

Sorting Algorithms

Paolo Camurati
Dip. Automatica e Informatica
Politecnico di Torino

On the importance of sorting

- On an average application 30% of CPU time is spent on sorting data
- Example
 - CPU scheduling
 - processes p_i with duration
 - p₀ 21, p₁ 3, p₂ 1, p₃ 2
 - Impact of sorting on average wait time

On the importance of sorting

• $p_0-p_1-p_2-p_3$

 $p_1 p_2 p_3$

 p_2

average wait time (0+21+24+25)/4 = 17,5

 $p_2p_3p_1$

• $p_1 - p_3 - p_0 - p_2$

average wait time (0+3+5+26)/4 = 8,5

• (sorted) p₂-p₃-p₁-p₀

 p_0

average wait time (0+1+3+6)/4 = 2,5

Sorting applications

Trivial applications

- Sorting a list of names, organizing an MP3 library, displaying Google PageRank results, etc.
- Simple problems if data are sorted
 - Find the median, binary search in a database, find duplicates in a mailing list, etc.
- Non trivial applications
 - Data compression, computer graphics (eg. convex hull), computational biology, etc.

Classification

- Internal sorting
 - Data are in main memory
 - Direct access to elements

- External sorting
 - Data are on mass memory
 - Sequential access to elements

Classification

- In place sorting
 - n data in array + constant number of auxiliary memory locations
- Stable sorting
 - For data with duplicated keys the relative ordering is unchanged

- Record with 2 keys
 - Name (key is first letter)
 - Group (key is an integer)

Example

Second sorting according to group NON stable algorithm

Second sorting according to group Stable algorithm

First sorting according to first letter

Andrea	3
Barbara	4
Chiara	3
Fabio	3
Franco	1
Giada	4
Lucia	3
Roberto	2

Franco	1
Roberto	2
Chiara	3
Fabio	3
Andrea	3
Lucia	3
Giada	4
Barbara	4

Franco	1
Roberto	2
Andrea	3
Chiara	3
Fabio	3
Lucia	3
Barbara	4
Giada	4

Classification: complexity

- O(n²)
 - Simple, iterative, based on comparison
 - Insertion sort, Selection sort, Exchange/Bubble sort
- $O(n^{3/2})$
 - Shellsort (with certain sequences)
- O(n log n)
 - More complex, recursive, based on comparison
 - Merge sort, Quicksort, Heapsort
- O(n)
 - Applicable with restrictions on data, based on computation
 - Counting sort, Radix sort, Bin/Bucket sort

Classification: complexity

- A more detailed analysis is possible, distinguishing between
- Comparison and
- Exchange operations
 When date are large, exchanging them may be expensive
 Asymptotic complexity however doesn't change

Lower bound

Algorithms based on comparison

- Elementary operation
 - Comparison a_i: a_i
- Outcome
 - Decision (a_i>a_j or a_i≤a_j), organized as a decision tree

4

Lower bound

Sort array of 3 distinct elements a₁, a₂, a₃

4

Lower bound

- For n distinct integers
 - Number of possible sortings = number of permutations n!
- Complexity
 - Number h of comparisons (tree height)
- Each solution = tree leaf
- Number of leaves = 2^h
- Stirling's approximation: n! > (n/e)ⁿ

$$2^{h} \ge n! > (n/e)^{n}$$

 $h > lg(n/e)^n = n lg n - n lg e = \Omega(n lg n)$