Abstract

These notes are based on Tony Pantev's "Algebra II" lectures at UPenn. Any mistake in what follows is my own.

Contents

1	Injective and flat modules	3
	1.1 Lecture 1	. 3
	1.2 Lecture 2	. 5
	1.3 Lecture 3	. 9
2	Localization	11
	2.1 Lecture 4	. 11
	2.2 Lecture 5	. 12
	2.3 Lecture 6	. 14
	2.4 Lecture 7	. 16
3	Basic algebraic geometry	18
	3.1 Lecture 8	. 19
	3.2 Lecture 9	. 21
4	Algebraic extensions	24
	4.1 Lecture 10	. 24
	4.2 Lecture 11	. 26
5	Splitting fields	28
	5.1 Lecture 12	. 28
6	Finite fields	30
	6.1 Lecture 13	. 30
	3.2 Lecture 14	. 32
7	Cyclotomic fields	33
	7.1 Lecture 15	. 36
8	Galois theory	37
	8.1 Lecture 16	. 38
	8.2 Lecture 17	. 40
	8.3 Lecture 18	43

CONTENTS 2

9 S	olvability in radicals	44
9.	.1 Lecture 19	45
9	.2 Lecture 20	47
9	.3 Lecture 21	50
10 F	Further applications of Galois theory	51
1	0.1 Lecture 22	51
10	0.2 Lecture 23	53
11 C	Chain complexes and chain maps	5 5
1	1.1 Lecture 24	56
1	1.2 Lecture 25	59
12 A	Additive categories	62
1:	2.1 Lecture 26	62
13 T	Triangulated categories	65
13	3.1 Lecture 27	65
13	3.2 Lecture 28	69
1:	3.3 Lecture 29	71

1 Injective and flat modules

1.1 Lecture 1

Proposition 1.1.1. An R-module M is injective if and only if we can fill any injectivity diagram of ideal type, i.e.,

where \mathfrak{a} is an ideal in R.

Proof.

 (\Longrightarrow)

This is obvious.

 (\Longleftrightarrow)

Let

$$0 \longrightarrow X' \longrightarrow X$$

be an injectivity diagram of R-modules and define

$$S = \{ (A, \xi) \mid X' \subset A \subset X, \ \xi : A \to M, \ \xi \upharpoonright_{X'} = \varphi \}.$$

By Zorn's lemma, there is some maximal element (N, ψ) of S. Suppose, toward a contradiction, that $X \neq N$. Pick any $x \in X \setminus N$. We have the ideal

$$\mathfrak{a} := \{a \in R : ax \in N\}$$

in R. Define the R-module morphism $\theta : \mathfrak{a} \to M$ by $a \mapsto \psi(ax)$. By hypothesis, we get the following commutative diagram.

$$0 \longrightarrow \mathfrak{a} \stackrel{\theta}{\longleftrightarrow} \stackrel{\tilde{\theta}}{R}$$

Define the R-submodule $\widetilde{N}=\langle N,x\rangle$. We can write any $z\in\widetilde{N}$ as z=y+ax for some $y\in N$ and some $a\in R$. Define $\widetilde{\psi}:\widetilde{N}\to M$ by $y+ax\mapsto \psi(y)+\widetilde{\theta}(a)$. To see that this is well-defined, let y+ax=y'+a'x. Then (y-y')=(a'-a)x, so that

$$\psi(y - y') = \psi((a' - a)x) = \tilde{\theta}(a' - a) = \tilde{\theta}(a') - \tilde{\theta}(a).$$

This implies that $\tilde{\psi}$ is a well-defined homomorphism. But then $\left(\tilde{N},\tilde{\psi}\right)>(N,\psi)$, a contradiction. \Box

Aside. The categorical dual P^{op} of this recognition principle for injectivity expresses a recognition principle for projectivity, namely that for any R-module M, ideal $I \subset R$, and homomorphism $\varphi: M \to R/I$, we can fill the diagram

$$\begin{array}{c}
M \\
\downarrow \\
R \longrightarrow R/I \longrightarrow 0
\end{array}$$
(*)

if and only if M is projective. This is equivalent to saying that M is projective if and only if the natural group map $\operatorname{Hom}_R(M,R) \to \operatorname{Hom}_R\left(M,R/I\right)$ is surjective. But then $\operatorname{P^{op}}$ is precisely an affirmative answer to what is known as "Faith's problem on R-projectivity," which Trlifaj (2017) proved to be undecidable in $\operatorname{ZFC} + \operatorname{GCH}$. Therefore, both $\operatorname{P^{op}}$ and $\operatorname{\neg}(\operatorname{P^{op}})$ are consistent with $\operatorname{ZFC} + \operatorname{GCH}$.

Corollary 1.1.2.

- 1. If R is an integral domain, then any injective R-module M is divisible.
- 2. If R is a PID, then M is injective if and only if it is divisible.

Proof.

1. Given any $a \in R$, we want to show that the homomorphism $\operatorname{mult}_a : M \to M$ given by $x \mapsto ax$ is surjective. The assumption that R is an integral domain entails that $\operatorname{mult}_a : R \to R$ is injective. Note that $\mathfrak{a} := \operatorname{mult}_a(R)$ is an ideal in R, giving the short exact sequence

$$0 \to \mathfrak{a} \to R \to R/\mathfrak{a} \to 0.$$

By assumption, $\operatorname{Hom}_R(-,M)$ is exact, so that the sequence

$$0 \to \operatorname{Hom}\left(R/_{\mathfrak{A}}, M\right) \to \operatorname{Hom}_{R}(R, M) \to \operatorname{Hom}_{R}(\mathfrak{a}, M) \to 0$$

is exact. Since R and \mathfrak{a} are free R-modules of rank 1, it follows that $\operatorname{Hom}_R(R,M) \cong M \cong \operatorname{Hom}_R(\mathfrak{a},M)$. This means that the sequence

$$0 \to \operatorname{Hom}\left(R_{/\mathfrak{a}}, M \right) \to M \xrightarrow{\operatorname{mult}_a} M \to 0$$

exact. In particular mult_a is surjective.

2. (\Leftarrow) Suppose that M is divisible and R is a PID. We want to fill the injectivity diagram

$$0 \longrightarrow \mathfrak{a} \stackrel{\varphi}{\longrightarrow} \stackrel{M}{\underset{\psi|}{\uparrow}}.$$

where \mathfrak{a} is an ideal in R. We have that $\mathfrak{a} = (a)$. Therefore, the short exact sequence

$$0 \to \mathfrak{a} \to R \to R/\mathfrak{a} \to 0$$

is isomorphic to $0 \to R \xrightarrow{\operatorname{mult}_a} R \to R/\mathfrak{a} \to 0$. Since M is divisible, we know that $M \xrightarrow{\operatorname{mult}_a} M \to 0$ is exact. Apply $\operatorname{Hom}_R(-,M)$ to get the sequence

$$\operatorname{Hom}_R(R,M) \xrightarrow{(-) \circ \operatorname{mult}_a} \operatorname{Hom}_R(R,M) \to 0,$$

which is isomorphic to $M \xrightarrow{\text{mult}_a} M \to 0$. This shows that $(-) \circ \text{mult}_a$ is surjective. It follows that φ can be lifted to some $\psi : R \to M$.

1.2 Lecture 2

Corollary 1.2.1. Any abelian group is injective if and only if it's divisible.

Corollary 1.2.2. If R is a PID and M is an injective R-module, then every quotient of M is injective.

Proof. This follows from the fact that any quotient of a divisible group is divisible. \Box

Example 1.2.3.

- 1. $\mathbb{Q}_{\mathbb{Z}}$ is injective.
- 2. S^1 is injective.
- 3. Any non-trivial finitely generated abelian group G is never injective.

Proof. It suffices to show that G is never divisible. There exists a maximal proper subgroup $H \leq G$. Then G/H is a simple abelian group, so that $G/H \cong C_p$ for some prime p. If G is divisible, then so must G/H. But C_p is not divisible, a contradiction.

Theorem 1.2.4 (Baer embedding). If R is a ring, then every module embeds into an injective module.

Corollary 1.2.5. For any R-module M, we can find an injective resolution

$$0 \to M \to I_0 \to I_1 \to \cdots \to I_k \to \cdots$$
.

Proof. We want to invent a duality operation that will convert $R-\mathbf{Mod}^{\mathrm{op}}$ to $R^{\mathrm{op}}-\mathbf{Mod}$ and then use projective objects in $R^{\mathrm{op}}-\mathbf{Mod}$. If T is an abelian group, then the functor

$$\mathbf{Ab} \xrightarrow{\mathrm{Hom}_{\mathbf{Ab}}(-,T)} \mathbf{Ab}^{\mathrm{op}}$$

will reverse arrows. The choice of T that ends up working is precisely $\mathbb{Q}_{\mathbb{Z}}$.

Claim. Let $\operatorname{Hom}_{\mathbf{Ab}}(-, \mathbb{Q}_{\mathbb{Z}}) := (-)^D$. Note that for any abelian group A, we have a canonical homomorphism $\epsilon_A : A \to A^{DD}$ given by $a \mapsto \left(\left[\varphi : A \to \mathbb{Q}_{\mathbb{Z}}\right] \to \varphi(a)\right)$. Then ϵ_A is injective.

Proof. We need to show that if $a \in A$ is nonzero, then we can find some homomorphism $f: A \to \mathbb{Q}/\mathbb{Z}$ such that $f(a) \neq 0$.

<u>Case 1:</u> Suppose that $|(a)| = n < \infty$. Then define the homomorphism $\varphi : (a) \to \mathbb{Q}_{\mathbb{Z}}$ by $a \mapsto [\frac{1}{n}]$. Since $\mathbb{Q}_{\mathbb{Z}}$ is divisible in **Ab**, it is also injective. Thus, we may find some map ψ such that

$$0 \longrightarrow (a) \stackrel{\varphi}{\longleftrightarrow} A$$

commutes. This means that $\psi(a) \neq 0$, as required.

Case 2: If (a) has infinite order, then define $\varphi:(a)\to\mathbb{Q}_{\mathbb{Z}}$ by $a\mapsto\frac{1}{2}$ and apply a similar argument to Case 1.

The duality functor $(-)^D$ extends to a functor $(-)^D: R^{\mathrm{op}}-\mathbf{Mod} \to R-\mathbf{Mod}^{\mathrm{op}}$ that is compatible with forgetting the module structure. Indeed, if M is a left module over R^{op} , then its module structure is given by a collection of maps $\{\mathrm{mult}_a: M \to M \mid a \in R\}$. Note that

$$\operatorname{mult}_a \circ \operatorname{mult}_b = \operatorname{mult}_{a \cdot_{R^{\operatorname{op}}} b} = \operatorname{mult}_{b \cdot_R a}.$$

For each $a \in R$, let $\underline{\operatorname{mult}}_a(\varphi) = \varphi \circ \operatorname{mult}_a$. Then the abelian group M^D has an R-module structure given by $\underline{\operatorname{mult}}_a: M^D \to M^D$, which clearly satisfies

$$\underline{\mathrm{mult}}_{ab} = \underline{\mathrm{mult}}_a \circ \underline{\mathrm{mult}}_b$$
.

Lemma 1.2.6. If M is a projective R^{op} -module, then M^D is an injective R-module.

Proof. Suppose that M is a projective R^{op} -module and consider the injectivity diagram

$$0 \longrightarrow X' \xrightarrow{\varphi} X$$

of R-modules. We want to lift $\varphi: X' \to M^D$ to a map $\psi: X \to M^D$. Apply $(-)^D$ to get a commutative diagram

$$0 \longleftarrow (X')^D \longleftarrow X^D$$

where the bottom row is exact because $\mathbb{Q}_{\mathbb{Z}}$ is injective.

Exercise 1.2.7. Show that $\epsilon_M: M \to M^{DD}$ is a map of R^{op} -modules.

We now have the following projectivity diagram of R^{op} -modules.

$$X^{D} \xrightarrow{\epsilon_{M} \circ \varphi^{D}} X^{D} \longrightarrow (X')^{D} \longrightarrow 0$$

By assumption, we may fill this diagram with some map $\psi: M \to X^D$. This induces the map $\psi^D: X^{DD} \to M^D$. Note that $(\epsilon_M)^D \circ \varphi^{DD} = \psi^D \circ i^{DD}$ where $i: X' \hookrightarrow X$. But $i^{DD} \upharpoonright_{X'} = i$ and $\varphi^{DD} \upharpoonright_{X'} = \varphi$, so that

$$\psi^D \circ i = (\epsilon_M)^D \circ \varphi = \varphi$$

on X'. It follows that

$$0 \longrightarrow X' \xrightarrow{\varphi} X^D \uparrow_{\psi^D \circ \epsilon_X}$$

commutes.

There is some surjection $\bigoplus_{j\in J} R \to M^D$. Therefore, we have a sequence of embeddings

$$M \hookrightarrow M^{DD} = \operatorname{Hom}_{\mathbb{Z}}\left(M^{D}, \mathbb{Q}_{\mathbb{Z}}\right) \hookrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(\bigoplus_{j \in J} R, \mathbb{Q}_{\mathbb{Z}}\right) = \left(\bigoplus_{j \in J} R\right)^{D}$$
 injective by Lemma 1.2.6

Definition 1.2.8. Given two R-modules M and N, the additive invariants of M and N are the abelian groups

$$\operatorname{Ext}_R^i(M,N) := H^i(\operatorname{Hom}_R(P^{\bullet},N))$$

indexed by \mathbb{N} where P^{\bullet} is a chosen projective resolution of M.

Proposition 1.2.9.

1. $\operatorname{Ext}^i_R(M,N)$ is independent of our choice of projective resolution.

Proof. This follows from the fact that any two projective resolutions are chain homotopic. \Box

2. $\operatorname{Ext}_R^i(M,N) = H^i(\operatorname{Hom}_R(M,I_{\bullet}))$ for any injective resolution I_{\bullet} of N.

Lemma 1.2.10.

- 1. $\operatorname{Ext}_{R}^{0}(M, N) = \operatorname{Hom}_{R}(M, N)$
- 2. $\operatorname{Ext}_{R}^{1}(M, N) = (\text{the group of isomorphism classes of extensions of } N \text{ by } M \text{ in } R-\operatorname{\mathbf{Mod}}).$

Proof. Let

$$\cdots \xrightarrow{\partial_1} P^1 \xrightarrow{\partial_0} P^0 \xrightarrow{\epsilon} M \to 0$$

be a projective resolution and let

$$(\xi): 0 \to N \xrightarrow{f} T \xrightarrow{g} M \to 0$$

be a short exact sequence of R-modules. Note that $\operatorname{Hom}_R(P^k, -)$ is exact for each $k \geq 0$. Therefore, the sequence

$$0 \to \operatorname{Hom}_R(P^k, N) \xrightarrow{f_k} \operatorname{Hom}_R(P^k, T) \xrightarrow{g_k} \operatorname{Hom}_R(P^k, M) \to 0$$

is exact where $f_k := f \circ (-)$ and $g_k := g \circ (-)$. Letting $d_i := (-) \circ \partial_i$, we get short exact sequences of complexes constituting the columns of

$$0 \longrightarrow \operatorname{Hom}_{R}(P^{0}, N) \xrightarrow{f_{0}} \operatorname{Hom}_{R}(P^{0}, T) \xrightarrow{g_{0}} \operatorname{Hom}_{R}(P^{0}, M) \longrightarrow 0$$

$$\downarrow^{d_{0}} \qquad \downarrow^{d_{0}} \qquad \downarrow^{d_{0}} \qquad \downarrow^{d_{0}}$$

$$0 \longrightarrow \operatorname{Hom}_{R}(P^{1}, N) \xrightarrow{f_{1}} \operatorname{Hom}_{R}(P^{1}, T) \xrightarrow{g_{1}} \operatorname{Hom}_{R}(P^{1}, M) \longrightarrow 0.$$

$$\downarrow^{d_{1}} \qquad \downarrow^{d_{1}} \qquad \downarrow^{d_{1}} \qquad \downarrow^{d_{1}}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

By definition, $\operatorname{Ext}^i_R(M,N) = \underbrace{\ker d_i}_{\operatorname{im} d_{i-1}}$. Since $\operatorname{Hom}_R(-,M)$ is left-exact and $P^1 \xrightarrow{\partial_1} P^0 \xrightarrow{\epsilon} M$ is exact, we also have the exact sequence

$$0 \to \operatorname{Hom}_R(M,M) \xrightarrow{(-) \circ \epsilon} \operatorname{Hom}_R(P^0,M) \xrightarrow{d_0} \operatorname{Hom}_R(P^1,M).$$

Let $\psi \in \operatorname{Hom}_R(P^0, M)$ satisfy $d_0(\psi) = 0$. Then $\psi = \varphi \circ \epsilon$ for some unique map $\varphi : M \to M$. Since g_0 is surjective, there exists $\alpha \in \operatorname{Hom}_R(P^0,T)$ such that $g_0(\alpha) = \psi = \varphi \circ \epsilon$. This implies that

$$g_1(d_0(\alpha)) = d_0(g_0(\alpha)) = d_0(\psi) = 0.$$

It follows that $d_0(\alpha) \in \ker g_1 = \operatorname{im} f_1$, so that $d_0(\alpha) = f_1(\beta)$ for some $\beta : P^1 \to N$. Since $f_2(d_1(\beta)) = f_1(\beta)$ $d_1(f_1(\beta)) = d_1(d_0(\alpha)) = 0$, the fact that f_2 is injective means that $d_1(\beta) = 0$. Hence $\beta \in \ker d_1$, and $[\beta] \in \operatorname{Ext}^1_R(M,N)$

Exercise 1.2.11. Show that $\psi \mapsto [\beta]$ is well-defined, i.e., that $[\beta]$ is independent of α .

This defines a map of abelian groups $\delta_{\xi}: \operatorname{Hom}_{R}(M,M) \to \operatorname{Ext}_{R}^{1}(M,N)$ given by $\varphi \mapsto [\beta]$. Now, define the homomorphism

$$e: \operatorname{Ext}_R(M,N) \to \operatorname{Ext}^1_R(M,N), \quad (\xi) \mapsto \delta_{\xi}(\operatorname{id}_M).$$

Apply $\operatorname{Hom}_R(M,-)$ to (ξ) to get the exact sequence

$$0 \to \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M, T) \to \operatorname{Hom}_R(M, M).$$

Claim. We can extend this sequence to a long exact sequence of abelian groups

$$0 \to \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M,T) \to \operatorname{Hom}_R(M,M) \xrightarrow{\delta_{\xi}} \operatorname{Ext}^1_R(M,N) \to \operatorname{Ext}^1_R(M,T) \to \operatorname{Ext}^1_R(M,M).$$

Exercise 1.2.12. Show that if (ξ) is split, then $\delta_{\xi}(\mathrm{id}_M) = 0$.

This implies that e is injective. We need to show that it is surjective as well. Suppose that How is it that eis injective? $\gamma \in \operatorname{Ext}^1_R(M,N)$ and let I_{\bullet} be an injective resolution of N. Apply $\operatorname{Hom}_R(M,-)$ to get

$$0 \to \operatorname{Hom}_R(M,N) \xrightarrow{\nu} \operatorname{Hom}_R(M,I_0) \xrightarrow{d_0} \operatorname{Hom}_R(M,I_1) \xrightarrow{d_1} \cdots$$

(where we have abused the notation d_i). By Proposition 1.2.9(2), we have that $\gamma = [f]$ for some $f \in \ker d_1$. Note that $f: M \to \ker \partial_1 = \operatorname{im} \partial_0$, giving

$$0 \longrightarrow N \longrightarrow I_0 \xrightarrow{\partial_0} \operatorname{im} \partial_0 \longrightarrow 0$$

$$f \uparrow \\ M$$

where the top row is exact. Take the pullback of ∂_0 and f to obtain T such that

$$0 \longrightarrow N \longrightarrow I_0 \stackrel{\partial_0}{\longrightarrow} \operatorname{im} \partial_0 \longrightarrow 0$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow \uparrow \qquad \qquad \cdot$$

$$0 \longrightarrow N \longrightarrow T \longrightarrow M \longrightarrow 0$$

Exercise 1.2.13.

- 1. Show that the map $\rho : \operatorname{Ext}_R^1(M,N) \to \operatorname{Ext}_R(M,N)$ given by $\gamma \mapsto \xi$ is independent of our choice of f.
- 2. Show that ρ is the inverse of e.

1.3 Lecture 3

Let N be a right R-module and M an R-module. Recall that $N \otimes_R M \in \text{ob}(\mathbf{Ab})$ is precisely the object in \mathbb{Z} -Mod representing the functor $B_{M,N} : \mathbf{Ab} \to \mathbf{Ab}$ given by

$$A \mapsto \{f : M \times N \to A \mid f(ax, y) = f(x, ay)\}.$$

Moreover, recall that N is flat if the functor

$$N \otimes_R (-) : R - \mathbf{Mod} \to \mathbf{Ab}$$

is exact.

Definition 1.3.1. Let N be a right R-module and M an R-module. Let $x_1, \ldots, x_n \in M$.

(1) A relation of the x_i 's with coefficients in R is a list of scalars $a_1, \ldots, a_n \in R$ such that

$$\sum_{i=1}^{n} a_i x_i = 0.$$

(2) A relation of the x_i 's with coefficients in N is a list of elements $y_1, \ldots, y_n \in N$ such that

$$\sum_{i=1}^{n} y_i \otimes x_i = 0.$$

Since $R \otimes_R M \cong M$, we see that (1) is a special case of (2). Let

$$a_1 \coloneqq (a_{11}, \dots, a_{1n})$$

$$a_2 \coloneqq (a_{21}, \dots, a_{2n})$$

$$\vdots$$

$$a_m \coloneqq (a_{21}, \dots, a_{mn}).$$

be relations of x_1, \ldots, x_n with coefficients in R. Let $(z_1, \ldots, z_m) \in N^m$. If A denotes the matrix (a_{ij}) , then $y = A^t z \in N^n$ is a relation with coefficients in N.

Definition 1.3.2. A relation y with coefficients in N follows from R-relations if y is of the form A^tz for some z and some matrix A of relations in R.

Lemma 1.3.3. A right R-module N is flat if and only if for any R-module M and any $x_1, \ldots, x_n \in M$, every N-relation among the x_i follows from R-relations.

Proof.

 (\Longrightarrow)

We have a module homomorphism $\varphi: \mathbb{R}^n \to M$ given by $(a_1, \ldots, a_n) \mapsto \sum_{i=1}^n a_i x_i$. Then

$$\underbrace{\ker \varphi}_{K} = \{(r_1, \dots, r_n) \in \mathbb{R}^n \mid (r_1, \dots, r_n) \text{ is a relation of the } x_i\text{'s in } \mathbb{R}\}.$$

We have an exact sequence

$$0 \to K \xrightarrow{i} R^n \xrightarrow{\varphi} M.$$

If N is flat, then $N \otimes_R (-)$ is exact, so that

$$0 \to N \otimes_R K \xrightarrow{\tilde{i}} N^n \xrightarrow{\tilde{\varphi}} N \otimes_R M$$

is exact. Thus, $\ker \tilde{\varphi} = (N\text{-relations}) = N \otimes_R K$.

(___)

Let $0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$ be a short exact sequence of R-modules. Since $N \otimes_R (-)$ is right exact, it suffices to show that

$$N \times_R M' \stackrel{\mathrm{id}_N \otimes f}{\longrightarrow} N \otimes_R M$$

is injective. Let $z \in \ker \operatorname{id}_N \otimes f$. Then $z = \sum_{i=1}^n y_i \otimes z_i$. We know that

$$\sum_{i=1}^{n} y_i \otimes f(z_i) = \mathrm{id}_N \otimes f(z) = 0,$$

and thus (y_1, \ldots, y_n) is an N-relation among the $f(z_i) \in M$. This shows that there exist $\left(a_i^j\right) \in R$ where $i = 1, \ldots, n$ and $j = 1, \ldots, m$ and elements $v_1, \ldots, v_m \in N$ such that $y_i = \sum_{i=1}^m v_j a_i^j$. Therefore, $\sum_{i=1}^n a_i^j f(z_i) = 0$ for each j. But

$$0 = \sum_{i=1}^{n} a_i^j f(z_i) = f\left(\sum_{i=1}^{n} a_i^j z_i\right).$$

As f is injective, it follows that $\sum_{i=1}^{n} a_i^j z_i = 0$ for each j. Finally, we compute

$$\sum_{i=1}^{n} y_i \otimes z_i = \sum_{i=1}^{n} \sum_{j=1}^{m} (v_j a_i^j) \otimes z_i$$
$$= \sum_{j=1}^{n} v_j \otimes \left(\sum_{i=1}^{n} a_i^j z_i \right)$$
$$= \sum_{j=1}^{n} (v_j \otimes 0) = 0.$$

Corollary 1.3.4.

- 1. Any free module is flat.
- 2. Any colimit of flat modules is flat.
- 3. Any direct summand of a free module is flat, so that any projective module is flat.
- 4. Any colimit of projective modules is flat.

2 Localization

2.1 Lecture 4

Let R be a commutative ring. Given $x \in R$, when can we make x multiplicatively invertible, perhaps in a new ring? This is a question of representability. We have a functor Φ_x : CommRing \to Set given by

$$B \mapsto \{\varphi : R \to B \mid \varphi(x) \in B^{\times}\} \subset \operatorname{Hom}_{\mathbf{CommRing}}(R, B).$$

We are asking whether or not Φ_x is representable. That is, we want to find some pair (R_x, h) where R_x is a commutative ring and $h: R \to R_x$ is a morphism such that $h(x) \in (R_x)^{\times}$ and if $\varphi: R \to B$ with $\varphi(x) \in B^x$, then $\varphi \circ h = \varphi$ for some map $\varphi: R_x \to B$.

In general, we can consider a set S of nonzero elements and ask for a universal way of making them invertible. But if we make S invertible, then we shall also make the *multiplicative closure* cl(S) of S invertible.

Definition 2.1.1. Any $S \subset R$ is called *multiplicatively closed* if $0 \notin S$, $1 \in S$, and $x, y \in S \implies xy \in S$.

Given a multiplicatively closed subset $S \subset R$, we want to find a universal way of inverting every element of S. Equivalently, find a ring representing Φ_S . Equivalently, we want to find a pair $\left(S^{-1}R,h\right)$ where $h:R\to S^{-1}R$ such that $h(S)\subset (S^{-1}R)^{\times}$ and any $\varphi:R\to B$ with $\varphi(S)\subset B^{\times}$ has $\varphi=\underline{\varphi}\circ h$ for some unique map $\varphi:R\to B$. We call the pair $\left(S^{-1}R,h\right)$ the localization of R along S.

Formally adjoin to R fractions with numerator in R and denominator in S. Consider the set $(R \times S, \sim)$ where $(a, s) \sim (b, t)$ if u(at - bs) = 0 for some $u \in S$. Set $S^{-1}R := R \times S / \sim$. Let $\frac{a}{s} := [(a, s)]$. Define

$$\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$$

and

$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st}.$$

Then $S^{-1}R$ becomes a ring with unity $\frac{1}{1}$. Also, we see that $h: R \to S^{-1}R$ given by $a \mapsto \frac{a}{1}$ is a ring homomorphism. Given a map $\varphi: R \to B$ such that im $\varphi \subset B^{\times}$, we have a well-defined map of rings $\underline{\varphi}: S^{-1}R \to B$ given by $\frac{a}{s} \mapsto \varphi(a)\varphi(s)^{-1}$, which satisfies $\underline{\varphi} \circ h = \varphi$.

Example 2.1.2. Here are some natural choices for S.

- (a) $\{1, x, x^2, \ldots\}$ with x not nilpotent.
- (b) R^{\times} .
- (c) $\{r \in R : r \text{ is not a zero divisor}\}.$

If A is an integral domain and we take any multiplicatively closed subset $S \subset A$, then $\operatorname{Frac}(A) \coloneqq (A \setminus \{0\})^{-1} A$ is a field and $h: A \to (A \setminus \{0\})^{-1} A$ is injective. For now, let S denote the set of non zero-divisors. If $\frac{a}{b} \in \operatorname{Frac}(A)$ is nonzero, then $\frac{a}{b} \neq \frac{0}{1}$, i.e., $a \cdot 1$ is not a zero divisor, so that $a \neq 0$ and thus $\frac{b}{a} \in \operatorname{Frac}(A)$. This shows that $\operatorname{Frac}(A)$ is a field. Moreover, if $a \in A$ satisfies $h(a) = \frac{a}{1} = 0 \in \operatorname{Frac}(A)$, then $\frac{a}{1} = \frac{0}{1} \implies a \cdot 1$ is a zero divisor. Hence a = 0, and h is injective.

If S is generic, then $S^{-1}A \subset \operatorname{Frac}(A)$ since $S^{-1}A$ equals the subring generated by $A \cong h(A)$ and $S^{-1} = \left\{ \frac{1}{s} \mid s \in S \right\}$. In this case, $\left(S^{-1}A, h \right)$ represents the functor $\Phi : \mathbf{Field} \to \mathbf{Set}$ given by $k \mapsto \{\varphi : A \to k \mid \varphi \text{ is injective}\}$. This means that for any ring map $\varphi : A \to B$ with $\varphi(S) \subset B^{\times}$, there is some unique map ψ such that $\psi \circ h = \varphi$.

2.2 Lecture 5

Example 2.2.1.

- 1. If $S = \{1, x, x^2, \ldots\}$ with x not nilpotent, then $S^{-1}A = A_f \equiv \left\{\frac{a}{f^n} : n \geq 0, \ a \in A\right\}$.
- 2. If $S \subset A^{\times}$, then $h: A \to S^{-1}A$ is an isomorphism.
- 3. If A is any ring and $S \subset A$ denotes the set of all non-zero divisors, then $\operatorname{Frac}(A) = S^{-1}A$ is called the *fraction ring of* A. If A is an integral domain, then $\operatorname{Frac}(A)$ is a field (called the *field of fractions of* A) and $H: A \to \operatorname{Frac}(A)$ is injective. In this case, $(\operatorname{Frac}(A), h)$ represents the functor $F_A: \mathbf{Field} \to \mathbf{Set}$ given by $K \mapsto \{\varphi: A \to K \mid \varphi \text{ monomorphism}\}.$

Let A be a commutative ring and $S \subset A$ be multiplicatively closed. Let M be an A-module. Define the equivalence relation $(M \times S, \sim)$ where $(m, s) \sim (n, t)$ if u(tm - sn) = 0 for some $u \in S$.

Define the A-module $S^{-1}M = M \times S / \infty$ where $\frac{m}{s} + \frac{n}{t} := \frac{tm + sn}{st}$. Define the module homomorphism $h_M : M \to S^{-1}M$ by $m \mapsto [(m, 1)]$. Let $\frac{m}{s}$ denote the equivalence class [(m, s)].

