mobiveil

SRIO VIP User Guide V1.3

NOTICE

Copyright in this document is owned by Mobiveil Inc. The use of this documentation is governed by an agreement containing restrictions on use, access, and disclosure.

Mobiveil Inc. and its licensor reserve the right to make changes to this documentation without obligation to notify any person or organization.

No part of this document may be photocopied, reproduced, transmitted, transcribed, stored in a retrieval system or translated to another language, in any form or by any means, electronic, mechanical, magnetic, optical or otherwise, or disclosed to third parties without the prior written consent of Mobiveil Inc. or its licensor.

THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE DOCUMENT. MOBIVEIL, INC. OR IT'S LICENSOR MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE TECHNOLOGY DESCRIBED IN THIS DOCUMENT AT ANY TIME.

Revision History

Revision	Date	Ву	Change
1.0	04/26/2013	MV	Initial Version
1.1	06/03/2013	MV	More logic related 1.x and 2.x
1.2	07/26/2013	MV	GEN3 Logic
1.3	09/20/2013	MV	GEN3 Changes and TXRX Model Support

Glossary

SRIO	Serial RapidIO
VIP	Verification IP
BFM	Bus Functional Model
VC	Virtual Channel
GSM	Globally Shared Memory
LFC	Logical Flow Control
PL	Physical Layer
TL	Transport Layer
LL	Logical Layer
ENV	Environment
REG	Register
DUT	Design Under Test
TLM	Transaction Level Model
FC	Functional Coverage
I/O	Input/Output
DS	Data Streaming
CS	Control Symbol
VMIN	Minimum Valid Characters
UVM	Universal Verification Methodology
SV	System Verilog
CRF	Critical Request Flow

Contents

Chapter 1. Introduction	. 8
1.1 Purpose	8
1.2 Scope	8
1.3 Audience	
1.4 References	8
Chapter 2. Overview	
2.1 Features Supported	
Chapter 3. Interface Description	
Chapter 4. Configuration Variables	
Chapter 5. Sequences	34
5.1 Logical Layer Sequences	34
5.2 Transport Layer Sequences	43
5.3 Physical Layer Sequences	44
Chapter 6. Sequence Item	50
Chapter 7. List of Checks	56
7.1 Logical Layer Checks	56
7.2 Transport Layer Checks	62
7.3 PL Monitor checks	62
Chapter 8. Creating SV Environment Using SRIO VIP	73
Chapter 9. Directory Structure	88
9.1 Directory / Files Description	88
Chapter 10. Running Simulation In Demo Setup	94
Chapter 11. Tools Used	96

Figures

Figure 1	Block Diagram Of SRIO VIP With DUT Setup	.10
Figure 2	Block Diagram Of SRIO VIP Back To Back Setup	.11
Figure 3	Block Diagram Of SRIO VIP Directory Structure	.88

Page 6 SRIO VIP User Guide

Tables

Table 1 SRIO VIP Interface	12
Table 2 SRIO VIP Global Configuration Parameters	14
Table 3 Logical Layer Configuration Parameters	16
Table 4 Transport Layer Configuration Parameters	18
Table 5 PL Agent Configuration Parameters	19
Table 6 PL User Input Parameters	32
Table 7 Logical Layer Sequences	34
Table 8 Transport Layer Sequences	43
Table 9 Physical Layer Sequences	44
Table 10 SRIO VIP's Sequence Item	50
Table 11 Logical Layer Checks	56
Table 12 Transport Layer Checks	62
Table 13 Physical Layer Checks	62
Table 14 Directory and Files Description	88
Table 15 RUN Command Options	95

1 Introduction

1.1 Purpose

This document provides the information about setting up the verification environment using SRIO VIP. It also describes the configuration of the of SRIO VIP and its usage.

1.2 Scope

The document covers the environment setup, directory structure, configuration, integration and running the simulation.

1.3 Audience

This document is intended for test bench developers and testcase writers who is going to use the SRIO VIP.

1.4 References

- "Serial RapidIO specification 1.3"
- "Serial RapidIO specification 2.x"
- "Serial RapidIO specification 3.x"
- "UVM 1.1 class reference manual"
- "UVM user guide 1.1"
- "SRIO VIP Microarchitecture"

Page 8 SRIO VIP User Guide

2 Overview

Mobiveil's Gen3 SRIO VIP supports SRIO specification versions 3.0, 2.2,2.1 and 1.3. The Gen3 VIP is system verilog (SV) based and supports standard Universal Verification Methodology (UVM).

2.1 Features Supported

- Supports Serial RapidIO specification versions 3.0, 2.2, 2.1 and 1.3
- Supports 1x, 2x, 4x 8x and 16x lane configurations.1.25 Gbaud, 2.5 Gbaud, 3.125 Gbaud, 5 Gbaud, 6.25 and 10.3125 Gbaud lane rates
- Supports 66, 50 and 34-bit addressing on the RapidIO interface
- Supports all types of packet formats
- Supports all types of IDLE sequences, Control and Status Symbols
- Supports Scrambling/De-Scrambling and Encoding/Decoding
- Supports out of order transaction generation and handling
- Supports critical request flow (CRF)
- Supports all transaction flows, with all priorities
- Supports test pattern generation at all protocol layers
- Supports error injection and error detection at all levels of protocol layers
- Provides Compliance Test Suite
- Functional Coverage

Figure 1, "Block Diagram Of SRIO VIP With DUT Setup," on page 10 shows the environment setup connecting the SRIO VIP with DUT. In tb_top module, interface and DUT are instantiated. Test is run from the tb_top module. In srio_base_test, srio_env is instantiated.

Figure 1 : Block Diagram Of SRIO VIP With DUT Setup

Figure 2, "Block Diagram Of SRIO VIP Back To Back Setup," on page 11 shows the environment setup connecting the two SRIO VIPs back to back. In tb_top module, interface is instantiated two times one each for both SRIO VIPs. Test is run from the tb_top module. In srio_base_test, srio_env1 and srio_env2 are instantiated.

Page 10 SRIO VIP User Guide

Figure 2 : Block Diagram Of SRIO VIP Back To Back Setup

3 Interface Description

All interface signals required for the SRIO VIP are declared in srio_interface.sv file.Refer to Table 1, "SRIO VIP Interface," on page 12 for the signals description.

Table 1: SRIO VIP Interface

Name	Width	I/O	Function
srio_rst_n	logic	Input	Reset.
sim_clk	logic	Input	Simulation clock. Must be greater than serial clock divided by 10. Silence timer and discovery timer are executed based on posedge of sim_clk. Thus, inorder to match the DUT's timer value, the model's timer values have to programmed based on the sim_clk period. For example, if DUT's discovery timer is kept as 20000ns for simulation purpose, and if the sim_clk period is 2ns, then the discovery timer value in pl agent config has to be set as 10000.
rx_sclk	logic[0:15]	Input	Serial RIO receive clock.
rxp	logic[0:15]	Input	Serial RIO receive data.
rxn	logic[0:15]	Input	Serial RIO receive complement data.
tx_sclk	logic[0:15]	Input	Serial RIO transmit clock.
txp	logic[0:15]	Output	Serial RIO transmit data.
txn	logic[0:15]	Output	Serial RIO transmit complement data.
rx_pclk	logic[0:15]	Input	Receive clock for parallel data mode.
rx_pdata	logic[0:15]	Input	Receive data for GEN1/GEN2 parallel data mode. Array of width 10-bits and depth 16.
tx_pclk	logic[0:15]	Input	Transmit clock for parallel data mode.
tx_pdata	logic[0:15]	Output	Transmit data for GEN1/GEN2 parallel data mode. Array of width 10-bits and depth 16.
gen3_rx_pdata	logic[0:15]	Input	Receive data for GEN3 parallel data mode. Array of width 67-bits and depth 16.
gen3_tx_pdata	logic[0:15]	Output	Transmit data for GEN3 parallel data mode. Array of width 67-bits and depth 16.

Name	Width	I/O	Function
TSG_clk	logic	1	The TSG (Timestamp Generator) counter used in Timing Synchronization protocol runs on the TSG clock.

4 Configuration Variables

This is the configuration object module that contains the global configuration variables used by the SRIO VIP components. This class inherits from uvm_object and named as srio_config.

Refer to Table 2, "SRIO VIP Global Configuration Parameters," on page 14 for the list of global configuration variables and their description.

Table 2: SRIO VIP Global Configuration Parameters

S.No	Parameter	Description
1	is_active	UVM_ACTIVE - BFM component will be instantiated and drive the interface signals. UVM_PASSIVE - Only Monitor component will be instantiated.Default - UVM_ACTIVE.
2	srio_vip_model	Selects the sRIO VIP model.(PE Model - SRIO_PE,PL Model - SRIO_PL,TxRx Model - SRIO_TXRX). Default - SRIO_PE.
3	srio_mode	Configures the mode/version. (SRIO_GEN30,SRIO_GEN22,SRIO_GEN21 and SRIO_GEN13). Default - SRIO_GEN21.
4	num_of_lanes	Configures the number of lanes.(1,2,4,8 and 16).Default - 4.
5	srio_baud_rate	Selects the baud rate. (SRIO_125,SRIO_25,SRIO_3125,SRIO_5,SRIO_625 and SRIO_103125).
6	en_ext_addr_support	If value is "1", supports extended address. Default - 0.
7	srio_addr_mode	Configures the addressing mode.(SRIO_ADDR_34,SRIO_ADDR_50 and SRIO_ADDR_66).Default - SRIO_ADDR_34.
8	srio_dev_id_size	Configures the device id type.(SRIO_DEVID_8,SRIO_DEVID_16 and SRIO_DEVID_32).Default - SRIO_DEVID_8.
9	srio_interface_mode	Configures if the line interface is serial or parallel.(SRIO_SERIAL, SRIO_PARALLEL).If Serial interface is selected, data is driven serially and user needs to provide serial clock.If Parallel interface is selected, data is driven in 10-bit or 67-bit interfaces based on GEN1/2 and GEN3 mode, user needs to provide parallel clock.Default - SRIO_SERIAL.
10	reg_space_size	Configures the size of the register block.Default - 24'hFFFFFF.

Page 14 SRIO VIP User Guide

S.No	Parameter	Description
11	srio_reg_model_tx	Pointer for the BFM's srio register model instance.
12	srio_reg_model_rx	Pointer for the DUT's srio register model instance.
13	link_initialized	Informs the status of the link initialization of active component.
14	pl_mon_tx_link_initialized	Informs the status of the link initialization of TX monitor.
15	pl_mon_rx_link_initialized	Informs the status of the link initialization of RX monitor.
16	packet_rx_started	Event which is triggered when the BFM started receiving a packet.
17	current_ack_id	Provides the value of the AckID currently used.
18	srio_tx_mon_if	Configures the TX monitor type.(BFM or DUT).
19	srio_rx_mon_if	Configures the RX monitor type.(BFM or DUT).
20	pl_rx_mon_init_sm_state	Provides the ISM state of RX monitor.
21	pl_rx_mon_init_sm_state	Provides the ISM state of TX monitor.
22	idle_detected	Informs that active component has completed the IDLE sequence detection
23	idle_selected	Informs the IDLE sequence detected by the active component. 1 indicates IDLE2, 0 indicates IDLE1.
24	multi_vc_support	Multiple VC Support.When true, VC1-8 and VC0 supported. When false, VC0 support. Default - 0.
25	vc_num_support	VC Number Support. Number of VC's supported.Default - 1.
26	file_h	Integer variable for file handler. Used for tracker file generation.
27	ll_config	Handle of srio_ll_config.
28	tl_config	Handle of srio_tl_config.
29	pl_config	Handle of srio_pl_config.
30	port_number	Device Port Number.Default - 0.
31	spec_support	Indicates the specification version to be followed. It is used to enable the new features added for 1.3 and 2.x devices in 3.0 specification, like timing control symbols, link-request reset port command, and new register set etc.
32	en_packet_delay	Enables delay between packets. Default - 0.

Logical Layer configuration object (srio_ll_config) is inherited from uvm_object, has the configuration variables used by the components of logical layer agent.

Refer to Table 3, "Logical Layer Configuration Parameters," on page 16 for the list of logical layer configuration variables and their description.

Table 3: Logical Layer Configuration Parameters

S.No	Parameters	Description
		1
1	is_active	UVM_ACTIVE - BFM component will be instan-
		tiated and drive the interface signals. UVM PASSIVE - Only Monitor component will
		be instantiated.Default - UVM ACTIVE.
2	has abouts	_
	has_checks	If TRUE, enables the LL checks in the LL monitor else checks are disabled.Default - TRUE.
3	has_coverage	If TRUE, functional coverage for logical layer is enabled.Default - TRUE.
4	interleaved_pkt	If TRUE, packets of different types are interleaved. If FALSE, packets are sent in the order they are received. Default - FALSE.
5	is_active	UVM_ACTIVE - BFM component will be instantiated and drive the interface signals. UVM_PASSIVE - Only Monitor component will be instantiated.Default - UVM_ACTIVE.
6	en_out_of_order_gen	If TRUE, messages and responses are generated out-of-order.Default - FALSE.
7	arb_type	Configures the arbitration mechanism of packet scheduler.(SRIO_LL_RR - Round Robin, SRIO_LL_WRR - Weighted Round Robin).Default - SRIO_LL_RR.
8	resp_done_ratio	Defines the probability of DONE response generation. Default - 100.
9	resp_err_ratio	Defines the probability of ERROR response generation. Default - 0.
10	resp_retry_ratio	Defines the probability of RETRY response generation. Default - 0.
11	gen_resp_en_ratio	Defines the probability of sending the response packet. Default - 100.
12	gen_resp_dis_ratio	Defines the probability of disabling the response packet. Default - 0.
13	resp_interv_ratio	Defines the probability of INTERVENTION response generation. Default - 20.

Page 16 SRIO VIP User Guide

S.No	Parameters	Description
14	resp_done_interv_ratio	Defines the probability of DONE INTERVEN- TION response generation.Default - 20.
15	resp_data_only_ratio	Defines the probability of DATA ONLY response generation.Default - 20.
16	resp_not_owner_ratio	Defines the probability of NOT OWNER response generation.Default - 0.
17	resp_gen_mode	IMMEDIATE, RANDOM, DISABLED. Default - IMMEDIATE.
18	resp_delay_min	Configures the response delay minimum value.Default - 100.
19	resp_delay_max	Configures the response delay maximum value.Default - 500.
20	io_pkt_ratio	Defines the probability of IO Packets transmission.Default - 20.
21	msg_pkt_ratio	Defines the probability of Message Packet transmission.Default - 20.
22	db_pkt_ratio	Defines the probability of Doorbell Packet transmission.Default - 20.
23	gsm_pkt_ratio	Defines the probability of GSM Packets transmission.Default - 20.
24	lfc_pkt_ratio	Defines the probability of LFC Packets transmission.Default - 20.
25	ds_pkt_ratio	Defines the probability of Data Streaming Packets transmission.Default - 20.
26	bfm_tx_pkt_cnt	Transmitted packet count from LL BFM
27	bfm_rx_pkt_cnt	Received packet count from LL BFM.
28	block_ll_traffic	Enable/Disable transmission from LL.Default - FALSE.
29	ll_resp_timeout	Response timeout value in nanoseconds.Default - 10000.
30	ll_pkt_transmitted	Event triggered whenever a packet is transmitted from LL.
31	ll_pkt_received	Event triggered whenever a packet is received by LL.
32	orph_xoff_timeout	Timeout limit for Orphaned XOFF in ns. Default - 32'h0FFF_FFFF
33	req_xonxoff_timeout	Max time (in ns) within which XON/XOFF to be sent after receiving REQUEST. Default - 32'h0FFF_FFFF

S.No	Parameters	Description
34		Max time (in ns) within which PDU has to be sent after receiving XON Default - 32'h0FFF_FFFF
35	tx_mon_tot_pkt_rcvd	Number of packets received by TX monitor
36	rx_mon_tot_pkt_rcvd	Number of packets received by RX monitor

Transport Layer configuration object (srio_tl_config) is inherited from uvm_object, has the configuration variables used by the components of transport layer agent.

Refer to Table 4, "Transport Layer Configuration Parameters," on page 18 for list of transport layer configuration variables and their description.

Table 4: Transport Layer Configuration Parameters

S.NO	Parameter	Description
1	is_active	UVM_ACTIVE - BFM component will be instantiated and drive the interface signals. UVM_PASSIVE - Only Monitor component will be instantiated.Default - UVM_ACTIVE.
2	has_checks	If TRUE, enables the TL checks in the TL monitor else checks are disabled.
3	has_coverage	If TRUE, functional coverage for transport layer is enabled.
4	en_deviceid_chk	If set to 1, i.e when the Device ID check is enabled, Destination ID of the received packet is expected to match with its own Device ID, failing which will result in uvm_error and the packet will not be forwarded to the upper layer (LL) and hence it will be discarded.
5	usr_sourceid_en	Enable/Disable using Source ID value from user.Default - FALSE.
6	usr_destinationid_en	Enable/Disable using Destination ID value from user.Default - FALSE.
7	usr_sourceid	Source ID value from user.
8	usr_destionationid	Destination ID value from user.
9	lfc_orphan_timer	Orphan timer value for LFC packets in Nano seconds.Default - 10000.

Physical Layer configuration object (srio_pl_config) is inherited from uvm_object, has the configuration variables used by the components of physical layer agent.

Page 18 SRIO VIP User Guide

Refer to Figure 5, "PL Agent Configuration Parameters," on page 19 for list of physical layer configuration variables and their description.

Table 5: PL Agent Configuration Parameters

S.No	Parameter	Description
1	has_checks	If TRUE, enables the PL checks in the PL monitor else checks are disabled.
2	has_coverage	If TRUE, functional coverage for physical layer is enabled.
3	comma_cnt_threshold	Comma Count Threshold. Number of comma(Idle_k) symbols needed for synchronization.Default value is 127
4	clk_compensation_seq_rate	Clock compensation sequence rate. Default value is 4096
5	ism_status_cs_sent	Number of status control symbol sent in initialization phase prior to entering normal operational mode.Default value is 15
6	ism_status_cs_rx	Number of error free control symbols received to enter into normal operational mode.Default value is 7
7	sync_break_threshold	Sync Break Threshold.Number of invalid symbols needed to break the sync.
8	lane_misalign_threshold	Lane Misalignment Threshold. Number of invalid A characters to declare lane misalignment.
9	code_group_sent_2_cs	Number of allowed code groups sent between two status control symbols
10	tx_scr_en	Transmit scrambler enable. When true scrambling is enabled. When false, scrambling is disabled
11	vmin_sync_threshold	VMIN Sync Threshold. Threshold for valid number of successive symbols needed in establishing synchronization in initialization phase.
12	valid_sync_threshold	Valid Sync Threshold. Number of valid characters after an invalid character reception threshold

S.No	Parameter	Description
13	bfm_discovery_timer	Discovery timer value used by the BFM. It is executed based on the posedge of sim_clk. Thus, inorder to match the DUT's timer value, the model's timer value have to be programmed based on the sim_clk period. For e.g., if DUT's discovery timer value is programmed as 20000ns for simulation purpose, and if the sim_clk period is 2ns, then the discovery timer value in pl agent config has to be set as 10000.
14	bfm_silence_timer	Silence timer value used by the BFM. It also need to be programmed in the same way as described for discovery timer.
15	lp_discovery_timer	Discovery timer value used by the BFM's link partner. It also need to be programmed in the same way as described for discovery timer.
16	lp_silence_timer	Silence timer value used by the BFM's link partner. It also need to be programmed in the same way as described for discovery timer.
17	pkt_retry_support	Packet Retry Support. When true, packet retry support is enabled. When false, packet retry support is disabled.
18	idle_seq_check_en	Idle Sequence Check Enable. When true, check is enabled. When false, check is disabled
19	force_reinit_en	Force Re-initialization Enable. When true, force reinitialization is enabled.
20	ackid_threshold	ACKID Threshold. Threshold for the number of outstanding packets that will return response
21	aet_en	Adaptive Equalization Training enable. When true AET is performed. When false AET is not performed
22	force_1x_mode_en	Force 1x Mode Enable. when true, enables force 1x mode support. Enabled by default.
23	force_laner_en	Force LaneR Mode Enable. When true, enables the support for force laneR. It is valid only if force_1x_mode_en is true. Enabled by default.
24	buffer_space	Buffer Space. Buffer space when flow control mode set to transmit flow control. Default value set is 16

Page 20 SRIO VIP User Guide

S.No	Parameter	Description
25	buffer_rel_min_val	Buffer Space release time is randomly selected between minimum and maximum values. Time is in terms of clock cycles.
26	buffer_rel_max_val	Buffer Space release time is randomly selected between minimum and maximum values. Time is in terms of clock cycles.
27	flow_control_mode	Flow Control Mode.(SRIO_FC_TRANSMIT - transmit control enable ,SRIO_FC_RECEIVE-receive control flow control enable
28	aet_command_period	Configures the time period between two successive AET commands.(Period.is mentioned interms of nano seconds)
29	cs_field_ack_timer	CS Field ACK Timer. When AET is enabled,the time within which the ACK will be received for a training command
30	align_threshold	Align Threshold. Threshold for the number of valid A columns needed for declaring lane alignment
31	default_cs_stype0	Default CS Stype0. Stype0 set to status when generating stype1 control symbol
32	default_cs_stype1	Default CS Stype1. Default stype1 set to NOP when generating stype0 control symbol
33	link_timeout	Port Link Timeout.Port Link timeout value
34	vc_refresh_interval	VC Refresh Interval.
35	vc_status_cs_rate	VC Status CS Rate.
36	pkt_accept_prob	Packet Accepted Probability.Probablility for sending out Packet Accepted control symbol
37	pkt_na_prob	Packet Not Accepted Probability.Probablility for sending out Packet Not Accepted control symbol
38	pkt_retry_prob	Packet Retry Probability.Probablility for sending out Packet Retry control symbol
39	brc3_training_mode	Training Mode. When set, long run training mode is supported, else, short run training mode is supported. Specific to Baud Rate Class 3. Default is short-run support.
40	tap_minus_min_value	Tap(_) Minimum Value.
41	tap_minus_max_value	Tap(_) Maximum Value.
42	tap_minus_rst_value	Tap(_) Reset Value.
43	tap_minus_prst_value	Tap(_) Preset Value.

