Loading data We are loading the data from file using numpy genfromtext function. Which will load all the features in a hashmap like data structure to help us easily manipulate the data In [23]: data set = np.genfromtxt('magic04.data', delimiter=',', dtype=None, encoding='utf-8') data set Out[23]: array([(28.7967, 16.0021, 2.6449, 0.3918, 0.1982, 27.7004, 22.011 , -8.2027, 40.092 , 81.882 8, 'g'), (31.6036, 11.7235, 2.5185, 0.5303, 0.3773, 26.2722, 23.8238, -9.9574, 6.3609, 205.261 (162.052 , 136.031 , 4.0612, 0.0374, 0.0187, 116.741 , -64.858 , -45.216 , 76.96 , 256.788 , 'g'), (75.4455, 47.5305, 3.4483, 0.1417, 0.0549, -9.3561, 41.0562, -9.4662, 30.2987, 256.516 6, 'h'), (120.5135, 76.9018, 3.9939, 0.0944, 0.0683, 5.8043, -93.5224, -63.8389, 84.6874, 408.3166, 'h'), (187.1814, 53.0014, 3.2093, 0.2876, 0.1539, -167.3125, -168.4558, 31.4755, 52.731, 272.3174, 'h')], dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<f8'), ('f3', '<f8'), ('f4', '<f8'), ('f5', '<f 8'), ('f6', '<f8'), ('f7', '<f8'), ('f8', '<f8'), ('f9', '<f8'), ('f10', '<U1')]) Separating Gammas from Hadrons In order to make both datasets equal in size we will separate Gs from Hs. Knowing that gamma data is in the first 12332 rows we separate the gamma in a variable called g_class Gamma data In [49]: g class=data set[:12332] g class Out[49]: array([(28.7967, 16.0021, 2.6449, 0.3918, 0.1982, 27.7004, 22.011, -8.2027, 40.092, 81.8828, (31.6036, 11.7235, 2.5185, 0.5303, 0.3773, 26.2722, 23.8238, -9.9574, 6.3609, 205.261, 'g'), (162.052 , 136.031 , 4.0612, 0.0374, 0.0187, 116.741 , -64.858 , -45.216 , 76.96 , 256.788 , 'g'), (22.0913, 10.8949, 2.2945, 0.5381, 0.2919, 15.2776, 18.2296, 7.3975, 21.068 , 123.281 , 'g'), (56.2216, 18.7019, 2.9297, 0.2516, 0.1393, 96.5758, -41.2969, 11.3764, 5.911 , 197.209 , 'g'), (31.5125, 19.2867, 2.9578, 0.2975, 0.1515, 38.1833, 21.6729, -12.0726, 17.5809, 171.227, 'g')], dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<f8'), ('f3', '<f8'), ('f4', '<f8'), ('f5', '<f 8'), ('f6', '<f8'), ('f7', '<f8'), ('f8', '<f8'), ('f9', '<f8'), ('f10', '<U1')]) **Hadron data** In [25]: h class=data set[12332:] h class 89.0566, 11.8175, 14.1224, 231.9028, Out[25]: array([(93.7035, 37.9432, 3.1454, 0.168 , 0.1011, 53.2566, (102.0005, 22.0017, 3.3161, 0.1064, 0.0724, -54.0862,43.0553, -15.0647, 88.4636, 274.9392, 'h'), (100.2775, 21.8784, 3.11 , 0.312 , 0.1446, -48.1834, 57.6547, -9.6341, 20.7848, 346.433, 'h'), (75.4455, 47.5305, 3.4483, 0.1417, 0.0549, -9.3561,41.0562, -9.4662, 