

OSNOVNI POJMOVI U DIGITALNOJ OBRADI SLIKE

POGLAVLJE 2

SENZORI SLIKE

- Energija na koju je senzor osetljiv transformiše se u električnu
- Digitalizacijom analogne električne veličine dobija se digitalna slika
- Tri osnovna tipa
 - Tačkasti
 - Linijski
 - Matrični

SENZORI SLIKE: Tačkasti

Fotodioda

- Izlazni napon proporcionalan svetlosti
- Upotreba optičkih filtara povećava selektivnost po učestanosti (zeleni filtar prouzrokovaće na izlazu veći napon ako je prisutna zelena boja)
- Formiranje 2D slike: kretanje senzora po x i y osi
 - Skeniranje filma u visokoj rezoluciji pri jednom koraku rotacije senzor prelazi sa leve na desnu stranu bubnja skenirajući pri tome jednu liniju

SENZORI SLIKE: Linijski

- Veći broj tačkastih senzora u liniji
- Kretanjem senzora normalno na liniju formira se slika
 - Snimanje teritorije linijskim senzorom na trupu aviona
 - Ravni skeneri (Flatbed)
- Linijski senzor u formi prstena
 - U medicini i industriji (CAT)
 - Omogućava dobijanje poprečnog snimka 3D objekta

SENZORI SLIKE: Matrični

- Tipična struktura u digitalnim kamerama CCD
 - Izlaz svake ćelije proporcionalan je integralu svetlosne energije
 - Nije neophodno kretanje kao kod prethodna dva tipa

 Digitalne i analogne komponente generišu digitalnu sliku

Scene element

DIGITALIZACIJA SLIKE

- Digitalizacija tačkastim senzorom
 - Rezoluciju kontroliše mehanički sklop
 - Veoma visoka rezolucija
 - Ograničenja su u optičkim komponentama

DIGITALIZACIJA SLIKE

- Digitalizacija matričnim senzorom
 - Kvalitet slike zavisi od prostorne rezolucije (broja piksela) i broja kvantizacionih nivoa (nijansi)

REPREZENTACIJA SLIKE

- Slika predstavljena u obliku matrice dimenzija MxN
- Svaka tačka naziva se piksel picture element
- Piksel može imati jednu od L nijansi u sivoj skali

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \dots & f(0,N-1) \\ f(1,0) & f(1,1) & \dots & f(1,N-1) \\ \dots & \dots & \dots & \dots \\ f(M-1,0) & f(M-1,1) & \dots & f(M-1,N-1) \end{bmatrix}$$

$$(x,y) \in Z^2, \ f \in Z$$

$$(x,y) \in \mathbb{Z}^2, \ f \in \mathbb{Z}$$

$$A = \begin{bmatrix} a_{0,0} & a_{0,1} & \dots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \dots & a_{1,N-1} \\ \dots & \dots & \dots & \dots \\ a_{M-1,0} & a_{M-1,1} & \dots & a_{M-1,N-1} \end{bmatrix}$$

$$a_{ij} = f(x = i, y = j) = f(i, j)$$

PROSTORNA REZOLUCIJA

- Decimacija (subsampling) sa korakom 2
 - Svaka druga vrsta i svaka druga kolona
 - U svakom koraku površina slike smanjuje se 4 puta

64

512

1024

PROSTORNA REZOLUCIJA

 Interpolacija na 1024x1024 piksela replikacijom vrsta i kolona

AMPLITUDSKA REZOLUCIJA

- Efekat amplitudske rezolucije
 - Prostorna rezolucija je konstantna - CAT slika sa 452x374 piksela
- Broj nivoa sivog (bita po pikselu) se smanjuje
 - 256 nivoa (8 bita)
 - 128 nivoa (7 bita)
 - 64 nivoa (6 bita)
 - 32 nivoa (5 bita)
- Standard 8 bita
 - Nekad 16 bita (medicina)

AMPLITUDSKA REZOLUCIJA

- Broj nivoa sivog (bita po pikselu) se smanjuje
 - 16 nivoa (4 bita)
 - 8 nivoa (3 bita)
 - 4 nivoa (2 bita)
 - 2 nivoa (1 bit)
- Pojava lažnih kontura (false contouring)
- Slika sa 256x256
 piksela sa 64 nijanse je
 granica prihvatljivog

