Međuispit iz Matematike 1

20. studenog 2012.

- 1. [6 bodova] (a) (2 boda) Izvedite izraz za umnožak kompleksnih brojeva z_1 i z_2 koji su dani u trigonometrijskom obliku. Koristeći dobiveni izraz, matematičkom indukcijom dokažite formulu za računanje n-te potencije $(n \in \mathbb{N})$ kompleksnog broja danog u trigonometrijskom obliku.
 - (b) (4 boda) Kompleksni broj $w=-\cos\left(\frac{5\pi}{12}\right)+i\sin\left(\frac{5\pi}{12}\right)$ zapišite u trigonometrijskom obliku, zatim u skupu $\mathbb C$ riješite jednadžbu $z^4=w^8$, te dobivena rješenja skicirajte u kompleksnoj ravnini.
- 2. [5 bodova] Zadane su funkcije $f(x) = 2 \operatorname{ch}(x-3) e^{-3}$ i $g(x) = \sqrt{e^3 x}$.
 - (a) (2 boda) Odredite prirodno područje definicije funkcije $g \circ f$.
 - (b) (3 boda) Na kojem dijelu svoj
g prirodnog područja definicije je $g \circ f$ strogo rastuća funkcija? Odredite sliku funkcije $g \circ f$.
- 3. [5 bodova] (a) (2 boda) Gaussovom metodom odredite inverz matrice

$$A = \begin{bmatrix} 2 & 1 & 1 \\ -2 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

(b) (3 boda) Riješite matričnu jednadžbu

$$(X+A)^2 = [(X+A)^{-1} \cdot X^{-1}]^{-1} + B$$

pri čemu je matrica Adana u (a) dijelu zadatka, a $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$

4. [4 boda] Odredite svojstvene vrijednosti i svojstvene vektore matrice

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

- 5. [5 bodova] (a) (1 bod) Može li omeđeni niz biti divergentan? Objasnite svoju tvrdnju.
 - (b) (1 bod) Navedite primjer konvergentnog strogo rastućeg niza (a_n) . Objasnite zbog čega je taj niz konvergentan.
 - (b) (3 boda) Niz (a_n) je zadan je rekurzivno na sljedeći način:

$$a_1 = 1$$
, $a_{n+1} = \frac{a_n(a_n + 1)}{3}$, $n \ge 2$.

Dokažite da je niz (a_n) konvergentan i odredite njegov limes.

- 6. [5 bodova] (a) (2 boda) Za proizvoljnu funkciju f definirajte konačan limes u beskonačnosti. Navedite jedan konkretan primjer takve funkcije te skicirajte njeno ponašanje kada $x \to +\infty$.
 - (b) (1 bod) Izračunajte limes

$$\lim_{x \to +\infty} \left(\frac{2x + \sin x}{x} \right)^{\frac{x+1}{x}}.$$

(c) (2 boda) Izračunajte limes

$$\lim_{x \to +\infty} \left[\frac{x^3}{x+2} \ln \left(\frac{x^2}{x^2+2} \right) \right].$$

Vrijeme pisanja: 1h i 30 min. Nije dozvoljena uporaba računala niti priručnika.