Comparaison de 2 méthodes de correction.

On considère le problème de Poisson avec condition de Dirichlet homogène ou non homogène :

$$\begin{cases}
-\Delta u = f & \Omega \\
u = g & \Gamma
\end{cases} \tag{\mathcal{E}_1}$$

On a ainsi une EDP que l'on souhaite résoudre sur un domaine Ω . On note Γ le bord de Ω , c'est-à-dire $\Gamma = \partial \Omega$. Dans notre cas, on souhaite appliquer une correction à la sortie d'un FNO. On considère ici que l'on possède une solution analytique u et qu'après une utilisation du FNO, on obtient une solution du type

$$\tilde{\phi}(x,y) = u_p(x,y) = u(x,y) - \epsilon P(x,y)$$

avec P la perturbation (tel que P = 0 sur Γ) et ϵ petit.

Ce document a pour but de comparer deux méthodes de correction de la solution obtenue.

1 Correction avec FEM

1.1 Présentation des 2 méthodes

• Méthode 1 : On souhaite résoudre le problème suivant

$$\begin{cases}
-\Delta(\tilde{\phi}C) = f & \Omega \\
C = 1 & \Gamma
\end{cases} \tag{C_1}$$

avec $\tilde{u} = \tilde{\phi}C$.

Dans un autre document, on a présenté l'intérêt de rehausser le problème et de se ramener au problème suivant

$$\begin{cases} -\Delta(\hat{\phi}C) = f & \Omega \\ \hat{u} = g + m & \Gamma \end{cases} \tag{C1^R}$$

avec $\hat{u} = \hat{\phi}C + m$ où $\hat{\phi} = \tilde{\phi} + m$ (m une constante).

• Méthode 2 : On souhaite résoudre le problème suivant

$$\begin{cases}
-\Delta C = \tilde{f} & \Omega \\
C = 0 & \Gamma
\end{cases} \tag{C2}$$

avec $\tilde{u} = \tilde{\phi} + C$ et $\tilde{f} = f + \Delta \tilde{\phi}$.

Remarque. On notera que dans ce cas rehausser le problème n'a aucun intérêt. En effet, la décomposition de C_h sur la base $(\varphi_1, \ldots, \varphi_{N_h})$ de V_h s'écrit pour ce problème

$$C_h = \sum_{i=1}^{N_h} C_i \varphi_i$$

avec $C_i = u(x_i) - \tilde{\phi}(x_i)$. Et donc, on a l'inégalité suivante

$$||(u - \tilde{\phi}) - C_h||_{L^2(\Omega)} \le ch^{k+1}|u - \tilde{\phi}|_{H^{k+1}(\Omega)}$$

Alors pour k = 1

$$|u - \tilde{\phi}|_{H^2(\Omega)} = ||(u - \tilde{\phi})''||_{L^2(\Omega)} = ||(\tilde{\phi} + \epsilon P - \tilde{\phi})''||_{L^2(\Omega)} = ||P''||_{L^2(\Omega)}$$

Et ainsi, en prenant $\hat{\phi} = \tilde{\phi} + m$ on obtient le même résultat.

1.2 Résultats numériques

On se place sur le carré $[0,1]^2$. On considère ici la solution analytique suivante

$$u_{ex}(x,y) = S \times \sin(2\pi f x + p) \times \sin(2\pi f y + p)$$

et P la perturbation définie par

$$P(x,y) = S \times \sin(2\pi f_p x + p_p) \times \sin(2\pi f_p y + p_p)$$

avec $p_p = 0$ pour que P = 0 sur Γ (et donc $u_p = u_{ex}$ sur Γ).

On cherche alors principalement à comparer les erreurs en norme L^2 obtenus avec les problèmes $\mathcal{C}_1^{\mathcal{R}}$ et \mathcal{C}_2 . On prendra S=0.5 et p=0 (c'est-à-dire g=0). On fera varier ϵ , f et f_p .

