

M3110-220.3M

Модуль электроизмерительный

EAC

Руководство по эксплуатации

02.2021 версия 1.13

Содержание

Предупреждающие сообщения	4
Используемые аббревиатуры и термины	4
Введение	5
1 Назначение	6
2 Технические характеристики и условия эксплуатации	7
2.1 Технические характеристики	
2.2 Гальваническая изоляция	8
2.3 Условия эксплуатация	8
3 Меры безопасности	10
4 Монтаж и демонтаж	11
4.1 Установка	11
4.2 Отсоединение клеммных колодок	
4.3 «Быстрая» замена	
5 Подключение	
5.1 Порядок подключения	
5.2 Общие требования	
5.3 Помехи и методы их подавления	
5.4 Схемы подключения	
5.5 Назначение контактов клеммной колодки	
6 Устройство и принцип работы	
6.1 Устройство	
6.2 Принцип работы	
6.4 Индикация	
6.5 Измерение параметров	
6.5.1 Действующее напряжение	
6.5.2 Действующий ток	
6.5.3 Полная, активная и реактивная мощности	20
6.5.4 Частота первой гармоники	20
6.5.5 Коэффициент мощности	
6.5.6 Использование согласующих трансформаторов	
7 Настройка	
7.1 Конфигурирование	
7.2 Конфигурационные и оперативные параметры	
7.3 Работа в режиме «Заводские сетевые настройки»	
8 Интерфейс RS-485	
8.1 Базовый адрес прибора в сети RS-485	
8.2 Мастер сети	
9 Техническое обслуживание	
10 Маркировка	26
11 Транспортирование и хранение	26
12 Комплектность	26
13 Гарантийные обязательства	
ПРИЛОЖЕНИЕ А. Команды управления прибором по сети RS-485	
ПРИЛОЖЕНИЕ Б. Команды протокола ОВЕН	
·	
ПРИЛОЖЕНИЕ В. Команды протокола Modbus	34

ТРИЛОЖЕНИЕ Г. Команды протокола DCON42
--

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о **непосредственной угрозе опасной ситуации**, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Используемые аббревиатуры и термины

АЦП – аналого-цифровой преобразователь.

Имя параметра – набор символов, однозначно определяющий доступ к параметру в приборе.

Индекс параметра – числовое значение, отличающее параметры однотипных элементов с одинаковыми именами.

Конфигурация – совокупность значений параметров, определяющих работу прибора.

Конфигурационные параметры – параметры, определяющие конфигурацию прибора. Задаются в программе-конфигураторе.

Мастер сети – прибор (или ПК), инициирующий обмен данными в сети RS-485 между отправителем и получателем данных.

Оперативные параметры – данные, которые прибор передает по сети RS-485.

ПК – персональный компьютер.

Сетевые параметры – служебные параметры, определяющие работу прибора в сети RS-485.

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, работой и техническим обслуживанием модуля электроизмерительного МЭ110-3М (в дальнейшем по тексту именуемого «прибор»).

Подключение, регулировка и техническое обслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

1 Назначение

Прибор предназначен для измерения напряжения, силы тока, частоты, мощности, фазового угла и коэффициента мощности в трехфазных сетях и передачи результатов измерений в сеть RS-485.

Прибор может быть использован в составе измерительных систем контроля и управления технологическими процессами на промышленных предприятиях.

Прибор изготавливается в соответствии с ТУ 4221-004-46526536-2011.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Характеристики прибора

Наименование	Значение	
Питание		
Напряжение питания от сети переменного тока	от 90 до 264 В частотой от 45 до 65 Гц	
Потребляемая мощность, не более	7,5 BA	
Измерение фазно	ого напряжения	
Входной сигнал (действующее значение)	~(1400) В, от 45 до 65 Гц	
Входной сигнал (с использованием внешних трансформаторов напряжения)	~(1 \cdot 10 ⁻³ 4000 \cdot 10 ³) В, от 45 до 65 Гц	
Максимальное допустимое значение, не более 1 с	800 B	
Основная приведенная погрешность измерений	0,25 %	
Разрешающая способность	0,1 B	
Входное сопротивление, не менее	500 кОм	
Время опроса входа, не более	1 c	
Количество каналов измерения	3	
Измерение линейного наг	пряжения (межфазного)	
Входной сигнал (действующее значение)	~(2580) В, от 45 до 65 Гц	
Входной сигнал (с использованием внешних трансформаторов напряжения)	~(2 · 10 ⁻³ 5800 · 10 ³) В, от 45 до 65 Гц	
Максимальное допустимое значение, не более 1 с	800 B	
Основная приведенная погрешность измерений	0,5 %	
Разрешающая способность	0,1 B	
Входное сопротивление, не менее	500 кОм	
Время опроса входа, не более	1 c	
Количество каналов измерения	3	
Измерение с	силы тока	
Входной сигнал (действующее значение)	от 0,005 до 5 А	
Входной сигнал (с использованием внешних трансформаторов тока)	от 0,005 · 10−³ до 50 · 10³ А	
Максимальное допустимое значение, не более 1 с	10 A	
Основная приведенная погрешность измерений	0,25 %	
Время опроса входа, не более	1 c	
Разрешающая способность	0,001 A	
Входное сопротивление, не более	0,01 Ом	
Количество каналов измерения	3	
Измерение полной, активной и реактивной мощности		
Входной сигнал (действующее значение)	от 0,02 до 2,00 кВт, кВА, квар	
Входной сигнал (с использованием внешних трансформаторов (напряжения/ток)	от 0,2 · 10 ⁻⁶ до 200 · 10 ⁹	
Основная приведенная погрешность измерений	0,5 %	
Время вычисления, не более	1 c	
Разрешающая способность, Вт, ВА, вар	1	
Количество каналов измерения	3	
Измерение частоты первой гармоники		
Действующая частота первой гармоники	от 45 до 65 Гц	
Основная приведенная погрешность измерений	0,15 %	

Наименование	Значение		
Время опроса входа, не более	1 c		
Разрешающая способность	0,01 Гц		
Количество каналов измерения (активный)	1		
Измерение коэффиц	иента мощности соs φ		
Диапазон измерения (в рабочем диапазоне мощности)	от 0 до 1		
Основная погрешность измерений	1,0 %		
Время вычисления, не более	1 c		
Разрешающая способность	0,01		
Количество каналов измерения	3		
Измерение с	разового угла		
Диапазон измерения (в рабочем диапазоне напряжений)	от 10° до 170°		
Основная погрешность измерений	0,4 %		
Время опроса входа, не более	1 c		
Разрешающая способность	1°		
Количество каналов измерения	3		
Интерфейс связи RS-485			
Скорости обмена	2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с		
Протоколы связи	DCON, Modbus ASCII, Modbus RTU, OBEH		
Входное сопротивление	12 кОм		
Общие	сведения		
Степень защиты корпуса	IP20		
Габаритные размеры прибора	(96 × 73 × 110) ± 1 мм		
Масса прибора, кг	0,5 кг		
Средняя наработка на отказ	60 000 ч		
Средний срок службы	10 лет		

Дополнительная погрешность измерения, вызванная изменением температуры окружающей среды относительно нормальной (на каждые 10 °C изменения температуры) – не более 0,5 предела основной погрешности.

Предел дополнительной приведенной погрешности, вызванной воздействием электромагнитных помех – не более 0,5 предела основной погрешности.

Время установления рабочего режима прибора – не более 1 минуты.

По эксплуатационной законченности приборы относятся к изделиям второго порядка.

