Computernetzwerke

Bitübertragungsschicht

Sebastian Bauer

Wintersemester 2022/2023

Computer Engineering Curriculum

Mikroprozessortechnik Rechnerorganisation

Mathematik

Embedded Systems Analogelektronik

Computernetzwerke

Leiterplattenentwurf

Betriebssysteme FPGA Grundlagen

Physik

F-Technik

Systemprogrammierung

Signalverarbeitung

Hybrides Referenzmodell: Bitübertragungsschicht

Anwendung

Transport

Vermittlung

Sicherung

Bitübertragung

Kommunikationsarchitektur

Informationsübertragung: Variieren von physikalischen Größen, z.B. Spannung mit dem Ziel *Bits* zu Übertragen.

Outline

- Bandbreite
- 2 Datenübertragung
- Leitungskodierung
- Manalkodierung
- Quellenkodierung

Fourier-Reihen

In der Fourier-Analyse werden zeitlich wiederholende Signale als Linearkombination von Sinus- und Kosinussignalen dargestellt:

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

mit $f = \frac{1}{T}$ Grundfrequenz, a_n Sinusamplitude, b_n Cosinusamplitude der n-ten Harmonischen (Vielfache der Grundfrequenz).

Wir betrachten endliche Datensignale und stellen uns vor, dass sich dasselbe Signal ständig wiederholt.

Fourier-Transformation

Gegeben sei ein Signal g(t). Es gilt:

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$

$$b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$

$$c = \frac{2}{T} \int_0^T g(t) dt$$

Weiterhin sei $rms_n = \sqrt{a_n^2 + b_n^2}$ (root mean square) der Amplituden der n-ten Fourierkomponente von g(t). Der RMS steht mit der zu übertragende Energie der jeweiligen Frequenz in Beziehung.

Bandbreitenbeschränkte Signale

- Jedes Medium dämpft verschiedene Amplituden der Fourierkomponenten unterschiedlich
- Für Kabel bis zu einer Grenzfrequenz f_c (engl. *cutoff frequency*) ungedämpft

Bandbreite eines Mediums

Die (analoge) *Bandbreite* eines Mediums ist das Intervall von Frequenzen, die nur geringe Dämpfung erfahren.

• Bandbreite eines Kabels hängt z. B. von Bauweise, Breite und Länge ab.

Analoge Bandbreiten

Anwendung	ungefähre Bandbreite		
Telefon	3,1 kHz		
AM-Rundfunk (Audio)	4,5 kHz		
UKW-Rundfunk	15 kHz		
Mobilfunk (GSM)	200 kHz		
analoges AM-Fernsehsignal	7 MHz		
IEEE-802.11 a/b (WLAN)	22 MHz		
Glasfaser-Ethernet	bis zu 50 GHz		

Beispielsignal und Fouriertransformation

Ein Beispiel für ein digitales Signal mit 8 Bits und dessen ersten 15 Harmonischen, dargestellt via RMS.

Beispielsignal und Fouriertransformation

Ein Beispiel für ein digitales Signal mit 8 Bits und dessen ersten 15 Harmonischen, dargestellt via RMS.

Und hier mit nur einer Komponente (=sehr schmales Band):

Beispielsignal mit mehreren Komponenten

Zwei Komponenten (=etwas höhere Bandbreite):

Vier Komponenten:

Beispielsignal mit acht Komponenten

Acht Komponenten:

Dies ist offensichtlich genug, um das Ursprungssignal zu rekonstruieren.

Bitrate

Die *Bitrate* ist die Anzahl von übertragenen Nutzbits in einer bestimmten Zeit. Die Einheit ist üblicherweise $\frac{Bit}{s}$ bzw. bps.

Annahme im Folgenden: es gibt 2 Symbole für 1 Bit

Bitrate

Die *Bitrate* ist die Anzahl von übertragenen Nutzbits in einer bestimmten Zeit. Die Einheit ist üblicherweise $\frac{Bit}{s}$ bzw. bps.

