计算理论作业 2

颜俊梁 MF21330103

2022年5月29日

题目 3.1. 证明括号引理: 对于任何 $M \in \Lambda$, 在 M 中出现的左括号的个数等于在 M 中出现的右括号的个数.

解答. 对 M 的结构归纳.

- 1. $M \equiv x \ (x \in \nabla)$: M 没有左右括号, 引理成立.
- 2. $M \equiv (\lambda x. N) \ (x \in \nabla, N \in \Lambda)$: 有归纳假设 N 中的左右括号数量相同. M 又引入了一对新的左右括号,故 M 中的左右括号数量仍然相同.
- 3. $M \equiv (N_1 N_2) \ (N_1, N_2 \in \Lambda)$: 有归纳假设 N_1, N_2 中的左右括号数量相同. M 又引入了一对新的左右括号,故 M 中的左右括号数量仍然相同.

证毕.

题目 3.2. 试求 SSSS 的 β -nf.

解答. 标准组合子 $S = \lambda xyz. xz(yz)$.

$$SSSS$$

$$\rightarrow_{\beta} (\lambda xyz. xz(yz))SSS$$

$$\rightarrow_{\beta} SS(SS)$$

$$= (\lambda xyz. xz(yz))S(SS)$$

$$\rightarrow_{\beta} \lambda z. Sz(SSz)$$

$$= \lambda z. (\lambda xyz. xz(yz))z(SSz)$$

$$\rightarrow_{\beta} \lambda z. \lambda l. zl(SSzl)$$

$$= \lambda z. \lambda l. zl((\lambda xyz. xz(yz))Szl)$$

$$\rightarrow_{\beta} \lambda z. \lambda l. zl(Sl(zl))$$

$$= \lambda z. \lambda l. zl((\lambda xyz. xz(yz))l(zl))$$

$$\rightarrow_{\beta} \lambda z. \lambda l. zl((\lambda k. lk(zlk))$$

题目 3.3. 证明: $(\lambda x. xxx)(\lambda x. xxx)$ 没有 β -nf.

解答. \diamondsuit $W = (\lambda x. xxx)(\lambda x. xxx).$

$$W = (\lambda x. xxx)(\lambda x. xxx)$$

$$\to_{\beta} (\lambda x. xxx)(\lambda x. xxx)(\lambda x. xxx)$$

$$= W(\lambda x. xxx)$$

$$\to_{\beta} W(\lambda x. xxx)(\lambda x. xxx)$$

$$\to_{\beta} W(\lambda x. xxx)(\lambda x. xxx)$$

$$\to_{\beta} W(\lambda x. xxx)(\lambda x. xxx)$$

$$\to_{\beta} ...$$

在每步规约时,有且仅有一个 β – redex $(W = (\lambda x. xxx)(\lambda x. xxx))$,对它进行规约后产生了一个无穷规约链,因此 $(\lambda x. xxx)(\lambda x. xxx)$ 没有 β -nf.

题目 3.4. 设 $F \in \Lambda$ 呈形 $\lambda x. M$, 证明:

- 1. $\lambda z. Fz =_{\beta} F$;
- 2. $\lambda z. yz \neq_{\beta} y.$

解答.

- 1. $\lambda z. Fz = \lambda z. (\lambda x. M)z \rightarrow_{\beta} \lambda z. M[x := z] =_{\alpha} \lambda x. M \equiv F$, 因此 $\lambda z. Fz =_{\beta}$ F.
- 2. 若 $y \equiv v \ (v \in \nabla)$, 即 y 是一个变量, 此时 $\lambda z. yz$ 是一个 β -nf, 显然 $\lambda z. yz \neq_{\beta} y.$

题目 3.5. 证明二元不动点定理: 对于任何 $F,G \in \Lambda$, 存在 $X,Y \in \Lambda$, 满足

$$FXY = X \tag{1}$$

$$GXY = Y (2)$$

解答. 消元法, 对于 (2) 式 GXY=Y, 有 $Y=\Theta(GX)$. 将其带人 (1) 式, 有 $FX(\Theta(GX))=X$. 对左边进行 λ 抽象, $(\lambda z.Fz(\Theta(Gz)))X=X$. 所以有解

$$X = \Theta(\lambda z.Fz(\Theta(Gz)))$$
$$Y = \Theta(G(\Theta(\lambda z.Fz(\Theta(Gz)))))$$

题目 3.6. 证明: 对任何 $M, N \in \Lambda^{\circ}$, 方程 xN = Mx 对于 x 有解.

