EinsMan prediction

-Prediction of renewable energy losses due to EinsMan

Dataset from Quadra Energy

CONTENTS OF THIS TEMPLATE

- 1. Introduction
- 2. EDA
- 3. Models
- 4. Pros and cons of different models
- 5. Weather forecast API
- 6. Future work

01

Introduction

Introduction

Energy market:

- Energy market is a very complex market
- Predict the right amount of energy produced
- Wrong predictions cost more money

EinsMan

- Last measure to use to overcome a bottleneck
- Protect individual sections of a distribution or transmission network
- Blades of wind turbines have to be turned out of the wind

Introduction

Progression over the years

2016

Installed wind energy in GWh - 33.500

Installed wind energy in GWh - 49.600

Installed wind energy in GWh - 61.592

EinsMan in GWh - 55

EinsMan in GWh - 3.743

EinsMan in GWh - 6.482

Cost in Mio. € - 44

Cost in Mio. € - 373

Cost in Mio. € - 709

02

Exploratory Data Analysis

EinsMan losses vs power available - mean over month

Energy available vs. energy used for October - mean over hours

Wind speed 100m vs. power available in October - mean over hours

Wind speed 100m vs. target loss in October - mean over hours

03 Modelling

List of different models

Using meteorological data

- Linear Regression
- Random Forest
- Support Vector Regression
- Gradient Boosting Regression
- XGBoost

Using only historic EinsMan data

- Naive prediction
- ARIMA
- LSTM (Long Short-Term Memory)

Error of different supervised models Different starting points and 48 hour forecast

Error of different supervised models Different starting points and 48 hour forecast

04

Pros and cons of different models Conclusion

Pros and cons of different models

Meteorological data models - Pros:

- Fast in forecasting
- Easy to implement the model itself

Meteorological data models - Cons:

- Is simply beaten by naive prediction
- Limited in prediction of time series
- Hard to integrate in time series prediction

EinsMan data models - Pros:

- Fitted for prediction of time series
- Don't need so many different informations

ElnsMan data models - Cons:

- Takes a lot of computational power
- Not so easy to implement

05 Future work

Future work

- Gridsearch to optimize the parameter for each model
- Try SARIMA for prediction
- Train API models with historical data
- Get more EinsMan data to predict for other Regions
- Build a dashboard with Einsman forecast for different Regions

Thank you for your attention

Matthis Westermann

matthis.westermann@gmail.com

XING

<u>Github</u>