Moreover, $S^{-1}M$ is naturally a module over $S^{-1}A$ via the action $\frac{a}{s} \cdot \frac{m}{t} := \frac{a \cdot m}{st}$. This makes h_M a module over $h: A \to S^{-1}A$ in that for any $a \in A$ and $m \in M$, we have that $h_M(a \cdot m) = h(a) \cdot h_M(m)$.

We see that $S^{-1}(-)$ is a functor which maps each homomorphism $\varphi: M \to N$ to $S^{-1}\varphi: S^{-1}M \to S^{-1}N$ given by $\frac{m}{s} \mapsto \frac{\varphi(m)}{s}$. It's easy to verify that $S^{-1}(-)$ is left adjoint to the pullback functor h^{\bullet} .

If $f: A \to B$ is a map of commutative rings, then there are natural functors $f^{\bullet}: B-\mathbf{Mod} \to A-\mathbf{Mod}$ and $f_{\bullet}: A-\mathbf{Mod} \to B-\mathbf{Mod}$, called the *pullback* and *pushforward*, respectively.

On the one hand, the pullback functor is already familiar to us. On the other hand, the pushforward acts on objects by

$$f_{\bullet}(M) \equiv B \otimes_A M$$

where B is viewed as an A-module via f along with the action $b \cdot (c \otimes m) \equiv (bc) \otimes m$. It acts on morphisms by $(\varphi : M \to N) \mapsto (\mathrm{id}_B \otimes \varphi : f_{\bullet}(M) \to f_{\bullet}(N))$.

Exercise 2.2.2. $(f_{\bullet}, f^{\bullet})$ is an adjoint pair.

Corollary 2.2.3. $S^{-1}(-) \cong h_{\bullet}$.

Naively, we could have tried to define fractions in A by $(a,s) \sim_n (b,t)$ if (at-bs=0). But this is not in general an equivalence relation, for it is not transitive. Indeed, set $A = \mathbb{C}[x,y]/(xy)$ and $S = \{1, x, x^2, \ldots\}$. Consider the localization A_x . Note that $(y,1) \not\sim_n (0,1)$ but that $(y,1) \sim_n (0,x)$ and $(0,x) \sim_n (0,1)$.

Note 2.2.4. We have that $A_x = \mathbb{C}[x, x^{-1}]$, which is a field, and that $h: A \to A_x$ is given by

$$\underbrace{[f(x,y)]}_{[p(x)+uq(y)]} \mapsto p(x),$$

which is non-injective.

Proposition 2.2.5.

- 1. If $h: A \to S^{-1}A$, then $\ker h = \{a \in A : (\exists s \in S) (sa = 0)\}$.
- 2. $S^{-1}A$ is flat as an A-module.

Corollary 2.2.6. $S^{-1}(-)$ is an exact functor.

Proof. Let $M \xrightarrow{f} T \xrightarrow{g} N$ be an exact sequence of A-modules. We want to show that

$$S^{-1}M \stackrel{S^{-1}f}{\longrightarrow} S^{-1}T \stackrel{S^{-1}g}{\longrightarrow} S^{-1}N$$

is exact as well. Let $\frac{x}{s} \in S^{-1}T$ with $\left(S^{-1}g\right)\left(\frac{x}{s}\right) = 0$. This implies that $\frac{g(x)}{s} = \frac{0}{1}$, so that ug(x) = 0 for some $u \in S$. But since g is a morphism, we know that 0 = ug(x) = g(ux). This means that f(y) = ux for some $y \in M$. Then $\frac{y}{us} \in S^{-1}M$ such that $\left(S^{-1}f\right)\left(\frac{y}{us}\right) = \frac{f(y)}{us} = \frac{ux}{us} = \frac{x}{s}$.

Suppose that $f \in A$ is not nilpotent. We can compute A_f explicitly as follows. There is a natural map $A_f[x] \to A_f$ given by $x \mapsto \frac{1}{f}$. This induces an isomorphism

$$A_f[x]/(x-\frac{1}{f}) \xrightarrow{\cong} A_f.$$

We also have a map $A[x] \to A_f[x]$ from the map h on the coefficients. Define the map $\alpha: A[x] \to A_f$ by $a \mapsto h(a) = \frac{a}{1}$ and $x \mapsto \frac{1}{f}$. We must compute $\ker \alpha$ as an ideal in A[x]. This is surjective since any element in A_f is of the form $\frac{a}{f^n}$ for some $a \in A$ and $n \in \mathbb{N}$, so that $ax^n \mapsto \frac{a}{f^n}$.

2.3 Lecture 6

Claim. $\ker \alpha = (fx - 1)$.

Proof. Note that $xf - 1 \in \ker \alpha$. Also, note that

$$\exists n \geq 0 \text{ s.t. } f^n g\left(\frac{1}{f}\right) = 0 \iff \alpha(g) = 0 \iff g\left(\frac{1}{f}\right) = 0 \text{ in } A_f.$$

Without loss of generality, we may assume that $n \ge \deg g$. Thus, $f^n g(x)$ is a polynomial of fx with coefficients in A, so that there is some $G(y) \in A[y]$ such that $G(fx) = f^n g(x)$. Then

$$g \in \ker \alpha \iff \exists G(y) \in A[y] \text{ s.t. } G(fx) = f^n g(x) \land G(1) = 0.$$

But then G(y) = (y-1) h(y) where $h(y) \in A[y]$. This implies that

$$g(x) \in \ker \alpha \iff \exists n \ge 0 \text{ s.t. } f^n g(x) \in (xf - 1).$$

But $f, fx-1 \in A[x]$ are relatively prime since 1 = fx+(fx-1)(-1). Hence $1^n = (fx+(fx-1)(-1))^n = f^nx^n + (fx-1)s(x)$ for some $s(x) \in A[x]$. Multiply by g(x) to get

$$g(x) = \underbrace{f^n g(x)}_{\bigcap} + \underbrace{(fx-1)s(x)g(x)}_{(xf-1)}.$$

Therefore, $g(x) \in (xf - 1)$, and $(xf - 1) = \ker \alpha$.

Suppose that $\varphi:A\to B$ is a map of commutative rings. Then we can transport the ideals along φ as follows.

Definition 2.3.1.

- 1. Given an ideal $\mathfrak{a} \subseteq A$, the extension of \mathfrak{a} along φ is the ideal $\mathfrak{a}^e \subseteq B$ that is generated by $\varphi(\mathfrak{a})$, i.e., $\mathfrak{a}^e = \varphi(\mathfrak{a}) \cdot B$.
- 2. Given an ideal $\mathfrak{b} \subseteq B$, the contraction of \mathfrak{b} along φ is defined as the ideal $\mathfrak{b}^c = \varphi^{-1}(\mathfrak{b})$.

Suppose that A is a commutative ring and that $S \subset A$ is multiplicatively closed. Recall the localization morphism $h: A \to S^{-1}A$. We want to study $(-)^e$ and $(-)^c$ along h.

Proposition 2.3.2.

1. If $\mathfrak{a} \leq A$, then $\mathfrak{a}^e = \left\{ \frac{a}{s} \mid a \in \mathfrak{a}, s \in S \right\}$.

Proof. By definition, $\mathfrak{a}^e = h(\mathfrak{a}) \cdot S^{-1}A = \left\{ \sum_i \frac{b_i}{t_i} \frac{a_i}{s_i} \mid a_i \in \mathfrak{a}, \ b_i \in A, \ s_i, t_i \in S \right\}$. Since $a_i b_i \in \mathfrak{a}$ and $s_i t_i \in S$, our proof is complete.

2. If $\mathfrak{a} \leq A$, then $\mathfrak{a}^e = (1) \iff \mathfrak{a} \cap S \neq \emptyset$.

Proof. Note that $\left(S^{-1}A\right)^{\times}$ consists of every fraction $\frac{a}{s}$ for which we can find some fraction $\frac{b}{t}$ such that $\frac{a}{s}\frac{b}{t}=1$. Therefore, we must have some element $u\in S$ such that $u(ab-st)=0\iff \exists\beta\in A \text{ s.t. } \beta a\in S$. Thus, $\left(S^{-1}A\right)^{\times}=\left\{\frac{a}{s}\mid \exists\beta\in A \text{ s.t. } \beta a\in S\right\}$. But then

$$\begin{split} \mathfrak{a}^e &= (1) \iff \mathfrak{a}^e \text{ contains some unit} \\ &\iff \left(\exists \frac{a}{s} \in \mathfrak{a}^e \right) \left(\exists \beta \in A \right) \left(\beta \cdot a \in S \right) \\ &\iff \beta \cdot a \in S \cap \mathfrak{a}. \end{split}$$

Suppose that $I \subseteq S^{-1}A$ is an ideal . Then we can form $I^{ce} \subseteq S^{-1}A$. By definition, $I \supset I^{ce}$.

Proposition 2.3.3.

1. In fact, $I = I^{ce}$.

Proof. If $\frac{a}{s} \in I$, then $a \in h^{-1}(I)$ because $h^{-1}(I) = \{r \in A \mid \frac{r}{1} \in I\}$. But $\frac{a}{1} = s \cdot \frac{a}{s}$ where $s \in S^{-1}A$ and $\frac{a}{s} \in I$, so that $a \in I$. This implies that $\frac{a}{s} \in I^{ce}$ for each $s \in S$, and thus $I \subset I^{ce}$.

2. If $\mathfrak{a} \subseteq A$, then $\mathfrak{a}^{ec} = \{r \in A \mid \exists s \in S \text{ s.t. } sr \in \mathfrak{a}\}.$

Proof. Suppose that $a \in \mathfrak{a}^{ec}$. Then $\frac{a}{1} = h(a) \in \mathfrak{a}^{e}$, so that $(\exists b \in \mathfrak{a}) (\exists s \in S) (\frac{a}{1} = \frac{b}{s})$. This implies that $\exists u \in S$ such that u(sa-b) = 0. Hence (us) a = b, and $\mathfrak{a}^{ec} \subset \{r \in A \mid \exists s \in S \text{ s.t. } sr \in \mathfrak{a}\}$. If $r \in A$ satisfies $rs \in \mathfrak{a}$ for some $s \in S$, then $\frac{r}{1} = \frac{rs}{s} \in \mathfrak{a}^{e}$ and thus $r \in \mathfrak{a}^{ec}$.

- 3. $\mathfrak{a} \subseteq A$ is contracted (i.e., $\mathfrak{a} = I^c$ for some $I \subseteq S^{-1}A$) if and only if $\mathfrak{a} = \mathfrak{a}^{ec}$ if and only if $[s] \in A/\mathfrak{a}$ is not a zero divisor for any $s \in S$.
- 4. The map $(-)^e$ induces a bijection

$$\left(-\right)^{e}:\left\{ \mathfrak{a}\trianglelefteq A\mid\mathfrak{a}\text{ is a contraction of some ideal}\right\} \rightarrow\left\{ I\mid I\trianglelefteq S^{-1}A\right\}$$

that preserves inclusions of ideals.

Suppose that M is an A-module.

Definition 2.3.4. A submodule $N \subset M$ is S-saturated if $N = \{x \in M \mid (\exists s \in S) (sx \in N)\}$.

If M = A and $N = \mathfrak{a}$, then N is S-saturated if and only if $\mathfrak{a} = \mathfrak{a}^{ec}$. The localization on modules induces an inclusion-preserving bijection

$$S^{-1}(-): \{N \subset M \mid N \text{ is } S\text{-saturated}\} \to \{M \mid M \subset S^{-1}M\}.$$

Definition 2.3.5. Let \mathfrak{a} be an ideal in A.

- 1. We say that \mathfrak{a} is a *maximal ideal* if it is properly contained in A and is maximal in the set of all properly contained ideals in A partially ordered by inclusion.
- 2. We say that \mathfrak{a} is a *prime ideal* if $xy \in \mathfrak{a} \implies x \in \mathfrak{a} \vee y \in \mathfrak{a}$.

Exercise 2.3.6. An ideal $\mathfrak{b} \subseteq A$ is prime if and only if $A \setminus \mathfrak{b}$ is multiplicatively closed.

2.4 Lecture 7

Proposition 2.4.1. If $\mathfrak{p} \subseteq A$ is prime and $S \subset A$ is multiplicatively closed, then $\mathfrak{p}^e \subseteq S^{-1}A$ is prime if and only if $S \cap \mathfrak{p} = \emptyset$.

Proof. The forward direction is obvious. Conversely, suppose that $S \cap \mathfrak{p} = \emptyset$. Then $\mathfrak{p}^{ec} = \mathfrak{p}$. Indeed, $\mathfrak{p}^{ec} = \{a \in A \mid \exists s \in S \text{ s.t. } sa \in \mathfrak{p}\}$. But if $sa \in \mathfrak{p}$, then either $s \in \mathfrak{p}$ or $a \in \mathfrak{p}$. Since $S \cap \mathfrak{p} = \emptyset$, we see that $s \notin \mathfrak{p} \implies a \in \mathfrak{p}$. Suppose that $x \cdot y \in \mathfrak{p}^e$. Then $x = \frac{a}{s}$ for some $a \in A$ and $s \in S$, and $y = \frac{b}{t}$ for some $b \in A$ and $t \in B$. Then $\frac{ab}{st} \in \mathfrak{p}^e$, so that $\frac{ab}{t} \in \mathfrak{p}^e$ since \mathfrak{p}^e is an ideal. Hence $ab \in \mathfrak{p}$, which is prime by assumption. Say that $a \in \mathfrak{p}$. Then $\frac{a}{s} \in \mathfrak{p}^e$.

Corollary 2.4.2. If $S \subset A$ is multiplicatively closed, then we get a bijection

$$\{\mathfrak{p} \in \operatorname{Spec}(A) \mid \mathfrak{p} \cap S = \emptyset\} \xrightarrow{(-)^e} \operatorname{Spec}(S^{-1}A).$$

Proof. This is because \mathfrak{p}^c is prime in A with $\mathfrak{p}^c \cap S = \emptyset$ whenever \mathfrak{p} is prime in $S^{-1}A$.

Now, recall the property P that an ideal $\mathfrak a$ in A is prime if and only if $A \setminus \mathfrak a$ is multiplicatively closed.

Proposition 2.4.3. \mathfrak{a} is prime if and only if there is some multiplicatively closed $S \subset \mathfrak{a}$ such that $S \cap A = \emptyset$ and \mathfrak{a} is maximal among all ideals satisfying P.

Proof. If \mathfrak{a} is prime, then $S = A \setminus \mathfrak{a}$ is multiplicatively closed and \mathfrak{a} is maximal. Conversely, let $a, b \in A$ such that $a, b \notin \mathfrak{a}$. We must show that $ab \notin \mathfrak{a}$. Consider $\mathfrak{a} + (a) \supsetneq \mathfrak{a}$ and $\mathfrak{a} + (b) \supsetneq \mathfrak{a}$. But we are given S such that $\mathfrak{a} \cap S = \emptyset$. Hence there are $s \in S \cap (\mathfrak{a} + (a))$ and $t \in S \cap (\mathfrak{a} + (b))$. Then $s = \alpha + x \cdot a$ and $t = \beta + y \cdot b$ where $\alpha, \beta \in \mathfrak{a}$ and $x, y \in A$. We compute

$$st = \alpha\beta + \alpha yb + \beta xa + xyab,$$

where $st \in S$ and $\alpha\beta$, αyb , $\beta xa \in \mathfrak{a}$. If we assume that $ab \in \mathfrak{a}$, then $st \in S \cap \mathfrak{a}$, a contradiction.

Note 2.4.4. If $S \subset A$ is multiplicatively closed, then by Zorn's lemma there is some prime ideal \mathfrak{b} such that $\mathfrak{b} = A \setminus S$.

Definition 2.4.5. Let A be a ring. We call A a *local ring* if any of the following equivalent conditions holds.

- (a) A has a unique maximal ideal \mathfrak{m} .
- (b) $A \setminus A^{\times}$ is an ideal.
- (c) If \mathfrak{m} is maximal and $x \in \mathfrak{m}$, then $1 + x \in A^{\times}$.

If A is a ring and \mathfrak{p} a prime ideal, we shall denote the localization $(A \setminus \mathfrak{p})^{-1} A$ by $A_{\mathfrak{p}}$.

Proposition 2.4.6. If \mathfrak{p} is prime, then $A_{\mathfrak{p}}$ is a local ring with unique maximal ideal \mathfrak{p}^e .

Proof. Let $S = A \setminus \mathfrak{p}$. Then $A_{\mathfrak{p}} = S^{-1}A$. Suppose that $I \leq A_{\mathfrak{p}} = S^{-1}A$ such that $I \neq (1)$. But any ideal in $S^{-1}A$ is of the form $I = \mathfrak{a}^e$ for some ideal \mathfrak{a} in A. Since $(1) \neq I = \mathfrak{a}^e$, it follows that $\mathfrak{a} \cap S = \emptyset$. Therefore, $\mathfrak{a} = A \setminus S = \mathfrak{p}$, so that $I = \mathfrak{a}^e \subset \mathfrak{p}^e$. Hence every nontrivial ideal in $A_{\mathfrak{p}}$ is contained in \mathfrak{p}^e , implying that \mathfrak{p}^e is the unique maximal ideal.

Corollary 2.4.7. In particular, the map

(prime ideal of
$$A \mid A \subset \mathfrak{p}$$
) $\stackrel{(-)^e}{\longrightarrow} \operatorname{Spec}(A_{\mathfrak{p}})$

is a bijection that preserves inclusions of ideals.

Definition 2.4.8. Let A be a commutative ring, For every $\mathfrak{p} \subseteq A$ prime, the height of \mathfrak{p} is

$$ht(\mathfrak{p}) \equiv \sup\{k \mid \mathfrak{p} = \mathfrak{p}_0 \supseteq \mathfrak{p}_1 \supseteq \mathfrak{p}_2 \supseteq \cdots \supseteq \mathfrak{p}_k, \ \mathfrak{p}_i \trianglelefteq A\}.$$

Note that $ht(\mathfrak{p}) = ht(\mathfrak{p}^e \text{ in } A_{\mathfrak{p}}).$

Definition 2.4.9. The Krull dimension of A is

$$\dim A \equiv \sup \left\{ \mathsf{ht}(\mathfrak{m}) \mid \text{maximal } \mathfrak{m} \lneq A \right\}.$$

Note that dim $A_{\mathfrak{p}} = \mathsf{ht}(\mathfrak{p})$ and that dim $A = \sup \{ \dim A_{\mathfrak{m}} \mid \text{maximal } \mathfrak{m} \not\subseteq A \}$.

Example 2.4.10.

- 1. If k is a field, then dim k = 0. (The converse is also true.)
- 2. If A is a PID, then dim A = 1. For example, \mathbb{Z} , $\mathbb{Q}[x]$, and $\mathbb{Z}[i]$ have dimension 1.

Exercise 2.4.11.

- 1. Show that $\mathbb{Z}\left[-\sqrt{5}\right]$ is not a PID but has dimension 1.
- 2. Sow that dim $\mathbb{C}[x_1,\ldots,x_n]=n$.

3 Basic algebraic geometry

Any information about a commutative ring A, a prime ideal in A, a localization in A, and the relations between them can be packaged into a geometrical object, specifically, a topological space along with a distinguished class of maps.

Let $X = \mathsf{Spec}(A)$, the set of all prime ideals in A, or spectrum of A. For any $f \in A$, define the principal open subset associated with f as

$$X_f \equiv \{ \mathfrak{p} \in X \mid f \notin \mathfrak{p} \} .$$

Such subsets satisfy

- (a) $X_f \cap X_q = X_{fq}$.
- (b) $X_{f^n} = X_f, X_f = X \iff f \notin \mathfrak{p} \ \forall \mathfrak{p} \ \text{prime} \iff f \in A^{\times}.$
- (c) $X_f = \emptyset \iff f \in \bigcap_{\mathfrak{p} \subset X} \mathfrak{p}$.

Definition 3.0.1. The minimal topology on X generated by $\{X_f\}_{f\in A}$ is called the *Zariski topology* on X.

The subset $U \subset X$ is open if and only if there is some $T \subset A$ such that $U = \bigcup_{f \in T} X_f$. Also, $Y \subset X$ is closed if $Y = \bigcap_{f \in T} (X \setminus X_f)$ for some $T \subset A$. Hence $Y \subset X$ is closed if there is some $T \subset A$ such that

$$Y = \{ \mathfrak{p} \mid \mathfrak{p} \supset \langle T \rangle \} .$$

In particular, for any ideal $\mathfrak{a} \subseteq A$, we can define a Zariski-closed subset $V(\mathfrak{a}) = \{\mathfrak{p} \in X \mid \mathfrak{p} \supset \mathfrak{a}\}$. (Note that replacing \mathfrak{a} with a set $S \subset A$ determines an equivalent topology.) Every closed subset is of this form.

Exercise 3.0.2. Write arbitrary intersections of closed sets, finite unions of closed sets, X, and \emptyset in this form.

Any $f \in A$ can be viewed as a function on X in two ways. First, view f as a mapping $X \to \coprod_{\mathfrak{p} \in X} A_{\mathfrak{p}}$ given by $\mathfrak{p} \mapsto \frac{f}{1} \in A_{\mathfrak{p}}$. Then for any \mathfrak{p} , the value of f on \mathfrak{p} is in $A_{\mathfrak{p}}$. Second, view f as a mapping $X \to \coprod_{\mathfrak{p} \in X} k_{\mathfrak{p}}$ given by

$$f \mapsto \frac{f}{1} + \mathfrak{p}^e \in k_{\mathfrak{p}} := A_{\mathfrak{p}/\mathfrak{p}^e}.$$

We call $k_{\mathfrak{p}}$ the residue field of $A_{\mathfrak{p}}$.

Example 3.0.3. Suppose that k is a field and $A = k[x_1, \ldots, x_n]$ such that for any \mathfrak{m} , $k_{\mathfrak{m}} = k$. Then $f \in A$ induces a function (prime ideals in A) $\to k$ given by $(x_1 - a_1, \ldots, x_n - a_n) \mapsto f(a_1, \ldots, a_n)$.

Lemma 3.0.4. The space X is quasi-compact, which means that for any Zariski-open $U \subset X$, any open cover $\{U_{\alpha}\}$ of X admits a finite subcover of U.

The space X, however, is *not* Hausdorff in general.

Exercise 3.0.5. Let $A = \mathbb{C}[x]$ and $X = \operatorname{Spec}(A)$. Show that X is not Hausdorff.

3.1 Lecture 8

Note 3.1.1.

- 1. We have that $V(S) = V(\mathfrak{a})$ whenever $\mathfrak{a} = \langle S \rangle$.
- 2. The Zariski topology is generated by the collection of principal open subsets on X, i.e., subsets of the form $X_f := \{ \mathfrak{b} \in X \mid f \notin \mathfrak{b} \}$ where $f \in A$. The elements in the ring A may be viewed as kinds of functions on X. View $f \in A$ as a function $X \to \coprod_{\mathfrak{b} \in X} A_{\mathfrak{b}} \to \coprod_{\mathfrak{b} \in X} A + \mathfrak{b}/\mathfrak{b}^c$ defined by $\mathfrak{b} \mapsto \frac{f}{1} \in A_{\mathfrak{b}}$.

If k is a field and $A = k[x_1, \ldots, x_n]$, then $V(a_1, \ldots, a_n) \in A^n$. We get a maximal ideal

$$\langle x_1-a_1,x_2-a_2,\ldots,x_n-a_n\rangle$$
.

Thus, if $f(x) \in A$ and we restrict this function, then we get the evaluation of f on points $a \in A^n$.

$$a \xrightarrow{\in} \langle x_1 - a_1, x_2 - a_2, \dots, x_n - a_n \rangle X \xrightarrow{} \coprod_{\mathfrak{b}} k_{\mathfrak{b}}$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$A^n \xrightarrow{} \coprod_a k \cong A^n \times k$$

This geometric way of packaging information about A and all of its prime ideals is compatible with all natural rings homomorphisms between the A_p 's. If we have a principal open, then for every $f \in A$, we get a ring A_f , provided that f is not nilpotent, and a functor (poset of principal open sets in X)^{op} \to **CommRing** given by $X_f \mapsto A_f$. This extends to another functor (opens in X)^{op} \to **CommRing**. Given $f \in A$, viewing f as a kind of function on X thus induces a compatible system of elements of all rings A(U) where $U \in X$ is open.

Lemma 3.1.2. The space X is quasi-compact, which means that any open cover $\{U_{\alpha}\}$ of X admits a finite subcover.

Proof. Let $X = \bigcup_{\alpha} U_{\alpha}$. The principal opens generate the Zariski topology, so that for any α , we can find a cover $U_{\alpha} = \bigcup_{\beta} X_{f_{\alpha}^{\beta}}$ where $f_{\alpha}^{\beta} \in A$. Then $X = \bigcup_{\alpha,\beta} X_{f_{\alpha}^{\beta}}$, so that

$$\emptyset = \bigcap_{\alpha,\beta} (\underbrace{X - X_{f_{\alpha}^{\beta}}}_{V(f_{\alpha}^{\beta})}).$$

But $\emptyset = \bigcap_{\alpha,\beta} V(f_{\alpha}^{\beta}) = V(\{f_{\alpha}^{\beta}\}_{\alpha,\beta})$. Hence $\langle (f_{\alpha}^{\beta})_{\alpha,\beta} \rangle$ is not contained in a ny prime ideal, so that $\langle (f_{\alpha}^{\beta})_{\alpha,\beta} \rangle = A$, hence $1 \in \langle (f_{\alpha}^{\beta})_{\alpha,\beta} \rangle$. We can find a collection of elements $\{a_{\alpha}^{\beta}\}_{\alpha,\beta}$ where $a_{\alpha}^{\beta} \in A$ such that $1 = \sum_{\alpha,\beta} a_{\alpha}^{\beta} f_{\alpha}^{\beta}$ and at most finitely many a_{α}^{β} are nonzero. Thus, there is sequence $(\alpha_{1},\beta_{1}),\ldots,(\alpha_{k},\beta_{k})$ with

$$\langle f_{\alpha_1}^{\beta_1}, \dots, f_{\alpha_k}^{\beta_k} \rangle = \langle 1 \rangle = A.$$

Hence $V(f_{\alpha_1}^{\beta_1}) \cap \cdots \cap V(f_{\alpha_k}^{\beta_k}) = \emptyset$, and $X = X_{f_{\alpha_1}^{\beta_1}} \cup \cdots \cup X_{f_{\alpha_k}^{\beta_k}}$. But $X_{f_{\alpha_i}^{\beta_i}} \in U_{\alpha_i}$ for each $i = 1, \dots, k$. Therefore, $X = U_{\alpha_1} \cup \cdots \cup U_{\alpha_k}$.

Example 3.1.3. Suppose that X is a compact Hausdorff space. Let A = C(X), the ring of complex-valued continuous functions on X. Consider Spec(A) equipped with the Zariski topology and its subset $Max(A) := {\mathfrak{a} \in C(X) \mid \mathfrak{a} \text{ maximal}}$ equipped with the subspace topology.

Claim. The natural map $X \xrightarrow{\varphi} \operatorname{Max}(A)$ given by $x \mapsto \{f \in C(X) \mid f(x) = 0\}$ is a homomorphism.

Proof. Let $\mathfrak{a}_x = \ker(\operatorname{ev}_x : A \to \mathbb{C})$. By Urysohn's lemma, for any two distinct points $x,y \in X$, there is some $f \in A$ such that f(x) = 0 and f(y) = 1. But $f \in \mathfrak{a}_x$ and $f \notin \mathfrak{a}_y$, making $\mathfrak{a}_x \neq \mathfrak{a}_y$. Now, suppose $\mathfrak{a} \in \operatorname{Max}(A)$ and $\mathfrak{a} \neq \mathfrak{a}_x$ for any $x \in X$. This means that for any $x \in X$, there is some $f_x \in \mathfrak{a}$ such that $f_x(x) \neq 0$. Let $U_x \subset U$ be an open neighborhood of $x \in X$ such that $f_x \upharpoonright_{U_x} \neq 0$. Then $X = \bigcup_{x \in X} U_x$, so that there is some finite subcover U_{x_1}, \ldots, U_{x_k} of X. Let $f = \sum_{i=1}^k |f_{x_i}|^2$, which does not vanish at any point of X. Note that $f = \sum_{i=1}^k f_{x_i} \cdot \bar{f}_{x_i}$, so that $f \in \mathfrak{a}$. But f is nowhere vanishing, so that $\frac{1}{f}$ is a well defined continuous function on X. Thus, $\frac{1}{f} \in A$, and $1 \in \mathfrak{a}$, contrary to the fact that \mathfrak{a} is maximal.

Exercise 3.1.4. Check that φ is continuous, hence a homeomorphism.

Let A be a commutative ring and M an A-module. Then M defines a subset of $X := \operatorname{\mathsf{Spec}}(A)$, namely

$$\operatorname{supp}(M) \equiv \{ \mathfrak{b} \in X \mid M_{\mathfrak{b}} \neq 0 \} ,$$

called the support of M.

Proposition 3.1.5.

1. $\operatorname{supp}(M) \subset V(\operatorname{ann}(M))$ where $\operatorname{ann}(M) \equiv \{a \in A \mid a \cdot m = 0 \text{ for each } m \in M\}$.

Proof. Let $\mathfrak{b} \in \operatorname{supp}(M)$. Then $M_{\mathfrak{b}} \neq (0)$. We need to show that $\operatorname{ann}(M) \subset \mathfrak{b}$. Suppose that there is some $a \in \operatorname{ann}(M)$ with $a \notin \mathfrak{b}$. Let $x \in M_{\mathfrak{b}}$. Then $x = \frac{m}{s}$ where $m \in M$ and $s \notin \mathfrak{b}$. We compute $\frac{a}{1} \cdot \frac{m}{s} = \frac{am}{s} = 0$ in $M_{\mathfrak{b}}$. Since $a \notin \mathfrak{b}$, it follows that $\frac{a}{1}$ is invertible in $A_{\mathfrak{b}}$, i.e, $\frac{1}{a} \in A_{\mathfrak{b}}$. Hence $\frac{m}{s} = \frac{1}{a} \left(\frac{a}{1} \frac{m}{s} \right) = 0$ in $M_{\mathfrak{b}}$, so that $M_{\mathfrak{b}} = (0)$, a contradiction.

2. If M is finitely generated, then $supp(M) \supset V(ann(M))$.

Proof. Let $\mathfrak{b} \in V(\operatorname{ann}(M))$ and $\mathfrak{b} \supset \operatorname{ann}(M)$. We want to show that $M_{\mathfrak{b}} \neq (0)$. Suppose to the contrary. Then for any $m \in M_{\mathfrak{f}}$ we have that $\frac{m}{1} = 0$ in $M_{\mathfrak{b}}$. This shows that there exists $s \notin \mathfrak{b}$ such that $s \cdot m = 0$ in M. But M is finitely generated. Let $m_1, \ldots, m_k \in M$ be generators of $M \setminus A$. Then there are $s_1, \ldots, s_k \in A \setminus \mathfrak{b}$ such that $s_i m_i = 0$ in M for each i. Let $s = s_1 \cdots s_k \in A \setminus \mathfrak{b}$. Then for any $m \in M$, we have that $s \cdot m = 0$. Hence $s \in A \setminus \mathfrak{b}$, and $s \in \operatorname{ann}(M)$, a contradiction.

