

03/25/99
JC542 U.S. PTO

Please type a plus sign (+) inside this box → +

PTO/SB/05 (2/98)
Approved for use through 09/30/00. OMB 0651-0032

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

A

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No.	081862.P123
First Inventor or Application Identifier	Henry Fourie
Title	Call Record Management for High Capacity Switched Virtual Circuits
Express Mail Label No.	EM560888573US

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents

1. Fee Transmittal Form
(Submit an original, and a duplicate for fee processing)
2. Specification Total Pages 24
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (if filed)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
3. Drawing(s) (35 CFR 113) Total Sheets 5
4. Oath or Declaration Total Pages
- a. Newly executed (original copy)
- b. Copy from a prior application (37 CFR 1.63(d))
(for continuation/divisional with Box 16 completed)
[Note Box 5 below]
- i. DELETION OF INVENTOR(S)
Signed statement attached deleting
inventor(s) named in the prior application,
see 37 CFR 1.63(d)(2) and 1.33(b).

*NOTE FOR ITEMS 1 & 13: IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R. § 1.28).

ADDRESS TO:
Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

5. Microfiche Computer Program (Appendix)
6. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)
 - a. Computer Readable Copy
 - b. Paper Copy (identical to computer copy)
 - c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

7. Assignment Papers (cover sheet & document(s))
8. 37 CFR 3.73(b) Statement Power of Attorney
(when there is an assignee)
9. English Translation Document (if applicable)
10. Information Disclosure Statement (IDS)/PTO - 1449 Copies of IDS Citations
11. Preliminary Amendment
12. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)
13. Small Entity Statement(s) Status still proper and desired
14. Certified Copy of Priority Document(s)
(if foreign priority is claimed)
15. Other:

16. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:

Continuation Divisional Continuation-in-part (CIP) of prior application No: _____ / _____

Prior application Information: Examiner _____

Group/Art Unit: _____

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

Customer Number of Bar Code Label (Insert Customer No. or Attach bare code label here) or Correspondence address below

Name	BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN LLP				
Address	12400 Wilshire Boulevard, Seventh Floor				
City	Los Angeles	State	California	Zip Code	90025
Country	U.S.A.	Telephone	(310) 207-3800	Fax	(310) 820-5988

Name (Print/Type) Anand Sethuraman, Reg. No. 43,351

Signature

Date 3/25/99

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

TO
JC542 U.S. PTO
09/27/6248

03/25/99

Attorney's Docket No. 081862.P123
Cisco Disclosure Number T025-WANBU
Express Mail No. EM560888573US

UNITED STATES PATENT APPLICATION

FOR

**CALL RECORD MANAGEMENT FOR HIGH CAPACITY SWITCHED VIRTUAL
CIRCUITS**

Inventors:

Henry Fourie
Snehal Karia

Prepared by:

BLAKELY, SOKOLOFF, TAYLOR & ZAFMAN LLP
12400 Wilshire Boulevard, Seventh Floor
Los Angeles, California 90025-1026
(310) 207-3800

CALL RECORD MANAGEMENT FOR HIGH
CAPACITY SWITCHED VIRTUAL CIRCUITS

FIELD OF THE INVENTION

The invention relates generally to communications and
5 networking. More specifically, the invention relates to the
usage of resources in networking devices.

BACKGROUND OF THE INVENTION

In connection-oriented networking schemes such as ATM
(Asynchronous Transfer Mode), connections or "calls" must be
10 established between one information device such as a computer
system or router and another. This call or connection is
sometimes referred to as a "virtual circuit" (VC) particularly
where a specified data pipe is artificially, through software,
segmented into separate data-pathways, each pathway servicing
15 a particular VC. Often a switch acts as an intermediary to
direct one or more of these VCs through a particular network
node, and thus these calls are collectively referred to as
SVCs (Switched Virtual Circuits).

