Lexium15

User's manual

Retain for future use

CANopen

Contents

Contents	3
Important information	4
Before you begin	5
CANOpen Wiring	6
Using the AM02CAN001V000 accessory	6
Without the AM02CAN001V000 accessory	6
Bus cable specifications	7
CANopen on Lexium 15	8
Standards	8
CANopen overview	9
PLCopen Motion Function Blocks for Schneider Motion Controllers	
PDO and SDO notions	
PDO mapping configuration	11
Lexium 15 predefined PDO	12
SDO handling	13
Device overview	 14
Device control	
Device Control Graph for Lexium 15 HP/HP	13 17
Control Word	
Control Word	20
Status Word	21
Servo drive functions	22 22
Digital inputs operations	22
Digital Outputs operations Analog input operations	23 24
Analog output operationsRegistration (LATCH)	23
Position register	23
Position register	28
Position profile (Point to point) (DSP 402)	
Velocity profile (DSP 402)	33
Profile torque (DSP 402)	34
Position Controller Data	34
Position Control (DSP 402)	35
Jog (only for Lexium 15 MP/HP)	35
Digital Velocity (only for Lexium 15 MP/HP)	36
Digital torque (only for Lexium 15 MP/HP)	36
Gear manufacturer mode	37
Motion Task	38
Manufacturer Data (Manufacturer status data)	40
Factor group	41
Identification	46
Errors	47
Warnings/ Manufacturer Status Register	49
CANOpen profile	50
Lexium 15 MP/HP	50
Basic data types	51
Communication Objects	52
Abort SDO Protocol	
Heartbeat (only for Lexium 15 LP)	57

Important information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personnal injury if the instruction are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates an imminently hazardous situation, which, if not avoided, **will result** in death, serious injury, or equipment damage.

WARNING

Warning indicates a potentially hazardous situation, which, if not avoided, **can result** in death, serious injury, or equipment damage.

▲ CAUTION

CAUTION indicates a potentially hazardous situation, which, if not avoided, **can result** in injury or equipment damage.

PLEASE NOTE

Electrical equipment should be serviced only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. This document is not intended as an instruction manual for untrained persons. © 2005 Schneider Electric. All Rights Reserved.

Read and understand these instructions before performing any procedure with this servo drive.

A DANGER

HAZARDOUS VOLTAGE

- Read and understand this manual before installing or operating the Lexium 15 servo drive. Installation, adjustment, repair, and maintenance must be performed by qualified personnel.
- The user is responsible for compliance with all international and national electrical standards in force concerning protective grounding of all equipment.
- Many parts in this variable speed servo drive, including printed wiring boards, operate at line voltage. DO NOT TOUCH. Use only
 electrically insulated tools.
- DO NOT touch unshielded components or terminal strip screw connections with voltage present.
- DO NOT short across terminals PA and PC or across the DC bus capacitors.
- Install and close all covers before applying power or starting and stopping the servo drive.
- Before servicing the variable speed servo drive:
 - Disconnect all power
 - Place a "DO NOT TURN ON" label on the variable speed servo drive disconnect
 - Lock the disconnect in the open position

-Disconnect all power including the external control power supply that may be present before servicing the servo drive. WAIT 15 MINUTES for the DC bus capacitors to discharge. Then follow the DC bus voltage measurement procedure given in the Installation Manual to verify that the DC voltage is less than ___ 45 V. The servo drive LEDs are not accurate indicators of the absence of DC bus voltage.

Failure to follow these instructions will result in death, serious injury, or equipment damage.

A CAUTION

DAMAGED EQUIPMENT

Do not operate or install any servo drive that appears damaged.

Failure to follow this instruction can result in injury or equipment damage.

CANOpen Wiring

The X6 connector on Lexium 15 servo drives carries the signals for an RS232 link and for a CAN bus. This means that a special cable is needed to ensure that both the RS232 link and the CAN bus remain immediately available on the servo drive. Moreover, pin assignment on this X6 connector is not standard compliant.

Using the AM02CAN001V000 accessory

The AM02CAN001V000 module can be used to solve the problems listed above, as it includes:

- · a male SubD connector for the RS232 link,
- two SubD connectors for the CAN bus, both these connectors are cabled in parallel.

Pin assignment for the three connectors is standard compliant. The module also includes a switch to activate the end of line resistance (120 Ohm) for the CAN bus.

The figure below shows the Lexium 15 connector positions.

Standard cables can be used, with shielding for the RS232 and CAN interfaces.

note: when the servo drive is the last item on the CAN bus, the end switch must be on ON. Otherwise, the switch must remain on OFF (delivery state).

Without the AM02CAN001V000 accessory

If the AMO2CA001V000 extension module is not used, a SUB D 9 point female connector is required. The figure below shows the SUB D 9 connector cabling.

Adapting the network:

according to ISO 11898, the bus should have an impedance of 120 ohms.

The line length usable for secure communications decreases as the transfer speed increases.

CANOpen wiring

Bus cable specifications

In accordance with ISO 11898, you should use a bus cable with a characteristic impedance of 120 Ω . The usable cable length for reliable communication is reduced as the transmission rate is increased.

The following values that we have measured can be used as a guide. They should not, however, be interpreted as limiting values:

Cable data						
Characteristic impedance	100 120 Ω					
Cable capacitance	Max 60 nF/km					
Lead resistance (loop)	159.8 Ω /km					

The following table gives the cable length as a function of the transmission rate:

Transmission rate: kbit/s	Lexium 15 LP - Max. cable length: m	Lexium 15 MP/HP - Max. cable length: m
1000	20	20
500	35	70
250	50	115

Longer transmission distances may be achieved with a lower cable capacitance (max. 30 $\,$ nF/km) and lower lead resistance (loop, 115 $\,$ Ω /km).

(Characteristic impedance 150 \pm 5 Ω -> termination resistance 150 \pm 5 Ω).

For EMC reasons, the SubD connector housing must fulfill the following requirements:

- · metal or metallic housing,
- provision for connecting the cable shielding in the housing, with a large contact area (metallic housing).

The entire cabling system to be used corresponds to the CAN standard.

CANopen on Lexium 15

Standards

Lexium 15 CANopen implementation is close to DS 301V4.02 and DSP 402 V2.0 profile. However, it is not fully compliant. If you need specific details, please contact Schneider Electric technical support.

For the manufacturer functions we will introduce the list of CANopen objects equivalent to ASCII commands. The function definitions are given in the Lexium 15 Programming Manual.

The Objects to access to ASCII commands have 4 sub indexes:

- 1: to access to the ASCII command value or execute the command.
- 2: lower limit of the value.
- 3: upper limit of the value.
- 4: default value.

Device data structure

The device data structure is as follow:

- Each device has a set of parameters (gain, acceleration, communication parameters...).
- · Each parameter is identified by an index and a sub index number and the ability to be mapped or not mapped in a PDO.

Types of communication

There are two types of communication between devices:

- PDO Process Data Object. They are standardized communication objects dedicated for parameters cyclic exchange.
- · SDO Service Data Object. They are configuration data dedicated for parameters acyclic exchange.

Highlights of CANopen

The diagram below is a brief introduction of CANopen.

PLCopen Motion Function Blocks for Schneider Motion Controllers

You do not need to manage this notion with =S= controllers. In fact PLCopen Motion Function Bloc libraries are available for:

- Premium PLC with P-Unit programming software since Dec 2005.
- BL Motion Controller with CoDeSys programming software since March 2005.
- · Mirano PLC with P-Unit programming software coming soon.

The information below is dedicated to persons who use other =S= controllers with PL7 programming language or third party controllers with basic CANopen functions.

PDO and SDO notions

The access to objects exchanged by PDO in IEC 61131 languages may be made in different ways.

CANopen and IEC 61131 for PDO

Depending on the implementation, the objects mapped in PDS are automaically refreshed by the system. They can be read or writen by IEC61131 objects such as:

- Generic names, like %IW or %QW. Those objects can be implemented by :
 - "Raw" objects or objects mapped in series of words. In this case, a 32 bits word will be stored in two IEC61131 words. For instance, the Target Position object which is a 32 bits piece of information, will be stored in PL7 in 2 %QW objects.
 - Type oriented mapping objects. In that case, each PDO object corresponds to an IEC61131 object. In the same example than previously, the Target position object will be stored in a %QDW object. This is the P-unit approach
- Symbolic names: Objects will be stored in IEC61131 objects with necessary size. In the previous example, Target Position will be stored in a 32 bits IEC61131 object. This is the P-Unit or CoDeSys approach.

The following diagram is a brief introduction to SDO and PDO notions

PDO mapping configuration

The configuration of PDO is made by CANOpen communication profile configurator. Follow the next steps to achieve this PDO mapping configuration:

- 1) Copy EDS files which are on the CD ROM that comes with the product in C:\Program Files\Hilscher\SyCon\Fieldbus\CANopen\EDS folder.
- 2) Copy .dib files which are on the CD ROM that comes with the product in C:\Program Files\Hilscher\SyCon\Fieldbus\CANopen\BMP folder.
- 3) Select Lexium15L or Lexium15MH device for Lexium 15 LP and Lexium 15 MP/HP.

4) Select a predefined PDO. In the example below the selected PDO has Controlword and Digital Speed or current predefined:

5) You can remove or add objects from the predefined PDO. In the example below the Profile_acceleration object has been added:

Lexium 15 predefined PDO

All Lexium 15 PDOs are free mapping. Nevertheless the EDS file provides predefined PDOs recommended by DSP 402 norm. This mapping is available for Lexium 15 LP/MP/HP, however Lexium 15 MP and Lexium 15 HP need to include objects 2600h to 2603h and 2A00h to 2A03h.

The following print screen shows how to add those objects

The tables below describe the transmit predefined PDOs:

PDO Number	Mapping Object Index	Mapping Object Name	Lex 15 Lex 15 LP MP/HP		Lex 15 LP	Lex 15 MP/HP
			In	nplementation		Free Mapping
1	6041h	Statusword	Yes	Yes	Yes	Yes
2	6041h	Statusword	No	No	Yes	Yes
	6061h	Modes of operation display				
3	6041h	Statusword (pp)	No	No No		Yes
	6064h	Position actual value				
4	6041h	Statusword (pv)	No	No	Yes	No
	606Ch	Velocity actual value				

PLEASE NOTE:

Ensure that BUSP7 ASCII command is set to 1. Another value of this ASCII will cause wrong value display in the objects 6063h and 6064h.

The table below describes the received predefined PDOs:

PDO Number	Mapping Obsject Index	Mapping Object Name	Lex 15 Lex 15 LP MP/HP		Lex 15 LP	Lex 15 MP/HP
			In	nplementation	Free Mappi	
1	6040h	Controlword	Yes	Yes	Yes	Yes
2	6040h	Controlword	Yes	No	Yes	Yes
	6060h	Modes of operation				
3	6040h	Controlword	Yes	No	Yes	Yes
	607Ah	Target position				
4	6040h	Controlword	Yes	No	Yes	Yes
	60FFh	Target velocity (pv)				

SDO handling

The DS 405 profile gives the recommendation for SDO objects access implementation:

All CANopen objects may be accessed by SDO exchanges. The DS405 implementation recommendation offer two main functions:

- CIA405_SDO_READx
- CIA405_SDO_WRITEx

These functions enable to store information in IEC 61131 Symbolic named object. With those functions, it is possible to read/write CANopen objects into/from IEC 61131 symbolic named objects i.e read or write the Target Position.

