AULA 06

Lógica

CAMILA LARANJEIRA

mila.laranjeira@gmail.com

Agenda

- Introdução à Lógica
- Ontologias
- Lógica Proposicional
- Lógica de 1ª Ordem

Você sabe lógica! Mas você sabe ensinar computadores a ter raciocínio lógico?

Sobre os slides

Esses slides usam material de:

- Week 9: Logic | CS221 Stanford (Autumn 2021)
 - https://stanford-cs221.github.io/autumn2021-extra/workouts/week9_slides.pdf
- Vários slides do curso CS227: Knowledge Representation and Reasoning | Stanford
 - https://web.stanford.edu/class/cs227/
- Lectures 7 and 8: Propositional Logic | Berkeley CS188: AI (Spring 2022)
 - https://inst.eecs.berkeley.edu/~cs188/sp22/assets/slides/Lecture7.pdf
 - https://inst.eecs.berkeley.edu/~cs188/sp22/assets/slides/Lecture8.pdf

- Sofia é amiga de Igor. Igor é amigo de João. Sofia joga Fortnite, João não joga, e não sabemos se Igor joga. Considerando essas relações, **existe amizade entre uma pessoa que joga Fortnite e outra que não joga?**

- Sofia é amiga de Igor. Igor é amigo de João. Sofia joga Fortnite, João não joga, e não sabemos se Igor joga. Considerando essas relações, existe amizade entre uma pessoa que joga Fortnite e outra que não joga?
 - A resposta é sempre sim! Duas possibilidades: Igor joga e é amigo de João, ou Igor não joga e é amigo de Sofia.

- Alguns problemas podem ser modelados da seguinte forma

- Alguns problemas podem ser modelados da seguinte forma

- Pensar racionalmente requer **representar conhecimento especialista** e **derivar soluções** lógicas dentro daquele escopo.
 - Primeira abordagem de I.A. a ser aplicada na indústria.

XCON: Recomendação de especificações de computador

Semantic Web

"Machine-readable content"

Siri: proposta em 2007, no iPhone 4S em 2011

SEMANTIC WEB - 2001

https://www.istor.org/stable/pdf/26059207.pdf

Google Knowledge Graph

Introducing the Knowledge Graph: things, not strings

Google Knowledge Graph

Equipe do Google em BH coloca no ar o Health Search

Painel de conhecimento

Knowledge panel

- Pensar racionalmente requer

- Ramo da filosofia que estuda a natureza do ser, da existência e da própria realidade
 - Formalização e estrutura da realidade
 - Sistema que define primitivas de entidades e relacionamentos
 - Define significados e restrições, garantindo a consistência da aplicação de primitivas

- Exemplo: GeneOntology
 - Função molecular
 - Componente celular
 - Processo biológico

- Unified Modeling Language
 - Machine-readable information

- Exemplo: iCalendar
 - Internet Calendaring and Scheduling Core Object Specification (.ics)

Arquivo Editar Formatar Exibir Ajuda
BEGIN: VCALENDAR

PRODID:-//Google Inc//Google Calendar 70.9054//EN

VERSION: 2.0

CALSCALE: GREGORIAN METHOD: PUBLISH

X-WR-CALNAME:mila.laranjeira@gmail.com

X-WR-TIMEZONE: America/Sao Paulo

BEGIN: VTIMEZONE

TZID: America/Sao Paulo

X-LIC-LOCATION: America/Sao Paulo

BEGIN:STANDARD
TZOFFSETFROM:-0300
TZOFFSETTO:-0300

TZNAME: -03

DTSTART:19700101T000000

END:STANDARD
END:VTIMEZONE
BEGIN:VTIMEZONE
TZID:America/Bahia

Níveis de Ontologia

CACADA – Gargalhada. No dialecto norteiro da Índia também se diz *cacada*, com a mesma significação.

CACAI - Zarolho; vesgo.

