EA2

Ann-Christin Falkenreck

31. Oktober 2020

Inhaltsverzeichnis

1	Aquivalenz von Automaten				2		
2	Analyse von Schaltwerken						
	2.1 Zustandstabelle				3		
	2.2 Übergangs- und Ausgangsfunktionen				S		
	2.3 Zustandsgraph						
3	Synthese von Schaltwerken				4		
	3.1 Zustandstabelle				4		
	3.2 Übergangs- und Ausgangsfunktionen				4		
	3.3 Schaltplan				١		
4	Zustandsminimierung				6		
	4.1 Zustandstabelle				6		
	4.2 Stufe 0 Tabelle				6		
	4.3 Äquivalente Zustandspaare				6		

1 Äquivalenz von Automaten

2 Analyse von Schaltwerken

2.1 Zustandstabelle

Z	X	Z+	У
0	0	1	1
0	1	2	1
1	0	2	1
1	1	1	0
2	0	2	1
2	1	0	1

2.2 Übergangs- und Ausgangsfunktionen

$$Z_0^+ = Z_2 x$$

$$Z_1^+ = Z_0 \overline{x} \text{ v } Z_1 x$$

$$Z_2^+ = Z_0 x \text{ v } Z_1 \overline{x} \text{ v } Z_2 \overline{x}$$

2.3 Zustandsgraph

3 Synthese von Schaltwerken

3.1 Zustandstabelle

Z_1Z_0	X	$Z_1^+ Z_0^+$	у
00	0	11	0
00	1	01	0
01	0	00	1
01	1	10	0
10	0	11	1
10	1	01	0
11	0	00	0
11	1	10	0

3.2 Übergangs- und Ausgangsfunktionen

$$y = \overline{Z_1} Z_0 x \text{ v } Z_1 \overline{Z_0} x$$

$$Z_1^+ = \overline{Z_1} \overline{Z_0} \overline{x} \text{ v } x \text{ v } Z_1 \overline{Z_0} \overline{x}$$

$$Z_0^+ = \overline{Z_1} \overline{Z_0} x \text{ v } \overline{Z_0} \text{ v } Z_1 \overline{Z_0} x$$

3.3 Schaltplan

4 Zustandsminimierung

4.1 Zustandstabelle

Zustand	Folgezustand	bei	Ausgabe		
	x=0	x=1	у		
1	7	2	1		
2	2	4	0		
3	6	4	0		
4	6	3	0		
5	3	4	1		
6	5	2	1		
7	4	3	1		

4.2 Stufe 0 Tabelle

Stufe 0	
(1,5)	(3,7)(2,4)
(1,6)	(5,7)
(1,7)	(4,7) $(2,3)$
(2,3)	(2,6)
(2,4)	(2,6)(3,4)
(3,4)	
(5,6)	(3,5) $(2,4)$
(5,7)	(3,4)
(6,7)	(4,5) $(2,3)$

4.3 Äquivalente Zustandspaare

(1,6), (3,4), (5,7)