# Filter Design

#### EE23BTECH11009 - AROSHISH PRADHAN\*

April 12, 2024

#### 1 Introduction

We are supposed to design the equivalent FIR and IIR filter realizations for a band-pass filter with pass band:  $9.4~\mathrm{kHz}$  and  $10.6~\mathrm{kHz}$ .

## 2 Filter Specifications

The sampling rate for the filter has been specified as  $F_s=48~\mathrm{kHz}.$ 

### 2.1 The Digital Filter

- 1. Tolerances: The pass-band  $(\delta_1)$  and stop-band  $(\delta_2)$  tolerances are given to be equal, so we let  $\delta_1 = \delta_2 = \delta = 0.15$ .
- 2. Pass-band: The pass-band of the filter is calculated as follows:

$$j = (r - 11000) \bmod \sigma$$

where,

$$r = \text{Roll Number}$$
  
= 11009  
 $\sigma = \text{Sum of digits of roll number}$   
= 11  
 $\implies j = 9$ 

The pass band is then given by:

$$\begin{aligned} 4 + 0.6(j) & to 4 + 0.6(j+2) \\ \Longrightarrow 9.4 \text{kHz to } 10.6 \text{kHz} \end{aligned}$$

Hence, the un-normalized discrete time filter pass-band frequencies are:

$$F_{p1} = 10.6 \,\text{kHz}$$
  
 $F_{p2} = 9.4 \,\text{kHz}$ 

If the un-normalized discrete-time (natural) frequency is F, the corresponding normalized digital filter (angular) frequency is given by  $\omega = 2\pi \left(\frac{F}{F_s}\right)$ . Therefore,

$$\omega_{p1} = 2\pi \frac{F_{p1}}{F_s} = 0.441\pi$$

$$\omega_{p2} = 2\pi \frac{F_{p2}}{F_s} = 0.391\pi$$

The centre frequency is then given by  $\omega_c = \frac{\omega_{p1} + \omega_{p2}}{2} = 0.416\pi$ .

3. Stop-band: The transition band for band-pass filters is  $\Delta F = 0.3$  kHz on either side of the pass-band. Hence, the un-normalized stop-band frequencies are:

$$F_{s1} = 10.6 + 0.3 = 10.9 \,\text{kHz}$$
  
 $F_{s2} = 9.4 - 0.3 = 9.1 \,\text{kHz}$ 

The corresponding normalized frequencies are:

$$\omega_{s1} = 0.454\pi$$
$$\omega_{s2} = 0.379\pi$$

The above parameters are summarized in the table below:

| Paramter       | Value              | Description                           |
|----------------|--------------------|---------------------------------------|
| $F_{p_1}$      | 10.6 kHz           | Unnormalized passband upper frequency |
| $F_{p_2}$      | 9.4 kHz            | Unnormalized passband lower frequency |
| $\omega_{p_1}$ | $0.441\pi$         | Normalized passband upper frequency   |
| $\omega_{p_2}$ | $0.391\pi$         | Normalized passband lower frequency   |
| $\Delta F$     | $0.3 \mathrm{kHz}$ | Transition Band                       |
| $F_{s_1}$      | 10.9kHz            | Unnormalized stopband upper frequency |
| $F_{s_2}$      | 9.1kHz             | Unnormalized stopband lower frequency |
| $\omega_{s_1}$ | $0.454\pi$         | Normalized stopband upper frequency   |
| $\omega_{s_2}$ | $0.379\pi$         | Normalized stopband lower frequency   |

Table 1: Input Paramters

#### 2.2 The Analog filter

In the bilinear transform, the analog filter frequency  $(\Omega)$  is related to the corresponding digital filter frequency  $(\omega)$  as  $\Omega = \tan \frac{\omega}{2}$ . Using this relation, we

obtain the analog pass-band and stop-band frequencies as:

$$\Omega_{p1} = \tan\left(\frac{\omega_{p_1}}{2}\right) = 0.8298$$

$$\Omega_{p2} = \tan\left(\frac{\omega_{p_2}}{2}\right) = 0.7051$$

$$\Omega_{s1} = \tan\left(\frac{\omega_{s_1}}{2}\right) = 0.8649$$

$$\Omega_{s2} = \tan\left(\frac{\omega_{s_2}}{2}\right) = 0.6772$$

respectively.

### 3 The IIR Filter Design

Filter Type: We are supposed to design filters whose stop-band is monotonic and pass-band equiripple. Hence, we use the *Chebyschev approximation* to design our band-pass IIR filter.

