PROV 3
Tid: 2x45 min

17 mars 2020

## HEMSKRIVNING: Kärnfysik

Till varje uppgift krävs fullständiga lösningar som tydligt visar hur du tänkt.

## NAMN:

1. Vilken av nukliderna nedan har flest

$$^{29}_{14}Si^{-i}\dot{c}$$
  $^{28}_{13}Al^{\Box}$   $^{31}_{15}P^{+i}\dot{c}$ 

- 2. Beräkna för nukliden <sup>6</sup><sub>3</sub>Li
  - a) massdefekten (i u, tre decimaler). (2p)
  - b) bindningsenergin (i MeV, en decimal). (1p)
- 3. Skriv reaktionsformel för sönderfallen nedan.
  - a) B-12 sönderfaller och sänder ut en  $\beta^{-}$ -partikel. (2p)
  - b) K-40 sönderfaller och sänder ut en  $\beta^+$ -partikel. (2p)
- 4. Beräkna den energi som frigörs i reaktionen i uppgift 3 a) (i MeV, en decimal). (3p)
- 5. Förklara med hjälp av bilden varför de stabila nukliderna placerar sig enligt prickarna i diagrammet. (2p)



- 6. En bit renkött i Sverige innehåller 2,9·10<sup>11</sup> atomer av den radioaktiva nukliden <sup>137</sup>Cs.
  - a) Visa att aktiviteten från <sup>137</sup>Cs är 0,21kBq i renköttet. (2p)
  - b) Bestäm aktiviteten 10 år senare. (2p)

7. Förklara vad som sker vid fission <u>och</u> fusion m h a bilden nedan (massan måste diskuteras).

(4p)



- 8. I ett kärnkraftverk bestrålar man <sup>235</sup>U med neutroner med låg kinetisk energi för att åstadkomma en fission. Fissionsprodukterna kan vara av olika slag, t ex kan det bildas <sup>144</sup>Ba och <sup>89</sup>Kr samt ett antal neutroner vid kärnklyvningen. Antag att klyvningen av en kärna U-235 frigör 173 MeV. Den elektriska uteffekten (nyttig effekt) från kraftverket är 95 MW och verkningsgraden är 25 %.
  - a) Skriv reaktionsformel (låt <u>en</u> neutron träffa U-235) för reaktionen som beskrivs ovan. (2p)
  - b) Beräkna hur mycket elektrisk energi (i J) kraftverket producerar under ett dygn. (2p)
  - c) Beräkna hur mycket energi (i J) som fås ur kärnreaktionerna under ett dygn. (1p)
  - d) Beräkna massan (i kg) på det U-235 som förbrukas under ett dygn. (2p)
- 9. Förklara vad man ser i bilden nedan. Fyll även i energi och strålningstyp som bör stå där pilen pekar. (3p)



| 10 De            | en radioaktiva isotopen 223 Ra sönderfaller till 219 Rn .                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a)               | Skriv reaktionsformel och ange vilken strålning som skickas ut i sönderfallet. (2p) Beräkna den energi som frigörs i reaktionen ovan (i MeV, en decimal). (3p) |
|                  | Markera i nuklidkartan <b>på sista sidan</b> hela sönderfallskedjan som startar med  223 Ra  och slutar när ett stabilt ämne nås.                              |
| (2p              | p)                                                                                                                                                             |
| d)               | Förklara varför du "hoppar" som du gör vid $\alpha$ -sönderfall och $\beta^-$ -sönderfall. (2p)                                                                |
| e)               | Förklara varför det inte är bra att andas in mycket radongas (  Påverkan på cellnivå ska beskrivas!  219 Rn ) i lungorna. (2p)                                 |
| <i>i</i> ) var i | rklara för följande begrepp: (10p)  ett kärnkraftverk man kan hitta dem  een funktion de har:                                                                  |
| a)               | Styrstavar                                                                                                                                                     |
| b)               | Moderator                                                                                                                                                      |
| c)               | Värmeväxlare                                                                                                                                                   |
| d)               | Bränslestavar                                                                                                                                                  |
| e)               | Turbin                                                                                                                                                         |
|                  |                                                                                                                                                                |

