Fizikai átviteli jellemzők és módszerek

A kommunikáció elmélete

A kommunikáció elmélete

- Adó aki küldi az információt
- Kódoló az eszköz, amely fizikai jelekké alakítja az információt
- Csatorna a közeg, amelyen a jelek eljutnak a vevőhöz
- Dekódoló a vevő oldalán lévő eszköz, amely a vett jeleket visszaalakítja információvá
- Vevő aki megkapja és befogadja az információt

 Környezet – a csatornát körülvevő "világ", amely hatással lehet az átvitt jelekre, ezt a hatást zajnak nevezzük

Csatornák és vonalak

- Csatornának ezentúl nem a fizikai közeget nevezzük, hanem a kommunikáció alatti összeköttetést
- A vonal a fizikai közeg két állomás között kábel vagy rádióhullám
- Nem célszerű, ha egy kommunikációs csatorna számára kisajátítunk egy vonalat – a "vonalas telefonok" pont így tesznek
- Több csatorna is kialakítható egy vonalon, háromféleképpen:
- 1) Multiplexelés
- 2) Csomagkapcsolás
- 3) Vonalkapcsolás

Multiplexelés

- Frekvenciaosztás
- Időosztás

(Csak megemlítjük, nem kell vele foglalkozni)

Frekvenciaosztásos multiplexelés

A jel multiplexelés egy formája, ahol több alapsávi jelet különböző vivőfrekvenciával modulálnak majd egy összetett (kompozit) jellé egyesítenek.

Időosztásos multiplexelés

Több kis sebességű forrásból beérkező adatfolyamok átvitele egy közös nagy sebességű csatornán az időosztás elve alapján működik.

Vonalkapcsolás

- Két vezetékes telefon között történik
- A fizikai közeg, a vonal a beszélgetés teljes időtartamára lefoglalódik a két készülék számára
- A kommunikáció befejezésével a kapcsolat megszakad, a vonal felszabadul
- Pont-pont kapcsolat érzését adja
- Hátránya: időbe telik a kapcsolat létrehozása és megszakítása

Vonalkapcsolás

Csomagkapcsolás

- Az átvinni kívánt adat méretét korlátozzuk és csomagokká bontjuk
- Az adó feldarabolja az üzenetet azonos méretű csomagokra, és úgy továbbítja
- A vevő összeállítja a csomagokból az eredeti üzenetet
- A darabok sorrendje számít, helyesen kell összerakni!
- A csomagok úgy szállítódnak a vonalon, ahogy az autók az úton: egy csomag elküldése után egy másik adó csomagja is megjelenhet ugyanazon a vonalon
- Nem kell foglalni a vonalat, amíg egy csomag vagy egy teljes adat átér a vevőhöz

Csomagkapcsolás

- Réz alapú kábelek:
- UTP Unshielded Twisted Pair (árnyékolatlan csavart érpár) két szigetelt, egymásra spirálisan felcsavart rézvezeték, összesen 8 páronként felcsavart vezeték van egy kábelben
- Ha kívülről egy árnyékoló fémszövet burokkal is körbevesszük, akkor árnyékolt sodrott érpárról beszélünk (STP – Shielded Twisted Pair)
- A csavarás a két vezeték egymásra hatását küszöböli ki, jelkisugárzás nem lép fel

10. ábra Különböző csavart érpáras kábelek

Egy UTP és STP kábelben 8 vezeték található, melyek funkciói:

- 1: Kimenő adat +
- 2: Kimenő adat –
- 3: Bejövő adat +
- 4, 5: más célokra fenntartva
- 6: Bejövő adat –
- 7, 8: más célokra fenntartva

Csatlakozási Pont	Hozzárendelés
1	Kimenő adat ÷
2	Kimenő adat -
3	Bejövő adat +
6	Bejövő adat -
4,5,7,8	Más célokra fenntartva

 A csavart érpáras kábelek kategóriái – figyeljük meg a sebességet és a maximális hosszt

UTP Categories - Copper Cable					
UTP Category	Data Rate	Max. Length	Cable Type	Application	
CAT1	Up to 1Mbps	-	Twisted Pair	Old Telephone Cable	
CAT2	Up to 4Mbps	-	Twisted Pair	Token Ring Networks	
САТЗ	Up to 10Mbps	100m	Twisted Pair	Token Rink & 10BASE-T Ethernet	
CAT4	Up to 16Mbps	100m	Twisted Pair	Token Ring Networks	
CAT5	Up to 100Mbps	100m	Twisted Pair	Ethernet, FastEthernet, Token Ring	
CAT5e	Up to 1 Gbps	100m	Twisted Pair	Ethernet, FastEthernet, Gigabit Ethernet	
CAT6	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (55 meters)	
CAT6a	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (55 meters)	
CAT7	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (100 meters)	

Kábeltesztelő

Koaxiális kábel

- Rézvezeték, körülvéve szigetelő réteggel. Csatlakozója a BNC-csatlakozó
- Kétféle alkalmazása: alapsávi és széles sávú
- Alapsávi esetén digitális jeleket viszünk át (az elektromos impulzus puszta változását)
- Széles sávú esetén több jelet viszünk át, ezek analóg jelek (kábeltévé esetén)

Koaxiális kábel

Megvalósítható vele a sín topológia

Optikai kábel

- Az információ fényimpulzusok formájában terjed egy fényvezető közegben, praktikusan egy üvegszálon
- Fényforrás → átviteli közeg → fényérzékelő

- Egymódusú (monomode): egy fénysugár halad a kábelben
- Többmódusú (multimode): több fénysugár halad a kábelben