S.No	Parameter	Description
44	tap_plus_min_value	Tap(+) Minimum Value.
45	tap_plus_max_value	Tap(+) Maximum Value.
46	tap_plus_rst_value	Tap(+) Reset Value.
47	tap_plus_prst_value	Tap(+) Preset Value.
48	def_tap	Default Tap
49	tap_rst_value	Tap Reset Value
50	tap_preset_value	Tap Preset Value
51	aet_cmd_kind	AET command kind {CMD_ENABLED,CMD_DISABLED}.
52	aet_cmd_cnt	Total number of aet command sending count.
53	aet_cmd_type	AET command type {TAPPLUS,TAPMI- NUS,RST,PRST,CMD_RANDOM}.
54	aet_tplus_kind	AET tap plus kind {TP_HOLD,TP_INCR,TP_DECR,TP_RANDO M}.
55	aet_tminus_kind	AET tap minus kind {TM_HOLD,TM_INCR,TM_DECR,TM_RAND OM}.
56	aet_training_period	The time period after which the receiver trained will be asserted when no training command is received
57	vc_ct_mode	VC continuous traffic mode.When set,VC set to CT mode and when not set VC set to RT mode
58	idle2_data_field_len	Length of Idle2 sequence Data field Length
59	max_pkt_size	Maximum packet size
60	pkt_ack_gen_mode	Packet acknowledgement generation kind {PL_IMMEDIATE, PL_RANDOM and PL_DISABLED}.
61	pkt_ack_delay_min	Minimum value of packet acknowledgement transmission delay.
62	pkt_ack_delay_max	Maximum value of packet acknowledgement transmission delay.
63	pl_response_gen_mode	Packet response generation kind {IMMEDI-ATE,RANDOM and DISABLED}
64	pl_response_delay_min	Minimum value of PL response packet transmission delay.
65	pl_response_delay_max	Maximum value of PL response packet transmission delay.

Page 22 SRIO VIP User Guide

S.No	Parameter	Description
66	response_en	Response Enable. When true,response driving is enabled and when false driving response is disabled
67	ackid_status_pnack_support	ACKID Status PNACK Support.When true, Param0 field of Packet Not Accepted CS carry AckId status information.When false,Param0 field of Packet Not Accepted CS doesnot carry AckId status information
68	timestamp_sync_support	Timestamp Sync Support.When true,timestamp sync is supported. When false,timestamp sync is not supported. Specific to specification revision 3.0.
69	timestamp_support	Timestamp Master Slave support.When TRUE, timestamp master is supported and when false timestamp slave is supported.
70	seed_ord_seq_rate	Seed ordered sequence rate. The rate at which seed order sequences are transmitted in IDLE3 sequence. Default value is 48
71	status_cntl_ord_seq_rate_mi n	Minimum code words allowed in between 2 status/control ordered sequence. Default value is 18.
72	status_cntl_ord_seq_rate_m ax	Maximum code words allowed in between 2 status/control ordered sequence. Default value is 49.
73	asymmetric_support	Asymmetric mode support. When true, asymmetry is supported. When false, asymmetry is not supported. Specific to Baud Rate Class3
74	cs_merge_en	If TRUE, control symbols carries both STYPE0 and STYPE1 functionalities. If FALSE, packets and non-status control symbols are transmitted on an individual basis.
75	cs_embed_en	If TRUE, control symbols are embedded with in packets.If FALSE,embedded CS's are disabled.
76	skew_en	Array of 16 bits, where each bit position indicates corresponding lane number. If an array bit is set, skew is enabled on that particular lane. Default value is 0 on all positions. 0 to 70 in serial and GEN1/2 mode.0 to 469 in serial and GEN3 mode.0 to 7 in parallel and GEN1/2/3 mode.
77	skew_min	Skew range minimum value. Integer type unpacked array of 16 locations.

S.No	Parameter	Description
78	skew_max	Skew range maximum value. Integer type unpacked array of 16 locations.
79	idle_sel	If TRUE, idle2 is enabled else idle1 is enabled.
80	nx_mode_support	Indicates NX mode is supported or not. A value of '1' indicates nx mode is supported.
81	x2_mode_support	Indicates X2 mode is supported or not. A value of '1' indicates 2x mode is supported.
82	brc3_v_cnt_threshold	BRC3 V_counter threshold. Used in codeword lock state machine to count the valid codewords.
83	brc3_iv_slip	BRC3 IV_Slip value used in codeword lock state machine.
84	brc3_ds_cnt_threshold	BRC3 DS_counter threshold. Used in sync state machine for BRC3 devices to count the descrambler seed codewords.
85	lock_break_threshold	Number of invalid codewords to be received inorder to break the codeword lock in a lane.
86	sync1_state_ui_cnt_threshol d	Unit interval used in sync state machine for BRC3, to wait before moving to SYNC_2 state from SYNC_1 state.
87	cw_training_ack_timeout_p eriod	ACK/NAK timeout period for codeword training.
88	cw_training_cmd_deassertio n_period	Time period within which command has to return to "hold" incase of codeword training.
89	gen3_training_timer	Time period within which codeword training/retraining or DME training is expected to complete.
90	gen3_keep_alive_assert_tim er	Time period after which keep_alive signal has to be asserted in any particular lane which is in TRAINED state.
91	gen3_keep_alive_deassert_t imer	Time period after which keep_alive signal has to be deasserted in any particular lane once asserted.
92	bfm_dme_training_c0_prese t_value	C0 tap preset value used by the BFM for DME training. Default value is 20.
93	bfm_dme_training_c0_init_value	C0 tap initialize value used by the BFM for DME training. Default value is 0.
94	bfm_dme_training_c0_min_ value	C0 tap minimum coefficient value used by the BFM for DME training. Default value is 0.
95	bfm_dme_training_c0_max _value	C0 tap maximum coefficient value used by the BFM for DME training. Default value is 20.

Page 24 SRIO VIP User Guide

S.No	Parameter	Description
96	bfm_dme_training_cp1_pre set_value	CP1 tap preset value used by the BFM for DME training. Default value is 0.
97	bfm_dme_training_cp1_init _value	CP1 tap initialize value used by the BFM for DME training. Default value is 0.
98	bfm_dme_training_cp1_min _value	CP1 tap minimum coefficient value used by the BFM for DME training. Default value is 0.
99	bfm_dme_training_cp1_ma x_value	CP1 tap maximum coefficient value used by the BFM for DME training. Default value is 15.
100	bfm_dme_training_cn1_pre set_value	CN1 tap preset value used by the BFM for DME training. Default value is 0.
101	bfm_dme_training_cn1_init_value	CN1 tap initialize value used by the BFM for DME training. Default value is 0.
102	bfm_dme_training_cn1_min _value	CN1 tap minimum coefficient value used by the BFM for DME training. Default value is 0.
103	bfm_dme_training_cn1_ma x_value	CN1 tap maximum coefficient value used by the BFM for DME training. Default value is 10.
104	lp_dme_training_c0_preset_value	C0 tap preset value used by the BFM's link partner for DME training. Default value is 20.
105	lp_dme_training_c0_init_va lue	C0 tap initialize value used by the BFM's link partner for DME training. Default value is 0.
106	lp_dme_training_c0_min_v alue	C0 tap minimum coefficient value used by the BFM's link partner for DME training. Default value is 0.
107	lp_dme_training_c0_max_v alue	C0 tap maximum coefficient value used by the BFM's link partner for DME training. Default value is 20.
108	lp_dme_training_cp1_preset _value	CP1 tap preset value used by the BFM's link partner for DME training. Default value is 0.
109	lp_dme_training_cp1_init_v alue	CP1 tap initialize value used by the BFM's link partner for DME training. Default value is 0.
110	lp_dme_training_cp1_min_ value	CP1 tap minimum coefficient value used by the BFM's link partner for DME training. Default value is 0.
111	lp_dme_training_cp1_max_value	CP1 tap maximum coefficient value used by the BFM's link partner for DME training. Default value is 15.
112	lp_dme_training_cn1_preset _value	CN1 tap preset value used by the BFM's link partner for DME training. Default value is 0.

S.No	Parameter	Description
113	lp_dme_training_cn1_init_v alue	CN1 tap initialize value used by the BFM's link partner for DME training. Default value is 0.
114	lp_dme_training_cn1_min_ value	CN1 tap minimum coefficient value used by the BFM's link partner for DME training. Default value is 0.
115	lp_dme_training_cn1_max_value	CN1 tap maximum coefficient value used by the BFM's link partner for DME training. Default value is 10.
116	dme_cmd_kind	DME Training Command kind {DME_CMD_ENABLED,DME_CMD_DISABL ED}
117	dme_cmd_cnt	Total number of DME training command sending count.
118	dme_cmd_type	DME Training command type {DME_HOLD,DME_DECR,DME_INCR,DME_I NIT,DME_PRST,DME_CMD_RANDOM}
119	dme_tap_type	DME tap type {DME_CMD_COEF0,DME_CMD_COEFPLUS1 ,DME_CMD_COEFMINUS1}
120	dme_coef0_kin	DME coefficient0 kind {COEF0_INCR,COEF0_DECR,COEF0_INIT,CO EF0_PRST,COEF0_RANDOM}
121	dme_coefplus1_kind	DME coefficientplus1 kind {COEFPLUS1_INCR,COEFPLUS1_DECR,COE FPLUS1_INIT,COEFPLUS1_PRST,COEFPLUS1 _RANDOM}
122	dme_coefminus1_kind	DME coefficientminus1 kind {COEFMINUS1_INCR,COEFMINUS1_DECR,C OEFMINUS1_INIT,COEFMINUS1_PRST,COEF MINUS1_RANDOM}
123	dme_wait_timer_frame_cnt	DME Training wait frame count.
124	cw_cmd_kind	Codeword training command kind { CW_CMD_ENABLED,CW_CMD_DISABLED }
125	cw_cmd_cnt	Codeword training command count.
126	cw_cmd_type	Codeword training command type {CW_HOLD,CW_DECR,CW_INCR,CW_RSVD 1,CW_RSVD2,CW_INIT,CW_PRST,CW_SPC_C MD_STAT,CW_CMD_RANDOM }

Page 26 SRIO VIP User Guide

S.No	Parameter	Description
127	cw_tap_type	Codeword training tap type {CW_CMD_TAP0,CW_CMD_TPLUS1,CW_CM D_TPLUS2,CW_CMD_TPLUS3,CW_CMD_TPL US4,CW_CMD_TPLUS5,CW_CMD_TPLUS6,C W_CMD_TPLUS7,CW_CMD_TMINUS8,CW_C MD_TMINUS7,CW_CMD_TMINUS6,CW_CM D_TMINUS5,CW_CMD_TMINUS4,CW_CMD_ TMINUS3,CW_CMD_TMINUS2,CW_CMD_TMINUS1}
128	cw_tp0_kind	Codeword tap0 kind {TP0_INCR,TP0_DECR,TP0_INIT,TP0_PRST,T P0_RANDOM}
129	cw_tplus1_kind	Codeword tap plus1 kind {TPLUS1_INCR,TPLUS1_DECR,TPLUS1_INIT, TPLUS1_PRST,TPLUS1_RANDOM}
130	cw_tplus2_kind	Codeword tap plus2 kind {TPLUS2_INCR,TPLUS2_DECR,TPLUS2_INIT, TPLUS2_PRST,TPLUS2_RANDOM}
131	cw_tplus3_kind	Codeword tap plus3 kind {TPLUS3_INCR,TPLUS3_DECR,TPLUS3_INIT, TPLUS3_PRST,TPLUS3_RANDOM}
132	cw_tplus4_kind	Codeword tap plus4 kind {TPLUS4_INCR,TPLUS4_DECR,TPLUS4_INIT, TPLUS4_PRST,TPLUS4_RANDOM}
133	cw_tplus5_kind	Codeword tap plus5 kind {TPLUS5_INCR,TPLUS5_DECR,TPLUS5_INIT, TPLUS5_PRST,TPLUS5_RANDOM}
134	cw_tplus6_kind	Codeword tap plus6 kind {TPLUS6_INCR,TPLUS6_DECR,TPLUS6_INIT, TPLUS6_PRST,TPLUS6_RANDOM}
135	cw_tplus7_kind	Codeword tap plus7 kind {TPLUS7_INCR,TPLUS7_DECR,TPLUS7_INIT, TPLUS7_PRST,TPLUS7_RANDOM}
136	cw_tminus8_kind	Codeword tap minus8 kind {TMINUS8_INCR,TMINUS8_DECR,TMINUS8 _INIT,TMINUS8_PRST,TMINUS8_RANDOM}
137	cw_tminus7_kind	Codeword tap minus7kind {TMINUS7_INCR,TMINUS7_DECR,TMINUS7_INIT,TMINUS7_PRST,TMINUS7_RANDOM}

S.No	Parameter	Description
138	cw_tminus6_kind	Codeword tap minus6 kind {TMINUS6_INCR,TMINUS6_DECR,TMINUS6_INIT,TMINUS6_PRST,TMINUS6_RANDOM}
139	cw_tminus5_kind	Codeword tap minus5 kind {TMINUS5_INCR,TMINUS5_DECR,TMINUS5 _INIT,TMINUS5_PRST,TMINUS5_RANDOM}
140	cw_tminus4_kind	Codeword tap minus4 kind {TMINUS4_INCR,TMINUS4_DECR,TMINUS4_INIT,TMINUS4_PRST,TMINUS4_RANDOM}
141	cw_tminus3_kind	Codeword tap minus3 kind {TMINUS3_INCR,TMINUS3_DECR,TMINUS3 _INIT,TMINUS3_PRST,TMINUS3_RANDOM}
142	cw_tminus2_kind	Codeword tap minus2 kind {TMINUS2_INCR,TMINUS2_DECR,TMINUS2 _INIT,TMINUS2_PRST,TMINUS2_RANDOM}
143	cw_tminus1_kind	Codeword tap minus1 kind {TMINUS1_INCR,TMINUS1_DECR,TMINUS1_INIT,TMINUS1_PRST,TMINUS1_RANDOM}
144	tap0_min_value	Codeword training Tap0 Minimum Value
145	tap0_max_value	Codeword training Tap0 Maximum Value
146	tap0_init_value	Codeword training Tap0 Initialization Value
147	tap0_prst_value	Codeword training Tap0 Preset Value
148	tap0_impl_en	Codeword training Tap0 implementation enable
149	tplus1_min_value	Codeword training Tapplus 1 Minimum Value
150	tplus1_max_value	Codeword training Tapplus 1 Maximum Value
151	tplus1_init_value	Codeword training Tapplus1 Initialization Value
152	tplus1_prst_value	Codeword training Tapplus1 Preset Value
153	tplus1_impl_en	Codeword training Tapplus1 implementation
154	tplus2_min_value	Codeword training Tapplus2 Minimum Value
155	tplus2_max_value	Codeword training Tapplus2 Maximum Value
156	tplus2_init_value	Codeword training Tapplus2 Initialization Value
157	tplus2_prst_value	Codeword training Tapplus2 Preset Value
158	tplus2_impl_en	Codeword training Tapplus2 implementation
159	tplus3_min_value	Codeword training Tapplus3 Minimum Value
160	tplus3_max_value	Codeword training Tapplus3 Maximum Value
161	tplus3_init_value	Codeword training Tapplus3 Initialization Value
162	tplus3_prst_value	Codeword training Tapplus3 Preset Value
163	tplus3_impl_en	Codeword training Tapplus3 implementation

Page 28 SRIO VIP User Guide

S.No	Parameter	Description
164	tplus4_min_value	Codeword training Tapplus4 Minimum Value
165	tplus4_max_value	Codeword training Tapplus4 Maximum Value
166	tplus4_init_value	Codeword training Tapplus4 Initialization Value
167	tplus4_prst_value	Codeword training Tapplus4 Preset Value
168	tplus4_impl_en	Codeword training Tapplus4 implementation
169	tplus5_min_value	Codeword training Tapplus5 Minimum Value
170	tplus5_max_value	Codeword training Tapplus5 Maximum Value
171	tplus5_init_value	Codeword training Tapplus5 Initialization Value
172	tplus5_prst_value	Codeword training Tapplus5 Preset Value
173	tplus5_impl_en	Codeword training Tapplus5 implementation
174	tplus6_min_value	Codeword training Tapplus6 Minimum Value
175	tplus6_max_value	Codeword training Tapplus6 Maximum Value
176	tplus6_init_value	Codeword training Tapplus6 Initialization Value
177	tplus6_prst_value	Codeword training Tapplus6 Preset Value
178	tplus6_impl_en	Codeword training Tapplus6 implementation
179	tplus7_min_value	Codeword training Tapplus7 Minimum Value
180	tplus7_max_value	Codeword training Tapplus7 Maximum Value
181	tplus7_init_value	Codeword training Tapplus7 Initialization Value
182	tplus7_prst_value	Codeword training Tapplus7 Preset Value
183	tplus7_impl_en	Codeword training Tapplus7 implementation
184	tminus8_min_value	Codeword training Tapminus 8 Minimum Value
185	tminus8_max_value	Codeword training Tapminus8 Maximum Value
186	tminus8_init_value	Codeword training Tapminus 8 Initialization Value
187	tminus8_prst_value	Codeword training Tapminus8 Preset Value
188	tminus8_impl_en	Codeword training Tapminus8 implementation enable
189	tminus7_min_value	Codeword training Tapminus 7 Minimum Value
190	tminus7_max_value	Codeword training Tapminus7 Maximum Value
191	tminus7_init_value	Codeword training Tapminus7 Initialization Value
192	tminus7_prst_value	Codeword training Tapminus7 Preset Value
193	tminus7_impl_en	Codeword training Tapminus7 implementation enable
194	tminus6_min_value	Codeword training Tapminus6 Minimum Value
195	tminus6_max_value	Codeword training Tapminus6 Maximum Value
196	tminus6_init_value	Codeword training Tapminus6 Initialization Value
197	tminus6_prst_value	Codeword training Tapminus6 Preset Value

