# **True Clouds**

#### How to start

- 1. Create cloud meshes
- 2. Assign Cloud Material to them (located in TrueClouds/Materials)
- 3. Arrange clouds on scene and put them in a separate layer (we'll call it Cloud Layer)
- 4. Add Cloud Camera 3D component to your camera
- 5. Set Cloud Mask to Cloud Layer.
- 6. Set Blocking Mask to everything except for Cloud Layer
- 7. Play with settings and see the clouds change!

## **Options**

## **General Settings**

| Clouds Mask          | Layers that contains clouds                                                                                       |
|----------------------|-------------------------------------------------------------------------------------------------------------------|
| Blocking Mask        | Layers that contain objects that can occlude clouds                                                               |
| Fallback Distance    | Distance in which objects are completely occluded inside a cloud                                                  |
| Light Mask           | Layers with additional lights for clouds                                                                          |
| Late Cut             | Apply depth test after the blurring step                                                                          |
| Approximate Distance | Approximate distance to clouds. Just scales other values to make your life easier. Set up once and don't change:) |
| Depth Precision      | How precise do you want the depth to be? Keep low                                                                 |

## **Light Settings**

| Sun                             | Transform for the sun. Clouds act as if it was a directional light            |  |
|---------------------------------|-------------------------------------------------------------------------------|--|
| Use Ramp For Coloring           | Enables ramp coloring                                                         |  |
| Ramp<br>*if Ramp is on          | Texture for lightning. From left to right color goes from the light to shadow |  |
| Light Color                     | Color of light                                                                |  |
| Light End<br>*if Ramp is off    | Angle threshold, below which there is only ShadowColor                        |  |
| Shadow Color<br>*if Ramp is off | Color of shadow                                                               |  |
| Silverline Power                | Power of light to shine through the cloud                                     |  |

|                    | Radius of shining through |
|--------------------|---------------------------|
| *if Halo Power > 0 |                           |

# **Blur Settings**

| •                 |                                                                                                                                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Radius            | Radius of blur for normals and alpha                                                                                             |
| Threshold         | Threshold is subtracted from alpha. Then alpha is normalised. I.E. $a = (a - threshold) / (1-threshold)$                         |
| Power             | a = pow(a, power)                                                                                                                |
| Quality           | Quality of blur (affects count of samples for gaussian)                                                                          |
| Depth Filtering   | How much does blur radius depend on distance If clouds in the distance are getting to blurry, consider increasing this parameter |
| Downsample Clouds | How strong should the render textures be downsampled Keep as low as possible if performance is bad                               |
| Downsample World  | How strong should world's depth be downscaled Keep as low as possible if performance is bad Not as important as previous setting |

# **Noise Settings**

| Use Noise                       |                   | Should noise be enabled?                                    |
|---------------------------------|-------------------|-------------------------------------------------------------|
| Can<br>Be<br>Locked<br>Together | Normal            | Power off normal noise                                      |
|                                 | Displacement      | Power of displacement noise                                 |
|                                 | Depth             | Power of cloud's depth noise                                |
| Wind                            |                   | Direction and speed of wind applied to noise                |
| Sinus Time Scale                |                   | Time scale for wavy depth noise                             |
| Texture                         |                   | Noise source                                                |
| Can<br>Be<br>Locked<br>Together | Noise Scale       | Scale applied to Noise Texture for normals and displacement |
|                                 | Depth Noise Scale | Scale applied to Noise Texture for depth noise              |

## Lighting

There are some tools for additional artistic control: point lights and tinting.

### **Point Light**

^ <del>-</del>: '

↑ Tints and Lights should be placed in layers of Light Mask

To add a Point Light go to AddComponent -> Cloud Point Light

| Start            | Where does the light start to fade off                                           |
|------------------|----------------------------------------------------------------------------------|
| Range            | Range of the light                                                               |
| Color            | Color of the light                                                               |
| Shadow Intensity | How much should the clouds be lit if the normals face away from the light source |

#### Tint

Δ.

↑ Tints and Lights should be placed in layers of Light Mask

Tint is a bit trickier to use, but it is more flexible in terms of what you can achieve.

Tint *Clouds/Tint\** is a shader that can be used to locally modify clouds color: brighten, darken, or in a simple overlay mode.

To tint a cloud, create a new object in scene and assign a material that uses *Clouds/Tint\** shader.

It works great with particle systems as well.

| Tint Color   | Color of the tint                                                   |
|--------------|---------------------------------------------------------------------|
| Main         | Main Texture                                                        |
| Max Distance | Maximum distance from cloud's surface at which the tint is applied. |



For examples go to TrueClouds/ExampleScenes/Scenes/CloudMobile

## **Optimizations:**

- 1. Start with maxing-out the *Downsample Clouds*. On mobile platforms I suggest you a minimum of 2
- 2. Next goes the *Downsample World*. It is especially important when *Late Cut* is enabled, but unfortunately artifacts are more visible as well
- 3. Decrease blur quality
- 4. Optimize your clouds geometry. You don't need high-frequency details as they will be lost in the blur

### Tips & Tricks

This cloud system is just a big illusion, that makes player think that objects are fluffy and have volume. There is no ray tracing/path tracing going on. There even is no 3d noise, only one pre-computed noise texture. This is what makes the system so fast, but it makes you work a bit harder.

Here are some tips to keep the illusion working:

- 1. Keep camera outside the cloud, since the clouds don't actually have any volume
- 2. Create big clouds (bigger than the fallback distance) if you want them to be near an real-world object
- 3. Turn *LateCut* on if there are a lot of opaque objects in front of the clouds. Especially if they are small.
- 4. Pick *Light Color* and *Shadow Color* close to the color of the sky to achieve believable look

#### Performance

Demo with clouds:

Nexus 5x - 50 fps on whole scene. 7 ms on clouds

One plus 5 – solid 60 fps

Modern IOS devices - solid 60 sps

PC with gtx 940m - 180 fps on whole scene, 0.5ms on clouds

#### How does it work?

I will describe the Late Cut workflow

- 1. Render textures are created, according to Resolution Divider option you've set
- 2. Render loop
  - a. Objects in *Blocking Mask* are rendered to the depth texture



b. Objects in Clouds Mask are rendered to the depth texture



c. Objects in Clouds Mask are rendered to the normal texture



- d. Normal texture is blurred using gaussian blur. RGB which represents normal and A which represents the blending factor are blurred with different kernels
- e. Normal texture's A channel is clamped to a *Threshold*, normalised and raised in the power of *Power*



f. Cloud's depth is blurred



#### g. Noise is applied to depth



- h. Color is calculated
  - i. Noise is projected on clouds using <u>Triplanar Texturing</u>
  - ii. Using the Noise, displacement is applied, i.e. sampling from different location
  - iii. Noise is applied to normals
  - iv. Lightning is calculated in a model similar to diffuse
  - v. Silverlining is applied to semi transparent pixels.

Normals (RGB)

Alpha





- i. Depth is applied
  - If World Resolution Divider = 1, color buffer is blended with the screen, applying additional transparency where world depth is less or close to cloud's depth
  - ii. If World Resolution Divider < 1, color buffer is blit to a small-res temporary buffer, applying additional transparency where world depth is less or close to cloud's depth. And that buffer, in turn, is blended with screen.



## P.S.

Thank you very much for reading this! If any problem occurs, please feel free to write me at <a href="mailto:mischapanin@gmail.com">mischapanin@gmail.com</a>