Scilab Textbook Companion for Mechanical Metallurgy by G. E. Dieter¹

Created by
Apurva Bhushan
B.Tech
Computer Engineering
KIIT University
College Teacher
None
Cross-Checked by
Spandana

May 18, 2015

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Mechanical Metallurgy

Author: G. E. Dieter

Publisher: Tata McGraw-Hill

Edition: 3

Year: 2013

ISBN: 9781259064791

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		5
1	Introduction	7
2	Stress and Strain Relationships for Elastic Behavior	8
3	Elements of the Theory of Plasticity	12
4	Plastic Deformation of Single Crystals	15
5	Dislocation Theory	16
6	Strengthening Mechanisms	17
7	Fracture	21
8	The Tension Test	23
11	Fracture Mechanics	27
12	Fatigue of Metals	29
13	Creep and Stress Rupture	34
14	Brittle Fracture and Impact Testing	37
15	Fundamentals of Metalworking	39
16	Forging	43

17 Rolling of Metals	45
18 Extrusion	49
19 Drawing of Rods Wires and Tubes	51
20 Sheet Metal Forming	53
21 Machining of Metals	55

List of Scilab Codes

Exa 1.1	Shear Stress	7
Exa 2.1	State of Stress in two dimensions	8
Exa 2.2	State of Stress in three dimensions	9
Exa 2.3	Calculation of Stresses from elastic strains	9
Exa 2.4	Elastic Anisotropy	10
Exa 3.1	True Stress and True Strain	12
Exa 3.2	Yielding Criteria for Ductile Metals	13
Exa 3.3	Tresca Criterion	13
Exa 3.4	Levy Mises Equation	14
Exa 4.1	Critical Resolved Shear Stress for Slip	15
Exa 5.1	Forces Between Dislocations	16
Exa 6.1	Grain Size Measurement	17
Exa 6.2	Strengthing Mechanism	17
Exa 6.3	Fiber Strengthing	18
Exa 6.4	Load Transfer	19
Exa 7.1	Cohesive Strength	21
Exa 7.2	Fracture Stress	21
Exa 8.1	Standard properties of the material	23
Exa 8.2	True Strain	24
Exa 8.3	Ultimate Tensile Strength	25
Exa 8.4	Effect of Strain Rate	25
Exa 11.1	Fracture Toughness	27
Exa 11.2	Fracture Toughness	27
Exa 11.3	Plasticity	28
Exa 12.1	Mean Stress	29
Exa 12.2	Low Cycle Fatigue	29
Exa 12.3	Fatigue Crack Proportion	30
Exa 12.4	Stress Concentration of Fatigue	31

Exa 12.5	Infinite Life Design
Exa 12.6	Local Strain method
Exa 13.1	Engineering Creep
Exa 13.2	Engineering Creep
Exa 13.3	Prediction of long time properties
Exa 14.1	Stress Corrosion Cracking
Exa 15.1	Mechanics of Metal Working
Exa 15.2	Mechanics of Metal Working
Exa 15.3	Hodography
Exa 15.4	Temperature in Metalworking 41
Exa 15.5	Friction and Lubrication 41
Exa 16.1	Forging in Plain Strain
Exa 17.1	Forces in rolling
Exa 17.2	Rolling Load
Exa 17.3	Rolling Load
Exa 17.4	Torque and Horsepower
Exa 18.1	Extrusion Process
Exa 19.1	Analysis of Wiredrawing 51
Exa 19.2	Analysis of Wiredrawing
Exa 20.1	Deep Drawing
Exa 20.2	Forming Limit Criteria
Exa 21.1	Mechanics of Machining
Exa 21.2	Mechanics of Machining
Exa 21.3	Tool Materials and Tool Life
Exa 21.4	Grinding Processes

Introduction

Scilab code Exa 1.1 Shear Stress

```
1 //Example 1.1
2 //Shear Stress
3 // Page No. 16
4 clc; clear; close;
6 y_b=2;
               //in J/m^2
              //in Gpa
7 G = 75;
8 G=G*10^9;
                  //conversion to Pa
9 L=0.01;
                     //in mm
                    //conversion to m
10 L=L*10^-3;
                   //no unit
11 nu=0.3;
12 T = sqrt((3*\%pi*y_b*G)/(8*(1-nu)*L));
13 T=T/10^6;
14 printf ('Shear Stress Required to nucleate a grain
     boundary crack in high temperature deformation =
     %g MPa', T)
```

Stress and Strain Relationships for Elastic Behavior

Scilab code Exa 2.1 State of Stress in two dimensions

```
1 //Example 2.1
2 //State of Stress in two dimensions
3 // Page No. 25
4 clc; clear; close;
//no unit
                          //in degrees
8 \text{ theta=45};
9 sigma_x_=50;
                          //in Mpa
                         //in Mpa
10 T_x_y_=5;
11 A = [(sigma_x + sigma_y)/2 + (sigma_x - sigma_y)/2 * cosd(2 *
     theta), sind(2*theta);(sigma_y-sigma_x)/2*sind(2*
     theta), cosd(2*theta)];
12 B=[sigma_x_; T_x_y_];
13 X = inv(A) *B;
14 p=X(1);
15 T_xy = X(2);
16 sigma_x1=sigma_x*p;
17 sigma_y1=sigma_y*p;
```

Scilab code Exa 2.2 State of Stress in three dimensions

```
1 / Example 2.2
2 //State of Stress in three dimensions
3 //Page No. 29
4 clc; clear; close;
6 s=poly(0, 's')
7 A = [s-0, -240, 0; -240, s-200, 0; 0, 0, s+280];
                                                    //in
8 p=determ(A);
9 X=roots(p);
10 for i=1:3
       printf('\nsigma%i = %g MPa',i,X(i));
11
12 end
13 printf('\n\nLogic: The matrix provided in the book
     is a state of stress of a body which includes a
     combination of normal and shear stresses acting
     in a triaxial direction. So the determinant of
     the matrix results in the cubic equation in ""
     sigma"" which when solved gives the principal
      stresses');
```

