CSCB63 WINTER 2021

WEEK 6 LECTURE 2 - DIRECTED GRAPHS AND STRONGLY CONNECTED COMPONENTS

Anna Bretscher

February 19, 2021

TODAY

Quick Review DFS

Strongly Connected Components

Kosaraju's Algorithm

RECURSIVE DFS

```
time = 0
start = any vertex
new stack order
dfs(start)
dfs(V)
  v.state = visited # ie, label v green
  v.start = time
  time += 1
  for each neighbour w of v
     if w.state == visited # ie, green
       # we have a cycle
     else if w.state == not_visited # ie, black
       add edge vw to tree T
       dfs(w)
  v.finish = t.ime
  v.state = finished
  order.push(v) <== new
  t.ime += 1
```

STRONGLY CONNECTED COMPONENTS

Strongly connected component (SCC): is maximal subset of vertices reachable from each other in a directed graph.

Three strongly connected components: $\{e, o\}$, $\{f, g, h, k\}$, $\{m\}$.

MOTIVATION

Q. What is an application that may want to find *strongly connected components*?

- A.
- **Q.** How do we find strongly connected components in a directed graph?
- **A.** Two common algorithms, we will look at one *Kosaraju's* algorithm. Makes an observation about G and it's *transpose*, G^T .

Transpose of G

The *transpose of G* (notation G^T) means a graph with the same vertices as G and the edges are the *reverse* of G's.

Not to be confused with the *complement* G^C of G.

G:

Observation: G^{T} has the *same* strongly connected components as G's.

Q. What is the *complexity* to compute adjacency lists of G^{T} :

Α.

KOSARAJU'S SCC ALGORITHM

Overview.

- DFS on G, be sure to visit all vertices, note finish times, accumulate vertices in reverse finishing order (i.e., as we finish with them push them to a stack.)
- Compute adjacency lists of G^T.
- ▶ DFS on G^T, pop vertices from the stack to pick start/restart vertices.
- Each tree found has the vertices of one strongly connected component.

Total O(|V| + |E|) time.

Let's see it in action...

PROOF OF KOSARAJU'S ALGORITHM

Notation

- We denote by f(v) the time at which node v is finished (all outgoing neighbours have been visited).
- ▶ f(u) < f(v) means "node u was finished before node v."
- Note that every node is eventually finished, so this notation is well-defined.
- ▶ Let C be an SCC. Define f(C) as the time at which the last node in C is finished.

$$f(C) = max_{v \in C} f(v)$$

PROOF OVERVIEW

Lemma. If s is the first node in SCC C visited by DFS, then f(C) = f(s).

Theorem Suppose we run *DFS* in *G*, restarting as needed. Let C_1 and C_2 be SCCs in *G*. If (u, v) is an edge in *G* where $u \in C_1$ and $v \in C_2$, then $f(C_2) < f(C_1)$.

Corollary. Let C_1 and C_2 be distinct SCC's in G = (V, E). Suppose there is an edge (u, v) in E^T where $u \in C_1$ and $v \in C_2$. Then $f(C_1) < f(C_2)$.

Corollary. Let C_1 and C_2 be distinct SCC's in G = (V, E), and suppose that $f(C_1) > f(C_2)$. Then there cannot be an edge from C_1 to C_2 in G^T .

Corollary. Let C_1 and C_2 be distinct SCC's in G = (V, E), and suppose that $f(C_1) > f(C_2)$. Then there cannot be an edge from C_1 to C_2 in G^T .

Q. What does this mean?

A.

Corollary. Let C_1 and C_2 be distinct SCC's in G = (V, E), and suppose that $f(C_1) > f(C_2)$. Then there cannot be an edge from C_1 to C_2 in G^T .

Q. What does this mean?

```
Α.
```

- •
- ightharpoons

PROOFS

Lemma. If s is the first node in SCC C visited by DFS, then f(C) = f(s).

Proof. At the time DFS(s) is called,

- since s is the first node in C visited by the DFS, all nodes in C have not been discovered (colour black).
- ▶ Since *C* is a *SCC*, every node $v \in C$ is reachable from *s*.
- ▶ This means there is a path from s to v for every $v \in C$.
- ▶ Thus every node $v \in C$ will be *finished* when DFS(s) returns.
- Since the last step of the DFS(s) is to finish s, this means that s is finished only after all other nodes in C are finished.
- ► Therefore, f(s) > f(v) for any $v \in C$. Since by definition $f(C) = max_{v \in C} f(v)$, this means f(C) = f(s).

