MECH 3315 – Spring 2019 Final Project description

Description of the dataset:

• Results from numerical simulations of the flow around a wind turbine are provided to you. The time-averaged velocity and pressure are provided. The flow is incompressible. The flow domain ("control volume") is shown in the figure

below.

D indicates the rotor diameter. The hub height (center of rotation) is at 0.7D from the ground. For this wind turbine, D = 126 m.

• The Reynolds number based on the rotor diameter and the incoming uniform velocity U is:

$$Re = \frac{\rho UD}{u} = 7.3 \cdot 10^7$$

The velocity and pressure fields provided are normalized with the reference velocity and density.

• The simulations were performed for different rotational speeds of the wind turbine. The tip-speed ratio (*TSR*) is defined as:

$$TSR = \frac{\omega R}{U}$$

where ω is the rotational speed of the turbine, R = D/2. Nine *TSR*s were selected from 5 to 9, every 0.5. Each file contains the velocity and pressure field for a specific *TSR*.

Name of the file provided: "data mod1 tsrXX.mat" or "data mod2 tsrXX.dat"

- XX is the value of the *TSR* times 10 (e.g. 'data_mod1_tsr75.mat' corresponds to a *TSR* = 7.5)
- The file provided is a MATLAB binary file. Once loaded into MATLAB, the workspace will display the following variables:

u	time-averaged streamwise velocity component
v	time-averaged wall-normal (vertical) velocity component
W	time-averaged spanwise velocity component
pr	time-averaged pressure
XX	streamwise coordinate
уу	wall-normal (vertical) coordinate
ZZ	spanwise coordinate
n1	number of points in the streamwise direction
n2	number of points in the wall-normal direction
n3	number of points in the spanwise direction

Project tasks:

- Verify the conservation of mass in the domain.
- Compute the *thrust* force on the wind turbine (this force is equal and opposite to the drag experienced by the flow) applying conservation of momentum.
- Compute the power extracted by the turbine applying conservation of energy.
- Plot the pressure on a horizontal plane at hub height.
- Plot particle lines (using Matlab functions). (suggestion, release particles at the rotor plane to observe the swirl in the wake)
- Comment the results in a report