

## MODELO PREDICTIVO DE EXPORTACIONES AGRÍCOLAS EN COLOMBIA HASTA EL 2026 PROYECTO TALENTO TECH

Ricardo Andres Sanchez Sanches Alexander González Troncoso

#### TABLA DE CONTENIDO

01

INTRODUCCIÓN

04

**DASHBOARD** 

02

IDENTIFICACIÓN DEL

PROBLEMA Y OBJETIVOS

05

**MODELO PREDICTIVO** 

03

ANÁLISIS DESCRIPTIVO

06

CONCLUSIONES Y PERSPECTIVA S



#### INTRODUCCIÓN

Colombia es un actor clave en el comercio agrícola global, destacándose en la exportación de café, banano, flores, cacao y palma de aceite, entre otros productos. Estas exportaciones generan empleo y fortalecen la economía del país.

Sin embargo, factores como la volatilidad del mercado, el clima y las políticas comerciales afectan la estabilidad del sector. Para enfrentar estos desafíos, este proyecto desarrolla un modelo predictivo de exportaciones hasta 2026, aplicando ciencia de datos y machine learning.





#### **IDENTIFICACIÓN DE PROBLEMA**



#### **VARIABILIDAD**

Variabilidad de los mercados internacionales y su impacto en la deman- da de productos colombianos.



#### **MEDIO AMBIENTE**

Efectos del cambio climático en la producción agrícola y disponibilidad de productos para la exportación.



#### **MODELOS**

Falta de acceso a modelos predictivos que permitan planificar de manera estratégica las exportaciones.



#### **OPTIMIZACIÓN**

Necesidad de optimizar la logística y distribución de productos para minimizar pérdidas y maximizar ganancias.

#### **OBJETIVO GENERAL**

Desarrollar un modelo predictivo para la gestión de las exportaciones agrícolas tradicionales y no tradicionales en Colombia, utilizando técnicas avanzadas de análisis de datos para optimizar la toma de decisiones en el sector.

## OBJETIVOS ESPECÍFICOS

- Implementar un proceso ETL con SQL y Python para limpiar, transformar y estructurar la información de exportaciones agrícolas colombianas.
- Visualizar tendencias y patrones de exportación mediante dashboards interactivos en Power Bl.
- Construir un modelo predictivo basado en regresión logística, series temporales y técnicas de machine learning.
- Optimizar el modelo predictivo mediante ajuste de hiperparámetros y validación con datos recientes.
- Analizar el impacto del modelo en la planificación y gestión del comercio agrícola.



03

### ANÁLISIS DESCRIPTIVO

#### **DATOS**

Se utilizó un conjunto de datos detallado sobre exportaciones agrícolas en Colombia, incluyendo productos tradicionales y no tradicionales, medidos en dólares FOB y toneladas.

- Fuente: Ministerio de Agricultura y Desarrollo Rural
- Cobertura: Nacional
- Frecuencia de actualización: Mensual
  - **Tamaño:** 476,000 filas y 9 columnas
- Última actualización: 11 de septiembre de 2024

Los datos provienen del portal de datos abiertos del gobierno colombiano y permiten analizar la evolución de las exportaciones, facilitando la identificación de patrones clave para la construcción del modelo predictivo.

476 K

**FILAS** 

9

**COLUMNAS** 

#### **EXPORTACIÓN**

CADA FILA ES UNA

#### ¿QUÉ HAY EN ESTE CONJUNTO DE DATOS?

| Columnas (9)                            |                                                         |
|-----------------------------------------|---------------------------------------------------------|
| Nombre de la columna                    | Descripción                                             |
| # Partida                               | Subpartida arancelaria a 10 dígitos                     |
| T <sub>T</sub> Descripcion Partida10 Di | g Descripción de la subpartida arancelaria a 10 digitos |
| <b>T</b> Tradición productos            | Tipo de tradicionalidad del producto                    |
| T <sub>T</sub> Departamento             | Departamento de origen                                  |
| <b>T</b> Pais                           | País de destino de la exportación                       |
| # Año                                   | Año                                                     |
| T <sub>T</sub> Mes                      | Mes                                                     |
| # Exportaciones en valor (I<br>USD FOB) | Miles Valor de la exportación en miles de dólares FOB   |
| Exportaciones en volume (Toneladas)     | en Cantidad de toneladas de la exportación              |

## PROCESO ETL (EXTRACCIÓN, TRANSFORMACIÓN Y CARGA)

Esencial para estructurar y limpiar los datos antes del análisis y modelado.

#### Importancia de un dataset limpio:

- ✓ Mejora la precisión de los modelos.
- ✓ Facilita la interpretación de resultados.
- ✓ Optimiza el rendimiento computacional.
- ✓ Permite una toma de decisiones basada en evidencia.

#### Características del dataset:

- o Registros: 475,785 | Columnas: 9
- o Cobertura: 2019 2024
- Exportaciones (USD FOB): Máx. 92.6M | 50% < 1,000 USD</li>
- o Exportaciones (Toneladas): Media: 64.71 | Máx. 60,979

#### TRANSFORMACIÓN DEL DATASET

Se carga el Dataset por medio de pandas, en un archivo CSV. Revisión y manejo de valores nulos para asegurar la calidad de los datos. Se combinaron las columnas Año y Mes en una nueva columna Fecha con formato datetime.

Los valores en miles de USD fueron convertidos a pesos colombianos (COP) usando una API.

Archivo listo para los modelos.

El nuevo archivo limpio fue guardado como Exportaciones\_limpias.csv.

Se calculan las coordenadas de Latitud y Longitud para Departamento y Pais. División por 1,000,000 para expresar los valores en millones de COP.

#### **ANÁLISIS DESCRIPTIVO**



#### **ANÁLISIS DESCRIPTIVO**



#### **ANÁLISIS DESCRIPTIVO**



Se observa que los productos
tradicionales representan el 62.2 %
del total exportado, mientras que
los no tradicionales abarcan el
37.8\%

Esto sugiere que, aunque hay una diversificación en los productos exportados, los sectores históricos como el café, el banano y las flores siquen dominando el mercado exterior. Este predominio indica que la economía exportadora del país aún depende en gran medida de estos productos agrícolas, reflejando su importancia histórica y estructural.



#### Exportaciones Tradicionales vs No Tradicionales por Departamento





04
DASHBOARD



# O5 MODELOS

#### SELECCIÓN DE VARIABLES

#### Conversión de fechas al tipo datetime.

- Extracción de variables temporales: Año y Mes.
- Codificación binaria de la variable Tradicional.
- Agrupación por mes, año y tipo de producto para construir una serie temporal.

#### Variables explicativas:

- Año: captura tendencias a largo plazo.
- Mes: modela estacionalidades.
- Tradicional: clasifica si el producto es tradicional (binaria).

#### Variable objetivo:

Exportaciones en millones COP.

#### DIVISIÓN DE DATOS Y MODELOS

El conjunto de datos fue dividido en conjuntos de entrenamiento (80 %) y prueba (20 %) utilizando la función train\_test\_split. Esta división es fundamental para validar la capacidad de generalización de los modelos.

Se entrenaron cinco modelos de regresión, cada uno con características y fundamentos matemáticos distintos:

#### **MODELOS**

REGRESIÓN LINEAL MÚLTIPLE

RANDOM FOREST REGRESSOR

XGBOOST REGRESSOR

GRADIENT BOOSTING REGRESSOR

RED NEURONAL (MLPREGRESSOR)





| Modelo                      | MSE                   | RMSE        | $ m R^2$ |
|-----------------------------|-----------------------|-------------|----------|
| Random Forest               | $4,92 \times 10^{10}$ | 221,715,52  | 0,6096   |
| XGBoost                     | $5,19 \times 10^{10}$ | 227, 875,83 | 0,5876   |
| Gradient Boosting           | $1,15 \times 10^{11}$ | 339,270,94  | 0,0859   |
| Red Neuronal (LSTM)         | $1,82 \times 10^{11}$ | 427, 197,73 | -0,4493  |
| Red Neuronal (Feed-Forward) | $7,89 \times 10^{10}$ | 280, 895,24 | 0,3734   |







6800 s ≈ 2 h Corriendo 100 épocas



## 05

# CONCLUSIONES Y PERSPECTIVAS

- Los resultados obtenidos muestran que el modelo Random Forest alcanzó el mejor desempeño predictivo, superando a otros enfoques como XGBoost, Gradient Boosting y redes neuronales.
- Este comportamiento se debe a su capacidad para manejar relaciones no lineales, su robustez frente al sobreajuste y su buen rendimiento incluso con un número reducido de variables explicativas.
- En contraste, modelos más complejos como las redes neuronales requieren una mayor dimensionalidad y volumen de datos para desplegar su potencial. Por tanto, Random Forest se consolida como la opción más adecuada para proyectar las exportaciones agrícolas en este caso.

- Importante mejorar la conectividad entre Datasets para lograr tener más variables que aporten al módelo. Esto influye en los resultados en gran medida.
- Este proyecto sirve como una forma de visualizar de cierta forma el comportamiento de las exportaciones a futuro en el área agricola, que es uno de nuestros fuertes como país. Tener esto presente en nuestro mercado es fundamental, para mejorar estretegias, para potenciar nuestro nivel de exportación.