The following diagram describes the SDO handling

note:Other IEC 61131 implementations enable similar SDO handling, only the syntax is different

The diagram below describes the Lexium 15 servo drive function structure:

The Lexium 15 servo drive has been structured in several functions:

- DRVCOM to manage the Status Machine Graph (Power ON / Power OFF / Fault).
- Modes of Operations to execute Motion Functions.
- Smarts functions to handle Digital I/O and Analog I/O.
- · Position Register.
- Position registration (Latch).

All these functions can be managed by CANopen. In the next chapters we will explain how to handle them using CANopen communication profile.

Device Control Graph for Lexium 15 LP

The device state graph implemented by Lexium 15LP servo drives is as follow:

The following table lists the different states of the Status Graph

State	Description
Not Ready for Switch On	Lexium 15 LP is not ready for switch on, there is no operational readiness (R1A/R1C) signaled from the controller program.
Switch On Disable	Lexium 15 LP is ready for switch on, parameters can be transferred, the DC-link voltage can be switched on, motion functions cannot be carried out yet.
Ready for Switch On	DC-link voltage may be switched on, parameters can be transferred, motion functions cannot be carried out yet.
Switched On	DC-link voltage must be switched on, parameters can be transferred, motion func-tions cannot be carried out yet, output stage is switched on (enabled).
Operation Enable	No fault present, output stage is enabled, motion functions are enabled.
Quick Stop Active	Servo drive has been stopped with the emergency ramp, output stage is enabled, motion functions are enabled, response depends on SDO 605Ah.
Fault Reaction Active	A fault has occured and the servo drive is stopped with the quickstop ramp.
Fault	A fault is active, the servo drive has been stopped and disable.

State transitions of the servo drive supervisor

The state transitions are affected by internal events (e.g. switching off the DC-link voltage) and by the flags in the Control Word (bits 0,1,2,3,7). The following table describes the State transitions.

Transition	Event	Action
0	Reset	Initialization.
1	Initialization completed successfully. Lexium 15 LP is ready to operate.	None.
2	Bit 1 <i>Disable Voltage</i> and Bit 2 <i>Quick Stop</i> are set in the Control word (<i>Shut-down</i> command). DC-link voltage may be present.	None.
3	Bit 0 is also set (Switch On command).	Output stage is switched on (enabled), provided that the hardware enable is present (logical AND). Servo drive has torque.
4	Bit 3 is also set (Enable Operation command).	Motion function is enabled, depending on the mode that is set.
5	Bit 3 is canceled (<i>Disable Operation</i> command).	Motion function is inhibited. Servo drive is stopped, using the relevant ramp (mode-dependent). The present position is maintained.
6	Bit 0 is canceled (Shutdown command).	Output stage is disabled. Servo drive has no torque.
7	Bits 1 and 2 are canceled (Quick Stop / Disable Voltage command).	None.
8	Bit 0 is canceled (Shutdown command).	Output stage is disabled. Servo drive has no torque.
9	Bit 1 is canceled (<i>Disable Voltage</i> command).	Output stage is disabled. Servo drive has no torque.
10	Bits 1 and 2 are canceled (Quick Stop / Disable Voltage command).	Motion function is enabled, depending on the mode that is set.
11	Bit 2 is canceled (Quick Stop command).	Servo drive is stopped with the emergency braking ramp. The output stage remains enabled. Setpoints are canceled (motion block number, digital setpoint, speed for jogging or homing). Bit 2 must be set again before any further motion tasks can be performed.
12	Bit 1 is canceled (<i>Disable Voltage</i> command).	Output stage is disabled. Servo drive has no torque.
13	Fault reaction active.	Execute appropriate fault reaction .
14	Fault reaction is completed.	Servo drive function is disabled. The power section may be switched off.
15	Fault Reset command received from host.	A reset of the fault condition is carried out if no fault exists currently on the servo drive. After leaving the state Fault the Bit 7 'Reset Fault' of the Controlword has to be cleared by the host.
16	Bit 2 is set.	Motion function is enabled again.

A CAUTION

INJURY FROM UNEXPECTED MOVEMENTS

If the servo drive is operated through the Control word / Status word, then no control commands may be sent through another communication channel (RS232, CANopen, ASCII channel, Option board).

Failure to follow this instruction can result in injury or equipment damage.

Device Control Graph for Lexium 15 MP/HP

The device state graph implemented by Lexium 15 MP/HP servo drives is as follow:

The following table lists the different states of the Status Graph

State	Description
Not Ready for Switch On	Lexium 15 MP/HP is not ready for switch on, there is no operational readiness (R1A/R1C) signaled from the controller program.
Switch On Disable	Lexium 15 MP/HP is ready for switch on, parameters can be transferred, the DC-link voltage can be switched on, motion functions cannot be carried out yet.
Ready to Switch On	DC-link voltage may be switched on, parameters can be transferred, motion functions cannot be carried out yet.
Switched On	DC-link voltage must be switched on, parameters can be transferred, motion functions cannot be carried out yet, output stage is switched on (enabled).
Operation Enable	No fault present, output stage is enabled, motion functions are enabled.
Quick Stop Active	Servo drive has been stopped with the emergency ramp, output stage is enabled, motion functions are enabled, response depends on SDO 605Ah.
Fault Reaction Active	Not supported at present.
Fault	Not supported at present.

State transitions of the servo drive supervisor

The state transitions are affected by internal events (e.g. switching off the DC-link voltage) and by the flags in the Control Word (bits 0,1,2,3,7). The following table describes the State transitions.

Transition	Event	Action
0	Reset	Initialization.
1	Initialization completed successfully. Lexium 15 MP/HP is ready to operate.	None.
2	Bit 1 Disable Voltage and Bit 2 Quick Stop are set in the Control word (Shut-down command). DC-link voltage may be present.	None.
3*	Bit 0 is also set (Switch On command).	Output stage is switched on (enabled), provided that the hardware enable is present (logical AND). Servo drive has torque.
3**	Bit 3 is also set (Enable Operation command).	Motion function is enabled, depending on the mode that is set (Manufacturer Modes - motion function is enabled).
4	Bit 3 is also set (Enable Operation command).	Motion function is enabled, depending on the mode that is set.
5	Bit 3 is canceled (<i>Disable Operation</i> command).	Motion function is inhibited. Servo drive is stopped, using the relevant ramp (mode-dependent). The present position is maintained.
6	Bit 0 is canceled (<i>Shutdown</i> command). (If bit 1 in DRVCNFG is set and if HW-Enable is taken away an Emergenc y Message will result)	Output stage is disabled. Servo drive has no torque.
7	Bits 1/2 are canceled (Quick Stop/Disable Voltage command).	None.
8	Bit 0 is canceled (Shutdown command).	Output stage is disabled. Servo drive has no torque.
9	Bit 1 is canceled (<i>Disable Voltage</i> command).	Output stage is disabled. Servo drive has no torque.
10	Bits 1 and 2 are canceled (<i>Disable Voltage</i> command). (If bit 1 in DRVCNFG is set and if HW-Enable is taken away an Emergency Message will result)	Motion function is enabled, depending on the mode that is set.
11	Bit 2 is canceled (Quick Stop command).	Servo drive is stopped with the emergency braking ramp. The output stage remains enabled. Setpoints are canceled (motion block number, digital setpoint, speed for jogging or homing). Bit 2 must be set again before any further motion tasks can be performed.
12	Bit 1 is canceled (Disable Voltage command).	Output stage is disabled. Servo drive has no torque.
13	A fault has occurred in the servo drive.	Execute appropriate fault reaction, i.e. the servo drives ramps down with DECSTOP - ramp and is then disabled.
14	Fault reaction is completed.	Servo drive function is disabled. The power section may be switched off.
15	Fault Reset command received from host.	A reset of the fault condition is carried out if no fault exists currently on the servo drive. After leaving the state Fault the Bit 'Reset Fault' of the controlword has to be cleared by the host.
16	Bit 2 is set.	Motion function is enabled again.
17	Bit 1 Disable Voltage and Bit 2 Quick Stop and Bit 3 Operation Enable are set in the Control Word.	Output stage is switched on (enabled), provided that the hardware enable is present (logical AND). Motion function is enabled, depending on the mode that is set.

A CAUTION

INJURY FROM UNEXPECTED MOVEMENTS

If the servo drive is operated through the Control word / Status word, then no control commands may be sent through another communication channel (RS232, CANopen, ASCII channel, Option board).

Failure to follow this instruction can result in injury or equipment damage.

Control Word

The Control Word (Index 6040h) device controls the Status machine graph as well as the Mode of operation:

	Bit	Name	DSP402 M/O	Profile Position Mode	Profile Velocity Mode	Profile Torque Mode	Homing Mode	Interpo -lation mode	Lex 15 LP	Lex 15 MP/HP
DRVCOM	0	Switch on	М						ok	ok
management	1	Disable Voltage	М						ok	ok
	2	Quick Stop	М						ok	ok
	3	Enable Operation	М						ok	ok
Modes of operation management	4	Operation mode specific		New_set_point	Reserved	Reserved	Homing Operation Start	Enable_ip _mode	ok	ok
	5	Operation mode specific		Change_set _immediately	Reserved	Reserved	Reserved	Reserved	ok	ok
	6	Operation mode specific		0: absolute 1: relative	Reserved	Reserved	Reserved	Reserved	ok	ok
	7	Reset Fault	М						ok	ok
	8	Pause/halt							ok	ok
	9	Reserved							ok	ok
	10	Reserved							ok	ok
	11	Reserved							ok	Reset following error
	12	Reset position							ok	ok
	13	Manufacturer- specific							ok	ok
	14	Manufacturer- specific							ok	ok
	15	Manufacturer- specific							ok	ok

Command	Bit 7 Fault Reset	Bit 3 Enable Operation	Bit 2 Quick Stop	Bit 1 Disable Voltage	Bit 0 Switch on	Transitions
Shutdown	Х	X	1	1	0	2. 6. 8
Switch on	X	X	1	1	1	3
Disable Voltage	Х	X	Х	0	Х	7. 9. 10. 12
Quick Stop	Х	X	0	1	Х	7. 10. 11
Disable Operation	Х	0	1	1	1	5
Enable Operation	X	1	1	1	1	4. 16
Fault Reset	1	Х	Х	Х	Х	15

Modes of operation

Lexium 15 servo drives support the following modes of operation

Modes Of Operation	DSP 402	Lexium 15 LP Available	Lexium 15 MP/HP Available	Unilink Number
CANopen DS 402 Modes of operation				
No mode change/no mode assigned	0	yes	yes	N/A
Profile position mode (pp)	1	yes	yes	N/A
Velocity mode (vI)	2			
Profile velocity mode (pv)	3	yes	yes	N/A
Torque profile mode (tq)	4	yes		
Reserved	5			
Homing mode (hm)	6	yes	yes	N/A
Interpolated position mode (ip)	7	yes		
Cyclic sync position mode	8			
Cyclic sync velocity mode	9			
Cyclic sync torque mode	10			
Reserved	+11 to +127			
Manufacturer			102 nb vailable	
Electronical gearing		F7h	F7h	4
Jogging		F8h	F8h	
Homing proprietary			F9h	
Trajectory (Positioning specific mode)			FAh	
Analog Torque		83h	FBh	3
Analog speed		81h	FCh	1
Digital torque		82h	FDh	2
Digital speed		80h	FEh	0
Position (MTASK)		FFh	FFh	8
Sercos				6

The object Mode Of Operation (Index: 6060h) is used to select the mode of operation of the servo drive.

The Mode Of Operation selected is displayed by the Mode Of Operation display object (Index 6061h).

