MTH5105 Differential and Integral Analysis 2008-2009

Exercises 3

Exercise 1: The functions sinh and cosh are given by

$$\sinh : \mathbb{R} \to \mathbb{R} , \qquad x \mapsto \frac{1}{2}(\exp(x) - \exp(-x)) ,$$

 $\cosh : \mathbb{R} \to \mathbb{R} , \qquad x \mapsto \frac{1}{2}(\exp(x) + \exp(-x)) .$

- (a) Prove that \sinh and \cosh are differentiable and that $\sinh' = \cosh$ and $\cosh' = \sinh$. [2 marks]
- (b) Prove that the function

$$f(x) = \cosh^2(x) - \sinh^2(x)$$

is constant by considering f'(x).

What is the value of the constant?

[4 marks]

(c) Prove the identity $\cosh(a+b) = \cosh(a)\cosh(b) + \sinh(a)\sinh(b)$ by considering the function

$$f(x) = \cosh(x+b) - \cosh(x)\cosh(b) - \sinh(x)\sinh(b)$$

for fixed $b \in \mathbb{R}$.

[4 marks]

Hint: you may use that if $g : \mathbb{R} \to \mathbb{R}$ is twice differentiable and g'' = g then there exist $c, d \in \mathbb{R}$ such that $g(x) = c \exp(x) + d \exp(-x)$.

(d) Prove that sinh is invertible.

[2 marks]

- (e) Prove that $\sinh(\mathbb{R}) = \mathbb{R}$. [4 marks] Hint: show that $\sinh(2x) > x$ for x > 0, and mimic the proof of the statement that $\exp(\mathbb{R}) = \mathbb{R}^+$.
- (f) Prove that $\operatorname{arsinh} = \sinh^{-1}$ is differentiable, and that

$$\operatorname{arsinh}'(x) = \frac{1}{\sqrt{1+x^2}} .$$

[4 marks]

- Solution: (a) exp is differentiable, therefore \sinh and \cosh are differentiable. Using $\exp' = \exp$, the derivatives follow immediately. [2 marks]
 - (b) f is differentiable, and $f'(x) = 2\cosh(x)\sinh(x) 2\sinh(x)\cosh(x) = 0$. By Theorem 11, f is constant. $f(0) = \cosh^2(0) \sinh^2(0) = 1$, so $\cosh^2(x) \sinh^2(x) = 1$. [4 marks]

- (c) f is differentiable with $f'(x) = \sinh(x+b) \sinh(x) \cosh(b) \cosh(x) \sinh(b)$. Similarly, f' is differentiable with $f''(x) = \cosh(x+b) \cosh(x) \cosh(b) \sinh(x) \sinh(b) = f(x)$. Therefore $f(x) = c \exp(x) + d \exp(-x)$. From 0 = f(0) = c + d and 0 = f'(0) = c d it follows that c = d = 0 and thus f(x) = 0. [4 marks]
- (d) $\sinh'(x) = \cosh'(x) > 0$ for all $x \in \mathbb{R}$, therefore sinh is strictly increasing by Theorem 9, and therefore invertible by the corollary after Theorem 16. [2 marks]
- (e) Let x > 0. We have $\exp(x) > 1 + x$ (see proof of Theorem 13) and $\exp(-x) < 1$ (since exp is strictly increasing, and $\exp(0) = 1$), so that $\sinh(x) > x/2$.

Let c > 0. From

$$\sinh(0) = 0 < c < \sinh(2c)$$

it follows by the IVT applied to the interval [0, 2c], that there exists an $x \in (0, 2c)$ such that $\sinh(x) = c$. A similar argument holds for c < 0, and for c = 0 we have $\sinh(0) = 0 = c$. [4 marks]

(f) $\sinh'(x) = \cosh(x) > 0$ for all $x \in \mathbb{R}$, therefore by Theorem 20, arish is differentiable and

$$\operatorname{arsinh}'(x) = \frac{1}{\cosh(\operatorname{arsinh}(x))}$$
.

Now $\cosh(x) = \sqrt{1 + \sinh^2(x)}$ (from (b), and the positive square root is taken as $\cosh(x)$ is positive), so that $\operatorname{arsinh}'(x) = 1/\sqrt{1+x^2}$. [4 marks]

- Exercise 2: (a) Find a bijective, continuously differentiable function $f: \mathbb{R} \to \mathbb{R}$ with f'(0) = 0 and a continuous inverse. [5 marks]
 - (b) Let $f: \mathbb{R}_0^+ \to \mathbb{R}$ be differentiable and decreasing. Prove or disprove: If $\lim_{x\to 0} f(x) = 0$, then $\lim_{x\to 0} f'(x) = 0$. [5 marks]
 - Solution: (a) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^3$. f is differentiable with continuous derivative $f'(x) = 3x^2$. We have $f'(0) = 3x^2$.

The inverse is $f^{-1}: \mathbb{R} \to \mathbb{R}, x \mapsto x^{1/3}$.

As f is strictly increasing on \mathbb{R} , f is injective. $f(\mathbb{R}) = \mathbb{R}$ implies that f is surjective as well, so f is bijective.

As f is differentiable, it is continuous. Therefore f^{-1} is also continuous. [5 marks]

(b) This can be disproved by a counterexample.

Let $f: \mathbb{R}_0^+ \to \mathbb{R}$ be given by f(x) = -x.

f is differentiable and f'(x) = -1 for $x \ge 0$.

 $\lim_{x\to 0} f(x) = 0$, but $\lim_{x\to 0} f'(x) = -1$. [5 marks]