Outline

- What is Model Checking?
 - Modeling: Transition Systems
 - Specification: Linear Temporal Logic
- Historical Verification Approaches
 - Explicit-state
 - BDDs
- SAT/SMT-based Verification Approaches
 - Bounded Model Checking
 - K-Induction
- Inductive Invariants

^{*} Many of the slides today are contributed by Makai Mann.

What is Model Checking?

- Approach for verifying the temporal behavior of a system
- Model: Representation of the system
- **Specification:** High-level desired property of system
- Considers infinite sequences

Modeling: Transition System

- Model checking typically operates over *Transition Systems*
 - A (symbolic) state machine

- A Transition System is $\langle S, I, T \rangle$
 - S: a set of states
 - *I*: a set of initial states (sometimes use *Init* instead of *I* for clarity)
 - T: a transition relation: $T \subseteq S \times S$
 - $T(s_0, s_1)$ holds when there is a transition from s_0 to s_1

Symbolic Transition Systems in Practice

- States are made up of state variables $v \in V$
 - A state is an assignment to all variables
- A Transition System is $\langle V, I, T \rangle$
 - V: a set of state variables, V' denotes next state variables
 - *I*: a set of initial states
 - T: a transition relation
 - $T(v_0, ..., v_n, v_0', ..., v_n')$ holds when there is a transition
 - Note: will often still use s to denote symbolic states (just know they're made up of variables)
- Symbolic state machine is built by translating another representation
 - E.g. a program, a mathematical model, a hardware description, etc...

Symbolic Transition System Example

- 2 variables: $V = \{v_0, v_1\}$
 - $S_0 \coloneqq \neg v_0 \land \neg v_1$, $S_1 \coloneqq \neg v_0 \land v_1$
 - $S_2 := v_0 \land \neg v_1$, $S_3 := v_0 \land v_1$
- Transition relation

$$(\neg v_0 \land \neg v_1) \Rightarrow ((\neg v_0' \land v_1') \lor (v_0' \land \neg v_1')) \land (\neg v_0 \land v_1) \Rightarrow (v_0' \land v_1') \land (v_0 \land \neg v_1) \Rightarrow (v_0' \land v_1') \land (v_0 \land v_1) \Rightarrow (v_0' \land v_1')$$

Modeling: Transition System Executions

• An *execution* is a sequence of states that respects I in the first state and T between every adjacent pair

• $\pi \coloneqq s_0 \ s_1 \ \dots s_n$ is a finite sequence if $I(s_0) \land \bigwedge_{i=1}^n T(s_{i-1}, s_i)$

Meta Note: State Machine vs Execution Diagrams

State Machine uses capitals

Symbolic execution uses lowercase

Concrete Execution:

Specification: Linear Temporal Logic (LTL)

- Notation: $M \models f$
 - Transition system model, M, entails LTL property, f, for ALL possible paths
 - i.e. LTL is implicitly universally quantified
- Other logics include
 - CTL: computational tree logic (branching time)
 - CTL*: combination of LTL and CTL
 - MTL: metric temporal logic (for regions of time)

Specification: Linear Temporal Logic (LTL)

- Atomic state property $P \subseteq S$:
 - Holds iff $s_0 \in P$
- Next P: X(P)
 - P holds **Next** time
 - Also written op
 - True iff the next state meets property P
- Invariant P: G(P)
 - P Globally holds
 - Also written □p
 - True iff every reachable state meets property P

Specification: Linear Temporal Logic

- Eventually P: F(P)
 - P holds in the Future
 - Also written ♦p
 - True iff P eventually holds

- P1 Until P2: P1 U P2
 - P1 holds until P2 holds
 - True iff P1 holds up until (but not necessarily including) a state where P2 holds
 - P2 must hold at some point

Specification: Linear Temporal Logic

- LTL operators can be composed
 - $G(Req \Rightarrow F(Ack))$
 - Every request eventually acknowledged
 - G(F(DeviceEnabled))
 - The device is enabled infinitely often (from every state, it's eventually enabled again)
 - $F(G(\neg Initializing))$
 - Eventually it's not initializing
 - E.g. there is some initialization procedure that eventually ends and never restarts