Figure 1 shows an exemplary wide-area networking system
20 serviced by ATM. A wide-area network (WAN) link 120
interconnects a first network 100 with a second network 110.
Each network has a plurality of nodes that may each contain
switching devices that regulate data traffic to one or more
user terminals. Network 100 is shown having nodes 102, 103,

104, 106, and 108, while network 110 is shown having nodes
112, 114, 116, and 118. A first user terminal 105 is
connected to node 102 of network 100 while a second user
terminal 115 is connected to node 118 of network 110. In
5 order for user terminal 105 and user terminal 115 to
communicate with one another, a call must first be established
between them. This call may be switched through a plurality
of nodes. One possible route for sending data from user
terminal 105 to user terminal 115 is for data to go from node
10 102 to node 106 to node 108 and then across the WAN link to
node 112 and node 118 finally reaching user terminal 115.
Each node has a controller device (SVC controller) and switch
which facilitates the calls through its node. The SVC
controller has processing, memory and other resources to
15 interpret, forward and process messages and initiate other
messages as appropriate, while the switch ordinarily handles
the physical routing of messages among nodes and user
terminals.

Similar to PSTN (Public Switched Telephone Network)
20 communications such as telephone calls, the period of SVC call
operation for a given call can be split into three distinct
phases—establishment (setup), active (data transfer), and
disconnect (hang-up). Once a call is established, for
example, between user terminal 105 and user terminal 115

across a specified path, a virtual circuit will have been
created and the call can proceed into the active phase where
data is transferred. Once the data transfer is complete, the
call can be disconnected, which will release the virtual
5 circuit. State, signaling, and other information for each
call that passes through a network node is memorialized in a
"call record" stored in the that node whether that node is the
source, an intermediary, or destination node. The call record
is updated whenever a change in state or activity in the call
10 is indicated. The call record may be used for functions such
as billing, tracing, routing, etc.

Ordinarily the creation, storage, updating and retrieval
either in whole or part by the SVC controller device within
the node. The capacity (number of supportable connections or
15 calls) of the switching device connected to the SVC controller
dictates the resources needed for call record handling at the
SVC controller. Recently switches such as carrier-class ATM
backbone switches have been developed to handle in the hundred
thousands to millions of connections, thus forcing SVC
20 controllers to be designed to scale-up accordingly. For
instance, if a call record is 1 KiloByte, then 1,000,000 call
records would require a controller memory/storage capacity of
1 GigaByte. Such a demand for memory on an SVC leads to

increased costs in new SVCs and upgrade difficulty if existing SVCs are used with high-capacity switches.

This expense and difficulty is increased substantially because of an industry standard that demands a service availability of 99.999%. A switching node must have a service outage of no more than 3 minutes per year. To prevent against power failure/system reset, the memory used must be non-volatile (or a redundant controller unit should be hot-standby available) and further, must be protected by a Memory Management Unit (MMU) to prevent wild pointer writes and other memory failures/errors. MMU-protected memory is expensive. If a standby controller is used with a volatile memory, the bandwidth required to transfer call records from the active controller to the standby controller can be prohibitive. In either case, whether using expensive non-volatile memory or using a redundant standby controller, the providing of resources becomes critical to cost and design.

SUMMARY OF THE INVENTION

What is disclosed is a method of managing resources in a network controller connecting to a plurality of interfaces comprising recognizing a transition in the phase of a call 5 transported through the controller, and the size of the call record of said call in accordance with the type of phase transition recognized.

Other objects, features, and advantages of the present invention will be apparent from the accompanying drawings and 10 from the detailed description that follows below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicated similar elements and in
5 which:

Figure 1 illustrates a prior art exemplary networking topology.

Figure 2 illustrates the operation of a connection-oriented network point-to-point call with call record
10 management.

Figure 3 illustrates the operation of a connection-oriented network point-to-multi-point call with call record management.

Figure 4 illustrates a methodology for tracking the
15 aggregate number of calls in the establishment.

Figure 5 is a diagram of a system that can use call record management.

DETAILED DESCRIPTION

A resource management strategy is described for a network controller device such as an SVC (Switched Virtual Circuit) controller that interprets and processes call messages
5 transported in a connection-oriented network by means of high-capacity switching devices. As will be described in greater detail below, the call record of given call is compressed or expanded depending upon the transition in phase that a call is undergoing, if any. The strategy is applicable to both point-to-point and point-to-multi-point calls
10

Figure 2 illustrates the operation of a connection-oriented network point-to-point call with call record management.