解答. 令 $x = \lambda z.T$ ($z \notin FV(T)$),于是 $xN \to_{\beta} T$,现在解方程 $T = M(\lambda z.T)$. 对右边进行 λ 抽象 $T = (\lambda y. M(\lambda z.y))T$,因此 $T = \Theta(\lambda y. M(\lambda z.y))$,所以 $x = \lambda z. \Theta(\lambda y. M(\lambda z.y))$.

题目 3.7. 证明: 对于任意 $P,Q \in \Lambda$, 若 $P \rightarrow_{\beta} Q$, 则存在 $n \geq 0$ 以及 $P_0, \ldots, P_n \in \Lambda$, 满足

- 1. $P \equiv P_0$
- 2. $Q \equiv P_n$
- 3. 对于任何 $0 \le i < n, P_i \rightarrow_{\beta} P_{i+1}$.

解答. 根据定义, \rightarrow_{β} 是 \rightarrow_{β} 的自反传递闭包, 即

$$\Rightarrow_{\beta} = \bigcup_{i=0}^{\infty} (\Rightarrow_{\beta})^i$$

因为 $P wop_{\beta} Q$, 所以存在 $n \in \mathbb{N}$, 使得 $P(\to_{\beta})^n Q$, 也就是存在这样的序列 $p \equiv P_0 \to_{\beta} P_1 \to_{\beta} \ldots \to_{\beta} P_n \equiv Q$, 满足 $P \equiv P_0$, $Q \equiv P_n$, 对于任何 $0 \le i < n$, $P_i \to_{\beta} P_{i+1}$.

题目 3.8. 证明: 对于任意 $P,Q \in \Lambda$, 若 $P \twoheadrightarrow_{\beta} Q$, 则 $\lambda z. P \twoheadrightarrow_{\beta} \lambda z. Q$.

解答. 根据题目 3.9, 存在归约序列 $P \equiv P_0 \rightarrow_{\beta} P_1 \rightarrow_{\beta} \dots \rightarrow_{\beta} P_n \equiv Q$. 于 是 $\lambda z. P \rightarrow_{\beta} \lambda z. P_0 \rightarrow_{\beta} \lambda z. P_1 \rightarrow_{\beta} \dots \rightarrow_{\beta} \lambda z. P_n \equiv \lambda z. Q$, 因此 $\lambda z. P \rightarrow_{\beta} \lambda z. Q$.

题目 3.9. 证明: 对于任意 $P,Q \in \Lambda$, 若 $P =_{\beta} Q$, 则存在 $n \geq 0$ 以及 $P_0, \ldots, P_n \in \Lambda$, 满足

- 1. $P \equiv P_0$
- 2. $Q \equiv P_n$
- 3. 对于任何 $0 \le i < n, P_i \rightarrow_{\beta} P_{i+1}$ 或 $P_{i+1} \rightarrow_{\beta} P_i$.

解答. 根据定义知道 = $_{\beta}$ 为 \rightarrow_{β} 的自反传递对称闭包, 于是

$$=_{\beta} = \bigcup_{i=0}^{\infty} (\rightarrow_{\beta} \cup \leftarrow_{\beta})^{i}$$

因为 $P =_{\beta} Q$, 所以存在 $n \in \mathbb{N}$, $P(\to_{\beta} \cup \leftarrow_{\beta})^{n}Q$. 因此存在序列 $P_{0}, \ldots, P_{n} \in \Lambda$, 使得 $P \equiv P_{0}$, $Q \equiv P_{n}$, 且对于任何 $0 \leq i < n$, $P_{i} \to_{\beta} P_{i+1}$ 或 $P_{i+1} \to_{\beta} P_{i}$.

题目 3.10. 证明: 对于任何 $M, N \in \Lambda$,

$$M =_{\beta} N \Leftrightarrow \lambda \beta \vdash M = N$$

解答. 首先证明"⇒". 证明, 若 $M =_{\beta} N$, 那么 $\lambda \beta \vdash M = N$. 先证明一个引理, 若 $M \to_{\beta} N$, 那么 $\lambda \beta \vdash M = N$. 对 \to_{β} 的结构作归纳.

- 1. $(M, N) \in \beta$, 那么由 $\lambda \beta$ 形式系统的 β 公理, 可知 $\lambda \beta \vdash M = N$.
- 2. (M, N) 呈形 (MP, MQ), 根据结构归纳假设若 $P \to_{\beta} Q$, 那么 $\lambda\beta \vdash P = Q$, 因为 μ 公理, $\lambda\beta \vdash MP = MQ$.
- 3. (M, N) 呈形 (PM, QM), 根据结构归纳假设若 $P \to_{\beta} Q$, 那么 $\lambda\beta \vdash P = Q$, 因为 v 公理, $\lambda\beta \vdash PM = QM$.
- 4. (M, N) 呈形 $(\lambda z. P, \lambda z. Q)$, 根据结构归纳假设若 $P \to_{\beta} Q$, 那么 $\lambda \beta \vdash P = Q$, 因为 ξ 公理, $\lambda \beta \vdash \lambda z. P = \lambda z. Q$.