Status Word

The Status Word (Object Index 6041h) provides the information of Device Control graph status and Mode of operation status:

	Bit	Name	Profile Position Mode	Profile Velocity Mode	Profile Torque Mode	Homing Mode	Interpo- lation Mode	Lex 15 LP	Lex 15 MP/HP
DRVCOM	0	Ready to switch on						ok	ok
management	1	Switched on						ok	ok
	2	Operation enable						ok	ok
	3	Fault						ok	ok
	4	Disable voltage						ok	ok
	5	Quick stop						ok	ok
	6	Switch on disabled						ok	ok
	7	Warning						ok	ok
	8	Manufacturer-specific (reserved)						ok	ok
	9	Remote						ok	ok
	10	Target reached	Yes	Yes				ok	ok
	11	Internal limit active	Yes	Yes	Yes	Yes	Yes	ok	ok
Modes of operation management	12	Operation mode specific (reserved)	Setpoint acknowledge	Velocity zero attained	Homing attained	Reserved	Ip mode active	ok	ok
	13	Operation mode specific (reserved)	Following error	Max slippage error	Homing error	Reserved	Reserved	ok	ok
	14	Manufacturer-specific						Gearing done	Gearing done
	15	Manufacturer-specific			·			Halt req	Halt req

Digital inputs operations

To manage the Digital Inputs access through CANopen, you may use the following objects:

	Lexium 15 MF	Lexium 15 LP						
Status	Status Format PDO mapping		Format	PDO mapping	Index	Sub	Name	
-			UNSIGNED32	Yes	60FDh	0	Digital inputs	

Lexium 15 LP

Index	Sub Idx	ASCII	Access	Format	Units	Limits	Short description
3561h	1	IN1	ro	Integer8	-	-	Status of digital input 1
3561h	1	IN5_20	ro	Integer32	-	long int	Status of digital inputs 5 20
3562h	1	IN1MODE	rw	Integer8	-	0 50	Function of Digital Input 1
3562h	1	IN5_20MODE	rw	Integer32	-	long int	Function of digital inputs 5 20
3563h	1	IN1TRIG	rw	Integer32	-	long int	Variable for IN1MODE
3563h	1	IN5_20TRIG	rw	Integer32	-	long int	Variable for digital inputs 5 20
3564h	1	IN2	ro	Integer8	-	-	Status of digital input 2
3565h	1	IN2MODE	rw	Integer8	-	0 50	Function of Digital Input 2
3566h	1	IN2TRIG	rw	Integer32	-	long int	Variable for IN2MODE
3567h	1	IN3	ro	Integer8	-	-	Status of Digital Input 3
3568h	1	IN3MODE	rw	Integer8	-	0 50	Function of Digital Input 3
3569h	1	IN3TRIG	rw	Integer32	-	long int	Variable for IN3MODE
356Ah	1	IN4	ro	Integer8	-	-	Status of Digital Input 4
356Bh	1	IN4MODE	rw	Integer8	-	0 50	Function of Digital Input 4
356Ch	1	IN4TRIG	rw	Integer32	-	long int	For IN4MODE

Index	Sub ldx	ASCII	Access	Format	Units	Limits	Short description
3561h	1	IN1	ro	Integer8	-	-	Status of digital input 1
3562h	1	IN1MODE	rw	Integer8	-	0 50	Function of Digital Input 1
3563h	1	IN1TRIG	rw	Integer32	-	long int	Variable for IN1MODE
3564h	1	IN2	ro	Integer8	-	-	Status of digital input 2
3565h	1	IN2MODE	rw	Integer8	-	0 50	Function of Digital Input 2
3566h	1	IN2TRIG	rw	Integer32	-	long int	Variable for IN2MODE
3567h	1	IN3	ro	Integer8	-	-	Status of Digital Input 3
3568h	1	IN3MODE	rw	Integer8	-	0 50	Function of Digital Input 3
3569h	1	IN3TRIG	rw	Integer32	-	long int	variable for IN3MODE
356Ah	1	IN4	ro	Integer8	-	-	Status of Digital Input 4
356Bh	1	IN4MODE	rw	Integer8	-	0 50	Function of Digital Input 4
356Ch	1	IN4TRIG	rw	Integer32	-	long int	Variable for IN4MODE

Digital Outputs operations

To manage the Digital Outputs access through CANopen, you may use the following objects:

Lexium 15 LP

Index	Sub Index	ASCII	Access	Format	Units	Limits	Short decription
3534h	1	ENCMODE	rw	Integer8	-	0, 1, 2, 3	Selection of Encoder Emulation
3535h	1	ENCOUT	rw	Integer32	CPR	see ASCII command description	Resolution Encoder Emulation EEO (ROD)
3537h	1	ENCZERO	rw	Integer16	-	0 ENCOUT-1	Zero Pulse Offset EEO (ROD)
35AEh	1	01	rw	Integer8	-	-	State of Digital Output 1
35AEh	1	O3_18	rw	Integer32	-	long int	State of Digital Output 1
35AFh	1	O1MODE	rw	Integer8	-	0 50	Function of Digital Output 1
35AFh	1	O3_18MODE	rw	Integer32	-	long int	Function of Digital Output 1
35B0h	1	O1TRIG	rw	Integer32	-	long int	Auxiliary variable for O1MODE
35B0h	1	O3_18TRIG	rw	Integer32	-	long int	Auxiliary variable for O1MODE
35B1h	1	O2	rw	Integer8	-	-	State of Digital Output 2
35B2h	1	O2MODE	rw	Integer8	-	0 50	Function of Digital Output 2
35B3h	1	O2TRIG	rw	Integer32	-	long int	Auxiliary variable for O2MODE

Index	Sub Index	ASCII	Access	Format	Units	Limits	Short decription
3530h	1	EN	Cmd	-	-	-	Software-Enable
3534h	1	ENCMODE	rw	Integer8	-	0, 1, 2, 3	Selection of Encoder Emulation
3535h	1	ENCOUT	rw	Integer32	CPR	see ASCII command description	Resolution Encoder Emulation EEO (ROD)
3537h	1	ENCZERO	rw	Integer16	-	0 ENCOUT-1	Zero Pulse Offset EEO (ROD)
35AEh	1	01	rw	Integer8	•	-	State of Digital Output 1
35AFh	1	O1MODE	rw	Integer8	-	0 50	Function of Digital Output 1
35B0h	1	O1TRIG	rw	Integer32	-	long int	Auxiliary variable for O1MODE
35B1h	1	O2	rw	Integer8	-	-	State of Digital Output 2
35B2h	1	O2MODE	rw	Integer8	-	0 50	Function of Digital Output 2
35B3h	1	O2TRIG	rw	Integer32	-	long int	Auxiliary variable for O2MODE
362Eh	1	IN2PM	rw	Integer8	-	0, 1, 2	In-Position 2 Mode

Analog input operations

To manage the Analog Inputs access through CANopen, you may use the following objects:

Lexium 15 LP

Index	Sub Idx	ASCII	Access	Format	Units	Limits	Short decription
3507h	1	ANCNFG	rw	Integer8	-	0 14	Configuration of Analog Input
3508h	1	ANDB	rw	Float	Millivolts	0.0 10000.0	Dead Band of the Analog Velocity Input Signal
3509h	1	ANIN1	ro	Integer32	Millivolts	- 10000 10000	Voltage at Analog Input 1
350Ah	1	ANIN2	ro	Integer32	Millivolts	- 10000 10000	Voltage at Analog Input 2
350Bh	1	ANOFF1	rw	Integer16	Millivolts	- 10000 10000	Analog Offset for analog input 1
350Ch	1	ANOFF2	rw	Integer16	Millivolts	- 10000 10000	Analog Offset for analog input 2
350Fh	1	ANZERO1	Cmd	-	-	-	Zero Analog Input 1
3510h	1	ANZERO2	Cmd	-	-	-	Zero Analog Input SW2
3511h	1	AVZ1	rw	Float	Milliseconds	0.2 100.0	Filter Time Constant for analog input 1
3571h	1	ISCALE1	rw	Float	A/10 Volts	0.0 100.0	Scaling of Analog Current Setpoint 1
3572h	1	ISCALE2	rw	Float	A/10 Volts	0.0 100.0	Scaling of Analog Current Setpoint 2
3629h	1	VSCALE1	rw	Integer16	(>VUNIT)	- 15000 15000	SW1 Velocity Scaling Factor
362Ah	1	VSCALE2	rw	Integer16	(>VUNIT)	- 15000 15000	SW2 Velocity Scaling Factor
3699h	1	AN11NR	rw	Integer8	-	0, 1, 2, 3, 4	N°. Of INxTRIG variable, that is changed analog
369Ah	1	AN11RANGE	rw	Integer32	-	- 262144 262143	Range of the analog change of INxTRIG

Index	Sub Idx	ASCII	Access	Format	Units	Limits	Short decription
3507h	1	ANCNFG	rw	Integer8	-	0 14	Configuration of Analog Input
3508h	1	ANDB	rw	Float	Millivolts	0.0 10000.0	Dead Band of the Analog Velocity Input Signal
3509h	1	ANIN1	ro	Integer32	Millivolts	- 10000 10000	Voltage at Analog Input 1
350Ah	1	ANIN2	ro	Integer32	Millivolts	- 10000 10000	Voltage at Analog Input SW2
350Bh	1	ANOFF1	rw	Integer16	Millivolts	- 10000 10000	Analog Offset for analog input 1
350Ch	1	ANOFF2	rw	Integer16	Millivolts	- 10000 10000	Analog Offset for input SW2
350Fh	1	ANZERO1	Cmd	-	-	-	Zero Analog Input 1
3510h	1	ANZERO2	Cmd	-	-	-	Zero Analog Input SW2
3511h	1	AVZ1	rw	Float	Milliseconds	0.2 100.0	Filter Time Constant input 1
3571h	1	ISCALE1	rw	Float	A/10 Volts	0.0 100.0	Scaling of Analog Current command 1
3572h	1	ISCALE2	rw	Float	A/10 Volts	0.0 100.0	Scaling of Analog Current command 2
3629h	1	VSCALE1	rw	Integer16	(>VUNIT)	- 15000 15000	Analog input 1 Velocity Scaling Factor
362Ah	1	VSCALE2	rw	Integer16	(>VUNIT)	- 15000 15000	Analog input 2 Velocity Scaling Factor

Analog output operations

To manage the Analog Outputs access through CANopen, you may use the following objects:

Lexium 15 MP/HP

Index	Sub Idx	ASCII	Access	Format	Units	Limits	Short decription
350Dh	1	ANOUT1	rw	Integer8	-	0 8	Configuration of the Analog Output 1
350Eh	1	ANOUT2	rw	Integer8	-	0 8	Source of the Analog Output 2
3520h	1	DAOFFSET1	rw	Integer16	Counts	0 2500	Analog Offset Output 1
3521h	1	DAOFFSET2	rw	Integer16	Counts	0 2500	Analog Offset Output 2
359Ah	1	MONITOR1	ro	Integer16	mV	- 10000 10000	Monitor 1 Output voltage
359Bh	1	MONITOR2	ro	Integer16	mV	- 10000 10000	Monitor 2 Output Voltage

Registration (LATCH)

An internal function called LATCH is available to register a position; the value is stored depending on the configuration of the Digital Input

Lexium 15 LP

Index	Sub Idx	ASCII	Access	Format	Units	Limits	Short decription
3578h	1	LATCH2P16	rw	Integer16	-	-	Latched 16-bit Position (positive edge)
3579h	1	LATCH2N16	rw	Integer16	-	-	Latched 16-bit Position (negative edge)
357Ah	1	LATCH2P32	rw	Integer16	-	-	Latched 32-bit Position (positive edge)
357Bh	1	LATCH2N32	rw	Integer16	-	-	Latched 32-bit Position (negative edge)
357Ch	1	LATCH1P32	rw	Integer16	-	-	Latched 32-bit Position (positive edge)
357Dh	1	LATCH1N32	rw	Integer16	-	-	Latched 32-bit Position (negative edge)
367Fh	1	LATCH1P16	rw	Integer16	-	-	Latched 16-bit Position (positive edge)
3680h	1	LATCH1N16	rw	Integer16	-	-	Latched 16-bit Position (negative edge)
3681h	1	EXTLATCH	rw	Integer8	-	0 2	Selection of the Source of the Latch Inputs

Lexium 15 MP/HP

The function must be enabled using the object 2026h sub index 1 set to 1

Index	Sub Idx	ASCII	Access	Format	Units	Limits	Short decription
3578h	1	LATCH16	rw	Integer16	-	-	Latched 16-bit Position (positive edge)
3579h	1	LATCH16N	rw	Integer16	-	-	Latched 16-bit Position (negative edge)
357Ah	1	LATCH32	rw	Integer32	-	-	Latched 32-bit Position (positive edge)
357Bh	1	LATCH32N	rw	Integer32	-	-	Latched 32-bit Position (negative edge)
357Ch	1	LATCHX32	rw	Integer32	-	-	Latched External 32-bit Position (positive edge)
357Dh	1	LATCHX32N	rw	Integer32	-	-	Latched External 32-bit Position (negative edge)

Position register

To access the Position Register through CANopen, you may use the following objects. Remember that this internal register manages the axis software limits and the use of Digital Output as a switch cam.

