AE675: Introduction to FEM

Take-home mid-semester examination

Time: 24 HR3.

Full Marks: 30

(28/2/23 - 1/3/23

9 PM 9 PM)

QI For the domain $\Omega = [0,1]$, the following differential equation is given:

$$-\frac{d}{dx}\left(x^{0}\frac{du}{dx}\right) = 10 , \quad 0 < x < 1 ; \quad 0 = 0.7$$
with $u(0) = 0$, $\left(x^{0}\frac{du}{dx}\right)\Big|_{x=1} = 5$.

Answer the following:

- (1) Using the approach followed in class, develop the weak formulation for this problem.
- (2) Prove that for $\{Q_i\}_{i=1}^N$ with $Q_i(x) = \chi^{i-1}$, a unique solution exists to this problem (i.e. for the weak solution)
- (8) Determine the EXACT solution U(x) to this problem by solving the differential equation.
- (4) If $U_N(x) = \sum_{i=1}^N Q_i(x)^n$, then show that the error $e_N(x)$ is "orthogonal" to $U_N(x)$ in [0,1].
- (5) Can you prove if $\|U_N\|^2 > \|U_U\|^2$ or $\|U_N\|^2 \le \|U_U\|^2$ where $\|\cdot\|$ is the usual norm discussed in class.
- (6) Obtain U3(x) and plot U(x), U3(x) versus X. Also plot (15(x) vs X on the same graph (use MATLAB).

- If 15 desired that FEM be used to solve this problem. Consider the 2-element mesh with $X_1=0$, $X_2=h_1$, $X_3=1$. Answer the following:
 - (1) Discuss the "goodness", or lack of it, of the UN(X) obtained in 1(6). Does the observation create a case for a better approximation?
 - (2) Let $h_1 = \frac{1}{2}$ and p = 1 (linear bosis functions) be used. How does this $U_3(x)$ compare with $U_3(x)$ obtained in 1(6)? Comment on result.
 - (3) Let $h_1 = 0.1$, and p = 1. Now compute the new $u_3(x)$. Comment on this result. Is it better?
 - (4) Now it is desired to use a LINEAR (p=1) approximation in $(0,h_1)$ and a cobic (p=3) approximation in $(h_1,1)$. Suggest how you will construct the BASIS functions. Develop the basis functions and plot them.
 - (5) Use matlab to SOLVE the problem posed in 2(4). Plot the $U_N(x)$ (what will be N?) against U(x), Comment on your result.

[5x3 =15pts]