在证明, 若 $M \leftarrow_{\beta} N$, 那么 $\lambda\beta \vdash M = N$. 此时 $N \rightarrow_{\beta} M$, 所以 $\lambda\beta \vdash N = M$, 根据 σ 公理, $\lambda\beta \vdash M = N$.

根据题目 3.9, 存在序列 $P_0, \ldots, P_n \in \Lambda$, 使得 $M \equiv P_0, N \equiv P_n$, 且对于 任何 $0 \le i < n$, $P_i \to_{\beta} P_{i+1}$ 或 $P_{i+1} \to_{\beta} P_i$. 所以 $\lambda \beta \vdash P_0 = P_1, \ldots, \lambda \beta \vdash P_{n-1} = P_n$. 连续使用公理 τ , 可知 $\lambda \beta \vdash P_0 = P_n$, 因此 $\lambda \beta \vdash M = N$. 然后证明 " \leftarrow ". 证明, 若 $\lambda\beta \vdash M = N$, 那么 $M =_{\beta} N$. 对 $\lambda\beta \vdash M = N$ 的证明作结构归纳.

- 1. M = N 为公理 ρ 或 β 得到, 易见 $M =_{\beta} N$.
- 2. M = N 由公理 σ 得到, 此时我们有 N = M, 由归纳假设 $M =_{\beta} N$.
- 3. M=N 由公理 τ 得到,此时我们有 M=N,N=L,有归纳假设 $M=_{\beta}N,N=_{\beta}L$,所以 $M=_{\beta}L$.
- 4. M = N 由公理 μ 或公理 ν 得到, 根据 $=_{\beta}$ 的合拍性易知成立.
- 5. M = N 由公理 ξ 得到, 根据题目 3.8 证明的结论易知成立.

因此 $M =_{\beta} N$.

综上所述, $M =_{\beta} N \Leftrightarrow \lambda \beta \vdash M = N$.

题目 3.11. 证明: 对于任何 $M, N \in \Lambda$,

$$M =_{\beta n} N \Leftrightarrow \lambda \beta \eta \vdash M = N$$

- **解答.** 首先证明 "⇒". 证明, 若 $M =_{\beta\eta} N$, 那么 $\lambda\beta\eta \vdash M = N$. 先证明一个引理, 若 $M \to_{\beta\eta} N$, 那么 $\lambda\beta\eta \vdash M = N$. 对 $\to_{\beta\eta}$ 的结构作归纳.
 - 1. $(M, N) \in \beta$, 那么由 $\lambda \beta \eta$ 形式系统的 β 公理, 可知 $\lambda \beta \eta \vdash M = N$.
 - 2. $(M, N) \in \eta$, 那么由 $\lambda \beta \eta$ 形式系统的 η 公理, 可知 $\lambda \beta \eta \vdash M = N$.
 - 3. (M, N) 呈形 (MP, MQ), 根据结构归纳假设若 $P \to_{\beta\eta} Q$, 那么 $\lambda\beta\eta \vdash P = Q$, 因为 μ 公理, $\lambda\beta\eta \vdash MP = MQ$.

- 4. (M,N) 呈形 (PM,QM), 根据结构归纳假设若 $P \to_{\beta\eta} Q$, 那么 $\lambda\beta\eta \vdash P = Q$, 因为 v 公理, $\lambda\beta\eta \vdash PM = QM$.
- 5. (M, N) 呈形 $(\lambda z. P, \lambda z. Q)$,根据结构归纳假设若 $P \rightarrow_{\beta\eta} Q$,那么 $\lambda\beta\eta \vdash P = Q$,因为 ξ 公理, $\lambda\beta\eta \vdash \lambda z. P = \lambda z. Q$.

在证明, 若 $M \leftarrow_{\beta} N$, 那么 $\lambda\beta\eta \vdash M = N$. 此时 $N \rightarrow_{\beta\eta} M$, 所以 $\lambda\beta\eta \vdash N = M$, 根据 σ 公理, $\lambda\beta\eta \vdash M = N$.

根据题目 3.9, 存在序列 $P_0, \ldots, P_n \in \Lambda$, 使得 $M \equiv P_0$, $N \equiv P_n$, 且对于 任何 $0 \le i < n$, $P_i \to_{\beta\eta} P_{i+1}$ 或 $P_{i+1} \to_{\beta\eta} P_i$. 所以 $\lambda\beta\eta \vdash P_0 = P_1, \ldots, \lambda\beta\eta \vdash P_{n-1} = P_n$. 连续使用公理 τ , 可知 $\lambda\beta\eta \vdash P_0 = P_n$, 因此 $\lambda\beta\eta \vdash M = N$.

然后证明 " \leftarrow ". 证明, 若 $\lambda\beta\eta \vdash M = N$, 那么 $M =_{\beta\eta} N$. 对 $\lambda\beta\eta \vdash M = N$ 的证明作结构归纳.

- 1. M = N 为公理 ρ , β 或 η 得到, 易见 $M =_{\beta \eta} N$.
- 2. M = N 由公理 σ 得到, 此时我们有 N = M, 由归纳假设 $M =_{\beta\eta} N$.
- 3. M = N 由公理 τ 得到, 此时我们有 M = N, N = L, 有归纳假设 $M = \beta_{\eta} N, N = \beta_{\eta} L$, 所以 $M = \beta_{\eta} L$.
- 4. M = N 由公理 μ 或公理 v 得到, 根据 $=_{\beta\eta}$ 的合拍性易知成立.
- 5. M = N 由公理 ξ 得到, 根据题目 3.8 证明的结论易知成立.

因此 $M =_{\beta\eta} N$.

综上所述, $M =_{\beta\eta} N \Leftrightarrow \lambda\beta\eta \vdash M = N$.

题目 3.12. 证明: 对于任何 $M, N \in \Lambda$, 若 $M =_{\beta} N$, 则存在 T 使 $M \rightarrow_{\beta} T$ 且 $N \rightarrow_{\beta} T$. 这就是 $=_{\beta}$ 的 CR 性质.

解答. 设 $M =_{\beta} N$, 根据题目 3.9 可知, 存在序列 $P_0, \ldots, P_n \in \Lambda$, 使得 $P \equiv P_0, Q \equiv P_n$, 且对于任何 $0 \le i < n, P_i \to_{\beta} P_{i+1}$ 或 $P_{i+1} \to_{\beta} P_i$.

下面对 i 作归纳证明, 存在 $T_i \in \Lambda$ 使得 $P_0 \rightarrow_{\beta} T_i$ 且 $P_i \rightarrow_{\beta} T_i$.

奠基: 当 i=0 时, 取 T_0 为 M 即可.

归纳假设: 当 i=k (k < n) 时, 存在 $T_k \in \Lambda$ 使得 $P_0 \rightarrow_\beta T_k$ 且. $P_k \rightarrow_\beta T_k$.

归纳步骤: 当 i = k + 1 时, 由归纳假设知 $P_0 \rightarrow_{\beta} T_k$ 且 $P_k \rightarrow_{\beta} T_k$.

情况 1: $P_k \to_{\beta} P_{k+1}$, 从而有 CR 性质, 存在 T_{k+1} 满足 $T_k \to_{\beta} T_{k+1}$ 且. $P_{k+1} \to_{\beta} T_{k+1}$. 因为 $P_0 \to_{\beta} T_k$, 所以 $P_0 \to_{\beta} T_{k+1}$, 从而命题成立.

情况 2: $P_{k+1} \rightarrow_{\beta} P_k$, 于是 $P_{k+1} \rightarrow_{\beta} T_k$, 又 $P_0 \rightarrow_{\beta} T_k$, 所以存在 $T_{k+1} \equiv T_k$, 命题成立.

综上, 存在 T_n 使得 $P_0 \rightarrow_\beta T_n$ 且 $P_n \rightarrow_\beta T_n$, 取 $T \equiv T_n$ 有 $M \rightarrow_\beta T$ 且 $N \rightarrow_\beta T$.

题目 3.13. 证明: 若在形式系统 $\lambda\beta$ 中加入下述公理:

(A)
$$\lambda xy. x = \lambda xy. y$$

则对于任何 $M, N \in \Lambda$, $\lambda \beta + (A) \vdash M = N$.

解答. 根据公理 A, λxy . $x = \lambda xy$. y, 对于任意 M, $N \in \Lambda$, 使用两次 v 公理 有 $(\lambda xy. x)MN = (\lambda xy. y)MN$.

对于左边, 使用两次 β 公理 $(\lambda xy. x)MN = M$. 对于右边, $(\lambda xy. y)MN = N$. 然后使用公理 τ , 有 M = N.

因此对于任何 $M, N \in \Lambda, \lambda\beta + (A) \vdash M = N$.

