Equazioni differenziali del I ordine

1. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = y^2 \\ y(0) = 1 \end{cases}$$

e stabilire il più ampio intervalo in cui è definita la soluzione.

- **2.** Determinare l'integrale generale della seguente equazione differenziale: y' = (1-x)(1-y).
- 3. Risolvere il seguente problema di Cauchy:

$$\begin{cases} yy' = 1\\ y(0) = 2 \end{cases}$$

e stabilire il più ampio intervalo in cui è definita la soluzione.

- **4.** Determinare l'integrale generale della seguente equazione differenziale: $y' + \frac{1}{xy} = 0$.
- 5. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = -2xy^2 \\ y(0) = -1 \end{cases}$$

e stabilire il più ampio intervalo in cui è definita la soluzione.

- **6.** Risolvere le seguente equazione differenziale: y' = ay + b, $a, b \in \mathbb{R} \setminus \{0\}$, pensandola sia come equazione a variabili separabili, sia come equazione lineare.
- 7. Sia T(t) la temperatura di un corpo ed E la temperatura dell'ambiente esterno. La temperatura del corpo si evolverà in base alla legge T'(t) = k(E T(t)), con k costante positiva. Risolvere l'equazione differenziale con la condizione iniziale $T(0) = T_0$. Cosa succede per tempi lunghi?
- 8. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = \frac{(1+y)^2}{x} \\ y(1) = 2 \end{cases}$$

e stabilire il più ampio intervalo in cui è definita la soluzione.

9. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' + 10y = e^{-10x} \\ y(0) = 0 \end{cases}$$

10. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' + y = e^{2x} \\ y(1) = 0 \end{cases}$$

11. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' + \frac{1}{x}y = 2 \arctan x \\ y(1) = 3 \end{cases}$$

e stabilire il più ampio intervalo in cui è definita la soluzione.

12. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = \frac{\sin 2x}{1 + \cos x} \\ y(0) = 0 \end{cases}$$

13. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' + \frac{1}{x}y = \frac{x+1}{x} \\ y(-1) = 2 \end{cases}$$

e stabilire il più ampio intervallo in cui è definita la soluzione.

14. Determinare l'integrale generale della seguente equazione differenziale: $y' + y \cot x - 2 \cos x = 0$ nell'intervallo $(0, \pi)$.

- 15. Determinare l'integrale generale della seguente equazione differenziale: $y' = 2xy 2x^3$.
- 16. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = -\frac{2x}{1+x^2}y + \frac{1}{x(1+x^2)} \\ y(-1) = 0 \end{cases}$$

e stabilire il più ampio intervallo in cui è definita la soluzione.

- 17. Determinare l'integrale generale della seguente equazione differenziale: $y' + y \sin x = \sin 2x$.
- 18. a) Determinare l'integrale generale della seguente equazione differenziale: $y' + \frac{2}{x}y = 2x + 1$ per x > 0. b) Determinare la soluzione che si mantiene limitata per $x \to 0^+$. c) Determinare la soluzione che soddisfa la condizione: y(1) = 0.
- 19. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' + 3x^2y^4 = 0\\ y(1) = 0 \end{cases}$$

- **20.** Determinare le curve y = f(x) la cui retta tangente nel punto (x, f(x)) incontra l'asse x nel punto (-x, 0).
- 21. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' + \frac{1}{x}y = x^3 \\ y(1) = \frac{1}{5} \end{cases}$$

e stabilire il più ampio intervallo in cui è definita la soluzione.

- 22. Determinare l'integrale generale della seguente equazione differenziale: $y'=-\frac{2}{r}y+\frac{\sin 4x}{r^2}.$
- 23. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = y \tan x + 1 \\ y(\pi) = 1 \end{cases}$$

e stabilire il più ampio intervallo in cui è definita la soluzione.

24. Dato il seguente problema di Cauchy:

$$\begin{cases} y' = e^y - e^x \\ y(0) = 0, \end{cases}$$

scrivere lo sviluppo di Taylor della soluzione arrestato al terz' ordine, e disegnare il grafico locale della soluzione in un intorno di x=0.