CACHÍ - Morder; mastigar. Cortar com os dentes.

n

DALE – Sovar; bater; agredir. Ingerir; tomar com gosto. Arriscar (no jogo). *Pegá dale*: dar uma sova. «Dar-lhe»

science noun

Synonyms for science

knowledge, lore, wisdom

Near Antonyms for science

ignorance, inexperience, innocence, nescience

 $(\forall x)(A \rightarrow B) \rightarrow (\forall x)A \rightarrow (\forall x)B$

Glossário

Dicionário de Sinônimos Teoria Axiomática

Precisão da Ontologia

Taxonomia

DB/OO

Sintaxe

- Quais expressões e símbolos são válidos?

Semântica

O que essas expressões significam?

Ex1: Sintaxe diferente, mesma semântica

$$2 + 3 \Leftrightarrow 3 + 2$$

Ex2: Mesma sintaxe, semântica diferente

Conheceremos dois tipos

• Lógica Proposicional

$$(\neg A \land B) \leftrightarrow C$$

Lógica de 1º Ordem

$$\forall x \exists y P(x,y)$$

Sintaxe

- Símbolos de proposição: A, B, C
- Conectivos lógicos: ¬, ∧, ∨, →, ↔
- Fórmulas

Negação: ¬A

Conjunção: A ∧ B

Disjunção: A V B

Implicação: $A \rightarrow B$

Equivalência: A ↔ B

Semântica

 Um modelo é uma associação de valor-verdade a símbolos de proposição

Exemplo

- Fómula $f = (\neg A \land B) \leftrightarrow C$
- Modelo w = {A:1, B:1, C:0}

Semântica

 Um modelo é uma associação de valor-verdade a símbolos de proposição

Exemplo

- Fómula $f = (\neg A \land B) \leftrightarrow C$
- Modelo w = {A:1, B:1, C:0}

Possíveis modelos:

2³ combinações

Semântica

- Na prática, vamos reduzir afirmações a proposições e lhes considerar verdadeiras.

Sofia joga Fortnite: A

Sofia é amiga de Igor: B

Sofia é amiga de João: C

 $W = \{A: 1, B: 1, C: 0\}$

Semântica

 Um modelo é uma associação de valor-verdade a símbolos de proposição

Exemplo

- Fómula $f = (\neg A \land B) \leftrightarrow C$
- Modelo w = {A:1, B:1, C:0}
- Função de Interpretação I(f, w) retorna
 - V (1) se w satisfaz f
 - F (0) se w não satisfaz f

Semântica

- Um modelo é uma associação de valor-verdade a símbolos de proposição
 - Caso base (fé uma proposição): I(f, w) = w(f)
- Caso recursivo. Para qualquer par de fórmulas f e g, pode-se definir:

Com n proposições, temos 2ⁿ possíveis modelos

5,	I(f,w)	I(g,w)	I(¬f,w)	I(fVg,w	I(f∧g,w)	I(f→g,w)	I(f⇔g,w)
	0	0					
	0	1					
	1	0					
	1	1					

Semântica

- Algumas propriedades para relembrar

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

- Fómula (¬A ∧ B) ↔ C
- Modelo $w = \{A:1, B:1, C:0\}$
- Função de Interpretação I(f, w) retorna
 - V (1) se w satisfaz f
 - F (0) se w não satisfaz f

```
\mathcal{I}((\neg A \land B) \leftrightarrow C, w) = 1
```

- Fómula ($\neg A \land B$) $\leftrightarrow C$
- Modelo $w = \{A:1, B:1, C:0\}$
- Função de Interpretação I(f, w) retorna
 - V (1) se w satisfaz f
 - F (0) se w não satisfaz f

- Fómula ($\neg A \land B$) $\leftrightarrow C$

etc.

