

Solutions: Linear Algebra by Hoffman and Kunze

G V V Sharma*

CONTENTS

1	Linea	r Equations	1
	1.1	Fields and Linear Equations	1
	1.2	Matrices and Elementary	
		Row Operations	6
	1.3	Row Reduced Echelon Matrices	14
	1.4	Matrix Multiplication	21
	1.5	Invertible Matrices	24
2	Vector Spaces		
	2.1	Vector Spaces	28
	2.2	Subspaces	31
	2.3	Bases and Dimension	37
	2.4	Coordinates	42

Abstract—This book provides solutions to the Linear Algebra book by Hoffman and Kunze.

1 Linear Equations

1.1 Fields and Linear Equations

1.1.1. Verify that the set of complex numbers numbers described in the form of c where x and y are rational is a sub-field of C.

Solution: Lets consider the set $S = \{x + x\}$

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

 $y\sqrt{2}, x, y \in Q$ }, $S \subset C$ We must verify that S meets the following two conditions:

$$0, 1 \in S \tag{1.1.1.1}$$

$$a, b \in S, a + b, -a, ab, a^{-1} \in S$$
 (1.1.1.2)

Throughout let

$$a = x + y\sqrt{2}, b = w + z\sqrt{2}$$
 (1.1.1.3)

If

a)

$$x = 0, y = 0 \in Q, a = 0 + \sqrt{2}.0 = 0, 0 \in S$$
(1.1.1.4)

b)
$$x = 1, y = 0, a = 1 + \sqrt{2}.0 = 1, 1 \in S$$
 (1.1.1.5)

c)
$$a + b = x + y\sqrt{2} + w + z\sqrt{2} = b + a$$
 (1.1.1.6)

d)
$$-a = -x - y\sqrt{2}, x, y \in Qso - x, -y \in Q, a \in S$$
 (1.1.1.7)

e)
$$ab = (x + y\sqrt{2})(w + z\sqrt{2}) = ba, ab \in S$$
 (1.1.1.8)

f)

$$a^{-1}a = (x + y\sqrt{2})^{-1}(x + y\sqrt{2}) = 1, a^{-1} \in S$$
(1.1.1.9)

Hence (1.1.1.1) ,(1.1.1.2) is verified. Therefore by considering the (1.1.1.1) and (1.1.1.2) we can say set complex numbers of given form $x + y\sqrt{2}$ is subfield of C.

1.1.2. Let \$\mathbb{F}\$ be the field of complex numbers. Are the following two systems of linear equations equivalent? If so, express each equation in each system as a linear combination of the equations in the other system.

$$x_1 - x_2 = 0$$
$$2x_1 + x_2 = 0$$

and

$$3x_1 + x_2 = 0$$
$$x_1 + x_2 = 0$$

Solution: The given system of linear equations can be written as,

$$\mathbf{A}\mathbf{x} = 0 \tag{1.1.2.1}$$

$$\implies \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{1.1.2.2}$$

$$\mathbf{B}\mathbf{x} = 0$$
 (1.1.2.3)

$$\implies \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{x} = 0 \tag{1.1.2.4}$$

Now we can obtain \mathbf{B} from matrix \mathbf{A} by performing elementary row operations given as,

$$\mathbf{B} = \mathbf{C}\mathbf{A} \tag{1.1.2.5}$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} = \mathbf{C} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \tag{1.1.2.6}$$

where **C** is product of elementary matrices given as,

$$\mathbf{C} = (\mathbf{E}_{7}\mathbf{E}_{6}\mathbf{E}_{5}\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1})$$

$$= \begin{pmatrix} 1 & 0 \\ \frac{1}{3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{3} & \frac{4}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{pmatrix} \quad (1.1.2.7)$$

Now, performing elementary operations on the

right side of A we obtain matrix B given as,

$$\mathbf{B} = \mathbf{AP} \tag{1.1.2.8}$$

$$\begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \mathbf{P} \tag{1.1.2.9}$$

where, **P** is product of elementary matrices given by,

$$\mathbf{P} = (\mathbf{E}_{1}\mathbf{E}_{2}\mathbf{E}_{3}\mathbf{E}_{4}\mathbf{E}_{5})$$

$$= \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{4}{3} & \frac{2}{3} \\ \frac{-5}{3} & \frac{-1}{3} \end{pmatrix} \quad (1.1.2.10)$$

Similarly, \mathbf{A} can be obtained from matrix \mathbf{B} from (1.1.2.5) as,

$$\mathbf{A} = \mathbf{C}^{-1}\mathbf{B} \tag{1.1.2.11}$$

$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} = \mathbf{C}^{-1} \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \tag{1.1.2.12}$$

Matrix **C** is product of elementary matrices and hence invertible and is given as,

$$\mathbf{C}^{-1} = \left(\mathbf{E_1}^{-1} \mathbf{E_2}^{-1} \mathbf{E_3}^{-1} \mathbf{E_4}^{-1} \mathbf{E_5}^{-1} \mathbf{E_6}^{-1} \mathbf{E_7}^{-1}\right)$$

$$= \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{3}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-1}{3} & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -2 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \quad (1.1.2.13)$$

Matrix \mathbf{A} can also be obtained from (1.1.2.8) given as,

$$\mathbf{A} = \mathbf{B}\mathbf{P}^{-1} \tag{1.1.2.14}$$

$$\begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 1 \end{pmatrix} \mathbf{P}^{-1} \tag{1.1.2.15}$$

where.

$$\mathbf{P}^{-1} = \left(\mathbf{E_5}^{-1} \mathbf{E_4}^{-1} \mathbf{E_3}^{-1} \mathbf{E_2}^{-1} \mathbf{E_1}^{-1}\right)$$

$$= \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{-1}{2} & -1 \\ \frac{5}{2} & 2 \end{pmatrix} \quad (1.1.2.16)$$

Thus (1.1.2.4) can be obtained from (1.1.2.2) by multiplying it with matrix \mathbb{C} , and by inverse row operations (1.1.2.2) can be obtained back

from (1.1.2.4) since **C** is product of elementary matrices and hence invertible.

Thus the two given homogeneous systems are row equivalent.

Now writing equations in matrix-vector form as,

$$3x_{1} + x_{2} = \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x}$$
 (1.1.2.17)

$$\Rightarrow \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} = \frac{1}{3} \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} + \frac{4}{3} \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x}$$
 (1.1.2.18)

$$x_{1} + x_{2} = \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x}$$
 (1.1.2.19)

$$\Rightarrow \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} = \frac{-1}{3} \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} + \frac{2}{3} \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x}$$
 (1.1.2.20)

(1.1.2.18), (1.1.2.20) is same as multiplying C with A as it takes the linear combination of each rows of matrix A i.e, (1.1.2.6)

$$x_{1} - x_{2} = \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} \qquad (1.1.2.21)$$

$$\implies \begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = (1) \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} + (-2) \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} \qquad (1.1.2.22)$$

$$2x_{1} + x_{2} = \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x} \qquad (1.1.2.23)$$

$$\implies \begin{pmatrix} 2 & 1 \end{pmatrix} \mathbf{x} = \frac{1}{2} \begin{pmatrix} 3 & 1 \end{pmatrix} \mathbf{x} + \frac{1}{2} \begin{pmatrix} 1 & 1 \end{pmatrix} \mathbf{x} \qquad (1.1.2.24)$$

(1.1.2.22), (1.1.2.24) is same as multiplying \mathbf{C}^{-1} with \mathbf{B} as it takes the linear combination of each rows of matrix \mathbf{B} i.e, (1.1.2.12)

Thus each equation in each system can be expressed as a linear combination of the equations in the other system when they are equivalent.

1.1.3. Are the following two systems of linear equations equivalent?

$$-x_1 + x_2 + 4x_3 = 0$$

$$x_1 + 3x_2 + 8x_3 = 0$$

$$\frac{1}{2}x_1 + x_2 + \frac{5}{2}x_3 = 0$$
(1.1.3.1)

Solution:

$$x_1 - x_3 = 0$$

$$x_2 + 3x_3 = 0$$
(1.1.3.2)

System of linear equations in (1.1.3.1) can be

expressed in matrix form as,

$$\mathbf{A}\mathbf{x} = 0 \tag{1.1.3.3}$$

$$\begin{pmatrix} -1 & 1 & 4 \\ 1 & 3 & 8 \\ \frac{1}{2} & 1 & \frac{5}{2} \end{pmatrix} \mathbf{x} = 0 \tag{1.1.3.4}$$

System of linear equations in (1.1.3.2) can be expressed in matrix form as,

$$\mathbf{B}\mathbf{x} = 0 \tag{1.1.3.5}$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} \mathbf{x} = 0 \tag{1.1.3.6}$$

Two system of linear equations are equivalent if one system can be expressed as a linear combination of other system.

Matrix **B** can be obtained from matrix **A** as,

$$\mathbf{B} = \mathbf{C}\mathbf{A} \tag{1.1.3.7}$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 3 \end{pmatrix} = \mathbf{C} \begin{pmatrix} -1 & 1 & 4 \\ 1 & 3 & 8 \\ \frac{1}{2} & 1 & \frac{5}{2} \end{pmatrix}$$
 (1.1.3.8)

$$\mathbf{C} = \begin{pmatrix} -1 & 1 & -2\\ \frac{1}{2} & -\frac{1}{2} & 2 \end{pmatrix} \tag{1.1.3.9}$$

Now, writing equations in matrix-vector form,

$$x_1 - x_3 = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \mathbf{x}$$

$$\implies (1 \quad 0 \quad -1)\mathbf{x} = -1(-1 \quad 1 \quad 4)\mathbf{x} + 1(1 \quad 3 \quad 8)\mathbf{x} - 2(\frac{1}{2} \quad 1 \quad \frac{5}{2})\mathbf{x} \quad (1.1.3.10)$$

$$x_2 + 3x_3 = \begin{pmatrix} 0 & 1 & 3 \end{pmatrix} \mathbf{x}$$

$$\implies \begin{pmatrix} 0 & 1 & 3 \end{pmatrix} \mathbf{x} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 4 \end{pmatrix} \mathbf{x}$$
$$-\frac{1}{2} \begin{pmatrix} 1 & 3 & 8 \end{pmatrix} \mathbf{x} + 2 \begin{pmatrix} \frac{1}{2} & 1 & \frac{5}{2} \end{pmatrix} \mathbf{x} \quad (1.1.3.11)$$

Equations (1.1.3.10) and (1.1.3.11) is same as multiplying **C** with **A** which is the linear combination of rows of matrix **A**.

Thus each equation in second system can be expressed as linear combination of the equations in first system.

Therefore, the two system of linear equations are equivalent.

1.1.4. Let \mathbb{F} be the field of complex numbers. Are the following two systems of linear equations

equivalent? If so, express each equation in each system as a linear combination of equations in other system. First system of equations:

$$2x_1 + (-1 + i)x_2 + x_4 = 0 (1.1.4.1)$$

$$3x_2 - 2ix_3 + 5x_4 = 0 (1.1.4.2)$$

The second system of equations:

$$(1+\frac{i}{2})x_1 + 8x_2 - ix_3 - x_4 = 0$$
 (1.1.4.3) Hence the given systems of linear equations are not equivalent.
$$\frac{2}{3}x_1 - \frac{1}{2}x_2 + x_3 + 7x_4 = 0$$
 (1.1.4.4) 1.1.5. Let \mathbb{F} be a set which contains exactly two elements 0 and 1 Define an addition and multiple of the contains of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and multiple of the contains exactly two elements 0 and 1 Define an addition and 1 Define and 1 De

Solution: Let \mathbf{R}_1 and \mathbf{R}_2 be the reduced row echelon forms of the augumented matrices of the following systems of homogeneous equations respectively.

$$\mathbf{AX} = \mathbf{0} \tag{1.1.4.5}$$

$$\mathbf{BX} = \mathbf{0} \tag{1.1.4.6}$$

Where **A** and **B** as follows

$$\mathbf{A} = \begin{pmatrix} 2 & -1+i & 0 & 1\\ 0 & 3 & -2i & 5 \end{pmatrix} \tag{1.1.4.7}$$

$$\mathbf{B} = \begin{pmatrix} 1 + \frac{i}{2} & 8 & -i & -1 \\ \frac{2}{3} & \frac{-1}{2} & 1 & 7 \end{pmatrix}$$
 (1.1.4.8)

On performing elementary row operations on (1.1.4.7),

$$\mathbf{R_1} = \mathbf{CA}$$
 (1.1.4.9)

where C is the product of all elementary matrices. Reducing the first system of linear equations, we get,

$$\mathbf{C} = \begin{pmatrix} 1 & \frac{1-i}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}$$
 (1.1.4.10)

$$\mathbf{R_1} = \begin{pmatrix} 1 & 0 & \frac{-1-i}{3} & \frac{4}{3} - \frac{5i}{6} \\ 0 & 1 & \frac{-2i}{3} & \frac{5}{3} \end{pmatrix}$$
 (1.1.4.11)

On performing elementary row operations on (1.1.4.8),

$$\mathbf{R}_2 = \mathbf{D}\mathbf{A}$$
 (1.1.4.12)

where **D** is the product of all elementary matrices. Reducing the second system of linear equations, we get,

$$\mathbf{D} = \begin{pmatrix} \frac{4}{5}(1 - \frac{i}{2}) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{-2}{3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{-6(143 + 43i)}{4909} \end{pmatrix} \begin{pmatrix} 1 & \frac{16(-2+i)}{5} \\ 0 & 1 \end{pmatrix} e$$

$$(1.1.4.13)$$
1 is an identity element of · operation of ·

$$\mathbf{R_2} = \begin{pmatrix} 1 & 0 & \frac{6702}{4909} - \frac{708i}{4909} & \frac{46620}{4909} - \frac{1998i}{4909} \\ 0 & 1 & \frac{-2(441 + 472i)}{4909} & \frac{-2(3283 + 1332i)}{4909} \end{pmatrix}$$
(1.1.4.14)

From the equations (1.1.4.11) and (1.1.4.14), we can say that

$$\mathbf{R_1} \neq \mathbf{R_2}$$
 (1.1.4.15)

elements,0 and 1.Define an addition and multiplication by tables. Verify that the set \mathbb{F} ,

$$\begin{array}{c|cccc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

together with these two operations, is a field. **Solution:**

To prove that $(\mathbb{F},+,\cdot)$ is a field we need to satisfy the following,

- a) + and \cdot should be closed
 - For any a and b in \mathbb{F} , $a+b \in \mathbb{F}$ and $a \cdot b$ $\in \mathbb{F}$. For example 0+0=0 and $0\cdot 0=0$.
- b) + and \cdot should be commutative
 - For any a and b in \mathbb{F} , a+b=b+a and a · $b = b \cdot a$. For example 0+1=1+0 and $0 \cdot a$ 1=1.0.
- c) + and \cdot should be associative
 - For any a and b in \mathbb{F} , a+(b+c)=(a+b)+cand $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. For example 0+(1+0)=(0+1)+0 and $0\cdot(1\cdot0)=(0\cdot1)\cdot0$.
- d) + and · operations should have an identity element
 - If we perform a + 0 then for any value of a from F the result will be a itself. Hence 0 is an identity element of + operation.If we perform a \cdot 1 then for any value of a from F the result will be a itself. Hence 1 is an identity element of \cdot operation.
- - For additive inverse to exist, \forall a in \mathbb{F} a+(a)=0. For example. 1-1=0 and 0-0=0.

- f) \forall a \in \mathbb{F} such that a is non zero there exists a multiplicative inverse
 - For multiplicative inverse to exist, \forall a such that a is non zero in \mathbb{F} , $a \cdot a^{-1} = 1$. For example $1 \cdot 1^{-1} = 1$.
- g) + and \cdot should hold distributive property
 - For any a,b and c in \mathbb{F} the property $a \cdot (b+c) = a \cdot b + a \cdot c$ should always hold true. For example $0 \cdot (1+1) = 0 \cdot 1 + 0 \cdot 1$.

Since the above properties are satisfied we can say that $(\mathbb{F},+,\cdot)$ is a field.

1.1.6. Prove that if two homogenous systems of linear equations in two unknowns have the same solutions, then they are equivalent.

Solution: Let the two systems of homogenous equations be

$$\mathbf{A}\mathbf{x} = \mathbf{0}$$
 (1.1.6.1)

$$\mathbf{B}\mathbf{y} = \mathbf{0}$$
 (1.1.6.2)

We can write

$$CAx = 0$$
 (1.1.6.3)

$$DBv = 0$$
 (1.1.6.4)

where C and D are product of elementary matrices that reduce A and B into their reduced row echelon forms R_1 and R_2

(1.1.6.3) and (1.1.6.4) imply

$$\mathbf{R_1} \mathbf{x} = 0 \tag{1.1.6.5}$$

$$\mathbf{R_2} \mathbf{y} = 0 \tag{1.1.6.6}$$

Given that they have same solution, we can write

$$\mathbf{R_1} \mathbf{x} = 0 \tag{1.1.6.7}$$

$$\mathbf{R_2} \mathbf{x} = 0 \tag{1.1.6.8}$$

$$\implies (\mathbf{R_1} - \mathbf{R_2})\mathbf{x} = 0 \tag{1.1.6.9}$$

Note that for a solution to exist, $\mathbf{R_1}$ and $\mathbf{R_2}$ can be either of matrices

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{1.1.6.10}$$

Case 1 Let us assume that the solution is unique. The unique solution is

$$\mathbf{x} = \mathbf{0} \tag{1.1.6.11}$$

Since they have the same solution, both R_1 , R_2 must have their rank as 2.

So.

$$\mathbf{R_1} = \mathbf{R_2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{1.1.6.12}$$

Case 2 Let us assume that (1.1.6.3),(1.1.6.4) have infinitely many solutions So.

$$rank(\mathbf{A}) = rank(\mathbf{B}) = 1$$
 (1.1.6.13)

equation (1.1.6.9) for solutions other than zero solution implies

$$\mathbf{R_1} = \mathbf{R_2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \tag{1.1.6.14}$$

So, in both the cases, we have

$$\mathbf{R_1} = \mathbf{R_2} \tag{1.1.6.15}$$

$$\implies$$
 CA = DB (1.1.6.16)

Since **C**, **D** are product of elementary matrices, they are invertible.

$$\implies \mathbf{A} = \mathbf{C}^{-1}\mathbf{DB} \tag{1.1.6.17}$$

$$\mathbf{B} = \mathbf{D}^{-1}\mathbf{C}\mathbf{A} \tag{1.1.6.18}$$

Let
$$C^{-1}D = E$$
 (1.1.6.19)

where ${\bf E}$ is also a product of elementary matrices

(1.1.6.17) and (1.1.6.18) hence become

$$\mathbf{A} = \mathbf{EB} \tag{1.1.6.20}$$

$$\mathbf{B} = \mathbf{E}^{-1} \mathbf{A} \tag{1.1.6.21}$$

Hence the two systems of equations are equivalent.

1.1.7. Prove that each subfield of the field of complex number contains every rational number

Solution:

Complex Numbers: A complex number is a number that can be expressed in the form a + bi, where a and b are real numbers, and i represents the imaginary unit, satisfying the equation $i^2 = -1$. The set of complex numbers is denoted by \mathbb{C}

$$\mathbb{C} = \{ (a, b) : a, b \in \mathbb{R} \}$$
 (1.1.7.1)

Rational Numbers: A number in the form $\frac{p}{q}$, where both p and q(non-zero) are integers, is called a rational number. The set of rational numbers is denoted by \mathbb{Q} Let \mathbb{Q} be the set of

rational numbers.

$$\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z}_{\neq 0} \right\}$$
 (1.1.7.2)

Let $\mathbb C$ be the field of complex numbers and given \mathbb{F} be the subfield of field of complex numbers $\mathbb C$ Since $\mathbb F$ is the subfield , we could say that

$$0 \in \mathbb{F} \tag{1.1.7.3}$$

$$1 \in \mathbb{F} \tag{1.1.7.4}$$

Closed under addition: Here \mathbb{F} is closed under addition since it is subfield

$$1 + 1 = 2 \in \mathbb{F} \quad (1.1.7.5)$$

$$1 + 1 + 1 = 3 \in \mathbb{F}$$
 (1.1.7.6)

$$1 + 1 + \dots + 1$$
(p times) = $p \in \mathbb{F}$ (1.1.7.7)

$$1 + 1 + \dots + 1$$
(q times) = $q \in \mathbb{F}$ (1.1.7.8)

By using the above property we could say that zero and other positive integers belongs to \mathbb{F} . Since p and q are integers we say,

$$p \in \mathbb{Z} \tag{1.1.7.9}$$

$$q \in \mathbb{Z} \tag{1.1.7.10}$$

Additive Inverse: Let x be the positive integer belong \mathbb{F} and by additive inverse we could say,

$$\forall x \in \mathbb{F} \tag{1.1.7.11}$$

$$(-x) \in \mathbb{F} \tag{1.1.7.12}$$

Therefore field \mathbb{F} contains every integers. Let n be a integer then,

$$n \in \mathbb{Z} \implies n \in \mathbb{F}$$
 (1.1.7.13)

$$\mathbb{Z} \subseteq \mathbb{F} \tag{1.1.7.14}$$

Where \mathbb{Z} is subset of \mathbb{F} Multiplicative Inverse: Every element except zero in the subfield \mathbb{F} has an multiplicative inverse. From equation (1.1.7.8), since $q \in \mathbb{F}$ we could say,

$$\frac{1}{q} \in \mathbb{F} \quad \text{and } q \neq 0 \tag{1.1.7.15}$$

Closed under multiplication: Also, F is closed under multiplication and thus, from equation (1.1.7.7) and (1.1.7.15) we get,

$$p \cdot \frac{1}{q} \in \mathbb{F}$$
 (1.1.7.16)

$$\implies \frac{p}{a} \in \mathbb{F}$$
 (1.1.7.17)

$$\implies \frac{p}{q} \in \mathbb{F} \tag{1.1.7.17}$$

where , $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{\neq 0}$ (from equation (1.1.7.3) and (1.1.7.15)) Conclusion From (1.1.7.2) and (1.1.7.17) we could say,

$$\mathbb{Q} \subseteq \mathbb{F} \tag{1.1.7.18}$$

From equation (1.1.7.18) we could say that each subfield of the field of complex number contains every rational number

Hence Proved

 $1+1+1=3\in\mathbb{F}$ (1.1.7.6) 1.1.8. Prove that, each field of the characteristic zero contains a copy of the rational number field.

> Solution: The characteristic of a field is defined to be the smallest number of times one must use the field's multiplicative identity (1) in a sum to get the additive identity. If this sum never reaches the additive identity (0), then the field is said to have characteristic zero.

