

Advanced Mathematics

East China University of Science and Technology

目录

第一章	预 <mark>备知识</mark>	2
1.1	基础知识	4
	1.1.1 函数的概念和特性	
	1.1.2 函数的图像	
	1.1.3 常用基础知识	,
第二章	数列极限	12
2.1	基础知识	1:
	2.1.1 数列极限的定义	12
	2.1.2 收敛数列的性质	
	2.1.3 极限运算规则	1:
	2.1.4 夹逼准则	
2.2	习题	1:
第三章	函数极限	18

第一章 预备知识

1.1 基础知识

1.1.1 函数的概念和特性

函数

设 x 与 y 是两个变量, D 是一个给定的数集, 若对于每一个 $x \in D$, 按照一定的法则 f, 有一个唯一确定的 y 与之对 应, 则称 y 为 x 的函数, 记为 y = f(x), 称 x 为自变量, y 为因变量, D 为定义域.

反函数

设函数 y = f(x) 的定义域为 D, 值域为 R, 若对于每一个 $y \in R$, 必存在唯一的 $x \in D$ 使得 y = f(x) 成立, 则由此定义了一个新的函数 $x = \varphi(y)$, 称这个函数是 y = f(x) 的反函数, 一般记作 $x = f^{-1}(y)$, 它的定义域为 R, 值域为 D.

- 1. 严格单调的函数一定有反函数 (严格单调函数不一定是反函数, 如某些分段函数)
- 2. $x = f^{-1}(y)$ 和 y = f(x) 是同一个函数, 只有写成 $y = f^{-1}(x)$, 图像才关于 y = x 对称

复合函数

函数 u=g(x) 在 $x\in D$ 上有定义, 函数 y=f(u) 在 $u\in D_1$ 上有定义, 且 $g(D)\subset D_1$, 则称 y=f(g(x)) 为复合函数, 定义域为 D,u 为中间变量.

函数的四种特性和重要结论

1. 有界性

设 f(x) 的定义域为 D, 数集 $I \subset D$. 若存在某个正数 M, 使得对于任一 $x \in I$, 有 $|f(x)| \leq M$ 成立, 则称 f(x) 在 I 上有界. 如果这样的 M 不存在, 则称 f(x) 在 I 上无上界.

2. 单调性

设 f(x) 的定义域为 D, 区间 $I \subset D$, 如果对于区间上的任一两点 x_1, x_2 , 当 $x_1 < x_2$ 的时候有 $f(x_1) < f(x_2)$ 成立, 则称 f(x) 在 I 上单调增加. 反之如果 $f(x_1) > f(x_2)$ 成立, 则称 f(x) 在 I 上单调减少.

3. 奇偶性

设 f(x) 的定义域 D 关于原点对称. 如果对于任一 $x \in D$, 恒有 f(x) = f(-x), 则称 f(x) 为偶函数. 如果对于任一 $x \in D$, 恒有 f(x) = -f(-x), 则称 f(x) 为奇函数. 偶函数的图像关于 y 轴对称, 奇函数的图像关于原点对称.

第一章 预备知识 3

- (a) 奇函数在 0 点有定义则 f(0) = 0
- (b) 偶函数当 f'(0) 存在时则 f'(0) = 0
- (c) 函数 f(x) 和 -f(x) 关于 x 轴对称, 函数 f(x) 和 f(-x) 关于 y 轴对称, 函数 y(x) 和 -y(-x) 关于原 点对称
- (d) 函数 f(x) 关于 x = T 对称 $\Leftrightarrow f(x+T) = f(T-x)$

4. 周期性

设 f(x) 的定义域为 D, 若存在一个正数 T, 使得对于任一 $x \in D$, 有 $x \pm T \in D$, 且 f(x + T) = f(x). 则称 f(x) 为 周期函数, T 称为 f(x) 的周期.

- 5. 重要结论
 - (a) 函数和其导函数

偶函数的导函数是奇函数 奇函数的导函数是偶函数 周期函数的周期和其导函数的周期相同

(b) 函数和其原函数

连续的奇函数的原函数是偶函数 连续的偶函数的原函数只有一个是奇函数 连续的周期函数和其原函数的周期相同

(c) 若 f(x) 在 (a,b) 内可导且 f'(x) 有界, 则 f(x) 在 (a,b) 内有界

1.1.2 函数的图像

直角坐标系

- 1. 常见图像
 - (a) 基本初等函数与初等函数
 - i. 常数函数 y = C, C 为常数, 图形为平行于 x 轴的水平直线.
 - ii. 幂函数 $y = x^{\mu} (\mu \text{ 是实数})$
 - A. 见到 \sqrt{u} , $\sqrt[3]{u}$, 用 u 来研究最值
 - B. 见到 |u| 时, 用 u^2 来研究最值
 - C. 见到 $u_1u_2u_3$ 时, 用 $ln(u_1u_2u_3) = lnu_1 + lnu_2 + lnu_3$ 来研究最值
 - D. 见到 $\frac{1}{u}$ 时, 用 u 来研究最值
 - iii. 指数函数 $y = a^x (a > 0, a \neq 1)$