S.No	Parameter	Descriptio	n
198	tminus6_impl_en	Codeword training Tapminus6 enable	implementation
199	tminus5 min value	Codeword training Tapminus5	Minimum Value
200	tminus5_max_value	Codeword training Tapminus5	
201	tminus5 init value	Codeword training Tapminus5	
202	tminus5 prst value	Codeword training Tapminus5	
203	tminus5_impl_en	Codeword training Tapminus5 enable	
204	tminus4_min_value	Codeword training Tapminus4	Minimum Value
205	tminus4_max_value	Codeword training Tapminus4	Maximum Value
206	tminus4_init_value	Codeword training Tapminus4	Initialization Value
207	tminus4_prst_value	Codeword training Tapminus4	Preset Value
208	tminus4_impl_en	Codeword training Tapminus4 enable	implementation
209	tminus3_min_value	Codeword training Tapminus3	Minimum Value
210	tminus3_max_value	Codeword training Tapminus3	Maximum Value
211	tminus3_init_value	Codeword training Tapminus3	Initialization Value
212	tminus3_prst_value	Codeword training Tapminus3	Preset Value
213	tminus3_impl_en	Codeword training Tapminus3 enable	implementation
214	tminus2_min_value	Codeword training Tapminus2	Minimum Value
215	tminus2_max_value	Codeword training Tapminus2	Maximum Value
216	tminus2_init_value	Codeword training Tapminus2	Initialization Value
217	tminus2_prst_value	Codeword training Tapminus2	Preset Value
218	tminus2_impl_en	Codeword training Tapminus2 enable	implementation
219	tminus1_min_value	Codeword training Tapminus1	Minimum Value
220	tminus1_max_value	Codeword training Tapminus1	Maximum Value
221	tminus1_init_value	Codeword training Tapminus1	Initialization Value
222	tminus1_prst_value	Codeword training Tapminus1	Preset Value
223	tminus1_impl_en	Codeword training Tapminus 1 enable	implementation
224	tminus1_min_value	Codeword training Tapminus1	Minimum Value
225	tminus1_max_value	Codeword training Tapminus1	Maximum Value
226	tminus1_init_value	Codeword training Tapminus1	Initialization Value
227	tminus1_prst_value	Codeword training Tapminus1	Preset Value

Page 30 SRIO VIP User Guide

S.No	Parameter	Description
228	tminus1_impl_en	Codeword training Tapminus1 implementation enable
229	k_cnt_for_idle_detection	Number of K characters to match in-order to detect the receiving IDLE sequence. Default value is 4.
230	m_cnt_for_idle_detection	Number of M characters to match in-order to detect the receiving IDLE sequence. Default value is 5.
231	gen3_max_pkt_size	Maximum packet size to be checked for GEN3 devices.
232	timestamp_auto_update_en	Enable for automatically sending timestamp sequence.
233	timestamp_auto_update_tim er	Indicates the time in within which the timestamp sequence has to be sent by the master automatically. This field is valid only if both timestamp_sync_support and timestamp_master_slave_support are 1.
234	asym_1x_mode_en	Asymmetric 1x mode enable.
235	asym_2x_mode_en	Asymmetric 2x mode enable.
236	asym_nx_mode_en	Asymmetric Nx mode enable.
237	xmt_width_timer	Timeperiod within which transmit width command is expected to complete. Timeperiod is counted in terms of sim_clk period. Default value is 10000.
238	rev_width_timer	Timeperiod within which receive width command os expected to complete. Timeperiod is counted in terms of sim_clk period. Default value is 10000.
239	xmt_my_cmd_timer	Timeperiod within which "My transmit width change" command has to be acknowleded. Timeperiod is counted in terms of sim_clk period. Default value is 10000.
240	xmt_lp_cmd_timer	Timeperiod within which "Link-partner transmit width change" command has to be acknowledged. Timeperiod is counted in terms of sim_clk period. Default value is 10000.

Physical Layer user input parameters are set of control parameters that needs to be configured by the user during run time to exercise any specific functionalities listed in Table 6, "PL User Input Parameters," on page 32

These parameters are declared in srio_pl_common_component_trans.sv in srio-vip/pl directory. Though many status variables are declared in it, only the control variables need to be configured by the user are listed in the below table.

Table 6: PL User Input Parameters

Table 6: PL User Input Parameters			
S.No	Parameter	Description	
1	force_1x_mode	Need to set it to force the BFM to operate in 1x mode.	
2	force_laneR	Need to set to force the BFM to operate in 1x mode laneR.	
3	force_reinit	Need to set to BFM re-initialization.	
4	link_req_rst_cmd_cnt	Number of link-request with reset-device command received by the BFM. If the count is 4, user need to execute the logic required for reset-device.	
5	link_req_rst_port_cmd_cnt	Number of link-request with reset-port command received by the BFM. If the count is 4, user need to execute the logic required for reset-device.	
6	change_my_xmt_width	Need to configure it appropriately to test the asymmetric operation. This field is equivalent of "Change my transmit width" field in PnPMCSR.	
7	change_lp_xmt_width	Need to configure it appropriately to test the asymmetric operation. This field is equivalent of "Change link partner trans- mit width" field in PnPMCSR.	
8	timestamp_support	Indicates the timestamp support.	
9	timestamp_master	If set, indicates, the BFM acts as timestamp master. This field is valid only if timestamp_support is set. If timestamp_support is set, and timestamp_master is not set, then the BFM acts as timestamp slave.	
10	send_zero_timestamp	If this field is set along with timestamp_support and timestamp_master, then the BFM will transmit zero timestamp sequence.	
11	send_timestamp	If this field is set along with timestamp_support and timestamp_master, then the BFM will transmit timestamp sequence loaded with TSG value + timestamp offset.	

Page 32 SRIO VIP User Guide

S.No	Parameter	Description
12	send_loop_request	If this field is set along with
		timestamp_support and
		timestamp_master, then the BFM will
		transmit loop-timing request control sym-
		bol.

5 Sequences

5.1 Logical Layer Sequences

Table 7, "Logical Layer Sequences," on page 34 shows the logical layer sequences.

Table 7: Logical Layer Sequences

S.No	Sequence	Description
1	srio_ll_nread_req_seq	Creates random nread request transactions
2	srio_ll_nwrite_req_seq	Creates random nwrite request transactions
3	srio_ll_nwrite_r_req_seq	Creates random nwrite_r request transactions
4	srio_ll_swrite_req_seq	Creates random swrite request transactions
5	srio_ll_atomic_inc_seq	Creates random Atomic Increment transactions
6	srio_ll_atomic_dec_seq	Creates random Atomic Decrement transactions
7	srio_ll_atomic_set_seq	Creates random Atomic Set transactions
8	srio_ll_atomic_clr_seq	Creates random Atomic Clear transactions
9	srio_ll_atomic_swap_seq	Creates random Atomic swap transactions
10	srio_ll_atomic_test_and_swap_seq	Creates random Atomic Test-and-Swap transactions
11	srio_ll_compare_and_swap_seq	Creates random Atomic Compare-and- Swap transactions
12	srio_ll_maintenance_rd_req_seq	Creates random Maintenance Read Request transactions
13	srio_ll_maintenance_wr_req_seq	Creates random Maintenance Write Request transactions
14	srio_ll_maintenance_port_wr_req_seq	Creates random Maintenance Port Write Request transactions
15	srio_ll_maintenance_rd_resp_seq	Creates random Maintenance Read Response transactions
16	srio_ll_io_rdsize_wdptr_err_seq	Creates SRIO IO Operations with rdsize_wdptr Error
17	srio_ll_io_wrsize_wdptr_err_seq	Creates SRIO IO Operations with wrsize_wdptr Error transaction
18	srio_ll_atomic_payload_err_seq	Creates Unsupported payload bytes such as 3,5,6,7 Bytes of transaction

Page 34 SRIO VIP User Guide

S.No	Sequence	Description
19	srio_ll_swrite_payload_error_seq	Creates SWRITE - Payload less than Double Word
20	srio_ll_maintenance_wr_resp_seq	Creates random Maintenance Write Response transaction
21	srio_ll_resp_with_payload_seq	Creates random Logical Response with payload transaction and covers possible status values.
22	srio_ll_resp_without_payload_seq	Creates random Logical Response without payload transaction and covers possible status values.
23	srio_ll_message_req_seq	Creates random Data Message Request transaction (includes both single segment and multi segment)
24	srio_ll_msg_sseg_req_seq	Creates Data Message - Single Segment ie. Message size should be equal to segment size.
25	srio_ll_msg_mseg_req_seq	Creates Data Message - Multi Segment ie. Message size should be greater than segment size.
26	srio_ll_msg_interleaved_req_seq	Creates Data Message - Interleaved Data Message with different mailbox and letter
27	srio_ll_msg_inorder_resp_seq	Creates Data Message - Response with Done (In-order)
28	srio_ll_msg_outoforder_resp_seq	Data Message - Response with Done (Out-of-order)
29	srio_ll_msg_error_pkt_seq	Creates Data Message - Error Packet - Invalid Segment Size and Message length(ie.,greter than 4K)
30	srio_ll_db_error_pkt_seq	Creates Doorbell Message - with Payload
31	srio_ll_message_resp_seq	Creates random Data Message Response Sequence (Response generated based on input configuration)
32	srio_ll_doorbell_req_seq	Creates random Doorbell Request transaction
33	srio_ll_doorbell_resp_seq	Creates random Doorbell Response transaction
34	srio_ll_ds_pdu_seq	Creates random Data Streaming transaction (includes both single and multi segment stream transaction)

S.No	Sequence	Description
35	srio_ll_ds_sseg_req_seq	Creates Data Streaming Single Segment stream. ie., pdulength should be less than or equal to mtu size. Maximum payload is 256B
36	srio_ll_ds_mseg_req_seq	Creates Data Streaming Multi Segment stream. ie., pdulength should be greater than mtu size maximum payload is 64K
37	srio_ll_ds_error_req_seq	Creates Data Streaming Error Packet (includes sop = 0 for 1st segment eop = 0 for end segment odd= 1 for even number of half words pad =0,Needs pad byte to make it to half word)
38	srio_ll_ds_max_req_seq	Creates Data Streaming Maximum PDU and MTU Check Payload is 64K and MTU is 256 Bytes.
39	srio_ll_ds_err_seg_req_seq	Creates Data Streaming ERROR packetstart segment, continuous segment End segment is greater than MTU size
40	srio_ll_ds_interleaved_req_seq	Creates Data Streaming Interleaved Stream packet with different stream ID
41	srio_ll_ds_abort_req_seq	Creates Data Streaming Abort packet DS packet with no data payload
42	srio_ll_ds_pdumismatch_err_seq	Creates Data Streaming PDU Length error at End segment
43	srio_ll_ds_los_error_seq	Creates Data Streaming Loss of segment (continuous or end segment received) for closed context and (start segment received) for open context
44	srio_ll_ds_traffic_mgmt_seq	Creates random Data Streaming Traffic Management transaction
45	srio_ll_lfc_flow_arb_spdu_seq	Creates LFC - Flow arbitration with single PDU
46	srio_ll_lfc_flow_arb_mpdu_seq	Creates LFC - Flow arbitration with Multiple PDU
47	srio_ll_lfc_orphaned_xoff_seq	Creates LFC - without XON
48	srio_ll_lfc_multi_xoff_xon_same_flowid_seq	Creates LFC - Same FlowID with Multiple XOFF and XON Count
49	srio_ll_lfc_multi_xoff_xon_diff_flowid _seq	Creates LFC - Different FlowID with Multiple XOFF and XON Count

Page 36 SRIO VIP User Guide

S.No	Sequence	Description
50	srio_ll_lfc_illegal_prio_req_seq	Creates LFC - Illegal priority (2'b11)
		request transaction.
51	srio_ll_lfc_illegal_resp_seq	Creates LFC - Illegal Priority(2'b00) response transaction
52	srio_ll_lfc_xoff_xon_seq	Creates LFC - Normal XOFF and XON Sequence
53	srio_ll_lfc_xon_without_xoff_seq	Creates LFC - Without XOFF Only XON
54	srio_ll_lfc_timeout_check_seq	Creates LFC - XOFF Count > XON, XON Count > XOFF
55	srio_ll_lfc_with_diff_id_seq	Creates LFC - XOFF with different SrcID and TargetID transaction
56	srio_ll_lfc_with_diff_flowid_seq	Creates LFC - XOFF with different flowID - Priority and CRF transaction
57	srio_ll_lfc_multi_orphaned_xoff_seq	Creates LFC - Multiple Orphaned XOFF transaction
58	srio_ll_gsm_rd_owner_seq	Creates random GSM Read Owner transaction
59	srio_ll_gsm_rd_to_own_owner_seq	Creates random GSM Read to Own Owner transaction
60	srio_ll_gsm_io_rd_owner_seq	Creates random GSM IO Read Owner transaction
61	srio_ll_gsm_rd_home_seq	Creates random GSM Read Home transaction
62	srio_ll_gsm_rd_to_own_home_seq	Creates random GSM Read to Own Home transaction
63	srio_ll_gsm_io_rd_home_seq	Creates random GSM IO Read Home transaction
64	srio_ll_gsm_dkill_home_seq	Creates random GSM DKill Home transaction
65	srio_ll_gsm_ikill_home_seq	Creates random GSM IKill Home transaction
66	srio_ll_gsm_tlbie_seq	Creates random GSM TLBIE transaction
67	srio_ll_gsm_tlbsync_seq	Creates random GSM TLBSYNC transaction
68	srio_ll_gsm_iread_home_seq	Creates random GSM IRead Home transaction
69	srio_ll_gsm_ikill_sharer_seq	Creates random GSM IKill Sharer transaction

S.No	Sequence	Description
70	srio_ll_gsm_dkill_sharer_seq	Creates random GSM DKill Sharer transaction
71	srio_ll_gsm_castout_seq	Creates random GSM CASTOUT transaction
72	srio_ll_gsm_flush_with_data_seq	Creates random GSM FLUSH with Data transaction
73	srio_ll_gsm_flush_without_data_seq	Creates random GSM FLUSH without Data transaction
74	srio_ll_invalid_ftype_seq	Creates Logical Layer packet with Invalid FTYPE
75	srio_ll_rand_all_packets_seq	Generates all types of packets.
76	srio_ll_rand_all_packets_err_seq	Generates all types of packets with errors injected.
77	srio_ll_pl_seq	Generates stimulus to both Physical and Logical Layers
78	srio_ll_ds_pdu_error_seq	Creates Data Streaming packets with invalid PDU
79	srio_ll_ds_mtu_error_seq	Creates Data Streaming packets with invalid MTU size
80	srio_ll_ds_sop_error_seq	Creates Data Streaming packets with invalid SOP size
81	srio_ll_ds_eop_error_seq	Creates Data Streaming packets with invalid EOP size
82	srio_ll_ds_odd_error_seq	Creates Data Streaming packets with invalid ODD size
83	srio_ll_ds_pad_error_seq	Creates Data Streaming packets with invalid PAD size
84	srio_ll_ttype_error_seq	Creates random TTYPE error transaction
85	srio_ll_resp_pri_error_seq	Creates random illegal response priority transaction
86	srio_ll_size_error_seq	Creates random packet with size exceed error transaction
87	srio_ll_payload_exist_error_seq	Creates random packet with payload exist error transaction
88	srio_ll_doubleword_align_error_seq	Creates random packet with double word alignment error transaction
89	srio_ll_lfc_pri_error_seq	Creates random LFC – illegal priority sequence

Page 38 SRIO VIP User Guide

S.No	Sequence	Description
90	srio_ll_msg_size_error_seq	Creates random Message packet with illegal size error sequence
91	srio_ll_msgseg_error_seq	Creates random message packet with invalid segment size error sequence.
92	srio_ll_lfc_user_gen_xoff_seq	Creates LFC user generated xoff sequence
93	srio_ll_lfc_user_gen_xon_seq	Creates LFC user generated xon sequence
94	srio_ll_io_random_seq	Creates IO random sequence
95	srio_ll_ds_mseg_single_mtu_seq	Creates multi segment DS packet with single MTU value sequence
96	srio_ll_port_resp_timeout_reg_seq	Creates transaction to configure Port Response Timeout Register
97	srio_ll_all_atomic_req_seq	Creates Maintenance read-write packet to configure Port Response Timeout Register
98	srio_ll_ds_concurrent_seq	Creates DS packet with valid MTU and PDU length value
99	srio_ll_ds_max_seg_support_seq	Creates DS packets to support maximum segment sequence
100	srio_ll_ds_mtu_reserved_seq	Creates DS packet with invalid MTU value sequence
101	srio_ll_ds_s_e_err_seq	Creates DS packet with invalid Start and End bit sequence
102	srio_ll_ds_traffic_seq	Creates DS packet with user defined COS and StreamID value sequence
103	srio_ll_ds_traffic_mgmt_basic_stream_xoff_seq	Creates Traffic Management basic stream xoff packet sequence
104	srio_ll_ds_traffic_mgmt_basic_stream_xon_seq	Creates Traffic Management basic stream xon packet sequence
105	srio_ll_normal_ds_payload_size_err_se q	Creates DS payload size Error packet sequence
106	srio_ll_ds_traffic_mgmt_xtype_err_seq	Creates Traffic Management packet with invalid xtype sequence
107	srio_ll_ds_traffic_mgmt_user_rate_xoff _seq	Creates user generated Traffic Management xoff packet for rate mode sequence
108	srio_ll_ds_traffic_mgmt_user_rate_xon _seq	Creates user generated Traffic Management xon packet for rate mode sequence
109	srio_ll_ds_traffic_mgmt_user_credit_xo n_seq	Creates user generated Traffic Management xon packet for credit mode sequence
110	srio_ll_ds_traffic_mgmt_user_credit_xo ff_seq	Creates user generated Traffic Management xoff packet for credit mode sequence

S.No	Sequence	Description
111	srio_ll_ds_traffic_mgmt_tmop_err_seq	Creates Traffic Management packet with invalid TMOP value sequence
112	srio_ll_ds_traffic_mgmt_parameter1_er r_seq	Creates Traffic Management packet with invalid parameter 1 value sequence
113	srio_ll_ftype_default_seq	Creates packets with random ftype values sequence
114	srio_ll_lfc_unsupport_flowid_seq	Creates LFC packet with unsupported f low ID value sequence
115	srio_ll_maintenance_wr_rd_seq	Create maintenance read-write packets to configure all registers sequence
116	srio_ll_lfc_xon_arb_0_seq	Creates LFC flow arbitration XON sequence number 0
117	srio_ll_lfc_xon_arb_1_seq	Create LFC flow arbitration XON sequence number 1
118	srio_ll_lfc_ds_single_pdu_arb_seq	Creates FAM DS single PDU sequence
119	srio_ll_lfc_ds_multi_pdu_arb_seq	Creates FAM DS multi PDU sequence
120	srio_ll_lfc_request_flow_spdu_1_seq	Creates FAM request for single PDU sequence number 0
121	srio_ll_lfc_request_flow_spdu_0_seq	Creates FAM request for single PDU sequence number 0
122	srio_ll_lfc_release_0_seq	Creates FAM release for sequence number 0
123	srio_ll_lfc_release_1_seq	Creates FAM release for sequence for 1
124	srio_ll_flow_arb_support_reg_seq	Creates FAM support enable sequence
125	srio_ll_lfc_request_flow_mpdu_1_seq	Creates FAM request for multi PDU sequence number 1
126	srio_ll_lfc_request_flow_mpdu_0_seq	Creates FAM request for multi PDU sequence number 0
127	srio_ll_traffic_mgmt_tm_type_mode_er r_seq	Creates Traffic Management packet with invalid TM_Mode value sequence
128	srio_ll_ds_traffic_mgmt_mask_err_seq	Creates Traffic Management packet with invalid mask value sequence
129	srio_ll_ds_traffic_mgmt_diff_operation _seq	Creates Traffic Management packet for different operation sequence
130	srio_ll_ds_traffic_mgmt_user_credit_err _seq	Creates user generated Traffic Management packet with credit support and invalid parameter values sequence
131	srio_ll_ds_traffic_mgmt_specific_strea m_xoff_seq	Creates Traffic Management packet for specific Stream xoff sequence

