Wintersemester 2016/17 Einführung in die Modellierung

Till Francke und Maik Heistermann *Universität Potsdam*

Seminar Einführung in die Modellierung im Modul Versuchsplanung und Geoökologische Modellierung

Wintersemester 2016/17 Einführung in die Modellierung

In diesem Semester

R als Werkzeug in der Modellierung Ökologische Modelle

Hydrologische Modelle

(Ökohydrologische Modelle)

Wintersemester 2016/17 Einführung in die Modellierung

Heute

Rekapitulation: Wasserhaushaltsmodelle
abc & d
Der MOPEX-Datensatz
Routinekämpfe

Abfluss als Komponente des Wasserhaushalts

$$\frac{\Delta S}{\Delta t} = P - ET - Q$$

Kontinuierlicher Wasserhaushalt mit dem abc-Modell

Gleichung für Gesamtabfluss Q_i am Gebietsauslass

$$Q_{i} = AO_{i} + AG_{i} = (1-a-b)P_{i} + cG_{i-1}$$

Neuberechnung des Grundwasserspeichers $G_{\underline{i}}$ im Zeitschritt $\underline{\textbf{i}}$

$$G_{i} = (1-c)G_{i-1} + aP_{i}$$

Kontinuierlicher Wasserhaushalt mit dem abc-Modell

Wasserhaushaltsmodelle

Abfluss als Komponente des Wasserhaushalts

$$\frac{\Delta S}{\Delta t} = P - ET - Q$$

Das abc-Modell

- ✓ Massenerhaltung als Grundprinzip
- Einfluss der Gebietsfeuchte auf Abflussbildung
- Abbildung physikalischer Prozesse (Verdunstung, Schnee)

Nach abc kommt abcd...

Ansatz des abcd-Modells

Aufteilung des monatlichen Niederschlags P in

- Änderung der Bodenfeuchte S
- Evapotranspiration ET,
- Direktabfluss QD,
- Grundwasserneubildung RG

Diese Aufteilung hängt ab von

- der Menge des Niederschlags P
- der Potenziellen Evapotranspiration PET
- der Anfangsbodenfeuchte S_{i-1}

Basisabfluss

- Der GW-Speicher verhält sich analog zum abc-Modell
- Basisabfluss QB ist proportional zum GW-Speicher G

Idee #1

Verdunstung und Bodenspeicher sind beschränkt!

Im Monat i ist $W_i = P_i + S_{i-1}$ verfügbar für

- die Auffüllung des Bodens auf S_i
- für Verdunstung $\mathbb{E} \mathbb{T}_{i}$

Die Summe aus beiden heiße $Y_i = S_i + ET_i$

Zunächst berechnen wir Y_i und dann erst die Aufteilung in S_i und ET_i

■ Y_i sei eine Funktion von W_i

Idee #1

Verdunstung und Bodenspeicher sind beschränkt!

Im Monat i ist $W_i = P_i + S_{i-1}$ verfügbar für

- die Auffüllung des Bodens auf Si
- für Verdunstung ET;

Die Summe aus beiden heiße $Y_i = S_i + ET_i$

Idee #1

Verdunstung und Bodenspeicher sind beschränkt!

Im Monat i ist $W_i = P_i + S_{i-1}$ verfügbar für

- die Auffüllung des Bodens auf S_i
- für Verdunstung ET;

Die Summe aus beiden heiße $Y_i = S_i + ET_i$

Zunächst berechnen wir Y_iund dann erst die Aufteilung in S_i und ET_i

- Y_i sei eine Funktion von W_i
- W_i klein $\Rightarrow Y_i = W_i$
- W_i groß ⇒ Y_i nähert sich asymptotisch dem Wert b
- a kontrolliert die Geschwindigkeit der Annäherung an b

Was passiert mit dem Überschuss $W_i - Y_i$?

Idee #1

Verdunstung und Bodenspeicher sind beschränkt!

Im Monat i ist $W_i = P_i + S_{i-1}$ verfügbar für

- die Auffüllung des Bodens auf S_i
- für Verdunstung ET;

Die Summe aus beiden heiße $Y_i = S_i + ET_i$

Zunächst berechnen wir Y_i und dann erst die Aufteilung in S_i und ET_i

- Y_i sei eine Funktion von W_i
- W_i klein $\Rightarrow Y_i = W_i$
- W_i groß $\Rightarrow Y_i$ nähert sich asymptotisch dem Wert b
- a kontrolliert die Geschwindigkeit der Annäherung an b

$$Y_i(W_i) = \frac{W_i + b}{2a} - \sqrt{\left(\frac{W_i + b}{2a}\right)^2 - \frac{bW_i}{a}}$$

Implementiere die Funktion Y_i (W_i) in R (abcd.R). Zeige, dass die Funktion die gewünschten Eigenschaften hat.

Idee #1

Verdunstung und Bodenspeicher sind beschränkt!

Im Monat i ist $W_i = P_i + S_{i-1}$ verfügbar für

- die Auffüllung des Bodens auf S_i
- für Verdunstung $\mathbf{E} \mathbf{T}_i$

Die Summe aus beiden heiße $Y_i = S_i + ET_i$

Idee #2

Aufteilung von Y_i zwischen Verdunstung \mathbb{E}_{i} und \mathbb{S}_{i} Boden hängt ab von

- der Potenziellen Verdunstung PET und
- der Speicherfähigkeit des Bodens (b)

$$Y_{i} = E_{i} + S_{i}$$

$$S_{i} = x \cdot Y_{i} \qquad x = \exp\left(-\frac{PET_{i}}{b}\right) \qquad E_{i} = (1-x) \cdot Y_{i}$$

Vergegenwärtige Dir das Verhalten der Aufteilung auf \mathbb{E}_{i} und \mathbb{S}_{i} durch Betrachtung der Grenzfälle PET \rightarrow 0, PET $\rightarrow \infty$, b \rightarrow 0, b $\rightarrow \infty$.