Lexium 15 LP

Index	Sub Idx	ASCII	Access	Format	Units	Limits	Short decription
3600h	1	SWCNFG	rw	Unsigned16	-	0 65536	Configuration of software limit switches
3604h	1	SWE1	rw	Integer32	-	long int	SW limit switch (smalest position)
3606h	1	SWE2	rw	Integer32	-	long int	SW limit switch (biggest position)
3636h	1	WPOS	ro	Integer8	-	0, 1, 2	Enable Position Registers
363Fh	1	WPOSE	ro	Integer32	-	0 65535	Enable Fast Position Registers 1 16
3640h	1	WPOSP	rw	Integer32	-	0 65535	Polarity of Fast Position Registers 1 16
3641h	1	WPOSX	rw	Integer32	-	0 65535	Mode of Fast Position Registers 1 16
3643h	1	POSRSTAT	rw	Integer32	-	-	Status of Fast Position Registers 1 16
3644h	1	P1	rw	Integer8	-	0 3	P1 Fast Position Register
3645h	1	P2	rw	Integer32	-	long int	P2 Fast Position Register
3646h	1	P3	rw	Integer32	-	long int	P3 Fast Position Register
3647h	1	P4	rw	Integer32	-	long int	P4 Fast Position Register
3648h	1	P5	rw	Integer32	-	long int	P5 Fast Position Register
3649h	1	P6	rw	Integer32	-	long int	P6 Fast Position Register
364Ah	1	P7	rw	Integer32	-	long int	P7 Fast Position Register
364Bh	1	P8	rw	Integer32	-	long int	P8 Fast Position Register
364Ch	1	P9	rw	Integer32	-	long int	P9 Fast Position Register
364Dh	1	P10	rw	Integer32	-	long int	P10 Fast Position Register
364Eh	1	P11	rw	Integer32	-	long int	P11 Fast Position Register
364Fh	1	P12	rw	Integer32	-	long int	P12 Fast Position Register
3650h	1	P13	rw	Integer32	-	long int	P13 Fast Position Register
3651h	1	P14	rw	Integer32	-	long int	P14 Fast Position Register
3652h	1	P15	rw	Integer32	-	long int	P15 Fast Position Register
3653h	1	P16	rw	Integer32	-	long int	P16 Fast Position Register
36C7h	1	OS1	rw	Integer8	-	0,1	Set/Reset of "Posreg1" of the I/O Option Card
36C8h	1	OS2	rw	Integer8	-	0,1	Set/Reset of "Posreg2" of the I/O Option Card
36C9h	1	OS3	rw	Integer8	-	0,1	Set/Reset of "Posreg3" of the I/O Option Card
36CAh	1	OS4	rw	Integer8	-	0,1	Set/Reset of "Posreg4" of the I/O Option Card
36CBh	1	OS5	rw	Integer8	-	0,1	Set/Reset of "Posreg5" of the I/O Option Card

Index	Sub Index	ASCII	Access	Format	Units	Limits	Short decription
3600h	1	SWCNFG	rw	Unsigned16	-	0 65536	Configuration of Position Registers 1 4
3601h	1	SWCNFG2	rw	Unsigned16	-	0 65535	Configuration of Position Registers 0 and 5
3602h	1	SWE0	rw	Integer32	-	long int	Position register 0
3603h	1	SWE0N	rw	Integer32	-	long int	Position register 0 (Cam)
3604h	1	SWE1	rw	Integer32	-	long int	Position register 1
3605h	1	SWE1N	rw	Integer32	-	long int	Position register 1 (Cam)
3606h	1	SWE2	rw	Integer32	-	long int	Position register 2
3607h	1	SWE2N	rw	Integer32	-	long int	Position register 2 (Cam)
3608h	1	SWE3	rw	Integer32	-	long int	Position register 3
3609h	1	SWE3N	rw	Integer32	-	long int	Position register 3 (Cam)
360Ah	1	SWE4	rw	Integer32	-	long int	Position register 4
360Bh	1	SWE4N	rw	Integer32	-	long int	Position register 4 (Cam)
360Ch	1	SWE5	rw	Integer32	-	long int	Position register 5
360Dh	1	SWE5N	rw	Integer32	-	long int	Position register 5 (Cam)
3636h	1	WPOS	ro	Integer8	-	0, 1, 2	Enable Position Registers
363Fh	1	WPOSE	ro	Integer32	-	0 65535	Enable Fast Position Registers 1 16
3640h	1	WPOSP	rw	Integer32	-	0 65535	Polarity of Fast Position Registers 1 16
3641h	1	WPOSX	rw	Integer32	-	0 65535	Mode of Fast Position Registers 1 16
3643h	1	POSRSTAT	rw	Integer32	-	-	Status of Fast Position Registers 1 16
3644h	1	P1	rw	Integer8	-	0 3	P1 Fast Position Register
3645h	1	P2	rw	Integer32	-	long int	P2 Fast Position Register
3646h	1	P3	rw	Integer32	-	long int	P3 Fast Position Register
3647h	1	P4	rw	Integer32	-	long int	P4 Fast Position Register
3648h	1	P5	rw	Integer32	-	long int	P5 Fast Position Register
3649h	1	P6	rw	Integer32	-	long int	P6 Fast Position Register
364Ah	1	P7	rw	Integer32	-	long int	P7 Fast Position Register
364Bh	1	P8	rw	Integer32	-	long int	P8 Fast Position Register
364Ch	1	P9	rw	Integer32	-	long int	P9 Fast Position Register
364Dh	1	P10	rw	Integer32	-	long int	P10 Fast Position Register
364Eh	1	P11	rw	Integer32	-	long int	P11 Fast Position Register
364Fh	1	P12	rw	Integer32	-	long int	P12 Fast Position Register
3650h	1	P13	rw	Integer32	-	long int	P13 Fast Position Register
3651h	1	P14	rw	Integer32	-	long int	P14 Fast Position Register
3652h	1	P15	rw	Integer32	-	long int	P15 Fast Position Register
3653h	1	P16	rw	Integer32	-	long int	P16 Fast Position Register

Modes of operation

Homing (DSP 402)

This mode enables to reference axis position measure. The position feedback is set to a value to express the position into machine mechanic physical dimensions.

Lex 15 MI	P/HP	Lex 15 LP							
Format PDO mapping		Format	Format PDO mapping		Sub	Name			
						HOMING MODE			
INTEGER32	Yes	INTEGER32		607Ch	0	Home offset			
INTEGER8	Yes	INTEGER8		6098h	0	Homing method			
INTEGER32	Yes	UNSIGNED32	UNSIGNED32 6099h 1		1	Speed during search for switch			
		UNSIGNED32		6099h	2	Speed during search for zero			
UNSIGNED32	Yes	UNSIGNED32		609Ah	0	Homing acceleration			

The following table describes supported homing methods

Lexium 15 LP

Method as per DSP 402	Brief description: Homing	ASCII command
- 1284	Reserved	_
- 3	Move to mechanical stop, with zeroing	NREF = 7
- 2	Set reference point at present position, allowing for lag/following error	NREF = 6
- 1	Homing within a single turn (direction of rotation depends on distance)	NREF = 5, DREF= 2
0	Reserved	_
1	Homing to negative limit switch, with zeroing, negative count direction	NREF = 2, DREF= 0
2	Homing to positive limit switch, with zeroing, positive count direction	NREF = 2, DREF= 1
3 7	Not supported	_
8	Homing to reference switch, with zeroing, positive count direction	NREF = 1, DREF= 1
9 11	Not supported	_
12	Homing to reference switch, with zeroing, negative count direction	NREF = 1, DREF= 0
13 14	Not supported	_
15 16	Reserved	_
17	Homing to negative limit switch, without zeroing, negative count direction	NREF = 4, DREF= 0
18	Homing to negative limit switch, without zeroing, positive count direction	NREF = 4, DREF= 1
19 23	Not supported	_
24	Homing to reference switch, without zeroing, positive count direction	NREF = 3, DREF= 1
25 27	Not supported	_
28	Homing to reference switch, without zeroing, negative count direction	NREF = 3, DREF= 0
29 30	Not supported	_
31 32	Reserved	_
33	Homing within a single turn, negative count direction	NREF = 5, DREF= 0
34	Homing within a single turn, positive count direction	NREF = 5, DREF= 1
35	Set reference point at present position	NREF = 0
36 127	Reserved	_

The following table describes supported homing methods

Method as per DSP 402	Brief description: Homing	ASCII command
- 1284	Reserved	_
- 3	Move to mechanical stop, with zeroing	NREF = 7
- 2	Set reference point at present position, allowing for lag/following error	NREF = 6
- 1	Homing within a single turn (direction of rotation depends on distance)	NREF = 5, DREF= 2
0	Reserved	_
1	Homing to negative limit switch, with zeroing, negative direction of motion	NREF = 2, DREF= 0
2	Homing to positive limit switch, with zeroing, positive direction of motion	NREF = 2, DREF= 1
3 7	Not supported	_
8	Homing to reference switch, with zeroing, positive direction of motion	NREF = 1, DREF= 1
9 11	Not supported	_
12	Homing to reference switch, with zeroing, negative direction of motion	NREF = 1, DREF= 0
13 14	Not supported	_
15 16	Reserved	_
17	Homing to negative limit switch, without zeroing, negative direction of motion	NREF = 4, DREF= 0
18	Homing to negative limit switch, without zeroing, positive direction of motion	NREF = 4, DREF= 1
19 23	Not supported	_
24	Homing to reference switch, without zeroing, positive direction of motion	NREF = 3, DREF= 1
25 27	Not supported	_
28	Homing to reference switch, without zeroing, negative direction of motion	NREF = 3, DREF= 0
29 30	Not supported	_
31 32	Reserved	_
33	Homing within a single turn negative direction of rotation	NREF = 5, DREF= 0
34	Homing within a single turn positive direction of rotation	NREF = 5, DREF= 1
35	Set reference point at present position	NREF = 0
36 127	Reserved	_

Position profile (Point to point) (DSP 402)

This operation mode allows to do point to point position move control by a field bus. There are two ways to send a move sequence using the Change_set_immediately parameter:

- By single set point: send set point, wait axis stop to send a new set point.
- By set of set points: send set point and send a new one when servo drive is able to receive a new one. Waiting axis stop is not compulsory.

