Physics 212 Lecture 8

Today's Concept:

Capacitors

(Capacitors in a circuits, Dielectrics, Energy in capacitors)

So what exactly does capacitance mean? What does a capacitor do in real life?

Energy in Capacitors (from lect 7)

Energy Stored in Capacitors

$$U = \frac{1}{2}QV$$
 or $U = \frac{1}{2}\frac{Q^2}{C}$ or $U = \frac{1}{2}CV^2$

Energy Density

$$u = \frac{1}{2} \varepsilon_o E^2$$

Simple Capacitor Circuit

This "Q" really means that the battery has moved charge Q from one plate to the other, so that one plate holds +Q and the other -Q.

Parallel Capacitor Circuit

Key point: V is the same for both capacitors

Key Point:
$$Q_{total} = Q_1 + Q_2 = VC_1 + VC_2 = V(C_1 + C_2)$$

$$C_{total} = C_1 + C_2$$

Series Capacitor Circuit

Key point: Q is the same for both capacitors

$$\text{Key point: } Q = VC_{total} = V_1C_1 = V_2C_2$$

Also:
$$V = V_1 + V_2$$

$$Q/C_{total} = Q/C_1 + Q/C_2$$

$$\frac{1}{C_{total}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Check Point 1

Which has lowest total capacitance:

Check Point 2

Which has lowest total capacitance?

Similar to CheckPoint 3

Which of the following is **NOT** necessarily true:

- A) $V_0 = V_1$
- B) $C_{total} > C_1$
- C) $V_2 = V_3$
- D) $Q_2 = Q_3$
- E) $V_1 = V_2 + V_3$

Check Point 3

A circuit consists of three unequal capacitors C_1 , C_2 , and C_3 which are connected to a battery of voltage V_0 . The capacitance of C_2 is twice that of C_1 . The capacitance of C_3 is three times that of C_1 . The capacitors obtain charges Q_1 , Q_2 , and Q_3 .

$$A = Q_1 > Q_3 > Q_2$$
 $A = Q_1 > Q_2 > Q_3$ $A = Q_1 > Q_2 = Q_3$ $A = Q_2 = Q_3$ $A = Q_1 = Q_2 = Q_3$ $A = Q_1 < Q_2 = Q_3$

- 1.: $Q_2 = Q_3$ (capacitors in series)
- 2. How about Q_1 vs. Q_2 and Q_3 ? Calculate C_{23} first.

2. How about
$$Q_1$$
 vs. Q_2 and Q_3 ? Calculate C_{23} first.

$$\frac{1}{C_{23}} = \frac{1}{C_2} + \frac{1}{C_3} = \frac{1}{2C_1} + \frac{1}{3C_1} = \frac{5}{6C_1}$$

$$C_{23} = \frac{6}{5}C_1$$

$$Q_1 = C_1V_0$$

$$Q_{23} = Q_2 = Q_3 = C_{23}V_0 = \frac{6}{5}C_1V_0$$

Dielectrics

By adding a dielectric, you are just making a new capacitor with larger capacitance (factor of κ)

Messing with Capacitors

If connected to a battery V stays constant

If isolated, then total Q stays constant

Check Point 4a

Two identical parallel plate capacitors are given the same charge Q, after which they are disconnected from the battery. Then, a dielectric is placed between the plates of C_2

Compare the voltages of the two capacitors.

$$AV_1 > V_2$$
 $BV_1 = V_2$ $CV_1 < V_2$

"Q is constant, C increases, C = Q/V."

Messing with Capacitors Clicker Question

A B C D E

Two identical parallel plate capacitors are connected to identical batteries. Then a dielectric is inserted between the plates of capacitor C_1 . Compare the energy stored in the two capacitors.

A)
$$U_1 < U_0$$

B)
$$U_0 = U_1$$

(c)
$$U_1 > U_0$$

Compare using $U = \frac{1}{2}CV^2$

$$U_1/U_0 = \kappa$$

Potential Energy goes UP

CheckPoint 4b

Two identical parallel plate capacitors are given the same charge Q, after which they are disconnected from the battery. Then, a dielectric is placed between the plates of C_2

Compare the potential energy stored by the two capacitors.

