Climate Model Output Rewriter (CMOR) Version 3

CMIP6 tables and MIPs post-processing

Denis Nadeau

Agenda

- Background
 - What is CMOR?
- What is needed for CMIP6?
- What is new in CMOR3?
 - CMIP6 tables for CMOR3.
- What's needed for similar projects such as obs4MIPs, ana4MIPs, CREATE?
 - Introduction to ezCMOR.

Background

What is CMOR?

- Create a uniform output file from different models following the CF-1 standard format to facilitate model outputs intercomparison.
- Capability to reorder axis order, reverse axis direction and convert units.
- Follow CF conventions provides for standardized description of data contained in a file.
- Data Reference Syntax (DRS) defines vocabulary used in uniquely identifying MIP datasets and specifying file and directory names
 - http://cmip-pcmdi.llnl.gov/cmip5/docs/cmip5_data_reference_syntax.pdf

What is CMOR?

- Define axes.
- Define variables to be written by CMOR.
- Write an array of data that includes one or more time samples for a defined variable.

Coupled Model Intercomparison Project 6

- What is needed for CMIP6?
 - More flexibility with global attributes.
 - Realization, Initialization, Physics in configuration file (table).
 - 2. Allow additional "required" global attributes.
 - 3. Allow user to "define" their custom global attributes.
 - 4. Provide more complete QC information to CMOR.

Current projects for CMIP6

Gather information from different "MIP" projects for CMIP6.

AerChemMIP	ISMIP6
C4MIP	LS3MIP
CFMIP	LUMIP
CORDEX	OMIP
DAMIP	PDRMIP
DCPP	PMIP
DECK	RFMIP
DynVar	SIMIP
FAFMIP	ScenarioMIP
GMMIP	SolarMIP
GeoMIP	VIACSAB
HighResMIP	VoIMIP

Architecture of current XML database.

CMOR3 Gathering information for CMIP6 (XML)

Conversion of XML table to SQlite3 relational database

```
create table var (
                                text primary key not NULL,
        uid
        description
                                text,
        id
                                text,
        label
                                text,
        procComment
                                text,
        procNote
                                text,
                                text,
        prov
                                text,
        sn
        title
                                text.
        units
                                text)
```

- From SQL create JSON format table.
 - CMOR3 will read JSON format table.

```
"GeoMIP": {
     "Experiments": {
          "G6sulfurSlice2": {
             "Variables": {
               "va": {
                    "modeling realm": "atmos",
                    "ok max mean abs": "4.679",
                    "ok min mean abs": "0.9886",
                    "levels": "17",
                    "timeLabel": "time-mean",
                    "mipTable": "Amon",
                    "valid max": "69.93",
                    "valid min": "-71.1",
                    "frequency": "mon",
                    "cell methods": "time: mean",
                    "timeDimension": "time",
                    "dimensions": "longitude|latitude|plevs"
```

- Add new tables to better handle a wider range of model output and observational data.
- Convert tables to JSON files
- 3. Allow more flexibility specially for metadata.
- 4. Add new projects for CMIP6.
- 5. Add new variables, spatial and temporal resolution.
- 6. Provide more complete Quality Control information
 - (e.g., valid max and min for more fields)

Use filename templates:

CMIP5

- hfss_Amon_HadGEM2-AO_historical_r1i1p1_186001-200512.c
 - <variable>_<realm>_<institute>_<experiment>_<rip>_<timestamp>.nc

CMIP6

- <variable_id>_<table_id>_<experiment_id>_<source_id>_<run_variant_id(rip)>_
<grid_id(regrid)>_<time_range>.nc

obs4MIPs

- cltNobs_MODIS_L3_C5_200003-201109.nc
 - <variable>_<satellite>_<Level>_<version>_<timestamp>.nc

CMOR3 Workflow

Introduction to ezCMOR

- Collaboration with NASA Goddard Space Flight Center (NCCS)
 - Convert observation gridded data to CMIP file format using CMOR
 - Convert model reanalysis data format using CMOR.
- Post-processing CMOR2 output files
 - Delete attributes
 - Realization, initialization, physics
 - Add attributes
 - Title
 - Set filename convention.
 - Set directory path convention.
- Add these options to CMOR version 3 for flexibility.

Handlers

For further information.

- https://github.com/PCMDI/xml-cmor3-database
- https://github.com/PCMDI/ezCMOR

Variables

Variable Name	Dimension	Description	Units
Т	3D	Air Temperature	К
U	3D	Eastward wind component	m s-1
V	3D	Northward wind component	m s-1
ТО	3D	Ocean Temperature	К
PREC	2D	precipitation	mm

User variable conversion table.

CMOR Variable				Positive	
Name	User Variable Name	Units	Level		Equation
ta	Т	K	all		data
		_			
ua	U	m s-1	all		data
	V.	4	-11		1-1-
va	V	m s-1	all		data
to	TOCEAN	K	all	up	data
rsds	SWGNT	W m-2		down	data
1303	OVVOIVI	VV 111-Z		GOVVII	lata
rsut	equation	W m-2		up	@DIFF(SWTDN,SWTNT)
rsutc	equation	W m-2		up	@DIFF(SWTDN,SWTNTCLR)
clt	CLDTOT	%			data*100
cl	CLOUD	%	all		data

Resource file for monthly MERRA assimilation data.

```
years=1979,1980,1981
file template
                    = "data/instM 3d asm Cp {0}.lst"
                    = "Tables"
inpath
table
                    = 'CMIP5 Amon createip'
                    = 'Tables'
inpath
OutputTimeUnits
                    = "months since 1900-1-1"
InputTimeUnits
                     = "internal"
SetGlbAttributes
                     = "[(\global\,rc[\product\]),
                                (\processing_version\,rc[\processing_version\]),
                                (\title\,\reanalysis output prepared for ana4MIPs
                                NASA-GSFC\)]"
                     = "[\realization\,\experiment\,\physics\_version\,\initialization\_method\]"
DelGlbAttributes
excel file
                      = 'MERRA ana4MIPs public.xls'
```

rsut	equation	W m-2	up	@DIFF(SWTDN,SWTNT)
rsutc	equation	W m-2	up	@DIFF(SWTDN,SWTNTCLR)

```
def DIFF(h, a, b):
    ""
    compute difference between a and b (a-b)
    ""
    var_a = h.getData( variable=a )
    var_b = h.getData( variable=b )
    res=(var_a - var_b)
    return res
```