РОЗРОБКА СИСТЕМИ КЛАСИФІКАЦІЇ МУЗИЧНИХ КОМПОЗИЦІЙ ЗА ЖАНРАМИ

Роботу виконав: Харченко Федір, учень 9-А класу ХНВК №45 «Академічна гімназія»

Науковий керівник: Руккас Кирило Маркович, професор кафедри теоретичної та прикладної інформатики механіко-математичного факультету Харківського національного університету ім. В.Н. Каразіна, доктор технічних наук, доцент.

Вступ

Мета дослідження: підвищення якості класифікації музичних композицій на жанри за допомогою нейронної мережі.

Актуальність дослідження: на підставі популярності музичних сервісів, корисною є можливість аналізу жанрових уподобань користувача по прослуханим композиціям для подальшого складання списку рекомендацій.

Об'єкт досліджень: процеси класифікації музичних композицій на жанри за допомогою нейронної мережі.

Предмет досліджень: математичні моделі класифікації музичних композицій на жанри за допомогою нейронної мережі.

Вступ Перетворення даних

ня Створення нейромережи Тренування нейромережи

Вступ

Завдання роботи:

- 1.Знайти та виконати метод перетворення даних.
- 2. Аналіз методів класифікації
- 3.Створення та тренування нейромережи.
- 4.Оцінка якості класифікації.

Вступ Перетворення даних

ня Створення нейромережи Тренування нейромережи

Аналіз методів перетворення даних

Вступ Перетворення даних

Створення нейромережи Тренування нейромережи

Аналіз методів перетворення даних

даних

Метод мел-кепстральних коефіцієнтів (MFCC)

нейромережи

нейромережи

класифікації

Створення та тренування нейромережи

Багатошаровий персептрон

Набір значень МГСС для кожного фрейму одного аудіофайлу

Нейрон з найбільшим значенням показує до якого з 10 жанрів належить цей трек: блюз, класика, кантрі, хіп-хоп, джаз,

Вступ

Перетворення даних

Створення нейромережи Тренування нейромережи

метал,

поп, реггі,

рок.

Створення та тренування нейромережи

Згорткова нейромережа

Вступ

Перетворення даних Створення нейромережи Тренування нейромережи

Тренування нейромережи

Розбиття набору даних на тренувальні та тестові дані, як 70/30. Тренування нейромережи на двох алгоритмах: адам та стохастичний градієнтний спуск.

Вони являються варіаціями градієнтного спуску. Градієнтний спуск — ітеративний алгоритм пошуку мінімуму або максимуму функції, функції помилки між вагами, тобто різниця між очікуваним результатом та отриманим.

Рис. 1 Градієнтний спуск

Вступ

Перетворення даних

Створення нейромережи Тренування нейромережи

Оцінка якості класифікації музичних композицій

Синій – багатошаровий персептрон з стохастичним градієнтним спуском.

Помаранчевий -

багатошаровий персептрон з алгоритмом адам.

Сірий – згорткова нейромережа з стохастичним градієнтним спуском.

ЖОВТИЙ – згорткова нейромережа з алгоритмом адам.

Вступ

Перетворення даних

Створення нейромережи Тренування нейромережи

Використане програмне забеспечення

Весь код був написаний на мові програмування Python. У ньому були використани декілька бібліотек.

- Librosa бібліотека для обробки аудіо даних, за допомогою цієї бібліотеки було використано метод мел-кепстральних коефіцієнтів.
- Tensorflow бібліотека для роботи з нейромережами, за допомогою неї було створено дві моделі нейромереж, та навчено за допомогою двома алгоритмами.
- Matplotlib бібліотека, для створення графіків.

Висновки

- На підставі проведеного аналізу методів обробки аудіо, був обран метод мел-кепстральних коефіцієнтів.
- Був проведен аналіз методів класифікації було застосовано нейромережу.
- Був проведен аналіз якості класифікації музичних композицій на жанри за допомогою нейронної мережі.
- В ході аналізу нейромереж, для вирішення завдання класифікації музичних композицій за жанрами краще використовувати згорткову нейромережу з оптимізатором Адам, найвища точність цієї нейромережі 77 відсотків.

Дякую за увагу!