

NGSPICE

이보람 차세대반도체소자연구실

boramyi@korea.ac.kr

May 18, 2021

Introduction to SPICE

Simulation Program with Integrated Circuit Emphasis

- Developed in 1970's at Berkeley
- Many commercial versions are available
 - HSPICE, PSPICE, SmartSPICE, NGSPICE, etc.
- HSPICE is a robust industry standard
 - Has many enhancements that we will use

Writing a SPICE deck is like writing a good program

- Plan: sketch schematic on paper or in editor
 - Modify existing decks whenever possible
- Code: strive for clarity
 - Start with name, email, date, purpose
 - Generously comment
- Test:
 - Predict what results should be
 - Compare with actual

Example: MOSFET DC Analysis

```
* mosiv.sp
 Parameters and models
.include '../models/ibm065/models.sp'
.temp 70
                                             4/2
.option post
*----
* Simulation netlist
*nmos
Vgs g gnd 0
          gnd 0
Vds d
M1 d g gnd gnd NMOS W=100n L=50n
* Stimulus
.dc Vds 0 1.0 0.05 SWEEP Vgs 0 1.0 0.2
.end
```

Example: MOSFET DC Analysis

nMOS I-V Characteristics

Input Netlist File Rule

- Input file extension of NGSPICE is '.txt'.
- The first statement should start with the title statement.
- The last statement should end with '.end'.
- Use '+' sign when writing long sentences that take up more than 2 lines.
- When using comments, use '*' at the beginning of the line.
- Netlists are used regardless of case.
- In general, '0' and 'gnd' always mean ground.

Sources

- DC SourceVdd vdd gnd 2.5
- Piecewise Linear Source
 Vin in gnd pwl Ops 0 100ps 0 150ps 1.0 1ns 1.0
- Pulsed Source
 Vck clk gnd PULSE 0 1.0 Ops 100ps 100ps 300ps 800ps
 ex) PULSE v1 v2 td tr tf pw per

Sinusiudal Source
 Vin in gnd sin 0 50m 1k

SPICE Elements

Letter	Element
R	Resistor
С	Capacitor
L	Inductor
K	Mutual Inductor
V	Independent voltage source
1	Independent current source
M	MOSFET
D	Diode
Q	Bipolar transistor
W	Lossy transmission line
X	Subcircuit
E	Voltage-controlled voltage source
G	Voltage-controlled current source
Н	Current-controlled voltage source
F	Current-controlled current source

R1 1 0 100 R2 1 0 47 R3 1 0 22

Units

Letter	Unit	Magnitude
а	atto	10-18
f	fempto	10 ⁻¹⁵
р	pico	10-12
n	nano	10-9
u	micro	10-6
m	milli	10-3
k	kilo	10 ³
x (meg)	mega	10 ⁶
g	giga	10 ⁹

Ex) 100 femptofarad capacitor = 100fF, 100f, 100e-15

C1 out gnd 100fF

C1 out gnd 100f

C1 out gnd 100e-15

CMOS Inverter Schematic

VIN 10 DC 0 VDD 30 DC 3

DGSB

M1 2 1 0 0 MOSN W=2U L=1U M2 2 1 3 3 MOSP W=5U L=1U

.DC VIN 0 3 0.01 From to step

CMOS Inverter Schematic

*CMOS inverter transfer characteristic

VIN 1 0 DC 0 VDD 3 0 DC 3

M1 2 1 0 0 MOSN W=2U L=1U M2 2 1 3 3 MOSP W=4U L=1U

.DC VIN 0 3 0.01 DC Analyze

Parameter Setting Value

.MODEL MOSN NMOS KP=50E-6 VTO=0.91 GAMMA=0.99 PHI=0.7 LAMBDA=0.02 RD=0 RS=0 IS=0 PB=0

- +CGDO=330p CGSO=330p CGBO=395p CJ=3.9E-4 MJ=0.45
- + CJSW=510p MJSW=0.36 TOX=4.15E-8 LD=0.26u NSUB=2.1E16 NSS=1E10

.MODEL MOSP PMOS KP=20E-6 VTO=-0.77 GAMMA=0.53 PHI=0.7 LAMBDA=0.05 RD=0 RS=0 IS=0 PB=0

- +CGDO=315p CGSO=315p CGBO=415p CJ=2.0E-4 MJ=0.47
- + CJSW=180p MJSW=0.09 TOX=4.15E-8 LD=0.25u NSUB=5.9E16 NSS=1E10

.END