Let Q be the rational number field. Hence,

$$0 \in \mathbb{Q}$$
 [Additive Identity] (1.1.8.1)

$$1 \in \mathbb{Q}$$
 [Multiplicative Identity] (1.1.8.2)

As addition is defined on \mathbb{Q} hence we have,

$$1 \neq 0$$
 (1.1.8.3)

$$1 + 1 = 2 \neq 0 \tag{1.1.8.4}$$

And so on,

$$1 + 1 + \dots + 1 = n \neq 0 \tag{1.1.8.5}$$

From the definition of characteristic of a field and from (1.1.8.3), (1.1.8.4) and so on upto (1.1.8.5), the rational number field, \mathbb{Q} has characteristic 0.

- 1.2 Matrices and Elementary Row Operations
- 1.2.1. Find all solutions to the system of equations

$$(1-i) x_1 - ix_2 = 0$$

2x₁ + (1-i) x₂ = 0 (1.2.1.1)

Solution: System of Linear Equations (1.2.1.1)

can be expressed in matrix form as,

$$\mathbf{A}\mathbf{x} = 0 \tag{1.2.1.2}$$

$$\begin{pmatrix} 1 - i & -i \\ 2 & 1 - i \end{pmatrix} \mathbf{x} = 0 \tag{1.2.1.3}$$

By row reduction,

$$\begin{pmatrix} 1-i & -i \\ 2 & 1-i \end{pmatrix} \xrightarrow[R_1 \leftarrow R_1/2]{R_1 \leftarrow R_2} \begin{pmatrix} 1 & \frac{1-i}{2} \\ 1-i & -i \end{pmatrix} \quad (1.2.1.4)$$

$$\stackrel{R_2 \leftarrow R_2 - (1-i)R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{1-i}{2} \\ 0 & 0 \end{pmatrix} \quad (1.2.1.5)$$

$$\left(1 \quad \frac{1-i}{2}\right)\mathbf{x} = 0 \tag{1.2.1.6}$$

$$\left(1 \quad \frac{1-i}{2}\right) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \tag{1.2.1.7}$$

$$x_1 = -\frac{1-i}{2}x_2 \tag{1.2.1.8}$$

$$\mathbf{x} = \begin{pmatrix} -\frac{1-i}{2}x_2 \\ x_2 \end{pmatrix} \tag{1.2.1.9}$$

$$\implies \mathbf{x} = x_2 \begin{pmatrix} -\frac{1-i}{2} \\ 1 \end{pmatrix} \tag{1.2.1.10}$$

1.2.2. If

$$A = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix} \tag{1.2.2.1}$$

Find all solutions of AX = 0 by row reducing A.

Solution: For the given equation AX = 0 can be defined as follows:

$$\begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 (1.2.2.2)

Now, we can apply Row Reduction Methodol-

ogy of matrix A:

$$\begin{pmatrix}
3 & -1 & 2 & 0 \\
2 & 1 & 1 & 0 \\
1 & -3 & 0 & 0
\end{pmatrix}
\xrightarrow{R_1 = R_1 + R_2}
\begin{pmatrix}
5 & 0 & 3 & 0 \\
2 & 1 & 1 & 0 \\
1 & -3 & 0 & 0
\end{pmatrix}$$

$$(1.2.2.3)$$

$$\stackrel{R_2 = R_2 - 2R_3}{\longleftrightarrow} \begin{pmatrix}
5 & 0 & 3 & 0 \\
0 & 7 & 1 & 0 \\
1 & -3 & 0 & 0
\end{pmatrix}$$

$$(1.2.2.4)$$

$$\stackrel{R_3 = R_3 - \frac{1}{3}R_1}{\longleftrightarrow} \begin{pmatrix}
5 & 0 & 3 & 0 \\
0 & 7 & 1 & 0 \\
0 & -3 & -\frac{3}{5} & 0
\end{pmatrix}$$

$$(1.2.2.5)$$

$$\stackrel{R_1 = \frac{1}{3}R_1}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & \frac{3}{5} & 0 \\
0 & 7 & 1 & 0 \\
0 & -3 & -\frac{3}{5} & 0
\end{pmatrix}$$

$$(1.2.2.6)$$

$$\stackrel{R_2 = \frac{1}{7}R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & \frac{3}{5} & 0 \\
0 & 1 & \frac{1}{7} & 0 \\
0 & 0 & -\frac{6}{35} & 0
\end{pmatrix}$$

$$(1.2.2.7)$$

$$\stackrel{R_3 = R_3 + 3R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & \frac{3}{5} & 0 \\
0 & 1 & \frac{1}{7} & 0 \\
0 & 0 & -\frac{6}{35} & 0
\end{pmatrix}$$

$$(1.2.2.8)$$

$$\stackrel{R_3 = -\frac{35}{6}R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & \frac{3}{5} & 0 \\
0 & 1 & \frac{1}{7} & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$(1.2.2.9)$$

$$\stackrel{R_2 = R_2 - \frac{1}{7}R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & \frac{3}{5} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

$$(1.2.2.10)$$

$$\stackrel{R_1 = R_1 - \frac{3}{5}R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

So, as we can see the only solution we got after row reducing of matrix *A* is zero vector. Thus, the solution is :

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 (1.2.2.12)

(1.2.2.11)

1.2.3.

$$\mathbf{A} = \begin{pmatrix} 6 & -4 & 0 \\ 4 & -2 & 0 \\ -1 & 0 & 3 \end{pmatrix} \tag{1.2.3.1}$$

Find all solutions of AX = 2X and all solutions of AX = 3X. The symbol cX denotes the matrix each entry of which is c times corresponding entry.

Solution:

$$\mathbf{A} = \begin{pmatrix} 6 & -4 & 0 \\ 4 & -2 & 0 \\ -1 & 0 & 3 \end{pmatrix} \tag{1.2.3.2}$$

To calculate solution of AX = 2X and all solutions of AX = 3X we calculate eigen values of A:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{X} = 0 \tag{1.2.3.3}$$

Substituting values in (1.2.3.3),

$$\begin{pmatrix} 6 - \lambda & -4 & 0 \\ 4 & -2 - \lambda & 0 \\ -1 & 0 & 3 - \lambda \end{pmatrix} \mathbf{X} = 0 \quad (1.2.3.4)$$

Simplifying:

$$\begin{pmatrix} 6 - \lambda & -4 & 0 \\ 4 & -2 - \lambda & 0 \\ -1 & 0 & 3 - \lambda \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 - R_2}$$

$$\begin{pmatrix} 2 - \lambda & -2 + \lambda & 0 \\ 4 & -2 - \lambda & 0 \\ -1 & 0 & 3 - \lambda \end{pmatrix}$$
 (1.2.3.5)

Taking $(3-\lambda)$ and $(2-\lambda)$ common from C_3 and R_1

$$(3-\lambda)(2-\lambda)\begin{pmatrix} 1 & -1 & 0\\ 4 & -2-\lambda & 0\\ -1 & 0 & 1 \end{pmatrix}$$
 (1.2.3.6)

$$\begin{pmatrix} 1 & -1 & 0 \\ 4 & -2 - \lambda & 0 \\ -1 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 4R_1} \begin{pmatrix} 1 & -1 & 0 \\ 0 & -\lambda + 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
(1.2.3.7)

Taking $(2 - \lambda)$ common from R_2 :

$$(2-\lambda)^2(3-\lambda)\begin{pmatrix} 1 & -1 & 0\\ 0 & 1 & 0\\ -1 & 0 & 1 \end{pmatrix}$$
 (1.2.3.8)

Eigen values are:

$$\lambda_1 = 2 \tag{1.2.3.9}$$

$$\lambda_2 = 3$$
 (1.2.3.10)

solution to AX = 2X is eigen vector corresponding to $\lambda = 2$

$$(\mathbf{A} - 2\mathbf{I})\mathbf{X} = 0 \tag{1.2.3.11}$$

Substituting values:

$$\begin{pmatrix} 4 & -4 & 0 & 0 \\ 4 & -4 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \xleftarrow{R_1 \leftarrow \frac{R_1}{4}} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 4 & -4 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \xleftarrow{R_2 \leftarrow R_2 - 4R_1}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \end{pmatrix} \xleftarrow{R_3 \leftarrow R_3 - R_1} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \xleftarrow{R_3 \longleftrightarrow R_2}$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xleftarrow{R_2 \leftarrow -R_2} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xleftarrow{R_1 \leftarrow R_1 + R_2}$$

$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{1.2.3.12}$$

So, x_3 is a free variable: Let $x_3 = c$.

$$x_2 - x_3 = 0 \implies x_2 = x_3 = c$$
 (1.2.3.13)

$$x_1 - x_3 = 0 \implies x_1 = x_3 = c$$
 (1.2.3.14)

So, the solution to AX = 2Xis

$$\mathbf{X} = c \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \tag{1.2.3.15}$$

solution of $\mathbf{AX} = 3\mathbf{X}$ is eigen vector corresponding to $\lambda = 3$

$$(\mathbf{A} - 3\mathbf{I})\mathbf{X} = 0$$
 (1.2.3.16)

substituting we have:

$$\begin{pmatrix} 3 & -4 & 0 & 0 \\ 1 & -2 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \leftarrow \frac{R_1}{3}} \begin{pmatrix} 1 & -\frac{4}{3} & 0 & 0 \\ 4 & -5 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 4R_1}$$

$$\begin{pmatrix} 1 & -\frac{4}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_1} \begin{pmatrix} 1 & -\frac{4}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 & 0 \\ 0 & -\frac{4}{3} & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow \frac{R_2}{3}}$$

$$\begin{pmatrix} 1 & \frac{-4}{3} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -\frac{4}{3} & 0 & 0 \end{pmatrix} \longleftrightarrow \begin{pmatrix} R_3 \leftarrow R_3 - \frac{4}{3}R_2 \\ \longrightarrow \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \longleftrightarrow \begin{pmatrix} R_3 \leftarrow R_1 + \frac{4}{3}R_2 \\ \longrightarrow \\ \longrightarrow \\ -\frac{4}{3}R_2 \leftarrow R_1 + \frac{4}{3}R_2 \\ \longrightarrow \\ -\frac{4}{3}R_1 \rightarrow R_1 + \frac{4}{3}R_2 \\ \longrightarrow \\ -\frac{4}{3}R_1 \rightarrow R_1 + \frac{4}{3}R_2 \rightarrow R_2 \\ \longrightarrow \\ -\frac{4}{3}R_1 \rightarrow R_1 \rightarrow R_2$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(1.2.3.17)

So x_3 is a free variable:

$$x_1 = 0 \tag{1.2.3.18}$$

$$x_2 = 0$$
 (1.2.3.19)

$$x_3 = c (1.2.3.20)$$

So, the solution to AX = 3X is,

$$\mathbf{X} = c \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \tag{1.2.3.21}$$

1.2.4. Find a row-reduced matrix which is row equivalent to,

$$\mathbf{A} = \begin{pmatrix} i & -(1+i) & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix}$$
 (1.2.4.1)

Solution: Step 1: Performing scaling operation to matrix **A** as $R_1 \leftarrow \frac{1}{i}R_1$ by scaling matrix D_1 given as,

$$\mathbf{D_1} = \begin{pmatrix} \frac{1}{i} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \ (1.2.4.2)$$

$$\mathbf{D_1A} = \begin{pmatrix} \frac{1}{i} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} i & -(1+i) & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} (1.2.4.3)$$

$$\implies \mathbf{D_1 A} = \begin{pmatrix} 1 & -1 + i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} (1.2.4.4)$$

Step 2: Performing $R_2 \leftarrow R_2 - R_1$ and $R_3 \leftarrow R_3 - R_1$ given by elementary matrix $\mathbf{E_{31}}\mathbf{E_{21}}$ on

equation (1.2.4.4),

$$\mathbf{E_{31}E_{21}} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
(1.2.4.5)

$$\mathbf{E_{31}}\mathbf{E_{21}}\mathbf{D_{1}}\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1+i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix}$$
(1.2.4.6)

$$\implies \mathbf{A_1} = \mathbf{E_{31}} \mathbf{E_{21}} \mathbf{D_1} \mathbf{A} = \begin{pmatrix} 1 & -1+i & 0\\ 0 & -1-i & 1\\ 0 & 1+i & -1 \end{pmatrix}$$
(1.2.4.7)

Step 3: Performing $R_2 \leftarrow \frac{-1}{1+i}R_2$ given by $\mathbf{D_2}$ on equation (1.2.4.7),

$$\mathbf{D_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2}(-1+i) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(1.2.4.8)

$$\mathbf{D_2A_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2}(-1+i) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1+i & 0 \\ 0 & -1-i & 1 \\ 0 & 1+i & -1 \end{pmatrix}$$
(1.2.4.9)

$$\implies \mathbf{A_2} = \mathbf{D_2}\mathbf{A_1} = \begin{pmatrix} 1 & -1+i & 0\\ 0 & 1 & \frac{1}{2}(-1+i)\\ 0 & 1+i & -1 \end{pmatrix}$$
(1.2.4.10)

Step 4: Performing $R_3 \leftarrow R_3 - (1+i)R_2$ given by $\mathbf{E_{32}}$ on equation (1.2.4.10),

$$\mathbf{E_{32}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -(1+i) & 1 \end{pmatrix} \tag{1.2.4.11}$$

$$\mathbf{E}_{32}\mathbf{A}_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 - i & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 + i & 0 \\ 0 & 1 & \frac{-1 + i}{2} \\ 0 & 1 + i & -1 \end{pmatrix}$$
(1.2.4.12)

$$\implies \mathbf{A_3} = \mathbf{E_{32}A_2} = \begin{pmatrix} 1 & -1+i & 0\\ 0 & 1 & \frac{-1+i}{2}\\ 0 & 0 & 1 \end{pmatrix}$$
(1.2.4.13)

Step 5: Performing $R_1 \leftarrow R_1 - (-1 + i)R_2$ given

by E_{12} on equation (1.2.4.13),

$$\mathbf{E_{12}} = \begin{pmatrix} 1 & 1-i & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \tag{1.2.4.14}$$

$$\mathbf{E_{12}A_3} = \begin{pmatrix} 1 & 1-i & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1+i & 0 \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 0 & 1 \end{pmatrix}$$
(1.2.4.15)

$$\implies \mathbf{A_4} = \mathbf{E_{12}A_3} = \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 0 & 1 \end{pmatrix} \quad (1.2.4.16)$$

Step 6: Performing $R_1 \leftarrow R_1 - iR_3$ and $R_2 \leftarrow R_2 - \frac{-1+i}{2}R_3$ given by $\mathbf{E_{13}E_{23}}$ on equation (1.2.4.16),

$$\mathbf{E}_{13}\mathbf{E}_{23} = \begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & -\left(\frac{-1+i}{2}\right) \\ 0 & 0 & 1 \end{pmatrix}$$
 (1.2.4.17)

$$\mathbf{E_{13}E_{23}A_4} = \begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & -\left(\frac{-1+i}{2}\right) \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & i \\ 0 & 1 & \frac{-1+i}{2} \\ 0 & 0 & 1 \end{pmatrix}$$

$$\implies \mathbf{A_5} = \mathbf{E_{13}}\mathbf{E_{23}}\mathbf{A_4} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(1.2.4.19)

 \therefore Row-reduced matrix of **A** given by equation (1.2.4.1) is,

$$\mathbf{A} = \begin{pmatrix} i & -1 - i & 0 \\ 1 & -2 & 1 \\ 1 & 2i & -1 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}$$
(1.2.4.20)

1.2.5. Prove that the following two matrices are not row equivalent

$$\begin{pmatrix} 2 & 0 & 0 \\ a & -1 & 0 \\ b & c & 3 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 \\ -2 & 0 & -1 \\ 1 & 3 & 5 \end{pmatrix}$$
 (1.2.5.1)

Solution: Call the first matrix **A** and the second matrix **B**.

$$\mathbf{A}^T = \begin{pmatrix} 2 & a & b \\ 0 & -1 & c \\ 0 & 0 & 3 \end{pmatrix} \tag{1.2.5.2}$$

 A^T is a upper triangular matrix with non-zero diagonal. Hence it has full rank = 3.

$$\mathbf{B}^{T} = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 0 & 3 \\ 2 & -1 & 5 \end{pmatrix} \xrightarrow{R_{2} \to R_{2} - R_{1}} \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 3 & 3 \end{pmatrix}$$

$$(1.2.5.3)$$

$$\xrightarrow{R_{3} \leftarrow R_{3}/3} \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$(1.2.5.4)$$

$$\xrightarrow{R_{3} \leftarrow R_{3} - R_{2}} \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(1.2.5.5)$$

 \mathbf{B}^T is a upper triangular matrix with zero diagonal. Hence it doesn't have full rank. Therefore both matrices have different rank, so it cannot be row equivalent.

1.2.6. Let

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{1.2.6.1}$$

be a 2×2 matrix with complex entries. Suppose A is row-reduced and also that a+b+c+d=0. Prove that there are exactly three such matrices. **Solution:** A matrix is in row echelon form if it follows the following conditions

- 1. All nonzero rows are above any rows of all zeros.
- 2. Each leading entry (i.e. left most nonzero entry) of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zero Row Reduced Echelon Form A matrix is in row reduced echelon form if it follows the following conditions
- 1. The matrix should be row echelon form
- 2. The leading entry in each nonzero row is 1.
- 3. Each leading 1 is the only nonzero entry in its column. Proof

Given,

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tag{1.2.6.2}$$

Condition 1 : Matrix **A** should be in row-reduced echelon form

Condition 2 : a + b + c + d = 0 where a,b,c and d are the elements of the matrix **A** Reducing the matrix **A** from equation (1.2.6.2)

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \xrightarrow{R_1 = \frac{1}{a}R_1} \begin{pmatrix} 1 & \frac{b}{a} \\ c & d \end{pmatrix}$$
 (1.2.6.3)

$$\stackrel{R_2=R_2-cR_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & \frac{ad-bc}{a} \end{pmatrix}$$
 (1.2.6.4)

$$\stackrel{R_2 = \frac{a}{ad - bc} R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & 1 \end{pmatrix}$$
(1.2.6.5)

$$\stackrel{R_1=R_1-\frac{b}{a}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix} \tag{1.2.6.6}$$

Case 1: Matrix A of Rank 2

From the equation (1.2.6.4), for the matrix to be in row reduced echelon form,

$$b = 0$$

$$a \neq 0$$

$$d = 1$$

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
(1.2.6.7)

For the condition 2 to get satisfied,

$$a + 0 + c + 1 = 0$$
 (1.2.6.8)
 $\Rightarrow a = -(c + 1)$ (1.2.6.9)
 $\Rightarrow c \neq -1$ (1.2.6.10)

Both the condition gets satisfied and so exactly one matrix **A** can be formed of Rank 2 with given conditions

Case 2: Matrix A of Rank 1

From the equation (1.2.6.4), for the matrix to be in row reduced echelon form,

$$a \neq 0$$
$$d = 0$$
$$c = 0$$

For the condition 2 to get satisfied,

$$a + b + 0 + 0 = 0 (1.2.6.11)$$

$$\implies b = -a \tag{1.2.6.12}$$

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \tag{1.2.6.13}$$

Both the condition gets satisfied and so exactly one matrix **A** can be formed of Rank 1 with given conditions

Case 3: Matrix A of Rank 0

From equation (1.2.6.2), for the matrix to be in row reduced echelon form,

$$a = 0$$

$$b = 0$$

$$c = 0$$

$$d = 0$$

$$\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
(1.2.6.14)

Both the condition gets satisfied and so exactly one matrix **A** can be formed of Rank 0 with given conditions

Therefore matrix A shown in equation (1.2.6.7),(1.2.6.13) and (1.2.6.14) are the exactly three such matrices that can be formed with given conditions.

1.2.7. Prove that the interchange of two rows of a matrix can be accomplished by a finite sequence of elementary row operations of the other two types.

Solution: Let **A** be a 3×3 matrix with having row vectors $\mathbf{a}_1, \mathbf{a}_2$ and \mathbf{a}_3 .

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} \tag{1.2.7.1}$$

Let's exchange row \mathbf{a}_1 and \mathbf{a}_2 . Let's call this elementary operation \mathbf{E}_1 .

$$\mathbf{E}_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{1.2.7.2}$$

(1.2.7.3)

Now performing operation E_1

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix}$$
 (1.2.7.4)

Now, to prove that same matrix can be obtained by elementary operations let's call them E_2 and E_3 . Now performing operation E_2 by adding

row 2 to row 1.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix}$$
 (1.2.7.5)

Using elementary operation E_2 we will subtract row 1 from row 2.

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} \quad (1.2.7.6)$$

Using elementary operation E_2 we will add row 2 to row 1.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_1 + \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix}$$
 (1.2.7.7)

Using elementary operation E_3 we will multiply row 2 by -1.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{a}_2 \\ -\mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} = \begin{pmatrix} \mathbf{a}_2 \\ \mathbf{a}_1 \\ \mathbf{a}_3 \end{pmatrix} \tag{1.2.7.8}$$

Hence, we can say that,

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\mathbf{a}_1 \\
\mathbf{a}_2 \\
\mathbf{a}_3
\end{pmatrix} = \times
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\mathbf{a}_1 \\
\mathbf{a}_2 \\
\mathbf{a}_3
\end{pmatrix}$$
(1.2.7.16)

where

Let us assume a matrix A

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \tag{1.2.7.10}$$

Let's exchange row \mathbf{a}_1 and \mathbf{a}_2 by applying operation E_1 .

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix} \quad (1.2.7.11)$$

Now, to prove that same matrix can be obtained by other two elementary operations. We will first perform elementary operation E_2 by adding row 2 to row 1.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} \quad (1.2.7.12)$$

Using elementary operation E_2 we will subtract row 1 from row 2.

$$\begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 3 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 \\ -1 & -2 & -3 \\ 1 & 1 & 0 \end{pmatrix}$$
(1.2.7.13)

Using elementary operation E_2 we will add row 2 to row 1.

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 3 \\ -1 & -2 & -3 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & -2 & -3 \\ 1 & 1 & 0 \end{pmatrix}$$
(1.2.7.14)

Using elementary operation E_3 we will multiply row 2 by -1.

