Python & Data Engineering 인공지능 직무전환자 과정

- Day 4 Data Preprocessing & Visualization

Sanghyun Seo

Course Descriptions

Python & Data Engineering

Day 1 – Python Basic	Day 2 - Advanced Python	Day 3 – Numpy, Pandas	Day 4 – Data Preprocessing, Visualization
 Getting started Introduction to Python Data Type & Variable Flow control Function Python programming practice 	 Review File Class Exception Handling Advanced python 	 Review Numpy Basic Advanced Numpy Pandas Basic Advanced Pandas 	 Review Introduction to machine learning Data preprocessing Visualization Course Summarization

Contents

- 1. Introduction to Machine Learning
 - Building Machine Learning Systems
- 2. Data Preprocessing
 - Data Summarization
 - Data Preprocessing
- 3. Visualization
 - Figures
 - Axes Customizing
 - Graph

1. Introduction to Machine Learning

Definition

- Changes in a system that enable it to perform better on repetition of same task
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."
 Tom M. Mitchell

Ref: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg

- Supervised learning
 - Given: <data, label> examples (labeled)
 - Learning: <model> rules, trees, neural nets to give the right answer

Н	W	Grade
185	65	F
162	80	Α
175	70	F
165	92	Α
•••	•••	•••

- Unsupervised learning
 - Given: <data> examples (unlabeled)
 - Learning: <groups> of data

I	W	
185	65	
160	90	
180	70	
165	95	
•••	•••	

Group?

- Reinforcement learning
 - Given: <action, reward> experiences
 - Learning: <rules> for right action

- Example: <x, f(x)>
 - X: input, f(X): output (f: target function)
- Learning
 - Given a set of examples
 - Find target function f (model or classifier)

- Various Machine Learning Models
 - Classification
 - Nearest Neighbor
 - Decision Tree
 - Naïve Bayes
 - Support Vector Machine
 - Neural Networks
 - Regression
 - Linear Regression
 - Support Vector Regression
 - Neural Networks
 - Clustering
 - K-means
 - Density based
 - Gaussian Mixture

MACHINE LEARNING SUPERVISED UNSUPERVISED LEARNING LEARNING CLUSTERING CLASSIFICATION REGRESSION Support Vector Machines Linear Regression, GLM K-Means, K-Medoids Fuzzy C-Means Discriminant SVR, GPR Hierarchical Analysis Naive Bayes Ensemble Methods Gaussian Mixture Hidden Markov Nearest Neighbor **Decision Trees** Model Neural Networks Neural Networks Neural Networks

Ref: https://kr.mathworks.com/help/stats/machine-learning-in-matlab.html

Procedure of Machine Learning

- Data preprocessing
- Learning
- Evaluation(Testing) → Employment

Type of Dataset

- Structured data
 - Numerical, categorical, etc.
- Unstructured data
 - Images, text, audio, video, etc.

Unstructured data

The university has 5600 students.
John's ID is number 1, he is 18 years old and already holds a B.Sc. degree.
David's ID is number 2, he is 31 years old and holds a Ph.D. degree. Robert's ID is number 3, he is 51 years old and also holds the same degree as David, a Ph.D. degree.

Semi-structured data

<university></university>
<student id="1"></student>
<name>John</name>
<age>18</age>
<degree>B.Sc.</degree>
<student id="2"></student>
<name>David</name>
<age>31</age>
<degree>Ph.D. </degree>

Structured data

ID	Name	Age	Degree
1	John	18	B.Sc.
2	David	31	Ph.D.
3	Robert	51	Ph.D.
4	Rick	26	M.Sc.
5	Michael	19	B.Sc.

Ref:

https://www.researchgate.net/publication/236860222_Developing_Dynamic_Packaging_Applications_using_Semantic_Web_b ased_Integration/figures?lo=1

Type of Dataset

• 텐서 (Tensor)

- 선형대수학/물리학에서, 선형 관계를 나타내는 미분기하학의 대상이다. 기본적인 예는 스칼라곱과 선형 변환이 있으며 스칼라와 벡터 또한 해당한다. 텐서는 기저를 선택하여 다차원 배열로 나타낼 수 있으며, 기저를 바꾸는 변환 법칙이 존재한다.

Tensor in deep learning

- 다차원의 데이터 구조를 표현한 것, 숫자를 담는 컨테이너
- 다차워 배열

Data Preprocessing

- Data cleaning
 - Fill in the missing values
 - Handle the noise data, identify or remove outliers
- Data transformation
 - Normalization, standardization
 - Discretization
- Feature selection
- Dimensionality reduction
 - Principle Component Analysis

Data Preprocessing

- 데이터 분할 (Dataset Split)
 - Training/Testing
 - Training/Validation/Testing

Ref: https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6

- 과적합(Overfitting)
 - Overfitting happens when a model learns the detail and noise in the training data to the extent that it negatively impacts the performance of the model on new data

Ref: https://www.geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/

- 머신러닝의 목적 및 평가방법:
 - 목적: 처음보는 데이터도 잘 예측할 수 있게 한다(일반화 generalization 능력).
 - 훈련 단계(Train Phase): 훈련 데이터(Train data, 훈련에 사용되는 데이터)로 훈련
 - 평가 단계(Validation Phase): 일반화 능력을 평가, 특정 지표로 최적의 모델을 선택
 - 테스트 단계(Test Phase): 훈련/평가에 없는 실제 데이터로 테스트 후 상용화

