

问题 A. 6789

 输入文件:
 标准输入

 输出文件:
 标准输出

时间限制: 1秒 1秒内存限制1024

兆字节

Jaehyun 喜欢数字。在 10 个数字中,6、7、8 和 9 是他的最爱。因此,他专门制作了一套只有 6、7、8 和 9 的卡片。

目前,Jaehyun 有 $N \times M$ 张卡片。Jaehyun 想制作一个 N 乘 M 的神奇卡片矩阵。矩阵的每一行都要包含 M 张牌。他已经把纸牌摆成了 N 乘 M 矩阵的形状。

图1.初始状态,非点对称。

要成为魔法矩阵,矩阵必须是点对称的:将矩阵旋转 180 度,结果与原始矩阵相同。例如,8 与它本身是点对称的,而 6 和 9 彼此是点对称的。Jaehyun 不想转换纸牌的位置,所以他的目标是只旋转纸牌的原始位置,使矩阵点对称。

第 5 阶段: 韩国大奖赛, 2019 年 10 月 13 日星期日

图2.旋转两张牌后,它们是点对称的。

找出最少要转动多少张牌才能组成神奇矩阵。

输入

第一行包含两个整数 N 和 M 。 $(1 \le N, M \le 500)$

接下来的 N 行中,每一行都包含一个由 M 个字符组成的字符串,表示写在每张卡片上的数字。保证每个字符都是 "6"、"7"、"8 "或 "9 "中的一个。

输出

在第一行打印制作魔术矩阵所需的最少翻牌张数。如果无法组成魔术矩阵,则打印"-1"(不带引号)。

标准输入	标准输出
2 3	2
676	
679	
3 3	0
888	
888	
888	
1 1	-1
7	

第5阶段: 韩国大奖赛, 2019年10月13日星期日

问题 B. 更大的推箱子游戏 40k

 输入文件:
 标准输入

 输出文件
 标准输出

时间限制: 1秒 1秒内存限制1024

兆字节

推**箱子**是一款著名的益智游戏,玩家在 $N \times M$ 大小的网格中移动,并将 1×1 大小的箱子推到 1×1 大小的存储位置。

大推箱子是推箱子游戏的一种可能的变体,但箱子的大小和存储位置都比 1×1大。这道题特别使用了 2×2。

大型推箱子游戏的规则与推箱子游戏相同。网格中的每个方格都是一个空方格或一堵墙。一些面积为 2×2 的空方格中各有 2×2 大小的盒子,一些面积为 2×2 的空方格中各有 2×2 大小的存储位置。

玩家位于网格中,可以上下左右移动到相邻的空方格,但不能穿过墙壁、方框或网格外。如果玩家试图移动到一个方框内,该 方框会被推到该方向的相邻方格内。箱子不能被推到其他箱子、墙壁或网格外,也不能被拉动。盒子的数量等于存储位置的数 量。当所有的盒子都到达储存位置时,谜题就解开了。

您的任务是制作一个更大的推箱子方格,至少需要 **40,000** 次移动才能解开谜题。为了方便起见,网格必须满足以下限制条件:

- $1 \le n, m, n+m \le 100_{\circ}$
- 网格包含一个盒子和一个存储位置。
- 播放器、盒子和存储位置不得相交。

输入

此问题没有输入。

输出

在第一行,打印两个空格分隔的整数 N、M; 它们描述了网格的大小。

在随后的 N 行中,每行打印一个长度为 M 的字符串;它描述网格的每一行。每个字符串必须由 .、#、P、B、S 组成;每个字符分别表示空方格、墙壁、玩家、盒子、存储位置。