Annahme im Folgenden: es gibt 2 Symbole für 1 Bit

• Zeit um 8 Bit mit Bitrate b zu senden: 8Bit $\cdot \frac{1}{b} = \frac{8Bit}{b}$

Bitrate

Die *Bitrate* ist die Anzahl von übertragenen Nutzbits in einer bestimmten Zeit. Die Einheit ist üblicherweise $\frac{Bit}{s}$ bzw. bps.

Annahme im Folgenden: es gibt 2 Symbole für 1 Bit

- Zeit um 8 Bit mit Bitrate b zu senden: 8Bit $\cdot \frac{1}{b} = \frac{8 \text{Bit}}{b}$
- Grundfrequenz für 8 Bit (1. Harmonische): $f_1(b) = \frac{b}{8Bit}$

Bitrate

Die *Bitrate* ist die Anzahl von übertragenen Nutzbits in einer bestimmten Zeit. Die Einheit ist üblicherweise $\frac{Bit}{s}$ bzw. bps.

Annahme im Folgenden: es gibt 2 Symbole für 1 Bit

- Zeit um 8 Bit mit Bitrate b zu senden: 8Bit $\cdot \frac{1}{b} = \frac{8 \mathrm{Bit}}{b}$
- Grundfrequenz für 8 Bit (1. Harmonische): $f_1(b) = \frac{b}{8 \text{Bit}}$
- Anzahl der ungedämpften Harmonischen: $h(b) = \frac{f_c}{f_1(b)}$

Bandbreite einer (klassischen) Telefonverbindung: $f_c = 3000 \, \text{Hz}$

Anzahl der Harmonischen bei Telefonverbindung

Bitrate

Die *Bitrate* ist die Anzahl von übertragenen Nutzbits in einer bestimmten Zeit. Die Einheit ist üblicherweise $\frac{Bit}{s}$ bzw. bps.

Annahme im Folgenden: es gibt 2 Symbole für 1 Bit

- ullet Zeit um 8 Bit mit Bitrate b zu senden: 8Bit $\cdot \frac{1}{b} = \frac{8 \mathrm{Bit}}{b}$
- Grundfrequenz für 8 Bit (1. Harmonische): $f_1(b) = \frac{b}{8Bit}$
- Anzahl der ungedämpften Harmonischen: $h(b) = \frac{f_c}{f_1(b)}$

Bandbreite einer (klassischen) Telefonverbindung: $f_c = 3000 \,\text{Hz}$

Anzahl der Harmonischen bei Telefonverbindung

$$h(b) = \frac{3000 \text{Hz}}{\frac{b}{8 \text{Bit}}} = \frac{24000 \text{Hz} \cdot \text{Bit}}{b}$$

Bandbreite Datenübertragung Leitungskodierung Kanalkodierung Quellenkodierung

Übertragungsraten bei 3000 Hz Bandbreite

Bit s	f_1	# Harmomische		
300	37.5	80		
600	75	40		
1200	150	20		
2400	300	10		
4800	600	5		
9600	1200	2		
19200	2400	1		

Annahme: 1 Bit pro Symbol

Intuition: (analoge) Bandbreite

Die Bandbreite sagt aus, wie oft bei der Übertragung durch ein Kabel die Spannung pro Zeiteinheit geändert werden kann.

Maximale Datenrate – nach Shannon und Hartley

Im rauschfreien Übertragungskanal...

Schrittgeschwindigkeit

Schrittgeschwindigkeit oder Symbolrate (baud) bestimmt die Anzahl der Symbole pro Sekunde. Es gilt:

maximale Symbol rate = $2B \cdot \text{Symbole}$

Datenrate

Für Kanäle mit (analoger) Bandbreite B und L Symbolen gilt:

maximale Datenrate = $2B \log_2 L \cdot Bits$

Beachte: Der Begriff Bandbreite ist häufig auch Synonym zu maximale Datenübertragungsrate = (digitale) Bandbreite.