Scilab code Exa 2.3 Calculation of Stresses from elastic strains

```
1 //Example 2.3
2 //Calculation of Stresses from elastic strains
3 //Page No. 52
```

```
4 clc; clear; close;
5
6 E = 200;
                         //in GPa
7 \text{ nu} = 0.33;
                         //no unit
8 \text{ e1} = 0.004;
                          //no unit
9 e2=0.001;
                          //no unit
10 sigma1=E*(e1+nu*e2)/(1-nu^2);
11 sigma2=E*(e2+nu*e1)/(1-nu^2);
12 sigma1=sigma1*1000;
                                //conversion to MPa
                                //conversion to MPa
13 sigma2=sigma2*1000;
14 printf('\nsigma1 = \%g MPa\nsigma2 = \%g MPa\n', sigma1
      ,sigma2);
15 printf('\nNote: Slight calculation errors in Book')
```

Scilab code Exa 2.4 Elastic Anisotropy

```
1 / \text{Example } 2.4
2 // Elastic Anisotropy
3 // Page No. 60
4 clc; clear; close;
5
6 S11_Fe=0.8;
                                  //in 1/Pa
                                    //in 1/Pa
7 S12_Fe=-0.28;
                                   //in 1/Pa
8 \text{ S44_Fe=0.86};
                                  //in 1/Pa
9 S11_W=0.26;
                                   //in 1/Pa
10 S12_W = -0.07;
11 S44_W = 0.66;
                                  //in 1/Pa
12 D_100_1=1;
13 D_100_m=0;
14 D_100_n=0;
15 D_110_l=1/sqrt(2);
16 D_110_m = 1/sqrt(2);
17 D_110_n=0;
18 D_111_l=1/sqrt(3);
19 D_111_m=1/sqrt(3);
```

```
20 D_1111_n=1/sqrt(3);
21
22 printf('\nFor Iron:\n\n');
23 Fe_E_111=1/(S11_Fe-2*((S11_Fe-S12_Fe)-S44_Fe/2)*(
      D_111_1^2*D_111_m^2+D_111_n^2*D_111_m^2+D_111_1
      ^2*D_111_n^2));
24 Fe_E_100=1/(S11_Fe-2*((S11_Fe-S12_Fe)-S44_Fe/2)*(
      D_100_1^2*D_100_m^2+D_100_n^2*D_100_m^2+D_100_1
      ^2*D_100_n^2));
25 printf('E_1111 = %g \times 10^111 Pa \setminus nE_100 = %g \times 10^11 Pa
      n', Fe_E_111, Fe_E_100);
26 printf('\n\nFor Tungten:\n\n');
27 \text{ W_E}_111=1/(S11_W-2*((S11_W-S12_W)-S44_W/2)*(D_111_1)
      ^2*D_111_m^2+D_111_n^2*D_111_m^2+D_111_1^2*
     D_111_n^2));
28 W_E_{100}=1/(S11_W-2*((S11_W-S12_W)-S44_W/2)*(D_{100}1)
      ^2*D_100_m^2+D_100_n^2*D_100_m^2+D_100_1^2*
      D_100_n^2));
29 printf ('E_111 = \%g x 10^11 Pa\nE_100 = \%g x 10^11 Pa
      \n\nTherefore tungsten is elastically isotropic
      while iron is elasitially anisotropic', W_E_111,
      W_E_100);
```

Elements of the Theory of Plasticity

Scilab code Exa 3.1 True Stress and True Strain

```
1 / \text{Example } 3.1
2 //True Stress and True Strain
3 // Page No. 76
4 clc; clear; close;
6 D_i = 0.505;
                            //in inches
7 L=2;
                        //in inches
                          //in lb
8 P_{max} = 20000;
                           //in lb
9 P_f = 16000;
10 D_f=0.425;
                           //in inches
11 E_St = P_max*4/(%pi*D_i^2);
12 T_fr_St= P_f*4/(%pi*D_f^2);
13 e_f = log(D_i^2/D_f^2);
14 e = exp(e_f) - 1;
15 printf('\nEngineering Stress at maximum load = \%g
      psi\nTrue Fracture Stress = \%g psi\nTrue Strain
      at fracture = %g\nEngineering strain at fracture
      = \%g', E_St, T_fr_St, e_f, e);
```

Scilab code Exa 3.2 Yielding Criteria for Ductile Metals

```
1 / Example 3.2
2 //Yielding Criteria for Ductile Metals
3 //Page No. 78
4 clc; clear; close;
                          //in MPa
6 sigma00=500;
                           //in MPa
7 sigma_z = -50;
8 sigma_y=100;
                          //in MPa
9 \text{ sigma}_x = 200;
                          //in MPa
10 T_xy = 30;
                      //in MPa
11 T_yz=0;
                     //in MPa
                     //in MPa
12 T_xz=0;
13 sigma0=sqrt((sigma_x-sigma_y)^2+(sigma_y-sigma_z)
      ^2+(sigma_z-sigma_x)^2+6*(T_xy^2+T_yz^2+T_xz^2))/
     sqrt(2);
14 s=sigma00/sigma0;
15 printf('\nSince the calculated value of sigma0 = \%g
     MPa, which is less than the yield strength of the
       aluminium alloy\nThus safety factor is = \%g',
     sigma0,s);
```

Scilab code Exa 3.3 Tresca Criterion

```
1 //Example 3.3
2 //Tresca Criterion
3 //Page No. 81
4 clc; clear; close;
5
6 sigma00=500; //in MPa
7 sigma_z=-50; //in MPa
```

```
//in MPa
8 \text{ sigma_y=100};
9 \text{ sigma}_x = 200;
                            //in MPa
                        //in MPa
10 T_xy=30;
11 T_yz=0;
                      //in MPa
12 T_xz=0;
                      //in MPa
13 sigma0=sigma_x-sigma_z;
14 s=sigma00/sigma0;
15 printf('\nSince the calculated value of sigma0 = \%g
      MPa, which is less than the yield strength of the
       aluminium alloy\nThus safety factor is = \%g,
      sigma0,s);
```

Scilab code Exa 3.4 Levy Mises Equation

```
1 / Example 3.4
2 //Levy-Mises Equation
3 // Page No. 91
4 clc; clear; close;
6 \text{ r_t=20};
                    //no unit
7 p=1000;
                    //in psi
8 sigma1=p*r_t;
                                                //conversion
9 sigma1=sigma1/1000;
       to ksi
10 sigma=sqrt(3)*sigma1/2;
11 e=(sigma/25)^(1/0.25);
12 \text{ e1=sqrt}(3)*e/2;
13 printf('\nPlastic Strain = \%g',e1);
```

