INNER PRODUCTS — TUTORIAL

MATHEMATICS, SCAN 2ND YEAR, 2023–2024 — LAST UPDATE: APRIL 1, 2024

Exercise 1. Definitions

- 1. For each of the following maps, say whether or not it is a symmetric bilinear form / an inner product.
 - a) $\varphi: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, (u, v) \mapsto 2u_1v_2 3u_2 v_1.$
 - b) $\varphi: \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}, (P,Q) \mapsto P(0) + Q(0)$

c)
$$\varphi: \mathcal{C}^0([0,1],\mathbb{R}) \times \mathcal{C}^0([0,1],\mathbb{R}) \to \mathbb{R}, (f,g) \mapsto \int_0^1 t^2 f(t)g(t) dt.$$

d)
$$\varphi: \mathcal{C}^0([0,2],\mathbb{R}) \times \mathcal{C}^0([0,2],\mathbb{R}) \to \mathbb{R}, (f,g) \mapsto \int_0^2 (1-t)f(t)g(t) dt.$$

e)
$$\varphi: \mathcal{C}^0([0,2],\mathbb{R}) \times \mathcal{C}^0([0,2],\mathbb{R}) \to \mathbb{R}, (f,g) \mapsto \int_0^1 (1-t)f(t)g(t) dt.$$

f)
$$\varphi: \mathcal{C}^1([-1,1],\mathbb{R}) \times \mathcal{C}^1([-1,1],\mathbb{R}), (f,g) \mapsto f(0)g(0) + \int_a^b f'(t)g'(t) dt$$
, for some real quantities a,b satisfying $-1 \le a < b \le 1$.

- 2. Give an example of a non-symmetric bilinear form on $\mathbb{R}[X]$.
- 3. Let n and p denote a positive integer and a nonnegative integer, respectively. Under which condition on p does the map $\varphi:(P,Q)\mapsto \sum_{k=0}^p P(k)Q(k)$ define an inner product on $\mathbb{R}_n[X]$?

Exercise 2. A general way to define a quadratic form

Let f and g be two linear form on a real vector space E. Prove that the function $q: E \to \mathbb{R}$, $u \mapsto f(u)g(u)$ defines a quadratic form on E.

Conversely, provide an example of a real vector space E and a quadratic form on E which is not of this form (that is, which cannot be written as the product of two linear forms).

Exercise 3. Applications of Cauchy-Schwarz inequality

1. Prove that, for every function f in $\mathcal{C}^0([a,b],\mathbb{R})$, the following inequality holds:

$$\left(\int_a^b |f(t)| \ dt\right)^2 \le (b-a) \int_a^b |f(t)|^2 \ dt.$$

For which function is this inequality actually an equality?

- 2. a) Find the least value of the quantity $(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$, over all possible values of the positive quantities x and y and z.
 - b) Extend this result to an arbitrary number (instead of three) positive quantities.

Exercise 4. The orthogonal complement of the orthogonal complement of a subspace is this subspace (finite dimension)

Let E denote an Euclidean vector space and F denote a vector subspace of E. Prove that $(F^{\perp})^{\perp} = F$.

Exercise 5. Euclidean distance to a vector subspace

In \mathbb{R}^4 equipped with the canonical dot product, let F = span((1,2,-1,1),(0,3,1,-1)).

- 1. a) Find a system of equations of the coordinates (x, y, z, t) of a vector of \mathbb{R}^4 , such that F^{\perp} is equal to the solutions of this system.
 - b) Provide an orthonormal basis of F^{\perp} .
- 2. Let $e_1 = (1, 0, 0, 0)$. Compute the distance between e_1 and F.

Exercise 6. Euclidean distance to a vector subspace, 2

In \mathbb{R}^4 equipped with the canonical dot product, let

$$u = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix} \quad \text{and} \quad F = \operatorname{span}(v_1, v_2, v_3) \,, \quad \text{with} \quad v_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \\ 0 \end{pmatrix} \quad \text{and} \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \quad \text{and} \quad v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} \,.$$

- 1. What is the orthogonal subspace of u?
- 2. a) Provide an equation for F.
 - b) Find the orthogonal projection of u on F and the distance between u and F.

Exercise 7. Trigonometric functions

Let us consider the vector space $E = \mathcal{C}^0([0,1],\mathbb{R})$ equipped with the usual inner product:

$$\varphi(f,g) = \int_0^1 f(t)g(t) dt.$$

For every nonnegative integer n, let us consider the function $h_n:[0,1]\to\mathbb{R},\,t\mapsto\cos(2\pi nt)$.

- 1. Show that the family $(h_n)_{n\in\mathbb{N}}$ is orthogonal.
- 2. Why does this show that the dimension of E is infinite?
- 3. Recover this result (the infinite dimension of E) by an other (elementary) method, without using an inner product.

