Analyse Temps Fréquence TP $N^{\circ}3$:

TRANSFORMÉE DE FOURIER À COURT TERME

Objectif: Comprendre la dépendance entre les deux domaines: Temps et fréquence en utilisant la Transformée de Fourier à Court Terme (TFCT).

Considérons le signal x(t) composé de trois signaux $x_1(t)$, $x_2(t)$, et $x_3(t)$, tels que :

- $x_1(t) = \cos\left(2\pi f_1 t\right)$ $0 \le t \le T_1$.
- $x_1(t) = \cos(2\pi f_1 t) \qquad 0 \le t \le T_1.$ $x_2(t) = \cos(2\pi f_2 t) \qquad T_1 \le t \le T_1 + T_2.$ $x_3(t) = \cos(2\pi f_3 t) \qquad T_1 + T_2 \le t \le T_1 + T_2 + T_3$
- f_1 =100Hz, f_2 =300Hz, f_3 =600Hz $T_1 = T_2 = T_3$ = 100 msec
- On prend une fréquence d'échantillonnage $F_e = 2$ Khz.
- Le nombre d'échantillons global de la durée $(T = T_1 + T_2 + T_3)$ est :

$$N = \frac{T_1 + T_2 + T_3}{T_e}$$

Travail à effectuer :

- 1. Développer un programme sous MATLAB qui génère le signal x(t).
- 2. Développer un programme sous MATLAB permettant de calculer le spectre par Transformée de Fourier Discrète (TFD) de x(t) en considérant toute la durée d'observation (N). Représentation graphique. Conclusion.
- 3. Développer un programme sous MATLAB permettant de calculer le spectre par Transformée de Fourier Discrète à Court Terme (TFCT) de x(t) en considérant à chaque fois une tranche de la durée d'observation. Faites varier la durée de la fenêtre. Représentation graphique à trois dimensions spectre, temps et fréquence.
- 4. Conclusion.