Blatt 2

1. Gegeben sei das kartesische Produkt

$$A = \{-1, 0, 1, 2\} \times \{1, 2, 3\}$$

Geben Sie alle Elemente der folgenden Teilmenge $B \subset A$ an:

$$B = \{(x, y) \in A \mid x + y > 3\}$$

2. Welche $x \in \mathbb{R}$ erfüllen

a)
$$|x| - 1 = \frac{1}{2}x$$
, b) $|x - 3| - 2|x + 2| = 0$,

c)
$$||x+5|-1| \le \frac{1}{2}$$
, d) $(x-1)^2 \cdot (x-2)^2 \cdot (x-3)^2 + (|x-2|-1)^2 = 0$.

3. Für welche reellen Zahlen gilt die Ungleichung

$$|x-2| < |x-3|$$
 ?

4. Beweise für drei reelle Zahlen a, b und $c \in \mathbb{R}$:

$$|a+b+c| \le |a| + |b| + |c|.$$

5. Beweisen Sie für $n \in \mathbb{N}_0$ durch vollständige Induktion:

$$\sum_{i=0}^{n} \binom{37+i}{i} = \binom{38+n}{n}.$$

6. Für zwei reelle Zahlen a und $b \in \mathbb{R}$ sei $\max(a, b)$ definiert als die größere der beiden Zahlen und entsprechend $\min(a, b)$ als die kleinere der beiden Zahlen. Zeige:

$$\max(a,b) = \frac{(a+b) + |a-b|}{2}$$
 und $\min(a,b) = \frac{(a+b) - |a-b|}{2}$.

7. Sei

$$M := \{x \mid x = \frac{1}{n} - \frac{1}{n+1} \text{ mit } n \in \mathbb{N} \}.$$

Man gebe, falls vorhanden, $\sup(M)$, $\max(M)$, $\inf(M)$ und $\min(M)$ an.