Severing uniqueness from answerhood

Bernhard Schwarz (McGill University)

reporting on joint work with

Aron Hirsch (HUJI) and Michaela Socolof (McGill)

1 Introduction

Wh-questions: answerhood and presuppositions. How do they relate?

- **Answerhood patterns:** What does it take to resolve a question?
 - **Mention-all.** Only one intuitively complete true answer:
 - (1) What is missing? conveys: "Tell me everything that is missing."
 - (2) $f_{-}m$ a. o and r are missing. b. #o is missing. c. #r is missing.
 - Mention-some. Multiple intuitively complete true answers:
 - (3) Where can we get coffee? can convey: "Tell me some place where we can get coffee."
 - (4) a. We can get coffee at Aroma.b. We can get coffee at Névé.
- Uniqueness presupposition. Carried by singular wh-questions:
 - (5) Which letter is missing? presupposes: $\exists !x[letter(x) \land miss(x)]$
 - (6) $f_{-}m$ #Which letter is missing?
 - Constraining answerhood: $\exists !x[letter(x) \land miss(x)]$ entails mention-all.

Influential idea (Dayal 1996): Mention-all and uniqueness from the same source.

- Mention-all: Encoded in an answer operator, ANS_D.
 - (7) $ANS_D [CP \dots]$
- Uniqueness: Triggered by ANS_D; a side-effect of mention-all as encoded in ANS_D.

Today:

- Main claim. (As in Hirsch & Schwarz 2019.) Uniqueness:
 - Severed: Trigger not tied to constraints on answerhood.
 - Local triggering: Triggered not by ANS, but locally, by operator in CP (and carried by each answer, as proposed in Uegaki 2018, 2020).
 - (8) (ANS) $[CP \dots TRIG \dots]$
- Evidence presented. Related findings about uniqueness:
 - **Scope:** Can be triggered under an operator scoping inside CP.
 - (9) (ANS) $[CP \dots OP [\dots TRIG \dots] \dots]$
 - Distribution: Can co-occur with mention-some, hence not tied to mention-all.
- Data studied: Singular wh-questions with disjunction (extending Haida & Repp 2013, Hirsch 2018, Ciardelli et al. 2019), OP = or.
 - (10) (ANS) $[CP \dots [\dots TRIG \dots]]$ or $[\dots TRIG \dots] \dots]$
- Consequences explored. Uniqueness, answerhood:
 - Local triggering: Triggering by a CP internal element. Possibility considered: TRIG
 wh (as in Hirsch & Schwarz 2019, Uegaki 2020).

(11) (ANS)
$$[CP \dots OP [\dots wh] \dots]$$

- **Answer operator:** A weakened operator considered in Fox (2013) is shown to interact with independently triggered uniqueness to derive observed answering patterns.
 - (12) $\left| \text{ANS}_{\text{F}} \right| \left[\text{CP} \dots \right]$

Outline:

- 1. Review: uniqueness from answerhood (Section 2)
- 2. Scope of uniqueness and local triggering:
 - a. A problem of scope (Section 3)
 - b. Triggering uniqueness locally (Sections 4)
- 3. Distribution of uniqueness and mention-some
 - a. A problem of distribution (Section 5)
 - b. Reconciling uniqueness with mention-some (Section 6)

2 Review: uniqueness from answerhood

This section: Outline of Dayal's classic proposal (developed in Xiang 2016 and Fox 2013, 2018)

• Dayal (1996): both mention-all and uniqueness from ANS_D, given the logical profiles of answer sets.

Assumptions:

- Syntax. Every question CP combines with ANS_D:
 - (13) $ANS_D [CP wh ...]$
- Semantics of CP. Determines a classic Hamblin set:
 - Non-singular wh (including mono-morphemic wh): Hamblin answers based on both atoms and pluralities.
 - (14) a. What is missing? b. $\{ miss(a), miss(b), miss(a+b), \dots \}$
 - Singular wh: Hamblin answers based on atomic individuals.
 - (15) a. Which letter is missing? b. $\{ miss(a), miss(b), ... \}$
- **Semantics of ANS_D.** Maps a Hamblin set to a proposition, picking out its unique strongest (= maximally informative) true member, presupposing there is one:
 - $(16) \quad a. \quad \llbracket \operatorname{ANS}_D \rrbracket^w = \lambda Q \colon \max_{\inf} (\{p\colon p \in Q \land p(w)\}) \neq \emptyset$ $\iota p[p \in \max_{\inf} (\{p\colon p \in Q \land p(w)\})]$ $b. \quad \max_{\inf}(P) := \{p\colon p \in P \land \forall q[q \in P \to p \subseteq q]\}$
 - Maximality notion: $\max_{inf}(P)$ cannot have more than one element.

Mention-all and uniqueness from ANS_D: ANS_D captures both mention-all where observed (with non-singular wh) and uniqueness (with basic cases of singular wh):

- Non-singular wh, mention-all: Unique complete true answer.
 - (17) What is missing? conveys: "Tell me everything that is missing."
 - Hamblin set: The Hamblin answers are based on atoms and pluralities.

