

DS1302

Trickle Charge Timekeeping Chip

www.dalsemi.com

功能特色:

- 时钟计数功能,可以对秒、分钟、小时、月、 星期、年的计数。年计数可达到 2100 年。
 - 有31*8位的额外数据暂存寄存器
 - 最少 I/O 引脚传输,通过三引脚控制
 - 工作电压: 2.0-5.5V
 - 工作电流小于 320 纳安 (2.0V)
- 读写时钟寄存器或内部 RAM(31*8 位的额外

数据暂存寄存)可以采用单字节模式和突发模式

- 8-pin DIP 封装或 8-pin SOICs
- 兼容 TTL (5.0V)
- 可选的工业级别,工作温度-40-85 摄氏度
- 兼容 DS1202 较 DS1202 增加的功能:
 - 1. 可通过 Vcc1 进行涓流充电
 - 2. 双重电源补给
- 3. 备用电源可采用电池或者超级电容(0.1F以上),可以用老式电脑主板上的 3.6V 充电电池。如果断电时间较短(几小时或几天)时,就可以用漏电较小的普通电解电容器代替。100 μF就可以保证 1小时的正常走时。DS1302 在第一次加电后,必须进行初始化操作。初始化后就可以按正常方法调整时间。

PIN ASSIGNMENT

DS1302S 8-Pin SOIC (200-Mil) DS1302Z 8-Pin SOIC (150-Mil)

PIN DESCRIPTION

XI, X2 - 32.768 kHz Crystal Pins

GND - Ground RST - Reset

I/O - Data Input/Output
SCLK - Serial Clock
VCC1, VCC2 - Power Supply Pins

ORDERING INFORMATION

PART # DESCRIPTION

DS1302 Serial Timekeeping Chip;
8-pin DIP

DS1302S Serial Timekeeping Chip;

8-pin SOIC (200-mil)

DS1302Z Serial Timekeeping Chip; 8-pin SOIC (150-mil)

功能简述:

DS1302 包括时钟/日历寄存器和 31 字节(8位)的数据暂存寄存器,数据通信仅通过一条串行输入输出口。实时时钟/日历提供包括秒、分、时、日期、月份和年份信息。闰年可自行调整,可选择 12 小时制和 24 小时制,可以设置 AM、PM。

只通过三根线进行数据的控制和传递: RST (Reset)、I/O (Data line)、SCLK (Serial clock)。通过备用电源可以让芯片在小于 1MW 的功率下运作。

工作过程:

主要工作原理图如 Figure 1 所示:移位寄存器,控制逻辑,晶振,时钟和 RAM。在进行任何数据传输时,

RST 必须被制高电平(注意虽然将它置为高电平,内部时钟还是在晶振作用下走时的,此时,允许外部读写数据),

在每个 SCLK 上升沿时 数据被输入,下降沿 时数据被输出,一次 只能读写一位, 适度 还是写需要通过串行 输入控制指令来实现 (也是一个字节),通 过8个脉冲便可读取 一个字节从而实现串 行输入与输出。最初 通过8个时钟周期载 入控制字节到移位寄 存器。如果控制指令 选择的是单字节模 式,连续的8个时钟 脉冲可以进行 8 位数

DS1302 BLOCK DIAGRAM Figure 1

据的写和 8 位数据的读操作,SCLK 时钟的上升沿时,数据被写入 DS1302,SCLK 脉冲的下降沿读出 DS1302 的数据。8 个脉冲便可读写一个字节。在突发模式,通过连续的脉冲一次性读写完 7 个字节的时钟/日历寄存器(注意时钟/日历寄存器要读写完),也可以一次性读写 8~328 位 RAM 数据(可按实际情况读写一定数量的位,不必全部读写,两者的区别)。

控制指令:

控制指令(8位)如 Figure2 所示:

每个字节的传输是有控制字节指定的,控制字节的最高位 Bit7 必须是'1',如果是'0',写入将被禁止,因此我们如果将这位置一,可以禁止写入。bit6 为'0'则指定对时钟/日历寄存器控制读写操作,为'1'则为 RAM 区数据的控制读写操作,bir1~bit5 指定相关寄存器待进行输入输出操作,最低位 bit0 指定是输入还是输出,为'0'则为输入,相反则输入有效,输入输出根据脉冲的上升沿和下降沿串行进行(前面已经提到)。

复位以及时钟控制:

所有的数据传输在RST置一时进行(反复强调),RST输入信号有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST提供终止单字节或多字节数据的传送手段。当RST为高电平时,所有的数据传送被初始化,允许对DS1302进行操作。如果在传送过程中RST置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。上电运行时,在Vcc≥2.5V之前,RST必须保持低电平。只有在SCLK为低电平时,才能将RST置为高电平。I/O为串行数据输入输出端(双向),后面有详细说明。SCLK始终是输入端。

数据的传输如下图所示: (注意两种模式)

数据输入:

经过8个时钟周期的控制字节的输入,一个字节的输入将在下8个时钟周期的上升沿完成,数据传输从字节最低位开始。

数据输出:

经过8个时钟周期的控制读指令的输入,控制指令串行输入后,一个字节的数据将在下个8个时钟周期的下降沿被输出,注意第一位输出是在最后一位控制指令所在脉冲的下降沿被输出,要求RST保持位高电平。

同理8个时钟周期的控制读指令如果指定的是突发模式,将会在脉冲的上升沿读入数据,下降沿读出数据,突

发模式一次可进行多字节数据的一次性读写,只要控制好脉冲就行了。

突发模式:

上面已经提到过的突发模式可以指定为任何时钟/日历或 RAM 的寄存器,与以前一样,位 6 指定时钟或 RAM, 位 0 指定读或写。读取或写入的突发模式开始在位 0 地址 0 。

对于 DS1202 来说,在突发模式下写时钟寄存器,起始的 8 个寄存器用来写入相关数据,必须写完。然而,在 突发模式下写 RAM 数据时,没有必要全部写完。每个字节都将被写入而不论 31 字节是否写完。

时钟/日历:

时钟/日历包含在7个寄存器中,如Figure4所示。数据在时钟/日历寄存器是二进制编码的十进制格式(BCD码)。

时钟停止标志:

秒寄存器的 bit7 是时钟停止标志位,如果这位是'1',时钟晶振停止起振,DS1302 进入低功耗待命模式,耗用电流小于 100 nanoamps,如果这位是'0',晶振开始起振。

AM-PM/12-24 模式选择:

小时寄存器的 bit7 是 AM-PM/12-24 模式选择选择位,这一位为'1'时,选择了 12 小时制,为'0'时,选择了 24 小时制,在 12 小时制下,bit 为'1'选择了 PM,在 24 小时制下,bit5 选择了 20~23 小时段。

写保护位:

控制字节的 bit7 是写保护位(前面已经提到),低 7 位(bit0~bit6),被置 0,在任何写操作前,bit7 都应该置 '0'。

涓流充电寄存器:

该寄存器决定了 DS1302 的充电特性,结构简图如下图所示,涓流充电选择位为 bit4~7,置 1010 时使涓流充电,其他选择将禁止涓流充电。DS1302 刚上电时无涓流充电。二极管选择位 diode select (DS) bit2~3,将在 Vcc1 和 Vcc2 之间选择 1 或 2 个 diode ,如果 DS 是 01,只有一个二极管被选择,如果 DS 四 10,将选择两个 diode,具体电路如下面图示,如果是 00 或 11,无涓流充电能力。还有电阻选择位 RS(bit0~1)将会选择 Vcc1 和 Vcc2 之间的电阻,具体如下表:

