CME 307 / MS&E 311: Optimization

Gradient descent

Professor Udell

Management Science and Engineering Stanford

January 29, 2024

Outline

Unconstrained minimization

What guarantees? What functions?

Quadratic approximations

Analysis via Polyak-Lojasiewicz condition

Unconstrained minimization

minimize
$$f(x)$$

- $ightharpoonup f: \mathbf{R}^n \to \mathbf{R}$ differentiable
- ▶ assume optimal value $f^* = \inf_x f(x)$ is attained (and finite)
- assume a starting point $x^{(0)}$ is known

unconstrained minimization methods

▶ produce sequence of points $x^{(k)}$, k = 0, 1, ... with

$$f(x^{(k)}) \to f^*$$

(we hope)

Gradient descent

minimize
$$f(x)$$

idea: go downhill

Algorithm Gradient descent

Given: $f : \mathbb{R}^d \to \mathbb{R}$, stepsize t, maxiters **Initialize:** x = 0 (or anything you'd like)

For: $k = 1, \ldots, maxiters$

update x:

$$x \leftarrow x - t \nabla f(x)$$

Gradient descent: choosing a step-size

- **constant step-size.** $t^{(k)} = t$ (constant)
- **decreasing step-size.** $t^{(k)} = 1/k$
- ▶ **line search.** try different possibilities for $t^{(k)}$ until objective at new iterate

$$f(x^{(k)}) = f(x^{(k-1)} - t^{(k)} \nabla f(x^{(k-1)}))$$

decreases enough.

tradeoff: line search requires evaluating f(x) (can be expensive)

define
$$x^+ = x - t\nabla f(x)$$

- ightharpoonup exact line search: find t to minimize $f(x^+)$
- ▶ the **Armijo rule** requires *t* to satisfy

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2$$

for some $c \in (0,1)$, e.g., c = .01.

define
$$x^+ = x - t\nabla f(x)$$

- exact line search: find t to minimize $f(x^+)$
- ▶ the **Armijo rule** requires *t* to satisfy

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2$$

for some $c \in (0, 1)$, *e.g.*, c = .01.

- a simple backtracking line search algorithm:
 - ightharpoonup set t=1
 - ightharpoonup if step decreases objective value sufficiently, accept x^+ :

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2 \implies x \leftarrow x^+$$

otherwise, halve the stepsize $t \leftarrow t/2$ and try again

define
$$x^+ = x - t\nabla f(x)$$

- exact line search: find t to minimize $f(x^+)$
- ▶ the **Armijo rule** requires *t* to satisfy

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2$$

for some $c \in (0,1)$, *e.g.*, c = .01.

a simple backtracking line search algorithm:

- ightharpoonup set t=1
- ightharpoonup if step decreases objective value sufficiently, accept x^+ :

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2 \implies x \leftarrow x^+$$

otherwise, halve the stepsize $t \leftarrow t/2$ and try again

Q: can we can always satisfy the Armijo rule for some *t*?

define
$$x^+ = x - t\nabla f(x)$$

- ightharpoonup exact line search: find t to minimize $f(x^+)$
- ▶ the **Armijo rule** requires *t* to satisfy

$$f(x^+) \le f(x) - ct \|\nabla f(x)\|^2$$

for some $c \in (0,1)$, *e.g.*, c = .01.

a simple backtracking line search algorithm:

- ightharpoonup set t=1
- \triangleright if step decreases objective value sufficiently, accept x^+ :

$$f(x^+) < f(x) - ct \|\nabla f(x)\|^2 \implies x \leftarrow x^+$$

otherwise, halve the stepsize $t \leftarrow t/2$ and try again

 \mathbf{Q} : can we can always satisfy the Armijo rule for some t?

A: yes! see gradient descent demo

Demo: gradient descent

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent.ipynb

How well does GD work?

for $x \in \mathbf{R}^n$,

- $ightharpoonup f(x) = x^T x$
- $f(x) = x^T A x$ for $A \succeq 0$
- ▶ $f(x) = ||x||_1$ (nonsmooth but differentiable **almost** everywhere)
- f(x) = 1/x on x > 0 (strictly convex but not strongly convex)

https://github.com/stanford-cme-307/demos/blob/main/gradient-descent-contours.ipynb

Outline

Unconstrained minimization

What guarantees? What functions?

Quadratic approximations

Analysis via Polyak-Lojasiewicz condition

Solution of an optimization problem

minimize
$$f(x)$$

for $f: \mathcal{D} \to \mathbf{R}$. x^* is a

- ▶ global minimizer if $f(x) \ge f(x^*)$ for all $x \in \mathcal{D}$.
- ▶ **local minimizer** if there is a neighborhood \mathcal{N} around x^* so that $f(x) \geq f(x^*)$ for all $x \in \mathcal{N}$.
- **isolated local minimizer** if the neighborhood \mathcal{N} contains no other local minimizers.
- unique minimizer if it is the only global minimizer.

Solution of an optimization problem

minimize
$$f(x)$$

for $f: \mathcal{D} \to \mathbf{R}$. x^* is a

- ▶ global minimizer if $f(x) \ge f(x^*)$ for all $x \in \mathcal{D}$.
- ▶ **local minimizer** if there is a neighborhood \mathcal{N} around x^* so that $f(x) \geq f(x^*)$ for all $x \in \mathcal{N}$.
- **isolated local minimizer** if the neighborhood \mathcal{N} contains no other local minimizers.
- unique minimizer if it is the only global minimizer.

pictures!

First order optimality condition

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, then $\nabla f(x^*) = 0$.

First order optimality condition

Theorem

If $x^* \in \mathbf{R}^n$ is a local minimizer of a differentiable function $f: \mathbf{R}^n \to \mathbf{R}$, then $\nabla f(x^*) = 0$.

proof: suppose by contradiction that $\nabla f(x^*) \neq 0$. consider points of the form $x_{\alpha} = x^* - \alpha \nabla f(x^*)$ for $\alpha > 0$. by definition of the gradient,

$$\lim_{\alpha \to 0} \frac{f(x_{\alpha}) - f(x^{\star})}{\alpha} = -\nabla f(x^{\star})^{\top} \nabla f(x^{\star}) = -\|\nabla f(x^{\star})\|^{2} < 0$$

so for any sufficiently small $\alpha > 0$, we have $f(x_{\alpha}) < f(x^{*})$, which contradicts the fact that x^{*} is a local minimizer.

Second order optimality condition

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a twice differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, then $\nabla^2 f(x^*) \succeq 0$.

Second order optimality condition

Theorem

If $x^* \in \mathbb{R}^n$ is a local minimizer of a twice differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, then $\nabla^2 f(x^*) \succeq 0$.

proof: similar to the previous proof. use the fact that the second order approximation

$$f(x_{\alpha}) \approx f(x^{\star}) + \nabla f(x^{\star})^{\top} (x_{\alpha} - x^{\star}) + \frac{1}{2} (x_{\alpha} - x^{\star})^{\top} \nabla^{2} f(x^{\star}) (x_{\alpha} - x^{\star})$$

is accurate locally to show a contradiction unless $\nabla^2 f(x^*) \succeq 0$: if not, there is a direction v such that $v^T \nabla^2 f(x^*) v < 0$. then $f(x + \alpha v) < f(x^*)$ for α arbitrarily small, which contradicts the fact that x^* is a local minimizer.

Q: Define convex set? convex function?

Q: Define convex set? convex function?

▶ A set $S \subseteq \mathbf{R}^n$ is convex if it contains every chord: for all $\theta \in [0,1]$, w, $v \in S$,

$$\theta w + (1 - \theta)v \in S$$

Q: Define convex set? convex function?

▶ A set $S \subseteq \mathbb{R}^n$ is convex if it contains every chord: for all $\theta \in [0,1]$, w, $v \in S$,

$$\theta w + (1 - \theta)v \in S$$

▶ A function $f : \mathbf{R}^n \to \mathbf{R}$ is convex iff its superlevel set $S = \{(x, t) : t \ge f(x)\}$ is convex.

Q: Define convex set? convex function?

A set $S \subseteq \mathbb{R}^n$ is convex if it contains every chord: for all $\theta \in [0,1]$, w, $v \in S$,

$$\theta w + (1 - \theta)v \in S$$

- ▶ A function $f : \mathbf{R}^n \to \mathbf{R}$ is convex iff its superlevel set $S = \{(x, t) : t \ge f(x)\}$ is convex.
- ▶ A differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is convex iff it satisfies the first order condition

$$f(v) - f(w) \ge \nabla f(w)^{\top} (v - w) \qquad \forall w, v \in \mathbf{R}^n$$

Q: Define convex set? convex function?

A set $S \subseteq \mathbb{R}^n$ is convex if it contains every chord: for all $\theta \in [0,1]$, w, $v \in S$,

$$\theta w + (1 - \theta)v \in S$$

- ▶ A function $f : \mathbf{R}^n \to \mathbf{R}$ is convex iff its superlevel set $S = \{(x, t) : t \ge f(x)\}$ is convex.
- ▶ A differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is convex iff it satisfies the first order condition

$$f(v) - f(w) \ge \nabla f(w)^{\top} (v - w) \qquad \forall w, v \in \mathbf{R}^n$$

▶ A twice differentiable function $f : \mathbf{R}^n \to \mathbf{R}$ is convex iff its Hessian is always **positive semidefinite**: $\lambda_{\min}(\nabla^2 f) \geq 0$

Convexity examples

Q: Which of these functions are convex?

- ▶ quadratic function $f(x) = x^2$ for $x \in \mathbf{R}$
- ▶ absolute value function f(x) = |x| for $x \in \mathbf{R}$
- ▶ quadratic function $f(x) = x^T A x$, $x \in \mathbf{R}^n$, $A \succeq 0$
- quadratic function $f(x) = x^T A x$, A indefinite
- rollercoaster function (cubic) f(x) = (x-1)(x-3)(x-5)
- ▶ hyperbolic function f(x) = 1/x for x > 0
- ▶ jump function f(x) = 1 if $x \ge 0$, f(x) = 0 otherwise
- ▶ jump to infinity function f(x) = 1 if $x \in [-1, 1]$, $f(x) = \infty$ otherwise

Definition

 $x^{\star} \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function $f: \mathbf{R}^n \to \mathbf{R}$ if $\nabla f(x^*) = 0$.

Q: Can a global minimum have a non-zero gradient?

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

A: No.

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

A: No.

Q: ... for convex functions?

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

A: No.

Q: . . . for convex functions?

A: Yes.

Definition

 $x^* \in \mathbf{R}^n$ is a **stationary point** of a differentiable function

 $f: \mathbf{R}^n \to \mathbf{R} \text{ if } \nabla f(x^*) = 0.$

Q: Can a global minimum have a non-zero gradient?

A: No.

Q: Is a stationary point always a global minimum?

A: No.

Q: . . . for convex functions?

A: Yes.

 $\nabla f(x^*) = 0$ is the **first-order (necessary) condition** for optimality.

Invex function

Definition

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **invex** if for some vector-valued function $\eta: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$,

$$f(x) - f(u) \ge \eta(x, u)^{\top} \nabla f(u)$$
 $\forall u \in \mathbf{R}^n, x \in \operatorname{dom} f$

Theorem (Craven and Glover, Ben-Israel and Mond)

A function is invex iff every stationary point is a global minimum.

Outline

Unconstrained minimization

What guarantees? What functions?