Exercise 8. Orthogonal subspace in a space of functions

Let $E = \mathcal{C}^{\infty}([0,1],\mathbb{R})$, and let us consider the map $\varphi: E \times E \to \mathbb{R}$ defined as:

$$\varphi(f,g) = \int_0^1 (f(t)g(t) + f'(t)g'(t)) dt.$$

Let us consider the vector subspaces V and W of E, defined as:

$$V = \{ f \in E : f(0) = f(1) = 0 \}$$
 and $W = \{ f \in E : f = f'' \}$.

- 1. Prove that φ is an inner product on E.
- 2. Prove that V and W are orthogonal to one another (meaning: every vector of V is orthogonal to every vector of W, for the inner product above). Can you deduce from this statement that V is included in W^{\perp} ? that V^{\perp} is included in W?
- 3. Provide an orthogonal basis of W.
- 4. Prove that $V = W^{\perp}$.

Exercise 9. Distance to a vector subspace of \mathbb{R}^3

In \mathbb{R}^3 equipped with its canonical dot product, let us consider the subset $H = \{(x, y, z) \in \mathbb{R}^3 : ax + by + cz = 0\}$, where a and b and c are three nonzero real numbers.

- 1. Why is H a vector subspace of \mathbb{R}^3 , and what is its dimension?
- 2. Describe H^{\perp} .
- 3. Compute the distance between H and a point (x_0, y_0, z_0) of \mathbb{R}^3 .

Exercise 10. Distance to a vector subspace of functions

Let us consider the space $E = \mathcal{C}^0([0,\pi],\mathbb{R})$, equipped with the inner product φ defined as:

$$\varphi(f,g) = \int_0^{\pi} f(t)g(t) dt,$$

and let us denote by $\|\cdot\|_2$ the norm associated with φ . Let us denote by id_E the identity function $[0,\pi] \to \mathbb{R}$, $x \mapsto x$, and let $F = \mathrm{span}(\cos, \sin, \mathrm{id}_E)$ in E (here \cos and \sin stand for the restrictions to the interval $[0,\pi]$ of the functions cosine and sine).

- 1. Prove that the three functions (\cos, \sin, id_E) are linearly independent.
- 2. Write the matrix of φ , restricted to F, in the basis (cos, sin, id_E) of F.
- 3. Let G denote the subspace of the solutions of the differential equation $\ddot{u} + u = 0$ on the interval $[0, \pi]$.
 - a) Prove that G is a vector subspace of F. What is its dimension?
 - b) Provide an orthonormal basis (e_1, e_2) of G for the inner product φ .
- 4. Find a vector e_3 such that (e_1, e_2, e_3) be an orthogonal basis of F for the inner product φ .
- 5. Let f denote an element of F, and let us write

$$d(f,G) = \inf_{g \in G} ||f - g||_2$$
.

- a) Prove that f can be written as: $f = f_0 + g_0$, with g_0 in G and $\varphi(f_0, g_0) = 0$.
- b) Prove that, with this notation, for every g in G,

$$||f - g||_2^2 = ||f_0||_2^2 + ||g - g_0||_2^2$$
 and $\operatorname{dist}(f, G) = ||f_0||_2$.

6. Compute the quantity
$$I = \inf_{(a,b) \in \mathbb{R}^2} \int_0^{\pi} \left(a\cos(t) + b\sin(t) - t\right)^2 dt$$
.

Exercise 11. Application of orthogonal projection to minimization

Let us consider the map $\varphi : \mathbb{R}_2[X] \times \mathbb{R}_2[X] \to \mathbb{R}$, defined as: $\varphi(P,Q) = \int_0^{+\infty} P(t)Q(t)e^{-t} dt$.

- 1. Prove that φ is an inner product on $\mathbb{R}_2[X]$.
- 2. For every nonnegative integer n, compute the quantity $I_n = \int_0^{+\infty} t^n e^{-t} dt$. Provide the matrix of φ in the canonical basis $(1, X, X^2)$ of $\mathbb{R}_2[X]$.
- 3. Provide an orthonormal basis of the subspace span (X, X^2) in $\mathbb{R}_2[X]$, for the inner product φ .
- 4. Compute the quantity $\min_{(a,b)\in\mathbb{R}^2} \int_0^{+\infty} (1-at-bt^2)^2 e^{-t} dt$.

Exercise 12. Projection on a finite dimension subspace, general properties

Let E denote a real vector space equipped with some inner product $\langle \cdot, \cdot \rangle$, and let $\| \cdot \|$ denote the corresponding norm. Let F denote a finite dimensional vector subspace of E, and let p denote the orthogonal projection onto F, in E.

1. Prove that, for every vector x of E,

$$||p(x)|| \le ||x||$$
 and $\langle x, p(x) \rangle = ||p(x)||^2$.

2. Provide a necessary and sufficient condition on x so that $p(x) = 0_E$.

Exercise 13. Minimization

Compute the quantities

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 t^2 \left(\ln(t) - at - b\right)^2 dt \quad \text{and} \quad \inf_{(a,b)\in\mathbb{R}^2} \int_0^1 t^2 \left(\sin(t) - at - b\right)^2 dt.$$

3