第4章 (之1) 第 19 次作业

教学内容: § 4 .1 .1 函数的单调性 § 4.1.2 函数的极值

**1. 已知 $f(x) = x^3 + ax^2 + bx$ 在 x = 1 处有极值 -2,则常数 a = 0 .

答: a = 0, b = -3

2. 选择题

*** (1) 设 f(x), g(x) 在区间 [a,b] 上可导, 且 f'(x) > g'(x), 则在 (a,b] 上有

- (A) f(x)-g(x)>0
- (B) $f(x) g(x) \ge 0$
- (C) f(x) g(x) > f(a) g(a) (D) f(x) g(x) > f(b) g(b)

答: (C)

*** (2) 设f(x) 与g(x) 都在x = a处取得极大值,则F(x) = f(x)g(x) 在x = a处

- (A) 必取极大值
- (B) 必取极小值
- (C) 不可能取极值 (D) 是否取极值不能确定

答(D)

**** (3) 已知 f(x) 在 x = 0 的某个邻域内连续, $\lim_{x \to 0} \frac{f(x)}{1 - \cos x} = 2$,则必有

① f(0) = 0; ② f'(0) = 0; ③ $f(x) \sim x^2(x \to 0)$; ④ f(0) 为极大值.

以上结论中正确的个数为

()

- (*A*)1
- (B) 2 (C) 3
- (D)4

答(C)

***(4)函数 y = f(x)在点 $x = x_0$ 处连续且取得极大值,则f(x)在 x_0 处必有 ()

- (A) $f'(x_0) = 0$
- (B) $f''(x_0) < 0$
- (C) $f'(x_0) = 0$ 且 $f''(x_0) < 0$ (D) $f'(x_0) = 0$ 或不存在

答(D)

3. 求下列函数的单调区间:

** (1)
$$y = x^2 + \frac{6}{x}$$

解: 函数在($-\infty$,0)及(0,+ ∞)内连续, $y' = \frac{2(x^3 - 3)}{x^2}$,

解得驻点
$$x = \sqrt[3]{3}$$
,

X	$(-\infty,0)$	$(0,\sqrt[3]{3})$	$\sqrt[3]{3}$	$(\sqrt[3]{3},+\infty)$
y'	_	_	0	+
у	↓	↓		†

函数的单调增区间为($\sqrt[3]{3}$,+ ∞),单调减区间为($-\infty$,0),(0, $\sqrt[3]{3}$).

** (2)
$$y = (x-5)^2 \sqrt[3]{(x+1)^2}$$

解: 函数在
$$(-\infty, +\infty)$$
内连续 $y' = \frac{8(x-5)(x-\frac{1}{2})}{3\sqrt[3]{x+1}}$ $x \neq -1$,

令
$$y' = 0$$
得 $x_1 = 5$, $x_2 = \frac{1}{2}$, 而当 $x = -1$ 时, y' 不存在,

X	$(-\infty, -1)$	-1	$(-1,\frac{1}{2})$	$\frac{1}{2}$	$(\frac{1}{2},5)$	5	$(5, +\infty)$
y'	_	X	+	0	_	0	+
у	↓		↑		↓		↑

函数的单调增区间为[$-1,\frac{1}{2}$],[$5,+\infty$),单调减区间为($-\infty,-1$],[$\frac{1}{2},5$].

4. 证明下列不等式

** (1) 证明当x > 1时, $2\sqrt{x} > 3 - \frac{1}{x}$.

$$\Re: \ \diamondsuit f(x) = 2\sqrt{x} - 3 + \frac{1}{x}, \quad f'(x) = \frac{1}{\sqrt{x}} - \frac{1}{x^2},$$

$$f(x)$$
在 $[1, +\infty]$ 上连续

当
$$x > 1$$
时 $f'(x) > 0$ 故 $f(x)$ 在 $\left[1, +\infty\right)$ 上单调增

当
$$x > 1$$
时恒有 $f(x) > f(1) = 0$, 即 $2\sqrt{x} > 3 - \frac{1}{x}$.

