(Camada Inter-rede)

Prof. Dr. Luiz Arthur Feitosa dos Santos

luiz.arthur.feitosa.santos@gmail.com

https://luizsantos.github.io/

Modelo TCP/IP

Aplicação

Transporte

Inter-rede

Enlace

Física

• Endereçamento e roteamento.

Camada de Inter-rede

A tecnologia TCP/IP é foi criada para ser roteável e interligar vários *host*s em uma rede tal como a Internet:

- IP (Internet Protocol);
 - Endereçamento IP (IPv4 e IPv6);
 - Datagrama IP.
- ARP (Address Resolution Protocol);
 - RARP (Reverse Address Resolution Protocol).
- ICMP (Internet Control Message Protocol).

O ARP converte endereços lógicos em endereços físicos.

Qual é o motivo disso? Por que ter endereço lógico e físico?

Qual é o motivo disso? Por que ter endereço lógico e físico?

O endereçamento lógico é mais fácil de gerenciar...

O processamento do endereço físico é mais rápido!

Version	IHL	Type of Service	Total Length						
	Identif	ication	Flags	Fragment Offset					
Time to Live		Protocol - TCP	Header Checksum						
Source Address – 10.0.0.1									
Destination Address – 10.0.0.4									
Data - GET									

Version	IHL	Type of Service	Total Length						
Identification			Flags	Fragment Offset					
Time t	o Live	Protocol - TCP	Header Checksum			1			
Source Address – 10.0.0.1									
Destination Address – 10.0.0.4									
Data - GET									

Preamble+SFD

Destination Address Source Address 54:53:ed:3b:44:01

Type **IP**

Data

Checksum

O ARP deve descobrir o endereço físico, antes de prosseguir...

ARP – **Pergunta**:

Sou $10.0.0.1 \rightarrow 54:53:ed:3b:44:01$ Quem é $10.0.0.4 \rightarrow ?$

Checksum

Preamble+SFD

ARP

Tabela ARP – host D

 $10.0.0.1 \rightarrow 54:53:ed:3b:44:01$

ARP – **Resposta**:

Sou $10.0.0.4 \rightarrow 52:54:00:07:2a:b3$ Para $10.0.0.1 \rightarrow 54:53:ed:3b:44:01$

Tabela ARP – host D

 $10.0.0.1 \rightarrow 54:53:ed:3b:44:01$

Sou 10.0.0.4 → 52:54:00:07:2a:b3

Para 10.0.0.1 → 54:53:ed:3b:44:01

 $10.0.0.1 \rightarrow 54:53:ed:3b:44:01$

Preamble+SFD Ad

Destination Address 54:53:ed:3b:44:01 Source Address 52:54:00:07:2a:b3

Type **ARP** ARP Resposta...

1///

Checksum

 $10.0.0.4 \rightarrow 52:54:00:07:2a:b3$

Agora podemos voltar ao processo que estava esperando!

ARP – **Resposta**:

Sou $10.0.0.4 \rightarrow 52:54:00:07:2a:b3$ Para $10.0.0.1 \rightarrow 54:53:ed:3b:44:01$

 $10.0.0.4 \rightarrow 52:54:00:07:2a:b3$

Preamble+SFD

Destination Address Source Address 54:53:ed:3b:44:01

Type IP IP Src 10.0.0.1 IP Dst 10.0.0.4...

Checksum

Voltando...

 $10.0.0.4 \rightarrow 52:54:00:07:2a:b3$

Voltando...

Nossa, mas toda vez que eu for me comunicar com alguma máquina o ARP faz isso?

Nossa, mas toda vez que eu for me comunicar com alguma máquina o ARP faz isso?

Não... a referência fica lá enquanto houver comunicação!

Você pode usar o comando arp para ver sua tabela ARP...

Legal, já sei...

Vou utilizar o ARP para saber qual é o endereço físico do **Google**! Qual hardware será que eles usam?

Legal, já sei...

Vou utilizar o ARP para saber qual é o endereço físico do **Google**! Qual hardware será que eles usam?

