

DATA SCIENCE IN CAR INSURANCE

Supervised by

Mr Barkeoui Ahmed

Mme Mosbah Sonia

Mme Trabelsi Dorra

Elaborated by

Barkallah Ahmed

Jebari Aziz

Mbarki Mohamed Amine

Mlaouhi Yahya

Mnif Noura

Omri Marwen

2020-2021

TABLE OF CONTENTS

INT	TRODUCTION	6
1.	CRISP DM	6
Bus	siness understanding	8
1.	CGA	8
2.	Business objectives	8
3.	Data Science objectives	9
Dat	ta analysis	10
1.	Internal data	10
2.	external data	11
a)	web scrapping	11
b)	Forms	13
Dat	ta preparation	14
1.	Internal data	14
a)	DATA WAREHOUSE	14
b)	FUSION	14
c)	Data cleaning	17
d)	Encoding	21
2.	External data	22
Dat	ta modelling	23
l.	Internal data	23
1.	Naïve Bayes	23
a)	Building the model	23
b)	Evaluation	23
2.	KNN	24
a)	Building the model	24
b)	Evaluation	24
3.	Multi Layer Perceptron (MLP)	25
a)	Building the model :	26
b)	Evaluation	26
4.	Decision Tree	26
a)	Building the model :	27
b)	Evaluation	27
5.	Random Forest	27
a)	Building the model	27

b)	Evaluation	28
6.	SVM	28
a)	Building the model	28
b)	Evaluation	29
7.	Logistic regression	29
a)	Building the model	29
b)	Evaluation	29
8.	Multi class classification	30
a)	Building the model	30
b)	Evaluation	31
II.	External data	
1.	K-means	31
a)	Building the model	32
b)	Evaluation	32
Dep	oloyment	33
Cor	nclusion	36

TABLE OF FIGURES

FIGURE 1 MACHIE LEARNING	6
FIGURE 2 CRISP DM	7
FIGURE 3 LOGO CGA	8
FIGURE 4 CGA TABLES	10
FIGURE 5 SELENUIM LOGO	11
FIGURE 6 REVIEWS ABOUT THE BEST INSURANCE IN TUNISIA	11
FIGURE 7 PARSE HUB LOGO	12
FIGURE 8 RATING THE CAR INSURANCE	12
FIGURE 9 CAR INSURANCE COVERAGE	13
FIGURE 10 VEHICLE USAGE	13
FIGURE 11 REASON OF SWITCHING COMPANY	13
FIGURE 12 SWITCH INSURER	13
FIGURE 13 DATA WAREHOUSE	14
FIGURE 14 MERGE POLICE.CSV AND POLICE_CGA INTO PP	15
FIGURE 15 MERGE SINISTRE.CSV AND SINISTRE_CGA INTO SS	15
FIGURE 16 MERGE VEHICLE.CSV AND VEHICLE_CGA INTO VV	15
FIGURE 17CREATING BMV	16
FIGURE 18 CREATING FAIT_BM	16
FIGURE 19 CREATING SSVV	16
FIGURE 20 CREATING FAIT_SINISTRE	17
FIGURE 21 DROP ALL THE UNNECESSARY DATA FROM BM_FAIT	17
FIGURE 22 DROP ALL THE UNNECESSARY DATA FROM SINISTRE_FAIT	17
FIGURE 23 FILL MISSING VALUES IN ENERGY BY UNKNOWN	18
FIGURE 24 FILL MISSING VALUES IN TYPE INTERMEDIARE BY 1 OR 2 OR 3	18
FIGURE 25 DELETE ALL CLIENTS WHO HAVE A POLICY EQUAL TO NULL	18
FIGURE 26ADDING A NEW COLUMN NAMED NUM_ACCIDENTS	18
FIGURE 27 CLEANED DATA	20
FIGURE 28 EXTRACT THE CLIENT WHO HAD MADE ACCIDENTS	20
FIGURE 29 CORRELATION OF PEARSON	21
FIGURE 30 ENCODING USING LABEL ENCODER	21
FIGURE 31 ENCODING USING GET DUMMIES	21
FIGURE 32 TRANSFORM THE COLUMN OF RATING TO FLOAT:	21
FIGURE 33 INSURANCE VOTE	22

