Deterministic Finite Automata (DFA)

$$A = (Q, \Sigma, \delta, q_0, F)$$

Q = a finite set (of states)

 Σ = a finite (input alphabet) set

 δ = the transition function (full function) where :

$$\delta: Q \times \Sigma \rightarrow Q ; (q, \sigma) \rightarrow \delta(q, \sigma) \in Q$$

 q_0 = initial state, $q_0 \in Q$

F = final state set , $F \subseteq Q$

Simple Representations of **DFA**

(1) Visual (Graphical): Transition Diagrams

(2) Tabular: Transition Tables

$\delta E = Extended Transition Function$

$$\delta E: Q \times \Sigma^* \rightarrow Q; (q, s) \rightarrow \delta E(q, s) \in Q$$

Inductive Definition (e = empty string)

$$\delta E(q, e) := q$$
, Basis

$$\delta E(q, s.a) = \delta(\delta E(q, s), a), Induction$$

L(A) := the language accepted by A

$$s \in L(A) \Leftrightarrow (if \ and \ only \ if) \ \delta E(q_0, s) \in F ; or :$$

$$L(A) = \{s \in \Sigma^* \mid \delta E(q_0, s) \in F\}$$

Nondeterministic Finite Automata (NFA)

Same as **DFA** except:

- (1) $\delta: Q \times \Sigma \rightarrow 2^Q$ (where $2^Q := P(Q) = power set of Q$)
- (2) initial state (is a set !) $Q_0 \subseteq Q$ (differs from main text!)

Distinction in graphical representation (transition diagram):

In **DFA** for every $\sigma \in \Sigma$ there **is** exactly **one** outgoing transition edge from every state $q \in Q$

In NFA for every $\sigma \in \Sigma$ there may be multiple (including none!) outgoing transition edges from every state $q \in Q$

CS 302 Fall 2017 4

Extended Transition Function for NFA

$$\delta E: 2^{Q} \times \Sigma^{*} \rightarrow 2^{Q}; (X, s) \rightarrow \delta E(X, s) \in 2^{Q}$$

Inductive Definition

$$\delta E(X, e) := X$$
, Basis

$$\delta E(X, s.a) = \bigcup_{q \in \delta E(X, s)} \delta(q, a), Induction$$

L(A) :=the language *accepted* by A

$$s \in L(A) \Leftrightarrow (if \ and \ only \ if) \ \delta E(Q_0, s) \cap F \neq \emptyset; \ or :$$

$$L(A) := \{ s \in \Sigma^* \mid \delta E(Q_0, s) \cap F \neq \emptyset \}; \emptyset := null set$$

Construction of Equivalent DFA D from a Given NFA N

Problem: Given an NFA $N = (Q, \Sigma, \delta_N, Q_0, F_N)$ construct a

DFA
$$D = (2^Q, \Sigma, \delta_D, Q_0, F_D)$$
 such that $L(N) = L(D)$

Solution:

(1)
$$\delta_D(X, \sigma) := \bigcup_{\{v \in X\}} \delta_N(v, \sigma) ; \delta_D(\emptyset, \sigma) := \emptyset, \forall \sigma \in \Sigma$$

$$(2) F_D := \{ Y \subseteq Q \mid Y \cap F_N \neq \emptyset \}$$

In order to prove that L(N) = L(D) proceed as follows:

(1) Show that $\delta_D E(Q_0, s) = \delta_N E(Q_0, s)$ using induction on the length of s

$$(2) s \in L(N) \Leftrightarrow (if \ and \ only \ if) \ \delta_N E(Q_0, s) \cap F_N \neq \emptyset \\ \Leftrightarrow \delta_D E(Q_0, s) \in F_D \Leftrightarrow s \in L(D)$$

Example for DFA equivalent **D** for an NFA **N**

 $L=(s \in \{0,1\}^* \mid s = u \ v \ ; |v| \le 2 \ ; \ v \ has \ at \ least \ one \ 1\}$

	state	input	next
> A ->	1	0	1,4 (B)
	1	1	1,2,3,5 (C)
$B \rightarrow$	1,4	0	1,4 (B)
	1,4	1	1,2,3,5 (C)
~ \	1,2,3,5	0	1,4,5 (E)
final $C \rightarrow$	1,2,3,5	1	1,2,3,5 (C)
final E→	1,4,5	0	1,4 (B)
	1,4,5	1	1,2,3,5 (C)

A 'bad case' example for NFA-to-DFA conversion

 $L = (s \in \{0,1\}^* \mid s=u.1.v; \mid v \mid =n-1, n > 1, a \text{ fixed integer})$

n+1 state NFA to accept L

Fact: Any DFA D to accept L has at least 2^n states

Proof of Fact

0.1

- (1) Consider all (2^n) sequences of 0 and 1s of length n; denote each by u^k for $k=1,...,2^n$ and jth input of u^k by u_i^k for j=1,...,n.
- (2) Apply each sequence \mathbf{u}^k starting from the initial state \mathbf{q}_0 of \mathbf{D} and let \mathbf{q}_j^k be the state of \mathbf{D} arrived at after the application of \mathbf{j} th input of \mathbf{u}^k . Claim $\mathbf{k} \neq \mathbf{p}$ implies $\mathbf{q}_n^k \neq \mathbf{q}_n^p$!
- (3) Suppose the claim is false for some k and p then let j be the first (smallest) index for which $u_j^k = 1$ and $u_j^p = 0$ then after n-j steps the corresponding states merge at the same value $q_n^k = q_n^p$ and it becomes impossible to differentiate inputs of length n+j starting with u^k and u^p although at jth stage one continues with l (to be accepted by l) and the other with l (to be rejected by l)!

