Измерение коэффициента ослабления потока γ -лучей в веществе и определение их энергий

Маслов Артём, Дедков Денис группа Б01-108а 09.10.2023

Цель и задачи работы:

- 1. С помощью сцинтилляционного счётчика измерить линейные коэффициенты ослабления потока γ -лучей в свинце, железе, алюминии.
- 2. По линейным коэффициентам ослабления потока γ -лучей определить энергию γ -квантов.

Описание экспериментальной установки

Схема экспериментальной установки приведена на рисунке 1:

Рис. 1: Схема экспериментальной установки.

Источник γ -лучей И окружён свинцовой оболочкой. Коллиматор выделяет узкий параллельный пучок γ -квантов, который проходит через набор поглотителей Π , и регистрируется сцинтилляционным счётчиком C (кристалл NaI(Tl)). Сигнал со счётчика усиливается каскадом фотоэлектронного умножителя и формирователявыпрямителя Φ , и регистрируется пересчётным прибором $\Pi\Pi$. Высоковольтный выпрямитель BB обеспечивает питание сцинтилляционного счётчика.

Оборудование и приборы

Экспериментальная установка №5.1б.

- 1. Набор поглотителей из алюминия, свинца и железа.
- 2. Блок детектирования сцинтилляционный РАДЭК БДЕГ-40. Заводской номер №2912. Инвентарный номер №4029.
- 3. Высоковольтный источник питания Scaler 1403. Инвентарный номер №410134125706.
- 4. Источник гамма-излучения в свинцовой оболочке.
- 5. Штангенциркуль. Класс точности 2. Снятие данных со шкалы проводилось с точностью $\sigma_1=0.2$ мм. Материалы имели царапины, возможно их форма была не идеально цилиндрической, устанавливались в держатель для поглотителей, возможно не совсем соосно, поэтому погрешность измерения эффективной толщины одного поглотителя $\sigma_{\text{штангенциркуль}}=0.5$ мм.

Первичные экспериментальные данные

Первичные экспериментальные данные приведены в таблицах 1-4. Погрешность измерения L_i одинакова и равна $\sigma_{\text{штангенциркуль}}=0.5$ мм. Время измерялось цифровым счётчиком импульсов, погрешность измерения $\sigma_T\sim 1/f\ll 1$ сек, где f – тактовая частота микроконтроллера счётчика, поэтому при дальнейших оценках

погрешностью измерения времени пренебрегаем. Считаем, что количество распавшихся частиц подчиняются распределению Пуассона и для количества импульсов считаем, что есть только случайная погрешность $\sigma = \sqrt{N}$.

Условные обозначения: N — число частиц попадающих на счётчик за время T. L — суммарная толщина поглотителя, L_i — толщина отдельных частей поглотителя.

Таблица 1. Радиационный фон.

N	σ_N	T, c
2122	46	60
3996	63	120
5977	77	180

Таблица 2. Поглотитель из свинца.

L, mm	σ_L , mm	T, c	N	σ_N	L_i , mm
0.0	0.5	10	80508	284	0.0
5.0	0.7	20	85154	292	5.0
10.0	0.9	30	71954	268	5.0
14.9	1.0	40	54403	233	4.9
19.7	1.1	60	48184	220	4.8
24.7	1.2	60	28687	169	5.0
29.7	1.3	90	26641	163	5.0
34.5	1.4	100	18783	137	4.8

Таблица 3. Поглотитель из железа.

L, mm	σ_L , mm	<i>T</i> , c	N	σ_N	L_i , mm
0.0	0.5	10	80503	284	0.0
10.1	0.7	20	89487	299	10.1
20.3	0.9	30	75156	274	10.2
30.4	1.0	40	57190	239	10.1
40.5	1.1	60	49202	222	10.1
50.6	1.2	60	28940	170	10.1
60.7	1.3	70	20288	142	10.1
70.9	1.4	90	16637	129	10.2

Таблица 4. Поглотитель из алюминия.

