Machine Learning

9장 모형 진단과 초모수의 결정

고려대학교 통계학과 박유성

- Olimination
- K-fold Cross-validation
- Nested Cross-validation
- Classifier의 성능 측정

01 Introduction

- Machine Learning의 모형 진단 구분
 - Overfitting (low bias & high variance) vs. Underfitting(high bias & low variance)
 - 초모수 (hyper parameter) 결정
 - 모형간 성능 비교
- 모형 진단을 위한 자료 분할
 - 전체 자료 → Training set + Validation set + Test set

- ▶ Training set을 이용하여 모형에 포함된 모수 추정
- ▶ Validation set을 이용하여 초모수 (예: 규제화를 위한 λ , SVM의 C) 결정
- ▶ Test set을 이용하여 최종 모형 평가

02 K-fold Cross-validation

• Training set \rightarrow (K-1)개의 Training folds + 1개의 Validation fold

- Test set은 고정
- (기호) E_i : i번째 자료 분할 (iteration)의 validation fold로 부터 구한 performance
- 가장 우수한 $\frac{1}{K}\sum_{i=1}^K E_i$ 를 보이는 초모수 선택 후, <mark>전체 training set을 이용하여 모형을 재추정</mark>

Overfitting vs. Underfitting

- High Variance 및 High Bias 진단
 - 그림 (a): High bias
 - Underfitting
 - ▶ 해결:
 - ① 특성변수 사용
 - ② 규제화 강도 약화
 - 그림 (b): High variance
 - ▶ Overfitting
 - ▶ 해결:
 - ① 특성변수의 개수 축소
 - ② 규제화 강도 강화
 - ③ 전체 관측자료 증가
 - 그림 (c): 바람직한 결과
 - ▶ 이렇게 되도록 특성변수의 차 원과 자료의 크기를 결정

03 Nested Cross-validation

- Why?
 - 고정된 자료 분할 방식의 문제점: Learning 모형의 performance가 자료 분할에 크게 의존
- How?
 - Idea: 고정된 Test set → 임의의 Test fold (K₁개)
 - For each test fold i ($i = 1 K_1$),
 - ► Apply K₂-fold cross-validation
 - ▶ 가장 우수한 $E_i = \frac{1}{K_2} \sum_{j=1}^{K_2} E_{i,j}$ 를 주는 초모수 선택
 - \rightarrow "K₁-K₂ Cross-validation"
 - 모형의 최종 performance:

$$\blacktriangleright E = \frac{1}{K_1} \sum_{i=1}^{K_1} \underline{E_i}$$

- Learning 모형을 선택하는 기준

04 Classifier의 성능 측정

- Confusion Matrix (이항 분류의 경우)
 - 분류 (classification) 결과를 count하여 정리한 표
 - Class
 - ▶ P: Positive class (y = 1), N: Negative class (y = 0)
 - 분류 결과의 유형
 - ▶ TP (True Positive): P를 P로 맞게 예측
 - ▶ FP (False Positive): N을 P로 잘 못 예측
 - ▶ FN (False Positive): P를 N으로 잘 못 예측
 - ▶ TN (True Positive): N을 N으로 맞게 예측

Predicted Class			
		Р	N
Actual Class	Р	True Positive (TP)	False Negative (FN)
	N	False Positive (FP)	True Negative (TN)

- 성능의 측도 (Performance measure)
 - $-Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$ \Rightarrow 그룹 불균형이 심한 경우 성능을 왜곡. (예) 100명의 환자 중 암환자 5명
 - $-PRE = \frac{TP}{TP+FP}$ (positive class 예측에 대한 정확도) $-REC = \frac{TP}{TP+FN}$ (positive를 positive로 예측하는 비율) $F1 = \frac{PRE \times REC}{PRE + REC}$

$$F1 = \frac{PRE \times REC}{PRE + REC}$$

Q & A