网格中必须包含一个 P、四个 B 和四个 S。B 和 S 必须分别组成一个 2×2 的正方形。当然,网格必须是可解的。

请注意,示例输出只是为了演示格式良好的输出。由于它可以在少于 40,000 步内求解,因此并不是正确答案。

标准输入	标准输出
	5 6
	SS
	SS
	.#BB#.
	.BB.P

问题 C. 清洁

输入文件: 标准输入 输出文件: 标准输出

时间限制 2 秒 内存限制 1024

兆字节

Minje 经营着一家游戏厅。其中一款游戏位于大小为 $N \times M$ 的网格中。每个单元格中都写有 L、R、U、D 四个字符中的一个。这分别表示左/右/上/下方向。玩家可以在网格内自由移动,但**不能**朝自己所在单元格所写的方向移动,也不能移动到网格外。

Minje 会在玩家进入和离开网格后清理网格。然而,清理所有 $N \times M$ γ 单元格是很累的。因此,Minje 只想清理玩家可能会访问的单元格。

有 Q 名玩家参与了游戏。Minje 会记住每个玩家在游戏中站过的第一个格子和最后一个格子。这些单元格不一定位于角落或边缘。请计算 Minje 应该清理的单元格数量。每局游戏都是独立的,不会影响其他游戏的结果。

输入

在第一行中,给出了三个整数 N、M、Q,分别表示网格的大小和玩家的数量。(1≤ N, M≤ 1 000, 1 Q≤≤ 300 000)

在接下来的 N 行中,给出了大小为 M 的字符串,表示写在每个网格单元格中的字符。每个字符都是这四个字母中的一个:L、R、U、D。

在接下来的 Q 行中,给出了四个整数 $x_1, y_1, x_2, y_{(2)}$ 。这表示玩家在单元格($x_1, y_{(1)}$)中开始游戏,在单元格($x_2, y_{(2)}$)中结束游戏。($1 \le x_{(1)}, x_2 \le N, 1 \le y_{(1)}, y_2 \le M$)

输出

在每行O中,按输入的顺序打印表示查询答案的单个整数。查询的答案是

- 如果无法从单元格 (x₁, y₁) 移动到单元格 (x₂, y₂),则打印 0。
- 否则,打印 Minje 应该清理的单元格数量。

标准输入	标准输出
5 5 5	0
DDDDD	14
RDDDL	20
RRDLL	14
RUUUL	5
UUUUU	
1 1 5 5	
2 2 5 5	
3 3 5 5	
4 4 5 5	
5 5 5 5	

问题 D. 容器

输入文件:标准输入输出文件:标准输出时间限制2.5 秒 内存限制

1024 兆字节

Cki86201 Container Creator (CCC) 生产两种集装箱。一种容量为 1 吨,另一种容量为 2 吨。CCC 目前在一个仓库里有 N γ 集装箱,它们排成一排。在装运集装箱时,最好把先装运的集装箱放在前面。因此,CCC 打算重新排列这 N γ 集装箱。

为了重新排列集装箱,我们使用了机器。机器可以选择两个或三个连续的集装箱,并颠倒它们的顺序。使用机器的成本是所选容器的总容量加上基本成本 C。因此,颠倒两个容器 [2, 1] 需要成本 3+C,颠倒三个容器 [1, 1, 2] 需要成本 4+C。

虽然这项任务对 cki86201 来说微不足道,但他现在必须玩《守望先锋》。请找出以最小成本重新排列集装箱的方法。

输入

第一行给出了两个整数 N、C。(1≤ N≤ 500, 0≤ C≤ 1000)

下一行是大小为 N 的字符串,由两个字符 "1"、"2 "组成。这表示仓库中按**当前**排列顺序存放的集装箱的容量。

下一行是一个大小为 N 的字符串,由两个字符 "1"、"2 "组成。这表示仓库中按**预期**排列顺序存放的集装箱的容量。

保证两个字符串中 "1 "和 "2 "的数量相等。

输出

在第一行,打印数字 K,表示您使用机器的次数。

在接下来的 K 行中,打印两个整数 i, j ($1 \le < j \le N, j = i \le 2$),表示您已使用机器将 i, i + 1, ..., j-容器的当前状态。 如果答案是有效的(即用输出的阶次进行模拟,会产生所需的排列),并且使用了尽可能小的成本,那么答案将被视为正确。

