Module 1: Introduction

- What is an operating system?
- Simple Batch Systems
- Multiprogramming Batched Systems
- Time-Sharing Systems
- Personal-Computer Systems
- Parallel Systems
- Distributed Systems
- Real -Time Systems

Operating System Concents

1.1

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware.
- Operating system goals:
 - Execute user programs and make solving user problems easier.
 - Make the computer system convenient to
- Use the computer hardware in an efficient manner.

Operating System Concepts

1.2

Laface - 2012 Silberschatz and Galvin

Computer System Components

- 1. Hardware provides basic computing resources (CPU, memory, I/O devices).
- Operating system controls and coordinates the use of the hardware among the various application programs for the various users.
- Applications programs define the ways in which the system resources are used to solve the computing problems of the users (compilers, database systems, video games, business programs).
- 4. Users (people, machines, other computers).

Operating System Concepts

1.3

Laface - 2012 Silberschatz and Galvi

Operating System Definitions

- Resource allocator manages and allocates resources.
 - Who, when, how much time, how many
- Control program controls the execution of user programs and operations of I/O devices.
- Kernel the one program running at all times (all else being application programs).

Dedicated system (15 minutes)

input time (t_i) execution time (t_e) output time (t_o)

0.3 min 1.0 min

0.5 min

Totale time (t_t)

1.8 min

Processor use: $P_u = \frac{t_e}{t_t}$

 $Throughput = Number\ of\ jobs\ completed\ per\ time\ unit$

$$P_{u} = \frac{1}{15} \approx 6.7 \%$$

$$Throughput = 4 \ job/h$$

Resident monitor - initial control in monitor - control transfers to job - when job completes control transfers back to monitor

Control Cards

- Problems
 - 1. How does the monitor know about the nature of the job (e.g., Fortran versus Assembly) or which program to execute?
 - 2. How does the monitor distinguish (a) job from job?

 - (b) data from program?
- Solution
 - Introduce control cards

Control Cards

• Special cards that tell the resident monitor which programs

to run \$JOB

\$FTN \$RUN

\$DATA \$END

Special characters distinguish control cards from data or program cards:
 \$ in column 1
 // in column 1 and 2
 709 in column1

Simple Batch Systems

- Parts of resident monitor
 - Control card interpreter responsible for reading and carrying out instructions on the cards
 - Loader loads systems programs and applications programs into memory.
 - Device drivers know special characteristics and properties for each of the system's I/O devices.

1.13

Laface - 2012 Silberschatz and Galvin

Simple Batch Systems

 Problem: Slow Performance – I/O and CPU could not overlap; card reader very slow.

$$P_u = \frac{1}{1.8} \approx 55.5 \%$$

Throughput = 33 job/h

Operating System Concepts

Laface - 2012 Silberschatz and Galvin

Off-line batch procesing Job collection 50 job Conversion cards → tape 15 min Tape mounting 5 min Batch execution 50 min Conversion tape → printer 25 min Output separation 15 min 140 min Batch response time $P_{u} = \frac{50}{55} \approx 90.9 \%$ $Throughput = \frac{50 \text{ job}}{55 \text{ min}} \approx 55 \text{ job/h}$

Limits of monoprogramming

- Reading 200 cards (50 ms per card):
- Reading 200 cards (50 ms per card):
 200 x 50 = 10.000 ms;
 Compilation (~ 500 cicles / instructions, ~ 5 instructions / card):
 200 x 5 x 500 x 0.003 = 1.500 ms;
 Executable loading (~ 150 cycles / instruction):
 200 x 5 x 150 x 0.003 = 300 ms;
 Execution (~ 400 cycles / instruction):
 200 x 5 x 400 x 0.003 = 1.200 ms;

- Listing (50 ms / source program line):

 200 x 50 = 10.000 ms;
- Output (50 ms / output line): 100 x 50 = 5.000 ms;

$$P_u = \frac{3.000}{28.000} \approx 10.7 \%$$

Busy form of waiting

1: TTYIN:

2: IN TTS ;Read TTY Status Register

3: ANI RBR ;Check for a Receive

Buffer Ready signal

-4: JZ TTYIN ;Loop if Receive Buffer

is empty

5: IN TTRB ;Read character from TTY

Receive Buffer

6: ... ;Poll other devices

Spooling

- Overlap I/O of one job with computation of another job. While executing one job, the OS
 - Reads next job from card reader into a storage area on the disk (job queue).
 - Outputs printout of previous job from disk to printer.
- Job pool data structure that allows the OS to select which job to run next in order to increase CPU utilization.

