Multidimensional Discrete Fourier Transform

Vardhan R

November 2022

1 Abstract

This paper aims to use the discrete Fourier transform on points in a multidimensional (say n-dimensional) space.

2 The Actual Stuff

Let the points be represented by vectors of the form

$$\overrightarrow{r}(t) = \sum_{k=1}^{n} (x_k(t) \, \hat{e_k}),$$

where t is a non-negative integer less than the total number of points (say N) and $x_k(t)$ is a real number for all positive integers k, less than or equal to n.

$$f_{u,v}(t) = x_u(t) + i \cdot x_v(t),$$

where $i = \sqrt{-1}$.

$$c_{u,v}^{(k)}(t) = \frac{1}{n-1} \sum_{t=0}^{N-1} \left(f_{u,v}(t) e^{-i\frac{2\pi kt}{N}} \right).$$

For each ordered pair (u,v), a set of epicycles is generated by computing $c_{u,v}^{(k)}(t)$ for all integers k in the range $\left[-\lfloor\frac{N-1}{2}\rfloor,\lfloor\frac{N}{2}\rfloor\right]$. In total, ${}^{n}C_{2}$ sets of epicycles are generated.

3 Future Plans

- Try introducing more complex numbers (like quaternions) to get the stuff done with only one set of epicycles.
- Try to orient each epicycle with angles like θ and ϕ to get the stuff done with only one set of epicycles.