3.2 Lecture 9

Proposition 3.2.1. $M = (0) \iff \operatorname{supp}(M) = \emptyset \iff \operatorname{supp}(M) \cap \operatorname{Max}(A) = \emptyset.$

Proof. It's clear that $M = \emptyset \implies \operatorname{supp}(M) = (0) \implies \operatorname{supp}(M) \cap \operatorname{Max}(A) = \emptyset$. Hence it suffices to show that

$$supp(M) \cap Max(A) = \emptyset \implies M = (0).$$

On the one hand, if M is finitely generated, then $\operatorname{supp}(M) = V(\operatorname{ann}(M))$, so that $\operatorname{supp}(M)$ must contain any maximal idea that contains $\operatorname{ann}(M) \leq A$. Thus, the assumption that $\operatorname{supp}(M) \cap \operatorname{Max}(A) = \emptyset$ implies that $\operatorname{ann}(A)$ is not contained in any maximal ideal, meaning that $\operatorname{ann}(M) = A$. This means that M = (0).

On the other hand, if M is arbitrary, then $M = \operatorname{colim}_{\alpha} N_{\alpha}$ with each $N_{\alpha} \subset M$ finitely generated. But then $M_{\mathfrak{a}} = \operatorname{colim}_{\alpha}(N_{\alpha})_{\mathfrak{a}}$ because localization is exact. Since each $N_{\alpha} = (0)$, it follows that $\operatorname{colim}_{\alpha} N_{\alpha} = 0$ as well.

Corollary 3.2.2. If we have a sequence of modules

$$\eta: M \stackrel{f}{\longrightarrow} T \stackrel{g}{\longrightarrow} N,$$

then η is exact at $T \iff \eta_{\mathfrak{p}}$ is exact at $T_{\mathfrak{p}}$ for each $\mathfrak{p} \in \operatorname{Spec}(A) \iff \eta_{\mathfrak{a}}$ is exact at $T_{\mathfrak{a}}$ for each $\mathfrak{a} \in \operatorname{Max}(A)_{\dot{\mathcal{C}}}$

Proof. All of the forward directions are clear. Conversely, if $\eta_{\mathfrak{a}}$ is for every \mathfrak{a} , then $M_{\mathfrak{a}} \xrightarrow{f_{\mathfrak{a}}} T_{\mathfrak{a}} \xrightarrow{g_{\mathfrak{a}}} N_{\mathfrak{a}}$ is exact. If $H = \ker g_{\text{im } f}$, then $H_{\mathfrak{a}} = \ker g_{\mathfrak{a}}/_{\text{im } f_{\mathfrak{a}}} = 0$. Thus, $\operatorname{supp}(H) \cap \operatorname{Max}(A) = \emptyset$, so that H = 0.

Definition 3.2.3. Suppose that Π is a property of A-modules or of morphisms of A-modules. We say that Π holds locally for A if $\Pi_{\mathfrak{a}}$ holds for every $\mathfrak{a} \in \mathsf{Spec}(A)$.

Example 3.2.4.

- 1. M = (0) holds locally if and only if it holds globally.
- 2. $M \to T \to N$ is exact locally if and only if it's exact globally.

Lemma 3.2.5. *TFAE*.

- (a) M is flat over A.
- (b) M is locally flat over A.
- (c) $M_{\mathfrak{a}}$ is flat over $A_{\mathfrak{a}}$ for every $\mathfrak{a} \in \operatorname{Max}(A)$.
- (d) $M_{\mathfrak{a}}$ is flat over A for every $\mathfrak{a} \in \operatorname{Max}(A)$.

Proof. The fact that (a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) is obvious. To see that (c) \Longrightarrow (a), suppose that M is an A-module such that $M_{\mathfrak{a}}$ is flat as an $A_{\mathfrak{a}}$ -module. Suppose that $0 \to X \to Y$ is an exact sequence of A-modules. Let $K = \ker(X \otimes_A M \to Y \otimes_A M)$. We want to show that K = 0.

Localizing $0 \to K \to X \otimes_A M \to Y \otimes_A M$ along \mathfrak{a} gives an exact sequence $0 \to K_{\mathfrak{a}} \to X_{\mathfrak{a}} \otimes_{A_{\mathfrak{a}}} M_{\mathfrak{a}} \to Y_{\mathfrak{a}} \otimes_{A_{\mathfrak{a}}} M_{\mathfrak{a}}$, where we have used the fact that $(X \otimes_A M)_{\mathfrak{a}} = X \otimes_A M_{\mathfrak{a}} = X_{\mathfrak{a}} \otimes_{A_{\mathfrak{a}}} M_{\mathfrak{a}}$. But $M_{\mathfrak{a}}$ is flat over $A_{\mathfrak{a}}$. Hence if we tensor the exact sequence $0 \to X_{\mathfrak{a}} \to Y_{\mathfrak{a}}$ with $M_{\mathfrak{a}}$ over $A_{\mathfrak{a}}$, then it will remain exact. This implies that $\ker(X_{\mathfrak{a}} \otimes_{A_{\mathfrak{a}}} M_{\mathfrak{a}} \to Y_{\mathfrak{a}} \otimes_{A_{\mathfrak{a}}} M_{\mathfrak{a}}) = 0$, so that $K_{\mathfrak{a}} = 0$ for each \mathfrak{a} . It follows that $\sup(K) = \emptyset$, which implies that K = (0).

Definition 3.2.6. If A is commutative ring, then the Jacobson radical of A is the ideal

$$\operatorname{Jac}(A) \equiv \bigcap_{\mathfrak{a} \in \operatorname{Max}(A)} \mathfrak{a}.$$

Lemma 3.2.7 (Nakayama). If A is a commutative ring and M is a finitely generated A-module with $Jac(A) \cdot M = M$, then M = (0).

Proof. Let M be finitely generated over A. Choose some finite set of generators m_1, \ldots, m_t of M of minimal cardinality. If $M \neq (0)$, then t > 0. Then $m_t \in M = \operatorname{Jac}(A) \cdot M$. Thus there are $a_1, \ldots, a_t \in \operatorname{Jac}(A)$ such that $m_t = \sum_{i=1}^t a_i m_i$. Then

$$(1 - a_t) m_t = \sum_{i=1}^{t-1} a_i m_i.$$

But $a_t \in \operatorname{Jac}(A)$, meaning that m_t belongs to every maximal ideal. Then $1 - a_t$ cannot be in any maximal ideal. Hence $1 - a_t$ is a unit in A. Let $u \in A$ such that $u(1 - a_t) = 1$. Then $m_t = \sum_{i=1}^{t-1} a_i u m_i$. This contradicts the fact that t is minimal.

Corollary 3.2.8 (Classical Nakayama). Suppose A is a local ring with maximal ideal \mathfrak{a}_A . Let M be a finitely generated A-module such that $\mathfrak{a}_A M = M$. Then M = (0).

Proposition 3.2.9.

- 1. If A is a commutative ring, then the functor $(-) \otimes {}^{A}/_{Jac(A)} : A-\mathbf{Mod^{fg}} \to {}^{A}/_{Jac(A)} \mathbf{Mod^{fg}}$ is faithful.
- 2. If M is a finitely generated A-module and $m_1, \ldots, m_t \in M$ are such that their images $\bar{m}_1, \ldots, \bar{m}_t \in M$ / $\operatorname{Jac}(A) \cdot M$ generate the module M/ $\operatorname{Jac}(A) \cdot M$, then they generate M.

Proof. If $N = \langle m_1, \dots, m_t \rangle \subset M$, then $\overline{M/N} = (0)$ since $\overline{M/N} = \overline{M}/\overline{N}$. But then $M \setminus N = 0$ thanks to Lemma 3.2.7.

Proposition 3.2.10. If A is a local ring and t is the minimal number of generators of a finitely generated A-module M, then every generating set for M contains a generating set of t elements.

Proof. Let m_1, \ldots, m_k be a generating set for M. Then $\bar{m}_1, \ldots, \bar{m}_k$ generate $M_{\mathfrak{q}_A M} =$ (finite dimensional vector space over $k_A = A_{\mathfrak{q}_A}$). This must have dimension t since every spacing subset in $M_{\mathfrak{q}_A M}$ lifts to a spanning subset of M. Choose a linearly independent subset in $\{\bar{m}_1, \ldots, \bar{m}_k\}$ and lift this to M.

Theorem 3.2.11. Let A be a local ring and M an A-module. Assume that one of the following conditions holds.

- (a) A is Noetherian with M finitely generated.
- (b) M is finitely presentable.

Then M is free \iff M is projective \iff M is flat.

Proof. We only need to show that if M is flat, then M is free. Suppose that M is flat and finitely presentable. We want to show that M is free. Let $0 \to K \to A^t \to M \to 0$ be a finite presentation where K is finitely generated. Since M being flat implies that $(-) \otimes k_A$ is exact, we have that

$$\eta: 0 \to K \otimes_A k_A \to k_A^t \to M \otimes_A k_A \to 0$$

is exact. Indeed, if $0 \to N' \to N \to N'' \to 0$ is a short exact sequence of A-modules and N^n is flat, then for every A-module, the sequence

$$0 \to N' \otimes M \to N \otimes M \to N'' \otimes M \to 0$$

is exact. To see this, choose a presentation $0 \to K \to F \to M \to 0$, where F is free. Then we get a commutative diagram

$$0 \longrightarrow K \longrightarrow N''$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K \otimes N' \longrightarrow K \otimes N \longrightarrow K \otimes N''$$

$$\downarrow \delta_1 \qquad \qquad \downarrow \delta_2 \qquad \qquad \downarrow \delta_3$$

$$0 \longrightarrow F \otimes N' \longrightarrow F \otimes N \longrightarrow F \otimes N''$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M \otimes N' \stackrel{\theta}{\longrightarrow} M \otimes N \longrightarrow M \otimes N''$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow 0 \longrightarrow 0$$

Apply the snake lemma (Lemma 11.2.6 below) to the first two rows.

Returning to η , note that k_A^t and $M \otimes_A k_A$ are t-dimensional vector spaces over k_A . Hence $K \otimes_A k_A = 0$. But K is a finitely generated K module. Therefore, Lemma 3.2.7 implies that K = 0.

24

4 Algebraic extensions

4.1 Lecture 10

Definition 4.1.1. Suppose that $A \subset B$ where A and B are commutative rings.

- 1. We say that $u \in B$ is algebraic over A if there is some $f(x) \in A[x]$ such that f(u) = 0 in B and $f \neq 0$. We say that u is transcendental over A if it is not algebraic over A.
- 2. In general, we say that a collection of elements $u_1, \ldots, u_k \in B$ are algebraically independent over A if there is some $f(x_1, \ldots, x_k) \in A[x_1, \ldots, x_k]$ such that $f \neq 0$ and $f(u_1, \ldots, u_k) = 0$ in B. We say that $u_1, \ldots, u_k \in B$ are independent transcendentals over A if they are not algebraically independent over A.
- 3. We say that $B \supset A$ is algebraic if each $u \in B$ is algebraic over A.

Our goal is to understand any algebraic extension of a ring. If A and B are domains, then we have a Cartesian diagram

$$A \hookrightarrow \operatorname{Frac}(A)
\downarrow \qquad \qquad \downarrow
B \hookrightarrow \operatorname{Frac}(B)$$

We have that B is an algebraic extension of A if and only if Frac(B) is an algebraic extension of Frac(A). This motivates the study of algebraic extensions of fields.

Definition 4.1.2. If $L \supset K$ is a field extension, we say that L is a *finite extension* if L is finite dimensional as a vector space over K. We call $[L:K] := \dim_K L$ the degree of the extension.

Remark 4.1.3. Finite field extensions arise naturally from polynomials.

Definition 4.1.4. If K is a field, then $f(x) \in K[x]$ is called *irreducible* if deg f > 0 and f cannot be written as f = gh where $g, h \in K[x]$ not units.

Theorem 4.1.5. If $h(x) \in K[x]$ is irreducible, then the ring K[x]/(h) is a field and the inclusion $K \subset K[x]/(h)$ is a finite field extension of degree $\deg h$.

Proof. Recall that K[x] is a Euclidean domain, in particular, a PID.

Lemma 4.1.6. Let A be a PID and $u \in A$ be nonzero. TFAE.

- (a) $A_{(u)}$ is a field.
- (b) (u) is prime.
- (c) u is simple.

Proof. The fact that (b) and (c) are equivalent is obvious.

Suppose that u is not simple, so that u = vw with $v, w \in A$ not units. Then in $A_{(u)}$ we have two elements [v] and [w] such that $[v] \cdot [w] = [u] = [0]$. But both [v] and [w] are nonzero since A has cancellations as a PID. Thus, $A_{(u)}$ is not a field.

Conversely, if $u \in A$ is simple, then for any $x \in A \setminus (u)$ we have that (x, u) = (1) since x and u are coprime. This means that we can find $a, b \in A$ such that ax + bu = 1. Then $[x] \cdot [a] = [1]$. Hence [x] is a unit, so that A/(u) is a field.

From this our theorem follows immediately.

Note 4.1.7.

- 1. If $h(x) \in K[x]$ is irreducible and L = K[x]/(h), then h(x) has a natural root in L, namely, t + (h). Moreover, every element in L can be written in the form $g(\alpha)$ for some $g(x) \in K[x]$.
- 2. If $B \supset A$ is a ring extension and $\alpha_1, \ldots, \alpha_k \in B$, we get an intermediate ring $A \subset A[\alpha_1, \ldots, \alpha_k] \subset B$ where $A[\alpha_1, \ldots, \alpha_k]$ is the image of the evaluation map $\operatorname{ev}_\alpha : f(x_1, \ldots, x_k) \mapsto f(\alpha_1, \ldots, \alpha_k)$. Thus, if K is a field and $h(x) \in K[x]$ is irreducible and $\alpha = t + +(h)$, then $L := K[x]/(h) = K[\alpha]$. Observe that α is algebraic over K, meaning that L is generated by a single algebraic element α .

Definition 4.1.8. We say that field extension $L \supset K$ is *simple* if it is isomorphic to $K[x]_{(h)}$ for some irreducible h.

Example 4.1.9.

- 1. $\mathbb{C} = \mathbb{R}[i] = \mathbb{R}[x]/(x^2 + 1)$.
- 2. If K is any field and $a \in K$ is not a square, then $x^2 a$ is irreducible and we get a simple field extension $K[\sqrt{a}] := K[t]/(t^2 a)$.

Let $L \supset K$ be any field extension and $u \in L$ be algebraic over K. Consider

$$\operatorname{ann}(u) \equiv \{g(x) \in K[x] \mid g(u) = 0\},\$$

which is an ideal in K[x]. Since K[x] is a PID, we see that this ideal is generated by a single element s(x). If we require that s(x) be monic, then it is uniquely determined. We call this the *minimal* polynomial of u, denoted by $\min_{u}(x)$.

Lemma 4.1.10. If $L \supset K$ is a field extension and $u \in L$ is algebraic over K, then $\min_u(x)$ is irreducible and K[u] is isomorphic to the simple field extension $K[t]/\min_u(x)$.

Proof. If $\min_u(x) = f(x)g(x)$, then $0 = \min_u(u) = f(u)g(u)$, so that either f(u) = 0 or g(u) = 0. But $f, g \mid \min_u$, so that $\deg f, \deg g \leq \deg \min_u$. By the minimality of \min_u , this implies that $\deg f = \deg \min_u$ or $\deg g = \deg \min_u$. Then either $\deg f = 0$ or $\deg g = 0$. **Theorem 4.1.11.** Let $L \supset K$ be a field extension and $u \in L$.

- (a) u is algebraic over K if and only if K[u] is a finite dimensional vector space over K.
- (b) If u is algebraic, then $[K(u):K] = \deg \min_{u}$.

Proof. We have proven (b) in Lemma 4.1.10. For (a), suppose that the ring K[u] is finite dimensional as a vector space over K. Then there exist nonnegative integers k_1, \ldots, k_s such that $k(u) = \operatorname{span}_K(u^{k_1}, \ldots, u^{k_2})$. Thus, if $m > \max(k_1, \ldots, k_s)$, then u^m is a K-linear combination of u^{k_1}, \ldots, u^{k_s} . Write $u^m = a_1 u^{k_1} + \cdots + a_s u^{k_s}$. Then $f(x) = x^m - \sum_{i=1}^s a_i x^{k_i}$ satisfies f(u) = 0. Conversely, if $u \in L$ is algebraic over K, then there is some n > 0 such that $u^n = \operatorname{span}_K(1, u, \ldots, u^{n-1})$. Then $u^m \in \operatorname{span}_K(1, u, \ldots, u^{n-1})$ for any m. This implies that K[u] is finite dimensional over K. \square

Corollary 4.1.12. If $L \supset K$ is a finite field extension, then L is algebraic over K.

4.2 Lecture 11

Definition 4.2.1. A finite field extension of \mathbb{Q} is called a *number field*.

Fix a prime p > 0. Let $\epsilon_p = e^{\frac{2\pi i}{p}} \in \mathbb{C}$. Then $\mathbb{Q}(\epsilon_p) \supset \mathbb{Q}$ is a finite extension because ϵ_p is annihilated by the polynomial $x^p - 1$. It is called the *p-th cyclotomic field*. Note that $x^p - 1$ is not minimal since we can factor out (x - 1). We claim that $\frac{x^p - 1}{x - 1}$ is the minimal polynomial, so that $[\mathbb{Q}(\epsilon_p) : \mathbb{Q}] = p - 1$. This will hold if we can prove that $\frac{x^p - 1}{x - 1}$ is irreducible in $\mathbb{Q}[x]$.

Lemma 4.2.2 (Gauss). If $f(x) \in \mathbb{Z}[x]$ is irreducible, then it is irreducible in $\mathbb{Q}[x]$.

Proof. Note that if $p(x) \in \mathbb{Q}[x]$, then there exists $N \in \mathbb{Z}_{>0}$ such that $Np(x) \in \mathbb{Z}[x]$ and the coefficients of Np are pairwise coprime. Suppose that $f(x) \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Z}[x]$. Suppose, towards a contradiction, that there are $g(x), h(x) \in \mathbb{Q}[x]$ non-units such that f(x) = g(x)h(x). Then g(x) and h(x) are \mathbb{Q} -proportional to some $\tilde{g}(x)$ and $\tilde{h}(x)$, respectively, over \mathbb{Z} with each having pairwise coprime coefficients. Thus, $f(x) = \lambda \tilde{g}(x)\tilde{h}(x)$ for some $\lambda \in \mathbb{Q}^{\times}$. Let $\lambda = \frac{a}{b}$ with (a,b) = 1. If $b \neq \pm 1$, then there is some p > 0 where $p \mid b$ and $pf = a\tilde{g}\tilde{h}$. We have that $bf, a\tilde{g}, \tilde{h} \in \mathbb{Z}[x]$. We can reduce $p \in [bf]_p = [a]_p[\tilde{g}]_p[\tilde{h}]_p$ But $f(x) \in \mathbb{Z}[x]$, so that $[bf]_p = [b]_p[f]_p = 0$. Hence $[a]_p[\tilde{g}]_p[\tilde{h}]_p = 0$ in $(\mathbb{Z}/p)[x]$, so that one of $[a]_p$, $[\tilde{g}]_p$, and $[\tilde{h}_p]$ must be 0. But (a,b) = 1, so that $[a]_p \neq 0$. Since each of \tilde{g} and \tilde{h} has coprime coefficients, we have that $[\tilde{g}]_p \neq 0$ and $[\tilde{h}]_p \neq 0$, a contradiction. \square

Thus, it suffices to show that $\frac{x^p-1}{x-1}$ is irreducible in $\mathbb{Z}[x]$. Let $f(x)=x^{p-1}+x^{p-2}+\cdots+x+1$. Then $f(x)(x-1)=x^p-1$. By the binomial formula, we see that $[(x-1)^p]_p=[x^p-1]_p$. Thus, $[f]_p[x-1]_p=[(x-1)^p]_p$, so that $[f]_p[(x-1)]_p=\left([x-1]_p\right)^p$ and $[f]_p=[(x-1)]^{p-1}$ If f=gh for some non-units g and h, then $[g]_p[h]_p=([(x-1)]_p)^{p-1}$, which implies that $[g]_p=[(x-1)^r]_p$ and $[h]_p=[(x-1)^s]_p$ for some r and s. Thus, $[g(1)]_p=[g]_p(1)=0=[h]_p(1)=[h(1)]_p$, meaning that $p\mid g(1)$ and $p\mid h(1)$. Since f=gh, it follows that $p^2\mid f(1)=p$, a contradiction.

Theorem 4.2.3. Suppose that $M \supset L \supset K$ is a chain of finite field extensions. Then $M \supset K$ is also finite with [M:K] = [M:L][L:K].

Proof. Let e_1, \ldots, e_n be a basis of L over K and f_1, \ldots, f_m be a basis of M over K. Then $\{e_i \cdot f_j\}_{i,j}$ forms a basis of M over K.

Note 4.2.4. Suppose that $L \supset K$ is a field extension with $u_1, \ldots, u_n \in L$. We get a ring $K[u_1, \ldots, u_n] = \operatorname{im} \operatorname{ev}_u$, which is a domain since it's contained in L. Let $K(u_1, \ldots, u_n) := \operatorname{Frac}(K[u_1, \ldots, u_n])$. Then we fave that $K \subset K[u_1, \ldots, u_n] \subset K(u_1, \ldots, u_n) \subset L$. Note that if $u \in L$ is algebraic over K, then $K \subset K[u] = K(u) \subset L$.

Theorem 4.2.5. Suppose that $L \supset K$ is a field extension and let $u_1, \ldots, u_n \in L$ be algebraic over K. Then $\dim_K K(u_1, \ldots, u_n) < \infty$. In particular, $K(u_1, \ldots, u_n) \supset K$ is an algebraic extension.

Proof. Note that

$$K \subset K(u_1) \subset K(u_1, u_2) \subset \cdots \subset K(u_1, \dots, u_n)$$

 $K(u_1, \dots, u_k) = K(u_1, \dots, u_{k-1})(u_k).$

Since each u_k is algebraic over K, we see that u_k is algebraic over any field containing K. Thus, u_k is algebraic over $K(u_1, \ldots, u_{k-1})$. Hence $\dim_{K(u_1, \ldots, u_{k-1})} K(u_1, \ldots, u_k) < \infty$. By Theorem 4.2.3, $\dim_K K(u_1, \ldots, u_n) < \infty$.

Definition 4.2.6.

- 1. A field K is algebraically closed if for every $L \supset K$ and every $u \in L$ algebraic over K, we have that $u \in K$.
- 2. We say that $K \subset L$ is algebraically closed in L if any $u \in L$ that is algebraic over K belongs to K.

Theorem 4.2.7. If $L \supset K$ is a field extension, then

$$\overline{K} := \{u \in L \mid u \text{ is algebraic over } K\}$$

is a field that is algebraically closed in L.

Proof. Let $u, v \in \overline{K}$. Then both are algebraic over K. If $K \subset K(u, v) \subset L$, then Theorem 4.2.5 shows that $K(u, v) \supset K$ is an algebraic extension. Since $K(u, v) \subset \overline{K}$, it follows that \overline{K} is a field. \square

Suppose $u \in L$ is algebraic over \overline{K} . Then we can find $f(x) = \sum_{i=1}^n a_i x^i \in \overline{K}[x]$ such that $\deg f > 0$ and f(u) = 0. Hence $f \in K(a_1, \ldots, a_n)[x]$, so that u is algebraic over $K(a_1, \ldots, a_n)$. Hence $K(a_1, \ldots, a_n, u)$ is finite dimensional over $K(a_1, \ldots, a_n)$. But $a_1, \ldots, a_n \in K$ are algebraic over K, so that $K(a_1, \ldots, a_n)$ is algebraic over K. This means that u is algebraic over K.

Let h is an irreducible polynomial over K. Write $\widetilde{K} = {}^{K[x]}/_{(h)}$ and let α denote the marked root x + (h) of h viewed as a polynomial in $\widetilde{K}[t]$.

5 SPLITTING FIELDS 28

Lemma 4.2.8 (Main lemma of Galois theory). For any $\varphi: K \to F$ field homomorphism, the natural map

$$\left\{\psi: \widetilde{K} \to F \mid \psi \upharpoonright_K = \varphi\right\} \to (\textit{distinct roots of } h^\varphi \in F[x])$$

given by $\psi \mapsto \psi(\alpha)$ is a bijection, where h^{φ} denotes the polynomial obtained by applying φ to the coefficients of h.

Proof. Let $\psi: \widetilde{K} \to F$ be a homomorphism with $\psi \upharpoonright_K = \varphi$. Then

$$h^{\varphi}(\psi(\alpha)) = \varphi(a_n)\psi(\alpha)^n + \varphi(a_{n-1})\psi(\alpha)^{n-1} + \dots + \varphi(a_1)\psi(\alpha) + \varphi(a_0)$$
$$= \psi(a_n)\psi(\alpha)^n + \psi(a_{n-1})\psi(\alpha)^{n-1} + \dots + \psi(a_1)\psi(\alpha) + \psi(a_0) = \psi(h(\alpha))$$
$$= 0.$$

Now, let $\xi \in F$ be a root of h^{φ} . Define a homomorphism $K[x] \to F$ by $f(x) \mapsto f^{\varphi}(\xi)$. Then $h(x) \mapsto h^{\varphi}(\xi) = 0$. Thus, this homomorphism descends to a homomorphism $\psi : K[x]/(h) \to F$ such that $\psi(\alpha) = \xi$. This implies that the assignment $\psi \mapsto \psi(\alpha)$ is surjective.

Finally, suppose that $\tilde{\varphi}: \widetilde{K} \to F$ is any homormophism such that $\tilde{\varphi} \upharpoonright_K = \varphi$. Then $\tilde{\varphi}(\alpha)$ is a root of h^{φ} . Let $\psi_{\tilde{\varphi}(\alpha)}: \widetilde{K} \to F$ be the extension that we constructed. Then $\tilde{\varphi} \upharpoonright_K = \varphi$, and $\psi_{\tilde{\varphi}(\alpha)\upharpoonright_K} = \varphi$. Also, we have that $\tilde{\varphi}(\alpha) = \xi$ and $\psi_{\tilde{\varphi}(\alpha)}(\alpha) = \xi$. This shows that $\tilde{\varphi} \upharpoonright_{K(\alpha)} = \psi_{\tilde{\varphi}(\alpha)} \upharpoonright_{K(\alpha)}$. But $K(\alpha) = \widetilde{K}$. \square

5 Splitting fields

5.1 Lecture 12

Definition 5.1.1. If K is a field and $f(x) \in K[x]$, then a field extension $L \supset K$ is a splitting field for f if

- (a) $f(x) = a \prod_{i=1}^{n} (x c_i)$ with $a, c_i \in L$ and
- (b) $L = K(c_1, \ldots, c_n)$.

Theorem 5.1.2. For every $f(x) \in K[x]$, a splitting field for f exists and is unique up to an isomorphism over K.

Proof. Consider the tower of fields $K = K_0 \subset K_1 \subset K_2 \subset \cdots$ where $K_i = K_{i-1}[\alpha_i]$ and α_i is a root of an irreducible factor f_i of f over K_{i-1} with deg $f_i > 0$. The degree of f is fixed, but the number of irreducible factors of f strictly increases after each step. Hence this sequence of fields will stabilize at some K_s , which is thus a splitting field for f.

To prove uniqueness, suppose that $L \supset K$ is another splitting field for f. We have $\varphi_0 : K_0 = K \hookrightarrow L$. By Lemma 4.2.8, we can extend φ_0 to a homomorphism $\varphi_1 : K_1 \to L$ provided that $f_1^{\varphi_0}$ has a root in L. But by assumption, f^{φ_0} has each of its roots in L. Since $f_1 \mid f$, it follows that $f_1^{\varphi_0}$ has each of its roots in L as well. This implies that $\varphi_1 : K_1 \to L$ will extend to a map provided that $\varphi_2 : K_2 \to L$ $f_2^{\varphi_1} = f_2^{\varphi_0}$ has some root in L. But this holds since $f_2 \mid f$. Continuing in this way, we

5 SPLITTING FIELDS 29

get $\varphi_s: K_s \to L$ such that $f_1^{\varphi_{s-1}}$ has all of its roots in L. Thus, $f^{\varphi_s} = f^{\varphi_0}$ has all of its roots in L. But $\varphi_s \upharpoonright_K = \varphi_0$, so that φ_s is injective. But L = K(all roots of f). By construction, all roots of f belong to im φ_s . Also, $K \subset \operatorname{im} \varphi_s$. Hence φ_s is surjective and thus an isomorphism.

Exercise 5.1.3. Describe all splitting fields of polynomials of degree 2.

Example 5.1.4. Suppose that K is a field of characteristic $\neq 2$. Let $f(x) = x^3 + a_2x^2 + a_1x + a_0 \in K[x]$. Let L be a splitting field for f. What can L be? This depends on the splitting behavior of f over K

- (A) Suppose that f has all of its roots in K. Then L = K, and [L : K] = 1.
- (B) Suppose that f has exactly one root in K Then $f(x) = (x \alpha) g(x)$ with $\alpha \in K$ and g(x) a quadratic irreducible in K[x]. Consider $L = {K[x] / (g)}$. Then [L:K] = 2, and g has a root in L. This implies that g has all of its roots in L. Hence L is the splitting field for f.
- (C) Suppose that f has no roots in K. Then f is irreducible in K[x]. Let $K_1 = K[x]/(f)$, which is a simple extension of degree 3. Note that f has a root α_1 in K_1 . Thus, $K_1 = K[\alpha_1]$. Consider $f(x) = (x \alpha_1) g(x)$ with $g \in K_1[x]$ and $\deg g = 2$. There are two sub-cases to consider.
 - (a) Suppose that g has two roots in K_1 . Then $L = K_1$, so that [L:K] = 3.
 - (b) Suppose that f is irreducible in K_1 . Then $L = K_2 = K_1[x]/(g)$, so that [L:K] = 6.

We conclude that if L is the splitting field for f, then $[L:K] \in \{1,2,3,5\}$.

How can we compute [L:K] from the coefficients of f? We have that $f(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$ in L[x]. Look at $Discr(f) := (\alpha_1 - \alpha_2)^2(\alpha_1 - \alpha_3)^2(\alpha_2 - \alpha_3)^2 \in L$. This is a symmetric function in $\alpha_1, \alpha_2, \alpha_3$. Hence it is expressible in terms of a_2, a_1, a_0 . Note that

$$Discr(f) = a_1^2 a_2^2 - 4a_2^2 a_0 - 4a_1^3 + 18a_0 a_1 a_2 - 27a_0^2.$$

Proposition 5.1.5. Suppose that f has no roots in K. Then $[L:K] = 3 \iff \operatorname{Discr} f \in K^2$.

