Rapport de Projet : Du Capteur à l'Actionneur

Sommaire

- Rapport de Projet : Du Capteur à l'Actionneur
 - Sommaire
 - 1. Introduction
 - * 1.1 Objectif du projet
 - * 1.2 Modes de fonctionnement
 - * 1.3 Machine à état
 - * 1.4 Comportements supplémentaires
 - 2. Conception
 - * 2.1 Diagramme de classe
 - * 2.2 Diagrammes de séquence
 - · Diagramme de séquence principal
 - · Traitement des commandes utilisateur
 - · Mise à jour du système selon l'état
 - $\cdot\,\,$ Mode 1 Suivi de distance
 - · Mode 2 Consigne utilisateur
 - * 2.4 Brochage des différents éléments
 - · Brochage du capteur HC-SR04
 - · Brochage du servo-moteur
 - · Brochage des LEDs
 - · Brochage de la Communication série
 - * 2.4 Configuration des différents éléments
 - · Configuration du servo-moteur
 - · Configuration du capteur HC-SR04
 - · Configuration de la communication série
 - 3. Modules développés
 - * 3.1. Module HC-SR04
 - · Fonctionnalités principales
 - · Design patterns utilisés
 - * 3.2. Module Servo-moteur
 - · Fonctionnalités principales
 - · Détails techniques
 - * 3.3. Module UART
 - · Fonctionnalités principales
 - · Protocole de communication
 - * 3.4. Application principale
 - · Fonctionnalités principales
 - · Stratégie de conception
 - 4. Difficultés rencontrées et solutions
 - 5. Conclusion

1. Introduction

1.1 Objectif du projet

Ce projet vise à développer un système embarqué sur microcontrôleur STM32F4 permettant d'interfacer un capteur de distance à ultrasons (HC-SR04) avec un servo-moteur. L'objectif principal est de créer un système capable de réagir à l'environnement (mesure de distance) ou à des commandes utilisateur (via liaison série) pour positionner précisément un servo-moteur.

Le système met en œuvre différentes technologies et compétences en développement embarqué :

- Mesure de distance par ultrasons
- Génération de signaux PWM pour contrôler un servo-moteur
- Communication série formatée
- Gestion d'une machine à états
- Développement modulaire avec séparation des responsabilités

1.2 Modes de fonctionnement

Le système propose trois modes de fonctionnement distincts :

1. Mode IDLE (repos):

- Les LEDs sont éteintes
- Le servo-moteur est positionné au centre (position neutre)
- Le système attend une commande utilisateur

2. Mode 1 (asservissement par capteur):

- La LED bleue est allumée pour indiquer ce mode
- Le servo-moteur se positionne proportionnellement à la distance mesurée par le capteur HC-SR04
- Plage de mesure valide : $5 \ \text{à} \ 25 \ \text{cm}$
- Si la distance est hors de cette plage, le servo-moteur revient en position centrale

3. Mode 2 (contrôle par commande série) :

- La LED verte est allumée pour indiquer ce mode
- Le servo-moteur se positionne selon une valeur envoyée par l'utilisateur via UART
- Plage de valeurs acceptées : 1 à 12 (correspondant à différentes positions angulaires)

1.3 Machine à état

Le système est géré par une machine à états dont les transitions sont déclenchées par les commandes utilisateur. Voici le diagramme d'états correspondant :

Ce diagramme illustre :

Figure 1: Machine à états

- Les trois états principaux du système (IDLE, MODE1, MODE2)
- Les transitions entre états déclenchées par les commandes utilisateur
- Les comportements spécifiques à chaque état
- La gestion des cas particuliers comme les mesures hors plage

1.4 Comportements supplémentaires

En plus des modes de fonctionnement principaux, le système offre les caractéristiques suivantes :

• Protocole de communication série structuré :

- Les messages sont encapsulés entre délimiteurs '<' et '>'
- Écho des caractères reçus pour confirmer la réception
- Messages d'état et d'erreur formatés

• Gestion des erreurs :

- Détection des valeurs hors plage pour le capteur
- Vérification de la validité des commandes série
- Messages d'erreur explicites pour guider l'utilisateur

• Retour d'information :

- Affichage régulier de la distance mesurée en Mode 1
- Confirmation des commandes reçues
- Indication visuelle du mode actif par LEDs

2. Conception

2.1 Diagramme de classe

Le diagramme suivant illustre la structure du code et les relations entre les différents modules du système :

Ce diagramme met en évidence :

- La structure modulaire du système avec une séparation claire des responsabilités
- L'implémentation du pattern Singleton pour le capteur HC-SR04
- Les interfaces entre le contrôleur principal et les différents modules périphériques
- Les constantes et limitations définies pour chaque sous-système

