MA-108 Ordinary Differential Equations

M.K. Keshari

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 5th March, 2015 D1 - Lecture 3

Recall

- The graph of a particular solution of an ODE: solution curve.
- An implicit solution of an ODE $F(x,y(x),\ldots,y^{(n)}(x))=0$ is an equation g(x,y)=0 which satisfies the differential equation and gives an explicit solution y(x) of ODE on some interval.
- The graph of an implicit solution: integral curve.
- We studied the direction fields of ODE y' = f(x, y).
- Curves f(x,y) = c are called direction fields or the slope fields of y' = f(x,y).

Separable ODE's

Example. Solve $y' = 2xy^2$.

We assume that y is not identically zero and apply separation of variables method.

Rewrite ODE as $\frac{1}{y^2}y'=2x$ and integrate it.

The solution is given by $\frac{-1}{y} = x^2 + C$, or $y = \frac{-1}{x^2 + C}$.

Note that the function $y\equiv 0$ is also a solution to this equation. This solution cannot be obtained for any choice of C in the previous solution.

Find the interval of validity for this solution, given that $y(0) = y_0$.

If
$$y_0 \neq 0$$
 then, $C = -\frac{1}{y_0}$. Hence $y = \frac{-y_0}{y_0 x^2 - 1}$

Separable ODE's

Recall
$$y = \frac{-1}{x^2 + C}$$
 and $y = \frac{-y_0}{y_0 x^2 - 1}$ if $y_0 \neq 0$.

What happens when $y_0 < 0$? or $y_0 = 0$? or $y_0 > 0$?

When $y_0 < 0$, the solution is defined for all x.

When $y_0 = 0$, we get the solution $y \equiv 0$.

When $y_0 > 0$, the solution is valid when $x \in \mathbb{R} - \{\pm 1/\sqrt{y_o}\}$.

Γ

Separable ODE's

Example: Find the solution to the initial value problem:

$$\frac{dy}{dx} = \frac{y\cos x}{1 + 2y^2}; \quad y(0) = 1.$$

Assume $y \neq 0$. Then,

$$\frac{1+2y^2}{y}dy = \cos x \ dx.$$

Integrating,

$$ln |y| + y^2 = \sin x + c.$$

As y(0)=1, we get c=1. Hence a particular solution to the IVP is

$$ln |y| + y^2 = \sin x + 1.$$

Note: $y \equiv 0$ is a solution to the DE, but it is not a solution to the given IVP.

Existence and Uniqueness for 1st order linear ODE

Theorem

Let

$$y' + p(x)y = f(x)$$

be linear 1st order ODE. Assume functions p and f are continuous on an open interval I=(a,b). Let $x_0 \in I$. If we fix the initial condition

$$y(x_0) = y_0,$$

then the IVP has a unique solution $y = \phi(x)$ on the interval I.

- ullet For example, the solution $R(t)=-200e^t$ (here k=1) for the IVP $R'=R-300;\ R(0)=100$ is unique over the interval $(-\infty,\infty)$. Why? Note in this problem both p(x) and f(x) are constants and hence continuous over \mathbb{R} .
- The interval of existence and uniqueness of the solution is independent of y_0 .
- ullet The uniqueness condition implies that the one parameter family of solutions, (for 1st order linear ODE) obtained using variation of parameters method, is in fact a general solution on the interval I.

Example. Solve

$$ty' + y = 3t^4.$$

Write the ODE in standard form

$$y' + (1/t)y = 3t^3.$$

The functions p(t) = 1/t and $f(t) = 3t^3$ are continuous over $I = \mathbb{R} - \{0\}$. By existence and uniqueness theorem, every IVP has a unique solution on the interval $\mathbb{R} - \{0\}$.

Solve the homogeneous part

$$y' + (1/t)y = 0$$

by separation of variables method. We have

$$ln |y| = -\ln|t| + K, \text{ i.e. } y = \frac{C}{t}$$

Take $y_1 = 1/t$ as solution of homogeneous part.

Applying variation of parameters, the solution of given ODE is $y=uy_1$, where u is the solution of

$$u' = \frac{3t^3}{y_1} = 3t^4$$

Note that $y_1 = 1/t$ is not zero on $I = \mathbb{R} - \{0\}$.

- In general, the solution for the 1st order linear homogeneous equation y'+p(x)y=0 will be non-zero on the given I, Why? since the solution is always the exponential of a function.
- Solving $u'=\frac{3t^3}{y_1}=3t^4$, we get $u=\frac{3}{5}t^5+C$. Hence $y=(1/t)[(3/5)t^5+C]$, is a solution to $y'+(1/t)y=3t^3$ on $\mathbb{R}-\{0\}$.
- For different initial values $t_0 \in \mathbb{R} \{0\}$ with $y(t_0) = y_0 \in \mathbb{R}$, the constant C will get determined.
- ullet By Uniqueness theorem, solution $y=(3/5)t^4+C(1/t)$ is a general solution. There are no other solutions.