题目 3.14. 证明: 设 $R \in \Lambda$ 上的一个二元关系, $M \in NF_R$, 则

1. 不存在 $N \in \Lambda$ 使得 $M \to_R N$;

2. $M \rightarrow_R N \Rightarrow M \equiv N$.

解答.

- 1. 根据定义, 对于 $M \in NF_R$, M 中不包含 R-redex 形式的子项, 因此不存在 $N \in \Lambda$ 使得 $M \to_R N$.
- 2. 假设 $M \neq N$, 根据题目 3.9 知存在序列 $P_0, ..., P_n \in \Lambda$, 使得 $P \equiv P_0$, $Q \equiv P_n$, 且对于任何 $0 \leq i < n$, $P_i \to_R P_{i+1}$ 或 $P_{i+1} \to_R P_i$. 因为 $M \neq N$, 所以序列长度至少为 1, 即存在 $M \to_R N$ 或者 $N \to_R M$, 与本题第一问命题矛盾.

综上 $M \rightarrow_R N \Rightarrow M \equiv N$.

题目 3.15. 若 $M \triangleright_{mcd} M'$ 且 $N \triangleright_{mcd} N'$, 则 $MN \triangleright_{mcd} M'N'$.

解答. $M \triangleright_{\text{mcd}} M'$ 表明存在序列 M_0, M_1, \ldots, M_n 将 M 归约到 M'. $N \triangleright_{\text{mcd}} N'$ 同样存在这样的归约序列 N_0, N_1, \ldots, N_n . 将两个序列合并可以得到 $M_0N_0, M_1N_0, \ldots, M_nN_0, M_nN_1, \ldots, M_nN_n$ 是从 MN 到 M'N' 的 minimal complete development, 即 $MN \triangleright_{\text{mcd}} M'N'$.

题目 3.16. 试找出 $A \in \Lambda^{\circ}$ 使 $A \lambda$ — 定义函数 f(x,y) = x + y.

解答. $A \equiv \lambda xyfz.xf(yfz)$, 于是

$$A \lceil n \rceil \lceil m \rceil \equiv (\lambda xyfz. xf(yfz)) \lceil n \rceil \lceil m \rceil$$

$$=_{\beta} \lambda fz. \lceil n \rceil f(\lceil m \rceil fz)$$

$$=_{\beta} \lambda fz. f^{n}(f^{m}z)$$

$$= \lambda fz. f^{n+m}z$$

$$= \lceil n + m \rceil$$

所以 $A \lambda$ 一 定义函数 f(x,y) = x + y.

题目 3.17. 试找出 $A \in \Lambda^{\circ}$ 使 $A \lambda$ 一定义函数 f(x) = 3x.

解答. $A \equiv \lambda x f z. x f(x f(x f z))$, 于是

$$A \lceil n \rceil \equiv (\lambda x f z. x f(x f(x f z))) \lceil n \rceil$$

$$=_{\beta} \lambda f z. \lceil n \rceil f(\lceil n \rceil f(\lceil n \rceil f z))$$

$$=_{\beta} \lambda f z. f^{n}(\lceil n \rceil f(\lceil n \rceil f z))$$

$$=_{\beta} \lambda f z. f^{n}(f^{n}(\lceil n \rceil f z))$$

$$=_{\beta} \lambda f z. f^{n}(f^{n}(f^{n}z))$$

$$= \lambda f z. (f^{3n}z)$$

$$= \lceil 3n \rceil$$

所以 $A \lambda$ 一 定义函数 f(x) = 3x.

题目 3.18. 令 $D \equiv \lambda xyz. z(Ky)x$, 证明: 对于任意的 $X, Y \in \Lambda$,

$$DXY \lceil 0 \rceil = X$$
$$DXY \lceil n + 1 \rceil = Y$$

这里 $K \equiv \lambda xy. x$, $\lceil n \rceil \equiv \lambda fx. f^n x$.

解答.

第一, $DXY \cap 0 \cap \equiv (\lambda xyz. z(Ky)x)XY \cap 0 \cap \rightarrow \beta \cap 0 \cap (KY)X = (\lambda fx. x)(KY)X \rightarrow \beta X.$

第二,
$$DXY \lceil n+1 \rceil \equiv (\lambda xyz. z(Ky)x)XY \lceil n+1 \rceil \twoheadrightarrow_{\beta} \lceil n+1 \rceil (KY)X = (\lambda fx. f^{n+1}x)(KY)X \twoheadrightarrow_{\beta} ((KY)^{n+1}X) = ((\lambda y. Y)^{n+1}X) \twoheadrightarrow_{\beta} Y.$$

题目 3.19. 设 $\operatorname{Exp} \equiv \lambda xy. yx$, 证明: 对于任意的 $n \in \mathbb{N}$ 和 $m \in \mathbb{N}^*$,

$$\operatorname{Exp} \lceil n \rceil \lceil m \rceil =_{\beta} \lceil n^{m} \rceil$$

(Exp 由 Rosser 教授作出)

解答. 对 *m* 进行数学归纳.