2.2 Diagrammes de séquence

Les diagrammes de séquence suivants montrent les interactions entre les différents modules du système :

Figure 2: Diagramme de classe

Diagramme de séquence principal Le diagramme principal présente une vue d'ensemble des interactions du système avec des références vers les diagrammes détaillés :

Ce diagramme montre :

- La séquence d'initialisation
- La structure de la boucle principale
- Les références vers les diagrammes plus détaillés

Traitement des commandes utilisateur Ce diagramme détaille le processus de réception et de traitement des commandes utilisateur :

Il montre:

- La réception des commandes via l'interface UART
- L'analyse et l'interprétation des commandes
- Les différentes actions selon le type de commande reçue

Mise à jour du système selon l'état Ce diagramme illustre comment le système réagit en fonction de son état actuel :

Il montre:

- Les actions spécifiques pour chaque état (IDLE, MODE1, MODE2)
- Le traitement des mesures de distance en MODE1
- La gestion des positions du servo-moteur

Mode 1 - Suivi de distance Les diagrammes suivants présentent des scénarios complets d'utilisation du système :

Ce scénario montre :

- L'activation du Mode 1 par l'utilisateur
- La mesure continue de la distance
- L'ajustement du servo en fonction de la distance mesurée

Mode 2 - Consigne utilisateur Ce scénario montre :

- L'activation du Mode 2 par l'utilisateur
- L'envoi d'une valeur de position
- Le positionnement du servo selon la consigne reçue

2.4 Brochage des différents éléments

Brochage du capteur HC-SR04

Figure 3: Diagramme de séquence principal 7

Figure 4: Traitement des commandes utilisateur

Figure 5: Mise à jour du système selon l'état

Figure 6: Scénario: Mode 1

Figure 7: Scénario: Mode 2

Broche	Connexion	Description
VCC	Alimentation 5V	Alimentation du capteur
GND Trig	Masse PA8 (GPIO)	Référence de masse Signal de déclenchement de la mesure (sortie STM32)
Echo	PA9 (GPIO)	Signal de retour de l'écho (entrée STM32)

Brochage du servo-moteur

Broche	Connexion	Description
VCC	Alimentation 5V	Alimentation du servo
GND	Masse	Référence de masse
Signal	PC6 (TIM3_CH1)	Signal PWM pour le contrôle de position

Brochage des LEDs

LED	Broche	Mode associé	Signification
LED Bleue	PD15	MODE1	Mode capteur actif
LED Verte	PD12	MODE2	Mode commande série actif
LED	PD13	Indication	Mesure valide $(5-25 \text{ cm})$
Orange			
LED Rouge	PD14	Indication d'erreur	Mesure hors plage

Brochage de la Communication série

Broche	Connexion	Description
TX	PA2	Transmission de données
RX	PA3	Réception de données

2.4 Configuration des différents éléments

Configuration du servo-moteur

Paramètre	Valeur	Description
Fréquence PWM Position minimale Position centrale	-	Fréquence du signal de contrôle (période 20ms) Largeur d'impulsion pour 0° Largeur d'impulsion pour 90°

Paramètre	Valeur	Description
Position maximale	$2000~\mu s$	Largeur d'impulsion pour 180°
Résolution	$1~\mu s$	Résolution du positionnement

Configuration du capteur HC-SR04

Paramètre	Valeur	Description
Durée trigger Plage de	10 µs 5-25	Durée de l'impulsion de déclenchement Plage de distance valide pour l'application
mesure Timeout Timer utilisé Pull-down	cm 10 ms TIM1 Activé	Délai maximum d'attente pour l'écho Timer haute résolution pour la mesure temporelle Sur la broche Echo pour stabiliser le signal

Configuration de la communication série

Paramètre	Valeur	Description
Interface	USART2	Interface série utilisée
Vitesse	115200	Débit de transmission
	bauds	
Format de	8N1	8 bits de données, pas de parité, 1 bit de stop
trame		
Délimiteurs	`<`, `>`	Caractères d'encapsulation des messages
Timeout	1000 ms	Timeout pour les opérations de transmission
UART		
Taille buffer	256 octets	Taille des buffers de réception et transmission

3. Modules développés

3.1. Module HC-SR04

Le module HC-SR04 gère l'interfaçage avec le capteur ul trasonique pour mesurer la distance.