Plastic Deformation of Single Crystals

Scilab code Exa 4.1 Critical Resolved Shear Stress for Slip

```
1 / \text{Example } 4.1
2 // Critical Resolved Shear Stress for Slip
3 // Page No. 125
4 clc; clear; close;
6 a = [1, -1, 0];
                               //no unit
7 n = [1, -1, -1];
                                //no unit
                                //no unit
8 s = [0, -1, -1];
                            //in MPa
9 \text{ Tr} = 6;
10 \cos_{fi=sum}(a.*n)/(sqrt(a(1)^2+a(2)^2+a(3)^2)*sqrt(n)
      (1)^2+n(2)^2+n(3)^2);
11 \cos_{m=sum}(a.*s)/(sqrt(a(1)^2+a(2)^2+a(3)^2)*sqrt(s)
      (1)^2+s(2)^2+s(3)^2);
12 sigma=Tr/(cos_fi*cos_lm);
13 printf('Tensile Stress applied = \%g MPa', sigma);
```

Dislocation Theory

Scilab code Exa 5.1 Forces Between Dislocations

Strengthening Mechanisms

Scilab code Exa 6.1 Grain Size Measurement

```
1 //Example 6.1
2 //Grain Size Measurement
3 //Page No. 193
4 clc; clear; close;
                               //in MN/m^2
6 sigma_i=150;
                               //in MN/m^{(3/2)}
7 k=0.7;
8 n=6;
9 N_x=2^(n-1);
10 N=N_x/(0.01)^2;
                                //in grains/in^2
                                 // in grains/m<sup>2</sup>
11 N=N*10^6/25.4^2;
12 D = sqrt(1/N);
13 sigma0=sigma_i+k/D^(1/2);
14 printf('\nYield Stress = %g MPa',sigma0);
```

Scilab code Exa 6.2 Strengthing Mechanism

```
1 / Example 6.2
```

```
2 //Strengthing Mechanism
3 //Page No. 219
4 clc; clear; close;
5
6 sigma0=600;
                           //in MPa
                           //in GPa
7 G=27.6;
                        //conversion to Pa
8 G = G * 10^9
9 b=2.5*10^-8;
                               //in cm
                           //conversion to m
10 b=b*10^-2;
11 T0=sigma0/2;
                             //conversion to Pa
12 \quad T0 = T0 * 10^6;
13 lambda=G*b/T0;
14 Cu_max = 54;
                            //in %
                            //in %
15 Cu_eq=4;
                             //in %
16 Cu_min=0.5;
                             //in g/cm^3
17 rho_al = 2.7;
                                //in g/cm^3
18 \text{ rho\_theta=4.43};
19 wt_a=(Cu_max-Cu_eq)/(Cu_max-Cu_min);
20 wt_theta=(Cu_eq-Cu_min)/(Cu_max-Cu_min);
21 V_a=wt_a/rho_al;
22 V_theta=wt_theta/rho_theta;
23 f=V_theta/(V_a+V_theta);
24 r = (3*f*lambda)/(4*(1-f));
25 printf('\nParticle Spacing = %g m\nParticle Size =
      %g m',lambda,r);
```

Scilab code Exa 6.3 Fiber Strengthing

```
1 //Example 6.3
2 //Fiber Strengthing
3 //Page No. 222
4 clc; clear; close;
5
6 Ef=380; //in GPa
7 Em=60; //in GPa
```

Scilab code Exa 6.4 Load Transfer

```
1 / Example 6.4
2 //Load Transfer
3 // Page No. 225
4 clc; clear; close;
6 sigma_fu=5;
                                          //in GPa
7 sigma_fu=sigma_fu*10^9;
                                       //Conversion to Pa
8 \text{ sigma_m} = 100;
                                      //in MPa
9 sigma_m=sigma_m*10^6;
                                    //Conversion to Pa
10 \text{ T0=80};
                                    //in MPa
11 T0=T0*10^6;
                                     //Conversion to Pa
12 f_f=0.5;
                                     //no unit
                                       //in um
13 d=100;
                               //conversion to m
14 d=d*10^-6;
15 B = 0.5;
                               //no unit
                                 //in cm
16 L=10;
17 L=L*10^-2;
                                  //conversion to m
18 Lc=sigma_fu*d/(2*T0);
19 sigma_cu=sigma_fu*f_f*(1-Lc/(2*L))+sigma_m*(1-f_f);
20 sigma_cu=sigma_cu*10^-9;
21 printf(' \setminus nsigma_cu = \%g GPa for L=100um \setminus n', sigma_cu)
22
23 L=2;
                              //in mm
```

Fracture

Scilab code Exa 7.1 Cohesive Strength

```
1 / \text{Example } 7.1
2 //Cohesive Strength
3 // Page No. 245
4 clc; clear; close;
                           //in GPa
6 E=95;
                            //conversion to Pa
7 E=E*10^9;
                              // erg/cm^2
8 \text{ Ys} = 1000;
                                     // conversion to J/m^2
9 \text{ Ys} = \text{Ys} * 10^{-3};
                            //in angstrom
10 \quad a0=1.6;
                                         //conversion to m
11 a0=a0*10^-10;
12 sigma_max = (E*Ys/a0)^(1/2)
13 sigma_max=sigma_max*10^-9;
14 printf('Cohesive strength of a silica fiber = %g GPa
       ',sigma_max);
```

Scilab code Exa 7.2 Fracture Stress

```
1 //Example 7.2
2 // Fracture Stress
3 // Page No. 246
4 clc; clear; close;
                                    //in GPa
6 E=100;
                                  //conversion to Pa
7 E=E*10^9;
                                  //J/m^2
8 \text{ Ys} = 1;
                                      //in m
9 a0=2.5*10^-10;
10 c=10^4*a0;
11 sigma_f = (E*Ys/(4*c))^(1/2);
12 sigma_f = sigma_f *10^-6;
13 printf('Fracture Stress = %g MPa', sigma_f);
```

