

Universidade Paulista – UNIP MBA em Data Science & Machine Learning

Emsemble de Séries Temporais com Orientação a Objetos

Disciplina: Linguagens de Programação Estatística (R)

Trabalho 01

UNIP 2018 Prof. Robson Fernandes

Conjunto de Dados

• Considerar o arquivos serieVendas.csv disponível na pasta "Códigos/Série Temporal"

Objetivo

• Considerar o arquivo **timeSeries.r** disponível na pasta "**Códigos/Série Temporal**" e criar um componente baseado no paradigma orientado a objetos utilizando o **R6**.

TimeSeries
- dataSet: List
- dataSetMAPE: List
- modelArima: Object
- modelExponencial: Object
- modelBats: Object
- modelTBats: Object
- modelRecurrentNeuralNetwork: Object
+ boxTest(dataSet): String
+ fit(dataSet): void
+ forecast(period) : List
+ plot(dataSet, title, xLabel, yLabel): void
+ plotMAPE(dataSetMAPE, title, xLabel, yLabel) : void
+ plotForecast(listForecast, title, xLabel, yLabel) : void

Diagrama de Classe : Componente Time Series

Regras

 o atributo dataSet deverá armazenar o retorno da função ts() conforme o arquivo timeSeries.r

- o atributo dataSetMAPE deverá armazenar a lista contendo o "Erro percentual Absoluto Médio" de cada modelo conforme o arquivo timeSeries.r
- os atributos modelArima, modelExponencial, modelBats, modelTBats e modelRecurrentNeuralNetwork deverão armanezar os modelos ajustados.
- o método boxTest receberá como argumento o dataSet e retornará o teste de hipótese baseado no Ljung-Box.
- o método fit receberá como argumento o dataSet e irá ajustar todos os modelos de séries temporais em questão (modelArima, modelExponencial, modelBats, modelTBats e modelRecurrentNeuralNetwork), e armazenará cada um no seu respectivo atributo.
- o método forecast receberá o período no qual se deseja realizar a previsão e irá considerá-lo por meio do modelo que tiver o menor MAPE. Ou seja, se o modelo TBATS tiver um MAPE de 11% e o modelo ARIMA de um MAPE de 13%, você deverá considerar o modelo com menor MAPE, neste caso, o modelo TBATS com MAPE de 11%, e retornar a lista com as previsões.
- o método **plot** receberá o dataSet da série temporal, bem como o título do gráfico e seus respectivos rótulos referente as coordenadas (x, y), para posteriormente apresentar o gráfico de série temporal.
- o método **plotMAPE** receberá a lista contendo o "Erro percentual Absoluto Médio" de cada modelo, bem como o título do gráfico e seus respectivos rótulos referente as coordenadas (x, y), para posteriormente apresentar o gráfico de barras.
- o método plotForecast receberá a lista da previsões retornada pelo método forecast, bem como o título do gráfico e seus respectivos rótulos referente as coordenadas (x, y), para posteriormente apresentar o gráfico de previsão.

Data de Entrega

- Entrega até 27/10/2018 às 23:59 (Código Fonte)
- E-mail robs.fernandes@outlook.com