30.2987, 256.5166, 'h'), (120.5135, 76.9018, 3.9939, 0.0944, 0.0683, 5.8043, -93.5224, -63.8389, 84.6874, 408.3166,'h'), (187.1814, 53.0014, 3.2093, 0.2876, 0.1539, -167.3125, -168.4558, 31.4755, 52.731 , 272.3174, 'h')], dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<f8'), ('f3', '<f8'), ('f4', '<f8'), ('f5', '<f 8'), ('f6', '<f8'), ('f7', '<f8'), ('f8', '<f8'), ('f9', '<f8'), ('f10', '<U1')]) Making Gs the same size as Hs We are taking a random 6688 rows from the gamma array to make both datasets equal In [26]: | g class=np.random.choice(g_class,size=6688,replace=False) print(g class) print(g class.shape) [(28.7043, 22.2965, 3.0396, 0.2766, 0.1401, -28.2185, -14.4249, 12.2056, 61.727 , 148.541, 'g') (71.3468, 25.1598, 3.0253, 0.2047, 0.1203, -120.403 , 51.7147, 14.6913, 8.6575, 211.858, 'g') (21.561 , 6.7887, 2.07 , 0.7149, 0.4213, 22.5915, 13.3083, -6.4567, 10.302 , 180.155, 'g') (12.9774, 11.0775, 2.1945, 0.7476, 0.4441, -14.3096, 6.7507, 9.7284, 68.4457, 212.57, 'g') (21.2858, 11.4472, 2.2122, 0.5828, 0.3098, -11.4379, -19.7686, -8.6863, 50.0471, 238.41 , 'g') (28.971 , 7.5578, 2.2923, 0.5816, 0.3291, 12.3711, -7.6712, -5.4745, 41.669 , 110.649, 'g')] (6688,)Constructing a new data array We will concatinate the new shortened g_class with the h_class to have our new dataset with equal parameters for both predections. In [27]: | data=np.concatenate((g class,h class),axis=0) print(data) print(data.shape) [(28.7043, 22.2965, 3.0396, 0.2766, 0.1401, -28.2185, -14.4249, 12.2056, 61.727, 148.541, 'g') (71.3468, 25.1598, 3.0253, 0.2047, 0.1203, -120.403, 51.7147, 14.6913, 8.6575, 211.858, 'g') (21.561, 6.7887, 2.07, 0.7149, 0.4213, 22.5915, 13.3083, -6.4567, 10.302 , 180.155 , 'g') (75.4455, 47.5305, 3.4483, 0.1417, 0.0549, -9.3561, 41.0562, -9.4662, 30.2987, 256.5166, 'h') 5.8043, -93.5224, -63.8389, 84.6874, 408.3166, 'h') (120.5135, 76.9018, 3.9939, 0.0944, 0.0683, (187.1814, 53.0014, 3.2093, 0.2876, 0.1539, -167.3125, -168.4558, 31.4755, 52.731, 272.3174, 'h')(13376,)Randomizing data by shuffle and splitting We are shuffling all our data using numpy Spliting data to Training, Testing, Validation data sets In [28]: rng = np.random.default rng() rng.shuffle(data) train,test_validate=np.array_split(data,[int(0.70 * len(data))]) test, validation=np.array split(test validate,[int(0.50 * len(test validate))]) In [29]: print(f"train: {train.shape[0]}\n" f"test: {test.shape[0]}\n" f"validation: {validation.shape[0]}") train: 9363 test: 2006 validation: 