

CSC380: Principles of Data Science

Statistics 4

Credit:

- Jason Pacheco,
- Kwang-Sung Jun,
- Chicheng Zhang
- Xinchen yu

1

Review: Sample Mean for Bernoulli

Sample mean: $\hat{p} = \frac{1}{N} \sum_i X_i$

$$\begin{split} \textbf{Expectation:} \quad \mathbf{E}[\hat{p}(X)] &= \mathbf{E}\left[\frac{1}{N}\sum_{i}X_{i}\right] \\ &\stackrel{\text{(a)}}{=} \frac{1}{N}\sum_{i}\mathbf{E}\left[X_{i}\right] \\ &\stackrel{\text{(b)}}{=} \frac{1}{N}Np = p \end{split}$$

Variance:
$$\mathbf{Var}(\hat{p}) = \mathbf{Var}\left(\frac{1}{N}\sum_{i}X_{i}\right)$$

$$\stackrel{(a)}{=} \frac{1}{N^{2}}\mathbf{Var}\left(\sum_{i}X_{i}\right)$$

$$\stackrel{(b)}{=} \frac{1}{N^2} \sum_{i} \mathbf{Var}(X_i)$$

$$\stackrel{(c)}{=} \frac{1}{N^2} \sum_{i=1}^{n} p(1-p) = \frac{1}{N} p(1-p) = \frac{1}{N} \mathbf{Var}(X)$$

Review: Sample Mean for Gaussian

(Property of Gaussian: $E[X] = \mu_x$, $Var[X] = \sigma_x^2$)

Expectation: $\mathbf{E}[\hat{p}(X)] = \mathbf{E}\left[\frac{1}{N}\sum_{i}X_{i}\right]$ $\stackrel{\text{(a)}}{=}\frac{1}{N}\sum_{i}\mathbf{E}\left[X_{i}\right]$

Variance: $\mathbf{Var}(\hat{p}) = \mathbf{Var}\left(\frac{1}{N}\sum_{i}X_{i}\right)$ $\stackrel{(a)}{=} \frac{1}{N^{2}}\mathbf{Var}\left(\sum_{i}X_{i}\right)$ $\stackrel{(b)}{=} \frac{1}{N^{2}}\sum_{i}\mathbf{Var}(X_{i})$ $= \frac{1}{N}\mathbf{Var}(X)$

3

Review: Sample Variance

Sample variance: $\hat{\sigma}^2 = \frac{1}{N} \sum_i (X_i - \hat{\mu})^2$ Source of bias: plug-in mean estimate

Expectation: $\mathbf{E}[\hat{\sigma}^2] = \frac{1}{N} \sum_i \mathbf{E}\left[(X_i - \hat{\mu})^2 \right] = \text{boring algebra} = \frac{N-1}{N} \sigma^2$

Correcting bias : $\widehat{\sigma}_{\text{unbiased}}^2 = \frac{N}{N-1} \hat{\sigma}^2 = \frac{1}{N-1} \sum_i (X_i - \hat{\mu})^2$ $E \Big[\widehat{\sigma}_{\text{unbiased}}^2 \Big] = \sigma^2$

Biased version has lower MSE: Bias-Variance tradeoff

5

- Point estimate: a sample statistic calculated using the sample data to estimate the
 most likely value of the corresponding unknown population parameter.
- Interval estimate: a range of values constructed from sample data so that the
 population parameter will likely occur within the range at a specified probability.

5

Confidence Intervals

6

Informally, find an interval such that we are *pretty sure* it encompasses the true parameter value.

failure rate

Given data X_1,\ldots,X_n and confidence $\alpha\in(0,1)$ find interval (a,b) such that,

$$P(\theta \in (a,b)) \ge 1 - \alpha$$

The interval (a,b) contains the true parameter value θ with probability **at least** $1-\alpha$

7

Confidence Intervals

The interval (a,b) contains the true parameter value θ with probability at least $1-\alpha$

- Interval (a,b) is random
- parameter θ is **not random** (it is fixed)

• Usually, you compute an estimator $\hat{\theta}$ and then set $a=\hat{\theta}-\epsilon_a$ and $b=\hat{\theta}-\epsilon_b$ for a carefully chosen $\epsilon_a,\epsilon_b>0$

-

Finding Confidence Interval

- Suppose X follows a distribution, given: $P(X \in [-1.96, 1.96]) = 0.95$ • We are 95% sure that X will fall into the interval [-1.96, 1.96]
- If we find the distribution of $\widehat{\mu} \mu$, we can get the interval that has the probability as 95% (or 99%, can choose confidence level)
- Use $\widehat{\mu}$ and the interval to calculate a range for μ , so that we are 95% sure μ fall into the range

Q: how to find the distribution of $\widehat{\mu} - \mu$?

