Aim of the Experiment:

Wireless Communication and Automation with Raspberry Pi and Micropython: Creating a Multi-Protocol IoT System.

Objective:

- 1) Familiarization with wifi module, important terminologies for IOT, Bluetooth Module, Bluetooth Terminal application etc.
- 2) Implementation of Interfacing of **ESP8266 WiFi Module** with Raspberry Pi Pico and display the temperature in local server.
- 3) Implementation of Controlling an LED from a Smartphone Using Wi-Fi.
- 4) Implementation of Control an LED from the Android application using Bluetooth wireless communication.

Components/Equipment/items Required:

SI	Name of the	Specification	Quantity
No.	Component/Equipment		
1	Raspberry Pi Pico	RP2040 microcontroller chip,	1
		125MHz	
2	Raspberry Pi Pico cable	USB Type A to Micro-B	1
3	Resistors (carbon type)	$^{1}/_{4}$ watt (330 Ω)	1
4	WiFi Module	ESP01	1
5	Bluetooth Module	HC05	1
6	LED	5mm	1
7	Breadboard	840 Tie points	1
8	Jumper Wire		As per requirement

Circuit/Schematic Diagram:

GND -- GND VCC -- 3.3V TXD -- GP1 RXD -- GP2 EN -- 3.3V

(Figure 1: Circuit diagram for implementation of Interfacing of ESP8266 WiFi Module with Raspberry Pi Pico and display the temperature in local server.)

Objective 3

(Figure 2: Circuit diagram for implementation of Controlling an LED from a Smartphone Using Wi-Fi.)

Objective 4

(Figure 3: Circuit diagram for implementation of Control an LED from the Android application using Bluetooth wireless communication.)

Observation:

Objective 2

(Figure 4: Simulation based electronic circuit for implementation of Interfacing of ESP8266 WiFi Module with Raspberry Pi Pico and display the temperature in local server.)

Figure 5: (Breadboard Schematic representation of an electronic circuit for implementation of Interfacing of ESP8266 WiFi Module with Raspberry Pi Pico and display the temperature in local server.)

Figure 6: (Hardware implementation based electronic circuit for implementation of Interfacing of ESP8266 WiFi Module with Raspberry Pi Pico and display the temperature in local server)

Objective 3

(Figure 7: Simulation based electronic circuit for implementation of implementation of Controlling an LED from a Smartphone Using Wi-Fi)

Figure 8: (Hardware implementation based electronic circuit for implementation of implementation of Controlling an LED from a Smartphone Using Wi-Fi)

Objective 4

Figure 9: (Simulation based Implementation of Control an LED from the Android application using Bluetooth wireless communication)

Figure 10: (Breadboard Schematic representation of an electronic circuit for implementation of Control an LED from the Android application using Bluetooth wireless communication)

Figure 11: (Hardware implementation based electronic circuit for implementation of Control an LED from the Android application using Bluetooth wireless communication)

Codes:

Objective 2

```
print("Hello, Pi Pico!")
print("This is Experiment - 9 and Objective - 2")
print("Name: ; Registration No.: ")
print("Objective : 2 Implementation of Interfacing of ESP8266 WiFi Module with
Raspberry Pi Pico and display the temperature in local server.")
```

Objective 3

<pre>print("Hello, Pi Pico!")</pre>		
<pre>print("This is Experiment - 9 and Objective - 3")</pre>		
<pre>print("Name: ; Registration No.:</pre>	")	
<pre>print("Objective : 3 Implementation of implementation of Controlling</pre>	an	LED
from a Smartphone Using Wi-Fi.")		

Objective 4

```
print("Hello, Pi Pico!")
print("This is Experiment - 8 and Objective - 4")
print("Name: ; Registration No.: ")
print("Objective : 4 Implementation of Control an LED from the Android application using Bluetooth wireless communication.")
```

Conclusion:

Precautions:

Post Experiment Questionnaire:

Answer all the Questions in brief with some appropriate examples.

- 1) The Raspberry Pi Pico is connected to an ESP01 wifi module through the UART interface. Write a Micropython program to connect to a wifi network using the ESP01 module.
- 2) The Raspberry Pi Pico is connected to an HC-05 Bluetooth module through the UART interface. Write a Micropython program to connect to a remote Bluetooth device using the HC-05 module.
- 3) Write a Micropython program to send a GET request to a web server using the ESP01 wifi module and receive the response on the Raspberry Pi Pico.
- 4) Write a Micropython program to send a message to a remote Bluetooth device using the HC-05 module.

Name of the Student Registration No Semester Branch, Section