Constructing
Inverse Diagrams
in
Homotopical Type Theory
(an update)

Josh Chen & Nicolai Krans

$$X: I \rightarrow C = B^{e_1} \rightarrow C$$
Inverse B direct

e.g.
$$T = \omega^{\circ p}$$

$$0 \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow \dots$$

$$X: I \rightarrow E = D^{op} \rightarrow E$$

Inverse D direct

$$e.g. T = N_{\perp}$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \dots$$

$$e.g. \ T = \Delta_{+}^{op}$$

$$\cdot \rightleftharpoons \longrightarrow \rightleftharpoons \Delta \rightleftharpoons \Delta \cdots$$

Why?

- 4 Presheaf + other models of HoTI
- A Parametricity, canonicity results
- A Higher + 00-categorical structures

[e.g. Kock'os, Shulman'15, Kapulkin - Lumsdaine 21]

my Both metatheory and applications.

IDEA:

Costices of simple I inductively encode dependency contexts

Examples: wor, At, III

i	M_i	Assume dype-in-del
		~

i Mi Assume
type-in-chet

.

0

i	Mi	Assume type-in-det
0	•	⊢ A₀
1	x: Ao	+ A
	$n:A_0$,	
2	A : 4'(*)	

All triangles commute, the square x does not. Assume Type-in-det

All triangles commute, the square x does not.

i	Mi	Assume type-in-det
0	•	+ Ao
1	x: Ao	⊢ A ₁
2	n: Ao, y: A,(n), z: A,(n)	+ A ₂
3	$x:A_o$	⊢ A ₃
	16, 14: A0	
4		

All triangles commute, the square x does not.

i	Mi	Ay P	lssume ve-in-det
0	•	h	Ao
1	$\kappa: A_0$	-	A_{ι}
2	7: A0, 7: A(1/2), 7: A(1/2)	H	A2
3	$x:A_o$	-	A_3
4	76, 74: A0, y: A1(76)		

All triangles commute, the square x does not.

i	Mi	A Ayr	lssume e-in-det
0	•	-	Ao
1	$\kappa: A_{o}$	-	A
2	n: Ao, y: A,(n), z: A,(n)	-	A ₂
3	$x:A_o$	-	A_3
4	76, 74: A6, y: A1(76), Z: A2(76,y,y)		

All triangles commute, the square x does not.

i	Mi	dy.	lsume e-in-det
0	•	-	Ao
1	$\kappa: A_{o}$	-	A
2	n: Ao, y: A(n), z: A(n)	-	A_2
3	x:Ao	H	A_3
4	76, 24: A6, y: A6, y: A1(146), Z: A2(16, y, y) W: A3(24)		

All triangles commute, the square x does not.

i	Mi	Assume type-in-det
0	•	⊢ A _o
1	x : A ₀	⊢ A _i
2	n: Ao, y: A(n), z: A(n)	⊢ A ₂
3	x:Ao	⊢ A ₃
4	76, 24: A6, y: A1(26), Z: A2(26,4,4) W: A2(26)	$\vdash A_{\mu}$

Get the image of an inverse diagram

 $X: I \rightarrow Type$

by taking Σ .

i	Mi	Assume type-in-del
0	•	⊢ A _o
1	x : A ₀	+ A,
2	71: A0, y: A1(x1), z: A1(x1)	⊢ A ₂

Matching objects (contexts)
of "Reedy fibrant" X

$$\begin{array}{c}
X_{2} = \sum_{i} (\pi : A_{0})(y : A_{i}(x))(\overline{g} : A_{i}(x)) \cdot A_{2}(\pi, y, \overline{g}) \\
(x, y, \overline{g}, -) \\
\hline
X_{1} = \sum_{i} A_{0} A_{i} \\
\hline
X_{2} = \sum_{i} (\pi : A_{0})(y : A_{i}(x))(\overline{g} : A_{i}(x)) \cdot A_{2}(\pi, y, \overline{g}) \\
(x, y, \overline{g}, -) \\
\hline
X_{1} = \sum_{i} A_{0} A_{i} \\
\hline
X_{2} = A_{0}
\end{array}$$

 $X: \mathcal{I} \longrightarrow \mathcal{E}$

Frequently:

- o (Classical) mathematical metatheory
- o C = Set.

