

UConnRCMPy: Python-based Data Analysis for Rapid Compression Machines

Bryan Weber
Chih-Jen Sung
University of Connecticut

Combustion drives the energy economy

- Combustion is expected to remain the dominant energy conversion mechanism for many years
- The combustion of fossil fuels has been implicated in a number of harmful effects on human health, the environment, and the economy
- Two solutions have been proposed:
 - Better engines
 - Better fuels

Combustion drives the energy economy

Combustion drives the energy economy

- Combustion is expected to remain the dominant energy conversion mechanism for many years
- The combustion of fossil fuels has been implicated in a number of harmful effects on human health, the environment, and the economy
- Two solutions have been proposed:
 - Better engines
 - Better fuels

We need both solutions to make substantial progress

- Selecting the best alternative fuel requires knowledge of the best engine design, which requires deciding which is the best fuel...
- Testing every fuel in every engine is too expensive and too time consuming

We need both solutions to make substantial progress

 Computer-aided design can be employed to design fuel-flexible, high-efficiency, lowemissions engines if the models we use are predictive

We want to do experiments that model a real engine

- Real engines operate at high pressure and low temperature
- Real engines are affected by:
 - Intake/Exhaust
 - Inhomogeneity
 - Fluid Mechanics
 - Power output

Rapid Compression Machine

- Experiments are conducted in a Rapid Compression Machine (RCM)
- High pressure and low temperature conditions
- Minimal effects of fluid mechanics and inhomogeneity

Rapid Compression Machine

What do we measure?

- The reaction chamber pressure is the primary measurement in the RCM
- A dynamic pressure transducer produces a charge output that is converted to a 0–10 V output
- Nominally, the initial voltage before compression is 0 V
- The voltage must be processed to compute the pressure, temperature, and ignition delay

What do we measure?

Problems Engineering Opportunities

- The signal is noisy \rightarrow Error in P_C
- There is an offset in the initial voltage \rightarrow Error in P_0 , T_C
- There are 25+ RCMs in the world, and everyone uses a different data analysis procedure
- Reproducibility is important!

26 MAY 2016 | VOL 533 | NATURE | 437

THIS WEEK

Reality check on reproducibility

COMBUSTION DIAGNOSTICS LABORATORY

A survey of Nature readers revealed a high level of concern about the problem of irreproducible results. Researchers, funders and journals need to work together to make research more reliable.

Let's use Python to write a data analysis framework with the following goals:

- 1. Reproducible analysis across researchers
- 2. Documented design choices for filter criteria, etc.
- 3. Citable, open-source publication of code

UConnRCMPy

https://github.com/bryanwweber/UConnRCMPy

Features of UConnRCMPy

- Filtering and smoothing the raw voltage generated by the pressure transducer
- Converting the voltage trace into a pressure trace using settings recorded from the equipment
- Processing the pressure trace to determine parameters of interest in reporting the experiments, including the ignition delay and machine-specific effects on the experiment
- Conducting simulations utilizing the experimental information to calculate the temperature during the experiment

Correcting the Offset

Computing Ignition Delay

Modeling facility effects

Replace oxygen with nitrogen and run the experiment again

Modeling Facility Effects

- The reaction chamber is modeled as undergoing adiabatic compression followed by adiabatic expansion, to reproduce the non-reactive pressure trace
- The temperature at the EOC is found by applying the compression/expansion process to the law of conservation of energy

$$c_v \frac{dT}{dt} = -P \frac{dv}{dt} - \sum_k u_k \frac{dY_k}{dt}$$

Modular Design

 Enables modifications for different file formats with consistent choices of filtering criteria, etc.

Scientific Python Software

- SciPy for filter construction and convolution (fftconvolve was ~100x faster than NumPy's convolve)
- Cantera (https://github.com/Cantera/cantera) to calculate thermodynamic information about the reactor
- Matplotlib for plots
- Documentation is available online (http://bryanwweber.github.io/UConnRCMPy/), generated by Sphinx

Demo

'species.cti']

1 Tim			С	D	E	F	G	н		J	K	ı
	ne	P0	T0	Pc	Tig	First Stage	Tc	in Spacers	mm Shims	Right Tank		
2	1307	878	413	29.92496204	11.88		895.5559595	2	0	O2	252	
3	1314	880	413	29.96528205	11.68		903.4760968	2	0	N2	2399	
4	1322	880	413	30.04718894	11.58		896.9368688	2	0	DME	2399	
5	1329	880	413	30.00451748	11.67		897.6781982	2	0	C3H8	2500	
6	1336	880	413	29.99434871	11.44		894.7526087	2	0	Pd	100	
7										Та	23.3	
8				Mean	11.65							
9				Std. Dev.	0.16							
10				%	1.38							

Future Work

- Automatic calculation of optimal low-pass filter cutoff frequency
- Automatic calculation of optimal moving-average smoothing filter width
- Improved detection of the EOC
- Unit testing!
- See
 https://github.com/bryanwweber/UConnRCMPy/is
 sues

Acknowledgements

This work was funded by the National Science Foundation under Grant No. CBET-1402231

Email: <u>bryan.w.weber@gmail.com</u>

Github: obryanwweber

Web: <u>bryanwweber.com</u>

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/4.0/.

