绰绰有余

题目描述

绰绰有余小 Y 秒了一个网格图挖点哈密顿回路和另一个网格哈密顿回路之后,想到了一个 $1 \times n$ 的网格,如下图所示是 n=3 时的情况。

绰绰有余小 Y 还有 m 条链,第 i 条链能覆盖 a_i 条网格的边。他要把**全部的链**都覆盖到网格的边上,链可以弯曲和在端点上相交(包括和自己相交)。除了最右边的一条边,其他 3n 条边必须被**恰好覆盖一次**。

比如 $n = 3, m = 4, a = \{3, 2, 3, 1\}$ 时,一种方案如下图。

绰绰有余小 Y 秒这题绰绰有余,但是他想让不绰绰有余的你来做一做。请你输出一种方案,或者表明无解。

输入格式

第一行两个正整数 $n, m \ (1 \le n, m \le 10^5)$,分别表示网格的大小和链的数量。

第二行 m 个正整数, 第 i 个数 a_i ($1 \le a_i \le 10^6$), 表示第 i 条链的长度。

输出格式

如果不存在合法的方案,输出一行 "no"。

否则,第一行包含 "yes"。接下来 3 行每行 n 个正整数。

- 第一行第 i 个数 x_i 表示左数第 i 条顶部的边被读入中第 x_i 条链覆盖。
- 第一行第 i 个数 y_i 表示左数第 i 条中间的边被读入中第 y_i 条链覆盖。
- 第一行第 *i* 个数 *z_i* 表示左数第 *i* 条底部的边被读入中第 *z_i* 条链覆盖。

可以参考样例的图片进行理解。

样例一

input

```
1 | 2 3
2 | 4 1 1
```

output

```
1 yes
2 1 2
3 1 1
4 1 3
```

explanation

样例二

input

```
1 | 2 4
2 | 4 1 1 1
```

output

```
1 | no
```

explanation

绰绰有余小 Y 必须用完所有链。

样例三

input

```
1 | 3 4
2 | 3 2 3 1
```

output

```
1 yes
2 1 1 3
3 1 2 3
4 2 3 4
```

限制与约定

由于一些原因,本题使用捆绑测试。每个子任务有若干个测试点,分为 4 个子任务,你只有通过一个子任务的所有测试点才能得到这个子任务的分数。

子任务	分值	性质
1	10	$n \leq 3, m \leq 10$
2	20	$1 \leq a_i \leq 2$
3	30	$a_i eq 1$
4	40	无特殊性质

对于所有数据, $1 \le n, m \le 10^5, 1 \le a_i \le 10^6$ 。

限制与约定

时间限制: 1s

空间限制: 1024MB