标准输入	标准输出
5 2	2
11221	1 3
21112	4 5
7 0	4
2212121	6 7
1212122	4 6
	2 4
	1 2
7 2	3
2212121	1 3
1212122	3 5
	5 7

问题 E.死亡仙人掌协会

输入文件: 标准输入 输出文件: 标准输出

时间限制: 10秒 10秒内存限制

1024 兆字节

在韩国,*宠物图*已经成为替代动物宠物的热门选择。其中,*树木*因其温和的特性和可爱的外形,成为最受欢迎的宠物图形选择。然而,Koo 在这个行业中却以特立独行而闻名,因为他只为顾客提供*仙人掌*图形。*树状*图和*仙人掌*图是某一类图。树图是没有循环的连通图。*仙人掌*图是一种连通图,其中不存在属于两个不同循环的边。让我们来看一个例子。

第一幅图中的图形既是树也是仙人掌,第二幅图中的图形是仙人掌,最后一幅图中的图形既不是树也不是仙人掌。更多循环, 更多问题。

Koo 带着热情和爱心为仙人掌图形服务了 21 年,但现在他老了,也累了。虽然宠物图的流行让他店里的客人越来越多,但他们很少成为顾客,因为大多数人认为仙人掌图对宠物来说很难看。辜鸿铭的财运越来越差,生活也越来越艰难。最后,Koo 接受了残酷的现实,他决定开始做树图生意--把他可爱的仙人掌剪掉边缘。

图形是一种非常敏感的生物,砍掉中间的边缘会使整个图形衰败。但是,如果你精确地切断顶点和边的交汇点,图形就能自我修复。因此,你应该去掉整条边,而不是切掉中间。此外,切勿将图形切成断开状态:这对图形来说是非常可怕的。

如果切掉边 $e=\{u,v\}$,顶点 u,v 就会受伤。仙人掌是一种顽强的生物,因此它能立即愈合受伤的伤疤,长出新的边和新的末端顶点。每一条边和每一个顶点都有一个非负的**愈合因子**,顾氏事先知道这个**因子**。如果一条边 e 的愈合因子为 RE_e ,而一个受伤的顶点v 的愈合因子为 $RV_{(v)}$,那么每一个受伤的顶点都会创建一条长度为 RE_e+RV_v 的新边,同时在边的另一侧创建一个新顶点。

在图中,红色的边是我们要剪切的边,绿色的边是新创建的边。

如果我们从仙人掌的每个循环中切下一条边,我们就可以创造出一棵树。一般来说,人们喜欢直径小的树,树的直径是树上两个顶点之间最短路径的最大可能长度。为了赚大钱,Koo 想砍掉仙人掌, 使其直径最小。给定一个仙人掌,请帮助 Koo 找出切割循环中的边所能得到的最小直径。

输入

第一行给出了两个整数 N、M,分别表示仙人掌的顶点和边的数量。($3 \le n \le 100\ 000$, $n \le m \le 150\ 000$) 。每个顶点都标有数字 1、2、.....。N,每条边分别标有 1、2、.....。M

第5阶段: 韩国大奖赛, 2019年10月13日星期日

下一行给出 N 个整数 RV_1 , RV_2 , RV_N 表示每个顶点的愈合因子。 $(0 \le RV_{(i)} \le 10^9)$.

