DOCUMENT RESUME

HE 013 795 ED 202 287

Huff, Robert A. AUTHOR

Undergirding Program Decisions with Intormation and TITLE

Unit Costs: An Approach to Differential Funding for

Statewide Systems of Postsecondary Educational

Institutions.

Education Commission of the States, Denver, Colo. INSTITUTION

Inservice Education Program.; State Higher Education

Executive Officers Association.

Kellogg Foundation, Battle Creek, Mich. SPONS AGENCY

FEPORT NO IEP-036 PUB DATE Nov 75

44p.: Paper presented at a Seminar for State Leaders NOTE

in Postsecondary Education (Hartford, CT, November

1975).

MF01/PC02 Plus Postage. EDRS PRICE

*Budgeting; Case Studies; *College Planning; DESCRIPTORS

*Computer Oriented Programs; Databases; Decision Making: *Financial Support: Management Information Systems: *Needs Assessment: Postsecondary Education;

Resource Allocation; School Funds; *Statewide

Planning: Unit Costs

*Seminars for State Leaders Postsec Ed (ECS SHEEO) IDENTIFIERS

ABSTRACT

A differential funding method for statewide higher education planning is examined, and a case study is presented. There are three basic dimensions or parameters by which higher education funding formulas may be differentiated: course level, discipline cluster, and institutional type. It is suggested that the only effective way to logically address the needs of instructional activities is to consider all three dimensions simultaneously. It is proposed that an acceptable statewide higher education financial planning tool must satisfy three important criteria: simplicity, compatibility with current funding approaches as well as with future trends, and limitations on institutional data contributions. The kind cf software system that may prove helpful is comprised of three programs or modules. The preparation module accepts all inputs including both institutional descriptors and planning policy parameters. The calculation module employs the submitted differential funding policies or formulas in conjunction with the credit hour demands produced in the preparation module to compute resource requirements. In addition, with the report module, the outputs of the calculation module are aggregated, sorted, and arrayed in preparation of a series of reports. The use of a prototype statewide planning and budgeting system at Mansfield State College and Shippensburg State College in Pennsylvania is described. It is claimed that computers provide the only means of accurately repeating thousands of calculations necessary for the development of alternative sets of institutional budgets within a short period of time. (SW)

HE 013 795

Inservice Education Program (IEP)

Paper Presented at a Seminar for State Leaders in Postsecondary Education

UNDERGIRDING PROGRAM DECISIONS WITH INFORMATION AND UNIT COSTS:

AN APPROACH TO DIFFERENTIAL FUNDING FOR
STATEWIDE SYSTEMS OF POSTSECONDARY EDUCATIONAL INSTITUTIONS

ROBERT A. HUFF

Executive Secretary
New Mexico Board of Educational Finance

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as received from the person or organization receivation at

Minor changes have been made to improve reproduction quality

Points of view or opinions stated in this document do not necessarily represent official NIE position or tiplicy.

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

Hartford, Connecticut November 1975

FCS

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (EDIC)."

IEP Paper No. 036

Inservice Education Program (IEP)
Education Commission of the States
1860 Lincoln Street. Suite 300
Denver, Colorado 80295

The IEP Program has been supported primarily by the W. K. Kellogg Foundation with additional funds from the Education Commission of the States, the Frost Foundation and the State Higher Education Executive Officers

Contents

	Page
Why Differential Funding	1
Technological Support for a Political Process	. 2
Dimensions of Differential Funding	4
Description of the Needed Technology	10
An Illustrative Application	13
A Plan for Action	35
A Final Caution	40

Why Differential Funding

Over the peat decade the absolute amount of funds, as well as the percentage of the gross national product utilized in support of institutions of higher learning, has increased dramatically. A natural consequence of this increase in appropriations has been critical scrutiny of how the large numbers of dollars have been allocated and expended. With the tightening of purse strings in many states, legislators have had to make difficult decisions regarding the relative return on dollars spent on education versus dollars spent on other important public needs. In addition, fierce competition among institutions for available funds has become commonplace. Faced with an environment in which many hard decisions must be justified, both state officials and educational leaders have begun to demand a more visible and logical process for distributing public funds to the several institutions within a state system.

Few will argue that equity in funding a diverse set of institutions can be found in treating all college and university instructional programs alike when it is time to distribute public dollars. Indeed, if diversity is to be maintained, there must be careful consideration of the differential needs and resource requirements of various programs, instruction levels, and institutions. Thus, differential funding formulas are deemed desirable by many state agency officials, legislators, and educators who fear that diversity will be compromised if blanket funding patterns are applied to all institutions and programs.

The major question no longer is whether to pursue differential funding formulas, but how the process of investigating and evaluating many different suggested variations in the funding pattern can be efficiently handled.

Technological Support for A Political Process

Picture for a moment a conference table surrounded by state officials, trustees, and educational leaders engaged in earnest discussion of the most appropriate way to allocate available higher education funds among several institutions. Many proposals, counter proposals, and suggestions are quickly presented. Each institution can make a persuasive philosophical case for the pattern of funding that will maximize its ability to pursue its own objectives. The problem. is that many sets of educational objectives are worthy, but all institutional goals and objectives cannot be pursued with equal vigor. Difficult decisions must be made, but there is no means of quickly assessing the dollar consequences of selecting one suggested funding pattern over another. There is no means of quickly evaluating the trade-offs between opposing funding formulas or the sensitivity of changing existing formulas. The stage is set for the essential political process of funding formula negotiation, but the technology for providing meaningful feedback to the negotiators concerning their proposals is lacking. Under such conditions, meaningful discussion cannot long be sustained and the desired logical, visible process for arriving at fund allocations may be lost in the heat of the political moment. The result is frequently a hasty return to broad, generalized funding formulas that tend to ignore instructional program differences and treat all institutions the same.

It appears that significant improvement in the political negotiation process related to funding could be obtained if technology were made available which would allow quick recalculation of institutional budgets based on changes in the formulas that might be suggested by any member of the negotiating group. Immediate feedback would reveal some proposals as unrealistic in terms of total dollars required, and others as shifting funds in new directions that might or might not be deemed desirable by the entire group.

Many institutions now have the technology to simulate their campus budgets, but there currently exists in most states little, if any, capability to simulate the multi-campus budgeting process. Tools are needed that will free state agency personnel from the drudgery of grinding prodigious quantities of numbers through calculators in order that they may use their time and intellect to investigate funding alternatives in cooperation with campus leaders. Freedom to plan together, to ask many questions concerning alternative funding formulas and receive useful answers will increase the probability that the right questions will be posed and answered. Too frequently institutions have felt that they have been planned for by state agencies rather than planned with. Ingenuity and patience are required in order to identify the right budgetary questions that should be posed. State agency personnel acting in isolation will frequently fail to identify all of the questions that campus people feel are of paramount importance. Adequate negotiation relative to differential funding formulas will not become a reality until technology is developed that will assist all interested parties in working more effectively together in defining a truly equitable distribution of the limited state higher education resources.

Dimensions of Differential Funding

Consideration of differential funding formulas can make campus administrators somewhat uneasy. A change from funding all instructional activities at an average cost to variable funding of disciplines and course levels suggests a reapportionment of the available pool of higher education dollars. In any redistribution resulting from application of new differential funding formulas, some institutions will gain funds while others must surely lose. The problem is that no one is quite sure exactly how large or in what direction the funding shift might be.

There are two ways in which any individual may approach the task of developing differential funding formulas. One is to consider the effort as a purely political process in which the most wily and skillful negotiator will win a financial advantage for his institution at the expense of sister institutions (assuming a fixed pool of available state higher education dollars). The second is to approach the task with the recognition that professional judgment, experience, and common sense will lead to the conclusion that some course levels, disciplines, and types of institutions are deserving of more than an average amount of funding support while others require somewhat less than the average. The key difference in the two approaches is that the second relies on a combination of reason and philosophical persuasion while the first relies solely on political tactics. The following discussion of the dimensions to be considered when developing funding formulas assumes that the logical, reasoned approach rather than the purely emotional, political approach will be followed.

