

Miércoles 5:00 p.m. Sábado 10:00 a.m.

Del 27/06 - 08/07

Contenido del Curso

I.	Introd <mark>ucción a la C</mark> ontaminación Atmosférica.	Semana 1
II.	Fuentes de emisión de contaminantes atmosféricos.	Semana 1
III.	Características y efectos de los contaminantes del aire.	Semana 2 y 3
IV.	Monitoreo de la calidad del aire.	Semana 2 y 3
V.	Modelación de la dispersión de los contaminantes atmosféricos.	Semana 4
VI.	Control de las Emisiones de Fuentes Puntuales y móviles	Semana 5
VII.	Contaminación del Aire en interiores	Semana 6

Problemas globales y las estrategias básicas de

protección ambiental

1.- Gases que afectan el clima de la Tierra

- 2.-Cambios Climáticos
- 3.- Disminución de la capa de ozono
- 4.- Contaminación del aire urbano
- 5.- Contaminación por ruido
- 6.- Contaminación electromagnética

AGENTES CONTAMINANTES SEGÚN SU NATURALEZA

FÍSICO

QUÍMICO

BIOLÓGICO

- Ruido
- Radiaciones no ionizantes
- Iluminación

- Material particulado (PM 2.5 Y PM 10)
 - CO, CH4, NOx, SO2, O3, COVs)

- Hongos.
- Bacterias.
- Virus.

Contaminantes del aire

Físicas

Químicos

Ruido

Energía

Partículas

Gases

Biológicas

Hongos, Virus y Bacterias

Unidades de medición

Parte por Millón (PPM)

Un contaminante gaseoso presente en el aire en bajas concentraciones se expresa por:

ppm(x) = Moles(x)/ Moles(total) * 10^6
ppm(x) = volumen(x)/volumen(total) *10^6
ppm(x) = volumen % (x) / 100% * 10^6

% en volumen

1 ppm = 0.0001% V

Masa por metro cúbico

La masa /volumen se usa para un contaminante gaseoso o particulado, presentes en moderada y alta concentración y se expresa como

> 1 mg/m3 = 10^3 ug/m3 = 10^6 ng/m3 ug/m3 mg/m3 ng/m3

> > Conversión de unidades

La relación entre ppm y ug/m3:

$$PV = nRT$$

$$ug/m3 = ppm *M*10^3 / K$$

$$K = R*T/P \quad R= 0.082 \text{ atm.L/}°K.mol \qquad T= °K$$

$$p = atm \qquad M=g/mol$$

Ejemplo 1

La concentración diaria promedio del SO2 es de 415 ug/m3 y 1 atm . ¿Cúal es la concentración en ppm?

Ejemplo 2

La concentración del Dióxido de Azufre en el aire es de 0.06 ppm. ¿Cuál será la concentración expresada en microgramos por metro cúbico (T = 25°C y P = 1 amt)

GRACIAS