在接下来的 M 行中, \hat{g} i 行给出了四个整数 $A_{(i)}$, B_{i} , $L_{(i)}$, $RE_{(i)}$ 。 这表示第 i 条边连接两个顶点 $A_{(i)}$, $B_{(i)}$ 且边长为 $L_{(i)}$,并具有愈合因子 $RE_{i\circ}$ ($1 \le A_{(i)}$, $B_{i} \le N$, $A \not= B_{(i)}$, $1 \le L_{(i)}$, $RE_{(i)} \le 10^9$)

保证给定的图是仙人掌图,且没有连接同一对顶点的不同边。

输出

打印一个表示答案的整数。

标准输入	标准输出
3 3	10
1 2 3	
3 1 2 3	
1 2 1 2	
2 3 3 1	
5 6	22
1 2 3 4 5	
1 2 6 1	
1 3 5 4	
2 3 4 2	
1 4 3 6	
1 5 2 3	
4 5 1 5	

问题 F. 希尔伯特旅馆

输入文件:标准输入输出文件标准输出

时间限制 1.5 秒 内存限制

1024 兆字节

希尔伯特的旅馆有无数个房间,分别编号为 0、1、2......。每个房间最多住一位客人。由于人们往往成群结队地办理入住手续,所以酒店有一个成群结队的柜台变量 G。

希尔伯特的酒店今天盛大开业。希尔伯特的酒店今天隆重开业。不久,无穷多的人同 时 到来,挤满了酒店的每个房间。所有客人的分组编号都是 0,G 被设为 1。

具有讽刺意味的是,即使每个房间都住满了人,酒店也能接纳更多的客人:

- 如果有 k (k≥ 1) 人来到酒店,那么对于每个房间号 x , x 号房间的客人都会搬到 x 号房间+ k 。之后,新客人会住满从 0 到 k- 1 的所有房间。
- 如果有无限多的人入住酒店,那么对于每个房间号 x,x号房间的客人都会搬到 2x号房间。
 的客人就会搬到 2x房间。之后,新客人会住满所有奇数房间。

你必须编写一个程序来处理下列查询:

- 1 k 如果 $k \ge 1$,则有 k 人到达酒店。如果 k = 0,则无穷多的人到达酒店。给新客人分配组号 G,然后将 G 递增 1 。
- 2 g x 找出包含组号为 g 的客人的 \hat{g} x \hat{f} 最小房间号,并将其输出到 modulo \hat{f} 10g + 7,然后换行。
- 3 x 输出 x 号房间客人的组号,换行。

输入

第一行给出一个整数 Q($1 \le Q \le 300,000$),表示查询次数。接下来的每一行都包含一个查询。查询中的所有数字都是整数 .

- 对于1 k 个查询,0≤ k≤109。
- 对于 2 g x 查询,g < G, $1 \le x \le 10^9$,至少有 x 位客人的组号为 g。
- 对于 3 x 查询, 0≤ x≤ 10⁹。

第 5 阶段: 韩国大奖赛, 2019 年 10 月 13 日星期日

tΦ	ш	ı
抑	О	

处理所有查询并按要求输出。保证输出不为空。

第 5 阶段: 韩国大奖赛, 2019 年 10 月 13 日星期日

示例

标准输入	标准输出
10	0
3 0	1
1 3	0
2 1 2	9
1 0	4
3 10	4
2 2 5	
1 5	
1 0	
3 5	
2 3 3	

注释

如果你知道 "红心",请假设 "无限 "仅指 "可数无限"。如果不知道,就不必担心。

第 5 阶段: 韩国大奖赛, 2019 年 10 月 13 日星期日

问题 G. 词法最小行走

输入文件: 标准输入 输出文件: 标准输出

时间限制: 2秒 2秒内存限制1024

兆字节

有一个有向图 G,它有 N 个节点和 M 条边。每个节点编号为 1 到 N,每条边编号为 1 到 M。对于每个 i ($1 \le i \le M$),边 i 从顶点 u_i 到顶点 v_i ,并具有**唯一的**颜色 $c_{(i)}$ 。

