自动控制系统的数学模型

Outline

Contents

1	时域模型 1				
	1.1	前介	1		
	1.2		2		
	1.3		3		
	1.4	· · · · · · · · · · · · · · · · · · ·	3		
	1.5	A CONTRACTOR OF THE CONTRACTOR	4		
2	复域模型 5				
	2.1	Japlace 变换	5		
	2.2		6		
	2.3		7		
3	结构图 11				
	3.1	告构图介绍 1:	1		
	3.2	t构图化简方法	3		
	3.3	· 古构图等效变换	5		
	3.4	: 言号流图 10	6		
	3.5	每森公式1	7		

1 时域模型

1.1 简介

数学模型分类

- 数学模型: 描述系统内部物理量/变量之间关系的数学表达式
- 数学模型种类:
 - · 时域 (t): 微分方程、差分方程、状态方程
 - · 复域 (s): 传递函数、结构图
 - · 频域 (w): 频率特性

建模步骤

- 1. 列出系统的输入变量、输出变量
- 2. 列写系统的原始方程
- 3. 对原始方程进行线性化
- 4. 消去中间变量,得到仅有输入/输出变量的微分方程

线性化原理与方法

原理:在系统工作点处,将非线性函数展开成泰勒级数,忽略高次项,得到 线性化方程

- y = f(x) 在 x_0 处展开
 - $y = f(x_0) + f'(x_0)(x x_0) + \cdots$
 - $y \approx y_0 + k(x x_0)$
- $y = f(x_1, x_2)$ 在 (x_{10}, x_{20}) 处展开
 - $y = f(x_{10}, x_{20}) + f_{x1}(x_{10}, x_{20})(x x_{10}) + f_{x2}(x_{10}, x_{20})(x x_{20}) + \cdots$
 - $\cdot y = y_0 + K_1(x x_{10}) + K_2(x x_{20})$
- 增量化方程
 - $dY = y y_0$
 - $dX = x x_0$
 - dY = KdX

1.2 线性微分方程与线性系统

线性微分方程的解

解=特解+通解

- 通解由微分方程的特征根决定
 - · 微分方程: $a_0x''(t) + a_1x'(t) + a_2x(t) = b$
 - ·特征方程: $a_0s^2 + a_1s + a_2 = 0$
- n 阶方程有 n 个互异特征根 $\lambda_1, ..., \lambda_n$ 时, 通解为 $y(t) = c_1 e^{\lambda_1 t} + ... + c_n e^{\lambda_n t}$
- 若有重根 $\lambda = \lambda_1 = \lambda_2$, 则 $y(t) = c_1 t e^{\lambda t} + c_2 e^{\lambda t} + \dots + c_n e^{\lambda_n t}$

线性系统的定义与特点

- 条件:
 - ・可加性: 若 $r_1(t)$ > $c_1(t)$, $r_2(t)$ > $c_2(t)$ 则: $r_1(t) + r_2(t)$ > $c_1(t) + c_2(t)$
 - · 齐次性: $r_1(t) > c_1(t)$ 则: $ar_1(t) > ac_1(t)$
- 微积分特性: $r_1(t) \to c_1(t)$ 则 $\int r_1(t) \to \int c_1(t), r_1(t)' \to c_1(t)'$

1.3 机械系统示例 (因果关系: 力与位移的关系) 机械系统示例 1

- 弹簧 -质量 -阻尼系统
- 解:
 - · 输入: F(t), 输出: Y(t)
 - · 原始方程: F kY(t) fv = ma
 - · 消去中间变量:
 - * v = Y'(t)
 - * a = v'
 - * mY" + fY' + kY = F

1.4 电气系统示例

电气及机电系统示例 1

- 电阻、电容网络 。
- 解:
 - · 输入: E_r , 输出 E_c
 - · 原始方程:
 - * $I = I_1 + I_2$
 - * $E_c = R_2 I$

*
$$E_r = R_1 I_2 + E_c$$

*
$$C(E_r - E_c)' = I_1$$

· 消去 I,I₁,I₂ 得:

