

CLAIMS

1. Multiply quaternized polysiloxanes of the formula (S1)

5

where

the sum total of (q + w) has a range of 10-1500 and the q/w ratio has a range of
10 5-600,

R is C₁-C₄-alkyl, linear or branched,

R₁ is hydrogen, C₁-C₃-alkyl or C₁-C₃-alkoxy,

R₂ is C₁-C₇-alkyl or benzyl,

15 X is a direct bond

or

20

where

r is 1-4 and

R₃ is C₁-C₇-alkyl or -NH-C₁-C₇-alkyl,

or

5

where

R_2 and r are each as defined above,

R_4 is $\text{C}_1\text{-C}_3$ -alkyl,

10

or

Y is

15

or

20

$-(\text{CH}_2)_x-$,

where

x is 1-4,

Z is $\text{C}_2\text{-C}_4$ -alkylene, linear or branched and

25

A^- is $\text{CH}_3\text{OSO}_3^-$, chloride, bromide, iodide or tosylsulfate $^-$,

or of the formula (S2)

where

R, R₂ and A⁻ have the same meaning as in formula (S1),

5 m is 1 - 4,

 p is 1 - 4, and

 s is 5 - 1500

10 2. Multiply quaternized polysiloxanes according to Claim 1 wherein
 the sum total of (q + w) has a range of 15-600 and the q/w ratio has a range of
 10-400,

R is methyl, ethyl or propyl,

15 R₁ is H, methyl, -OCH₃ or -OC₂H₅,

R₂ is methyl or benzyl,

R₃ is methyl or -NH-C₄H₉,

R₄ is methyl,

Z is C₃-alkylene, linear or branched,

20 A⁻ is CH₃OSO₃⁻ or chloride,

m is 3,

p is 3,

s is 10 - 600,

r is 2, and

25 x is 3.

3. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E1

5

or having structural units of the formula E1a

10

4. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E2

5. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E3

10 6. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E4

7. Multiply quaternized polysiloxanes according to Claim 1 or 2 having structural units of the formula E5

5

10 8. Multiply quaternized polysiloxanes according to Claim 1 or 2 of the formula E6

9. Process for preparing multiply quaternized polysiloxanes of the formula (S1) according to any one of Claims 1 to 6, characterized in that the following reactions are carried out:

5 A) reaction of dialkylamine with epichlorohydrin to form a glycidylalkylamine,
B) reaction of the glycidylalkylamine with 3-aminoalkyldialkoxymethylsilane or with 3-(2-aminoalkylamino)alkyldialkoxymethylsilane to form the corresponding silanes,
C) reaction of the resultant silanes with polydimethylsiloxanediol or with
10 octamethylcyclotetrasiloxane or with tetraalkyl- or aryltrialkyl-ammonium hydroxide to form polysiloxanes, with subsequent quaternization to form the multiply quaternized polysiloxanes.

15 10. Process for preparing multiply quaternized polysiloxanes of the formula (S1) where Y is $-(CH_2)_x-$ and X is

20 characterized in that the following reactions are carried out:

A) reaction of N'-(3-(dialkylamino)alkyl)-N,N-dialkylalkane-1,3-diamine with dialkoxy(3-glycidyloxyalkyl)methylsilane,
B) reaction of the reaction product from A) with polydimethylsiloxanediol or with octamethylcyclotetrasiloxane, with subsequent quaternization.

25

11. Process for preparing multiply quaternized polysiloxanes of the formula (S2) according to Claims 1 or 2, characterized in that the following reactions are carried out:

30 A) reaction of octaalkylcyclotetrasiloxane with 1,1,3,3-tetraalkyldisiloxane,
B) reaction of the reaction product from A) with an allyl glycidyl ether and a hydrosilylation catalyst;
C) reaction of the reaction product from B) with N,N,N',N'-tetraalkyldialkylenetriamine to form the polysiloxane and subsequent quaternization.

35

12. Use of multiply quaternized polysiloxanes according to Claims 1 to 8 as a softener in the textile industry.