L, mm	σ_L , mm	T, c	N	σ_N	L_i , mm
0.0	0.5	10	80609	284	0.0
20.1	0.7	20	106921	327	20.3
40.2	0.9	30	105830	325	20.1
60.3	1.0	40	93622	306	20.1
80.3	1.1	50	77771	279	20.0
100.4	1.2	60	62404	250	20.1
120.5	1.3	70	49694	223	20.1
140.6	1.4	90	44318	211	20.1

Обработка экспериментальных данных

Уровень радиационного фона определим как:

$$n_{\text{mym}} = <\frac{N}{T}>$$

где $\langle x \rangle$ – среднее значение x.

$$n_{\text{miv}} = 34 \pm 1, \ \varepsilon = 3.6\%$$

Среднеквадратичное отклонение $n_{\text{шум}}$ определялось по формуле:

$$\sigma_{n_{\text{шум}}} = \sqrt{\frac{1}{k-1} \sum_{i=1}^{k} (n_i - \langle n \rangle)^2}$$

Построим график зависимости количества зарегистрированных в секунду γ -квантов n от толщины поглощающего слоя l в обычном и логарифмическом масштабе (рис. 2, 3).

Рис. 2: График зависимости n(l).

Рис. 3: График зависимости $\ln n(l)$.

Погрешность n оценивалась по формулам:

$$\begin{split} \sigma_n &= \sqrt{\sigma_{N/t}^2 + \sigma_{n_{\text{mym}}}^2} \\ \sigma_{N/t} &= \frac{N}{t} \cdot \varepsilon_N = \frac{N}{t} \cdot \frac{\sigma_N}{N} \\ \sigma_{\ln n} &= \frac{1}{n} \cdot \sigma_n \end{split}$$

Кресты погрешности малы и на графиках не видны.

С помощью метода наименьших квадратов проведём на графике в логарифмическом масштабе прямые. Коэффициенты наклона прямых:

$$\begin{split} \mu_{\rm Pb} &= 1.14 \pm 0.04 \ {\rm cm^{-1}} \\ \mu_{\rm Fe} &= 0.56 \pm 0.01 \ {\rm cm^{-1}} \\ \mu_{\rm Al} &= 0.20 \pm 0.01 \ {\rm cm^{-1}} \end{split}$$

Определим линейные коэффициенты поглощения, приведённые к плотности вещества:

$$\begin{split} \mu' &= \frac{\mu}{\rho} \\ \mu'_{Pb} &= 0.085 \pm 0.003 \; \frac{^{\text{CM}^2}}{^{\text{\Gamma}_2}} \\ \mu'_{Fe} &= 0.071 \pm 0.001 \; \frac{^{\text{CM}^2}}{^{\text{\Gamma}_2}} \\ \mu'_{Al} &= 0.076 \pm 0.001 \; \frac{^{\text{CM}^2}}{^{\text{\Gamma}}} \end{split}$$

Были взяты следующие значения плотности:

$$ho_{Pb} = 13.35 \text{ r/cm}^3 \\
ho_{Fe} = 7.87 \text{ r/cm}^3 \\
ho_{Al} = 2.70 \text{ r/cm}^3$$

Обсуждение результатов и выводы

В работе были измерены линейные коэффициенты поглощения Pb, Fe, Al:

$$\begin{split} \mu_{\rm Pb} &= 1.14 \pm 0.04 \ {\rm cm}^{-1} \\ \mu_{\rm Fe} &= 0.56 \pm 0.01 \ {\rm cm}^{-1} \\ \mu_{\rm Al} &= 0.20 \pm 0.01 \ {\rm cm}^{-1} \end{split}$$

Табличные значения линейных коэффициентов поглощения μ в см⁻¹:

E_{γ} , МэВ	Al	Fe	Pb
0.6	0.210	0.606	1.42
0.7	0.196	0.563	1.17
0.8	0.184	0.528	1.01

По табличным видно, что энергия измеряемых в работе гамма-квантов равна примерно $0,7\pm0,1$ МэВ.