

TUMOR TYPE
Soft tissue malignant peripheral
nerve sheath tumor (MPNST)
COUNTRY CODE
TW

REPORT DATE 31 Aug 2022

ORD-1435143-01

ABOUT THE TEST FoundationOne[®] Heme is a comprehensive genomic profiling test designed to identify genomic alterations within hundreds of cancer-related genes in hematologic malignancies and sarcomas.

ATIENT

DISEASE Soft tissue malignant peripheral nerve sheath tumor (MPNST)

NAME Li, Yu-Ting

DATE OF BIRTH 07 November 2007

SEX Female

MEDICAL RECORD # 45806368

ORDERING PHYSICIAN Yeh, Yi-Chen
MEDICAL FACILITY Taipei Veterans General Hospital
ADDITIONAL RECIPIENT None
MEDICAL FACILITY ID 205872
PATHOLOGIST Not Provided

SPECIMEN SITE Spine
SPECIMEN ID S111-29418 B (PF22090)
SPECIMEN TYPE Slide Deck
DATE OF COLLECTION 02 August 2022
SPECIMEN RECEIVED 17 August 2022

Biomarker Findings

Microsatellite status - MS-Stable
Tumor Mutational Burden - 3 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

EGFR amplification
NF1 splice site 2991-1G>A
MYC amplification
CDKN2A/B CDKN2A loss, CDKN2B loss
RB1 rearrangement exon 11
TP53 A138fs*32

Report Highlights

- Targeted therapies with potential clinical benefit approved in another tumor type: Afatinib (p. 2), Cetuximab (p. 9), Dacomitinib (p. 10), Panitumumab (p. 10), Selumetinib (p. 11), Trametinib (p. 11)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 13)

BIOMARKER FINDINGS

Microsatellite status - MS-Stable

Tumor Mutational Burden - 3 Muts/Mb

GENOMIC FINDINGS

EGFR - amplification

3 Trials see p. 13

NF1 - splice site 2991-1G>A

10 Trials see p. <u>15</u>

MYC - amplification

5 Trials see p. 14

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. See Biomarker Findings section

No therapies or clinical trials. See Biomarker Findings section

THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)			
none	Afatinib			
	Cetuximab			
	Dacomitinib			
	Panitumumab			
none	Selumetinib			
	Trametinib			
none	none			

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE
Soft tissue malignant peripheral
nerve sheath tumor (MPNST)
COUNTRY CODE
TW

REPORT DATE 31 Aug 2022

ORD-1435143-01

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

CDKN2A/B - CDKN2A loss, CDKN2B loss p. 6	<i>TP53</i> - A138fs*32 p. <u>8</u>
RB1 - rearrangement exon 11p. 7	

NOTE Genomic alterations detected may be associated with activity of certain FDA-approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type.

Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type.

BIOMARKER FINDINGS

BIOMARKER

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and

experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁵.

FREQUENCY & PROGNOSIS

MSI has been studied in small cohorts of MPNST. One study reported a 30% (3/10) MSI-low frequency; another reported MSI in 45% (5/11) of samples⁶⁻⁷. MSI-high (MSI-H) has been observed at high frequency in endometrial cancers (14-33%)⁸⁻¹⁵, colorectal cancers (CRCs; 10-15%)^{3,16-19}, and gastric cancers (12-35%)²⁰⁻²³ and at lower frequencies in many other tumor types, including esophageal²⁴, small bowel²⁵⁻²⁹, hepatobiliary³⁰⁻³⁶, prostate³⁷⁻³⁹, and urinary tract carcinomas⁴⁰⁻⁴². Published data investigating the prognostic implications of MSI in nerve sheath tumors are limited (PubMed, Feb 2022).

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹⁸. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH₂, MSH₆, or PMS₂^{18,43-44}. This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers^{17,45-46}. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins^{17-18,44,46}.

BIOMARKER

Tumor Mutational Burden

RESULT 3 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1⁴⁷⁻⁴⁹, anti-PD-1 therapies⁴⁷⁻⁵⁰, and combination nivolumab and ipilimumab⁵¹⁻⁵⁶. In multiple pan-tumor studies, increased tissue tumor mutational burden (TMB) was associated with sensitivity to immune checkpoint inhibitors^{47-50,57-61}. In the KEYNOTE 158 trial of pembrolizumab monotherapy for patients with solid tumors, significant improvement in ORR was observed for patients with TMB ≥10 Muts/Mb (as measured by this assay) compared with those with TMB <10 Muts/Mb in a large cohort that included multiple tumor types⁵⁷; similar findings were

observed in the KEYNOTE 028 and 012 trials⁵⁰. At the same TMB cutpoint, retrospective analysis of patients with solid tumors treated with any checkpoint inhibitor identified that tissue TMB scores ≥ 10 Muts/Mb were associated with prolonged time to treatment failure compared with scores <10 muts/Mb (HR=0.68)61. For patients with solid tumors treated with nivolumab plus ipilimumab in the CheckMate 848 trial, improved responses were observed in patients with a tissue TMB ≥ 10 Muts/Mb independent of blood TMB at any cutpoint in matched samples⁶². However, support for higher TMB thresholds and efficacy was observed in the prospective Phase 2 MyPathway trial of atezolizumab for patients with pan-solid tumors, where improved ORR and DCR was seen in patients with TMB ≥ 16 Muts/Mb than those with TMB \geq 10 and <16 Muts/Mb⁶⁰. Similarly, analyses across several solid tumor types reported that patients with higher TMB (defined as ≥16-20 Muts/Mb) achieved greater clinical benefit from PD-1 or PD-L1-targeting monotherapy compared with patients with higher TMB treated with chemotherapy⁶³ or those with lower TMB treated with PD-1 or PD-L1-targeting agents⁴⁸.

FREQUENCY & PROGNOSIS

Malignant peripheral nerve sheath tumor (MPNST) harbors a median TMB of 2.5 mutations per megabase (muts/Mb), and 8.2% of cases have high TMB (>20 muts/Mb)⁶⁴. The prognostic significance of TMB in nerve sheath tumors has not been extensively studied (PubMed, Oct 2021).

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma⁶⁵⁻⁶⁶ and cigarette smoke in lung cancer⁶⁷⁻⁶⁸, treatment with temozolomide-based chemotherapy in glioma⁶⁹⁻⁷⁰, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes 19,71-74, and microsatellite instability $(MSI)^{19,71,74}$. This sample harbors a TMB level associated with lower rates of clinical benefit from treatment with PD-1- or PD-L1-targeting immune checkpoint inhibitors compared with patients with tumors harboring higher TMB levels, based on several studies in multiple solid tumor types^{48-49,57}.

GENOMIC FINDINGS

GENE FGFR

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

Based on clinical studies across multiple tumor types, EGFR amplification or expression may predict sensitivity to the second-generation EGFR TKIs afatinib⁷⁵⁻⁸⁰ and dacomitinib⁸¹⁻⁸². There are conflicting data on the efficacy of anti-EGFR antibodies for the treatment of EGFR-amplified tumors. A meta-analysis of colorectal cancer patients treated with second-line or higher cetuximab or panitumumab observed an

association between EGFR copy number gain and increased OS and PFS⁸³. However, studies in head and neck squamous cell carcinoma and gastric cancer found either no association or a negative association between EGFR copy number gain and survival after treatment with first-line cetuximab or panitumumab in combination with chemotherapy⁸⁴⁻⁸⁵.

FREQUENCY & PROGNOSIS

EGFR amplification has been observed in MPNST⁸⁶⁻⁸⁷, but was not detected in 20 schwannomas⁸⁸ or in 8 plexiform neurofibromas⁸⁶. EGFR protein expression has been reported in 28-63% of MPNST^{86,89-90}, whereas EGFR expression was not detected in schwannomas (o/20)⁸⁸. In a study of 46 MPNST patients, overexpression of EGFR was found to correlate with lower 5-year DFS (17.4 months), time to

progression (mean 5.2 months), and 5-year survival (25%) as compared to patients without overexpression (DFS 30.1 months; time to progression, mean 9.2 months; 5-year survival, 52%)⁸⁹. Similar findings were reported in another study of 51 MPNST patients, with high expression of EGFR correlating with poor DFS and OS⁸⁷.

FINDING SUMMARY

EGFR encodes the epidermal growth factor receptor, which belongs to a class of proteins called receptor tyrosine kinases. In response to signals from the environment, EGFR passes biochemical messages to the cell that stimulate it to grow and divide⁹¹. Amplification of EGFR has been associated with increased expression of EGFR mRNA and protein in several cancer types⁹²⁻⁹⁴.

GENOMIC FINDINGS

GENE

NF1

2991-1G>A

ALTERATION splice site 2991-1G>A

NM_001042492

CODING SEQUENCE EFFECT

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in neurofibromatosis Type 1-associated neurofibroma⁹⁵⁻⁹⁸, glioma or glioblastoma⁹⁸⁻¹⁰², and non-small cell lung cancer¹⁰³, NF1 inactivation may predict sensitivity to MEK inhibitors such as cobimetinib, trametinib, binimetinib, and selumetinib. Loss or inactivation of NF1 may also predict sensitivity to mTOR inhibitors, including everolimus and temsirolimus, based on limited clinical data104-106 and strong preclinical data in models of malignant peripheral nerve sheath tumor (MPNST)¹⁰⁷⁻¹⁰⁸. A preclinical study suggests that combined mTOR and MEK inhibition is effective in a model of NF1-deficient MPNST109. Whereas frequent adverse events precluded a recommended Phase 2 dose and schedule for the combination of trametinib and everolimus in a Phase 1b trial for solid tumors¹¹⁰, a retrospective study for heavily pretreated patients with solid tumors reported tolerable regimens of the combination for 23/31 patients, with 16 patients treated >3 months and evaluable patients achieving a median PFS of 6.5

months¹¹¹. It is not known whether these therapeutic approaches would be relevant in the context of alterations that have not been fully characterized, as seen here.

FREQUENCY & PROGNOSIS

NF1 loss, either through deletion or inactivation, has been reported frequently in malignant peripheral nerve sheath tumors (MPNSTs), which may be associated with neurofibromatosis type 1 and have been shown to occur in approximately 10% of patients with this disorder¹¹². One study reported NF1 deletion in 82% (28/34) of MPNST samples and NF1 mutation in another three tumors, for NF1 loss in 91% (31/34) of MPNST samples analyzed¹¹². Somatic mutations in the NF1 gene have been identified in both neurofibromatosis-associated and sporadic MPNSTs, and are found in approximately 40% of patients¹¹³. Neurofibromas are a characteristic clinical feature exhibited by neurofibromatosis type 1 (NF1) patients. Germline NF1 mutations have been reported in 83-95% of NF1 patients, and somatic NF1 mutations were also found to be common in neurofibromas, with 77 somatic mutations found in 109 cutaneous neurofibromas from 46 NF1 patients¹¹⁴⁻¹¹⁶. Loss of heterozygosity (LOH) at NF1 has been found in approximately 20-40% of cutaneous neurofibromas, and in plexiform neurofibromas, a more diffuse type of tumor of which about 10-15% of cases may transform to malignant peripheral nerve sheath tumors (MPNSTs), NF1 LOH is found in approximately 70% of cases $^{114-115,117}$. NF1 status has been reported to be correlated with the tumor-free and overall survival of MPNST patients¹¹⁸.