Page 40 SRIO VIP User Guide

S.No	Sequence	Description
132	srio_ll_ds_traffic_mgmt_specific_strea m_xon_seq	Creates Traffic Management packet for specific Stream xon sequence
133	srio_ll_ds_traffic_mgmt_specific_cos_x off_seq	Creates Traffic Management packet for specific COS xoff sequence
134	srio_ll_ds_traffic_mgmt_specific_cos_x on_seq	Creates Traffic Management packet for specific COS xon sequence
135	srio_ll_ds_traffic_mgmt_group_of_cos_xoff_seq	Creates Traffic Management packet for Group of COS xoff sequence
136	srio_ll_ds_traffic_mgmt_group_of_cos_xon_seq	Creates Traffic Management packet for Group of COS xon sequence
137	srio_ll_ds_traffic_mgmt_random_cos_x off_seq	Creates Traffic Management packet for random of COS xoff sequence
138	srio_ll_ds_traffic_mgmt_random_cos_x on_seq	Creates Traffic Management packet for random of COS xon sequence
139	srio_ll_lfc_ds_seq	Creates DS packet with valid Priority and Crf value sequence
140	srio_ll_ds_all_traffic_xoff_seq	Creates Traffic Management packet for all traffic xoff sequence
141	srio_ll_ds_all_traffic_xon_seq	Creates Traffic Management packet for all traffic xon sequence
142	srio_ll_nwrite_nread_34_addr_seq	Creates NWRITE and NREAD with 34 bits addressing bit packets sequence
143	srio_ll_nwrite_nread_50_addr_seq	Creates NWRITE and NREAD with 50 bits addressing bit packets sequence
144	srio_ll_nwrite_nread_66_addr_seq	Creates NWRITE and NREAD with 66 bits addressing bit packets sequence
145	srio_ll_lfc_ds_random_prio_seq	Creates DS packet with random priority sequence
146	srio_ll_nwrite_nread_mem_access_seq	Creates nwrite and nread packets to access memory block sequence
147	srio_ll_user_gen_random_prio_seq	Creates user generated random priority sequence
148	srio_ll_maintenance_ds_support_reg_se q	Creates Maintenance read-write packet to configure for DS packet sequence
149	srio_ll_ds_traffic_random_streamid_seq	Creates DS packet with random StreamID sequence
150	srio_ll_ds_traffic_random_streamid_cos _seq	Creates DS packet with random StreamID and COS sequence

S.No	Sequence	Description
151	srio_ll_ds_all_traffic_seq	Creates Traffic Management packed with wild card 3'b111 sequence
152	srio_ll_ds_all_traffic_mgmt_credit_cont rol_seq	Creates Traffic Management packet with credit control sequence
153	srio_ll_illegal_io_seq	Creates IO packets with illegal ttype,rd_size and wr_size sequence
154	srio_ll_illegal_gsm_seq	Creates GSM packets with illegal ttype,rd_size and wr_size sequence
155	srio_ll_illegal_msg_seq	Creates MSG packets with illegal ttype and segments sequence
156	srio_ll_vc_lfc_xon_seq	Creates LFC xon packet with multi VC support sequence
157	srio_ll_vc_lfc_xoff_seq	Creates LFC xon packet with multi VC support sequence
158	srio_ll_vc_ds_mseg_req_seq	Creates DS multi segments packet with multi VC support sequence
159	srio_ll_multi_vc_nwrite_swrite_seq	Creates nwrite and swrite packet with multi VC support sequence
160	srio_ll_msg_mseg_req_with_err_seq abcd	Creates message packets with invalid length sequence
161	srio_ll_msg_mseg_max_req_seq	Creates message packets with maximum length sequence
162	srio_ll_ds_traffic_mgmt_random_basic _stream_seq	Creates DS Traffic Management Basic packet with random parameter and specific stream values sequence
163	srio_ll_ds_traffic_mgmt_random_rate_s tream_seq	Creates DS Traffic Management Rate packets with random parameter and specific stream values sequence
164	srio_ll_ds_traffic_mgmt_random_credit _stream_seq	Creates DS Traffic Management Credit packets with random parameter and specific stream values sequence
165	srio_ll_atomic_invalid_size_seq	Creates Atomic packets with illegal size sequence
166	srio_ll_ds_mseg_req_err_seq	Creates DS multi segment packets with invalid size sequence
167	srio_ll_ds_max_streamid_seq	Creates DS packets with maximum Stream_ID sequence

Page 42 SRIO VIP User Guide

S.No	Sequence	Description
168	srio_ll_msg_unsupported_seq	Creates message packets for unsupported message transition sequence
169	srio_ll_db_unsupported_seq	Creates message packets for unsupported doorbell transition sequence
170	srio_ll_outstanding_unack_req_seq	Creates random packets request with maximum unacknowledged request sequence
171	srio_ll_unexp_msg_resp_req_seq	Creates unexpected message response packets without message request packet sequence
172	srio_ll_msg_mseg_max_mbox_letter_re q_seq	Creates message packets with maximum letter and fixed mbox values sequence
173	srio_ll_req_seq	Creates nread request packets for illegal ftype corruption in callback sequence
174	srio_ll_gsm_pkt_for_illegal_resp_req_s eq	Creates GSM packets for illegal response sequence
175	srio_ll_msg_mseg_req_cov_seq	Creates multi segment message with all possible ssize, letter, mbox, message length sequence
176	srio_ll_pkt_invalid_tt_seq	Creates packets with invalid TT values sequence
177	srio_ll_vc_user_gen_seq	Creates user generated packets with multi VC support sequence
178	srio_ll_vc_lfc_user_gen_xoff_seq	Creates LFC XOFF packets with VC support sequence
179	srio_ll_vc_lfc_user_gen_xon_seq	Creates LFC XON packets with VC support sequence

5.2 Transport Layer Sequences

Table 8, "Transport Layer Sequences," on page 43 shows the transport layer sequences.

Table 8: Transport Layer Sequences

S.No	Sequence	Description
1	srio_tl_pkt_seq	Transport Layer Packet Sequence
2	srio_tl_pkt_err_seq	Transport Layer Packet Sequence with error (eg., corrupt tt field)
3	srio_tl_rand_all_packets_seq	Generates all types of packets.

S.No	Sequence	Description
4		Generates all types of packets with errors injected.

5.3 Physical Layer Sequences

Table 9, "Physical Layer Sequences," on page 44 shows the physical layer sequences.

Table 9: Physical Layer Sequences

S.No	Sequence Sequence	Description
1	srio_pl_pkt_acc_cs_seq	Packet Accepted CS Sequence
2	srio_pl_pkt_rty_cs_seq	Packet Retry CS Sequence
3	srio_pl_pkt_na_cs_seq	Packet Not Accepted CS Sequence
4	srio_pl_status_cs_seq	Status CS Sequence
5	srio_pl_vc_st_cs_seq	VC Status CS Sequence
6	srio_pl_link_res_cs_seq	Link Request CS Sequence
7	srio_pl_sop_cs_seq	Start of Packet CS Sequence
8	srio_pl_sop_padded_cs_seq	Start of Packet padded CS sequence
9	srio_pl_sop_unpadded_cs_seq	Start of Packet unpadded CS sequence
10	srio_pl_stomp_cs_seq	Stomp CS Sequence
11	srio_pl_eop_cs_seq	End of Packet CS Sequence
12	srio_pl_eop_padded_cs_seq	End of Packet padded CS Sequence
13	srio_pl_eop_unpadded_cs_seq	End of Packet Unpadded CS Sequence
14	srio_pl_restart_rty_cs_seq	Restart from Retry CS Sequence
15	srio_pl_link_req_cs_seq	Link Request CS Sequence
16	srio_pl_multicast_cs_seq	Multicast CS Sequence
17	srio_pl_nop_cs_seq	NOP CS Sequence
18	srio_pl_link_req_rst_dev_cs_seq	Link request Reset Device CS Sequence
19	srio_pl_link_req_rst_port_cs_seq	Link Request Reset Port CS Sequence
20	srio_pl_link_req_port_status_cs_seq	Link Request Port Status CS Sequence
21	srio_pl_ip_st_cs_seq	Input Status CS Sequence
22	srio_pl_timestamp_cs_seq	Timestamp CS Sequence
23	srio_pl_loop_resp_cs_seq	Loop Response CS Sequence
24	srio_pl_voq_bp_cs_seq	VoQ Back pressure CS Sequence
25	srio_timing_cs_seq	Timing CS Sequence
26	srio_descr_sync_break_cs_seq	Descrambler sync break CS sequence
27	srio_pl_ackid_err_cs_seq	Ackid error CS sequence

Page 44 SRIO VIP User Guide

S.No	Sequence	Description
28	srio_pl_crc_err_cs_seq	Crc error CS sequence
29	srio_pl_loss_descr_sync_cs_seq	Loss of descrambler sync CS sequence
30	srio_pl_invalid_char_cs_seq	Invalid/Illegal character CS sequence
31	srio_pl_pkt_na_lack_buf_res_cs_seq	Packet Not Accepted due to lack of buffer resources CS sequence
32	srio_pl_pkt_na_ackid_status_cs_seq	Packet Not Accepted ackid status CS sequence
33	srio_pl_pkt_ackid_error_seq	Packet Ackid Error Sequence
34	srio_pl_pkt_early_crc_err_seq	Packet early crc error sequence
35	srio_pl_pkt_final_crc_err_seq	Packet final crc error sequence
36	srio_pl_pkt_illegal_prio_err_seq	Packet illegal priority error sequence
37	srio_pl_pkt_illegal_crf_err_seq	Packet illegal crf error sequence
38	srio_pl_pkt_size_err_seq	Packet size greater than the allowed maximum packet size error sequence
39	srio_pl_stomp_pkt_cancel_seq	Cancelling a packet by a Stomp sequence
40	srio_pl_restart_retry_pkt_cancel_seq	Cancelling a packet by restart from retry sequence
41	srio_pl_link_request_pkt_cancel_seq	Cancelling a packet by a link request sequence
42	srio_pl_sync_break_seq	Synchronization break sequence
43	srio_pl_align_break_seq	Alignment break sequence
44	srio_pl_idle2_csfield_corruption_seq	Idle2 csfield corruption sequence
45	srio_pl_idle2_psr_corruption_seq	Idle2 pseudo random field corruption sequence
46	srio_pl_idle2_csmarker_corruption_seq	Idle2 cs field marker corruption sequence
47	srio_pl_idle2_descr_sync_break_seq	Idle2 descrambler sync break sequence
48	srio_pl_idle2_csfield_truncation_seq	Idle2 cs field truncation sequence
49	srio_pl_idle2_psr_truncation_seq	Idle2 pseudo random truncation sequence
50	srio_pl_idle2_csmarker_truncation_seq	Idle2 cs marker truncation sequence
51	srio_pl_idle2_csfield_update_seq	Idle2 cs field update sequence
52	<pre>srio_pl_force1x_mode_portwidth_overr ide_seq</pre>	Force 1x mode port width override sequence
53	srio_pl_force1x_mode_laner_portwidth _override_seq	Force 1x mode lane R port width override sequence

S.No	Sequence	Description
54	srio_pl_nxmode_enabled_2x_disabled_portwidth_override_seq	Force Nx mode enabled 2x mode disabled port width override sequence
55	srio_pl_2xmode_enabled_nx_disabled_portwidth_override_seq	Force 2x mode enabled Nx disabled port width override sequence
56	srio_pl_force_reinit_seq	Force re-initialization sequence
57	srio_pl_dis_nxmode_sm_seq	Discovery to Nxmode state transition sequence
58	srio_pl_dis_2xmode_sm_seq	Discovery to 2xmode state transition sequence
59	srio_pl_dis_1xmode_ln0_sm_seq	Discovery to 1xmode_lane0 state transition sequence
60	srio_pl_dis_1xmode_ln1_sm_seq	Discovery to 1xmode_lane1 state transition sequence
61	srio_pl_dis_1xmode_ln2_sm_seq	Discovery to 1xmode_lane2 state transition sequence
62	srio_pl_dis_sl_sm_seq	Discovery to Silent state transition sequence
63	srio_pl_nxmode_sl_sm_seq	Nxmode to Silent state transition sequence
64	srio_pl_nxmode_dis_sm_seq	Nxmode to Discovery state transition sequence
65	srio_pl_2xmode_sl_sm_seq	2xmode to Silent state transition sequence
66	srio_pl_2xmode_2x_rec_sm_seq	2xmode to 2x recovery state transition sequence
67	srio_pl_1xmode_ln0_sl_sm_seq	1xmode lane0 to Silent state transition sequence
68	srio_pl_1xmode_ln0_1x_rec_sm_seq	1xmode lane0 to 1x recovery state transition sequence
69	srio_pl_1xmode_ln1_sl_sm_seq	1xmode lane1 to Silent state transition sequence
70	srio_pl_1xmode_ln1_1x_rec_sm_seq	1xmode lane1 to 1x recovery state transition sequence
71	srio_pl_1xmode_ln2_sl_sm_seq	1xmode lane2 to Silent state transition sequence

Page 46 SRIO VIP User Guide

S.No	Sequence	Description
72	srio_pl_1xmode_ln2_1x_rec_sm_seq	1xmode lane2 to 1x recovery state transition sequence
73	srio_pl_2x_rec_2xmode_sm_seq	2x Recovery to 2xmode state transition sequence
74	srio_pl_x_rec_1xmode_ln0_sm_seq	2x Recovery to 1xmode lane0 state transition sequence
75	srio_pl_2x_rec_1xmode_ln1_sm_seq	2x Recovery to 1xmode lane1 state transition sequence
76	srio_pl_2x_rec_sl_sm_seq	2x Recovery to silent state transition sequence
77	srio_pl_1x_rec_sl_sm_seq	1x Recovery to Silent state transition sequence
78	srio_pl_1x_rec_1xmode_ln0_sm_seq	1x Recovery to 1xmode lane0 state transition sequence
79	srio_pl_1x_rec_1xmode_ln1_sm_seq	1x Recovery to 1xmode lane1 state transition sequence
80	srio_pl_1x_rec_1xmode_ln2_sm_seq	1x Recovery to 1xmode lane2 state transition sequence
81	srio_pl_aymmetry_silent_sm_seq	Asymmetry t=- Silent state transistion sequence
82	srio_pl_1x_rec_1x_retrain_sm_seq	1x Recovery to 1x Retrain state transition sequence
83	srio_pl_1x_retrain_1x_rec_sm_seq	1x Retrain to 1x Recovery state transition sequence
84	srio_pl_nx_rec_nx_retrain_sm_seq	Nx Recovery to Nx Retrain state transition sequence
85	srio_pl_nx_retrain_nx_rec_sm_seq	Nx Retrain to Nx Recovery state transition sequence
86	srio_pl_2x_rec_2x_retrain_sm_seq	2x Recovery to 2x Retrain state transition sequence
87	srio_pl_2x_retrain_2x_rec_sm_seq	2x Retrain to 2x Recovery state transition sequence
88	srio_pl_nxm_nxr_sm_seq	Nx Mode to Nx Recovery state transition sequence
89	srio_pl_nxr_nxm_sm_seq	Nx Recovery to Nx Mode state transition sequence
90	srio_pl_nxr_1xm0_sm_seq	Nx Recovery to 1x Mode0 state transition sequence

S.No	Sequence	Description
91	srio_pl_nxr_1xm1_sm_seq	Nx Recovery to 1x Mode1 state transition sequence
92	srio_pl_nxr_1xm2_sm_seq	Nx Recovery to 1x Mode2 state transition sequence
93	srio_pl_nxr_sil_sm_seq	Nx Recovery to Silent Mode state transition sequence
94	srio_pl_nxm_asymetry_sm_seq	Nx Mode to Asymmetry Mode state transition sequence
95	srio_pl_2xm_asymetry_sm_seq	2x Mode to Asymmetry Mode state transition sequence
96	srio_pl_nxr_2xm_sm_seq	Nx Recovery to 2x Mode state transition sequence
97	srio_pl_rand_state_trans_seq	Random state transition sequence
98	srio_pl_rand_all_packets_seq	Generates all types of packets.
99	srio_pl_rand_all_packets_err_seq	Generates all types of packets with errors injected.
100	srio_pl_nx_mode_support_disable_seq	Creates NX mode support disable sequence
101	srio_pl_x2_mode_support_disable_seq	Creates 2X mode support disable sequence
102	srio_pl_pkt_na_ackid_err_cs_seq	Creates packet not accepted ackID error sequence
103	srio_pl_pkt_na_crc_err_cs_seq	Creates packet not accepted CRC error sequence
104	srio_pl_pkt_na_non_maintenace_rep_st op_cs_seq	Creates packet not accepted non mainte- nance error sequence
105	srio_pl_pkt_na_invalid_char_cs_seq	Creates packet not accepted invalid character error sequence
106	srio_pl_pkt_na_lack_buf_res_cs_seq	Creates packet not accepted lack of buffer error sequence
107	srio_pl_pkt_na_loss_descr_sync_cs_seq	Creates packet not accepted loss of desr error sequence
108	srio_pl_nwrite_swrite_req_seq	Creates nwrite and swrite sequence and force it directly to pl sequencer
109	srio_pl_ll_io_random_seq abcd	Creates IO packets with randomized pl variables sequence
110	srio_txrx_seq	Creates packets with TxRx status control symbols sequence
111	srio_pl_sop_nwrite_eop_seq	Creates packet with sop ,nwrite packets and eop control symbol sequence

Page 48 SRIO VIP User Guide

l	S.No	Sequence	Description
	112		Creates GEN3 packets with padded start of packet (sop) sequence
	113	srio_pl_gen3_eop_padded_seq	Creates GEN3 packets with padded end of packets (eop) sequence

6 Sequence Item

SRIO VIP's sequence item is named as srio_trans and it contains the fields of packets/control symbols defined in the serial RapidIO specification. It also includes miscellaneous fields and random constraints. Table 10, "SRIO VIP's Sequence Item," on page 50 provides the description of various fields defined in this object.

Table 10: SRIO VIP's Sequence Item

S.No	Field Name	Size	Description	
Comm	Common Fields			
1	transaction_kind	srio_trans_ki nd	Transaction Kind {SRIO_PACKET,SRIO_CS,SRIO_STATE_MC}	
Logica	al Layer Fields			
2	ftype	4-bits	Format type	
3	wdptr	1-bit	Word pointer, used in conjunction with the data size (rdsize and wrsize) fields	
4	rdsize	4-bits	Data size for read transactions, used in conjunction with the word pointer (wdptr) bit	
5	wrsize	4-bits	Write data size for sub-double-word transactions, used in conjunction with the word pointer (wdptr) bit	
6	SrcTID	8-bits	The packet's transaction ID	
7	ttype	4-bits	Transaction Type	
8	address	29-bits	Physical address	
9	ext_address	32-bits	Specifies the most significant 16 bits of a 50-bit physical address or 32 bits of a 66-bit physical address.	
10	flowID	3-bits	Includes Priority and CRF	
11	xamsbs	2-bits	Extended address most significant bits. Further extends the address specified by the address and extended address fields by 2 bits.	
12	config_offset	21-bits	Double-word offset into the CAR/CSR register block for reads and writes	
13	info_lsb	8-bits	Software-defined information field LSB	
14	info_msb	8-bits	Software-defined information field MSB	
15	msg_len	4-bits	Total number of packets comprising the message operation.	
16	ssize	4-bits	Standard message packet data size.	
17	letter	2-bits	Identifies a slot within a mailbox.	
18	mbox	2-bits	Specifies the recipient mailbox in the target element	

Page 50 SRIO VIP User Guide

S.No	Field Name	Size	Description
19	msgseg_xmbox	4-bits	msg_seg -> For multiple packet data message operations, specifies the part of the message supplied by the packet. xmbox -> For single packet data message operations, specifies the upper 4 bits of the mailbox targeted by the packet.
20	cos	8-bits	class of service
21	S	1-bit	Start - If set, this packet is the first segment of a new PDU
22	Е	1-bit	End - If set, this packet is the last segment of a PDU
23	xh	1-bit	Extended header - is used for traffic management.
24	odd	1-bit	Odd - If set, the data payload has an odd number of half-words
25	pad	1-bit	Pad - If set, a pad byte was used to pad to a half-word boundary
26	StreamID	16-bits	Traffic stream identifier
27	pdulength	16-bits	PDU length
28	Xtype	3-bits	Traffic Management Packet
29	TMOP	4-bits	Indicates which type of Stream Management Message
30	wildcard	3-bits	Indicates VSID dest/class/stream wildcard
31	mask	8-bits	Class Mask: Used to mask portions of the class of service (COS) field to allow groups of classes to be included in the message
32	parameter1	8-bits	Parameter1: Argument specific to the TM message operation
33	parameter2	8-bits	Parameter2: Argument specific to the TM message operation
34	SecTID	8-bits	Original requestor's, or secondary, transaction ID for intervention
35	SecID	4-bits	Original requestor's, or secondary, ID for intervention
36	SecDomain	4-bits	Original requestor's, or secondary, do-main for intervention
37	targetID_Info	8-bits	Target Transaction ID / Target Information of Msg/ Doorbell Response
38	trans_status	4-bits	Type of Response status
39	payload[\$]	8-bits	Payload Queue

S.No	Field Name	Size	Description
Trans	port Layer Fields		
40	SourceID	32-bits	Source Device ID
41	DestinationID	32-bits	Destination Device ID
42	tt	2-bits	Transport Type
43	hop_count	8-bits	Hop Count
Physic	al Layer Fields		
44	ackid	12-bits	Acknowledge ID.
45	gen3_ackid_msb	6-bits	MSB of ackid decoded from sop-padded or sop-unpadded control symbol.
46	sop	1-bit	Start of Packet.
47	eop	1-bit	End of Packet
48	prio	2-bits	Priority
49	crf	1-bit	Critical Request Flow
50	vc	1-bit	Virtual Channel
51	veid	4-bits	Virtual Channel ID
52	early_crc	16-bits	Early crc
53	final_crc	16-bits	Final crc
54	crc_32	32-bits	Crc 32.Specific to Gen3.0
55	final_crc_err	1-bit	Final Crc Error
56	early_crc_err	1-bit	Early Crc Error
57	crc32_err	1-bit	Crc32 Error
58	cs_type	srio_pl_cs_ty pe	CS Type {SRIO_CS24,SRIO_CS48,SRIO_CS64}
59	cs_kind	srio_pl_cs_ki nd	CS Kind {SRIO_SC,SRIO_PD}
60	stype0	4 bits	Stype0
61	param0	12-bits	Parameter0
62	param1	12-bits	Parameter1
63	brc3_stype1_msb	2 bits	Used only for GEN3.0. This field concatenated with stype1 and cmd field gives the stype1 value for CS64.
64	stype1	3 bits	Stype1
65	cmd	3-bits	Command
66	cs_crc5	5-bits	Crc5.Crc5 for short CS24
67	cs_crc13	13-bits	Crc13. Crc13 for long CS48
68	cs_crc_24	24-bits	Crc24.Crc24 for gen3.0 CS64

Page 52 SRIO VIP User Guide

S.No	Field Name	Size	Description	
69	state	srio_pl_state _kind	State. State variable for holding the current state of initialization state machine {SILENT,SEEK,DIS-COV-ERY,NX_MODE,2X_MODE,2X_RECOVERY,1X_MODE_LANE0,1X_MODE_LANE1,1X_MODE_LANE2,1X_RECOVERY}	
70	next_state	srio_pl_state _kind	Next State.Next state variable for moving to the specific state of initialization state machine {SILENT,SEEK,DISCOV-ERY,NX_MODE,2X_MODE,2X_RECOVERY,1X_MODE_LANE0,1X_MODE_LANE1,1X_MODE_LANE2,1X_RECOVERY}	
Miscel	llaneous Fields			
71	ll_err_kind	ll_err_kind	LL Error Kind NONE,MAX_SIZE_ERR,FTYPE_ERR,TTYPE_E RR,PAYLOAD_ERR,RESP_RSVD_STS_ERR,RE SP_PRI_ERR,RESP_PAYLOAD_ERR,SIZE_ERR ,NO_PAYLOAD_ERR,PAYLOAD_EXIST_ERR, ATAS_PAYLOAD_ERR,AS_PAYLOAD_ERR,AC AS_PAYLOAD_ERR,DW_ALIGN_ERR,LFC_PR I_ERR,DS_MTU_ERR,DS_PDU_ERR,DS_SOP_ ERR,DS_EOP_ERR,DS_ODD_ERR,DS_PAD_ER R,MSG_SSIZE_ERR,MSGSEG_ERR.	
72	tl_err_kind	tl_err_type	TL Error Type TL_NULL_ERR,DEST_ID_MISMATCH_ERR,U NSUPPORTED_TT_ERR,RESERVED_TT_ERR	
73	pl_err_kind	pl_err_kind	PL Error Kind {NO_ERR,EARLY_CRC_ERR,FINAL_CRC_ER R,ACKID_ERR,CS_FIELD_COR,PSR_COR,CS MARKER_COR,DESC_SYNC_BREAK,CS_FIE LD_TRU,PSR_TRU,CSMARKER_TRU,CSFIEL D_UPDATE}	
74	payload_err	bool	Payload size greater than allowed	
75	wdptr_rdsize_err	bool	Invalid wdptr and rdsize	
76	wdptr_wrsize_err	bool	Invalid wdptr and wrsize	
77	crc_err	bool	If TRUE,CRC error is created	
78	stomp_err	bool	Indicate STOMP End during packet transmission	
79	ackid_err	bool	If TRUE, wrong AckID is transmitted	

S.No	Field Name	Size	Description
80	cs_err	srio_pl_cs_er	CS Error
		r_kind	{BAD_CHAR,CRC_ERR,DELIM_ERR,ALIGN_ ERR}
81	usr_gen_pkt	bit	If 1, indicates that the packet is generated by user. User has taken care of constructing the packet with the required values.
82	usr_directed_ll_re sponse_en	bool	If TRUE, user directed response type is sent. If FALSE, response type is selected from LL configuration parameters
83	usr_directed_ll_re ponse_type	srio_ll_resp_ kind	LL_NO_RESP,LL_DONE,LL_ERROR,LL_RETR Y
84	usr_directed_ll_re sponse_delay	integer	Decides the latency of a LL response packet transmitted.
85	usr_directed_pl_r esponse_en	bool	If TRUE, user configured delay and port status are inserted while PL responses are sent.
86	usr_directed_port _status	integer	User directed port status value for PL response packets.
87	usr_directed_pl_r esponse_delay	integer	Decides the latency of a PL response packet transmitted.
88	usr_directed_pl_a ck_en	bool	If TRUE, user directed response type is sent. If FALSE, response type is selected from PL configuration parameters.
89	usr_directed_pl_a ck_type	srio_pl_ack_ kind	PL_ACCEPT,PL_NOT_ACCEPT,PL_RETRY.
90	usr_directed_pl_n ac_cause	srio_pl_nac_ cause	User directed cause field if packet not accepted response is sent.
91	usr_directed_pl_a ck_delay	integer	Decides the latency of a acknowledge packet transmitted.
92	packet_gap	int	Delay between packets for transmission
93	msg_type	bit	Used by LL monitor to save the type of msg as single segment/multi segment
94	ll_err_detected	ll_err_kind	Type(ll_err_kind) of LL error detected by the LL monitor
95	tl_err_detected	tl_err_type	Type(tl_err_type) of TL error detected by the TL monitor
96	ll_err_encountere d	bit	Set by LL monitor when any LL error is encountered
97	tl_err_encountere d	bit	Set by TL monitor when any TL error is encountered

Page 54 SRIO VIP User Guide

S.No	Field Name	Size	Description
98	pl_err_encountere d	bit	Set the protocol checker instance, so that the upper layer monitors need not process the error transaction. It will be used by the functional coverage instance.
99	cs_crc24_err		Indicates crc24 error is detected in the received control symbol transaction.
100	do_pack	function	The function do_pack method acts as the user-definable hook called by the <pack> method and is used to override the actual uvm do_pack method to include its fields in a pack. This function packs the packet fields into bit stream. Input to function is srio_trans object and output is bit array.</pack>
101	do_unpack	function	The function do_unpack method acts as the user-definable hook called by the <unpack> method and is used to override the actual uvm do_unpack method to include its fields in an unpack operation. This function unpacks the bit stream into srio_trans object.</unpack>
102	do_copy	function	The function do_copy method acts as the user-definable hook called by the <copy> method and is used to override the actual uvm do_copy method to include its fields in a copy operation. This function copies the fields from the current srio_trans object to new srio_trans object.</copy>
103	do_compare	function	The function do_compare method acts as the user-definable hook called by the <compare> method and is used to override the actual uvm do_compare method to include its fields in a compare operation. Compares its fields with the received srio_trans object's fields.</compare>
104	do_print	function	The function do_print method acts as the user-definable hook called by the <print> and <sprint> method and is used to override the actual uvm do_print method to ensure a consistent output format. Prints the srio_trans object's fields.</sprint></print>

7 List of Checks

7.1 Logical Layer Checks

The logical layer agent monitor checks are listed in Table 11, "Logical Layer Checks," on page 56.

Table 11: Logical Layer Checks

S.No	Check Description	Specification Reference				
Common LL Checks						
1	Received a request packet with an outstanding source TID	Part 1, Section 3.1.				
2	Received write requests with data payload greater than max size (256 bytes)	Part 1, Section 4.1.2				
3	Response received with reserved status field	Part 2, Section 4.3.1				
4	Received a packet with invalid ftype	Part 1, Section 4.1				
5	Received a packet with valid ftype and invalid ttype	Part 3, Section 2.5.3				
6	Received a packet where the device does not have the support to process it	Part 1, Section 5.4.8 Part 2, Section 5.4.2 Part 5, Section 5.4.2 Part 10, Section 5.5.2				
7	Transmitted a packet where the processing element does not have the support to issue it	Part 1, Section 5.4.7 Part 2, Section 5.4.1 Part 5, Section 5.4.1 Part 10, Section 5.5.1				
8	Requests received with priority = 3	Part 6, Section 5.6.3				
9	Response received with priority = 0	Part 6, Section 5.6.3				

Page 56 SRIO VIP User Guide

S.No	Check Description	Specification Reference
10	Response received with a priority not greater than request's priority	Part 6, Section 5.6.3
11	Response received for a non-outstanding request i.e. unsolicited response	Part 8, Section 2.5.3
TYPE 1		
12	Packets received with data payload	Part 5, Section 4.2.5
13	Received a reserved combination of rdsize and wdptr	Part 5, Section 4.2.5
TYPE 2 -	- Generic Checks	
14	Received packet with data payload	Part 1, Section 4.1.5
TYPE 2 -	- NREAD	
15	Received response to NREAD where the requested length and received data payload mismatches	Part 1, Section 3.3.1
TYPE 2 -	- ATOMIC	
16	Atomic transactions of sizes other than 1,2 and 4 bytes	Part 1, Section 3.3.4
17	Received packet with data payload greater than the expected number of bytes corresponding to {wdptr,wrsize}	Part 1, Section 4.1.7
TYPE 5 -	- Generic Checks	l
18	Received a reserved combination of wrsize and wdptr	Part 1, Section 4.1.2
19	Received packet with data payload greater than the expected number of bytes corresponding to {wdptr,wrsize}	Part 1, Section 4.1.7
20	Received packets without data payload	Part 1, Section 4.1.7.
21	Received packet with data payload not matching the expected number of bytes, where the wrsize is lesser than or equal to single double word	Part 5, Section 4.2.8.
22	Data payload greater than the wrsize in multiple double- word transactions	Part 1, Section 4.1.2
TYPE 5 -	- ATOMIC PACKET	
23	ATOMIC test-and-swap transaction with data payload other than 1/2/4 bytes	Part 1, Section 4.1.7
24	ATOMIC swap transaction with data payload other than 1/2/4 bytes	Part 1, Section 4.1.7

S.No	Check Description	Specification Reference
25	Received Atomic compare and swap with data payload not equal to 16 bytes	Part 1, Section 4.1.7
TYPE 6		
26	Data payload exceeds the maximum size of 256 bytes	Part 1, Section 4.1.8
27	Packet received without data payload	Part 1, Section 4.1.8
28	Data payload not multiple of Double word	Part 1, Section 4.1.8
29	Data payload lesser than one double word	Part 1, Section 4.1.8
TYPE 7 -	- LFC	
30	In the multiple PDU transfer case (in the middle of PDU transfer), after sending XOFF(ARB), receiving new PDUs after the current PDU transfer is done. Packets having CRF=1 is exceptional.	Part 9, Section 2.2.1
31	In the multiple PDU transfer case (in the middle of PDU transfer), after sending XOFF(ARB), no RELEASE packet is received after the current PDU transfer is completed.	Part 9, Section 2.2.1
32	When a request is pipelined, received XON(ARB), for the pipelined request before the current transaction has not been completed.	Part 9, Section 2.2.2
33	Received pipelined REQUEST before XON(ARB) was sent to the first REQUEST	Part 9, Section 2.2.2
34	LFC packets received with priority < 3	Part 9, Section 2.2.4
35	LFC packets received with CRF = 0, even though CRF is supported	Part 9, Section 2.2.4
36	Started receiving packets from a destination ID with a particular priority (Packets with CRF=1 is exceptional), for which the 'number of XOFF packets sent' is lesser than the 'number of XON packets sent' before the orphaned timer expires.	Part 9, Section 2.4.2.3
37	Receiving LFC packet, when there was no packets sent other than Maintenance and flow control transaction request flows.	Part 9, Section 2.4.3
38	Receiving second REQUEST message, before sending XOFF(ARB) for the previous REQUEST and before the first REQUEST is timed out	Part 9, Section 2.4.7

Page 58 SRIO VIP User Guide

S.No	Check Description	Specification Reference
39	Received RELEASE with different flow that of the context is allocated for.	Part 9, Section 2.4.7
40	Receiving REQUEST for pipelining, with the same sequence number, when the first PDU transaction is on progress.	Part 9, Section 2.4.7
41	After sending XOFF for a particular priority, receiving packets with the same (Packets with CRF=1 is exceptional) or lower priorities before the orphaned timer expires. (For devices not supporting flow arbitration)	Part 9, Section 3.2, Section A.2
42	Received a LFC packet with data payload	Part 9, Section 3.2
43	Received XON(ARB), for a particular sequence number, when there was no REQUEST sent for the same sequence number	Part 9, Section 3.3
44	Received XOFF(ARB) for a particular sequence number, when there was no REQUEST sent for the same sequence number	Part 9, Section 3.3
45	Received RELEASE for a sequence number, for which there was no REQUEST received earlier.	Part 9, Section 3.3
46	Started receiving PDUs before the REQUEST - XON(ARB) hand shake happens	Part 9, Section 3.3
47	Started receiving PDUs before the XON(ARB) is sent for that sequence number	Part 9, Section 3.3
48	Received XON without XOFF preceded by that	
49	Received LFC packet with reserved flowID	Part 9, Section 3.2
TYPE 8 -	- MAINTENANCE	
50	Received maintenance read request for the size other than word, double word or multiple double word up to 64 bytes	Part 1, Section 4.1.10
51	Received maintenance write request for the size other than word, double word or multiple double word up to 64 bytes	Part 1, Section4.1.10
52	Received maintenance write request with the data payload size greater than wrsize mentioned in the packet	Part 1, Section4.1.10
53	Received maintenance write with reserved combination of wrsize and wdptr	Part 1, Section4.1.10
54	Maintenance response with hop count not equal to 8'hFF	Part 3, Section 2.5

S.No	Check Description	Specification Reference
TYPE 9 -	- DATA STREAMING	
55	Received a segment where the data payload size is greater than the MTU.	Part 10, Section 3.2.4
56	Data Streaming length field configured greater than Max-PDU supported	Part 10, Section 3.2.4
57	Received a start or single segment on an open context	Part 10, Section 3.2.5
58	Receiving End segment on a closed context	Part 10, Section 3.2.5
59	Receiving a continuation segment on a new context	Part 10, Section 3.2.5
60	The length of a reassembled PDU is lesser than the PDU length field in the end data streaming segment packet header	Part 10, Section 3.2.5
61	The length of a reassembled PDU is greater than the PDU length field in the end data streaming segment packet header	Part 10, Section 3.2.5
62	Received a segment where the data payload size is smaller than the MTU (End segment and single segment are exceptional)	Part 10, Section 3.2.5
63	Receiving more number of segments than Segsupport specified in 'Data Streaming Information CAR'	Part 10, Section 4.2
64	Received a packet with Odd bit set, when the data payload has an even number of half-words	Part 10, Section 4.2
65	Received a packet with Pad bit set, when the length of payload is multiple of 2 bytes	Part 10, Section 4.2
66	Packet received with xh = 1 and any of S, E, O or P bits with non-zero values	Part 10, Section 4.3
TYPE 9	- DS TRAFFIC MANAGEMENT	
67	After sending XOFF (DS traffic management) packet for a particular priority receiving DS packets with the same or lower priorities	Part 10, Section 4.3.2
68	After sending XOFF (DS traffic management) packet, receiving DS packets from the same destination, class and streamid.	Part 10, Section 4.3
69	Received XON (DS traffic management) without XOFF (DS traffic management) preceded by that	
70	Received packet with reserved xtype value	Part 10, Section 4.3

Page 60 SRIO VIP User Guide

S.No	Check Description	Specification Reference
71	Received packet with reserved TM OP value	Part 10, Section 4.3
72	Received packet with valid TMOP and reserved parameter1 value	Part 10, Section 4.3
TYPE 10	- DOOR BELL	
73	Received Doorbell request packet with data payload	Part 2, Section 4.2.4
TYPE 11	- DATA MESSAGE	
74	Received a message segment with payload greater than the one specified in the ssize field	Part 2, Section 4.2.5
75	Received a message segment (except the last segment) with payload lesser than the one specified in the ssize field	Part 2, Section 4.2.5
76	Received duplicated/repeated message segment without any 'retry' response	Part 2, Section 4.2.5
77	Received message packet with reserved ssize	Part 2, Section 4.2.5
78	Received a message segment whose msgseg field is greater than msglen field	Part 2, Section 4.2.5
79	Packet received with Data payload lesser than 8 bytes (Minimum size of data payload in a message segment is 8 bytes)	Part 2, Section 4.2.5
80	Received a message segment without data payload	Part 2, Section 4.2.5
81	Received a message packet without double-word boundary alignment	Part 2, Section 4.2.5
82	Received message segments of the same message (except the last segment) with different payload size.	Part 2, Section 4.2.5
83	Received message segments of the same message with different ssize field.	Part 2, Section 4.2.5
84	Received message segments of the same message with different msg_length field.	Part 2, Section 4.2.5
85	Data Message Operation not completed at the end of simulation	NA
TYPE 13	- RESPONSE CLASS	
86	Received response to NREAD where the requested length and received data payload mismatches	Part 1, Section 3.3.1
87	Received response to an atomic transaction with data payload size not equal to 8 bytes	Part 1, Section 4.1.5

S.No	Check Description	Specification Reference
88	Received data payload in the response with ERROR status. (Maintenance Read Response is exceptional)	Part 1, Section 4.2.3
89	Received data payload in the response which does not require data payload	Part 1, Section 4.2.3
90	Received response to Doorbell packet with data payload	Part 2, Section 4.3.3
91	Received 'retry' response when expected for a 'error' response	

7.2 Transport Layer Checks

The transport layer monitor checks are listed in Table 12, "Transport Layer Checks," on page 62.

Table 12: Transport Layer Checks

S.No	Check Description	Specification reference
1	Received packet without interchanged source and destination address in the response packet as that of request packet.	Part 3. Section 2.3
2	Received a packet that contained a destination ID that is not defined for this processing element	Part 3. Section 2.3
3	Packets received with reserved 'tt' field.	Part 3. Section 2.4

7.3 PL Monitor checks

The physical layer monitor checks are listed in Table 13, "Physical Layer Checks," on page 62.

