Rappels : somme de deux vecteurs

Chapitre 1 Chapitre 2 Chapitre 3

Somme de deux vecteurs

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

$$\left[\begin{array}{cc} 3 & 1 \\ 1 & 2 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} 7 \\ 4 \end{array}\right] \iff x_1 \left[\begin{array}{c} 3 \\ 1 \end{array}\right] + x_2 \left[\begin{array}{c} 1 \\ 2 \end{array}\right] = \left[\begin{array}{c} 7 \\ 4 \end{array}\right],$$

FIGURE – Décider si \vec{b} est comb. lin. de $\vec{v}_1, \ldots, \vec{v}_m$

Chapitre 1 Chapitre 2 Chapitre 3

Rappel

Definition (Applications linéaires)

Une application $T: \mathbb{R}^m \to \mathbb{R}^n$ est une application linéaire si il existe une matrice A de taille $n \times m$, telle que pour tout $\overrightarrow{X} \in \mathbb{R}^m$.

$$T(\overrightarrow{x}) = A\overrightarrow{x}.$$

Notez que le **nombre de colonnes** de A est le nombre de composantes de l'**entrée** et que le **nombre de lignes** de A est le nombre de composantes de la **sortie**.

Pour
$$A = (\overrightarrow{v}_1, \dots, \overrightarrow{v}_m)$$
 nous avons

$$T(\overrightarrow{x}) = A\overrightarrow{x} = (\overrightarrow{v}_1, \dots, \overrightarrow{v}_m)\overrightarrow{x} = \sum_{i=1}^m x_i \overrightarrow{v}_i$$

Rappel

Proposition (Règles algébriques du produit matrice vecteur)

Soit A une matrice de taille $n \times m$, $\overrightarrow{x} \in \mathbb{R}^m$ et $\overrightarrow{y} \in \mathbb{R}^m$ deux vecteurs, $k \in \mathbb{R}$ un scalaire. Alors on a

(a)
$$A(\overrightarrow{x} + \overrightarrow{y}) = A\overrightarrow{x} + A\overrightarrow{y}$$
,

(b)
$$A(k\overrightarrow{x}) = k(A\overrightarrow{x})$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \begin{pmatrix} 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Considérons l'application linéaire \mathcal{T} de \mathbb{R}^3 dans \mathbb{R}^2 telle que

E31- (0,525) (3)=03

Déterminer la matrice de T.

Chapitre 1 Chapitre 2 Chapitre 3

Proposition (colonnes de la matrice d'une application linéaire.)

Soit $T: \mathbb{R}^m \to \mathbb{R}^n$ une application linéaire, A sa matrice. On pose

$$\overrightarrow{e}_{j} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow j^{\text{ ème}} ligne$$

Alors le j ème vecteur colonne de la matrice A est le vecteur $T(\overrightarrow{e}_j) \in \mathbb{R}^n$.

$$A = (\overrightarrow{v}_1 \dots \overrightarrow{v}_m) \Rightarrow T(\overrightarrow{e}_i) = A \overrightarrow{e}_i = \overrightarrow{v}_i$$

Tout vecteur de \mathbb{R}^n est combinaison linéaire de $\vec{e}_1, \ldots, \vec{e}_n$. Dans \mathbb{R}^3 :

Démonstration : ...

Theorem (Caractérisation des applications linéaires)

Soit $T: \mathbb{R}^m \to \mathbb{R}^n$ une application. L'application T est linéaire (càd il existe une matrice $n \times m$ A telle que pour tout $\overrightarrow{x} \in \mathbb{R}^m$, $T(\overrightarrow{x}) = A \overrightarrow{x}$) si et seulement si

(a)
$$\forall \overrightarrow{v} \in \mathbb{R}^m$$
, $\forall \overrightarrow{w} \in \mathbb{R}^m$ on a $T(\overrightarrow{v} + \overrightarrow{w}) = T(\overrightarrow{v}) + T(\overrightarrow{w})$

(b)
$$\forall \overrightarrow{v} \in \mathbb{R}^m$$
, $\forall k \in \mathbb{R}$ on a $T(k\overrightarrow{v}) = kT(\overrightarrow{v})$.

"
$$\Rightarrow$$
 " Règles algébriques du produit matrice vecteur

" \Leftarrow " $T \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = T(x_1 \overrightarrow{e}_1 + \dots x_m \overrightarrow{e}_m) =$

$$\begin{bmatrix} \overrightarrow{V}_1 & \overrightarrow{V}_2 & \dots & \overrightarrow{V}_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \end{bmatrix}$$

$$\begin{bmatrix} \overrightarrow{\vee}_1 & \overrightarrow{\vee}_2 & \dots & \overrightarrow{\vee}_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

Applications linéaires en géométrie

Definition

 $\forall k \in \mathbb{R}, \ H_k = egin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$ définit une **homothétie vectorielle**, avec

$$H_k \overrightarrow{x} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \overrightarrow{x} = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} kx_1 \\ kx_2 \end{bmatrix} = k \overrightarrow{x}.$$

Si k > 1, c'est une **dilatation**, si k < 1 , c'est une **contraction**.

