香港考試局

HONG KONG EXAMINATIONS AUTHORITY

一九八〇年香港中

HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1980

MATHEMATICS

MARKING SCHEME

這份內部文件,只限閱卷員參閱,不得以任何形式翻印。

This is a restricted document. It is meant for use by markers of this paper for marking purposes only. Reproduction in any form is strictly prohibited.

Hong Kong Examinations Authority All Rights Reserved 1980

RESTRICTED 内部文件

RESTRICTED 内部文件

	MARKS	NOTES
SOLUTION STEPS	1-1	
2x + 40 = x + 3x $2x = 40$ $x = 20$	1M + 1A	Do not penalize cand. for writing x = 20°, x° = 20 or x° = 20°.
ALTERNATIVELY, $(2x + 40)^{\circ}$ $y + x + 3x = 180$ $x = 20$	1H 1H 2A	!
ALTERNATIVELY, x + 3x + 180 = (2x + 40) = 180	1	
2. (a) $a(3b-c)+c-3b$ = a(3b-c)-(3b-c) or $3b(a-1)-c(a-1)$ — = $(a-1)(3b-c)$ ————————————————————————————————————	1A 1A	If a cand. writes a(3b - c) + c - 3b = 0 a(3b - c) - (3b - c) = 0 (a - 1)(3b - c) = 0 award 1 mark. If a cand. writes
$= (x^{2} + 1)(x^{2} - 1)$ $= (x^{2} + 1)(x + 1)(x - 1)$	2A 1A	$x = 1 = 0$ $(x^{2}+1)(x^{2}-1)=0$ $(x^{2}+1)(x+1)(x-1)=0$ 1A
ALTERNATIVELY, $f(x) = x^{4} - 1$ f(1) = 0, $\therefore (x - 1)$ is a factor of $f(x)$. By long division, $f(x) = (x - 1)(x^{3} + x^{2} + x + 1)$ $= (x - 1)(x + 1)(x^{2} + 1)$	- 1A - 1A - 1A	If a cand. writes f(1) = 0, (x-1) is a factor. 1A f(-1)=0 (x+1) is a factor. 1A

RESTRICTED 内部文件

RESTRICTED 內部文件

N. C.	KES I KICTED I	八即人什	
SOI	LUTION STEPS	MARKS	NOTES
Product of roots	· - 5/2	1A	
Let the other root	or dβ = - 5	1A	网络宫 (====================================
$\mathcal{L} = -\frac{1}{2}$	•	1A	
$-\frac{k}{2} = -\frac{1}{2} +$	5 or $\lambda + \beta = -\frac{k}{2}$	1М	
k = -9	2	1A	·
LTERNATIVELY,		1	
Product of roots =	-52	1A	:
Since one of the r		,	
2(5) + k(5) -	5 = 0	1M 1A	
The equation is			
2x ² - 9x - (x - 5) (2x +	•	1A	
(X =)) (2X +	$x = 5$ or $x = -\frac{1}{2}$		
The other root is	-1/2	1A	·.
sin 9 = cos 120°			
= - 1/2		1A	
ALTERNATIVELY,			
$sin \theta = cos 120^{\circ}$ $= -cos 60^{\circ}$,		
= - sin 30°		1A	·
9 = 180° + 30			Accept 0 = 210°, 330°
= 210°	or 330°	j	Accept $\Theta = 210^{\circ}$ and 330°
		如药油	外表的一张的一张的李素为曾分

RESTRICTED 内部文件

RESTRICTED 内部文件

D 2

	RESTRICTED 内部	XIT	P.3
S	OLUTION STEPS	MARKS	NOTES
SO mm {	Let the length of AB be x mm. AC = x cos 30° x cos 30° + 50 = x $x = \frac{50}{1 - \cos 30°}$ = 373 (corr. to 3 sig. fig.) Length of the rod = 373 mm.	2A 1M 1N 1A	Wrong unit -1 pp. No unit 0.K.
LTERNATIVELY,	Let AB = x mm $\angle ABB' = \angle AB'B$ $= 75^{\circ}$ $\frac{CB'}{CB} = \tan 75^{\circ}$ $CB' = 50 \tan 75^{\circ}$	1M TA	Alternatively, Let AC = R um. A+50 = cco 30 3 M R = 50 coo 30 - 0 3232 14 AB = 373 1A.
50 mm (B	$= 186.6$ $\frac{CB'}{x} = \sin 30^{\circ}$ $x = \frac{CB'}{\sin 30^{\circ}}$	1M + 1A	
	= 373.2 = 373 (corr. to 3 sig. fig.)	1A	
Then (36 - x) mothers x + 2(36 - x) = x = 1 10 mothers lost onl 26 mothers lost bot	et only one of their children. lost two of their children. 62 0 y one of their children. h of their children.	1A 2M 1A	If one answer given without explanation. 1A If both answers given 3A (i) With checking +1 (ii) With acceptable explanation +2
	only one of their children two of their children.	1A 2M	

RESTRICTED 內部文件

D	-

SOLUTION	STEP8	MARKS	NOTES
$a(1 + \frac{x}{100}) = b(1 - \frac{x}{100})$ $a + \frac{ax}{100} = b - \frac{bx}{100}$ $\frac{ax}{100} + \frac{bx}{100} = b - a$ $\frac{a + b}{100} x = b - a$ $x = \left(\frac{b - a}{a + b}\right).$	nemi-skilled and unskilled	1A 1A 1A 2A	pr a 46c
	respectively. $ \frac{120 \times 10 + 90 \times 20 + 60}{60} = \frac{4800}{60} = 80 $		(for denominator)
·			
	,		

		<u> </u>
SOLUTION STEPS	MARKS	NOTES.
$P_{A} \qquad (a) (i) \tan \lambda = \frac{h}{x}$	1A	
$x = \frac{h}{\tan \alpha}$	1 A	Accept x = h cot x 2/1
$(ii) \tan \beta = \frac{\pi}{y}$	1A	
$y = \frac{h}{\tan \beta}$	1A	Accept y = h cot p
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2M	
$\left(\frac{h}{\tan \beta}\right)^2 = \left(\frac{h}{\tan \alpha}\right)^2 + 400^2$	114	For sub. x, y
$\left(\frac{h}{\tan 30^{\circ}}\right)^{2} = \left(\frac{h}{\tan 60^{\circ}}\right)^{2} + 400^{2}$	1A `	
$(\overline{3}h)^2 = (\frac{1}{3}h)^2 + 400^2$		
$(2\frac{2}{3}h^2 = 400^2)$		
$h^2 = \frac{3}{8} \times 400^2$ $h = \sqrt{\frac{2}{8}} \times 400 \text{ (or } 244.9)$	14	or any figure which
≈ 245 (corr. to 3 sig. fig.)	I A	rounds off to 245
ALTERNATIVELY		
$BC^2 = AC^2 + AB^2$	2M	
$y^2 = x^2 + 400^2$		
$x = \frac{h}{\tan 60^{\circ}} \qquad y = \frac{h}{\tan 30^{\circ}}$		
$\frac{x}{y} = \frac{\tan 30^{\circ}}{\tan 60^{\circ}}$	1A	
= 13		
		,
$9x^2 = x^2 + 400^2$ $8x^2 = 400^2$	1M	
$x = \sqrt{\frac{400^2}{8}} = 141.42$		·
h = x tan 60°	1A	
= 245	1A	
		; ;

RESTRICTED 內部文件

(a)	∠ PAX = 20
	(. angle at centre is twice as great
	as angle at circumference)

ALTERNATIVELY, $\angle APO = 0$ or $\angle PAX = 0 + \angle APO$ —

Similarly \(QBX = 29 \) $\angle RCX = 29$

(b) ∠ PAO = ∠QBO = ∠RCO --Sector PAO, sector QBO, sector RCO are similar.

Area of sector PAO : area of sector QBO :

= $OA^2 : OB^2 : OC^2$ area of sector RCO = $2^2 : 3^2 : 4^2$ or 4 : 6 : 6

ALTERNATIVELY.

∠ PAO = ∠ QBO = ∠ RCO = Ø Area of sector PAO = $\frac{1}{3}$ OA² Ø

Area of sector QBO = $\frac{1}{2}$ OB² \emptyset Area of sector RCO = $\frac{1}{2}$ OC² Ø

Area of sector PAO: area of sector QBO:

 $= \frac{1}{2} OA^2 \emptyset : \frac{1}{2} OB^2 \emptyset : \frac{1}{2} OC^2 \emptyset = OA^2 : OB^2 : OC^2$

 $= 2^2 : 3^2 : 4^2$ or 4 : 6 : 9

不必為理由

Awarded only if both

answers are correct

11113 LPA 0=LQB0=LR10=DO.

(for any one of the

(provided all three expressions are correct)

1A

RESTRICTED 內部文件

SOLUTION STEPS	MARKS	NOTES
(c) If RD \perp OX, RD ² = CR ² - CD ² = OC ² - CD ² = 4 ² - 2 ²	1Н	
$tan \theta = \frac{RD}{OD}$ $= \frac{\sqrt{12}}{6} = \frac{\sqrt{3}}{3}$ $\theta = 30^{\circ}$	1M	
ALTERNATIVELY, R.	1M	
C 2 D	1A 1A	•.
ALTERNATIVELY, C D E		:
Mentioning RD is the perpendicular bisector of CE ∴ RC = RE RC = CE (radii) Hence △ RCE is an equilateral △ ∴ ∠ RCE = 60° ∴ 9 = 30°	1M 1M 1A 1 (A	