There are three basic dimensions or parameters by which higher education funding formulas may be differentiated: course level, discipline cluster, and institutional type. Differentiating funding for instruction by course level assumes that it is reasonable to expect variations in class section sizes, faculty contact hour work loads, and instruction related expenses for various course levels. Most educators will agree that graduate instruction is and should be more costly than upper division or lower division instruction. However, it is difficult to know just how much more costly graduate instruction should be. Experienced educators acting in good faith should be able to reach agreement on the differential operating parameters (section size, work load, etc.) and funds required for different course levels.

The argument for differential funding by discipline cluster rests on the fact that some disciplines such as the physical sciences, vocational/technical, and studio art require special laboratory sessions, equipment, and smaller than average student/faculty ratios. Again, few will deny the logic of differentiation for such cases. The problem is in arriving at consensus on the amount of difference that can be justified.

The different missions and modes of operation of a diverse set of state institutions leads many educators to believe that funding approaches should acknowledge and financially support such diversity. As with course levels and discipline clusters, judgment and educational philosophy must be relied upon when considering different levels of funding appropriate for universities, state colleges, and community colleges.

Failure to find reasonable consensus concerning differential needs will erode public confidence in professional educators and damage their credibility. Very simply, it has become unacceptable for educational leaders to say that they either do not know or are unable to agree on the essential differences in how courses at different levels in different disciplines at different types of institutions should be supported in terms of human and other resources. If the professional educators do not know, who does?

If an attempt is made to consider each of the three dimensions (course level, discipline cluster, and institution type) separately, the process of developing differential formulas may soon become confused. The only effective way to logically address the needs of instructional activities is to consider all three dimensions simultaneously. For example, the question is not, what is needed for lower division instruction? Followed by, what is needed for the physical sciences? Followed by, what is needed for universities? Rather, the question should be, what are the resource requirements for lower division instruction in the physical sciences at the universities? Thus, the first task before those attempting to develop meaningful differential funding patterns is to develop a set of discipline planning centers that cut across all three dimensions of the multiple institutions, course levels, and disciplines within the state. By seeking agreement on the aggregates of disciplines, course levels, and institutions that will be considered for differential funding, state and institutional planners will be preparing to give proper attention to the equitable distribution of state higher education funds. Description of a methodology for defining a set of statewide discipline planning centers will be provided later in this paper.

It should be remembered that the state of the art in differential funding is crude at best. If statewide planners attempt to develop myriad differential funding formulas to accommodate everyone's pet discipline, course level, and institution, the budgeting process will probably quickly become mired in its own complexities. The best avenue is to first decide what constitutes the smallest reasonable set of statewide discipline planning centers based on generally acknowledged large differences in resource requirements, and then give careful attention to analyzing the financial support needed for each planning center.

Table I displays the current practice of 16 states in funding higher education institutions. Across the top of the table are the three dimensions discussed above. The figures in the columns define the numbers of course levels, discipline clusters, and different institutional types accommodated in the funding patterns of the 16 states.

It can be quickly noted that a wide variety of practice occurs regarding differential funding formulas. Some states employ no policies at all relative to differential funding by the three dimensions in Table I, although differentiation may occur in those states due to historical precedent and informal political negotiation. Other states have carried the delineation of differential instructional cost centers to an extreme, and one must wonder whether careful attention to analysis of each differentially treated cost center is possible or if historical precedent is merely perpetuated into the future with little regard for what ought to be the differential funding levels. A state operating with five scarse levels applying to each of 25 discipline clusters in

Table I

Dimensions of Differential Funding for Instruction
In 16 States -- July, 1975

State	Course Discipline Levels Clusters*		Institutional Types
California	4	By instruction type lecture, lab, independent study	3
Colorado	5	43	0
Connecticut	3	2 exceptions: Art and Music	0
Illinois	0	3 exceptions in community colleges only	. 0
Kentucky	0	0	o
Massachusetts	0	0	o ,
Missouri	4	25	o
Nebraska	0	0	3
New York (SUNY)	3	0	3
North Dakota	4	5 exceptions: Engineering, Pharmacy, Architecture, Nursing, Technical Education	3
Oklahoma	3	0	4
Pennsylvania	. 0	0 .	3
South Carolina	3	14	3
Texas	3	19	2
Virginia	7	6	0
West Virginia	6	3 exceptions: Engineering, Engineering Technology, Health Technology	0
	·		

^{*}All states fund medical schools and such other special units as veterinary medicine and dentistry in a differential manner. Data related to these instructional programs have not been included in this table.

two different institution types is actually funding instruction differentially in 250 separate cost centers. It is hardly likely that sufficient thought and analysis can be given to the unique needs of that many different discipline planning centers. The time and knowledge of professional personnel will allow thorough consideration, analysis, and negotiation of a limited number of discipline planning centers. Thus, planning centers should be broad in nature rather than overly discrete. It is time to learn to use a yardstick well rather than to attempt to apply a micrometer to a problem that is still poorly understood.

All of the above discussions have related only to the instructional portion of institutional budgets. Consideration of state funding for research, public service, and such support activities as libraries, executive management, and physical plant maintenance pose a completely different set of problems. The current state of the art offers little assistance in preparing formulas for these non-instructional activities. Although support activity formulas that are driven by instructional variables (i.e., student credit hours, FTE faculty, or instructional budget) exist in several states, they have been derived primarily through subjective judgment. Furthermore, many of the support activity expenditures bear little relationship to the instructional portion of the institution. Rising fuel bills are not merely a function of more students. Postponed building maintenance cannot be delayed forever. The most pragmatic approach to developing institutional operating budgets at this time is to employ differential funding formulas for the instructional area and engage in individual analysis of the current needs of the several support activity areas. When funding support activities, the key question usually is not how many students will appear

next year. Rather, the questions become what was the level of funding for the activity last year, what expenditures were or can be postponed, and what inflationary factors have arisen that are most important in setting support activity budgets? Such factors call for specific annual consideration rather than generalized formulas.

Description of the Needed Technology

Statewide educational planning agencies face many dilemmas in interfacing with both institutions and funding bodies. They must secure enough hard data to support resource allocation decisions and, at the same time, not create undue data collection burdens for individual empuses or unduly constrain institutional autonomy in managing institutional operations. Computer assisted approaches to statewide financial planning that focus the attention of educators and state personnel on key budgeting parameters and allow meaningful dialogue concerning differential funding could be very useful. The technological know-how to provide the needed computerized statewide planning and budgeting tools now exists and such tools can be expected to become commonplace during the next few years.

An acceptable statewide higher education financial planning tool must satisfy three important criteria:

1. <u>Simplicity</u> -- Highly complex, esoteric models and approaches have not been well understood nor frequently implemented. Most state agencies do not have large numbers of staff or large amounts of resources for their own operations. Furthermore, legislators and state budget officers must be able to understand the higher education fund negotiation approach without great expenditure of their personal time.

- 2. Compatibility with current funding approaches as well as future trends Although a computerized budgeting instrument should allow investigation of new alternatives in resource allocation, any tool that is unable to relate to the ways in which funding of institutions is currently accomplished will have limited acceptability. Change is usually evolutionary rather than revolutionary.
- 3. <u>Limitations on institutional data contributions</u> Planning models that depend heavily on massive contributions of data collected in and by institutions are cumbersome at best and politically unacceptable at worst. A truly useful model must operate on a combination of normally collected institutional data and policy decisions. Special institutional data collection efforts to run a statewide planning model are to be avoided.

Figure 1 provides a generalized description of the kind of software system that may prove helpful. The prototype system is comprised of three programs or modules. The Preparation Module accepts all inputs including both institutional descriptors and planning policy parameters. This module computes enrollments at the institutional and program levels, calculates credit hour demands of the various clusters of disciplines identified within the state for differential funding consideration, and edits all input data.

The Calculation Module employs the submitted differential funding policies or formulas in conjunction with the credit hour demands produced in the Preparation Module to compute resource requirements. The resource estimates include numbers of faculty positions for various discipline clusters in different institutions, faculty salary requirements, and other line item expenditures such as support staff, supplies, etc.

