Speaker: Rodrigo Benenson

Human-in-the-loop annotations

KEEP CALM AND WRITE DOWN QUESTIONS

Typical machine learning paper focus on model training

Architecture

Typical machine learning paper focus on model training

Typical machine learning paper focus on model training

In practice machine learning is much more than data + model

(In practice, transfer learning can be shockingly effective)

Redundant with what the model already knew.

Redundant with what the model already knew.

Redundant with what the model already knew.

★Too hard for the model to learn.

Redundant with what the model already knew.

★Too hard for the model to learn.

Informative and learnable annotation.

Detection

Which boxes to add?

Semantic labeling

Which pixels to add?

Which image areas should be annotated?

(aka active learning)

Which annotation

will lead to an improved model?

Which annotation will lead to an improved model?

⇒ Hard problem

Uniform

- Score bands
- High entropy
- Ensemble disagreements
- Self-consistency

Uniform: accept one's ignorance.

Pros:

- As simple as it gets.
- Reasonable strategy to bootstrap annotations.

Cons:

- If model is reasonably good, high portion of redundant annotations.
- If class distribution is skewed, will under-represent some classes.

Variant (if image-level labels): uniform annotations, but only across the bottom-N worst classes.

- Uniform
- Score bands
- High entropy
- Ensemble disagreements
- Self-consistency

Score band: focus on areas with score \subseteq [a, b].

E.g. score \in [0.4, 0.6], score \in [0.8, 0.9].

Pros:

- Simple to implement.
- Can easily target ambiguous regions.
- Can aim for class-balanced sampling.

Cons:

Empirically not very effective.

- Uniform
- Score bands
- High entropy
- Ensemble disagreements
- Self-consistency

High entropy: focus on areas of model confusion.

$$H(x) = -\sum_k p_k \log(p_k)$$

Pros:

- Simple to understand.
- Annotated samples guaranteed to provide training loss.
- Empirically hard to beat.

Cons:

Does not include a notion of sample diversity.

- Uniform
- Score bands
- High entropy
- Ensemble disagreements
- Self-consistency

Ensemble disagreements:

focus where N models disagree.

Disagreement measured by I2-norm, Jensen-Shannon divergence, vote entropy, etc.

Pros:

- Better estimation of model uncertainty.
- Provides better results than single model.

Cons:

Requires training multiple models.
 (Ensemble can be approximated via dropout)

(Ensemble average can also be used as a single stronger model, and use high-entropy)

- Uniform
- Score bands
- High entropy
- Ensemble disagreements
- Selfconsistency

Self-consistency:

focus where equivariance is not respected.

Pros:

- Simple to understand.
- Can (should) be combined with the previous heuristics.

Cons:

(Requires hand-crafting the test-time augmentation).

Opinion: active learning is a field where most ideas do not work.

(most ideas work a little, sometimes)

If in doubt: ensemble model + entropy + self-consistency.

Collecting bounding boxes

(without drawing any box)

The annotator verifies boxes instead of drawing them (yes/no or yes/part/container/mixed/missed)

Better model when limited human time budget

Pascal VOC 2007 object detection evaluation.

Red: weakly supervised bounding boxes (from image-level labels). Green: boxes after collecting verifications.

Collecting segmentations

(guiding the drawing hand)

Segmentation annotations do not need to be complete

Segmentation annotations do not need to be complete

Segmentation blocks can be machine-selected

Segmentation blocks can be machine-selected

Collecting segmentations

(guiding the clicking hand)

- Quality > COCO polygons
- ~3x faster annotation time
- 2.5M instances masks https://g.co/dataset/open-images

Annotation dialogs

(where the machine ask)

The best strategy covers different annotation types, the machine asks what it needs.

The best strategy covers different annotation types, the machine asks what it needs.

Takeaways:

- For large scale annotation campaigns,
 hybrid annotations enable better use of human time.
- Strong annotations can be partial, and focused.
- For active learning component, keep it simple.
- Do not underestimate the power of transfer learning.
- There is a large design space for Human-Machine collaboration.

