

# Dr. Gregory J. Mazzaro Spring 2015

# ELEC 318 – Electromagnetic Fields

Lecture 4(x)

Exam #2 Discussion



1. A current density is equal to  $8R\cos\phi \hat{\mathbf{R}} - 10R^2\sin\theta \hat{\boldsymbol{\phi}} + 12R^3\sin\phi \hat{\boldsymbol{\theta}} \pmod{mA/m^2}$ . Determine the current crossing through the surface given by R = 5 m,  $0 \le \theta \le 60^{\circ}$ ,  $0 \le \phi \le 30^{\circ}$ .

### **Example: Current Density**



If  $J = z \frac{25}{r}$  (mA/mm<sup>2</sup>) inside a wire centered on the z axis, find the current I flowing through the wire if its radius is 5 mm.

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{S} \qquad d\mathbf{S} = \hat{\mathbf{z}} \ r \ d\phi \ dr$$



$$I = \int_{\rho=0}^{\rho=5} \int_{\phi=0}^{\phi=2\pi} \frac{25}{r} \,\hat{\mathbf{z}} \cdot \hat{\mathbf{z}} \, r \, d\phi \, dr$$
$$= 25 \int_{r=0}^{r=5} \int_{\phi=0}^{\phi=2\pi} d\phi \, dr$$
$$= 25 \cdot 2\pi \cdot 5 = 250\pi = 785.4 \,\text{mA}$$

Lecture 4(g) Slide #10,11



1. A current density is equal to  $8R\cos\phi \hat{\mathbf{R}} - 10R^2\sin\theta \hat{\boldsymbol{\phi}} + 12R^3\sin\phi \hat{\boldsymbol{\theta}} \pmod{\mathrm{mA/m}^2}$ . Determine the current crossing through the surface given by  $R = 5 \, \mathrm{m}$ ,  $0 \le \theta \le 60^{\circ}$ ,  $0 \le \phi \le 30^{\circ}$ .

### Review packet #2 – Problem #3

Given the current density  $\frac{10}{r}\sin\phi\,\hat{\mathbf{r}}\,\frac{A}{m^2}$ , determine the current flowing through the surface  $r=2,\,0\leq\phi\leq\pi,\,0< z<5\,\mathrm{m}$ .



1. A current density is equal to  $8R\cos\phi \hat{R} - 10R^2\sin\theta \hat{\phi} + 12R^3\sin\phi \hat{\theta} \pmod{mA/m^2}$ . Determine the current crossing through the surface given by R = 5 m,  $0 \le \theta \le 60^{\circ}$ ,  $0 \le \phi \le 30^{\circ}$ .

### Homework #4, Problem #1

- 1. A current density is equal to  $3R^2 \cos\theta \hat{\mathbf{R}} R^2 \sin\theta \hat{\mathbf{\theta}} \left(A/m^2\right)$ . Determine...
  - (a) the current crossing the surface defined by  $\theta = 30^{\circ}$ ,  $0 \le \phi \le 2\pi$ ,  $0 \le R \le 2$  m, and
  - (b) the current through the surface given by R = 2 m,  $0 \le \theta \le 30^{\circ}$ ,  $0 \le \phi \le 2\pi$ .



**2.** A cylindrical-wedge resistor is drawn in the figure.

Its ends are capped by thin metal plates at radii a = 2 cm and b = 4 cm.

The conductivity of the material between the plates is  $\sigma = 1.1 \times 10^6$  S/m.

The height of the resistor is h = 6 cm and the angle of the wedge is  $\phi_0 = \pi/6$ .

Determine the resistance of this structure from radius a to radius b (from the front to the back, in the figure).

# Consider a material of conductivity $\sigma$ , in the shape of a truncated cone of height h, and radii a and b at the ends. Determine the electrical resistance from one end to the other. $R = \frac{\int_{L} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{S}} \qquad R = \frac{\int_{L} \frac{\mathbf{J}}{\sigma} \cdot d\mathbf{l}}{I}$ $\mathbf{J} = \frac{I}{\pi r^{2}} \hat{\mathbf{z}}$ $r = \frac{(a-b)}{h} z + b \qquad d\mathbf{l} = \hat{\mathbf{z}} dz$ $R = \frac{1}{\sigma \cdot I} \int_{0}^{h} \frac{I}{\pi r^{2}} \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} dz$ $= \frac{1}{\pi \sigma} \int_{0}^{h} \frac{1}{r^{2}} dz = \frac{1}{\pi \sigma} \int_{0}^{h} \left\{ \frac{(a-b)}{h} z + b \right\}^{-2} dz = \frac{1}{\pi \sigma} \frac{h}{ab}$



Lecture 4(c) Slide #10,11



**2.** A cylindrical-wedge resistor is drawn in the figure.

Its ends are capped by thin metal plates at radii a = 2 cm and b = 4 cm.