#### 3.1 The Analog Filter

1. Low Pass Filter Specifications: If  $H_{a,BP}(j\Omega)$  be the desired analog band pass filter, with the specifications provided in Section 2.2, and  $H_{a,LP}(j\Omega_L)$  be the equivalent low pass filter, then

$$\Omega_L = \frac{\Omega^2 - \Omega_0^2}{B\Omega} \tag{1}$$

where

$$\Omega_{0} = \sqrt{\Omega_{p1}\Omega_{p2}} = 0.7649$$

$$B = \Omega_{p1} - \Omega_{p2} = 0.1247$$

$$\implies \Omega_{L_{p_{1}}} = \frac{\Omega_{p_{1}}^{2} - \Omega_{p_{1}}\Omega_{p_{2}}}{(\Omega_{p_{1}} - \Omega_{p_{2}})\Omega_{p_{1}}} = 1$$

The low pass filter has the pass-band edge at  $\Omega_{Lp}=1$  and stop-band edges at

$$\Omega_{L_{s_1}} = \frac{\Omega_{s_1}^2 - \Omega_0^2}{B\Omega_{s_1}} = 1.5111$$

$$\Omega_{L_{s_2}} = \frac{\Omega_{s_2}^2 - \Omega_0^2}{B\Omega_{s_2}} = -1.4976$$

We choose the stop-band edge of the analog low pass filter as  $\Omega_{Ls} = \min(|\Omega_{Ls_1}|, |\Omega_{Ls_2}|) = 1.4976$ .

2. The Low Pass Chebyschev Filter Parameters: The magnitude squared of the Chebyschev low pass filter is given by

$$|H_{a,LP}(j\Omega_L)|^2 = \frac{1}{1 + \epsilon^2 c_N^2 \left(\frac{\Omega_L}{\Omega_{L_p}}\right)}$$
 (2)

where  $c_N(x)$  is the Chebyshev Polynomial of the first kind of order N, given by:

$$c_N(x) = \begin{cases} \cos(N\cos^{-1}(x)) & \text{if } |x| \le 1\\ \cosh(N\cosh^{-1}(x)) & \text{if } x \ge 1 \end{cases}$$

where N and  $\epsilon$  are design parameters. Since  $\Omega_{Lp}=1,$  (2) may be rewritten as

$$|H_{a,LP}(j\Omega_L)|^2 = \frac{1}{1 + \epsilon^2 c_N^2(\Omega_L)}$$
(3)

Also, the design paramters have the following constraints

$$\frac{\sqrt{D_2}}{c_N(\Omega_{Ls})} \le \epsilon \le \sqrt{D_1},$$

$$N \ge \left[ \frac{\cosh^{-1} \sqrt{D_2/D_1}}{\cosh^{-1} \Omega_{Ls}} \right],$$
(4)

where

$$D_1 = \frac{1}{(1-\delta)^2} - 1 = 0.384$$
$$D_2 = \frac{1}{\delta^2} - 1 = 43.444$$

After substituting  $\delta=0.15$  and  $\Omega_{L_s}=1.4976$ , we obtain  $N\geq 4$  and  $0.2897\leq \epsilon\leq 0.6197$ . In Fig. 1, we plot  $|H(j\Omega)|$  for a range of values of  $\epsilon$ , for N=4. We find that for larger values of  $\epsilon$ ,  $|H(j\Omega)|$  decreases in the transition band. We choose  $\epsilon=0.4$  for our IIR filter design.

Listing 1: Code for Figure 1

wget

3. The Low Pass Chebyshev Filter: Thus, we obtain

$$|H_{a,LP}(j\Omega_L)|^2 = \frac{1}{1 + 0.16c_4^2(\Omega_L)}$$
 (5)

where,

$$c_4(x) = 8x^4 - 8x^2 + 1. (6)$$



Figure 1: Analog Low-Pass Frequency Response for  $0.3 \le \epsilon \le 0.6$ 

The poles of the frequency response in (5) lying on the left half of the Argand Plane are in general obtained as

$$s_k = r_1 \cos(\phi_k) + jr_2 \sin(\phi_k) \tag{7}$$

where

$$\phi_k = \frac{\pi}{2} + \frac{(2k+1)\pi}{2N}, k = 0, 1, \dots, N-1$$

$$r_1 = \frac{\beta^2 - 1}{2\beta}, r_2 = \frac{\beta^2 + 1}{2\beta}, \beta = \left[\frac{\sqrt{1 + \epsilon^2} + 1}{\epsilon}\right]^{\frac{1}{N}}$$
(8)

Values of  $s_k$  using (7) are given in the table below:

Note that the poles of frequency response in (5) are calculated through the below code separately and plotted in Figure 2.