- Modelo $w = \{A:1, B:1, C:0\}$
- Função de Interpretação I(f, w) retorna
 - V (1) se w satisfaz f
 - F (0) se w não satisfaz f


```
function PL-TRUE?(\alpha,model) returns true or false if \alpha is a symbol then return Lookup(\alpha, model) if Op(\alpha) = \neg then return not(PL-TRUE?(Arg1(\alpha),model)) if Op(\alpha) = \wedge then return and(PL-TRUE?(Arg1(\alpha),model), PL-TRUE?(Arg2(\alpha),model))
```

Base de conhecimento

- Knowledge base
- Fórmulas + ontologia de tipos e relações
- Intersecção de um conjunto de fórmulas
- Ex1: KB = {chuva, chuva → molhado}

Base de conhecimento

- Knowledge base
- Fórmulas + ontologia de tipos e relações
- Intersecção de um conjunto de fórmulas
- Ex1: KB = {chuva, chuva → molhado}

M(KB): conjunto de possíveis modelos.

Base de conhecimento

- Knowledge base
- Fórmulas + ontologia de tipos e relações
- Intersecção de um conjunto de fórmulas
- Ex1: KB = {chuva, chuva → molhado}

- Quanto mais fórmulas forem adicionadas, menor é o espaço de possíveis modelos

Até agora...

- Ontologia: Definição de primitivas (tipos e relações)
 - Sintaxe: conjunto de símbolos e expressões válidas
 - Semântica: significado de cada símbo (proposição com valor-verdade; função de interpretação)
- Base de conhecimento: intersecção de fórmulas conhecidas; espaço de possíveis modelos.

Operações

Proposição A: está chovendo

Tell(A): está chovendo

Possíveis respostas

- Já sabia disso
- Não acredito nisso
- Aprendi algo novo

Ask(A): está chovendo?

Possíveis respostas

- Sim
- Não
- Não sei

Entailment

- Implicação, vínculo
- A informação de f já era conhecida.

$$\{KB \models f \text{ se e somente se M(KB)} \subseteq M(f)\}$$

- Exemplo: (está chovendo ^ está frio) ⊨ (está frio)
 - tell(está chovendo ^ está frio)
 Aprendi algo novo
 - tell(está frio)
 Já sabia disso

Contradição

- f contradiz o que já era conhecido

```
(KB contr. f se e somente se M(KB) \cap M(f) = \emptyset
```


M(f)

- Exemplo: (está chovendo ^ está frio) contr. (¬está frio)
 - tell(está chovendo ^ está frio)
 Aprendi algo novo
 - tell(¬está frio)
 Não acredito nisso

Contingência

- f adiciona informação à base de conhecimento

```
\emptyset \subseteq M(KB) \cap M(f) \subseteq M(KB)
```


- Exemplo:
 - tell(está chovendo)
 Aprendi algo novo
 - tell(está frio)
 Aprendi algo novo

Operações

Proposição A: está chovendo

Tell(A): está chovendo

Possíveis respostas

- Já sabia disso
- Não acredito nisso
- Aprendi algo novo

Ask(A): está chovendo?

Possíveis respostas

- Sim
- Não
- Não sei

PropositionalLogic.ipynb

Lógica Proposicional

- Pensar racionalmente requer

- Como saber se tal modelo existe?

Como saber se tal modelo existe?

Teste os possíveis modelos!

- Model checking
- NP-completo

PropositionalLogic.ipynb

Como saber se tal modelo existe?

Teste os possíveis modelos!

- Model checking
- NP-completo (SAT)

Algoritmos populares (SAT Solvers)

- **DPLL**: backtracking + poda
- WalkSat: busca local aleatória

- A alternativa à checagem de todos os possíveis modelos é a **prova de teoremas**
- A partir de regras de inferência pré-definidas é possível partir de **premissas** a **conclusões**

- Se f_1 , f_2 , f_3 , ..., f_k e **g** são fórmulas, uma regra de inferência é definida por:

$$\frac{f_1, f_2, f_3, \dots, f_k}{g}$$
 (premissas) (conclusão)