The conductivity of the material between the plates is  $\sigma = 1.1 \times 10^6$  S/m.

The height of the resistor is h = 6 cm and the angle of the wedge is  $\phi_0 = \pi/6$ .

Determine the resistance of this structure from radius a to radius b (from the front to the back, in the figure).

### **Example: Resistance, Coaxial**



Determine the total resistance between the inner conductor at radius a and the outer conductor at radius b.

The length of the structure is L and the conductivity of the material between radius a and radius b is  $\sigma$ .

$$R = \frac{V}{I} = \frac{\int_{L} \mathbf{E} \cdot d\mathbf{l}}{\int_{S} \sigma \mathbf{E} \cdot d\mathbf{S}} = \frac{\int_{L} \mathbf{E} \cdot d\mathbf{l}}{I}$$

$$\mathbf{J} = \frac{I}{A}\hat{\mathbf{r}} = \frac{I}{2\pi r L}\hat{\mathbf{r}} \implies \mathbf{E} = \frac{I}{2\pi \sigma r L}\hat{\mathbf{r}}$$



$$\int_{L} \mathbf{E} \cdot d\mathbf{l} = \int_{r=a}^{r=b} \left( \frac{I}{2\pi \sigma r L} \hat{\mathbf{r}} \right) \cdot \hat{\mathbf{r}} dr$$

$$= \frac{I}{2\pi \sigma L} \int_{r=a}^{r=b} \frac{1}{r} dr = \frac{I \cdot \ln(b/a)}{2\pi \sigma L}$$

$$R = \frac{1}{I} \frac{I \cdot \ln(b/a)}{2\pi \sigma L} = \frac{\ln(b/a)}{2\pi \sigma L}$$

Lecture 4(g) Slide #4,5



-5



**2.** A cylindrical-wedge resistor is drawn in the figure.

Its ends are capped by thin metal plates at radii a = 2 cm and b = 4 cm.

The conductivity of the material between the plates is  $\sigma = 1.1 \times 10^6$  S/m.

The height of the resistor is h = 6 cm and the angle of the wedge is  $\phi_0 = \pi/6$ .

Determine the resistance of this structure from radius a to radius b (from the front to the back, in the figure).



### Homework #4, Problem #3

3. The block illustrated (at right), with dimensions in millimeters, is made from an aluminum alloy with a conductivity of 3.8 x 10<sup>7</sup> S/m. Compute the resistance that would be measured between the top and bottom surfaces of the block.





**2.** A cylindrical-wedge resistor is drawn in the figure.

Its ends are capped by thin metal plates at radii a = 2 cm and b = 4 cm.

The conductivity of the material between the plates is  $\sigma = 1.1 \times 10^6$  S/m.

The height of the resistor is h = 6 cm and the angle of the wedge is  $\phi_0 = \pi/6$ .

Determine the resistance of this structure from radius a to radius b (from the front to the back, in the figure).

### Review packet #2 – Problem #11

Determine the resistance of the bar in the figure, between the vertical ends located at  $\phi=0$  and  $\phi=\pi/2$ , given a uniform conductivity  $\sigma$ .





**2.** A cylindrical-wedge resistor is drawn in the figure.

Its ends are capped by thin metal plates at radii a = 2 cm and b = 4 cm.

The conductivity of the material between the plates is  $\sigma = 1.1 \times 10^6$  S/m.

The height of the resistor is h = 6 cm and the angle of the wedge is  $\phi_0 = \pi/6$ .

Determine the resistance of this structure from radius a to radius b (from the front to the back, in the figure).

### Review packet #2 – Problem #39

A cylindrical-wedge capacitor is drawn in the figure. Its two plates are at r=a and r=b. Its height is h, and the angle of the wedge is  $\phi_0$ .