Fonctionnalités principales

- Initialisation des broches GPIO et du timer
- Génération d'impulsions précises de 10µs pour le trigger
- Mesure du temps d'écho avec une résolution microseconde
- Conversion du temps d'écho en distance (cm)
- Filtrage des mesures hors plage (5-25 cm)
- Mise à jour périodique des mesures en Mode 1

Design patterns utilisés

- Singleton : Une seule instance du capteur est créée et accessible via HC_SR04_get_instance()
- State: Le comportement du module change en fonction du mode de fonctionnement (actif en Mode 1)

3.2. Module Servo-moteur

Le module servo-moteur permet de contrôler la position angulaire d'un servo standard via un signal PWM.

Fonctionnalités principales

- Initialisation du timer PWM (TIM3)
- Positionnement précis du servo à une valeur spécifiée
- Conversion de distances (5-25 cm) en positions servo (1000-2000 μs)
- Conversion de valeurs utilisateur (1-12) en positions servo
- Position centrale par défaut (1500 µs, 90°)

Détails techniques

- Signal PWM généré à 50Hz (période de 20ms)
- Largeur d'impulsion variable entre 1ms (0°) et 2ms (180°)
- Position centrale à 1.5ms (90°)
- $\bullet~$ Résolution temporelle de $1\mu s$

3.3. Module UART

Le module UART gère la communication série avec l'utilisateur, offrant une interface formatée pour les commandes et les messages d'état.

Fonctionnalités principales

- Envoi de messages formatés avec délimiteurs
- Réception non-bloquante de commandes
- Écho des caractères reçus
- Gestion des dépassements de buffer
- Support pour les commandes textuelles et numériques

Protocole de communication

Type de			
message	Format	Exemple	Description
Commande	<commande></commande>	<mode1></mode1>	Change le mode de
mode			fonctionnement

Type de message	Format	Exemple	Description
Valeur servo	<valeur></valeur>	<8>	Positionne le servo en Mode 2
Information	<message></message>	<pre><distance: 15.32="" cm=""></distance:></pre>	Retour d'information
Erreur	<message d'erreur></message 	<pre><error: long="" message="" too=""></error:></pre>	Indication d'une erreur

Commandes reconnues:

• mode1 : Active le Mode 1 (suivi par capteur)

• mode2 : Active le Mode 2 (commande manuelle)

• quit : Retourne au mode IDLE

• 1 à 12 : Valeurs pour positionner le servo en Mode 2

3.4. Application principale

L'application principale orchestre tous les modules et implémente la machine à états qui gère le comportement du système.

Fonctionnalités principales

- Initialisation de tous les périphériques
- Boucle principale non-bloquante
- Traitement des commandes utilisateur
- Gestion des transitions entre états
- Mise à jour périodique de l'état du système

Stratégie de conception

- Architecture modulaire : Chaque module a une responsabilité claire et bien définie
- Machine à états : Gestion explicite des états et transitions pour simplifier la logique
- Gestion non-bloquante : Aucune fonction ne bloque l'exécution, permettant au système de réagir en temps réel
- Extensibilité : Facilité d'ajout de nouveaux modes ou comportements

4. Difficultés rencontrées et solutions

Problème Description		Solution mise en œuvre	
Précisio	nFluctuations	• Ajout d'un pull-down sur la broche	
des mesures	importantes dans les s mesures du capteur	Echo • Utilisation de TIM1 pour mesurer avec une résolution de 1µs •	
	HC-SR04, rendant le positionnement du servo instable	Implémentation de timeouts (10ms) • Filtrage des valeurs hors plage (5-25 cm)	
Communication mières		• Réception non-bloquante des	
série blo-	implémentations de la communication série	caractères • Gestion d'état pour reconstituer les commandes • Utilisation de	
quante	bloquaient l'exécution principale	délimiteurs '<' et '>' • Buffer statique pour conserver l'état entre appels	
Stabilite	é Servo instable lors de	• Limitation de la fréquence de mise à jour	
du	petits changements de	$(100 \mathrm{ms}) \bullet $ Filtrage des mesures aberrantes \bullet	
servo	distance	Position centrale par défaut en cas d'erreur	

5. Conclusion

Ce projet a permis de développer un système complet intégrant capteur et actionneur, avec une interface utilisateur série. Les principales réalisations sont :

- 1. Architecture modulaire : Le système est divisé en modules réutilisables avec des interfaces claires
- 2. Machine à états robuste : La gestion explicite des états simplifie la logique et rend le comportement prévisible
- 3. **Interface utilisateur intuitive** : Les commandes simples et le retour d'information constant facilitent l'utilisation
- 4. **Fiabilité** : La gestion des erreurs, les timeouts et les vérifications de plages assurent un fonctionnement robuste