# Advanced Regression: 3c Prediction accuracy and cross-validation

Garyfallos Konstantinoudis

Epidemiology and Biostatistics, Imperial College London

7th March 2023

## Cross-validation (CV)

Exhaustive cross-validation

Non-exhaustive cross-validation

Cross-validation to evaluate prediction performance Cross-validation in R: crossval

Cross-validation to fix open parameters

Cross-validation in R: cv.glmnet

## CV as a re-sampling technique

Tools that involve repeatedly drawing samples from a training set and refitting a model on each sample. In each draw we obtain more information about the fitted model.

#### Aims

- 1. To evaluate prediction rules and compare different models with respect to their predictive performance.
- 2. To fix open parameters and set model complexity, e.g.  $\lambda$  the regularization parameter in regularized regression.

# CV approaches

- 1. Exhaustive cross-validation
  - Leave-one-out cross-validation
  - Leave-p-out cross-validation
- 2. Non-exhaustive cross-validation
  - k-fold cross-validation
  - Repeated random sub-sampling validation

# Leave-one-out cross-validation (LOOCV)

- ► Split the data containing *n* observations into
  - 1. Training data of size n-1
  - 2. Test data of size 1
- In each split, we leave out **one** observation.
- ▶ We fit the prediction rule  $\hat{f}(x)$  on the training data without observation i.
- ▶ We evaluate the  $MSE_i$  of  $\hat{f}(x_i)$  on the single observation i.
- ▶ Repeat *n*-times for  $i \in 1,...,n$ .
- Overall mean CV test error is defined as

$$CV_{\{n\}} = \frac{1}{n} \sum_{i=1}^{n} MSE_i$$

Cross-validation (CV)

Exhaustive cross-validation

# Leave-one-out cross-validation (LOOCV)



# Leave-*p*-out cross-validation (LOOCV)

- $\triangleright$  Split the data containing n observations into
  - 1. Training data of size n p
  - 2. Test data of size p
- In each split, we leave out p observations.
- We fit the prediction rule  $\hat{f}(x)$  on the training data without the p observations.
- ▶ We evaluate the  $MSE_i$  of  $\hat{f}(x_i)$  on the test data  $i \in p$ .
- ▶ Repeat for all possible combinations  $comb = \binom{n}{p}$  of how to select p elements from a set of n.
- Overall mean CV test error is defined as

$$CV_{\{comb\}} = \frac{1}{comb} \sum_{i=1}^{comb} MSE_i$$

#### k-fold cross-validation

- ▶ With k-fold CV, we divide the data set into *k* different subsets, each of the same length.
- ightharpoonup Recommended are k=5 or k=10.
- We fit the prediction rule  $\hat{f}(x)$  on the training data including k-1 subsets.
- We evaluate the  $MSE_g$  of  $\hat{f}(x_g)$  on all observations g in subset k.
- ▶ Repeat k-times for  $g \in 1, ..., k$ .
- Overall CV test error rate is defined as

$$CV_{k-fold} = \frac{1}{k} \sum_{g=1}^{k} MSE_g$$

☐ Non-exhaustive cross-validation

## k-fold cross-validation



Cross-validation (CV)

Non-exhaustive cross-validation

## Repeated random sub-sampling validation

- ► Also known as Monte Carlo CV.
- Randomly splits the dataset into training and test data.
- Advantage: The proportion of the training/test split is not dependent on the folds.
- ▶ No guarantee that the samples are evenly distributed among training and test data, e.g. some samples might only ever be in the training data and never used to test the prediction.

└ Non-exhaustive cross-validation

#### MC cross validation



## Comparison LOOCV and k-fold CV

- ▶ LOOCV is a special case of k-fold CV, when n = k.
- LOOCV has less bias than k-fold CV.
- LOOCV has higher variance than k-fold CV.
- ► LOOCV is deterministic, while *k*-fold CV depends on the random draw of the folds.
- ► LOOCV (*n* iterations) is more computationally intensive than *k*-fold CV (*k* iterations).
- L-p-OCV  $\binom{n}{p}$  iterations) is computationally infeasible for medium sample size. For example p=10 out of n has over e+13 possible combinations (R: choose(100,10)).

## Cross-validation to evaluate prediction rules

#### We can use CV:

- ➤ To evaluate the prediction performance of different methods, e.g. Ridge regression against Elastic Net.
- To compare different models with different predictors (not necessarily nested) and decide which model has the better prediction performance.
- ► To examine how well a prediction rule generalises to the population (given that our data was representative).