*
$$R_1CE'_c + (R_1 + R_2)/R_2E_c = R_1E'_r + E_r$$

电气及机电系统示例 2

- 电阻、电容网络 ○
- 解:
 - · 输入: U_r , 输出: U_c
 - $\cdot U_r = RI + U_c , CU_c' = I$
 - · 消去 I , $RCU'_c + U_c = U_r$

1.5 非线性系统示例

倒立摆系统线性化模型

- 倒立摆
 - · M: 小车质量
 - · m: 杆质量
 - · l: 摆杆半长
 - · J: 摆杆转动惯量(绕质心)

- 解:
 - · 输入 F, 输出 θ , r
 - · 原始方程:
 - * 小车水平方向: Mr'' = F H
 - * 杆水平方向: $m(r + lsin(\theta))'' = H$
 - * 杆竖直方向: $m(lcos(\theta))'' = N mg$
 - * 杆转动: $J(\theta)'' = Nlsin(\theta) Hlcos(\theta)$
 - · 整理后:
 - * $(M+m)r'' + ml\cos(\theta)\theta'' ml\sin(\theta)(\theta')^2 = F$
 - * $ml\cos(\theta)r'' + (J + ml^2)\theta'' = mgl\sin(\theta)$
 - · 线性化 ($\theta \to 0$, $\sin(\theta) \approx \theta$, $\cos(\theta) \approx 1$)
 - * $(M+m)r'' + ml\theta'' = F$
 - * $mlr'' + (J + ml^2)\theta'' = mgl\theta$

2 复域模型

2.1 Laplace 变换

概念

定义

$$\mathcal{L}[F(t)] = F(s)$$

$$= \int_{0}^{+\infty} f(t)e^{-st}dt$$

• 作用:将微积分运算变成代数运算

常用函数的 Laplace 变换

- 单位脉冲函数 $f(t) = \delta(t) \rightarrow F(s) = 1$
- 阶跃函数 $f(t) = A, (t \ge 0) \to F(s) = \frac{A}{2}$
- 斜坡函数 (速度) $f(t) = vt, (t \ge 0) \rightarrow F(s) = \frac{v}{s^2}$
- 加速度函数 $f(t) = \frac{1}{2}at^2, (t \ge 0) \to F(s) = \frac{a}{s^3}$
- 指数函数 $f(t) = e^{at} \rightarrow F(s) = \frac{1}{s-a}$
- 正弦函数 $f(t) = A\sin(\omega t) \rightarrow F(s) = \frac{A\omega}{s^2 + \omega^2}$

Laplace 变换的性质

- 线性: $f(t) = f_1(t) + f_2(t) \rightarrow F(s) = F_1(s) + F_2(s)$
- $\xi \ddot{a}$: $g(t) = f(t)e^{-at} \rightarrow G(s) = F(s+a)$
- 延迟: $g(t)=f(t-a)\to G(s)=F(s)e^{-as}$, 一个信号经过 e^{-as} 后,相当于对这个信号作延迟运算
- 积分: $g(t) = \int_0^t f(\tau)d\tau \to G(s) = \frac{F(s)}{s}, \frac{1}{s}$ 相当于积分器
- 徽分: $g(t)=f(t)'\to G(s)=sF(s)-f(0)$,零初始条件下,G(s)=sF(s),s 相当于微分器
- 初值定理: 若 f(t) 在 t=0 处无脉冲分量则 $f(0)=\lim_{t\to 0}f(t)=\lim_{s\to \infty}sF(s)$
- 终值定理: 若 F(s) 极点全部在左半平面,则 $f(\infty)=\lim_{t\to\infty}f(t)=\lim_{s\to >0}sF(s)$

传递函数概念

- 概念:数学模型,从现阶段来讲,描述的是输入与输出的数学运算关系。 传递函数可以表示出系统的结构,可以用来研究系统结构,参数变化对系统性能的影响。
- 定义: 线性定常系统的传递函数是指在零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比,记作: $G(s) = \frac{C(s)}{R(s)}$ 。

