Midterm 3

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy

April 27, 2020

1 Memory Bank

- 1. $\vec{E} = -\frac{\Delta V}{\Delta x}$... E-field is the slope or change in voltage with respect to distance
- 2. $V(x) = -Ex + V_0$... Voltage is linear between two charge planes
- 3. Q=CV ... Definition of capacitance
- 4. $C = \frac{\epsilon_0 A}{d}$... Capacitance of a parallel plate capacitor
- 5. $C_{tot}^{-1} = C_1^{-1} + C_2^{-1}$... Adding two capacitors in series.
- 6. $C_{tot} = C_1 + C_2$... Adding two capacitors in parallel.
- 7. i(t) = dQ/dt ... Definition of current.
- 8. $v_d = i/(nqA)$... Charge drift velocity in a current i in a conductor with number density n and area A.
- 9. $R_{tot}^{-1}=R_1^{-1}+R_2^{-1}$... Adding two capacitors in parallel.
- 10. $R_{tot} = R_1 + R_2$... Adding two capacitors in series.
- 11. $\Delta V = IR_{\text{tot}}, \vec{J} = \sigma \vec{E}$... Versions of Ohm's Law. (\vec{J} is the current density with units of Amps per meter-squared).
- 12. P = IV ... Relationship between power, current, and voltage.
- 13. $V_{\rm C}(t) = \epsilon_1 \left(1 \exp(-t/\tau)\right)$... voltage across the capacitor in an RC series circuit. The time constant $\tau = RC$.
- 14. $i(t) = \frac{\epsilon_1}{R} \exp(-t/\tau)$... Current in an RC series circuit.
- 15. $i_{\rm in}=i_{\rm out}$... Kirchhoff's junction rule.
- 16. $\epsilon_1 + \epsilon_2 + \epsilon_3 + \dots = 0$... Kirchhoff's loop rule.
- 17. $\vec{F} = q\vec{v} \times \vec{B}$... The Lorentz force on a charge q with velocity \vec{v} in a magnetic field \vec{B} .
- 18. $\vec{F} = I\vec{L} \times \vec{B}$... The Lorentz force on a conductor of length \vec{L} carrying a current I in a magnetic field \vec{B} .
- 19. $\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$... Ampère's Law.
- 20. $\epsilon = -Nd\phi/dt$... Faraday's Law.
- 21. $\phi = \vec{B} \cdot \vec{A}$... Definition of magnetic flux.
- 22. $-Nd\phi/dt = \oint \vec{E} \cdot d\vec{l}$... Induced E-field due to changing magnetic flux.
- 23. Faraday's Law using **Inductance**, M: $emf = -M \frac{dI}{dt}$.
- 24. Typically, we refer to mutual inductance between two objects as M, and self inductance as L. Self-inductance: $\Delta V = -L(dI/dt)$.
- 25. Units of inductance: V s A^{-1} , which is called a Henry, or H.
- 26. $B = \mu_0 nI$... The B-field of a solenoid, n = N/L is the turn density, and I is the current.

Figure 1: (Left) A current I experiences a force F in a B-field.

2 Chapter 11: Magnetic Forces and Fields

- 1. Consider Fig. 1 (left). In each of the three cases, determine the direction of the B-field given that F is the Lorentz force.
 - a: Into the page
 - b: To the left
 - c: Out of the page
- 2. Consider Fig. 1 (right). **The Hall Effect**. An E-field exists in the vertical direction and a B-field is perpendicular to the direction of charge velocity. (a) Show that if the E-field force on a charge balances the Lorentz force on a charge, that v = E/B. (b) If the E-field is constant, $E = \Delta V/\Delta x$. Show that

$$\Delta V = \frac{B\Delta xI}{nq_e A} \tag{1}$$

where n is the charge carrier density, q_e is the electron charge, A is the cross-sectional area of the conductor, and I is the current. Plug in B=1.33 T, $\Delta x=2$ cm, I=10 A, $n=2\times 10^{28}$ m⁻³, A=1 mm², and q_e is the charge of an electron.

- (a) Setting F = qE equal to F = qvB gives $qE = qvB \rightarrow v = E/B$. (b) Using the formula for the drift velocity in the memory bank, along with $\Delta V/\Delta x = E$, gives the correct result. (c) We get about 83 μV
- 3. A proton has a magnetic field due to its spin. The field is similar to that created by a circular current loop 0.65×10^{-15} m in radius with a current of 1.05×10^4 A. Find the maximum torque on a proton in a 2.50-T field. (This is a significant torque on a small particle.)

