1 - INTERPOLATION

J-P. Croisille

Université Paul Verlaine-Metz

Semestre S7, master de mathématiques M1, année 2008/2009

1- INTRODUCTION

Théorie de l'interpolation: approximation de f(x) par une fonction $\tilde{f}(x)$ réalisant un certain nombre de conditions.

- ▶ A partir de **données** $(x_i, f(x_i))$, qui sont par exemple des mesures, reconstruire la fonction f(x) "au mieux". But : prédire la fonction f(x) pour les valeurs x où on ne dispose pas de mesures.
- Interpolation polynômiale globale: interpolée de Lagrange. TOUTES les mesures influencent la fonction interpolée $\tilde{f}(x)$ en tout x.
- Interpolation polynômiale par morceaux: interpolé de type spline. La fonction $\tilde{f}(x)$ est influencée au point x seulement par les mesures $(x_i, f(x_i))$ avec x_i proche de x.

Plus difficile: interpolation des surfaces. Chercher une fonction interpolante $\tilde{f}(x,y)$ qui passe par des points mesurés $(x_i,y_i,f(x_i,y_i))$.

Théorie de l'approximation: Approcher une fonction d'un espace abstrait par une fonction d'un espace concret.

Exemple: approximation de $L^2[0,1]$ par les fonctions affines par morceaux sur une grille fixée.

Théorie abstraite de l'approximation: Partie de l'analyse fonctionnelle.

Exemple: Théorème de projection sur un convexe fermé dans un espace de Hilbert.

Théorie concrète de l'approximation: Construire un algorithme de calcul de la meilleure approximation quand elle existe.

Exemple: Assemblage et résolution numérique du système linéaire correspondant à une approximation de type moindres carrés.

Références:

- M-J-D. Powell: Approximation theory and methods, Cambridge Univ. Press, (1981)
- ▶ R. Kress: Numerical Analysis, *Springer*, (1997)
- ► G. Hämmerlin, K-H. Hoffmann: *Numerical Mathematics*, (1988)
- P.J. Davis: Interpolation and Approximation, Dover (1975)
- ▶ J. Barranger: Introduction à l'analyse numérique, Hermann (1997)
- M. Schatzman: Analyse numérique: une approche mathématique Dunod (2001)

2- INTERPOLATION DE LAGRANGE: DEFINITION

But: approximation de f, continue sur [a,b] par un polynôme $p \in \mathcal{P}_n[a,b]$,

$$p(x) = \sum_{i=0}^{n} c_i x^i , \ a \le x \le b$$
 (1)

Collocation en n+1 points distincts

$$a \le x_0 < x_1 < \dots < x_{n-1} < x_n \le b$$
:

$$f(x_i) = p(x_i) \tag{2}$$

Théorème A

Il existe un unique polynôme $p \in \mathcal{P}_n[a,b]$ vérifiant (2), qui est

$$p(x) = \sum_{k=0}^{n} f(x_k) l_k(x)$$
 (3)

où $l_k(x)$ est le polynôme élémentaire de Lagrange

$$l_k(x) = \prod_{k=0}^{n} \frac{x - x_j}{x_k - x_j} \tag{4}$$

Démonstration:

Il est évident que le polynôme p(x) convient. Si un second polynôme q(x) convient, alors p-q est de degré n et possède n+1 racines, distinctes, donc il est nul.

Théorème B

Si $f \in C^{(n+1)}[a,b]$ et si p est son polynôme d'interpolation de Lagrange aux points x_j , alors l'erreur e(x) = f(x) - p(x) est telle que pour tout $x \in [a,b]$, il existe $\xi(x) \in [a,b]$ tel que

$$e(x) = \frac{1}{(n+1)!} \prod_{j=0}^{n} (x - x_j) f^{(n+1)}(\xi)$$
 (5)

Démonstration:

En appliquant le théorème des valeurs intermédiaires par récurrence, on montre que si la fonction $g \in C^{(n+1)}[a,b]$ s'annule en (n+2) points distincts de [a,b], alors sa dérivée d'ordre (n+1) possède au moins, un zéro dans [a,b].

Premier cas:

Si le point x coïncide avec l'un des x_i , alors $e(x_i) = 0$ et

$$0 = \frac{1}{(n+1)!} \prod_{j=0}^{n} (x_i - x_j) f^{(n+1)}(\xi) = e(x_i)$$
 (6)

d'où l'identité entre les deux termes.

