

Social network analytics

Bart Baesens
Professor Data Science at KU Leuven

Nodes (vertices)

- customers
- companies
- products
- credit cards
- accounts
- web pages

Edges

Different kind of relationships, e.g.
 money transfer, call, friendship,
 transmission of a disease, reference

Edges

- Different kind of relationships, e.g.
 money transfer, call, friendship,
 transmission of a disease, reference
- Weighted based on e.g. interaction frequency, importance of information exchange, intimacy, emotional intensity

Edges

- Different kind of relationships, e.g.
 money transfer, call, friendship,
 transmission of a disease, reference
- Weighted based on e.g. interaction frequency, importance of information exchange, intimacy, emotional intensity
- Directed, e.g. incoming or ougoing

Sociogram

Sociogram

Connectivity Matrix

	Α	В	C	D
Α	0	1	0	1
В	1	0	0	1
C	0	0	0	1
D	1	1	1	0

Sociogram

Connectivity Matrix

Adjaceny List

	Α	В	С	D
Α	0	1	0	1
В	1	0	0	1
С	0	0	0	1
D	1	1	1	0

Sociogram

Connectivity Matrix

Adjaceny List

	Α	В	С	D
Α	0	3	0	1
В	3	0	0	8
С	0	0	0	5
D	1	8	5	0

Towards a network

• From a transactional data source ...

```
> print(transactions)
   originator beneficiary amount time benef country payment channel
                              102 22:47
                     ID16
                                                   GBR
                                                               CHAN 04
         ID14
                                                               CHAN 02
         ID14
                     ID15
                              125 20:21
                                                   USA
                                                               CHAN 04
         ID02
                     ID01
                             1067 10:45
                                                   CAN
                                                               CHAN 02
         ID05
                     ID06
                               59 15:40
                                                  USA
         ID05
                                                               CHAN 02
                     ID07
                             99 14:41
                                                   USA
15
                             145 18:23
         ID08
                                                               CHAN 01
                     ID09
                                                   USA
16
         ID03
                             1039 21:20
                                                               CHAN 02
                     ID04
                                                   USA
```

• ... towards a network

```
> library(igraph)
> network <- graph_from_data_frame(transactions, directed = FALSE)</pre>
```

Plotting a network

> plot(network)

A network's edges and nodes

Edges

```
> E(network)
+ 16/16 edges from 297af3c (vertex names):
[1] ID02--ID01 ID11--ID04 ID04--ID01 ID04--ID03 ID03--ID01 ID08--ID09
[7] ID14--ID15 ID03--ID14 ID05--ID06 ID11--ID12 ID02--ID05 ID11--ID13
[13] ID02--ID08 ID14--ID16 ID08--ID10 ID05--ID07
```

Vertices (nodes)

```
> V(network)
+ 16/16 vertices, named, from 297af3c:
  [1] ID02 ID11 ID04 ID03 ID08 ID14 ID05 ID01 ID09 ID15 ID06 ID12 ID13 ID16
[15] ID10 ID07
> V(network)$name
  [1] "ID02" "ID11" "ID04" "ID03" "ID08" "ID14" "ID05" "ID01" "ID09" "ID15"
[11] "ID06" "ID12" "ID13" "ID16" "ID10" "ID07"
```


Overlapping edges

```
> plot(net)
> E(net)$width <- count.multiple(net)
> edge_attr(net)
$width
[1] 7 7 7 7 7 7 7 1 1 1 4 4 4 4 1 1
```


Overlapping edges

```
> E(net)$curved <- FALSE
```

> plot(net)

Let's practice!

Fraud and social network analysis

Bart Baesens
Professor Data Science at KU Leuven

Is fraud a social phenomenom?

- Intuition: *relationships* between people
- Are there effects indicating that fraud is a social phenomenon?

Is fraud a social phenomenom?

- Fraudsters tend to cluster together:
 - are attending the same events/activities
 - are involved in the same crimes
 - use the same resources
 - are sometimes one and the same person (identity theft)

Homophily

Homophily in social networks (from sociology)

People have a strong tendency to associate with other whom they perceive as being similar to themselves in some way.

Homophily in fraud networks

Fraudsters are more likely to be connected to other fraudsters, and legitimate people are more likely to be connected to other legitimate people.

Homophily - social security fraud

Does the network contain statistically significant patterns of homophily?

```
> assortativity_nominal(network, types = V(network)$isFraud, directed = FALSE)
```


Identity theft

Before: person calls his/her frequent contacts.

Identity theft

Before: person calls his/her frequent contacts.

After: person calls new contacts which *coincidentally* overlap with another persons contacts.

Money mules

- Money mule = person who transfers money acquired illegally (e.g. stolen)
- Beneficiary of fraudulent transaction
- Transfers stolen money on behalf of other (scam operator)

Add attributes to nodes

```
> V(network)$name
 [1] "ID02" "ID11" "ID04" "ID03" "ID08" "ID14" "ID05" "ID01" "ID09" "ID15"
[11] "ID06" "ID12" "ID13" "ID16" "ID10" "ID07"
> print(list money mules)
[1] "ID01" "ID02" "ID03" "ID04"
> V(network)$isMoneyMule <- ifelse(V(network)$name %in% list money mules,
                                   TRUE, FALSE)
> V(network)$color <- ifelse(V(network)$isMoneyMule,
                             "darkorange", "lightblue")
> vertex attr(network)
$name
 [1] "ID02" "ID11" "ID04" "ID03" "ID08" ... "ID16" "ID10" "ID07"
$isMoneyMule
     TRUE FALSE TRUE TRUE FALSE ... FALSE FALSE
$color
 [1] "darkorange" "lightblue" "darkorange" ... "lightblue" "lightblue"
```


Network with highlighted money mules

> plot(network)

Let's practice!

Social network based inference

Tim Verdonck
Professor Data Science at KU Leuven

Social network based inference

Goal

Predict the behavior of a node based on the behavior of other nodes

Social network based inference

Challenges

- Data are not independent
 - Behavior of one node might influence behavior of other nodes
 - Correlated behavior between nodes
- Collective inference: inferences about nodes can affect each other

Non-relational vs relational

Non-relational model

- Only uses local information
- Traditional methods: logistic regression, decision trees

Relational model

- Makes use of links in the network
- Relational neighbor classifier

Relational neighbor classifier

Assumptions

- Homophily: connected nodes have a propensity to belong to the same class ("guilt by association")
- Some class labels are known

Relational neighbor classifier

Probability of fraud

$$P(F|?) = rac{1+1}{1+1+1+1+1} = rac{2}{5} = 40\%$$

Relational neighbor classifier with weights

Probability of fraud

$$P(F|?) = rac{1+2}{3+1+1+2+1} = rac{3}{8} = 37.5\%$$

Relational neighbor classifier

```
# Nodes are labeled as 1 (fraud), 0 (not fraud), or NA (unknown)
> vertex attr(network)
$name
[1] "?" "B" "C" "D" "E" "A"
$isFraud
[1] NA 1 0 1 0 0
# The edges have a weight
> edge attr(network)
$weight
[1] 2 3 1 1 1
# Create subgraph containing node "?" and all fraudulent nodes
> subnetwork <- subgraph(network, v = c("?", "B", "D"))
# strength(): sum up the edge weights of the adjacent edges for node "?"
> prob fraud <- strength(subnetwork, v = "?") / strength(network, v = "?")
> prob fraud
[1] 0.375
```


Let's practice!

Social network metrics

Tim Verdonck
Professor Data Science at KU Leuven

Geodesic

Shortest path between nodes, e.g. between A and I

```
> shortest_paths(network, from = "A", to = "I")
[1] A C G I
```


Number of edges

> degree(network)

A

2

Number of edges

> degree (network)

A B 2 2

Number of edges

```
> degree(network)

A B C
2 2 1
```


Number of edges

```
> degree(network)

A B C D
2 2 1 3
```

If Network has N nodes, then normalizing means dividing by N-1

Closeness	Normalized Closeness


```
> closeness(net)

A
0.25
```


	Closeness	Normalized Closeness
Α	$(1+1+2)^{-1}=0.25$	


```
> closeness(net)

A B
0.25 0.25
```


	Closeness	Normalized Closeness
Α	$(1+1+2)^{-1}=0.25$	
В	$(1+1+2)^{-1}=0.25$	

```
> closeness(net)

A B C
0.25 0.25 0.20
```


	Closeness	Normalized Closeness
Α	$(1+1+2)^{-1}=0.25$	
В	$(1+1+2)^{-1}=0.25$	
С	$(1+2+2)^{-1}=0.20$	


```
> closeness(net)

A B C D
0.25 0.25 0.20 0.33
```


	Closeness	Normalized Closeness
Α	$(1+1+2)^{-1}=0.25$	
В	$(1+1+2)^{-1}=0.25$	
С	$(1+2+2)^{-1}=0.20$	
D	$(1+1+1)^{-1}=0.33$	

```
> closeness(net)

A B C D
0.25 0.25 0.20 0.33

> closeness(net, normalized = TRUE)

A B C D
0.75 0.75 0.60 1.00
```


	Closeness	Normalized Closeness
Α	$(1+1+2)^{-1}=0.25$	$((1 + 1 + 2) / 3)^{-1} = 0.75$
В	$(1+1+2)^{-1}=0.25$	$((1+1+2)/3)^{-1}=0.75$
С	$(1+2+2)^{-1}=0.20$	$((1 + 2 + 2) / 3)^{-1} = 0.60$
D	$(1+1+1)^{-1}=0.33$	$((1 + 1 + 1) / 3)^{-1} = 1.00$

Number of times that a node or edge occurs in the geodesics of the network

Number of times that a node or edge occurs in the geodesics of the network


```
> betweenness(network)
```

A

0 0

Number of times that a node or edge occurs in the geodesics of the network

> betweenness(network)

A B E

0 3 0

Number of times that a node or edge occurs in the geodesics of the network

> betweenness(network)

Number of times that a node or edge occurs in the geodesics of the network


```
> betweenness(network)

A B C D E
0 3 4 3 0

> betweenness(network, normalized = TRUE)

A B C D E
0.0 0.6 0.8 0.6 0.0
```


Featurization

	Payment channel	 Amount	Freq_auth	 Rec_auth	Fraud degree	Legit degree	Closeness	 Betweenness	Fraud
1	Mobile	102	3	0.02	1	4	2.73	13	No
2	ATM	125	1	0.59	0	5	2.32	29	No
3	Web	1067	0	0.86	3	2	3.05	63	No
n	Mobile	1039	2	0.12	0	3	1.89	31	No

Let's practice!