(18)
$$\{ \operatorname{miss}(a), \operatorname{miss}(b), \operatorname{miss}(a+b), \dots \} = \{ \operatorname{miss}(a), \operatorname{miss}(b), \operatorname{miss}(a) \land \operatorname{miss}(b), \dots \}$$

- Logical profile: The Hamblin set is closed under conjunction.
- Fact: For any set of propositions S closed under conjunction, $\max_{\inf}(S) = \{\bigcap S\}$.
- So: ANS_D outputs the conjunction of all true Hamblin answers, hence mention-all:
 - (19) if defined

$$[\![ANS_D]\!]^w((18)) = \iota p[p \in \max_{\inf}(\{p: p \in (18) \land p(w)\})]$$
$$= \bigcap \{p: p \in (18) \land p(w)\}$$

- Singular wh, uniqueness presupposition: Unique true answer (hence mention-all).
 - (20) Which letter is missing? presupposes: $\exists !x[letter(x) \land miss(x)]$
 - Hamblin set: The Hamblin answers are based on atoms only.

(21)
$$\{ miss(a), miss(b), \ldots \}$$

- Logical profile: The Hamblin set is not ordered by entailment.
- Fact: For any unordered set of propositions S, $\max_{\inf}(S) \neq \emptyset$ iff $\exists ! p[p \in S]$.
- So: ANS_D can apply only if there is a single true Hamblin answer, hence uniqueness:

(22)
$$[ANS_D]^w((21))$$
 defined only if $\max_{\inf}(\{p: p \in (21) \land p(w)\}) \neq \emptyset$ iff $\exists ! p[p \in (21) \land p(w)]$

Salient limitation: Remains silent about mention-some (Fox 2013, 2018). See Sections 5 and 6.

3 A problem of scope

This section: A problem for Dayal's proposal.

• Claim targeted: The uniqueness trigger applies globally, to the interrogative as a whole.

3.1 A puzzle from disjunction

Data investigated: Disjunctive wh-questions, with singular wh-phrase (extending observations in Haida & Repp 2013, Hirsch 2018, Ciardelli et al. 2019).

- (23) a. In which town was Shakespeare born or did Bach die?
 - b. Which letter is missing in fa_m or was replaced with a dollar sign in t\$st?
 - Surface syntactic profile: or flanked by two C' constituents:
 - (24) a. In which town [C [C was] Shakespeare born] or [C [C did] Bach die]?
 - b. Which letter [C'] [C] is missing in fa_m or [C'] [C] was replaced in t\$st]?
 - Terminology: C'-disjunctive questions. (Leaving open whether or merges with C' constituents.)

Confirming acceptability. Possible contexts and responses:

- (25) Person A is doing a crossword and needs to answer one of two clues next.
 - A: In which town was Shakespeare born or did Bach die?
 - B: i. Shakespeare was born in Stratford.
 - ii. Bach died in Leipzig.
- (26) Person A is playing a word game and must complete one of two words next.
 - A: Which letter is missing in fa_m or was replaced with a dollar sign in t\$t?
 - B: i. r is missing in fa m.
 - ii. e was replaced in t\$st.

Determining the predicted presupposition:

- Transparent CP syntax. C' disjunction, across-the-board wh-movement:
 - (27) [CP [in which town] [C' was Shakespeare born t] or [C' did Bach die t]]
- Background on composition in CP. Karttunen (1977) (as updated in Heim 1994, Fox 2013):
 - Logical form for CP (TP = question nucleus):
 - (28) a. Which letter is missing?
 - b. $[CP \lambda p [[which letter] \lambda x [C' [C? p] [TP x missing]]]]$

- Entries for functional elements:

(29) a.
$$[?] = \lambda p_{st}$$
. λq_{st} . $p = q$
b. $[which] = \lambda f_{et}$. λg_{et} . $\exists x [f(x) \land g(x)]$

- Resulting CP denotation (in world w), corresponding Hamblin set:

(30) a.
$$\lambda p. \exists x[letter(x)(w) \land p = miss(x)]$$

b. $\{miss(a), miss(b), ...\}$

• Applied to C'-disjunctives:

- Logical form for CP:

(31)
$$[_{CP} \lambda p[$$
 [which town] $\lambda x[$ $[_{C'} [_{C} ? p] [_{TP}$ Shakespeare was born in $x]]$ or $[_{C'} [_{C} ? p] [_{TP}$ Bach did die in $x]]]]]$

- Classic semantics for disjunction:

(32)
$$[\sigma] = \lambda p_t . \lambda q_t. p \vee q$$

- Resulting CP denotation (in world w), corresponding Hamblin set:

(33) a.
$$\lambda p. \exists x [town(x)(w) \land [p = born_s(x) \lor p = died_b(x)]]$$

b. $\{born_s(Stratford), born_s(Leipzig), ...\}$
 $\cup \{died_b(Stratford), died_b(Leipzig), ...\}$

• Condition on applying ANS_D:

- Logical profile: The Hamblin set (33b) is not ordered by entailment.
- Fact: For any unordered set of propositions S, $\max_{\inf}(S) \neq \emptyset$ iff $\exists ! p[p \in S]$.
- Hence: ANS_D can apply only if there is a single true Hamblin answer.