FINDING SUMMARY

NF1 encodes neurofibromin, a GTPase-activating protein (GAP) that is a key negative regulator of the RAS signaling pathway¹¹⁹. Neurofibromin acts as a tumor suppressor by repressing RAS signaling¹²⁰. The consequences of alterations that may leave the GAP-related domain intact, such as seen here, are unclear; however, similar alterations have been previously reported in the context of cancer, which may indicate biological relevance.

POTENTIAL DIAGNOSTIC IMPLICATIONS

NF1, CDKN2A/B, and PRC2 components such as EED and SUZ12 are recurrently co-mutated in malignant peripheral nerve sheath tumors (NCCN Soft Tissue Sarcoma Guidelines, v2.2022)^{112-113,121-123}.

POTENTIAL GERMLINE IMPLICATIONS

One or more of the NF1 variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with neurofibromatosis type 1 (ClinVar, Mar 2022)124. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline mutations in NF1 cause the autosomal dominant disorder neurofibromatosis type 1, which is characterized in part by increased risk of developing various tumors, including sarcoma, glioma, breast carcinoma, and neuroendocrine and hematological neoplasms¹²⁵⁻¹²⁷. Estimates for the prevalence of the disorder in the general population range from 1:2,500 to 1:3,000¹²⁸⁻¹²⁹, and in the appropriate clinical context, germline testing of NF1 is recommended.

GENOMIC FINDINGS

MYC.

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Preclinical data indicate MYC overexpression may predict sensitivity to investigational agents targeting CDK1 $^{130-131}$, CDK2 132 , Aurora kinase A $^{133-140}$, Aurora kinase B $^{141-144}$, glutaminase $^{145-148}$, or BET bromodomain-containing proteins $^{149-152}$, as well as agents targeting both HDAC and PI₃K $^{153-155}$. Exploratory biomarker analysis in a Phase 2 study reported a PFS benefit associated with a combination of the Aurora A kinase inhibitor alisertib and paclitaxel as second-line therapy for

patients with MYC-overexpressed small cell lung cancer but not for patients without MYC overexpression¹⁵⁶. A PR was reported for a patient with MYC-amplified invasive ductal breast carcinoma treated with an unspecified Aurora kinase inhibitor and taxol¹⁵⁷.

- Nontargeted Approaches -

MYC amplification has also been suggested to predict response to chemotherapy in patients with breast cancer in some studies¹⁵⁸⁻¹⁵⁹. Preclinical evidence suggests that colon cancer cells with MYC amplification may be more sensitive to 5-fluorouracil and paclitaxel¹⁶⁰⁻¹⁶¹.

FREQUENCY & PROGNOSIS

MYC amplification has been reported in various solid tumors including breast (9.6%), ovarian (6.7%), melanoma (5.8%), endometrial (5.5%), non-small

cell lung (5.5%), prostate (4.7%), esophagogastric (4.4%), and colorectal (3.9%) cancer¹⁶². Published data investigating the prognostic implications of MYC alterations in nerve sheath tumors are limited (PubMed, Aug 2022). One study of MPNST found MYC amplification was significantly associated with tumor recurrence, however it was not associated with patient survival¹⁶³.

FINDING SUMMARY

MYC (c-MYC) encodes a transcription factor that regulates many genes related to cell cycle regulation and cell growth. It is an oncogene and may be activated in as many as 20% of cancers¹⁶⁴. MYC dysregulation (amplification, overexpression, translocation) has been identified in a number of different cancer types¹⁶⁵. MYC amplification has been significantly linked with increased mRNA and protein levels and results in the dysregulation of a large number of target genes^{164,166-167}.

GENE

CDKN2A/B

ALTERATION

CDKN2A loss, CDKN2B loss

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Clinical data in mesothelioma, breast cancer, and uterine leiomyosarcoma indicate that CDKN2A loss may predict sensitivity to abemaciclib168 and palbociclib treatment¹⁶⁹⁻¹⁷⁰. However, multiple other clinical studies have shown no significant correlation between p16INK4a loss or inactivation and the rapeutic benefit of these agents $^{171-177}$; it is not known whether CDK4/6 inhibitors would be beneficial in this case. Although preclinical studies have suggested that loss of p14ARF function may be associated with reduced sensitivity to MDM2 inhibitors¹⁷⁸⁻¹⁷⁹, the clinical relevance of p14ARF as a predictive biomarker is not clear. Preclinical data suggest that tumors with loss of p16INK4a function may be sensitive to CDK4/6 inhibitors, such as abemaciclib, ribociclib, and palbociclib180-183. There are no drugs that directly target the mutation or loss of CDKN2B in cancer. Because the p15INK4b protein encoded by CDKN2B is known to inhibit CDK4, tumors with CDKN2B mutation or loss may predict sensitivity

to CDK4/6 inhibitors, such as ribociclib, abemaciclib, and palbociclib $^{172,174-175,184-186}$.

FREQUENCY & PROGNOSIS

In the malignant peripheral nerve sheath tumor (MPNST) MSKCC dataset, homozygous deletion of both CDKN2A and CDKN2B was reported in 67% (10/15) of cases¹²². Deletion of the CDKN2A/B locus has been reported in approximately 33% of MPNST tumors¹⁸⁷⁻¹⁸⁸. Loss of CDKN2A and CDKN2B expression has been reported at a higher level, from 50-80%¹⁸⁸⁻¹⁹⁰. Genomic loss of CDKN2A and CDKN2B has been associated with poor prognosis in patients with MPNST¹⁸⁸.

FINDING SUMMARY

CDKN2A encodes two different, unrelated tumor suppressor proteins, p16INK4a and p14ARF, whereas CDKN2B encodes the tumor suppressor p15INK4b¹⁹¹⁻¹⁹². Both p15INK4b and p16INK4a bind to and inhibit CDK4 and CDK6, thereby maintaining the growth-suppressive activity of the Rb tumor suppressor; loss or inactivation of either p15INK4b or p16INK4a contributes to dysregulation of the CDK4/6-cyclin-Rb pathway and loss of cell cycle control¹⁹³⁻¹⁹⁴. The tumor suppressive functions of p14ARF involve stabilization and activation of p53, via a mechanism of MDM2 inhibition¹⁹⁵⁻¹⁹⁶. One or more alterations observed here are predicted to result in p16INK4a

loss of function¹⁹⁷⁻²¹⁸. One or more alterations seen here are predicted to result in p14ARF loss of function^{201,218-221}. CDKN2B alterations such as seen here are predicted to inactivate p15INK4b²²².

POTENTIAL DIAGNOSTIC IMPLICATIONS

NF1, CDKN2A/B, and PRC2 components such as EED and SUZ12 are recurrently co-mutated in malignant peripheral nerve sheath tumors (NCCN Soft Tissue Sarcoma Guidelines, v2.2022)^{112-113,121-123}.

POTENTIAL GERMLINE IMPLICATIONS

Germline CDKN2A mutation is associated with melanoma-pancreatic cancer syndrome, a condition marked by increased risk of developing malignant melanoma and/or pancreatic cancer²²³. Mutation carriers within families may develop either or both types of cancer, and melanoma cases may be referred to as familial or hereditary melanoma²²⁴⁻²²⁵. CDKN₂A is the most implicated gene in familial melanoma, with germline mutations present in 16% to 20% of familial melanoma cases²²⁶⁻²²⁸. CDKN₂A alteration has also been implicated in familial melanoma-astrocytoma syndrome, an extremely rare tumor association characterized by dual predisposition to melanoma and nervous system tumors²²⁹⁻²³¹. In the appropriate clinical context, germline testing of CDKN2A is recommended.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

GENOMIC FINDINGS

GENE

RB1

ALTERATION

rearrangement exon 11

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies –

On the basis of limited clinical data²³² and strong preclinical data^{142,233-235}, RB₁ inactivation may be associated with sensitivity to inhibitors of Aurora kinase A, particularly in small cell lung cancer (SCLC). A clinical study evaluating the Aurora kinase A inhibitor alisertib for patients with prostate cancer did not find an association between RB₁ deletion and clinical benefit²³⁶. Other

approaches to target RB1 inactivation under investigation in preclinical studies include inhibitors of BCL-2 family members²³⁷ and activation of the NOTCH pathway²³⁸.

FREQUENCY & PROGNOSIS

In one study, RB1 mutation was observed in 7% (1/15) malignant peripheral nerve sheath tumors (MPNSTs), and RB1 homozygous deletion was not observed 122. RB1 alterations have been reported in neurofibromatosis type-1 (NF1)-associated MPNSTs 239. One study has reported loss of heterozygosity (LOH) for RB1 in 40% (4/10) of MPNSTs analyzed 240. The prognostic significance of RB1 alterations in the context of MPNST has not been extensively investigated (PubMed, Sep 2021).

FINDING SUMMARY

RB1 encodes the retinoblastoma protein (Rb), a tumor suppressor and negative regulator of the cell cycle²⁴¹⁻²⁴². Alterations such as seen here may disrupt RB1 function or expression²⁴³⁻²⁴⁹.

POTENTIAL GERMLINE IMPLICATIONS

Mutations in RB1 underlie the development of retinoblastoma (RB), a rare tumor that arises at a rate of approximately 1:20,000 live births, with nearly 5,000 new cases worldwide per year²⁵⁰. Germline mutations in RB1 account for approximately 40% of RB tumors²⁵¹ and are associated with an increased risk of developing secondary malignancies that include soft tissue and bone sarcoma and malignant melanoma²⁵²⁻²⁵³. In the appropriate clinical context, germline testing of RB1 is recommended.

GENOMIC FINDINGS

TP53

ALTERATION A138fs*32

TRANSCRIPT ID NM_000546

CODING SEQUENCE EFFECT

412delG

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib²⁵⁴⁻²⁵⁷, or p53 gene therapy and immunotherapeutics such as SGT-53²⁵⁸⁻²⁶² and ALT-801²⁶³. In a Phase 1 study, adavosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% and SDs in 53% of patients with solid tumors; the response rate was 21% (4/19) for patients with TP53 mutations versus 12% (4/33) for patients who were TP53 wildtype²⁶⁴. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 32% (30/94, 3 CR) ORR and a 73% (69/94) DCR for patients with platinumrefractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer²⁶⁵. A smaller Phase 2 trial of adayosertib in combination with carboplatin achieved a 43% (9/21, 1 CR) ORR and a 76% (16/21) DCR for patients with platinum-refractory TP53-mutated ovarian cancer²⁶⁶. The combination of adavosertib with paclitaxel and carboplatin for patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone²⁶⁷. In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/or recurrent gastric cancer experienced a 24% (6/25) ORR with adavosertib combined with paclitaxel²⁶⁸. A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71% (5/7) response rate for patients with TP53

alterations²⁶⁹. The Phase 2 FOCUS4-C trial for patients with TP53- and RAS-mutated colorectal cancer reported improvement in PFS (3.61 vs. 1.87 months, HR=0.35, p=0.0022), but not OS (14.0 vs 12.8 months, p=0.93), following adavosertib treatment compared with active monitoring²⁷⁰. In a Phase 1b clinical trial of SGT-53 in combination with docetaxel for patients with solid tumors, 75% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage²⁶². ATR inhibitor treatment of chronic lymphocytic leukemia (CLL) cells with biallelic inactivation of TP53 suppressed cell viability, promoted DNA damage, and attenuated xenograft growth in preclinical studies²⁷¹⁻²⁷²; however, ATR inhibitors as monotherapy had little effect on these parameters in solid tumor models in other preclinical studies²⁷³⁻²⁷⁴. Therefore, it is unclear whether TP53 inactivation predicts sensitivity to ATR inhibition.

