

Universitat Rovira i Virgili

Departament de Bioquímica i Biotecnologia

10. ESTRUCTURA DELS PRINCIPALS TIPUS D'ARN

ESTRUCTURA I FUNCIÓ DE BIOMOLÈCULES

(Grau en Bioquímica i Biologia Molecular) (Grau en Biotecnologia)

PROGRAMA DE TEORIA DE L'ASSIGNATURA

- 8) COMPONENTS ESTRUCTURALS DELS ÀCIDS NUCLEICS (2)
- 9) ESTRUCTURA SECUNDÀRIA DEL DNA (2)

- 10) ESTRUCTURA DELS PRINCIPALS TIPUS D'ARN (2)
- 11) FONAMENTS DE LA INTERACCIÓ PROTEÏNA-DNA (2)

OBJECTIUS PRINCIPALS DEL TEMA

- (1) Conèixer les principals característiques estructurals dels ARNt
- (2) Entendre la importància que té l'ARN monocatenari en el fet que un ARN pugui tenir activitat catalítica
- (3) Conèixer les principals característiques del ribozim hammerhead
- (4) Conèixer l'estructura del ribosoma

FONAMENTS DE L'ESTRUCTURA DE L'ARN

ESTRUCTURA DE L'ARNt

10. ESTRUCTURA DELS PRINCIPALS TIPUS D'ARN

ELS RIBOZIMS

ESTRUCTURA DEL RIBOSOMA

ESTRUCTURA QUÍMICA DELS SUCRES

D-RIBOSA	2-DESOXI-D-RIBOSA		
H O C OH HOCH2 OH HOCH2 OH H H H H H H H H H H H H H H H H H	H O C $\frac{1}{1}$ H O $\frac{1}{1}$ H O $\frac{1}{2}$ H O $\frac{1}{2}$ O $\frac{1}{4}$ H $\frac{1}{1}$ H $\frac{1}{3}$ $\frac{1}{2}$ H O $\frac{1}{2}$ H O $\frac{1}{4}$ H $\frac{1}{4}$ H $\frac{1}{4}$ H $\frac{1}{4}$ H $\frac{1}{4}$ H $\frac{1}{4}$ Furanose form of p-2-Deoxyribose $\frac{1}{2}$ D-2-Deoxyribose $\frac{1}{2}$ D-2-Deoxyribose		

FONAMENTS DE L'ESTRUCTURA DELS ARN (1)

FONAMENTS DE L'ESTRUCTURA DELS ARN (2)

SUBSTITUCIÓ DE LA D-2-DESOXIRIBOSAS (ADN) PER LA D-RIBOSA (ARN)

FONAMENTS DE L'ESTRUCTURA DELS ARN (2)

FONAMENTS DE L'ESTRUCTURA DE L'ARN

ESTRUCTURA DE L'ARNt

10. ESTRUCTURA DELS PRINCIPALS TIPUS D'ARN

ELS RIBOZIMS

ESTRUCTURA DEL RIBOSOMA

Descripció general de l'estructura primària i secundària dels ARNt. Complementarietat entre bases

Descripció general de l'estructura primària i secundària dels ARNt. Localització de la *tija* i dels *braços*.

Descripció general de l'estructura primària i secundària dels ARNt. Nucleòtids no estàndard en la seqüència

Descripció general de l'estructura primària i secundària dels ARNt. Lloc d'unió covalent del aminoàcid

Descripció general de l'estructura primària i secundària dels ARNt. L'anticodó

Descripció general de l'estructura primària i secundària dels ARNt. Localització dels nucleòtids conservats

Descripció de l'estructura tridimensional dels ARNt. Importància dels ponts d'hidrogen entre nucleòtids conservats

Descripció de l'estructura tridimensional dels ARNt. Localització dels braços i de la tija en l'estructura tridimensional

FONAMENTS DE L'ESTRUCTURA DE L'ARN

ESTRUCTURA DE L'ARNt

10. ESTRUCTURA DELS PRINCIPALS TIPUS D'ARN

ELS RIBOZIMS

ESTRUCTURA DEL RIBOSOMA

ESTRUCTURA SECUNDÀRIA DEL RIBOZIM HAMMERHEAD

LOCALITZACIÓ DELS NUCLEÒTIDS DEL CENTRE CATALÍTIC AL RIBOZIM HAMMERHEAD

LLOC D'ESCISIÓ DE LA CADENA POLINUCLEOTÍDICA AL RIBOZIM HAMMERHEAD

MECANISME D'AUTO-ESCISSIÓ AL RIBOZIM HAMMERHEAD (1)

