ENGR 222 THERMODYNAMICS

Unit Conversions
and
Property Tables

Before you begin the exam, scan through this booklet to determine whether or not it is free from previous handwriting, underlining, circling, margin notes, etc. If there are <u>no</u> extraneous marks, under "Condition", write the word "CLEAN". If there <u>are</u> marks, indicate under "Condition" the number of the table, graph, or page that contains writing.

	Name	Date	Condition
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

Before you begin the exam, scan through this booklet to determine whether or not it is free from previous handwriting, underlining, circling, margin notes, etc. If there are <u>no</u> extraneous marks, under "Condition", write the word "CLEAN". If there <u>are</u> marks, indicate under "Condition" the number of the table, graph, or page that contains writing.

	Name	Date	Condition
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			

Conversion Factors

DIMENSION	METRIC	METRIC/ENGLISH
Acceleration	$1 \text{ m/s}^2 = 100 \text{ cm/s}^2$	1 m/s2 = 3.2808 ft/s2 1 ft/s2 = 0.3048* m/s2
Area	$1 \text{ m}^2 = 10^4 \text{ cm}^2 = 10^6 \text{ mm}^2 = 10^{-6} \text{ km}^2$	$1 m^2 = 1550 in^2 = 10.764 ft^2$ $1 ft^2 = 144 in^2 = 0.09290304* m^2$
Density	$1 \text{ g/cm}^3 = 1 \text{ kg/L} = 1000 \text{ kg/m}^3$	1 g/cm ³ = 62.428 lbm/ft ³ = 0.036127 lbm/in ³ 1 lbm/in ³ = 1728 lbm/ft ³ 1 kg/m ³ = 0.062428 lbm/ft ³
Energy, heat, work, internal energy, enthalpy	1 kJ = $1000 \text{ J} = 1000 \text{ N} \cdot \text{m} = 1 \text{ kPa} \cdot \text{m}^3$ 1 kJ/kg = $1000 \text{ m}^2/\text{s}^2$ 1 kWh = 3600 kJ 1 cal [†] = 4.184 J 1 IT cal [†] = 4.1868 J 1 Cal [†] = 4.1868 kJ	$\begin{array}{l} 1 \text{ kJ} = 0.94782 \text{ Btu} \\ 1 \text{ Btu} = 1.055056 \text{ kJ} \\ = 5.40395 \text{ psia·ft}^3 = 778.169 \text{ lbf·ft} \\ 1 \text{ Btu/lbm} = 25,037 \text{ ft}^2/\text{s}^2 = 2.326* \text{ kJ/kg} \\ 1 \text{ kJ/kg} = 0.430 \text{ Btu/lbm} \\ 1 \text{ kWh} = 3412.14 \text{ Btu} \\ 1 \text{ therm} = 10^5 \text{ Btu} = 1.055 \times 10^5 \text{ kJ} \\ \text{ (natural gas)} \end{array}$
Force	$1 \text{ N} = 1 \text{ kg·m/s}^2 = 10^5 \text{ dyne}$ 1 kgf = 9.80665 N	1 N = 0.22481 lbf 1 lbf = 32.174 lbm·ft/s ² = 4.44822 N
Heat flux	$1 \text{ W/cm}^2 = 10^4 \text{ W/m}^2$	$1 \text{ W/m}^2 = 0.3171 \text{ Btu/h·ft}^2$
Heat transfer coefficient	$1 \text{ W/m}^2 \cdot ^{\circ}\text{C} = 1 \text{ W/m}^2 \cdot \text{K}$	1 W/m ² ·°C = 0.17612 Btu/h·ft ² ·°F
Length	$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \mu\text{m}$ $1 \text{ km} = 1000 \text{ m}$	1 m = 39.370 in = 3.2808 ft = 1.0926 yd 1 ft = 12 in = 0.3048* m 1 mile = 5280 ft = 1.6093 km 1 in = 2.54* cm
Mass	1 kg = 1000 g 1 metric ton = 1000 kg	1 kg = 2.2046226 lbm 1 lbm = 0.45359237* kg 1 ounce = 28.3495 g 1 slug = 32.174 lbm = 14.5939 kg 1 short ton = 2000 lbm = 907.1847 kg
Power, heat transfer rate	1 W = 1 J/s 1 kW = 1000 W = 1.341 hp 1 hp ‡ = 745.7 W	1 kW = 3412.14 Btu/h = 737.56 lbf·ft/s 1 hp = 550 lbf·ft/s = 0.7068 Btu/s = 42.41 Btu/min = 2544.5 Btu/h = 0.74570 kW 1 boiler hp = 33,475 Btu/h 1 Btu/h = 1.055056 kJ/h 1 ton of refrigeration = 200 Btu/min
Pressure	$\begin{array}{c} 1 \text{ Pa} = 1 \text{ N/m}^2 \\ 1 \text{ kPa} = 10^3 \text{ Pa} = 10^{-3} \text{ MPa} \\ 1 \text{ atm} = 101.325 \text{ kPa} = 1.01325 \text{ bars} \\ = 760 \text{ mm Hg at 0°C} \\ = 1.03323 \text{ kgf/cm}^2 \\ 1 \text{ mm Hg} = 0.1333 \text{ kPa} \end{array}$	$1 \text{ Pa} = 1.4504 \times 10^{-4} \text{ psia}$ $= 0.020886 \text{ lbf/ft}^2$ $1 \text{ psi} = 144 \text{ lbf/ft}^2 = 6.894757 \text{ kPa}$ $1 \text{ atm} = 14.696 \text{ psia} = 29.92 \text{ in Hg at } 30^{\circ}\text{F}$ $1 \text{ in Hg} = 3.387 \text{ kPa}$
Specific heat	$1 \text{ kJ/kg} \cdot ^{\circ}\text{C} = 1 \text{ kJ/kg} \cdot ^{\kappa}\text{K} = 1 \text{ J/g} \cdot ^{\circ}\text{C}$	1 Btu/lbm·°F = 4.1868 kJ/kg·°C 1 Btu/lbmol·R = 4.1868 kJ/kmol·K 1 kJ/kg·°C = 0.23885 Btu/lbm·°F = 0.23885 Btu/lbm·R

^{*}Exact conversion factor between metric and English units.

[†]Calorie is originally defined as the amount of heat needed to raise the temperature of 1 g of water by 1°C, but it varies with temperature. The international steam table (IT) calorie (generally preferred by engineers) is exactly 4.1868 J by definition and corresponds to the specific heat of water at 15°C. The thermochemical calorie (generally preferred by physicists) is exactly 4.184 J by definition and corresponds to the specific heat of water at room temperature. The difference between the two is about 0.06 percent, which is negligible. The capitalized Calorie used by nutritionists is actually a kilocalorie (1000 IT calories).

DIMENSION	METRIC	METRIC/ENGLISH
Specific volume	$1 \text{ m}^3/\text{kg} = 1000 \text{ L/kg} = 1000 \text{ cm}^3/\text{g}$	$1 \text{ m}^3/\text{kg} = 16.02 \text{ ft}^3/\text{lbm}$ $1 \text{ ft}^3/\text{lbm} = 0.062428 \text{ m}^3/\text{kg}$
Temperature	$T(K) = T(^{\circ}C) + 273.15$ $\Delta T(K) = \Delta T(^{\circ}C)$	$\pi(R) = \pi(^{\circ}F) + 459.67 = 1.87(K)$ $\pi(^{\circ}F) = 1.8 \pi(^{\circ}C) + 32$ $\Delta\pi(^{\circ}F) = \Delta\pi(R) = 1.8 \Delta\pi(K)$
Thermal conductivity	1 W/m·°C = 1 W/m·K	1 W/m⋅°C = 0.57782 Btu/h⋅ft⋅°F
Velocity	1 m/s = 3.60 km/h	1 m/s = 3.2808 ft/s = 2.237 mi/h 1 mi/h = 1.46667 ft/s 1 mi/h = 1.6093 km/h
Volume	$1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 \text{ (cc)}$	$1 \text{ m}^3 = 6.1024 \times 10^4 \text{ in}^3 = 35.315 \text{ ft}^3$ $= 264.17 \text{ gal (U.S.)}$ $1 \text{ U.S. gallon} = 231 \text{ in}^3 = 3.7854 \text{ L}$ $1 \text{ fl ounce} = 29.5735 \text{ cm}^3 = 0.0295735 \text{ L}$ $1 \text{ U.S. gallon} = 128 \text{ fl ounces}$
Volume flow rate	$1 \text{ m}^3/\text{s} = 60,000 \text{ L/min} = 10^6 \text{ cm}^3/\text{s}$	$1 \text{ m}^3/\text{s} = 15,850 \text{ gal/min (gpm)} = 35.315 \text{ ft}^3/\text{s}$ = 2118.9 ft ³ /min (cfm)

[‡]Mechanical horsepower. The electrical horsepower is taken to be exactly 746 W.

Some Physical Constants

Sume i nysicai ounsiams	
Universal gas constant	$R_u = 8.31447 \text{ kJ/kmol·K}$ = 8.31447 kPa·m³/kmol·K = 0.0831447 bar·m³/kmol·K = 82.05 L·atm/kmol·K = 1.9858 Btu/lbmol·R = 1545.37 ft·lbf/lbmol·R = 10.73 psia·ft³/lbmol·R
Standard acceleration of gravity	$g = 9.80665 \text{ m/s}^2$ = 32.174 ft/s ²
Standard atmospheric pressure	1 atm = 101.325 kPa = 1.01325 bar = 14.696 psia = 760 mm Hg (0°C) = 29.9213 in Hg (32°F) = 10.3323 m H ₂ O (4°C)
Stefan-Boltzmann constant	$\sigma = 5.6704 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4 = 0.1714 \times 10^{-8} \text{ Btu/h} \cdot \text{ft}^2 \cdot \text{R}^4$
Boltzmann's constant	$k = 1.380650 \times 10^{-23} \text{ J/K}$
Speed of light in vacuum	$c_o = 2.9979 \times 10^8 \text{ m/s}$ = $9.836 \times 10^8 \text{ ft/s}$
Speed of sound in dry air at 0°C and 1 atm	c = 331.36 m/s = 1089 ft/s
Heat of fusion of water at 1 atm	$h_{if} = 333.7 \text{ kJ/kg}$ = 143.5 Btu/lbm
Enthalpy of vaporization of water at 1 atm	$h_{fg} = 2256.5 \text{ kJ/kg}$ = 970.12 Btu/lbm

APPENDIX

1

PROPERTY TABLES AND CHARTS (SI UNITS)

Table A-1	Molar mass, gas constant, and critical-point properties	Table A-20	Ideal-gas properties of carbon dioxide, CO_2
Table A-2	Ideal-gas specific heats of various common gases	Table A-21	Ideal-gas properties of carbon monoxide, CO
Table A-3	Properties of common liquids, solids, and foods	Table A-22 Table A-23	Ideal-gas properties of hydrogen, H ₂
Table A-4 Table A-5	Saturated water—Temperature table Saturated water—Pressure table	Table A-24	Ideal-gas properties of water vapor, H ₂ O Ideal-gas properties of monatomic oxygen, O
Table A-6	Superheated water	Table A-25	Ideal-gas properties of hydroxyl, OH
Table A-7 Table A-8	Compressed liquid water Saturated ice-water vapor	Table A-26	Enthalpy of formation, Gibbs function of formation, and absolute entropy at 25°C, 1 atm
Figure A-9 Figure A-10	T-s diagram for water Mollier diagram for water	Table A-27	Properties of some common fuels and hydrocarbons
Table A-11	Saturated refrigerant-134a— Temperature table	Table A-28	Natural logarithms of the equilibrium constant K_p
Table A-12	Saturated refrigerant-134a— Pressure table	Figure A-29	Generalized enthalpy departure chart
Table A-13	Superheated refrigerant-134a	Figure A-30	Generalized entropy departure chart
Figure A-14	P-h diagram for refrigerant-134a	Figure A–31	Psychrometric chart at 1 atm total pressure
Figure A-15	Nelson–Obert generalized compressibility chart	Table A-32	One-dimensional isentropic compressible-flow functions
Table A-16	Properties of the atmosphere at high altitude		for an ideal gas with $k = 1.4$
Table A-17	Ideal-gas properties of air	Table A-33	One-dimensional normal-shock functions for an ideal gas with $k = 1.4$
Table A-18	Ideal-gas properties of nitrogen, N_2	Table A-34	Rayleigh flow functions for an ideal
Table A-19	Ideal-gas properties of oxygen, O ₂		gas with $k = 1.4$

TABLE A −1

Molar mass, gas constant, and critical-point properties

		лорениез	Gas		point properties	5
Substance	Formula	Molar mass, <i>M</i> kg/kmol	constant, R kJ/kg·K*	Temperature, K	Pressure, MPa	Volume, m³/kmol
Air	_	28.97	0.2870	132.5	3.77	0.0883
Ammonia	NH_3	17.03	0.4882	405.5	11.28	0.0724
Argon	Ar	39.948	0.2081	151	4.86	0.0749
Benzene	C_6H_6	78.115	0.1064	562	4.92	0.2603
Bromine	Br ₂	159.808	0.0520	584	10.34	0.1355
<i>n</i> -Butane	C_4H_{10}	58.124	0.1430	425.2	3.80	0.2547
Carbon dioxide	CO_2	44.01	0.1889	304.2	7.39	0.0943
Carbon monoxide	CO	28.011	0.2968	133	3.50	0.0930
Carbon tetrachloride	CCI₄	153.82	0.05405	556.4	4.56	0.2759
Chlorine	Cl ₂	70.906	0.1173	417	7.71	0.1242
Chloroform	CHCl₃	119.38	0.06964	536.6	5.47	0.2403
Dichlorodifluoromethane (R-12)	CCI ₂ F ₂	120.91	0.06876	384.7	4.01	0.2179
Dichlorofluoromethane (R-21)	CHČI ₂ F	102.92	0.08078	451.7	5.17	0.1973
Ethane	C_2H_6	30.070	0.2765	305.5	4.48	0.1480
Ethyl alcohol	C ₂ H ₅ OH	46.07	0.1805	516	6.38	0.1673
Ethylene	C_2H_4	28.054	0.2964	282.4	5.12	0.1242
Helium	He	4.003	2.0769	5.3	0.23	0.0578
<i>n</i> -Hexane	C_6H_{14}	86.179	0.09647	507.9	3.03	0.3677
Hydrogen (normal)	H_2	2.016	4.1240	33.3	1.30	0.0649
Krypton	Kr	83.80	0.09921	209.4	5.50	0.0924
Methane	CH ₄	16.043	0.5182	191.1	4.64	0.0993
Methyl alcohol	CH ₃ OH	32.042	0.2595	513.2	7.95	0.1180
Methyl chloride	CH ₃ CI	50.488	0.1647	416.3	6.68	0.1430
Neon	Ne	20.183	0.4119	44.5	2.73	0.0417
Nitrogen	N_2	28.013	0.2968	126.2	3.39	0.0899
Nitrous oxide	N_2^- 0	44.013	0.1889	309.7	7.27	0.0961
Oxygen	02	31.999	0.2598	154.8	5.08	0.0780
Propane	C_3H_8	44.097	0.1885	370	4.26	0.1998
Propylene	C_3H_6	42.081	0.1976	365	4.62	0.1810
Sulfur dioxide	SO_2	64.063	0.1298	430.7	7.88	0.1217
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.08149	374.2	4.059	0.1993
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.06052	471.2	4.38	0.2478
Water	H_2O	18.015	0.4615	647.1	22.06	0.0560
Xenon	Xe	131.30	0.06332	289.8	5.88	0.1186

^{*}The unit kJ/kg-K is equivalent to kPa·m³/kg-K. The gas constant is calculated from $R = R_u/M$, where $R_u = 8.31447$ kJ/kmol-K and M is the molar mass

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236; and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A–2Ideal-gas specific heats of various common gases

(a) At 300 K

		Gas constant, R	c_p	$c_{_{\scriptscriptstyle V}}$	
Gas	Formula	kJ/kg·K	kJ/kg·K	kJ/kg∙K	k
Air	_	0.2870	1.005	0.718	1.400
Argon	Ar	0.2081	0.5203	0.3122	1.667
Butane	C_4H_{10}	0.1433	1.7164	1.5734	1.091
Carbon dioxide	CO_2	0.1889	0.846	0.657	1.289
Carbon monoxide	CO	0.2968	1.040	0.744	1.400
Ethane	C_2H_6	0.2765	1.7662	1.4897	1.186
Ethylene	C_2H_4	0.2964	1.5482	1.2518	1.237
Helium	He	2.0769	5.1926	3.1156	1.667
Hydrogen	H_2	4.1240	14.307	10.183	1.405
Methane	CH₄	0.5182	2.2537	1.7354	1.299
Neon	Ne	0.4119	1.0299	0.6179	1.667
Nitrogen	N_2	0.2968	1.039	0.743	1.400
Octane	C_8H_{18}	0.0729	1.7113	1.6385	1.044
Oxygen	02	0.2598	0.918	0.658	1.395
Propane	C_3H_8	0.1885	1.6794	1.4909	1.126
Steam	$H_2^{\circ}O^{\circ}$	0.4615	1.8723	1.4108	1.327

Note: The unit kJ/kg·K is equivalent to kJ/kg·°C.

Source: Chemical and Process Thermodynamics 3/E by Kyle, B. G., © 2000. Adapted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

910 PROPERTY TABLES AND CHARTS

TABLE A–2Ideal-gas specific heats of various common gases (*Continued*)

(b) At various temperatures

Temperature,	<i>c_p</i> kJ/kg∙K	<i>c₀</i> kJ/kg∙K	k	<i>c_p</i> kJ/kg⋅K	<i>c</i> _v kJ/kg∙K	k	c _p kJ/kg⋅K	<i>c</i> , kJ/kg∙K	k
K		Air		Car	bon dioxide, (CO ₂	Carboi	n monoxide,	CO
250	1.003	0.716	1.401	0.791	0.602	1.314	1.039	0.743	1.400
300	1.005	0.718	1.400	0.846	0.657	1.288	1.040	0.744	1.399
350	1.008	0.721	1.398	0.895	0.706	1.268	1.043	0.746	1.398
400	1.013	0.726	1.395	0.939	0.750	1.252	1.047	0.751	1.395
450	1.020	0.733	1.391	0.978	0.790	1.239	1.054	0.757	1.392
500	1.029	0.742	1.387	1.014	0.825	1.229	1.063	0.767	1.387
550	1.040	0.753	1.381	1.046	0.857	1.220	1.075	0.778	1.382
600	1.051	0.764	1.376	1.075	0.886	1.213	1.087	0.790	1.376
650	1.063	0.776	1.370	1.102	0.913	1.207	1.100	0.803	1.370
700	1.075	0.788	1.364	1.126	0.937	1.202	1.113	0.816	1.364
750	1.087	0.800	1.359	1.148	0.959	1.197	1.126	0.829	1.358
800	1.099	0.812	1.354	1.169	0.980	1.193	1.139	0.842	1.353
900	1.121	0.834	1.344	1.204	1.015	1.186	1.163	0.866	1.343
1000	1.142	0.855	1.336	1.234	1.045	1.181	1.185	0.888	1.335
		Hydrogen,	H_2		Nitrogen,	N_2	С)xygen, O ₂	
250	14.051	9.927	1.416	1.039	0.742	1.400	0.913	0.653	1.398
300	14.307	10.183	1.405	1.039	0.743	1.400	0.918	0.658	1.395
350	14.427	10.302	1.400	1.041	0.744	1.399	0.928	0.668	1.389
400	14.476	10.352	1.398	1.044	0.747	1.397	0.941	0.681	1.382
450	14.501	10.377	1.398	1.049	0.752	1.395	0.956	0.696	1.373
500	14.513	10.389	1.397	1.056	0.759	1.391	0.972	0.712	1.365
550	14.530	10.405	1.396	1.065	0.768	1.387	0.988	0.728	1.358
600	14.546	10.422	1.396	1.075	0.778	1.382	1.003	0.743	1.350
650	14.571	10.447	1.395	1.086	0.789	1.376	1.017	0.758	1.343
700	14.604	10.480	1.394	1.098	0.801	1.371	1.031	0.771	1.337
750	14.645	10.521	1.392	1.110	0.813	1.365	1.043	0.783	1.332
800	14.695	10.570	1.390	1.121	0.825	1.360	1.054	0.794	1.327
900	14.822	10.698	1.385	1.145	0.849	1.349	1.074	0.814	1.319
1000	14.983	10.859	1.380	1.167	0.870	1.341	1.090	0.830	1.313

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 783, Table A-4M. Originally published in Tables of Thermal Properties of Gases, NBS Circular 564, 1955.

TABLE A-3

Properties of common liquids, solids, and foods

(a) Liquids

	Boiling	data at 1 atm	Freez	ring data	L	iquid properti	es
Substance	Normal boiling point, °C	Latent heat of vaporization $h_{\rm fg}$, kJ/kg	Freezing point, °C	Latent heat of fusion h_{if} , kJ/kg	Temperature, °C	Density ρ, kg/m ³	Specific heat c _p , kJ/kg⋅K
Ammonia	-33.3	1357	-77.7	322.4	-33.3 -20	682 665	4.43 4.52
					0	639	4.60
	105.0	161.6	1000		25	602	4.80
Argon	-185.9	161.6	-189.3	28	-185.6	1394	1.14
Benzene	80.2	394	5.5	126	20	879	1.72
Brine (20% sodium	102.0		17 /		20	1150	2 11
chloride by mass)	103.9 -0.5	 385.2	-17.4 -138.5	80.3	20	1150	3.11
<i>n</i> -Butane Carbon dioxide	-0.5 -78.4*		-138.5 -56.6	80.3	-0.5 0	601 298	2.31 0.59
Ethanol	-78.4°	230.5 (at 0°C)	-36.6 -114.2	109	25	296 783	2.46
Ethyl alcohol	78.2 78.6	838.3 855	-114.2 -156	109	20	763 789	2.46
Ethylene glycol	198.1	800.1	-10.8	181.1	20	1109	2.84
Glycerine	179.1	974	18.9	200.6	20	1261	2.32
Helium	-268.9	22.8	10.9	200.6	-268.9	146.2	2.32
Hydrogen	-252.8	445.7	 -259.2	— 59.5	-252.8	70.7	10.0
Isobutane	-232.8 -11.7	367.1	-259.2 -160	105.7	-252.8 -11.7	593.8	2.28
Kerosene	204–293	251	-24.9	105.7 —	20	820	2.20
Mercury	356.7	294.7	-38.9	11.4	25	13,560	0.139
Methane	-161.5	510.4	-182.2	58.4	-161.5	423	3.49
Wictharic	101.5	310.4	102.2	30.4	-100 -100	301	5.79
Methanol	64.5	1100	-97.7	99.2	25	787	2.55
Nitrogen	-195.8	198.6	-210	25.3	-195.8	809	2.06
Millogen	133.0	150.0	210	23.3	-160	596	2.97
Octane	124.8	306.3	-57.5	180.7	20	703	2.10
Oil (light)	12 1.0	000.0	07.0	100.7	25	910	1.80
Oxygen	-183	212.7	-218.8	13.7	-183	1141	1.71
Petroleum	_	230–384	210.0	1017	20	640	2.0
Propane	-42.1	427.8	-187.7	80.0	-42.1	581	2.25
					0	529	2.53
					50	449	3.13
Refrigerant-134a	-26.1	217.0	-96.6	_	-50	1443	1.23
6					-26.1	1374	1.27
					0	1295	1.34
					25	1207	1.43
Water	100	2257	0.0	333.7	0	1000	4.22
					25	997	4.18
					50	988	4.18
					75	975	4.19
					100	958	4.22

^{*} Sublimation temperature. (At pressures below the triple-point pressure of 518 kPa, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -56.5° C.)

TABLE A–3Properties of common liquids, solids, and foods (*Concluded*)

(b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ kg/m 3	Specific heat, $c_p \ \mathrm{kJ/kg} \cdot \mathrm{K}$	Substance	Density, $ ho$ kg/m 3	Specific heat, c_p kJ/kg·K
Metals			Nonmetals		
Aluminum			Asphalt	2110	0.920
200 K		0.797	Brick, common	1922	0.79
250 K		0.859	Brick, fireclay (500°C)	2300	0.960
300 K	2,700	0.902	Concrete	2300	0.653
350 K		0.929	Clay	1000	0.920
400 K		0.949	Diamond	2420	0.616
450 K		0.973	Glass, window	2700	0.800
500 K		0.997	Glass, pyrex	2230	0.840
Bronze (76% Cu, 2% Zn,	8,280	0.400	Graphite	2500	0.711
2% AI)			Granite	2700	1.017
Brass, yellow (65% Cu,	8,310	0.400	Gypsum or plaster board	800	1.09
35% Zn)			Ice		
Copper			200 K		1.56
-173°C		0.254	220 K		1.71
-100°C		0.342	240 K		1.86
−50°C		0.367	260 K		2.01
0°C		0.381	273 K	921	2.11
27°C	8,900	0.386	Limestone	1650	0.909
100°C		0.393	Marble	2600	0.880
200°C		0.403	Plywood (Douglas Fir)	545	1.21
Iron	7,840	0.45	Rubber (soft)	1100	1.840
Lead	11,310	0.128	Rubber (hard)	1150	2.009
Magnesium	1,730	1.000	Sand	1520	0.800
Nickel	8,890	0.440	Stone	1500	0.800
Silver	10,470	0.235	Woods, hard (maple, oak, etc.)	721	1.26
Steel, mild	7,830	0.500	Woods, soft (fir, pine, etc.)	513	1.38
Tungsten	19,400	0.130			

(c) Foods

	Water		Specifi kJ/k	ic heat, g⋅K	Latent heat of		Water		Specific kJ/kg		Latent heat of
Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg	Food	content, % (mass)	Freezing point, °C	Above freezing	Below freezing	fusion, kJ/kg
Apples	84	-1.1	3.65	1.90	281	Lettuce	95	-0.2	4.02	2.04	317
Bananas	75	-0.8	3.35	1.78	251	Milk, whole	88	-0.6	3.79	1.95	294
Beef round	67	_	3.08	1.68	224	Oranges	87	-0.8	3.75	1.94	291
Broccoli	90	-0.6	3.86	1.97	301	Potatoes	78	-0.6	3.45	1.82	261
Butter	16	_	_	1.04	53	Salmon fish	64	-2.2	2.98	1.65	214
Cheese, swiss	39	-10.0	2.15	1.33	130	Shrimp	83	-2.2	3.62	1.89	277
Cherries	80	-1.8	3.52	1.85	267	Spinach	93	-0.3	3.96	2.01	311
Chicken	74	-2.8	3.32	1.77	247	Strawberries	90	-0.8	3.86	1.97	301
Corn, sweet	74	-0.6	3.32	1.77	247	Tomatoes, ripe	94	-0.5	3.99	2.02	314
Eggs, whole	74	-0.6	3.32	1.77	247	Turkey	64	_	2.98	1.65	214
Ice cream	63	-5.6	2.95	1.63	210	Watermelon	93	-0.4	3.96	2.01	311

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, SI version (Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 1993), Chapter 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