FREQUENCY & PROGNOSIS

TP53 mutations have been reported in 9.6% of soft tissue malignant peripheral nerve sheath tumors (MPNSTs), but have not been reported in any of the 66 soft tissue neurofibroma or 11 soft tissue schwannoma samples analyzed in COSMIC (Mar 2022)²⁷⁵. In the literature, TP53 mutations have been reported in up to 40% of MPNSTs^{112,122,127,276-277}. Heterozygous deletions or homozygous loss of TP53 have been reported in 17-50% of cases^{86,278}. Loss of heterozygosity (LOH) of TP53 has also been observed in MPNST; one study noted TP53 mutation in 11/19 MPNST112 and another reported a high level of intra-tumoral heterogeneity for TP53 LOH240. Loss of the chromosomal region encoding TP53 (17p13) has been observed in 9 cases of NF1-positive neurofibroma²⁷⁹. Reports of p53 protein overexpression in MPNST have varied, but p53 protein overexpression has been correlated with TP₅₃ mutation^{277,280-281}. The prognostic impact of TP53 aberrations in MPNST is unclear, with some studies associating TP53 alterations with higher tumor grade^{112,281}, but other studies observing that TP53 alterations were not prognostic in MPNST or schwannoma^{86,278,282}. High TP53 expression

correlated with inferior PFS on the univariate, but not multivariate analysis in one study¹¹⁸, but no significant impact of TP₅₃ expression on OS was observed^{118,278}.

FINDING SUMMARY

Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in aggressive advanced cancers²⁸³. Alterations such as seen here may disrupt TP53 function or expression²⁸⁴⁻²⁸⁸.

POTENTIAL GERMLINE IMPLICATIONS

Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers²⁸⁹⁻²⁹¹, including sarcomas²⁹²⁻²⁹³. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000²⁹⁴ to 1:20,000²⁹³. For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30²⁹⁵. In the appropriate clinical context, germline testing of TP53 is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion²⁹⁶⁻³⁰¹. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy²⁹⁶⁻²⁹⁷. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease³⁰². Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH300,303-304. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Afatinib

Assay findings association

EGFR amplification

AREAS OF THERAPEUTIC USE

Afatinib is an irreversible kinase inhibitor that targets the kinase domains of EGFR, ERBB2/HER2, and ERBB4. It is FDA approved for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) and nonresistant EGFR mutations and for the treatment of patients with metastatic, squamous NSCLC after progression on platinum-based chemotherapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical^{75-82,305-308} data, EGFR amplification may indicate sensitivity to the second-generation EGFR TKIs afatinib or dacomitinib.

SUPPORTING DATA

There are no reports of clinical studies specifically evaluating afatinib in the context of MPNST or other

nerve sheath tumors (PubMed, Aug 2022). Afatinib has been primarily evaluated for the treatment of EGFRmutant NSCLC, in which treatment with afatinib exhibited significant improvement in progression free survival (PFS) vs. chemotherapy treatments309-310 . A Phase 2 trial of afatinib in patients with either EGFR or ERBB2 amplification and esophagogastric, biliary tract, urothelial tract, or gynecologic cancer reported a 5% (1/20) objective response rate, with complete response achieved in one patient and stable disease (SD) achieved in 8 patients; the authors concluded that afatinib activity as a single agent was encouraging⁷⁶. A Phase 1 trial of afatinib in advanced cancer reported SD in 14/31 patients311. A Phase 1 study of afatinib combined with pemetrexed in patients with advanced solid tumors reported confirmed partial response in 3% (1/30) of patients and SD in 33%(10/30) of patients³¹².

Cetuximab

Assay findings association

EGFR amplification

AREAS OF THERAPEUTIC USE

Cetuximab is a monoclonal antibody that targets EGFR. It is FDA approved for the treatment of head and neck squamous cell carcinoma (HNSCC) and KRAS-wild-type, EGFR-expressing metastatic colorectal cancer (CRC). Please see the drug label for full prescribing information.

GENE ASSOCIATION

For patients with metastatic CRC receiving cetuximab or panitumumab as mono- or combination therapy, increased EGFR copy number associated with improved OS (HR=0.62) in a meta-analysis, although increased survival was not seen in populations that received first-line treatment with EGFR antibodies⁸³.

SUPPORTING DATA

Clinical data on the efficacy of cetuximab for the

treatment of nerve sheath tumors are limited (PubMed, Aug 2022). A Phase 3 trial of combined cetuximab and platinum/5-FU in patients with HNSCC demonstrated improved response compared to platinum/5-FU alone, but EGFR amplification was not shown to predict response to this treatment⁸⁴. A Phase 3 study of patients with pancreatic adenocarcinoma did not report any improved outcome in patients treated with a combination of cetuximab plus gemcitabine vs gemcitabine alone³¹³. In a Phase 1/2 trial of 36 patients with metastatic castrationresistant prostate cancer (mCRPC) treated with cetuximab in combination with doxorubicin, stable disease was reported in approximately 63% of patients314. A Phase 1 study of the combination therapy of cetuximab, erlotinib, and bevacizumab reported stable disease in 21% (7/34) of patients with non-small cell lung cancer (NSCLC)315.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Dacomitinib

Assay findings association

EGFR amplification

AREAS OF THERAPEUTIC USE

Dacomitinib is a second generation irreversible tyrosine kinase inhibitor that targets the kinase domains of EGFR, ERBB2/HER2, and ERBB4/HER4. It is FDA approved for the first-line treatment of patients with metastatic nonsmall cell lung cancer (NSCLC) with EGFR exon 19 deletion or exon 21 L858R substitution mutations. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical^{75-82,305-308} data, EGFR amplification may indicate sensitivity to the second-generation EGFR TKIs afatinib or dacomitinib.

SUPPORTING DATA

Clinical data on the efficacy of dacomitinib for the treatment of nerve sheath tumors are limited (PubMed, Aug 2022). Investigations into the efficacy of dacomitinib have primarily been in the context of non-small cell lung cancer (NSCLC). Patients with EGFR-mutant NSCLC

treated with dacomitinib exhibited significant improvement in OS compared with gefitinib treatment (median OS, 34.1 vs. 26.8 months)316-317. A Phase 2 study of dacomitinib in patients with advanced penile squamous cell carcinoma (SCC) reported an ORR of 32% (1 CR, 8 PR), including a 100% DCR (1 CR, 1 PR, 2 SD) in four patients with EGFR amplification81,318. A Phase 2 study of dacomitinib in patients with recurrent or metastatic head and neck SCC reported clinical benefit (defined as PFS>4 months) in 13/31 (42%) of patients82. Studies of dacomitinib in esophageal 319 and cutaneous 320 SCC reported RRs of 12.5% (6/48) and 28.6% (12/42), respectively, but high DCRs of 73% and 86%, respectively. In contrast, trials of dacomitinib in heavily pretreated patients with HER2+ gastric cancer321 and patients with EGFR-amplified glioblastoma³²² found RRs of fewer than 10% and DCRs of fewer than 50%: 11/27 (41%) DCR in HER2+ gastric cancer321 and 15/49 (31%) in EGFRamplified glioblastoma322.

Panitumumab

Assay findings association

EGFR amplification

AREAS OF THERAPEUTIC USE

Panitumumab is a monoclonal antibody that targets EGFR. It is FDA approved to treat KRAS wild-type and NRAS wild-type metastatic colorectal cancer (CRC) combined with chemotherapy or as monotherapy for patients who have progressed on prior chemotherapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

For patients with metastatic CRC receiving cetuximab or panitumumab as mono- or combination therapy, increased EGFR copy number associated with improved OS (HR=0.62) in a meta-analysis, although increased survival was not seen in populations that received first-line treatment with EGFR antibodies⁸³.

SUPPORTING DATA

Clinical data on the efficacy of panitumumab for the

treatment of nerve sheath tumors are limited (PubMed, Aug 2022). Panitumumab has shown efficacy as monotherapy or in combination with chemotherapy for patients with KRAS-wildtype colorectal cancer323-325 and has been investigated in a variety of other tumor types. For patients with head and neck squamous cell carcinoma (HNSCC), data are conflicting; some trials of panitumumab in various lines and with different chemotherapy combinations have shown modest benefit326-328 and others have reported no benefit329-331. A Phase 3 study of chemotherapy with or without panitumumab for patients with advanced gastroesophageal cancer was terminated for futility³³². Trials in a variety of tumor types have failed to show significant benefit for patients, including non-small cell lung cancer (NSCLC)333-334; biliary tract cancers, including cholangiocarcinoma335-336; and renal cell carcinoma (RCC)337.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Selumetinib

Assay findings association

NF1

splice site 2991-1G>A

AREAS OF THERAPEUTIC USE

Selumetinib is a MEK inhibitor that is FDA approved to treat pediatric patients 2 years of age and older with neurofibromatosis type 1 (NF1) who have symptomatic, inoperable plexiform neurofibromas (PNs). Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in neurofibromatosis type 1 (NF1)-associated neurofibroma $^{95-98,338-342}$, glioma $^{98-102,343}$, and non-small cell lung cancer 103 , NF1 inactivation may predict sensitivity to MEK inhibitors. It is not known whether this therapeutic approach would be relevant in the context of alterations that have not been fully characterized, as seen here.

SUPPORTING DATA

Clinical data on the efficacy of selumetinib for the treatment of soft tissue schwannomas or malignant peripheral nerve sheath tumors are limited (PubMed, Mar 2022). A Phase 2 clinical trial of selumetinib for children with neurofibromatosis type 1 (NF1) and inoperable plexiform neurofibromas (PNs) reported an ORR of 68% (51/75), all of which were PRs^{96,338}. A Phase 2 study of selumetinib for adults with PNs resulted in 50% (13/26) PRs³³⁹. A Phase 1 clinical trial for selumetinib for children with NF1 and inoperable PN reported 71% (17/24) PRs⁹⁵.

