Conferencia 5 - Coloración

3 de mayo de $2025\,$

Definición. Sea G un grafo y k, $k \in \mathbb{Z}$, $k \ge 0$, una k-coloración se define como una función $f: V(G) \to \{0, 1, 2, \dots, k\}$

Definición. Una k-coloración se dice propia si $\forall \{v, w\} \in E(G)$ se tiene que $f(v) \neq f(w)$. Si G tiene una k-coloración propia se dice que G es k-coloreable.

Definición. Se llama número cromático de G, $\chi(G)$, al menor k tal que G es k-coloreable

Observaciones:

- $\chi(K_n) = n$
- $\chi(C_{2k}) = 2$
- $\chi(C_{2k+1}) = 3$
- Si un grafo es bipartito es 2-coloreable
- El número cromático es la menor cantidad de conjuntos independientes que se pueden formar en G
- Si H es subgrafo de G entonces $\chi(H) \leq \chi(G)$
- $w(G) \leq \chi(G)$, donde w es el número de clique de G

Definición. Un grafo G es k-crítico si $\forall v \in V(G)$ se tiene que $\chi(G-v) < \chi(G)$

Nota:
$$\chi(G-v) = \chi(G) - 1$$

Teorema. Si G es un grafo k-crítico con $k \geq 2$ entonces G es conexo y $\delta(G) \geq k-1$

Demostración.

Demostremos que G es conexo

Suponga que G es k-crítico y no es conexo, entonces se descompone en t componentes conexas c_1, c_2, \ldots, c_t , luego $k = max(\chi(c_1), \chi(c_2), \ldots, \chi(c_t))$ por lo que existe un i tal que $1 \le i \le t$ y $\chi(c_i) = k$ entonces es posible quitar cualquier vértice de cualquier componente conexa que no sea c_i y se mantendría entonces $k = \chi(c_i) = max(\chi(c_1), \chi(c_2), \ldots, \chi(c_t))$, por tanto G no sería k-crítico, lo que es una contradicción. Por tanto G es conexo.

Demostremos la segunda parte.

Supongamos que $\delta(G) < k-1$, entonces sea $v \in V(G)$ tal que

 $deg(v) = \delta(G)$, por tanto tomemos G'=G-v. Como G es k-crítico entonces $\chi(G') = \chi(G) - 1$ o sea, se puede colorear a G' con k-1 colores

Si se pone de vuelta a v como deg(v) < k-1 entonces v tiene a lo sumo k-2 vértices adyacentes a él, que potencialmente tienen todos colores diferentes, como se dispone de k-1 colores, se puede colorear a v con un color que no tenga ninguno de sus adyacentes, luego es posible colorear a G con k-1 colores lo que es una contradicción.

Teorema. Sea G un grafo tal que $\chi(G) = k$ entonces al menos k vértices de G tienen grado mayor o igual que k-1

Demostración.

Si G no es k-crítico entonces se pueden suprimir aristas hasta que lo sea. El grafo resultante, Q, al ser k-crítico cumple que $\delta(Q) \geq k-1$ y tiene al menos k vértices. Luego el grado de cualquier vértices es igual o mayor que k-1

Note que al regresar al grafo original, como se añaden aristas lo único que puede pasar es que el grado de eso k vértices aumente de modo que seguirán teniendo un grado mayor o igual que k-1

Teorema. Sea G un grafo, entonces $\chi(G) \leq 1 + \Delta(G)$

Demostración. Demostración por inducción en el número de vértices n.