Voici les résultats obtenus :

			FEM	Corr	m=1000	Corr v2
FEM	f=4, fp=2	eps=0.01	0.170794	0.009114	0.000455	0.000455
		eps=0.001	0.170794	0.000911	0.000045	0.000045
	f=6, fp=2	eps=0.01	0.340309	0.009562	0.000455	0.000455
		eps=0.001	0.340309	0.000957	0.000045	0.000045
	f=8, fp=2	eps=0.01	0.511393	0.009871	0.000455	0.000455
		eps=0.001	0.511393	0.000987	0.000045	0.000045
	f=2, fp=4	eps=0.01	0.045487	0.001398	0.001708	0.001708
		eps=0.001	0.045487	0.000140	0.000171	0.000171
	f=2, fp=6	eps=0.01	0.045487	0.002909	0.003403	0.003403
		eps=0.001	0.045487	0.000292	0.000340	0.000340
	f=2, fp=8	eps=0.01	0.045487	0.004749	0.005114	0.005114
		eps=0.001	0.045487	0.000471	0.000511	0.000511

FIGURE 1 – Résultats FEM pour nb_vert=64

Il semblerait ici que les résultats obtenus pour les problèmes $\mathcal{C}_1^{\mathcal{R}}$ avec m=1000 (avant-dernière colonne) et \mathcal{C}_2 (dernière colonne) soient très proches.

1.3 Explication

On cherche ici à comprendre pourquoi on obtient des résultats aussi proches avec les 2 méthodes.

Méthode 1

On cherche à résoudre le problème

$$\begin{cases}
-\Delta(\hat{\phi}C) = f & \Omega \\
\hat{u} = g + m & \Gamma
\end{cases} \tag{C1^R}$$

avec $\hat{u} = \hat{\phi}C + m$ où $\hat{\phi} = \tilde{\phi} + m$ (m une constante).

La décomposition de $\hat{u_h}$ sur la base $(\varphi_1,\dots,\varphi_{N_h})$ de V_h s'écrit pour ce problème

$$\hat{u}_h = C_h \hat{\phi} = \left(\sum_{i=1}^{N_h} C_i \varphi_i\right) \hat{\phi}(x) \tag{1}$$

Or

$$C_i = \frac{u(x_i) + m}{\hat{\phi}(x_i)} = \frac{u(x_i) + m}{\tilde{\phi}(x_i) + m}$$

$$\tag{2}$$

avec

$$u(x_i) = \tilde{\phi}(x_i) + \epsilon P(x_i) \tag{3}$$

et

$$\tilde{\phi}(x) = \tilde{\phi}(x_i) + (x - x_i)\tilde{\phi}'(x_i) \tag{4}$$

De plus

$$\sum_{i=1}^{N_h} \varphi_i = 1 \tag{5}$$

Avec les 4 relations précédentes, on peut développer 1 :

$$\begin{split} \hat{u_h} &= \left(\sum_{i=1}^{N_h} C_i \varphi_i\right) \hat{\phi}(x) \\ &= \left(\sum_{i=1}^{N_h} \frac{u(x_i) + m}{\tilde{\phi}(x_i) + m} \varphi_i\right) \hat{\phi}(x) \quad \text{par 2} \\ &= \left(\sum_{i=1}^{N_h} \frac{\tilde{\phi}(x_i) + m + \epsilon P(x_i)}{\tilde{\phi}(x_i) + m} \varphi_i\right) \hat{\phi}(x) \quad \text{par 3} \\ &= \sum_{i=1}^{N_h} \left(1 + \epsilon \frac{P(x_i)}{\tilde{\phi}(x_i) + m}\right) \varphi_i \hat{\phi}(x) \\ &= \left(\sum_{i=1}^{N_h} \varphi_i\right) \hat{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \frac{\hat{\phi}(x)}{\tilde{\phi}(x_i) + m} \varphi_i \\ &= \hat{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \frac{\tilde{\phi}(x_i) + m + (x - x_i) \tilde{\phi}'(x_i)}{\tilde{\phi}(x_i) + m} \varphi_i \quad \text{par 4 et 5} \\ &= \hat{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \left(1 + \frac{(x - x_i) \tilde{\phi}'(x_i)}{\tilde{\phi}(x_i) + m}\right) \varphi_i \\ &= \tilde{\phi}(x) + m + \epsilon \sum_{i=1}^{N_h} P(x_i) \left(1 + \frac{(x - x_i) \tilde{\phi}'(x_i)}{\tilde{\phi}(x_i) + m}\right) \varphi_i \end{split}$$