2007 In [30]: test Out[30]: array([(227.184 , 22.5405, 2.9325, 0.4474, 0.3102, -264.034 , 135.869 , 9.4616, 48.219 , 265.238 , 'h'), (16.7429, 15.1867, 2.3096, 0.6569, 0.4289, -1.6276, -14.8761, 11.3786, 68.6733, 58.837, 'g'), (87.4843, 25.5134, 3.5567, 0.1834, 0.0939, 59.1418, 97.7039, -2.8502, 2.72 , 149.034 , 'g'), (74.7173, 27.7138, 2.9001, 0.3612, 0.1907, -32.4868, 47.5564, 29.9233, 10.598, 291.766, 'g'), (30.9451, 16.7568, 2.7266, 0.4747, 0.2523, -45.8489, 20.8345, 13.6632, 24. , 184.2445, 'h'), (52.026, 18.7414, 2.9124, 0.216, 0.1312, -59.3847, -30.5249, 5.8067, 86.2773, 175.3454, 'h')], dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<f8'), ('f3', '<f8'), ('f4', '<f8'), ('f5', '<f 8'), ('f6', '<f8'), ('f7', '<f8'), ('f8', '<f8'), ('f9', '<f8'), ('f10', '<U1')]) In [31]: train Out[31]: array([(36.939 , 18.2265, 3.0943, 0.3477, 0.1767, 13.7988, 27.5274, 13.6707, 7.1492, 197.201, (24.2753, 15.6068, 2.5276, 0.4392, 0.2685, 7.9587, 19.1974, 14.8347, 15.4169, 125.031, 'g'), (20.3377, 16.3027, 2.5164, 0.5172, 0.3024, 1.3912, -10.0307, 4.1745, 8.9192, 232.5213, 'h'), (238.1686, 84.5643, 3.6106, 0.124 , 0.0859, -175.5476, -93.5337, -82.8953, 59.5554, 175.1797, 'h'), (74.8745, 16.9201, 3.0691, 0.3539, 0.1787, -52.831 , 52.5547, -14.409 , 4.7291, 347.188 , 'h'), (46.2067, 6.389, 2.6149, 0.5194, 0.2973, 24.9479, 37.3093, 5.4582, 47.6534, 195.95, 'h')], dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<f8'), ('f3', '<f8'), ('f4', '<f8'), ('f5', '<f 8'), ('f6', '<f8'), ('f7', '<f8'), ('f8', '<f8'), ('f9', '<f8'), ('f10', '<U1')]) In [32]: validation Out[32]: array([(10.8567, 10.8014, 2.3301, 0.6371, 0.3562, 30.62 , -5.0966, -3.6579, 8.03887e+01, 148.526 (74.1464, 20.7143, 2.7348, 0.2799, 0.1427, -31.1356, 53.6291, 19.484, 4.80200e+00, 300.163 (55.7137, 19.1975, 2.9335, 0.2494, 0.1335, -75.2473, -37.3578, 16.5932, 1.38600e+00, 286.074 , 'g'), (18.2796, 10.6091, 2.1367, 0.5474, 0.281, -1.0013,6.7534, 4.6502, 6.21000e-02, 180.919 'g'), (22.2019, 6.5999, 2.1861, 0.7362, 0.4072, -24.0167, -11.5369, 6.728, 2.02020e+01, 194.701 'g'), (26.4121, 17.8816, 2.6042, 0.3458, 0.1779, 11.6522, 16.5482, -15.3669, 2.04350e+01, 204.868 'g')], dtype=[('f0', '<f8'), ('f1', '<f8'), ('f2', '<f8'), ('f3', '<f8'), ('f4', '<f8'), ('f5', '<f 8'), ('f6', '<f8'), ('f7', '<f8'), ('f8', '<f8'), ('f9', '<f8'), ('f10', '<U1')]) Separating features from the perdiction We are taking the first ten features and putting them in array x_data and the last feature (the predection) in array y_data