The Tension Test

Scilab code Exa 8.1 Standard properties of the material

```
1 //Example 8.1
 2 //Standard properties of the material
 3 //Page No. 281
 4 clc; clear; close;
                    //in inches
 6 D=0.505;
//in inches
                       //in inches
                     //in lb
                     //in inches
14 Af = \%pi * D_f^2/4;
15 s_u=Pmax/A0;
16 \text{ sO=Py/AO};
17 s_f = Pf/A0;
18 e_f = (Lf - Lo)/Lo;
19 q = (AO - Af) / AO;
20 printf('\nUltimate Tensile Strength = \%g psi\n0.2
      percent offset yield strength = %g psi\nBreaking
```

```
Stress = %g psi\nElongation = %g percent\
nReduction of Area = %g percent\n\n\nNote: Slight
Computational Errors in book',s_u,s0,s_f,e_f
*100,q*100);
```

Scilab code Exa 8.2 True Strain

```
1 / Example 8.2
2 //True Strain
3 //Page No. 288
4 clc; clear; close;
6 // case 1
7 Af = 100;
                              //in mm^2
8 Lf=60;
                             //in mm
                             //in mm^2
9 \quad A0 = 150;
10 L0=40;
                              //in mm
11 ef1=log(Lf/L0);
12 ef2=log(AO/Af);
13 printf('\nTrue Strain to fracture using changes in
      length = \%g\nTrue Strain to fracture using
      changes in area = \%g, ef1, ef2);
14
15 // Case 2
16 Lf = 83;
                                //in mm
                               //in mm
17 L0 = 40;
                                 //in mm
18 Df =8;
19 D0=12.8;
                                  //in mm
20 ef1=log(Lf/L0);
21 \text{ ef2=}2*log(D0/Df);
22 printf('\n\n\nFor More ductile metals\nTrue Strain
      to fracture using changes in length = \%g\nTrue
      Strain to fracture using changes in diameter = %g
      ',ef1,ef2);
```

Scilab code Exa 8.3 Ultimate Tensile Strength

Scilab code Exa 8.4 Effect of Strain Rate

```
1 / \text{Example } 8.4
2 //Effect of Strain Rate
3 //Page No. 298
4 clc; clear; close;
6 \quad C_70=10.2;
                           //in ksi
7 C_825=2.1;
                           //in ksi
                            //no unit
8 m_70=0.066;
                              //no unit
9 m_825=0.211;
10 \text{ e1=1};
                       //no unit
                         //no unit
11 e2=100;
12 printf('\nAt 70 \deg F n');
13 sigma_a=C_70*e1^m_70;
14 sigma_b=C_70*e2^m_70;
15
16 printf('sigma_a = %g ksi\nsigma_b = %g ksi\nsigma_b/
      sigma_a = %g\n', sigma_a, sigma_b, sigma_b/sigma_a);
```

```
17     printf('\n\nAt 825deg F\n');
18     sigma_a=C_825*e1^m_825;
19     sigma_b=C_825*e2^m_825;
20     printf('sigma_a = %g ksi\nsigma_b = %g ksi\nsigma_b/sigma_a = %g\n',sigma_a,sigma_b,sigma_b/sigma_a);
```

Fracture Mechanics

Scilab code Exa 11.1 Fracture Toughness

```
1 //Example 11.1
2 // Fracture Toughness
3 // Page No. 354
4 clc; clear; close;
6 a=5;
                        //in mm
7 a=a*10^-3;
                           //conversion to m
8 t=1.27;
9 t=t*10^-2;
                    //in cm
                   //conversion to m
10 K_Ic = 24;
                     //in MPa*m^{(1/2)}
11 sigma=K_Ic/(sqrt(%pi*a)*sqrt(sec(%pi*a/(2*t))));
12 printf ('Since Fracture Toughness of the material is
     = %g MPa\n and the applied stress is 172 MPa thus
      the flaw will propagate as a brittle fracture',
     sigma);
```

Scilab code Exa 11.2 Fracture Toughness

```
1 //Example 11.2
2 //Fracture Toughness
3 //Page No. 354
4 clc; clear; close;
6 \text{ K_Ic} = 57;
                         //in MPam^{(1/2)}
                          //in MPa
7 sigma0=900;
                          //in MPa
8 sigma=360;
9 Q = 2.35;
                           //no unit
10 a_c=K_Ic^2*Q/(1.21*\%pi*sigma^2);
                                             //cpnversion
11 a_c=a_c*1000;
      to mm
12 printf('\nCritical Crack depth = \%g mm\nwhich is
      greater than the thickness of the vessel wall, 12
     mm',a_c);
```

Scilab code Exa 11.3 Plasticity

```
1 //Example 11.3
2 // Plasticity
3 // Page No. 361
4 clc; clear; close;
6 a=10;
                                //in mm
7 a=a*10^-3;
                                //conversion to m
8 sigma=400;
                                 //in MPa
                                 //in MPa
9 \text{ sigma0} = 1500;
10 rp=sigma^2*a/(2*%pi*sigma0^2);
                                      //conversion to mm
11 rp=rp*1000;
12 K=sigma*sqrt(%pi*a);
13 K_eff=sigma*sqrt(%pi*a)*sqrt(a+%pi*rp);
14 printf('\nPlastic zone size = \%g mm\nStress
      Intensity Factor = \%g MPa m(1/2)\n\nNote:
      Calculation Errors in book', rp, K_eff);
```

Fatigue of Metals

Scilab code Exa 12.1 Mean Stress

```
1 //Example 12.1
2 //Mean Stress
3 // Page No. 387
4 clc; clear; close;
                        // in ksi
// in ksi
// :- .
6 sigma_u=158;
7 sigma0=147;
7 sigma0=147;
8 sigma_e=75;
                               // in ksi
                             // in ksi
9 \ l_max = 75;
                              // in ksi
10 \ l_min = -25;
                              //no unit
11 \text{ sf} = 2.5;
12 sigma_m=(l_max+l_min)/2;
13 sigma_a = (l_max - l_min)/2;
14 sigma_e=sigma_e/sf;
15 A=sigma_a/sigma_e+sigma_m/sigma_u;
16 D=sqrt(4*A/\%pi);
17 printf('\nBar Diameter = \%g in',D);
```

