Massachusetts Institute of Technology

Instructors: Zachary Abel, Erik Demaine, Jason Ku

Lecture 7: AVL Trees

Sep. 27, 2018

Lecture 7: AVL Trees

BST Review

• BST maintains a sorted order on a dynamic set

Data Structure	insert(k)	delete(k)	find_min()	find(k)	find_next(k)	
Array	1*	n	n	n	n	
Sorted Array	n	n	1	$\log n$	$\log n$	
Binary Heap	$\log n$	n	1	n	n	
BST	h	h	h	h	h	
Today!	$\log n$	$\log n$	1	$\log n$	$\log n$	

- Worst case O(h) per operation, where h is height, can be h = O(n)...:(
- Today:
 - How to make height $O(\log n)$?
 - Data structure augmentation
- Many ways to achieve 'logarithmic' height (red-black, B-trees, splay trees, skip lists, etc.)
- AVL trees was first (1962), and still perhaps one of the simplest

AVL Property

- Adel'son-Vel'skiĭ & Landis
- AVL Property: Sub-tree heights of a node's left and right children differ by at most one.
 - node height: #edges in longest path down, a.k.a., height of node's subtree. (Leaves have height 0.)
 - * Don't confuse this with **node depth**: #edges in longest path **up**. (Root has depth 0.)
 - node skew: height(node.right) height(node.left) (missing child contributes height -1)
- AVL property restated: skew $\in \{-1, 0, 1\}$
- Claim: Every node satisfies AVL Property \implies height is $O(\log n)$
 - Want largest height for given number of nodes (i.e. fewest nodes for fixed height)

- Let S(h) be the minimum number of nodes in height h AVL tree
- Worst case, when every node is skewed, with fewest nodes for height
- -S(h) = S(h-1) + S(h-2) + 1 > 2S(h-2)
- S'(h) = 2S'(h-2) has solution $S'(h) = 2^{h/2}$
- $S(h) \ge S'(h) = 2^{h/2} \implies h \le 2\log S(h) \le 2\log n = O(\log n)$
- Exercise: What is S(h) exactly? (It's related to the Fibonacci numbers!)

Augmentation

- To speed up computation, store height (and skew) at each node
- How to maintain these?
- Sub-tree properties may change for any node effected by the change
- i.e. any ancestor of node inserted or removed
- Update sub-tree properties of ancestors going up the tree
- Other common augmentations computable from children, such as min, max, height, sum, count

```
# Assumes node's descendants are updated
def update(node):
    left_height = node.left.height if node.left else -1
    right_height = node.right.height if node.right else -1
    node.height = 1 + max(left_height, right_height)
    node.skew = right_height - left_height

# Assumes node and its ancestors are the
# only nodes that need updating
def maintain(node):
    update(node)
    if node.parent:
        maintain(node.parent)
```

• **Example:** Add keys [6, 3, 9, 2, 3, 7, 4] and maintain height, skew

- Insert key 5. Uh oh! Now some nodes do not satisfy AVL Property!
- How to fix skew while maintaining BST Property?

Rotations

- **Invariant**: tree is AVL before and after dynamic operation
- Consider lowest node X violating AVL after insert or delete
- Skew magnitude is two: without loss of generality assume positive
- Either heavier sub-tree has non-opposite (same or equal) or opposite skew

- If heavier sub-tree same or equal, rotation!
- A rotation rearranges attached sub-trees to maintain the BST property (confirm)

- For case 1, rotate left at X. A and X move down, B stays same, C and Y moves up
- Restores balance!

- ullet For case 2, rotate right at Y. C moves down, B moves up or stays same
- Now looks like case 1! A left rotation at X restores balance!

- Call update on X and Y after rotation as sub-trees have changed
- Continue walking up the tree to repeatedly find and fix lowest violation in $O(\log n)$ time
- Note: might need to rebalance multiple times on the way up!

```
# Assumes all nodes other than node and its ancestors
  # are updated and AVL
  def maintain(node):
      update (node)
      balance (node)
       if node.parent:
          maintain(node.parent)
  # Assumes node and descendants are updated,
# and descendants satisfy AVL property
  def balance(node):
      if node.skew == 2:
12
          if node.right.skew == -1:
13
               right_rotate(node.right)
14
          left_rotate(node)
       if node.skew == -2:
16
          if node.left.skew == 1:
               left_rotate(node.left)
18
           right_rotate(node)
```

• Example: Balance insertion of key 5

• Example: Balance deletion of key 9

AVL Sort

- Maintaining that height is $O(\log n)$ ensures insertion is also $O(\log n)$
- AVL sort runs in $O(n \log n)$ time.
- Can we do better? Next time!

Data Structure	Static Set		Dynamic Set		D.O.S.	Ordered Set			
	find- key(k)	iter ()	insert (x)	delete- key(k)	delete- min/ max()	find- next/ prev(k)	find- min/ max()	order- iter()	Space ~
static array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n \lg n)$	$1 \cdot n$
linked list	$\Theta(n)$	$\Theta(n)$	Θ(1)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n \lg n)$	$3 \cdot n$
dynam. array	$\Theta(n)$	$\Theta(n)$	Θ(1) _{a.}	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n \lg n)$	[n,4n]
sorted array	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(\lg n)$	Θ(1)	$\Theta(n)$	$1 \cdot n$
binary heap	$\Theta(n)$	$\Theta(n)$	$\Theta(\lg n)$	$\Theta(n)$	one in $\Theta(\lg n)$	$\Theta(n)$	one in $\Theta(1)$	$\Theta(n \lg n)$	$1 \cdot n$
AVL tree	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(n)$	$5 \cdot n$

Data Structure	Static Set		Dynamic Set		D.O.S.	Ordered Set			
	find- key(<i>k</i>)	iter ()	insert (x)	delete- key(k)	delete- min/ max()	find- next/ prev(k)	find- min/ max()	order- iter()	Space ~
static array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n \lg n)$	$1 \cdot n$
linked list	$\Theta(n)$	$\Theta(n)$	Θ(1)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n \lg n)$	$3 \cdot n$
dynam. array	$\Theta(n)$	$\Theta(n)$	Θ(1) _{a.}	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n \lg n)$	[n,4n]
sorted array	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$	$\Theta(\lg n)$	Θ(1)	$\Theta(n)$	$1 \cdot n$
binary heap	$\Theta(n)$	$\Theta(n)$	$\Theta(\lg n)$	$\Theta(n)$	one in $\Theta(\lg n)$	$\Theta(n)$	one in $\Theta(1)$	$\Theta(n \lg n)$	$1 \cdot n$
AVL tree	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(\lg n)$	$\Theta(1)$	$\Theta(n)$	$5 \cdot n$

```
# Assumes only node and ancestors need updating
def maintain(node):
    update(node)
    if node.parent:
        maintain(node.parent)
```

All 3 ways for x to have skew 2

After rotating x left

The harder case, dissected

The harder case

After rotating y right

After rotating x left


```
def balance(node): # node and descendants
  if node.skew == 2: # are updated, and node's
    if node.right.skew == -1: # descendants
      rotate_right(node.right) # are AVL
    rotate_left(node)
  elif node.skew == -2:
    <symmetrical>
def maintain(node): # Assumes node's descendants
  update(node) # are updated and AVL
  balance(node)
 if node.parent:
    maintain(node.parent)
```