Proof. We know that f is irreducible over K. Hence $K_1 = K[x]/(f)$ is an extension of degree 3 in which f has a root α_1 . Note that $\operatorname{Discr}(f) \notin K^2 \iff \operatorname{Discr}(f) \notin K_1^2$. The (\iff) direction is obvious. For the reverse direction, suppose, towards a contradiction, that $\operatorname{Discr}(f) \notin K^2$ but $\operatorname{Discr}(f) \in K_1^2$. This means that $\left[K\left[\sqrt{\operatorname{Discr}(f)}\right]:K\right] = 2$ and $K \subset K\left[\sqrt{\operatorname{Discr}(f)}\right] \subset K_1$. Thus, $3 = [K_1:K] = \left[K\left[\sqrt{\operatorname{Discr}(f)}\right]:K\right] \cdot \left[K_1:K\left[\sqrt{\operatorname{Discr}(f)}\right]\right] = 2 \cdot 1$, a contradiction.

Now, $\operatorname{Discr}(f) \in K_1^2 \iff (\alpha_1 - \alpha_2)(\alpha_1 - \alpha_3)(\alpha_2 - \alpha_3) \in K_1$. This implies that $\alpha_2 - \alpha_3 \in K_1$. Indeed, $f \in K_1[x]$ satisfies $f(x) = (x - \alpha_1) g(x)$, and $\alpha_2, \alpha_3 \in L$ are roots of g. Therefore, we have in L that $g(\alpha_1) = (\alpha_1 - \alpha_2) (\alpha_1 - \alpha_3) \in L$. But $g \in K_1[x]$ and $\alpha_1 \in K_1$, so that $g(\alpha_1) \in K_1$. It follows that $\alpha_2 - \alpha_3 \in K_1$. Hence $\operatorname{Discr}(f) \in K_1^2 \iff \alpha_2 - \alpha_1 \in K_1$. But $-\alpha_2 - \alpha_3$ is a coefficient of g in K_1 . Therefore, $\alpha_2, \alpha_3 \in K_1$.

Note 5.1.6.

6 FINITE FIELDS 30

- 1. Suppose that K is a finite field. Then $\operatorname{char} K > 0$.
- 2. Suppose that K is any field such that $\operatorname{char} K = p > 0$. Then the natural map $\varphi : K \to K$ given by $x \mapsto x^p$ respects addition due to the binomial theorem. Hence it is a field homomorphism, called the *Frobenius morphism*. If K is finite, then this map is an automorphism. In general, im $\varphi = K^p \subset K$ is a subfield.

3. If K has characteristic p, then the natural map $\mathbb{F}_p \to K$ given by $[n] \mapsto \underbrace{1+1+\cdots+1}_{n \text{ times}}$ is a field extension. Therefore, if K is finite, then $K \supset \mathbb{F}_p$ is a finite field extension. In this case, if K has degree n, then $K \cong \mathbb{F}_p^{\oplus n}$ is a vector space over \mathbb{F}_p . Hence $|K| = |\mathbb{F}_p|^n = p^n$.

6 Finite fields

Theorem 6.0.1. For every prime p and integer n > 0, there is some finite field K consisting of p^n elements that is unique up to an isomorphism over \mathbb{F}_p .

Proof. We first prove uniqueness. If F is a finite field with $q := p^n$ elements, then $|F^{\times}| = q - 1$. It follows that for any $a \in F^{\times}$, $a^{q-1} = 1$. But then for any $a \in F$, $a^q = a$, so that each element of F is a root of $x^q - x \in \mathbb{F}_p[x]$. Then $\prod_{a \in F} (x - a) \mid x^q - x$ in F[x]. This implies that $x^q - x = \prod_{a \in F} (x - a)$ in F[x]. This means that F is a splitting field for $x^q - x$ over \mathbb{F}_p , which must be unique up to isomorphism.

To prove existence, consider F the splitting field for $x^q - x$ over \mathbb{F}_p . We want to show that |F| = q.

Note 6.0.2. If A is any commutative ring, then A[x] has a natural derivation. There exists a unique map $\frac{d}{dx}:A[x]\to A[x]$ such that $\frac{d}{dx}(a)=0$ for any $a\in A$, $\frac{d}{dx}(x)=1$, and $\frac{d}{dx}$ satisfies the Leibniz rule, i.e., $\frac{d}{dx}(fg)=\frac{df}{dx}g+f\frac{dg}{dx}$. Note that $\frac{d}{dx}$ is given by $\frac{d}{dx}(a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0)=na_n+(n-1)a^{n-1}x^{n-2}+\cdots+0$. Then $\frac{d}{dx}$ is an A-module homomorphism. If $A\subset B$ is a subring, then we get compatible derivations $\frac{d}{dx}\hookrightarrow A[x]\subset B[x]\hookrightarrow \frac{d}{dx}$.

Returning to our proof, consider $f(x) = x^q - x$. Then since $F \supset \mathbb{F}_p$ is the splitting field for f(x), it follows that $f(x) = \prod_{i=1}^q (x-c_i)$ where $c_i \in F$. How many distinct roots does f(x) have in F? If f(x) has a repeated root, then we can write $f(x) = (x-c)^2 g(x)$ in F[x]. This implies that $\frac{df}{dx}(x) = 2(x-c)g + (x-c)^2 \frac{dg}{dx}$ will also have c has a root. But $\frac{df}{dx} = qx^{q-1} - 1 = -1$ in $\mathbb{F}_p[x] \subset F[x]$. But in this case $\frac{df}{dx}$ has no roots. Thus, f(x) has no repeated roots in F, so that $|F| \geq q$.

Now consider $R_f := \{c \in F \mid f(c) = 0\}$. Note that $\mathbb{F}_p \subset R_f \subset F$ and that $R_f = \{c \in F \mid \varphi^n(c) = c\}$ where φ denotes the Frobenius map. But since φ is a field automorphism of F, so is φ^n . Hence the fixed points of φ^n form a subfield. This means that R_f is a subfield, hence a splitting field for f. Thus, $R_f \cong F$.

6.1 Lecture 13

We write \mathbb{F}_q for the splitting field for $x^q - x \in \mathbb{F}_p[x]$.

6 FINITE FIELDS 31

Proposition 6.1.1. The group \mathbb{F}_q^{\times} is a cyclic group of order q-1.

Proof. By the structure theorem for finite abelian groups, we get

$$\mathbb{F}_q^{\times} \cong \mathbb{Z}/p_1^{m_{11}} \times \mathbb{Z}/p_1^{m_{12}} \times \cdots \times \mathbb{Z}/p_1^{m_{1k}} \times \mathbb{Z}/p_2^{m_{21}} \times \mathbb{Z}/p_2^{m_{22}} \times \cdots \times \mathbb{Z}/p_s^{m_{sk}} \times \mathbb{Z}/p_s^{m_{sk}} \times \mathbb{Z}/p_s^{m_{sk}} \times \mathbb{Z}/p_s^{m_{sk}} \times \mathbb{Z}/p_s^{m_{sk}}$$

Let $\alpha_i = p_1^{m_{1i}} p_2^{m_{2i}} \cdots p_s^{m_{si}}$ for each i = 1, ..., k. Hence $|\mathbb{F}_q^{\times}| |d_1 d_2 \cdots d_k$ where $d_1 |d_2 | \cdots |d_k$. Hence every element in \mathbb{F}_q^{\times} has order dividing d_k . For any $a \in \mathbb{F}_q$, $a^{d_k+1} = a$, so that $|\mathbb{F}_q| = \deg x^{d_k+1} - x = d_k + 1$. Then $q \leq d_k + 1$, so that $q - 1 \leq d_k$. Since $d_k | q - 1$, we have that $d_k = q - 1$, and thus $d_1 = d_2 = \cdots = d_{k-1} = 1$. Hence

$$\mathbb{F}_q^{\times} \cong \mathbb{Z}/p_1^{m_{1k}} \times \mathbb{Z}/p_2^{m_{2k}} \times \cdots \times \mathbb{Z}/p_s^{m_{sk}}.$$

Since the $p_i^{m_{ik}}$ are pairwise coprime, it follows that $\mathbb{F}_q^{\times} \cong \mathbb{Z}/p_1^{m_{1k}}p_2^{m_{2k}}\cdots p_s^{m_{sk}}$.

Corollary 6.1.2. $\mathbb{F}_q = \mathbb{F}_p(\sigma)$.

Proof. Since \mathbb{F}_q^{\times} is cyclic, we know that $\mathbb{F}_q^{\times} = \langle \sigma \rangle$.

Proposition 6.1.3. Aut(\mathbb{F}_q) is a cyclic group of order n. In fact, Aut(\mathbb{F}_q) $\cong \langle \varphi \rangle$ where φ denotes the Frobenius map.

Proof. We have arranged it so that \mathbb{F}_q is unique up to isomorphism over \mathbb{F}_p , so that each $\psi \in \operatorname{Aut}(\mathbb{F}_q)$ restricts to the identity on $\mathbb{F}_p \subset \mathbb{F}_q$. This implies that $\operatorname{Aut}(\mathbb{F}_q) \cong \operatorname{Aut}(\mathbb{F}_q/\mathbb{F}_p)$, which is the subgroup of all $\psi : \mathbb{F}_q \xrightarrow{\cong} \mathbb{F}_q$ such that $\psi \upharpoonright_{\mathbb{F}_p} = \operatorname{id}_{\mathbb{F}_p}$.

Lemma 6.1.4. Let $L \supset K$ be a finite field extension of degree n. Then we have that $|\operatorname{Aut}(L/K)| \leq n$.

Proof. Since $[L:K]=n<\infty$, we can construct L as a tower $K=K_0\subset K_1\subset\cdots\subset K_s=L$ where $K_{i+1}=K_i[\alpha_i]$ and α_i is a root of an irreducible $f_i(x)\in K_i[x]$. Consider $\varphi_0:K\hookleftarrow L$ the natural inclusion. Applying Lemma 4.2.8, we see that φ_0 extends to $\varphi_1:K_1\to L$ in finitely many ways such that the number of such φ_1 's equals the number of distinct roots of $f_0^{\varphi_0}$ in L. This quantity is $\leq \deg f_0=[K_1:K_0]$ Each φ_1 extends to a map $\varphi_2:K_2\to L$ in at most $\deg f_1=[K_2:K_1]$ ways. Therefore, φ_0 will extend to a map $\varphi_s:L\to L$ in $[K_1:K_0][K_2:K_1]\cdots [K_s:K_{s-1}]$ many ways. It follows that

$$|\operatorname{Aut}(L/K)| \le \prod_{i=0}^{s-1} [K_{i+1} : K_i] = [L : K] = n.$$

Corollary 6.1.5. If $f(x) \in K[x]$ and L is a splitting field for f and f has distinct roots in L, then $|\operatorname{Aut}(L/K)| = [L:K]$.

We have that $|\operatorname{Aut}(\mathbb{F}_q/\mathbb{F}_p)| = [\mathbb{F}_q : \mathbb{F}_p] = n$. If $\varphi \in \operatorname{Aut}(\mathbb{F}_q/\mathbb{F}_p)$, then $\varphi^n = \operatorname{id}$. Thus, it suffices to show that $\varphi^m \neq \operatorname{id}$ for any m < n. Suppose that m has $\varphi^m = \operatorname{id}$. Then $\varphi^m(a) = a$ for every $a \in \mathbb{F}_q$. Therefore, $q^{p^m} = a$ for each $a \in \mathbb{F}_q$, so that $p^n = q = |\mathbb{F}_q| \leq p^m$. Then $m \geq n$.

This completes our main proof.

6 FINITE FIELDS 32

Proposition 6.1.6. There is a bijection (subfields of \mathbb{F}_q) $\cong_{\mathbf{Set}}$ (subgroups of $\mathrm{Aut}(\mathbb{F}_q)$).

Proof. Let $F \subset \mathbb{F}_q$ be a subfield, so that $\mathbb{F}_p \subset F \subset \mathbb{F}_q$. We have that $|F| \mid |\mathbb{F}_q| = p^n$, so that $|F| \leq p^d$ for some $d \leq n$. Since $\mathbb{F}_q \supset F$, we have that \mathbb{F}_q is a vector space over F. If $[\mathbb{F}_q : F] = r$, then $\mathbb{F}_q \cong F^{\oplus r}$ as F-vector spaces. Note that

$$p^{n} = |\mathbb{F}_{q}| = |F|^{r} = (p^{d})^{r} = p^{dr},$$

which implies that $d \mid n$.

Since F is a finite field, it follows that F^{\times} is cyclic of order p^d-1 . Hence any $a \in F \subset \mathbb{F}_q$ satisfies $a^{p^d}=a$. But if $d\mid n$, then $x^q-x=x^{p^n}-x=\left(x^{p^d}-x\right)g(x)$ because $p^n-1=p^{dr}-1=\left(p^d\right)^r-1=\left(p^d-1\right)m$ so that $x^{q-1}-1=\left(x^{p^d-1}-1\right)g(x)$. But \mathbb{F}_q is the splitting field for x^q-x , and all roots of this are distinct. Thus, there are exactly p^d roots of x^q-x that are the distinct roots of $x^{p^d}-x$. Therefore,

$$F = \mathbb{F}_{p^d} = \left(\text{subfield of } \mathbb{F}_q \text{ that is the splitting field for } x^{p^d} - x \right) = \left(\text{fixed subfield of } \varphi^d \right).$$

Hence F is the fixed point subgroup of $\langle \varphi^d \rangle \leq \operatorname{Aut}(\mathbb{F}_q)$.

Let $\psi \in \operatorname{Aut}(\mathbb{F}_q)$ with $\psi \notin \langle \varphi^d \rangle$. Then $\psi = \varphi^e$ for some $e \geq 0$ such that $d \nmid e$. If ξ generates F^{\times} and $\xi^{p^e} = \psi(\xi) = \xi$, then $p^d - 1 \mid p^e - 1$ since $|F^{\times}| = p^d - 1$. But this is impossible, which implies that $\psi \upharpoonright_F \neq \operatorname{id}_F$. Therefore, $\langle \varphi^d \rangle = \operatorname{Aut}(\mathbb{F}_q/F)$, and we have a bijection

(subfields of
$$\mathbb{F}_q$$
) $\cong_{\mathbf{Set}}$ (subgroups of $\mathrm{Aut}(\mathbb{F}_q)$)
 $F\mapsto \mathrm{Aut}(\mathbb{F}_q/F)$
 $\mathbb{F}_q^G \hookleftarrow G.$

6.2 Lecture 14

Proposition 6.2.1.

1. Let $\mathbb{F}_q^{\times} = \langle \theta \rangle$. Then $\mathbb{F}_q = \mathbb{F}_p(\theta)$, meaning that θ is a primitive element for the extension $\mathbb{F}_q \supset \mathbb{F}_p$. Further, if h denotes the minimal polynomial of θ over \mathbb{F}_p , then \mathbb{F}_q is the splitting field for h.

Proof. Every nonzero element of \mathbb{F}_q is a power of θ . Hence $\mathbb{F}_q = \mathbb{F}_p(\theta)$. Now, note that $\deg h = n$ because $[\mathbb{F}_q : \mathbb{F}_p] = n$. Write $h(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ where each $a_i \in \mathbb{F}_p$. If we view h over \mathbb{F}_q , then $\varphi(a_i) = a_i$ due to Fermat's little theorem. Hence $\varphi(h(x)) = h(\varphi(x))$ for any $x \in \mathbb{F}_q$, meaning that $\varphi(c)$ is a root of h whenever c is a root. Thus, we get n roots of h.

$$\theta, \ \theta^p, \ \theta^{p^2}, \dots, \theta^{p^{n-1}}$$

If K is the splitting field for h, then $\mathbb{F}_p \subset K \subset \mathbb{F}_q$. But $[K : \mathbb{F}_p] = n = [\mathbb{F}_q : \mathbb{F}_p]$, so that $K = \mathbb{F}_q$.

2. Let $m \geq 0$ be any integer and $q = p^n$. Then there is some irreducible polynomial over \mathbb{F}_q of degree m

Proof. Let $\mathbb{F}_{p^{mn}}^{\times} = \langle \theta \rangle$. Then the minimal polynomial p(x) of θ over \mathbb{F}_q has degree m, and p(x) is irreducible since it is minimal.

7 Cyclotomic fields

Let $q = p^n$ and d > 0 be any integer. Among the finitely many polynomials over \mathbb{F}_q of degree d, how many of these are irreducible? We have just shown that at least one is irreducible.

Define the Möbius function $\mu: \mathbb{Z}_{>0} \to \{-1, 0, 1\}$ by

$$n \mapsto \begin{cases} -1 & n = 1 \\ (-1)^k & n = p_1 \cdots p_k \text{ where the } p_i \text{ are pairwise distinct } \cdot \\ 0 & n \text{ is divisible by a square} \end{cases}$$

Proposition 7.0.1.

- (i) $\mu(k) \neq 0$ for some k.
- (ii) $\mu(nm) = \mu(n)\mu(m)$ when (n, m) = 1.

(iii)
$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n=1\\ 0 & n \neq 1 \end{cases}.$$

Proof. Let n > 0 be an integer and write $p_1^{k_1} \cdots p_k^{r_k}$ where the prime p_i are pairwise distinct. Let $n_0 = p_1 \cdots p_k$. Then $\sum_{d|n} \mu(d) = \sum_{d|n_0} \mu(d)$. If $d \mid n_0$, then $d = p_{i_1} \cdots p_{i_s}$, so that $\mu(d) = (-1)^s$. By the binomial theorem, it follows that

$$\sum_{d|n_0} \mu(d) = \sum_{s=0}^k \binom{k}{s} (-1)^2$$
$$= (1-1)^k$$
$$= \begin{cases} 1 & k=0\\ 0 & k>0 \end{cases}.$$

Therefore,
$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n=1 \\ 0 & n \neq 1 \end{cases}$$
.

Corollary 7.0.2. For any $m, d \in \mathbb{Z}_{>0}$ such that $d \mid m$, we have that

$$\sum_{d|n|m} \mu\left(\frac{m}{n}\right) = \begin{cases} 1 & d=m\\ 0 & d \neq m \end{cases}.$$

Remark 7.0.3. Proposition 7.0.1 completely characterizes the Möbius function.

Lemma 7.0.4 (Möbius inversion formula). Let A be an abelian group and $f, g : \mathbb{Z}_{>0} \to A$ be functions such that $f(n) = \sum_{d|n} g(d)$ for every n. Then

$$g(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) f(d). \tag{\dagger}$$

If A is written multiplicatively, then this becomes

$$g(n) = \prod_{d|n} f(d)^{\mu(\frac{n}{d})}.$$

Proof. We compute

$$\sum_{d|n} \mu\left(\frac{n}{d}\right) f(d) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \sum_{k|d} g(k)$$

$$= \sum_{d|n} \sum_{k|d} \mu\left(\frac{n}{d}\right) g(k)$$

$$= \sum_{k|n} g(k) \sum_{d: k|d|n} \mu\left(\frac{n}{d}\right)$$

$$= \sum_{k|n} g(k) \delta(k, n)$$

$$= g(n).$$

Definition 7.0.5. Define the Euler (totient) function $\varphi : \mathbb{Z}_{>0} \to \mathbb{Z}$ by

$$\varphi(n) = \# \{ m \in \mathbb{Z}_{>0} : m \le n, (m, n) = 1 \}.$$

If $n \in \mathbb{Z}_{>0}$, then $n = \sum_{d|n} \varphi(d)$. Therefore, if $f : \mathbb{Z}_{>0} \to \mathbb{Z}$ is given by f(n) = n and $g := \varphi$, then we can apply (\dagger) to get

$$\begin{split} \varphi(n) &= g(n) = \sum_{d \mid n} \mu\left(\frac{n}{d}\right) f(d) \\ &= \sum_{d \mid n} \mu\left(\frac{n}{d}\right) d \\ &= \sum_{m \mid n} \mu(m) \frac{n}{m} = \left(\sum_{m \mid n} \frac{\mu(m)}{m}\right) n. \end{split}$$

Lemma 7.0.6. If $n = p_1^{r_1} \cdots p_k^{r_k}$, then $\varphi(n) = n \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right)$.

Proof. Let $n_0 = p_1 \cdots p_k$. Then

$$\sum_{m|n} \frac{\mu(m)}{m} = \sum_{m|n_0} \frac{\mu(m)}{m}$$

$$= \underbrace{1}_{m=1} - \sum_{i=1}^k \frac{1}{p_i}$$

$$+ \sum_{i < j} \frac{1}{p_i p_j} + \dots + (-1)^s \sum_{i_1 < \dots < i_s} \frac{1}{p_{i_1} \dots p_{i_s}}$$

$$+ \dots + (-1)^k \frac{1}{p_1 \dots p_k}$$

$$= \prod_{i=1}^k \left(1 - \frac{1}{p_i}\right).$$

Let $p(x) = x^n - 1 \in \mathbb{Q}[x]$ with n > 0. Let Γ_n be the splitting field for p(x). We know that $\Gamma_n = \mathbb{Q}(\zeta_n)$, where ζ_n denotes a primitive n-th root of unity in \mathbb{C} . Let the set Prim_n consist of all the primitive n-th roots of unity.

We have that $\mu_n = \{1, \zeta_n, \zeta_n^2, \dots, \zeta_n^{n-1}\} = \coprod_{d|n} \operatorname{Prim}_d$. Define the d-th cyclotomic polynomial as

$$\Phi_d(x) = \prod_{\alpha \in \text{Prim}_d} (x - \alpha).$$

For example,

$$\begin{split} &\Phi_1 = x - 1 \\ &\Phi_2 = x + 1 \\ &\Phi_3 = x^2 + x + 1 \\ &\Phi_4 = x^2 + 1 \\ &\vdots \\ &\Phi_p = x^{p-1} + x^{p-2} + \dots + x + 1 \text{ with } p \text{ prime.} \end{split}$$

Note that

$$x^n - 1 = \prod_{d|n} \Phi_d(x).$$

Consider the functions $\Phi_{(-)}: \mathbb{Z}_{>0} \to \mathbb{C}(x)^{\times}$ and $f: \mathbb{Z}_{>0} \to \mathbb{C}(x)^{\times}$ where $f(n) = x^n - 1$. We can apply (\dagger) to get

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(\frac{n}{d})},$$

which is a rational function over \mathbb{Z} . We can write $\Phi_n(x) = \frac{a(x)}{b(x)}$ with b(x) monic. Write $\Phi_n(x) = x^m + p_{m-1}X^{m-1} + \dots + p_0$ and set $M = \text{lcm}\{c_i \mid p_i = \frac{t_i}{c_i}, i = 1, \dots, m-1\}$. Let $P_i = Mp_i$ for each $i = 1, \dots, m-1$ and $P_m = M$. Since $M\Phi_n(x)b(x) = Ma(x) \in \mathbb{Z}[x]$, we see that M divides

each coefficient of $M\Phi_n(x)b(x)$. Suppose, towards a contradiction, that M>1. Then there exists a prime divisor p of M. By our choice of M, there exists a maximal $0 \le i_0 \le m$ such that $p \nmid P_{i_0}$. If deg b(x) = s, then the coefficient of X^{m+s} in $M\Phi_n(x)b(x)$ has the form $M + p \cdot t$ for some $t \in \mathbb{Z}$. But this is not divisible by p and thus not divisible by M, a contradiction. Thus, M = 1, so that $\Phi_n(x) \in \mathbb{Z}[x]$.

Moreover, since deg $\Phi_n = \varphi(n)$, it follows that $[\Gamma_n : \mathbb{Q}] = \varphi(n)$.

7.1 Lecture 15

Let $q = p^n$. Let $\psi_d(q) = \#\{p(x) \text{ irreducible over } \mathbb{F}_q \mid \deg p(x) = d\}$. If $f(x) \in \mathbb{F}_q[x]$ is irreducible, then $F = \mathbb{F}_q[x]/(f)$ is a finite field. Thus, $\#F = g^d = p^{nd}$, so that F is the splitting field for $x^{p^{nd}} - x$ over \mathbb{F}_p . Also, F is just the set of roots of $x^{p^{nd}} - x$. By construction, the polynomial $f(x) \in \mathbb{F}_q[x]$ has a root over F, and $x^{p^{nd}} - x \in \mathbb{F}_q[x]$ has a root in F.

Since f(x) is irreducible in $\mathbb{F}_q[x]$, we see that $\left(f, x^{p^{nd}} - x\right) \in \{1, f\}$ in $\mathbb{F}_q[x]$. But if $\left(f, x^{p^{nd}} - x\right) = 1$, then $1 = a(x)f(x) + b(x)(x^{p^{nd}} - x)$. with $a, b \in \mathbb{F}_q[x]$. If we write this as an equation in F[x], then evaluating on $\alpha \in F$ a common root of f(x) and $x^{p^{nd}} - x$ will give us a contradiction. Hence $f(x) \mid x^{p^{nd}} - x$ in $\mathbb{F}_q[x]$. Since all roots of $x^{p^{nd}} - x$ are pairwise distinct, we see that any irreducible monic polynomial of degree d over \mathbb{F}_q appears exactly once in the decomposition of $x^{p^{nd}} - x$ into irreducibles. Note that if m = dr, then

$$x^{q^d} - x \mid \underbrace{x^{q^m} - x}_{\text{distinct roots}},$$

and thus every irreducible monic polynomial over \mathbb{F}_q of degree dividing m appears exactly once in the irreducible decomposition of $x^{q^m} - x$.

For each $d \geq 1$, let $f_{d,1}, f_{d,2}, \ldots, f_{d,\psi_d(q)}$ be irreducible monic polynomials over \mathbb{F}_q of degree d. Then for any $m \geq 1$, we get

$$x^{q^m-x} - x = \prod_{d|m} \prod_{k=1}^{\psi_d(q)} f_{d,k}(x),$$

so that $q^m = \sum_{d|m} d\psi(q)$. Then

$$\psi_d(q) = \frac{1}{m} \sum_{d|m} \mu\left(\frac{m}{d}\right) q^d.$$

Example 7.1.1.

$$\psi_2(2) = \frac{1}{2}(2^2 - 2) = 1.$$

$$\psi_3(2) = \frac{1}{2}(2^3 - 2) = 2.$$

Remark 7.1.2. A randomly chosen polynomial over \mathbb{F}_q of degree d will be irreducible with probability $\approx \frac{1}{d}$. Given a polynomial p(x) over \mathbb{F}_q of degree d, there is no known algorithm with complexity polynomial in d that decides whether p(x) is irreducible.

8 Galois theory

Definition 8.0.1. If $L \supset K$ is a field extension, then the *Galois group* is

$$\operatorname{Gal}(L/K) \equiv \{ \varphi \in \operatorname{Aut}(L) : \varphi \upharpoonright_K = \operatorname{id}_K \}.$$

Theorem 8.0.2. Let $L \supset K$ be a field extension of degree $n < \infty$. Let $G \leq \operatorname{Gal}(L/K)$.

- (a) $L^G = K \iff |G| = n$.
- (b) If $L^G = K$ and $K \subset P \subset Q \subset L$ is a chain of field extensions, then every homomorphism $\varphi: P \to L$ over K extends to a homomorphism $Q \to L$ in exactly [Q: P] many ways.

Proof.

(a) For the (\Leftarrow) direction, note that if $G \leq \operatorname{Aut}(L)$, then tautologically $G \leq \operatorname{Gal}(L/L^G)$. Hence $|G| \leq |\operatorname{Gal}(L/L^G)| = [L:L^G]$. If $G \leq \operatorname{Gal}(L/K)$, then $L \subset L^G \subset L$, so that $[L:L^G] \leq [L:K] = n$. This means that $|G| \leq n$.

Conversely, let $L^G = K$. Take $\alpha \in L$ and let $\mathrm{Orb}_G(\alpha) = \{\lambda_1, \dots, \lambda_m\} \subset L$. Consider

$$f(x) = \prod_{i=1}^{m} (x - \lambda_i) \in L[x].$$

But the coefficients are symmetric polynomials in λ_i , and any $g \in G$ permutes the λ_i . In this case, g permutes the coefficients of f(x). Hence $f(x) \in L^G[x] = K[x]$. By construction, α is a root of f(x), the minimal polynomial of α . We can decompose f(x) into linear factors in L.

Apply part (b) to P = K and Q = L. In this case, (b) implies that if $L^G = K$, then |Gal(L/K)| = [L:K] = n. Thus, we must show that G = Gal(L/K).

Let $\varphi \in \operatorname{Gal}(L/K)$. Recall that f(x) is the minimal polynomial of α over K. Note that $\varphi(x)$ is a root of $f^{\varphi}(x)$. Indeed, since $\varphi_K = \operatorname{id}_K$, we have that $f^{\varphi}(x) = f(x)$. Hence $\varphi(\alpha) \in \operatorname{Orb}_G(\alpha)$, so that there exists $g \in G$ such that $\varphi(\alpha) = g(\alpha)$. If L is a finite field, then we can take α to be the generator of L^{\times} , in which case $\varphi(\alpha) = g(\alpha) \implies \varphi(\alpha^k) = g(\alpha^k)$ for each $k \implies \varphi = g$. If L is infinite, then K is infinite and for any $g \in G$, we consider $L_g = \{a \in L \mid \varphi(a) = g(a)\} \subset L$. By definition, $L_g = L^{g^{-1}\circ\varphi}$ is a subfield in L. This contains K because $g^{-1} \circ \varphi \in \operatorname{Gal}(L/K)$. Therefore, $K \subset L_g \subset L$ is a field extension, meaning that L_g is a K-vector subspace in L.

We have shown that $L = \bigcup_{g \in G} L_g$.

Claim. If K is an infinite field and V is a finite-dimensional K-vector space and $V_1, V_2, \ldots, V_g \subset V$ are subspaces, then $V = \bigcup_{i=1}^g V_i \implies V = V_k$ for some k.

Proof. Suppose that each $V_i \subsetneq V$ and that $V = \bigcup_{i=1}^g V_i$. Then there exists a linear map $f_i: V \to K$ such that $f_i \upharpoonright_{V_i} = 0$ and $f_i \neq 0$. Then $f: V \to K$ given by $f = \prod_{i=1}^k f_i$ is the function associates with a nonzero polynomial in $V = K^n$ of degree s. But f is the zero function since $V = \bigcup_{i=1}^k V_i$, a contradiction.

(b) Suppose that $K \subset P \subset L$. Let $K \subset P \subset Q \subset L$ where $Q = P(\alpha) = P[\alpha]$ and α is a root of some irreducible $h(x) \in P[x]$. Let $f(x) = \prod_{i=1}^m (x - \lambda_i)$ where $\operatorname{Orb}_G(\alpha) = \{\lambda_1, \dots, \lambda_m\} \subset L$. Then $f(x), g(x) \in P[x]$ have a common root, and h(x) is irreducible. Hence $h \mid f$ in P[x]. Let $\varphi : P \to L$ be any field homomorphism over K. Then $h^{\varphi} \mid \underbrace{f^{\varphi}}_{f}$ in L[x]. But f decomposes into distinct linear factors in L[x]. Hence h^{φ} equals a product of a subcollection of these factors. It follows that h^{φ} has $\deg h^{\varphi} = \deg h$ distinct roots in L. By Lemma 4.2.8, since $Q \cong P[x]/(h)$, we see that φ extends in exactly $\deg h - [Q:P]$ many ways.