奠基: 当 m = 1,

$$\begin{aligned} \operatorname{Exp} \lceil n \rceil \rceil \rceil &= (\lambda x y. y x) \lceil n \rceil (\lambda f x. f x) \\ &= (\lambda f x. f x) \lceil n \rceil \\ &= \lambda x. \lambda f z. f^n z x \\ &= \lambda x z. x^n z \\ &\equiv \lceil n^1 \rceil \end{aligned}$$

成立。

归纳假设: 当 m=k 时, $\mathrm{Exp}\lceil n\rceil\lceil k\rceil =_{\beta}\lceil n^k\rceil$.

$$\operatorname{Exp} \lceil n \rceil \lceil k \rceil = (\lambda x y. yx) \lceil n \rceil (\lambda f x. f^k x)$$
$$= (\lambda f x. f^k x) \lceil n \rceil$$
$$= \lambda x. (\lambda f z. f^n z)^k x$$

因此 $\lambda x. (\lambda f z. f^n z)^k x = \lceil n^k \rceil.$

归纳步骤: 对于 m = k + 1,

$$\begin{aligned}
& = (\lambda xy.yx) \lceil n \rceil (\lambda fx. f^{k+1}x) \\
& = (\lambda fx. f^{k+1}x) \lceil n \rceil \\
& = \lambda x. (\lambda fz. f^n z)^{k+1}x \\
& = \lambda x. (\lambda fz. f^n z)((\lambda fz. f^n z)^k x) \\
& = \lambda x. (\lambda fz. f^n z)(\lambda y. ((\lambda fz. f^n z)^k y))x \\
& = \lambda x. (\lambda fz. f^n z)(\lceil n^k \rceil x) \\
& = \lambda xz. (\lambda y. x^{n^k}y)^n z \\
& = \lambda xz. (\lambda y. x^{n^k}y)(\dots ((\lambda y. x^{n^k}y)z)) \\
& \equiv \lambda xz. x^{n^{k+1}}z \\
& \equiv \lceil n^{k+1} \rceil
\end{aligned}$$
(By I.H.)

综上, 对于任意的 $n \in \mathbb{N}$ 和 $m \in \mathbb{N}^*$, $\operatorname{Exp} \lceil n \rceil \lceil m \rceil =_{\beta} \lceil n^m \rceil$.

题目 3.20. 构造 $F \in \Lambda^{\circ}$ 使得对于任何 $n \in \mathbb{N}$,

$$F \sqcap n \rceil =_{\beta} \lceil 2^{n} \rceil$$

解答. 使用题目 3.18 中的 D 和题目 3.19 中的 Exp, 有 $F \equiv \lambda x$. $D \cap \Gamma \cap (Exp \cap 2 \cap x) x$.

题目 3.21. 设 $f, g: \mathbb{N} \to \mathbb{N}, f = \text{Itw}[g], 即$

$$f(0) = 0$$
$$f(n+1) = g(f(n))$$

且 $G \in \Lambda^{\circ}$ λ -定义函数 g. 试求 $F \in \Lambda^{\circ}$ 使得 F λ -定义函数 f.

解答. 构造方程

$$F \lceil n \rceil = D \lceil 0 \rceil (G(F(\operatorname{pred} \lceil n \rceil))) \lceil n \rceil$$

$$F \lceil n \rceil = (\lambda n. D \lceil 0 \rceil (G(F(\operatorname{pred} n)))n) \lceil n \rceil$$

$$F \lceil n \rceil = (\lambda f n. D \lceil 0 \rceil (G(f(\operatorname{pred} n)))n) F \lceil n \rceil$$

因此, $F \equiv \Theta(\lambda f n. D \cap G(f(\operatorname{pred} n)))n) \lambda$ -定义了函数 f.

题目 3.22. 存在一般递归函数 $var, app, abs, num : \mathbb{N} \to \mathbb{N}$ 使得

- 1. $\forall n \in \mathbb{N}. \operatorname{var}(n) = \sharp(\upsilon^{(n)});$
- 2. $\forall M, N \in \Lambda$. app $(\sharp M, \sharp N) = \sharp (MN)$;
- 3. $\forall x \in \nabla, M \in \Lambda. \operatorname{abs}(\sharp x, \sharp M) = \sharp(\lambda x. M);$
- 4. $\forall n \in \mathbb{N}. \operatorname{num}(n) = \sharp \lceil n \rceil.$

解答. 我们取 $[x,y] = 2^x \cdot 3^y$, $\Pi_1 = ep_0$, $\Pi_2 = ep_1$, 从而 $[\cdot,\cdot]$, $\Pi_1,\Pi_2 \in \mathcal{EF}$.