- Se f_1 , f_2 , f_3 , ..., f_k e g são fórmulas, uma regra de inferência é definida por:

$$\frac{f_1, f_2, f_3, \dots, f_k}{g}$$
 (premissas)

- Modus ponens: para quaisquer símbolos p e q

- Se f_1 , f_2 , f_3 , ..., f_k e **g** são fórmulas, uma regra de inferência é definida por:

$$\frac{f_1, f_2, f_3, \dots, f_k}{g}$$
 (premissas)

- Modus ponens: para quaisquer símbolos p e q

Modus Ponens — Horn clauses

chifre
conjunção:

- Modus ponens: para quaisquer símbolos p e q

horn clauses

Se aplica a **cláusulas definidas**

Conjunção de símbolos ightarrow símbolo

- Exemplo

kb = {chuva, chuva→molhado, molhado→escorregadio}

chuva	molhado	escorregadio
1 ?		,

- Exemplo
 - kb = {chuva, chuva→molhado, molhado→escorregadio}
- Repita até que nenhuma mudança aconteça em kb
 - Escolha um conjunto de fórmulas f1, f2, ..., fk ∈ kb
 - Se existe uma regra correspondente ao modus ponens, adicione a conclusão a **kb**

chuva	molhado	escorregadio
1	?	?

- Exemplo

```
kb = {chuva, chuva→molhado, molhado→escorregadio}
```

- Repita até que nenhuma mudança aconteça em kb
 - Escolha um conjunto de fórmulas f1, f2, ..., fk ∈ kb
 - Se existe uma regra correspondente ao modus ponens, adicione a conclusão a kb

```
kb = {chuva, chuva→molhado, molhado→escorregadio,
molhado}
```

chuva	molhado	escorregadio
1	3	;
1	1	,

- Exemplo

```
kb = {chuva, chuva→molhado, molhado→escorregadio}
```

- Repita até que nenhuma mudança aconteça em kb
 - Escolha um conjunto de fórmulas f1, f2, ..., fk \in kb
 - Se existe uma regra correspondente ao modus ponens, adicione a conclusão a kb

```
kb = {chuva, chuva→molhado, molhado→escorregadio,
molhado}
```

```
kb = {chuva, chuva→molhado, molhado→escorregadio,
molhado, escorregadio}
```

chuva	molhado	escorregadio
1	?	?
1	1	?
1	1	1

- Exemplo
 - kb = {chuva, chuva→molhado, molhado→escorregadio}
- Repita até que nenhuma mudança aconteça em kb
 - Escolha um conjunto de fórmulas f1, f2, ..., fk \in kb
 - Se existe uma regra correspondente ao modus ponens, adicione a conclusão a kb

kb = {chuva,	$chuva {\rightarrow} molhado,$	molhado→escorregadio,
molhado}		

kb = {chuva, chuva→molhado, molhado→escorregadio,
molhado, escorregadio}

chuva	molhado	escorregadio
1	?	?
1	1	}
1	1	1

kb deriva/prova f, ou kb ⊢ f, se f é adicionado a kb

- Roda em tempo linear graças a alguns truques
 - Cada símbolo sabe em que regras ele aparece
 - Cada regra registra quantas premissas ainda não foram satisfeitas

Inferência: Propriedades

- **São** (sound, sanidade): nada mais que a verdade

$$\{f: \mathsf{KB} \vdash f\} \subseteq \{f: \mathsf{KB} \models f\}$$

Tudo que deriva é uma implicação

- **Completo**: toda a verdade

$$\{f: \mathsf{KB} \vdash f\} \supseteq \{f: \mathsf{KB} \models f\}$$

Deriva todas as implicações

Modus Ponens

Não é loucura sonhar

Se kb tem apenas cláusulas definidas, forward inference com modus ponens é **são** e **completo**.

- Modus ponens: para quaisquer símbolos p e q

Modus Ponens

- Exemplo

```
kb = {chuva, chuva V molhado→escorregadio}
```

chuva	molhado	escorregadio
1	Ş	;

- Semanticamente, kb ⊨ f (kb implica em f)
- Sintaticamente, não conseguimos derivar com Modus Ponens

Modus Ponens

- Exemplo

$$kb = \{chuva, chuva \ V \ molhado \rightarrow escorregadio\}$$

f = escorregadio

chuva	molhado	escorregadio
1	}	,

- Semanticamente, kb ⊨ f (kb implica em f)
- Sintaticamente, não conseguimos derivar com Modus Ponens

Se alguma cláusula não é definida, forward inference com modus ponens é são mas **incompleto**.

$$\frac{p, p \rightarrow q}{q} \quad (premissas)$$

- Se f_1 , f_2 , f_3 , ..., f_k e **g** são fórmulas, uma regra de inferência é definida por:

$$f_1, f_2, f_3, \dots, f_k \qquad \text{(premissas)}$$

$$g \qquad \text{(conclusão)}$$

- Modus Ponens reescrito

$$\frac{p, p \rightarrow q}{q} \text{ (premissas)}$$

Forma normal conjuntiva

p, ¬p∨q (premissas)

q (conclusão)

р	q	p→q	¬p∨q
0	0	1	1
0	1	1	1
1	0	0	0
1	1	1	1

- Se f_1 , f_2 , f_3 , ..., f_k e g são fórmulas, uma regra de inferência é definida por:

$$\frac{f_1, f_2, f_3, \dots, f_k}{g} \qquad \text{(premissas)}$$

$$\frac{f_1, f_2, f_3, \dots, f_k}{g} \qquad \text{(conclusão)}$$

$$\begin{array}{cccc}
 & p, p \rightarrow q & (premissas) \\
 & q & (conclusão)
\end{array}$$

CNF (conjunctive normal form)

Forma normal conjuntiva

p, ¬pVq (premissas)

q (conclusão)

- Expressões proposicionais podem ser convertidas para CNF
- Existe uma regra mais robusta que atua em expressões CNF
 - Resolução

- Conjunção de uma ou mais cláusulas, onde cada cláusula é uma disjunção de literais
 - ANDs de vários ORs
 - Negações apenas em literais

- Conjunção de uma ou mais cláusulas, onde cada cláusula é uma disjunção de literais
 - ANDs de vários ORs
 - Negações apenas em literais

$$A \leftrightarrow (B \lor C)$$

$$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$

- Conjunção de uma ou mais cláusulas, onde cada cláusula é uma disjunção de literais
 - ANDs de vários ORs
 - Negações apenas em literais

$$A \leftrightarrow (B \lor C)$$

(A \rightarrow (B \lor C)) \land ((B \lor C) \rightarrow A) # elimina equivalência

$$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$

- Conjunção de uma ou mais cláusulas, onde cada cláusula é uma disjunção de literais
 - ANDs de vários ORs
 - Negações apenas em literais

$$A \leftrightarrow (B \lor C)$$

 $(A \rightarrow (B \lor C)) \land ((B \lor C) \rightarrow A)$ # elimina equivalência
 $(\neg A \lor B \lor C) \land (\neg (B \lor C) \lor A)$ # elimina implicação
 $(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$

¬p V a

 $p \rightarrow q$

р

- Conjunção de uma ou mais cláusulas, onde cada cláusula é uma disjunção de literais
 - ANDs de vários ORs
 - Negações apenas em literais

$$A \leftrightarrow (B \lor C) \qquad Atenção para o OR convertido em AND \\ (A \rightarrow (B \lor C)) \land ((B \lor C) \rightarrow A) \# elimina equivalência \\ (\neg A \lor B \lor C) \land (\neg (B \lor C) \lor A) \# elimina implicação \\ (\neg A \lor B \lor C) \land ((\neg B \land \neg C) \lor A) \# regra de De Morgan (distribui o not) \\ (\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$

