COMPUTING RISK!!!

Question 1

Question 1c an 2a

Out[62]:

		mit on 11	ot's compas - I	
C	Since xis are iids			
ي.	COVICKIL	2 (xi, xj) = va(xi) = E(xi) - E'(x) - 2-0 = 2		
	$E^{2}(x_{i}) = 0$ $E(x_{i}^{2}) = 2$			
		2 (0) -	Costrop = grossor	
	1.	0 2 000		
	100	00.0	1,873, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
	The new	(0) 2	For the same of the same	
	K Sharp, suite = storing - 3pp			
1.2	120Db			
(a)	E [(a-y)	$ ^2J = E[a^2 -$	2ay : 42)	
-0	5 200 900 0 15 [a2] + E [a] + 2 a 5 [4] 50)			
`		=> var(a) +	var (y) + E EARDING	
	+E[y] - 2a E[y]			
	with one of var (4) storage of			
	Prove tu		(0)	
-	TOVE TU	at bayes or	wk = vaxly)	
-	7 4 1	J 2- 18)	MM 1 5 - 60	
-	E (a - 4)	= IE (IE(y)-y) ²	
-	The Contract of the Contract o	= E ECY)2 - dy E(y) +y2]	
-	tacto	10=15 C472-4	2 E(4) E(4) + E 12	
	Property.	= V0x(U)	Jacob de la constante de la co	
	Action Colonia	-		

Question 2b

```
In [63]: Image("/content/sample_data/Screen Shot 2020-02-22 at 9.41.10 AM.png")
Out[63]:
               (i) f(x) = agming E
                   E[(a-y)2 |x
                   22
In [0]:
         import sys
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from sklearn.model_selection import train_test_split
```

LINEAR REGRESSION:

1. Normalization:

Numpy's broadcasting can be used here. It makes the calculations easier. It handles array with various sizes and performs calculations which can be used here.

In [0]: df = pd.read_csv('/content/sample_data/ridge_regression_dataset.csv', delimiter=',')

```
In [0]: def feature_normalization(train, test):
               """Rescale the data so that each feature in the training set is in
              the interval [0,1], and apply the same transformations to the test
              set, using the statistics computed on the training set.
                  train - training set, a 2D numpy array of size (num_instances, num_features)
                  test - test set, a 2D numpy array of size (num instances, num features)
                  train normalized - training set after normalization
                  test_normalized - test set after normalization
              train normedlist = []
              for i,v in enumerate(train):
                  result = all(elem == train[i][0] for elem in train[i])
                  if result == True:
                      train[i] = train[i]
                      train_normedlist.append(train[i])
                  else:
                      for k,v in enumerate(train[i]):
                          train[i][k] = (train[i][k] - min(train[i])) / (max(train[i]) - min(train[i])
          ]))
                       train_normedlist.append(train[i])
              test_normedlist = []
              for i,v in enumerate(test):
                  result = all(elem == test[i][0] for elem in test[i])
                  if result == True:
                      test[i] = test[i]
                      test_normedlist.append(test[i])
                  else:
                       for k,v in enumerate(test[i]):
                          test[i][k] = (test[i][k] - min(train[i])) / (max(train[i]) - min(train[i]))
                       test_normedlist.append(test[i])
              return np.array(train normedlist), np.array(test normedlist)
  In [0]: X = df.values[:,:-1]
          y = df.values[:,-1]
          print('Split into Train and Test')
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =100, random_state=10)
          print("Scaling all to [0, 1]")
          X_train, X_test = feature_normalization(X_train, X_test)
          X_train = np.hstack((X_train, np.ones((X_train.shape[0], 1)))) # Add bias term
          X_test = np.hstack((X_test, np.ones((X_test.shape[0], 1)))) # Add bias term'''
          Split into Train and Test
          Scaling all to [0, 1]
 1. a
Made Design Matrix. dmX (Design Matrix X) = X_train theta = theta response = y_train
```

```
In [0]: | m = X_train.shape[0]
        dmX = np.zeros((m, X train.shape[1]))
        dmX = np.array(X_train)
        theta = np.zeros((X_train.shape[1]))
In [0]: response=np.ones((m,1))
        response = y_train
        b = np.ones((m,1))
In [0]: dmX.shape
Out[0]: (100, 49)
```