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -1 & -2 & -3 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 2 & 3 \\ 1 & 1 & 0 \end{pmatrix}$$
(1.2.7.15)

Hence, we can say that,

ence, we can say that,
$$\begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$
(1.2.7.16)

where

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

is a 2×2 matrix over the field F. Prove the following -

- If every entry of **A** is 0, then every pair x_1 and x_2 is a solution of $\mathbf{AX} = 0$.
- If $ad bc \neq 0$, then the system AX = 0 has only the trivial solution $x_1 = x_2 = 0$
- If ad bc = 0 and some entry of A is different from 0, then there is a solution x_1^0 and x_2^0 such that x_1 and x_2 is a solution if and only if there is a scalar y such that $x_1 = yx_1^0$ and $x_2 = yx_2^0$

Solution: Solution 1 If every entry of **A** is 0

then the equation AX = 0 becomes,

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0$$
 (1.2.8.1)

$$\implies 0.x_1 + 0.x_2 = 0 \forall x_1, x_2 \in F$$
 (1.2.8.2)

Hence proved, every pair x_1 and x_2 is a solution for the equation AX = 0. Solution 2 Case 1: Let a = 0. Since $ad - bc \neq 0$. As $bc \neq 0$ therefore $b \neq 0$ and $c \neq 0$. Hence, we can perform row reduction on the augmented matrix of equation AX=0 as follows,

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & b & 0 \\ c & d & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{c} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d & 0 \\ 0 & b & 0 \end{pmatrix}$$
 (1.2.8.3)
$$= \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{b} \end{pmatrix} \begin{pmatrix} 1 & \frac{d}{c} & 0 \\ 0 & b & 0 \end{pmatrix}$$
 (1.2.8.4)
$$= \begin{pmatrix} 1 & -\frac{d}{c} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{d}{c} & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 (1.2.8.5)
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 (1.2.8.6)

Case 2: Let $a, b, c, d \neq 0$. Considering the following case,

$$\mathbf{AX} = \mathbf{u} \tag{1.2.8.7}$$

$$\implies \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \tag{1.2.8.8}$$

Row Reducing the augmented matrix of (1.2.8.8) we get,

$$\begin{pmatrix} \frac{1}{a} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & u_1 \\ c & d & u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} & \frac{u_1}{a} \\ c & d & u_2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & \frac{a}{ad-bc} \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} & \frac{u_1}{a} \\ 0 & \frac{ad^a-bc}{a} & \frac{au_2-cu_1}{a} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & -\frac{b}{a} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} & \frac{u_1}{au_2-cu_1} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \frac{du_1-bu_2}{ad-bc} \\ 0 & 1 & \frac{au_2-cu_1}{ad-bc} \\ \end{pmatrix}$$

From (1.2.8.12) we get,

$$x_{1} = \frac{du_{1} - bu_{2}}{ad - bc}$$

$$x_{2} = \frac{au_{2} - cu_{1}}{ad - bc}$$
(1.2.8.13)
$$(1.2.8.14)$$

$$x_2 = \frac{au_2 - cu_1}{ad - bc} \tag{1.2.8.14}$$

Since $u_1 = 0$ and $u_2 = 0$ then from (1.2.8.13) and (1.2.8.14),

$$x_1 = 0 \tag{1.2.8.15}$$

$$x_2 = 0 (1.2.8.16)$$

Hence we get,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{1.2.8.17}$$

In (1.2.8.6) and (1.2.8.17), we can see that AX = 0 has only one trivial solution i.e $x_1 = x_2 = 0$ in all cases. Hence proved, the equation **AX**=0 has only one trivial solution $x_1 = x_2 = 0$ Solution 3 Case 1: Let, $a \neq 0$ for A. Given ad - bc = 0, we can perform row reduction on augmented matrix of equation AX = 0 as follows,

$$\begin{pmatrix} \frac{1}{a} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -c & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} & 0 \\ c & d & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \frac{b}{a} & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad [\because ad - bc = 0]$$

$$(1.2.8.19)$$

Hence from (1.2.8.19), AX = 0 if and only if

$$x_1 = -\frac{b}{a}x_2 \qquad [a \neq 0] \tag{1.2.8.20}$$

Letting $x_1^0 = -\frac{b}{a}$ and $x_2^0 = 1$ we get for y = 1,

$$x_1 = yx_1^0 \tag{1.2.8.21}$$

$$x_2 = yx_2^0 (1.2.8.22)$$

which is a solution of the equation AX = 0. Case 2: Let, $b \neq 0$ for A. Given ad - bc = 0, at first we multiply by elementary matrix to change the columns and the we can perform row reduction on augmented matrix of equation AX = 0 as follows.

$$\begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} b & a & 0 \\ d & c & 0 \end{pmatrix}$$
 (1.2.8.23)

Hence using the result obtained from (1.2.8.19)

we can conclude for (1.2.8.23), $\mathbf{AX} = 0$ if and only if

$$x_2 = -\frac{a}{b}x_1 \qquad [b \neq 0] \tag{1.2.8.24}$$

Letting $x_2^0 = -\frac{a}{b}$ and $x_1^0 = 1$ we get for y = 1,

$$x_1 = yx_1^0 \tag{1.2.8.25}$$

$$x_2 = yx_2^0 (1.2.8.26)$$

which is a solution of the equation AX = 0. **Case 3:** Let, $c \ne 0$ for **A**. Given ad - bc = 0, we can perform row reduction on augmented matrix of equation AX = 0 as follows,

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{c} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} c & d & 0 \\ a & b & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{d}{c} & 0 \\ a & b & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & \frac{d}{c} & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad [\because ad - bc = 0]$$

$$(1.2.8.29)$$

Hence from (1.2.8.29), AX = 0 if and only if

$$x_1 = -\frac{d}{c}x_2 \qquad [a \neq 0] \tag{1.2.8.30}$$

Letting $x_1^0 = -\frac{d}{c}$ and $x_2^0 = 1$ we get for y = 1,

$$x_1 = yx_1^0 (1.2.8.31)$$

$$x_2 = yx_2^0 (1.2.8.32) 1$$

which is a solution of the equation $\mathbf{AX} = 0$. **Case 4:** Let, $d \neq 0$ for **A**. Given ad - bc = 0, at first we multiply by elementary matrix to change the columns and then we can perform row reduction on augmented matrix of equation $\mathbf{AX} = 0$ as follows,

$$\begin{pmatrix} a & b & 0 \\ c & d & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b & a & 0 \\ d & c & 0 \end{pmatrix}$$
 (1.2.8.33)

$$= \begin{pmatrix} d & c & 0 \\ b & a & 0 \end{pmatrix} \quad (1.2.8.34)$$

Hence using the result from (1.2.8.29) we can conclude for (1.2.8.34), AX = 0 if and only if

$$x_2 = -\frac{c}{d}x_1 \qquad [a \neq 0] \tag{1.2.8.35}$$

Letting $x_2^0 = -\frac{c}{d}$ and $x_1^0 = 1$ we get for y = 1,

$$x_1 = yx_1^0 (1.2.8.36)$$

$$x_2 = yx_2^0 (1.2.8.37)$$

which is a solution of the equation AX = 0.

1.3 Row Reduced Echelon Matrices

(1.2.8.32) 1.3.1. Find all solutions to the following system of equations by row-reducing the co-efficient matrix:

$$\frac{1}{3}x_1 + 2x_2 - 6x_3 = 0 (1.3.1.1)$$

$$-4x_1 + 5x_3 = 0 (1.3.1.2)$$

$$-3x_1 + 6x_2 - 13x_3 = 0 (1.3.1.3)$$

$$-\frac{7}{3}x_1 + 2x_2 - \frac{8}{3}x_3 = 0 (1.3.1.4)$$

Solution: The coefficient matrix is:

$$A = \begin{pmatrix} \frac{1}{3} & 2 & -6 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \\ -\frac{7}{3} & 2 & -\frac{8}{3} \end{pmatrix}$$
 (1.3.1.5)

The number of rows of this coefficient matrix is m = 4 and the number of columns is n = 3, So in this case, n < m. Now the row operations

are:

$$\begin{pmatrix} \frac{1}{3} & 2 & -6 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \\ -\frac{7}{3} & 2 & -\frac{8}{3} \end{pmatrix} \xrightarrow{R_4 \leftarrow R_4 \times 3} \begin{pmatrix} 1 & 6 & -18 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \\ -7 & 6 & -8 \end{pmatrix}$$

$$(1.3.1.6)$$

$$\stackrel{R_3 \leftarrow R_2 + R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 6 & -18 \\
-4 & 0 & 5 \\
-7 & 6 & -8 \\
-7 & 6 & -8
\end{pmatrix}
\stackrel{R_4 \leftarrow R_4 - R_3}{\longleftrightarrow}$$

 $\begin{pmatrix} 1 & 6 & -18 \\ -4 & 0 & 5 \\ -7 & 6 & -8 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 + 4R_1} \begin{pmatrix} 1 & 6 & -18 \\ 0 & 24 & -67 \\ R_3 \leftarrow R_3 + 7R_1 \end{pmatrix} \begin{pmatrix} 1 & 6 & -18 \\ 0 & 24 & -67 \\ 0 & 48 & -138 \\ 0 & 0 & 0 \end{pmatrix}$

(1.3.1.8)

(1.3.1.7)

$$\stackrel{R_3 \leftarrow R_3/2}{\longleftrightarrow} \begin{pmatrix}
1 & 6 & -18 \\
0 & 24 & -67 \\
0 & 24 & -69 \\
0 & 0 & 0
\end{pmatrix}
\stackrel{R_3 \leftarrow R_3 - R_2}{\longleftrightarrow}$$

(1.3.1.9)

$$\begin{pmatrix} 1 & 6 & -18 \\ 0 & 24 & -67 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_3 \leftarrow \frac{R_3}{(-2)}} \begin{pmatrix} 1 & 6 & -18 \\ 0 & 24 & -67 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
(1.3.1.10)

$$\stackrel{R_2 \leftarrow \frac{R_2}{4}}{\longleftrightarrow} \begin{pmatrix} 1 & 6 & -18 \\ 0 & 6 & -\frac{67}{4} \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow}$$

(1.3.1.11)

$$\begin{pmatrix}
1 & 0 & -\frac{5}{4} \\
0 & 6 & -\frac{67}{4} \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}
\xrightarrow{R_2 \leftarrow \frac{R_2}{6}}
\begin{pmatrix}
1 & 0 & -\frac{5}{4} \\
0 & 1 & -\frac{67}{24} \\
0 & 0 & 1 \\
0 & 0 & 0
\end{pmatrix}$$
(1.3.1.12)

$$\xrightarrow[R_1 \leftarrow R_1 + \frac{5R_3}{4}]{R_1 \leftarrow R_1 + \frac{5R_3}{4}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} (1.3.1.13)$$

Now,

$$A\mathbf{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0 \tag{1.3.1.14}$$

So,

$$\mathbf{I_3x} = 0 \tag{1.3.1.15}$$

$$\implies \mathbf{x} = 0 \tag{1.3.1.16}$$

1.3.2. Find a row-reduced matrix which is row equivalent to A.What are the solutions of Ax = 0?

$$\mathbf{A} = \begin{pmatrix} 1 & -i \\ 2 & 2 \\ i & 1+i \end{pmatrix} \tag{1.3.2.1}$$

Solution: Let R be a row-reduced echelon matrix which is row equivalent to A. Then the systems

$$Ax = 0, Rx = 0$$
 (1.3.2.2)

have the same solutions. On performing elementary row operations on (1.3.2.1),

$$\mathbf{R} = \mathbf{B}\mathbf{A} \tag{1.3.2.3}$$

where **B** is the product of all elementary matrices. Reducing the given matrix, we get

$$\mathbf{B} = (\mathbf{E}_{5}\mathbf{E}_{4}\mathbf{E}_{3}\mathbf{E}_{2}\mathbf{E}_{1})$$

$$= \begin{pmatrix} 1 & i & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -i & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4}(1-i) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -i & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2}(1-i) & \frac{1}{4}(1+i) & 0 \\ \frac{1}{2}(-1+i) & \frac{1}{4}(1-i) & 0 \\ \frac{1}{2}(1-i) & \frac{1}{4}(-1-i) & 1 \end{pmatrix} (1.3.2.4)$$

$$\mathbf{R} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \tag{1.3.2.5}$$

:. Row-reduced matrix of A is,

$$\mathbf{A} = \begin{pmatrix} 1 & -i \\ 2 & 2 \\ i & 1+i \end{pmatrix} \stackrel{RREF}{\longleftrightarrow} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \tag{1.3.2.6}$$

From(1.3.2.2) and (1.3.2.6),

$$A\mathbf{x} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \tag{1.3.2.7}$$

The solution of Ax = 0 is,

$$\mathbf{I_2x} = 0 \tag{1.3.2.8}$$

$$\implies \mathbf{x} = 0 \tag{1.3.2.9}$$

As I_2 is invertible.

1.3.3. Describe explicitly all 2x2 row-reduced echelon matrices.

Solution:

2x2 matrices which are row-reduced echelon matrix can be represented as a linear combination of three matrices:-

$$c_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 (1.3.3.1)

1.3.4. Consider the system of the equations

$$x_1 - x_2 + 2x_3 = 1$$
 (1.3.4.1)

$$x_1 - 0x_2 + 2x_3 = 1 (1.3.4.2)$$

$$x_1 - 3x_2 + 4x_3 = 2 ag{1.3.4.3}$$

Does this system have a solution? If so describe explicitly all solutions.

Solution: Let **V** is the set of all $(x_1, x_2, x_3) \in \mathbb{R}^3$ which satisfy the (1.3.4.1), (1.3.4.2) and (1.3.4.3)

From equation (1.3.4.1) to (1.3.4.3) we can write,

$$\begin{pmatrix} 1 & -1 & 2 \\ 1 & 0 & 2 \\ 1 & -3 & 4 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \quad (1.3.4.4)$$

$$\implies$$
 Ax = **b** (1.3.4.5)

Where,

(1.3.4.6)

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 0 & 2 \\ 1 & -3 & 4 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 (1.3.4.7)

Solving the matrix A for rank we get,

$$\begin{pmatrix}
1 & -1 & 2 \\
2 & 0 & 2 \\
1 & -3 & 4
\end{pmatrix}
\xrightarrow{R_2 = R_1 - 2R_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 2 & -2 \\
1 & -3 & 4
\end{pmatrix}
(1.3.4.8)$$

$$\xrightarrow{R_3 = R_3 - R_1}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 2 & -2 \\
0 & -2 & 2
\end{pmatrix}
(1.3.4.9)$$

$$\xrightarrow{R_3 = R_3 + R_2}
\begin{pmatrix}
1 & -1 & 2 \\
0 & 2 & -2 \\
0 & 0 & 0
\end{pmatrix}
(1.3.4.10)$$

Hence, rank (A) = 2. Now solving the augmented matrix of (1.3.4.5) we get,

$$\begin{pmatrix}
1 & -1 & 2 & 1 \\
2 & 0 & 2 & 1 \\
1 & -3 & 4 & 2
\end{pmatrix}
\xrightarrow{R_2=R_1-2R_1}
\begin{pmatrix}
1 & -1 & 2 & 1 \\
0 & 2 & -2 & -1 \\
1 & -3 & 4 & 2
\end{pmatrix}$$

$$\xrightarrow{R_3=R_3-R_1}
\begin{pmatrix}
1 & -1 & 2 & 1 \\
0 & 2 & -2 & -1 \\
0 & 2 & -2 & -1 \\
0 & -2 & 2 & 1
\end{pmatrix}$$

$$\xrightarrow{R_3=R_3+R_2}
\begin{pmatrix}
1 & -1 & 2 & 1 \\
0 & 2 & -2 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{R_3=R_3+R_2}
\begin{pmatrix}
1 & -1 & 2 & 1 \\
0 & 2 & -2 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{(1.3.4.13)}$$

We have rank $(\mathbf{A}) = \text{rank } (\mathbf{A} : \mathbf{b}) = 2 < n$, where n = 3. Hence we have infinite no of solutions for given system of equations.

Using Gauss - Jordan elimination method to getting the solution,

$$\begin{pmatrix} 1 & -1 & 2 & 1 \\ 2 & 0 & 2 & 1 \\ 1 & -3 & 4 & 2 \end{pmatrix} \xrightarrow{R_2 = R_1 - 2R_1} \begin{pmatrix} 1 & -1 & 2 & 1 \\ 0 & 2 & -2 & -1 \\ 1 & -3 & 4 & 2 \end{pmatrix}$$

$$(1.3.4.14)$$

$$\stackrel{R_3=R_3-R_1}{\longleftrightarrow} \begin{pmatrix} 1 & -1 & 2 & 1\\ 0 & 2 & -2 & -1\\ 0 & -2 & 2 & 1 \end{pmatrix}$$
 (1.3.4.15)

$$\stackrel{R_2 = \frac{R_2}{2}}{\longleftrightarrow} \begin{pmatrix} 1 & -1 & 2 & 1\\ 0 & 1 & -1 & -\frac{1}{2}\\ 0 & -2 & 2 & 1 \end{pmatrix}$$
(1.3.4.16)

$$\stackrel{R_3=R_3+2R_2}{\longleftrightarrow} \begin{pmatrix} 1 & -1 & 2 & 1\\ 0 & 1 & -1 & -\frac{1}{2}\\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (1.3.4.17)

$$\stackrel{R_1 = R_1 + R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 1 & \frac{1}{2} \\ 0 & 1 & -1 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (1.3.4.18)

$$\implies x_1 + x_3 = \frac{1}{2}, x_2 - x_3 = -\frac{1}{2} \quad (1.3.4.19)$$

$$\implies x_2 = -\frac{1}{2} + x_3, x_1 = \frac{1}{2} - x_3 \quad (1.3.4.20)$$

From equation (1.3.4.19) and (1.3.4.20)

$$\mathbf{x} = \begin{pmatrix} \frac{1}{2} - x_3 \\ -\frac{1}{2} + x_3 \\ x_3 \end{pmatrix}$$
 (1.3.4.21)

which can be written as,

$$\mathbf{x} = x_3 \begin{pmatrix} -1\\1\\1 \end{pmatrix} + \begin{pmatrix} -\frac{1}{2}\\-\frac{1}{2}\\0 \end{pmatrix}$$
 (1.3.4.22)

from 1.3.4.22 we can say that for any value 1.3.6. Find all solutions of x_3 , V will no be gives zero vector. Hence the given solution space will not span of the vector space V

1.3.5. Find all solutions of

$$x_1 - 2x_2 + x_3 + 2x_4 = 1$$

$$x_1 + x_2 - x_3 + x_4 + x_5 = 2$$

$$x_1 + 7x_2 - 5x_3 - x_4 = 3$$

Solution: The given equations can be written as,

$$\mathbf{A}\mathbf{x} = B \tag{1.3.5.1}$$

$$\begin{pmatrix} 1 & -2 & 1 & 2 \\ 1 & 1 & -1 & 1 \\ 1 & 7 & -5 & -1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 (1.3.5.2)

Now, we form the augmented matrix and per-

form Row reduction,

$$\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
1 & 1 & -1 & 1 & | & 2 \\
1 & 7 & -5 & -1 & | & 3
\end{pmatrix}$$

$$(1.3.5.3)$$

$$\xrightarrow{R_2 = R_2 - R_1, R_3 = R_3 - R_1}
\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
0 & 3 & -2 & -1 & | & 1 \\
0 & 9 & -6 & -3 & | & 2
\end{pmatrix}$$

$$\xrightarrow{R_2 = \frac{1}{3}R_2}
\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
0 & 1 & \frac{-2}{3} & \frac{-1}{3} & | & \frac{1}{3} \\
0 & 9 & -6 & -3 & | & 2
\end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 - 9R_1}
\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
0 & 1 & \frac{-2}{3} & \frac{-1}{3} & | & \frac{1}{3} \\
0 & 0 & 0 & 0 & | & -1
\end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 - 9R_1}
\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
0 & 1 & \frac{-2}{3} & \frac{-1}{3} & | & \frac{1}{3} \\
0 & 0 & 0 & 0 & | & -1
\end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 - 9R_1}
\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
0 & 1 & \frac{-2}{3} & \frac{-1}{3} & | & \frac{1}{3} \\
0 & 0 & 0 & 0 & | & -1
\end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 - 9R_1}
\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
0 & 1 & \frac{-2}{3} & \frac{-1}{3} & | & \frac{1}{3} \\
0 & 0 & 0 & 0 & | & -1
\end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 - 9R_1}
\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
0 & 1 & \frac{-2}{3} & \frac{-1}{3} & | & \frac{1}{3} \\
0 & 0 & 0 & 0 & | & -1
\end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 - 9R_1}
\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
0 & 1 & \frac{-2}{3} & \frac{-1}{3} & | & \frac{1}{3} \\
0 & 0 & 0 & 0 & | & -1
\end{pmatrix}$$

$$\xrightarrow{R_3 = R_3 - 9R_1}
\begin{pmatrix}
1 & -2 & 1 & 2 & | & 1 \\
0 & 1 & \frac{-2}{3} & \frac{-1}{3} & | & \frac{1}{3} \\
0 & 0 & 0 & 0 & | & -1
\end{pmatrix}$$

Rank of A is less than rank of the augmented matrix. Hence, the given system has no solution.

$$2x_1 - 3x_2 - 7x_3 + 5x_4 + 2x_5 = -2 (1.3.6.1)$$

$$x_1 - 2x_2 - 4x_3 + 3x_4 + x_5 = -2 (1.3.6.2)$$

$$2x_1 - 4x_3 + 2x_4 + x_5 = 3 (1.3.6.3)$$

$$x_1 - 5x_2 - 7x_3 + 6x_4 + 2x_5 = -7 (1.3.6.4)$$

Solution: The given equations can be written as,

$$\begin{pmatrix} 2 & -3 & -7 & 5 & 2 \\ 1 & -2 & -4 & 3 & 1 \\ 2 & 0 & -4 & 2 & 1 \\ 1 & -5 & -7 & 6 & 2 \end{pmatrix} \mathbf{x} = \begin{pmatrix} -2 \\ -2 \\ 3 \\ 7 \end{pmatrix}$$
 (1.3.6.5)

Now, we form the augmented matrix and per-

form Row reduction,

$$\begin{pmatrix}
2 & -3 & -7 & 5 & 2 & | & -2 \\
1 & -2 & -4 & 3 & 1 & | & -2 \\
2 & 0 & -4 & 2 & 1 & | & 3 \\
1 & -5 & -7 & 6 & 2 & | & 7
\end{pmatrix}$$

$$\stackrel{R_3=R_3-R_1}{\longleftrightarrow} \begin{pmatrix}
2 & -3 & -7 & 5 & 2 & | & -2 \\
1 & -2 & -4 & 3 & 1 & | & -2 \\
0 & 3 & 3 & -3 & -1 & | & 5 \\
1 & -5 & -7 & 6 & 2 & | & 7
\end{pmatrix}$$
(1.3.6.7)

$$\stackrel{R_1 = \frac{1}{2}R_1}{\longleftrightarrow} \begin{pmatrix}
1 & \frac{-3}{2} & \frac{-7}{2} & \frac{5}{2} & 1 & | & -1 \\
1 & -2 & -4 & 3 & 1 & | & -2 \\
0 & 3 & 3 & -3 & -1 & | & 5 \\
1 & -5 & -7 & 6 & 2 & | & 7
\end{pmatrix}$$
(1 3 6 8)

$$\stackrel{R_2=R_2-R_1,R_4=R_4-R_1}{\longleftrightarrow} \begin{pmatrix}
1 & \frac{-3}{2} & \frac{-7}{2} & \frac{5}{2} & 1 & -1 \\
0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & -1 \\
0 & 3 & 3 & -3 & -1 & 5 \\
0 & -\frac{7}{2} & -\frac{7}{2} & \frac{7}{2} & 1 & -6
\end{pmatrix}$$

$$\stackrel{R_1=R_1-3R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & -2 & 1 & 1 & 2 \\
0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & -1 \\
0 & 3 & 3 & -3 & -1 & 5 \\
0 & -\frac{7}{2} & -\frac{7}{2} & \frac{7}{2} & 1 & -6
\end{pmatrix}$$

$$\stackrel{R_3=R_3+6R_2,R_4=R_4-7R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & -2 & 1 & 1 & 2 \\
0 & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & -1 \\
0 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}$$
(1.3.6.11)

$$\xrightarrow{R_2 = -2R_2} \begin{pmatrix} 1 & 0 & -2 & 1 & 1 & 2 \\ 0 & 1 & 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} 1.3.7. \text{ Let}$$

$$(1.3.6.12)$$

$$\stackrel{R_1=R_1+R_3,R_4=R_4+R_3,R_3=-R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & -2 & 1 & 0 & | & 1 \\
0 & 1 & 1 & -1 & 0 & | & 2 \\
0 & 0 & 0 & 0 & 1 & | & 1 \\
0 & 0 & 0 & 0 & 0 & | & 0
\end{pmatrix}$$
(1.3.6.13)

So,

$$x_1 - 2x_3 + x_4 = 1 (1.3.6.14)$$

$$x_2 + x_3 - x_4 = 2$$
 (1.3.6.15)
 $x_5 = 1$ (1.3.6.16)

$$x_5 = 1 \tag{1.3.6.16}$$

Solving the equations we get,

$$x_1 = 1 + 2x_3 - x_4 \tag{1.3.6.17}$$

$$x_2 = 2 - x_3 + x_4 \tag{1.3.6.18}$$

$$x_5 = 1$$
 (1.3.6.19)

which can be written as,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$
 (1.3.6.20)

$$\implies \mathbf{x} = \begin{pmatrix} 1 + 2x_3 - x_4 \\ 2 - x_3 + x_4 \\ x_3 \\ x_4 \\ 1 \end{pmatrix}$$
 (1.3.6.21)

We can express (1.3.6.21) as a sum of linear combination of vectors,

$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \mathbf{x_3} + \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \mathbf{x_4}$$
 (1.3.6.22)

where $x_3, x_4 \in \mathbb{R}$.