- 평가 단계의 의미:
 - 일반화generalization 능력을 측정한다!
 - 예시: 어떤 수학 지식을 "이해했다"라고 할때는 언제일까?
 - 수학 지식을 "이해했다" = 새로운 문제도 풀수 있다. = 일반화 능력
 - 평가 방법: 시험을 봐서 좋은 성적을 얻었을 때

Evaluation Metrics

- Confusion matrix

-
$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

-
$$Precsion = \frac{TP}{TP+FP}$$

-
$$Recall = \frac{TP}{TP+FN}$$

Recal Ref: https://www.guru99.com/confusion-matrix-machine-learning-example.html

Building Machine Learning Systems

- (1) Data split → (2) learning with various hyperparameter
 - \rightarrow (3) evaluation on validation dataset \rightarrow (4) find best model
 - \rightarrow (5) evaluation on test dataset \rightarrow (6) deployment

Ref: https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

Deep Learning

- Paradigm shift
 - Large-scale data (Big Data)
 - High computation power (GPU)
 - Deep Learning Framework (PyTorch, Tensorflow, etc.)

2. Data Preprocessing

Data Object

- A data object represents an entity
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
 - Also called samples, examples, instances, data points, objects, tuples.
- Data objects are described by attributes
 - Database rows → data objects; columns → attributes.

Id	Name	Gender	Age	GPA
1043028	Tom Cruise	M	28	3.14
2102019	Emma Stone	F	27	3.35

Attribute Types

- 명목 (Nominal)
 - categories, states, or "names of things"
 - hair_color = {black, blond, brown}, occupation, zip code
- 이진 (Binary)
 - Nominal attribute with only 2 states (0/1, T/F, Y/N, +/-)
 - has_desease = {0, 1}, student?,
- 순서 (Ordinal)
 - Values have a meaningful order (ranking)
 - size = {small, medium, large}, grade, medal

Attribute Types

- 수치 (Numeric)
 - integer or real-valued
 - temperature = 36.8, age, weight, speed, salary
- 이산 (Discrete) vs. 연속 (Continuous)
 - Discrete: finite or countably infinite set of values
 - age = 25
 - Continuous: real numbers
 - weight = 72.3

Data Summarization

- Motivation
 - To better understand the data: central tendency, variation and spread \sum_{x}
- Mean: $\mu = \frac{2}{N}$
- Median: middle value
- Mode: value that occurs most frequently in the data
- Max/Min

Data Summarization

Variance

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

- Standard deviation σ
 - square root of variance
 - For normal distribution, [μ–2σ, μ+2σ] contains about 95% of data

Quartiles

- Q1 (25th percentile), Q3 (75th percentile)
- Boxplot: ends of the box are the quartiles, median is marked

Data Summarization

Histogram

- display of tabulated frequencies
- shows what proportion of cases
 fall into each of several categories

Scatter plot

- pair of values is treated as a pair of coordinates and plotted as points
- provides a first look at bivariate data to see clusters of points, outliers, etc.

Why Data Preprocessing?

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=""
 - noisy: containing errors or outliers
 - e.g., Salary="-10"
 - inconsistent: containing discrepancies in codes or names
 - e.g., "gender" vs. "sex"
 - e.g., sex="woman" vs. sex="female"
- No quality data, no quality mining results!
 - Quality decisions must be based on quality data
 - Noisy or missing data may cause misleading statistics
 - → Data warehouse needs consistent integration of quality data

Why Data Preprocessing?

- Incomplete data may come from
 - "Not Applicable" data value when collected
 - Human/hardware/software problems
- Noisy data (incorrect values) may come from
 - Faulty data collection instruments
 - Human or computer error at data entry
 - Errors in data transmission
- Inconsistent data may come from
 - Different data sources
 - Functional dependency violation (e.g., modify some linked data)
- Duplicate records also need data cleaning

Major Tasks

- 데이터 정제 (Data cleaning)
 - Fill in missing values, smooth noisy data, identify or remove outliers, resolve inconsistencies

- Integration of multiple databases, data cubes, or files
- 데이터 변형 (Data transformation)
 - Normalization, standardization
 - Discretization, Generalization
- 데이터 축소 (Data reduction)

 - Obtains reduced representationSampling, dimensionality reduction

18, 35, 47, 29, 63, 52, ... → Y, Y, O, Y, O, O, ...

Data Cleaning

Importance

- "Data cleaning is one of the three biggest problems in data warehousing"—Ralph Kimball
- "Data cleaning is the number one problem in data warehousing"—DCI survey

Data cleaning tasks

- Fill in missing values
- Identify outliers and smooth out noisy data
- Correct inconsistent data
- Resolve redundancy caused by data integration

Handling Missing Data

- Ignore the tuple
 - usually done when class label is missing (assuming the tasks in classification)
- Use a global constant
 - Ex> "unknown", 0, or - ∞
- Use the attribute mean
- Use the attribute mean for all samples of the same class
 - Ex> For customer of "risk_high" class → fill in the average of "risk_high" people
- Use the most probable value
 - Inference-based such as Bayesian formula or decision tree

Handling Noisy Data

- Noise
 - Random error or variance in a measured variable
- Incorrect attribute values may due to
 - Data entry problems
 - Error in data collection / data transmission
 - Inconsistency in naming convention
- Handling Noisy Data
 - Binning
 - Outlier detection by clustering
 - Outlier detection by regression