iv. 对数函数 $y = log_a x \ (a > 0, a \neq 1)$

常用公式:
$$x = e^{lnx}$$
 $(x > 0), u^v = e^{lnu^v} = e^{vlnu}$ $(u > 0)$

v. 三角函数

A. 正弦函数和余弦函数 正弦函数 $y = \sin x$, 余弦函数 $y = \cos x$.

B. 正切函数和余切函数 正切函数 $y = \tan x$, 余切函数 $y = \cot x$.

C. 正割函数和余割函数 正割函数 $y = \sec x$, 余割函数 $y = \csc x$.

(a) 正割函数图像

(b) 余割函数图像

vi. 反三角函数

A. 反正弦函数和反余弦函数 反正弦函数 $y = \arcsin x$, 反余弦函数 $y = \arccos x$.

B. 反正切函数和反余切函数 反正切函数 $y = \arctan x$, 反余切函数 $y = \operatorname{arccot} x$

vii. 初等函数

(b) 反余弦函数图像

(a) 反正切函数图像

(b) 反余切函数图像

第一章 预备知识 6

由基本初等函数经过有限次的四则运算,以及有限次的复合所构成的可以用一个式子表示的函数称为初等 函数.

(b) 分段函数

在自变量的不同范围中, 对应法则不同式子来表示的函数称为分段函数. 一般来说它不是初等函数.

i. 绝对值函数

$$y = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

ii. 符号函数

$$y = \operatorname{sgn} x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

iii. 取整函数

y = [x], y = [x],

2. 图像变换

(a) 平移变换

- i. 将函数 y = f(x) 沿 x 轴向左平移 x_0 $(x_0 > 0)$ 个单位长度, 得到函数 $f(x + x_0)$ 的图像; 将函数 y = f(x) 沿 x 轴向右平移 x_0 $(x_0 > 0)$ 个单位长度, 得到函数 $f(x x_0)$ 的图像
- ii. 将函数 y = f(x) 沿 y 轴向上平移 y_0 $(y_0 > 0)$ 个单位长度, 得到函数 $f(x) + y_0$ 的图像; 将函数 y = f(x) 沿 y 轴向下平移 y_0 $(y_0 > 0)$ 个单位长度, 得到函数 $f(x) y_0$ 的图像

(b) 对称变换

- i. 将函数 y = f(x) 的图像关于 x 轴对称, 得到函数 y = -f(x) 的图像
- ii. 将函数 y = f(x) 的图像关于 y 轴对称, 得到函数 y = f(-x) 的图像
- iii. 将函数 y = f(x) 的图像关于原点对称, 得到函数 y = -f(-x) 的图像
- iv. 将函数 y = f(x) 的图像关于直线 y = x 对称, 得到函数 $y = f^{-1}(x)$ 的图像
- v. 保留函数 y = f(x) 在 x 轴及 x 轴上方的部分, 把 x 轴下方的部分关于 x 轴对称到 x 轴上方并去掉原来下方的部分, 得到函数 y = |f(x)| 的图像
- vi. 保留函数 y = f(x) 在 y 轴及 y 轴右侧的部分, 去掉 y 轴左侧的部分, 再将 y 轴右侧图像对称到 y 轴左侧, 得到函数 y = f(|x|) 的图像

(c) 伸缩变换

- i. 水平伸缩: y = f(kx)(k > 1) 的图像, 可由 y = f(x) 的图像上每点的横坐标缩短到原来的 $\frac{1}{k}$ 倍且纵坐标不变得到. y = f(kx)(0 < k < 1) 的图像, 可由 y = f(x) 的图像上每点的横坐标伸长到原来的 $\frac{1}{k}$ 倍且纵坐标不变得到
- ii. 垂直伸缩: y = kf(x)(k > 1) 的图像, 可由 y = f(x) 的图像上每点的纵坐标伸长到原来的 k 倍且横坐标不变得到; y = kf(x)(0 < k < 1) 的图像, 可由 y = f(x) 的图像上每点的纵坐标缩短到原来的 k 倍且横坐标不变得到

极坐标系

- 1. 用描点法画常见图像
 - (a) 心形线

$$r = a(1 - \cos \theta)(a > 0)$$

图 1.5: 心形线

(b) 玫瑰线

 $r = a\sin 3\theta (a > 0)$

图 1.6: 玫瑰线

(c) 阿基米德螺线

$$r=a\theta(a>0,\theta\geq0)$$

图 1.7: 阿基米德螺线

(d) 伯努利双纽线

$$r^2 = a^2 \cos 2\theta (a > 0)$$
 或 $r^2 = a^2 \sin 2\theta (a > 0)$.