- Conjunção de uma ou mais cláusulas, onde cada cláusula é uma disjunção de literais
 - ANDs de vários ORs
 - Negações apenas em literais

$$A \leftrightarrow (B \lor C)$$

 $(A \to (B \lor C)) \land ((B \lor C) \to A)$ # elimina equivalência
 $(\neg A \lor B \lor C) \land (\neg (B \lor C) \lor A)$ # elimina implicação
 $(\neg A \lor B \lor C) \land ((\neg B \land \neg C) \lor A)$ # regra de De Morgan (distribui o not)
 $(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$ # regra distributiva

- Remover equivalência e implicações

$$\frac{f {\leftrightarrow} g}{(f {\rightarrow} g) {\wedge} (g {\rightarrow} f)} \qquad \frac{f {\rightarrow} g}{\neg f {\vee} g}$$

- Negações apenas em literais

$$\frac{\neg (f \land g)}{\neg f \lor \neg g} \qquad \frac{\neg (f \lor g)}{\neg f \land \neg g} \qquad \frac{\neg \neg f}{f}$$

- Distribuir disjunções e conjunções

$$\frac{f{\vee}(g{\wedge}h)}{(f{\vee}g){\wedge}(f{\vee}h)}$$

Resolução

- Regra de inferência mais robusta capaz de derivar a partir de expressões CNF
- Implementada na demo de Lógica Proposicional
- Resolve também para Lógica de 1ª Ordem (estamos chegando lá)

Resolução

Ela é mais complicada, mas em sua essência:

- A partir de duas cláusulas contendo o mesmo literal (com valores opostos)
- É possível derivar a unificação das cláusulas "cancelando" aquele literal
- Esse processo é aplicado iterativamente

```
Premissa 1: ¬P V Q
Premissa 2: P
```

Conclusão: Q

Resolução

Ela é mais complicada, mas em sua essência:

- A partir de duas cláusulas contendo o mesmo literal (com valores opostos)
- É possível derivar a unificação das cláusulas "cancelando" aquele literal
- Esse processo é aplicado iterativamente

Premissa 1: ¬P ∨ Q

Premissa 2: P

Conclusão: (

https://pt.wikipedia.org/wiki/Princ%C3%ADpio_da_resolu%C3%A7%C3%A3o

A resolução na lógica de primeira ordem

A resolução na Lógica de primeira ordem condensa os silogismos tradicionais de inferência lógica resolução funciona, considere o seguinte exemplo de silogismo da lógica aristotélica:

Todos os gregos são europeus. Homero é grego. Então, Homero é europeu.

https://youtu.be/_Iz83hfkFds?t=1903

Lecture 17: Logic 2 - First-order Logic | Stanford CS221:

Lógica Proposicional

Para derivar conclusões / responder perguntas a partir de premissas, vimos:

- Model checking
 - SAT solvers
- Regras de inferência
 - Modus Ponens
 - Resolução

Soluções mais eficientes atuam em CNF

Lógica de 1ª Ordem

Quem derrubou a Internet?

- Lógica Proposicional

A: Maria_derrubou_internet

B: Gustavo_derrubou_internet

C: July_derrubou_internet

D: Henrique_derrubou_internet

Lógica de 1ª Ordem

Quem derrubou a Internet?

- Lógica Proposicional

A: Maria_derrubou_internet

B: Gustavo_derrubou_internet

C: July_derrubou_internet

D: Henrique_derrubou_internet

- Lógica de 1ª Ordem

Muito mais expressiva!