Confidence Intervals of the Normal Distribution

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 . Let $\hat{\mu} \coloneqq \frac{1}{n} \sum_i X_i$.

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

quiz candidate

$$\sqrt{n}\frac{\widehat{\mu}-\mu}{\sigma}\sim N(0,1)$$

Recall:

· Closed under additivity:

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$
 $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

• Closed under affine transformation (a and b constant):

$$aX + b \sim \mathcal{N}(a\mu_x + b, a^2\sigma_x^2)$$

(proof)

$$\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)$$

Use this with $X = \sum_{i=1}^{n} X_i$, $a = \frac{1}{n}$, b = 0.

c

Confidence Intervals of the Normal Distribution

11

(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

$$P(Z \in [-z, z]) = 1 - 2(1 - \Phi(z))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z. z = 1.96: RHS $\approx .95$, 95% confident z = 2.58: RHS $\approx .99$,

Terminology: "standard" normal distribution := $\mathcal{N}(0,1)$

(Corollary)

$$P\left(\hat{\mu} \in \left[\mu - \frac{z\sigma}{\sqrt{n}}, \mu + \frac{z\sigma}{\sqrt{n}}\right]\right) = 1 - 2(1 - \Phi(z))$$

hints: use the fact $\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \sim N(0,1)$. Set $Z \coloneqq$

 $\sqrt{n}\frac{\widehat{\mu}-\mu}{\sigma}$ and use Fact 2.

Gaussians almost do not have tails!

11

Confidence Intervals of the Normal Distribution

12

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 . Let $\hat{\mu} := \frac{1}{n} \sum_i X_i$.

Fact 1
$$\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \sim N(0, 1)$$

Fact 2 $Z \sim N(0, 1)$ $P(Z \in [-z, z]) = 1 - 2(1 - \phi(z))$

$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$
 $z = 1.96: RHS \approx .95, 95\% \text{ confident}$ $z = 2.58: RHS \approx .99,$

$$P\left(\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \in [-z, z]\right) = 1 - 2(1 - \phi(z))$$

$$P\left(\sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma} \in [-z, z]\right) = P\left(\widehat{\mu} \in \left[\mu - \frac{z\sigma}{\sqrt{n}}, \mu + \frac{z\sigma}{\sqrt{n}}\right]\right)$$

Confidence Intervals of the Normal Distribution

13

Finally, by our corollary,

$$P\left(\hat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

This is a confidence bound for the mean μ !!

=> Compute
$$\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$$
. Done!

$$\widehat{\mu} \in [\mu - 3, \mu + 3]$$

$$\mu - 3 \le \widehat{\mu} \le \mu + 3$$

$$\widehat{\mu} - 3 \le \mu \le \widehat{\mu} + 3$$

Confidence interval: (a,b), where $\hat{a} = \hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}$, and $\hat{b} = \hat{\mu} + 1.96\frac{\sigma}{\sqrt{n}}$

13

Caveat: interpreting confidence intervals

16

Recommended point of view:

- Assume: Heights of UA students follow a normal distribution $\mathcal{N}(\mu, 1)$ with unknown μ
- Fork m parallel universes. For each universe $u \in \{1, 2, ..., m\}$,
 - Subsample n UA students randomly, take the sample mean
 - Compute the confidence bound $\left[\hat{\mu}^{(u)} \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu}^{(u)} + \frac{1.96\sigma}{\sqrt{n}}\right]$

- · The fraction of parallel universes where the random interval includes μ is approximately at least 0.95 if m is large enough.
- As m goes to infinity, the fraction will become arbitrarily close to a value that is at least 0.95.

Confidence bounds for arbitrary distributions

17

<u>Recall</u>: If $X_1, ..., X_n$ from an **arbitrary** distribution, can we still use the same method used for Gaussian?

Short answer: YES, if n is large enough.

· Central limit theorem

$$\lim_{N \to \infty} \frac{\sqrt{N}}{\sigma} (\bar{X}_N - \mu) \to \mathcal{N} (0, 1)$$

Q: What if n is not large enough (<30)?

17

Method 1: Gaussian (Corrected)

Suppose $X_1, ..., X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 .

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma} \sim N(0,1)$$
 Replaced by T-distribution

(Fact 2) If
$$Z \sim \mathcal{N}(0,1)$$
, \mathcal{O} Sample STD $P(Z \in [-z,z]) = 1 - 2(1 - \Phi(z))$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS $\approx .95$, 95% confident

z = 2.58: RHS $\approx .99$,

Let:
$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

=> Compute $\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$. Done!

n≤30 small samples

Q: what if σ^2 is unknown and sample size is small (< 30)?

