BUSINESS ANALYTICS DR. BRENDA MULLALLY

AGE OF TECHNOLOGY

- TECHNOLOGY HAS MADE IT POSSIBLE TO COLLECT AND STORE HUGE AMOUNTS OF DATA.
 - RETAILERS, CREDIT AGENCIES, INVESTMENT COMPANIES, GOVERNMENT AGENCIES,
- IT IS DIFFICULT FOR BUSINESSES TO MAKE SENSE OF ALL OF THE DATA COLLECTED.
- MANY MORE PEOPLE NOW HAVE THE POWER TO ANALYSE DATA AND MAKE DECISIONS ON THE BASIS OF QUANTITATIVE ANALYSIS.
- QUANTITATIVE ANALYSIS IS NOW CONDUCTED BY PEOPLE OTHER THAN THOSE THAT TRADITIONALLY HAD DONE THE NUMBER CRUNCHING.
- MOST EMPLOYEES NOW HAVE ACCESS TO SOFTWARE TO ANALYSE DATA, PARTICULARLY SPREADSHEET AND DATABASE SOFTWARE.
- QUANTITATIVE ANALYSIS IS NOW AN INTEGRAL PART OF THESE PEOPLE'S JOB.

- BASIC DATA SUMMARIES AND VISUALISATIONS:
 - SUMMARY STATISTICS
 - FREQUENCY TABLES
 - HISTOGRAMS
 - BOXPLOTS
 - SCATTERPLOTS
 - CORRELATION TABLES
 - CROSS-TABULATIONS

TYPICAL EMPLOYEES TODAY NOT JUST THE MANAGERS AND TECHNICAL SPECIALISTS HAVE A
WEALTH OF EASY-TO-USE TOOLS AT THEIR DISPOSAL, AND IT IS FREQUENTLY UP TO THEM TO
SUMMARIZE DATA IN A WAY THAT IS BOTH MEANINGFUL AND USEFUL TO THEIR
CONSTITUENTS: PEOPLE WITHIN THEIR COMPANY, THEIR COMPANY'S SUPPLIERS, AND THEIR
COMPANY'S CUSTOMERS. IT TAKES SOME TRAINING AND PRACTICE TO DO THIS EFFECTIVELY.

- DATA ANALYSIS IN THE REAL WORLD IS NEVER DONE IN A VACUUM. IT IS DONE TO SOLVE A
 PROBLEM. TYPICALLY, THERE ARE FOUR STEPS THAT ARE FOLLOWED, WHETHER THE CONTEXT IS
 BUSINESS, MEDICAL SCIENCE, OR ANY OTHER FIELD.
 - 1. RECOGNISE A PROBLEM THAT NEEDS SOLVING
- 2. GATHER DATA TO HELP UNDERSTAND AND THEN SOLVE THE PROBLEM.
- 3. ANALYSE THE DATA
- 4. ACT ON THE ANALYSIS BY CHANGING POLICIES, UNDERTAKING INITIATIVES, PUBLISHING RECORDS ETC.

- POPULATIONS AND SAMPLES
 - POPULATION INCLUDES ALL OF THE ENTITIES OF INTEREST: PEOPLE, HOUSEHOLDS, MACHINES, OR WHATEVER.
 - SAMPLE IS A SUBSET OF A POPULATION, OFTEN RANDOMLY CHOSEN AND PREFERABLY REPRESENTATIVE OF THE POPULATION AS A WHOLE.
- IT IS VERY IMPORTANT THAT THE SAMPLE IS REPRESENTATIVE OF THE POPULATION. THIS MEANS THAT ANY OBSERVED CHARACTERISTICS OF THE SAMPLE CAN BE GENERALISED TO THE POPULATION AS A WHOLE.

- DATA SETS, VARIABLES, AND OBSERVATIONS
 - DATA SET: A RECTANGULAR ARRAY OF DATA WHERE COLUMNS CONTAIN VARIABLES, SUCH AS HEIGHT, GENDER, AND INCOME.
 - EACH ROW CONTAINS AN OBSERVATION.
 - EACH OBSERVATION CONTAINS THE ATTRIBUTES OF A PARTICULAR MEMBER OF A POPULATION: A PERSON, A COMPANY, A CITY, A MACHINE...
 - A VARIABLE (COLUMN) IS OFTEN CALLED A FIELD OR AN ATTRIBUTE.
 - AN OBSERVATION (ROW) IS OFTEN CALLED A CASE OR A RECORD.

