Characterizing EEG signatures of inattention that predict forgetting

David DiStefano, Helen Schmidt, Paige Hickey & Elizabeth Race Integrative Cognitive Neuroscience Lab, Department of Psychology, Tufts University

INTRODUCTION

- Periods of inattention are associated with reduced cortical analysis of the external environment (perceptual decoupling)
- Perceptual decoupling is evident in attenuated ERP responses to stimuli that appear during off-task vs. on-task periods¹⁻³

Research Questions

Does perceptual decoupling occur in response to task-relevant and task-irrelevant stimuli during incidental encoding?

Do EEG markers of inattention predict subsequent long-term memory?

PARTICIPANTS

- 35 young adults (18 male)
- Mean age = 22.5 yrs

CzPz

FACES

Mean education = 15.5 yrs
 All right handed

EEG METHODS

- 32-channel EEG recorded during encoding
- Eye-blink artifacts corrected with ICA
- Artifact rejection by automatic/manual inspection
- Baselined -200 to 0ms before face / tone onset
- Re-referenced to average of L/R mastoid

Analysis

Periods of inattention defined by:

- 1. Subjective self-report of attentional state¹⁻³
- Off-task vs. on-task reports
- Analyzed by averaging 3 trials preceding attention prompt

2. Behavioral measure of RT variability⁴

Absolute deviance from within-subject mean RT

Perceptual decoupling analyses focused on a priori time windows and regions of interest:

- P3 over centro-parietal electrodes¹⁻³
- Auditory N1 over central electrodes³
- Face-specific N170 over right occipitotemporal electrodes⁵

Memory analyses included these same attentionrelated ERPs as well as the canonical Dm effect

REFERENCES

- Smallwood, J., Beach, E., Schooler, J., & Handy, T. (2008). Going AWOL in the Brain: Mind Wandering Reduces Cortical Analysis of External events. Journal of Cognitive Neuroscience, 20(3), 458-469
- 2. Kam, J. W., Dao, E., Farley, J., Fitzpatrick, K., Smallwood, J., Schooler, J. W., & Handy, T. C. (2010). Slow Fluctuations in Attentional Control of Sensory Cortex. 23(2), 460-470.
- 3. Baird, B., Smallwood, J., Lutz, A., & Schooler, J. W. (2014). The Decoupled Mind: Mind-wandering Disrupts cortical Phase-locking to Perceptual Events. Journal of Cognitive Neuroscience, 26(11), 2596-2607. doi:10.1162/jocn_a_00656
- 4. Esterman, M., Rosenberg, M., & Noonan, S. (2014). Intrinsic Fluctuations in Sustained
- Attention and Distractor Processing. The Journal of Neuroscience, 34(5), 1724-1730.

 5. Rossion, B., Gauthier, I., Tarr, M.J., et al. (2000). The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of face-specific processes in the human brain. Cognitive Neuroscience, 11(1), 69-74.

METHODS

PERCEPTUAL DECOUPLING EFFECTS

Behavioral Inattention

ERP amplitude predicts subsequent memory

No attenuation of earlier

SUBSEQUENT MEMORY EFFECTS

Classic frontal / centroparietal subsequent memory effect (Dm)

Timing & topography of centro-parietal amplitude reduction for subsequently forgotten faces mirrors face perceptual decoupling effect

Self-Reported Inattention

trials with high RT variability

 No attenuation of auditory N1 to distractor tones in the interval preceding subjective reports of inattention

Behavioral Inattention

 No attenuation of auditory N1 to distractor tones preceding trials with high RT variability

 Attenuation of auditory N1 to distractor tones predicts subsequent memory for target faces Neural response to cross-modal, auditory distractors preceding target faces predicts later face memory

BEHAVIORAL RESULTS

Encoding

Mean Acc = 95% (SD = 4)

Mean RT = 682ms (SD = 77)

Attentional Fluctuations

- Frequent lapses of attention during encoding
 Trials proceding Off Task reports loss accurate
- Trials preceding Off-Task reports less accurate than trials preceding On-Task reports (p < .05)
- Trials with more variable RTs less accurate than trials with more stable RTs (p < .05)

Retrieval

- 41% old items remembered (SD = 13)
- 59% old items forgotten (SD = 13)

Self-Reported Inattention

Off-Task On-Task
 Self-reported inattention at encoding does not predict subsequent memory

 RT variability measure of inattention does predict subsequent memory
 * p<.02

CONCLUSIONS

- Neural processing of task-relevant faces, but not task-irrelevant tones, was attenuated during periods of inattention defined by (1) off-task self reports and (2) behavioral RT variability.
- Face-related perceptual decoupling reduced the magnitude of the P3 component (typically associated with task-related attention) as well as the later LPC (typically associated with memory).
- The timing and topography of this face-related P3/LPC perceptual decoupling effect overlapped with the centro-parietal subsequent memory effect observed for faces.
- The mean amplitude of the P3/LPC in response to faces also predicted memory performance across individuals.
- Additional attention-related ERP effects that predicted forgetting, but did not overlap with those reflecting attentional state, were also identified:
 - 1. Modulation of the face-specific N170
 - 2. Attenuation of the auditory N1 in response to background tones
- These results indicate that fluctuations in attention are associated with neural activity patterns that are similar to those that predict subsequent memory.
- In addition, the success of memory encoding can be predicted by neural response to cross-modal, taskirrelevant distractors that precede critical mnemonic targets.