Deuxième cas:

Si $x \neq x_i$, on considère la fonction

$$g(t) = f(t) - p(t) - e(x) \prod_{i=0}^{n} \left(\frac{t - x_i}{x - x_i}\right), \ a \le t \le b$$
 (7)

$$g \in C^{(n+1)}[a,b], g(x) = 0 \text{ et } g(x_i) = 0, i = 0, \dots n$$
 (8)

donc il existe $\xi \in [a, b]$ tel que $g^{(n+1)}(\xi) = 0$. On a

$$g^{(n+1)}(t) = f^{(n+1)}(t) - e(x) \prod_{i=0}^{n} \frac{1}{(x-x_i)} (n+1)!$$
 (9)

et

$$g^{(n+1)}(\xi) = 0 \Rightarrow e(x) = \frac{1}{(n+1)!} \prod_{i=0}^{n} (x - x_i) f^{(n+1)}(\xi)$$
 (10)

3- EXEMPLE DE RUNGE ET POINTS DE TCHEBYCHEFF

Exemple de Runge:

$$f(x) = \frac{1}{1+x^2}, -5 \le x \le 5 \tag{11}$$

On examine l'erreur au voisinage de -5 et 5 aux points

$$x_{n-1/2}=5-rac{5}{n},$$
 avec $x_i=-5+10\,rac{i}{n}\,,\,i=0,\dots n.$ On observe que

$$\lim_{n \to +\infty} \|f(x_{n-1/2}) - \tilde{f}_n(x_{n-1/2})\|_{\infty} = +\infty$$
 (12)

n	$f(x_{n-1/2})$	$p(x_{n-1/2})$	$e(x_{n-1/2})$
2	0.138	0.760	-0.621
10	0.047059	1.579	-1.532
20	0.042440	-39.953	39.995

Table: Explosion de l'erreur entre fonction de Runge et son interpolé de Lagrange quand $n \to +\infty$.

Explication: c'est le terme $\operatorname{prod}(x_{n-1/2})=\prod_{i=0}^n(x_{n-1/2}-x_i)$ dans l'erreur $e(x_{n-1/2})$ qui est responsable de l'explosion de l'erreur. Ce n'est pas $f^{(n+1)}(\xi)$. La quantité $|e(x)|/f^{(n+1)}(\xi)|$ reste à peu près constante si on observe l'erreur aux points $x=\frac{x_i+x_{i-2}}{2}$, $i=0,1,\ldots 20$. Un remède est le suivant : il faut choisir les points d'interpolation très concentrés aux extrêmités de l'intervalle.

Evaluation de

$$\operatorname{prod}(x) = \prod_{j=0}^{n} (x - x_j) \tag{13}$$

x	f(x)	p(x)	e(x)	prod(x)
0.25	0.941	0.942	-0.001314	2.05 (6)
1.75	0.246	0.238	0.0077	-6.56 (6)
4.75	0.0424	-39.952	39.994	-7.27 (10)

Table: Comportement de prod(x)

$$x=[-5:2:5];$$

$$f=Runge(x);$$

$$x=[-5:1:5];$$

$$f=Runge(x);$$

$$x=[-5:0.5:5];$$

$$f=Runge(x);$$

$$x=[-5 -4.5 -4 -3.5 -3 -1 1 3 5];$$

f=Runge(x);

Points de Tchebycheff: Une façon d'améliorer la qualité du résultat est de choisir les points d'interpolation de Tchebycheff. Les polynômes de Tchebycheff sont définis par

$$T_n(\cos\theta) = \cos(n\,\theta) \tag{14}$$

c'est à dire

$$T_n(x) = \cos(n \operatorname{Arccos} x)$$
 , $-1 \le x \le 1$ (15)

Le polynôme de Tchebycheff $T_n(x)$ s'obtient en développant $\cos{(n \, \theta)}$ en puissances de $\cos{\theta}$ et en remplaçant $\cos{\theta}$ par x. La relation trigonométrique

$$\cos((n+1)\theta) + \cos((n-1)\theta) = 2\cos\theta \cos(n\theta) \tag{16}$$

donne sur $T_n(x)$ la relation de récurrence

$$T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$$
 , $-1 \le x \le 1$ (17)

L'intérêt est le suivant : le maximum de $T_n(x) = \cos(n\theta)$, $x = \cos\theta$, est 1. Donc si on choisit les points x_i tel que

$$\prod_{i=0}^{n} (x - x_i) = \text{ multiple de } T_{n+1}(x), \tag{18}$$

alors les x_i sont nécessairement les racines de $T_{n+1}(x)$. On en déduit que

$$x_i = \cos\left(\frac{(2(n-i)+1)\pi}{2(n+1)}\right) ; i = 0, 1, \dots n$$
 (19)

