STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching

Lecture 17

Introduction to Variational Autoencoders

Lecture Overview

- 1. Variational Autoencoder Overview
- 2. Sampling from a Variational Autoencoder
- 3. The Log-Var Trick
- 4. The Variational Autoencoder Loss Function
- 5. A Variational Autoencoder for Handwritten Digits in PyTorch
- 6. A Variational Autoencoder for Face Images in PyTorch
- 7. VAEs and Latent Space Arithmetic
- 8. VAE Latent Space Arithmetic in PyTorch -- Making People Smile

Autoencoders vs. Variational Autoencoders

1. Variational Autoencoder Overview

- 2. Sampling from a Variational Autoencoder
- 3. The Log-Var Trick
- 4. The Variational Autoencoder Loss Function
- 5. A Variational Autoencoder for Handwritten Digits in PyTorch
- 6. A Variational Autoencoder for Face Images in PyTorch
- 7. VAEs and Latent Space Arithmetic
- 8. VAE Latent Space Arithmetic in PyTorch -- Making People Smile

Recap: A Regular Autoencoder

Minimize squared error loss:

$$\mathcal{L} = ||\mathbf{x} - Dec(Enc(\mathbf{x}))||_2^2$$

Variational Autoencoder

$$\mathcal{L} = -\mathbb{E}_{z \sim q_w(z \mid x^{[i]})} \left[\log p_w \left(x^{[i]} \mid z \right) \right] + \mathbf{KL} \left(q_w \left(z \mid x^{[i]} \right) \mid | p(z) \right)$$

Expected neg. log likelihood term; wrt to encoder distribution

Kullback-Leibler divergence term where $p(z) = \mathcal{N} \left(\mu = 0, \sigma^2 = 1 \right)$

Kingma, D. P., & Welling, M. (2013). Auto-encoding Variational Bayes. *arXiv preprint arXiv:1312.6114*. https://arxiv.org/abs/1312.6114

Generating New Data

- 1. Variational Autoencoder Overview
- 2. Sampling from a Variational Autoencoder
- 3. The Log-Var Trick
- 4. The Variational Autoencoder Loss Function
- 5. A Variational Autoencoder for Handwritten Digits in PyTorch
- 6. A Variational Autoencoder for Face Images in PyTorch
- 7. VAEs and Latent Space Arithmetic
- 8. VAE Latent Space Arithmetic in PyTorch -- Making People Smile

Using Regular Autoencoders for Sampling

Previous Lecture:

Using Regular Autoencoders for Sampling

Challenge: regular autoencoders are difficult to sample from, because

- oddly shaped distribution, hard to sample in a balanced way
- 2. distribution not centered at (0, 0)
- distribution not necessarily continuous (hard to see here in 2D, but a big problem in higher dimensional latent spaces)

Previous Lecture:

Using Variational Autoencoders (VAEs) for Sampling

This Lecture:

d-dimensional probability density for multivariate Gaussian

$$p(z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(z - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(z - \boldsymbol{\mu})\right)$$

$$Z \sim \mathcal{N}(0, I)$$

with
$$z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}, \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

Sampling from a VAE

$$z = \mu + \sigma \cdot \epsilon$$

Where
$$\pmb{\sigma}^2 = \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \end{pmatrix}$$
 $\epsilon_1, \epsilon_2 \sim \textit{N}(0,1)$

- VAE's assume a diagonal covariance matrix (no interaction between the features).
- Thus, we only need a mean and a variance vector, no covariance matrix

How Can We Use Backropagation with a Probability Distribution?

- 1. Variational Autoencoder Overview
- 2. Sampling from a Variational Autoencoder

3. The Log-Var Trick

- 4. The Variational Autoencoder Loss Function
- 5. A Variational Autoencoder for Handwritten Digits in PyTorch
- 6. A Variational Autoencoder for Face Images in PyTorch
- 7. VAEs and Latent Space Arithmetic
- 8. VAE Latent Space Arithmetic in PyTorch -- Making People Smile

Using Variational Autoencoders (VAEs) for Sampling

This Lecture:

d-dimensional probability density for multivariate Gaussian

$$p(z; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n |\boldsymbol{\Sigma}|}} \exp\left(-\frac{1}{2}(z - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(z - \boldsymbol{\mu})\right)$$

$$Z \sim \mathcal{N}(0, I)$$

with
$$z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}, \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