Beispiel zur maximalen Datenrate

Datenrate

maximale Datenrate = $2B \log_2 L \cdot Bits$

Aufgabe zu Datenrate

Wie groß ist die maximale Datenrate, die über eine analoge Telefonleitung erzielt werden kann, wenn ein *Leitungscode* mit zwei Symbolen benutzt wird?

Signal-Rausch-Verhältnis

- Bisher rauschfreier Übertragungskanal
- Störungen führen zu einer
 - Begrenzung des max. Informationsgehalt eines Symbols
 - → Menge der unterscheidbaren Symbole ist begrenzt

Signal-Rausch-Verhältnis (engl. signal-to-noise ratio)

Das Signal-Rausch-Verhältnis misst die Qualität eines von einem Rauschsignal überlagerten Nutzsignals:

$$SNR = \frac{Nutz signalle istung}{Rausch signalle istung} = \frac{S}{N}$$

SNR wird in dB (Dezibel) angegeben $\equiv 10 \log_{10} \frac{S}{N}$

Maximale Datenrate mit Rauschen

Maximale Datenrate

Die maximale Datenrate in einem Kanal mit Signal-Rausch-Verhältnis $\frac{S}{N}$ beträgt:

maximale Datenrate =
$$2B \log_2 \left(1 + \frac{S}{N}\right)$$
 · Bits

Aufgabe

Wie groß ist die maximale Datenrate auf einer Leitung mit einer SNR von 20 dB bei einer verfügbaren Bandbreite von 1 kHz?

Outline

- Bandbreite
- 2 Datenübertragung
- Leitungskodierung
- 4 Kanalkodierung
- Quellenkodierung

Serielle und Parallele Übertragung

Asymmetrisch

- Einfachste Form Signale über Kabel zu übertragen
- Eine Ader für:
 - Signal
 - Referenzspannung
- Englisch: single-ended signaling

- Einfach, aber anfällig gegen Störung
- Genutzt bei: RS-232 (seriell), I²C, viele parallele Busse (PCI, VGA, PATA)

Differentiell

- Signal geht mit unterschiedlicher Polarität auf zwei Adern
- Zweimal höherer Ausgangspegel ⇒ Weniger anfällig für Störungen

 Genutzt bei Ethernet over Twisted Pair, USB, PCI Express, DisplayPort, HDMI, DDR SDRAM

Symmetrisch

 Signal geht unterschiedlicher Polarität auf zwei verdrillte Adern (Twisted-Pair-Kabel)

- Störungen wirken sich im Idealfall gleichsinnig
- Heben sich dadurch beim Empfänger auf
- English: balanced signaling
- Genutzt bei z.B. bei Ethernet over Twisted Pair

Outline

- Bandbreite
- 2 Datenübertragung
- 3 Leitungskodierung
- 4 Kanalkodierung
- Quellenkodierung

Bandbreite Datenübertragung Leitungskodierung Kanalkodierung Quellenkodierung

Leitungskodierung

Leitungscode

Leitungscode legt fest, wie Symbole auf der physischen Ebene umgesetzt werden.

Übertragene Signal wird entsprechende der Eigenschaften eines Übertragungsmediums geformt, z.B.:

- Unterdrückung des Gleichspannungsanteil
- Ermöglichung einer Taktrückgewinnung (Synchronizität zw. Sender und Empfänger)
- Verringerung der Leitungsbandbreite

Gleichanteilsfrei

Gleichspannungsanteil ist 0, so dass Signalfolge auch durch Übertrager/Transformatoren mit galvanischen Trennung übertragen werden kann.

