Elementos da Teoria de Anéis

lcc :: $2.^{\underline{0}}$ ano

paula mendes martins

departamento de matemática :: uminho

generalidades

conceitos básicos

Definição. Seja A um conjunto não vazio e duas operações binárias, que representamos por + e por \cdot , nele definidas. O triplo $(A, +, \cdot)$ diz-se um *anel* se

- 1. (A, +) é um grupo comutativo (também chamado *módulo*);
- 2. (A, \cdot) é um semigrupo;
- 3. A operação \cdot é *distributiva* em relação à operação +, i.e., para todos $a,b,c\in A$,

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 e $(b+c) \cdot a = b \cdot a + c \cdot a$.

O anel A diz-se comutativo se a multiplicação for comutativa.

Observação. Referimo-nos sempre à primeira operação (i.e., à operação para a qual temos um grupo) como *adição*. À segunda operação (i.e., à operação para a qual temos um semigrupo) chamamos *multiplicação*.

Definições. Seja $(A, +, \cdot)$ um anel.

- Ao elemento neutro do grupo chamamos zero do anel e representamos por 0_A .
- Quando existe, ao elemento neutro do semigrupo chamamos identidade do anel e representamos por 1_A.
- Ao elemento oposto de a ∈ A para a adição chamamos simétrico de a e representamos por −a (note-se que, sendo (A, +) grupo, qualquer elemento do anel admite um único simétrico).
- No caso de o anel ter identidade, podem existir elementos que admitem elemento oposto para a multiplicação. Quando existe, referimo-nos ao elemento oposto de a ∈ A para a multiplicação como o inverso de a.
 Neste caso, representamos o inverso de a por a⁻¹.

Observação. Se não houver ambiguidade, falamos no anel A quando nos referimos ao anel $(A,+,\cdot)$ e omitimos o sinal da multiplicação na escrita de expressões.

Exemplo 1. Seja $A = \{a\}$. Então, $(A, +, \cdot)$, onde a + a = a e $a \cdot a = a$, é um anel comutativo com identidade, ao qual se chama *anel nulo*. Representa-se por $A = \{0_A\}$.

Exemplo 2. $(\mathbb{Z}, +, \times)$ e $(\mathbb{R}, +, \times)$ são anéis comutativos com identidade.

Exemplo 3. Dado $n \in \mathbb{N}$, $(\mathbb{Z}_n, +, \times)$ é um anel comutativo com identidade.

Exemplo 4. Dado o natural $n \ge 2$, $(n\mathbb{Z}, +, \times)$ é um anel comutativo sem identidade.

Exemplo 5. $(\mathcal{M}_2(\mathbb{R}), +, \times)$ é um anel não comutativo com identidade.

Proposição. Seja A um anel. Então, para todo $x \in A$, $0_A x = x 0_A = 0_A$.

Proposição. Se $A \neq \{0_A\}$ é um anel com identidade 1_A , então $1_A \neq 0_A$.

Proposição. Sejam A um anel e $x, y \in A$. Então:

- 1. (-x) y = x (-y) = -xy;
- 2. (-x)(-y) = xy.

Proposição. Sejam A um anel, $n \in \mathbb{N}$ e $a, b_1, b_2, ..., b_n \in A$. Então,

- 1. $a(b_1 + b_2 + \cdots + b_n) = ab_1 + ab_2 + \cdots + ab_n$;
- 2. $(b_1 + b_2 + \cdots + b_n) a = b_1 a + b_2 a + \cdots + b_n a$.

Observação. A propriedade apresentada na última proposição é conhecida, em Teoria de Anéis, como *propriedade distributiva generalizada*.

potências e múltiplos

Seja $(A,+,\cdot)$ um anel. Então, (A,+) é grupo, pelo que podemos falar nos múltiplos de expoente **inteiro** de $a\in A$. Assim, temos

- i. $0a = 0_A$;
- ii. (n+1)a = na + a, para todo $n \in \mathbb{N}_0$;
- ii. na = -(-na), para todo $n \in \mathbb{Z}^-$.

Proposição. Sejam A, um anel, $a,b\in A$ e $m,n\in \mathbb{Z}$. Então,

- 1. (m+n) a = ma + na;
- 2. n(ma) = (nm) a;
- 3. n(a + b) = na + nb.

Proposição. Sejam A um anel, $a, b \in A$ e $n \in \mathbb{Z}$. Então,

$$n(ab) = (na) b = a(nb)$$
.

