

BINARY SEARCH TREE

Binary Search Tree (BST)

- A BST is a binary tree T with the following conditions:
 - a) Key of every node in the right sub-tree of T is greater then the Key at root.
 - b) Key of every node in the left sub-tree of T is less then the Key at root.
- c) All Keys are distinct.

An Example

BST Operations (in addition to those of Binary Tree)

1. Search for a key

2.Insert a key

3.Delete a key

4. Findmax & Findmin

Recursive Search

```
BST * search (T key, BST * t){
  if (empty_t(t))
       return NULL;
  else if (key==t \rightarrow info)
               return t;
       else if (key < t\rightarrowinfo)
               return (search (key,t \rightarrow left));
               else
                       return (search (key, t→right));
```


Non-recursive Search

```
BST * search (T key, BST * t) {
 BST *cur; int found;
 if (empty_t(t))
    return NULL;
 else{
      cur=t; found=0;
      while (cur!=NULL) & (!(found))){
         if (key==cur \rightarrow info) found=1;
                  else if (key < cur\rightarrowinfo)
                            cur=cur→left;
                  else cur=cur→right;
 return cur;
```


Insertion Example

Deletion Example

• Delete 5

• Delete 5

Center for Distributed Computing, Jadavpur University

Center for Distributed Computing, Jadavpur University

Result 1

Result 2

Problem of BST

- Average case complexity of search, insertion and deletion operations is O(log₂ n), where n is the no of nodes in the tree.
- The height of a BST depends on the sequence of insertion and deletion of keys.
- An extreme case:
 Draw a BST for the following sequence of insertions:

1, 2, 3, 4, 5, 6, 7

Problems of BST ...

The tree degenerates into a linked list.

The worst case complexity of search, insertion and deletion are O(n).

Remedy: Balanced tree.

Height Balanced Tree (AVL Tree)

- Invented by Adelson-Velskii, Landis (Russian)
- AVL tree is a BST where at each node (including the root node) the left sub-tree and the right sub-tree do not differ in height by more than one.

$$|h_L - h_R| <= 1$$

Balance Factor

 Balance Factor (BF) of a node is the difference between the heights of its left and right sub-trees.

$$BF = h_L - h_R$$

$$BF = 1$$
 left high
 $BF = -1$ right high
 $BF = 0$ equal high

AVL Tree Operations (in addition to those of Binary tree)

- 1. Search a key
- 2. Find max & Find min

Same as BST

- 3. Insert a Key
- 4. Delete a Key

Insert / Delete as in BST; then rebalance the resultant tree if necessary

AVL Tree Example

Rebalancing needs Rotation

Right Rotation

```
avltree * rotate-right (avltree * t) {
    avltree * temp;
    temp = t → left;
    t → left = temp → right;
    temp → right = t;
    return temp;
}
```


Center for Distributed Computing, Jadavpur University

Tree remains unbalanced even after rotation

Right rotate the right child

Deletion Examples

Conclusion

- Height of a height-balanced (AVL) Tree is guaranteed to be O(log n), n being the no. of nodes.
- The insertion/deletion step takes at most O(log n) time.
- Each rebalancing step, i.e., rotation (possibly double rotation) and updation of BF takes a constant amount of time.
- The rebalancing may go up to the root. Thus, there can be at most O(log n) rebalancing steps.
- Thus the overall complexity of insertion/deletion is O(log n).

Various types of trees used in other applications

- Splay Tree
- Red Black Tree
- Trie
- Quad Tree
- Octree
- ...