Pointed Sets

December 3, 2023

006W This chapter contains some foundational material on pointed sets.

Contents

1	Poir	nted Sets	2
	1.1	Foundations	2
	1.2	Morphisms of Pointed Sets	3
	1.3	The Category of Pointed Sets	4
	1.4	Elementary Properties of Pointed Sets	
2	Limits of Pointed Sets		6
	2.1	Products	6
	2.2	Equalisers	6
	2.3	Pullbacks	6
3	Colimits of Pointed Sets		
	3.1	Coproducts	7
	3.2	Pushouts	
	3.3	Coequalisers	7
4	Constructions With Pointed Sets		8
	4.1	Internal Homs	8
	4.2	Free Pointed Sets	8
	4.3	Wedge Sums of Pointed Sets	10
Δ	Oth	er Chanters	12

006X 1 Pointed Sets

006Y 1.1 Foundations

006Z DEFINITION 1.1.1 ► POINTED SETS

A **pointed set**¹ is equivalently

- · An \mathbb{E}_0 -monoid in (N $_{\bullet}$ (Sets), pt);
- · A pointed object in (Sets, pt).

¹Further Terminology: Also called an \mathbb{F}_1 -module.

0070 REMARK 1.1.2 ➤ UNWINDING DEFINITION 1.1.1

In detail, a **pointed set** is a pair (X, x_0) consisting of

- · The Underlying Set. A set X, called the **underlying set of** (X, x_0) ;
- · The Basepoint. A morphism

$$[x_0]: \mathsf{pt} \to X$$

in Sets, determining an element $x_0 \in X$, called the **basepoint of** X.

0071 EXAMPLE 1.1.3 ► THE ZERO SPHERE

The 0-sphere¹ is the pointed set $(S^0, 0)^2$ consisting of

· The Underlying Set. The set S^0 defined by

$$S^0 \stackrel{\text{def}}{=} \{0, 1\};$$

• The Basepoint. The element 0 of S^0 .

¹Further Terminology: Also called the **underlying pointed set of the field with one element**.

² Further Notation: Also denoted $(\mathbb{F}_1, 0)$.

0072 EXAMPLE 1.1.4 ➤ THE TRIVIAL POINTED SET

The **trivial pointed set** is the pointed set (pt, \star) consisting of

- The Underlying Set. The punctual set pt $\stackrel{\text{def}}{=} \{ \star \}$;
- · The Basepoint. The element ★ of pt.

0073 EXAMPLE 1.1.5 ► THE UNDERLYING POINTED SET OF A SEMIMODULE

The **underlying pointed set** of a semimodule (M, α_M) is the pointed set $(M, 0_M)$.

0074 EXAMPLE 1.1.6 ➤ THE UNDERLYING POINTED SET OF A MODULE

The **underlying pointed set** of a module (M, α_M) is the pointed set $(M, 0_M)$.

0075 1.2 Morphisms of Pointed Sets

0076 DEFINITION 1.2.1 ➤ MORPHISMS OF POINTED SETS

A morphism of pointed sets¹ is equivalently

- · A morphism of \mathbb{E}_0 -monoids in $(N_{\bullet}(Sets), pt)$.
- · A morphism of pointed objects in (Sets, pt).

0077 REMARK 1.2.2 ➤ UNWINDING DEFINITION 1.2.1

In detail, a **morphism of pointed sets** $f:(X,x_0)\to (Y,y_0)$ is a morphism of sets $f:X\to Y$ such that the diagram

$$\begin{array}{c|c}
 & \text{pt} \\
 & [x_0] / & [y_0] \\
 X \longrightarrow & Y
\end{array}$$

commutes, i.e. such that

$$f(x_0)=y_0.$$

¹ Further Terminology: Also called a **pointed function** or a **morphism of** \mathbb{F}_1 **-modules**.

0078 1.3 The Category of Pointed Sets

0079 DEFINITION 1.3.1 ➤ THE CATEGORY OF POINTED SETS

The category of pointed sets is the category Sets, defined equivalently as

- · The homotopy category of the ∞ -category $\mathsf{Mon}_{\mathbb{E}_0}(\mathsf{N}_{\bullet}(\mathsf{Sets}),\mathsf{pt})$ of Monoids in Monoidal ∞ -Categories, $\ref{eq:Monoids}$;
- · The category Sets* of Categories, ??.