** (2) $\exists x \ge 0$ $\forall x \ge 0$ $\forall x \ge 0$, $x^a - ax \le 1 - a$ (0 < a < 1).

$$\mathbb{M}: \ \, \diamondsuit f(x) = x^a - ax - 1 + a, \ \, \mathbb{M} f'(x) = ax^{a-1} - a = a\left(\frac{1}{x^{1-a}} - 1\right)$$

当
$$0 \le x < 1$$
时, $f'(x) > 0$,故 $f(x) < f(1) = 0$

当
$$x > 1$$
时, $f'(x) < 0$,故 $f(x) < f(1) = 0$

综合得: 当 $x \ge 0$ 时, $x^a - ax \le 1 - a$ (0 < a < 1)

*** (3) 当
$$b > a > e$$
时, $a^b > b^a$.

解: 设
$$f(x) = x \ln a - a \ln x$$
 $(x > a)$

$$f'(x) = \ln a - \frac{a}{x} = \frac{x \ln a - a}{x}$$
, $\therefore a > e \Rightarrow \ln a > 1$,
 $\therefore \exists x > a$ 时, $f'(x) > 0$,
 $\therefore b > a > e$ 时, $f(b) > f(a)$,
 $\therefore b \ln a - a \ln b > 0$, $\therefore a^b > b^a$.

5. 求下列函数的极值

** (1) $f(x) = (x-1)x^{\frac{2}{3}}$ (注: 本题说明讨论极值时不可忽略导数不存在的点.)

解:
$$f'(x) = \frac{5}{3}x^{\frac{2}{3}} - \frac{2}{3}x^{-\frac{1}{3}} = \frac{\frac{5}{3}x - \frac{2}{3}}{x^{\frac{1}{3}}}$$
,
令 $f'(x) = 0$, 得驻点 $x = \frac{2}{5}$, 不可导点为 $x = 0$ 。
 $\therefore \exists x < 0$ 时, $f' > 0$, $\exists 0 < x < \frac{2}{5}$ 时, $f' < 0$,
 $\exists x > \frac{2}{5}$ 时, $f(x)$ 取极大值 0 ,
 $x = \frac{2}{5}$ 时, $f(x)$ 取极小值 $-\frac{3}{5}(\frac{2}{5})^{\frac{2}{3}}$.

** (2)
$$f(x) = \sqrt{2}\cos 2x + 4\cos x$$
.
#: $f'(x) = -2\sqrt{2}\sin 2x - 4\sin x$,
 $\Rightarrow -4\sqrt{2}\sin x \cdot \cos x - 4\sin x = 0$,
 $\Rightarrow \sin x = 0$ $\exists \cos x = -\frac{1}{\sqrt{2}}$,

$$\therefore x = n\pi, \quad x = 2n\pi + \pi \pm \frac{\pi}{4} \quad (n \in Z),$$

$$\mathbb{X} :: f''(x) = -4\sqrt{2}\cos 2x - 4\cos x,$$

$$\overline{m} f''(n\pi) < 0, \quad f''\left(2n\pi + \pi \pm \frac{\pi}{4}\right) > 0,$$

∴ 极大值
$$f(2n\pi) = 4 + \sqrt{2}$$
, $f(2n\pi + \pi) = \sqrt{2} - 4$;
极小值 $f\left(2n\pi + \pi \pm \frac{\pi}{4}\right) = -2\sqrt{2}$.

**6. 设 f(x) 在区间 $(-\infty, +\infty)$ 内二阶可导,且 f''(x) > 0, $f(0) \le 0$. 试证明: $\varphi(x) = \frac{f(x)}{x}$ 在区间 $(-\infty, 0)$ 和 $(0, +\infty)$ 内都是单调增加的.

证:
$$\varphi'(x) = \frac{xf'(x) - f(x)}{x^2}$$
, $\Leftrightarrow g(x) = xf'(x) - f(x)$, 则 $g'(x) = xf''(x)$

当x < 0时,g'(x) < 0,故 $g(x) > g(0) = -f(0) \ge 0$,

当x > 0时, g'(x) > 0, 故 $g(x) > g(0) = -f(0) \ge 0$

 $\therefore x < 0$ 或 x > 0 时均有 g(x) > 0,即 $\varphi'(x) > 0$,故有 $\varphi(x)$ 单调增加.