Figure 1
Prototype Software Description

3 Preparation Calculation Module Report Module Input Data Module Translation Reports Application of Projected Separate of Enrollments Budgets Differential into Credit for each Funding Demands Institution Formulas per institution per discipline 'per course level

61

The third and last module shown in Figure 1 is the Report Module. Here the outputs of the Calculation Module are aggregated, sorted, and arrayed in preparation for the printing of a series of reports.

An Illustrative Application

One of the best ways to explain the capabilities and potential utility of any piece of new technology is to provide a case study illustration. This has been done with the use of a prototype Statewide Planning and Budgeting System (SPBS) in order to support the following narrative description.

The Pennsylvania Department of Higher Education is currently serving as a pilot test site for the use of a new prototype planning and budgeting model. Two state college campuses have been selected to provide the data base for the project and to serve on a team that will evaluate the effectiveness of the new technology in facilitating the multi-campus planning and budgeting process. The two institutions are Mansfield State College and Shippensburg State College. These two campuses have provided historical information related to enrollments, course registration patterns followed by various types of students, and curriculum offerings that will serve as the data base for the pilot test and for this illustrative case study. The cooperation of these two campuses is greatly appreciated since it is always desirable to test a new software tool with actual data as opposed to contrived input. It should be remembered that while the baseline data in the following illustration are actual, all of the policy decisions and funding formulas that have been used to develop the example are fictitious and do not necessarily represent what is actual or even desirable for the two campuses. For this reason,

and to prevent a casual viewer from hastily scanning the budget reports that are displayed as part of the illustrative case and assuming that the dollar figures are the result of actual funding negotiations, the names of the two institutions have been changed on all reports to Alpha State College and Beta State College.

The prototype SPBS is initiated with forecasts of student enrollments in the various institutions of the multi-campus system. The enrollment projections must be broken down to indicate the numbers of students who will enter at various student levels in various degree programs. At Alpha and Beta State Colleges the three student levels used were lower division, upper division, and graduate level. Table II displays the SPBS projected enrollment report for the two campuses. It can be noted that Alpha State College is expecting an enrollment of 3,006 while Beta State College anticipates 4,776 full time equivalent students.

Differential funding of instructional disciplines assumes that students taking courses in different disciplines at different course levels consume varying amounts of resources. Thus, an effective planning strategy must assess the demands that the projected enrollments will place on the various discipline clusters and fund them accordingly. Figure 2 illustrates the interaction of students in the various degree programs at Alpha State College with the instructional disciplines offered there. For example, a student entering as a lower division biology major can be expected to take a certain number of biology courses but that same student will also be required to take courses in mathematics, the social sciences, and many of the other disciplines offered by the institution. The SPBS uses numerical descriptions of the historical interaction between all types of student majors and all disciplines along

II STATE# SOLITE BELLE BELLE STATE SOLITE STATE

SPASSI PHOTUTYP4 VPISU-HUFF

VMISU-HUFF			,	ENHOLLMENT	REPORT
INSTITUTION	PROGRAM	TUIAL	•F0	• ປວ	•ек
Alpha State	04 010LUGY	120 -	62	58	
College	ON EUUCATION	1.090	486	574	30
	IU FINE ARTS	73	41	29	2
	11 LANGUAGES	34	13	21	-
	12 MED. TECH.	41	33	d	
	13 HOME ECON	455	248	207	
	15 LEFFERS	102	44	эĉ	6
	16 FIRMARA SCI	24	2	55	Ū
	17 MAIN	80	4 U	3 9	
	13 PHISICAL SCI	61	29	32	
	20 PSYCHOLOGY	164	60	104	
	55 POCIVE PCI	446	212	230	5
	44 THIERDISC	UUŁ	321	40	39
	52 MED TECH-2	ý	9		
	YY UNDECLARED	н	1		7
Alpha State College	TOTALS	3.006	1+501	1+416	89
D. 4 C. 4	04 BIULDGY	246	165	73	а
Beta State	05 8 051%ES5	1,071	747	293	ง วิ
College	UB COMMUNICAT	262	167	68	27
	UB EUUCATION	1,310	508	.% 4∋d	257
	IU FIHE ANTS	1	,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
	11 LANGUAGES	63	40	26	
	IC MEJ. TECH.	40	36	10	•
	IS LETTERS .	150	64	74	12
	19 FIGHARA SCI	112	48	46	. 19
	17 MATH	163	ڏو	ŠÝ	ii
	17 PHISICAL SCI	116	60	55	4
	26 PSYCHOLOGY	124	90	40	•
	21 PUBLIC AFFRS	< H <	159	33	46
	ZZ SULIAL SCI	atc	113	201	21 23
	41 CONTINUED	46	42		5.1
	YY UN ECLAHED	230	171		59
Beta State College	IOTALS	4.776	2.404	1,455	48 H
	SYSTEM TOTALS	1.152	4+305	2+900	511

Figure 2

Degree Program/Discipline Interaction at Alpha State College

Med. Tech. - 2

Undeclared

* Interaction lines are shown for only two of the fourteen degree programs to avoid an overly confusing set of lines in the diagram.

with the previously reported enrollment forecasts to project the credit hour demand that the enrollments will place on each discipline. Table III shows the credit hour demands resulting from such calculations at Alpha and Beta State Colleges.

All of the computations to this point have occurred in the Preparation Module of the SPBS software. Shifting to the Calculation Module requires development of a series of trial policies related to differential funding that may be inserted into the model.

The first concern pertains to the development of discipline planning centers for differential funding consideration. It has previously been pointed out that one of the dangers in attempting differential funding is seeking to deal with too much detail. Each of the credit demand figures in Table III is a potential planning center that could be funded in a unique, differential manner. Beginning with the demand on lower division (.20) biology at Alpha State College for 4,861 credits, there are 69 separate credit demand figures listed in Table III for the two institutions. Clearly, if each of these figures was considered a unique planning center, it would be extremely difficult to give the time required for thorough objective and subjective analysis of all of their differential resource requirements. A practical alternative is to group a number of disciplines that are felt to be somewhat similar in their resource requirements into aggregate planning centers. With fewer planning centers, thorough analysis and funding negotiations could be carried out. Differential funding formulas in higher education should seak first to accommodate the large variations in funding needs that can be measured in dollars before they attempt to deal with the smaller variations that must be measured in pennies. Table IV displays the results of the process of constructing discipline planning centers

TABLE III
STATEWIDE PLANNING AND HUDGETING SYSTEM

SP4551 PHOTOTYPE VPISU-HUFF

VHISJ-HUFF				CHEUIT DEMAN	J HEHOKL
NOTTUTI FRAT	DISCIPLINE	TOTAL	• ć 9 🕏	• 30 *	.50*
Alpha State	04 mIOLOGY	5,738	4,46]	578	
College	NOTIALION	35,067	16+190	16,744	2.133
	11 LANUIJAGES	2,047	1.776	415	
	13 HUME ECUN	6,975	3,568	3.467	
	15 LETTERS	11,167	9,903	1.096	166
	10 FIGHARA SCI	506	48	458	
	17 MAIH	2,902	2,642	207	3
	13 BUAPICAL SCI	5,268	4+665	604	
	20 421F40F0P4	6.627	4.924	1.655	238
	22 SOCIAL SCI	1,2,475	9.146	3,809	71
	44 INTERUISE	122	94	55	6
Alpha State College	TOTALS	89:644	57.817	29.208	2,619
Beta State	04 B10L06Y	7,221	5,527	529	165
College	UD BUDINESS	19.109	8 • 70 3	4,444	957
	U6 CUMMUNICAT	2,098	1+284	790	624
	UB EDULATION	22,217	4,428	12.361	5,428
	ODJ/ HEALTH PE	2,880	5.480		3,
	OBJE BUE BLBO	41050	2,151	2.315	183
	10 FINE ARTS	41526	2,167	1,598	57
	11 LA NULAGES	1.018	1,320	540	•
	15 LETTERS	15,658	14./31	612	315
	10 LISHAHY SCI	2,310	1.158	135	440
	17 MATn	8.079	7.283	6/0	120
	19 PHYSICAL SCI	5.241	4,509	· /14	. 18
,	20 PSYCHOLOGY	9,679	5,402	1.658	1.209
	21 SULIAL WELF	3,022	1.293	1.164	
	22 SULIAL SCI	31,435	201/31	4,070	1.434
Beta State	•				
College	ZJATCT	140.346	41.50 0	37.345	10,930
	STATEM TOTALS	229,990	149.385	57:056	13+549

^{* .20} is a code used to designate lower division course level.

