# Retail Giant Sales Forecasting assignment

Submitted by-

Sawal Malhotra

#### Introduction

- Global Mart is an online supergiant with multiple categories such as consumer, corporate and home office.
- It operates in Different regions and wants us to identify the key market segment and predict sales inmost profitable market segment of next 6 months.

#### Problem Statement

- We need to forecast the Sales of next 6 months for most consistent market Segment for given Global Store.
- We need to follow Data Preparation and Forecasting techniques using various Smoothing and ARIMA models techniques.

#### Coefficient of Variation(CoV) for Market-Segment

| segment            | cov      |
|--------------------|----------|
| Consumer-APAC      | 0.522725 |
| Consumer-Africa    | 1.310351 |
| Consumer-Canada    | 1.250315 |
| Consumer-EMEA      | 2.652495 |
| Consumer-EU        | 0.595215 |
| Consumer-LATAM     | 0.683770 |
| Consumer-US        | 1.010530 |
| Corporate-APAC     | 0.530051 |
| Corporate-Africa   | 1.891744 |
| Corporate-Canada   | 1.786025 |
| Corporate-EMEA     | 6.355024 |
| Corporate-EU       | 0.722076 |
| Corporate-LATAM    | 0.882177 |
| Corporate-US       | 1.071829 |
| Home Office-APAC   | 1.008219 |
| Home Office-Africa | 2.012937 |
| Home Office-Canada | 2.369695 |
| Home Office-EMEA   | 7.732073 |
| Home Office-EU     | 0.938072 |
| Home Office-LATAM  | 1.169693 |
| Home Office-US     | 1.124030 |

- ➤ There are in total 21 Distinct Market Segments and out of which 'Consumer-APAC' Market Segment is having the least value of Covariance.
- ➤ Thus, based on Covariance value we can say that 'Consumer-APAC' is the most Consistent Market Segment.
- The lest consistent market segment is 'Home Office-EMEA' as it have the highest COV value.

#### Optimum technique from Flowchart that might work best for predicting sales.



- As per the flow chart, we have Historical data of more than 10 observations.
- From ARIA techniques, we can observe Seasonality in data, without any exogenous variable.
- Preferred technique can be considered as SARIMA method in case of ARMIA Models.
- From Smoothing techniques, we prefer Holt Winters over other Smoothing method as it captures Seasonality along with Level and Trend in the Global Market data set.

## Smoothing Technique

Following techniques were used to forecast next six month sales.

- Naive method
- Simple average
- Simple Moving Average
- Simple Exponential Smoothing technique
- Holt method
- Holts Winter Additive method
- Holts Winter Multiplicative method

#### Naive method

- > Here, the green Straight line parallel to axis represents the Naive forecast for 6 months duration.
- ➤ In Naive Method, Sales is predicted based on the Last Months Sale.
- ➤ It captures only the LEVEL with the forecast value as 55151.4699.
- > APE value was calculate to be around 17.47



#### Simple Average method

- > Here, the Green Straight line parallel to axis represents the Simple Average forecast for 6 months duration.
- > In Simple Average Method, Predicted Sales is the Average of all the previous months Train data.
- ➤ It captures the Level of average values with forecast value as 35253.632814.
- ➤ MAPE value of Simple Average Method is greater than Naive method in this case.
- > It means Naive method is better among these two methods for the current problem statement.



|    | Me   | thod | M | APE   |
|----|------|------|---|-------|
| /e | е Ме | thod | 1 | 7.47  |
| je | е Ме | thod | 3 | 34.34 |

#### Simple Moving Average method

- > Here, the Green line represents the Simple Moving Average.
- > In Simple Moving Average Method, we have taken Moving window size of 12 months.
- Predicted Sales is the Average of moving 12 months Train data window.
- > It gives importance to the weight of each window and captures the increasing Trend.
- Based on MAPE value, Simple Moving Average method is performing better than Simple Average method.



| Naive Method                 | 17.47 |
|------------------------------|-------|
| Simple Average Method        | 34.34 |
| Simple Moving Average Method | 16.10 |