We want:

- o Homotopical type theory (incl. MLTT w/o UIP)
- o E a wild category

 (i.e. precategory w/ hom-types)

 $\chi: \mathcal{I} \longrightarrow \mathcal{E}$

Frequently:

- o (Classical) mathematical metatheory
- C = Set.

We want:

- o Homotopical type theory (incl. MLTT w/o UIP)
- o \mathcal{E} a wild category $\left(\text{e.g. }\mathcal{E}=\mathcal{U}, \text{ wild category of } \frac{\text{U-small types}}{\text{& functions}}\right)$

Why? Internalize!

mis Internal metatheory of TT w/o UIP

Higher calegorical structures in HoTT

Est Technical goal Est

Given "nice enough"

4 simple inverse category I

♦ wild category & w/ a (T, U)-cwf structure

in Ho77,

inductively define matching objects M_i of diagrams $\mathcal{I} \to \mathcal{E}$.

Est Technical goal Est

Given "nice enough"

♦ simple inverse category I (strictly oriented)

♦ wild category & w/ a (T, U)-cnf structure

in Ho77,

(... set-truncated? Uniformly coherent?)

inductively define matching objects M_i of diagrams $\mathcal{I} \to \mathcal{E}$.

Mi are indexed over $\frac{1}{1}$, which has a filtration by linear cosieves

2 1

-	ume
0 · · · ·	l _o
1. $x:A_0 \mapsto A$	4,

Mi are indexed over $\frac{1}{1}$, which has a filhation by linear cosieves

i	Mi	Assume
0	•	+ Ao
1.	x: A ₀	⊢ A ₁
	x: Ao	
2		

Mi are indexed over 1/1, which has a filtration by linear cosieves

2
1
$$Assume$$

i
 M_i
Assume

0
 A_i
 $A_$

Mi are indexed over $\frac{1}{1}$, which has a filtration by linear cosieves

Facts

- \$ 1/1 has a filtration by linear cosieves
- \$\linear cosieves of strictly oriented I form a (strict) category L_I with a split bifibration $p: L_I \longrightarrow I$

Intuition:

Matching objects of diagrams $I \rightarrow \mathcal{E}$ should arise as "sufficiently coherent" wild functors $M: \mathcal{L}_I \longrightarrow \mathcal{E}$.

♦ Thm/Construction

(WIP, implementing in Agda)

github.com/jaycech3winternal-diagrams

Given strictly oriented I and sufficiently coherent wild ℓ w/ (Π, U) -cuf structure, there is a (strict) category $h_{\rm I}$ such that

- 1. ShI embeds into LI via a functor i which
 - o is injective on objects
 - o hits (i, 1/2, i-1): (11)0 for each i: 10
 - o sends arrows to operatesian lifts of $p: L_1 \rightarrow I$
- 2. by induction on (Shz) o we simultaneously define
 - o the type of a generic diagram $X: I \rightarrow C$
 - o a wild functor $M: Sh_1 \longrightarrow \mathcal{C}$ such that $M[\iota^{-1}(i, i/1, i-1)]$ is the matching obj. Mi of X.

Current Questions

- (?) "Sufficiently coherent" wild structure
 - o "Set-tuncated" certainly suffices
 - o So far have not yet needed to truncate... at which point will we be forced to?
- (?) Correct induction principle on (Sh1)0
 - o Initial mutually inductive def. not structurally decreasing (not accepted by Agola).
 - o Related to how we choose to define $Sh_1 \ , \ L_1 \ \ \text{and} \ \ \iota : Sh_1 \hookrightarrow L_1 \ .$

Appendix

Def. I simple cat is strictly oriented if:

- o I(i,j) is ordered (<) for all i,j.
- o for f: Ilij),
 - $-\circ f: I(j,k) \to I(i,k)$

is shictly monotone.

Def. The height of a cosieve S under i: Io in I. is the largest h: Io such that

S 1 1(i,h)

is inhabited.

Def. A cosieve I under i of height h is linear if:

- o for all j: To where j < h, $T(ij) \subset S$.
- o So I(i,h) is a <-prefix of I(i,h).