Table 13: Physical Layer Checks

S.No	Check Description	Specification reference
LINK PROTOCOL CHECKS		
1	Unexpected packet-accepted control symbol transmitted.	5.13.2.3.1
2	Unexpected packet-accepted control symbol received.	5.13.2.3.1

Page 62 SRIO VIP User Guide

S.No	Check Description	Specification reference
3	Packet -accepted with unexpected ackID value transmitted.	5.13.2.3.1
4	Packet-accepted with unexpected ackID value received.	5.13.2.3.1
5	Device is operating in receiver-controlled flow control mode, and the buf status field is not equal to 0x1F in the transmitted packet-accepted control symbol.	5.9.1
6	Device is operating in receiver-controlled flow control mode, and the buf status field is not equal to 0x1F in the received packet-accepted control symbol.	5.9.1
7	Unexpected packet-retry control symbol transmitted.	5.13.2.3.1
8	Unexpected packet-retry control symbol received.	5.13.2.3.1
9	Packet -retry with unexpected ackID value transmitted.	5.13.2.3.1
10	Packet-retry with unexpected ackID value received.	5.13.2.3.1
11	Device is operating in receiver-controlled flow control mode, and the buf status field is not equal to 0x1F in the transmitted packet-retry control symbol.	5.9.1
12	Device is operating in receiver-controlled flow control mode, and the buf status field is not equal to 0x1F in the received packet-retry control symbol.	5.9.1
13	Unexpected packet-not-accepted control symbol transmitted.	5.13.2.3.1
14	Unexpected packet-not-accepted control symbol received.	5.13.2.3.1
15	Packet-not-accepted with invalid cause field transmitted.	3.4.3 / Table 3-4
16	Packet-not-accepted with invalid cause field received.	3.4.3 / Table 3-4
17	Status control symbol with unexpected ackID-status transmitted.	5.13.2.3.1
18	Status control symbol with unexpected ackID-status received.	5.13.2.3.1
19	Device is operating in receiver-controlled flow control mode, and the buf status field is not equal to 0x1F in the transmitted status control symbol.	5.9.1
20	Device is operating in receiver-controlled flow control mode, and the buf status field is not equal to 0x1F in the transmitted status control symbol.	5.9.1
21	Atleast one status control symbol have to be transmitted every 1024 / code-groups.	5.5.3.1

S.No	Check Description	Specification reference
22	Atleast one status control symbol have to be received every 1024 code-groups.	5.5.3.1
23	VC_status control symbol is transmitted when multiple VCs are not supported.	3.4.5
24	VC_status control symbol is received when multiple VCs are not supported.	3.4.5
25	Device is operating in receiver-controlled flow control mode, and the buf status field is not equal to 0x1F in the transmitted VC_status control symbol.	5.9.1
26	Device is operating in receiver-controlled flow control mode, and the buf status field is not equal to 0x1F in the transmitted VC_status control symbol.	5.9.1
27	Link-response control symbol with unexpected ackID-status transmitted.	5.13.2.3.1
28	Link-response control symbol with unexpected ackID-status received.	5.13.2.3.1
29	Reserved cause field value seen on the transmitted packet-not-accepted control symbol	-NA-
30	Reserved port-status value seen on the transmitted link-response control symbol.	-NA-
31	Reserved cause field value seen on the received packet- not-accepted control symbol	-NA-
32	Reserved port-status value seen on the received link-response control symbol.	-NA-
33	Unexpected link-response control symbol received when no link-request is outstanding.	5.7
34	Unexpected link-response control symbol transmitted when no link-request is outstanding.	5.7
35	SOP control symbol transmitted with /SC/ delimiter.	3.5 / Table 3-7
36	Packet transmission before link initialization is complete.	5.5.3.1
37	EOP control symbol transmitted with /SC/ delimiter.	3.5 / Table 3-7
38	EOP control symbol transmitted when a packet is not in progress.	-NA-
39	STOMP control symbol transmitted when a packet is not in progress.	3.5 / Table 3-7
40	STOMP control symbol received when a packet is not in progress.	3.5 / Table 3-7

Page 64 SRIO VIP User Guide

S.No	Check Description	Specification reference
41	Link-request control symbol received with PD delimiter when no packet is in progress.	3.5.5 / Table 3-7
42	Restart-from-retry control symbol received with PD delimiter when no packet is in progress.	3.5.5 / Table 3-7
43	Restart-from-retry control symbol transmitted without receiving a packet-retry control symbol.	3.5.4
44	Unexpected Restart-from-retry control symbol transmitted when there are no outstanding packets.	3.5.4
45	A new link request is transmitted when a previous link request is outstanding.	5.7
46	Sync sequence doesn't precede the link request control symbol.	4.8.2
47	Link request doesn't follow immediately after a sync sequence.	4.8.2
48	Invalid / Incomplete sync sequence transmitted.	4.8.2
49	Invalid / Incomplete sync sequence received.	4.8.2
50	Clock compensation sequence not transmitted in the last 5000 characters.	4.7.1
51	Packet retry control symbol transmitted when multiple VC is supported and enabled.	5.4 / 5.8
52	Packet retry control symbol received when multiple VC is supported and enabled.	5.4 / 5.8
53	Packet retry control symbol transmitted for a packet, the VC of which is operating in CT mode.	5.4 / 5.8
54	Packet retry control symbol received for a packet, the VC of which is operating in CT mode.	5.4 / 5.8
55	Input error detected, recovery not initiated. i.e., packet-not-accepted is not transmitted.	5.13.2.6
56	Received a packet-not-accepted control symbol, link request with input-status command is not sent out.	5.13.2.7
57	Received a link-request with input-status command, link response is not sent out.	5.7
58	Start flag is not set in first control symbol of timestamp sequence.	6.5.3.5
59	Start flag is set in other than first control symbol of the timestamp sequence.	6.5.3.5
60	End flag is set in other than last control symbol of the timestamp sequence	6.5.3.5

S.No	Check Description	Specification reference
61	End flag is not set in the lst control symbol of the timestamp sequence.	6.5.3.5
62	Incomplete timestamp sequence encountered. Timestamp sequence shall not be truncated by any other control symbols.	6.5.3.5
IDLE SE	QUENCE CHECKS	
63	Invalid / Illegal characters being transmitted in the IDLE sequence on lane <x>.</x>	5.13.2.2
64	Invalid / Illegal characters received in the IDLE sequence on lane <x>.</x>	5.13.2.2
65	IDLE1 sequence doesn't begin with /K/ character.	4.7.2
66	IDLE2 sequence neither begins with clock compensation sequence nor with D0.0	4.7.4
67	IDLE sequence is not identical across lanes.	5.13.2.2
68	Column of A not seen on the transmitted IDLE sequence.	5.13.2.2
69	Column of A not seen on the received IDLE sequence.	5.13.2.2
70	Column of K not seen on the transmitted IDLE sequence.	5.13.2.2
71	Column of K not seen on the received IDLE sequence.	5.13.2.2
72	Column of R not seen on the transmitted IDLE sequence.	5.13.2.2
73	Column of R not seen on the received IDLE sequence.	5.13.2.2
74	Column of M not seen on the transmitted IDLE sequence.	5.13.2.2
75	Column of M not seen on the received IDLE sequence.	5.13.2.2
76	Column of D0.0 not seen on the transmitted IDLE sequence.	5.13.2.2
77	Column of D0.0 not seen on the received IDLE sequence.	5.13.2.2
78	In IDLE1 sequence, successive /A/ characters has to be separated by atleast 16 non-A characters.	4.7.2
79	The length of the pseudo random data field in the IDLE2 sequence is less than 509 characters.	4.7.4.1.1
80	The length of the pseudo random data field in the IDLE2 sequence is greater than 515 characters.	4.7.4.1.1

Page 66 SRIO VIP User Guide

S.No	Check Description	Specification reference
81	The special characters within the pseudo-random data characters of the IDLE2 sequence have to be separated by at least 16 and not more than 31 D0.0 characters except the first contiguous sequence of pseudo-random data characters.	4.7.4.1.1
82	The length of first contiguous sequence of pseudo-random characters in the IDLE2 sequence shall be no less than 16 and no more 35 characters.	4.7.4.1.1
83	When the IDLE2 sequence is truncated at the pseudorandom data characters, the length of the last contiguous sequence of pseudo-random characters shall be no less than 4 and no more than 35 characters.	4.7.4.1.1
84	After an M character, 4 D0.0 characters has to follow and the sequence shall not be truncated before 4 D0.0 characters after an M character.	4.7.4
85	IDLE2 sequence shall not be truncated within the 4 M characters of the CS marker field.	4.7.4
86	5th and 7th characters of IDLE2 CS marker field has to be same.	4.7.4.1.2
87	6th and 8th characters of IDLE2 CS marker field has to be complement to each other.	4.7.4.1.2
88	Dx.y character of the IDLE2 CS marker indicates wrong lane number on lane <x></x>	4.7.4.1.2 / Table 4-6
89	Dx.y character of the IDLE2 CS marker indicates wrong active link width on lane <x></x>	4.7.4.1.2 / Table 4-5
90	The bits [0-31] and [32-63] of IDLE2 CS field has to bitwise compliment to each other.	4.7.4.1.3
91	Port doesn't support IDLE2 sequence, but IDLE2 sequence is being transmitted on the link.	6.6.8
CONTRO	L SYMBOL CHECKS	
92	Invalid / Illegal character seen in the transmitted control symbol.	5.13.2.3.2
93	Invalid / Illegal character seen in the received control symbol.	5.13.2.3.2
94	Starting /SC/ delimiter occurs on lane, the modulo 4 of which is non-zero.	5.13.2.3.2
95	Wrong CRC in transmitted control symbol.	5.13.2.3.2
96	Wrong CRC in received control symbol.	5.13.2.3.2

S.No	Check Description	Specification reference
97	End de-limiter is missing at the 7th character position from the start de-limiter.	5.13.2.3.2
98	Start delimiter and end delimiter are not same.	5.13.2.3.2
PACKET	CHECKS	
99	Invalid / Illegal character seen in the transmitted packet.	5.13.2.4
100	Invalid / Illegal character seen in the received packet.	5.13.2.4
101	Wrong CRC in transmitted packet.	5.13.2.4
102	Wrong CRC in received packet.	5.13.2.4
103	Packet transmitted with wrong ackID.	5.13.2.4
104	Packet received with wrong ackID.	5.13.2.4
105	Request packet transmitted with illegal priority 2'b11.	5.6.3
106	Request packet received with illegal priority 2'b11.	5.6.3
107	Packet is being transmitted when all the possible ackIDs are outstanding.	5.6.2
108	Packet is being received when all the possible ackIDs are outstanding.	5.6.2
109	Starting /PD/ delimiter of a packet occurs on a lane, the modulo 4 of which is non-zero.	5.13.2.3.2
110	Total packet size exceeds maximum supported bytes.	5.13.2.4
111	Packet is transmitted in output-error-stopped state.	5.13.2.7
TIMEOU	T CHECKS	
112	Link timeout occured. Packet acknowledgement is not received for with ackID <x></x>	6.6.2
113	Link timeout occured. Link response is not received for an outstanding link request.	6.6.2
114	Link timeout occured. Loop-timing response is not received for an outstanding loop-timing request.	6.6.2
AET CHI	ECKS	
115	Transmit equalizer command is transmitted when transmit equalizer control is not supported.	6.6.10 / Table 6-18
116	Transmit equalizer command is de-asserted before an ACK/NACK is received and also before 250us (100us incase of BRC3) from the time the command is asserted.	4.7.4.1.4
117	Transmit equalizer command ACK/NACK has to be deasserted within 250us (100us incase of BRC3) from the time the equalizer command is de-asserted.	4.7.4.1.4

Page 68 SRIO VIP User Guide

S.No	Check Description	Specification reference
118	Multiple equalization commands are set in the same IDLE2 CS field.	4.7.4.1.4
119	ACK and NACK are set together in the same IDLE2 CS field.	4.7.4.1.4
120	ACK / NACK is set when no AET command is outstanding.	
121	AET command asserted again before the re-assertion timer expires.	4.7.4.1.4
122	AET command shall not change / de-asserted before an ACK / NACK is received or before the command time-out occurs.	4.7.4.1.4
123	AET command not de-asserted even after the ACK time- out occured.	4.7.4.1.4
GEN3 SP	ECIFIC CHECKS*	
124	Incorrect sequence number detected in the first control symbol of timestamp sequence.	6.5.3.5 / Table 6-2.
125	Incorrect sequence number detected in the second control symbol of timestamp sequence.	6.5.3.5 / Table 6-2.
126	Incorrect sequence number detected in the third control symbol of timestamp sequence.	6.5.3.5 / Table 6-2.
127	Incorrect sequence number detected in the fourth control symbol of timestamp sequence.	6.5.3.5 / Table 6-2.
128	Unexpected timestamp sequence control symbols detected.	6.5.3.5
129	Unexpected loop-request control symbol detected.	6.5.3.5
130	Unexpected loop-timing response control symbol is transmitted when no loop-timing request is outstanding.	6.5.3.5
131	Unexpected loop-timing response control symbol is received when no loop-timing request is outstanding.	6.5.3.5
132	Incomplete timestamp sequence control symbol encountered. Timestamp sequence control symbols shall not be interrupted.	6.5.3.5.1
133	SOP-padded control symbol transmitted, when no packet was previously transmitted.	3.5.1
134	Previous packet was not padded to achieve a total length that is multiple of 8 bytes, but it is terminated with SOP-padded control symbol.	3.5.1

S.No	Check Description	Specification reference
135	Previous packet was padded to achieve a total length that is multiple of 8 bytes, but it is terminated with SOP-unpadded control symbol.	3.5.1
136	Packet which is not padding appended to achieve a total length that is multiple of 8 bytes is terminated by EOP-padded control symbol.	3.5.3
137	Packet which is padding appended to achieve a total length that is multiple of 8 bytes is terminated by EOP-unpadded control symbol.	3.5.3
138	type and !type of a 67B codeword have to be compliment to each other.	5.5.1
139	Invalid skip-marker control codeword is transmitted. Fixed value is different.	5.5.3.1
140	Invalid skip-marker control codeword is received. Fixed value is different.	5.5.3.1
141	Skip-marker control codeword have to be transmitted only as part of skip ordered sequence.	5.5.3.1
142	Invalid lane_check control codeword is transmitted. Fixed value is different.	5.5.3.2 / Table 5-2
143	Invalid lane_check control codeword is received. Fixed value is different.	5.5.3.2 / Table 5-2
144	BIP-23 and iBIP-23 fields of lane_check control codeword are not compliment to each other.	5.5.3.2 / Table 5-2
145	Lane_check control codeword have to be transmitted only as part of skip ordered sequence.	5.5.3.2
146	Invalid skip control codeword is transmitted. Fixed value is different.	5.5.3.4
147	Invalid skip control codeword is received. Fixed value is different.	5.5.3.4
148	Incorrect Status / Control control codeword is transmitted. Field <x> is not matching the expected value.</x>	5.5.3.5
149	Field <x> which belongs to the port scope of a status / control codeword should have same value on all operating lanes.</x>	5.5.3.5
150	Field <x> which belongs to the Asym. port scope of a status / control control codeword should have same value on all operating lanes.</x>	5.5.3.5
151	Ordered sequences shall not be truncated.	5.9.1

Page 70 SRIO VIP User Guide

S.No	Check Description	Specification reference
152	Ordered sequences have to be identical across all the operating lanes except the lane specific fields.	5.8
153	A link request control symbol shall always be preceded by a seed ordered sequence.	5.8.1
154	Skip control codeword shall be transmitted only as a part of skip ordered sequence.	5.8.3
155	Lane-check control codeword shall be transmitted only as a part of skip ordered sequence.	5.8.3
156	Skip ordered sequence shall be transmitted atleast once for every 5000 codewords per lane.	5.8.3
157	Control symbols embedded in a packet shall always align to an 8-byte boundary relative to the beginning of the packet.	6.5.3.3
158	As part of IDLE3, the seed ordered sequence shall be transmitted at least once for every 49 codewords transmitted per lane.	5.9.1
159	As part of IDLE3, the status / control ordered sequence shall be transmitted at least once for every 18 to 49 codewords transmitted per lane.	5.9.1
160	The 2 consecutive status / control control codewords within a status / control ordered sequence have to be identical per lane.	5.8.2
161	Invalid / illegal codeword encountered inbetween IDLE sequence3.	5.9.1
162	CSB should be followed by either CSE or CSEB.	5.7
163	Incorrect Link CRC32 detected.	5.6
164	Transmit equalizer command shall not be asserted when status is other than not_updated.	5.10.2.2
165	Transmit equalizer command should be deasserted within 5us after 100us timeout.	5.10.2.2
166	Transmit equalizer command field shall not change before transmit equalizer status is received.	5.10.2.2
167	Transmit equalizer tap field shall not change before transmit equalizer status is received.	5.10.2.2
168	Transmit equalizer command should be deasserted within 5us after receiving status.	5.10.2.2

S.No	Check Description	Specification reference
169	Transmit equalizer status should not be other than not_updated when there is no active command-status handshake is outstanding.	5.10.2.2
170	Expected and actual coefficient status doesn't match.	802.3-2008, 72.6.10.2.4
171	Transmit width request is being transmitted when asymmetry mode is not supported.	7.6.14
172	Transmit width request is de-asserted before the transmit width request pending bit is asserted and also before 250us from the time the transmit width request is asserted.	5.16.1.3
173	Transmit width request pending bit has to be de-asserted within 250us from the time the transmit width request is de-asserted.	5.16.1.3
174	Receive width link command is being transmitted when asymmetry mode is not supported.	7.6.14
175	Receive width link command is de-asserted before the receive width command ACK/NACK is asserted and also before 62.5us from the time the receive width link command is asserted.	5.16.3
176	Receive width command ACK/NACK has to be deasserted within 62.5us from the time the receive width link command is de-asserted.	5.16.3
177	Receive width link command ACK and Receive width link command NACK are asserted at the same time.	5.16.3
178	Receive width link command NACK is expected as unsupported / illegal link width requested, but receive width link command ACK is transmitted.	5.16.3

^{*} Specification reference for LL checks, TL checks and PL GEN3 Specific Checks are wrt to Draft version 3.0.10. PL checks other than GEN3 Specific Checks are wrt Rev.2.2.

Page 72 SRIO VIP User Guide

Creating SV Environment Using SRIO VIP

This section explains how to use the SRIO VIP in a UVM based system verilog environment to build the DUT verification environment.