By single set point

By set of set points

	Lex 15 MP/HP			Lex 15 LP						
Status	Format PDO mapping		Status	Format	PDO mapping	Index	Sub	Name		
	INTEGER32	Yes		INTEGER32		607Ah	0	Target position		
	UNSIGNED8					607Bh	0	Position range limit		
	INTEGER32					607Bh	1	Min position range limit		
	INTEGER32					607Bh	2	Max position range limit		
				UNSIGNED32		607Fh	0	Max profile velocity		
				UNSIGNED32		6080h	0	Max motor speed		
	UINTEGER32	Yes		UNSIGNED32	Yes	6081h	0	Profile velocity		
	UNSIGNED32	Yes		UNSIGNED32	Yes	6083h	0	Profile acceleration		
	UNSIGNED32	Yes		UNSIGNED32	Yes	6084h	0	Profile deceleration		
				UNSIGNED32		6085h	0	Quick stop deceleration		
	INTEGER16	Yes		INTEGER16	Yes	6086h	0	Motion profile type		
				UNSIGNED32		60C5h	0	Max acceleration		
						60C6h	0	Max deceleration		
								Motion profile types (accel/decel)		
Yes			Yes					Trapeze		
Yes			Yes					Sinus ²		
Yes			Yes					Manufacturer profiles		

Velocity profile (DSP 402)

Velocity profile is an operation mode that enables to assign new velocity set points which will be reached after acceleration or deceleration, which means it will not be directly applied to velocity servo loop.

Lexium 15 M	P/HP	Lexium 15 LP							
Format PDO mappin g		Format	PDO mapping	Index	Sub	Name			
		PROFILE VELOCITY MODE							
INTEGER32	Yes	INTEGER32	Yes	606Ch	0	Velocity actual value			
INTEGER32	Yes	INTEGER32	Yes	60FFh	0	Target velocity			

Profile torque (DSP 402)

The following diagram shows the profile torque specifications

	Lexium 15 LP										
Format PDO mapping Index Sub Name											
	PROFILE TORQUE MODE										
INTEGER16	INTEGER16 Yes 6071h 0 Target torque										
INTEGER16	Yes	6077h	0	Torque actual value							

Position Controller Data

The objects below are the parameters used by the Lexium 15 Position Controller:

Lexium 15 LP/ MP/HP

Index	Sub index	ASCII	ACC ess	Format	Unit	Limits	Short description	
35C7h	1	PEMAX	rw	INTEGER32	μm	long int	Max. following error	
35CAh	1	PGEARI	rw	INTEGER32	μm	long int	Position resolution (Numerator)	
35CBh	1	PGEARO	rw	INTEGER32	μm	long int	Position resolution (Denominator)	
35CFh	1	POSCNFG	rw	INTEGER8	-	0,1,2	Axes type	

Position Control (DSP 402)

The Position Control is not a Mode of Operation. It is a data setting to manage the Poition Loop of the servo drive:

Lexium 15	MP/HP	Lexium 15 LP								
Format	PDO mapping	Format	PDO mapping	Index	Index Sub Name		Туре	Attr.		
						POSITION CONTROL FUNCTION				
INTEGER32	Yes	INTEGER32	Yes	6063h	0	Position actual value*	INTEGER32	ro		
INTEGER32	Yes	INTEGER32	Yes	6064h	0	Position actual value	INTEGER32	ro		
		UNSIGNED32		6065h	0	Following error window	UNSIGNED32	rw		
		UNSIGNED32		6067h	0	Position window	UNSIGNED32	rw		
		UNSIGNED16		6068h	0	Position window time	UNSIGNED16	rw		

PLEASE NOTE:

Ensure that BUSP7 ASCII command is set to 1. Another value of this ASCII will cause wrong value display in the objects 6063h and 6064h.

Jog (only for Lexium 15 MP/HP)

Jog is a manufacturer Mode Of Operation:

OPMODE F8h: Jog

Index	Sub Index	ASCII	Access	Format	Units	Limits	Short decription
3502h	1	ACCR	rw	Integer16	>> ACCUNIT	1 32767	Acceleration Ramp for homing/jog modes
3524h	1	DECR	rw	Integer16	>> ACCUNIT	1 32767	Deceleration Ramp for homing/jog modes
3591h	1	MJOG	Cmd	-	-	-	Start Jog Mode
3621h	1	VJOG	rw	Integer32	see VUNIT	0 VLIM/VLIMN	Speed for Jog Mode

Digital Velocity (only for Lexium 15 MP/HP)

The Digital Velocity manufacturer Mode Of Operation is only available for Lexium 15 MP/HP. For Lexium 15 LP the DSP 402 Velocity Profile provides the same function.

The following diagram shows the acceleration and deceleration profile

The Acceleration and Deceleration profile are given in the objects used by Position Profile and Velocity Profile modes.

The Set Point is given by the following object:

Index	Sub Index	Object	Description	Data Format	Attr
2060h	0	VAR	Speed or current setpoint	Integer32	r/w

The value of the speed is given by the formula:

Speed:
$$n[min^{-1}] = 1875/262144 \times digital speed setpoint$$

A new setpoint only becomes valid after Enable Operation has been refreshed (via SDO 6040h, Control word)

Digital torque (only for Lexium 15 MP/HP)

The Digital Torque manufacturer Mode Of Operation is only available for Lexium 15 MP/HP. For Lexium 15 LP, the DSP 402 Torque Profile provides the same function.

The Set Point is given by the following object:

Index	Sub Index	Object	Description	Data Format	Attr
2060h	0	VAR	Speed or current setpoint	Integer32	r/w

The value is given by the formula:

Current:
$$I[A] = digital current setpoint/1640 \times I_{max}$$

A new set point only becomes valid after Enable Operation has been refreshed (via SDO 6040h, Control word)

Gear manufacturer mode

The manufacturer Mode of Operation enables electronic gearing. With CANopen it is possible to select the mode by setting F7h in Mode of Operation object (6060h).

The following diagram describes electronic gearing

However it is possible to modify the gear ratio parameters:

Lexium 15 LP

Index	Sub Index	ASCII	Access	Format	Units	Limits	Short decription
353Eh	1	GEARI	rw	Integer16	-	1 32 767	Input Factor for Electronic Gearing
353Fh	1	GEARMODE	rw	Integer8	-	0 17	Position Input Electronic Gearing Mode
3540h	1	GEARO	rw	Integer16	-	-32 767 32 767	Output Factor for Electronic Gearing
3656h	1	ROFFSABS	rw	Integer32	PUNIT	long int	Reference Offset

Lexium 15 MP/HP

Index	Sub Index	ASCII	Access	Format	Units	Limits	Short decription
3532h	1	ENCIN	rw	Integer32	Pulse/ Umdr.	256,512, ,65 536	Encoder Pulse Input
353Eh	1	GEARI	rw	Integer16	-	1 32767	Input Factor for Electronic Gearing
353Fh	1	GEARMODE	rw	Integer8	-	0 17	Secondary position source (electr. Gearing or Secondary feedback to position controller)
3540h	1	GEARO	rw	Integer16	-	-32767 32767	Output Factor for Electronic Gearing
3656h	1	ROFFS2	rw	Integer32	PUNIT	long int	Position offset for "absolute Gearing"

Motion Task

Motion Task may also be managed by CANopen. It enables to control the start of a specific Motion Task and to monitor its execution. The following diagram shows a Motion Task sequence.

	Lexium 15 MP/HP		Lexium 15 LP					
Index	Sub index	Description	PDO mapping	Index	Sub index	Description	Format	PDO mapping
2022h	5	Motion task number	Yes	2080h		Motion task number	UNSIGNED16	Yes
				2081h		Active motion task display	UNSIGNED16	Yes
1002h	0	Manufacturer status bit 19 InPosition	No	1002h		Manufacturer status bit 3 InPosition	UNSIGNED32	Yes
2070h	11	Enhanced status bit 19 InPosition	Yes					

Lexium 15 LP

The object 2080 sub index 0 indicates the number of the selected motion task.

Motion tasks 1 to 200 are EEPROM motion blocks, and motion tasks 201 to 300 are RAM motion blocks. The RAM motion blocks are loaded with the first 64 EEPROM motion blocks when the servo drive is switched on or reset. The object may be mapped in PDO.

The 2081 object shows the last motion task which has been set in the servo drive. If there is no value in object 2080h and if a motion task is started via the new-set point/set point acknowledge mechanism of the profile position mode, motion task 0 will be used and displayed. If you start a set of stored motion tasks (bit 3 of the motion task Control wordControl word O_C, SDO 35B9 sub1 set), the active motion task will be displayed in this object.

Index	Sub Idx	ASCII	Access	Format	Units	Limits	Short decription
351Ah	1	CLRORDER	Cmd	Integer16	-	0;1180; 192255	Deleting a Motion Task
351Dh	1	CONTINUE	Cmd	-	-	-	Continue last position order
356Dh	1	INPOS	ro	Integer8	-	-	Status of In-Position Signal
35B6h	1	OVRIDE	rw	Integer8	-	0 3	Override Function for Motion Tasks
35B7h	1	O_ACC	rw	Integer16		0 511	Acceleration Time 1 for Motion Task 0
35B9h	1	O_C	rw	Integer16	-	int	Control for Motion Task 0
35BAh	1	O_DEC	rw	Integer16	-	int	Braking Time 1 for Motion Task 0
35BCh	1	O_FN	rw	Integer16	-	0, 1, ,180,192 255	Next Task Number for Motion Task 0
35BDh	1	O_FT	rw	Integer16	Milliseconds	1 32 767	Delay before Next Motion Task
35BEh	1	O_P	rw	Integer32	-	long int	Target Position/Path for Motion Task 0
35BFh	1	O_V	rw	Integer32	-	long int	Target Speed for Motion Task 0
35D6h	1	PTMIN	rw	Integer16	>>ACCUNIT	1 32 767	Min. Acceleration Ramp for Motion Tasks
35D9h	1	PVMAXN	rw	Integer32	VUNIT	0 VLIM	Max. (Negative) Velocity for Position Control
3642h	1	MOVE	Cmd	Integer16	-	0,1, ,180,192 255	Command Start Motion Task
3654h	1	PTARGET	rw	Integer32	-	long int	Last Target Position
3659h	1	ACCUNIT	rw	Integer32	-	0, 1, , 5	Type of acceleration setpoint for the system
365Bh	1	MTMUX	rw	Integer16	-	0, 192 255	Presetting for motion task that is processed later
36B6h	1	DOVRIDE	rw	Integer16	-	0 8 192	Digital Override Factor
36D2h	1	NREFMT	rw	Integer16		0 511	Homing with following motion task

Lexium 15 MP/HP

The object 2022 sub index 05 indicates the number of the selected motion task.

Motion tasks 1 to 180 are EEPROM motion blocks, and motion tasks 192 to 255 are RAM motion blocks. The RAM motion blocks are loaded with the first 64 EEPROM motion blocks when the servo drive is switched on or reset. The object may be mapped in PDO.