Morsezeichen: Frühe Leistungskodierung

- Drei Symbole: kurzes und langes Signal sowie Pause
- Ursprünglich von Samuel Morse (1833), heutige Form geht zurück auf Friedrich Clemens Gerke (1848)
- Kodiert Zahlen, lateinische Buchstaben, aber auch mehr
- Benötigt nur geringe Bandbreite, keine Ansprüche an SNR

Α	•	Н		0		V	• • • • -
В	- · · ·	- 1		Р	·	W	·
С	- ·	J		Q		Χ	
D		K		R	. – .	Υ	
E	•	L	. –	S		Ζ	
F		М		Т	_		
G		N		U	• • -		

 Morsetelegraphie wurde 2014 ins Verzeichnis des Immateriellen Kulturerbes aufgenommen

Non-Return to Zero (NRZ)

- Jedem logischen Bit wird Leitungszustand zugewiesen
 - Bei 0 ein Low-Signal (z.B. 0.4 V)
 - Bei 1 ein High-Signal (z.B. 5 V)

- ullet Folgen gleiche Bits aufeinander o konstanter Signalpegel Probleme bei längeren gleichen Pegeln:
 - Verschiebung des Durchschnitts (Baseline) welche zur Erkennung von Low- und Highpegel verwendet wird
 - Falsche Anzahl der interpretierten gleichen Werte

Wird z. B. bei serieller Schnittstelle benutzt.

NRZ - Baseline-Wandler

- Empfänger unterscheidet Pegel anhand des Durchschnitts zuletzt empfangener Symbole und deren Pegel
- Beim Übertragen längerer gleicher Pegel verschiebt sich Durchschnitt
- → Erkennung des Ursprungssymbol wird erschwert

Bild von Baun: Grundlagen der Informatik

Non Return to Zero Invert (NRZI)

- Ordnet einem der Bitwerte aktuellen Spannungspegel zu
- Dem anderen einen Zustandswechsel (engl. inversion)

NRZ-M Pegelwechsel bei 1 NRZ-S Pegelwechsel bei 0

NRZI findet Verwendung bei USB, Ethernet über Glasfaser (100BASE-FX), FDDI oder bei CD-ROM und Festplatten.

Return to Zero (RZ)

- Verwendung von drei Spannungspegeln 1, 0, -1
- Halbierung der Takte:
 - Bitwert 1: halber Takt 1, danach 0
 - Bitwert 0: halber Takt -1, danach 0
- Aber: doppelte Bandbreite nötig

Alternate Mark Inversion (AMI)

- Verwendung von drei Spannungspegeln 1, 0, -1
 - Bitwert 0: Pegel 1 wird angelegt
 - ullet Bitwert 1: Es wird alternierend Pegel +2 und -2 angelegt

- Gleichanteilsfrei
- Taktrückgewinnung (bei langen Nullfolgen) nicht möglich

Manchester-Kodierung

- Verwendet zwei Spannungspegel
- Flanken tragen Information
 - Bitwert 0: Steigende Flanke, Bitwert 1: Fallende Flanke
 - Oder umgekehrt (=XOR über Takt- und Datensignal)
- Bei gleichen Bits: Bei Taktende zum Anfangspegel
- Damit gleichanteilsfrei und Taktrückgewinnung möglich
- Aber doppelte Bandbreite nötig

Multi-Level Transmit 3 (MLT-3)

- Drei Spannungspegel: -1, 0, +1
- Geht zyklisch durch die Zustände (-1, 0, +1, 0) für 1
- Bleibt im Zustand bei 0
- Ungeeignet bei langen Nullfolgen
- Verwendet bei 100BASE-TX

Outline

- Bandbreite
- 2 Datenübertragung
- Leitungskodierung
- 4 Kanalkodierung
- Quellenkodierung

Kanalkodierung

Alle bisherigen Kodierungen haben mindestens einen Nachteil

- Nicht gleichanteilsfrei
- Keine Taktrückgewinnung
- Schlechte Effizienz

Lösungsmöglichkeit: Hinzufügen von Redundanz

- Mehr Bits übertragen als für Information nötig
- Damit Herstellung der gewünschten Eigenschaften
- Aber auch Vorwärtsfehlerkorrektur