A)
$$\mathbf{U}_1 > \mathbf{U}_2$$
 B) $\mathbf{U}_1 = \mathbf{U}_2$ C) $\mathbf{U}_1 < \mathbf{U}_2$

CheckPoint 4c

Two identical parallel plate capacitors are given the same charge Q, after which they are disconnected from the battery. After C₂ has been charged and disconnected, it is filled with a dielectric. The two capacitors are now connected to each other by wires as shown. How will the charge redistribute itself, if at all?

- **A.** The charges will flow so that the charge on C_1 will become equal to the charge on C_2 .
- **B.** The charges will flow so that the energy stored in C₁ will become equal to the energy stored in C_2
- **C.** The charges will flow so that the potential difference across C₁ will become the same as the potential difference across C₂.
- D. No charges will flow. The charge on the capacitors will remain what it was before they were connected.

V must be the same!!

Q:
$$\frac{Q_1}{C_1} = \frac{Q_2}{C_2}$$
 $Q_1 = \frac{C_1}{C_2}Q_2$

Q:
$$\frac{Q_1}{C_1} = \frac{Q_2}{C_2}$$
 $Q_1 = \frac{C_1}{C_2}Q_2$
U: $U_1 = \frac{1}{2}C_1V^2$ $U_2 = \frac{1}{2}C_2V^2$

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage *V*.

A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

What is Q_f , the final charge on the capacitor?

Conceptual Analysis:

$$C \equiv \frac{Q}{V}$$

What changes when the dielectric added?

- A) Only C

Adding dielectric changes the physical capacitor

C changes

V does not change and C changes

Q changes

Strategic Analysis:

- Calculate new capacitance C
- Apply definition of capacitance to determine Q

To calculate *C*, let's first look at:

A) $V_{left} < V_{right}$ B) $V_{left} = V_{right}$ C) $V_{left} > V_{right}$

The conducting plate is an equipotential!

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage *V*.

A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

What is Q_f , the final charge on the capacitor?

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage *V*.

A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

What is Q_p , the final charge on the capacitor?

Can consider capacitor to be two capacitances, C_1 and C_2 , in parallel

A)
$$C_1 = C_0$$

What is C_1 ?

B)
$$C_1 = \frac{3}{4}C_0$$

C)
$$C_1 = \frac{4}{3}C_0$$

A)
$$C_1 = C_0$$
 B) $C_1 = \frac{3}{4}C_0$ C) $C_1 = \frac{4}{3}C_0$ D) $C_1 = \frac{9}{16}C_0$

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage *V*.

A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

What is Q_p , the final charge on the capacitor?

$$K = \frac{C_1}{K}$$

What is C_2 ?

A)
$$C_2 = \kappa C_0$$

B)
$$C_2 = \frac{3}{4} \kappa C_0$$

C)
$$C_2 = \frac{4}{3} \kappa C_0$$

B)
$$C_2 = \frac{3}{4} \kappa C_0$$
 C) $C_2 = \frac{4}{3} \kappa C_0$ D) $C_2 = \frac{1}{4} \kappa C_0$

 $C_1 = \frac{3}{4}C_0$

In general. For parallel plate capacitor filled with dielectric: $C = \kappa \varepsilon_0 A/d$

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage *V*.

A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

What is Q_p , the final charge on the capacitor?

$$C_1 = \frac{3}{4}C_0$$
 $C_2 = \frac{1}{4} \kappa C_0$

$$C = C_1$$

$$C_1 = \frac{3}{4}C_0$$

What is *C*?

A)
$$C = C_1 + C_2$$
 B)

C)
$$C = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$$

 $C = \text{parallel combination of } C_1 \text{ and } C_2$: $C = C_1 + C_2$

$$C = C_0 (3/_4 + 1/_4 \kappa)$$

An air-gap capacitor, having capacitance C_0 and width x_0 is connected to a battery of voltage *V*.

A dielectric (κ) of width $x_0/4$ is inserted into the gap as shown.

What is Q_p , the final charge on the capacitor?

$$C_1 = \frac{3}{4}C_0$$

$$C_1 = {}^{3}/_{4}C_0$$
 $C_2 = {}^{1}/_{4} \kappa C_0$

$$C = C_0 (3/_4 + 1/_4 \kappa)$$

What is Q?

$$C \equiv \frac{Q}{V} \longrightarrow Q = VC$$

$$Q_f = VC_0 \left(\frac{3}{4} + \frac{1}{4} \kappa \right)$$