Note that the above solution space is not closed on vector addition and scalar multiplication. As $x_5 = 1$, the zero vector is not included in the solution space. Hence, x is not a vector space. Since, x is not a vector space, it cannot be expressed in the form of linear combination of basis vectors.

$$\mathbf{A} = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix} \tag{1.3.7.1}$$

For which triples (y_1, y_2, y_3) does the system AX = Y have a solution?

Solution:

Given,

$$\mathbf{AX} = \mathbf{Y} \tag{1.3.7.2}$$

$$\begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{pmatrix} \mathbf{X} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
 (1.3.7.3)

Now we try to find the matrix **B** such that **BA** gives the row echelon form of matrix A.

Here, \mathbf{B} is given by,

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{2}{3} & 1 & 0 \\ -\frac{7}{5} & \frac{8}{5} & 1 \end{pmatrix} \tag{1.3.7.4}$$

$$\implies \mathbf{BA} = \begin{pmatrix} 3 & -1 & 2 \\ 0 & \frac{5}{3} & -\frac{1}{3} \\ 0 & 0 & -\frac{6}{5} \end{pmatrix}$$
 (1.3.7.5)

Therefore, from (1.3.7.5) rank of matrix **A** is 3 and it is a full rank matrix.

Hence the columns of **A** are linearly independent.

Therefore, the triples (y_1, y_2, y_3) are linear combination of columns of matrix **A**.

$$\implies \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = a \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \\ -3 \end{pmatrix} + c \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \quad (1.3.7.6)$$

where a,b,c can be any real value.

1.3.8. Let

$$\mathbf{A} = \begin{pmatrix} 3 & -6 & 2 & -1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{pmatrix} \tag{1.3.8.1}$$

For which (y_1, y_2, y_3, y_4) does the system of equations $\mathbf{AX} = \mathbf{Y}$ have a solution? **Solution:** Given,

$$\mathbf{AX} = \mathbf{Y} \tag{1.3.8.2}$$

$$\begin{pmatrix} 3 & -6 & 2 & -1 \\ -2 & 4 & 1 & 3 \\ 0 & 0 & 1 & 1 \\ 1 & -2 & 1 & 0 \end{pmatrix} \mathbf{X} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$$
 (1.3.8.3)

Now we try to find the matrix B such that BA gives the row echelon form of matrix A Here,B is given by ,

$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{2}{3} & 1 & 0 & 0 \\ -\frac{2}{7} & -\frac{3}{7} & 1 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix}$$
 (1.3.8.4)

$$\mathbf{BA} = \begin{pmatrix} 3 & -6 & 2 & -1 \\ 0 & 0 & \frac{7}{3} & \frac{7}{3} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{1.3.8.5}$$

Therefore, rank of matrix A is 2 Now B is

expressed in terms of two block matrices

$$\mathbf{B} = \begin{pmatrix} \mathbf{B_1} \\ \mathbf{B_2} \end{pmatrix} \tag{1.3.8.6}$$

$$\mathbf{B_1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{2}{3} & 1 & 0 & 0 \end{pmatrix} \tag{1.3.8.7}$$

$$\mathbf{B_2} = \begin{pmatrix} -\frac{2}{7} & -\frac{3}{7} & 1 & 0\\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix} \tag{1.3.8.8}$$

Multiplying matrix \mathbf{B} to both sides on the equation (1.3.8.2), we get,

$$\begin{pmatrix} \mathbf{B_1} \\ \mathbf{B_2} \end{pmatrix} \mathbf{AX} = \begin{pmatrix} \mathbf{B_1} \\ \mathbf{B_2} \end{pmatrix} \mathbf{Y} \tag{1.3.8.9}$$

We know that , matrix A is of rank 2 The augumented matrix of (1.3.8.9) is given by

$$\begin{pmatrix} \mathbf{B_1 A} & \mathbf{B_1 Y} \\ \mathbf{B_2 A} & \mathbf{B_2 Y} \end{pmatrix} \tag{1.3.8.10}$$

$$\mathbf{B_1A} = \begin{pmatrix} 3 & -6 & 2 & -1 \\ 0 & 0 & \frac{7}{3} & \frac{7}{3} \end{pmatrix}$$
 (1.3.8.11)

$$\mathbf{B_2A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{1.3.8.12}$$

Since B_2A is zero matrix and for the given system AX = Y to have a solution,

$$\mathbf{B_2Y} = 0 \qquad (1.3.8.13)$$

$$\begin{pmatrix} -\frac{2}{7} & -\frac{3}{7} & 1 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = 0$$
 (1.3.8.14)

The augumented matrix of (1.3.8.14) is given by,

$$\begin{pmatrix} -\frac{2}{7} & -\frac{3}{7} & 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 & 0 \end{pmatrix}$$
 (1.3.8.15)

By row reduction technique,

$$\stackrel{R_1 = -\frac{7}{2}R_1}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{3}{2} & -\frac{7}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{3}{2} & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (1.3.8.16)

$$\stackrel{R_2=2R_2}{\longleftrightarrow} \begin{pmatrix} 1 & \frac{3}{2} & -\frac{7}{2} & 0 & | & 0 \\ 0 & 1 & -3 & 2 & | & 0 \end{pmatrix}$$
 (1.3.8.17)

$$\stackrel{R_1 = R_1 - \frac{3}{2}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & 1 & -3 & | & 0 \\ 0 & 1 & -3 & 2 & | & 0 \end{pmatrix} \quad (1.3.8.18)$$

Equation (1.3.8.14) can be modified as,

$$\begin{pmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = 0$$
 (1.3.8.19)

Here y_3 and y_4 are free variables If $y_3 = a$ and $y_4 = b$, then the solution to the system of equation $\mathbf{AX} = \mathbf{Y}$ is given by,

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = a \begin{pmatrix} -1 \\ 3 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 3 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$
 (1.3.8.20)

One of the solution when a = 1 and b = 2 is given by ,

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \\ 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 3 \\ -2 \\ 0 \\ 1 \end{pmatrix}$$
 (1.3.8.21)

1.3.9. Suppose \mathbf{R} and \mathbf{R}' are 2×3 row-reduced echelon matrices and that the system $\mathbf{R}\mathbf{X}=0$ and $\mathbf{R}'\mathbf{X}=0$ have exactly the same solutions. Prove that $\mathbf{R}=\mathbf{R}'$.

Solution:

Since **R** and **R**' are 2×3 row-reduced echelon matrices they can be of following three types:-

a) Suppose matrix **R** has one non-zero row then **RX**=0 will have two free variables. Since **R**'**X**=0 will have the exact same solution as **RX** = 0, **R**'**X**=0 will also have two free variables. Thus **R**' have one non zero row. Now let's consider a matrix **A** with the first row as the non-zero row **R** and second row as the second row of **R**'.

$$\mathbf{R} = \begin{pmatrix} 1 & a & b \\ 0 & 0 & 0 \end{pmatrix} \tag{1.3.9.1}$$

$$\mathbf{R}' = \begin{pmatrix} 1 & c & d \\ 0 & 0 & 0 \end{pmatrix} \tag{1.3.9.2}$$

(1.3.9.3)

Let X satisfy

$$\mathbf{RX} = 0$$
 (1.3.9.4)

$$(1 \quad \mathbf{a}^T) \begin{pmatrix} x \\ \mathbf{y} \end{pmatrix} = 0$$
 (1.3.9.5)

$$x + \mathbf{a}^T \mathbf{y} = 0 \tag{1.3.9.6}$$

where

$$\mathbf{a} = \begin{pmatrix} a \\ b \end{pmatrix} \tag{1.3.9.7}$$

$$\mathbf{R}'\mathbf{X} = 0 \tag{1.3.9.8}$$

$$\begin{pmatrix} 1 & \mathbf{b}^T \end{pmatrix} \begin{pmatrix} x \\ \mathbf{y} \end{pmatrix} = 0 \tag{1.3.9.9}$$

$$x + \mathbf{b}^T \mathbf{y} = 0 \tag{1.3.9.10}$$

where

$$\mathbf{b} = \begin{pmatrix} c \\ d \end{pmatrix} \tag{1.3.9.11}$$

Subtracting (1.3.9.10) from (1.3.9.6),

$$x + \mathbf{a}^T \mathbf{y} - x - \mathbf{b}^T \mathbf{y} = 0$$
 (1.3.9.12)

$$(\mathbf{a}^T - \mathbf{b}^T)\mathbf{y} = 0 \tag{1.3.9.13}$$

Since y is a 2×1 vector,

$$\implies y_1 \mathbf{a} - y_2 \mathbf{b} = 0 \tag{1.3.9.14}$$

Which can be written as,

$$\mathbf{a} = k\mathbf{b} \tag{1.3.9.15}$$

where, $k = \frac{y_2}{y_1}$ assuming $y_1 \neq 0$. Now, Substituting (1.3.9.15) in (1.3.9.6)

$$x + k\mathbf{b}^T \mathbf{y} = 0 \tag{1.3.9.16}$$

Comparing (1.3.9.16) with (1.3.9.10)

$$x + \mathbf{b}^T \mathbf{y} = 0 \tag{1.3.9.17}$$

$$x + k\mathbf{b}^T \mathbf{y} = 0 \tag{1.3.9.18}$$

Hence k=1 which means $y_1=y_2$ and from this we can say that $\mathbf{a}=\mathbf{b}$. If in the above case we take $y_1=0$ then

$$y_1 \mathbf{a} - y_2 \mathbf{b} = 0 \tag{1.3.9.19}$$

$$y_2$$
b = 0 (1.3.9.20)

Hence for the (1.3.9.20) to be always true **b** should be zero. Now from (1.3.9.15) we will see that **a** will also be 0. Hence, $\mathbf{R} = \mathbf{R}'$

b) Let **R** and **R** have all rows as non zero.

$$\mathbf{R} = \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & c \end{pmatrix} \tag{1.3.9.21}$$

$$\mathbf{R}' = \begin{pmatrix} 1 & 0 & e \\ 0 & 1 & f \end{pmatrix} \tag{1.3.9.22}$$

Let X satisfy

$$\mathbf{RX} = 0$$
 (1.3.9.23)

$$\mathbf{X}^T \mathbf{R}^T = 0 \tag{1.3.9.24}$$

Here,

$$\mathbf{R} = (\mathbf{I} \ \mathbf{a})$$
 (1.3.9.25) 1.4 Matrix Multiplication

$$\mathbf{a} = \begin{pmatrix} b \\ c \end{pmatrix}$$
 (1.3.9.26) 1.4.1. Let

$$\mathbf{R}^T = \begin{pmatrix} \mathbf{I} \\ \mathbf{a}^T \end{pmatrix} \tag{1.3.9.27}$$

Let,

$$\mathbf{X}^T = \begin{pmatrix} \mathbf{y}^T & z \end{pmatrix} \tag{1.3.9.28}$$

where z is a scalar constant. Now, substituting (1.3.9.28) and (1.3.9.25) in (1.3.9.24)

$$\begin{pmatrix} \mathbf{y}^T & z \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{a}^T \end{pmatrix} = 0 \tag{1.3.9.29}$$

$$\mathbf{y}^T + z\mathbf{a}^T = 0 \tag{1.3.9.30}$$

Now for,

$$\mathbf{R}'\mathbf{X} = 0 \tag{1.3.9.31}$$

$$\mathbf{X}^T \mathbf{R'}^T = 0 \tag{1.3.9.32}$$

Here,

$$\mathbf{R}' = \begin{pmatrix} \mathbf{I} & \mathbf{b} \end{pmatrix} \tag{1.3.9.33}$$

$$\mathbf{b} = \begin{pmatrix} e \\ f \end{pmatrix} \tag{1.3.9.34}$$

Let,

$$\mathbf{X}^T = \begin{pmatrix} \mathbf{y}^T & z \end{pmatrix} \tag{1.3.9.35}$$

where z is a scalar constant. Now, substituting (1.3.9.35) and (1.3.9.33) in (1.3.9.32)

$$\begin{pmatrix} \mathbf{y}^T & z \end{pmatrix} \begin{pmatrix} \mathbf{I} \\ \mathbf{b}^T \end{pmatrix} = 0 \tag{1.3.9.36}$$

$$\mathbf{y}^T + z\mathbf{b}^T = 0 \tag{1.3.9.37}$$

Subtracting (1.3.9.37) from (1.3.9.30)

$$\mathbf{y}^T + z\mathbf{a}^T - \mathbf{y}^T - z\mathbf{b}^T = 0 \qquad (1.3.9.38)$$

$$(\mathbf{a}^T - \mathbf{b}^T)z = 0$$
 (1.3.9.39)

$$\mathbf{a}^T = \mathbf{b}^T \qquad (1.3.9.40)$$

c) Suppose matrix **R** have all the rows as zero

then $\mathbf{R}\mathbf{X}=0$ will be satisfied for all values of \mathbf{X} . We know that $\mathbf{R}'\mathbf{X}=0$ will have the exact same solution as $\mathbf{R}\mathbf{X}=0$ then we can say that for all values of $\mathbf{X}=0$ equation $\mathbf{R}'\mathbf{X}=0$ will be satisfied.Hence, $\mathbf{R}'=\mathbf{R}=0$.

 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 4 & 4 \end{pmatrix}$ (1.4.1.1)

Verify directly that $A(AB) = A^2B$ Solution:

$$A^{2} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}$$
 (1.4.1.2)

$$A^{2} = \begin{pmatrix} 2 & -1 & 1 \\ 5 & -2 & 3 \\ 6 & -3 & 4 \end{pmatrix}$$
 (1.4.1.3)

and

$$AB = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 4 & 4 \end{pmatrix}$$
 (1.4.1.4)

$$AB = \begin{pmatrix} 5 & -1 \\ 8 & 0 \\ 10 & -2 \end{pmatrix} \tag{1.4.1.5}$$

Now RHS is

$$A^{2}B = \begin{pmatrix} 2 & -1 & 1 \\ 5 & -2 & 3 \\ 6 & -3 & 4 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 4 & 4 \end{pmatrix}$$
 (1.4.1.6)

$$A^2B = \begin{pmatrix} 7 & -3\\ 20 & -4\\ 25 & -5 \end{pmatrix} \tag{1.4.1.7}$$

Now LHS is

$$A(AB) = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5 & -1 \\ 8 & 0 \\ 10 & -2 \end{pmatrix}$$
 (1.4.1.8)

$$A(AB) = \begin{pmatrix} 7 & -3\\ 20 & -4\\ 25 & -5 \end{pmatrix} \tag{1.4.1.9}$$

Hence verified.

1.4.2. Find two different 2×2 matrices **A** such that

 $\mathbf{A}^2 = 0$ but $\mathbf{A} \neq 0$

Solution: The matrix A can be given by,

$$\mathbf{A} = \begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix} \tag{1.4.2.1}$$

$$\mathbf{m} = \begin{pmatrix} m_1 \\ m_2 \end{pmatrix}, \mathbf{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} \tag{1.4.2.2}$$

Now,

$$\mathbf{A}^2 = \mathbf{A}\mathbf{A} = \mathbf{0} \tag{1.4.2.3}$$

$$\implies$$
 $\mathbf{A}^2 = (\mathbf{Am} \ \mathbf{An}) = (\mathbf{0} \ \mathbf{0}) \ (1.4.2.4)$

From (1.4.2.4), we say that the null space of **A** contains columns of matrix **A**. Also atleast one of the columns must be non-zero since given $\mathbf{A} \neq 0$. Thus, the null space of **A** contains non zero vectors, $rank(\mathbf{A}) < 2$. Hence, **A** is a singular matrix. This implies that the columns of **A** are linearly dependent.

$$\mathbf{A}\mathbf{x} = 0 \tag{1.4.2.5}$$

$$\begin{pmatrix} \mathbf{m} & \mathbf{n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 \tag{1.4.2.6}$$

$$x_1 \mathbf{m} + x_2 \mathbf{n} = 0 \tag{1.4.2.7}$$

$$\mathbf{n} = \frac{-x_1}{x_2} \mathbf{m} \tag{1.4.2.8}$$

$$\implies$$
 n = k **m** (1.4.2.9)

where $\mathbf{m} \neq 0$ as $\mathbf{A} \neq 0$ Now from (1.4.2.4),

$$\mathbf{Am} = 0$$
 (1.4.2.10)

$$m_1 \mathbf{m} + m_2 \mathbf{n} = 0 \tag{1.4.2.11}$$

$$(m_1 + km_2) \mathbf{m} = 0 (1.4.2.12)$$

Thus we get, $m_1 = -km_2$

$$\mathbf{A} = \begin{pmatrix} -km_2 & -k^2m_2 \\ m_2 & km_2 \end{pmatrix}; m_2 \neq 0 \qquad (1.4.2.13)$$

(1.4.2.9) can be written as,

$$\implies \mathbf{m} = \frac{1}{h}\mathbf{n} \tag{1.4.2.14}$$

$$\implies \mathbf{m} = c\mathbf{n} \tag{1.4.2.15}$$

where $\mathbf{n} \neq 0$ as $\mathbf{A} \neq 0$ From (1.4.2.4),

$$\mathbf{An} = 0$$
 (1.4.2.16)

$$n_1 \mathbf{m} + n_2 \mathbf{n} = 0 \tag{1.4.2.17}$$

$$(cn_1 + n_2) \mathbf{n} = 0 (1.4.2.18)$$

Thus we get, $n_2 = -cn_1$

$$\mathbf{A} = \begin{pmatrix} cn_1 & n_1 \\ -c^2n_1 & -cn_1 \end{pmatrix}; n_1 \neq 0 \qquad (1.4.2.19)$$

From (1.4.2.13), (1.4.2.19) two different 2×2 matrices **A** can be given as,

$$\mathbf{A} = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix} \tag{1.4.2.20}$$

$$\mathbf{A} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \tag{1.4.2.21}$$

1.4.3. Let
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 2 \\ 1 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 1 \\ -4 & 4 \end{pmatrix}$ Is there any matrix C such that $CA = B$?

Solution: The matrix B is obtained by multiplying the matrix A with matrix C. B is a 2×2 matrix and A is a 3×2 matrix. so matrix C must be a 2×3 matrix. Let the matrix C is:

$$C = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} \tag{1.4.3.1}$$

$$\implies C^T = \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \\ c_1 & c_2 \end{pmatrix}$$
 (1.4.3.2)

So, after multiplying with A matrix we get,

$$\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 2 \\ 1 & 0 \end{pmatrix} =$$

$$\begin{pmatrix} a_1 + 2b_1 + c_1 & -a_1 + 2b_1 \\ a_2 + 2b_2 + c_2 & -a_2 + 2b_2 \end{pmatrix}$$
 (1.4.3.3)

Matrix A is a rectangular matrix. Now, Considering CA = B and by transposing both side,

$$(CA)^{T} = B^{T}$$

$$(1.4.3.4)$$

$$\Rightarrow A^{T}C^{T} = B^{T}$$

$$(1.4.3.5)$$

$$\Rightarrow \begin{pmatrix} 1 & 2 & 1 \\ -1 & 2 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{c_{1}} & \mathbf{c_{2}} \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 1 & 4 \end{pmatrix}$$

$$(1.4.3.6)$$

We can represent it like this:

$$\begin{pmatrix} 1 & 2 & 1 \\ -1 & 2 & 0 \end{pmatrix} \mathbf{c_1} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \tag{1.4.3.7}$$

$$(1.4.3.8)$$

Now the augmented matrix is:

$$\begin{pmatrix} 1 & 2 & 1 & 3 \\ -1 & 2 & 0 & 1 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_1 + R_2} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 4 & 1 & 4 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftarrow R_2/2} \begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & 2 & \frac{1}{2} & 2 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 - R_2}$$

$$\begin{pmatrix} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 2 & \frac{1}{2} & 2 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2/2} \begin{pmatrix} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & \frac{1}{4} & 1 \end{pmatrix} \quad (1.4.3.9)$$

Similarly,

$$\begin{pmatrix} 1 & 2 & 1 \\ -1 & 2 & 0 \end{pmatrix} \mathbf{c_2} = \begin{pmatrix} -4 \\ 4 \end{pmatrix}$$
 (1.4.3.10) (1.4.3.11)

Now the augmented matrix is:

$$\begin{pmatrix} 1 & 2 & 1 & -4 \\ -1 & 2 & 0 & 4 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_1 + R_2} \begin{pmatrix} 1 & 2 & 1 & -4 \\ 0 & 4 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \leftarrow R_2/2} \begin{pmatrix} 1 & 2 & 1 & -4 \\ 0 & 2 & \frac{1}{2} & 0 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1 - R_2}$$

$$\begin{pmatrix} 1 & 0 & \frac{1}{2} & -4 \\ 0 & 2 & \frac{1}{2} & 0 \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2/2} \begin{pmatrix} 1 & 0 & \frac{1}{2} & -4 \\ 0 & 1 & \frac{1}{4} & 0 \end{pmatrix}$$

$$(1.4.3.12)$$

From equations 1.4.3.9 and 1.4.3.12, it can be observed that solutions exist and there is a matrix C such that CA = B. Now,

$$\mathbf{c_1} = \begin{pmatrix} 1 - \frac{c_1}{2} \\ 1 - \frac{c_1}{4} \\ c_1 \end{pmatrix} \tag{1.4.3.13}$$

$$\implies \mathbf{c_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_1 \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{4} \\ 1 \end{pmatrix} \qquad (1.4.3.14)$$

$$\mathbf{c_2} = \begin{pmatrix} -4 - \frac{c_2}{2} \\ -\frac{c_2}{4} \\ c_2 \end{pmatrix} \tag{1.4.3.15}$$

$$\implies \mathbf{c_2} = \begin{pmatrix} -4\\0\\0 \end{pmatrix} + c_2 \begin{pmatrix} -\frac{1}{2}\\-\frac{1}{4}\\1 \end{pmatrix} \qquad (1.4.3.16)$$

Now,

$$C^{T} = \begin{pmatrix} 1 & -4 \\ 1 & 0 \\ 0 & 0 \end{pmatrix} + c_{1} \begin{pmatrix} -\frac{1}{2} & 0 \\ -\frac{1}{4} & 0 \\ 1 & 0 \end{pmatrix} + c_{2} \begin{pmatrix} 0 & -\frac{1}{2} \\ 0 & -\frac{1}{4} \\ 0 & 1 \end{pmatrix}$$

$$\implies C = \begin{pmatrix} 1 & 1 & 0 \\ -4 & 0 & 0 \end{pmatrix} + c_{1} \begin{pmatrix} -\frac{1}{2} & -\frac{1}{4} & 1 \\ 0 & 0 & 0 \end{pmatrix} + c_{2} \begin{pmatrix} 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{4} & 1 \end{pmatrix} \quad (1.4.3.17)$$

Now,

$$CA = \begin{pmatrix} 1 & 1 & 0 \\ -4 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 2 \\ 1 & 0 \end{pmatrix}$$

$$+ c_1 \begin{pmatrix} -\frac{1}{2} & -\frac{1}{4} & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 2 \\ 1 & 0 \end{pmatrix}$$

$$+ c_2 \begin{pmatrix} 0 & 0 & 0 \\ -\frac{1}{2} & -\frac{1}{4} & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 2 \\ 1 & 0 \end{pmatrix}$$

$$\implies CA = \begin{pmatrix} 3 & 1 \\ -4 & 4 \end{pmatrix} + c_1 \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\implies CA = B \quad (1.4.3.18)$$

Hence, it is proved that there there exist a matrix C such that CA = B.

1.4.4. Let **A** be an $m \times n$ matrix and **B** be an $n \times k$ matrix. Show that the columns of **C** = **AB** are linear combinations of columns of **A**. If $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the columns of **A** and $\gamma_1, \gamma_2, \ldots, \gamma_k$ are the columns of **C** then,

$$\gamma_{\mathbf{j}} = \sum_{r=1}^{n} B_{rj} \alpha_{\mathbf{r}}$$
 (1.4.4.1)

Solution:

$$\mathbf{C} = \mathbf{AB} \tag{1.4.4.2}$$

$$\mathbf{C} = \begin{pmatrix} \gamma_1 & \gamma_2 & \dots & \gamma_k \end{pmatrix} \tag{1.4.4.3}$$

$$\mathbf{A} = \begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} \tag{1.4.4.4}$$

$$\mathbf{B} = \begin{pmatrix} \beta_1 & \beta_2 & \dots & \beta_k \end{pmatrix} \tag{1.4.4.5}$$

$$= \begin{pmatrix} B_{11} & B_{12} & \dots & B_{1k} \\ B_{21} & B_{22} & \dots & B_{2k} \\ \vdots & \vdots & \dots & \vdots \\ B_{n1} & B_{n2} & B_{nk} \end{pmatrix}$$
(1.4.4.6)

By matrix multiplication, we can write

$$(\gamma_1 \quad \gamma_2 \quad \dots \quad \gamma_k) = (\mathbf{A}\beta_1 \quad \mathbf{A}\beta_2 \quad \dots \quad \mathbf{A}\beta_k)$$

$$(1.4.4.7)$$

Consider γ_1

$$\gamma_{1} = \mathbf{A}\beta_{1} \qquad (1.4.4.8)$$

$$= \left(\alpha_{1} \quad \alpha_{2} \quad \dots \quad \alpha_{n}\right) \begin{pmatrix} B_{11} \\ B_{21} \\ \vdots \\ B_{n} \end{pmatrix} \qquad (1.4.4.9)$$

 $= B_{11}\alpha_1 + B_{21}\alpha_2 + \ldots + B_{n1}\alpha_n \qquad (1.4.4.10) \ 1.4.6. \ I$

Similarly, considering j^{th} column of C

$$\gamma_{\mathbf{j}} = \begin{pmatrix} \alpha_{1} & \alpha_{2} & \dots & \alpha_{\mathbf{n}} \end{pmatrix} \begin{pmatrix} B_{1j} \\ B_{2j} \\ \vdots \\ B_{nj} \end{pmatrix}$$
(1.4.4.11)

$$= B_{1j}\alpha_1 + B_{2j}\alpha_2 + \ldots + B_{nj}\alpha_n \qquad (1.4.4.12)$$

$$\implies \gamma_{\mathbf{j}} = \sum_{r=1}^{n} B_{rj} \alpha_{\mathbf{r}} \qquad (1.4.4.13)$$

which proves that columns of C are linear combinations of columns of A

1.4.5. Let **A** and **B** be $n \times n$ matrices such that $\mathbf{AB} = \mathbf{I}$. Prove that $\mathbf{BA} = \mathbf{I}$. Solution: Let $\mathbf{BX} = 0$ be a system of linear equation with n unknowns and n equations as **B** is $n \times n$ matrix. Hence,

$$\mathbf{BX} = 0 \tag{1.4.5.1}$$

$$\implies \mathbf{A}(\mathbf{BX}) = 0 \tag{1.4.5.2}$$

$$\implies (\mathbf{AB})\mathbf{X} = 0 \tag{1.4.5.3}$$

$$\implies$$
 IX = 0 [:: **AB** = **I**] (1.4.5.4)

$$\implies \mathbf{X} = 0 \tag{1.4.5.5}$$

From (1.4.5.5) since $\mathbf{X} = 0$ is the only solution of (1.4.5.1), hence $rank(\mathbf{B}) = n$. Which implies all columns of \mathbf{B} are linearly independent. Hence \mathbf{B} is invertible. Therefore, every left inverse of \mathbf{B} is also a right inverse of \mathbf{B} . Hence there exists a $n \times n$ matrix \mathbf{C} such that,

$$BC = CB = I$$
 (1.4.5.6)

Again given that AB = I. Hence,

$$\mathbf{AB} = \mathbf{I} \tag{1.4.5.7}$$

$$\implies ABC = C \tag{1.4.5.8}$$

$$\implies \mathbf{A(BC)} = \mathbf{C} \tag{1.4.5.9}$$

$$\implies$$
 A = **C** [: **BC** = **I**] (1.4.5.10)

Hence using (1.4.5.10) and (1.4.5.6) we can write,

$$\mathbf{BA} = \mathbf{I} \tag{1.4.5.11}$$

Hence Proved.

6 Let

$$\mathbf{C} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} \tag{1.4.6.1}$$

be a 2×2 matrix. We inquire when it is possible to find 2×2 matrices **A** and **B** such that C=AB-BA. Prove that such matrices can be found if and only if $C_{11}+C_{22}=0$. **Solution:** We have to find,

$$tr(\mathbf{C}) = C_{11} + C_{22} = tr(\mathbf{AB} - \mathbf{BA})$$
 (1.4.6.2)

$$\implies tr(\mathbf{C}) = tr(\mathbf{AB}) - tr(\mathbf{BA}) \quad (1.4.6.3)$$

We know that,

$$tr(\mathbf{AB}) = \sum_{i=1}^{2} (\mathbf{AB})_{ii}$$
 (1.4.6.4)

$$\implies \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij} b_{ji} \qquad (1.4.6.5)$$

$$\implies \sum_{i=1}^{2} \sum_{j=1}^{2} b_{ji} a_{ij}$$
 (1.4.6.6)

$$\implies tr(\mathbf{AB}) = \sum_{i=1}^{2} \mathbf{BA}_{ij} \qquad (1.4.6.7)$$

$$\implies tr(\mathbf{AB}) = tr(\mathbf{BA})$$
 (1.4.6.8)

Substituting equation (1.4.6.8) to (1.4.6.3) we get

$$\implies tr(\mathbf{C}) = tr(\mathbf{AB}) - tr(\mathbf{BA}) = 0 \quad (1.4.6.9)$$

1.5 Invertible Matrices

1.5.1. Let

$$\mathbf{A} = \begin{pmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{pmatrix} \tag{1.5.1.1}$$

For which **X** does there exist a scalar c such that AX = cX

Solution: Given

$$\mathbf{A} = \begin{pmatrix} 5 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & 1 & 5 \end{pmatrix} \tag{1.5.1.2}$$

The given matrix has single eigenvalue as it is the lower triangular matrix and has equal diagonal elements. Hence $c_1 = c_2 = c_3 = 5$. To find the corresponding eigenvector, consider the following

$$(\mathbf{A} - c\mathbf{I})\mathbf{X} = 0 \tag{1.5.1.3}$$

$$\implies \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 (1.5.1.4)

Solving the homogeneous system of linear equations by performing rref, we get

$$\begin{pmatrix} 30 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 \longleftrightarrow R_1} \begin{pmatrix} 31 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(1.5.1.5)$$

Hence we get,

$$x_1 = 0, x_2 = 0, x_3 = t$$
 (1.5.1.6)

where, x_3 is arbitrary. Therefore,

$$\mathbf{X} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} t \tag{1.5.1.7}$$

Hence, the given matrix has single eigenvector and is not diagonalizable.

1.5.2. Discover whether

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{pmatrix} \tag{1.5.2.1}$$

is invertible, and find A^{-1} if it exists.

Solution: The matrix A is in row reduced echolon form with four pivot elements. Therefore the rank(A) is 4. Hence the rows of matrix A constitute of 4 linearly independent vectors. Thus it can be concluded that matrix A is invertible. Using Gauss-Jordan Elimination, if there exists an elimentary matrix E such that E[A I] = [I E] then E is the inverse of A i.e

 $\mathbf{E} = \mathbf{A}^{-1}.$

$$[\mathbf{A} \ \mathbf{I}] = \begin{pmatrix} 1 & 2 & 3 & 4 & | & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 4 & | & 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 4 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$
(1.5.2.2)

$$\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 2 & 3 & 4 & | & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & 4 & | & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1
\end{pmatrix} (1.5.2.3)$$

$$\stackrel{R_2 \leftarrow R_2 - R_3}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 2 & 0 & 0 & | & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 4 & | & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1
\end{pmatrix} (1.5.2.4)$$

$$\stackrel{R_3 \leftarrow R_3 - R_4}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 2 & 0 & 0 & | & 0 & 1 & -1 & 0 \\
0 & 0 & 3 & 0 & | & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 4 & | & 0 & 0 & 0 & 1
\end{pmatrix}$$
(1.5.2.5)

$$\xrightarrow{R_4 \leftarrow \frac{R_4}{4}} \begin{pmatrix}
1 & 0 & 0 & 0 & | & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & | & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1 & 0 & | & 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 1 & | & 0 & 0 & 0 & \frac{1}{4}
\end{pmatrix} = [\mathbf{I} \ \mathbf{E}] \tag{1.5.2.6}$$

Therefore, for the given problem,

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{pmatrix}$$
 (1.5.2.7)

Generalization of above result to a matrix of any arbitrary size: Let

$$\mathbf{A} = \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_N \\ 0 & a_2 & a_3 & \dots & a_N \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & a_N \end{pmatrix}$$
 (1.5.2.8)

Then

$$\mathbf{E}_{1}\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{1} & a_{2} & a_{3} & \dots & a_{N} \\ 0 & a_{2} & a_{3} & \dots & a_{N} \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & a_{N} \end{pmatrix} \qquad \mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{a_{1}} & -\frac{1}{a_{1}} & 0 & 0 & \dots & 0 \\ 0 & \frac{1}{a_{2}} & -\frac{1}{a_{2}} & 0 & \dots & 0 \\ 0 & 0 & \frac{1}{a_{3}} & -\frac{1}{a_{3}} & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & \frac{1}{a_{N}} \end{pmatrix}$$

$$(1.5.2.9)$$

$$= \begin{pmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & a_3 & \dots & a_N \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & a_N \end{pmatrix}$$
 (1.5.2.10)

$$\mathbf{E}_{2}\mathbf{E}_{1}\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -1 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & 1 \end{pmatrix} \begin{pmatrix} a_{1} & 0 & 0 & \dots & 0 \\ 0 & a_{2} & a_{3} & \dots & 1.5 a_{N}^{2} \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & \dots & a_{N} \end{pmatrix}$$
Suppose \mathbf{A} is a 2×1 matrix and \mathbf{B} is 1×2 matrix. Prove that $\mathbf{C} = \mathbf{A}\mathbf{B}$ is non invertible. Solution: Let's take \mathbf{A} and \mathbf{B} to be non zero vectors. Now, we know that for \mathbf{C} to be non invertible $\mathbf{C}\mathbf{v} = 0$ should have a non-trivial

$$= \begin{pmatrix} a_1 & 0 & 0 & \dots & 0 \\ 0 & a_2 & 0 & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & a_N \end{pmatrix}$$
 (1.5.2.12)

Proceeding in similar manner, we get

$$\mathbf{E}_{N}\mathbf{E}_{N-1}\dots\mathbf{E}_{2}\mathbf{E}_{1}\mathbf{A} = \mathbf{U} = \begin{pmatrix} a_{1} & 0 & 0 & \dots & 0 \\ 0 & a_{2} & 0 & \dots & 0 \\ 0 & 0 & a_{3} & \dots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & \dots & a_{N} \end{pmatrix}$$

$$(1.5.2.13)$$

$$= \operatorname{diag} \begin{pmatrix} a_{1} & a_{2} & \dots & a_{N} \end{pmatrix}$$

$$(1.5.2.14)$$

$$\implies \mathbf{A} = \mathbf{L}\mathbf{U} \tag{1.5.2.15}$$

where $\mathbf{L} = \mathbf{E}_1^{-1} \mathbf{E}_2^{-1} \dots \mathbf{E}_N^{-1}$

$$\implies \mathbf{A}^{-1} = \mathbf{U}^{-1} \mathbf{L}^{-1} \tag{1.5.2.16}$$

Therefore

$$\mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{a_1} & -\frac{1}{a_1} & 0 & 0 & \dots & 0\\ 0 & \frac{1}{a_2} & -\frac{1}{a_2} & 0 & \dots & 0\\ 0 & 0 & \frac{1}{a_3} & -\frac{1}{a_3} & \dots & 0\\ 0 & 0 & 0 & 0 & \dots & \frac{1}{a_N} \end{pmatrix}$$
(1.5.2.18)

From (1.5.2.18) for the above problem

$$\mathbf{A}^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{pmatrix}$$
 (1.5.2.19)

invertible Cx = 0 should have a non trivial solution.So,

$$\mathbf{C}\mathbf{x} = 0 \tag{1.5.3.1}$$

$$\implies \mathbf{ABx} = 0 \tag{1.5.3.2}$$

Here, we know that **B** is 1×2 matrix and **x** is 2×1 matrix then **Bx** will result to a scalar constant k.

$$\implies \mathbf{A}k = 0 \tag{1.5.3.3}$$

For (1.5.3.3) to be true k should be zero. We also know that **B** is 1×2 matrix i.e. rows are less than column hence,

$$\mathbf{B}\mathbf{x} = 0 \tag{1.5.3.4}$$

will have a non trivial solution. Hence, using (1.5.3.3) and (1.5.3.4) we can say,

$$\mathbf{ABx} = 0 \tag{1.5.3.5}$$

will have a non trivial solution so, C is non invertible.

- 1.5.4. Let **A** be an $n \times n$ (square) matrix, Prove the
- $\Rightarrow \mathbf{A}^{-1} = \begin{pmatrix} \frac{1}{a_1} & 0 & 0 & \dots & 0 \\ 0 & \frac{1}{a_2} & 0 & \dots & 0 \\ 0 & 0 & \frac{1}{a_3} & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & & & & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & \dots & 0$

Solution:

a) Given **A** is an invertible matrix and $\mathbf{AB} = 0$

then,

$$\mathbf{AB} = 0 \qquad (1.5.4.1)$$

$$\Rightarrow \mathbf{A}^{-1}(\mathbf{AB}) = 0 \qquad (1.5.4.2) \ 1.5$$

$$\Rightarrow (\mathbf{A}^{-1}\mathbf{A})\mathbf{B} = 0 \qquad (1.5.4.3)$$

$$\Rightarrow \mathbf{IB} = 0 \quad [\because \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}] \qquad (1.5.4.4)$$

$$\Rightarrow \mathbf{B} = 0 \qquad (1.5.4.5)$$

b) If **A** is not invertible, then there exists an $n \times n$ matrix **B** such that AB = 0 but $B \neq 0$. Since **A** is not invertible, AX = 0 must have a non-trivial solution. Let the non-trivial solution be,

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \tag{1.5.4.6}$$

Let **B** which is an $n \times n$ matrix have all its columns as **y**.

$$\mathbf{B} = \begin{pmatrix} \mathbf{y} & \mathbf{y} & \cdots & \mathbf{y} \end{pmatrix} \tag{1.5.4.7}$$

From equation (1.5.4.7), we can say that $\mathbf{B} \neq 0$ but $\mathbf{AB} = 0$

1.5.5. An $n \times n$ matrix \mathbf{A} is called upper-triangular if $\mathbf{A}_{ij} = 0$ for i > j, that is, if every entry below the main diagonal is 0. Prove that an upper-triangular (square) matrix is invertible if and only if every entry on its main diagonal is different from 0. **Solution:** An $n \times n$ matrix \mathbf{A} is called upper-triangular if $\mathbf{A}_{ij} = 0$ for i > j, that is, if every entry below the main diagonal is 0. Prove that an upper-triangular (square) matrix is invertible if and only if every entry on its main diagonal is different from 0. Considering \mathbf{A} , an upper triangular matrix. Using the property that determinant of upper triangular matrix is the product of diagonal elements,

$$\left|\mathbf{A}\right| = \prod_{i=1}^{n} a_{i,i} \tag{1.5.5.1}$$

If **A** be invertible then $|\mathbf{A}| \neq 0$. Hence from (1.5.5.1) we get,

$$\prod_{i=1}^{n} a_{i,i} \neq 0 \tag{1.5.5.2}$$

if any diagonal element is 0 then (1.5.5.2) won't be right hence no diagonal elements should be 0. Hence Proved.

(1.5.4.2) 1.5.6. Let A be a $m \times n$ matrix. Show that by a finite number of elementary row and/or column operations one can pass from A to a matrix R which is both row-reduced echelon and column-reduced echelon, i.e., $R_{ij} = 0$ if $i \neq j$, $R_{ii} = 1$, $1 \leq i \leq r$, $R_{ii} = 0$, if i > r. Show that R = PAQ, where P is an invertible $m \times m$ matrix and Q is an invertible $n \times n$ matrix.

Solution:

Lemma Every elementary matrix is invertible and the inverse is again an elementary matrix. If an elementary matrix E is obtained from I by using a certain row or column operation q, then E^{-1} is obtained from I by the "inverse" operation q^{-1} .

