

TIME SERIES MODELING

Sri Kanajan

TIME SERIES MODELING

LEARNING OBJECTIVES

- Model and predict from time series data using AR, ARMA, or ARIMA models
- Specifically, coding these models in statsmodels

COURSE

PRE-WORK

PRE-WORK REVIEW

 Prior exposure to linear regression with discussion of coefficients and residuals

OPENING

TIME SERIES MODELING

TIME SERIES MODELING

- In the last class, we focused on exploring time series data and common statistics for time series analysis.
- In this class, we will advance those techniques to show how to predict or forecast forward from time series data.
- With a sequence of values (a time series), we will use the techniques in this class to predict a future value.

TIME SERIES MODELING

- There are many times when you may want to use a series of values to predict a future value.
 - The number of sales in a future month
 - Anticipated website traffic when buying a server
 - Financial forecasting
 - The number of visitors to your store during the holidays

INTRODUCTION

WHAT ARE TIME SERIES MODELS?

WHAT ARE TIME SERIES MODELS?

- Time series models are models that will be used to predict a future value in the time series.
- **Like** other predictive models, we will use prior history to predict the future.
- **Unlike** previous models, we will use the earlier in time *outcome* variables as *inputs* for predictions.

• A moving average is an average of p surrounding data points in time.

• Autocorrelation is how correlated a variable is with itself. Specifically, how related are variables earlier in time with variables later in time.

$$r_{k} = \frac{\sum_{t=k+1}^{n} (y_{t} - \bar{y})(y_{t-k} - \bar{y})}{\sum_{t=1}^{n} (y_{t} - \bar{y})^{2}}$$

• We fix a *lag*, k, which is how many time points earlier we should use to compute the correlation.

- We can use these values to assess how we plan to model our time series.
- Typically, for a high quality model, we require some autocorrelation in our data.
- We can compute autocorrelation at various lag values to determine how far back in time we need to go.

- Many models make an assumption of *stationarity*, assuming the mean and variance of our values is the *same* throughout.
- While the values (e.g. of sales) may shift up or down over time, the mean and variance of sales is constant (i.e. there aren't many dramatic swings up or down).
- These assumptions may not represent real world data; we must be aware of that when we are breaking the assumptions of our model.

Stationary Time Series

Non-stationary Time Series

- Often, if these assumptions don't hold, we can alter our data to make them true. Two common methods are *detrending* and *differencing*.
- Detrending would mean to remove any major trends in our data.
- We could do this is many ways, but the simplest is to fit a line to the trend and make a new series that is the difference between the line and the true series.

For example, there is a clear upward (non-stationary) trend in google searches for "iphone".

If we fit a line to this data first, we can create a new series that is the difference between the true number of searches and the predicted searches.

• Below is an example where we look at US housing prices over time. Clearly, there is an upward trend, making the time series non-stationary (ie: the mean house price is increasing).

• We can fit a line that represents the trend. With our trend line, we can subtract the trend line value from the original value to get the bottom figure.

- A simpler method is *differencing*. This is very closely related to the diff function we saw in the last class.
- Instead of predicting the series (again our non-stationary series), we can predict the difference between two consecutive values.

TIME SERIES MODELS

- In the rest of this lesson, we are going to build up to the **ARIMA** time series model.
- This model combines the ideas of differencing and two models we will see.
 - AR autoregressive models
 - MA moving average models

- Autoregressive (AR) models are those that use data from previous time points to predict the next.
- This is very similar to previous regression models, except as input, we take the previous outcome.
- If we are attempting to predict weekly sales, we use the sales from a previous week as input.
- Typically, AR models are notes AR(p) where *p* indicates the number of previous time points to incorporate, with AR(1) being the most common.

- In an autoregressive model, similar to standard regression, we are learning regression coefficients for each of the p previous values. Therefore, we will learn p coefficients or β values.
- If we have a time series of sales per week, y_i, we can regress each yi from the last *p* values.

$$y_{i} = \beta_{o} + \beta_{1}y_{i-1} + \beta_{2}y_{i-2} + ... + \beta_{p}y_{i-p} + \varepsilon$$

• As with standard regression, our model assumes that each outcome variable is a linear combination of the inputs and a random error term.

- For an AR(1) model, we will learn a single coefficient.
- This coefficient, β , will tell us the relationship between the previous value, Y_{t-1} , and the next value, Y_t .

$$Y_{t} = \beta_{0} + \beta_{1} \cdot Y_{t-1}$$

A value > 1 would indicate a growth over previous values. This would typically represent non-stationary data, since if we compound the increases, the values are continually increasing.

Global Temperature Deviations, 1880-2009

• Values between 1 and -1 represent increasing and decreasing patterns from previous patterns.

- As with other models, interpretation of the model becomes more complex as we add more factors.
- Going from AR(1) to AR(2) can add significant *multi-collinearity*.

- Recall that *autocorrelation* is the correlation of a value with its series *lagged* behind.
- A model with high correlation implies that the data is highly dependent on previous values and an autoregressive model would perform well.

- Autoregressive models are useful for learning falls or rises in our series.
- This will weight together the last few values to make a future prediction.
- Typically, this model type is useful for small-scale trends such as an increase in demand or change in tastes that will gradually increase or decrease the series.
- This model does not capture the seasonal element
- You can identify the number of AR components by observing the partial autocorrelation plot

ACTIVITY: KNOWLEDGE CHECK

ANSWER THE FOLLOWING QUESTIONS

- 1. If we observe an autocorrelation near 1 for lag 1, what do we expect the single coefficient in an AR(1) model to be? >1, between 0 and 1, or <1?
- 2. What if we observe an autocorrelation of o?

