compound is defined by [the following general formulas] <u>formula I, II, or III</u>:

 $(LR_k)_z[LR_{k-f}(R^IOSiR^{II}_3)_f]_xMX_y$ $L_{\lambda}(R^{I}OSiR_{3}^{II})_{a}(R)_{k-a-1}$ (R) L (RIDSIR3)(R)k-b-1 $L(R^{I}OSR_{3}^{II})_{a}(R)_{k-a-1}$ (RIOSiRII

wherein:

the ${\bf L}$ groups are[,] equal to or different from each other, wherein each ${\bf L}$ is selected from the group [comprising:] consisting of cyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, octahydrofluorenyl, and [or] benzoindenyl; each ${\bf R}$ is independently [selected from] hydrogen, linear or branched ${\bf C}_1$ - ${\bf C}_{20}$ alkyl, linear or branched ${\bf C}_3$ - ${\bf C}_{20}$ cycloalkyl, linear or branched ${\bf C}_3$ - ${\bf C}_{20}$ alkenyl, linear

or branched C_7 - C_{20} arylalkyl, linear or branched C_7 - C_{20} alkylaryl, linear or branched C_8 - C_{20} arylalkenyl, [linear or branched, optionally substituted by 1 to 10 halogen atoms,] or a group $\operatorname{SiR^{II}}_3$, wherein the C_1 - C_{20} alkyl, the C_3 - C_{20} cycloalkyl, the C_6 - C_{20} arylalkyl, the C_7 - C_{20} alkylaryl, and the C_8 - C_{20} arylalkenyl are optionally substituted with 1 to 10 halogen atoms;

Con

the [each] R^I[,] groups are equal to or different from each other, wherein each R^I is a divalent aliphatic or aromatic hydrocarbon group containing from 1 to 20 carbon atoms, optionally containing from 1 to 5 heteroatoms of groups 14 to 16 of the [periodic table] Periodic Table of the [elements] Elements, and optionally containing boron; [preferably it is: C₁-C₂₀ alkylene, C₃-C₂₀cycloalkylene, C₆-C₂₀ arylene, C₇-C₂₀ alkenyl, C₇-C₂₀ arylalkylene, or alkylarylene, linear or branched, or a group SiR^{II}₂;] each R^{II} is independently [selected from] linear or branched C₁-C₂₀ alkyl, linear or branched C₃-C₂₀ cycloalkyl, linear or branched C₆-C₂₀ arylalkyl, linear or branched C₃-C₂₀ alkenyl, linear or branched C₇-C₂₀ arylalkyl, linear or branched C₈-C₂₀ arylalkenyl, or linear or branched C₇-C₂₀ alkylaryl[, linear or branched; preferably R^{II} is methyl, ethyl or isopropyl]; each O is independently [selected from] B, C, Si, Ge, or Sn;

each **Q** is independently [selected from] B, C, Si, Ge, or Sn; **M** is a lanthanide, an actinide, or a metal of group 3, 4, or 10 of the Periodic Table[, Lanthanide or Actinide] of the Elements, and M has a valence;

each ${\bf X}$ is independently [selected from:] hydrogen, chlorine, bromine, ${\rm OR^{II}}$, ${\rm NR^{II}}_2$, ${\rm C_1-C_{20}}$ alkyl, or ${\rm C_6-C_{20}}$ aryl;

L' is N or 0;

when **L** is cyclopentadienyl, **k** is equal to 5[,]; when **L** is indenyl, **k** is equal to 7[,]; when **L** is fluorenyl or benzoindenyl, **k** is equal to 9[,]; when **L** is tetrahydroindenyl, **k** is equal to 11; and

```
when L is octahydrofluorenyl, k is equal to 17;
z is equal to 0 \wedge 1, or 2;
x is equal to 1, \bigvee2, or 3;
\mathbf{y} is equal to 1, \lambda or 3;
x + y + z is equal\to the valence of M;
m is [an integer which can assume the values] equal to 1, 2, 3 or
a [and b are integers] is an integer whose value ranges from 0 to
k-1;
b is an integer whose value ranges from 0 to k-1;
f is an integer whose value ranges from 1 to k;
g is [an integer whose value ranges from] equal to 0 to 1;
c [and e are] is equal to 0 or 1;
e is equal to 0 or 1;
\mathbf{a} + \mathbf{b} + \mathbf{c} is at least 1;
\mathbf{a} + \mathbf{g} + \mathbf{c} is at least 1;
d is equal to 0, 1, or 2;
when Q is B_{\perp} then c + d = 1;
when Q is C, Si, Ge, or Sn, then c + d = 2;
when L' is N, then g + e = 1; and
when L' is 0, then g = 0 and e = 0.
```

- (amended once) A heterogeneous [Heterogeneous] catalytic Cording to claim 1 wherein the group RIOSiRII, is [selected from] $CH_2-CH_2-OSiMe_3$, $CH_2-CH_2-CH_2-OSiMe_3$, $CH_2-O-CH_2-OSiMe_3$, $O-CH_2-CH_2-OSiMe_3$ OSiMe₃.
- (amended twice) A heterogeneous [Heterogeneous] catalytic according to claim 1 wherein M is titanium, zirconium, or hafnium.

