Table 4: CHI-SQUARE Significant Values χ^2 (α) of Chi-Square Distribution Right Tail Areas for Given Probability α ,

 $P = P_r (\chi^2 > \chi^2 (\alpha)) = \alpha$

And is Degrees of Freedom (d.f.)

Degree of freedom (v)	Probability (Level of significance)							
	0 = .99	0.95	0.50	0.10	0.05	0.02	0.01	
7. 1.41.5	.000157	.00393	.455	2.706	3.841	5.214	6.635	
2	.0201	.103	1.386	4.605	5.991	7.824	9.210	
3	.115	.352	2.366	6.251	7.815	9.837	11.341	
4	.297	.711	3.357	7.779	9.488	11.668	13.277	
5	.554	1.145	4.351	9.236	11.070	13.388	15.086	
5	.872	2.635	5.348	10.645	12.592	15.033	16.812	
7	.1.239	2.167	6.346	12.017	14.067	16.622	18.475	
8	.1.646	2.733	7.344	13.362	15.507	18.168	20.090	
9	2.088	3.325	8.343	14.684	16.919	19.679	21.669	
10	2.558	3.940	9.340	15.987	18.307	21.161	23.209	
. 11	3.053	4.575	10.341	17.275	19.675	22.618	24.725	
12	3.571	5.226	11.340	18.549	21.026	24.054	26.217	
13	4.107	5.892	12.340	19.812	22.362	25.472	27.688	
	4.660	6.571	13.339	21.064	23.685	26.873	29.141	
14 15	4.000	7.261	14.339	22.307	24.996	28.259	30.578	
16	5.812	7.962	15.338	23.542	26.296	29.633	32.000	
17	6.408	8.672	15.338	24.769	27.587	30.995	33.409	
18	7.015	9.390	17.338	25.989	28.869	32,346	34,805	
19	7.633	10.117	18.338	27.204	30.144	33.687	36,19	
20	8.260	10.851	19.337	28.412	31.410	35.020	37,56	
4	8.897	11.591	20.337	29.615	32.671	36.343	38.932	
21		12.338	21.337	30.813	33.924	37.659	40.289	
22	9.542	13.091	22.337	32.007	35.172	38.968	41.638	
23	10.196 10.856	13.848	23.337	32.196	36.415	40.270	42.980	
24		14.611	24.337	34.382	37.65	41.566	44.31	
25	11.524	15.379	25.336	35.363	38.885	41.856	45.642	
26	12.198	16.151	26.336	36.741	40.113	41.140	46.96	
27	12.879	16.928	27.336	37.916	41.337	45.419	48.278	
28	13.565	17.708	28.336	39.087	42.557	46.693	49.588	
29	14.256	18.493	29.336	40.256	43.773	47.962	50.892	
30	14.933	10.433	27.550	,5.25			50.67	

Note. For degrees of freedom (v) greater than 30, the quantity $\sqrt{2\chi^2} - \sqrt{2\nu - 1}$ may be used as a normal variate with unit variance.

chi-square test of goodness of fit.

(ai)
$$\chi^2$$
-test

This test enables us to find it the deviations of the experiment from theory is deviations of the experiment from theory is it really due to the just by chance or is it really due to the inadequacy of the theory to fit the observed data,

(If O: (i=1,2,...n) is a set of observed (experimental)
frequencies and Ei (i=1,2,...n) is the corresponding
set of expected (Theoretical) frequencies, then

Kool Peansonie Chi-square, given by $\chi^2 = \sum_{i=1}^n \frac{(o_i - E_i)^2}{E_i}$

Null hypothesis to i There is no significant ditberence between the observed and the theoretical values.

NOTE:

1) Get tabulated value of χ^2 for n-1 degrees of freedom.

- e) (1) calculate value of x2 obtained is less than the corresponding tabulated value then we accept the null hypothesis.
- 3) (It calculated value of Xt is grater than the tabulated value then we reject null hypothesis.
- EXA) The demand for a particular spare point in a factory was found to vary from day to day. In a sample study the following information was obtained.

