MATEMATIKA DISKRIT

cabang matematika

bersifat diskrit / tidak kontinyu

Komputer (digital) beroperasi secara diskrit

Informasi yang disimpan dan dimanipulasi oleh komputer adalah dalam bentuk diskrit.

LOGIKA

Teknik Informatika Politeknik Negeri Malang 2024

Deasy Sandhya Elya Ikawati, S. Si, M. Si

Logika

Merupakan studi penalaran.

Di dalam matematika, logika digunakan untuk :

- membuktikan teorema
- membantu membedakan antara argumen yang valid dan tidak valid

Di dalam ilmu komputer, logika digunakan untuk membuktikan bahwa program-program berjalan seperti yang diharapkan.

Logika

Pernyataan / Proposisi

Pernyataan Tunggal

Pernyataan Gabungan

Tabel Kebenaran

Pernyataan

Pernyataan-pernyataan, kalimat berita

Proposisi

Disimbolkan dengan huruf kecil

Bernilai benar atau salah, tidak keduanya

Contoh:

- ✓ 6 adalah bilangan genap.
- ✓ Soekarno adalah Presiden Indonesia yang pertama.

- ☐ Ibukota Provinsi Jawa Barat adalah Semarang.
- **□** 13 ≥ 20
- Pemuda itu tinggi.
- Kehidupan hanya ada di planet Bumi.

Pernyataan

Contoh:

Jakarta adalah ibukota Indonesia.

Gabungan

Pernyataan Gabungan

Kata Penghubung / Operator Logika

Konjungsi

 $p \wedge q$, $p \times q$, p.q, pq

Disjungsi

 $p \vee q, p+q$

Operator Biner

Negasi

 $\sim p, p', \overline{p}$

→

Operator Uner

Contoh:

p: Tahun ini saya memiliki uang 100 juta.

q: Saya berangkat ke Paris.

Tabel Kebenaran

Kata Penghubung / Operator Logika

Konjungsi

p	q	$p \wedge q$
+	+	+
+	_	_
_	+	_
_	_	_

Disjungsi

p	q	$p \vee q$
+	+	+
+	_	+
_	+	+
_	_	_

Contoh:

Tahun ini saya memiliki uang 100 juta dan berangkat ke Paris.

p

Tahun ini saya memiliki uang 100 juta

В

q

Saya berangkat ke Paris

В

 $B \wedge B = B$

Tautologi dan Kontradiksi

Tautologi : proposisi majemuk bernilai benar untuk semua kasus.

 $p \vee \sim (p \wedge q)$ adalah sebuah tautologi

p	q	$p \wedge q$	$\sim (p \wedge q)$	$p \lor \sim (p \land q)$
Т	Т	Т	F	T
Т	F	F	T	${f T}$
F	T	F	T	T
F	F	F	T	T

Kontradiksi: proposisi majemuk yang bernilai salah untuk semua kasus

 $(p \land q) \land \neg (p \lor q)$ adalah sebuah kontradiksi

p	$\mid q \mid$	$p \wedge q$	$p \vee q$	$-(p \lor q)$	$(p \land q) \land \neg (p \lor q)$
T	Т	T	F	F	F
T	F	F	T	F	F
F	T	F	T	F	F
F	F	F	F	т	F

Ekivalen

Dua proposisi majemuk dikatakan ekivalen apabila mempunyai tabel kebenaran yang identik.

Hukum De Morgan: $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$.

T T F F F T F F T T T F T F T T T T F F F T T T T T	

Disjungsi Eksklusif

 Jika p dan q adalah proposisi, proposisi eksklusif bernilai benar jika satu benar. Selain itu salah

р	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

p	q	$p \vee q$
+	+	+
+	_	+
_	+	+
_	_	_

Proposisi Bersyarat (Implikasi)

- Proposisi yang mengandung suatu syarat, disebut juga proposisi bersyarat, atau kondisional, atau implikasi
- Ditulisakan secara umum sbb:
 - Jika p, maka q
 - Proposisi p: hipotesis/antesenden/premis
 - Proposisi q : konklusi /konsekuen

Proposisi Bersyarat (Implikasi)

Tabel Implikasi

р	q	p→q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Contoh:

Jika saya lulus ujian, maka saya mendapat hadiah dari ayah Jika suhu mencapai 80°C, maka *alarm* akan berbunyi

Jiya anda tidak mendaftar ulang, maka anda dianggap mengundurkan diri

Varian proporsi bersyarat

- Terdapat tiga variasi proposisi bersyarat :
 - Konvers (kebalikan) : $q \rightarrow p$
 - Invers : $\sim p \rightarrow \sim q$
 - Kontraposisi : ~ q → ~ p

					Implikasi	Konvers	Invers	Kontraposisi
	p	q	~ p	~ q	$p \rightarrow q$	$q \rightarrow p$	$\sim p \rightarrow \sim q$	$\sim q \rightarrow \sim p$
	T	Ŧ	F	F	T	T	T	Т
-\	T	F	F	T	F	T	T	F
_	■ F	T	T	F	T	F	F	T
•	. 街 🚜	F	T	T	T	T	T	T

Contoh

Tentukan konvers, invers, dan kontraposisi dari: "Jika Amir mempunyai mobil, maka ia orang kaya"

Maka:

Konvers : Jika Amir orang kaya, maka ia mempunyai

mobil

Invers : Jika Amir tidak mempunyai mobil, maka ia

bukan orang kaya

sisi : Jika Amir bukan orang kaya, maka ia

tidak mempunyai mobil

Bikondisional (Bi-implikasi)

- Bikondisional termasuk salah satu proposisi bersyarat
- Ditulisakan secara umum sbb : $p \leftrightarrow q$
 - -p jika dan hanya jika q
- Tabel kebenaran bikondisional

	р	q	$p \leftrightarrow q$
	Т	Т	Т
	Т	F	F
·	F	Т	F
	F	F	Т
	٠ 💖		

Bikondisional (Bi-implikasi)

 Bikondisional p ↔ q ekivalen secara logika dengan (p → q) ∧ (q → p)
 Bukti tabel kebenarannya sbb:

	р	q	$p \leftrightarrow q$	ho ightarrow q	$q \rightarrow p$	$(p \rightarrow q) \land (q \rightarrow p)$
	Т	Т	Т	Т	Т	Т
١	T	F	F	F	Т	F
	F	Т	F	Т	F	F
٥	F	F	Т	Т	F	Т

Contoh

Proposisi majemuk berikut adalah bi-implikasi:

- 1 + 1 = 2 jika dan hanya jika 2 + 2 = 4.
- Syarat cukup dan syarat perlu agar hari hujan adalah kelembaban udara tinggi.
- Jika anda orang kaya maka anda mempunyai banyak uang, dan sebaliknya.
- Bandung terletak di Jawa Barat iff Jawa Barat adalah sebuah propinsi di Indonesia.

Post Test

- 1. Buatlah proposisi yang:
 - a.Bernilai benar (1 poin)
 - b.Bernilai salah (1 poin)
- 2. Buatlah kalimat majemuk
 - a. Implikasi bernilai benar (1 poin)
 - b. Biimplikasi yang bernilai salah (1 poin)
- 3. Buktikan proposisi berikut equivalen atau tidak dengan menggunakan table kebenaran:
 - a. \sim (pVq) dan \sim p \wedge \sim q (3 poin)
 - b.~ $(p \land q) dan ~p \land ~q (3 poin)$
 - c.~(p=>q) dan p \land ~q (3 poin)
- 4. Tentukan invers, konvers, dan kontraposisi dari pernyataan "Jika saya rajin belajar, maka saya beruntung". (3 poin)

Post Test

- 5. Tentukan nilai kebenaran dari pernyataan berikut: (2 poin)
- a. Jika saya makan pedas, maka saya tidak sakit perut
- b. Jika saya tidur siang maka saya dapat belajar selam 4 jam
- 6. Buatlah biimplikasi bernilai benar dan biimplikasi bernilai salah (ada 2 jawaban). (2 poin)

NILAI: TOTAL POIN X 5

Daftar Pustaka

Yan watequlis, Cahya Rahmad, Deasy Sandhya Elya, 2017, Matematika Diskrit, Polinema press.

Munir, Rinaldi, "Matematika Diskrit Ed. Revisi Ke-5", Informatika Bandung, 2012

