### NADZĘDZIE SZTUCZNEJ INTELIGENCJI

## Uczenie sieci neuronowych

### CEL: Znaleźć układ wag, aby zminimalizować funkcję błędu

# I. <u>Uczenie perceptronu</u>

## 1. Reguła perceptronowa (dla dyskretnych neuronów)

$$W_{new} = W_{old} + \eta (d-y)X$$
  
$$b_{new} = b_{old} + \eta (d-y)$$

**gdzie**:  $W_{new}$ : nowy wektor wag

 $W_{old}$ : wektor wag w poprzednim kroku uczenia

*b<sub>new</sub>*: nowa wartość odchylenia

 $b_{old}$ : wartość odchylenia w poprzednim kroku uczenia

 $\eta$ : współczynnik uczenia (wsp. korekcji)

d : żądana odpowiedźy : otrzymana odpowiedźX : wektor wejściowy



# 2. Reguła DELTA (dla ciągłych neuronów )

$$W_{new} = W_{old} + \eta (d-y) f'(net)X$$
  
$$b_{new} = b_{old} + \eta (d-y) f'(net)$$

# Pochodne niektórych funkcji aktywacji

a) Funkcja liniowa

$$f(\mathbf{x}) = x \to f'(\mathbf{x}) = 1$$

b) Funkcja sigmoidalna unipolarna

$$f(x) = \frac{1}{1 + e^{-\lambda x}} \rightarrow f'(x) = \lambda f(x) [1 - f(x)]$$

c) Funkcja sigmoidalna bipolarna

$$f(x) = \frac{2}{1 + e^{-\lambda x}} - 1 \rightarrow f'(x) = \frac{\lambda}{2} [1 - f^{2}(x)]$$

d) Funkcja tangens hiperboliczny

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} \rightarrow f'(x) = 1 - f^2(x)$$

## 3. Algorytm uczenia

**Wejście:** Ciąg treningowy  $\{(X_1, d_1), (X_2, d_2), ..., (X_p, d_p)\}$ 

Wyjście: Wektor wag W, wartość odchylenia b

Krok 1: Wylosuj początkowy wektor wag W i poczatkowe odchylenie b

Krok 2: Dla każdego wektora uczącego X

- **2.1** Wyznacz *y*: y = f(WX + b)
- 2.2 Uaktualizuj wagi

 $W_{new} = W_{old} + \eta . (d - y) . X$  (gdy neuron jest dyskretny)

 $b_{new} = b_{old} + \eta (d - y)$ 

 $W_{new} = W_{old} + \eta . (d - y) . f'(net) . X$  (gdy neuron jest ciągły)

 $b_{new} = b_{old} + \eta (d - y).f'(net)$ 

Krok 3: Jeśli wagi pozostały bez zmian lub  $E < E_{min}$  to stop, wpp. powrót do Krok 2

## II. Uczenie jednowarstwowej sieci neuronowej

**Wejście:** Ciąg treningowy  $\{(X_1, D_1), (X_2, D_2),..., (X_p, D_p)\}$  **Wyjście:** Macierz wag  $W_{K\times N}$ , wektor odchyleń  $B_{K\times 1}$  **Oznaczenie:**  $W^i$ : Wektor wag i-tego neuronu  $d^i$ : i-ta składowa żądanego wektora wyjściowego  $y^i$ : i-ta składowa wektora wyjściowego sieci

# Algorytm uczenia

**Krok 1:** Wylosuj początkową macierz wag *W* i początkowy wektor odchyleń *B* 

Krok 2: Dla każdego wektora uczącego X

**2.**1 Wyznacz *Y*: Y = f(W.X + B)

**2.2** Uaktualizuj wagi (dla i = 1,...,K)

$$W_{new}^{i} = W_{old}^{i} + \eta.(d^{i} - y^{i}).X$$

$$b_{new}^{i} = b_{old}^{i} + \eta . (d^{i} - y^{i})$$

(gdy neuron jest dyskretny)

$$W_{new}^{i} = W_{old}^{i} + \eta.(d^{i} - y^{i}).f'(net_{i})X$$

$$b_{new}^{i} = b_{old}^{i} + \eta . (d^{i} - y^{i}).f'(net_{i})$$

(gdy neuron jest ciagly)

Krok 3: Jeśli wagi pozostały bez zmian lub  $E < E_{min}$  to stop, wpp. powrót do Krok 2



Algorytm wstecznej propagacji błędu

Wymaganie: Sieć składa się wyłącznie z neuronów ciągłych



**Wejście:** Ciąg treningowy  $\{(X_1, D_1),...,(X_p, D_p)\}$ 

**Wyjście:** Macierze wag:  $W_{J \times N}$ ,  $V_{K \times J}$ 



- 1. Wyznaczanie błędu neuronu w sieci
  - a) Warstwa wyjściowa

$$\delta_k = f'(net_k) (d_k - y_k)$$
  
(dla  $k = 1, 2, ..., K$ )

b) Warstwa ukryta

$$\rho_j = f'(net_k) \sum_{k=1}^{K} v_{kj} \delta_k$$
 (dla  $j = 1, 2, ..., J$ )



# 2. Algorytm uczenia

- **Krok 1:** Wylosuj początkowe macierze wag *W*, *V* i początkowe wektory odchyleń *B*, *C*
- Krok 2: Dla każdego wektora uczącego X
  - **2.1** Wyznacz wektor wyjściowej z I warstwy (ukrytej)

$$Y = f(W.X + B)$$

2.2 Wyznacz wektor wyjściowej z II warstwy (wyjściowej)

$$Z = f(V.Y + C)$$

- 2.3 Wyznacz błędy neuronów
  - a) Warstwa wyjściowa:

$$\delta_k = f'(net_k) (d_k - y_k) \text{ (dla } k = 1, 2, ..., K)$$

b) Warstwa ukryta:

$$\rho_{j} = f'(net_{k}) \sum_{k=1}^{K} v_{kj} \delta_{k}$$
 (dla  $j = 1, 2, ..., J$ )

- **2.2** Uaktualizuj wagi (dla i = 1,...,K)
  - a) Warstwa wyjściowa:

$$V_{new}^{k} = V_{old}^{k} + \eta . \delta_{k} Y$$
 (dla  $k = 1, 2, ..., K$ )

$$c_{new}^{k} = c_{old}^{k} + \eta.\delta_{k}$$

b) Warstwa ukryta:

$$W_{new}^{j} = W_{old}^{j} + \eta . \rho_{j} X$$
 (dla  $j = 1, 2, ..., J$ )

$$b_{new}^{j} = b_{old}^{j} + \eta.\rho_{j}$$

Krok 3: Jeśli wagi pozostały bez zmian lub  $E < E_{min}$  to stop, wpp. powrót do Krok 2

## IV. Funkcja błędu

1. Sieć z jednym wyjściem:

$$E = \frac{1}{2} \sum_{i=1}^{P} (d_i - y_i)^2$$

P - liczba wektorów uczących

### 2. Sieć z wieloma wyjściami

$$E = \frac{1}{2} \sum_{i=1}^{P} \sum_{j=1}^{K} (d_i^{(j)} - y_i^{(j)})^2$$

$$P - \text{liczba wektorów uczących, } K - \text{liczba wyjść sieci}$$