

## Quiz #2 Solutions

## Problem 1.

Recall that two vectors are orthogonal if and only if their dot product is zero.

- (1)  $\vec{u} \cdot \vec{v} = (-2) \times 1 + 2 \times 1 = 0$  therefore yes,  $\vec{u}$  and  $\vec{v}$  are orthogonal.
- (2)  $\vec{u} \cdot \vec{v} = 1 \times 1 + 2 \times 2 + 3 \times (-1) = 2 \neq 0$  therefore no,  $\vec{u}$  and  $\vec{v}$  are not orthogonal.

## Problem 2.

Recall that given any two vectors  $\vec{u}$  and  $\vec{v}$ , the cross product  $\vec{w} = \vec{u} \times \vec{v}$  is orthogonal to both  $\vec{u}$  and  $\vec{v}$ . Note that the other vectors orthogonal to both  $\vec{u}$  and  $\vec{v}$  are just the scalar multiples of  $\vec{w}$ .

(1) Let us compute  $\vec{w} = \vec{u} \times \vec{v}$  where  $\vec{u} = (0, 1, 0)$  and  $\vec{v} = (0, 0, 1)$ :

$$\vec{w} = \vec{u} \times \vec{v}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} \vec{k}$$

$$= \vec{i}$$

$$= (1, 0, 0)$$

Answer:  $\vec{w} = (1, 0, 0)$  is orthogonal to both  $\vec{u}$  and  $\vec{v}$ .

*Remark:* A more "clever" answer to this specific question, not requiring any computations, would have been to observe that  $\vec{u} = \vec{j}$  and  $\vec{v} = \vec{k}$ , and we know that  $\vec{w} = \vec{i}$  is orthogonal to both. An even more "clever" answer, since the question did not specify that  $\vec{w}$  should be non-null, is simply to take  $\vec{w} = \vec{0}$  (recall that the null vector is orthogonal to all vectors!).

(2) Let us compute  $\vec{w} = \vec{u} \times \vec{v}$  where  $\vec{u} = (2, 1, 0)$  and  $\vec{v} = (-1, 1, 0)$ :

$$\vec{w} = \vec{u} \times \vec{v}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & 0 \\ -1 & 1 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix} \vec{i} - \begin{vmatrix} 2 & 0 \\ -1 & 0 \end{vmatrix} \vec{j} + \begin{vmatrix} 2 & 1 \\ -1 & 1 \end{vmatrix} \vec{k}$$

$$= 3\vec{k}$$

$$= (0, 0, 3)$$

Answer:  $\vec{w} = (0, 0, 3)$  is orthogonal to both  $\vec{u}$  and  $\vec{v}$ .

*Remark:* A more "clever" answer to this specific question, not requiring any computations, would have been to observe that  $\vec{u}$  and  $\vec{v}$  are both in the xy-plane (their z-components are zero), therefore  $\vec{w} = \vec{k}$  is orthogonal to both (since  $\vec{k}$  is orthogonal to any vector in the xy-plane). Once again here, an even more "clever" answer, since the question did not specify that  $\vec{w}$  should be non-null, is simply to take  $\vec{w} = \vec{0}$  (recall that the null vector is orthogonal to all vectors!).

## Problem 3.

- (1) True [It is a theorem that two vectors are parallel if and only if their cross product is the null vector.]
- (2) True  $[\vec{k} = \text{is orthogonal to any vector in the } xy\text{-plane: this is easy to check with the dot product, for instance.}]$
- (3) True  $[\vec{u} \times \vec{v}]$  is orthogonal to  $\vec{u}$ , therefore  $\vec{u} \cdot (\vec{u} \times \vec{v}) = 0$ .
- (4) True [This is because  $\vec{u} \cdot \vec{v} = ||\vec{u}|| \, ||\vec{v}|| \cos(\theta)$  and  $||\vec{u} \times \vec{v}|| = ||\vec{u}|| \, ||\vec{v}|| \sin(\theta)$ , conclude using the fact that  $\cos^2(\theta) + \sin^2(\theta) = 1$ .]