RESTRICTED 内部文件

RESTRICTED 内部文件

RESTRICTED 内部文件

		· • · · · · · · · · · · · · · · · · · ·
SOLUTION STEPS	MARKS	NOTES
(a) (i) Common ratio = 10	1A\ ·	
(i) Sum of n terms = $\frac{a(r^n - 1)}{r - 1}$	114	
$= \frac{k(10^{n} - 1)}{10 - 1}$		
$=\frac{k}{9}(10^n-1)$	1&	
(b) (i) One mark would be awarded if a cand. shows the correct <u>idea</u> of proving		
either 3rd term = 2nd term = 2nd term - 1st te	rm 1147	
or 1st term + 3rd term = 2 x 2nd term		
$\log 10k - \log k = \log \frac{10k}{k}$		
= log 10 or 1	144	
$\log 100k - \log 10k = \log \frac{100k}{10k}$		
= log 10 or 1	1A	
.'. It is an A.P.		
ALTERNATIVELY.		
$\frac{\log k + \log 100k}{2} = \frac{1}{2} \log 100k^2$		
= log 10k	2.4	
It is an A.P.		•
(ii) Quoting correct formula for the sum of A.P.		
$\frac{n}{2}\left(2n+(n-1)\right]d \text{or} \frac{n}{2}\left[T(1)+T(n)\right]$	1 1 M	This may be omitted
Sum of the first n terms		(6) S = 170 + 700 1
$=\frac{n}{2}\Big[2 \log k + (n-1) \log 10\Big]$	1A	to be to top to be
$= \frac{n}{2} \left[2 \log k + (n-1) \right]$		Signature To 1
Sum of the first ten terms		
$= \frac{10}{2} \Big[2 \log k + 9 \log 10 \Big] - \dots$	1A	
= 10 log k + 45	1A	

RESTRICTED 内部文件

RESTRICTED 内部文件

PC

	SOLUTION STEPS	MARKS	NOTES
and y be the no. Constraints:	of economy class seats of first class seats. (, y \in N. may in remaining in the control of the	IA (设务等能力v-分 may be omitted
7			
50			
x+1.5 y	= 60		
30	x + y		
10x+30g=720			
20			
10			
AINI		##	
ρ 10	2b 30 an 50	60	70 80 ×
Graphs of the lines	x = y	1A Por	Labelling of graphs not necessary.
	+ 30y = 720	1A	not necessary.
Correct region			
Testing optimization	n	1A 1H	
No. of first class		1h _1h < \	Augustat and-
No. of economy class	s seats = 48	~1A~ ·	Awarded only if region correct
			安结一张,最多6分。
			清 shaded region to-分

RESTRICTED 内部文件

SOLUTION STEPS	MARKS	NOTES
(a) (i) $(3\vec{1} + 4\vec{j}) \cdot (x\vec{1} + y\vec{j})$ = $3x + 4y$	1A	If "." omitted, do not deduct mark.
(ii) $ \overrightarrow{OA} = \sqrt{3^2 + 4^2}$ = 5	1A	OA = OA = OA Accept
	1A	$\begin{vmatrix} - \rangle \\ 0A \end{vmatrix} = \sqrt{(3i)^2 + (4j)^2}$
(ii) $\cos \angle AOP = \frac{\overrightarrow{OA} \cdot \overrightarrow{OP}}{ \overrightarrow{OA} \overrightarrow{OP} }$		
$=\frac{x + 4y}{5\sqrt{x^2 + y^2}}$	IM	Accept $\binom{3}{4} \cdot \binom{x}{y} = 3x + 4y$,
(b) OB · OP = 8x - 6y	1A	$(3, 4) \cdot (x, y) = 3x + 4y$
$\cos \angle BOP = \frac{\overrightarrow{OB} \cdot \overrightarrow{OP}}{ \overrightarrow{OB} \overrightarrow{OP} }$		
$= \frac{8x - 6y}{10\sqrt{x^2 + y^2}}$	1M + 1A	
(c) Equation of internal bisector of ∠ AOB:		70
$\frac{3x + 4y}{5 \int x^2 + y^2} = \frac{8x - 6y}{10 \int x^2 + y^2}$	2M	
3x + 4y = 4x - 3y $x - 7y = 0$	1A	
\vec{i} \vec{i} \vec{i} \vec{i} \vec{i} \vec{i} \vec{i}		If "→" is omitted threatimes or more in the solution, deduct 1 mark for poor presentation.
B		
RESTRICTED 内部	「 『文件	

RESTRICTED 內部文件

<u> </u>		777	
	SOLUTION STEPS	MARKS	NOTES
(a) Probat	bility = $\frac{9}{10} \times \frac{2}{3}$	2A	Award 2 or 0
	$= \frac{3}{5} \text{ or } \frac{6}{10} \text{ or } \frac{60}{100} \text{ or } 60\% \text{ or } 0.6$	5 - 1A & 30	r. \$ 2
one	bability of obtaining the qualification with re-examination of the theory paper $x \frac{9}{10} \times \frac{2}{3}$	1 1A	
one	bability of obtaining the qualification with re-examination of the practical paper $x \frac{1}{3} \times \frac{2}{3}$	_ 1A	
	uired probability + 1/5	1M	Award this mark for the
50 13	5	1A	+ sign. Even when
- 50		IA	3 and 1/5 are both in- correct, still give
	bability that A (or B) does not obtain the lification by sitting each paper once.	1A	thic mark.
	bability that A and B do not obtain the diffication by sitting each paper once.	canallar	3 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2
Requ	uired probability $\frac{2}{5} \times \frac{2}{5}$	IM	1 •
= 21 25	5 . 5	1A	This mitted mark should be gives when the expression is of the form 1- p ² where 01.
ALTERN	NATI VELY,		,
	uired probability $\frac{2}{5} \times \frac{3}{5}$	1M + 1A	This method mark should b
= 21		1A	is of the form $p_1 + p_2 p_3$
ALTERN	NATIVELY,		
	uired probability 2 + 2 x 2 + 2 x 5 =	1M + 1A	This method mark should be given when the expression is of the form

RESTRICTED 内部文件

ANALES AND ESTABLISHED AND AND AND AND AND ASSESSMENT

RESTRICTED 內部文件

		
SOLUTION STEPS	MARKS	NOTES
$x^2 + y^2 - 10x + 8y + 16 = 0$ (*)		y 4
(a) $\begin{cases} y = 0 \\ x^2 + y^2 - 10x + 8y + 16 = 0 \end{cases}$	1M	C
		0
$x^2 - 10x + 16 = 0$ (x - 2)(x - 8) = 0		7
x = 2 or 8	14 + 1 A	
A = (2, 0), B = (8, 0)	$\frac{1}{2}A + \frac{1}{2}A$	[2]
$\mathbf{x} = 0$		
$\begin{cases} x = 0 \\ x^2 + y^2 - 10x + 8y + 16 = 0 \end{cases}$	1M	19. 性别会 1分。
$y^2 + 8y + 16 = 0$	ŀ	
$(\mathbf{y} + 4)^2 = 0$		
y = -4 T = (0, -4)	. 1A	
	' '^	
b) (i) Slope of BT = $\frac{0 - (-4)}{8 - (0)} = \frac{1}{2}$		
Equation of AC: $\frac{y-0}{x-2}$ = slope of BT	- 1M	
$\frac{y-c}{y-c} = \frac{1}{2}$		
X - E - E	14	
$x = 2y + 2$ or $y = \frac{1}{2}x - 1$	'^	•
(ii) Substitute x = 2y + 2 in (*),	- 1M	OR
$(2y + 2)^2 + y^2 - 10(2y + 2) + 8y + 16 = 0$		Sub. $y = \frac{x}{2} - 1$ in (*) 1M
$5y^2 - 4y = 0$ y(5y - 4) = 0		$5x^2 - 28x + 36 = 0$ (x - 2)(5x - 18)= 0
y(5y - 4) = 0 y = 0 or y = 4	- 1A	$x = 2$ or $\frac{18}{5}$ — 1A
· · · · · · · · · · · · · · · · · · ·	. 1	x = 2 is rejected,
$y = 0$ is rejected, $y = \frac{4}{5} = x = \frac{11}{5}$ $C = (\frac{18}{5}, \frac{4}{5})$	- 1A	$x = \frac{18}{5}$ $y = \frac{4}{5}$
(a) ALTERNATIVELY,		$c = (\frac{18}{5}, \frac{4}{5})$ — 1A
$(x-5)^2 + (y+4)^2 = 25$ Centre = $(5, -4)$	- 1A	y,
Radius = 5	j	c
$T = (0, -4)$ $AN = BN = \sqrt{5^2 - 4^2} = 3$	- 1A 1A	AN B
OA = 5 - 3 = 2 OB = 5 + 3 = 8	1/2A 1/2A	o x
A = (2, 0), B = (8, 0)	15A + 15A	(5,-4)
RESTRICTED 内部	文件	
MESTIMOTED Labrain		