Onersting System Concents

1.2

Multiprogrammed Batch Systems Several jobs are kept in main memory at the same time, and the CPU is multiplexed among them. Operating system job 1 job 2 job 3 job 4

OS Features Needed for Multiprogramming

- I/O routine supplied by the system.
- Memory management the system must allocate the memory to several jobs.
- CPU scheduling the system must choose among several jobs ready to run.
- Allocation of devices.

Onersting System Concents

1.25

Time-Sharing Systems-Interactive Computing

- The CPU is multiplexed among several jobs that are kept in memory and on disk (the CPU is allocated to a job only if the job is in memory).
- A job is swapped in and out of memory to the disk.
- On-line communication between the user and the system is provided; when the operating system finishes the execution of one command, it seeks the next "control statement" not from a card reader, but rather from the user's keyboard.
- On-line system must be available for users to access data and code.

Operating System Concepts

1.26

Laface - 2012 Silberschatz and Galvi

Personal-Computer Systems

- Personal computers computer system dedicated to a single user.
- I/O devices keyboards, mice, display screens, small printers.
- User convenience and responsiveness.
- Can adopt technology developed for larger operating system' often individuals have sole use of computer and do not need advanced CPU utilization of protection features.

Operating System Concept

1.27

Laface - 2012 Silberschatz and Galvi

Parallel Systems

- Multiprocessor systems with more than one CPU in close communication.
- Tightly coupled system processors share memory and a clock; communication usually takes place through the shared memory.
- Advantages of parallel system:
 - Increased throughput
 - Economical
 - Increased reliability
 graceful degradation
 fail-soft systems

_		
Operating	System	Concepts

1.29

Laface - 2012 Silberschatz and Gali

Parallel Systems (Cont.)

- Symmetric multiprocessing (SMP)
 - -Each processor runs an identical copy of the operating system.
 - Many processes can run at once without performance deterioration.
 - Most modern operating systems support SMP

Operating System Concept

1.30

aface - 2012 Silberschatz and Galvi

Parallel Systems (Cont.)

- Asymmetric multiprocessing
 - -Each processor is assigned a specific task; master processor schedules and allocates work to slave processors.
 - More common in extremely large systems

Operating System Concern

. . . .

Symmetric Multiprocessing Architecture CPU CPU ... CPU memory CPU Luface - 2012 Siberschatz and Galvin

Real-Time Systems

- Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems.
- Well-defined fixed-time constraints: the task correctness depends on when a given operation is performed

Operating System Concepts

1.33

ace - 2012 Silberschatz and Galvin

Real-Time Systems

• Hard real-time system

- Secondary storage limited or absent, data stored in short-term memory, or read-only memory (ROM)
- Conflicts with time-sharing systems, not supported by general-purpose operating systems

Soft real-time system

- Limited utility in industrial control or robotics
- Useful in applications (multimedia, virtual reality) requiring advanced operating-system features

Operating System Concents

1 24

Distributed Systems

- Distribute the computation among several physical processors.
- Loosely coupled system each processor has its own local memory; processors communicate with one another through various communications lines, such as high-speed buses or telephone lines.
- Advantages of distributed systems.
 - Resources Sharing
 - Computation speed up load sharing
 - Reliability
 - Communications

Operating System Concepts

1.35

Laface - 2012 Silberschatz and Galvi

Distributed Systems (Cont.)

- Network Operating System
 - provides file sharing
 - provides communication scheme
 - runs independently from other computers on the network
- Distributed Operating System
 - less autonomy between computers
 - gives the impression there is a single operating system controlling the network.

Operating System Concept

1.3

Laface - 2012 Silberschatz and Galvi