Geometria Diferencial Tarea 1

Antonio Barragán Romero

Del libro Differential Geometry of Curves and Surfaces.

Problemas

Problema 1 Sea $\alpha: I \to \mathbb{R}^3$ una curva parametrizada, con $\alpha'(t) \neq 0$ para todo $t \in I$. Muestra que $\|\alpha(t)\|$ es constante distinto de cero si y solo si $\alpha(t)$ es ortogonal a $\alpha'(t)$ para todo $t \in I$.

Solución: Dado que $\|\alpha(t)\|^2 = \langle \alpha(t), \alpha(t) \rangle$, se cumple que

$$\|\alpha(t)\|^{2} = \langle \alpha(t), \alpha(t) \rangle' = 2\langle \alpha(t), \alpha'(t) \rangle. \tag{1}$$

Además podemos notar que $\|\alpha(t)\|$ es constante si y solo si $\|\alpha(t)\|^2$ es constante. Entonces sí $\|\alpha(t)\|$ es constante distinto de cero obtenemos que $\alpha(t) \neq \mathbf{0}$, por hipotesis $\alpha'(t) \neq \mathbf{0}$ y por Eq. 1 obtenemos que $2\langle \alpha(t), \alpha'(t) \rangle = 0$, lo cual implica que $\alpha(t)$ y $\alpha'(t)$ son ortogonales.

Ahora, sí $\alpha(t)$ y $\alpha'(t)$ son ortogonales por Eq. 1 obtenemos que $\|\alpha(t)\|^{2} = 0$, lo cual implica que $\|\alpha(t)\|$ es constante y además distinto de cero pues $\alpha(t) \neq 0$.

Problema 2 Sea $\alpha(0,\pi) \to \mathbb{R}^2$ dada por

$$\alpha(t) = \left(\sin(t), \ln\left(\cot\left(\frac{t}{2}\right) - \cos(t)\right)\right),\tag{2}$$

donde t es el angulo entre el eje y y el vector $\alpha(t)$. La traza de α es llamada tractrix. Muestra que

- a) α es una curva regular diferenciable excepto en $t=\frac{\pi}{2}$
- b) La longitud del segmento de la recta tangente a la tractix en el punto de tangencia y el eje y siempre es 1.

Demostración:

a) Primero notemos que

$$\alpha'(t) = \left(\cos(t), \sin(t) - \frac{1}{2}\csc^2\left(\frac{t}{2}\right) \frac{1}{\cot\left(\frac{t}{2}\right)}\right)$$

$$= \left(\cos(t), \sin(t) - \frac{1}{\sin(t)}\right),$$
(3)

por lo que α es diferenciable. Además $\alpha'(t) = \mathbf{0}$ si y solo si $\cos(t) = 0$ para $t \in (0, \pi)$, lo cual pasa si y solo si $t = \frac{\pi}{2}$, se sigue que α es regular diferenciable excepto en $t = \frac{\pi}{2}$.

¹Me parece que la paremetrización del libro era incorrecta.

b) Dado un $t \in (0, \pi) \setminus \left\{\frac{\pi}{2}\right\}$ tenemos que la ecuación de la recta tangente a la tractrix que pasa por $\alpha(t)$ es $\alpha(t) + \lambda \alpha'(t)$. Como nos interesa que $\alpha(t) + \lambda \alpha'(t)$ intersecte al eje y entonces se debe cumplir que su primera coordenada sea cero, es decir,

$$\sin(t) + \lambda \cos(t) = 0, (4)$$

lo cual implica que $\lambda = -\frac{\sin(t)}{\cos(t)}$. Dado que $\alpha(t)$ es el punto de tangencia, tenemos que $\lambda \alpha'(t)$ es el segmento de la recta tangente que une el punto de tangencia y el eje y, luego, su longitud es $\|\lambda \alpha'(t)\|$. Podemos ver que

$$\begin{split} \|\lambda\alpha'(t)\|^2 &= \lambda^2 \left(\cos^2(t) + \sin^2(t) - 2 + \frac{1}{\sin^2(t)}\right) \\ &= \lambda^2 \left(\frac{1}{\sin^2(t)} - 1\right) \\ &= \lambda^2 \left(\frac{1 - \sin^2(2)}{\sin^2(t)}\right) \\ &= \frac{\sin^2(t)}{\cos^2(t)} \cdot \frac{\cos^2(t)}{\sin^2(t)} \\ &= 1, \end{split} \tag{5}$$

y por tanto $\|\lambda\alpha'(t)\| = 1$, como queremos.

Problema 3 Muestra que la ecuación de un plano que pasa por tres puntos no colineales $p_1 = (x_1, y_1, z_1)$, $p_2 = (x_2, y_2, z_2)$, $p_3 = (x_3, y_3, z_3)$ está dada por

$$(p - p_1) \wedge (p - p_2) \cdot (p - p_3) = 0, \tag{6}$$

donde p = (x, y, z) es un punto arbitrario del plano.

Demostración: Primero veamos la "idea" detras de la formula. Sabemos que un plano queda determinado por un punto en el plano P_0 y un vector normal al plano n, pues dado otro punto P en el plano se debe cumplir que $\langle P_0 - P, n \rangle = 0$.

En nuestro caso tenemos que $p-p_1$ y $p-p_2$ son puntos en el plano que lo generan, entonces $(p-p_1) \wedge (p-p_2)$ es normal al plano y como $p-p_3$ es un punto del plano, se debe cumplir $(p-p_1) \wedge (p-p_2) \cdot (p-p_3) = 0$.