Sistema de control 12/08/13

Tema 1

Pedía calcular los valores K_p y K_l para que se cumpla simultáneamente las siguientes condiciones

- a) El error ante una entrada rampa sea del 10%
- b) Sea estable

Tema 2

 $G_{c}(s) = \frac{63,21}{s(s+4)(s+6)}$

- a) Diseñar un compensador $G_c(s)$ para $t_{s(2\%)}$ =2 M_p =0.2 sin que tenga error ante una entrada escalón
- b) Dibujar el lugar de raíces compensado
- c) Diseñar el circuito analógico
- d) Calcular $t_{s(2\%)}$ y M_p para $G_c(s)=k=1$

Tema 3

$$\frac{C(S)}{R(S)} = \frac{s+12}{s(s^2+6s+8)}$$

- a) Representar en variable de estado
- b) Diagrama en bloque y flujo
- c) Auto valores
- d) controlabilidad y observabilidad
- e) Realimentar con K para s_1 =-24 s_2 =-2 +2j s_3 =-2-2j sin que exista e_{ss} para una entrada escalón