# An introduction to GAM(M)s

Stefano Coretta

12/07/2018

Some (fairly) linear data...



- ▶ A general formula:  $y = \beta_0 + \beta_1 x$ 
  - y is the **outcome variable**
  - x is the **predictor**
  - $\triangleright$   $\beta_0$  is the **intercept**
  - $\triangleright \beta_1$  is the **slope**
- $\blacktriangleright$  We know x and y
  - we need to estimate  $\beta_0$ ,  $\beta_1$
- ► We can add more predictors
  - $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$

code in R

estimated intercept and slope



#### Is it linear?



How to account for non-linearity in a linear model?

- Use higher-degree polynomials

  - cubic:  $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$
  - *n*th:  $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + ... + \beta_n x^n$