FIGURE 34 EXAMPLE OF NAIVE BAYES	23
FIGURE 35 MODEL OF NAIVE BAYAS	23
FIGURE 36 ACCURACY OF THE MODEL	23
FIGURE 37 EXAMPLE OF KNN	24
FIGURE 38 MODEL OF KNN	24
FIGURE 39 ACCURACY OF THE MODEL	24
FIGURE 40 ACCURACY FOR EACH CLIENT	25
FIGURE 41 EXAMPLE OF MLP	25
FIGURE 42 MODEL OF MLP	25
FIGURE 43 ACCURACY OF MLP	26
FIGURE 44 EXAMPLE OF DECISION TREE	26
FIGURE 45MODEL OF DECISION TREE	27
FIGURE 46ACCURACY OF DECISION TREE	27
FIGURE 47EXAMPLE OF RANDOM FOREST	27
FIGURE 48MODEL OF RANDOM FOREST	28
FIGURE 49ACCURACY OF RANDOM FOREST	28
FIGURE 50 EXAMPLE OF SVM	28
FIGURE 51 MODEL OF SVM	28
FIGURE 52 ACCURACY OF SVM	29
FIGURE 53 EXAMPLE OF LOGISTIC REGRESSION	29
FIGURE 54 MODEL OF LOGISTIC REGRESSION	29
FIGURE 55 ACCURACY OF LOGISTIC REGRESSION	30
FIGURE 56 EXAMPLE OF MULTI CLASS	30
FIGURE 57 MODEL OF MULTI CLASS	30
FIGURE 58 DROPOUT LAYERS AND A REGULARIZES	31
FIGURE 59 ACCURACY OF MULTI CLASS	31
FIGURE 60 K-MEANS EXAMPLE	31
FIGURE 61 MODEL OF K-MEANS	32
FIGURE 62 2CLUSTERS	32
FIGURE 63 ACCURACY OF K-MEANS	32
FIGURE 64 LOGIN INTERFACE	33
FIGURE 65 DARK MODE	33
FIGURE 66 DASHBOARD CLIENT PER USAGE	34
FIGURE 67 DASHBOARD SATISFACTION OF INSURANCE COMPANIES	34
FIGURE 68 BONUS-MALUS PREDICTION INTERFACE	35
FIGURE 69 FRAUD DETECTION	35

INTRODUCTION

"A baby learns to crawl, walk and then run. We are in the crawling stage when it comes to applying machine learning." ~Dave Waters

FIGURE 1 MACHIE LEARNING

Machine learning is becoming more and more essential in various industries, given its many applications such as predicting values and classifying data

For this end of year project, the CGA (Comité Général des assurances) tasked fourth year data science students with programming an online interface to assist its agents in decision making and providing them with easy to understand dashboards

1. CRISP DM

CRISP-DM stands for cross-industry process for data mining. The CRISP-DM methodology provides a structured approach to planning a data science project. It is a robust and well-proven methodology. It has also proven to be practically powerful, flexible as well as being useful when using analytics to solve thorny business issues. It is the golden thread than runs through almost every client engagement.

CRISP-DM breaks the process of data science into six major phases:

- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment

FIGURE 2 CRISP DM

The sequence of the phases is not strict and moving back and forth between different phases as it is always required. The arrows in the process diagram indicate the most important and frequent dependencies between phases. The outer circle symbolizes the cyclic nature of a data science project itself. A data science process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions.

FIGURE 3 LOGO CGA

1. CGA

The "Comité Général des Assurances" ensures the protection of the rights of policyholders and beneficiaries of insurance contracts and the soundness of the financial base of insurance companies and their ability to honor their commitments.

Within the missions assigned to it, the committee is in charge of:

- The supervision of insurance companies and professions related to the insurance sector and the monitoring of their activities.
- The study of legislative, regulatory and organizational issues relating to insurance and reinsurance operations and insurance companies submitted to it by the ministry of Finance.
- The study of technical and economic inquiries relating to the development of the insurance sector and its organization and the presentation of proposals to this effect to the ministry of Finance,
- And in general, to study and give its opinion on any other question falling within its attributions.

