

UNIDADE I

Estatística e Probabilidade

Prof. Me. Antônio Palmeira

Conteúdo da disciplina

- Estatística descritiva.
- Probabilidades.
- Estatística indutiva.

Noções gerais sobre conjunto de dados

- Apresenta uma relação de valores brutos de características estudadas e as suas respectivas contagens.
- Pode ser apresentado na forma de uma tabela de dados brutos.
- Exemplo: tabela de dados brutos que apresenta o nome do finalista, o número da chamada e a quantidade de falhas em uma desafio proposto.

N. de chamada	Nome do finalista	Quantidade de falhas no algoritmo
1	André	3
2	Bianca	2
3	Beatriz	3
4	Catarina	2
5	Diego	1
6	Elsa	5
7	Fábio	1
8	Gabriela	2
9	Júlia	3
10	Laila	2
11	Marcelo	0
12	Mariana	1
13	Patrícia	2
14	Paulo	2
15	Rafael	3
16	Sofia	2
17	Tobias	2

Organização de um conjunto de dados

- É a forma de apresentar o conjunto de dados para trazer as medidas e as observações.
- Exemplo: quantidade e identificação de finalistas de acordo com o número de falhas.

Quantidade de falhas	Quantidade de finalistas	Nome do finalista
0	1	Marcelo
1	3	Diego, Fábio e Mariana
2	8	Bianca, Catarina, Gabriela, Laila, Patrícia, Paulo, Sofia e Tobias
3	4	André, Beatriz, Júlia e Rafael
4	0	-
5	1	Elsa
Total	1+3+8+4+0+1=17	

Frequência absoluta de cada medida de um conjunto de dados

Quantidade de falhas (x)	Frequência absoluta (FA)
0	1
1	3
2	8
3	4
4	0
5	1
Total	N = 1 + 3 + 8 + 4 + 0 + 1 = 17

Quantidade de falhas	Quantidade de finalistas	Nome do finalista
0	1	Marcelo
1	3	Diego, Fábio e Mariana
2	8	Bianca, Catarina, Gabriela, Laila, Patrícia, Paulo, Sofia e Tobias
3	4	André, Beatriz, Júlia e Rafael
4	0	-
5	1	Elsa
Total	1 + 3 + 8 + 4 + 0 + 1 = 17	

Frequência relativa de cada medida de um conjunto de dados

- Frequência Relativa (FR)
- Frequência Absoluta (FA)
- Total da Amostra (N)

$$FR = \frac{FA}{N}$$

Quantidade de falhas (x)	Frequência absoluta (FA)	Frequência relativa (FR), sendo $FR = \frac{FA}{N}$
0	1	1/17 = 0,05882
1	3	3/17 = 0,17647
2	8	8/17 = 0,47059
3	4	4/17 = 0,23529
4	0	0/17 = 0
5	1	1/17 = 0,05882
Total	N = 1 + 3 + 8 + 4 + 0 + 1 = 17	Soma = $\frac{1}{17} + \frac{3}{17} + \frac{8}{17} + \frac{4}{17} + \frac{0}{17} + \frac{1}{17}$ Soma = 1

Frequência relativa (FR) Fonte: adaptado de: livro-texto.

Percentual de cada medida de um conjunto de dados

Quantidade de falhas (x)	Frequência absoluta (FA)	Frequência relativa (FR), sendo FR = FA N	Percentual (Perc%), sendo Perc% = FR . 100
0	1	1/17 = 0,05882	5,882%
1	3	3/17 = 0,17647	17,647%
2	8	8/17 = 0,47059	47,059%
3	4	4/17 = 0,23529	23,529%
4	0	0/17 = 0	0%
5	1	1/17 = 0,05882	5,882%
Total	N = 1 + 3 + 8 + 4 + 0 + 1 = 17	Soma = $\frac{1}{17} + \frac{3}{17} + \frac{8}{17} + \frac{4}{17} + \frac{0}{17} + \frac{1}{17}$ Soma = 1	Soma = 100%

Medidas de tendência central de um conjunto de dados

- As medidas de tendência central representam uma forma de sintetizar as características em um conjunto de dados.
- Essas medidas são também chamadas de medida de posição.
- Elas podem ser na forma de: médias, modas e medianas.

