DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

Svako distribuiranje celog ili delova ovih slajdova ZABRANJENO je i predstavlja povredu autorskog prava.

- Definicija stabla
- Karakterizacija stabla
- Grafovi i konture
- Pokrivajuća stabla
- Algoritmi za konstrukciju pokrivajućeg stabla
- Priferov niz

Tema 1

Definicija stabla

Stablo

Definition

Za prost graf G=(V,E) kažemo da je stablo ako važi:

- (i) G je povezan graf i
- (ii) G je acikličan graf (bez kontura).

Tema 2

Karakterizacija stabla

Karakterizacija stabla

Theorem (Karakterizacija stabla)

Neka je G = (V, E) prost graf. Sledeća tvrđenja sa ekvivalentna:

- (i) G je stablo.
- (ii) Za svaka dva čvora $u, v \in V(G)$ postoji jedinstven put od u do v.
- (iii) *G* je povezan i |E(G)| = |V(G)| 1.
- (iv) G je minimalan povezan graf.
- (v) G je maksimalan acikličan graf.
 - $(i) \Leftrightarrow (ii) \quad (i) \Leftrightarrow (iii) \quad (i) \Leftrightarrow (iv) \quad (i) \Leftrightarrow (v).$

$$(i) \Leftrightarrow (ii)$$

Neka je G=(V,E) i $|V|=n\geq 2$. Tada je G stablo ako i samo ako za svaka dva čvora $u,v\in V$ postoji jedinstven uv-put.

Za n=2 tvrđenje sledi direktno. Pretpostavićemo da je $n\geq 3$. (\Rightarrow)

Pretpostavimo suprotno,

$$U_1 = uu_1 \dots u_i u_{i+1} \dots u_m v$$
$$U_2 = uv_1 \dots v_n v$$

$$\{u_i, u_{i+1}\} \in U_1 \qquad \{u_i, u_{i+1}\} \not\in U_2$$

Ovde ćemo prikazati slučaj kada je $u,v \notin \{u_i,u_{i+1}\}$, ostali slučajevi se izvode slično. Sada je

$$u_i \dots u_1 u v_1 \dots v_n v u_m \dots u_{i+1}$$

 u_iu_{i+1} -šetnja u grafu $G-\{u_i,u_{i+1}\}$. Ako u grafu $G-\{u_i,u_{i+1}\}$ postoji u_iu_{i+1} -šetnja, onda postoji i u_iu_{i+1} -put. Dodavanjem grane u_iu_{i+1} dobijamo konturu u grafu G, što je u suprotnosti sa pretpostavkom da je G stablo.

$$(i) \Leftrightarrow (ii)$$

Neka je G=(V,E) i $|V|\geq 2$. Tada je G stablo ako i samo ako za svaka dva čvora $u,v\in V$ postoji jedinstven uv-put.

(\Leftarrow) Ako za svaka dva čvora $u,v\in V$ postoji uv-put, onda je G po definiciji povezan graf. Treba još pokazati da je G acikličan. Pretpostavimo suprotno, da u grafu G postoji kontura oblika

$$w_1w_2w_3\ldots w_lw_1.$$

Tada postoje bar dva puta od w_1 do w_l :

$$w_1w_l$$
 $w_1w_2w_3\ldots w_l$

što je u kontradikciji sa pretpostavkom da za svaka dva čvora postoji jedinstven put od jednog do drugog.

To znači da je naša pretpostavka netačna i da je G acikličan graf.

Pomoćna lema

Lemma

Neka je G = (V, E) stablo i neka je $|V| = n \ge 2$. Tada postoje bar dva čvora stepena 1.

Kako je G stablo, G je povezan graf. Pretpostavimo da je

$$u_1u_2\dots u_l \tag{1}$$

najduži put u grafu G (može biti više takvih puteva iste dužine). Pokazaćemo da je tada

$$d_G(u_1) = d_G(u_l) = 1.$$

Pretpostavimo da je $d_G(u_1) \ge 2$ (slično za $d_G(u_l) \ge 2$). Tada postoji čvor $w \ne u_2$)sa osobinom $u_1w \in E$.

- Ako $w \in \{u_3, \dots, u_l\}$ onda G (i) ima konturu, što je u kontradikciji sa
- (i) ima konturu, što je u kontradikciji sa pretpostavkom da je ${\cal G}$ stablo.

