CAU

presenter: Sooho Moon

DMAIS

2024-11-01

DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning Wenhan Xiong and Thien Hoang and William Yang Wang.

Department of Computer Science
University of California, Santa Barbara

EMNLP 2017

Relational Message Passing for Knowledge Graph Completion

Hongwei Wang, Hongyu Ren, Jure Leskovec

Stanford University
Stanford, California, United States

KDD 2021

INDEX

Main interest

DeepPath

- · Problem with previous models
- · Architecture
- · Experiments

Conclusion

PathCon

- · Problem with previous models
- Architecture
- Experiments
- Conclusion

Main interest

Knowledge Graph Completion(KGC)

Problem with previous models(DeepPath)

Problem of PRA

- □ PRA(2011a), a very impactful random walk based research on KGC
- ☐ However, operates in a fully <u>discrete</u> space limiting the ability to score and compare results

CAU

- >> Preview of DeepPath
- Reinforcement learning(RL) based model
 - ☐ Trains a policy-based RL agent to find promising reasoning paths
- Incorporates translation based KG embedding method
 - ☐ Agent uses embeddings to navigate the path in a continuous space

Markov decision process(MDP) = environment

Components of RL environment<S.A.P.R>

Given tirple (h,r,t), we want the agent to find the most informative paths linking the target nodes

□ **Action** : Agent uses policy network to pick the most promising relation to extend the path

CAU

- Components of RL environment<S,A,P,R>
 - □ **States**: Help define the current circumstance the agent is facing

 $e : \mathsf{entity} \ \mathsf{embedding} \ \mathsf{generated} \ \mathsf{from} \mathsf{TransE}$

$$s_t = e_t \oplus (e_{target} - e_t)$$

equivalent to the sum of relation embeddings of a path which can connect e_{target} to e_{t}

since TransE is able to model composition!!

$$\mathbf{e}_0 = \mathbf{e}_{source}$$

- Components of RL environment<S,A,P,R>
 - □ **Rewards**: 3 segments contribute to enhance the quality of paths found by the agent
 - 1. Global accuracy

$$r_{\text{GLOBAL}} = \begin{cases} +1, & \text{if the path reaches } e_{target} \\ -1, & \text{otherwise} \end{cases}$$

2. Path efficiency

$$r_{\text{EFFICIENCY}} = \frac{1}{length(p)}$$

3. Path diversity

$$r_{ ext{DIVERSITY}} = -\frac{1}{|F|} \sum_{i=1}^{|F|} cos(\mathbf{p}, \mathbf{p}_i)$$

- Components of RL environment<S,A,P,R>
 - □ **Policy network** : neural network that maps state vector to probability distribution of all possible actions

- Supervised policy learning inspired by AlphaGo(2016)
 - ☐ Large action space of KG results in poor convergence with naive trial and error approachs
 - ☐ To tackle this problem, feed paths that connect positive sample first to better guide the agent (after that, we retrain the model on trial and error)

$$J(\theta) = \mathbb{E}_{a \sim \pi(a|s;\theta)}(\sum_{t} R_{s_{t},a_{t}})$$
$$= \sum_{t} \sum_{t} \pi(a|s_{t};\theta) R_{s_{t},a_{t}}$$

$$\nabla_{\theta} J(\theta) = \sum_{t} \sum_{t} \pi(a|s_{t}; \theta) \nabla_{\theta} \log \pi(a|s_{t}; \theta)$$

$$\approx \nabla_{\theta} \sum_{t} \log \pi(a = r_t | s_t; \theta)$$

- r_t belongs to the supervised path p
- it assumes that all the actions are done with 100% certainty

Traditional two-side BFS is not enough

- \Box Supervised paths are sampled by picking a subset of positive tuple $\{e_{source}, e_{target}\}$ and conducting BFS from each entity until they meet
- □ However, BFS is biased to short paths which may hinder generality in retraining process
- ☐ To tackle this, randomly sample a intermediate node and conduct two two-side BFS

Review of DeepPath schema

- Settings
 - ☐ Metric : MAP(Mean Average Precision)
 - □ Dataset: FB15k-237, NELL-995(Tasks refer to relations that we will observe in this section)

Dataset	# Ent.	# R.	# Triples	# Tasks
FB15K-237	14,505	237	310,116	20
NELL-995	75,492	200	154.213	12

Experiments

☐ Entity prediction and fact prediction

Link prediction and # of collected reasoning paths

FB15K-237						NE	LL-995			# of Reasoning Paths		
Tasks	PRA	RL	TransE	TransR	Tasks	PRA	RL	TransE	TransR	m 1	DD I	D.
teamSports	0.987	0.955	0.896	0.784	athletePlaysForTeam	0.547	0.750	0.627	0.673	Tasks	PRA	RL
birthPlace	0.441	0.531	0.403	0.417	athletePlaysInLeague	0.841	0.960	0.773	0.912	worksFor	247	25
personNationality	0.846	0.823	0.641	0.720	athleteHomeStadium	0.859	0.890	0.718	0.722	WORKSPOT	247	23
filmDirector	0.349	0.441	0.386	0.399	athletePlaysSport	0.474	0.957	0.876	0.963	teamPlaySports	113	27
filmWrittenBy	0.601	0.457	0.563	0.605	teamPlaySports	0.791	0.738	0.761	0.814	, ,		21
filmLanguage	0.663	0.670	0.642	0.641	orgHeadquaterCity	0.811	0.790	0.620	0.657	teamPlaysInLeague	69	21
tvLanguage	0.960	0.969	0.804	0.906	worksFor	0.681	0.711	0.677	0.692	athletehomestadium	37	11
capitalOf	0.829	0.783	0.554	0.493	bornLocation	0.668	0.757	0.712	0.812			11
organizationFounded	0.281	0.309	0.390	0.339	personLeadsOrg	0.700	0.795	0.751	0.772	organizationHiredPerson	244	9
musicianOrigin	0.426	0.514	0.361	0.379	orgHiredPerson	0.599	0.742	0.719	0.737			
Overall	0.541	0.572	0.532	0.540		0.675	0.796	0.737	0.789	Average #	137.2	20.3

Fact prediction

- ☐ Generate 10 negative triples(fake a certain entity, e.g. (h',r,t)) for each positive
- ☐ Rank all the positive and negative triples(PRA is not able to process fact prediction)

			fact check
positive	(h,r,t) (h,r,t_1)	_	(h,r,t) true (h,r,t'_1) ture
negative	(h,r,t) (h,r,t_1) (h,r,t_{10})	7	 (h,r,t ₁₀) false

	Fact Prediction Results								
Methods	FB15K-237	NELL-995							
RL	0.311	0.493							
TransE	0.277	0.383							
TransH	0.309	0.389							
TransR	0.302	0.406							
TransD	0.303	0.413							

Relation	Reasoning Path
filmCountry	$\label{eq:filmReleaseRegion} \begin{split} & \text{filmReleaseRegion} \\ & \text{featureFilmLocation} & \rightarrow \text{locationContains}^{-1} \\ & \text{actorFilm}^{-1} & \rightarrow \text{personNationality} \end{split}$
personNationality	$\begin{split} & placeOfBirth \rightarrow locationContains^{-1} \\ & peoplePlaceLived \rightarrow locationContains^{-1} \\ & peopleMarriage \rightarrow locationOfCeremony \rightarrow locationContains^{-1} \end{split}$
tvProgramLanguage	$\label{eq:countryOfOrigin} \begin{split} \text{tvCountryOfOrigin} &\rightarrow \text{countryOfficialLanguage} \\ \text{tvCountryOfOrigin} &\rightarrow \text{filmReleaseRegion}^{-1} \rightarrow \text{filmLanguage} \\ \text{tvCastActor} &\rightarrow \text{filmLanguage} \end{split}$
personBornInLocation	$\begin{array}{l} personBornInCity\\ graduatedUniversity \rightarrow graduatedSchool^{-1} \rightarrow personBornInCity\\ personBornInCity \rightarrow atLocation^{-1} \rightarrow atLocation \end{array}$
athletePlaysForTeam	$\label{eq:athleteHomeStadium} \begin{array}{l} \text{athleteHomeStadium} \longrightarrow \text{teamHomeStadium}^{-1} \\ \text{athletePlaysSport} \longrightarrow \text{teamPlaysSport}^{-1} \\ \text{athleteLedSportsTeam} \end{array}$
personLeadsOrganization	worksFor organizationTerminatedPerson ⁻¹ mutualProxyFor ⁻¹