Scilab code Exa 12.2 Low Cycle Fatigue

```
1 //Example 12.2
2 //Low Cycle Fatigue
3 //Page No. 391
4 clc; clear; close;
6 \text{ sigma_b=75};
                                //in MPa
7 e_b=0.000645;
                                 //no unit
                                 //no unit
8 e_f = 0.3;
9 E=22*10^4;
                                 //in MPa
                                 //no unit
10 c = -0.6;
11 d_e_e=2*sigma_b/E;
12 d_e_p = 2 * e_b - d_e_e;
13 N=(d_e_p/(2*e_f))^(1/c)/2;
14 printf('\nd_e_e = %g\nd_e_p = %g\nNumber of Cycles =
       %g cycles',d_e_e,d_e_p,N);
```

Scilab code Exa 12.3 Fatigue Crack Proportion

```
1 //Example 12.3
2 // Fatigue Crack Proportion
3 // Page No. 401
4 clc; clear; close;
5
6 \text{ ai=0.5};
                               //in mm
7 ai=ai*10^-3;
                             //conversion to m
8 \text{ sigma_max} = 180;
                                  //in MPa
                               //MPam^(1/2)
9 \text{ Kc} = 100;
10 alpha=1.12;
                                  //no unit
                                 //no unit
11 p=3;
12 A=6.9*10^-12;
                                  //in MPam^(1/2)
13 af=(Kc/(sigma_max*alpha))^2/%pi;
14 Nf = (af^(1-(p/2))-ai^(1-(p/2)))/((1-p/2)*A*sigma_max
      ^3*%pi^(p/2)*alpha^p);
15 printf('Fatigue Cycles = %g cycles', Nf);
```

Scilab code Exa 12.4 Stress Concentration of Fatigue

```
1 //Example 12.4
2 //Stress Concentration of Fatigue
3 // Page No. 404
4 clc; clear; close;
                            //no unit
6 \text{ rho} = 0.0004;
                         //in ksi
7 S_u=190;
8 S_u=S_u*1000;
                              //conversion to psi
                          //in inches-lb
9 M = 200;
10 Pm = 5000;
                         //in lb
11 D=0.5;
                           //in inches
12 dh=0.05;
                            //in inches
13 \text{ r=dh/2};
                           //no unit
14 Kt=2.2;
15 Kf = 1 + (Kt - 1) / (1 + sqrt (rho/r));
16 q = (Kf - 1) / (Kt - 1);
17 A = \%pi/4*D^2;
18 sigma_m=Pm/A;
19 I = \%pi/64*D^4;
20 sigma_a=Kf*((M*D)/(2*I));
21 sigma_max=sigma_a+sigma_m;
22 sigma_min=sigma_a-sigma_m;
23 \text{ sigma_e=S_u/2};
24 sigma_a1=sigma_e/Kf*(1-sigma_m/S_u);
25 printf('\nMean Stress = \%g psi\nFluctuating Bending
      Stress = %g psi\nEffective Maximum Stress = %g
      psi\nEffective Minimum Stress = \%g psi\nsigma_a =
       %g psi\n\n\nNote: Calculation Errors in the book
      ',sigma_m,sigma_a,sigma_max,sigma_min,sigma_a1);
```

Scilab code Exa 12.5 Infinite Life Design

```
1 //Example 12.5
2 //Infinite Life Design
3 // Page No. 422
4 clc; clear; close;
6 \text{ Kt} = 1.68;
                             //no unit
                             //no unit
7 q = 0.9;
                             //in psi
8 sigma_ed=42000;
9 \text{ Cs} = 0.9;
                              //no unit
10 Cf = 0.75;
                             //no unit
                              //no unit
11 Cz=0.81;
12 Kf = q * (Kt - 1) + 1;
13 sigma_e=sigma_ed*Cs*Cf*Cz;
14 sigma_en=sigma_e/Kf;
15 printf('\nFatigue Limit = \%g psi', sigma_en);
```

Scilab code Exa 12.6 Local Strain method

```
1 //Example 12.6
2 //Local Strain method
3 // Page No. 424
4 clc; clear; close;
6 funcprot(0);
7 K = 189;
                         //in ksi
                         //no unit
8 n=0.12;
9 \text{ ef} = 1.06;
                         //no unit
                          //in ksi
10 sigma_f = 190;
                           //no unit
11 b = -0.08;
12 c = -0.66;
                       //no unit
                         //in psi
13 E=30*10^6;
14 E=E/1000;
                   //conversion to ksi\
15 \text{ s} = 200;
                      //in ksi
```

```
//in ksi
16 sigma_m=167;
17 sigma_a=17;
                          //in ksi
18 se=s^2/E;
19 deff('y=f(ds)', 'y=(ds^2)/(2*E)+(ds^((1+n)/n))/(2*K)
      (1/n)-se/2;
20 [ds,v,info]=fsolve(0,f);
21 \text{ de=se/ds};
22 deff('y=f1(N2)', 'y=N2^-b*(sigma_f/E)+ef*N2^-c-de/2')
23 [N2, v, info]=fsolve(0, f1);
24 N2 = 1/N2;
25 N_1 = N2/2;
26 de_e2=sigma_a/E;
27 deff('y=f2(N2)', 'y=N2^-b*((sigma_f-sigma_m)/E)+ef*N2
      -c-de_{-}e2;
28 [N2, v, info] = fsolve(0, f2);
29 N2=1/N2;
30 N_2 = N2/2;
31 C_pd = 2*60*60*8;
32 f = N_2/C_pd;
33 printf('\nNumber of cycles = \%g cycles\nFatigue
      damage per cycle = %g\nNumber of cycles with
      correction of mean stress= %g cycles\nFatigue
      damage per cycle with correction of mean stress=
      %g damage per year\nShaft will fail in %g days',
      N_1, 1/N_1, N_2, 1/N_2, f);
```