****7. 设 f(x) 在 x_0 的某邻域内具有 n 阶连续导数,且 $f'(x_0) = \cdots = f^{(n-1)}(x_0) = 0$,而 $f^{(n)}(x_0) \neq 0$. 试证明:

- (1) 当n 为奇数时, $f(x_0)$ 不是极值;
- (2) 当n 为偶数时,若 $f^{(n)}(x_0) < 0$ (或> 0),则 $f(x_0)$ 是极大值(或极小值).

证: :: f(x)在 x_0 的某邻域内具有n阶连续导数,由n-1阶泰勒公式,

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n-1)}(x_0)}{(n-1)!}(x - x_0)^{n-1} + \frac{f^{(n)}(\xi)}{n!}(x - x_0)^n$$

$$= f(x_0) + \frac{f^{(n)}(\xi)}{n!}(x - x_0)^n , \xi \notin x_0 = x \ge 1.$$

不妨设 $f^{(n)}(x_0) > 0$,因为 f(x) 的 n 阶导数在 x_0 点连续,所以有 $\lim_{x \to x_0} f^{(n)}(x) = f^{(n)}(x_0)$

再由极限的局部保号性定理,可知存在 x_0 的某个邻域 $N(x_0,\delta)$,当x在该邻域内时总有 $f^{(n)}(x)>0$.由于 ξ 在 x_0 与x之间,可知 ξ 也必然在该邻域内,所以有 $f^{(n)}(\xi)>0$.于是

(1) n 为奇数时,只要 $x_0 < x < x_0 + \delta$,就有

$$f(x) = f(x_0) + \frac{f^{(n)}(\xi)}{n!} (x - x_0)^n > f(x_0),$$

当 $x_0 - \delta < x < x_0$ 时,

$$f(x) = f(x_0) + \frac{f^{(n)}(\xi)}{n!} (x - x_0)^n < f(x_0),$$

- ∴ *x*₀ 不是极值点.
- (2) 当 n 为偶数时,只要 $0 < |x x_0| < \delta$,就有

$$f(x) = f(x_0) + \frac{f^{(n)}(\xi)}{n!} (x - x_0)^n > f(x_0),$$

 $\therefore f(x_0)$ 为极小值.

第4章 (之2) 第20次作业

教学内容: § 4.1.3 最大值与最小值

§ 4.1.4 方程根的个数

**1. 方程
$$x^3 - 3x + 1 = 0$$
 在 (0.1) 内

(A) 无实根

(B) 有唯一实根

(C) 有两个实根

(D) 有三个实根

答 (B)

**2. 求函数 $y = x + \sqrt{1-x}$ 在指定区间 [-5,1]上的最大值和最小值.

解:
$$y'=1+\frac{-1}{2\sqrt{1-x}}=\frac{2\sqrt{1-x}-1}{2\sqrt{1-x}}$$
,

∴临界点为 $x = \frac{3}{4}$, x = 1.

考虑
$$y\left(\frac{3}{4}\right) = \frac{3}{4} + \sqrt{1 - \frac{3}{4}} = \frac{5}{4}$$
, $y(1) = 1 + \sqrt{1 - 1} = 1$,

在端点处 $y(-5) = -5 + \sqrt{1 - (-5)} = -5 + \sqrt{6}$, y(1) = 1.

∴最大值为
$$y\left(\frac{3}{4}\right) = \frac{5}{4}$$
,

最小值为 $y(-5) = -5 + \sqrt{6}$.

