where $\alpha = \sqrt{a_{11}}$, the matrix B_1 is invertible and

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & C - WW^\top / a_{11} \end{pmatrix}$$

is symmetric positive definite. However, this implies that $C - WW^{\top}/a_{11}$ is also symmetric positive definite (consider $x^{\top}A_1x$ for every $x \in \mathbb{R}^n$ with $x \neq 0$ and $x_1 = 0$). Thus, we can apply the induction hypothesis to $C - WW^{\top}/a_{11}$ (which is an $(n-1) \times (n-1)$ matrix), and we find a unique lower-triangular matrix L with positive diagonal entries so that

$$C - WW^{\top}/a_{11} = LL^{\top}.$$

But then we get

$$A = \begin{pmatrix} \alpha & 0 \\ W/\alpha & I \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & C - WW^{\top}/a_{11} \end{pmatrix} \begin{pmatrix} \alpha & W^{\top}/\alpha \\ 0 & I \end{pmatrix}$$

$$= \begin{pmatrix} \alpha & 0 \\ W/\alpha & I \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & LL^{\top} \end{pmatrix} \begin{pmatrix} \alpha & W^{\top}/\alpha \\ 0 & I \end{pmatrix}$$

$$= \begin{pmatrix} \alpha & 0 \\ W/\alpha & I \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & L \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & L^{\top} \end{pmatrix} \begin{pmatrix} \alpha & W^{\top}/\alpha \\ 0 & I \end{pmatrix}$$

$$= \begin{pmatrix} \alpha & 0 \\ W/\alpha & L \end{pmatrix} \begin{pmatrix} \alpha & W^{\top}/\alpha \\ 0 & L^{\top} \end{pmatrix}.$$

Therefore, if we let

$$B = \begin{pmatrix} \alpha & 0 \\ W/\alpha & L \end{pmatrix},$$

we have a unique lower-triangular matrix with positive diagonal entries and $A = BB^{\top}$. \square

Remark: The uniqueness of the Cholesky decomposition can also be established using the uniqueness of an LU-decomposition. Indeed, if $A = B_1B_1^{\top} = B_2B_2^{\top}$ where B_1 and B_2 are lower triangular with positive diagonal entries, if we let Δ_1 (resp. Δ_2) be the diagonal matrix consisting of the diagonal entries of B_1 (resp. B_2) so that $(\Delta_k)_{ii} = (B_k)_{ii}$ for k = 1, 2, then we have two LU-decompositions

$$A = (B_1 \Delta_1^{-1})(\Delta_1 B_1^{\top}) = (B_2 \Delta_2^{-1})(\Delta_2 B_2^{\top})$$

with $B_1\Delta_1^{-1}$, $B_2\Delta_2^{-1}$ unit lower triangular, and $\Delta_1B_1^{\top}$, $\Delta_2B_2^{\top}$ upper triangular. By uniquenes of LU-factorization (Theorem 8.5(1)), we have

$$B_1 \Delta_1^{-1} = B_2 \Delta_2^{-1}, \quad \Delta_1 B_1^{\top} = \Delta_2 B_2^{\top},$$

and the second equation yields

$$B_1 \Delta_1 = B_2 \Delta_2. \tag{*}$$