Solution Given **A** is a $m \times n$ matrix. Converting **A** into row reduced echelon form by performing a series of elementary row operations **P**. Let **R**' be the row reduced echelon matrix. Also, by using the lemma we can tell that **P** is invertible and order $m \times m$.

$$\mathbf{R}' = \mathbf{P}\mathbf{A} \tag{1.5.6.1}$$

where,

$$\mathbf{R'} = \begin{pmatrix} \mathbf{I} & \mathbf{F} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

I is an identity matrix, F is Free variables matrix and 0 represents a block of zeroes

 ${f R}'$ is in row-reduced echelon form. To perform column operations, elementary matrices should be multiplied on the right side in order to convert the ${f R}'$ into column-reduced echelon form

$$\mathbf{R} = \mathbf{R}'\mathbf{Q} \tag{1.5.6.2}$$

But performing column operations on a matrix is equivalent to performing row operations on the transposed matrix.

$$\mathbf{R}^{T} = (\mathbf{R}'\mathbf{Q})^{T}$$

$$\implies \mathbf{R}^{T} = \mathbf{Q}^{T}\mathbf{R}'^{T}$$
(1.5.6.3)

Hence, by using lemma it can be observed that \mathbf{Q}^T is invertible and of the order $n \times n$. Convert-

ing \mathbf{R}^T to row-reduced echelon is equivalent to converting \mathbf{R} to column-reduced echelon.

$$\mathbf{R} = \mathbf{PAQ} \tag{1.5.6.4}$$

where,

$$\mathbf{R} = \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \tag{1.5.6.5}$$

I is an identity matrix and 0 represents a block of zeroes. Q is a upper triangular matrix. R in (1.5.6.4) is in both row and column reduced echelon form. Hence proved. Example Let,

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 5 & 7 \\ 1 & 2 & 3 & 4 \end{pmatrix} \tag{1.5.6.6}$$

To convert (1.5.6.6) into row reduced echelon form, **A** has to be multiplied by **P**

$$\mathbf{P} = \begin{pmatrix} -5 & 3 & 0 \\ 2 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \tag{1.5.6.7}$$

$$\mathbf{R'} = \mathbf{PA} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (1.5.6.8)

 \mathbf{R}' is in row reduced echelon form. To convert (1.5.6.8) into column-reduced echelon form, elementary operations have to be performed on \mathbf{R}'^T . By multiplying all the elementary matrices.

$$\mathbf{Q}^T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -2 & 1 & 0 & 0 \\ -1 & 0 & -1 & 1 \end{pmatrix} \tag{1.5.6.9}$$

$$\implies \mathbf{Q} = \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \tag{1.5.6.10}$$

So **PAQ** is in both row-reduced and column-reduced echelon form.

$$\mathbf{R} = \mathbf{PAQ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \tag{1.5.6.11}$$

The inverses of **P** and **Q** are,

$$\mathbf{P}^{-1} = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 5 & 0 \\ 1 & 3 & 1 \end{pmatrix}; \quad \mathbf{Q}^{-1} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1.5.6.12)

2 Vector Spaces

- 2.1 Vector Spaces
- 2.1.1. If **F** is a field, verify that vector space of all ordered n-tuples \mathbf{F}^n is a vector space over the field \mathbf{F} .

Solution: Let \mathbf{F}^n be a set of all ordered n-tuples over \mathbf{F} i.e

$$\mathbf{F}^n = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} : a_1, a_2, \dots, a_n \in \mathbf{F} \right\}$$
 (2.1.1.1)

For \mathbf{F}^n to be a vector space over \mathbf{F} it must satisfy the closure property of vector addition and scalar multiplication.

Vector Addition in \mathbf{F}^n :

Let $\alpha = (a_i)$ and $\beta = (b_i) \ \forall \ i = 1, 2, \dots, n \in \mathbf{F}^n$ then

$$\alpha + \beta = (a_i) + (b_i)$$

$$= (a_i + b_i)$$
(2.1.1.2)
$$= (2.1.1.3)$$

Since

$$a_i + b_i \in \mathbf{F} \ \forall \ i = 1, 2, \cdots, n$$
 (2.1.1.4)
 $\implies \alpha + \beta \in \mathbf{F}^n$ (2.1.1.5)

Scalar multiplication in F^n over F:

Let $\alpha = (a_i) \ \forall \ i = 1, 2, \dots, n \in \mathbb{F}^n$ and $a \in \mathbb{F}$ then

$$a\alpha = (aa_i) \tag{2.1.1.6}$$

Since

$$aa_i \in \mathbf{F} \ \forall \ i = 1, 2 \cdots, n$$
 (2.1.1.7)
 $\implies a\alpha \in \mathbf{F}^n$ (2.1.1.8)

Associativity of addition in F^n :

Let
$$\alpha = (a_i)$$
, $\beta = (b_i)$, $\gamma = (g_i) \ \forall \ i = 1, 2, \dots, n \in \mathbf{F}^n$ then

$$\alpha + (\beta + \gamma) = (a_i) + (b_i + g_i)$$
 (2.1.1.9)
= $(a_i + b_i + g_i)$ (2.1.1.10)
= $(a_i + b_i) + (g_i)$ (2.1.1.11)
= $(\alpha + \beta) + \gamma$ (2.1.1.12)

Existence of additive identity in \mathbf{F}^n :

We have
$$\mathbf{0} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbf{F}^n \text{ and } \alpha = (a_i) \ \forall \ i = a_i$$

 $1, 2, \cdots, n \in \mathbf{F}^n$ then

$$(a_i) + (0) = (a_i + 0)$$
 (2.1.1.13)
= (a_i) (2.1.1.14)

Therefore $\mathbf{0}$ is the additive identity in \mathbf{F}^n .

Existence of additive inverse of each element of \mathbf{F}^n :

If $\alpha = (a_i) \ \forall \ i = 1, 2, \dots, n \in \mathbf{F}^n$ then Hence \mathbf{F}^n is a vector space over \mathbf{F} .

(a) $\in \mathbf{F}^n$ Also we have $(-a_i) \in \mathbf{F}^n$. Also we have

$$\left(-a_i\right) + \left(a_i\right) = \mathbf{0} \tag{2.1.1.15}$$

Therefore $-\alpha = (-a_i)$ is the additive inverse of α . Thus \mathbf{F}^n is an abelian group with respect to addition.

Futher we observe that

a) If $a \in \mathbf{F}$ and $\alpha = (a_i)$, $\beta = (b_i) \ \forall \ i = 1, 2, \dots, n \in \mathbf{F}^n$ then

$$a(\alpha + \beta) = a(a_i + b_i)$$
 (2.1.1.16)

$$= (a[a_i + b_i])$$
 (2.1.1.17)

$$= (aa_i + ab_i)$$
 (2.1.1.18)

$$(aa_i) + (ab_i)$$
 (2.1.1.19)

$$= a(a_i) + a(b_i)$$
 (2.1.1.20)

$$= a\alpha + a\beta \tag{2.1.1.21}$$

b) If $a,b \in \mathbb{F}$ and $\alpha = (a_i) \ \forall \ i = 1, 2, \dots, n \in \mathbb{F}^n$ 2.1.3. If \mathbb{C} is the field of complex numbers, which then

$$(a+b)\alpha = ([a+b]a_i)$$
 (2.1.1.22)

$$= \left(aa_i + ba_i\right) \tag{2.1.1.23}$$

$$= (aa_i) + (ba_i) \tag{2.1.1.24}$$

$$= a\left(a_i\right) + b\left(a_i\right) \tag{2.1.1.25}$$

$$= a\alpha + b\alpha \tag{2.1.1.26}$$

c) If $a,b \in \mathbf{F}$ and $\alpha = (a_i) \ \forall \ i = 1, 2, \dots, n \in \mathbf{F}^n$

$$(ab)\alpha = ([ab]a_i) \tag{2.1.1.27}$$

$$= \left(a[ba_i]\right) \tag{2.1.1.28}$$

$$= a \left(ba_i \right) \tag{2.1.1.29}$$

$$= a(b\alpha) \tag{2.1.1.30}$$

d) If 1 is the unity element of **F** and α = $(a_i) \ \forall \ i=1,2,\cdots,n \in \mathbf{F}^n \text{ then}$

$$1\alpha = (1a_i) \tag{2.1.1.31}$$

$$= (a_i) \tag{2.1.1.32}$$

$$=\alpha \qquad (2.1.1.33)$$

Hence \mathbf{F}^n is a vector space over \mathbf{F} .

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$
(2.1.2.1)

Solution: Using property of commutativity of (+) in \mathbf{V}

$$(\alpha_1 + \alpha_2) + (\alpha_3 + \alpha_4) = (\alpha_2 + \alpha_1) + (\alpha_3 + \alpha_4)$$
(2.1.2.2)

Using property of associativity of (+) in V

$$(\alpha_2 + \alpha_1) + (\alpha_3 + \alpha_4) = \alpha_2 + [\alpha_1 + (\alpha_3 + \alpha_4)]$$
(2.1.2.3)

Using property of commutativity of (+) in V

$$\alpha_2 + [\alpha_1 + (\alpha_3 + \alpha_4)] = \alpha_2 + (\alpha_3 + \alpha_1) + \alpha_4$$
(2.1.2.4)

Using property of associativity of (+) in V

$$\alpha_2 + (\alpha_3 + \alpha_1) + \alpha_4 = [\alpha_2 + (\alpha_3 + \alpha_1)] + \alpha_4$$
(2.1.2.5)

vectors in \mathbb{C}^3 are linear combinations of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$,

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$?

Solution: Expressing the given vectors as the 2.1.5. On \mathbb{R}^n define two operations columns of a matrix,

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} \tag{2.1.3.1}$$

The row reduced echelon form of the matrix on performing elementary row operations can be given as,

$$\mathbf{R} = \mathbf{C}\mathbf{A} \tag{2.1.3.2}$$

$$\mathbf{C} = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} \tag{2.1.3.3}$$

Thus we get,

$$\mathbf{R} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \tag{2.1.3.4}$$

From (2.1.3.4), $rank(\mathbf{A}) = 3$. Thus \mathbf{A} is a full rank matrix. Hence the columns of A are linearly independent i.e., the given vectors are linearly independent and forms the basis for

Hence any vector $\mathbf{Y} \in \mathbf{C}^3$ can be written as the linear combinations of $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

2.1.4. Let V be the set of all pairs (x,y) of real numbers and let F be the field of real numbers. Define

$$(x,y) + (x_1,y_1) = (x+x_1,y+y_1)$$
 (2.1.4.1) Hence **V** is not a vector space.
 $c(x,y) = (cx,y)$ (2.1.4.2) Let \mathbb{V} be the set of all complex-valued functions f on the real line such that

Is V with these operations, a vector space over the field of real numbers?

Solution: $V = \{(x,y) | x, y \in R\}$, consider u = $(x_1, y_1) \in V, a, b, c \in R$. Axioms with respect to addition and scalar multiplication.

a)

$$(a+b)u = (a+b)(x_1, y_1)$$
 (2.1.4.3)

$$= ((a+b)x_1, y_1) \neq au + bu \qquad (2.1.4.4)$$

Since V with the given operations the equation

(2.1.4.4) contradicts the axioms of scalar multiplication. Hence it is not vector space over real number with these operations.

$$\alpha \oplus \beta = \alpha - \beta \tag{2.1.5.1}$$

$$c \cdot \alpha = -c\alpha \tag{2.1.5.2}$$

The operations on the right are usual ones. Which of the axioms for a vector space are satisfied by $(\mathbb{R}^n, \oplus, \cdot)$?

Solution: Let $(\alpha, \beta, \gamma) \in \mathbb{R}^n$ and c, c_1, c_2 are scalars taken from the field \mathbb{R} where the vector space is defined on. Table 2.1.5 lists the axioms

where C is the product of elementary matrices,

2.1.6. Let V be the set of pairs (x, y) of real numbers and let F be the field of real numbers. Define

$$(x,y) + (x_1, y_1) = (x + x_1, 0)$$
 (2.1.6.1)

$$c(x, y) = (cx, 0)$$
 (2.1.6.2)

Is V, with these operations, a vector space?

Solution: V is a vector space if it satisfies all properties of the vector space. Let us consider the property of Existence of additive identity. According to Existence of additive identity, there is a unique vector 0 in V called the zero vector, such that $\alpha + \mathbf{0} = \alpha$ for all α in \mathbf{V} .

Let
$$u = (x_1, y_1) \in \mathbf{V}$$

$$u + \mathbf{0} = (x_1, y_1) + (0, 0)$$

$$= (x_1 + 0, 0)$$

$$= (x_1, 0)$$

$$\neq u$$
(2.1.6.3)

From (2.1.6.3), there does not exist an additive identity for V.

Hence V is not a vector space.

tions f on the real line such that

$$f(-t) = \overline{f(t)} \tag{2.1.7.1}$$

The bar denotes complex conjugation. Show that V, with the operations

$$(f+g)(t) = f(t) + g(t) (2.1.7.2)$$

$$(cf)(t) = cf(t)$$
 (2.1.7.3)

is a vector space over the field of real numbers. Give an example of a function in V which is not real valued.

UNSATISTIFD	SATISFIED
Associativity of addition	Additive identity
$\alpha \oplus (\beta \oplus \gamma) = \alpha - \beta + \gamma$	$\alpha \oplus \beta = \alpha - \beta = \alpha$
$(\alpha \oplus \beta) \oplus \gamma = \alpha - \beta - \gamma$	Additive identity is β
$\alpha \oplus (\beta \oplus \gamma) \neq (\alpha \oplus \beta) \oplus \gamma$	unique $\beta = (0, 0,0)$
Commutativity of addition	Additive inverse
$\alpha \oplus \beta = \alpha - \beta$	$\alpha \oplus \alpha = \alpha - \alpha = 0$
$\beta \oplus \alpha = \beta - \alpha$	Additive inverse is α
$\alpha \oplus \beta \neq \beta \oplus \alpha$	
Scalar multiplication with field multiplication	
$(c_1c_2)\cdot\alpha=(-c_1c_2)\alpha$	
$c_1 \cdot (c_2 \cdot \alpha) = c_1 c_2 \alpha$	
$(c_1c_2)\cdot\alpha\neq c_1\cdot(c_2\cdot\alpha)$	
Identity element of scalar multiplication	
$1 \cdot \alpha = -\alpha = \alpha \text{ for } \alpha = (0, 0,, 0)$	
$1 \cdot \alpha = -\alpha \neq \alpha \forall \alpha \neq (0, 0,, 0)$	
Distributivity of scalar multiplication w.r.t vector addition	
$c \cdot (\alpha \oplus \beta) = -c(\alpha - \beta)$	
$c \cdot \alpha \oplus c \cdot \beta = -c\alpha - (-c\beta)$	
$c \cdot (\alpha \oplus \beta) \neq c \cdot \alpha \oplus c \cdot \beta$	
Distributivity of scalar multiplication w.r.t field addition	
$(c_1 + c_2) \cdot \alpha = -(c_1 + c_2)\alpha$	
$c_1 \cdot \alpha \oplus c_2 \cdot \beta = -c_1 \alpha - (-c_2 \beta)$	
$(c_1 + c_2) \cdot \alpha \neq c_1 \cdot \alpha \oplus c_2 \cdot \beta$	

TABLE 2.1.5: Axioms of vector space $(\mathbb{R}^n, \oplus, \cdot)$

Solution: To prove that V with the given operations is a vector space over the field of real numbers, we have to start by proving that additivity and homogeneity both hold true. So, we have to prove that (cf+g)(t) is equal to cf(t)+g(t).

$$(cf+g)(t)$$
 (2.1.7.4)

$$= (cf)(t) + g(t)$$
 (2.1.7.5)

$$= cf(t) + g(t) (2.1.7.6)$$

Now, we know that $f(-t) = \overline{f(-t)}$ and so (cf+g)(t) should also satisfy the property,

Example Let's take f(x)=a+ix

$$f(1) = a + i \tag{2.1.7.12}$$

Hence, f(x) is not real valued. Now,

$$f(x) = a + ix (2.1.7.13)$$

$$f(-x) = a - ix (2.1.7.14)$$

$$f(-x) = \overline{f(x)}$$
 (2.1.7.15)

Since a and $x \in \mathbb{R}$, so $f \in \mathbb{V}$

2.2 Subspaces

$$(cf + g)(-t)$$
 (2.1.7.7)

$$= cf(-t) + g(-t)$$
 (2.1.7.8) 2.2.1. Is the vector $\begin{pmatrix} 3 \\ -1 \\ 0 \\ -1 \end{pmatrix}$ in the subspace of \mathbb{R}^4

$$= cf(t) + g(t)$$
 (2.1.7.10)

$$= cf(t) + g(t)$$
 (2.1.7.11) spanned by the vectors $\begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \\ 9 \end{pmatrix}$

? **Solution:** Expressing the given three vectors as columns of a matrix,

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 1 \\ 3 & 1 & 9 \\ 2 & -3 & -5 \end{pmatrix} \tag{2.2.1.1}$$

and

$$\mathbf{b} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ -1 \end{pmatrix} \tag{2.2.1.2}$$

For the vector **b** to be in the subspace of \mathbb{R}^4 spanned by the three vectors.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2.2.1.3}$$

must have a solution.

$$\begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 1 \\ 3 & 1 & 9 \\ 2 & -3 & -5 \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3 \\ -1 \\ 0 \\ -1 \end{pmatrix}$$
 (2.2.1.4)

Forming the augmented matrix and row reducing it by elementary row operations,

$$\begin{pmatrix} 2 & -1 & 1 & 3 \\ -1 & 1 & 1 & -1 \\ 3 & 1 & 9 & 0 \\ 2 & -3 & -5 & -1 \end{pmatrix} \xrightarrow{R_2 \leftarrow 2R_2 + R_1, R_3 \leftarrow R_3 - \frac{3}{2}R_1} \xrightarrow{R_4 \leftarrow R_4 - R_1}$$

$$\begin{pmatrix}
2 & -1 & 1 & 3 \\
0 & 1 & 3 & 1 \\
0 & \frac{5}{2} & \frac{15}{2} & \frac{-9}{2} \\
0 & -2 & -6 & -4
\end{pmatrix}
\xrightarrow{R_3 \leftarrow 2R_3 - 5R_2}
\begin{pmatrix}
2 & -1 & 1 & 3 \\
0 & 1 & 3 & 1 \\
0 & 0 & 0 & -14 \\
0 & 0 & 0 & -2
\end{pmatrix}$$
(2.2.1.6)

From (2.2.1.6), it is clear that the system does

not have a solution. Hence the vector $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$ does

not lie in the subspace of \mathbb{R}^4 spanned by the given three vectors.

2.2.2. Let **W** be the set of all $(x_1, x_2, x_3, x_4, x_5)$ in \mathbb{R}^5

which satisfy

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0 (2.2.2.1)$$

$$x_1 + \frac{2}{3}x_3 - x_5 = 0 (2.2.2.2)$$

$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0 (2.2.2.3)$$

Find a finite set of vectors which spans W. **Solution:** The given equations are,

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0 (2.2.2.4)$$
$$x_1 + \frac{2}{3}x_3 - x_5 = 0 (2.2.2.5)$$

$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0$$
 (2.2.2.6)

which can be written as,

$$\begin{pmatrix} 2 & -1 & \frac{4}{3} & -1 & 0 \\ 1 & 0 & \frac{2}{3} & 0 & -1 \\ 9 & -3 & 6 & -3 & -3 \end{pmatrix} \mathbf{x} = 0$$
 (2.2.2.7)

Now, the augmented matrix,

$$\begin{pmatrix}
2 & -1 & \frac{4}{3} & -1 & 0 & 0 \\
1 & 0 & \frac{2}{3} & 0 & -1 & 0 \\
9 & -3 & 6 & -3 & -3 & 0
\end{pmatrix}$$

$$(2.2.2.8)$$

$$\xrightarrow{R_3 = R_3 - 3R_1 - 3R_2}
\begin{pmatrix}
2 & -1 & \frac{4}{3} & -1 & 0 & 0 \\
1 & 0 & \frac{2}{3} & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$(2.2.2.9)$$

$$\xrightarrow{R_2 = R_2 - \frac{1}{2}R_1}
\begin{pmatrix}
2 & -1 & \frac{4}{3} & -1 & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{R_2 = 2R_2}
\begin{pmatrix}
2 & -1 & \frac{4}{3} & -1 & 0 & 0 \\
0 & 1 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{R_1 = R_1 + R_2}
\begin{pmatrix}
2 & 0 & \frac{4}{3} & 0 & -2 & 0 \\
0 & 1 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{R_1 = R_1 + R_2}
\begin{pmatrix}
2 & 0 & \frac{4}{3} & 0 & -2 & 0 \\
0 & 1 & 0 & 1 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

(2.2.2.12)

So.

$$2x_1 + \frac{4}{3}x_3 - 2x_5 = 0 (2.2.2.13)$$

$$x_2 + x_4 - 2x_5 = 0 (2.2.2.14)$$

Solving the equations we get,

$$x_1 = -\frac{2}{3}x_3 + x_5 \tag{2.2.2.15}$$

$$x_2 = -x_4 + 2x_5 \tag{2.2.2.16}$$

which can be written as,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$
 (2.2.2.17)

$$= \begin{pmatrix} -\frac{2}{3}x_3 + x_5 \\ -x_4 + 2x_5 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$
 (2.2.2.18)

$$= x_3 \begin{pmatrix} -\frac{2}{3} \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 (2.2.2.19)

where x_3, x_4 and $x_5 \in \mathbb{R}$. Hence, the vectors

$$\begin{pmatrix} -\frac{2}{3} \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \text{ and } \begin{pmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 1 \end{pmatrix} \text{ will span } \mathbf{W}$$

- 2.2.3. Let **F** be a field and let n be a positive integer $(n\geq 2)$. Let V be the vector space of all $n\times n$ matrices over F. Which of the following set of matrices A in V are subspaces of V?
 - a) all invertible A;
 - b) all non-invertible A;
 - c) all \mathbf{A} such that $\mathbf{AB} = \mathbf{BA}$, where \mathbf{B} is some fixed matrix in V;
 - d) all **A** such that $A^2 = A$.

Solution:

a) Let the matrices A and $B \in V$, be set of invertible matrix. For them to be a subspace they need to be closed under addition. Let,

$$\mathbf{A} = \mathbf{I} \tag{2.2.3.1}$$

$$\mathbf{B} = -\mathbf{I} \tag{2.2.3.2}$$

It could be easily proven that both matrices

A and B are invertible as,

$$rank(\mathbf{I}_{nxn}) = rank \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{nxn}$$

$$(2.2.3.3)$$

$$\implies rank(-\mathbf{I}_{nxn}) = rank(\mathbf{I}_{nxn}) = n$$

or it is a full rank matrix as there are n pivots.

$$\therefore \mathbf{A} + \mathbf{B} = \mathbf{0}. \tag{2.2.3.5}$$

But the zero matrix **0** is non-invertible as,

$$rank(\mathbf{0}_{nxn}) = rank \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}_{nxn}$$

$$(2.2.3.6)$$

$$\implies rank(\mathbf{0}_{nxn}) = 0$$

$$(2.2.3.7)$$

- : the set of invertible matrices are not closed under addition. Hence not a subspace of V.
- b) Let the matrices $A_1, A_2, \dots, A_n \in V$, be set of non-invertible matrix. For them to be a subspace they need to be closed under addition. Let,

$$\mathbf{A_1} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}_{n\times n}$$
 (2.2.3.8)

$$\mathbf{A_{1}} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}_{nxn}$$

$$\mathbf{A_{2}} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}_{nxn}$$

$$(2.2.3.8)$$

$$\mathbf{A_n} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{nxn}$$
 (2.2.3.10)

It could be proven that matrices A_1 ,

 A_2, \dots, A_n are non-invertible as,

$$rank(\mathbf{A_1}) = rank \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$(2.2.3.12)$$

$$\implies rank(\mathbf{A_1}) = 1$$

$$(2.2.3.13)$$

or there is only one pivot hence rank is 1.

$$\implies \mathbf{A_1} + \mathbf{A_2} + \mathbf{A_3} + \cdots \mathbf{A_n} = \mathbf{I}_{nxn}$$
(2.2.3.14)

Now the identity matrix I is invertible as shown in equation (2.2.3.4). ∴ the set of non-invertible matrices are not closed under addition. Hence not a subspace of V.

c) **Theorem 1:**. A non-empty subset W of V is a subspace of V if and only if for each pair of vectors α , β in W and each scalar $c \in F$, the vector $c\alpha + \beta \in W$.