^{.30} is a code used to designate upper division course level.

^{.50} is a code used to designate graduate division course level.

Planning Center 1

Lower Division Biology ALL*
Lower Division Physical Sci. ALL
Lower Division Fine Arts ALL
Lower Division Home Econ ALL

Planning Center 2

Lower Division Business ALL Lower Division Business Ed. ALL Lower Division Communications ALL Lower Division Languages ALL

Planning Center 3

Lower Division Education ALL
Lower Division Health & P.E. ALL
Lower Division Letters ALL
Lower Division Math ALL
Lower Division Psychology ALL
Lower Division Social Welfare ALL
Lower Division Social Science ALL
Lower Division Interdisciplinary ALL

Planning Center 4

Upper Division Biology ALL
Upper Division Physical Sci. ALL
Upper Division Fine Arts ALL
Upper Division Home Econ ALL

<u>Planning Center 5</u>

Upper Division Business ALL
Upper Division Business Ed. ALL
Upper Division Communications ALL
Upper Division Languages ALL

Planning Center 6

Upper Division Education ALL
Upper Division Health & P.E. ALL
Upper Division Letters ALL
Upper Division Library Sci. ALL
Upper Division Math ALL
Upper Division Psychology ALL
Upper Division Social Welfare ALL
Upper Division Interdisciplinary ALL

Planning Center 7

Grad. Division Biology ALL Grad. Division Physical Sci. ALL Grad. Division Fine Arts ALL

Planning Center 8

Grad. Division Business ALL Grad. Division Business Ed. ALL Grad. Division Communications ALL

Planning Center 9

Grad. Division Education ALL
Grad. Division Letters ALL
Grad. Division Library Sci. ALL
Grad. Division Math ALL
Grad. Division Psychology ALL
Grad. Division Social Sci. ALL

i.e., Lower Division Biology in ALL institutions.

^{*} The word ALL refers to the fact that the discipline and planning center will apply to ALL institutions,

by aggregating the several disciplines at Alpha and Beta State Colleges in accordence with their similarities in resource requirements. As shown in Table IV, the result of that process is the construction of nine planning centers that encompass both institutions. With the identification of the nine planning centers, the stage is set for discussion of the amount of variations in human and other resources that will be supported by the funding agency.

Table V shows the funding formulas that were developed and used at Alpha and Beta State Colleges for each of the nine planning centers. It can be noted that Planning Center 1 will carry a student faculty ratio of 18 students to each faculty position and that each faculty position will be supported at the rate of \$15,000 for salary and fringes. Also, Planning Center 1 will be funded for secretarial support at the rate of a \$3,000 minumum base plus an additional \$500 per each faculty position. Finally, supplies and expenses for Planning Center 1 will be provided by a formula that allocates a minumum base of \$1,000 to each discipline, plus \$200 per each discipline faculty position, plus \$2 for each credit hour generated. Application of the formulas displayed in Table V at Alpha and Beta State Colleges results in the generation of the SPBS Discipline Budget Report shown in Table VI.

The Discipline Budget Report is typical of the line item budgets that virtually all institutions develop and use for daily operation and control purposes. In this illustration only three line items were included for each discipline. However, the system allows the calculation of any number of discipline line items with any locally defined titles such as travel, communication, duplication, computing, etc.

Table V
Discipline Planning Center Funding Formulas

Planning Center	Student/Faculty Ratio	Dollars Per Faculty Position
PC1	18 to 1	\$15,000
PC2	20 to 1	\$15,000
PC3	24 to 1	\$15,000
PC4	15 to 1	\$18,000
PC5	18 to 1	\$17,000
PC6	20 to 1	\$17,000
PC7	10 to 1	\$20,000
PC8	12 to 1	\$19,000
PC9	15 to 1	\$19,000
Planning Center	Secretarial Support	Formulas
PC1	\$3,000 Base + \$500 per B	Faculty Position
PC2	\$3,000 Base + \$500 per F	
PC3	\$3,000 Base + \$700 per F	
PC4	\$3,000 Base + \$700 per F	
PC5	\$3,000 Base + \$700 per F	Saculty Position
PC6	\$3,000 Base + \$800 per F	aculty Position
PC7		'aculty Position
PC8		aculty Position
PC9	•	aculty Position
Planning Center	Supplies and Expens	es Formulas
PC1	\$1,000 Base + \$200 per F	aculty Position + \$2.00 per student credit
PC2	\$1 000 Rage + \$200 new F	aculty Position + \$1.50 per
102	71,000 base : 7200 per r	student credit
PC3	\$1,000 Base + \$200 per F	aculty Position + \$1.00 per
203	71,000 Basis : 7200 per 1	student credit
PC4	\$1.000 Base + \$300 per Fa	aculty Position + \$3.00 per
,	, _ , _ , _ , _ , _ , _ , _ , _ , _ , _	atudent credit
PC5	\$1,000 Base + \$300 per Fa	aculty Position + \$2.00 per
DC(\$1 000 Par 1 \$200 Par	student credit
PC6	\$1,000 Base + \$300 per Fa	student credit
PC7	\$1,000 Base + \$400 per Fa	aculty Position + \$4.00 per student credit
PC8	\$1,000 Base + \$400 per Fa	aculty Position + \$3.00 per
		student credit
PC9	\$1,000 Base + \$400 per Fa	student credit

TABLE VI STATEWIDE PLANNING AND HODGETING SYSTEM

SH450} 4m)[UTYPF VH[SU-MUFF

DISCIPLINE SUDGET REPORT

INSTITUTION	ÚISCIPLINE	TOTAL	• < 0	: 30	• > 0
Alpha State					
College					
5 - 1 in	F				
→ ¤IOLUSY	FACULTY SALARIES		135.015	35,114	
	SECHETARIAL	11.860	7+501 ₹ 12-521	4+356	
	SUPPLIES + EXP	16,740	167761	4,219	
•	DISCIPLINE TUTAL	198,736	155.037	43.699	
IN EDUCATION .	FACULTY SALARIES	924,283	337.290	474,415	112,578
	SECHETARIAL	47,200	15.740	£2.545	5,925
	SUPPLIES + EXP	65,945	21,587	34,498	9,769
	DISCIPLINE TOTAL	1.037.428	377.717	531,433	128.273
11 LANGUAGES	FALULTY SALAHIES	54,491	44,450	10,041	
	SECHETARIAL	1,695	4,482	3,413	
•	SUPPLIES + EXP	0,075	4,200	1.415	
	DISCIPLINE TOTAL	66,461	53,142	15.257	
				134237	
13 HUME ECON	FALULIY SALAHIES	235,190	99,110	130,279	
	SECHETAHTAL	14,603	5+304	00t+B	
	SUPPLIES + EXP	2 2,9 50	++457	13,476	
	DISCIPLINE TOTAL	272.943	114, 171	150.0/2	
ID LETTERS	FACULTY SALARIES	246,228	205+304	31.057	8,867
	SECRETARIAL	17,373	12,428	4,279	657
	SUPPLIES + EXP	18,536	13,553	3.1.45	1.691
	DISCIPLINE TOTAL	282 • 138	232.505	38.258	11,025
IO LIUHARY SCI	FALULIT SALAHIES	13,977	106		
	SELMETARIAL	6.591	1.000 3.047	12,917	
	SUPPLIES + EAP	2,977	1:061	3+544	
	DISCIPLINE TOTAL	23,536	5,108	1,416 18,428	
		207330	34100	101450	
11 TATH	FALULTY SALARIES	65,101	55,1179	5.853	158
	SECHETHALAL	8,857	50617	3.241	Ä
	SUPPLIES + EXP	6,866	4 • 4 4 0	1 + 4 1 4	1.012
	DISCIPLINE IDIAL	77,833	65+136	10.518	1.179
14 PHYSICAL SCI	FACULTY SALARIES	153,719	129.572	24,147	•
	SELHETARIAL	11.250	7+319	3.737	
	SUPPLIES + EXP	15,270	12.057	3,513	
	DISCIPLINE TOTAL	180.247	145.448	31.679	
PO PSYCHOLOGY	FACULTY SALAHIES	165.414	14.9 7.2		
	SECHETARIAL	162,317	102+573	47,151	12.503
	SUPPLIES . EXP.	13,600	7 + 7 8 7	4.743	661
	DISCIPLINE TUTAL	12,600	7+241 117+651	4 + 33U	1,9/4
		1074203	1111031	50+454	15.203