$$J(\theta) = \frac{1}{m} (x\theta - y)^{T} (x\theta - y)$$

1. b

Indented block

gradientjtheta = (2/m)*((np.dot((response - (np.dot(dmX, theta))),dmX))) $\nabla J(\theta) = \frac{2}{m}(x\theta - y)^Tx$

$$\nabla J(\theta) = \frac{2}{m} (x\theta - y)^T x$$

1. c

```
In [0]: eta = np.random.rand()
        h = np.random.rand(X_train.shape[1],1)
        length = eta*np.abs(h)
        thetadash = theta+ length
```

$$\theta' = \theta + length$$

$$J(\theta + \eta h) - J(\theta) = \frac{1}{m} (x\theta' - y)^{T} (x\theta' - y) - J(\theta)$$

1. d

$$\theta = \theta - \frac{\eta}{m} (x\theta - y)^T x$$

1. e

```
In [0]: def compute_square_loss(dmX, response, theta):
            m = dmX.shape[0]
            \verb|costfntheta| = (1/m)*(np.dot((np.dot(dmX,theta) - response),(np.dot(dmX,theta) - response)|
            return costfntheta
```

```
In [0]: compute_square_loss(dmX,response,theta)
```

Out[0]: 7.961518343622414

1. f

```
In [0]: def compute_square_loss_gradient(X, y, theta):
            iter = X.shape[0]
            gradientjtheta = ((2/iter)*(np.dot(((np.dot(X, theta)) - y ),X)))
            #ones = np.ones(num_instances).reshape(num_instances,1)
            \#extended X = np.append(X, ones, axis = 1)
            '''differences = np.dot(X,theta)-y
            grad = 1.0/num_instances*(np.dot(differences,X))'''
            return gradientjtheta
```

```
In [0]: compute_square_loss_gradient(dmX, response, theta).shape
```

Out[0]: (49,)

```
#See http://ufldl.stanford.edu/wiki/index.php/Gradient checking and advanced optimization
def grad checker(X, y, theta, epsilon=0.01, tolerance=1e-4):
    """Implement Gradient Checker
    Check that the function compute_square_loss_gradient returns the
    correct gradient for the given X, y, and theta.
   Let d be the number of features. Here we numerically estimate the
    gradient by approximating the directional derivative in each of
    the d coordinate directions:
    (e_1 = (1,0,0,...,0), e_2 = (0,1,0,...,0), ..., e_d = (0,...,0,1))
    The approximation for the directional derivative of J at the point
    theta in the direction e i is given by:
    (J(theta + epsilon * e i) - J(theta - epsilon * e i)) / (2*epsilon).
    We then look at the Euclidean distance between the gradient
    computed using this approximation and the gradient computed by
    compute square loss gradient(X, y, theta). If the Euclidean
   distance exceeds tolerance, we say the gradient is incorrect.
       X - the feature vector, 2D numpy array of size (num_instances, num_features)
       y - the label vector, 1D numpy array of size (num_instances)
       theta - the parameter vector, 1D numpy array of size (num_features)
       epsilon - the epsilon used in approximation
       tolerance - the tolerance error
    A boolean value indicating whether the gradient is correct or not
    true_gradient = compute_square_loss_gradient(X, y, theta) #The true gradient
   num_features = theta.shape[0]
    approx grad = np.zeros(num features)
    e=np.zeros((num_features,1))
    for i in range(num features):
       e=np.zeros(num features)
       e[i] = 1
       thetaplus = theta+epsilon * e
       thetaminus = theta-epsilon * e
       approx grad[i] = (compute square loss(X, y, thetaplus) - compute square loss(X, y,
thetaminus))/(2*epsilon)
   distance = np.linalg.norm(approx_grad-true_gradient)
   return distance<tolerance</pre>
    #thetaplusep, thetaminusep = (theta+epsilon),(theta-epsilon)
    #TODO
```

```
In [0]: grad_checker(dmX, response, theta, epsilon=0.01, tolerance=1e-4)
```

