

What are the Parameters that Affect the Construction of a Knowledge Graph?

David Chaves-Fraga*, Ontology Engineering Group
Universidad Politécnica de Madrid, Spain
Kemele M. Endris, L3S Research Center & TIB
Enrique Iglesias, University of Bonn
Oscar Corcho, OEG - UPM
Maria-Esther Vidal, L3S Research Center & TIB

*Work done during the research visit of David Chaves-Fraga to TIB and L3S

ODBASE@2019 (Rhodes)

Triplify

TARQL

SPARQL-Generate

RML-Mapper

CARML

RocketRML

SDM-RDFizer

RMLStreamer

Triplify

TARQL

Functional KGC Engines

SPARQL-Generate

RML-Mapper

CARML

RocketRML

SDM-RDFizer

RMLStreamer

Declarative KGC Engines

Sensor.csv

SensorID	SensorLocation	TypeSensor
1	loc1	typeA
2	loc2	typeB

```
<TripleMap1>
  a rr:TriplesMap;
  rml:logicalSource [
  rml:source "/home/data/Sensor.csv";
  rml:referenceFormulation ql:CSV];
  rr:subjectMap [
    rr:template "http://example.org/Sensor/{SensorID}";
    rr:class example:Sensor];
  rr:predicateObjectMap [
                                                    Two
    rr:predicate example:isLocatedAt;
                                                    POMs
    rr:objectMap [
                rml:reference "SensorLocation"];
  rr:predicateObjectMap [
    rr:predicate example:device;
    rr:objectMap [
                rml:reference "TypeSensor"];]].
```

Sensor.csv

SensorID	SensorLocation	TypeSensor

```
ex:Sensor.
ex:Sensor/1
               a
               ex:isLocatedAt
                               "loc1".
ex:Sensor/1
ex:Sensor/1
               ex:device
                                "typeA".
                                ex:Sensor.
ex:Sensor/2
                                "loc2".
               ex:isLocatedAt
ex:Sensor/2
ex:Sensor/2
               ex:device
                                 "typeB".
```

```
<TripleMap1>
 a rr:TriplesMap;
 rml:logicalSource [
 rml:source "/home/data/Sensor.csv";
 rml:referenceFormulation ql:CSV];
 rr:subjectMap [
    rr:template "http://example.org/Sensor/{SensorID}";
    rr:class example:Sensor];
 rr:predicateObjectMap [
                                                    Two
    rr:predicate example:isLocatedAt;
                                                    POMs
    rr:objectMap [
                rml:reference "SensorLocation"];
 rr:predicateObjectMap [
    rr:predicate example:device;
    rr:objectMap [
                rml:reference "TypeSensor"];]].
```

Sensor.csv

SensorID	Sensor Location	Type Sensor
1	loc1	typeA
2	loc2	typeB

Observation.csv

ObservationID	Observation Location
1	loc1
2	loc2

```
<TripleMap2>
 a rr:TriplesMap;
 rml:logicalSource [
   rml:source "/home/data/Observation.csv";
   rml:referenceFormulation ql:CSV];
 rr:subjectMap [
   rr:template "http://example.org/Observation/{ObservationID}";
   rr:class example:Observation]
 rr:predicateObjectMap [
                                                 Join Between
  rr:predicate example:observationSensor;
                                                 TripleMap2 and
   rr:objectMap [
     rr:parentTriplesMap <TripleMap1>;
                                                 TripleMap1
     rr:joinCondition [
       rr:child "SensorLocation";
       rr:parent "ObservationLocation";]];].
```

```
<TripleMap1>
 a rr:TriplesMap;
  rml:logicalSource [
  rm<sup>3</sup>
        ex:Sensor/1
                                                  ex:Sensor.
                             ex:isLocatedAt
                                                 "loc1".
        ex:Sensor/1
                                                 "typeA".
        ex:Sensor/1
                             ex:device
        ex:Sensor/2
                                                  ex:Sensor.
        ex:Sensor/2
                             ex:isLocatedAt
                                                  "loc2".
                                                  "typeB".
        ex:Sensor/2
                             ex:device
                                                  ex:Observation
        ex:Observation/1 a
        ex:Observation/1 ex:observationSensor ex:Sensor/1.
        ex:Observation/2 a
                                                  ex:Observation
        ex:Observation/2 ex:observationSensor ex:Sensor/2
1
2
              IOC2
                                 rr:joinCondition [
                                  rr:child "SensorLocation";
                                  rr:parent "ObservationLocation";]];].
```