Danach kann z.B. NRZ oder NRZI verwendet werden

Blockkodierungen

- Ein Vertreter der Kanalkodierung, fehlerkorrigierend
- Blöcke werden unabhängig voneinander (de)kodiert
- Bilden p Bits auf q Symbolen zur Basis X ab: $\{0,1\}^p \to \{0,1,\ldots,X\}^q$
- Wir schreiben: pBqX mit $X \in \{B, T, Q\}$ Anzahl der Spannungspegel (B=binär, T=ternär, Q=quaternär)

Wichtige sich beeinflussende Charakteristika:

Informationsrate: $\frac{p}{q}$ bei X=B (auch Effizienz genannt)

Korrekturrate: Wie viele Fehler können erkannt oder korrigiert werden?

Durch Redundanz kann Symbolrate höher als Datenrate sein.

Vorwärtsfehlerkorrektur

Fehler werden erkannt, ohne mit dem Sender erneut zu kommunizieren

Postleitzahl und Ort

Falsch geschriebene Ortsangaben können anhand der Postleitzahl korrigiert werden. Ebenso werden Zahlendreher in der Postleitzahl durch den Abgleich mit dem Ortsnamen erkannt.

4B5B-Code

- p = 4 Nutzbits, q = 5 Codebits
- Davon 16 Codebits für Daten, mit Bedacht gewählt:
 - Nicht mehr als eine führende 0
 - Nicht mehr als zwei abschließende 0en
 - → Löst lange Nullfolgen
- Die anderen 16 f
 ür Steuerung (nur acht genutzt)
- Wird bei 100BASE-TX dem MLT-3 vorgeschaltet
 - → Löst lange Einsfolgen

Aufgabe

Wie groß ist die Effizienz von 4B5B?

4B5B-Tabelle

Bezeichnung	Nutzbits (4B)	Codebits (5B)	Funktion
0	0000	11110	0
1	0001	01001	1
2	0010	10100	2
3	0011	10101	3
4	0100	01010	4
5	0101	01011	5
6	0110	01110	6
7	0111	01111	7
8	1000	10010	8
9	1001	10011	9
Α	1010	10110	Α
В	1011	10111	В
C	1100	11010	C
D	1101	11011	D
E	1110	11100	E
F	1111	11101	F
Q		00000	Quiet
I		11111	ldle
J		11000	Start #1
K		10001	Start #2
Т		01101	End
R		00111	Reset
S		11001	Set
Н		00100	Halt

Aufgabe

Kodiere Hallo mittels 4B5B als binären Datenstrom.

- 5 Nutzbits, 6 Codebits (Effizienz?)
- Codebits sind für Gleichanteilsfreiheit optimiert
 - 20 von 32 Nutzdaten werden gleichanteilsfreie abgebildet
 - Restliche gibt es positive (4 Einsen) und negative (4 Nullen) Kodierungen
 - Positive und negative Codewörter werden alternierend benutzt
- Wird in der Regel NRZ-leitungskodiert
- Es gibt mehrere Codetabellen (Cattermole, Morgenstern)

5B6B-Tabelle nach Cattermole

5B	6B	5B	6B (+)	6B (-)
00000	111000	10100	101000	010111
00001	110100	10101	100100	011011
00010	110010	10110	100010	011101
00011	110001	10111	100001	011110
00100	101100	11000	011000	100111
00101	101010	11001	010100	101011
00110	101001	11010	010010	101101
00111	100110	11011	010001	101110
01000	100101	11100	001100	110011
01001	100011	11101	001010	110101
01010	011100	11110	001001	110110
01011	011010	11111	000101	111010
01100	011001			
01101	010110			
01110	010101			
01111	010011			
10000	001110			
10001	001101			
10010	001011			
10011	000111			

8B6T

- 8 Nutzbits, 6 Codetrits (=1 Tryte), Randbedingungen:
 - Mindestens zwei Übergänge in einem Codewort
 - Summe (DC-Balance) darf nur 0 oder 1 sein
 - 4 Nullen zu Beginn oder am Ende ausgeschlossen
- Definiert in IEEE 802.3 Annex 23A
- Keine weitere Leitungskodierung notwendig

Aufgabe

Wie groß ist die Effizienz von 8B6T?