Média de um conjunto de dados

A média de um conjunto de dados é feita da seguinte maneira:

- Somamos todos os valores observados.
- Dividimos o resultado dessa soma pela quantidade de elementos somados.

$$\overline{x}_{CD} = \frac{x_1 + x_2 + ... + x_i + ... + x_N}{N}$$

A igualdade anterior também pode ser escrita como:

$$\overline{x}_{CD} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Na expressão, $\sum_{i=1}^{N} x_i$ é lido como "somatória de xis com índice i, começando em 1 e indo até N".

Exemplo de cálculo de médias

Bimestre	Nota
1º bimestre	7,5
2º bimestre	6
3º bimestre	6
4º bimestre	9

Média de Lucas em matemática =
$$\frac{7,5+6+6+9}{4} = \frac{28,5}{4} = 7,125$$

Cálculo da média com valores negativos

$$\overline{X}_{CD} = \frac{X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7 + X_8 + X_9}{9}$$

$$\overline{x}_{CD} = \frac{21 + (-7,3) + 12,5 + 32 + (-47) + 23 + 3 + (-51,7) + (-0,8)}{9} = \frac{-15,3}{9} = -1,7$$

Medida	Valor
X ₁	21
X ₂	-7,3
X_3	12,5
X_4	32
X_5	-47
X ₆	23
X ₇	3
X ₈	-51,7
X ₉	-0,8

Cálculo das médias das frequências absolutas

- Multiplicamos cada medida pela sua frequência absoluta de ocorrência.
- Somamos todas as multiplicações de medidas pelas suas respectivas frequências absolutas.
- Dividimos a soma anterior pelo número N de medidas.

Quantidade de falhas no algoritmo	Frequência absoluta
$X_1 = 0$	FA ₁ = 1
X ₂ = 1	FA ₂ = 3
X ₃ = 2	FA ₃ = 8
$X_4 = 3$	FA ₄ = 4
$X_5 = 4$	$FA_5 = 0$
$X_6 = 5$	FA ₆ = 1
	N = 1 + 3 + 8 + 4 + 0 + 1 = 17

$$\bar{x}_{CD} = \frac{x_1 \cdot FA_1 + x_2 \cdot FA_2 + x_3 \cdot FA_3 + x_4 \cdot FA_4 + x_5 \cdot FA_5}{N}$$

$$\bar{x}_{CD} = \frac{0.1 + 1.3 + 2.8 + 3.4 + 4.0 + 5.1}{17} = \frac{0 + 3 + 16 + 12 + 0 + 5}{17} = \frac{36}{17} = 2,12$$

Interatividade

Qual das opções a seguir apresenta apenas medidas de tendências centrais?

- a) Média e variância.
- b) Mediana e moda.
- c) Variância e desvio-padrão.
- d) Desvio-padrão e moda.
- e) Variância e mediana.

Resposta

Qual das opções a seguir apresenta apenas medidas de tendências centrais?

- a) Média e variância.
- b) Mediana e moda.
- c) Variância e desvio-padrão.
- d) Desvio-padrão e moda.
- e) Variância e mediana.

Moda de um conjunto de dados

- A moda (Mo) de um conjunto de dados é o valor mais frequente nesse conjunto, ou seja, é o valor que aparece mais vezes.
- Um conjunto de dados pode não apresentar moda ou ter mais de uma moda.

Quantidade de falhas (x)	Frequência absoluta (FA)
0	1
1	3
2	8
3	4
4	0
5	1
Total	N = 1 + 3 + 8 + 4 + 0 + 1 = 17

Mediana de um conjunto de dados

 A mediana MD de um conjunto de dados escritos em ordem crescente é o valor central da distribuição de valores (se o número de elementos do conjunto for ímpar).

A mediana é média aritmética dos dois valores centrais da distribuição de dados se o número

de elementos do conjunto for par.

Ordenamento	Valor
1º valor	-51,7
2º valor	-47
3º valor	-7,3
4º valor	-0,8
5º valor	3
00	40 =
6º valor	12,5
7º valor	12,5 21
7º valor	21

Peso (kg)
2,97
2,98
3,04
3,05
3,09
3,12
3,13
3,13
3,18
3,21
3,22
3,26

$$MD = \frac{(6^{\circ} \text{ valor}) + (7^{\circ} \text{ valor})}{2} = \frac{3,12 + 3,13}{2} = 3,125$$

Medidas de dispersão de um conjunto de dados

- Podemos estar interessados em avaliar de modo mais amplo o comportamento de um conjunto de valores.
- Para isso, não é suficiente calcularmos apenas as medidas de tendência central, precisamos das medidas de dispersão (amplitude, variância e desvio-padrão).

Amplitude de um conjunto de dados

 A amplitude A de um conjunto de dados é a diferença entre o maior valor observado (MVO) e o menor valor observado (mvo).

$$A = MVO - mvo = 3,26 - 2,97 = 0,29$$

Na situação em foco, a diferença de peso entre o "maior recém-nascido" e o "menor recém-

nascido" é de 0,29 kg, ou seja, 290 gramas.

Nome do recém-nascido	Peso do recém-nascido (kg)
Alice	3,05
Hugo	3,12
Laura	2,97 (mvo)
Silas	3,21
Tiago	3,18
Rodrigo	3,09
Carina	2,98
Gisele	3,13
Viviane	3,04
Ricardo	3,13
Ulisses	3,26 (MVO)
Marta	3,22

Variância e desvio-padrão

- São medidas que nos ajudam a observar se a variabilidade de um conjunto de dados é grande ou pequena.
- Observe que na tabela a seguir os três alunos têm médias iguais, mas variabilidades diferentes, por isso precisamos calcular a variância e o desvio-padrão.

Estudante	Notas em ciências		Média das notas		
Marcos	4,75	5,25	5,5	4,5	5
Vanessa	5	5	5	5	5
Leila	0	0	10	10	5

Variância

 A variância VAR das N medidas de um conjunto de dados, em que Xi representa uma medida qualquer (lida como "i-esima medida").

$$VAR = \frac{(x_1 - \overline{x}_{CD})^2 + (x_2 - \overline{x}_{CD})^2 + ... + (x_i - \overline{x}_{CD})^2 + ... + (x_N - \overline{x}_{CD})^2}{N}$$

$$VAR = \frac{\sum_{i=1}^{N} (x_i - \overline{x}_{CD})^2}{N}$$

Desvio-padrão

 O desvio-padrão de um conjunto de dados, indicado por DP, é um valor que mostra se a variabilidade de um conjunto de valores é grande ou é pequena em relação à média dos valores.

$$DP = \sqrt{VAR}$$

- Se o desvio-padrão de um conjunto de dados é zero (DP = 0), isso significa que esse conjunto é formado por valores idênticos.
- Se o desvio-padrão de um conjunto de dados é "pequeno" quando comparado à média, isso significa que esse conjunto é formado por valores "pouco dispersos", que variam pouco.
 - Se o desvio-padrão de um conjunto de dados é "grande" quando comparado à média, significa que esse conjunto é formado por valores "muito dispersos", que variam muito.

Calculando o desvio-padrão

Calculamos a média:

$$\overline{x}_{CD} = \frac{x_1 + x_2 + x_3}{3}$$

$$\overline{x}_{CD} = \frac{(-2) + 221 + 56}{3} = \frac{275}{3} = 91,67$$

Medida	Valor
X ₁	-2
X_2	221
X_3	56

Calculamos a variância:

VAR =
$$\frac{(x_1 - \overline{x}_{CD})^2 + (x_2 - \overline{x}_{CD})^2 + (x_3 - \overline{x}_{CD})^2}{3}$$

$$VAR = \frac{((-2) - (91,67))^2 + ((221) - (91,67))^2 + ((56) - (91,67))^2}{3}$$

$$VAR = \frac{(-93,67)^2 + (129,33)^2 + (-35,67)^2}{3}$$

$$VAR = \frac{8774,0689 + 16726,2489 + 1272,3489}{3} = \frac{26772,6667}{3} = 8924,2222$$

■ Calculamos o desvio-padrão: $DP = \sqrt{VAR} = \sqrt{8924,2222} = 94,47$

Calculando o desvio-padrão (exemplo dos alunos)

Estudante		Notas em	ciências	
Marcos	$X_1 = 4,75$	$X_2 = 5,25$	$X_3 = 5.5$	$X_4 = 4,5$

VAR(Marcos) =
$$\frac{(x_1 - \overline{x}_{CD})^2 + (x_2 - \overline{x}_{CD})^2 + (x_3 - \overline{x}_{CD})^2 + (x_4 - \overline{x}_{CD})^2}{4}$$

VAR(Marcos) =
$$\frac{((4,75)-(5))^2 + ((5,25)-(5))^2 + ((5,5)-(5))^2 + ((4,5)-(5))^2}{4}$$

VAR(Marcos) =
$$\frac{(-0.25)^2 + (0.25)^2 + (0.5)^2 + (-0.5)^2}{4}$$

VAR(Marcos) =
$$\frac{0.0625 + 0.0625 + 0.25 + 0.25}{4} = \frac{0.625}{4}$$

$$VAR(Marcos) = 0.15625$$

$$DP(Marcos) = \sqrt{0,15625} = 0,3953$$

Calculando o desvio-padrão (exemplo dos alunos)

Estudante		Notas em	ciências	
Vanessa	$X_1 = 5$	$X_2 = 5$	$X_3 = 5$	$X_4 = 5$

$$VAR(Vanessa) = \frac{\left(x_{1} - \overline{x}_{CD}\right)^{2} + \left(x_{2} - \overline{x}_{CD}\right)^{2} + \left(x_{3} - \overline{x}_{CD}\right)^{2} + \left(x_{4} - \overline{x}_{CD}\right)^{2}}{4}$$

$$VAR(Vanessa) = \frac{\left((5) - (5)\right)^{2} + \left((5) - (5)\right)^{2} + \left((5) - (5)\right)^{2} + \left((5) - (5)\right)^{2}}{4}$$

VAR(Vanessa) =
$$\frac{(0)^2 + (0)^2 + (0)^2 + (0)^2}{4} = \frac{0}{4}$$

$$VAR(Vanessa) = 0$$

$$DP(Vanessa) = \sqrt{0} = 0$$

Calculando o desvio-padrão (exemplo dos alunos)

Estudante		Notas em	ciências	
Leila	$X_1 = 0$	$X_2 = 0$	$X_3 = 10$	$X_4 = 10$

VAR(Leila) =
$$\frac{(x_1 - \overline{x}_{CD})^2 + (x_2 - \overline{x}_{CD})^2 + (x_3 - \overline{x}_{CD})^2 + (x_4 - \overline{x}_{CD})^2}{4}$$

VAR(Leila) =
$$\frac{((0)-(5))^2 + ((0)-(5))^2 + ((10)-(5))^2 + ((10)-(5))^2}{4}$$

VAR(Leila) =
$$\frac{(-5)^2 + (-5)^2 + (5)^2 + (5)^2 + (5)^2}{4} = \frac{25 + 25 + 25 + 25}{4} = \frac{100}{4}$$

$$VAR(Leila) = 25$$

$$DP(Leila) = \sqrt{25} = 5$$

Interatividade

Qual das opções a seguir apresenta apenas medidas de dispersão?

- a) Média e variância.
- b) Mediana e moda.
- c) Variância e desvio-padrão.
- d) Desvio-padrão e moda.
- e) Variância e mediana.

Resposta

Qual das opções a seguir apresenta apenas medidas de dispersão?

- a) Média e variância.
- b) Mediana e moda.
- c) Variância e desvio-padrão.
- d) Desvio-padrão e moda.
- e) Variância e mediana.

Probabilidade

• É o estudo das chances de ocorrência de um resultado, que são obtidas pela razão entre casos favoráveis e casos possíveis.

$$P = P(sucesso) = \frac{Número de casos favoráveis}{Número total de casos possíveis}$$

- Como o número de casos favoráveis é menor do que o número total de casos possíveis ou igual ao número total de casos possíveis, a probabilidade P é um número real que varia de 0 até 1 (0 ≤ P ≤ 1).
- Muitas vezes, a probabilidade P é multiplicada por 100% para expressarmos o resultado em percentual (%).

Exemplo de probabilidade

Qual é a probabilidade de que, em um único lançamento de um dado honesto, obtenhamos o resultado 3 (face 3 voltada para cima)?

- O número total de casos possíveis é igual a 6, pois você pode obter os seguintes resultados:
 1, 2, 3, 4, 5 ou 6.
- Os resultados possíveis de um experimento também são conhecidos como espaço amostral
 E. No caso em estudo, temos que E = {1, 2, 3, 4, 5, 6}.
- De todos os possíveis resultados, ou seja, de todo o espaço amostral E, somente se considera sucesso a obtenção do resultado 3.
- Ou seja, dos 6 resultados possíveis, apenas um deles é favorável.

$$P = P(sucesso) = \frac{Número de casos favoráveis}{Número total de casos possíveis} = \frac{1}{6}$$

$$P = P(sucesso) = \frac{Número de casos favoráveis}{Número total de casos possíveis}.100\% = \frac{1}{6}.100\% = 16,7\%$$

Probabilidade da união e da intersecção de eventos

- Vamos indicar por A e por B dois eventos do espaço amostral E, cujas probabilidades de ocorrência são, respectivamente, P(A) e P(B).
- A probabilidade de ocorrência de A ou B, ou seja, a probabilidade da ocorrência da união dos eventos A e B, indicada por P(A ∪ B), é dada por:
 - $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Na igualdade acima, chamada de regra de adição de probabilidades, P(A ∩ B) indica a probabilidade de ocorrência de A e B, ou seja, a probabilidade de ocorrência da intersecção dos eventos A e B.

Exemplo de probabilidade da união e da intersecção de eventos

Qual é a probabilidade de o estudante sorteado cursar Ciência da Computação no turno diurno? 1253

 $P(C \cap D) = \frac{1253}{6283} = 0,1994$

Qual é a probabilidade de o estudante sorteado cursar Ciência da Computação ou estudar no turno diurno?

$$P(C \cup D) = P(C) + P(D) - P(C \cap D)$$

$$P(C \cup D) = 0.5744 + 0.4165 - 0.1994 = 0.7915$$

Curso	Diurno	Noturno	Total
Ciência da Computação	1253	2356	3609
Matemática	238	327	565
Administração	1126	983	2109
Total	2617	3666	6283

Probabilidade condicional

- Vamos indicar por A e por B dois eventos do espaço amostral E, cujas probabilidades de ocorrência são, respectivamente, P(A) e P(B).
- A probabilidade de ocorrência de A dado que B ocorreu, ou seja, a probabilidade condicional de A dada a ocorrência de B, indicada por P(A/B) e lida como "pê de A dado B", é dada por:

$$P(A / B) = \frac{P(A \cap B)}{P(B)}$$

Exemplo de probabilidade condicional

• Qual é a probabilidade de sortearmos um estudante do curso de Ciência da Computação sabendo que esse estudante estuda no turno diurno?

$$P(C/D) = \frac{P(C \cap D)}{P(D)} = \frac{0,1994}{0,4165} = 0,4787$$

$$P(C/D) = \frac{1253}{2617} = 0,4787$$

Curso	Diurno	Noturno	Total
Ciência da Computação	1253	2356	3609
Matemática	238	327	565
Administração	1126	983	2109
Total	2617	3666	6283

Eventos independentes

- Vamos indicar por A e por B dois eventos do espaço amostral E, cujas probabilidades de ocorrência são, respectivamente, P(A) e P(B).
- Os eventos A e B são independentes se informações a respeito da ocorrência ou da não ocorrência de A não interferem na probabilidade de ocorrência de B.

$$P(A/B) = P(A) e P(A \cap B) = P(A) . P(B)$$

Exemplo de eventos independentes

- Uma urna com 2 bolas cinza e 3 bolas verdes, retiramos ao acaso e sucessivamente 2 bolas, mas, agora, fazendo a reposição da bola inicialmente retirada (colocando-a novamente na urna).
- Nesse caso, qual é a probabilidade de retirarmos duas bolas verdes?

Fonte: livro-texto.

Resultado obtido	Probabilidade de ocorrer o resultado
Retiro uma bola cinza e, depois, outra bola cinza	$P(C \cap C) = P(C) \cdot P(C) = \frac{2}{5} \cdot \frac{2}{5} = \frac{4}{25}$
Retiro uma bola cinza e, depois, uma bola verde	$P(C \cap V) = P(C) \cdot P(V) = \frac{2}{5} \cdot \frac{3}{5} = \frac{6}{25}$
Retiro uma bola verde e, depois, uma bola cinza	$P(V \cap C) = P(V) \cdot P(C) = \frac{3}{5} \cdot \frac{2}{5} = \frac{6}{25}$
Retiro uma bola verde e, depois, outra bola verde	$P(V \cap V) = P(V) \cdot P(V) = \frac{3}{5} \cdot \frac{3}{5} = \frac{9}{25}$
Todo tipo possível de combinação de retiradas	$P(C \cap C) + P(C \cap V) + P(V \cap C) + P(V \cap V) = \frac{4}{25} + \frac{6}{25} + \frac{6}{25} + \frac{9}{25} = 1$

Função discreta de probabilidade de uma variável aleatória

- Lançamento de um dado como um experimento que gera os eventos apresentados na tabela a seguir, em que também adicionamos suas probabilidades de ocorrência.
- Chamemos de X a variável aleatória que representa o número da face voltada para cima no lançamento de um dado.
- Os valores de X e as probabilidades de termos cada um dos valores anteriores são:

• $x_1 = 1$	• $p(x_1 = 1) = 1/6$
• x ₂ = 2	• $p(x_1 = 1) = 1/6$ • $p(x_2 = 2) = 1/6$ • $p(x_3 = 3) = 1/6$ • $p(x_4 = 4) = 1/6$
• $x_3 = 3$	• $p(x_3 = 3) = 1/6$
• x . = 4	• $p(x_4 = 4) = 1/6$

Evento	Número da face voltada para cima	Probabilidade
Evento 1	1	1/6
Evento 2	2	1/6
Evento 3	3	1/6
Evento 4	4	1/6
Evento 5	5	1/6
Evento 6	6	1/6

7	
• $x_5 = 5$	• $p(x_5 = 5) = 1/6$
$\bullet x_6 = 6$	• $p(x_6 = 6) = 1/6$

X	x ₁ = 1	x ₂ = 2	$x_3 = 3$	x ₄ = 4	$x_5 = 5$	$x_6 = 6$
p	$p(x_1) = 1/6$	$p(x_2) = 1/6$	$p(x_3) = 1/6$	$p(x_4) = 1/6$	$p(x_5) = 1/6$	$p(x_6) = 1/6$

Principais modelos de distribuição discreta de probabilidade

- Modelo uniforme discreto.
- Modelo de Bernoulli.
- Modelo binomial.

Modelo uniforme discreto

 No modelo uniforme discreto, todos os possíveis valores da variável aleatória discreta têm a mesma probabilidade P de ocorrência.

Interatividade

Considerando a existência de dois eventos A e B, podemos apresentar a probabilidade condicional por:

- a) P (A/B).
- b) P (A U B).
- c) $P(A \cap B)$.
- d) P(A + B).
- e) P(A-B).

Resposta

Considerando a existência de dois eventos A e B, podemos apresentar a probabilidade condicional por:

- a) P (A/B).
- b) P (A U B).
- c) $P(A \cap B)$.
- d) P(A + B).
- e) P(A-B).

Modelo de Bernoulli

- Usamos o modelo de Bernoulli em um experimento aleatório que admite apenas um dos dois resultados a seguir.
 - Sucesso, em que a variável aleatória discreta assume o valor 1.
 - Fracasso, em que a variável aleatória discreta assume o valor 0.
- Se a probabilidade de sucesso for p, a probabilidade de fracasso será 1 p, visto que há apenas duas situações (sucesso ou fracasso) e a soma das probabilidades de todos os resultados possíveis dá 1.

Х	1	0
P(X = x)	р	1 – p

Modelo binomial

 A variável aleatória discreta X que corresponde ao número de sucessos obtidos na realização de n ensaios de Bernoulli independentes, todos com a mesma probabilidade P de sucesso, segue modelo binomial de parâmetros n e p e é indicada por "X ~ b(n;p)".

Imagine que, nesses n ensaios, consideremos a probabilidade de ocorrência de k sucessos (e, evidentemente, n - k fracassos). Essa probabilidade, indicada por P(X = k), é calculada por:

$$P(X = k) = {n \choose k} p^k (1-p)^{n-k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Função densidade de probabilidade

- As distribuições contínuas de probabilidade operam com variáveis aleatórias contínuas, ou seja, com variáveis cujos valores ocorrem de modo aleatório e cujo domínio está em intervalo de números reais.
- Em outras palavras, diferentemente do que acontece com as variáveis aleatórias discretas, as variáveis aleatórias contínuas podem assumir "infinitos" valores, ou seja, não conseguimos listar individualmente todos os seus possíveis valores.

Principais modelos de distribuição contínua de probabilidade

- Modelo uniforme contínuo.
- Modelo normal.

Modelo uniforme contínuo

No modelo uniforme contínuo, a função densidade de probabilidade f(x) da variável aleatória contínua X no intervalo [a;b], ou seja, para a ≤ x ≤ b, é dada por:

$$f(x) = \frac{1}{b - a}$$

- Para esse tipo de distribuição, se x < a ou se x > b, f(x) = 0.
- Pense na reta real (reta "contínua" em que temos números reais). Imagine que um ponto seja escolhido aleatoriamente no segmento [3;8] dessa reta. Qual é a probabilidade de que o ponto escolhido se encontre entre 5,2 e 7,1?

$$f(x) = \frac{1}{b-a} = \frac{1}{8-3} = \frac{1}{5}$$

$$F(x) = 0.2$$

Modelo uniforme contínuo

- Numericamente, essa probabilidade é igual à área do retângulo mostrado na figura.
- A base B do retângulo mede 7,1 5,2 = 1,9 e a sua altura H mede 0,2. Logo, a área A do retângulo é 0,38, visto que A = B . H = 1,9 . 0,2 = 0,38.
- Concluímos que a probabilidade de que o ponto escolhido se encontre entre 5,2 e 7,1 é igual a 0,38 (ou 38%).

Modelo normal

- A distribuição normal de probabilidade também é chamada de gaussiana.
- No modelo normal, um dos tipos mais importantes de distribuição contínua de probabilidade, a função densidade de probabilidade f(x) da variável aleatória contínua X, é dado por:

$$f(x) = \frac{1}{\sigma\sqrt{2}} e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} e^{\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

- σ é o desvio-padrão DP(X) da variável aleatória contínua X.
- Dizemos que a distribuição normal tem parâmetros μ e σ^2 , em que σ^2 é a variância VAR(X) da variável aleatória contínua X e fazemos sua indicação por X \sim N(μ ; σ 2).

Modelo normal

A probabilidade de termos a ≤ x < b no caso de uma variável aleatória contínua X que segue modelo normal, representada por P(a ≤ x < b), é numericamente igual à área delimitada pelo gráfico de f(x), pelo eixo x e pelas retas verticais x = a e x = b, como ilustrado na figura

a seguir.

Fonte: adaptado de: livro-texto.

Como calcular essa área?

Calculando a probabilidade pelo modelo normal

- Com o auxílio de uma tabela, que trabalha com o que chamamos de normal reduzida (ou normal padrão).
- Para isso, definimos a variável aleatória contínua Z a seguir.

$$Z = \frac{X - \mu}{\sigma}$$

Fonte: livro-texto.

Exemplo de modelo de distribuição normal

- P(0 < Z < 1.68)
- Inicialmente, vamos determinar P(Z < 1,68). Como 1,68 é o resultado da soma de 1,6 e 0,08, na tabela normal reduzida, entramos com 1,6 na horizontal e com 0,08 na vertical, como destacado a seguir, e chegamos a P(Z < 1,68) = 0,9535.
- Sabemos que a área total delimitada pela curva normal (gaussiana) e pelo eixo horizontal vale 1. Como a curva normal reduzida tem média 0 (ela é simétrica em relação a essa média), a área da região à esquerda da média vale 0,5, que é metade da área total sob a curva, conforme ilustrado a seguir. Essa área equivale à probabilidade P(Z < 0).

Exemplo de modelo de distribuição normal

Como queremos P(0 < Z < 1,68), devemos fazer:

■
$$P(0 < Z < 1,68) = P(Z < 1,68) - P(Z < 0)$$

■
$$P(0 < Z < 1,68) = 0,9535 - 0,5$$

$$P(0 < Z < 1,68) = 0,4535$$

Z	0,08
1,6	0,9535

Interatividade

Qual das opções a seguir é considerada um modelo de distribuição contínua de probabilidade?

- a) Modelo uniforme discreto.
- b) Modelo de Bernoulli.
- c) Modelo binomial.
- d) Modelo aleatório.
- e) Modelo normal.

Resposta

Qual das opções a seguir é considerada um modelo de distribuição contínua de probabilidade?

- a) Modelo uniforme discreto.
- b) Modelo de Bernoulli.
- c) Modelo binomial.
- d) Modelo aleatório.
- e) Modelo normal.

ATÉ A PRÓXIMA!