17 Try solving the 2D wedge problem [Jk2 Sec. (2.11)] in rectangular cds (x, y).

1) For $\nabla^2 \phi = 0$ in 2D rectangular cds (x, y), we have only one field point?

free separation const available; call it α . Then solutions for the $x \notin y$ variation go as $\{siniax\} \notin \{siniay\}$; we can as well take solutions $\{siniax\} \notin \{siniay\}$, if we are doing a $\{siniay\} \in \{cosay\}$.

problem where $x \notin y$ are treated equivalently, and are thus interchangeable. For a 2D wedge with opening $A \beta = \frac{\pi}{2}$, where the potential $\phi = V = cnst$ on both the planes $y = 0 \notin x = 0$, we can therefore consider a solution

 $\rightarrow \phi(x,y) = \nabla + \sum_{\alpha} A_{\alpha} [\sin \alpha x \sinh \alpha y + \sinh \alpha x \sin \alpha y], A_{\alpha} = cnst. \square$

In fact this ϕ satisfies: $\partial^2 \phi / \partial x^2 + \partial^2 \phi / \partial y^2 = 0$ (for all $\alpha \notin A_\alpha$), and it will obey the "in-close" B.C: $\phi(0,y)=0$, $\phi(x,0)=0$.

2) The costs $\alpha \notin A_{\alpha}$ will be fixed by distant B.C. We can get information for the behavior of ϕ near the vertex by assuming that the "lowest" values of (α, A_{α}) do not vanish, and expanding $: \sin z \cong Z \notin \sinh Z \cong Z$. Thus, as $(x,y) \to (0,0)$, the leading term in the potential goes as...

 $\phi(x,y) \simeq V + 2V_1 \times y$, $V_1 = \alpha^2 A_\alpha = c_{nst}$.

This is the result in rectangular cds (x,y). To compare with polar cds, but $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, so: $2xy = \rho^2 \cdot 2\cos \varphi \sin \varphi = \rho^2 \sin 2\varphi$. Then...

 $\rightarrow \phi(\rho, \varphi) \simeq V + V_1 \rho^2 \sin 2\varphi, \quad \text{as} \quad \rho = \sqrt{x^2 + y^2} \rightarrow 0. \tag{3}$

This recovers Jackson's result in his Eq. (2.73) for a wedge with $\beta = \frac{\pi}{2}$. The rect. cd. solution in (1) would be enormously more complicated if we had $\beta \neq$ multiple of $\pi/2$

The sins with & sinh sin terms enter with equal weight because x & y are coequal.