**3. 求函数 $y = |x^2 - 3x + 2|$ 在 $|x| \le 10$ 时的最大值,最小值.

解:由于所给函数与函数 $g = y^2 = (x^2 - 3x + 2)^2$ 有相同的最大值与最小值点,

$$\overline{\text{fit}} \frac{dg}{dx} = 2(x^2 - 3x + 2)(2x - 3),$$

$$\Rightarrow \frac{dg}{dx} = 0 \ \text{?} \ x_1 = 1, \ x_2 = 2, \ x_3 = \frac{3}{2}.$$

原来函数值

$$y(1) = y(2) = 0$$
, $y(\frac{3}{2}) = \frac{1}{4}$

$$y(-10) = 132$$
, $y(10) = 72$

故所给函数的最大值为y(-10) = 132

最小值为
$$y(1) = y(2) = 0$$

**4. 设 A = (2a,0)(a > 0), 在心形线 $\rho = a(1 + \cos \theta)$ 的第一象限部分上找一点 P,使 ΔOPA 的面积最大.

解:由于线段OA = 2a为一个确定的值,所以本问题本质上是求P点纵坐标

$$y = a(1 + \cos \theta) \sin \theta (0 \le \theta \le \frac{\pi}{2})$$

的最大值.

$$\frac{dy}{d\theta} = a(2\cos^2\theta + \cos\theta - 1),$$

令
$$\frac{dy}{d\theta} = 0$$
,可得 $(0, \frac{\pi}{2})$ 上的唯一驻点 $\theta = \frac{\pi}{3}$,

根据实际意义可知, 所求之点就是对应于 $\theta = \frac{\pi}{3}$ 的点

$$P = (\frac{3}{4}a, \frac{3\sqrt{3}}{4}a) \ .$$

**5. 欲造一个有上、下底的圆柱形铁桶,容积为定值V,试问当铁桶的底半径R 和高度H 取何值时,才能使用料最省?

解: 所需材料为 $A = 2\pi R^2 + 2\pi R \cdot H$.

**6 在铁道线(假设是直线)上有一点 A 与原料供应站 B 相距 100km,在铁道线外有一工厂 C, CA 垂直于 AB (如图),且 C, A 相距 20km. 已知汽车运费为 m元 / km ,火车的运费为 n元 / km (m>n). 现准备在 A,B 之间选一点 D,向工厂修建一条公路,使原料供应站 B 运货到工厂所用费用最省,问 D 应选在何处?

解: 设
$$AD = x$$
, 则 $CD = \sqrt{400 + x^2}$, $BD = 100 - x$,
于是总运费 $y = m\sqrt{400 + x^2} + n(100 - x)$ $(0 < x < 100)$ $y' = \frac{mx - n\sqrt{400 + x^2}}{\sqrt{400 + x^2}}$, $\Rightarrow y' = 0$ 得唯一驻点: $x = \frac{20n}{\sqrt{m^2 - n^2}}$

$$y'' = \frac{400 \, m}{\left(400 + x^2\right)^{\frac{3}{2}}} > 0$$

可见: 在距A点 $\frac{20n}{\sqrt{m^2-n^2}}(km)$ 处, 修公路至C可使总费用最省。

**7. 由 $y = 0, x = 8, y = x^2$ 围成的曲线边三角形 OAB, 这里A = (8,0), B = (8,64). 在曲边 OB上求一点, 使得过此点所作的 $y = x^2$ 的切线与 OA, AB 所围成的 三角形面积最大.

解

设曲边OB上任取一点为 $M(x, x^2)(0 < x < 8)$,则过该点的切线为: $Y - x^2 = 2x(X - x)$

切线与x轴的交点 $P = (\frac{x}{2}, 0)$ 与x = 8的交点 $Q = (8, 2x(8-x) + x^2)$

于是所围的三角形 PAQ的面积为:

$$S = \frac{1}{2}(8 - \frac{x}{2})[2x(8 - x) + x^{2}] = \frac{x}{4}(16 - x)^{2} (0 < x < 8)$$

$$S' = \frac{3}{4}x^{2} - 16x + 64 = \frac{1}{4}(16 - x)(16 - 3x), \quad \text{Iff} \quad \text{Iff} \quad x = \frac{16}{3},$$

$$S'' = \frac{3}{2}x - 16 \qquad S'' \Big|_{x = \frac{16}{3}} < 0$$

 \therefore 在点 $\left(\frac{16}{3}, \frac{256}{9}\right)$ 处作切线,所围面积最大.

