- Introduction
- Power series
- Oifferentiation in Higher Dimensions
  - Limits and Continuity in  $\mathbb{R}^n$
  - Differentiability in  $\mathbb{R}^n$
  - Derivatives
- 4 Integration in Higher Dimensions
- 5 Further Topics in Calculus
- Summary Outlook and Review

Power series

#### Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus



## **Higher Dimensions**

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in **Higher Dimensions** 

Further Topics in Calculus

Summary -Outlook and Review

In Analysis 1 we have discussed differentiation of functions of 1 variable.

Now we consider a real-valued function in several variables

Differential Calculus in  $\mathbb{R}^n$ 

$$f: D \subseteq \mathbb{R}^n \to \mathbb{R}$$
  
 $\mathbf{x} = (x_1, \dots, x_n)^{\top} \mapsto f(x_1, \dots, x_n) = f(\mathbf{x})$ 

In Analysis 1 we have discussed differentiation of functions of 1 variable.

Now we consider a <u>real-valued</u> function in several variables

$$f: D \subseteq \mathbb{R}^n \to \mathbb{R}$$
  
 $\mathbf{x} = (x_1, \dots, x_n)^{\top} \mapsto f(x_1, \dots, x_n) = f(\mathbf{x})$ 

Later we are going to extend the differential calculus to vector-valued functions (of several variables)

$$f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$$

$$\mathbf{X} = (x_1, \dots, x_n)^\top \mapsto (f_1(x_1, \dots, x_n), \dots, f_m(x_1, \dots, x_n))^\top$$

$$= \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} f_1(\mathbf{x}) \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{pmatrix}$$

Introduction

Power series

#### Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus



A real-valued function in 2 variables

X, y indep.

$$f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$$

$$\mathbf{X} = (X_1, X_2)^{\top} \mapsto f(X_1, X_2) = \mathbf{Z}$$

$$\Rightarrow (X_1, Y_2)^{\top}$$

We may plot the function value as 3rd coordinate over the real plane  $\mathbb{R}^2$ .

The graph of f is a subset of  $\mathbb{R}^3$ : a "landscape" or "mountains".

Introduction

Power series

## Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus



# Contour Line, Equipotential Surface, ...

#### Definition (Level set)

We define the **level set** of a function  $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ ,  $(x_1, \ldots, x_n)^\top \mapsto f(x_1, \ldots, x_n)$  for the function value  $c \in \mathbb{R}$  as the set

$$N_c := \{\mathbf{x} \in D \mid f(\mathbf{x}) = c\}.$$

The structure of  $N_c$  may be "complicated", it might also be the empty set.

For n = 2 the level set is called a contour line or level curve (though it may be an area, e.g.), for n = 3 the level set is called an equipotential surface (though it may be a solid, e.g.).

Introduction

Power series

#### Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus



A partial function is a "cross section"-function that is obtained by freezing all but 1 variables, e.g.  $x_i$ :

$$g_i: D_i \subseteq \mathbb{R} \to \mathbb{R}$$
  
 $x_i \mapsto f(a_1, \dots, a_{i-1}, x_i, a_{i+1}, \dots, a_n),$ 

with  $(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_n) \in D$  for all  $x_i \in D_i$ ,  $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n$  fixed.

Introduction

Power series

#### **Higher Dimensions**

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in **Higher Dimensions** 

Further Topics in Calculus



## Partial Function: Example

Analysis 2

S.-J. Kimmerle

Introduction

Power series

## Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review



- see blackboard

#### Definition (Partial derivative)

Let  $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ ,  $\mathbf{x} = (x_1, \dots, x_n)^\top \mapsto f(x_1, \dots, x_n)$  and  $a \in D$ , D an open set.

If the derivative of the partial function

$$X_i \mapsto f(a_1,\ldots,a_{i-1},X_i,a_{i+1},\ldots,a_n) = f(a_1,\ldots)$$

exists at  $x_i = a_i$ ,

then we call it the **partial derivative** of f w.r.t.  $x_i$  at a.