Creep and Stress Rupture

Scilab code Exa 13.1 Engineering Creep

```
1 //Example 13.1
2 //Engineering Creep
3 //Page No. 461
4 clc; clear; close;
6 \text{ sf} = 3;
                           //no unit
7 per=1/1000;
                           //in %
                          //in Fahrenheit
8 T(1) = 1100;
9 T(2) = 1500;
                          //in Fahrenheit
10 C(1) = 30000;
                                 //from fig 13-17 in book
11 C(2) = 4000;
                                //from fig 13-17 in book
12 W(1) = C(1) / sf;
13 W(2) = C(2) / sf;
14 W1(1) = W(1) *0.00689;
15 W1(2) = W(2) * 0.00689;
16 printf('\n
      n');
17 printf('Temperature\tCreep Strength, psi\tWorking
      Stress, psi\tWorking Stress, MPa\n');
18 printf('
```

```
');
19 printf('\n1100 F\t\t\t%i\t\t\t%i\t\t\t\g\n',C(1),W
(1),W1(1));
20 printf('\n1500 F\t\t\t%i\t\t\t%i\t\t\t\g\n',C(2),W
(2),W1(2));
```

Scilab code Exa 13.2 Engineering Creep

```
1 //Example 13.2
2 //Engineering Creep
3 // Page No. 461
4 clc; clear; close;
6 deff('y=C(f)', 'y=(f-32)*(5/9)');
7 R=1.987;
                           //in cal/mol K
                        //in Fahrenheit
8 T2 = 1300;
                        //in Fahrenheit
9 T1 = 1500;
10 T2=C(T2)+273.15;
11 T1=C(T1)+273.15;
                          //no unit
12 e2=0.0001;
                        //no unit
13 \text{ e1=0.4};
14 Q=R*log(e1/e2)/(1/T2-1/T1);
15 printf('\nActivation Energy = \%g cal/mol',Q)
16 printf('\n\nNote: Calculation Errors in book');
```

Scilab code Exa 13.3 Prediction of long time properties

```
1 //Example 13.3
2 //Prediction of long time properties
3 //Page No. 464
4 clc; clear; close;
```

Brittle Fracture and Impact Testing

Scilab code Exa 14.1 Stress Corrosion Cracking

```
1 //Example 14.1
2 //Stress Corrosion Cracking
3 // Page No. 494
4 clc; clear; close;
6 cg=10; //in mm
7 cg=cg/1000; //conversion to m
                     //in mm
                      //m/s
8 gr=10^-8;
9 l = cg/(gr*3600*24);
10 printf('\nEstimated Life = %g days',1);
                             //in MN m^{(-3/2)}
11 K_l_SCC=10;
12 a_sigma2=K_1_SCC^2/(1.21*%pi);
13 s = [500, 300, 100];
14 printf('\n \n \n-
      nStress, MPa\tCrack Length, mm\n
15 for i=1:3
       printf('\t\%g\t\t\%g\n',s(i),a_sigma2*1000/s(i)^2)
```

```
17 end
18 printf('______');
19 printf('\n\n\n\nNote: Calculation errors in book');
```

Fundamentals of Metalworking

Scilab code Exa 15.1 Mechanics of Metal Working

```
1 //Example 15.1
2 // Mechanics of Metal Working
3 //Page No. 506
4 clc; clear; close;
6 //For Bar which is double in length
7 L2=2;
                      //factor (no units)
8 L1=1;
                      //factor (no units)
9 e = (L2-L1)/L1;
10 e1 = log(L2/L1);
11 r=1-L1/L2;
12 printf('\nEnginering Strain = %g\nTrue Strain = %g\
     nReduction = %g', e, e1, r);
13
14 //For bar which is halved in length
15 L1=1;
                      //factor (no units)
16 L2=0.5;
                        //factor (no units)
17 e=(L2-L1)/L1;
18 e1 = log(L2/L1);
19 r=1-L1/L2;
20 printf('\n\nEnginering Strain = %g\nTrue Strain = %g
```

Scilab code Exa 15.2 Mechanics of Metal Working

```
1 //Example 15.2
2 // Mechanics of Metal Working
3 //Page No. 511
4 clc; clear; close;
6 D0 = 25;
                         //in mm
7 D1 = 20;
                         //in mm
                         //in mm
8 D2=15;
9 ep1=log((D0/D1)^2);
10 U1=integrate ('200000*e^0.5', 'e',0,ep1);
11 ep2=log((D1/D2)^2);
12 U2=integrate('200000*e^0.5', 'e', ep1, ep1+ep2);
13 printf('\nPlastic work done in 1st step = \%g lb/in
      ^2\nPlastic work done in 2nd step = \%g lb/in^2\n'
      ,U1,U2);
```

Scilab code Exa 15.3 Hodography

Scilab code Exa 15.4 Temperature in Metalworking

```
1 //Example 15.4
2 //Temperature in Metalworking
3 // Page No. 526
4 clc; clear; close;
                           //in MPa
6 Al_s=200;
                         //no unit
7 Al_e=1;
                            //in g/cm^3
8 \text{ Al_p=2.69};
                             //in cal/g * deg C
9 \quad Al_c=0.215;
10 Ti_s=400;
                            //in MPa
11 Ti_e=1;
                         //no unit
                           //in g/cm^3
12 Ti_p=4.5;
                              //in cal/g * deg C
13 Ti_c=0.124;
                          //in J/cal
14 J=4.186;
15 b=0.95;
                          //no unit
16 Al_Td=Al_s*Al_e*b/(Al_p*Al_c*J);
17 Ti_Td=Ti_s*Ti_e*b/(Ti_p*Ti_c*J);
18 printf('\nTemperature Rise for aluminium = \%g C\
      nTemperature Rise for titanium = %g C\n', Al_Td,
      Ti_Td);
```

Scilab code Exa 15.5 Friction and Lubrication

```
1 //Example 15.5
2 //Friction and Lubrication
3 //Page No. 546
4 clc; clear; close;
5
6 Do=60; //in mm
7 Di=30; //in mm
```

```
8 \text{ def1=70};
                           //in mm
9 def2=81.4;
                             //in mm
10 h=10;
                        //in mm
11 a=30;
                        //in mm
12 di=sqrt((Do^2-Di^2)*2-def1^2);
13 pr=(Di-di)/Di*100;
14 \quad m = 0.27;
                         //no unit
15 p_s=1+2*m*a/(sqrt(3)*h);
16 printf('\nFor OD after deformation being 70 mm, Di =
      %g mm\nPrecent change in inside diameter = %g
      percent\nPeak pressure = \%g',di,pr,p_s);
17 di=sqrt(def2^2-(Do^2-Di^2)*2);
18 pr=(Di-di)/Di*100;
19 m = 0.05;
                         //no unit
20 p_s=1+2*m*a/(sqrt(3)*h);
21 printf('\n\nnFor OD after deformation being 81.4
     mm, Di = \%g mm\nPrecent change in inside diameter
      = %g percent\nPeak pressure = %g',di,pr,p_s);
```