914 PROPERTY TABLES AND CHARTS

TABLE A-4

Saturated water—Temperature table

		Specific volume, m³/kg Sat Sat			<i>nternal e</i> kJ/kg			<i>Enthalp</i> kJ/kg	y,	Entropy, kJ/kg·K		
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. Iiquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965	8.7488 8.5559	9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	8.0152 7.8466 7.6832	8.5567 8.4520 8.3517 8.2556 8.1633
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.4089 6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.3542 7.2952 7.2382 7.1829 7.1292
125 130 135 140 145	232.23 270.28 313.22 361.53 415.68	0.001065 0.001070 0.001075 0.001080 0.001085	0.77012 0.66808 0.58179 0.50850 0.44600	524.83 546.10 567.41 588.77 610.19	2009.5 1993.4 1977.3 1960.9 1944.2	2534.3 2539.5 2544.7 2549.6 2554.4	525.07 546.38 567.75 589.16 610.64	2188.1 2173.7 2159.1 2144.3 2129.2	2713.1 2720.1 2726.9 2733.5 2739.8	1.5816 1.6346 1.6872 1.7392 1.7908	5.3919 5.2901 5.1901	7.0771 7.0265 6.9773 6.9294 6.8827
150 155 160 165 170	476.16 543.49 618.23 700.93 792.18	0.001091 0.001096 0.001102 0.001108 0.001114	0.39248 0.34648 0.30680 0.27244 0.24260	631.66 653.19 674.79 696.46 718.20	1927.4 1910.3 1893.0 1875.4 1857.5	2559.1 2563.5 2567.8 2571.9 2575.7	632.18 653.79 675.47 697.24 719.08	2113.8 2098.0 2082.0 2065.6 2048.8	2745.9 2751.8 2757.5 2762.8 2767.9	1.8418 1.8924 1.9426 1.9923 2.0417	4.9002 4.8066 4.7143	6.8371 6.7927 6.7492 6.7067 6.6650
175 180 185 190 195 200	892.60 1002.8 1123.5 1255.2 1398.8 1554.9	0.001121 0.001127 0.001134 0.001141 0.001149 0.001157	0.21659 0.19384 0.17390 0.15636 0.14089 0.12721	740.02 761.92 783.91 806.00 828.18 850.46	1839.4 1820.9 1802.1 1783.0 1763.6 1743.7	2579.4 2582.8 2586.0 2589.0 2591.7 2594.2	741.02 763.05 785.19 807.43 829.78 852.26	2031.7 2014.2 1996.2 1977.9 1959.0 1939.8	2772.7 2777.2 2781.4 2785.3 2788.8 2792.0	2.0906 2.1392 2.1875 2.2355 2.2831 2.3305	4.4448 4.3572 4.2705 4.1847	6.6242 6.5841 6.5447 6.5059 6.4678 6.4302

TABLE A-4Saturated water—Temperature table (*Concluded*)

		Specific volume, m³/kg Sat. Sat.		In	<i>ternal en</i> kJ/kg	ergy,		<i>Enthalp</i> kJ/kg			<i>Entropy,</i> kJ/kg∙K	
Temp.,	Sat. press.,	Sat. Iiquid,	Sat. vapor,	Sat. Iiquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. Iiquid,	Evap.,	Sat. vapor,
T °C	P _{sat} kPa	V_f	V_g	U_f	U_{fg}	U_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
205 210 215 220 225	1724.3 1907.7 2105.9 2319.6 2549.7	0.001164 0.001173 0.001181 0.001190 0.001199	0.11508 0.10429 0.094680 0.086094 0.078405	872.86 895.38 918.02 940.79 963.70	1723.5 1702.9 1681.9 1660.5 1638.6	2596.4 2598.3 2599.9 2601.3 2602.3	897.61 920.50 943.55	1920.0 1899.7 1878.8 1857.4 1835.4	2794.8 2797.3 2799.3 2801.0 2802.2	2.3776 2.4245 2.4712 2.5176 2.5639	3.8489 3.7664	6.3930 6.3563 6.3200 6.2840 6.2483
230 235 240 245 250	2797.1 3062.6 3347.0 3651.2 3976.2	0.001209 0.001219 0.001229 0.001240 0.001252	0.071505 0.065300 0.059707 0.054656 0.050085	986.76 1010.0 1033.4 1056.9 1080.7	1616.1 1593.2 1569.8 1545.7 1521.1	2602.9 2603.2 2603.1 2602.7 2601.8	990.14 1013.7 1037.5 1061.5 1085.7	1812.8 1789.5 1765.5 1740.8 1715.3	2802.9 2803.2 2803.0 2802.2 2801.0	2.6100 2.6560 2.7018 2.7476 2.7933	3.5216 3.4405 3.3596	6.2128 6.1775 6.1424 6.1072 6.0721
255 260 265 270 275	4322.9 4692.3 5085.3 5503.0 5946.4	0.001263 0.001276 0.001289 0.001303 0.001317	0.045941 0.042175 0.038748 0.035622 0.032767	1104.7 1128.8 1153.3 1177.9 1202.9	1495.8 1469.9 1443.2 1415.7 1387.4	2600.5 2598.7 2596.5 2593.7 2590.3	1110.1 1134.8 1159.8 1185.1 1210.7	1689.0 1661.8 1633.7 1604.6 1574.5	2799.1 2796.6 2793.5 2789.7 2785.2	2.8390 2.8847 2.9304 2.9762 3.0221	3.1169 3.0358 2.9542	6.0369 6.0017 5.9662 5.9305 5.8944
280 285 290 295 300	6416.6 6914.6 7441.8 7999.0 8587.9	0.001333 0.001349 0.001366 0.001384 0.001404	0.030153 0.027756 0.025554 0.023528 0.021659	1228.2 1253.7 1279.7 1306.0 1332.7	1358.2 1328.1 1296.9 1264.5 1230.9	2586.4 2581.8 2576.5 2570.5 2563.6	1236.7 1263.1 1289.8 1317.1 1344.8	1543.2 1510.7 1476.9 1441.6 1404.8	2779.9 2773.7 2766.7 2758.7 2749.6	3.0681 3.1144 3.1608 3.2076 3.2548	2.7066 2.6225 2.5374	5.8579 5.8210 5.7834 5.7450 5.7059
305 310 315 320 325	9209.4 9865.0 10,556 11,284 12,051	0.001425 0.001447 0.001472 0.001499 0.001528	0.019932 0.018333 0.016849 0.015470 0.014183	1360.0 1387.7 1416.1 1445.1 1475.0	1195.9 1159.3 1121.1 1080.9 1038.5	2555.8 2547.1 2537.2 2526.0 2513.4	1373.1 1402.0 1431.6 1462.0 1493.4	1366.3 1325.9 1283.4 1238.5 1191.0	2739.4 2727.9 2715.0 2700.6 2684.3	3.3024 3.3506 3.3994 3.4491 3.4998	2.2737 2.1821 2.0881	5.6657 5.6243 5.5816 5.5372 5.4908
330 335 340 345 350	12,858 13,707 14,601 15,541 16,529	0.001560 0.001597 0.001638 0.001685 0.001741	0.012979 0.011848 0.010783 0.009772 0.008806	1505.7 1537.5 1570.7 1605.5 1642.4	993.5 945.5 893.8 837.7 775.9	2499.2 2483.0 2464.5 2443.2 2418.3	1525.8 1559.4 1594.6 1631.7 1671.2	1140.3 1086.0 1027.4 963.4 892.7	2666.0 2645.4 2622.0 2595.1 2563.9	3.5516 3.6050 3.6602 3.7179 3.7788	1.6756 1.5585	5.4422 5.3907 5.3358 5.2765 5.2114
355 360 365 370 373.95	17,570 18,666 19,822 21,044 22,064	0.001808 0.001895 0.002015 0.002217 0.003106	0.007872 0.006950 0.006009 0.004953 0.003106	1682.2 1726.2 1777.2 1844.5 2015.7	706.4 625.7 526.4 385.6 0	2388.6 2351.9 2303.6 2230.1 2015.7	1714.0 1761.5 1817.2 1891.2 2084.3	812.9 720.1 605.5 443.1 0	2526.9 2481.6 2422.7 2334.3 2084.3	3.8442 3.9165 4.0004 4.1119 4.4070	1.1373 0.9489	5.1384 5.0537 4.9493 4.8009 4.4070

Source: Tables A-4 through A-8 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

916 PROPERTY TABLES AND CHARTS

TABLE A-5

Saturated water—Pressure table

			<i>fic volume,</i> m ³ /kg		<i>Internal e</i> kJ/kg			<i>Enthalpy</i> kJ/kg	;		<i>Entropy,</i> kJ/kg·K	
Press., P kPa	Sat. temp., T_{sat} °C	Sat. Iiquid, <i>v_f</i>	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30	69.09	0.001022	5.2287	289.24	2178.5	2467.7	289.27	2335.3	2624.6	0.9441	6.8234	7.7675
40	75.86	0.001026	3.9933	317.58	2158.8	2476.3	317.62	2318.4	2636.1	1.0261	6.6430	7.6691
50	81.32	0.001030	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100	99.61	0.001043	1.6941	417.40	2088.2	2505.6	417.51	2257.5	2675.0	1.3028	6.0562	7.3589
101.325	99.97	0.001043	1.6734	418.95	2087.0	2506.0	419.06	2256.5	2675.6	1.3069	6.0476	7.3545
125	105.97	0.001048	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.2841
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1	2700.2	1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6	2706.3	1.5302	5.5968	7.1270
225	123.97	0.001064	0.79329	520.47	2012.7	2533.2	520.71	2191.0	2711.7	1.5706	5.5171	7.0877
250	127.41	0.001067	0.71873	535.08	2001.8	2536.8	535.35	2181.2	2716.5	1.6072	5.4453	7.0525
275	130.58	0.001070	0.65732	548.57	1991.6	2540.1	548.86	2172.0	2720.9	1.6408	5.3800	7.0207
300	133.52	0.001073	0.60582	561.11	1982.1	2543.2	561.43	2163.5	2724.9	1.6717	5.3200	6.9917
325	136.27	0.001076	0.56199	572.84	1973.1	2545.9	573.19	2155.4	2728.6	1.7005	5.2645	6.9650
350	138.86	0.001079	0.52422	583.89	1964.6	2548.5	584.26	2147.7	2732.0	1.7274	5.2128	6.9402
375	141.30	0.001081	0.49133	594.32	1956.6	2550.9	594.73	2140.4	2735.1	1.7526	5.1645	6.9171
400	143.61	0.001084	0.46242	604.22	1948.9	2553.1	604.66	2133.4	2738.1	1.7765	5.1191	6.8955
450	147.90	0.001088	0.41392	639.54	1934.5	2557.1	623.14	2120.3	2743.4	1.8205	5.0356	6.8561
500	151.83	0.001093	0.37483		1921.2	2560.7	640.09	2108.0	2748.1	1.8604	4.9603	6.8207
550	155.46	0.001097	0.34261		1908.8	2563.9	655.77	2096.6	2752.4	1.8970	4.8916	6.7886
600	158.83	0.001101	0.31560		1897.1	2566.8	670.38	2085.8	2756.2	1.9308	4.8285	6.7593
650	161.98	0.001104	0.29260		1886.1	2569.4	684.08	2075.5	2759.6	1.9623	4.7699	6.7322
700	164.95	0.001108	0.27278	696.23	1875.6	2571.8	697.00	2065.8	2762.8	1.9918	4.7153	6.7071
750	167.75	0.001111	0.25552	708.40	1865.6	2574.0	709.24	2056.4	2765.7	2.0195	4.6642	6.6837

TABLE A–5Saturated water—Pressure table (*Concluded*)

		Specific volume, m³/kg		In	<i>ternal en</i> kJ/kg	ergy,		Enthalpy kJ/kg	<i>;</i>	Entropy, kJ/kg·K		
Press., P kPa	Sat. temp., T_{sat} °C	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap.,	Sat. vapor, s_g
800 850 900 950 1000	170.41 172.94 175.35 177.66 179.88	0.001115 0.001118 0.001121 0.001124 0.001127	0.24035 0.22690 0.21489 0.20411 0.19436	731.00 741.55 751.67	1856.1 1846.9 1838.1 1829.6 1821.4	2576.0 2577.9 2579.6 2581.3 2582.8	720.87 731.95 742.56 752.74 762.51	2047.5 2038.8 2030.5 2022.4 2014.6	2768.3 2770.8 2773.0 2775.2	2.0457 2.0705 2.0941 2.1166 2.1381	4.6160 4.5705 4.5273 4.4862 4.4470	6.6616 6.6409 6.6213 6.6027 6.5850
1100 1200 1300 1400 1500	184.06 187.96 191.60 195.04 198.29	0.001133 0.001138 0.001144 0.001149 0.001154	0.17745 0.16326 0.15119 0.14078 0.13171	796.96 813.10 828.35	1805.7 1790.9 1776.8 1763.4 1750.6	2585.5 2587.8 2589.9 2591.8 2593.4	781.03 798.33 814.59 829.96 844.55	1999.6 1985.4 1971.9 1958.9 1946.4	2788.9		4.3735 4.3058 4.2428 4.1840 4.1287	6.5520 6.5217 6.4936 6.4675 6.4430
1750 2000 2250 2500 3000	205.72 212.38 218.41 223.95 233.85	0.001166 0.001177 0.001187 0.001197 0.001217	0.11344 0.099587 0.088717 0.079952 0.066667	906.12 933.54	1720.6 1693.0 1667.3 1643.2 1598.5	2596.7 2599.1 2600.9 2602.1 2603.2	878.16 908.47 936.21 961.87 1008.3	1917.1 1889.8 1864.3 1840.1 1794.9		2.3844 2.4467 2.5029 2.5542 2.6454	4.0033 3.8923 3.7926 3.7016 3.5402	6.3877 6.3390 6.2954 6.2558 6.1856
3500 4000 5000 6000 7000	242.56 250.35 263.94 275.59 285.83	0.001235 0.001252 0.001286 0.001319 0.001352	0.057061 0.049779 0.039448 0.032449 0.027378	1045.4 1082.4 1148.1 1205.8 1258.0	1557.6 1519.3 1448.9 1384.1 1323.0	2601.7 2597.0	1154.5 1213.8	1753.0 1713.5 1639.7 1570.9 1505.2	2800.8 2794.2 2784.6	2.7253 2.7966 2.9207 3.0275 3.1220	3.3991 3.2731 3.0530 2.8627 2.6927	6.1244 6.0696 5.9737 5.8902 5.8148
8000 9000 10,000 11,000 12,000	295.01 303.35 311.00 318.08 324.68	0.001384 0.001418 0.001452 0.001488 0.001526	0.015988	1306.0 1350.9 1393.3 1433.9 1473.0	1264.5 1207.6 1151.8 1096.6 1041.3	2570.5 2558.5 2545.2 2530.4 2514.3	1363.7 1407.8 1450.2	1441.6 1379.3 1317.6 1256.1 1194.1	2758.7 2742.9 2725.5 2706.3 2685.4	3.2077 3.2866 3.3603 3.4299 3.4964	2.5373 2.3925 2.2556 2.1245 1.9975	5.7450 5.6791 5.6159 5.5544 5.4939
13,000 14,000 15,000 16,000 17,000	330.85 336.67 342.16 347.36 352.29	0.001566 0.001610 0.001657 0.001710 0.001770	0.012781 0.011487 0.010341 0.009312 0.008374	1511.0 1548.4 1585.5 1622.6 1660.2	985.5 928.7 870.3 809.4 745.1	2496.6 2477.1 2455.7 2432.0 2405.4	1571.0 1610.3 1649.9	1131.3 1067.0 1000.5 931.1 857.4		3.6848 3.7461	1.8730 1.7497 1.6261 1.5005 1.3709	5.4336 5.3728 5.3108 5.2466 5.1791
18,000 19,000 20,000 21,000 22,000 22,064	356.99 361.47 365.75 369.83 373.71 373.95	0.001840 0.001926 0.002038 0.002207 0.002703 0.003106	0.007504 0.006677 0.005862 0.004994 0.003644 0.003106	1699.1 1740.3 1785.8 1841.6 1951.7 2015.7	675.9 598.9 509.0 391.9 140.8	2375.0 2339.2 2294.8 2233.5 2092.4 2015.7	1776.8 1826.6 1888.0 2011.1	777.8 689.2 585.5 450.4 161.5	2466.0 2412.1 2338.4 2172.6		1.2343 1.0860 0.9164 0.7005 0.2496	5.1064 5.0256 4.9310 4.8076 4.5439 4.4070

TABLE A-6

Superh	eated wate	r									
T	V	И	h	s	V	и	h	S	l v u	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg kJ/kg	kJ/kg	kJ/kg·K
	D —	0.01 ME	°a (45.81°	PC)*	D —	0.05 MP	o (Q1 22º	()	P = 0.10	MP2 (00 61	1°C)
0 - 4 †											
Sat.† 50	14.670 14.867		2583.9 2592.0	8.1488 8.1741	3.2403	2483.2	2645.2	7.5931	1.6941 2505.	b 26/5.C	7.3589
100	17.196		2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959 2506.	2 2675.8	7.3611
150	19.513		2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367 2582.		
200	21.826		2879.6	8.9049	4.3562	2660.0	2877.8		2.1724 2658.		
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062 2733.	9 2974.5	8.0346
300	26.446		3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389 2810.		
400	31.063		3280.0	9.6094	6.2094	2968.9	3279.3		3.1027 2968.		
500	35.680		3489.7	9.8998	7.1338	3132.6	3489.3		3.5655 3132.		
600	40.296		3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279 3302.		
700	44.911		3929.9	10.4056	8.9813	3480.6	3929.7		4.4900 3480.		
800	49.527			10.6312	9.9047	3665.2	4160.4		4.9519 3665.		
900	54.143			10.8429	10.8280	3856.8		10.1000	5.4137 3856.		
1000	58.758			11.0429	11.7513	4055.2		10.3000	5.8755 4055.		
1100	63.373			11.2326	12.6745	4259.9		10.4897	6.3372 4259.		10.1698
1200 1300	67.989 72.604			11.4132 11.5857	13.5977 14.5209	4470.8 4687.3		10.6704 10.8429	6.7988 4470. 7.2605 4687.		3 10.3504 3 10.5229
1300											
0-4	P = 0.88578		a (120.2)	7.1270	0.60582	0.30 MPa	2724.9		P = 0.40 N 0.46242 2553.		
Sat. 150	0.86376			7.1270	0.63402		2724.9	6.9917 7.0792	0.47088 2564.		
200	1.08049			7.5081	0.03402		2865.9	7.0792	0.53434 2647.		
250	1.19890			7.7100	0.71645		2967.9	7.5132	0.59520 2726.		
300	1.31623			7.8941	0.87535		3069.6	7.7037	0.65489 2805.		
400	1.54934			8.2236	1.03155		3275.5	8.0347	0.77265 2964.		
500	1.78142			8.5153	1.18672		3486.6	8.3271	0.88936 3129.		
600	2.01302			8.7793	1.34139		3704.0	8.5915	1.00558 3301.		
700	2.24434	3479.9	3928.8	9.0221	1.49580	3479.5	3928.2	8.8345	1.12152 3479.	0 3927.6	8.7012
800	2.47550	3664.7	4159.8	9.2479	1.65004		4159.3	9.0605	1.23730 3663.	9 4158.9	8.9274
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298 3855.	7 4396.9	9.1394
1000	2.93755			9.6599	1.95824		4642.0	9.4726	1.46859 4054.		
1100	3.16848			9.8497	2.11226		4893.1	9.6624	1.58414 4259.		
1200	3.39938			10.0304	2.26624		5150.2		1.69966 4470.		
1300	3.63026	4687.1	5413.1	10.2029	2.42019			10.0157	1.81516 4686.	7 5412.8	9.8828
			a (151.83			0.60 MPa	-	-	P = 0.80 N		
Sat.	0.37483			6.8207	0.31560		2756.2		0.24035 2576.		
200	0.42503			7.0610	0.35212		2850.6		0.26088 2631.		6.8177
250	0.47443			7.2725				7.1833	0.29321 2715.		
300	0.52261			7.4614	0.43442		3062.0		0.32416 2797.		
350	0.57015			7.6346	0.47428		3166.1		0.35442 2878. 0.38429 2960.		
400 500	0.61731 0.71095			7.7956 8.0893	0.51374 0.59200		3270.8 3483.4		0.38429 2960.		
600	0.71095			8.3544	0.59200		3701.7		0.44332 3126.		
700	0.80409			8.5978	0.00976		3926.4		0.56011 3477.		
800	0.98966			8.8240	0.82457		4157.9		0.61820 3662.		
900	1.08227			9.0362	0.90179		4396.2		0.67619 3854.		
1000	1.17480			9.2364	0.97893		4641.1		0.73411 4053.		
1100	1.26728			9.4263	1.05603		4892.4		0.79197 4258.		
1200	1.35972			9.6071	1.13309		5149.6		0.84980 4469.		9.3898
1300	1.45214			9.7797	1.21012			9.6955	0.90761 4686		

 $^{{}^{*}\}text{The temperature in parentheses}$ is the saturation temperature at the specified pressure.

 $^{^{\}dagger}$ Properties of saturated vapor at the specified pressure.

TABLE A-6

Superl	neated wat	er (<i>Concl</i>	uded)									
T	V	и	h	S	v	и	h	S	v	и	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	Р	= 1.00 MI	Pa (179.8	8°C)	Р	= 1.20 M	MPa (187	.96°C)	P =	1.40 MP	a (195.0	4°C)
Sat.	0.19437	2582.8	2777.1	6.5850	0.16326	2587.8	2783.8	6.5217	0.14078	2591.8	2788.9	6.4675
200	0.20602	2622.3	2828.3	6.6956	0.16934			6.5909	0.14303	2602.7	2803.0	
250	0.23275	2710.4	2943.1	6.9265	0.19241			6.8313	0.16356	2698.9	2927.9	
300	0.25799	2793.7	3051.6	7.1246	0.21386	2789.7	3046.3	7.0335	0.18233	2785.7	3040.9	
350	0.28250	2875.7	3158.2	7.3029	0.23455	2872.7	3154.2	7.2139	0.20029	2869.7	3150.1	7.1379
400	0.30661	2957.9	3264.5	7.4670	0.25482	2955.5		7.3793	0.21782	2953.1	3258.1	7.3046
500	0.35411	3125.0	3479.1	7.7642	0.29464			7.6779	0.25216	3121.8	3474.8	7.6047
600	0.40111	3297.5	3698.6	8.0311	0.33395			7.9456	0.28597	3295.1	3695.5	7.8730
700	0.44783	3476.3	3924.1	8.2755	0.37297			8.1904	0.31951	3474.4	3921.7	
800	0.49438	3661.7	4156.1	8.5024	0.41184			8.4176	0.35288	3660.3	4154.3	
900	0.54083	3853.9	4394.8	8.7150	0.45059			8.6303	0.38614	3852.7		8.5587
1000	0.58721	4052.7	4640.0	8.9155	0.48928			8.8310	0.41933	4051.7	4638.8	
1100	0.63354	4257.9	4891.4	9.1057	0.52792			9.0212	0.45247	4257.0	4890.5	
1200	0.67983	4469.0	5148.9	9.2866	0.56652		5148.5	9.2022	0.48558	4468.3		9.1308
1300	0.72610	4685.8	5411.9	9.4593	0.60509			9.3750	0.51866	4685.1		9.3036
0 - 1		= 1.60 MI					MPa (207)			2.00 MP		
Sat. 225	0.12374 0.13293	2594.8 2645.1	2792.8 2857.8	6.4200 6.5537	0.11037	2597.3 2637.0			0.09959 0.10381	2599.1 2628.5		6.3390 6.4160
250	0.13293	2692.9	2919.9	6.6753	0.11678	2686.7			0.10361	2680.3		6.5475
300	0.14190	2092.9	3035.4	6.8864	0.12302	2777.4			0.11150	2773.2		6.7684
350	0.17459	2866.6	3146.0	7.0713	0.14023	2863.6			0.12331	2860.5		6.9583
400	0.19007	2950.8	3254.9	7.2394	0.16849	2948.3			0.15122	2945.9		7.1292
500	0.22029	3120.1	3472.6	7.5410	0.19551	3118.5			0.17568	3116.9		7.4337
600	0.24999	3293.9	3693.9	7.8101	0.22200	3292.7			0.19962	3291.5		7.7043
700	0.27941	3473.5	3920.5	8.0558	0.24822	3472.6			0.22326	3471.7		7.9509
800	0.30865	3659.5	4153.4	8.2834	0.27426	3658.8			0.24674	3658.0		8.1791
900	0.33780	3852.1	4392.6	8.4965	0.30020	3851.5	4391.		0.27012	3850.9	4391.1	8.3925
1000	0.36687	4051.2	4638.2	8.6974	0.32606	4050.7	4637.	6 8.6427	0.29342	4050.2	4637.1	8.5936
1100	0.39589	4256.6	4890.0	8.8878	0.35188	4256.2			0.31667	4255.7		8.7842
1200	0.42488	4467.9	5147.7	9.0689	0.37766	4467.6			0.33989	4467.2		8.9654
1300	0.45383	4684.8	5410.9	9.2418	0.40341	4684.5	5410.	6 9.1872	0.36308	4684.2	5410.3	9.1384
	<i>P</i>	= 2.50 MI	Pa (223.9	5°C)	Р	= 3.00 M	MPa (233	.85°C)	P =	3.50 MP	a (242.5	6°C)
Sat.	0.07995 0.08026	2602.1 2604.8	2801.9	6.2558	0.06667	2603.2	2803.	2 6.1856	0.05706	2603.0	2802.7	6.1244
225			2805.5 2880.9	6.2629	0.07063	00447	0050	F (2002	0.05076	2624.0	2020 =	6.1764
250	0.08705	2663.3		6.4107	0.07063	2644.7 2750.8			0.05876	2624.0		
300 350	0.09894	2762.2	3009.6	6.6459	0.08118				0.06845	2738.8		6.4484
400	0.10979 0.12012		3127.0 3240.1	6.8424 7.0170	0.09056	2844.4 2933.6			0.07680 0.08456	2836.0 2927.2		9 6.6601 2 6.8428
450	0.12012		3351.6	7.1768	0.10789	3021.2			0.00430	3016.1		7.0074
500	0.13013		3462.8	7.1768	0.10789	3108.6			0.09198	3104.5		7.0074
600	0.15931		3686.8	7.5234	0.11020	3285.5			0.03313	3282.5		7.1353
700	0.17835	3469.3	3915.2	7.8455	0.13243	3467.0			0.12702	3464.7		7.4855
800	0.19722		4149.2	8.0744	0.16420	3654.3			0.14061	3652.5		7.9156
900	0.21597		4389.3	8.2882	0.17988	3847.9			0.15410	3846.4		8.1304
1000	0.23466		4635.6	8.4897	0.19549	4047.7			0.16751	4046.4		8.3324
1100	0.25330		4887.9	8.6804	0.21105	4253.6			0.18087	4252.5		8.5236
1200	0.27190	4466.3	5146.0	8.8618	0.22658	4465.3			0.19420	4464.4		8.7053
1300	0.29048	4683.4	5409.5	9.0349	0.24207	4682.6	5408.	8 8.9502	0.20750	4681.8	5408.0	8.8786

