- Опр. 1. Пусть A и B два подмножества в топологическом пространстве X. Множество A называется плотным в B, если $\bar{A} \supset B$. B частности, множество A называется всюду плотным (в пространстве X), если его замыкание \bar{A} совпадает со всем пространством X. Подмножество A называется нигде не плотным в X, если A не является плотным ни в одной окрестности пространства X.
- **Опр. 2.** Топологическое пространство называется сепарабельным, если оно содержит счетное всюду плотное множество.
- **Опр. 3.** Пусть X метрическое пространство. Последовательность его точек $(x_n)_{n\in\mathbb{N}}$ называется фундаментальной, если для любого $\varepsilon>0$ существует такое $N\in\mathbb{N}$, что при всех m,n>N выполнено неравенство $\rho(x_m,x_n)<\varepsilon$.
- **Опр. 4.** Если в метрическом пространстве X любая фундаментальная последовательность сходится, то это пространство называется полным.
 - 1. Пусть X полное метрическое пространство. Докажите, что подмножество $Y\subset\subset X$ полно (в индуцированной метрике) в том и только том случае, когда оно замкнуто.
 - 2. (**Теорема о вложенных шарах**) Докажите, что метрическое пространство X полно тогда и только тогда, когда в нём всякая последовательность вложенных друг в друга замкнутых шаров, радиусы которых стремятся к нулю, имеет непустое пересечение.
- Опр. 5. Подмножество топологического пространства X, которое можно представить в виде счётного объединения нигде не плотных в X множеств, называется множеством первой категории Бэра в пространстве X. Множество, которое нельзя представить в таком виде, называется множеством второй категории Бэра в пространстве X.
 - 3. Докажите, что если множество второй категории Бэра покрыто счётным семейством замкнутых множеств, то хотя бы одно из них имеет внутреннюю точку.
 - 4. Докажите, что всякое полное метрическое пространство X является множеством второй категории Бэра.
 - 5. Докажите, что счётное пересечение открытых плотных множеств в $\mathbb R$ является плотным множеством.
- **Опр. 6.** Пусть X метрическое пространство. Его пополнением называется пара (X',i), в котором X' полное метрическое пространство, $i\colon X\to X'$ изометрия, и образ i(X) всюду плотен в X'.
- 6. Пусть (X, ρ) метрическое пространство. Скажем, что фундаментальные последовательности $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}} \subset X$ эквиваленты, если $\lim_{n \to +\infty} \rho(x_n, y_n) = 0$. Докажите, что введённое отношение действительно является отношением эквивалентности.

Через X^* обозначим множество классов эквивалентности фундаментальных последовательностей пространства X.

- 7. Пусть x^* , $y^* \in X^*$ два класса эквивалентности, а $(x_n)_{n \in \mathbb{N}} \in x^*$, $(y_n)_{n \in \mathbb{N}} \in y^*$ произвольные их представители. Определим расстояние между классами x^* и y^* как $\rho(x^*,y^*) \stackrel{\text{def}}{=} \lim_{n \to +\infty} \rho(x_n,y_n)$. Докажите, что введённое расстояние корректно определено, пространство X изометрично вкладывается в X^* и является плотным в нём.
- 8. Докажите, что у всякого метрического пространства X существует пополнение; если (X_1',i_1') и (X_2',i_2') два пополнения пространства X, то существует

и единственно такое взаимно однозначное сохраняющее расстояния отображение $\varphi\colon X_1'\to X_2',$ что $\varphi\circ i_1=i_2.$

- Опр. 7. Пусть (X, ρ) метрическое пространство. Отображение $f: X \to X$ называется сжимающим отображением, или короче, сжатием, если существует такое число $\alpha \in [0,1)$, что для любых двух точек $x,y \in X$ выполняется неравенство $\rho(f(x),f(y)) \le \alpha \rho(x,y)$.
 - 9. (Принцип сжимающих отображений) Всякое сжимающее отображение f, определённое в полном метрическом пространстве X, имеет одну и только одну неподвижную точку $x \in X$, т. е. f(x) = x.

Упражнения

- 1. На прямоугольную карту положили карту той же местности, но меньшего масштаба. Докажите, что можно проткнуть иголкой сразу обе карты так, чтобы точка прокола изображала на обеих картах одну и ту же точку местности.
- 2. Пусть $X=\mathbb{N}$, а расстояние между натуральными числами m,n определяется как $\rho(m,n)=1+\min(1/m,1/n)$ при $m\neq n$ и 0 при m=n. Докажите, что X полное метрическое пространство. Докажите также, что замкнутые шары $\bar{B}(1,1+1/2)\supset \bar{B}(2,1+1/3)\supset \bar{B}(3,1+1/4)\supset\dots$ вложены, но имеют пустое пересечение.
- 3. Пусть $f(x) = x + \frac{\pi}{2} \arctan x$, $x \in [0; +\infty)$. Докажите, что |f(x) f(y)| < |x y|, но f(x) не имеет неподвижной точки.
- 4. Подмножество Y топологического пространства X называется G_{δ} -множеством, если оно представимо в виде счётного пересечения открытых множеств. Подмножество, являющиеся дополнением до G_{δ} -множества, называется F_{σ} -множеством. Докажите, что
 - (a) произвольное F_{σ} -множество представимо в виде объединения счётного числа замкнутых множеств;
 - (b) множество иррациональных чисел вещественной прямой является G_{δ} -множеством, но не F_{σ} -множеством.
- 5. Для функции $f\colon X\to\mathbb{R}$ через U_f обозначим подмножество точек, в которых f непрерывна. Докажите, что U_f является G_δ -множеством.
- 6. Докажите, что существует и единственно решение $x \in \mathbb{R}$ уравнения $2x + \sin x = 1$.
- 7. Пусть $F\colon W\subset \mathbb{R}^m\times \mathbb{R}^n\to \mathbb{R}^n$ отображение, определённое в окрестности W точки (x_0,y_0) , непрерывное в (x_0,y_0) вместе с частной производной $F'_y(x,y)$, которая предполагается существующей в W. Если $F(x_0,y_0)=0$ и при этом существует $\left(F'_y(x_0,y_0)\right)^{-1}$, то найдутся окрестность $U=U(x_0)\subset \mathbb{R}^m$ точки x_0 в X, окрестность $V=V(y_0)\subset \mathbb{R}^n$ точки y_0 в Y и такая функция $f\colon U\to V$, непрерывная в x_0 , что $U\times V\subset W$ и

$$\big(F(x,y)=0 \ \text{ B } \ U\times V\big) \Leftrightarrow \big(y=f(x), x\in U\big).$$

- 8. Введите на интервале (-1;1) метрику таким образом, чтобы он стал полным метрическим пространством.
- 9. Пусть $f(t,x): \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ непрерывная функция, для которой справедливо неравенство $||f(t,x_1)-f(t,x_2)|| \leq M||x_1-x_2||, t \in \mathbb{R}$ и $x_1,x_2 \in \mathbb{R}^n$. Докажите, что дифференциальное уравнение $\dot{x}=f(t,x)$ с начальным условием $x(t_0)=x_0$ имеет единственное решение.