Specification: Safety vs. Liveness

- Safety: "something bad does not happen"
 - State invariant, e.g. $G(\neg bad)$
- Liveness: "something good eventually happens"
 - Eventuality, e.g. GF(good)
- Fairness conditions
 - Fair traces satisfy each of the fairness conditions infinitely often
 - E.g. only fair if it doesn't delay acknowledging a request forever
- Every property can be written as a conjunction of a safety and liveness property

Specification: Liveness to Safety

- Can reduce liveness to safety checking
- For SAT-based:

Armin Biere, Cyrille Artho, Viktor Schuppan. Liveness Checking as Safety Checking, Electronic Notes in Theoretical Computer Science. 2002

Several approaches for first-order logic

From now on, we consider only safety properties

Historical Verification Approaches: Explicit State

- Tableaux-style state exploration
- Form of depth-first search
- Many clever tricks for reducing search space
- Big contribution is handling temporal logics (including branching time)

Historical Verification Approaches: BDDs

- Binary Decision Diagrams (BDDs)
 - Manipulate sets of states symbolically

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang. Symbolic Model Checking: 10^{20} States and beyond

Great BDD resource:

http://www.ecs.umass.edu/ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf

Historical Verification Approaches: BDDs

Binary Decision Diagram

- Represent Boolean formula as a decision diagram
- Example: $(x_1 \land x_2) \lor (x_3 \land x_4)$
- Can be much more succinct than other representations x_1

• • •

Historical Verification Approaches: BDDs

BDD Operators

- Negation
 - Swap leaves (F → T)
- AND
 - All Boolean operators implemented recursively
- These two operators are sufficient

Fig. 2-7. AND-Operation between $x_1 \lor x_2$ and $x_2 \neg x_3$

Image Credit: <u>Introduction to Formal Hardware Verification</u> – Thomas Kropf

$$f(x) \coloneqq (x \wedge f \Big|_{x}) \vee (\neg x \wedge f \Big|_{\neg x})$$

BDDs: Cofactoring

• $f|_{\neg x_2}$ for BDD f is fixing x_2 to be negative

Credit for Example: <u>Introduction to Formal Hardware Verification</u> – Thomas Kropf

BDD Image Computation

- Current reachable states are BDD R
 - Over variable set V
- Compute next states with:
 - $N := \exists V \ T(V, V') \land R(V)$ T, R, and N are all BDDs
 - Existential is implemented cofactoring: $\exists x_i . f(..., x_i, ...) \coloneqq f(..., F, ...) \lor f(..., T, ...)$
- Grow reachable states

• $R = R \vee N[V'/V]$

Convert next state variables V' to state variables V

• Map next-state variables to current state, then add to reachable states

BDD image computation is based on the idea that all reachable next states are either already in R or they are the result of applying the transition function to some set of states V in R to reach the set of states V'.

 $T(V, V') \wedge R(V)$ using BDD operations. Then, use cofactoring operation to remove (non-next state) state-variables.

BDD-based model checking

• Start with R = Init

Keep computing image and growing reachable states

Stop when there's a fixpoint (reachable states not growing)

- Can handle $\sim 10^{20}$ states
 - More with abstraction techniques and compositional model checking

BDD: Variable Ordering

- Good variable orderings can be exponentially more compact
 - Finding a good ordering is NP-complete

There are formulas that have no non-exponential ordering

SAT-based model checking

- Edmund Clarke
 - One of the founders of model checking
- SAT solving taking off
- Clarke hired several post-doctoral students to try to use SAT as an oracle to solve model checking problems
- Struggled for a while to find a general technique
 - What if you give up completeness? → Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu. Symbolic Model Checking without BDDs. TACAS 1999

Bounded Model Checking (BMC)

- Sacrifice completeness for quick bug-finding
- Unroll the transition system
 - Each variable $v \in V$ gets a new symbol for each time-step, e.g. v_k is v at time k
 - Space-Time duality: unrolls temporal behavior into space
- For increasing values of k, check:
 - $I(s_0) \wedge \bigwedge_{i=1}^k T(s_{i-1}, s_i) \wedge \neg P(s_k)$
- If it is ever SAT, return FALSE
 - Can construct a counter-example trace