图 1.8: 伯努利双纽线

参数方程

1. 摆线

$$\begin{cases} x = r(t - \sin t) \\ y = r(1 - \cos t) \end{cases}$$

图 1.9: 摆线

2. 星形线

$$\begin{cases} x = r\cos^3 t \\ y = r\sin^3 t \end{cases}$$

图 1.10: 星形线

1.1.3 常用基础知识

数列

1. 等差数列

首项为 a_1 , 公差为 $d(d \neq 0)$ 的数列 $a_1, a_1 + d, a_1 + 2d, ..., a_1 + (n-1)d, ...$

- (a) 通项公式: $a_n = a_1 + (n-1)d$
- (b) 前 n 项的和: $S_n = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}[2a_1 + (n-1)d]$
- 2. 等比数列

首项为 a_1 , 公比为 $r(r \neq 0)$ 的数列 $a_1, a_1r, ..., a_1r^{n-1},$

- (a) 通项公式: $a_n = a_1 r^{n-1}$
- (b) 前 n 项的和 $S_n = \begin{cases} na_1 & r = 1 \\ \frac{a_1(1-r^n)}{1-r} & r \neq 1 \end{cases}$
- (c) 一些常见数列前 n 项的和

i.
$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n = \frac{n(1+n)}{2}$$

i.
$$\sum_{k=1}^n k=1+2+3+\ldots+n=\frac{n(1+n)}{2}$$
 ii.
$$\sum_{k=1}^n k^2=1^2+2^2+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$$

iii.
$$\sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1\times 2} + \frac{1}{2\times 3} + \ldots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

三角函数

1. 三角函数的基本关系

$$\csc \alpha = \frac{1}{\sin \alpha}, \ \sec \alpha = \frac{1}{\cos \alpha}, \ \cot \alpha = \frac{1}{\tan \alpha}$$
$$\sin^2 \alpha + \cos^2 \alpha = 1, \ 1 + \tan^2 \alpha = \sec^2 \alpha, \ 1 + \cot^2 \alpha = \csc^2 \alpha$$
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}, \ \cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$

- 2. 重要公式
- 3. 倍角公式

$$\sin 2\alpha = 2\sin \alpha \cos \alpha, \ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 1 - 2\sin^2 \alpha$$
$$= 2\cos^2 \alpha - 1, \ \tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

4. 半角公式

$$\sin^2 \frac{\alpha}{2} = \frac{1}{2} (1 - \cos \alpha), \cos^2 \frac{\alpha}{2} = \frac{1}{2} (1 + \cos \alpha)$$
$$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}}$$

5. 和差公式

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

6. 积化和差公式

$$\begin{split} \sin\alpha\cos\beta &= \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)] \\ \cos\alpha\sin\beta &= \frac{1}{2}[\sin(\alpha+\beta) - \sin(\alpha-\beta)] \\ \cos\alpha\cos\beta &= \frac{1}{2}[\cos(\alpha+\beta) + \cos(\alpha-\beta)] \\ \sin\alpha\sin\beta &= -\frac{1}{2}[\cos(\alpha+\beta) - \cos(\alpha-\beta)] \end{split}$$

7. 和差化积公式

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

8. 万能公式

若
$$u = \tan \frac{x}{2}(-\pi < x < \pi)$$
, 则 $\sin x = \frac{2u}{1+u^2}$, $\cos x = \frac{1-u^2}{1+u^2}$.