Handling Noisy Data

- Outlier detection
 - Clustering
 - Similar values are organized into groups (clusters)
 - → detect and remove outliers
 - Regression
 - Fit the data into regression functions
 - → detect and remove outliers

Data Integration

- Data integration
 - Combines data from multiple sources into a coherent store
- Schema integration
 - Integrate metadata from different sources
 - Entity identification problem: identify real world entities from multiple data sources
 - Ex> customer_id = cust-No
- Detecting and resolving data value conflicts
 - For the same real world entity, attribute values from different sources are different
 - Possible reasons: different representations, different scales
 - Ex> 2.1 m vs. 210 cm

Data Integration

- Redundancy
 - One attribute may be a "derived" from another attribute
 - Ex> monthly sales vs. annual sales
- Detecting redundancy
 - Some redundancy can be detected by correlation analysis (how strongly one attribute implies the other)
 - Sample correlation coefficient

$$r_{A,B} = \frac{\sum (A - \bar{A})(B - \bar{B})}{(n-1)\sigma_A \sigma_B}$$

- r > 0 : highly correlated (A increase → B increase)
- r = 0: independent
- r > 0 : negatively correlated

Data Transformation

- Data transformation: Change data to appropriate form
 - Normalization:
 - Rescale the data into a small, specified range (Ex> [0, 1])
 - Standardization
 - Rescale the data to have 0 mean, 1 standard deviation
 - Discretization
 - Convert continuous values to discretized/nominal values
 - Generalization
 - Concept hierarchy climbing
 - Aggregation
 - Summarization, data cube construction

Normalization/Standardization

Normalization

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Ex> \$12,000 ~ \$98,000 \rightarrow [0, 1], then \$45,000 \rightarrow 0.38
- Standardization: z-score

$$v' = \frac{v - \bar{A}}{}$$

 $v' = \frac{v - A}{\sigma_A}$ - Ex> If $\mu = 54,000$, $\sigma = 16,000$, then \$45,000 \rightarrow -0.56

Age	Salary
25	2000000
35	2500000
50	4000000

Age	Salary
-0.93	-0.80
-0.13	-0.32
1.06	1.12

Discretization

Discretization

- Dividing the range of the attribute into intervals
 - → Interval labels can be used to replace actual data values
 - → Reduce the number of values for a continuous attribute
 - $[140, 220] \rightarrow \{ <170, 170 \le \}$
 - (174, 159, 168, 182, 165, ... } → (170≤, <170, <170, 170≤, <170, ... }

Concept hierarchy

- Defines a discretization
- Low level concepts → higher level concepts
 - Ex> Age (integer) → {young, middle-aged, senior}
 (18, 15, 27, 14, 19, 63, 32, ...) → (Y, Y, M, Y, Y, S, M, ...)
- Can be automatically generated based on data distribution

- Building Good Training Sets
 - 결측치 처리 (Dealing with missing data)

```
import pandas as pd
                                                1.0 2.0
                                                          3.0 4.0
from io import StringIO
                                                5.0 6.0 NaN
                                                               8.0
import sys
                                             2 10.0 11.0 12.0 NaN
csv data = \
'''A,B,C,D
1.0,2.0,3.0,4.0
5.0,6.0,,8.0
10.0,11.0,12.0,"
df = pd.read csv(StringIO(csv data))
                                            dtype: int64
Df
                                            array([[ 1., 2., 3., 4.],
df.isnull().sum()
                                                  [5., 6., nan, 8.],
df.values
                                                  [10., 11., 12., nan]])
```

- Building Good Training Sets
 - 결측치 처리 (Eliminating samples or features with missing values)

```
# remove rows that contain missing values
df.dropna(axis=0)

# remove columns that contain missing values
df.dropna(axis=1)

# drop rows where all colums are NaN
df.dropna(how="all")

# drop rows where NaN appear in specific columns (for example : "C")
df.dropna(subset=["C"])
```


	Α	В
0	1.0	2.0
1	5.0	6.0
2	10.0	11.0

	Α	В	С	D
0	1.0	2.0	3.0	4.0
1	5.0	6.0	NaN	8.0
2	10.0	11.0	12.0	NaN

	Α	В	С	D
0	1.0	2.0	3.0	4.0
2	10.0	11.0	12.0	NaN

- Building Good Training Sets
 - 결측치 처리 (Imputing missing values)

- Building Good Training Sets
 - Handling categorical data

```
import pandas as pd

df = pd.DataFrame([['green', 'M', 10.1, 'class2'],
['red', 'L', 13.5, 'class1'],
['blue', 'XL', 15.3, 'class2']])

df.columns = ['color', 'size', 'price', 'classlabel']
df
```

	color	size	price	classlabel
0	green	М	10.1	class2
1	red	L	13.5	class1
2	blue	XL	15.3	class2

Mapping ordinal features

```
size_mapping = {'XL': 3, 'L': 2, 'M': 1}
df['size'] = df['size'].map(size_mapping)
Df

inv_size_mapping = {v: k for k, v in size_mapping.items()}
df['size'] = df['size'].map(inv_size_mapping)
df
```

	color	size	price	classlabel
0	green	1	10.1	class2
1	red	2	13.5	class1
2	blue	3	15.3	class2
	color	size	price	classlabel
0	color green	size M	price 10.1	classlabel class2
0		М		

