0.1 Lecture 12

0.1.1 Topics

- Definition of K-cell.
- Theorem: If $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$ is a sequence of k-cells, then $\bigcap_{n=1}^{\infty} I_n$ is nonempty.
- Theorem: Every k—cell is compact.
- Theorem: Suppose $E \subseteq \mathbb{R}^k$. Then
- Connected sets

E is closed and bounded \iff E is compact \iff Every infinite subset of E has a limit point in E.

• Theorem: Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .

Corollary. If $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$ is a sequence of compact sets, then $\bigcap_{n=1}^{\infty} I_n$ is nonempty.

Theorem (Nested Interval Property). If $I_n = [a_n, b_n]$ is a sequence of closed intervals in \mathbb{R} such that $I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$, then $\bigcap_{n=1}^{\infty} I_n$ is nonempty.

Definition (K-cell). The set $I = [a_1, b_1] \times \cdots \times [a_k, b_k]$ is called a k-cell in \mathbb{R}^k .

Example. Let $I = [a_1, a_2] \times [a_2, b_2]$ is a 2-cell in \mathbb{R}^2 .

Theorem (Nested Cell Property). If $I_1 \supseteq I_2 \supseteq I_3 \cdots$ is a nested sequence of k-cells, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. For each $n \in \mathbb{N}$, let

$$I_n = [a_1^{(n)}, b_1^{(n)}] \times \dots \times [a_k^{(n)}, b_k^{(n)}]$$

Also, let

$$\forall n \in \mathbb{N} \text{ and } \forall 1 \leq i \leq k, \text{ we have } A_i^{(n)} = [a_i^{(n)}, b_i^{(n)}]$$

Since for each $n \in \mathbb{N}$, $I_n \supseteq I_{n+1}$, we have

$$A_i^{(n)} \supseteq A_i^{(n+1)} \ \forall 1 \le i \le k.$$

That is,

$$I_1 = A_1^{(1)} \times \cdots \times A_k^{(1)}$$

$$I_2 = A_1^{(2)} \times \cdots \times A_k^{(2)}$$

$$\vdots$$

$$I_n = A_1^{(n)} \times \cdots A_k^{(n)}.$$

Hence, it follows from the nested interval property that there exists

$$\exists x_1 \in \bigcap_{n=1}^{\infty} A_1^{(n)}$$

$$\exists x_2 \in \bigcap_{i=1}^{\infty} A_2^{(n)}$$

$$\vdots$$

$$\exists x_k \in \bigcap_{n=1}^{\infty} A_k^{(n)}.$$

Thus, by a fact in set theory; that is,

$$(A \cap B) \times (C \cap D) \subset (A \times C) \cap (B \times D).$$

$$(x_1, \dots, x_k) \in \left[\bigcup_{n=1}^{\infty} A_1^{(n)}\right] \times \left[\bigcap_{n=1}^{\infty} A_2^{(n)}\right] \times \dots \times \left[\bigcap_{n=1}^{\infty} A_k^{(n)}\right]$$

$$\subseteq \bigcap_{n=1}^{\infty} [A_1^{(n)} \times \dots \times A_k^{(n)}]$$

$$= \bigcap_{n=1}^{\infty} I_n.$$

Hence, we see that

$$\bigcap_{n=1}^{\infty} I_n \neq \emptyset.$$

Theorem. Every k-cell in \mathbb{R}^k is compact.

Proof. Here we will prove the claim for 2-cells. The proof for a general k-cell is completely analogous. Let $I = [a_1, b_1] \times [a_2, b_2]$ be a 2-cell. Let $a = (a_1, a_2)$ and $b = (b_1, b_2)$. Let

$$\delta = d(a,b) = ||a - b|| = \sqrt{|a_1 - b_1|^2 + |a_2 - b_2|^2}$$

. Note that if $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are any two points in I, then

$$x_1, y_1 \in [a_1, b_2] \Longrightarrow |x_1 - y_1| \le |b_1 - a_1|$$

 $x_2, y_2 \in [a_2, b_2] \Longrightarrow |x_2 - y_2| \le |b_2 - a_2|$

which implies that

$$\sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2} \le \sqrt{|a_1 - b_1|^2 + |a_2 - b_2|^2} = \delta.$$

