Math 467, Winter 2015, Prof. Sinclair $\mathbf{Midterm}$

February 13, 2015

Instructions:

- 1. Read all questions carefully. If you are confused ask me!
- 2. You should have 4 pages including this page. Make sure you have the right number of pages.
- 3. Make sure your name is clearly printed on the first page and your initials are on all subsequent pages.
- 4. If necessary you may use the back of pages.
- 5. Box your answers when appropriate.

Name:		
UO ID:		

Question:	1	2	3	Total
Points:	10	10	10	30
Score:				

Page 2 of 4

- [10 pts] 1. Suppose (X_n) is a doubly stochastic Markov chain with states $\{1, 2, ..., N\}$.
 - (a) Prove that $\pi = (1/N, 1/N, \dots, 1/N)$ is a stationary distribution.

(b) Give a non-trivial (i.e. non-deterministic) example (of a doubly stochastic Markov chain) for which this is not the only stationary distribution. Demonstrate another stationary distribution for your example, or explain why it has one.

- [10 pts] 2. Let ξ_1, ξ_2, \ldots be a sequence of Bernoulli random variables all with $P\{\xi_i = 1\} = p > 0$ and $P\{\xi_i = 0\} = 1 p > 0$. Let $S_n = S_0 + \xi_1 + \xi_2 + \cdots + \xi_n$. Set $Y_0 = S_0$ and $Y_n = S_n c_n$ for $n \ge 1$.
 - (a) For what values of c_n is Y_n a martingale? Justify your answer.

(b) Suppose $S_0 = 10$. Find the probability that $S_n = 5 + pn$ before $S_n = 20 + pn$.

[10 pts] 3. Suppose the transition matrix for a five state Markov chain (with states 1, 2, 3, 4, 5) is given by

$$p = \begin{bmatrix} .3 & .4 & 0 & 0 & .3 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & .6 & .4 \\ 0 & 0 & 0 & .4 & .6 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

(a) Classify each state as either recurrent or transient. Write the state space in the form $T \cup R_1 \cup \cdots \cup R_n$ where T is the set of transient states and each of the R_i are closed irreducible sets of states.

(b) Compute the limiting transition matrix: $\lim p^n$.