Method MAPE

#### Simple Exponential Smoothing

- > Here, the green line parallel to axis represents the Simple Exponential Smoothing.
- In Simple Exponential Smoothing Method, most recent value gets the Higher weight while, the Older values gets the lower weight assigned to them.
- > It captures only the Level of Data, by moving Average window with higher weightage to closest/latest data than older/past data.



| Method                       | MAPE  |
|------------------------------|-------|
| Naive Method                 | 17.47 |
| Simple Average Method        | 34.34 |
| Simple Moving Average Method | 16.10 |
| Simple Exponential Smoothing | 15.83 |
|                              |       |

#### Holt method

- ➤ Here, the green line represent an Upward trend which is Holts Exponential forecast.
- > It captures both Level as well as Trend in the forecast.
- ➤ An upward increasing trend and level is captured as part of the model.



| Method                       | MAPE  |
|------------------------------|-------|
| Naive Method                 | 17.47 |
| Simple Average Method        | 34.34 |
| Simple Moving Average Method | 16.10 |
| Simple Exponential Smoothing | 15.83 |
| HOLT Exponential Forecast    | 14.67 |

#### Holt Winters Additive method

- ➤ Here the green line, represents the Holts Winter Additive forecast, obtained by following an Additive approach.
- ➤ We have captured the Level and an Upward Increasing Trend and Seasonality, which is quite close to actual Test data.



| Method                         | MAPE  |
|--------------------------------|-------|
| Naive Method                   | 17.47 |
| Simple Average Method          | 34.34 |
| Simple Moving Average Method   | 16.10 |
| Simple Exponential Smoothing   | 15.83 |
| HOLT Exponential Forecast      | 14.67 |
| Holt WINTERs Additive Forecast | 9.39  |

#### Holt Winters Multiplicative method

- > Here, the green Line is the Holts Winter Multiplicative forecast .
- > It captures the Trend and level and Seasonality using Multiplicative approach in calculation.
- > We observe the Forecast value is quite close to the test data.



| Method                               | MAPE  |
|--------------------------------------|-------|
| Naive Method                         | 17.47 |
| Simple Average Method                | 34.34 |
| Simple Moving Average Method         | 16.10 |
| Simple Exponential Smoothing         | 15.83 |
| HOLT Exponential Forecast            | 14.67 |
| Holt WINTERs Additive Forecast       | 9.39  |
| Holt WINTERs Multiplicative Forecast | 10.20 |

#### Inference

- ➤ Based on the Smoothing techniques, we can see lowest MAPE value is for Holts Winter Additive Forecast- which means its best suited for prediction.
- ➤ Visually, the forecast for Holts Winter Additive and Multiplicative method appears much closer to actual 6 months data than other smoothing techniques.
- ➤ We were able to capture the Seasonality in data in Holt Winters method.

#### ARIMA techniques

Following is the list of ARIMA techniques executed:

- Simple Auto Regressive(AR)
- Moving Average(MA)
- Auto Regressive Moving Average(ARMA)
- Auto Regressive Integrated Moving Average(ARIMA)
- Seasonal Auto Regressive Integrated Moving Average(SARIMA)

#### Simple Auto Regressive(AR) method

- ➤ Here, the green line indicates the Auto Regression method
- > Auto regression method predicts the future observation as linear regression of past Sales data.
- In this case, value of Lag order i.e. p is taken as 1



| Method                               | MAPE  |
|--------------------------------------|-------|
| Naive Method                         | 17.47 |
| Simple Average Method                | 34.34 |
| Simple Moving Average Method         | 16.10 |
| Simple Exponential Smoothing         | 15.83 |
| HOLT Exponential Forecast            | 14.67 |
| Holt WINTERs Additive Forecast       | 9.39  |
| Holt WINTERs Multiplicative Forecast | 10.20 |
| Auto Regressive (AR)method           | 13.56 |

