

Knowledge Graph Summarization

Kickoff Meeting

Prof. Dr. Axel-Cyrille Ngonga Ngomo Tutor: Asep Fajar Firmansyah

Data Science Group Paderborn University

Project Group - WiSe 2025 October 16, 2025

Agenda

- ► About DICE and Tutor
- ► PG Organization
- ► PG Objectives Recap
- ► Goal & Grading
- ► First Task and Next Steps

About DICE

What does the DICE group do?

- Data Integration
- Data Storage and Querying
- ► Interpretable Data Processing
- Machine Learning
- Natural Language Processing

For more information: https://dice-research.org/groups/

Tutor

Asep Fajar Firmansyah

- Studied Informatics engineering and Information Technology in Indonesia
- ► PhD student since 2018
- Research associate since 2022
- Research Interest:
 - Knowledge Graph Summarization
 - ► KG Construction
 - Natural Language Processing

Section 1

PG Organization

PG Structure and Deliverables

How is this project group structured?

- ► Semesters: WiSe 25/26 and SoSE 26
- ► **Registration:** You need to register your self before 31.10.2025.
- During Semesters:
 - Regular Group Meetings (Usually) Every Week
 - ▶ Weekly Report
- Semester-end Requirements:
 - Individual Report, Group Report, and Group Presentation
 - Grading and Feedback
- ► Final Submission: Source Code and Documentation

PG Setup

How is the project group setup and organized?

Module Handbook: Project group is intended to be a preparation for industrial practice.

Students: Self-organized Dev Team

Supervisor: Product Owner and Contact Point

► Time Investment:

20 hours per week (with vacations)

▶ 15 hours per week (without vacations)

Expectations

What do we expect from you?

- → Be a valuable member of your team!
 - Manage your project
 - Write code(!) and commit it
 - ▶ Communicate with team members
 - Support each other where possible
 - ▶ .
- ightarrow We won't keep students if they are not participating in their team

PG Schedule

- ► **Kickoff Meeting:** 16.10.2025, FU.136
- ► Weekly Meetings: Data DBD, FU.136
- ► End WiSe 25/26:
 - Individual Report, Group Report, and Group Presentation
 - Grading and Feedback
- ► Between WiSe 25/26 and SoSe 26: Vacations
- ► Start SoSe 26: Resume PG Work
- Mid-July 2026: End of the Implementation Phase
- ► End SoSe 26:
 - ► Individual Report, Group Report, and Group Presentation
 - Final Grading

Unforeseen Events

▶ Vacations:

- Should be avoided during lecture time!
- In very urgent cases, contact your supervisor

► Project Issues:

- ► Problems within the team
- Hardware issues
- Personal issues
- → Get in touch with your supervisor

► Illness:

- Get a Doctor's Certificate!
- ► If you can foresee it, inform your teammates

Section 2

PG Objectives Recap

Knowledge Graphs

Introduction

A Knowledge Graph (KG) represents entities as nodes and their relationships as edges.

► Knowledge Graphs Everywhere

► Many open knowledge graphs

Powering Al

► Applied across diverse domains

Knowledge Graphs

Structure and Representation

A knowledge Graph

Entity Description

KGS

Why Summarize Knowledge Graphs?

Knowledge Graphs grow large and noisy

- ► Entities are connected by many facts
- Not all facts are relevant or important
- Verbose triples overwhelm users/systems

Key challenges

- Hard to extract the core meaning of an entity
- Inefficiency in search, reasoning, and downstream applications

KGS: Topics

Extractive Entity Summarization in Knowledge Graphs

Motivation

- Problem: Entities are often described with excessive and redundant information in KGs.
- Solution: Apply entity summarization to produce concise, informative views.
- Goal: Select a representative subset of triples by optimizing relatedness, informativeness, and diversity.

Firmansyah, A.F., Moussallem, D., Ngomo, AC.N. (2021). GATES: Using Graph Attention Networks for Entity Summarization. In *Proceedings of the 11th Knowledge Capture Conference (K-CAP '21)*, ACM, New York, NY, USA, pp. 73–80. Firmansyah, A.F., Moussallem, D., Ngomo, AC.N. (2024). ESLM: Improving Entity Summarization by Leveraging Language Models. In *The Semantic Web – ESWC 2024*, LNCS, vol. 14664, Springer, Cham.

KGS: Topics

Abstractive Entity Summarization in Knowledge Graphs

Motivation

- Problem: The incompleteness of knowledge graphs leads to incomplete summaries
- Solution: Apply abstractive entity summarization, to make more complete summary.
- Goal: To go beyond extractive summarization by generating more complete and coherent summaries

Firmansyah, A.F., Zahera, H.M., Sherif, M.A., Moussallem, D., Ngomo, AC.N. (2025). ANTS: Abstractive Entity Summarization in Knowledge Graphs. The Semantic Web – ESWC 2025. LNCS, vol. 15718, Springer, Cham.

Project Objectives

Improving the entity summarizer performance in generating an entity summary and address the challenges in entity summarization tasks

- Improve summary quality depends on relatedness, informativeness, and diversity.
- Explore the advanced techniques of NLP/ML
- Ensure Computational Efficiency
- Discover novel approaches

Project Tasks

What types of tasks will the project group be responsible for?

- ► Study state-of-the-arts (SOTA) Models
- Reproduce SOTA models on New Benchmark Datasets
- ► Analyze the Limitation of SOTA Models
- Develop a New Entity Summarizer
- Evaluate the Models
- Create a Visualization

Section 3

Goals & Grading

PG Goals

Current Semester

What are the goals for the current semester?

- 1. Propose multiple (min. 2) approaches for Entity Summarization.
- 2. Run experiments and evaluate each approach.
- 3. Provide in-depth analysis on what works better and what doesn't.

\rightarrow Considerations:

- Technical features: Frequency & centrality, informativeness, and diversity & coverage
- Specific feature: Domain knowledge, context awareness, and personalization.

Grading

How will the students be graded?

- ► Achieved Goals:
 - ► **Group:** What goals did the group achieve?
 - ► Individual: How much did you contribute towards this goal?
- Reports and Presentations (Group, Individual)
- ► Soft Skills (Group, Individual):
 - Commitment and engagement
 - Collaborative and learning skills
 - ► Motivation and volitional strategies
 - Scientific writing and self-management

Section 4

Ice Breaker

First Task

"Talk is cheap. Show me the code." - Linus Torvalds

- 1. Choose each one model of entity summarizers from unsupervised and supervised learning method.
- 2. Reproduce the entity summarization models
- 3. Evaluate all models
- 4. Report findings
- \rightarrow **Time Limit:** 1 Week
- \rightarrow **Resources:** Access to DICE experiment servers.

Next Steps

"A place for everything, everything in its place" - Benjamin Franklin

- \rightarrow Organize Yourselves
 - Team Structure: Flat, Hierarchical, Holacratic, ...
 - Regular Meetings: https://terminplaner6.dfn.de/
 - ► Communication: UPB Matrix
 - Code Repository: https://github.com/dice-group/KGSUMM-PG
- ightarrow Try to use open-source tools wherever possible

That's all Folks!

dice-research.org/teaching/KGSUMM-2025

Have questions?

Email: asep.fajar.firmansyah@uni-paderborn.de

Matrix: @asepff:chat.dice-research.org

All source images are from Google Search and Canva.