Listing 2: Code for Figure 2

| $s_k$ | Value           |
|-------|-----------------|
| $s_0$ | -0.162 + 1.003j |
| $s_1$ | -0.391 + 0.415j |
| $s_2$ | -0.391 - 0.415j |
| $s_3$ | -0.162 - 1.003j |

Table 2: Poles on left half of complex plane

| $s_k$ | Value           |
|-------|-----------------|
| $s_0$ | -0.162 + 1.003j |
| $s_1$ | -0.391 + 0.415j |
| $s_2$ | -0.391 - 0.415j |
| $s_3$ | -0.162 - 1.003j |
| $s_4$ | 0.162 + 1.003j  |
| $s_5$ | 0.391 + 0.415j  |
| $s_6$ | 0.391 - 0.415j  |
| $s_7$ | 0.162 - 1.003j  |

Table 3: Poles of frequency response in (5)



Figure 2: Pole-Zero Plot of frequency response of (5)

Thus, for even N, the low-pass stable Chebyshev filter, with a gain  $G_{LP}$  has the form

$$H_{a,LP}(s_L) = \frac{G_{LP}}{\prod_{k=1}^{\frac{N}{2}-1} (s_L^2 - 2r_1 \cos \phi_k s_L + r_1^2 \cos^2 \phi_k + r_2^2 \sin^2 \phi_k)}$$

$$= \frac{G_{LP}}{(s - s_0)(s - s_1)(s - s_2)(s - s_3)}$$
(10)

Substituting  $N=4,\,\epsilon=0.4$  and  $H_{a,LP}(j)=\frac{1}{\sqrt{1+\epsilon^2}},$  from (8) and (9), we obtain

$$H_{a,LP}(s_L) = \frac{0.3125}{s_L^4 + 1.1068s_L^3 + 1.6125s_L^2 + 0.9140s_L + 0.3366}$$
(11)

In Figure 3 we plot  $|H(j\Omega)|$  using (5) and (11), thereby verifying that our low-pass Chebyschev filter design meets the specifications.

Listing 3: Code for Figure 3



Figure 3: Plot of Frequency Response obtained from specifications in (5) and design in (11)

4. The Band Pass Chebyschev Filter: The analog band-pass filter is obtained from (11) as follows. From (1):

$$\Omega_L = \frac{\Omega^2 - \Omega_0^2}{B\Omega} \tag{12}$$

$$\implies j\Omega_L = \frac{\Omega_0^2 - \Omega^2}{Bj\Omega} \tag{13}$$

$$=\frac{\Omega_0^2 + (j\Omega)^2}{Bj\Omega} \tag{14}$$

$$\implies s_L = \frac{s^2 + \Omega_0^2}{Bs} \tag{15}$$

Hence,

$$H_{a,BP}(s) = G_{BP}H_{a,LP}(s_L)|_{\substack{s_L = \frac{s^2 + \Omega_0^2}{Bs}}},$$
 (16)

where  $G_{BP}$  is the gain of the band-pass filter. The below code evaluates  $G_{BP}$  and finds the coefficients of  $H_{a,BP}$ . We get  $G_{BP} = 1.077$  by evaluating gain such that  $H_{a,BP}(j\Omega_{p1}) = 1$ .

$$H_{a,BP}(s) = \frac{7.55642 \times 10^{-5} s^4}{s^8 + 0.138015 s^7 + 2.36536 s^6 + 0.244019 s^5 + 2.08328 s^4 + 0.142769 s^3 + 0.809685 s^2 + 0.0276411 s + 0.117176} (17)$$

In Figure 4, we plot  $|H_{a,BP}(j\Omega)|$  as a function of  $\Omega$  for both positive as well as negative frequencies. We find that the pass-band and stop-band frequencies in the figure match well with those obtained analytically through the bilinear transformation.

Listing 4: Code for Figure 4

wget

#### 3.2 The Digital Filter

From the bilinear transformation, we obtain the digital band-pass filter from the corresponding analog filter as

$$H_{d,BP}(z) = GH_{a,BP}(s)|_{s=\frac{1-z^{-1}}{1+z^{-1}}}$$
 (18)

where G is the gain of the digital filter. From (17) and (18), we obtain

$$H_{d,BP}(z) = G\frac{N(z)}{D(z)} \tag{19}$$

All coefficients and G are calculated from the below code.