∃x Suspeito(x) ∧ DerrubouInternet(x)

Lógica de 1ª Ordem

 $\forall x \; \text{Estudante}(x) \rightarrow \text{Sabe}(x, \; \text{matemática})$

- Termos
 - Constantes: matemática
 - Variáveis: x
 - Funções*: F(x)
- Fórmulas
 - Átomos/Predicados aplicados a termos: Estudante(x)
 - Quantificadores (universal e de existência): ∀ ∃
 - Conectivos: $\neg \land \lor \rightarrow \leftrightarrow$

- Universal (para todo x)
 - Conjunção
 - $\forall x P(x) \in como P(A) \land P(B) \land P(C) \land ...$
- Existência (existe um x)
 - Disjunção
 - ∃xP(x) é como P(A) ∨ P(B) ∨ P(C) ∨ ...

- Universal (para todo x)
 - $\forall x P(x) \in como P(A) \land P(B) \land P(C) \land ...$
- Existência (existe um x)
 - $\exists x P(x) \in como P(A) \lor P(B) \lor P(C) \lor ...$

Exemplos:

- Todos os estudantes sabem cálculo
- Alguns estudantes sabem cálculo

- Universal (para todo x)
 - $\forall x P(x) \in como P(A) \land P(B) \land P(C) \land ...$
- Existência (existe um x)
 - $\exists x P(x) \in como P(A) \lor P(B) \lor P(C) \lor ...$

Exemplos:

- Todos os estudantes sabem cálculo ∀x Estudante(x)→Sabe(x, cálculo)
- Alguns estudantes sabem cálculo ∃x Estudante(x) ∧ Sabe(x, cálculo)

- Universal (para todo x)
 - $\forall x P(x) \in como P(A) \land P(B) \land P(C) \land ...$
- Existência (existe um x)
 - ∃xP(x) é como P(A) ∨ P(B) ∨ P(C) ∨ ...
- Algumas propriedades

$$\neg \forall x P(x)$$
 equivale a $\exists x \neg P(x)$

 $\forall x \exists y (Px,y)$ é diferente de $\exists y \forall x (Px,y)$

Lógica de 1º Ordem

Vamos fazer algumas frases

- Todo mundo conhece alguém
- Existe alguém que todo mundo conhece

- Existe um curso que todos os estudantes fazem

- Todo mundo no Brasil conhece Anitta

Lógica de 1º Ordem

FirstOrder.ipynb

Vamos fazer algumas frases

- Todo mundo conhece alguém

$$\forall x \ \text{Pessoa}(x) \rightarrow \exists y \ \text{Pessoa}(y) \land \text{Conhece}(x, y)$$

- Existe alguém que todo mundo conhece

$$\exists y \; \mathsf{Pessoa}(y) \; \land \; \forall x \; \mathsf{Pessoa}(x) \to \mathsf{Conhece}(x, y)$$

- Existe um curso que todos os estudantes fazem

$$\exists y \; Curso(y) \; \land \; \forall x \; Estudante(x) \rightarrow Cursou(x, y)$$

- Todo mundo no Brasil conhece Anitta

$$\forall x (Pessoa(x) \land Origem(x, Brasil)) \rightarrow Conhece(x, Anitta)$$

Modelos

- Lógica Proposicional

{PedroSabeMatemática: 1, StephanieSabeMatemática: 1}

- Lógica de 1ª Ordem
 - Representação em grafos para predicados unários e binários

matemática

- Nós são objetos rotulados com constantes
- Arestas são **predicados** binários
- Predicados unários são rótulos adicionais do nó

- Um modelo w na lógica de 1ª ordem mapeia:
 - Símbolos constantes para objetos

- Predicados para tuplas de objetos

$$w(sabe) = \{(o1, o3), (o2, o3)\}$$

- Em uma base de conhecimento kb todos os objetos tem uma e apenas uma constante associada

- Exemplos de bases **inconsistentes**:

- Em uma base de conhecimento kb todos os objetos tem uma e apenas uma constante associada;
- Com isso em mente, podemos converter expressões de 1ª ordem para lógica proposicional.