Pulsamplitudenmodulation-5 (PAM-5)

- 5 Pegel (Amplitudenstufen)
 - Informationsgehalt $log_2 5 = 2,32$ Bit
 - Jedoch nur 2 Bit Nutzdaten
 - 5. Symbol: Fehlererkennung

Aufgabe: nutzbare Datenrate

Wie hoch ist die nutzbare Datenrate bei 25 Millionen Pulsen pro Sekunde und zwei Kabeln?

Pulsamplitudenmodulation-5 (PAM-5)

- 5 Pegel (Amplitudenstufen)
 - Informationsgehalt $log_2 5 = 2,32$ Bit
 - Jedoch nur 2 Bit Nutzdaten
 - 5. Symbol: Fehlererkennung

Aufgabe: nutzbare Datenrate

Wie hoch ist die nutzbare Datenrate bei 25 Millionen Pulsen pro Sekunde und zwei Kabeln? (= 100Base-TX) Wie hoch ist sie bei 125 Millionen Pulsen und vier Kabeln?

Pulsamplitudenmodulation-5 (PAM-5)

- 5 Pegel (Amplitudenstufen)
 - Informationsgehalt $log_2 5 = 2,32$ Bit
 - Jedoch nur 2 Bit Nutzdaten
 - 5. Symbol: Fehlererkennung

Aufgabe: nutzbare Datenrate

Wie hoch ist die nutzbare Datenrate bei 25 Millionen Pulsen pro Sekunde und zwei Kabeln? (= 100Base-TX) Wie hoch ist sie bei 125 Millionen Pulsen und vier Kabeln? (= 1000Base-T)

8B10B

- 8 Datenbits zu 10 Codebits, Randbedingungen:
 - mind. 4 Nullen und 4 Einsen
 - Für Datenbits mit vier Nullen im Code, existiert auch eine Variante mit vier Einsen (DC-Ausgleich)
 - Jede Kodierung enthält mindestens 3 Pegelsprünge und nach spätestens fünf Takten wechselt der Pegel (Taktwiederherstellung)
- Übertragung der Bits erfolgt mittels NRZ-Kodierung
- PCle 1.0 und 2.0, SATA, DisplayPort, HDMI, USB 3.0, Gigabit-Ethernet 1000Base-CX, -SX, -LX

64B66B

- Zwei Präambeln
 - 01₂ es folgen 64 Payloadbits
 - 10₂ es folgt ein 8-Bit-Typ und 56 Bits Steuerinformation oder Daten.
 - → mind. ein Pegelwechsel alle 66 Bits
- Daten werden mit Polynom $x^{58} + x^{39} + 1$ gescrambelt: ausgeglichene Verteilung zwischen Nullen und Einsen
- Im Unterschied zu 8B10B nur statistische Garantien (dafür wesentlich effizienter)
- Verwendet z. B. bei 10 Gigabit Ethernet

Was ein es mit dem Polynom auf sich hat, kommt gleich...

128B130B

- Modifikation von 64B66B
- Präambel folgen 128 Bits
- Scambling-Polynom: $x^{23} + x^{21} + x^{16} + x^8 + x^5 + x^2 + 1$
- PCle 3.0. 4.0 und 5.0

Scambling

- Tauscht Bitfolgen durch besser an die Eigenschaften des Übertragungskanals angepasste Bitfolgen
 - Beispielsweise annähernde Gleichanteilsfreiheit
- Implementierbar z. B. mit linear rückgekoppeltes Schieberegister

Recap: Schieberegister

- Mehrere in Reihe geschaltete Flipflops
- Speicherinhalt (je 1 Bit) bei jedem Takt um einen Flipflop weiterschieben
- Anzahl der Register ist konstant