Forging

Scilab code Exa 16.1 Forging in Plain Strain

```
1 //Example 16.1
 2 //Forging in Plain Strain
 3 // Page No. 574
4 clc; clear; close;
 6 sigma=1000;
                                //in psi
 7 \text{ mu} = 0.25;
                                //no unit
                                //in inches
8 a=2;
                                //in inches
9 b=6;
10 h=0.25;
                                   //in inches
                                //in inches
11 x = 0;
12 p_max = 2 * sigma * exp(2 * mu * (a - x)/h)/sqrt(3);
13 printf('\nAt the centerline of the slab = \%g psi\n',
      p_max);
14 printf('\nPressure Distributon from the centerline:'
      );
15 printf('\n-----
16 printf('x\tp (ksi)\t\tt_i (ksi)\n');
17 printf('———\n');
18 for x=0:h:a
       p=2*sigma*exp(2*mu*(a-x)/h)/(1000*sqrt(3));
```

```
//in ksi
20
       t_i=mu*p;
       printf('\%g\t\%g\t\t\%g\n',x,p,t_i);
21
22 \text{ end}
                                            ----\n ');
23 printf('----
24 k=sigma/sqrt(3);
                               //in inches
25 x = 0;
26 p_max1=2*sigma*((a-x)/h+1)/sqrt(3);
27 printf('\nFor sticking friction:\np_max = \%g ksi',
      p_max1/1000);
28 x1=a-h/(2*mu)*log(1/(2*mu));
29 p=2*sigma*(a/(2*h)+1)/sqrt(3);
30 P=2*p*a*b;
                                         //conversion to
31 P = P * 0.000453;
      metric tons
32 printf('\n\nThe Forging load = \%g tons',P);
```

Rolling of Metals

Scilab code Exa 17.1 Forces in rolling

```
1 //Example 17.1
2 //Forces in rolling
3 // Page No. 596
4 clc; clear; close;
6 \text{ mu} = 0.08;
                                  //no unit
                                   //in inches
7 R=12;
8 alpha=atand(mu);
9 dh=mu^2*R;
10 printf('\nMaximum possible reduction when mu is 0.08
      = \%g in n', dh);
                                 //no unit
11 mu = 0.5;
12 dh=mu^2*R;
13 printf ('Maximum possible reduction when mu is 0.5 =
      %g in ', dh);
```

Scilab code Exa 17.2 Rolling Load

```
1 //Example 17.2
2 //Rolling Load
3 // Page No. 598
4 clc; clear; close;
                                 //in inches
6 h0=1.5;
7 \text{ mu} = 0.3;
                                 //no unit
8 D=36;
                               //in inches
                                  //in ksi
9 \text{ s_en=20};
                                  //in ksi
10 s_ex=30;
11 h1=h0-0.3*h0;
12 \, dh = h0 - h1;
13 h_=(h1+h0)/2;
14 Lp=sqrt(D/2*dh);
15 Q=mu*Lp/h_{:}
16 sigma0=(s_en+s_ex)/2;
17 P=sigma0*(exp(Q)-1)*s_ex*Lp/Q;
18 printf('\nRolling Load = \%g kips',P);
19 P=sigma0*(Lp/(4*dh)+1)*s_ex*Lp;
20 printf('\nRolling Load if sticking friction occurs
      = %g kips',P);
```

Scilab code Exa 17.3 Rolling Load

```
1 //Example 17.3
2 //Rolling Load
3 // Page No. 599
4 clc; clear; close;
5
6 h0=1.5;
                                   //in inches
7 \text{ mu} = 0.3;
                                   //no unit
8 D=36;
                                 //in inches
9 \text{ s_en=20};
                                    //in ksi
10 s_ex=30;
                                    //in ksi
11 C=3.34*10^-4;
                                          //in inches^2/ton
```

```
//in tons
12 P_{=}1357;
13 h1=h0-0.3*h0;
14 \quad dh=h0-h1;
15 h_{=}(h1+h0)/2;
16 R=D/2;
17 R1=R*(1+C*P_/(s_ex*(dh)));
18 Lp=sqrt(R1*dh);
19 Q=mu*Lp/h_;
20 sigma0=(s_en+s_ex)/2;
21 P2=sigma0*(exp(Q)-1)*s_ex*Lp/Q;
                                             ///conversion
22 P2=P2*0.45359
      to tons
23 R2=R*(1+C*P2/(s_ex*(dh)));
24 printf('\nP2 = \%g \ tons \nR2 = \%g \ in', P2, R2);
```

Scilab code Exa 17.4 Torque and Horsepower

```
1 //Example 17.4
2 //Torque and Horsepower
3 // Page No. 614
4 clc; clear; close;
5
6 \text{ w=} 12;
                                 //in inches
7 \text{ hi} = 0.8;
                                   //in inches
                                   //in inches
8 \text{ hf} = 0.6;
                                 //in inches
9 D=40;
                                  //in rpm
10 N = 100;
11 R=D/2;
12 dh=abs(hf-hi);
13 e1=log(hi/hf);
14 r = (hi - hf)/hi;
15 sigma=20*e1^0.2/1.2;
                                        //no unit
16 \, Qp = 1.5;
17 P=2*sigma*w*(R*(hi-hf))^(1/2)*Qp/sqrt(3);
18 a=0.5*sqrt(R*dh);
```

Extrusion

Scilab code Exa 18.1 Extrusion Process

```
1 //Example 18.1
2 //Extrusion Process
3 // Page No. 629
4 clc; clear; close;
6 Db = 6;
                                //in inches
7 Df = 2;
                               //in inches
8 L=15;
                               //in inches
                              //in inches/s
9 v = 2;
10 alpha=60;
                                    //in degrees
11 mu=0.1;
                                  //no unit
12 R=Db^2/Df^2;
13 \text{ e=}6*v*log(R)/Db
14 \text{ sigma=} 200 * e^0.15;
15 B=mu*cotd(alpha);
16 p_d=sigma*((1+B)/B)*(1-R^B);
17 p_d=abs(p_d);
18 t_i=sigma/sqrt(3);
19 p_e=p_d+4*t_i*L/Db;
20 p_e = p_e * 145.0377;
                                             //conversion to
       psi
```