Não dá... O ARP não passa de uma rede para outra!

Só que aqui ele vai pedir sobre o endereço físico do gateway padrão (0.0.0.0/0 → 10.0.0.3)

0.1.0.1/24

10.1.0.2/24

00:00:00:00:00:04

10.1.0.1/24 00:00:00:00:00:00:03 10.1.0.2/24

RARP

Pergunta RARP Sou 54:53:ed:3b:44:01, Alguém tem meu IP?

Servidor RARP

54:53:ed:3b:44:01 - 10.0.0.1

0a:80:c2:f2:28:22 - 10.0.0.2

54:53:ed:4a:14:02 - 10.0.0.3

54:53:ed:3b:44:01

0a:80:c2:f2:28:22

54:53:ed:4a:14:02

10.0.0.4/24

52:54:00:07:2a:b3

RARP

Pergunta RARP Sou 54:53:ed:3b:44:01, Alguém tem meu IP?

Servidor RARP

54:53:ed:3b:44:01 - 10.0.0.1

0a:80:c2:f2:28:22 - 10.0.0.2

54:53:ed:4a:14:02 - 10.0.0.3

RARP Servidor RARP

Resposta RARP 54:53:ed:3b:44:01, Seu IP é 10.0.0.1

54:53:ed:3b:44:01 - 10.0.0.1

0a:80:c2:f2:28:22 - 10.0.0.2

54:53:ed:4a:14:02 - 10.0.0.3

RARP

Resposta RARP 54:53:ed:3b:44:01, Seu IP é 10.0.0.1

Servidor RARP

54:53:ed:3b:44:01 - 10.0.0.1

0a:80:c2:f2:28:22 - 10.0.0.2

54:53:ed:4a:14:02 - 10.0.0.3

10.0.0.4/24

52:54:00:07:2a:b3

0a:80:c2:f2:28:22

54:53:ed:4a:14:02

D

RARP Servidor RARP 54:53:ed:3b:44:01 - 10.0.0.1 O RARP tem dois problemas: 1. não passa de uma rede para outra; 0a:80:c2:f2:28:22 - 10.0.0.2 2. só atribui IPs para hosts 54:53:ed:4a:14:02 - 10.0.0.3 cadastrados; 10.0.0.1 10.0.0.4/24 54:53:ed:3b:44:01 54:53:ed:4a:14:02 0a:80:c2:f2:28:22 52:54:00:07:2a:b3 A

Mas neste último caso o endereço físico do *host* F está cadastrado no servidor RARP!

Mas neste último caso o endereço físico do *host* F está cadastrado no servidor RARP!

Lembre, o ARP/RARP não passam de uma rede para outra!

Nem atribuem IP para hosts não cadastrados...

Mas neste último caso o endereço físico do *host* F está cadastrado no servidor RARP!

O DHCP resolve tudo isso!

Lembre, o ARP/RARP não passam de uma rede para outra!

Nem atribuem IP para hosts não cadastrados...

Datagrama ARP

0	8	16 24	32 bits
Tipo de Hardware		Tipo de Protocolo	
HLEN	PLEN	Operação	
Endereço do Hardware Emissor (octetos 0-3)			
End. Do Hardware Emissor (octetos 4-5)		IP Emissor (octetos 0-1)	
IP Emissor (octetos 2-3)		End. Do Hardware Destino (octetos 0-1	.)
End. Do Hardware Destino (octetos 2-5)			
IP Destino (octetos 0-3)			

Conclusão:

O ARP é fundamental em redes TCP/IP, pois quadros de rede (Camada de Enlace) navegam na rede local através de endereços físicos, todavia redes TCP/IP utilizam endereços lógicos (IPs – Camada de Inter-Rede), então o ARP converte IPs em endereços físicos...

O RARP foi substituído pelo DHCP, que fica na camada de aplicação.

Obrigado!!!

Prof. Dr. Luiz Arthur Feitosa dos Santos

luiz.arthur.feitosa.santos@gmail.com

https://luizsantos.github.io/

Links e referencias na descrição do vídeo