Externes linear rückgekoppeltes Schieberegister

- Schieben wie vorher, zusätzlich ist Eingang mit einem Rückkopplungszweig in Form von Taps verknüpft
- Schaltung ist durch *Generatorpolynom* eindeutig definiert:

$$p = c_k x^k + c_{k-1} x^{k-1} + \ldots + c^1 x^1 + x^0$$

über endl. Körper \mathbb{F}_2 mit Koeffizienten $c_1, \ldots, c_k \in \{0, 1\}$

• Nützlich als Pseudozufallsgenerator (falls mind. ein FF keine 0)

Schritt

$$x^1$$
 x^2
 x^3
 x^4
 Hex

 0
 1
 0
 0
 0
 8

 1
 1
 0
 0
 0
 0
 0

Schritt	x^1	x^2	x^3	x^4	Hex
0	1	0	0	0	8
1	1	1	0	0	C
2					

Schritt	x^1	x^2	x^3	x^4	Hex
0	1	0	0	0	8
1	1	1	0	0	C
2	1	1	1	0	Е
3					

Schritt	x^1	x^2	x^3	x^4	Hex
0	1	0	0	0	8
1	1	1	0	0	C
2	1	1	1	0	Е
3	0	1	1	1	7
4					

Schritt	x^1	x^2	x^3	x^4	Hex
0	1	0	0	0	8
1	1	1	0	0	C
2	1	1	1	0	Е
3	0	1	1	1	7
4	0	0	1	1	3
5					•

Schritt	x^1	x^2	x^3	x^4	Hex
0	1	0	0	0	8
1	1	1	0	0	C
2	1	1	1	0	Е
3	0	1	1	1	7
4	0	0	1	1	3
5	0	0	0	1	1
6					

Schritt	x^1	x^2	x^3	x^4	Hex
0	1	0	0	0	8
1	1	1	0	0	C
2	1	1	1	0	Е
3	0	1	1	1	7
4	0	0	1	1	3
5	0	0	0	1	1
6	1	0	0	0	8

Schritt	x^1	x^2	x^3	x^4	Hex
0	1	0	0	0	8
1	1	1	0	0	C
2	1	1	1	0	Е
3	0	1	1	1	7
4	0	0	1	1	3
5	0	0	0	1	1
6	1	0	0	0	8

Kennzeichen linear rückgekoppelter Schieberegister

- Anzahl der Zustände hängt von Position der Taps ab
- Längste mögliche Periode beträgt $2^k 1$
- Primitiv sind Polynome, wenn sie nicht in andere Polynome restlos zerlegbar sind (\sim Primzahlen in $\mathbb N$)
- Schaltungen, die aus primitiven Generatorpolynomen hervorgehen, erzeugen $2^k 1$ verschiedene Zustände

Polynom
$$x^4 + x^3 + x^1 + 1$$
 ist nicht primitiv, da:
 $x^4 + x^3 + x^1 + 1 = (x+1)^2(x^2 + x + 1)$

Die Überführung des Schieberegisters in ein Generatorpolynom erlaubt Anwendung mathematischer Werkzeuge, um Eigenschaften theoretisch nachzuweisen.

Aufgabe: Linear rückgekoppelter Schieberegister

Aufgabe

- Wie ist die längste Periode eines linearen 4-Bit-Schieberegisters?
- Wie sieht ein zu $x^4 + x^3 + 1$ passendes lineares Schieberegister aus?
- **3** Wie lautet die Zustandsfolge von $x^4 + x^3 + 1$?