***8. 讨论方程 $xe^{-x} = a(a > 0)$ 实数根的个数.

解: 设 $f(x) = xe^{-x} - a$,则 f(x) 在 $(-\infty, +\infty)$ 上可导,且 $f'(x) = e^{-x}(1-x)$,

当 x>1 时,有 f'(x)<0,所以 $f(x)\downarrow$;

当 x < 1 时,有 f'(x) > 0,所以 $f(x) \uparrow$,

所以 f(x) 有极大值 $f(1) = e^{-1} - a$.

由于
$$f(-\infty) = -\infty$$
, $f(+\infty) = -a < 0$, 所以

当
$$f(1) = e^{-1} - a > 0$$
 即 $0 < a < \frac{1}{e}$ 时,方程有两个不同实数根;

当
$$f(1) = e^{-1} - a = 0$$
 即 $a = \frac{1}{e}$ 时,方程有一个实数根;

当
$$f(1) = e^{-1} - a < 0$$
即 $a > \frac{1}{e}$ 时,方程无实数根.

第4章 (之3) 第 21 次作业

教学内容: § 4.2 函数的凸性与拐点

答案: $(n\pi, 1+2n\pi)(n=0,\pm 1,\pm 2,\pm 3,\cdots)$

**(2). 设曲线 $y = ax^3 + bx^2$ 以点(1,3)为拐点,则数组(a,b)= 答案: $(a,b) = (-\frac{3}{2}, \frac{9}{2})$

**(3). $f(x) = \arctan x$ 是区间 ______ 上的凸函数; 是区间 _____ 上的凹函数. 答案: $(-\infty,0]$, $[0,+\infty)$. 说明:也可以填 $(-\infty,0)$, $(0,+\infty)$.

**(4). 若 f(x) = -f(-x), 在 $(0,+\infty)$ 内 f' > 0, f'' > 0, 则在 $(-\infty,0)$ 内 f(x) 是单调递 (增、减)的 (凸、凹)函数.

答案:增、凹.

2. 选择题

** (1) 曲线 $y = e^{-x^2}$ 的拐点情况是 ()

- (A) 没有拐点; (B) 有一个拐点;
- (C) 有两个拐点; (D) 有三个拐点.

答: (C)

** (2) 曲线
$$y = x^2 \ln x$$
 在点 $P = (\frac{1}{e^2}, -\frac{2}{e^4})$ 近邻是

A. 凸的; B 凹的; C 左侧近邻凸, 右侧近邻凹;

D 左侧近邻凹,右侧的近邻凸.

答(B) . $y' = 2x \ln x + x$, $y'' = 2 \ln x + 3 在 \left(\frac{1}{e^2}, -\frac{2}{e^4} \right)$ 连续, $y''(\frac{1}{e^2}) = -1 < 0$. 根据连续 函数的局部保号性可得结论.

**** (3) 若
$$f'(x_0) = f''(x_0) = 0$$
, $f'''(x_0) > 0$, 则下列选项正确的是

- (A) $f(x_0)$ 是f(x)的极大值;
- (B) $f(x_0)$ 是f(x)的极小值;
- (*C*) $f'(x_0)$ 是f'(x)的极大值;

(*D*)
$$(x_0, f(x_0))$$
是曲线 $y = f(x)$ 的拐点答: (*D*)

**3. 求函数 $y = \ln(1+x^2)$ 的凸凹区间和它图形上的拐点.

解:
$$y' = \left[\ln\left(1 + x^2\right)\right]' = \frac{2x}{1 + x^2}$$
,
$$y'' = \frac{2\left(1 + x^2\right) - 2x \cdot 2x}{\left(1 + x^2\right)^2} = \frac{2 - 2x^2}{\left(1 + x^2\right)^2}$$
,

∴ 当 x < -1或 x > 1时, f'' < 0 。 当 -1 < x < 1时, f'' > 0 .