Ako $w \notin \{u_3, \ldots, u_l\}$, onda je put

(ii) $wu_1u_2\ldots u_l$ duži od (1), što dovodi do kontradikcije.

Pomoćna lema

Lemma

Neka je G = (V, E), $|V| = n \ge 2$, i neka je $d_G(u) = 1$ za neki čvor $u \in V$. Tada je G stablo ako i samo ako je G - u stablo.

 (\Rightarrow) Pretpostavimo da je G stablo.

Da bismo pokazali da je G-u stablo, treba pokazati sledeće: (i) G-u je povezan; (ii) G-u je acikličan.

- (i) Posmatrajmo dva proizvoljna čvora $v,w\in V(G-u)$. Kako je G povezan, postoji vw-put u G. Ovaj put ne sadrži čvor stepena 1 koji je različit od v i w, što znači da ne sadrži u. Znači, taj put je ujedno i put u G-u, što pokazuje da je G-u povezan.
- (ii) Kako je G acikličan, to je i G-u acikličan, zato što brisanjem grane iz acikličnog grafa ne možemo dobiti konturu.

Pomoćna lema

Lemma

Neka je $G = (V, E), |V| = n \ge 2$, i neka je $d_G(u) = 1$ za neki čvor $u \in V$. Tada je G stablo ako i samo ako je G - u stablo.

```
(\Leftarrow) Neka je G - u stablo.
```

Od acikličnog grafa, dodavanjem nazad lista u ne možemo dobiti konturu u tom grafu.

Svaki čvor konture ima stepen bar dva, a čvor u je stepena 1.

Svaka dva čvora koja su povezana u G-u ostaju povezana i u G.

Ostaje još da pokažemo da postoji uw-put za svaki čvor $w \in V(G-u)$.

Kako je $d_G(u) = 1$ postoji $v \in V(G - u)$ sa osobinom $\{u, v\} \in E(G)$.

Iz pretpostavke da je G-u stablo, sledi da je G-u povezan graf, odakle za svako $w \in V(G-u)$ postoji wv-put u G-u.

Dodavanjem grane $\{u, v\}$ tom putu, dobijamo put u G.

$$(i) \Leftrightarrow (iii)$$

Neka je G=(V,E) i $|V|=n\geq 2$. Tada je G stablo ako i samo ako je G povezan graf i |E|=n-1.

 (\Rightarrow) (indukcijom po n)

n=2: stablo sa 2 čvora ima jednu granu

 $T_n \Rightarrow T_{n+1}$:

Neka je dato stablo

$$G = (V, E) \qquad |V| = n + 1$$

Neka je u list u tom stablu i $\{u,v\}$ (jedina) grana incidentna sa u:

$$G' = G - u = (V \setminus \{u\}, E \setminus \{\{u, v\}\})$$

$$|E| = |E(G')| + 1 = (n-1) + 1 = n$$

$$(i) \Leftrightarrow (iii)$$

Neka je G=(V,E) i $|V|=n\geq 2$. Tada je G stablo ako i samo ako je G povezan graf i |E|=n-1.

 (\Leftarrow) Indukcijom po n.

Baza n = 2: Povezan graf sa dva čvora i jednom granom je stablo.

Induktivni korak $T_{n-1}\Rightarrow T_n$: Ako je E(G)=V(G)-1, onda postoji čvor u sa osobinom $d_G(u)\leq 1$. Kako je G povezan, mora važiti $d_G(u)=1$ i graf G'=G-u je povezan graf sa osobinom |V(G')|=|V(G)|-1=n i |E(G')|=|E(G)|-1=n-1. Prema induktivnoj pretpostavci je sada G'-u stablo. Prema Lemi 7, G je stablo.

$$(i) \Leftrightarrow (iv)$$

Neka je
$$G=(V,E)$$
 i $|V|=n\geq 2$. Tada,

G stablo akko

G je povezan i brisanjem proizvoljne grane dobija se nepovezan graf.

 (\Rightarrow) Ako je G stablo, onda je G po definiciji povezan graf i acikličan graf.

Pretpostavimo suprotno, tj. da je $G-\{u,v\}$ povezan, za neku granu $\{u,v\}\in E.$

↓ (po definiciji povezanog grafa)

Postoji uv-put P u $G - \{u, v\}$ (a samim tim i u G).

