

Fenomenul de rezonanță

L14: Stdiul ciorcuitelor RLC serie și a rezonanței de (U) L15: Studiul circuitelor RLC paralele și a rezonanței de (I)

În domeniul timp:

$$u_R(t) = R * i(t)$$

$$u_L(t) = L*\frac{di}{dt}$$

$$\mathbf{u}_{\mathrm{C}}(\mathbf{t}) = \frac{1}{c} \int i(t) dt$$

În complex:

$$\underline{\mathbf{U}}_{\mathbf{R}} = \mathbf{R} * \underline{\mathbf{I}}$$

$$\underline{\mathbf{U}}_{\mathbf{L}} = \mathbf{j} \boldsymbol{\omega} \mathbf{L}^* \underline{\mathbf{I}}$$

$$\underline{\mathbf{U}}_{\underline{\mathbf{C}}} = \frac{1}{\mathbf{j}\boldsymbol{\omega}\boldsymbol{c}} * \underline{\mathbf{I}}$$

- *R, L, C* ⇒ *constante*
- $\frac{d}{dt} \Rightarrow j\omega$
- $\int dt \Rightarrow \frac{1}{i\omega}$

Listă de termini:

R – resistor(rezistenţă)

C-condensator

L-inductivitate

Z-impedanță

Y-admitanță

X-reactanță

B-susceptanță

 $\omega = 2\pi f$ –pulsație

 $\mathbf{u(t)} = \mathbf{u_R} + \mathbf{u_L} + \mathbf{u_C}$

$$i(t)=i_R+i_L+i_C$$

$$u(t)=u_R+u_L+u_C$$

$$\underline{\mathbf{U}} = \mathbf{R}^*\underline{\mathbf{I}} + \mathbf{j}\omega\mathbf{L}^*\underline{\mathbf{I}} + \frac{1}{\mathbf{j}\omega\mathbf{C}}^*\underline{\mathbf{I}}$$

$$\underline{\mathbf{U}} = \underline{\mathbf{I}} * \left[\mathbf{R} + \mathbf{j} (\omega \mathbf{L} - \frac{1}{\omega \mathbf{C}}) \right]$$

Condiție:

La rezonanță:
$$X = 0 \iff \omega L = \frac{1}{\omega C}$$

$$\underline{Z} = R + j\omega X$$

$$X = \omega L - \frac{1}{\omega C}$$

Consecințe:

$$Z = |\underline{Z}| = \sqrt{R^2 + X^2}$$

$$Dar X = 0 (Z=R)$$

$$R=\min \Leftrightarrow \underline{Z}=\min$$

$$\underline{U} = |\underline{Z}| * |\underline{I}| \iff |\underline{I}| = \frac{|\underline{U}|}{|\underline{Z}|} \iff \underline{I} = \max$$

Defazajul : $\varphi = \operatorname{arc} \operatorname{tg} \frac{X}{R} \iff \varphi = 0$ (<u>*U*</u> în faza cu <u>I</u>)

Factor de putere: $\cos \varphi = \max$

Putere active: $P = U_R *I = R*I^2 \Leftrightarrow P = \max$

Putere reactivă: $Q = U^*I^*\sin \varphi \Leftrightarrow Q=0$

L15

$$i(t)=i_{R}+i_{L}+i_{C}$$

$$\underline{I} = \frac{U}{R} + \frac{U}{j\omega L} + \underline{U}^* j\omega C$$

$$\underline{\mathbf{I}} = \underline{\mathbf{U}} * \left[\frac{1}{R} - \mathbf{j} \left(\frac{1}{\omega \mathbf{L}} - \omega \mathbf{C} \right) \right]$$

Condiție:

La rezonanță:
$$B = 0 \iff \frac{1}{\omega L} = \omega C$$

$$\underline{Y} = G - j\omega B$$

$$\underline{\mathbf{B}} = \frac{1}{\omega \mathbf{L}} - \omega \mathbf{C}$$

$$Y = |\underline{Y}| = \sqrt{G^2 + B^2}$$
Dar B = 0 (Y=G)
$$G=\min \iff \underline{Y}=\min \iff \underline{Z}=\max$$

$$\underline{I} = |\underline{Y}| * |\underline{U}| \iff \underline{I} = \min$$

Defazajul : $\varphi = \operatorname{arc} \operatorname{tg} \frac{R}{X} \iff \varphi = 0$ (<u>*U*</u>în faza cu <u>I</u>)

Factor de putere: $\cos \varphi = \max$

Putere active: $P = U_R *I = R*I^2 \iff P = min$

Putere reactivă: $Q = U^*I^*\sin \varphi \Leftrightarrow Q = 0$

Schema de montaj

Alimentare A.T. 50[V]

f=50[Hz] L14

Aparatura utilizată va fi:

k – *întrerupător bipolar*;

AT – autotransformator 0-250V, 8 A;

A- ampermetru de curent alternativ [A];

V, V1, V2, V3 – voltmetre de curent alternativ;

W – wattmetru 60V, 5A;

R – reostat cu cursor, 30Ω , 5A;

B – bobină de inductivitate variabilă (0,05...0.15H); 5A;

C - condensator 100µF, 400V.