Idee #2

Aufteilung von Y_i zwischen Verdunstung \mathbb{E}_{+} und \mathbb{S}_{+} Boden hängt ab von

- der Potenziellen Verdunstung PET und
- der Speicherfähigkeit des Bodens (b)

$$Y_{i} = E_{i} + S_{i}$$

$$Si = x \cdot Y_{i} \qquad x = \exp\left(-\frac{PET_{i}}{b}\right) \qquad E_{i} = (1-x) \cdot Y_{i}$$

Herleitung von x aus folgender Proportionalität und der Lösung der entsprechenden DGL

$$\frac{dS}{dt} = -PET_i \frac{S}{b} \implies \int_{Y_i}^{S_i} \frac{dS}{S} = \int_{i-1}^{i} -PET_i \frac{1}{b} dt \qquad (s. Thomas (1981), S. 25)$$

Ideen #3 und #4

Aufteilung des Überschusses W_i - Y_i

Der Überschuss $W_i - Y_i$ wird in Direktabfluss RD_i und GW-Neubildung RG_i mittels c aufgeteilt:

$$RD_i = (1-c)\cdot(Y_i - W_i)$$

$$RG_i = c \cdot (Y_i - W_i)$$

Basisabfluss und Grundwasserspeicher

Der Basisabfluss RB_{i} ist proportional zum Grundwasserspeicher G_{i} .

$$RB_i = d \cdot G_i$$

Der neue Grundwasserspeicher G_i ergibt sich aus der Bilanzierung von G_{i-1} , RG_i und RB_i .

$$\Rightarrow G_i = G_{i-1} + RG_i - RB_i = c \cdot (W_i - Y_i) - d \cdot G_i$$

Verdunstung ET

Bodenwasser-

speicher S

Grundwasser-

speicher G

Überblick über die Wasserbilanz eines Monats

- **0.** Argumente: P_i, PET_i, a, b, c, d
- 1a. Berechne \mathbf{W}_{i} gemäß $W_{i} = S_{i-1} + P_{i}$
- **1b.** Berechne $Y_i(W_i)$ $Y_i(W_i) = \frac{W_i + b}{2a} \sqrt{\left(\frac{W_i + b}{2a}\right)^2 \frac{bW_i}{a}}$
- 2. Berechne Bodenfeuchte S; und Verdunstung ET;

$$S_{i} = Y_{i} \cdot \exp\left(-\frac{PET_{i}}{b}\right), \quad E_{i} = Y_{i} \cdot \left(1 - \exp\left(-\frac{PET_{i}}{b}\right)\right)$$

3. Berechne Direktabfluss RD; und GW-Neubildung RG;

$$RD_i = (1-c)(Y_i - W_i)$$
 $RG_i = c(Y_i - W_i)$

4. Berechne Gesamtabfluss Q_i und Grundwasserspeicher G_i

$$Q_i = RD_i + RB_i = (1 - c)(Y_i - W_i) + dG_i$$
 $G_i = G_{i-1} + c \cdot (W_i - Y_i) - d \cdot G_{i-1}$

Wie lassen sich die Parameter a, b, c und d physikalisch interpretieren? Welche Einheiten haben sie?

abcd

Abfluss Q

Direktabfluss QD

Basisabfluss QB

Niederschlag P

Grundwasser-

neubildung RG

Verdunstung ET

Bodenwasser-

speicher S

Grundwasser-

speicher G

Überblick über die Wasserbilanz eines Monats

- **0.** Argumente: P_i, PET_i, a, b, c, d
- 1a. Berechne \mathbf{W}_{i} gemäß $W_{i} = S_{i-1} + P_{i}$
- **1b.** Berechne $Y_i(\overline{W_i})$ $Y_i(W_i) = \frac{W_i + b}{2a} \sqrt{\left(\frac{W_i + b}{2a}\right)^2 \frac{bW_i}{a}}$
- 2. Berechne Bodenfeuchte S; und Verdunstung ET;

$$S_{i} = Y_{i} \cdot \exp\left(-\frac{PET_{i}}{b}\right), \quad E_{i} = Y_{i} \cdot \left(1 - \exp\left(-\frac{PET_{i}}{b}\right)\right)$$

3. Berechne Direktabfluss RD; und GW-Neubildung RG;

$$RD_i = (1-c)(Y_i - W_i)$$
 $RG_i = c(Y_i - W_i)$

4. Berechne Gesamtabfluss Q_i und Grundwasserspeicher G_i

$$Q_i = RD_i + RB_i = (1-c)(Y_i - W_i) + dG_i$$
 $G_i = \frac{G_{i-1} + c(W_i - Y_i)}{1+d}$

Implementiere das abcd-Modell als Funktion in R (Datei abcd.R).

abcd

Abfluss Q

Direktabfluss QD

Basisabfluss QB

Niederschlag P

Grundwasser-

neubildung RG

MOPEX

MOPEX: MOdel Parameter Estimation Experiment

- homogener Datensatz für 431 Einzugsgebiete in den USA
- Abflusszeitreihen
- Gebietsmittelwerte für Niederschlag, PET, T_{min}, T_{max}
- tägliche Auflösung (für diesen Kurs: Monatsmittelwerte)

Download der Daten und Metadaten:

ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US Data

Selected 92

MOPEX 431 Catchments

Finleson und Da

