考试课程 数学实验 2001.01.05

班级 姓名 学号								
说明: (1) 第 1, 2, 3 题每题 10 分,直接将答案填在试题纸上; (2) 第 4 题 20 分,将简要解题过程和结果写在试题纸上。								
1. 给定方程 $x - \sin^2 x - 1 = 0$ 。用迭代公式 $x_{k+1} = \sin^2 x_k + 1$ 求该方程在区间[0, 2]内的								
解,则迭代是 <u>1</u> 阶收敛的。若取迭代初值为 $x_0 = 0$,则 $x_{50} = 1.8971943063$ (精确到 10 位小数)。该方程的 Newton 迭代公式是: $x(k+1)=x(k)-(x(k)-\sin^2(x(k))-1)/(1-\sin(2*x(k)))$								
迭代是								
收敛的充要条件(局部收敛性定理): $f(x)$ 在 $x*$ 的一个邻域内连续、可微,且 $ f'(x*) <1$,则								
对于该邻域内任意初值 $x0$,序列 $\{xk\}$ 均收敛于 $x*$ 2)若已判断其收敛,则将 $f(x)$ 在 $x*$ 作泰勒展开,若 $f'(x*)=f''(x*)=\cdots=f^{(p-1)}(x*);$ $f^{(p)}(x*)\neq 0$,则此迭代公式为 p 阶收敛								
x0=0;								
x(1)=x0;								
for $j=1:49$								
$x(j+1)=\sin(x(j))^2+1;$								
end;								
x(j+1) NEWTON 法(2 阶收敛):								
对于方程 f(x)=0, 其牛顿法迭代公式为:								
$\varphi(x) = x - \frac{f(x)}{f'(x)}$								
$x(k+1)=x(k)-(x(k)-\sin^2(x(k))-1)/(1-\sin(2*x(k)))$								
2. $\forall y''(x) - y'(x) \sin x + ye^x = 0, y(0) = 1, y'(0) = 0,$ 用数值解法算出								
y(1)=0.2714(精确到 4 位小数), 你用的方法是 <u>龙格-库塔方法</u> ,调用的 Matlal 命令是ode45(@ff, ts,y0),算法精度为 <u>4 阶</u> 。								
%待解常微分方程组函数 M 文件源程序:								
function dy=ff (x,y)								
$dy=[y(2);y(2)*\sin(x)-y(1)*\exp(x)];$								
%应用欧拉方法和龙格-库塔方法求解该常微分方程:								
ts=0:0.1:1;								
y0=[1,0];								
[x,y]=ode45(@ff, ts,y0); % 龙格-库塔方法求数值解								
[x, y(:,1)] 输出结果: 1.000000000000000000000000000000000000								
汽油含硫量的置信区间为(精确到 4 位小数)								
取 4 桶的含硫量为 (%): 1.2, 0.8, 1.5, 1.7, 要检验: 甲的含硫量小于乙, 作的零假设是								

 $\underline{\text{H0: } μ_{\,\,\,\,\,\,\,\,\,}}$, 用的 Matlab 命令是 $\underline{\text{ttest2}(x,y)}$, 检验结果是 $\underline{\text{接受 H0}}$, 作

这个检验的前提是 数据来自正态总体,相互独立。

1)

 $x=[1.2 \ 1.5 \ 0.9 \ 0.8 \ 1.3]$

[mux sigmax mucix sigmacix]=normfit(x) 输出结果:

mucix = 0.782280071552989

1.497719928447011

2)

 $x=[1.2 \ 1.5 \ 0.9 \ 0.8 \ 1.3]$

 $y=[1.2 \ 0.8 \ 1.5 \ 1.7]$

[h,sig,ci]=ttest2(x,y,[],-1)

输出结果:

h=0

4. 某厂用甲、乙两种原料添加填充剂制成一种新型材料,经实验知道,新型材料的强度 y 主要取决于单位体积内原料甲的含量 x_1 (千克) 和原料乙的含量 x_2 (千克),并得到以下数据:

					131					
X 1	13.2	21.9	20.0	14.1	18.4 17.8	20.7	16.0	18.5	20.8	15.0
\mathbf{x}_2	15.0	20.9	13.7	19.3	17.8	14.1	24.0	18.2	25.0	25.0

在投入正式生产时得知,每千克原料甲含有毒物质 5 克,每千克原料乙含有毒物质 1 克,而单位体积新型材料中规定有毒物质不得超过 100 克;每千克原料甲售价 300 元,每千克原料乙售价 400 元,而生产单位体积新型材料用于购买甲、乙两种原料的成本预算限额为 12,000元;由于技术原因,单位体积新型材料中原料乙的含量不得超过 25 千克。(精确到 4 位小数)

- (1) 确定新型材料的强度 y 与单位体积内原料甲的含量 x_1 和原料乙的含量 x_2 之间的关系,并求甲、乙两种原料的含量 x_1 , x_2 ,在满足上述条件下使新型材料的强度 y 最大。
- (2) 如果购买甲、乙两种原料的成本预算限额增加 100 元,问可使新型材料的强度提高百分之几。
- (3) 讨论实验数据的随机误差对(1) 的结果会有什么影响。

解.

