A Relação entre Inflação e Dívida Pública: Análise com Equações Diferenciais e Modelos Econométricos

Luiz Tiago Wilcke January 29, 2025

Abstract

Este artigo explora a relação dinâmica entre inflação e dívida pública, utilizando equações diferenciais e modelos econométricos para elucidar os mecanismos subjacentes. A análise inclui a formulação de modelos teóricos que descrevem a interação entre essas variáveis macroeconômicas, acompanhada de exemplos numéricos com precisão de três dígitos. Além disso, são incorporados modelos avançados e equações adicionais para aprofundar a compreensão dessa relação complexa. Os resultados indicam que a inflação pode afetar significativamente a sustentabilidade da dívida pública e vice-versa, oferecendo insights valiosos para formuladores de políticas econômicas.

Contents

1	Intr	rodução	3
2	Rel	ação Teórica entre Inflação e Dívida Pública	3
	2.1	Conceitos Fundamentais	3
	2.2	Mecanismos de Interação	
3	Mo	delagem Matemática da Relação	3
	3.1	Equação Diferencial da Dívida Pública	3
	3.2	Equação Diferencial da Inflação	
	3.3	Modelo de Fisher	
	3.4		
	3.5	Modelo Econômico Integrado	4
4	Mo	delos Econométricos Aplicados	5
	4.1	Modelo de Vetores Autorregressivos (VAR)	5
		4.1.1 Especificação do Modelo VAR(2)	5
	4.2	Modelo de Correção de Erros (ECM)	
	4.3	Modelo de Regressão Multivariada	
	4.4	Estimação dos Parâmetros	

5	Exemplos Numéricos				
	5.1	Cálculo da Dívida Pública	6		
	5.2	Cálculo da Inflação	6		
	5.3	Análise da Dinâmica do PIB	7		
	5.4	Evolução da Relação Dívida-PIB	7		
6	Disc	cussão dos Resultados	7		
7	Modelos Avançados e Equações Adicionais				
	7.1	Modelo de Expectativas Racionais	7		
	7.2	Modelo Fiscal de Sustentabilidade	8		
	7.3	Curva de Phillips Estendida	8		
	7.4	Modelo de Crescimento Endógeno	8		
8	Conclusão				
9	9 Referências				

1 Introdução

A inflação e a dívida pública são dois pilares fundamentais na análise macroe-conômica de qualquer país. A interação entre essas variáveis pode influenciar a estabilidade econômica, o crescimento e a confiança dos investidores. Compreender essa relação é essencial para a formulação de políticas fiscais e monetárias eficazes. Este estudo visa desenvolver um modelo teórico que descreva a dinâmica entre inflação e dívida pública, apoiado por análises quantitativas precisas e modelos econométricos avançados.

2 Relação Teórica entre Inflação e Dívida Pública

2.1 Conceitos Fundamentais

- Inflação: Refere-se ao aumento generalizado dos preços de bens e serviços em uma economia ao longo do tempo.
- **Dívida Pública**: Representa o total das obrigações financeiras do governo, decorrentes de empréstimos para financiar déficits orçamentários.

2.2 Mecanismos de Interação

A relação entre inflação e dívida pública pode ser entendida através de diversos mecanismos:

- 1. **Efeito Monetário**: Governos podem financiar déficits emitindo moeda, o que pode aumentar a inflação.
- Carga da Dívida: A inflação pode reduzir o valor real da dívida pública, facilitando seu pagamento.
- 3. Expectativas Inflacionárias: Altas expectativas de inflação podem elevar as taxas de juros, aumentando o custo do serviço da dívida.
- 4. Curva de Phillips: Relaciona inflação e desemprego, onde políticas fiscais expansivas para reduzir a dívida podem impactar a inflação.
- Teoria Fiscal do Nível de Preços: Propõe que o nível de preços é determinado pelas políticas fiscais, especialmente pelo nível de endividamento público.

3 Modelagem Matemática da Relação

3.1 Equação Diferencial da Dívida Pública

Consideremos a equação que descreve a dinâmica da dívida pública D(t):

$$\frac{dD(t)}{dt} = G(t) - T(t) + i(t)D(t) - \delta D(t) \tag{1}$$

Onde:

• G(t) é o gasto público,

- T(t) são as receitas tributárias,
- i(t) é a taxa de juros nominal da dívida,
- \bullet δ é a taxa de amortização ou pagamento da dívida.

