MAE 263F: Homework2_He

Jiahua He

Abstract— This electronic document is a report of Homework1 for 263F.

I. PROBLEM STATEMENT

The question is showing in Fig.1 below.

Assignment: An elastic rod with a total length l=20 cm is naturally curved with radius $R_n=2$ cm. The location of its N nodes at t=0 are

$$\mathbf{x}_k = [R_n \cos((k-1)\Delta\theta), \quad R_n \sin((k-1)\Delta\theta), \quad 0]$$

where $\Delta\theta=\frac{l}{R_n}\frac{1}{N-1}$. The twist angles θ^k $(k=1,\ldots,N-1)$ at t=0 are 0. The first two nodes and the first twist angle remain fixed throughout the simulation (i.e. one end is clamped). The physical parameters are: density $\rho=1000$ kg/m³, cross-sectional radius $r_0=1$ mm, Young's modulus E=10 MPa, shear modulus $G=\frac{E}{3}$ (corresponding to an incompressible material), and gravitational acceleration $g=[0,0,-9.81]^T$. Choose an appropriate time step size Δt and number of nodes N.

- Write a computer program that simulates the deformation of this rod under gravity from t = 0 to t = 5 s.
- \bullet Plot the z-coordinate of the last node (\mathbf{x}_N) with time. The solution can be found at the end of this Chapter.

Figure. 1 Question Statement

II. ANSWER

A. Problem1

The program that simulates the deformation of this rod under gravity from t=0 to t=5 s is in GitHub repository. The images below show the initial discrete elastic rob structure and the shape of the rod after 4.91 seconds of simulation.

Figure. 2 Discrete Elastic Rob Structure at t=0 s

Figure. 3 Discrete Elastic Rob Structure at t=4.91 s

B. Problem2

The z-coordinate of the last node $(x_{\rm N}$) with time is shown below in Fig.4.

Figure. 4 z-coordinate of the last node (x_N) with time

REFERENCES

[1] M. K. Jawed and S. Lim, "Discrete simulation of slender structures," *BruinLearn*, 2024.