2.2 Гальваническая изоляция

Прибор имеет следующие группы гальванически изолированных цепей:

- питания прибора;
- интерфейса RS-485;
- измерительного входа и цепь заводских настроек.

Электрическая прочность изоляции всех групп цепей относительно друг друга – 2500 В.

2.3 Условия эксплуатация

Прибор эксплуатируется в следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от минус 20 до плюс 55 °C;

- верхний предел относительной влажности воздуха 80 % при +35 °C и более низких температурах без конденсации влаги;
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к климатическим воздействиям во время эксплуатации прибор соответствует группе исполнения В4 по ГОСТ 52931.

По устойчивости к воздействию атмосферного давления прибор относится к группе Р1 по ГОСТ 52931.

По устойчивости к механическим воздействиям во время эксплуатации прибор соответствует группе исполнения N2 по ГОСТ 52931.

По электромагнитной совместимости модули относятся к оборудованию класса A по ГОСТ Р 51522. Если подаются импульсные помехи, то допускается кратковременное прекращение обмена по сети RS-485. Обмен должен восстанавливаться сразу по окончании действия помехи.

3 Меры безопасности

По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ 12.2.007.0.

Во время эксплуатации и технического обслуживания следует соблюдать требования следующих документов:

- ΓΟCT 12.3.019;
- «Правила эксплуатации электроустановок потребителей»;
- «Правила охраны труда при эксплуатации электроустановок».

Во время эксплуатации прибора открытые контакты клеммника находятся под опасным для жизни напряжением. Прибор следует устанавливать в специализированных шкафах, доступ внутрь которых разрешен только квалифицированным специалистам.

Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и подключенных к нему устройств.

Не допускается попадание влаги на контакты выходных разъемов и внутренние элементы модулей.

ВНИМАНИЕ

Запрещается использование модулей при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.

4 Монтаж и демонтаж

Во время монтажа следует соблюдать меры безопасности из раздела 3.

Перед установкой прибора следует подготовить посадочное место в шкафу электрооборудования. Конструкция шкафа должна обеспечивать защиту прибора от попадания в него влаги, грязи и посторонних предметов.

4.1 Установка

Прибор может быть установлен на DIN-рейке 35 мм или закреплен на внутренней стенке шкафа двумя винтами M3 × 15 (винты в комплект поставки не входят).

Для установки прибора на DIN-рейку следует:

- 1. Подготовить место на DIN-рейке для установки прибора.
- 2. Установить прибор на DIN-рейку.
- 3. С усилием придавить прибор к DIN-рейке до фиксации защелки.

Для демонтажа прибора следует:

- 1. Отсоединить линии связи с внешними устройствами.
- 2. В проушину защелки вставить острие отвертки.
- 3. Защелку отжать, после чего отвести прибор от DIN-рейки.

Рисунок 4.1 – Габаритные размеры

Рисунок 4.2 – Установочные размеры

4.2 Отсоединение клеммных колодок

Для отсоединения клеммных колодок следует:

- 1. Отключить питание модуля и подключенных к нему устройств.
- 2. Поднять крышку.
- 3. Выкрутить винты.
- 4. Снять колодку.

4.3 «Быстрая» замена

Конструкция клеммника позволяет оперативно заменить прибор без демонтажа подключенных к нему внешних линий связи.

Для замены прибора следует:

- 1. Обесточить все линии связи, подходящие к прибору, в том числе линии питания.
- 2. Открутить крепежные винты по краям обеих клеммных колодок прибора.
- 3. Отделить съемную часть каждой колодки от прибора вместе с подключенными внешними линиями связи с помощью отвертки или другого подходящего инструмента.
- 4. Снять прибор с DIN-рейки или вынуть прибор из щита.
- 5. На место снятого прибора установить другой с предварительно удаленными разъемными частями клеммных колодок.
- 6. Подсоединить к установленному прибору снятые части клеммных колодок с подключенными внешними линиями связи.
- 7. Закрутить крепежные винты по краям обеих клеммных колодок.

5 Подключение

5.1 Порядок подключения

Для подключения прибора следует:

- 1. Подсоединить прибор к источнику питания.
- 2. Подсоединить датчики к входам прибора.
- 3. Подсоединить линии связи интерфейса RS-485.
- 4. Подать питание на прибор.

5.2 Общие требования

Подключение к сети переменного тока следует осуществлять к сетевому фидеру, не связанному непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение прибора от сети.

Питание постоянным напряжением следует осуществлять от локального источника питания или распределенной сети.

ВНИМАНИЕ

Запрещается питание каких-либо устройств от сетевых контактов прибора (контакты 1 и 2).

Прибор подключается к сети RS-485 по двухпроводной схеме витой парой проводов с соблюдением полярности. Провод А подключается к выводу А прибора, аналогично соединяются между собой выводы В. На концах линии рекомендуется установить резисторы с сопротивлением 120 Ом.

Для обеспечения надежности электрических соединений входных клемм рекомендуется использовать медные многожильные кабели сечением от 0,75 до 1,5 мм², концы которых перед подключением следует зачистить и залудить или оконцевать. Жилы кабелей следует зачищать с таким расчетом, чтобы срез изоляции плотно прилегал к клеммной колодке, т. е. чтобы оголенные участки провода не выступали за ее пределы. Последовательность действий при подключении провода к клемме приведена на рисунке ниже.

Рисунок 5.1 – Подключение провода к клемме

5.3 Помехи и методы их подавления

На работу прибора могут оказывать влияние внешние помехи:

- возникающие под действием электромагнитных полей (электромагнитные помехи), наводимые на прибор и на линии связи прибора с первичными преобразователями;
- возникающие в питающей сети.

Для уменьшения влияния электромагнитных помех следует:

- во время прокладки сигнальных линий от первичных преобразователей их длину следует по возможности уменьшать и выделять их в самостоятельную трассу (или несколько трасс), отделенную от силовых кабелей:
- обеспечить надежное экранирование сигнальных линий. Экраны следует электрически изолировать от внешнего оборудования на протяжении всей трассы и подсоединять к заземленному контакту щита управления;
- прибор рекомендуется устанавливать в металлическом шкафу, внутри которого не должно быть никакого силового оборудования. Корпус шкафа должен быть заземлен.

Для уменьшения помех, возникающих в питающей сети, следует:

- подключать прибор к питающей сети отдельно от силового оборудования;
- все заземляющие линии и экраны прокладывать по схеме «звезда» с обеспечением хорошего контакта к заземляемому элементу;
- заземляющие цепи выполнять проводами наибольшего сечения;
- фильтры сетевых помех (например, ОВЕН БСФ) следует устанавливать в линиях питания прибора.

5.4 Схемы подключения

Рисунок 5.2 - Общий вид

□ □ ПРИМЕЧАНИЕ

Кнопка перехода в режим «Заводские сетевые настройки» расположена под крышкой корпуса с маркировкой «ЗАВ. HACTP. RS-485».

Рисунок 5.3 – Подключение прибора к трехфазной сети

ПРИМЕЧАНИЕ FU1, FU3 – плавкие предохранители 1,0 A/600 В (типа ВПТ6-33).

