生物信息学:导论与方法 Bioinformatics: Introduction and Methods

Ge Gao 高歌 & Liping Wei 魏丽萍 Center for Bioinformatics, Peking University

TAACCCTAACCCTAACCCTAACCCTA CCTAACCCTAACCCTAACCCTAACCC CCCTAACCCTAACCCTAACCCTAAC **AACCCTAACCCTAACCCCTAACCCTA**

Week 6: Functional prediction of genetic variations

北京大学生物信息学中心 魏丽萍 Liping Wei, Ph.D.

Center for Bioinformatics, Peking University

TAACCCTAACCCTAACCCTAACCCTAACCCTA
CCTAACCCTAACCCTAACCCTAACCCTAACCC
CCCTAACCCCTAACCCTAACCCTAACCCTAAC
AACCCTAACCCTAACCCTAACCCTA
ACCCTAACCCCAACCCCAACCCCAACCCCAAC
CTACCCTAACCCTAACCCTAACCCTAACCCTAA

Week 6 Unit 4: Classifier-based methods: SAPRED

北京大学生物信息学中心 魏丽萍

Liping Wei, Ph.D.

Center for Bioinformatics, Peking University

Single Amino acid Polymorphisms diseaseassociation Predictor (SAPRED)

www.sapred.cbi.pku.edu.cn

PDB – get protein 3D structure

http://www.rcsb.org/pdb/home/home.do

Homology Modeling

http://swissmodel.expasy.org/

Biologically-Intuitive features

- Residue frequencies, conservation scores
- Solvent accessibilities and C_{β} density, secondary structure...

New attributes:

- Structural neighbor profile
- Nearby functional sites
- Disordered regions
- Hydrogen bonds change
- β-aggregation
- HLA family

Structural neighbor profile

Definition:

A 20-D vector: take the C_a of the variant residue as the center, draw a sphere with a specific radius. The residues inside are counted to get the number for each of the 20 kinds of residues. Each number is a component of the vector.

$$\begin{bmatrix} N_{R,a_i} \end{bmatrix} = \sum_{j=1}^{L} X_j$$
where $X_j = 1$ if $X_j = a_i \& r_{X_{j,c}} < R$;
otherwise, $X_j = 0$

R: radius

L: protein length

a_i: a specific residue type

r: distance between a residue and the center residue

Structural neighbor profile

The variant site is H128, radius is 10 Angstroms. Neighbors are:

42-47: LLICTY

50-52: AGT

55: I

59: V

106-110: LKTHL

112: T

125-127: KFL

129-131: VAR

176-177: HV

180-181: WW

184: K

188-194: QILFLFY

197: I 208: V 211: F

Structural neighbor profile: vector

<u>a.a.</u>	А	С	D	E	F	G	Н	I	K	L
<u>N</u>	2	1	0	0	4	1	2	4	3	7
<u>a.a.</u>	М	N	Р	Q	R	S	Т	V	W	Y

Structural neighbor profile

- Different radius had different predictive power.
- We selected <u>13</u> Angstroms as the optimal radius.

Nearby functional sites

- Amino acid variations located exactly on functional, active, and binding sites tend to have large effect on protein function.
 - But coverage is low.
- We considered that variations in the vicinity of important sites could also affect protein function.
 - Significantly increased coverage.

Nearby functional sites

Ye, ZQ, et al., 2007, Bioinformatics, 23(12):1444

Disordered Region

122 SAPs in disordered regions, 114 (93%) are disease-associated.

(Image adapted from: Kissinger CR, et al. 1995. "Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex." Nature 378:641-4.)

From: http://ist.temple.edu/disprot/index.php

Hydrogen bond change

Changed Hydrogen bond	Disease	Polymorphism	ratio
-6	1	0	1/0
-5	12	1	12
-4	44	2	22
-3	114	16	7.25
-2	230	55	4.18
-1	403	213	1.89
0	1142	716	1.59
1	224	142	1.58
2	68	36	1.89
3	11	4	2.75
4	0	2	0
5	0	2	0

Other attributes

 52 variants in <u>transmembrane</u> regions, 49 (94%) are diseaseassociated

 194 variants altered β-aggregation properties, 169 (87%) are disease-associated

435 variants from HLA families, all except one are "polymorphism".

