## Assignment 1 - Steady State Thermal Analyses of a Curved Pipe

Figure 1 shows a curved cast iron pipe. Inside and outside diameters are 70 mm and 90 mm, respectively, and its thermal conductivity is 52 W/m-C.



For parts A, B, and C, the pipe is carrying steam at 155 C with an inside surface convection coefficient of 20  $W/m^2$  -C, and the outside ambient temperature is 20 C. Assume the pipe ends are adiabatic.

Part A - The pipe is not insulated, and the outside convection coefficient is 3.8 W/m<sup>2</sup> -C.

A1- Determine the maximum outside surface temperature of the cast iron pipe. Express your answer in degrees C and to the nearest tenth of a degree C.

A2 - Determine the rate of heat loss off the outside surface of the pipe. Express your answer in Watts and to the nearest tenth of a Watt.

Part B - The pipe's outside surface is insulated with 5 mm of foam (K = 0.20 W/m-C). It is correct to assume that the total heat resistance ( $R_{total}$ ) due to the insulation and the heat resistance from external surface convection act in series, as indicated in Figure 2.



Figure 2

This means

$$R_{total} = R_{insulation} + R_{convection}$$

It is relatively easy to show that  $R_{total}$  = 0.29/A where A is the total exterior surface area of the pipe. The equivalent exterior convection coefficient ( $h_{eq}$ ) is easily determined from

$$h_{eq} = \frac{1}{R_{total}A} = 3.4 \text{ W/m}^2 - \text{C}$$

which accounts for the added insulation and replaces the exterior convection coefficient used in Part A.

- B1- Determine the maximum outside surface temperature of the cast iron pipe. Express your answer in degrees C and to the nearest tenth of a degree C.
- B2 Determine the rate of heat loss off the outside surface of the pipe. Express your answer in Watts and to the nearest tenth of a Watt.
- B3 Explain the change in heat loss compared to A2.
- **Part C** The pipe's outside surface is insulated with 5 mm of foam (K = 0.2- W/m-C). Instead of approximating an equivalent convection film coefficient, this time model the 5-mm thick insulation with finite elements. In so doing, you will need to add a second part to the given model. And you will need to add a second material (Foam Insulation) to the Engineering Data tool. The convection coefficient is 3.8 W/m<sup>2</sup> -C and is applied to the outside surface of the insulation, and the outside ambient temperature remains at 20 C.
- C1- Determine the maximum outside surface temperature of the <u>cast iron pipe</u>. Express your answer in degrees C and to the nearest degree C.
- C2 Determine the rate of heat loss off the outside surface of the <u>insulation</u>. Express your answer in Watts and to the nearest tenth of a Watt.
- C3 Explain the change in heat loss compared to A2. Explain the change in heat loss compared to B2. Do these changes make sense and why or why not?

## **Assumptions and Additional Guidance**

- 1) Heat transfer is steady state.
- 2) Thermal properties are constant.
- 3) For Part C, the thermal contact resistance at the interface between the metal and the insulation is negligible. In other words, use default Mechanical settings.
- 4) Radiation can be ignored.
- 5) <u>Accurate, convergence</u> results in terms of your mesh are expected.
- 6) It might be useful and efficient to employ a ½-symmetry model.