|              | Z  |                        |        |           | Del av nul | klidkarta   |             |          |          |         |        |          |                               |              |        |
|--------------|----|------------------------|--------|-----------|------------|-------------|-------------|----------|----------|---------|--------|----------|-------------------------------|--------------|--------|
|              |    | 1                      |        |           |            |             |             |          |          |         |        |          | U 226                         | U 227        | U 228  |
| Uran         | 92 |                        |        |           |            |             |             |          |          |         |        |          | 0.5 s                         | 1.1 m        | 9.1 m  |
|              |    |                        |        |           |            |             |             |          |          |         |        |          | Œ                             | Œ            | Œ      |
|              |    |                        | Pa 215 | Pa 216    | Pa 217     | Pa 218      |             |          | Pa 221   | Pa 222  | Pa 223 | Pa 224   | Pa 225                        | Pa 226       | Pa 227 |
| Protaktinium | 91 |                        | 14 ms  | 0,20 s    | 4,9 ms     | 0,12 ms     |             |          | 6 μs     | 5,7 ms  | 6,5 ms | 0,95 s   | 1,8 s                         | 1,8 m        | 38 m   |
|              |    |                        | Œ      | Œ         | Œ          | Œ           |             |          | Œ        | Œ       | Œ      | Œ        | Œ                             | Œ            | Œ      |
|              |    | Th 213                 | Th 214 | Th 215    | Th 216     | Th 217      | Th 218      | Th 219   | Th 220   | Th 221  | Th 222 | Th 223   | Th 224                        | Th 225       | Th 226 |
| Thorium      | 90 | 0,14 s                 | 0,13 s | 1,2 s     | 28 ms      | 250 µs      | 0,11 μs     | 1,05 µs  | 10 µs    | 1,7 ms  | 2,9 ms | 0,66 s   | 2,0 s                         | 8 m          | 31 m   |
|              |    | α                      | Œ      | Œ         | Œ          | Œ           | Œ           | Œ        | Œ        | Œ       | Œ      | Œ        | Œ                             | Œ            | Œ      |
|              |    | Ac 212                 | Ac 213 | Ac 214    | Ac 215     | Ac 216      | Ac 217      | Ac 218   | Ac 219   | Ac 220  | Ac 221 | Ac 222   | Ac 223                        | Ac 224       | Ac 225 |
| Actinium     | 89 | 0,93 s                 | 0,80 s | 8,2 s     | 0,17 s     | 0,33 ms     | 0,11 μs     | 0,27 μs  | 7 μs     | 26 ms   | 52 ms  | 66s / 5s | 2,2 m                         | 2,9 h        | 10 d   |
|              |    | Œ                      | Œ      | Œ         | Œ          | Œ           | Œ           | Œ        | Œ        | Œ       | Œ      | Œ        | Œ                             | EC           | Œ      |
|              |    | Ra 211                 | Ra 212 | Ra 213    | Ra 214     | Ra 215      | Ra 216      | Ra 217   | Ra 218   | Ra 219  | Ra 220 | Ra 221   | Ra 222                        | Ra 223       | Ra 224 |
| Radium       | 88 | 13 s                   | 13,0 s | 2,7 m     | 2,5 s      | 1,6 ms      | 0,18 μs     | 1,6 µs   | 14 µs    | 10 ms   | 23 ms  | 29 s     | 38 s                          | 11, 4 d      | 3,7 d  |
|              |    | Œ                      | Œ      | Œ         | Œ          | Œ           | Œ           | α        | Œ        | Œ       | Œ      | Œ        | Œ                             | Œ            | Œ      |
|              |    | Fr 210                 | Fr 211 | Fr 212    | Fr 213     | Fr 214      | Fr 215      | Fr 216   | Fr 217   | Fr 218  | Fr 219 | Fr 220   | Fr 221                        | Fr 222       | Fr 223 |
| Francium     | 87 | 3,2 m                  | 3,1 m  | 19,3 m    | 34,6 s     | 3,4 / 5,1ms | 0,12 μs     | 0,70 μs  | 22 µs    | 0,7 ms  | 20 ms  | 27 s     | 4,8 m                         | 14,8 m       | 22 m   |
|              |    | Œ                      | Œ      | EC        | Œ          | Œ           | Œ.          | Œ        | Œ        | Œ       | Œ.     | Œ        | Œ                             | β-           | β-     |
|              |    | Rn 209                 | Rn 210 | Rn 211    | Rn 212     | Rn 213      | Rn 214      | Rn 215   | Rn 216   | Rn 217  | Rn 218 | Rn 219   | Rn 220                        | Rn 221       | Rn 222 |
