Übungsblatt 4

Relationaler Schema-Entwurf, Normalisierung

Aufgabe 1

Wiederholen Sie den Begriff der **funktionalen Abhängigkeit**. Was bedeutet die funktionale Abhängigkeit $X \to Y$ zwischen den Attributen X und Y für die Werte dieser Attribute?

Buchungen

Buchan	Buchangen					
KdNr	Name	ame Telefon RNr Ziel		Land	Preis	
98700	Meier, Carlo	0177 123456	1234	Rom	IT	390
98713	Apel, Rolf	0162 778899	1234	Paris	F	200
89999	Meier, Anna	0177 666987	2248	Neapel		999
98617	Schulz, Peter	0155 224466	1234			
98713			3456	Oslo	N	1399
	Schulz, Peter	0177 576891	3456			
98700			1243	Paris		200

Ergänzen Sie die fehlenden Werte in der Relation **Buchungen**. Berichtigen Sie "offensichtlich" falsche Werte.

Warum können Sie das tun? Erkennen Sie Zusammenhänge zwischen den Attributen des Schemas?

Gegeben seien das Relationenschema

sowie die funktionalen Abhängigkeiten

$$AC \to BDE$$
 (1)

$$B \to D$$
 (2)

$$A \to E$$
 (3)

- a) Was heißt **Normalisierung** durch Zerlegung für ein relationales Datenbankschema? Wann ist ein relationales Schema in 1., 2. bzw. 3. Normalform?
- b) In welcher Normalform befindet sich das Schema?
- c) Überführen Sie das Schema ggf. in die dritte Normalform.

Ein Lebensmittel-Großhandel plant den Einsatz eines relationalen Datenbanksystems. In der Tabelle unten sind beispielhaft ein paar Daten zusammengestellt. Es fallen Redundanzen auf in der Folge bestehender funktionaler Abhängigkeiten:

$ArtNr, LNr \rightarrow Preis$	(1)
ArtNr o Artikel	(2)
$LNr \to Lieferant$	(3)
$Artikel \to Lager$	(4)
$ArtNr, LNr \to Bestand$	(5)
$ArtNr \to Einheit$	(6)
LNr o Telefon	(7)

R		
ĸ		•
11		_
		•
	•	•

ArtNr	LNr	Lieferant	Telefon	Artikel	Preis	Einheit	Lager	Bestand
123	753	Öko-Hof	0367845	Eier	1.59	Packung	E3	100
246	753	Öko-Hof	0367845	Milch	0.81	Liter	E5	250
246	988	Bio-Gut	0372468	Milch	0.69	Liter	E5	93

- a) Bestimmen Sie den Schlüssel mit der Eigenschaft $X \to R$ für das gegebene Schema R unter Benutzung der Ableitungsregeln.
- b) Entwerfen Sie ein relationales Datenbankschema in 3. Normalform durch Dekomposition.

Gegeben sei folgende Relation:

L	Ε	Н	R	E

Student	Vorlesung	Professor	
49999	AuP	Schulz	
51234	AuP	Schulz	
51234	BS	Bauer	
56789	AuP	Vogt	

Zerlegen Sie die Daten entsprechend der **drei** gegebenen Möglichkeiten und führen Sie diese wieder zusammen (mit einem natürlichen Verbund):

a) LEHRE1a(Student, Professor) LEHRE2a(Student, Vorlesung)

b) LEHRE1b(Vorlesung, Professor) LEHRE2b(Vorlesung, Student)

c) LEHRE1c(Professor, Vorlesung) LEHRE2c(Professor, Student)

Was können Sie zu den Schema-Entwürfen jeweils feststellen?

Gegeben sei die Zerlegung der Relation $R(A,\ B,\ C,\ D,\ E)$ in die Relationen $R_1(A,\ B,\ C)$ und $R_2(C,D,E)$.

Geben Sie jeweils **mindestens** zwei funktionale Abhängigkeiten an, so dass folgende Bedingungen erfüllt sind:

- a) Die Zerlegung ist weder verbundtreu noch abhängigkeitstreu.
- b) Die Zerlegung ist sowohl verbundtreu als auch abhängigkeitstreu.

In der folgenden Relation sind Angaben zu den gastronomischen Angeboten der Region zusammengestellt. (Jedes Gericht kann mit einer der verschiedenen Beilagen kombiniert werden.)

Angebote

Lokal	Wo	Gerichte	Beilagen		
Ratskeller	Markt	Roulade, Gulasch	Klöße, Kartoffeln		
Bierstube	Campus	Schnitzel, Rumpsteak, Rostbrätel	Ofenkartoffel, Bratkartoffeln		
Seeblick	Uferweg	Lachsfilet, Forelle, Gulasch	Kartoffeln, Baguette, Pasta		

- a) Erzeugen Sie eine Relation Angebote in 1. Normalform.
- b) Analysieren Sie nun die Relation bezüglich bestehender Abhängigkeiten.
- c) Bringen Sie das Schema der Relation schrittweise in die **dritte Normalform** durch Dekomposition. Notieren Sie das **Datenbankschema** mit **gekennzeichneten Primärschlüsseln**.