1

Análise de Sistemas CFAR

José Guilherme Silva de Macedo

Departamento de Engenharia Eletrônica e de Computação

Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brasil

jmacedo@poli.ufrj.br

Abstract—No contexto de radares e algumas aplicações de sonares, sistemas de detecção à taxa de falso alarme constante (CFAR , Constant false alarm rate) são uma solução frequentemente utilizada. A partir das probabilidades de falso alarme (P_{fa}) e de detecção (P_d) requisitadas em projeto é possível calcular a Signal-to-noise ratio (SNR) necessária. Este trabalho contém a análise e resultados de simulações de alguns sistemas CFAR simplificados.

Index Terms—CFAR, Radar, Variáveis Aleatórias.

I. INTRODUÇÃO

Veículos e objetos equipados com radares possuem antenas que emitem ondas em determinada frequência, essas ondas se propagam no ambiente e caso se choquem com algum objeto, elas são refletidas e então o radar recebe essas ondas refletidas. A partir do efeito Doppler, é possível verificar a velocidade dos objetos. Também é possível descobrir a distância ao alvo usando o período que a onda levou para voltar à antena. A análise adiante realiza simplificações no modelo e o objetivo é apenas realizar a detecção de um alvo, dada a amplitude do sinal recebido. O sinal é processado, e caso seja maior que um determinado limiar, o sistema deve informar que há um alvo presente.

II. MODELAGEM

O sinal recebido é complexo, além disso o canal introduz ruído do tipo AWGN (*Additive White Gaussian Noise*). As características físicas do radar determinam a potência do ruído e definem a variância das distribuições gaussianas utilizadas para simular as partes real e imaginária do ruído. A seguir, temos as transformações de variáveis usadas no sinal complexo recebido (Z).

$$Z = X + jY$$
, onde X, Y $\sim \mathcal{N}(0, \sigma^2)$

$$\begin{cases} A = \sqrt{X^2 + Y^2} \\ \phi = \arctan \frac{Y}{X} \end{cases}$$

Então, marginalizamos a função densidade de probabilidade (pdf) conjunta de A e Φ :

$$f_{A,\Phi}(a,\phi) = \frac{a}{\pi\sigma^2} e^{\frac{-a^2}{2\sigma^2}} \Rightarrow \begin{cases} A \sim \text{Rayleigh}(\sigma^2) \\ \phi \sim \text{Uniforme}(-\frac{\pi}{2}; \frac{\pi}{2}) \end{cases}$$

Em posse da amplitude do sinal de entrada, é possível calcular o limiar necessário para assegurar as P_{fa} e P_d [1]. O detector de envelope pode ter uma constante multiplicando a amplitude ao quadrado, mas, por simplicidade, o detector será apenas:

$$W = A^2$$
, tal que $W \sim \exp(2\sigma^2)$

Quando não há alvo presente, P_{fa} se dá por:

$$P_{fa} = \int_{W_T}^{\infty} f_W(w) dw = e^{\frac{-W_T}{2\sigma^2}}$$

Onde W_T é o limiar procurado. Finalmente

$$W_T = 2\sigma^2 \ln \frac{1}{P_{fa}}$$

Por fim, dadas P_{fa} e P_d , podemos modelar n tentativas de detecção do radar como tentativas de Bernoulli, onde P_{fa} e P_d são as probabilidade de sucesso no caso que em o alvo está ausente e quando está presente, respectivamente. Assim, podemos usar uma aproximação normal e as probabilidades estimadas \hat{p} serão:

$$\hat{p} \pm z \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \Rightarrow n \geqslant \frac{(1-\hat{p})(\frac{z}{\epsilon})^2}{\hat{p}}$$

Onde z é um valor associado a CDF da distribuição normal relacionado a confiança desejada para o experimento e ϵ é o máximo erro percentual permitido.

III. RESULTADOS

A. Probabilidade de Falso Alarme

Foi usado z = 95% e $\epsilon = 10\%$, dessa forma, os resultados dessa tabela apresentam um erro de até 10% com 95% de confiança. Os resultados esperados estão dentro da faixa de erro das frequências relativas, dessa

forma, os resultados estão de acordo com o esperado. Foi utilizado $\sigma^2 = 1$, como Z é a soma de duas distribuições normais, realmente era esperado que $P_{ZZ} = 2\sigma^2$.

