

Elektronische signalen 2

Inverterende versterker

P. Debbaut

Vereenvoudigde studie

Met ideale Opamp

Voordeel: zeer eenvoudige en betrouwbare berekeningen

Nadeel: resultaten zijn niet academisch juist (praktisch voldoende nauwkeurig)

Principeschema

*Voedingsspanningen niet getekend!

Terugkoppeling-tegenkoppeling

Virtuele massa

Spanningsversterking

Opmerkingen

- signaal wordt geïnverteerd
- A_{uf} alleen bepaald door R_f en R_I
- A_{uf} dezelfde voor AC en DC

knooppunt a $\sum I = 0$

$$I_g = I_i + I_f$$

 $I_i = 0$ waardoor: $I_g = I_f$

$$\frac{U_g}{R_1} = -\frac{U_o}{R_f}$$

$$A_{uf} = \frac{U_o}{U_g} = -\frac{R_f}{R_1}$$

Tegenfase

Blokschema inv. versterker

In- en uitgangsweerstand

$$R_{if} = \frac{U_g}{I_g} = \frac{U_g}{\frac{U_g}{R_1}}$$

$$R_{if} = R_1$$

Bij belasting daalt de uitgangsspanning niet!

Transferkarakteristiek

Statische versterking

$$A_{UF} = \frac{U_o}{U_g}$$

Dynamische versterking

$$A_{uf} = \frac{\Delta U_o}{\Delta U_g}$$

Oversturing

Asymmetrische voeding

Enkelvoudige voeding U_{s+}

Bij
$$R_2 = R_3$$

Signalen asymmetrische voeding

Oefening

Bepaal de spanningsversterking en de ingangsweerstand van de volgende versterker

Oplossing:

$$A_{uf} = \frac{U_o}{U_g} = -\frac{R_f}{R_1}$$
$$= -\frac{100.10^3 \Omega}{100.10^3 \Omega} = -1$$

$$R_{if} = R_1 = 100k\Omega$$

Dit is een inverter, $U_o = -U_g$