| Radon        | 86 | 29 m                   | 2,4 h  | 14,7 h    | 24 m       | 25 ms       | 0,27 μs     | 2,3 µs   | 45 µs    | 0,54 ms | 35 ms  | 4,0 s    | 56 s                          | 25 m         | 3,8 d  |
|              |    | EC                     | Œ      | EC        | Œ          | Œ           | Œ.          | Œ        | Œ        | Œ       | Œ      | Œ        | Œ                             | ozoch β−     | Œ      |
|              |    | At 208                 | At 209 | At 210    | At 211     | At 212      | At 213      | At 214   | At 215   | At 216  | At 217 | At 218   | At 219                        |              |        |
| Astatine     | 85 | 1,63 h                 | 5,4 h  | 8,1 h     | 7,2 h      | 122 / 315ms | 0,11 μs     | 2 μs     | 0,10 ms  | 0,3 ms  | 32 ms  | 2 s      | 54 s                          |              |        |
|              |    | EC                     | EC     | EC        | Œ          | Œ           | Œ.          | Œ        | Œ        | Œ       | Œ      | Œ        | Œ                             |              |        |
|              |    | Po 207                 | Po 208 | Po 209    | Po 210     | Po 211      | Po 212      | Po 213   | Po 214   | Po 215  | Po 216 | Po 217   | Po 218                        |              |        |
| Polonium     | 84 | 5,8 h                  | 2,9 y  | 102 y     | 138 d      | 25 / 0,52s  | 46s / 0,3µs | 4,2 μs   | 160 µs   | 1,8 ms  | 0,15 s | <10 s    | 3,1 m                         |              |        |
|              |    | β+                     | Œ      | Œ         | Œ          | Œ           | Œ.          | Œ        | Œ        | Œ       | Œ      | Œ        | oz.och β−                     |              |        |
|              |    | Bi 206                 | Bi 207 | Bi 208    | Bi 209     | Bi 210      | Bi 211      | Bi 212   | Bi 213   | Bi 214  | Bi 215 |          |                               |              |        |
| Vismut       | 83 | 6,2 d                  | 38 y   | 3,7*10° y |            | 5 d         | 2,1 m       | 61 m     | 46 m     | 19,8 m  | 7,4 m  |          |                               |              |        |
|              |    | β+                     | EC     | EC        | Stabil     | β-          | Œ           | ozoch β− | ozoch β− | β-      | β-     |          | Nuklid                        |              |        |
|              |    | Pb 205                 | Pb 206 | Pb207     | Pb 208     | Pb 209      | Pb 210      | Pb 211   | Pb 212   | Pb 213  | Pb 214 |          |                               |              |        |
| Bly          | 82 | 1,51*10 <sup>7</sup> y |        |           |            | 3,2 h       | 22 y        | 36 m     | 10,6 h   | 10,2 m  | 27 m   |          | T <sub>1/2</sub> metastabil / |              |        |
|              |    | EC                     | Stabil | Stabil    | Stabil     | β-          | β-          | β-       | β-       | β-      | β-     |          | T 1/2 9                       | grundtillstå | nd     |
|              |    | TI 204                 | TI 205 | TI 206    | TI 207     | TI 208      | TI 209      | TI 210   |          |         |        |          |                               |              |        |
| Thallium     | 81 | 3,8 y                  |        | 4,2 m     | 4,8 m      | 3,1 m       | 2,2 m       | 1,3 m    |          |         |        |          | Sönderfallstyp                |              |        |
|              |    | β                      | Stabil | β-        | β-         | β-          | β-          | β-       |          |         |        |          |                               |              |        |
|              |    |                        |        |           |            |             |             |          |          |         |        |          |                               |              |        |
| N            |    | 123                    | 124    | 125       | 126        | 127         | 128         | 129      | 130      | 131     | 132    | 133      | 134                           | 135          | 136    |

## **Konstanter:**

Se även nuklidtabell och det periodiska systemet!

 $1 u \approx 1,66054 \cdot 10^{-27} kg \approx 931,5 \, MeV/c^2$   $1 c \approx 2,9979 \cdot 10^8 \, m/s$  $1 e \approx 1,602 \cdot 10^{-19} \, C$