∴函数在区间(-1,1)上是凸函数,在区间 $(-\infty,-1)$, $(1,+\infty)$ 上是凹函数.

∴ 其图形上的拐点为 $(1, \ln 2)$, $(-1, \ln 2)$.

***4. 试决定常数 k 的值,使曲线 $y = k(x^2 - 3)^2$ 在拐点处的法线通过坐标原点.

解:
$$y' = 2k(x^2 - 3) \cdot 2x$$
, $y'' = 4k(3x^2 - 3)$, $y'' = 4k(3x^2 - 3)$, $y'' = 4k(3x^2 - 3)$,

::过拐点处的法线为

$$y-4k = \frac{1}{8k}(x-1)$$
 \vec{y} $y-4k = \frac{1}{-8k}(x+1)$.

将
$$(x,y)=(0,0)$$
代入,解得 $k=\pm \frac{\sqrt{2}}{8}$.

***5. 证明: 无论实数 a,b 取何值,曲线 $y = 3x^5 - 10x^3 + ax + b$ 的三个拐点总在同一条直线上.

证明: $y' = 15x^4 - 30x^2 + a$, $y'' = 60x^3 - 60x = 60x(x-1)(x+1)$.

当 x < -1, 或 0 < x < 1 时, y'' < 0;

当 -1 < x < 0, 或 x > 1 时, y'' > 0,

所以曲线有三个拐点: (-1,7-a+b), (0,b), (1,-7+a+b),

它们都在直线 y = (a-7)x+b 上.

****6. 设 f(x) 在 x_0 的某邻域内具有 n (n>2) 阶连续导数,且 $f''(x_0)=\cdots=f^{(n-1)}(x_0)=0$,而 $f^{(n)}(x_0)\neq 0$. 试证明:

- (1) 当 n 为奇数时,点 $(x_{0,}f(x_{0}))$ 必是曲线 y = f(x) 的拐点;
- (2) 当n 为偶数时,点 $(x_{0},f(x_{0}))$ 不是曲线 y=f(x) 的拐点.

证: : f''(x)在 x_0 的某邻域内具有n-2阶连续导数,由n-3阶泰勒公式,

$$f''(x) = f''(x_0) + f'''(x_0)(x - x_0) + \dots + \frac{f^{(n-1)}(x_0)}{(n-3)!}(x - x_0)^{n-3} + \frac{f^{(n)}(\xi)}{(n-2)!}(x - x_0)^{n-2}$$

$$=\frac{f^{(n)}(\xi)}{(n-2)!}(x-x_0)^{n-2}$$
, $\xi \in x_0 \ni x \ge 0$.

不妨设 $f^{(n)}(x_0) > 0$,因为 f(x) 的 n 阶导数在 x_0 点连续,所以有 $\lim_{x \to x_0} f^{(n)}(x) = f^{(n)}(x_0)$,再由极限的局部保号性定理,可知存在 x_0 的某个邻域 $N(x_0,\delta)$,当 x 在该邻域内时总有 $f^{(n)}(x) > 0$. 由于 ξ 在 x_0 与 x 之间,可知 ξ 也必然在该邻域内,所以有 $f^{(n)}(\xi) > 0$. 于是 (1) n 为奇数时,只要 $x_0 < x < x_0 + \delta$,就有

$$f''(x) = \frac{f^{(n)}(\xi)}{(n-2)!} (x-x_0)^{n-2} > 0$$
,

当 $x_0 - \delta < x < x_0$ 时,

$$f''(x) = \frac{f^{(n)}(\xi)}{(n-2)!} (x - x_0)^{n-2} < 0$$
,

 $\therefore (x_0, f(x_0))$ 是曲线的拐点.

(2) 当n 为偶数时,只要 $0 < |x - x_0| < \delta$,就有

$$f''(x) = \frac{f^{(n)}(\xi)}{(n-2)!} (x - x_0)^{n-2} > 0$$
,

 $\therefore (x_0, f(x_0))$ 不是曲线的拐点.