L'adaptation à un intervalle quelconque se fait par

$$x_i = \lambda + \mu \cos\left(\frac{(2(n-i)+1)\pi}{2(n+1)}\right), i = 0, 1 \dots n$$
 (20)

avec λ et μ choisis tel que

$$\lambda = \frac{1}{2}(a+b); \ \mu = \frac{1}{2}(b-a)$$
 (21)

Données de Lagrange: Points de Tchebycheff avec n=4

Données de Lagrange: Points de Tchebycheff avec n=10

Données de Lagrange: Points de Tchebycheff avec n=20

4- ALGORITHME DE NEWTON, DIFFERENCES DIVISEES

Le calcul effectif de p(x), interpolant les données $(x_i; f_i)$, $0 \le i \le n$, par la formule

$$p(x) = \sum_{k=0}^{n} f_k \, l_k(x) \tag{22}$$

n'est pas a priori très bon.

Notion de complexité arithmétique: On évalue en fonction du nombre de points n du nombre d'opérations nécessaires pour réaliser le calcul. Si x est fixé,

- ▶ Calcul de $l_k(x)$: O(n). En tout pour k = 1, ..., n: $O(n^2)$.
- ► Assemblage de $p(x) = \sum_{k=0}^{n} f_k l_k(x)$: O(n) .

En tout $O(n^2)$ opérations.

Définition (Différences divisées de Newton)

Le coefficient de x^n dans le polynôme de Lagrange p(x) est noté

$$f[x_0, x_1, \dots x_n] \tag{23}$$

et s'appelle la différence divisée d'ordre n des données $(x_i, f_i)_{0 \le i \le n}$. On a

$$p(x) = \sum_{k=0}^{n} f_k \, l_k(x) \tag{24}$$

donc

$$f[x_0, \dots x_n] = \sum_{k=0}^n \frac{f(x_k)}{\prod_{j=0, j \neq k}^n (x_k - x_j)}$$
 (25)

Théorème C

Si $f \in C^{(n)}[a,b]$ et x_i , $0 \le i \le n$ sont n+1 points distincts de [a,b], alors il existe ξ dans le plus petit intervalle contenant tous les points x_i , $0 \le i \le n$ tel que

$$f[x_0, x_1 \dots x_n] = \frac{f^{(n)}(\xi)}{n!}$$
 (26)

Démonstration:

Soit $e(x)=f(x)-p(x)\in C^{(n)}[a,b]$. On a $e(x_i)=0$, $i=0\dots n$. Donc il existe $\xi\in I$ tel que $e^{(n)}(\xi)=0$, c'est à dire $f^{(n)}(\xi)=p^{(n)}(\xi)$. Ceci équivaut encore, puisque n! $f[x_0,\dots x_n]=p^{(n)}(\xi)$ à

$$f[x_0, \dots x_n] = \frac{1}{n!} f^{(n)}(\xi)$$
 (27)

Principe du calcul effectif de p(x): Soit \overline{x} un point fixé. On évalue $f(\overline{x})$ à partir d'un grand nombre de données $(x_i\,,\,f_i)\,,\,i=0\ldots m$. En général, il est inutile de calculer le polynôme de Lagrange global de degré m. Les théorèmes B et C suggèrent que l'erreur $e(\overline{x})=f(\overline{x})-p_n(\overline{x})$ est du type

$$e(\bar{x}) \simeq \prod_{j=0}^{n} (\bar{x} - x_j) f[x_0, x_1 \dots x_{n+1}]$$
 (28)

On range les x_j de sorte que $|\bar{x}-x_j|$ soit une suite croissante. On évalue $p_n(\bar{x})$ quand n augmente. A partir d'un certain n l'adjonction des x_j additionnels ne sert plus à rien. On a intérêt à calculer d'une façon générale une suite de valeurs $p_k(x)$ avec k qui augmente et d'observer le comportement de cette suite.