Conclusion(DeepPath)

- DeepPath for knowledge graph completion
 - ☐ First reinforcement learning based KGC model
 - □ Complex reward function to explore more informative paths
 - □ Adopted embeddings to define states on a continuous space
- Limitations of DeepPath
 - □ Sparse reward and large action space is still a problem
 - Supervised policy learning is not safe from bias(on the other hand. AlphaGo Zero(2017))
 - □ Transductive nature because of the need to create embeddings for all entities and relations.

Problem with previous models(PathCon)

- Translation based embedding models's transductive nature
 - ☐ Embedding based models can't scale to evolving KGs

- Considering context and path for link prediction
 - □ Entity type(infered from surrounding relations) = Context
 □ Relational paths between target nodes = Path

 Link prediction model
 PathCon

CAU

- Preview of PathCon
 - ☐ Context obtained by relational message passing, detect target entity's TYPE
 - □ Paths detect target nodes relative positions

Problem formulation

CAU

- Relational message passing(context)
- M : #edges Var[d] : variance of node degree

N: #nodes

☐ Message aggregation between neighbor relations for entity context

- Relational message passing(context)
 - ☐ Overview of relational message passing for relational context

$$\begin{split} m_v^i = & A_1\left(\left\{s_e^i\right\}_{e \in \mathcal{N}(v)}\right), \qquad /\!/ \text{node aggregate} \\ m_e^i = & A_2\left(m_v^i, m_u^i\right), \ v, u \in \mathcal{N}(e), \quad /\!/ \text{aggregate to edge} \\ s_e^{i+1} = & U\left(s_e^i, m_e^i\right). \qquad /\!/ \text{update edge state} \end{split}$$

$$\begin{split} & m_v^i = \sum_{e \in \mathcal{N}(v)} s_e^i, \quad //A_1, A_2 \\ & s_e^{i+1} = \sigma \left(\left[m_v^i, m_{it}^i, s_e^i \right] \cdot W^i + b^i \right), \ v, u \in \mathcal{N}(e), \quad //U \end{split}$$

CAU

- Relational paths(path)
 - ☐ Represents relative position between h and t
 - ☐ Specify embeddings for all possible path combination

"only 3.2% of all possible paths of length 2 occur in the FB15K dataset"

Combining relational context and path

□ Context score vector, path attention and path score vector(K iterations)

$$s_{(h,t)} = \sigma\left(\left[m_h^{K-1}, m_t^{K-1}\right] \cdot W^{K-1} + b^{K-1}\right) \qquad \alpha_P = \frac{\exp\left(s_P^\top s_{(h,t)}\right)}{\sum_{P \in \mathcal{P}_{h \to t}} \exp\left(s_P^\top s_{(h,t)}\right)} \qquad s_{h \to t} = \sum_{P \in \mathcal{P}_{h \to t}} \alpha_P s_P = \sum_$$

□ Optimization process

$$p(r|h,t) = \text{SOFTMAX}\left(s_{(h,t)} + s_{h \to t}\right)$$

$$\min \mathcal{L} = \sum_{(h,r,t) \in \mathcal{D}} J \big(p(r|h,t), \ r \big)$$

The output dimension must match the number of total relations in the KG

Datasets

☐ FB15k, FB15k-237, WN18, WN18RR, NELL995, DDB14(DDB14 proposed in this paper)