Out[0]: True

```
In [0]: def batch grad descent(X, y, alpha=0.1, num step=1000, grad check=False):
            In this question you will implement batch gradient descent to
            minimize the average square loss objective.
                X - the feature vector, 2D numpy array of size (num_instances, num_features)
                y - the label vector, 1D numpy array of size (num instances)
                alpha - step size in gradient descent
                num step - number of steps to run
                grad check - a boolean value indicating whether checking the gradient when updating
            Returns:
                theta hist - the history of parameter vector, 2D numpy array of size (num step+1, n
        um features)
                             for instance, theta in step 0 should be theta hist[0], theta in step
         (num step) is theta hist[-1]
                loss hist - the history of average square loss on the data, 1D numpy array, (num st
        ep+1)
            num_instances, num_features = X.shape[0], X.shape[1]
            theta hist = np.zeros((num step+1, num features)) #Initialize theta hist
            loss_hist = np.zeros(num_step+1) #Initialize loss hist
            theta = np.zeros(num_features)#Initialize theta
            for i in range(1,num_step+1):
                grad = compute_square_loss_gradient(X, y, theta)
                theta = theta-alpha*grad
                loss_hist[i] = compute_square_loss(X,y,theta)
                theta_hist[i] = theta
            return theta_hist, loss_hist
```

In [0]: theta_hist, loss_hist = batch_grad_descent(X, y, alpha=0.1, num_step=1000, grad_check=False
)

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:24: RuntimeWarning: invalid v alue encountered in subtract

1. b

```
In [0]: step_size = [0.5, 0.1, .05, .01, 1]
```


/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:24: RuntimeWarning: invalid v alue encountered in subtract

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:24: RuntimeWarning: invalid v alue encountered in subtract

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until

Out[0]: <matplotlib.legend.Legend at 0x7f74cae0cba8>

Larger the steps, the faster the loss function value decreases. When step size > 0.01, it starts to diverge.

RIDGE REGRESSION!

1.

$$\nabla J(\theta) = \frac{2}{m} (x\theta - y)^T x + 2\lambda \theta$$

2.

```
In [0]: ridgecostfn = compute_regularized_square_loss_gradient(dmX, response, theta, lambda_reg = 2
)
```

3.

```
In [0]: def regularized grad descent(X, y, alpha=0.05, lambda reg=10**-2, num step=1000):
            Args:
                X - the feature vector, 2D numpy array of size (num_instances, num_features)
                y - the label vector, 1D numpy array of size (num_instances)
                alpha - step size in gradient descent
                lambda reg - the regularization coefficient
                num step - number of steps to run
            Returns:
                theta hist - the history of parameter vector, 2D numpy array of size (num step+1, n
        um features)
                             for instance, theta in step 0 should be theta hist[0], theta in step
         (num step+1) is theta hist[-1]
                loss hist - the history of average square loss function without the regularization
         term, 1D numpy array.
            num_instances, num_features = X.shape[0], X.shape[1]
            theta = np.zeros(num features) #Initialize theta
            theta hist = np.zeros((num step+1, num features)) #Initialize theta hist
            loss_hist = np.zeros(num_step+1) #Initialize loss_hist
            for i in range(1, num_step+1):
                loss hist[i] = compute square loss(X,y,theta)
                grad = compute regularized square loss gradient(X, y, theta, lambda_reg)
                theta = theta-alpha*grad
                theta_hist[i] = theta
            return theta hist, loss hist
```

```
In [0]: theta_histridge, loss_histridge = regularized_grad_descent(dmX, response, alpha=0.05, lambd
a_reg=10**-2, num_step=1000)
```

4.

Since B multiplied by the last theta term which is being adjusted. For larger B, the magnitude of theta adjusting is small and the regularization terms is small compared to the entire regularization. Bias is used to regularize the training set.

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until

I would select theta with value where lambda is 1e-5. It converges the fastest.

