Clustered Covariate Regression

Abdul-Nasah Soale & Emmanuel Selorm Tsyawo

Temple University

Presenter: Emmanuel Selorm Tsyawo estsyawo@temple.edu

MEG Conference, Oct. 11, 2019

Introduction

- Identification is necessary for consistency
- A crucial aspect to identification in single-index models is the non-singularity of the Gram matrix $E(\mathbf{x}'\mathbf{x})$
 - Singularity of $E(\mathbf{x}'\mathbf{x}) \Longrightarrow$ non-identification in e.g. linear and probit regressions
- Of concern to this paper, singularity caused by
 - High dimensionality many/more covariates relative to observations
 - Multicollinearity
 - Both

Motivation

- ▶ Singularities of $E(\mathbf{x}'\mathbf{x})$ in the limit theory engenders
 - inconsistency
 - differing rates of convergence

(Phillips 2016)

 Estimation infeasible without adjustments when non-singularity holds in finite samples

Contribution

A novel approach to identification, inference, and estimation, namely, Clustered Covariate Regression (CCR)

- ▶ in the presence of rank deficiency, weak identification due to
 - high-dimensionality
 - multicollinearity
 - both

in single-index models

How does the CCR work?

- ▶ Project an $n \times p$ rank-deficient **x** using a $p \times k$ projection matrix m such that m'x'xm is non-singular.
- \triangleright p > k, n >> k

Outline

Introduction

Related Literature

The CCR

Estimation

Asymptotic Theory

Monte Carlo Experiments

Empirical Model

Conclusion

Strands of related literature

- Variable selection, e.g.,
 - the Lasso (Belloni, Chernozhukov, and Hansen (2014b)) (needs tuning parameter, penalty function)
- ▶ Dimension reduction (using pre-constructed projection matrices) e.g., Wold, Esbensen, and Geladi, 1987
 - principal component regression (PCR), partial least squares (PLS)
 (use pre-constructed projection matrix)

What is gained by the CCR?

- ► The CCR spans the class of single-index models, e.g., linear, logit, and quantile regressions
- ightharpoonup CCR obviates sparsity assumption in the high-dimensional parameter $oldsymbol{eta}$
 - but assumes (approximate) reducibility of a high-dimensional $\beta \in \mathbb{R}^p$ vector to a smaller identifiable $\delta \in \mathbb{R}^k$, p > k
- CCR obviates the choice of tuning parameter and penalty function
 - but requires a criterion (e.g., BIC) for model selection
- ► The CCR projection matrix m is model, outcome, covariate dependent; it is not pre-constructed

The conditional functional

Suppose a conditional functional (e.g., conditional expectation, conditional quantile)

$$\nu(y_i|\mathbf{x}_i) = g(\mathbf{x}_i\boldsymbol{\beta}) = g(\mathbf{x}_i\boldsymbol{m}\boldsymbol{\delta})$$

- $ightharpoonup eta = m\delta$ (or approximately)
- unknown parameters β is $p \times 1$, δ is $k \times 1$
- **m** is an unknown $p \times k$ (clustering) projection matrix

The projection matrix I

Characteristics of the projection matrix m:

- ▶ **m** belongs to a set \mathcal{M} of $p \times k$ matrices
- ▶ has exactly p non-zero elements
- the columns of m correspond to clusters
- each row has only one non-zero element
- the vector of non-zero elements in m are researcher-specified, e.g. standard deviations or a vector of ones
- Cluster assignments (column assignment of non-zero row elements) unknown a priori

The projection matrix II

An example, p = 4, k = 2

▶
$$\delta = [\delta_1, \delta_2]'$$
, $\mathbf{x} = [x_1, x_2, x_3, x_4]$, and $\mathbf{m}' = \begin{bmatrix} \eta_1 & 0 & 0 & \eta_4 \\ 0 & \eta_2 & \eta_3 & 0 \end{bmatrix}$

- ► The linear predictor function $\mathbf{x} m \delta = x_1 \eta_1 \delta_1 + x_2 \eta_2 \delta_2 + x_3 \eta_3 \delta_2 + x_4 \eta_4 \delta_1 = x_1 \beta_1 + x_2 \beta_2 + x_3 \beta_3 + x_4 \beta_4 = \mathbf{x} \beta$
- factorises eta into $m\delta$
- if scaling (e.g., by covariate standard deviation), η_j specified by researcher else $\eta_i = 1$ for all $j = 1, \dots, p$

The CCR estimation problem

- An objective, e.g. linear regression $Q_n(\mathbf{x}\boldsymbol{m}\boldsymbol{\delta}) \equiv n^{-1} \sum_{i=1}^n q(\mathbf{x}_i \boldsymbol{m}\boldsymbol{\delta}), \ q(\mathbf{x}_i \boldsymbol{m}\boldsymbol{\delta}) = (y_i \mathbf{x}_i \boldsymbol{m}\boldsymbol{\delta})^2$
- $Q_n(\delta) \equiv \frac{1}{|\mathcal{A}_n|} \int_{\mathcal{M}} Q_n(\mathbf{x} \boldsymbol{m} \delta) \mathbf{1}_{\mathcal{A}_n}(\boldsymbol{m}) d\mu(\boldsymbol{m}) = \frac{1}{|\mathcal{A}_n|} \sum_{\boldsymbol{m} \in \mathcal{A}_n} Q_n(\mathbf{x} \boldsymbol{m} \delta)$
- $ightharpoonup \mu$ is the counting measure
- ▶ set $A_n(\delta) \equiv \{ m \in \mathcal{M} : Q_n(\mathbf{x}m\delta) \leq Q_n(\mathbf{x}s\delta) \ \forall s \in \mathcal{M} \setminus m \}$
- ▶ $\mathbf{1}_{\mathcal{A}_n}(\mathbf{m}) \equiv \mathbf{1}\{\mathbf{m} \in \mathcal{A}_n\}$ indicator for $\mathbf{m} \in \mathcal{A}_n$
- $ightharpoonup |\mathcal{A}_n| \equiv \mu(\mathcal{A}_n)$ denotes the cardinality of \mathcal{A}_n

The Estimation Problem

Minimisation

$$\hat{\delta} = \operatorname{arg\,min}_{\delta \in \mathbf{\Delta}} \, Q_n(\delta)$$

- ▶ If an $m \in A_n$ is known, δ can be estimated
- ▶ But, $\mathbf{m} \in \mathcal{A}_n$ is unknown, $\implies \delta$ is unknown
- lacktriangle Approach: use a sequential scheme to estimate $m{m} \in \mathcal{A}_n$ and $m{\delta}$

The Sequential CCR Algorithm

fix k (number of clusters)

- 1. Initialise counter l=0, parameter vector $\boldsymbol{\beta}^{(l)}=\boldsymbol{m}^{(l)}\boldsymbol{\delta}^{(l)}$
- 2. Update $I \leftarrow I + 1$, for each $j = 1, \dots, p$,
 - $\qquad \text{update } \hat{\beta}_{j}^{(I)} = \text{arg min}_{\beta_{j}} Q_{n}(\mathbf{x}_{-j}\boldsymbol{\beta}_{-j}^{(I)} + x_{j}\beta_{j})$
 - assign $\hat{\beta}_{j}^{(l)}$ to a cluster and update $\boldsymbol{m}^{(l)}$
 - update $oldsymbol{\delta}^{(I)} = \mathop{\sf arg\,min}_{oldsymbol{\delta} \in oldsymbol{\Delta}} \, Q_n(\mathbf{x} oldsymbol{m}^{(I)} oldsymbol{\delta})$
 - update $oldsymbol{eta}^{(I)} \leftarrow oldsymbol{m}^{(I)} oldsymbol{\delta}^{(I)}$
- 3. Check convergence for $Q_n(\mathbf{x}\mathbf{m}^{(l-1)}\boldsymbol{\delta}^{(l-1)}) Q_n(\mathbf{x}\mathbf{m}^{(l)}\boldsymbol{\delta}^{(l)}) < \epsilon$ else return to step 2
- Without clustering, the algorithm is similar to the (block)-coordinate descent algorithm (used for e.g. Lasso)
- ▶ Optimal k is determined using a model selection criterion, e.g., BIC

Assumptions

- 1. $\mu(\mathcal{A}_n) \to 1$ as $n \to \infty$, i.e., $\mathcal{A}_n \to \{\boldsymbol{m}_o\}$ as $n \to \infty$
- 2. $\sqrt{p/n} \to 0$ as $p, n \to \infty$

Theorem - Consistency

- $\hat{\delta}_n \stackrel{p}{\to} \delta_o$ under standard assumptions
- $lacksymbol{\hat{eta}}_n\stackrel{p}{ o}eta_o$ where $\hat{eta}_n\equiv m{m}_n\hat{m{\delta}}_n$ and $eta_o\equivm{m}_om{\delta}_o$