Ainsi

$$u_h = \hat{u_h} - m = \tilde{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \left(1 + \frac{(x - x_i)\tilde{\phi}'(x_i)}{\tilde{\phi}(x_i) + m} \right) \varphi_i$$

et finalement

$$u_h \xrightarrow[m \to \infty]{} \tilde{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \varphi_i$$
 (6)

Remarque. Pour le problème C_1 , (équivalent au problème $C_1^{\mathcal{R}}$ avec m=0), on a

$$u_h = \tilde{\phi}(x) + \epsilon \sum_{i=1}^{N_h} P(x_i) \left(1 + \frac{(x - x_i)\tilde{\phi}'(x_i)}{\tilde{\phi}(x_i)} \right) \varphi_i$$

Méthode 2

On cherche à résoudre le problème

$$\begin{cases}
-\Delta C = \tilde{f} & \Omega \\
C = 0 & \Gamma
\end{cases} \tag{C2}$$

avec $\tilde{u} = \tilde{\phi} + C$ et $\tilde{f} = f + \Delta \tilde{\phi}$.

La décomposition de u_h sur la base $(\varphi_1,\ldots,\varphi_{N_h})$ de V_h s'écrit pour ce problème

$$u_h = C_h + \tilde{\phi} = \left(\sum_{i=1}^{N_h} C_i \varphi_i\right) + \tilde{\phi}(x) \tag{7}$$

Or

$$C_i = u(x_i) - \tilde{\phi}(x_i) \tag{8}$$

avec

$$u(x_i) = \tilde{\phi}(x_i) + \epsilon P(x_i) \tag{9}$$

Avec les 2 relations précédentes, on peut développer 7 :

$$u_{h} = \tilde{\phi}(x) + \sum_{i=1}^{N_{h}} C_{i}\varphi_{i}$$

$$= \tilde{\phi}(x) + \sum_{i=1}^{N_{h}} (u(x_{i}) - \tilde{\phi}(x_{i}))\varphi_{i} \quad \text{par 8}$$

$$= \tilde{\phi}(x) + \sum_{i=1}^{N_{h}} (\tilde{\phi}(x_{i}) + \epsilon P(x_{i}) - \tilde{\phi}(x_{i}))\varphi_{i} \quad \text{par 9}$$

$$u_{h} = \tilde{\phi}(x) + \epsilon \sum_{i=1}^{N_{h}} P(x_{i})\varphi_{i}$$

$$(10)$$

Ainsi par 6 et 10, il semblerait que pour le problème \mathcal{E}_1 , les 2 méthodes proposées soit équivalentes (en prenant m grand).

2 Correction avec ϕ -FEM

Remarque. Le rehaussement avec ϕ -FEM n'étant pas encore fonctionnel, on comparera seulement la seconde méthode avec la méthode classique (pour m=0). On testera par la suite d'imposer les conditions au bord par la méthode duale et finalement on pourra comparer le rehaussement avec la nouvelle méthode de correction.

2.1 Présentation des 2 méthodes

• Méthode 1 : On souhaite résoudre le problème suivant

$$\begin{cases}
-\Delta(\tilde{\phi}C) = f & \Omega \\
C = 1 & \Gamma
\end{cases} \tag{C_1}$$

avec $\tilde{u} = \tilde{\phi}C$.

• Méthode 2 : On souhaite résoudre le problème suivant

$$\begin{cases}
-\Delta(\phi C) = \tilde{f} & \Omega \\
\tilde{C} = 0 & \Gamma
\end{cases} \tag{C2}$$

avec $\tilde{u} = \tilde{\phi} + \tilde{C}$ où $\tilde{C} = \phi C$ et $\tilde{f} = f + \Delta \tilde{\phi}$.