- 1. $\sharp(\upsilon^{(n)}) = [0, n] \in \mathcal{EF}$, 所以取 $var(n) = [0, n] \in \mathcal{EF}$.
- 2. 取 app $(m,n) = [1,[m,n]] \in \mathcal{EF}$.
- 3. \mathbb{R} abs $(n, m) = [2, [n, m]] \in \mathcal{EF}$.
- 4. 对于 ♯ 「n+1 ¬ 有

$$\sharp \lceil n + 1 \rceil = \sharp (\lambda f x. f^{n+1} x)$$

$$= [2, [\sharp f, \sharp \lambda x. f^{n+1} x]]$$

$$= [2, [\sharp f, [2, [\sharp x, \sharp f^{n+1} x]]]]$$

$$= [2, [\sharp f, [2, [\sharp x, [1, [\sharp f, \sharp f^n x]]]]]]$$

对于 $\sharp \ulcorner n \urcorner = [2, [\sharp f, [2, [\sharp x, \sharp f^n x]]]],$ 因此 $\sharp f^n x = (\Pi_2 \circ \Pi_2 \circ \Pi_2 \circ \Pi_2)(\sharp \ulcorner n \urcorner).$ 因此, $\sharp \ulcorner n + 1 \urcorner = [2, [\sharp f, [2, [\sharp x, [1, [\sharp f, \Pi_2^4(\sharp \ulcorner n \urcorner)]]]]].$

令 $h(z) = [2, [\sharp f, [2, [\sharp x, [1, [\sharp f, \Pi_2^4(z)]]]]], 取 x \equiv v^{(0)}, f \equiv v^{(1)}$ 时, $h \in \mathcal{EF}$. 于是

$$\begin{cases} \text{num}(0) &= \sharp \lceil 0 \rceil \\ \text{num}(n+1) &= h(\text{num}(n)) \end{cases}$$

因此, $\operatorname{num} \in \mathcal{PRF}$ 且 $\forall n \in \mathbb{N}$. $\operatorname{num}(n) = \sharp \lceil n \rceil$.

题目 3.23. 设 f(n) 为题目 1.16 中定义的函数, 试构造 $F \in \Lambda^{\circ}$ 使 $F \cap \Pi^{\circ} = \Gamma f(n)^{\circ}$, 对于 $n \in \mathbb{N}^{+}$ 成立.

解答. 我们取 $[x, y] = 2^x \cdot 3^y$, $\Pi_1 = \text{ep}_0$, $\Pi_2 = \text{ep}_1$, 从而 $[\cdot, \cdot]$, $\Pi_1, \Pi_2 \in \mathcal{EF}$. 取 $\omega_n \equiv \lambda x. x...x$ (其中共有 $n \uparrow x \perp n \geq 1, x \equiv v^{(0)}$).

1. $f(n) = \sharp \omega_n \ (n \ge 1,$ 补充定义 f(0) = 0), 首先证明 $f \in \mathcal{PRF}$. 对于 f(n+1):

$$f(n+1) = \sharp \omega_n = [2, [\sharp v^{(0)}, \sharp v^{(0)} \dots v^{(0)}]] \qquad (\sharp n+1 \uparrow v^{(0)})$$
$$= [2, [1, [1, \sharp v^{(0)} \dots v^{(0)}]]] \qquad (\sharp n \uparrow v^{(0)})$$

又因为 $\sharp v^{(0)} = \Pi_2^2(f(n))$ (共 $n \uparrow v^{(0)}$). 所以 $f \in \mathcal{PRF}$.

2. 因为 $f \in \mathcal{PRF}$, 所以有 $F \in \Lambda^{\circ}$ 使得 $F \lceil n \rceil = \lceil \omega_n \rceil$. 根据定理 3.41 , 有 $E(F \lceil n \rceil) = E \lceil \omega_n \rceil = \omega_n$, E 为枚举子.