Creating tb_top module:

```
module tb_top;
// Import UVM and srio_test_lib package
import uvm_pkg::*;
import srio_test_lib_pkg::*;
// Instantiate the interfaces:
srio_interface SRIO_IF();
initial
begin
uvm_config_db#(virtual srio_interface)::set(null, "*srio_env*", "SRIO_VIF", SRIO_IF);
run test();
end
//Assert Reset
initial
begin
 SRIO_IF.srio_rst_n = 0;
 #50ns;
  SRIO_IF.srio_rst_n = 1;
end
//Generate the clocks
// Instantiate DUT and connect the signals
end
endmodule
PE MODEL:
Creating base test:
```

```
'include "uvm macros.svh"
import uvm_pkg::*;
import srio_env_pkg::*;
// Create base test from uvm test
class srio_base_test extends uvm_test;
'uvm component utils(srio base test)
// Instantiate srio env class
srio env env1;
```



```
srio env config env config; // Global configuration object
srio_reg_block srio_reg_model_tx; // Register Block for TX device, BFM
srio_reg_block srio_reg_model_rx; // Register Block for RX Device, DUT
function void build phase( uvm phase phase );
//Create Global configuration object
env_config = srio_env_config::type_id::create("srio_env_config",this);
// Store the global config object handle to uvm config data base
uvm_config_db #(srio_env_config)::set(this,"*srio_env1*", "srio_env_config", env_config);
// Configure the global variables at this place
env config.num of lanes = 4;
env_config.srio_mode = SRIO_GEN22;
env_config.srio_baud_rate = SRIO_5;
// Create Register blocks and build it
srio_reg_model_tx = srio_reg_block::type_id::create("srio_reg_model_tx");
srio_reg_model_tx.build();
srio_reg_model_rx = srio_reg_block::type_id::create("srio_reg_model_rx");
srio_reg_model_rx.build();
//Store the reg blocks handle to the global config object. Other components will take it from config
env config.srio reg model tx = srio reg model tx;
env_config.srio_reg_model_rx = srio_reg_model_rx;
// SRIO Environment creation
env1 = srio env::type id::create("srio env1", this );
//Configure the individual layer's configuration variable
env1.pl_agent.pl_agent_config.idle_sel = 1;
env1.tl agent.ll config.has checks
                                       = 1:
env1.ll agent.ll config.interleaved pkt = FALSE;
endfunction
endclass
Creating LL test case which invokes nread sequence to create nread packets
class srio_ll_nread_req_test extends srio_base_test;
`uvm_component_utils(srio_ll_nread_req_test)
//LL nread virtual sequence which maps to actual nread sequence
srio_ll_nread_req_seq nread_req_seq;
task run phase( uvm phase phase );
nread_req_seq = srio_ll_nread_req_seq::type_id::create("nread_req_seq");
phase.raise_objection( this );
//Start the sequence using the virtual sequencer
nread reg seg.start(env1.e virtual seguencer);
phase.drop_objection(this);
endtask
```

Page 74 SRIO VIP User Guide

endclass

end //}

```
Creating srio_env:
class srio env extends uvm env;
'uvm component utils(srio env);
srio_II_agent II_agent; // LL Agent
srio tl agent tl agent; // TL Agent
srio_pl_agent pl_agent; // PL Agent
srio env config env config;
srio_virtual_sequencer e_virtual_sequencer; // Virtual Sequencer
// SRIO Reg Block
srio_reg_block srio_reg_model;
// Register layering adapter:
srio_reg_adapter srio_adapter;
// Register predictor:
uvm reg predictor #(srio trans) srio reg predictor;
// SRIO Trans Item Decoder. Used by Register Model
srio_trans_decoder trans_decoder;
// Functional coverage
srio_II_func_coverage srio_II_fc;
srio tl func coverage srio tl fc;
srio_pl_func_coverage srio_pl_fc;
function void build_phase(uvm_phase phase);
// Get the environment config handle from uvm config data base
if(!uvm_config_db #(srio_env_config)::get(this, "", "srio_env_config", env_config))
   `uvm_fatal("CONFIG FATAL", "Can't get the env_config")
// Storing the DUT reg block handle from config to local variable
srio_reg_model = env_config.srio_reg_model_rx;
srio_adapter
                = srio_reg_adapter::type_id::create("srio_adapter");
srio reg predictor = uvm reg predictor #(srio trans)::type id::create("srio reg predictor", this);
trans_decoder = srio_trans_decoder::type_id::create("trans_decoder", this);
//Create LL,TL and PL Agents
II_agent = srio_II_agent::type_id::create("II_agent", this);
tl agent = srio tl agent::type id::create("tl agent", this);
pl_agent = srio_pl_agent::type_id::create("pl_agent", this);
// Create Virtual Sequencer
if(env_config.has_virtual_sequencer)
begin //{
e virtual sequencer = srio virtual sequencer::type id::create("e virtual sequencer", this);
```



```
// Create Coverage Modules
if(env_config.has_coverage)
begin //{
if(env_config.srio_vip_model == SRIO_PE)
begin //{
srio II fc
           = srio II func coverage::type id::create("srio II fc", this);
srio tl fc
           = srio_tl_func_coverage::type_id::create("srio_tl_fc", this);
end //}
srio_pl_fc
            = srio_pl_func_coverage::type_id::create("srio_pl_fc", this);
end //}
endfunction
function void connect_phase(uvm_phase phase);
// Connect TLM Ports
Il agent. Il agent tx put port.connect(tl agent.tl agent tx put export);
tl agent.tl agent tx put port.connect(pl agent.pl agent tx put export);
pl_agent.pl_agent_rx_put_port.connect(tl_agent.tl_agent_rx_put_export);
tl_agent.tl_agent_rx_put_port.connect(ll_agent.ll_agent_rx_put_export);
// Analysis port to upper layer import connection
tl agent.tl monitor.tx mon ap.connect(ll agent.ll monitor.tx monitor.ll tx mon imp);
tl_agent.tl_monitor.rx_mon_ap.connect(ll_agent.ll_monitor.rx_monitor.ll_rx_mon_imp);
pl agent.pl monitor.tx mon ap.connect(tl agent.tl monitor.tx monitor.tt tx mon imp);
pl_agent.pl_monitor.rx_mon_ap.connect(tl_agent.tl_monitor.rx_monitor.tl_rx_mon_imp);
// Assigning LL,TL and PL sequencer handles to virtual sequencer handles
if(env config.has virtual sequencer)
begin //{
e_virtual_sequencer.v_II_sequencer = II_agent.II_sequencer;
e_virtual_sequencer.v_tl_sequencer = tl_agent.tl_sequencer;
e_virtual_sequencer.v_pl_sequencer = pl_agent.pl_sequencer;
end //}
// Register sequencer layering part:
if(env_config.srio_vip_model == SRIO_PE)
srio_reg_model.srio_reg_block_map.set_sequencer(Il_agent.Il_sequencer, srio_adapter);
srio reg model.srio reg block map.set sequencer(pl agent.pl sequencer, srio adapter);
//Register Layer
// Register prediction part:
// Set the predictor Adress map:
srio reg predictor.map = srio reg model.srio reg block map;
// Set the predictor adapter:
srio reg predictor.adapter = srio adapter;
// Disable the register models auto-prediction
srio_reg_model.srio_reg_block_map.set_auto_predict(0);
trans decoder.tx decoder.srio reg model = srio reg model;
// Connect the predictor to the bus agent monitor analysis port
if(env_config.srio_vip_model == SRIO_PE)
begin //{
```

Page 76 SRIO VIP User Guide


```
Il agent.tx mon ap.connect(trans decoder.tx decoder.analysis export);
Il agent.rx mon ap.connect(trans decoder.rx decoder.analysis export);
//FC modules are collecting packets from monitor analysis ports
if(env_config.has_coverage)
begin //{
Il agent.tx mon ap.connect(srio Il fc.tx trans collector.analysis export);
Il_agent.rx_mon_ap.connect(srio_ll_fc.rx_trans_collector.analysis_export);
tl_agent.tx_mon_ap.connect(srio_tl_fc.tx_trans_collector.analysis_export);
tl_agent.rx_mon_ap.connect(srio_tl_fc.rx_trans_collector.analysis_export);
pl_agent.tx_mon_ap.connect(srio_pl_fc.tx_trans_collector.analysis_export);
pl agent.rx mon ap.connect(srio pl fc.rx trans collector.analysis export);
srio II fc.II agent = II agent;
srio_pl_fc.pl_agent = pl_agent;
end //}
end //}
else
begin //{
pl_agent.tx_mon_ap.connect(trans_decoder.tx_decoder.analysis_export);
pl_agent.rx_mon_ap.connect(trans_decoder.rx_decoder.analysis_export);
if(env_config.has_coverage)
begin //{
pl_agent.tx_mon_ap.connect(srio_pl_fc.tx_trans_collector.analysis_export);
pl_agent.rx_mon_ap.connect(srio_pl_fc.rx_trans_collector.analysis_export);
srio_pl_fc.pl_agent = pl_agent;
end //}
end //}
// Connect the srio transaction decoder to the register predictor's input port
trans_decoder.ap.connect(srio_reg_predictor.bus_in);
endfunction: connect phase
endclass
Creating virtual sequencer:
class srio virtual sequencer extends uvm sequencer #(srio trans);
`uvm_component_utils(srio_virtual_sequencer)
srio_II_sequencer v_II_sequencer;
srio tl sequencer v tl sequencer;
srio_pl_sequencer v_pl_sequencer;
endclass
Creating Virtual Sequence:
class srio_virtual_base_seq extends uvm_sequence#(srio_trans);
 `uvm_object_utils(srio_virtual_base_seq)
// Config and reg model handles
srio_env_config env_config;
srio_reg_block srio_reg_model;
```



```
///Virtual sequencer Handles for LL,TL and PL sequencers
srio_II_sequencer seq_II_sequencer;
srio_tl_sequencer seq_tl_sequencer;
srio_pl_sequencer seq_pl_sequencer;
srio virtual_sequencer seq_virtual_seqr;
task body();
assert($cast(seq_virtual_seqr,m_sequencer))
if(!uvm_config_db #(srio_env_config)::get(m_sequencer, "", "srio_env_config", env_config))
`uvm_fatal("Config Fatal", "Can't get the env_config")
seq_II_sequencer= seq_virtual_seqr.v_II_sequencer;
seq_tl_sequencer= seq_virtual_seqr.v_tl_sequencer;
seg pl sequencer= seg virtual segr.v pl sequencer;
endtask
endclass: srio_virtual_base_seq
Creating LL Nread Virtual Sequence:
class srio II nread reg seg extends srio virtual base seg;
`uvm_object_utils(srio_ll_nread_req_seq)
//This is the original LL sequence which creates nread packets. This virtual sequence maps to
// that sequence
srio_II_request_class_seq II_nread_req_seq;
task body();
super.body();
repeat (5) begin //{
Il nread reg seg = srio Il request class seg::type id::create("Il nread reg seg");
// User can control some of the nread fields from virtual sequence
II_nread_req_seq.ftype_0 = 4'h2;
Il nread reg seg.ttype 0 = 4'h4;
Il nread reg seg.rdsize 0 = 4'h6;
II_nread_req_seq.SrcTID_0 = $random;
II_nread_req_seq.ext_address_0= $urandom;
II_nread_req_seq.address_0 = $random;
Il nread reg seg.xamsbs 0 = $random;
Il nread reg seg.wdptr 0 = $random;
Il_nread_req_seq.start(seq_ll_sequencer);
end //}
endtask
endclass: srio_ll_nread_req_seq
```

Page 78 SRIO VIP User Guide

Creating LL Base Sequence:

```
class srio_II_base_seq extends uvm_sequence#(srio_trans);
`uvm_object_utils(srio_ll_base_seq)
srio env config env config;
srio_reg_block srio_reg_model;
task pre body();
super.pre body();
if(!uvm_config_db #(srio_env_config)::get(m_sequencer, "", "srio_env_config", env_config))
`uvm_fatal("Config Fatal", "Can't get the env_config")
srio_reg_model = env_config.srio_reg_model_rx;
//Wait for the
wait (env_config.pl_mon_tx_link_initialized == 1);
wait (env config.pl mon rx link initialized == 1);
endtask
endclass: srio_II_base_seq
Creating LL request packet transmitting sequence:
class srio_II_request_class_seq extends srio_II_base_seq;
`uvm_object_utils(srio_ll_request_class_seq)
srio_trans srio_trans_item;
//These fields are controlled from virtual sequence
logic [3:0] ftype 0;
logic [3:0] ttype_0;
logic [31:0] ext_address_0;
logic [28:0] address 0;
logic [1:0] xamsbs 0;
logic wdptr_0;
logic [3:0] wrsize_0;
logic [3:0] rdsize_0;
logic [7:0] SrcTID_0;
virtual task body();
srio_trans_item = srio_trans::type_id::create("srio_trans_item");
//Values of some of the fields are forced from virtual sequence. So need to disable the related
// constraints
srio_trans_item.Ftype.constraint_mode(0);
srio_trans_item.Ttype.constraint_mode(0);
srio_trans_item.ext_adress_xamsbs.constraint_mode(0);
srio_trans_item.rdsize_0.constraint_mode(0);
srio trans item.Wdptr.constraint mode(0);
start item(srio trans item);
```



```
assert(srio_trans_item.randomize() with {ftype ==ftype_0 ;ttype == ttype_0 ;rdsize ==
rdsize_0;SrcTID == SrcTID_0;ext_address == ext_address_0;address == address_0;xamsbs ==
xamsbs_0;wdptr == wdptr_0;});
//Prints the srio trans sequence item fields
srio_trans_item.print();
finish_item(srio_trans_item);
endtask
endclass: srio_ll_request_class_seq
Creating TL Virtual Sequence:
class srio_tl_pkt_tt_seq extends srio_virtual_base_seq;
`uvm_object_utils(srio_tl_pkt_tt_seq)
srio_tl_pkt_tt_base_seq tl_pkt_tt_seq;
task body();
super.body();
repeat(5) begin
tl_pkt_tt_seq = srio_tl_pkt_tt_base_seq::type_id::create("tl_pkt_tt_seq");
tl_pkt_tt_seq.start(vseq_tl_sequencer);
end
endtask
endclass: srio_tl_pkt_tt_seq
Creating TL Sequence:
class srio_tl_pkt_tt_base_seq extends srio_tl_base_seq; //{
`uvm_object_utils(srio_tl_pkt_tt_base_seq)
srio_trans srio_trans_item;
rand bit [3:0] ftype_0,ttype_0;
virtual task body();
srio_trans_item = srio_trans::type_id::create("srio_trans_item");
srio_trans_item.Ftype.constraint_mode(0);
srio_trans_item.Ttype.constraint_mode(0);
srio_trans_item.wrsize_0.constraint_mode(0);
ftype_0 = \sup_{x \in \mathbb{Z}} (32'd6, 32'd5);
start_item(srio_trans_item);
assert(srio_trans_item.randomize() with {ftype ==ftype_0 ;ttype == 4'h4;wrsize ==4'hB ;wdptr
==1'b0;});
for(int i=0; i<8; i++) begin
srio_trans_item.payload.push_back(i);
end
```

Page 80 SRIO VIP User Guide


```
finish_item(srio_trans_item);
endtask
endclass: srio_tl_pkt_tt_base_seq
Creating PL Virtual Sequence:
class srio_pl_nwrite_swrite_req_seq extends srio_virtual_base_seq;
`uvm_object_utils(srio_pl_nwrite_swrite_req_seq)
srio_pl_nwrite_swrite_class_base_seq pl_nwrite_swrite_seq ;
task body();
super.body();
repeat(5) begin
pl_nwrite_swrite_seq=
srio pl nwrite swrite class base seq::type id::create("pl nwrite swrite seq");
// Connect to PL virtual sequencer
pl nwrite swrite seg.start(vseg pl seguencer);
end
endtask
endclass: srio_pl_nwrite_swrite_req_seq
Creating PL Sequence:
class srio_pl_nwrite_swrite_class_base_seq extends srio_ll_base_seq;
'uvm object utils(srio pl nwrite swrite class base seg)
srio trans srio trans item;
rand bit [3:0] ftype_0;
rand bit [3:0] ttype_0;
virtual task body();
srio_trans_item = srio_trans::type_id::create("srio_trans_item");
srio_trans_item.pkt_type = SRIO_PL_PACKET;
srio_trans_item.Ftype.constraint_mode(0);
srio_trans_item.Ttype.constraint_mode(0);
srio trans item.wrsize 0.constraint mode(0);
ftype_0 = \sup_{0 \le 1} \sup_{0 \le 1} (32'd6, 32'd5);
start_item(srio_trans_item);
assert(srio_trans_item.randomize() with {ftype ==ftype_0;ttype == 4'h4;wrsize ==4'hB ;wdptr
==1'b0;});
for(int i=0; i<8; i++) begin //{
srio_trans_item.payload.push_back(i);
end //}
finish_item(srio_trans_item);
endtask
endclass: srio_pl_nwrite_swrite_class_base_seq
```


PL Setup:

Creating base test:

```
`include "uvm macros.svh"
import uvm pkg::*;
import srio_env_pkg::*;
// Create base test from uvm_test
class srio_base_test extends uvm_test;
`uvm_component_utils(srio_base_test)
// Instantiate srio env class
srio_env env1;
srio_env_config env_config; // Global configuration object
srio reg block srio reg model tx; // Register Block for TX device, BFM
srio_reg_block srio_reg_model_rx; // Register Block for RX Device, DUT
function void build_phase( uvm_phase phase );
//Create Global configuration object
env config = srio env config::type id::create("srio env config",this);
// Store the global config object handle to uvm config data base
uvm_config_db #(srio_env_config)::set(this,"*srio_env1*", "srio_env_config", env_config);
// Configure the global variables at this place
env config.num of lanes = 4;
env config.srio mode = SRIO GEN22;
env_config.srio_baud_rate = SRIO_5;
// Configure the model as PL model
env_config1.srio_vip_model = SRIO_PL;
// Create Register blocks and build it
srio_reg_model_tx = srio_reg_block::type_id::create("srio_reg_model_tx");
srio_reg_model_tx.build();
srio_reg_model_rx = srio_reg_block::type_id::create("srio_reg_model_rx");
srio_reg_model_rx.build();
//Store the reg blocks handle to the global config object. Other components will take it from config
env_config.srio_reg_model_tx = srio_reg_model_tx;
env_config.srio_reg_model_rx = srio_reg_model_rx;
// SRIO Environment creation
env1 = srio_env::type_id::create("srio_env1", this );
//Configure PL Layer's configuration variable
env1.pl_agent.pl_agent_config.idle_sel = 1;
endfunction
endclass
```

Page 82 SRIO VIP User Guide

Creating srio_env:

```
class srio_env extends uvm_env;
`uvm_component_utils(srio_env);
srio II agent II agent; // LL Agent
srio tl agent tl agent; // TL Agent
srio_pl_agent pl_agent; // PL Agent
srio env config env config;
srio virtual sequencer e virtual sequencer; // Virtual Sequencer
// SRIO Reg Block
srio_reg_block srio_reg_model;
// Register layering adapter:
srio reg adapter srio adapter;
// Register predictor:
uvm reg predictor #(srio trans) srio reg predictor;
// SRIO Trans Item Decoder. Used by Register Model
srio_trans_decoder trans_decoder;
// Functional coverage
srio II func coverage srio II fc;
srio tl func coverage srio tl fc;
srio_pl_func_coverage srio_pl_fc;
// Users needs to connect the TLM and analysis port from PL agents to their TL/LL model.
uvm_put_port #(srio_trans) tl_agent_tx_put_port; ///< Dummy TLM port used in PL model
uvm_put_export #(srio_trans) tl_agent_rx_put_export; ///< Dummy TLM port used in PL model
uvm_tlm_fifo #(srio_trans) tl_rx_fifo;
                                             ///< Dummy TLM port fifo
function void build phase(uvm phase phase);
// Get the environment config handle from uvm config data base
if(!uvm_config_db #(srio_env_config)::get(this, "", "srio_env_config", env_config))
   `uvm_fatal("CONFIG FATAL", "Can't get the env_config")
// Storing the DUT reg block handle from config to local variable
srio reg model = env config.srio reg model rx;
srio_adapter
                = srio_reg_adapter::type_id::create("srio_adapter");
srio reg predictor = uvm reg predictor #(srio trans)::type id::create("srio reg predictor", this);
                = srio_trans_decoder::type_id::create("trans_decoder", this);
trans decoder
//Create LL,TL and PL Agents
II agent = srio II agent::type id::create("II agent", this);
tl agent = srio tl agent::type id::create("tl agent", this);
pl_agent = srio_pl_agent::type_id::create("pl_agent", this);
// Create Virtual Sequencer
if(env config.has virtual sequencer)
begin //{
e virtual sequencer = srio virtual sequencer::type id::create("e virtual sequencer", this);
```


end //} // Create Coverage Modules if(env_config.has_coverage) begin //{ if(env config.srio vip model == SRIO PE) begin //{ srio II fc = srio_ll_func_coverage::type_id::create("srio_ll_fc", this); srio tl fc = srio_tl_func_coverage::type_id::create("srio_tl_fc", this); end //} srio pl fc = srio pl func coverage::type id::create("srio pl fc", this); end //} if(env_config.srio_vip_model == SRIO_PL) tl agent rx put export = new("tl agent rx put export", this); tl agent tx put port = new("tl agent tx put port", this); tl_rx_fifo = new("tl_rx_fifo", this,100); end endfunction function void connect phase(uvm phase phase); if(env_config.srio_vip_model == SRIO_PE) // If PE model,connect PL-<>TL and TL<-> LL begin // TLM ports Il agent. Il agent tx put port.connect(tl agent.tl agent tx put export); tl agent.tl agent tx put port.connect(pl agent.pl agent tx put export); pl_agent.pl_agent_rx_put_port.connect(tl_agent.tl_agent_rx_put_export); tl_agent.tl_agent_rx_put_port.connect(ll_agent.ll_agent_rx_put_export); // Analysis port to upper layer import connection tl agent.tl monitor.tx mon ap.connect(ll agent.ll monitor.tx monitor.ll tx mon imp); tl agent.tl monitor.rx mon ap.connect(ll agent.ll monitor.rx monitor.ll rx mon imp); pl_agent.pl_monitor.tx_mon_ap.connect(tl_agent.tl_monitor.tx_monitor.tl_tx_mon_imp); pl_agent.pl_monitor.rx_mon_ap.connect(tl_agent.tl_monitor.rx_monitor.tl rx mon imp); end else if(env_config.srio_vip_model == SRIO_PL) // In PL model only PL agent will be included. User needs to connect the // PL agents's TLM and Analysis port to their wrapper logic. Here dummy // ports are connected for example and user needs to replace it. tl_agent_rx_put_export.connect(tl_rx_fifo.put_export); tl_agent_tx_put_port.connect(pl_agent.pl_agent_tx_put_export); pl agent_pl agent_rx_put_port.connect(tl_agent_rx_put_export); end // Assigning LL,TL and PL sequencer handles to virtual sequencer handles if(env_config.has_virtual_sequencer) begin //{ e virtual sequencer.v | | sequencer = | agent.| | sequencer; e_virtual_sequencer.v_tl_sequencer = tl_agent.tl_sequencer; e_virtual_sequencer.v_pl_sequencer = pl_agent.pl_sequencer;