Quadratic approximations

Analysis via Polyak-Lojasiewicz condition

Quadratic approximation

Suppose $f : \mathbf{R} \to \mathbf{R}$ is twice differentiable. For any $x \in \mathbf{R}$, approximate f about x:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x).$$

If f is a quadratic function, $\nabla^2 f(x) = H$ is constant.

Quadratic approximation

Suppose $f : \mathbf{R} \to \mathbf{R}$ is twice differentiable. For any $x \in \mathbf{R}$, approximate f about x:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x).$$

If f is a quadratic function, $\nabla^2 f(x) = H$ is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

$$y^* = \underset{y}{\operatorname{argmin}} f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T H(y - x)$$
$$\Longrightarrow \nabla f(x) + H(y^* - x) = 0$$
$$y^* = x - H^{-1}(\nabla f(x)).$$

Quadratic approximation

Suppose $f : \mathbf{R} \to \mathbf{R}$ is twice differentiable. For any $x \in \mathbf{R}$, approximate f about x:

$$f(y) \approx f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x).$$

If f is a quadratic function, $\nabla^2 f(x) = H$ is constant.

Quadratic approximations are useful because quadratics are easy to minimize:

$$y^* = \underset{y}{\operatorname{argmin}} f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T H(y - x)$$
$$\implies \nabla f(x) + H(y^* - x) = 0$$
$$y^* = x - H^{-1}(\nabla f(x)).$$

If we approximate the Hessian of f by $H = \frac{1}{t}I$ for some t > 0 and choose x^+ to minimize the quadratic approximation, we obtain the **gradient descent** update with step size t:

$$x^+ = x + -t\nabla f(x)$$

Quadratic upper bound

Definition (Smooth)

A function $f : \mathbf{R} \to \mathbf{R}$ is *L*-smooth if for all $x, y \in \mathbf{R}$,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{L}\nabla f$ is *L*-**Lipschitz continuous**:

$$\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$$

▶ $\nabla^2 f(x) \leq LI$ for all $x \in \text{dom } f$.

Quadratic upper bound

Definition (Smooth)

A function $f : \mathbf{R} \to \mathbf{R}$ is *L*-smooth if for all $x, y \in \mathbf{R}$,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{L}\nabla f$ is *L*-**Lipschitz continuous**:

$$\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$$

▶ $\nabla^2 f(x) \leq LI$ for all $x \in \text{dom } f$.

Q: For $A \succeq 0$, the quadratic function $f(x) = \frac{1}{2}x^T Ax$ is ?-smooth

Quadratic upper bound

Definition (Smooth)

A function $f: \mathbf{R} \to \mathbf{R}$ is L-smooth if for all $x, y \in \mathbf{R}$,

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{L}\nabla f$ is *L*-**Lipschitz continuous**:

$$\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|$$

▶ $\nabla^2 f(x) \leq LI$ for all $x \in \operatorname{dom} f$.

Q: For $A \succeq 0$, the quadratic function $f(x) = \frac{1}{2}x^T Ax$ is ?-smooth

A: $\lambda_{\max}(A)$ -smooth

Quadratic lower bound

Definition (Strongly convex)

A function $f : \mathbf{R} \to \mathbf{R}$ is μ -strongly convex if for all $x, y \in \mathbf{R}$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{\mu}\nabla f$ is μ -coercive:

$$\|\nabla f(y) - \nabla f(x)\| \ge \mu \|y - x\|$$

▶ $\nabla^2 f(x) \succeq \mu I$ for all $x \in \operatorname{dom} f$.

Quadratic lower bound

Definition (Strongly convex)

A function $f : \mathbf{R} \to \mathbf{R}$ is μ -strongly convex if for all $x, y \in \mathbf{R}$,

$$f(y) \ge f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||^{2}.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{\mu}\nabla f$ is μ -coercive:

$$\|\nabla f(y) - \nabla f(x)\| \ge \mu \|y - x\|$$

▶ $\nabla^2 f(x) \succeq \mu I$ for all $x \in \operatorname{dom} f$.

Q: For $A \succeq 0$, the quadratic function $f(x) = \frac{1}{2}x^T Ax$ is ?-strongly convex

Quadratic lower bound

Definition (Strongly convex)

A function $f : \mathbf{R} \to \mathbf{R}$ is μ -strongly convex if for all $x, y \in \mathbf{R}$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2.$$

Equivalently, assuming the derivatives exist,

▶ the operator $\frac{1}{\mu}\nabla f$ is μ -coercive:

$$\|\nabla f(y) - \nabla f(x)\| \ge \mu \|y - x\|$$

▶ $\nabla^2 f(x) \succeq \mu I$ for all $x \in \operatorname{dom} f$.

Q: For $A \succeq 0$, the quadratic function $f(x) = \frac{1}{2}x^T Ax$ is ?-strongly convex

A: $\lambda_{\min}(A)$ -strongly convex

Optimizing the upper bound

start at $x^{(0)}$. suppose f is L-smooth, so for all $y \in \mathbf{R}$,

$$f(y) \le f(x^{(0)}) + \nabla f(x)^T (y - x^{(0)}) + \frac{L}{2} ||y - x^{(0)}||^2$$

let's choose next iterate $x^{(1)}$ to minimize this upper bound:

$$x^{(1)} = \underset{y}{\operatorname{argmin}} f(x) + \nabla f(x)^{T} (y - x) + \frac{L}{2} ||y - x||^{2}$$

$$\implies \nabla f(x^{(0)}) + L(x^{(1)} - x^{(0)}) = 0$$

$$x^{(1)} = x^{(0)} - \frac{1}{L} \nabla f(x^{(0)})$$

Optimizing the upper bound

start at $x^{(0)}$. suppose f is L-smooth, so for all $y \in \mathbf{R}$,

$$f(y) \le f(x^{(0)}) + \nabla f(x)^T (y - x^{(0)}) + \frac{L}{2} ||y - x^{(0)}||^2$$

let's choose next iterate $x^{(1)}$ to minimize this upper bound:

$$x^{(1)} = \underset{y}{\operatorname{argmin}} f(x) + \nabla f(x)^{T} (y - x) + \frac{L}{2} ||y - x||^{2}$$

$$\implies \nabla f(x^{(0)}) + L(x^{(1)} - x^{(0)}) = 0$$

$$x^{(1)} = x^{(0)} - \frac{1}{L} \nabla f(x^{(0)})$$

- **gradient descent** update with step size $t = \frac{1}{L}$
- lower bound ensures true optimum can't be too far away...

Outline

Unconstrained minimization

What guarantees? What functions?

Quadratic approximations

Analysis via Polyak-Lojasiewicz condition

for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$,

- **Quadratic loss.** $||Ax b||^2$
- ▶ **Logistic loss.** $f(x) = \sum_{i=1}^{m} \log(1 + \exp(b_i a_i^T x))$ where a_i is ith row of A

for
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$,

- **Quadratic loss.** $||Ax b||^2$
- ▶ **Logistic loss.** $f(x) = \sum_{i=1}^{m} \log(1 + \exp(b_i a_i^T x))$ where a_i is ith row of A

Q: Which of these are smooth? Under what conditions?

for
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$,

- ▶ Quadratic loss. $||Ax b||^2$
- ▶ **Logistic loss.** $f(x) = \sum_{i=1}^{m} \log(1 + \exp(b_i a_i^T x))$ where a_i is ith row of A

Q: Which of these are smooth? Under what conditions?

A: Both.

for
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$,

- **Quadratic loss.** $||Ax b||^2$
- ▶ **Logistic loss.** $f(x) = \sum_{i=1}^{m} \log(1 + \exp(b_i a_i^T x))$ where a_i is ith row of A

Q: Which of these are smooth? Under what conditions?

A: Both.

