Package 'mirmisc'

October 26, 2021

```
Title Non-Modeling Helper Functions For Mirvie R Coders
Version 0.3.0
Description We have random bits of code that are quite useful. This is a
     home for it.
License file LICENSE
URL https://gitlab.com/Mirvie/mirmisc
BugReports https://gitlab.com/Mirvie/mirmisc/-/issues
Imports arrow (>= 3.0),
     checkmate,
     DescTools,
     detrendr (>= 0.6.12),
     dplyr (>= 1.0.0),
     forcats,
     foreach,
     fs,
     future,
     ggplot2,
     ggpmisc,
     ggstatsplot,
     ggthemes,
     glue,
     janitor,
     magrittr,
     methods,
     plotly,
     png,
     pROC,
     purrr,
     qualV,
     readr,
     rlang,
     rrcov,
     rsample,
     scales,
     strex,
     stringr,
```

2 R topics documented:

```
tidyr,
      utils,
     zeallot,
      zoo
Suggests datasets,
     embed,
     knitr,
     mirmodels,
     mockery,
     patchwork,
     recipes,
     rmarkdown,
     spelling,
     testthat (>= 3.0),
      tidyverse,
      withr
VignetteBuilder knitr
\textbf{Config/testthat/edition} \ \ 3
Config/testthat/parallel true
Encoding UTF-8
Language en-US
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.2
```

R topics documented:

autopiot.mirvie_conort_outliers
check_sample_descs
collapse_tech_reps
collect_counts
convert_feather_dir_to_csvs
convert_gene_names
deseq_contrasts
deseq_pairs
deseq_wide
lf_fill_missing_genes
lownsample_count_vec
Ggsea_basic
ilter_genes
get_cohort_outliers
get_df_gene_names
get_feather_path
get_gene_names
get_htseq_paths
mutate_genes
plot_cond_paired_pearson
plot_down
olot_metrics_global

```
autoplot.mirvie_cohort_outliers
```

٠,	

23

plot_var_mean_ratio		 										 				18
prep_gsea_input_gen	e_set											 				18
prep_gsea_input_lfc		 										 				19
prep_rd_input		 										 				20
reconcile_names .		 										 				20
repsim_gene_cond		 										 				21

```
{\it autoplot.mirvie\_cohort\_outliers} \\ {\it Plot~a~mirvie\_cohort\_outliers~object}.
```

Description

A mirvie_cohort_outliers object is the output of a call to get_cohort_outliers().

Usage

Index

```
## S3 method for class 'mirvie_cohort_outliers'
autoplot(object, pcx = 1, pcy = 2, plotly = interactive(), ...)
```

Arguments

object	A mirvie_cohort_outliers object.
рсх	An integer between 1 and 5. The principal component that will be on the x axis.
рсу	An integer between 1 and 5. The principal component that will be on the y axis.
plotly	A flag. Make the plot interactive (with mirvie ID tooltips)?
	Not currently used.

Value

```
A ggplot2::ggplot() or a plotly::ggplotly().
```

check_sample_descs Check the sample descriptions data frame for an R&D experiment.

Description

- It must contain a column called sample_name with unique values.
- It must contain a column called condition.
- If it contains a column called id_tech_rep, then for a given id_tech_rep, the sample_names must have a common substring at least two characters long.

Usage

```
check_sample_descs(sample_descs)
```

4 collapse_tech_reps

Arguments

sample_descs A data frame of sample descriptions that includes columns called sample_name and condition.

Value

TRUE (invisibly) if the check passes. Otherwise, an error is thrown.

See Also

```
Other Arkady: collapse_tech_reps(), deseq_contrasts(), deseq_pairs(), deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(), plot_var_mean_ratio() prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

collapse_tech_reps

Collapse (sum) technical replicates in a set of R&D experiments.

Description

Technical replicates, identified by the id_tech_rep column, are summed into a single sample. The resulting id_genes_counts is the longest common substring of the id_genes_counts of the input technical replicates.

Usage

```
collapse_tech_reps(prepped_rd_input)
```

Arguments

```
prepped_rd_input
```

A data frame. The output of a call to prep_rd_input().

Value

A dataframe with columns id_genes_counts, condition and the gene columns.

See Also

```
Other Arkady: check_sample_descs(), deseq_contrasts(), deseq_pairs(), deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(), plot_var_mean_ratio() prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

collect_counts 5

collect_counts

Collect the count files of several samples into a single data frame.

Description

This function takes a directory path dir_path and searches that directory for files whose names end in '_counts.txt'. It reads those files and concatenates them. Each file is assumed to correspond to a single sample whose name is contained in the first part of the file name (the bit before '_counts.txt'). These sample names are used as column names in the output data frame.

Usage

```
collect_counts(
   dir_path,
   convert_genenames = TRUE,
   cpm = FALSE,
   log2 = FALSE,
   remove_ercc = TRUE,
   remove_rp_4_11 = TRUE,
   remove_metadata = TRUE,
   remove_controls = TRUE,
   write = FALSE
)
```

Arguments

dir_path

A character vector. The path to the directory containing '*_counts.txt' files. To specify several directories, use a list of paths.

convert_genenames

A flag. Convert gene names from Ensembl IDs to more widely-used names?

cpm A flag. Convert raw counts to counts-per-million (on a per sample basis)?

 $\log 2$ A flag. Transform the counts using $\log 2(x + 1)$?

remove_ercc A flag. Remove ERCC counts from the results?

remove_rp_4_11 A flag. RP4 and RP11 genes come from a particular donor when building the

genome and are mostly not useful. The default (TRUE) is to remove them.

remove_metadata

A flag. The count files can contain non-gene metadata (e.g. mapping stats). The

default (TRUE) is to remove them.

remove_controls

A flag. The count files can contain positive and negative controls (denoted by having names ending in 'PC_counts.txt' or 'NC_counts.txt'). The default (TRUE)

is to remove them.

write

A flag or string. Write the results to disk as a tab-separated file? If TRUE, the file will be written to the working directory with name 'genes_counts.txt', 'genes_cpm.txt', genes_log2.txt' or 'genes_log2_cpm.txt'. To write the file

elsewhere, pass the path through this argument as a string.

Value

A data frame object.

6 convert_gene_names

Examples

```
## Not run:
collect_counts("path/to/dir/with/count/files")
## End(Not run)
```

```
convert_feather_dir_to_csvs
```

Make a directory of CSVs from a directory of feathers.

Description

Take a directory containing feather files and create a sibling directory with corresponding CSVs.

Usage

```
convert_feather_dir_to_csvs(feather_dir_path, new_dir_name = "feather-csvs")
```

Arguments

feather_dir_path

The path to the directory containing the feathers.

new_dir_name

The name of the new directory. This should *not* be an absolute path and rather just a name; I.e. it should not contain '/'. The created directory will be a sibling of the one at feather_dir_path.

Value

The path to the output directory, invisibly.

convert_gene_names

Convert gene names to/from Ensembl.

Description

This function works in a particular way: inputs that don't look like a gene at all are returned as is.

Usage

```
convert_gene_names(x, ensembl = "from")
```

Arguments

x A character vector.

ensembl A string. Either "from" or "to". With "to" the result is Ensembl gene names.

With "from" the result is colloquial gene names.

Value

A character vector.

deseq_contrasts 7

deseq_contrasts

Obtain pairwise contrasts with shrunken log2FC from a DESeq object.

Description

Obtain pairwise contrasts with shrunken log2FC from a DESeq object.

Usage

```
deseq_contrasts(ddsx, compr, alpha = 0.05, shrink = TRUE)
```

Arguments

ddsx	A DESeq object, output from deseq_wide().
compr	A character vector for pairwise comparisons of interest, eg., $c("4","1")$ from draw 4 with samples from draw 1.
alpha	A number. The significance level.
shrink	A flag. DESeq2::1fcShrink() the result? Default yes.

Value

A dataframe.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_pairs(), deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(), plot_var_mean_ratio() prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

```
rs_genes <- arrow::read_feather(
   system.file("extdata", "rs_genes_draw_3_4.feather", package = "mirmisc")
)
rs_meta <- arrow::read_feather(
   system.file("extdata", "rs_meta_draw_3_4.feather", package = "mirmisc")
)
ddsx <- deseq_wide(rs_genes, rs_meta, compvar = "meta_draw")
deseq_contrasts(ddsx, compr = c("4", "3"))</pre>
```

8 deseq_wide

deseq_pairs	Get the mirmodels::deseq() tables from pairs of conditions.

