Лабораторная работа 5.8.1.

Вязовцев Андрей, Б01-009

09.10.22

Цель работы: при помощи модели абсолютно чёрного тела (АЧТ) проводятся измерения температуры, исследуется излучение накалённых тел, определяются постоянные Планка и Стефана-Больцмана.

В работе используются: оптический пирометр с исчезающей нитью и термопарой, накалённые тела с различной испускательной способностью.

Теоретическая справка:

Для измерения температуры тел, удалённых от наблюдателя, применяют методы оптических пирометрии, основанные на использовании зависимости испускательной способности исследуемого тела от температуры. Различают три температуры, функционально связанные с истинной термодинамической температурой и излучательной способностью тела: радиационную $T_{\rm pag}$, цветовую $T_{\rm цв}$ и яркостную $T_{\rm spk}$.

Радиационная (энергетическая) температура — температура АЧТ, при которой его интегральная испускательная способность одинакова с интегральной испускательной способностью исследуемого тела.

Цветовая температура — температура АЧТ, при которой отношение их спектральных испускательных способностей для двух заданных длин волн одинаково.

Яркостная температура — температура АЧТ, при которой его спектральная испускательная способность равна спектральной испукательной способности исследуемого тела при той же длине волны. Именно эту температуру мы и будем измерять. Для вольфрама функциональная зависимость термодинамической температуры от яркостной представлена на рис. 1.

Закон Киргофа для излучения любого тела:

Рис. 1. $T = f(T_{\text{ярк}})$ для вольфрама

$$r_{\lambda} = a_{\lambda} r_{\lambda}^{\text{ATT}} \tag{1}$$

Для абсолютно серого тела (АСТ):

$$a_{\lambda} \equiv a = const$$
 (2)

Если бы нить излучала как AЧТ, то баланс потребляемой и излучаемой энергии определялся бы соотношением:

$$W = \sigma S(T^4 - T_0^4) \tag{3}$$

где W — потребляемой нитью электрическая мощность, S — площадь излучаемой поверхности нити, T — температура нити, T_0 — температура окружающей среды, $\sigma=5.67\cdot 10^{-12}~\frac{\rm Br}{{\rm cm}^2\cdot {\rm K}^4}$ — постоянная Стефана-Больцмана.

Если считать нить серым телом и его излучение ослаблено на ε_T по сравнению с АЧТ, то:

$$W = \varepsilon_T S \sigma T^4 \tag{4}$$

Коэффициент ε_T зависит от температуры следующим образом для вольфрама:

При выполнении работы также потребуется вычислить постоянную планка h с помощью постоянной Стефана-Больцмана σ . Приведём необходимую формулу ниже:

T, K	1700	1800	1900	2000
ε_T	0.209	0.223	0.236	0.249

Таблица 1. $\varepsilon_T(T)$ для вольфрама

$$h = \sqrt[3]{\frac{2\pi^5 k_{\rm B}^4}{15c^2\sigma}} \tag{5}$$

Экспериментальная установка:

На рис. 2 изображена экспериментальная установка. Она состоит из оптического пирометра 9, модели АЧТ, трёх образцов (18, 19, 20), блока питания (1) и цифровых вольтметров В7-22А и В7-38.

- 1. Блок питания
- 2. Тумблер включения питания пирометра и образцов
- 3. Тумблер нагрева нити пирометра «Быстро» вверх, «Медленно» вниз
- 4. Кнопка «Нагрев нити»
- 5. Кнопка «Охлаждение нити»
- 6. Тумблер переключения образцов
- 7. Регулятор мощности нагрева образцов
- 8. Окуляр пирометра
- 9. Корпус пирометра
- 10. Объектив пирометра
- 11. Переключение диапазонов: 700 1200 °C вниз, 1200 2000 °C вверх
- 12. Ручка перемещения красного светофильтра
- 13. Регулировочный винт
- 14. Вольтметр (напряжение на лампе накаливания)
- 15. Амперметр (ток через образцы)

- 16. Вольтметр в цепи термопары
- 17. Модель АЧТ
- 18. Трубка с кольцами из материалов с разной излучательной способностью
- 19. Лампа накаливания
- 20. Неоновая лампочка

Рис. 2. Схема экспериментальной установки.

Ход работы:

І. Изучение работы оптического пирометра.:

1. Включим модель АЧТ, дадим ей прогреться (приблизительно до 37.5 мВ на термопаре). Далее включиим пирометр и измерим температуру (температуры тела и нити считаются равными, когда нить сливается с ним). Также укажем ожидаемую температуру (используя постоянную термопары 41 мкВ).

Из таблицы видно, что температуры отличаются в пределах 3%, т. е. пирометр настроен верно.