SVM classifier

SVM – support vector machine

Separate transformed data with a hyper plane in a high-dimensional space

- Kernel function Radial Basis Function(RBF)
- Grid-search to select proper values of parameter

Five-fold cross-validation

Part	Total proteins	Total SAP	Deleterious	Neutral SAP
			SAP	
1	105	686	449	237
2	104	688	450	238
3	105	688	450	238
4	105	688	450	238
5	103	688	450	238
Total	522	3438	2249	1189

Ye, ZQ, et al., 2007, Bioinformatics, 23(12):1444

Accuracy: ACC and MCC

SAP status	Predicted as disease- association (+)	Predicted as polymorphism (-)
Disease-association (+)	TP	FN
Polymorphism (-)	FP	TN

Overall accuracy:

$$ACC = \frac{TP + TN}{TP + TN + FP + FN}$$

Matthew correlation coefficient:

$$MCC = \frac{(TP \times TN - FP \times FN)}{\sqrt{(TN + FN)(TN + FP)(TP + FN)(TP + FP)}}$$

Predictive power

Attribute groups	ACC (%)	MCC
Residue frequencies	77.5	0.489
13 Å structural neighbor profile	76.4	0.467
Conservation scores	74.8	0.425
Nearby functional sites	69.3	0.246
Solvent accessibilities	68.0	0.232
C_{β} density	67.0	0.190
Final attribute set	82.6	0.604

SAPRED web server

http://sapred.cbi.pku.edu.cn/

Document Contact

<u>Single Amino acid Polymorphisms</u> (SAPs), also known as <u>non-synonymous Single Nucleotide</u> Polymorphisms (nsSNPs), account for about 50% of the gene lesions known to be related to inherited diseases. Through large-scale efforts such as HapMap project and The Cancer Genome Atlas (TCGA), available SAP data is accumulating rapidly in databases such as dbSNP, HGVBase, Swiss-Prot variant page and many allele-specific databases. This provides us the opportunities and needs to understand and predict their disease-association.

SAPRED, the <u>SAP</u> disease-association <u>predictor</u>, offers the researchers an automatic pipeline to predict the disease-association of SAPs. Compared with other similar tools, **SAPRED** utilizes several novel attributes such as Structural Neighbor Profile and Nearby Functional Sites, in addition to incorporating other well-known attributes such as Residue Frequency and Conservation. By feeding these attributes to the internal trained SVM classifier, **SAPRED** outputs the final prediction result as well as the corresponding likelihood. The attributes themselves are also presented due to their potential biological significance.

Currently **SAPRED** affords two types of predictions. One is based on both the structural and sequence information, the other relies on the sequence information only. The former aims at higher prediction accuracy and more attributes with putative biological insights, while the latter covers much more inputs whose structural models are not available at present.

Run SAPRED

SAP Disease-Association Predictor

Currently SAPRED supports only one substitution each time. The user should also supply the PDB files of the wildtype and variant protein with enough quality for extracting structural information. Make sure the PDB file contains only one chain and its residue numbering system is consistent with the FASTA sequence. Such PDB file can be prepared using Swiss-Model or Modeller. If the structure model is unavailable, the user can switch to sapred_seq instead, whose accuracy is a little lower. The users can try these demos first: demo1 demo2 demo3

∃ Input		
± * input fasta file:	<u>-</u>	•
* mutation name:		(
* wildtype pdb file:		@
± * variant pdb file:	_	(
∃ Output		
* save result in directory:	Work Directory	
* prediction result: (bio:sapred:sapred)	Untitled.sapred	(

Results

Prediction Result

Prediction	Disease Likelihood	Neutral Likelihood
Disease	0.88069	0.11931

Explanation of Results: Structural features

Structure-derived attributes

Structure-derived attrit	Juces								
	Α	0	G	1	M	1	S		3
	С	4	Н	1	N	2	Т		2
13A structural neighbor profile	D	2	l	3	P	3	V		0
	E	0	K	6	Q	2	W		0
	F	1	L	5	R	1	Υ		0
	ACT_SITE							14	
Structurally Nearby	BINDING							14	
Functional Sites	METAL							14	
T difficient offers	MOD_RES							14	
	DISULFID							14	
Solvent Accessibilities	Side-chain a	absolute						.44	
SOVER PROCESSIONINES	Side-chain relative 48.5								
C-beta density	16								
	Secondary structure							C	
Secondary structures	No alteration of secondary structure								Υ
	No alteration of 3-mer secondary structure							Υ	
	[Phi Difference] 1.350								
Dihedrals	Psi Difference 1.530								
	Chi1 Difference 0.914								
Changed Hydrogen Bonds	0								
Changed Disulfide Bonds	0								
RMSD	0.07358								
Difference between energy	2.1752								