2.2 Résultats numériques

Nous allons considérer deux cas tests : le premier sera de considérer comme géométrie un carré (similaire au cas test de FEM) et le second sera de considérer un cercle.

1er cas test : le carré

On se place sur le carré $[0,1]^2$. On prend alors

$$\phi_c(x,y) = ||x - 0.5||_{\infty} - 0.5$$

pour construire les ensembles \mathcal{F}_h^{Γ} et \mathcal{T}_h^{Γ} nécessaire à ϕ -FEM.

On considérera alors le domaine environnant $\mathcal{O} = [-0.5, 1.5]^2$ et on prendra la levelset

$$\phi(x,y) = x(1-x)y(1-y)$$

On considère la même solution analytique que celle utilisée dans le cas test de FEM:

$$u_{ex}(x,y) = S \times \sin(2\pi f x + p) \times \sin(2\pi f y + p)$$

et P la perturbation définie par

$$P(x,y) = S \times \sin(2\pi f_p x + p_p) \times \sin(2\pi f_p y + p_p)$$

avec $p_p = 0$ pour que P = 0 sur Γ (et donc $u_p = u_{ex}$ sur Γ).

On cherche alors principalement à comparer les erreurs en norme L^2 obtenus avec les problèmes C_1 et C_2 . On prendra S=0.5 et p=0 (c'est-à-dire g=0). On fera varier ϵ , f et f_p . Voici les résultats obtenus :

facte	Corr v2	Corr	PhiFEM			
9.6713	0.000450	0.008844	0.161997	eps=0.01	f=4, fp=2	١
9.6711	0.000045	0.000884	0.161997	eps=0.001		
1.2591	0.000445	0.009455	0.341761	eps=0.01	f=6, fp=2	
1.2503	0.000044	0.000946	0.341761	eps=0.001		
1.6078	0.000439	0.009495	0.521955	eps=0.01	f=8, fp=2	
1.4901	0.000044	0.000950	0.521955	eps=0.001		
0.3678	0.001868	0.000687	0.035073	eps=0.01	f=2, fp=4	
0.3674	0.000187	0.000069	0.035073	eps=0.001		
0.5896	0.003959	0.002334	0.035073	eps=0.01	f=2, fp=6	
0.5839	0.000396	0.000231	0.035073	eps=0.001		
0.7431	0.006052	0.004498	0.035073	eps=0.01	f=2, fp=8	
0.6960	0.000605	0.000421	0.035073	eps=0.001		

FIGURE 2 – Résultats sur le carré (nb_vert=64) FIGURE 3 – Résultats sur le carré (nb_vert=128) Il semblerait que les résultats obtenus pour le problème \mathcal{C}_2 (colonne "Corr v2") soient meilleurs que ceux obtenus pour le problème \mathcal{C}_1 (colonne "Corr"). La colonne "facteur" contient les coefficients "Corr"/"Corr v2".

2nd cas test : le cercle

On considère Ω le cercle de rayon $\sqrt{2}/4$ et de centre (0.5, 0.5). On prend

$$\phi(x,y) = -1/8 + (x - 1/2)^2 + (y - 1/2)^2$$

On considère le domaine fictif $O = (0, 1)^2$.

On considère toujours la solution analytique suivante :

$$u_{ex}(x,y) = S \times \sin(2\pi f x + \varphi) \times \sin(2\pi f y + \varphi)$$

On prend dans ce cas la perturbation P définie par

$$P(x,y) = S \times \sin(2\pi f x + \varphi) \times \sin(2\pi f y + \varphi) \times \cos(4\pi ((x - 0.5)^2 + (y - 0.5)^2))$$

pour que P = 0 sur Γ (et donc $u_p = u_{ex}$ sur Γ).

On cherche comme pour le cas test du carré à comparer les erreurs en norme L^2 obtenues avec les problèmes \mathcal{C}_1 et \mathcal{C}_2 .