指数运算法则

$$\begin{split} a^{\alpha} \cdot a^{\beta} &= a^{\alpha+\beta}, \ \frac{a^{\alpha}}{a^{\beta}} &= a^{\alpha-\beta} \\ (a^{\alpha})^{\beta} &= a^{\alpha\beta}, \ (ab)^{\alpha} &= a^{\alpha}b^{\alpha}, \ (\frac{a}{b})^{\alpha} &= \frac{a^{\alpha}}{b^{\alpha}} \end{split}$$

对数运算法则

1.
$$\log_a(MN) = \log_a M + \log_a N$$

2.
$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

$$3. \, \log_a^n = n \log_a M$$

4.
$$\log_a \sqrt[n]{M} = \frac{1}{n} \log_a M$$

一元二次方程基础

1. 一元二次方程:
$$ax^2 + bx + c = 0 (a \neq 0)$$

2. 根的公式:
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

3. 根和系数的关系:
$$x_1 + x_2 = -\frac{b}{a}$$
, $x_1 x_2 = \frac{c}{a}$

4. 判别式:
$$\Delta = b^2 - 4ac$$

5. 抛物线定点坐标:
$$(-\frac{b}{2a}, c - \frac{b^2}{4a})$$

因式分解公式

1.
$$(a+b)^2 = a^2 + b^2 + 2ab$$

2.
$$(a-b)^2 = a^2 + b^2 - 2ab$$

3.
$$(a+b)^3 = a^3 + 3a^2b + 3b^2a + b^3$$

4.
$$(a-b)^3 = a^3 - 3a^2b + 3b^2a - b^3$$

5.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

6.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

7.
$$a^2 - b^2 = (a+b)(a-b)$$

8. 二项式定理:
$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$$

阶乘和双阶乘

1.
$$n! = 1 \cdot 2 \cdot 3 \cdot ... \cdot n$$
, 规定 $0! = 1$

2.
$$(2n)!! = 2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n) = 2^n n!$$

3.
$$2(n-1)!! = 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)$$

常用不等式

1. 设 a, b 为实数, 则有:

(a)
$$|a \pm b| \le |a| + |b|$$

(b)
$$||a| - |b|| \le |a - b|$$

2.
$$\sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}(a, b > 0)$$

4. 若
$$0 < a < x < b, 0 < c < y < d, 则 $\frac{c}{b} < \frac{y}{x} < \frac{d}{a}$$$

5.
$$\sin x < x < \tan x (0 < x < \frac{\pi}{2})$$

6.
$$\sin x < x(x > 0)$$

7.
$$\arctan x \le x \le \arcsin x (0 \le x \le 1)$$

8.
$$e^x \ge x + 1(\forall x)$$

9.
$$x-1 \ge \ln x (x > 0)$$

10.
$$\frac{1}{1+x} < \ln(1+\frac{1}{x}) < \frac{1}{x}(x>0)$$

第二章 数列极限

2.1 基础知识

2.1.1 数列极限的定义

设 $\{x_n\}$ 为一数列, 若存在常数 a, 对于任意的 $\epsilon>0$, 总存在正整数 N, 使得当 n>N 的时候, $|x_n-a|<\epsilon$ 恒成立, 则称数 a 是数列 $\{x_n\}$ 的极限, 或者称数列 $\{x_n\}$ 收敛于 a, 记为

$$\lim_{n \to \infty} x_n = a \text{ or } x_n \to a(n \to \infty).$$

2.1.2 收敛数列的性质

- 1. 唯一性: 若数列存在极限,则极限是唯一的
- 2. 有界性: 若数列存在极限, 则数列有界
- 3. 保号性
 - (a) 脱帽: 设有数列 $\{x_n\}$, 若 $\lim_{n \to \infty} x_n = a > 0$ (或 < 0) \Rightarrow 存在正整数 N, 当 n > N 时, 有 $x_n > 0$ (或 $x_n < 0$)
 - (b) 戴帽: 设有数列 $\{x_n\}$, 若存在正整数 N, 当 n > N 时, 有 $x_n \ge 0$, 且数列存在极限 $\Rightarrow \lim_{n \to \infty} x_n = a \ge 0$

2.1.3 极限运算规则

设
$$\lim_{n\to\infty} x_n = a$$
, $\lim_{n\to\infty} y_n = b$, 则

- 1. $\lim_{n\to\infty} (x_n \pm y_n) = a \pm b$
- $2. \lim_{n \to \infty} x_n y_n = ab$
- 3. 若 $b \neq 0, y_n \neq 0 \Rightarrow \lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$

2.1.4 夹逼准则

如果数列 $\{x_n\}$, $\{y_n\}$ 及 $\{z_n\}$ 满足条件:

- $1. \ y_n \le x_n \le z_n (n=1,2,3...)$
- 2. $\lim_{n\to\infty}y_n=a, \lim_{n\to\infty}z_n=a$ 则数列 $\{x_n\}$ 的极限存在,且 $\lim_{n\to\infty}x_n=a.$

2.1.5 单调有界准则

单调有界数列必有极限.

2.2 习题

第三章 函数极限