Homework 8 in 18.06 Due on Gradescope Sunday May 7 at 11:59 p.m.

To find the SVD $A = U\Sigma V^{\mathrm{T}}$ by hand, here are the steps from page 291.

Find
$$U$$
 and Σ and V for our original $A=\left[egin{array}{cc} 5 & 4 \\ 0 & 3 \end{array}\right]$.

With rank 2, this A has two positive singular values σ_1 and σ_2 . We will see that σ_1 is larger than $\lambda_{\max}=5$, and σ_2 is smaller than $\lambda_{\min}=3$. Begin with A^TA and AA^T :

$$egin{aligned} oldsymbol{A^{\mathrm{T}}}oldsymbol{A} = \left[egin{array}{cc} 25 & 20 \ 20 & 25 \end{array}
ight] & oldsymbol{A}oldsymbol{A^{\mathrm{T}}} = \left[egin{array}{cc} 41 & 12 \ 12 & 9 \end{array}
ight] \end{aligned}$$

Those have the same trace $\lambda_1 + \lambda_2 = 50$ and the same eigenvalues $\lambda_1 = \sigma_1^2 = 45$ and $\lambda_2 = \sigma_2^2 = 5$. The square roots are $\sigma_1 = \sqrt{45} = 3\sqrt{5}$ and $\sigma_2 = \sqrt{5}$. Then σ_1 times σ_2 equals 15, and this is the determinant of A. The next step is to find V.

The key to V is to find the eigenvectors of $A^{T}A$ (with eigenvalues 45 and 5):

$$\begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} = \mathbf{45} \begin{bmatrix} \mathbf{1} \\ \mathbf{1} \end{bmatrix} \qquad \begin{bmatrix} 25 & 20 \\ 20 & 25 \end{bmatrix} \begin{bmatrix} -\mathbf{1} \\ \mathbf{1} \end{bmatrix} = \mathbf{5} \begin{bmatrix} -\mathbf{1} \\ \mathbf{1} \end{bmatrix}$$

Then v_1 and v_2 are those orthogonal eigenvectors rescaled to length 1. Divide by $\sqrt{2}$.

Right singular vectors
$$v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ (as predicted)

The left singular vectors are $u_1 = Av_1/\sigma_1$ and $u_2 = Av_2/\sigma_2$. Multiply v_1, v_2 by A:

$$A\mathbf{v}_1 = \frac{3}{\sqrt{2}} \begin{bmatrix} 1\\3 \end{bmatrix} = \sqrt{45} \frac{1}{\sqrt{10}} \begin{bmatrix} 1\\3 \end{bmatrix} = \sigma_1 \mathbf{u}_1$$

$$A\mathbf{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -3\\1 \end{bmatrix} = \sqrt{5} \frac{1}{\sqrt{10}} \begin{bmatrix} -3\\1 \end{bmatrix} = \sigma_2 \mathbf{u}_2$$

The division by $\sqrt{10}$ makes u_1 and u_2 unit vectors. Then $\sigma_1 = \sqrt{45}$ and $\sigma_2 = \sqrt{5}$ as expected. The Singular Value Decomposition of A is U times Σ times V^T . (Not V.)

$$egin{aligned} oldsymbol{U} = rac{1}{\sqrt{10}} \left[egin{array}{ccc} 1 & -3 \ 3 & 1 \end{array}
ight] & oldsymbol{\Sigma} = \left[egin{array}{ccc} \sqrt{45} \ \sqrt{5} \end{array}
ight] & oldsymbol{V^{
m T}} = rac{1}{\sqrt{2}} \left[egin{array}{ccc} 1 & 1 \ -1 & 1 \end{array}
ight] \end{aligned}$$

1. Find the eigenvalues and the singular values of this 2 by 2 matrix
$$A$$
.
$$A = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \quad \text{with} \quad A^{\mathrm{T}}A = \begin{bmatrix} 20 & 10 \\ 10 & 5 \end{bmatrix} \quad \text{and} \quad AA^{\mathrm{T}} = \begin{bmatrix} 5 & 10 \\ 10 & 20 \end{bmatrix}.$$

The eigenvectors (1,2) and (1,-2) of A are not orthogonal. How do you know the eigenvectors v_1, v_2 of A^TA will be orthogonal? Notice that A^TA and AA^T have the same eigenvalues $\lambda_1 = 25$ and $\lambda_2 = 0$.

1

This is Problem 7.1.5 on page 295 of ILA6.

2. Find $A^{T}A$ and AA^{T} and the singular vectors v_1, v_2, u_1, u_2 for A:

$$A = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 8 \\ 0 & 0 & 0 \end{array} \right] \quad \text{has rank } r=2. \quad \text{The eigenvalues are } 0,0,0.$$

Check the equations $Av_1 = \sigma_1 u_1$ and $Av_2 = \sigma_2 u_2$ and $A = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T$. If you remove row 3 of A (all zeros), show that σ_1 and σ_2 don't change.

This is Problem 7.1.1 on page 295 of ILA6.

- **3.** If $(A^{T}A)v = \sigma^{2}v$, multiply by A. Move the parentheses to get $(AA^{T})Av = \sigma^{2}(Av)$. If v is an eigenvector of $A^{T}A$, then _____ is an eigenvector of AA^{T} . This is Problem 7.1.14 on page 296 of ILA6.
- **4.** If A = Q is an orthogonal matrix, why does every singular value of Q equal 1? This is Problem 7.1.9 on page 296 of ILA6.
- **5.** (a) Why is the trace of $A^{T}A$ equal to the sum of all a_{ij}^{2} ?
 - (b) For every rank-one matrix, why is $\sigma_1^2 = \text{sum of all } a_{ij}^2$? This is Problem 7.1.16 on page 296 of ILA6.
- **6.** Suppose A_0 holds these 2 measurements of 5 samples:

$$A_0 = \left[\begin{array}{rrrr} 5 & 4 & 3 & 2 & 1 \\ -1 & 1 & 0 & 1 & -1 \end{array} \right]$$

Find the average of each row and subtract it to produce the centered matrix A. Compute the sample covariance matrix $S = AA^{\rm T}/(n-1)$ and find its eigenvalues λ_1 and λ_2 . What line through the origin is closest to the 5 samples in columns of A?

This is Problem 7.3.1 about Principal Component Analysis from page 307 of ILA6. The best line is an eigenvector of S and a singular vector of the centered matrix A.