2.2 传递函数的零点与极点

传递函数的形式

- 传递函数有三种表达形式
 - · 分子分母多项式
 - · 零极点形式
 - . 典型环节形式

分子分母多项式

• 在零初始条件下,对微分方程两端进行拉氏变换,有

$$\begin{array}{rcl} a_n c^{(n)}(t) + \ldots + a_0 c(t) & = & b_m r^{(m)}(t) + \ldots + b_0 r \\ a_n s^n C(s) + \ldots + a_0 C(s) & = & b_m s^m R(s) + \ldots + b_0 R(s) \\ (a_n s^n + \ldots + a_0) C(s) & = & (b_m s^m + \ldots + b_0) R(s) \\ G(s) & = & \frac{C(s)}{R(s)} \\ & = & \frac{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_0}{a_n s^n + a_{n-1} s^{n-1} + \ldots + a_0} \end{array}$$

• 传递函数只与系统的结构和参数有关

零极点形式

$$G(s) = \frac{k_g \prod_{i=1}^{m} (s - z_i)}{\prod_{j=1}^{n} (s - p_j)}$$

- k_g 根轨迹增益
- z_i 零点
- p_j 极点

典型环节形式

$$G(s) = \frac{K \prod_{i=1}^{m} (\tau_i s + 1)}{s^{\nu} \prod_{j=1}^{n} (\tau_j s + 1)}$$

K:系统增益

传递函数的零极点对系统输出的影响

•
$$N(s)C(s) = M(s)R(s)$$

· $M(s) = (b_m s^m + b_{m-1} s^{m-1} + \dots + b_0)$
· $N(s) = (a_n s^n + a_{n-1} s^{n-1} + \dots + a_0)$

- $G(s) = \frac{C(s)}{R(s)} = \frac{M(s)}{N(s)}$
- M(s) = 0 求得极点, N(s) = 0 求得零点。
- $c(t) = c_1 e^{\lambda_1 t} + \dots + c_n e^{\lambda_n t}$
- 系统运动模态由极点决定
- 各模态所占比例由零点决定

2.3 典型环节传递函数

比例环节

$$c(t) = kr(t)$$

$$C(s) = kR(s)$$

$$G(s) = \frac{C(s)}{R(s)}$$

积分环节

- 传递函数
 - $c(t) = \int r(t)dt$
 - $C(s) = \frac{R(s)}{s}$ $G(s) = \frac{1}{s}$

- 推导
 - 1. $U_r = IR$
 - 2. $U_r(s) = I(s)R$
 - $3. C \frac{dU_c}{dt} = I_c = -I$

 - 4. $U_c(s) = -\frac{I(s)}{Cs}$ 5. $U_c(s) = -\frac{U_r(s)}{RCs}$
 - 6. $\frac{U_c(s)}{U_r(s)} = -\frac{1}{RCs}$

微分环节

- 传递函数
 - c(t) = r'(t)
 - $\cdot C(s) = sR(s)$
 - G(s) = s

推导

$$U_r = \frac{1}{C} \int Idt + U_c$$

$$U_r(s) = \frac{I(s)}{Cs} + U_c(s)$$

$$IR = U_c$$

$$I(s)R = U_c(s)$$

$$U_r(s) = \frac{U_c(s)}{RCs} + U_c(s)$$

$$\frac{U_c(s)}{U_r(s)} = \frac{RCs}{1 + RCs}$$

$$\approx RCs, \quad (RC \ll 1)$$

实际物理系统 $n \ge m$. 其中: n: 传递函数分母阶次, m 分子阶次

一阶惯性环节

• 传递函数

$$G(s) = \frac{1}{Ts+1}$$

其中 T = RC 为时间常数

推导

$$\begin{array}{rcl} U_r & = & IRdt + U_c \\ U_r(s) & = & I(s)R + U_c(s) \\ U_c & = & \frac{1}{C}\int Idt \\ I(s) & = & CsU_c \\ U_r(s) & = & U_c(s)RCs + U_c(s) \\ \frac{U_c(s)}{U_r(s)} & = & \frac{1}{1 + RCs} \end{array}$$

