Definition 1. polynomial ring $\mathbf{r}[x]$ in x over the ring \mathbf{r} is defined as set of expressions, called polynomials in x, of the form

$$f(x) = a_0 + a_1 x^1 + \dots + a_m x^m$$

where a_0, a_1, \ldots, a_n , the coefficients of p(x) are elements of \mathbf{r} , and x, x^2 are symbols

Definition 2. let f be a field. by the ring of polynomial in the indeterminate, x, written as $\mathbf{R}[x]$, we mean the set of all symbols $f(x) = a_0 + a_1 x^1 + \cdots + a_m x^m$, where n can be any nonnegative integer and where the coefficient $a_0, a_1 + \cdots + a_n$ are all in f. in order to make a ring out of $\mathbf{f}[x]$, we must be able to recognize when the two elements in it are equal, we must add and multiply element of $\mathbf{f}[x]$ so that the axiom defining the ring hold true for $\mathbf{f}[x]$.

Definition 3. if $f(x) = a_0 + a_1 x^1 + \dots + a_m x^m$ and $g(x) = b_0 + b_1 x^1 + \dots + b_m x^m$ are in $\mathbf{f}[x]$, then f(x) = g(x) if and only if for every integer $i \ge 0$, such as $a_i = b_i$

Definition 4. if $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$, then f(x) + g(x) is equal

$$\sum_{i=0}^{n} a_i x^i + \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{k} (a_i + b_j) x^k \quad \text{where } k = \max(n, m)$$

if f(x) or g(x) do not contain the term cx^t , then assume $c=0, k \ge t \ge 0$

Definition 5. if $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{j=0}^{m} b_j x^j$, then f(x)g(x) is equal

$$\sum_{i=0}^{n} a_i x^i \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_i b_j x^{i+j} \right)$$

the definition say nothing more than: multiply two polynomials by multiplying out two symbols formally, use the relation $x^i x^j = x^{i+j}$ and collect terms

Definition 6. the degree of nonzero polynomial is defined as the maximus power of a term with nonzero coefficients.

Definition 7. if f(x) and g(x) are nonzero polynomials in f(x), then

$$\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x))$$

Proof. let $f(x) = \sum_{i=0}^n a_i x^i, a_n \neq 0$ and $g(x) = \sum_{j=0}^m b_j x^j, b_m \neq 0$ we have

$$\deg(f(x)) = n$$
$$\deg(g(x)) = m$$

let $\alpha \in \{0 \dots n\}, \alpha \neq n \text{ and } \beta \in \{0 \dots m\}, \beta \neq m$

$$\therefore \alpha < n \text{ and } \beta < m$$

$$\implies \alpha + \beta < n + m$$

from the definition of multiplication of two polynomials

$$f(x)g(x) = \sum_{i=0}^{n} a_i x^i \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_i b_j x^{i+j} \right)$$

we need to show $a_n b_m \neq 0$, from the definition

$$a_n \neq 0$$

 $b_m \neq 0$
 $\implies a_n b_m \neq 0 \quad \because f \text{ is a integral domain}$
 $\implies \text{the maximus power of term is } a_n b_m x^{n+m}$
 $\implies \deg(f(x)g(x)) = n + m = \deg(f(x)) + \deg(g(x))$

Proof. by induction

Proof. from above proof, we have

$$\deg(f(x)) + \deg(g(x)) = \deg(f(x)g(x))$$
$$\deg(f(x)) = \deg(f(x)g(x)) - \deg(g(x))$$
$$\therefore \deg(g(x)) \ge 0$$
$$\therefore \deg(f(x)) \le \deg(f(x)g(x))$$

(1)

Lemma 1. given f is integral domain, prove $f(x)g(x) = 0 \leftrightarrow f(x) = 0$ or g(x) = 0

Proof. proof by contradition assume f(x) and g(x) are nonzero polynomials

from the definition of multiplication of two polynomials

$$f(x)g(x) = \sum_{i=0}^{n} a_i x^i \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} a_i b_j x^{i+j} \right) \quad a_n \neq 0, b_m \neq 0$$

the leading term is $a_n b_m x^{n+m}$

 $\implies a_n b_m \neq 0$: f is integral domain

 $\implies f(x)g(x) \neq 0$, therefore, that contradits our assumtion

$$\implies f(x) = 0 \text{ or } g(x) = 0$$

Proof. proof by the degree of polynomial, need to prove f is integral domain for the formula

$$\begin{split} \deg(f(x)g(x)) &= \deg(f(x)) + \deg(g(x)) \\ \deg(f(x)g(x)) &= \deg(0) = -\infty \\ &\therefore \deg(f(x)) = -\infty \text{ or } \deg(g(x)) = -\infty \\ &\Longrightarrow f(x) = 0 \text{ or } g(x) = 0 \end{split}$$