The magnitude of the magnetic moment is $\mu = NIA$, and N = 1 loop for the atom. The area is πr^2 , and we're given the current and radius. The torque is then $\tau = \mu B = 3.5 \times 10^{-26} \ N \ m$.

3 Chapter 12: Sources of Magnetic Fields

- 1. (a) What is the B-field inside a solenoid with 500 turns per meter, carrying a current of 0.3 A? (b) Suppose we insert a piece of metal inside the solenoid, boosting μ_0 by a factor of 5000. What is the new B-field?
 - (a) $B = \mu_0 n I = 4\pi \times 10^{-7} \times 500 \times 0.3 = 0.19 \ mT$. (b) Thos is a scaling problem: $B = 0.94 \ T$.
- 2. Consider Fig. 2. Mass spectrometer. Suppose that the velocity of the charged particles moving to the right is v = E/B. (a) Show that if v = E/B, $F_{net} = 0$ in the region in the top left¹. (b) Recall that the centripetal force on a particle of mass m is mv^2/r . Set this equal to the magnitude of the Lorentz force to prove that

$$r = \frac{mE}{qB^2} \tag{2}$$

¹Molecules that do not have this velocity will hit the sides of this portion of the instrument.

Figure 2: A basic diagram of a toroid, which is a solenoid wrapped into a circular tube.

The mass of an oxygen nucleus is 16 times that of a proton (mass of proton: 1.67×10^{-27} kg). Suppose oxygen ions with the charge of 1 proton are sent through the mass-sepctrometer. The E-field is 10 V/m, and the B-field is 0.01 T. What is the distance r?

(a) Recall the argument from the Hall Effect problem that if qE = qvB, v = E/B. (b)

$$\frac{mv^2}{r} = qvB \tag{3}$$

$$\frac{mv}{r} = qB \tag{4}$$

$$\frac{mv}{r} = qB \tag{4}$$

$$\frac{r}{mv} = \frac{1}{qB}$$

$$r = \frac{mv}{qB}$$
(5)

$$r = \frac{mv}{qB} \tag{6}$$

$$r = \frac{mE}{qB^2} \tag{7}$$

(c) Insert the correct numbers into the formula:

$$r = \frac{16 * 1.66 \times 10^{-27} * 10}{1.6 \times 10^{-19} 10^{-4}} \approx 1.66 \ cm \tag{8}$$

Chapter 13: Electromagnetic Induction 4

Figure 3: A voltage is induced on a loop by a changing B-field.

1. The magnetic field in Fig. 3 flows out of the page through a single (N=1) loop, and is tuned to follow the form

$$B(t) = B_0 \left(\frac{1}{2} + \frac{2}{\pi} \sin(2\pi f t) + \frac{2}{3\pi} \sin(6\pi f t) + \frac{2}{5\pi} \sin(10\pi f t) \right)$$
(9)

The loop has a radius r. (a) In terms of the given variables, what is the induced voltage in the circuit? (b) If $B_0 = 0.1 \text{ T}$, r = 0.1 m, and $f = 10^3 \text{ Hz}$, what is the induced emf at t = 0? (c) What is the current through the resistor at t = 1 ms?

(a)
$$\epsilon(t) = -4B_0\pi r^2 f(\cos(2\pi f t) + \cos(6\pi f t) + \cos(10\pi f t))$$
 (10)

(b) At time
$$t = 0$$
,

$$\epsilon(0) = -12B_0\pi r^2 f = -37.7 V$$
(11)

(c) At time t = 1 ms, ft = 1, so the cosines are all 1, as in part (b).

$$\epsilon(t) = -12B_0 \pi r^2 f = -37.7 \ V \tag{12}$$

Using Ohm's law, we have i = -7.54 A.

5 Chapter 14: Inductance

- 1. What is (a) the rate at which the current though a 0.50-H coil is changing if an emf of 0.150 V is induced across the coil?
 - 0.3 Amps per second, using Faraday's Law with inductance.
- 2. When a camera uses a flash, a fully charged capacitor discharges through an inductor. In what time must the 0.100-A current through a 2.00-mH inductor be switched on or off to induce a 500-V emf?

$$|\epsilon| = LdI/dt$$
, so $dt = LdI/|\epsilon| = 0.4 \ \mu s$