EXAMPLE 2.1: QUESTIONNAIRE DATA.XLSX

- OBJECTIVE: TO ILLUSTRATE VARIABLES AND OBSERVATIONS IN A TYPICAL DATA SET.
- SOLUTION: DATA SET INCLUDES OBSERVATIONS
 ON 30 PEOPLE WHO RESPONDED TO A
 QUESTIONNAIRE ON THE PRESIDENT'S
 ENVIRONMENTAL POLICIES.
- VARIABLES INCLUDE: AGE, GENDER, STATE, CHILDREN, SALARY, OPINION.
- INCLUDES A ROW THAT LISTS VARIABLE NAMES.
- INCLUDES A COLUMN THAT SHOWS AN INDEX OF THE OBSERVATION.

1	Α	В	С	D	E	F	G
1	Person	Age	Gender	State	Children	Salary	Opinion
2	1	35	Male	Minnesota	1	\$65,400	5
3	2	61	Female	Texas	2	\$62,000	1
4	3	35	Male	Ohio	0	\$63,200	3
5	4	37	Male	Florida	2	\$52,000	5
6	5	32	Female	California	3	\$81,400	1
7	6	33	Female	New York	3	\$46,300	5
28	27	27	Male	Illinois	3	\$45,400	2
29	28	63	Male	Michigan	2	\$53,900	1
30	29	52	Male	California	1	\$44,100	3
31	30	48	Female	New York	2	\$31,000	4

DATA TYPES

- NUMERICAL AND CATEGORICAL DATA
- DO YOU WANT TO DO ARITHMETIC ON THE DATA?
- CAN YOU AVERAGE DAYS OF THE WEEK OR GENDER?
- WHAT ABOUT A VARIABLE THAT HAS 1, 2, 3, 4, OR 5 AS ITS VALUE?
- ORDINAL: A NATURAL ORDERING TO CATEGORIES.
- NOMINAL: NO NATURAL ORDER TO CATEGORIES.
- ALL CATEGORICAL VARIABLES CAN BE ENCODED WITH NUMBERS BUT NOT ALL ARE, IT IS PERSONAL CHOICE.
- DUMMY VARIABLE

- DATA TYPES
 - SOMETIMES A NUMBER VARIABLE IS CODED USING A CATEGORY.
 - BINNING (DISCRETISING)

ENVIRONMENTAL DATA USING A DIFFERENT CODING

1	Α	В	C	D	E	F	G	Н	1	J	K	L
1	Person	Age	Gender	State	Children	Salary	Opinion					
2	1	Middle-aged	1	Minnesota	1	\$65,400	Strongly agree		Note th	o formulas in columns	P. C. and	
3	2	Elderly	0	Texas	2	\$62,000	Strongly disagree		Note the formulas in columns B, C, and G that generate this recoded data. The			
4	3	Middle-aged	1	Ohio	0	\$63,200	Neutral		formulas in columns B and G are based on the lookup tables below.			
5	4	Middle-aged	1	Florida	2	\$52,000	Strongly agree					
6	5	Young	0	California	3	\$81,400	Strongly disagree					
7	6	Young	0	New York	3	\$46,300	Strongly agree					
8	7	Elderly	0	Minnesota	2	\$49,600	Strongly disagree		Age look	kup table (range name	AgeLookup)	
9	8	Middle-aged	1	New York	1	\$45,900	Strongly agree		0	Young		
10	9	Middle-aged	1	Texas	3	\$47,700	Agree		35	Middle-aged		
11	10	Young	0	Texas	1	\$59,900	Agree		60	Elderly		
12	11	Middle-aged	1	New York	1	\$48,100	Agree					
13	12	Middle-aged	0	Virginia	0	\$58,100	Neutral		Opinion lookup table (range name Opinion		ame Opinion	Lookup)
14	13	Middle-aged	0	Illinois	2	\$56,000	Strongly disagree		1	Strongly disagree		
15	14	Middle-aged	0	Virginia	2	\$53,400	Strongly disagree		2	Disagree		
16	15	Middle-aged	0	New York	2	\$39,000	Disagree		3	Neutral		
17	16	Middle-aged	1	Michigan	1	\$61,500	Disagree		4	Agree		
18	17	Middle-aged	1	Ohio	0	\$37,700	Strongly disagree		5	Strongly agree		
19	18	Middle-aged	0	Michigan	2	\$36,700	Agree					
28	27	Young	1	Illinois	3	\$45,400	Disagree					
29	28	Elderly	1	Michigan	2	\$53,900	Strongly disagree					
30	29	Middle-aged	1	California	1	\$44,100	Neutral					
31	30	Middle-aged	0	New York	2	\$31,000	Agree					

