Module 2 : Déterminant d'une matrice

Unité 1 : Déterminant d'une matrice 2x2

Soit une matrice A a 2 lignes et 2 colonnes

$$A_{(2,2)} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Par définition, son déterminant est le nombre réel noté det A ou |A| :

$$\det A = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Ne pas confondre les notations :

- avec des parenthèses (ou des crochets) pour une matrice,
- avec des barres pour un déterminant.

Un déterminant n'est pas une matrice. C'est un nombre réel.

$$\mathsf{Ex}\ \mathsf{A} = \begin{bmatrix} 3 & 3 \\ 2 & 4 \end{bmatrix} \quad \mathsf{B} = \begin{bmatrix} 1 & 6 \\ 7 & 0 \end{bmatrix}$$

$$\det A = |A| = \begin{vmatrix} 3 & 3 \\ 2 & 4 \end{vmatrix} = 12 - 6 = 6$$

$$\det B = 0 - 42 = -42$$

Le déterminant concerne les matrices carrées. Une matrice dont le déterminant est différent de zéro est une matrice dite régulière. Elle est dite singulière dans le cas contraire.

2. Déterminant d'une matrice nxn

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & a_{ij} & \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{bmatrix}$$

Considérons un élément a_{ij} de A. Si on raye dans A la ligne et la colonne contenant a_{ij} , on obtient une matrice a n-1 lignes et n-1 colonnes notée A_{ij} . Son déterminant $\left|A_{ij}\right|$ s'appelle le mineur de a_{ij} dans A. On appelle cofacteur du terme a_{ij} le produit $(-1)^{i+j}A_{ij}$

$$\det A = a_{11} |A_{11}| - a_{12} |A_{12}| + a_{13} |A_{13}| + ... + (-1)^{n+1} a_{1n} |A_{1n}|$$

Ex matrice 3x3

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11} (a_{22}a_{33} - a_{23}a_{32}) - a_{12} (a_{21}a_{33} - a_{23}a_{31}) + a_{13} (a_{21}a_{32} - a_{22}a_{31})$$

Dans cet exemple, le mineur de a_{11} est $\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$

Pour le signe du cofacteur : $(-1)^{i+j}$

 $1^{\text{ère}}$ ligne + $1^{\text{ère}}$ colonne (1+1)=2 nombre pair $\rightarrow (-1)^2 = 1$ donc signe positif

 $1^{\text{ère}}$ ligne + $2^{\text{ème}}$ colonne (1+2)=3 nombre impair $\rightarrow (-1)^3 = -1$ donc signe négatif.

Exemple:

$$A = \begin{bmatrix} 1 & 3 & 7 \\ 2 & 4 & 8 \\ 5 & 0 & 6 \end{bmatrix}$$

On peut développer selon les lignes ou les colonnes. Développons selon la 1ère ligne :

$$\begin{vmatrix} A \\ A \end{vmatrix} = 1 \begin{vmatrix} 4 & 8 \\ 0 & 6 \end{vmatrix} - 3 \begin{vmatrix} 2 & 8 \\ 5 & 6 \end{vmatrix} + 7 \begin{vmatrix} 2 & 4 \\ 5 & 0 \end{vmatrix}$$
$$= 24 - 3(12 - 40) + 7(0 - 20)$$
$$= -32$$

On peut vérifier le résultat si on développe selon la $2^{i me}$ ligne ou la $3^{i me}$ ligne. Développons selon la $2^{i me}$ ligne :

$$\begin{vmatrix} A \\ = -2 \begin{vmatrix} 3 & 7 \\ 0 & 6 \end{vmatrix} + 4 \begin{vmatrix} 1 & 7 \\ 5 & 6 \end{vmatrix} - 8 \begin{vmatrix} 1 & 3 \\ 5 & 0 \end{vmatrix}$$
$$= -2(18) + 4(6 - 35) - 8(-15)$$
$$= -32$$

Développons selon la 3^{ème} ligne :

$$\begin{vmatrix} A \end{vmatrix} = 5 \begin{vmatrix} 3 & 7 \\ 4 & 8 \end{vmatrix} - 0 \begin{vmatrix} 1 & 7 \\ 2 & 8 \end{vmatrix} + 6 \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}$$
$$= 5(24 - 28) - 0 + 6(4 - 6)$$
$$= -32$$

Développons selon la 1ère colonne :

$$\begin{vmatrix} A \\ = 1 \begin{vmatrix} 4 & 8 \\ 0 & 6 \end{vmatrix} - 2 \begin{vmatrix} 3 & 7 \\ 0 & 6 \end{vmatrix} + 5 \begin{vmatrix} 3 & 7 \\ 4 & 8 \end{vmatrix}$$
$$= 24 - 2(18) + 5(24 - 28)$$
$$= -32$$