TABLE VI (continued)

SP4S51 STATEWIDE PLANNING AND BUDGETING SYSTEM

VP15U-HUFF			0.	ISCIPLINE BU	DGET REPORT
VOLICITISMI	DISCIPLINE	TOTAL	.20	.30	.50
Alpha State College					
SS PUCTAL SCI	FALULTY SALAHIES	301+130	167,498	107,353	3,747
	SEUNETARIAL	19,483	11+843	7,442	197
1	SUPPLIES . EXP	22,530	12.623	8.515	1,292
`	DISCIPLINE TOTAL	343,143	213,464	123,443	5,236
24 TALEMBIRG	FACULTY SALAHIES	2,899	1+459	624	317
	SEURETARIAL	6+134	3.091	3.026	17
	SUPPLIES + EXP	3,18,	1 • 1 < 0	1.044	1.025
	DISCIPLINE TUTAL	12,222	5 • 171	4,573	1.359
Alpha State College	TAPLITATION TOT	2,685,995	1+491+379	1,032,343	162.273
Beta State Coll	ege				
04 910FnQA	FACULTY SALARIES	216,223	181+312	21.150	13.750
- -	SELHETARIAL	13,417	9+1144	3,823	134750 550
	SUPPLIES + EXP	21,347	15,472	2,940	1.935
,	DISCIPLINE TUTAL	250,986	206.828	27,923	16.235
92 HUSINESS	FACULTY SALAHIES	578,170	217+576	297,458	63.136
	SELRETARIAL	28.492	10,453	15.648	2,991
	SUPPLIES + EXP	47,302	16,456	25+147	5,500
	DISCIPLINE TUTAL	653+96+	244+/84	337.853	71+327
PO COMMUNICAT	FACULTY SACARIES	98.141	32.103	24,373	41,106
	SELHETARIAL	10,044	4.070	4.024	1.950
	SUPPLIES + EXP	10,112	3.354	3,017	3.739
	UISCIPLINE TOTAL	110,296	39.527	31.716	45.855
18 EDUCATION	FACULTY SALAMIES	128,957	42,252	350,228	286,477
	SCLHETARIAL	39.004	7.305	1/+461	15.078
	SUPPLIES + EXP	55,645	5,558	25,722	23.315
	DISCIPLINE TUTAL	824.451	106.215	313,312	324.070
4537 HEALTH PE	FALULTY SALAHIES	60.006	60.006		
	SÉLHETARIAL	5.000	>• →00		•
	SUPPLIES + EXP	4.680	4.580		
	UISCIPLINE TOTAL	70,400	70+486	ì	
1436 ATE FD	FALULTY SALAHIES	130./54	53,766	72,516	12.072
	SECHETARIAL	11,35/	4.792	0.002	J 572
	SUPPLIES + EXP	13,665	4,443	6,919	1,603
	OIDCIPLINE TOTAL	163,/46	63.501	45+838	14, 97
514F 3H12 G1	FACULTY SALAHIES	149.521	75,447	67.424	4.749
	SELHETAVIAL	11.393	3.562	5.644	196
	SUPPLIES + EXP	16.167	7+558	7.226	1.323

TABLE VI (continued) STATE#IDE PLANNING AND BUDGETING SYSTEM

SPHSSI PROTOTYPE PRUHUFF

DISCIPLINE BUDGET REPORT

INSTITUTION	DISCIPLINE	TOTAL	•50	•30	50
Beta State Colle	ege				
	DISCIPLINE TOTAL	177.021	89, 167	80,792	6+262
11 LANGUAGES	FALULTY SALARIES	42,387	33,004	9,342	
	SECHETARIAL	7,486	4,100	3,395	
	SUPPLIES + EXP	5.182	3,420	1,752	
	DISCIPLINE TOTAL	55,055	40+525	14,530	
IS LETTERS	FACULTY SALARIES	340.052	305+387	17.341	16.625
	SECHETARIAL	21,910	17, 321	3,714	875
	SUPPLIES + EXP	24,341	19,422	2,224	2,295
	DISCIPLINE TOTAL	387,104	344,031	23.279	19.795
ID LIBHAHY SCI	FACULTY SALARIES	67,202	24,125	50.410	22.167
	SECHETARIAL	9,154	4,126	3,851	1.167
	SUPPLIES + FAP	7,082	2,480	2,476	2,727
	DISCIPLINE TOTAL	84.038	30./31	27,247	26,U6U
7 MATH	FALULIY SALAHIES	177,223	151,/35	19,154	6.333
	SEUNETARIAL	14,203	10.081	3,759	333
	SUPPLIES + EXP	14,152	10,306	2,352	1,493
	DISCIPLINE TOTAL	205.578	172,123	25.232	8 • 1 6 U
9 PHYSICAL SCI	FACULTY SALAHIES	155.318	125,258	28.550	1.500
	SECHETARIAL	11,346	7,175	4,111	
	SUPPLIES + EXP	16,409	11.589	3.018	60
	UISCIPLINE TOTAL	183,073	144,122	36,259	1,102 2,662
U PSYCHOLOGY	FACULTY SALARIES	252,784	141,716	47.250	63,809
	SELHETARIAL	17,918	£10.6	4,446	3,354
	SUPPLIES + EAP	19,996	9,592	4,336	5,970
	DISCIPLINE TOTAL	290,693	161.021	56+542	73,130
I SUCIAL WELF	FALULTY SALAHIES	75,924	75,737	48, 757	
	SEUNETARIAL	9,274	4,257	5.017	
	SUPPLIES + EAP	7,110	2,552	41428	
	DISCIPLINE TOTAL	92.309	33+n47	56.452	
SUCTAL SCT	FALULTY SALARIES	732,734	535+064	120.457	75.643
	SECHETARIAL	73.881	25,016	1495	75+683
	SUPPLIES + EXP	50,314	33,479	7195 <i>6</i> 91540	3,983
	DISCIPLINE TOTAL	623,029	597,758	1,16,503	6+875 86+361
Beta State	TIPEL TOTAL	0.07027	3711730	2.701.207	001301
College	TOT MOTTUTIFEME	4,379,683	2+345+665	1+337+347	696+371
	SYSTEM TOTALS	7,065,878	3,437,043	2.370.190	ช5 ช•645

The Discipline Budget Report indicates that a total of \$2,685,995 must be provided for Alpha State College and \$4,379,883 for Beta State College in support of their instructional programs, if they are to be operated in the manner defined by the differential funding formulas employed in the calculations. Should the members of the statewide planning group wish to examine the fiscal consequences of changing some of the formulas in any of the disciplines or planning centers at one or both of the institutions, the SPBS software tool could provide immediate feedback. Some typical questions that might be entertained during the funding negotiation process ar .: What if the student/faculty ratio at Beta State College was raised by ten percent to increase faculty productivity, and a concurrent 15 percent salary increase was granted? What if a ceiling on graduate level enrollments was placed on Alpha State College during the next budgetary period? What would it cost to honor a request from Beta State College to decrease the student/faculty ratio in library science at the graduate level to 12 to 1? An important aspect of the budget development process is the investigation of many alternatives and the posing of many different questions related to institutional funding. A statewide higher education budget, properly arrived at, should be calculated and recalculated many times in search of the pattern of resource allocation that will satisfy the maximum number of educational needs with the available funds. Hand calculated budget approaches will never allow this to happen.

