

Computer Vision

Exercise Session 9–Shape from Silhouettes

Exercise 9 – Shape from Silhouettes

Exercise 9

- Three main tasks:
 - Silhouette extraction
 - Find good threshold
 - Define volume of interest
 - Guess and check
 - Compute occupancy score for each voxel
 - Write code for this

Modify provided code

Silhouette Extraction

Volume of Interest

- Find bounding box
- First get a rough bounding box
 - Refine later once everything is working
- Make sure your bounding box includes the whole statue
 - Provided code projects volume corners into images

Bounding Box

Projected volume corners

Compute Occupancy Score

- For each voxel
 - Project the voxel center into each image
 - Use provided volume-to-world transformation
 - Add 1 if projection is within silhouette region
 - Note that z is up, x, y are parallel to the turn table surface
- Start with a 10x10x20 voxel grid
- Once everything is working increase resolution, at least 64x64x128

3D iso-surface

Provided code generates a 3D iso-surface from the volume

1 image

4 images

18 images

3D iso-surface

Hand-in

- Report should include:
 - All parameters used i.e., silhouette threshold, bounding box and volume resolution
 - One or two silhouette images
 - Screenshot of the 3D model
 - Your description of the method and ideas of how to improve it
- Source code
- 3D model saved as *.fig file

Hand-in

By 3:00pm on Thursday 6th December 2018 On Moodle

