

Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

- 1 1 (Previously Presented). A distributed method for processing auction traffic using one or more servers at a plurality of nodes in a distributed processing system comprising the steps of:
 - 4 using a computer implemented current local winner determination method at each of the nodes to identify loser bids and candidate winning bids; and
 - 7 using a computer implemented current global winner determination method to determine from the candidate winning bids from each of the nodes a current set of winners.
- 1 2 (Original). The method of claim 1, wherein the auction is an open-cry auction.
- 1 3 (Previously Presented). A distributed method for processing open-cry auction traffic using one or more servers at a plurality of nodes in a distributed processing system comprising the steps of:
 - 4 using a current local winner determination method at each of the nodes to identify loser bids and candidate winning bids, wherein the current local winner determination method comprises the steps of:
 - 7 (a) receiving a new bid(v,q) at a node, where v denotes the price per unit and q denotes the quantity desired;
 - 9 (b) checking to see if the new bid ranks in the top $\lfloor N/q \rfloor$ bids, in terms of price/unit bid value, amongst all the bids asking for quantity q whose information is available to this process, where N is a number of copies of a single item on sale and $\lfloor x \rfloor$ stands for the greatest integer less than or equal to x ;
 - 14 (c) taking the new bid along with the set of $\lfloor N/q \rfloor$ bids that have been processed and determining a new set of top $\lfloor N/q \rfloor$ bids;

16 (d) determining if $\text{bid}(v,q)$ is in the top $\lfloor N/q \rfloor$ bids and, if it is not,
17 declaring it a loser bid, but if so, declaring it a candidate
18 bid; and

19 using a current global winner determination method to determine
20 from the candidate winning bids from each of the nodes a current set of
21 winners.

1 4 (Original). The method of claim 3, further comprising the steps of:
2 holding the candidate bid at the node for a time, τ ; and
3 if by time τ , through an arrival of another bid, a candidate bid loses
4 its position amongst the top $\lfloor N/q \rfloor$ highest bids, declaring the bid a loser
5 bid;
6 otherwise, declaring the bid a winner candidate and making the bid
7 accessible for further processing by the current global winner
8 determination method.

9 5 (Previously Presented). The method of claim 4, wherein the current
10 global winner determination method comprises the steps of:
11 receiving new candidate winning bid from a node $\text{bid}(v,q)$;
12 taking the candidate winning bid along with the set of all bids that
13 have been processed and determining a new set of winners;
14 determining whether the new candidate $\text{bid}(v,q)$ is a winner or a
15 loser; and
16 notifying the bidder of $\text{bid}(v,q)$ as to whether they are a winner or
17 loser.

1 6 (Previously Presented). A distributed method for processing open-cry
2 auction traffic using one or more servers at a plurality of nodes in a
3 distributed processing system comprising the steps of:
4 using a current local winner determination method at each of the
5 nodes to identify loser bids and candidate winning bids, wherein the
6 current local winner determination method comprises the steps of:

7 (a) receiving a new bid(v,q) at a node, where v denotes the price per
8 unit and q denotes the quantity desired;
9 (b) considering a set of bids using a set of pre-specified auction
10 rules and selecting winners for auctioning $N+x$ copies of the
11 item on sale; and
12 (c) determining whether the bid(v,q) is a candidate winner bid;
13 and
14 using a current global winner determination method to determine
15 from the candidate winning bids from each of the nodes a current set of
16 winners.

17 7 (Previously Presented). The method of claim 6, wherein the current
18 global winner determination method comprises the steps of:
19 receiving new candidate winning bid from a node bid(v,q);
20 taking the candidate winning bid along with the set of all bids that
21 have been processed and determining a new set of winners;
22 determining whether the new candidate bid(v,q) is a winner or a
23 loser; and
24 notifying the bidder of bid(v,q) as to whether they are a winner or
25 loser.

1 8 (Original). The method of claim 1, wherein the auction is a descending
2 auction.

1 9 (Previously Presented). A distributed method for processing descending
2 auction traffic using one or more servers at a plurality of nodes in a
3 distributed processing system comprising the steps of:
4 using a current local winner determination method at each of the
5 nodes to identify loser bids and candidate winning bids, wherein the
6 current local winner determination method comprises the steps of:
7 (a) receiving a bid (q) for processing, where q is the quantity
8 desired at going price p ;

9 (b) determinating whether the bid is in the first $\lfloor R/q \rfloor$ bids, asking
10 for quantity q at price p , where $\lfloor x \rfloor$ stands for the greatest
11 integer less than or equal to x and R is a currently remaining
12 quantity on auction;
13 (c) if the bid is in the first $\lfloor R/q \rfloor$ bids, asking for quantity q at the
14 going price p , then declaring the bid a candidate winner bid;
15 and
16 (d) making the candidate winner bid available for further
17 processing by the current global winner determination
18 method; and
19 using a current global winner determination method to determine
20 from the candidate winning bids from each of the nodes a current set of
21 winners.

1 10 (Original). The method of claim 9, further comprising the steps of:
2 giving bids processed by the method a time stamp of arrival; and
3 determining whether the time stamp, if it exists on the bid, is
4 greater than or equal to the time stamp of any bid, asking for quantity q at
5 going price p , that has been processed by the method in the past.

1 11 (Previously Presented). The method of claim 1, wherein bidders submit
2 multi-item bids and the bids may be indivisible.