A Phase 2 study of selumetinib for patients with tumors with activating alterations in the MAPK pathway observed SD for 13 cycles as best response for the single patient with PN344. In 1 case study, selumetinib resulted in a significant tumor volume reduction in a pediatric patient with PN and an ongoing clinical response of 23 months³⁴⁵. Selumetinib has demonstrated efficacy in NF1-associated neurofibroma in Phase 2 studies 96,338-339 and a Phase 1 study⁹⁵. Phase 2 studies reported clinical responses in low-grade glioma99,346, melanoma347-351, and in lung103,352-353 and endometrial cancer354. A Phase 2 study of selumetinib for patients with activating alterations in the MAPK pathway reported a DCR of 15% (3/20), with no objective responses observed344. Phase 1 studies of selumetinib to treat patients with solid tumors reported 1/ 15 PR for a patient with colorectal cancer (CRC) and 5/15 SDs for patients with tonsil squamous cell carcinoma (SCC), non-small cell lung cancer (NSCLC), and CRC355; 2/ 39 PRs (for patients with CRC) and 18/39 SDs were achieved when selumetinib was administered in combination with cyclosporin A^{356} . Multiple Phase 1 studies combining selumetinib with erlotinib or temsirolimus357, docetaxel or dacarbazine358, AKT inhibitors359, or cixutumumab (an anti-IGF-1R antibody)360 reported clinical responses for patients with advanced solid tumors including NSCLC, thyroid carcinoma, tongue SCC, and ovarian cancer.

Trametinib

Assay findings association

NF1

splice site 2991-1G>A

AREAS OF THERAPEUTIC USE

Trametinib is a MEK inhibitor that is FDA approved as a monotherapy to treat patients with melanoma with BRAF V600E or V600K mutations. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical evidence in neurofibromatosis type 1 (NF1)-associated neurofibroma $^{95-98,338-342}$, glioma $^{98-102,343}$, and non-small cell lung cancer 103 , NF1 inactivation may predict sensitivity to MEK inhibitors. It is not known whether this therapeutic approach would be relevant in the context of alterations that have not been fully characterized, as seen here.

SUPPORTING DATA

A Phase 1/2 study of trametinib for pediatric patients with NF1-associated inoperable plexiform neurofibroma reported an ORR of 46% (12/26)³⁴⁰. Case studies of trametinib have also reported clinical benefit for pediatric patients with NF1-associated inoperable plexiform neurofibroma, including 4 PRs of over 18 months and 1 PR of over 10 months^{97-98,342,361}. A Phase 1b/2 trial

examining a combination of trametinib and pazopanib in patients with soft tissue sarcoma reported 2 partial responses (embryonal rhabdomyosarcoma and spindle cell sarcoma), 12 instances of stable disease and 11 instances of progressive disease with a median progression-free survival (PFS) of 2.27 months and a 4-month PFS of 21.1%; none of the patients with Ewing sarcoma (0/4), leiomyosarcoma (o/6) or liposarcoma (o/4) achieved a response³⁶². A Phase 2 study of another MEK inhibitor, selumetinib, reported limited activity in 34 patients with soft tissue sarcoma treated with single-agent selumetinib, with partial response seen in 2 patients and stable disease in 9 patients; combination of selumetinib with the mTOR inhibitor temsirolimus improved progression-free survival in patients with leiomyosarcoma³⁶³. Whereas frequent adverse events precluded a recommended Phase 2 dose and schedule for the combination of trametinib and everolimus in a Phase 1b trial for solid tumors 110, a retrospective study for heavily pretreated patients with solid tumors reported tolerable regimens of the combination for 23/31 patients, with 16 patients treated >3 months and evaluable patients achieving a median PFS of 6.5 months¹¹¹.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE
Soft tissue malignant peripheral
nerve sheath tumor (MPNST)

REPORT DATE 31 Aug 2022

ORDERED TEST # ORD-1435143-01

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

TUMOR TYPE
Soft tissue malignant peripheral
nerve sheath tumor (MPNST)

REPORT DATE 31 Aug 2022

ORDERED TEST # ORD-1435143-01

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and

should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \Rightarrow Geographical proximity \Rightarrow Later trial phase. Clinical trials listed here may have additional enrollment criteria that may require

medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or visit https://www.foundationmedicine.com/genomictesting#support-services.

FGFR

ALTERATION amplification

RATIONALE

EGFR activating mutations, rearrangements, or amplification may predict sensitivity to EGFRtargeted therapies. Strategies to overcome resistance to current agents include nextgeneration EGFR inhibitors and combination therapies.

NCT03783403

A Study of CC-95251, a Monoclonal Antibody Directed Against SIRPα, in Subjects With Advanced Solid and Hematologic Cancers

TARGETS CD20, EGFR, SIRP-alpha

LOCATIONS: Seoul (Korea, Republic of), Heidelberg (Australia), Melbourne (Australia), Edmonton (Canada), Rouen (France), Oregon, Creteil (France), Nantes Cedex 01 (France), Borddeaux Cedex (France), Villejuif CEDEX (France)

NCT03784014

MOLECULAR PROFILING OF ADVANCED SOFT-TISSUE SARCOMAS

TARGETS
ABL, KIT, ROS1, ALK, MET, ERBB2, EGFR, BRAF, MEK, PARP, PD-L1, CDK4, CDK6

LOCATIONS: Dijon (France), Paris (France), Villejuif (France), Lyon (France), Clermont-Ferrand (France), Marseille (France), Saint-Herblain (France), Bordeaux (France)

NCT04616196	PHASE 1/2
Study of NKTR 255 in Combination With Cetuximab in Solid Tumors	TARGETS EGFR
LOCATIONS: California, Montana, Arizona, Minnesota, Illinois, Michigan, Texas, New York	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE Soft tissue malignant peripheral nerve sheath tumor (MPNST)

REPORT DATE 31 Aug 2022

ORDERED TEST # ORD-1435143-01

FOUNDATIONONE®HEME

CLINICAL TRIALS

GEN	E
M	YC

ALTERATION amplification

RATIONALE

MYC overexpression may predict sensitivity to inhibition of CDKs, especially CDK1 and CDK2, of to downregulate MYC expression and MYC-Aurora kinases, including Aurora kinase A and B,

and of BET domain proteins, which are reported dependent transcriptional programs.

•			
NCT03936465	PHASE 1		
Study of the Bromodomain (BRD) and Extra-Terminal Domain (BET) Inhibitor BMS-986158 in Pediatric Cancer	TARGETS BRD2, BRDT, BRD3, BRD4		
LOCATIONS: Washington, Toronto (Canada), Michigan, Ohio, Massachusetts, North Carolina			
NCT04983810	PHASE 1/2		
A Study to Investigate Fadraciclib (CYCO65), in Subjects With Advanced Solid Tumors and Lymphoma	TARGETS CDK2, CDK9		
LOCATIONS: Seoul (Korea, Republic of), Barcelona (Spain), California, Texas			
NCT04742959	PHASE 1/2		
Crossover Relative Bioavailability and Dose Escalation Study of TT-00420 Tablet in Patients With Advanced Solid Tumors	TARGETS Aurora kinase A, Aurora kinase B		
LOCATIONS: California, Illinois, Ohio, Texas, New Jersey			
NCT04555837	PHASE 1/2		
Alisertib and Pembrolizumab for the Treatment of Patients With Rb-deficient Head and Neck Squamous Cell Cancer	TARGETS Aurora kinase A, PD-1		
LOCATIONS: Texas			
NCT01434316	PHASE 1		
Veliparib and Dinaciclib in Treating Patients With Advanced Solid Tumors	TARGETS PARP, CDK1, CDK9, CDK5, CDK2		

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

CLINICAL TRIALS

G	E	ľ	ΙE	
1	\	I	F	_

ALTERATION splice site 2991-1G>A

RATIONALE

On the basis of clinical evidence and strong preclinical evidence, NF1 inactivation may predict sensitivity to MEK inhibitors. Limited clinical data and strong preclinical data indicate that loss or inactivation of NF1 may also predict sensitivity

to mTOR inhibitors. It is not known whether these therapeutic approaches would be relevant in the context of alterations that have not been fully characterized, as seen here.

NCT02638428	PHASE 2
Genomics-Based Target Therapy for Children With Relapsed or Refractory Malignancy	TARGETS FGFR3, KIT, FGFR1, VEGFRs, FGFR2, ALK, ROS1, AXL, TRKA, MET, TRKC, DDR2, ABL, SRC, RET, RAFs, FLT3, EGFR, mTOR, JAK2, JAK1, ERBB2, BRAF

LOCATIONS: Seoul (Korea, Republic of)

NCT02446431	PHASE NULL		
Metronomic Therapy for Pediatric Patients With Solid Tumors at High Risk of Recurrence	TARGETS VEGFA, HDAC, mTOR		
LOCATIONS: California			
NCT04801966	PHASE NULL		
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF		
LOCATIONS: Melbourne (Australia)			
NCT04216953	PHASE 1/2		
MEK Inhibitor and a PDL1 Inhibitor Patients With Locally Advanced and/or Metastatic Soft Tissue Sarcoma	TARGETS MEK, PD-L1		
LOCATIONS: Lille (France), Paris (France), Lyon (France), Marseille (France)			
NCT03778996	PHASE 2		
SM-88 as Maintenance Therapy for Advanced Ewing's Sarcoma Patients and as Salvage Therapy for Sarcoma Patients	TARGETS mTOR		
LOCATIONS: California			
NCT02574728	PHASE 2		

NCT02574728	PHASE 2
Sirolimus in Combination With Metronomic Chemotherapy in Children With Recurrent and/or Refractory Solid and CNS Tumors	TARGETS TOP2, mTOR
LOCATIONS: Arizona, Missouri, Delaware, Virginia, Georgia	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

TUMOR TYPE Soft tissue malignant peripheral nerve sheath tumor (MPNST)

REPORT DATE 31 Aug 2022

ORDERED TEST # ORD-1435143-01

FOUNDATIONONE®HEME

CLINICAL TRIALS

NCT04469530	PHASE 2		
Sirolimus in Combination With Metronomic Chemotherapy in Children With High-Risk Solid Tumors	TARGETS mTOR		
LOCATIONS: Missouri, Pennsylvania, Georgia			
NCT01582191	PHASE 1		
A Phase 1 Trial of Vandetanib (a Multi-kinase Inhibitor of EGFR, VEGFR and RET Inhibitor) in Combination With Everolimus (an mTOR Inhibitor) in Advanced Cancer	TARGETS mTOR, EGFR, SRC, RET, VEGFRs		
LOCATIONS: Texas			
NCT03239015	PHASE 2		
Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular Event	TARGETS EGFR, ERBB4, ERBB2, PARP, mTOR, MET, ROS1, RET, VEGFRs, BRAF, CDK4 CDK6		
LOCATIONS: Shanghai (China)			
NCT04337463	PHASE NULL		
ATG-008 Combined With Toripalimab in Advanced Solid Tumors	TARGETS mTORC1, mTORC2, PD-1		
LOCATIONS: Chongqing (China), Chengdu (China)			

TUMOR TYPE
Soft tissue malignant peripheral
nerve sheath tumor (MPNST)

REPORT DATE 31 Aug 2022

ORDERED TEST # ORD-1435143-01

A1141T

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future. Please note that some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

AXIN1	BCL11B	GNA13	HIST1H1C
P748L	1141V	S12P	A68V
JAK2	KDM4C loss	MED12	MET
1899T		R1266C	R1022Q
MKI67	PCLO	PDK1	RPTOR rearrangement
K219Q	T2954K	R238C	
TSC2			

APPENDIX

Genes Assayed in FoundationOne®Heme

FoundationOne Heme is designed to include genes known to be somatically altered in human hematologic malignancies and sarcomas that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay utilizes DNA sequencing to interrogate 406 genes as well as selected introns of 31 genes involved in rearrangements, in addition to RNA sequencing of 265 genes. The assay will be updated periodically to reflect new knowledge about cancer biology.

