## Imputation for summary statistics in GWAS settings



Sina Rüeger (sina.rueger@unil.ch) Zoltán Kutalik (zoltan.kutalik@unil.ch)

Institute of Social and Preventive Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland Swiss Institute of Bioinformatics, Lausanne, Switzerland









## Testing framework For testing we used HapMap imputed cohort data (limited to Chromosome 15) and looked particulary on regions with ancestry informative markers. We selected 6 subpopulations (CH, FR, IT, GE, SP, PT) and kept the sample size roughly equal. To generate an insilico phenotype a SNP was selected as being the "causal" one and effect sizes were generated for all SNPs (using a linear regression model). GTCTGCT $Y = \alpha * g + \epsilon, \epsilon = N(0,1)$ TACAGCA GACTTTA GAGTTCT Using the association statistics from HapMap SNPs only, we imputed the effect size of non-HapMap SNPs and compared to the "true" effect size estimates. Pop effect sizes individuals used for imputation individuals used individuals used Pop Pop 1 effect sizes **Strategies** 1<sup>st</sup>: Imputation of summary statistics 1<sup>st</sup>: Meta-analysis 2<sup>nd</sup>: Meta-analysis 2<sup>nd</sup>: Imputation of meta-analysed summary statistics Reference panels for imputation Reference data sets should represent the population used to calculate the effectsizes (usually a mixture of different populations).

## How can we improve the imputation performance?

For the insilico phenotype we generated, the results suggest that our test statistics agree closer (mean square error = 0.024, optimized  $\lambda$ ) with the true values than the estimates provided by previous methods (mean square error = 0.028,  $\lambda$  = 0.1). The optimized  $\lambda$  makes only little difference in this setting. However, as the  $\lambda$  gets smaller, e.g.  $\lambda$  = 1e-07, the median square error increases to 0.047.  $\lambda$  = 0.1 is optimal for small reference data sets.