- Building Good Training Sets
 - Encoding class labels

```
import numpy as np
# create a mapping dict to convert class labels from strings to integers
class mapping = {label: idx for idx, label in enumerate(np.unique(df['classlabel']))}
class mapping
# to convert class labels from strings to integers
df['classlabel'] = df['classlabel'].map(class mapping)
df
# reverse the class label mapping
inv class mapping = {v: k for k, v in class mapping.items()}
df['classlabel'] = df['classlabel'].map(inv class mapping)
df
from sklearn.preprocessing import LabelEncoder
# Label encoding with sklearn's LabelEncoder
class le = LabelEncoder()
y = class le.fit transform(df['classlabel'].values)
# reverse mapping
class le.inverse transform(y)
```

- Building Good Training Sets
 - Encoding class labels

```
import numpy as np
# create a mapping dict to convert class labels from strings to integers
class mapping = {label: idx for idx, label in enumerate(np.unique(df['classlabel']))}
class mapping
                                                             {'class1': 0, 'class2': 1}
# to convert class labels from strings to integers
                                                              color size price classlabel
df['classlabel'] = df['classlabel'].map(class mapping)
                                                                     M 10.1
                                                             areen
# reverse the class label mapping
                                                               red
                                                                        13.5
inv_class_mapping = {v: k for k, v in class mapping.items()}
                                                               blue
                                                                    ΧL
                                                                        15.3
df['classlabel'] = df['classlabel'].map(inv class mapping)
                                                              color size price classlabel
from sklearn.preprocessing import LabelEncoder
                                                           0 green
                                                                     M 10.1
                                                                                class2
# Label encoding with sklearn's LabelEncoder
                                                                        13.5
                                                                                class1
                                                               red
class le = LabelEncoder()
                                                               blue
                                                                    XL 15.3
                                                                                class2
v = class le.fit transform(df['classlabel'].values)
                                                                    → array([1, 0, 1])
# reverse mapping
```

- Building Good Training Sets
 - Performing one-hot encoding on nominal features

- Building Good Training Sets
 - Performing one-hot encoding on nominal features

```
# return dense array so that we can skip
# the toarray step
ohe = OneHotEncoder(categorical_features=[0], sparse=False)
ohe.fit_transform(X)

# one-hot encoding via pandas
pd.get_dummies(df[['price', 'color', 'size']])

# multicollinearity guard in get_dummies
pd.get_dummies(df[['price', 'color', 'size']], drop_first=True)

# multicollinearity guard for the OneHotEncoder
ohe = OneHotEncoder(categorical_features=[0])
ohe.fit_transform(X).toarray()[:, 1:]
```

- Building Good Training Sets
 - Performing one-hot encoding on nominal features

```
# return dense array so that we can skip
   # the toarray step
   ohe = OneHotEncoder(categorical_features=[0], sparse=False) array([[ 0. , 1. , 0. , 1. , 10.1],
   ohe.fit transform(X) -
                                                                               [ 0. , 0. , 1. , 2. , 13.5],
[ 1. , 0. , 0. , 3. , 15.3]])
   # one-hot encoding via pandas
    pd.get dummies(df[['price', 'color', 'size']])
   # multicollinearity guard in get dummies
    pd.get_dummies(df[['price', 'color', 'size']], drop first=True)
   # multicollinearity guard for the OneHotEncoder
   ohe = OneHotEncoder(categorical features=[0])
    ohe.fit_transform(X).toarray()[:, 1:
  price size color_blue color_green color_red
                                          price size color_green color_red
                                                                       array([[ 1. , 0. , 1. , 10.1],
 10.1
                                       0 10.1
                                                                               [ 0. , 1. , 2. , 13.5],
[ 0. , 0. , 3. , 15.3]])
  13.5
                                          13.5
2 15.3
                                       2 153
```

- Data transformation
 - Example Load the wine dataset

	Class label	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD280/OD315 of diluted wines	Proline
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

Data transformation

```
1 from sklearn.model_selection import train_test_split
 3 X = df_wine.iloc[:, 1:].values
 4 y = df_wine.iloc[:, 0].values
 6 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
                        stratify=y,
 8
                        random state=0)
10 print("\n Total dataset")
11 print(type(X))
12 print (X.shape)
14 print("\n Training dataset")
15 print(type(X_train))
16 print(X_train.shape)
18 print("\n Test dataset")
19 print(type(X test))
20 print(X_test.shape)
Total dataset
<class 'numpy.ndarray'>
(178, 13)
Training dataset
<class 'numpy.ndarray'>
(124, 13)
Test dataset
<class 'numpy.ndarray'>
(54, 13)
```


- Data transformation
 - Brining features onto the same scale Normalization
 - Change all values in the range [0, 1]

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- Brining features onto the same scale Standardization
 - Transform all values to have zero mean and unit variance

$$x_{new} = \frac{x - \mu}{\sigma}$$

- Data transformation
 - Brining features onto the same scale

```
X, y = df wine.iloc[:, 1:].values, df wine.iloc[:, 0].values
print(X[0:3,0:5])
                                               [[ 14.23
                                                         1.71
                                                                2.43
                                                                     15.6
                                                                           127.
                                                       1.78
                                               [ 13.2
                                                                2.14 11.2 100. ]
                                               [ 13.16
                                                         2.36
                                                                2.67
                                                                     18.6
                                                                           101. 11
from sklearn.preprocessing import MinMaxScaler
mms = MinMaxScaler()
X norm = mms.fit transform(X)
print(X norm[0:3, 0:5])
                                        [[ 0.84210526  0.1916996
                                                              0.57219251 0.25773196 0.61956522
                                         [ 0.57105263  0.2055336
                                                              0.4171123
                                                                        0.03092784 0.326086961
                                         [ 0.56052632  0.3201581
                                                              0.70053476  0.41237113  0.33695652]]
from sklearn.preprocessing import StandardScaler
stdsc = StandardScaler()
X std = mms.fit transform(X)
print(X std[0:3, 0:5])
                                        1.913905221
                                         [ 0.24628963 -0.49941338 -0.82799632 -2.49084714
                                         [ 0.19687903  0.02123125  1.10933436  -0.2687382
                                                                                  0.0883583611
```

