福州大学 2016~2017 学年第一学期考试 B 卷

课程名称								
考生姓名				专业	工 软件工程	_		
	题号	_	=	三	四	总分	累分人签名	
	题分	20	10	40	30	100	7177 L	
	得分							
考生注意	事项: 1、ス 2、ラ	本试卷共 <u></u> 考试结束后					带出考场。	-
一、单	项选择是	页(每小剧	题 1 分 ,	共 20	分,将	答案的序	亨号写在题目的	括号中)
得分	评卷人							
1. 操作系	统中的命	令行窗口	是一种	()。			
A. 操作系	统接口	В.	进程通信	È C.	系统调用	∄ D.	. API	
2. 操作系	统中有一	些操作具	具有不可定	分割性,	这样的摸	操作被称え	为()。	
A. 初始 [·]	A. 初始化程序 B. 原语 C. 子程序 D. 控制模块							
3. 处理器								
A. 核心	态和用户	态	В	. 同步态	和异步和	\$		
C. 高级:	态和低级法	态	D	. 抢占式	和非抢。	占式		
4. () 不是	是系统调	用的特点	į,				
	的子程序。				分			
B. 对应的子程序运行时处理器处于核心态								
C. 可以由多个用户程序共享								
D. 对应的子程序需要用户自己实现								
5. 下面关于进程的描述中,正确的是()。								
A. 进程的并发性能够提高操作系统的计算效率 B. 优先级是进程调度的重要参数,一旦确定就不能改变								
C. 一个进程 I/O 结束后可以直接进入运行状态								
D. 进程申请 CPU 得不到满足,其状态变为阻塞态								

6. 在执行 V 操作时,当信号量的值 (),应释放一个等待该信号量的进程。 A. 小于 0 B. 大于 0 C. 小于等于 0 D. 大于等于 0												
7. 在由 9 个生产者, 6 个消费者, 共享容量为 3 的缓冲器组成的生产者-消费者问题中,												
互斥使用缓冲 互斥使用缓冲	互斥使用缓冲器的信号量 mutex 的初值应该为()。											
A. 3	A. 3 B. 6 C. 1 D. 9											
 8 系统中有 3 和	8. 系统中有 3 种资源 R1、R2、R3,总量分别为 3,8,11,系统中 4 个进程 A、											
B、C、D 对资源							-		-			
■ 统当前处于(· 	— 110		ZH NL I"	1 111111	, 00)LD //	1/417	VIVI	
		MA	AX				US	ED				
		R1	R2	R3			R1	R2	R3			
	A	3	5	5		A	0	2	3			
	В	2	5	6		В	1	3	3			
	С	0	2	4		С	0	1	2			
	D	2	7	5		D	1	1	1			
A. 死锁状态	В.	非多	全状	态	C. 安全	:状态	D.	就绪	状态			
9. 在一段时间内	,只	允许-	一个进	性程访	可的资源和	尔为()。				
9. 在一段时间内,只允许一个进程访问的资源称为()。 A. 共享资源 B. 临界区 C. 临界资源 D. 共享区												
10. 当操作系统发生抖动(thrashing)时,可以采取的有效措施是()。												
I.撤销部分进程 II.增加磁盘交换区的容量 III.提高用户进程的优先级												
A. 仅I B. 仅II C. 仅III D. 仅I, II												
11. 在缺页处理过程中,操作系统执行的操作可能是()。												
	I.修改页表 II.磁盘I/O III.分配页框											
A. 仅 I 、 II B. 仅 II C. 仅 III D. I 、 II 和 III												
12. 某基于动态分区存储管理的计算机,其主存容量为 55MB (初始为空),采用最佳适												
配(Best fit)算法,分配和释放的顺序为:分配 15 MB,分配 30 MB,释放 15 MB,												
分配 8 MB, 此时主存中最大空闲分区的大小是()。												
A. 7 MB B. 9 MB C. 10 MB D. 15 MB												
13. 下列存储管:												
I 分段式管理									分区管	理		
A. I、II和III B. III和IV C. II D. II、III和IV												

14. 操作系统中用于管理和控制进程的数据结构是 ()。
A. PCB B. JCB C. DCB D. FCB
15. 文件的顺序存取是 ()。
A. 按终端号依次存取 B. 按文件的逻辑块号依次存取
C. 按文件的物理块号依次存取 D. 按文件的逻辑记录大小依次存取
16. 在下列物理文件格式中, () 最容易产生存储碎片。
A. 链接文件 B. 连续文件 C. 索引文件 D. 流式文件
17. 现代操作系统均解决了文件重名问题,其采用的方法是()。
A. 执行重定向 B. 建立索引表 C. 建立树形目录结构 D. 建立指针
18.在下面的 I/O 控制方式中,能够与 CPU 并行性最高的是 ()。 A. 程序控制方式
19. 程序员利用系统调用打开 I/O 设备时,通常使用的设备是 ()。 A. 逻辑设备 B. 物理设备 C. 用户设备 D. 系统设备
20. CPU 的计算速度远高于打印机的打印速度,为缓解这一矛盾,操作系统通常采用
() 。
A. 并行技术 B. 通道技术 C. 缓冲技术 D. 虚存技术
二、填空题(每空1分,共10分,将答案写在题目的横线上)
得分 评卷人
1. 操作系统的基本类型是批处理系统、实时系统和。
2. 在采用线程技术的操作系统中,系统资源分配的单位是;处理机调度的
单位是
3. 重定位方式分静态重定位和。
4. 在某分页存储管理方案中, 其逻辑地址的低 12 位表示页内地址, 高 20 位表示页号,
则该对应的页框大小为,逻辑地址(虚拟地址)空间大小为。

5. 在页式存储管理中,为了加快重定位速度,通常采用						
来减少 CPU 访问内存	字的次数 。					
6. 文件的保密是指_			o			
7. 假设某操作系统设	7. 假设某操作系统设定的页框大小为 1KB, 进程 P1 的页表如下所示,则该进程中逻辑					
地址 OA5C(H) 所对应的物理地址为(H)。						
	页号	页框号				
	0	5				
	1	10				
	2 4					

三、简答分析题(每小题 5 分, 共 40 分)

得分	评卷人

1. 操作系统的基本功能是什么?

2. 画出进程的基本状态转换关系图,并简述每个基本状态的含义。

3.	什么是多道程序设计技术?多道程序设计的主要优点是什么?
4.	两道系统程序 A、B,共享一个整型变量 count,其代码如下。假定 count 初值为 90,
	那么,在多道程序设计环境下,A、B 各执行一次,请给出所有可能的输出结果(即
	语句 printf()执行的结果)。
	A ()
	<pre>count = count + 1; printf("count=%d",count);</pre>
	}
	<u>B</u> ()
	<pre>count = 0;</pre>
	<pre>count = count + 10;</pre>
	}
_	什么是线程?引入线程的目的是什么?
υ.	们公定线性: 引入线性的目的定任公:
	第5页 共 0 而

6.	简述存储管理方式中分段与分页的区别。
7.	三个并发进程共享一个临界资源,用信号量的 P、V 操作实现这三个进程的互斥,试
	问:(1)应如何设置信号量的初值?(2)在这三个进程互斥过程中,信号量可能有
	哪几个取值?并说明每个取值的对应的执行状况。
8	简述索引文件结构的优缺点。

四、综合计算题(每小题 10 分, 共 30 分)

得分	评卷人

1. 设有三道作业,它们的提交时间及执行时间由下表给出:

作业号	提交时间	执行时间(小时)
1	8:30	2. 0
2	9:12	1.6
3	9:24	0. 5

试计算在单道程序环境下,采用先来先服务调度算法(FCFS)和最短作业优先调度算法(SJF)时的平均周转时间。(以十进制实数进行计算,要求写出计算过程)

2. 设某系统允许一个进程在内存中最多装入 4 个页框, 假设作业 A 运行时实际访问的页
号序列为: 1, 2, 3, 6, 4, 7, 3, 2, 1, 4, 7, 5, 6, 5, 2, 1。若分别使用先进先出
(FIFO) 算法与最近最久未使用(LRU) 算法进行页面置换调度,请计算每个算法淘汰
的页号序列及缺页中断次数。(假设初始化时4个页框均为空,要求写出分析过程)

3. 如下图所示,系统中有三个进程 GET、PRO 和 PUT,共用两个缓冲区 BUF1 和 BUF2。假设 BUF1 中最多可放 11 个信息,现已放入了 2 个信息; BUF2 最多可放 5 个信息。GET 进程负责不断地将输入信息送入 BUF1 中,PRO 进程负责从 BUF1 中取出信息进行处理,并将处理结果送到 BUF2 中,PUT 进程负责从 BUF2 中读取结果并输出。

下面的程序用 PV 操作实现了 GET、PRO、PUT 的同步与互斥,请在横线上的括号内填入 正确的内容,每空 1 分。

semaphore S1=(<u>)</u> , S2= <u>(</u> <u>)</u> , S3= <u>(</u>	<u>)</u> , S4=0, S5=S6=1;
GET:	PRO:	PUT:
•••	•••	•••
L1: produce x;	L2: <u>()</u> ;	L3: P(S4);
P(S1);	_(P(S6);
P(S5);	Read BUF1 to y;	Read BUF2 to z;
Write x to BUF1;	<u>()</u> ;	V(S6);
V(S5);	<u>(</u>	V(S3);
V(S2);	Compute y;	Output z;
Goto L1;	<u>()</u> ;	Goto L3;
	(); Write y to BUF2;	
	V(S6);	
	<u>()</u> ;	
	Goto L2;	
	•••	