Q: Which of these are strongly convex? Under what conditions?

for
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $x \in \mathbb{R}^n$,

- **Quadratic loss.** $||Ax b||^2$
- ▶ **Logistic loss.** $f(x) = \sum_{i=1}^{m} \log(1 + \exp(b_i a_i^T x))$ where a_i is ith row of A

Q: Which of these are smooth? Under what conditions?

A: Both.

Q: Which of these are strongly convex? Under what conditions?

A: Quadratic loss is strongly convex if A is rank n. Logistic loss

is strongly convex on a compact domain if A is rank n.

Definition (Polyak-Lojasiewicz condition)

A function $f: \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz**

condition if

$$\frac{1}{2}\|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Definition (Polyak-Lojasiewicz condition)

A function $f : \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz** condition if

$$\frac{1}{2}\|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Theorem

Suppose f(x) = g(Ax) where $g : \mathbf{R}^m \to \mathbf{R}$ is strongly convex and $A : \mathbf{R}^n \to \mathbf{R}^m$ is linear. Then f is Polyak-Lojasiewicz. source: [Karimi, Nutini, and Schmidt (2016)]

Definition (Polyak-Lojasiewicz condition)

A function $f : \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz** condition if

$$\frac{1}{2}\|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Theorem

Suppose f(x) = g(Ax) where $g : \mathbf{R}^m \to \mathbf{R}$ is strongly convex and $A : \mathbf{R}^n \to \mathbf{R}^m$ is linear. Then f is Polyak-Lojasiewicz. source: [Karimi, Nutini, and Schmidt (2016)]

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even when m < n

Definition (Polyak-Lojasiewicz condition)

A function $f : \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz** condition if

$$\frac{1}{2} \|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Theorem

Suppose f(x) = g(Ax) where $g : \mathbf{R}^m \to \mathbf{R}$ is strongly convex and $A : \mathbf{R}^n \to \mathbf{R}^m$ is linear. Then f is Polyak-Lojasiewicz. source: [Karimi, Nutini, and Schmidt (2016)]

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even when m < n

Q: Are all Polyak-Lojasiewicz functions convex?

Definition (Polyak-Lojasiewicz condition)

A function $f : \mathbf{R} \to \mathbf{R}$ satisfies the **Polyak-Lojasiewicz** condition if

$$\frac{1}{2} \|\nabla f(x)\|^2 \ge \mu(f(x) - f^*)$$

Theorem

Suppose f(x) = g(Ax) where $g : \mathbf{R}^m \to \mathbf{R}$ is strongly convex and $A : \mathbf{R}^n \to \mathbf{R}^m$ is linear. Then f is Polyak-Lojasiewicz. source: [Karimi, Nutini, and Schmidt (2016)]

so logistic loss (on a compact set) and quadratic loss are Polyak-Lojasiewicz even when m < n

Q: Are all Polyak-Lojasiewicz functions convex?
A: No. A river valley is Polyak-Lojasiewicz but not convex.
why use Polyak-Lojasiewicz? Polyak-Lojasiewicz is weaker
than strong convexity and yields simpler proofs

PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a Polyak-Lojasiewicz function is globally optimal.)

PL and invexity

Theorem

Every Polyak-Lojasiewicz function is invex. (That is, any stationary point of a Polyak-Lojasiewicz function is globally optimal.)

proof: if
$$\nabla f(\bar{x}) = 0$$
, then

$$0 = \frac{1}{2} \|\nabla f(x)\|^2 \ge \mu(f(\bar{x}) - f^*) \ge 0$$

 $\implies f(\bar{x}) = f^*$ is the global optimum.

strong convexity ⇒ Polyak-Lojasiewicz

Theorem

If f is μ -strongly convex, then f is μ -Polyak-Lojasiewicz.

strong convexity \implies Polyak-Lojasiewicz

Theorem

If f is μ -strongly convex, then f is μ -Polyak-Lojasiewicz.

