Лабораторна робота № 24

РЕЗОНАНС НАПРУГ

Мета роботи

Ознайомлення з явищем резонансу в електричному колі з послідовним сполученням індуктивної котушки та конденсатора.

Дослідження умов виникнення резонансу.

Побудова резонансних кривих та частотних характеристик.

Використання, для аналітичних розрахунків, співвідношень, що характеризують резонансний режим.

Підготовка до роботи

При підготовці до роботи студенти мають скласти протокол звіту, ознайомитись з методичними вказівками, робочим завданням та відповісти на такі запитання:

- 1. Яке фізичне явище називають резонансом?
- 2. Чому явище резонансу в послідовному коливному контурі називають резо-нансом напруг?
- 3. Зміною яких параметрів досягається резонанс в послідовному коливальному контурі?
- 4. Які енергетичні процеси мають місце в коливальному контурі при резонансі?
- 5. Чому дорівнює повний опір послідовного коливального контура при резонансі напруг?
- 6. Що називають хвильовим опором, добротністю та згасанням послідовного резонансного контура?
- 7. Як визначити наявність резонансного стану в електричному колі за показом приладів?

Робоче завдання

1. Скласти електричне коло з послідовним сполученням конденсатора і індуктивної котушки, відповідно до схеми рис. 24.1.

Рис.24.1

2. Для живлення електричного кола використати джерело синусо-їдної напруги регульованої частоти. Величина робочої напруги в межах 3...5 В; діапазон робочої частоти задає викладач.

- 3. Установити середнє значення діапазону робочої частоти, закоротити конденсатор і за показами приладів визначити параметри індуктивної котушки разом з міліамперметром, що використовуються в дослідах.
- 4. Досягти резонансного стану електричного кола, змінюючи ємність конденсатора. Занотувати значення резонансної ємності C_o , індуктивності L_o , та частоти f_o .
 - 5. Виміряти величини, зазначені в таблиці 24.1, для трьох дослідів:
- a) змінюючи в можливих межах індуктивність котушки при незмін-них резонансних ємності C_o та частоті f_o ;
- δ) змінюючи в можливих межах ємність конденсатора при незмінних резонансних індуктивності L_o та частоті f_o ;
- e) змінюючи в межах, визначених викладачем, частоту джерела живлення при незмінних резонансних ємності C_o та індуктивності L_o .

Таблиця 24.1

Дослід	L	C	f	U	U_L	U_C	I	φ	P
Змінюється									
Змінюється С									
Змінюється ƒ									

- 6. За результатами вимірів п.5 побудовати резонансні криві струму кола I, напруги на котушці індуктивності U_L та конденсаторі U_C , кута зсуву фаз кола φ для кожного із трьох дослідів (a, δ, c) .
- 7. За результатами вимірів п.5 σ побудувати векторні діаграми кола для випадків, коли $C < C_o$; $C = C_o$; $C > C_o$
 - 8. Розрахувати хвильовий опір ρ , добротність Q та згасання контуру d.
 - 9. Зробити і записати у протоколі звіту висновки по роботі.

Завдання на навчально-дослідну роботу студентів

- 1. Побудувати частотні характеристики послідовного коливального контуру.
- 2. Довести, що найбільші значення напруг індуктивної котушки та конденсатора при зміні частоти в широких межах перевершують відпо-відні значення в резонансному стані.
- 3. Побудувати резонансні характеристики послідовного коливального контуру, що живиться від джерела струму, частота якого змінюється.
- 4. Як залежить вигляд резонансної кривої струму від добротності контуру?
 - 5. Визначити смугу пропускання послідовного резонансного контуру.

Методичні вказівки

Явище, коли струм і напруга в колі (чи на його ділянці), незважаючи на наявність у ньому реактивних елементів (котушок індуктивності та кондинсаторів), збігаються за фазою, називають *резонансом*.

В резонансному режимі має місце повна компенсація реактивних опорів кола (чи його ділянки). При цьому вхідний опір ϵ суто активним, реактивна потужність, відповідно, дорівнює нулю, а вся електрична енергія, що надходить від джерела, перетворюється у теплову.

За певних умов, резонанс реактивних елементів може виникнути в електричному колі з послідовним сполученням індуктивності і ємності. Таке нерозгалужене електричне коло, що вміщує послідовно сполучені елементи R, L і C (рис.24.2), є найпростішим резонансним колом або ідеальним послідовним коливальним контуром.

Умова резонансу в такому електричному колі:

$$X_{ex} = \omega L - \frac{1}{\omega C} = 0$$
 afo $\omega^2 LC = 1$

3 останнього виразу випливає, що резонансного стану в ідеальному коливальному контурі можна досягти, змініючу одну з трьох величин: ω , L чи C. Відповідно, їх значення для резонансного режиму розраховуються так:

$$\omega_o = \frac{1}{\sqrt{LC}}; \qquad L_o = \frac{1}{\omega^2 C}; \qquad C_o = \frac{1}{\omega^2 L}.$$

Повний опір такого електричного кола в стані резонансу напруг $Z = \sqrt{R^2 + (\omega L - 1/\omega C)^2} = R$ є суто активним за характером та найменш можливим за

величиною. Відповідно, струм та потужність, що споживається, досягають найбільших значень.

Реактивний опір катушки індуктивності або конденсатора в режимі резонансу

$$\rho = \omega_0 L; \quad L = \frac{1}{\omega_0 C} = \sqrt{\frac{L_0}{C_0}},$$

називаеться хвильовим опором резонансного контуру.

Якщо реактивні опори X_L та X_C при резонансі більші, ніж активний опір R, напруги на затискачах індуктивної котушки та конденсатора будуть більші за напругу на вході електричного кола. Тому резонанс у послідовному коливальному контурі називають резонансом напруг.

Величина

$$Q = \frac{U_{Co}}{U} = \frac{U_{Lo}}{U} = \frac{\omega_o L_o}{R} = \frac{1}{\omega_o CR} = \frac{\sqrt{L/C}}{R} = \frac{\rho}{R},$$

називається добротністю контура і визначає перевищення реактивної складової напруги на реактивних елементах, при резонансі над прикладеною до кола напругою. Користуються також оберненою величиною – згасанням контура:

$$d=\frac{1}{Q}.$$

Залежності фізичних величин кола від частоти називають частотними характеристиками кола. Залежності: $I(\omega)$, $U_R(\omega)$, $U_L(\omega)$, $U_C(\omega)$ при резонансі називаються резонансними характеристиками кола.

Література

- 1. Теоретичні основи електротехніки: Підручник: У 3 т. / В.С. Бойко, Ю.Ф. Видолоб та ін.; За заг.ред. І.М. Чиженка, В.С. Бойка. К.: ІВЦ "Видавництво «Політехніка»", 2004. Т.1: Усталені режими лінійних електричних кіл із зосередженими параметрами. С. 147-158.
- 2. В.С.Бойко, В.В.Бойко, Ю.Ф.Видолоб, І.А.Курило, В.І.Шеховцов, Н.А.Шидловська; Теоретичні основи електротехніки-Т1: Київ "Політехніка", 2004. -272c. С. 175-180, 261-267.
- 3. Нейман Л.Р., Демирчян К.С. Теоретические основы элекротех-ники. Т.1 Л.: Энергоатомиздат, 1981. 536 с. С.175-180.
- 4. Каплянский А. Е., Лысенко А.П., Полотовский Л.С. Теоретические основы электротехники. М.: Высш. шк., 1972. 447 с. С.147-149.