```
In [1]:
```

```
import pandas as pd
```

In [2]:

```
df1 = pd.read_csv('train_c.csv')
df2 = pd.read_csv('test_c.csv')
df3 = pd.read_csv('sample_submission_c.csv')
```

In [3]:

```
df1.head()
```

Out[3]:

	id	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	M
0	0	2.3859	15	3.827160	1.112100	1280.0	2.486989	34.60	-120.12	
1	1	3.7188	17	6.013373	1.054217	1504.0	3.813084	38.69	-121.22	
2	2	4.7750	27	6.535604	1.103175	1061.0	2.464602	34.71	-120.45	
3	3	2.4138	16	3.350203	0.965432	1255.0	2.089286	32.66	-117.09	
4	4	3.7500	52	4.284404	1.069246	1793.0	1.604790	37.80	-122.41	
4										•

In [4]:

```
df1.tail()
```

Out[4]:

	id	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Long
37132	37132	3.3438	50	4.936508	1.079365	1775.0	3.022222	34.19	-1
37133	37133	3.7308	26	5.087533	0.966019	1006.0	4.316901	37.32	-1:
37134	37134	4.1716	52	4.678862	1.101485	1156.0	1.431734	37.75	-1:
37135	37135	2.7143	16	5.710074	1.068376	584.0	2.803659	38.40	-1:
37136	37136	2.2419	34	5.424419	1.058685	1340.0	3.799065	36.34	-1
4									-

In [5]:

df1.shape

Out[5]:

(37137, 10)

```
In [6]:
df1.columns
Out[6]:
Index(['id', 'MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population',
       'AveOccup', 'Latitude', 'Longitude', 'MedHouseVal'],
      dtvpe='object')
In [7]:
df1.duplicated().sum()
Out[7]:
In [8]:
df1.isnull().sum()
Out[8]:
id
              0
MedInc
HouseAge
AveRooms
              0
AveBedrms
Population
              0
Ave0ccup
              0
Latitude
              0
Longitude
              0
MedHouseVal
              0
dtype: int64
In [9]:
df1.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 37137 entries, 0 to 37136
Data columns (total 10 columns):
    Column Non-Null Count Dtype
    -----
                 -----
0
    id
                37137 non-null int64
1
    MedInc
                37137 non-null float64
                37137 non-null int64
 2
    HouseAge
 3
                 37137 non-null float64
    AveRooms
 4
    AveBedrms
                 37137 non-null float64
 5
    Population 37137 non-null float64
    AveOccup 37137 non-null float64
 6
 7
    Latitude
               37137 non-null float64
    Longitude 37137 non-null float64
 8
    MedHouseVal 37137 non-null float64
dtypes: float64(8), int64(2)
memory usage: 2.8 MB
```

In [10]:

df1.describe()

Out[10]:

	id	MedInc	HouseAge	AveRooms	AveBedrms	Population	Αv
count	37137.00000	37137.000000	37137.000000	37137.000000	37137.000000	37137.000000	37137
mean	18568.00000	3.851029	26.057005	5.163124	1.062204	1660.778919	2
std	10720.67281	1.803167	12.158221	1.206242	0.096490	1302.469608	2
min	0.00000	0.499900	2.000000	0.851064	0.500000	3.000000	(
25%	9284.00000	2.602300	17.000000	4.357522	1.020305	952.000000	2
50%	18568.00000	3.515600	25.000000	5.068611	1.054545	1383.000000	2
75%	27852.00000	4.699700	35.000000	5.858597	1.088825	1856.000000	3
max	37136.00000	15.000100	52.000000	28.837607	5.873181	35682.000000	502
4							•

In [11]:

df1.nunique()

Out[11]:

id 37137 MedInc 12310 HouseAge 51 AveRooms 21278 AveBedrms 13303 3694 Population Ave0ccup 20253 Latitude 791 Longitude 755 MedHouseVal 3723 dtype: int64

In [12]:

df2.head()