HEMATOLOGICAL MALIGNANCY DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY NUMBER ALTERATIONS

ABL1	ACTB	ADGRA2 (GPR124,) AKT1	AKT2	AKT3	ALK	AMER1 (FAM123B	or WTX)
APC	APH1A	AR	ARAF	ARFRP1	ARHGAP26 (GRAF)	ARID1A	ARID2
ASMTL	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXL
B2M	BAP1	BARD1	BCL10	BCL11B	BCL2	BCL2L2	BCL6	BCL7A
BCOR	BCORL1	BIRC3	BLM	BRAF	BRCA1	BRCA2	BRD4	BRIP1
BRSK1	BTG2	ВТК	BTLA	CAD	CALR*	CARD11	CBFB	CBL
CCN6 (WISP3)	CCND1	CCND2	CCND3	CCNE1	ССТ6В	CD22	CD274 (PD-L1)	CD36
CD58	CD70	CD79A	CD79B	CDC73	CDH1	CDK12	CDK4	CDK6
CDK8	CDKN1B	CDKN2A	CDKN2B	CDKN2C	CEBPA	CHD2	CHEK1	CHEK2
CIC	CIITA	CKS1B	CPS1	CREBBP	CRKL	CRLF2	CSF1R	CSF3R
CTCF	CTNNA1	CTNNB1	CUX1	CXCR4	DAXX	DDR2	DDX3X	DNM2
DNMT3A	DOT1L	DTX1	DUSP2	DUSP9	EBF1	ECT2L	EED	EGFR
ELP2	EMSY (C11orf30)	EP300	EPHA3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3
ERBB4	ERG	ESR1	ETS1	ETV6	EXOSC6	EZH2	FAF1	FANCA
FANCC	FANCD2	FANCE	FANCF	FANCG	FANCL	FAS (TNFRSF6)	FBXO11	FBXO31
FBXW7	FGF10	FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1
FGFR2	FGFR3	FGFR4	FHIT	FLCN	FLT1	FLT3	FLT4	FLYWCH1
FOXL2	FOXO1	FOXO3	FOXP1	FRS2	GADD45B	GATA1	GATA2	GATA3
GID4 (C17orf39)	GNA11	GNA12	GNA13	GNAQ	GNAS	GRIN2A	GSK3B	GTSE1
HDAC1	HDAC4	HDAC7	HGF	H1-2 (HIST1H1C)	UNAS	H1-3 (HIST1H1D)	OSKSD	GISLI
H1-4 (HIST1H1E)	TIDAC+	H2AC6 (HIST1H2A		H2AC11 (HIST1H2A	G)	H2AC16 (HIST1H2)	4/)	
H2AC17 (HIST1H2	ΔΜ)	H2BC4 (HIST1H2B	-	H2BC11 (HIST1H2B.	-	H2BC12 (HIST1H2B	•	
H2BC17 (HIST1H2	•	H3C2 (HIST1H3B)	C)	HNF1A	HRAS	HSP90AA1	ICK	ID3
IDH1	IDH2	IGF1R	IKBKE	IKZF1	IKZF2	IKZF3	IL7R	INHBA
INPP4B	INPP5D (SHIP)	IRF1	IRF4	IRF8	IRS2	JAK1	JAK2	JAK3
JARID2	JUN	KAT6A (MYST3)	KDM2B	KDM4C	KDM5A	KDM5C	KDM6A	KDR
KEAP1	KIT	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)	KRAS	LEF1	LRP1B
LRRK2	MAF	MAFB	MAGED1	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1
MAP3K14	MAP3K6	MAP3K7	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B
MEF2C	MEN1	MET	MIB1	MITF	MKI67	MLH1	MPL	MRE11 (MRE11A)
MSH2	MSH3	MSH6	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
MYO18A	NCOR2	NCSTN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOD1
NOTCH1	NOTCH2	NPM1	NRAS	NSD2 (WHSC1 or N		NT5C2	NTRK1	NTRK2
NTRK3	NUP93	NUP98	P2RY8	PAG1	PAK3	PALB2	PASK	PAX5
PBRM1	PC	PCBP1	PCLO	PDCD1	PDCD11	PDCD1LG2 (PD-L2)		PDGFRA
PDGFRB	PDK1	PHF6	PIK3CA	PIK3CG	PIK3R1	PIK3R2	PIM1	PLCG2
POT1	PPP2R1A	PRDM1	PRKAR1A	PRKDC	PRSS8	PTCH1	PTEN	PTPN11
PTPN2	PTPN6 (SHP-1)	PTPRO	RAD21	RAD50	RAD51	RAF1	RARA	RASGEF1A
RB1	RELN	RET	RHOA	RICTOR	RNF43	ROS1	RPTOR	RUNX1
S1PR2	SDHA	SDHB	SDHC	SDHD	SERP2	SETBP1	SETD2	SF3B1
SGK1	SMAD2	SMAD4	SMARCA1	SMARCA4	SMARCB1	SMC1A	SMC3	SMO
SOCS1	SOCS2	SOCS3	SOX10	SOX2	SPEN	SPOP	SRC	SRSF2
STAG2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STK11	SUFU	SUZ12
TAF1	TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TENT5C (FAM46C)		TGFBR2	TLL2	TMEM30A
TMSB4XP8 (TMS		TNFAIP3	TNFRSF11A	TNFRSF14	TNFRSF17	TOP1	TP53	TP63
TRAF2	TRAF3	TRAF5	TSC1	TSC2	TSHR	TUSC3	TYK2	U2AF1
I KAFZ	I KATS	IKATS	1361	1362	ISHK	10363	IINZ	UZAFI

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use

ORD-1435143-01 APPENDIX Genes Assayed in FoundationOne®Her								ationOne®Heme
U2AF2	VHL	WDR90	WT1	XBP1	XPO1	YY1AP1	ZMYM3	ZNF217
ZNF24 (ZSCAN3)	ZNF703	ZRSR2						
*Note: the assay v	vas updated on 11/8	8/2016 to include t	he detection of alt	erations in CALR				
HEMATOLOGIC	AL MALIGNANCY	DNA GENE LIST	: FOR THE DETE	ECTION OF SELE	CT REARRANGEM	IENTS		
ALK	BCL2	BCL6	BCR	BRAF	CCND1	CRLF2	EGFR	EPOR
ETV1	ETV4	ETV5	ETV6	EWSR1	FGFR2	IGH	IGK	IGL
JAK1	JAK2	KMT2A (MLL)	MYC	NTRK1	PDGFRA	PDGFRB	RAF1	RARA
RET	ROS1	TMPRSS2	TRG					
HEMATOLOGIC	AL MALIGNANCY	RNA GENE LIST	: FOR THE DETE	CTION OF SELE	CT REARRANGEM	IENTS*		
ABI1	ABL1	ABL2	ACSL6	AFDN (MLLT4 or		AFF1	AFF4	ALK
ARHGAP26 (GRAI		ARHGEF12	ARID1A	ARNT	ASXL1	ATF1	ATG5	ATIC
BCL10	BCL11A	BCL11B	BCL2	BCL3	BCL6	BCL7A	BCL9	BCOR
BCR	BIRC3	BRAF	BTG1	CAMTA1	CARS1 (CARS)	CBFA2T3	CBFB	CBL
CCND1	CCND2	CCND3	CD274 (PD-L1)	CDK6	CDX2	CEP43 (FGFR1OP)		CHN1
CIC	CIITA	CLP1	CLTC	CLTCL1	CNTRL (CEP110)	COL1A1	CREB3L1	CREB3L2
CREBBP	CRLF2	CSF1	CTNNB1	DDIT3	DDX10	DDX6	DEK	DUSP22
EGFR	EIF4A2	ELF4	ELL	ELN	EML4	EP300	EPOR	EPS15
ERBB2	ERG	ETS1	ETV1	ETV4	ETV5	ETV6	EWSR1	FCGR2B
FCRL4	FEV	FGFR1	FGFR2	FGFR3	FLI1	FNBP1	FOXO1	FOXO3
FOXO4	FOXP1	FSTL3	FUS	GAS7	GLI1	GMPS	GPHN	H4C9 (HIST1H4I)
HERPUD1	HEY1	HIP1	HLF	HMGA1	HMGA2	HOXA11	HOXA13	НОХАЗ
HOXA9	HOXC11	HOXC13	HOXD11	HOXD13	HSP90AA1	HSP90AB1	IGH	IGK
IGL	IKZF1	IL21R	IL3	IRF4	ITK	JAK1	JAK2	JAK3
JAZF1	KAT6A (MYST3)	KDSR	KIF5B	KMT2A (MLL)	LASP1	LCP1	LMO1	LMO2
LPP	LYL1	MAF	MAFB	MALT1	MDS2	МЕСОМ	MLF1	MLLT1 (ENL)
MLLT10 (AF10)	MLLT3	MLLT6	MN1	MNX1	MRTFA (MKL1)	MSI2	MSN	MUC1
MYB	MYC	МҮН11	МҮН9	NACA	NBEAP1 (BCL8)	NCOA2	NDRG1	NF1
NF2	NFKB2	NIN	NOTCH1	NPM1	NR4A3	NSD1	NSD2 (WHSC1 or	MMSET)
NSD3 (WHSC1L1)	NTRK1	NTRK2	NTRK3	NUMA1	NUP214	NUP98	NUTM2A	OMD
P2RY8	PAFAH1B2	PAX3	PAX5	PAX7	PBX1	PCM1	PCSK7	PDCD1LG2 (PD-L2)
PDE4DIP	PDGFB	PDGFRA	PDGFRB	PER1	PHF1	PICALM	PIM1	PLAG1
PML	POU2AF1	PPP1CB	PRDM1	PRDM16	PRRX1	PSIP1	РТСН1	PTK7
RABEP1	RAF1	RALGDS	RAP1GDS1	RARA	RBM15	RET	RHOH	RNF213
RNF217-AS1 (STL)		ROS1	RPL22	RPN1	RUNX1	RUNX1T1 (ETO)	RUNX2	SEC31A
SEPTIN5 (SEPT5)	SEPTIN6 (SEPT6)	SEPTIN9 (SEPT9)	SET	SH3GL1	SLC1A2	SNX29 (RUNDC2A		SRSF3
SS18	SSX1	SSX2	SSX4	STAT6	SYK	TAF15	TAL1	TAL2
TBL1XR1	TCF3 (E2A)	TCL1A (TCL1)	TEC	TET1	TFE3	TFG	TFPT	TFRC
TLX1	TLX3	TMPRSS2	TNFRSF11A	TOP1	TP63	TPM3	TPM4	TRIM24
TRIP11	TTL	TYK2	USP6		YPEL5	ZBTB16	ZMYM2	ZNF384

^{*}Note: some VUS rearrangements between targeted genes and unknown fusion partners or intergenic regions detected by RNA sequencing may not be reported.