This proves our result for simple field extensions. Since every finite extension is a tower of simple extensions, we are done by induction on the length of the tower.

Definition 8.0.3. A finite field extension $L \supset K$ is a Galois extension if |Gal(L/K)| = [L:K].

Corollary 8.0.4. If $L \supset K$ is a Galois extension, then $K \subset P \subset L \implies L \supset P$ is Galois as well.

Proof. Take Q = L and apply (b) then (a).

Definition 8.0.5. If K is a field and $f(x) \in K[x]$, then we say that f is separable over K if f has no repeated roots in any finite extension of K. Equivalently, f has no repeated roots in its splitting field.

8.1 Lecture 16

Proposition 8.1.1. A polynomial $f(x) \in K[x]$ is separable over K if and only if (f, f') = 1.

Proof. If $f,g \in K[x]$, then $(f,g) \in K[x]$. Suppose there exists $L \supset K$ such that f has a multiple root in L. Then there exists an irreducible polynomial $h(x) \in L[x]$ such that $h^2 \mid f$. This implies that $f = h^2q$, so that $f' = 2hh'q + h^2q' = h(2h'q + hq')$. Hence $h \mid f'$ in L[x]. Then $h \mid (f, f')$ in L[x], making $(f, f') \neq 1$.

Conversely, suppose that $(f, f') \neq 1$. Then there exists h irreducible in K[x] such that $h \mid f'$ and $h \mid f$ in K[x]. We can write f = hg, so that f' = h'g + hg'. Either $h \mid g$ or h' = 0. In the former case, we have that $h \mid g \implies h^2 \mid f \implies f$ has a double root in L = K[x]/(h). In the latter case, we see that $\operatorname{char} K = p > 0$ and $h(x) = a_0 + a_1 x^p + a_2 x^{2p} + \dots + a_s x^{sp}$ with $a_s \neq 0$. Let $L \supset K$ be a finite field extension such that for any $i = 0, \dots, s$, we have b_i such that $b_i^p = q_i$. Then viewing $h(x) \in L[x]$, we get $h(x) = (b_0 + b_1 x + b_2 x^2 + \dots + b_s x^s)^p$ since $b_s \neq 0$. Hence if $\varphi(x)$ is an irreducible factor of $b_0 + b_1 x + \dots + b_s x^s$ in L[x], then if $F = L[x]/(\varphi)$, then φ has a root in F and h will have a root with multiplicity p in F. In this case, f has a root with multiplicity p in F.

Corollary 8.1.2. If K has char K = 0, then every irreducible $f(x) \in K[x]$ is separable.

Proof. If char K = 0, then $f \neq 0$ and f is irreducible. Since $\deg f > 0$, it follows that $f' \neq 0$. Hence (f, f') is a polynomial of degree ≥ 0 . Since f is irreducible, this means that $(f, f') \in \{1, f\}$. But $\deg f' < \deg f$, so that (f, f') = 1.

Corollary 8.1.3. If $f(x) \in K[x]$ is irreducible and char $K \nmid \deg f$, then f is separable.

Corollary 8.1.4. Every irreducible polynomial f over a finite field F is separable.

Proof. If f is irreducible and $f' \neq 0$, then apply a similar argument to the proof of Corollary 8.0.4. Suppose f' = 0. Then $f(x) = a_0 + a_1 x^p + \cdots + a_s x^{sp}$ with $p = \operatorname{char} F$. But as F is finite, we know that the Frobenius map φ is an automorphism. Thus, any element in F has a p-th root in F. Hence there exists $b_i \in F$ such that $b_i^p = a_i$. This shows that $f(x) = (b_0 + b_1 x + \cdots + b_s x^s)^p$, which contradicts that f is irreducible over F.

Example 8.1.5. There are irreducible polynomials over fields of characteristic > 0 that are not separable. For example, let $K = \mathbb{F}_p(t)$ and $f(x) = x^p - t$. This is irreducible in K[x] but not separable over K.

Indeed, if $L \supset K$ is such that f has a root α in L, then f splits in L[x]. We can write $f(x) = (x - \alpha)^p$. But if 0 < k < p, then $\alpha^k \notin K$. This shows that f is irreducible in F[x] but has a root of multiplicity p.

Theorem 8.1.6. If $f(x) \in K[x]$ and every irreducible factor of f is separable over K, then the splitting field L of f is Galois over K.

Proof. We constructed L as a tower

$$K = K_0 \subset K_1 \subset \cdots \subset K_s = L$$

where $K_{i+1} = K_i(\alpha_{i+1})$ and α_{i+1} is a root of some irreducible factor $f_{i+1}(x)$ of $f(x) \in K_i[x]$. Since f_{i+1} is irreducible in $K_i[x]$ and $f_{i+1} \mid f$ in $K_i[x]$, it follows that f_{i+1} must divide one of the irreducible factors of f(x) in K[x]. But these are separable, which implies that f_{i+1} is separable for each i. By Lemma 4.2.8, a field homomorphism $\varphi: K \to L$ extends to an isomorphism $\varphi: L \to L$ in

(# of distinct roots in f_1) · (# of distinct roots in f_2) · · · (# of distinct roots in f_{s-1})

many ways. Note that

(# of distinct roots in
$$f_1$$
) · (# of distinct roots in f_2) · · · (# of distinct roots in f_{s-1})
$$= \deg f_1 \cdot \deg f_2 \cdots \deg f_{s-1}.$$

Hence

$$|\operatorname{Gal}(L/K)| = \operatorname{deg} f_1 \cdot \operatorname{deg} f_2 \cdots \operatorname{deg} f_{s-1} = [K_1 : K_0] [K_2 : K_1] \cdots [K_s : K_{s-1}] = [L : K].$$

If $f(x) \in K[x]$ and $L \supset K$ is the splitting field for f, then let $\alpha_1, \ldots, \alpha_m$ denote the distinct roots of f in L. We have that $L = K(\alpha_1, \ldots, \alpha_m)$ and any $\varphi \in \operatorname{Gal}(L/K)$ sends $\{\alpha_1, \ldots, \alpha_m\}$ to itself. This gives us a homomorphism $\operatorname{Gal}(L/K) \to S_m$ that is injective by Lemma 4.2.8. Therefore, $\operatorname{Gal}(L/K) \subset S_m$.

Example 8.1.7.

1. Let K be a field and let $f(x) \in K[x]$ be irreducible of degree 2. Let L denote the splitting field for f(x). Then $K\left[\sqrt{D}\right]$ where $D = \operatorname{Discr}(f) \in K$. In this case, [L:K] = 2, and $\operatorname{Gal}(L/K) \subset S_2$ since $D \neq 0$. Thus, f must have distinct roots in L. Note that $\operatorname{Gal}(L/K) \neq \{\operatorname{id}\}$, since these roots are not in K. This shows that $\operatorname{Gal}(L/K) = \langle \sigma \rangle = S_2$ where $\sigma: L \to L$ is given by $a + b\sqrt{D} \mapsto a - b\sqrt{D}$.

- 2. Let $q = p^n$. Consider the extension $\mathbb{F}_q \supset \mathbb{F}_p$. Then $\operatorname{Gal}(\mathbb{F}_q/\mathbb{F}_p) = \langle \varphi \rangle \cong \mathbb{Z}/n$.
- 3. Recall that the cyclotomic field $\Gamma_n \supset \mathbb{Q}$ is the splitting field for

$$x^{n} - 1 = (x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1).$$

This polynomial has irreducible factors each of which is separable. Thus, $\Gamma_n \supset \mathbb{Q}$ is a Galois extension such that $\operatorname{Gal}(\Gamma_n/\mathbb{Q}) \subset S_{\mu_n}$. Since any $g \in \operatorname{Gal}(\Gamma_n/\mathbb{Q})$ respects multiplication in Γ_n , we see that $g \upharpoonright_{\mu_n} : \mu_n \to \mu_n$ is a group automorphism. It follows that $\operatorname{Gal}(\Gamma_n/\mathbb{Q}) \subset \operatorname{Aut}_{\mathbf{Grp}}(\mu_n) \cong (\mathbb{Z}/n)^{\times}$, which has order $\phi(n)$. We have shown that the minimal polynomial of a root of 1 over \mathbb{Q} is precisely $\Phi_n(x)$, where $\operatorname{deg} \Phi_n(x) = \phi(n)$. Hence $[\Gamma_n : \mathbb{Q}] = \phi(n)$, so that $\operatorname{Gal}(\Gamma_n/\mathbb{Q}) = (\mathbb{Z}/n)^{\times}$.

4. Suppose that char $K \notin \{2,3\}$. Let $f(x) \in K[x]$ be irreducible and monic of degree 3. Let $D \in K$ denote the discriminant of f. Let $L \supset K$ be the splitting field for f, so that $L \supset K$ is Galois. Then

$$|\operatorname{Gal}(L/K)| = \begin{cases} 6 & D \notin K^2 \\ 3 & D \in K^2 \end{cases}.$$

But $Gal(L/K) \subset S_3$. This shows that

$$\operatorname{Gal}(L/K) = \begin{cases} S_3 & D \notin K^2 \\ A_3 & D \in K^2 \end{cases}.$$

8.2 Lecture 17

Definition 8.2.1. Let k be a field and A be a finitely generated k-algebra. A collection $u_1, \ldots, u_n \in A$ is a transcendence basis of A/k if

- (i) the u_i are independent transcendentals over k and
- (ii) every $a \in A$ is algebraically dependent with $k[u_1, \ldots, u_n]$.

If A is a domain and u_1, \ldots, u_n forms a transcendence basis of A/k, then they also form a transcendence basis of $\operatorname{Frac}(A)$ over k. Observe that $x \in \operatorname{Frac}(A)$ is algebraic over $k[u_1, \ldots, u_n]$ if and only if it is algebraic over $k(u_1, \ldots, u_n)$. Then

$$S := \{x \in \operatorname{Frac}(A) \mid x \text{ is algebraic over } k[u_1, \dots, u_n]\}$$

is a subfield. But $A \subset S \subset \operatorname{Frac}(A)$, so that, by the universal property, $S = \operatorname{Frac}(A)$. Hence $\operatorname{Frac}(A)$ is algebraic over $k(u_1, \ldots, u_n)$.

Let $A = k[u_1, \ldots, u_n]$ and suppose that $\{u_1, \ldots, u_d\}$ is a maximal subset of algebraically independent elements over k in $\{u_1, \ldots, u_n\}$. Then u_1, \ldots, u_d form a transcendence basis of A/k. Indeed, K equals the algebraic closure of $k(u_1, \ldots, u_d)$ in $\operatorname{Frac}(A)$. Thus, $u_1, \ldots, u_n \in K$, so that $K = \operatorname{Frac}(A)$. It follows that $K \supset A$.

As a result, if A is a finitely generated algebra without zero divisions, then A has a transcendence basis over k. Indeed, choose any system of generators of A/k and then choose a maximal subset of algebraically independent elements.

Lemma 8.2.2. Suppose that $\{u_1, \ldots, u_n\}$ is a transcendence basis of A/k and that v is transcendental over $k[u_1, \ldots, u_n]$. Then $\{v, u_2, u_3, \ldots, u_n\}$ is also a transcendence basis of A/k.

Proof. Note that v, u_2, \ldots, u_n are algebraically independent over k whereas v, u_1, u_2, \ldots, u_n are algebraically dependent. A nontrivial algebraic relation among these will be given by a polynomial p(x) over k such that p(x) includes a monomial involving u_1 with a nonzero coefficient. Then p(x) can be viewed as a nonzero polynomial in $(k[v, u_1, \ldots, u_n])[u_1]$ with $\deg \geq 1$ on u. We have that u_1 is algebraic over $k[v, u_1, \ldots, u_n]$. Thus, the algebraic closure of $k[v, u_2, \ldots, u_n]$ in $\operatorname{Frac}(A)$ contains u_1 , hence contains A. It follows that the algebraic closure of $k[v, u_2, \ldots, u_n]$ equals $\operatorname{Frac}(A)$.

This shows that any transcendence basis of A/k has the same cardinality. Indeed, let u_1, \ldots, u_n and v_1, \ldots, v_m be transcendence bases of A/k. Then at least one of the v_i 's must be transcendental over $k[u_2, \ldots, u_n]$. This is because if each v_i is algebraic over $k[u_2, \ldots, u_n]$, then $A \supset k[u_2, \ldots, u_n]$ will be algebraic, in which case u_2, \ldots, v_m is also a basis, a contradiction.

Say that v_1 is transcendental over $k[u_2,\ldots,u_n]$. Then $A\supset k[v_1,u_2,\ldots,u_n]$ is algebraic \ldots One of v_1,\ldots,v_m must be transcendental over $k[v_1,\ldots,u_2,\ldots,u_n]$. Hence $A\supset k[v_1,v_2,u_3,\ldots,u_n]$ is algebraic. If $m\leq n$, then $A\supset k[v_1,v_2,\ldots,v_m,u_{m+1},\ldots,u_n]$ is algebraic and $v_1,v_2,\ldots,v_m,u_{m+1},\ldots,u_n$ are dependent. This is a contradiction unless n=m.

If F is a field and $\widetilde{F} \supset F$ is a field extension, then we can measure how far \widetilde{F} is from being an algebraic extension of F by its transcendence degree over F

 $\operatorname{trdeg}\left(\widetilde{F}/F\right) \equiv \operatorname{card}(\operatorname{independent} \ \operatorname{transcendentals} \ \operatorname{we} \ \operatorname{need} \ \operatorname{to} \ \operatorname{add} \ \operatorname{to} \ F \ \operatorname{to} \ \operatorname{generate} \ \widetilde{F}).$

Corollary 8.2.3. trdeg is an invariant of the extension \widetilde{F} .

Example 8.2.4. Let k be a field and a_1, a_2, \ldots, a_n be indeterminates. Let $K := k(a_1, \ldots, a_n)$. Consider $f(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \cdots + a_n \in K[x]$. Then $Gal(L/K) = S_n$ where L denotes the splitting field for f.

Proof. Let $x_1, x_2, \ldots, x_n \in L$ denote the roots of f. Then $a_i = (-1)^i \sigma_i(x_1, \ldots, x_n)$ where σ_i denotes the i-th elementary symmetric function. Hence $L = K(x_1, \ldots, x_n) = k(x_1, \ldots, x_n)$. Consider the chain of field extensions $L \supset K \supset k$. Note that $L \supset K$ is an algebraic extension and that $K \supset k$ is a transcendental extension because K is obtained from adding n independent transcendentals to K.

Since $\operatorname{trdeg}(L/k) = \operatorname{trdeg}(K/k) = n$ and $L = K(x_1, \dots, x_n)$, we see that x_1, \dots, x_n are algebraically independent over k. Therefore, there are pairwise distinct. This shows that $f(x) \in K[x]$ has distinct roots, so that $L \supset K$ is separable and thus a Galois extension. It follows that $\operatorname{Gal}(L/K) = S_n$ and

$$L^{S_n} = (k(x_1, \dots, x_n))^{S_n} = K = k(\sigma_1, \dots, \sigma_n).$$

Theorem 8.2.5 (Main theorem of Galois theory). Let $L \supset K$ be a Galois extension. Then the mappings

$$(K \subset P \subset L : P \text{ field}) \mapsto (G \leq \operatorname{Gal}(L/K))$$

$$L^G \leftrightarrow G$$

are inverse to each other.

Furthermore, if $L \supset P \supset K$, then $P \supset K$ is a Galois extension of K if and only if $Gal(L/P) \subseteq Gal(L/K)$.

Proof. Consider $K \subset P \subset L$ and $K \subset L^{\operatorname{Gal}(L/P)} \subset L$. Then $L^{\operatorname{Gal}(L/P)} \supset P$. From a theorem from two lectures ago, we have the following two results.

- (a) $[L:P] = |\operatorname{Gal}(L/P)|$ for any $K \subset P \subset L$.
- (b) $[L:L^G] = |G|$ for any $G \leq \operatorname{Gal}(L/K)$.

Therefore, $\left[K:L^{\operatorname{Gal}(L/P)}\right]\cdot [L:P]=[L:P]$, so that $\left[L^{\operatorname{Gal}(L/P)}:L\right]=1$. Hence $L^{\operatorname{Gal}(L/P)}=L$. Similarly, $\operatorname{Gal}(L/L^G)\leq G$ satisfies $\left|\operatorname{Gal}(L/L^G)\right|=|G|$, so that $\operatorname{Gal}(L/L^G)=G$.

For the second part our theorem, note that any automorphism of P/K will extend to an automorphism of L/K. This shows that the map $\{\varphi \in \operatorname{Gal}(L/K) \mid \varphi(P) \subset P\} \to \operatorname{Gal}(P/K)$ given by $\varphi \mapsto \varphi \upharpoonright_P$ is surjective. Then $P \supset K$ will be Galois if and only if the elements of $\{\varphi \in \operatorname{Gal}(L/K) \mid \varphi(P) \subset P\}$ induce [P : K] distinct elements of $\operatorname{Gal}(P/K)$.

We compute

$$\begin{split} |\mathrm{Gal}(L/P)| &= [L:P] \\ [P:K] &= \frac{[L:K]}{[L:P]} = \frac{|\mathrm{Gal}(L/K)|}{|\mathrm{Gal}(L/K)|} \\ [P:K] &= [\mathrm{Gal}(L/K):\mathrm{Gal}(L/P)] \,. \end{split}$$

Thus, $P \supset K$ is a Galois extension if and only if any element of Gal(L/K) leaves P invariant. But $P = L^{Gal(L/P)}$, and $P = P^{Gal(L/P)}$. Hence any $g \in Gal(L/P)$ satisfies

$$g(P) = g(L^{Gal(L/P)}) = L^{g Gal(L/P)g^{-1}}.$$

It follows that $g(P) = P \iff g\operatorname{Gal}(L/P)g^{-1} = \operatorname{Gal}(L/P)$.

8.3 Lecture 18

Example 8.3.1. Let K be a field with char $K \notin \{2,3\}$. Let f be an irreducible, monic, cubic polynomial over K. Let L be the splitting field for f. Let $D := \operatorname{Discr} f \in K \setminus K^2$. Then $\operatorname{Gal}(L/K) = S_3$. We get

$$L\supset L^{A_3}\supset K$$

$$\operatorname{Gal}(L/K)\trianglerighteq A_3\trianglerighteq \{e\}\,.$$

It follows that $L^{A_3} \supset K$ is Galois with $\operatorname{Gal}(L^{A_3}/K) \cong \operatorname{Gal}(L/K)/A_3 \cong C_2$. In fact, $L^{A_3} \cong K \left\lceil \sqrt{D} \right\rceil$.

Now, let p > 2 be prime. Consider the cyclotomic field $\Gamma_p \supset \mathbb{Q}$. We have that

$$\operatorname{Gal}(\Gamma_p/\mathbb{Q}) \cong (\mathbb{Z}/p)^{\times} \cong \mathbb{Z}/(p-1).$$

Let $H \subseteq \operatorname{Gal}(\Gamma_p/\mathbb{Q})$ be the unique subgroup of index 2. Then $\left[\Gamma_p^H:\mathbb{Q}\right]=2$.

Let $\langle \varphi \rangle = \operatorname{Gal}(\Gamma_p/\mathbb{Q})$. Then $\varphi \upharpoonright_{\mu_p} : \mu_p \to \mu_p$ is a group automorphism and uniquely determines φ , which in turn is uniquely determined by the image of ζ the positive p-th root of 1. Write $\varphi(\zeta) = 1\zeta^r$ for some $r \in \mathbb{Z}_{>0}$ so that $[r]_p \in \mathbb{Z}/p$ is a generator of $(\mathbb{Z}/p)^{\times}$.

Definition 8.3.2. Given $k \in \mathbb{Z}_{>0}$ and prime p > 2, define the Legendre symbol

$$\left(\frac{k}{p}\right) = \begin{cases} 1 & [k]_p \in \left(\left(\mathbb{Z}/p\right)^{\times}\right)^2 \\ -1 & [k]_p \notin \left(\left(\mathbb{Z}/p\right)^{\times}\right)^2 \end{cases}.$$

Consider $\alpha \in \Gamma_p$ given by

$$\alpha = \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \zeta^{r^{k-1}} = \zeta - \zeta^r + \zeta^{r^2} - \dots \zeta^{r^{p-2}}.$$

If $g \in \operatorname{Gal}(\Gamma_p/\mathbb{Q})$, then

$$g(\alpha) = \begin{cases} \alpha & g \in H \\ -\alpha & g \notin H \end{cases}.$$

Then $\alpha \in \Gamma_p^H$. Also, α^2 is fixed by every element of $\operatorname{Gal}(\Gamma_p/\mathbb{Q})$ and thus is rational. This implies that $\Gamma_p^H = \mathbb{Q}[\alpha]$.

Lemma 8.3.3. $\alpha^2 = (-1)^{\frac{p-1}{2}} p$, so that

$$\Gamma_p^H = \begin{cases} \mathbb{Q} \left[\sqrt{p} \right] & p \equiv 1 \mod 4 \\ \mathbb{Q} \left[\sqrt{-p} \right] & p \not\equiv 1 \mod 4 \end{cases}.$$

Proof. Let $L \supset K$ be a finite extension of fields. Then for any $u \in L$, we get a map $\operatorname{mult}_u : L \to L$, which is linear over K. Applying trace determines a K-linear map $L \to K$ given by $u \mapsto \operatorname{tr}(\operatorname{mult}_u)$. This induces a symmetric bilinear map $\langle \cdot, \cdot \rangle : L \otimes_K L \to K$ given by $u \otimes v \mapsto \operatorname{tr}(\operatorname{mult}_u \circ \operatorname{mult}_v)$. Note that if $u \neq 0$, then

$$\langle u, u^{-1} \rangle = \operatorname{tr}(\operatorname{mult}_{uu^{-1}}) = \operatorname{tr}(\operatorname{id}_L) = [L:K]$$

since $(\operatorname{char} K, [L:K]) = 1$. Now, the vector space Γ_p has a \mathbb{Q} -basis $\{1, \zeta, \zeta^2, \ldots, \zeta^{p-2}\}$. Hence $\operatorname{mult}_{\zeta^2}$ is a cyclic operator, and $\operatorname{tr}(\operatorname{mult}_1) = p-1$ and $\operatorname{tr}(\operatorname{mult}_{\zeta^k}) = -1$ for each $k = 1, \ldots, p-2$. It follows that

$$\left\langle \zeta^k, \zeta^l \right\rangle = \begin{cases} p-1 & k+l \equiv 0 \mod p \\ 1 & \text{otherwise} \end{cases}.$$

If $x = \sum_{i=0}^{p-1} x_i \zeta^i$ and $y = \sum_{i=0}^{p-1} y_i \zeta^i$ are two elements of Γ_p , then we can choose x_i and y_i such that $\sum x_i = 0$ and $\sum y_i = 0$. Thus,

$$\langle x, y \rangle = p(x_0 y_0 + \sum k = 1^{p-1} x_k y_{p-k}).$$

But $\alpha = \sum_{k=1}^{p-1} \left(\frac{k}{p}\right) \zeta^{r^{k-1}}$, so that

$$\alpha^{2} = \frac{1}{p-1} \langle \alpha, \alpha \rangle = \frac{1}{p-1} \sum_{k=1}^{p-1} p\left(\frac{k}{p}\right) \left(\frac{-k}{p}\right)$$
$$= \frac{p}{p-1} \sum_{k=1}^{p} \left(\frac{k}{p}\right) \left(\frac{-k}{p}\right)$$
$$= p\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} p.$$

Definition 8.3.4. Let $L \supset K$ be a field extension and $\alpha \in L_{\tilde{c}}$. We say that α can be expressed in radicals over K if it can be obtained from elements in K by applying +, \cdot , and $\sqrt[r]{\cdot}$, i.e., there exists a tower of subfields

$$K = K_0 \subset K_1 \subset \cdots \subset K_s \subset L$$

such that $K_{i+1} = K_i(\alpha_{i+1})$ where $\alpha_{i+1}^{r_{i+1}} \in K_i$ and $\alpha \in K_s$.

Proposition 8.3.5. If $f(x) \in K[x]$ is irreducible, $L \supset K$ is an extension, and α is a root of f(x), then α can be expressed in radicals if and only if any root of f can be expressed in radicals in the splitting field for f.

Proof. If $L_1, L_2 \supset K$ are field extensions and $\alpha_1 \in L_1$ and $\alpha_2 \in L_2$ are roots of f, then by Lemma 4.2.8 there is a unique map $\varphi : K(\alpha_1) \xrightarrow{\cong} K(\alpha_2)$ such that $\varphi(\alpha_1) = \alpha_2$. Now transport all suitable expressions by φ or φ^{-1} .

9 Solvability in radicals

Definition 9.0.1. We say that $f(x) \in K[x]$ is solvable in radicals if every root of f can be expressed in radicals over K.

This is equivalent to saying that L is a splitting field for f, then there is a tower of subfields $K = K_0 \subset K_1 \subset \cdots \subset K_s = L$ such that $K_{i+1} = K_i(\alpha_{i+1})$ where $\alpha_{i+1}^{r_i+1} \in K_i$.

Theorem 9.0.2. If K is a field with characteristic $0, f(x) \in K[x]$ is irreducible, and $L \supset K$ is the splitting field for f, then f is solvable in radicals over K if and only if Gal(L/K) is solvable.

Note 9.0.3.

- 1. A generic polynomial equation over K of deg ≥ 5 will not be solvable in radicals, since Gal $\cong S_n$.
- 2. If $f(x) \in \mathbb{Q}[x]$ is irreducible of degree 5, then f will not be solvable in radicals as soon as $\operatorname{Gal}(L/\mathbb{Q}) \in \{S_5, A_5\}$. Suppose $f \in \mathbb{Q}[x]$ is such a polynomial and let $\alpha_1, \ldots, \alpha_5$ be the roots of f. Note that $\operatorname{Gal}(L/\mathbb{Q}) \subset S_5$. Since f is irreducible, it must be separable, which means that the α_i are pairwise distinct. Hence $5 \mid |\operatorname{Gal}(L/\mathbb{Q})|$. Therefore, $\operatorname{Gal}(L/\mathbb{Q})$ must contain an element of order 5, so that $\operatorname{Gal}(L/\mathbb{Q})$ contains a 5-cycle. If we can choose f so that $\operatorname{Gal}(L/\mathbb{Q})$ contains a transposition, then $\operatorname{Gal}(L/\mathbb{Q}) = S_5$.

Choose f so that it has exactly three real roots. In this case, complex conjugation will belong to $Gal(L/\mathbb{Q})$, so that $Gal(L/\mathbb{Q}) = S_5$. Start with $x^5 - 16x = x(x-2)(x+2)(x^2+4)$, which has exact three real roots. To make this irreducible, shift its graph to obtain the polynomial $f(x) = x^5 - 16x + 2$.

9.1 Lecture 19

Theorem 9.1.1. If K is a field with characteristic 0, $f(x) \in K[x]$ is irreducible, and $L \supset K$ is the splitting field for f, then f is solvable in radicals over K if and only if Gal(L/K) is solvable.

Proof.

 (\Longleftrightarrow)

We have a series

$$G = G^{(0)} \trianglerighteq G^{(1)} \trianglerighteq \cdots \trianglerighteq G^{(s)} \trianglerighteq \{e\},$$

which we can refine to get a normal series

$$G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_r = \{e\}$$

such that $G_{i+1}/G_i \cong \mathbb{Z}/n_i$. Letting $K_i = L^{n_i}$, we have a tower

$$K = K_0 \subset K_1 \subset \cdots \subset K_r = L.$$

Let F be the cyclotomic field that contains all roots of 1 of order $n = n_1 n_2 \cdots n_r$. Consider the tower

$$KF \subset K_1F \subset \cdots \subset K_rF = LF.$$

Then $K_{n_i}F \supset K_1F$ is a cyclic extension of degree dividing n_i .

Lemma 9.1.2. Let K be a field and let n have char $K \nmid n$. Suppose that $K \supset \mu_n$.

- (a) For any $\alpha \in K$, the extension $K(\sqrt[n]{\alpha}) \supset K$ is cyclic of order dividing n.
- (b) For every $\widetilde{K} \supset K$ Galois and cyclic of order n, there exists $\alpha \in K$ such that $\widetilde{K} \cong K(\sqrt[n]{\alpha})$.

Before proving this, note that (b) implies that $K_{i+1}F \supset K_iF$ for every i.

Proof.

(a) By definition, $K(\sqrt[n]{\alpha})$ contains some root of $x^n - \alpha$. But K contains μ_n , so that $K(\sqrt[n]{\alpha})$ contains every root of $x^n - \alpha$. Thus, $K(\sqrt[n]{\alpha})$ is the splitting field for $x^n - \alpha$. Hence $K(\sqrt[n]{\alpha}) \supset K$ is Galois. If $\sigma \in \text{Gal}(K(\sqrt[n]{\alpha})/K)$, then $\sigma(\sqrt[n]{\alpha}) = \zeta_{\sigma}\sqrt[n]{\alpha}$ where ζ_{σ} is some n-th root of 1 depending on σ . Then we get a map

$$\zeta: \operatorname{Gal}(K(\sqrt[n]{\alpha})/K) \to \mu_n$$

given by $\sigma \mapsto \zeta_{\sigma}$. But since $K \supset \mu_n$, if $\sigma, \tau \in \operatorname{Gal}(K(\sqrt[n]{\alpha})/K)$, then

$$\sigma(\tau(\sqrt[n]{\alpha})) = \sigma(\zeta_{\tau} \sqrt[n]{\alpha}) = \sigma(\zeta_{\tau})\sigma(\sqrt[n]{\alpha}).$$

As $\zeta_{\tau} \in \mu_n \subset K$, we see that $\sigma(\zeta_{\tau}) = \zeta_{\tau}$. This implies that

$$\sigma(\tau(\sqrt[n]{\alpha})) = \zeta_{\tau}\zeta_{\sigma}\sqrt[n]{\alpha}.$$

But $\sigma(\tau(\sqrt[n]{\alpha})) = \zeta_{\tau\sigma} \sqrt[n]{\alpha}$ as well, so that $\zeta_{\tau\sigma} = \zeta_{\tau}\zeta_{\sigma}$. This shows that ζ is a homomorphism.