3. Visualization

matplotlib

matplotlib

- python에서 가장 대표적인 시각화 패키지
- seaborn, plotnine, plotly 등 다양한 시각화 패키지가 있음
- naming convention

```
      import matplotlib.pyplot as plt

      # 주피터 노트북에서 대화형 시각화를 사용하기 위해 포함되어야 하는 코드! 실

      %matplotlib notebook
```

matplotlib

matplotlib

- anatomy of a figure
- https://matplotlib.org/3.1.3/gallery/showcase/anatomy.html

matplotlib

- Spines: Lines connecting the axis tick marks
- Title: Text label of the whole Figure object
- Legend: They describe the content of the plot
- Grid: Vertical and horizontal lines used as an extension of the tick marks
- X/Y axis label: Text label for the X/Y axis below the spines
- Minor tick: Small value indicators between the major tick marks
- Minor tick label: Text label that will be displayed at the minor ticks
- Major tick: Major value indicators on the spines
- Major tick label: Text label that will be displayed at the major ticks
- Line: Plotting type that connects data points with a line
- Markers: Plotting type that plots every data point with a defined marker

• 주요 구성요소: Figure & Axis

Axes

the pyplot API

- plt.figure
 - Making Figures
 - matplotlib.pyplot.figure

matplotlib.pyplot.figure

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, FigureClass=<class 'matplotlib.figure.Figure'>, clear=False, **kwargs' [source]

Create a new figure, or activate an existing figure.

- 'fig'를 object로 할당하여 사용 시 다양한 method 사용가능

```
[1] 1 import matplotlib.pyplot as plt
2 import numpy as np
```

```
[2] 1 fig = plt.figure()
```

<Figure size 432x288 with 0 Axes>

fig.add_subplot (arguments)

```
add_subplot(self, *args, **kwargs)
                                                                                 [source]
    Add an Axes to the figure as part of a subplot arrangement.
    Call signatures:
      add_subplot(nrows, ncols, index, **kwargs)
      add_subplot(pos, **kwargs)
      add_subplot(ax)
      add_subplot()
                [5]
                       1 fig=plt.figure(figsize=(7, 7),
                               facecolor='linen')
                       3 ax = fig.add_subplot(1, 1, 1)
```

- fig.add_subplot (single ax)
 - $ax = fig.add_subplot(1, 1, 1)$
 - argument: (row, col, idx)

- fig.add_subplot (1D axes)
 - $ax1 = fig.add_subplot(3, 1, 1)$
 - $ax2 = fig.add_subplot(3, 1, 2)$
 - $ax3 = fig.add_subplot(3, 1, 3)$

- fig.add_subplot (1D axes)
 - ax1 = fig.add_subplot(3, 1, 1,
 facecolor='r')
 - ax2 = fig.add_subplot(3, 1, 2, facecolor='g')
 - ax3 = fig.add_subplot(3, 1, 3, facecolor='b')

 HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision (ICCV 2019)

Fig. 3: 1-D loss landscape of all blocks of Inception-V3 on ImageNet along the first dominant eigenvector of the Hessian. Here ϵ is the scalar that perturbs the parameters of the corresponding block along the first dominant eigenvectors.

- fig.add_subplot (2D axes)
 - axes grid [3, 3, i-th axes]

```
- ax1 = fig.add_subplot(2, 2, 1)
```

- $ax2 = fig.add_subplot(2, 2, 2)$
- $ax3 = fig.add_subplot(2, 2, 3)$
- $ax4 = fig.add_subplot(2, 2, 4)$

 HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision (ICCV 2019)

Fig. 1: Top eigenvalue of each individual block of pre-trained ResNet20 on Cifar-10 (Left), and Inception-V3 on ImageNet (Right). Note that the magnitudes of eigenvalues of different blocks varies by orders of magnitude. See Figure 6 and 7 in appendix for the 3D loss landscape of other blocks.

- fig.add_subplot (irregular arrangement)
 - axes grid [3, 3, i-th axes]
 - $ax1 = fig.add_subplot(1, 2, 1)$
 - ax2 = fig.add_subplot(2, 2, 2)
 - $ax3 = fig.add_subplot(2, 2, 4)$

- Drawing following figure and axes
 - fig.add_subplot (irregular arrangement)

plt.subplots (making fig and axes simultaneously)

Figure(504x504) AxesSubplot(0.125,0.536818;0.775x0.343182) AxesSubplot(0.125,0.125;0.775x0.343182)

plt.subplots (making fig and axes simultaneously)

matplotlib.pyplot.subplots

matplotlib.pyplot.subplots(nrows=1, nco/s=1, *, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw) [source]

Create a figure and a set of subplots.

This utility wrapper makes it convenient to create common layouts of subplots, including the enclosing figure object, in a single call.

