§ 3、解析函数在无穷远点的性质 整函数与亚纯函数

一、 目的和要求

- 1、掌握函数在∞邻域内的性质,掌握孤立奇点类型的判定定理;
- 2、掌握整函数的概念及其分类,灵活运用亚纯函数的概念及其与有理函数的关系

二、重难点

- 1、重点
- ∞ 作为孤立奇点的判定方法,亚纯函数的概念;
- 2、难点

判定定理的应用及概念间关系

三、 教法

课堂讲授法,采用启发式

四、教学手段

电教, CAI 演示 (2课时)

(一)解析函数在∞的性质

定义 设 f(z) 在区域 $R < |z| < +\infty (R \ge 0)$ 内解析,则 ∞ 称为 f(z) 的孤立奇点 在该区域内有 *Laurent* 级数(展式)

$$f(z) = \sum_{n=-\infty}^{\infty} c_n z^n \tag{1}$$

其中 c_n 由 Laurent 系数公式决定。

令 $z=\frac{1}{w}$,按照 R>0 或 R=0 ,我们的在 $0<|w|<\frac{1}{R}$ 或 $0<|w|<+\infty$ 内解析的函数 $\varphi(z)=f(\frac{1}{w})$,其 Laurent 展式为

$$\varphi(w) = \sum_{n=\infty}^{\infty} \frac{C_n}{w^n} \quad (2)_{\circ}$$

若 w=0 为函数的可去奇点 (m 阶) 极点或本性奇点,这样

- (1) 若当 $n=1,2,\cdots$ 时, $c_n=0$,则称 ∞ 为函数的可去奇点;
- (2)若只有有限个整数(至少有一个)n)0,使 $c_n \neq 0$,则 $z = \infty$ 为函数的极点,若 $c_m \neq 0$, $\forall n > m > 0$ 时, $c_n = 0$ 则称 ∞ 为函数的 m 阶极点,m=1 时称为简单极点
- (3)若有无穷多个 n)0,使 $c_n \neq 0$,则 ∞ 为函数的本性奇点,并称 $\sum_{n=0}^{\infty} c_n z^n$ 及 $\sum_{n=1}^{\infty} c_n z^n$ 为函数在 ∞ 的解析部分和主要部分.

注 (1) 若∞为函数奇点之聚点,就是函数的非孤立奇点.

(2) f(z)在 ∞ 解析 $\Leftrightarrow \infty$ 为f(z)的可去奇点,且定义 $f(\infty) = \lim_{z \to \infty} f(z)$

1、判定定理

定理 5.3 设 $z = \infty$ 为 f(z) 的孤立奇点,下列陈述等价

- (1) $z = \infty$ 为 f(z) 可去奇点
- (2) f(z)在∞处主要部分为0
- $(3) \lim_{z\to\infty} f(z) = b(\neq 0)$
- (4) f(z)在∞的某去心邻域内有界

定理 5.4 设 $z = \infty$ 为 ∞ 的孤立奇点,则下列陈述等价

- (1) $z = \infty$ 为 f(z) 的 m 阶极点
- (2) f(z)在∞的主要部分为 $b_1z + b_2z^2 + \dots + b_mz^m (b \neq 0)$
- (3) f(z)在 $z=\infty$ 的某去心邻域 $N-\{\infty\}$ 内能表成 $f(z)=z^m \varphi(z)$,其中 $\varphi(z)$ 在 \mathbb{N} 内解析且 $\varphi(\infty) \neq 0$.

(4)
$$z = \infty$$
 为 $g(z) = \begin{cases} f(z), z \neq \infty \\ 0, z = \infty \end{cases}$ 的 m 级零点。

$$Cor1.$$
 $z = \infty$ 为 $f(z)$ 的 m 阶极点 $\Leftrightarrow \lim_{z \to \infty} \frac{f(z)}{z^m} = b(b \neq 0, \infty)$

$$Cor2$$
. $z = \infty$ 为 $f(z)$ 的极点 $\Leftrightarrow \lim_{z \to \infty} f(z) = \infty$