Moreover, if $\sigma \in \ker \zeta$, i.e., $\zeta_{\sigma} = 1$, then $\sigma(\sqrt[n]{\alpha}) = 1 \cdot \sqrt[n]{\alpha} = \sqrt[n]{\alpha}$. Since any $\sigma \in \operatorname{Gal}(K(\sqrt[n]{\alpha})/K)$ preserving $\sqrt[n]{\alpha}$ must be the identity, it follows that ζ is injective. As a result, we get an embedding $\operatorname{Gal}(K(\sqrt[n]{\alpha})/K) \leq \mu_n$.

(b) Suppose that $\operatorname{Gal}\left(\widetilde{K}/K\right)$ is cyclic of order $d\mid n$. We want to show that there exists $\alpha\in K$ such that $\widetilde{K}\cong K(\sqrt[d]{\alpha})$.

Let $\alpha \in \widetilde{K}$ and $\xi \in \mu_d \subset \mu_n \subset K$. The Lagrange resolvent of (α, ξ) is the element

$$\ell(\alpha,\xi) = \alpha + \xi \sigma(\alpha) + \xi^2 \sigma^2(\alpha) + \dots + \xi^{d-1} \sigma^{d-1}(\alpha)$$

of \widetilde{K} where $\sigma \in \operatorname{Gal}\left(\widetilde{K}/K\right)$ is a generator.

Note that $\sigma(\ell(\alpha,\xi)) = \xi^{-1}\ell(\alpha,\xi)$, so that $\sigma(\ell(\alpha,\xi)^2) = \xi^{-k}\ell(\alpha,\xi)^k$.

Suppose that ξ is a primitive d-th root of unity. We see that $\operatorname{id} + \xi \sigma + \xi^2 \sigma^2 + \dots + \xi^{d-1} \sigma^{d-1}$ is a linear combination of operators $L \to L$ viewed as a K-vector space. But in $\operatorname{End}_K\left(\widetilde{K}\right)$ the generators are linearly independent. Therefore, module this statement, we have that

$$\sum_{k=0}^{d-1} \xi^k \sigma^k \neq 0$$

in End_K (\widetilde{K}) . Hence there exists $\alpha \in \widetilde{K}$ such that $\ell(\alpha, \xi) = \sum_{k=0}^{d-1} \xi^k \sigma^k(\alpha) \neq 0$. But for each $i = 0, \ldots, d-1$, we see that $\sigma^i(\ell(\alpha, \xi)) = \xi^{-i}\ell(\alpha, \xi)$. This implies that

$$\ell(\alpha,\xi), \ \sigma(\ell(\alpha,\xi)), \ \sigma^2(\ell(\alpha,\xi)), \ \dots, \ \sigma^{d-1}(\ell(\alpha,\xi))$$

are pairwise distinct in \widetilde{K} . Therefore, $\ell(\alpha,\xi) \in \widetilde{K}$ does not belong to any proper subfield of \widetilde{K} . It follows that $\widetilde{K} = K(\ell(\alpha,\xi))$. But $\sigma(\ell(\alpha,\xi)^d) = \underbrace{\xi^{-1}}_{} \ell(\alpha,\xi)^d = \ell(\alpha,\xi)^d$. Hence

$$\ell(\alpha, \xi)^d = \widetilde{K}^{\operatorname{Gal}(\widetilde{K}/K)} = K.$$

This proves our lemma modulo the statement that id, σ , σ^2 , ..., σ^{d-1} are linearly independent linear operators.

Note 9.1.3. The σ^i belong to $\operatorname{End}_K\left(\widetilde{K}\right)$ and commute with each other. They can be simultaneously diagonalized over $L\supset K$ the splitting field for $f(x)=\det(\sigma-x\cdot\operatorname{id})$. Writing a linear combination of the σ^i and evaluating it on a basis of eigenvectors will produce a homogenous linear system with a Vandermonde coefficient matrix. Then one needs to show that σ has distinct eigenvalues.

 (\Longrightarrow)

See Section 9.2.

9.2 Lecture 20

Definition 9.2.1. If G is a group and k a field, then a k-character of G is a group homomorphism $\chi: G \to \mathrm{GL}_1(k) = k^{\times}$.

Each k-character χ of G can be viewed as a function with values in k.

Lemma 9.2.2 (Dedekind). If χ_1, \ldots, χ_s are pairwise distinct k-characters of G, then they are linearly independent in $\operatorname{Fun}(G,k)$.

Proof. We induct on s. If s=1, then χ_1 must be linearly independent since $\chi_1 \neq 0$. Suppose, inductively, that any collection $\sigma_1, \ldots, \sigma_t$ of characters with $t \leq s$ is linearly independent. Suppose that χ_1, \ldots, χ_s are linearly dependent. Then there are $a_1, \ldots, a_s \in k$ such that $a_1\chi_1 + \cdots + a_s\chi_s$ is the zero function. By our IH, each a_i must be nonzero, say, a_s . Let $b_i = -\frac{a_i}{a_s}$. Then

$$\sum_{i=1}^{s-1} b_i \chi_i = \chi_s.$$

If $g, h \in G$, then

$$\chi_s(h)\chi_s(g) = \sum_{i=1}^{s-1} b_i \chi_i(h)\chi(g),$$

in which case $\chi_s(g) = \sum_{i=1}^{s-1} (b_i \frac{\chi_i(h)}{\chi_s(h)}) \chi_i(g)$. Fix $h \in G$, so that

$$\chi_s = \chi_s = \sum_{i=1}^{s-1} (b_i \frac{\chi_i(h)}{\chi_s(h)}) \chi_i$$

and $\chi_s = \sum_{i=1}^{s-1} b_i \chi_i$. It follows that $0 = \sum_{i=1}^{s-1} (b_i \frac{\chi_i(h)}{\chi_s(h)} - b_i) \chi_i$. By our IH, we see that $b_i \frac{\chi_i(h)}{\chi_s(h)} - b_i = 0$. But $b_i \neq 0$ for any i. We have that $\chi_i(h) = \chi_s(h)$ for any $i = 1, \ldots, s-1$. This proves that $\chi_i = \chi_s$ for any $i = 1, \ldots, s-1$. This contradicts the assumption that the χ_1, \ldots, χ_s are pairwise distinct. \square

Definition 9.2.3. If $K_1, K_2 \subset L$, then the *composite of* K_1 *and* K_2 *in* L is the field

$$K_1K_2 = \bigcap \left\{ P \mid P \subset L, K_1, K_2 \subset P \right\}.$$

Let K_1 and K_2 be finite extensions of k, so that $K_1 = k(a_1, \ldots, a_s)$ and $K_2 = k(b_1, \ldots, b_t)$. Then the field $k(a_1, \ldots, a_s, b_1, \ldots, b_t)$ both contains K_1K_2 and is contained in some L such that $K_1, K_2 \subset L$. Hence

$$K_1K_2 = k(a_1, \ldots, a_s, b_1, \ldots, b_t).$$

Lemma 9.2.4. Suppose that K and F are two finite field extensions of k. Then

- (a) If $K \supset k$ is Galois, then so is $KF \supset F$.
- (b) $Gal(KF/F) = Gal(K/K \cap F)$.

Proof.

- (a) If $K \supset k$ is Galois, then K is the splitting field of some separable polynomial $f(x) \in k[x]$. Thus, KF is the splitting field of f(x) viewed over F. But if f is separable over k, then it is separable over F. Therefore, $KF \supset F$ is Galois.
- (b) Consider the tower of extensions $k \subset K \subset KF$. The main theorem of Galois theory says that $\operatorname{Gal}(K/k) \leq \operatorname{Gal}(KF/k)$ since $K \supset k$ is assumed to be Galois. Thus, if $\sigma \in \operatorname{Gal}(KF/k)$, then $\sigma(K) \subset K$. Indeed, $\sigma(K) = K$ as a subfield in KF if and only if $\sigma(K) = (KF)^{\operatorname{Gal}(KF/K)}$. Let $g \in \operatorname{Gal}(KF/K) \subset \operatorname{Gal}(KF/k)$. Then g(x) = x for any $x \in K$.

Let $x \in K$. Consider $\sigma(x) \in KF$. We must show that $g(\sigma(x)) = \sigma(x)$ for any $g \in \operatorname{Gal}(KF/K)$, i.e., $(\sigma^{-1}g\sigma)(x) = x$ for any g. But since $\sigma^{-1}g\sigma \in \sigma^{-1}\operatorname{Gal}(KF/K)\sigma$, we see that $\sigma^{-1}g\sigma(x) = x$ for any $x \in K$. Hence we get a natural homomorphism $\rho : \operatorname{Gal}(KF/F) \to \operatorname{Gal}(K/K)$ given by $\sigma \mapsto \sigma \upharpoonright_K$. Note that

$$\ker \rho = \{ \sigma \in \operatorname{Gal}(KF/F) \mid \sigma \upharpoonright_K = \operatorname{id}_K \}$$
$$= \{ \sigma \in \operatorname{Gal}(KF/k) \mid \sigma \upharpoonright_K = \operatorname{id}_K, \ \sigma \upharpoonright_F = \operatorname{id}_F \} .$$

But KF is generated by K and F, so that $\sigma = \mathrm{id}_{KF}$. This shows that $\ker \rho = \{\mathrm{id}_{KF}\}$. We see that $\mathrm{Gal}(KF/F) \subset \mathrm{Gal}(K/k)$.

Let $H := \operatorname{im} \rho \subset \operatorname{Gal}(K/k)$ and consider its fixed subfield K^H . Note that (b) is equivalent to saying that $K^H - K \cap F$. We have that $K^H \supset K \cap F$ because $K^H = \{x \in K \mid (\forall \sigma \in \operatorname{Gal}(KF/F)) \ (\sigma(x) = x)\}$. Moreover, if we view K^H as subfield of KF, then $k \subset K^H \subset KF$ and $k \subset F \subset KF$. Since $\operatorname{Gal}(KF/F)$ fixes K^H and F (pointwise), it follows that $\operatorname{Gal}(KF/F)$ fixes K^HF . Therefore, $K^HF \subset KF^{\operatorname{Gal}(KF/F)} = F$, so that $K^H \subset H$. This proves that $K^H \subset F \cap K$.

49

Corollary 9.2.5. If both K and F are Galois field extensions of k, then

is a lattice of Galois field extensions.

Theorem 9.2.6. If K is a field with characteristic $0, f(x) \in K[x]$ is irreducible, and $L \supset K$ is the splitting field for f, then f is solvable in radicals over K if and only if Gal(L/K) is solvable.

Proof.

 (\Longleftrightarrow)

This was proven in Section 9.1.

 (\Longrightarrow)

For any root α of f, we can find an extension $K_{\alpha} \supset K$ such that $\alpha \in L_{\alpha} \subset L$ and there exists a tower of radical extensions

$$K = K_0 \subset K_1 \subset \cdots \subset K_s = K_\alpha \subset L$$

with $K_{i+1} = K_i(\alpha_{i+1})$ and $\alpha_{i+1}^{n_{i+1}} \in L_i$.

Claim. Without loss of generality, we may assume that K_{α} satisfies the following properties.

- $\alpha \in K_{\alpha}$.
- $K_{\alpha} \supset K$ is Galois.
- Each step of K_{α} (viewed as our tower of radical extensions) is Galois and cyclic.

Proof. Since $K_{\alpha} \supset K$ is a finite extension, we can find a K-basis e_1, \ldots, e_n of K_{α} . Let $f_i \in K[x]$ denote the minimal polynomial of e_i . Let S_i denote the splitting field of f_i . Then $S_i \supset K$ is a Galois extension and contains e_i . Note that the composite of the S_i contains each e_i . Let $L_{\alpha} = S_1 S_2 \cdots S_n$. Then $K \subset K_{\alpha} \subset L_{\alpha}$. (We call L_{α} the Galois closure of K_{α} .) Consider the tower $K = K_0 \subset K_1 \subset \cdots \subset K_s = K_{\alpha}$ where $K_{i+1} \supset K_i$ is a radical extension of degree n_i . If $\sigma \in \operatorname{Gal}(L_{\alpha}/K)$, then $K = \sigma K \subset \sigma K_1 \subset \cdots \subset \sigma K_{\alpha}$ is still a tower of radical extensions.

By taking the composites $K_1 \sigma K_1 \subset \cdots \subset K_1 \sigma K_s$ and $K_2 K_1 \sigma K_1 \cdots$, we get a composite of all $\{\sigma K\alpha\}_{\sigma \in \operatorname{Gal}(L_{\alpha}/K)}$, which will be a tower of radical extensions. But $K \subset \prod_{\sigma} \sigma K_{\alpha} \subset L_{\alpha}$, and L_{α} is generated by all σK_{α} . Hence $L_{\alpha} = \prod_{\sigma} \sigma K_{\alpha} = L$.

We still must prove that each step in our radical tower is Galois and cyclic. Let $n = n_1 n_2 \cdots n_k$. Let $F = K[\mu_n]$. If the tower $K = K_0 \subset K_1 \subset \cdots \subset K_t = L_\alpha$ has $K_i = K_{i-1} \begin{bmatrix} \frac{n_i}{\sqrt[n]} a_i \end{bmatrix}$, then we can pass to composites

$$K \subset K_0F \subset K_1F \subset \cdots \subset K_tF = L_\alpha F.$$

We see that $LF \supset K$ is radical and Galois as the splitting field for $x^n - 1$ and that $K_iF \supset K_{i+1}F$ is radical of degree n_i and contains μ_{n_i} . Thus, $K_iF \supset K_{i+1}F$ is Galois and cyclic of degree dividing n_i by Lemma 8.3.3(a).

We have constructed an extension $LF \supset K$ such that

- $\alpha \in LF$,
- $LF \supset L$ is Galois, and
- LF is a tower of radical, cyclic, Galois extensions.

It follows that $\operatorname{Gal}(LF/K)$ is solvable. But $LF \supset L \supset K$ where $L \supset K$ is Galois. Hence $\sigma(L) \subset L$ for any $\sigma \in \operatorname{Gal}(LF/K)$, so that $\operatorname{Gal}(L/K) < \operatorname{Gal}(LF/K)$. This proves that $\operatorname{Gal}(L/K)$ is solvable. \square

9.3 Lecture 21

Definition 9.3.1. Let K be a field and $f(x) \in K[x]$. We say that f is solvable in quadratic radicals if the splitting field L for f is a tower

$$K = K_0 \subset K_1 \subset \cdots \subset K_s = L$$

such that $K_i = K_{i-1} \left[\sqrt{a_i} \right]$ for some $a_i \in K_{i-1}$.

Theorem 9.3.2. Let K be a field with char $K \neq 2$ and $f(x) \in K[x]$ be irreducible. Then f is solvable in quadratic radicals if and only if $[L:K] = 2^n$ for some n where L denotes the splitting field for f.

Proof.

 (\Longrightarrow)

We have that $L \supset K$ is a tower of quadratic extensions. Hence $[L:K] = 2^n$ for some n.

 (\Longleftrightarrow)

We have that $[L:K]=2^n$ for some $n \geq 0$ and $\deg f = [K(\alpha):K] \mid [L:K]$ where α is a root of f(x). Thus, $[K(\alpha):K]$ equals a power of 2, so that f is separable. This shows that $L \supset K$ is Galois and thus that $G := \operatorname{Gal}(L/K)$ has order 2^n . It follows that there is some normal series

$$G = G^0 \triangleright G^1 \triangleright \cdots \triangleright G^s = \{e\}$$

such that $G^i/_{G^{i+1}} \cong \mathbb{Z}/2$. This induces a tower of field extensions

$$K = L^{G^0} \subset L^{G_1} \subset \dots \subset L^{G_s} = L$$

such that $[L^{G^{i+1}}:L^{G_i}]=2.$

Note 9.3.3 (The construction problem). Given a unit measure and segments of lengths a_1, \ldots, a_k , we want to construct a segment of length α using ruler and compass. Elementary geometry shows that such a construction is possible if and only if α can be expressed in quadratic radicals over $\mathbb{Q}(a_1, \ldots, a_k)$. If α is transcendental over $\mathbb{Q}(a_1, \ldots, a_k)$, then our construction is impossible.

Example 9.3.4. We see that π cannot be constructed over \mathbb{Q} , i.e., we cannot square the circle.

Moreover, if α is algebraic over $\mathbb{Q}(a_1,\ldots,a_k)$, then α can be constructed by Theorem 9.3.2 if and only if the minimal polynomial of α has degree power of 2.

Example 9.3.5.

- (a) <u>Doubling the cube.</u> Given a segment of length one, construct a segment of length $\sqrt[3]{2}$. Since the minimal polynomial of $\sqrt[3]{2}$ is $x^3 2$, such a construction is impossible.
- (b) Trisecting an angle φ . Given a segment of length $\cos \varphi$, construct a segment of length $\cos \left(\frac{\varphi}{3}\right)$. The minimal polynomial of $\cos \left(\frac{\varphi}{3}\right)$ over $\mathbb{Q}(\cos \varphi)$ is $4x^3 3x \cos \varphi$. In general, this is irreducible, in which case our construction is impossible.
- (c) Constructing regular n-gons. Given a segment of length i, construct a segment of length $\cos\left(\frac{2\pi}{n}\right)$. This is possible if and only if $e^{\frac{2\pi i}{n}}$ is expressible in quadratic radicals over \mathbb{Q} . In turn, this happens if and only if

$$\underbrace{\left[\Gamma_n:\mathbb{Q}\right]}_{\varphi(n)}=2^s.$$

For example, if p is prime, then we can construct a regular p-gon if and only if $1 + 2^k$ for some k. Currently, the largest known such p is 65,537.

10 Further applications of Galois theory

10.1 Lecture 22

To begin, note that the following statements are true.

- If $f(x) \in \mathbb{R}[x]$ has odd degree, then it has a real root.
- Every $\alpha \in \mathbb{C}$ has a square root in \mathbb{C} .

Now, suppose that $K \supseteq \mathbb{R}$ is a finite field extension. If $[K : \mathbb{R}]$ is odd and $\alpha \in K \setminus \mathbb{R}$, then $K \supset \mathbb{R}(\alpha) \supset \mathbb{R}$, in which case $\deg f \mid [K : \mathbb{R}]$ where f denotes the minimal polynomial of α over \mathbb{R} . In this case, f has odd degree and thus has a root in \mathbb{R} , so that $\mathbb{R}(\alpha) = \mathbb{R}$, a contradiction. This proves that $[K : \mathbb{R}]$ is odd.

We want to prove the fundamental theorem of algebra: that any $f(x) \in \mathbb{C}[x]$ has a root in \mathbb{C} . Note that if c is a complex root of $f(x)\overline{f(x)} \in \mathbb{R}[x]$, then either c or \overline{c} is a root of f(x). Thus, it suffices to show that any polynomial over \mathbb{R} has a root in \mathbb{C} .

To this end, let $g(x) \in \mathbb{R}[x]$ be non-constant and irreducible. Let L denote the splitting field for g. Then $[L:K] = |\operatorname{Gal}(L/\mathbb{R})|$ is even, so that there is some nontrivial 2-Sylow subgroup $H \leq \operatorname{Gal}(L/\mathbb{R})$. This means that the intermediate extension $L \supset L^H \supset \mathbb{R}$ has odd degree. But then $L^H = \mathbb{R}$. This means that $L \supset L^H$ is Galois, so that

$$[L:\mathbb{R}] = [L:L^H] = |Gal(L/L^H)| = |H| = 2^n$$

for some n. By Theorem 9.3.2, it follows that g(x) is solvable in quadratic radicals. Therefore, $L = \mathbb{C}$ since $[\mathbb{C} : \mathbb{R}] = 2$.

Theorem 10.1.1 (Primitive element theorem). Suppose that $L \supset K$ is a finite field extension. This has a primitive element, i.e., $L = K(\theta)$ for some $\theta \in L_j$, if and only if there are at most finitely many intermediate fields $K \subset F \subset L$.

Proof. If K is finite, then L is a finite group with cyclic multiplicative group $\langle \theta \rangle$. In this case, we have shown that $L = K(\theta)$.

 (\Longleftrightarrow)

For any $\alpha, \beta \in L$, consider the collection of intermediate fields

$$K \subset K(\alpha + c\beta) \subset L$$

where $c \in K$. Thus, $\exists c, c' \in K$ such that $E := K(\alpha + c\beta) = K(\alpha + c'\beta)$. Hence $(c - c')\beta \in E$, and $c - c' \in K \setminus \{0\}$. Then $\beta \in E$, so that $\alpha \in E$. This shows that $E \supset K(\alpha, \beta)$. It's clear that $E \subset K(\alpha, \beta)$. Hence $E = K(\alpha, \beta)$. But $E \supset K$ is a finite extension, which implies that $E \supset K(\alpha, \beta)$ for some $\alpha_1, \ldots, \alpha_n$. By indiction on $E \subset K$, we can find elements $E \subset K$ such that

$$K(\alpha_1, \dots, \alpha_n) = K(\alpha_1 + c_2\alpha_2 + c_3\alpha_3 + \dots + c_n\alpha_n).$$

 (\Longrightarrow)

We have that $L = K(\theta)$. Let $f(x) \in K[x]$ denote the minimal polynomial of θ over K. Let $K \subset F \subset L$ be an intermediate field extension. Let $g_F(x) \in F[x]$ denote the minimal polynomial over F. This proves that $g_F(x) \mid f(x)$ in F[x]. We get a map

(intermediate field extensions
$$K \subset F \subset L$$
) \rightarrow (divisors of $f(x)$)

given by $F \mapsto g_F(x)$. Since there are at most finitely many divisors of f(x), it suffices to check that this map is injective.

Suppose that $K \subset F \subset L$. Let $F_0 \subset F$ be the subfield obtained from K by adjoining the coefficients of $g_F(x)$. It is enough to show that $F_0 = F$. Note that $g_F(x)$ is irreducible in F[x], so that $g_F(x)$ is irreducible in $F_0[x]$ Therefore, $g_F(x) \in F_0[x]$, which means that $g_F(x)$ is the minimal polynomial of θ over F_0 . Then $[L:F_0] = \deg g_F = [L:F]$, so that $F_0 = F$.

Corollary 10.1.2. If $L \supset K$ is a (finite) separable extension, then L has a primitive element.

Proof. It suffices to show that if $\alpha, \beta \in L$ are separable over K, then $K(\alpha, \beta) = K(\theta)$ for some θ . If K is finite, then we're done. Suppose that K is infinite. Let $\varphi_1, \ldots, \varphi_n$ denote the distinct embeddings of $K(\alpha, \beta)$ in \overline{K} over K. Consider

$$f(x) = \prod_{i \neq j} (\varphi_i(\alpha) + x\varphi_i(\beta) - \varphi_j(\alpha) - x\varphi_j(\beta)).$$

Since this is not the zero polynomial, there is some $c \in K$ such that $f(c) \neq 0$. It follows that the $\varphi_i(\alpha + c\beta)$ are pairwise distinct in \overline{K} . Then $[K(\alpha + c\beta) : K] \geq n$. But $[K(\alpha, \beta) : K] = n$, so that $K(\alpha, \beta) = K(\alpha + c\beta)$.

Let K be a field and $f(x) \in K[x]$ be a monic separable polynomial. Let L denote the splitting field of f, so that $L \supset K$ is Galois. Let $G_f := \operatorname{Gal}(L/K) \subset S_n$ where $n = \deg f$. Let $\operatorname{char} K \neq 2$.

Theorem 10.1.3. $L^{G_f \cap A_n} = K(\Delta(f))$ where $\Delta(f) = \prod_{i < j} (\lambda_i - \lambda_j)$ and $\lambda_1, \ldots, \lambda_n$ denote the distinct roots of f.

Before proving this, note that $\Delta(f)$ is a square root of $\mathrm{Discr}(f) \in K$.

Proof. Consider x_1, \ldots, x_n purely transcendental elements over K. Let $K(x_1, \ldots, x_n) \supset K$ be the corresponding extension. There is a group homomorphism $\Phi: S_n \to \operatorname{Gal}(K(x_1, \ldots, x_n)/K)$ given by $\sigma \mapsto \Phi_{\sigma}$ where

$$\Phi_{\sigma}(f)(x_1,\ldots,x_n) = f(x_{\sigma^{-1}(1)},\ldots,x_{\sigma^{-1}(n)}).$$

This is injective, and $K(x_1,\ldots,x_n)^{S_n}=K(\sigma_1,\ldots,\sigma_n)$ where $\sigma_1,\ldots,\sigma_n\in K[x_1,\ldots,x_n]$ are the alternating symmetric polynomials. Further, $\mathrm{Gal}(K(x_1,\ldots,x_n)/K(\sigma_1,\ldots,\sigma_n))=S_n$. Let $\Delta_n=\prod_{i< j}(x_i-x_j)\in K(x_1,\ldots,x_n)$. Then $\Phi_{\sigma}(\Delta_n)=\mathrm{sgn}(\sigma)\Delta_n$, and $\Delta_n\notin K(\sigma_1,\ldots,\sigma_n)$.

Define ev: $K(x_1, \ldots, x_n) \to L$ by $x_i \mapsto \lambda_i$. Then ev $\circ \Phi_{\sigma} = \sigma^{-1} \circ \text{ev}$. Thus,

$$\operatorname{ev}(\Delta(f)) = \operatorname{ev}(\Phi_{\sigma}(\Delta_n)) = \sigma^{-1}(\Delta(f)).$$

This shows that the subgroup in G_f fixing $\Delta(f)$ is precisely $G_f \cap A_n$.

Corollary 10.1.4. If char $K \neq 2$ and f(x) is monic and separable over K, then $G_f \subset A_n$ if and only if $\operatorname{Discr}(f) \in K^2$.

10.2 Lecture 23

Theorem 10.2.1. Suppose that K is a field and $f(x) \in K[x]$ is separable. Then f is irreducible if and only if the Galois group G_f acts transitively on the set of roots of f.

Proof.

 (\Longrightarrow)

For any two roots λ_i, λ_j of f, we have that $K(\lambda_I) \cong K(\lambda_j)$ as fields over K because both $\operatorname{ev}_{\lambda_i} : K[x] \to K(\lambda_i)$ and $\operatorname{ev}_{\lambda_j} : K[x] \to K(\lambda_j)$ induces isomorphisms with K[x]/(f). By Lemma 4.2.8, we

can extend this isomorphisms to an automorphism $\sigma: L \to L$ of the splitting field L for f. Thus, $\sigma \in \operatorname{Gal}(L/K)$ with $\sigma(\lambda_i) = \lambda_j$.

 (\Longleftrightarrow)

Let $\{\lambda_1, \ldots, \lambda_n\}$ denote the set of roots of f. Let f(x) = g(x)h(x) where $\deg g \geq 1$ and g is irreducible. We must show that h is constant. Let λ be any root of g. Then there exists $\sigma_i \in G_f$ such that $\sigma_i(\lambda) = \lambda_i$ for each $i = 1, \ldots, n$. Note that

$$g(\lambda_i) = g(\sigma_i(\lambda)) = \sigma_i(g(\lambda)) = 0,$$

so that each λ_i is a root of g. Hence $f \mid g$, which implies that h is constant.

Theorem 10.2.2. Suppose that p is prime and that $f(x) \in \mathbb{Q}[x]$ is monic and irreducible with $\deg f = p$. Suppose that f has exactly two non-real roots in \mathbb{C} . Then $G_f = S_p$.

Proof. Let L be the splitting field for f(x). Write $f(x) = \prod_{i=1}^{p} (x - x_i)$ with each $\lambda_i \in \mathbb{C}$. Then $\mathbb{Q}(\lambda_1, \ldots, \lambda_p) \subset \mathbb{C}$. We see that

$$\mathbb{Q} \subset \mathbb{Q}(\lambda_i) \subset \mathbb{Q}(\lambda_1, \dots, \lambda_p) \subset \mathbb{C},$$

so that $[\mathbb{Q}(\lambda_i):\mathbb{Q}] \mid [L:\mathbb{Q}]$. Since $p \mid [L:\mathbb{Q}] = |G_f| \subset S_p$, it follows from Sylow that G_p contains an element of order p, i.e., that G_f contains a p-cycle. Also, the element in G_f that switches the roots is the complex conjugate pair of a transposition.

Theorem 10.2.3 (Brouwer). For any prime $p \geq 5$, there are infinitely many polynomials in $\mathbb{Q}[x]$ of degree p with Galois group S_p .

Proof. Let k be an odd integer and let $0 \le m, n_1 \le n_2 < \cdots < n_{k-2}$ be even integers. Consider

$$g(x) = (x^2 + m) (x - n_1) (x - n_2) \cdots (x - n_{k-2}).$$

This polynomial has $\frac{k-3}{2}$ local maxima. Also, for each odd $h \in \mathbb{Z}$, |g(h)| > 2. Hence if c denotes a local maximum of g, then g(c) > 2. This shows that if f(x) = g(x) - 2, then there are

- $\frac{k-3}{2}$ positive local maxima in $[n_1, n_{k-2}]$ and
- $\frac{k-3}{2}$ negative local maxima in $[n_1, n_{k-2}]$.

It follows that f(x) has k-3 real roots in $[n_1, n_{k-2}]$ with $f(n_{k-2}) = -2$ and $\lim_{x\to\infty} f(x) > 0$. Therefore, we have another real roots $> n_{k-2}$. Hence f(x) has at least k-2 real roots. Let $\lambda, \ldots, \lambda_n \in \mathbb{C}$ denote the distinct roots of f. Then

$$\prod_{i=1}^{k} (x - \lambda_i) = f(x) = (x^2 + m) (x - n_1) (x - n_2) \cdots (x - n_{k-2}) - 2$$

, and $-\sum_{i=1}^k \lambda_i = -\sum_{i=1}^{k-2} n_i$. From this, we compute

$$\begin{split} \sum_{i < j} \lambda_i \lambda_j &= m + \sum_{a < b} n_a n_b \\ \sum_{i = 1}^k \lambda_i^2 &= \left(\sum_{i = 1}^k \lambda_i\right)^2 = \sum_{i < j} \lambda_i \lambda_j \\ &= \left(\sum_{i = 1}^{k - 2} n_i\right)^2 - 2m - 2\left(\sum_{a < b} n_a n_b\right) \\ &= \sum_{i = 1}^{k - 2} n_i^2 - 2m. \end{split}$$

Choose $m \gg \sum n_i^2$ so that $\sum_{i=1}^k \lambda_i^2 < 0$. This implies that there exists a non-real root. Hence we must have exactly two real roots. Further, we can write $f(x) = x^k + a_1 x^{k-1} + \cdots + a_{k-1} x + a_k$ with each $a_i \in 2\mathbb{Z}$. Since $a_k = f(0) = g(0) - 2$, we see that $2 \mid a_{k-1}$ but $4 \nmid a_{k-1}$. By Eisenstein's criterion, f must be irreducible. We thus get infinitely many f's such that $G_f = S_p$.

11 Chain complexes and chain maps

The originators of homological algebra include Betti, Poincaré, and Riemann. The main goal of this subject is to extract invariants from topological spaces. Decompose X into contractible pieces (such as cells or simplices) to reduce X to combinatorial data. Specifically, reduce X to a collection of pieces of various dimensions where the boundary of a piece of dimension n is glued to a sub-collection of pieces of dimension n-1.

