Deep Generative Models

Lecture 3

Roman Isachenko

Moscow Institute of Physics and Technology

2023. Autumn

Posterior distribution

$$p(\theta|\mathbf{X}) = \frac{p(\mathbf{X}|\theta)p(\theta)}{p(\mathbf{X})} = \frac{p(\mathbf{X}|\theta)p(\theta)}{\int p(\mathbf{X}|\theta)p(\theta)d\theta}$$

Bayesian inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathbf{X})d\boldsymbol{\theta}$$

Maximum a posteriori (MAP) estimation

$$\boldsymbol{\theta}^* = \argmax_{\boldsymbol{\theta}} p(\boldsymbol{\theta}|\mathbf{X}) = \argmax_{\boldsymbol{\theta}} \left(\log p(\mathbf{X}|\boldsymbol{\theta}) + \log p(\boldsymbol{\theta})\right)$$

MAP inference

$$p(\mathbf{x}|\mathbf{X}) = \int p(\mathbf{x}|\theta)p(\theta|\mathbf{X})d\theta \approx p(\mathbf{x}|\theta^*).$$

Latent variable models (LVM)

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z}.$$

MLE problem for LVM

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\max_{\boldsymbol{\theta}} \log p(\mathbf{X}|\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log p(\mathbf{x}_i|\boldsymbol{\theta}) = \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^n \log \int p(\mathbf{x}_i|\mathbf{z}_i,\boldsymbol{\theta}) p(\mathbf{z}_i) d\mathbf{z}_i. \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$
 where $\mathbf{z}_k \sim p(\mathbf{z})$.

ELBO derivation 1 (inequality)

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} \geq \mathbb{E}_q \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z})} = \mathcal{L}(q, \boldsymbol{\theta})$$

ELBO derivation 2 (equality)

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \int q(\mathbf{z}) \log \frac{p(\mathbf{z}|\mathbf{x}, \theta)p(\mathbf{x}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \\ = \log p(\mathbf{x}|\theta) - KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta))$$

Variational decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathcal{L}(q,\boldsymbol{\theta}) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})) \geq \mathcal{L}(q,\boldsymbol{\theta}).$$

Variational lower Bound (ELBO)

$$\log p(\mathbf{x}|oldsymbol{ heta}) = \mathcal{L}(q,oldsymbol{ heta}) + \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},oldsymbol{ heta})) \geq \mathcal{L}(q,oldsymbol{ heta}).$$

$$\mathcal{L}(q, \theta) = \int q(\mathbf{z}) \log \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z})} d\mathbf{z} = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z}, \theta) - KL(q(\mathbf{z})||p(\mathbf{z}))$$

Log-likelihood decomposition

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \mathbb{E}_q \log p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) - KL(q(\mathbf{z})||p(\mathbf{z})) + KL(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x},\boldsymbol{\theta})).$$

Instead of maximizing incomplete likelihood, maximize ELBO

$$\max_{oldsymbol{ heta}} p(\mathbf{x}|oldsymbol{ heta}) \quad o \quad \max_{oldsymbol{a},oldsymbol{ heta}} \mathcal{L}(oldsymbol{q},oldsymbol{ heta})$$

 Maximization of ELBO by variational distribution q is equivalent to minimization of KL

$$rg \max_{q} \mathcal{L}(q, oldsymbol{ heta}) \equiv rg \min_{q} \mathit{KL}(q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, oldsymbol{ heta})).$$

EM-algorithm

► E-step

$$q^*(\mathbf{z}) = \argmax_{q} \mathcal{L}(q, \boldsymbol{\theta}^*) = \arg\min_{q} \mathit{KL}(q(\mathbf{z}) || \mathit{p}(\mathbf{z} | \mathbf{x}, \boldsymbol{\theta}^*));$$

M-step

$$oldsymbol{ heta}^* = rg \max_{oldsymbol{ heta}} \mathcal{L}(q^*, oldsymbol{ heta});$$

Amortized variational inference

Restrict a family of all possible distributions $q(\mathbf{z})$ to a parametric class $q(\mathbf{z}|\mathbf{x}, \phi)$ conditioned on samples \mathbf{x} with parameters ϕ .