定理 5.6 $z = \infty$ 为 f(z) 的孤立奇点,则下列陈述等价

- (1) $z = \infty$ 为 f(z) 的本性奇点
- (2) f(z)在z=∞的主要部分有无穷多个非零项
- (3) 不存在有限或无穷的极限 $\lim_{z \to z} f(z)$

注 上节中定理 5.7 到定理 5.9 对 $z=\infty$ 的本性奇点也真

例1 $z = \infty$ 为 $e^{\frac{1}{z}}$ 的可去奇点; $z = \infty$ 为 n 此多项式的 n 阶极点; $z = \infty$ 为 $\cos z$, $\sin z$ 的本性奇点。

例 2 判断下列函数孤立奇点的类型(含∞)

(1)
$$\frac{1}{(z^2-4)^3}$$
 (2) $e^{z+\frac{1}{z}}$ (3) $\frac{1-\cos z}{z^2}$ (4) $\frac{1+e^z}{e^z-1}$

(2)
$$e^{z+\frac{1}{2}}$$

$$(3) \quad \frac{1-\cos z}{z^2}$$

$$(4) \frac{1+e^z}{e^z-1}$$

解 (1) 易知 $z = \pm 2$ 为其三阶极点(两种方法) $\begin{cases} (z+2)^3 \cdot f(z) \\ \frac{f(z)}{(z-2)^2} \end{cases}$, $z = \infty$ 为可去奇点

 $(\lim f(z) = 0).$

(2) 其孤立奇点为 0或∞。

法二 由于
$$z_n = \frac{1}{2n\pi i} \rightarrow 0 (n \rightarrow \infty)$$
有 $e^{z_n + \frac{1}{z_n}} = e^{\frac{1}{2n\pi i}} \rightarrow 1 (n \rightarrow \infty)$,

$$z_n = \frac{1}{2n\pi i + \pi i} \to 0 \, \bar{\eta} \, e^{z_n + \frac{1}{z_n}} = -e^{\frac{1}{2n\pi i + \pi i}} \to -1 \quad (n \to \infty) \,,$$

故 $\lim_{z\to 0} e^{z+\frac{1}{z}}$ 不存在; 即 z=0 为其本性奇点

同理 取 $z_r = 2\pi ni$ 及 $z_n' = 2n\pi i + \pi i$ 易得, ∞ 也为本性奇点 法一 用展式

(3) 当z = 0时, $1 - \cos z = 0$,故 z = 0 非其二阶极点,

$$\lim_{z \to 0} \frac{1 - \cos z}{z^2} = \lim_{z \to 0} \frac{\sin z}{2z} = \frac{1}{2}$$

z=0为其可去奇点 又

$$\frac{1-\cos z}{z^2} = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n+2)!}$$

 $z = \infty$ 为其本性奇点

(4) 因为 $z_k = 2k\pi i$ 为 $e^z - 1$ 的简单零点,故 z_k 为 $\frac{e^z + 1}{e^z - 1}$ 的简单极点,又

$$z_k = 2k\pi i \to \infty \quad (k \to \infty)$$

故 $z=\infty$ 为非孤立奇点

(5)
$$\frac{z^7}{(z+1)^2(z-5)^3}$$

解 易知 z=-1为其二阶极点 z=5 为其三阶极点

$$\lim_{z \to \infty} \frac{1}{z^2} \cdot \frac{z^7}{(z+1)^2 (z-5)^3} = 1$$

故 $z = \infty$ 为其二阶极点

例3 求多值函数 $Ln\frac{z-a}{z-b}$ 的第 k 支在 ∞ 某去心邻域内的 Laurent 展式

解 $Lnz = \ln z + 2k\pi i \ (k \in \mathbb{Z})$ 考虑主支 $\ln \frac{z-a}{z-b}$,且 $z=\infty$ 不是其支点 ,故在 ∞ 的邻域 $|z| > \max\{|a|,|b|\}$ 内解析,

$$\ln \frac{z-a}{z-b} = \ln(1-\frac{a}{z}) - \ln(1-\frac{b}{z}) = -\sum_{n=1}^{\infty} \frac{1}{n} \cdot (\frac{a}{z})^n + \mp \sum_{n=1}^{\infty} \frac{1}{n} \cdot (\frac{b}{z})^n = \sum_{n=1}^{\infty} \frac{b^n - a^n}{n} \cdot \frac{1}{z^n}$$

$$(\ln \frac{z-a}{z-b})_k = \sum_{n=1}^{\infty} \frac{b^n - a^n}{n} \cdot \frac{n}{2} + 2k\pi i \qquad (k \in \mathbb{Z})$$

例 4 问 $\sec \frac{1}{z-1}$ 在 z=1 的邻域内是否解析

解 易得: $z_k = \frac{1}{(k+\frac{1}{2})\pi} + 1$ 为 $\sec \frac{1}{z-1}$ 的一阶奇点且 $z_k \to 1 (k \to \infty)$,故 z=1为非

孤立奇点,不能展成 Laurent 级数 (题改条件下)

例 5 若 f(z)在 0 < |z-a| < k 内解析且不恒为 0,又若 f(z)有异于 a 但却异 a 为聚点的零点,证 a 必为 f(z) 本性奇点。

证明 (穷举法) 由题可知 z = a 为 f(z) 的孤立奇点

- (1) 若 z=a 为 f(z)可去奇点,则 在 |z-a| < R 内,令 f(a) = 0 解析且以 a 为非孤立 零矢 \Rightarrow $f(z) \equiv 0$ 。
- (2) 若 a 为 f(z) 极点,则 $\lim_{z\to a} f(z) = \infty$, $\lim_{z\to a} f(z) = 0$ 从而 z=a 为 f(z) 的本性奇点(据解析函数孤立奇点特征,可区分为两种最简单的解析函数族)。

(二) 整函数与亚纯函数

1、整函数(全纯函数)

已知 若 f(z) 在复平面(有限) \mathbb{C} 上解析,则称之为一个整函数,显然 ∞ 为整函数的孤立奇点, f(z) 绕 ∞ 的 Laurent 展式即为 Taylor 展式

$$f(z) = \sum_{n=0}^{\infty} c_n z^n \qquad (0 \le |z| < +\infty)$$
 (*)

显然有

定理 5.10 若 f(z) 为以整函数,则

- (1) $z = \infty$ 为 f(z) 的可去奇点 ⇔ f(z) 为常数 c_0 ;
- (2) $z = \infty$ 为 f(z) 的 m 阶极点 $\Leftrightarrow f(z)$ 为 m 此多项式;
- (3) $z = \infty$ 为 f(z) 的本性奇点 \Leftrightarrow (*) 中有无穷多个 $c_n \neq 0$,此时称(3)为超越整函数,如 e^x , $\sin z$, $\cos z$ 等

2、亚纯函数

定义 在 z 平面 \mathbb{C} 上出极点外,无其他类型奇点的单值解析函数,称为亚纯函数。亚纯函数族是较枕函书更一般的函数族(推广)。最简单,有几点的亚纯函数是有理(分式)函数。

例 $\frac{1}{\sin z}$ 为一个亚纯函数,极点 $z = k\pi (k \in \mathbb{Z})$ ——无穷多个有理数

$$\frac{\alpha_0 + \alpha_1 z + \alpha_2 z^2 + \dots + \alpha_n z^n}{\beta_0 + \beta_1 z + \beta_2 z^2 + \dots + \beta_n z^n} \qquad (\alpha_n, \beta_{n \neq 0})$$

也是一个亚纯函数, $(\alpha_k, \beta_l \in \mathbb{C} \quad k = 0 \to m, m, n \in N)$,在 \mathbb{C} 上有有限个极点,无穷远点 ∞ 为其极点(n) m时)或可去奇点 $(n \le m$ 时)。

定理 5.11 函数 f(z) 为有理函数 $\Leftrightarrow f(z)$ 在上除极点和可去极点外无其他类型奇点

证 "⇒" 设 $f(z) = \frac{P(z)}{Q(z)}$,其中 P(z),Q(z) 分别为 z 的 m 次和 n 次多项式且彼此互质,则

(1) 当 m) n, 时, $z = \infty$ 为 f(z) 的 m-n 阶极点;