So, $d(x,y) \leq \delta$. Let us assume for contradiction that I is NOT compact. So, there exists an open cover $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ of I that does NOT have a finite subcover; that is, $I\subseteq\bigcup_{{\alpha}\in\Lambda}G_{\alpha}$. For each $1\leq i\leq 2$, divide $[a_i,b_i]$ into two subintervals of equal length:

$$c_i = \frac{a_i + b_i}{2}$$
 $[a_i, b_i] = [a_i, c_i] \cup [c_i, b_i].$

These subintervals determine 4 2-cells. There is at least one of these 4 2-cells that is not covered

by any finite subcollection of $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$. Let us call this 2-cell as I_1 . Notice that

$$\forall x, y \in I_1 \ \|x - y\|_2 \le \frac{\delta}{2}.$$

Now, subdivide I_1 into 4 2-cells and continue this process inductively. In this manner, we will obtain a sequence of 2-cells

$$I, I_1, I_2, I_3, \dots$$

such that

$$I \supseteq I_1 \supseteq I_2 \supseteq I_3 \supseteq \dots \tag{1}$$

$$\forall x, y \in I_n, \quad ||x - y|| \le \frac{\delta}{2} \tag{2}$$

 $\forall n \in \mathbb{N} \ I_n$ cannot be covered by a finite subcollection of $\{G_\alpha\}_{\alpha \in I}$

Theorem (Heine-Borel Theorem). Let $E \subseteq \mathbb{R}^k$. The following statements are equivalent:

- (a) E is closed and bounded.
- (b) E is compact.
- (c) Every infinite subset of E has a limit point of E.

Proof. We will show that $(a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (a)$.

- $((a)\Longrightarrow (b))$ Assume that E is closed and bounded. Our goal is to show that E is compact. Since E is bounded, there exists a K-cell, I, such that $E\subseteq I$. Note that by Theorem 2.40, we see that I is compact. By Theorem 2.3.5, E is compact.
- $((b) \Longrightarrow (c))$ Assume that E is compact. Our goal is to show that E is limit point compact; that is, every infinite subset of E has a limit point in E. See proof from last week.
- $((c) \Longrightarrow (a))$ Assume that every infinite subset of E has a limit point in E. Our goal is to show that E is closed and bounded. Suppose for sake of contradiction that E is NOT bounded and NOT closed

Suppose that E is NOT bounded. In what follows, we will construct a sequence of points x_1, x_2, \ldots in E. Since E is not bounded, we know that

$$E \not\subseteq N_1(0) \Longrightarrow \exists x_1 \in E \text{ such that } d(x_1,0) = ||x_1||_2 \ge 1.$$

 $E \not\subseteq N_2(0) \Longrightarrow \exists x_2 \in E \text{ such that } d(x_2,0) = ||x_2||_2 \ge 2$

$$E \nsubseteq N_3(0) \Longrightarrow \exists x_3 \in E \text{ such that } d(x_3,0) = ||x_3||_2 \ge 3$$

:

$$E \nsubseteq N_n(0) \Longrightarrow \exists x_n \in E \text{ such that } d(x_n, 0) = ||x_n||_2 \ge n$$

:

That is, we have a sequence of points $S = \{x_n : n \in \mathbb{N}\}$ in E with the property that

$$d(x_n, 0) = ||x_n||_2 \ge n.$$

Note that S is an infinite set; indeed, if S were finite, then

$$S = \{a_1, \dots, a_m\}.$$

Now, let

$$r = \max\{d(a_n, 0) : 1 \le n \le m\}$$

and let $n \in \mathbb{N}$ be such that n > r+1 (By the Archimedean Property). Since $||x_n||_2 \ge n > r+1$, we can conclude that none of the a_1, \ldots, a_m is x_n and this contradicts how S was constructed.

Now, we will show that E is closed. Assume for contradiction that E is NOT closed; that is, $E' \nsubseteq E$. That is, there exists $y_0 \in \mathbb{R}^k$ such that $y_0 \in E'$ but $y_0 \in E$. We will construct a sequence of points y_1, y_2, \ldots in E as follows:

$$\begin{aligned} y_0 &\in E' \Longrightarrow N_1(y_0) \cap (E \setminus \{y_0\}) \text{ is infinite such that } \|y_1 - y_0\| < 1 \\ y_0 &\in E' \Longrightarrow N_{\frac{1}{2}}(y_0) \cap (E \setminus \{y_0\}) \text{ is infinite such that } \|y_2 - y_0\| < \frac{1}{2} \\ &\vdots \\ y_0 &\in E' \Longrightarrow N_{\frac{1}{m}}(y_0) \cap (E \setminus \{y_0\}) \text{ is infinite such that } \|y_m - y_0\| < \frac{1}{m} \\ &\vdots \end{aligned}$$