BMC Graphically

 s_0 must be an initial state

Check if it can violate the property at time k

Bounded Model Checking: Completeness

- Completeness condition: reaching the diameter
 - Diameter: d
 - Depth needed to unroll to such that every possible state is reachable in d steps or less

$$rd(M) := \min\{i | \forall s_0, \dots, s_{i+1}. \ \exists s'_0, \dots, s'_i. \\ I(s_0) \land \bigwedge_{j=0}^i T(s_j, s_{j+1}) \to (I(s'_0) \land \bigwedge_{j=0}^{i-1} T(s'_j, s'_{j+1}) \land \bigvee_{j=0}^i s'_j = s_{i+1})\}$$

- Recurrence diameter: d_r
 - The depth such that *every* execution of the system of length $\geq d_r$ must revisit states
 - Can be exponentially larger than the diameter

$$rdr(M) := max\{i \mid \exists s_0 \dots s_i. \ I(s_0) \land \bigwedge_{j=0}^{i-1} T(s_j, s_{j+1}) \land \bigwedge_{j=0}^{i-1} \bigwedge_{k=j+1}^{i} s_j \neq s_k\}$$
(4)

- $d_r \ge d$
- Very difficult to compute the diameter
 - Requires a quantifier: find d such that any state reachable at d+1 is also reachable in $\leq d$ steps (replace "i" with "d" in equation (3) above)

K-Induction

- Extends bounded model checking to be able to prove properties
- Based on the concept of (strong) mathematical induction
- For increasing values of k, check:
 - Base Case: $I(s_0) \wedge \bigwedge_{i=1}^k T(s_{i-1}, s_i) \wedge \neg P(s_k)$
 - Inductive Case: $\left(\bigwedge_{i=1}^{k+1} T(s_{i-1}, s_i) \land P(s_{i-1})\right) \land \neg P(s_{k+1})$
 - If base case is SAT, return a counter-example
 - If inductive case is UNSAT, return TRUE
 - Otherwise, continue

K-Induction Graphically

 s_0 must be an initial state

Arbitrary starting state s_0 such that $P(s_0)$ holds

K-Induction: Simple Path

- This approach can be complete over a finite domain
 - requires the simple path constraint
 - each state is distinct from other states in trace
- If simple path is UNSAT, then we can return true

K-Induction: Simple Path

- This approach can be complete over a finite domain
 - requires the simple path constraint
 - each state is distinct from other states in trace
- If simple path is UNSAT, then we can return true

Without simple path, inductive step could get:

K-Induction Observation

- Crucial observation
 - Does not depend on direct computation of reachable state space
- Beginning of "property directed" techniques
 - We do not need to know the exact reachable states, as long as we can guarantee they meet the property
 - "Property directed" is associated with a family of techniques that build inductive invariants automatically

Inductive Invariants

- The goal of most modern model checking algorithms
- Over finite-domain, just need to show that algorithm makes progress, and it will eventually find an inductive invariant
 - In the worst case, the reachable states are themselves an inductive invariant
 - Hopefully there's an easier to find inductive invariant that is sufficient
- Inductive Invariant: II
 - $Init(s) \Rightarrow II(s)$
 - $T(s,s') \wedge II(s) \Rightarrow II(s')$
 - $II(s) \Rightarrow P(s)$

Advanced Algorithms

- Interpolant-based model checking
 - Constructs an over-approximation of the reachable states
 - Terminates when it finds an inductive invariant or a counterexample
- IC3 / PDR
 - Computes over (under) approximations of forward (backward) reachable states
 - Refines approximations by guessing relative inductive invariants
 - Terminates when it finds an inductive invariant or a counterexample

Building Blocks: Approximations

- Problems
 - Explicit reachability computation (e.g. BDDs) is difficult
 - Inductive invariants are difficult to find

- Solution (motivation for approximations)
 - Build approximations of reachable states
 - Iteratively refine it until inductive

What is an approximation?