JSON Format (Size/Time(ms))

Simsek, U. et al (2019). **RocketRML - A NodeJS Implementation of Use-case Specific RML Mapper.** Proceedings of the 1s International Workshop on Knowledge Graph Building co-located with the 16th Extended Semantic Web Conference

Size	SDM-RDFizer	RMLMapper
Two POM	1.72	0.92
Five POM	1.85	1.84
Ten POM	1.98	3.46

Size	SDM-RDFizer	RMLMapper
Two POM	1.72	0.92
Five POM	1.85	1.84
Ten POM	1.98	3.46

Size	SDM-RDFizer	RMLMapper
Two POM	1.72	0.92
Five POM	1.85	1.84
Ten POM	1.98	3.46

Join Selectivity	SDM-RDFizer	RMLMapper
High	2.16	38.6
Medium	2.20	40.43
Low	2.19	46.06

Size	SDM-RDFizer	RMLMapper
Two POM	1.72	0.92
Five POM	1.85	1.84
Ten POM	1.98	3.46

Join Selectivity	SDM-RDFizer	RMLMapper
High	2.16	38.6
Medium	2.20	40.43
Low	2.19	46.06

Challenges

- Identify variables and configuration setups that may provide accurate and well-informed overview of knowledge graph creation engines' performance:
 - mappings,
 - data distribution,
 - serialisation, data format, ...

- Identify variables and configuration setups that may provide accurate and well-informed overview of knowledge graph creation engines' performance:
 - mappings,
 - data distribution,
 - serialisation, data format, ...
- Empirically evaluate the performance of the state-ofart engines and study their behaviour

- Independent variables: need to be specified in a testbed to ensure reproducibility:
 - number of joins, data size, RAM available, serialisation, etc.
- Observed variables (measurements):
 - Execution time and completeness.

Mapping variables

Independent	Observed Variables	
Variables	Execution Time	Completeness
Mapping order	X	
# triplesMap	X	X
# predicateObjectMaps	X	X
# predicates	X	X
# objects	X	X
# joins	X	X
# named graphs	X	X
join selectivity	X	X
relation type	X	X
object TermMap Type	X	

Relation Type	RMLMapper	SDM-RDFizer
1-1	42.86	2.19
1-N	43.34	2.19
N-1	43.26	2.15
N-M	78.64	2.33

^{*} (N = 15 in 1-N and N-1, N=M=10 in N-M)

Relation Type	RMLMapper	SDM-RDFizer
1-1	42.86	2.19
1-N	43.34	2.19
N-1	43.26	2.15
N-M	78.64	2 3

SDM-RDFizer **performs better** in N-1 than 1-N

^{*} (N = 15 in 1-N and N-1, N=M=10 in N-M)

Relation Type	RMLMapper	SDM-RDFizer
1-1	42.86	2.19
1-N	43.34	2.19
N-1	43.26	2.15
N-M	73.64	2 3

RMLMapper is **not affected** by 1-N and N-1

SDM-RDFizer **performs better** in N-1 than 1-N

^{*} (N = 15 in 1-N and N-1, N=M=10 in N-M)

Relation Type	RMLMapper	SDM-RDFizer
1-1	42.86	2.19
1-N	43.34	2.19
N-1	43.26	2.15
N-M	78.64	2.33

^{*} (N = 15 in 1-N and N-1, N=M=10 in N-M)

Relation Type	RMLMapper	SDM-RDFizer
1-1	42.86	2.19
1-N	43.34	2.19
N-1	43.26	2.15
N-M	78.64	2.33

Both are **affected** by N-M relations

^{*} (N = 15 in 1-N and N-1, N=M=10 in N-M)

Data variables

Independent	Observed Variables		
Variables	Execution Time	Completeness	
dataset size	X		
data frequency distribution	X		
initial delay	X	X	
data format	X	X	

Partitioning Type	RMLMapper	SDM-RDFizer
Horizontal without duplicates	1904.31	4.84
Vertical without duplicates	2067.77	4.73
Horizontal with duplicates	2276.98	5.86
Vertical with duplicates	2024.66	4.98