一阶微分环节

$$G(s) = 1 + \tau s$$

二阶振荡环节

LC 振荡电路 ○

$$U_r = IR + U_L + U_c$$

$$U_c = \frac{1}{C} \int I dt$$

$$U_L = L \frac{dI}{dt}$$

推导

$$\begin{array}{rcl} U_r(s) & = & I(s)R + U_L(s) + U_c(s) \\ U_c(s) & = & \frac{I(s)}{Cs} \\ I(s) & = & CsU_c \\ U_L(s) & = & LsI(s) \\ & = & LCs^2U_c(s) \\ U_r(s) & = & (Rcs + LCs^2 + 1)U_c(s) \\ \frac{U_c(s)}{U_r(s)} & = & \frac{1}{LCs^2 + RCs + 1} \end{array}$$

二阶振荡环节标准形式

• 标准形式:

$$G(s) = \frac{\omega^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$
$$= \frac{1}{T^2 s^2 + 2\xi T s + 1}$$

其中 $T\omega_n = 1$

• 术语:

 $\cdot \omega_n$: 无阻尼振荡频率或自然频率

· E: 阻尼比或阻尼系数

· T: 时间常数

例:姿态角、角速度、加速度计等其数学模型均为二阶振荡环节

二阶微分环节

$$G(s) = \tau^2 s^2 + 2\xi \tau s + 1$$

延迟环节

$$\begin{array}{rcl} c(t) & = & r(t-\tau) \\ C(s) & = & R(s)e^{-\tau s} \end{array}$$

$$G(s) = e^{-\tau s}$$

3 结构图

3.1 结构图介绍

结构图特点

- 结构图是系统中各元件功能和信号流向的图解,它表示系统中各元部件的相互连接以及信号在系统中的传递路线。
- 特点
 - . 形象直观
 - · 可以评价各元部件对系统性能的影响
 - · 工程上使用广泛
 - · 可描述线性或非线性系统
 - · 同一结构图可用不同元器件构成实现
 - · 对于某一确定系统或元件, 其结构图不是唯一的

系统结构图的组成及绘制

组成: 4 个基本单元

- 信号线
- 引出点 (分支点)
- 比较点 (累加点)
- 传递函数环节

环节连接方式

- 3 种连接方式:
- 串联
- 并联
- 反馈

串联

- 传递函数计算
 - · 等效传递函数等于各环节传递函数的乘积

并联

- 结构图
- 传递函数计算
 - · 等效传递函数等于各环节传递函数的代数和

反馈

一个环节输出信号通过另一个环节反馈至自己的输入端并与原输入信号进行 比较的连接

结构图

结构图

术语介绍:

- 前向通道及其传递函数: 信号从 R(s)->C(s) 的通道称为前向通道, 前向通道上各传递函数的乘积称为前向通道传递函数
- 反馈能道及其传递函数: 信号从 C(s)->E(s) 的通道称为反馈通道, 反馈通道上各传递函数的乘积称为反馈通道传递函数
- 反馈连接的等效传递函数: $G(s) = \frac{\%$ 前向通道传递函数 $1 \pm \%$ 有通道传递函数 $1 \pm \%$ 有通道传递函数 $1 \pm \%$ 有通道传递函数 $1 \pm \%$ 有通道传函数
- 开环系统传递函数: $G_{open}(s) = G(s)H(s)$
- 误差传递函数: $\Phi_e(s) = \frac{E(s)}{R(s)} = 1 \frac{C(s)H(s)}{R(s)} = \frac{1}{1 + G(s)H(s)}$
- 扰动传递函数: $\Phi_f(s) = \frac{C(s)}{N(s)} = \frac{G_2(s)}{1+G_1(s)G_2(s)H(s)}$
- 闭环传递函数: $\Phi(s) = \frac{C(s)}{R(s)}$