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS Microsatellite (MS) status

Tumor Mutational Burden (TMB)

ZNF521

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

Performance Specifications

The median exon coverage for this sample is 766x

ACCURACY					
Sensitivity: Base Substitutions	At ≥5% Minor Allele Frequency	>99.0%			
Sensitivity: Insertions/Deletions (1-40bp)	At ≥10% Minor Allele Frequency	98.0%			
Sensitivity: Focal Copy Number Alterations (Homozygous Deletions or Amplifications)	At ≥8 copies	>95.0%			
Sensitivity: Microsatellite Instability-High (MSI-H) status	Positive Predictive Agreement (PPA)	100.0% (87.54%-100.00%)*			
Sensitivity: Microsatellite Stable (MSS) status	Positive Predictive Agreement (PPA)	89.66% (81.50%, 94.46%)*			
Sensitivity: Known Gene Fusions	>95.0%				
Specificity: Base Substitutions, Insertions/Deletions, and Focal Copy Number Alterations	Positive Predictive Value (PPV)	>99.0%			
Specificity: Known Gene Fusions	Positive Predictive Value (PPV)	>95.0%			
Specificity: Microsatellite Instability-High (MSI-H) status	Negative Predictive Agreement (NPA)	97.44% (91.12%-99.29%)*			
Specificity: Microsatellite Stable (MSS) status	Negative Predictive Agreement (NPA)	94.44% (86.57%, 97.82%)*			
Accuracy: Tumor Mutation Burden	At ≥20% tumor nuclei	>90.0%			
Reproducibility (average concordance between replicates)	97.0% inter-batch precision 97.0% intra-batch precision 95.0% microsatellite status precision 96.0% tumor mutation burden precision				

*95% Confidence Interval

Assay specifications were determined for typical median exon coverage of approximately 500 X. For additional information regarding the validation of FoundationOne®Heme, please refer to the article He, J. et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting, Blood (2016 Jun. 16).

In the fractional-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the FoundationOne Heme assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by

the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by analytical concordance to a PCR comparator assay using a pan-tumor sample set. Patients with results categorized as "MS-Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.

Tumor Mutational Burden (TMB) is determined by measuring the number of somatic mutations in sequenced genes on the FoundationOne Heme test and extrapolating to the genome as a whole. TMB is assayed for all FoundationOne Heme samples and is reported as the number of mutations per megabase (Muts/Mb). Tumor Mutational Burden is reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine Tumor Mutational Burden.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®Heme

ABOUT FOUNDATIONONE HEME

FoundationOne®Heme is a comprehensive genomic profiling test for hematologic malignancies and sarcomas. The test is designed to provide physicians with clinically actionable information to help with diagnostic sub-classification, prognosis assessment, and targeted therapeutic selection. Test results provide information about clinically significant alterations, potential targeted therapies, available clinical trials, and quantitative markers that may support immunotherapy clinical trial enrollment. FoundationOne Heme is analytically validated to detect all classes of genomic alterations in more than 400 cancer-related genes. In addition to DNA sequencing, FoundationOne Heme employs RNA sequencing across 265 genes to capture a broad range of gene fusions, common drivers of hematologic malignancies and sarcomas.

FoundationOne Heme was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne Heme has not been cleared or approved by the United States Food and Drug Administration (FDA). The FDA has determined that such clearance or approval is not necessary. FoundationOne Heme may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratory is certified under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) as qualified to perform **NETWORK* (NCCN*) CATEGORIZATION** high-complexity clinical testing.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance FoundationOne Heme identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also

highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification - equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne Heme for identifying a copy number amplification is five (5) for ERBB2 and six (6) for all other genes. Conversely, an alteration denoted as "loss equivocal" implies that FoundationOne Heme data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that FoundationOne Heme analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials Pediatric trial qualification \rightarrow Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne Heme.

TREATMENT DECISIONS ARE **RESPONSIBILITY OF PHYSICIAN**

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. These include: subclonal alterations in heterogeneous samples, low sample quality or with homozygous losses of <3 exons; and deletions and insertions >4obp, or in repetitive/high homology sequences. FoundationOne Heme is performed using DNA and RNA derived from tumor, and as such germline events may not be reported.

The following targets typically have low coverage resulting in a reduction in sensitivity: SDHD exon 4, TNFRSF11A exon1, and TP53 exon 1.

FoundationOne Heme fulfills the requirements of the European Directive 98/79 EC for in vitro

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

About FoundationOne®Heme

diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a, Cipalstraat 3, 2440 Geel, Belgium.

CE

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1. BRCA1, BRCA2, BRIP1, CHEK2, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only.

Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION		
CR	Complete response		
DCR	Disease control rate		
DNMT	DNA methyltransferase		
HR	Hazard ratio		
ITD	Internal tandem duplication		
MMR	Mismatch repair		
muts/Mb	Mutations per megabase		
NOS	Not otherwise specified		
ORR	Objective response rate		
os	Overall survival		
PD	Progressive disease		
PFS	Progression-free survival		
PR	Partial response		
SD	Stable disease		
TKI	Tyrosine kinase inhibitor		

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version (RG) 7.0.0

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

References

ORDERED TEST # ORD-1435143-01

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- Kobayashi C, et al. Cancer Genet. Cytogenet. (2006) pmid: 16527603
- Upadhyaya M, et al. Hum. Mutat. (2004) pmid: 14722917
- Zighelboim I, et al. J. Clin. Oncol. (2007) pmid: 17513808
- 9. Hampel H, et al. Cancer Res. (2006) pmid: 16885385
- Stelloo E, et al. Clin. Cancer Res. (2016) pmid: 27006490
- Kanopienė D, et al. Medicina (Kaunas) (2014) pmid: 25458958
- 12. Black D, et al. J. Clin. Oncol. (2006) pmid: 16549821
- 13. Nout RA, et al. Gynecol. Oncol. (2012) pmid: 22609107
- Steinbakk A, et al. Cell Oncol (Dordr) (2011) pmid: 21547578
- Bilbao C, et al. Int. J. Radiat. Oncol. Biol. Phys. (2010) pmid: 20005452
- Guastadisegni C, et al. Eur. J. Cancer (2010) pmid: 20627535
- 17. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 19. Nature (2012) pmid: 22810696
- 20. Hiyama T, et al. J. Gastroenterol. Hepatol. (2004) pmid: 15209621
- 21. Wu MS, et al. Cancer Res. (1998) pmid: 9537253
- 22. dos Santos NR, et al. Gastroenterology (1996) pmid: 8536886
- 23. Fang WL, et al. Biomed Res Int (2013) pmid: 23555086
- 24. Farris AB, et al. Am. J. Surg. Pathol. (2011) pmid: 21422910
- 25. Agaram NP, et al. Am. J. Clin. Pathol. (2010) pmid: 20395525
- 26. Ruemmele P, et al. Am. J. Surg. Pathol. (2009) pmid: 19252434
- 27. Planck M, et al. Cancer (2003) pmid: 12627520
- 28. Hibi K, et al. Jpn. J. Cancer Res. (1995) pmid: 7775257
- **29.** Muneyuki T, et al. Dig. Dis. Sci. (2000) pmid: 11117578
- **30.** Zhang SH, et al. World J. Gastroenterol. (2005) pmid: 15918185
- 31. Chiappini F, et al. Carcinogenesis (2004) pmid: 14656944
- **32.** Suto T, et al. J Surg Oncol (2001) pmid: 11223838
- 33. Momoi H, et al. J. Hepatol. (2001) pmid: 11580146
- **34.** Liengswangwong U, et al. Int. J. Cancer (2003) pmid: 14506736
- **35.** Moy AP, et al. Virchows Arch. (2015) pmid: 25680569
- **36.** Yoshida T, et al. J. Gastroenterol. (2000) pmid: 11063221
- **37.** Pritchard CC, et al. Nat Commun (2014) pmid: 25255306
- **38.** Azzouzi AR, et al. BJU Int. (2007) pmid: 17233803 **39.** Burger M, et al. J. Mol. Med. (2006) pmid: 16924473
- 40. Bai S, et al. Am. J. Clin. Pathol. (2003) pmid: 23690119
- 41. Giedl J, et al. Am. J. Clin. Pathol. (2014) pmid: 25319978
- **42.** Yamamoto Y, et al. Clin. Cancer Res. (2006) pmid: 16675567
- **43.** You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- **44.** Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- **45.** Boland CR, et al. Cancer Res. (1998) pmid: 9823339

- 46. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 47. Samstein RM. et al. Nat. Genet. (2019) pmid: 30643254
- 48. Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 50. Cristescu R, et al. Science (2018) pmid: 30309915
- 51. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 53. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 54. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 55. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- **56.** Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 57. Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- 58. Ott PA, et al. J. Clin. Oncol. (2019) pmid: 30557521
- 59. Cristescu R, et al. J Immunother Cancer (2022) pmid: 35101941
- **60.** Friedman CF, et al. Cancer Discov (2022) pmid: 34876409
- 61. Sturgill EG, et al. Oncologist (2022) pmid: 35274716
- 62. Schenker at al., 2022; AACR Abstract 7845
- 63. Legrand et al., 2018; ASCO Abstract 12000
- **64.** Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 65. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 66. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) nmid: 23875803
- 67. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- **68.** Rizvi NA, et al. Science (2015) pmid: 25765070
- **69.** Johnson BE, et al. Science (2014) pmid: 24336570
- 70. Choi S, et al. Neuro-oncology (2018) pmid: 2945241971. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 72. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 73. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 74. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- **75.** Kim HS, et al. Oncotarget (2017) pmid: 28418920
- **76.** Kwak EL, et al. Cancer (2013) pmid: 23775486
- 77. Sanchez-Vega F, et al. Cancer Discov (2019) pmid: 30463996
- **78.** Hong MH, et al. Cancer (2020) pmid: 32749686
- 79. Chen Q, et al. Onco Targets Ther (2020) pmid: 32184619
- 80. Machiels JP, et al. Ann Oncol (2018) pmid: 29346507
- 81. Necchi A, et al. BJU Int. (2018) pmid: 28921872
- 82. Kim HS, et al. Clin. Cancer Res. (2015) pmid: 25424851
- **83.** Jiang Z, et al. PLoS ONE (2013) pmid: 23441167
- **84.** Licitra L, et al. Ann. Oncol. (2011) pmid: 21048039
- 85. Smyth EC, et al. Gut (2021) pmid: 33199443
- **86.** Holtkamp N, et al. Neuro-oncology (2008) pmid: 18650488
- 87. Du X, et al. J Hematol Oncol (2013) pmid: 24341609
- 88. Prayson RA, et al. Ann Diagn Pathol (2007) pmid: 17870017
- 89. Keizman D, et al. J. Neurooncol. (2009) pmid: 19330289
- **90.** Tawbi H, et al. Oncologist (2008) pmid: 18448562
- **91.** Ciardiello F, et al. N. Engl. J. Med. (2008) pmid: 18337605
- Liang Z, et al. BMC Cancer (2010) pmid: 20637128
 Bhargava R, et al. Mod. Pathol. (2005) pmid: 15920544
- Bhargava R, et al. Mod. Pathol. (2005) pmid: 1592054
 Yang YL, et al. Chin. Med. J. (2012) pmid: 22490401
- 95. Dombi E, et al. N. Engl. J. Med. (2016) pmid: 28029918