Partitioning Type	RMLMapper	SDM-RDFizer
Horizontal without duplicates	1904.31	4.84
Vertical without duplicates	2067.77	4.73
Horizontal with duplicates	2276.98	5.86
Vertical with duplicates	24.66	4.98

Both behaves **similar** in horizontal partitioning

Partitioning Type	RMLMapper	SDM-RDFizer
Horizontal without duplicates	1904.31	4.84
Vertical without duplicates	2067.77	4.73
Horizontal with duplicates	2276.98	5.86
Vertical with duplicates	2024.66	4.98

Partitioning Type	RMLMapper	SDM-RDFizer
Horizontal without duplicates	1904.31	4.84
Vertical without duplicates	2067.77	4.73
Horizontal with duplicates	2276.98	5 36
Vertical with duplicates	2024.66	4.98

Different behavior in vertical partitioning

Platform, Source and Output variables

Independent Variables		Observed Variables	
		Execution Time	Completeness
	cache on/off	X	
Platform	RAM available	X	
	# processor	X	
	distribution data transfer	X	X
Source	initial delay	X	
	access limitation	X	X
	serialisation	X	X
Output	duplicates	X	X
	generation type	X	X

Goal: Empirically demonstrate how the behaviour of engines to create knowledge graphs is affected in different configurations and testbeds.

- RQ1) What is the effect of mixing different variables in one testbed?
- RQ2) What is the impact of considering configurations of different complexity of the same variable in one testbed?
- RQ3) Do the different variables and configurations influence in the behaviour of existing knowledge graph creation tools?

Datasets:

- Naïve:
 - 2 files, 30 columns per file
- Relation type:
 - 1-N, N-1 with $N = \{1, 5, 10, 15\}$
 - N-M, N=M={1, 3, 5, 10}

Join Duplicates:

- Low (5% to 20% duplicates)
- High (30% to 50% duplicates)
- Join Selectivity:
 - High (5% to 20% matches)
 - Low (60% to 100% matches)

Common features:

- **Size:** 1k, 10k and 50k rows

Format: Local CSV files

Output: N-Triples

Resource available at:

https://github.com/SDM-TIB/KGC-Param-Eval

Engines (selected based on RML-Implementation-Report):

- RMLMapper: https://github.com/RMLio/rmlmapper-java
- SDM-RDFizer: https://github.com/SDM-TIB/SDM-RDFizer

Comparison using Pearson's correlations:

Negative correlation (between 0 and -1)

Trends of execution time of the tools are opposite

Positive correlation (between 0 and 1)

Trends of execution time of the tools are similar

Total positive correlation (1)

Comparing same configuration

Configurations 1-3: SDM-RDFizer on datasets 1k, 10k, 50k and 30 POM Configurations 4-6: RMLMapper on datasets 1k, 10k, 50k and 30 POM

Configurations 1-4: SDM-RDFizer on 1-N, N-1, N-M and combination Configurations 5-8: RMLMapper on 1-N, N-1, N-M and combination

1K rows

Configurations 1-2: SDM-RDFizer on low and high duplicates Configurations 3-4: RMLMapper on low and high duplicates

Configurations 1-2: SDM-RDFizer on low and high selectivity Configurations 3-4: RMLMapper on low and high selectivity

Conclusions:

- We studied different parameters and variables that may affect the behaviour of knowledge graph creation engines
- **Empirical evaluation** of knowledge graph creation engines considering the studied parameters:
 - Discover hidden patterns in their behaviours

Join Selectivity

Future work:

- Define general testbeds to analyse the behaviour of the engines
- Evaluate other tools (e.g. RocketRML) and mapping languages (e.g. R2RML)

What are the Parameters that Affect the Construction of a Knowledge Graph?

David Chaves-Fraga*, Ontology Engineering Group
Universidad Politécnica de Madrid, Spain
Kemele M. Endris, L3S Research Center & TIB
Enrique Iglesias, University of Ropp

Enrique Iglesias, University of Bonn Oscar Corcho, OEG - UPM Maria-Esther Vidal, L3S Research Center & TIB

*Work done during the research visit of David Chaves-Fraga to TIB and L3S

ODBASE@2019 (Rhodes)