(a) With the outer plate at a fixed potential  $V_0$  and the inner plate grounded, determine an expression for the electric field intensity everywhere between the plates.

Neglect fringing.







**3.** A spherical capacitor has two concentric spherical conductors: an inner conductor at radius a = 4 m and an outer conductor at radius b = 6 m.

An open-cut view of the capacitor is shown in the figure. (The actual capacitor is closed all the way around.)

The inner conductor is held at a potential  $V_a = 1 \text{ V}$  and the outer conductor is held at a potential  $V_b = 3 \text{ V}$ .

The dielectric constant of the material inside the capacitor is  $\varepsilon_r = 5$ . There is no charge in the dielectric.



Write a complete expression for the potential everywhere between the two conductors.



Lecture 4(e) Slide #14,15



**3.** A spherical capacitor has two concentric spherical conductors: an inner conductor at radius a = 4 m and an outer conductor at radius b = 6 m.

An open-cut view of the capacitor is shown in the figure. (The actual capacitor is closed all the way around.)

The inner conductor is held at a potential  $V_a = 1 \text{ V}$  and the outer conductor is held at a potential  $V_b = 3 \text{ V}$ .

The dielectric constant of the material inside the capacitor is  $\varepsilon_r = 5$ . There is no charge in the dielectric.



Write a complete expression for the potential everywhere between the two conductors.



Lecture 4(f) Slide #11,12



**3.** A spherical capacitor has two concentric spherical conductors: an inner conductor at radius a = 4 m and an outer conductor at radius b = 6 m.

An open-cut view of the capacitor is shown in the figure. (The actual capacitor is closed all the way around.)

The inner conductor is held at a potential  $V_a = 1 \text{ V}$  and the outer conductor is held at a potential  $V_b = 3 \text{ V}$ .

The dielectric constant of the material inside the capacitor is  $\varepsilon_r = 5$ . There is no charge in the dielectric.



Write a complete expression for the potential everywhere between the two conductors.

### Review packet #2 – Problem #29

A certain material occupies the space between two conducting slabs located at  $y=\pm 2$  cm. When heated, the material emits electrons such that the volume charge density is equal to  $50 \left(1-y^2\right) \, \mu C/m^3$ . If the slabs are both held at 30 kV, find the potential everywhere within the slabs. Take  $\varepsilon=3\,\varepsilon_0$ .



**3.** A spherical capacitor has two concentric spherical conductors: an inner conductor at radius a = 4 m and an outer conductor at radius b = 6 m.

An open-cut view of the capacitor is shown in the figure. (The actual capacitor is closed all the way around.)

The inner conductor is held at a potential  $V_a = 1 \text{ V}$  and the outer conductor is held at a potential  $V_b = 3 \text{ V}$ .

The dielectric constant of the material inside the capacitor is  $\varepsilon_r = 5$ . There is no charge in the dielectric.



Write a complete expression for the potential everywhere between the two conductors.

### Homework #5, Problem #1

1. An infinitely-long coaxial cylindrical structure has an inner conductor of radius a=2 mm and an outer conductor of radius b=4.5 mm. The space between the conductor is filled with a volume charge density of  $\frac{10\varepsilon_0}{r}$   $\frac{C}{m^3}$  and a permittivity equal to that of free space. The inner conductor is grounded and the outer conductor is maintained at 40 V. Determine the potential everywhere in the space  $2 \le r \le 4.5$  mm.



**4.** The boundary between two regions of space is defined by 8x - 6z = 48 m.

The region including the origin is air, where the electric field intensity is 125  $\hat{x}$  – 75  $\hat{y}$  + 50  $\hat{z}$  V/m .

Determine the electric field intensity in the second region, where the permittivity is  $2\varepsilon_0$ . The boundary is charge-free.

### Homework #4, Problem #6

6. The boundary between two regions of space is defined by 4x + 3y = 10 m. The region including the origin is air, where the flux density is  $2 \hat{x} - 4 \hat{y} + 6.5 \hat{z}$  nC/m<sup>2</sup>. Determine the electric flux density in the second region, where the relative dielectric constant is 2.5. (The boundary is charge-free.)