2. Business objectives

Understanding the end goal of the business is the first step to create a reliable prediction model, for the insurance field, these goals are:

Profit maximization

From the insurer's point of view, the goal of an insurance company is to maximize profit.

Bonus Malus prediction

One of the important aspect is the bonus-malus index (BM) which is given to a client when they start an insurance policy, most of the company's financial loss comes from attributing the default Index to a client that is prone to making accidents

Fraud detection

Another cause of financial loss are fraudulent claims, which take considerable time to be reviewed.

3. Data Science objectives

After translating the previously mentioned goals to fit the technical aspect of the project, these are the data science goals:

• Reducing Human Error

Our application will manage to execute human tasks automatically with no errors through machine learning algorithms.

Data Collection

Centralize the data from various insurance companies into one global database: Before this was implemented, data was scattered across various insurance companies, this made it easier for clients to transfer from one agency to another without their record carrying over, thus resetting their bonus malus index.

Data Update

Update client information using our stored data simultaneously with every occurring change.

Dashboarding

Create a user interface providing the agents and clients with various statistics concerning insurance policies and claims.

Data analysis

1. Internal data

After identifying the goals of the project, the next step is to acquire the necessary data. This task has already been done by the CGA, which has collected and separated the data into various tables, the database provided consists of

ClassesBonusMalus

The main table for predicting the BM index, it contains said index for each client, along with various info such as the car id and policy type

Police

Contains every policy that is registered by the CGA, its type, nature, the owner of said policy, etc...

Sinistres

Accidents processed by the CGA are stored here, the tables plays an important role in identifying certain types of fraud

Véhicule

Insured automobiles are stored here, along with their corresponding usage, brand, fuel type and date of registration

Assure & Souscripteur

Id of the insured and ID of the underwriter exist in these tables respectively

Compagnies & MarqueVehicule & UsageVehicule

These tables contain a literal description of the corresponding ID value

UsageVehicule

Literal description for abbreviations used in the other tables

2. external data

a) web scrapping

> Selenium

FIGURE 5 SELENIUM LOGO

As for our external data, we managed to gather some information through web scrapping using selenium, from a website called "lemeilleur.tn". The information gathered reflects people's reviews about the best automobile insurance company in Tunisia.

Quelle est la meilleure société d'assurance en Tunisie

FIGURE 6 REVIEWS ABOUT THE BEST INSURANCE IN TUNISIA

FIGURE 7 PARSE HUB LOGO

We succeed to gather some information through web scrapping using parsehub, from a website called "ghorbel-opinion.tn" to extract data from multiple pages as shown here

Les avis les plus récents							
ASSUREUR	NOTE SUR 5	AVIS					
3700 A. 7 4 cop Ly 2 7 3700 A. 7 4 cop Ly 2 7	4/5	Avis rédigé le 2020-09-17 12:08:00 par opinion : bon expérience () Lire la suite					
A Controlini	4/5	Avis rédigé le 2017-04-25 11:56:00 par yasser : TRÈS PROFESSIONEL () Lire la suite					
GA	4/5	Avis rédigé le 2017-04-25 11:54:00 par yasser : bon service () Lire la suite					
CARTE	3/5	Avis rédigé le 2017-04-25 11:53:00 par foufou : pas mal () Lire la suite					
CARTE	3/5	Avis rédigé le 2017-04-25 11:44:00 par foufou : service moyenne () Lire la suite					
	3/5	Avis rédigé le 2017-04-24 14:03:00 par foufou : meilleur prix sur le marché () Lire la suite					

FIGURE 8 RATING THE CAR INSURANCE

b) Forms

A public survey has been launched to collect extra information from citizens and their opinions about their insurance companies.

The data collected, however, doesn't have the same format or size as the internal data which why we couldn't merge it with the internal databases and won't interfere in building our predictive models but it will serve as a mean of dashboarding and providing useful statistics as shown in the pie charts for the decision making

Data preparation

1. Internal data

Now that the data is clearly understood, the next step is identifying which tables are to be used, in correspondence with the two main goals (BM prediction and fraud detection), a Data warehouse chart is created

a) DATA WAREHOUSE

The Data warehouse consists of two data marts

FaitClasseBonusMalus

Will be used in the prediction models for the BM index, it is composed of three tables: ClasseBonusMalus, Police and Vehicule.

FaitSinistre

Plays a major role in detecting fraudulent activities. Sinistres, Police and Vehicule are fused to create this fact table

FIGURE 13 DATA WAREHOUSE

b) FUSION

Along with the CGA provided database, last year's database was provided as complimentary data, fusing these two guarantees a bigger data pool which can increase the potency of the machine learning models.

For this task, SQL Server Integration Services (SSIS) is used to join the police, vehicle and Sinister tables saved in SQL Server Management Studio (SSMS) and in CSV files.

FIGURE 14 MERGE POLICE.CSV AND POLICE_CGA INTO PP

FIGURE 15 MERGE SINISTRE.CSV AND SINISTRE_CGA INTO SS

FIGURE 16 MERGE VEHICLE.CSV AND VEHICLE_CGA INTO VV

Note that the "union all" feature is also used to get rid of all but the columns that exist in both joined tables

The common column that is used to join the tables is the ID column (CodePolice_id, CodeSinistre_id, CodeVehicule_id). "ss", "vv", "pp" are the resulting tables from this joint.

To create "FaitClasseBonusMalus", the tables are merged in this order:

"ClassesBonusMalus" + "Vehicule" using the column 'CodeVehicule_id' as the common column creating "BMV"

FIGURE 17 CREATING BMV

"BMV" +"Police" using 'CodePolice_id' as the common column creating "fait_BM"

FIGURE 18 CREATING FAIT_BM

To create "FaitSinistre", the tables are merged in this order:

"ss"+"vv" " using the column 'CodeVehicule_id' as the common column, creating "ssvv"

FIGURE 19 CREATING SSVV

"ssvv"+"pp" using 'CodePolice_id' as the common column, Creating "fait_sinistre"

FIGURE 20 CREATING FAIT_SINISTRE

these are the dimensions for the resulting fact tables:

fait_BM: 1307361 rows × 44 columns

fait_sinistre: 562802 rows × 29 columns

c) Data cleaning

During data imputation, the most prominent action is deleting empty and quasi-empty columns.

• For "fait_BM" these are

```
#F1_x :9415
#nnumChassis :9415
#nnumChassis :9415
#nnummchassis :9415
#nnummchassis :9415
#nnummchassis :9415
#nnummchassis :9416
#nnummchassis :9
```

FIGURE 21 DROP ALL THE UNNECESSARY DATA FROM BM_FAIT

• For "fait_sinistre":

FIGURE 22 DROP ALL THE UNNECESSARY DATA FROM SINISTRE_FAIT

Next step, filling missing values.

Most missing values are replaced proportionally with the most common data in its respective columns.

```
fait_BM['energie']=fait_BM['energie'].replace(['0'],'unkown')
```

FIGURE 23 FILL MISSING VALUES IN ENERGY BY UNKNOWN

```
fait_Sinistre["typeIntermediaire"]=fait_Sinistre["typeIntermediaire"].fillna(1,limit=250000)

fait_Sinistre["typeIntermediaire"]=fait_Sinistre["typeIntermediaire"].fillna(2,limit=65000)

fait_Sinistre["typeIntermediaire"]=fait_Sinistre["typeIntermediaire"].fillna(3)
```

FIGURE 24 FILL MISSING VALUES IN TYPE INTERMEDIARE BY 1 OR 2 OR 3

FIGURE 25 DELETE ALL CLIENTS WHO HAVE A POLICY EQUAL TO NULL

Adding a new column to "fait_BM" named "num_accidents", which contains the sum of accidents. For each insured, given that these accidents are either totally or partially their fault.

FIGURE 26 ADDING A NEW COLUMN NAMED NUM ACCIDENT

To ensure an accurate prediction of the BM index, we must determine the values which correspond to non-fraudulent clients, for this task, we added a new column in both fact tables, named "fraud".

These types of frauds are detected as follows:

In "fait_BM":

1)policy type is "individual" but the client has more than 3 vehicules

```
query = """SELECT count(CodeVehicule_id) as count,CodeAssure_id
    FROM fait_BM where typePolice='I'
    group by CodeAssure_id having count(CodeVehicule_id) >=3 """
results = cursor.execute(query).fetchall()
```

2)policy type is "fleet " but the client has less than 3 cars

3) usage code=1 (private use) so policy type must not be "fleet"

```
query = "SELECT CodeVehicule_id FROM fait_BM where codeUsage=1 and typePolice='F' "
results = cursor.execute(query).fetchall()
```

4) usage code=14 or 15 (rent or travel agency) so policy type must not be "individual"

```
query = "SELECT CodeVehicule_id FROM fait_BM where codeUsage in (15,14) and typePolice='I' "
results = cursor.execute(query).fetchall()
```

5) client has more than 4 vehicules so policy type must not be "individual"

```
query = """SELECT count (CodeVehicule_id) as count_CodeVehicule_id,CodeAssure_id
    FROM fait_BM where typePolice='I'
    group by CodeAssure_id having (count (CodeVehicule_id)) >=3 """
results = cursor.execute(query).fetchall()
```

6) multi insurance fraud

```
query = """SELECT CodeVehicule_id ,count (codeCompagnie) as count_codeCompagnie
   FROM fait_BM where typePolice='I' group by CodeVehicule_id having (count (codeCompagnie)) >=3 """
results = cursor.execute(query).fetchall()
```

7) wrecked vehicule still has an operational policy

```
query = "SELECT CodeVehicule_id FROM fait_BM where ETAT_VEHICULE='R' "
```

8)unusual date

```
query = "SELECT DATE_AFFECTATION FROM [fait_BM] where DATE_AFFECTATION>'2021-03-16 00:00:00'"
results = cursor.execute(query).fetchall()
```


1)abnormal number of accidents

```
condition = fait_Sinistre.groupby('CodeAssure_id').CodeAssure_id.transform('size') >=15

fait_Sinistre.loc[condition, 'Fraud'] = 1
```

2) planned accidents

After identifying the Bonus-malus indexes that are affected by fraudulent activities, we isolate them, thus creating a "clean" fact table.

```
data=fait_BM[fait_BM["Fraud"]==0]
```

FIGURE 27 CLEANED DATA

➤ Its dimension being 1082005 rows × 23 columns

Another look at the data shows that certain BM indexes are illogical (drivers who made no accidents having an index above 8 and vice versa)

```
people who made 12 accidents and have BM index of 1 ,their total is 1 people who made 12 accidents and have BM index of 2 ,their total is 10 people who made 12 accidents and have BM index of 3 ,their total is 4 people who made 12 accidents and have BM index of 4 ,their total is 3 people who made 12 accidents and have BM index of 5 ,their total is 2 people who made 12 accidents and have BM index of 6 ,their total is 1 people who made 12 accidents and have BM index of 7 ,their total is 1 people who made 12 accidents and have BM index of 8 ,their total is 0 people who made 12 accidents and have BM index of 9 ,their total is 0 people who made 12 accidents and have BM index of 10 ,their total is 0 people who made 12 accidents and have BM index of 10 ,their total is 0 people who made 12 accidents and have BM index of 11 ,their total is 0
```

FIGURE 28 EXTRACTING THE CLIENTS WHO HAD MADE ACCIDENTS

These values were deleted:

- **♣** BM=1 and num_accidents > 0
- BM=11 and num_accidents < 2</p>
- ♣ 8<BM<11 and num_accident < 1</p>
- ◆ 0<BM<8 and num_accident > 2
- BM=2 and num_accident >1
- ➤ New dimension 1025544 rows × 23 columns

The cleaning phase is reaching its final steps, for predictions, IDs serve no value, so they are dropped.

FIGURE 29 CORRELATION OF PEARSON

This correlation map shows that the columns "typeImmatriculation", "Fraud" and "ETAT_VEHICULE" have little to no effect on the target data, these columns are dropped.

