Intel Atom Architecture – Next Generation Computing

Overview

- Intel's smallest and lowest power processor
 I.6 GHz (TDP 2.5 W)
 - TDP Thermal Design Power
 - maximum amount of power the cooling system in a computer is required to dissipate.
- The Intel® Atom[™] processor enables the industry to create pocket-sized and low power Mobile Internet Devices (MIDs), and Internet-focused notebooks (netbooks) and desktops (nettops).

Atom Intended Usage

- Portable internet capable devices
- Not computationally as capable as a desktop
- Used in mobile phones and Netbooks also in desktops

Types of Intel Atom

- Three series of Atom processors released
- N series and Z series are both single core
 - Used in mobile phones and netbooks
- D series are dual core processors and are used in desktops and even servers
- The TDP can vary from as low as 0.65 W
 to 13 W

Atom Architecture

- Superscalar 2 issue
 - Multiple instruction processed at the same time by the processor
 - Different from instruction pipelining
 - Uses multiple redundant hardware components in the processor at the same time

Instruction Pipelining

Instr No.			Pipel	ine S	Stage	Э	
1	IF	ID	EX	MEM	WB		
2		IF	ID	EX	MEM	WB	
3			IF	ID	EX	MEM	WB
4				IF	ID	EX	МЕМ
5					IF	ID	EX
Clock Cycle	1	2	3	4	5	6	7

Superscalar – 2 issue

	IF	ID	EX	MEM	WB				
	IF	ID	EX	MEM	WB				
	i	IF	ID	EX	MEM	WB			
	t	IF	ID	EX	MEM	WB			
-	<u> </u>		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB		
				IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB	
					IF	ID	EX	MEM	WB
					IF	ID	EX	MEM	WB

In-order and Out of order execution

In-order

- Instruction fetch.
- If input operands are available (in registers for instance), the instruction is dispatched to the appropriate functional unit.
- If one or more operand is unavailable during the current clock cycle (generally because they are being fetched from memory), the processor stalls until they are available.
- The instruction is executed by the appropriate functional unit.
- The functional unit writes the results back to the register file.

Out-Of-Order

- Instruction fetch.
- Instruction dispatch to an instruction queue (also called instruction buffer)
- The instruction waits in the queue until its input operands are available.
- The instruction is then allowed to leave the queue before earlier, older instructions.
- The instruction is issued to the appropriate functional unit and executed by that unit.
- The results are queued.
- Only after all older instructions have their results written back to the register file, then this result is written back to the register file.

Advantages and Disadvantages of inorder processing

Advantages

- Eliminates Instruction Reordering Logic
 - Reduces Power Consumption
 - Reduces Die Space

Disadvantages

- Lower Performance
 - Data dependencies are more critical
 - Memory Accesses and slow floating point operations stall the pipeline for longer time
 - Inefficiency in CPU hardware usage

Safe Instruction Recognition

 Start the execution of a low latency integer operation when a floating point operation is waiting for resources

Instruction Set and Functional Units

ISA

- Intel x86 compatible instruction Set
 - Just like any desktop computer
- Instruction length are variable (CISC)
- Support for SIMD instructions

Functional Units

- Minimum number of functional units to reduce power
- 2 Integer ALUs
- 2 Floating Point ALUs

Simultaneous Multi-threading

- Hyper-threading technology
- 2 threads can execute simultaneously
- Leads to increase in power consumption by less than 20 %
- Performance improves by about 40 %

Power Management Options – Frequency Scaling

- Frequency Scaling
 - 8 different operating frequency.
 - Can reduce the frequency to up to 13 % of maximum (1.6 GHz).
 - Reducing frequency reduces power consumption
 - May increase execution time and hence energy consumption
 - Will definitely control operating temperature

Power Management Options – Sleep Scheduling

- 6 sleep states C1 through C6
- Sleep states mainly drains or shuts down the cache
- Also shuts down the core clock
- However, there is time penalty to wake up from the sleep states
- Computation can only take place in C1 state

Software Control on Power Management

- Advanced Configuration and Power Interface (ACPI)
- Linux based set of commands
- Sleep scheduling
 - echo NUM > /proc/acpi/sleep, NUM = 1 ... 6
- For waking up alarm can be set in the real time clock
- Frequency scaling –
 echo NUM>/proc/acpi/processor/CPU0/performance,
 NUM = 0...7

Innovative Idea at IMPACT Lab

 Usage of Atom processors in sensors on body

Body Sensor Networks

- Sensors sense physiological signals
- Communicate with each other through wireless channel
- Simple computation capabilities
- Very low power

Problems

Heating effects

- ^o Wearable Sensor Nodes
- Base Station
- Thermal Map of
- Human Body
- Communication Range

Concerns:

- 1. Thermal safety Keeping human body temperature within safe limits
- 2. Sustainability Long term operation ensuring minimum battery drainage

Body Sensor Network (BSN)

Power Measurements

Power Measurement Set up

Operating Mode (Percent throttling)	Power (W)
0	0.191
13	0.1864
25	0.17
37, 50, 62, 75	0.167
87	0.164

Table showing Atom power consumption at different operating frequencies

The entire platform takes around IIW of power as the chipset is elaborate

Temperature Profiling

- The temperature rise of human skin due to contact with Atom based BSN node has to be evaluated
- The temperature rise occurs due to several physical phenomenon and is modeled using the Penne's bioheat equation -

$$\rho C_p \frac{dT}{dt} = K\nabla^2 T - b(T - T_b) + \rho SAR + P_c + A\sigma(T_r^4 - T_b^4)$$

Heat accumulated

Operating Mode

(Percent

0, 13, 25

37, 50

62, 75

87

Throttling)

Heat transfer Heat transfer

Atom Processor

Operating

(°C)

43

42

41

39

Temperature

by conduction by convection

Maximum Skin

(°C) after 24 hrs

Temperature

of operation

39.4365

39.3325

39.2295

39.0264

Heat by electromagnetic radiation

Heat by power dissipation

Thermal

Damage

(°C)

Temperat

nal ge erature	
39.2	5: in sk th A

Heat by radiation

> Thermal damage parameter calculated according to Henrique and Moritz [5]. Maximum temperature must not exceed this.

5. F. C. J. Henriques et al. Studies of thermal njury: I. the conduction of heat to and through kin and the temperatures attained therein. A heoretical and an experimental investigation. In Am | Pathol., pages 530–549, July. 1947.

Research Questions

- Use frequency control and processor sleep scheduling to reduce the power consumption of Atom to the level of a sensor
- Limit the heating effect of Atom to safe levels
- Ultimate Goal
 - A safe and sustainable Body Sensor Network with Intel Atom processors

Thank You