	FB15K	FB15K-237	WN18	WN18RR	NELL995	DDB14
#nodes	14,951	14,541	40,943	40,943	63,917	9,203
#relations	1,345	237	18	11	198	14
#training	483,142	272,115	141,442	86,835	137,465	36,561
#validation	50,000	17,535	5,000	3,034	5,000	4,000
#test	59,071	20,466	5,000	3,134	5,000	4,000
$\mathbb{E}[d]$	64.6	37.4	6.9	4.2	4.3	7.9
Var[d]	32,441.8	12,336.0	236.4	64.3	750.6	978.8

Metrics

□ MRR. Hit@1. 3

Link prediction

Method	TransE	ComplEx	DisMult	RotatE	SimplE	QuatE	PathCon
#param.	3.7M	7.4M	3.7M	7.4M	7.4M	14.7M	0.06M

		FB15K		F	B15K-23	37		WN18		1	WN18RR			NELL995			DDB14		
	MRR	Hit@1	Hit@3	MRR	Hit@1	Hit@3	MRR	Hit@1	Hit@3	MRR	Hit@1	Hit@3	MRR	Hit@1	Hit@3	MRR	Hit@1	Hit@3	
TransE	0.962	0.940	0.982	0.966	0.946	0.984	0.971	0.955	0.984	0.784	0.669	0.870	0.841	0.781	0.889	0.966	0.948	0.980	
ComplEx	0.901	0.844	0.952	0.924	0.879	0.970	0.985	0.979	0.991	0.840	0.777	0.880	0.703	0.625	0.765	0.953	0.931	0.968	
DistMult	0.661	0.439	0.868	0.875	0.806	0.936	0.786	0.584	0.987	0.847	0.787	0.891	0.634	0.524	0.720	0.927	0.886	0.961	
RotatE	0.979	0.967	0.986	0.970	0.951	0.980	0.984	0.979	0.986	0.799	0.735	0.823	0.729	0.691	0.756	0.953	0.934	0.964	
SimplE	0.983	0.972	0.991	0.971	0.955	0.987	0.972	0.964	0.976	0.730	0.659	0.755	0.716	0.671	0.748	0.924	0.892	0.948	
QuatE	0.983	0.972	0.991	0.974	0.958	0.988	0.981	0.975	0.983	0.823	0.767	0.852	0.752	0.706	0.783	0.946	0.922	0.962	
DRUM	0.945	0.945	0.978	0.959	0.905	0.958	0.969	0.956	0.980	0.854	0.778	0.912	0.715	0.640	0.740	0.958	0.930	0.987	
Con	0.962 ± 0.000	$^{0.934}_{\pm0.000}$	0.988 ± 0.000	0.978 ± 0.000	0.961 ± 0.001	0.995 ± 0.000	$0.960 \\ \pm 0.002$	0.927 ± 0.005	0.992 ± 0.001	0.943 ± 0.002	0.894 ± 0.004	0.993 ± 0.003	0.875 ± 0.003	0.815 ± 0.004	$^{0.928}_{\pm\ 0.003}$	0.977 ± 0.000	0.961 ± 0.001	0.994 ± 0.001	
Ратн	0.937 ± 0.001	$^{0.918}_{\pm0.001}$	$^{0.951}_{\pm0.001}$	0.972 ± 0.001	0.957 ± 0.001	$^{0.986}_{\pm\ 0.001}$	0.981 ± 0.000	$^{0.971}_{\pm\ 0.005}$	0.989 ± 0.001	0.933 ± 0.000	$^{0.897}_{\pm0.001}$	$^{0.961}_{\pm0.001}$	$^{0.737}_{\pm\ 0.001}$	0.685 ± 0.002	$^{0.764}_{\pm\ 0.002}$	0.969 ± 0.000	0.948 ± 0.001	0.991 ± 0.000	
PATHCON	0.984 ± 0.001	0.974 ± 0.002	0.995 ± 0.001	0.979 ± 0.000	0.964 ± 0.001	0.994 ± 0.001	0.993 ± 0.001	0.988 ± 0.001	0.998 ± 0.000	0.974 ± 0.001	0.954 ± 0.002	0.994 ± 0.000	0.896 ± 0.001	0.844 ± 0.004	0.941 ± 0.004	0.980 ± 0.000	0.966 ± 0.001	0.995 ± 0.000	