A "point-to-point" call is a call between two and only
15 parties, and has three phases-establishment, active and release. For a given point-to-point call, before the call is established, the call is said to be in an idle state 200. The establishment phase 210 begins with the receipt of a Call Setup message at a particular node. The establishment phase
20 also commences the formation of a new call record for that call as it passes that particular node. Thus, a call that has to traverse through five nodes before being connected would have five call records associated with it, one at the controller of each node. When a call is connected

(established) successfully, then that call is in the active phase 220. As such, the call is no longer "in progress," but rather has been fully established. If a call is unable to connect, then the call transitions directly back to idle state 5 200 from establishment phase 210. For example a destination busy signal would end the establishment phase 210 and, thus trigger the idle state before the call reaches the active phase. In this instance, the call record is fully discarded.

If a call is in the active phase 220, the transfer of 10 user data (rather than just control/signaling data) can occur until a release (hang-up) is completed. When the call transitions from the establishment phase 210 to the active phase 220, the call record at each node that the call has passed through is updated in selected fields. Certain other 15 fields, which the call record needed to preserve during establishment phase 210, are not needed during the active phase. According to an embodiment of the invention, the call record is compressed by discarding such information when a call reaches the active phase.

20 When a call completes its data transfer or is disconnected prematurely by accident or design, the active phase 220 is terminated and the call transitions to a release phase 230. The release phase 230 must be completed before the call is considered to be in the idle state 200 and ordinarily

this requires the call record to be expanded to include certain release phase information. According to one embodiment of the invention, the compressed call records from the active phase can be expanded and re-created as release 5 phase records capable of completing the release process. When the release phase 230 is completed, the call record is discarded.

10 **Figure 3** illustrates the operation of a connection-oriented network point-to-multi-point call with call record management.

In a "point-to-multi-point" call, two or more parties are connected together in the same active session. The point-to-multi-point call will have the ability to add or drop new parties as desired, in addition to the two parties 15 participating in the initial call establishment ("call initiating parties"). During the active phase, no additional parties are being added or dropped from the call.

For a given point-to-multi-point call, before a call is established, the call is said to be in an idle state 300. The 20 establishment phase 310 begins with the receipt of a Call Setup message at a particular node. The establishment phase also commences the formation of a new call record for that call as it passes that particular node. Thus, a call that has to traverse through five nodes before being connected would

have five call records associated with it, one at the controller of each node. When a call is connected (established) successfully, then that call is first in the active phase 320. As such, the call is no longer "in progress," but rather has been fully established. If a call is unable to connect, then the call transitions directly back to idle state 300 from establishment phase 310. For example a destination busy signal would end the establishment phase 310 and, thus trigger the idle state before the call reaches the active phase. In this instance, the call record is fully discarded.

If a call is in the active phase 320, the transfer of user data (rather than just control/signaling data) can occur until a release (hang-up) is completed. When the call transitions from the establishment phase 310 to the active phase 320, the call record at each node that the call has passed through is updated in selected fields. Certain other fields, which the call record needed to preserve during establishment phase 310, may not needed during the active phase. According to the invention, the call record is compressed by discarding such information when a call reaches the active phase.

In many regards, the active phase for a point-to-multipoint call is similar to the active phase for a point-to-point

081862.P123

call. However, unlike a point-to-point call, a point-to-multi-point call is capable of adding (and subsequently dropping) additional parties to the connection. **Figure 3** illustrates this capability by a special intermediary state, 5 the "Add/Drop Party" state 325. When a new party is being added to the call, it is similar to a call establishment. Thus, as shown in **Figure 3**, the compressed active phase call record must be temporarily expanded when the add party procedure is initiated. When the add party procedure is completed, the call returns to the active phase, and the call record can again be compressed. A drop party procedure is similar to a call release. Thus, as shown in **Figure 3**, the compressed active phase call record must be temporarily expanded when the add party procedure is initiated. When the drop party procedure is completed, the call returns to the active phase, and the call record can again be compressed. In 10 15 the Add/Drop Party state 325, the call record is expanded to include, as appropriate, information relevant to either an add or drop party proceeding.

20 The add party situation does not result in the creation of an entirely new call record, but adds to the existing call record. Once the add party is complete, the added party is "active" and thus, the call record can again be compressed. Likewise, when an added party is being dropped, the call

record is first expanded and after the completion of the drop party, the call record is once again compressed. A compressed call record after the completion of an add party will have more information than that of a compressed call record after
5 the completion of a drop party.