Description

Technical replicates in genes_counts should be collapsed with collapse_tech_reps() prior to running this function.

Usage

```
deseq_pairs(prepped_rd_input)
```

Arguments

```
prepped_rd_input
```

A data frame. The output of a call to prep_rd_input().

Value

A dataframe. A series of mirmodels::deseq() tables bound together with dplyr::bind_rows(). There are two extra columns cond1 and cond2 to record the conditions being compared.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(), plot_var_mean_ratio() prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

deseq_wide

Obtain DESeq object from raw counts wide dataframe.

Description

Wide is samples in columns, genes in rows.

Usage

```
deseq_wide(data, design, compvar)
```

Arguments

data	A wide datafame with raw counts that contains raw counts for samples of interest (may contain other samples as well, which will be filtered out).
design	A dataframe with all of the variables specified in compvar as column names. Must have the same number of rows as data with samples in the same order.
compvar	• a character vector with the name(s) of the variable(s), which must be identical to the variable name(s) in the design dataframe.

df_fill_missing_genes 9

Value

A DESeq2 object.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(), plot_var_mean_ratio() prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

Examples

```
rs_genes <- arrow::read_feather(
   system.file("extdata", "rs_genes_draw_3_4.feather", package = "mirmisc")
)
rs_meta <- arrow::read_feather(
   system.file("extdata", "rs_meta_draw_3_4.feather", package = "mirmisc")
)
deseq_wide(rs_genes, rs_meta, compvar = "meta_draw")</pre>
```

df_fill_missing_genes Fill missing gene columns in one data frame with those from another.

Description

The 'gene names' are those returned by get_gene_names(). This function takes two data frames df and df_fill_from and, if there are any columns in df_fill_from with gene names as column names which don't exist in df, they are copied into df.

Usage

```
df_fill_missing_genes(df, df_fill_from)
```

Arguments

```
df A data frame.df_fill_from A data frame with the same number of rows as df.
```

Details

If the gene names in df are contiguously located, the copied genes are inserted right after those. Otherwise, they are inserted on the end.

Value

A data frame.

Examples

```
if (require("mirmodels")) {
   st_data <- get_st_data()
   st_data_median0 <- get_st_data(gene_predicate = ~ median(.) == 0)
   dim(st_data)
   dim(st_data_median0)
   dim(df_fill_missing_genes(st_data_median0, st_data))
}</pre>
```

Description

Uniformly downsample a vector of non-negative integers to have a specified sum. That is, keep randomly subtracting 1 from nonzero elements of the vector until it has the desired sum. Each count is equally likely to be taken. That is, an element with value 8 is 4 times more likely to be decremented than an element with value 2.

Usage

```
downsample_count_vec(vec, end_sum)
downsample_count_mat_rows(mat, end_sum)
downsample_count_mat_cols(mat, end_sum)
downsample_gene_counts(df, end_sum)
```

Arguments

vec A vector of non-negative integers.

end_sum The number that you would like vector to sum to after downsampling. This must

be less than the initial sum.

mat A matrix of non-negative integers.

df A data frame with gene names as columns.

Details

downsample_count_mat_rows() and downsample_count_mat_cols() just do downsample_vec() to all rows and columns of a matrix using apply().

downsample_gene_counts() downsamples on the subset of columns in the data frame that have names in get_gene_names().

If end_sum > sum(vec), vec is returned unchanged.

Value

A vector of non-negative integers.

fgsea_basic 11

Examples

```
downsample_count_vec(1:24, 24)
mat <- matrix(sample.int(100, size = 6^2, replace = TRUE), nrow = 6)
downsample_count_mat_rows(mat, end_sum = 6)
downsample_count_mat_cols(mat, end_sum = 6)
if (rlang::is_installed("mirmodels")) {
   ms_data <- mirmodels::get_ms_data(gene_predicate = ~ median(.) > 0)
   downsampled_ms <- downsample_gene_counts(ms_data, end_sum = 1e6)
}</pre>
```

fgsea_basic

Get results from fast Gene Set Enrichment Analysis (GSEA)

Description

```
Uses fgsea::fgsea() defaults.
```

Usage

```
fgsea_basic(prepped_gsea_input_lfc, prepped_gsea_input_gene_set)
```

Arguments

Value

A dataframe.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(), deseq_wide(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(), plot_var_mean_ratio(), prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

```
rs_genes <- arrow::read_feather(
   system.file("extdata", "rs_genes_draw_3_4.feather", package = "mirmisc")
)
rs_meta <- arrow::read_feather(
   system.file("extdata", "rs_meta_draw_3_4.feather", package = "mirmisc")
)
ddsx <- deseq_wide(rs_genes, rs_meta, compvar = "meta_draw")
dsq_contrasts <- deseq_contrasts(ddsx, compr = c("4", "3"))
prepped_gsea_input_lfc <- prep_gsea_input_lfc(dsq_contrasts)
prepped_gsea_input_gene_set <- prep_gsea_input_gene_set("C8")
fgsea_basic(prepped_gsea_input_lfc, prepped_gsea_input_gene_set)</pre>
```

12 get_cohort_outliers

filter_genes

Filter genes using a predicate function.

Description

Gene names are elements of get_gene_names(). Genes for whom the predicate function f() evaluates to FALSE are dropped.

Usage

```
filter_genes(df, f)
```

Arguments

df A data frame some of whose column names are gene names.

f A predicate function or a formula coercible to a function by rlang::as_function().

Value

A data frame.

get_cohort_outliers

Detect the outlying samples in a cohort.

Description

This function wraps mirmodels::compute_pcas() and hence uses rrcov::PcaGrid() to do robust PCA analysis and detect outliers.

Usage

```
get_cohort_outliers(cohort)
```

Arguments

cohort

A two-character string, e.g. "BW".

Details

Prior to PCA calculation (and outlier detection), a call to mirmodels::linear_correct() is made to regress away the effect of the total number of counts on gene expression levels, with care taken to not regress away the effect of gestational age.

There's an Easter egg. You can pass a data frame directly as the cohort argument and then the function will use that rather than having to call get_*_data() to get the data. I advise get_*_data(log2 = TRUE, tot_counts = TR dian(.) > 0).

get_df_gene_names 13

Value

An object of class mirvie_cohort_outliers. This is a data frame with 5 principal components named PC1, PC2, . . ., PC5. It also has columns meta_collectionga, mirvie_id and outlier which is a boolean column where TRUE indicates an outlier. This object has attributes var_exp and loadings. Read the documentation of mirmodels::compute_pcas() for more on those.

See Also

```
autoplot.mirvie_cohort_outliers()
```

Examples

```
if (require("mirmodels")) {
   ga_outliers <- get_cohort_outliers("ga")
   autoplot(ga_outliers)
}</pre>
```

get_df_gene_names

Which gene names are also column names?

Description

This is just intersect(names(df),get_gene_names()).

Usage

```
get_df_gene_names(df)
```

Arguments

df

A data frame.

Value

A character vector.

get_feather_path

Get the path to the folder containing the feather files.

Description

This function requires you to have set the environment variable MIRVIE_FEATHER_PATH, which you can do in the ~/.Rprofile file. It should have a line like Sys.setenv(MIRVIE_FEATHER_PATH = "path/to/mirvie/feathers/dir"). If the file doesn't exist, create it and make this the only line in the file. If this is done correctly, this function then forms a path with MIRVIE_FEATHER_PATH as the root directory.

Usage

```
get_feather_path(..., use_dotenv = TRUE, verify = TRUE)
```

14 get_gene_names

Arguments

.. Character vectors. Elements of the path. Mostly, you'll leave this blank.

use_dotenv A flag. If the MIRVIE_FEATHER_PATH environment variable isn't found by the

usual R means, check the ~/.env file used by python-dotenv.

verify A flag. Check that MIRVIE_FEATHER_PATH exists and contains at least one

*.feather file. Error if check fails. Default TRUE.

Details

There's a whole vignette explaining this function. To find it, run browseVignettes(package = "mirmisc").

Value

An fs::path.