Another array of useful information concerning the discipline budgets of the two state colleges is provided in the SPBS Discipline Parameter Report as shown in Table VII. In this report the number of faculty positions, along with the total budget and cost per credit

SP9S51 PROTOTYPE VPISU-HUFF /

TABLE VII STATEWIDE PLANNING AND BUDGETING SYSTEM

DISCIPLINE PARAMETER REPORT

	DISCIPLINE	COURSE	FACULTY POSITIONS	BUDGET	CHEDIT	UNIT
Alpha State College					51 /-	40
	04 BIOLUGY	• 50	¥.00	155,037	4,861	31.90
	04 BIOLUGY	. 30	1.95	43,699	676	49.78
	OB EDUCATION	. 20	22.49	377,717	16,190	23.33
	OH EDUCATION	. 30	27.91	531,438	16,744	31.74
	08 EDUCATION	• ÷0	5.93	128,273	2,133	60.14
	11 LANGUAGES	.20	2.95	53,194	1,775	29.92
	11 LANGUAGES	. 30	.59	15,269	319	47.67
	13 HUME ECON	.20	5.61	114,671	3,569	32.20
•	13 HOME ECON	. 30	7.57	158,072	3,407	46.40
	15 LETTERS	• 50	13.75	232,585	9,903	23.49
	15 LETTERS	. 3 <i>u</i>	1.83	38.524	1.496	35.15
	15 LETTERS	.50	.47	11,025	108	65.62
	16 LIBHARY SCI	.20	. 6 7	5,108	48	106.42
	16 LIBRARY SCI	.30	.76	18.428	458	49.23
	17 MATH	• 2 <i>0</i>	3.74	66,136	2.695	24.57
	17 MATH	. 30	-34	10,518	207	50.83
	17 MATH	• ÷0	• 01	1.179	3	392.46
	19 PHYSICAL SCI	• 50	5.54	148,948	4,665	31.93
	14 PHYSICAL SCI	. 30	1.34	31,299	604	51.85
	20 PS1CHUL061	20	5.64	117,651	4,924	23.90
	20 PSYCHULDGY	.30	2.78	56,454	1.665	33.90
	20 PSYCHOLOGY	. ŝ U	•6b	15,203	233	63.07
	22 SULIAL SCI	• 50	12.53	213,964	9,095	23.52
	22 SUCTAL SCI	.30	6.35	123,943	3,809	32.55
	22 SOLIAL SCI	.50	- 20	5,236	71	73.75
	44 INTERDISC	.20	د1.	6.171	. 94	65.62
	49 INTERDISC	. 3 0	• U 4	4,643	22	213.20
	49 INTERUISC	.50	- 02	1,358	5	226.32
Alpha State College	INSTITUTION TOTALS	•	145.59	2+685+995	89,644	29.96
Beta State College						
	04 BIULUGY	.20	12.09	206+828	6,527	31.69
	04 BloLOGY	.30	1.18	27,921	529	52.76
	04 BIOLOGY	•50	- 69	16,235	165	98.39
	US BUSINESS	.20	14.51	244,794	9,703	28.13
	05 BUSINESS	.30	17.50	337,853	9,449	35.76
	05 BUSINESS	•5U	3 • 32	71,327	957	74.53
	OD COMMUNICAT	• 2 u	2.14	39,527	1,204	30.78
	66 COMMUNICAT	.30	1.46	31,916	790	40.40
	OD COMMUNICAT	. ÷0	c.17	46,855	624	75.09
	Un EDUCATION	• 2 U	5.15	106,215	4,428	23.49
	00 EDUCATION	. 30	20.60	393,372	15.361	31.02
	OH EDUCATION	. > 0	10.00	J24, 870	5,428	59.85
	0037 HEALTH PE	• 50	4. 00	70,446	გ∙¤ 9 0	24.47
	04 3 6 805 ED	• 50	J • 58	63,501	2+151	29.53

52~551 44017144¢ 44127-40££

TABLE VII (continued) STATEWIDE PLANNING AND HUDGETING SYSTEM

DISCIPLINE PARAMETER REPORT

	UISCIPLINE	COJRSE LEVEL	FACULTY POSITIONS	HUUGET	CHEUI! DEMAND	UNIT COST
Beta State College						
	0436 BUS ED	.30	4.29	65 • 838	2,316	22 04
	₽93 4U5 €D	• 50	.64	14.44/	183	37.06
	10 FINE ARTS	.20	5.12	84,467	2,767	78.95
	IU FINE AKTS	. 3u	3.77	80.794	1.699	32.52 47.58
	10 FINE ANTS	.50	24	6,264	57	109.85
	11 LANGUAGES	.20	5.20	40,525	1,320	30.70
	11 LANGUAGES	. 30	•55	14,530	298	48.75
	15 LETTERS	.20	20.46	344.031	14,731	23.35
	15 LETTERS	. 30	1.05	23,279	612	35.04
	15 LETTERS	• 50	.98	19,795	واد داد	62.84
	16 LIBRARY SCI	• 50	1.61	30.731	1.159	26.54
	In LIBRARY SCI	.30	1.23	27,247	738	36.92
	In LIBRARY SCI	0 ذ •	1.17	26,060	420	62.05
	17 FATH	.20	10.12	172,123	7.283	23.63
	17 MATH	. 30	1.13	25.295	676	37.42
	1/ MATH	• S u	.33	8,160	150	65.00
	15 PHYSICAL SCI	. 20	5.35	144,122	4,509	31.96
	19 PHYSICAL SCI	. 30	1.59	30,249	714	50.82
	14 PHYSICAL SCI	.50	. 08	2,652	18	147.89
	20 PSYCHULOGY	.20	9.45	161.021	6+802	23.67
	20 PSYCHOLOGY	. Jů	2.78	56,542	1.063	33.90
	ZU PSYCHULOGY	• ò0	3،36	73.116	1,209	60.49
	21 SOCIAL WELF	.20	1.00	33,847	1,293	25.18
	21 SOCIAL WELF	.30	5.88	58,462	1.727	33.81
	25 SOCTAL SCI	.20	35.74	597,958	25.731	23.24
	22 SOCIAL SCI	.30	7.1c	130.507	4,270	32.44
	22 SUCIAL SCI	• ၁ 0	3.78	80.551	1.434	60.36
					*****	00.30
Beta State College	INSTITUTION TOTALS		236.32	4,374,833	140+346	31.21
	SYSTEM TOTALS		381.91	7,065,378	229,440	30.72

(unit cost), are displayed for each course level of each discipline.

Note that the dollar total for each of the institutions is the same as
in the previous Discipline Budget Report (Table VI). The dollars have
merely been displayed along with some new information in a new way.

A third SPBS report pertaining to the instructional budgets of the two institutions is the Degree Program Budget Report as shown in Table VIII. In this report, the funds required for each output producing degree program are displayed, along with the cost per full time equivalent student at each student level in each degree program.

Frequently, the most important question for funding agencies such as legislatures is, "What is the public getting for the higher education dollars it is expending?" The Degree Program Budget Report relates budgeted funds to educated and trained students (outputs), rather than to input requirements such as faculty salaries, travel, and supplies. It should again be noted that the total instructional budget dollars have not changed in any of the reports. The instructional budget for each institution has merely been arrayed in different ways in order to provide more information for decision makers.