Let $T = \{y_1, y_2, y_3, \dots\}$ and note that $T \subseteq E$. Note T is infinite (by construction y_1, y_2, y_3, \dots are distinct elements. We claim that if $z \neq y_0$, then $z \in T'$. To this end, we have for all $n \in \mathbb{N}$

$$d(y_0, z) = ||y_0 - z||_2 \le ||y_0 - y_n||_2 + ||y_n - z||_2$$

which implies further that

$$||y_n - z||_2 \ge ||y_0 - z||_2 - ||y_n - y_0||_2 > ||y_0 - z||_2 - \frac{1}{n}.$$

Hence, for all $n \in \mathbb{N}$ with $\frac{1}{n} < \frac{1}{2} ||y_0 - z||_2$, we have

$$d(y_n, z) > ||y_0 - z||_2 - \frac{1}{n}$$

$$> ||y_0 - z||_2 - \frac{1}{2} ||y_0 - z||_2$$

$$= \frac{1}{2} ||y_0 - z||_2.$$

So, for all but finitely many n, we see that

$$d(y_n, z) > \frac{1}{2} ||y_0 - z||_2.$$

Hence, if we let $\varepsilon = \frac{1}{4}||y_0 - z||_2$, then $N_{\varepsilon}(z) \cap T$ is a finite set which proves $z \notin T'$. But this implies that the only possible limit point of T is y_0 , but $y_0 \notin E$. Hence, T is an infinite subset of E with not limit point in E. This contradicts our hypothesis that every infinite subset of E has a limit point of E.

Remark. Note that in any general metric space, we have $(a) \Longrightarrow (b)$ is not necessarily true.

Theorem (Bolzano-Weierstrass Theorem). Let $E \subseteq \mathbb{R}^k$ and E is an infinite set and bounded. Then $E' \neq \emptyset$.

Proof. Suppose that E is bounded. Then there exists a k-cell I such that $E \subseteq I$. By Theorem 2.40, we know that I is a compact set. Furthermore, we know that I is limit point compact by Theorem 2.41. So, every infinite set in I has a limit point in I. In particular, E has a limit point in I. So, $E \neq \emptyset$.

0.2 Lecture 13

0.2.1 Topics

- Separated sets, disconnected sets, connected set.
- Theorem: $E \subseteq \mathbb{R}$ is connected if and only if $x, y \in E$ and $z \in (x, y)$ implies $z \in E$.
- Perfect Sets
- Theorem: $P \subseteq \mathbb{R}^k$ is nonempty perfect implies P is uncountable.
- The Cantor Set

Definition (Connected Sets, Disconnected, connected). Let (X, d) be a metric space.

- (i) Two sets $A, B \subseteq X$ are aid to be disjoint if $A \cap B = \emptyset$.
- (ii) Two sets $A, B \subseteq X$ are said to be **separated** if $\overline{A} \cap B$ and $A \cap \overline{B}$ are both empty.
- (iii) A set $E \subseteq X$ is said to **disconnected** if it can be written as a union of tow nonempty separated sets A and B; that is, $E = A \cup B$.
- (iv) A set $E \subseteq X$ is said to be connected if it is NOT disconnected.

Example (\mathbb{R} with the standard metric). (*) If we have A=(1,2) and B=(2,5) are separated, then

$$\overline{A} \cap B = [1, 2] \cap (2, 5) = \emptyset$$

 $A \cap \overline{B} = (1, 2) \cap [2, 5] = \emptyset.$

Hence, $E = A \cup B$ is disconnected.

(*) We have C = (1, 2] and D = (2, 5) are disjoint but not separated; that is, we have

$$\begin{split} C \cap \overline{D} &= (1,2] \cap [2,5] = \{2\} \\ C \cup D &= (1,5) \text{ is indeed connected.} \end{split}$$

Theorem. Let $E \subseteq \mathbb{R}$. E is connected if and only if E contains the following property

If
$$x, y \in E$$
 and $x < z < y$, then $z \in E$.

Proof.

Remark (Proposition 3.3.5, "Differential Calculus on Normed Space", Cartan). Let U be an open set in a normed (real) vector space. The following conditions are equivalent:

- (a) U is connected
- (b) U is path connected (any two points in U can be connected by a path in U)

Remark (Chapter 4, "Introduction" to Topological Manifolds", John Lee). In any metric space, path connected \Longrightarrow connected.

However, the converse is not always true!

Definition (Perfect Set). Let (X, d) be a metric space. Let $E \subseteq X$. The following are equivalent definitions:

(i) E is said to be **perfect** if E' = E

- (ii) E is said to be **perfect** if $E' \subseteq E$ and $E \subseteq E'$.
- (iii) E is said to be perfect if E is closed and every point of E is a limit point of E.
- (iv) E is said to be perfect if E is closed and E does not have any isolated points.

