The Frequency-Response Design Method 2

Lecture 11:

- Relative Stability
- System Bandwidth

Prof. Seunghoon Woo

Department of Automotive Engineering | College of Automotive Engineering | KOOKMIN UNIVERSITY

Nyquist Stability Criterion

 Nyquist stability criterion, discovered by Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932.

Nyquist Stability Criterion (cont'd)

Important Question:

Does increasing gain (K) increase or decrease the system's stability??

I: Stability Criteria (Stable)

$$|KG(j\omega)|$$
 1 at $\angle G(j\omega) = -180^{\circ}$.

II: Neutral Stability Criteria (Marginal)

$$|KG(j\omega)| = 1$$
 at $\angle G(j\omega) = -180^{\circ}$.

III: Instability Criteria (Unstable)

$$|KG(j\omega)|$$
 1 at $\angle G(j\omega) = -180^{\circ}$.

But, how to measure **stability margin**?

Gain Margin (GM) on Nyquist Plot

- Bode Plot vs. Nyquist Plot ??
- Phase (-180°) crossover frequency, $\omega_{\rm n}$: $\angle L(j\omega_p) = -180$
- Gain Margin (in dB)

$$GM = 20 \log_{10} \frac{1}{|L(j\omega_p)|}$$

Indicates how much OL gain can be multiplied without violating CL stability.

Neutral Stability!!

Examples of Gain Margin (GM)

Reason Why GM is Inadequate ??

Phase Margin (PM)

Gain crossover frequency, ω_g:

$$|L(j\omega_g)| = 1$$

Phase Margin (in degree)

$$PM = 180^{\circ} + \angle L(j\omega_g)$$

 Indicates how much OL phase-delay can be added without violating CL stability.

 $|KG(j\omega)| = 1$ at $\angle G(j\omega) = -180^{\circ}$.

Neutral Stability!!

Example on Nyquist Plot


```
num = [2500];
den = [1 55 250 0];
s = tf('s')
sys = tf(num,den)
figure(1)
nyquist(sys)
```


Frequency Shaping (Loop Shaping)

 Reshape Bode Plot of G(jω) into a "desired" shape of

$$L(j\omega) := G(j\omega)C(j\omega)$$

by a series connection of appropriate C(s).

Typical Shaping Goal & Guideline

Important Notes on Bode Plot

Summary: Bode Plots

- Without computer, Bode plot can be sketched easily.
- Bode plot tells <u>frequency region</u> (or <u>bandwidth</u>) for notifying about
 - how much gain (amplitude, 이득)
 - how much sluggish (phase, 지연)
- For checking stability, the GM, PM and crossover frequencies are easily determined on Bode plot.

Stability Margin Comparison

$$Y(s) = \frac{CG}{1 + CG}R + \frac{G}{1 + CG}D$$
 $E(s) = \frac{1}{1 + CG}R + \frac{G}{1 + CG}D$

- C(s) should be <u>larger</u> for control performance, which means to minimize the tracking error.
- But, with larger C(s), <u>stability margins</u> can be <u>reduced</u> !!

Case 1:
$$C(s) = 2,500$$
 VS. Case 2: $C(s) = 5,000$

Stability Margin Comparison (cont'd)

The Frequency-Response Design Method 2

Lecture 11:

- Relative Stability
- System Bandwidth

Prof. Seunghoon Woo

Department of Automotive Engineering | College of Automotive Engineering | KOOKMIN UNIVERSITY

Frequency Shaping (Revisited)

- C(s) should be <u>larger</u> for control performance, which means to minimize the tracking error.
- But, with larger C(s), <u>stability margins</u> can be <u>reduced</u> !!

Case 1:
$$C(s) = 2,500$$

Case 1: C(s) = 2,500 VS. Case 2: C(s) = 5,000

Frequency Shaping (Revisited) (cont'd)

Case 1: First-order System + PI control (Revisited)

- Step 1: step response requirement
 - (1) Overshoot = 10%

$$M_p = \exp(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}})$$
 $\zeta \approx 0.6$

(2) Rising time = 0.1 sec

$$T_{r} = \frac{\pi - \varphi}{\omega_{n} \sqrt{1 - \varsigma^{2}}}$$

$$where, \cos \varphi = \varsigma$$

$$\omega_{n} = \frac{3.14 - \cos^{-1}(0.6)}{0.1 \times \sqrt{1 - 0.6^{2}}} = 27.7 \text{ [rad/s]}$$

$$\frac{8}{8} = \frac{60}{50}$$

$$\frac{40}{30}$$

$$\frac{16\%}{10}$$

$$\frac{5\%}{0.6^2}$$

$$\frac{60.6)}{0.6^2} = 27.7 [rad/s]$$

80 70

- Case 1: First-order System + PI control (Revisited)
 - Step 2: Check desired pole locations