## CV is build to evaluate prediction performance.

It does not help us to understand how the individual components of a model work.

#### Cross-validation in R: crossval

#### Example: Prediction of Diabetes disease progression

▶ Does the prediction improve when we add blood lipid measurements to our model?

```
> x = as.matrix(diabetes$x)
> colnames(x) = c("age","sex","bmi","map","tc","ldl","hdl",
"tch","ltg","glu")
> x1 = x[,c(1,2,3,4,10)]
> colnames(x1) = c("age","sex","bmi","map","glu")
>
```

Cross-validation to evaluate prediction performance

Cross-validation in R: crossval

## Cross-validation in R: crossval

1. Write a prediction function.

```
> predfun.lm = function(train.x, train.y, test.x, test.y){
+ lm.fit = lm(train.y ~ ., data=train.x)
+ ynew = predict(lm.fit, test.x )
+
+ # compute squared error risk (MSE)
+ out = mean( (ynew - test.y)^2 )
+ return( out )
+
+ }
```

Cross-validation to evaluate prediction performance

<sup>└</sup>Cross-validation in R: crossval

Cross-validation to evaluate prediction performance

Cross-validation in R: crossval

#### Cross-validation in R: crossval

Load the crossval package and perform the CV for model x (including blood lipids) and x1 (excluding blood lipids).

```
> set.seed(12345)
> cv.out = crossval(predfun.lm, x, y, K=5, verbose=FALSE)
> cv.out1 = crossval(predfun.lm, x1, y, K=5, verbose=FALSE)
```

- Model x has a lower CV test error than x1. → Lipid measurements improve the prediction of disease progression.

## Cross-validation to fix open parameters

- Many algorithms have open parameters.
- lacktriangle Example: Penalisation parameter  $\lambda$  in regularized regression

$$\underset{\alpha,\beta}{\operatorname{argmin}} = RSS(\alpha,\beta) + \lambda f(\beta)$$

- ▶ It is not recommended to fix those parameter arbitrary since we might not understand what the consequences are.
- Cross-validation can be used to fix these parameters with respect to the prediction performance of a model.
- Again, cross-validation tunes the parameter to optimise prediction performance, this is not to help us understand a model.

## Cross-validation to fix open parameters

- ▶ Both the MSE in LOOCV and the MSE in k-fold CV are random variables.
- The mean CV test error is an estimate for the expected CV test error.
  - ♦ LOOCV

$$CV_{\{n\}} = \frac{1}{n} \sum_{i=1}^{n} MSE_{i}$$

♦ k-fold CV

$$CV_{k-fold} = \frac{1}{k} \sum_{g=1}^{k} MSE_g$$

Each mean CV test error has a variance and a standard error.

#### Occam's razor

Select the largest value of  $\lambda$  (smallest model) such that error is within 1 standard error of the minimum CV error.

## Cross-validation to fix open parameters



- The R package glmnet has its own inbuilt function to perform CV: cv.glmnet.
- When computing a glmnet object without pre-specified λ glmnet computes the model over a grid of lambdas and returns a matrix of regression coefficients.

```
> glmnet.all = glmnet(x,y,family="gaussian",alpha=1)
>
> dim(glmnet.all$beta)
[1] 10 88
> length(glmnet.all$lambda)
[1] 88
```

## Cross-validation in R: cv.glmnet

glmnet defines the optimal grid of lambda values for you.

```
> glmnet.all$lambda
 [1] 45.16003002 41.14813742 37.49265031 34.16190659 31.12705697 28.36181502
     25.84222954 23.54647710
                             21.45467297
                                          19.54869896 17.81204642 16.22967331
     14.78787387 13.47415991 12.27715268 11.18648427 10.19270784
                                                                    9,28721577
[19]
      8,46216512
                  7.71040969
                               7.02543815
                                           6.40131759
                                                        5.83264218
                                                                    5.31448632
[25]
      4.84236200 4.41217991
                               4.02021401
                                           3.66306928
                                                        3.33765230
                                                                    3.04114447
[31]
      2.77097757 2.52481156
                               2.30051426
                                           2.09614292
                                                        1.90992736
                                                                    1.74025468
[37]
      1.58565525
                 1.44479000
                               1.31643884
                                           1.19949004
                                                        1.09293065
                                                                    0.99583771
[43]
      0.90737023
                  0.82676196
                               0.75331471
                                           0.68639230
                                                        0.62541510
                                                                    0.56985495
[49]
      0.51923061
                  0.47310359
                               0.43107437
                                           0.39277891
                                                        0.35788552
                                                                    0.32609195
[55]
      0.29712284
                  0.27072727
                              0.24667660
                                           0.22476253
                                                        0.20479525
                                                                    0.18660180
[61]
      0.17002461
                  0.15492010
                              0.14115742
                                           0.12861739
                                                        0.11719137
                                                                    0.10678041
[67]
      0.09729434
                  0.08865098
                               0.08077547
                                           0.07359960
                                                        0.06706121
                                                                    0.06110368
[73]
      0.05567540
                  0.05072935
                               0.04622269
                                           0.04211640
                                                        0.03837489
                                                                    0.03496577
[79]
      0.03185951
                  0.02902920
                               0.02645032
                                           0.02410055
                                                        0.02195952
                                                                    0.02000870
[85]
      0.01823118
                  0.01661157
                               0.01513585
                                           0.01379122
```