TABLE A-6

TABLE	A-6											
Superl	neated wate	r (<i>Conti</i>	nued)									
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m ³ /kg l	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	P =	= 4.0 MF	Pa (250.35	5°C)	Р	= 4.5 MP	a (257.44°	°C)	P =	5.0 MPa	(263.94	-°C)
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275		2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3		6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0		6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5		6.6483
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210
500		3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8		6.9781
600	0.09886		3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3		7.2605
700	0.11098		3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7		7.5136
800	0.12292		4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9		7.7458
900		3844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8		7.9619
1000	0.14653		4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6		8.1648
1100	0.15824		4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3		8.3566
1200	0.16992		5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6		8.5388
1300	0.18157		5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3		8.7124
	P =	= 6.0 MF	Pa (275.59	9°C)	Р	= 7.0 MP	a (285.83°	°C)	P =	8.0 MPa	(295.01	°C)
Sat.	0.03245		2784.6	5.8902	0.027378		2772.6	5.8148	0.023525			5.7450
300	0.03619		2885.6	6.0703	0.029492		2839.9	5.9337	0.024279			5.7937
350		2790.4	3043.9	6.3357	0.035262		3016.9	6.2305	0.029975			6.1321
400	0.04742		3178.3	6.5432	0.039958		3159.2	6.4502	0.034344			6.3658
450		2989.9	3302.9	6.7219	0.044187		3288.3	6.6353	0.038194			6.5579
500	0.05667 3 0.06102 3		3423.1 3541.3	6.8826	0.048157		3411.4	6.8000	0.041767			6.7266
550 600	0.06102		3658.8	7.0308 7.1693	0.051966 0.055665		3531.6 3650.6	6.9507 7.0910	0.045172 0.048463			6.8800 7.0221
700		3453.0	3894.3	7.1093	0.053003		3888.3	7.0910	0.048403			7.0221
800	0.07355		4133.1	7.6582	0.062856		4128.5	7.5836	0.061011			7.5185
900		3838.8	4376.6	7.8751	0.076750		4373.0	7.8014	0.067082			7.7372
1000	0.09756		4625.4	8.0786	0.083571		4622.5	8.0055	0.073079			7.9419
1100	0.10543		4879.7	8.2709	0.090341		4877.4	8.1982	0.079025			8.1350
1200		4459.8	5139.4	8.4534	0.097075		5137.4	8.3810	0.084934			8.3181
1300	0.12107		5404.1	8.6273	0.103781		5402.6	8.5551	0.090817			8.4925
	P =	= 9.0 MF	Pa (303.35	5°C)	<i>P</i> =	= 10.0 MF	Pa (311.00)°C)	P =	12.5 MPa	a (327.8)	1°C)
Sat.	0.020489	2558.5	2742.9	5.6791	0.018028	2545.2	2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284	2647.6	2857.1	5.8738	0.019877	2611.6	2810.3	5.7596				
350	0.025816	2725.0	2957.3	6.0380	0.022440	2699.6	2924.0	5.9460	0.016138	2624.9	2826.6	5.7130
400	0.029960	2849.2	3118.8	6.2876	0.026436	2833.1	3097.5	6.2141	0.020030	2789.6	3040.0	6.0433
450	0.033524	2956.3	3258.0	6.4872	0.029782	2944.5	3242.4	6.4219	0.023019	2913.7	3201.5	6.2749
500	0.036793	3056.3	3387.4	6.6603	0.032811	3047.0	3375.1	6.5995	0.025630	3023.2	3343.6	6.4651
550	0.039885	3153.0	3512.0	6.8164	0.035655		3502.0	6.7585	0.028033			6.6317
600	0.042861		3634.1	6.9605	0.038378		3625.8	6.9045	0.030306			
650	0.045755		3755.2	7.0954	0.041018		3748.1	7.0408	0.032491			6.9227
700	0.048589		3876.1	7.2229	0.043597		3870.0	7.1693	0.034612			7.0540
800	0.054132		4119.2	7.4606	0.048629		4114.5	7.4085	0.038724			7.2967
900	0.059562		4365.7	7.6802	0.053547		4362.0	7.6290	0.042720			7.5195
1000	0.064919		4616.7	7.8855	0.058391		4613.8	7.8349	0.046641			7.7269
1100	0.070224		4872.7	8.0791	0.063183		4870.3	8.0289	0.050510			7.9220 8.1065
1200	0.075492		5133.6	8.2625	0.067938 0.072667		5131.7	8.2126	0.054342			8.1065
1300	0.080733	40/2.9	5399.5	8.4371	0.072007	40/1.3	5398.0	8.3874	0.00814/	4007.3	ეაყ4.1	0.2019

TABLE A-6

Superheated water (Concluded)

Superl	neated wate	r (Concil	iaea)									
T	V	и	h	S	V	И	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg·K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg⋅K
	P =	: 15.0 MP	a (342.16	i°C)	P = 1	17.5 MPa	(354.67	°C)	P =	20.0 MP	a (365.75	 5°C)
Sat.	0.010341	2455.7	2610.8	5.3108	0.007932	2390.7	2529.5	5.1435	0.005862	2294.8	2412.1	4.9310
350	0.011481	2520.9	2693.1	5.4438								
400	0.015671	2740.6	2975.7	5.8819	0.012463		2902.4		0.009950		2816.9	5.5526
450	0.018477	2880.8	3157.9	6.1434	0.015204			6.0212	0.012721		3061.7	5.9043
500	0.020828	2998.4	3310.8	6.3480	0.017385			6.2424	0.014793		3241.2	6.1446
550	0.022945	3106.2	3450.4	6.5230	0.019305			6.4266	0.016571			6.3390
600	0.024921	3209.3	3583.1	6.6796	0.021073			6.5890	0.018185		3539.0	6.5075
650	0.026804	3310.1	3712.1	6.8233	0.022742		3693.8		0.019695			6.6593
700	0.028621	3409.8	3839.1	6.9573	0.024342			6.8735	0.021134		3807.8	6.7991
800	0.032121	3609.3	4091.1	7.2037	0.027405		4079.3		0.023870		4067.5	7.0531
900	0.035503	3811.2	4343.7	7.4288	0.030348		4334.6		0.026484		4325.4	7.2829
1000	0.038808	4017.1	4599.2	7.6378	0.033215		4592.0		0.029020		4584.7	7.4950
1100	0.042062	4227.7	4858.6	7.8339	0.036029		4852.8		0.031504		4847.0	7.6933
1200	0.045279	4443.1	5122.3	8.0192	0.038806		5117.6		0.033952		5112.9	7.8802
1300	0.048469	4663.3	5390.3	8.1952	0.041556	4659.2	5386.5	8.1215	0.036371	4655.2	5382.7	8.0574
		P = 25				P = 30.0				P = 35		
375	0.001978	1799.9	1849.4	4.0345	0.001792		1791.9		0.001701		1762.4	3.8724
400	0.006005	2428.5	2578.7	5.1400	0.002798		2152.8		0.002105	1914.9	1988.6	4.2144
425	0.007886	2607.8	2805.0	5.4708	0.005299		2611.8		0.003434		2373.5	4.7751
450	0.009176	2721.2	2950.6	5.6759	0.006737		2821.0		0.004957		2671.0	5.1946
500	0.011143	2887.3	3165.9	5.9643	0.008691		3084.8		0.006933	2755.3	2997.9	5.6331
550	0.012736	3020.8	3339.2	6.1816	0.010175		3279.7		0.008348		3218.0	5.9093
600	0.014140	3140.0	3493.5	6.3637	0.011445		3446.8		0.009523		3399.0	6.1229
650	0.015430	3251.9	3637.7	6.5243	0.012590		3599.4			3190.9	3560.7	6.3030
700	0.016643	3359.9	3776.0	6.6702	0.013654		3743.9		0.011523		3711.6	6.4623
800	0.018922	3570.7	4043.8	6.9322	0.015628		4020.0		0.013278		3996.3	6.7409
900	0.021075	3780.2	4307.1	7.1668	0.017473		4288.8		0.014904		4270.6	6.9853
1000	0.023150	3991.5	4570.2	7.3821	0.019240		4555.8		0.016450	3965.8		7.2069
1100	0.025172	4206.1	4835.4	7.5825	0.020954		4823.9		0.017942			7.4118
1200	0.027157	4424.6	5103.5	7.7710	0.022630		5094.2		0.019398	4406.1	5085.0	7.6034
1300	0.029115	4647.2	5375.1	7.9494	0.024279	4639.2	5367.6	7.8602	0.020827	4631.2	5360.2	7.7841
		P = 40				P = 50.0				<i>P</i> = 60		
375	0.001641	1677.0	1742.6	3.8290		1638.6			0.001503		1699.9	3.7149
400	0.001911	1855.0	1931.4	4.1145	0.001731			4.0029	0.001633	1745.2	1843.2	3.9317
425	0.002538	2097.5	2199.0	4.5044	0.002009			4.2746	0.001816	1892.9	2001.8	4.1630
450	0.003692	2364.2	2511.8	4.9449	0.002487		2284.7		0.002086		2180.2	4.4140
500	0.005623	2681.6	2906.5	5.4744	0.003890		2722.6		0.002952			4.9356
550	0.006985	2875.1	3154.4	5.7857	0.005118				0.003955			5.3517
600	0.008089	3026.8	3350.4	6.0170	0.006108				0.004833			
650	0.009053	3159.5	3521.6	6.2078	0.006957				0.005591			5.8867
700	0.009930	3282.0	3679.2	6.3740	0.007717				0.006265			
800	0.011521	3511.8	3972.6	6.6613	0.009073				0.007456			6.4033
900	0.012980	3733.3	4252.5	6.9107	0.010296				0.008519			
1000	0.014360	3952.9	4527.3	7.1355	0.011441				0.009504			
1100	0.015686	4173.7		7.3425	0.012534				0.010439			
1200	0.016976	4396.9		7.5357	0.013590				0.011339			
1300	0.018239	4623.3	5352.8	7./1/5	0.014620	4007.5	ეპპგ.5	7.0048	0.012213	4591.8	3324.5	7.5111

FIGURE A-9

T-s diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lexter Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

FIGURE A-10

Mollier diagram for water.

Copyright © 1984. From NBS/NRC Steam Tables/1 by Lester Haar, John S. Gallagher, and George S. Kell. Reproduced by permission of Routledge/Taylor & Francis Books, Inc.

TABLE A–11Saturated refrigerant-134a—Temperature table

		Specific i m³/k		Inte	ernal ener kJ/kg	gy,		<i>Enthalpy</i> kJ/kg	;		Entropy, kJ/kg·K	
Temp <i>T</i> °C	Sat. ., press., <i>P</i> _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s_g
-40 -38 -36 -34 -32	51.25 56.86 62.95 69.56 76.71	0.0007054 0.0007083 0.0007112 0.0007142 0.0007172	0.36081 0.32732 0.29751 0.27090 0.24711	-0.036 2.475 4.992 7.517 10.05	207.40 206.04 204.67 203.29 201.91	207.37 208.51 209.66 210.81 211.96	2.515 5.037		225.86 227.12 228.39 229.65 230.91	0.00000 0.01072 0.02138 0.03199 0.04253	0.96866 0.95511 0.94176 0.92859 0.91560	0.96866 0.96584 0.96315 0.96058 0.95813
-30 -28 -26 -24 -22	84.43 92.76 101.73 111.37 121.72	0.0007203 0.0007234 0.0007265 0.0007297 0.0007329	0.22580 0.20666 0.18946 0.17395 0.15995	12.59 15.13 17.69 20.25 22.82	200.52 199.12 197.72 196.30 194.88	213.11 214.25 215.40 216.55 217.70	12.65 15.20 17.76 20.33 22.91	219.52 218.22 216.92 215.59 214.26	232.17 233.43 234.68 235.92 s237.17	0.05301 0.06344 0.07382 0.08414 0.09441	0.90278 0.89012 0.87762 0.86527 0.85307	0.95579 0.95356 0.95144 0.94941 0.94748
-20 -18 -16 -14 -12	132.82 144.69 157.38 170.93 185.37	0.0007362 0.0007396 0.0007430 0.0007464 0.0007499	0.14729 0.13583 0.12542 0.11597 0.10736	25.39 27.98 30.57 33.17 35.78	193.45 192.01 190.56 189.09 187.62	218.84 219.98 221.13 222.27 223.40	25.49 28.09 30.69 33.30 35.92	212.91 211.55 210.18 208.79 207.38	238.41 239.64 240.87 242.09 243.30	0.10463 0.11481 0.12493 0.13501 0.14504	0.84101 0.82908 0.81729 0.80561 0.79406	0.94564 0.94389 0.94222 0.94063 0.93911
-10 -8 -6 -4 -2	200.74 217.08 234.44 252.85 272.36	0.0007535 0.0007571 0.0007608 0.0007646 0.0007684	0.099516 0.092352 0.085802 0.079804 0.074304	43.66 46.31	186.14 184.64 183.13 181.61 180.08	224.54 225.67 226.80 227.92 229.04	38.55 41.19 43.84 46.50 49.17	205.96 204.52 203.07 201.60 200.11	244.51 245.72 246.91 248.10 249.28	0.15504 0.16498 0.17489 0.18476 0.19459	0.78263 0.77130 0.76008 0.74896 0.73794	0.93766 0.93629 0.93497 0.93372 0.93253
0 2 4 6 8	293.01 314.84 337.90 362.23 387.88	0.0007723 0.0007763 0.0007804 0.0007845 0.0007887	0.069255 0.064612 0.060338 0.056398 0.052762	56.99 59.68	178.53 176.97 175.39 173.80 172.19	230.16 231.27 232.38 233.48 234.58	51.86 54.55 57.25 59.97 62.69	198.60 197.07 195.51 193.94 192.35	250.45 251.61 252.77 253.91 255.04	0.20439 0.21415 0.22387 0.23356 0.24323	0.72701 0.71616 0.70540 0.69471 0.68410	0.93139 0.93031 0.92927 0.92828 0.92733
10 12 14 16 18	414.89 443.31 473.19 504.58 537.52	0.0007930 0.0007975 0.0008020 0.0008066 0.0008113	0.049403 0.046295 0.043417 0.040748 0.038271	65.10 67.83 70.57 73.32 76.08	170.56 168.92 167.26 165.58 163.88	235.67 236.75 237.83 238.90 239.96	65.43 68.18 70.95 73.73 76.52	190.73 189.09 187.42 185.73 184.01	256.16 257.27 258.37 259.46 260.53	0.25286 0.26246 0.27204 0.28159 0.29112	0.67356 0.66308 0.65266 0.64230 0.63198	0.92641 0.92554 0.92470 0.92389 0.92310

TABLE A–11Saturated refrigerant-134a—Temperature table (*Concluded*)

		Specific m³/		Inte	ernal ene kJ/kg	rgy,		<i>Enthalpy</i> kJ/kg	;		<i>Entropy,</i> kJ/kg∙K	
Temp T°C	Sat. ., press., $P_{\rm sat}$ kPa	Sat. Iiquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
20	572.07	0.0008161	0.035969	78.86	162.16	241.02	79.32	182.27	261.59	0.30063	0.62172	0.92234
22	608.27	0.0008210	0.033828	81.64	160.42	242.06	82.14	180.49	262.64	0.31011	0.61149	0.92160
24	646.18	0.0008261	0.031834	84.44	158.65	243.10	84.98	178.69	263.67	0.31958	0.60130	0.92088
26	685.84	0.0008313	0.029976	87.26	156.87	244.12	87.83	176.85	264.68	0.32903	0.59115	0.92018
28	727.31	0.0008366	0.028242	90.09	155.05	245.14	90.69	174.99	265.68	0.33846	0.58102	0.91948
30	770.64	0.0008421	0.026622	92.93	153.22	246.14	93.58	173.08	266.66	0.34789	0.57091	0.91879
32	815.89	0.0008478	0.025108	95.79	151.35	247.14	96.48	171.14	267.62	0.35730	0.56082	0.91811
34	863.11	0.0008536	0.023691	98.66	149.46	248.12	99.40	169.17	268.57	0.36670	0.55074	0.91743
36	912.35	0.0008595	0.022364	101.55	147.54	249.08	102.33	167.16	269.49	0.37609	0.54066	0.91675
38	963.68	0.0008657	0.021119	104.45	145.58	250.04	105.29	165.10	270.39	0.38548	0.53058	0.91606
40	1017.1	0.0008720	0.019952	107.38	143.60	250.97	108.26	163.00	271.27	0.39486	0.52049	0.91536
42	1072.8	0.0008786	0.018855	110.32	141.58	251.89	111.26	160.86	272.12	0.40425	0.51039	0.91464
44	1130.7	0.0008854	0.017824	113.28	139.52	252.80	114.28	158.67	272.95	0.41363	0.50027	0.91391
46	1191.0	0.0008924	0.016853	116.26	137.42	253.68	117.32	156.43	273.75	0.42302	0.49012	0.91315
48	1253.6	0.0008996	0.015939	119.26	135.29	254.55	120.39	154.14	274.53	0.43242	0.47993	0.91236
52	1386.2	0.0009150	0.014265	125.33	130.88	256.21	126.59	149.39	275.98	0.45126	0.45941	0.91067
56	1529.1	0.0009317	0.012771	131.49	126.28	257.77	132.91	144.38	277.30	0.47018	0.43863	0.90880
60	1682.8	0.0009498	0.011434	137.76	121.46	259.22	139.36	139.10	278.46	0.48920	0.41749	0.90669
65	1891.0	0.0009750	0.009950	145.77	115.05	260.82	147.62	132.02	279.64	0.51320	0.39039	0.90359
70	2118.2	0.0010037	0.008642	154.01	108.14	262.15	156.13	124.32	280.46	0.53755	0.36227	0.89982
75	2365.8	0.0010372	0.007480	162.53	100.60	263.13	164.98	115.85	280.82	0.56241	0.33272	0.89512
80	2635.3	0.0010772	0.006436	171.40	92.23	263.63	174.24	106.35	280.59	0.58800	0.30111	0.88912
85	2928.2	0.0011270	0.005486	180.77	82.67	263.44	184.07	95.44	279.51	0.61473	0.26644	0.88117
90	3246.9	0.0011932	0.004599	190.89	71.29	262.18	194.76	82.35	277.11	0.64336	0.22674	0.87010
95	3594.1	0.0012933	0.003726	202.40	56.47	258.87	207.05	65.21	272.26	0.67578	0.17711	0.85289
100	3975.1	0.0015269	0.002630	218.72	29.19	247.91	224.79	33.58	258.37	0.72217	0.08999	0.81215

Source: Tables A-11 through A-13 are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and -40°F).

TABLE A-12

Saturated refrigerant-134a—Pressure table

	_		volume, /kg	Inte	<i>rnal enei</i> kJ/kg	rgy,	E	Enthalpy, kJ/kg			Entropy, kJ/kg·K	
Press., <i>P</i> kPa	Sat. temp., T _{sat} °C	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
60 70 80 90 100	-36.95 -33.87 -31.13 -28.65 -26.37	0.0007098 0.0007144 0.0007185 0.0007223 0.0007259	0.31121 0.26929 0.23753 0.21263 0.19254		205.32 203.20 201.30 199.57 197.98	209.12 210.88 212.46 213.88 215.19		218.65		0.01634 0.03267 0.04711 0.06008 0.07188	0.94807 0.92775 0.90999 0.89419 0.87995	0.96441 0.96042 0.95710 0.95427 0.95183
120 140 160 180 200	-22.32 -18.77 -15.60 -12.73 -10.09	0.0007324 0.0007383 0.0007437 0.0007487 0.0007533	0.16212 0.14014 0.12348 0.11041 0.099867	22.40 26.98 31.09 34.83 38.28	195.11 192.57 190.27 188.16 186.21	217.51 219.54 221.35 222.99 224.48	22.49 27.08 31.21 34.97 38.43	212.08 209.90 207.90	236.97 239.16 241.11 242.86 244.46	0.09275 0.11087 0.12693 0.14139 0.15457	0.85503 0.83368 0.81496 0.79826 0.78316	0.94779 0.94456 0.94190 0.93965 0.93773
240 280 320 360 400	-5.38 -1.25 2.46 5.82 8.91	0.0007620 0.0007699 0.0007772 0.0007841 0.0007907	0.083897 0.072352 0.063604 0.056738 0.051201	44.48 49.97 54.92 59.44 63.62	182.67 179.50 176.61 173.94 171.45	227.14 229.46 231.52 233.38 235.07	44.66 50.18 55.16 59.72 63.94	199.54 196.71 194.08	247.28 249.72 251.88 253.81 255.55	0.17794 0.19829 0.21637 0.23270 0.24761	0.75664 0.73381 0.71369 0.69566 0.67929	0.93458 0.93210 0.93006 0.92836 0.92691
450 500 550 600 650	12.46 15.71 18.73 21.55 24.20	0.0007985 0.0008059 0.0008130 0.0008199 0.0008266	0.045619 0.041118 0.037408 0.034295 0.031646	68.45 72.93 77.10 81.02 84.72	168.54 165.82 163.25 160.81 158.48	237.00 238.75 240.35 241.83 243.20	68.81 73.33 77.54 81.51 85.26	183.38 180.90	259.30 260.92	0.26465 0.28023 0.29461 0.30799 0.32051	0.66069 0.64377 0.62821 0.61378 0.60030	0.92535 0.92400 0.92282 0.92177 0.92081
700 750 800 850	26.69 29.06 31.31 33.45	0.0008331 0.0008395 0.0008458 0.0008520	0.029361 0.027371 0.025621 0.024069	88.24 91.59 94.79 97.87	156.24 154.08 152.00 149.98	244.48 245.67 246.79 247.85	88.82 92.22 95.47 98.60	171.82	265.03 266.20 267.29 268.31	0.33230 0.34345 0.35404 0.36413	0.58763 0.57567 0.56431 0.55349	0.91994 0.91912 0.91835 0.91762
900 950 1000 1200 1400	35.51 37.48 39.37 46.29 52.40	0.0008580 0.0008641 0.0008700 0.0008934 0.0009166	0.022683 0.021438 0.020313 0.016715 0.014107	100.83 103.69 106.45 116.70 125.94	148.01 146.10 144.23 137.11 130.43	250.68 253.81	101.61 104.51 107.32 117.77 127.22	165.64 163.67 156.10	269.26 270.15 270.99 273.87 276.12	0.37377 0.38301 0.39189 0.42441 0.45315	0.54315 0.53323 0.52368 0.48863 0.45734	0.91692 0.91624 0.91558 0.91303 0.91050
1600 1800 2000 2500 3000	57.88 62.87 67.45 77.54 86.16	0.0009400 0.0009639 0.0009886 0.0010566 0.0011406	0.012123 0.010559 0.009288 0.006936 0.005275	134.43 142.33 149.78 166.99 183.04	124.04 117.83 111.73 96.47 80.22	260.17 261.51 263.45	135.93 144.07 151.76 169.63 186.46	111.16		0.47911 0.50294 0.52509 0.57531 0.62118	0.42873 0.40204 0.37675 0.31695 0.25776	0.90784 0.90498 0.90184 0.89226 0.87894

TABLE A-13

Superheated refrigerant-134a

	neateu rei	rigorant	10 10						I			
T	V	И	h	S	V	И	h	S	V	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	P = 0.0	06 MPa (7	$r_{\text{sat}} = -36.$	95°C)	P = 0	.10 MPa ($T_{\rm sat} = -26$.37°C)	P=0.	14 MPa (7	$r_{\rm sat} = -18$.77°C)
Sat.	0.31121	209.12	227.79	0.9644	0.19254	215.19	234.44	0.9518	0.14014	219.54	239.16	0.9446
-20	0.33608	220.60	240.76	1.0174	0.19841	219.66	239.50	0.9721				
-10	0.35048	227.55	248.58	1.0477	0.20743	226.75	247.49	1.0030	0.14605	225.91	246.36	0.9724
0	0.36476	234.66	256.54	1.0774	0.21630	233.95	255.58	1.0332	0.15263	233.23	254.60	1.0031
10	0.37893	241.92	264.66	1.1066	0.22506	241.30	263.81	1.0628	0.15908	240.66	262.93	1.0331
20		249.35	272.94		0.23373	248.79	272.17	1.0918	0.16544	248.22	271.38	
30		256.95	281.37		0.24233		280.68	1.1203	0.17172	255.93	279.97	
40	0.42102	264.71		1.1915	0.25088	264.25	289.34	1.1484	0.17794	263.79	288.70	
50	0.43495	272.64	298.74		0.25937	272.22	298.16	1.1762	0.18412	271.79	297.57	
60	0.44883	280.73	307.66		0.26783	280.35	307.13	1.2035	0.19025	279.96	306.59	
70	0.46269	288.99		1.2732	0.27626	288.64	316.26	1.2305	0.19635	288.28	315.77	
80	0.47651	297.41	326.00		0.28465	297.08	325.55	1.2572	0.20242	296.75	325.09	
90	0.49032	306.00	335.42		0.29303	305.69	334.99	1.2836	0.20847	305.38	334.57	
100	0.50410	314.74	344.99	1.3520	0.30138	314.46	344.60	1.3096	0.21449	314.17	344.20	1.2814
	P = 0.1	18 MPa (7	$r_{\text{sat}} = -12$	73°C)	P = 0	.20 MPa ($T_{\rm sat} = -10$.09°C)	P = 0	.24 MPa ($T_{\rm sat} = -5.5$	38°C)
Sat.	0.11041	222.99	242.86	0.9397	0.09987	224.48	244.46	0.9377	0.08390	227.14	247.28	0.9346
-10	0.11189	225.02	245.16	0.9484	0.09991	224.55	244.54	0.9380				
0	0.11722	232.48	253.58	0.9798	0.10481	232.09	253.05	0.9698	0.08617	231.29	251.97	0.9519
10	0.12240	240.00		1.0102	0.10955	239.67	261.58	1.0004	0.09026	238.98	260.65	0.9831
20	0.12748	247.64	270.59	1.0399	0.11418	247.35	270.18	1.0303	0.09423	246.74	269.36	1.0134
30	0.13248	255.41	279.25	1.0690	0.11874	255.14	278.89	1.0595	0.09812	254.61	278.16	1.0429
40	0.13741	263.31	288.05	1.0975	0.12322	263.08	287.72	1.0882	0.10193	262.59	287.06	1.0718
50	0.14230		296.98		0.12766	271.15	296.68	1.1163	0.10570	270.71		1.1001
60	0.14715		306.05		0.13206		305.78	1.1441	0.10942	278.97		1.1280
70	0.15196	287.91	315.27		0.13641	287.73	315.01	1.1714	0.11310	287.36		1.1554
80	0.15673	296.42	324.63		0.14074	296.25	324.40	1.1983	0.11675	295.91		1.1825
90	0.16149	305.07	334.14		0.14504	304.92	333.93	1.2249	0.12038	304.60	333.49	
100	0.16622	313.88	343.80	1.2602	0.14933	313.74	343.60	1.2512	0.12398	313.44	343.20	1.2356
			$T_{\rm sat} = -1.3$	25°C)			$(T_{\rm sat} = 2.4)$			0.40 MPa		
Sat.	0.07235			0.9321	0.06360	231.52	251.88	0.9301	0.051201	235.07	255.55	0.9269
0	0.07282	230.44	250.83	0.9362								
10	0.07646	238.27		0.9680	0.06609	237.54	258.69	0.9544	0.051506	235.97		0.9305
20	0.07997	246.13	268.52		0.06925	245.50	267.66	0.9856	0.054213			0.9628
30	0.08338	254.06	277.41	1.0285	0.07231	253.50	276.65	1.0157	0.056796		275.07	
40	0.08672	262.10		1.0576	0.07530		285.70	1.0451	0.059292			1.0236
50	0.09000	270.27		1.0862	0.07823	269.82	294.85	1.0739	0.061724			1.0528
60	0.09324		304.67		0.08111	278.15	304.11	1.1021	0.064104		302.96	
70	0.09644				0.08395				0.066443		312.44	
80	0.09961				0.08675			1.1571	0.068747		322.02	
90	0.10275		333.06		0.08953		332.62	1.1840	0.071023		331.73	
100	0.10587		342.80		0.09229		342.39	1.2105	0.073274		341.57	
110	0.10897		352.68			321.89	352.30	1.2367	0.075504		351.53	
120		331.32	362.70		0.09775	331.07	362.35	1.2626	0.077717		361.63	
130	0.11512		372.87			340.39	372.54	1.2882	0.079913		371.87	
140	0.11818	350.09	383.18	1.3250	0.10314	349.86	382.87	1.3135	0.082096	349.41	382.24	1.2942

TABLE A-13

Superheated refrigerant-134a (Continued)