Figure 4: Analog Band-Pass Frequency Response from (17)

We get:

$$G = 7.55642 \times 10^{-5} \tag{20}$$

$$N(z) = 1 - 4z^{-2} + 6z^{-4} - 4z^{-6} + z^{-8}$$
(21)

$$D(z) = 5.8230569z^{-8} - 12.4205486z^{-7} + 34.1023786z^{-6} - 42.2777094z^{-5}$$

$$+ 58.95155z^{-4} - 44.1531786z^{-3} + 37.1935974z^{-2} - 14.1500354z^{-1}$$

$$+ 6.9279451$$
(22)

The plot of  $|H_{d,BP}(z)|$  with respect to the normalized angular frequency (normalizing factor  $\pi$ ) is available in Figure 5. Again we find that the pass-band and stop-band frequencies meet the specifications well enough.

Listing 6: Code for Figure 5

wget

## 4 The FIR Filter

We design the FIR filter by first obtaining the (non-causal) low-pass equivalent using the Kaiser window and then converting it to a causal band-pass filter.



Figure 5: The magnitude response of the band-pass digital filter

#### 4.1 The Equivalent Low-Pass Filter

The low-pass filter has a pass-band frequency  $\omega_l$  and transition band  $\Delta\omega=2\pi\frac{\Delta F}{F_s}=0.0125\pi.$  The stop-band tolerance is  $\delta$ .

1. The pass-band frequency  $\omega_l$  is defined as:

$$\omega_l = \frac{\omega_{p1} - \omega_{p2}}{2} = 0.025\pi \tag{23}$$

Substituting the values of  $\omega_{p1}$  and  $\omega_{p2}$  from section 2.1, we obtain  $\omega_l = 0.025\pi$ .

2. The impulse response  $h_{lp}(n)$  of the desired low-pass filter with cutoff frequency  $\omega_l$  is given by

$$h_l(n) = \frac{\sin(n\omega_l)}{n\pi} w(n), \tag{24}$$

where w(n) is the Kaiser window obtained from the design specifications.

#### 4.2 The Kaiser Window

The Kaiser window is defined as

$$w(n) = \frac{I_0 \left[\beta N \sqrt{1 - \left(\frac{n}{N}\right)^2}\right]}{I_0(\beta N)}, \quad -N \le n \le N, \quad \beta > 0$$

$$= 0 \quad \text{otherwise}, \quad (25)$$

where  $I_0(x)$  is the modified Bessel function of the first kind of order zero in x and  $\beta$  and N are the window shaping factors. In the following, we find  $\beta$  and N using the design parameters in section 2.1.

1. N is chosen according to

$$N \ge \frac{A - 8}{4.57\Delta\omega},\tag{26}$$

where  $A = -20 \log_{10} \delta$ . Substituting the appropriate values from the design specifications, we obtain A = 16.4782 and  $N \ge 48$ .

2.  $\beta$  is chosen according to

$$\beta N = \begin{cases} 0.1102(A - 8.7) & A > 50\\ 0.5849(A - 21)^{0.4} + 0.07886(A - 21) & 21 \le A \le 50\\ 0 & A < 21 \end{cases}$$
 (27)

In our design, we have A=16.4782<21. Hence, from (27) we obtain  $\beta=0.$ 

3. We choose N=100, to ensure the desired low pass filter response. Substituting in (25) gives us the rectangular window

$$w(n) = 1, -100 \le n \le 100$$
  
= 0 otherwise (28)

From (24) and (28), we obtain the desired low-pass filter impulse response

$$h_{lp}(n) = \frac{\sin(\frac{n\pi}{40})}{n\pi} - 100 \le n \le 100$$

$$= 0, \quad \text{otherwise}$$
(29)

Listing 7: Code for Figure 6

wget

The magnitude of the Frequency Response of low-pass filter is plotted in Figure 7.

Listing 8: Code for Figure 7



Figure 6: Plot of FIR Low-Pass Filter Impulse Response

#### 4.3 The FIR Band-pass Filter

The centre of the pass-band of the desired band-pass filter was found to be  $\omega_c = 0.416\pi$  in Section 2.1. The impulse response of the desired band-pass filter is obtained from the impulse response of the corresponding low-pass filter as

$$h_{bp}(n) = 2h_{lp}(n)\cos(n\omega_c) \tag{30}$$

Thus, from (29), we obtain (plotted in Figure 8)

$$h_{bp}(n) = \frac{2\sin(\frac{n\pi}{40})\cos(0.416n\pi)}{n\pi} - 100 \le n \le 100$$

$$= 0, \qquad \text{otherwise}$$
(31)

Listing 9: Code for Figure 8

wget

The magnitude response of the FIR band-pass filter designed to meet the given specifications is plotted in Figure 9.

Listing 10: Code for Figure 9



Figure 7: Plot of FIR Low-Pass Filter Frequency Response



Figure 8: Plot of FIR Band-Pass Filter Impulse Response



Figure 9: Plot of FIR Band-Pass Filter Frequency Response