$$s^{2} + 2\varsigma\omega_{n}s + \omega_{n}^{2} = 0$$

$$\Rightarrow s^{2} + 2(0.6)(27.7)s + 27.7^{2} = 0$$

$$s_{1,2} = -16.6 \pm 22.1j$$

Step 3: Calculate PI gains based on model matching

$$s^{2} + (a + k_{p}b)s + k_{i}b$$
$$= s^{2} + 2\varsigma\omega_{n}s + \omega_{n}^{2}$$

$$s^{1} \longrightarrow k_{p} = \frac{1}{b}(2\zeta\omega_{n} - a)$$

$$k_{p} = \frac{1}{b}(2\zeta\omega_{n} - a)$$

$$k_{p} = \frac{1}{b}(2\zeta\omega_{n} - a)$$

$$k_{p} = \frac{30}{b}$$

$$a = 30$$

$$b = 30$$

$$k_p = 0.1$$

$$k_i = 25.5$$

$$\zeta \approx 0.6$$

$$\omega_n = 27.7 \text{ [rad/s]}$$

- Case 1: First-order System + PI control (Revisited)
 - Step 4: Simulation model & result

Stability Margin should be checked with Open-Loop System [C(s)P(s)]!!

Stability Margin with PI Controller (cont'd)

$$C(s)_{PI,case1}P(s) = \frac{0.1s + 25.5}{s} \cdot \frac{30}{s + 30} = \frac{s(3 + 765/s)}{s(s + 30)}$$

$$C(s)_{PI,case2}P(s) = \frac{0.1s + 50}{s} \cdot \frac{30}{s + 30} = \frac{s(3 + 1500/s)}{s(s + 30)}$$

Then, one more question:

10¹

10²

Frequency (rad/s)

10³

-150

10⁰

- How to check the Bandwidth of Feedback Control System?

10⁴

Bandwidth with PI Controller

```
s = tf('s');
a = 30; % plant model parameter
b = 30; % plant model parameter
plant = tf([b],[1 a]); % plant model
                                                            C(s)_{PI,case1} = k_p + \frac{k_i}{s} = \frac{0.1s + 25.5}{s}
C(s)_{PI,case1} P(s) = \frac{0.1s + 25.5}{s} \cdot \frac{30}{s + 30} : \text{ Open Loop TF}
H(s)_{PI,case1} = \frac{C(s)_{PI,case1} P(s)}{1 + C(s)_{PI,case1} P(s)} : \text{ Closed Loop TF}
kp1 = 0.1;
ki1 = 25.5;
control_PI_1 = tf([kp1 ki1],[1 0]);
sys1 = control_PI_1 * plant;
sys1_CL = sys1/(1+sys1);
subplot(121)
bode(sys1_CL)
bandwidth(sys1_CL)
                                                                    Bandwidth of Closed Loop TF with PI, Case1
grid
kp2 = 0.1;
                                                                    C(s)_{PI,case2} = k_p + \frac{k_i}{s} = \frac{0.1s + 50}{s}
ki2 = 50;
control_PI_2 = tf([kp2 ki2],[1 0]);
                                                  C(s)_{PI,case2}P(s) = \frac{0.1s + 50}{s} \cdot \frac{30}{s + 30}: Open Loop TF
H(s)_{PI,case2} = \frac{C(s)_{PI,case2}P(s)}{1 + C(s)_{PI,case2}P(s)}: Closed Loop TF
plant = tf([b],[1 a]);
sys2 = control_PI_2 * plant;
sys2_CL = sys2/(1+sys2);
subplot(122)
bode(sys2_CL)
bandwidth(sys2_CL)
                                                                   Bandwidth of Closed Loop TF with PI, Case 2
grid
```

Bandwidth with PI Controller (cont'd)

Bandwidth with PI Controller (cont'd)

Bode Plots: Open-Loop VS. Closed-Loop

$$H(s) = C(s)P(s) = \frac{k_p s + k_i}{s} \frac{b}{s+a}$$
$$= \frac{s(k_p b + k_i b / s)}{s(s+a)}$$

$$H(j\omega) = \frac{\left\{k_p b + k_i b / (j\omega)\right\}}{(j\omega) + a}$$

if
$$\omega \to 0$$
 then, $H(j\omega) \to \frac{k_i b}{j\omega} \to \infty$

$$H(s) = \frac{C(s)P(s)}{1 + C(s)P(s)} = \frac{\frac{k_{p}s + k_{i}}{s} \frac{b}{s + a}}{1 + \frac{k_{p}s + k_{i}}{s} \frac{b}{s + a}}$$
$$= \frac{k_{p}bs + k_{i}b}{s^{2} + as + k_{p}bs + k_{i}b}$$

$$H(j\omega) = \frac{k_p b(j\omega) + k_i b}{(j\omega)^2 + a(j\omega) + k_p b(j\omega) + k_i b}$$

if
$$\omega \to 0$$
 then, $H(j\omega) \to 1$

Summary

Summary:

- Relative stability margin with Bode & Nyquist plot
 - Gain Margin & Phase Margin
 - Control design guidelines: stability, transient, steady-state error, noise reduction and etc.