Drawing of Rods Wires and Tubes

Scilab code Exa 19.1 Analysis of Wiredrawing

```
1 //Example 19.1
2 // Analysis of Wiredrawing
3 // Page No. 640
4 clc; clear; close;
6 Ab=10;
                                 //in mm
7 r=0.2;
                                 //in %
8 	 alpha=12;
                                    //in degrees
9 \text{ mu} = 0.09;
                                   //no unit
                                 //no unit
10 n = 0.3;
11 K = 1300;
                                  //in MPa
12 v=3;
                               //in m/s
13 B=mu*cotd(alpha/2);
14 e1 = log(1/(1-r));
15 sigma=K*e1^0.3/(n+1);
16 Aa = Ab * (1-r);
17 sigma_xa = sigma*((1+B)/B)*[1-(Aa/Ab)^B];
18 Aa = \%pi * Aa^2/4;
19 Pd=sigma_xa*Aa;
```

Scilab code Exa 19.2 Analysis of Wiredrawing

```
1 //Example 19.2
2 //Analysis of Wiredrawing
3 // Page No. 645
4 clc; clear; close;
                                     //in degrees
6 \text{ alpha=12};
                                 //in %
7 r = 0.2;
8 \text{ mu} = 0.09;
                                   //no unit
9 n = 0.3;
                                 //no unit
10 \text{ K} = 1300;
                                  //in MPa
11 v=3;
                               //in m/s
12 B=mu*cotd(alpha/2);
13 e1 = log(1/(1-r));
14 sigma_xa=K*e1^0.3/(n+1);
15 r1=1-((1-(B/(B+1)))^(1/B));
16 e = log(1/(1-r1));
17 sigma0=1300*e^0.3;
18 r2=1-(1-((sigma0/sigma_xa)*(B/(B+1)))^(1/B));
19 printf('\nBy First Approximation, r = \%g \setminus nBy Second
      Approximation, r = \%g', r1, r2);
```

Sheet Metal Forming

Scilab code Exa 20.1 Deep Drawing

Scilab code Exa 20.2 Forming Limit Criteria

```
1 //Example 20.2
2 //Forming Limit Criteria
3 //Page No. 675
4 clc; clear; close;
```

Machining of Metals

Scilab code Exa 21.1 Mechanics of Machining

```
1 //Example 21.1
2 // Mechanics of Machining
3 //Page No. 685
4 clc; clear; close;
6 a=6;
                              //in degrees
7 \text{ sigma_s} = 60000;
                                          //in psi
8 \text{ su_s} = 91000;
                                      //in psi
                                          //in psi
9 sigma_c=10000;
10 su_c = 30000;
                                      //in psi
11 deff('y=s(fi)', 'y=cosd(fi-a)*sind(fi)-sigma_s/su_s*(
      \cos d (45 - a/2) * \sin d (45 + a/2))');
12 deff('y=c(fi)', 'y=cosd(fi-a)*sind(fi)-sigma_c/su_c*(
      \cos d (45-a/2) * \sin d (45+a/2) )');
  [fi,v,info]=fsolve(0,s);
13
14 printf('\nShear Plane Angle for 1040 steel= \%g deg',
15 [fi,v,info]=fsolve(0,c);
16 printf('\nShear Plane Angle for Copper = \%g deg',fi)
```

Scilab code Exa 21.2 Mechanics of Machining

```
1 //Example 21.2
2 // Mechanics of Machining
3 // Page No. 687
4 clc; clear; close;
6 v = 500;
                                 //in ft/min
7 \text{ alpha=6};
                                   //in degrees
8 b=0.4;
                                 //in inches
                                  //in inches
9 t=0.008;
10 Fv=100;
                                  //in lb
11 Fh=250;
                                  //in lb
                                //in in
12 L=20;
13 rho=0.283;
                                     //in lb/in^2
                                   //in gm
14 \text{ m} = 13.36;
                          //conversion to lb
15 \text{ m=m/}454;
16
17 tc=m/(rho*b*L);
18 \text{ r=t/tc};
19 fi=atand(r*cosd(alpha)/(1-r*sind(alpha)));
20 mu=(Fv+Fh*tand(alpha))/(Fh-Fv*tand(alpha));
21 be=atand(mu);
22 Pr=sqrt(Fv^2+Fh^2);
23 Ft=Pr*sind(be);
24 p_fe=Ft*r/Fh;
25 Fs=Fh*cosd(fi)-Fv*sind(fi);
26 vs=v*cosd(alpha)/cosd(fi-alpha);
27 p_se=Fs*vs/(Fh*v);
28 \quad U=Fh*v/(b*t*v);
29 U=U/33000;
                                      //conversion to hp
                                       //conversion of ft
30 \quad U = U / 12;
      units to in units
31 printf('\nSlip\ plane\ angle = \%g\ deg\nPercentage\ of
```

```
total energy that goes into friction = %g percent
\nPercentage of total energy that goes into shear
= %g percent \nTotal energy per unit volume = %g
hp min/in^3',fi,p_fe*100,p_se*100,U);
```

Scilab code Exa 21.3 Tool Materials and Tool Life

```
//Example 21.3
//Tool Materials and Tool Life
//Page No. 698
clc;clear;close;

t=(1/d)^(1/0.12);
printf('\nFor High Speed steel tool, increase in tool life is given by: t2 = %g t1',t);
t=(1/d)^(1/0.3);
printf('\nFor Cemented carbide tool, increase in tool life is given by: t2 = %g t1',t);
```

Scilab code Exa 21.4 Grinding Processes

```
1 //Example 21.4
2 // Grinding Processes
3 //Page No. 703
4 clc; clear; close;
6 U=40;
                              //in GPa
                                //in m/s
7 uw = 0.3;
8 b=1.2;
                               //in mm
9 v = 30;
                              //in m/s
10 d=0.05;
                                //in mm
11 b=b*10^-3;
                                   //conversion to m
```