

UNIVERSIDADE FEDERALDE RORAIMA CENTRO DE CIÊNCIA E TECNOLOGIA BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO DCC511 – Lógica de Predicados (2021.2) Prof. Msc. Thais Oliveira Almeida

AULA 3:

QUANTIFICADORES E FÓRMULAS

Alfabeto da Lógica de Predicados

❖É constituído por:

- Símbolos de pontuação: (,);
- Símbolos de verdade: true, false;
- Conjunto enumerável de símbolos para variáveis: x, y, z, w, x₁, y₁, z₁,..;
- Conjunto enumerável de símbolos para funções: f, g, h, f₁, g₁, h₁, f₂, g₂...;
- Conjunto enumerável de símbolos para predicados: p, q, r, s, p₁, q₁, r₁, s₁, p₂, q₂...;
- Conjunto enumerável de símbolos para constantes: a, b, c,
- Conectivos proposicionais: \neg , \lor , \rightarrow , \leftrightarrow , \forall , \exists .

Quantificadores

- Quantificação Universal
 - $\lor \forall x p(x)$
 - ∘ *p*(x) é um predicado.
 - ∘ p(x) é verdadeiro para todo x do universo.

Exemplo:

Todo numero natural par ao quadrado é par.

Quantificadores

- Quantificação Existencial
 - \bullet $\exists x p(x)$
 - ∘ *p*(x) é um predicado.
 - ∘ p(x) é verdadeiro para algum x do universo.

Exemplo:

• Existe um número natural que ao quadrado é igual a ele mesmo.

Aridade

- Associado a cada símbolo de função ou predicado, temos uma aridade:
 - Número inteiro, não-negativo k;
 - Indica o número de argumentos da função ou predicado.
 - p(x) k = 1
 - p(x,y) k = 2
 - \circ a k = 0

Aridade

- Constantes e símbolos proposicionais:
 - Sempre tem k=0;
 - Funções → constantes;
 - Predicados → símbolos proposicionais.

Notação

- Constantes (funções zero-árias; aridade nula)
 - a, b, c, a1, b1, c1, a2, b2, ...
- Quantificadores
 - Universal: ∀ (para todo...)
 - Existencial: 3 (existe...)
- \diamond Os conectivos \rightarrow , \leftrightarrow e ^ são definidos em função do conjunto completo $\{\neg, v\}$.

Consultas

- Na Linguagem da Lógica de Predicados ocorrem vários elementos básicos necessários à definição de fórmula:
 - "A capital de Roraima é Boa Vista?"
 - Deve retornar um símbolo de verdade;
 - Sentenças que representam símbolos de verdade, em Lógica de Predicados, são chamados de átomos.
 - "Qual a capital do Brasil?"
 - Deve retornar um objeto;
 - Sentenças que representam objetos são chamados de termos.

Termos

- ❖São construídos a partir destas regras:
 - Variáveis são termos: representam objetos;
 - Se t_1 , t_2 , ..., t_n são termos: f é um símbolo de função n-ária, então f(t_1 , t_2 , ..., t_n) também é um termo.
- **Exemplos:**
 - · +(9, 10)
 - Interpretado como: 9 + 10 = 19
 - · -(9,5)
 - ∘ Interpretado como: 9 5 = 4
 - Notação prefixa.

Exemplo de Termos

- x (variável);
- ❖a (constante, função zero-ária aplicada a zero termo);
- ❖f(x, a) se e somente se "f" é binária (pois "x" e "a" são termos);
- ❖g(y, f(x,a), c) se e somente se "g" é ternária, e "f" é binária;
- **⋄**x, 9, y, 10;

Átomos

- ❖São construídos a partir destas regras:
 - O símbolo de verdade false é um átomo;
 - Se t₁, t₂, ..., t_n são termos: p é um símbolo de predicado n-ário, então p(t₁, t₂, ..., t_n) é um átomo.

Exemplos:

- · >(10,9)
 - Interpretado como: 10>9
- 9 = +(5,4)
 - Interpretado como: 9 = 5+4
- Interpretados como T.
 - · Abusos de linguagem:
 - > e = são predicados
 - + e são funções

Exemplos de Átomos

- ❖ p (símbolo proposicional, predicado zero-ário aplicado a zero termo);
- ❖ p (f(x,a),x) se e somente se "p" é binário;
- q(x,y,z) considerado implicitamente como ternário;

Fórmulas

- A construção das fórmulas é feita a partir da concatenação de átomos e conectivos;
- ❖São construídas a partir destas regras:
 - Todo átomo é uma fórmula da Lógica de Predicados;
 - Porque os átomos sempre retornam um símbolo de verdade.
 - Se H é fórmula, então (¬H) também é;
 - Se H e G são fórmulas, então (H \vee G) também é;
 - Se H e G são fórmulas, então (H ∧ G) também é;
 - Se H e G são fórmulas, então (H → G) também é;
 - Se H e G são fórmulas, então (H ↔ G) também é;
 - Se H é fórmula e x variável, então: $(\forall x)$ H e $(\exists x)$ H são fórmulas.

Equivalência Lógica

- Duas proposições H e G são logicamente equivalentes (H ≡ G), se ambas possuem tabelas-verdade idênticas.
- *Relembrando:
 - \circ H \rightarrow G
 - Denota ($\neg H \lor G$)
 - \circ (H \rightarrow false)
 - Denota ¬H
 - (H ↔ G)
 - Denota (H \rightarrow G) \land (G \rightarrow H)
 - (H ^ G)
 - Denota ¬(¬H ∨ ¬G)

Equivalência Lógica

- Duas proposições H e G são logicamente equivalentes (H ≡ G), se ambas possuem tabelas-verdade idênticas.
- *Relembrando:
 - \circ H \rightarrow G
 - Denota $(\neg H \lor G)$
 - H = V e G=F
 - \circ H \rightarrow G = V \rightarrow F = F
 - $(\neg H \lor G) = \neg V \lor F = F \lor F = F$