Actual reachable state set: R

- Over-approximation, $O: R \rightarrow O$
 - Proofs on over-approximation holds
 - Counterexamples can be spurious
- Under-approximation, $U: U \rightarrow R$
 - Proofs on under-approximation can be spurious
 - Counterexamples are real

Craig Interpolation

• Given an unsatisfiable formula, $A \wedge B$

- Craig Interpolant, I
 - $A \rightarrow I$
 - $I \wedge B$ is UNSAT
 - $V(I) \subseteq V(A) \cap V(B)$
 - ullet Where V returns the free variables (uninterpreted constants) of a formula
- ullet We can use interpolants as over-approximations of A

Obtaining Craig Interpolants

- Mechanical over SAT
 - Label clauses in the proof
 - Some straightforward post-processing
- Non-trivial for SMT
 - But there are solvers that support it
 - MathSAT
 - Smt-Interpol
 - CVC4 through SyGuS

Interpolant-based Model Checking

- Big picture
 - Perform BMC
 - Iteratively compute and refine an over-approximation of states reachable in k steps
 - If it becomes inductive, you're done

Interpolants for Abstraction from BMC Run

- Obtain interpolant, I, from an unsat BMC run with A and B as shown below
- Useful properties
 - I over-approximates A, i.e. states reachable in one-step from Init: $A \rightarrow I$
 - There are no states reachable in k-1 steps from I that violate the property: $I \wedge B$ UNSAT
 - I only contains symbols from one time step (time 1): $V(I) \subseteq V(A) \cap V(B)$

Init
$$\wedge T(s_0, s_1)$$

$$T(s_1, s_2) \wedge \cdots \wedge T(s_{k-1}, s_k) \wedge \neg P(s_k)$$

A

3

From UNSAT $A \wedge B$, Craig Interpolant, I: $A \rightarrow I$ $I \wedge B \text{ is UNSAT}$ $V(I) \subseteq V(A) \cap V(B)$

Interpolant-based Model Checking

```
if check(Init \land T(s_0, s_1) \land (\neg P(s_0) \lor \neg P(s_1)) Base case: Check if s_0 or s_1 violate P return False
```

k=2

Initialize R to the initial states.

A = set of states reachable in 1 step from R.

If it is and R = Init, return false. True counterexample.

Otherwise, increment, reset R to Init and restart. We may have found a spurious counterexample.

We reached a fixed point where R is not changing. We found an invariant and proved the property.

B = Represents a violation of the property P in K-1 steps from the states represented by A.

while True

$$A \coloneqq R \wedge T(s_0, s_1), B \coloneqq \neg P(s_k) \wedge \bigwedge_{i=1}^{k-1} T(s_i, s_{i+1})$$

if $\operatorname{check}(A \wedge B)$

-if R == Init
return False

else

$$R = Init$$

k++

else

I = get_interpolant()

 $R = R \vee I[1/0]$ // map symbols at 1 to symbols at 0

Check to see if P is violated is K

steps from R.

if $\neg \operatorname{check}(R \wedge T(s_0, s_1) \wedge \neg R)$ return True If A and B is UNSAT, we find an **interpolant I.** Recall that I over-approximates A, i.e. states reachable in one-step from R: $A \rightarrow I$. Also, there are no states reachable in k-1 steps from I that violate the property: $I \land B$ UNSAT.

Check to see if $R \wedge T(s_0, s_1) \rightarrow R$ is valid. I.e., check to see if $R \wedge T(s_0, s_1) \wedge \neg R$ is SAT. If UNSAT, the validity check holds which means the transition function will not grow R.