- Model variant study(context aggregator)
 - □ Concat aggregator

$$s_e^{i+1} = \sigma \left(\left[m_v^i, m_u^i, s_e^i \right] \cdot W^i + b^i \right), v, u \in \mathcal{N}(e)$$

□ Mean aggregator

$$s_e^{i+1} = \sigma \left(\frac{1}{3} (m_v^i + m_u^i + s_e^i) W + b \right), v, u \in \mathcal{N}(e)$$

□ Cross context aggregator

$$\boldsymbol{m}_{v}^{i} \boldsymbol{m}_{u}^{i \; \top} = \begin{bmatrix} \boldsymbol{m}_{v}^{i \; (1)} \boldsymbol{m}_{u}^{i \; (1)} & \cdots & \boldsymbol{m}_{v}^{i \; (1)} \boldsymbol{m}_{u}^{i \; (d)} \\ \cdots & \cdots & \cdots \\ \boldsymbol{m}_{v}^{i \; (d)} \boldsymbol{m}_{u}^{i \; (1)} & \cdots & \boldsymbol{m}_{v}^{i \; (d)} \boldsymbol{m}_{u}^{i \; (d)} \end{bmatrix}$$

$$s_e^{i+1} = \sigma \left(\text{flatten} \left(m_v^i m_u^i \right)^T \right) W_1^i + s_e^i W_2^i + b^i \right), \ v, u \in \mathcal{N}(e)$$

- Model variant study(path representation, path aggregator)
 - ☐ Independent random initialization
 - ☐ Learning path representation via RNN

$$s_P = \text{RNN}(r_1, r_2, ...)$$

☐ Attention aggregator

$$s_{h \to t} = \sum_{P \in \mathcal{P}_{h \to t}} \alpha_P s_P$$

□ Mean aggregator

$$s_{h \to t} = \sum_{P \in \mathcal{P}_{h \to t}} s_P$$

Model variant study(initial edge features)

- □ Identity(one-hot)
- □ BOW(Bag Of Words)

Emb init

Emb init

Context

Path

Input of BOW, BERT are individual relation's english name

Other analysis

▼ relations of DDB14

- 0: belong(s) to the category of
- 1: is a category subset of 2: may cause
- 3: is a subtype of 4: is a risk factor for
- 4: is a risk factor for 5: is associated with 6: may contraindicate

- 7: interacts with
- 8: belongs to the drug family of 9: belongs to drug super-family
- 10: is a vector for 11: may be allelic with
- 12: see also 13: is an ingredient of

 $Figure~8: The \ learned \ correlation \ between \ all \ relational \ paths \ with \ length \leq 2 \ and \ the \ predicted \ relations \ on \ DDB14.$

Figure 9: The learned correlation between the contextual relations of head/tail and the predicted relations on DDB14.

Conclusion(PathCon)

CAU

Message passing based KGC model

- □ Novel architecture of relational message passing
- □ Entity-independent inductive model
- □ Combined context(message passing) and path for link prediction

More stuff to discuss about

- □ Is it okay to neglect direction attributes of relations?
- ☐ Why did BERT perform worst in initial edge features?
- ☐ What happens if new paths are created by new entities?
- □ Need harder negative than random sampling(e.g. (h,r',t)), such as using GAN
- □ Path dependent to context problem

Contact: Sooho Moon (Email: moonwalk725@cau.ac.kr)