Fig. I.15.- Requerimientos de secuencia de la ribozima hammerhead. Se muestran los nucleótidos esenciales para la actividad catalítica de las ribozimas hammerhead que procesan sustratos en *trans*. Los nucleótidos que representan la ribozima se muestran en mayúscula, mientras que los del sustrato se indican en minúscula. N = cualquier nucleótido; Y = C o U; R = A o G; H = A, C ó U. HI-HIII = hélice II-hélice III.

MECANISME D'AUTO-ESCISSIÓ AL RIBOZIM HAMMERHEAD (2)

ESTRUCTURA TRIDIMENSIONAL DEL RIBOZIM HAMMERHEAD (1)

ESTRUCTURA TRIDIMENSIONAL DEL RIBOZIM HAMMERHEAD (2)

PLEGAMENT DEL RIBOZIM HAMMERHEAD DEPENENT DE Mg²⁺

FONAMENTS DE L'ESTRUCTURA DE L'ARN

ESTRUCTURA DE L'ARNt

10. ESTRUCTURA DELS PRINCIPALS TIPUS D'ARN

ELS RIBOZIMS

ESTRUCTURA DEL RIBOSOMA

ESTRUCTURA GENERAL DELS RIBOSOMES

ESTRUCTURA GENERAL DELS RIBOSOMES (1)

ESTRUCTURA GENERAL DELS RIBOSOMES (2)

RECONEIXEMENT CODÓ-ANTICODÓ

Figura 21-4. Apareamiento codón-anticodón. a) Interacción entre el ARNm y el ARNt (nótese el alineamiento antiparalelo de las cadenas). b) Balanceo entre codón-anticodón: posibilidades de apareamiento.

EL CODI GENÈTIC

TABLE 4.4 The genetic code

First position (5' end)	Second Position			Third position	
	U	c	Α	G	(3' end)
	Phe	Ser	Tyr	Cys	U
U	Phe	Ser	Tyr	Cys	c
	Leu	Ser	Stop	Stop	Α
	Leu	Ser	Stop	Trp	G
	Leu	Pro	His	Arg	U
L	Leu	Pro	His	Arg	c
	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
	lle	Thr	Asn	Ser	U
II M	lle	Thr	Asn	Ser	c
	lle	Thr	Lys	Arg	Α
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	U
G	Val	Ala	Asp	Gly	c
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G

Note: This table identifies the amino acid encoded by each triplet. For example, the codon 5' AUG 3' on mRNA specifies methionine, whereas CAU specifies histidine. UAA, UAG, and UGA are termination signals. AUG is part of the initiation signal, in addition to coding for internal methionine residues.

MECANISME DE SÍNTESI PROTEICA EN PROCARIOTES. INICIACIÓ (1)

MECANISME DE SÍNTESI PROTEICA EN PROCARIOTES. INICIACIÓ (2)

Prokaryotic Ribosome-mRNA Recognition

 16S rRNA binds to an mRNA at the ribosomal-binding site or Shine-Dalgarno box

MECANISME DE SÍNTESI PROTEICA EN PROCARIOTES. ELONGACIÓ (1)

MECANISME DE SÍNTESI PROTEICA EN PROCARIOTES. ELONGACIÓ (2)

MECANISME DE SÍNTESI PROTEICA EN PROCARIOTES. ELONGACIÓ (3)

MECANISME DE SÍNTESI PROTEICA EN PROCARIOTES. TERMINACIÓ (1)

MECANISME DE SÍNTESI PROTEICA EN PROCARIOTES. TERMINACIÓ (2)

ESTRUCTURA DE LA SUBUNITAT 30S DEL RIBOSOMA

OBJECTIUS PRINCIPALS DEL TEMA

- (1) Conèixer les principals característiques estructurals dels ARNt
- (2) Entendre la importància que té l'ARN monocatenari en el fet que un ARN pugui tenir activitat catalítica
- (3) Conèixer les principals característiques del ribozim hammerhead
- (4) Conèixer l'estructura del ribosoma