Index	Sub Idx	ASCII	Access	Format	Units	Limits	Short decription
351Ah	1	CLRORDER	Cmd	Integer16	-	0;1 180; 192 255	Deleting a Motion Task
351Dh	1	CONTINUE	Cmd	-	-	-	Continue last position order
356Dh	1	INPOS	ro	Integer8	-	-	Status of In-Position Signal
35B6h	1	OVRIDE	rw	Integer8	-	0 3	Override Function for Motion Tasks
35B7h	1	O_ACC1	rw	Integer16	mm/s ²	1 32 000	Acceleration Time 1 for Motion Task 0
35B8h	1	O_ACC2	rw	Integer16	ms	1 32 000	Acceleration Time 2 for Motion Task 0
35B9h	1	O_C	rw	Integer16	-	int	Control Variable for Motion Task 0
35BAh	1	O_DEC1	rw	Integer16	mm/s ²	1 32 000	Braking Time 1 for Motion Task 0
35BBh	1	O_DEC2	rw	Integer16	ms	1 32 000	Deceleration Time 2 for Motion Task 0
35BCh	1	O_FN	rw	Integer16	-	0, 1, ,180,192 255	Next Task Number for Motion Task 0
35BDh	1	O_FT	rw	Integer16	ms	1 32 767	Delay before Next Motion Task
35BEh	1	O_P	rw	Integer32	-	long int	Target Position/Path for Motion Task 0
35BFh	1	O_V	rw	Integer32	-	long int	Target Speed for Motion Task 0
35D6h	1	PTMIN	rw	Integer16	>>ACCUNIT	1 32 767	Min. Acceleration Ramp for Motion Tasks
35D9h	1	PVMAXN	rw	Integer32	VUNIT	0 VLIM	Max. (Negative) Velocity for Position Control
35F5h	1	SPSET	rw	Integer8	-	0, 1, 2, 3	Enable for S-curve
362Eh	1	IN2PM	rw	Integer8	-	0, 1, 2	In-Position 2 Mode
3642h	1	MOVE	Cmd	Integer16	-	0,1, ,180,192 255	Start Motion Task
3654h	1	PTARGET	rw	Integer32	-	long int	Last Target Position
365Bh	1	MTMUX	rw	Integer16	-	0, 192 255	Presetting for motion task that is processed later

Manufacturer Data (Manufacturer status data)

Lexium 15 MP/HP		Lexium 15 LP					
Format PDO mapping		Format	PDO mapping	Index	Sub	Name	
UINTEGER32		UNSIGNED32		1000h	0	Device type	
UINTEGER8		UNSIGNED8		1001h	0	Error register	
UINTEGER32		UNSIGNED32	Yes	1002h		Manufacturer-specific status register	

Factor group

There is a possibility of conversion between physical dimensions and sizes, and the internal units used in the device (increments). Several factors can be implemented. This chapter describes how these factors influence the system, how they are calculated and which data are necessary to create them. **Normalized parameters are denoted by an asterisk** *.

Relationship between Physical and Internal Units

The factors defined in the factor group set up a relationship between device-internal units (increments) and physical units.

The factors are the result of the calculation of two parameters called dimension index and notation index. The dimension index indicates the physical dimension; the notation index indicates the physical unit and a decimal exponent for the values. These factors are directly used to normalize the physical values.

The notation index can be used in two ways:

- For a unit with decimal scaling and notation index < 64, the notation index defines the exponent/ decimal place of the unit.
- For a unit with non-decimal scaling and notation index > 64, the notation index defines the sub-index of the physical dimension of the unit.

Lexium 1	Lexium 15 MP/HP			Lexiun	n 15 LP	
Format	PDO mapping	Format	PDO mapping	Index	Sub	Name
						FACTOR GROUP
INTEGER8	Yes	INTEGER8		6089h	0	Position notation index
UNSIGNED8	Yes	UNSIGNED8		608Ah	0	Position dimension index
INTEGER8	Yes	INTEGER8		608Bh	0	Velocity notation index
UNSIGNED8	Yes	UNSIGNED8		608Ch	0	Velocity dimension index
INTEGER8	Yes	INTEGER8		608Dh	0	Acceleration notation index
UNSIGNED8	Yes	UNSIGNED8		608Eh	0	Acceleration dimension index
UNSIGNED8		UNSIGNED8		6093h	0	Position factor
UNSIGNED32	Yes	UNSIGNED32		6093h	1	Numerator
UNSIGNED32	Yes	UNSIGNED32		6093h	2	Feed constant
		UNSIGNED8		6094h	0	Velocity encoder factor
UNSIGNED32	Yes	UNSIGNED32		6094h	1	Numerator
UNSIGNED32	Yes	UNSIGNED32		6094h	2	Divisor
UNSIGNED32	Yes	UNSIGNED32		6097h	1	Numerator
UNSIGNED32	Yes	UNSIGNED32		6097h	2	Divisor

Lexium 15 MP/HP

Object 608Bh

This Object determines the notation for SDO 6081h profile_velocity. In combination with SDO 608Ch velocity_dimension_index, the following basic units can be represented:

physical dimension	units	velocity dimension index	velocity notation index
manufacturer-specific	incr/sec	0	0
revolutions	rpm	11	73

Object 608Ch

This Object determines the dimension for SDO 6081h profile_velocity. In combination with SDO 608Bh velocity_notation_index, the following basic units can be represented

physical dimension	units	velocity dimension index	velocity notation index
manufacturer-specific	incr/sec	0	0
revolutions	rpm	11	73

Object 6093h

The postion factor converts the target position into the internal data format of the Lexium 15 MP/HP (increments).

The position controller can be run with the resolution set to 20 bits/turn or 16 bits/turn (see SDO 35D1h and the ASCII command PRBASE). The numerator and the feed constant can be used to set up any value of scaling.

$$position_factor = \frac{position_encoder_resolution \times gear_ratio}{feed_constant}$$

- Position_encoder_resolution resolution of the position controller is 2²⁰ or 2¹⁶
- Gear_ratio transmission ratio for the gearing that is used
- feed_constant the feed constant of the output side of the servo drive gearing

Example: One turn is equivalent to 10 000 increments. The gear ratio is 1.

position_factor =
$$\frac{2^{20} \text{ incr}}{1000 \text{ incr}}$$

- Numerator: 2²⁰
- Feed constant 10000
- Setpoint provision in [incr/turn] for SDO 607Ah (target_position)

The Numerator corresponds to the ASCII-parameter PGEARO, feed-constant to the parameter PGEARI.

Object 6094h

The velocity_encoder_factor converts the target speed (rpm) or velocity (incr/sec) into the terminal data format of the Lexium 15 MP/HP (increments). The following formula and associated table explain how the velocity_encoder_factor is calculated:

$$velocity_encoder_factor = \frac{velocity_encoder_resolution \times gear_ratio \times position_unit \times Fvelocity(notation_index)}{feed_constant \times velocity_unit \times sec \times Fposition(notation_index)}$$

Parameter	Designation
Velocity_encoder_resolution	Resolution of the speed 2 ²⁰
Gear_ratio	Transmission ratio for the gearing that is used
Position_unit	In meters
Fposition (notation_index)	Dimension_index=1, notation_index=0[m]
Feed_constant	Feed constant for the output side of the servo drive gearing
Velocity_unit	In [m/s]
Fvelocity (notation_index)	Dimension_index=13, notation_index=0 [m/s]

(see also SDO 606Bh velocity_notation_index and SDO 606Ch velocity_dimension_index)

Example: The speed-setpoint has to be made in rounds per minute (rpm/min).

The transmission ratio and feed constant are 1

velocity_encoder_factor =
$$\frac{2^{20}}{1} \frac{1/1}{1} \frac{\text{incr}}{\text{s}}$$

Expanded for rpm:

$$\mbox{velocity_encoder_factor} = \ \frac{2^{20}}{1} \ \frac{1/1}{1} \ \frac{[m]}{[m/s]} \ \frac{\mbox{incr}}{s} \times \frac{1}{60 [s/min]} = \frac{2^{20}}{60} \ \frac{\mbox{incr}}{s}$$

- Numerator: 2²⁰
- Divisor: 60
- Setpoint provision in [rpm] for SDO 60FFh target_velocity/velocity units
- Setpoint provision in [incr/min] for SDO 6081h profile_velocity/speed units

Since the speed controller operates internally with a resolution of 2^{20} bits/turn, regardless of the resolution of the encoder system, the following expression is used to calculate the operating mode pv (for revolutions per minute):

increments =
$$\frac{262144}{1875} \times \text{speed setpoint}[\text{min}^{-1}]$$

This incremental setpoint provison should be used for cyclic applications (for example, position control, 4 ms cycle). The advantages are there is no rounding error and a lower CPU loading.

The above calculation is valid if divisor or numerator is set to 0.

The velocity_encoder_factor also affects SDO 6081h profile_velocity. In order to be able to use this factor for the position mode (pp) as well, the internal gearing factors PGEARI and PGEARO must be equal (PGEARI=PGEARO; SDO 2020h sub-index; 08h, 09h). If the divisor or numerator is set to 0, then the internal scaling is used: increments per cycle (250 µs).

Object 6097h

The acceleration_factor converts the acceleration [unit: s²] into the internal format of the Lexium 15 MP/HP.

At present, the numerator and divisor are read-only. The values are set to 1. If the acceleration_factor is set to 1, then the ramp settings (SDO 6083h, profile_acceleration and SDO 6084h, profile_deceleration) will be provided as acceleration times [ms] required to reach the target speed (SDO 6081h profile_velocity).

Lexium 15 LP

Object 6089h

The "position notation index" scales position setpoints, which units are defined with the "position dimension index" in SI-units, in power of ten. The following table describes the relationship between the values for SDO 6089 and the manufacturer specific parameter PUNIT:

Value of SDO6089h	ASCII parameter PUNIT	Scaling
FFh	1	10 ⁻¹
FEh	2	10 ⁻²
FDh	3	10 ⁻³
FCh	4	10 ⁻⁴
FBh	5	10 ⁻⁵
FAh	6	10 ⁻⁶
F9h	7	10 ⁻⁷
F8h	8	10 ⁻⁸
F7h	9	10 ⁻⁹
0	0	1

Object 608Ah

The "position dimension index" defines the SI-units of the used position setpoints.

The following table describes the relationship between the SDO values and the manufacturer specific parameter PUNIT:

Value of SDO608Ah	ASCII parameter PUNIT	SI unit
1	91	m
0	0	Manufacturer specific increments

The parameter PUNIT can be stored in the servo drive. The values of 6089h and 608Ah are initialized by that paremeter.

Object 608Fh

The position encoder resolution defines the ratio of encoder increments per motor revolution. This object is used in the same way for SDO 6090 (velocity encoder resolution).

position encoder resolution
$$=$$
 $\frac{\text{encoder increments}}{\text{motor revolutions}}$

Object 6091h

The gear ratio defines the ratio of motor shaft revolution per driving shaft revolution. This includes the gear if present.

$$gear ratio = \frac{motor shaft revolutions}{driving shaft revolutions}$$

Object 6092h

The feed constant defines the ratio of motor shaft revolution per driving shaft revolution. This includes the gear if present.

$$feed constant = \frac{feed}{driving shaft revolutions}$$

Object 6093h

The position factor converts the desired position (in position units) into the internal format (in increments). These values are calculated via the SDOs 608F and 6091.

$$position \ factor \ = \ \frac{position \ encoder \ resolution \ \bullet \ gear \ ratio}{feed \ constant}$$

Object 608Bh

The "velocity notation index" scales velocity setpoints, which units are defined with the "velocity dimension index" as SI-units, in power of ten. The following table describes the relationship between the SDO values and the parameter VUNIT:

Value of SDO608Bh	ASCII parameter VUNIT	Scaling
0	0	1
0	1	1
0	5	1
0	6	1
FDh	7	10 ⁻³
FDh	8	10 ⁻³

Object 608Ch

The "velocity dimension index" defines the SI-unit of the used velocity setpoint.