The final BM fact table contains these columns:

-codeUsage	-energie	-Etat_Police
-naturePolice	-puissanceFiscal	-codeMarque
-codeAgence	-codeCompagnie	-typePolice
-num_accidents	-coefBonusMalus	-classeBonusMalus

d) Encoding

In order to apply our models, most of which work only on numerical data, we needed to encode our col umns using different encoding methods_

FIGURE 30 ENCODING USING LABEL ENCODER

```
pd.get_dummies(data, columns=["naturePolice"])
```

FIGURE 31 ENCODING USING GET DUMMIES

2. External data

Opinions concerning insurance companies were scrapped from this web page https://www.ghorbel-opinion.tn/frontendAssurance.php

We convert the data from string to number in this phase and we delete the Nan value as shown below

```
[ ] #transform the column of rating to float
    for i in range(34):
        if d.iloc[i]['Assureur_rating_name'] =='1/5':
            d['Assureur_rating_name'][i]=1.0/5
        elif d.iloc[i]['Assureur_rating_name']=="2/5":
            d['Assureur_rating_name'][i]=2.0/5
        elif d.iloc[i]['Assureur_rating_name']=="3/5":
            d['Assureur_rating_name'][i]=3.0/5
        elif d.iloc[i]['Assureur_rating_name']=="4/5":
            d['Assureur_rating_name'][i]=4.0/5
        elif d.iloc[i]['Assureur_rating_name']=="5/5":
            d['Assureur_rating_name'][i]=5.0/5
```

FIGURE 32 TRANSFORM THE COLUMN OF RATING TO FLOAT

FIGURE 33 INSURANCE VOTE

Data modelling

I. Internal data

Once our internal data is cleaned and prepared. It is time for the modelling phase. We noticed that our data is a labeled discrete with the target class being the Bonus Malus index, ranging from 1 to 11, this necessitates classification supervised learning models, these are:

- K nearest neighbor (KNN)
- Naïve Bayes
- Multi-Layer Perceptron (MLP)
- Support vector machine (SVM)
- Decision tree + random forest algorithm
- Logistic regression

1. Naïve Bayes

Naive Bayes is a probabilistic technique for constructing classifiers. The characteristic assumption of the naive Bayes classifier is to consider that the value of a particular feature is independent of the value of any other feature, given the class variable.

FIGURE 34 EXEMPLE OF NAIVE BAYES

a) Building the model

```
from sklearn.naive_bayes import MultinomialNB, GaussianNB, BernoulliNB
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score

nb = {'gaussian': GaussianNB(),
    'bernoulli': BernoulliNB(),
    'multinomial': MultinomialNB()}
```

FIGURE 35 MODEL NB

b) Evaluation

'gaussian': 0.6439376672131247, 'bernoulli': 0.29104316612528724, 'multinomial': 0.17779348760108965}

FIGURE 36 ACCURACY OF THE MODEL

➤ This Naïve Bayes model is 69% accurate.

2. KNN

K Nearest Neighbor is a simple algorithm that stores all the available cases and classifies the new data or case based on a similarity measure. It is mostly used to classify a data point based on how its neighbors are classified.

FIGURE 37 EXAMPLE OF KNN

a) Building the model

FIGURE 38 MODEL KNN

b) Evaluation

```
Entrée [595]: from sklearn import metrics print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

Accuracy: 0.941358104945655
```

FIGURE 39 ACCURACY OF THE MODEL

<pre>print(classification_report(y_test, y_pred))</pre>										
	95 3025		0	0	0	0	0	0	0	0]
[20	93 38475		0	0	0	0	0	0	0	0]
[4 2281	54814	3095	0	0	0	0	0	0	0]
[0 0	3076	46755	991	0	0	0	0	0	0]
[0 0	4	663	24481	2	0	0	0	0	0]
[0 0	0	0	15	13364	1	1	0	0	0]
[0 0	0	0	6	4	2891	287	0	0	0]
[0 0	0	0	2	0	111	29725	0	0	0]
Ī	0 0	0	0	0	0	0	4	744	0	0]
į	0 0	0	0	0	0	0	1	1	165	0]
į	0 0	0	0	0	0	0	0	0	1	13]]
		precis	sion	recal	1 f1-	score	supp	ort		
	1	(0.97	0.9	6	0.97	81	220		
	2	(88.6	0.9	0	0.89	429	942		
	3	(0.91	0.9	1	0.91	60:	194		
	4	6	0.93	0.9	2	0.92	50	822		
	5	6	0.96	0.9	7	0.97	25	150		
	6	1	1.00	1.0	10	1.00	13	381		
	7	6	0.96	0.9	1	0.93	3:	188		
	8	6	0.99	1.0	10	0.99	29	838		
	9	1	1.00	0.9	9	1.00		748		
	10	6	0.99	0.9	9	0.99		167		
	11	1	1.00	0.9	3	0.96		14		
a	ccuracy					0.94	307	664		
	cro avg		0.96	0.9	5	0.96	307	664		