Linear vs Non-Linear Differential Equations

Theorem (Existence of solution for y' = f(x, y))

Consider y' = f(x,y). Assume the functions f and $\partial f/\partial y$ are continuous in some rectangle $a < x < b, \ c < y < d$ containing the point (x_0,y_0) . Then, in some interval $(t_0-h,t_0+h) \subset (a,b)$, there is a unique solution $y=\phi(t)$ of the initial value problem $y'=f(t,y),\ y(t_0)=y_0$.

 Note the theorem says that the solution and the interval where the solution is valid, of a non-linear ODE depends on the choice of our initial condition.

Linear vs Non-Linear Differential Equations

- The solution of a non-linear ODE obtained using a particular method may not be a general solution.
- For example, for the non-linear ODE $y'=2xy^2$, our solution $y=-1/(x^2+C)$ does not give the solution $y\equiv 0$ for any value of C.
- Also, not every value of C will give an actual solution, unlike in the case of the solution to linear ODEs.
 We showed that the solution obtained using separation of variables method,

$$\int M(x) \, dx + \int N(y) \, dy = C$$

is a solution to an initial value problem for some values of C, not necessarily for all C.

Bernoulli Equation

Let us now discuss other methods to solve non-linear differential equations.

Example: Consider $y' + y = xy^2$. This is clearly not linear and not separable. The solution to homogeneous part y' + y = 0 is given by $y = Ce^{-x}$. We imitate the variation of parameters method and set $y = ue^{-x}$.

$$u'e^{-x} - ue^{-x} + ue^{-x} = u^{2}e^{-2x}x$$

$$\implies u'e^{-x} = u^{2}e^{-2x}x$$

$$\implies \frac{u'}{u^{2}} = xe^{-x}$$

We can now apply separation of variables method

$$-1/u = -(1+x)e^{-x} + C$$

$$u = 1/((1+x)e^{-x} - C)$$

$$\implies y = e^{-x}/((1+x)e^{-x} - C) = 1/(1+x - Ce^{x})$$

Epidemics

The math. model of an epidemic gives a non-linear ODE. Suppose that a given population can be divided into two parts: those who have a given disease and can infect others, and those who do not have it but are susceptible.

Let x be the proportion of susceptible individuals and y be the proportion of infectious individuals; then x+y=1. Assume that the disease spreads by contact between sick and wellat the rate dy/dt proportional to number of such contacts. Further, assume that members of both groups move about freely among each other, so the number of contacts is proportional to the product of x and y. Since x=1-y, we obtain the initial value problem

$$dy/dt = \alpha y(1-y), \ y(0) = y_0,$$

where α is a positive proportionality factor, and y_0 is the initial proportion of infectious individuals.

Bernoulli Equation

A non-linear differential equation of the form $y'+p(x)y=f(x)y^r$ is said to be a **Bernoulli Equation**.

Example:
$$xy' - 2y = \frac{x^2}{y_0^6}$$

Let us rewrite it as $y'-\frac{2}{x}y=\frac{x}{y^6}$, and consider solutions over intervals in $\mathbb{R}-\{0\}$.

The solution to homogeneous part is $y_1 = x^2$.

The solution to non-homogeneous part is $y=uy_1$, where u satisfies $u'y_1=x(uy_1)^{-6}$. Rewrite it as $u^6u'=x(x^2)^5=x^{11}$. By integrating, we get $(1/7)u^7=(1/12)x^{12}+C$.

Solution:
$$(1/7)y^7 = [(1/12)x^{12} + C]y_1^7 = [(1/12)x^{12} + C]x^{14}$$
.

Solution: $(1/7)y' = [(1/12)x^{12} + C]y'_1 = [(1/12)x^{12} + C]x^{14}$.

Notice we no longer have an explicit solution here .

Converting to Separable Equation

Solve xy' = y + x. Rewrite it as y' = y/x + 1.

Clearly, this is not separable, but we can make it separable by changing our variables.

Let
$$v = y/x$$
 or $y = vx$. Then $y' = v'x + v$
Given ODE is $v'x + v = v + 1$ or $v'x = 1$.

Apply separation of variables to get $y = (\ln |x| + C)x$.

Definition

A differential equation y' = f(x, y) is said to be **homogeneous** if if it can be written as y' = q(y/x).

For example,
$$y' = \frac{y^2 + xy - x^2}{x^2} = (\frac{y}{x})^2 + \frac{y}{x} - 1$$
.

Any non linear ODE y'=q(y/x) can be converted to a separable equation by substituting y=vx.