↓ (po definiciji konture)

 $P + \{u, v\}$ je kontura u G (kontradikcija sa pretpostavkom da je G acikličan).

$$(i) \Leftrightarrow (iv)$$

Neka je
$$G=(V,E)$$
 i $|V|=n\geq 2$. Tada,

G stablo akko

G je povezan i brisanjem proizvoljne grane dobija se nepovezan graf.

 (\Leftarrow) Treba samo pokazati da je G acikličan.

Pretpostavimo da je G povezan i sadrži konturu C.

↓ (prema tvrđenju sa prethodnog predavanja)

$$G - \{u, v\}$$
 povezan, $\{u, v\} \in C$

(kontradikcija sa pretpostavkom da se brisanjem bilo koje grane dobija nepovezan graf)

$$(i) \Leftrightarrow (v)$$

Neka je
$$G=(V,E)$$
 i $|V|=n\geq 2$. Tada,

G je stablo akko

G je acikličan i dodavanjem grane se dobija graf koji sadrži konturu.

(⇒)

$$G \text{ je stablo} \\ \Downarrow \\ G \text{ je povezan} \\ \Downarrow \\ \text{Izaberimo } \{u,v\} \not\in E(G). \text{ Postoji } uv\text{-put } P \text{ u } G. \\ \Downarrow \\ P+\{u,v\} \text{ je kontura u } G+\{u,v\}.$$

$$(i) \Leftrightarrow (v)$$

Neka je
$$G=(V,E)$$
 i $|V|=n\geq 2$. Tada,

G je stablo akko

G je acikličan i dodavanjem grane se dobija graf koji sadrži konturu.

 (\Leftarrow) Treba pokazati da je G povezan. Neka su u i v proizvoljni čvorovi iz V. Imamo dva slučaja:

- (i) Ako je $\{u, v\} \in E$, onda je ta grana ujedno i uv-put.
- (ii) Ako $\{u,v\} \not\in E$, onda $G+\{u,v\}$ sadrži konturu koja sadrži uv. Oduzimanjem sa konture grane uv dobijamo uv-put u G.

Karakterizacija stabla

Theorem (Karakterizacija stabla)

Neka je G = (V, E) prost graf. Sledeća tvrđenja sa ekvivalentna:

- (i) G je stablo.
- (ii) Za svaka dva čvora $u, v \in V(G)$ postoji jedinstven put od u do v.
- (iii) *G* je povezan i |E(G)| = |V(G)| 1.
- (iv) G je minimalan povezan graf.
- (v) G je maksimalan acikličan graf.
 - $(i) \Leftrightarrow (ii) \quad (i) \Leftrightarrow (iii) \quad (i) \Leftrightarrow (iv) \quad (i) \Leftrightarrow (v).$

Tema 3

Grafovi i konture

Lemma

Neka je $G=(V,E), |V|=n, |E|\geq n,$ sa osobinom da su G_1,\ldots,G_l njegove komponente povezanosti sa k_1,\ldots,k_l čvorova, respektivno. Tada postoji $i\in\{1,\ldots,l\}$ sa osobinom $|E(G_i)|\geq k_i.$

Pp. suprotno,

$$n \le |E(G)| = |E(G_1)| + \dots + |E(G_l)|$$

 $< k_1 + \dots k_l = n$

Neka je G=(V,E), gde je $|V|=n\geq 2$ i $|E|\geq n.$ Tada G sadrži konturu.

- (i) G je povezan: ako G nema konturu, onda je stablo $\Rightarrow G$ ima n-1 grana.
- (ii) G nije povezan: neka su G_1, \ldots, G_l komponente povezanosti grafa G sa osobinom

$$|V(G_1)| = k_1, \dots, |V(G_l)| = k_l$$
 $k_1 + \dots + k_l = n$.

Prema prethodnoj lemi, postoji komponenta povezanosit G_i za koju je $|E(G_i)| \geq k_i$. Ako G_i nema konturu, onda je G_i stablo, a samim tim ima k_i-1 granu, što je kontradikcija. Znači, komponenta G_i ima konturu, a to je ujedno i kontura u grafu G.