NFA with ε-transitions

$$N\varepsilon = (Q, \Sigma, \delta_{N\varepsilon}, Q_0, F)$$

Difference is in $\delta_{N\varepsilon}: Q \times (\Sigma \cup \varepsilon) \rightarrow 2^Q$

 $\delta_{N\varepsilon}(q, \varepsilon) \in 2^Q$ is called (a bundle of) ε -transitions

In computing the language accepted, $L(N\varepsilon)$, ε -transitions do not count, i.e., they are defined as invisible and erased!

Typical Applications of ε - transitions

CS 302 Fall 2017

Eliminating *\varepsilon*-transitions

Idea : define ε -closures inductively (recursively)

Let $X \subseteq Q$ and compute $ECLOSE(X) \subseteq Q$ recursively as below:

ECLOSE(X)=X, basis

If $y \in ECLOSE(X)$ then set:

 $ECLOSE(X) := ECLOSE(X) \cup \delta_{N_{\varepsilon}}(y, \varepsilon)$, recursion

The language $L(N\varepsilon)$ accepted by an automaton $N\varepsilon$ with ε -transitions

Extended Transition Function for $N\varepsilon$:

$$\delta_{N\varepsilon}E(X, e) := ECLOSE(X)$$
; basis

$$\delta_{N\varepsilon}E(X, s.a) := \bigcup_{v \in Y}ECLOSE(\delta_{N\varepsilon}(y, a)), Y = \delta_{N\varepsilon}E(X, s) : induction$$

$$L(N\varepsilon)$$
 = language accepted by $N\varepsilon$

$$= \{ s \in \Sigma^* \mid \delta_{N\varepsilon} E(Q_0, s) \cap F \neq \emptyset \}$$

~N := NFA-equivalent for $N\varepsilon$ with no ε -transitions

$$\sim N := (Q, \Sigma, \delta_{\sim N}, Q'_{\theta}, F)$$

where : $\delta_{\sim N}(q, a) := \delta_{N\varepsilon} E(\{q\}, a)$; $Q'_{\theta} := ECLOSE(Q_{\theta})$

Fact: $L(\sim N) = L(N\varepsilon)$

Example for \varepsilon-NA to NA without \varepsilon-transitions transformation

$$L_1 = \{01\}, L_2 = \{10\}$$
 $L := \{L_1 \cup L_2\}^*$

$$L := \{L_1 \cup L_2\}^*$$

q	σ	Q'
1	0	5
1	1	3
2	0	φ
2	1	3
3	0	1,2,4,6
3	1	ϕ
4	0	5
4	1	ϕ
5	0	ϕ
5	1	1,2,4,6
6	0	5
6	1	3

A Resume of equivalence formulas for DFA, NFA and \varepsilon-NFA

(1)
$$\delta_A: Q \times \Sigma \to Q$$
; $\delta_A E: Q \times \Sigma^* \to Q$; $s \in L(A) \Leftrightarrow \delta_A E(q_0, s) \in F$

(2)
$$\delta_N: Q \times \Sigma \to 2^Q$$
; $\delta_N E: 2^Q \times \Sigma^* \to 2^Q$; $s \in L(N) \Leftrightarrow \delta_N E(Q_0, s) \cap F \neq \emptyset$

(3) Deterministic Equivalent **D** of an NFA N such that L(N) = L(D)

$$D = (2^{Q}, \Sigma, \delta_{D}, Q_{0}, F_{D}); \delta_{D}(X, \sigma) := \bigcup_{\{v \in X\}} \delta_{N}(v, \sigma); \delta_{D}(\emptyset, \sigma) := \emptyset$$

$$F_D := \{ Y \subseteq Q \mid Y \cap F_N \neq \emptyset \}$$

$$(4) \ \delta_{N\varepsilon}: Q \times \Sigma \cup \{\varepsilon\} \ \rightarrow 2^{Q} \ ; \ \delta_{N\varepsilon}E: 2^{Q} \times \Sigma^{*} \ \rightarrow 2^{Q} \ ; \ s \in L(N\varepsilon) \Leftrightarrow \delta_{N\varepsilon}E(Q_{\theta},s) \cap F \neq \emptyset$$

(5) Equivalent $\sim N$ without ϵ -transitions of an ϵ -NFA $N\epsilon$ such that $L(\sim N) = L(N\epsilon)$

$$\sim N := (Q, \Sigma, \delta_{\sim N}, Q'_{\theta}, F); \delta_{\sim N}(q,a) := \delta_{N\varepsilon}E(\{q\}, a); Q'_{\theta} := ECLOSE(Q_{\theta})$$