Confidence Interval

- The confidence level, γ , represents how confident we are the interval will contain the population parameter (population proportion or population mean).
- To get z^* , find z^* such that $P(|Z| < z^*) = \gamma$. To do that, first get percentile, ℓ , from confidence level (γ) :

$$\ell = \frac{\gamma + 1}{2}$$

then, use the z-table to find z^* such that $P(Z < z^*) = \ell$.

Proportion

The population proportion, p, is estimated with an interval (to indicate uncertainty) based on a sample proportion, \hat{p} .

• Bounds:

$$\hat{\rho} \pm z^{\star} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

- Necessary sample size for a given margin of error:
 - If \hat{p} is known:

$$n = \hat{\rho}(1 - \hat{\rho}) \left(\frac{z^{\star}}{ME}\right)^{2}$$

- If \hat{p} is unknown, assume it is 0.5 to be conservative

$$n = \frac{1}{4} \left(\frac{z^{\star}}{ME} \right)^2$$

Mean

The population mean, μ , is estimated with an interval (to indicate uncertainty) based on a sample mean, \bar{x} .

- Bounds:
 - If σ is known:

$$\bar{x} \pm z^{\star} \cdot \frac{\sigma}{\sqrt{n}}$$

- If σ is unknown, use the sample standard deviation (and t^*). Remember, df = n - 1. To get t^* , find t^* such that $P(|T| < t^*) = \gamma$ and df = n - 1.

$$\bar{x} \pm t^* \cdot \frac{s}{\sqrt{n}}$$

• Necessary sample size for a given margin of error:

$$n = \left(\frac{z^*\sigma}{ME}\right)^2$$

Hypothesis Testing (Single-Sample)

 H_0 = null hypothesis

 H_A = alternative hypothesis

p-value = probability of getting sample at least as extreme as observed sample, **given** H_0

 α = significance level = chance of type II error given H_0

- Calculate the *p*-value.
 - "at least as extreme" can mean "as large or larger", "as small or smaller", or "as far from expected in either direction".
- If *p*-value is small enough, we reject the null hypothesis. (This logic is similar to *reductio ad absurdum* or proof by contradiction.)

If p-value $< \alpha$ then reject H_0

If p-value $\geq \alpha$ then do not reject H_0

Single-sample proportion testing

Necessary conditions: $\hat{p}n \ge 10$ and $(1 - \hat{p})n \ge 10$.

$$z_0 = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Right tail (one tail)

- H_0 claims $p = p_0$
- H_A claims $p > p_0$
- *p*-value = $P(Z > z_0)$

Left tail (one tail)

- H_0 claims $p = p_0$
- H_A claims $p < p_0$
- p-value = $P(Z < z_0)$

Two tail

- H_0 claims $p = p_0$
- H_A claims $p \neq p_0$
- p-value = $P(|Z| > |z_0|)$

Single-sample mean testing, σ known

$$z_0 = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

Right tail (one tail)

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu > \mu_0$
- p-value = $P(Z > z_0)$

Left tail (one tail)

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu < \mu_0$
- *p*-value = $P(Z < z_0)$

Two tail

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu \neq \mu_0$
- p-value = $P(|Z| > |z_0|)$

Single-sample mean testing, σ unknown

$$df = n - 1 \qquad t_0 = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

Right tail (one tail)

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu > \mu_0$
- *p*-value = $P(T > t_0)$

Left tail (one tail)

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu < \mu_0$
- p-value = $P(T < t_0)$

Two tail

- H_0 claims $\mu = \mu_0$
- H_A claims $\mu \neq \mu_0$
- *p*-value = $P(|T| > |t_0|)$