Tema 4

Pokrivajuća stabla

Pokrivajuća stabla

Definicija

 G_1 je pokrivajuće stablo grafa G ako je

- (i) G_1 je pokrivajući podgraf od G ($V(G_1) = V(G)$ i $E(G_1) \subseteq E(G)$)
- (ii) G_1 je stablo.

Zadatak

Koliko ima različitih pokrivajućih stabala (označenog) grafa K_4 ?

Pokrivajuća stabla

Teorema

Graf ima pokrivajuće stablo ako i samo ako je povezan.

(⇒) Sledi direktno iz definicije stabla.

(←)

Neka je G povezan.

- $|V(G)|=n\geq 2 \Rightarrow |E(G)|\geq n-1$ (u suprotnom graf ne bi bio povezan) Posmatraćemo dva slučaja:
 - |E(G)| = n 1: povezan graf sa n 1 čvorova je stablo
 - $|E(G)| = k \ge n$: sledeća lema.

Pokrivajuća stabla

Lema

Ako je G povezan graf sa osobinom |V(G)| = n. Ako je $k \ge n$ i |E(G)| = k onda G ima pokrivajuće stablo.

Dokaz: (indukcijom po k)

Graf sa n čvorova i bar n grana ima konturu.

<u>Baza k=n</u>: Oduzimanjem iz grafa jedne grane konture, graf ostaje povezan i pokriva i dalje sve čvorove. Povezan graf sa n-1 čvorova je stablo.

Induktivni korak $T_{k-1}\Rightarrow T_k$: Ako G sadrži konturu, onda možemo konstruisati povezan graf G' brisanjem proizvoljne grane konture. Primetimo da je V(G')=V(G) i $E(G')\subseteq E(G)$. Kako je G' povezan, prema induktivnoj pretpostavci, G' ima pokrivajuće stablo, a to je ujedno i pokrivajuće stablo grafa G.

Tema 5

Algoritmi za konstrukciju pokrivajućeg stabla

Konstrukcija pokrivajućeg stabla

Zadatak

- Konstruisati pokrivajuće stablo pretraživanjem u dubinu.
- Konstruisati pokrivajuće stablo pretraživanjem u širinu.
- Krenuti od proizvoljnog čvora i u svakom koraku dodati granu za koju je jedan čvor već izabran, a drugi još uvek nije.
- Urediti grane, a zatim tim redom dodavati grane koje ne prave konturu (inače preći na sledeću granu).

Tema 6

Priferov niz

Priferov niz

Neka je G=(V,E) stablo u kojem su čvorovi označeni prirodnim brojevima $1,\ldots,n$. Za takvo stablo kažemo da je označeno. Priferov kod je niz

$$p(G) = (p_1, \dots, p_{n-2})$$

koji na jedinstven način karakteriše stablo G.

- $G_0 = G i i = 1.$
- 2 Izaberimo list u sa najmanjom oznakom i posmatrajmo dalje $G_i := G_{i-1} u$
- $oldsymbol{0}$ p_i je jednak oznaci čvora koji je susedan čvoru u
- 4 Ako je i = n 2 onda je algoritam završen, inače i povećamo za 1 i vratimo se na korak 2.

Priferov niz

Zadatak

Odrediti Priferov niz za stablo na slici.

Priferov niz - rekonstrukcija označenog stabla

Neka je $p(G) = (p_1, \dots, p_{n-2})$ Priferov niz dobijen od označenog stabla G.

- Za $l_1 = \min(\{1,\ldots,n\} \setminus \{p_1,\ldots,p_{n-2}\})$ kreiraj granu $\{l_1,p_1\} \in T(G)$.
- Za i = 2..n 2 i

kreiraj granu $\{l_i, p_i\} \in T(G)$.

• Poslednja grana je uv, gde je $u, v \in \{1, \dots, n\} \setminus \{l_1, \dots, l_{n-2}\}.$

Zadatak

Konstruisati označeno stablo čiji je Priferov niz (1,2,1,2,1,2).

Zadatak

Konstruisati označeno stablo čiji je Priferov niz (5,1,1,4,5,1).

Priferov kod

Teorema

Kompletan graf K_n ima n^{n-2} različitih pokrivajućih stabala.

Dokaz sledi na osnovu principa bijekcije.

- Preslikavanje skupa svih stabala u skup Priferovih nizova je bijekcija.
- Broj nizov elemenata iz skupa $\{1, \ldots, n\}$ dužine n je n^{n-2} .