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

- 96. Schalkwijk S, et al. Cancer Chemother Pharmacol (2021) pmid: 33903938
- 97. Toledano H, et al. Childs Nerv Syst (2021) pmid: 33751171
- 98. Ronsley R, et al. Cancer Med (2021) pmid: 33939292 99. Fangusaro J. et al. Lancet Oncol. (2019) pmid: 31151904
- 100. Manoharan N, et al. J Neurooncol (2020) pmid: 32780261
- 101. Kondyli M, et al. J Neurooncol (2018) pmid: 30097824
- **102.** Awada G, et al. Case Rep Oncol () pmid: 33082744
- 103. Middleton G, et al. Nature (2020) pmid: 32669708
- **104.** Lim SM, et al. Oncotarget (2016) pmid: 26859683
- **105.** Weiss B, et al. Neuro-oncology (2015) pmid: 25314964
- 106. Janku F, et al. Oncotarget (2014) pmid: 24931142107. Johannessen CM, et al. Curr. Biol. (2008) pmid: 18164202
- 108. Johannessen CM, et al. Proc. Natl. Acad. Sci. U.S.A.
- (2005) pmid: 15937108
- 109. Malone CF, et al. Cancer Discov (2014) pmid: 24913553110. Tolcher AW, et al. Ann. Oncol. (2015) pmid: 25344362
- 111. Patterson et al., 2018; AACR Abstract 3891
- **112.** Upadhyaya M, et al. Hum. Mutat. (2008) pmid: 17960768
- 17960768 113. Bottillo I, et al. J. Pathol. (2009) pmid: 19142971
- 114. Laycock-van Spyk S, et al. Hum. Genomics (2011) pmid: 22155606
- 115. Thomas L, et al. Eur. J. Hum. Genet. (2012) pmid: 22108604
- 116. Messiaen LM, et al. Hum. Mutat. (2000) pmid:
- 117. Upadhyaya M, et al. Hum. Mutat. (2008) pmid: 18484666
- 118. Fan Q, et al. Clin Transl Oncol (2014) pmid: 23749326
- 119. Hattori S, et al. Biochem. Biophys. Res. Commun. (1991) pmid: 1904223
- 120. Morcos P, et al. Mol. Cell. Biol. (1996) pmid: 8628317
- 121. Pemov A, et al. Neurooncol Adv (2020) pmid: 32642732
- 122. Lee W, et al. Nat. Genet. (2014) pmid: 25240281123. Kallen ME, et al. Am J Surg Pathol (2021) pmid:
- 32796172 124. Landrum MJ, et al. Nucleic Acids Res. (2018) pmid: 29165669
- 125. Jett K, et al. Genet. Med. (2010) pmid: 20027112
- 126. Patil S, et al. Oncologist (2012) pmid: 22240541
- 127. Evans DG, et al. Clin Sarcoma Res (2012) pmid: 23036231
- 128. Upadhyaya M, et al. J. Med. Genet. (1995) pmid: 8544190
- 129. Williams VC, et al. Pediatrics (2009) pmid: 19117870
- 130. Horiuchi D, et al. J. Exp. Med. (2012) pmid: 22430491
- 131. Goga A, et al. Nat. Med. (2007) pmid: 17589519
 132. Molenaar JJ, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid: 19525400
- pmid: 19525400 133. Dammert MA, et al. Nat Commun (2019) pmid:
- 134. Mollaoglu G, et al. Cancer Cell (2017) pmid: 28089889
- 135. Cardnell RJ, et al. Oncotarget (2017) pmid: 29088717136. Wang L, et al. Mol Oncol (2017) pmid: 28417568
- 137. Takahashi Y, et al. Ann. Oncol. (2015) pmid: 25632068
- 138. Li Y, et al. Thyroid (2018) pmid: 30226440 139. Mahadevan D, et al. PLoS ONE (2014) pmid: 24893165
- 140. Park SI, et al. Target Oncol (2019) pmid: 31429028141. Helfrich BA, et al. Mol. Cancer Ther. (2016) pmid:
- 27496133 142. Hook KE, et al. Mol. Cancer Ther. (2012) pmid: 22222631
- 143. Yang D, et al. Proc. Natl. Acad. Sci. U.S.A. (2010) pmid:

APPENDIX

References

- 144. He J, et al. Anticancer Drugs (2019) pmid: 30540594
- Shroff EH, et al. Proc. Natl. Acad. Sci. U.S.A. (2015) nmid: 25964345
- 146. Effenberger M, et al. Oncotarget (2017) pmid: 29156762
- Qu X, et al. Biochem. Biophys. Res. Commun. (2018) pmid: 30103944
- 148. Xiang Y, et al. J. Clin. Invest. (2015) pmid: 25915584
- 149. Delmore JE, et al. Cell (2011) pmid: 21889194
- 150. Bandopadhayay P, et al. Clin. Cancer Res. (2014) pmid: 24297863
- 151. Lovén J, et al. Cell (2013) pmid: 23582323
- 152. Otto C. et al. Neoplasia (2019) pmid: 31734632
- 153. Dong LH, et al. J Hematol Oncol (2013) pmid: 23866964
- 154. Pei Y, et al. Cancer Cell (2016) pmid: 26977882
- 155. Fu XH, et al. Acta Pharmacol, Sin. (2019) pmid: 30224636
- 156. Owonikoko TK, et al. J Thorac Oncol (2020) pmid: 31655296
- Ganesan P, et al. Mol. Cancer Ther. (2014) pmid: 25253784
- 158. Pereira CB, et al. PLoS ONE (2013) pmid: 23555992
- 159. Yasojima H, et al. Eur. J. Cancer (2011) pmid: 21741827
- 160. Arango D, et al. Cancer Res. (2001) pmid: 11406570
- 161. Bottone MG, et al. Exp. Cell Res. (2003) pmid: 14516787
- 162. Zehir A, et al. Nat. Med. (2017) pmid: 28481359
- 163. Yang J, et al. Clin. Cancer Res. (2011) pmid: 22042973
- **164.** Dang CV, et al. Semin. Cancer Biol. (2006) pmid: 16904903
- 165. Nesbit CE, et al. Oncogene (1999) pmid: 10378696
- 166. Blancato J, et al. Br. J. Cancer (2004) pmid: 15083194
- 167. Fromont G, et al. Hum. Pathol. (2013) pmid: 23574779
- 168. Fennell DA, et al. Lancet Oncol (2022) pmid: 35157829
- 169. Elvin JA, et al. Oncologist (2017) pmid: 28283584
- 170. Gao J, et al. Curr Oncol (2015) pmid: 26715889
- 171. Gopalan et al., 2014; ASCO Abstract 8077
- 172. Peguero et al., 2016; ASCO Abstract 2528
- 173. Konecny et al., 2016; ASCO Abstract 5557
- DeMichele A, et al. Clin. Cancer Res. (2015) pmid: 25501126
- 175. Finn RS, et al. Lancet Oncol. (2015) pmid: 25524798
- 176. Infante JR, et al. Clin. Cancer Res. (2016) pmid: 27542767
- 177. Johnson DB, et al. Oncologist (2014) pmid: 24797823
- Van Maerken T, et al. Mol. Cancer Ther. (2011) pmid: 21460101
- Gamble LD, et al. Oncogene (2012) pmid: 21725357
- 180. Konecny GE, et al. Clin. Cancer Res. (2011) pmid: 21278246
- Katsumi Y, et al. Biochem. Biophys. Res. Commun. (2011) pmid: 21871868
- 182. Cen L, et al. Neuro-oncology (2012) pmid: 22711607
- 183. Logan JE, et al. Anticancer Res. (2013) pmid: 23898052
- 184. Shapiro et al., 2013; ASCO Abstract 2500
- 185. Flaherty KT, et al. Clin. Cancer Res. (2012) pmid: 22090362 186. Dickson MA, et al. J. Clin. Oncol. (2013) pmid: 23569312
- Mantripragada KK, et al. Genes Chromosomes Cancer 187.
- (2009) pmid: 19603524
- Endo M, et al. Clin. Cancer Res. (2011) pmid: 21262917 188.
- Perrone F, et al. Clin. Cancer Res. (2003) pmid: 14519636
- 190. Agesen TH, et al. J. Neuropathol. Exp. Neurol. (2005) pmid: 15715087
- 191. Ouelle DE, et al. Cell (1995) pmid: 8521522
- 192. Mutat. Res. (2005) pmid: 15878778
- 193. Gazzeri S, et al. Oncogene (1998) pmid: 9484839

