Homework #3

- (1) Consider the regular expression $E = (1+(0+101)^*)^*$. Draw an ε -NFA accepting the language corresponding to E above using as little number of states as possible; compute and sketch the equivalent NFA without ε -transitions; and finally compute the equivalent DFA accepting the language E above.
- **(2)** Convert the following **DFA** to **RE** using the state elimination technique. Try to simplify the regular expression using the equivalence relations stated in class.

- (3) For following languages, prove or disprove the statement that the language is *regular*.
 - (a) $\{ww^R \mid w \in (0+1)^*\}$, where w^R stands for the string w written in reverse (backwards)
 - **(b)** $\{w \mid w \text{ has same number of occurrences of } 01 \text{ and } 10 \text{ as substrings} \}$
- (4) Consider the *Deterministic Finite Automata*,

$$A = (Q_A, \Sigma_A, \delta_A, q_{0A}, F_A)$$
 and $B = (Q_B, \Sigma_B, \delta_B, q_{0B}, F_B)$ with

 $Q_A \cap Q_B = \phi$, $\Sigma_A \cap \Sigma_B = \phi$ where ϕ stands for the null set.

Let $L_A \subseteq \Sigma_A^*$ and $L_B \subseteq \Sigma_B^*$ be the languages accepted by A and B respectively and define the interleaved language :

$$L_A \parallel L_B := \{ s \in (\Sigma_A \cup \Sigma_B)^* \mid s \uparrow_A \in L_A \text{ and } s \uparrow_B \in L_B \}$$

where $s \uparrow_A$ and $s \uparrow_B$ stands for the projection of s on Σ_A and Σ_B obtained by erasing all the symbols of s in Σ_B and Σ_A respectively.

- (a) Define the interleaving product $A \parallel B$ of A and B as a DFA that accepts the language $L_A \parallel L_B$
- **(b)** Compute a **DFA** that accepts the language $L = (01)^* || (ab)^*$

- (5) Let A and B be DFAs that accept languages L_a and L_b over an alphabet Σ .
- (a) Describe algorithm(s) using the product automaton $A \times B$ to decide the following problems:
 - (i) $L_a = L_b$;
 - (ii) L_a strictly included in L_b ;
 - (iii) L_b strictly included in L_a ;
 - (iv) none of the first three!
- **(b)** State the complexity of your algorithm as an *O* function of *n* if the number of states of *A* and *B* are the same and are equal to *n*.
- *(6)* Problems from the main textbook

Exercise 4.1.2 ((b),(c),(h))

Exercise 4.3.3, 4.3.4

Exercises 4.4.2, 4.4.3