Explanation of Results: sequence features

Sequence-derived attributes

Sequence-derived attri	Dutes				
	Frequency of widetype residue		0.8591		
Residue frequencies	Frequency of variant residue	0.0052			
	Difference residue frequency	-0.8539			
	neibor3L	0.7588			
	neibor2L 1.0534				
	neibor1L	0.7201			
Conservation Scores	conserv	1.1102			
	neibor1R	0.1574			
	neibor2R	0.1906			
	neibor3R	1.0747			
	ACT_SITE		30		
Sequentially Nearby	BINDING		30		
Functional Sites	METAL		30		
	MOD_RES		30		
	tango_wt	0	.00		
Aggregation Properties	diff_tango	0			
	frag_equal	Υ	,		
BLOSUM Score	-3				
GRANTHAM Score	118				
In TRANSMEM Region	N				
In Disordered Region	N				
In HLA Family	N				

Results using SAPRED_Seq

Prediction Result

Prediction	Disease Likelihood	Neutral Likelihood
Disease	0.871749	0.128251

ACC=81.5% MCC=0.577

Sequence-derived attributes

	Frequency of widetype residue	0.8591	
Residue frequencies	Frequency of variant residue		0.0052
	Difference residue frequency	-0.8539	
	neibor3L	0.7586	
	neibor2L	1.0534	
	neibor1L	0.7201	
Conservation Scores	conserv	1.1102	
	neibor1R	0.1574	
	neibor2R	0.1906	
	neibor3R	1.0747	
	ACT_SITE		30
Sequentially Nearby	BINDING		30
Functional Sites	METAL		30
	MOD_RES		30
	tango_wt		0.00
Aggregation Properties	diff_tango	0	
	frag_equal	<u> </u>	
BLOSUM Score	-3		
GRANTHAM Score	116		
In TRANSMEM Region	N		
In Disordered Region	N		
In HLA Family	N		

The New Hork Times

May 14, 2013

My Medical Choice

By ANGELINA JOLIE
LOS ANGELES

MY MOTHER fought cancer for almost a decade and died at 56. She held out long enough to meet the first of her grandchildren and to hold them in her arms. But my other children will never have the chance to know her and experience how loving and gracious she was.

Angelina Joli has a genetic variation in BRCA1

Do you think she had made the right decision to remove her breasts?

Lots of factors to consider in making this complicated decision

- Given her genetic mutation, what is the likelihood of her getting breast cancer?
 - P(cancer|mutation)
 - P(cancer-free|mutation)
- Even after she got mastectomy, what is the likelihood of her getting breast cancer?
 - P(cancer|mutation, mastectomy)
- If she didn't get mastectomy, what could her outcome be?
 - P(early detection | mutation, cancer)
 - P(cure | mutation, cancer, early detection)
 - P(new treatment before cancer develops)
- What is the risk of death from the procedure of mastectomy?
 - P(death from surgery | mastectomy)
- Age of onset of cancer
- Emotional stress: fear of cancer vs. distress over loss of breasts
- Cost of mastectomy

Using family history to increase prediction power

- Strong family history
 - Jolie's mother, Marcheline Bertrand, died from ovarian cancer at 56 after a 10 year battle.
 - Her aunt, 61-year-old Debbie Martin, is dying of breast cancer after a 9 year battle.
 - Her grandmother, Lois Bertrand, died of cancer at 45.
 - Her great-grandmother, Virginia Gouwens, died of ovarian cancer at 53.
 - Her uncle, Raleigh, also died of cancer in 2009.
- Strong family history, early-onset, poor prognosis
- Has the causal mutation been identified in her affected relatives and does it co-segregate with cancer in her family?
- Does Jolie carry the same mutation?

Lots of remaining challenges

- Prediction accuracy
- Integration of multiple sources of evidence
- Noncoding variants
- More training data
- Ethical issues

Wherever there are challenges, there are opportunities.

生物信息学:导论与方法 Bioinformatics: Introduction and Methods

Ge Gao 高歌 & Liping Wei 魏丽萍 Center for Bioinformatics, Peking University

