Обработка данных:

Размеры тел

	$a_{\scriptscriptstyle \mathrm{K}}$	a	b	c	$h_{ ext{ iny L}}$	$r_{\scriptscriptstyle m L\!I}$	$h_{\scriptscriptstyle m J}$	$r_{\scriptscriptstyle \mathcal{I}}$
значение, см	9.2	9.9	4.9	14.9	9.6	4.3	1.6	6.15
ε	0.0005	0.0005	0.001	0.0003	0.0005	0.0012	0.0031	0.0008

Таблица 1: Размеры исследуемых тел и их погрешности

Абсолютная погрешность измерения размеров линейкой составляет 0.005 см.

Периоды колебаний

 $\sigma_{\text{полн}}$, с

 $\varepsilon_{\text{полн}}$

	\overline{T}	T_{1z} T_{1x}		T_{1y}		T_{1d}		T_{1e}		T_{1p}		T_{1m}		$T_{2\mathrm{x}}$		T_{2y}		T_{2z}			
T_{c}	p, c	3.0	3.053 3.058		3.0	3.061 3.		06	3.064		3.063		3.064		3.8		4.102		3.255		
$\sigma_{ ext{c.j.}}$	іуч, с	, с 0.01 0.0		0.0	04	0.008		0.007		0.008		0.005		0.007		0.026		0.009		0.01	
$\sigma_{\pi c}$	олн, с	, с 0.13		0.	0.13		13	0.13		0.	0.13		.13 0.1		13	0.133		0.13		0.13	
ε_1	$\varepsilon_{\text{полн}} = 0.0427 = 0.0$		0.0	425	0.0425		0.0426		0.0425		0.0	0.0425 0.0		425 0.0		0349 0.0		0.0318		101	
	T	T T		$T_{\rm 2d}$		T_{2e} T_{2}		$_{\rm m}$ T_2		\overline{I}_{2p}		$T_{\rm p}$		T_{3x} T_{3x}		T		$T_{\rm 4x}$ T		4y	
	$T_{\rm cp}$	$T_{\rm cp},{ m c}$		492 3.358 009 0.011		358 3.8		3.4		46	2.5	557	3.6	606	4.2	226 3.2		266	3.2	247	
	$\sigma_{\rm cuvu}$, c		0.0)11	0.017		0.0	08	0.0		0.4	134	0.429		0.457		0.3	666	

Таблица 2: Средние значения периодов колебаний $(T_{\rm cp})$ и их погрешности

0.13

0.0509

0.453

0.1256

0.449

0.1061

0.475

0.1455

0.388

0.1196

0.13

0.0378

0.131

0.0338

Систематическая погрешность для всех измерений одинакова и складывается из погрешности секундомера и скорости реакции экспериментатора, которая определяется с помощью измерения временного промежутка между двумя нажатиями на кнопку. В моем случае скорость реакции составляет 0.13 с, а погрешность секундомера - 0.001 с, следовательно ей можно пренебречь и принять систематическую погрешность равной 0.13 с.

Проверка соотношений периодов

0.13

0.0373

0.13

0.0389

• Параллелепипед

$$\frac{a^2T_{2x}^2 + b^2T_{2y}^2 + c^2T_{2z}^2}{a^2 + b^2 + c^2} = T_{2d}^2, \quad \frac{a^2T_{2x}^2 + b^2T_{2y}^2 + c^2T_{2z}^2}{a^2 + b^2 + c^2} = (12.125 \pm 0.6219)c^2, \quad T_{2d}^2 = (12.194 \pm 0.26)c^2$$

$$\frac{b^2T_{2y}^2 + c^2T_{2z}^2}{c^2 + b^2} = T_{2e}^2, \quad \frac{b^2T_{2y}^2 + c^2T_{2z}^2}{c^2 + b^2} = (11.203 \pm 0.7708)c^2, \quad T_{2e}^2 = (11.276 \pm 0.26)c^2$$

$$\frac{a^2T_{2x}^2 + c^2T_{2z}^2}{c^2 + a^2} = T_{2p}^2, \quad \frac{a^2T_{2x}^2 + c^2T_{2z}^2}{c^2 + a^2} = (11.773 \pm 0.6637)c^2, \quad T_{2p}^2 = (11.875 \pm 0.26)c^2$$

$$\frac{b^2T_{2y}^2 + a^2T_{2x}^2}{a^2 + b^2} = T_{2m}^2, \quad \frac{b^2T_{2y}^2 + a^2T_{2x}^2}{a^2 + b^2} = (14.91 \pm 0.8386)c^2, \quad T_{2m}^2 = (15.039 \pm 0.262)c^2$$

Куб

В справедливости соотношения: $T_{1z} = T_{1x} = T_{1y} = T_{1d} = T_{1e} = T_{1p} = T_{1m}$ можно убедиться, исходя из таблицы 2.

1

$$\begin{split} \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{3} &= T_{1\mathrm{d}}^2, \quad \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{3} = (9.347 \pm 0.4587)c^2, \quad T_{1\mathrm{d}}^2 = (9.364 \pm 0.26)c^2 \\ &\frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{2} = T_{1\mathrm{e}}^2, \quad \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{z}}^2}{2} = (9.982 \pm 0.562)c^2, \quad T_{1\mathrm{e}}^2 = (9.388 \pm 0.26)c^2 \\ &\frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{z}}^2}{2} = T_{1\mathrm{p}}^2, \quad \frac{T_{1\mathrm{x}}^2 + T_{1\mathrm{z}}^2}{2} = (9.973 \pm 0.5617)c^2, \quad T_{1\mathrm{p}}^2 = (9.382 \pm 0.26)c^2 \\ &\frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{x}}^2}{2} = T_{1\mathrm{m}}^2, \quad \frac{T_{1\mathrm{y}}^2 + T_{1\mathrm{x}}^2}{2} = (11.905 \pm 0.5625)c^2, \quad T_{1\mathrm{m}}^2 = (9.388 \pm 0.26)c^2 \end{split}$$

• Цилиндр

$$\frac{T_{3\mathrm{y}}^2}{T_{3\mathrm{x}}^2} = 1 + \frac{h_{\mathrm{u}}^2}{3r_{\mathrm{u}}^2}, \quad \frac{T_{3\mathrm{y}}^2}{T_{3\mathrm{x}}^2} = (1.652 \pm 0.525), \quad 1 + \frac{h_{\mathrm{u}}^2}{3r_{\mathrm{u}}^2} = (2.661 \pm 0.0042)$$

• Диск

$$\frac{T_{4\mathrm{y}}^2}{T_{4\mathrm{x}}^2} = 1 + \frac{h_{\mathrm{\pi}}^2}{3r_{\mathrm{\pi}}^2}, \quad \frac{T_{4\mathrm{y}}^2}{T_{4\mathrm{x}}^2} = (0.988 \pm 0.3721), \quad 1 + \frac{h_{\mathrm{\pi}}^2}{3r_{\mathrm{\pi}}^2} = (1.023 \pm 0.0001)$$

Эллипсоиды инерции

Поскольку мы не знаем сами моменты инерции, но знаем их соотношения и пропорциональность квадратам периодов, построим сечения эллипсоидов в произвольном масштабе, согласно уравнению эллипсоида:

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1$$

• Параллелепипед

$$A = \frac{1}{\sqrt{T_{2x}^2 - T_p^2}} = 0.356, \qquad B = \frac{1}{\sqrt{T_{2y}^2 - T_p^2}} = 0.312, \qquad C = \frac{1}{\sqrt{T_{2z}^2 - T_p^2}} = 0.496$$

Сечение плоскостью хг

Сечение плоскостью ху

Сечение плоскостью ух

Куб

$$A = B = \frac{1}{\sqrt{T_{1x}^2 - T_{p}^2}} = 0.596$$

• Диск

$$A = \frac{1}{\sqrt{T_{3x}^2 - T_p^2}} = 0.393, \qquad B = \frac{1}{\sqrt{T_{3y}^2 - T_p^2}} = 0.297$$

• Цилиндр

$$A = \frac{1}{\sqrt{T_{\text{4x}}^2 - T_{\text{p}}^2}} = 0.492, \qquad B = \frac{1}{\sqrt{T_{\text{4y}}^2 - T_{\text{p}}^2}} = 0.5$$

Сечение куба плоскостью ху

Сечение диска плоскостью ху

Сечение цилиндра плоскостью ху