TABLE I Frequência relativa de falso alarme

P_{fa}	5.10^{-4}	5.10^{-5}	5.10^{-6}
Freq. Rel.	$5.09 \cdot 10^{-4}$	$4.92 \cdot 10^{-5}$	$5.45 \cdot 10^{-6}$
n	$7.7 \cdot 10^5$	$7.7 \cdot 10^6$	$7.7 \cdot 10^7$
P_{ZZ}	2	2	2
W_T	15.2	19.8	24.4

B. P_d com sinal de módulo constante

As equações de Shnidman permitem calcular a SNR entre sinal e ruído baseado nas P_{fa} e P_d [3]. Dado que a potência do ruído é a amplitude ao quadrado e que temos a potência do ruído, foi calculada a amplitude do sinal de entrada. A fase do sinal foi amostrada de uma distribuição uniforme de acordo com o que foi visto acima.

TABLE II Frequência relativa de detecção

P_{fa} / Pd	0.7	0.75	0.8	0.85	0.9
5.10^{-4}	0.712	0,766	0,811	0,864	0,907
5.10^{-5}	0.702	0,756	0,802	0,851	0,905
5.10^{-6}	0.694	0,742	0,792	0,844	0,896

Os resultados mostram que as equações de Shnidman funcionam muito bem para achar a SNR necessária para garantir P_{fa} e P_d nesse modelo. A quantidade de amostras foi calculada de forma termos erro de até 0.5% com 99% de confiança. Dessa forma, observa-se que quanto maior P_{fa} , maior tende a ser o erro de estimativa de P_d , pois há mais falsos alarmes.

C. P_d com sinal de amplitude aleatória

Desta vez, a amplitude do sinal recebido foi modelado por uma distribuição Rayleigh cujo parâmetro é a potência calculada anteriormente. Este modelo é o Swerling 1, no qual os dispersores de sinal dos alvos refletem com a mesma intensidade, além disso, é analisado apenas uma amostra de amplitude. Vemos novamente que as frequências relativas se distanciam do valor desejado quando P_{fa} aumento, o erro e confiança foram os mesmos do caso anterior. Dessa forma, seguem os resultados quando modelamos um alvo móvel por uma distribuição Rayleigh.

TABLE III Frequência relativa de detecção

	P_{fa} / Pd	0.7	0.75	0.8	0.85	0.9
	5.10^{-4}	0.722	0,775	0,824	0,868	0,914
Ī	5.10^{-5}	0.709	0,762	0,811	0,856	0,906
Ī	5.10^{-6}	0.702	0,754	0,804	0,851	0,906

D. P_d com pulso de sinal com módulo aleatório

É possível processar um pulso de informações com um filtro casado, de forma a somar M entradas. Quando M cresce, a SNR necessária diminui, pois como o ruído tem média zero, a soma de várias amostras tende a anular o ruído. Entretanto, observa-se que isso vem com o custo de aumentar a taxa de amostragem, logo isso pode inviabilizar tal alternativa. Contudo, as equações de Shnidman não são adequadas para essa modelagem, logo foi necessário multiplicar a SNR (linear) fornecida por uma constante para obter a mesma P_d do caso anterior e comparar a SNR, de forma a observar que quando usamos um pulso de informações é possível reduzir a SNR e logo a energia necessária para fazer o radar funcionar. Seja M o tamanho do pulso e fixando P_{fa} em $5\cdot 10^{-6}$:

TABLE IV SNR(dB) necessária

	-	Swerling 1	Swerling 2	Swerling 2	Swerling 2
	P_d / M	1	4	8	12
ſ	0.7	15.26	12.35	9.74	8.13
Ī	0.8	14.42	14.54	11.93	10.20
Ī	0.9	20.82	17.83	15.58	13.33

IV. CONCLUSÃO

Nesse trabalho foi feita uma breve análise de Sistemas de Detecção à taxa de falso alarme constante, quando verifica-se apenas uma amostra para obter uma resposta, viu-se que as funções de Shnidman fornecem uma estimativa para a SNR baseado em P_{fa} e P_d . Além disso, foi feita uma análise a partir de uma modificação nessas funções de modo a verificar a redução na SNR necessária a medida que analisamos mais pulsos a cada processo de decisão, contudo isso leva ao problema de aumento na taxa de amostragem que não foi levado em conta neste trabalho. O fator de correção da SNR foi calculado por força bruta para cada P_d desejado.

REFERENCES

- [1] Peyton Z. Peebles, Jr. Probability, Random Variables, and Random Signal principles, 2001, McGraw-Hill Inc.
- [2] https://www.mathworks.com/help/phased/ug/ signal-detection-in-white-gaussian-noise.html Acesso em 11/11/2020.
- [3] https://www.mathworks.com/help/phased/ref/shnidman.html. Acesso em 11/11/2020.