Theorem Suppose we run *DFS* starting at each node in *G*.

Let C_1 and C_2 be SCCs in G. If (u, v) is an edge in G where $u \in C_1$ and $v \in C_2$, then $f(C_2) < f(C_1)$.

Proof.

- Let x_1 and x_2 be the first nodes DFS visits in C_1 and C_2 , respectively.
- ▶ By our lemma, $f(C_1) = f(x_1)$ and $f(C_2) = f(x_2)$. Therefore, we will show $f(x_2) < f(x_1)$.
- Note x_2 is reachable from x_1 , since there is a path from x_1 to u in C_1 , across (u, v), and there exists a path in C_2 from v to x_2 .
- ► However, x₁ is not reachable from x₂, since then x₁ and x₂ would be strongly connected, contradicting that they belong to different SCCs.

TWO CASES...

Case 1. $DFS(x_2)$ is called before $DFS(x_1)$:

- Since x_1 is not reachable from x_2 , x_1 will not be finished (white) when $DFS(x_2)$ returns.
- ▶ Thus x_1 is finished after x_2 , so $f(x_2) < f(x_1)$.

TWO CASES...

Case 2 $DFS(x_1)$ was called before $DFS(x_2)$.

- ▶ When $DFS(x_1)$ is called, all nodes in C_1 and C_2 have not been visited, so there will be a DFS path from x_1 to x_2 .
- ▶ Thus when $DFS(x_1)$ returns, x_2 will be white or finished.
- Since $DFS(x_1)$ finishes with x_1 just before it returns, this means that x_1 was finished after x_2 , so $f(x_2) < f(x_1)$.

We proved...

Theorem. Suppose we run *DFS* starting at each node in *G*. Let C_1 and C_2 be SCCs in *G*. If (u, v) is an edge in *G* where $u \in C_1$ and $v \in C_2$, then $f(C_2) < f(C_1)$.

Now, we can show:

Corollary. Let C_1 and C_2 be distinct SCC's in G = (V, E). Suppose there is an edge (u, v) in E^T where $u \in C_1$ and $v \in C_2$. Then $f(C_1) < f(C_2)$.

Proof.

- ► Edge $(u, v) \in E^T$ implies $(v, u) \in E$.
- ▶ Since *SCC*'s of *G* and G^T are the same, $f(C_2) > f(C_1)$.
- This completes the proof.

USING THE COROLLARY

Corollary. Let C_1 and C_2 be distinct SCC's in G = (V, E).

Exists
$$(u, v) \in E^T$$
 where $u \in C_1$ and $v \in C_2 \longrightarrow f(C_1) < f(C_2)$.

What does the *contrapositive* of this corollary tell us?

Contrapositive.

$$f(C_1) > f(C_2) \longrightarrow \text{not exists } (u, v) \in E^T \text{ where } u \in C_1 \text{ and } v \in C_2$$

Corollary.

Let C_1 and C_2 be distinct SCC's in G = (V, E), and suppose that $f(C_1) > f(C_2)$, then there cannot be an edge from C_1 to C_2 in G^T .

TYING IT ALL TOGETHER

Corollary. Let C_1 and C_2 be distinct SCC's in G = (V, E), and suppose that $f(C_1) > f(C_2)$. Then there cannot be an edge from C_1 to C_2 in G^T .

This means...

- ▶ If we start the *DFS* on G^T at the *SCC C*₁ with *maximum* finish time $f(C_1)$ in the first *DFS* on G,
- ▶ then, since $f(C_1) > f(C_2)$ for all $C_2 \neq C_1$, there are no edges from C_1 to C_2 in G^T .
- ▶ therefore, DFS will only visit vertices from C₁.
- ▶ if the start vertex in C_1 is x, then DFS(x) returns a DFS tree that contains only vertices from C_1 .

TYING IT ALL TOGETHER

- ▶ The next vertex chosen as *starting vertex* in the second *DFS* is in $SCC C_2$ such that $f(C_2)$ is *maximum* over all SCC's other than C_1 .
- ▶ The *DFS* visits all vertices in C_2 . What do we know about but the *edges out* of C_2 ?
- They only go to C₁, which we've already visited.
- ► Therefore, the only *tree edges* will be to vertices in C₂.
- Continue for all remaining SCCs