Weiteres zu linearen Schieberegistern

Neben Scrambling spielen die Betrachtungen auch für andere Anwendungen eine Rolle:

- Modulo-Zähler (effizienter als arithmetische Zähler)
- Fehlererkennung (z. B. CRC-check, wird für uns noch relevant)

Eine Liste möglicher Polynome, die die maximalen Anzahl von Zuständen erzeugen gibt es z.B. auf https:

```
//users.ece.cmu.edu/~koopman/lfsr/index.html.
```

Outline

- Bandbreite
- 2 Datenübertragung
- Leitungskodierung
- 4 Kanalkodierung
- Quellenkodierung

Quellenkodierung

- Menge digitaler Daten wird verdichtet
- Reduziert überflüssige (redundante) Information
- → Datenkompression
 - Verlustfrei, d.h., Kompression ∘ Dekompression = Quelle
 (z. B. gzip, bzip2, xz)
 - Verlustbehaftet (z. B. JPEG, H265)
 - Eher selten Teil der Bitübertragungsschicht

Grenzen der Datenkompression

Es gibt keinen verlustfreien Datenkompressionsalgorithmus, der jede Datei tatsächlich verkleinern kann.

Lauflängenkodierung

Lauflängenkodierung (run-length encoding, RLE)

Ist einfaches verlustfreies Kompressionsverfahren, das nebeneinanderliegende gleichartige Symbole durch Paare von Symbol und Anzahl ersetzt.

Beispiel

Die Zeichenkette wwwaaadexxxxx soll mittels Lauflängenkodierung komprimiert werden. Dies ergibt w4a3d1e1x6.

Aufgabe

Komprimiere aaabbbcdddeeeeeeeeef. Wann ist Lauflängenkodierung besonders effizient, wann nicht?

Taubenschlagprinzip

Gibt es weniger Nistplätze für Tauben als es Tauben im Taubenschlag gibt, müssen mind. zwei Tauben einen Nistplatz teilen.

Taubenschlagprinzip

Gibt es weniger Nistplätze für Tauben als es Tauben im Taubenschlag gibt, müssen mind. zwei Tauben einen Nistplatz teilen.

Taubenschlagprinzip

Gibt es weniger Nistplätze für Tauben als es Tauben im Taubenschlag gibt, müssen mind. zwei Tauben einen Nistplatz teilen.

Beweis für Datenkompression: Annahme es gäbe einen

 \rightarrow dieser erzeugte aus jeder Bitfolge der Länge n, eine komprimierte Bitfolge der Länge höchstens n-1

Taubenschlagprinzip

Gibt es weniger Nistplätze für Tauben als es Tauben im Taubenschlag gibt, müssen mind. zwei Tauben einen Nistplatz teilen.

- \rightarrow dieser erzeugte aus jeder Bitfolge der Länge n, eine komprimierte Bitfolge der Länge höchstens n-1
- \rightarrow bildete 2^n mögliche Urbitfolgen auf $2^n 1$ Bitfolgen ab

Taubenschlagprinzip

Gibt es weniger Nistplätze für Tauben als es Tauben im Taubenschlag gibt, müssen mind. zwei Tauben einen Nistplatz teilen.

- \rightarrow dieser erzeugte aus jeder Bitfolge der Länge n, eine komprimierte Bitfolge der Länge höchstens n-1
- \rightarrow bildete 2^n mögliche Urbitfolgen auf $2^n 1$ Bitfolgen ab
- → laut Taubenschlagprinzip repräsentierte dann mind. einer dieser mind. zwei unterschiedliche Urbitfolgen

Taubenschlagprinzip

Gibt es weniger Nistplätze für Tauben als es Tauben im Taubenschlag gibt, müssen mind. zwei Tauben einen Nistplatz teilen.

- \rightarrow dieser erzeugte aus jeder Bitfolge der Länge n, eine komprimierte Bitfolge der Länge höchstens n-1
- \rightarrow bildete 2^n mögliche Urbitfolgen auf $2^n 1$ Bitfolgen ab
- → laut Taubenschlagprinzip repräsentierte dann mind. einer dieser mind. zwei unterschiedliche Urbitfolgen
- zu jeder komprimierter Bitfolge ist eindeutig genau eine unkomprimierter Bitfolge zugeordnet

Zusammenfassung zu Kodierungen

