Suppose we observe p values $\pi_1,...,\pi_n$ coming from Z scores $Z_1,...,Z_n$ such that $\pi_i = 2\Phi(-|Z_i|)$ and $Z = [Z_1,...,Z_n]^T \sim MVN(0,\Sigma)$ under the null where Φ is the CDF of N(0,1). For notation we use $I\{A\} = 1$ if A occurs 0 otherwise (i.e. indicator). Let $S(t) = \sum_k I\{|Z_k| \geq t\}$.

In the grant we have a band of h_i and we reject the global null if $\pi_{(i)} \leq h_i$ for any i. The h_i are chosen such that $\alpha = P\left[X \leq h_i\right]$ where $X \sim Beta(i, n+1-i)$. I suggesting observing that

$$\begin{split} P_0\left[\pi_{(i)} \leq h_i\right] &= P_0\left[|Z|_{(d+1-i)} \geq -\Phi^{-1}(h_i/2)\right] \\ &= P_0\left[\left(\sum_k I\left\{|Z_k| \geq -\Phi^{-1}(h_i/2)\right\}\right) \geq i\right] \\ &= P_0\left[S\left(-\Phi^{-1}(h_i/2)\right) \geq i\right] \end{split}$$

When $\Sigma \neq I$, S(t) has the null distribution of an over or under-dispersed binomial. [1] and [2] approximate the distribution of S(t) with the Extended Beta Binomial distribution $EBB(\lambda, \gamma)$ where they choose λ and γ to match the mean and variance of S(t). Let f(x;t) be its PMF.

We choose a new adjusted \hat{h}_i such that

$$\alpha = P_0 \left[S\left(-\Phi^{-1}\left(\hat{h}_i/2\right) \right) \right) \ge i \right]$$

$$\approx 1 - \sum_{k=1}^{i-1} f\left(k \; ; \; -\Phi^{-1}\left(\hat{h}_i/2\right) \right)$$

 $P(S(t) \ge x)$ should be decreasing in t for any x. And $-\Phi^{-1}(x/2)$ should be decreasing in x. Thus in practice given an α we can reject the global null if for any i

$$\alpha \geq 1 - \sum_{k=1}^{i-1} f(k; -\Phi^{-1}(\pi_{(i)}/2))$$
$$= 1 - \sum_{k=1}^{i-1} f(k; |Z|_{(d+1-i)})$$

References

- 1. Sun, Lin 2017. Set-Based Tests for Genetic Association Using the Generalized Berk-Jones Statistic
- 2. Barnett et al 2017. The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies