San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Regular Languages

Lecture 12 Day 13/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 13

- Summary of Lecture 11
- Quiz 4
- Lecture 12: Teaching ...
 - Regular Languages

Summary of Lecture 11: We learned ...

NFAs Formal Definition

- Formally, we define NFAs by a quintuple $M = (Q, \Sigma, \delta, q_0, F)$
- Except δ, the rest items are similar to DFAs'.

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q$$

 δ is total function.

Machines and Languages Association

- Every machine has an associated language.
- BUT we do NOT know yet whether or not for every language, we can construct a machine!

DFAs vs NFAs

- What is power?
- Automata class A is more powerful than class B iff ...
 - ... the set of languages recongnized by class B is a proper subset of the set of the languages recognized by class A.

Theorem

- The set of languages accepted by NFAs are equal to the set of languages accepted by DFAs.
- NFAs and DFAs have the same power.

Any question?

Quiz 4 No Scantron Needed!

Introduction

Example 1

Design a DFA/NFA to recognize our famous language:

- \bullet L = {aⁿbⁿ : n ≥ 0} over Σ = {a, b}
 - You're struggling!
 - Let's forget about this, and take a simpler example!

Example 2

- Design a DFA/NFA to recognize the following language:
- L = {ww^R : w $\in \Sigma^*$ } over Σ = {a, b}

Why We Could NOT Construct Machines

 After some struggling, we realized that we could not construct such machines.

•

What is the reason?

- Because we need to store some info from one part of the construction and use that info to construct the other parts.
- In example 1, to make sure that the number of a's and b's are equal, we need to count and store the number of a's somehow.
- But we cannot implement counters by DFAs/NFAs!
 - They don't have memory!
- How about example 2?
- Explain why we could not construct the machine?

Categorizing Formal Languages

- We just realized that there are different kinds of formal languages.
 - Some languages are more complex than the others.
- To study formal languages, we need to categorize them.
- Up to this point, we've realized that ...
 - We can construct a DFA/NFA for some languages while we cannot for the others.

 Let's give a name to these two categories!

Regular Languages

Definition

- A language L is called regular iff there exists a DFA/NFA to recognize it.
- Note that this definition has two sides:
 - If there exists a DFA/NFA, then its associated language is regular.
 - If L is regular, then there exists a DFA/NFA to recognize it.

U = Formal Languages

Machines and Languages Association

- We already saw the association between machines and languages.
- Now we have a name for the languages that DFAs/NFAs recognize.

Categorizing Formal Languages

- Recall that before, we categorized formal languages as "finite" and "infinite".
- And this is our second categorization:
 - 1. "Regular Languages", and
 - 2. "Non-Regular Languages"
- Note that the correct English word is "irregular" but in computer science we use "non-regular".
- How can we prove that a language is regular?
 - We need to construct a DFA/NFA for it.

Regular Languages

Example 3

- Which of the following languages is regular over $\Sigma = \{a, b\}$?
- L = {abbaa}
- $L = \{\lambda\}$
- L = { }
- L = $\{\lambda, a, abb\}$
- $L = \{a, b\}^*$
- $L = \{a^nb : n \ge 0\}$
- We've already constructed DFAs for almost all of the above languages.
- So, all of them are regular.

Homework

- a. Prove that the language $L = \{awa : w \in \{a, b\}^*\}$ is regular.
- b. Write a set-builder for L².
- c. Prove that L² is regular.

(1)

Recognizing Regular Languages Heuristically

- Sometimes we can heuristically find out whether a language is regular or not. How?
- Let's explain it through some examples.

Example 4

- Which of the following languages are regular?
 - 1. L = {ab w : w $\in \Sigma^*$ } over Σ = {a, b}
 - 2. L = {w w : w $\in \Sigma^*$ } over Σ = {a, b}
 - 3. L = {w abb w : w $\in \Sigma^*$ } over $\Sigma = \{a, b\}$
 - 4. $L = \{1^{2k} : k \ge 0\}$ over $\Sigma = \{1\}$
 - 5. $L = \{1^n + 1^m = 1^{n+m} : n, m \ge 1\}$ over $\Sigma = \{1, +, =\}$ (Unary addition)

Finite Languages

Finite Languages

Theorem

All "finite" languages are regular.

Proof

- To prove this theorem, we need to construct an NFA for a general finite language L = {w₁, w₂, ..., w_n}
 - Where w_j ∈ Σ* for j = 1, 2, ..., n.
- We know that strings are finite sequence of symbols.
- So, we can construct a separate NFA for every string.
- For example if w = abb, then the following DFA can recognize it.

Finite Languages Are Regular

Proof (cont'd)

- Let $w_k = a_1 a_2 ... a_m$ be a general string where $a_i \in \Sigma$ for i = 1, 2, ..., m.
- We can construct the following NFA to recognize w_k.

For simplicity, let's put the NFA in a box ...

So, this NFA can accept the string w_k.

Finite Languages Are Regular

Proof (cont'd)

 So, in the similar way, we can construct an NFA for every w_i in the language.

 We should combine these simple NFAs and construct an NFA to recognize L.

•

But how?

Finite Languages Are Regular

Proof (cont'd)

 We can combine them by using λ-transitions.

- This new machine recognizes L.
- Explain why?
- Since L is a general finite language, so, we proved all finite languages are regular.

Non-Regular Languages Are Infinite

The contrapositive of every theorem is also true.

Recap: Contrapositive

$$p \to q \equiv \sim q \to \sim p$$

The theorem we just proved:

If L is finite, then L is regular.

Translation:

If L is non-regular (= not regular), then L is infinite (= not finite).

The compact version:

All non-regular languages are infinite.

Categories of Formal Languages

1st Categorization: Finite and Infinite

U = All Formal Languages

Where would you locate "regular" and "non-regular" languages?

Categories of Formal Languages

2nd Categorization: Regular and Non-Regular

U = All Formal Languages

Closure Properties of Regular Languages

Theorem

If L, L₁ and L₂ are all regular languages, then:

Union	$L_1 \cup L_2$
Concatenation	L ₁ L ₂
Star-Closure	L*
Reversal	LR
Complement	С
Intersection	$L_1 \cap L_2$
Minus	L ₁ - L ₂

are regular languages too.

 It means: The family of "regular languages" is closed under the above operations.

What is the Next Step?

Conclusion

- NFAs and DFAs recognize "regular languages".
- The next step is to define a new class of machines that recognizes "non-regular languages".

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Kenneth H. Rosen, "Discrete Mathematics and Its Applications, 7th ed.," McGraw Hill, New York, United States, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790