3.2 结构图化简方法

结构图化简

- 目地: 求系统的闭环传递函数 $\Phi(s) = \frac{C(s)}{R(s)}$
- 化简方法:
 - · 串、并、反馈连接
 - · 比较点、分支点移动

例: 求 $\Phi(s) = \frac{C(s)}{R(s)}$:

解:

$$G(s) = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)}$$

$$\Phi(s) = \frac{G(s)G_3(s)}{1 + G(s)G_3(s)}$$
(2)

$$\Phi(s) = \frac{G(s)G_3(s)}{1 + G(s)G_3(s)} \tag{2}$$

$$\Phi(s) = \frac{G_1(s)G_2(s)G_3(s)}{1 + G_1(s)G_2(s) + G_1(s)G_2(s)G_3(s)}$$
(3)

例:结构图化简

例:结构图化简(续)

• 内回路化为 $\Phi_1(s)$

• 内回路化为 $\Phi_2(s)$

例:结构图化简 (续)

解:

$$\Phi_1(s) = \frac{G_2 G_3}{1 + G_2 G_3 H_2} \tag{4}$$

$$\Phi_2(s) = \frac{G_1 \Phi_1}{1 + H_1 G_1 \Phi_1 / G_3} \tag{5}$$

$$= \frac{G_1 G_2 G_3}{1 + G_2 G_3 H_2 + G_1 G_2 H_1} \tag{6}$$

$$\Phi(s) = \frac{\Phi_2}{1 + \Phi_2} \tag{7}$$

$$= \frac{G_1 G_2 G_3}{1 + G_2 G_3 H_2 + G_1 G_2 H_1 + G_1 G_2 G_3} \tag{8}$$

(9)

结构图变换规则:各通道传递函数不变,即等效变换

3.3 结构图等效变换

比较点移动

分支点移动

$$R(s)$$
 $G(s)$ $C(s)$ $G(s)$ $C(s)$ $Q(s)$ $G(s)$ $Q(s)$

• 分支点移动

• 分支点移动

分支点与比较点的相互移动

例: 求 $\Phi(s) = \frac{C(s)}{R(s)}$

$$C(s) = R(s)G_1 + X(s) \tag{10}$$

$$X(s) = G_2(R(s) - C(s)G_3) (11)$$

$$C(s) = R(s)G_1 + G_2(R(s) - C(s)G_3)$$
(12)

$$\frac{C(s)}{R(s)} = \frac{G_1 + G_2}{1 + G_2 G_3} \tag{13}$$

3.4 信号流图

信号流图定义

由节点与有向支路构成的能表征系统功能与信号流动方向的图,称为系统的信号流图。

$$F(s) \overset{H(s)}{\circ} Y(s)$$

结构图与信号流图

3.5 梅森公式

梅森公式

- 优点:不需要对结构图作任何变换,可以直接对复杂的结构图求取系统的 闭环传递函数
- 梅森公式

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum_{k=1}^{l} P_k \Delta_k$$

- · Δ : 系统的特征多项式, Δ =1-(所有不同回路增益之和)+(所有两两不接触回路增益乘积之和)-(所有三个互不接触回路增益乘积之和)+...
- · P_k: 第 k 条前向通道
- \cdot Δ_k : 系统结构图去除 P_k 后的特征多项式

梅森公式示例 (结构图):

梅森公式示例(信号流图):

解:

•
$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{1}{\Delta} \sum P_k \Delta_k$$
;

- $P_1 = G_1G_2G_3, L_1 = -G_1H_1, L_2 = -G_2H_2, L_3 = -G_3H_3$;
- $\Delta_1 = 1$;
- $\Delta = 1 (L_1 + L_2 + L_3) + L_1 L_3 = 1 + G_1 H_1 + H_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3$;
- $\Phi(s) = \frac{G_1 G_2 G_3}{1 + G_1 H_1 + G_2 H_2 + G_3 H_3 + G_1 G_3 H_1 H_3}$.