4. (amended twice) A heterogeneous [Heterogeneous] catalytic (mastry) according to claim 1 wherein the alumoxane is represented by [the formulas] a formula:

 $(RA10)_n$ or $R(R-A1-0)_mA1R_2$,

wherein \mathbf{R} is <u>an</u> alkyl or <u>an</u> aryl group containing from 1 to 20 carbon atoms; \mathbf{n} ranges from 1 to 40[,]; and \mathbf{m} ranges from 3 to 40.

- 5. (amended twice) A heterogeneous catalytic [Heterogeneous catalyst] Sustain according to claim 1 wherein the inorganic support is selected from the group consisting of silica, alumina, silica alumina, aluminum phosphates, and mixtures thereof.
- 6. (amended twice) A heterogeneous catalytic [Heterogeneous catalyst] special according to claim 1 comprising a transition metal, wherein [the content in] the transition metal [is comprised] comprises between 0.01 and 3% by weight of the catalyst system.
- 7. (amended twice) A heterogeneous catalytic [Heterogeneous catalyst] Content in according to claim 6 wherein the [content in] transition metal [is comprised] comprises between 0.1 and 1% by weight of the catalyst system.
- 8. (amended twice) A process [Process] for [the] polymerization of alpha olefins in a slurry or in a gas phase, [characterized by] wherein the polymerization is catalyzed by [the use of] the heterogeneous catalyst claim 1.

Please add the following new claims.

wherein each $\mathbf{R}^{\mathbf{I}}$ is linear or branched C_1 - C_{20} alkylene, linear or branched C_3 - C_{20} cycloalkylene, linear or branched C_6 - C_{20} arylene, linear or branched C_7 - C_{20} alkenyl, linear or branched C_7 - C_{20} , linear or branched arylalkylene, linear or branched alkylarylene, or a group $\mathrm{SiR}^{\mathbf{II}}_2$.

12. A heterogeneous catalytic system as claimed in Claim 1, wherein R^{II} is methyl, ethyl, or isopropyl.

wherein R^{II} is methyl, ethyl, or isopropyl.

A heterogeneous catalytic system as claimed in Claim 2, wherein M is titanium, zirconium, or hafnium.

Lomps. To /2
15. A heterogeneous catalytic system as claimed in Claim 13,
wherein M is titanium, zirconium, or hafnium.

Compositor

A heterogeneous catalytic system as claimed in Claim 2, wherein the alumoxane is represented by a formula:

 $(RA10)_n$ or $R(R-A1-0)_mA1R_2$,

wherein \mathbf{R} is an alkyl or an aryl group containing from 1 to 20 carbon atoms; \mathbf{n} ranges from 1 to 40; and \mathbf{m} ranges from 3 to 40.

A heterogeneous catalytic system as claimed in Claim 3, wherein the alumoxane is represented by a formula:

 $(RA10)_n$

or

 $R(R-A1-O)_mA1R_2$,

wherein \mathbf{R} is an alkyl or an aryl group containing from 1 to 20 carbon atoms; \mathbf{n} ranges from 1 to 40; and \mathbf{m} ranges from 3 to 40.

18. A heterogeneous catalytic system as claimed in Claim 13, wherein the alumoxane is represented by a formula:

 $(RA10)_n$

or

 $R(R-Al-O)_mAlR_2$,

wherein \mathbf{R} is an alkyl or an aryl group containing from 1 to 20 carbon atoms; \mathbf{n} ranges from 1 to 40; and \mathbf{m} ranges from 3 to 40.

19. A heterogeneous catalytic system as claimed in Claim 2, wherein the inorganic support is selected from the group consisting of silica, alumina, silica alumina, aluminum phosphates, and mixtures thereof.

28. A heterogeneous catalytic system as claimed in Claim 3, wherein the inorganic support is selected from the group consisting of silica, alumina, silica alumina, aluminum phosphates, and mixtures thereof.

21. A process for polymerizing a monomer or a mixture of a monomer and a comonomer, wherein the process comprises: contacting the heterogeneous catalytic statem claimed in Claim 1 with the monomer or the mixture to polymerize the monomer or the mixture.--