Секущие плоскости

Используем пропозициональные переменные \bar{p} с интерпретацией 0=false и 1=true. Строка доказательства - это

$$\sum_{k} c_k p_k \ge C,$$

где c_k и C - целые.

Аксиомы: $p_k \ge 0$ и $-p_k \ge -1$ (т.е. $0 \le p_k \le 1$) для каждой пропозициональной переменной p_k .

Парвила:

- 1. Сложение. Из $\sum_{k} c_{k} p_{k} \geq C$ и $\sum_{k} d_{k} p_{k} \geq D$ получаем $\sum_{k} (c_{k} + d_{k}) p_{k} \geq C + D;$
- 2. Деление. Из $\sum_{k} c_{k} p_{k} \geq C$ получаем $\sum_{k} \frac{c_{k}}{d} p_{k} \geq \left\lceil \frac{C}{d} \right\rceil$, d > 0 целое, которое делит каждое c_{k} ;
- 3. Умножение. Из $\sum_k c_k p_k \geq C$ получаем $\sum_k dc_k p_k \geq dC$, где d произвольное положительное целое.

Для опровержения множества неравенств надо получить противоречие $0 \ge 1$.

Statement. По невыполнимой формуле в $KH\Phi$ можно построить доказательство в секущих плоскостях.

Statement. Секущие плоскости моделируют резолюцию.

Нижняя оценка

Идея: Извлечь из доказательства монотонную булеву схему и применить оценку (теорему Разборова) на монотонную схемную сложность.

Theorem 0.1. (Пудлак) Если формула A(x,y) такая, что все вхождения x положительны (т.е. без отрицания), или формула B(x,y) такая, что все вхождения x отрицательны, то по доказательству $A(x,y) \wedge B(x,y)$ в секущих плоскостях размера s можно построить вещественную монотонную схему C размера $\leq s$ такую, что $C(x) = 1 \quad \forall x \in U \ u \ C(x) = 0 \quad \forall x \in V$, где $U = \{x \mid \exists y : A(x,y) = 1\}$, $V = \{x \mid \exists z : A(x,z) = 1\}$.

Theorem 0.2. (Разборов) Пусть C - монотонная вещественная схема, принимающая на вход векторы из 0 и 1 длины $\binom{n}{2}$, кодирующие граф на п вершинах. Пусть C выдает 1, если граф содержит клику размера m, и выдает 0, если вершины графа можно раскрасить в m-1 цвет, где $m=\left\lfloor\frac{1}{8}\left(\frac{n}{\log n}\right)^{\frac{2}{3}}\right\rfloor$. Тогда размер схемы хотя бы $2^{\Omega((\frac{n}{\log n})^{\frac{1}{3}})}$.

Запишем формулой, что граф одновременно имеет клику размера т и правильным образом красится в m-1 цвет. Причем сделаем это так, чтобы попасть в условие теоремы Пудлака (это можно сделать). Тогда из двух предыдущих теорем получим нажнюю оценку.

Theorem 0.3. При $m = \left\lfloor \frac{1}{8} \left(\frac{n}{\log n} \right)^{\frac{2}{3}} \right\rfloor$ размер доказательства в секущих плоскостях формулы Clique \wedge Coloring есть $2^{\Omega((\frac{n}{\log n})^{\frac{1}{3}})}$.