3.2 Equação Diferencial da Inflação

A inflação $\pi(t)$ pode ser modelada pela seguinte equação diferencial:

$$\frac{d\pi(t)}{dt} = \alpha D(t) - \beta \pi(t) + \gamma Y(t) + \epsilon(t)$$
 (2)

Onde:

- \bullet α representa o impacto da dívida na inflação,
- β é a taxa de ajuste da inflação,
- Y(t) é o nível de produção ou PIB,
- γ capta a relação entre PIB e inflação,
- $\epsilon(t)$ é um termo de erro estocástico.

3.3 Modelo de Fisher

O modelo de Fisher relaciona a taxa de juros nominal i(t), a taxa de juros real r(t) e a inflação esperada $\pi^e(t)$:

$$i(t) = r(t) + \pi^e(t) \tag{3}$$

Este modelo é fundamental para entender como as expectativas de inflação influenciam as taxas de juros nominais, afetando assim o custo da dívida pública.

3.4 Dinâmica da Dívida-PIB

A relação entre dívida pública e PIB é crucial para avaliar a sustentabilidade da dívida. A equação dinâmica da relação dívida-PIB é dada por:

$$\frac{d\left(\frac{D(t)}{Y(t)}\right)}{dt} = \frac{G(t) - T(t)}{Y(t)} + \frac{i(t)D(t)}{Y(t)} - \frac{D(t)}{Y(t)^2} \frac{dY(t)}{dt} \tag{4}$$

Onde Y(t) é o PIB nominal. Essa equação ajuda a entender como a dívida evolui em relação ao crescimento econômico.

3.5 Modelo Econômico Integrado

Integrando as equações diferenciais apresentadas, obtemos um sistema que captura a interação dinâmica entre dívida pública, inflação e PIB:

$$\begin{cases} \frac{dD(t)}{dt} = G(t) - T(t) + i(t)D(t) - \delta D(t) \\ \frac{d\pi(t)}{dt} = \alpha D(t) - \beta \pi(t) + \gamma Y(t) + \epsilon(t) \\ \frac{dY(t)}{dt} = f(Y(t), \pi(t), \text{ outras variáveis}) \end{cases}$$
 (5)

4 Modelos Econométricos Aplicados

Para empregar esses modelos teóricos na prática, utilizamos diversos modelos econométricos que capturam as interdependências entre inflação, dívida pública e outras variáveis macroeconômicas ao longo do tempo.

4.1 Modelo de Vetores Autorregressivos (VAR)

O modelo VAR é uma extensão que permite modelar múltiplas equações de forma simultânea, capturando a dinâmica conjunta das variáveis.

4.1.1 Especificação do Modelo VAR(2)

$$\begin{bmatrix} \pi_t \\ D_t \\ Y_t \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} + \begin{bmatrix} \phi_{11} & \phi_{12} & \phi_{13} \\ \phi_{21} & \phi_{22} & \phi_{23} \\ \phi_{31} & \phi_{32} & \phi_{33} \end{bmatrix} \begin{bmatrix} \pi_{t-1} \\ D_{t-1} \\ Y_{t-1} \end{bmatrix} + \begin{bmatrix} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \\ \theta_{31} & \theta_{32} & \theta_{33} \end{bmatrix} \begin{bmatrix} \pi_{t-2} \\ D_{t-2} \\ Y_{t-2} \end{bmatrix} + \begin{bmatrix} \epsilon_{1,t} \\ \epsilon_{2,t} \\ \epsilon_{3,t} \end{bmatrix}$$
(6)

Onde ϕ e θ são os coeficientes de autorregressão, e ϵ são os termos de erro.

4.2 Modelo de Correção de Erros (ECM)

Caso as séries temporais sejam cointegradas, um modelo ECM pode ser utilizado para capturar as relações de longo prazo e os ajustes de curto prazo.

$$\Delta \mathbf{Z}_{t} = \Pi \mathbf{Z}_{t-1} + \sum_{i=1}^{k-1} \Gamma_{i} \Delta \mathbf{Z}_{t-i} + \mathbf{u}_{t}$$
(7)

Onde \mathbf{Z}_t é um vetor de variáveis cointegradas, Π capta a relação de longo prazo, Γ_i os ajustes de curto prazo, e \mathbf{u}_t são os erros.

4.3 Modelo de Regressão Multivariada

Além dos modelos VAR e ECM, podemos utilizar modelos de regressão multivariada para entender a influência direta e indireta das variáveis sobre a inflação e a dívida pública.

$$\pi_t = \beta_0 + \beta_1 D_t + \beta_2 Y_t + \beta_3 G_t + \epsilon_t \tag{8}$$

$$D_t = \gamma_0 + \gamma_1 G_t + \gamma_2 T_t + \gamma_3 \pi_t + \eta_t \tag{9}$$

Onde β e γ são os coeficientes a serem estimados, e ϵ_t , η_t são os termos de erro.

4.4 Estimação dos Parâmetros

Os parâmetros dos modelos VAR, ECM e de regressão multivariada são estimados utilizando métodos de Mínimos Quadrados Ordinários (OLS) e Máxima Verossimilhança (ML), garantindo três dígitos de precisão nos cálculos.

5 Exemplos Numéricos

Considere um cenário onde:

- Gasto público G(t) = 1.200 bilhões,
- Receita tributária T(t) = 900 bilhões,
- Taxa de juros nominal i(t) = 0.05 (5%),
- Taxa de amortização $\delta = 0.02$ (2%),
- $\alpha = 0.02$,
- $\beta = 0.03$,
- $\gamma = 0.01$,
- PIB inicial $Y_0 = 10.000$ bilhões.

5.1 Cálculo da Dívida Pública

Usando a equação diferencial da dívida pública:

$$\frac{dD(t)}{dt} = 1.200 - 900 + 0.05D(t) - 0.02D(t) = 300 + 0.03D(t) \tag{10}$$

Resolvendo a equação diferencial:

$$D(t) = \left(D_0 + \frac{300}{0.03}\right)e^{0.03t} - \frac{300}{0.03} \tag{11}$$

Supondo $D_0 = 5.000$ bilhões no tempo t = 0:

$$D(t) = (5.000 + 10.000) e^{0.03t} - 10.000 = 15.000 e^{0.03t} - 10.000$$
 (12)

Para t = 2 anos:

$$D(2) = 15.000e^{0.06} - 10.000 \approx 15.000 \times 1.062 - 10.000 = 15.930 - 10.000 = 5.930$$
 bilhões (13)

5.2 Cálculo da Inflação

Usando a equação diferencial da inflação:

$$\frac{d\pi(t)}{dt} = 0.02 \times 5.930 - 0.03\pi(t) + 0.01 \times 10.000 = 0.1186 - 0.03\pi(t) + 0.100 \quad (14)$$

$$\frac{d\pi(t)}{dt} = 0.2186 - 0.03\pi(t) \tag{15}$$

Resolvendo a equação diferencial:

$$\pi(t) = \left(\pi_0 - \frac{0.2186}{0.03}\right)e^{-0.03t} + \frac{0.2186}{0.03} \tag{16}$$

$$\pi(t) = (\pi_0 - 7.287) e^{-0.03t} + 7.287 \tag{17}$$

Supondo $\pi_0 = 2.000\%$ no tempo t = 0:

$$\pi(t) = (2.000 - 7.287)e^{-0.03t} + 7.287 \approx (-5.287)e^{-0.03t} + 7.287 \tag{18}$$

Para t = 2 anos:

$$\pi(2) \approx (-5.287)e^{-0.06} + 7.287 \approx -5.287 \times 0.942 + 7.287 = -4.981 + 7.287 = 2.306\%$$
(19)

5.3 Análise da Dinâmica do PIB

Supondo que o PIB cresce a uma taxa constante de g = 0.02 (2%) ao ano:

$$Y(t) = Y_0 e^{gt} = 10.000 e^{0.02t} (20)$$

Para t=2 anos:

$$Y(2) = 10.000e^{0.04} \approx 10.000 \times 1.0408 = 10.408 \text{ bilhões}$$
 (21)

5.4 Evolução da Relação Dívida-PIB

$$\frac{D(t)}{Y(t)} = \frac{5.930}{10.408} \approx 0.570 \ (57,0\%) \tag{22}$$

Esta relação indica a proporção da dívida em relação ao PIB, importante para avaliar a sustentabilidade fiscal.

6 Discussão dos Resultados

Os exemplos numéricos ilustram que a dívida pública tende a crescer de forma controlada em condições de déficit moderado e taxas de juros constantes. A inflação responde positivamente ao aumento da dívida, mas com um mecanismo de ajuste que modera seu crescimento a longo prazo. A relação dívida-PIB permanece em níveis sustentáveis, sugerindo que, sob as condições modeladas, a política fiscal é capaz de manter a dívida dentro de limites aceitáveis.