The following table describes the relationship between the SDO values and the manufacturer specific parameter VUNIT:

Value of SDO608Ch	ASCII parameter VUNIT	SI unit
A6h	0	m/s
A4h	1	round/min (rpm)
A6h	5	m/s
A7h	6	m/min
A6h	7	m/s
A7h	8	m/min

The parameter VUNIT can be stored in the servo drive. The values for SDOs 608Bh ad 608Ch are initialized by this parameter. Only the described values for VUNIT are possible with the profile DS 402.

Object 608Dh

The "acceleration notation index" scales acceleration setpoints, which units are defined with the "acceleration dimension index" as SI-units, in power of ten.

The following table describes the relationship between the SDO values and the parameter ACCUNIT:

Value of SDO608Dh	Value of SDO608Dh ASCII parameter ACCUNIT			
0	1,5	1		
FAh	3	10 ⁻⁶		
FDh	4	10 ⁻³		

Object 608Eh

The "acceleration dimension index" defines the SI-units of the used acceleration setpoints.

The following table describes the relationship between the SDO values and the manufacturer specific parameter ACCUNIT:

Value of SDO608Eh	ASCII parameter ACCUNIT	SI unit
AEh	1	rad/s ²
55h	3, 4, 5	m/s

The parameter ACCUNIT can be stored in the servo drive. The values for SDOs 608Dh ad 608Eh are initialized by this parameter. Only the described values for ACCUNIT are possible with the profile DS 402.

Object 6097h

The acceleration factor converts the acceleration (in acceleration units/s) into the internal format (in increments/s). This factor is actually calculated from SDO 6093 and readable only.

acceleration factor =
$$\frac{\text{velocity unit} \bullet \text{encoded factor}}{\text{acceleration unit} \bullet \text{second}}$$

Identification

The following tables list the Identification PDOs

Format	PDO mapping	Index	Sub	Name
UNSIGNED32		1000h	0	Device type
UNSIGNED8		1001h	0	Error register
UNSIGNED32	Yes	1002h	0	Manufacturer-specific status register

Index	Sub idx	Var Type	Description	Format	Access
1008h	0	VAR	Manufacturer device name	Visible String	r
100Ah	0	VAR	Manufacturer software version	Visible String	r
1018h		RECORD	Identity Object		
1018h	0	VAR	Number of entries	UINTEGER8	r
1018h	1	VAR	Vendor ID	UINTEGER32	r
1018h	2	VAR	Product Code	UINTEGER32	r
1018h	3	VAR	Revision number	UINTEGER32	r
1018h	4	VAR	Serial number	UINTEGER32	r

Errors

The following tables list the different error codes (Emergency messages) for Lexium 15 LP and Lexium 15 MP/HP

Lexium 15 MP/HP

SDO	1003h	DS301	SDO	1003h	D\$301
Error Code	Category	Description	Error Code	Category	Description
0000h	_	Error reset or no error (mandatory)	6282h	4	Faulty user software (macro, F32)
1000h	_	Generic error (mandatory)	6320h	3	Parameter error
1080h	5	No R1A/R1C (status not ready for operation)	7111h	1	Braking error/fault (F11)
2330h	2	Earth short (F22)	7122h	1	Commutation error (F25)
3100h	1	No mains/line-BTB (F16)	7181h	5	Could not enable Lexium
3110h	1	Overvoltage in DC-bus/DC-link (F02)	7182h	5	Command only possible in disabled status
3120h	1	Undervoltage in DC-bus/DC-link (F05)	7303h	1	Feedback device error (F04)
3130h	1	Supply line phase missing (with PMODE = 2) (F19)	8053h	1	Handling error (F21)
4110h	1	Ambient temperature too high (F13)	8181h	2	Response monitoring activated
4210h	1	Heat sink temperature too high (F01)	8182h	1	CAN bus off (F23)
4310h	1	Motor temperature too high (F06)	8281h	5	Status machine not in operation enable condition
5111h	1	Fault in === 15 V external control power supply (F07)	8282h	5	Wrong mode setting
5380h	1	Fault in A/D converter (F17)	8331h	1	I2t (torque fault, F15)
5400h	1	Fault in output stage (F14)	8480h	1	Overspeed (F08)
5420h	1	Braking (chopper) (F18)	8611h	2	Lag/following error
5441h	1	Operating error for PWR-option (F27)	8681h	5	Invalid motion task number
5530h	1	Serial EEPROM (F09)	8682h	2	External trajectory error (F28) (only with Sercos)
5581h	1	Flash EEPROM (F10)	FF01h	4	Serious exception error (F32)
6010h	4	Watchdog (software reset, F32)	FF02h	3	Error in PDO elements
6181h	4	BCC error (table)	FF03h	5	Operating mode
6182h	4	BCC error (system macro)	FF04h	1	Slot error (F20)
6183h	4	BCC error (serial EEPROM)	FF06h	2	Warning display as error (F24)
6184h	4	FPGA error	FF07h	2	Homing error (drove onto HW limit switch) (F26)
6185h	4	Fault/error (table)	FF08h	2	Sercos error (F29)
6281h	4	User software BCC (macro, F32)	FF11h	1	Sercos

Lexium 15 LP

SDO	1003h	DS301
Error Code	Category	Description
0000h	_	Error reset or no error (mandatory)
1000h	_	Generic error (mandatory)
1080h	5	No R1A/R1C (status not ready for operation)
2330h	1	Error in ground connection (F22)
2380h	1	Error in motor connection (phase fault) (F12)
3100h	1	No mains/line-BTB (F16)
3110h	1	Overvoltage in DC-bus/DC-link (F02)
3120h	1	Undervoltage in DC-bus/DC-link (F05)
3130h	1	Supply line phase missing (with PMODE = 2) (F19)
4110h	1	Ambient temperature too high (F13)
4210h	1	Heat sink temperature too high (F01)
4310h	1	Motor temperature too high (F06)
5111h	1	Fault in == 15 V auxiliary voltage (F07)
5380h	1	Fault in A/D converter (F17)
5400h	1	Fault in output stage (F14)
5420h	1	Ballast (chopper) (F18)
5441h	1	Operating error for PWR-option (F27)
5530h	1	Serial EEPROM (F09)
6320h	3	Parameter error
7111h	1	Braking error/fault (F11)
7122h	1	Commutation error (F25)
7181h	5	Could not enable Lexium
7303h	1	Feedback device error (F04)
7305h	1	Signal failure digital encoder input (F10)
8053h	1	Handling error (F21)
8182h	1	CAN bus off (F23)
8331h	1	I2t (torque fault, F15)
8480h	1	Overspeed (F08)
8611h	2	Lag/following error (n03/F03)
8681h	5	Invalid motion task number
FF01h	4	Serious exception error (F32)
FF02h	3	Error in PDO elements
FF04h	1	Slot error (F20)
FF06h	2	Warning display as error (F24)
FF07h	2	Homing error (drove onto HW limit switch) (F26)
FF08h	2	Sercos error (F29)
FF11h	2	Emergency timeout failure(F30)

Warnings/ Manufacturer Status Register

The following tables list the different warnings for Lexium 15 LP and Lexium 15 MP/HP

SDO		1002h			
	'	Lexium 15 MP/HP			Lexium 15 LP
Bit		Explanation	Bit		Explanation
0	n01	Warning 1: I ² t-threshold exceeded	0	n01	L²t threshold exceeded
1	n02	Warning 2: full braking power reached	1	n02	Reached preset braking power limit
2	n03*	Warning 3: lag/following error	2	n03*	Exceeded preset contouring error limit
3	n04*	Warning 4: response monitoring activated	3	n04*	Nodeguarding monitoring has been activated
4	n05	Warning 5: power supply phase missing	4	n05	Power supply phase missing
5	n06*	Warning 6: software limit-switch 1 has been activated	5	n06*	Position fall below software limit switch 1
6	n07*	Warning 7: software limit-switch 2 has been activated	6	n07*	Position exceeded software limit switch 2
7	n08	Warning 8: faulty motion task started	7	n08	A faulty motion task was started
8	n09	Warning 9: no reference point set at start of motion task	8	n09	No reference point (Home) set at start of motion task
9	n10*	Warning 10: PSTOP activated	9	n10*	PSTOP limit-switch activated
10	n11*	Warning 11: NSTOP activated	10	n11*	NSTOP limit-switch activated
11	n12	Warning 12: motor default values were loaded	11	n12	Only for ENDAT or HIPERFACE®: discrepancy between servo motor number saved in the encoder and the servo motor default values loaded
12	n13*	Warning 13: expansion board not functioning correctly	12	n13*	Expansion card not operating correctly
13	n14	Warning 14: motor phase	13	n14	SinCos commutation (wake & shake) not completed, will be canceled when servo drive is enabled and wake & shake carried out
14	n15	Warning 15: erroneous VCT entry selected	14	n15	Fault according to speed/current table INXMODE 35
15	n16	Warning 16: reserve	15	n16	Summarized warning for n17 to n31
16		Motion task active	16	n17	CAN-Sync is not logged in (with SYNCSRC=3)
17		Reference point set	17	n18	Max. number of turns exceeded
18		Actual position = home position	18	n19	Reserved
19		In Position	19	n20	Reserved
20		Position latch made (positive edge)	20	n21	Reserved
21		Reached Position 0	21	n22	Reserved
22		Reached Position 1	22	n23	Reserved
23		Reached Position 2	23	n24	Reserved
24		Reached Position 3	24	n25	Reserved
25		Reached Position 4	25	n26	Reserved
26		Finished initialization	26	n27	Reserved
27		Reached Position 5	27	n28	Reserved
28		Speed = 0	28	n29	Reserved
29		Safety relay has been activated	29	n30	Reserved
30		Output stage enabled	30	n31	Reserved
31		Error present	31	n32	Firmware is an unreleased beta version
* = thes	se war	ning messages result in a controlled shut-down c	of the	servo	drive (braking by emergency stop ramp)

Lexium 15 MP/HP

Response to BUSOFF communication faults

The communication fault BUSOFF is directly monitored and signaled by Level 2 (CAN controller). This message may have various causes. The list below provides a few examples:

- telegrams are transmitted, although there is no other CAN node connected,
- · CAN nodes have different transmission rates,
- · the bus cable is faulty,
- faulty cable termination causes reflections on the cable.

A BUSOFF is signaled by the Lexium 15 MP/HP only if another CAN node is connected and if at least one Object was successfully transmitted. The BUSOFF condition is signaled by the error message F23. If the output stage is enabled for the execution of a motion task when this fault occurs, then the servo drive is braked to a stop, using the emergency stop ramp. The output stage is thus disabled.

Setting the station address

Three different ways enable to configure the esalve address (address on the CAN-Bus) for the servo drive:

- using the pushbuttons on the front panel (see installation instructions for Lexium 15),
- · with the commissioning software Unilink L or Unilink MP,
- using the ASCII command sequence: ADDR nn SAVE => COLDSTART (nn = address).

The address range can be expanded from 1 ... 63 to 1 ... 127 by using the ASCII-Object MDRV.

A CAUTION

RISK OF UNEXPECTED OPERATION

After changing the station address and/or the baud rate you must turn the == 24 V external control power supply for the servo drive off and on again.

Failure to follow this instruction can result in injury or equipment damage.