Lemma 2. division algorithm

let $f(x) = a_0 + a_1 x^1 + \cdots + a_m x^m$, there exists g(x) and r(x) such that

$$f(x) = h(x)g(x) + r(x)$$
 where $r(x) = 0$ or $\deg(r(x)) < \deg(g(x)), a_m \neq 0, b_n \neq 0$

Proof. if $\deg(f(x)) < \deg(g(x))$, then we have

$$f(x) = 0 \cdot g(x) + r(x)$$
$$\therefore f(x) = r(x)$$
$$\therefore \deg(r(x)) < \deg(g(x))$$

if $\deg(f(x)) \ge \deg(g(x))$

$$f_1(x) = f(x) - \frac{a_m x^m}{b_n x^n} g(x)$$

$$f_1(x) = f(x) - \frac{a_m x^m}{b_n x^n} (b_0 + b_1 x + \dots + b_{n-1} x^{n-1} + b_n x^n)$$

$$f_1(x) = f(x) - \frac{a_m x^m}{b_n x^n} (b_0 + b_1 x + \dots + b_{n-1} x^{n-1}) - a_m x^m$$

$$\implies \deg(f_1(x)) \le m - 1$$

Use induction on the degree of $f_1(x)$, e.g. m-1, and assume the follow hold

$$f_1(x) = h(x)g(x) + r(x) \text{ such as } r(x) = 0 \text{ or } \deg(r(x)) < \deg(g(x))$$

$$f(x) - \frac{a_m x^m}{b_n x^n} g(x) = h(x)g(x) + r(x) \quad \text{from } (1), (2)$$

$$f(x) = (h(x) + \frac{a_m x^m}{b_n x^n})g(x) + r(x)$$

$$\implies r(x) = 0 \text{ or } \deg(r(x)) < \deg(g(x)) \text{ for } \deg(f(x)) = m$$

$$\therefore \text{ The Division Algorithm is true}$$

Definition 9. Principal Idea is the ideal that generated by single element from \mathbf{R} . Let $a \in \mathbf{I}$ and $r \in \mathbf{R}$, if ar or $ra \in \mathbf{I}$, then ar or ra is principal idea.

Example 1. 2Z is principal ideal of Z or nZ is principal ideal of Z

Theorem 1. Fermat Little Theorem $a, p \in \mathbb{Z}$, p is prime and gcd(a, p) = 1

$$a^p \equiv a \mod p$$

Proof. 1. Use Induction and Binomial Theorem:

Proof. let $S = \{1, 2, ..., p-1\}$ then $a \cdot S = \{a, a2, ..., a(p-1)\}$ In $a \cdot S$, none of them is divisible by $p \quad \because \gcd(a, p) = 1$ It is sufficient to show all of them in $a \cdot S$ are distinct.

Assume $ai \equiv aj \mod p$ where $i \neq j$, $1 \leq i, j \leq p-1$

But $i \equiv j \mod p$ cancel both side by aThat contracts our assumption $i \neq j$ \implies the permuation of $S \equiv a \cdot S \mod p$ $\implies a \cdot S \mod p \equiv S \mod p$ $\implies a^{p-1} 1 \cdot 2 \cdot \dots (p-1) \mod p \equiv 1 \cdot 2 \cdot \dots p-1 \mod p$ $\implies a^{p-1} \equiv 1 \mod p$ $\implies a^p \equiv a \mod p$

Note 1. let
$$S = \{1, 2, 3, 4\}, a = 2, p = 5$$

 $a \cdot S = \{2, 4, 6, 8\} \mod 5$
 $a \cdot S = \{2, 4, 1, 3\} \mod 5$
 $a \cdot S$ is just a different arrange of $\{1, 2, 3, 4\}$ as long as $\gcd(a, p) = 1$

Definition 10. Legendra Symbol

$$p \text{ is old prime, } a \in \mathbb{Z}$$

$$\begin{pmatrix} \frac{a}{q} \end{pmatrix} = \begin{cases} +1 & : a^{\frac{p-1}{2}} \mod p \equiv 1 \\ 0 & : a^{\frac{p-1}{2}} \mod p \equiv 0 \\ -1 & : a^{\frac{p-1}{2}} \mod p \equiv p-1 \end{cases}$$

Proof. write your proof here

Definition 11. Gauss Lemma

Proof. write your proof here