Method 1: Gaussian (Corrected)

19

Recall: Gaussian confidence interval with $\sqrt{n} \frac{\hat{\mu}_n - \mu}{\sigma} \sim \mathcal{N}(0,1)$.

What if we use $\hat{\sigma}$ instead of σ ?

(Theorem) X_1, \dots, X_n with unknown μ, σ^2 .

Let $\widehat{UVar}_n \coloneqq \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\mu}_n)^2$ (unbiased version of sample variance). Then, $\sqrt{n} \frac{\widehat{\mu}_n - \mu}{\sqrt{UVar}_n} \sim \text{student-t(mean 0, scale 1, degrees of freedom = } n-1)$

As df approaches infinity, T distribution becomes gaussian

σ

19

Т	T	a	bl	e
		_	\sim	

Degrees	Significance level							
of	20%	10%	5%	2%	1%	0.1%		
freedom	(0.20)	(0.10)	(0.05)	(0.02)	(0.01)	(0.001)		
1	3.078	6.314	12.706	31.821	63.657	636.619		
2	1.886	2.920	4.303	6.965	9.925	31.598		
3	1.638	2.353	3.182	4.541	5.841	12.941		
4	1.533	2.132	2.776	3.747	4.604	8.610		
5	1.476	2.015	2.571	3.365	4.032	6.859		
6	1.440	1.943	2.447	3.143	3.707	5.959		
7	1.415	1.895	2.365	2.998	3.499	5.405		
8	1.397	1.860	2.306	2.896	3.355	5.041		
9	1.383	1.833	2.262	2.821	3.250	4.781		
10	1.372	1.812	2.228	2.764	3.169	4.587		
40	1.303	1.684	2.021	2.423	2.704	3.551		
60	1.296	1.671	2.000	2.390	2.660	3.460		
120	1.289	1.658	1.980	2.158	2.617	3.373		
∝	1.282	1.645	1.960	2.326	2.576	3.291		

21

Method 1: Gaussian (Corrected)

22

With a similar derivation we have done before, With at least 95% confidence:

Where $t_{\alpha/2,n-1}$ can be computed numerically.

Key take away: more conservative!

=> more likely to be correct.

$$\left[\hat{\mu}-t_{\alpha/2,n-1}\frac{\hat{\sigma}}{\sqrt{n}},\hat{\mu}+t_{\alpha/2,n-1}\frac{\hat{\sigma}}{\sqrt{n}}\right]$$

much larger number compensates for the inaccuracy of $\hat{\sigma}^2$

(recall: 1.96 for gaussian) import scipy.stats as st

alpha = 0.05 st.t.ppf(1-alpha/2,df=2) => 4.302652729911275

st.t.ppf(1-alpha/2,df=5) => 2.5705818366147395

st.t.ppf(1-alpha/2,df=10) => 2.2281388519649385

st.t.ppf(1-alpha/2,df=30) => 2.0422724563012373

<u>Common practice</u>: Apply this method even if we do not know whether true distribution is Gaussian.

st.t.ppf(1-alpha/2,df=100) => 1.9839715184496334

Ppf=Percent Point Function

Method 2: Bootstrap

Suppose $X_1, \dots, X_n \sim \mathcal{N}(\mu, \sigma^2)$ with unknown μ & known σ^2 .

(Fact 1)
$$\hat{\mu} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right) \sqrt{n} \frac{\hat{\mu} - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

(Fact 2) If $Z \sim \mathcal{N}(0,1)$,

Directly approximate distributions of
$$\widehat{\mu} - \mu$$

$$P(Z \in [-z, z]) = 1 - 2(1 - \Phi(z))$$

where $\Phi(z) := P(Z \le z)$ is the CDF of Z.

z = 1.96: RHS \approx .95, 95% confident

z = 2.58: RHS $\approx .99$,

Let:
$$Z \longrightarrow \sqrt{n} \frac{\widehat{\mu} - \mu}{\sigma}$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{1.96\sigma}{\sqrt{n}}, \mu + \frac{1.96\sigma}{\sqrt{n}}\right]\right) \ge 0.95$$

$$P\left(\hat{\mu} \in \left[\mu - \frac{2.58\sigma}{\sqrt{n}}, \mu + \frac{2.58\sigma}{\sqrt{n}}\right]\right) \ge 0.99$$

=> Compute
$$\left[\hat{\mu} - \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu} + \frac{1.96\sigma}{\sqrt{n}}\right]$$
. Done!