(34)
$$[ANS_D]^w((33b))$$
 defined only if $\max_{\inf}(\{p: p \in (33b) \land p(w)\}) \neq \emptyset$ iff $\exists ! p[p \in (33b) \land p(w)]$

• Hence, the presupposition predicted:

$$[\exists!x[town(x) \land born_s(x)] \land \neg \exists y[town(y) \land died_b(y)]] \\ \lor [\neg \exists x[town(x) \land born_s(x)] \land \exists!y[town(y) \land died_b(y)]]$$

Verdict: inadequate. The questions can be felicitous even if—or even though—the presuppositions predicted are incompatible with common knowledge. Specifically:

• Entailed by presupposition predicted:

(36)
$$\neg \exists x [town(x) \land born_s(x)] \lor \neg \exists y [town(y) \land died_b(y)]$$

• Given by common knowledge:

$$(37) \quad \exists x [town(x) \land born_s(x)] \land \exists y [town(y) \land died_b(y)]$$

3.2 A matter of scope

Diagnosis of the problem: Due to the relative scope of the uniqueness trigger and or.

- Analysis above: The uniqueness trigger (TRIG = ANS_D) scopes over disjunction:
 - (38) TRIG $[\dots \text{ or } \dots]$
 - Notation: Schema equates or's semantic scope with its syntactic disjuncts (even though disjunct size may not actually fix or's scope (e.g., Larson 1985, Schlenker 2006)).
- **Proposed remedy:** The trigger can (or must) scope below *or*, internal to the disjuncts:

$$(39) \quad [\dots TRIG \dots] \text{ or } [\dots TRIG \dots]$$

Expected effect of the proposed remedy:

- Presupposition triggered: Uniqueness triggered internal to each disjunct.
 - (40) In which town was Shakespeare born or did Bach die?

(41) left:
$$\exists !x[town(x) \land born_s(x)]$$

right: $\exists !y[town(y) \land died_b(y)]$

- Assuming universal projection. Suppose every triggered presupposition is true, $\forall Ps$:
 - $(42) \quad \exists !x[town(x) \land born_s(x)] \land \exists !y[town(y) \land died_b(y)]$

Verdict: adequate. C'-disjunctive questions elicit judgments expected under $\forall Ps$:

- Detecting the presupposition: Infelicity when $\forall Ps$ is incompatible with common knowledge.
 - (43) a. #Which letter is missing in f_{-m} or was replaced with a dollar sign in t\$st? b. #Which letter is missing in f_{am} or was replaced with a dollar sign in f\$\$st ?

- Presupposition derived $(\forall Ps)$:

(44) a.
$$\exists !x[letter(x) \land miss_{f_m}(x)] \land \exists !y[letter(y) \land replaced_{t\$st}]$$

b. $\exists !x[letter(x) \land miss_{f_m}(x)] \land \exists !y[letter(y) \land replaced_{t\$st}]$

- Entailed by common knowledge:

(45) a.
$$\neg \exists ! x [letter(x) \land miss_{f_m}(x)]$$

b. $\neg \exists ! y [letter(y) \land replaced_{\$\$st}]$

Next, developing the remedy: How does [...TRIG ...] or [...TRIG ...] arise?

- Two options:
 - High disjunction: Or scopes above ANS_D (= TRIG).

$$(46) \quad [_{X} \dots ANS [_{CP} \dots] \dots] \text{ or } [_{X} \dots ANS [_{CP} \dots] \dots]$$

- Low triggering: TRIG (\neq ANS) scopes within C', below or.

(47)
$$[C' \dots TRIG \dots]$$
 or $[C' \dots TRIG \dots]$

• Next step: A case against high disjunction.

3.3 A case against high disjunction

Scope above ANS: Above ANS_D, the lone scope site for disjunction that seems viable would be in a covert performative layer.

- Two covert performative predicates (Sauerland 2009, Sauerland & Yatsushiro 2017): Imperative force from covert structure above ANS.
 - (48) a. Which letter is missing?
 - b. OUGHT [MAKE-KNOWN [ANS_D [CP which letter is missing]]]
- A scope site for disjunction: Between the two performative predicates (entertained as an option for CP-disjunctives in Hirsch 2018):
 - (49) In which town was Shakespeare born or did Bach die?
 - Scope taking: For example, via big coordinates whose size is in part obscured by ellipsis:

- Determining the presupposition predicted:
 - Hamblin sets. In each disjunct, a separate CP denotation is composed; the Hamblin sets are not unioned:

- Logical profiles: Neither Hamblin set is ordered by entailment.
- Consequence: In each disjunct, ANS_D can apply only if there is a single true proposition in the Hamblin set.

$$(52) \quad \text{a. left:} \quad \llbracket \operatorname{ANS_D} \ \rrbracket^w((51a)) \quad \operatorname{defined \ only \ if} \\ \quad \operatorname{max_{inf}}(\{p\colon p{\in}(51a) \wedge p(w)\}) \neq \emptyset \text{ iff} \\ \quad \exists ! p[p{\in}(51a) \wedge p(w)] \\ \\ \text{b. right:} \quad \llbracket \operatorname{ANS_D} \ \rrbracket^w((51b)) \quad \operatorname{defined \ only \ if} \\ \quad \operatorname{max_{inf}}(\{p\colon p{\in}(51b) \wedge p(w)\}) \neq \emptyset \text{ iff} \\ \quad \exists ! p[p{\in}(51b) \wedge p(w)]$$