Alimentare A.T. 50[V] f=50[Hz]

Aparatura utilizată va fi:

k − *întrerupător bipolar;*

AT – autotransformator 0-250V, 8 A;

A, A₁, A₂, A₃— ampermetre de curent alternativ [A];

V − voltmetru de curent alternativ;

W – wattmetru 120V, 1A;

R – reostat cu cursor, 160 Ω , 2A;

B – bobină de inductivitate variabilă (0,2...0,55H);

C - condensator 32µF, 400V.

Schema de montaj

L14

L15

Rezultate experimentale

L14

L15

Tabelul 1 – Rezultate măsurate pentru rezonanță prin variația inductivității

Mărimea calculată	Calculate cu măsurătorile obținute înainte de rezonanță				Rezonanță	Calculate cu măsurătorile obținute după rezonanță			
I (A)	1,36	1,37	1,38	1,43	1,47	1,44	1,35	1,31	1,29
URC (V)	38,6	39,1	39,3	40,7	41,8	41	38,4	37,5	36,9
U _B (V)	58,5	58,2	57,3	53,5	45,1	32,1	19,3	15,8	13,3
Uc (V)	41,5	42,2	42,5	44	45,1	44,3	41,4	40,5	39,8
P (W)	63	64	66	69	75	70	62	58	56

Tabelul 2 – Mărimile circuitului R, L, C serie care vor fi calculate

Mărimea calculată	Calculate cu măsurătorile obținute înainte de rezonanță				Rezonanță	Calculate cu măsurătorile obținute după rezonanță				
R _C (Ω)										
R (Ω)										
Z _L (Ω)										
X _L (Ω)										
L (H)										
U _L (V)										
cosφ										
Χ _C (Ω)										

Tabelul 1 – Rezultate măsurate pentru rezonanță prin variația inductivității

Mărimea calculată	Calculate cu măsurătorile obținute înainte de rezonanță				Rezonanță	Calculate cu măsurătorile obținute după rezonanță			
I (A)	0,55	0,51	0,504	0,5	0,492	0,5	0,51	0,53	0,75
IRC (A)	0,43	0,427	0,429	0,432	0,431	0,43	0,428	0,431	0,43
I _B (V)	0,311	0,425	0,453	0,569	0,619	0,672	0,719	0,767	1,12
Ic (V)	0,622	0,620	0,622	0,624	0,620	0,619	0,620	0,621	0,617
P (W)	27	27	27	27	26	27	27	27	28

Tabelul 2 – Mărimile circuitului R, L, C paralel care vor fi calculate

Mărimea calculată	Calculate cu măsurătorile obținute înainte de rezonanță				Rezonanță	Calculate cu măsurătorile obținute după rezonanță				
G _C (S)										
G (S)										
Z _L (Ω)										
X _L (Ω)										
B _L (Ω)										
L (H)										
I∟ (A)										
B _C (Ω)										
C (uF)										
B (S)										
Y (S)										
cosφ										

Rezultate experimentale

L14 Se vor trasa, curbele de variație:

- variația tensiunii pe bobină în funcție de reactanța inductivă, UB=f(XL);
- variația tensiunii inductive în funcție de reactanța inductivă, UL=f(XL);
- variaţia tensiunii pe condensator în funcţie de reactanţa capacitivă, UC=f(XL);
- variația curentului total din circuit în funcție de reactanța inductivă, I=f(XL);
- variația factorului de putere în funcție de reactanța inductivă, cosφ=f(XL).

Se vor trasa, curbele de variație:

- variația curentului din circuit în funcție de reactanța inductivă, I=f(XL);
- variația curentului pe bobină în funcție de reactanța inductivă, IB=f(XL);
- variația componentei reactive a curentului prin bobină în funcție de reactanța inductivă, IL=f(XL);
- variația curentului pe condesator din circuit în funcție de reactanța inductivă, IC=f(XL);
- variația factorului de putere în funcție de reactanța inductivă, $\cos \varphi = f(XL)$.

L15