007A REMARK 1.3.2 ► UNWINDING DEFINITION 1.3.1

In detail, the category of pointed sets is the category Sets, where

- · Objects. The objects of Sets* are pointed sets;
- · Morphisms. The morphisms of Sets* are morphisms of pointed sets;
- · Identities. For each $(X, x_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$, the unit map

$$\mathbb{1}_{(X,x_0)}^{\mathsf{Sets}_*} \colon \mathsf{pt} \to \mathsf{Sets}_*((X,x_0),(X,x_0))$$

of Sets_{*} at (X, x_0) is defined by¹

$$id_{(X,x_0)}^{\mathsf{Sets}_*} \stackrel{\mathsf{def}}{=} id_X;$$

· Composition. For each $(X,x_0),(Y,y_0),(Z,z_0)\in {\sf Obj}({\sf Sets}_*)$, the composition map

$$\circ_{(X,x_0),(Y,y_0),(Z,z_0)}^{\mathsf{Sets}_*} \colon \mathsf{Sets}_*((Y,y_0),(Z,z_0)) \times \mathsf{Sets}_*((X,x_0),(Y,y_0)) \to \mathsf{Sets}_*((X,x_0),(Z,z_0))$$

of Sets_{*} at $((X, x_0), (Y, y_0), (Z, z_0))$ is defined by²

$$g \circ_{(X,x_0),(Y,y_0),(Z,z_0)}^{\mathsf{Sets}_*} f \stackrel{\mathsf{def}}{=} g \circ f.$$

$$g(f(x_0)) = g(y_0)$$
$$= z_0,$$

¹Note that id_X is indeed a morphism of pointed sets, as we have $id_X(x_0) = x_0$.

² Note that the composition of two morphisms of pointed sets is indeed a morphism of pointed sets, as we have

007B 1.4 Elementary Properties of Pointed Sets

007C PROPOSITION 1.4.1 ► ELEMENTARY PROPERTIES OF POINTED SETS

Let (X, x_0) be a pointed set.

007D

007E

007F

007G

- Completeness. The category Sets_{*} of pointed sets and morphisms between them is complete, having in particular products (Definition 2.1.1), pullbacks (Definition 2.3.1), and equalisers (Definition 2.2.1).
- 2. Cocompleteness. The category Sets* of pointed sets and morphisms between them is cocomplete, having in particular coproducts (Definition 3.1.1), pushouts (Definition 3.2.1), and coequalisers (Definition 3.3.1).
- 3. Failure To Be Cartesian Closed. The category Sets* is not Cartesian closed.
- 4. Relation to Partial Functions. We have an equivalence of categories¹

$$\mathsf{Sets}_* \stackrel{\mathsf{eq.}}{\cong} \mathsf{Sets}^{\mathsf{part.}}$$

between the category of pointed sets and pointed functions between them and the category of sets and partial functions between them.

PROOF 1.4.2 ► PROOF OF PROPOSITION 1.4.1

Item 1: Completeness

Omitted.

Item 2: Cocompleteness

Omitted.

Item 3: Failure To Be Cartesian Closed

See [MSE2855868].

Item 4: Relation to Partial Functions

Omitted.

2 Limits of Pointed Sets

007J 2.1 Products

Let (X, x_0) and (Y, y_0) be pointed sets.

007K DEFINITION 2.1.1 ► PRODUCTS OF POINTED SETS

The **product of** (X, x_0) **and** (Y, y_0) is the pointed set $(X \times Y, (x_0, y_0))$.

007L 2.2 Equalisers

Let $f, g: (X, x_0) \Rightarrow (Y, y_0)$ be morphisms of pointed sets.

007M DEFINITION 2.2.1 ► EQUALISERS OF POINTED SETS

The **equaliser of** (f, g) is the pointed set $(Eq_*(f, g), x_0)$ consisting of

· The Underlying Set. The set $Eq_*(f, g)$ defined by

$$Eq_*(f,g) \stackrel{\text{def}}{=} \{x \in X \mid f(x) = y_0 = g(x)\};$$

• The Basepoint. The element x_0 of Eq_{*}(f, g).

007N 2.3 Pullbacks

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (X, x_0) \to (Z, z_0)$ and $g: (Y, y_0) \to (Z, z_0)$ be morphisms of pointed sets.

007P DEFINITION 2.3.1 ➤ PULLBACKS OF POINTED SETS

The **pullback of** (X, x_0) **and** (Y, y_0) **over** (Z, z_0) **along** (f, g) is the pointed set $((X, x_0) \times_{(z, z_0)} (Y, y_0), p_0)$ consisting of

· The Underlying Set. The set $(X, x_0) \times_{(z,z_0)} (Y, y_0)$ defined by

$$(X, x_0) \times_{(z, z_0)} (Y, y_0) \stackrel{\text{def}}{=} \{(x, y) \in X \times Y \mid f(x) = z_0 = g(y)\};$$

· The Basepoint. The element (x_0, y_0) of $(X, x_0) \times_{(z,z_0)} (Y, y_0)$.

0070 3 Colimits of Pointed Sets

007R 3.1 Coproducts

Let (X, x_0) and (Y, y_0) be pointed sets.

007S DEFINITION 3.1.1 ► COPRODUCTS OF POINTED SETS

The **coproduct of** (X, x_0) **and** (Y, y_0) is their wedge sum $(X \vee Y, p_0)$ of Definition 4.3.1.

007T 3.2 Pushouts

Let (X, x_0) , (Y, y_0) , and (Z, z_0) be pointed sets and let $f: (Z, z_0) \to (X, x_0)$ and $g: (Z, z_0) \to (Y, y_0)$ be morphisms of pointed sets.

007U DEFINITION 3.2.1 ➤ PUSHOUTS OF POINTED SETS

The **pushout of** (X, x_0) **and** (Y, y_0) **over** (Z, z_0) **along** (f, g) is the pointed set $\left(X \coprod_{f,Z,g} Y, p_0\right)$, where $p_0 = [x_0] = [y_0]$.

007V 3.3 Coequalisers

Let $f, g: (X, x_0) \Rightarrow (Y, y_0)$ be morphisms of pointed sets.

007W

DEFINITION 3.3.1 ► COEQUALISERS OF POINTED SETS

The **coequaliser of** (f, g) is the pointed set $(CoEq(f, g), x_0)$.

007X 4 Constructions With Pointed Sets

007Y 4.1 Internal Homs

Let (X, x_0) and (Y, y_0) be pointed sets.

007Z

DEFINITION 4.1.1 ▶ POINTED SETS OF MORPHISMS OF POINTED SETS

The **pointed set of morphisms of pointed sets from** (X, x_0) **to** (Y, y_0) is the pointed set **Sets**_{*}(X, Y) consisting of

- The Underlying Set. The set $\mathbf{Sets}_*((X, x_0), (Y, y_0))$ of morphisms of pointed sets from (X, x_0) to (Y, y_0) ;
- · The Basepoint. The element

$$\Delta_{y_0} \colon (X, x_0) \to (Y, y_0)$$

of **Sets**_{*} $((X, x_0), (Y, y_0))$.

0080 4.2 Free Pointed Sets

Let *X* be a set.

0081

DEFINITION 4.2.1 ► FREE POINTED SETS

The **free pointed set on** X is the pointed set X^+ consisting of

· The Underlying Set. The set X^+ defined by

$$X^+\stackrel{\mathrm{def}}{=} X \coprod \mathrm{pt};$$

• The Basepoint. The element \star of X^+ .

0082 Proposition 4.2.2 ➤ Properties of Free Pointed Sets

Let X be a set.

1. Functoriality. The assignment $X \mapsto X^+$ defines a functor

$$(-)^+$$
: Sets \rightarrow Sets_{*},

where

· Action on Objects. For each $X \in \mathsf{Obj}(\mathsf{Sets})$, we have

$$[(-)^+](X) \stackrel{\text{def}}{=} X_+,$$

where X_{+} is the pointed set of Definition 4.2.1;

· Action on Morphisms. For each morphism $f: X \to Y$ of Sets, the image

$$f_+\colon X_+\to Y_+$$

of f by $(-)^+$ is the map of pointed sets defined by

$$f^+(x) \stackrel{\text{def}}{=} \begin{cases} f(x) & \text{if } x \in X, \\ \star & \text{if } x = \star. \end{cases}$$