направление	вверх	вверх	вниз	вниз
U, мВ	37.97	37.91	38.04	37.92
$T_{\rm spk}$	926	937	934	938
$T_{\text{терм}}$	926	925	928	925

Таблица 2. Измерения на АЧТ

II. Измерение яркостной температуры накалённых тел.:

2. Посмотрим, как различные тела при одной и той же температуре имеют яркостную температуру. Для этого измерим температуру колец. Результаты см. в таблице 3.

объект	левое кольцо	керамика	правое кольцо
T , $^{\circ}C$	800	846	784

Таблица 3. Кольца

III. Проверка закона Стефана-Больцмана.:

3. Теперь измерим напряжение и силу тока через лампочу с нитью накаливания прощадью $S=0.36~{\rm cm}^2$, изменяя её яркостную температуру от 900 до 1900 °C. Результаты представлены в таблице 4.

$T_{\rm spi}$	к, °С	90	0	100	00	110	00	120	00	130	00	140	00
U	, B	1.710		1.973		2.4	$2.449 \mid 2.94$		$42 \mid 3.21$		14	3.89	
I	I, A 0.48		35	0.511		0.5	0.60		$0.69 \mid 0.69$		27	0.68	34
	$T_{\rm spk}, {}^{\circ}C$		1	1500 16		600 17		700	18	800	19	900	
	U, B		4.	.660 5.		287	6.	243	7.	245	7.	797	
	I, A		0.	745	0.	793	0.	861	0.	929	0.	964	

Таблица 4. Лампа

4. Теперь определим с помощью этих данных выделяемую на лампе мощность и термодинамическую температуру (с помощью графика 1).

$T_{\rm sp}$	$_{\rm ok}$, $^{\circ}C$	90	0	100	00	110	00	120	00	130	00	140	00
T_{T}	ерм, К	121	0	132	20	143	80	153	30	164	10	174	10
W	′, Вт	0.8	3	1.0	1	1.3	7	1.7	7	2.0	2	2.6	6
	$T_{\rm spk}$,	$^{\circ}C$	1	500	10	600	1'	700	18	800	19	900	
	$T_{\text{терм}}$, K	18	850	19	960	20	060	2	170	25	270	
	W, I	Зт	3	.47	4	.19	5	.38	6	.73	7	.52	

Таблица 5. Ещё лампа

- 5. Построим графики W=f(T) (см. рис. 3) и $\ln W=f(\ln T)=\ln(\varepsilon_T\sigma S)+n\ln T$ (см. рис. 4).
 - 6. Из графика с помощью МНК получаем:

$$n = 4.01 \pm 0.12$$

$$\ln(\varepsilon_T \sigma S) = -26.91 \pm 0.01$$

Стоит отметить, что график строился только по тем точкам, у которых T>1700 К. Это сделано из-за того, что при меньших температурах существует зависимость S(T), которую невозможно учесть. Начиная же с таких температур нить накаляется полностью, т. е. $S=0.36~{\rm cm}^2=const.$ Но при этом необходимо учесть, что ε_T тоже зависит от температуры. Для этого была использована таблица 1.

Рис. 3. График W = f(T)

Также заметим, что теоретическое значение n=4 (см. (4)). Полученное экспериментальное значение сходится с теоретическим. Звучит нереалистично.

7. Для каждого значения $T>1700~{\rm K}$ найдём постоянную Стефана-Больцмана по формуле 4. Результаты представлены в таблице 6.

T, K	1740	1850	1960	2060	2170	2270	
$\sigma, \frac{\mathrm{Br}}{\mathrm{cm}^2 \cdot \mathrm{K}^4}$	$3.76 \cdot 10^{-12}$	$3.62 \cdot 10^{-12}$	$3.28 \cdot 10^{-12}$	$3.21 \cdot 10^{-12}$	$3.11 \cdot 10^{-12}$	$2.72 \cdot 10^{-12}$	

Таблица 6. $\sigma(T)$

Как видно, полученные значения отличаются в 1.5-2 раза. Вероятно, проблема в неверно указанном S на установке.

8. Теперь с помощью формулы (5) найдём постоянную планка. Очевидно, что оно будет неверно, ну да и ладно. Результаты — в табл. 7.

Рис. 4. График $\ln W = f(\ln T)$

	Г, К	1740	1850	1960	2060	2170	2270	
h, f	Дж · с	$7.60 \cdot 10^{-34}$	$7.69 \cdot 10^{-34}$	$7.95 \cdot 10^{-34}$	$8.01 \cdot 10^{-34}$	$8.10 \cdot 10^{-34}$	$8.47 \cdot 10^{-34}$	

Таблица 7. h(T)

IV. Измерение «яркостной температуры» неоновой лампочки.:

9. Теперь направим пирометр на неоновую лампочку. Находим $T_{\rm ярк}=830~{\rm K}.$ Но при этом она холодная на ощупь. Это означается, что природа свечения в ней другая.