SMM501 PKMTUTYPE VPISU-HUFF

Alpha State College

TABLE VIII STATEWIDE PLANNING AND HUDGETING SYSTEM

DEGREE PHOGRAM BUDGET REPORT

	STUDE	TO HIERUP TE	COST	•
PROGHAM	LEVEL	FTE MAJORS	PER MAJOH	PROGRAM COST
U4 HIOLOG	Y .LU	64.17	954	53,102
U4 BIOLOG		57.60	1.076	61,981
04 BIOF08		119.77	961	115,082
UB EDUCAT	IUN .GH	30.29	1+406	42, 581
UB EDUCATI	IUN .LD	486.03	756	357.619
UH EUUCATI	עט. מטו	573.56	403	518,010
OH EDUCAT	IUN Totals	1.089.88	н 5	928,210
10 FINE AF		2.33	1,002	2,337
10 FINE AF		41.20	755	31.103
10 FINE A	งเง ราง	29.17	494	25,907
10 FINE AR	RIS Totals	72.70	316	59,347
11 LANGUAG		14.93	B 7	11+343
11 LANGUAG		20.77	1,049	21,774
11 LANGUAG	SES Totals	33.70	983	33,117
12 MEO. TE	CH. • GR			
15 HED. TE	CHLD	32.77	945	27,687
15 MED. TE		7.80	1,136	8,859
15 WED. 1E	CH. Totals	40.56	901	36+545
13 HUME EC		247.60	802	213,479
. 13 HUME EC		201.43	1+141	236,669
13 HOME EC	on Totals	455.03	949	450,148
15 LETTERS	• Grt	5.63	1,732	9,740
15 LETTERS	•LU	43.83	784	34,373
15 LETTERS	ئا∪ •	52.43	890	46,677
15 LETTERS	Totals	101.89	991	90.791
16 LIBHARY		2.23	1.362	3.042
16 LIHHARY		21.90	1.074	23,528
16 LIBHAHY	SCI Totals	24.13	1,101	26,570
17 MATH	• GH			
17 MATH	•LU	40.20	773	31,081
17 MATH	. UÚ	39.46	1,003	39,586
17 MATH	Totals	79.66	A07	70.667
19 PHYSICAL		24.27	447	24,795
19 PHYSICAL	• • • • • • • • • • • • • • • • • • • •	32.07	1,153	36,959
19 PHYSICAL	SCI Totals	51.33	1.007	61,754
ZO PSYCHOLO		60.03	783	47.018
20 PSYCHOLO		103.60	100	y3.530
ZU PSYCHOLO	Gr Totals	163.63	459	140.549

SPHS51 PHOTUTYPE VMISU-HUFF

TABLE VIII (continued) STATERIDE PLANNING AND BUDGETING SYSTEM

DEGREE PROGRAM BUDGET REPORT

		STUDENT	NUMBER OF	CUST	
Alpha State College	PROGHAM	LEVEL	FTE MAJORS	PEH MAJOH	PROSHAM COST
pila state correge	22 SUCTAL SCI	• GH			
	22 SOCIAL SCI	•LD	4.67	1+591	7,426
	SS SOCIAL SCI		211.93	769	153,039
	SS SOCIAL SCI	.UD Totals	229.80	4/2	200.283
. •	EE SOCIAL SCI	104415	446.40	មុខរ	370,748
	49 INTERDISC	•6∺	39.25	1.445	56,708
•	49 INTERDISC	•LU	.3.0.6	9/2	192,670
	49 INTERDISC	• UD .	39.93	473	34.077
	49 INTERDISC	Totals	300.02	947	294,255
	La Man Trans				-011233
	52 MED TECH-2	-LD	9.43	766	7,224
	25 WED TECH-5	Totals	7.43	766	7,229
	99 UNDECLARED	• GH	6.71	1.407	9.437
	99 UNDECLARED	•LD	1.03	1,477	
	99 UNUECLARED	Totals	7.74		1+547
		-	1.14	1+419	10+984.
Alpha State Chilege	INSTITUTION Totals				
my m death to things	THE THE TOTAL TOTAL	•	3,005.90	374	2,685,946
Beta State College	U4 BIOLOGY	• GR	1.63	5•168	16,529
	U4 BIOLOGY	• LD	165.17	401	142,130
	U4 BIOLOGY	. UD	76.60	499	72,444
	U4 BIOLOGY	Totals	245.34	942	231.103
	US BUSINESS	co			
	US BUSINESS	• GR	30.62	1.500	50+823
	05 BUSINESS	• LD	747.16	834	655,818
		• UD	293.13	968	583 , 150
	05 HUSINESS	Totals	1,070,92	494	106.759
	U6 CUMMUNICAT	• GH	27.13	1.739	47.167
	US COMMUNICAT	•LD	166.97	797	133,109
	U6 CUMMUNICAT	• UD	67.93	A92	60.576
	UB CUMMUNICAT	Totals	252.03	919	240,852
	UR EDUCATION	• GR	354 N.S		
	UB EDUCATION	• L D	256.92	1+451	372,698
	UN EDUCATION	.00	608.03	455	501,426
	UB EDUCATION	Totals.	453.24	925	417,740
	00 FB004:104	106415	1.318.19	980	1,291,864
	10 FINE ARTS	•GH	1.00	1.536	1.534
	lu finë arts	Totals	1.00	1,538	1.538
	3.3. 3. 4.4.4.4.5.5.5.5				. 7 . 3 0
	11 LANGUAGES	• LU	40.13	4/4	35.091
	11 LANGUAGES	. Uu	c8.07	93	27.581
	11 LANGUAGES	Totals	66.20	919	52.672
	12 MED. TECH.	•LD	15.08	861	31.314
	12 MEU. TECH.	•00	10.03	490	31.510
	· · · - - · · -		10.03	470	9,931

SP9551 PHOTOTYPE VPTSU-HUFF

TABLE VIII (continued) STATEBIDE PLANNING AND BUDGETING SYSTEM

DEGREE PRIGRAM BUDGET REPURT

Beta State College	PROGHAM	STUDENT LEVEL	Y NUMBER OF FIE MAJORS	CUST Pen major	PROGHAM COST
	12 MED. TECH.	Totals	46.30	989	41,141
	15 LETTERS	· .GR	11.88	1.517	18,013
T.	15 LETTERS	•LD	63.63	7:5	
	15 LETTERS	• ປປ	74.47	863	49,964
	15 LETTERS	Totals	149.97	885	64,24I 132,216
•	16 LIBHARY SCI	GH	18.50	1,416	37/305
	16 LIBHARY SCI	•LÚ	48.23	808	27,305
	16 LIBHARY SCI	• 00	45.67	908	38,961
	16 LIBHARY SCI	Totals	112.40	95g	41,447 107,714
	17 MATH	• GH	11 26	1 242	
,	17 MATH	•LU	11.25	1,589	14,49
	17 MATH		93.33	788	73,585
	17 MATH	.UD	58.67	21.6	<u>,</u> 54+697:
	** '''	Totals	163.25	975	142,778
	19 PHYSICAL SCI	• GN	3.50	1.797	4 300
	19 PHYSICAL SCI	•LD	60.17	8-3	6,290
	19 PHYSICAL SCI	. UD	54.70	1.036	52,203
	19 PHYSICAL SCI	Totals	118.37	9/3	56,673 115,166
	20 0540 00 000				į
	20 PSYCHOLOGY	.LD	59.50	766	/ 58+519
	20 PSYCHULOGY	ַ עט	34.41	3⊃0	33,960
	20 PSYCHOLOGY	Totals .	124.47	742	102,479
	21 PUHLIC AFFHS	• GH	38.38	1,451	55,692
	21 PURLIC AFFRS	۰LU	158.57	7 7 4	125,490
•	21 PUBLIC AFFRS	. ∪∪	55.03	407	77,156
	21 PUBLIC AFFRS	Totals	£82.07	916	258.827
	22 SUCIAL SCI	• GR	21.30	1,333	20.488
	22 SOCIAL SCI	.LU	313.40	772	241,815
	22 SUCIAL SCI	• UU	201.30	826	
	22 SUCTAL SCI	Totals	536.07	846	172,300 442,603
2	1 CUNTINU ED	• L <i>U</i>	42.33	864	36.EEJ
	91 CUNTINU EU	∪ں •		5-4	36.558
	AJ CONTINO ED	Totals	42.33	864	36,558
	YY UNDECLARED	• GR	. 59.13	1,433	
	49 UNDECLARED	•LD	170.57		94.751
	49 UNDECLARED	•00		754	130.260
	99 UNDECLARED	Totals	229.69	436	215,011
	THE TITLETON MAKE				
	INSTITUTION Totals		4,715.66	917	4,379,884
	System Totals		7,781.55	908	7,065,880

Consideration of the needs of those activities that support the instructional function at the two state colleges was the next step in the illustrative planning process. As was stated earlier, special analysis of individual cases is recommended for the support activity areas. However, once formulas have been established, they can be inserted into the SPBS for calculation. Table IX shows some hypothetical formulas used with the state college data for illustration purposes. These formulas are not actual, and any resemblance they may bear to the actual needs of the two colleges is purely coincidental. Using the formulas in Table IX, the SPBS produced a final report, the Summary Budget Report shown in Table X. This report displays the total operating budget for each institution in an abreviated fashion.