- 194. Oncogene (1999) pmid: 10498883
- Sherr CJ, et al. Cold Spring Harb. Symp. Quant. Biol. (2005) pmid: 16869746
- 196. Ozenne P, et al. Int. J. Cancer (2010) pmid: 20549699
- 197. Ruas M, et al. Oncogene (1999) pmid: 10498896
- 198. Jones R. et al. Cancer Res. (2007) pmid: 17909018
- 199. Haferkamp S, et al. Aging Cell (2008) pmid: 18843795 200. Huot TJ, et al. Mol. Cell. Biol. (2002) pmid: 12417717
- 201. Rizos H, et al. J. Biol. Chem. (2001) pmid: 11518711
- 202. Gombart AF, et al. Leukemia (1997) pmid: 9324288
- 203. Yang R, et al. Cancer Res. (1995) pmid: 7780957
- 204. Parry D, et al. Mol. Cell. Biol. (1996) pmid: 8668202
- 205. Greenblatt MS, et al. Oncogene (2003) pmid: 12606942
- 206. Yarbrough WG, et al. J. Natl. Cancer Inst. (1999) pmid:
- 207. Poi MJ, et al. Mol. Carcinog. (2001) pmid: 11255261
- 208. Byeon IJ, et al. Mol. Cell (1998) pmid: 9660926
- Kannengiesser C, et al. Hum. Mutat. (2009) pmid:
- 210. Lal G, et al. Genes Chromosomes Cancer (2000) pmid: 10719365
- 211. Koh J, et al. Nature (1995) pmid: 7777061
- McKenzie HA, et al. Hum. Mutat. (2010) pmid: 20340136
- 213. Miller PJ, et al. Hum. Mutat. (2011) pmid: 21462282
- 214. Kutscher CL, et al. Physiol. Behav. (1977) pmid: 905385
- 215. Scaini MC, et al. Hum. Mutat. (2014) pmid: 24659262
- Jenkins NC, et al. J. Invest. Dermatol. (2013) pmid:
- 217. Walker GJ, et al. Int. J. Cancer (1999) pmid: 10389768
- 218. Rutter JL, et al. Oncogene (2003) pmid: 12853981
- 219. Itahana K, et al. Cancer Cell (2008) pmid: 18538737
- 220. Zhang Y, et al. Mol. Cell (1999) pmid: 10360174
- 221. Zhang Y, et al. Cell (1998) pmid: 9529249
- 222. Jafri M, et al. Cancer Discov (2015) pmid: 25873077 223. Whelan AJ, et al. N Engl J Med (1995) pmid: 7666917
- 224. Adv Exp Med Biol (2010) pmid: 20687502
- 225. Hogg D, et al. J Cutan Med Surg (1998) pmid: 9479083
- 226. De Unamuno B, et al. Melanoma Res (2018) pmid: 29543703
- Soura E, et al. J Am Acad Dermatol (2016) pmid: 227. 26892650
- Huerta C, et al. Acta Derm Venereol (2018) pmid: 29405243 228.
- 229. Kaufman DK, et al. Neurology (1993) pmid: 8414022
- 230. Bahuau M, et al. Cancer Res (1998) pmid: 9622062
- 231. Chan AK, et al. Clin Neuropathol () pmid: 28699883
- 232. Owonikoko et al., 2016; ESMO Abstract 14230
- 233. Gong X, et al. Cancer Discov (2019) pmid: 30373917
- 234. Oser MG, et al. Cancer Discov (2019) pmid: 30373918
- 235. Yang W, et al. Kaohsiung J Med Sci (2022) pmid: 34741392
- 236. Beltran H, et al. Clin. Cancer Res. (2019) pmid: 30232224
- Allaman-Pillet N, et al. Ophthalmic Genet. () pmid: 21955141
- 238. Viatour P, et al. J. Exp. Med. (2011) pmid: 21875955 Front Biosci (Landmark Ed) (2011) pmid: 21196210
- 240. Thomas L, et al. Hum. Genomics (2012) pmid:
- 23244685 Burkhart DL, et al. Nat. Rev. Cancer (2008) pmid:
- 18650841 242. Knudsen ES, et al. Nat. Rev. Cancer (2008) pmid:
- 243. Berge EO, et al. Mol. Cancer (2010) pmid: 20594292
- 244. Giacinti C, et al. Oncogene (2006) pmid: 16936740

- 245. Otterson GA, et al. Proc. Natl. Acad. Sci. U.S.A. (1997) pmid: 9342358
- 246. Otterson GA, et al. Am. J. Hum. Genet. (1999) pmid: 10486322
- 247. Qin XQ, et al. Genes Dev. (1992) pmid: 1534305
- 248. Rubin SM, et al. Cell (2005) pmid: 16360038
- Sun H. et al. Mol. Cell. Biol. (2006) pmid: 16449662
- 250. Chen Z, et al. Hum. Mutat. (2014) pmid: 24282159 251. Yun J, et al. Int J Ophthalmol (2011) pmid: 22553621
- 252. Houston SK, et al. Int Ophthalmol Clin (2011) pmid: 21139478
- Ng AK, et al. Semin Radiat Oncol (2010) pmid: 253.
- 254. Hirai H, et al. Cancer Biol. Ther. (2010) pmid: 20107315
- Bridges KA, et al. Clin. Cancer Res. (2011) pmid: 21799033
- Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid: 256. 21389100
- Osman AA, et al. Mol. Cancer Ther. (2015) pmid:
- 25504633 Xu L, et al. Mol. Cancer Ther. (2002) pmid: 12489850
- 259. Xu L, et al. Mol. Med. (2001) pmid: 11713371
- Camp ER, et al. Cancer Gene Ther. (2013) pmid:
- 261. Kim SS, et al. Nanomedicine (2015) pmid: 25240597
- 262. Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628
- 263. Hajdenberg et al., 2012; ASCO Abstract e15010
- 264. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554
- 265. Moore et al., 2019; ASCO Abstract 5513
- 266. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27998224
- 267. Oza et al., 2015; ASCO Abstract 5506
- 268. Lee J. et al. Cancer Discov (2019) pmid: 31315834 Méndez E, et al. Clin. Cancer Res. (2018) pmid:
- 29535125 270. Seligmann JF, et al. J Clin Oncol (2021) pmid: 34538072
- Kwok M, et al. Blood (2016) pmid: 26563132
- 272. Boudny M, et al. Haematologica (2019) pmid: 30975914
- Dillon MT, et al. Mol. Cancer Ther. (2017) pmid: 28062704
- Middleton FK, et al. Cancers (Basel) (2018) pmid: 274. 30127241
- Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 276. Brohl AS, et al. Sci Rep (2017) pmid: 29118384 Verdijk RM, et al. J. Neuropathol. Exp. Neurol. (2010) 277.
- pmid: 20010306 278 Yu J. et al. Clin. Cancer Res. (2011) pmid: 21325289
- 279. Koga T, et al. J. Pathol. (2002) pmid: 12081210
- 280. Mawrin C, et al. Virchows Arch. (2002) pmid: 12070601
- 281. Holtkamp N, et al. Neoplasia (2007) pmid: 17786186
- 282. Pekmezci M. et al. Mod. Pathol. (2015) pmid: 25189642
- 283. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675 284. Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid:
- 18410249 Kato S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 285 12826609
- Kamada R, et al. J. Biol. Chem. (2011) pmid: 20978130 286.
- Zerdoumi Y, et al. Hum. Mol. Genet. (2017) pmid: 28472496
- Yamada H, et al. Carcinogenesis (2007) pmid: 17690113 Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- 290. Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100 Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev.
- (2001) pmid: 11219776
- Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316 292. Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid: 19204208

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

References

ORDERED TEST # ORD-1435143-01

- 294. Lalloo F. et al. Lancet (2003) pmid: 12672316
- 295. Mandelker D, et al. Ann. Oncol. (2019) pmid: 31050713 296. Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
- Genovese G, et al. N. Engl. J. Med. (2014) pmid:
- 298. Xie M. et al. Nat. Med. (2014) pmid: 25326804
- Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid:
- 300. Severson EA, et al. Blood (2018) pmid: 29678827
- 301. Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 302. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- 303. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 304. Razavi P, et al. Nat. Med. (2019) pmid: 31768066
- 305. Janiigian et al., 2014: AACR Abstract CT228
- 306. Lai et al., 2019; DOI: 10.1200/PO.19.00186
- 307. Cohen et al., 2016; ASTRO Abstract 10
- 308. Machiels et al., 2017; ESMO Abstract 1079P 309. Seguist LV. et al. J. Clin. Oncol. (2013) pmid: 23816960
- 310. Katakami N, et al. J. Clin. Oncol. (2013) pmid: 23816963
- 311. Marshall J, et al. Future Oncol (2013) pmid: 23414476
- 312. Chu et al., 2013; ASCO Abstract 2523
- 313. Philip PA, et al. J. Clin. Oncol. (2010) pmid: 20606093
- 314. Slovin SF, et al. Clin Genitourin Cancer (2009) pmid: 19815486
- 315. Falchook GS, et al. Oncotarget (2013) pmid: 23435217
- 316. Opsomer RJ, et al. Acta Urol Belg (1985) pmid: 2986437
- 317. Wu YL, et al. Lancet Oncol. (2017) pmid: 28958502
- 318. Necchi et al., 2018; ASCO Abstract 399
- 319. Kim HS, et al. Oncotarget (2015) pmid: 26462025

- 320. Cavalieri S, et al. Eur. J. Cancer (2018) pmid: 29734047
- 321. Oh DY, et al. Gastric Cancer (2016) pmid: 26581547
- Sepúlveda-Sánchez JM, et al. Neuro-oncology (2017) 322. pmid: 28575464
- 323. Douillard JY, et al. Ann. Oncol. (2014) pmid: 24718886
- 324. Price TJ, et al. Lancet Oncol. (2014) pmid: 24739896
- 325. Van Cutsem E, et al. J. Clin. Oncol. (2007) pmid:
- 326. Vermorken JB, et al. Lancet Oncol (2013) pmid: 23746666
- 327. Wirth LJ, et al. Ann. Oncol. (2010) pmid: 19892746
- 328. Siano M. et al. Oncologist (2017) pmid: 28592616
- 329. Mesía R, et al. Lancet Oncol (2015) pmid: 25596660
- 330. Giralt J, et al. Lancet Oncol (2015) pmid: 25596659
- 331. Siu LL, et al. JAMA Oncol (2016) pmid: 27930762 332. Waddell T, et al. Lancet Oncol. (2013) pmid: 23594787
- 333. Crawford J, et al. J Thorac Oncol (2013) pmid: 24389433
- 334. Schuette W, et al. Clin Lung Cancer (2015) pmid: 26094080
- 335. Leone F, et al. Cancer (2016) pmid: 26540314
- 336. Vogel A. et al. Eur J Cancer (2018) pmid: 29413685
- Rowinsky EK, et al. J. Clin. Oncol. (2004) pmid: 15210739
- 338. Glassberg et al., 2020; ASPHO Abstract 2015
- 339. Coyne et al., 2020; ASCO Abstract 3612
- 340. McCowage et al., 2018; ASCO Abstract 10504
- 341. Mueller et al., 2020; SNO Abstract NFB-17
- 342. Waldner et al., 2020; DOI: 10.1055/s-0040-1715638
- 343. Romo et al., 2019; SNO Abstract RARE-54
- 344. Eckstein OS, et al. J Clin Oncol (2022) pmid: 35363510

- 345. Passos J. et al. Pediatr. Neurol. (2020) pmid: 31917098
- 346. Banerjee A, et al. Neuro-oncology (2017) pmid: 28339824
- 347. Gupta A, et al. Ann. Oncol. (2014) pmid: 24567366
- 348. Robert C, et al. Lancet Oncol. (2013) pmid: 23735514
- 349. Kirkwood JM, et al. Clin. Cancer Res. (2012) pmid: 22048237
- 350. Banerji U, et al. Clin. Cancer Res. (2010) pmid: 20179232
- Boers-Sonderen MJ, et al. Anticancer Drugs (2012) 351. pmid: 22293660
- 352. Lopez-Chavez A, et al. J. Clin. Oncol. (2015) pmid: 25667274
- 353. Hainsworth JD, et al. J Thorac Oncol (2010) pmid: 20802351
- Coleman RL, et al. Gynecol. Oncol. (2015) pmid: 25887099
- Deming DA, et al. Invest New Drugs (2016) pmid: 26666244 355.
- Krishnamurthy A, et al. Cancer Res. (2018) pmid: 356. 30042150
- 357. Infante JR, et al. Invest New Drugs (2017) pmid: 28424891
- 358. LoRusso PM, et al. BMC Cancer (2017) pmid: 28264648
- Tolcher AW, et al. Clin. Cancer Res. (2015) pmid: 359. 25516890
- Wilky BA, et al. Br. J. Cancer (2015) pmid: 25268371
- 361. Vaassen P. et al. Neuropediatrics (2019) pmid: 31141829
- Subbiah V, et al. Clin. Cancer Res. (2017) pmid: 28377484
- 363. Eroglu Z, et al. Br. J. Cancer (2015) pmid: 25897676

isclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy