Course Code:	Course Title	Credit
CSC604	Artificial Intelligence	3

Pr	Prerequisite: Discrete Mathematics, Data Structures		
	Course Objectives:		
1	To conceptualize the basic ideas and techniques underlying the design of intelligent		
	systems.		
2	To make students understand and Explore the mechanism of mind that enables intelligent		
	thought and action.		
3	To make students understand advanced representation formalism and search techniques.		
4	To make students understand how to deal with uncertain and incomplete information.		
Co	ourse Outcomes: At the end of the course, the students will be able to		
G			
1	Ability to develop a basic understanding of AI building blocks presented in intelligent		
	agents.		
2	Ability to choose an appropriate problem solving method and knowledge representation		
6 1	technique.		
3	Ability to analyze the strength and weaknesses of AI approaches to knowledge- intensive		
	problem solving.		
4	Ability to design models for reasoning with uncertainty as well as the use of unreliable		
	information.		
5	Ability to design and develop AI applications in real world scenarios.		

1			
Modul		Content	Hrs
e			
1		Introduction to Artificial Intelligence	4
	1.1	Introduction, History of Artificial Intelligence, Intelligent Systems:	
		Categorization of Intelligent System, Components of AI Program,	
		Foundations of AI, Sub-areas of AI, Applications of AI, Current trends	
		in AI.	
2		Intelligent Agents	4
	2.1	Agents and Environments, The concept of rationality, The nature of	
		environment, The structure of Agents, Types of Agents, Learning Agent.	
	2.2	Solving problem by Searching: Problem Solving Agent, Formulating	
		Problems, Example Problems.	
3		Problem solving	10
	3.1	Uninformed Search Methods: Breadth First Search (BFS), Depth First	
		Search (DFS), Depth Limited Search, Depth First Iterative Deepening	
		(DFID), Informed Search Methods: Greedy best first Search, A* Search,	
		Memory bounded heuristic Search.	
2	3.2	Local Search Algorithms and Optimization Problems: Hill climbing	
		search Simulated annealing, Genetic algorithms.	
	3.3	Adversarial Search: Game Playing, Min-Max Search, Alpha Beta	
		Pruning	
4		Knowledge and Reasoning	12
	4.1	Knowledge based Agents, Brief Overview of propositional logic, First	
		Order Logic: Syntax and Semantic, Inference in FOL, Forward chaining,	
20		backward Chaining.	
7	4.2	Knowledge Engineering in First-Order Logic, Unification, Resolution	

	4.3	Uncertain Knowledge and Reasoning: Uncertainty, Representing	
		knowledge in an uncertain domain, The semantics of belief network,	
5		Simple Inference in belief network	
5		Planning and Learning	5
	5.1	The planning problem, Planning with state space search, Partial order planning, Hierarchical planning, Conditional Planning.	
,	5.2	Learning: Forms of Learning, Theory of Learning, PAC learning. Introduction to statistical learning (Introduction only) Introduction to reinforcement learning: Learning from Rewards, Passive Reinforcement Learning, Active reinforcement Learning	
6		AI Applications	4
	6.1	 Introduction to NLP- Language models, Grammars, Parsing Robotics - Robots, Robot hardware, Problems Robotics can solve AI applications in Healthcare, Retail, Banking 	

Tex	Textbooks:		
1	Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Fourth		
	Edition" Pearson Education, 2020.		
2	Saroj Kaushik, "Artificial Intelligence", Cengage Learning, First edition, 2011		
3	George F Luger, "Artificial Intelligence" Low Price Edition, Fourth edition, Pearson		
	Education.,2005		
Ref	References:		
1	Nils J. Nilsson, Principles of Artificial Intelligence, Narosa Publication.		
2	Deepak Khemani, A First Course in Artificial Intelligence, McGraw Hill Publication		
3	Patrick H. Winston, Artificial Intelligence, 3rd edition, Pearson Education.		
4	Elaine Rich and Kevin Knight, "Artificial Intelligence", Third Edition, McGraw Hill		
	Education,2017.		

Assessment: **Internal Assessment:** Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and the second class test when an additional 40% syllabus is completed. Duration of each test shall be one hour. **End Semester Theory Examination:** Question paper will comprise a total of six questions. 1 2 All question carries equal marks 3 Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3) Only Four questions need to be solved. 4 In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Use	Useful Links		
1	1 https://nptel.ac.in/courses/106/105/106105078/		
2	https://thestempedia.com/blog/simple-ai-and-machine-learning-projects-for-students-		
	and-beginners/		
3	https://nptel.ac.in/courses/106/105/106105079/		

Lab Code	Lab Name	Credit
CSL604	Artificial Intelligence Lab	1

Pr	Prerequisite: Discrete Mathematics, Data Structure		
La	ab Objectives:		
1	To realize the basic techniques to build intelligent systems		
2	To apply appropriate search techniques used in problem solving		
3	To create knowledge base for uncertain data		
La	Lab Outcomes: At the end of the course, the students will be able to		
1	Identify languages and technologies for Artificial Intelligence		
2	Understand and implement uninformed and informed searching techniques for real world		
	problems.		
3	Create a knowledge base using any AI language.		
4	Design and implement expert systems for real world problems.		

Suggestee	Suggested List of Experiments (programming in python)		
Sr. No.	Title of Experiment		
1	One case study on AI applications published in IEEE/ACM/Springer or any prominent journal.		
2	Assignments on State space formulation and PEAS representation for various AI applications		
3	Program on uninformed search methods.		
4	Program on informed search methods.		
5	Program on Game playing algorithms.		
6	Program for first order Logic		
7	Planning Programming		
8	Implementation for Bayes Belief Network		
	Note: Any other practical covering the syllabus topics and subtopics can be conducted.		

Note: Any other practical covering the syllabus topics and subtopics can be conducted.

The programming assignment for First order logics could be in the form of a mini project

Te	Term Work:		
1	Term work should consist of a minimum of 8 experiments.		
2	Journal must include at least 2 assignments on content of theory and practical of "Artificial		
	Intelligence"		
3	The final certification and acceptance of term work ensures that satisfactory performance of		
	laboratory work and minimum passing marks in term work.		
4	Total 25 Marks (Experiments: 15-marks, Attendance Theory & Practical: 05-marks,		
	Assignments: 05-marks)		
0	Oral & Practical exam: Based on the entire syllabus of CSC604: Artificial Intelligence		