Let the matrices A_1 and A_2 satisfy,

$$\mathbf{A_1B} = \mathbf{BA_1} \tag{2.2.3.15}$$

$$A_2B = BA_2$$
 (2.2.3.16)

Let, $c \in \mathbf{F}$ be any constant.

$$\therefore (c\mathbf{A_1} + \mathbf{A_2})\mathbf{B} = c\mathbf{A_1}\mathbf{B} + \mathbf{A_2}\mathbf{B} \quad (2.2.3.17)$$

Substituting from equations (2.2.3.15) and (2.2.3.16) to (2.2.3.17),

$$\Rightarrow (c\mathbf{A}_1 + \mathbf{A}_2)\mathbf{B} = c\mathbf{B}\mathbf{A}_1 + \mathbf{B}\mathbf{A}_2$$

$$(2.2.3.18)$$

$$\Rightarrow \mathbf{B}c\mathbf{A}_1 + \mathbf{B}\mathbf{A}_2$$

$$(2.2.3.19)$$

$$\Rightarrow \mathbf{B}(c\mathbf{A}_1 + \mathbf{A}_2)$$

Thus, $(cA_1 + A_2)$ satisfy the criteria and from Theorem-1 it can be seen that the set is a subspace of V.

d) Let A and $B \in V$ be set of matrices such that,

$$\mathbf{A}^2 = \mathbf{A} \tag{2.2.3.21}$$

$$\mathbf{B}^2 = \mathbf{B} \tag{2.2.3.22}$$

Now for them to be closed under addition,

$$(\mathbf{A} + \mathbf{B})^2 = \mathbf{A} + \mathbf{B}$$
 (2.2.3.23)

Which is not always same. Example let,

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \tag{2.2.3.24}$$

$$\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \tag{2.2.3.25}$$

Clearly,

$$\mathbf{A}^2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \mathbf{A}$$

$$(2.2.3.26)$$

$$\mathbf{B}^2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \mathbf{B}$$
(2.2.3.27)

Now,

$$\mathbf{A} + \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$(2.2.3.28)$$

$$\implies (\mathbf{A} + \mathbf{B})^2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$(2.2.3.29)$$

Hence, clearly from equations (2.2.3.28) and (2.2.3.29),

$$(\mathbf{A} + \mathbf{B})^2 \neq \mathbf{A} + \mathbf{B}$$
 (2.2.3.30)

 \therefore the set of all A such that $A^2 = A$ is not closed under addition. Hence, not a subspace of V.

- (2.2.3.18) Subspace of \mathbb{R}^1 are \mathbb{R}^1 and the zero subspace
 - b. Prove that a subspace of \mathbb{R}^2 is \mathbb{R}^2 , or the zero subspace, or consists of all scalar multiples of some fixed vector in \mathbb{R}^2 . (The last type of subspace is, intuitively, a straight line through the origin.)
 - c. Can you describe the subspaces of \mathbb{R}^3 ? Solution:
 - a. Let $W \neq 0$ be subspace of \mathbb{R}^1 . Then W is a nonempty subset of \mathbb{R}^1 and there exist $w \in W$ such that $w \neq 0$ which gives us that there exist w^{-1} .

Let $x \in \mathbb{R}^1$. Since W is in \mathbb{R}^1 we have that it is closed under scalar

multiplication which gives us that $(xw^{-1})w = x(w^{-1}w) = x.1 = x \in W$

Hence $\mathbb{R}^1 \subset W$ and therefore $W = \mathbb{R}^1$

Thus the only subspace of \mathbb{R}^1 distinct of 0 is \mathbb{R}^1 and therefore only subspaces of \mathbb{R}^1 are 0 and \mathbb{R}^1 .

b. Clearly, 0 and \mathbb{R}^2 itself are subspaces of \mathbb{R}^2 . If $u \neq 0$ and $u \in \mathbb{R}^2$ then span $\{\mathbf{u}\} = c\mathbf{u} : c \in \mathbb{R} = \text{set of all scalar multiples of } \mathbf{u}$ is a subspace of \mathbb{R}^2 .

To show that these are the only subspaces of \mathbb{R}^2 , assume that $W \subset \mathbb{R}^2$ is any subspace of \mathbb{R}^2 . Since $W \subset \mathbb{R}^2$ is a subspace of \mathbb{R}^2 , we have that $\mathbf{0} \in W$. If $W \neq \mathbf{0}$ then there is a vector $\mathbf{u} \neq 0$ and $\mathbf{u} \in W$, and hence W contains $c\mathbf{u}$ for every $c \in \mathbb{R}$. If $W \neq span\{\mathbf{u}\}$, then there is a vector $v \in W$ so that $\mathbf{v} \neq k\mathbf{u}$ for any $k \in \mathbb{R}$.

Then $\mathbf{z} = c\mathbf{u} + d\mathbf{v} \in span\{\mathbf{u}, \mathbf{v}\}$ for any $c, d \in \mathbb{R}$. Since W is a subspace $c\mathbf{u}$ and $d\mathbf{v} \in W$ for any $c, d \in \mathbb{R}$, and hence so does $\mathbf{z} = c\mathbf{u} + d\mathbf{v}$. Thus $\mathbf{z} \in span\{\mathbf{u}, \mathbf{v}\} \implies z \in W$, and so $span\{\mathbf{u}, \mathbf{v}\} \subset W \subset \mathbb{R}^2$.

Let $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2$ be any vector in \mathbb{R}^2 , and let $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and let $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. We show that there are real numbers c and d so that $c\mathbf{u} + d\mathbf{v} = \mathbf{x}$

$$\begin{pmatrix} cu_1 \\ cu_2 \end{pmatrix} + \begin{pmatrix} dv_1 \\ dv_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \tag{2.2.4.1}$$

$$\begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 (2.2.4.2)

Since $\mathbf{v} \neq k\mathbf{u}$ for any $k \in \mathbb{R}$ and since $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ assume that $u_1 \neq 0$, and since $k\mathbf{u} \neq \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ assume that $v_2 \neq 0$. Then

$$A = \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (2.2.4.3)

Hence A is row equivalent to I_2 and so A is invertible and so (2.2.4.2) has unique solution for c and d. Thus for any $\mathbf{x} \in \mathbb{R}^2$ we can find real numbers c and d such that $\mathbf{x} = c\mathbf{u} + d\mathbf{v}$. Hence $\mathbf{x} \in \mathbb{R}^2 \implies x \in span\{\mathbf{u}, \mathbf{v}\}$. Thus $\mathbb{R}^2 \subset span\{\mathbf{u}, \mathbf{v}\} \subset W \subset \mathbb{R}^2$.

Hence $span\{\mathbf{u},\mathbf{v}\} = \mathbf{W} = \mathbb{R}^2$, and so the only subspace of \mathbb{R}^2 are $\mathbf{0}$, \mathbb{R}^2 , and $L = c\mathbf{u} : \mathbf{u} \neq 0, c \in \mathbb{R}$.

- c. The following are the subspaces of \mathbb{R}^3 :
 - 1. Origin is a trivial subspace of \mathbb{R}^3 .
 - 2. \mathbb{R}^3 itself is a trivial subspace of \mathbb{R}^3 .
 - 3. Every line through origin is subspace of \mathbb{R}^3 .
 - 4. Every plane in \mathbb{R}^3 passing through origin is a subspace \mathbb{R}^3 .

Proof: Let W be a plane passing through origin. We need $\mathbf{0} \in W$, but we have that since we're only considering planes that contain origin. Next, we need W is closed under vector addition. If $\mathbf{w_1}$ and $\mathbf{w_2}$ both belong to W, then so does $\mathbf{w_1} + \mathbf{w_2}$ because it's found by constructing a parallelogram, and the whole parallelogram lies in the plane W. Finally, we need W is closed under scalar products, but it is since scalar multiples lie in a straight line through the origin, and that line lies in W. Thus, each plane W passing through the origin is a subspace of \mathbb{R}^3 .

5. The intersection of any of the above subspaces will also be a subspace of \mathbb{R}^3 . Because intersection of subspaces of a vector space is also a subspace of vector space.

Proof: Let W be a collection of subspaces of V, and let $W = \cap W_i$ be their intersection. Since each W_i is a subspace, each of it contains the zero vector. Thus the zero vector is in the

intersection W, and W is non-empty. Let α and β be vectors in W and let c be a scalar. By definition of W, both α and β belong to each W_i , and because each W_i is a subspace, the vector $(c\alpha + \beta)$ is again in W. Hence by definition of subspace, W is a subspace of V.

These 5 are only subspaces of \mathbb{R}^3 possible. Because dimension of vector space \mathbb{R}^3 is 3. Any subspace of \mathbb{R}^3 should have dimension less than or equal to it's dimension. Hence possible dimensions of subspaces are 0,1,2,3. Only subspace with 0 dimension is origin. Subspaces of dimension 1 with zero vector are lines passing through origin. Subspaces of dimension 2 with zero vector are plane passing through origin. Subspace of dimension 3 are all of \mathbb{R}^3 itself.

- 2.2.5. Let **V** be the vector space of all functions from **R** into **R**; let V_e be the subset of even functions, f(-x) = f(x); let V_o be the subset of odd functions, f(-x) = -f(x).
 - a) Prove that V_e and V_o are subspaces of V
 - b) Prove that $V_e + V_o = V$
 - c) Prove that $V_e \cap V_o = \{0\}$

Solution:

a) Prove that V_e and V_o are subspaces of V. A non-empty subset W of V is a subspace of V if and only if for each pair of vectors α , β in W and each scalar c in F the vector $c\alpha + \beta$ is again in W.

Let $\mathbf{u}, \mathbf{v} \in \mathbf{V_e}$ and $c \in \mathbf{R}$ and let $\mathbf{h} = c\mathbf{u} + \mathbf{v}$. Then,

$$\mathbf{h}(-x) = c\mathbf{u}(-x) + \mathbf{v}(-x)$$

$$= c\mathbf{u}(x) + \mathbf{v}(x) \qquad (2.2.5.1)^2$$

$$= \mathbf{h}(x)$$

From (2.2.5.1)

$$\implies \mathbf{h}(-x) = \mathbf{h}(x) \tag{2.2.5.2}$$

$$\implies$$
 h \in **V**_e (2.2.5.3)

Let $\mathbf{u}, \mathbf{v} \in \mathbf{V_0}$ and $c \in \mathbf{R}$ and let $\mathbf{h} = c\mathbf{u} + \mathbf{v}$.

Then,

$$\mathbf{h}(-x) = c\mathbf{u}(-x) + \mathbf{v}(-x)$$

$$= -c\mathbf{u}(x) - \mathbf{v}(x)$$

$$= -\mathbf{h}(x)$$
(2.2.5.4)

From (2.2.5.4)

$$\implies \mathbf{h}(-x) = -\mathbf{h}(x) \tag{2.2.5.5}$$

$$\implies$$
 h \in **V**₀ (2.2.5.6)

From (2.2.5.3) and (2.2.5.6), V_e and V_o are subspaces of V.

a) Prove that $V_e + V_o = V$.

Let $\mathbf{u} \in \mathbf{V}$

$$\mathbf{u}_{\mathbf{e}}(x) = \frac{\mathbf{u}(x) + \mathbf{u}(-x)}{2}$$
 (2.2.1.7)

$$\mathbf{u_o}(x) = \frac{\mathbf{u}(x) - \mathbf{u}(-x)}{2}$$
 (2.2.1.8)

Equation equation (2.2.1.7) and (2.2.1.8), $\mathbf{u_e}$ is even and $\mathbf{u_o}$ is odd. Adding both the equations,

$$\mathbf{u} = \mathbf{u_e} + \mathbf{u_o} \tag{2.2.1.9}$$

a) Prove that $V_e \cap V_o = \{0\}$.

Let $\mathbf{u} \in \mathbf{V_e} \cap \mathbf{V_o}$

$$\mathbf{u} \in \mathbf{V}_{\mathbf{e}} \implies \mathbf{u}(-x) = \mathbf{u}(x)$$
 (2.2.2.10)

$$\mathbf{u} \in \mathbf{V}_{\mathbf{0}} \implies \mathbf{u}(-x) = -\mathbf{u}(x)$$
 (2.2.2.11)

Equating (2.2.2.10) and (2.2.2.11),

$$\mathbf{u}(x) = -\mathbf{u}(x) \tag{2.2.2.12}$$

$$\implies 2\mathbf{u}(x) = 0 \tag{2.2.2.13}$$

$$\implies \mathbf{u} = 0 \tag{2.2.2.14}$$

Equations (2.2.5.3), (2.2.5.6), (2.2.1.9), (2.2.2.14) proves 1, 2 and 3.

(2.2.5.1) 2.2.3. Let W_1 and W_2 be subspaces of a vector space V such that

$$\mathbf{W_1} + \mathbf{W_2} = \mathbf{V} \tag{2.2.3.1}$$

and
$$W_1 \cap W_2 = 0$$
 (2.2.3.2)

Prove that for each vector α in V there are unique vectors α_1 in W_1 and α_2 in W_2 such that

$$\alpha = \alpha_1 + \alpha_2 \tag{2.2.3.3}$$

Solution: Suppose, vectors α_1 and α_2 are not

unique. Consider

$$\alpha_1' \in \mathbf{W}_1, \qquad (2.2.3.4)$$

$$\alpha'_{1} \in \mathbf{W}_{1},$$
 (2.2.3.4)
 $\alpha'_{2} \in \mathbf{W}_{2}$ (2.2.3.5)
 $= \alpha'_{1} + \alpha'_{2}$ (2.2.3.6)

such that
$$\alpha = \alpha_1' + \alpha_2'$$
 (2.2.3.6)

(2.2.3.3) and (2.2.3.6) indicate

$$\alpha_1 + \alpha_2 = \alpha_1' + \alpha_2' \tag{2.2.3.7}$$

$$\implies \alpha_1 - \alpha_1' = \alpha_2' - \alpha_2 \tag{2.2.3.8}$$

For α_1 and α'_1 lying in subspace W_1 , defined on field \mathbb{F} , the following holds

$$\alpha_1 + c\alpha_1' \in \mathbf{W}_1, c \in \mathbb{F} \tag{2.2.3.9}$$

$$c = -1 \implies \alpha_1 - \alpha_1' \in \mathbf{W_1} \qquad (2.2.3.10)$$

Similarly,
$$\alpha'_{2} - \alpha_{2} \in \mathbf{W}_{2}$$
 (2.2.3.11)

$$(2.2.3.8) \implies \alpha_1 - \alpha_1' \in \mathbf{W_2}$$
 $(2.2.3.12)$

(2.2.3.2),(2.2.3.10),(2.2.3.12) indicate

$$\alpha_1 - \alpha_1' = \alpha_2' - \alpha_2 = \mathbf{0} \tag{2.2.3.13}$$

$$\implies \alpha_1 = \alpha_1' \qquad (2.2.3.14)$$

$$\alpha_2 = \alpha_2' \qquad (2.2.3.15)$$

So, there exists a unique $\alpha_1 \in W_1$ and $\alpha_2 \in W_2$ such that

$$\alpha = \alpha_1 + \alpha_2 \tag{2.2.3.16}$$

where $\alpha \in \mathbf{V}$

linearly independent in R^4

Solution: consider the row reduced matrix

$$\begin{pmatrix} 1 & 1 & 2 & 4 \\ 2 & -1 & -5 & 2 \\ 1 & -1 & -4 & 0 \\ 2 & 1 & 1 & 6 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 1 & 2 & 4 \\ 0 & -3 & -9 & -6 \\ 0 & -2 & -6 & -4 \\ 2 & 1 & 1 & 6 \end{pmatrix}$$

$$(2.3.1.3)$$

$$\xrightarrow{R_4 \leftarrow R_4 - 2R_1} \begin{pmatrix}
1 & 1 & 2 & 4 \\
0 & -1 & -3 & -2 \\
0 & -2 & -6 & -4 \\
0 & -3 & -9 & -6
\end{pmatrix}$$
(2.3.1.4)

$$\stackrel{R_4 \leftarrow R_2}{\longleftarrow} \begin{pmatrix}
1 & 1 & 2 & 4 \\
0 & 1 & 3 & 2 \\
0 & -3 & -9 & -6 \\
0 & -2 & -6 & -4
\end{pmatrix}$$
(2.3.1.5)

$$\xrightarrow{R_3 \leftarrow R_3 + 3R_2} \begin{pmatrix}
1 & 1 & 2 & 4 \\
0 & 1 & 3 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(2.3.1.6)

Therefore the rank = no. of pivot columns = 2 (less than no. of columns). Thus the fours vectors are not linearly independent.

2.3.2. Find a basis for the subspace of \mathbb{R}^4 spanned by the four vector. the four vectors

$$\alpha_1 = \begin{pmatrix} 1 & 1 & 2 & 4 \end{pmatrix} \tag{2.3.2.1}$$

$$\alpha_2 = \begin{pmatrix} 2 & -1 & -5 & 2 \end{pmatrix} \tag{2.3.2.2}$$

$$\alpha_1 = \begin{pmatrix} 1 & 1 & 2 & 1 \end{pmatrix}$$
 (2.3.2.1)
 $\alpha_2 = \begin{pmatrix} 2 & -1 & -5 & 2 \end{pmatrix}$ (2.3.2.2)
 $\alpha_3 = \begin{pmatrix} 1 & -1 & -4 & 0 \end{pmatrix}$ (2.3.2.3)

$$\alpha_4 = \begin{pmatrix} 2 & 1 & 1 & 6 \end{pmatrix} \tag{2.3.2.4}$$

Solution: The basis of the given four vectors is equivalent to finding the basis of column-space $C(\mathbf{A})$ of a matrix **A** defined as follows,

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 1 & -1 & -1 & 1 \\ 2 & -5 & -4 & 1 \\ 4 & 2 & 0 & 6 \end{pmatrix} \tag{2.3.2.5}$$

Now we calculate the row echelon form of A

2.3 Bases and Dimension

2.3.1. Are the vectors

$$\alpha_1 = (1, 1, 2, 4), \alpha_2 = (2, -1, -5, 2)$$
 (2.3.1.1)

$$\alpha_3 = (1, -1, -4, 0), \alpha_4 = (2, 1, 1, 6)$$
 (2.3.1.2)

as follows,

$$\begin{pmatrix}
1 & 2 & 1 & 2 \\
1 & -1 & -1 & 1 \\
2 & -5 & -4 & 1 \\
4 & 2 & 0 & 6
\end{pmatrix}
\xrightarrow{R_2 = R_2 - R_1}
\begin{pmatrix}
1 & 2 & 1 & 2 \\
0 & -3 & -2 & -1 \\
0 & -9 & -6 & -3 \\
4 & 2 & 0 & 6
\end{pmatrix}$$

$$(2.3.2.6)$$

$$\xrightarrow{R_4 = R_4 - R_1}
\begin{pmatrix}
1 & 2 & 1 & 2 \\
0 & -3 & -2 & -1 \\
0 & -9 & -6 & -3 \\
0 & -6 & -4 & -2
\end{pmatrix}$$

$$(2.3.2.7)$$

$$\xrightarrow{R_2 = -\frac{1}{3}R_2}
\begin{pmatrix}
1 & 2 & 1 & 2 \\
0 & 1 & -\frac{2}{3} & \frac{1}{3} \\
0 & -9 & -6 & -3 \\
0 & -6 & -4 & -2
\end{pmatrix}$$

$$(2.3.2.8)$$

$$\xrightarrow{R_3 = R_3 - 9R_2}
\begin{pmatrix}
1 & 2 & 1 & 2 \\
0 & 1 & -\frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 \\
0 & -6 & -4 & -2
\end{pmatrix}$$

$$\stackrel{R_4=R_4+6R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 2 & 1 & 2 \\
0 & 1 & -\frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} (2.3.2.10)$$

From (2.3.2.10) we can see that the first column and second column of **A** contains pivot values. Hence the column 1 and column 2 are the basis of the subspace of \mathbb{R}^4 spanned by the given vectors α_1 , α_2 , α_3 , α_4

Hence the required basis vectors are,

$$\mathbf{a_1} = \begin{pmatrix} 1 & 1 & 2 & 4 \end{pmatrix} \tag{2.3.2.11}$$

$$\mathbf{a_2} = \begin{pmatrix} 2 & -1 & -5 & 2 \end{pmatrix} \tag{2.3.2.12}$$

2.3.3. Let V be the vector space of all 2×2 matrices over the field \mathbb{F} . Let W_1 be the set of matrices of the form

$$\begin{pmatrix} x & -x \\ y & z \end{pmatrix} \tag{2.3.3.1}$$

and let W_2 be the set of matrices of the form

$$\begin{pmatrix} a & b \\ -a & c \end{pmatrix} \tag{2.3.3.2}$$

- a) Prove that W_1 and W_2 are subspaces of V.
- b) Find the dimension of $W_1, W_2, W_1 + W_2$ and

 $W_1 \cap W_2$.