Out[12]:

	id	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude
0	37137	1.7062	35	4.966368	1.096539	1318.0	2.844411	39.75	-121.85
1	37138	1.3882	22	4.187035	1.098229	2296.0	3.180218	33.95	-118.29
2	37139	7.7197	21	7.129436	0.959276	1535.0	2.888889	33.61	-117.81
3	37140	4.6806	49	4.769697	1.048485	707.0	1.743590	34.17	-118.34
4	37141	3.1284	25	3.765306	1.081633	4716.0	2.003827	34.17	-118.29
4									•

```
In [13]:
df2.tail()
Out[13]:
          id MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude Long
 24754 61891
              2.2875
                                  3.914729
                                             1.085271
                                                           866.0
                                                                  2.071429
                                                                              34.44
                                                                                       -1
 24755 61892
              3.0781
                            33
                                  4.771971
                                             1.038674
                                                          1628.0
                                                                  2.326848
                                                                              34.09
                                                                                       -1
 24756 61893
              2.6961
                            14
                                  4.593960
                                             1.170380
                                                          3900.0
                                                                  2.540034
                                                                              37.51
                                                                                       -1:
24757 61894
              7.2315
                             8
                                  7.508403
                                             1.018692
                                                          1388.0
                                                                  2.601202
                                                                              33.67
                                                                                       -1
 24758 61895
              5.7260
                            30
                                  6.000000
                                             1.000000
                                                            15.0
                                                                  2.500000
                                                                              37.96
                                                                                       -1:
In [14]:
df2.shape
Out[14]:
(24759, 9)
In [15]:
df2.columns
Out[15]:
Index(['id', 'MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population',
        'AveOccup', 'Latitude', 'Longitude'],
      dtype='object')
In [16]:
df2.duplicated().sum()
Out[16]:
In [17]:
df2.isnull().sum()
Out[17]:
id
               0
MedInc
               0
               0
HouseAge
               0
AveRooms
AveBedrms
               0
Population
               0
               0
Ave0ccup
Latitude
               0
Longitude
               0
dtype: int64
```

In [18]:

df2.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24759 entries, 0 to 24758
Data columns (total 9 columns):
    Column
               Non-Null Count Dtype
               -----
0
               24759 non-null int64
    id
    MedInc
               24759 non-null float64
 1
    HouseAge
 2
               24759 non-null int64
 3
   AveRooms 24759 non-null float64
 4
   AveBedrms 24759 non-null float64
 5 Population 24759 non-null float64
               24759 non-null float64
 6
    Ave0ccup
               24759 non-null float64
7
    Latitude
    Longitude 24759 non-null float64
8
dtypes: float64(7), int64(2)
memory usage: 1.7 MB
```

In [19]:

df2.describe()

Out[19]:

	id	Medinc	HouseAge	AveRooms	AveBedrms	Population	A
count	24759.000000	24759.000000	24759.000000	24759.000000	24759.000000	24759.000000	2475
mean	49516.000000	3.832618	26.041561	5.168789	1.063599	1679.327548	
std	7147.451994	1.797503	12.177907	1.252874	0.123630	1365.598976	
min	37137.000000	0.499900	2.000000	1.000000	0.560000	3.000000	
25%	43326.500000	2.590150	17.000000	4.356443	1.020460	955.000000	
50%	49516.000000	3.504600	25.000000	5.077143	1.054094	1398.000000	
75%	55705.500000	4.687500	35.000000	5.858646	1.088295	1874.000000	
max	61895.000000	15.000100	52.000000	56.269231	10.500000	35682.000000	23
4							-

In [20]:

df2.nunique()

Out[20]:

id 24759 MedInc 10239 HouseAge 51 AveRooms 16283 AveBedrms 10688 3454 Population Ave0ccup 15496 Latitude 745 Longitude 736 dtype: int64