Examples

```
## Not run:
get_feather_path()
## End(Not run)
```

get_gene_names

Get the names of all of the genes that we use.

Description

This includes the Ensembl and colloquial names (so in that sense there is duplication).

Usage

```
get_gene_names()
```

Value

A character vector.

```
get_gene_names()
```

get_htseq_paths 15

get_htseq_paths	Get the paths to htseq/ directories for a given cohort.
-----------------	---

Description

The *_counts.txt files live in directories called htseq/. This function helps you to find all such directories for a given cohort.

Usage

```
get_htseq_paths(base_dir = "/mnt/storage/Cohorts", cohort_code)
```

Arguments

base_dir A string. The path to a directory that the cohort directories live under. The

cohort directories have name structure ###_XY where # is a digit and XY is the

cohort code. For example, 007_RS.

cohort_code A string with exactly two characters. E.g. "RS".

Value

A character vector of paths.

Examples

```
## Not run:
get_htseq_paths(cohort_code = "RS")
## End(Not run)
```

mutate_genes

Apply the same function to all columns whose names are gene names.

Description

Gene names are elements of get_gene_names().

Usage

```
mutate_genes(df, f)
```

Arguments

df A data frame.

f A function or a formula coercible to a function by rlang::as_function().

Value

A data frame.

16 plot_down

```
plot_cond_paired_pearson
```

Violin plots for within-condition gene Pearson correlation coefficients.

Description

Violin plots for within-condition gene Pearson correlation coefficients.

Usage

```
plot_cond_paired_pearson(prepped_rd_input, gene_subset = NULL, qntl = NULL)
```

Arguments

prepped_rd_input

A data frame. The output of a call to prep_rd_input().

gene_subset A character vector of genes in a subset of interest.

qntl A number between 0 and 1. A quantile-based threshold below which the data

is subset. The purpose of this is to improve the sensitivity of the reproducibility

analysis by focusing on subsets of data with lower counts.

Value

A ggplot.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(), deseq_wide(), fgsea_basic(), plot_down(), plot_metrics_global(), plot_var_mean_ratio(), prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

plot_down

Plot top n most significantly enriched pathways in the upward or downward direction.

Description

Plot top n most significantly enriched pathways in the upward or downward direction.

Usage

```
plot_down(fgsea_out, padj_thresh = 0.05, n = 20)
plot_up(fgsea_out, padj_thresh = 0.05, n = 20)
```

Arguments

fgsea_out Output of fgsea::fgsea() or fgsea_basic().

padj_thresh Adjusted p-value threshold. size_thresh number of genes to show.

plot_metrics_global 17

Value

```
A ggplot2::ggplot().
```

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(), deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_metrics_global(), plot_var_mean_ratio(prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

Examples

```
rs_genes <- arrow::read_feather(
   system.file("extdata", "rs_genes_draw_3_4.feather", package = "mirmisc")
)
rs_meta <- arrow::read_feather(
   system.file("extdata", "rs_meta_draw_3_4.feather", package = "mirmisc")
)
ddsx <- deseq_wide(rs_genes, rs_meta, compvar = "meta_draw")
dsq_contrasts <- deseq_contrasts(ddsx, compr = c("4", "3"))
prepped_gsea_input_lfc <- prep_gsea_input_lfc(dsq_contrasts)
prepped_gsea_input_gene_set <- prep_gsea_input_gene_set("C8")
fgs <- fgsea_basic(prepped_gsea_input_lfc, prepped_gsea_input_gene_set)
plot_down(fgs)
plot_up(fgs)</pre>
```

plot_metrics_global

Plots comparisons between conditions in an experiment.

Description

Actual experimental samples and positive controls, using all genes in the count table or a subset of genes.

Usage

```
plot_metrics_global(prepped_rd_input, gene_subset = NULL)
```

Arguments

```
prepped_rd_input

A data frame. The output of a call to prep_rd_input().

gene_subset A character vector of genes in a subset of interest.
```

Value

A list of 6 ggplots.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(), deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_var_mean_ratio(), prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

plot_var_mean_ratio

Plot median and other quantile values for variance-to-mean ratios obtained across all genes.

