中三級 上學期試卷

數學科 (卷一)

建議題解及評卷參考

一般指引:

(1) 錯別字,不扣分。

(2) 算式表達或計算過程表達欠佳、欠設題或欠文字解說,扣 1 分。 (全卷最多只扣 2 分)

(3) 單位錯漏,扣 1 分。 (全卷最多只扣 1 分)

甲部 (40 分)

1. (a)
$$x^2 + x - 20 = (x+5)(x-4)$$
 2A

(b)
$$20y - x^2y - xy = -y(x^2 + x - 20)$$
 1M
= $-y(x+5)(x-4)$

2. (a)
$$2a^2 - 9a + 9 = (a - 3)(2a - 3)$$
 2A

(b)
$$2a^2 - 9a + 9 - 2ab + 6b = (a - 3)(2a - 3) - 2b(a - 3)$$
 1M
= $(a - 3)(2a - 2b - 3)$ 1A

3. (a)
$$\frac{15x}{4} < 3x - 2$$

$$4\left(\frac{15x}{4}\right) < 4(3x - 2)$$

$$15x < 12x - 8$$

$$3x < -8$$

$$\frac{3x}{3} < \frac{-8}{3}$$

$$\therefore \qquad x < -\frac{8}{3}$$

$$1A$$

1

所得的解的圖示:

1M

(b) 能使該不等式成立的最大整數是 -3。

1M

1M + 1M

1A

$$= \frac{2688 - 2400}{2400} \times 100\%$$

$$= +12\%$$

1M 1A

1M

$$=$4800$$

1A

設李生先的物業的應課差餉租值為 \$R。

$$4800 = R \times 5\%$$

$$R = 4800 \div 5\%$$

$$= 96000$$

1M

· 李生先的物業的應課差餉租值是 \$96 000。

1A

6. 利用三角不等式,可得:

(i)
$$4 + x > 7$$

$$\therefore$$
 $x = 4, 5, 6, ...$

1M

(ii)
$$4+7>x$$

$$\therefore$$
 $x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$

1M

(iii)
$$x + 7 > 4$$

$$x > -3$$

$$\therefore$$
 $x = 1, 2, 3, ...$

1M

從 (i)、(ii) 和 (iii) 的結果可得,x 的所有可能值是

1A

∴
$$\angle ADC = \angle ABC$$
 (平行四邊形對角) $62^{\circ} + x = 2x + 4^{\circ}$

$$x = 58^{\circ}$$

1A

側視圖

AD = BC (平行四邊形對邊) 1M

$$3y - 2 = y + 6$$

$$2y = 8$$

正視圖

$$y = 4$$
 1A

8.

5M 給全部正確

1A

9. (a) ∵ *DP* 是 *HP* 在平面 *ABCD* 上的投影。

∴ ∠HPD 是 HP 與平面 ABCD 的交角。 1A

(b) :: HD 是 HQ 在平面 ADHE 上的投影。

俯視圖

∴ ∠OHD 是 HO 與平面 ADHE 的交角。 1A

(c) ∵ GB 是 HB 在平面 BCGF 上的投影。

∴ ∠HBG 是 HB 與平面 BCGF 的交角。 1A

(d) \therefore P 和 Q 分別是 AB 和 DC 的中點。

∴ APQD 和 EPQH 都是長方形。

∴ $PA \perp PQ$ \nearrow $PE \perp PQ$

 \therefore ABCD 與 EPQH 相交於 PQ, $PA \perp PQ$ 及 $PE \perp PQ$ (或 $QD \perp PQ$ 及 $QH \perp PQ$)。

 \therefore $\angle EPA$ (或 $\angle HQD$) 是平面 ABCD 與 EPQH 的交角。

(e) $:: M \setminus P$ 和 Q 分別是 $HG \setminus AB$ 和 DC 的中點。

∴ DQMH 和 APMH 都是長方形。

∴ PM \(\perp \) HG \(\pa \) QM \(\perp \) HG

 \therefore HPG 與 HDCG 相交於 HG, PM \perp HG 及 QM \perp HG。

∴ ∠PMQ 是平面 HPG 與 HDCG 的交角。 1A

乙部 (40 分)

10. (a)
$$a^3 - 8b^3 = a^3 - (2b)^3$$

 $= (a - 2b)[a^2 + (a)(2b) + (2b)^2]$ 1M
 $= (a - 2b)(a^2 + 2ab + 4b^2)$ 1A

(b)
$$3a^2b - 6ab^2 = 3ab(a - 2b)$$
 2A

(c)
$$a^3 + 3a^2b - 6ab^2 - 8b^3$$

 $= a^3 - 8b^3 + 3a^2b - 6ab^2$ 1M
 $= (a - 2b)(a^2 + 2ab + 4b^2) + 3ab(a - 2b)$ (從 (a) 和 (b)) 1M
 $= (a - 2b)(a^2 + 5ab + 4b^2)$ 1M
 $= (a - 2b)(a + b)(a + 4b)$ 1A

每月的利率=
$$\frac{6\%}{12}$$
= 0.5%

12. (a) 設綺莉參觀該主題公園的次數為 n。

依題意,可得:

$$270n > 2000 + 10n$$

$$260n > 2000$$

$$n > \frac{2000}{260}$$

$$n > \frac{100}{13}$$

$$n > 7\frac{9}{13}$$
1A

- ... 綺莉應最少參觀該主題公園 8 次,才使她選擇 成為會員所需繳付的費用比以非會員入場的便宜。 1A
- **(b) (i)** 設綺莉參觀該主題公園的次數為 *m*。 依題意,可得:

$$270 \times (1+20\%)m > 2000 + 10 \times (1+20\%)m$$

$$324m > 2000 + 12m$$

$$312m > 2000$$

$$m > \frac{2000}{312}$$

$$m > \frac{250}{39}$$

$$m > 6\frac{16}{39}$$
1A

- ... 綺莉應最少參觀該主題公園 7 次,才使她 選擇成為會員所需繳付的費用比以非會員入 場的便官。
- (ii) 可節省的金額 = \${270×(1+20%)×8-[2000+10×(1+20%)×8]} 1M = \$496 1A
- 13. (a) : $F \in \triangle ABC$ 的内心。 : $\angle BAE = \angle EAC$ 及 $\angle ACD = \angle DCB$ $\angle FAC = \angle DAF$ =15° 1M 在 $\triangle AFC$ 中, $\angle FAC + \angle ACD = \angle DFA$ (\triangle 外角) 15°+ $\angle ACD = 55$ ° $\angle ACD = 40$ ° 1A

1A

(b) 在 △*ABC* 中,

$$\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$$
 (△ 內角和) 1M $\angle ABC + (15^{\circ} + 15^{\circ}) + (40^{\circ} + 40^{\circ}) = 180^{\circ}$ 1M $\angle ABC + 110^{\circ} = 180^{\circ}$ $\angle ABC = 70^{\circ}$ 1A

(c) : $F \in \triangle ABC$ 的內心。

$$\angle ABH = \angle GBH$$

$$\angle ABH = \frac{\angle ABC}{2}$$

$$= \frac{70^{\circ}}{2}$$

$$= 35^{\circ}$$

$$\angle CAH = \angle ACD$$
 (錯角, $AG // DC$)

$$=40^{\circ}$$

1M

在 △ABH 中,

$$35^{\circ} + (15^{\circ} + 15^{\circ} + 40^{\circ}) + \angle AHB = 180^{\circ}$$
 1M
 $105^{\circ} + \angle AHB = 180^{\circ}$

$$\therefore$$
 BH 並不垂直於 AG。

} 1A

$$\angle HCB = \angle CED$$
 (同位角, $BC // DE$) = 45°

1M (正方形性質) 1M

 $\angle GBF = 45^{\circ}$ 在 $\triangle BCH$ 中,

$$\angle BHC + 45^{\circ} + 45^{\circ} = 180^{\circ}$$

$$\angle BHC = \underline{90^{\circ}}$$

1A

$$\angle HBI = \angle HBC = 45^{\circ}$$

$$BH = BH$$

$$\angle BHI = 180^{\circ} - \angle BHC$$

$$= 180^{\circ} - 90^{\circ}$$

$$= 90^{\circ}$$

$$= \angle BHC$$

 $\therefore \triangle BHI \cong \triangle BHC$

ASA

1 給理由

(c)
$$\therefore$$
 $\triangle BHI \cong \triangle BHC$ (在 (b) 已證)
 \therefore $IH = CH$ (全等 \triangle 的對應邊) 1M
考慮 $\triangle IBC$ 和 $\triangle CDE$ \circ
 $\angle ICB = \angle CED = 45^{\circ}$ (同位角, $BC /\!\!/ DE$)
 \therefore $BC = CF$ (已知)
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc (正方形性質)
 \therefore $\triangle CF = DE$ (正方形性質)
 \therefore $\triangle IBC \cong \triangle CDE$ (ASA)
 \therefore $\triangle IC = CE$ (全等 \triangle 的對應邊) 1M
 $\boxed{HH} = \frac{IH}{IC}$
 $= \frac{IH}{IIH + CH}$
 $= \frac{IH}{2IH}$
 $= \frac{1}{2}$
 $CE = 2IH$ 1M
 $IH : CH : CE = IH : IH : 2IH$
 $= 1:1:2$