Si k < 0. c'est la composée de l'homothétie de rapport positif -k et de la symétrie centrale $\overrightarrow{x} \to -\overrightarrow{x}$

Chapitre 1 Chapitre 2 Chapitre 3

Definition

Le **produit scalaire** $\vec{x} \cdot \vec{y}$ de \vec{x} et \vec{y} dans \mathbb{R}^n est le nombre réel

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = x_1 y_1 + x_2 y_2 \dots + x_n y_n \in \mathbb{R}$$

La norme $\|\vec{x}\|$ est le nombre réel $\sqrt{\vec{x}\cdot\vec{x}}=\sqrt{x_1^2+\ldots+x_n^2}$

Proposition (propriétés du produit scalaire)

$$\mathbf{0} \ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

$$(\vec{a} + \vec{b}) \cdot \vec{c} = (\vec{a} \cdot \vec{c}) + (\vec{b} \cdot \vec{c})$$

$$\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$$

$$T_{\vec{a}} \colon \mathbb{R}^n \to \mathbb{R}^1, \ \vec{b} \mapsto \vec{a} \cdot \vec{b}$$

est une application linéaire (car donnée par une matrice)

$$\vec{a} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}, \vec{b} = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} \rightsquigarrow T_{\vec{a}}(\vec{b}) = \begin{bmatrix} \alpha_1 & \dots & \alpha_n \end{bmatrix} \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}$$

Chapitre 1 Chapitre 2 Chapitre 3

$\|\vec{a}\|$ est la "longueur" de \vec{a}

Theorem

Soit \vec{a} et \vec{b} deux vecteurs dans \mathbb{R}^n , alors $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow \vec{a} \perp \vec{b}$.

$$\|\vec{a} + \vec{b}\|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = \|\vec{a}\|^2 + 2(\vec{a} \cdot \vec{b}) + \|\vec{b}\|^2$$

Chapitre 1 Chapitre 2 Chapitre 3

Definition

Soit \vec{a} dans \mathbb{R}^n , alors $\vec{a}^\perp = \{ \vec{b} \in \mathbb{R}^n | \vec{a} \cdot \vec{b} = 0 \}.$

Pour
$$\vec{a} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n \setminus \{\vec{0}\}$$
, \vec{a}^\perp est solution du système homogène $[\alpha_1 \ \cdots \ \alpha_n \ | \ 0 \]$ et dépend de $n-1$ paramètres.

Exemple : \mathbb{R}^2 , \mathbb{R}^3 .

Definition

$$\vec{a} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} \in \mathbb{R}^n \setminus \{\vec{0}\}, \ \vec{a}^{\perp} = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mid \alpha_1 x + \alpha_2 y + \alpha_3 z = 0 \} \text{ est le}$$

plan vectoriel orthogonal à \vec{a} , $\alpha_1 x + \alpha_2 y + \alpha_3 z = 0$ est l'équation du plan vectoriel orthogonal à \vec{a} et \vec{a} est un vecteur normal à ce plan vectoriel .

Chapitre 1 Chapitre 2 Chapitre 3

Le vecteur obtenu par **projection orthogonale d'un vecteur** \vec{b} sur une droite vectoriel $L = \langle a \rangle = \{\lambda \vec{a} | \lambda \in \mathbb{R}\}$ est le vecteur $\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \vec{a}$

$$\left(\vec{b} - \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \vec{a}\right) \cdot \vec{a} =$$

Pour un **vecteur unitaire** $\vec{u} = \frac{1}{\|\vec{a}\|}\vec{a}$ la projection de \vec{b} sur $L = \langle a \rangle$ est $(\vec{u} \cdot \vec{b}) \vec{u}$

Droite vectorielle $L=\{\lambda\overrightarrow{w}|k\in\mathbb{R}\}$ et vecteur \overrightarrow{x}

unique décomposition $\overrightarrow{x} = \overrightarrow{x}^{||} + \overrightarrow{x}^{\perp}$.

Theorem (projection orthogonale de \overrightarrow{x} sur la droite L)

 $\overrightarrow{x}^{\parallel} = (\overrightarrow{x} \cdot \overrightarrow{u}) \overrightarrow{u}$ avec \overrightarrow{u} vecteur de L de norme 1

Chapitre 1 Chapitre 2 Chapitre

Definition (Projections.)

Soit $\vec{a} \neq \vec{0}$ dans \mathbb{R}^2 et $L = <\vec{a}>$ une droite vectorielle dans \mathbb{R}^2 . Chaque vecteur \overrightarrow{x} de \mathbb{R}^2 admet une unique décomposition

$$\overrightarrow{x} = \overrightarrow{x}^{||} + \overrightarrow{x}^{\perp},$$

où $\overrightarrow{x}^{||}$ est parallèle à L et où $\overrightarrow{x}^{\perp}$ est orthogonal à L. L'application $\mathbb{R}^2 \longrightarrow \mathbb{R}^2, \overrightarrow{x} \longrightarrow \mathcal{T}(\overrightarrow{x}) = \overrightarrow{x}^{||}$ est la projection (orthogonale) sur la droite L, souvent notée proj_L .

Soit $\overrightarrow{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ vecteur directeur unitaire de L, alors

$$\operatorname{proj}_{I}(\overrightarrow{x}) = (\overrightarrow{x} \cdot \overrightarrow{u}) \overrightarrow{u}.$$

 $\overrightarrow{x} o \operatorname{proj}_L(\overrightarrow{x})$ est linéaire de matrice $\begin{bmatrix} u_1^2 & u_1u_2 \\ u_1u_2 & u_2^2 \end{bmatrix}$.

Calculer la projection dans

•
$$\mathbb{R}^2$$
 sur $D = <\begin{bmatrix} 3 \\ -2 \end{bmatrix} >$

$$\begin{array}{ccc} T: \mathbb{R}^n & \to & \mathbb{R}^n \\ \overrightarrow{x} & \mapsto & \mathrm{proj}_L(\overrightarrow{x}) = (\overrightarrow{x} \cdot \overrightarrow{u}) \overrightarrow{u} \end{array}$$

- T est linéaire.
- \odot Calcul de la matrice de T.
- **3** Les cas n = 2 et n = 3.

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$D = \frac{1}{5} \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}, \quad E = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad F = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

$$P^{N} = \frac{1}{3} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -$$