- (2) 当 $m \le n$ 时, $z = \infty$ 必为f(z)的可去极点,只要令 $f(\infty) = \lim_{z \to \infty} \frac{P(z)}{Q(z)}$ $z = \infty$ 为 其解析点:
 - (3) Q(z) 的零点必为 f(z) 的极点。

" \leftarrow "若f(z)在 \mathbb{C}_{∞} 上除极点的无其他类型奇点,则这些极点的个数只能为有限多个,若不然,这些极点在 \mathbb{C}_{∞} 上的聚点便为非孤立奇点

令 f(z) 在 Z 平面上的极点为 $z_1, z_2, ..., z_n$,其阶分别为 $\lambda_1, \lambda_2, \lambda_3, ... \lambda_n$ 则函数

$$g(z) = (z - z_1)^{\lambda_1} (z - z_2)^{\lambda_2} \cdots (z - z_n)^{\lambda_n} f(z)$$

要多以 $z=\infty$ 为极点,而在 \mathbb{C} 上解析,故g(z)必为多项式(或常数),即 f(z)必为有理函数。

定义 5.7 非有理函数的亚纯函数称为超越亚纯函数 注 亚纯函数可以表示成两个整函数的商,也可表示成部分公式

补 例 6 (1)
$$f(z) = (z-e)(z^2+1)$$
 为整函数

此因 $\lim_{z\to\infty} f(z) = \infty$, ∞ 为函数极点此外别无奇点, $\inf_{z\to\infty} f(z)$ 为整函数且为三次多项式。

- (2) 考查 $f(z) = 1 + e^{z+1}$
- 解 f(z) 为整函数,又因 Laurent 展式为

$$f(z) = 1 + e^{z+1} = 1 + \left[1 + (z+1) + \frac{(z+1)^2}{2!} + \cdots\right]$$

$$= 2 + (z+1) + \frac{(z+1)^2}{2!} + \cdots + \frac{(z+1)^n}{n!} + \cdots \qquad (0 \le |z+1| < +\infty)$$

易见 $z = \infty$ 为函数的本性奇点,故 函数 f(z) 为超越整函数。

例7 考察函数
$$f(z) = \frac{1}{e^z + 1}$$

解 $e^z + 1$ 的零点为 $z_k = (2k+1)\pi i$ $(k \in \mathbb{Z})$,又 $(e^z + 1) = e^z$ 在 z_k 处不为 0,

故 z_k 皆为函数的一阶极点其极限 ∞ 为函数非孤立奇点,此外, f(z) 别无奇点,

依定义, $f(z) = \frac{1}{e^z + 1}$ 为超越亚纯函数

例8 设f(z)在 \mathbb{C} 上解析,且当 $z \to \infty$ 时, $\frac{f(z)}{z} \to 1$,证明 f(z)必有一个零点

证 由题设知 f(z)必为一个整函数,即 f(z)只以 $z=\infty$ 为孤立奇点(据 Taylor 定理知)

$$i z f(z) = c_0 + c_1 z + c_2 z^2 + \dots + c_n z^n + \dots$$
 $(0 \le |z| < +\infty)$

又由题设

$$\lim_{z \to \infty} \frac{f(z)}{z} = 1 \tag{1}$$

 $\therefore z = \infty$ 为 $\frac{f(z)}{z}$ 的可去奇点,从而 $z = \infty$ 为函数的一阶极点,故必

$$f(z) = c_0 + c_1 z (2)$$

(2) 代入(1) 后,必有 $c_1=1$ 故 $f(z)=c_0+z$,即 必有且只有一个零点。

五 小结

- 1、∞奇点的类型与判定
- 2、亚纯函数与分类.

六 作业

$$P_{212}4(1)$$
 , 6, 8 (1) (4)

七 预习要求 预习并回答

- 1、函数有那两种定义方式? 为何说这两种定义是统一的?
- 2、在℃上,可去奇点的函数一定为0吗?
- 3、∞函数定义中积分方向如何理解?

八 后记

参教文献【1】【5】【6】