Your Name	Your Signature		
Solutions			

Problem	Total Points	Score		
1	15			
2	14			
3	14			
4	15			
5	10			
6	12			
7	10			
8	10			
Total	100			

- You have 1 hour.
- If you have a cell phone with you, it should be turned off and put away. (Not in your pocket)
- You may not use a calculator, book, notes or aids of any kind.
- In order to earn partial credit, you must show your work.

- 1. (15 points)
 - (a) Complete the definition below.

Given integers a and b and $n \in \mathbb{N}$, we say that a and b are congruent modulo n if

(b) Use the definition and a direct proof to prove the statement below. Do not use any previous results from the text or in homework.

If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{7}$, then $a^2 \equiv 1 \pmod{7}$.

Supps at \mathcal{X} and $\alpha \equiv 1 \pmod{7}$.

Thus, $7 \mid \alpha - 1 \text{ or, equivalently, } \exists n \in \mathbb{Z} \text{ s.t.} | 7n = \alpha - 1$.

Multiply both sides by $\alpha + 1$ to obtain. $7n(\alpha + 1) = (\alpha - 1)(\alpha + 1) = \alpha^2 - 1$.

Observe that $n(a+1) \in \mathbb{Z}$, say m = n(a+1).

Thus, $7m = a^2 - 1$ where $m \in \mathbb{Z}$.

- · Thus, 7/2-1.
- · Thus, & a2=1 (mod7).

2. (14 points)

(a) List the elements in the set $\{x \in \mathbb{Z} : |3x| \le 6\}$.

$$-2, -1, 0, 1, 2$$

+3

(b) List the elements in the set $\{X \subseteq \{a, b, c\} : a \notin X\}$.

+4

(c) Write the set $\{\cdots, \frac{-\pi}{4}, \frac{-\pi}{2}, 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \cdots\}$ in set-builder notation.

(d) Determine the cardinality of the set $\{\emptyset, \{\emptyset\}, \{1, 2\}, \{1, 2, 3\}\}$.

 $P(A) = \{ \emptyset, \{ 0 \}, \{ 1 \}, \dots \}$

3. (14 points) Let $A = \{0, 1, 2, 3, 4\}$ and $\mathcal{P}(A)$ denote the power set of A.

(a) Determine $|\mathcal{P}(A)|$, the cardinality of $\mathcal{P}(A)$.

25=32

(b) List 3 distinct **elements** of $\mathcal{P}(A)$ such that each element has a different cardinality. Use correct notation.

$$5$$
 ϕ , $\{0,1\}$

(c) List 3 distinct subsets of $\mathcal{P}(A)$ such that each subset has different cardinality. Use correct notation.

4. (15 points) Let $A = \{0, 1, 2\}, B = \{1, 2, 3, 4\}$ and define the universal set $U = \{0, 1, 2, 3, \cdots, 9\}$. Find:

$$+3^{(a)}A\cup B = \{0,1,2,3,4\}$$

(b)
$$\overline{A \cup B} = \{5, 6, 7, 8, 9\}$$

+3

(c)
$$|A \times B| = 3 \times 4 = 12$$

$$(d) (A \times A) \cap (B \times B) = \left\{ (x, y) : x \in \{1, 2\}, y \in \{1, 2\} \right\}$$

$$= \left\{ (1, 1), (1, 2), (2, 1), (2, 2) \right\}$$

(e)
$$(A \times A) - (A \times B)$$

+3 = $\{(x,y): x \in \{0,1,2\}, y = 0\} = \{(0,0),(1,0),(2,0)\}$

5. (10 points) Complete the truth table for the statement $P \Leftrightarrow (Q \lor \sim R)$.

P	Q	R	MR	DYNR	P	(=)(QV~P)		
T	T	T	F	TT	T	1			
T	T	F	T	第十	T	旗			
T	F	T	F	多日	F.	本			
T	F	F	T	第 T.	Ť	15			
\mathbf{F}	T	T	F	每十	F	At.			
\mathbf{F}	T	F	T	第十	F	Th.			
F	F	T	F	g F	Ť	#		3	-
\mathbf{F}	F	F	T	第十	F	4,			
			· · · · · · · · · · · · · · · · · · ·			XI			

- 6. (12 points) Negate the two statements below. Your answer should be a complete sentence in English. (You are not asked to determine the truth value of these statements.)
 - (a) There exists a real number r such that r > 1 and $r^2 < 1.001$. $\exists r, r 7 \mid \Lambda r^2 21.001$. For every real number r, r = 1 or r2>1,001.
 - (b) If $a \in X$, then $a \notin Y X$. $\forall a \in X$, $a \in Y X$. There is an aEX such that a EY-X.
- 7. (10 points) Prove the statement below with a contrapositive proof.

Let $x, y \in \mathbb{Z}$. If 3x - 5y is odd, then x and y do not have the same parity.

May x a 2 Contrapositive: let x, y Et. If x and y have the same parity, then 3x-5y is even.

Pf: Let x,yEH and suppose x and y have the same parity.

Case 1: Supp & x and y are even Then x=2m and y=2n for m, n Et. Thus 3x-5y=3(2m)-5(2n)=2(3m-5n), where $3m-5n \in \mathbb{Z}$.

Thus, 3x-5y is even if xandy are even.

Case 2 Sppse x and y are odd. Then x=2m+1 and y=2n+1 for $m,n \in \mathbb{H}$. Thus, 3x-5y=3(2n+1)-5(2n+1)=2(-2n-1)+1, where $-2n-1 \in \mathbb{H}$.

Thus, 3x-5y is odd if xardy are odd,

8. (10 points) Prove the statement below using a proof by contradiction.

Let $a, b \in \mathbb{Z}$. If $4 \mid (a^2 + b^2)$, then a is even or b is even.

Negatin' 4 (a2+52) and a and b are both odd.

Pf: (by contradictin)

Suppose 4 (a2+62), and a and base both odd.

By definite of odd, $\exists m, n \in \mathbb{Z}$ such that a = 2n+1 and b = 2m+1.

 $\int_{0}^{S_{0}} a^{2} + b^{2} = 4n^{2} + 4n + 1 + 4m^{2} + 4m + 1 = 4(n^{2} + n + m^{2} + m) + 2,$ where $n^{2} + n + m^{2} + m \in \mathbb{Z}$, Say K.

On the other hand, Since $4|a^2+b^2$, $3lt # such that <math>4|a^2+b^2$.

So, $4l = a^2 + b^2 = 4k + 2$. Thus, 4(l-k) = 2. SUNTATO So 4/2 which is a contradictor Sure 4/2.

Thus, we have shows that If 4/a2+6, then either ais even or bisuen.