第6次作业 自硕2| 崔晏菲 2042/0976

(月) fibbs distribution = = exp{-(喜dih;+毫fiv; + 至毫Wijh; Vj)}

(2) Cluster Graph:

H, V, H, H, V2

V, V2

Hz, V2

Hz, V3

Belief propagation 代码为;

```
def Ealief propagation(self):

protectials = self.markov_network = self.markov_network.T

for in range(potentials.hope(a)):

potentials = self.markov_network = self.markov_network.T

for in range(potentials.hope(a)):

potentials(i,i) / - 2

massage = n.once((potentials.shope(a), 2))

bilefs = n.once((potentials.shope(a), 2))

bilefs = fervations = bolist(s;(,a)=ceshape(-1,a)).oopy()

shile(True):

for a range(potentials.shope(b)):

for a range(potentials.shope(b)):

for a range(potentials.shope(b)):

s_neighbors_discard(s)

__neighbors_discard(s)
__neighbors_discard(s
```

进代了12次新收敛了.

13 A1 66) T	边缘饰女吓,	51X \$ 311	的直定信	十分提后	3
114 / 180 -		pagation得到的每个			, •
		BP得到的边缘分布			
	0 H1	0.396029	0.396086		
	1 H1	1 0.603971	0.603914		
	2 H2	0.784402	0.784246		
	3 H2	1 0.215598	0.215754		
	4 V1	0.601171	0.601142		
	5 V1	1 0.398829	0.398858		
	6 V2	0.484688	0.484701		
	7 V2	1 0.515312	0.515299		
	8 V3	0.414948	0.414986		
	9 V3	1 0.585052	0.585014		
iz m	z %j. ie N =	Σ [-V leighbr(j) jθi]	ν _{ij} θὶ] -	ال کان کان	t C
代33为:	def Newn field inference(self): delta = 1e-20 potentials = self.markov_network = se Q = np.ones(potentials.shape(0), 20) for in range(potentials.shape(0)): potentials[i,1] /= 2 before = None Q:teretions = Q[:1].reshape(-1,1).c thile(True) for j in range(potentials.shape(0)): for j in range(potentials.shape(0)): j.neighbors = set(list(np.who j.neighbors.discard(j)) j.neighbors.discard(j)	1f.markov_network.T OPP()]): re(potentials[j]!-0)[0])) s) j.neighbors]*0[j_neighbors,0; j_neighbors]*0[j_neighbors,1) - potentials[j,j]*0) - potentials[j,j]*1		
	before = Q.copy() Q.trerations = np.concatenate elif(np.sum(np.abs()ebfore))>>de before = Q.copy() Q.trerations = np.concatenate else: Q.trerations = np.concatenate break	([Q_iterations, before[:,1].re	eshape(-1,1)], axis-1)		
	return Q, Q_iterations				

进行了24次年光收金义了

得到的边缘分布为

		点守	取值	MFI得到的边缘分布	真实边缘分布
	0	H1	0	0.374662	0.396086
	1	H1	1	0.625338	0.603914
	2	H2	0	0.786248	0.784246
	3	H2	1	0.213752	0.215754
	4	V1	0	0.602864	0.601142

0.398858

Mean field variational inference得到的每个节点的边缘分布为:

5 V2 0 0.479365 0.484701 7 V2 1 0.520635 0.515299 8 V3 0 0.405503 0.414986

0.397136

9 V3 1 0.594497 0.585014

可以看到和真实值较为接近,但有一定偏差.

(4) 经过比较我们可以发现,帮助超断在很短进代内就会收敛,最终结果有偏差。偏差是无法避免的,因为贝和P本身充的偏差。而Gibbs sampling 公证足够长的迭代次数,多么收敛到真实值。