- **25.** Determinare l'integrale generale della seguente equazione differenziale: $e^{x+y}y'+x=0$.
- 26. Risolvere il seguente problema di Cauchy

$$\begin{cases} y' = \frac{y}{\log y} \\ y(0) = 2, \end{cases}$$

stabilire il più ampio intervallo in cui è definita la soluzione e disegnare un grafico locale della soluzione in un intorno di x=0.

- 27. Determinare l'integrale generale dell'equazione differenziale $y' = \frac{y}{x} + \frac{1}{x}e^{\frac{1}{x}}$, e: a) trovare la soluzione $y_1(x)$ tale che $\lim_{x \to +\infty} y_1(x)$ sia finito; b) trovare la soluzione $y_2(x)$ tale che $y_2(1) = 0$, disegnare un grafico di y_2 in un intorno destro di x = 0 e stabilire il suo comportamento asintotico per $x \to +\infty$.
- **28.** Data l'equazione differenziale y' = -y + f(x), determinare f(x) in modo che per x > 0, $y = x^{-\frac{3}{2}}$ sia soluzione. Scrivere l'integrale generale.
- 29. Dato il seguente problema di Cauchy:

$$\begin{cases} y' = -x \arctan y \\ y(1) = 1, \end{cases}$$

si scriva l'equazione della retta tangente al grafico della soluzione nel punto (1,1) e si tracci un grafico della soluzione in un intorno di tale punto.

- **30.** Si determinino le curve y = y(x) tali che il segmento di tangente che unisce il punto P di tangenza al punto T di intersezione con l'asse x uguaglia il segmento che unisce P all'origine.
- **31.** Trovare l'equazione differenziale che ha come integrale generale la famiglia di funzioni definite implicitamente dall'equazione: cx xy = c. (allievi gestionali)
- 32. Risolvere il seguente problema di Cauchy

$$\begin{cases} x^2y' - 2xy - y^2 = 0\\ y(7) = -7, \end{cases}$$

operando la sostituzione y(x) = xz(x).

33. Risolvere il seguente problema di Cauchy:

$$\begin{cases} y' = \frac{y}{x} \left(1 + \ln \frac{y}{x} \right) \\ y(1) = 5 \end{cases}$$

Soluzioni.

1.
$$y = \frac{1}{1-x}, (-\infty, 1).$$

2.
$$y = ce^{\frac{x^2}{2} - x} + 1, c \in \mathbb{R}.$$

3.
$$y = \sqrt{2(x+2)}, (-2, +\infty).$$

4.
$$y = \pm \sqrt{\log \frac{1}{x^2} + c}$$
.

5.
$$y = \frac{1}{x^2 - 1}$$
, $(-1, 1)$.

6.
$$y = -\frac{b}{a} + ce^{ax}, \ c \in \mathbb{R}.$$

7. (vedi esercizio 6)
$$T = (T_o - E)e^{-kt} + E$$
, $\lim_{t \to +\infty} T(t) = E$.

8.
$$y = \frac{3}{1 - 3\log x} - 1$$
, $(0, \sqrt[3]{e})$.

9.
$$y = xe^{-10x}$$
.

10.
$$y = \frac{1}{3}(e^{2x} - e^{3-x}).$$

11.
$$y = x \arctan x + \frac{1}{x} \arctan x + \frac{1}{x} (4 - \frac{\pi}{2}) - 1, (0, +\infty).$$

12.
$$y = 2[-\cos x + \log(1 + \cos x) + 1 - \log 2].$$

13.
$$y = \frac{1}{2}x - \frac{3}{2x} + 1$$
, $(-\infty, 0)$.

14.
$$y = \sin x + \frac{c}{\sin x}$$
.

15.
$$y = 1 + x^2 + ce^{x^2}$$
.

16.
$$y = \frac{\log(-x)}{1+x^2}$$
, $(-\infty, 0)$.

17.
$$y = 2\cos x + 2 + ce^{\cos x}$$
.

18. a)
$$y = \frac{1}{2}x^2 + \frac{1}{3}x + \frac{c}{x^2}$$
. b) $y = \frac{1}{2}x^2 + \frac{1}{3}x$. c) $y = \frac{1}{2}x^2 + \frac{1}{3}x - \frac{5}{6x^2}$.

19.
$$y = 0$$
.

20. La curva cercata risolve l'equazione differenziale: $\frac{f'(x)x - f(x)}{f'(x)} = -x$, cioé: 2y'x - y = 0. L'integrale generale è: $y = \pm \sqrt{c|x|}$, c > 0.

21.
$$y = \frac{1}{5}x^4$$
, $(0, +\infty)$.

22.
$$y = \frac{1}{x^2} \left(-\frac{1}{4} \cos 4x + c \right).$$

23.
$$y = \tan x - \frac{1}{\cos x}, \ \left(\frac{1}{2}\pi, \frac{3}{2}\pi\right).$$

24. $y = -\frac{1}{2}x^2 - \frac{1}{3}x^3 + o(x^3)$. La soluzione passa per l'origine, è tangente all'asse x e ha la concavità rivolta verso il basso.

- **25.** L'equazione diventa: $e^y y' = -\frac{x}{e^x}$, l'integrale generale è $y = \log[e^{-x}(x+1)+c]$.
- **26.** $y=e^{\sqrt{2x+\log^2 2}}$, $(-\frac{1}{2}\log^2 2,+\infty)$. Si ha che $y'(0)=\frac{2}{\log 2}>0$; derivando l'equazione si trova $y''(0)=2\frac{\log 2-1}{\log^3 2}<0$. La soluzione passa per (0,2), è tangente alla retta $y=2+\frac{2}{\log 2}x$, e ha la concavità rivolta verso il basso.
- **27.** $y = -xe^{\frac{1}{x}} + cx$, $c \in \mathbb{R}$. a) $y_1 = -xe^{\frac{1}{x}} + x$; b) $y_2 = -xe^{\frac{1}{x}} + ex$, $y_2 \sim x(e-1)$ per $x \to +\infty$.
- **28.** $f(x) = \frac{2x-3}{x^2\sqrt{x}}, \ y = x^{-\frac{3}{2}} + ce^{-x}.$
- **29.** $y'(1) = -\frac{\pi}{4}$, retta tangente: $y = -\frac{\pi}{4}(x-1) + 1$; $y'' = -\arctan y \frac{y'x}{1+y^2}$, $y''(1) = -\frac{\pi}{8} < 0$, dunque la concavità è rivolta verso il basso.
- **30.** $P = (x, y), \ T = (x \frac{y}{y'}, 0). \ \overline{OP}^2 = \overline{PT}^2 \Rightarrow x^2 = \frac{y^2}{y'^2}, \ \text{e cioé } \frac{y'}{y} = \pm \frac{1}{x}, \ \text{da}$ cui $y = cx, \ \text{o} \ y = \frac{c}{x}, \ c \in \mathbb{R}.$
- **31.** Derivando rispetto a x l'equazione (*) $cx xy(x) \equiv c$, si trova: (**) c y xy' = 0. Da (*) si trova $c = \frac{xy}{x-1}$, sostituendo il valore di c nell'equazione (**), si trova l'equazione differenziale: $y y'(x^2 x) = 0$.
- **32.** Poniamo y(x) = xz(x), si ha che y'(x) = z(x) + xz'(x), sostituendo nell'equazione si trova la seguente equazione nella funzione incognita z(x): $x^3z' = x^2(z+z^2)$. Si tratta di un'equazione a variabili separabili, le rette di equazioni z = 0 e z = -1 sono soluzioni, in corrispondenza di z = -1 si ottiene y = -x che risolve il problema di Cauchy dato, non è quindi necessario trovare le altre soluzioni dell'equazione.
- **33.** Poniamo y(x) = xz(x), si ha che y'(x) = z(x) + xz'(x), sostituendo nell'equazione si trova la seguente equazione nella funzione incognita z(x): $xz' = z \ln z$, con la condizione $z(1) = \frac{y(1)}{1} = 5$. Si tratta di un'equazione a variabili separabili, la retta di equazione z = 1 è soluzione dell'equazione

ma non del problema. Le altre soluzioni si ottengono ponendo: $\int \frac{1}{z \ln z} dz = \int \frac{1}{x} dx$, da cui, tenendo conto che essendo il problema centrato in x=1 è x>0, $\ln |\ln z| = \ln x + c$, $|\ln z| = xe^c$, $\ln z = \pm xe^c$. Sostituendo x=1 si trova, tenendo conto che z(1)=5: $\ln 5=e^c$, quindi $\ln z=\ln 5x$, $z=e^{x\ln 5}=5^x$, $y=x5^x$.