Tipos Abstractos de Datos

Ernesto Rodriguez

Universidad del Itsmo erodriguez@unis.edu.gt

Tipos Abstractos de Dato (ADT)

Sea $S^0 := \{A_1, \dots, A_n\}$ un confjunto finito de simbolos, se conoce a S como el conjunto de **tipos** tal que:

- $oldsymbol{\circ} \mathcal{S}^0 \subseteq \mathcal{S}$
- Si $\mathbb{A}, \mathbb{B} \in \mathcal{S}$, entonces $(\mathbb{A} \times \mathbb{B}) \in \mathcal{S}$
- Si $\mathbb{A} \in \mathcal{X}$ y $\mathbb{B} \in \mathcal{S}^0$, entonces $(\mathbb{A} \to \mathbb{B}) \in \mathcal{S}$

Tipos Abstractos de Dato

- Si c es un simbolo y $\mathbb{A} \in \mathcal{S}$, se le conoce a la pareja $[c : \mathbb{A}]$ una declaracion de constructor para c en \mathcal{S}
- Si \mathcal{S}^0 es un conjunto de simbolos y \mathcal{D} un conjunto de **declaraciones** de **constructores** en \mathcal{S} , se conoce a la pareja $\langle \mathcal{S}^0, \mathcal{D} \rangle$ como un **Tipo** abstracto de **Dato**
- **Ejemplo:** $\langle \{\mathbb{B}\}, \{[T : \mathbb{B}], [F : \mathbb{B}]\} \rangle$ es un tipo abstracto de dato que representa los booleanos.
- **Ejemplo:** $\langle \{\mathbb{N}\}, \{[o:\mathbb{N}], [s:\mathbb{N} \to \mathbb{N}]\} \rangle$ representa los numeros naturales.
- **Ejemplo:** $\{\{\mathbb{N}, \mathcal{L}(\mathbb{N})\}, \{[o:\mathbb{N}], [s:\mathbb{N} \to \mathbb{N}], [\text{nil}:\mathcal{L}(\mathbb{N})], [\text{cons}:\mathbb{N} \times \mathcal{L}(\mathbb{N}) \to \mathcal{L}(\mathbb{N})]\}\}$ representa una lista de naturales.

Terminos Constructores

Sea $\mathcal{A} := \langle \mathcal{S}^0, \mathcal{D} \rangle$ un tipo abstracto de datos. Se conoce el termino t como un **termino constructor del tipo** \mathbb{T} ssi:

- ullet $\mathbb{T}\in\mathcal{S}^0$ y $[t:\mathbb{T}\in\mathcal{D}]$ o
- $\mathbb{T} = \mathbb{A} \times \mathbb{B}$ y t tiene la forma $\langle a, b \rangle$, donde a y b son constructores de los tipos \mathbb{A} y \mathbb{B} .
- t tiene la forma c(a) donde a es un termino constructor del tipo \mathbb{A} y hay un constructor con la declaración $[c : \mathbb{A} \to \mathbb{T}] \in \mathcal{D}$

Se utiliza la notación $\mathcal{T}^{\mathbf{g}}_{\mathbb{A}}(\mathcal{A})$ para representar el conjunto de todos los constructores del tipo \mathbb{A} y utilizamos $\mathcal{T}^{\mathbf{g}}(\mathcal{A}) := \cup_{\mathbb{A} \in \mathcal{S}} \mathcal{T}^{\mathbf{g}}_{\mathbb{A}}(\mathcal{A})$

Aximoas de Peano para ADTs

- Si t es un constructor del tipo \mathbb{T} , entonces $t \in \mathbb{T}$
- La igualdad es trivial (igualdad estructural)
- ullet Solo los terminos constructores de ${\mathbb T}$ pertenecen al tipo ${\mathbb T}$

Computación mediante Constructores

- Se desea entender la computacion de data en ADTs
- Consideremos un ejemplo concreto: $\mathcal{B} := \langle \{\mathbb{B}\}, \{[T : \mathbb{B}], [F : \mathbb{B}]\} \rangle$ y las operaciones que ya conocemos: \land , \lor , \neg como "y", "o" y "no"
- La idea es imaginar que estas funciones son "equaciones". Por ejemplo $\neg(T) = F$ donde representamos a $\neg(T) \leadsto F$ para indicar la dirección del flujo.

Computación mediante Constructores

Las operaciones se presentan declarando tipos y ecuaciones:

$$\neg: \langle \neg :: \mathbb{B} \to \mathbb{B} \; ; \; \{ \neg (T) \leadsto F, \neg (F) \leadsto T \} \rangle,$$

$$\wedge: \langle \wedge :: \mathbb{B} \times \mathbb{B} \to \mathbb{B} \; ; \; \{ \wedge (T,T) \leadsto T, \wedge (T,F) \leadsto F, \wedge (F,T) \leadsto F, \wedge (F,F) \leadsto F \} \rangle,$$

$$\vee: \langle \vee :: \mathbb{B} \times \mathbb{B} \to \mathbb{B} \; ; \; \{ \vee (T,T) \leadsto T, \vee (T,F) \leadsto T, \vee (F,T) \leadsto T, \vee (F,F) \leadsto F \} \rangle.$$

Y computar simplemente significa reemplazar iguales por iguales:

$$\vee (T, \wedge (F, \neg (F))) \sim \vee (T, \wedge (F, T)) \sim \vee (T, F) \sim T$$