LECTURE 5: MORE PROBABILITY DISTRIBUTIONS

AP STATS

ABSTRACT. We review uniform distributions and cumulative distributions. We then define a "z-score" of a point in a distribution.

- If X is a discrete variable, then we call f a **probability mass function** (PMF)
- If X is a continuous variable, then we call f a **probability density function** (PDF)

Question 1. Suppose we have $X = \{1, 2, 5\}$ and suppose p(x) = kx for some constant k. What is the value of k if we want p to be a probability mass function on X?

Solution. Rewriting X as $X = \{1\} \cup \{2\} \cup \{5\}$, from Additivity we get that

$$p(X) = p(\{1, 2, 5\}) = p(\{1\} \cup \{2\} \cup \{5\})$$

$$= p(\{1\}) + p(\{2\}) + p(\{5\})$$
 using additivity
$$= k(1) + k(2) + k(5)$$
 plugging x into $p(x)$

$$= 8k$$

Using the fact that p(X) = 1 from Property (2) NORMALIZATION, we conclude that $p(X) = 8k = 1 \Longrightarrow k = \frac{1}{8}$.

1. Uniform Distributions

A uniform distribution is a distribution where all of the data points are *uniformly distributed* (are equal). Graphically, a uniform distribution is a flat line:

That is, the probability function is a nonzero constant on X and is 0 outside of X. However, since coming to a flat line in life is rare, we use "roughly uniform" to describe distributions that are *almost* uniform.

Example 1. Suppose X = [2, 2023] and let f(x) = c for some constant c. If we want f to be the uniform probability density function on X = [2, 2023], we use the fact that f(X) = 1.

Recalling that f(X) =area under f, and since f(x) = c is a flat line at height c, the area under f is a box with height c and width 2023 - 2 = 2021. Thus, we

$$c2021 = f(X) = 1 \Longrightarrow c = \frac{1}{2021}$$

Example 2. Let $X = \{1, 2, 3, 4, 5, 6\}$ be the random variable for a "fair die" (fair \Longrightarrow uniform probability). So if f(x) = c is the uniform probability distribution function on X, we get that $c = \frac{1}{6}$.

2. Cumulative Distribution Functions

Given a random variable X and a PMF/PDF f defined on X, we can consider another distribution called the **cumulative distribution** function, which sums all of the probabilities up to a given point.

Definition. The cumulative distribution function (CDF) is the function defined as

$$CDF(x) = \int_{t=-\infty}^{x} f(t), \quad f = PDF/PMF$$

The cumulative distribution function has the following properties:

- Domain = all real numbers \mathbb{R}
- Range of outputs = [0, 1]
- CDF is monotonically increasing (if $x \le y \Longrightarrow CDF(x) \le CDF(y)$)

Example 1. From Question 1, we have $X = \{1, 2, 5\}$ and $p(x) = \frac{1}{8}$ as our probability function.

Let's find the values of the CDF:

$$\begin{array}{c|cccc} x & 1 & 2 & 5 \\ \hline p(x) & \frac{1}{8} & \frac{2}{8} & \frac{5}{8} \\ CDF(x) & \frac{1}{8} & \frac{3}{8} & \frac{8}{8} \end{array}$$

Note that we set the CDF(x) = 0 for any x < 1 in this example so that the CDF starts life at 0 and then concludes its final output to be 8/8 = 1.

Example 2. If we set X = [2,2023] and let $f(x) = \frac{1}{2021}$ to be our (uniform) probability function, then we can evaluate the CDF at any given point between 2 and 2023. So if we

were interested in x = 2020, then

$$CDF(x = 2020) = [area from x = 2 to x = 2020] = \frac{2018}{2021}$$

3. Z-Scores

Definition. Given a quantitative variable, the **z-score** of a point x is the number

$$z_x = \frac{x - \mu}{\sigma}$$
, $\mu = \text{mean}$, $\sigma = \text{standard dev}$

The z-score tells you how many standard deviations you are away from the mean μ .

Remark. You can always compute the z-score of a point given μ and σ .

The only reason why we care about these z-scores is that they give us percentile interpretations when our distribution is normal.

Example 1. Suppose $\mu = 70$ years and $\sigma = 5$ years. Say that your tortoise lifespan was in the 2.3 standard deviations above the mean. How long was your tortoise lifespan?

We write $z_x = 2.3$ and then do the computations:

$$2.3 = z_x = \frac{x - 70}{5} \Longrightarrow x = 70 + 2.3(5) = 81.5 \text{ years}$$