- Presuppositions triggered:

(53) a. left:
$$\exists !x[town(x) \land born_s(x)]$$

b. right: $\exists !y[town(y) \land died_b(y)]$

- Projection: Universal projection derives the intended target, ∀Ps.
 - (54) $\exists !x[town(x) \land born_s(x)] \land \exists !y[town(y) \land died_b(y)]$

3.3.1 Problems with high disjunction

Two commitments. The high disjunction proposal is committed to two assumptions:

A. Scope extension. A C'-disjunctive question allows for or to scope higher than C'.

B. Two questions. A C'-disjunctive question introduces two separate question denotations (Hamblin sets).

To be argued: Neither commitment is viable.

A. No scope extension: In C'-disjunctives, or cannot take scope higher than C'.

• Part 1: No high disjunction from ellipsis

Data: Consider C'-<u>conjunctives</u>—wh questions with C' constituents flanking and.

- (57) In which town was Shakespeare born and did Bach die?
 - Ellipsis parse: With and scoping in the performative layer:

```
(58) OUGHT [ [MAKE-KNOWN [ANS<sub>D</sub> [CP in which town was S born]]] and [MAKE-KNOWN [ANS<sub>D</sub> [CP in which town did B die]]]]]
```

- Prediction. Should felicitously elicit answers such as:
 - (59) Shakespeare was born in Stratford and Bach died in Leipzig.
- Judgment: Cannot normally be so answered. (Sentence seems to imply that Bach died where Shakespeare was born.)
- Hence: The C'-conjunctive does not permit a high conjunction ellipsis parse.
- Assumption: Conditions on ellipsis apply equally to coordinations with and and or.
- Consequence: High disjunction in C'-disjunctives, if available, cannot be due to ellipsis.

• Part 2: no high disjunction from any source

- Other potential paths to high scope: e.g., choice functional analyses (Schlenker 2006) or Hamblin semantics (Simons 2005, Alonso-Ovalle 2006).
- Problem: Independent evidence against possible disjunction scope over an embedding predicate in C'-disjunctives.
- Baseline: Or can scope over an embedding predicate in embedded CP-disjunctives.
 - (60) Al is wondering [CP in which town Shakespeare was born] or [CP in which town Bach died].

(61) a. ... either fact will do.
$$(wonder > or)$$

b. ... but I'm not sure which. $(or > wonder)$

- Frozen scope: In embedded C'-disjunctives, or cannot scope over the overt embedding predicate.
 - (62) Al is wondering in which town [C' Shakespeare was born] or [C' Bach died].

(63) a. ... either fact will do.
$$(wonder > or)$$

b. #... but I'm not sure which. $(or > wonder)$

Assumption: Constraints on scope do not discriminate between overt and covert embedding predicates.

- **So, scope extension commitment:** Not viable. In C'-disjunctives, the scope of *or* is frozen at C', hence cannot extend into the covert performative layer.
- **B. One question, not two:** The meaning of a C'-disjunctive question does not introduce two separate question denotations (Hamblin sets).
 - Evidence from explicit reference to questions:
 - Reference to questions: The demonstrative *this question* can be understood as getting its referent from a preceding matrix interrogative.
 - (64) a. In which town was Shakespeare born?
 - b. Sorry, I cannot answer this question.
 - Assumption: Anaphoric reference of this question is to a question denotation.
 - Prediction: High disjunction then predicts that C'-disjunctives should not be good antecedents, as they introduce two equally salient question denotations. Compare:
 - (65) Either Jane or Maud will sing. #She will stand on that platform.

(Simons 1996)

- Observation: The prediction is incorrect; C'-disjunctives can antecede this question:
 - (66) a. In which town was Shakespeare born or did Bach die?
 - b. Sorry, I cannot answer this question.
- Questioning the premise: Perhaps this question can also pick up the unique speech act a
 C'-disjunctive expresses? Test with overt approximations of high disjunction structure:
 - (67) a. i. Tell me in which town Shakespeare was born or tell me in which town Bach died.
 - ii. You should tell me in which town Shakespeare was born or tell me in which town Bach died.
 - iii. I want you to tell me in which town Shakespeare was born or tell me in which town Bach died.
 - b. #Sorry, I cannot answer this question.
- Observation: These overt approximations do not serve as good antecedents for this question. (Cf.: Sorry, I cannot respond to this request.)
 - **So, two-questions commitment:** Not viable. In the interpretation of a C'-disjunctive question, only one question denotation (Hamblin set) is composed.

Recall, the two options: How does [... TRIG ...] or [... TRIG ...] arise in C'-disjunctive questions?

• High disjunction: Rejected.

(68)
$$[_{\mathbf{X}} \dots \mathbf{ANS} [_{\mathbf{CP}} \dots] \dots] \text{ or } [_{\mathbf{X}} \dots \mathbf{ANS} [_{\mathbf{CP}} \dots] \dots]$$

• Low triggering: Adopt this.