Example. • $E = [0, 1] \Longrightarrow E' = [0, 1]$. Thus, we have E = E' and so E is perfect.

- $E = [0,1] \cup \{2\} \Longrightarrow 2$ is an isolated point of $E \Longrightarrow E$ is NOT perfect.
- $E = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \Longrightarrow E' = \{0\} \Longrightarrow E \neq E'$, so E is not perfect.
- Is E' from the last example perfect? Indeed, $E' = \{0\} \Longrightarrow (E')' = \emptyset$. Thus, $E' \neq (E')' \Longrightarrow E'$ is NOT perfect.
- $E = \emptyset$ and $E' = \emptyset$. Thus, E = E' so E is perfect.

Theorem. Let P be a nonempty perfect set in \mathbb{R}^k . Then P is uncountable.

Our proof of the theorem above will use the following two lemmas:

Lemma. Let (X,d) be a metric space. Let $E\subseteq X$ be perfect. If V is any open set in X such that $V\cap E\neq\emptyset$, then $V\cap E$ is an infinite set.

Proof. Let $q \in V \cap E$. Thus, $q \in V$ and $q \in E$. Then $q \in V$ implies that there exists $\delta > 0$ such that $N_{\delta}(q) \subseteq V$ and $q \in E$ implies $q \in E'$. As a consequence of these two results, we see that $N_{\delta}(q) \cap E$ is an infinite set. Thus, $V \cap E$ is an infinite set (Here, we are using the fact that an open set intersected with a perfect set is infinite whenever the intersection is nonempty).

Lemma. Let $q \in \mathbb{R}^k$. Let r > 0. Then $\overline{N_r(q)} = C_r(q)$.

Proof. Note that since P' = P and $P \neq \emptyset$, we have $P' \neq \emptyset$. Thus, P is infinite. Assume for contradiction that P is countable. Let's denote the distinct elements of P by x_1, x_2, x_3, \ldots ; that is, we can denote

$$P = \{x_1, x_2, x_3, \dots\}.$$

In what follows, we will construct a sequence of neighborhoods V_1, B_2, V_3, \ldots such that

- (i) For all $n \in \mathbb{N}$, we have $\overline{V_{n+1}} \subseteq V_n$.
- (ii) For all $n \in \mathbb{N}$, $x_n \notin \overline{V_{n+1}}$.
- (iii) For all $n \in \mathbb{N}$, $V_n \cap P \neq \emptyset$.

Let's assume that we have constructed these neighborhoods (Construction of neighborhoods). Then for each $n \in \mathbb{N}$, let

$$K_n = \overline{V_n} \cap P \neq \emptyset.$$

Note that

- (I) $\overline{V_{n+1}} \subseteq V_n \subseteq \overline{V_n}$ so $\overline{V_{n+1}} \cap P \subseteq \overline{V_n} \cap P$ and so $K_{n+1} \subseteq K_n$ for each n.
- (II) Since $\overline{V_n}$ is a closed and bounded set in \mathbb{R}^k , we have that $\overline{V_n}$ is compact. Furthermore, P being a perfect set implies that P is a closed set. As a consequence of these two facts, we can conclude that $K_n = \overline{V_n} \cap P$ is compact.

Using facts (I) and (II), we can conclude that

$$\bigcap_{n=1}^{\infty} K_n \neq \emptyset \tag{*}$$

by Theorem 2.3.6. Recall that for all n, we have $K_n \subseteq P$, and so we have

$$\bigcap_{n=1}^{\infty} K_n \subseteq P.$$

In what follows, we will contradict (*). Let $b \in P$ be arbitrary. Then $b = x_m$ for some $m \in \mathbb{N}$. By property (ii), we see $x_m \notin \overline{V_{m+1}}$ and so $x_m \notin \overline{V_{m+1}} \cap P = K_{m+1}$. This tells us that

$$\bigcap_{n=1}^{\infty} K_n = \emptyset.$$

Remark (On the construction of neighborhoods $V_1, V_2, ...$). Fix $r_1 > 0$. Let $V_1 = N_{r_1}(x_1)$. Clearly, $V_1 \cap P \neq \emptyset$ (because $x_1 \in V_1$ and $c_1 \in P$). Our goal is to construct an open neighborhood V_2 such that

- (i) $\overline{V_2} \subseteq V_1$,
- (ii) $x_1 \notin \overline{V_2}$,
- (iii) $V_2 \cap P \neq \emptyset$.

