432 Class 11 Slides

github.com/THOMASELOVE/432-2018

2018-02-20

Setup

```
library(skimr)
library(pROC)
library(ROCR)
library(rms) # note: also loads Hmisc
library(simputation)
library(broom)
library(tidyverse)
```

Today's Materials

- Logistic Regression and the Framingham Study (part 2)
- Performing Linear Regression with ols
- Hormone Therapy and Baseline LDL in the HERS trial

The HERS trial is described in Vittinghoff et al., especially Chapter 4.

Logistic Regression and Framingham

Data Ingest, Cleanup (from Class 10)

```
fram <- read.csv("data/fram new.csv") %>% tbl df
set.seed(432001)
fram1 <- fram %>%
    impute_pmm(educ + cigs_day + heart_r ~ age + smoker) %>%
    impute_rlm(bmi + tot_chol ~ sex + age + sbp + heart_r) %>
    impute pmm(bp meds ~ hx htn + bmi + tot chol) %>%
    impute rlm(glucose ~ hx dm + bmi + tot chol + age) %>%
   mutate(ed f = fct recode(factor(educ),
                   "1 Some HS" = "1", "2 HS grad" = "2",
                   "3 Some Col" = "3", "4 Col grad" = "4"))
fram2 <- fram1 %>%
    select(subj, sex, age, smoker, cigs_day, bp_meds,
           hx_stroke, hx_htn, hx_dm, ed_f, tot_chol,
           sbp, dbp, bmi, heart_r, glucose, CHD_10)
```

The Models We've Fit (predicting CHD_10)

```
m 01 \leftarrow glm(CHD 10 \sim hx htn, data = fram2,
             family = binomial)
d <- datadist(fram2)</pre>
options(datadist = "d")
m_01_lrm <- lrm(CHD_10 ~ hx_htn, data = fram2, x = T, y = T)
m_02 \leftarrow glm(CHD_10 \sim hx_htn + tot_chol,
             data = fram2, family = binomial)
m 02 lrm <- lrm(CHD 10 ~ hx htn + tot chol, data = fram2,
                 x = TRUE, y = TRUE
```

Assessing Predictive Quality: Discrimination

Key measures: C statistic, Nagelkerke R²

Model	C statistic	Nagelkerke R ²				
m_01_lrm	0.614	0.051				
m_02_lrm	0.640	0.055				

and we could use validate(model) to address how well these results might hold up in new data.

Assessing Predictive Quality: Calibration Curves

```
plot(calibrate(m_01_lrm), main = "Calibration for m_01_lrm")
plot(calibrate(m_02_lrm), main = "Calibration for m_02_lrm")
```


Assessing Predictive Quality: Goodness of Fit Test

This uses the le Cessie-van Houwelingen-Copas-Hosmer unweighted sum of squares test statistic. to produce (using up just one degree of freedom) a global goodness of fit test. It's available through residuals applied to a lrm fit, with type = "gof").

The essential components of a logistic regression fit are:

- The logit transformation is the correct function linking the covariates with the conditional mean,
- The linear predictor is correct (we don't need to include additional variables, transformations of predictors or interaction terms), and
- The variance follows a Bernoulli distribution.

See Hosmer et al. 1997

The Omnibus Goodness of Fit Test

As in any omnibus test, a significant result here is difficult to interpret, but it means that something somewhere in the model is probably wrong.

 Harrell: I focus on directed tests such as allowing all continuous variables to have nonlinear effects or allowing selected interactions, and finding out how important the complex model terms are.

```
round(residuals(m_01_lrm, type = "gof"),3)
round(residuals(m_02_lrm, type = "gof"),3)
```

	Sum	of	squared	Expe	cted							
		eri	rors	valu	e H0		SD			Z		P
Model	1	528	. 985	528	.985	0.0	000	-22	68.9	81	0.0	000
Model	2	527	. 948	527	.291	0.3	331		1.9	986	0.0	047

Looking better in m_02_1rm but still some work to do.

Goal 3. Kitchen Sink Model for CHD_10

Focus on model with 1rm first!

```
m_03 \leftarrow glm(CHD_10 \sim hx_htn + tot_chol + sex + age +
                      smoker + cigs day + bp meds +
                      hx stroke + hx dm + ed f + sbp + dbp +
                      bmi + heart r + glucose,
                 data = fram2, family = binomial)
d <- datadist(fram2)</pre>
options(datadist = "d")
m_03_{lrm} \leftarrow lrm(CHD_10 \sim hx_{htn} + tot_{chol} + sex + age +
                      smoker + cigs_day + bp_meds +
                      hx_stroke + hx_dm + ed_f + sbp + dbp +
                      bmi + heart_r + glucose,
                 data = fram2, x = TRUE, y = TRUE)
```

m_03_1rm (first section of output)

```
> m_03_1rm
Logistic Regression Model
 lrm(formula = CHD_{10} \sim hx_htn + tot_chol + sex + age + smoker +
    cigs_day + bp_meds + hx_stroke + hx_dm + ed_f + sbp + dbp +
    bmi + heart_r + glucose, data = fram2, x = TRUE, y = TRUE)
                    Model Likelihood
                                       Discrimination
                                                        Rank Discrim.
                       Ratio Test
                                          Indexes
                                                           Indexes
0bs
                   LR chi2 405.40
            4240
                                        R2
                                                0.159
                                                               0.733
 0
            3596
                   d.f.
                                          1.016
                                                        Dxy 0.466
                                  17
                                        q
            644
                   Pr(> chi2) <0.0001
                                        ar 2.763
                                                        gamma 0.466
max |deriv| 6e-10
                                            0.120
                                                               0.120
                                        gp
                                                        tau-a
                                        Brier 0.115
```

m_03_lrm (second section of output)

	Coef	S.E.	Wald Z	Pr(> Z)
Intercept	-7.9981	0.6583	-12.15	<0.0001
hx_htn	0.2331	0.1287	1.81	0.0700
tot_chol		0.0010		0.0842
sex=M	0.4886	0.1012	4.83	<0.0001
age	0.0607	0.0063	9.67	<0.0001
smoker	0.0248	0.1451	0.17	0.8642
cigs_day	0.0207	0.0057	3.60	0.0003
bp_meds	0.2534	0.2206	1.15	0.2506
hx_stroke	0.9633	0.4439	2.17	0.0300
hx_dm	0.1353	0.2989	0.45	0.6507
ed_f=2_HS_grad	-0.1906	0.1120	-1.70	0.0889
ed_f=3_Some_Col	-0.1005	0.1397	-0.72	0.4719
ed_f=4_Col_grad	0.0255	0.1533	0.17	0.8679
sbp	0.0141	0.0035	3.98	<0.0001
dbp	-0.0029	0.0060	-0.48	0.6294
bmi	0.0019	0.0118	0.16	0.8712
heart_r	-0.0012	0.0039	-0.32	0.7524
glucose	0.0071	0.0022	3.28	0.0010

Validating our Summary Statistics

```
set.seed(432020) # probably better to set a seed
validate(m_03_lrm)[1:4,] # to fit things in the slide
```

```
index.orig training
                                           optimism
                                   test
          0.4658670 0.4690634 0.4575484 0.011515041
Dxy
R.2.
       0.1590194 0.1624443 0.1526612 0.009783165
Intercept 0.0000000 0.0000000 -0.0466690 0.046668999
       1.0000000 1.0000000 0.9635322 0.036467806
Slope
         index.corrected n
               0.4543520 40
Dxy
R.2
               0.1492362 40
Intercept
            -0.0466690 40
Slope
            0.9635322 40
```

plot(summary(m_03_lrm))

plot(anova(m_03_lrm))

Can we see the prediction results?

What about on a better scale?

ggplot(Predict(m_03_lrm, fun = plogis))

Calibration of mod_03_lrm

set.seed(432029); plot(calibrate(m_03_lrm))

Goodness of fit test?

```
round(residuals(m_03_lrm, type = "gof"),3)
```

Sum of squared errors Expected 488.329
SD 1.407
P 0.830

Expected value|H0 488.026 Z 0.215

Nomogram of mod_03_1rm

plot(nomogram(m_03_lrm, fun = plogis))

100

300

Comparing our Three Nested Models

```
anova(m_01, m_02, m_03)
Analysis of Deviance Table
Model 1: CHD 10 ~ hx htn
Model 2: CHD_10 ~ hx_htn + tot_chol
Model 3: CHD 10 ~ hx htn + tot chol + sex + age + smoker + ci
   bp meds + hx stroke + hx dm + ed f + sbp + dbp + bmi + hea
   glucose
  Resid. Df Resid. Dev Df Deviance
1
      4238 3486.9
    4237 3475.5 1 11.411
2
3
      4222 3206.8 15 268.682
```

Model 2 vs. Model 3 at a glance

```
glance(m_02)
```

```
null.deviance df.null logLik AIC BIC
1 3612.209 4239 -1737.748 3481.495 3500.552
deviance df.residual
1 3475.495 4237
```

```
glance(m_03)
```

```
null.deviance df.null logLik AIC BIC

1 3612.209 4239 -1603.407 3242.813 3357.155

deviance df.residual

1 3206.813 4222
```