On peut vérifier le résultat si on développe selon la $2^{i\text{ème}}$ colonne ou la $3^{i\text{ème}}$ colonne Développons selon la $2^{\text{ème}}$ colonne :

$$\begin{vmatrix} A \\ = -3 \begin{vmatrix} 2 & 8 \\ 5 & 6 \end{vmatrix} + 4 \begin{vmatrix} 1 & 7 \\ 5 & 6 \end{vmatrix} - 0 \begin{vmatrix} 1 & 7 \\ 2 & 8 \end{vmatrix}$$
$$= -3(12 - 40) + 4(6 - 35) - 0$$
$$= -32$$

Développons selon la 3^{ème} colonne :

$$|A| = 7 \begin{vmatrix} 2 & 4 \\ 5 & 0 \end{vmatrix} - 8 \begin{vmatrix} 1 & 3 \\ 5 & 0 \end{vmatrix} + 6 \begin{vmatrix} 1 & 3 \\ 2 & 4 \end{vmatrix}$$
$$= 7(-20) - 8(-15) + 6(4 - 6)$$
$$= -32$$

3. Les propriétés des déterminants

3.1 Déterminant nul

Le déterminant d'une matrice est nul si et seulement si les vecteurs colonnes (respectivement les vecteurs lignes) sont liés.

$$A = \begin{bmatrix} 4 & 8 \\ 6 & 12 \end{bmatrix} \quad \left| A \right| = 48 - 48 = 0 \text{ , la deuxième colonne est le double de la première colonne.}$$

$$B = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} \quad \left| B \right| = 24 - 24 = 0 \text{ , la deuxième ligne est le double de la première ligne.}$$

Un déterminant qui a deux lignes identiques est nul.

$$\begin{vmatrix} 4 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{vmatrix} = 4 \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} - 1 \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix} + \begin{vmatrix} 2 & 1 \\ 2 & 1 \end{vmatrix}$$
$$= 4(0) - 1(0) + 0 = 0$$

Un déterminant qui a deux colonnes identiques est aussi nul.

$$\begin{vmatrix} 2 & 3 & 2 \\ 1 & 2 & 1 \\ 3 & 1 & 3 \end{vmatrix} = 0$$

3.2 Symétrie

Un déterminant ne change pas si on échange ses lignes et ses colonnes c'est-à-dire qu'une matrice et sa transposée ont le même déterminant

$$\begin{vmatrix} 5 & 6 \\ 3 & 2 \end{vmatrix} = 10 - 18 = -8 \quad \begin{vmatrix} 5 & 3 \\ 6 & 2 \end{vmatrix} = 10 - 18 = -8$$

3.3 Alternance

Si l'on échange 2 lignes d'un déterminant, celui-ci change de signe en gardant la même valeur absolue.

$$\begin{vmatrix} 1 & 3 & 7 \\ 2 & 4 & 8 \\ 5 & 0 & 6 \end{vmatrix} = -32$$

$$\begin{vmatrix} 1 & 3 & 7 \\ 5 & 0 & 6 \\ 2 & 4 & 8 \end{vmatrix} = 1 \begin{vmatrix} 0 & 6 \\ 4 & 8 \end{vmatrix} - 3 \begin{vmatrix} 5 & 6 \\ 2 & 8 \end{vmatrix} + 7 \begin{vmatrix} 5 & 0 \\ 2 & 4 \end{vmatrix}$$

$$= -24 - 3(40 - 12) + 7(20)$$

$$= 32$$

A cause de la deuxième propriété, si on échange 2 colonnes d'un déterminant, celui-ci change aussi de signe en gardant la même valeur absolue.

3.4 Linéarité

• Si on multiplie une ligne (ou une colonne) d'une matrice par un réel λ , le déterminant de la nouvelle matrice est multiplié par ce réel.

Ex

$$A = \begin{bmatrix} 1 & 3 & 7 \\ 2 & 4 & 8 \\ 5 & 0 & 6 \end{bmatrix} \quad |A| = -32$$

Multiplions la 2^{ème} ligne par ½:

$$\begin{vmatrix} 1 & 3 & 7 \\ 1 & 2 & 4 \\ 5 & 0 & 6 \end{vmatrix} = 1 \begin{vmatrix} 2 & 4 \\ 0 & 6 \end{vmatrix} - 3 \begin{vmatrix} 1 & 4 \\ 5 & 6 \end{vmatrix} + 7 \begin{vmatrix} 1 & 2 \\ 5 & 0 \end{vmatrix}$$
$$= 12 - 3(6 - 20) + 7(-10)$$
$$= -16$$

• Si un vecteur colonne se présente comme la somme de deux vecteurs colonnes, le déterminant est la somme des deux déterminants obtenus en prenant successivement chacun des termes de la somme.

Ex:

$$\begin{vmatrix} 4 & 10 \\ 3 & 12 \end{vmatrix} = \begin{vmatrix} 4 & 6+4 \\ 3 & 4+8 \end{vmatrix} = \begin{vmatrix} 4 & 6 \\ 3 & 4 \end{vmatrix} + \begin{vmatrix} 4 & 4 \\ 3 & 8 \end{vmatrix}$$
$$= 16 - 18 + 32 - 12$$
$$= +18$$

$$\begin{vmatrix} 4 & 10 \\ 3 & 12 \end{vmatrix} = 48 - 30 = +18$$

• En ajoutant à une ligne un multiple d'une autre, on ne change pas un déterminant.

Ex : soit le déterminant suivant :

$$\begin{vmatrix} 1 & 3 & 7 \\ 2 & 4 & 8 \\ 5 & 0 & 6 \end{vmatrix} = -32$$

On utilise cette propriété pour obtenir des 0 dans une ligne ou une colonne et ainsi simplifier le calcul du déterminant

Si on retranche à la deuxième ligne, la première multipliée par 2, on obtient :

$$\begin{vmatrix} 1 & 3 & 7 \\ 2-2x1 & 4-2x3 & 8-2x7 \\ 5 & 0 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 3 & 7 \\ 0 & -2 & -6 \\ 5 & 0 & 6 \end{vmatrix}$$

Si on ajoute à la troisième ligne, la première multipliée par -5, on obtient :

$$\begin{vmatrix} 1 & 3 & 7 \\ 0 & -2 & -6 \\ 5 + 1x(-5) & 0 + 3x(-5) & 6 + 7x(-5) \end{vmatrix} = \begin{vmatrix} 1 & 3 & 7 \\ 0 & -2 & -6 \\ 0 & -15 & -29 \end{vmatrix}$$

Le calcul du déterminant est alors simplifié :

$$\begin{vmatrix} 1 & 3 & 7 \\ 0 & -2 & -6 \\ 0 & -15 & -29 \end{vmatrix} = 1 \begin{vmatrix} -2 & -6 \\ -15 & -29 \end{vmatrix} = 58 - 80 = -32$$

Autre exemple :

$$A = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 2 & 3 & 2 & -2 \\ 2 & 4 & 2 & 1 \\ 3 & 1 & 5 & -3 \end{bmatrix}$$

Si on ajoute la première colonne à la troisième colonne et la première colonne multipliée par -2 à a quatrième colonne, on obtient :

$$\left|A\right| = \begin{vmatrix} 1 & 0 & -1+1 & 2-2 \\ 2 & 3 & 2+2 & -2-4 \\ 2 & 4 & 2+2 & 1-4 \\ 3 & 1 & 5+3 & -3-6 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 2 & 3 & 4 & -6 \\ 2 & 4 & 4 & -3 \\ 3 & 1 & 8 & -9 \end{vmatrix} = \begin{vmatrix} 3 & 4 & -6 \\ 4 & 4 & -3 \\ 1 & 8 & -9 \end{vmatrix}$$

Si on retranche à la première ligne deux fois la deuxième ligne et à la troisième ligne trois fois la deuxième ligne, on obtient :

$$\begin{vmatrix} A \\ A \end{vmatrix} = \begin{vmatrix} 3 - 2(4) & 4 - 2(4) & -6 - 2(-3) \\ 4 & 4 & -3 \\ 1 - 3(4) & 8 - 3(4) & -9 - 3(-3) \end{vmatrix} = \begin{vmatrix} -5 & -4 & 0 \\ 4 & 4 & -3 \\ -11 & -4 & 0 \end{vmatrix} = 3\begin{vmatrix} -5 & -4 \\ -11 & -4 \end{vmatrix}$$
$$= 3(20 - 44) = -72$$

3.5 Déterminant d'un produit

Si A et B sont 2 matrices carrées d'ordre n, alors

$$|AB| = |A| \cdot |B|$$

Le déterminant du produit A.B est égal au produit des déterminants de A et de B

4. Rang d'une matrice

On dit qu'une matrice $A \neq [0]$, A de dimension quelconque différente de la matrice nulle, est de rang r si au moins l'un de ses mineurs carrés d'ordre r est différent de 0, tandis que chaque mineur carré d'ordre r+1 est nul. Ou encore : le rang d'une matrice A de dimension quelconque est l'ordre de la plus grande sous-matrice carrée régulière que l'on peut extraire de A.

Une matrice nulle est de rang 0.

Ex:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$$

$$|A| = 1 \begin{vmatrix} 3 & 4 \\ 5 & 7 \end{vmatrix} - 2 \begin{vmatrix} 2 & 4 \\ 3 & 7 \end{vmatrix} + 3 \begin{vmatrix} 2 & 3 \\ 3 & 5 \end{vmatrix}$$
$$= (21 - 20) - 2(14 - 12) + 3(10 - 9)$$
$$= 1 - 4 + 3 = 0$$

 \Rightarrow la matrice n'est pas de rang 3.

Si on prend $\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = -1 \neq 0 \implies$ la matrice A est de rang 2.

<u>Conséquence</u>: Une matrice carrée A est régulière si son rang=n c'est-à-dire si $|A| \neq 0$. Elle est singulière sinon.

Autres propriétés sur les rangs des matrices :

Soient 2 matrices A et B

rang A = rang A'

rang A'A = rang AA'

Si rang $X_{(n,k)} = k$ avec k<n alors rang $X'X_{(k,k)} = k$