cv.glmnet performs the CV and returns two values:

- 1.  $\alpha$  Slambda.min: The  $\alpha$  with the minimum CV error
- 2.  $\lambda$  slambda.1se: The  $\lambda$  within 1 standard error of the minimum CV error, that provides the sparsest model

```
> glmnet.cv = cv.glmnet(x,y,family="gaussian",alpha=1, type.measure="mse")
> glmnet.cv$lambda.min
[1] 0.08077547
> glmnet.cv$lambda.1se
[1] 4.842362
```

## Cross-validation in R: cv.glmnet

- Note: CV is not deterministic.
- ▶ When you repeat the CV, you can see different CV mean errors and the respective optimal lambdas.

```
> glmnet.cv = cv.glmnet(x,y,family="gaussian",alpha=1, type.measure="mse")
> glmnet.cv$lambda.min
[1] 0.08077547
> glmnet.cv$lambda.1se
[1] 4.842362
> 
> glmnet.cv = cv.glmnet(x,y,family="gaussian",alpha=1, type.measure="mse")
> glmnet.cv$lambda.min
[1] 0.9073702
> glmnet.cv$lambda.1se
[1] 7.025438
```

▶ In order to synchronise the random number generator in R and reproduce your results use set.seed().

```
> set.seed(1234)
> glmnet.cv = cv.glmnet(x,y,family="gaussian",alpha=1, type.measure="mse")
> glmnet.cv$lambda.min
[1] 1.19949
> glmnet.cv$lambda.1se
[1] 5.832642
> 
> set.seed(1234)
> glmnet.cv = cv.glmnet(x,y,family="gaussian",alpha=1, type.measure="mse")
> glmnet.cv$lambda.min
[1] 1.19949
> glmnet.cv$lambda.1se
[1] 5.832642
```

## Cross-validation in R: cv.glmnet

➤ To extract the lasso model with cross-validated lambda, run first the CV and then extract the model with the specific lambda.

```
> set.seed(1234)
> glmnet.cv = cv.glmnet(x,y,family="gaussian",alpha=1, type.measure="mse")
> glmnet.out = glmnet(x,v,family="gaussian",alpha=1, lambda= glmnet.cv$lambda.1se)
> coef(almnet.out)
11 x 1 sparse Matrix of class "dgCMatrix"
(Intercept)
             152,13348
age
             -13.58817
sex
bmi
             506.75582
             199.08174
map
tc
Thr
hd1
            -124,20902
tch
lta
             441.61689
qlu
```

> cvfit = glmnet::cv.glmnet(x, y, type.measure="mse")

Shortcut: > coef(cvfit, s = "lambda.1se")

## Cross-validation in R: cv.glmnet

Elastic net regression has two parameters to optimise  $\lambda_1$  (lambda) and  $\lambda_2$  (alpha).

## Take away: Cross-validation

- Cross-validation is a powerful tool to evaluate the prediction performance of a model.
- Cross-validation is computer-intensive, but that is not a problem anymore.
- ▶ It can be used
  - To compare different models or different sets of predictor variables.
  - ⋄ To compare different algorithms or methods.
  - ⋄ To fix open parameters in complex methods.
- Cross-validation prevents overfitting.
- ▶ It is absolutely essential to do cross-validation when performing prediction.

## Further reading



- Chapter 5 Resampling Methods in 'An Introduction to Statistical Learning'. Free pdf available from http://www-bcf.usc.edu/~gareth/ISL/index.html
- CV in epidemiological context: Contrasting population studies from US and Denmark: 'A cross-validation of risk-scores for coronary heart disease mortality based on data from the Glostrup Population Studies and Framingham Heart Study' https:

//academic.oup.com/ije/article/31/4/817/630270