Além disso, a introdução de modelos econométricos como o VAR permite capturar as interdependências e os efeitos de retroalimentação entre inflação e dívida pública, oferecendo uma visão mais completa das dinâmicas macroeconômicas. A análise empírica através de modelos como o ECM pode revelar a existência de relações de longo prazo e mecanismos de ajuste que não são evidentes em modelos puramente teóricos.

7 Modelos Avançados e Equações Adicionais

7.1 Modelo de Expectativas Racionais

Incorporando expectativas racionais, o modelo considera que os agentes econômicos antecipam as políticas fiscais e monetárias, ajustando suas expectativas de inflação de acordo com a trajetória da dívida pública.

$$\pi^{e}(t) = E_{t}[\pi(t+1)] \tag{23}$$

Isso impacta diretamente a taxa de juros nominal conforme a equação de Fisher:

$$i(t) = r(t) + \pi^e(t) \tag{24}$$

7.2 Modelo Fiscal de Sustentabilidade

A sustentabilidade da dívida pública pode ser avaliada através do critério de que a taxa de crescimento do PIB g(t) exceda a taxa de juros nominal i(t):

$$g(t) > i(t) \tag{25}$$

Se esta condição for satisfeita, a dívida pública tende a estabilizar ou reduzir-se em relação ao PIB.

7.3 Curva de Phillips Estendida

Incorporando a dívida pública na Curva de Phillips, temos:

$$\pi(t) = \pi^{e}(t) - \gamma(u(t) - u^{n}) + \delta \frac{D(t)}{Y(t)}$$
(26)

Onde u(t) é a taxa de desemprego e u^n é a taxa natural de desemprego. Este modelo sugere que a dívida pública elevada pode pressionar a inflação, mesmo em níveis de desemprego próximos ao natural.

7.4 Modelo de Crescimento Endógeno

Integrando a teoria de crescimento endógeno, podemos modelar como a dívida pública e a inflação afetam os incentivos para investimento e inovação, influenciando o crescimento econômico a longo prazo.

$$\frac{dA(t)}{dt} = \eta A(t)^{\alpha} L(t)^{1-\alpha} - \theta D(t)$$
(27)

Onde:

- A(t) é o nível de tecnologia,
- η é a taxa de eficiência,
- α é a elasticidade do produto em relação ao capital,
- L(t) é a força de trabalho,
- \bullet de capta o impacto negativo da dívida sobre o progresso tecnológico.

8 Conclusão

A análise da relação entre inflação e dívida pública através de equações diferenciais e modelos econométricos revela uma interação complexa e dinâmica. A inflação pode atuar como um mecanismo de ajuste para a dívida pública, mas, simultaneamente, a dívida elevada pode gerar pressões inflacionárias. Modelos quantitativos, incluindo VAR e ECM, permitem uma melhor compreensão dessas interações, fornecendo ferramentas valiosas para a formulação de políticas econômicas equilibradas e sustentáveis.

A incorporação de modelos avançados, como expectativas racionais e a Curva de Phillips estendida, enriquece a análise, permitindo capturar nuances adicionais das dinâmicas macroeconômicas. A relação sustentável entre dívida pública e inflação depende de diversos fatores, incluindo a taxa de crescimento econômico, as expectativas de inflação e a eficácia das políticas fiscais e monetárias. Portanto, uma abordagem integrada que considere esses múltiplos aspectos é essencial para garantir a estabilidade econômica a longo prazo.

9 Referências

- 1. Blanchard, O., & Johnson, D. R. (2013). Macroeconomia. Pearson.
- 2. Mankiw, N. G. (2018). Princípios de Economia. Cengage Learning.
- 3. Romer, D. (2018). Advanced Macroeconomics. McGraw-Hill Education.
- 4. Wooldridge, J. M. (2015). Introdução à Econometria. Cengage Learning.
- 5. Fischer, S. (1993). Macroeconomics. McGraw-Hill.
- 6. Barro, R. J. (1979). On the Determination of the Public Debt. Journal of Political Economy, 87(5), 940-971.
- 7. Blanchard, O., & Perotti, R. (2002). An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output. Quarterly Journal of Economics, 117(4), 1329-1368.