UTICAJ REZOLUCIJE

- Različiti parametri za različite slike
 - Lice (Lena) slika bez mnogo detalja
 - Kamerman slika sa više detalja
 - Gužva slika sa veoma mnogo detalja
- Subjektivni testovi (isopreference curve)
 - Iste ocene za različit broj bita po pikselu k i dimenziju slike NxN
 - Slika sa više detalja ima vertikalnu krivu

UTICAJ REZOLUCIJE - ALIASING

- Teorema o uzorkovanju $f_s \ge 2 \cdot f_{\text{max}}$
- Ukoliko nije ispunjena, visoke učestanosti će se pojaviti na mestu niskih – aliasing
- Ovo se u optici manifestuje u vidu Moiré efekta

W.K.Pratt: Digital Image Processing, 3rd edition

PROSTORNA REZOLUCIJA

- Povećanje rezolucije zooming
 - Estimacija crvenih piksela na osnovu vrednosti plavih
- Smanjenje rezolucije shrinking
 - Estimacija plavih piksela na osnovu vrednosti crvenih
 - NF filtriranje da bi se izbegao aliasing

PROSTORNA REZOLUCIJA

- Interpolacija najbližim susedom nearest neighbor
 - Novi piksel dobija vrednost (euklidski) najbližeg piksela originalne slike (koristi se samo jedan piksel)
 - Najjednostavniji metod, ali se javlja mozaik efekat
- Bilinearna interpolacija
 - Nova vrednost dobija se na osnovu četiri susedna piksela

$$f(x',y') = (1-a)[(1-b)f(x,y) + bf(x,y+1)] + a[(1-b)f(x+1,y) + bf(x+1,y+1)]$$

- Složenije interpolacije
 - Nova vrednost se određuje na osnovu šire okoline i na osnovu različitih 2D funkcija
 - Računarski zahtevne metode

PROSTORNA REZOLUCIJA

- Slike sa 1024x1024 piksela dobijene od slika sa 128x128, 64x64, 32x32 piksela, respektivno

Najbliži sused

 Bilinearna interpolacija

RELACIJE IZMEĐU PIKSELA

- Susedi piksela p sa koordinatama (x,y)
- $N_4(p)$ 4 po vertikali i horizontali
 - Svi su na jediničnom rastojanju od (x,y)
- $N_D(p)$ 4 po dijagonalama
- $N_8(p)$ po svim pravcima

$$N_4(p) = \{(x+1,y), (x-1,y), (x,y+1), (x,y-1)\},\$$

 $N_D(p) = \{(x+1,y+1), (x+1,y-1), (x-1,y+1), (x-1,y-1)\},\$
 $N_8(p) = N_4(p) \cup N_D(p)$

- Pikseli p i q su 4-susedni ako je q u $N_4(p)$
- Pikseli p i q su 8-susedni ako je q u $N_8(p)$

RELACIJE IZMEĐU PIKSELA

- Bliskost (adjacency)
 - V skup vrednosti nijansi pomoću kojeg se definiše bliskost (adjacency)
 - U binarnoj slici, *V*={1} skup svih piksela koji imaju vrednost 1
 - U sivoj slici, V je neki podskup skupa sa 256 vrednosti
- **4-bliski** su pikseli p i q sa vrednostima iz V ako je q u $N_4(p)$
- **8-bliski** su pikseli p i q sa vrednostima iz V ako je q u $N_8(p)$
- m-bliski su pikseli p i q sa vrednostima iz V ako je
 - q u $N_4(p)$, ili
 - q u $N_D(p)$ i presek $N_4(p)$ i $N_4(q)$ ne sadrži piksele sa vrednostima iz V

RELACIJE IZMEĐU PIKSELA

- Skupovi S1 i S2 su bliski (adjacent) ako su bilo koja dva piksela iz S1 i S2 bliski
- **Putanja** (path) od piksela p sa koordinatama (x,y) do piksela q sa koordinatama (s,t) je skup piksela

$$(x_0, y_0), (x_1, y_1), ...(x_n, y_n),$$

 $(x_0, y_0) = (x, y), (x_n, y_n) = (s, t),$
 (x_i, y_i) i (x_{i-1}, y_{i-1}) su bliski za $1 \le i \le n$

• Putanja je zatvorena ako je $(x_0, y_0) = (x_n, y_n)$

RELACIJE IZMEĐU PIKSELA

- Povezanost (connectivity)
 - Pikseli p i q su povezani u skupu S, ako između njih postoji putanja koja se sastoji samo od piksela iz S
 - Za svaki piksel p iz S, skup piksela koji su sa njim povezani u S čine povezanu komponentu skupa S
 - Ako postoji samo jedna povezana komponenta u skupu S, tada je S povezan skup
- Region slike
 - Podskup piksela R koji je povezan skup predstavlja region
 - Granica/kontura (boundary, border, contour) regiona R
 je skup svih piksela regiona koji imaju jednog ili više
 suseda koji ne pripadaju skupu R
 - Ako je R čitava slika, granicu čine prve i poslednje vrste i kolone

MERE RASTOJANJA PIKSELA

Metrika

Za piksele p, q, z sa koordinatama (x, y), (s, t), (v, w)

D je metrika ili funkcija rastojanja ako važi

- 1. $D(p,q) \ge 0$, (D(p,q) = 0 akko je p = q),
- 2. D(p,q) = D(q,p),
- $3. D(p,z) \leq D(p,q) + D(q,z)$
 - Na osnovu ove definicije moguće je formulisati različita rastojanja između piksela
 - Euklidsko rastojanje
 - D_4 rastojanje
 - D_8 rastojanje

MERE RASTOJANJA PIKSELA

Rastojanja

Euklidsko rastojanje između piksela p i q

$$D_e(p,q) = \sqrt{[(x-s)^2 + (y-t)^2]}$$

 D_4 rastojanje (city-block) između piksela p i q $D_4(p,q) = |x-s| + |y-t|$

 D_8 rastojanje (*chessboard*) između piksela p i q $D_8(p,q) = \max(|x-s|,|y-t|)$

- $-D_4$ i D_8 zavise samo od koordinata, a ne i od putanje
- $-\ D_m$ rastojanje je najkraća m-putanja između piksela p i q

MERE RASTOJANJA PIKSELA

Rastojanja

- Pikseli koji imaju Euklidsko rastojanje od (x,y) manje od r pripadaju krugu prečnika r opisanog oko piksela (x,y)
- Pikseli koji imaju D_4 rastojanje od (x,y) manje ili jednako 2
 - Pikseli sa $D_4=1$ su 4-susedi od (x,y)
- Pikseli koji imaju D_8 rastojanje od (x,y) manje ili jednako 2
 - Pikseli sa $D_8=1$ su 8-susedi od (x,y)

 2
 2
 2
 2

 2
 1
 1
 1
 2

 2
 1
 0
 1
 2

 2
 1
 1
 1
 2

 2
 2
 2
 2
 2

OPERACIJE NAD SLIKAMA

- Operacije na nivou piksela
 - Slike su predstavljene kao matrice, ali se na njima najčešće ne vrše matrične operacije
 - Npr. deljenje slike f sa slikom g podrazumeva deljenje vrednosti odgovarajućih piksela u slikama f i g
 - Slično je i sa ostalim operacijama: invertovanje, logaritam
- Linearne i nelinearne operacije
 - Operator H čiji su ulaz i izlaz slike je **linearan**, ako za bilo koje dve slike f i g i konstante a i b važi sledeće

$$H(af + bg) = aH(f) + bH(g)$$

 Ako ovaj uslov nije uvek ispunjen, operator H je nelinearan

ZAKLJUČAK

- Senzori slike
- Digitalizacija slike
- Reprezentacija slike
- Prostorna rezolucija
- Amplitudska rezolucija
- Interpolacija i decimacija
- Moiré efekat (aliasing)
- Relacije između piksela
- Mere rastojanja između piksela
- Operacije na nivou piksela