Project Development Phase Model Performance Test

DATE	17-11-2002		
Team ID	PNT2022TMID28852		
TEAM MEMBERS	1. SWARNA RAJINI 2. B.ANANTHA KUMAR 3. CH.GIREESH BABU 4. D.SANTHOSH		
PROJECT NAME	WEB PHISHING DETECTION		
Marks	4 Marks		

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot		
1.	Metrics	Classification Model: Gradient Boosting Classification Accuray Score- 97.4%	In [OI] Accepting the classification report of the model print(meries aleasification report (p_max, p_tast_ples)) print(meries aleasification_report(p_max, p_tast_ples)) print(meries aleasification recold fluores support 1 a. 0.00 a. 6. 6. 6. 6. 7. 8. 70 a.		
2.	Tune the Model	Hyperparameter Tuning - 97% Validation Method - KFOLD & Cross Validation Method	Wiccoson signed-rank load is (N) emble and cross recommend manual from independent insert existence from class and the insert existence if an insert existence if a load to a common if a load if a load to a common if a load if a load		

1. **METRICS**:

CLASSIFICATION REPORT:

PERFORMANCE:

Out 33 J : ML Model Accuracy fl _score Recall Precision

O Gradient Boosting Classifier		0.974	0.977	0.994	0.986
(CatBoost Classifier	0.972	0.975	0.994	0.989
2	Random Forest	0.969	0.972	0.992	0.991
3 Ма	Support Vector achine	0.964	0.968	0.980	0.965
4	Decision Tree	0.958	0.962	0.991	0.993
5	K-Nearest Neighbors	0.956	0.961	0.991	0.989
6	Logistic Regression	0.934	0.941	0.943	0.927
	Naive Bayes Classifier	0.605	0454	0292	0.997
8	XGBoost Classifier	0.548	0.548	0.993	0.984

9 Multi-layer 0.543 0.543 0.989 0983 Perceptron

2. TUNE THE MODEL - HYPERPARAMETER TUNING


```
In [59]:

print("The best parameters are %s with a score of %0.2f"

**Cocid_best the parameters are score of core

The best parameters are {'max_features': 5, 'n_estimators': 20) with a score of 0.97
```

VALIDATION METHODS: KFOLD & Cross Folding

Wilcoxon signed-rank test

```
In [78]: #KFOLD and Cross Validation
             from scipy . stats import wilcoxon from
            sklearn. datasets import load iris from
            sklearn .ensemble import
                                     from
      GradientBoostingClassifier
                                              xgboost
                                # Load the dataset
                                X = load iris().data
      import X6BClassifier y = load_iris().target from
       sklearn .model_selection import cross_val_score,
           |modell Prepare models and select your CV method
           mode12
           kf g
                    Extract results for each model on the same
                  folds results_modell = X, y, cv=kf)
           stat, results mode12 - cross_va1_score(mode12, X,
           stat cv=kf) p = results_mode12, zsplit );
outt78J:
                   9S.ø
    5x2CV combined F test
 [891: from mlxtend. evaluate import combined
    ftest 5x2cv | from sklearn. tree import DecisionTreeClassifier, ExtraTreeClassifier from
    sklearn.ensemble
    GradientBoostingClas5ifier from mlxtend.data
    import iris_data # Prepare data and c Ifs
    clfl
    GradientBoostingClassifier(
    ) clf2 •
    DecisionTreeClassifier()
    # Calculate p-value f, p
    cortined estimator2=c1f2,
    j print(
       f) print(
    •p-value: ' ,
    f-value: 1.727272727272733 p-value: 0.284ø135734291782
```