We write:

$$\frac{\partial f}{\partial x_i}(\mathbf{a})$$
 or  $f'_{X_i}(\mathbf{a})$  or  $.\downarrow_{\mathbf{x}_i}(\mathbf{a})$  or  $\frac{\partial}{\partial x_i} f(\mathbf{a})$ 

We say f is **partially differentiable** in  $\mathbf{a}$ , if all  $\frac{\partial f}{\partial x_i}(\mathbf{a})$  exist. We say f is partially differentiable in  $E \subseteq D$ , if f is partially differentiable at any  $\mathbf{a} \in E$ .

#### Introduction

Power series

#### Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus



We assume that *f* is partially differentiable in *D*. It is convenient to arrange the (first) partial derivatives in a vector.

We define the **gradient** of  $f: D \subseteq \mathbb{R} \to \mathbb{R}$  as the <u>column</u> vector (function):

That 
$$\nabla f(\mathbf{x}) := \begin{bmatrix} \frac{\partial I}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_i}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{x}) \end{bmatrix}$$

2d: 
$$\nabla f(x, y) = \frac{\partial f(x, y)}{\partial x}(x, y)$$

Introduction

Power series

#### Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

The gradient is

- orthogonal to level sets and
- points into the direction of the steepest ascent.



Power series

## Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

$$f(x,y) = (x^{2} + y^{2}) \exp(\sin(x + y))$$

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}(x,y)\right) = \exp(\sin(x + y))\left(2\left(\frac{x}{y}\right) + \dots\right)$$

$$+ (x^{2} + y^{2}) \cos(x + y) \left(\frac{1}{y}\right)$$

$$g(x,y) = 100 \left(y - x^{2}\right)^{2} + (1 - x)^{2} \text{ Rosenborock}$$

$$\cos 2\pi \cos x$$

$$\cos 2\pi \cos$$

## Higher Partial Derivatives: Definition

Partial derivatives w.r.t. some  $x_j$  are again functions of  $x_1$ ,  $x_2$ , ...,  $x_n$  and, again, we may search for partial derivatives w.r.t. some  $x_i$ , yielding **second partial derivatives**. (i, j = 1, ..., n)

We write:

$$\frac{\partial}{\partial x_i} \frac{\partial f}{\partial x_j}(\mathbf{a})$$
 or  $\frac{\partial^2}{\partial x_i \partial x_j} f(\mathbf{a})$  or  $f''_{X_i, X_j}(\mathbf{a})$  or  $f''_{i,j}(\mathbf{a})$  ...

In 2d with  $(x, y) = (x_1, x_2)$  this reads, e.g.:

$$\frac{\partial}{\partial x} \frac{\partial f}{\partial y}(\mathbf{a})$$
 or  $\frac{\partial^2}{\partial x \partial y} f(\mathbf{a})$  or  $f''_{x,y}(\mathbf{a})$  or  $f''_{1,2}(\mathbf{a})$  ...

Introduction

Power series

#### Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus



## Higher Partial Derivatives: Hesse Matrix

We assume that f is 2x partially differentiable in D. Again it is convenient to order the second partial derivatives in a (quadratic) matrix.

We define the **Hesse matrix** of  $f: D \subseteq \mathbb{R} \to \mathbb{R}$  as the quadratic matrix (function):

$$H_{f}(\mathbf{x}) := \begin{pmatrix} \frac{\partial^{2}}{\partial x_{1} \partial x_{1}} f(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{1} \partial x_{n}} f(\mathbf{x}) \\ \vdots & \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(\mathbf{x}) & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \frac{\partial^{2}}{\partial x_{n} \partial x_{1}} f(\mathbf{x}) & \dots & \frac{\partial^{2}}{\partial x_{n} \partial x_{n}} f(\mathbf{x}) \end{pmatrix} \in \mathbb{R}^{n \times n}$$

Introduction

Power series

#### Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

In 2d with  $(x, y) = (x_1, x_2)$  this reads, e.g.:

$$H_f(x,y) := \begin{pmatrix} \frac{\partial^2}{\partial x \partial x} f(x,y) & \frac{\partial^2}{\partial x \partial y} f(x,y) \\ \frac{\partial^2}{\partial y \partial x} f(x,y) & \frac{\partial^2}{\partial y \partial y} f(x,y) \end{pmatrix} = \frac{2}{2} f(x,y)$$



According to the Schwarz-Clairaut theorem there holds:

Suppose f is defined on a disk  $D \subseteq \mathbb{R}^2$  with  $(x_0, y_0) \in D$ . If  $\frac{\partial^2 f}{\partial x \partial y}$  and  $\frac{\partial^2 f}{\partial y \partial x}$  are both continuous on D, then  $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$  at  $(x_0, y_0)$ .