Emmy Noether introduced groups of chains $C_i(X)$, a free abelian group generated by the collection of *i*-dimensional pieces, equipped with boundary relations $\partial_i: C_i(X) \to C_{i-1}(X)$. From this, we obtain abelian groups $H_i(X) \equiv \ker \partial_i /_{\text{im } \partial_{i+1}}$, which are algebraic invariants of X.

Hilbert wanted to extract numerical invariants from a module. Specifically, if k is a field and $K := k[x_1, \ldots, x_n]$, then he wanted to understand the complexity of a module over K (or, more generally, any graded module over k).

A typical graded module over R will be a module of the form MR/I where $I \subseteq R$ is a homogeneous ideal. By the Hilbert basis theorem, $I \subseteq R$ is generated by finitely many homogeneous polynomials $f_1, f_2, \ldots, f_{r_0}$. Thus, we have surjective map $\psi: R^{\oplus r_o} \to I$ given by $(a_1, \ldots, a_{r_0}) \mapsto \sum a_i f_i$. But, there generators are not, in general, independent. Therefore, we consider the module of relations $Z_0(I) \equiv \ker \psi$ among the f_i . Note that $Z_0(I)$ is finitely generated. We can choose generators and get a map $\psi': R^{\oplus r_1} \to Z_0(I)$. Then

$$R^{\oplus r_1} \to R^{\oplus r_0} \to I \to 0$$

is an exact sequence of graded R-modules. If $Z_1(I) \equiv \ker \psi'$ is not zero, then choose generators again to get a map $\psi'': R^{\oplus r_2} \to Z_1(I)$. Continuing in this way, we get an exact sequence

$$\cdots \to R^{\oplus r_2} \to R^{\oplus r_1} \to R^{\oplus r_0} \to I \to 0.$$

The length of this sequence is defined to be $\max\{i \mid r_i \neq 0\}$. This is an invariant of I and of R/I.

Theorem 11.0.1 (Hilbert's syzygy theorem). Hilbert's syzygy theorem states that $Z_{n-1}(I)$ is free, i.e., that there is an exact sequence of graded R-modules

$$0 \to R^{\oplus r_n} \to R^{\oplus r_{n-1}} \to \cdots \to R^{\oplus r_0} \to I \to 0.$$

11.1 Lecture 24

Definition 11.1.1.

1. A chain complex (in **Ab**) is a pair $(M_{\bullet}, \partial_{\bullet})$ where $M_{\bullet} = \{M_i\}_{i \in \mathbb{Z}}$ is a set of abelian groups and $\partial_{\bullet} = \{\partial_i\}_{i \in \mathbb{Z}}$ is a set of morphisms in **Ab** such that the *i-th differential* $\partial_i : M_i \to M_{i-1}$ satisfies $\partial_{i-1} \circ \partial_i = 0$.

We call $Z_n \equiv \ker \partial_n$ the group of degree n cycles and $B_n \equiv \operatorname{im} \partial_{n+1}$ the group of degree n boundaries. Finally, we call $H_n \equiv Z_n/B_n$ the degree n homology group.

2. A ((co)chain) complex (in \mathbf{Ab}) is a pair $(M^{\bullet}, d^{\bullet})$ where $M^{\bullet} = \{M^{i}\}_{i \in \mathbb{Z}}$ is a set of abelian groups and $d^{\bullet} = \{d^{i}\}_{i \in \mathbb{Z}}$ is a set of morphisms in \mathbf{Ab} such that the *i-th differential* $d^{i}: M^{i} \to M^{i+1}$ satisfies $d^{i+1} \circ d^{i} = 0$.

We call $Z^n \equiv \ker d^n$ the group of degree n cocycles and $B^n \equiv \operatorname{im} d^{n-1}$ the group of degree n coboundaries.

Finally, we call $H^n \equiv Z^n/B^n$ the degree n cohomology group.

Definition 11.1.2. Let (A^{\bullet}, d_A^i) and (B^{\bullet}, d_B^i) be complexes. A chain map $f^{\bullet}: (A^{\bullet}, d_A^{\bullet}) \to (B^{\bullet}, d_B^{\bullet})$ consists of group homomorphisms $f^i: A^i \to B^i$ for each $i \in \mathbb{Z}$ such that $d_B^i \circ f^i = f^{i+1} \circ d_A^i$.

Note 11.1.3.

- 1. Any chain map $f^{\bullet}: (A^{\bullet}, d_A^{\bullet}) \to (B^{\bullet}, d_B^{\bullet})$ restricts term-wise to maps $f^i: Z^i(A^{\bullet}) \to Z^i(B^{\bullet})$ and maps $f^i: B^i(A^{\bullet}) \to B^i(B^{\bullet})$. Thus, it induces a map $f^*: H^i(A^{\bullet}) \to H^i(B^{\bullet})$.
- 2. We have a natural isomorphism $\mathbf{Ch}(\mathbf{Ab}) \to \mathbf{CoCh}(\mathbf{Ab})$ given by $N_i \mapsto M^{-i}$ and $\partial_i \mapsto d^{-i}$.

Definition 11.1.4. We say that $(A^{\bullet}, d^{\bullet})$ is bounded above if there is some N such that $A^n = 0$ for any $n \geq N$. We define bounded below similarly. We say that $(A^{\bullet}, d^{\bullet})$ is bounded if it is both bounded above and bounded below.

As a result, we have the subcategories $CoCh^{-}(Ab)$, $CoCh^{+}(Ab)$, and $CoCh^{b}(Ab)$, respectively.

If $C^{\bullet} = \bigoplus_{i \in \mathbb{Z}} C^i$ is a graded abelian group, then it induces a natural complex $(\underline{C}^{\bullet}, 0)$ where $\underline{C}^i \equiv C^i$. In particular, any abelian group may be viewed as a complex.

Conversely, given a complex $(M^{\bullet}, d^{\bullet})$, we can form the graded abelian group $M^{\bullet} \equiv \bigoplus_{i \in \mathbb{Z}} M^i$ and package the differential d^i into a single group map $D: M^{\bullet} \to M^{\bullet}$ such that $D \upharpoonright_{M^i} = d^i$ and $D^2 = 0$.

We can write D as the block diagonal matrix

$$\begin{bmatrix} 0 & & & & & \\ d^i & 0 & & & & \\ & d^{i+1} & 0 & & & \\ & & d^{i+2} & 0 & & \\ & & \ddots & \ddots \end{bmatrix}.$$

As a result, we obtain the *cochain functor* given by $(A^{\bullet}, d^{\bullet}) \to \bigoplus_{i \in \mathbb{Z}} A^i$ and $f^{\bullet} \mapsto (f^i)_{i \in \mathbb{Z}}$.

Definition 11.1.5. We say that $(A^{\bullet}, d^{\bullet})$ is acyclic or exact if $H^{\bullet}(A^{\bullet}, d^{\bullet}) = 0$.

Theorem 11.1.6. Let K^{\bullet} be an exact complex of R-modules and I^{\bullet} a bounded below complex of injective R-modules. Any chain map $f: K^{\bullet} \to I^{\bullet}$ is homotopic to zero.

Proof. By hypothesis, there is some $r \in \mathbb{Z}$ such that $I^k = 0$ for any k < r. Then $f^k = 0$ for any k < r. Define $h^k : K^k \to I^{k-1}$ by $h^k = 0$ for each $k \le r$. Then $f^k = 0 = d_I h^k + h^{k+1} d_K$ for any k < r. Let s > r and assume, for induction, that, for each k < s, we have constructed a map $h^k : K^k \to I^{k-1}$ such that $f^{k-1} = d_I h^{k-1} + h^k d_K$. We must construct a map $h^s : K^s \to I^{s-1}$ such that $f^{s-1} = d_I h^{s-1} + h^s d_K$.

Let $g^{s-1} = f^{s-1} - d_I h^{s-1}$. Note that

$$g^{s-1}d_K = (f^{s-1} - d_I h^{s-1}) d_K$$

$$= f^{s-1}d_K - d_I h^{s-1}d_K$$

$$= d_I f^{s-2} - d_I (f^{s-2} - d_I h^{s-2})$$

$$= 0.$$

Therefore, g^{s-1} descends to a map $g^{s-1}: K^{s-1}/_{\operatorname{im} d_K} \to I^{s-1}$. Since K^{\bullet} is exact, we have

$$g^{s-1}: \overset{K^{s-1}}{/_{\ker d_K}} \to I^{s-1}.$$

Moreover, since I^{s-1} is injective, we can find some map $h^s: K^s \to I^{s-1}$ such that

$$I^{s-1}$$

$$g^{s-1} \uparrow \qquad \qquad h^{s}$$

$$K^{s-1} / \ker d_{K} \xrightarrow{\cong} \operatorname{im} d_{K} \stackrel{\longleftarrow}{\longleftrightarrow} K^{s}$$

commutes. Hence $h^s d_K = g^{s-1}$. It follows that

$$\begin{split} d_I h^{s-1} + h^s d_K &= d_I h^{s-1} + g^{s-1} \\ &= d_I h^{s-1} + f^{s-1} - d_I h^{s-1} \\ &= f^{s-1}, \end{split}$$

as desired \Box

Definition 11.1.7. If A is an abelian group, then a *left resolution of* A is an exact complex $(C^{\bullet}, d^{\bullet}) \in$ ob $\mathbf{CoCh}^{\leq 0}(\mathbf{Ab})$ of the form

$$\cdots \to C^{i-1} \to C^i \to \cdots \to C^0 \to A \to 0.$$

Example 11.1.8. If $I \subseteq k[x_1, \ldots, x_n]$ is a homogenous ideal, then Hilbert's syzygy theorem says that I has a left resolution of length n+1 with n+1 terms free finitely generated R-modules.

Let $a \in \mathbb{Z}$. Define the *shift functor*

$$-[a]: \mathbf{CoCh}(\mathbf{Ab}) \to \mathbf{CoCh}(\mathbf{Ab})$$

as follows. Let $(M^{\bullet}, d_{M}^{\bullet})$ be a complex. Form the pair $\left(M^{\bullet}[a], d_{M[a]}^{\bullet}\right)$ where $(M^{\bullet}[a])^{n} \equiv M^{a+n}$ and $\left(d_{M[a]}\right)^{n} \equiv (-1)^{a} d_{M}^{a+n}$. If f^{\bullet} is a chain map, then let $(f^{\bullet}[a])^{n} = f^{a+n}$.

Proposition 11.1.9. The shift functor is an equivalence that preserves $CoCh^{-}(Ab)$, $CoCh^{+}(Ab)$, and $CoCh^{b}(Ab)$.

Definition 11.1.10. Let $f: M \to N$ be a chain map. Form $\operatorname{cone}(f)$ the *cone of* f as a new complex where $\operatorname{cone}(f)^{\bullet} \equiv N \oplus M[1]$ and $d_{\operatorname{cone}(f)}^{\bullet} \equiv \begin{bmatrix} d_N & f \\ 0 & d_{M[1]} \end{bmatrix}$.

We see that

$$cone(f)^n = N^n \oplus M^{n+1}$$

and $d_{\text{cone}(f)}^n: N^n \oplus M^{n+1} \to N^{n+1} \oplus M^{n+2}$ with

$$d_{\operatorname{cone}(f)}^{n} = \begin{bmatrix} d_{N}^{n} & f^{n+1} \\ 0 & -d_{M}^{n+1} \end{bmatrix}.$$

Exercise 11.1.11. Show that $d_{\text{cone}(f)}^{i+1} \circ d_{\text{cone}(f)}^{i} = 0$.

Definition 11.1.12.

1. A double complex is a triple $(A^{\bullet,\bullet}, d^{\bullet}, \delta^{\bullet})$ where $A^{i,j} = \{A^{i,j}\}_{(i,j)\in\mathbb{Z}^2}$ and both $d: A^{\bullet,\bullet} \to A^{\bullet+1,\bullet}$ and $\delta: A^{\bullet,\bullet} \to A^{\bullet,\bullet+1}$ are homomorphisms such that $d\delta = \delta d$ and $d^2 = \delta^2 = 0$. As a commutative diagram, this has the form

2. The total complex of $(A^{\bullet,\bullet}, d^{\bullet}, \delta^{\bullet})$ is the complex Tot(A) where $\text{Tot}(A)^n \equiv \bigoplus_{p+q=n} A^{p,q}$ and $d_{\text{Tot}(A)} \upharpoonright_{A^{p,q}} \equiv d + (-1)^p \delta$.

Proposition 11.1.13. Any chain map $f: M \to N$ induces a double complex

$$M^{i-1,0} \xrightarrow{d_M} M^{i,0} \xrightarrow{d_M} M^{i+1,0} \xrightarrow{d_M} M^{i+2,0} \xrightarrow{d_M} \cdots$$

$$\downarrow f \qquad \qquad \downarrow f \qquad \qquad \downarrow f \qquad \qquad \downarrow f$$

$$N^{i-1,1} \xrightarrow{d_N} N^{i,1} \xrightarrow{d_N} N^{i+1,1} \xrightarrow{d_N} N^{i+2,1} \xrightarrow{d_N} \cdots$$

The total complex of this is precisely cone(f).

Let N and C be complexes. Suppose that $C \xrightarrow{\iota} N$ is a chain map where each $\iota^n : N^n \to C^n$ is injective. Let $s^n : C^n \to N^n$ be a group homomorphism such that $s^n \circ \iota^n = \mathrm{id}_{N^n}$. Then $M := \left(C/N, d_{C/N}\right)$ is a complex. Our choice of s^n produces a splitting $C^{\bullet} \cong N^{\bullet} \oplus M^{\bullet}[1]$ in the category of graded abelian groups. Thus, we have the map $d_C = \begin{bmatrix} d_N & f \\ 0 & d_{M[1]} \end{bmatrix}$ where $f: M \to N$ is a map of graded abelian groups.

Exercise 11.1.14. Show that f is a chain map and $C \cong \text{cone}(f)$.

11.2 Lecture 25

Definition 11.2.1. Let $f, g: A^{\bullet} \to B^{\bullet}$ be two chain maps. A homotopy between f and g is a map of graded abelian groups $h: A^{\bullet} \to B^{\bullet - 1}$ such the

$$d_B h + h d_A = f - g$$
.

We say that f and g are homotopy equivalent (written as $f \sim g$) if there is a homotopy between them.

Proposition 11.2.2.

- 1. Homotopy is an equivalence relation.
- 2. The class mor $^{\circ}$ CoCh(Ab) of all chain maps homotopic to 0 is a two-sided ideal in mor CoCh(Ab).
- 3. If $f \simeq g : A^{\bullet} \to B^{\bullet}$, then $H^{\bullet}(f) = H({}^{\bullet}g)$.
- 4. If $f \simeq g$ and c is a cocycle, then $f(c) g(c) = d_B h(c)$, which is a coboundary.

Notation. Let $C(\mathbf{Ab})$ denote the category with complexes as objects and homotopy classes of chain maps as morphisms.

Note 11.2.3.

1. We have that $\operatorname{Hom}_{\mathcal{C}(\mathbf{Ab})}(A,B) = \frac{\operatorname{Hom}_{\mathbf{CoCh}(\mathbf{Ab})}(A,B)}{\operatorname{Hom}_{\mathbf{CoCh}(\mathbf{Ab})}^{\sim 0}(A,B)}$.

2. H^{\bullet} descends to a well-defined functor in the sense that the diagram

$$\begin{array}{c} \mathbf{CoCh}(\mathbf{Ab}) \longrightarrow \mathcal{C}(\mathbf{Ab}) \\ \\ H^{\bullet} \downarrow \\ \mathbf{grAb} \end{array}.$$

commutes.

Definition 11.2.4. A short exact sequence of complex is a sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ of complexes such that each sequence

$$0 \to A^n \xrightarrow{f^n} B^n \xrightarrow{g^n} C^n \to 0$$

is exact in Ab.

Let

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

be a short exact sequence of complexes. Consider the commutative diagram

$$0 \longrightarrow A^{n-1} \xrightarrow{f^{n-1}} B^{n-1} \xrightarrow{g^{n-1}} C^{n-1} \longrightarrow 0$$

$$\downarrow d_A^{n-1} \downarrow \qquad \downarrow d_B^{n-1} \qquad \downarrow d_C^{n-1} \downarrow$$

$$0 \longrightarrow A^n \xrightarrow{f^n} B^n \xrightarrow{g^n} C^n \longrightarrow 0$$

$$\downarrow d_A^n \downarrow \qquad \downarrow d_B^n \qquad \downarrow d_C^n$$

$$0 \longrightarrow A^{n+1} \xrightarrow{f^{n+1}} B^{n+1} \xrightarrow{g^{n+1}} C^{n+1} \longrightarrow 0$$

Define a collection of edge homomorphisms $\left\{\delta^n: H^n(C) \to H^{n+1}(A)\right\}_{n \in \mathbb{Z}}$ as follows. Let $c \in C^n$ with $d^n_C(c) = 0$. By exactness, there is some $b \in B^n$ such that $g^n(b) = c$. But then

$$d_B^n(b) \in \ker g^{n+1} = \operatorname{im} f^{n+1}.$$

Since f^{n+1} is injective, this means that there is a unique $a \in A^{n+1}$ such that $f^n(a) = d_B^n(b)$. Let $\delta^n([c]) = [a]$.

Exercise 11.2.5. Check that δ^n is a homomorphism and that it is independent both of our choice of c and of our choice of b.

Lemma 11.2.6 (Snake). Any short exact sequence

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

complexes induces a long exact sequence in cohomology

$$H^{n}(A) \xrightarrow{\delta^{n-1}} H^{n}(C)$$

$$H^{n}(A) \xrightarrow{f^{*}} H^{n}(B) \xrightarrow{g^{*}} H^{n}(C)$$

$$H^{n+1}(A) \xrightarrow{f^{*}} H^{n+1}(B) \xrightarrow{\delta^{n}} \cdots$$

Proof.

Exactness at $H^n(B)$: We have that $0_{H^n(C)} = H^n(0) = H^n(g \circ f) = H^n(g) \circ H^n(f)$. Hence $\lim_{h \to \infty} H^n(f) \subset \ker_{h} H^n(g)$.

For the reverse inclusion, let $[b] \in \ker H^n(g) \subset H^n(B)$. Then $g(b) \in C^n$ must be a coboundary, so that there is some $c \in C^{n-1}$ such that $g(b) = d_C c$. Choose a lift $b_1 \in B^{n-1}$ of c, meaning that $g(b_1) = c$. Then $b - d_B b_1 \in Z^n(B)$, and $[b] = [b - d_B b_1]$. But

$$g(b - d_B b_1) = g(b) - g(d_B b_1) = g(b) - d_C g(b_1) = g(b) - d_C c = 0.$$

Hence $b-d_Bb_1 \in \ker g \subset B^n$. This implies that there exists a unique $a \in A^n$ such that $b-d_Bb_1 = f(a)$. Also,

$$f(d_A a) = d_B(f(a)) = d_B(b - d_B b_1) = 0.$$

Since f is injective, we see that $d_A a = 0$, i.e., $a \in Z^n(A)$. Thus, $H^n(f)([a]) = [f(a)] = [b - d_B b_1] = [b]$. This proves that $[b] \in \operatorname{im} H^n(f)$.

Exactness at $H^n(C)$: Let $[b] \in H^n(B)$. Note that $\delta^n(H^n(g)([b])) = [a]$ where $a \in A^{n+1}$ denotes the unique element such that $f(a) = d_B b$. Since $d_B b = 0$ and f is injective, it follows that a = 0. Hence im $H^n(g) \subset \ker \delta^n$.

Conversely, let $[c] \in \ker \delta^n$. Choose $b \in B^n$ such that g(b) = c and then the unique $a \in A^{n+1}$ such that $f(a) = d_B b$. Thus, $\delta^n([c]) = [a] = 0$, so that $a \in B^{n+1}(A)$, i.e., $d_A a_1 = a$ for some $a_1 \in A^n$. Note that $g(b - f(a_1)) = g(b) - g(f(a_1)) = c - 0 = c$. Further,

$$d_B(b - f(a_1)) = d_B(b) - d_B(f(a_1))$$

$$= f(a) - f(d_A a_1)$$

$$= f(a) - f(a)$$

$$= 0.$$

This shows that $b - f(a_1)$ is a cocycle. Thus, $H^n(g)([b - f(a_1)]) = [g(b - f(a_1))] = [c]$, so that $[c] \in \operatorname{im} H^n(g)$.

Exactness at $H^{n+1}(A)$: Let $[c] \in H^n(C)$ and find $[a] = \delta^n([c])$, where

$$\begin{array}{c} b \stackrel{g}{\longrightarrow} c \\ \downarrow \\ a \stackrel{f}{\longrightarrow} d_B b \end{array}.$$

Then $H^{n+1}(f)([a]) = [f(a)] = [d_B b] = 0$. It follows that im $\delta^n \subset \ker H^{n+1}(f)$.

Conversely, let $[a] \in \ker H^{n+1}(f)$, so that $H^{n+1}(f)([a]) = [f(a)] = 0$. This means that $f(a) = d_B b$ for some $b \in B^n$. Then $\delta^n([g(b)]) = [a]$. This shows that im $\delta^n \supset \ker H^{n+1}(f)$.

12 Additive categories

Definition 12.0.1.

1. A category \mathscr{C} is enhanced over \mathbf{Ab} if $\mathrm{Hom}_{\mathscr{C}}(a,b)$ is an abelian group for any $a,b\in\mathrm{ob}\,\mathscr{C}$ and

$$\operatorname{Hom}_{\mathscr{C}}(y,z) \times \operatorname{Hom}_{\mathscr{C}}(x,y) \xrightarrow{\circ} \operatorname{Hom}_{\mathscr{C}}(x,z)$$

is bilinear for any $x, y, z \in \text{ob } \mathscr{C}$.

2. A category \mathscr{C} is called *additive* if it is enhanced over \mathbf{Ab} and has finite products.

Example 12.0.2. The following are additive categories.

- 1. **Ab**.
- 2. *R*-**Mod**.

Note 12.0.3.

- 1. Let \mathscr{C} be category with finite products. The product of the empty diagram is the terminal object in \mathscr{C} since it is the initial object in **Set**.
- 2. If \mathscr{C} is additive and * is the terminal object in \mathscr{C} , then $\operatorname{Hom}_{\mathscr{C}}(*,*)$ consists of a single element, which must equal the group identity element.

Exercise 12.0.4. Verify the following statements.

- 1. If $\mathscr C$ is a additive, then its terminal object is also initial and thus is a zero object in $\mathscr C$.
- 2. A zero object $0_{\mathscr{C}}$ satisfies $\operatorname{Hom}_{\mathscr{C}}(x,0_{\mathscr{C}})=0$ and $\operatorname{Hom}_{\mathscr{C}}(0_{\mathscr{C}},x)=0$ for any $x\in\operatorname{ob}\mathscr{C}$.
- 3. Any additive category has finite coproducts that are equal to finite products.

12.1 Lecture 26

Definition 12.1.1. Let $\mathscr C$ be an additive category. Let $f: x \to y$ be a morphism in $\mathscr C$.

1. A kernel (object) for f is a pair (k,q) where $k \in \text{ob} \mathscr{C}$ and $q: k \to x$ such that for any $z \in \text{ob} \mathscr{C}$, the natural sequence

$$\operatorname{Hom}(z,k) \xrightarrow{q \circ -} \operatorname{Hom}(z,x) \xrightarrow{f \circ -} \operatorname{Hom}(z,y)$$

is exact.

2. A cokernel (object) for f is a pair (c, p) where $c \in \text{ob} \mathscr{C}$ and $p : y \to c$ such that for any $z \in \text{ob} \mathscr{C}$, the natural sequence

$$\operatorname{Hom}(c,z) \xrightarrow{-\circ p} \operatorname{Hom}(y,z) \xrightarrow{-\circ f} \operatorname{Hom}(x,z)$$

is exact.

Definition 12.1.2. We say that a category \mathscr{A} is abelian if

63

- 1. \mathscr{A} is additive and
- 2. for any morphism $f: x \to y$ in \mathscr{A} , there exists a sequence $k \xrightarrow{q} x \xrightarrow{a} i \xrightarrow{b} y \xrightarrow{p} c$ in \mathscr{A} such that
 - (a) (k,q) is a kernel for f,
 - (b) (c, p) is a cokernel for f,
 - (c) (c, a) is a cokernel for q, and
 - (d) (i, b) is a kernel for p.

We call i the $image \ of \ f$.

Definition 12.1.3. If \mathscr{A} is a abelian, then a sequence $x \xrightarrow{f} y \xrightarrow{g} z$ in \mathscr{A} is exact if im $f = \ker g$.

Example 12.1.4.

- 1. **Ab**.
- 2. R-Mod.
- 3. **PreShAb**_X where X is a space.

Remark 12.1.5. Our notion of and results for cohomology for complexes of abelian groups hold for complexes of objects in an abelian category.

Theorem 12.1.6 (Freyd-Mitchell). Every abelian category admits a fully faithful embedding into R-Mod for some ring R.

Remark 12.1.7. It is not, in general, possible to complete an additive category \mathscr{C} to an abelian one. Still, we can always add enough images to \mathscr{C} to get cones of maps of complexes.

Let $\mathscr C$ be additive. A map $e: x \to x$ in $\mathscr C$ is an *idempotent* if $e^2 = e$. Let $\mathscr C = \mathbf{Vect}_k$. Then an idempotent map $e: x \to x$ is a projection map, i.e., $x = x_1 \oplus x_2$ such that $e = i_1 \circ p_1$.

If \mathscr{C} is additive and $e: x \to x$ is idempotent in \mathscr{C} , then we say that e has an image in \mathscr{C} if there exists a decomposition $x = x_1 \oplus x_2$ such that

$$e = \begin{bmatrix} id_{x_1} & 0 \\ 0 & 0 \end{bmatrix}$$

with respect to this decomposition. We say that x_1 is the *image of e*.

Let $e: x \to x$ be an idempotent. Then $\mathrm{id}_x \, e: x \to x$ is also an idempotent. Indeed,

$$(\mathrm{id}_x - e)^2 = \mathrm{id}_x^2 - \mathrm{id}_x e - e\mathrm{id}_x + e^2 = \mathrm{id}_x = e.$$

If
$$x = x_1 \oplus x_2$$
 has $e = \begin{bmatrix} \mathrm{id}_{x_1} & 0 \\ 0 & 0 \end{bmatrix}$, then $\mathrm{id}_x - e = \begin{bmatrix} 0 & 0 \\ 0 & \mathrm{id}_{x_2} \end{bmatrix}$, so that $\mathrm{id}_x - e$ has x_2 as an image.

Definition 12.1.8. A category \mathscr{C} is *idempotent complete* or *Karoubian* if \mathscr{C} is additive and any idempotent in \mathscr{C} has an image in \mathscr{C} .

Exercise 12.1.9. Show that for any additive category \mathscr{C} , there exists a unique (up to unique isomorphism) category \mathscr{C}^{Kor} together with a functor $F:\mathscr{C}\to\mathscr{C}^{\text{Kor}}$ such that

- 1. $\mathscr{C}^{\mathrm{Kor}}$ is idempotent complete,
- 2. F is fully faithful, and
- 3. every object in $\mathscr{C}^{\mathrm{Kor}}$ is an image of an idempotent in \mathscr{C} .

Definition 12.1.10. A graded additive category is an additive category $\mathscr C$ such that for any $x,y\in \operatorname{ob}\mathscr C$, $\operatorname{Hom}(x,y)$ is a graded abelian group, i.e., $\operatorname{Hom}(x,y)\cong\bigoplus_{n\in\mathbb Z}\operatorname{Hom}^n(x,y)$ and $\operatorname{Hom}(x,y)\times \operatorname{Hom}(y,z)\stackrel{\circ}{\longrightarrow}\operatorname{Hom}(x,z)$ has the form $\operatorname{Hom}^n(x,y)\times\operatorname{Hom}^m(y,z)\stackrel{\circ}{\longrightarrow}\operatorname{Hom}^{n+m}(x,z)$ where \circ is bilinear.

Definition 12.1.11. A graded additive category $\mathscr C$ is a differential graded category if for any $x,y\in \operatorname{ob}\mathscr C$, the graded group $\operatorname{Hom}(x,y)$ is equipped with with a homomorphism $d:\operatorname{Hom}(x,y)\to\operatorname{Hom}(x,y)$ such that

- (a) $d: \operatorname{Hom}^n(x, y) \to \operatorname{Hom}^{n+1}(x, y),$
- (b) $d^2 = 0$, and
- (c) d satisfies the graded Leibniz rule, i.e., if $f \in \operatorname{Hom}^n(x,y)$ and $g \in \operatorname{Hom}(a,x)$, then

$$d(f \circ g) = df \circ g + (-1)^n f \circ dg.$$

Proposition 12.1.12. Let \mathscr{C} be a category.

- 1. If \mathscr{C} is additive, then for any $x \in \operatorname{ob} \mathscr{C}$, $\operatorname{Hom}(x,x)$ is a ring (in fact, a \mathbb{Z} -algebra).
- 2. If \mathscr{C} is a graded additive category, then for any $x \in \operatorname{ob}\mathscr{C}$, $\operatorname{End}(x)$ is a graded ring.
- 3. If \mathscr{C} is differential graded category, then for any $x \in \text{ob}\mathscr{C}$, End(x) is a differential graded algebra.

Definition 12.1.13. If \mathscr{C} is a differential graded category, then the *homotopy category of* \mathscr{C} is the category $\operatorname{Ho}(\mathscr{C})$ (or $[\mathscr{C}]$) given by

$$\begin{split} \operatorname{ob} \operatorname{Ho}(\mathscr{C}) &\equiv \operatorname{ob} \mathscr{C} \\ \operatorname{Hom}_{\operatorname{Ho}(\mathscr{C})}(x,y) &\equiv H^0(\operatorname{Hom}_{\mathscr{C}}(x,y),d) \\ &= \frac{\ker(\operatorname{Hom}_{\mathscr{C}}^0(x,y) \overset{d}{\longrightarrow} \operatorname{Hom}_{\mathscr{C}}^1(x,y))}{\operatorname{im}(\operatorname{Hom}_{\mathscr{C}}^{-1}(x,y) \overset{d}{\longrightarrow} \operatorname{Hom}_{\mathscr{C}}^0(x,y))}. \end{split}$$

Let \mathscr{B} be an additive category. Define the category $\mathbf{Compl}(\mathscr{B})$ of complexes in \mathscr{B} by

ob
$$\mathbf{Compl}(\mathscr{B}) = (\text{complexes of objects in } \mathscr{B})$$

mor $\mathbf{Compl}(\mathscr{B}) = (\text{morphisms of complexes})$.