```
In [21]:
df3.head()
Out[21]:
      id MedHouseVal
             2.079751
 0 37137
1 37138
             2.079751
2 37139
             2.079751
3 37140
            2.079751
4 37141
           2.079751
In [22]:
df3.tail()
Out[22]:
          id MedHouseVal
24754 61891
                 2.079751
 24755 61892
                 2.079751
 24756 61893
                2.079751
24757 61894
                 2.079751
24758 61895
                 2.079751
In [23]:
df3.shape
Out[23]:
(24759, 2)
In [24]:
df3.columns
Out[24]:
Index(['id', 'MedHouseVal'], dtype='object')
In [25]:
df3.duplicated().sum()
Out[25]:
```

0

```
df3.isnull().sum()
Out[26]:
id
MedHouseVal
               0
dtype: int64
In [27]:
df3.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 24759 entries, 0 to 24758
Data columns (total 2 columns):
 # Column
                 Non-Null Count Dtype
 0
     id
                  24759 non-null int64
 1
     MedHouseVal 24759 non-null float64
dtypes: float64(1), int64(1)
memory usage: 387.0 KB
In [28]:
df3.describe()
Out[28]:
               id MedHouseVal
 count 24759.000000 24759.000000
 mean 49516.000000
                      2.079751
  std 7147.451994
                      0.000000
  min 37137.000000
                      2.079751
  25% 43326.500000
                      2.079751
  50% 49516.000000
                      2.079751
  75% 55705.500000
                      2.079751
                      2.079751
  max 61895.000000
In [29]:
df1 = df1.drop('id', axis = 1)
In [30]:
df2 = df2.drop('id', axis = 1)
```

In [26]:

```
In [31]:
```

```
import matplotlib.pyplot as plt
import seaborn as sns
```

In [32]:

```
import warnings
warnings.filterwarnings('ignore')
```

In [33]:

```
for i in df1.columns:
   plt.figure(figsize = (14,6))
   sns.boxplot(df1[i],data=df1, palette = 'hls')
   plt.xticks(rotation = 90)
   plt.yticks(rotation = 90)
   plt.show()
```


In [34]:

```
Q1 = df1.quantile(0.25)
Q3 = df1.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

```
MedInc
                 2.097400
HouseAge
                18.000000
AveRooms
                 1.501075
AveBedrms
                 0.068521
Population
               904.000000
AveOccup
                 0.730818
Latitude
                 3.770000
Longitude
                 3.780000
MedHouseVal
                 1.452000
dtype: float64
```

```
In [35]:
```

```
df1_new = df1[~((df1 < (Q1 - 1.5 * IQR)) |(df1 > (Q3 + 1.5 * IQR))).any(axis=1)]
```

In [36]:

```
df1_new.shape
```

Out[36]:

(29631, 9)

In [37]:

```
for i in df2.columns:
   plt.figure(figsize = (14,6))
   sns.boxplot(df2[i],data=df2, palette = 'hls')
   plt.xticks(rotation = 90)
   plt.yticks(rotation = 90)
   plt.show()
```


In [38]:

```
Q1 = df2.quantile(0.25)
Q3 = df2.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

```
MedInc
                2.097350
HouseAge
               18.000000
AveRooms
                1.502204
AveBedrms
                0.067835
Population
              919.000000
Ave0ccup
                0.729167
Latitude
                3.790000
Longitude
                3.780000
dtype: float64
```

```
In [39]:
```

```
df2_new = df2[~((df2 < (Q1 - 1.5 * IQR)) |(df2 > (Q3 + 1.5 * IQR))).any(axis=1)]
```

In [40]:

```
df2_new.shape
```

Out[40]:

(20327, 8)

In [41]:

```
for i in df1.columns:
   plt.figure(figsize = (14,6))
   sns.histplot(df1[i], kde = True, palette = 'hls')
   plt.xticks(rotation = 90)
   plt.yticks(rotation = 90)
   plt.show()
```



```
In [42]:
```

```
for i in df2.columns:
   plt.figure(figsize = (14,6))
   sns.histplot(df2[i], kde = True, palette = 'hls')
   plt.xticks(rotation = 90)
   plt.yticks(rotation = 90)
   plt.show()
```


In [43]:

```
corr1 = df1_new.corr()
```

In [44]:

corr1

Out[44]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Lo
MedInc	1.000000	-0.154998	0.691408	-0.231312	-0.000613	0.033867	-0.060739	-(
HouseAge	-0.154998	1.000000	-0.193637	-0.045089	-0.216033	-0.017077	0.021367	-(
AveRooms	0.691408	-0.193637	1.000000	-0.095022	-0.055967	0.171741	0.118046	-(
AveBedrms	-0.231312	-0.045089	-0.095022	1.000000	0.048547	-0.103755	0.004771	(
Population	-0.000613	-0.216033	-0.055967	0.048547	1.000000	0.142742	-0.089915	(
AveOccup	0.033867	-0.017077	0.171741	-0.103755	0.142742	1.000000	-0.096950	(
Latitude	-0.060739	0.021367	0.118046	0.004771	-0.089915	-0.096950	1.000000	-
Longitude	-0.044226	-0.088901	-0.101521	0.020426	0.086667	0.128508	-0.938111	
MedHouseVal	0.644598	0.059935	0.253826	-0.110152	-0.016966	-0.224396	-0.128430	-(

In [45]:

```
plt.figure(figsize = (14,6))
sns.heatmap(corr1, annot = True)
plt.show()
```


In [46]:

corr2 = df2_new.corr()

In [47]:

corr2

Out[47]:

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Lon
Medinc	1.000000	-0.135119	0.699506	-0.222035	-0.027705	0.004920	-0.066105	-0.0
HouseAge	-0.135119	1.000000	-0.177665	-0.052257	-0.241461	-0.034786	0.013681	-0.0
AveRooms	0.699506	-0.177665	1.000000	-0.083990	-0.071239	0.149369	0.113657	-0.1
AveBedrms	-0.222035	-0.052257	-0.083990	1.000000	0.059616	-0.101494	0.010358	0.0
Population	-0.027705	-0.241461	-0.071239	0.059616	1.000000	0.158499	-0.090892	0.0
AveOccup	0.004920	-0.034786	0.149369	-0.101494	0.158499	1.000000	-0.099062	0.1
Latitude	-0.066105	0.013681	0.113657	0.010358	-0.090892	-0.099062	1.000000	-0.9
Longitude	-0.039657	-0.080053	-0.100590	0.015702	0.089963	0.138032	-0.936620	1.0
4								•

In [48]:

```
plt.figure(figsize = (14,6))
sns.heatmap(corr2, annot = True)
plt.show()
```


In [49]:

```
X = df1_new.iloc[:, :-1].values
y = df1_new.iloc[:, -1].values
```

In [50]:

```
from sklearn.ensemble import ExtraTreesRegressor
import matplotlib.pyplot as plt
model = ExtraTreesRegressor()
model.fit(X,y)
print(model.feature_importances_)
```

[0.44956365 0.06024292 0.07753374 0.04130218 0.04166166 0.10917792 0.10365402 0.11686392]

In [51]:

```
X = df1_new.iloc[:,:-1]
```

In [52]:

```
feat_importances = pd.Series(model.feature_importances_, index=X.columns)
feat_importances.nlargest(10).plot(kind='barh')
plt.show()
```


In [53]:

```
X1 = df2_new.iloc[:, :-1].values
y1 = df2_new.iloc[:, -1].values
```

In [54]:

```
model1 = ExtraTreesRegressor()
model1.fit(X1,y1)
print(model1.feature_importances_)
```

```
[0.01533467 0.01319221 0.0099897 0.00672347 0.006853 0.01019466 0.93771229]
```

In [55]:

```
X1 = df2_new.iloc[:,:-1]
```

In [56]:

