# Principle stresses and directions in the earth





#### **Idealized half-space**



 $S_{33} = S_v$  must be a principle stress!



# Four parameters needed to describe state-of-stress in the earth

- $S_{\rm V}$  vertical stress magnitude
- ullet  $S_{\mbox{Hmax}}$  maximum horizontal principle stress magnitude
- $\bullet$   $S_{
  m hmin}$  minimum horizontal principle stress magnitude
- ullet One horizontal principle direction, usually the direction associated with  $S_{\mbox{Hmax}}$



#### **Anderson fault classification**



#### **Normal fault**



$$S_v > S_{Hmax} > S_{hmin}$$

© USGS Image Source



#### **Reverse fault**



© USGS Image Source



#### Strike-slip



$$S_{Hmax} > S_v > S_{hmin}$$

© USGS Image Source



#### **Summary**

| Regime      | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> |
|-------------|----------------|----------------|----------------|
| Normal      | $S_v$          | $S_{Hmax}$     | $S_{hmin}$     |
| Strike-slip | $S_{Hmax}$     | $S_{v}$        | $S_{hmin}$     |
| Reverse     | $S_{Hmax}$     | $S_{hmin}$     | $S_{v}$        |



# Vertical stress magnitude

$$S_v = \int_0^z \rho(z) g \mathrm{d}z$$



#### In offshore areas

$$S_v = \rho_w g z_w + \int_{z_w}^{z} \rho(z) g dz$$



#### **Rules of thumb**

- $\rho_w \approx 1 \text{g/cm}^3$ 
  - increases at a rate of 10 MPa/km (0.44 psi/ft)
- $\rho_{\rm rock} \approx 2.3 \text{g/cm}^3$ 
  - increaes at a rate of 23 MPa/km (1 psi/ft)



## **Density logs**



© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 1.3, pp. 11)



## **Density log integration**



© Cambridge University Press Zoback, Reservoir Geomechanics (Fig. 1.3, pp. 11)