Рисунок 5.4 – Подключение прибора к трехфазной сети через согласующие трансформаторы

5.5 Назначение контактов клеммной колодки

Таблица 5.1 – Назначение контактов клеммной колодки прибора

Номер	Наименование	Назначение
1	L	Питание переменного тока от 90 до 264 В
2	N	Питание переменного тока от 90 до 264 В
3	NC	Не подключен
4	UA	Вход 1 измерения напряжения
5	UN	Нейтраль (входы измерения напряжения)

6	UB	Вход 2 измерения напряжения
7	UN	Нейтраль (входы измерения напряжения)
8	UC	Вход 3 измерения напряжения
9	UN	Нейтраль (входы измерения напряжения)
10	Α	RS-485 линия A
11	В	RS-485 линия B
12	NC	Не подключен
13	IA	Вход 1 измерения тока
14	INA	Нейтраль (вход 1 измерения тока)
15	IB	Вход 2 измерения тока
16	INB	Нейтраль (вход 2 измерения тока)
17	IC	Вход 3 измерения тока
18	INC	Нейтраль (вход 3 измерения тока)

ПРИМЕЧАНИЕ Контакты нейтралей 5, 7, 9 объединены между собой.

6 Устройство и принцип работы

6.1 Устройство

Прибор имеет три входа для измерения:

- напряжения;
- силы тока;
- частоты;
- мощности;
- фазового угла;
- коэффициента мощности.

Устройство прибора:

- аналого-цифровой преобразователь (АЦП);
- микроконтроллер;
- драйвер RS-485 с гальванической развязкой;
- вторичный источник питания (ВИП) с гальванической развязкой.

Структурная схема прибора приведена на рисунке ниже:

Рисунок 6.1 - Структурная схема прибора

6.2 Принцип работы

Прибор работает в сети RS-485 по протоколам:

- DCON;
- Modbus-ASCII;
- Modbus-RTU;
- · OBEH.

Для организации обмена данными в сети по интерфейсу RS-485 необходим Мастер сети.

Мастером сети может являться:

- □K;
- ПЛК;
- панель оператора;
- удаленный облачный сервис.

\mathbf{i}

ПРИМЕЧАНИЕ

Из-за аппаратных ограничений невозможно использование в приборе следующих сочетаний сетевых параметров:

- PrtY = 0, Sbit = 0, Len = 0 (контроль четности отсутствует, 1 стоп-бит, 7 бит);
- PrtY = 1, Sbit = 1, Len = 1 (проверка на четность, 2 стоп-бита, 8 бит);
- PrtY = 2, Sbit = 1, Len = 1 (проверка на нечетность, 2 стоп-бита, 8 бит).

В сети RS-485 предусмотрен только один Мастер сети.

Прибор конфигурируется на ПК через преобразователь интерфейса RS-485/RS-232 или RS-485/USB (например, OBEH AC3-M или AC4) с помощью ПО «Конфигуратор M110» (см. Руководство пользователя на сайте owen.ru).

6.3 Управление

Управление режимами работы прибора и считывание из прибора результатов измерения выполняется с использованием команд, передаваемых в сети RS-485. Прибор обеспечивает работу в сети RS-485 с использованием следующих протоколов:

- Modbus RTU, чтение/запись;
- Modbus ASCII, чтение/запись;
- ОВЕН, чтение/запись;
- DCON, только чтение.

Протоколы переключаются с помощью параметра **T.pro**.

ПРИМЕЧАНИЕ

Полный перечень параметров прибора приведен в Приложении Команды управления прибором по сети RS-485.

Прибор не является **Мастером сети**, поэтому сеть RS-485 должна иметь **Мастера сети**, например ПК с запущенной на нем SCADA-системой, контроллер или регулятор.

К прибору предоставляется бесплатный ОРС-драйвер и библиотека стандарта Windows DLL, которые рекомендуется использовать для подключения прибора к SCADA-системам и контроллерам других производителей.

Команды управления конфигурацией прибора обеспечивают запись и чтение конфигурационных параметров, определяющих режимы работы прибора.

Конфигурационные параметры хранятся в энергонезависимой памяти прибора. Их запись выполняется в два этапа. На первом этапе параметры записываются в оперативную память. На втором этапе по специальной команде (**Aply**) параметры переписываются в энергонезависимую память. Если команда **Aply** не была подана, то в случае пропадания питания в процессе конфигурации все изменения аннулируются.

Команда **Aply** кроме перезаписи изменений конфигурационных параметров в энергонезависимую память обеспечивает применение изменений сетевых настроек, что вызывает переход работы прибора на новые сетевые настройки.

Управление прибором по протоколу **ОВЕН** реализовано в ПО «Конфигуратор M110».

Для работы прибора в составе SCADA-систем по протоколам **Modbus** и **OBEH** на сайте owen. ru следует скачать бесплатный OPC-сервер.

6.4 Индикация

На лицевой панели прибора размещены светодиодные индикаторы:

Таблица 6.1 – Индикация

Светодиод	Свечение	Значение
Питание	Зеленое	Подача на прибор питающего тока
	Погашен	Нет обмена по сети RS-485
RS-485	Мерцает в такт принятым/ переданным данным	Выполняется обмен данными
	Мигает с частотой 1 Гц	Работа в режиме «Заводские сетевые настройки» (см. раздел 7.3)
Авария	Красное	Возникновение нештатной ситуации (см. таблицу 6.2)

	Горит	На входе есть сигнал, сигнал находится в допустимом диапазоне измеряемых значений
UA, UB, UC, IA, IB, IC	Мигает с частотой 1 Гц	Сигнал вышел за допустимый диапазон измеряемых значений или сигнал на входе отсутствует

Таблица 6.2 - Описание ошибок

Индикатор		Описание ошибки	
Авария	RS-485	- Описание ошиоки	
Мигает с частотой 1 Гц	-	• отсутствие связи с АЦП*; • нарушение чередования фаз	
Засвечен	Погашен	Отсутствие связи с ПК в течение времени указанного в параметре t.out ** в секундах (по умолчанию 600 секунд)	

$oxed{i}$

ПРИМЕЧАНИЕ

- * Ошибка «отсутствие связи с АЦП» является более приоритетной, чем ошибка «нарушение чередования фаз».
- ** Полный перечень параметров прибора приведен в Приложении Команды управления прибором по сети RS-485.

На лицевой панели прибора под крышкой с маркировкой «ЗАВ. HACTP. RS-485» расположена кнопка, предназначенная для входа в режим «Заводские сетевые настройки».

6.5 Измерение параметров

6.5.1 Действующее напряжение

Входной сигнал, поступающий на клеммы прибора, преобразуется делителем напряжения, реализованным на прецизионных резисторах, и поступает на фильтр нижних частот со срезом на частоте 70 кГц и подавлением 20 дБ/дек. Последующая обработка сигнала выполняется специализированным $\Sigma\Delta$ -АЦП и микроконтроллером, где рассчитывается действующее значение напряжения V_{rms} по следующей формуле:

$$V_{rms} = K_V \sqrt{\frac{1}{T} \int\limits_0^T V^2(t) dt} \tag{6.1}$$

где V – значение фазного напряжения;

T – период;

 K_V – коэффициент трансформации по напряжению.

6.5.2 Действующий ток

Входной сигнал, поступающий на клеммы прибора, проходит через токовый шунт и поступает на фильтр нижних частот со срезом на частоте 70 кГц и подавлением 20 дБ/дек. Последующая обработка сигнала выполняется специализированным $\Sigma\Delta$ -АЦП и микроконтроллером, где действующий ток I_{rms} рассчитывается по следующей формуле:

$$I_{rms} = K_I \sqrt{\frac{1}{T} \int_0^T I^2(t) dt}$$
 (6.2)

где *I* – значение фазного тока;

 K_l – коэффициент трансформации по току.

6.5.3 Полная, активная и реактивная мощности

Значения полной, активной и реактивной мощности получают вычислением по формулам, описанным ниже:

$$S = V_{rms} \cdot I_{rms} \tag{6.3}$$

Полная мощность

$$P = V_{rms} \cdot I_{rms} \cdot \cos \varphi \tag{6.4}$$

Активная мощность

где φ – угол смещения между V и I.

$$Q = V_{rms} \cdot I_{rms} \cdot \sin \varphi \tag{6.5}$$

Реактивная мощность

Соотношение мощностей показано на рисунке ниже:

Рисунок 6.2 – Диаграмма соотношение мощностей

6.5.4 Частота первой гармоники

Для измерения частоты первой гармоники используется функция специализированного АЦП «пересечение сигналом нулевого уровня». Тогда, в первом канале напряжения, АЦП формирует сигналы для микроконтроллера, разница между которыми по времени пересчитывается в частоту, при этом значение частоты должно попадать в диапазон от 45 до 65 Гц.

6.5.5 Коэффициент мощности

Значения коэффициента мощности $\cos \phi$ получают вычислением по следующей формуле:

$$\cos \varphi = \frac{P}{S} \tag{6.6}$$

Коэффициент мощности вычисляется в диапазоне измерения мощности – от 0,02 до 2 кВт.

6.5.6 Использование согласующих трансформаторов

Допускается подключение канала напряжения или канала тока через согласующие трансформаторы, в этом случае необходимо установить в параметрах **N. u** или **N. i** значения коэффициентов трансформации внешних трансформаторов. По умолчанию подразумевается, что трансформатор не используется, и значение этого параметра равно «1». Параметры могут принимать значения от 0,001 до 9999,000.

ПРИМЕЧАНИЕ

Полный перечень параметров прибора приведен в Приложении Команды управления прибором по сети RS-485.

Пример

Если необходимо измерить напряжение 600 B, но т. к. прибор измеряет напряжение до 400 B, и используется понижающий трансформатор 600/300. Тогда значение параметра **N.u** будет равно 2.

ПРИМЕЧАНИЕ

Параметры, производные от напряжения и тока, такие как мощность, в случае использования согласующих трансформаторов, пересчитываются прибором с учетом значений коэффициентов трансформации (**N.u** или **N.i**).

Пример

Если необходимо измерить полную мощность 3,3 кВА и напряжение укладывается в диапазон и составляет 220 В, но ток нагрузки до 15 А и используется трансформатор тока 30/5, с **N. i = 6** соответственно, в результате вычислений прибор выдаст значение полной мощности 3,3 кВА.

7 Настройка

7.1 Конфигурирование

Прибор конфигурируется с помощью ПО «Конфигуратор М110». Установочный файл располагается на сайте owen.ru.

Для конфигурирования прибора следует:

- 1. Подключить прибор к ПК через адаптер интерфейса RS-485/RS-232 или RS-485/USB.
- 2. Подать питание на прибор.
- 3. Установить и запустить ПО «Конфигуратор М110».
- 4. Выбрать настройки порта для установки связи с прибором.

Рисунок 7.1 - Выбор настроек порта

5. Выбрать модель прибора.

Рисунок 7.2 - Выбор модели прибора

6. В открывшемся главном окне задать конфигурационные параметры.

Рисунок 7.3 - Главное окно

7. После задачи параметров записать настройки в прибор, выбрав команду в главном меню **Прибор** → **Записать все параметры**.

Подробная информация о работе с ПО «Конфигуратор М110» представлена в руководстве пользователя на сайте owen.ru.

7.2 Конфигурационные и оперативные параметры

Параметры в приборе разделяются на группы:

- конфигурационные;
- оперативные.

Конфигурационные параметры – это параметры, определяющие конфигурацию прибора: настройку входов и сетевые настройки. Значения этих параметров следует задавать с помощью ПО «Конфигуратор М110».

Значения конфигурационных параметров хранятся в энергонезависимой памяти прибора и сохраняются в случае выключения питания.

Оперативные параметры – это данные, которые прибор передает по сети RS-485 при запросе от Мастера. Оперативные параметры отражают текущее состояние регулируемой системы.

Каждый параметр имеет имя, состоящее из латинских букв (до четырех), которые могут быть разделены точками, и название. Например, «Задержка ответа по RS-485» **Rs.dL**, где «Задержка ответа по RS-485» – название, **Rs.dL** – имя.

Конфигурационные параметры имеют также индекс – цифру, отличающую параметры однотипных элементов. Индекс передается вместе со значением параметра. Работу с индексами выполняет ПО «Конфигуратор М110» автоматически.

Оперативные параметры не имеют индекса. Они индексируются через сетевой адрес.

7.3 Работа в режиме «Заводские сетевые настройки»

Работа в режиме «Заводские сетевые настройки» рекомендуется для установки связи между ПК и прибором в случае утери информации о заданных значениях сетевых параметров прибора.

ВНИМАНИЕ

Напряжение на некоторых элементах печатной платы прибора опасно для жизни! Прикосновение к печатной плате, а также попадание посторонних предметов внутрь корпуса недопустимы.

Для входа в режим «Заводские сетевые настройки» следует:

- 1. Запустить ПО «Конфигуратор М110».
- 2. Подать питание на прибор.
- 3. Откинуть крышку корпуса прибора с маркировкой «ЗАВ. HACTP. RS-485».
- 4. Нажать и удерживать кнопку, расположенную под крышкой, на время более 5 секунд, после отпускания кнопки начнет мигать светодиод «RS-485», прибор перестроится на заводские значения сетевых параметров, но в его памяти сохранятся ранее установленные значения сетевых параметров.

- 5. В окне **Установка связи с прибором** задать значения заводских сетевых параметров (в соответствии с данными таблицы) и нажать кнопку «Установить связь» или нажать кнопку «Заводские сетевые настройки». Связь с прибором установится с заводскими значениями сетевых параметров. Откроется главное окно программы «Конфигуратор М110».
- 6. Считать значения сетевых параметров прибора, выбрав команду **Прибор | Прочитать все параметры** или открыв папку «Сетевые параметры».
- 7. Зафиксировать на бумаге значения сетевых параметров прибора, которые были считаны (или перестроить прибор на требуемые сетевые параметры).
- 8. Закрыть ПО «Конфигуратор М110».
- 9. Повторно нажать и удерживать кнопку «ЗАВ. HACTP. RS-485» на время более 5 секунд, после отпускания кнопки, светодиод «RS-485» погаснет, прибор вернется в рабочий режим.

ПРИМЕЧАНИЕ В СПУЧАЕ ПРИМЕ

В случае применения новых сетевых настроек (команда «Aply») в режиме «Заводские сетевые настройки», переход прибора в рабочий режим выполняется автоматически, светодиод «RS-485» гаснет.

- 10. Запустить ПО «Конфигуратор М110».
- 11. Установить зафиксированные ранее значения параметров в окне Установка связи с прибором.
- 12. Нажать кнопку «Установить связь» и проверить наличие связи с прибором, выбрав команду **Прибор | Проверка связи с прибором**.
- 13. Закрыть крышку корпуса с маркировкой «ЗАВ. HACTP. RS-485».