Variational Bayes

E-step

$$\phi_k = \phi_{k-1} + \eta \nabla_{\phi} \mathcal{L}(\phi, \boldsymbol{\theta}_{k-1})|_{\phi = \phi_{k-1}}$$

M-step

$$\boldsymbol{\theta}_k = \boldsymbol{\theta}_{k-1} + \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\phi}_k, \boldsymbol{\theta})|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}}$$

Outline

1. ELBO gradients, reparametrization trick

2. Variational autoencoder (VAE)

3. Tighter variational bound (IWAE)

Outline

1. ELBO gradients, reparametrization trick

Variational autoencoder (VAE)

3. Tighter variational bound (IWAE)

ELBO gradients, (M-step, $\nabla_{\theta} \mathcal{L}(\phi, \theta)$)

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

M-step: $\nabla_{\theta} \mathcal{L}(\phi, \theta)$

$$egin{aligned}
abla_{m{ heta}} \mathcal{L}(m{\phi}, m{ heta}) &= \int q(\mathbf{z}|\mathbf{x}, m{\phi})
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}, m{ heta}) d\mathbf{z} pprox \\ &pprox
abla_{m{ heta}} \log p(\mathbf{x}|\mathbf{z}^*, m{ heta}), \quad \mathbf{z}^* \sim q(\mathbf{z}|\mathbf{x}, m{\phi}). \end{aligned}$$

Naive Monte-Carlo estimation

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) p(\mathbf{z}) d\mathbf{z} = \mathbb{E}_{p(\mathbf{z})} p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) \approx \frac{1}{K} \sum_{k=1}^{K} p(\mathbf{x}|\mathbf{z}_k, \boldsymbol{\theta}),$$

where $\mathbf{z}_k \sim p(\mathbf{z})$.

The variational posterior $q(\mathbf{z}|\mathbf{x}, \phi)$ assigns typically more probability mass in a smaller region than the prior $p(\mathbf{z})$.

image credit: https://jmtomczak.github.io/blog/4/4_VAE.html

ELBO gradients, (E-step, $\nabla_{\phi}\mathcal{L}(\phi, \theta)$)

E-step: $\nabla_{\phi} \mathcal{L}(\phi, \theta)$

Difference from M-step: density function $q(\mathbf{z}|\mathbf{x}, \phi)$ depends on the parameters ϕ , it is impossible to use the Monte-Carlo estimation:

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})} \right] d\mathbf{z}$$

$$\neq \int q(\mathbf{z}|\mathbf{x}, \phi) \nabla_{\phi} \left[\log p(\mathbf{x}|\mathbf{z}, \theta) - \log \frac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})} \right] d\mathbf{z}$$

Reparametrization trick (LOTUS trick)

- $r(x) = \mathcal{N}(x|0,1), y = \sigma \cdot x + \mu, p_Y(y|\theta) = \mathcal{N}(y|\mu,\sigma^2), \theta = [\mu,\sigma].$
- $ightharpoonup \epsilon^* \sim r(\epsilon), \quad \mathbf{z} = g_{\phi}(\mathbf{x}, \epsilon), \quad \mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \phi)$

$$egin{aligned}
abla_{\phi} \int q(\mathbf{z}|\mathbf{x},\phi) f(\mathbf{z}) d\mathbf{z} &=
abla_{\phi} \int r(\epsilon) f(\mathbf{z}) d\epsilon \\ &= \int r(\epsilon)
abla_{\phi} f(g_{\phi}(\mathbf{x},\epsilon)) d\epsilon pprox
abla_{\phi} f(g_{\phi}(\mathbf{x},\epsilon^*)) \end{aligned}$$