*行走的*定义是边 $e_1, e_2, \dots, e_{l_{\mathcal{B}}}$ 序列,其中每 $1 \le k < l$, $\mathbf{v}(e_{l(u)} \ / \ \dot{\mathbf{D}}_{e(k)}$ 的尾)与 $u_{(e)}(e_{l_{k}(+1)})$ 边 $e(e_{l_{k}(+1)})$ 的头)相同。我们可以说一条行走 e_1, e_2, \dots, e_l 开始于顶点 $u_{(e)}(e_{l_k})$ 并结束于顶点 $v(e_{l_k}(e_{l_k}))$ 。请注意,同一条边可以在一次行走中出现多次。

行走 e_1 , e_2 , ---, e_l 的*颜色序列*定义为 $c_{(e)}$ (v_1) , $c_{(e)}$ (v_2) , ---, $c_{(e)}$ (v_3)

考虑 G 中从顶点 S 到顶点 T 的所有长度不超过 10^{100} 的彩色行走序列。

输入

输入的第一行包含四个空格分隔的整数 N, M, S 和 T (1≤ N≤ 100 000, 0≤ M≤ 300 000, 1≤ S≤ N, 1≤ T≤ N, S /= T)。

接下来是 M 条线: 其中第 j ($1 \le j \le M$)- 条线包含三个空间隔离整数 u_i, v_i 和 $c_{(i)}$ ($1 \le u_i, v_i \le N$, $u_i = v_{(i)}$, $1 \le c(v_i \le 10^9)$; 它描述了一条从顶点 u_i 到顶点 $v_{(i)}$ 的带颜色 $c(v_i)$ 的定向边。

图中没有多条边,每条边都有唯一的颜色。形式上,对于任意 $1 \le i < j \le M$ 、 $c_i \ne c_j$ 和 $(u_{(i)}, v_i)$ 成立。 $\ne (u_i, v_i)$ 成立。

输出

如果不存在从顶点 S 到顶点 T 的行走,则打印 "IMPOSSIBLE"。(不带引号)

否则,假设 a_1, a_2, \dots, a_r 是所有从顶点 S 到顶点 T 长度至多为 10^{100} 的颜色序列中的词典最小序列。

- 如果 $l \le 10^6$, 则在第一行打印 $a_1, a_2, ---, a_l$ 。每个打印的整数之间应有一个空格。
- 如果 l> 106, 打印 "T00 LONG" (太长)。(不带引号)

示例

标准输入	标准输出
3 3 1 3	1 7
1 2 1	
2 3 7	
1 3 5	
3 4 1 3	过长
1 2 1	
2 1 2	
2 3 7	
1 3 5	
2 0 2 1	不可能

备注

序列 p_1, p_2, \dots, p_n 在词法上小于另一序列 q_1, q_2, \dots, q_m ,当且仅当下列条件之一成立时

第5阶段:韩国大奖赛,2019年10月13日星期日

成立:

- 存在唯一的j ($0 \le j < \min(n, m_{)}$),其中 $p_1 = q_1, p_2 = q_{(2)}, \dots, p_j = q_j$ 和p(j) (+1) $< q_{(j)}$ (+1)< q
- n < m 和 $p_1 = q_1, p_2 = q_2, \dots, p_n = q_{(n)}$ 。 换句话说, $p \in q$ 的严格前缀。

第5阶段:韩国大奖赛,2019年10月13日星期日

问题 H. 最大化

输入文件: 标准输入 输出文件 标准输出

时间限制 2 秒 内存限制 1024

兆字节

Maximizer 有两个排列组合 $A=[a_1, a_2, \cdots, a_N]$, $B=[b_1, b_2, \cdots, b_N]$ 。 A 和 B 的长度均为

N 并由 1 到 N 之间**的不同整数**组成。

最大化者希望最大化每个元素的差值之和 Σ_N

_{i=1} |a_i-b_i|。但他只能

确切地说,他只能交换 A 中相邻两个元素的 a_i 和 $a_{(i)}$ (+1),交换对象为 1 到 N- 1 中的某个 i。他想交换多少次就交换多少次。

要使差和最大,最少需要多少次交换?