 TCS=1010
 使能涓流充电
 DS=01
 选择一个二极管

 TCS=其它
 禁止涓流充电
 DS=10
 选择两个二极管

DS=00 或 11, 即使 TCS=1010, 充电功能也被禁止

RS 位	电阻	典型位
00	没有	没有
01	R1	2ΚΩ
10	R2	4K Ω
11	R3	8K Ω

RS 和 DS 是有外部 Vcc1 和 Vcc2 (如超级电容,第一页已经提到)最大充电电流来决定的,其最大充电电流由一下方法计算:例如 Vcc2 电压为 5V, Vcc1 连接一个超级电容,假如涓流充电禁止,且 VCC1、VCC2 之间只有一个二极管和一个电阻 R1,则其最大电流为:

 $I_{max} = (5.0V - diode drop) / R1$ $\sim (5.0V - 0.7V) / 2K\varsigma$ $\sim 2.2 \text{ mA}$

显然,超级电容充电时,VCC1、VCC2之间的压降将会减少,其充电电流也将会减少。

时钟/日历突发模式:

由时钟/日历指令字节来指定其突发模式操作。在该模式下,其实的8个时钟/日历寄存器将被连续的读和写,详细见前面表格("时钟/日历"处),起始与地址0和位0。

如果些保护位被置'1',则在突发模式下,无任何字节将会被读写,涓流充电不可以在突发模式下选择。

RAM:

The static RAM is 31 x 8 bytes addressed consecutively in the RAM address space.

RAM 突发模式:

由 RAM 控制指令字节来指定其突发模式操作。在该模式下,31 个 RAM 静态寄存器将可以被连续的读或写,起始与地址 0 和位 0.

寄存器概况:

详细见前面表格("时钟/日历"处)

晶体振荡器的选择:

一个 32.768KHZ 的晶振可以直接接在 DS1302 的 2、3 管脚之间,可以设定规定载荷电容位 6pF。

电源控制:

VCC1 可提供单电源控制也可以用来作为备用电源,VCC2 为主电源。在主电源关闭的情况下,也能保持时钟的连续运行。DS1302 由 Vcc1 或 Vcc2 两者中的较大者供电。当 Vcc2 大于 Vcc1+0.2V 时,Vcc2 给 DS1302 供电。当 Vcc2 小于 Vcc1 时,DS1302 由 Vcc1 供电。

最大绝对额定值:

管脚电压(相对于 GND) -0.5V ~ 7.5 V 工作温度 0°C ~ 70°C 存储温度 -55°C ~ 125°C 焊接温度 260°C for 10 seconds

RECOMMENDED DC OPERATING CONDITIONS

(0°C to 70°C)

(0 0 10 10 0								
PARAMETER	SY	MBOL	MIN	TYP	MAX	UNITS	NOTES	
Supply Voltage V _{CC1} , V _{CC2}	V _{CC1} , V _{CC2}		2.0		5.5	V	1, 11	
Logic 1 Input	V_{IH}		2.0		V _{CC} +0.3	V	1	
Logic 0 Input	VIL	V _{CC} =2.0V V _{CC} =5V	-0.3 -0.3		+0.3	V	1	

DC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}\text{C to }70^{\circ}\text{C}; V_{\text{CC}} = 2.0 \text{ to } 5.5\text{V}^{\star})$

PARAMETER	SY	MBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage	I_{LI}				+500	μΑ	6
I/O Leakage	I_{LO}				+500	μΑ	6
Logic 1 Output	V_{OH}	V _{CC} =2.0V	1.6			V	2
	- 011	V _{CC} =5V	2.4				
Logic 0 Output	V_{OL}	$V_{CC}=2.0V$			0.4	V	3
	- 02	V _{CC} =5V			0.4		
Active Supply Current	I _{CC1A}	V _{CC1} =2.0V			0.4	mA	5, 12
Treate Supply Carrent	-CC IA	V _{CC1} =5V			1.2		
Timekeeping Current	I _{CC1T}	V _{CC1} =2.0V			0.3	μА	4, 12
ranekeeping Current		V _{CC1} =5V			1		
Standby Current	I _{CC1S}	V _{CC1} =2.0V			100	nA	10, 12,
buildey Culteri		V _{CC1} =5V			100		14
Active Supply Current	I _{CC2A}	V _{CC2} =2.0V			0.425	mA	5, 13
Active Supply Current	1CC2A	V _{CC2} =5V			1.28	IIIA	
Timekeeping Current	I _{CC2T}	V _{CC2} =2.0V			25.3	μA	4, 13
Timekeeping Current	1CC21	V _{CC2} =5V			81	μΑ	
Standby Current	Loose	V _{CC2} =2.0V			25	μA	10, 13
Standby Current	I _{CC2S}	V _{CC2} =5V			80	μΑ	
	R1			2		K?	
Trickle Charge Resistors	R2			4		K?	
	R3			8		K?	
Trickle Charge Diode Voltage Drop	V_{TD}			0.7		V	

