

Today

- Why Clip?
- Line Clipping
- · Overview of Rasterization
- · Line Rasterization
- · Circle Rasterization
- · Antialiased Lines

MIT EECS 6.837, Durand and Cutler

Clipping Eliminate portions of objects outside the viewing frustum View Frustum boundaries of the image plane projected in 3D a near & far clipping plane User may define additional clipping planes

Clipping strategies

- Don't clip (and hope for the best)
- Clip on-the-fly during rasterization
- Analytical clipping: alter input geometry

Questions?

MIT EECS 6.837, Durand and Cutler

Today

- Why Clip?
- Point & Line Clipping
 - Plane Line intersection
 - Segment Clipping
 - Acceleration using outcodes
- · Overview of Rasterization
- Line Rasterization
- Circle Rasterization
- · Antialiased Lines

MIT EECS 6.837, Durand and Cutler

Implicit 3D Plane Equation

Plane defined by:
 point p & normal n OR
 normal n & offset d OR
 3 points

• Implicit plane equation Ax+By+Cz+D=0

MIT EECS 6.837, Durand and Cutler

Homogeneous Coordinates

Homogenous point: (x,y,z,w)
 infinite number of equivalent
 homogenous coordinates:
 (sx, sy, sz, sw)

• Homogenous Plane Equation: $Ax+By+Cz+D=0 \rightarrow H=(A,B,C,D)$

Infinite number of equivalent plane expressions: $sAx+sBy+sCz+sD=0 \rightarrow H=(sA,sB,sC,sD)$

Point-to-Plane Distance

- If (A,B,C) is normalized: d = H•p = H^Tp (the dot product in homogeneous coordinates)
- d is a *signed distance*positive = "inside"
 negative = "outside"

MIT EECS 6.837, Durand and Cutler

Clipping a Point with respect to a Plane

- If $d = H \cdot p \ge 0$ Pass through
- If $d = H \cdot p < 0$: Clip (or cull or reject)

MIT EECS 6.837, Durand and Cutler

Clipping with respect to View Frustum

- Test against each of the 6 planes
 - Normals oriented towards the interior
- Clip (or cull or reject) point p if any $H \cdot p < 0$

Clipping & Transformation

• Transform M (e.g. from world space to NDC)

• The plane equation is transformed with (M⁻¹)^T

MIT EECS 6.837, Durand and Cutler

Segment Clipping

- If $H \cdot p > 0$ and $H \cdot q < 0$
- If $H \cdot p < 0$ and $H \cdot q > 0$
- If $H \cdot p > 0$ and $H \cdot q > 0$
- If $H \cdot p < 0$ and $H \cdot q < 0$

Segment Clipping

- If H•p > 0 and H•q < 0
 clip q to plane
- If $H \bullet p \le 0$ and $H \bullet q \ge 0$
- If $H \bullet p > 0$ and $H \bullet q > 0$
- If $H \cdot p < 0$ and $H \cdot q < 0$

MIT EECS 6.837, Durand and Cutler

Segment Clipping

- If $H \bullet p > 0$ and $H \bullet q < 0$
 - clip q to plane
- If H•p < 0 and H•q > 0
 clip p to plane
- If $H \cdot p > 0$ and $H \cdot q > 0$
- If $H \cdot p < 0$ and $H \cdot q < 0$

MIT EECS 6.837, Durand and Cutler

Segment Clipping

- If $H \bullet p > 0$ and $H \bullet q < 0$
 - clip q to plane
- If $H \cdot p < 0$ and $H \cdot q > 0$
 - clip p to plane
- If $H \cdot p > 0$ and $H \cdot q > 0$
 - pass through
- If $H \cdot p < 0$ and $H \cdot q < 0$

MIT EECS 6.837, Durand and Cutler

Segment Clipping

- If $H \cdot p > 0$ and $H \cdot q < 0$
 - clip q to plane
- If $H \bullet p \le 0$ and $H \bullet q \ge 0$
 - clip p to plane
- If $H \cdot p > 0$ and $H \cdot q > 0$
 - $-\ pass\ through$
- If $H \bullet p < 0$ and $H \bullet q < 0$
 - clipped out

p q

MIT EECS 6.837, Durand and Cutler

Clipping against the frustum

- For each frustum plane H

 If $H^{\bullet}p > 0$ and $H^{\bullet}q < 0$, clip q to H

 If $H^{\bullet}p < 0$ and $H^{\bullet}q > 0$, clip p to H

 If $H^{\bullet}p < 0$ and $H^{\bullet}q > 0$, pass through

 If $H^{\bullet}p < 0$ and $H^{\bullet}q < 0$, clipped out
 - Result is a single segment. Why?

MIT EECS 6.837, Durand and Cutler

Line – Plane Intersection

• Explicit (Parametric) Line Equation

$$L(t) = P_0 + t * (P_1 - P_0)$$

$$L(t) = (1 t) * P_0 + t * P_1$$

- How do we intersect?
 Insert explicit equation of line into implicit equation of plane
- Parameter t is used to interpolate associated attributes (color, normal, texture, etc.)

Is this Clipping Efficient? • For each frustum plane H - If H•p>0 and H•q<0, clip q to H - If H•p>0 and H•q>0, clip p to H - If H•p>0 and H•q>0, pass through - If H•p<0 and H•q<0, clipped out H1 H2 H3 H4 MIT EECS 6.837, Durand and Cutler

Questions?

MIT EECS 6.837, Durand and Cutler

Today

- Why Clip?
- · Line Clipping
- Overview of Rasterization
- Line Rasterization
- · Circle Rasterization
- · Antialiased Lines

MIT EECS 6.837, Durand and Cutler

Framebuffer Model

- Raster Display: 2D array of picture elements (pixels)
- Pixels individually set/cleared (greyscale, color)
- Window coordinates: pixels centered at integers

2D Scan Conversion

- Geometric primitives (point, line, polygon, circle, polyhedron, sphere...)
- Primitives are continuous; screen is discrete
- Scan Conversion: algorithms for *efficient* generation of the samples comprising this approximation

Brute force solution for triangles

- · For each pixel
 - Compute line equations at pixel center
 - "clip" against the triangle

Brute force solution for triangles

- For each pixel
 - Compute line equations at pixel center
 - "clip" against the triangle

Problem? If the triangle is small, a lot of useless computation

Brute force solution for triangles

- Improvement:
 - Compute only for the screen bounding box of the triangle
 - Xmin, Xmax, Ymin, Ymax of the triangle vertices

Can we do better? Yes!

- More on polygons next week.
- Today: line rasterization

Questions?

MIT EECS 6.837, Durand and Cutler

Today

- Why Clip?
- · Line Clipping
- Overview of Rasterization
- Line Rasterization
 - naive method
 - Bresenham's (DDA)
- Circle Rasterization
- Antialiased Lines

MIT EECS 6.837, Durand and Cutler

Scan Converting 2D Line Segments

- Given:
 - Segment endpoints (integers x1, y1; x2, y2)
- Identify:
 - Set of pixels (x, y) to display for segment

MIT EECS 6.837, Durand and Cutler

Line Rasterization Requirements

- Transform continuous primitive into discrete samples
- Uniform thickness & brightness
- Continuous appearance
- No gaps
- Accuracy
- Speed

Algorithm Design Choices

- Assume:
 - m = dy/dx, 0 < m < 1
- Exactly one pixel per column
 - fewer \rightarrow disconnected, more \rightarrow too thick

MIT EECS 6.837, Durand and Cutler

Algorithm Design Choices

- Note: brightness can vary with slope
 - What is the maximum variation?
- How could we compensate for this?
 - Answer: antialiasing

MIT EECS 6.837, Durand and Cutler

Naive Line Rasterization Algorithm

- Simply compute y as a function of x
 - Conceptually: move vertical scan line from x1 to x2
 - What is the expression of y as function of x?
 - Set pixel (x, round (y(x)))

 $y = y1 + \frac{x - x1}{x2 - x1}(y2 - y1)$

= y1 + m(x - x1)

 $m = \frac{dy}{dx}$

X MIT EECS 6.837, Durand and Cutler

Efficiency

• Computing y value is expensive

y = y1 + m(x - x1)

• Observe: y += m at each x step (m = dy/dx)

Line Rasterization

- It's like marching a ray through the grid
- Also uses DDA (Digital Difference Analyzer)

Bresenham's Algorithm (DDA)

- Select pixel vertically closest to line segment
 - intuitive, efficient, pixel center always within 0.5 vertically
- Same answer as naive approach

MIT EECS 6.837, Durand and Cutler

Bresenham's Algorithm (DDA)

- Observation:
 - If we're at pixel P (x_p, y_p) , the next pixel must be either E (x_p+1, y_p) or NE (x_p, y_p+1)

MIT EECS 6.837, Durand and Cutler

Bresenham Step

- Which pixel to choose: E or NE?
 - Choose E if segment passes below or through middle point M
 - Choose NE if segment passes above M

Bresenham Step

• Use decision function D to identify points underlying line L:

D(x, y) = y-mx-b

- positive above L
- zero on L
- negative below L

 $D(p_x, p_y)$ = vertical distance from point to line

MIT EECS 6.837. Durand and Cutler

Bresenham's Algorithm (DDA)

• Decision Function:

$$D(x, y) = y - mx - b$$

• Initialize:

error term e = -D(x,y)

• On each iteration:

update x:

x' = x + Iupdate e: e' = e + m

if $(e \le 0.5)$: y' = y (choose pixel E)

y' = y + (choose pixel NE) e' = e - 1if (e > 0.5):

MIT EECS 6.837, Durand and Cutler

Summary of Bresenham

- initialize x, y, e
- for $(x = x1; x \le x2; x++)$
- plot (x,y)
 - update x, y, e

F=0

F<0

- · Generalize to handle all eight octants using symmetry
- · Can be modified to use only integer arithmetic

Questions?

MIT EECS 6.837, Durand and Cutler

Today

- Why Clip?
- Line Clipping
- · Overview of Rasterization
- Line Rasterization
 - naive method
 - Bresenham's (DDA)
- Circle Rasterization
- · Antialiased Lines

MIT EECS 6.837, Durand and Cutler

Circle Rasterization

- Generate pixels for 2nd octant only
- Slope progresses from $0 \rightarrow -1$
- Analog of Bresenham Segment Algorithm

MIT EECS 6.837. Durand and Cutler

Circle Rasterization

• Decision Function:

$$D(x, y) = x^2 + y^2 - R^2$$

• Initialize: error term e = -D(x, y)

update x: x' = x + 1

update e: e' = e + 2x + 1if $(e \ge 0.5)$: y' = y (choose pixel E)

if (e < 0.5): y' = y - I (choose pixel SE), e' = e + 1

MIT EECS 6.837, Durand and Cutler

Questions?

MIT EECS 6.837, Durand and Cutler

Today

- Why Clip?
- Line Clipping
- · Overview of Rasterization
- Line Rasterization
 - naive method
 - Bresenham's (DDA)
- Circle Rasterization
- · Antialiased Lines