```
feat_importances1 = pd.Series(model1.feature_importances_, index=X1.columns)
feat_importances1.nlargest(10).plot(kind='barh')
plt.show()
```


In [57]:

In [58]:

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

In [59]:

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X_train, y_train)
```

Out[59]:

```
▼ LinearRegression
LinearRegression()
```

In [60]:

```
y_pred= lr.predict(X_test)
```

```
In [61]:
```

```
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
```

```
In [62]:
```

```
import numpy as np
```

In [63]:

```
print("MAE",mean_absolute_error(y_test,y_pred))
print("MSE",mean_squared_error(y_test,y_pred))
print("RMSE",np.sqrt(mean_squared_error(y_test,y_pred)))
r2 = r2_score(y_test,y_pred)
print('R2',r2)
```

```
MAE 0.4559020229348219
MSE 0.36220681897846946
RMSE 0.6018362061046755
R2 0.5951473610461915
```

In [64]:

```
from sklearn.tree import DecisionTreeRegressor
dt = DecisionTreeRegressor()
dt.fit(X_train, y_train)
```

Out[64]:

```
▼ DecisionTreeRegressor
DecisionTreeRegressor()
```

In [65]:

```
y_pred = dt.predict(X_test)
```

In [66]:

```
print("MAE",mean_absolute_error(y_test,y_pred))
print("MSE",mean_squared_error(y_test,y_pred))
print("RMSE",np.sqrt(mean_squared_error(y_test,y_pred)))
r2 = r2_score(y_test,y_pred)
print('R2 ',r2)
```

```
MAE 0.5446529458410663
MSE 0.5653147126236038
RMSE 0.7518741334981566
R2 0.3681257744109878
```

```
In [67]:
```

```
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators = 100, random_state = 0)
rf.fit(X_train, y_train)
```

Out[67]:

```
RandomForestRegressor
RandomForestRegressor(random_state=0)
```

In [68]:

```
y_pred = rf.predict(X_test)
```

In [69]:

```
print("MAE",mean_absolute_error(y_test,y_pred))
print("MSE",mean_squared_error(y_test,y_pred))
print("RMSE",np.sqrt(mean_squared_error(y_test,y_pred)))
r2 = r2_score(y_test,y_pred)
print('R2 ',r2)
```

```
MAE 0.3866588000506158
MSE 0.28044284579795753
RMSE 0.5295685468359668
R2 0.6865381316750745
```

In [70]:

```
from sklearn.svm import SVR
sv = SVR(kernel = 'rbf')
sv.fit(X_train, y_train)
```

Out[70]:

```
▼ SVR
SVR()
```

In [71]:

```
y_pred = sv.predict(X_test)
```

```
In [72]:
```

0.3137081265449524

```
print("MAE", mean absolute error(y test, y pred))
print("MSE", mean_squared_error(y_test,y_pred))
print("RMSE",np.sgrt(mean squared error(y test,y pred)))
r2 = r2_score(y_test,y_pred)
print('R2 ',r2)
MAE 0.4105013446301161
MSE 0.3215388050041222
RMSE 0.5670439180558435
R2 0.6406035808516599
In [81]:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
In [87]:
model = Sequential()
model.add(Dense(13, input_shape=(8,), kernel_initializer='normal',
          activation='relu'))
model.add(Dense(1, kernel initializer='normal'))
model.compile(loss='mean_squared_error', optimizer='adam')
In [88]:
history = model.fit(X_train, y_train, epochs = 100)
Epoch 1/100
Epoch 2/100
Epoch 3/100
Epoch 4/100
Epoch 5/100
Epoch 6/100
Epoch 7/100
741/741 [============== ] - 2s 2ms/step - loss: 0.3171
Epoch 8/100
741/741 [============= ] - 2s 3ms/step - loss: 0.3158
Epoch 9/100
Epoch 10/100
                           2- 2-4-+-- 1--- 2126
744/744 [
In [89]:
print(model.evaluate(X_test, y_test))
186/186 [============= ] - 0s 1ms/step - loss: 0.3137
```