We can do this just by using the fact that $V_1 \cap P \neq \emptyset$. By the first lemma found above, there exists $y_1 \in V_1 \cap P$ such that $y_1 \neq x_1$. Since V_1 is open and $y_1 \in V_1$, there exists $\delta_1 > 0$ such that $N_{\delta_1}(y_1) \subseteq V_1$.

Let
$$r_2 = \frac{1}{2} \min\{d(x_1, y_1), \delta_1\}.$$

Let $V_2 = N_{r_2}(y_1)$. We claim V_2 has all the desired properties above. Indeed, we see that

(i) Observe that

$$\overline{V_2} = \overline{N_{r_2}(y_1)} = \{ z \in \mathbb{R}^k : ||z - y_1||_2 \le r_2 \}$$

$$\subseteq \{ z \in \mathbb{R}^k : ||z - y_1||_2 < \delta_1 \} = N_{\delta_1}(y_1)$$

$$\subset V_1.$$

(ii) Notice that $d(x_1, y_1) > r_2$ implies that

$$x_1 \notin \overline{N_{r_2}(y_1)} = \{ z \in \mathbb{R}^k : ||z - y_1||_2 \le r_2 \}.$$

(iii) Since $y_1 \in V_2$ and $y_1 \in P$, we clearly have that $V_2 \cap P \neq \emptyset$.

We can construct V_3, V_4, \ldots in a similar manner.

As a consequence of the theorem above, we have

Corollary. The interval [0,1] is uncountable.

0.2.2 The Cantor Set

The construction of the Cantor set is typically done in stages.

Step 0:

Let $E_0 = [0, 1]$.

Step 1:

Remove the segment $\left(\frac{1}{3}, \frac{2}{3}\right)$, that is, remove the middle third, and define

$$E_1 = \left[0, \frac{1}{3}\right] \cup \left[\frac{2}{3}, 1\right].$$

The middle third, in this case, will be calculated by the following

$$\left(\frac{1}{3}, \frac{2}{3}\right) = \left(\frac{3(0)+1}{3^2}, \frac{3(0)+2}{3^2}\right).$$

Step 2:

Take each of the intervals $\left[0,\frac{1}{3}\right]$ and $\left[\frac{2}{3},1\right]$ and remove the middle third of each of those, and define

$$E_2 = \left[0, \frac{1}{9}\right] \cup \left[\frac{2}{9}, \frac{3}{9}\right] \cup \left[\frac{6}{9}, \frac{7}{9}\right] \cup \left[\frac{8}{9}, 1\right].$$

Likewise, we can remove the middle third move explicitly by calculating the following

$$\left(\frac{3(0)+1}{3^2}, \frac{3(0)+2}{3^2}\right)$$
 and $\left(\frac{3(2)+1}{3^2}, \frac{3(2)+2}{3^2}\right)$.

Continue in this manner until we obtain a sequence of compact sets:

$$E_1, E_2, E_3, E_4, \dots$$

with the following properties

- $(1) E_1 \supseteq E_2 \supseteq E_3 \supseteq E_4 \cdots$
- (2) For each $n \in \mathbb{N}$, E_n is the union of 2^n intervals of length $\frac{1}{3^n}$.

The set $P = \bigcap_{n=1}^{\infty} E_n$ is called the **Cantor Set**.

Remark. Notice that in order to obtain E_n , we remove intervals of the form $\left(\frac{3k+1}{3^n}, \frac{3k+2}{3^n}\right)$ from E_{n-1} ; that is, k is such that $0 \le k$ and $3k+2 < 3^n$.

Theorem (Properties of the Cantor Set). Let P denote the Cantor set. Then

- (1) P is compact
- (2) P is nonempty
- (3) P contains no segment
- (4) P is perfect (and so it is uncountable)
- (5) P has measure zero.

Proof. (1) Note that P is an intersection of compact sets. Hence, P is compact (see hw5).

- (2) It follows from Theorem 2.3.6 that the intersection of a sequence of nested nonempty compact sets is nonempty. (In fact, the endpoint of each interval that appears at any state belong to P)
- (3) Our goal is to show that P does NOT contain any set of the form (α, β) (where $0 \le \alpha, \beta \le 1$). Note that, by the construction of P, the intervals of the form:

$$I_{k,n} = \left(\frac{3k+1}{3^n}, \frac{3k+2}{3^n}\right) n \in \mathbb{N}, 3k+2 < 3^n$$

have no intersection with P. However, (α, β) contains at least one of $I_{k,n}$'s. Indeed, (α, β)

contains $\left(\frac{3k+1}{3^n}, \frac{3k+2}{3^n}\right)$.