Magic Dataset

We are supposed to use this 'magic' dataset to generate a prediction of wether the energy particles are of type gamma (q) or hadron (h).

Introduction

import numpy as np

In [22]:

In [33]:

Out[35]:

def return_x_y_arrays(data_set_to_be_sliced):
 buf=data_set_to_be_sliced.tolist()

x_data= []
y_data=[]
for d in buf:

x=d[:10]

return x data, y data

In [34]: | x_train, y_train=return_x_y_arrays(train)

model=knn(n_neighbors=1)
model.fit(x train, y train)

x test, y test=return x y arrays(test)

Fitting and training the model

KNeighborsClassifier
KNeighborsClassifier(n neighbors=1)

We will use various K values to score the model

print(model.score(x test, y test))

print (model.score (x_test, y_test))

print(model.score(x test,y test))

print(model.score(x test, y test))

print(model.score(x validation, y validation))

print(model.score(x validation, y validation))

print(model.score(x validation, y validation))

print(model.score(x validation, y validation))

print(model.score(x_validation,y_validation))

 $k = 3 \# sqrt(10) 10 \rightarrow number of features$

test scores.append(model.score(x test, y test))

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV

k range = list(range(1, 26, 2)) # 1, 3, 5, ..., 25

grid = GridSearchCV(KN, param grid, cv=10, scoring='accuracy', return train score=True)

print("Accuracy for our training dataset with tuning is : {:.2f}%".format(accuracy))

Using confusion matrix to display the results in human-readable graphic

support

1048

958

2006

2006

2006

900

800

- 700

- 600

- 500

400

300

200

{'n_neighbors': [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25]}

Accuracy for our training dataset with tuning is : 77.11%

validation scores.append(model.score(x validation, y validation))

k=1 k=3 k=10 k=23 -> Best k=600

In [36]: print(model.score(x test, y test))

0.7532402791625125 0.7478824115595416

0.7701894317048853 0.7593423019431988

0.7666999002991027 0.7623318385650224

0.7791625124626121 0.7678126557050324

0.7298105682951147 0.726457399103139

validation scores=[]

model.n neighbors=k

In [50]: model.n neighbors=3

In [37]: model.n neighbors=10

In [56]: model.n neighbors=23

In [38]: model.n neighbors=600

In [39]: | test_scores=[]

In [40]: test scores

Out[42]: 0

Out[43]: 0

In [52]:

In [57]:

Out[40]: [0.7701894317048853]

Out[41]: [0.7593423019431988]

In [43]: np.argmax(test scores)

print(param grid)

Training data

In [42]: np.argmax(validation scores)

KN = KNeighborsClassifier()

g = grid.fit(x train, y train)

accuracy=grid.best score * 100

In [53]: best k = grid.best params ['n neighbors']

Calculation test accuracy score

y test pred = knn.predict(x test)

import matplotlib.pyplot as plt

g

accuracy

macro avg
weighted avg

g

h

True label

In [55]:

Out[55]:

disp = disp.plot(cmap=plt.cm.Blues)

precision

0.75

0.82

0.79

0.78

900

295

g

results = pd.DataFrame(g.cv_results_)

3

7

9

11

13

15

17

19

21

23

25

import pandas as pd

needed results

0

1

2

3

4

5

6

7

8

9

10

11

12

Predicted label

1.000000

0.867564

0.837291

0.825234

0.813082

0.808383

0.803387

0.799708

0.797441

0.794902

0.791591

0.789419

0.787616

param_n_neighbors mean_train_score mean_test_score

knn = KNeighborsClassifier(n neighbors=best k)

knn = KNeighborsClassifier(n neighbors=best k)

y_validation_pred = knn.predict(x validation)

test accuracy = knn.score(x validation, y validation)

from sklearn.metrics import ConfusionMatrixDisplay

matix = confusion_matrix(y_test, y_test_pred)
print(classification report(y test, y test pred))

from sklearn.metrics import confusion matrix, classification report

recall f1-score

0.86

0.69

0.78

0.78

disp = ConfusionMatrixDisplay(confusion matrix=matix, display labels=['g','h'])

0.80

0.75

0.78

0.78

0.78

148

663

h

needed_results = results[['param_n_neighbors', 'mean_train_score', 'mean_test_score']]

0.738969

0.757235

0.764499

0.770799

0.769199

0.769840

0.769839

0.770052

0.770481

0.770373

0.768985

0.771123

0.767597

test accuracy = knn.score(x_test, y_test)

Calculation validation accuracy score

print(grid.best_params_)

knn.fit(x train, y train)

knn.fit(x_train,y_train)

print(test_accuracy)

print(test_accuracy)

0.7791625124626121 0.7678126557050324

{'n neighbors': 23}

param grid = dict(n neighbors=k range)

In [41]: validation_scores

x_data.append(x)
y=np.array([d[10]])
y_data.append(y)
x_data=np.array(x_data)

y_data=np.array(y_data).ravel()

x validation, y validation=return x y arrays(validation)

Scoring the model using test and validation datasets

In [35]: from sklearn.neighbors import KNeighborsClassifier as knn