ELBO gradient (E-step, $\nabla_{\phi} \mathcal{L}(\phi, \theta)$)

$$\nabla_{\phi} \mathcal{L}(\phi, \theta) = \nabla_{\phi} \int q(\mathbf{z}|\mathbf{x}, \phi) \log p(\mathbf{x}|\mathbf{z}, \theta) d\mathbf{z} - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$= \int r(\epsilon) \nabla_{\phi} \log p(\mathbf{x}|g_{\phi}(\mathbf{x}, \epsilon), \theta) d\epsilon - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

$$\approx \nabla_{\phi} \log p(\mathbf{x}|g_{\phi}(\mathbf{x}, \epsilon^{*}), \theta) - \nabla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Variational assumption

$$egin{aligned} r(\epsilon) &= \mathcal{N}(\mathbf{0}, \mathbf{I}); \quad q(\mathbf{z}|\mathbf{x}, \phi) = \mathcal{N}(\mu_{\phi}(\mathbf{x}), \sigma_{\phi}^2(\mathbf{x})). \ \mathbf{z} &= g_{\phi}(\mathbf{x}, \epsilon) = \sigma_{\phi}(\mathbf{x}) \cdot \epsilon + \mu_{\phi}(\mathbf{x}). \end{aligned}$$

Here $\mu_{\phi}(\cdot)$, $\sigma_{\phi}(\cdot)$ are parameterized functions (outputs of neural network).

- p(z) prior distribution on latent variables z. We could specify any distribution that we want. Let say $p(z) = \mathcal{N}(0, \mathbf{I})$.
- $p(\mathbf{x}|\mathbf{z}, \theta)$ generative distibution. Since it is a parameterized function let it be neural network with parameters θ .

Outline

1. ELBO gradients, reparametrization trick

2. Variational autoencoder (VAE)

3. Tighter variational bound (IWAE)

Generative models zoo

Variational autoencoder (VAE)

Final EM-algorithm

- ▶ pick random sample \mathbf{x}_i , $i \sim U[1, n]$.
- compute the objective:

$$oldsymbol{\epsilon}^* \sim r(oldsymbol{\epsilon}); \quad \mathbf{z}^* = g(\mathbf{x}, oldsymbol{\epsilon}^*, \phi);$$
 $\mathcal{L}(\phi, oldsymbol{\theta}) pprox \log p(\mathbf{x}|\mathbf{z}^*, oldsymbol{\theta}) - \mathit{KL}(q(\mathbf{z}^*|\mathbf{x}, \phi)||p(\mathbf{z}^*)).$

lacktriangle compute a stochastic gradients w.r.t. ϕ and heta

$$abla_{\phi} \mathcal{L}(\phi, \theta) pprox
abla_{\phi} \log p(\mathbf{x}|g_{\phi}(\mathbf{x}, \epsilon^*), \theta) -
abla_{\phi} \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})); \\
\nabla_{\theta} \mathcal{L}(\phi, \theta) pprox
abla_{\theta} \log p(\mathbf{x}|\mathbf{z}^*, \theta).$$

• update θ , ϕ according to the selected optimization method (SGD, Adam, RMSProp):

$$\phi := \phi + \eta \nabla_{\phi} \mathcal{L}(\phi, \theta),$$

$$\theta := \theta + \eta \nabla_{\theta} \mathcal{L}(\phi, \theta).$$

Variational autoencoder (VAE)

- VAE learns stochastic mapping between x-space, from complicated distribution π(x), and a latent z-space, with simple distribution.
- The generative model learns a joint distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$ of the generative model.

Variational Autoencoder

$$\mathcal{L}(\phi, oldsymbol{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \left[\log p(\mathbf{x}|\mathbf{z}, oldsymbol{ heta}) - \log rac{q(\mathbf{z}|\mathbf{x}, \phi)}{p(\mathbf{z})}
ight]
ightarrow \max_{\phi, heta}.$$

Variational autoencoder (VAE)

- lacksquare Encoder $q(\mathbf{z}|\mathbf{x},\phi) = \mathsf{NN}_e(\mathbf{x},\phi)$ outputs $\mu_\phi(\mathbf{x})$ and $\sigma_\phi(\mathbf{x})$.
- ▶ Decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathsf{NN}_d(\mathbf{z}, \boldsymbol{\theta})$ outputs parameters of the sample distribution.

