Quantifying relationships among populations: Many populations

Andrea Manica

Outline

- Generalising f₄
- Quantifying distances between populations
- Building trees
- Admixture Graphs
- Some spatial statistics

qpWave: generalising
$$f_4$$

0 1 2 0 1 2
L: pop_a, pop_b, pop_c R: pop_d, pop_e, pop_f

$$X(l_i, r_i) = f_4(l_0, l_i; r_0, r_i) \qquad f_4(a, b; d, e) \qquad f_4(a, b; d, f)$$

$$rank + 1 \leq 1$$

$$n waves \qquad f_4(a, b; d, e) \qquad f_4(a, b; d, e)$$

qpAdm: estimating proportions from multiple sources

T: pop_t

S: pop_a, pop_b, pop_c

R: pop_d, pop_e, pop_f

$$T = \sum_{i=1}^{n} w_i s_i$$

$$\sum_{i} w_{i} f_{4}(T, s_{i}, r_{1}, r_{2}) = f_{4}(T, T, r_{1}, r_{2})$$

Quantifying distances among populations

Quantifying distances among populations

$$f_2(A,B) = E[(p_A-p_B)^2]$$

$$\hat{F}_2(P_1, P_2) = \pi_{12} - \frac{\pi_{11} + \pi_{22}}{2}.$$

$$F_2(P_1, P_2) = \frac{1}{2} F_{ST} \mathbb{E} H_{\exp}.$$

$$F_2(P_1, P_2) = 2\mathbb{E} T_{12} - \mathbb{E} T_{11} - \mathbb{E} T_{12}$$

Quantifying distances among populations

Neighbour Joining trees

Breaking the tree

Treemix

qpGraph

Fitted on f_2 or f_3

First fit unadmixed skeleton

Then test admixture scenarios

Check for mismatches in predicted vs observed f_3 and f_4

Not exhaustive, multiple graphs might fit data equally

qpGraph - changing philosophies

Even for simple scenarios, there are many graph that fit the data

Manual searches are not enough

Extensive searches are needed, and evidence from admixture graphs needs to be complemented with other approaches

Using space to model many populations

Isolation by distance can explain a lot of differences

Barriers for human movement

EMMS

EMMS – migration vs population size

Outline

- Generalising f₄
- Quantifying distances between populations
- Building trees
- Admixture Graphs
- Some spatial statistics

Practical

- Use Admixtools to fit admixture graph
- Human dataset with modern and ancient