Techniques for data cleansing

Readings for today

• Müller, H., & Freytag, J. C. (2003). Problems, Methods, and Challenges in Data Cleansing. Berlin: HUB-IB-164.

Topics

1. Data cleansing

2. Types of anomalies

3. Data quality criterion

Data cleansing

Real data is messy

Once you have a tidy data table, there are lots of ways that errors can be present.

- Some are obvious.
- Some are hidden

date	daily deaths	hospitalized
5/7/20	2752	51425
4/29/20	2685	55987
4/15/20	2546	59924
5/5/20	2494	53176
4/21/20	2481	59773
12/1/20	2473	98691
4/14/20	2353	59600
11/25/20	2289	89959
4/16/20	2197	59498
4/30/20	2153	54921
4/17/20	2118	58886
4/22/20	2082	59212
4/11/20	2079	55557
4/28/20	2077	56034
4/10/20	2072	53167
11/24/20	2066	88080

What is data cleansing?

Data cleansing: The identification & accounting for anomalies in your data.

It is assumed that your observations have a veridical mapping to entities in the real world.

Definition of terms

Anomaly: Property of data that renders it an incorrect representation

of the world.

Data: Symbolic representation of information.

Tuple: List of discrete values from a finite set.

Feature vector: Collection of observations.

Syntactical: Errors in labels or formats.

Semantic: Errors in the fundamental value of observations themselves.

Coverage: Gaps in the collection process.

Syntactical:

• Lexical errors: Discrepancy between structure of data & format.

Subject ID	Trial	Accuracy	RT	
S001	1	correct	incorrect	
S001	2	correct	599	
S001	3	incorrect	240	
S002	1	incorrect	692	
S002	2	correct	476	
S002	3	correct	301	

Syntactical:

- Lexical errors: Discrepancy between structure of data & format.
- Domain format errors: Value for attribute does not match domain.

Name	Trial	Cond	RT
Smith, John	1	A	380
Doe, Jane	2	В	599
Smith, Karen	3	A	240
PairMax	1	A	692

Missing comma in name format

Syntactical:

- Lexical errors: Discrepancy between structure of data & format.
- Domain format errors: Value for attribute does not match domain.
- Irregularities: Non-uniform use of values, units, or observations.

Subject ID	Trial	Cond	RT
S001	1	Α	380
S001	2	В	599
S001	3	Α	240
S002	1	A	692
S002	2	В	0.476
S002	3	A	301

Units change from milliseconds to seconds

Semantic:

 Integrity constraint violations: Value does not match constraints of attribute.

Age cannot be negative

Semantic:

- Integrity constraint violations: Value does not match constraints of attribute.
- Contradictions: Values violate a dependency.

Semantic:

- Integrity constraint violations: Value does not match constraints of attribute.
- Contradictions: Values violate a dependency.
- Duplicates: 2 or more data points represent the same thing.

Semantic:

- Integrity constraint violations: Value does not match constraints of attribute.
- Contradictions: Values violate a dependency.
- Duplicates: 2 or more data points represent the same thing.
- Invalid tuples: General case for all other semantic errors.

Subject ID	Age	DOB
S001	41	4/14/1979
S002	24	12/25/1996
S003	37	1/1/1984
S004	128	1/24/1891
Outlier or extreme value		

Coverage:

Missing value: Omission of an observation or data point

Coverage:

- Missing value: Omission of an observation or data point
- Missing tuples: Omission of a full variable or feature.

Remember the goal

How do anomalies distort the mapping between world and observations?

- I. Accuracy: Exact, uniform, & complete representations of the world.
- Integrity: Data set contains representations of all desired aspects of the world.
 - Completeness: All the unique variables & observations are present.
 - Validity: No contradictions or invalid tuples.

- I. Accuracy: Exact, uniform, & complete representations of the world.
- Integrity: Data set contains representations of all desired aspects of the world.

(Semantic)

• Consistency: Data set is uniform & free of contradictions.

(Syntactic)

- Schema conformity: No lexical or domain formatting errors.
- Uniformity: All observations of the same variable have the same format.

- I. Accuracy: Exact, uniform, & complete representations of the world.
 - Integrity: Data set contains representations of all desired aspects of the world.

(Semantic)

• Consistency: Data set is uniform & free of contradictions.

(Syntactic)

Density: For all n observations & p
variables, you have exactly n × p
values.

(Coverage)

- I. Accuracy: Exact, uniform, & complete representations of the world.
 - Integrity: Data set contains representations of all desired aspects of the world.

(Semantic)

• Consistency: Data set is uniform & free of contradictions.

(Syntactic)

Density: For all n observations & p
variables, you have exactly n × p
values.

(Coverage)

II. Uniqueness: There are no duplicate entries or variables.

Anomaly to quality criterion

Criterion

Schema Completeness **Validity** Uniformity Uniqueness **Density** Conformity **Lexical Errors Domain format** errors Irregularities **Constraint Violations** Missing Values Missing Tuples **Duplicates Invalid Tuples**

Steps of data cleansing

- Defines a logic for cleansing pipelines.
- Leave original data untouched.
- Automate as many steps as possible

Take home message

Developing a formal process for identifying anomalies, correcting identified anomalies, and evaluating for quality makes your data a more veridical representation of the real word.