S4

 Check to see if initial states or states reachable in 1 step violate P if check(Init $\wedge T(s_0, s_1) \wedge (\neg P(s_0) \vee \neg P(s_1))$ return False

S4

 Check to see if initial states or states reachable in 1 step violate P if check(Init $\land T(s_0, s_1) \land (\neg P(s_0) \lor \neg P(s_1))$ return False

S4

• k = 2

Bad: $P = \neg S9$

k = 2; R = Initwhile True $A := R \wedge T(s_0, s_1), B := \neg P(s_k) \wedge \bigwedge_{i=1}^{k-1} T(s_i, s_{i+1})$ if $check(A \wedge B)$

S4

Start – can't violate in 2 steps

 $\begin{array}{l} R = Init \\ \text{while True} \\ A \coloneqq R \wedge T(s_0, s_1) \text{,} B \coloneqq \neg P(s_k) \wedge \bigwedge_{i=1}^{k-1} T(s_i, s_{i+1}) \\ \text{if check}(A \wedge B) \end{array}$

• k = 2

 $I = \texttt{get_interpolant()}$ $R = R \lor I[1/0] \text{ // map symbols at 1 to symbols at 0}$ $\texttt{if} \neg \texttt{check}(R \land T(s_0, s_1) \land \neg R)$ return True

S4

From UNSAT $A \wedge B$, Craig Interpolant, I: $A \rightarrow I$ $I \wedge B \text{ is UNSAT}$ $V(I) \subseteq V(A) \cap V(B)$

• k = 2

while True $A \coloneqq R \wedge T(s_0, s_1), B \coloneqq \neg P(s_k) \wedge \bigwedge_{i=1}^{k-1} T(s_i, s_{i+1})$ if $\mathrm{check}(A \wedge B)$

From UNSAT $A \wedge B$, Craig Interpolant, I:

 $A \rightarrow I$

 $I \wedge B$ is UNSAT

 $V(I) \subseteq V(A) \cap V(B)$

• k = 2

 $I = \texttt{get_interpolant()}$ $R = R \lor I[1/0] \text{ // map symbols at 1 to symbols at 0}$ $\texttt{if} \neg \texttt{check}(R \land T(s_0, s_1) \land \neg R)$ return True

S4

From UNSAT $A \wedge B$, Craig Interpolant, I: $A \rightarrow I$ $I \wedge B$ is UNSAT

 $V(I) \subseteq V(A) \cap V(B)$

• k = 2

 $I = \texttt{get_interpolant()}$ $R = R \lor I[1/0] \text{ // map symbols at 1 to symbols at 0}$ $\texttt{if} \neg \texttt{check}(R \land T(s_0, s_1) \land \neg R)$ return True

S4

From UNSAT $A \wedge B$, Craig Interpolant, I: $A \rightarrow I$ $I \wedge B \text{ is UNSAT}$ $V(I) \subseteq V(A) \cap V(B)$

• k = 2, can reach S9 in 2 steps from R

• k = 3, restart with R = Init and increment K

• k = 3, restart with R = Init and increment K

S4

R = Init while True $A \coloneqq R \wedge T(s_0, s_1), B \coloneqq \neg P(s_k) \wedge \bigwedge_{i=1}^{k-1} T(s_i, s_{i+1})$ if $\mathrm{check}(A \wedge B)$

• k = 3

 $I = \texttt{get_interpolant()}$ $R = R \lor I[1/0] \text{ // map symbols at 1 to symbols at 0}$ $\texttt{if} \neg \texttt{check}(R \land T(s_0, s_1) \land \neg R)$ return True

S4

From UNSAT $A \wedge B$, Craig Interpolant, I: $A \rightarrow I$ $I \wedge B \text{ is UNSAT}$ $V(I) \subseteq V(A) \cap V(B)$

•
$$k = 3$$

R = Initwhile True $A := R \wedge T(s_0, s_1), B := \neg P(s_0, s_1)$

 $A := R \wedge T(s_0, s_1), B := \neg P(s_k) \wedge \bigwedge_{i=1}^{k-1} T(s_i, s_{i+1})$ if $\operatorname{check}(A \wedge B)$

• k = 3, interpolant guarantees property not violated in $k-1 \rightarrow 2$ steps

 $V(I) \subseteq V(A) \cap V(B)$

Terminate with True! We reached a fixed point!

Interpolant-based model checking

Advantages

- Approximate reachability
- Clever refinements

Disadvantages

- Requires unrolling (can become expensive)
- Needs to restart every time k is incremented
- Refinements are clever, but not directly targeting induction