 $\bullet P(x, y, z)$ 

 $\mathbf{E}(x, y=0) = \frac{q}{4\pi\varepsilon_0} \left\{ \frac{1}{(z-d)^2} - \frac{1}{(z+d)^2} \right\} \hat{\mathbf{z}}$ 

- 5. An infinite line carrying a charge density of +913 pC/m is located at x = 3, y = 2 m. Another infinite line carrying a charge density of -913 pC/m is located at x = -3, y = 2 m. A grounded (perfect) conductor occupies  $y \le 0$ . Assume  $\varepsilon = \varepsilon_0$ .
  - (a) Determine the electric field intensity at the point (x = 0 m, y = 2 m, z = 4 m). Express your answer in V/m, in the appropriate direction(s).

### (a) Determine the electric field intensity at a point P(x, y, z) in the presence of a charge q at (0, 0, d) and above an infinitely-long perfectlyconducting ground plane in the x-y plane. $+q \bullet (0, 0, +d)$ (b) What is the direction of **E** as *P* approaches z = 0? (c) What is the direction of $\mathbf{E}$ if P is on the +z axis? $\mathbf{E} = \sum_{k=1}^{N} \frac{q_k}{4\pi\varepsilon_0} \cdot \frac{\mathbf{R} - \mathbf{R}'_k}{|\mathbf{R} - \mathbf{R}'_k|^3}$ $-q \stackrel{.}{\bullet} (0,0,-d)$ $= \frac{+q}{4\pi\varepsilon_0} \frac{\mathbf{R} - \mathbf{R}_1'}{\left|\mathbf{R} - \mathbf{R}_1'\right|^3} + \frac{-q}{4\pi\varepsilon_0} \frac{\mathbf{R} - \mathbf{R}_2'}{\left|\mathbf{R} - \mathbf{R}_2'\right|^3}$ $= \frac{q}{4\pi\varepsilon_0} \left\{ \frac{\mathbf{R} - \mathbf{R}_1'}{|\mathbf{R} - \mathbf{R}_1'|^3} - \frac{\mathbf{R} - \mathbf{R}_2'}{|\mathbf{R} - \mathbf{R}_2'|^3} \right\} = \frac{q}{4\pi\varepsilon_0} \left\{ \frac{x \,\hat{\mathbf{x}} + y \,\hat{\mathbf{y}} + (z - d) \,\hat{\mathbf{z}}}{\left\{x^2 + y^2 + (z - d)^2\right\}^{3/2}} - \frac{x \,\hat{\mathbf{x}} + y \,\hat{\mathbf{y}} + (z + d) \,\hat{\mathbf{z}}}{\left\{x^2 + y^2 + (z - d)^2\right\}^{3/2}} \right\}$

**Example: E-Field, Image Charge** 

Lecture 4(f) Slide #5.6



- 5. An infinite line carrying a charge density of +913 pC/m is located at x = 3, y = 2 m.
  Another infinite line carrying a charge density of -913 pC/m is located at x = -3, y = 2 m.
  A grounded (perfect) conductor occupies y ≤ 0. Assume ε = ε<sub>0</sub>.
  - (a) Determine the electric field intensity at the point (x = 0 m, y = 2 m, z = 4 m). Express your answer in V/m, in the appropriate direction(s).

# The space $x \le 0$ , $y \le 0$ is occupied by a grounded conductor. (In other words, Quadrant I is the only quadrant that is not grounded.) A charge of 100 nC is placed at (3 m, 4 m, 0). At the point (3 m, 5 m, 0), determine (a) the absolute electric potential and (b) the electric field intensity. Assume $\varepsilon = \varepsilon_0$ . $V = \sum_{k=1}^{N} \frac{q_k}{4\pi\varepsilon_0} \frac{q_k}{|\mathbf{R} - \mathbf{R}_k'|} = \frac{q}{4\pi\varepsilon_0} \left\{ \frac{1}{|\mathbf{R} - \mathbf{R}_1'|} - \frac{1}{|\mathbf{R} - \mathbf{R}_2'|} + \frac{1}{|\mathbf{R} - \mathbf{R}_2'|} - \frac{1}{|\mathbf{R} - \mathbf{R}_2'|} \right\}$ $= \frac{100 \cdot 10^{-9}}{4\pi (8.854 \cdot 10^{-12})} \left\{ \frac{1}{1} - \frac{1}{\sqrt{37}} + \frac{1}{\sqrt{117}} - \frac{1}{9} \right\} = \frac{734 \text{ V}}{|\mathbf{R} - \mathbf{R}_2'|^3} - \frac{\mathbf{R} - \mathbf{R}_2'}{|\mathbf{R} - \mathbf{R}_2'|^3} - \frac{\mathbf{R} - \mathbf{R}_2'}{|\mathbf{R} - \mathbf{R}_2'|^3} \right\}$ $= \frac{100 \cdot 10^{-9}}{4\pi (8.854 \cdot 10^{-12})} \left\{ \frac{(0,1,0)}{1^3} - \frac{(6,1,0)}{(37)^{3/2}} + \frac{(6,9,0)}{(117)^{3/2}} - \frac{(0,9,0)}{(9)^{3/2}} \right\} = \frac{-20 \hat{\mathbf{x}} + 890 \hat{\mathbf{y}} \text{ V/m}}{1}$