Superi	ileated rein	igerant-1	1344 (0	ontinaca)								
Τ	V	И	h	S	V	И	h	S	V	И	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg∙K
	P = 0.9	50 MPa ($T_{\rm sat} = 15.$	71°C)	P = 0.	.60 MPa ($T_{\rm sat} = 21.5$	55°C)	P = 0.	70 MPa (<i>T</i>	_{sat} = 26.6	9°C)
Sat.	0.041118	238.75	259.30	0.9240	0.034295	241.83	262.40	0.9218	0.029361	244.48	265.03	0.9199
20	0.042115											
30	0.044338	250.84	273.01	0.9703	0.035984	249.22	270.81	0.9499	0.029966	247.48	268.45	0.9313
40	0.046456	259.26	282.48	1.0011	0.037865	257.86	280.58	0.9816	0.031696	256.39	278.57	0.9641
50	0.048499				0.039659	266.48	290.28	1.0121	0.033322	265.20	288.53	0.9954
60	0.050485				0.041389	275.15	299.98	1.0417	0.034875	274.01		1.0256
70	0.052427				0.043069	283.89	309.73	1.0705	0.036373	282.87	308.33	
80	0.054331				0.044710	292.73	319.55	1.0987	0.037829	291.80		1.0835
90	0.056205				0.046318	301.67	329.46	1.1264	0.039250	300.82		1.1114
100	0.058053				0.047900	310.73	339.47	1.1536	0.040642	309.95		1.1389
110	0.059880				0.049458	319.91	349.59	1.1803	0.042010	319.19		1.1658
120	0.061687				0.050997	329.23	359.82	1.2067	0.043358	328.55		1.1924
130	0.063479				0.052519	338.67	370.18	1.2327	0.044688	338.04		1.2186
140	0.065256				0.054027	348.25	380.66	1.2584	0.046004	347.66		1.2444
150	0.067021				0.055522	357.96	391.27	1.2838	0.047306	357.41		1.2699 1.2951
160	0.068775				0.057006	367.81	402.01	1.3088	0.048597	367.29		
Cat	P = 0.8 0.025621	80 MPa ($T_{\text{sat}} = 35.5$ 269.26			00 MPa (7		
Sat. 40	0.023621				0.022683 0.023375	248.85 253.13	274.17	0.9169 0.9327	0.020313 0.020406	250.68 251.30		0.9156 0.9179
50	0.027033				0.023373	262.44	284.77	0.9660	0.020406	260.94	282.74	
60	0.020347				0.024809	271.60	295.13	0.9976	0.021790	270.32	293.38	
70	0.023373				0.020140	280.72	305.39	1.0280	0.023000	279.59	303.85	
80	0.032659				0.027413	289.86	315.63	1.0574	0.025398	288.86	314.25	
90	0.033941				0.029806	299.06	325.89	1.0860	0.026492	298.15	324.64	
100	0.035193				0.030951	308.34	336.19	1.1140	0.027552	307.51	335.06	
110	0.036420				0.032068	317.70	346.56	1.1414	0.028584	316.94	345.53	
120	0.037625				0.033164	327.18	357.02	1.1684	0.029592	326.47	356.06	1.1580
130	0.038813	337.40	368.45	1.2061	0.034241	336.76	367.58	1.1949	0.030581	336.11	366.69	1.1846
140	0.039985	347.06	379.05	1.2321	0.035302	346.46	378.23	1.2210	0.031554	345.85	377.40	1.2109
150	0.041143	356.85	389.76	1.2577	0.036349	356.28	389.00	1.2467	0.032512	355.71	388.22	1.2368
160	0.042290	366.76	400.59	1.2830	0.037384	366.23	399.88	1.2721	0.033457	365.70	399.15	1.2623
170	0.043427				0.038408	376.31	410.88	1.2972	0.034392	375.81	410.20	
180	0.044554	386.99	422.64	1.3327	0.039423	386.52	422.00	1.3221	0.035317	386.04	421.36	1.3124
		20 MPa ($T_{\rm sat} = 52.4$			60 MPa (7		
Sat.	0.016715 0.017201				0.014107	256.37	276.12	0.9105	0.012123	258.47	277.86	0.9078
50 60	0.017201				0.015005	264.46	285.47	0.9389	0.012372	260.89	280.69	0.9163
70	0.018404				0.015005		297.10	0.9389	0.012372	271.76		0.9103
80	0.020529			1.0248	0.017023	284.51	308.34	1.0056	0.0134362	282.09	305.07	
90	0.020525			1.0546	0.017023	294.28	319.37	1.0364	0.014302	292.17	316.52	
100	0.022442			1.0836	0.017323	304.01	330.30	1.0661	0.016014	302.14	327.76	
110	0.023348				0.01979	313.76	341.19	1.0949	0.016773	312.07	338.91	1.0795
120	0.024228				0.020388	323.55	352.09	1.1230	0.01770	322.02	350.02	
130	0.025086			1.1664	0.021155	333.41	363.02	1.1504	0.018201	332.00	361.12	
140	0.025927			1.1930	0.021904	343.34	374.01	1.1773	0.018882	342.05	372.26	
150	0.026753			1.2192	0.022636	353.37	385.07	1.2038	0.019545	352.17	383.44	
160	0.027566			1.2449	0.023355	363.51	396.20	1.2298	0.020194	362.38	394.69	
170	0.028367				0.024061	373.75	407.43	1.2554	0.020830	372.69	406.02	
180	0.029158	385.08	420.07	1.2954	0.024757	384.10	418.76	1.2807	0.021456	383.11	417.44	

FIGURE A-14

P-h diagram for refrigerant-134a.

Note: The reference point used for the chart is different than that used in the R-134a tables. Therefore, problems should be solved using all property data either from the tables or from the chart, but not from both.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

FIGURE A-15

Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

TABLE A–16Properties of the atmosphere at high altitude

Altitude,	Temperature, °C	Pressure, kPa	Gravity g, m/s ²	Speed of Sound, m/s	Density, kg/m³	Viscosity μ, kg/m·s	Thermal Conductivity, W/m∙K
0	15.00	101.33	9.807	340.3	1.225	1.789×10^{-5} 1.783×10^{-5} 1.777×10^{-5} 1.771×10^{-5} 1.764×10^{-5}	0.0253
200	13.70	98.95	9.806	339.5	1.202		0.0252
400	12.40	96.61	9.805	338.8	1.179		0.0252
600	11.10	94.32	9.805	338.0	1.156		0.0251
800	9.80	92.08	9.804	337.2	1.134		0.0250
1000	8.50	89.88	9.804	336.4	1.112	1.758×10^{-5} 1.752×10^{-5} 1.745×10^{-5} 1.739×10^{-5} 1.732×10^{-5}	0.0249
1200	7.20	87.72	9.803	335.7	1.090		0.0248
1400	5.90	85.60	9.802	334.9	1.069		0.0247
1600	4.60	83.53	9.802	334.1	1.048		0.0245
1800	3.30	81.49	9.801	333.3	1.027		0.0244
2000	2.00	79.50	9.800	332.5	1.007	1.726×10^{-5} 1.720×10^{-5} 1.713×10^{-5} 1.707×10^{-5} 1.700×10^{-5}	0.0243
2200	0.70	77.55	9.800	331.7	0.987		0.0242
2400	-0.59	75.63	9.799	331.0	0.967		0.0241
2600	-1.89	73.76	9.799	330.2	0.947		0.0240
2800	-3.19	71.92	9.798	329.4	0.928		0.0239
3000	-4.49	70.12	9.797	328.6	0.909	1.694×10^{-5} 1.687×10^{-5} 1.681×10^{-5} 1.674×10^{-5} 1.668×10^{-5}	0.0238
3200	-5.79	68.36	9.797	327.8	0.891		0.0237
3400	-7.09	66.63	9.796	327.0	0.872		0.0236
3600	-8.39	64.94	9.796	326.2	0.854		0.0235
3800	-9.69	63.28	9.795	325.4	0.837		0.0234
4000	-10.98	61.66	9.794	324.6	0.819	1.661×10^{-5} 1.655×10^{-5} 1.648×10^{-5} 1.642×10^{-5} 1.635×10^{-5}	0.0233
4200	-12.3	60.07	9.794	323.8	0.802		0.0232
4400	-13.6	58.52	9.793	323.0	0.785		0.0231
4600	-14.9	57.00	9.793	322.2	0.769		0.0230
4800	-16.2	55.51	9.792	321.4	0.752		0.0229
5000	-17.5	54.05	9.791	320.5	0.736	1.628×10^{-5} 1.622×10^{-5} 1.615×10^{-5} 1.608×10^{-5} 1.602×10^{-5}	0.0228
5200	-18.8	52.62	9.791	319.7	0.721		0.0227
5400	-20.1	51.23	9.790	318.9	0.705		0.0226
5600	-21.4	49.86	9.789	318.1	0.690		0.0224
5800	-22.7	48.52	9.785	317.3	0.675		0.0223
6000	-24.0	47.22	9.788	316.5	0.660	1.595×10^{-5} 1.588×10^{-5} 1.582×10^{-5} 1.575×10^{-5} 1.568×10^{-5}	0.0222
6200	-25.3	45.94	9.788	315.6	0.646		0.0221
6400	-26.6	44.69	9.787	314.8	0.631		0.0220
6600	-27.9	43.47	9.786	314.0	0.617		0.0219
6800	-29.2	42.27	9.785	313.1	0.604		0.0218
7000	-30.5	41.11	9.785	312.3	0.590	1.561×10^{-5}	0.0217
8000	-36.9	35.65	9.782	308.1	0.526	1.527×10^{-5}	0.0212
9000	-43.4	30.80	9.779	303.8	0.467	1.493×10^{-5}	0.0206
10,000	-49.9	26.50	9.776	299.5	0.414	1.458×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5} 1.422×10^{-5}	0.0201
12,000	-56.5	19.40	9.770	295.1	0.312		0.0195
14,000	-56.5	14.17	9.764	295.1	0.228		0.0195
16,000	-56.5	10.53	9.758	295.1	0.166		0.0195
18,000	-56.5	7.57	9.751	295.1	0.122		0.0195

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=101.325 kPa, $T=15^{\circ}$ C, $\rho=1.2250$ kg/m³, g=9.80665 m²/s.

934 PROPERTY TABLES AND CHARTS

TABLE A-17

Ideal-gas properties of air

lucar	gas highe	ities of all									
T	h		И		S°	T	h		И		s°
K	kJ/kg	P_r	kJ/kg	V_r	kJ/kg·K	K	kJ/kg	P_r	kJ/kg	V_r	kJ/kg·K
200	199.97	0.3363	142.56	1707.0	1.29559	580	586.04	14.38	419.55	115.7	2.37348
210	209.97	0.3987	149.69	1512.0	1.34444	590	596.52	15.31	427.15	110.6	2.39140
220	219.97	0.4690	156.82	1346.0	1.39105	600	607.02	16.28	434.78	105.8	2.40902
230	230.02	0.5477	164.00	1205.0	1.43557	610	617.53	17.30	442.42	101.2	2.42644
240	240.02	0.6355	171.13	1084.0	1.47824	620	628.07	18.36	450.09	96.92	2.44356
250 260	250.05 260.09	0.7329 0.8405	178.28 185.45	979.0 887.8	1.51917 1.55848	630 640	638.63 649.22	19.84 20.64	457.78 465.50	92.84 88.99	2.46048 2.47716
270	270.11	0.8403	192.60	808.0	1.59634	650	659.84	21.86	473.25	85.34	2.47710
280	280.13	1.0889	199.75	738.0	1.63279	660	670.47	23.13	481.01	81.89	2.50985
285	285.14	1.1584	203.33	706.1	1.65055	670	681.14	24.46	488.81	78.61	2.52589
290	290.16	1.2311	206.91	676.1	1.66802	680	691.82	25.85	496.62	75.50	2.54175
295	295.17	1.3068	210.49	647.9	1.68515	690	702.52	27.29	504.45	72.56	2.55731
298	298.18	1.3543	212.64	631.9	1.69528	700	713.27	28.80	512.33	69.76	2.57277
300	300.19	1.3860	214.07	621.2	1.70203	710	724.04	30.38	520.23	67.07	2.58810
305	305.22	1.4686	217.67	596.0	1.71865	720	734.82	32.02	528.14	64.53	2.60319
310	310.24	1.5546	221.25	572.3 549.8	1.73498	730	745.62	33.72	536.07	62.13	2.61803
315 320	315.27 320.29	1.6442 1.7375	224.85 228.42	549.8	1.75106 1.76690	740 750	756.44 767.29	35.50 37.35	544.02 551.99	59.82 57.63	2.63280 2.64737
325	325.31	1.8345	232.02	508.4	1.78249	760	778.18	39.27	560.01	55.54	2.66176
330	330.34	1.9352	235.61	489.4	1.79783	780	800.03	43.35	576.12	51.64	2.69013
340	340.42	2.149	242.82	454.1	1.82790	800	821.95	47.75	592.30	48.08	2.71787
350	350.49	2.379	250.02	422.2	1.85708	820	843.98	52.59	608.59	44.84	2.74504
360	360.58	2.626	257.24	393.4	1.88543	840	866.08	57.60	624.95	41.85	2.77170
370	370.67	2.892	264.46	367.2	1.91313	860	888.27	63.09	641.40	39.12	2.79783
380	380.77	3.176	271.69	343.4	1.94001	880	910.56	68.98	657.95	36.61	2.82344
390	390.88	3.481	278.93	321.5	1.96633	900	932.93	75.29	674.58	34.31	2.84856
400 410	400.98 411.12	3.806 4.153	286.16 293.43	301.6 283.3	1.99194 2.01699	920 940	955.38 977.92	82.05 89.28	691.28 708.08	32.18 30.22	2.87324 2.89748
420	421.26	4.522	300.69	266.6	2.04142	960	1000.55	97.00	725.02	28.40	2.92128
430	431.43	4.915	307.99	251.1	2.06533	980	1023.25	105.2	741.98	26.73	2.94468
440	441.61	5.332	315.30	236.8	2.08870	1000	1046.04	114.0	758.94	25.17	2.96770
450	451.80	5.775	322.62	223.6	2.11161	1020	1068.89	123.4	776.10	23.72	2.99034
460	462.02	6.245	329.97	211.4	2.13407	1040	1091.85	133.3	793.36	23.29	3.01260
470	472.24	6.742	337.32	200.1	2.15604	1060	1114.86	143.9	810.62	21.14	3.03449
480	482.49	7.268	344.70	189.5	2.17760	1080	1137.89	155.2	827.88	19.98	3.05608
490	492.74	7.824	352.08		2.19876 2.21952		1161.07		845.33	18.896	
500 510	503.02 513.32	8.411 9.031	359.49 366.92	162.1		1140	1184.28 1207.57	179.7	862.79 880.35		3.09825 3.11883
520	523.63	9.684	374.36	154.1	2.25997	1160	1230.92	207.2	897.91		3.13916
530	533.98	10.37	381.84	146.7	2.27967	1180	1254.34	222.2	915.57	15.241	3.15916
540	544.35	11.10	389.34	139.7	2.29906	1200	1277.79	238.0	933.33	14.470	3.17888
550	555.74	11.86	396.86	133.1	2.31809		1301.31	254.7	951.09		3.19834
560	565.17	12.66	404.42		2.33685	1240	1324.93	272.3	968.95	13.069	3.21751
570	575.59	13.50	411.97	121.2	2.35531						

TABLE A–17Ideal-gas properties of air (*Concluded*)

T K	<i>h</i> kJ/kg	P,	и kJ/kg	V _r	<i>s</i> ° kJ/kg⋅K	T K	<i>h</i> kJ/kg	P_r	<i>u</i> kJ/kg	V _r	<i>s</i> ° kJ/kg⋅K
1260	1348.55	290.8	986.90	12.435	3.23638	1600	1757.57	791.2	1298.30	5.804	3.52364
1280	1372.24	310.4	1004.76	11.835	3.25510	1620	1782.00	834.1	1316.96	5.574	3.53879
1300	1395.97	330.9	1022.82	11.275	3.27345	1640	1806.46	878.9	1335.72	5.355	3.55381
1320	1419.76	352.5	1040.88	10.747	3.29160	1660	1830.96	925.6	1354.48	5.147	3.56867
1340	1443.60	375.3	1058.94	10.247	3.30959	1680	1855.50	974.2	1373.24	4.949	3.58335
1360	1467.49	399.1	1077.10	9.780	3.32724	1700	1880.1	1025	1392.7	4.761	3.5979
1380	1491.44	424.2	1095.26	9.337	3.34474	1750	1941.6	1161	1439.8	4.328	3.6336
1400	1515.42	450.5	1113.52	8.919	3.36200	1800	2003.3	1310	1487.2	3.994	3.6684
1420	1539.44	478.0	1131.77	8.526	3.37901	1850	2065.3	1475	1534.9	3.601	3.7023
1440	1563.51	506.9	1150.13	8.153	3.39586	1900	2127.4	1655	1582.6	3.295	3.7354
1460	1587.63	537.1	1168.49	7.801	3.41247	1950	2189.7	1852	1630.6	3.022	3.7677
1480	1611.79	568.8	1186.95	7.468	3.42892	2000	2252.1	2068	1678.7	2.776	3.7994
1500	1635.97	601.9	1205.41	7.152	3.44516	2050	2314.6	2303	1726.8	2.555	3.8303
1520	1660.23	636.5	1223.87	6.854	3.46120	2100	2377.7	2559	1775.3	2.356	3.8605
1540	1684.51	672.8	1242.43	6.569	3.47712	2150	2440.3	2837	1823.8	2.175	3.8901
1560	1708.82	710.5	1260.99	6.301	3.49276	2200	2503.2	3138	1872.4	2.012	3.9191
1580	1733.17	750.0	1279.65	6.046	3.50829	2250	2566.4	3464	1921.3	1.864	3.9474

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 785–86, table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

TABLE A–27Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, kg/kmol	Density, ¹ kg/L	Enthalpy of vaporization, ² kJ/kg	Specific heat, 1 c_p kJ/kg·K	Higher heating value, ³ kJ/kg	Lower heating value, ³ kJ/kg
Carbon (s)	С	12.011	2	_	0.708	32,800	32,800
Hydrogen (g)	H ₂	2.016	_	_	14.4	141,800	120,000
Carbon monoxide (g)	CÓ	28.013	_	_	1.05	10,100	10,100
Methane (g)	CH₄	16.043	_	509	2.20	55,530	50,050
Methanol (ℓ)	CH₄O	32.042	0.790	1168	2.53	22,660	19,920
Acetylene (g)	C_2H_2	26.038	_	_	1.69	49,970	48,280
Ethane (g)	C_2H_6	30.070	_	172	1.75	51,900	47,520
Ethanol (ℓ)	C ₂ H ₆ O	46.069	0.790	919	2.44	29,670	26,810
Propane (ℓ)	C ₃ H ₈	44.097	0.500	335	2.77	50,330	46,340
Butane (ℓ)	$C_4^{\circ}H_{10}^{\circ}$	58.123	0.579	362	2.42	49,150	45,370
1-Pentene (ℓ)	C ₅ H ₁₀	70.134	0.641	363	2.20	47,760	44,630
Isopentane (ℓ)	C ₅ H ₁₂	72.150	0.626	_	2.32	48,570	44,910
Benzene (ℓ)	C_6H_6	78.114	0.877	433	1.72	41,800	40,100
Hexene (ℓ)	C_6H_{12}	84.161	0.673	392	1.84	47,500	44,400
Hexane (ℓ)	C_6H_{14}	86.177	0.660	366	2.27	48,310	44,740
Toluene (ℓ)	C ₇ H ₈	92.141	0.867	412	1.71	42,400	40,500
Heptane (ℓ)	C_7H_{16}	100.204	0.684	365	2.24	48,100	44,600
Octane (ℓ)	C_8H_{18}	114.231	0.703	363	2.23	47,890	44,430
Decane (ℓ)	$C_{10}H_{22}$	142.285	0.730	361	2.21	47,640	44,240
Gasoline (ℓ)	$C_n H_{1.87n}$	100-110	0.72-0.78	350	2.4	47,300	44,000
Light diesel (ℓ)	$C_nH_{1.8n}$	170	0.78-0.84	270	2.2	46,100	43,200
Heavy diesel (ℓ)	$C_nH_{1.7n}$	200	0.82-0.88	230	1.9	45,500	42,800
Natural gas (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	2	50,000	45,000

 $^{^1\}mathrm{At}\ 1$ atm and 20°C.

²At 25°C for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.

 $^{^3\}mbox{At}$ 25°C. Multiply by molar mass to obtain heating values in kJ/kmol.

APPENDIX

2

PROPERTY TABLES AND CHARTS (ENGLISH UNITS)

Table A-TE	Molar mass, gas constant, and critical-point properties	Table A-16E	Properties of the atmosphere at high altitude
Table A-2E	Ideal-gas specific heats of various	Table A-17E	Ideal-gas properties of air
	common gases	Table A-18E	Ideal-gas properties of nitrogen, N ₂
Table A-3E	Properties of common liquids, solids, and foods		Ideal-gas properties of oxygen, O ₂
Table A-4E	Saturated water—Temperature table	Table A-20E	Ideal-gas properties of carbon dioxide, CO ₂
Table A-5E	Saturated water—Pressure table	Table A-21E	Ideal-gas properties of carbon
Table A-6E	Superheated water		monoxide, CO
Table A-7E	Compressed liquid water	Table A-22E	Ideal-gas properties of hydrogen, H ₂
Table A-8E	Saturated ice-water vapor	Table A-23E	Ideal-gas properties of water vapor,
Figure A-9E	T-s diagram for water		H_2O
Figure A-10E	Mollier diagram for water	Table A-26E	Enthalpy of formation, Gibbs function
Table A-11E	Saturated refrigerant-134a— Temperature table		of formation, and absolute entropy at 77°C, 1 atm
Table A-12E	Saturated refrigerant-134a—Pressure	Table A-27E	Properties of some common fuels and hydrocarbons
	table	Figure A_31F	Psychrometric chart at 1 atm total
Table A-13E	Superheated refrigerant-134a	rigulo A OIL	pressure
Figure A-14E	P-h diagram for refrigerant-134a		r

TABLE A–1EMolar mass, gas constant, and critical-point properties

		Malau	Gas co	nstant, R	Critica	l-point prope	erties
Substance	Formula	Molar mass, <i>M</i> lbm/lbmol	Btu/ Ibm∙R*	psia∙ft³/ Ibm∙R*	Temperature, R	Pressure, psia	Volume, ft ³ /Ibmol
Air	_	28.97	0.06855	0.3704	238.5	547	1.41
Ammonia	NH_3	17.03	0.1166	0.6301	729.8	1636	1.16
Argon	Ar	39.948	0.04971	0.2686	272	705	1.20
Benzene	C_6H_6	78.115	0.02542	0.1374	1012	714	4.17
Bromine	Br ₂	159.808	0.01243	0.06714	1052	1500	2.17
<i>n</i> -Butane	C_4H_{10}	58.124	0.03417	0.1846	765.2	551	4.08
Carbon dioxide	CO_2	44.01	0.04513	0.2438	547.5	1071	1.51
Carbon monoxide	CO	28.011	0.07090	0.3831	240	507	1.49
Carbon tetrachloride	CCI_4	153.82	0.01291	0.06976	1001.5	661	4.42
Chlorine	Cl ₂	70.906	0.02801	0.1517	751	1120	1.99
Chloroform	CHCI₃	119.38	0.01664	0.08988	965.8	794	3.85
Dichlorodifluoromethane (R-12)	CCI_2F_2	120.91	0.01643	0.08874	692.4	582	3.49
Dichlorofluoromethane (R-21)	CHCI ₂ F	102.92	0.01930	0.1043	813.0	749	3.16
Ethane	C_2H_6	30.020	0.06616	0.3574	549.8	708	2.37
Ethyl alcohol	C_2H_5OH	46.07	0.04311	0.2329	929.0	926	2.68
Ethylene	C_2H_4	28.054	0.07079	0.3825	508.3	742	1.99
Helium	He	4.003	0.4961	2.6809	9.5	33.2	0.926
<i>n</i> -Hexane	C_6H_{14}	86.178	0.02305	0.1245	914.2	439	5.89
Hydrogen (normal)	H_2	2.016	0.9851	5.3224	59.9	188.1	1.04
Krypton	Kr	83.80	0.02370	0.1280	376.9	798	1.48
Methane	CH_4	16.043	0.1238	0.6688	343.9	673	1.59
Methyl alcohol	CH ₃ OH	32.042	0.06198	0.3349	923.7	1154	1.89
Methyl chloride	CH ₃ CI	50.488	0.03934	0.2125	749.3	968	2.29
Neon	Ne	20.183	0.09840	0.5316	80.1	395	0.668
Nitrogen	N_2	28.013	0.07090	0.3830	227.1	492	1.44
Nitrous oxide	N_2^- 0	44.013	0.04512	0.2438	557.4	1054	1.54
Oxygen	02	31.999	0.06206	0.3353	278.6	736	1.25
Propane	C_3H_8	44.097	0.04504	0.2433	665.9	617	3.20
Propylene	C_3H_6	42.081	0.04719	0.2550	656.9	670	2.90
Sulfur dioxide	SO_2	64.063	0.03100	1.1675	775.2	1143	1.95
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.01946	0.1052	673.6	588.7	3.19
Trichlorofluoromethane (R-11)	CCĬ ₃ F	137.37	0.01446	0.07811	848.1	635	3.97
Water	H_2O	18.015	0.1102	0.5956	1164.8	3200	0.90
Xenon	Xe	131.30	0.01513	0.08172	521.55	852	1.90

^{*}Calculated from $R=R_{\rm u}/M$, where $R_{\rm u}=1.98588$ Btu/lbmol·R = 10.7316 psia-ft³/lbmol·R and M is the molar mass.

Source: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236, and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A–2EIdeal-gas specific heats of various common gases (a) At 80°F

Gas	Formula	Gas constant, <i>R</i> Btu/lbm⋅R	c_p Btu/Ibm \cdot R	<i>c</i> _v Btu/lbm∙R	k
Air	_	0.06855	0.240	0.171	1.400
Argon	Ar	0.04971	0.1253	0.0756	1.667
Butane	C_4H_{10}	0.03424	0.415	0.381	1.09
Carbon dioxide	CO_2	0.04513	0.203	0.158	1.285
Carbon monoxide	CO	0.07090	0.249	0.178	1.399
Ethane	C_2H_6	0.06616	0.427	0.361	1.183
Ethylene	C_2H_4	0.07079	0.411	0.340	1.208
Helium	He	0.4961	1.25	0.753	1.667
Hydrogen	H_2	0.9851	3.43	2.44	1.404
Methane	CH₄	0.1238	0.532	0.403	1.32
Neon	Ne	0.09840	0.246	0.1477	1.667
Nitrogen	N_2	0.07090	0.248	0.177	1.400
Octane	C ₈ H ₁₈	0.01742	0.409	0.392	1.044
Oxygen	02	0.06206	0.219	0.157	1.395
Propane	C ₃ H ₈	0.04504	0.407	0.362	1.124
Steam	$H_2^{\circ}O^{\circ}$	0.1102	0.445	0.335	1.329

Source: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 687, Table A–8E.

960 PROPERTY TABLES AND CHARTS

TABLE A-2E

Ideal-gas specific heats of various common gases (*Continued*) (*b*) At various temperatures

Temp., °F	<i>c_p</i> Btu/lbm∙R	<i>c</i> , Btu/lbm∙R	k	<i>c_p</i> Btu/lbm⋅R	<i>c</i> _v Btu/lbm∙R	k	<i>c_p</i> Btu/lbm⋅R	<i>c</i> _v Btu/lbm∙R	k
		Air		Car	bon dioxide, C	202	Carbo	n monoxide,	СО
40	0.240	0.171	1.401	0.195	0.150	1.300	0.248	0.177	1.400
100	0.240	0.172	1.400	0.205	0.160	1.283	0.249	0.178	1.399
200	0.241	0.173	1.397	0.217	0.172	1.262	0.249	0.179	1.397
300	0.243	0.174	1.394	0.229	0.184	1.246	0.251	0.180	1.394
400	0.245	0.176	1.389	0.239	0.193	1.233	0.253	0.182	1.389
500	0.248	0.179	1.383	0.247	0.202	1.223	0.256	0.185	1.384
600	0.250	0.182	1.377	0.255	0.210	1.215	0.259	0.188	1.377
700	0.254	0.185	1.371	0.262	0.217	1.208	0.262	0.191	1.371
800	0.257	0.188	1.365	0.269	0.224	1.202	0.266	0.195	1.364
900	0.259	0.191	1.358	0.275	0.230	1.197	0.269	0.198	1.357
1000	0.263	0.195	1.353	0.280	0.235	1.192	0.273	0.202	1.351
1500	0.276	0.208	1.330	0.298	0.253	1.178	0.287	0.216	1.328
2000	0.286	0.217	1.312	0.312	0.267	1.169	0.297	0.226	1.314
		Hydrogen, H ₂			Nitrogen, N_2			Oxygen, O_2	
40	3.397	2.412	1.409	0.248	0.177	1.400	0.219	0.156	1.397
100	3.426	2.441	1.404	0.248	0.178	1.399	0.220	0.158	1.394
200	3.451	2.466	1.399	0.249	0.178	1.398	0.223	0.161	1.387
300	3.461	2.476	1.398	0.250	0.179	1.396	0.226	0.164	1.378
400	3.466	2.480	1.397	0.251	0.180	1.393	0.230	0.168	1.368
500	3.469	2.484	1.397	0.254	0.183	1.388	0.235	0.173	1.360
600	3.473	2.488	1.396	0.256	0.185	1.383	0.239	0.177	1.352
700	3.477	2.492	1.395	0.260	0.189	1.377	0.242	0.181	1.344
800	3.494	2.509	1.393	0.262	0.191	1.371	0.246	0.184	1.337
900	3.502	2.519	1.392	0.265	0.194	1.364	0.249	0.187	1.331
1000	3.513	2.528	1.390	0.269	0.198	1.359	0.252	0.190	1.326
1500	3.618	2.633	1.374	0.283	0.212	1.334	0.263	0.201	1.309
2000	3.758	2.773	1.355	0.293	0.222	1.319	0.270	0.208	1.298

Note: The unit Btu/lbm·R is equivalent to Btu/lbm·°F.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 830, Table A-4. Originally published in Tables of Properties of Gases, NBS Circular 564, 1955.

TABLE A–3EProperties of common liquids, solids, and foods (a) Liquids

	Boiling	data at 1 atm	Free	zing data	Lic	quid propert	ies
Substance	Normal boiling point, °F	Latent heat of vaporization, $h_{\rm fg}$ Btu/Ibm	Freezing point, °F	Latent heat of fusion, h_{if} Btu/Ibm	Temperature, °F	Density, ρ Ibm/ft ³	Specific heat, c_p Btu/Ibm·R
Ammonia	-27.9	24.54	-107.9	138.6	-27.9 0 40 80	42.6 41.3 39.5 37.5	1.06 1.083 1.103 1.135
Argon Benzene Brine (20% sodium chloride	-302.6 176.4	69.5 169.4	-308.7 41.9	12.0 54.2	-302.6 68	87.0 54.9	0.272 0.411
by mass) n-Butane Carbon dioxide Ethanol Ethyl alcohol Ethylene glycol Glycerine Helium Hydrogen Isobutane Kerosene Mercury Methane Methanol	219.0 31.1 -109.2* 172.8 173.5 388.6 355.8 -452.1 -423.0 10.9 399-559 674.1 -258.7 148.1		0.7 -217.3 -69.8 -173.6 -248.8 12.6 66.0434.5 -255.5 -12.8 -38.0 296.0		68 31.1 32 77 68 68 68 -452.1 -423.0 10.9 68 77 -258.7 -160 77	71.8 37.5 57.8 48.9 49.3 69.2 78.7 9.13 4.41 37.1 51.2 847 26.4 20.0 49.1	0.743 0.552 0.583 0.588 0.678 0.678 0.554 5.45 2.39 0.545 0.478 0.033 0.834 1.074 0.609
Nitrogen Octane	-320.4 256.6	85.4 131.7	-346.0 -71.5	10.9 77.9	-320.4 -260 68	50.5 38.2 43.9	0.492 0.643 0.502
Octane Oil (light) Oxygen Petroleum	-297.3 	91.5 99–165	-361.8	5.9	77 -297.3 68	56.8 71.2 40.0	0.430 0.408 0.478
Propane	-43.7	184.0	-305.8	34.4	-43.7 32 100	36.3 33.0 29.4	0.538 0.604 0.673
Refrigerant-134a	-15.0	93.3	-141.9	_	-40 -15 32 90	88.5 86.0 80.9 73.6	0.283 0.294 0.318 0.348
Water	212	970.1	32	143.5	32 90 150 212	62.4 62.1 61.2 59.8	1.01 1.00 1.00 1.01

^{*}Sublimation temperature. (At pressures below the triple-point pressure of 75.1 psia, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -69.8° F.)

TABLE A-3E

Properties of common liquids, solids, and foods (*Concluded*) (b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, $ ho$ lbm/ft 3	Specific heat, c_p Btu/lbm·R	Substance	Density, $ ho$ Ibm/ft 3	Specific heat, c_p Btu/Ibm·R
Metals			Nonmetals		
Aluminum			Asphalt	132	0.220
−100°F		0.192	Brick, common	120	0.189
32°F		0.212	Brick, fireclay (500°C)	144	0.229
100°F	170	0.218	Concrete	144	0.156
200°F		0.224	Clay	62.4	0.220
300°F		0.229	Diamond	151	0.147
400°F		0.235	Glass, window	169	0.191
500°F		0.240	Glass, pyrex	139	0.200
Bronze (76% Cu, 2% Zn,	517	0.0955	Graphite	156	0.170
2% AI)			Granite	169	0.243
Brass, yellow (65% Cu,	519	0.0955	Gypsum or plaster board	50	0.260
35% Zn)			Ice		
Copper			−50°F		0.424
-60°F		0.0862	0°F		0.471
0°F		0.0893	20°F		0.491
100°F	555	0.0925	32°F	57.5	0.502
200°F		0.0938	Limestone	103	0.217
390°F		0.0963	Marble	162	0.210
Iron	490	0.107	Plywood (Douglas fir)	34.0	
Lead	705	0.030	Rubber (soft)	68.7	
Magnesium	108	0.239	Rubber (hard)	71.8	
Nickel	555	0.105	Sand	94.9	
Silver	655	0.056	Stone	93.6	
Steel, mild	489	0.119	Woods, hard (maple, oak, etc.)	45.0	
Tungsten	1211	0.031	Woods, soft (fir, pine, etc.)	32.0	

(c) Foods

	Water	Freezing		Specific heat, Btu/lbm·R			Water content,	Freezing	Specific heat, Btu/lbm·R		Latent heat of	
	content,	point,	Above	Below	fusion,		%	point,	Above	Below	fusion,	
Food	% (mass)	°F	freezing	freezing	Btu/lbm	Food	(mass)	°F	freezing	freezing	Btu/lbm	
Apples	84	30	0.873	0.453	121	Lettuce	95	32	0.961	0.487	136	
Bananas	75	31	0.801	0.426	108	Milk, whole	88	31	0.905	0.465	126	
Beef round	67	_	0.737	0.402	96	Oranges	87	31	0.897	0.462	125	
Broccoli	90	31	0.921	0.471	129	Potatoes	78	31	0.825	0.435	112	
Butter	16	_	_	0.249	23	Salmon fish	64	28	0.713	0.393	92	
Cheese, Swiss	39	14	0.513	0.318	56	Shrimp	83	28	0.865	0.450	119	
Cherries	80	29	0.841	0.441	115	Spinach	93	31	0.945	0.481	134	
Chicken	74	27	0.793	0.423	106	Strawberries	90	31	0.921	0.471	129	
Corn, sweet	74	31	0.793	0.423	106	Tomatoes, ripe	94	31	0.953	0.484	135	
Eggs, whole	74	31	0.793	0.423	106	Turkey	64	_	0.713	0.393	92	
Ice cream	63	22	0.705	0.390	90	Watermelon	93	31	0.945	0.481	134	

Source: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, I-P version (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1993), Chap. 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

TABLE A–4ESaturated water—Temperature table

	Specific volume, ft ³ /lbm			Int	ternal energ Btu/Ibm	у,		<i>Enthalpy,</i> Btu/lbm		<i>Entropy,</i> Btu/lbm·R		
Temp., T°F	Sat. press., P _{sat} psia	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
32.0 35 40 45 50	0.08871 0.09998 0.12173 0.14756 0.17812	0.01602 0.01602 0.01602 0.01602 0.01602	3299.9 2945.7 2443.6 2035.8 1703.1	0.000 3.004 8.032 13.05 18.07	1021.0 1019.0 1015.6 1012.2 1008.9	1021.0 1022.0 1023.7 1025.3 1026.9	3.004	1075.2 1073.5 1070.7 1067.8 1065.0	1075.2 1076.5 1078.7 1080.9 1083.1	0.00000 0.00609 0.01620 0.02620 0.03609	2.18672 2.17011 2.14271 2.11587 2.08956	2.1867 2.1762 2.1589 2.1421 2.1256
55 60 65 70 75	0.21413 0.25638 0.30578 0.36334 0.43016	0.01603 0.01604 0.01604 0.01605 0.01606	1430.4 1206.1 1020.8 867.18 739.27	23.07 28.08 33.08 38.08 43.07	1005.5 1002.1 998.76 995.39 992.02	1028.6 1030.2 1031.8 1033.5 1035.1	23.07 28.08 33.08 38.08 43.07	1062.2 1059.4 1056.5 1053.7 1050.9	1085.3 1087.4 1089.6 1091.8 1093.9	0.04586 0.05554 0.06511 0.07459 0.08398	2.06377 2.03847 2.01366 1.98931 1.96541	2.1096 2.0940 2.0788 2.0639 2.0494
80 85 90 95 100	0.50745 0.59659 0.69904 0.81643 0.95052	0.01607 0.01609 0.01610 0.01612 0.01613	632.41 542.80 467.40 403.74 349.83	48.06 53.06 58.05 63.04 68.03	988.65 985.28 981.90 978.52 975.14	1036.7 1038.3 1040.0 1041.6 1043.2	48.07 53.06 58.05 63.04 68.03	1048.0 1045.2 1042.4 1039.5 1036.7	1096.1 1098.3 1100.4 1102.6 1104.7	0.09328 0.10248 0.11161 0.12065 0.12961	1.94196 1.91892 1.89630 1.87408 1.85225	2.0352 2.0214 2.0079 1.9947 1.9819
110 120 130 140 150	1.2767 1.6951 2.2260 2.8931 3.7234	0.01617 0.01620 0.01625 0.01629 0.01634	264.96 202.94 157.09 122.81 96.929	78.01 88.00 97.99 107.98 117.98	968.36 961.56 954.73 947.87 940.98	1046.4 1049.6 1052.7 1055.9 1059.0	78.02 88.00 97.99 107.99 117.99	1031.0 1025.2 1019.4 1013.6 1007.8	1109.0 1113.2 1117.4 1121.6 1125.7	0.14728 0.16466 0.18174 0.19855 0.21508	1.80970 1.76856 1.72877 1.69024 1.65291	1.9570 1.9332 1.9105 1.8888 1.8680
160 170 180 190 200	4.7474 5.9999 7.5197 9.3497 11.538	0.01639 0.01645 0.01651 0.01657 0.01663	77.185 61.982 50.172 40.920 33.613	127.98 138.00 148.02 158.05 168.10	934.05 927.08 920.06 912.99 905.87	1062.0 1065.1 1068.1 1071.0 1074.0	128.00 138.02 148.04 158.08 168.13	989.85 983.76	1129.8 1133.9 1137.9 1141.8 1145.7	0.23136 0.24739 0.26318 0.27874 0.29409	1.61670 1.58155 1.54741 1.51421 1.48191	1.8481 1.8289 1.8106 1.7930 1.7760
210 212 220 230 240	14.136 14.709 17.201 20.795 24.985	0.01670 0.01671 0.01677 0.01684 0.01692	27.798 26.782 23.136 19.374 16.316	178.15 180.16 188.22 198.31 208.41	898.68 897.24 891.43 884.10 876.70	1076.8 1077.4 1079.6 1082.4 1085.1	178.20 180.21 188.28 198.37 208.49	970.09 965.02 958.59	1149.5 1150.3 1153.3 1157.0 1160.5	0.30922 0.31222 0.32414 0.33887 0.35342	1.45046 1.44427 1.41980 1.38989 1.36069	1.7597 1.7565 1.7439 1.7288 1.7141
250 260 270 280 290	29.844 35.447 41.877 49.222 57.573	0.01700 0.01708 0.01717 0.01726 0.01735	13.816 11.760 10.059 8.6439 7.4607	218.54 228.68 238.85 249.04 259.26	869.21 861.62 853.94 846.16 838.27	1087.7 1090.3 1092.8 1095.2 1097.5	218.63 228.79 238.98 249.20 259.45	938.65 931.76 924.74	1164.0 1167.4 1170.7 1173.9 1177.0	0.36779 0.38198 0.39601 0.40989 0.42361	1.33216 1.30425 1.27694 1.25018 1.22393	1.6999 1.6862 1.6730 1.6601 1.6475
300 310 320 330 340	67.028 77.691 89.667 103.07 118.02	0.01745 0.01755 0.01765 0.01776 0.01787	6.4663 5.6266 4.9144 4.3076 3.7885	269.51 279.79 290.11 300.46 310.85	830.25 822.11 813.84 805.43 796.87	1099.8 1101.9 1104.0 1105.9 1107.7	269.73 280.05 290.40 300.80 311.24	902.75 895.09 887.25	1180.0 1182.8 1185.5 1188.1 1190.5	0.43720 0.45065 0.46396 0.47716 0.49024	1.19818 1.17289 1.14802 1.12355 1.09945	1.6235 1.6120 1.6007
350 360 370 380 390	134.63 153.03 173.36 195.74 220.33	0.01799 0.01811 0.01823 0.01836 0.01850	3.3425 2.9580 2.6252 2.3361 2.0842	321.29 331.76 342.29 352.87 363.50	770.23 761.00	1109.4 1111.0 1112.5 1113.9 1115.1	321.73 332.28 342.88 353.53 364.25	862.53 853.86 844.96	1192.7 1194.8 1196.7 1198.5 1200.1	0.50321 0.51607 0.52884 0.54152 0.55411	1.07570 1.05227 1.02914 1.00628 0.98366	1.5683 1.5580 1.5478

TABLE A–4ESaturated water—Temperature table (*Concluded*)

		Specific v ft³/lb		In	ternal energ Btu/lbm	īy,		<i>Enthalpy,</i> Btu/lbm		Entropy, Btu/lbm·R		
Temp.,	Sat. press., P _{sat} psia	Sat. liquid, v _f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
400 410 420 430 440 450 460 470 480 490 500 510 520	247.26 276.69 308.76 343.64 381.49 422.47 466.75 514.52 565.96 621.24 680.56 744.11 812.11	0.01864 0.01878 0.01894 0.01910 0.01926 0.01944 0.01962 0.01981 0.02001 0.02022 0.02044 0.02067 0.02092	1.8639 1.6706 1.5006 1.3505 1.2178 1.0999 0.99510 0.90158 0.81794 0.74296 0.67558 0.61489 0.56009	374.19 384.94 395.76 406.65 417.61 428.66 439.79 451.01 462.34 473.77 485.32 496.99	741.97 732.14 722.08 711.80 701.26 690.47 679.39 668.02 656.34 644.32 631.94 619.17 605.99	1116.2 1117.1 1117.8 1118.4 1118.9 1119.1 1119.2 1119.0 1118.7 1118.1 1117.3 1116.2 1114.8	375.04 385.90 396.84 407.86 418.97 430.18 441.48 452.90 464.43 476.09 487.89 499.84 511.94	826.39 816.71 806.74 796.46 785.87 774.94 763.65 751.98 739.91 727.40 714.44 700.99	1201.4 1202.6 1203.6 1204.3 1204.8 1205.1 1205.1 1204.9 1204.3 1203.5 1202.3 1200.8 1199.0	0.56663 0.57907 0.59145 0.60377 0.61603 0.62826 0.64044 0.65260 0.66474 0.67686 0.68899 0.70112 0.71327	0.96127 0.93908 0.91707 0.89522 0.87349 0.85187 0.83033 0.80885 0.78739 0.76594 0.74445 0.72290 0.70126	1.5279 1.5182 1.5085 1.4990 1.4895 1.4801 1.4708 1.4615 1.4521 1.4428 1.4334 1.4240 1.4145
520 530 540 550 560 570 580 590	812.11 884.74 962.24 1044.8 1132.7 1226.2 1325.5 1430.8	0.02092 0.02118 0.02146 0.02176 0.02207 0.02242 0.02279 0.02319	0.56009 0.51051 0.46553 0.42465 0.38740 0.35339 0.32225 0.29367	520.76 532.88 545.18 557.68 570.40 583.37	592.35 578.23 563.58 548.33 532.45 515.84 498.43	1114.8 1113.1 1111.1 1108.8 1106.0 1102.8 1099.2 1095.0	511.94 524.23 536.70 549.39 562.31 575.49 588.95 602.75	672.47 657.31 641.47 624.91 607.55 589.29	1199.0 1196.7 1194.0 1190.9 1187.2 1183.0 1178.2 1172.8	0.71327 0.72546 0.73770 0.75000 0.76238 0.77486 0.78748 0.80026	0.67947 0.65751 0.63532 0.61284 0.59003 0.56679 0.54306	1.4145 1.4049 1.3952 1.3853 1.3752 1.3649 1.3543 1.3433
600 610 620 630 640	1542.5 1660.9 1786.2 1918.9 2059.3	0.02362 0.02411 0.02464 0.02524 0.02593	0.26737 0.24309 0.22061 0.19972 0.18019	624.11 638.47 653.35 668.86	480.10 460.73 440.14 418.12 394.36	1090.3 1084.8 1078.6 1071.5 1063.2	616.92 631.52 646.62 662.32 678.74	528.03 504.92 480.07 453.14	1166.6 1159.5 1151.5 1142.4 1131.9	0.81323 0.82645 0.83998 0.85389 0.86828	0.51871 0.49363 0.46765 0.44056 0.41206	1.3319 1.3201 1.3076 1.2944 1.2803
650 660 670 680 690 700 705.10	2207.8 2364.9 2531.2 2707.3 2894.1 3093.0 3200.1	0.02673 0.02767 0.02884 0.03035 0.03255 0.03670 0.04975	0.16184 0.14444 0.12774 0.11134 0.09451 0.07482 0.04975	702.48 721.23 742.11 766.81 801.75	368.44 339.74 307.22 269.00 220.77 146.50	1053.6 1042.2 1028.5 1011.1 987.6 948.3 866.6	696.08 714.59 734.74 757.32 784.24 822.76 896.07	390.84	1119.7 1105.4 1088.3 1066.9 1038.2 991.1 896.1	0.88332 0.89922 0.91636 0.93541 0.95797 0.99023 1.05257	0.38177 0.34906 0.31296 0.27163 0.22089 0.14514 0	1.2651 1.2483 1.2293 1.2070 1.1789 1.1354 1.0526

Source: Tables A–4E through A–8E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLE A–5ESaturated water—Pressure table

			volume, Ibm	Internal energy, Btu/lbm			Enthalpy, Btu/lbm		Entropy, Btu/lbm·R			
Press., P psia	Sat. temp., $T_{\rm sat}$ °F	Sat. liquid, v_f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h_f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid,	Evap., s _{fg}	Sat. vapor, s_g
1	101.69	0.01614	333.49	69.72	973.99	1043.7	69.72	1035.7	1105.4	0.13262	1.84495	1.9776
2	126.02	0.01623	173.71	94.02	957.45	1051.5	94.02	1021.7	1115.8	0.17499	1.74444	1.9194
3	141.41	0.01630	118.70	109.39	946.90	1056.3	109.40	1012.8	1122.2	0.20090	1.68489	1.8858
4	152.91	0.01636	90.629	120.89	938.97	1059.9	120.90	1006.0	1126.9	0.21985	1.64225	1.8621
5	162.18	0.01641	73.525	130.17	932.53	1062.7	130.18	1000.5	1130.7	0.23488	1.60894	1.8438
6	170.00	0.01645	61.982	138.00	927.08	1065.1	138.02	995.88	1133.9	0.24739	1.58155	1.8289
8	182.81	0.01652	47.347	150.83	918.08	1068.9	150.86	988.15	1139.0	0.26757	1.53800	1.8056
10	193.16	0.01659	38.425	161.22	910.75	1072.0	161.25	981.82	1143.1	0.28362	1.50391	1.7875
14.696	211.95	0.01671	26.805	180.12	897.27	1077.4	180.16	970.12	1150.3	0.31215	1.44441	1.7566
15	212.99	0.01672	26.297	181.16	896.52	1077.7	181.21	969.47	1150.7	0.31370	1.44441	1.7549
20	227.92	0.01683	20.093	196.21	885.63	1081.8	196.27	959.93	1156.2	0.33582	1.39606	1.7319
25	240.03	0.01692	16.307	208.45	876.67	1085.1	208.52	952.03	1160.6	0.35347	1.36060	1.7141
30	250.30	0.01700	13.749	218.84	868.98	1087.8	218.93	945.21	1164.1	0.36821	1.33132	1.6995
35	259.25	0.01708	11.901	227.92	862.19	1090.1	228.03	939.16	1167.2	0.38093	1.30632	1.6872
40	267.22	0.01715	10.501	236.02	856.09	1092.1	236.14	933.69	1169.8	0.39213	1.28448	1.6766
45	274.41	0.01721	9.4028	243.34	850.52	1093.9	243.49	928.68	1172.2	0.40216	1.26506	1.6672
50	280.99	0.01727	8.5175	250.05	845.39	1095.4	250.21	924.03	1174.2	0.41125	1.24756	1.6588
55	287.05	0.01732	7.7882	256.25	840.61	1096.9	256.42	919.70	1176.1	0.41958	1.23162	1.6512
60	292.69	0.01738	7.1766	262.01	836.13	1098.1	262.20	915.61	1177.8	0.42728	1.21697	1.6442
65	297.95	0.01743	6.6560	267.41	831.90	1099.3	267.62	911.75	1179.4	0.43443	1.20341	1.6378
70	302.91	0.01748	6.2075	272.50	827.90	1100.4	272.72	908.08	1180.8	0.44112	1.19078	1.6319
75	307.59	0.01752	5.8167	277.31	824.09	1101.4	277.55	904.58	1182.1	0.44741	1.17895	1.6264
80	312.02	0.01757	5.4733	281.87	820.45	1102.3	282.13	901.22	1183.4	0.45335	1.16783	1.6212
85	316.24	0.01761	5.1689	286.22	816.97	1103.2	286.50	898.00	1184.5	0.45897	1.15732	1.6163
90	320.26	0.01765	4.8972	290.38	813.62	1104.0	290.67	894.89	1185.6	0.46431	1.14737	1.6117
95	324.11	0.01770	4.6532	294.36	810.40	1104.8	294.67	891.89	1186.6	0.46941	1.13791	1.6073
100	327.81	0.01774	4.4327	298.19	807.29	1105.5	298.51	888.99	1187.5	0.47427	1.12888	1.6032
110	334.77	0.01781	4.0410	305.41	801.37	1106.8	305.78	883.44	1189.2	0.48341	1.11201	1.5954
120	341.25	0.01789	3.7289	312.16	795.79	1107.9	312.55	878.20	1190.8	0.49187	1.09646	1.5883
130	347.32	0.01796	3.4557	318.48	790.51	1109.0	318.92	873.21	1192.1	0.49974	1.08204	1.5818
140	353.03	0.01802	3.2202	324.45	785.49	1109.9	324.92	868.45	1193.4	0.50711	1.06858	1.5757
150	358.42	0.01809	3.0150	330.11	780.69	1110.8	330.61	863.88	1194.5	0.51405	1.05595	1.5700
160	363.54	0.01815	2.8347	335.49	776.10	1111.6	336.02	859.49	1195.5	0.52061	1.04405	1.5647
170	368.41	0.01821	2.6749	340.62	771.68	1112.3	341.19	855.25	1196.4	0.52682	1.03279	1.5596
180	373.07	0.01827	2.5322	345.53	767.42	1113.0	346.14	851.16	1197.3	0.53274	1.02210	1.5548
190 200 250 300 350	377.52 381.80 400.97 417.35 431.74	0.01833 0.01839 0.01865 0.01890 0.01912	2.4040 2.2882 1.8440 1.5435 1.3263	350.24 354.78 375.23 392.89 408.55	763.31 759.32 741.02 724.77 709.98	1113.6 1114.1 1116.3 1117.7 1118.5	350.89 355.46 376.09 393.94 409.79	847.19 843.33 825.47 809.41 794.65	1198.1 1198.8 1201.6 1203.3 1204.4	0.53839 0.54379 0.56784 0.58818 0.60590	1.01191 1.00219 0.95912 0.92289 0.89143	1.5460 1.5270 1.5111
400 450 500 550 600	444.62 456.31 467.04 476.97 486.24	0.01934 0.01955 0.01975 0.01995 0.02014	1.1617 1.0324 0.92819 0.84228 0.77020	458.90	696.31 683.52 671.42 659.91 648.88	1119.0 1119.2 1119.1 1118.8 1118.3	424.13 437.30 449.51 460.93 471.70	780.87 767.86 755.48 743.60 732.15	1205.0 1205.2 1205.0 1204.5 1203.9	0.62168 0.63595 0.64900 0.66107 0.67231	0.86350 0.83828 0.81521 0.79388 0.77400	1.4742 1.4642 1.4550

TABLE A–5ESaturated water—Pressure table (*Concluded*)

			<i>volume,</i> Ibm	Internal energy, Btu/lbm		Enthalpy, Btu/lbm			Entropy, Btu/lbm·R			
Press.,	Sat. temp.,	Sat. liquid,	Sat.	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,	Sat. liquid,	Evap.,	Sat. vapor,
P psia	T _{sat} °F	V_f	Vg	U _f	U _{fg}	Иg	h _f	h _{fg}	h _g	S _f	S _{fg}	S_g
700	503.13	0.02051	0.65589	488.96	627.98	1116.9	491.62	710.29	1201.9	0.69279	0.73771	1.4305
800	518.27	0.02087	0.56920	506.74	608.30	1115.0	509.83	689.48	1199.3	0.71117	0.70502	1.4162
900	532.02	0.02124	0.50107	523.19	589.54	1112.7	526.73	669.46	1196.2	0.72793	0.67505	1.4030
1000	544.65	0.02159	0.44604	538.58	571.49	1110.1	542.57	650.03	1192.6	0.74341	0.64722	1.3906
1200	567.26	0.02232	0.36241	566.89	536.87	1103.8	571.85	612.39	1184.2	0.77143	0.59632	1.3677
1400	587.14	0.02307	0.30161	592.79	503.50	1096.3	598.76	575.66	1174.4	0.79658	0.54991	1.3465
1600	604.93	0.02386	0.25516	616.99	470.69	1087.7	624.06	539.18	1163.2	0.81972	0.50645	1.3262
1800	621.07	0.02470	0.21831	640.03	437.86	1077.9	648.26	502.35	1150.6	0.84144	0.46482	1.3063
2000	635.85	0.02563	0.18815	662.33	404.46	1066.8	671.82	464.60	1136.4	0.86224	0.42409	1.2863
2500	668.17	0.02860	0.13076	717.67	313.53	1031.2	730.90	360.79	1091.7	0.91311	0.31988	1.2330
3000	695.41	0.03433	0.08460	783.39	186.41	969.8	802.45	214.32	1016.8	0.97321	0.18554	1.1587
3200.1	705.10	0.04975	0.04975	866.61	0	866.6	896.07	0	896.1	1.05257	0	1.0526