DELIVERABLE

Answers to the above questions

- Moving average (MA) models, as opposed to AR models, do not take the previous outputs (or values) as inputs. They take the previous error terms.
- We will attempt to predict the next value based on the overall average and how off our previous predictions were.
- The intuition is that the MA model captures the high frequency element

- This model is useful for handling specific or abrupt changes in a system.
- AR models slowly incorporate changes in the system by combining previous values; MA models use prior errors to quickly incorporate changes.
- This is useful for modeling a sudden occurrence something going out of stock or a sudden rise in popularity affecting sales.

- As in AR models, we have an order term, q, and we refer to our model as MA(q). The moving average model is dependent on the last q errors.
- If we have a time series of sales per week, y_i , we can regress each y_i from the last q error terms.

$$y_i = \text{mean of series} + \varepsilon_i + \beta_1 \varepsilon_{i-1} + \beta_2 \varepsilon_{i-2} + ... + \beta_q \varepsilon_{i-q}$$

• We include the mean of the time series (that's why it's called a moving average) as we assume the model takes the mean value of the series and randomly jumps around it.

- Of course, we don't have error terms when we start where do they come from?
- This requires a more complex fitting procedure than we have seen previously.
- We need to iteratively fit a model (perhaps with random error terms), compute the errors and then refit, again and again.

- ightharpoonup In this model, we learn q coefficients.
- In an MA(1) model, we learn one coefficient.
- This value indicates the impact of how our previous error term on the next prediction.

ARMA MODELS

- **ARMA** (pronounced 'R-mah') models combine the autoregressive and moving average models.
- An ARMA(p,q) model is simply a combination (sum) of an AR(p) model and MA(q) model.

ARMA MODELS

- We specify two model settings, p and q, which correspond to combining an AR(p) model with an MA(q) model.
- Incorporating both models allows us to mix two types of effects.
 - AR models slowly incorporate changes in preferences, tastes, and patterns.
 - Moving average models base their prediction on the prior error, allowing to correct sudden changes based on random events supply, popularity spikes, etc.

CONCLUSION

TOPIC REVIEW

CONCLUSION

- Time-series models use previous values to predict future values, also known as forecasting.
- AR and MA model are simple models on previous values or previous errors respectively.
- ARMA combines these two types of models to account for both gradual shifts (due to AR models) and abrupt changes (MA models).

CONCLUSION

- Note that none of these models may perform well for data that has more random variation.
- For example, for something like iphone sales (or searches) which may be sporadic, with short periods of increases, these models may not work well.

COURSE

BEFORE NEXT CLASS

LESSON

Q&A

LESSON

EXIT TICKET

DON'T FORGET TO FILL OUT YOUR EXIT TICKET

BEFORE NEXT CLASS

DUE DATE

Project: Final Project, Part 3

- To explore time series models, we will use the Rossmann sales data.
- This dataset has sales data for every Rossmann store for a 3-year period and indicators for holidays and basic store information.

- In the last class, we saw that we could plot the sales data at a particular store to identify how the sales changed over time.
- We also computed autocorrelation for the data at varying lag periods. This helps us identify if previous timepoints are predictive of future data and which time points are most important the previous day, week, or month.

In this class, we will use statsmodels to code AR, MA, ARMA, and ARIMA models.

• statsmodels provides a nice summary utility to help us diagnose models.

ARIMA MODELS IN STATSMODELS

• We can adjust the AR component of the model to adjust for a piece of this. Let's increase the lag to 7.

```
model = ARIMA(store1_sales_data, (7, 1, 2)).fit()
model.summary()

plot_acf(model.resid, lags=50)
```

- This removes some of the autocorrelation in the residuals but large discrepancies still exist.
- However, they exist where we are breaking our model assumptions.

ARIMA MODELS IN STATSMODELS

- Increasing p increases the dependency on previous values further (longer lag). But our autocorrelation plots show this isn't necessary past a certain point.
- Increasing q increases the likelihood of an unexpected jump at a handful of points. The autocorrelation plots show this doesn't help past a certain point.
- Increasing d increases differencing, but d=1 moves our data towards stationarity (other than a few points). d=2 would imply an exponential trend which we don't have here.

INDEPENDENT PRACTICE

WALMART SALES DATA

ACTIVITY: WALMART SALES DATA

DIRECTIONS (50 minutes)

We will analyze the weekly sales data from Walmart over a two year period from 2010 to 2012. The data is separated by store and department, but we will focus on analyzing one store for simplicity.

To read in the data

```
import pandas as pd
import numpy as np

%matplotlib inline

data =
pd.read_csv('lessons/lesson-16/assets/data/train.csv')
data.set_index('Date', inplace=True)
data.head()
```

ACTIVITY: WALMART SALES DATA

DIRECTIONS

Complete the following tasks:

- 1. Filter the dataframe to Store 1 sales and aggregate over departments to compute the total sales per store.
- 2. Plot the rolling_mean for Weekly_Sales. What general trends do you observe?
- 3. Compute the 1, 2, 52 autocorrelations for Weekly_Sales and/or create an autocorrelation plot.
- 4. What does the autocorrelation plot say about the type of model you want to build?

ACTIVITY: WALMART SALES DATA

DIRECTIONS

- 5. Split the weekly sales data in a training and test set using 75% of the data for training.
- 6. Create an AR(1) model on the training data and compute the mean absolute error of the predictions.
- 7. Plot the residuals where are their significant errors?
- 8. Compute and AR(2) model and an ARMA(2, 2) model does this improve your mean absolute error on the held out set?
- 9. Finally, compute an ARIMA model to improve your prediction error iterate on the p, q, and parameters comparing the model's performance..