(69)
$$[C' \dots TRIG \dots]$$
 or $[C' \dots TRIG \dots]$

Answer operator: Operating on Hamblin set, applies to CP:

(70) ANS
$$\left[\text{CP} \dots \left[\text{C'} \dots \text{TRIG} \dots \right] \text{ or } \left[\text{C'} \dots \text{TRIG} \dots \right] \dots \right]$$

Consequence: Uniqueness:

- TRIG \neq ANS: Uniqueness not triggered globally by ANS_D or any answer operator.
- Local triggering: Instead triggered within the interrogative CP.

Questions this raises: With TRIG \neq ANS:

- Answerhood: What are the consequences for answerhood? (Sections 5 & 6)
- Uniqueness: What triggers uniqueness? (Next.)

4 Triggering uniqueness locally

This section: The wh-item as a conceivable local trigger, TRIG = wh.

• Uniqueness could be triggered by the wh-item after reconstruction into the question nucleus. (Versions considered in Hirsch & Schwarz 2019, Uegaki 2020; see Xiang 2020 for problems).

Revised logical form and denotations:

- Revised logical form:
 - Overt wh: The overt wh-phrase reconstructs (as in Rullmann & Beck 1998).
 - Covert wh: A silent operator \exists_{wh} takes the overt wh-phrase's place at the periphery, binding a variable within the reconstructed overt wh-phrase.
 - (71) a. Which letter is missing?
 - b. $[CP \lambda p [\exists_{wh} \lambda x [C' [C ? p] [TP [DP [which x] letter] [VP is missing]]]]]$

• New denotations:

- Covert wh: existential quantification, removed from the overt wh, is reassigned to \exists_{wh} :

(72)
$$[\![\exists_{\mathrm{wh}}]\!] = \lambda f_{\mathrm{et}}. \exists x [f(x)]$$

Overt wh: which is a "parameterized determiner" that triggers a mereology-based maximality presupposition (Sharvy 1980, Link 1983).

$$(73) \quad a. \quad \llbracket \operatorname{which} \rrbracket = \lambda x_e. \ \lambda f_{et}. \ \lambda g_{et}: \max_{part} (\{z: \ f(z) \wedge g(z)\}) \neq \emptyset$$

$$. \ f(x) \wedge g(x)$$

$$b. \quad \max_{part}(P) := \{x: \ x \in P \wedge \forall y [y \in P \to y \sqsubseteq x]\}$$

Uniqueness triggered locally, in the nucleus:

- Presupposition triggered locally: Maximality presupposition is triggered in the question nucleus.
 - (74) $\max_{\text{part}}(\{z: \text{letter}(z) \land \text{miss}(z)\}) \neq \emptyset$
- Uniqueness from maximality: As a condition on a set of atoms, maximality yields uniqueness.
 - (75) $\max_{\text{part}}(\{\text{z: letter}(\text{z}) \land \text{miss}(\text{z})\}) \neq \emptyset \text{ iff}$ $\exists ! \text{z}[\text{letter}(\text{z}) \land \text{miss}(\text{z})]$
- Presuppositional answers: each Hamblin answer carries the uniqueness presupposition.

(76) a.
$$\lambda p. \exists x[p = \lambda w: \exists !y[letter(y)(w) \land miss(y)(w)]. letter(x)(w) \land miss(x)(w)]$$

b.
$$\begin{cases} \lambda w: \exists !y[letter(y)(w) \land miss(y)(w)]. letter(a)(w) \land miss(a)(w), \\ \lambda w: \exists !y[letter(y)(w) \land miss(y)(w)]. letter(b)(w) \land miss(b)(w), \\ & \dots \end{cases}$$

- Projection: Projection from the Hamblin answers (existential or universal) yields the question's intended presupposition (cf. Who invited the king of France?).
 - (77) $\exists !x[letter(x) \land miss(x)]$

Low triggering under disjunction

- (78) In which town was Shakespeare born or did Bach die?
 - Logical form: The overt wh-phrase reconstructs to in intermediate position in each disjunct:

(79)
$$[CP \lambda p [\exists_{wh} \lambda x [C' [C? p] [TP [which x] town] \lambda y [TP Shakespeare was born in y]]] [or [C' [C? p] [TP [which x] town] \lambda z [TP Bach died in z]]]]]]]$$

• Presuppositions triggered, locally and low: A presupposition of maximality, hence uniqueness, is triggered in the nucleus, internal to each disjunct:

$$\begin{array}{ll} (80) & a. & left: & \max_{\mathrm{part}}\{z: \ \mathrm{town}(z) \wedge \mathrm{born}_s(z)\} \neq \emptyset \ \mathrm{iff} \\ & \exists ! z [\mathrm{town}(z) \wedge \mathrm{born}_s(z)] \\ & b. & \mathrm{right:} & \max_{\mathrm{part}}\{z: \ \mathrm{town}(z) \wedge \mathrm{died}_b(z)\} \neq \emptyset \ \mathrm{iff} \\ & \exists ! z [\mathrm{town}(z) \wedge \mathrm{died}_b(z)] \end{array}$$

