Linear Algebra Homework 3

Deadline:11/12 24:00

- 0. Lecture notes from 10/27 to 11/5, please upload as a separate pdf file to the corresponding assignment.
- 1. Let A $(m \times n)$, B $(n \times k)$ be two matrices. Show that the columns of AB are linear combinations of the columns of A. Then show that $C(AB) \subseteq C(A)$.
- 2. (a) Suppose column j of B is a combination of previous columns of B. Show that column j of AB is the same combination of previous columns of AB. Then AB cannot have new pivot columns, so $rank(AB) \leq rank(B)$.
 - (b) Find A_1 and A_2 so that $\operatorname{rank}(A_1B)=1$ and $\operatorname{rank}(A_2B)=0$ for B $=\begin{bmatrix}1&1\\1&1\end{bmatrix}$.
- 3. Consider A = $\begin{bmatrix} 2 & 8 & 1 & 0 & 7 \\ -3 & -12 & 0 & 2 & 2 \\ 5 & 20 & -2 & -1 & 0 \end{bmatrix}$ Find N(A) the null space of A.

Please also identify pivot variables and free variables.

- 4. Which of the following subsets of \mathbb{R}^3 are actually subspaces?
 - (a) The plane of vectors (b_1,b_2,b_3) with $b_1 = b_2$
 - (b) The plane of vectors with $b_1 = 1$.
 - (c) The vectors with $b_1b_2b_3 = 0$.
 - (d) All linear combinations of v = (1,4,0) and w = (2,2,2).
 - (e) All vectors that satisfy $b_1 + b_2 + b_3 = 0$.
 - (f) All vectors with $b_1 \le b_2 \le b_3$
- 5. The matrix $A = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$ is a "vector" in the space M of all 2 by 2 matrices. Write down the zero vector in this space, the vector $\frac{1}{2}$ A, and the vector -A. What matrices are in the smallest subspace containing A?
- 6. Suppose you know that the 3 by 4 matrix A has the vector s = (2, 3, 1, 0) as the only special solution to Ax = 0.
 - (a) What is the rank of A and the complete solution to Ax = 0?
 - (b) What is the exact row reduced echelon form R of A?
 - (c) How do you know that Ax = b can be solved for all b?