Quantum Chemistry I - Practice Quiz Practice Quiz • 30 min

Introduction to Quantum Chemistry Heisenberg's Uncertainty Principle and The Schrödinger Equation The Free Particle & the Particle in a Box The Wave Function and Particle in a Box **Application to Polyene** Electronic Spectra

Practice Quiz: Quantum

Chemistry I - Practice Quiz

PRACTICE QUIZ • 30 MIN

Quantum Chemistry I - Practice Quiz

Submit your assignment Try again Grade 90% Receive grade View Feedback TO PASS 80% or higher We keep your highest score

3 P

Congratulations! You passed!

Keep Learning GRADE 90% TO PASS 80% or higher **Quantum Chemistry I - Practice Quiz** TOTAL POINTS 10 1. If the workfunction of a metal is $2.2~{
m eV}(1~{
m eV}=1.602 imes 10^{-19}~{
m J})$, the corresponding threshold wavelength is: \bigcirc 562 nm ○ 587 nm ○ 464 nm 744 nm ○ 444 nm Correct Solution 2. If a photon of energy $4.9 \times 10^{-19}~{
m J}$ ejects an electron $(m_e=9.11 \times 10^{-31}~{
m kg})$ from a metal having a workfunction energy of $2.2~{
m eV}(1~{
m eV}=1.602 \times 10^{-19}~{
m J})$, the velocity of the emitted electron is: $\bigcirc~5.5 imes10^3~{
m m~s^{-1}}$ $igode{igotimes} 5.5 imes 10^5~\mathrm{m~s^{-1}}$ $\bigcirc~4.5 imes10^5~{
m m~s^{-1}}$ $\bigcirc~1.5 imes10^5~{
m m~s^{-1}}$ $\bigcirc~3.2 imes10^6~{
m m~s^{-1}}$ Correct Solution 3. Using de Broglie's relationship, the velocity of an electron $(m_e=9.11 imes 10^{-31}
m ~kg)$ having a wavelength of 700
m ~nm is: $\bigcirc~2.04 imes10^3~{
m m~s^{-1}}$ $\bigcirc~3.06 imes10^3~{
m m~s^{-1}}$ $\bigcirc~9.04 imes10^5~{
m m~s^{-1}}$ $igode 1.04 imes 10^3 \ \mathrm{m \ s^{-1}}$ $\bigcirc~1.04 imes10^2~\mathrm{m~s^{-1}}$ ✓ Correct 4. Heisenberg's uncertainty principle states: $\bigcirc \hspace{0.1in} \triangle y \times \triangle p_y \geq h/4\pi$ igcirc $riangle y imes riangle p_y \leq h/2\pi$ igcirc $riangle x imes riangle p_x \geq h/2\pi$ igcirc $riangle x imes riangle p_y \geq h/4\pi$ $igcup \triangle x imes riangle p_x \geq 2h/4\pi$ igcirc $riangle x imes riangle p_x \leq h/4\pi$ ✓ Correct 5. The minimum uncertainty in the velocity of an electron $(m_e=9.11 imes10^{-31}~{
m kg})$ in a He atom whose position is known to within $58\ \mathrm{m}$ is: $\bigcirc~0.5 imes10^{-6}~\mathrm{m~s^{-1}}$ $igoldsymbol{ig$ $\bigcirc~1.0 imes10^{-9}~\mathrm{m~s^{-1}}$ $\bigcirc~1.5 imes10^{-6}~\mathrm{m~s^{-1}}$ $\bigcirc~0.8 imes10^{-7}~\mathrm{m~s^{-1}}$ Correct 6. Using the particle in a box model, the energy of the highest occupied energy level for a linear polyene of length 14 angstroms and containing $10~\pi$ -electrons is $(m_e=9.11\times 10^{-31}~{\rm kg})$: [Correct answer to be indicated.] $\bigcirc \ \ 7.32 imes 10^{-17} \ \mathrm{J}$ $igotimes 7.68 imes 10^{-19} J$ $\bigcirc~5.68 imes10^{-10}~\mathrm{J}$ $\bigcirc ~1.45 imes 10^{-34}~\mathrm{J}$ $\bigcirc ~4.52 imes 10^{-5}~\mathrm{J}$ ✓ Correct 7. Using the particle in a box model, the wavelength of electromagnetic radiation, in nm, needed to excite electronically to the first excited state, a linear polyene of length 14 angstroms and containing 10 π -electrons ($m_e = 9.11 \times 10^{-31}$ kg), is: [Correct answer to be indicated] \bigcirc 4564 nm ○ 444 nm 587 nm O 844 nm Correct

8. For the particle in a box, in the first excited state, only one of the following answers could be correct for the the probability of finding a particle in the leftmost 20% of the box. Choose which one.

9. A particle in a one-dimensional box of length L can be excited from the ground state to the first excited state by light of 1/1 point

frequency, u. If the box length is trebled, the frequency needed to produce the transition is:

 \bigcirc 0.253

0.800

 \bigcirc 0.153

 $\bigcirc 9\nu$

 $\bigcirc \
u/3$

 $\bigcirc \
u/6$

✓ Correct

 $igcup \Psi^2 dv$ equals 1.

✓ Correct

 $igcup \Psi$ is continuous everywhere.

10. Born's interpretation of the wavefunction, Ψ , states that:

igotimes The probability of finding particle in a volume element dv equals $\Psi^2 dv$.

igcup The probability of finding particle in a volume element dv equals Ψ^2 .

X Incorrect