```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]: # 1.Load the data from "cereal.csv" and plot histograms of sugar and vitamin c
 ontent across different cereals
 df_cereal = pd.read_csv("cereal.csv")
 df_cereal.head()

Out[2]:

	name	mfr	type	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	sh
0	100% Bran	N	С	70	4	1	130	10.0	5.0	6	280	25	
1	100% Natural Bran	Q	С	120	3	5	15	2.0	8.0	8	135	0	
2	All- Bran	K	С	70	4	1	260	9.0	7.0	5	320	25	
3	All- Bran with Extra Fiber	K	С	50	4	0	140	14.0	8.0	0	330	25	
4	Almond Delight	R	С	110	2	2	200	1.0	14.0	8	-1	25	

```
In [5]: plt.hist([df_cereal["sugars"], df_cereal["vitamins"]], color=['orange','green'
])
    plt.title("Sugars and Vitamins")
    plt.xlabel("Sugar and Vitamins")
    plt.legend(["Sugar", "Vitamins"])
```

Out[5]: <matplotlib.legend.Legend at 0x1c2c3dc8ec8>

Out[6]:

	name	mfr	type	calories	protein	fat	sodium	fiber	carbo	sugars	potass	vitamins	sh
0	100% Bran	N	С	70	4	1	130	10.0	5.0	6	280	25	
1	100% Natural Bran	Q	С	120	3	5	15	2.0	8.0	8	135	0	
2	All- Bran	K	С	70	4	1	260	9.0	7.0	5	320	25	
3	All- Bran with Extra Fiber	K	С	50	4	0	140	14.0	8.0	0	330	25	
4	Almond Delight	R	С	110	2	2	200	1.0	14.0	8	-1	25	

```
In [13]: # Create a bar plot where each manufacturer is on the y axis and the
    # height of the bars depict the number of cereals manufactured by them.
    grouped_mfr = df_cereal.groupby(["manufacturers"], as_index=False).count()

x= grouped_mfr["manufacturers"]
y= grouped_mfr["mfr"]

plt.bar(x,y)
plt.setp(plt.gca().get_xticklabels(), rotation=90, horizontalalignment='right')
    plt.xlabel("Manufacturers")
    plt.ylabel("count")
    plt.title("No of cereals manufactured by each manufacturers")
```

Out[13]: Text(0.5, 1.0, 'No of cereals manufactured by each manufacturers')


```
In [14]: # 3.Extract the rating as your target variable 'y' and all numerical parameter
s as your predictors 'x'. Separate 25% of your data as test set
from sklearn.model_selection import train_test_split
X = df_cereal.iloc[:,3:15]
Y = df_cereal["rating"]

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, rand
om_state=10)
```

Out[17]: <matplotlib.collections.PathCollection at 0x1c2c6c53208>


```
In [ ]:
```