1 Motivating Example

GOAL: To evaluate the effect of smoking on heart rate.

• Suppose the collection \mathcal{U} of all human beings has been divided into four overlapping groups: \mathcal{U}_1 non-smokers, \mathcal{U}_2 light smokers, \mathcal{U}_3 moderate smokers, and \mathcal{U}_4 heavy smokers, i.e.

$$\mathcal{U} = \bigsqcup_{j=1}^{4} \mathcal{U}_{j}$$

- In each group, we take a random sample of 6 individuals, and measure their heart rates after three minutes of resting.
- Let μ_j be the population mean heart rate of \mathcal{U}_j , $j=1,\ldots,4$, respectively. We would like to use the collected data to test:

$$H_0: \quad \mu_1 = \mu_2 = \mu_3 = \mu_4$$

 H_1 : not all of μ_1 , μ_2 , μ_3 , and μ_4 are equal.

Suppose the collected data are as follows:

$ \begin{array}{c} \text{non-smokers} \\ j = 1 \end{array} $	light smokers $j=2$		heavy smokers $j=4$
69	55	66	91
52	60	81	72
71	78	70	81
58	58	77	67
59	62	57	95
65	66	79	84

2 Sums of Squares and Their Relevant Properties

$$SS_{\text{inter-level}} := \sum_{j=1}^{k} \sum_{i=1}^{n_j} (\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot})^2 = \sum_{j=1}^{k} n_j (\overline{Y}_{\cdot j} - \overline{Y}_{\cdot \cdot})^2$$

$$SS_{\text{intra-level}} := \sum_{j=1}^{k} \sum_{i=1}^{n_j} (Y_{ij} - \overline{Y}_{\cdot j})^2$$

$$SS_{\text{total}} := \sum_{i=1}^{k} \sum_{j=1}^{n_j} (Y_{ij} - \overline{Y}_{\cdot \cdot})^2$$

Proposition 2.1

$$SS_{\text{total}} = SS_{\text{inter-level}} + SS_{\text{intra-level}}$$

Proposition 2.2

Suppose:

1. Y_{ij} , for j = 1, ..., k and $i = 1, ..., n_j$, are independent random variables.

2. there exist $\sigma^2 > 0$ and $\mu_1, \ldots, \mu_k \in \mathbb{R}$ such that $Y_{ij} \sim N(\mu_j, \sigma^2)$, for each $j = 1, \ldots, k$, and each $i = 1, \ldots, n_j$. Then, regardless of whether H_0 ($\mu_1 = \mu_2 = \mu_3 = \mu_4$) is true, we have:

- $\frac{SS_{\text{intra-level}}}{\sigma^2}$ has a χ^2 distribution with (n-k) degrees of freedom. In particular, $E\left[\frac{SS_{\text{intra-level}}}{\sigma^2}\right] = n-k$.
- \bullet $SS_{intra-level}$ and $SS_{inter-level}$ are independent random variables.

Proposition 2.3

Suppose:

- 1. Y_{ij} , for j = 1, ..., k and $i = 1, ..., n_j$, are independent random variables.
- 2. there exist $\sigma^2 > 0$ and $\mu_1, \ldots, \mu_k \in \mathbb{R}$ such that $Y_{ij} \sim N(\mu_j, \sigma^2)$, for each $j = 1, \ldots, k$, and each $i = 1, \ldots, n_j$. Then,

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \implies \frac{SS_{\text{inter-level}}}{\sigma^2} \sim \chi_{k-1}^2$$

Corollary 2.4

Suppose:

- 1. Y_{ij} , for j = 1, ..., k and $i = 1, ..., n_j$, are independent random variables.
- 2. there exist $\sigma^2 > 0$ and $\mu_1, \ldots, \mu_k \in \mathbb{R}$ such that $Y_{ij} \sim N(\mu_j, \sigma^2)$, for each $j = 1, \ldots, k$, and each $i = 1, \ldots, n_j$.

Then,

$$H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 \implies F := \frac{SS_{\text{inter-level}}/(k-1)}{SS_{\text{intra-level}}/(n-k)} \sim \mathcal{F}_{n-k}^{k-1}$$

Lemma 2.5

Suppose:

- 1. Y_{ij} , for j = 1, ..., k and $i = 1, ..., n_j$, are independent random variables.
- 2. there exist $\sigma^2 > 0$ and $\mu_1, \ldots, \mu_k \in \mathbb{R}$ such that $Y_{ij} \sim N(\mu_j, \sigma^2)$, for each $j = 1, \ldots, k$, and each $i = 1, \ldots, n_j$. Then,

$$E[SS_{\text{inter-level}}] = (k-1)\sigma^2 + \sum_{j=1}^{k} n_j(\mu_j - \mu)^2,$$

where $\mu := \frac{1}{n} \sum_{j=1}^k \mu_j$, and $n = n_1 + n_2 + \cdots + n_k$. In particular,

$$\frac{E\left[SS_{\text{inter-level}}/(k-1)\right]}{E\left[SS_{\text{intra-level}}/(n-k)\right]} = \frac{\sigma^2 + \frac{1}{k-1} \sum_{j=1}^k n_j (\mu_j - \mu)^2}{\sigma^2} \ge 1$$

3 Experimental Design of Univariate One-way ANOVA

Let $n, N \in \mathbb{N}$, with $n \leq N$. Let $\mathcal{U} = \{1, 2, \dots, N\}$, which represents the finite population, or universe, of N elements.

Study Notes March 19, 2011 Kenneth Chu

A Technical Results

Theorem A.1

Let Y_1, Y_2, \ldots, Y_n be independent identically distributed random variables with common distribution $N(\mu, \sigma^2)$. Then,

• the following two random variables are independent:

$$\overline{Y} := \frac{1}{n} \sum_{i=1}^{n} Y_i$$
 and $S^2 := \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$

• the random variable

$$\frac{1}{\sigma^2} \cdot (n-1) S^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (Y_i - \overline{Y})^2$$

has a χ^2 distribution with (n-1) degrees of freedom.