TYPES OF DATA

- A NUMERICAL VARIABLE IS DISCRETE IF IT RESULTS FROM A COUNT, SUCH AS THE NUMBER OF CHILDREN.
- A CONTINUOUS VARIABLE IS THE RESULT OF AN ESSENTIALLY CONTINUOUS MEASUREMENT, SUCH AS WEIGHT OR HEIGHT.
- DATA SET:
- CROSS-SECTIONAL DATA ARE DATA ON A CROSS SECTION OF A POPULATION AT A DISTINCT POINT IN TIME.
- TIME SERIES DATA ARE DATA COLLECTED OVER TIME.

HOW TO DESCRIBE CATEGORICAL VARIABLES?

- THERE ARE ONLY A FEW POSSIBILITIES FOR DESCRIBING A CATEGORICAL VARIABLE, ALL BASED ON COUNTING:
 - COUNT THE NUMBER OF CATEGORIES.
 - GIVE THE CATEGORIES NAMES.
 - COUNT THE NUMBER OF OBSERVATIONS IN EACH CATEGORY (REFERRED TO AS THE **COUNT OF CATEGORIES**).
 - ONCE YOU HAVE THE COUNTS, YOU CAN DISPLAY THEM GRAPHICALLY, USUALLY IN A COLUMN CHART OR A PIE CHART.

EXAMPLE 2.2: SUPERMARKET TRANSACTIONS.XLSX

- OBJECTIVE: TO SUMMARIZE CATEGORICAL VARIABLES IN A LARGE DATA SET.
- SOLUTION: DATA SET CONTAINS TRANSACTIONS MADE BY SUPERMARKET CUSTOMERS OVER A TWO-YEAR PERIOD.
- CHILDREN, UNITS SOLD, AND REVENUE ARE NUMERICAL.
- PURCHASE DATE IS A DATE VARIABLE.
- TRANSACTION AND CUSTOMER ID ARE USED ONLY TO IDENTIFY.
- ALL OF THE OTHER VARIABLES ARE CATEGORICAL.

14	Α	В	C	D	E	F	G	Н	i i	J	K	0	Р
1	Transaction	Purchase Date	Customer ID	Gender	Marital Status	Homeowner	Children	Annual Income	City	State or Province	Country	Units Sold	Revenue
2	1	12/18/2011	7223	F	S	Υ	2	\$30K - \$50K	Los Angeles	CA	USA	5	\$27.38
3	2	12/20/2011	7841	M	M	Y	5	\$70K - \$90K	Los Angeles	CA	USA	5	\$14.90
4	3	12/21/2011	8374	F	M	N	2	\$50K - \$70K	Bremerton	WA	USA	3	\$5.52
5	4	12/21/2011	9619	M	M	Y	3	\$30K - \$50K	Portland	OR	USA	4	\$4.44
6	5	12/22/2011	1900	F	S	Υ	3	\$130K - \$150K	Beverly Hills	CA	USA	4	\$14.00
7	6	12/22/2011	6696	F	M	Y	3	\$10K - \$30K	Beverly Hills	CA	USA	3	\$4.37
8	7	12/23/2011	9673	M	S	Υ	2	\$30K - \$50K	Salem	OR	USA	4	\$13.78
9	8	12/25/2011	354	F	M	Y	2	\$150K +	Yakima	WA	USA	6	\$7.34
10	9	12/25/2011	1293	М	M	Y	3	\$10K - \$30K	Bellingham	WA	USA	1	\$2.41
11	10	12/25/2011	7938	M	S	N	1	\$50K - \$70K	San Diego	CA	USA	2	\$8.96

EXAMPLE 2.2: SUPERMARKET TRANSACTIONS.XLSX

- TO GET THE COUNTS IN COLUMN S, USE EXCEL'S COUNTIF FUNCTION.
- ☐ TO GET THE PERCENTAGES
 IN COLUMN T, DIVIDE EACH
 COUNT BY THE TOTAL
 NUMBER OF
 OBSERVATIONS.
- ☐ WHEN CREATING CHARTS,
 BE CAREFUL TO USE
 APPROPRIATE SCALES.

