

An Algorithm For 3D MRI Brain Tumor Segmentation

Final Viva

Speaker: Dong Wanqi

Student No: 2018213196

Affiliation: BUPT & QMUL

Project overview

Background

Design & Innovation

Results

Conclusion & Future work

Project overview

Project overview

1. Brain tumor

- ✓ Brain tumor is a mass of malicious cells in the brain.
- ✓ Claimed millions of lives of human beings

2. Why automated brain tumor segmentation?

- ✓ Pinpoint the exact location of the tumor.
- ✓ Identify different tumor areas and tissue properties.
- ✓ Manual delineation can be expensive, time consuming, inaccurate.
- ✓ Save time, provide suggestions for tumor analysis and resection.

3. Objectives & Tasks

- ✓ Propose an algorithm for 3D MRI brain tumor segmentation.
- ✓ Compare with other methods
- ✓ Improve segmentation performance

Background

Dataset, labels, and segmentation targets

Source:

Multimodal Brain Tumor Segmentation Challenge 2020 (BraTS 2020)

Details of the dataset:

✓ File format: nii.gz

✓ **Modalities:** FLAIR, T1, T1c, T2 (4 modalities)

✓ Image Size: 240(Slide height)×240(Slide

width)×155(Number of slides)×4(Modality number)

✓ **Used dataset size:** 200 Volumes

<Four modalities for each 3D data volume>

Labels:

Segmentation target (Tumor regions):

```
✓ ET (Enhancing tumor) \rightarrow label 4
```

✓ TC (Tumor core)
$$\rightarrow$$
 label 4 + label 1

✓ WT (Whole Tumor) \rightarrow label 4 + label 1 + label 2

ET, TC, WT are three overlapping parts!!

Design & Innovation

Data pre-processing & Data augmentation

Data Normalization:

Minmax normalization + Remove outliers \rightarrow Scaled to $0\sim1$

Minmax normalization:
$$x_{new} = \frac{(x_{old} - X_{min})}{(X_{max} - X_{min})}$$

Data cropping and padding:

Minimal bounding box strategy \rightarrow 128*128*128

Data augmentation strategies:

Strategy	Rescaling	Noise	Transposing	Flipping	Channel dropping
Probability	0.8	0.8	0.8	0.8	0.2

Proposed model: Atten Unet

Proposed model: Atten_Unet

CBAM (Convolutional Block Attention Module)

Loss function & Training procedure

Loss: Dice Loss

$$L_{dice} = 1 - \frac{2 * \sum p_{true} * p_{pred} + \varepsilon}{\sum p_{true}^2 + \sum p_{pred}^2 + \varepsilon}$$

- \triangleright **Optimizer:** Adam (Initial learning rate = 0.0001)
- ➤ **Device:** Google Colab Pro, Telsa V100 GPU
- > **Training:** 150 epochs, 17 hours
- > 5-fold cross validation (4/5 Training, 1/5 Validation)

SummaryLoss/train tag: SummaryLoss/train

SummaryLoss/val tag: SummaryLoss/val

Evaluation metrics

1. Dice similarity coefficient (DSC Score) → To replace accuracy

$$DSC = \frac{2TP}{2TP + FP + FN}$$

• DSC indicates the extent of overlap between the predicted tumor regions and actual tumor regions

2. Hausdorff distance

$$h(A,B) = \max_{a \in A} \left\{ \min_{b \in B} d(a,b) \right\}$$

- Hausdorff distance is a complement to the DSC
- Can be used to measure the maximum distance between two contour edges
- Used to present the severity of outliers for segmentation

Code and logs

Code on Github: https://github.com/sea-comet/Graduation

Overall structure of the code:

Logs for training

Code and logs

```
['ET : 0.8499204516410828',
                                             'TC: 0.8979440927505493',
                ['ET : 0.8520125150680542',
                                             'TC : 0.8950595855712891', 'WT : 0.8769645690917969']
                                                 : 0.8986184000968933',
Epoch 122 : Val : ['ET : 0.8516132235527039',
                                             'TC : 0.8979402780532837', 'WT : 0.8717659115791321
                                             'TC: 0.8973857760429382',
                 ['ET : 0.8499546051025391',
                                             'TC: 0.8980101346969604',
                 ['ET : 0.8539274334907532',
                                             'TC: 0.8984575271606445',
                                             'TC : 0.8981119990348816', 'WT : 0.8737003207206726'
                 ['ET : 0.8536598086357117',
                 ['ET : 0.8512079119682312',
                                             'TC : 0.895054817199707',
                 ['ET : 0.8503589630126953',
                                             'TC : 0.8977636098861694',
                                             'TC : 0.8987848162651062',
                                             'TC : 0.9003745913505554', 'WT : 0.8631355166435242'
Epoch 146 :Val : ['ET : 0.8537999987602234',
Epoch 149 : Val : ['ET : 0.8533316850662231', 'TC : 0.901594340801239', 'WT : 0.8825992345809937'
Epoch 152 :Val : ['ET : 0.8538955450057983', 'TC : 0.9004379510879517', 'WT : 0.8864582180976868']
```

Val.txt: DSC scores for three tumor regions

Results

Segmentation results

Predicted segmentation result:

Ground Truth label:

Predicted segmentation result:

Ground Truth label:

Predicted segmentation result:

Ground Truth label:

Qualitative results and comparison

Qualitative results of my algorithm

	ET	TC	WT
DSC	0.8539	0.9004	0.8865
Hausdorff	7.599	4.882	21.612

Comparison between my method and the winner solution nn-Unet in BraST 2020

nn-Unet / My Method	ET	TC	$\mathbf{W}\mathbf{T}$
DSC	82.03 / 85.39	85.06 / 90.04	88.95 / 88.65
Hausdorff	17.805 / 7.599	17.337 / 4.822	8.498 / 21.612

My method *outperforms* nn-Unet regarding tumor regions ET and TC. The results for WT is *close* to nn-Unet.

Comparison of my method and the method with model replaced with 3D-Unet

3D-Unet / My Method	ET	TC	WT
DSC	84.83 / 85.39	89.91 / 90.04	87.14 / 88.65
Hausdorff	9.47 / 7.599	8.53/ 4.822	33.57 / 21.612

My method *outperforms* 3D-Unet in every metrics for three tumor regions ET, TC and WT

Conclusion & Future work

Conclusion & Future work

Conclusion Future work Future work

- ✓ My algorithm provides better performance for 3D MRI brain tumor segmentation
- ✓ Pave the way for automated tumor segmentation in medical field

- ✓ Train more epochs
- ✓ Train on the whole dataset when computational resource is sufficient
- ✓ Try other networks
- ✓ Try other data augmentation strategies