- argument: (nrows=r, ncols=c, etc.)
- fig, axes = plt.subplots(nrows=1, ncols=1)
- fig, axes = plt.subplots(1, 1)
- fig, axes = plt.subplots()

plt.subplots (axes: ndarray type)

```
1.0
 1 fig, axes = plt.subplots(nrows=2,ncols=1,
                             figsize=(7, 7), facecolor='linen')
                                                                       0.8
 3 print(fig)
 4 print(axes)
                                                                       0.6
 5 print(type(axes))
                                                                       0.4
Figure(504x504)
[<matplotlib.axes._subplots.AxesSubplot object at 0x7f6c041fdc88>
                                                                       0.2
<matplotlib.axes._subplots.AxesSubplot object at 0x7f6c042b7630>
<class 'numpy.ndarray'>
                                                                       0.0
                                                                         0.0
                                                                                      0.2
                                                                                                  0.4
                                                                                                               0.6
                                                                                                                            0.8
                                                                                                                                        1.0
                                                                       1.0
                                                                       0.8
                                                                       0.6
                                                                       0.4
                                                                       0.2
                                                                       0.0
                                                                                      0.2
                                                                                                  0.4
                                                                                                               0.6
                                                                                                                            0.8
                                                                         0.0
                                                                                                                                        1.0
```

plt.subplots (unpacking axes)

plt.subplots (access via loop)

```
1 fig. axes = plt.subplots(nrows=5,ncols=5.
                            figsize=(7, 7), facecolor='linen')
 3 for ax in axes:
       print(ax)
[<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbfa7d30>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedc4fe978>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbcc04e0>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbcf0860>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbca1be0>1
[<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbc55f60>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbc12320>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbbc46d8>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbb73a90>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbba8da0>1
[<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbb67160>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbb184e0>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbac9860>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedba7cbe0>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbaaff60>1
[<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedba6b320>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedba206a0>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb9d1a20>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb983da0>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb941160>]
[<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb8f44e0>
```

<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb926860>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb8d7be0>

<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb88cf60>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb84b320>]

plt.subplots (indexing 2D axes)

```
1 fig. axes = plt.subplots(nrows=5,ncols=5.
                            figsize=(7, 7), facecolor='linen')
 3 for ax in axes:
       print(ax)
[<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbfa7d30>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedc4fe978>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbcc04e0>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbcf0860>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbca1be0>1
[<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbc55f60>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbc12320>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbbc46d8>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbb73a90>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbba8da0>1
[<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbb67160>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbb184e0>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbac9860>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedba7cbe0>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedbaaff60>1
[<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedba6b320>
<matplotlib.axes. subplots.AxesSubplot object at 0x7fcedba206a0>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb9d1a20>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb983da0>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb941160>]
[<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb8f44e0>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb926860>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb8d7be0>
<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb88cf60>
```

<matplotlib.axes._subplots.AxesSubplot object at 0x7fcedb84b320>1

plt.subplots (numpy flat & enumerate)

```
1 fig, axes = plt.subplots(nrows=5,ncols=5,
                            figsize=(7, 7), facecolor='linen')
 3 for idx. ax in enumerate(axes.flat):
       print(idx, ax)
O AxesSubplot (0.125.0.749828; 0.133621x0.130172)
1 AxesSubplot(0.285345.0.749828;0.133621x0.130172)
2 AxesSubplot(0.44569.0.749828;0.133621x0.130172)
3 AxesSubplot(0.606034.0.749828;0.133621x0.130172)
4 AxesSubplot(0.766379,0.749828;0.133621x0.130172)
5 AxesSubplot(0.125,0.593621;0.133621x0.130172)
6 AxesSubplot(0.285345,0.593621;0.133621x0.130172)
7 AxesSubplot(0.44569,0.593621;0.133621x0.130172)
8 AxesSubplot(0.606034.0.593621;0.133621x0.130172)
9 AxesSubplot(0.766379.0.593621;0.133621x0.130172)
10 AxesSubplot(0.125,0.437414;0.133621x0.130172)
11 AxesSubplot(0.285345.0.437414;0.133621x0.130172)
12 AxesSubplot(0.44569,0.437414;0.133621x0.130172)
13 AxesSubplot(0.606034.0.437414;0.133621x0.130172)
14 AxesSubplot(0.766379,0.437414;0.133621x0.130172)
15 AxesSubplot(0.125.0.281207;0.133621x0.130172)
16 AxesSubplot(0.285345,0.281207;0.133621x0.130172)
17 AxesSubplot(0.44569,0.281207;0.133621x0.130172)
18 AxesSubplot(0.606034,0.281207;0.133621x0.130172)
19 AxesSubplot(0.766379,0.281207;0.133621x0.130172)
20 AxesSubplot(0.125.0.125;0.133621x0.130172)
21 AxesSubplot(0.285345.0.125;0.133621x0.130172)
22 AxesSubplot(0.44569.0.125;0.133621x0.130172)
23 AxesSubplot(0.606034.0.125;0.133621x0.130172)
```

24 AxesSubplot(0.766379.0.125;0.133621x0.130172)

- plt.subplots (axes indexing example)
 - ax.set_title()

plt.subplot2grid (more complex arrangement)

matplotlib.pyplot.subplot2grid

matplotlib.pyplot.subplot2grid(shape, loc, rowspan=1, colspan=1, fig=None, **kwargs)

[source]

Create an axis at specific location inside a regular grid.

```
fig = plt.figure()ax = plt.subplot2grid(shape=( , ), loc=( , ), rowspan= , colspan= , fig=fig)
```

plt.subplot2grid (simgle ax)

plt.subplot2grid (axes arrangement)

plt.subplot2grid (more complex arrangement)