2. Adjointness. We have an adjunction

$$((-)^+ \dashv \overline{\Xi})$$
: Sets $\underbrace{\overset{(-)^+}{\pm}}_{\Xi}$ Sets_{*},

witnessed by a bijection of sets

$$\mathsf{Sets}_*((X_+, \star), (Y, y_0)) \cong \mathsf{Sets}(X, Y),$$

natural in $X \in \mathsf{Obj}(\mathsf{Sets})$ and $(Y, y_0) \in \mathsf{Obj}(\mathsf{Sets}_*)$.

3. Symmetric Strong Monoidality With Respect to Wedge Sums. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

$$\left((-)^+,(-)^{+,\coprod},(-)_{\mu}^{+,\coprod}\right)\colon(\mathsf{Sets},\coprod,\emptyset)\to(\mathsf{Sets}_*,\vee,\mathsf{pt}),$$

0084

0083

0085

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\coprod}: X^{+} \vee Y^{+} \xrightarrow{\cong} (X \coprod Y)^{+},$$
$$(-)_{\mathbb{F}}^{+,\coprod}: \operatorname{pt} \xrightarrow{\cong} \emptyset^{+},$$

natural in $X, Y \in Obj(Sets)$.

4. Symmetric Strong Monoidality With Respect to Smash Products. The free pointed set functor of Item 1 has a symmetric strong monoidal structure

$$((-)^+, (-)^{+,\times}, (-)^{+,\times}_{\mathbb{F}}) \colon (\mathsf{Sets}, \times, \mathsf{pt}) \to (\mathsf{Sets}_*, \wedge, S^0),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\times} \colon X^{+} \wedge Y^{+} \xrightarrow{\cong} (X \times Y)^{+},$$
$$(-)_{\mathbb{K}}^{+,\times} \colon S^{0} \xrightarrow{\cong} \mathsf{pt}^{+},$$

natural in $X, Y \in \mathsf{Obj}(\mathsf{Sets})$.

PROOF 4.2.3 ► PROOF OF PROPOSITION 4.2.2

Item 1: Functoriality

Clear.

Item 2: Adjointness

Clear.

Item 3: Symmetric Strong Monoidality With Respect to Wedge Sums

Omitted.

Item 4: Symmetric Strong Monoidality With Respect to Smash Products

Omitted.

0087 4.3 Wedge Sums of Pointed Sets

Let (X, x_0) and (Y, y_0) be pointed sets.

0086

8800

DEFINITION 4.3.1 ► WEDGE SUMS OF POINTED SETS

The **wedge sum of** X **and** Y is the pointed set $(X \vee Y, p_0)$ consisting of

· The Underlying Set. The set $X \vee Y$ defined by ¹

$$(X \lor Y, p_0) \stackrel{\text{def}}{=} (X, x_0) \coprod (Y, y_0)$$

$$\cong (X \coprod_{pt} Y, p_0)$$

$$\cong (X \coprod_{pt} Y/\sim, p_0),$$

$$X \hookleftarrow_{[x_0]} pt,$$

where \sim is the equivalence relation on $X \coprod Y$ given by $x_0 \sim y_0$;

· The Basepoint. The element p_0 of $X \vee Y$ defined by

$$p_0 \stackrel{\text{def}}{=} [x_0]$$
$$= [y_0].$$

¹Here $(X, x_0) \coprod (Y, y_0)$ is the coproduct of (X, x_0) and (Y, y_0) in Sets_{*}.

0089

PROPOSITION 4.3.2 ► PROPERTIES OF WEDGE SUMS OF POINTED SETS

Let (X, x_0) and (Y, y_0) be pointed sets.

008A

1. Functoriality. The assignments $(X, x_0), (Y, y_0), ((X, x_0), (Y, y_0)) \mapsto (X \vee Y, p_0)$ define functors

$$X \lor -: \mathsf{Sets}_* \to \mathsf{Sets}_*,$$

 $- \lor Y : \mathsf{Sets}_* \to \mathsf{Sets}_*,$
 $-_1 \lor -_2 : \mathsf{Sets}_* \times \mathsf{Sets}_* \to \mathsf{Sets}_*.$

008B

2. Associativity. We have an isomorphism of pointed sets

$$(X\vee Y)\vee Z\cong X\vee (Y\vee Z),$$

natural in $(X, x_0), (Y, y_0), (Z, z_0) \in \mathsf{Sets}_*$.

008C

3. Unitality. We have isomorphisms of pointed sets

$$\mathsf{pt} \vee X \cong X$$
,

$$X \vee \mathsf{pt} \cong X$$
,

natural in $(X, x_0) \in \mathsf{Sets}_*$.

4. Commutativity. We have an isomorphism of pointed sets

$$X \vee Y \cong Y \vee X$$
.

natural in $(X, x_0), (Y, y_0) \in \mathsf{Sets}_*$.

5. *Symmetric Monoidality*. The triple (Sets_{*}, ∨, pt) is a symmetric monoidal category.

6. Symmetric Strong Monoidality With Respect to Free Pointed Sets. The free pointed set functor of Item 1 of Proposition 4.2.2 has a symmetric strong monoidal structure

$$\left((-)^+,(-)^{+,\coprod},(-)^{+,\coprod}_{\mu}\right)\colon(\mathsf{Sets},\coprod,\emptyset)\to(\mathsf{Sets}_*,\vee,\mathsf{pt}),$$

being equipped with isomorphisms of pointed sets

$$(-)_{X,Y}^{+,\coprod}: X^{+} \vee Y^{+} \xrightarrow{\cong} (X \coprod Y)^{+},$$
$$(-)_{\mathscr{F}}^{+,\coprod}: \mathsf{pt} \xrightarrow{\cong} \emptyset^{+},$$

natural in $X, Y \in \mathsf{Obj}(\mathsf{Sets})$.

7. The Fold Map. We have a natural transformation

$$\nabla\colon \vee\circ\Delta^{\mathsf{Cats}}_{\mathsf{Sets}_*}\Longrightarrow \mathsf{id}_{\mathsf{Sets}_*}, \qquad \begin{array}{c} \mathsf{Sets}_*\times\mathsf{Sets}_*\\ \Delta^{\mathsf{Cats}}_{\mathsf{Sets}_*}& \bigvee\\ \nabla\\ \mathsf{Sets}_*& \bigvee\\ \mathsf{id}_{\mathsf{Sets}_*}& \mathsf{Sets}_* \end{array}$$

called the **fold map**, whose component

$$\nabla_X : X \vee X \to X$$

at X is given by the composition

$$\begin{array}{c} X \stackrel{\Delta_X}{\longrightarrow} X \times X \\ \longrightarrow X \times X/{\sim} \\ & \stackrel{\text{def}}{\longrightarrow} X \vee X. \end{array}$$

008F

008E

008D

008G

Appendices

A Other Chapters

Set Theory

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Indexed and Fibred Sets
- 6. Relations
- 7. Spans
- 8. Posets

Category Theory

- 9. Categories
- 10. Constructions With Categories
- 11. Kan Extensions

Bicategories

- 12. Bicategories
- 13. Internal Adjunctions

Internal Category Theory

14. Internal Categories

Cyclic Stuff

15. The Cycle Category

Cubical Stuff

16. The Cube Category

Globular Stuff

17. The Globe Category

Cellular Stuff

18. The Cell Category

Monoids

- 19. Monoids
- 20. Constructions With Monoids

Monoids With Zero

- 21. Monoids With Zero
- 22. Constructions With Monoids With Zero

Groups

- 23. Groups
- 24. Constructions With Groups

Hyper Algebra

- 25. Hypermonoids
- 26. Hypergroups
- 27. Hypersemirings and Hyperrings

28. Quantales

Near-Rings

- 29. Near-Semirings
- 30. Near-Rings

Real Analysis

- 31. Real Analysis in One Variable
- 32. Real Analysis in Several Variables

Measure Theory

- 33. Measurable Spaces
- 34. Measures and Integration

Probability Theory

34. Probability Theory

Stochastic Analysis

- 35. Stochastic Processes, Martingales, and Brownian Motion
- 36. Itô Calculus
- 37. Stochastic Differential Equations

Differential Geometry

38. Topological and Smooth Manifolds

Schemes

39. Schemes