Geometry and Space Groups

richard.cooper@chem.ox.ac.uk
ECACOMSIG school 2013

What will we learn to do?

- Convert crystal data to orthogonal coordinates
- Compute geometry in crystallographic coordinate systems

- Change coordinate systems (abc)
- Change coordinates (xyz)
- Change reflection indices (hkl / MTZ)

Libraries (e.g. cctbx)

```
<u>uc sym mat3</u> const & <u>metrical matrix</u> () const
                        Access to metrical matrix.
uc sym mat3 const & reciprocal metrical matrix () const
                        Access to reciprocal metrical matrix
     uc mat3 const & fractionalization matrix () const
                        Matrix for the conversion of cartesian to fractional coordinates.
     <u>uc mat3</u> const & <u>orthogonalization matrix</u> () const
                        Matrix for the conversion of fractional to cartesian coordinates.
             FloatType <u>distance</u> (<u>fractional</u>< FloatType > const &site_frac_1, <u>fractional</u><
                        FloatType > const &site frac 2) const
              uc mat3 matrix cart (sgtbx::rot mx const &rot mx) const
              unit_cell change basis (sgtbx::rot_mx const &c_inv_r) const
              unit cell change basis (sgtbx::change of basis op const &cb_op) const
                        Transformation (change-of-basis) of unit cell parameters.
```

Bibliography / Further reading

- International Tables Volume A: Space-group symmetry (IUCr)
- IUCr Teaching Pamphlet #22: Matrices, mappings, and crytsallographic symmetry, Hans Wondratschek (IUCr, 1997); iucr.org/education/pamphlets/22
- Fundamentals of Crystallography 3rd ed., edited by C. Giacovazzo (IUCr, 2006)
- Computing Methods in Crystallography, John Rollett (Pergamon Press, 1965)

Notation

Very generally:

x italic lower case a scalar

a bold lower case a vector

M bold upper case a matrix

Orthogonalization

COORDINATE SYSTEMS

Why orthogonalize?

- Compare two structures across a phase transition, or that have been published in different non-conventional settings.
- Relate macroscopic orthogonally described properties (e.g. elasticity, piezoelectricity, etc.) to the crystallographic coordinate system.
- Put part of a crystal structure into PDB format.

- Crystallography typically uses fractional, non-Cartesian co-ordinates
 - Good for symmetry and diffraction formulae
 - Bad for geometrical calculation (distance, etc.)

$$x = 0.4a$$

 $y = 1.0b$

Basis vectors

- In the previous examples a and b are the basis vectors.
- They define coordinate axes for a particular reference frame.
- The molecule didn't move. The way we refer to it changed.
- We can choose them to point wherever we like (provided they are linearly independent) – but some ways are more sensible than others.

Lattices

 A three-dimensional lattice can be described by 3 basis vectors. If basis vectors begin and end on lattice points the coordinates remain the same from one cell to the next.

Describing unit cell edges as vectors

General (triclinic) case. Construct a Cartesian coordinate system e_1 , e_2 , e_3 for a, b, and c:

- e_1 is (1,0,0); e_2 is (0,1,0); e_3 is (0,0,1)
- Express (a, b, c) as linear combinations of (e_1, e_2, e_3) :

a =
$$k_{11}$$
 e_1 . + k_{12} . e_2 + k_{13} . e_3
b = k_{21} . e_1 + k_{22} . e_2 + k_{23} . e_3
c = k_{31} . e_1 + k_{32} . e_2 + k_{33} . e_3

$$(a,b,c)^T = M^{-1} (e_1,e_2,e_3)^T$$

Express new axes in old system

 $\mathbf{e_1}$ is parallel to crystallographic \mathbf{a} axis . $\mathbf{e_2}$ is in \mathbf{ab} plane, a perpendicular to $\mathbf{e_1}$: $\mathbf{a} \times \mathbf{b} \times \mathbf{e_1}$. $\mathbf{e_3}$ perpendicular to \mathbf{ab} plane: $\mathbf{a} \times \mathbf{b}$

Transforming coordinates

Coordinates transform differently to the cell axes:

Axes rotate 30° anticlockwise from ab to a'b'.

Object stands still, but relative to axes it appears to have moved clockwise.

Transforming coordinates

 Basis transforms covariantly; coordinates transform contravariantly

$$\begin{bmatrix} x_{cart} \\ y_{cart} \\ z_{cart} \end{bmatrix} = (\mathbf{M}^{-1})^T \begin{bmatrix} x_{frac} \\ y_{frac} \\ z_{frac} \end{bmatrix}$$

$$\begin{bmatrix} x_{frac} \\ y_{frac} \\ z_{frac} \end{bmatrix} = \mathbf{M}^T \begin{bmatrix} x_{cart} \\ y_{cart} \\ z_{cart} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix} = \mathbf{M} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix}$$

Transforming X-ray data

Find matrix **U** to convert hkl vector to reciprocal Cartesian basis... **Uh** = **h'**

- 1. We know that $\mathbf{h}^{\mathsf{T}}\mathbf{x} = \phi$. Therefore $\mathbf{h'}^{\mathsf{T}}\mathbf{x'} = \phi$.
- 2. If a matrix L transforms x to x', then: $\mathbf{h'}^\mathsf{T}\mathbf{x'} = (\mathbf{U}\mathbf{h})^\mathsf{T}\mathbf{L}\mathbf{x} = \mathbf{h}^\mathsf{T}\mathbf{U}^\mathsf{T}\mathbf{L}\mathbf{x} = \mathbf{\phi}$
- 3. Therefore $\mathbf{U}^{\mathsf{T}}\mathbf{L} = \mathbf{I}$ and $\mathbf{U} = (\mathbf{L}^{\mathsf{T}})^{-1}$