When the call completes its data transfer or disconnected prematurely by accident or design, the active phase 320 is terminated and the call transitions to a release phase 330. The release phase 330 must be completed before the call is
10 considered to be in the idle state 300 and ordinarily, this requires the call record to be expanded to include certain release phase information. According to one embodiment of the invention, the compressed call records from the active phase can be expanded and re-created as release phase records
15 capable of completing the release process. When the release phase 330 is completed the call record is discarded completely.

Figure 4 illustrates fields in an exemplary call record.

A typical call record 400 is composed of fields that
20 store particular information about a call. A unique call ID field 410 identifies a call uniquely from any other call on the node. Field 410 is critical for accessing the proper call record for a given call, and thus is maintained throughout all call phases. Also, a field 420 containing information for a

status inquiry which indicates the current state of the call (i.e., whether it is being established, already connected and so on). Field established 430 includes traffic and quality of service parameters which define the traffic flow when the call
5 is established. Field 440 includes addressing and routing information in order to trace the path of the call for diagnosis, or to identify where in the network a message for that should be forwarded. A field 450 contains call accounting information, such as the call length or time/date
10 the call was established. Field 460 contains timer information used to determine if a time-out situation has occurred. Field 470 contains retry counters to determine how many times a call set-up retry should be attempted. Field 490 contains pointers to setup messages that are being processed
15 or forwarded by the controller.

According to one embodiment of the invention, fields 460, 470, and 490 may be discarded as soon as a call enters the active phase. The completion of the establishment phase eliminates the need for the information in those fields. By
20 freeing the allocated memory for those fields (rather than merely clearing the fields to null values) extra memory may be made available for other call record storage or other systemic use. By compressing these fields, the call record is compressed. Point-to-point and point-to-multi-point have

similar call record structures, with the exception of fields related to added parties dynamically created in the point-to-multi-point call. Such fields include pointers to mini-call records ("child" records of a "root" such as call record 400),

5 which can be added and discarded as a party is added or dropped. When call records are expanded, memory is allocated for fields that are needed for the phase sought to be completed.

Figure 5 is a diagram of a system that can use call
10 record management.

A network node in a connection-oriented network, such as the nodes shown in **Figure 1**, incorporates at least two elements--an active SVC controller 500 and a switch device 510. Such a node may also include a standby SVC controller
15 520 that takes substitute control of the system when active controller 500 fails to operate as expected. Switch 510 connects to active controller 500 over a number of bi-directional interfaces which pass through switch 510 connecting to either other nodes on the network or to user
20 terminals under the purview of the node in which the switch 510 and controller 500 function. Controller 500 accepts messages over these interfaces which belong to calls that pass through the node. These messages are interpreted and processed by a message processing system 507, which may itself

incorporate processors, buffers, protocol stacks and signaling mechanisms, which then initiates action based on the content and directives, if any, contained therein. For instance, when a call setup is successfully processed, a new call record may

5 be created in a call record memory 505 (which may be physically distinct or coalesced with other memories in controller 500 or external to the controller itself (not pictured)). Call record memory 505 is illustrated as containing N call records but this number may be increased as

10 further call setup messages are encountered. Each call record, according to one or more embodiments of the invention, is either in compressed or expanded form, depending upon the phase which the call is entering (or exiting). For instance, when a message indicating a call connect is processed by

15 message processing system 507, controller 500 will compress the call record indicated in the call connect message (by its unique call ID) by removing fields pertinent only to the establishment phase. Likewise, when a disconnect message is processed, the call record is expanded by controller 500 to

20 include release phase related fields. Further, call records can dynamically point to other data structures that store information regarding added or dropped parties in a point-to-multi-point call. As a result of compressing call records and expanding them only as needed, the average size of a call

record during its lifetime can be reduced, and thus, the amount of memory restricted for call records can be minimized. Further, in node where a standby controller 520 is used, as in **Figure 5**, the amount of bandwidth needed to transfer over call 5 records in the event of a failure would be lower and have the intended advantage of making the process of transferring such records less time consuming, thus allowing the standby controller 520 to go active more rapidly.

In the foregoing specification, the invention has been 10 described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and 15 drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

CLAIMS:

What is claimed is:

1 1. A method of managing resources in a network
2 controller connecting to a plurality of interfaces comprising:
3 recognizing a transition in the phase of a call
4 transported through said controller; and
5 modifying the size of the call record of said call in
6 accordance with the type of phase transition recognized.

1 2. A method according to claim 1, wherein recognizing
2 includes:
3 receiving a call message for said call; and
4 processing said call message, said call message
5 potentially indicating said phase transition.

1 3. A method according to claim 2, wherein said call is
2 a point-to-point call.

1 4. A method according to claim 3, wherein said phase is
2 one of idle, establishment, active and release phases.

1 5. A method according to claim 4, wherein modifying
2 includes:

3 discarding said call record if said transition is to the
4 idle phase.

1 6. A method according to claim 4, wherein modifying
2 includes:

3 compressing said call record by removing establishment
4 phase related fields if said transition is from the
5 establishment phase to the active phase.

1 7. A method according to claim 6, wherein modifying
2 includes:

3 expanding said compressed call record by adding release
4 phase related fields if said transition is from the active
5 phase to the release phase.

1 8. A method according to claim 6 comprising:
2 completing the release of said call using said compressed
3 call record if said transition is from the active phase to the
4 release phase.

1 9. A method according to claim 2, wherein said call is
2 a point-to-multi-point call.

1 10. A method according to claim 9, wherein said phase is
2 one of idle, establishment, active, add party, drop party and
3 release phases.

1 11. A method according to claim 10, wherein modifying
2 includes:

3 discarding said call record if said transition is to the
4 idle phase.

1 12. A method according to claim 10, wherein modifying
2 includes:

3 compressing said call record by removing establishment
4 phase related fields if said transition is from the
5 establishment phase to the active phase.

1 13. A method according to claim 12, wherein modifying
2 includes:

3 expanding said compressed call record by adding release
4 phase related fields if said transition is from the active
5 phase to the release phase.

1 14. A method according to claim 12 comprising:
2 completing the release of said call using said compressed
3 call record if said transition is from the active phase to the
4 release phase.

1 15. A method according to claim 12, wherein modifying
2 includes:

3 expanding said compressed call record by adding add party
4 phase related fields if said transition is from the active
5 phase to the add party phase.

1 16. A method according to claim 15, wherein modifying
2 includes:

3 compressing said expanded call record by removing add
4 party phase related fields if said transition is from the add
5 party phase to the active phase.

1 17. A method according to claim 12, wherein modifying
2 includes:

3 expanding said compressed call record by adding drop
4 party phase related fields if said transition is from the
5 active phase to the drop party phase.

1 18. A method according to claim 17, wherein modifying
2 includes:

3 compressing said expanded call record by removing drop
4 party phase related fields if said transition is from the drop
5 party phase to the active phase.

1 19. A method according to claim 1, wherein said
2 interfaces define physical connections between the node in
3 which said controller resides and other nodes connected said
4 node in which said controller resides and define physical
5 connections between the node in which said controller resides
6 and user terminals belonging to said node in which said
7 controller resides.

1 20. A system including a network switching controller
2 capable of supporting a plurality of interfaces, said
3 apparatus comprising:

4 a processor adapted to process call messages received on
5 said interfaces, and adapted to recognize said call's phase
6 transition; and

7 a memory coupled to said processor, said processor
8 modifying the size of the call record of said call as stored

9 in said memory in accordance with the type of phase transition
10 recognized.

1 21. An article comprising a computer readable medium
2 having instructions which when executed manages resources in a
3 network controller connecting a plurality of interfaces, said
4 instructions when executed causing:

5 recognizing a transition in the phase of a call
6 transported through said controller; and

7 modifying the size of the call record of said call in
8 accordance with the type of phase transition recognized.

1 22. An apparatus for managing resources in a network
2 controller having a plurality of interfaces comprising:
3 means for recognizing a transition in the phase of a call
4 transported through said controller; and
5 means for modifying the size of the call record of said
6 call in accordance with the type of phase transition
7 recognized.

ABSTRACT

A resource management strategy for a network controller device such as an SVC (Switched Virtual Circuit) controller that interprets and processes call messages transported in a connection-oriented network by means of high-capacity switching devices. The call record of given call is compressed or expanded depending upon the transition in phase that a call is undergoing, if any. The strategy is applicable to both point-to-point and point-to-multi-point calls.

卷之三

**Fig. 1
(Prior Art)**

Fig. 2

POINT-TO-MULTI-POINT CALL

Fig. 3

Fig. 4

Fig. 5