Artificial Intelligence Machine Learning Ensemble Methods

Outline

- 1. Majority voting
- 2. Boosting
- 3. Bagging
- 4. Random Forests
- 5. Conclusion

• A randomly chosen hyperplane has an expected **error of 0.5**.

- A randomly chosen hyperplane has an expected error of 0.5.
- Many random hyperplanes combined by majority vote will still be random.

- A randomly chosen hyperplane has an expected error of 0.5.
- Many random hyperplanes combined by majority vote will still be random.
- Suppose we have m classifiers, performing slightly better than random, that is **error** = 0.5- ϵ .

- A randomly chosen hyperplane has an expected error of 0.5.
- Many random hyperplanes combined by majority vote will still be random.
- Suppose we have m classifiers, performing slightly better than random, that is **error** = 0.5- ϵ .
- Combine: make a decision based on majority vote?

- A randomly chosen hyperplane has an expected error of 0.5.
- Many random hyperplanes combined by majority vote will still be random.
- Suppose we have m classifiers, performing slightly better than random, that is **error** = 0.5- ϵ .
- Combine: make a decision based on majority vote?
- What if we combined these m slightly-better-than-random classifiers? Would majority vote be a good choice?

Condorcet's Jury Theorem

Marquis de Condorcet Application of Analysis to the Probability of Majority Decisions. 1785.

Assumptions:

- 1. Each individual makes the right choice with a probability p.
- 2. The votes are independent.

Condorcet's Jury Theorem

Marquis de Condorcet Application of Analysis to the Probability of Majority Decisions. 1785.

Assumptions:

- 1. Each individual makes the right choice with a probability p.
- 2. The votes are independent.

If p > 0.5, then adding more voters increases the probability that the majority decision is correct. if p < 0.5, then adding more voters makes things worse.

• An **Ensemble Method** combines the predictions of many individual classifiers by majority voting.

- An **Ensemble Method** combines the predictions of many individual classifiers by majority voting.
- Such individual classifiers, called **weak learners**, are required to perform slightly better than random.

- An **Ensemble Method** combines the predictions of many individual classifiers by majority voting.
- Such individual classifiers, called **weak learners**, are required to perform slightly better than random.

How do we produce independent weak learners using the same training data?

- An **Ensemble Method** combines the predictions of many individual classifiers by majority voting.
- Such individual classifiers, called **weak learners**, are required to perform slightly better than random.

How do we produce independent weak learners using the same training data?

- Use a **strategy** to obtain relatively independent weak learners!
- Different methods:
 - 1. Boosting
 - 2. Bagging
 - 3. Random Forests

- First ensemble method.
- One of the most powerful Machine Learning methods.
- Popular algorithm: AdaBoost.M1 (Freund and Shapire 1997).
- "Best off-the-shelf classifier in the world" Breiman (CART's inventor), 1998.
- Simple algorithm.
- Weak learners can be trees, perceptrons, decision stumps, etc.

• Idea:

Train the weak learners on weighted training examples.

- The predictions from all of the G_m , $m \in \{1, \dots, M\}$ are combined with a weighted majority voting.
- \bullet α_m is the contribution of each weak learner G_m .
- Computed by the boosting algorithm to give a weighted importance to the classifiers in the sequence.
- The decision of a highly-performing classifier in the sequence should weight more than less important classifiers in the sequence.
- This is captured in:

$$G(x) = sign\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

The error rate on the training sample:

$$err := \frac{\sum_{i=1}^{n} 1\{y_i \neq G(x_i)\}}{n}$$

The error rate on the training sample:

$$err := \frac{\sum_{i=1}^{n} 1\{y_i \neq G(x_i)\}}{n}$$

The error rate on each weak learner:

$$err_m := \frac{\sum_{i=1}^n w_i \ 1\{y_i \neq G_m(x_i)\}}{\sum_{i=1}^n w_i}$$

The error rate on the training sample:

$$err := \frac{\sum_{i=1}^{n} 1\{y_i \neq G(x_i)\}}{n}$$

The error rate on each weak learner:

$$err_m := \frac{\sum_{i=1}^n w_i \ 1\{y_i \neq G_m(x_i)\}}{\sum_{i=1}^n w_i}$$

Intuition:

- Give large weights for hard examples.
- Give small weights for easy examples.

For each weak learner m, we associate an error err_m .

$$\alpha_m = log(\frac{1 - err_m}{err_m})$$

1. Initialize the example weights $w_i = \frac{1}{n}, i = 1, \dots, n$.

- 1. Initialize the example weights $w_i = \frac{1}{n}, i = 1, \dots, n$.
- 2. For m = 1 to M (number of weak learners)

- 1. Initialize the example weights $w_i = \frac{1}{n}, i = 1, \dots, n$.
- 2. For m = 1 to M (number of weak learners)
 - (a) Fit a classifier $G_m(x)$ to training data using the weights w_i .