EXAMPLE 2.2: SUPERMARKET TRANSACTIONS.XLSX

- ANOTHER EFFICIENT WAY TO FIND COUNTS
 FOR A CATEGORICAL VARIABLE IS TO USE
 DUMMY (0-1) VARIABLES.
 - RECODE EACH VARIABLE SO THAT ONE CATEGORY IS REPLACED BY 1 AND ALL OTHERS BY 0.
 - THIS CAN BE DONE USING A SIMPLE IF FORMULA.
 - FIND THE COUNT OF THAT CATEGORY BY SUMMING THE 0S AND 1S.
 - FIND THE PERCENTAGE OF THAT CATEGORY
 BY AVERAGING THE 0S AND 1S.

14	А	В	С	D	E
1	Transaction	Purchase Date	Customer ID	Gender	Gender Dummy for M
2	1	12/18/2011	7223	F	0
3	2	12/20/2011	7841	M	1
4	3	12/21/2011	8374	F	0
5	4	12/21/2011	9619	M	1
6	5	12/22/2011	1900	F	0
7	6	12/22/2011	6696	F	0
8	7	12/23/2011	9673	M	1
9	8	12/25/2011	354	F	0
10	9	12/25/2011	1293	M	1
11	10	12/25/2011	7938	M	1
14055	14054	12/29/2013	2032	F	0
14056	14055	12/29/2013	9102	F	0
14057	14056	12/29/2013	4822	F	0
14058	14057	12/31/2013	250	M	1
14059	14058	12/31/2013	6153	F	0
14060	14059	12/31/2013	3656	M	1
14061			3500000	Count	6889
14062				Percent	49.0%

DESCRIPTIVE MEASURES FOR NUMERICAL VARIABLES

- THERE ARE MANY WAYS TO SUMMARIZE NUMERICAL VARIABLES, BOTH WITH NUMERICAL SUMMARY MEASURES AND WITH CHARTS.
- TO LEARN HOW THE VALUES OF A VARIABLE ARE DISTRIBUTED, ASK:
 - WHAT ARE THE MOST "TYPICAL" VALUES?
 - HOW SPREAD OUT ARE THE VALUES?
 - WHAT ARE THE "EXTREME" VALUES ON EITHER END?
 - IS THE CHART OF THE VALUES SYMMETRIC ABOUT SOME MIDDLE VALUE, OR IS IT SKEWED IN SOME DIRECTION? DOES IT HAVE ANY OTHER PECULIAR FEATURES BESIDES POSSIBLE SKEWNESS?

EXAMPLE 2.3: BASEBALL SALARIES 2011.XLSX

- OBJECTIVE: TO LEARN HOW

 SALARIES ARE DISTRIBUTED ACROSS

 ALL 2011 MLB PLAYERS.
- **SOLUTION**: DATA SET CONTAINS DATA ON 843 MAJOR LEAGUE BASEBALL PLAYERS IN THE 2011 SEASON.
- VARIABLES ARE PLAYER'S NAME,
 TEAM, POSITION, AND SALARY.
- CREATE SUMMARY MEASURES OF BASEBALL SALARIES USING EXCEL FUNCTIONS.

1	Α	В	C	D
1	Player	Team	Position	Salary
2	A.J. Burnett	New York Yankees	Pitcher	\$16,500,000
3	A.J. Ellis	Los Angeles Dodgers	Catcher	\$421,000
4	A.J. Pierzynski	Chicago White Sox	Catcher	\$2,000,000
5	Aaron Cook	Colorado Rockies	Pitcher	\$9,875,000
6	Aaron Crow	Kansas City Royals	Pitcher	\$1,400,000
7	Aaron Harang	San Diego Padres	Pitcher	\$3,500,000
8	Aaron Heilman	Arizona Diamondbacks	Pitcher	\$2,000,000
9	Aaron Hill	Toronto Blue Jays	Second Baseman	\$5,000,000
10	Aaron Laffey	Seattle Mariners	Pitcher	\$431,600
11	Aaron Miles	Los Angeles Dodgers	Second Baseman	\$500,000
12	Aaron Rowand	San Francisco Giants	Outfielder	\$13,600,000
13	Adam Dunn	Chicago White Sox	Designated Hitter	\$12,000,000
14	Adam Everett	Cleveland Indians	Shortstop	\$700,000