Setting the transmission rate

Three different ways enable to configure the CAN transmission rate:

- using the pushbuttons on the front panel (see installation instructions for Lexium 15 servo drive),
- with the commissioning software Unilink L or Unilink MP.
- using the ASCII command sequence: CBAUD bb => SAVE => COLDSTART (bb = transmission rate in kbit/s).

The following table shows the coding of the transmission rate in the LED display:

Transmission rate: kbit/s	Max. cable length: m
2	20
5	50
10	100
12	125
25	250
33	333
50	500 (Default)
66	666
80	800
100	1000

Basic data types

Unsigned integer

Data in the basic data type UNSIGNEDn define exclusively positive integers.

The value range is from 0 to 2^{n-1} . The bit sequence $b = b_{n-1}...b_0$ defines the value UNSIGNEDn(b) = $b_{n-1} 2^{n-1} + ... + b_1 2^1 + b_0 2^0$

Example: the value 266 = 10Ah is transmitted in the data type UNSIGNED16, in the form of two bytes (1st byte = 0Ah, 2nd byte = 01h).

The following table gives the transmission syntax for the data type UNSIGNEDn:

Byte number	1	2	3	4	5	6	7	8
UNSIGNED8	b7b0							
UNSIGNED16	b7b0	b15b8						
UNSIGNED24	b7b0	b15b8	b23b16					
UNSIGNED32	b7b0	b15b8	b23b16	b31b24				
UNSIGNED40	b7b0	b15b8	b23b16	b31b24	b39b32			
UNSIGNED48	b7b0	b15b8	b23b16	b31b24	b39b32	b47b40		
UNSIGNED56	b7b0	b15b8	b23b16	b31b24	b39b32	b47b40	b55b48	
UNSIGNED64	b7b0	b15b8	b23b16	b31b24	b39b32	b47b40	b55b48	b63b56

Signed integer

Data in the basic data type INTEGERn define both positive and negative integers.

The value range is from $-2^{n-1}-1$ to $2^{n-1}-1$. The bit sequence $b=b_{n-1}...b_0$ defines the value INTEGERn(b) $=b_{n-2} 2^{n-2} + + b_1 2^1 + b_0 2^0$ with $b_{n-1}=0$

Negative numbers are represented as 2's complement, which means:

INTEGERn(b) = -INTEGERn(b) - 1 with $b_{n-1} = 1$

Example: the value -266 = FEF6h is transmitted in the data type INTEGER16, in the form of two bytes (1st byte = F6h, 2nd byte = FEh).

The following table gives the transmission syntax for the data type INTEGERn:

Byte number	1	2	3	4	5	6	7	8
INTEGER8	b7b0							
INTEGER16	b7b0	b15b8						
INTEGER24	b7b0	b15b8	b23b16					
INTEGER32	b7b0	b15b8	b23b16	b31b24				
INTEGER40	b7b0	b15b8	b23b16	b31b24	b39b32			
INTEGER48	b7b0	b15b8	b23b16	b31b24	b39b32	b47b40		
INTEGER56	b7b0	b15b8	b23b16	b31b24	b39b32	b47b40	b55b48	
INTEGER64	b7b0	b15b8	b23b16	b31b24	b39b32	b47b40	b55b48	b63b56

Mixed data types

Mixed data types combine basic data types (INTEGERn, UNSIGNEDn, REAL). Two types of mixed data are distinguished:

STRUCT	This data type is composed of elements with different data types.		
ARRAY	This data type is composed of elements of the same data type.		

Extended data types

Extended data types are derived from basic data types and mixed data types. The types of extended data that are supported are defined below.

Octet string

The data type OCTET_STRING is defined with the data type ARRAY. Length is the length of the byte string. ARRAY[length] OF UNSIGNED8 OCTET_STRING length

Visible string

The data type VISIBLE_STRING can be defined with the data type UNSIGNED8 or the data type ARRAY. Permissible values are 00h and the range is from 20h to 7Eh. The data are interpreted as 7 bit ASCII code (as per ISO 646-1973(E)). Length is the length of the visible string. UNSIGNED8 VISIBLE CHAR

ARRAY[length] OF VISIBLE_CHAR VISIBLE_STRING length

Communication Objects

Communication Objects are described with the help of service elements and protocols. Two basic types of service elements are distinguished:

- · unconfirmed services PDO,
- · confirmed services SDO.

All services require faultless operation of the Data Link and Physical Layer.

The Lexium 15 servo drive supports the Communication Objects that are described in detail in the following sections:

- · network Management Objects (NMT),
- · synchronization Object (SYNC),
- time Stamp Object (TIME),
- · emergency Object (EMCY),
- · process Data Object (PDO),
- · service Data Object (SDO),
- · nodeguard.

Network Management Objects (NMT)

The NMT telegram is as follow

The servo drive supports the following network management functions:

cs = 129, reset node	Causes a cold-start of the servo drive. This deletes all parameters saved in the RAM and loads the values stored in the EEPROM or the default values.
cs = 1, start remote node	Starts the CAN node. That wants to say the PDOs of the servo drive are enabled for operation. From this moment, transmit-PDOs will be transmitted under eventcontrol, and cyclical process data operation can start.

Synchronization Object (SYNC)

This is a periodic *Broadcast Object* which provides the basic clock for the bus. SYNC has a high priority, to ensure constant time intervals. For instance, you can use the SYNC object to start motion task of several axes simultaneously.

Time-Stamp Object (TIME)

This communication Object is not supported by Lexium 15 servo drives.

Emergency Object (EMCY)

EMCY is event-triggered and generated by an internal fault/error situation. This Object is transmitted for every error. The error codes are described in the chapter Errors. See "Errors", page 47. With Lexium 15 LP the last 8 Emergency error codes can be read via SDO 1003.

Application of the Emergency Object

The reaction in the event of an error or fault depends on the error class and is therefore variable. For this reason, the reaction is described with the aid of an error status machine. The error conditions *error free* and *error occurred* are distinguished. The following transitions are defined below:

Phase	Description
0	After initialization, the state diagram takes the error-free status if no error is detected. A no error signal is generated in this condition.
1	The Lexium 15 servo drive detects an internal error and indicates this in the first three bytes of the emergency telegram (error code in Bytes 0,1 and error register in Byte 2). Since the Lexium 15 servo drive can distinguish between different types of error, Byte 3 of the manufacturer-specific error field is used to indicate the error category.
2	A single error has been reset. The EMCY telegram contains error code 0000h and the error register indicates the remaining errors. The manufacture-specific area is set to zero.
3	A new error has occurred. The Lexium 15 servo drive remains in the error status and transmits an EMCY Object with the corresponding error code. The new error code is entered in Bytes 0 and 1.
4	All errors have been reset. The EMCY telegram contains the error code 0000h, the error register does not indicate any other errors. The manufacture-specific area is set to zero.

Composition of the Emergency Object

The Emergency Object is composed of 8 bytes, divided as follows:

Byte	0	1	2	3	4	5	6	7
Content	Emergency error code		Error register	Integer32	Category		Reserved	

If an Emergency Object is generated, the error condition is then signaled to the status machine (error free / error occurred) by the generation of a second Emergency Object. Only the first four bytes are relevant in this case (Emergency Error code, Error register, Category). Byte 0/1 contains the Error Reset code (0000h) and Byte 2 indicates if a possible further error is present. If the error register contains 00h, the error status is error-free.

Byte 3 contains the category. The interpretations of the error numbers (error code) and the error categories are described in the section Emergency Messages. The error register is defined through Object 1001h Error register.

Abort SDO Protocol

The Abort SDO protocol breaks off SDO transmission, and indicates the error that caused the break in transmission through an abort code (error code). The error code is in the format of an UNSIGNED32 value. The following tables show possible reasons for an abort SDO.

Lexium 15 LP

Abort code	Description
0601 0000h	Unsupported access to this object
0601 0001h	Read access attempt on a write-only object
0601 0002h	Write access attempt on a read-only object
0602 0000h	Object does not exist in Object Dictionary
0604 0041h	Object cannot be mapped to a PDO
0604 0042h	Size and number of mapped objects exceed permissible PDO length
0604 0043h	General parameter incompatibility
0607 0010h	Data type incompatible, length of service parameter is incompatible
0609 0011h	Subindex does not exist
0609 0030h	Outside value range for the parameter (only for write access)
0609 0031h	Parameter value too high
0609 0032h	Parameter value too low
0800 0020h	Data cannot be transmitted or saved
0800 0022h	Data cannot be transmitted or saved because of device status
FF03 0000h	OS cmd buffer full

Lexium 15 MP/HP

Abort code	Description
0503 0000h	Toggle bit was not toggled
0504 0000h	Timeout for SDO protocol
0504 0001h	Client/server command - invalid or unknown identifier
0504 0002h	Unrecognized block size (block mode only)
0504 0003h	Unrecognized block number (block mode only)
0504 0004h	CRC error (block mode only)
0504 0005h	Out of memory
0601 0000h	Unsupported access to this object
0601 0001h	Read access attempt on a write-only object
0601 0002h	Write access attempt on a read-only object
0602 0000h	Object does not exist in Object Dictionary
0604 0041h	Object cannot be mapped to a PDO
0604 0042h	Size and number of mapped objects exceed permissible PDO length
0604 0043h	General parameter incompatibility
0604 0047h	General device incompatibility
0606 0000h	Access infringement caused by hardware error
0607 0010h	Data type incompatible, length of service parameter is incompatible
0607 0012h	Data type incompatible, length of service parameter is too long
0607 0013h	Data type incompatible, length of service parameter is too short
0609 0011h	Subindex does not exist
0609 0030h	Outside value range for the parameter (only for write access)
0609 0031h	Parameter value too high
0609 0032h	Parameter value too low
0609 0036h	Maximum value is lower than minimum value
0800 0000	General error/fault
0800 0020h	Data cannot be transmitted or saved
0800 0020h	Data cannot be transmitted or saved because device is under local control
0800 0022h	Data cannot be transmitted or saved because of device status
0800 0023h	Dynamic generation of the Object Dictionary not possible or already available (e.g Object Dictionary is created from a file, and an error occurs because of a defect in the file)

Nodeguard (Only for Lexium 15 MP/HP)

The Node Guarding protocol is a functional monitoring for the servo drive. It requires the servo drive to be accessed at regular intervals by the CANopen master. The maximum time interval that is allowed between two Nodeguard telegrams is given by the product of the Guard Time (SDO 100Ch) and the Life Time Factor (SDO 100Dh). If one of these two values is 0, then the response monitoring is deactivated.

Node guarding is only activated when the output stage is enabled. If the servo drive is not accessed within the time defined by SDOs 100Ch and 100Dh, then Warning N04 (response monitoring) is displayed on the servo drive and this one is braked to a stop with the Quickstop ramp. Thus, any other movement is prevented.

The time sequence for node guarding is as shown below:

t = toggle Bit, changes its status with every slave telegram

s = status of the NMT slave status machine

Node guarding is carried out by the Master through RTR telegrams with the COB-ID, which can be set in Lexium 15 MP/HP servo drives for the slave by SDO 100Eh. The default value is 700h + slave node address.

Heartbeat (only for Lexium 15 LP)

The Heartbeat Protocol defines an Error Control Service without need for remote frames. A Heartbeat Producer transmits a Heartbeat message cyclically. One or more Heartbeat Consumer receive the indication. The relationship between producer and consumer is configurable via SDO 1016h / 1017h. The Heartbeat Consumer guards the reception of the Heartbeat within the Heartbeat Consumer Time. If the Heartbeat is not received within the Heartbeat Consumer Time a Heartbeat Event will be generated.

The diagram below describes the Heartbeat protocol:

