Homework 1 Tom (wonsuk) Jeong

May 24, 2024

1 Question 1

Prove the following statement: For all $x \in R$, $0 \cdot x = 0$, where 0 is the additive identity of R. (Hint: consider 1 + 0.)

Proof 1.1. \mathbb{R} is a field, so it follows the distributive property. We also know 1+0=1 since 0 is the additive identity:

$$1+0=1$$

$$x(1+0)=x(1) \ .. \ using the distributive property of fields
$$1\cdot x+0\cdot x=1\cdot x$$$$

1 is the multiplicative identity,

$$x + 0 \cdot x = x$$

$$x - x + 0 \cdot x = x - x \dots - x \text{ is the additive inverse of } x$$

$$0 \cdot x = 0$$

We show that $0 \cdot x = 0$ for all $x \in \mathbb{R}$.

2 Question 2

Write a clear proof of the Archimedian Principle, i.d. the statement: if $a,b \in \mathbb{R}_{>0}$, then there exists $n \in \mathbb{N}$ such that $a \cdot n > b$. You may use the following lemma without proving it: If $E \subset \mathbb{N}$ has a supremum s, then $s \in E$. hint: consider the set $E = \{n \in \mathbb{N} : n < \frac{b}{a}\}$. Then use the lemma above and consider $a \cdot (s+1)$.

Proof 2.1. To prove: If $a, b \in \mathbb{R}_{>0}$, then there exists $n \in \mathbb{N}$ such that $a \cdot n > b$. Consider the equivalent statement: If $a, b \in \mathbb{R}_{>0}$, then there exists $n \in \mathbb{N}$ such that $n > \frac{b}{a}$. We will consider two cases:

1. Case 1: $a \ge b$

Let n = 1. Then,

$$a \cdot n = a \ge b$$
.

Thus, $a \cdot n > b$ is satisfied for n = 1.

2. Case 2: a < b

Let $E = \{ n \in \mathbb{N} : n < \frac{b}{a} \}.$

We know that E is non-empty since $1 \in E$ (because a < b implies $\frac{b}{a} > 1$).

We also know that E is bounded above by $\frac{b}{a}$. Thus, $E \subset \mathbb{R}$ and it has a supremum $s = \sup(E)$. By the given lemma, $s \in E$.

By definition of the supremum, for all $e \in E$, we have $e \leq s$. Also note that $s \in E \to s \in \mathbb{N}$

Now, consider k = s + 1. Since s is the supremum of E, $k \notin E$. This implies that $k > \frac{b}{a}$. Therefore,

$$a \cdot k > b$$
.

Since $k = s + 1 \in \mathbb{N}$ (Natural numbers closed under addition), we have shown that there exists $n \in \mathbb{N}$ such that $a \cdot n > b$.

Thus, the Archimedean Principle is proved.

3 Question 3

Prove that

$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

using mathematical induction.

Proof 3.1. We will prove the statement by induction on n.

1. Base Case: n=1

LHS:
$$\sum_{k=1}^{1} k^3 = 1^3 = 1$$

RHS: $\left(\frac{1(1+1)}{2}\right)^2 = 1^2 = 1$

We get 1 = 1 so the base case holds.

2. Inductive Hypothesis: Assume that the statement holds for n = m. That is,

$$\sum_{k=1}^{m} k^3 = \left(\frac{m(m+1)}{2}\right)^2$$

3. **Inductive Step:** We will show that the statement holds for n = m + 1.

$$\sum_{k=1}^{m+1} k^3 = \sum_{k=1}^{m} k^3 + (m+1)^3$$

$$= \left(\frac{m(m+1)}{2}\right)^2 + (m+1)^3$$

$$= \frac{m^2(m+1)^2}{4} + (m+1)^3$$

$$= \frac{m^2(m+1)^2 + 4(m+1)^3}{4}$$

$$= \frac{(m+1)^2(m^2 + 4m + 4)}{4}$$

$$= \frac{(m+1)^2(m+2)^2}{4}$$

$$= \left(\frac{(m+1)(m+2)}{2}\right)^2$$

Thus, by induction, we have shown that

$$\sum_{k=1}^{n} k^{3} = \left(\frac{n(n+1)}{2}\right)^{2}$$

4 Question 4

Prove that for any pair of integers $m, n \in \mathbb{Z}$ with $n \geq 1$, there exists a pair of unique integers $q, r \in \mathbb{Z}$ such that m = qn + r and $0 \leq r \leq n - 1$.