The Statewide Planning and Budgeting System illustrated above is a public domain software package developed by the author and colleagues at Virginia Polytechnic Institute and State University. The developmental research was supported by contracts with statewide agencies in Pennsylvania, Virginia, and Missouri. It is written in ANS COBOL and requires approximately 150,000 bytes of core storage. The programming was done by Mr. James Farmer of Systems Research, Inc. in Los Angeles. Mr. Farmer was assisted by Mr. Jack Lewis, a doctoral candidate at. VPI & SU and by Mr. Charles Fletcher, Director of Data Processing at the American Council on Education in Washington, D.C. The SPBS, as displayed above, is intended only to illustrate the assistance that such planning tools can bring to the statewide higher education budgeting process. Local agencies and planning committees will frequently prefer to develop their own unique software packages to meet unique local needs. If the prototype SPBS stimulates the thinking of local developers, it will have served its primary purpose.

Table IX
Support Activity Cost Formulas

Institution	Support Activity	<u>Formula</u>
ALL	Community Education	\$80,000 Base
ALL	Summer Session	5% of Instructional Salaries
ALL	Library	\$100,000 Base
ALL	Student Services	\$50,000 Base + \$1.00 per Student Credit
ALL	Executive Management	\$120,000 Base
ALL	Computing	\$20,000 Base + \$.30 per Student Credit
ALL	Fiscal Operations	\$30,000 Base + 3% of Instructional Salaries
ALL	Administrative Services	\$140,000 Base
ALL	Physical Plant M. & O.	\$190,000 Base + 5% of Instructional Salaries
ALL	Logistical Services	\$80,000 + \$.50 per Student Credit
ALL	Community Relations	\$29,000 Base

SPPS51 PROTUTYPE VPTSU-HUFF

TABLE X STATEWIDE PLANNING AND BOUGETING SYSTEM

SUMMARY BUDGET REPORT

NAME	EXPENSE TYPE	a un GET
Alpha State College	DISCIPLINE BOGTS	2.685.995
	OT COMMUNITY ED	80,000
	UZ SOMMER SESS	110,333
	US LIBRARY	100,000
	O4 STUDENT SERV	139,644
•	05 EXEC MANG	120,000
	U6 COMPUTING	46,893
	07 FISCAL OPER	99,800
	UB AUMIN SERV	140,000
	DA HUAZ STANI	306,333
	10 LUGISTIC SEH	124,622
	11 COMM RELAT	24.000
	INSTITUTIONAL TOTAL	3,9 88,820
Beta State College	DISCIPLINE BOGTS	
	01 COMMUNITY FO	4,379,883
	UZ SUMMER SESS	60.000
	03 FIR445A	190.710
	U+ STUDENT SERV	100.000
	US EAEC MANG	190.346
	06 CUMPUTING	120.000
	UT FISCAL OPER	52.104
	VH3C VINCA 80	144,426
	OY PHYS PLANT	140.000
	10 LUGISTIC SER	350,710
	11 COMM RELAT	· 150.173
	II Give GERI	54,100
	INSTITUTIONAL TOTAL	5+967+351
	SYSTEM TOTAL	9,956,171

A Plan for Action

It is relatively easy to engage in conversation regarding needed alterations or improvements in the statewide higher education planning process. It is often very difficult to move from the discussion stage to the action stage. People are most comfortable with a familiar environment, with a process that is a known quantity, even though they must admit that the current process has a number of flaws. In proclaiming the need for change in the funding procedures, we frequently use such terms as visibility of the decision process, logical approaches, broadened participation, and consensus. No one can be overtly against such concepts, but there will always remain a hesitancy among educators to take significant action directed toward change since they can never quite be sure exactly how a change may ultimately affect their institution and their ability to pursue their personal objectives. All of us like to operate in an atmosphere of autonomy. While changes in the planning and funding approaches may provide new opportunities for some, they may also restrict the current autonomy of others.

People respond to incentives. They weigh potential benefits and potential penalties in any new situation and then decide whether to play a passive role, an active role in support of the change, or an active role in opposition to the proposed change. Consequently, those who wish to be effective as change agents must learn to manage the change effort in such a way as to provide the greatest possible number of benefits (incentives) to the key participants. Incentives come in many forms, only a few of which are economic in nature. Professional people are greatly concerned with recognition of a job well done, personal knowledge that they are improving their performance, and awareness that their voice has impact on the decision-making process.

Figure 3: Decision Matrix for Discipline Planning Center Construction

INSTITUTIONS AND COURSE LEVELS

	Univ	Universities		State Colleges			Community Colleges	
	LD	UD	GD	LD	עט	GD	LD	
Social Sciences	1			1			1	
Physical Sciences	2	2		2	2		2	•
Letters	1	i		1			1	

DISCIPLINE CLUSTERS

*In this example of planning center construction, 1 indicates those cells that might be included in Planning Center 1. 2 indicates those cells that might be included in Planning Center 2. Other cells would have to be associated with additional planning centers in a similar manner.

purely fiscal vantage point may prove totally impractical when viewing the same institutions from a human or pedagogical perspective. Regular self-analysis by institutions will clarify the constraints and possibilities for improvement within which differential funding formulas must be developed.

Task 4 - Develop Technical Support Capability: This document has stressed the desirability of developing the technical capability to support an iterative budgeting and planning process. If this task is not undertaken simultaneously with the first three tasks, the entire effort to improve and refine the budgeting process may be quite shallow. Information, coupled with suggested funding policies, must be synthesized quickly in order that many alternatives may be weighed in a timely fashion. Computers provide the only means or accurately repeating the thousands of calculations necessary for the development of alternative sets of institutional budgets within a short period of time.

Task 5 - Conduct Planning Sessions: All of the work done under the first four tasks will be preparation for initiating the fifth task. It is at this point that the appropriate groups of statewide planning participants must be brought together, given the best available information, supported with the best available technology, and asked to engage in a thoroughly professional group planning process.

Compromise and patience must be key ingredients in that process.

However, with improved information feedback provided by improved technology, there is at least the possibility of the more orderly, visible, logical planning process that educators and state officials have discussed for so long.

A Final Caution

Any new undertaking usually begins with high hopes. Many soon develop the kind of arthritic pains that can cause early demise. A spectacular idea on paper may look totally anemic when put to the test of real world application. Those who pursue change in such sensitive matters as budget determination should not expect quantum leaps in short periods of time. Progress comes in a succession of small, earned improvements.

There are many pitfalls along the approach to higher education differential planning described in this document. New users of the kind of technological tools referred to in the state college illustration may succumb to a false sense of precision. The computer is a wonderful tool for speeding up many chores that used to be long and arduous. However, if the computer is headed in the wrong direction, it has an equally efficient capacity to lead us into error faster than ever before. Computers cannot and should not make decisions. Computers make things possible but people make things happen. It should always be remembered that planning is essentially a human activity, not a computer calculation. Frequently, analysts employed by statewide agencies become so engrossed with conducting historical analyses as a form of audit that they lose sight of what planning is all about. Planning should be more concerned with what ought to be than with what has been. Historical analysis lets us know where we have been so that we can decide better where we ought to be going.

Some educators would have us believe that, if complete consensus cannot be gained relative to a proposed change, no change is in order. Complete consensus is rare indeed, especially among educators and

people in the political ranks. However, seeking reasonable consensus is an absolute necessity. Not being able to decide when reasonable consensus has been attained may paralyze efforts to improve the planning process. Should error of judgment occur in knowing when reasonable consensus has been reached, failure will be the probable result. On the other hand, never displaying enough confidence to declare reasonable consensus and move ahead will surely prohibit success.

The rural people of southern Appalachia are fond of saying,
"You can't push a rope." This simply means that those who do not want
to change will bend under pressure but will never really cooperate in
achieving the change. Colleges and universities, like all bureaucratic
organizations, are very experienced at bending like a rope but never
going where they do not want to go. The obvious moral of this analogy
is that more ground can be gained, when dealing with ropes and educational
institutions, by leading from the front than by pushing from behind.