• Presuppositional answers: The Hamblin set consists of two families of Hamblin answers, which differ in the uniqueness presupposition they carry:

$$(81) \quad a. \quad \lambda p. \ \exists x [\quad [p = \lambda w \colon \exists ! y [town(y)(w) \land born_s(y)(w)]. \ town(x)(w) \land born_s(x)(w)] \\ \quad \vee [p = \lambda w \colon \exists ! y [town(y)(w) \land died_b(y)(w)]. \ town(x)(w) \land died_b(x)(w)]] \\ b. \quad \begin{cases} \lambda w \colon \exists ! y [tn(y)(w) \land born_s(y)(w)]. \ tn(Stratford)(w) \land born_s(Stratford)(w), \\ \lambda w \colon \exists ! y [tn(y)(w) \land born_s(y)(w)]. \ tn(Leipzig)(w) \land born_s(Leipzig)(w), \\ & \dots \end{cases} \\ \\ & \cup \begin{cases} \lambda w \colon \exists ! y [tn(y)(w) \land died_b(y)(w)]. \ tn(Stratford)(w) \land died_b(Stratford)(w), \\ \lambda w \colon \exists ! y [tn(y)(w) \land died_b(y)(w)]. \ tn(Leipzig)(w) \land died_b(Leipzig)(w), \\ & \dots \end{cases} \end{cases}$$

- Presupposition projected: Universal projection from the Hamblin set yields the target ∀Ps (e.g., Abrusán 2014):
 - (82) $\exists !x[town(x) \land born_s(x)] \land \exists !y[town(y) \land died_b(y)]$

Summary. Uniqueness must be locally triggered within the question nucleus. The wh-item is a possible trigger.

(83) (ANS)
$$[CP \dots TRIG \dots] = (ANS) [CP \dots wh] \dots$$

5 A problem of distribution

This section: Another way of seeing that uniqueness must be severed from answerhood. Now focusing on answerhood:

- Claim targeted: Uniqueness is tied to ANS_D, hence to mention-all.
- **Observed:** A kind of uniqueness can co-occur with mention-some.

C'-disjunctives as mention-some questions. Consider again a C'-disjunctive with singular wh:

(84) Which letter is missing in fa m or was replaced with a dollar sign in t\$st?

• Expected classic Hamblin set (see Section 3):

(85)
$$\{ \operatorname{miss}_{\operatorname{fa_m}}(a), \, \operatorname{miss}_{\operatorname{fa_m}}(b), \, \dots \}$$

$$\cup \{ \operatorname{replaced}_{\operatorname{t\$st}}(a), \, \operatorname{replaced}_{\operatorname{t\$st}}(b), \, \dots \}$$

- Logical profile: Hamblin set not ordered by entailment.

• Assessing answerhood:

- Answerhood predicted from ANS_D: Uniqueness and mention-all.
 - (86) ANS_D [which letter is missing in fa m or was replaced in t\$st]
- Actually observed: C'-disjunctives are mention-some, judged to permit two intuitively complete answers.
 - (87) Which letter is missing in fa_m or was replaced with a dollar sign in t\$st? conveys: "Tell me one of those two things."
 - (88) a. r is missing in fa_m . b. e was replaced in t\$st.
- Already dismissed: High disjunction, two applications of ANS_D.
 - (89) OUGHT [[MAKE-KNOWN [ANS_D [$_{CP}$ which letter [$_{C'}$ missing in fa_m]]]] or [MAKE-KNOWN [ANS_D [$_{CP}$ which letter [$_{C'}$ replaced in t\$st]]]]]

Therefore: C'-disjunctives do not compose with ANS_D.

And yet, uniqueness. C'-disjunctives still carry a sort of uniqueness presupposition (Section 3):1

(90) a. #Which letter is missing in f_{-m} or was replaced with a dollar sign in t\$st? b. #Which letter is missing in f_{a} or was replaced with a dollar sign in f\$\$st ?

Conclusion: Uniqueness cannot be derived from ANS_D or tied to mention-all.

Next step: A weaker theory of answerhood which does not derive uniqueness from ANS, but interacts with independently triggered uniqueness to permit mention-some.

¹For a related observation, due to Roger Schwarzschild, see Dayal (2016, p. 75, fn. 19).

6 Reconciling uniqueness with mention-some

This section: A weak ANS defined in Fox (2013) applies to our data correctly: for unordered Hamblin sets, it derives mention-some unless masked by independently triggered uniqueness.

 $\mathbf{ANS_D}$ (Dayal 1996). Recap:

(91) a.
$$[ANS_D]^w = \lambda Q$$
: $\max_{\inf, strong} (\{p: p \in Q \land p(w)\}) \neq \emptyset$
 $\iota p[p \in \max_{\inf, strong} (\{p: p \in Q \land p(w)\})]$
b. $\max_{\inf, strong} (P) := \{p: p \in P \land \forall q[q \in P \rightarrow p \subseteq q]\}$

• Strong maximality: max_{inf,strong}(P) cannot have more than one element.

Salient limitation: Remains silent about mention-some (Fox 2013, 2018). So, Fox's suggestion:

• **ANS**_F (Fox 2013). Appealing to a weaker notion of maximality, which permits multiple maximal members:

(92) a.
$$[ANS_F]^w = \lambda Q: \max_{\inf, weak}(\{p: p \in Q \land p(w)\}) \neq \emptyset$$

 $\cdot \max_{\inf, weak}(\{p: p \in Q \land p(w)\})$
b. $\max_{\inf, weak}(P) := \{p: p \in P \land \forall q [q \in P \rightarrow q \not\subset p]\}$

- Weak maximality: max_{inf,weak}(P) can have multiple elements.

In particular: $\max_{inf,weak}(P) = P$ if P not ordered by entailment.

Fox's assessment of ANS_F. Accommodates mention-some at expense of losing uniqueness:

- Singular wh. Where ANS_D correctly derives uniqueness, ANS_F incorrectly derives mentionsome.
 - (93) Which letter is missing? presupposes: $\exists !x[letter(x) \land miss(x)]$
 - Classic Hamblin set: Not ordered by entailment.
 - $(94) \quad \{ miss(a), miss(b), \dots \}$
 - Consequence: ANS_F can incorrectly output a set of multiple true Hamblin answers.
 - (95) w: o and r are the missing letters $\|ANS_F\|^w((94)) = \{miss(o), miss(r)\}$

But, reassessment, given local triggering:

- **Singular wh.** Availability of mention-some correctly regulated by locally triggered presupposition:
 - **High trigger.** Triggered highest in wh's scope, presupposition preempts mention-some.
 - (96) Which letter is missing?

(97)
$$\begin{cases} \lambda w \colon \exists ! y[letter(y)(w) \land miss(y)(w)]. \ letter(a)(w) \land miss(a)(w), \\ \lambda w \colon \exists ! y[letter(y)(w) \land miss(y)(w)]. \ letter(b)(w) \land miss(b)(w), \\ & \dots \end{cases}$$

- Logical profile: Hamblin answers are pairwise incompatible; only one can be true.
- Projection: In fact, the projected presupposition entails that exactly one Hamblin answer is true.

(98)
$$\exists !y[letter(y) \land miss(y)]$$

- So, answerhood: potential mention-some correctly masked, mention-all (uniqueness) correctly guaranteed.
- Low trigger. An operator OP intervening between wh and the trigger can change the logical profile, unmasking mention-some from ANS_F. Example: OP = or.
 - (99) In which town was Shakespeare born or did Bach die?

$$\begin{cases} \lambda w \colon \exists ! y[tn(y)(w) \land born_s(y)(w)]. \ tn(Strtf)(w) \land born_s(Strtf)(w), \\ \lambda w \colon \exists ! y[tn(y)(w) \land born_s(y)(w)]. \ tn(Lpz)(w) \land born_s(Lpz)(w), \\ & \dots \end{cases}$$

$$\cup \begin{cases} \lambda w \colon \exists ! y[tn(y)(w) \land died_b(y)(w)]. \ tn(Strtf)(w) \land died_b(Strtf)(w), \\ \lambda w \colon \exists ! y[tn(y)(w) \land died_b(y)(w)]. \ tn(Lpz)(w) \land died_b(Lpz)(w), \\ & \dots \end{cases}$$

- Logical profile: There are pairs of mutually compatible Hamblin answers; more than one Hamblin answer can be true.
- Projection: In fact, the (universally) projected presupposition entails that exactly two Hamblin answers are true.

(101)
$$\exists !x[town(x) \land born_s(x)] \land \exists !y[town(y) \land died_b(y)]$$

- So, answerhood (extending Hirsch 2018): mention-some correctly unmasked.
 - $(102) \quad w: \ Shakespeare \ born \ (only) \ in \ Stratford, \ Bach \ died \ (only) \ in \ Leipzig$ $\left[\begin{bmatrix} ANS_F \end{bmatrix}^w ((100)) = \\ \begin{cases} \lambda w: \ \exists ! y[tn(y)(w) \land born_s(y)(w)]. \ tn(Strtf)(w) \land born_s(Strtf)(w), \\ \lambda w: \ \exists ! y[tn(y)(w) \land died_b(y)(w)]. \ tn(Lpz)(w) \land died_b(Lpz)(w) \end{cases}$
 - (103) a. Shakespeare was born in Stratford.
 - b. Bach died in Leipzig.

Conclusion: For Hamblin sets of singular wh-questions, ANS_F enables mention-some, which is often, but not always, masked by locally triggered presupposition:

- Triggered high: Mention-some correctly masked—as only one Hamblin answer can be true
- Triggered low: Mention-some correctly enabled—as multiple Hamblin answers can be true.

7 Conclusions

Wh-questions: answerhood and presuppositions. How do they relate?

- Dayal (1996): Uniqueness and mention-all have the same source. Triggering arises in virtue of how mention-all is encoded in an answer operator, ANS_D.
- Today: Uniqueness triggering severed from answerhood. Evidence from C'-disjunctives:
 - Scope of uniqueness: Content of the uniqueness presupposition reveals possible low triggering site, inside the question nucleus.
 - Distribution of uniqueness: Compatible with mention-some, unless masked by uniqueness' content from high triggering site in the nucleus.

Open questions include: What are possible low triggering sites? What is the trigger? (Hirsch & Schwarz 2019, Xiang 2020, Kobayashi & Rouillard 2020)

```
(104) (ANS) [CP \dots OP [\dots TRIG \dots] \dots]
```

- Triggering sites. Today: OP = or. Hirsch & Schwarz (2019): OP = \Diamond .
 - (105) Which letter could be missing in fo_m ?
 - (106) a. a could be missing. b. r could be missing.
 - Low uniqueness: Presupposes $\Diamond[\exists!x[letter(x) \land miss(x)]]$, not $\exists!x[\Diamond[letter(x) \land miss(x)]]$.

