Exercise 9, Discrete Mathematics for Bioinformatics

Sascha Meiers, Martin Seeger

Winter term 2011/2012

9.1 PORTA — Polyhedron Representation Transformation Algorithm

```
a) $ soplex -x problem.lp
  Solution value is: 2.5000000e+00
  Primal solution (name, id, value):
  x2 1 1.5000000e+00
  x3 2 5.0000000e-01
  x4 3 5.0000000e-01
  All other variables are zero (within 1.0e-09).
b) Input file:
  DIM = 4
  LOWER_BOUNDS
  0 0 0 0
  UPPER_BOUNDS
  1 1 1 1
                 \ We assume to have boolean variables.
  INEQUALITIES_SECTION
  x1 + x2 + x3  <= 2
  x1 + x2 + x4 \le 2
          x3 + x4 <= 1
  END
  Output file of vint:
  DIM = 4
  CONV_SECTION
  (1)0000
  (2)0001
  (3)0010
  (4)0100
  (5)0101
  (6)0110
  (7)1000
  (8) 1001
  (9)1010
```

```
(10) 1 1 0 0
```

END

These are all feasible points.

c) traf transforms these points into a inequality-representation:

```
DIM = 4
```

VALID

1 1 0 0

INEQUALITIES_SECTION

END

d) We solve the new LP using *soplex* and get:

```
Solution value is: 2.0000000e+00
```

```
Primal solution (name, id, value):

x1 0 1.0000000e+00

x2 1 1.0000000e+00

All other variables are zero (within 1.0e-09).
```

9.2 Branch and Bound

a) \$ lp_solve -S3 example2.lp

Value of objective function: 22.4

Actual values of the variables:

x1	2.8
x2	0
x3	0
x4	0

Actual values of the constraints:

b) Let us call the original problem P_0 . We branch the problem into two problems: $P_{11} = P_0 \wedge x_1 \leq 2$ and $P_{12} = P_0 \wedge x_1 \geq 3$.

Result of solving P_{11} :

\$ lp_solve -S3 example21.lp

Value of objective function: 22.2857

Actual values of the variables:

x1	2
x2	0.571429
х3	0
x4	0

Actual values of the constraints:

c1	14
c2	2

Result of solving P_{12} :

\$ lp_solve -S3 example22.lp
This problem is infeasible

Hence, we branch further into $P_{21} = P_{11} \wedge x_2 \leq 0$ and $P_{22} = P_{11} \wedge x_2 \geq 1$.

Result of solving P_{21} :

\$ lp_solve -S3 example221.lp

Value of objective function: 22

Actual values of the variables:

x1	2
x2	C
x3	1
x4	C

Actual values of the constraints:

c1	14
c2	2
c3	0

Result of solving P_{22} :

\$ lp_solve -S3 example222.lp

Value of objective function: 22.2

Actual values of the variables:

x1	1.4
x2	1
x3	0
v 4	0

Actual values of the constraints:

c1	14
c2	1.4
c3	1

Since $22 = \lfloor 22.4 \rfloor$, and the solutions of P_{21} are integers, this is the solution of the branch and bound ILP algorithm.