A note on Free groups(borrowed from Hungerford Ch1)

Definition 0.1 (Concrete category). A category \mathcal{A} , along with a faithful functor to Set

Definition 0.2 (Free object). Let A be an object of concrete category A, $X \neq \phi$ a set, and a map $i: X \to A$. Then, A is said to be free on the set X iff

$$B \in \mathcal{B} \text{ and } f: X \to B \implies X \xrightarrow{i} A \\ \downarrow g \text{ commutes i.e. } \exists ! g \in \mathcal{A}(A,B) \text{ such that } g \circ i = f$$

Theorem 0.1 (Free objects depend only on the cardinality of the set they're free on). If F and F' are objects of a concrete category \mathcal{A} such that they're free on X and X' respectively. Then

$$|X| = |X'| \implies F \cong F'$$

Proof. As |X| = |X'|, there's a bijection $b: X \longleftrightarrow X'$. And as F, F' are free on X,X', there are maps $i: X \to F$ and $i': X \to F'$. Also, as the maps obey composition,

$$A \xrightarrow{f} B \downarrow_{g \circ f} \downarrow_{g} C$$

Corollary 0.1.1. Two objects of a category are free on the same set only if they're isomorphic.