C. Points on Plane

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

On a plane are n points (x_i, y_i) with integer coordinates between 0 and 10^6 . The distance between the two points with numbers a and b is said to be the following value: (the distance calculated by such formula is called *Manhattan distance*).

We call a hamiltonian path to be some permutation p_i of numbers from 1 to n. We say that the length of this path is value .

Find some hamiltonian path with a length of no more than 25×10^8 . Note that you do not have to minimize the path length.

Input

The first line contains integer n ($1 \le n \le 10^6$).

The i+1-th line contains the coordinates of the i-th point: x_i and y_i ($0 \le x_i, y_i \le 10^6$).

It is guaranteed that no two points coincide.

Output

Print the permutation of numbers p_i from 1 to n — the sought Hamiltonian path. The permutation must meet the inequality .

If there are multiple possible answers, print any of them.

It is guaranteed that the answer exists.

Examples

input 5

0 7 8 10

3 4

5 0 9 12

output

4 3 1 2 5

Note

In the sample test the total distance is:

$$(|5-3|+|0-4|)+(|3-0|+|4-7|)+(|0-8|+|7-10|)+(|8-9|+|10-12|)=2+4+3+3+8+3+1+2=26$$