Practice 4

- Drawing following figure and axes
 - plt.subplot2grid (more complex arrangement)

Practice 5

- Drawing following figure and axes
 - Using for loop for deleting redundant code

```
1 fig = plt.figure(figsize=(7, 7), facecolor='linen')
 2 \text{ ax1} = \text{plt.subplot2grid}((5, 4), (0, 0),
                                rowspan=2, colspan=2)
 4 \text{ ax2} = \text{plt.subplot2grid}((5, 4), (0, 2),
                                 rowspan=2, colspan=2)
 7 \text{ ax3} = plt.subplot2grid((5.4), (2.0))
 8 \text{ ax4} = \text{plt.subplot2grid}((5,4), (2,1))
 9 \text{ ax5} = \text{plt.subplot2grid}((5,4), (2,2))
10 ax6 = plt.subplot2grid((5,4), (2,3))
11
12 \text{ ax7} = \text{plt.subplot2grid}((5,4), (3,0))
13 ax8 = plt.subplot2grid((5,4), (3,1))
14 \text{ ax9} = \text{plt.subplot2grid}((5,4), (3,2))
15 \text{ ax} 10 = \text{plt.subplot2grid}((5,4), (3,3))
16
17 \text{ ax} 11 = \text{plt.subplot2grid}((5,4), (4,0))
18 \text{ ax} 12 = \text{plt.subplot2grid}((5,4), (4,1))
19 ax13 = plt.subplot2grid((5,4), (4,2))
20 \text{ ax} 14 = \text{plt.subplot2grid}((5,4), (4,3))
```


fig.add_axes (arbitrary locations and sizes of axes)

```
add_axes(self, *args, **kwargs)

Add an axes to the figure.

Call signatures:

add_axes(rect, projection=None, polar=False, **kwargs)
add_axes(ax)
```

- fig = plt.figure()
- ax = fig.add_axes([left, bottom, width, height])

fig.add_axes (arbitrary locations and sizes of axes)

fig.add_axes (arbitrary locations and sizes of axes)

Practice 6

- Drawing following figure and axes
 - fig.add_axes (arbitrary locations and sizes of axes)

left, bottom = 0.1, 0.1
width1, height1 = 0.6, 0.6
spacing = 0.005

Practice 6

- Drawing following figure and axes
 - fig.add_axes (arbitrary locations and sizes of axes)

```
1 left, bottom = 0.1, 0.1
2 width1, height1 = 0.6, 0.6
3 spacing = 0.005
```


fig.add_axes (zoom axes)

Soh, Jae Woong, Sunwoo Cho, and Nam Ik Cho. "Meta-transfer learning for zero-shot super-resolution." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.

fig.add_axes (zoom axes)

- making figures and axes
 - 1) subplots
 - fig, axes = plt.subplots()

2) add_subplot

- fig= plt.figure()
- ax = fig.add_subplot()

3) subplot2grid

- fig = plt.figure()
- ax = plt.subplot2grid(fig=fig)

4) add_axes

- fig = plt.figure()
- ax = fig.add_axes()

Axis

fig.tight_layout()

fig.tight_layout(pad=1)

- fig.subplots_adjust (more customized layout)
 - axis.set_visible()

fig.subplots_adjust (more customized layout)

matplotlib.pyplot.subplots_adjust

matplotlib.pyplot.subplots adjust(/eft=None, bottom=None, right=None, top=None, wspace=None, hspace=None) [source] Adjust the subplot layout parameters. Unset parameters are left unmodified; initial values are given by rcParams["figure.subplot.[name]"]. Parameters: left: float, optional The position of the left edge of the subplots, as a fraction of the figure width. right : float, optional The position of the right edge of the subplots, as a fraction of the figure width. bottom: float, optional The position of the bottom edge of the subplots, as a fraction of the figure height. top: float, optional The position of the top edge of the subplots, as a fraction of the figure height. wspace: float, optional The width of the padding between subplots, as a fraction of the average axes width. hspace: float, optional The height of the padding between subplots, as a fraction of the average axes height.

fig.subplots_adjust (more customized layout)

fig.subplots_adjust (more customized layout)

```
1 fig, axes = plt.subplots(2, 2, figsize=(7, 7),
1 fig, axes = plt.subplots(2, 2, figsize=(7, 7),
                                                                                                   facecolor='linen')
                          facecolor='linen')
                                                                        4 for ax_idx, ax in enumerate(axes.flat):
4 for ax_idx, ax in enumerate(axes.flat):
                                                                              ax.get_xaxis().set_visible(False)
      ax.get_xaxis().set_visible(False)
                                                                              ax.get_yaxis().set_visible(False)
      ax.get_yaxis().set_visible(False)
                                                                        8 fig.subplots_adjust(wspace=0.5)
8 fig.subplots_adjust(hspace=0.5)
```

• 축지정

- plt.axis([xmin, xmax, ymin, ymax])
- plt.xlim, plt.ylim

```
1 plt.axis([0, 10, 0, 20])
2
3 plt.plot(x, y)
4 plt.show()
```



```
1 plt.xlim([0, 10])
2 plt.ylim([0, 20])
3
4 plt.plot(x, y)
5 plt.show()
```


Ticks

- xticks(), yticks()
- set_xtics / set_xticlabels
- set_ytics / set_yticlabels

```
1 plt.xticks(np.arange(3), ['a', 'b', 'c'])
2 plt.yticks(np.arange(10))
3
4 plt.show()
```



```
1 fig, axs = plt.subplots(1, 3, figsize=(9, 3))
2
3 axs[1].set_xticks([0,2,4,6])
4 axs[1].set_yticks([0,5,10])
5
6 axs[2].set_xticklabels(['A', 'B', 'C', 'D', 'E'])
7 axs[2].set_yticks([0,1,2])
8 axs[2].set_yticklabels(['a', 'b', 'c'])
9
10 plt.show()
```


- Legend
 - plt.legend()

```
1 fig, ax = plt.subplots()
2
3 ax.plot(x, y1, label = 'sin')
4 ax.plot(x, y2, label = 'cos')
5
6 ax.legend(loc=1)
7
8 plt.show()
```


Text

- plt.title()
- plt.xlabel()
- plt.ylabel()

```
1 fig, ax = plt.subplots()
3 ax.plot(x, y1, label = 'sin')
4 \text{ ax.plot}(x, y2, label = 'cos')
6 ax.legend(loc=1)
8 plt.title('sin, cos graph') # title
10 plt.xlabel('x label') # x label
11 plt.ylabel('y label') # y label
13 plt.show()
                           sin, cos graph
    1.00
    0.75
    0.50
    0.25
    0.00
   -0.25
   -0.50
   -0.75
   -1.00
                               x label
```

- Text
 - text()
 - annotate()

```
1 \times = np.arange(8)
2 y = x**2
4 fig, ax = plt.subplots()
6 ax.plot(x, y, 'ro')
8 for x_, y_in zip(x, y):
9 ax.text(x_+0.2, y_+0.3, '%d, %d' % (int(x_), int(y_)))
                                            7, 49
50
40
                                      6, 36
30
                                 5, 25
20
                           4, 16
                    3, 9
10
   0,0 1,1
```

```
1 \times = np.arange(-1, 3, 0.01)
2 y = -x**4+4*x**3-4*x**2
4 fig, ax = plt.subplots()
5 \text{ ax.plot}(x, y, lw=2)
6 ax.annotate('local mininmum', xy=(1, -1), xytext=(-0.5, -3.5),
              arrowprops=dict(facecolor='black'))
9 ax.set_ylim(-10,2)
10 plt.show()
  0
 -2
            local mininmum
 -4
 -6
 -8
     -1.0 -0.5 0.0
                     0.5 1.0 1.5
                                      2.0
```

- Save figure
 - fig.savefig()

Amounts

- bars
- dots
- grouped bars
- stacked bars
- heatmap

Distributions

- histogram
- density plot
- cumulative density
- boxplots
- violins
- strip charts
- sina plots
- ridgeline plot

Proportions

- pie chart
- bars
- stacked bars
- multiple pie carts
- stacked densities

x-y relationships

- scatter plot
- bubble chart
- paired scatter plot
- density contours
- line graph

- geospatial data
 - map
 - choropleth
 - cartogram

- uncertainty
 - error bars
 - eyes
 - confidence band

- Commonly used aesthetics in data visualization
 - position, shape, size, color, line width, line type
 - Some of these aesthetics can represent both continuous and discrete data (position, size, line width, color) while others can usually only represent discrete data (shape, line type)

Line plot

Bar plot

```
1 data = {'Apple': 21, 'Banana': 15, 'Pair': 5, 'Grape': 20}
2 names = list(data.keys())
3 values = list(data.values())
5 fig, ax = plt.subplots()
6 ax.bar(names, values)
<BarContainer object of 4 artists>
20.0
17.5
15.0
12.5
10.0
 7.5
 5.0
 2.5
 0.0
          Apple
                     Banana
                                  Pair
                                              Grape
```

```
1 labels = ['HONEST CANDIDATE', 'Little Women', 'The Closet', 'Jojo Rabbit']
2 \text{ user} = [9.2, 9.4, 8.6, 9.16]
3 \text{ critic} = [5.4, 8, 5.5, 7.17]
4 \times = np.arange(len(labels)) # the label locations
6 width = 0.3 # the width of the bars
8 fig, ax = plt.subplots()
9 rects1 = ax.bar(x - width/2, user, width, label='user')
10 rects2 = ax.bar(x + width/2, critic, width, label='critic')
12 ax.set_ylim(0, 13)
13 ax.set ylabel('Rating')
14 ax.set xticks(x)
15 ax.set_xticklabels(labels)
16 ax.legend()
<matplotlib.legend.Legend at 0x7fc1ed3ccf50>
                                                  user
  12
  10
Rating
   6
   2
    HONEST CANDIDATELittle Women
                                             Jojo Rabbit
                                 The Closet
```

Histogram & Scatter plots

```
1 mu, sigma = 100, 15
2 \times = mu + sigma * np.random.randn(1000)
4 # the histogram of the data
5 plt.hist(x, 50, density=True, facecolor='g')
7 plt.xlabel('IQ')
8 plt.ylabel('Probability')
9 plt.title('Histogram of IQ')
11 plt.text(60, .025, r'$\mu=100,\m\sigma=15$')
12 plt.xlim(40, 160)
13 plt.ylim(0, 0.035)
14 plt.grid(True)
15 plt.show()
                          Histogram of IQ
  0.035
  0.030
                 \mu = 100, \ \sigma = 15
  0.025
Probability
0.020
  0.010
  0.005
  0.000
                                100
                                         120
```


Thank you! Q&A