(1)假设函数关系为 y=b0+b1*x1+b2*x2

多元线性回归:

y=[105 150 128 125 131 129 146 129 161 138];

 $x1=[13.2\ 21.9\ 20.0\ 14.1\ 18.4\ 20.7\ 16.0\ 18.5\ 20.8\ 15.0];$

x2=[15 20.9 13.7 19.3 17.8 14.1 24 18.2 25 25];

n=10;

m=2;

X = [ones(n,1),x1', x2']

[b,bint,r,rint,s]=regress(y',X)

rcoplot(r,rint)

输出结果:

b = 21.628865150622616

3.217510807205672

2.855253462833373

故强度 y 与原料甲的含量 x_1 (千克) 和原料乙的含量 x_2 (千克)函数关系为:

$$y = 21.6289 + 3.2175 x_1 + 2.8553 x_2$$

约束优化问题:

决策变量:

料甲的含量 x1; 原料乙的含量 x2

目标函数:

y=3.2175*x1+2.8553*x2+21.6289

约束条件:

$$5*x1+x2 \le 100$$

$$300*x1+400*x2 \le 12000$$

$$x2 \le 25$$

$$x1,x2 \ge 0$$

 $x1, x2 \ge 0$

基本模型:

$$max(z) = 3.2175*x1+2.8553*x2$$

s.t.
$$5*x1+x2 \le 100$$
$$300*x1+400*x2 \le 12000$$
$$x2 \le 25$$

$$c=[3.2175 \quad 2.8553];$$

A1=[5 1;

```
300 400 ;
     0 1];
b1=[100;12000;25];
v1=[0\ 0];
[x,z,ef,out,lag]=linprog(-c,A1,b1,[],[],v1);
y1 = -(z-21.6289)
输出结果:
x = 16.470588235294102
     17.647058823529388
y1 = 1.250106647058822e+002
优化方案:
甲: 16.4706; 乙: 17.6471;
(2)
c=[3.2175 \quad 2.8553];
A1=[ 5 1;
     300 400 ;
     0 1;
b1=[100;12100;25];
v1=[0\ 0];
[x,z,ef,out,lag]=linprog(-c,A1,b1,[],[],v1);
\mathbf{X}
y2 = -(z-21.6289)
dy=y2-y1
a=dy/y1
输出结果:
x = 16.411764602561966
  17.941176435242152
y 2=1.256611936842900e+002
dy = 0.650528978407806
a = 0.005203787852327
应该用 lag 乘子!! 更加正规!!
(3) 实验数据的随机误差导致回归系数有置信区间: c_1 (2.3947, 4.0403), c_2 (2.2707,
3.4399)。 用置信区间的左右端点重新计算,发现当取 c_1=2.3947,c_2=3.4399 时,最优解改
变为 x_1 = 6.6667 , x_2 = 25.0000, y_{\text{max}} = c_0 + c_1 x_1 + c_2 x_2 = 123.5898, 即实验数据的随机误差
会影响最优解。
```

2001年1月5日计算方法(数学实验)考试

答案

 $x_{k+1} = x_k - \frac{x_k - \sin^2 x_k - 1}{1 - \sin 2x_k}$

- 1. 1 1.8971943063
- [0.7823, 1.4977]; H₀: μ₁< μ₂, h=ttest2(x, y, 0.05, 1), 接受 H₀, 数据来自正态总体,相互独立。
- 4. (1) 作 x1~y, x2~y 散点图,近似线性关系。用数据拟合: $y = c_0 + c_1 x_1 + c_2 x_2$,并作假设: $H_0: c_0 = c_1 = c_2 = 0$ 。用回归分析,计算得:

置信区间均不含零点,且 R^2 = 0.9666 f=101.2543 p=0.0000, 拒绝 H_0 . 残差置信区间均含零点,无异常数据,得

$$y = 21.6289 + 3.2175 x_1 + 2.8553 x_2$$

以 $y = c_1 x_1 + c_2 x_2$ (去掉常数 c_0) 为目标函数建立优化问题的数学模型:

$$\max_{x_1, x_2} \quad z = 3.2175x_1 + 2.8553x_2$$
s.t.
$$5x_1 + x_2 \le 100$$

$$3x_1 + 4x_2 \le 120$$

$$x_2 \le 25, \ x_1, x_2 \ge 0$$

计算结果: x₁=16.4706 x₂=17.6471, lag=0.2532 0.6505 0

 $y_{\text{max}} = c_0 + c_1 x_1 + c_2 x_2 = 125.0100$

甲乙两种原料的含量分别为 16.4706 (千克) 和 17.6471 (千克) 使新型材料的强度最大。

- (2) 由 1 的计算结果: lag(2) = 0.6505,可知购买甲乙两种原料的成本预算限额增加 100元,新型材料的强度提高 0.6505,与上面结果 y=125.0100 相比,增加 0.52%.
- (3) 实验数据的随机误差导致回归系数有置信区间: c_1 (2.3947, 4.0403), c_2 (2.2707, 3.4399)。 用置信区间的左右端点重新计算,发现当取 c_1 =2.3947, c_2 =3.4399 时,最优解改变为 x_1 =6.6667 , x_2 =25.0000, $y_{\max} = c_0 + c_1 x_1 + c_2 x_2$ =123.5898,即实验数据的随机误差 会影响最优解。