Theorem - Asymptotic Normality

$$\sqrt{n}(\hat{\delta}_n - \delta_o) \stackrel{d}{\to} \mathcal{N}(\mathbf{0}, \mathbf{V}_o)$$
 where $\mathbf{V}_o = \mathbf{A}_o^{-1} \mathbf{B}_o \mathbf{A}_o^{-1}$, $\mathbf{A}_o \equiv E[\mathbf{H}(\mathbf{x}_i \mathbf{m}_o \delta_o)]$, and $\mathbf{B}_o \equiv E[\mathbf{s}(\mathbf{x}_i \mathbf{m}_o \delta_o)\mathbf{s}(\mathbf{x}_i \mathbf{m}_o \delta_o)']$

CCR in a baseline specification

Table: Baseline model: $\mathbf{x}_i \stackrel{iid}{\sim} \mathcal{N}(0, \mathbf{I}_p), \ \delta = [-2, -1, 0, 1, 2, 3]'$

n	р	CCR	OLS	LASSO	PCR	PLS
30	12	0.201(0.086)	0.199(0.054)	0.197 (0.055)	0.395(0.215)	0.325(0.112)
	24	0.365 (0.136)	0.375(0.145)	0.372(0.140)	0.515(0.173)	0.400(0.119)
	36	0.821(0.181)	-	1.400(6.244)	0.769(0.144)	0.766(0.133)
90	12	0.069 (0.023)	0.091(0.021)	0.091(0.022)	0.357(0.231)	0.188(0.055)
	24	0.060 (0.023)	0.010(0.018)	0.099(0.018)	1.061(0.158)	0.353(0.078)
	36	0.065 (0.027)	0.110(0.018)	0.109(0.018)	1.225(0.117)	0.490(0.083)

Note: (1) Results: average $d_{\beta} = \|\hat{\beta} - \beta_o\|_1/p$. (2) 1000 simulations each (3) $\sigma(d_{\beta})$ in parentheses. (4) Optimal k - BIC. (5) Two-step Lasso, PCR, and PLS - 10-fold CV (6) $k^* = 6$.

CCR under Multicollinearity

Table: Multicollinearity: $\mathbf{x}_i \stackrel{iid}{\sim} \mathcal{N}(0, \mathbf{\Sigma}), \; \mathbf{\Sigma}_{jj'} = 0.5^{|j-j'|}$

n	р	CCR	OLS	LASSO	PCR	PLS
30	12	0.283(0.106)	0.250(0.075)	0.246 (0.076)	0.336(0.143)	0.554(0.126)
	24	0.468(0.168)	0.481(0.194)	0.448 (0.164)	0.479(0.137)	0.533(0.118)
	36	1.118(0.241)	-	1.197(2.346)	0.714 (0.132)	0.757(0.118)
90	12	0.094 (0.041)	0.116(0.030)	0.114(0.031)	0.250(0.127)	0.389(0.067)
	24	0.076 (0.036)	0.128(0.026)	0.126(0.026)	0.300(0.118)	0.285(0.061)
	36	0.083 (0.043)	0.142(0.026)	0.140(0.026)	0.327(0.111)	0.389(0.065)

Note: (1) Results: average $d_{\beta} = \|\hat{\beta} - \beta_o\|_1/p$. (2) 1000 simulations each (3) $\sigma(d_{\beta})$ in parentheses. (4) Optimal k - BIC. (5) Two-step Lasso, PCR, and PLS - 10-fold CV (6) $k^* = 6$.

The empirical model

Estimating private and spillover effects of R&D on productivity

$$E[y_{it}|\boldsymbol{w}_{it},\boldsymbol{x}_{t}] = \alpha_{0} + \boldsymbol{w}_{it}\boldsymbol{\theta} + x_{it}\gamma_{ii} + \sum_{j \neq i} x_{jt}\gamma_{ij} + \alpha_{t} + \delta_{i}$$

- $ightharpoonup k_w + T + N + N^2$ parameters, NT observations
- e.g. T = 27, N = 50, p = 2577 parameters, n = NT = 1350 firm-year observations
- ▶ *p* > *n*

Conclusion

In a nutshell, we propose Clustered Covariate Regression. It is a novel approach to

- handling rank-deficiency in single-index models
 - multicollinearity, high-dimensionality, or both
- ightharpoonup offers advantages: e.g. obviates sparsity in $oldsymbol{eta}$ and increases precision
- interesting extensions (left for future work)
 - ▶ high-dimensional causal inference
 - multicollinearity in non-linear models
 - estimating latent network structures from panel data