EXAMPLE 2.3: BASEBALL SALARIES 2011.XLSX

d	Α	В	C	D	E	F
1	Measures of central tendency				Measures of variability	
2	Mean	\$3,305,055			Range	\$31,586,000
3	Median	\$1,175,000			Interquartile range	\$3,875,925
4	Mode	\$414,000	57		Variance	20,563,887,478,833
5		15 75			Standard deviation	\$4,534,742
6	Min, max, p	oercentiles, quartile	es		Mean absolute deviation	\$3,249,917
7	Min	\$414,000				
8	Max	\$32,000,000			Measures of shape	
9	P01	\$414,000	0.01		Skewness	2.2568
10	P05	\$414,000	0.05		Kurtosis	5.7233
11	P10	\$416,520	0.10			
12	P20	\$424,460	0.20		Percentages of values less	than given values
13	P50	\$1,175,000	0.50		Value	Percentage less than
14	P80	\$5,500,000	0.80		\$1,000,000	46.38%
15	P90	\$9,800,000	0.90		\$1,500,000	54.69%
16	P95	\$13,590,000	0.95		\$2,000,000	58.36%
17	P99	\$20,000,000	0.99		\$2,500,000	63.23%
18	Q1	\$430,325	1		\$3,000,000	66.55%
19	Q2	\$1,175,000	2		28884 - 97	
20	Q3	\$4,306,250	3			

MEASURES OF CENTRAL TENDENCY

- THE MEAN IS THE AVERAGE OF ALL VALUES.
 - IF THE DATA SET REPRESENTS A SAMPLE FROM SOME LARGER POPULATION, THIS MEASURE IS CALLED THE **SAMPLE MEAN** AND IS DENOTED BY X.
 - IF THE DATA SET REPRESENTS THE ENTIRE POPULATION, IT IS CALLED THE **POPULATION** MEAN AND IS DENOTED BY M. $\sum_{i=1}^{n} X_{i}$

• IN EXCEL, THE MEAN CAN BE CALCULATED WITH THE AVERAGE FUNCTION.

MEASURES OF CENTRAL TENDENCY

(SLIDE 2 OF 3)

- THE **MEDIAN** IS THE MIDDLE OBSERVATION WHEN THE DATA ARE SORTED FROM SMALLEST TO LARGEST.
 - IF THE NUMBER OF OBSERVATIONS IS ODD, THE MEDIAN IS LITERALLY THE MIDDLE OBSERVATION.
 - IF THE NUMBER OF OBSERVATIONS IS EVEN, THE MEDIAN IS USUALLY DEFINED AS THE AVERAGE OF THE TWO MIDDLE OBSERVATIONS.
- IN EXCEL, THE MEDIAN CAN BE CALCULATED WITH THE MEDIAN FUNCTION.

MEASURES OF CENTRAL TENDENCY

(SLIDE 3 OF 3)

- THE MODE IS THE VALUE THAT APPEARS MOST OFTEN.
 - IN MOST CASES WHERE A VARIABLE IS ESSENTIALLY CONTINUOUS, THE MODE IS NOT VERY INTERESTING BECAUSE IT IS OFTEN THE RESULT OF A FEW LUCKY TIES.
 - HOWEVER, IT IS NOT ALWAYS A RESULT OF LUCK AND MAY REVEAL INTERESTING INFORMATION.
- IN EXCEL, THE MODE CAN BE CALCULATED WITH THE MODE.SNGL FUNCTION.

MINIMUM, MAXIMUM, PERCENTILES, AND QUARTILES

- FOR ANY PERCENTAGE P, THE PTH PERCENTILE IS THE VALUE SUCH THAT A PERCENTAGE P OF ALL VALUES ARE
 LESS THAN IT.
- THE QUARTILES DIVIDE THE DATA INTO FOUR GROUPS, EACH WITH (APPROXIMATELY) A QUARTER OF ALL OBSERVATIONS.
 - THE FIRST, SECOND AND THIRD QUARTILES ARE THE PERCENTILES CORRESPONDING TO P=25%, P=50%, AND P=75%.
 - BY DEFINITION, THE SECOND QUARTILE (P = 50%) IS EQUAL TO THE MEDIAN.
- THE MINIMUM AND MAXIMUM VALUES CAN BE CALCULATED WITH EXCEL'S MIN AND MAX FUNCTIONS, AND THE PERCENTILES AND QUARTILES WITH EXCEL'S PERCENTILE AND QUARTILE FUNCTIONS.