Proof 4.1. I will prove two things: first, the existence of q and r and second, the uniqueness of q and r.

1. **Existence:** Let $m, n \in \mathbb{Z}$ with $n \geq 1$ which means $n \in \mathbb{N}$. We will show that there exists $q, r \in \mathbb{Z}$ such that m = qn + r and $0 \leq r \leq n - 1$. Consider the set $S = \{m + an : a \in \mathbb{Z}\} \cap \mathbb{Z}_{\geq 0}$. Since $n \in \mathbb{N}$, S is non-empty. By the Well-Ordering Principle, S has a least element r. if $m \geq 0$ then we can take a to be 1. we see that n > 0 and $m + an = m + n \geq 0$ thus $m + n \in S$. If m < 0 then we can take a to be -m. we see that $m + an = m(1 - n) \geq 0$ thus $m(1 - n) \in S$.

Using the well ordring principle, we see that S has a least element r. and $r \in S$ implies $\exists a \in \mathbb{Z}$ such that r = m + an. We can write m = qn + r where q = a and r = m + an.

since $r \in S$, we know that $r \geq 0$. $S \in \mathbb{Z}_{>0}$

Now we will show that $r \leq n-1$. But since $n \in \mathbb{N}$ we can re-write this inequality as r < n which is easier for this part. For contradiction, assume $r \geq n$ then we see that $r-n \in S$ because $r-n=m-nq-n=m-n(q+1) \geq 0$. $r-n \in S \to r-n \geq r$ which is a contradiction. Thus, r < n and if we write this in the terms of the question $r \leq n-1$.

2. Uniqueness: We will show injection between q, r to m. Assume that there exists $q_1, q_2, r_1, r_2 \in \mathbb{Z}$ such that $m = q_1 n + r_1 = q_2 n + r_2$ and $0 \le r_1, r_2 \le n - 1$.

We can write $q_1n+r_1=q_2n+r_2$ as $q_1n-q_2n=r_2-r_1$. This implies that $(q_1-q_2)n=r_2-r_1$. Since $0 \le r_1, r_2 \le n-1$, we have $-n < r_2-r_1 < n$. This implies that $-1 < q_1-q_2 < 1$. Since $q_1, q_2 \in \mathbb{Z}$, we have $q_1-q_2=0 \to q_1=q_2$. Therefore we have $q_1n=q_2n\to r_1=r_2$. Thus, q and r are unique.

Thus, we have shown that for any pair of integers $m, n \in \mathbb{Z}$ with $n \geq 1$, there exists a pair of unique integers $q, r \in \mathbb{Z}$ such that m = qn + r and $0 \leq r \leq n - 1$.

5 Question 5

Suppose (a_n) is a sequence in \mathbb{R} . Prove that (a_n) converges to a number $a \in \mathbb{R}$ if and only if every subsequence of (a_n) converges to a.

Proof 5.1. We will prove the statement by proving both directions.

1. **If:** Suppose (a_n) converges to a number $a \in \mathbb{R}$. We will show that every subsequence of (a_n) converges to a.

Let (a_{n_k}) be a subsequence of (a_n) . Since (a_n) converges to a, we have $\lim_{n\to\infty} a_n = a$. This implies that for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|a_n - a| < \epsilon$ for all $n \ge N$.

Since (a_{n_k}) is a subsequence of (a_n) , we have $n_k \geq k$ for all $k \in \mathbb{N}$. Thus, for all $k \geq N$, we have $n_k \geq k \geq N$. This implies that $|a_{n_k} - a| < \epsilon$ for all $k \geq N$. Therefore, (a_{n_k}) converges to a.

2. Only If: Suppose every subsequence of (a_n) converges to a. We will show that (a_n) converges to a.

For contradiction, assume that (a_n) does not converge to a. This implies that there exists $\epsilon > 0$ such that for all $N \in \mathbb{N}$, there exists $n \geq N$ such that $|a_n - a| \geq \epsilon$.

Consider the subsequence (a_{n_k}) defined as follows: $n_1 = 1$ and $n_{k+1} > n_k$ such that $|a_{n_k} - a| \ge \epsilon$. Since (a_{n_k}) is a subsequence of (a_n) , we have $n_k \ge k$ for all $k \in \mathbb{N}$. This implies that

 $|a_{n_k} - a| \ge \epsilon$ for all $k \in \mathbb{N}$. Therefore, (a_{n_k}) does not converge to a, which is a contradiction.

Thus, we have shown that (a_n) converges to a number $a \in \mathbb{R}$ if and only if every subsequence of (a_n) converges to a.