TABLE A-6E

Superheated water

				S				S				S
T	V	U Dhadhaa	h Dhadhan	Btu/	V	U Dhadhan	h Dha illana	Btu/	V (13/11	U Dhar/Hana	h Dhadhan	Btu/
°F	ft ³ /lbm	Btu/Ibm	Btu/Ibm	Ibm⋅R	ft ³ /lbm	Btu/Ibm	Btu/Ibm	lbm⋅R	ft ³ /lbm	Btu/Ibm	Btu/lbm	lbm⋅R
	P =	= 1.0 psia	(101.69°F	-)*	P =	= 5.0 psia	(162.18°	F)	P =	= 10 psia	(193.16°I	=)
Sat.†	333.49	1043.7	1105.4	1.9776	73.525	1062.7	1130.7	1.8438	38.425	1072.0	1143.1	1.7875
200	392.53	1077.5	1150.1	2.0509	78.153	1076.2	1148.5	1.8716	38.849	1074.5	1146.4	1.7926
240	416.44	1091.2	1168.3	2.0777	83.009	1090.3	1167.1	1.8989	41.326	1089.1	1165.5	1.8207
280	440.33	1105.0	1186.5	2.1030	87.838	1104.3	1185.6	1.9246	43.774	1103.4	1184.4	1.8469
320	464.20	1118.9	1204.8	2.1271	92.650	1118.4	1204.1	1.9490	46.205	1117.6	1203.1	1.8716
360	488.07	1132.9	1223.3	2.1502	97.452	1132.5	1222.6	1.9722	48.624	1131.9	1221.8	1.8950
400	511.92	1147.1	1241.8	2.1722	102.25	1146.7	1241.3	1.9944	51.035	1146.2	1240.6	1.9174
440	535.77	1161.3	1260.4	2.1934	107.03	1160.9	1260.0	2.0156	53.441	1160.5	1259.4	1.9388
500	571.54	1182.8	1288.6	2.2237	114.21	1182.6	1288.2	2.0461	57.041	1182.2	1287.8	1.9693
600	631.14	1219.4	1336.2	2.2709	126.15	1219.2	1335.9	2.0933	63.029	1219.0	1335.6	2.0167
700	690.73	1256.8	1384.6	2.3146	138.09	1256.7	1384.4	2.1371	69.007	1256.5	1384.2	2.0605
800	750.31	1295.1	1433.9	2.3553	150.02	1294.9	1433.7	2.1778	74.980	1294.8	1433.5	2.1013
1000	869.47	1374.2	1535.1	2.4299	173.86	1374.2	1535.0	2.2524	86.913	1374.1	1534.9	2.1760
1200	988.62	1457.1	1640.0	2.4972	197.70	1457.0	1640.0	2.3198	98.840	1457.0	1639.9	2.2433
1400	1107.8	1543.7	1748.7	2.5590	221.54	1543.7	1748.7	2.3816	110.762	1543.6	1748.6	2.3052
	P	= 15 psia	(212.99°F	=)	<i>P</i> =	= 20 psia	(227.92°	F)	P =	= 40 psia	(267.22°I	=)
Sat.	26.297	1077.7	1150.7	1.7549	20.093	1081.8	1156.2	1.7319	10.501	1092.1	1169.8	1.6766
240	27.429	1087.8	1163.9	1.7742	20.478	1086.5	1162.3	1.7406				
280	29.085	1102.4	1183.2	1.8010	21.739	1101.4	1181.9	1.7679	10.713	1097.3	1176.6	1.6858
320	30.722	1116.9	1202.2	1.8260	22.980	1116.1	1201.2	1.7933	11.363	1112.9	1197.1	1.7128
360	32.348	1131.3	1221.1	1.8496	24.209	1130.7	1220.2	1.8171	11.999	1128.1	1216.9	1.7376
400	33.965	1145.7	1239.9	1.8721	25.429	1145.1	1239.3	1.8398	12.625	1143.1	1236.5	1.7610
440	35.576	1160.1	1258.8	1.8936	26.644	1159.7	1258.3	1.8614	13.244	1157.9	1256.0	1.7831
500	37.986	1181.9	1287.3	1.9243	28.458	1181.6	1286.9	1.8922	14.165	1180.2	1285.0	1.8143
600	41.988	1218.7	1335.3	1.9718	31.467	1218.5	1334.9	1.9398	15.686	1217.5	1333.6	1.8625
700	45.981	1256.3	1383.9	2.0156	34.467	1256.1	1383.7	1.9837	17.197	1255.3	1382.6	1.9067
800	49.967	1294.6	1433.3	2.0565	37.461	1294.5	1433.1	2.0247	18.702	1293.9	1432.3	1.9478
1000	57.930	1374.0	1534.8	2.1312	43.438	1373.8	1534.6	2.0994	21.700	1373.4	1534.1	2.0227
1200	65.885	1456.9	1639.8	2.1986	49.407	1456.8	1639.7	2.1668	24.691	1456.5	1639.3	2.0902
1400	73.836	1543.6	1748.5	2.2604	55.373	1543.5	1748.4	2.2287	27.678	1543.3	1748.1	2.1522
1600	81.784	1634.0	1861.0	2.3178	61.335	1633.9	1860.9	2.2861	30.662	1633.7	1860.7	2.2096
	P	= 60 psia	(292.69°F	=)	P =	= 80 psia	(312.02°	F)	<i>P</i> =	100 psia	(327.81°	F)
Sat.	7.1766	1098.1	1177.8	1.6442	5.4733	3 1102.3	1183.4	1.6212	4.4327	1105.5	1187.5	1.6032
320	7.4863	1109.6	1192.7	1.6636		1105.9	1187.9	1.6271				
360		1125.5	1213.5	1.6897		5 1122.7	1209.9	1.6545	4.6628	1119.8	1206.1	1.6263
400	8.3548	1140.9	1233.7	1.7138	6.2187	7 1138.7	1230.8	1.6794	4.9359	1136.4	1227.8	1.6521
440	8.7766	1156.1	1253.6	1.7364	6.5420	1154.3	1251.2	1.7026	5.2006	1152.4	1248.7	1.6759
500	9.4005	1178.8	1283.1	1.7682	7.0177	7 1177.3	1281.2	1.7350	5.5876	1175.9	1279.3	1.7088
600	10.4256	1216.5	1332.2	1.8168	7.7951	1215.4	1330.8	1.7841	6.2167	1214.4	1329.4	1.7586
700	11.4401	1254.5	1381.6	1.8613	8.5616	1253.8	1380.5	1.8289	6.8344	1253.0	1379.5	1.8037
800	12.4484	1293.3	1431.5	1.9026	9.3218	3 1292.6	1430.6	1.8704	7.4457	1292.0	1429.8	1.8453
1000	14.4543	1373.0	1533.5	1.9777	10.8313	3 1372.6	1532.9	1.9457	8.6575	1372.2	1532.4	1.9208
1200	16.4525	1456.2	1638.9	2.0454		1455.9	1638.5	2.0135	9.8615	1455.6	1638.1	1.9887
1400	18.4464	1543.0	1747.8	2.1073	13.8306	5 1542.8	1747.5	2.0755	11.0612	1542.6	1747.2	2.0508
1600	20.438	1633.5	1860.5	2.1648	15.3257	7 1633.3	1860.2	2.1330	12.2584	1633.2	1860.0	2.1083
1800	22.428	1727.6	1976.6	2.2187	1	2 1727.5	1976.5	2.1869	1	1727.3	1976.3	2.1622
2000	24.417	1825.2	2096.3	2.2694	18.3117	1825.0	2096.1	2.2376	14.6487	1824.9	2096.0	2.2130
					1							

^{*}The temperature in parentheses is the saturation temperature at the specified pressure.

 $^{^{\}dagger}$ Properties of saturated vapor at the specified pressure.

TABLE A-6E

Superheated water (Concluded)

<u> </u>												
Т	V	и	h	s Btu/	V	и	h	s Btu/	v	и	h	s Btu/
°F	ft ³ /lbm	Btu/lbm	Btu/Ibm	lbm∙R	ft ³ /lbm	Btu/lbm	Btu/lbm	lbm⋅R	ft ³ /lbm	Btu/lbm	Btu/Ibm	Ibm∙R
	P =	= 120 psia	a (341.25	°F)	P =	140 psia	(353.03°	'F)	P =	160 psia	(363.54°l	=)
Sat.	3.7289	1107.9	1190.8	1.5883	3.2202	1109.9	1193.4	1.5757	2.8347	1111.6	1195.5	1.5647
360	3.8446	1116.7	1202.1	1.6023	3.2584	1113.4	1197.8	1.5811				
400	4.0799	1134.0	1224.6	1.6292	3.4676	1131.5	1221.4	1.6092	3.0076	1129.0	1218.0	1.5914
450	4.3613	1154.5	1251.4	1.6594	3.7147	1152.6	1248.9	1.6403	3.2293	1150.7	1246.3	1.6234
500	4.6340	1174.4	1277.3	1.6872	3.9525	1172.9	1275.3	1.6686	3.4412	1171.4	1273.2	1.6522
550	4.9010	1193.9	1302.8	1.7131	4.1845	1192.7	1301.1	1.6948	3.6469	1191.4	1299.4	1.6788
600	5.1642	1213.4	1328.0	1.7375	4.4124	1212.3	1326.6	1.7195	3.8484	1211.3	1325.2	1.7037
700	5.6829	1252.2	1378.4	1.7829	4.8604	1251.4	1377.3	1.7652	4.2434	1250.6	1376.3	1.7498
800	6.1950	1291.4	1429.0	1.8247	5.3017	1290.8	1428.1	1.8072	4.6316	1290.2	1427.3	1.7920
1000	7.2083	1371.7	1531.8	1.9005	6.1732	1371.3	1531.3	1.8832	5.3968	1370.9	1530.7	1.8682
1200	8.2137	1455.3	1637.7	1.9684	7.0367	1455.0	1637.3	1.9512	6.1540	1454.7	1636.9	1.9363
1400	9.2149	1542.3	1746.9	2.0305	7.8961	1542.1	1746.6	2.0134	6.9070	1541.8	1746.3	1.9986
1600	10.2135	1633.0	1859.8	2.0881	8.7529	1632.8	1859.5	2.0711	7.6574	1632.6	1859.3	2.0563
1800	11.2106	1727.2	1976.1	2.1420	9.6082	1727.0	1975.9	2.1250	8.4063	1726.9	1975.7	2.1102
2000	12.2067	1824.8	2095.8	2.1928	10.4624	1824.6	2095.7	2.1758	9.1542	1824.5	2095.5	2.1610
	P =	= 180 psia	a (373.07	°F)	P =	200 psia	(381.80°	°F)	P =	225 psia	(391.80°l	=)
Sat.	2.5322	1113.0	1197.3	1.5548	2.2882	1114.1	1198.8	1.5460	2.0423	1115.3	1200.3	1.5360
400	2.6490	1126.3	1214.5	1.5752	2.3615	1123.5	1210.9	1.5602	2.0728	1119.7	1206.0	1.5427
450	2.8514	1148.7	1243.7	1.6082	2.5488	1146.7	1241.0	1.5943	2.2457	1144.1	1237.6	1.5783
500	3.0433	1169.8	1271.2	1.6376	2.7247	1168.2	1269.0	1.6243	2.4059	1166.2	1266.3	1.6091
550	3.2286	1190.2	1297.7	1.6646	2.8939	1188.9	1296.0	1.6516	2.5590	1187.2	1293.8	1.6370
600	3.4097	1210.2	1323.8	1.6897	3.0586	1209.1	1322.3	1.6771	2.7075	1207.7	1320.5	1.6628
700	3.7635	1249.8	1375.2	1.7361	3.3796	1249.0	1374.1	1.7238	2.9956	1248.0	1372.7	1.7099
800	4.1104	1289.5	1426.5	1.7785	3.6934	1288.9	1425.6	1.7664	3.2765	1288.1	1424.5	1.7528
900	4.4531	1329.7	1478.0	1.8179	4.0031	1329.2	1477.3	1.8059	3.5530	1328.5	1476.5	1.7925
1000	4.7929	1370.5	1530.1	1.8549	4.3099	1370.1	1529.6	1.8430	3.8268	1369.5	1528.9	1.8296
1200	5.4674	1454.3	1636.5	1.9231	4.9182	1454.0	1636.1	1.9113	4.3689	1453.6	1635.6	1.8981
1400	6.1377	1541.6	1746.0	1.9855	5.5222	1541.4	1745.7	1.9737	4.9068	1541.1	1745.4	1.9606
1600	6.8054	1632.4	1859.1	2.0432	6.1238	1632.2	1858.8	2.0315	5.4422	1632.0	1858.6	2.0184
1800	7.4716	1726.7	1975.6	2.0971	6.7238	1726.5	1975.4	2.0855	5.9760	1726.4	1975.2	2.0724
2000	8.1367	1824.4	2095.4	2.1479	7.3227	1824.3	2095.3	2.1363	6.5087	1824.1	2095.1	2.1232
	P =	= 250 psia	a (400.97	°F)	P =	275 psia	(409.45°	'F)	P =	300 psia	(417.35°I	-)
Sat.	1.8440	1116.3	1201.6	1.5270	1.6806	1117.0	1202.6	1.5187	1.5435	1117.7	1203.3	1.5111
450	2.0027	1141.3	1234.0	1.5636	1.8034	1138.5	1230.3	1.5499	1.6369	1135.6	1226.4	1.5369
500	2.1506	1164.1	1263.6	1.5953	1.9415	1162.0	1260.8	1.5825	1.7670	1159.8	1257.9	1.5706
550	2.2910	1185.6	1291.5	1.6237	2.0715	1183.9	1289.3	1.6115	1.8885	1182.1	1287.0	1.6001
600	2.4264	1206.3	1318.6	1.6499	2.1964	1204.9	1316.7	1.6380	2.0046	1203.5	1314.8	1.6270
650	2.5586	1226.8	1345.1	1.6743	2.3179	1225.6	1343.5	1.6627	2.1172	1224.4	1341.9	1.6520
700	2.6883	1247.0	1371.4	1.6974	2.4369	1246.0	1370.0	1.6860	2.2273	1244.9	1368.6	1.6755
800	2.9429	1287.3	1423.5	1.7406	2.6699	1286.5	1422.4	1.7294	2.4424	1285.7	1421.3	1.7192
900	3.1930	1327.9	1475.6	1.7804	2.8984	1327.3	1474.8	1.7694	2.6529	1326.6	1473.9	1.7593
1000	3.4403	1369.0	1528.2	1.8177	3.1241	1368.5	1527.4	1.8068	2.8605	1367.9	1526.7	1.7968
1200	3.9295	1453.3	1635.0	1.8863	3.5700	1452.9	1634.5	1.8755	3.2704	1452.5	1634.0	1.8657
1400	4.4144	1540.8	1745.0	1.9488	4.0116	1540.5	1744.6	1.9381	3.6759	1540.2	1744.2	1.9284
1600	4.8969	1631.7	1858.3	2.0066	4.4507	1631.5	1858.0	1.9960	4.0789	1631.3	1857.7	1.9863
1800	5.3777	1726.2	1974.9	2.0607	4.8882	1726.0	1974.7	2.0501	4.4803	1725.8	1974.5	2.0404
2000	5.8575	1823.9	2094.9	2.1116	5.3247	1823.8	2094.7	2.1010	4.8807	1823.6	2094.6	2.0913
					<u> </u>							

TABLE A-6E

Superheated water (Continued)

Oupon	icated wat	(- (, ,		1							
-			,	S			,	S			,	S
<i>T</i> °F	<i>v</i> ft ³ /lbm	U Dtu/lbm	h Dtu/lbm	Btu/	V f+3/lbm	U Dtu/lbm	h Dtu/lbm	Btu/	V ft3/lbm	U Dtu/lbm	h Dtu/lbm	Btu/
Г	TL ^o /IDIII	Dtu/IDIII	Btu/Ibm	M·IIIUI	ft ³ /lbm	Dtu/IDIII	Btu/Ibm	איווועו	ft ³ /lbm	Dtu/IDIII	Btu/Ibm	M·IIIUI
	P =	= 350 psia	(431.74	°F)	P =	400 psia	(444.62°I	=)	P =	450 psia	(456.31°F	=)
Sat.	1.3263	1118.5	1204.4	1.4973	1.1617	1119.0	1205.0	1.4852	1.0324	1119.2	1205.2	1.4742
450	1.3739		1218.3	1.5128	1.1747	1122.5	1209.4	1.4901	1.002	1110.	1200.2	11.7.1
500	1.4921		1251.9	1.5487	1.2851	1150.4	1245.6	1.5288	1.1233	1145.4	1238.9	1.5103
550	1.6004		1282.2	1.5795	1.3840	1174.9	1277.3	1.5610	1.2152	1171.1	1272.3	1.5441
600	1.7030	1200.6	1310.9	1.6073	1.4765	1197.6	1306.9	1.5897	1.3001	1194.6	1302.8	1.5737
650	1.8018	1221.9	1338.6	1.6328	1.5650	1219.4	1335.3	1.6158	1.3807	1216.9	1331.9	1.6005
700	1.8979	1242.8	1365.8	1.6567	1.6507	1240.7	1362.9	1.6401	1.4584		1360.0	1.6253
800	2.0848	1284.1	1419.1	1.7009	1.8166	1282.5	1417.0	1.6849	1.6080		1414.7	1.6706
900	2.2671	1325.3	1472.2	1.7414	1.9777	1324.0	1470.4	1.7257	1.7526		1468.6	1.7117
1000	2.4464		1525.3	1.7791	2.1358	1365.8	1523.9	1.7636	1.8942		1522.4	1.7499
1200	2.7996	1451.7	1633.0	1.8483	2.4465	1450.9	1632.0	1.8331	2.1718	1450.1	1631.0	1.8196
1400 1600	3.1484 3.4947	1539.6 1630.8	1743.5 1857.1	1.9111 1.9691	2.7527 3.0565	1539.0 1630.3	1742.7 1856.5	1.8960 1.9541	2.4450 2.7157	1538.4 1629.8	1742.0 1856.0	1.8827 1.9409
1800	3.4947	1725.4	1974.0	2.0233	3.3586	1725.0	1973.6	2.0084	2.7137	1724.6	1973.2	1.9409
2000	4.1830	1823.3	2094.2		3.6597	1823.0	2093.9	2.0594	3.2527	1822.6	2093.5	2.0462
2000												
		= 500 psia					(486.24°I				(503.13°I	
Sat.	0.92815	1119.1		1.4642	0.77020	1118.3		1.4463	0.65589	1116.9	1201.9	1.4305
500	0.99304	1140.1	1231.9	1.4928	0.79526	1128.2		1.4596	0.70700	11405	10400	1 4700
550	1.07974	1167.1	1267.0	1.5284	0.87542	1158.7	1255.9	1.4996	0.72799		1243.8	1.4730
600 650	1.15876 1.23312	1191.4 1214.3	1298.6	1.5590	0.94605	1184.9 1209.0	1289.9	1.5325	0.79332 0.85242		1280.7 1313.8	1.5087 1.5393
700	1.23312	1214.5	1328.4 1357.0	1.5865 1.6117	1.01133	1209.0	1321.3 1351.0	1.5614 1.5877			1313.6	1.5666
800	1.44097	1230.4	1412.5	1.6576	1.19038	1275.8	1408.0	1.6348	1.01125	1272.4	1403.4	1.6150
900	1.57252		1466.9	1.6992	1.30230	1318.7	1463.3	1.6771			1459.7	1.6581
1000	1.70094	1363.6	1521.0	1.7376	1.41097	1361.4	1518.1	1.7160	1.20381		1515.2	1.6974
1100	1.82726		1575.3	1.7735	1.51749	1404.4	1572.9	1.7522	1.29621		1570.4	1.7341
1200	1.95211	1449.4	1630.0	1.8075	1.62252	1447.8	1627.9	1.7865	1.38709		1625.9	1.7685
1400	2.1988	1537.8	1741.2	1.8708	1.82957	1536.6	1739.7	1.8501	1.56580	1535.4	1738.2	1.8324
1600	2.4430	1629.4	1855.4	1.9291	2.0340	1628.4	1854.2	1.9085	1.74192	1627.5	1853.1	1.8911
1800	2.6856	1724.2	1972.7	1.9834	2.2369	1723.4	1971.8	1.9630	1.91643	1722.7		1.9457
2000	2.9271	1822.3	2093.1	2.0345	2.4387	1821.7	2092.4	2.0141	2.08987	1821.0	2091.7	1.9969
	P =	= 800 psia	(518.27	°F)	P = 1	1000 psia	(544.65°	F)	P = 1	1250 psia	(572.45°	F)
Sat.	0.56920	1115.0	1199.3	1.4162	0.44604	1110.1	1192.6	1.3906	0.34549	1102.0	1181.9	1.3623
550	0.61586	1139.4	1230.5	1.4476	0.45375	1115.2	1199.2	1.3972				
600	0.67799	1170.5	1270.9	1.4866	0.51431	1154.1	1249.3	1.4457	0.37894	1129.5	1217.2	1.3961
650	0.73279	1197.6	1306.0	1.5191	0.56411	1185.1	1289.5	1.4827	0.42703			1.4414
700	0.78330		1338.4	1.5476	0.60844	1212.4		1.5140			1306.8	
750	0.83102	1246.0	1369.1	1.5735	0.64944	1237.6	1357.8	1.5418	0.50344	1226.4	1342.9	1.5076
800	0.87678	1268.9	1398.7	1.5975	0.68821	1261.7	1389.0	1.5670	0.53687	1252.2	1376.4	1.5347
900	0.96434	1313.3	1456.0	1.6413	0.76136	1307.7	1448.6	1.6126	0.59876		1439.0	1.5826
1000	1.04841	1357.0	1512.2	1.6812	0.83078	1352.5	1506.2	1.6535	0.65656	1346.7	1498.6	1.6249
1100	1.13024	1400.7	1568.0	1.7181	0.89783	1396.9	1563.1	1.6911	0.71184	1392.2	1556.8	1.6635
1200 1400	1.21051 1.36797	1444.6 1534.2	1623.8 1736.7	1.7528 1.8170	0.96327 1.09101	1441.4 1531.8	1619.7 1733.7	1.7263 1.7911	0.76545 0.86944	1437.4 1528.7	1614.5 1729.8	1.6993 1.7649
1600	1.52283	1626.5	1851.9	1.8759	1.09101	1624.6	1849.6	1.7911	0.86944	1622.2	1729.6	1.8246
1800	1.67606		1970.0	1.9306	1.33956	1720.3	1968.2	1.9053	1.07036	1718.4	1966.0	1.8799
2000	1.82823	1820.4		1.9819	1.46194	1819.1	2089.6	1.9568		1817.5	2087.9	1.9315

TABLE A-6E

Superheated water (Concluded)

Опрог	Ticated was	(00//0		S								
Т	V	и	h	S Btu/	V	и	h	s Btu/	V	и	h	s Btu/
°F	ft ³ /lbm	Btu/Ibm	Btu/Ibm		ft ³ /lbm			Ibm∙R	ft ³ /lbm		Btu/Ibm	
	P =	1500 ps	ia (596.26				(617.17°				(635.85°	
Sat.	0.27695	1092.1		1.3362	0.22681	1080.5	1153.9	1.3112	0.18815	1066.8	1136.4	1.2863
600	0.28189	1097.2	1175.4	1.3423								
650	0.33310	1147.2	1239.7	1.4016	0.26292	1122.8	1207.9	1.3607	0.20586	1091.4	1167.6	1.3146
700	0.37198	1183.6	1286.9	1.4433	0.30252	1166.8	1264.7	1.4108	0.24894	1147.6	1239.8	1.3783
750 800	0.40535 0.43550	1214.4 1242.2	1326.9 1363.1	1.4771 1.5064	0.33455 0.36266	1201.5 1231.7	1309.8 1349.1	1.4489 1.4807	0.28074 0.30763	1187.4 1220.5	1291.3 1334.3	1.4218 1.4567
850	0.43356	1268.2	1396.9	1.5328	0.38835	1251.7	1349.1	1.5088	0.30763		1372.8	1.4867
900	0.49015	1293.1	1429.2	1.5569	0.41238	1285.4	1419.0	1.5341	0.35390	1277.5	1408.5	1.5134
1000	0.54031	1340.9	1490.8	1.6007		1334.9	1482.9	1.5796	0.39479	1328.7	1474.9	1.5606
1100	0.58781	1387.3	1550.5	1.6402	0.49917	1382.4	1544.1	1.6201	0.43266	1377.5	1537.6	1.6021
1200	0.63355	1433.3	1609.2	1.6767	0.53932	1429.2	1603.9	1.6572	0.46864	1425.1	1598.5	1.6400
1400	0.72172	1525.7	1726.0	1.7432	0.61621	1522.6	1722.1	1.7245	0.53708	1519.5	1718.3	1.7081
1600	0.80714	1619.8	1843.8	1.8033	0.69031	1617.4	1840.9	1.7852	0.60269		1838.0	1.7693
1800	0.89090	1716.4	1963.7	1.8589	0.76273	1714.5	1961.5	1.8410	0.66660	1712.5	1959.2	1.8255
2000	0.97358	1815.9	2086.1	1.9108	0.83406	1814.2	2084.3	1.8931	0.72942	1812.6	2082.6	1.8778
	P =	2500 ps	ia (668.17	7°F)	P = 3	3000 psia	(695.41°	F)		P = 350	0 psia	
Sat.	0.13076	1031.2	1091.7	1.2330	0.08460	969.8	1016.8	1.1587				
650									0.02492	663.7	679.9	0.8632
700	0.16849	1098.4	1176.3	1.3072	0.09838	1005.3	1059.9	1.1960	0.03065	760.0	779.9	0.9511
750	0.20327	1154.9	1249.0	1.3686	1	1114.1	1196.5	1.3118	0.10460	1057.6	1125.4	1.2434
800	0.22949	1195.9	1302.0	1.4116	0.17601	1167.5	1265.3	1.3676	0.13639	1134.3	1222.6	1.3224
850	0.25174	1230.1	1346.6	1.4463	0.19771	1208.2	1317.9	1.4086	0.15847	1183.8	1286.5	1.3721
900	0.27165	1260.7	1386.4	1.4761	0.21640	1242.8	1362.9	1.4423	0.17659	1223.4	1337.8	1.4106
950	0.29001	1289.1	1423.3	1.5028	0.23321	1273.9	1403.3	1.4716	0.19245	1257.8	1382.4	1.4428
1000 1100	0.30726 0.33949	1316.1 1367.3	1458.2 1524.4	1.5271 1.5710	0.24876 0.27732	1302.8 1356.8	1440.9 1510.8	1.4978 1.5441	0.20687 0.23289	1289.0 1346.1	1423.0 1496.9	1.4711 1.5201
1200	0.36966	1416.6	1524.4	1.6103	0.27732	1408.0	1576.6	1.5850	0.25654	1346.1	1565.4	1.5627
1400	0.42631	1513.3	1710.5	1.6802	0.35249	1507.0	1702.7	1.6567	0.29978	1500.7	1694.8	1.6364
1600	0.48004	1610.1	1832.2	1.7424	0.39830	1605.3	1826.4	1.7199	0.33994	1600.4	1820.5	1.7006
1800	0.53205	1708.6	1954.8	1.7991	0.44237	1704.7	1950.3	1.7773	0.37833	1700.8	1945.8	1.7586
2000	0.58295	1809.4	2079.1	1.8518	0.48532	1806.1	2075.6	1.8304	0.41561	1802.9	2072.1	1.8121
		P = 40	00 psia			P = 500	O psia			P = 600	0 psia	
650	0.02448	657.9	676.1	0.8577	0.02379	648.3	670.3	0.8485	0.02325	640.3	666.1	0.8408
700	0.02440	742.3	763.6	0.9347	0.02678	721.8	746.6	0.9156	0.02564	708.1	736.5	0.9028
750	0.06370	962.1	1009.2	1.1410	0.03373	821.8	853.0	1.0054	0.02981	788.7	821.8	0.9747
800	0.10520	1094.2	1172.1	1.2734	0.05937	986.9	1041.8	1.1581	0.03949	897.1	941.0	1.0711
850	0.12848	1156.7	1251.8	1.3355	0.08551	1092.4		1.2593	0.05815	1018.6	1083.1	1.1819
900	0.14647	1202.5	1310.9	1.3799	0.10390	1155.9	1252.1	1.3198	0.07584	1103.5	1187.7	1.2603
950	0.16176	1240.7	1360.5	1.4157	0.11863	1203.9	1313.6	1.3643	0.09010	1163.7	1263.7	1.3153
1000	0.17538	1274.6	1404.4	1.4463	0.13128	1244.0	1365.5	1.4004	0.10208	1211.4	1324.7	1.3578
1100	0.19957	1335.1	1482.8	1.4983	0.15298	1312.2	1453.8	1.4590	0.12211	1288.4	1424.0	1.4237
1200	0.22121	1390.3	1554.1	1.5426	0.17185	1372.1	1531.1	1.5070	0.13911	1353.4	1507.8	1.4758
1300	0.24128	1443.0	1621.6	1.5821	0.18902	1427.8	1602.7	1.5490	0.15434	1412.5	1583.8	1.5203
1400	0.26028	1494.3	1687.0	1.6182	1	1481.4	1671.1	1.5868	0.16841	1468.4	1655.4	1.5598
1600	0.29620	1595.5	1814.7	1.6835	1	1585.6	1803.1	1.6542	0.19438	1575.7	1791.5	1.6294
1800 2000	0.33033 0.36335	1696.8 1799.7	1941.4 2068.6	1.7422 1.7961	0.26320 0.29023	1689.0		1.7142 1.7689	0.21853 0.24155	1681.1 1786.7	1923.7 2054.9	1.6907 1.7463
2000		1/33./		1./301	0.23023	1/33.2		1.7009	0.24100	1/00./	2004.9	1.7403

FIGURE A-9E

T-s diagram for water.

Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore, Steam Tables (New York: John Wiley & Sons, 1969).

FIGURE A-10E

Mollier diagram for water.

Source: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore, Steam Tables (New York: John Wiley & Sons, 1969).

TABLE A–11ESaturated refrigerant-134a—Temperature table

		Specific ft³/l		<i>Internal</i> Btu/			Entha Btu/				<i>Entropy,</i> Btu/lbm∙R	
Temp., <i>T</i> °F	Sat. press., P _{sat} psia	Sat. liquid, v _f	Sat. vapor,	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s_g
-40 -35 -30 -25 -20 -15 -10	7.432 8.581 9.869 11.306 12.906 14.680 16.642	0.01130 0.01136 0.01143 0.01150 0.01156 0.01163 0.01171	5.7796 5.0509 4.4300 3.8988 3.4426 3.0494 2.7091	-0.016 1.484 2.990 4.502 6.019 7.543 9.073	89.167 88.352 87.532 86.706 85.874 85.036 84.191	89.15 89.84 90.52 91.21 91.89 92.58 93.26	0.000 1.502 3.011 4.526 6.047 7.574 9.109	93.288	97.10 97.86 98.61 99.36 100.12 100.86 101.61	0.00000 0.00355 0.00708 0.01058 0.01405 0.01749 0.02092	0.23135 0.22687 0.22248 0.21817 0.21394 0.20978 0.20569	0.23135 0.23043 0.22956 0.22875 0.22798 0.22727 0.22660
-5 0 5 10 15	18.806 21.185 23.793 26.646 29.759	0.01178 0.01185 0.01193 0.01201 0.01209	2.4137 2.1564 1.9316 1.7345 1.5612	10.609 12.152 13.702 15.259 16.823	83.339 82.479 81.610 80.733 79.846	93.95 94.63 95.31 95.99 96.67	10.650 12.199 13.755 15.318 16.889	90.886 90.062 89.226	102.35 103.08 103.82 104.54 105.27	0.02431 0.02769 0.03104 0.03438 0.03769	0.20166 0.19770 0.19380 0.18996 0.18617	0.22598 0.22539 0.22485 0.22434 0.22386
20 25 30 35 40 45 50	33.147 36.826 40.813 45.124 49.776 54.787 60.175 65.957	0.01217 0.01225 0.01234 0.01242 0.01251 0.01261 0.01270 0.01280	1.4084 1.2732 1.1534 1.0470 0.95205 0.86727 0.79136 0.72323	18.394 19.973 21.560 23.154 24.757 26.369 27.990 29.619	78.950 78.043 77.124 76.195 75.253 74.298 73.329 72.346	97.34 98.02 98.68 99.35 100.01 100.67 101.32 101.97	18.469 20.056 21.653 23.258 24.873 26.497 28.131 29.775	86.636 85.742 84.833 83.907 82.963 82.000	105.98 106.69 107.40 108.09 108.78 109.46 110.13 110.79	0.04098 0.04426 0.04752 0.05076 0.05398 0.05720 0.06039 0.06358	0.18243 0.17874 0.17509 0.17148 0.16791 0.16437 0.16087 0.15740	0.22341 0.22300 0.22260 0.22224 0.22189 0.22157 0.22127 0.22098
60 65 70 75 80 85 90	72.152 78.780 85.858 93.408 101.45 110.00 119.08	0.01290 0.01301 0.01312 0.01323 0.01334 0.01347 0.01359	0.66195 0.60671 0.55681 0.51165 0.47069 0.43348 0.39959	31.258 32.908 34.567 36.237 37.919 39.612 41.317	71.347 70.333 69.301 68.251 67.181 66.091 64.979	102.61 103.24 103.87 104.49 105.10 105.70 106.30	31.431 33.097 34.776 36.466 38.169 39.886 41.617	78.988 77.939 76.866 75.767 74.641	111.44 112.09 112.71 113.33 113.94 114.53 115.10	0.06675 0.06991 0.07306 0.07620 0.07934 0.08246 0.08559	0.15396 0.15053 0.14713 0.14375 0.14038 0.13703 0.13368	0.22070 0.22044 0.22019 0.21995 0.21972 0.21949 0.21926
95 100 105 110 115	128.72 138.93 149.73 161.16 173.23	0.01372 0.01386 0.01400 0.01415 0.01430	0.36869 0.34045 0.31460 0.29090 0.26913	43.036 44.768 46.514 48.276 50.054	63.844 62.683 61.496 60.279 59.031	106.88 107.45 108.01 108.56 109.08	43.363 45.124 46.902 48.698 50.512	71.080 69.825 68.533	115.66 116.20 116.73 117.23 117.71	0.08870 0.09182 0.09493 0.09804 0.10116	0.13033 0.12699 0.12365 0.12029 0.11693	0.21904 0.21881 0.21858 0.21834 0.21809
120 130 140 150 160 170 180 190 200 210	185.96 213.53 244.06 277.79 314.94 355.80 400.66 449.90 504.00 563.76	0.01446 0.01482 0.01521 0.01567 0.01619 0.01681 0.01759 0.01860 0.02009 0.02309	0.24909 0.21356 0.18315 0.15692 0.13410 0.11405 0.09618 0.07990 0.06441 0.04722	85.267	57.749 55.071 52.216 49.144 45.799 42.097 37.899 32.950 26.651 16.498	109.60 110.57 111.44 112.20 112.81 113.22 113.35 113.03 111.92 108.48	52.346 56.080 59.913 63.864 67.958 72.233 76.752 81.631 87.140 94.395	62.924 59.801 56.405 52.671 48.499 43.726 38.053 30.785	118.17 119.00 119.71 120.27 120.63 120.73 120.48 119.68 117.93 113.41	0.10428 0.11054 0.11684 0.12321 0.12970 0.13634 0.14323 0.15055 0.15867 0.16922	0.11354 0.10670 0.09971 0.09251 0.08499 0.07701 0.06835 0.05857 0.04666 0.02839	0.21782 0.21724 0.21655 0.21572 0.21469 0.21335 0.21158 0.20911 0.20533 0.19761

Source: Tables A–11E through A–13E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for Temperatures from 170 K to 455 K and Pressures up to 70 MPa," *J. Phys. Chem, Ref. Data*, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and -40°F).

TABLE A–12ESaturated refrigerant-134a—Pressure table

		Specific ft ³ /	<i>volume,</i> Ibm	In	<i>ternal ener</i> Btu/Ibm	gy,		<i>Enthalpy,</i> Btu/lbm			<i>Entropy,</i> Btu/lbm∙R	
Press., P psia	Sat. temp., T°F	Sat. liquid, v_f	Sat. vapor, v_g	Sat. liquid, u_f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s _{fg}	Sat. vapor, s_g
5	-53.09	0.01113	8.3785	-3.918	91.280	87.36	-3.907	99.022	95.11	-0.00945	0.24353	0.23408
10	-29.52	0.01144	4.3753	3.135	87.453	90.59	3.156	95.528	98.68	0.00742	0.22206	0.22948
15	-14.15	0.01165	2.9880	7.803	84.893	92.70	7.835	93.155	100.99	0.01808	0.20908	0.22715
20	-2.43	0.01182	2.2772	11.401	82.898	94.30	11.445	91.282	102.73	0.02605	0.19962	0.22567
25	7.17	0.01196	1.8429	14.377	81.231	95.61	14.432	89.701	104.13	0.03249	0.19213	0.22462
30	15.37	0.01209	1.5492	16.939	79.780	96.72	17.006	88.313	105.32	0.03793	0.18589	0.22383
35	22.57	0.01221	1.3369	19.205	78.485	97.69	19.284	87.064	106.35	0.04267	0.18053	0.22319
40	29.01	0.01232	1.1760	21.246	77.307	98.55	21.337	85.920	107.26	0.04688	0.17580	0.22268
45	34.86	0.01242	1.0497	23.110	76.221	99.33	23.214	84.858	108.07	0.05067	0.17158	0.22225
50	40.23	0.01252	0.94791	24.832	75.209	100.04	24.948	83.863	108.81	0.05413	0.16774	0.22188
55	45.20	0.01261	0.86400	26.435	74.258	100.69	26.564	82.924	109.49	0.05733	0.16423	0.22156
60	49.84	0.01270	0.79361	27.939	73.360	101.30	28.080	82.030	110.11	0.06029	0.16098	0.22127
65	54.20	0.01279	0.73370	29.357	72.505	101.86	29.510	81.176	110.69	0.06307	0.15796	0.22102
70	58.30	0.01287	0.68205	30.700	71.688	102.39	30.867	80.357	111.22	0.06567	0.15512	0.22080
75	62.19	0.01295	0.63706	31.979	70.905	102.88	32.159	79.567	111.73	0.06813	0.15245	0.22059
80	76.02	0.01303	0.59750	33.201	70.151	103.35	33.394	78.804	112.20	0.07047	0.14993	0.22040
85		0.01310	0.56244	34.371	69.424	103.79	34.577	78.064	112.64	0.07269	0.14753	0.22022
90		0.01318	0.53113	35.495	68.719	104.21	35.715	77.345	113.06	0.07481	0.14525	0.22006
95		0.01325	0.50301	36.578	68.035	104.61	36.811	76.645	113.46	0.07684	0.14307	0.21991
100		0.01332	0.47760	37.623	67.371	104.99	37.869	75.962	113.83	0.07879	0.14097	0.21976
110	85.00	0.01347	0.43347	39.612	66.091	105.70	39.886	74.641	114.53	0.08246	0.13703	0.21949
120	90.49	0.01360	0.39644	41.485	64.869	106.35	41.787	73.371	115.16	0.08589	0.13335	0.21924
130	95.64	0.01374	0.36491	43.258	63.696	106.95	43.589	72.144	115.73	0.08911	0.12990	0.21901
140	100.51	0.01387	0.33771	44.945	62.564	107.51	45.304	70.954	116.26	0.09214	0.12665	0.21879
150	105.12	0.01400	0.31401	46.556	61.467	108.02	46.945	69.795	116.74	0.09501	0.12357	0.21857
160	109.50	0.01413	0.29316	48.101	60.401	108.50	48.519	68.662	117.18	0.09774	0.12062	0.21836
170	113.69	0.01426	0.27466	49.586	59.362	108.95	50.035	67.553	117.59	0.10034	0.11781	0.21815
180	117.69	0.01439	0.25813	51.018	58.345	109.36	51.497	66.464	117.96	0.10284	0.11511	0.21795
190	121.53	0.01452	0.24327	52.402	57.349	109.75	52.912	65.392	118.30	0.10524	0.11250	0.21774
200	125.22	0.01464	0.22983	53.743	56.371	110.11	54.285	64.335	118.62	0.10754	0.10998	0.21753
220	132.21	0.01490	0.20645	56.310	54.458	110.77	56.917	62.256	119.17	0.11192	0.10517	0.21710
240	138.73	0.01516	0.18677	58.746	52.591	111.34	59.419	60.213	119.63	0.11603	0.10061	0.21665
260	144.85	0.01543	0.16996	61.071	50.757	111.83	61.813	58.192	120.00	0.11992	0.09625	0.21617
280	150.62	0.01570	0.15541	63.301	48.945	112.25	64.115	56.184	120.30	0.12362	0.09205	0.21567
300	156.09	0.01598	0.14266	65.452	47.143	112.60	66.339	54.176	120.52	0.12715	0.08797	0.21512
350	168.64	0.01672	0.11664	70.554	42.627	113.18	71.638	49.099	120.74	0.13542	0.07814	0.21356
400	179.86	0.01757	0.09642	75.385	37.963	113.35	76.686	43.798	120.48	0.14314	0.06848	0.21161
450	190.02	0.01860	0.07987	80.092	32.939	113.03	81.641	38.041	119.68	0.15056	0.05854	0.20911
500	199.29	0.01995	0.06551	84.871	27.168	112.04	86.718	31.382	118.10	0.15805	0.04762	0.20566

TABLE A-13E

Superheated refrigerant-134a

Т	V	и	h	s Btu/	V	и	h	s Btu/	v	и	h	s Btu/
°F	ft ³ /lbm		Btu/lbm		ft ³ /lbm	Btu/lbm	Btu/lbm		ft ³ /lbm		Btu/Ibm	
	<i>P</i> =	10 psia (7	$\frac{1}{\text{sat}} = -29$).52°F)	<i>P</i> =	15 psia (<i>T</i>	$s_{\text{sat}} = -14$	↓.15°F)	<i>P</i> =	20 psia (7	$T_{\rm sat} = -2.$	43°F)
Sat.	4.3753	90.59		0.22948	2.9880	92.70	100.99	0.22715	2.2772	94.30	102.73	0.22567
-20 0	4.4856 4.7135			0.23350 0.24174	3.1001	05.09	10269	0.23310	2.2922	04.72	102 20	0.22671
20	4.7133	98.77		0.24174	3.2551			0.23310	2.4130			0.23504
40	5.1600	102.20	111.75	0.25761	3.4074	101.95	111.41	0.24922	2.5306	101.70	111.07	0.24311
60	5.3802			0.26531	3.5577			0.25700	2.6461			0.25097
80	5.5989			0.27288	3.7064			0.26463	2.7600			0.25866
100				0.28033				0.27212	2.8726			0.26621
120				0.28767	4.0006			0.27950	2.9842			0.27363
140		120.66		0.29490	4.1464			0.28677	3.0950	120.37		0.28093
160				0.30203				0.29393	3.2051			0.28812
180				0.30908				0.30100	3.3146	128.41		0.29521
200		132.77		0.31604				0.30798	3.4237			0.30221
220	7.1068	136.98	150.13	0.32292	4.7239	136.88	149.99	0.31487	3.5324	136.78	149.85	0.30912
	P =	30 psia (P =	40 psia (50 psia (
Sat.	1.5492			0.22383	1.1760	98.55	107.26	0.22268	0.9479	100.04	108.81	0.22188
20	1.5691			0.22581	1 2126	100.61	100 EQ	0 22720				
40 60				0.23414 0.24219				0.22738 0.23565	1.0019	102 04	112 11	0.23031
80				0.24219	1.3389			0.23363	1.0540			0.23847
100	1.8908			0.25767	1.3995			0.24363	1.1043			0.23647
120				0.26517				0.25140	1.1534			0.25406
140				0.20317				0.26644	1.2015			0.25400
160				0.27234				0.27375	1.2488			0.26139
180				0.28693				0.28095	1.2955			0.27621
200				0.29398				0.28803	1.3416			0.27021
220		136.57		0.29398	1.7449			0.28803	1.3410	136.15		0.28333
240				0.30778				0.29301	1.4326			0.29728
260				0.30778				0.30190	1.4326			
280	2.5598			0.31436			163.76		1.5223			0.31086
200	-											
		60 psia (70 psia (80 psia (
Sat.				0.22127				0.22080	0.59750	103.35	112.20	0.22040
60				0.22570				0.22155				
80				0.23407				0.23016				0.22661
100				0.24211				0.23836				0.23499
120				0.24991				0.24628				0.24304
140				0.25751				0.25398	0.72698			
160				0.26496				0.26149	0.75888			
180				0.27226				0.26885				0.26583
200	1.1101	131.63		0.27943	0.9447		143.63		l	131.16	143.31	
220	1.1489	135.93		0.28649	0.9785	135.71		0.28317		135.49	148.09	0.28024
240		140.30		0.29344	1.0118		153.21			139.90	152.93	
260		144.75		0.30030	1.0449	144.56		0.29704	0.90961		157.84	
280	1.2629	149.27		0.30707	1.0776			0.30384		148.92		0.30100
300		153.87		0.31376	1.1101	153.71		0.31055	0.96737			0.30773
320	1.3377	158.54	173.39	0.32037	1.1424	158.39	173.19	0.31718	0.99590	158.24	172.98	0.31438
					1				I			

TABLE A-13E

Superheated refrigerant-134a (Concluded)

S								S				S
T	V	и	h	Btu/	V	и	h	Btu/	v	и	h	Btu/
°F	ft ³ /lbm	Btu/Ibm	Btu/Ibm	lbm⋅R	ft ³ /lbm		Btu/Ibm	lbm⋅R	ft ³ /lbm		Btu/Ibm	lbm∙R
	P =	= 90 psia ($T_{\text{sat}} = 72.7$	78°F)	P = '	100 psia ($T_{\rm sat} = 79.$	12°F)	P = 1		$T_{\rm out} = 90$.	49°F)
Cot				0.22006		104.99						0.21924
Sat. 80	0.53113 0.54388	104.21 105.74	113.06 114.80	0.22330	0.47760 0.47906	104.99	113.83 114.05	0.21976 0.22016	0.39644	106.55	115.16	0.21924
100	0.54366	105.74	114.60	0.23189	0.47906	105.18	114.05	0.22010	0.41013	100 40	117 50	0.22362
120	0.60874	114.04	124.18	0.23169	0.51076	113.66	123.65	0.22900	0.41013			0.23232
140	0.63885	118.19	128.83	0.24797	0.56821	117.86	128.37	0.23733	0.46190			0.23232
160	0.66796	122.38	133.51	0.25563	0.50621	122.08	133.09	0.25309	0.48563			0.24851
180	0.69629	126.62	138.22	0.26311	0.62122	126.35	137.85	0.26063				0.25619
200	0.72399	130.92	142.97	0.27043	0.64667	130.67	142.64	0.26801	1			0.26368
220	0.75119	135.27	147.78	0.27762	0.67158	135.05	147.47	0.27523				0.27100
240	0.77796	139.69	152.65	0.28468	0.69605	139.49	152.37	0.28233				0.27817
260	0.80437	144.19	157.58	0.29162	0.72016	143.99	157.32	0.28931	0.59379			0.28521
280	0.83048	148.75	162.58	0.29847	0.74396	148.57	162.34	0.29618	1			0.29214
300	0.85633	153.38	167.64	0.30522	0.74330	153.21	167.42	0.30296	0.63420			0.29896
320	0.88195	158.08	172.77	0.31189	0.79079	157.93	172.56	0.30230				0.30569
			$T_{\text{sat}} = 100$				$T_{\rm sat} = 109$			80 psia (7		
Cot			116.26	0.21879					0.25813			
Sat.	0.33771 0.36243	107.51 111.96	121.35	0.21879	0.29316 0.30578	108.50 111.01	117.18 120.06	0.21836				0.21795 0.21910
120 140	0.38551	111.96	121.33	0.23628	0.30378	115.62	125.32	0.23230	0.28231			0.21910
160	0.36551	120.81	131.36	0.23626	0.32774	120.13	130.43	0.23230	0.28231			0.22830
180	0.40711	125.22	136.30	0.25227	0.34790	124.62	135.49	0.24009	1			0.23718
200	0.42766	129.65	141.24	0.25227	0.38494	124.02	140.52	0.25645	0.31936			0.25330
220	0.44743	134.12	146.21	0.25388	0.38494	133.64	145.55	0.26397	1			0.26094
240	0.48522	134.12	151.21	0.27455	0.40234	138.20	150.62	0.20397	0.36779			0.26837
260	0.46522	143.21	151.21	0.27455	0.41921	142.81	155.71	0.27131				0.20637
280	0.50343	143.21	161.35	0.28166	0.45304	147.48	160.85	0.27549	1			0.27302
300	0.52134	152.54	166.50	0.29551	0.45171	152.20	166.04	0.29246	0.39731			0.28273
320	0.55630	152.54	171.71	0.29551	0.48299	156.98	171.28	0.29246				0.28970
340	0.55345	162.13	171.71	0.30228	0.48299	161.83	171.28	0.29927	0.42394			0.29030
360	0.57545	167.02	182.32	0.30896	0.49828	166.74	181.94		1	166.46		0.30331
300												
			$T_{\text{sat}} = 125$				$T_{\text{sat}} = 156$			00 psia (7		
Sat.	0.22983	110.11	118.62	0.21753	0.14266	112.60	120.52	0.21512	0.09642	113.35	120.48	0.21161
140	0.24541	113.85	122.93	0.22481	0.14656	112.00	101 05	0.01745				
160	0.26412	118.66	128.44	0.23384	0.14656	113.82	121.95	0.21745	0.00050	110 41	100 50	0.01170
180	0.28115	123.35	133.76	0.24229	0.16355	119.52	128.60	0.22802	1			0.21173
200	0.29704	128.00	138.99	0.25035	0.17776	124.78	134.65	0.23733				0.22471
220	0.31212	132.64	144.19	0.25812	0.19044	129.85	140.42	0.24594				0.23500
240	0.32658	137.30	149.38	0.26565	0.20211	134.83	146.05		0.13853			0.24418
260	0.34054	141.99	154.59	0.27298	0.21306	139.77	151.59	0.26192	1			0.25270
280	0.35410	146.72	159.82	0.28015	0.22347	144.70	157.11	0.26947				0.26077
300	0.36733	151.50	165.09	0.28718	0.23346	149.65	162.61	0.27681	0.16611			0.26851
320	0.38029	156.33	170.40	0.29408	0.24310	154.63	168.12	0.28398	1			0.27599
340	0.39300	161.22	175.77	0.30087	0.25246	159.64	173.66	0.29098		157.97		0.28326
360	0.40552	166.17	181.18	0.30756	0.26159	164.70	179.22	0.29786	0.18951	163.15	1//.18	0.29035

980 PROPERTY TARI ES AND CHARTS

FIGURE A-14E

P-h diagram for refrigerant-134a.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

FIGURE A-15

Nelson-Obert generalized compressibility chart.

Used with permission of Dr. Edward E. Obert, University of Wisconsin.

TABLE A–16EProperties of the atmosphere at high altitude

0 59.00 14.7 32.174 1116 0.07647 1.202 × 10-5 0.0146 500 57.22 14.4 32.173 1115 0.07536 1.199 × 10-5 0.0146 1000 55.43 14.2 32.171 1113 0.07426 1.196 × 10-5 0.0146 1500 53.65 13.9 32.169 1111 0.07317 1.193 × 10-5 0.0145 2000 51.87 13.7 32.168 1109 0.07210 1.190 × 10-5 0.0145 2000 51.87 13.7 32.168 1109 0.07210 1.190 × 10-5 0.0145 3000 48.30 13.2 32.165 1105 0.06998 1.183 × 10-5 0.0144 3000 48.30 13.2 32.163 1100 0.06998 1.183 × 10-5 0.0144 3500 46.52 12.9 32.163 1103 0.06985 1.180 × 10-5 0.0143 4500 42.96 12.5 32.160 1099 0.06690 1.173 × 10-5 0.0143 4500 42.96 12.5 32.160 1099 0.06690 1.173 × 10-5 0.0142 5500 39.39 12.0 32.157 1095 0.06690 1.170 × 10-5 0.0142 5500 39.39 12.0 32.157 1095 0.06491 1.167 × 10-5 0.0141 6000 37.61 11.8 32.156 1093 0.06333 1.164 × 10-5 0.0141 7000 34.05 11.3 32.152 1093 0.06200 1.157 × 10-5 0.0141 7000 34.05 11.3 32.151 1091 0.06296 1.160 × 10-5 0.0141 7000 34.05 11.3 32.151 1093 0.06200 1.157 × 10-5 0.0141 8000 30.48 10.9 32.149 1085 0.06200 1.157 × 10-5 0.0141 8000 30.48 10.9 32.149 1085 0.06012 1.150 × 10-5 0.0140 8000 30.48 10.9 32.149 1085 0.06012 1.150 × 10-5 0.0140 8000 30.48 10.9 32.148 1083 0.05919 1.147 × 10-5 0.0149 8500 28.70 10.7 32.148 1083 0.05919 1.147 × 10-5 0.0149 8500 28.70 10.7 32.148 1083 0.05919 1.147 × 10-5 0.0139 11.000 12.67 8.99 32.146 1081 0.05828 1.144 × 10-5 0.0139 11.000 12.36 10.1 1.150 × 10-5 0.0139 11.000 12.67 8.99 32.146 1081 0.05828 1.144 × 10-5 0.0138 11.000 12.67 8.99 32.145 1079 0.05738 1.140 × 10-5 0.0139 11.000 12.67 8.99 32.145 1079 0.05648 1.130 × 10-5 0.0139 11.000 12.67 8.99 32.145 1079 0.05638 1.144 × 10-5 0.0138 11.000 12.67 8.99 32.145 1079 0.05648 1.137 × 10-5 0.0138 11.000 12.67 8.99 32.146 1081 0.05828 1.144 × 10-5 0.0138 11.000 12.67 8.99 32.145 1079 0.05648 1.130 × 10-5 0.0138 11.000 12.67 8.99 32.145 1079 0.05648 1.130 × 10-5 0.0136 11.000 12.67 8.99 32.145 1079 0.05648 1.130 × 10-5 0.0136 11.000 12.67 8.99 32.145 1000 0.05808 1.000 0.05600 1.1000 0.05600 0.05600 0.05600 0.05600 0.05600 0.05600 0.05600 0.05600 0.05600 0.05600 0.056	Altitude,	Temperature, °F	Pressure,	Gravity,	Speed of sound,	Density,	Viscosity	Thermal conductivity,
500		TF						
1000								
1500								
2000 51.87 13.7 32.168 1109 0.07210 1.190 x 10 ⁻⁵ 0.0144 3500 50.09 13.4 32.165 1105 0.06998 1.183 x 10 ⁻⁵ 0.0144 3500 46.52 12.9 32.163 1103 0.06998 1.183 x 10 ⁻⁵ 0.0143 4000 44.74 12.7 32.162 1101 0.06792 1.177 x 10 ⁻⁵ 0.0143 4500 42.96 12.5 32.160 1099 0.06690 1.173 x 10 ⁻⁵ 0.0142 5000 41.17 12.2 32.157 1095 0.06491 1.167 x 10 ⁻⁵ 0.0142 6000 37.61 11.8 32.156 1093 0.06393 1.164 x 10 ⁻⁵ 0.0141 6500 35.83 11.6 32.152 1089 0.06200 1.157 x 10 ⁻⁵ 0.0141 7500 32.26 11.1 32.151 1089 0.06102 1.154 x 10 ⁻⁵ 0.0140 7500 32.26 11.1 32.149 1085								
2500 50.09 13.4 32.166 1107 0.07104 1.186 × 10 ⁻⁵ 0.0144 3000 48.30 13.2 32.165 1105 0.06998 1.183 × 10 ⁻⁵ 0.0144 3500 46.52 12.9 32.163 1103 0.06985 1.180 × 10 ⁻⁵ 0.0143 4000 44.74 12.7 32.162 1101 0.06792 1.177 × 10 ⁻⁵ 0.0143 4500 42.96 12.5 32.160 1099 0.06690 1.173 × 10 ⁻⁵ 0.0142 5500 39.39 12.0 32.157 1095 0.06491 1.167 × 10 ⁻⁵ 0.0141 6500 37.61 11.8 32.156 1093 0.06393 1.164 × 10 ⁻⁵ 0.0141 6500 35.83 11.6 32.154 1091 0.06296 1.160 × 10 ⁻⁵ 0.0141 7000 34.05 11.3 32.152 1089 0.06200 1.157 × 10 ⁻⁵ 0.0140 8000 30.48 10.9 32.149 1085 0.06012 1.150 × 10 ⁻⁵ 0.0139 8500 26.92 10.5 32.146 1081 0.05828 1.144 × 10 ⁻⁵ 0.0139 9000 26.92 10.5 32.146 1081 0.05828 1.144 × 10 ⁻⁵ 0.0139 9500 25.14 10.3 32.145 1077 0.05648 1.137 × 10 ⁻⁵ 0.0139 11.000 19.79 9.72 32.140 1073 0.05473 1.130 × 10 ⁻⁵ 0.0137 11.000 19.79 9.72 32.140 1073 0.05473 1.130 × 10 ⁻⁵ 0.0136 13.000 23.36 10.1 32.145 1077 0.05648 1.137 × 10 ⁻⁵ 0.0136 13.000 12.67 8.99 32.134 1065 0.06132 1.124 × 10 ⁻⁵ 0.0136 13.000 12.67 8.99 32.134 1065 0.05135 1.110 × 10 ⁻⁵ 0.0136 13.000 12.67 8.99 32.134 1065 0.05135 1.110 × 10 ⁻⁵ 0.0137 1.000 19.79 9.72 32.140 1073 0.05473 1.130 × 10 ⁻⁵ 0.0136 13.000 12.67 8.99 32.134 1065 0.06135 1.117 × 10 ⁻⁵ 0.0136 13.000 12.67 8.99 32.134 1065 0.05135 1.110 × 10 ⁻⁵ 0.0136 13.000 12.67 8.99 32.134 1065 0.06135 1.110 × 10 ⁻⁵ 0.0136 13.000 12.67 8.99 32.134 1065 0.06135 1.110 × 10 ⁻⁵ 0.0136 13.000 12.67 8.99 32.134 1061 0.04973 1.110 × 10 ⁻⁵ 0.0132 13.000 -5.55 8.29 32.125 1033 0.04659 1.095 × 10 ⁻⁵ 0.0132 13.000 -5.14 7.34 32.115 1037 0.04659 1.095 × 10 ⁻⁵ 0.0132 13.000 -5.49 3.								
3000								
3500								
4000 44,74 12,7 32,162 1101 0.06792 1.177 × 10 ⁻⁵ 0.0143 4500 42.96 12.5 32,160 1099 0.06690 1.173 × 10 ⁻⁵ 0.0142 5500 39.39 12.0 32,157 1095 0.06491 1.167 × 10 ⁻⁵ 0.0141 6000 37.61 11.8 32,156 1093 0.06393 1.164 × 10 ⁻⁵ 0.0141 6500 35.83 11.6 32,154 1091 0.06296 1.160 × 10 ⁻⁵ 0.0141 7500 32.26 11.1 32,152 1089 0.06200 1.157 × 10 ⁻⁵ 0.0140 7500 32.26 11.1 32,149 1085 0.06102 1.150 × 10 ⁻⁵ 0.0140 8500 28.70 10.7 32,148 1083 0.05919 1.147 × 10 ⁻⁵ 0.0139 9000 26.92 10.5 32,146 1081 0.05828 1.144 × 10 ⁻⁵ 0.0138 10,000 23.36 10.1 32,145 1077								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
5000 41.17 12.2 32.159 1097 0.06590 1.170 × 10 ⁻⁵ 0.0142 5500 39.39 12.0 32.157 1095 0.06491 1.167 × 10 ⁻⁵ 0.0141 6000 37.61 11.8 32.156 1093 0.06393 1.164 × 10 ⁻⁵ 0.0141 6500 35.83 11.6 32.152 1089 0.06206 1.157 × 10 ⁻⁵ 0.0141 7500 32.26 11.1 32.151 1087 0.06105 1.154 × 10 ⁻⁵ 0.0140 8000 30.48 10.9 32.149 1085 0.06012 1.150 × 10 ⁻⁵ 0.0139 8500 28.70 10.7 32.148 1083 0.05919 1.147 × 10 ⁻⁵ 0.0139 9500 25.14 10.3 32.145 1079 0.05738 1.140 × 10 ⁻⁵ 0.0138 10,000 23.36 10.1 32.145 1079 0.05738 1.140 × 10 ⁻⁵ 0.0136 12,000 16.23 9.34 32.131 1069								
5500 39.39 12.0 32.157 1095 0.06491 1.167 × 10 ⁻⁵ 0.0141 6000 37.61 11.8 32.156 1093 0.06393 1.164 × 10 ⁻⁵ 0.0141 6500 35.83 11.6 32.152 1089 0.06200 1.157 × 10 ⁻⁵ 0.0140 7500 32.26 11.1 32.151 1087 0.06105 1.154 × 10 ⁻⁵ 0.0140 8000 30.48 10.9 32.149 1085 0.06012 1.150 × 10 ⁻⁵ 0.0139 8500 28.70 10.7 32.148 1083 0.05919 1.147 × 10 ⁻⁵ 0.0139 9000 26.92 10.5 32.146 1081 0.05828 1.144 × 10 ⁻⁵ 0.0138 10,000 23.36 10.1 32.145 1077 0.05648 1.137 × 10 ⁻⁵ 0.0138 12,000 16.23 9.34 32.137 1069 0.0538 1.140 × 10 ⁻⁵ 0.0136 13,000 12.67 8.99 32.134 1065								
6500 37.61 11.8 32.156 1093 0.06393 1.164 × 10 ⁻⁵ 0.0141 6500 35.83 11.6 32.154 1091 0.06296 1.160 × 10 ⁻⁵ 0.0140 7500 32.26 11.1 32.151 1087 0.06105 1.154 × 10 ⁻⁵ 0.0140 8000 30.48 10.9 32.149 1085 0.06012 1.150 × 10 ⁻⁵ 0.0139 8500 28.70 10.7 32.148 1083 0.05919 1.147 × 10 ⁻⁵ 0.0139 9000 26.92 10.5 32.146 1081 0.05828 1.144 × 10 ⁻⁵ 0.0138 9500 25.14 10.3 32.145 1079 0.05738 1.140 × 10 ⁻⁵ 0.0138 10,000 23.36 10.1 32.145 1077 0.05648 1.137 × 10 ⁻⁵ 0.0136 12,000 16.23 9.34 32.137 1069 0.05302 1.124 × 10 ⁻⁵ 0.0136 13,000 12.67 8.99 32.134 1065								
6500 35.83 11.6 32.154 1091 0.06296 1.160 × 10 ⁻⁵ 0.0141 7000 34.05 11.3 32.152 1089 0.06200 1.157 × 10 ⁻⁵ 0.0140 7500 32.26 11.1 32.151 1087 0.06105 1.154 × 10 ⁻⁵ 0.0140 8000 30.48 10.9 32.149 1085 0.06012 1.150 × 10 ⁻⁵ 0.0139 8500 28.70 10.7 32.148 1083 0.05919 1.147 × 10 ⁻⁵ 0.0139 9000 26.92 10.5 32.146 1081 0.05828 1.144 × 10 ⁻⁵ 0.0138 9500 25.14 10.3 32.145 1077 0.05738 1.140 × 10 ⁻⁵ 0.0138 10,000 23.36 10.1 32.145 1077 0.05648 1.137 × 10 ⁻⁵ 0.0137 11,000 19.79 9.72 32.140 1073 0.05473 1.130 × 10 ⁻⁵ 0.0136 12,000 16.23 9.34 32.137 1069 0.05302 1.124 × 10 ⁻⁵ 0.0136 13,000 12.67 8.99 32.134 1065 0.05135 1.117 × 10 ⁻⁵ 0.0135 14,000 9.12 8.63 32.131 1061 0.04973 1.110 × 10 ⁻⁵ 0.0134 15,000 5.55 8.29 32.128 1057 0.04814 1.104 × 10 ⁻⁵ 0.0134 15,000 -1.58 7.65 32.122 1049 0.04508 1.090 × 10 ⁻⁵ 0.0132 18,000 -5.14 7.34 32.115 1041 0.04217 1.076 × 10 ⁻⁵ 0.0132 19,000 -8.70 7.05 32.115 1041 0.04217 1.076 × 10 ⁻⁵ 0.0132 19,000 -8.70 7.05 32.115 1041 0.04217 1.076 × 10 ⁻⁵ 0.0128 22,000 -19.4 6.21 32.106 1029 0.03808 1.056 × 10 ⁻⁵ 0.0128 24,000 -65.5 5.70 32.100 1020 0.03553 1.042 × 10 ⁻⁵ 0.0128 24,000 -60.5 5.70 32.100 1020 0.03553 1.042 × 10 ⁻⁵ 0.0128 26,000 -33.6 5.22 32.094 1012 0.03311 1.028 × 10 ⁻⁵ 0.0128 26,000 -36.9 3.99 32.08 987 0.02468 0.971 × 10 ⁻⁵ 0.0113 30,000 -69.7 4.78 32.08 968 0.01890 0.955 × 10 ⁻⁵ 0.0113 40,000 -69.7 2.148 32.04 968 0.01487 0.955 × 10 ⁻⁵ 0.0113 45,000 -69.7 2.148 32.04 968 0.01487 0.955 × 10 ⁻⁵ 0.0113 45,000 -69.7 1.332 32.00 968 0.01171 0.055 × 10 ⁻⁵ 0.0113								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c} 7500 \\ 8000 \\ 30.48 \\ 10.9 \\ 32.149 \\ 10.85 \\ 0.06012 \\ 1.150 \times 10^{-5} \\ 0.0139 \\ 8500 \\ 28.70 \\ 10.7 \\ 32.148 \\ 10.83 \\ 0.05919 \\ 1.147 \times 10^{-5} \\ 0.0139 \\ 9000 \\ 26.92 \\ 10.5 \\ 32.146 \\ 10.81 \\ 10.81 \\ 0.05828 \\ 1.144 \times 10^{-5} \\ 0.0138 \\ 9500 \\ 25.14 \\ 10.3 \\ 32.145 \\ 10.79 \\ 0.05738 \\ 1.140 \times 10^{-5} \\ 0.0138 \\ 10.000 \\ 23.36 \\ 10.1 \\ 32.145 \\ 10.77 \\ 0.05648 \\ 1.137 \times 10^{-5} \\ 0.0138 \\ 11.000 \\ 19.79 \\ 9.72 \\ 32.140 \\ 10.73 \\ 0.05473 \\ 1.130 \times 10^{-5} \\ 0.0136 \\ 12.000 \\ 16.23 \\ 9.34 \\ 32.137 \\ 10.69 \\ 0.05302 \\ 1.124 \times 10^{-5} \\ 0.0136 \\ 13.000 \\ 12.67 \\ 8.99 \\ 32.134 \\ 10.65 \\ 0.05135 \\ 1.117 \times 10^{-5} \\ 0.0136 \\ 13.000 \\ 12.67 \\ 8.99 \\ 32.134 \\ 10.65 \\ 0.05135 \\ 1.117 \times 10^{-5} \\ 0.0136 \\ 13.000 \\ 12.67 \\ 8.99 \\ 32.134 \\ 10.65 \\ 0.05135 \\ 1.117 \times 10^{-5} \\ 0.0136 \\ 13.000 \\ 12.67 \\ 8.99 \\ 32.128 \\ 10.67 \\ 0.04814 \\ 1.104 \times 10^{-5} \\ 0.0132 \\ 17.000 \\ -1.58 \\ 7.65 \\ 32.122 \\ 10.49 \\ 0.04508 \\ 1.097 \times 10^{-5} \\ 0.0132 \\ 18.000 \\ -5.14 \\ 7.34 \\ 32.119 \\ 10.45 \\ 0.04508 \\ 1.090 \times 10^{-5} \\ 0.0132 \\ 10.000 \\ -12.2 \\ 6.76 \\ 32.112 \\ 10.37 \\ 0.04077 \\ 1.070 \times 10^{-5} \\ 0.0132 \\ 10.000 \\ -26.5 \\ 5.70 \\ 32.100 \\ 10.20 \\ 0.03553 \\ 1.042 \times 10^{-5} \\ 0.0128 \\ 22.000 \\ -19.4 \\ 6.21 \\ 32.106 \\ 10.29 \\ 0.03808 \\ 1.056 \times 10^{-5} \\ 0.0124 \\ 26.000 \\ -33.6 \\ 5.22 \\ 32.094 \\ 1012 \\ 0.03311 \\ 1.028 \times 10^{-5} \\ 0.0124 \\ 26.000 \\ -47.8 \\ 4.37 \\ 32.082 \\ 995 \\ 0.02866 \\ 1.000 \times 10^{-5} \\ 0.0113 \\ 38.000 \\ -69.7 \\ 3.05 \\ 32.06 \\ 968 \\ 0.01890 \\ 0.955 \times 10^{-5} \\ 0.0113 \\ 38.000 \\ -69.7 \\ 2.148 \\ 32.04 \\ 968 \\ 0.01890 \\ 0.955 \times 10^{-5} \\ 0.0113 \\ 55.000 \\ -69.7 \\ 1.332 \\ 32.00 \\ 968 \\ 0.01487 \\ 0.0922 \\ 0.955 \times 10^{-5} \\ 0.0113 \\ 55.000 \\ -69.7 \\ 1.332 \\ 32.00 \\ 968 \\ 0.01922 \\ 0.955 \times 10^{-5} \\ 0.0113 \\ 55.000 \\ -69.7 \\ 1.332 \\ 32.00 \\ 968 \\ 0.01922 \\ 0.955 \times 10^{-5} \\ 0.0113 \\ 55.000 \\ -69.7 \\ 1.332 \\ 32.00 \\ 968 \\ 0.00922 \\ 0.955 \times 10^{-5} \\ 0.0113 \\ 55.000 \\ -69.7 \\ 1.332 \\ 32.00 \\ 968 \\ 0.0147 \\ 0.0052 \\ 0.955 \times 10^{-5} \\ 0.0113 \\ 0.0113 \\ 0.0012 \\ 0.955 \times 10^{-5} \\ 0.0113 \\ 0.0113 \\ 0.0012 \\ 0.0013 \\ 0.0013 \\ 0.$								
8000 30.48 10.9 32.149 1085 0.06012 1.150 × 10 ⁻⁵ 0.0139 8500 28.70 10.7 32.148 1083 0.05919 1.147 × 10 ⁻⁵ 0.0139 9000 26.92 10.5 32.146 1081 0.05828 1.144 × 10 ⁻⁵ 0.0138 9500 25.14 10.3 32.145 1079 0.05738 1.140 × 10 ⁻⁵ 0.0138 10,000 23.36 10.1 32.145 1077 0.05648 1.137 × 10 ⁻⁵ 0.0137 11,000 19.79 9.72 32.140 1073 0.05473 1.130 × 10 ⁻⁵ 0.0136 12,000 16.23 9.34 32.137 1069 0.05302 1.124 × 10 ⁻⁵ 0.0136 13,000 12.67 8.99 32.134 1065 0.05135 1.117 × 10 ⁻⁵ 0.0136 14,000 9.12 8.63 32.131 1061 0.04973 1.110 × 10 ⁻⁵ 0.0134 15,000 5.55 8.29 32.128 1057<	7000		11.3				1.157×10^{-5}	0.0140
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7500	32.26	11.1	32.151	1087	0.06105		0.0140
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8000	30.48				0.06012		0.0139
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8500	28.70	10.7	32.148	1083	0.05919		0.0139
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9000	26.92	10.5	32.146	1081	0.05828	1.144×10^{-5}	0.0138
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9500	25.14	10.3	32.145	1079	0.05738	1.140×10^{-5}	0.0138
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10,000	23.36	10.1	32.145	1077	0.05648	1.137×10^{-5}	0.0137
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11,000	19.79	9.72	32.140	1073	0.05473	1.130×10^{-5}	0.0136
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12,000	16.23	9.34	32.137	1069	0.05302	1.124×10^{-5}	0.0136
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13,000	12.67	8.99	32.134	1065	0.05135	1.117×10^{-5}	0.0135
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14,000	9.12	8.63	32.131	1061	0.04973	1.110×10^{-5}	0.0134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15,000	5.55	8.29	32.128	1057	0.04814	1.104×10^{-5}	0.0133
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16,000	+1.99	7.97	32.125	1053	0.04659	1.097×10^{-5}	0.0132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17,000	-1.58	7.65	32.122	1049	0.04508	1.090×10^{-5}	0.0132
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18,000	-5.14	7.34	32.119	1045	0.04361	1.083×10^{-5}	0.0130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19,000	-8.70	7.05	32.115	1041	0.04217		0.0129
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-12.2		32.112	1037	0.04077	1.070×10^{-5}	0.0128
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22,000	-19.4		32.106		0.03808	1.056×10^{-5}	0.0126
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24,000	-26.5	5.70	32.100	1020	0.03553	1.042×10^{-5}	0.0124
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26,000	-33.6	5.22	32.094	1012	0.03311	1.028×10^{-5}	0.0122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28,000	-40.7	4.78	32.088	1003	0.03082	1.014×10^{-5}	0.0121
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30,000	-47.8	4.37	32.082	995	0.02866	1.000×10^{-5}	0.0119
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32,000	-54.9	3.99	32.08	987	0.02661		0.0117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34,000	-62.0	3.63	32.07	978	0.02468	0.971×10^{-5}	0.0115
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					968			0.0113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40,000	-69.7	2.73	32.05	968	0.01890	0.955×10^{-5}	0.0113
$55,000$ -69.7 1.332 32.00 968 0.00922 0.955×10^{-5} 0.0113		-69.7	2.148	32.04	968	0.01487	0.955×10^{-5}	0.0113
$55,000$ -69.7 1.332 32.00 968 0.00922 0.955×10^{-5} 0.0113		-69.7	1.691	32.02	968	0.01171		0.0113
	55,000	-69.7	1.332	32.00	968	0.00922	0.955×10^{-5}	0.0113
	60,000	-69.7	1.048	31.99	968	0.00726	0.955×10^{-5}	0.0113

Source: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=14.696 psia, T=59°F, $\rho=0.076474$ lbm/ft³, g=32.1741 ft²/s.

982 PROPERTY TABLES AND CHARTS

TABLE A-17E

Ideal-gas properties of air

iueai-g	gas proper	ries oi all									
<i>T</i> R	<i>h</i> Btu/lbm	P_r	<i>u</i> Btu/Ibm	V_r	<i>s</i> ° Btu/lbm∙R	<i>T</i> R	<i>h</i> Btu/Ibm	P_r	<i>u</i> Btu/lbm		s° Btu/Ibm∙R
360	85.97	0.3363	61.29	396.6	0.50369	1600	395.74	71.13	286.06	8.263	0.87130
380	90.75	0.4061	64.70	346.6	0.51663	1650	409.13	80.89	296.03	7.556	0.87954
400	95.53	0.4858	68.11	305.0	0.52890	1700	422.59	90.95	306.06	6.924	0.88758
420	100.32	0.5760	71.52	270.1	0.54058	1750	436.12	101.98	316.16	6.357	0.89542
440	105.11	0.6776	74.93	240.6	0.55172	1800	449.71	114.0	326.32	5.847	0.90308
537	109.90	0.7913	78.36	215.33	0.56235	1850	463.37	127.2	336.55	5.388	0.91056
	114.69	0.9182	81.77	193.65	0.57255	1900	477.09	141.5	346.85	4.974	0.91788
	119.48	1.0590	85.20	174.90	0.58233	1950	490.88	157.1	357.20	4.598	0.92504
	124.27	1.2147	88.62	158.58	0.59173	2000	504.71	174.0	367.61	4.258	0.93205
	128.10	1.3593	91.53	146.34	0.59945	2050	518.71	192.3	378.08	3.949	0.93891
540	129.06	1.3860	92.04	144.32	0.60078	2100	532.55	212.1	388.60	3.667	0.94564
560	133.86	1.5742	95.47	131.78	0.60950	2150	546.54	223.5	399.17	3.410	0.95222
580	138.66	1.7800	98.90	120.70	0.61793	2200	560.59	256.6	409.78	3.176	0.95919
600	143.47	2.005	102.34	110.88	0.62607	2250	574.69	281.4	420.46	2.961	0.96501
620	148.28	2.249	105.78	102.12	0.63395	2300	588.82	308.1	431.16	2.765	0.97123
640	153.09	2.514	109.21	94.30	0.64159	2350	603.00	336.8	441.91	2.585	0.97732
720 740	157.92 162.73 167.56 172.39 177.23	2.801 3.111 3.446 3.806 4.193	112.67 116.12 119.58 123.04 126.51	87.27 80.96 75.25 70.07 65.38	0.64902 0.65621 0.66321 0.67002 0.67665	2400 2450 2500 2550 2600	617.22 631.48 645.78 660.12 674.49	367.6 400.5 435.7 473.3 513.5	452.70 463.54 474.40 485.31 496.26	2.419 2.266 2.125 1.996 1.876	0.98331 0.98919 0.99497 1.00064 1.00623
760	182.08	4.607	129.99	61.10	0.68312	2650	688.90	556.3	507.25	1.765	1.01172
780	186.94	5.051	133.47	57.20	0.68942	2700	703.35	601.9	518.26	1.662	1.01712
800	191.81	5.526	136.97	53.63	0.69558	2750	717.83	650.4	529.31	1.566	1.02244
820	196.69	6.033	140.47	50.35	0.70160	2800	732.33	702.0	540.40	1.478	1.02767
840	201.56	6.573	143.98	47.34	0.70747	2850	746.88	756.7	551.52	1.395	1.03282
860	206.46	7.149	147.50	44.57	0.71323	2900	761.45	814.8	562.66	1.318	1.03788
880	211.35	7.761	151.02	42.01	0.71886	2950	776.05	876.4	573.84	1.247	1.04288
900	216.26	8.411	154.57	39.64	0.72438	3000	790.68	941.4	585.04	1.180	1.04779
920	221.18	9.102	158.12	37.44	0.72979	3050	805.34	1011	596.28	1.118	1.05264
940	226.11	9.834	161.68	35.41	0.73509	3100	820.03	1083	607.53	1.060	1.05741
960	231.06	10.61	165.26	33.52	0.74030	3150	834.75	1161	618.82		1.06212
980	236.02	11.43	168.83	31.76	0.74540	3200	849.48	1242	630.12		1.06676
1000	240.98	12.30	172.43	30.12	0.75042	3250	864.24	1328	641.46		1.07134
1040	250.95	14.18	179.66	27.17	0.76019	3300	879.02	1418	652.81		1.07585
1080	260.97	16.28	186.93	24.58	0.76964	3350	893.83	1513	664.20		1.08031
1160 1200 1240	271.03 281.14 291.30 301.52 311.79	18.60 21.18 24.01 27.13 30.55	194.25 201.63 209.05 216.53 224.05	22.30 20.29 18.51 16.93 15.52	0.77880 0.78767 0.79628 0.80466 0.81280	3400 3450 3500 3550 3600	908.66 923.52 938.40 953.30 968.21	1613 1719 1829 1946 2068	675.60 687.04 698.48 709.95 721.44	0.7436 0.7087 0.6759	1.08470 1.08904 1.09332 1.09755 1.10172
1360 1400 1440	322.11 332.48 342.90 353.37 363.89	34.31 38.41 42.88 47.75 53.04	231.63 239.25 246.93 254.66 262.44	14.25 13.12 12.10 11.17 10.34	0.82075 0.82848 0.83604 0.84341 0.85062	3800	983.15 998.11 1013.1 1028.1 1043.1	2196 2330 2471 2618 2773	732.95 744.48 756.04 767.60 779.19	0.5882 0.5621 0.5376	1.10584 1.10991 1.11393 1.11791 1.12183
	374.47 385.08	58.78 65.00	270.26 278.13	9.578 8.890	0.85767 0.86456		1058.1 1073.2	2934 3103	790.80 802.43		1.12571 1.12955

TABLE A-17E

Ideal-gas properties of air (Concluded)

<i>T</i> R	<i>h</i> Btu/Ibm	P_r	<i>u</i> Btu/Ibm	V _r	<i>s</i> ° Btu/lbm∙R	<i>T</i> R	<i>h</i> Btu/Ibm	P_r	<i>u</i> Btu/Ibm	V_r	<i>s</i> ° Btu/lbm⋅R
4000	1088.3	3280	814.06	0.4518	1.13334	4600	1270.4	6089	955.04	0.2799	1.17575
4050 4100 4150 4200 4300	1103.4 1118.5 1133.6 1148.7 1179.0	3464 3656 3858 4067 4513		0.4331 0.4154 0.3985 0.3826 0.3529	1.13709 1.14079 1.14446 1.14809 1.15522	4900	1300.9 1331.5 1362.2 1392.9 1423.6	6701 7362 8073 8837 9658	978.73 1002.5 1026.3 1050.1 1074.0	0.2598 0.2415 0.2248 0.2096 0.1956	1.18232 1.18876 1.19508 1.20129 1.20738
4400 4500	1209.4 1239.9	4997 5521	907.81 931.39	0.3262 0.3019	1.16221 1.16905	5200 5300	1454.4 1485.3	10,539 11,481	1098.0 1122.0	0.1828 0.1710	1.21336 1.21923

Note: The properties P_r (relative pressure) and v_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 832–33, Table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

TABLE A-27E

Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, Ibm/Ibmol	Density, ¹ Ibm/ft ³	Enthalpy of vaporization, ² Btu/lbm	Specific heat,¹ c _p Btu/ Ibm∙°F	Higher heating value, ³ Btu/lbm	Lower heating value, ³ Btu/lbm
Carbon (s)	С	12.011	125	_	0.169	14,100	14,100
Hydrogen (g)	H_2	2.016	_	_	3.44	60,970	51,600
Carbon monoxide (g)	co	28.013		_	0.251	4,340	4,340
Methane (g)	CH₄	16.043	_	219	0.525	23,880	21,520
Methanol (ℓ)	CH₄O	32.042	49.3	502	0.604	9,740	8,570
Acetylene (g)	C_2H_2	26.038	_	_	0.404	21,490	20,760
Ethane (g)	C_2H_6	30.070	_	74	0.418	22,320	20,430
Ethanol (ℓ)	C_2H_6O	46.069	49.3	395	0.583	12,760	11,530
Propane (ℓ)	C_3H_8	44.097	31.2	144	0.662	21,640	19,930
Butane (ℓ)	C_4H_{10}	58.123	36.1	156	0.578	21,130	19,510
1-Pentene (ℓ)	C_5H_{10}	70.134	40.0	156	0.525	20,540	19,190
Isopentane (ℓ)	C_5H_{12}	72.150	39.1	_	0.554	20,890	19,310
Benzene (ℓ)	C_6H_6	78.114	54.7	186	0.411	17,970	17,240
Hexene (ℓ)	C_6H_{12}	84.161	42.0	169	0.439	20,430	19,090
Hexane (ℓ)	C_6H_{14}	86.177	41.2	157	0.542	20,770	19,240
Toluene (ℓ)	C_7H_8	92.141	54.1	177	0.408	18,230	17,420
Heptane (ℓ)	C_7H_{16}	100.204	42.7	157	0.535	20,680	19,180
Octane (ℓ)	C_8H_{18}	114.231	43.9	156	0.533	20,590	19,100
Decane (ℓ)	$C_{10}H_{22}$	142.285	45.6	155	0.528	20,490	19,020
Gasoline (ℓ)	$C_n H_{1.87n}$	100-110	45–49	151	0.57	20,300	18,900
Light diesel (ℓ)	$C_nH_{1.8n}$	170	49–52	116	0.53	19,800	18,600
Heavy diesel (ℓ)	$C_nH_{1.7n}$	200	51–55	99	0.45	19,600	18,400
Natural gas (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	0.48	21,500	19,400

 $^{^1\}mbox{At}\ 1$ atm and $68\mbox{°F}.$

 $^{^2\}mbox{At }77^{\circ}\mbox{F}$ for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.

³At 77°F. Multiply by molar mass to obtain heating values in Btu/lbmol.