Description

Useful in comparison to a reference: if median and other quantile ratios are higher or lower than in the reference, then one can draw a conclusion about a relative variability among the samples in a given experimental condition.

Usage

```
plot_var_mean_ratio(prepped_rd_input)
```

Arguments

```
prepped_rd_input
```

A data frame. The output of a call to prep_rd_input().

Value

A ggplot.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(), deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(), prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

Description

Categories of interest from http://www.gsea-msigdb.org/gsea/msigdb/index.jsp.

Usage

```
prep_gsea_input_gene_set(category)
```

Arguments

cetegory

A string. Category of interest.

Value

A list object for fgsea.

prep_gsea_input_lfc 19

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(),
deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(),
plot_var_mean_ratio(), prep_gsea_input_lfc(), prep_rd_input(), reconcile_names()
```

Examples

```
prep_gsea_input_gene_set("C8")
```

```
Prep ranking metric gene input for fgsea::fgsea().
prep_gsea_input_lfc
```

Description

Prep ranking metric gene input for fgsea::fgsea().

Usage

```
prep_gsea_input_lfc(x)
```

Arguments Х

The dataframe with the contrasts from DESeq, results generated by deseq_contrasts().

Value

A data frame.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(),
deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(),
plot_var_mean_ratio(), prep_gsea_input_gene_set(), prep_rd_input(), reconcile_names()
```

```
rs_genes <- arrow::read_feather(</pre>
 system.file("extdata", "rs_genes_draw_3_4.feather", package = "mirmisc")
rs_meta <- arrow::read_feather(</pre>
  system.file("extdata", "rs_meta_draw_3_4.feather", package = "mirmisc")
ddsx <- deseq_wide(rs_genes, rs_meta, compvar = "meta_draw")</pre>
dsq_contrasts <- deseq_contrasts(ddsx, compr = c("4", "3"))</pre>
prep_gsea_input_lfc(dsq_contrasts)
```

20 reconcile_names

prep_rd_input	Join the sample descriptions and genes counts data frames into a wide format.
---------------	---

Description

This function calls reconcile_names() and check_sample_descs() internally.

Usage

```
prep_rd_input(sample_descs, genes_counts)
```

Arguments

 ${\tt sample_descs} \qquad {\tt A \ data \ frame \ of \ sample \ descriptions. \ The \ sample \ Name \ column \ holds \ the \ sample}$

names.

genes_counts A data frame of gene counts. The first column is gene and the rest are sample

names.

Value

A data frame. The gene counts table with columns corresponding to the desired subset of data.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(), deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(), plot_var_mean_ratio(), prep_gsea_input_gene_set(), prep_gsea_input_lfc(), reconcile_names()
```

Description

Given a data frame of sample descriptions from the lab team and a data frame from a genes_counts.txt file from a sequencing run, match the sample names and return a data frame of sample descriptions detailing the matching.

Usage

```
reconcile_names(sample_descs, genes_counts)
```

Arguments

sample_descs A data frame of sample descriptions. The sampleName column holds the sample

names.

genes_counts A data frame of gene counts. The first column is gene and the rest are sample

names.

repsim_gene_cond 21

Details

Name matching is done by first replacing all whitespace and underscores with hyphens and then asserting that the sampleName must a substring of the column name. The matching is done via a pair of columns id_sample_descs and id_genes_counts in the output.

Value

A data frame.

See Also

```
Other Arkady: check_sample_descs(), collapse_tech_reps(), deseq_contrasts(), deseq_pairs(), deseq_wide(), fgsea_basic(), plot_cond_paired_pearson(), plot_down(), plot_metrics_global(), plot_var_mean_ratio(), prep_gsea_input_gene_set(), prep_gsea_input_lfc(), prep_rd_input()
```

repsim_gene_cond

Repeatedly simulate gene counts for cases and controls of a condition.

Description

Given a number of gene repetitions, a number of samples, the condition prevalence and the theoretical mean of a gene for cases and controls, repeatedly simulate gene counts for that gene across the condition.

Usage

```
repsim_gene_cond(
  n_gene_reps,
  n_samples,
  cond_prevalence,
  control_mean,
  case_mean
)
```

Arguments