Таблица 7.1 – Заводские значения сетевых параметров прибора

Параметр	Описание	Заводская установка
bPS	Скорость обмена данными	9600 бит/с
PrtY	Тип контроля четности слова данных	Отсутствует
Sbit	Количество стоп-битов в посылке	1
A.Len	Длина сетевого адреса	8 бит
Addr	Базовый адрес прибора	16
Rs.dl	Задержка ответа по RS-485	2 мс
T.pro	Тип протокола	OBEH

8 Интерфейс RS-485

8.1 Базовый адрес прибора в сети RS-485

Каждый прибор в сети RS-485 должен иметь свой уникальный базовый адрес:

Таблица 8.1 – Адресация в сети RS-485

Адресация в протоколе ОВЕН*			
Диапазон значений базового адреса при 8-битной адресации	от 0 до 254		
Диапазон значений базового адреса при 11- битной адресации	от 0 до 2039		
Широковещательный адрес при 8-битной адресации	255		
Широковещательные адреса при 11-битной адресации	от 2040 до 2047		
Базовый адрес прибора по умолчанию**	16		
Базовый адрес каждого следующего прибора	[базовый адрес предыдущего прибора] + 1		
Адресация в протоколе Modbus			
Диапазон значений базового адреса	от 1 до 255		
Широковещательный адрес 0			
Адресация в про	Адресация в протоколе DCON		
Диапазон значений базового адреса от 0 до 255			
ТРИМЕЧАНИЕ * Длина базового адреса определяется парам В адресе может быть 8, либо 11 бит. ПРИМЕЧАНИЕ ** Базовый адрес прибора задается в ПО «Кон	етром A.Len во время задания сетевых настроек.		

8.2 Мастер сети

Для организации обмена данными в сети по интерфейсу RS-485 необходим **Мастер сети**. Основная функция **Мастера сети** — инициировать обмен данными между **Отправителем** и **Получателем данных**. Прибор не может быть **Мастером сети**, он выступает в роли **Получателя данных**.

В качестве Мастера сети можно использовать:

- программируемые контроллеры (ПЛК);
- ПК с подключенным преобразователем RS-232/RS-485 (например, OBEH AC3-M) или USB/RS-485 (например, OBEH AC4).

В сети RS-485 предусмотрен только один **Мастер сети**.

9 Техническое обслуживание

Обслуживание прибора во время эксплуатации заключается в его техническом осмотре. Во время выполнения работ пользователь должен соблюдать меры безопасности из раздела 3.

Технический осмотр прибора проводится обслуживающим персоналом не реже одного раза в шесть месяцев и включает в себя выполнение следующих операций:

- очистку корпуса прибора, а также его клеммных колодок от пыли, грязи и посторонних предметов;
- проверку качества крепления прибора на DIN-рейке или на стене;
- проверку качества подключения внешних связей.

Обнаруженные во время осмотра недостатки следует немедленно устранить.

10 Маркировка

На корпус прибора наносятся:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс точности;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер и дата выпуска прибора.

На потребительскую тару наносятся:

- наименование прибора;
- единый знак обращения продукции на рынке государств-членов Таможенного союза (EAC);
- страна-изготовитель;
- заводской номер и дата выпуска прибора.

11 Транспортирование и хранение

Прибор транспортируется в закрытом транспорте любого вида в транспортной таре поштучно или в контейнерах. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 ГОСТ 15150 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 ГОСТ 15150. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

12 Комплектность

Прибор	1 шт.
Паспорт и Гарантийный талон	1 экз.
Краткое руководство по эксплуатации	1 экз.

ПРИМЕЧАНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

13 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 24 месяца со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Команды управления прибором по сети RS-485

Таблица А.1 – Значения типов данных

Тип поши к	F.4=	Диапазон значений				
Тип данных	Бит	Минимальное Максимальное				
Unsigned char	8	0	255			
Unsigned short	16	0	65535			
Unsigned long	32	0	4294967295			
Signed long	32	-2147483648	2147483647			
Float	32	3,4E-38	3,4E+38			

Приложение Б. Команды протокола ОВЕН

Таблица Б.1 – Команды протокола ОВЕН

Команда HASH		Данные записи/ чтения	Тип данных	Примечание
		Общие параметры	прибора	
Имя прибора dev	0xD681	Строка ASCII, 8 байт: MЭ110-3M	Char[8]	Только чтение
Версия прошивки ver	0x2D5B	Строка ASCII, 5 байт: VX.YY: X – номер версии; YY– номер подверсии	Char[4]	Только чтение. Устанавливается предприятием-изготовителем
		Сетевые парам	етры	
данными 1- bPS 2- 3- 0xB760 4- 5- 6- 7-		0 — 2400 бит/с; 1 — 4800 бит/с; 2 — 9600 бит/с; 3 — 14400 бит/с; 4 — 19200 бит/с; 5 — 28800 бит/с; 6 — 38400 бит/с; 7 — 59600 бит/с; 8 — 115200 бит/с	Unsigned char	Запись/Чтение. По умолчанию – 2
Длина слова данных Len	0x523F	0 – 7 бит; 1 – 8 бит	Unsigned char	Запись/Чтение. По умолчанию – 1
Тип контроля четности PrtY	0xE8C4	0 – нет; 1 – четность; 2 – нечетность	Unsigned char	Запись/Чтение. По умолчанию – 0
Количество стоп- битов в посылке Sbit	0xB72E	0 – 1 стоп-бит; 1 – 2 стоп-бит	Unsigned char	Запись/Чтение. По умолчанию – 0
Задержка ответа по RS-485 Rs.dL	0xCBF5	от 0 до 255 мс	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 2
Сетевой тайм-аут t.out	0xBEC7	от 0 до 600 с	Unsigned short	Запись/Чтение. <i>По</i> умолчанию – 600
Базовый адрес прибора Addr	0x9F62	от 1 до 2039	Unsigned short	Запись/Чтение. <i>По</i> умолчанию – 16
Протокол обмена T.pro	0x77A0	0 – Modbus ASCII; 1 – Modbus RTU; 2 – OBEH; 3 – DCON	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 2
Длина сетевого адреса A.Len	0x1ED2	0 — 8 бит; 1 — 11 бит	Unsigned char	Запись/Чтение. По умолчанию – 0
Код последней ошибки n.Err	0x0233	См. таблицу Б.2	Unsigned char	Только чтение

		Конфигурационные г	параметры	
Байт статуса (битовая маска) Stat	0x9C5B	Чтение: 0 – ошибка ЕЕРКОМ; 1 – ошибка связи с АЦП; 2 – ошибка применения параметров; 4 – выход за границу диапазона фаза А; 5 – выход за границу диапазона фаза В; 6 – выход за границу диапазона фаза С	Unsigned char	Только чтение
Режим работы Mode	0x5304	См. таблицу Б.3	Unsigned short	Запись/Чтение. По умолчанию – 0
Значение коэффициента трансформации напряжения по входам N.u	0xAADF	от 0,001 до 9999,000	Float	Запись/Чтение. По умолчанию – 1,0
Значение коэффициента трансформации тока по входам N.i	0x91EC	от 0,001 до 9999,000	Float	Запись/Чтение. По умолчанию – 1,0
Применение параметров Aply	0x8403	0х0081 – применить и сохранить настройки в энергонезависимую память	Unsigned char	Только запись. После применения и сохранения значение этого параметра станет 0х0000
		Оперативные пар	аметры	
Значение измеренного напряжения по входу А In.u1	0x7174		Float	Только чтение
Значение измеренного напряжения по входу В In.u2	0x4C28		Float	Только чтение
Значение измеренного напряжения по входу С In.u3	0xDDD1		Float	Только чтение
Значение измеренного тока по входу А In.i1	0x6693		Float	Только чтение
Значение измеренного тока по входу В In.i2	0x5BCF		Float	Только чтение
Значение измеренного тока по входу С In.i3	0xCA36		Float	Только чтение

