(H20T2A3)

Für r > 0 sei $K_r(0) := \{z \in \mathbb{C} : |z| \le r\}$ die offene Kreisscheibe um 0 mit Radius r.

- a) Bestimmen Sie den Konvergenzradius R der Potenzreihe $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{z^k}{k}$ und zeigen Sie, dass $f_R: K_R(0) \to \mathbb{C}$; $z \to \sum_{k=1}^{\infty} (-1)^{k+1} \frac{z^k}{k}$ holomorph ist.
- b) Zeigen Sie, dass für $\gamma: [0,2\pi] \to \mathbb{C}$; $t \to \frac{1}{4} + \frac{1}{2}e^{-2it}$ das Integral $\int_{\gamma} \frac{f_R(z)}{\left(z \frac{1}{4}\right)^2} dz$ existiert, und berechnen Sie es.

Zu a)

In der Potenzreihe $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{z^k}{k}$ sind die Koeffizienten $a_k = (-1)^{k+1} \frac{1}{k}$, also $L := \lim_{k \to \infty} \sup \sqrt[k]{|a_k|} = \lim_{k \to \infty} \frac{1}{\sqrt[k]{k}} = 1$ (denn $\sqrt[k]{k} \xrightarrow[k \to \infty]{} 1$) und daher ist $R = \frac{1}{L} = 1$ der Konvergenzradius der Potenzreihe. Da die Potenzreihe auf $K_1(0)$ absolut konvergiert, ist f_1 analytisch und somit auch holomorph.

Zub)

Die Funktion $g: K_1(0) \setminus \left\{\frac{1}{4}\right\} \to \mathbb{C}$; $z \to \frac{f_1(z)}{\left(z - \frac{1}{4}\right)^2}$ ist holomorph als Quotient holomorpher Funktionen mit nullstellenfreiem Nenner.

Es gilt $\left|\frac{1}{4} - \gamma(t)\right| = \left|\frac{1}{2}e^{-2it}\right| = \frac{1}{2}$, also $Spur(\gamma) \subseteq K_1(0) \setminus \left\{\frac{1}{4}\right\}$ und damit ist das Kurvenintegral wohldefiniert, denn $\int_{\gamma} \frac{f_1(z)}{\left(z-\frac{1}{4}\right)^2} dz = \int_0^{2\pi} \frac{f_1(\gamma(t))}{\left(\gamma(t)-\frac{1}{4}\right)^2} \gamma'(t) dt = \int_0^{2\pi} -4ie^{2it} f_1(\gamma(t)) dt$ ist als Integral einer stetigen Funktion auf einem kompakten Intervall wohldefiniert.

Da $K_1(0)$ ein einfach zusammenhängendes Gebiet ist und $f_1: K_1(0) \to \mathbb{C}$ holomorph ist, gilt nach der Cauchy-Integralformel $n\left(\gamma, \frac{1}{4}\right) f_1'\left(\frac{1}{4}\right) = \frac{1}{2\pi i} \int_{\gamma} \frac{f_1(z)}{\left(z^{-\frac{1}{2}}\right)^2} dz$.

$$n\left(\gamma, \frac{1}{4}\right) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - \frac{1}{4}} dz = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{1}{\frac{1}{2}e^{-2it}} \frac{1}{2} e^{-2it} (-2i) dt = -2.$$

Da $\frac{1}{4} \in K_1(0)$ im Inneren des Konvergenzkreises liegt, lässt sich die Potenzreihe gliedweise differenzieren und $f'(z) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{kz^{k-1}}{k} = \sum_{k=1}^{\infty} (-1)^{k+1} z^{k-1} = \sum_{k=1}^{\infty} (-z)^{k-1} = \sum_{l=0}^{\infty} (-z)^l = \frac{1}{1+z}$ für $z \in K_1(0)$. Damit ist $f'\left(\frac{1}{4}\right) = \frac{1}{1+\frac{1}{4}} = \frac{4}{5}$.

Also gilt
$$\int_{\gamma} \frac{f_1(z)}{\left(z - \frac{1}{4}\right)^2} dz = 2\pi i (-2) \frac{4}{5} = -\frac{16\pi i}{5}.$$