```
n_gene_reps The number of times to repeatedly simulate the gene counts for that gene.
n_samples The number of samples in the simulation.
```

cond_prevalence

A number in (0, 1). The condition prevalence.

control_mean Theoretical mean of the gene for controls.

case_mean Theoretical mean of the gene for cases.

Details

Poisson gene counts are assumed.

Value

A tibble with $n_gene_reps + 1$ columns called $generep_1$, $generep_2$, . . ., $generep_n_gene_reps$, cond and $n_semples$ columns.

22 repsim_gene_cond

```
if (rlang::is_installed("mirmodels")) {
   rsgc5000 <- repsim_gene_cond(15000, 5000, 1 / 10, 0.01, 0.05)
   sde <- mirmodels::cor_de(rsgc5000, "cond", head(names(rsgc5000), -1))
}</pre>
```

Index

* Arkady	fgsea_basic, 4, 7-9, 11, 16-21
<pre>check_sample_descs, 3</pre>	fgsea_basic(), 16
collapse_tech_reps, 4	filter_genes, 12
deseq_contrasts, 7	fs::path, <i>14</i>
deseq_pairs, 8	•
deseq_wide, 8	<pre>get_cohort_outliers, 12</pre>
fgsea_basic, 11	<pre>get_cohort_outliers(), 3</pre>
plot_cond_paired_pearson, 16	<pre>get_df_gene_names, 13</pre>
plot_down, 16	get_feather_path, 13
plot_metrics_global, 17	get_gene_names, 14
plot_var_mean_ratio, 18	get_gene_names(), 9, 12, 15
prep_gsea_input_gene_set, 18	get_htseq_paths, 15
prep_gsea_input_lfc, 19	ggplot2::ggplot(), 3, 17
prep_rd_input, 20	
reconcile_names, 20	<pre>mirmodels::compute_pcas(), 12, 13</pre>
reconcile_names, 20	mirmodels::deseq(), 8
apply(), <i>10</i>	<pre>mirmodels::linear_correct(), 12</pre>
autoplot.mirvie_cohort_outliers, 3	mutate_genes, 15
autoplot.mirvie_cohort_outliers(), 13	-
autopiot.mirvie_conort_outilers(), 15	plot_cond_paired_pearson, 4, 7-9, 11, 16,
check_sample_descs, 3, 4, 7-9, 11, 16-21	17–21
check_sample_descs(), 20	plot_down, 4, 7-9, 11, 16, 16, 17-21
collapse_tech_reps, 4, 4, 7–9, 11, 16–21	plot_metrics_global, 4, 7-9, 11, 16, 17, 17,
	18–21
collapse_tech_reps(), 8	plot_up(plot_down), 16
collect_counts, 5	plot_var_mean_ratio, 4, 7-9, 11, 16, 17, 18,
convert_feather_dir_to_csvs, 6	19–21
convert_gene_names, 6	plotly::ggplotly(), 3
docog contracts 4.7 % 0.11 16.21	prep_gsea_input_gene_set, 4, 7-9, 11,
deseq_contrasts, 4, 7, 8, 9, 11, 16–21	16–18, 18, 19–21
deseq_contrasts(), 19	<pre>prep_gsea_input_gene_set(), 11</pre>
deseq_pairs, 4, 7, 8, 9, 11, 16–21	prep_gsea_input_lfc, 4, 7-9, 11, 16-19, 19,
deseq_wide, 4, 7, 8, 8, 11, 16–21	20, 21
deseq_wide(), 7	<pre>prep_gsea_input_lfc(), 11</pre>
df_fill_missing_genes, 9	prep_rd_input, 4, 7–9, 11, 16–19, 20, 21
downsample_count_mat_cols	prep_rd_input(), 4, 8, 16–18
(downsample_count_vec), 10	
downsample_count_mat_rows	reconcile_names, 4, 7-9, 11, 16-20, 20
(downsample_count_vec), 10	reconcile_names(), 20
downsample_count_vec, 10	repsim_gene_cond, 21
downsample_gene_counts	rlang::as_function(), <i>12</i> , <i>15</i>
(downsample_count_vec), 10	rrcov::PcaGrid(), 12
<pre>dplyr::bind_rows(), 8</pre>	***
fgsea::fgsea(), 11, 16, 18, 19	