Total No. of Questions: 8]	SEAT No. :
P4833	[Total No. of Pages : 2
	[5060] - 739
M.E. (E & TC)	(VLSI & Embedded Systems)
ANAL	OG CMOS DESIGN

		M.E. (E & TC) (VLSI & Embedded Systems)	
		ANALOG CMOS DESIGN	
		(2013 Pattern) (Semester - II)	
Time	2:3 H	Hours] [Max. Marks	: 50
Instr	ructio	ons to the candidates :-	
	<i>1)</i>	Answer any five questions.	
	2)	Neat diagrams must be drawn wherever necessary.	
	3)	Assume Suitable data if necessary.	
<i>Q1</i>)	a)	Explain MOSFET as a switch? Comment on signal degradation	n in
~ /	,	pass transistor.	[4]
	b)	Explain CMOS inverting amplifiers.	[3]
	c) \	What is the need of Voltage/current reference?	[3]
Q 2)	a)	Explain in detail common source amplifier.	[4]
	b)	How current sink and current source are implemented using MOSF	ET.
		'What are the voltage compliances? How to improve?	[4]
	c)	Write short note on MOSFET as a diode.	[2]
			7
Q3)	a)	Explain CMOS differential amplifier using NMOS transistors with la	arge
~	,	signal analysis.	[4]
	b)	Discuss any two approaches to implementing the output amplifier	. [4]
	c)	Write short note on Micro power opamp.	[2]
Q4)	a)	Explain large signal analysis of differential amplifier.	[4]
	b)	Explain Low noise opamp using MOSFETS.	[4]
	c)	Write short note on cascode amplifier	[2]

<i>Q5</i>)	a)	Explain short circuit time constant method for bandwidth estimation.[4]			
	b)	Explain current scaling Digital to Analog Convertor.	[4]		
	c)	Explain Neutralization and unilateralization approaches of Tu amplifier.	ned [2]		
Q6)	a)	Explain Shunt peaked amplifier for bandwidth enhancement.	[4]		
	b)	Explain different switched capacitor circuits that emulate a resister.[4]			
	c)	Explain Two Port bandwidth enhancement technique.	[2]		
<i>Q</i> 7)	a)	Discuss various LNA topologies with respect to power versus noise match. [5]			
	b)	What is Differential LNA, how it overcomes the drawbacks in sine ended LNA	ngle [5]		
<i>Q8</i>)	a) \	Explore different characteristics of mixer.	[4]		
20)	b)	Explain advanced trends in RF chip design.	[6]		
		A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.			
[506	50]-7:	39			