Sampling from a VAE

Sampled from standard multivariate normal distribution in each forward pass

But why ϵ ? Continuous distribution; VAE must ensure that points in neighborhood encode the same image so that when decoding they produce the same image

Think of these as parameter vectors included in training & backpropagation

Sampling from a VAE -- The Log-Var Trick

Instead of using a variance vector,
$$\ m{\sigma}^2 = \left(egin{array}{c} \sigma_1^2 \\ \sigma_2^2 \end{array}
ight)$$

we use the

log-var vector

to allow for positive and negative values: $\log(\sigma^2)$

Why can we do this?

$$\log(\sigma^2) = 2 \cdot \log(\sigma)$$
$$\log(\sigma^2)/2 = \log(\sigma)$$
$$\sigma = e^{\log(\sigma^2)/2}$$

So, when we sample the points, we can do

$$z = \mu + e^{\log(\sigma^2)/2} \cdot \epsilon$$

Combining Two Objectives

- 1. Variational Autoencoder Overview
- 2. Sampling from a Variational Autoencoder
- 3. The Log-Var Trick
- 4. The Variational Autoencoder Loss Function
- 5. A Variational Autoencoder for Handwritten Digits in PyTorch
- 6. A Variational Autoencoder for Face Images in PyTorch
- 7. VAEs and Latent Space Arithmetic
- 8. VAE Latent Space Arithmetic in PyTorch -- Making People Smile

Variational Autoencoder

Minimizes ELBO (Evidence lower bound), consisting of KL term and reconstruction loss

If you assume $p_w(x \mid z)$ follows multivariate-Bernoulli, use cross entropy; if you assume it follows normal distribution, use MSE

MSE is same as cross-entropy between the empirical distribution and a Gaussian model (Reference: Deep Learning book by Goodfellow et al., pg. 132)

$$\mathcal{L} = -\mathbb{E}_{z \sim q_w(z \mid x^{[i]})} \left[\log p_w \left(x^{[i]} \mid z \right) \right] + \mathbf{KL} \left(q_w \left(z \mid x^{[i]} \right) \mid \mid p(z) \right)$$

Expected neg. log likelihood term; wrt to encoder distribution

Kullback-Leibler divergence term where $p(z) = \mathcal{N} \left(\mu = 0, \sigma^2 = 1 \right)$

The Variational Autoencoder Loss Function

1) Minimize squared error loss: (ensures good reconstruction)

2) Minimize KL divergence:

$$\mathcal{L}_2 = D_{KL} \left[N(\mu, \sigma) || N(0, 1) \right] = -\frac{1}{2} \sum_{m=1}^{\infty} \left(1 + \log \left(\sigma^2 \right) - \mu^2 - \sigma^2 \right)$$

(ensures latent space is continuous and standard normal distributed)

Overall loss: $\mathcal{L} = \alpha \cdot \mathcal{L}_1 + \mathcal{L}_2$

Binary Cross Entropy vs MSE

Cross Entropy is not symmetric:

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \cdot \log q(x)$$

$$pixel in x pixel in x'$$

$$-0.8 * log(0.7) = 0.285340$$

 $-0.8 * log(0.9) = 0.0842884$

$$-0.2 * log(0.1) = 0.460517$$

 $-0.2 * log(0.3) = 0.240795$

KL Loss Derivation

The encoder distribution is $q(z|x) = \mathcal{N}(z|\mu(x), \Sigma(x))$ where $\Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_n^2)$.

The latent prior is given by $p(z) = \mathcal{N}(0, I)$.

Both are multivariate Gaussians of dimension n, for which in general the KL divergence is:

$$\mathfrak{D}_{\mathrm{KL}}[p_1 \parallel p_2] = \frac{1}{2} \left[\log \frac{|\Sigma_2|}{|\Sigma_1|} - n + \operatorname{tr} \{ \Sigma_2^{-1} \Sigma_1 \} + (\mu_2 - \mu_1)^T \Sigma_2^{-1} (\mu_2 - \mu_1) \right]$$

where $p_1 = \mathcal{N}(\mu_1, \Sigma_1)$ and $p_2 = \mathcal{N}(\mu_2, \Sigma_2)$.

