Análisis de señales Taller de refuerzo matemático

Escuela de Ciencias exactas e Ingeniería

Código: SA2020II_TTQ00

	Profesor: Marco Teran
Name:	Deadline: 18 de Febrero

1.	(30 points)	Realizar	cada 1	mo de	los siguientes	eiercicios	de refuerzo	matemático
⊥.	(SOLDOING)	rtcanzai	caua i	uno de	TOS SIGUICITOS	CICICIOS	de renderzo	matematico.

(a)
$$\int t \cos(3t^2) dt$$
 (k) $\int \frac{dx}{x^2 - a^2}$, para $a \neq 0$ (t) $\sum_{s=4}^{10} 3s$ (b) $\int \frac{t \sin(4t + 6\pi)}{3\pi} dt$ (l) $\int (bx)^{\frac{1-b}{b}} dx$ (u) $\sum_{s=4}^{6} (2x)^2$

(d)
$$\int 4t^{2n} dt$$
 (n) $\sum_{k=0}^{99} (\frac{1}{3})^k$ (v) $\sum_{k=0}^{n} y^2$

(e)
$$\int t \sin(t) \cos(3t) dt$$
 (o)
$$\sum_{n=0}^{8} 1^{n}$$
 (w)
$$\sum_{r=0}^{\infty} \frac{1}{3} 9^{\frac{r}{2}}$$
 (f)
$$\int \frac{1}{3\Omega - 2} d\Omega$$
 (e)
$$\int t \sin(t) \cos(3t) dt$$
 (o)
$$\sum_{n=0}^{8} 1^{n}$$
 (v)
$$\sum_{r=0}^{\infty} \frac{1}{3} 9^{\frac{r}{2}}$$

(f)
$$\int \frac{1}{3\Omega - 2} d\Omega$$
 (p) $\sum_{n=-2}^{4} 0.5^n$ (g) $\int \sin^2 \theta \cos^2 \theta d\theta$ (q) $\sum_{k=r}^{10} 9^{0.5k}$ (x) $\sum_{k=r}^{\infty} 3(\frac{1}{2})^{2k}$

(h)
$$\int_{a}^{b} |x| dx$$
, para $a < 0 < b$ (q) $\sum_{k=5}^{90.0k} 9^{0.0k}$ (y) $\sum_{n=-\infty}^{1} \frac{2n}{3} (5)^n$

(i)
$$\int_{1}^{3} (x^2 - 1)10^{-2x} dx$$
 (r) $\sum_{n=0}^{5} 4e^{3n}$ (y) $\sum_{n=-\infty}^{\infty} \frac{2n}{3} (5)^n$

(j)
$$\int \frac{\mathrm{d}x}{x\sqrt{1-x^2}}$$
 (s) $\sum_{m=2}^{6} \cos 0.5m$ (z) $\sum_{n=0}^{\infty} n^2 (\frac{1}{3})^n$

2. (5 points) Resolver las inecuaciones:

(a)
$$1 - x \ge 2x + 3$$
 (d) $12 \le -1.4x \le 28$

(b)
$$5x - 4 < 3x + 4$$
 (e) $-8 < (x - 4)(x + 3) < 0$

(c)
$$0.2x + 4 > 1.7x - 3$$
 (f) $\frac{x^2 - 5x + 6}{x + 4} \le 0$

(g)
$$\frac{4-x}{3x^2+3x-60} \ge 0$$

(h) $x^3 + 8 > 0$

(a)
$$\left(\frac{1-x}{1+\sqrt{(x)}}+2\sqrt{x}\right)(1-\sqrt{x})$$
 (c) $\left(\frac{1}{(\sqrt{(x)}-1)^2}-\frac{\sqrt{x}}{1-x}\right)\frac{1-x}{1+x}$ (e) $\sin^2 x - \sin^4 x + \cos^4 x$

(b)
$$(\frac{1}{\sqrt{(x)+3}} + \frac{4}{x-9})\frac{\sqrt{x}+3}{\sqrt{x}+1}$$
 (d) $\frac{\sqrt{x}}{\sqrt{x}-6} - \frac{3}{\sqrt{x}+6} + \frac{x}{36-x}$ (f) $\frac{\sin^2\alpha}{1-\cos\alpha} - \cos\alpha$

4. (5 points) Demostrar la igualdad implementando propiedades trigonométricas:

(a)
$$\sin^4 \alpha + 2\sin^2 \alpha \cos^2 \alpha = 1 - \cos^4 \alpha$$