продолжение таоли			
Значение измеренной полной мощности по входу А In.S1	0xB071	Float	Только чтение
Значение измеренной полной мощности по входу В In.S2	0x8D2D	Float	Только чтение
Значение измеренной полной мощности по входу С In.S3	0x1CD4	Float	Только чтение
Значение измеренной активной мощности по входу А In.P1	0x1A05	Float	Только чтение
Значение измеренной активной мощности по входу В In.P2	0x2759	Float	Только чтение
Значение измеренной активной мощности по входу С In.P3	0xB6A0	Float	Только чтение
Значение измеренной реактивной мощности по входу А In.Q1	0x7C29	Float	Только чтение
Значение измеренной реактивной мощности по входу В In.Q2	0x4175	Float	Только чтение
Значение измеренной реактивной мощности по входу С In.Q3	0xD08C	Float	Только чтение
Значение измеренного коэффициента мощности по входу A cos.1	0x1E31	Float	Только чтение

продолжение таси	•			
Значение измеренного коэффициента мощности по входу В	0x236D		Float	Только чтение
соs.2 Значение измеренного коэффициента мощности по входу В соs.2	0xB294		Float	Только чтение
Значение измеренной частоты сети in.F	0x1425		Float	Только чтение
Значение измеренного фазового угла по входам АВ vB.12	0x6B3B		Float	Только чтение
Значение измеренного фазового угла по входам ВС vB.23	0x9CEE		Float	Только чтение
Значение измеренного фазового угла по входам СА vB.31	0x9762		Float	Только чтение
Значение измеренного межфазного напряжения по входу АВ vRM.1	0x9704		Float	Только чтение
Значение измеренного межфазного напряжения по входу ВС vRM.2	0xAA58		Float	Только чтение
Значение измеренного межфазного напряжения по входу СА vRM.3	0x3BA1		Float	Только чтение
		Параметры кали	бровки*	
Значение максимального напряжения, используемого при калибровке Uk.hi	0x5922	от 100 до 300	Float	Запись/Чтение. <i>По</i> умолчанию – 300
Значение минимального напряжения, используемого при калибровке Uk.lo	0xDBB7	от 1 до 10	Float	Запись/Чтение. <i>По</i> умолчанию – 6

Значение максимального тока, используемого при калибровке Ik.hi	0x1620	от 1 до 5	Float	Запись/Чтение. <i>По</i> умолчанию – 5
Значение минимального тока, используемого при калибровке Ik.lo	0x94B5	от 0,01 до 0,1	Float	Запись/Чтение. По умолчанию – 0,02

i

ПРИМЕЧАНИЕ

* Калибровка прибора выполняется только на предприятии-изготовителе. Изменять параметры калибровки не рекомендуется.

Таблица Б.2 – Код последней сетевой ошибки (0x0233 – HASH для протокола OBEH, 0x000F – номер первого регистра для протокола Modbus)

Код	Описание	
0	Безошибочный прием кадра	
2	Заданное положение точки, превышающее 3	
3	Попытка модификации ROM параметра	
33	Аппаратная ошибка кадрирования	
39	Неверная контрольная сумма кадра	
40	Не найден дескриптор	
49	Размер поля данных не соответствует ожидаемому	

Таблица Б.3 – Кодирование режима работы (0х5304 – HASH для протокола OBEH, 0х0011 – номер первого регистра для протокола Modbus)

Номер бита	Назначение
15	Использовать целые значения коэффициента трансформации
14	Ошибка чередования фаз
8 Старт калибровки	
7 Ожидает U = 100 B, I = 1 A, соsф = 1. Калибровка завершена	
6 Ожидает U = HiVoltage , I = HiCurrent, cosφ = 0,5	
2 Ожидает U = LoVoltage, I = LoCurrent	
1 Ожидает U = HiVoltage, I = HiCurrent	
0	Ошибка калибровки. Не удалось выполнить калибровку

ПРИМЕЧАНИЕ

Для прерывания калибровки необходимо установить бит 9, при этом устанавливается бит ошибки – бит 0.

ПРЕДУПРЕЖДЕНИЕ

Биты номер 8–0 используются при калибровке прибора. Значения HiVoltage/HiCurrent и LoVoltage/LoCurrent (соответственно значения максимального напряжения/тока и минимального напряжения/тока при калибровке) задаются с помощью параметров калибровки. Калибровка проводится только на предприятии-изготовителе.

Приложение В. Команды протокола Modbus

Для протокола Modbus реализовано выполнение следующих функций:

- 03 (read registers) чтение одного или нескольких регистров;
- 06 (preset single register) запись одного регистра;
- 16 (preset multiple registers) запись нескольких регистров;
- 17 (reportslaveID) чтение имени прибора и версии программы.

Если адрес прибора равен нулю, для протокола Modbus это широковещательный адрес, и прибор будет выполнять команды записи (6, 16), но не будет отправлять квитанции на принятые команды. На адреса более 247 прибор реагировать не будет.

Для функций **06** и **16** при попытке записать регистры, предназначенные только для чтения, или при попытке обращения к несуществующим регистрам возвращается ошибка 1 (**Illegal function**).

Структура запроса и ответа для функции 17

Функция позволяет получить имя прибора и версию программного обеспечения.

В таблице ниже представлен запрос на чтение имени и версии программного обеспечения прибора с адресом 12:

Таблица В.1 - Запрос для функции 17

Адрес	Функция	Контрольная сумма
12	17	ZZ

Ответ на функцию 17 представлен в таблице ниже:

Таблица В.2 – Ответ на функцию 17

Адрес	Функция	Количество байт данных	Данные 18 байт	Контрольная сумма
12	17	18	MЭ110-220.3M VX. YY	ZZ

ПРИМЕЧАНИЕ

Поля X и YY определяются предприятием-изготовителем.

Таблица В.3 – Команды протокола Modbus

Параметр	Номера регистров, НЕХ	Данные записи/ чтения	Тип данных	Примечание					
	Общие параметры								
Имя прибора	0x0000; 0x0001; 0x0002; 0x0003	Строка ASCII, 8 байт: МЭ110-3М	Char[8]	Только чтение					
Версия прошивки	0x0004; 0x0005	Строка ASCII, 4 байт VX.YY: X – номер версии; YY– номер подверсии	Char[4]	Только чтение. Устанавливается предприятием- изготовителем					
		Сетевые параметры	I						
Скорость обмена	0x0006	0 — 2400 бит/с; 1 — 4800 бит/с; 2 — 9600 бит/с; 3 — 14400 бит/с; 4 — 19200 бит/с; 5 — 28800 бит/с; 6 — 38400 бит/с; 7 — 59600 бит/с; 8 — 115200 бит/с	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 2					
Длина слова данных	0x0007	0 – 7 бит; 1 – 8 бит	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 1					