- 1. Initialize the example weights $w_i = \frac{1}{n}, i = 1, \dots, n$.
- 2. For m = 1 to M (number of weak learners)
 - (a) Fit a classifier $G_m(x)$ to training data using the weights w_i .
 - (b) Compute

$$err_m := \frac{\sum_{i=1}^n w_i \ 1\{y_i \neq G_m(x_i)\}}{\sum_{i=1}^n w_i}$$

- 1. Initialize the example weights $w_i = \frac{1}{n}, i = 1, \dots, n$.
- 2. For m = 1 to M (number of weak learners)
 - (a) Fit a classifier $G_m(x)$ to training data using the weights w_i .
 - (b) Compute

$$err_m := \frac{\sum_{i=1}^n w_i \ 1\{y_i \neq G_m(x_i)\}}{\sum_{i=1}^n w_i}$$

(c) Compute

$$\alpha_m = \log(\frac{1 - err_m}{err_m})$$

- 1. Initialize the example weights $w_i = \frac{1}{n}, i = 1, \dots, n$.
- 2. For m = 1 to M (number of weak learners)
 - (a) Fit a classifier $G_m(x)$ to training data using the weights w_i .
 - (b) Compute

$$err_m := \frac{\sum_{i=1}^n w_i \ 1\{y_i \neq G_m(x_i)\}}{\sum_{i=1}^n w_i}$$

(c) Compute

$$\alpha_m = \log(\frac{1 - err_m}{err_m})$$

(d) $w_i \leftarrow w_i.exp[\alpha_m.1(y_i \neq G_m(x_i))]$ for $i = 1, \dots, n$.

- 1. Initialize the example weights $w_i = \frac{1}{n}, i = 1, \dots, n$.
- 2. For m = 1 to M (number of weak learners)
 - (a) Fit a classifier $G_m(x)$ to training data using the weights w_i .
 - (b) Compute

$$err_m := \frac{\sum_{i=1}^n w_i \ 1\{y_i \neq G_m(x_i)\}}{\sum_{i=1}^n w_i}$$

(c) Compute

$$\alpha_m = \log(\frac{1 - err_m}{err_m})$$

- (d) $w_i \leftarrow w_i.exp[\alpha_m.1(y_i \neq G_m(x_i))]$ for $i = 1, \dots, n$.
- 3. Output

$$G(x) = sign\left[\sum_{m=1}^{M} \alpha_m G_m(x)\right]$$

Digression: Decision Stumps

This is an example of very weak classifier

A simple 2-terminal node decision tree for binary classification.

$$f(x_i|j,t) = \begin{cases} +1 & \text{if } x_{ij} > t \\ -1 & \text{otherwise} \end{cases}$$

Where $j \in \{1, \cdots d\}$.

Example: A dataset with 10 features, 2,000 examples training and 10,000 testing.

AdaBoost Performance

Error rates:

- Random: 50%.

- Stump: 45.8%.

- Large classification tree: 24.7%.

- AdaBoost with stumps: 5.8% after 400 iterations!

AdaBoost Performance

AdaBoost with Decision stumps lead to a form of: **feature selection**

AdaBoost-Decision Stumps

Bagging & Bootstrapping

- ullet Bootstrap is a re-sampling technique \equiv sampling from the empirical distribution.
- Aims to improve the quality of estimators.
- Bagging and Boosting are based on bootstrapping.
- Both use re-sampling to generate weak learners for classification.
- Strategy: Randomly distort data by re-sampling.
- Train weak learners on re-sampled training sets.
- Bootstrap aggregation = Bagging.

Bagging

Training

For $b = 1, \dots, B$

- 1. Draw a bootstrap sample \mathcal{B}_b of size ℓ from training data.
- 2. Train a classifier f_b on \mathcal{B}_b .

Classification: Classify by majority vote among the B trees:

$$f_{avg} := \frac{1}{B} \sum_{b=1}^{B} f_b(x)$$

Bagging

Bagging works well for trees:

Random Forests

- 1. Random forests: modifies bagging with trees to reduce correlation between trees.
- 2. Tree training optimizes each split over all dimensions.
- 3. But for Random forests, choose a different subset of dimensions at each split. Number of dimensions chosen m.
- 4. Optimal split is chosen within the subset.
- 5. The subset is chosen at random out of all dimensions $1, \ldots, d$.
- 6. Recommended $m = \sqrt{d}$ or smaller.

Credit

• "An Introduction to Statistical Learning, with applications in R" (Springer, 2013)" with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani.