

Content

- Introduction/Background
- Data Overview
- Data Cleaning
- Data Exploration
- Machine Learning Models
- Evaluation
- Results
- Conclusion

Introduction

Problem Statement:

- Accurate demand forecasting is crucial for optimizing inventory and improving supply chain management
- Need a scalable solution for performing store-item level predictions

Objective:

- Compare and evaluate machine learning models for fine-grained demand forecasting at the store-item level
 - Using Kaggle's Store Item Demand Forecasting historical sales dataset [1]
- Use Databricks' Fine-Grained Demand Forecasting Accelerator with Prophet as a baseline model and compare it against XGBoost [2].
- Assess forecasting performance using evaluation metrics: MAE, RMSE, MAPE, and one sided t-test

[1] https://www.kaggle.com/competitions/demand-forecasting-kernels-only/data

 $\label{lem:com/notebooks/RCG/Fine_Grained_Demand_Forecasting/index.html\#Fine_Grained_Demand_Forecasting_1.html$

Background

Prophet

- Designed specifically for time-series forecasting
- Automatically handles seasonality, holidays, and trend changes
- Requires minimal parameter tuning and works well with missing data
- Ideal for business forecasting with built-in interpretability

XGBoost

- A powerful gradient boosting model typically for classification or regression
- Known for high performance and is a top choice for Kaggle time series prediction competitions
- Requires custom feature engineering for timeseries data
- Optimized for scalability and efficient training using boosting techniques

- [1] https://facebook.github.io/prophet/docs/multiplicative_seasonality.html
- [2] https://machinelearningmastery.com/xgboost-for-time-series-forecasting/
- [3] ChatGPT Prompt: "I am doing a project on fine grained demand forecasting. I am following a databricks solution that uses Prophet, what are some other alternatives to this forecasting model that are simple but still accurate?"

Dataset Overview

- Dataset: Kaggle Store Item Demand Forecasting Training Set [1]
 - 5 years of historical sales data 2013-2017
 - 10 stores, 50 items
 - includes dates, store IDs, item IDs, and #of sales
 - 913,000 rows of data
- Granularity: Store-item combinations across multiple years, enabling trend and seasonality analysis.

	date	store 📤	item 📤	sales 📤
1	2013-01-01	1	1	13
2	2013-01-02	1	1	11
3	2013-01-03	1	1	14
4	2013-01-04	1	1	13
5	2013-01-05	1	1	10
6	2013-01-06	1	1	12

■ [1]https://www.kaggle.com/competitions/demandforecasting-kernels-only/data

Data Cleaning

- Overall, a clean dataset
 - Aggregate to ensure dataset is at store item level
- Standardized datetime
- Created column with month and weekday names with spark.sql functions

Day	month	day_of_week	day_of_week_name	month_name
Tuesday	7	3	Tuesday	July
Tuesday		3	Tuesday	
Saturday	12	7	Saturday	December
Thursday	5	5	Thursday	May
Monday	8	2	Monday	August
Tuesday	12	3	Tuesday	December
Sunday	4	1	Sunday	April
Wednesday	3	4	Wednesday	March
Wednesday	5	4	Wednesday	May
Tuesday	6	3	Tuesday	June

Data Exploration

- Visualizations Conducted:
 - Weekly sales trends by store and item
 - Monthly and weekly sales peaks.
 - Year over year analysis

Insights: Identified peak sales in July and weekends.

Methodology Overview

Prophet Model (Baseline):

- Selected for its ability to handle seasonality and long-term trends automatically
- Requires minimal manual feature engineering, making it user-friendly for time-series forecasting

XGBoost Model (Comparative):

- Chosen for its ability to incorporate custom-engineered features
- Supports gradient boosting, providing high accuracy in regression tasks

Processing Framework:

• **PySpark:** Used for scalable and efficient data handling, enabling fast data processing for the large dataset of 913,000 rows.

Statistical Hypothesis Testing:

- Null Hypothesis (H₀): Prophet performs better or equally as well as XGBoost
- Alternative Hypothesis (H₁): XGBoost performs better than Prophet

Building Prophet Model

- Import Prophet Model using pip install prophet
- Configuration: followed the Databricks solution accelerator's set parameters [1]
 - Interval width: 0.95
 - Seasonality: Weekly and yearly enabled
 - Growth: Linear
- Training: Full dataset, including 2017.
- Forecast: Automatically predicts for all historical and future dates.
- Strengths: Automated feature handling, trend and seasonality detection.
- [1]https://notebooks.databricks.com/notebooks/RCG/Fine_Grained_Demand_Forecasting/index.html#Fine_Grained_Demand___1.html

Building XGBoost Model

- Features Engineered:
 - Temporal: Year, month, day, day of the week, is_weekend.
 - Sales History: Lag-1,2,3, rolling mean (window=3).
- Training Process: 80/20 split
 - Training set: Data before 2017.
 - Test set: Data from 2017.
- Forecast: Predicted values for 2017 and next 90 days.
- Strengths: Custom feature selection, works well for irregular patterns

- [1] https://www.kaggle.com/code/enolac5/time-series-arima-dnn-xgboost-comparison#Findings-and-Steps-Forward
- [2] https://www.kaggle.com/code/robikscube/tutorial-time-series-forecasting-with-xgboost/notebook#Train/Test-Split

Evaluation

Model Evaluation Results (Aggres Metrics):

- XGBoost Model:
 - MAE: 3.52
 - RMSE: 5.14
 - MAPE: 6.33%
- Prophet Model:
 - MAE: 6.19
 - RMSE: 8.05
 - MAPE: 12.73%
- Below picture is a comparison at store level

Evaluation

- Our null hypothesis: (Prophet's performance is equal to or better than XGBoost's) is rejected
- XGBoost is significantly more accurate

```
MAE T-Statistic: -134.7186
MAE P-Value: 1.7382e-16
Reject the null hypothesis for MAE: XGBoost performs significantly better.

RMSE T-Statistic: -104.8531
RMSE P-Value: 1.6564e-15
Reject the null hypothesis for RMSE: XGBoost performs significantly better.

MAPE T-Statistic: -15.4742
MAPE P-Value: 4.3032e-08
Reject the null hypothesis for MAPE: XGBoost performs significantly better.
```


Results: Future Forecast Analysis

- As seen in historical data, sales begin to pick up in the new year
- Similar sales pattern
- Prophet seems to overpredict compared to XGBoost

Conclusion

Performance Insights:

- Both models are easily scalable, and quick
- XGBoost has better accuracy and is significantly more accurate.
- Prophet requires less manual work and is sufficient for quick forecasts

Next Steps:

- Explore additional models (ARIMA, LSTM).
- Improve feature engineering for XGBoost.
- Use Prophet's custom seasonalities for better fit.

Sources

- Brownlee, J. (2020, August 4). *How to Use XGBoost for Time Series Forecasting*. Machine Learning Mastery. https://machinelearningmastery.com/xgboost-for-time-series-forecasting/
- ChatGPT. (2024). Chatgpt.com. https://chatgpt.com/auth/login
- Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. (2018, April 17). *Notes from the AI frontier: Applications and value of deep learning*. McKinsey & Company. https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep-learning
- Demand Forecasting at Scale. (n.d.). Databricks. https://www.databricks.com/solutions/accelerators/demand-forecasting
- Eno5. (2018). *Blocked*. Kaggle.com. https://www.kaggle.com/code/enolac5/time-series-arima-dnn-xgboost-comparison#Model-(2)---Feed-Forward-Neural-Network-with-Daily-Data
- Fine_Grained_Demand_Forecasting Databricks. (2021). Databricks.com. https://notebooks.databricks.com/notebooks/RCG/Fine_Grained_Demand_Forecasting/index.html#Fine_Grained_Demand_Forecasting_1.ht ml
- Multiplicative Seasonality. (2023, October 18). Prophet. https://facebook.github.io/prophet/docs/multiplicative_seasonality.html
- robikscube. (2018, November 9). [Tutorial] Time Series forecasting with XGBoost. Kaggle.com; Kaggle. https://www.kaggle.com/code/robikscube/tutorial-time-series-forecasting-with-xgboost/notebook#Train/Test-Split
- Store Item Demand Forecasting Challenge. (n.d.). Kaggle.com. https://www.kaggle.com/competitions/demand-forecasting-konly/data