	•			
Тип контроля четности слова данных	0x0008	0 – нет; 1 – четность; 2 – нечетность	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Количество стоп- битов в посылке	0x0009	0 – 1 стоп-бит; 1 – 2 стоп-бита	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Задержка ответа по RS-485	0x000A	от 0 до 255 мс	Unsigned char	Запись/Чтение. <i>По умолчанию</i> – 2
Сетевой тайм-аут	0x000B	от 0 до 600 с	Unsigned short	Запись/Чтение. <i>По</i> умолчанию – 600
Сетевой адрес прибора	0x000C	от 1 до 247	Unsigned short	Запись/Чтение. <i>По</i> умолчанию – 16
Тип сетевого протокола	0x000D	0 – Modbus ASCII; 1 – Modbus RTU; 2 – OBEH; 3 – DCON	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 2
Длина сетевого адреса	0x000E	0 – 8 бит; 1 – 11 бит	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Код последней сетевой ошибки	0x000F		Unsigned char	Только чтение
	Конфі	игурационные парам	метры	
Байт статуса (битовая маска)	0x0010	0 – ошибка ЕЕРКОМ; 1 – ошибка связи с АЦП; 2 – ошибка применения параметров; 4 – выход за границу диапазона фаза А; 5 – выход за границу диапазона фаза В; 6 – выход за границу диапазона фаза С	Unsigned char	Только чтение
Режим работы	0x0011		Unsigned short	Запись/Чтение. <i>По</i> умолчанию – 0
Положение десятичной точки в целом значении коэффициента трансформации напряжения по входам	0x0012	0 - (); 1 - (); 2 - (); 3 - ()	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Целое значение коэффициента трансформации напряжения по входам со смещение точки	0x0013, 0x0014	от 1 до 9999999	Unsigned long	Запись/Чтение. <i>По</i> умолчанию – 1
Положение десятичной точки в целом значении коэффициента трансформации тока по входам	0x0015	0 - (); 1 - (); 2 - (); 3 - ()	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0

продолжение таоли	1451 5.0			
Целое значение коэффициента трансформации тока по входам со смещение точки	0x0016, 0x0017	от 1 до 9999999	Unsigned long	Запись/Чтение. <i>По умолчанию</i> – 1
Положение десятичной точки в целом значении измеренного напряжения по входам	0x0018	0 – (——); 1 – (—); 2 – (); 3 – (—)	Unsigned char	Запись/Чтение. По умолчанию – 0
Положение десятичной точки в целом значении измеренного тока по входам	0x001F	0 – (); 1 – (); 2 – (); 3 – ()	Unsigned char	Запись/Чтение. По умолчанию – 0
Положение десятичной точки в целом значении измеренной полной мощности по входам	0x0026	0 – (——); 1 – (—); 2 – (); 3 – (—)	Unsigned char	Запись/Чтение. По умолчанию – 0
Положение десятичной точки в целом значении измеренной активной мощности по входам	0x002D	0 - (); 1 - (); 2 - (); 3 - ()	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Положение десятичной точки в целом значении измеренной реактивной мощности по входам	0x0034	0 – (); 1 – (); 2 – (); 3 – ()	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Положение десятичной точки в целом значении измеренного коэффициента мощности по входам	0x003B	0 – (——); 1 – (—); 2 – (–.–); 3 – (—)	Unsigned char	Запись/Чтение. По умолчанию – 0
Положение десятичной точки в целом значении измеренной частоты сети	0x0042	0 - (); 1 - (); 2 - (); 3 - ()	Unsigned char	Запись/Чтение. <i>По умолчанию</i> – 0
Положение десятичной точки в целом значении измеренного фазового угла по входам	0x0045	0 – (); 1 – (); 2 – (); 3 – ()	Unsigned char	Запись/Чтение. <i>По умолчанию</i> – 0
Значение коэффициента трансформации напряжения по входам с плавающей точкой	0x004C, 0x004D	от 0,001 до 9999,000	Float	Запись/Чтение. <i>По</i> умолчанию – 1,0

продолжение таоли	іцы Б.5			
Значение коэффициента трансформации тока по входам с плавающей точкой	0x004E, 0x004F	от 0,001 до 9999,000	Float	Запись/Чтение. <i>По</i> умолчанию – 1,0
Применение параметров	0x007C	0×0081 — применить и сохранить настройки в энергонезависимую память	Unsigned char	Только запись. После применения и сохранения значение этого параметра станет 0×0000
	Ог	теративные парамет	ры	
Целое значение измеренного напряжения по входу А	0x0019, 0x001A		Signed long	Только чтение
Целое значение измеренного напряжения по входу В	0x001B, 0x001C		Signed long	Только чтение
Целое значение измеренного напряжения по входу С	0x001D, 0x001E		Signed long	Только чтение
Целое значение измеренного тока по входу А	0x0020, 0x0021		Signed long	Только чтение
Целое значение измеренного тока по входу В	0x0022, 0x0023		Signed long	Только чтение
Целое значение измеренного тока по входу С	0x0024, 0x0025		Signed long	Только чтение
Целое значение измеренной полной мощности по входу А	0x0027, 0x0028		Signed long	Только чтение
Целое значение измеренной полной мощности по входу В	0x0029, 0x002A		Signed long	Только чтение
Целое значение измеренной полной мощности по входу С	0x002B, 0x002C		Signed long	Только чтение
Целое значение измеренной активной мощности по входу А	0x002E, 0x002F		Signed long	Только чтение
Целое значение измеренной активной мощности по входу В	0x0030, 0x0031		Signed long	Только чтение
Целое значение измеренной активной мощности по входу С	0x0032, 0x0033		Signed long	Только чтение

	•		
Целое значение измеренной реактивной мощности по входу А	0x0035, 0x0036	Signed long	Только чтение
Целое значение измеренной реактивной мощности по входу В	0x0037, 0x0038	Signed long	Только чтение
Целое значение измеренной реактивной мощности по входу С	0x0039, 0x003A	Signed long	Только чтение
Целое значение измеренного коэффициента мощности по входу А	0x003C, 0x003D	Signed long	Только чтение
Целое значение измеренного коэффициента мощности по входу В	0x003E, 0x003F	Signed long	Только чтение
Целое значение измеренного коэффициента мощности по входу С	0x0040, 0x0041	Signed long	Только чтение
Целое значение измеренной частоты сети	0x0043, 0x0044	Unsigned long	Только чтение
Целое значение измеренного фазового угла по входу АВ	0x0046, 0x0047	Signed long	Только чтение
Целое значение измеренного фазового угла по входу ВС	0x0048, 0x0049	Signed long	Только чтение
Целое значение измеренного фазового угла по входу СА	0x004A, 0x004B	Signed long	Только чтение
Значение измеренного напряжения по входу А	0x0050, 0x0051	Float	Только чтение
Значение измеренного напряжения по входу В	0x0052, 0x0053	Float	Только чтение
Значение измеренного напряжения по входу С	0x0054, 0x0055	Float	Только чтение
Значение измеренного тока по входу А	0x0056, 0x0057	Float	Только чтение

продолжение таоли			
Значение измеренного тока по входу В	0x0058, 0x0059	Float	Только чтение
Значение измеренного тока по входу С	0x005A, 0x005B	Float	Только чтение
Значение измеренной полной мощности по входу А	0x005C, 0x005D	Float	Только чтение
Значение измеренной полной мощности по входу В	0x005E, 0x005F	Float	Только чтение
Значение измеренной полной мощности по входу С	0x0060, 0x0061	Float	Только чтение
Значение измеренной активной мощности по входу А	0x0062, 0x0063	Float	Только чтение
Значение измеренной активной мощности по входу В	0x0064, 0x0065	Float	Только чтение
Значение измеренной активной мощности по входу С	0x0066, 0x0067	Float	Только чтение
Значение измеренной реактивной мощности по входу А	0x0068, 0x0069	Float	Только чтение
Значение измеренной реактивной мощности по входу В	0x006A, 0x006B	Float	Только чтение
Значение измеренной реактивной мощности по входу С	0x006C, 0x006D	Float	Только чтение
Значение измеренного коэффициента мощности по входу А	0x006E, 0x006F	Float	Только чтение
Значение измеренного коэффициента мощности по входу В	0x0070, 0x0071	Float	Только чтение