Dough: mon The wed Thu Fri Sat.

NO-of part : 1124 1125 1110 1120 1126 1115

demanded

Test the hypothesis that the number of points demanded does not depend on the day of the week

solution;

null hypothesis their The Novet points demanded does not depend on the week. (Or) observed and expected values are same.

Expected frequencies of the spare point demanded on each of six days of the week is $= \frac{1}{6} \left(1124 + 1125 + 1110 + 1120 + 1126 + 1115 \right)$

Expected frequency = 1120.

	Frequenc	y	10 512	(0; - Ei) 2 Ei	
Day	observed Oi	Expected Ei	(O; -Ei)2	Ei	
mon	1124	1120	16	0.014	
Tue	1125	1120	25	0.022	
wed	1110	1120	100	0.089	
Thy	1120	1120	0	0	
Fri	1126	1120	36	0.032	
sot	1115	1120	25	0.022	
Total	6720	6720	i	0.179	

$$\chi^2 = \sum \frac{(0.1 - E.i)^2}{E.i} = 0.179$$

The number of degrees of freedom = 6-1 = 5

The tabulated value of χ^2 for 5 d.f. = 11.07. χ^2 calculated = 0.179 $\langle \chi^2 \rangle$ tabulated = 11.07.

Hence we accept the null hypothesis tho.

i.e. The number parts demanded does not depend on the week.

2) The following figure show the distribution of digits in numbers chosen at random from a telephone directory:

digits: 0 1 2 3 4 5 6 7 8 9

Frequency: 1026 1107 997 966 1075 933 1107 972 964 853

Test whether the digits may be taken to occur equally frequently in the directory.

Solution:
Null hypothesis to: The digits occur equally
trequently in the directory.

Expected frequency = $\frac{1}{10}\sqrt{1026+1107+997+966+1075}$

= 1000. frequencies (O; -E;)2 **Higill** observed O: $(0: -E:)^{\perp}$ Expected E: 1026 1000 676 0-676 1107 1000 11449 2 11.449 997 1000 9 3 0.009 966 1000 1156 1.156 4 1075 1000 5625 5-625 933 5 1000 4489 4.489 6 1107 1000 11149 11.149 7 972 1000 784 0-784 8 964 1000 1296 1. 296 853 1000 21609 21.809 Total 10,000 10,000 58.542

Scanned with CamScanner

$$\chi^{e} = \sum_{E_{1}} \frac{(0-E_{1})^{2}}{E_{1}} = 58.542$$

Degrees of freedom = n-1 = 10-1 = 9.

Tabulated X'sy, for 9 dif = 16.919.

X' caliculated = 58.542 > X2 tobulated = 16.919 Hence we reject the null hypothesis.

A sample analysis of examination results of 3) 200 students was made. It was found that 46 Students had failed, 68 secured a third division, 62 secured a secound division and the rest were placed in first division. Are there figures commensurate with the general examination result which is in the ratio of 4:3:2:1 for various categories respectively.

Bolution:

Null hypothesis the . The given data commensurate with the general examination result.

General examination results

4 : 3 : 2 : 1 Failed III-div. I-div.

-	Tre q	uencies		12				
category	Observed (Oi)	Expected (Ei)	(01 - €;)2	(0:-E:)2				
Failed	46	$\frac{4}{10}$ x 200 = 80	1156	14.450				
II Division	68	3 x 200 = 60	64	1.067				
I Division	6 2	$\frac{2}{10}$ x 200 = 40	484	12.100				
I Division	24	$\frac{1}{10} \times 200 = 20$	16	0-800				
Total	200	200		28.417				

$$\chi^2 = \frac{(0; -E_i)^2}{E_i} = 28.417.$$

degrees of freedom = 4-1=3

$$\chi^2_{51}$$
 for $3 d.4 = 7.815$

calculate X2 = 28.417 > Tabulated X2 = 7.815

Hence we reject the null hypothesis

(or) sample analysis of examination result) are not commensurate with general examination

results.