Le calcul pratique de $p_k(x)$ est donné par

Théorème D

Si $p_k \in \mathcal{P}_k$ est le polynôme d'interpolation de Lagrange défini par

$$p_k(x_i) = f(x_i) , i = 0, 1 \dots k$$
 (29)

alors le polynôme $p_{k+1} \in \mathcal{P}_{k+1}$ défini par les conditions

$$p_{k+1}(x_i) = f(x_i), i = 0, 1 \dots k, k+1$$
 (30)

est le poynôme

$$p_{k+1}(x) = p_k(x) + \left\{ \prod_{j=0}^k (x - x_j) \right\} f[x_0, x_1 \dots x_{k+1}], \ a \le x \le b$$
 (31)

Démonstration:

Soit $q \in \mathcal{P}_{k+1}$ le polynôme qui interpole $(x_i \ f(x_i))$, $i = 0 \dots k+1$. On a

$$q(x_i) - p_{k+1}(x_i) = 0$$
 , $i = 0, 1 \dots k$ (32)

De plus le coefficient de x^{k+1} dans $p_{k+1}(x)$ est le même que dans q(x), donc $q-p_{k+1}\in\mathcal{P}_k$ et possède k+1 zéros, donc $q-p_{k+1}=0$.

On en déduit par récurrence la formule d'évaluation de $p_n(x)$

$$p_n(x) = f(x_0) + (x - x_0) f[x_0, x_1] + (x - x_0)(x - x_1) f[x_0, x_1, x_2]$$

$$+ \dots + \left[\prod_{j=0}^{n-1} (x - x_j) \right] f[x_0, x_1 \dots x_n], a \le x \le b$$

Le calcul effectif des $f[x_0, x_1 \dots x_k]$ est donné par :

Théorème E

La différence divisée d'ordre k+1 $f[x_j, x_{j+1}, \dots x_{j+k+1}]$ est reliée aux différences divisées d'ordre k $f[x_{j+1}, \dots, x_{j+k+1}]$ et $f[x_j, \dots, x_{j+k}]$ par la formule

$$f[x_j, x_{j+1}, \dots, x_{j+k+1}] = \frac{f[x_{j+1}, \dots x_{j+k+1}] - f[x_j, \dots x_{j+k}]}{x_{j+k+1} - x_j}$$
(33)

Démonstration:

Soit p_k , $q_k \in \mathcal{P}_k$ des polynômes qui interpolent respectivement les valeurs $(x_i, f(x_i))$ $i = j, \ldots, j + k$ et $(x_i, f(x_i))$ $i = j + 1, \ldots, j + k + 1$. Alors le polynôme p_{k+1} défini par

$$p_{k+1}(x) = \frac{(x-x_j)q_k(x) + (x_{j+k+1} - x)p_k(x)}{x_{j+k+1} - x_j}, \ a \le x \le b$$
 (34)

vérifie les deux conditions

$$\begin{cases}
 p_{k+1} \in \mathcal{P}_{k+1} \\
 p_{k+1}(x_i) = f(x_i), \ i = j, \dots, j+k+1
\end{cases}$$
(35)

donc le coefficient de x^{k+1} dans $p_{k+1}(x)$ est

$$f[x_j, x_{j+1}, \dots, x_{j+k+1}] = f[x_j, x_{j+1}, \dots, x_{j+k+1}]$$

$$= \frac{f[x_{j+1}, \dots, x_{j+k+1}] - f[x_j, \dots, x_{j+k}]}{x_{j+k+1} - x_j}$$

car $f[x_{j+1}, \ldots, x_{j+k+1}]$ est le coefficient de x^k dans q_k et $f[x_j, \ldots, x_{j+k}]$ est le coefficient de x^k dans p_k .

Organisation du calcul des différences divisées de Newton

x	f[x] = f(x)			
x_0	$f[x_0]$			
x_1	$f[x_1]$	$f[x_0, x_1]$		
x_2	$f[x_2]$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$	
x_3	$f[x_3]$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_2, x_2, x_3]$

Organisation du calcul des différences divisées de Newton Exemple:

x	0.1	0.2	0.3	0.4	0.5
f(x)	1.40	1.56	1.76	2.00	2.28

x	f[x] = f(x)				
0.1	1.40				
0.2	1.56	$\frac{1.56-1.40}{0.2-0.1} = 1.6$			
0.3	1.76	$\frac{1.76-1.56}{0.3-0.2}=2.0$	$\frac{2.0-1.6}{0.3-0.1} = 2.0$		
0.4	2.00	$\frac{2.0-1.76}{0.4-0.3} = 2.4$	$\frac{2.4-2.}{0.4-0.2}=2.0$	0.	
0.5	2.28	$\frac{2.28-2.0}{0.5-0.4} = 2.8$	$\frac{2.8-2.4}{0.5-0.3}=2.0$	0.	0.

5- INTERPOLATION DE HERMITE

Données:

les points $x_i, i = 0, \dots, m$

$$\begin{cases} f(x_i), i = 0, 1 \dots, m \\ f^{(j)}(x_i), j = 0, 1 \dots, l_i & i = 0, 1 \dots, m \end{cases}$$
 (36)

On a donc $l_i + 1$ informations en chaque point x_i , ce qui donne n + 1 coefficients inconnus avec

$$n+1 = \sum_{i=0}^{m} (l_i + 1) \tag{37}$$

On cherche donc un polynôme interpolé $p(x) \in \mathcal{P}_n$.

Théorème F

Si les x_i sont des points distincts de [a,b] et si $f^{(j)}(x_i), i=0,1\ldots,l_i$ $i=0,1\ldots,m$ sont des valeurs données, alors il existe un unique poynôme $p\in\mathcal{P}_n$ tel que

$$p^{(j)}(x_i) = f^{(j)}(x_i), j = 0, 1 \dots, l_i \quad i = 0, 1 \dots, m$$
 (38)

Démonstration:

On cherche $p(x)=\sum_{i=0}^n c_i x^i$. les conditions (38) forment un système linéaire en les c_i , qui est carré par définition de n. Il suffit donc de vérifier que la matrice est inversible, c-a-d que si le second membre dans (38) est nul, alors le vecteur $c=[c_0,c_1,\ldots,c_n]^T=\mathbf{0}_{\mathbb{R}^{n+1}}$. Mais p est nécessairement un multiple de

$$\prod_{i=0}^{m} (x - x_i)^{l_i + 1} \tag{39}$$

Puisque x^{n+1} intervient dans ce produit, on a $p \equiv 0$.

Extension de l'algorithme de Newton à l'interpolation de Hermite Exemple:

x	1.6	1.7	1.8
f(x)	0.08	0.06	0.04
f'(x)	-0.25		-0.13

x	f(x)				
1.60	0.08				
1.60	0.08	-0.25			
1.70	0.06	$\frac{0.06-0.08}{1.70-1.60} = -0.2$	$\frac{-0.2+0.25}{1.70-1.60} = 0.5$		
1.80	0.04	$\frac{0.04-0.06}{0.3-0.2} = -0.2$	0.0	-2.5	
1.80	0.04	-0.13	$\frac{-0.13+0.2}{0.1} = 0.7$	3.5	$\frac{3.5+2.5}{0.2} = 30.0$

Calcul du polynôme de Hermite par différences divisées:

Théorème G

Soit f(x) une fonction donnée aux points x_i , $i=0,1,\ldots,n$ avec répétition eventuelle. On suppose que si x_i intervient k+1 fois, alors les $f^{(i)}(x_j)$, $j=1,2,\ldots,k$ sont aussi donnés. Supposons que le polynôme p(x) soit calculé par la méthode de Newton généralisée de la façon précedente, alors p(x) est le polynôme de Hermite correspondant aux données.

Démonstration:

Soit $p^*(x)$ le polynôme de Hermite, défini de façon unique au théorème précédent. On montre que $p = p^*$. On a $f(x_i) = p^*(x_i)$. Soit $\varepsilon > 0$ fixé. On fixe des ξ distincts tels que $|x_i - \xi| < \varepsilon, i = 0, 1, \dots, n$. (rappel: les x_i sont comptés avec répétition). On peut supposer que f(x) est le polynôme de Lagrange aux points ξ_i . Dans le tableau de Newton pour le polynôme f(x), on a $f[\xi_i, \xi_{i+1}, \dots, \xi_{i+k+1}]$. Mais ceci vaut $f^{(k+1)}(\xi)/(k+1)!$ par le théorème C, avec $\xi \in [\xi_j, \xi_{j+k+1}]$, ce qui entraı̂ne $\xi \in [x_i - \varepsilon, x_i + \varepsilon]$. On constate donc que chaque terme du tableau pour f converge quand $\varepsilon \to 0$ vers le terme correspondant du tableau pour p. Comme le polynôme f(x) est indépendant de ε , on en déduit que $f(x) \equiv p(x)$, par identité polynômiale.

Exercices

- Vérifier la formule donnant le polynôme de Lagrange dans le théorème A.
- Détailler le raisonnement par récurrence pour le théorème B.
- ▶ Montrer que les zéros de $T_{n+1}(x)$ sont les

$$x_i = \cos\left(\frac{(2(n-i)+1)\pi}{2(n+1)}\right) ; i = 0, 1, \dots n$$
 (40)

- Vérifier tous les détails de la preuve du théorème E.
- Vérifier tous les détails de la preuve du théorème G.