• • •	•			
Значение измеренного коэффициента мощности по входу С	0x0072, 0x0073		Float	Только чтение
Значение измеренной частоты сети	0x0074, 0x0075		Float	Только чтение
Значение измеренного фазового угла по входам АВ	0x0076, 0x0077		Float	Только чтение
Значение измеренного фазового угла по входам ВС	0x0078, 0x0079		Float	Только чтение
Значение измеренного фазового угла по входам СА	0x007A, 0x007B		Float	Только чтение
Значение измеренного межфазного напряжения по входу АВ	0x007D, 0x007E		Float	Только чтение
Значение измеренного межфазного напряжения по входу ВС	0x007F, 0x0080		Float	Только чтение
Значение измеренного межфазного напряжения по входу СА	0x0081, 0x0082		Float	Только чтение
Значение измеренного тока нейтрали	0x0083, 0x0084		Float	Только чтение
Положение десятичной точки в целом значении измеренного межфазного напряжения по входам	0x0085	0 – (); 1 – (); 2 – (); 3 – ()	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Целое значение измеренного напряжения по входу АВ	0x0086, 0x0087		Unsigned long	Только чтение
Целое значение измеренного напряжения по входу ВС	0x0088, 0x0089		Unsigned long	Только чтение
Целое значение измеренного напряжения по входу СА	0x008A, 0x008B		Unsigned long	Только чтение

Положение десятичной точки в целом значении измеренного тока нейтрали	0x008C	0 - (); 1 - (); 2 - (); 3 - ()	Unsigned char	Запись/Чтение. <i>По</i> умолчанию – 0
Целое значение измеренного тока нейтрали	0x008D, 0x008E		Unsigned long	Только чтение
	Па	раметры калибровн	(N*	
NOMINAL_ VOLTAGE калибровка	0x008F, 0x0090	от 100 до 300	Float	Запись/Чтение. <i>По</i> умолчанию – 300
MINIMAL_ VOLTAGE калибровка	0x0091, 0x0092	от 1 до 10	Float	Запись/Чтение. <i>По</i> умолчанию – 6
NOMINAL_ CURRENT калибровка	0x0093, 0x0094	от 1 до 5	Float	Запись/Чтение. <i>По</i> умолчанию – 5
MINIMAL_ CURRENT калибровка	0x0095, 0x0096	от 0,01 до 0,10	Float	Запись/Чтение. <i>По</i> умолчанию – 0,02
MINIMAL_ NEUTRAL_ CURRENT калибровка	0x0097, 0x0098	от 1 до 15	Float	Запись/Чтение. <i>По</i> умолчанию – 4
Статус калибровки	0x0099, 0x009A	от 0 до 4294967295	Unsigned long	Только чтение
Начало калибровки	0x009B	от 0 до 65535	Unsigned short	Только чтение
Флаг пропадания фазы	0x009C	от 0 до 1	Unsigned char	Только запись. <i>По</i> умолчанию – 0

ПРИМЕЧАНИЕ* Калибровка прибора выполняется только на предприятии-изготовителе. Изменять параметры калибровки не рекомендуется.

Приложение Г. Команды протокола DCON

Г.1 Считывание данных

Посылка:

#AAN[CHK](cr)

где AA - адрес модуля от 0x00 до 0xFF;

N – номер канала (фазы) от 1 до 3;

[СНК] - контрольная сумма;

(ст) – символ перевода строки (0х0D).

Ответ:

(данные) [CHK] (cr)

где **(данные)** – десятичное представление результата измерения со знаком (пять значащих цифр). На месте недостоверных данных передается «–9.99».

Если в посылке синтаксическая ошибка или ошибка в контрольной сумме, то не выдается никакого ответа.

Пример

>+100.00+2.000+0200.00+0200.00+0000.00+1.00+50.00+1000.000+2000.000[CHK](cr)

- Значение напряжения V' (без учета K_V) 100,00 В;
- Значение тока I' (без учета К_I) 2,000 А;
- Значение полной мощности S' (без учета K_V и K_I) − 200,00 Вт;
- Значение активной мощности P' (без учета K_V и K_I) 200,00 Вт;
- Значение реактивной мощности Q' (без учета K_V и K_I) 0,00 Вт;
- Коэффициент мощности cos φ 1,00;
- Значение частоты *F* 50,00 Гц;
- Коэффициент трансформации по напряжению $K_V 1000,000$;
- Коэффициент трансформации по току *K*_I 2000,000.

Измеренные значения напряжения, тока и мощности вычисляются по формулам:

- измеренное значение напряжения: $V_{rms} = V' \cdot K_V = 100,000 \cdot 1000,000 = 10^5$ (B);
- измеренное значение тока: $I_{rms} = I' \cdot K_I = 2,000 \cdot 2000,000 = 4 \cdot 10^3$ (A);
- измеренное значение полной мощности: $S = S' \cdot K_V \cdot K_I = 200,000 \cdot 1000,000 \cdot 2000,000 = 4 \cdot 10^8$ (Вт):
- измеренное значение активной мощности: P = P' · K_V · K_I = 200,000 · 1000,000 · 2000,000 = 4 · 108 (Вт);
- измеренное значение реактивной мощности: $Q = Q' \cdot K_V \cdot K_I = 0,000 \cdot 1000,000 \cdot 2000,000 = 0$ (Вт).

Контрольная сумма (СНК) позволяет обнаружить ошибки в командах, отправленных из ведущего устройства, а также в ответах ведомого. Контрольная сумма (СНК) передается как коды двух ASCII символов (от 0x00 до 0xFF) и представляет собой сумму ASCII кодов всех символов посылки не включая код символа переноса строки. В случае переполнения суммы, старшие разряды отбрасываются.

ПРИМЕЧАНИЕ

Вся информация, содержащаяся в кадре, включая адрес прибора, данные, СНК и символ перевода строки, передается в ASCII кодах. Следует обратить внимание, что использование ASCII кодов строчных латинских символов недопустимо.

Г.2 Считывание имени прибора

Посылка:

```
$AAM[CHK](cr)
```

где AA – адрес модуля от 0x00 до 0xFF;

[СНК] – контрольная сумма;

(сr) – символ перевода строки (0х0D).

Ответ:

```
!AA(имя прибора(8 символов))[CHK](cr)
```

Если в посылке синтаксическая ошибка, ошибка в контрольной сумме или при запросе данных с несуществующего канала, то не выдается никакого ответа.

Пример

>!AAM9110-3M[CHK](cr)

Г.3 Считывание версии программы прибора

Посылка:

```
$AAF[CHK](cr)
```

где AA — адрес модуля от 0x00 до 0xFF;

[СНК] – контрольная сумма;

(ст) – символ перевода строки (0х0D).

Ответ:

```
!AA(версия(7 символов))[CHK](cr)
```

Если в посылке синтаксическая ошибка, ошибка в контрольной сумме или при запросе данных с несуществующего канала, то не выдается никакого ответа.

Пример

>!AAVx.yy[CHK](cr)

Россия, 111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 тел.: +7 (495) 641-11-56, факс: (495) 728-41-45

тех. поддержка 24/7: 8-800-775-63-83, support@owen.ru

отдел продаж: sales@owen.ru

www.owen.ru 1-RU-48571-1.13