输入

第一行包含一个整数 N. (1≤ N≤ 250000)

第二行包含 N 个整数 $a_1, a_2, \dots, a_{(N)}$ ($1 \le a_i \le N$)。第三行包含 N 个整数 b_1, b_2

---, $b_{(N)}$ (1≤ b_i ≤ N) ∘

每一个 $[a_1, a_2, ---, a_N]$ 和 $[b_1, b_2, ---, b_N]$ 都是一个排列。换句话说,它由从 1 到 N 的不同整数组成。

输出

打印一个整数,即最大化差值和所需的最小交换次数。

标准输入	标准输出
3	2
1 2 3	
1 2 3	
4	3
3 4 1 2	
3 2 4 1	

问题 I. 最小直径生成树

输入文件: 标准输入 输出文件: 标准输出

时间限制 5 秒 内存限制 1024

兆字节

给您一个简单相连的无向加权图 G,其中有 N 个节点和 M 条边。每个节点编号为 1 到 N。

G 的生成树是 G 的一个子图,它是一棵树,连接着 G 的所有顶点。G 的最小直径生成树是具有最小直径的 G 的生成树。 编写一个程序,找出任何直径最小的生成树。

输入

输入的第一行包含两个整数 N ($2 \le N \le 500$) 和 M ($N = 1 \le M \le \frac{(N) - (N - (1))}{2}$)。那么下面是 M 行:第 i ($1 \le i \le M$) - 行包含三个空格分隔的整数 u_i, v_i 和 $I_{(i)}$

 $(1 \le u_i, v_i \le N, 1 \le l_i \le 10^9)$; 它描述了连接顶点 u_i 和顶点 v_{ij} 的长度为 l_{ij} 的双向边。

保证给定的图没有任何循环或多条边,并且图是连通的。

输出

第一行,打印 G 的最小直径生成树的直径。

在接下来的 N- 1 行中,打印 G 的最小直径生成树中的边的描述。第 j ($1 \le j \le N$ - 1)-行应包含两个空格分隔的整数 x_i 和 y_i ($1 \le x_i, y_i \le N$);它描述了连接顶点 x_i 和 $y_{(i)}$ 的双向边。

如果有多个可能的答案,请打印其中任意一个。

标准输入	标准输出
3 3	2
1 2 1	1 2
2 3 1	3 1
3 1 1	
6 7	1060
1 2 10	3 4
2 3 20	6 4
1 3 30	5 6
3 4 1000	2 3
4 5 30	1 2
5 6 20	
4 6 10	

输入文件: 标准输入

输出文件: 标准输出

时间限制 1.5 秒 内存限制

1024 兆字节

图1.阴天中的加普川和世博桥

*加普川*是流经*大德创新城的*一条小溪:它是大田的一个研究区,包括韩国科学技术院、世博科学公园、国立科学博物馆等。加普川的水边被用作公园,是休闲和娱乐设施。

在这个问题中,我们将 Gapcheon 建模为一条略微弯曲的弧线。在弧线上,每厘米正好有 10^6 个点。在 Gapcheon 中,有 N 座桥将弧线上的两个不同点用直线段连接起来。这样的线段可能在端点处与其他线段相交,但绝不会与其他线段相交。对于每一对点,最多存在一座直接连接这两点的桥。

图 2: x, y, z 是不相交的桥,只在端点处相互接触。这可能是一个输入实例。编号为 $8...10^{(6)$ 的点为简洁起见省略。

图 3. x、y 是相互交叉的桥梁。这不是一个可能的输入实例。编号为 8...10^{(6)的点}为简洁起见省略。

市议会计划在这些桥梁上安装一些照明灯,使加普川成为一个在夜晚更令人愉悦的地方。市议会为每座桥梁 计算了安装灯光后的美学价值。这些值可以用正整数表示。

然而,过多的灯光会在午夜时分打扰居民。为了解决这个问题,议会决定制定一些规定:对于相邻两点之间的每条弧线,从那里最多只能看到 k 座亮灯的桥梁。当线段的一个端点的索引最多为 i ,而线段的另一个端点的索引至少为 i+1 时,我们称从连接 i (i+1) 的弧线上**可以看到**该线段。