1.

$$fi\theta = \frac{1}{m} \sum \nabla f m\theta + \lambda \theta^T \theta$$

2.

$$\nabla f i\theta = \nabla (x\theta - y)^T (x\theta - y) + \lambda \theta^T \theta$$
$$E[\nabla f i\theta] = \frac{1}{m} \sum \nabla f m\theta$$
$$Therefore, E[\nabla f i\theta] = \nabla J(\theta)$$

3.

Initialized all parameters θ

 $\theta' = \theta - \eta \nabla J(\theta)$ where $J(\theta)$ is calculated with a random subset of training set.

4.

```
In [0]: def stochastic grad descent(X, y, alpha=0.1, lambda reg=1, num epochs=1000, c = c):
            In this question you will implement stochastic gradient descent with a regularization t
        erm
                X - the feature vector, 2D numpy array of size (num_instances, num_features)
                y - the label vector, 1D numpy array of size (num instances)
                alpha - string or float. step size in gradient descent
                        NOTE: In SGD, it's not always a good idea to use a fixed step size. Usually
        it's set to 1/sqrt(t) or 1/t
                        if alpha is a float, then the step size in every iteration is alpha.
                        if alpha == "1/sqrt(t)", alpha = 1/sqrt(t)
                        if alpha == "1/t", alpha = 1/t
                lambda reg - the regularization coefficient
                num iter - number of epochs (i.e number of times) to go through the whole training
         set
            Returns:
                theta_hist - the history of parameter vector, 3D numpy array of size (num_iter, num
        _instances, num_features)
                loss hist - the history of regularized loss function vector, 2D numpy array of size
         (num_iter, num_instances)
            num instances, num features = X.shape[0], X.shape[1]
            theta = np.ones(num_features) #Initialize theta
            num iter = num_epochs
            theta hist = np.zeros((num_iter+1, num_features)) #Initialize theta hist
            loss_hist = np.zeros(num_iter+1) #Initialize loss hist
            for i in range(1, num iter+1):
                if alpha=='1/sqrt(t)':
                    step_size = c/np.sqrt((i+1.0))
                elif alpha=='1/t':
                    step\_size = c/(i+1.0)
                else:
                  step_size = alpha
                grad = compute_regularized_square_loss_gradient(X_train,y_train,theta,lambda_reg)
                theta = theta-step_size*grad.T
                loss_i = compute_square_loss(X,y,theta)+np.dot(theta,theta)*lambda_reg
                loss_hist[i] = loss_i
                theta_hist[i] = theta
            return loss_hist,theta_hist
```

```
In [0]: h=stochastic grad descent(dmX, response, alpha=0.1, lambda reg=1, num_epochs=1000)
```

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:34: RuntimeWarning: invalid v alue encountered in subtract

5.

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: RuntimeWarning: divide by zero encountered in log

This is separate from the ipykernel package so we can avoid doing imports until


```
In [0]: for c in [0.1,0.01,0.001]:
    loss_hist_SGD,theta_hist_SGD = stochastic_grad_descent(dmX,response,lambda_reg=0.05,alp
    ha='1/t', c= c)
    #print(loss_hist_SGD)
    plt.plot(range(len(loss_hist_SGD)),(loss_hist_SGD),label='lambda:'+str(c))
    plt.xlabel("step")
    plt.ylabel("log(l2 regularized sqaure loss)")
    plt.legend()
    plt.show()
```



```
In [0]: for c in [0.1,0.01,0.001]:
    loss_hist_SGD,theta_hist_SGD = stochastic_grad_descent(dmX,response,lambda_reg=0.05,alp
    ha='1/sqrt(t)', c= c)
    #print(loss_hist_SGD)
        plt.plot(range(len(loss_hist_SGD)),(loss_hist_SGD),label='lambda:'+str(c))
    plt.xlabel("step")
    plt.ylabel("log(l2 regularized sqaure loss)")
    plt.legend()
    plt.show()
```


Gradient diverges with decreasing step-size. 0.01 ocnverges faster than 0.001!

Also, 1/sqrt(t) converges faster than 1/t

```
In [0]:
```