Knowledge base in first-order logic

 $Student(alice) \land Student(bob)$

 $\forall x \operatorname{Student}(x) \to \operatorname{Person}(x)$

 $\exists x \, \mathrm{Student}(x) \wedge \mathrm{Creative}(x)$

Knowledge base in propositional logic-

Studentalice \land Studentbob

 $(Studentalice o Personalice) \land (Studentbob o Personbob)$

 $(Studentalice \land Creativealice) \lor (Studentbob \land Creativebob)$

- Em uma base de conhecimento kb todos os objetos tem uma e apenas uma constante associada;
- Com isso em mente, podemos converter expressões de 1ª ordem para lógica proposicional.

$\mathsf{Knowledge\ base\ in\ first-order\ logic} \ \ \mathsf{Student}(\mathsf{alice}) \land \mathsf{Student}(\mathsf{bob}) \ \ \forall x \, \mathsf{Student}(x) \to \mathsf{Person}(x) \ \ \exists x \, \mathsf{Student}(x) \land \mathsf{Creative}(x)$

Divirta-se com as regras de inferência e os SAT solvers da lógica proposicional!

Knowledge base in propositional logic Studentalice \land Studentbob (Studentalice \rightarrow Personalice) \land (Studentbob \rightarrow Personbob) (Studentalice \land Creativealice) \lor (Studentbob \land Creativebob)

Lógica de 1ª Ordem: Substituição/Unificação

- Existem nuances nos processos de substituição e unificação para transformar expressões de 1ª ordem em proposições.
- Não entraremos em detalhes, mas recomendo o material de referência para aprofundar.

https://inst.eecs.berkeley.edu/~cs188/sp22/assets/slides/Lecture9.pdf https://inst.eecs.berkeley.edu/~cs188/sp22/assets/notes/sp21_notes/note03.pdf

- Convert (KB $\wedge \neg \alpha$) to PL, use a PL SAT solver to check (un)satisfiability
 - Trick: replace variables with ground terms, convert atomic sentences to symbols
 - ∀x Knows(x,Obama) and Democrat(Feinstein)
 - Knows(Obama, Obama) and Knows(Feinstein, Obama) and Democrat(Feinstein)
 - Knows_Obama_Obama ∧ Knows_Feinstein_Obama ∧ Democrat_Feinstein
 - and ∀x Knows(Mother(x),x)
 - Knows(Mother(Obama),Obama) and Knows(Mother(Mother(Obama)),Mother(Obama))
 - Real trick: for k = 1 to infinity, use all possible terms of function nesting depth k
 - If entailed, will find a contradiction for some finite k (Herbrand); if not, may continue for ever; semidecidable

https://youtu.be/_Iz83hfkFds?t=3579

```
Premises:
    Takes(alice, cs221)
    Covers(cs221, mdp)
    \forall x \, \forall y \, \forall z \, \text{Takes}(x,y) \wedge \text{Covers}(y,z) \rightarrow \text{Knows}(x,z)
Conclusion:
    \theta = \{x/\text{alice}, y/\text{cs221}, z/\text{mdp}\}
Derive Knows(alice, mdp)
```

Expressividade da Lógica de 1ª Ordem

- Agentes Lógicos

https://inst.eecs.berkelev.edu/~cs188/sp22/assets/notes/sp21_notes/note03.pdf

$$F^{t+1} \Leftrightarrow ActionCausesF^t \lor (F^t \land \neg ActionCausesNotF^t)$$

In our world, the transition could be formulated as $Hot^{t+1} \Leftrightarrow StepCloseToLava^t \lor (Hot^t \land \neg StepAwayFromLava^t)$.

Representação robusta de conhecimento
 https://youtu.be/mmQl6VGvX-c

Resumo

- Muitos problemas de otimização podem ser formulados como busca local
 - Basta que o caminho até a solução não seja relevante
- Muitos algoritmos de aprendizado de máquina são buscas locais (e falaremos mais deles)
- Famílias gerais de algoritmos
 - Hill climbing/Gradient descent
 - Determinístico
 - Simulated annealing e outros métodos estocásticos
 - Beam search
 - Algoritmos genéticos