Otimização Combinatória: Trabalho Final

Gabriel Mattos Langeloh

1 de outubro de 2021

1 Instruções gerais

- O trabalho deve ser realizado em duplas.
- Cada dupla deve escolher uma meta-heurística e um problema (definidos abaixo) e informar o professor imediatamente (Discord / e-mail).
- Cada par (problema, heurística) deve ser único na turma. Conflitos serão resolvidos por ordem de pedido.
- O trabalho consiste em:
 - Formular o problema escolhido como programa inteiro misto.
 - Implementar a formulação (ex: com Julia / JuMP) e executar a formulação sobre as instâncias dadas, com limite de tempo.
 - Propor componentes para a meta-heurística escolhida resolver o problema (vizinhança, condição de parada, crossover, etc).
 - Implementar a meta-heurística proposta em qualquer linguagem de programação.
 - Executar a implementação sobre as instâncias dadas e apresentar os resultados.
 - Escrever um relatório completo explicando o que foi feito, apresentando todos os resultados.
- Entrega: 17/11

2 Meta-heurísticas

- Simulated Annealing
- Late Acceptance Hill Climbing
- GRASP
- Busca Tabu
- VNS
- Busca local iterada
- Algoritmos genéticos

3 Problema 1

3.1 Enunciado

Seja G = (V, E) um grafo. Um subgrafo induzido G[V'] por um subconjunto de vértices $V' \subseteq V$ é o subgrafo de G com vértices V' e arestas $\{u, v\} \in E$ tais que $u, v \in V'$.

Encontre V' de cardinalidade máxima tal que G[V'] só possui vértices de grau par.

3.2 Exemplos

Dado o grafo $G_1 = (V, A)$ da Figura 1, $V_1 = \{a, b, d\}$, $V_2 = \{a, e, f\}$ e $V_3 = \{c, d, e\}$, temos os grafos induzidos da Figura 2. Dentre esses grafos, apenas 2a é factível, pois todos os seus vértices possuem grau par. A solução ótima para essa instância é V' = V, gerando o grafo original, pois todos os vértices desse grafo já possuem grau par.

Sempre existe alguma solução factível, basta escolher um único vértice (ou um conjunto independente de vértices). Isso é exemplificado pelo grafo G_2 na Figura 3. O subgrafo 4a mostra um subgrafo induzido de um único vértice (que necessariamente terá grau 0, pois não existem loops em nossos grafos), enquanto o subgrafo 4b mostra um conjunto independente maximal, que nesse caso é a solução ótima para o nosso problema.

Figura 1: Grafo G_1

Figura 2: Exemplo de grafos induzidos

3.3 Instâncias e formato

As instâncias são fornecidas em arquivos texto induced_n_m.dat onde n é o número de vértices e m o número de arestas da instância. A primeira linha do arquivo contém os inteiros n e m separados por espaços. Cada uma das próximas m linhas contém dois inteiros u,v separados por espaços, correspondendo à existência da aresta $\{u,v\}$ no grafo. Vértices são numerados de 1 a n.

4 Problema 2

Seja G=(V,E) um grafo, $s,t\in V$ vértices distintos e $d:E\to\mathbb{R}_+$ uma função de distâncias nas arestas de G. Dado um caminho, definimos o maior tamanho de passo como o maior valor $|d_{a_1}-d_{a_2}|$ para arestas a_1,a_2 consecutivas no caminho.

Encontre o caminho s-t em G com menor tamanho de passo máximo.

Figura 3: Grafo G_2

4.1 Exemplos

Dado o grafo G=(V,A) com distâncias d apresentado na Figura 5, com s=1 e t=3, queremos encontrar o caminho com menor tamanho de passo máximo de 1 a 3. Exemplos de caminhos incluem 1,2,4,3 e 1,5,6,4,3. Caminhos por definição não possuem ciclos, logo cada vértice pode aparecer no máximo uma vez.

No exemplo, o caminho 1, 2, 4, 3 possui passo máximo 45: observa-se que o tamanho de passo no vértice $2 \in 81 - 36 = 45$, enquanto o tamanho de passo no vértice $4 \in 41 - 36 = 5$. O passo máximo é o maior dentre esses valores, 45. Note que só há tamanho de passo nos vértices intermediários do caminho, onde se entrou e saiu uma vez.

Outro exemplo de caminho no grafo dado é 1,5,4,3, com passo máximo 43. Basta observar que o passo no vértice 5 é 93-84=9 e o passo em 4 é 84-41=43. Como queremos minimizar o passo máximo, essa solução é melhor que o caminho 1,2,4,3. De fato, 1,5,4,3 é ótimo para essa instância, como pode ser facilmente verificado inspecionando diversos caminhos no grafo

Figura 5: Grafo G de exemplo para o problema da minimização do passo máximo. A solução ótima é o caminho 1, 5, 4, 3.

dado.

Como todos os grafos fornecidos serão conexos, esse problema é sempre factível, pois qualquer caminho s-t é uma solução factível.

4.2 Instâncias e formato

As instâncias são fornecidas em arquivos texto smt_n_m.dat onde n é o número de vértices e m o número de arestas da instância. A primeira linha do arquivo contém os inteiros n e m separados por espaços, seguidos dos inteiros s,t, a origem e destino desejados para o caminho. Cada uma das próximas m linhas contém três inteiros u,v,d separados por espaços, correspondendo à existência da aresta $\{u,v\}$ com distância d no grafo. Vértices são numerados de 1 a n.

5 Problema 3

Seja T=(V,E,r) uma árvore com raiz $r\in V$, e seja F um conjunto de arestas distinto de E ($F\cap E=\emptyset$) com uma função de custos $c:F\to\mathbb{R}$.

Um corte em T é uma partição S_1, S_2 de vértices de V. O tamanho do corte é o número de arestas $\{u, v\}$ do corte com $u \in S_1, v \in S_2$.

Encontre um subconjunto F' de F de custo mínimo tal que $T'=(V,E\cup F',r)$ possui apenas cortes de tamanho 2 ou mais.

5.1 Exemplos e informações adicionais

Dada a árvore T=(V,E,1) apresentada na Figura 6, e as arestas adicionais F apresentadas em azul e vermelho, queremos encontrar um subconjunto $F'\subseteq F$ satisfazendo as condições descritas no enunciado. Primeiramente, note que nenhuma árvore com $|V|\geq 2$ satisfaz essas condições: podemos escolher um corte de tamanho 1 onde S_1 é uma folha e S_2 é o restante da árvore. Por isso, a factibilidade do problema depende das opções de arestas adicionais fornecidas em F. A instância será factível se, e somente se, todo corte possui tamanho 2 ou mais no grafo $(V, E \cup F)$, ou seja, se escolhemos F'=F. Em outras palavras: adicionar mais arestas extras a uma solução factível sempre mantém a factibilidade (mas piora a qualidade da solução). As instâncias fornecidas no trabalho serão todas factíveis.

Existe outra perspectiva equivalente a esse problema: $F' \subseteq F$ é solução do problema se o grafo resultante $(V, E \cup F')$ é 2-aresta-conexo, isto é, se entre qualquer par de vértices $\{u,v\}$ existem pelo menos 2 caminhos. Vale observar que em uma árvore, sempre existe exatamente 1 caminho entre cada par de vértices, de modo que "estamos tentando escolher F' de modo a ganhar um novo caminho entre cada par de vértices", e queremos que essa escolha de F' tenha custo total mínimo.

No exemplo da Figura 6, podemos escolher, por exemplo $F' = \{\{6,7\}, \{3,6\}\}\}$ como solução factível de valor 39+19=58. Para verificar a factibilidade dessa solução, podemos observar que qualquer corte agora possui tamanho 2 ou mais. A partir da perspectiva de conectividade, podemos também pensar que existem pelo menos dois caminhos entre cada par de vértices. Por exemplo, na árvore original, existia apenas o caminho 2,1,5 entre 2 e 5. Mas, com as arestas de F', foi criado o caminho 2,4,5 entre 2 e 5. Observações similares se aplicam a todos os outros pares de vértices.

5.2 Instâncias e formato

As instâncias são fornecidas em arquivos texto tree_n_m.dat onde n é o número de vértices e m=|F| o número de arestas adicionais da instância. Note que o número de arestas |E| da árvore não precisa ser dado: ele é sempre igual a n-1, caso contrário o grafo não seria uma árvore (conexo e acíclico). A primeira linha do arquivo contém os inteiros n e m separados por espaços, seguidos do inteiros r, que indica o vértice raiz da árvore. Cada uma das próximas n-1 linhas contém dois inteiros u, v separados por espaços,

Figura 6: Árvore com arestas adicionais. As arestas originais da árvore são mostradas em preto, enquanto as arestas adicionais são coloridas. Não há diferença entre arestas azuis e vermelhas, as cores são usadas apenas para facilitar a visualização.

correspondendo à existência da aresta $\{u,v\}$ na árvore. Após isso, constam m linhas com três inteiros u,v,c separados por espaços, correspondendo à aresta adicional $\{u,v\}$ de custo c. Vértices são numerados de 1 a n.

6 Resultados conhecidos para cada problema

As Tabelas 1a, 1b, 2 apresentam os best known values (BKVs) do valor objetivo das melhores soluções conhecidas para as instâncias fornecidas. Os valores marcados como ótimos são comprovadamente a solução ótima, de acordo com um solver de programação inteira. Valores marcados como não ótimos podem ou não ser ótimos.

Os resultados foram, em sua maioria, obtidos pela execução de um solver de programação inteira durante 1 hora. Assim, é possível que sejam obtidos resultados melhores pelas meta-heurísticas implementadas, exceto no caso do Problema 3, no qual a formulação é muito forte, de modo que o solver foi capaz de resolver todas as instâncias.

10	700	BKV	Ótimo	n	m	BKV	Ótimo	
<u>n</u>	m 10			7	6	65.0	Sim	
7	10	5.0	Sim	7	10	43.0	Sim	
10	22	8.0	Sim	7	15	1.0	Sim	
50	122	36.0	Sim	50	250	501.0	Sim	
50	368	36.0	Não	50	500	188.0	Não	
50	612	30.0	Não	50	1000	61.0	Não	
100	495	59.0	Não	100	500	227.0	Sim	
100	1485	27.0	Não	100	1000	252.0	Não	
100	2475	20.0	Não	100	2000	152.0	Não	
200	1990	56.0	Não	200	1000	694.0	Não	
200	5970	23.0	Não					
200	9950	18.0	Não	200	2000	282.0	Não N~	
500	12475	52.0	Não	200	4000	147.0	Não	
500	37425	29.0	Não	500	2500	614.0	Não	
500	62375	26.0	Não	500	5000	371.0	Não	
700	24465	55.0	Não	500	10000	265.0	Não	
700	73395	29.0	Não	700	3500	589.0	Não	
700	122325	23.0	Não	700	7000	436.0	Não	
100	144949	∠9.0	rau	700	14000	285.0	Não	
(a) Problema 1								
					(b) Dualilama 9			

(b) Problema 2

Tabela 1: Melhores resultados conhecidos (BKVs) para cada instância dos Problemas 1 e 2.

n	m	BKV	Ótimo
7	7	50.0	Sim
10	20	47.0	Sim
100	495	537.0	Sim
100	990	257.0	Sim
100	1485	171.0	Sim
200	1990	397.0	Sim
200	3980	271.0	Sim
200	5970	160.0	Sim
500	12475	492.0	Sim
500	24950	314.0	Sim
500	37425	238.0	Sim
700	24465	582.0	Sim
700	48930	318.0	Sim
700	73395	291.0	Sim
1000	149850	339.0	Sim
1000	249750	287.0	Sim
1000	349650	259.0	Sim

Tabela 2: Melhores resultados conhecidos (BKVs) para cada instância do Problema 3. Todos os resultados são garantidamente ótimos.