FIGURE 40 ACCURACY FOR EACH CLASS

➤ This KNN model is 94% accurate.

3. Multi Layer Perceptron (MLP)

The multilayer perceptron is a deep learning algorithm that is used mainly with tabular dataset. It also can be used on image data, text data as well as time series data due to its great flexibility.

FIGURE 41 EXAMPLE OF MLP

a) Building the model:

b) Evaluation

> This MLP model is 93% accurate.

4. Decision Tree

Decision Trees is a rule-based model, it used for classification and generally used for decision making and in forecasting future outcomes and assigning probabilities to those outcomes.

Is a Person Fit?

FIGURE 44 EXAMPLE OF DECISION TREE

a) Building the model

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, random_state=3)
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier(random_state=0)

dt.fit(X_train, y_train)
```

DecisionTreeClassifier(random_state=0)

FIGURE 45 MODEL OF DECISION TREE

FIGURE 46 ACCURACY OF THE MODEL

5. Random Forest

Random forests are an improvement to decision trees, they operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes of the individual trees.

FIGURE 47 EXAMPLE OF RANDOM FOREST

a) Building the model

```
: from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(random_state=0)
rfc.fit(X_train, y_train)
```

RandomForestClassifier(random_state=0)

FIGURE 48 MODEL OF RANDOM FOREST

b) Evaluation

```
# Predict the Test set results
y_pred = rfc.predict(X_test)
# Check accuracy score
from sklearn.metrics import accuracy_score
print('Model accuracy score with 10 decision-trees : {0:0.4f}'. format(accuracy_score(y_test, y_pred)))
```

Model accuracy score with 10 decision-trees : 0.9492

FIGURE 49 ACCURACY OF RANDOM FOREST

6. SVM

The SVM is essentially used for all kinds of recognition such as face detection or handwriting recognition and it can be used for both classification and regression. In our case we used the SVM for classification. The difficult part of SVM is choosing the right Kernel.

FIGURE 50 EXAMPLE OF SVM

a) Building the model

```
from sklearn.svm import SVC

svm = SVC()
svm.fit(X_train, y_train)
SVC()
```

FIGURE 51 MODEL OF SVM

b) Evaluation

<pre>from sklearn.metrics import classification_report y_pred_svc_1 = svm.predict(X_test) print(classification_report(y_pred_svc_1, y_test))</pre>					
	precision	recall	f1-score	support	
1	0.97	0.93	0.95	84913	
2	0.62	0.90	0.73	29503	
3	0.90	0.76	0.82	71583	
4	0.80	0.88	0.84	45802	
5	0.91	0.73	0.81	31298	
6	0.60	0.80	0.69	9956	
7	0.71	0.71	0.71	3187	
8	1.00	0.98	0.99	30498	
9	0.99	1.00	1.00	745	
10	0.99	0.99	0.99	167	
11	0.86	1.00	0.92	12	
accuracy			0.86	307664	
macro avg	0.85	0.88	0.86		
thted avg		0.86	0.86		
gnieu avg	0.88	0.86	0.86	20/004	

FIGURE 52 ACCURACY OF SVM

> We tested the model with different kernels and the one with the best results was the polynomial kernel with 0.94 accuracy.

7. Logistic regression

The logistic regression as opposed to linear regression is a classification algorithm used to assign observations to a discrete set of classes.

FIGURE 53 EXAMPLE OF LOGISTIC REGRESSION

a) Building the model

```
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
dlf = LogisticRegression(random_state=0).fit(X_train, y_train)
```

FIGURE 54 MODEL OF LOGISITIC REGRESSION

b) Evaluation