取 $M \equiv \lambda z. (E(Fz))z$, 因此 $M \lceil n \rceil = (E(F \lceil n \rceil)) \lceil n \rceil = \omega_n \lceil n \rceil = \lceil n \rceil \dots \rceil = \lceil n \rceil \dots \lceil n \rceil = \lceil n \rceil \dots \rceil = \lceil n \rceil \dots \rceil \dots \rceil = \lceil n \rceil \dots \rceil \dots \rceil \cap n \rceil = \lceil n \rceil \dots \rceil \cap n \rceil \cap n \rceil = \lceil n \rceil \dots \rceil \cap n \rceil \cap$

3. 最后使用题目 3.18 中的 D, 令 $L \equiv \lambda z$. $D \cap 0 \cap (Mz)z$, $L \lambda$ -定义函数 $f(n) = \underbrace{n^{-n}}_{n \wedge n}$.

题目 3.24. 构造 $H \in \Lambda^{\circ}$, 使得对于任意 $n \in \mathbb{N}, x_1, \ldots, x_n \in \Lambda$, 有

$$H \sqcap n \dashv x_1 \dots x_n =_{\beta} \lambda z. z x_1 \dots x_n$$

解答. 1. 令 $L_n \equiv [x_1, \dots, x_n] \equiv \lambda z. zx_1 \dots x_n \ (n \ge 1)$, 这里 x_i 为 $v^{(i)}$ $(1 \le i \le n), z$ 为 $v^{(0)}$.

设 $l(n) = \sharp L_n$, 约定 l(0) = 0, 下面证明 $l \in \mathcal{PRF}$.

$$l(n) = [2, [\sharp z, \sharp z x_1 \dots x_n]]$$

= $[2, [1, h(n)]]$

这里 $h(n) = \sharp zx_1 \dots x_n$.

$$h(1) = \sharp z x_1 = [1, [1, \sharp x_1]] = [1, [1, [0, 1]]]$$

$$h(n+1) = \sharp z x_1 \dots x_n x_{n+1}$$

$$= [2, [h(n), \sharp x_{n+1}]]$$

$$= [2, [h(n), [0, n+1]]]$$

补充定义 h(0) = 0, 因此 $h \in \mathcal{PRF}$. 从而 $l(n) = \begin{cases} 0 & \text{if } n = 0 \\ [2, [1, h(n)]] & 否则 \end{cases}$ $\in \mathcal{PRF}$.

2. 令 $M_n \equiv \lambda x_1 \dots x_n$. $[x_1, \dots, x_n]$, $g(n) = \sharp M_n$, $l(n) = \sharp [x_1, \dots, x_n]$. 令 $f(i, y) = [2, [[0, i], y]] \in \mathcal{PRF}$, 所以 $g(n) = f(1, f(2, \dots, f(n-1, f(n, l(n)))))$. 同习题 1.17 可以证明 $g \in \mathcal{PRF}$.

3. 存在 $G \in \Lambda^{\circ}$, $G \lambda$ -定义 g, 从而 $G \lceil n \rceil =_{\beta} \lceil M_n \rceil$, 因此 $E(G \lceil n \rceil) = M_n$.

令 $H \equiv \lambda z. E(Gz)$,从而 $H \lceil n \rceil x_1 \dots x_n = (\lambda z. E(Gz)) \lceil n \rceil x_1 \dots x_n = M_n x_1 \dots x_n = [x_1, \dots, x_n] = \lambda z. z x_1 \dots x_n$.

题目 3.25. 证明: 存在 $\Theta_2 \in \Lambda^{\circ}$, 使得对于任意 $F \in \Lambda^{\circ}$, 有

$$\Theta_2 \, \lceil F \rceil =_{\beta} F \, \lceil \Theta_2 \, \lceil F \rceil \rceil$$

解答. 令 $W \equiv \lambda xy$. $Ey(\operatorname{App}(\operatorname{App} x(\operatorname{Num} x))(\operatorname{Num} y))$, $\Theta_2 \equiv W \sqcap W \sqcap$, 这里 E 为枚举子, 从而对于 $F \in \Lambda^\circ$, $E \sqcap F \sqcap = F$.

$$\begin{split} \Theta_2 \ulcorner F \urcorner &= W \ulcorner W \urcorner \ulcorner F \urcorner \\ &= E \ulcorner F \urcorner \left(\operatorname{App}(\operatorname{App} \ulcorner W \urcorner (\operatorname{Num} \ulcorner W \urcorner)) (\operatorname{Num} \ulcorner F \urcorner) \right) \\ &= F \left(\operatorname{App}(\operatorname{App} \ulcorner W \urcorner \ulcorner \Gamma W \urcorner \urcorner) \ulcorner \Gamma F \urcorner \urcorner \right) \\ &= F \operatorname{App} \ulcorner W \ulcorner W \urcorner \urcorner \ulcorner \Gamma F \urcorner \urcorner \\ &= F \ulcorner \Theta_2 \ulcorner F \urcorner \urcorner \end{split}$$