^{*}Unless otherwise noted.

CAPACITANCE

 $(t_A = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	$C_{\rm I}$		10		pF	
I/O Capacitance	$C_{I/O}$		15		pF	
Crystal Capacitance	C_X		6		pF	

AC ELECTRICAL CHARACTERISTICS

 $(0^{\circ}\text{C to }70^{\circ}\text{C}; V_{\text{CC}} = 2.0 \text{ to } 5.5\text{V}^{*})$

			`		, 00	•	,
PARAMETER	SY	SYMBOL		TYP	MAX	UNITS	NOTES
Data to CLK Setup	4	$V_{CC}=2.0V$	200			200	7
	t _{DC}	V _{CC} =5V	50			ns	/
CLK to Data Hold	tense	$V_{CC}=2.0V$	280			ns	7
	tcdh	V _{CC} =5V	70				
CLV to Data Dalou	t _{CDD}	$V_{CC}=2.0V$			800	ns	7, 8, 9
CLK to Data Delay		V _{CC} =5V			200		
CLK Low Time	4	$V_{CC}=2.0V$	1000				7
CLK Low Time	t _{CL}	V _{CC} =5V	250			ns	
CLK High Time	·	$V_{CC}=2.0V$	1000			200	7
	t _{CH}	V _{CC} =5V	250			ns	/

AC ELECTRICAL CHARACTERISTICS (cont'd) (0°C to 70°C; V_{CC} = 2.0 to 5.5V*)

CLK Frequency	t _{CLK}	V _{CC} =2.0V V _{CC} =5V	DC	0.5 2.0	MHz	7
CLK Rise and Fall	t _R , t _F	V _{CC} =2.0V		2000	ns	
		$V_{CC}=5V$ $V_{CC}=2.0V$	4	500		7
RST to CLK Setup	tcc	V _{CC} =5V	1		μs	/
CLK to RST Hold	t _{CCH}	$V_{CC}=2.0V$	240		ns	7
CER to RST Hold		V _{CC} =5V	60			
RST Inactive Time	t _{CWH}	$V_{CC}=2.0V$	4		μs	7
RST mactive time	LCWH	V _{CC} =5V	1		μισ	,
DOT to HO High 7	·	$V_{CC}=2.0V$		280		7
RST to I/O High Z	t _{CDZ}	V _{CC} =5V		70	ns	/
SCLV to I/O High 7	4	V _{CC} =2.0V		280		7
SCLK to I/O High Z	t _{CCZ}	V _{CC} =5V		70	ns	/

^{*}Unless otherwise noted.

TIMING DIAGRAM: READ DATA TRANSFER Figure 5

TIMING DIAGRAM: WRITE DATA TRANSFER Figure 6

NOTES:

- All voltages are referenced to ground.
- Logic one voltages are specified at a source current of 1 mA at V_{CC}=5V and 0.4 mA at V_{CC}=2.0V, V_{OH}=V_{CC} for capacitive loads.
- 3. Logic zero voltages are specified at a sink current of 4 mA at V_{CC}=5V and 1.5 mA at V_{CC}=2.0V, V_{OL}=GND for capacitive loads.
- 4. I_{CC1T} and I_{CC2T} are specified with I/O open, RST set to a logic "0", and clock halt flag=0 (oscillator enabled).
- 5. I_{CC1A} and I_{CC2A} are specified with the I/O pin open, RST high, SCLK=2 MHz at V_{CC}=5V; SCLK=500 kHz, V_{CC}=2.0V and clock halt flag=0 (oscillator enabled).
- RST, SCLK, and I/O all have 40K? pull-down resistors to ground.
 Measured at V_{IH}=2.0V or V_{IL}=0.8V and 10 ms maximum rise and fall time.
- 8. Measured at V_{OH} =2.4V or V_{OL} =0.4V.
- 9. Load capacitance = 50 pF.
- 10. I_{CC1S} and I_{CC2S} are specified with RST, I/O, and SCLK open. The clock halt flag must be set to logic one (oscillator disabled).
- 11. $V_{CC}=V_{CC2}$, when $V_{CC2}>V_{CC1}+0.2V$; $V_{CC}=V_{CC1}$, when $V_{CC1}>V_{CC2}$.
- 12. V_{CC2}=0 volts.
- V_{CC1}=0 volts.
- Typical values are at 25°C.

DS1302 SERIAL TIMEKEEPER 8-PIN DIP (300-MIL)

PKG	8-PIN					
DIM	MIN	MAX				
A IN.	0.360	0.400				
MM	9.14	10.16				
B IN.	0.240	0.260				
MM	6.10	6.60				
C IN.	0.120	0.140				
MM	3.05	3.56				
D IN.	0.300	0.325				
MM	7.62	8.26				
E IN.	0.015	0.040				
MM	0.38	1.02				
F IN.	0.120	0.140				
MM	3.04	3.56				
G IN.	0.090	0.110				
MM	2.29	2.79				
H IN.	0.320	0.370				
MM	8.13	9.40				
J IN.	0.008	0.012				
MM	0.20	0.30				
K IN.	0.015	0.021				
MM	0.38	0.53				

DS1302S SERIAL TIMEKEEPER 8-PIN SOIC (150-MIL AND 200-MIL)

PKG		PIN MIL)	8-PIN (200 MIL)		
DIM	MIN	MAX	MIN	MAX	
A IN.	0.188	0.196	0.203	0.213	
MM	4.78	4.98	5.16	5.41	
B IN.	0.150	0.158	0.203	0.213	
MM	3.81	4.01	5.16	5.41	
C IN.	0.048	0.062	0.070	0.074	
MM	1.22	1.57	1.78	1.88	
E IN.	0.004	0.010	0.004	0.010	
MM	0.10	0.25	0.10	0.25	
F IN.	0.053	0.069	0.074	0.084	
MM	1.35	1.75	1.88	2.13	
G IN. MM			BSC BSC		
H IN.	0.230	0.244	0.302	0.318	
MM	5.84	6.20	7.67	8.08	
J IN.	0.007	0.011	0.006	0.010	
MM	0.18	0.28	0.15	0.25	
K IN.	0.012	0.020	0.013	0.020	
MM	0.30	0.51	0.33	0.51	
L IN.	0.016	0.050	0.019	0.030	
MM	0.41	1.27	0.48	0.76	
phi	0°	8°	0°	8°	

56-G2008-001 56-G4010-001

一般设计流程: (所有过程须将 RST 置 '1')

- 关闭写保护通过设置指控指令 bit7
- 串行输入控制指令
- 根据需要输入控制指令,完成数据传输
- 可以选择字节模式,即每输入一条控制指令,下8个脉冲完成相应一个字节的读写
- 可以选择突发模式,对时钟/日历寄存器或 31*8 RAM 进行一次性读写
- 打开写保护

本文为字面翻译,版权归原公司所有,纯属学习交流之用,严禁用于商业用途,如有疑问和需要,或者文章有错误疏漏之处(本人水平有限)

请联系:

QQ:337072753

EMAIL:heyoudong1232006@126.com