LHZ scheme implementation

Abhishek Anand

What we have:

Machinery to solve QUBOs restricted to unit disk graphs

Quantum Optimization for Maximum Independent Set Using Rydberg Atom Arrays

Hannes Pichler, ^{1, 2, *} Sheng-Tao Wang, ^{2, *} Leo Zhou, ² Soonwon Choi, ^{2, 3} and Mikhail D. Lukin²

What we wish to do:

- Solve arbitrary QUBO on arbitrary graph
- Translate arbitrary graph ⇒ equivalent UD graph

Overview

Attempt 1: $[< O(n^2)$ atoms]

N² non-linear equations with qN variables

where q = number of degrees of freedom for each atom:

- x, y coordinate
- n, l, etc.

In general, not solvable for arbitrary set of equations. Plus, scaling problems (q).

Attempt 2: [O(n²) atoms: LHZ]

A quantum annealing architecture with all-to-all connectivity from local interactions

Wolfgang Lechner, 1,2* Philipp Hauke, 1,2 Peter Zoller 1,2

Core idea: represent each interaction as an atom

Main challenge: as redundancy (each variable represented *n* time), ensure some constraints

LHZ geometry

LHZ geometry

 Only works with 4 atoms per group (square/rhombus shape) as underlying fact that makes it work is:

$$n^2 = \sum_{i=0}^{n-1} (2n+1)$$

Only one symmetric position for auxiliary qubit

Why single species/n does not work:

If single species, then:

$$V_{a,b} = 8V_{\text{edges}}$$

- where a is the auxiliary qubit and b is on the corners
- But, for the right degeneracy and energy separation, we want:

$$V_{a,b} = 2V_{\text{edges}}$$

Why single species/n does not work:

 $V_{a,b} = 2V_{\text{edges}}$

What can we do?

- (Empirically, no proof), all other symmetric configurations with >1 auxiliary qubits suffer from the same problem
- Use qutrits
- Use different species: ⁸⁷Rb and ¹³³Cs

A Coherent Quantum Annealer with Rydberg Atoms

A. W. Glaetzle, ^{1, 2, *} R. M. W. van Bijnen, ^{1, 2, *} P. Zoller, ^{1, 2} and W. Lechner^{1, 2, †}

Use different n

Use different *n* (only s-s interactions)

Find n₁, n₂ analytically by solving:

$$\frac{C6_{n_1,n_2}}{\left(\frac{1}{\sqrt{2}}\right)^6} = 2C6_{n_1,n_1}$$

- Run simulation: $30 < n_1, n_2 < 120$

Use different *n* (Rb)

- I = 0, $j = \frac{1}{2}$, $m = \frac{1}{2}$
- Running simulation: 10 < n_1 , n_2 < 120, 1.995 < x < 2.005, 4 μ m < r < 25 μ m where r = distance between physics atoms
- 218 unique configurations possible
- Use cases when ancillary n < physical n (to prevent ancillary-ancillary interactions)

Specific Rb configuration

- Physical \Rightarrow |63S_{1/2}>
- Ancillary \Rightarrow |117S_{1/2}>
- Distance b/w physical \Rightarrow 6 μ m
- Distance b/w ancillary and physical \Rightarrow 4.24 μ m

Interaction trends

Red → physical-physical
Blue → ancillary-ancillary
Green → physical-ancillary

Ancilla-ancilla interactions very strong!

What's the best we can do with s-s interactions?

- Physical \Rightarrow |80S_{1/2}>
- Ancillary \Rightarrow |76S_{1/2}>
- Distance b/w physical ⇒ 9 μm
- Distance b/w ancillary and physical \Rightarrow 6.36 μ m

Interaction trends

Red → physical-physical
Blue → ancillary-ancillary
Green → physical-ancillary

Still, ancilla-ancilla interactions dominate

Idea: encode ancilla as a p-state

- s-s interactions stronger than s-p
- But, s-p interactions stronger than p-p!

Hence, if we encode ancilla as a p-state, ancilla-ancilla interactions would not dominate.

Optimal s-p Rb configuration

- Physical \Rightarrow |100S_{1/2}>
- Ancillary \Rightarrow |80P_{3/2}>
- Distance b/w physical ⇒ ~6 μm
- Distance b/w ancillary and physical ⇒ ~4.24 μm
- For small system (4 physical + 3 ancilla): we achieve required parity separation

To do: full Hamiltonian analysis