#### Moving Average(MA) method

- ➤ Here, the green line indicates the Moving Average Forecast.
- ➤ Moving Average Forecast method predicts the Forecast value ,using the past forecast errors.
- ➤ It has single parameter window size i.e. q=1



| MAPE  | Method                               |
|-------|--------------------------------------|
| 17.47 | Naive Method                         |
| 34.34 | Simple Average Method                |
| 16.10 | Simple Moving Average Method         |
| 15.83 | Simple Exponential Smoothing         |
| 14.67 | HOLT Exponential Forecast            |
| 9.39  | Holt WINTERs Additive Forecast       |
| 10.20 | Holt WINTERs Multiplicative Forecast |
| 13.56 | Auto Regressive (AR)method           |
| 33.93 | Moving Average (MA) method           |
|       |                                      |

#### ARMA(Auto Regressive Moving Average) method

- ➤ Here, the Green line indicates the Auto Regressive Moving Average Forecast
- > ARMA method predicts the Forecast value by combining both AR and MA method.
- ➤ It has two parameters : Lag Order(p=1) and window size(q=1).



#### Method MAPE Naive Method 17.47 Simple Average Method 34.34 Simple Moving Average Method 16.10 Simple Exponential Smoothing 15.83 **HOLT Exponential Forecast** 14.67 Holt WINTERs Additive Forecast 9.39 Holt WINTERs Multiplicative Forecast 10.20 Auto Regressive (AR)method 13.56 Moving Average (MA) method 33.93 (ARMA) Auto Regressive Moving Average method

#### ARIMA(Auto Regressive Integrate Moving Average) method

- ➤ Here, the green line represents the ARIMA Forecast.
- ARIMA captures the Level and trend, but no Seasonality.



| Method                                        | MAPE  |
|-----------------------------------------------|-------|
| Naive Method                                  | 17.47 |
| Simple Average Method                         | 34.34 |
| Simple Moving Average Method                  | 16.10 |
| Simple Exponential Smoothing                  | 15.83 |
| HOLT Exponential Forecast                     | 14.67 |
| Holt WINTERs Additive Forecast                | 9.39  |
| Holt WINTERs Multiplicative Forecast          | 10.20 |
| Auto Regressive (AR)method                    | 13.56 |
| Moving Average (MA) method                    | 33.93 |
| (ARMA) Auto Regressive Moving Average method  | 32.40 |
| ARIMA) Auto Regressive Integrative Moving Ave | 32.40 |

#### SARIMA(Seasonal Auto Regressive Integrated Moving Average) method

- ➤ Here, the Green line represent the SARIMA forecast.
- > In the model, all 3 factors: Level, Trend and Seasonality are captured and observed.
- > Forecast values observed to be very close to Actual values of next 6 months.



| MAPE  |
|-------|
| 17.47 |
| 34.34 |
| 16.10 |
| 15.83 |
| 14.67 |
| 9.39  |
| 10.20 |
| 13.56 |
| 33.93 |
| 32.40 |
| 32.40 |
| 12.95 |
|       |

Method MADE

### ARIMA Technique inference:

 Based on ARIMA techniques, we can observe the lowest value of MAPE is for SARIMA method- thus it's the best suited of prediction of sale of nest 6 months.

#### Overall Inference:

- ➤ Overall, MAPE value is observed to have least value for Holts Winter and SARIMA model amongst all the models.
- ➤ Visually, SARIMA model is giving us better result and it have pretty decent MAPE value on lower side as well. So, we can prefer it.





#### Method MAPE

| Naive Method                                   | 17.47 |
|------------------------------------------------|-------|
| Simple Average Method                          | 34.34 |
| Simple Moving Average Method                   | 16.10 |
| Simple Exponential Smoothing                   | 15.83 |
| HOLT Exponential Forecast                      | 14.67 |
| Holt WINTERs Additive Forecast                 | 9.39  |
| Holt WINTERs Multiplicative Forecast           | 10.20 |
| Auto Regressive (AR)method                     | 13.56 |
| Moving Average (MA) method                     | 33.93 |
| (ARMA) Auto Regressive Moving Average method   | 32.40 |
| (ARIMA) Auto Regressive Integrative Moving Ave | 32.40 |
| (SARIMA)Seasonal Auto Regressive Integrated Mo | 12.95 |

## Thank you.