This is an additive category. We can also refine this definition by incorporating degree-shifting maps to get a differential graded category of complexes in \mathscr{B} . Define the category $\mathbf{Compl}^{\bullet}(\mathscr{B})$ by

$$\operatorname{ob}\mathbf{Compl}^{\bullet}(\mathscr{B}) = (\text{complexes of objects in }\mathscr{B})$$

$$\operatorname{Hom}_{\mathbf{Compl}^{\bullet}(\mathscr{B})}(M,N) = \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}^n(M,N)$$

where

$$\operatorname{Hom}^n(M,N) \equiv \prod_{a \in \mathbb{Z}} \operatorname{Hom}_{\mathscr{B}}(M^a,N^{a+n}).$$

The composition is obtained component-wise from the composition in \mathscr{B} . Define $d: \operatorname{Hom}^n(M,N) \to \operatorname{Hom}^{n+1}(M,N)$ by

$$(f_a)_{a\in\mathbb{Z}}\to (d_N\circ f_a+(-1)^nf_{a+1}\circ d_M)_{a\in\mathbb{Z}}.$$

This makes $Compl^{\bullet}(\mathcal{B})$ a differential graded category.

Let $M, N \in \text{ob } \mathbf{Compl}^{\bullet}(\mathscr{B})$. Then

$$\begin{split} Z^0(\operatorname{Hom}_{\mathbf{Compl}^{\bullet}(\mathscr{B})}(M,N)) &= \ker(\operatorname{Hom}^0 \stackrel{d}{\longrightarrow} \operatorname{Hom}^1) \\ &= \operatorname{Hom}_{\mathbf{Compl}(\mathscr{B})}(M,N) \\ B^0(\operatorname{Hom}_{\mathbf{Compl}^{\bullet}(\mathscr{B})}(M,N)) &= \operatorname{im}(\operatorname{Hom}^{-1} \stackrel{d}{\longrightarrow} \operatorname{Hom}^0) \\ &= (\operatorname{homotopies of 0-maps of complexes}) \,. \end{split}$$

Also, we have that

$$H^0(\operatorname{Hom}_{\mathbf{Compl}^{\bullet}(\mathscr{B})}(M,N)) = \text{(maps of complexes)/(homotopies)}.$$

Example 12.1.14. $\operatorname{Ho}(\operatorname{Comp}^{\bullet}(\operatorname{Ab})) = \mathcal{C}(\operatorname{Ab}), \text{ and } Z^{0}(\operatorname{Comp}^{\bullet}(\operatorname{Ab})) = \operatorname{CoCh}(\operatorname{Ab}).$

13 Triangulated categories

13.1 Lecture 27

Let \mathscr{C} be a category. For any $x \in \text{ob}\,\mathscr{C}$, define x[n] as the object, if it exists, in \mathscr{C} that represents the shift functor on morphisms $\text{Hom}_{\mathscr{C}}(-,x)[n]:\mathscr{C}^{\text{op}}\to\mathbf{Compl}(\mathbf{Ab})$. If $f:x\to y$ is a morphism in \mathscr{C} , then define the cone cone(f) of f to be the object, it it exists, in \mathscr{C} that represents the functor $\mathscr{C}^{\text{op}}\to\mathbf{Comp}(\mathbf{Ab})$ given by $z\mapsto \text{cone}(\text{Hom}_{\mathscr{C}}(z,x)\xrightarrow{f\circ -}\text{Hom}_{\mathscr{C}}(z,y))$.

Definition 13.1.1. A category \mathscr{C} is called *strongly pre-triangulated* if every object in \mathscr{C} has shifts in \mathscr{C} and every morphism in \mathscr{C} has cones in \mathscr{C} . We call \mathscr{C} *pre-triangulated* if every object in \mathscr{C} has shifts in $Ho(\mathscr{C})$ and every morphism in \mathscr{C} has cones in $Ho(\mathscr{C})$.

Note 13.1.2. Both the assignment $x \mapsto x[n]$ and the assignment $f \mapsto \text{cone}(f)$ are functorial.

Definition 13.1.3. Given a differential graded category \mathscr{C} , we define $\operatorname{Ho}^{\bullet}(\mathscr{C})$ as the graded additive category such that

$$\mathrm{ob}\,\mathrm{Ho}^\bullet(\mathscr{C})=\mathrm{ob}\,\mathscr{C}$$

$$\mathrm{Hom}_{\mathrm{Ho}^\bullet(\mathscr{C})}(x,y)=H^\bullet(\mathrm{Hom}_\mathscr{C}(x,y)).$$

If \mathscr{C} is strongly pre-triangulated, then $\operatorname{Ho}^{\bullet}(\mathscr{C})$ and $\operatorname{Ho}(\mathscr{C})$ contain the same information. Indeed, $\operatorname{Ho}(\mathscr{C})$ is precisely the degree zero piece of $\operatorname{Ho}^{\bullet}(\mathscr{C})$. Conversely, $ifx,y \in \operatorname{ob}\mathscr{C}$, then

$$\operatorname{Hom}_{\operatorname{Ho}^{\bullet}(\mathscr{C})}(x,y) = \bigoplus_{a \in \mathbb{Z}} \operatorname{Hom}_{\operatorname{Ho}^{\bullet}(\mathscr{C})}^{a}(x,y)$$

where $\operatorname{Hom}_{\operatorname{Ho}^{\bullet}(\mathscr{C})}^{a}(x,y) = \operatorname{Hom}_{\operatorname{Ho}(\mathscr{C})}(x,y[a]) = \operatorname{Hom}_{\operatorname{Ho}(\mathscr{C})}(x,y)[a].$

Notation. From now on, if \mathscr{C} is strongly pre-triangulated, then we write $Ho(\mathscr{C})$ for the graded homotopy category.

Definition 13.1.4. If \mathscr{C} is strongly pre-triangulated, then a *triangle* \triangle *in* Ho(\mathscr{C}) is a sequence of degree zero maps $x \xrightarrow{u} y \xrightarrow{v} z \xrightarrow{w} x[1]$. We represent this as

$$x \xrightarrow{u} y \\ \downarrow_{v} \\ \downarrow_{v}.$$

Let \mathscr{C} be strongly pre-triangulated. Given a triangle

$$\begin{array}{c}
x \xrightarrow{u} y \\
\downarrow v, \\
z
\end{array}$$

we have a long sequence of maps

$$x[-1] \xrightarrow{u[-1]} y[-1] \xrightarrow{v[-1]} z[-1]$$

$$x \xrightarrow{w} y \xrightarrow{v} z$$

$$x[1] \xrightarrow{u[1]} y[1] \xrightarrow{v[1]} z[1] \xrightarrow{w[1]} \cdots$$

in \mathscr{C} .

Definition 13.1.5. Let \mathscr{C} be strongly pre-triangulated. We say that a triangle in $\operatorname{Ho}(\mathscr{C})$ is *exact* if it is isomorphic to the triangle

$$x \xrightarrow{u} y \xrightarrow{\text{``inclusion''}} \text{cone}(u) \xrightarrow{\text{``projection''}} x[1]$$
.

Definition 13.1.6. A graded additive category \mathscr{D} is *triangulated* if \mathscr{D} is equipped with a shift functor $[1]: \mathscr{D} \to \mathscr{D}$ and a collection of *distinguished triangles* such that the following axioms hold.

- (0) Every triangle that is isomorphic to a distinguished triangle is distinguished.
- (1) For any object x in \mathscr{D} , the triangle $x \xrightarrow{\mathrm{id}_x} x \to 0 \to x[1]$ is distinguished.
- (2) (rotation invariance) The shift rotation of a triangle \triangle is distinguished if and only if \triangle is, i.e., the triangle $x \xrightarrow{u} y \xrightarrow{v} z \xrightarrow{w} x[1]$ is distinguished if and only if the triangle

$$y \xrightarrow{v} z \xrightarrow{w} x[1] \xrightarrow{-u[1]} y[1]$$

is distinguished.

(3) Every morphism $u: x \to y$ can be included in a distinguished triangle $x \xrightarrow{u} y \xrightarrow{v} z \xrightarrow{w} x[1]$, and every commutative square

$$\begin{array}{ccc}
x & \xrightarrow{u} & y \\
f \downarrow & & \downarrow g \\
x' & \xrightarrow{u'} & y'
\end{array}$$

can be completed to a commutative diagram of distinguished triangles, i.e.,

(4) (octahedron axiom) Given any two distinguished triangles $x \xrightarrow{u} y \xrightarrow{v} z \xrightarrow{w} x[1]$ and $y \xrightarrow{f} y' \xrightarrow{g} q \xrightarrow{h} y[1]$, we can complete them to a commutative diagram

$$\begin{array}{ccccc}
x & \xrightarrow{u} & y & \xrightarrow{v} & z & \xrightarrow{w} & x[1] \\
\parallel & & \downarrow^f & & \downarrow^a & & \parallel \\
x & \longrightarrow & y' & \longrightarrow & z' & \longrightarrow & x[1] \\
\downarrow^g & & \downarrow^b & & \downarrow^{u[1]} \\
\downarrow^q & & & \downarrow^c & & \downarrow^c \\
y[1] & \longrightarrow & z[1]
\end{array}$$

where each new triangle is distinguished.

The octahedron axiom is the formal transplant of the second isomorphism theorem for $\mathbf{Comp}(\mathbf{Ab})$, which states that given two complexes L and M, an inclusion $f: L \hookrightarrow M$, and a subcomplex N of L

 $^{^{1}\}mathrm{The}$ second isomorphism theorem holds in some form for any abelian category.

and of M, we have that $M/L \cong (M/N)/(L/N)$, i.e., if

has exact rows and exact left two columns, then the third column is also exact.

Now, suppose that $\mathscr C$ is strongly pre-triangulated and let $\alpha:M\to N$ be a morphism in $\mathscr C$ such that α is injective (i.e., ker α exists and is trivial) with $d\alpha=0$ and α is split (i.e., there exists $\beta:N\to M$ with $p\circ\alpha=\mathrm{id}_M$). We call such an α a split monomorphism in $\mathscr C$.

Lemma 13.1.7.

- (i) The map $cone(\alpha) \to N/M$ is a homotopy equivalence.
- (ii) Any morphism in $\mathscr C$ is homotopy equivalent to a split mono, i.e., given $f:M\to L$, we can construct a natural diagram

$$M \xrightarrow{\alpha} N \\ \downarrow^g \\ L$$

in \mathscr{C} such that α is a split mono and q is an iso in $Ho(\mathscr{C})$.

Partial proof. For (ii), take $N = L \oplus \text{cone}(\text{id}_M)$.

Theorem 13.1.8. If \mathscr{C} is a strongly pre-triangulated differential graded category and $\mathscr{D} = \operatorname{Ho}(\mathscr{C})$, then \mathscr{D} is triangulated with exact triangles as the distinguished triangles.

Proof.

Verifying axioms (0) and (1) is trivial.

For axiom (2), if $x \to y \to z \to x[1]$ is a triangle, then we can use Lemma 13.1.7 to rewrite it as a homotopy equivalent triangle $M \to N \to L \to M[1]$ where $M \stackrel{\alpha}{\longrightarrow} N$ is a split mono. In this case, we can check that $N \to L \to M[1] \to N[1]$ is exact by using the splitting.

For axiom (3), note that any $u: x \to y$ is included in $x \to y \to \text{cone}(u) \to x[1]$. Moreover, if

$$\begin{array}{ccc}
x & \xrightarrow{u} & y \\
f \downarrow & & \downarrow^{g} \\
x' & \xrightarrow{u'} & y'
\end{array}$$

is commutative in $Ho(\mathscr{C})$ and we lift f, g, u, and u' to maps $\tilde{\cdot}$ in \mathscr{C} , then we get a diagram

in
$$\mathscr C$$
 where $M \equiv \begin{bmatrix} \delta & 0 \\ 0 & 0 \end{bmatrix}$, $\delta \in \operatorname{Hom}^{-1}(x,y')$, and $\tilde g \circ \tilde u - \underbrace{\tilde u' \circ \tilde f}_{d(\delta)} \sim 0$.

For axiom (4), given a distinguished triangle $M \to N \to L \to M[1]$, we apply Lemma 13.1.7 twice to get a homotopy equivalent distinguished triangle $M \to N' \to L'' \to M[1]$ where each map in this is a split mono. We are done after an application of the second isomorphism theorem.

Remark 13.1.9. Such reasoning can be applied to complete any differential graded category to a triangulated one.

13.2 Lecture 28

Definition 13.2.1. If \mathscr{A} and \mathscr{B} are differential graded categories, then a differential graded functor $F:A\to B$ has the following properties.

- (i) F is additive, i.e., F: $\operatorname{Hom}_{\mathscr{A}}(x,y) \to \operatorname{Hom}_{\mathscr{B}}(F(x),F(y))$ is a group homomorphism for any $x,y \in \operatorname{ob} \mathscr{A}$.
- (ii) F respects differentials, i.e., if $x, y \in \text{ob } \mathscr{A}$, then $F : \text{Hom}_{\mathscr{A}}(x, y) \to \text{Hom}_{\mathscr{B}}(F(x), F(y))$ is a map of complexes.

If $F, G : \mathcal{A} \to \mathcal{B}$ are two differential graded functors between differential graded categories, then define, for each $n \in \mathbb{Z}$, the group

$$\operatorname{Hom}^n(F,G) \equiv \{\varphi_x \mid \varphi_x : F(x) \to G(x) \text{ in } \operatorname{Hom}^n_{\mathscr{B}}(F(x),G(x)), \ x \in \operatorname{ob} \mathscr{A}\}.$$

A map $F \to G$ is defined as a natural transformation $F \to G$ such that each component $\varphi_x : F(x) \to G(x)$ belongs to $\operatorname{Hom}_{\mathscr{B}}^n(F(x), G(x))$. The differential on $\prod_{x \in \operatorname{ob} \mathscr{A}} \operatorname{Hom}^{\bullet}(F(x), G(x))$ induces a differential on

$$\operatorname{Hom}^{\bullet}(F,G) \equiv \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}^{n}(F,G).$$

This produces a complex of maps between F and G, and we get a differential graded category $\mathbf{dgFun}(\mathscr{A},\mathscr{B})$.

Exercise 13.2.2. Prove the following assertions.

1. If $F: \mathscr{A} \to \mathscr{B}$ is a differential graded functor, then $H^0(F): H^0(\mathscr{A}) \to H^0(\mathscr{B})$ is an additive functor.

2. If $F, G : \mathcal{A} \to \mathcal{B}$ are differential graded functors, then there is an embedding $H^0(\text{Hom}(F,G)) \subset \text{Hom}(H^0(F), H^0(G))$.

Definition 13.2.3. If \mathscr{A} is a differential graded category, then a *left* \mathscr{A} -module is a differential graded functor $\mathscr{A} \to \mathbf{Compl}(\mathbf{Ab})$ and a *right* \mathscr{A} -module is a differential graded functor $\mathscr{A}^{\mathrm{op}} \to \mathbf{Compl}(\mathbf{Ab})$.

If \mathscr{A} is a differential graded category with a single object *, then $\mathscr{A} \leftrightarrow R := \operatorname{Hom}_{\mathscr{A}}(*,*)$, which is precisely the complex of abelian groups equipped with a multiplication-like operation \cdot such that λ satisfies the graded Leibniz rule for \cdot .

Exercise 13.2.4. Show that a module over $\mathscr A$ is precisely the data of a complex x of abelian groups together with a differential graded algebra homomorphism $R \to \operatorname{Hom}_{\mathbf{Compl}(\mathbf{Ab})}(x,x)$.

Given a differential graded category \mathscr{A} , we have respective categories of left and right modules over \mathscr{A} that are linear over a field k, namely

$$\begin{split} \mathscr{A}-\mathbf{dgmod}_k &\equiv \mathbf{dgFun}(\mathcal{A},\mathbf{Compl}(k\mathbf{-Vect})) \\ \mathbf{dgmod}_k - \mathscr{A} &\equiv \mathbf{dgFun}(\mathcal{A}^\mathrm{op},\mathbf{Compl}(k\mathbf{-Vect})). \end{split}$$

Exercise 13.2.5. Show that the functors

$$\begin{split} h^{\bullet} : \mathscr{A}^{\mathrm{op}} &\to \mathscr{A}\mathbf{-dgmod}_k \\ x &\mapsto h^{\times} \equiv \mathrm{Hom}_{\mathscr{A}}(x,-) \\ h_{\bullet} : \mathscr{A} &\to \mathscr{A}^{\mathrm{op}}\mathbf{-dgmod}_k \\ h_{\times} &\equiv \mathrm{Hom}_{\mathscr{A}^{\mathrm{op}}}(x,-) = \mathrm{Hom}_{\mathscr{A}}(-,x) \end{split}$$

are fully faithful differential graded functors.

Proposition 13.2.6.

- 1. If \mathscr{A} is a small differential graded category, then $H^0(\mathscr{A}^{\mathrm{op}}-\mathbf{dgmod}_k)$ is triangulated.
- 2. If $\mathscr A$ is a pre-triangulated differential graded category, then the fully faithful functor

$$H^0(h_{\bullet}): H^0(\mathscr{A}) \to H^0(\mathscr{A}^{\mathrm{op}} - \mathbf{dgmod}_k)$$

gives a triangulated structure on $H^0(\mathscr{A})$.

Definition 13.2.7. We say that an object F in $\mathscr{A}^{\mathrm{op}}$ - \mathbf{dgmod}_k is compact or perfect if $F: \mathcal{A}^{\mathrm{op}} \to \mathbf{Compl}(k-\mathbf{Vect})$ commutes with arbitrary coproducts.

Note 13.2.8. h^{\times} is compact for any $x \in \text{ob } \mathscr{A}$.

Definition 13.2.9. We say that a k-linear differential graded category \mathscr{A} is *triangulated* if every compact object in $\mathscr{A}^{\mathrm{op}}$ - \mathbf{dgmod}_k is representable.

Note 13.2.10. A triangulated differential graded category is automatically strongly pre-triangulated, and $H^0(\mathscr{A})$ is triangulated.

Exercise 13.2.11.

1. Suppose that \mathscr{D} is a triangulated additive category. Let $M \to N \to C \to M[1]$ be a distinguished triangle. Show that for every $L \in \text{ob } \mathscr{D}$, the sequence

$$\cdots \longrightarrow \operatorname{Hom}(L,M) \longrightarrow \operatorname{Hom}(L,N) \longrightarrow \operatorname{Hom}(L,C)$$

$$\operatorname{Hom}(L,M[1]) \stackrel{\longleftarrow}{\longrightarrow} \operatorname{Hom}(L,N[1]) \longrightarrow \operatorname{Hom}(L,C[1]) \longrightarrow \cdots$$

is a long exact sequence of abelian groups.

2. Suppose that \mathscr{D} is triangulated. Show that the sum $\triangle_1 \oplus \triangle_2$ of two triangles in \mathscr{D} is distinguished if and only if both \triangle_1 and \triangle_2 are distinguished.

Definition 13.2.12. If \mathscr{D}_1 and \mathscr{D}_2 are triangulated additive categories, then a *triangulated* (or *exact*) functor $F: \mathscr{D}_1 \to \mathscr{D}_2$ is an additive functor such that

- (i) F is equipped with an isomorphism $\sigma: F \circ [1] \to [1] \circ F$ and
- (ii) F sends distinguished triangles to distinguished triangles.

A morphism of two triangulated functors (F, θ_F) and (G, θ_G) is a morphism $f : F \to G$ of additive functors such that f intertwines θ_F and θ_G . As a result, we have a category of triangulated functors $\mathcal{D}_1 \to \mathcal{D}_2$.

If \mathscr{A} and \mathscr{B} are differential graded categories and $F:\mathscr{A}\to\mathscr{B}$ is a differential graded functor, then we have a natural differential graded functor $\mathscr{A}^{\mathrm{op}}-\mathbf{dgmod}_k \stackrel{F}{\longrightarrow} \mathscr{B}^{\mathrm{op}}-\mathbf{dgmod}_k$ so that $H^0(F)$ is triangulated.

Definition 13.2.13. If \mathscr{D} is a triangulated category and \mathscr{A} is an abelian category, then a *cohomological functor* is a functor $H: \mathscr{D} \to \mathscr{A}$ such that

- (i) H is additive and
- (ii) H sends distinguished \triangle 's in \mathcal{D} into long exact sequences in \mathcal{A} .

Example 13.2.14.

- 1. If $\mathcal{C}(\mathbf{Ab})$ denotes the triangulated category of homotopy classes of complexes of abelian groups, then $H^{\bullet}: \mathcal{C}(\mathbf{Ab}) \to \mathbf{grAb}$ is a cohomological functor.
- 2. If \mathscr{D} is a triangulated category and $L \in \text{ob } \mathscr{D}$, then $h^L : \mathscr{D} \to \mathbf{Ab}$ given by $M \mapsto Z^0(\text{Hom}_{\mathscr{B}}(L, M))$ is a cohomological functor.

13.3 Lecture 29

Let \mathscr{D} be a triangulated category and $\mathscr{V} \subset \mathscr{D}$ a triangulated subcategory (i.e., the inclusion functor is triangulated). We wish to construct a quotient category \mathscr{D}/\mathscr{V} , i.e., a triangulated category \mathscr{D}/\mathscr{V} together with a triangulated functor $q: \mathscr{D} \to \mathscr{D}/\mathscr{V}$ such that

- q(x) = 0 for any $x \in \text{ob } \mathcal{V}$ and
- for any triangulated functor $f: \mathcal{D} \to \mathcal{D}'$ satisfying $x \in \text{ob } \mathcal{V} \implies f(x) = 0$, we have $g \circ q = f$.

Note 13.3.1.

- 1. In the triangulated category of triangulated categories with exact functors, the triangle $\mathscr{V} \to \mathscr{D}/\mathscr{V} \to \mathscr{V}[1]$ is exact.
- 2. If \mathscr{D} is triangulated and $u: x \to y$ is a morphism in \mathscr{D} , then there exists an object cone(u) in \mathscr{D} that is unique up to a non-unique isomorphism. This is the third term in a distinguished \triangle completing u.

Exercise 13.3.2. Show that if $u: x \to y$ is a map in \mathscr{D} , then it is an isomorphism in \mathscr{D} if and only if cone(u) = 0.

Definition 13.3.3. If \mathscr{D} is a triangulated category and $\mathscr{V} \subset \mathscr{D}$ a triangulated subcategory, then a morphism $u: x \to y$ in \mathscr{D} is a \mathscr{V} -quasi-isomorphism if $cone(u) \in ob(\mathscr{V})$.

Exercise 13.3.4. Let $\mathcal{V} \subset \mathcal{D}$ be a pair of triangulated categories. Use the octahedron axiom to show that if f and g are compassable morphisms in \mathcal{D} , then every morphism in $\{f, g, g \circ f\}$ is a \mathcal{V} -quasi-isomorphism if and only if at least two morphisms in it are \mathcal{V} -quasi-isomorphisms.

Remark 13.3.5. One may define \mathcal{D}/\mathcal{V} as the localization of \mathcal{D} in the set of all \mathcal{V} -quasi-isomorphisms. But doing so requires a lot of work.

Definition 13.3.6. Suppose that \mathscr{I} is a small category. We say that \mathscr{I} is a *directed category* if it satisfies the following properties.

(1) If $x_1, x_2 \in \text{ob } \mathscr{I}$, then there is some diagram

of maps in \mathscr{I} .

(2) If

is a diagram of maps in \mathscr{I} , then there exist maps $x_2 \to x_4$; $x_3 \to x_4$ in \mathscr{I} such that

commutes in \mathscr{I} .

(3) For any two parallel maps $f, g: x \to y$, there exists a map $h: y \to z$ such that $h \circ f = h \circ g$.

Let \mathscr{I} be small. There is a well-defined functor colim: $\operatorname{Fun}(\mathscr{I}, \mathbf{Ab}) \to \mathbf{Ab}$, but this need *not* be exact even though both \mathbf{Ab} and $\operatorname{Fun}(\mathscr{I}, \mathbf{Ab})$ are abelian.

Exercise 13.3.7. Show, however, that if $\mathscr I$ is directed, then colim is an exact functor.

Now, let $\mathscr{V} \subset \mathscr{D}$ be a pair of triangulated categories. Let $x \in \text{ob}\,\mathscr{D}$ and let \mathscr{Q}/x be the full subcategory of \mathscr{D}/x consisting of morphisms $y \to x$ that are \mathscr{V} -quasi-isomorphisms. Similarly, let x/\mathbb{Q} be the full subcategory of x/\mathscr{D} consisting morphisms $x \to z$ that are \mathscr{V} -quasi-isomorphisms.

Exercise 13.3.8. Prove the following assertions.

- 1. Both x/2 and $(2/x)^{op}$ are directed categories.
- 2. Any map in x/2 or 2/x is automatically a \mathcal{V} -quasi-isomorphism.

Definition 13.3.9. Define the Verdier quotient of \mathscr{D} by \mathscr{V} as the category \mathscr{D}/\mathscr{V} with ob $\mathscr{D}/\mathscr{V} \equiv \text{ob }\mathscr{D}$ and $\text{Hom}_{\mathscr{D}/\mathscr{V}}(a,b) \equiv \text{colim}_{a' \in (\mathscr{D}/a)^{\text{op}}} \text{Hom}_{\mathscr{D}}(a',b)$.

There exists a canonical isomorphism

$$\operatorname*{colim}_{a' \in (\mathscr{Q}/a)^{\operatorname{op}}} \operatorname{Hom}_{\mathscr{D}}(a',b) \cong \operatorname*{colim}_{b' \in (b/\mathscr{Q})} \operatorname{Hom}_{\mathscr{D}}(a,b').$$

For this, we must check that given a top triangle

we can form a commutative double triangle

As a result, we get $q: \mathcal{D} \to \mathcal{D}/\mathcal{V}$.

Lemma 13.3.10. If $x \in \text{ob } \mathscr{D}$ has q(x) = 0 in \mathscr{D}/\mathscr{V} , then x is a direct summand of an object in \mathscr{V} .

Proof. We have that
$$q(x) = 0 \iff$$
 there is some $y \in \mathscr{D}$ such that $\varphi : y \to x$ is a \mathscr{V} -quasi-isomorphism. In this case, $\underline{\mathrm{cone}(\varphi)} \in \mathscr{V}$.

Definition 13.3.11. A triangulated subcategory $\mathcal{V} \subset \mathcal{D}$ is *thick* if any object in \mathcal{D} that is isomorphic to a direct summand of an object in \mathcal{V} is an object in \mathcal{V} .

Note 13.3.12. If \mathscr{V} is a strict full thick triangulated subcategory of \mathscr{D} , then $q: \mathscr{D} \to \mathscr{D}/\mathscr{V}$ kills all and only objects in \mathscr{V} .

Definition 13.3.13. If \mathscr{D} is triangulated and $\mathscr{U}, \mathscr{V} \subset \mathscr{D}$ are strict full triangulated subcategories, then $(\mathscr{U}, \mathscr{V})$ is an *admissible pair of subcategories* if

- (a) $\operatorname{Hom}_{\mathscr{D}}(x,y) = 0$ for any $x \in \operatorname{ob} u$ and $y \in \operatorname{ob} \mathscr{V}$ and
- (b) any object $z \in \text{ob} \mathcal{D}$ fits in a distinguished triangle $x \to z \to y \to x[1]$ with $x \in \text{ob} \mathcal{U}$ and $y \in \text{ob} \mathcal{V}$.

Exercise 13.3.14. Prove the following assertions.

- 1. The \triangle in condition (b) is unique up to a unique isomorphism and is functorial in z.
- 2. The functor $\mathscr{D} \to \mathscr{U}$ given by $z \mapsto x(z)$ is triangulated and is right adjoint to $\mathscr{U} \hookrightarrow \mathscr{D}$.

 Dually, the functor $\mathscr{D} \to \mathscr{V}$ given by $z \mapsto y(z)$ is triangulated and is left adjoint to $\mathscr{V} \hookrightarrow \mathscr{D}$.
- 3. Each of \mathcal{U} and \mathcal{V} determines the other. Specifically,

$$\mathcal{V} = \mathcal{U}^{\perp} \equiv \underbrace{\left\{ y \in \text{ob} \, \mathscr{D} \mid \text{Hom}_{\mathscr{D}}(x,y) = 0, \ x \in \text{ob} \, \mathscr{U} \right\}}_{full \ subcategory}$$

$$\mathcal{U} = {}^{\perp} \mathcal{V} \equiv \underbrace{\left\{ x \in \text{ob} \, \mathscr{D} \mid \text{Hom}_{\mathscr{D}}(x,y) = 0, \ y \in \text{ob} \, \mathscr{V} \right\}}_{full \ subcategory}.$$

In particular, both \mathcal{U} and \mathcal{V} are thick subcategories.

4. The natural compositions $\mathscr{U} \hookrightarrow \mathscr{D} \to \mathscr{D}/\mathscr{V}$ and $\mathscr{V} \hookrightarrow \mathscr{D} \to \mathscr{D}/\mathscr{U}$ are triangulated equivalences.

Definition 13.3.15. An additive pair $(\mathcal{U}, \mathcal{V})$ is called a *semiorthogonal decomposition of* \mathcal{D} *into* \mathcal{U} and \mathcal{V} .

Proposition 13.3.16. If $\mathcal{U} \subset \mathcal{D}$ is a strict full triangulated thick subcategory, then TFAE.

- 1. The inclusion $\mathscr{U} \hookrightarrow \mathscr{D}$ has a left adjoint.
- 2. The quotient $\mathcal{D} \to \mathcal{D}/\mathcal{U}$ has a right adjoint.
- 3. $(\mathcal{U}, \mathcal{U}^{\perp})$ is admissible.

Definition 13.3.17. If $\mathscr A$ is an abelian category, then the *derived category of* $\mathscr A$ is the triangulated category

$$\mathcal{D}(\mathscr{A}) \equiv \frac{\mathcal{C}(\mathscr{A})}{\mathcal{C}(\mathscr{A})^{\mathrm{acyclic}}},$$

where $\mathcal{C}(\mathscr{A})^{\text{acyclic}}$ is the full subcategory of $\mathcal{C}(a)$ consisting of those x with zero cohomology.

To do computations in $\mathcal{D}(\mathscr{A})$, we must understand when $\mathcal{D}(a)$ can be embedded in $\mathcal{C}(\mathscr{A})$ so that $(\mathcal{C}(\mathscr{A})^{\text{acyclic}}, \mathcal{D}(\mathscr{A}))$ is an adjoint pair. This requires $(\mathcal{C}(\mathscr{A})^{\text{acyclic}})^{\perp}$ to be large.

Define ${}^{\perp}\mathcal{C}(\mathscr{A})^{\text{acyclic}}$ as the category of homotopically projective objects in $\mathcal{C}(\mathscr{A})$ and $(\mathcal{C}(\mathscr{A})^{\text{acyclic}})^{\perp}$ as the category of homotopically injective objects in $\mathcal{C}(\mathscr{A})$.

Proposition 13.3.18.

- 1. Every bounded-above complex of projectives is a homotopically projective object in $\mathcal{C}(\mathscr{A})$.
- 2. Any bounded-below complex of injectives is a homotopically injective object in $\mathcal{C}(\mathscr{A})$.