Demonstração. Temos de considerar três casos:

- (i) n = 0. A demonstração é trivial.
- (ii) n > 0. Resulta da propriedade distributiva generalizada:

$$(na) b = (\underbrace{a+a+\cdot+a}_{a\times})b = \underbrace{ab+ab+\cdot\cdot\cdot ab}_{a\times} \times = n(ab)$$

е

$$a(nb) = a(\underbrace{b+b+\cdot +b}_{n\times}) = \underbrace{ab+ab+\cdot \cdot \cdot ab}_{n} \times = n(ab).$$

(iii) n < 0. Para $a, b \in A$, temos que

$$n(ab) = -[(-n)(ab)] = -[((-n)a)b] = [-(-(na))]b = (na)b$$

е

$$n(ab) = -[(-n)(ab)] = -[a((-n)b)] = a[-(-n)b] = a(nb).$$

Seja $(A, +, \cdot)$ um anel. Então, (A, \cdot) é semigrupo, pelo que podemos falar nas potências de expoente **natural** de $a \in A$. Assim, temos

- i. $a^1 = a$;
- ii. $a^{n+1} = a^n \cdot a$, para todo $n \in \mathbb{N}$.

Proposição. Sejam A um anel, $a \in A$ e $m, n \in \mathbb{N}$. Então,

- 1. $(a^n)^m = a^{nm}$;
- $2. \ a^n a^m = a^{n+m}.$

Observação. Tendo em conta que estamos a trabalhar num anel e, portanto, a trabalhar com duas operações simultaneamente, distinguiremos as duas potências a^n e na (com $a \in A$ e $n \in \mathbb{N}$) falando em *múltiplo de a* para na e em potência de a para a^n .

elementos de um anel

Definição. Seja A um anel com identidade 1_A . Um elemento $a \in A$ diz-se uma unidade se admite um inverso em A. Representa-se por \mathcal{U}_A o conjunto das unidades de um anel com identidade.

Exemplo 6. No anel $(\mathbb{Z}, +, \times)$, temos que $\mathcal{U}_A = \{-1, 1\}$.

Exemplo 7. No anel $(\mathbb{R},+,\times)$, temos que $\mathcal{U}_A=\mathbb{R}\setminus\{0\}$.

Exemplo 8. No anel $(\mathcal{M}_2(\mathbb{R}),+,\times)$, temos que

$$\mathcal{U}_A = \left\{ \left[egin{array}{cc} a & b \\ c & d \end{array}
ight] \in \mathcal{M}_2\left(\mathbb{R}\right) \mid \textit{ad} - \textit{bc}
eq 0
ight\}.$$

Quem são as unidades em $(\mathbb{Z}_n, +, \times)$, para $n \in \mathbb{N}$?São os elementos $[x]_n$, com $\mathrm{m.d.c.}(x, n) = 1$.

Definição. Seja A um anel. Um elemento $a \in A$ diz-se *simplificável* se, para todos $x, y \in A$

$$xa = ya$$
 ou $ax = ay \Rightarrow x = y$.

Exemplo 9. Nos anéis $(\mathbb{Z}, +, \times)$ e $(\mathbb{R}, +, \times)$, qualquer elemento não nulo é simplificável.

Exemplo 10. No anel $(\mathcal{M}_2(\mathbb{R}), +, \times)$, o elemento $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ não é simplificável. De facto,

е

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -3 & -2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix} \neq \begin{bmatrix} 3 & 2 \\ -3 & -2 \end{bmatrix}.$$

Observação. Num anel A, todo a unidade é simplificável, mas nem todo o elemento simplificável é uma unidade.

Definição. Seja A um anel. Um elemento $a \in A$ diz-se um *divisor de zero* se existe $b \in A \setminus \{0_A\}$ tal que

$$ab = 0_A$$
 ou $ba = 0_A$.

Observação. O elemento zero de um anel A só não é divisor de zero se $A = \{0_A\}$.

Exemplo 11. Nos anéis $(\mathbb{Z}, +, \times)$ e $(\mathbb{R}, +, \times)$, o único divisor de zero existente é o elemento 0.

Exemplo 12. No anel $(\mathcal{M}_2(\mathbb{R}), +, \times)$, qualquer matriz $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ tal que ad-bc=0 é divisor de zero.

Quem são os divisores de zero em $(\mathbb{Z}_n, +, \times)$, para $n \in \mathbb{N}$?

Exemplo 13.

- Os divisores de zero do anel $(\mathbb{Z}_6,+,\times)$ são os elementos $[0]_6$, $[2]_6$, $[3]_6$ e $[4]_6$ pois $[0]_6\times[1]_6=[0]_6$, $[2]_6\times[3]_6=[0]_6$ e $[4]_6\times[3]_6=[0]_6$.
- No anel $(\mathbb{Z}_7, +, \times)$, o único elemento divisor de zero é $[0]_7$.

Proposição. No anel $(\mathbb{Z}_n, +, \times)$, os divisores de zero são os elementos $[x]_n$, onde $\mathrm{m.d.c.}(x, n) \neq 1$.

Demonstração. Se $1 \neq d = \text{m.d.c.}(x, n)$, então, existem $a, b \in \mathbb{Z}$ tais que d = ax + bn e existe n = kd. Assim, em \mathbb{Z}_n , $[d]_n = [a]_n[x]_n + [0]_n(*)$ e, portanto, $[0]_n = [kd]_n = [ka]_n[x]_n$ com $[ka]_n \neq [0]_n$.