

Topic Recognition Latent Dirichlet Allocation

Algorithmic Methods in the Humanities · June 23, 2016 Florian Becker

Institute of Theoretical Informatics · Algorithmics Group

More and more text

http://www.passion-estampes.com/npe/newsletter-francois-schuiten.html

More and more text

Mass production of text:

- > 4000 peer-reviewed papers / day
- nearly 3 million blog posts / day
- 500 million tweets / day

http://www.passion-estampes.com/npe/newsletter-francois-schuiten.html

- Automatically extract topics from documents
- Organizing and searching of large collections of text

- Automatically extract topics from documents
- Organizing and searching of large collections of text

Algorithm: Corpus → Topics

Input corpus, int *K* (number of topics)

Output K topics

- Automatically extract topics from documents
- Organizing and searching of large collections of text

Algorithm: Corpus → Topics

Input corpus, int *K* (number of topics)

Output K topics

Distribution over words

- Automatically extract topics from documents
- Organizing and searching of large collections of text

Algorithm: Corpus → Topics

Input corpus, int *K* (number of topics)

Output K topics

Distribution over words

0.15*algorithm

0.1*complexity

0.05*program

0.05*turing

. . .

. . .

Latent Dirichlet Allocation: What does it do?

Latent Dirichlet Allocation: What does it do?

- Assumptions
- Generative Process
- Dirichlet Distribution

Latent Dirichlet Allocation: What does it do?

- Assumptions
- Generative Process
- Dirichlet Distribution

Demo

Latent Dirichlet Allocation: What does it do?

- Assumptions
- Generative Process
- Dirichlet Distribution

Demo

Latent Dirichlet Allocation: How does it do it?

Latent Dirichlet Allocation: What does it do?

- Assumptions
- Generative Process
- Dirichlet Distribution

Demo

Latent Dirichlet Allocation: How does it do it?

- Inference
- Gibbs Sampling

Latent Dirichlet Allocation: What does it do?

- Assumptions
- Generative Process
- Dirichlet Distribution

Demo

Latent Dirichlet Allocation: How does it do it?

- Inference
- Gibbs Sampling

Conclusion

Latent Dirichlet Allocation

Latent Dirichlet Allocation

- Unsupervised Learning Model
- Finding clusters of similar texts
- Generative Model

Latent Dirichlet Allocation

Assumptions

- A document is represented as a bag of words
- A document is about multiple topics
- A topic is a distribution over words
- Order of documents in corpus does not matter
- Every document is generated by a generative process

Generative Process

Algorithm: Generative Process

- 1. Choose $\theta_i \sim \text{Dir}(\alpha)$,
- 2. Choose $\varphi_k \sim \text{Dir}(\beta)$
- 3. For each of the word positions i, j
 - (a) Choose a topic $z_{i,j} \sim \text{Multinomial}(\theta_i)$.
 - (b) Choose a word $w_{i,j} \sim \text{Multinomial}(\varphi_{z_{i,j}})$

$$j \in \{1, ..., N_i\}$$
, and $i \in \{1, ..., D\}$

- N_i Number of words in document i
- D Number of documents

Binomial Distribution \rightarrow Multinomial Distribution \rightarrow Dirichlet Distribution

Binomial Distribution \rightarrow Multinomial Distribution \rightarrow Dirichlet Distribution

Binomial Distribution (PMF)

$$f(k; n, p) = \Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

Binomial Distribution \rightarrow Multinomial Distribution \rightarrow Dirichlet Distribution

Binomial Distribution (PMF)

$$f(k; n, p) = \Pr(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

success/failure experiments

Example: fair coin, 6 tosses

Probability of 5 heads?

$$Pr(5 \text{ heads}) = f(5) = Pr(X = 5) = {6 \choose 5}0.5^5(1 - 0.5)^{6-5} \approx 0.09375$$

Multinomial Distribution (PMF)

$$f(x_1, \ldots, x_k; n, p_1, \ldots, p_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$$

Multinomial Distribution (PMF)

$$f(x_1, \ldots, x_k; n, p_1, \ldots, p_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$$

Multinomial Distribution (PMF)

$$f(x_1,\ldots,x_k;n,p_1,\ldots,p_k) = \frac{n!}{x_1!\cdots x_k!}p_1^{x_1}\cdots p_k^{x_k}$$

Multinomial Distribution (PMF)

$$f(x_1, \ldots, x_k; n, p_1, \ldots, p_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$$

Multinomial Distribution (PMF)

$$f(x_1, \ldots, x_k; n, p_1, \ldots, p_k) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$$

$$lpha=[1,1,1]$$
 A

$$\alpha = [2, 1, 1]$$

$$\alpha = [2, 2, 2]$$

$$\alpha = [3, 3, 3]$$

$$\alpha = [4, 4, 4]$$

$$\alpha = [5, 5, 5]$$

$$\alpha = [10, 10, 10]$$

$$\alpha = [0.9, 0.9, 0.9]$$

Plate Notation

- Vertex ≡ random variable
- Edge \equiv dependence

Plate Notation: LDA

 α - Dirichlet parameterization

 β_k - topics (dist. over words)

 θ_d - topic proportions for d^{th} document

 $z_{d,n}$ - topic assignment for n^{th} word in d^{th} document

LDA: Demo

LDA: Demo

Depending on how the corpus changes...

LDA and Inference

- Goal: Automatically discover topics from a collection of documents
- Only documents themselves are observed
- topics, per-document topic distributions, and the per-document perword topic assignments is *hidden*

LDA and Inference

- Goal: Automatically discover topics from a collection of documents
- Only documents themselves are observed
- topics, per-document topic distributions, and the per-document perword topic assignments is *hidden*

How to infer latent variables?

How to infer latent variables?

$$p(\beta_{1:K}, \theta_{1:D}, z_{1:D} | w_{1:D}) = \frac{p(\beta_{1:K}, \theta_{1:D}, z_{1:D}, w_{1:D})}{p(w_{1:D})}$$

 β_k - topics (dist. over words)

 θ_d - topic proportions for d^{th} document

 $z_{d,n}$ - topic assignment for n^{th} word in d^{th} document

 w_d - observed words

How to infer latent variables?

$$p(\beta_{1:K}, \theta_{1:D}, z_{1:D} | w_{1:D}) = \frac{p(\beta_{1:K}, \theta_{1:D}, z_{1:D}, w_{1:D})}{p(w_{1:D})}$$

marginal probability

 β_k - topics (dist. over words)

 θ_d - topic proportions for d^{th} document

 $z_{d,n}$ - topic assignment for n^{th} word in d^{th} document

 w_d - observed words

Problem: Marginal probability is intractable to compute

Problem: Marginal probability is intractable to compute

Could only be computed theoretically:

Sum the joint distribution over every possible instance of the hidden topic structure.

Problem: Marginal probability is intractable to compute

Could only be computed theoretically:

Sum the joint distribution over every possible instance of the hidden topic structure.

In other words: Sum over all possible ways of assigning each observed word of the collection to one of the topics.

Problem: Marginal probability is intractable to compute

Could only be computed theoretically:

Sum the joint distribution over every possible instance of the hidden topic structure.

In other words: Sum over all possible ways of assigning each observed word of the collection to one of the topics.

⇒ Approximation !

Gibbs Sampling

- used for Bayesian inference
- randomized algorithm
- Markov Chain Monte Carlo Algorithm
- Method to find (good) topics

Text mining algorithms can be used to find structure in text corpora like Plato's dialogues

Text mining algorithms can be used to find structure in text corpora like Plato's dialogues

-	-	-	-	-	-	-
text	mining	algorithms	structure	corpora	Aristotle	dialogues

Text mining algorithms can be used to find structure in text corpora like Plato's dialogues

1. Randomly assign words to topics

1	3	2	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

Text mining algorithms can be used to find structure in text corpora like Plato's dialogues

1. Randomly assign words to topics

1	3	2	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

2. Do this for all documents in corpus

1	3	2	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

1		3	2	1	2	1	2
te	xt	mining	algorithms	structure	corpora	Plato	dialogues

	1	2	3
text	65	54	59
mining	21	4	12
algorithms	100	74	122
structure	20	12	14
corpora	5	2	12
Plato	35	33	42
dialogues	24	27	31

1	3	2	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

	1	2	3
text	65	54	59
mining	21	4	12
algorithms	100	74	122 -
structure	20	12	14
corpora	5	2	12
Plato	35	33	42
dialogues	24	27	31
	ı		

Counts from **all** documents

sample word *algorithm*

1	3	555	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

	1	2	3
text	65	54	59
mining	21	4	12
algorithms	100	74	122 -
structure	20	12	14
corpora	5	2	12
Plato	35	33	42
dialogues	24	27	31

Counts from all documents

1	3	???	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

1	3	???	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

3. Topic distribution in this document

Topic 1

Topic 2

Topic 3

1	3	???	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

3. Topic distribution in this document

Topic 1

Topic 2

Topic 3

4. Word distribution over topics

1	3	???	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

Topic 1	Topic 2		To	opic 3
		1	2	3
	text	65	54	59
	mining	21	4	12
	algorithms	100	74	122
	structure	20	12	14
4. Word distribution over topics	corpora	5	2	12
	Plato	35	33	42
	dialogues	24	27	31
Florian Becker – Latent Dirichlet Allocation	-			Institute of The

1	3	???	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

1	3	???	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

1	3	???	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

- 4. Word distribution over topics
- 5. Sample according to green area

		Topic 1				
1	3	1	1	2	1	2
text	mining	algorithms	structure	corpora	Plato	dialogues

- 4. Word distribution over topics
- 5. Sample according to green area

Conclusion - Take home message

Wrap up

Conclusion - Take home message

Wrap up

- Topic models find the hidden topical patterns that pervade a unstructured collection of text
 - Generative process as a model of how texts are composed
 - Words are allocated according a Dirichlet distribution over topics

Conclusion - Take home message

Wrap up

- Topic models find the hidden topical patterns that pervade a unstructured collection of text
 - Generative process as a model of how texts are composed
 - Words are allocated according a Dirichlet distribution over topics
- Inference
 - Gibbs sampling can be used for approximating the hidden variables

Resources

- http://www.cs.columbia.edu/ blei/
- Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet allocation." the Journal of machine Learning research 3 (2003): 993-1022. APA
- Porteous, Ian, et al. "Fast collapsed gibbs sampling for latent dirichlet allocation." Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2008.