Càlcul Diferencial en Diverses Variables - 2011-2012 Segon Parcial

- Feu els problemes en fulls separats.
- Justifiqueu detalladament les respostes.
- (1) (a) Sigui $f: \mathbb{R}^n \to \mathbb{R}$ una funció de classe C^2 . Si $p \in \mathbb{R}^n$ és un punt crític de f tal que la diferencial segona de f en p és una forma definida positiva, proveu que f té un mínim local en el punt p.
 - (b) Siguin $f: \mathbb{R} \to \mathbb{R}$ i $g: \mathbb{R}^2 \to \mathbb{R}$ dues funcions de classe C^2 en \mathbb{R} i \mathbb{R}^2 , respectivament. Definim

$$F(x,y) = f(y + xg(y^{2}, x)) - x^{2}.$$

- (i) Calculeu les derivades parcials de primer ordre de F en termes de f, g i les seves derivades parcials.
- (ii) Sabent que f'(0) = 0, f''(0) = -1 i g(0,0) = 3, proveu que F té un extrem local en el punt (0,0). De quin tipus és?
- (2) Considerem la funció $f(x, y, z) = -x \cos z + yz^2 + e^y$.
 - (a) Proveu que l'equació f(x, y, z) = 0 defineix una funció implícita y = g(x, z) en un entorn del punt (1, 0, 0).
 - (b) Calculeu el gradient de g en el punt (1,0).
 - (c) Per a quins valors reals de α , la funció

$$F_{\alpha}(x, y, z) = (-x\cos z + yz^{2} + e^{y}, x^{2} + \alpha y, x + \alpha z)$$

té inversa diferenciable en un entorn del punt (1,0,0)?

- (3) Sigui S la superfície d'equació $x^2 y^2 + z^3 = 1$.
 - (a) Existeix algun punt o punts de S a distància màxima de l'origen? Justifiqueu la resposta i, si és afirmativa, trobeu tots aquests punts.
 - (b) Existeix algun punt o punts de S a distància mínima de l'origen? Justifiqueu la resposta i, si és afirmativa, trobeu tots aquests punts.