RWorksheet_Leysa#4a

Camilo Leysa

2024-10-14

1.

a. The table below shows the data about shoe size and height. Create a data frame. Describe the data.

##		Shoe_size	Height	Gender
##	1	6.5	66.0	F
##	2	9.0	68.0	F
##	3	8.5	64.5	F
##	4	8.5	65.0	F
##	5	10.5	70.0	M
##	6	7.0	64.0	F
##	7	9.5	70.0	F
##	8	9.0	71.0	F
##	9	13.0	72.0	M
##	10	7.5	64.0	F
##	11	10.5	74.5	M
##	12	8.5	67.0	F
##	13	12.0	71.0	M
##	14	10.5	71.0	M
##	15	13.0	77.0	M
##	16	11.5	72.0	M
##	17	8.5	59.0	F
##	18	5.0	62.0	F
##	19	10.0	72.0	M
##	20	6.5	66.0	F
##	21	7.5	64.0	F
##	22	8.5	67.0	M
##	23	10.5	73.0	M
##	24	8.5	69.0	F
##	25	10.5	72.0	M
##		11.0	70.0	М
##	27	9.0	69.0	М
##	28	13.0	70.0	M

b. Create a subset by males and females with their corresponding shoe size and height.

```
male_subset <- subset(sizes_shoe,Gender =="M")
male_subset</pre>
```

```
##
      Shoe_size Height Gender
## 5
                   70.0
           10.5
## 9
           13.0
                   72.0
                              М
## 11
           10.5
                   74.5
                              Μ
## 13
           12.0
                   71.0
                              Μ
## 14
           10.5
                   71.0
                              М
## 15
           13.0
                   77.0
                              Μ
           11.5
                   72.0
## 16
                              М
## 19
           10.0
                   72.0
                              Μ
## 22
            8.5
                   67.0
                              Μ
## 23
           10.5
                   73.0
                              Μ
## 25
           10.5
                   72.0
                              М
## 26
           11.0
                   70.0
                              М
## 27
            9.0
                   69.0
                              М
## 28
           13.0
                   70.0
                              М
```

b.

```
female_subset <- subset(sizes_shoe,Gender == "F")
female_subset</pre>
```

```
##
      Shoe_size Height Gender
## 1
             6.5
                   66.0
                              F
                              F
## 2
             9.0
                   68.0
                              F
## 3
             8.5
                   64.5
                   65.0
                              F
## 4
             8.5
## 6
             7.0
                   64.0
                              F
## 7
             9.5
                   70.0
                              F
## 8
             9.0
                   71.0
                              F
                              F
## 10
             7.5
                   64.0
                              F
## 12
             8.5
                   67.0
                              F
## 17
             8.5
                   59.0
                              F
## 18
             5.0
                   62.0
## 20
             6.5
                   66.0
                              F
## 21
             7.5
                              F
                   64.0
                              F
## 24
             8.5
                   69.0
```

c. Find the mean of the shoe size of the respondents.

```
mean_shoesize <- mean(sizes_shoe$Shoe_size)
mean_shoesize</pre>
```

[1] 9.410714

c. Find the mean of the height of the respondents.

```
mean_height <- mean(sizes_shoe$Height)
mean_height</pre>
```

[1] 68.57143

d. Is there a relationship between shoe size and height? Why?

#There is a relationship in the shoe size and height. As we can see in the table, if a person is #tend to be taller, its shoe size is also big. For instance, we can see in the person with the #height of 77.0 has also a big shoe size of 13.0. This implies that the taller individuals often #have larger feet which generally aligns with their biological expectations.

2. a.Construct character vector months to a factor with factor() and assign the result to factor_months_vector. Print out factor_months_vector and assert that R prints out the factor levels below the actual values.

```
##
    [1] March
                  April
                             January
                                       November
                                                           September October
                                                 January
  [8] September November
                             August
                                       January
                                                 November
                                                           November
                                                                      February
                             July
                                                 August
                                                                      September
## [15] May
                  August
                                       December
                                                           August
## [22] September November
                            February
                                       April
## 11 Levels: April August December February January July March May ... September
```

3. Then check the summary() of the months_vector and factor_months_vector. Interpret the results of both vectors. Are they both equally useful in this case?

```
summary_months <- summary(months_vector)</pre>
summary_months
##
      Length
                  Class
                               Mode
##
           25 character character
summary_factor_months <- summary(factor_months_vector)</pre>
summary_factor_months
##
       April
                                                                July
                 August
                          December
                                     February
                                                  January
                                                                          March
                                                                                       May
##
                       4
##
    November
                October September
```

4. Create a vector and factor for the table below.

1

5

##

```
Directions <- c("East","West","North")
Frequency<- c(1L,4L,3L)
Directions</pre>
```

[1] "East" "West" "North"

Frequency

[1] 1 4 3

```
new_order_data <- factor(Directions, levels= c("East","West","North"))
new_order_data</pre>
```

```
## [1] East West North
## Levels: East West North
```

5. Enter the data below in Excel with file name = import_march.csv

```
Data <- read.table("import_march.csv", sep=",", header = TRUE)
Data</pre>
```

```
##
     Students Strategy.1 Strategy.2 Strategy.3
## 1
                        NA
                                    NA
                                                 NA
## 2
                                    10
                                                 8
          Male
                         8
## 3
                         4
                                     8
                                                 6
## 4
                         0
                                     6
                                                 4
## 5
                        14
                                     4
                                                 15
       {\tt Female}
## 6
                        10
                                     2
                                                 12
## 7
                         6
                                     0
                                                 9
```

b. View the dataset. Write the R scripts and its result.

View(Data)