image credit:

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})) \quad \text{or } = \mathsf{Softmax}(\boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\pmb{\mu}_{\phi}(\mathsf{x}),\pmb{\sigma}_{\phi}^2(\mathsf{x})).$$

Outline

1. ELBO gradients, reparametrization trick

Variational autoencoder (VAE)

3. Tighter variational bound (IWAE)

VAE limitations

Poor generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_{\boldsymbol{\theta}}(\mathbf{z}), \sigma^2_{\boldsymbol{\theta}}(\mathbf{z})) \quad \text{or } = \mathsf{Softmax}(\boldsymbol{\pi}_{\boldsymbol{\theta}}(\mathbf{z})).$$

Loose lower bound

$$\log p(\mathbf{x}|\boldsymbol{\theta}) - \mathcal{L}(q,\boldsymbol{\theta}) = (?).$$

Poor prior distribution

$$p(\mathbf{z}) = \mathcal{N}(0, \mathbf{I}).$$

Poor variational posterior distribution (encoder)

$$q(\mathsf{z}|\mathsf{x},\phi) = \mathcal{N}(\mathsf{z}|\pmb{\mu}_{\phi}(\mathsf{x}),\pmb{\sigma}_{\phi}^2(\mathsf{x})).$$

Importance sampling

LVM

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z} = \int \left[\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \right] q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) d\mathbf{z}$$
$$= \int f(\mathbf{x}, \mathbf{z}) q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} f(\mathbf{x}, \mathbf{z})$$

Here $f(\mathbf{x}, \mathbf{z}) = \frac{p(\mathbf{x}, \mathbf{z}|\theta)}{q(\mathbf{z}|\mathbf{x}, \phi)}$.

ELBO: derivation 1

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \mathsf{log} \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} f(\mathbf{x}, \mathbf{z}) \geq \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \mathsf{log} f(\mathbf{x}, \mathbf{z}) = \\ &= \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \log \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} = \mathcal{L}(q, \boldsymbol{\theta}). \end{split}$$

 $f(\mathbf{x}, \mathbf{z})$ could be any function that satisfies $p(\mathbf{x}|\theta) = \mathbb{E}_{\mathbf{z} \sim q} f(\mathbf{x}, \mathbf{z})$. Could we choose better $f(\mathbf{x}, \mathbf{z})$?

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int \left| \frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \right| q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) d\mathbf{z} = \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} f(\mathbf{x}, \mathbf{z})$$

Let define

$$f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = \frac{1}{K} \sum_{k=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x}, \boldsymbol{\phi})}$$

$$\mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \cap q(\mathbf{z} | \mathbf{x}, \boldsymbol{\phi})} f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = p(\mathbf{x} | \boldsymbol{\theta})$$

EL BO

$$\begin{split} \log p(\mathbf{x}|\boldsymbol{\theta}) &= \log \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x})} f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) \geq \\ &\geq \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \log f(\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_K) = \\ &= \mathbb{E}_{\mathbf{z}_1, \dots, \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})} \log \left[\frac{1}{K} \sum_{l=1}^K \frac{p(\mathbf{x}, \mathbf{z}_k | \boldsymbol{\theta})}{q(\mathbf{z}_k | \mathbf{x}, \boldsymbol{\phi})} \right] = \mathcal{L}_K(q, \boldsymbol{\theta}). \end{split}$$

VAE objective

$$\log p(\mathbf{x}| heta) \geq \mathcal{L}(q, heta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log rac{p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})}
ightarrow \max_{q, oldsymbol{ heta}}$$

$$\mathcal{L}(q, \theta) = \mathbb{E}_{\mathbf{z}_1, ..., \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x}, \phi)} \left(\frac{1}{K} \sum_{k=1}^K \log \frac{p(\mathbf{x}, \mathbf{z}_k | \theta)}{q(\mathbf{z}_k | \mathbf{x}, \phi)} \right)
ightarrow \max_{q, \theta}.$$

IWAE objective

$$\mathcal{L}_{K}(q, \boldsymbol{\theta}) = \mathbb{E}_{\mathbf{z}_{1}, \dots, \mathbf{z}_{K} \sim q(\mathbf{z} | \mathbf{x}, \boldsymbol{\phi})} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathbf{x}, \mathbf{z}_{k} | \boldsymbol{\theta})}{q(\mathbf{z}_{k} | \mathbf{x}, \boldsymbol{\phi})} \right) \rightarrow \max_{q, \boldsymbol{\theta}}.$$

If K = 1, these objectives coincide.