Caso base: Para n=1 se tiene que $\chi(G) = 1$ y $\Delta(G) = 0$, luego 1 < 1 + 0

Paso inductivo: Probemos que si se cumple para n se cumple para n+1

Sea G con n+1 vértices, si se tiene G'=G-v entonces G' tiene n vértices luego $\chi(G') \leq 1 + \Delta(G')$ pero $\Delta(G') \leq \Delta(G)$ por tanto $\chi(G') \leq 1 + \Delta(G') \leq 1 + \Delta(G)$

Luego es posible colorear a G' con $\Delta(G)+1$ colores distintos. Note que v a lo sumo tiene $\Delta(G)$ vértices adyacentes, como hay $\Delta(G)+1$ colores siempre puede colorearse v de modo que no tenga el mismo color que ninguno dde sus adyacentes, por tanto es posible colorear a G con $\Delta(G)+1$ colores distintos, luego $\chi(G) \leq 1 + \Delta(G)$

Teorema. Sea G un grafo planar entonces $\chi(G) \leq 6$

Demostración. Demostración por inducción en el número de aristas.

Caso base: Para n=1 es obvio.

Paso inductivo: Probemos que si se cumple para n se cumple para n+1 Como G, con n+1 vértices, es planar tiene al menos un vértice cuyo grados es menor o igual a 5, digamoes que este vértice es v.

Tomemos el grafo G'=G-v, como G es planar entonces al quitar un vértice a este y dando G', G'continúa siendo planar.

Como el número de vértices de G' es n y es planar, por hipótesis de inducción, se tiene que $\chi(G') \leq 6$. Al reinsertar v, como $deg(v) \leq 5$, se tiene que v tiene a lo sumo 5 vértices adyacentes cuyos colores pueden ser todos potencialmente distintos, basta con colorear v con un color que no tengan sus vecinos, luego es posible colorear a G con 6 colores distintos.-

Teorema (Teorema de los 5 colores). El número cromático de un grafo planar es menor o igual que 5

Demostración. Demostración por inducción en el número de vértices.

Si este es menor que 5 entonces es obvio.

Ahora, como el grafo G es planar, tiene n+1 vertices, siempre hay un vértice con 5 o menos vértices adyacente, digamos que ese vértice es v. Entonces se tiene G'= G-v, con n vértices, que es 5-coloreable (por hipótesis de inducción)

Ahora, si $deg(v) \le 4$ ya estaría demostrado. Si el deg(v) = 5 pero sus vértices adyacentes solo usan, entre ellos, 4 colores también estaría demostrado.

Tendríamos que ver el caso con deg(v) = 5 y sus advacentes usan 5 colores. Para ello llamaremos a,b,c,d y e a los vértices adayacentes y los tendremos en ese mismo oreden en el sentido del giro de las agujas del reloj.

Entonces consideremos el conjunto V_{ad} como los vértices de G' que tienen el mismo color de a o de d. Es obvio que a y d pertenecen a V_{ad} .

Entonces puede suceder que o existe un camino de a hasta d
 utilizando solo los vértices de V_{ad} o no existe.

En el caso de que no exista se buscan todos los caminos de a hasta los distintos vértices que están en V_{ad} y se invierten los colores (si tiene el color de a toma el de d y viceversa). Al final del proceso, a tendrá el mismo color de d y cuando unamos de nuevo v este tomaría el color de a.

Ahora, en el caso se que si existe una camino entre a y d, también se formaría un ciclo con las aristas $\{a,v\}$ y $\{v,d\}$. Tendríamos también el conjunto V_{be} construido de manera similar a V_{ad} , estos conjuntos son disjuntos pues a,b,d y e tienen colores diferentes. Como se forma el ciclo mencionado una de las aristas b o e quedaría dentro del ciclo. De esta manera no podría haber camino entre b y e pues para que hubiera camino tendrían que pasar por un nodo que esté en V_{ad} y eso no puede ocurrir pues V_{ad} y V_{be} son disjuntos.

Entonces b y e estarían en caso en que no hay un camino entre ellos pasando solo por los vértices de V_{be} . Luego estaríamos en el primer caso analizado y se haría entonces el remapeo de colores.

Teorema (Teorema de los 4 colores). El número cromático de un grafo planar es menor o igual que 4

La demostración del **Teorema de los 4 colores** se ha realizado con verficiación computacional combinando varias ideas teóricas.