Solution: A non-empty subset W of V is a subspace of V if and only if for each pair of vectors α , β in W and each scalar $c \in F$, the vector $c\alpha + \beta \in W$.

a) Let $A_1, A_2 \in W_1$ where,

$$A_1 = \begin{pmatrix} x_1 & -x_1 \\ y_1 & z_1 \end{pmatrix}, A_2 = \begin{pmatrix} x_2 & -x_2 \\ y_2 & z_2 \end{pmatrix}$$
 (2.3.3.3)

Let $c \in F$ then,

$$cA_1 + A_2 = \begin{pmatrix} cx_1 + x_2 & -cx_1 - x_2 \\ cy_1 + y_2 & cz_1 + z_2 \end{pmatrix} = \begin{pmatrix} u & -u \\ v & w \end{pmatrix}$$
(2.3.3.4)

Thus $cA_1 + A_2 \in W_1$. Hence W_1 is a subspace. Similarly, let $A_1, A_2 \in W_2$ where,

$$A_1 = \begin{pmatrix} a_1 & b_1 \\ -a_1 & c_1 \end{pmatrix}, A_2 = \begin{pmatrix} a_2 & b_2 \\ -a_2 & c_2 \end{pmatrix}$$
 (2.3.3.5)

Let $c \in F$ then,

$$cA_1 + A_2 = \begin{pmatrix} ca_1 + a_2 & cb_1 + b_2 \\ -ca_1 - a_2 & cc_1 + c_2 \end{pmatrix} = \begin{pmatrix} u & v \\ -u & w \end{pmatrix}$$
(2.3.3.6)

Thus $cA_1 + A_2 \in W_2$. Hence W_2 is a subspace.

b) The subspace W_1 can be given as,

$$\begin{pmatrix} x & -x \\ y & z \end{pmatrix} = x \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} + y \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= xA_1 + yA_2 + zA_2$$

$$(2.3.3.8)$$

Now.

$$x \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} + y \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$(2.3.3.9)$$

$$\implies x = y = z = 0$$

$$(2.3.3.10)$$

 A_1, A_2, A_3 are linearly independent and spans W_1 . Thus $\{A_1, A_2, A_3\}$ forms basis for W_1 .

 \therefore dimension of W_1 is 3.

The subspace W_2 can be given as,

$$\begin{pmatrix} a & b \\ -a & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= aA_1 + bA_2 + cA_2 \qquad (2.3.3.12)$$

Now,

$$a \begin{pmatrix} 1 & 0 \\ -1 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$(2.3.3.13)$$

$$\Rightarrow a = b = c = 0$$

$$(2.3.3.14)$$

 A_1, A_2, A_3 are linearly independent and spans W_2 . Thus $\{A_1, A_2, A_3\}$ forms basis for W_2 .

\therefore dimension of W_2 is 3.

Subspace $W_1 + W_2$ is given by,

$$\begin{pmatrix} x+a & -x+b \\ y-a & z+c \end{pmatrix}$$
 (2.3.3.15)

For $x + a \neq -x + b \neq y - a \neq z + c$,

$$\begin{pmatrix} x+a & -x+b \\ y-a & z+c \end{pmatrix} = \begin{pmatrix} j & k \\ l & m \end{pmatrix}$$
 (2.3.3.16)
= $j \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + k \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + l \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + m \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ (2.3.3.17)

$$= jA_1 + kA_2 + lA_3 + mA_4 (2.3.3.18)$$

Now,

$$jA_1 + kA_2 + lA_3 + mA_4 = 0$$
 (2.3.3.19)
 $\implies j = k = l = m = 0$ (2.3.3.20)

 A_1, A_2, A_3, A_4 are linearly independent and spans $W_1 + W_2$. Thus $\{A_1, A_2, A_3, A_4\}$ forms a basis.

\therefore dimension of $W_1 + W_2$ is 4.

The subspace $W_1 \cap W_2$ is given as,

$$\begin{pmatrix} x & -x \\ -x & y \end{pmatrix} = x \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} + y \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= xA_1 + yA_2 \qquad (2.3.3.21)$$

Now,

$$x \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix} + y \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad (2.3.3.23)$$

$$\implies x = y = 0 \qquad (2.3.3.24)$$

 A_1, A_2 are linearly independent and spans $W_1 \cap W_2$. Thus, $\{A_1, A_2\}$ forms a basis.

\therefore dimension of $W_1 \cap W_2$ is 2.

2.3.4. Let **V** be the space of 2×2 matrices over **F**. Find a basis $\{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \mathbf{A}_4\}$ for **V** such that $\mathbf{A}_j^2 = \mathbf{A}_j$ for each j

Solution: Every 2×2 matrix may be written as

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$(2.3.4.1)$$

This shows that

$$\{\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \mathbf{A}_4\} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
(2.3.4.2)

can be the basis for the space V of all 2×2 matrices. However A_2 and A_3 doesn't satisfy the property of $A^2 = A$. Consider b = 0 and c = 0, then the matrix

$$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \tag{2.3.4.3}$$

can't be a basis as it is the linear combination of A_1 and A_4 . Hence either b or c or both must be non zero. Hence,

$$\mathbf{A}_2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \tag{2.3.4.4}$$

$$\mathbf{A}_3 = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \tag{2.3.4.5}$$

Here, $\mathbf{A}_2^2 = \mathbf{A}_2$ and $\mathbf{A}_3^2 = \mathbf{A}_3$. Therefore the basis can be

$$\{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}\} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
(2.3.4.6)

 $\{A_1, A_2, A_3, A_4\}$ forms the basis, iff they are linearly independent and the linear combination of them span the space **V**. To show that they are linearly independent, we show that the equation has a trivial solution.

$$a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$(2.3.4.7)$$

$$\implies a + b = 0$$

$$(2.3.4.8)$$

$$b = 0$$

$$(2.3.4.9)$$

$$c = 0$$

$$(2.3.4.10)$$

$$c + d = 0$$

$$(2.3.4.11)$$

The corresponding matrix form is Ax = 0

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 (2.3.4.12)

Row reducing the augmented matrix,

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \xrightarrow{R_2 \longleftrightarrow R_3} \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} 2$$

$$(2.3.4.13)$$

$$\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}$$
(2.3.4.14)

Therefore, a = b = c = d = 0. Hence the matrices are linearly independent. To show that the linear combination of $\{A_1, A_2, A_3, A_4\}$ span the space V, consider an arbitrary matrix,

$$\begin{pmatrix} w & x \\ y & z \end{pmatrix} \tag{2.3.4.15}$$

Compute a, b, c, d such that

$$\begin{pmatrix} w & x \\ y & z \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
(2.3.4.16)

$$= \begin{pmatrix} a+b & c \\ b & c+d \end{pmatrix} \tag{2.3.4.17}$$

Equating the entries, this produces system of linear equations,

$$a + b = w, y = b, x = c, z = c + d$$
 (2.3.4.18)

$$\implies a = w - y$$
 (2.3.4.19) 2.3.6

$$b = y (2.3.4.20)$$

$$c = x$$
 (2.3.4.21)

$$d = z - x \tag{2.3.4.22}$$

In particular, there exists at least one solution regardless of the values of w, x, y, z. For example, consider the following matrix,

$$\begin{pmatrix} w & x \\ y & z \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ -2 & 7 \end{pmatrix} \tag{2.3.4.23}$$

Here, a = 5, b = -2, c = 4, d = 3. Using

(2.3.4.16), we get

$$5\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - 2\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + 4\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} + 3\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ -2 & 7 \end{pmatrix}$$
(2.3.4.24)

Hence
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 forms the basis for the given space V .

2.3.5. Let **V** be a vector space over a subfield **F** of complex numbers. Suppose α , β and γ are linearly independent vectors in **V**. Prove that $(\alpha+\beta)$, $(\beta+\gamma)$ and $(\gamma+\alpha)$ are linearly independent.

Solution: Let α , β and γ be three n× 1 dimensional vectors. We need to prove that,

$$(\alpha + \beta \quad \beta + \gamma \quad \gamma + \alpha)\mathbf{x} = 0 \qquad (2.3.5.1)$$

will only have a trivial solution. The above equation can be written as

$$(\alpha \quad \beta \quad \gamma) \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \mathbf{x} = 0$$
 (2.3.5.2)

$$\mathbf{x}^T \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha^T \\ \boldsymbol{\beta}^T \\ \boldsymbol{\gamma}^T \end{pmatrix} = 0 \qquad (2.3.5.3)$$

Since, α , β and γ are independent.

$$\mathbf{x}^T \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 0 \tag{2.3.5.4}$$

In the above equation we can see that the 3×3 matrix has linearly independent rows and hence will have a trivial solution. So, **x** is a zero vector. Hence, $(\alpha+\beta)$, $(\beta+\gamma)$ and $(\gamma+\alpha)$ are linearly independent.

(2.3.4.19) 2.3.6. Prove that the space of all mxn matrices over (2.3.4.20) the field **F** has dimension mn, by exhibiting a basis for this space.

Solution: Let **M** be the space of all $\mathbf{m} \times \mathbf{n}$ matrices. Let, $\mathbf{M}_{ij} \in \mathbf{M}$ be,

$$\mathbf{M}_{ij} = \begin{cases} 0 & m \neq i, n \neq j \\ 1 & m = i, n = j \end{cases}$$
 (2.3.6.1)

For example,

$$\mathbf{M}_{12} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}_{mxn}$$
 (2.3.6.2)

(2.3.6.3)

Let $A \in M$ given as,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} \tag{2.3.6.4}$$

Now clearly,

$$\mathbf{a}_{11} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
(2.3.6.5)

$$\implies \mathbf{a}_{11} = \mathbf{A}\mathbf{M}_{11} \tag{2.3.6.6}$$

$$\therefore \mathbf{A} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} M_{ij}$$
 (2.3.6.7)

 \implies **M**_{ij} span **M**. Also from the above equation **A**= 0 if and only if all elements are zero, that is,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
(2.3.6.8)

$$\implies a_{ij} = 0 \tag{2.3.6.9}$$

Hence, \mathbf{M}_{ij} are linearly independent as well. Hence, \mathbf{M}_{ij} constitutes a basis for \mathbf{M} . and number of elements in basis are mn. Hence dimension of space of all mxn matrices \mathbf{M} is mn.

2.3.7. Let **V** be the set of real numbers.Regard **V** as a vector space over the field of rational numbers, with usual operations. Prove that this vector space is not finite-dimensional.

Solution: Let M be the space of all $m \times n$

matrices. Let, $\mathbf{M}_{ij} \in \mathbf{M}$ be,

$$\mathbf{M}_{ij} = \begin{cases} 0 & m \neq i, n \neq j \\ 1 & m = i, n = j \end{cases}$$
 (2.3.7.1)

For example,

$$\mathbf{M}_{12} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}_{mxn}$$
 (2.3.7.2)

(2.3.7.3)

Let $A \in M$ given as,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix}_{\mathbf{m} \times \mathbf{n}}$$
(2.3.7.4)

Now clearly,

$$\mathbf{a}_{11} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

$$(2.3.7.5)$$

$$\implies \mathbf{a}_{11} = \mathbf{A}\mathbf{M}_{11} \tag{2.3.7.6}$$

$$\therefore \mathbf{A} = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} M_{ij}$$
 (2.3.7.7)

 \implies **M**_{ij} span **M**. Also from the above equation **A**= 0 if and only if all elements are zero, that is,

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$
(2.3.7.8)

$$\implies a_{ii} = 0 \tag{2.3.7.9}$$

Hence, \mathbf{M}_{ij} are linearly independent as well. Hence, \mathbf{M}_{ij} constitutes a basis for \mathbf{M} . and number of elements in basis are mn. Hence dimension of space of all mxn matrices \mathbf{M} is mn.

2.4 Coordinates

2.4.1. Find the coordinate matrix of the vector $\begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$ in the basis of C^3 consisting of the vectors $\begin{pmatrix} 2i & 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 2 & -1 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1+i & 1-i \end{pmatrix}$ in that order.

Solution:

$$\begin{pmatrix} 1 & 0 & 1 \end{pmatrix} = \alpha_1 \begin{pmatrix} 2i & 1 & 0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 2 & -1 & 1 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 & 1+i & 1-i \end{pmatrix}$$
(2.4.1.1)

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2i & 2 & 0 \\ 1 & -1 & 1+i \\ 0 & 1 & 1-i \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix}$$
 (2.4.1.2)

Now we find α_i by row reducing augmented matrix.

$$\begin{pmatrix} 2i & 2 & 0 & 1 \\ 1 & -1 & 1+i & 0 \\ 0 & 1 & 1-i & 1 \end{pmatrix} \xrightarrow{R_1 \to R_2} \begin{pmatrix} 1 & -1 & 1+i & 0 \\ 0 & 2+2i & 2-2i & 1 \\ 0 & 1 & 1-i & 1 \end{pmatrix} \xrightarrow{\text{converting elon form}} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

$$\xrightarrow[R_3 \leftarrow R_3 - R_2]{} \begin{pmatrix} 1 & -1 & 1+i & 0\\ 0 & 1+i & 1-i & \frac{1}{2}\\ 0 & -i & 0 & \frac{1}{2} \end{pmatrix}$$
 (2.4.1.4)

Therefore the coordinate matrix of the vector is

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} \frac{-1-i}{2} \\ \frac{i}{2} \\ \frac{3+i}{4} \end{pmatrix}$$
 (2.4.1.5)

2.4.2. Let $\mathbf{B} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{pmatrix}$ be the ordered basis for R^3 consisting of

$$\alpha_1 = \begin{pmatrix} 1 & 0 & -1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}.$$

What are the coordinates of vector $\begin{pmatrix} a & b & c \end{pmatrix}$ in the ordered basis **B**?

Solution: Given

$$\mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \tag{2.4.2.1}$$

be the ordered basis for R^3 , then the coordinates of vector,

$$\alpha = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \tag{2.4.2.2}$$

in the ordered basis R^3 is the vector,

$$[\alpha]_{\mathbf{B}} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \tag{2.4.2.3}$$

hence

$$x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \alpha \tag{2.4.2.4}$$

substituting (2.4.2.1) and (2.4.2.2) in (2.4.2.4)

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (2.4.2.5)

augmented matrix form

$$\begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 0 & b \\ -1 & 1 & 0 & c \end{pmatrix}$$
 (2.4.2.6)

converting above matrix into row reduced echelon form

$$\begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 0 & b \\ -1 & 1 & 0 & c \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 + R_1} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 0 & b \\ 0 & 2 & 1 & c + a \end{pmatrix}$$
(2.4.2.7)

$$\stackrel{R_3 \leftarrow R_3 - 2R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & a - 2b + c \end{pmatrix}$$
(2.4.2.8)

$$\stackrel{R_1 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 1 & a - b \\
0 & 1 & 0 & b \\
0 & 0 & 1 & a - 2b + c
\end{pmatrix}$$
(2.4.2.9)

$$\xrightarrow{R_1 \leftarrow R_1 - R_3} \begin{pmatrix} 1 & 0 & 0 & b - c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & a - 2b + c \end{pmatrix}$$
(2.4.2.10)

 \therefore The coordinates of α w.r.t **B** is

$$[\alpha]_{\mathbf{B}} = \begin{pmatrix} b - c \\ b \\ a - 2b + c \end{pmatrix} \tag{2.4.2.11}$$

(2.4.2.1) 2.4.3. Let **W** be the subspace of \mathbb{C}^3 spanned by $\alpha_1 = (1)$

$$\begin{pmatrix} 1 \\ 0 \\ i \end{pmatrix} \text{ and } \alpha_2 = \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix}.$$

a) Show that α_1 and α_2 form a basis for **W**.

(2.4.3.12)

- b) Show that the vectors $\beta_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ and $\beta_2 = \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix}$ are in **W** and form another basis for **W**
- c) What are the coordinates of α_1 and α_2 in the ordered basis $\{\beta_1, \beta_2\}$ for **W**.

Solution:

a) It is given that α_1 and α_2 span **W**. For α_1 and α_2 to be the basis for **W** they must be linearly independent. Let

$$S_1 = \{\alpha_1, \alpha_2\} = \left\{ \begin{pmatrix} 1\\0\\i \end{pmatrix}, \begin{pmatrix} 1+i\\1\\-1 \end{pmatrix} \right\} \quad (2.4.3.1)$$

Using row reduction on matrix $\mathbf{A} = \begin{pmatrix} \alpha_1 & \alpha_2 \end{pmatrix}$

$$\begin{pmatrix}
1 & 1+i \\
0 & 1 \\
i & -1
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 - iR_1}
\begin{pmatrix}
1 & 1+i \\
0 & 1 \\
0 & -i
\end{pmatrix}$$

$$(2.4.3.2)$$

$$\xrightarrow{R_3 \leftarrow R_3 + iR_2}
\begin{pmatrix}
1 & 1+i \\
0 & 1 \\
0 & 0
\end{pmatrix}$$

$$(2.4.3.3)$$

$$\xrightarrow{R_1 \leftarrow R_1 - (i+1)R_2}
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{pmatrix}$$

$$(2.4.3.4)$$

Since **A** is a full-rank matrix the column vectors are linearly independent. Therefore $S_1 = \{\alpha_1, \alpha_2\}$ is a basis set for **W**.

b)

$$\beta_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \tag{2.4.3.5}$$

$$\beta_2 = \begin{pmatrix} 1 \\ i \\ 1+i \end{pmatrix} \tag{2.4.3.6}$$

Since column vectors of $\mathbf{A} = \begin{pmatrix} \alpha_1 & \alpha_2 \end{pmatrix}$ are basis for \mathbf{W} and if β_1 and $\beta_2 \in \mathbf{W}$ there exist a unique solution \mathbf{x} such that

$$(\alpha_1 \quad \alpha_2) \mathbf{x} = (\beta_1 \quad \beta_2) \tag{2.4.3.7}$$

Using row reduction on augmented matrix

$$\begin{pmatrix} 1 & 1+i & | & 1 & 1 \\ 0 & 1 & | & 1 & i \\ i & -1 & | & 0 & 1+i \end{pmatrix} (2.4.3.8)$$

$$\stackrel{R3 \leftarrow R_3 - iR - 1}{\longleftrightarrow} \begin{pmatrix} 1 & 1+i & | & 1 & 1 \\ 0 & 1 & | & 1 & i \\ 0 & -i & | & -i & 1 \end{pmatrix} (2.4.3.9)$$

$$\stackrel{R_3 \leftarrow R_3 + iR_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1+i & | & 1 & 1 \\ 0 & 1 & | & 1 & i \\ 0 & 0 & | & 0 & 0 \end{pmatrix}$$

$$\stackrel{(2.4.3.10)}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & | & -i & 2-i \\ 0 & 1 & | & 1 & i \\ 0 & 0 & | & 0 & 0 \end{pmatrix}$$

$$\stackrel{(2.4.3.11)}{\longleftrightarrow} \Rightarrow \mathbf{x} = \begin{pmatrix} -i & 2-i \\ 1 & i \end{pmatrix}$$

Therefore β_1 and $\beta_2 \in \mathbf{W}$. Consider

$$S_2 = \{\beta_1, \beta_2\} = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\i\\1+i \end{pmatrix} \right\} \quad (2.4.3.13)$$

and also let

$$\mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & i \\ 0 & 1+i \end{pmatrix} \tag{2.4.3.14}$$

Using row reduction on matrix B

$$\begin{pmatrix}
1 & 1 \\
1 & i \\
0 & 1+i
\end{pmatrix}
\xrightarrow{R_2 \leftarrow R_2 - R_1}
\begin{pmatrix}
1 & 1 \\
0 & i-1 \\
0 & 1+i
\end{pmatrix}
(2.4.3.15)$$

$$\xrightarrow{R_2 \leftarrow \frac{R_2}{i-1}}
\begin{pmatrix}
1 & 1 \\
0 & 1+i
\end{pmatrix}
(2.4.3.16)$$

$$\xrightarrow{R_1 \leftarrow R_1 - R_2}
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
0 & 0
\end{pmatrix}
(2.4.3.17)$$

Since **B** is a full rank matrix the column vectors are linearly independent.

Let α be any vector in the subspace **W**, then it can be expressed as span $\{\alpha_1, \alpha_2\}$ i.e

$$\alpha = (\alpha_1 \quad \alpha_2) \mathbf{x_1} = \mathbf{A} \mathbf{x_1} \tag{2.4.3.18}$$

 $S_2 = \{\beta_1, \beta_2\}$ spans **W** if any vector $\alpha \in \mathbf{W}$

can be expressed as

$$\alpha = (\beta_1, \beta_2) \mathbf{x_2} = \mathbf{B} \mathbf{x_2} \tag{2.4.3.19}$$

From (2.4.3.18) and (2.4.3.19) we conclude

$$\mathbf{B}\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1$$
 (2.4.3.20)

$$\mathbf{B}\mathbf{x}_2 = \mathbf{A}\mathbf{x}_1$$
 (2.4.3.20)
 $\implies \mathbf{x}_2 = \mathbf{B}^{-1}\mathbf{A}\mathbf{x}_1$ (2.4.3.21)

Therefore from (2.4.3.21) $\mathbf{x_2}$ exists if **B** is invertible. From (2.4.3.17) we conclude x_2 exists and hence any vector $\alpha \in \mathbf{W}$ can be expressed as span $\{\beta_1, \beta_2\}$. Therefore $\{\beta_1, \beta_2\}$ is basis for W.

c) Since $\alpha_1, \alpha_2 \in \mathbf{W}$ and $\{\beta_1, \beta_2\}$ are ordered basis for W there must exist unique value of x such that

$$(\beta_1 \quad \beta_2) \mathbf{x} = (\alpha_1 \quad \alpha_2)$$
 (2.4.3.22)

Using row reduction on (2.4.3.22) we get,

$$\begin{pmatrix} 1 & 1 & | & 1 & 1+i \\ 1 & i & | & 0 & 1 \\ 0 & 1+i & | & i & -1 \end{pmatrix}$$

$$(2.4.3.23)$$

$$\stackrel{R_2 \leftarrow R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & | & 1 & 1+i \\ 0 & i-1 & | & -1 & -i \\ 0 & 1+i & | & i & -1 \end{pmatrix}$$

$$(2.4.3.24)$$

$$\stackrel{R_2 \leftarrow \frac{R_2}{i-1}}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & | & 1 & 1+i \\ 0 & 1 & | & \frac{1+i}{2} & \frac{-1+i}{2} \\ 0 & 1+i & | & i & -1 \end{pmatrix}$$

$$(2.4.3.25)$$

$$\stackrel{R_3 \leftarrow R_3 - (i+1)R_2}{\longleftrightarrow} \begin{pmatrix} 1 & 1 & | & 1 & 1+i \\ 0 & 1 & | & \frac{1+i}{2} & \frac{-1+i}{2} \\ 0 & 0 & | & 0 & 0 \end{pmatrix}$$

$$(2.4.3.26)$$

$$\stackrel{R_1 \leftarrow R_2 - R_1}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & | & \frac{1-i}{2} & \frac{3+i}{2} \\ 0 & 1 & | & \frac{1+i}{2} & \frac{-1+i}{2} \\ 0 & 0 & | & 0 & 0 \end{pmatrix}$$

$$(2.4.3.27)$$

$$\Longrightarrow \mathbf{x} = \frac{1}{2} \begin{pmatrix} 1-i & 3+i \\ 1+i & -1+i \end{pmatrix}$$

$$(2.4.3.28)$$

Thus the column vectors of (2.4.3.28) are corresponding coordinates of α_1 and α_2 in ordered basis $\{\beta_1, \beta_2\}$.