Lecture 4(g) Slide #12,13



- 5. An infinite line carrying a charge density of +913 pC/m is located at x = 3, y = 2 m.
  Another infinite line carrying a charge density of −913 pC/m is located at x = −3, y = 2 m.
  A grounded (perfect) conductor occupies y ≤ 0. Assume ε = ε<sub>0</sub>.
  - (a) Determine the electric field intensity at the point (x = 0 m, y = 2 m, z = 4 m). Express your answer in V/m, in the appropriate direction(s).

### Homework #5, Problem #5

5. In free space, infinite planes y = 4 m and y = 8 m carry charges of 20 nC/m<sup>2</sup> and 30 nC/m<sup>2</sup>, respectively. If plane y = 2 m is grounded, calculate the electric field intensity at P(-4 m, 6 m, 2 m).



- 5. An infinite line carrying a charge density of +913 pC/m is located at x = 3, y = 2 m.
  Another infinite line carrying a charge density of -913 pC/m is located at x = -3, y = 2 m.
  A grounded (perfect) conductor occupies y ≤ 0. Assume ε = ε<sub>0</sub>.
  - (a) Determine the electric field intensity at the point (x = 0 m, y = 2 m, z = 4 m). Express your answer in V/m, in the appropriate direction(s).

### **Example: Linear Superposition**



Three infinitely-long lines of charge, each with density 445 pC/m, are parallel to the z axis.

One is on the z-axis (x = 0, y = 0). The second is at x = 0, y = -3 m. The third is at x = 0, y = 3 m.

Determine E at P(x = 4 m, y = 3 m, z = 6 m), in free space.

Prior result: For a single line charge along the z axis...  $\mathbf{E} = \frac{\rho_l}{2\pi\varepsilon_r}$ 



$$\mathbf{E} = \mathbf{E}_{y\to 3}^{\rho_1 \text{ at}} + \mathbf{E}_{y\to 0}^{\rho_1 \text{ at}} + \mathbf{E}_{y\to 3}^{\rho_1 \text{ at}}$$

$$\rho_1 = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{split} &=\frac{\rho_{i}}{2\pi\varepsilon_{0}}\left\{\begin{array}{l} \frac{1}{r_{i}}\hat{\mathbf{x}}+\frac{1}{r_{2}}\left[\hat{\mathbf{x}}\cos\left(\phi_{i}\right)+\hat{\mathbf{y}}\sin\left(\phi_{i}\right)\right]+\frac{1}{\rho_{3}}\left[\hat{\mathbf{x}}\cos\left(\phi_{2}\right)+\hat{\mathbf{y}}\sin\left(\phi_{2}\right)\right]\right\}\\ &=\frac{\rho_{i}}{2\pi\varepsilon_{0}}\left\{\begin{array}{l} \frac{1}{4}\hat{\mathbf{x}}+\frac{1}{5}\left[\hat{\mathbf{x}}\left(\frac{4}{5}\right)+\hat{\mathbf{y}}\left(\frac{3}{5}\right)\right]+\frac{1}{\sqrt{52}}\left[\hat{\mathbf{x}}\left(\frac{4}{\sqrt{52}}\right)+\hat{\mathbf{y}}\left(\frac{6}{\sqrt{52}}\right)\right]\right\}\\ &=\frac{\rho_{i}}{2\pi\varepsilon_{0}}\left\{\begin{array}{l} \frac{1}{4}\hat{\mathbf{x}}+\left[\hat{\mathbf{x}}\left(\frac{4}{25}\right)+\hat{\mathbf{y}}\left(\frac{3}{25}\right)\right]+\left[\hat{\mathbf{x}}\left(\frac{4}{52}\right)+\hat{\mathbf{y}}\left(\frac{6}{52}\right)\right]\right.\right\} \end{split}$$

$$= \frac{445 \cdot 10^{-12}}{2\pi \left(8.854 \cdot 10^{-12}\right)} \left\{ 0.49 \hat{\mathbf{x}} + 0.24 \hat{\mathbf{y}} \right\} \approx \frac{3.9 \hat{\mathbf{x}} + 1.9 \hat{\mathbf{y}}}{m}$$