- (107) #Which letter could be missing in f = m?
- Mention-some: (i) and (ii) in (b) could each resolve the question.
- The trigger. Considered above: TRIG = wh.
 - Problem: Multiple wh ≠ multiple uniqueness triggering (Hirsch & Schwarz 2019, Xiang 2020).
 - Dayal (1996): Multiple singular why ields "exhaustivity and uniqueness":
 - (108) Which student read which book? presupposes: $\forall x[student(x) \rightarrow \exists!y[book(y) \land read(x,y)]]$
 - Possibility (Kobayashi & Rouillard 2020): TRIG \approx an exhaustivity operator.

References

Abrusán, Marta. 2014. Weak Island Semantics. Oxford University Press.

Alonso-Ovalle, Luis. 2006. Disjunction in alternative semantics. Doctoral Dissertation, University of Massachusetts Amherst.

Ciardelli, Ivano, Jeroen Groenendijk, & Floris Roelofsen. 2019. *Inquisitive semantics*. Oxford University Press.

Dayal, Veneeta. 1996. Locality in Wh Quantification. Dordrecht: Kluwer.

Dayal, Veneeta. 2016. Questions. Oxford: Oxford University Press.

Fox, Danny. 2013. Mention some readings. Lecture notes, Massachusetts Institute of Technology, February 2013.

Fox, Danny. 2018. Partition by exhaustification: Comments on Dayal 1996. In *Proceedings of Sinn und Bedeutung 22*, ed. Uli Sauerland & Stephanie Solt, volume 2 of *ZASPiL 61*, 403–434. Berlin: Leibniz-Centre General Linguistics.

Haida, Andreas, & Sophie Repp. 2013. Disjunction in wh-questions. In *Proceedings of NELS 40*, ed. Seda Kan, Claire Moore-Cantwell, & Robert Staubs, 259–272. Amherst: GLSA.

Heim, Irene. 1994. Questions. Class handout, Massachusetts Institute of Technology.

Hirsch, Aron. 2018. Disjoining questions. manuscript, McGill University, Montreal.

Hirsch, Aron, & Bernhard Schwarz. 2019. Singular which, mention-some, and variable scope uniqueness. In *Proceedings of Semantics and Linguistic Theory (SALT)* 29, ed. Katherine Blake, Forrest Davis, Kaelyn Lamp, & Joseph Rhyne, 748–767. Linguistic Society of America.

Karttunen, Lauri. 1977. Syntax and semantics of questions. Linguistics and Philosophy 1:3–44.

Kobayashi, Filipe Hisao, & Vincent Rouillard. 2020. High and low exhaustification in singular which-questions. Poster at SALT 30.

Larson, Richard K. 1985. On the syntax of disjunction scope. Natural Language & Linguistic Theory 3:217–264.

Link, Godehard. 1983. The logical analysis of plurals and mass terms: A lattice-theoretical approach. In *Meaning, Use, and the Interpretation of Language*, ed. Reiner Bäuerle, Christoph Schwarze, & Arnim von Stechow, 302—323. Berlin: de Gruyter.

Rullmann, Hotze, & Sigrid Beck. 1998. Presupposition projection and the interpretation of 'which'-questions. In *Proceedings of Semantics and Linguistic Theory (SALT)* 8, ed. Devon Strolovitch & Aaron Lawson, 215–232. Ithaca, NY: Cornell University.

- Sauerland, Uli. 2009. Decomposing questions acts. Snippets 62–63.
- Sauerland, Uli, & Kazuko Yatsushiro. 2017. Remind-me presuppositions and speech-act decomposition: Evidence from particles in questions. *Linguistic Inquiry* 48:651–678.
- Schlenker, Philippe. 2006. Scopal independence: A note on branching and wide scope readings of indefinites and disjunctions. *Journal of Semantics* 23:281–314.
- Sharvy, Richard. 1980. A more general theory of definite descriptions. *The Philosophical Review* 89:607–624.
- Simons, Mandy. 1996. Disjunction and anaphora. In *Proceedings of Semantics and Linguistic Theory* (SALT) 6, ed. Teresa Galloway & Justin Spence, 245–260. Ithaca, NY: Cornell University.
- Simons, Mandy. 2005. Dividing things up: The semantics of or and the modal/or interaction. *Natural Language Semantics* 13:271–316.
- Uegaki, Wataru. 2018. The problem of presupposition projection in question-embedding. talk at Semantics and Linguistic Theory (SALT) 28.
- Uegaki, Wataru. 2020. The existential/uniqueness presupposition of wh-complements projects from the answers. ms. University of Edinburgh (to appear in Linguistics and Philosophy).
- Xiang, Yimei. 2016. Interpreting questions with non-exhaustive answers. Doctoral Dissertation, Harvard University, Cambride, MA.
- Xiang, Yimei. 2020. Relativized exhaustivity: Mention-some and uniqueness. Manuscript, Rutgers University, July 2020.