Transforming coordinates

Reciprocal space coordinates transform in the same way as the cell vectors

$$\begin{bmatrix} x_{cart} \\ y_{cart} \\ z_{cart} \end{bmatrix} = (\mathbf{M}^{-1})^T \begin{bmatrix} x_{frac} \\ y_{frac} \\ z_{frac} \end{bmatrix} \begin{bmatrix} \mathbf{e}_1 \\ \mathbf{e}_2 \\ \mathbf{e}_3 \end{bmatrix} = \mathbf{M} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{bmatrix} \begin{bmatrix} h_c \\ k_c \\ l_c \end{bmatrix} = \mathbf{M} \begin{bmatrix} h \\ k \end{bmatrix}$$

$$\begin{bmatrix} x_{frac} \\ y_{frac} \\ z_{frac} \end{bmatrix} = \mathbf{M}^{T} \begin{bmatrix} x_{cart} \\ y_{cart} \\ z_{cart} \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} \mathbf{e}_{1} \\ \mathbf{e}_{2} \\ \mathbf{e}_{3} \end{bmatrix} \begin{bmatrix} h \\ k \\ l \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} h_{c} \\ k_{c} \\ l_{c} \end{bmatrix}$$

THE METRIC TENSOR

The Metric Tensor

$$\begin{bmatrix} \Delta x_{cart} \\ \Delta y_{cart} \\ \Delta z_{cart} \end{bmatrix} = (\mathbf{M}^{-1})^T \begin{bmatrix} \Delta x_{frac} \\ \Delta y_{frac} \\ \Delta z_{frac} \end{bmatrix}$$

$$\begin{bmatrix} \Delta x_{cart} & \Delta y_{cart} & \Delta z_{cart} \end{bmatrix} \begin{bmatrix} \Delta x_{cart} \\ \Delta y_{cart} \\ \Delta z_{cart} \end{bmatrix} = \Delta x^{2}_{cart} + \Delta y^{2}_{cart} + \Delta z^{2}_{cart} = d^{2}$$

$$\begin{bmatrix} \Delta x_{frac} & \Delta y_{frac} & \Delta z_{frac} \end{bmatrix} \mathbf{M}^{-1} (\mathbf{M}^{-1})^{T} \begin{vmatrix} \Delta x_{frac} \\ \Delta y_{frac} \\ \Delta z_{frac} \end{vmatrix} = \Delta \mathbf{x} \mathbf{G} \Delta \mathbf{x} = d^{2}$$

The Metric Tensor

- Easy to calculate.
- Useful for computing.
- Easy to transform:

$$G' = MGM^T$$

$$G = \begin{bmatrix} \mathbf{a.a} & \mathbf{a.b} & \mathbf{a.c} \\ \mathbf{a.b} & \mathbf{b.b} & \mathbf{b.c} \\ \mathbf{a.c} & \mathbf{b.c} & \mathbf{c.c} \end{bmatrix}$$

$$G = \begin{bmatrix} aa & ab\cos\gamma & ac\cos\beta \\ ab\cos\gamma & bb & bc\cos\alpha \\ ac\cos\beta & bc\cos\alpha & cc \end{bmatrix}$$

The Metric Tensor

- **G** is very useful in programming it is much less error prone that the explicit orthogonalisation matrix full of sines and cosines.
- The determinant of **G** is the volume of the unit cell squared.
- The inverse of G is denoted G*.
- **G** transforms reciprocal (**a***,**b***,**c***) to real lattice directions (**a**,**b**,**c**), and **G*** does the reverse.
- $d^2 = \Delta x G \Delta x^T$

Implementation comment from Prof Neder: if comparing many distances (e.g. all atoms pairwise, then it may be quicker (fewer operations) to convert all coordinates to orthogonal basis in one pass, then compute distances between pairs.

TRANSFORMATIONS

- Classic example is changing space group $P2_1/n$ to $P2_1/c$
- The space groups are the same.

- Classic example is changing space group $P2_1/n$ to $P2_1/c$
- The space groups are the same.

- Classic example is changing space group $P2_1/n$ to $P2_1/c$
- The space groups are the same.

• Transform basis vectors from $P2_1/n$ to $P2_1/c$

• Transform basis vectors from $P2_1/n$ to $P2_1/c$

• Transform basis vectors from $P2_1/n$ to $P2_1/c$

• Transform basis vectors from $P2_1/n$ to $P2_1/c$ Transform basis vectors from $P2_1/n$ to $P2_1/c$

$$\begin{bmatrix} \mathbf{a'} \\ \mathbf{b'} \\ \mathbf{c'} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{bmatrix}$$

- Transform metric tensor from $P2_1/n$ to $P2_1/c$
- Avoids referring to cell vectors in Cartesian basis (a,b,c)

$$\mathbf{G'} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \mathbf{G} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{T}$$

• Transform coordinates from $P2_1/n$ to $P2_1/c$

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^T \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Tutorials

Work through coordinate transform and geometry calculations in IPython notebook (or Python) using numpy matrices.

Thanks

- See bibliography slide above
- Dr David Watkin
- ECACOMSIG delegates and organisers