Lecture 4(d) Slide #15,16



- 5. An infinite line carrying a charge density of +913 pC/m is located at x = 3, y = 2 m.
  Another infinite line carrying a charge density of −913 pC/m is located at x = −3, y = 2 m.
  A grounded (perfect) conductor occupies y ≤ 0. Assume ε = ε<sub>0</sub>.
  - (a) Determine the electric field intensity at the point (x = 0 m, y = 2 m, z = 4 m). Express your answer in V/m, in the appropriate direction(s).

### Review packet #2 – Problem #50

An infinite line carrying a uniform charge density of 8.35 nC/m is located at y = 0, z = 2 m, above a grounded (perfect) conductor which occupies  $z \le 0$ .

- (a) Determine the electric field intensity at the point (x = 5 m, y = 3 m, z = 2 m). Express your answer in V/m, in the appropriate direction(s).
- (b) Determine the electric field intensity at the point (x = -5 m, y = 3 m, z = -2 m).



# Dr. Gregory J. Mazzaro Spring 2015

ELEC 318 – Electromagnetic Fields

Lecture 5(p)

Additional Examples from Chapter 5

# Magnetization & Classification



### **permeability**, $\mu$ (H/m)

$$\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$$

- -- a measure of how magnetized a material can become
- --  $\mu_r$  = permeability relative to that of free space,  $\mu_0$

$$\mathbf{B} = \mu \mathbf{H}$$

$$\mathbf{B} = \mu_{\mathrm{r}} \mu_{\mathrm{0}} \mathbf{H}$$

(dipole moments)





**hysteresis** (magnetic *memory*)

un-magnetized

vs. **magnetized** 



|                                                                        | Diamagnetism                                                   | Paramagnetism                                                                | Ferromagnetism                      |
|------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|
| Permanent magnetic dipole moment                                       | No                                                             | Yes, but weak                                                                | Yes, and strong                     |
| Direction of induced<br>magnetic field<br>(relative to external field) | Opposite                                                       | Same                                                                         | Hysteresis                          |
| Common substances                                                      | Bismuth, copper, diamond, gold, lead, mercury, silver, silicon | Aluminum, calcium,<br>chromium, magnesium,<br>niobium, platinum,<br>tungsten | Iron,<br>nickel,<br>cobalt          |
| Typical value of $\mu_c$                                               | ≈1                                                             | ≈1                                                                           | $ \mu_{\rm c} \gg 1$ and hysteretic |

# **Example: Magnetic Force, Charge**



A proton (1.6 x 10<sup>-19</sup> C) moving with a speed of 2 x 10<sup>6</sup> m/s through a magnetic field with flux density of 2.5 Wb/m<sup>2</sup> experiences a magnetic force of magnitude 0.4 pN. Calculate the angle between the magnetic field and the proton's velocity.

$$\mathbf{F} = q(\mathbf{u} \times \mathbf{B})$$

# Example: Magnetic Force, Closed Loop



The semicircular conductor in the figure lies in the x-y plane and carries a current I. The closed circuit is exposed to a uniform magnetic flux density  $B_0$  $\mathbf{y}$ . Determine the magnetic force on (a) the straight section of the wire and (b) the curved section.

$$\mathbf{F} = I \int_{L} d\mathbf{l} \times \mathbf{B}$$



$$\hat{\mathbf{r}} = \cos\phi \,\hat{\mathbf{x}} + \sin\phi \,\hat{\mathbf{y}} \qquad \hat{\mathbf{z}} = \hat{\mathbf{z}}$$

$$\hat{\boldsymbol{\phi}} = -\sin\phi \,\hat{\mathbf{x}} + \cos\phi \,\hat{\mathbf{y}}$$