1.6 Производни от по-висок ред. Формула на Тейлор

Досега ние разглеждахме само производни от първи ред. Както за функции на една променлива, ние можем да продължим да диференцираме и да получим частни производни от по-висок ред. Така, с $\frac{\partial^2 f}{\partial x_i \ \partial x_j}(x)$ или с $f_{x_i x_j}(x)$ означаваме производната на функцията $\frac{\partial f}{\partial x_i}$ по променливата x_i в точката x.

На пръв поглед картината изглежда доста сложна: ако $f(x_1,\ldots,x_n)$ е функция на n променливи, то първите и производни са n на брой. Всяка от тях може да бъде диференцирана по n променливи, и така получаваме общо n^2 различни втори производни, n^3 - трети, и n^k производни от k-ти ред. Всъщност картината е малко по-оптимистична: в този параграф ние ще покажем, че при някои леки предположения стойността на производните не зависи от реда, в който е извършено диференцирането. Така ситуацията се опростява — например за функция на две променливи различните производни от ред k не са 2^k , а само k+1 на брой.

Ще докажем теоремата за независимостта на висшите производни от реда на диференцирането най-напред за функция на две променливи.

Теорема 1. Нека f(x,y) е функция на две променливи, дефинирана в околност на точката (x_0,y_0) . Да предположим, че първите производни f'_x , f'_y , и смесените втори производни f''_{xy} и f''_{yx} съществуват в околност на (x_0,y_0) . Ако f''_{xy} и f''_{yx} са непрекъснати в тази точка, то стойностите им в нея са равни.

Доказателство. Ще апроксимираме смесените втори производни с "диференчни частни от втори ред". Нека h и k са достатъчно малки числа. Да означим

$$W(h,k) = f(x_0 + h, y_0 + k) - f(x_0 + h, y_0) - f(x_0, y_0 + k) + f(x_0, y_0).$$

Ще докажем последователно, че

$$\lim_{h,k\to 0}\frac{W(h,k)}{hk}=f_{xy}^{\prime\prime}\left(x_{0},y_{0}\right),\text{ и че }\lim_{h,k\to 0}\frac{W(h,k)}{hk}=f_{yx}^{\prime\prime}\left(x_{0},y_{0}\right),$$

откъдето, разбира се, следва твърдението на теоремата.

За тази цел да разгледаме помощната функция

$$\varphi(x) = f(x, y_0 + k) - f(x, y_0),$$

дефинирана за стойности на x, достатъчно близки до x_0 . Групирайки в израза за W(h,k) първото с третото, и второто с четвъртото събираемо, получаваме равенството

$$W(h,k) = \varphi(x_0 + h) - \varphi(x_0) = h\varphi'(x_0 + \theta_1 h),$$

за подходящо $\theta_1 \in (0,1)$ (по теоремата за крайните нараствания за функцията φ). Тъй като $\varphi'(x) = f'_x(x,y_0+k) - f'_x(x,y_0)$, то

$$W(h,k) = h f'_x (x_0 + \theta_1 h, y_0 + k) - f'_x (x_0 + \theta_1 h, y_0) = h k f''_{xy} (x_0 + \theta_1 h, y_0 + \theta_2 k),$$

като последното равенство се получава отново чрез прилагане на теоремата за крайните нараствания, този път за функцията $f_x'(x_0 + \theta_1 h, y)$ на променливата y. Тук отново $\theta_2 \in (0,1)$ (разбира се, числата θ_1 и θ_2 зависят от h и k). Оттук

$$\frac{W(h,k)}{hk} = f_{xy}''(x_0 + \theta_1 h, y_0 + \theta_2 k),$$

и следователно при $h \to 0, \, k \to 0$ имаме

$$\frac{W(h,k)}{hk} \to f_{xy}''(x_0,y_0).$$

Ясно е, че в горното разсъждение местата на x и y могат да бъдат разменени. Да въведем друга помощна функция $\psi(y) = f(x_0 + h, y) - f(x_0, y)$. Тогава $W(h, k) = \psi(y_0 + k) - \psi(y_0) = k\psi'(y_0 + \theta_3 k)$, откъдето както по-горе получаваме

$$\frac{W(h,k)}{hk} = f''_{yx}(x_0 + \theta_4 h, y_0 + \theta_3 k) \text{ и } \lim_{h \to 0, k \to 0} \frac{W(h,k)}{hk} = f''_{yx}(x_0, y_0),$$

откъдето $f_{xy}''(x_0, y_0) = f_{yx}''(x_0, y_0).$

Следствие 2. Ако функцията $f(x_1, ..., x_n)$ притежава непрекоснати частни производни до ред k в дадена околност, то тяхните стойности не зависят от реда на диференциране.