Examenul de bacalaureat național 2015

Proba E. c)

Matematică $M_pedagogic$

Clasa a XI-a

BAREM DE EVALUARE ŞI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2^{-2} = \frac{1}{4}, \left(\frac{1}{4}\right)^0 = 1$	2p
	$\frac{1}{4} \cdot 3 - 1 = -\frac{1}{4}$	3p
2.	f(-2)+f(2)=2, $f(-1)+f(1)=2$, $f(0)=1$	3p
	f(-2) + f(-1) + f(0) + f(1) + f(2) = 2 + 2 + 1 = 5	2p
3.	$x^2 - 5x + 3 = -1$	2p
	$x^2 - 5x + 4 = 0 \Leftrightarrow x_1 = 1$ şi $x_2 = 4$, care verifică ecuația	3 p
4.	Sunt 12 numere pare în mulțimea {1, 2,, 25}, deci sunt 12 cazuri favorabile	2p
	Sunt 25 de numere în mulțimea {1, 2,, 25}, deci sunt 25 de cazuri posibile	1p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{12}{25}$	2p
5.	$\frac{3}{3} = \frac{a+5}{2}$	3p
	$\begin{vmatrix} 3 & 2 \\ a = -3 \end{vmatrix}$	2p
6.	$l_{\text{pătrat}} = 3\sqrt{2} \text{ dm}$	3p
	$\mathcal{A}_{\text{pătrat}} = \left(3\sqrt{2}\right)^2 = 18 \text{ dm}^2$	2p

SUBIECTUL al II-lea (30 d

1.	$0*2 = 0 \cdot 2 - 3 \cdot 0 - 3 \cdot 2 + 12 =$	3 p
	= 6	2p
2.	x * y = xy - 3x - 3y + 9 + 3 =	2p
	= x(y-3)-3(y-3)+3=(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
3.	x*4=(x-3)(4-3)+3=x	2p
	4*x = (4-3)(x-3)+3=x, pentru orice număr real x	3 p
4.	$(2x-3)(x-3)+3=3 \Leftrightarrow (2x-3)(x-3)=0$	3 p
	$x_1 = \frac{3}{2} \text{ si } x_2 = 3$	2p
5.	x*(-x)=(x-3)(-x-3)+3=	2p
	$=12-x^2 \le 12$, pentru orice număr real x	3 p
6.	Pentru $x = 3m$ și $y = 3n$, cu m și n numere întregi, numărul $x * y = (3m - 3)(3n - 3) + 3 =$	2p
	=3(m-1)(3n-3)+3=3((m-1)(3n-3)+1) este întreg, multiplu de 3	3 p

SUBIECTUL al III-lea		uncte)
1.	$\hat{2} \cdot \hat{4} = \hat{0}$	3p
	$\hat{1} \cdot \hat{2} \cdot \hat{3} \cdot \hat{4} \cdot \hat{5} = \hat{0}$	2p
2.	$\hat{4} \cdot \left(\hat{3} + \hat{5}\right) = \hat{4} \cdot \hat{0} = \hat{0}$	2p
	$\hat{4} \cdot \hat{3} + \hat{4} \cdot \hat{5} = \hat{4} + \hat{4} = \hat{0} \Rightarrow \hat{4} \cdot (\hat{3} + \hat{5}) = \hat{4} \cdot \hat{3} + \hat{4} \cdot \hat{5}$	3 p
3.	$\hat{3}$ și $\hat{7}$ sunt soluții ale ecuației	3 p
	Celelalte elemente ale lui \mathbb{Z}_8 nu sunt soluții ale ecuației	2p
4.	$\hat{3} \cdot \hat{3} = \hat{1}$	3 p
	Simetricul elementului $\hat{3}$ în raport cu operația de înmulțire din \mathbb{Z}_8 este $\hat{3}$	2 p
5.	$\hat{0}^3 = \hat{0}, \ \hat{1}^3 = \hat{1}, \ \hat{2}^3 = \hat{0}, \ \hat{3}^3 = \hat{3}, \ \hat{4}^3 = \hat{0}, \ \hat{5}^3 = \hat{5}, \ \hat{6}^3 = \hat{0} \ \text{si} \ \hat{7}^3 = \hat{7}$	3p
	$A = \left\{\hat{0}, \hat{1}, \hat{3}, \hat{5}, \hat{7}\right\}$	2p
6.	$\begin{cases} \hat{2}x + y = \hat{5} \\ \hat{3}x + \hat{7}y = \hat{1} \end{cases} \Rightarrow \hat{5}x = \hat{6}$	3р
	$x = \hat{6}$, $y = \hat{1}$, care verifică ecuațiile sistemului	2p