proof: minimize the strong convexity condition over *y*:

$$\min_{y} f(y) \geq \min_{y} \left(f(x) + \nabla f(x)^{T} (y - x) + \frac{\mu}{2} ||y - x||^{2} \right)
f^{*} \geq f(x) - \frac{1}{2\mu} ||y - x||^{2}$$

Types of convergence

objective converges

$$f(x^{(k)}) \to f^*$$

▶ iterates converge

$$x^{(k)} \rightarrow x^*$$

under

strong convexity: objective converges ==> iterates converge proof: use strong convexity with x = x* and y = x^(k):

$$f(x^{(k)}) - f^* \ge \frac{\mu}{2} ||x^{(k)} - x^*||^2$$

Polyak-Lojasiewicz: not necessarily true (x^* may not be unique)

Rates of convergence

linear convergence with rate c

$$f(x^{(k)}) - f^* \le c^k (f(x^{(0)}) - f^*)$$

- looks like a line on a semi-log plot
- example: gradient descent on smooth strongly convex function
- sublinear convergence
 - looks slower than a line (curves up) on a semi-log plot
 - \triangleright example: 1/k convergence

$$f(x^{(k)}) - f^* \le \mathcal{O}(1/k)$$

- example: gradient descent on smooth convex function
- example: stochastic gradient descent

Gradient descent converges linearly

Theorem

If $f: \mathbf{R}^n \to \mathbf{R}$ is μ -Polyak-Lojasiewicz, L-smooth, and $x^* = \operatorname{argmin}_x f(x)$ exists, then gradient descent with stepsize L

$$x^{(k+1)} = x^{(k)} - \frac{1}{I} \nabla f(x^{(k)})$$

converges linearly to f^{\star} with rate $(1-\frac{\mu}{L})$.

Gradient descent converges linearly: proof

proof: plug in update rule to *L*-smoothness condition

$$f(x^{(k+1)}) - f(x^{(k)}) \leq \nabla f(x^{(k)})^{T} (x^{(k+1)} - x^{(k)}) + \frac{L}{2} ||x^{(k+1)} - x^{(k)}||^{2}$$

$$\leq (-\frac{1}{L} + \frac{1}{2L}) ||\nabla f(x^{(k)})||^{2}$$

$$\leq -\frac{1}{2L} ||\nabla f(x^{(k)})||^{2}$$

$$\leq -\frac{\mu}{L} (f(x^{(k)}) - f^{*}) \rhd (\text{using PL})$$

decrement proportional to error \implies linear convergence:

$$f(x^{(k)}) - f^{\star} \leq (1 - \frac{\mu}{L})(f(x^{(k-1)}) - f^{\star})$$

$$\leq (1 - \frac{\mu}{L})^{k}(f(x^{(0)}) - f^{\star})$$

Practical convergence

Gradient descent with optimal stepsize converges even faster.

$$f(x^{(k+1)}) = \inf_{\alpha} f(x^{(k)} - \alpha \nabla f(x^{(k)})) \le f(x^{(k)} - \frac{1}{L} \nabla f(x^{(k)}))$$

Practical convergence

Gradient descent with optimal stepsize converges even faster.

$$f(x^{(k+1)}) = \inf_{\alpha} f(x^{(k)} - \alpha \nabla f(x^{(k)})) \le f(x^{(k)} - \frac{1}{L} \nabla f(x^{(k)}))$$

► Local vs global convergence

Quiz

- A strongly convex function always satisfies the Polyak-Lojasiewicz condition
 - A. true
 - B. false
- Suppose $f: \mathbf{R} \to \mathbf{R}$ is L-smooth and satisfies the Polyak-Lojasiewicz condition. Then any stationary point $\nabla f(x) = 0$ of f is a global optimum: $f(x) = \operatorname{argmin}_{V} f(y) =: f^{*}$.
 - A. true
 - B. false
- Suppose f: R → R is L-smooth and satisfies the Polyak-Lojasiewicz condition. Then gradient descent on f converges linearly from any starting point.
 - A. true
 - B. false