市议会希望考虑光污染和夜景之间的权衡,因此您应提供所有整数 1≤ k≤ N 的最大可能的美学价值总和。

输入

第一行包含一个整数 N。 (1≤ N≤ 250 000)

接下来的 N 行包含三个整数 S_i , E_i , $V_{(i)}$, 表示有一条直线桥连接点 $S_{(i)}$, $E_{(i)}$, 并具有美学值 $V_{(i)}$. (1 $\leq S_i < E_i \leq 10^6$, 1 $\leq V_i \leq 10^9$). 保证没有线段连接同一对点,也没有两条不同的线段交叉。

输出

打印用空格分隔的 N 个整数。如果 k=i,则第 i 个整数($1 \le i \le N$)应为答案。

示例

标准输入	标准输出
6	41 80 80 80 80 80
1 2 10	
2 3 10	
1 3 21	
3 4 10	
4 5 10	
3 5 19	
4	1 2 3 4
1 5 1	
2 5 1	
3 5 1	
4 5 1	

注

图4.输入样本1的描述。

第5阶段:韩国大奖赛,2019年10月13日星期日

问题 K. 变化之风

输入文件: 标准输入 输出文件: 标准输出

时间限制 12 秒 内存限制

1024 兆字节

这个问题的原标题是"无一点的树积公制Voronoi 图查询"。

给你两棵大小为 N 的加权树 T_1 , T_2 ,其中每个顶点都标有数字 1 .N .设 $dist(T_1, i, j)$ 是树 $T_{(1)}$ 中从节点 i 到 j 的最短路径的总权重,类似地定义 $dist(T_2, i, j)$ 。

考虑大小为 N 的点集。与曼哈顿度量相似(事实上,这是曼哈顿度量的概括),我们可以定义两点之间的距离 $1 \le i$, $j \le N$: 它是两个距离之和,即 $dist(T_1, i, j) + dist(T_2, i, j)$.对于每个 $1 \le i \le N$,请确定离点 "最近的点"。 i.形式上,对于每个 i,您应该找到 $min_{(j)\cdot(j)=i}dist(T_1, i, j) + dist(T_2, i, j)$.

输入

第一行,给出一个整数 N,表示两棵树的顶点数。(2 n≤ ≤ 250 000)

在接下来的 N- 1 行中,将给出第一棵树的描述。N- 1 行中的每一行都包含三个整数 S_{i} $E_{(i)}$, $W_{(i)}$,表示有一条边连接两个顶点 $S_{(i)}$, $E_{(i)}$ 且权重为 W_{i} $(1 \le S_{(i)}$, $E_{i} \le N$, $1 \le W_{(i)} \le 10^{9}$)

在接下来的 N-1 行中,将以相同格式对第二棵树进行描述。

输出

打印N行,每行包含一个整数。在 \hat{g}_i 行,应打印一个整数,表示 \hat{g}_i 点的答案。

标准输入	标准输出
5	25
1 2 10	25
2 4 20	85
3 4 30	65
4 5 50	105
1 2 15	
1 3 25	
1 4 35	
1 5 25	
9	18084
5 7 6577	9369
4 5 8869	9582
5 9 9088	23430
2 1 124	26694
6 2 410	9369
2 8 8154	23430
4 8 4810	9582
3 4 4268	22988
3 9 763	
6 2 8959	
7 4 7984	
3 8 504	
8 6 9085	
5 2 4861	
1 9 8539	
1 7 7834	