Introduction to calculations

CALCULATIONS IN TABLEAU

Agata Bak-Geerinck
Senior Data Analyst, Telenet

Why do calculations?

Calculations allow you to create new data from data that already exists in your data source and perform computations on your data

Typical use-cases:

- Measure missing in original dataset:
 - o e.g. Sales and Costs but no Profit measure
- Transforming existing data:
 - e.g extracting First name from First and Last name
- Categorizing the data:
 - o e.g. grouping Age into "Kids", "Teens", "Adults", based on age thresholds
- •

Types of calculations in Tableau

There are four main types of calculations:

Basic calculations:

- Row-level calculations
- Aggregate calculations

Advanced calculations:

- Level of Detail expressions
- Table Calculations

Row-level calculations vs. aggregations

- Row-level calculations
 - Performed on each individual row
 - o e.g. End Date Start Date

- Aggregate calculations e.g. SUM() , AVG()
 - Performed on set of records defined by dimensions in the view
 - e.g Sum of Profit = SUM(Sales) SUM(Cost)
 - Recalculated per dimension in the view

Start date	End date	Days between
05/03/2022	16/01/2022	48
17/03/2022	31/01/2022	45
23/02/2022	30/11/2021	85
07/03/2022	03/01/2022	63
13/02/2022	10/02/2022	3
25/02/2022	31/01/2022	25

Sum	of Profit
	53.950

Region	Sum of Profit
Asia	18.286
Americas	12.074
Europe	11.823
Australia	11.767
Grand Tota	al 53.950

Most common calculation errors

- Tableau has a built-in calculation validity check! The calculation is valid.
- Do NOT mix up row-level and aggregate calculations:

```
SUM([Sales])/[Customer] Cannot mix aggregate and non-aggregate arguments with this function.
```

- Use only row-level or aggregation calculation
- Do **NOT** apply calculations on incompatible data types:

```
SUM([Activity Date]) SUM is being called with (date), did you mean (float)?
```

- Watch out for syntax errors:
 - Missing syntax elements, e.g. ELSEIF or END in an IF() statement
 - Missing an identifier, operator, comma, or parenthesis
 - Using incorrect bracket type {}, [], ()

Most common logical errors

Tableau validity check does NOT eliminate all errors!

Typical logical / mathematical errors:

- Applying mathematical operations in the wrong order
- Incorrect or missing brackets in AND and OR statements
- Wrong application of conditions in IF and CASE statements
- Summing the non-summable values, e.g. Customer IDs
- Averaging the average

• ...

Final analytical responsibility lies with you!

The dataset - Fitbit usage

Let's practice!

CALCULATIONS IN TABLEAU

Start to calculate in Tableau

CALCULATIONS IN TABLEAU

Agata Bak-Geerinck
Senior Data Analyst, Telenet

Let's practice!

CALCULATIONS IN TABLEAU

String and Logical functions

CALCULATIONS IN TABLEAU

Agata Bak-Geerinck
Senior Data Analyst, Telenet

Overview of data types

Data type - an attribute of a piece of data that tells a computer how to interpret its value.

- String
- Date and Time
- Numeric
- Boolean (True / False)
- •

Structured data sources: one column = one data type.

Icon	Data type	
Abc	Text (string) values	
=	Date values	
Ë	Date & Time values	
#	Numerical values	
T F	Boolean values (relational only)	
(III)	Geographic values (used with maps)	

String data type

String - a sequence of one or more letters, numbers or other characters.

Examples of string data:

- "Apple"
- "M. L. King"
- "Year 1992"
- "Female, 29 years old"

In calculations, string values are enclosed in " ".

• e.g IF [Word] = "Apple" THEN "Fruit" END

String functions in Tableau

+ Concatenation - joining two or more strings end-to end:

SPLIT() - extracting parts of a string based on a delimiter:

```
Name
Abbing, Mr. Anthony
Abbott, Master. Eugene Joseph

Split
Abbott

SPLIT ( [Name], ",", 1 )
```

String functions in Tableau

LEFT(), RIGHT(), MID() - extract requested, fixed number of characters, based on the position in the string:

Fitbit version	LEFT()	RIGHT()	MID()
A11	А	11	1
B39	В	39	3
C45	С	45	4
D35	D	35	3
	LEFT([Fitbit version],1)	RIGHT([Fitbit version],2)	MID([Fitbit version],2,1)

Logical functions: Boolean (True/False)

Logical functions allow to determine if a certain condition is true or false and returns a requested value based on evaluation.

Boolean (True/False) conditions:

- Top Athlete?: [Low activity ratio] < 0.1 returns "TRUE" or "FALSE"
- Possible to include several checks in the same condition, adding AND OR statements:
 - o ([Gender]="Female" AND [Age] = 30) OR ([Gender]="Male" AND [Age] = 35)
- Negation:
 - o [Category] = "Busy Mum" AND NOT [Occupation] = "Clerk"
 - o [Category] = "Busy Mum" AND [Occupation] != "Clerk"
 - o [Category] = "Busy Mum" AND [Occupation] <> "Clerk"

Logical functions: IF, IIF, CASE

IF function:

- IF test1 THEN ____ END
- IF test1 THEN ____ ELSE ___ END

```
IF test1 THEN ____ ELSEIF ___ THEN
```

• ____ ELSE ____ END

IIF function

• IIF (test, ____, ___)

CASE function

```
• THEN ____ ELSE ___ END
```

IF allows algebra conditions, e.g:

```
IF [Heart Rate] >=60 THEN "OK" ELSE "NOT OK" END
```

IIF() allows algebra conditions, e.g:

```
IIF ([Heart Rate] >=60, "OK" , "NOT OK")
```

CASE searches for an exact match, e.g:

```
CASE [Fitbit version]
WHEN "A21" THEN "New" WHEN "B16" THEN "Old" END
```

Other logical functions

ISNULL, ISDATE - checks if a value is "Null" or a date:

- ISNULL([Steps]) returns "TRUE" or "FALSE"
- ISDATE([Activity Date]) returns "TRUE"

IFNULL - checks if a value is "Null" and controls the output:

- IFNULL ([Steps], 0)
- IFNULL ([Steps], "No steps")

ZN - returns a 0 if a value is "Null"

• ZN([Steps]) returns 0

Let's practice!

CALCULATIONS IN TABLEAU

Practical use of string and logical functions

CALCULATIONS IN TABLEAU

Agata Bak-GeerinckSenior Data Analyst, Telenet

Let's practice!

CALCULATIONS IN TABLEAU