On prendra S=0.5 et p=0 (attention ici $g\neq 0$). On fera varier ϵ , f et f_p .

Remarque. Ici, on prend 2 fois moins de nœuds que dans le cas test du carré pour avoir des cas comparables (car le domain O est deux fois plus petit sur la longueur et sur la largeur).

Voici les résultats obtenus :

			PhiFEM	Corr	Corr v2	facteurs
PhiFEM	f=4, fp=2	eps=0.01	0.012251	0.006089	0.000299	20.396088
		eps=0.001	0.012251	0.000609	0.000030	20.398810
	f=6, fp=2	eps=0.01	0.024760	0.006622	0.000302	21.961475
		eps=0.001	0.024760	0.000662	0.000030	22.052286
	f=8, fp=2	eps=0.01	0.036114	0.006653	0.000297	22.366257
		eps=0.001	0.036114	0.000665	0.000030	22.537918
	f=2, fp=4	eps=0.01	0.003165	0.009198	0.001293	7.112455
		eps=0.001	0.003165	0.000933	0.000129	7.215171
	f=2, fp=6	eps=0.01	0.003165	0.003155	0.002576	1.224708
		eps=0.001	0.003165	0.000307	0.000258	1.191953
	f=2, fp=8	eps=0.01	0.003165	0.007592	0.003775	2.011383
		eps=0.001	0.003165	0.000728	0.000377	1.927707

FIGURE 4 – Résultats sur le cercle (nb_vert=32) FIGURE 5 – Résultats sur le cercle (nb_vert=64) Il semblerait que les résultats obtenus pour le problème C_2 (colonne "Corr v2") soient meilleurs que ceux obtenus pour le problème C_1 (colonne "Corr"). La colonne "facteur" contient les coefficients "Corr"/"Corr v2". On obtient alors le même type de résultat que pour le cas test du carré.

2.3 Explication

On cherche ici à expliciter la forme de la solution dans le problème C_2 . La décomposition de u_h sur la base $(\varphi_1, \ldots, \varphi_{N_h})$ de V_h s'écrit pour ce problème

$$u_h = \phi(x)C_h + \tilde{\phi}(x) \tag{1}$$

avec

$$C_h = \sum_{i=1}^{N_h} C_i \varphi_i \tag{2}$$

Or

$$C_i = \frac{u(x_i) - \tilde{\phi}(x_i)}{\phi(x_i)} \tag{3}$$

avec

$$u(x_i) = \tilde{\phi}(x_i) + \epsilon P(x_i) \tag{4}$$

et

$$\phi(x) = \phi(x_i) + (x - x_i)\phi'(x_i) \tag{5}$$

Les relations 1 et 2 deviennent alors :

$$u_{h} = \tilde{\phi}(x) + \phi(x)C_{h}$$

$$= \tilde{\phi}(x) + \phi(x) \sum_{i=1}^{N_{h}} C_{i}\varphi_{i}$$

$$= \tilde{\phi}(x) + \phi(x) \sum_{i=1}^{N_{h}} \frac{u(x_{i}) - \tilde{\phi}(x_{i})}{\phi(x_{i})} \varphi_{i} \quad \text{par 3}$$

$$= \tilde{\phi}(x) + \phi(x) \sum_{i=1}^{N_{h}} \frac{\tilde{\phi}(x_{i}) + \epsilon P(x_{i}) - \tilde{\phi}(x_{i})}{\phi(x_{i})} \varphi_{i} \quad \text{par 4}$$

$$= \tilde{\phi}(x) + \epsilon \sum_{i=1}^{N_{h}} P(x_{i}) \frac{\phi(x)}{\phi(x_{i})} \varphi_{i}$$

$$u_{h} = \tilde{\phi}(x) + \epsilon \sum_{i=1}^{N_{h}} P(x_{i}) \left(1 + \frac{(x - x_{i})\phi'(x_{i})}{\phi(x_{i})}\right) \varphi_{i} \quad \text{par 5}$$

$$(6)$$