```
dlf.score(X_test, y_test)
0.6616341203390712
```

FIGURE 55 ACCURACY OF THE MODEL

> The evaluation of the model gave us an accuracy of 66%.

8. Multi class classification

Keras Multi Class Classification is a deep learning algorithm that provide a classification model for more than two categories like we have in the bonus malus index using neural network to learn from the train sample and predict using acivation function like relu and softmax.

FIGURE 56 EXAMPLE OF MULTI CLASS

a) Building the model

```
# create model
def classification small model():
    model = Sequential()
    model.add(Dense(15, activation='relu', input_shape=(20,),
    kernel_regularizer=regularizers.l1_l2(l1=1e-5, l2=1e-4),
    bias_regularizer=regularizers.12(1e-4),
    activity regularizer=regularizers.l2(1e-5)))
    model.add(Dropout(0.5))
    model.add(Dense(15, activation='relu',
    kernel_regularizer=regularizers.l1_l2(l1=1e-5, l2=1e-4),
    bias_regularizer=regularizers.12(1e-4),
    activity_regularizer=regularizers.l2(1e-5)))
    model.add(Dropout(0.5))
    model.add(Dense(output, activation='softmax'))
    model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
    return model
```

FIGURE 57 MODEL OF MULTI CLASS

b) Evaluation

Model: "sequential_2"

Layer (type)	Output Shape	Param #
dense_5 (Dense)	(None, 15)	315
dropout_3 (Dropout)	(None, 15)	0
dense_6 (Dense)	(None, 15)	240
dropout_4 (Dropout)	(None, 15)	0
dense_7 (Dense)	(None, 12)	192

Total params: 747 Trainable params: 747 Non-trainable params: 0

FIGURE 58 DROPOUT LAYERS AND A REGULARIZES

In this graph we summarize the accuracy and the loss function of our model

FIGURE 59 ACCURACY OF THE MODEL

II. External data

1. K-means

k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells. k-means clustering minimizes within-cluster variances (squared Euclidean distances), but not regular Euclidean distances, which would be the

more difficult Weber problem: the mean optimizes squared errors, whereas only the geometric median minimizes Euclidean distances.

FIGURE 60 EXAMPLE OF K-MEANS

a) Building the model

We used an unsupervised model k_means to make the data into two clusters:

```
[24] from sklearn.cluster import KMeans
k_means = KMeans(init = "k-means++", n_clusters = 2, n_init = 100)
```

FIGURE 612 CLUSTERS

[28] k_means.fit(X)

FIGURE 62 MODEL OF K_MEANS

b) Evaluation

FIGURE 63 EVALUATION

Deployment

Deploying the models is the last step in the project, and arguably the most important one, it's about providing the user with an easy to use interface through which they can access the various features, such as viewing statistics, investigate frauds and predicting the bonus malus index, the interface is created with FLASK and runs python script.

FIGURE 64 LOGIN INTERFACE

As shown here, we offer customizable user interfaces with the option of using dark or light mode.

FIGURE 65 DARK MODE

FIGURE 66 DASHBOARDS: CLIENT PER USAGE

FIGURE 67 DASHBOARDS: CUSTOMER SATISFACTION OF INSURANCE COMPANIES

Detect BM class

FIGURE 68 BONUS-MALUS PREDICTION INTERFACE

Detect fraudulent client

FIGURE 69 FRAUD DETECTION

Conclusion

Insurance is a large investment for the insured as well as for the insurance companies. The companies' investment resides in in its data provided by their customers. The availability of this data via connected devices has skyrocketed, and insurers will have to make progress in advanced analytics and artificial intelligence.

Our decision making tool is only but a first step in revolutionizing the insurance industry in Tunisia, yet it will still be important for insurers to explore additional levers in conjunction with reducing claims expenditure via optimized risk selection. More effectively combating fraud, increasing use of allied repair workshops, and offering assistance and service add-ons are all initiatives that could potentially more than compensate for decreasing premiums.

Insurance companies could, for example, provide services for avoiding risk, point out necessary maintenance work to drivers, and identify intelligent parking solutions. Insurers also can sell their data and analysis solutions to third parties, such as media agencies focusing on location-based advertising.