Page 84 SRIO VIP User Guide


```
end //}
// Register sequencer layering part:
if(env_config.srio_vip_model == SRIO_PE)
srio_reg_model.srio_reg_block_map.set_sequencer(II_agent.II_sequencer, srio_adapter);
srio_reg_model.srio_reg_block_map.set_sequencer(pl_agent.pl_sequencer, srio_adapter);
//Register Layer
// Register prediction part:
// Set the predictor Adress map:
srio reg predictor.map = srio reg model.srio reg block map;
// Set the predictor adapter:
srio reg predictor.adapter = srio adapter;
// Disable the register models auto-prediction
srio_reg_model.srio_reg_block_map.set_auto_predict(0);
trans decoder.tx decoder.srio reg model = srio reg model;
// Connect the predictor to the bus agent monitor analysis port
if(env_config.srio_vip_model == SRIO_PE)
begin //{
Il agent.tx mon ap.connect(trans decoder.tx decoder.analysis export);
Il agent.rx mon ap.connect(trans decoder.rx decoder.analysis export);
//FC modules are collecting packets from monitor analysis ports
if(env config.has coverage)
begin //{
Il_agent.tx_mon_ap.connect(srio_ll_fc.tx_trans_collector.analysis_export);
Il_agent.rx_mon_ap.connect(srio_ll_fc.rx_trans_collector.analysis_export);
tl agent.tx mon ap.connect(srio tl fc.tx trans collector.analysis export);
tl_agent.rx_mon_ap.connect(srio_tl_fc.rx_trans_collector.analysis_export);
pl agent.tx mon ap.connect(srio pl fc.tx trans collector.analysis export);
pl_agent.rx_mon_ap.connect(srio_pl_fc.rx_trans_collector.analysis_export);
srio II fc.II agent = II agent;
srio_pl_fc.pl_agent = pl_agent;
end //}
end //}
else
begin //{
pl_agent.tx_mon_ap.connect(trans_decoder.tx_decoder.analysis_export);
pl agent.rx mon ap.connect(trans decoder.rx decoder.analysis export);
if(env config.has coverage)
begin //{
pl_agent.tx_mon_ap.connect(srio_pl_fc.tx_trans_collector.analysis_export);
pl_agent.rx_mon_ap.connect(srio_pl_fc.rx_trans_collector.analysis_export);
srio_pl_fc.pl_agent = pl_agent;
end //}
end //}
// Connect the srio transaction decoder to the register predictor's input port
trans_decoder.ap.connect(srio_reg_predictor.bus_in);
endfunction: connect phase
endclass
```


TXRX Setup:

endclass

Creating base test:

```
// Create base test from uvm test
class srio_base_test extends uvm_test;
// Configure the model as TXRX model
env_config1.srio_vip_model = SRIO_TXRX;
// Refer to PE/PL model's srio base test for remaining part of the code.
endclass
Creating srio_env:
class srio_env extends uvm_env;
// Refer to PE/PL model's env for remaining part of the code
// User needs to connect the PL agent's TLM to their wrapper logic.
uvm put port #(srio trans) tl agent tx put port; ///< Dummy TLM port
uvm_put_export #(srio_trans) tl_agent_rx_put_export; ///< Dummy TLM port</pre>
uvm_tlm_fifo #(srio_trans) tl_rx_fifo;
                                            ///< Dummy TLM port fifo
function void build_phase(uvm_phase phase);
if(env config.srio vip model == SRIO TXRX)
begin
tl_agent_rx_put_export = new("tl_agent_rx_put_export", this);
tl_agent_tx_put_port = new("tl_agent_tx_put_port", this);
tl_rx_fifo = new("tl_rx_fifo", this,100);
end
endfunction
function void connect_phase(uvm_phase phase);
if(env_config.srio_vip_model == SRIO_TXRX)
begin
// In PL/TXRX model only PL agent will be included. User needs to connect the
// PL agents's TLM and Analysis port to their wrapper logic. Here dummy
// ports are connected for example and user needs to replace it.
tl agent rx put export.connect(tl rx fifo.put export);
tl_agent_tx_put_port.connect(pl_agent.pl_agent_tx_put_export);
pl_agent_pl_agent_rx_put_port.connect(tl_agent_rx_put_export);
end
endfunction
```

Page 86 SRIO VIP User Guide

Promoting/Demoting uvm report severity

A callback 'severity_modifier' extended from 'uvm_report_catcher' (uvm callback) is provided to promote/demote the uvm report's severity.

The usage is as follows
At the beginning of the run_phase of the testcase, add the below lines.
<i> </i>
severity_modifier <hangle of="" severity_modifier=""> = new;</hangle>
<pre><hangle of="" severity_modifier="">.config_severity("<uvm id="" report="">", <required severity="">);</required></uvm></hangle></pre>
uvm_report_cb::add(null, <hangle of="" severity_modifier="">);</hangle>
<i> </i>
In the above code,
-> Line1: The handle of the callback (severity_modifier) is created and newed.
-> Line2: The task config_severity is called by passing the arguments, 'uvm report id' and 'required severity'
-> Line3: The created callback is added for use
Example
The testcase srio_ll_no_payload_error_demote_test.sv shows the example of error demotion.
// Error Demotion
severity_modifier severity_modifier1 = new;
severity_modifier1.config_severity("SRIO_LL_PROTOCOL_CHECKER:NO_PAYLOAD_ERR", UVM_WARNING);
uvm_report_cb::add(null, severity_modifier1);

The above examples describe about creating tb_top, tests, env and sequences. Same manner other sequences and test cases are created. User can also create their own test cases, sequences, env and build the required DUT verification setup.

Directory Structure

Figure 3, "Block Diagram Of SRIO VIP Directory Structure," on page 88 shows the SRIO VIP directory structure.

Figure 3: Block Diagram Of SRIO VIP Directory Structure

9.1 Directory / Files Description

Table 14: Directory and Files Description

Name of the Directory/File	Description	
doc	This directory contains the SRIO VIP documents.	
common	This directory contains the files commonly used by SRIO VIP components.	
srio_interface.sv	All the signals are declared here.	
srio_base_trans.sv	Base class for srio_trans sequence item class and contains the sequence item variables and the constraints.	
srio_trans.sv	Contains the methods of sequence item.	
srio_report_catcher_callback.sv	Contains callbacks to promote/demote uvm report severity	
env	This directory contains the environment related files.	
srio_env_config.vh	Contains the environment configuration class and its variables.	
srio_env.sv	srio_env class and its logic are included in this files	

Page 88 SRIO VIP User Guide

Name of the Directory/File	Description		
srio_env_pkg.sv	Contains the srio_env_pkg package that includes all the agent, functional coverage and register model files.		
srio_virtual_sequencer.sv	Contains the srio virtual sequencer class. This class has the handles of LL,TL and PL sequencers.		
11	All Logical Layer related files are included here.		
srio_ll_agent.sv	Logical Layer agent's top level component. This class instantiates LL BFM(active), monitor(Passive) and configuration components.		
srio_ll_variables.sv	Contains the Enum declarations used by the logical layer components.		
srio_ll_config.vh	Logical Layer configuration class.		
srio_ll_sequencer.sv	Logical Layer sequencer		
srio_ll_bfm.sv	Logical Layer active BFM component.		
srio_ll_base_generator.sv	LL base generator class.		
srio_logical_transaction_generator.sv	This file contains the srio_logical_transaction_generator class. This class instantiates other packets generators and also includes the RR and WRR mechanism.		
srio_io_generator.sv	Contains srio_io_generator class and its variables.		
srio_msg_db_generator.sv	Contains srio_msg_db_generator class and handles generation of message and doorbell packets.		
srio_ds_generator.sv	Contains srio_ds_generator class and handles generation of data streaming packets.		
srio_gsm_generator.sv	Contains srio_gsm_generator class and its variables.		
srio_lfc_generator.sv	Contains srio_lfc_generator class logic.		
srio_resp_generator.sv	Contains srio_resp_generator class and handles generation of response packets for received requests.		
srio_packet_handler.sv	Contains srio_packet_handler class and decodes the received packets.		
srio_ll_monitor.sv	Top Level component of Logical Layer agent's Passive component. It instantiates srio_ll_txrx_monitor for TX and RX monitor checks.		
srio_ll_txrx_monitor.sv	Contains srio_ll_txrx_monitor class and performs the protocol checks of Logical Layer. It instantiates LFC, MSG and DS assembly classes.		
srio_ll_ds_assembly.sv	Contains srio_ll_ds_assembly class which is used for DS assembly and testing in LL monitor.		
srio_ll_msg_assembly.sv	Contains srio_ll_msg_assembly class which is used for Data Message assembly and testing in LL monitor.		

Name of the Directory/File	Description	
srio_ll_lfc_assembly.sv	Contains srio_ll_lfc_assembly class which is used for LFC testing in LL monitor.	
srio_ll_tx_trans_collector.sv	Instantiated inside srio_ll_func_coverage class. It receives transactions from ll agent tx monitor.	
srio_ll_rx_trans_collector.sv	Instantiated inside srio_ll_func_coverage class. It receives transactions from ll agent rx monitor.	
srio_ll_func_coverage.sv	Contains LL layer related coverpoints.	
srio_ll_callback.sv	Contains the virtual task declarations used for logical layer callbacks.	
tl	All Transport Layer related files are included here.	
srio_tl_agent.sv	Transport Layer agent's top level component. This class instantiates TL BFM(active), monitor(Passive) and configuration components.	
srio_tl_config.vh	Transport Layer configuration class.	
srio_tl_sequencer.sv	TRansport Layer sequencer.	
srio_tl_bfm.sv	Transport Layer active BFM component.	
srio_tl_generator.sv	Contains srio_tl_generator class and handles generation of TL fields.	
srio_tl_receiver.sv	Contains srio_tl_receiver class and decodes the received packets.	
srio_tl_monitor.sv	Top Level component of TL agent's Passive component. It instantiates srio_tl_txrx_monitor for TX and RX monitor checks.	
srio_tl_txrx_monitor.sv	Contains srio_tl_txrx_monitor class and performs the protocol checks of TL.	
srio_tl_tx_trans_collector.sv	Instantiated inside srio_tl_func_coverage class. It receives transactions from tl agent tx monitor.	
srio_tl_rx_trans_collector.sv	Instantiated inside srio_tl_func_coverage class. It receives transactions from tl agent rx monitor.	
srio_tl_func_coverage.sv	Contains TL layer related coverpoints.	
srio_tl_callback.sv	Contains the virtual task declarations used for transport layer callbacks.	
pl	This directory contains the Physical Layer files.	
srio_pl_agent.sv	Physical Layer agent's top level component. This class instantiates PL BFM(active), monitor(Passive) and configuration components.	
srio_pl_variables.sv	Contains the Enum declarations used by the physical layer components.	

Page 90 SRIO VIP User Guide

Name of the Directory/File	Description	
srio_pl_config.sv	Physical Layer configuration class.	
srio_pl_sequencer.sv	Physical Layer sequencer.	
srio_pl_driver.sv	Physical Layer Active BFM component.	
srio_pl_pktcs_merger.sv	Physical layer packet and control symbol merger component.	
srio_pl_idle_gen.sv	Physical layer idle generation and striping component.	
srio_pl_data_trans.sv	Physical layer component that contains either the merged packet/control symbol or separate control symbol.	
srio_pl_lane_data.sv	Carries the lane specific data such as 10bit codegroup, 8b data / control character etc.	
srio_pl_lane_handler.sv	Receives the serial data and performs the decoding, descrambling, lane synchronization and receiver training. There will a separate instance of this class for each of the lanes supported.	
srio_pl_rx_data_handler.sv	Processes each lane's data, detects and decodes the idle sequence, performs de-skewing and de-striping and passes the aligned data to state-machine class. It also forms the control symbol trans or packet trans whenever they are received and passes to the higher level component.	
srio_pl_state_machine.sv	Contains the Align state machine and Initialization state machine.	
srio_pl_pkt_handler.sv	Physical layer packet handler component. Contains logic for collecting the packets and control symbols. If a packet is detected, it is forwarded to upper layers and if control symbols detected it is sent to tx components for further processing.	
srio_pl_monitor.sv	Top level class of PL agent's passive component. It instantiates the Tx monitor and Rx monitor w.r.to physical layer.	
srio_pl_link_monitor.sv	PL agent's Tx monitor and Rx monitor.	
srio_pl_protocol_checker.sv	Performs the protocol checks on the received control symbols and packets. It also performs link maintenance protocol checks.	
srio_pl_tx_trans_collector.sv	Instantiated inside srio_pl_func_coverage class. It receives transactions from pl agent tx monitor.	
srio_pl_rx_trans_collector.sv	Instantiated inside srio_pl_func_coverage class. It receives transactions from pl agent rx monitor.	
srio_pl_func_coverage.sv	Contains PL layer related coverpoints.	
srio_pl_fc_macro.sv	Contains macro definitions used in PL functional coverage	

Name of the Directory/File	Description	
srio_pl_callback.sv	Contains the virtual task declarations used for physical	
	layer callbacks.	
srio_gen_trans_tracker.sv	Records the transaction details of both env1 & env2 in two	
	separate files inside examples/pe_model	
	env1_srio_tracker.txt - Tx and Rx transactions of ENV1 env2_srio_tracker.txt - Tx and Rx transactions of ENV2	
reg model	This directory contains the register model files	
srio reg block.sv	Contains all the srio memory mapped registers and the	
&_	associated functional coverage bins for each register.	
srio_reg_adapter.sv	This block converts SRIO transactions (Maintenance,	
	NWRITE_R/NREAD) into register transactions using the	
	bus2reg function.	
srio_tx_trans_decoder.sv	This block decodes the MAINT_RD, MAINT_WR, NWRITE R, NREAD transaction requests transmitted by	
	BFM. This is a sub-block instantiated inside	
	srio_trans_decoder.	
srio_rx_trans_decoder.sv	This block decodes the responses received by BFM from	
	DUT. This is a sub-block instantiated inside	
	srio_trans_decoder.	
srio_trans_decoder.sv	This passes the decoded request and response packets from	
	srio_tx_trans_decoder and srio_rx_trans_decoder respectively to register predictor.	
sequences	This directory contains all the sequences related files.	
srio ll sequence lib.sv	Contains the Logical Layer sequences.	
srio_tl_sequence_lib.sv	Contains the Transport Layer sequences.	
srio_pl_sequence_lib.sv	Contains the Physical Layer sequences.	
srio_virtual_sequence_lib.sv	Contains the virtual sequences.	
srio_seq_lib_pkg.sv	Sequences library package includes LL,TL,PL abd Virtual	
	sequences.	
tests	Contains the test case files.	
srio_test_lib_pkg.sv	Test Cases library package include all test cases.	
examples	This directory includes the examples files.	
pe_model	Contains the scripts and tb_top for running simulation in PE model back to back setup.	
srio_base_test.sv	Contains srio_base_test test case for PE model setup.	
tb_top.sv	Top module for PE model back to back setup.	
RUN	RUN scripts gets the PE model back to back simulation	
	options and invokes make file.	

Page 92 SRIO VIP User Guide

Name of the Directory/File	Description		
makefile.sim	make file to run the back to back setup simulation for PE model.		
with_dut	This directory includes the example file for creating the SRIO VIP with DUT integrated setup for PE model.		
tb_top.sv	Top module for DUT setup with PE model.		
srio_base_test.sv	Base test case for DUT setup with PE model.		
pl_model	Contains the scripts and tb_top for running simulation in PL model back to back setup.		
srio_base_test.sv	Contains srio_base_test test case for PL model.		
tb_top.sv	Top module for back to back setup.		
RUN	RUN scripts gets the PL model back to back simulation options and invokes make file.		
makefile.sim	make file to run the back to back setup simulation for PL model.		
with_dut	This directory includes the example file for creating the SRIO VIP with DUT integrated setup for PL model.		
tb_top.sv	Top module for DUT setup with PL model.		
srio_base_test.sv	Base test case for DUT setup with PL model.		
txrx_model	Contains the scripts and tb_top for running simulation in TXRX model back to back setup.		
srio_base_test.sv	Contains srio_base_test test case for TXRX model.		
tb_top.sv	Top module for back to back setup.		
RUN	RUN scripts gets the TXRX model back to back simulation options and invokes make file.		
makefile.sim	make file to run the back to back setup simulation for TXRX model.		
with_dut	This directory includes the example file for creating the SRIO VIP with DUT integrated setup for TXRX model.		
tb_top.sv	Top module for DUT setup with TXRX model.		
srio_base_test.sv	Base test case for DUT setup with TXRX model.		

10 Running Simulation In Demo Setup

This chapter explains about setting up the SRIO VIP back to back environment and running the simulation. For creating DUT integrated setup, user needs to create the top verilog module and srio base test as discussed in the previous sections. User also need to update the scripts accordingly.

Set the SRIO VIP Path.

setenv SRIO_VIP_PATH <Path of the srio-vip directory>

Set the UVM library path.

setenv UVM_PATH <Path of the UVM library>

VCS users need to also set the following variable

setenv VCS_UVM_HOME \$UVM_PATH/src

PE Model

Run the simulation from srio-vip/examples/pe model directory.

Example RUN command:

./RUN -test srio_II_nread_req_test

PL Model

Run the simulation from srio-vip/examples/pl_model directory.

Example RUN command:

./RUN -test srio_pl_nwrite_swrite_req_test

TXRX Model

Run the simulation from srio-vip/examples/txrx model directory.

Example RUN command:

./RUN -test srio_txrx_model_test

Table 15: RUN Command Options

Option	Description
-s or -sim	Simulator. One of nc,vcs and questa.
	Default is nc.
-t or -test	Name of the test. One of he tests from test library.
-l or -lane	Number of Lanes. One of 1,2,4,8 and 16.Default is 4.
-b or -baudrate	SRIO Baud rate.One of 1_25G, 2_5G, 3_125G, 5G, 6_25G,
	10_3125G. Default is 5G.
-v or -srio_ver	SRIO Specification Version. One of 1_3,2_1,2_2 and 3_0.
-i or -dev_id	SRIO Device ID. One of 8, 16, 32. Default is 8.
-a or -addr_mode	SRIO Addressing Mode. One of 34, 50, 66. Default is 34.
-is or -idle_sel	GEN2 Idle selection.One of 1,2.Default is 2.
-tm or -	GEN3 Training Mode Selection. 0 - Short Run 1 - Long
brc3_traning_mode	Run.Default - 0.
-rm or -	Register model set Selection. 1 - RM-I, 2 - RM-II. Default - 1.
register_model_set	
-rs or -seed	Seed value. Default is process id value.
-c or -cov	Enable functional coverage
-help	Shows options.

Log files are stored in logs directory.

11 Tools Used

Tools Used	Version	Vendor	Platform
IUS	Incisive_12.10.020	Cadence	Linux
VCS	G-2012.09-SP1	Synopsys	Linux
Questa	Questa_10.1d	Mentor	Linux
UVM	1.1c	Accellera	Linux

Page 96 SRIO VIP User Guide