This shows that the Hesse matrix is symmetric.

The order of the partial derivatives doesn't water in this case!

Introduction

Power series

#### Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus



## Higher Partial Derivatives: Examples

#### Analysis 2

S.-J. Kimmerle

Introduction

Power series

#### Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

$$H_{3}(x,y) = ... = \begin{pmatrix} -400(y-3x^{2})+2,-400x \\ -400x, & 200 \end{pmatrix}$$



Let  $D \subseteq \mathbb{R}^n$ .

•  $\varepsilon$ -neighbourhood of  $\mathbf{a} \in \mathbb{R}^n$ :

$$U_{\varepsilon}(\mathbf{a}) := \left\{ \mathbf{x} \in \mathbb{R}^{n} \, \middle| \, ||\mathbf{x} - \mathbf{a}||_{2} := \sqrt{\sum_{i=1}^{n} (x_{i} - a_{i})^{2}} < \varepsilon \right\}$$

- $\mathbf{a} \in D$  is called an **interior point** of D : $\iff$  there exists  $U_{\epsilon}(\mathbf{a})$  with  $U_{\epsilon}(\mathbf{a}) \subseteq D$ .
- A set D is called **open** : $\iff$  any point of D is an interior point. A set D is called **closed** : $\implies \mathbb{R}^n \setminus D$  is open.
- $\mathbf{b} \in \mathbb{R}^n$  is called a **boundary point** of  $D :\longrightarrow$  for all  $U_{\varepsilon}(\mathbf{b})$  holds, there exists a  $\mathbf{x}, \mathbf{y} \in U_{\varepsilon}(\mathbf{b})$  with  $\mathbf{x} \in D$  and  $\mathbf{y} \notin D$ . The set  $\partial D$  of all boundary points  $\mathbf{b}$  is called **boundary** of D.

Examples, see blackboard

Introduction

Power series

Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ 

Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus



Power series

Differentiation in Higher Dimensions

Limits and Continuity in  $\mathbb{R}^n$ 

Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in Higher Dimensions

Further Topics in Calculus

Summary -Outlook and Review

Let  $f: \mathbb{R}^n \subseteq D \to \mathbb{R}^m$ ,  $\mathbf{a} \in D \cup \partial D$ .

$$\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = c \in \mathbb{R}^m : \Longleftrightarrow$$

for all  $\varepsilon > 0$  exists  $U_{\varepsilon}(\mathbf{a}) : ||f(\mathbf{x}) - c|| \le \varepsilon$  for all  $\mathbf{x} \in D \cap U_{\varepsilon}(\mathbf{a})$ .

f is called **continuous** in  $\mathbf{a} \in D : \iff \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = f(\mathbf{a})$ . f is called continuous in  $D : \iff f$  is continuous for all  $\mathbf{a} \in D$ .

Example: For n = 2, m = 1, f is continuous means that there are no "jumps" or "ridges".



Power series

Differentiation in **Higher Dimensions** 

Limits and Continuity in  $\mathbb{R}^n$ 

Differentiability in  $\mathbb{R}^n$ Derivatives

Integration in **Higher Dimensions** 

Further Topics in Calculus

Summary -Outlook and Review

Functions of severable variables exhibit phenomena that we do not encounter in 1d:

Consider  $f: \mathbb{R}^2 \to \mathbb{R}$ ,

$$f(x,y) := \begin{cases} \frac{2xy}{x^2+y^2}, & \text{if } x \neq 0 \text{ or } y \neq 0, \\ 0, & \text{if } (x,y)^\top = (0,0)^\top. \end{cases}$$

A limit in 2d has to hold for any "path"  $(x, y) \rightarrow (x_0, y_0)$ . It is not enough to consider each coordinate separately!