In the VAE case, $p_1=q(z|x)$ and $p_2=p(z)$, so $\mu_1=\mu$, $\Sigma_1=\Sigma$, $\mu_2=\vec{0}$, $\Sigma_2=I$. Thus:

$$\mathfrak{D}_{\text{KL}}[q(z|x) \mid\mid p(z)] = \frac{1}{2} \left[\log \frac{|\Sigma_2|}{|\Sigma_1|} - n + \text{tr}\{\Sigma_2^{-1}\Sigma_1\} + (\mu_2 - \mu_1)^T \Sigma_2^{-1} (\mu_2 - \mu_1) \right]$$

$$= \frac{1}{2} \left[\log \frac{|I|}{|\Sigma|} - n + \text{tr}\{I^{-1}\Sigma\} + (\vec{0} - \mu)^T I^{-1} (\vec{0} - \mu) \right]$$

$$= \frac{1}{2} \left[-\log |\Sigma| - n + \text{tr}\{\Sigma\} + \mu^T \mu \right]$$

$$= \frac{1}{2} \left[-\log \prod_i \sigma_i^2 - n + \sum_i \sigma_i^2 + \sum_i \mu_i^2 \right]$$

$$= \frac{1}{2} \left[-\sum_i \log \sigma_i^2 - n + \sum_i \sigma_i^2 + \sum_i \mu_i^2 \right]$$

$$= \frac{1}{2} \left[-\sum_i (\log \sigma_i^2 + 1) + \sum_i \sigma_i^2 + \sum_i \mu_i^2 \right]$$

Source: https://stats.stackexchange.com/questions/318748/deriving-the-kl-divergence-loss-for-vaes/370048#370048

Implementing Our First Convolutional Variational Autoencoder in PyTorch

- 1. Variational Autoencoder Overview
- 2. Sampling from a Variational Autoencoder
- 3. The Log-Var Trick
- 4. The Variational Autoencoder Loss Function
- 5. A Variational Autoencoder for Handwritten Digits in PyTorch
- 6. A Variational Autoencoder for Face Images in PyTorch
- 7. VAEs and Latent Space Arithmetic
- 8. VAE Latent Space Arithmetic in PyTorch -- Making People Smile

Variational Autoencoders for Generating New Face Images

- 1. Variational Autoencoder Overview
- 2. Sampling from a Variational Autoencoder
- 3. The Log-Var Trick
- 4. The Variational Autoencoder Loss Function
- 5. A Variational Autoencoder for Handwritten Digits in PyTorch
- 6. A Variational Autoencoder for Face Images in PyTorch
- 7. VAEs and Latent Space Arithmetic
- 8. VAE Latent Space Arithmetic in PyTorch -- Making People Smile

A Variational Autoencoder for Face Images

Architectural changes compared to previous MNIST example:

- based on 2016: Deep Feature Consistent Variational Autoencoder (https://ieeexplore.ieee.org/document/7926714)
- 1 -> 3 color channels
- 2 -> 200 latent dim
- BatchNorm, Dropout
- increase reconstruction loss coefficient

Manipulating Images in Latent Space

- 1. Variational Autoencoder Overview
- 2. Sampling from a Variational Autoencoder
- 3. The Log-Var Trick
- 4. The Variational Autoencoder Loss Function
- 5. A Variational Autoencoder for Handwritten Digits in PyTorch
- 6. A Variational Autoencoder for Face Images in PyTorch
- 7. VAEs and Latent Space Arithmetic
- 8. VAE Latent Space Arithmetic in PyTorch -- Making People Smile

Latent Space Arithmetic

E.g., we can give a sad person a smile by

•
$$z_{new} = z_{orig} + \alpha \cdot z_{diff}$$

Making People Smile

- 1. Variational Autoencoder Overview
- 2. Sampling from a Variational Autoencoder
- 3. The Log-Var Trick
- 4. The Variational Autoencoder Loss Function
- 5. A Variational Autoencoder for Handwritten Digits in PyTorch
- 6. A Variational Autoencoder for Face Images in PyTorch
- 7. VAEs and Latent Space Arithmetic
- 8. VAE Latent Space Arithmetic in PyTorch -- Making People Smile