Theorem

- 1. $\log p(\mathbf{x}|\boldsymbol{\theta}) \geq \mathcal{L}_K(q,\boldsymbol{\theta}) \geq \mathcal{L}_M(q,\boldsymbol{\theta})$, for $K \geq M$;
- 2. $\log p(\mathbf{x}|\boldsymbol{\theta}) = \lim_{K \to \infty} \mathcal{L}_K(q, \boldsymbol{\theta})$ if $\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})}$ is bounded.

If K > 1 the bound could be tighter.

$$egin{aligned} \mathcal{L}(q, oldsymbol{ heta}) &= \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log rac{p(\mathbf{x}, \mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})}; \ \mathcal{L}_K(q, oldsymbol{ heta}) &= \mathbb{E}_{\mathbf{z}_1, ..., \mathbf{z}_K \sim q(\mathbf{z}|\mathbf{x}, oldsymbol{\phi})} \log \left(rac{1}{K} \sum_{k=1}^K rac{p(\mathbf{x}, \mathbf{z}_k | oldsymbol{ heta})}{q(\mathbf{z}_k | \mathbf{x}, oldsymbol{\phi})}
ight). \end{aligned}$$

- $ightharpoonup \mathcal{L}_1(q,\theta) = \mathcal{L}(q,\theta);$
- ▶ Which $q^*(\mathbf{z}|\mathbf{x}, \phi)$ gives $\mathcal{L}(q^*, \theta) = \log p(\mathbf{x}|\theta)$?

Objective

$$\mathcal{L}_{\mathcal{K}}(q, oldsymbol{ heta}) = \mathbb{E}_{\mathsf{z}_1, ..., \mathsf{z}_K \sim q(\mathsf{z}|\mathsf{x}, oldsymbol{\phi})} \log \left(rac{1}{K} \sum_{k=1}^K rac{p(\mathsf{x}, \mathsf{z}_k | oldsymbol{ heta})}{q(\mathsf{z}_k | \mathsf{x}, oldsymbol{\phi})}
ight)
ightarrow \max_{oldsymbol{\phi}, oldsymbol{ heta}}.$$

Theorem

Gradient signal of $q(\mathbf{z}|\mathbf{x},\phi)$ vanishes as K increases:

$$\begin{split} \Delta_K &= \nabla_{\boldsymbol{\theta}, \boldsymbol{\phi}} \mathcal{L}_K(\boldsymbol{q}, \boldsymbol{\theta}); \quad \mathsf{SNR}_K = \frac{\mathbb{E}[\Delta_K]}{\sigma(\Delta_K)}; \\ \mathsf{SNR}_K(\boldsymbol{\theta}) &= O(\sqrt{K}); \quad \mathsf{SNR}_K(\boldsymbol{\phi}) = O\left(\sqrt{K^{-1}}\right). \end{split}$$

- ► IWAE makes the variational bound tighter and extends the class of variational distributions.
- ► Gradient signal becomes really small, training is complicated.
- ► IWAE is a standard quality measure for VAE models.

Summary

- Amortized variational inference allows to efficiently compute the stochastic gradients for ELBO using Monte-Carlo estimation.
- The reparametrization trick gets unbiased gradients w.r.t to the variational posterior distribution $q(\mathbf{z}|\mathbf{x}, \phi)$.
- The VAE model is an LVM with two neural network: stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ and stochastic decoder $p(\mathbf{x}|\mathbf{z}, \theta)$.
- Standart VAE has several limitations that we will address later in the course.
- ➤ The IWAE could get the tighter lower bound to the likelihood, but the training of such model becomes more difficult.