

WAF
7632

PATENT
ATTORNEY DOCKET NO.: 08472/704002

Certificate of Mailing: Date of Deposit: October 12, 2004

I hereby certify under 37 CFR 1.8(a) that this correspondence is being deposited with the United States Postal Service as **first class mail** with sufficient postage on the date indicated above and is addressed to Mail Stop Appeal, Commissioner for Patents, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450.

Holly Wurcel
Printed name of person mailing correspondence

Signature of person mailing correspondence

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:	Gary Ruvkun et al.	Art Unit:	1632
Serial No.:	08/908,453	Examiner:	Ram R. Shukla
Filed:	August 7, 1997	Customer No.:	21559
Title:	AGE-1 POLYPEPTIDES AND RELATED MOLECULES AND METHODS		

Mail Stop Appeal
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450.

APPEAL BRIEF (AMENDED)
SUBMITTED PURSUANT TO 37 CFR § 41.37

In support of Appellants' Notice of Appeal filed December 30, 2003 of the Office's final rejection mailed on July 8, 2003 and in response to the Office Communication mailed September 9, 2004, submitted herewith is Appellants' amended Appeal Brief.

TABLE OF CONTENTS

Real Party in Interest.....	Page 3
Related Appeals and Interferences.....	Page 3
Status of Claims	Page 3
Status of Amendments	Page 3
Summary of the Invention.....	Page 3
Issues	Page 5
Arguments	Page 5
Conclusion.....	Page 11
Claims Appendix	Page 12
Evidence Appendix.....	Page 14
Exhibit A entered November 17, 2003	
Exhibit B entered November 17, 2003	
Exhibit C entered November 17, 2003	

Real Party in Interest

The Real Party in Interest is The General Hospital Corporation, to which all interest in the present application has been assigned by virtue of an Assignment, recorded on July 23, 1998 (Reel/Frame 334/0514).

Related Appeals and Interferences

There are no currently pending appeals or interferences related to this case, although a Petition to Request Withdrawal of Finality under 37 C.F.R. § 1.181 has been filed and Appellants bring this to the Board's attention as it may "have a bearing on the Board's decision in the pending appeal." 37 C.F.R. § 41.37(c)(ii).

Status of Claims

Claims 8, 10-13, 15, 16, 19, and 20 are currently pending. Claims 1-7, 14, and 21-28 are withdrawn from consideration. Claims 9, 17, 18, 29, and 30 were canceled.¹

Claims 8, 10-13, 15, 16, 19, and 20 were finally rejected in a Final Office Action mailed on July 8, 2003, and are appealed.

Status of Amendments

All amendments have been entered and are reflected in the appended claims.

Summary of the Invention

Appellants' invention generally features a purified and isolated DNA encoding an AGE-1 polypeptide having PI-3 kinase activity, and methods of identifying compounds that decrease AGE-I expression or biological activity. Specifically, the claims on appeal are directed to the following compositions and methods:

¹ Appellants note that the status of the claims provided in the Final Office Action is incorrect. Claims 18, 29, and 30 were canceled in Appellants' Reply filed June 26, 2002.

(i) purified and isolated DNA encoding an AGE-1 polypeptide containing SEQ ID NO:1 (claim 8), and vectors and cells that include this DNA (claims 10 and 11, respectively);

(ii) methods of producing a recombinant AGE-1 polypeptide using the vectors and cells of the invention and recombinant polypeptides produced by such methods (claims 12 and 13, respectively);

(iii) screening methods for candidate compounds that require (a) a nematode cell expressing its endogenous AGE-1 DNA; (b) contacting the nematode cell with a candidate compound; and (c) measuring AGE-1 gene expression in the nematode cell, a decrease in AGE-1 gene expression following contact with the candidate compound, compared to AGE-1 gene expression in a nematode cell that is not contacted with the candidate compound, identifying the candidate compound as a compound that is capable of decreasing AGE-1 gene expression (claims 15, 19, and 20); and

(iv) screening methods for candidate compounds that require (a) a cell expressing a recombinant AGE-1 polypeptide; (b) contacting the cell with a candidate compound; and (c) measuring the PI 3-kinase activity of the cell, a decrease in AGE-1 PI 3-kinase activity of the cell following contact with the candidate compound, compared to AGE-1 PI 3-kinase activity in a cell that is not contacted with the candidate compound, identifying the candidate compound as a compound that is capable of decreasing AGE-1 PI 3-kinase activity (claims 16, 19, and 20).

Each of these claims is described in the specification. The amino acid sequence of an AGE-1 polypeptide, for example, is found at Figure 3 (SEQ ID NO:1), and the nucleic acid sequence of an AGE-1 cDNA is found at Figure 4. Cells and vectors containing a nucleic acid encoding an AGE-1 polypeptide and methods of using these cells and vectors for the production of recombinant AGE-1 polypeptides are provided at pages 28-29.

Methods for screening candidate compounds are provided in Appellants' specification at page 31, line 7 to page 34, line 7. In particular, at page 31, lines 15-17, Appellants teach methods for measuring AGE-1 expression. At page 31, lines 9-14,

Appellants teach that AGE-1 expression may be measured following the addition of antagonist molecules either to culture medium or to an animal, for example, a nematode, and, at page 31, lines 17-19, Appellants teach that the level of AGE-1 expression in the presence of a candidate molecule is compared to the level measured for the same cells in the absence of the candidate molecule. In addition, Appellants teach methods for identifying compounds that modulate AGE-1 kinase activity *in vitro* at page 32, lines 8-21. Methods for the selection of candidate compounds are provided at page 31, lines 19-21, and methods for purifying such compounds are provided at page 32, lines 1-7. Appellants teach that the usefulness of compounds that modulate AGE-1 expression can be confirmed by testing the compounds in animal models such as nematodes (page 33, lines 4 and 5). Finally, at page 33, lines 6-9, Appellants teach that selected compounds may be used as therapeutics to decrease the level of native AGE-1 expression and thereby increase the longevity of an animal, for example, a human.

Issues on Appeal

This appeal presents two issues:

- I. Whether the Office erred in rejecting claims 8, 10, and 11 as being anticipated by Swinburne (EMBL Accession No. Z66519, October 27, 1995); and
- II. Whether the Office erred in rejecting claims 8, 10-13, 15, 16, 19, and 20 as being obvious over Swinburne (EMBL Accession No. Z66519, October 27, 1995) in view of Johnson et al. (Genetica 91:65-77, 1993).

Arguments

The present anticipation and obviousness rejections are based on a central factual error that requires reversal. As is discussed below, these rejections turn on a primary reference by Swinburne and the assertion that this reference disclosed Appellants' AGE-1 amino acid sequence prior to Appellants' priority application filing date of August 7, 1996. This assertion is incorrect. The sequence provided by

Swinburne was updated on multiple occasions from its initial submission in October 1995. As of Appellants' filing date, Swinburne had not submitted a full-length AGE-1 sequence, nor identified its function. This reference therefore cannot anticipate or render obvious Appellants' claims to the AGE-1 sequence of SEQ ID NO: 1 or methods for identifying AGE-1 modulatory compounds that measure changes in its gene expression or PI-3 kinase activity. The rejections based on Swinburne must be reversed.

I. The Swinburne Reference Does Not Teach the Claimed Invention

The case law is clear that, to anticipate a claim, a prior art reference must disclose, either expressly or inherently, all of the limitations of the claim. *Kalman v. Kimberley-Clark Corp.*, 713 F.2d 760, 218 U.S.P.Q. 781 (Fed. Cir. 1983).

As indicated above, claim 8 is directed to purified and isolated DNA encoding an AGE-1 polypeptide that includes the sequence of SEQ ID NO: 1, and claims 10 and 11 are directed to a vector and cell, respectively, that include that purified and isolated AGE-1 DNA. The Office has rejected these claims under 35 U.S.C. § 102(a) as being anticipated by Swinburne (GenBank Accession No. Z66519), asserting that this GenBank submission disclosed the amino acid sequence of SEQ ID NO: 1 as of October 27, 1995. This assertion is in error.

While it is true that the first Swinburne sequence submission occurred in October 1995,² the nucleic acid sequence of the cosmid "B0334" that is the subject of the submission underwent continual updating since it first became available. Exhibit A to Appellants' Reply entered November 17, 2003 provides a sequence revision history, indicating that this submission was updated multiple times following Appellants' priority application filing date of August 7, 1996. Exhibit B to Appellants' Reply entered November 17, 2003 provides the version of Gene Bank Accession No. Z66519 available as of July 29, 1996, a deposit made just prior to the filing of Appellants' priority

document (U.S.S.N. 60/023,382). As shown in Exhibit B, at page 4, as of July 29, 1996, the polypeptide product of B0334.8 contained just *seventy-six* amino acids.³ In contrast, the AGE-1 polypeptide sequence of SEQ ID NO:1 contains *one thousand one hundred forty-six* amino acids. Thus, contrary to the Office's assertion, the cited Swinburne reference Z55419 [gi:1044812] -- available as of Appellants' priority application filing date -- clearly does *not* disclose SEQ ID NO:1 and cannot anticipate Appellants' claims.

In fact, contrary to the Office's assertion, the nucleic acid sequence of AGE-1 was *not* publicly available at the time Appellants' patent application was filed. This point is made clear in Appellants' specification at page 20, lines 1-7, where Appellants state:

The *C. elegans* Genome Project has sequenced cosmid B0334. Analysis of the DNA sequence in the 4 kb region that detected the *age-1(mg55)* breakpoint revealed two putative exons that showed strong sequence identity with the last 88 amino acids of mammalian phosphatidylinositol 3-kinase (PI 3-kinase)p110 catalytic subunit. *The region to the right of B0334 expected to contain the rest of age-1 was not cloned in cosmids or phage by the C. elegans genome project* (emphasis added).

Appellants, and not Swinburne, were the first to obtain the *age-1* nucleic acid and amino acid sequences, as evidenced by Appellants' specification at page 20, lines 7-17.

We isolated genomic phage and cDNA clones extending to the right from B0334 and used anchored polymerase chain reaction (PCR) of reverse transcribed RNA to isolate and determine the sequence of the coding region of *age-1*. To confirm the splicing pattern of *age-1*, reverse transcription PCR (RTPCR) was used in conjunction with genomic sequencing of predicted splice junctions. The sequence predicted by cDNA clones and anchored PCR was further confirmed by sequencing genomic fragments corresponding to the predicted coding sequence. Because three independent cDNA clones end within 30 base pairs of each other and because these encode a protein coextensive with mammalian p110 (see below), we concluded that the assembled *age-1* cDNA was likely to be

² The GenBank submission history indicates that this sequence was "first seen at NCBI on October 30, 1995," not October 27, 1995 as indicated by the Office. Appendix A to Appellants' Reply entered November 17, 2003.

³ Evidence that cosmid B0334.8 encodes AGE-1 is provided by Exhibit C to Appellants' Reply entered November 17, 2003, under the heading "Definition."

complete. The nucleic acid sequence of the *C. elegans* age-1 cDNA is shown in Figure 4 (emphasis added).

Indeed, if the *age-1* nucleic acid sequence was publicly available, Appellants would not have gone to the trouble of cloning and sequencing the gene.

It is clear that Swinburne, as of Appellants' priority application filing date, failed to disclose a nucleic acid sequence encoding SEQ ID NO: 1, as required by claims 8, 10, and 11. The anticipation rejection in this case has been maintained in error; it should be reversed.

II. Swinburne and Johnson, in Combination, Do Not Suggest the Claimed Invention

To establish a *prima facie* case of obviousness under § 103, the Examiner must demonstrate that the differences between the claimed invention and the prior art are such that the subject matter as a whole would have been obvious, at the time the invention was made, to a person having ordinary skill in the art. *See* 35 U.S.C. § 103(a) (Supp. III 1997); *In re Dembiczak*, 175 F.3d 994, 998, 50 U.S.P.Q.2d 1614, 1616 (Fed. Cir. 1999), *abrogated on other grounds by* *In re Gartside*, 203 F.3d 1305, 53 U.S.P.Q.2d 1769 (Fed. Cir. 2000). Whether or not a claimed invention would have been obvious is a “legal conclusion based on underlying factual inquiries including: (1) the scope and content of the prior art; (2) the level of ordinary skill in the art; (3) the differences between the claimed invention and the prior art; and (4) objective evidence of nonobviousness.” *Id.*

Claims 8, 10-13, 15, 16, 19, and 20 feature compositions requiring the AGE-1 amino acid sequence of SEQ ID NO: 1 and methods of identifying modulatory compounds that depend on measurement of AGE-1 gene expression or PI-3 kinase activity. These claims stand rejected under 35 U.S.C. § 103 as obvious over Swinburne (Gene Bank Accession No. Z66519) in view of Johnson et al. (*Genetica* 91:65-77, 1993) based on the Office’s assertion that:

. . . it would have been obvious for an artisan of skill to *express the DNA of Swinburne* in a cell and express the protein in a cell, isolate the protein and study its function or practice method of identifying compounds that

decrease the expression of Age-1 by following the method of Johnson et al and routine cell culture methods. An artisan of skill would have been motivated to express Age-1 in a cell, isolated Age-1 protein and tested its activity *because Swinburne identified putative functional domain.*

Additionally, an artisan would have been motivated to practice the screening methods for identifying compounds that decrease Age-1 activity because Johnson et al teaches that molecular cloning and characterization of Age-1 locus will provide significant insights into the molecular basis of senescence. (Office Action mailed July 8, 2003, page 4, first paragraph.)

This rejection should similarly be reversed.

As detailed above, as of Appellants' priority application filing date, Swinburne failed to disclose the amino acid sequence of SEQ ID NO: 1. Swinburne, as of that same date, also failed to disclose the nucleic acid sequence encoding SEQ ID NO: 1; failed to identify *any* functional domain of AGE-1; and even failed to disclose that the *age-1* gene was present on cosmid B0334. Swinburne therefore does not teach what the Office asserts and does not suggest the invention of any of claims 8, 10-13, 15, 16, 19, or 20.

In addition, the secondary reference, Johnson, fails entirely to remedy the deficiencies of Swinburne. Johnson merely describes the effects of an *age-1* mutation on lifespan and maps *age-1* to somewhere on chromosome II. Johnson does not provide the skilled artisan with the information, requisite motivation, or expectation of success required to obtain a nucleic acid sequence encoding SEQ ID NO: 1, to express it in a cell, or to identify any functional domains.

Appellants were the first to genetically map, clone, and sequence *age-1* as evidenced by Appellants' specification. Appellants carried out three-factor mapping, deficiency mapping, physical mapping, breakpoint analysis, and anchored polymerase chain reaction of reverse transcribed RNA to isolate and sequence the *age-1* coding region (pages 19-21, Figures 2A, 2B, 2C). The *age-1* amino acid and nucleic acid sequences first obtained by Appellants are shown in Figures 3 and 4, respectively. Appellants were the first to molecularly characterize mutant alleles of *age-1* (page 20, line 24, to page 21, line 7); were the first to appreciate that *age-1* encodes a

phosphatidylinositol 3-kinase (page 21, line 3, to page 22, line 25); and were the first to appreciate that a decrease in AGE-1 activity would directly increase lifespan (page 22, line 26, to page 23, line 23). The references cited by the Office uniformly fail to recognize these key insights, in addition to failing to provide the AGE-1 sequence.

The obviousness rejection in this case has also been maintained in error, and should be reversed.

Conclusion

Appellants respectfully request that the rejection of claims 8, 10-13, 15, 16, 19, and 20 be reversed. The required fees for this appeal and the filing of an appeal brief have been previously submitted.

If there are any additional charges, or any credits, please apply them to Deposit Account No. 03-2095.

Respectfully submitted,

Date: 12 October 2004

Karen L. Elbing, Ph.D.

Reg. No. 35,238

Clark & Elbing LLP
101 Federal Street
Boston, MA 02110
Telephone: 617-428-0200
Facsimile: 617-428-7045

Claims Appendix

8. A purified and isolated DNA which encodes an AGE-1 polypeptide, said polypeptide comprising the sequence of SEQ ID NO: 1.
10. A vector comprising the purified and isolated AGE-1 DNA of claim 8.
11. A cell comprising the purified and isolated AGE-1 DNA of claim 8.
12. A method of producing a recombinant AGE-1 polypeptide, said method comprising the steps of:
 - (a) providing a cell transformed with the DNA of claim 8 encoding an AGE-1 polypeptide, said DNA being expressed in the cell;
 - (b) culturing the transformed cell under conditions for expressing the DNA; and
 - (c) isolating the recombinant AGE-1 polypeptide.
13. A recombinant AGE-1 polypeptide produced according to the method of claim 12.
15. A method of identifying an AGE-1 modulatory compound that is capable of decreasing the expression of an AGE-1 gene, said method comprising the steps of:
 - (a) providing a nematode cell expressing its endogenous AGE-1 DNA,
 - (b) contacting said nematode cell with a candidate compound; and
 - (c) measuring AGE-1 gene expression in said nematode cell, a decrease in AGE-1 gene expression in said nematode cell following contact with said candidate compound, compared to AGE-1 gene expression in a nematode cell that is not contacted with said candidate compound, identifying said candidate compound as a compound that is capable of decreasing AGE-1 gene expression.

16. A method of identifying an AGE-1 modulatory compound that is capable of decreasing AGE-1 PI 3-kinase activity, said method comprising the steps of:

(a) providing a cell expressing an AGE-1 polypeptide of claim 8;

(b) contacting the cell with a candidate compound; and

(c) measuring the PI 3-kinase activity of said cell, a decrease in AGE-1 PI 3-kinase activity of said cell following contact with the candidate compound, compared to AGE-1 PI 3-kinase activity in a cell that is not contacted with said candidate compound, identifying said candidate compound as a compound that is capable of decreasing AGE-1 PI 3-kinase activity.

19. The method of claim 15 or 16, wherein said method is carried out in a nematode

20. The method of claim 15 or 16, wherein said method involves assaying AGE-1 PI 3-kinase activity *in vitro*.

Evidence Appendix

EXHIBIT A

Sequence Revision History

Find (Accessions, GI numbers or Fasta style Seq/ids) Z66519

Go Cle

About Entrez

Show difference between I and II as GenBank/GenPept

Entrez

Revision history for Z66519

Search for Genes
LocusLink provides curated information for human, fruit fly, mouse, rat, and zebrafish

Help | FAQ

Batch Entrez: Upload a file of GI or accession numbers to retrieve protein or nucleotide sequences

Check sequence revision history

How to create WWW links to Entrez

LinkOut

Cubby

Related resources

BLAST

Reference sequence project

LocusLink

Clusters of orthologous groups

Protein reviews on the web

GI	Version	Update Date	Status	I	II
18369669	2	Oct 23 2003 11:29	Live	<input checked="" type="radio"/>	<input type="radio"/>
18369669	2	Sep 25 2003 12:08	Dead	<input type="radio"/>	<input checked="" type="radio"/>
18369669	2	Aug 11 2003 11:26	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	Jul 28 2003 9:44	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	May 22 2003 11:12	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	Apr 27 2003 11:09	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	Jan 14 2003 11:12	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	Dec 16 2002 12:32	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	Nov 14 2002 11:10	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	Nov 8 2002 11:37	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	Oct 14 2002 2:55	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	Apr 29 2002 11:25	Dead	<input type="radio"/>	<input type="radio"/>
18369669	2	Jan 24 2002 11:07	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Oct 15 2001 11:16	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Sep 20 2001 11:14	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Jun 23 2001 12:07	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Oct 26 2000 12:41	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Jul 21 2000 11:58	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	May 25 2000 4:22	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Jan 27 2000 10:57	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Dec 15 1999 10:13	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Oct 11 1999 10:07	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Sep 6 1999 10:07	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Sep 5 1999 10:32	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Mar 8 1999 4:36	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Nov 24 1998 10:27	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Nov 18 1998 10:36	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Nov 16 1998 6:24	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Nov 13 1998 10:36	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Sep 22 1998 11:12	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Aug 3 1998 10:54	Dead	<input type="radio"/>	<input type="radio"/>
1044812	1	Jun 13 1998 3:34	Dead	<input type="radio"/>	<input type="radio"/>

EXHIBIT A

1044812	1	Nov 29 1997 4:36	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Oct 2 1997 2:52	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Sep 16 1997 5:02	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Nov 4 1996 12:16	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Oct 10 1996 3:33	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Sep 28 1996 1:36	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Aug 10 1996 1:27	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Jul 29 1996 12:17	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Jun 8 1996 5:26	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Apr 25 1996 2:52	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Jan 27 1996 1:07	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Dec 2 1995 1:59	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Nov 30 1995 3:35	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Nov 29 1995 2:27	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Nov 25 1995 12:58	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Nov 21 1995 12:44	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Nov 18 1995 12:36	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Nov 13 1995 5:08	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Nov 5 1995 12:33	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Nov 3 1995 1:39	Dead	<input type="radio"/>	<input checked="" type="radio"/>
1044812	1	Oct 30 1995 2:27	Dead	<input type="radio"/>	<input checked="" type="radio"/>

Accession Z66519 was first seen at NCBI on Oct 30 1995 2:27

[Disclaimer](#) | [Write to the Help Desk](#)
[NCBI](#) | [NLM](#) | [NIH](#)

EXHIBIT B

GGCTCTGGGATAGACCTTCCCGCCTAGAATATGGGATCCCGGGGAACTTATTATAGCAGATGCC
TTCCTTGATACGGGATTTGGGATATATACACAGACACCGGGGGTTAGGATAGTCTT
CCCCGGGATACGGGATTTGGGATATATACACAGACACCGGGGGTTAGGATAGTCTT
CACAGACACGGGATTTGGGATATATACACAGACACCGGGGGTTAGGATAGTCTT

PubMed	Nucleotide	Protein	Genome	Structure	PMC	Taxonomy	OMIM	Books
<input type="text" value="Search Nucleotide"/> <input type="button" value="Go"/> <input type="button" value="Clear"/>								
<input type="button" value="Limits"/>			<input type="button" value="Preview/Index"/>		<input type="button" value="History"/>		<input type="button" value="Clipboard"/>	<input type="button" value="Details"/>
<input type="button" value="Display"/> <input checked="" type="radio" value="default"/> <input type="checkbox"/>		Show: <input type="text" value="1"/> <input type="checkbox"/>		<input type="button" value="Send To"/>	<input type="button" value="File"/>	<input type="button" value="Get Subsequence"/>	<input type="button" value="Features"/>	

1: Z66519[gi:1044812] This record was replaced or removed. See [revision history](#) for details.

LOCUS CEB0334 41812 bp DNA linear INV 27-JUL-1996
DEFINITION *Caenorhabditis elegans* cosmid B0334.
ACCESSION Z66519
VERSION Z66519 GI:1044812
KEYWORDS Gonadotrophin-releasing hormone receptor like protein; oxalyl-CoA decarboxylase; Phytoene synthase precursor; potassium channel protein; Yeast hypothetical protein L8167.12 like protein.
SOURCE *Caenorhabditis elegans*
ORGANISM *Caenorhabditis elegans*
Eukaryotae; mitochondrial eukaryotes; Metazoa; Nematoda;
Secernentea; Rhabditia; Rhabditida; Rhabditina; Rhabditoidea;
Rhabditidae; *Caenorhabditis*.
REFERENCE 1 (bases 1 to 41812)
AUTHORS Swinburne,J.
TITLE Direct Submission
JOURNAL Submitted (26-OCT-1995) Nematode Sequencing Project, Sanger Centre, Hinxton, Cambridge CB10 1RQ, England and Department of Genetics, Washington University, St. Louis, MO 63110, USA. E-mail:
jes@sanger.ac.uk or rw@nematode.wustl.edu
REFERENCE 2 (bases 1 to 41812)
AUTHORS Wilson,R., Ainscough,R., Anderson,K., Baynes,C., Berks,M., Bonfield,J., Burton,J., Connell,M., Copsey,T., Cooper,J., Coulson,A., Craxton,M., Dear,S., Du,Z., Durbin,R., Favello,A., Fulton,L., Gardner,A., Green,P., Hawkins,T., Hillier,L., Jier,M., Johnston,L., Jones,M., Kershaw,J., Kirsten,J., Laister,N., Latreille,P., Lightning,J., Lloyd,C., McMurray,A., Mortimore,B., O'Callaghan,M., Parsons,J., Percy,C., Rifken,L., Roopra,A., Saunders,D., Shownkeen,R., Smaldon,N., Smith,A., Sonhammer,E., Staden,R., Sulston,J., Thierry-Mieg,J., Thomas,K., Vaudin,M., Vaughan,K., Waterston,R., Watson,A., Weinstock,L., Wilkinson-Sproat,J. and Wohldman,P.
TITLE 2.2 Mb of contiguous nucleotide sequence from chromosome III of *C. elegans*
JOURNAL Nature 368 (6466), 32-38 (1994)
MEDLINE 94150718
COMMENT Current sequence finishing criteria for the *C. elegans* genome sequencing consortium are that all bases are either sequenced unambiguously on both strands, or on a single strand with both a dye primer and dye terminator reaction, from distinct subclones. Exceptions are indicated by an explicit note.
IMPORTANT: This sequence is NOT necessarily the entire insert of clone B0334. It may be shorter because we only sequence overlapping sections once, or longer because we arrange for a small overlap between neighbouring submissions.
The true left end of clone B0334 is at 1 in this sequence. The true right end of clone B0334 is at 41812 in this sequence. The true right end of clone W02B12 is at 4181 in this sequence. Coding

sequences below are predicted from computer analysis, using the program Genefinder (P. Green, ms in preparation), and other available information.

FEATURES Location/Qualifiers

source 1..41812
/organism="Caenorhabditis elegans"
/mol_type="unassigned DNA"
/db_xref="taxon:6239"
/chromosome="II"
/clone="B0334"
CDS join(1692..1838,2102..2239,2499..2625,2748..3271)
/codon_start=1
/product="B0334.9"
/protein_id="1044820"
/db_xref="GI:1044820"
/translation="MNLLDYLFNKADILEELGALNNSSLDPPLMKTFGVIAFFVTST
HVAGQVLYLMDTVTKNIASHTMILYDIHEGNIPRTFSAKCKPITCNDETSISCLPE
FQGVGSPTTHNGVVFRTLATDKLCPWFSSMSSPIPSGKVKKEQHTRTPLRFNCHNE
LRVCGGNAETHEPFEFQLITYAATLPRCTRRLCRKVYYVQRCGRQYGHGLIMYSYTKPG
LIPRPLNSRLKPSTTEWFDSFSPEIRGDIFHLLKRSPSETVRRIHKDYGVHLSPKRL
LNLRPQSWPIKDQPLVTEWMMQMIRCRHHRIIDSL"
CDS complement(join(4176..4394,4819..4966,5021..5163,
5218..5529,5685..5735))
/note="similar to potassium channel protein; cDNA EST
yk95h12.5 comes from this gene; cDNA EST yk95h12.3 comes
from this gene"
/codon_start=1
/product="B0334.2"
/protein_id="1089818"
/db_xref="GI:1089818"
/translation="MSLETRCRHLWPSGVRKLLRIAPQAIIVLILTTMLVGAAIF
QSIDPVGEQSFYEVVFFEFITISTIGYGNQYPQTHASRVFSIIFSILGIPLLVVTLG
NFGKYLTKFYWKTHGWIFSERTESELVNDKDMPGIVIACLYLLTFAIGFFFIPHSGAA
YSIDDCYFSFISFATVGFSDKVPQIDTFEKFCKVITYLVWGTILNIMLISYVTNWFTQ
LFARQPFRGTDVEVMIGGCITVSEITSVAKEFHASPQVRSILHDINGIMEDMKTE
EDSEKSDILVAQDL"
CDS complement(join(6522..6659,7308..7435,7482..7635))
/note="cDNA EST yk121a7.3 comes from this gene"
/codon_start=1
/product="B0334.1"
/protein_id="1044813"
/db_xref="GI:1044813"
/translation="MRQLLLALFVSAASAFPFIGSVQAVRVTGKVTNGQPAENIKV
KLYEKEIVLDKLLDEKSTDGRGSFTLAGNKELTAIDPHVNHYHCKNYNGVCYKKLKI
KIPKSFISEGETADRTFDIGELNLAGSFSGESTDCLN"
CDS complement(join(10596..11180,11230..12189,12420..12524,
12857..13062,13799..13814))
/note="similar to oxalyl-CoA decarboxylase; cDNA EST
yk78f11.3 comes from this gene; cDNA EST yk102g1.3 comes
from this gene; cDNA EST yk117b8.3 comes from this gene;
cDNA EST yk102g1.5 comes from this gene; cDNA EST
yk78f11.5 comes from this gene; cDNA EST yk134b10.5 comes
from this gene; cDNA EST yk117b8.5 comes from this gene;
cDNA EST yk27h3.5 comes from this gene; cDNA EST yk171e8.3
comes from this gene; cDNA EST yk171e8.5 comes from this
gene; cDNA EST yk164e9.3 comes from this gene; cDNA EST
yk164e9.5 comes from this gene"
/codon_start=1
/product="B0334.3a"
/protein_id="1044814"

`/db_xref="GI:1044814"`
`/translation="MSHHVSRVSLLVRRSQFSFAPQRGLISVIDKQQCRQITDYSAK`
`DSRINSRKLRNHDGSNMDGASITAAALKSQGVEMFGVVGFPVIEWGMAAQAHGIKYI`
`GCRNEQAAAYAAQAMGYLTGKPVALLVSGPGILHAIGGLANATVNCWPVVCIGGTAD`
`VDLENRGAFQEWSQQESVRNSCKHVSRPTSLHTIPAHIEKAVRCAMYGRPGAVYVDLP`
`GNLVLTSTEEEISFPPQVPLPAPVSIPPIAEIEKAIDTLKSAKKPLVIVGKGAAWSER`
`GATQVQQFLTKSKLPWLATPGGKGVASDLHPRFIGQARSLALREADTVFLIGARFNWI`
`LHFGLPPRFQKDVKVVQIDICPEEFHQNVKTEVPLLGDIGETLAELTPRLGDWTYDES`
`TEWFKKLRENAEKNRAAVEKFVDDHSTPLNYAAYQPIREFLANNDVIVINEGANTMD`
`IGRTMMPSRLPKRRLDAGTFGTMGVGHGFSLAAALWARDHSPKTKVLVVQGDSAFGFS`
`AMELETIARYNLPVVTVIINNSGIYRGLLPEDDKAIEGDRTLALPVLSLTACRYEEM`
`CKAFGGAGTVVRTVPEIKAALEKAFQKTDGPTVINALISTDSERKPQADHWLTRSKM"`
`complement(join(10596..11180, 11230..12189, 12420..12524,`
CDS `12857..13062, 13145..13193))`
`/note="cDNA EST yk31d2.5 comes from this gene; cDNA EST`
`yk31d2.3 comes from this gene"`
`/codon_start=1`
`/product="B0334.3b"`
`/protein_id="1044815"`
`/db_xref="GI:1044815"`
`/translation="MRFLQKMFOSFCRVFGGRSVLLVRRSQFSFAPQRGLISVIDKQ`
`QCRQITDYSACKDSRINSRKLRNHDGSNMDGASITAAALKSQGVEMFGVVGFPVIEWG`
`MAAQAHGIKYIGCRNEQAAAYAAQAMGYLTGKPVALLVSGPGILHAIGGLANATVNC`
`WPVVCIGGTADVDLENRGAFQEWSQQESVRNSCKHVSRPTSLHTIPAHIEKAVRCAMY`
`GRPGAVYVDLPGNLVLTSTEEEISFPPQVPLPAPVSIPPIAEIEKAIDTLKSAKKPLV`
`IVGKGAAWSERGATQVQQFLTKSKLPWLATPGGKGVASDLHPRFIGQARSLALREADT`
`VFLIGARFNWIHFGLPPRFQKDVKVVQIDICPEEFHQNVKTEVPLLGDIGETLAELT`
`PRLGDWTYDESTEWFKLRENAEKNRAAVEKFVDDHSTPLNYAAYQPIREFLANNDV`
`IVINEGANTMDIGRTMMPSRLPKRRLDAGTFGTMGVGHGFSLAAALWARDHSPKTKVL`
`VVQGDSAFGFSAMELETIARYNLPVVTVIINNSGIYRGLLPEDDKAIEGDRTLALPV`
`SLTAECRYEEMCKAFGGAGTVVRTVPEIKAALEKAFQKTDGPTVINALISTDSERKPQ`
`ADHWLTRSKM"`
CDS `join(16591..16664, 16715..16815, 16867..17048, 17094..17369)`
`/note="similar to Yeast hypothetical protein L8167.12`
`like; cDNA EST CEMSG11F comes from this gene; cDNA EST`
`CEESI49F comes from this gene; cDNA EST CEESI49R comes`
`from this gene"`
`/codon_start=1`
`/product="B0334.4"`
`/protein_id="1044816"`
`/db_xref="GI:1044816"`
`/translation="MKLWDSPNTSFPSFDEVASAFWDRYPNASHAKHIISEDVLERQI`
`TDNTIVTKKLIVKGSSILKRVPRWISRMTDIQVVPVIEESVYDKVSKLVTYTRNVS`
`HISLFQLHERCIYKSSEDNQQHHPALLTDVLSVTVSIDCGRMSSVYEKVLLMGFKKS`
`INNTTKGLFEKLEERFGVKNVANEKMKMIKEIIKSSSNLVTHVQCEEDV"`
CDS `join(18553..18884, 18952..19114, 19164..19427, 19857..20360)`
`/note="similar to phytoene synthase precursor"`
`/codon_start=1`
`/product="B0334.5"`
`/protein_id="1044817"`
`/db_xref="GI:1044817"`
`/translation="MRRSTQLSIIHHIRQPCQSNVPRICDAPNLETTATSTTKLFSWN`
`SQWTCLRSYSNGRRLGRRFSGITSISARHFSTKSSPFLDTSSNNNISNDKKTPSRSP`
`DFSNIPGARIPKSMPKRTRFLEISKQQADEAFRSCLEMVRKHIDSYLAILTINKRAQ`
`PEIVALNALNVELASIRDVKDTRKGDAASAMYRLQFWKDAISSIYGISPLPVPRQPAI`
`ALCSFAAGANSDMLLKLVETRQSTIGDRQFSDINALCEYGKSTIGSLLCLQIDALARN`
`SPETKVLPMAYDVAKDLGAAYAIANMIRATHPLLARGIVLLPADVMSLNGATPDSLYK`
`KKKDEMVGMTKDLVNESKRLLIDARSPIEMVPKAVRPALAATGATTDYIICKIEKNN`
`YDIYSPHLQRNRNPLLWSLLVRKLC SKY"`
CDS `join(31563..31968, 32014..32087, 33645..34083, 34488..34591)`

/note="similar to Gonadotropin-releasing hormone receptor like protein"
/codon_start=1
/product="B0334.6"
/protein_id="1044818"
/db_xref="GI:1044818"
/translation="MDELITLEGASQSEQIIGSHDFCNFSNITHHEHDEQSISIVWWS
NVAVLVIALIGLACNLLNMAVLTNSKTTARRIPSWNLLIALAVCDSLFLIFATLDVTP
LSIPSLAFSTSFnHFYSRIVLYIRTLASTFYKSSRNIPKSFKFLANCQILEKIRHVYRH
IYYRTMDYVSLFAFNVLPPIGCLLYMNSRIIFTLRRVVDEDSRKYEETKLSDGLIQHDA
HNNRTMRANAMLFAVVFMLFFCVPQAPARILFDMyGQYHPKAILEVCLSQQLVFLNA
SLNFCLYCVVSKRYRTLMQTLKKFLHLEGVDHPFQINLKQTKSSSAHVTSLedHHA
HLIQNV"
join(36840..36939, 37888..38078, 38131..38355, 39373..39747)
/codon_start=1
/product="B0334.7"
/protein_id="1044819"
/db_xref="GI:1044819"
/translation="MFPVLVGISAGVLSWFSPVWIQVFCAQLGLGGLATAIVMLFE
NRHNTLVRGRFKIEANWIRYTIFYAVNGIYALLFLLPVYFRIPDPEWAKLILLKILPCP
HPSYFQSNVFVFSMDISSERTGTAGIFLFFFLETFVLCIHSSYFLMSLKTHMSPTRK
LQQKFFIDMIFQTMTHSVVVRENVKSEYRIVLRNTSIYDVAVKIVNPNEPKLERYEC
LVLSNKYTEVAILETPSKAALLRNKPVEIYARAIYPYNRKNIRHWIEGHVSDKPHHLV
QSLSNFVADNAEYSAKTVKKV"
complement(join(40596..40727, 41436..41534))
/note="cDNA EST CEMSC28F comes from this gene"
/codon_start=1
/product="B0334.8"
/protein_id="1167775"
/db_xref="GI:1167775"
/translation="MWNNRDLFVSLFTLMLGMELPELSTKADLDHLKKTLFCNGESKE
EARKFFAGIYEEAFNGSWSTKTNWLFHAVKH"

BASE COUNT 13058 a 7729 c 7485 g 13540 t

ORIGIN

1 gatcctctcg cgaagaccat tgggctcgag tcggcttc gctcgtcata ctgattgaga
61 aatggcgatg tggagaatgt caagcttatg tggactttt ttcgagaaaa aaaataacgt
121 ggaatatatt ttttggta taaatttcat acacgtttt ggtcaccaaa ctttgtgag
181 attttttg cgtaatttgc aaaaatttoga ttttatttt tgagagaaaa gtaaattttg
241 gcaacttca ggcaatattc agaaatattc taacggatta tttttggta gtatgaaat
301 caacttgcaa caaacttggc aacttaccga aacagttgaa acattgccag aaaaaggcac
361 tatcacactt ttggaaaatg gaatataaag tttgttttag tttcaaaga ttgcttagtat
421 aattaaagca tctgagagac cgaaaagaga actgcagac ttgcaaagtt gcgc当地
481 tgaaaagaaa ttggtaaact ttggtagaaa tttacaaaaa ttgataaca agtttgtaaa
541 catttgc当地 taaattgact ttacagtact cgtccacac tttcatttggta tgtcacctat
601 gaattaaagat caattgat tattaatttg ttgataaaaag aaaaatgc当地 ttttgaata
661 ttgttaaaac atatgc当地 gtaaatatac aagttcaaaa cataatgaac ataacatatt
721 gaacagaaaa aatactataa gagagaatac tattcgctct tggagctcaa agtcttggaa
781 aatggacaa gattgtaaa aatgc当地 gacccttc当地 ttctgttaga gacaaaactc
841 tccttgaagt tcttgagaga aagcttggaa tttggaaagt actttgagca tctgaaaata
901 taaaaaaaaatt taaataactt aatcactgaa ttgaaagata caatagttac tacaggtttca
961 ct当地tacaca attttatcat tgctactctt gaaaactttt aagcggctga ct当地tgg
1021 attcttggta gactattaa attctcgat aattttttt cttatcaaac cgatcaagtt
1081 tggtcagcat tatgat tcaaaaaata caaaatttaa aaaaatgtat ttgtatcta
1141 ccttggta gtagactctt cccttc当地 gacgagacag ccaccgc当地 aataacaacg
1201 tagttccaaa ggtagatcac aaattaatta tgttc当地aaa ttaattaattt aattaattat
1261 aagagctcaa catggatggc gagctgaaac tcgtcaaaca atggatcaat tgctc当地gaa
1321 tatctttgta cggagtagat tgccaaattt cctcgggagtg caagactgaa gaaaaaggtta
1381 gattacctga agatcttca acacatcatt gattgtttat ctagatttcc tacgtcactc
1441 gtcacaatgta aatggtc当地 aatgtgctaa ttcat tccgtaaacc caggaaatgc
1501 tccgggtccct gtatataactc tccacggaaa taatcgatcg cgaagcgtg ttacagatgta

8761 caacaatttt tctgaaagaa atcttaaaa aagttacatt gaagtaagtt aggaatttcc
8821 aaagttctga aaatctacct atttgcgtt acaaatttac tgattcatgt ctgaacaata
8881 atgtaatcat atgtgtctag tacatatagt tcggatcatc ttctaataact tttatcttc
8941 taaggcaactt tttgttttt gtttaatatt atgaattttt agtactctcg ataaacggta
9001 caagatcctt ttgttccagt ataacaatct tttcaaaaac ttaaacgctc taatgaagat
9061 atgttcatta tgattgtaaa gtctaaagatt gttatctcg tgcgcattt cagcgagaat
9121 caaaaacccgg tatttgaagt ttacacatct cttctcagg tacataacca gcttttgca
9181 tcttctttt ctgattttt ttcattaaat ctcaaataatc tcgagatgag gtcgttgtt
9241 ccttgattc tattcgcatt atttattggg tgcttcactc aacatggagg aatcgctaga
9301 atgcaggaat tgaagacaaa agtagatcca ataagaagct tcgatcttcc ggatgaagct
9361 ccgagagcaa gaattattgc aacggattt tcgacaagag gcaatagaaa aatgaaaaag
9421 ccatttaagg taagattttt atattttgaa aaacactact acgcttatat ctctgttctc
9481 ttgattttt tcaaaattac gtcaactgac aaaatacgt aaaaatattt atctacattt
9541 ttgttaatgaa ccattttcg aacaaactga agagaaccga gataaaagcc gtcaaaagtag
9601 aagtagatcc attgggttca aagtttcagc attcggtatt tttgaaatg caaaatatcg
9661 cataacttaag ctttctttt gtttgcgtt ctggaaatc gcacgctctg tttggctgct
9721 ataatttgaa aatttgcggt cgtgcgaga cccgctaccg tattttgcgtt ttatacattt
9781 ttttcaaaa tcagattttt caattccccc gttctctaaa ttatattact ggtcatattc
9841 cagttgtcag aactttttaga gtttttgcac aaaaaattt tttcccggt ctcggcacga
9901 acgaaactttt gcagctaccg taaccacgag tattttgcac tcttctctt tatataagct
9961 tcgctcaatt ttttcttattt ataatgcaaa aacttcaatt ttttggaaag ttttttttt
10021 aattcatgtg aaagaaaatac agaaaaatac gctgaaaaaa gtgtgcctg tggttactgt
10081 agcagcaaag tttctgtcgc tctagcaaga cctggttcag tatgtattttt tgccttaaaa
10141 attacaaaat ttggaaact ggataatacg acactctaatttattgtggc aatcagacag
10201 taaccaacaa tttaaaggta tatgccgcct tctgaaaaattt gaattttcag gacgattccc
10261 gccaagaaga cttcaggaga tggaaagctcg acgagctcac agatcgagat atgagaagca
10321 gtaaagaagt gaaaagttt gttcgatcgc cattcacaaa ggatagtggg agtgaagaag
10381 atgagcatgt tggagatttcc ttcccatcca aaagagttt attttgtaaa ctcagaattt
10441 aattttgtaa ctttgaattt attatgtgtt aatataatgtt cttttttttt aactcaggg
10501 actagggtt attcaaattt gatcacatgtt taaaaatac aaatcaagga aataattaat
10561 ggttaatgca gtgaaatata caatttgaga cttatttaca ttttcgagcg agtcaaccaa
10621 tgatcagctt gtggtttttctt ctccgaatctt gttgagatgtt gacatttttgcgtt
10681 ccgtcggttt tttggatgc cttctcgaga gctgccttga ttttggaaac agttctaaca
10741 acagttccag ctccctccgaa agctttgcac atttcttcat aacgacattt agcagtttagc
10801 gagagaactg gaagagcaag agtacggctt ctttcgattt ctttatcatc ttctggcagg
10861 agtccacatgt agattccaga gttgttaatg ataacagtgtt cgacttggaaat attgtatcga
10921 gcaattgtct cgagttccat ggcagagaat ccgaaagcac tggctccctt aaccacgaga
10981 accttagtct tcggactgtg atcttttgcctt caggtgcgg cggcgaggaa gaatccatga
11041 ccgactccca ttgttccaaa ggttccggcg tcgaggccac gtttccggag acggaaaggc
11101 atcatggttc ggccgatatac cattgtgtt gtccttcgt tgatcacaat gacgtcattt
11161 ttggcgagga attcacgaat ctgaaaaattt gaatttgaat tataatattt tatttttt
11221 tccacttact ggttgcatac ctgcgttagt attcagtggg gttgagtttcatcgcacaaa
11281 cttctcaact gcccgtctt tcttctcagc gtttcccttgc agcttcttgc accactcggt
11341 tgactcgctg taggtccagt ccccaagtct tgggtcaac tggccagcg tctcttcaat
11401 atctccaaa agtggaaacctt cagtttcac gttctgatgg aacttcttgc gacaaatgtc
11461 gatctgaaca accttcacat tttttggaa ttttggggaa agtccgaaat gaagaatcca
11521 gttgaatcgg gtcggatca ggaatacggt atcagccctt ctaatgcca aggatcttgc
11581 ttgtccgatg aatcttgggt gaagatctga agcaacttctt tttccacccg gagtttgcag
11641 ccatggaaagc ttggatttttgg tgagggactg ctgaaacttgc ttagctccac gctcgacca
11701 cgcggctccc tttccaacaa taaccagagg tttctttgcctt ctcttcaagg tgtcaatagc
11761 tttttcaattt tcagcaattt gttggatggaa aactggagctt ggaagtggga ctttgtgg
11821 gaagctgatt ttttcttcag tgctgtttaa cacaagattt ccggaaagat caacataaac
11881 agctccaggt tttccgtaca tcgcacatct cactgcctt ctaatatgtt caggaatttgt
11941 gtgaagactt gtcggacggc taacatgttt gcatgagttt ctgacagactt ctttgtgg
12001 ccattccctgg aatgtccac gattctcgag atcgacatctt ggggttccctt caatacagac
12061 tacaggccag cagttgactg tggcgttggc aagtcccttca atagctgtt gatccgg
12121 tccagagactt acaagaagag caactggctt tccgttggaa tttccatag ctttgacgac
12181 ataggcggcc tagacagggta ttttttttta aaggaattttt atatttttattt tcaatgagac
12241 cgaaaaggtt gggaaatttgc aatatcacc aaaaaactt tctgaaaacg gtatttttca
12301 attatttagtt gggtttttca ttttcaacg aatattttttt gtttctttt gttatatttcc

12361 tgaatttcca acgtttcgg gcattttcga attccccgcg tcttccaaaa ttcacgaacc
12421 gcttgctcat ttctacatcc gatgtattt attccatgtg cttgtgctgc cattcctact
12481 tcaataaccg ggaatccgac gactccgaac atgtactcga caccctgaaa tcttattttt
12541 ttgcttattc tgtaagtatt tcttgctcatc aataatcact gataagagtg aattatggtc
12601 ttatttctga taatctatga gcggagggtga aagtcgacaa tttttcgga aaaattgcca
12661 cgtggagggt atcagtgaag ttttgtaaa agttataaaa agttaaactac atttgagaaa
12721 aattaatttt agagcaaat ttaacattt ttgcaaaaaaaaa gtttttttgc tctggaaaaaa
12781 ccatccaaaaa tccctttca gaaaaactcc attttttaaa caaattaatt ttttgattt
12841 tttaaaatga acaaaccctga gattaaggg ccgcccgtgt aatcgatgc ccatccatat
12901 ttgatccgtc gtgattccgt agtttctcg aattgatgcg actgtcttg gccgaatagt
12961 cgggtatctg ccggcattgt tgcttatcga tcacactgat aagaccacgt tgggtgcga
13021 aagagaattt cgacccctgc accagtagag acactgatct acctgtgaaa gatataattt
13081 ttagagagtt tcgttagttt ggaagctttt atttagatga attgaaattt tgattccaga
13141 aaacccccaa aaactctgca aaaagactga aacattttt ggagaaatct catttttgt
13201 ttactgattc aaaattgaaa cactttcta tgggtttcg gtgcggattt tgaataaata
13261 tattcgggtt gatattttt ataattttag tttaaaaat aagaaaattt tcgggttggg
13321 ttactgtaca ttttagattt taatttattt ttcgctcccg agaatattac cgaattattt
13381 aacaaaaattt cttaattaa aattcgtgac tgggtatata aacctagacg cggaaattttt
13441 cgatttcgt gacaactttt tgtaaaaatac aagagggtgt gcacgcgtgc gcctttaaag
13501 agtactgtaa ttcaaaattt ttgtttaaaaa ttctgtgtc cttctatct acttttaaaa
13561 tatttcgtat aataagaaat ataactttt cggaaaactg agaagaactg tgcaaaattt
13621 atgaaaattt taaaattcgg gagaacgaa attttataac tacagtactc tttaaagacg
13681 cacatctt tgcatttagc agaaattttgt cgtgtcgaga ccggatacag taactttgaa
13741 gcaatgctag caagacttcg caaaattcca gaaaatattt ttttaagtcaa taatttactc
13801 acgtgatgtg acattggcaa gagaagaagc tataaaccgt gtggatgaca tctgtaaaac
13861 ttttcgttc tgattgaatg aaaaagcgg aagcaagaag tcaataaaac aaggttctga
13921 tttaaatgtat ctctgtgact cggttctttt actgtctgcg tctatgtatt caacgaattt
13981 agtgcattt aacagcaaaag attacaatga tgactattat tttttgaga aacatttctt
14041 cgtgagacgt catcagattc ataaaggctt cggaaatagc ttgatgagta aacatttgc
14101 ctcaagttca aagaactatt aattttgaaa ccggagatga ttcatgaca aggaaagcaa
14161 caaaaaaaaaac taccagtaaa gtgttaattca aggaagaggt aataggcaag atctacagga
14221 aaagaatggaa aaatttagaa aagtgatttca tagatatgaa ctaaaaatgt aaaaaaaaaa
14281 gggaaaaata ttgattgtac aaacaaaaaa agagataaca aattgaacgg gttgggttga
14341 ctttcgagtc attagaagct tgattctgtat aaggttgg tgcgatattt tgcaggagat
14401 tctgaaattt aaaagtaaaag ctttttaata agttatattt gtttacaca aaaatcaata
14461 aaggacgaag cggtaacat ttttagtttca tagtttttta gatgttaattt tatgattttt
14521 aaatttgaat ttttcgcaga atttatgtt tggcaactg gaatccatct gaatttcctg
14581 ctcaaaacat taccgttaac ttcttcctca tcctcatctt cactcgattc tccgagtaag
14641 ctcagatcgt cttctagcga cgattccacc ggagctgagt cttcttccat cttcatcgac
14701 tcctctctc cgttgcgtc cttttctcg ttcccatttt cgttccact cacgacgtct
14761 tctcgctccg atgttggata acttatttactt cgggtctga aataatattt gttatttcac
14821 acaatttaac aggaaaaaca ccgcaatcat actttttattt tcttgcctgt tctaattttt
14881 tcatctctt tgctgttata agcagttggg gagctggctg ctgtggaggt tctccatcca
14941 gccaaccgcg gattttcca atactggaaac tacagaagtt gagccctgaa aaatattgt
15001 ttttggattt taactattaa attaaaattt cttacaaatc ggttcatcaac taaagaatgg
15061 agttcgaata gctccaagca tttagaacaag gaagatgtc atcagattt gagctatcaa
15121 tggagcaccg tcatataatgt ttctggaaaa attaatttttac agttttttt atgaattcgt
15181 caaaaaaaaaac ctgaagaata aattaaaggta cttcgcagaa ccagaaaaaa acgcaaaagaa
15241 tcctccggaa atagtctcag aaaaacacttc gatgatagaa atctcggttga aaatcgatatt
15301 ggttgactc tgaaattttac aacattttaa ataaatttac ccaacaaaga agaaataaaaa
15361 caaaaaaaaaac cctcaatgtt cttttttttt ggcgatattt gaaaggcgat
15421 gcgaggattt caaccattt tgagagtaat cttctgttag cacaagaatc atgagcatgc
15481 tcttggattt gtgcaatct tcgtgattct gttcttgcg attttttgtt ataaaccagaa
15541 tacatggaaa caagaagagc agttgagaga acgagaatcc aaaagttcg tggccgaacg
15601 attgatcgaa gaacaacaaa agcagccgcg ggcaaaatga agatgttgcg tggaaaatg
15661 aaaggttggaa gactcacaatc ttttttttttgc caagtacat ctggagctgg aggcttcacg
15721 ctgaaaatgt ttgacaacgc ggatcggtac gttcttctt cttcagccaa atctgcttca
15781 tcatttttta aataacttcga aagaaccgac atgctgtgcc gagatatttt aattctgca
15841 ttcaaaagttt aaaaatatac ggaactagaa gaaaatatac tcactgtaca tttttttttaa
15901 ttgaacccatc caaatgtat tcaatttttgc tttcgtggag aagttgtcga agaatcagac

15961 gaagactt~~t~~ g atcaggctga aactattgaa tgggttattt acggatttct taaaag~~c~~ttt
16021 tagttac~~t~~ tctgaacttg atttcaaca gatagaagtc gtttgcgc tggcg~~g~~gctt
16081 tctccagaa~~g~~ ttggatcatt cgatcttc cacacatttt catgtgtaaa ttctt~~C~~gtca
16141 atgtcttg~~a~~ g ttgcgaaaag ttgcggacg aggagttagaa gtgtgaccca tattat~~t~~ttc
16201 atctgaaaca agcggaaagt tgaaagagaa aagatgtt~~a~~ cagcacgctc agcaa~~C~~tgac
16261 aggcgagtt~~c~~ ataagataac atagttgtt~~t~~ gatcaataaa atgttgtt~~t~~ttcc~~G~~gagtt
16321 ttcagataat tcgcattaa acttca~~t~~ttt ttatattcag aaaattgtaa aatcg~~a~~aaca
16381 tttcaagaat tgcaaaacaa gttt~~c~~agaa gc~~c~~aaattaa taagtataat acgg~~t~~tgaca
16441 attgggtat~~t~~ g~~c~~agaattgt cgtgaatttc gatgcctgc~~t~~ tacgcgagaa atttg~~C~~attc
16501 attattt~~t~~ttt tttccacagt tttccacact tttctcatcg atttttg~~c~~aa taatt~~t~~catc
16561 aaatttctt~~t~~ gttttc~~c~~agt aaacttcaag atgaagctt~~t~~ gggattctcc~~t~~ gaata~~c~~ctcg
16621 ttcccttatt~~t~~ cattt~~g~~at~~t~~ga g~~t~~ttgcc~~c~~agt~~t~~ g~~c~~gtttt~~g~~gg acagg~~t~~gagg~~t~~ cagga~~a~~atct
16681 cgaaaaat~~g~~g taatttcaat ttctaaaccc t~~c~~agataccc~~a~~ aatttctcat~~t~~ g~~c~~aaa~~a~~acaca
16741 tcatttc~~g~~ga ggatgtactc~~t~~ gaacgccaga~~t~~ tactgacaa cactattgtc~~t~~ actaa~~aaa~~at
16801 tgattgtca~~a~~ gcaagg~~t~~t~~t~~ tagctgat~~t~~ tacaagagcc~~t~~ agtaaattat~~t~~ tcgcataatt
16861 tttcagaag~~t~~ ctcgatttt~~t~~ aaacgtgtt~~c~~ ctcgttg~~g~~at~~t~~ ttcgagaat~~t~~ acagatattc
16921 aagttgtt~~CC~~ t~~g~~t~~c~~attg~~g~~aa gaa~~a~~gtgtt~~t~~ atgataa~~a~~gt atcga~~aaaa~~aaa ctcgt~~a~~acat
16981 acactcgaaa~~t~~ gttt~~c~~acac atttcttat~~t~~ t~~c~~caact~~c~~ca t~~g~~aacgat~~g~~c~~t~~ atttaca~~aa~~at
17041 catccgaggt~~t~~ t~~t~~atcatt~~t~~tt~~t~~ tatttcaat~~t~~ ctctattt~~t~~ac~~t~~ tg~~t~~tattttt~~t~~ caggataat~~c~~
17101 agcagcat~~ca~~ cccagcc~~t~~tt~~t~~ ctcactgac~~t~~ tactg~~c~~gaag~~t~~ tg~~t~~cacagtt~~t~~ t~~c~~aat~~t~~cgatt
17161 gtgg~~t~~caat~~t~~ gagct~~c~~agtt~~t~~ tacgagaa~~g~~g~~t~~ccacta~~t~~at~~t~~ g~~g~~g~~c~~tt~~c~~aaa~~a~~aat~~c~~gat~~ca~~
17221 ataacacaac~~t~~ gaaagg~~g~~ttt~~t~~ tttgagaagc~~t~~ tagaagagc~~t~~ g~~t~~tttggag~~t~~tc~~t~~ aaaaac~~g~~ttt~~t~~
17281 ctaatgagaa~~t~~ aatgaaaat~~t~~ atcaagg~~g~~aaa~~t~~ agattat~~t~~caat~~t~~ g~~t~~cat~~c~~gt~~ca~~ aat~~t~~ct~~c~~gt~~ca~~
17341 ctcatgt~~c~~ca~~t~~ atgcgaagag~~t~~ gatgtct~~t~~ag~~t~~ cagccata~~t~~act~~t~~ gaatataa~~at~~at~~t~~ c~~t~~caa~~a~~acatt
17401 cactttt~~cc~~ cgttatttt~~t~~ atttat~~t~~gt~~c~~cc~~t~~ttt~~t~~ ccc~~aaaa~~aaa~~t~~ atctcaatt~~c~~tc~~t~~atagaatt~~t~~
17461 actgaat~~c~~t~~t~~ ctgcacatt~~t~~ tttg~~c~~att~~t~~ga~~t~~actgagac~~t~~ca~~t~~ttt~~t~~gtt~~t~~ttt~~t~~ gttattt~~gg~~c
17521 tctcaat~~c~~tc~~t~~ t~~c~~c~~t~~gataaa~~t~~ t~~g~~t~~c~~at~~t~~att~~t~~ caatttattt~~t~~ ttt~~g~~at~~t~~ttt~~t~~ttt~~gg~~ctat~~t~~
17581 tttct~~gg~~tta~~t~~ tttaccag~~t~~ct~~t~~ attgttat~~t~~ct~~t~~tt~~t~~gac~~t~~ct~~t~~ttt~~g~~tct~~t~~ aattacatta~~t~~
17641 taatctat~~ca~~ taatctccaa~~t~~ tatttag~~g~~t~~t~~ct~~t~~caata~~t~~agg~~c~~ttt~~c~~aa~~a~~aact~~c~~cttc~~t~~
17701 aaaaag~~c~~ttc~~t~~ t~~t~~gg~~t~~cttc~~t~~g~~t~~ atcaacgata~~t~~ t~~g~~gc~~g~~ag~~t~~ac~~t~~ tatttac~~cc~~gg~~t~~ tg~~g~~at~~t~~gac~~t~~
17761 ccc~~aaa~~ag~~t~~t~~t~~ t~~c~~t~~g~~gaacac~~t~~ g~~g~~c~~ag~~tt~~t~~tt~~t~~ ccactt~~g~~aat~~t~~ c~~g~~ca~~aaaa~~aaa~~t~~taaccat~~ca~~
17821 tcacaagaaa~~t~~ aagagacata~~t~~ gat~~t~~caaaa~~t~~ gaaaatcccc~~t~~ t~~g~~tt~~t~~gag~~c~~cc~~t~~ tg~~at~~cacaat~~t~~
17881 cgtctcg~~c~~tt~~t~~ ctctcatt~~t~~gc~~t~~ tccatt~~t~~gt~~c~~gc~~t~~ ctattcc~~g~~cc~~t~~ g~~cc~~caacacc~~t~~ gtttctac~~t~~
17941 g~~c~~gt~~t~~ct~~c~~act~~t~~ g~~g~~caacc~~t~~gt~~t~~ t~~c~~at~~t~~caat~~t~~ cccat~~c~~cc~~t~~gac~~t~~ g~~t~~cg~~t~~cg~~t~~ct~~t~~ agacagttat~~t~~
18001 ctccttgatt~~t~~ g~~c~~act~~t~~gat~~t~~ ac~~g~~gaactt~~c~~tc~~t~~tt~~c~~tg~~g~~cc~~t~~ aat~~c~~ccatt~~t~~cc~~t~~ttt~~c~~cataaa~~t~~
18061 gaaggat~~ca~~aa~~t~~ gt~~g~~ag~~t~~tg~~g~~ga~~t~~ ggag~~g~~ag~~t~~tt~~c~~ atgaaaatt~~t~~tt~~t~~aa~~t~~ccaa~~t~~aa~~a~~ac~~g~~agg~~g~~aa~~t~~
18121 aacccgattt~~t~~ tcgtaat~~g~~ag~~t~~ aat~~t~~ct~~g~~aa~~t~~ aatttt~~c~~aaa~~t~~ aaaaattat~~t~~ g~~c~~t~~g~~t~~g~~caaa~~t~~
18181 gtattt~~g~~aaa~~t~~ aataact~~t~~tt~~c~~ag~~t~~ct~~a~~aa~~t~~ atctcaat~~t~~tt~~c~~cc~~t~~ag~~t~~tt~~t~~ aga~~a~~gt~~t~~gt~~t~~ta~~t~~
18241 aaaaatt~~cc~~g~~t~~ t~~c~~ag~~t~~gg~~cc~~g~~t~~ cactgac~~t~~aa~~t~~tt~~c~~g~~t~~caaa~~t~~tt~~c~~gag~~t~~attt~~t~~ ag~~c~~tataata~~t~~
18301 t~~g~~cg~~c~~tttt~~t~~ t~~c~~caat~~t~~act~~t~~ t~~g~~aacc~~g~~cc~~t~~ tg~~t~~tttttt~~t~~ tg~~g~~aa~~a~~ttt~~t~~ t~~c~~aa~~a~~agg~~t~~cc~~t~~
18361 t~~c~~at~~c~~ac~~g~~aa~~t~~att~~t~~gg~~c~~agt~~t~~tttt~~gg~~tta~~t~~ g~~t~~tt~~gg~~gt~~t~~ct~~t~~ aaaaag~~cc~~aa~~t~~ttttt~~t~~ct~~t~~
18421 tttt~~c~~caatt~~t~~ t~~g~~c~~t~~act~~t~~ac~~t~~ g~~c~~c~~t~~tt~~a~~aaa~~t~~ aact~~t~~aaa~~a~~ac~~t~~aaaattat~~t~~ t~~c~~gg~~g~~ag~~t~~ttt~~t~~
18481 aaaat~~c~~aatt~~t~~tt~~c~~ct~~g~~ttt~~t~~ tt~~c~~gg~~c~~att~~t~~tt~~t~~ caattt~~t~~act~~t~~ caattt~~cc~~ca~~t~~att~~c~~cag~~ca~~
18541 ccacgacc~~g~~a~~t~~ t~~c~~at~~g~~cg~~a~~cg~~t~~ aag~~c~~act~~c~~aa~~t~~ tt~~t~~gt~~c~~ccat~~c~~ca~~t~~tt~~c~~at~~c~~cat~~t~~ tc~~g~~ac~~a~~cc~~g~~cg
18601 t~~g~~cc~~aa~~ag~~ca~~ at~~g~~t~~cc~~cc~~ag~~ aatt~~t~~tg~~c~~gat~~t~~ g~~c~~t~~cc~~ga~~a~~cc~~t~~ tt~~t~~g~~a~~a~~a~~ca~~t~~ac~~g~~tc~~t~~
18661 acgacaaaac~~t~~ t~~t~~t~~c~~ct~~g~~t~~g~~ gaact~~c~~ac~~t~~ag~~t~~ t~~g~~gac~~t~~gt~~t~~ct~~t~~ t~~c~~cc~~aa~~ac~~g~~g~~t~~aa~~t~~
18721 agaagact~~cg~~ g~~c~~gc~~g~~ac~~g~~att~~t~~ ctc~~g~~g~~a~~ata~~t~~ a~~c~~tt~~t~~caat~~t~~ct~~t~~ g~~t~~ct~~c~~gt~~t~~ca~~t~~tt~~c~~ct~~t~~aca~~t~~
18781 aaat~~c~~c~~t~~t~~c~~tc~~g~~ga~~t~~ cac~~c~~tc~~t~~at~~t~~ct~~t~~ aataataa~~a~~ca~~t~~tt~~c~~caat~~g~~ta~~t~~ taagaagaaa~~t~~
18841 acac~~c~~tag~~t~~ g~~t~~tc~~g~~cc~~c~~aga~~t~~ ct~~t~~tag~~c~~aa~~t~~ att~~c~~cc~~gg~~gt~~t~~ c~~a~~c~~g~~gt~~t~~aa~~t~~ta~~t~~ttt~~t~~tg~~t~~
18901 t~~c~~ttttat~~t~~gt~~t~~ t~~c~~t~~t~~caact~~t~~tt~~t~~aaa~~a~~ata~~t~~ taaat~~c~~tttt~~t~~ cc~~a~~tttt~~t~~ata~~t~~ g~~t~~at~~c~~cc~~aa~~aa~~t~~
18961 atcgat~~g~~cc~~t~~aaaagg~~g~~ac~~c~~cc~~t~~ g~~t~~tt~~c~~ct~~g~~aga~~t~~ aat~~c~~tag~~t~~aa~~t~~ g~~c~~ag~~c~~gg~~c~~cc~~t~~ ac~~g~~agg~~c~~att~~t~~
19021 cagaagtt~~t~~gt~~t~~tt~~c~~gaaat~~g~~tt~~c~~ g~~t~~tt~~c~~aaa~~a~~aca~~t~~ c~~g~~at~~t~~at~~c~~gac~~t~~ ag~~t~~ttat~~c~~tag~~t~~ cc~~a~~tttt~~t~~gac~~t~~
19081 tat~~c~~caataaa~~t~~ c~~g~~ag~~c~~ac~~g~~ac~~t~~ c~~g~~aga~~t~~att~~t~~gt~~t~~ c~~g~~c~~g~~ttt~~t~~gt~~t~~ ag~~a~~aa~~t~~tt~~c~~g~~a~~ ccc~~aaa~~ata~~t~~
19141 gttt~~aaa~~at~~t~~ c~~g~~gg~~c~~aa~~t~~tt~~c~~ c~~g~~act~~t~~taa~~c~~g~~t~~ cact~~g~~aa~~c~~gt~~t~~ cg~~g~~at~~t~~tt~~c~~g~~g~~ct~~t~~ t~~c~~aa~~t~~tt~~c~~gt~~t~~
19201 acaa~~a~~agt~~g~~ga~~t~~ cacaagaaaa~~t~~ gg~~g~~ag~~g~~ac~~g~~ct~~t~~ c~~g~~aca~~t~~at~~g~~ta~~t~~ tc~~g~~c~~c~~tt~~c~~aa~~t~~ tt~~c~~ct~~t~~g~~g~~aa~~t~~gg
19261 at~~g~~ct~~t~~att~~t~~tc~~t~~ at~~c~~caat~~t~~ct~~t~~ac~~t~~ g~~g~~aa~~t~~at~~t~~tc~~t~~ c~~a~~ct~~t~~tc~~t~~gt~~t~~ acc~~a~~ac~~g~~t~~c~~aa~~t~~ c~~c~~t~~g~~tt~~t~~g~~c~~ta~~t~~
19321 tt~~g~~ct~~t~~ct~~g~~t~~g~~ ct~~t~~ttt~~t~~cc~~g~~cc~~t~~ g~~t~~ct~~g~~gt~~t~~cc~~a~~ a~~t~~c~~t~~ct~~g~~ac~~t~~ g~~t~~tt~~c~~ct~~g~~aaa~~t~~ ct~~g~~gt~~t~~tt~~t~~g~~a~~aa~~t~~
19381 ct~~g~~gc~~c~~c~~g~~t~~c~~ aacaatt~~t~~gt~~t~~tt~~c~~g~~a~~at~~t~~ g~~t~~at~~g~~gg~~c~~agt~~t~~tt~~t~~ct~~t~~g~~g~~at~~t~~ taat~~t~~g~~c~~t~~g~~tg~~t~~ ag~~t~~ttt~~t~~aata~~t~~
19441 tt~~g~~aaa~~a~~att~~t~~ t~~g~~caaaaat~~t~~tt~~c~~ g~~t~~aa~~a~~gg~~t~~aaa~~t~~ aattt~~a~~ac~~t~~at~~t~~tt~~c~~cc~~a~~at~~t~~c~~g~~ g~~c~~aa~~a~~at~~t~~ttt~~t~~
19501 tgt~~g~~att~~t~~tc~~t~~ t~~ta~~att~~t~~ca~~t~~ aag~~a~~at~~c~~gt~~t~~gc~~t~~ g~~c~~c~~t~~tt~~c~~aa~~t~~ g~~t~~at~~c~~t~~g~~tg~~t~~tag~~t~~ ct~~cc~~catt~~t~~

19561 ctcatcggtt agtgattttt agaagctaca gtactcttta aaggcacaca ctctccgag
19621 ttaagaaaa tcgttcgtt cgagaccgg tacgggttt ttggagaaa aaccagaaac
19681 tttgcacatc gagataatag tttctttgc tctatgaatc aaagaaaaaa atcattattt
19741 ttcaatgcgg aatttagatg agaaaaacca atttgggtt ttttaatct aaaatgtaga
19801 taaaatagac aaatttctt aaaaaaaaaa attaaaatta ctaaatattt ttccagttat
19861 gcaaatatgg caaatcaaca atcggtctc ttctgtgcct acaaatacgat gctcttgctc
19921 gtaactctcc agaaactaaa gtactccaa tggctacga tggcaaaa gatctcgag
19981 ccgcgtatgc tatcgccat atgattcgatcc acatactggct cgtggaatcg
20041 ttcttctacc agctgatgt atgtctttaa atgggccac accggatagt cttataaaa
20101 agaagaagct cgatgagatg gttgaatga caaaagatct ggtcaacgag tcaaaacgat
20161 tacttattga tgctcgaagt ccgatagaaa tggtaccgaa agctgtgaga cctgcgctt
20221 cagccactgg agccacaact gactatatac taaaacaat cggaaatcg taaaacgat
20281 tctactctcc tcatcttcaa cgtcgaaatc cacttcttct ctggtcactt ttggttcgaa
20341 aactgtgctc aaaatattaa aatgttat tttcgtgtt tttcttcat cttcatcttc
20401 ttttttttc tttctctttt ccctttcccc ttctcccat ttcgtgttct ctctctctca
20461 ttcaatagt tatatttata tttatggcat caagtaaaga gcttacaatc agtgtggagt
20521 actacgaaga ctagtaaacg gataactgaa tcataacaag gagcccatcg taaaagaaag
20581 cgggaagaag aagaatgtgg cgaattagaa tgtcataac gagaataactc gaagatgaac
20641 cctctttga attttgttg ttgttggat tctggaaagct atttttctc ttgagagaag
20701 agaacatctt caaaaaaaaa atataacaac aacaatttga aggggaagc cattttaca
20761 aatttagcgt taagctggaa cacttcttc gaatattatt taaaactac atttagacta
20821 catttactgc tcttgcgaat ttaatttaat atccgatta acctgatgc aaatttttga
20881 acaaaaaacac ggaaccgaag aggtgtgtc cttaaagag tactgttagt acaaacttgt
20941 gctgtgcgg aatttttac gactttcat aacgatttg caaaatgtat ctgttttaag
21001 tgatttatgt tagttttaa aaaaataaaat taaaattttt taattaaata aaatttaaac
21061 aaaaaactat gtaaaatcag taaaattcc acaacagcaa atgattgaaa ctacagtatt
21121 ctttaaggc gcacgctttt tcgctttt caaataaaaaa tttatcgtgt cgagccagat
21181 gccgtatccc gcatttaaca gtaagtacac aatcaagagc gcccttacgg aaaacttcac
21241 ttaatattga tatataattt cataaaacatt atagtaaacg tgcttacatt tgcgatacc
21301 ctgttacag ttggaaattt agtatgaccg gcgaaaatag caatcattat gagaatttca
21361 caattcaatc agctttata cgcagaattt ccattttaga atgagaattt tctatcaagt
21421 gtaaaatcaaa gaaaattttaa agttagcaat ccagtttga caccgttacgg tgggtgttc
21481 atcaattttaa acatgtttt aatttttagac atgtttaaag gaatctatca ggtctaataa
21541 ttttagctga atatttccga agagaatttag agcagcctgg aaaaatcta aattttttaa
21601 caaaaaatat tactcgatg cggaaatgtc caattttatga tggaaaataa cggtaccagg
21661 tctcgacacg gcccataaag tttatattttatgc cgccttcgaa ggttacgatc
21721 gtttgcga gctttcgaa ttatccac cccctctgct cattttgcaaa attctgaatg
21781 cattctgtac atactttaca aaagttccg tcaacttct gaaaattttgt ttgcttttc
21841 cggaggcctc cgccaatctg tcaactccaa ttgtctgaaa tcaacttccaa atgaaactcaa
21901 acaagaaaaa tgctggaaaga agagaacatg cagtattaaa gatgtttatg ttttgaact
21961 cgcattctga tttttttgt gttttgtgt ctaaaagtct gggatcagaa ttttagattt
22021 ttagtgttag tttgtgtt cttttttgc aaagaattgc atttttccgg gcgttactcg
22081 cttcttcttc ttgtgattct gtatgttagt gcaaaaagtt cggtaaagtt ttttgaat
22141 tgaaggctc gaagagagat tttggtaca gttttgtaca tttaagctt ctatgaaag
22201 tgcatagtct tccttagaaaaa ctgtccagac caccgattca ttttgcataa accctgccc
22261 tcatacatat tgtttcacc ttttctccaa ttttgcataa ctctctctc actttcaaaac
22321 tgtcacgaaa tgctgaaaga gaagctctca atacctctgt ctgtctcaact tgatcgag
22381 accccctctc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
22441 attgtctctt gcatcaaaca ctttttttttgc ttttttttttgc ttttttttttgc
22501 tcattcaatg caatccatca ttttttttttgc ttttttttttgc ttttttttttgc
22561 ctttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
22621 ctagatctgt tttttgtatg ttttttttttgc ttttttttttgc ttttttttttgc
22681 cggaaaatcgc ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
22741 aagccggata ctaagcctaa ttttttttttgc ttttttttttgc ttttttttttgc
22801 tggttatcat gtttcat ttttttttttgc ttttttttttgc ttttttttttgc
22861 atcggaaacgg atcggaaaaaa ttttttttttgc ttttttttttgc ttttttttttgc
22921 agacaaaatg atgaagcatc ttttttttttgc ttttttttttgc ttttttttttgc
22981 ccacgtcaga ttttttttttgc ttttttttttgc ttttttttttgc ttttttttttgc
23041 tctatccgtt ccgtgactcc ttttttttttgc ttttttttttgc ttttttttttgc
23101 tgccgactta tcactgttca ttttttttttgc ttttttttttgc ttttttttttgc

26761 gcattagaaa cggaaatagcg tcataaaaaat aacaacagca gttgccgcac ttcatgcggt
26821 ttatctcaa acaaaggcg agatatgagc taccaaagtg aaattggaaa attggccctc
26881 caatgttcg ttaaagtgt atttcagga tctttgagag cccggcggga gcttggttct
26941 ggagttatata tgcataaatt aaccctccag taaagggggc ccttgatga atataatcac
27001 tctgtatggta ttaattccg atgagaatc catttttctt ttttcacat ttgtgaacca
27061 aaaataagtt taaataaaag gcggatatt ctaaggtgt ataacatag atatatttt
27121 ttaaatttaa ataaagttt ttttatttt tgctaaaaaa cgaatagttt acaaccgcct
27181 cgctcaaattt tattttgata aaagtggcta tttaggctt agccgcgcac taccggcgg
27241 gtgtcataag gatttccaat attttattcc agttggcat ccttagtatgt ttttcgggc
27301 cttaggctc aagtgtgcca taagatttca atatattttt ttccagtttgc acatcctagt
27361 ttttttttc gggcccttag gcttaagtgt gtcataagga tttccatat tttattcaag
27421 ttgggcattcc tagtatgtt ttcggccct taggctgggtt ggattggat ttccaatgtt
27481 ttattccagt tgggcacccct aagtcataat agctttttt ctttttttgcgcctcaag
27541 cgcaaggaaa aacccctctg taacttttta agagggtttc atatattttttaaaaatcg
27601 ggcgaagccc tgattttaaa tccatattgt ttttttttgccttccactat ccctgcaaatt
27661 agggaaagaga atgtgttgtt tctgtatgaag taaaatcat cataaaatct tgaaaactga
27721 gagcaggagg taatatttga atatatttggg ttggaaatgt gtgtccctt gtgggtgggg
27781 tggcgatgtg ttggcatcca acccttcaac gaactgtatc tccgcctgt atctccctc
27841 aaagtaagaa ttgggttaca aaaatttggg ggaatatgaa aataaatgtt aggatttcaa
27901 aaatgttaat ttgaaacac cagaccaaaac cacttttctt gggcaagagg caaaaaatta
27961 atttttgaa aaaatttcaa actggcacaat aatttttca aaaataaaattt ttcacaaatt
28021 tttggtagat ttcactttt ataaatatttgc ttcatttgc acagaaaaga aaacgaagat
28081 tcatcaaaaaa atgagtggaaa aatcgaaaaa attcgaaaaa gtccgtgctg aaaaactcga
28141 ttttgcgggt gctgaaaaaaa attgtacta aaattttttt tgaaacttag ttttccggat
28201 ttagcgtcaa attttgaatc tatgtaaaaaa acagaattaa aattgtatctc agattgagtg
28261 agtaataaac gctcaaaggtaa gaaaaatgaa caacgcacaa acggcagtaa ctgcctca
28321 agtcggttat ctcagtggat tttcaactca ttttcgaaat ttttttgcctt atcgcttta
28381 gaaatatttgc taatttcatt tttttccctc aaaatcaaaatc ttttcgctt gaccgcac
28441 ctacgagaag gaaaaaaaatc aagttttggg aaaaaatc aaaaattttt ttttcgctt
28501 gatttcaaa atgaaaaaat cacttttgc gaaataattt tactttaaaa ttttccggat
28561 atctttttat acaacaattt caccttggaa ccaaagatctt ctcacaaagaca acagcgcac
28621 aagcgttgc ttgcggaaaaa acacggaaaaa aacacacccg agtgggaggg ggaggtcaaa
28681 attgcgaaatt tgacttttgc gctcaactaaa agagctcata gctgatggat ctggatgatt
28741 tgtatgtttt tcgacgcattc tcgtcgagta ctatataactg ctaaaaaatc tcgtaaaaat
28801 cgcaaaaact cgaattttcc tgcaaaaaaaa aagaggcgaa aaatgagaaaa aaaaacgtga
28861 ttttggagg atactcgaaa atactcttca tatctcggtt caaagagctc caatcttct
28921 gaaataaaagc atacagaggt gggcaagct tcttgaagag acagaaaaaa accgcataa
28981 aatccatcca cccaccgtca agttacacgc gcgttttcaa agtgcacaaa aaacaggcg
29041 taaaaaaatt tagacgccccg caccggact cgaactttt ttatattttg aagcttaata
29101 tctcggttcc tgcataatcgaa aattttgc ttttttttttgcataatcgaa
29161 tcctcctgtc attaaatttt cgtgagctt gacggaaaac tgacaaaacgc ccaaactttc
29221 aaattttaaa aatagtttgc gggcattttt gaaaacacccct taagctccat aactcgccga
29281 gttttgtatgc aatcaatttgc aatatttaca cggaaagctt ttagtggctt atacgtctct
29341 gtgttaattt tgcgttttgc cggccaaacgg gaaacccttggggaaaatgaaa aaaaacgttat
29401 aaacccaaagc ctaaatagag ctaacgcattc cccactgacg ccaagcctaa gtctgagcct
29461 attccttagta taagtcttgc ctgaaacctaa gcagaaatac ctgcattttcgtt aagttccgc
29521 caaacatatc ctttctcatttttgc ctttgcatttttgc ctttgcatttttgc
29581 tccggctcga cggccgttc cgccttctca gtctctgttcccttccatccatcttcc
29641 gaatatccgaa ctcacttaca caaacaaaaca aacaaaatgc ctttgcggaaa agcacatata
29701 ccgtccccctc atacatacac tacaagagag gggccctc ctttgcatttttgc
29761 cttctctcgc tggcactca ctcttttatttgc ttttttttttgcatttttgc
29821 attcaatgttgc tcatctaaatc ctttgcatttttgc ttttttttttgcatttttgc
29881 tattccggaa ttttttttttgc ttttttttttgc ctttgcatttttgc
29941 atttcataat ttttttttttgc ttttttttttgc
30001 cacggccattt ttttttttttgc ttttttttttgc
30061 gacccaaaat attatgaccc ttttttttttgc
30121 aacattttgtt ctttgcatttttgc
30181 cagacccatcg ttttttttttgc
30241 ttccttatcat ttttttttttgc
30301 accaaatttttgc
30361 accaaatttttgc
30421 accaaatttttgc
30481 accaaatttttgc
30541 accaaatttttgc
30601 accaaatttttgc
30661 accaaatttttgc
30721 accaaatttttgc
30781 accaaatttttgc
30841 accaaatttttgc
30901 accaaatttttgc
30961 accaaatttttgc
31021 accaaatttttgc
31081 accaaatttttgc
31141 accaaatttttgc
31201 accaaatttttgc
31261 accaaatttttgc
31321 accaaatttttgc
31381 accaaatttttgc
31441 accaaatttttgc
31501 accaaatttttgc
31561 accaaatttttgc
31621 accaaatttttgc
31681 accaaatttttgc
31741 accaaatttttgc
31801 accaaatttttgc
31861 accaaatttttgc
31921 accaaatttttgc
32001 accaaatttttgc
32061 accaaatttttgc
32121 accaaatttttgc
32181 accaaatttttgc
32241 accaaatttttgc
32301 accaaatttttgc
32361 accaaatttttgc
32421 accaaatttttgc
32481 accaaatttttgc
32541 accaaatttttgc
32601 accaaatttttgc
32661 accaaatttttgc
32721 accaaatttttgc
32781 accaaatttttgc
32841 accaaatttttgc
32901 accaaatttttgc
32961 accaaatttttgc
33021 accaaatttttgc
33081 accaaatttttgc
33141 accaaatttttgc
33201 accaaatttttgc
33261 accaaatttttgc
33321 accaaatttttgc
33381 accaaatttttgc
33441 accaaatttttgc
33501 accaaatttttgc
33561 accaaatttttgc
33621 accaaatttttgc
33681 accaaatttttgc
33741 accaaatttttgc
33801 accaaatttttgc
33861 accaaatttttgc
33921 accaaatttttgc
34001 accaaatttttgc
34061 accaaatttttgc
34121 accaaatttttgc
34181 accaaatttttgc
34241 accaaatttttgc
34301 accaaatttttgc
34361 accaaatttttgc
34421 accaaatttttgc
34481 accaaatttttgc
34541 accaaatttttgc
34601 accaaatttttgc
34661 accaaatttttgc
34721 accaaatttttgc
34781 accaaatttttgc
34841 accaaatttttgc
34901 accaaatttttgc
34961 accaaatttttgc
35021 accaaatttttgc
35081 accaaatttttgc
35141 accaaatttttgc
35201 accaaatttttgc
35261 accaaatttttgc
35321 accaaatttttgc
35381 accaaatttttgc
35441 accaaatttttgc
35501 accaaatttttgc
35561 accaaatttttgc
35621 accaaatttttgc
35681 accaaatttttgc
35741 accaaatttttgc
35801 accaaatttttgc
35861 accaaatttttgc
35921 accaaatttttgc
36001 accaaatttttgc
36061 accaaatttttgc
36121 accaaatttttgc
36181 accaaatttttgc
36241 accaaatttttgc
36301 accaaatttttgc
36361 accaaatttttgc
36421 accaaatttttgc
36481 accaaatttttgc
36541 accaaatttttgc
36601 accaaatttttgc
36661 accaaatttttgc
36721 accaaatttttgc
36781 accaaatttttgc
36841 accaaatttttgc
36901 accaaatttttgc
36961 accaaatttttgc
37021 accaaatttttgc
37081 accaaatttttgc
37141 accaaatttttgc
37201 accaaatttttgc
37261 accaaatttttgc
37321 accaaatttttgc
37381 accaaatttttgc
37441 accaaatttttgc
37501 accaaatttttgc
37561 accaaatttttgc
37621 accaaatttttgc
37681 accaaatttttgc
37741 accaaatttttgc
37801 accaaatttttgc
37861 accaaatttttgc
37921 accaaatttttgc
38001 accaaatttttgc
38061 accaaatttttgc
38121 accaaatttttgc
38181 accaaatttttgc
38241 accaaatttttgc
38301 accaaatttttgc
38361 accaaatttttgc
38421 accaaatttttgc
38481 accaaatttttgc
38541 accaaatttttgc
38601 accaaatttttgc
38661 accaaatttttgc
38721 accaaatttttgc
38781 accaaatttttgc
38841 accaaatttttgc
38901 accaaatttttgc
38961 accaaatttttgc
39021 accaaatttttgc
39081 accaaatttttgc
39141 accaaatttttgc
39201 accaaatttttgc
39261 accaaatttttgc
39321 accaaatttttgc
39381 accaaatttttgc
39441 accaaatttttgc
39501 accaaatttttgc
39561 accaaatttttgc
39621 accaaatttttgc
39681 accaaatttttgc
39741 accaaatttttgc
39801 accaaatttttgc
39861 accaaatttttgc
39921 accaaatttttgc
40001 accaaatttttgc
40061 accaaatttttgc
40121 accaaatttttgc
40181 accaaatttttgc
40241 accaaatttttgc
40301 accaaatttttgc
40361 accaaatttttgc
40421 accaaatttttgc
40481 accaaatttttgc
40541 accaaatttttgc
40601 accaaatttttgc
40661 accaaatttttgc
40721 accaaatttttgc
40781 accaaatttttgc
40841 accaaatttttgc
40901 accaaatttttgc
40961 accaaatttttgc
41021 accaaatttttgc
41081 accaaatttttgc
41141 accaaatttttgc
41201 accaaatttttgc
41261 accaaatttttgc
41321 accaaatttttgc
41381 accaaatttttgc
41441 accaaatttttgc
41501 accaaatttttgc
41561 accaaatttttgc
41621 accaaatttttgc
41681 accaaatttttgc
41741 accaaatttttgc
41801 accaaatttttgc
41861 accaaatttttgc
41921 accaaatttttgc
42001 accaaatttttgc
42061 accaaatttttgc
42121 accaaatttttgc
42181 accaaatttttgc
42241 accaaatttttgc
42301 accaaatttttgc
42361 accaaatttttgc
42421 accaaatttttgc
42481 accaaatttttgc
42541 accaaatttttgc
42601 accaaatttttgc
42661 accaaatttttgc
42721 accaaatttttgc
42781 accaaatttttgc
42841 accaaatttttgc
42901 accaaatttttgc
42961 accaaatttttgc
43021 accaaatttttgc
43081 accaaatttttgc
43141 accaaatttttgc
43201 accaaatttttgc
43261 accaaatttttgc
43321 accaaatttttgc
43381 accaaatttttgc
43441 accaaatttttgc
43501 accaaatttttgc
43561 accaaatttttgc
43621 accaaatttttgc
43681 accaaatttttgc
43741 accaaatttttgc
43801 accaaatttttgc
43861 accaaatttttgc
43921 accaaatttttgc
44001 accaaatttttgc
44061 accaaatttttgc
44121 accaaatttttgc
44181 accaaatttttgc
44241 accaaatttttgc
44301 accaaatttttgc
44361 accaaatttttgc
44421 accaaatttttgc
44481 accaaatttttgc
44541 accaaatttttgc
44601 accaaatttttgc
44661 accaaatttttgc
44721 accaaatttttgc
44781 accaaatttttgc
44841 accaaatttttgc
44901 accaaatttttgc
44961 accaaatttttgc
45021 accaaatttttgc
45081 accaaatttttgc
45141 accaaatttttgc
45201 accaaatttttgc
45261 accaaatttttgc
45321 accaaatttttgc
45381 accaaatttttgc
45441 accaaatttttgc
45501 accaaatttttgc
45561 accaaatttttgc
45621 accaaatttttgc
45681 accaaatttttgc
45741 accaaatttttgc
45801 accaaatttttgc
45861 accaaatttttgc
45921 accaaatttttgc
46001 accaaatttttgc
46061 accaaatttttgc
46121 accaaatttttgc
46181 accaaatttttgc
46241 accaaatttttgc
46301 accaaatttttgc
46361 accaaatttttgc
46421 accaaatttttgc
46481 accaaatttttgc
46541 accaaatttttgc
46601 accaaatttttgc
46661 accaaatttttgc
46721 accaaatttttgc
46781 accaaatttttgc
46841 accaaatttttgc
46901 accaaatttttgc
46961 accaaatttttgc
47021 accaaatttttgc
47081 accaaatttttgc
47141 accaaatttttgc
47201 accaaatttttgc
47261 accaaatttttgc
47321 accaaatttttgc
47381 accaaatttttgc
47441 accaaatttttgc
47501 accaaatttttgc
47561 accaaatttttgc
47621 accaaatttttgc
47681 accaaatttttgc
47741 accaaatttttgc
47801 accaaatttttgc
47861 accaaatttttgc
47921 accaaatttttgc
48001 accaaatttttgc
48061 accaaatttttgc
48121 accaaatttttgc
48181 accaaatttttgc
48241 accaaatttttgc
48301 accaaatttttgc
48361 accaaatttttgc
48421 accaaatttttgc
48481 accaaatttttgc
48541 accaaatttttgc
48601 accaaatttttgc
48661 accaaatttttgc
48721 accaaatttttgc
48781 accaaatttttgc
48841 accaaatttttgc
48901 accaaatttttgc
48961 accaaatttttgc
49021 accaaatttttgc
49081 accaaatttttgc
49141 accaaatttttgc
49201 accaaatttttgc
49261 accaaatttttgc
49321 accaaatttttgc
49381 accaaatttttgc
49441 accaaatttttgc
49501 accaaatttttgc
49561 accaaatttttgc
49621 accaaatttttgc
49681 accaaatttttgc
49741 accaaatttttgc
49801 accaaatttttgc
49861 accaaatttttgc
49921 accaaatttttgc
50001 accaaatttttgc
50061 accaaatttttgc
50121 accaaatttttgc
50181 accaaatttttgc
50241 accaaatttttgc
50301 accaaatttttgc
50361 accaaatttttgc
50421 accaaatttttgc
50481 accaaatttttgc
50541 accaaatttttgc
50601 accaaatttttgc
50661 accaaatttttgc
50721 accaaatttttgc
50781 accaaatttttgc
50841 accaaatttttgc
50901 accaaatttttgc
50961 accaaatttttgc
51021 accaaatttttgc
51081 accaaatttttgc
51141 accaaatttttgc
51201 accaaatttttgc
51261 accaaatttttgc
51321 accaaatttttgc
51381 accaaatttttgc
51441 accaaatttttgc
51501 accaaatttttgc
51561 accaaatttttgc
51621 accaaatttttgc
51681 accaaatttttgc
51741 accaaatttttgc
51801 accaaatttttgc
51861 accaaatttttgc
51921 accaaatttttgc
52001 accaaatttttgc
52061 accaaatttttgc
52121 accaaatttttgc
52181 accaaatttttgc
52241 accaaatttttgc
52301 accaaatttttgc
52361 accaaatttttgc
52421 accaaatttttgc
52481 accaaatttttgc
52541 accaaatttttgc
52601 accaaatttttgc
52661 accaaatttttgc
52721 accaaatttttgc
52781 accaaatttttgc
52841 accaaatttttgc
52901 accaaatttttgc
52961 accaaatttttgc
53021 accaaatttttgc
53081 accaaatttttgc
53141 accaaatttttgc
53201 accaaatttttgc
53261 accaaatttttgc
53321 accaaatttttgc
53381 accaaatttttgc
53441 accaaatttttgc
53501 accaaatttttgc
53561 accaaatttttgc
53621 accaaatttttgc
53681 accaaatttttgc
53741 accaaatttttgc
53801 accaaatttttgc
53861 accaaatttttgc
53921 accaaatttttgc
54001 accaaatttttgc
54061 accaaatttttgc
54121 accaaatttttgc
54181 accaaatttttgc
54241 accaaatttttgc
54301 accaaatttttgc
54361 accaaatttttgc
54421 accaaatttttgc
54481 accaaatttttgc
54541 accaaatttttgc
54601 accaaatttttgc
54661 accaaatttttgc
54721 accaaatttttgc
54781 accaaatttttgc
54841 accaaatttttgc
54901 accaaatttttgc
54961 accaaatttttgc
55021 accaaatttttgc
55081 accaaatttttgc
55141 accaaatttttgc
55201 accaaatttttgc
55261 accaaatttttgc
55321 accaaatttttgc
55381 accaaatttttgc
55441 accaaatttttgc
55501 accaaatttttgc
55561 accaaatttttgc
55621 accaaatttttgc
55681 accaaatttttgc
55741 accaaatttttgc
55801 accaaatttttgc
55861 accaaatttttgc
55921 accaaatttttgc
56001 accaaatttttgc
56061 accaaatttttgc
56121 accaaatttttgc
56181 accaaatttttgc
56241 accaaatttttgc
56301 accaaatttttgc
56361 accaaatttttgc
56421 accaaatttttgc
56481 accaaatttttgc
56541 accaaatttttgc
56601 accaaatttttgc
56661 accaaatttttgc
56721 accaaatttttgc
56781 accaaatttttgc
56841 accaaatttttgc
56901 accaaatttttgc
56961 accaaatttttgc
57021 accaaatttttgc
57081 accaaatttttgc
57141 accaaatttttgc
57201 accaaatttttgc
57261 accaaatttttgc
57321 accaaatttttgc
57381 accaaatttttgc
57441 accaaatttttgc
57501 accaaatttttgc
57561 accaaatttttgc
57621 accaaatttttgc
57681 accaaatttttgc
57741 accaaatttttgc
57801 accaaatttttgc
57861 accaaatttttgc
57921 accaaatttttgc
58001 accaaatttttgc
58061 accaaatttttgc
58121 accaaatttttgc
58181 accaaatttttgc
58241 accaaatttttgc
58301 accaaatttttgc
58361 accaaatttttgc
58421 accaaatttttgc
58481 accaaatttttgc
58541 accaaatttttgc
58601 accaaatttttgc
58661 accaaatttttgc
58721 accaaatttttgc
58781 accaaatttttgc
58841 accaaatttttgc
58901 accaaatttttgc
58961 accaaatttttgc
59021 accaaatttttgc
59081 accaaatttttgc
59141 accaaatttttgc
59201 accaaatttttgc
59261 accaaatttttgc
59321 accaaatttttgc
59381 accaaatttttgc
59441 accaaatttttgc
59501 accaaatttttgc
59561 accaaatttttgc
59621 accaaatttttgc
59681 accaaatttttgc
59741 accaaatttttgc
59801 accaaatttttgc
59861 accaaatttttgc
59921 accaaatttttgc
60001 accaaatttttgc
60061 accaaatttttgc
60121 accaaatttttgc
60181 accaaatttttgc
60241 accaaatttttgc
60301 accaaatttttgc
60361 accaaatttttgc
60421 accaaatttttgc
60481 accaaatttttgc
60541 accaaatttttgc
60601 accaaatttttgc
60661 accaaatttttgc
60721 accaaatttttgc
60781 accaaatttttgc
60841 accaaatttttgc
60901 accaaatttttgc
60961 accaaatttttgc
61021 accaaatttttgc
61081 accaaatttttgc
61141 accaaatttttgc
61201 accaaatttttgc
61261 accaaatttttgc
61321 accaaatttttgc
61381 accaaatttttgc
61441 accaaatttttgc
61501 accaaatttttgc
61561 accaaatttttgc
61621 accaaatttttgc
61681 accaaatttttgc
61741 accaaatttttgc
61801 accaaatttttgc
61861 accaaatttttgc
61921 accaaatttttgc
62001 accaaatttttgc
62061 accaaatttttgc
62121 accaaatttttgc
62181 accaaatttttgc
62241 accaaatttttgc
62301 accaaatttttgc
62361 accaaatttttgc
62421 accaaatttttgc
62481 accaaatttttgc
62541 accaaatttttgc
62601 accaaatttttgc
62661 accaaatttttgc
62721 accaaatttttgc
62781 accaaatttttgc
62841 accaaatttttgc
62901 accaaatttttgc
62961 accaaatttttgc
63021 accaaatttttgc
63081 accaaatttttgc
63141 accaaatttttgc
63201 accaaatttttgc
63261 accaaatttttgc
63321 accaaatttttgc
63381 accaaatttttgc
63441 accaaatttttgc
63501 accaaatttttgc
63561 accaaatttttgc
63621 accaaatttttgc
63681 accaaatttttgc
63741 accaaatttttgc
63801 accaaatttttgc
63861 accaaatttttgc
63921 accaaatttttgc
64001 accaaatttttgc
64061 accaaatttttgc
64121 accaaatttttgc
64181 accaaatttttgc
64241 accaaatttttgc
64301 accaaatttttgc
64361 accaaatttttgc
64421 accaaatttttgc
64481 accaaatttttgc
64541 accaaatttttgc
64601 accaaatttttgc
64661 accaaatttttgc
64721 accaaatttttgc
64781 accaaatttttgc
64841 accaaatttttgc
64901 accaaatttttgc
64961 accaaatttttgc
65021 accaaatttttgc
65081 accaaatttttgc
65141 accaaatttttgc
65201 accaaatttttgc
65261 accaaatttttgc
65321 accaaatttttgc
65381 accaaatttttgc
65441 accaaatttttgc
65501 accaaatttttgc
65561 accaaatttttgc
65621 accaaatttttgc
65681 accaaatttttgc
65741 accaaatttttgc
65801 accaaatttttgc
65861 accaaatttttgc
65921 accaaatttttgc
66001 accaaatttttgc
66061 accaaatttttgc
66121 accaaatttttgc
66181 accaaatttttgc
66241 accaaatttttgc
66301 accaaatttttgc
66361 accaaatttttgc
66421 accaaatttttgc
66481 accaaatttttgc
66541 accaaatttttgc
66601 accaaatttttgc
66661 accaaatttttgc
66721 accaaatttttgc
66781 accaaatttttgc
66841 accaaatttttgc
66901 accaaatttttgc
66961 accaaatttttgc
67021 accaaatttttgc
67081 accaaatttttgc
67141 accaaatttttgc
67201 accaaatttttgc
67261 accaaatttttgc
67321 accaaatttttgc
67381 accaaatttttgc
67441 accaaatttttgc
67501 accaaatttttgc
67561 accaaatttttgc
67621 accaaatttttgc
67681 accaaatttttgc
67741 accaaatttttgc
67801 accaaatttttgc
67861 accaaatttttgc
67921 accaaatttttgc
68001 accaaatttttgc
68061 accaaatttttgc
68121 accaaatttttgc
68181 accaaatttttgc
68241 accaaatttttgc
68301 accaaatttttgc
68361 accaaatttttgc
68421 accaaatttttgc
68481 accaaatttttgc
68541 accaaatttttgc
68601 accaaatttttgc
68661 accaaatttttgc
68721 accaaatttttgc
68781 accaaatttttgc
68841 accaaatttttgc
68901 accaaatttttgc
68961 accaaatttttgc
69021 accaaatttttgc
69081 accaaatttttgc
69141 accaaatttttgc
69201 accaaatttttgc
69261 accaaatttttgc
69321 accaaatttttgc
69381 accaaatttttgc
69441 accaaatttttgc
69501 accaaatttttgc
69561 accaaatttttgc
69621 accaaatttttgc
69681 accaaatttttgc
69741 accaaatttttgc
69801 accaaatttttgc
69861 accaaatttttgc
69921 accaaatttttgc
70001 accaaatttttgc
70061 accaaatttttgc
70121 accaaatttttgc
70181 accaaatttttgc
70241 accaaatttttgc
70301 accaaatttttgc
70361 accaaatttttgc
70421 accaaatttttgc
70481 accaaatttttgc
70541 accaaatttttgc
70601 accaaatttttgc
70661 accaaatttttgc
70721 accaaatttttgc
70781 accaaatttttgc
70841 accaaatttttgc
70901 accaaatttttgc
70961 accaaatttttgc
71021 accaaatttttgc
71081 accaaatttttgc
71141 accaaatttttgc
71201 accaaatttttgc
71261 accaaatttttgc
71321 accaaatttttgc
71381 accaaatttttgc
71441 accaaatttttgc
71501 accaaatttttgc
71561 accaaatttttgc
71621 accaaatttttgc
71681 accaaatttttgc
71741 accaaatttttgc
71801 accaaatttttgc
71861 accaaatttttgc
71921 accaaatttttgc
72001 accaaatttttgc
72061 accaaatttttgc
72121 accaaatttttgc
72181 accaaatttttgc
72241 accaaatttttgc
72301 accaaatttttgc
72361 accaaatttttgc
72421 accaaatttttgc
72481 accaaatttttgc
72541 accaaatttttgc
72601 accaaatttttgc
72661 accaaatttttgc
72721 accaaatttttgc
72781 accaaatttttgc
72841 accaaatttttgc
72901 accaaatttttgc
72961 accaaatttttgc
73021 accaaatttttgc
73081 accaaatttttgc
73141 accaaatttttgc
73201 accaaatttttgc
73261 accaaatttttgc
73321 accaaatttttgc
73381 accaaatttttgc
73441 accaa

30361 aactagcatt tctctagatc ctagaaggcct agatcctaa gttggcgag aagttgcgt
30421 agatcaaact agcttagtaag atctctcgat caaagaactc cctatccgtt tcctaccaa
30481 aaccatgggt tggccttct ttccaggcta cctatacatt ttgatctatt tcctcatacg
30541 tcaaataat tcacccaatt tattcaatct tgacgaaatt tttctgtcg ttgatctata
30601 agaagcatca aatgttgatc tttcgaaaaa ttgaaaatac tatgaggaat ataaaagtcta
30661 aagatccgtc tcagaatgac aaatgattcc gttttgcac aaacatcgic tgaccttggc
30721 gaaaaacgtt tcttactta ttcccttagg atacttttc atgtaaaaa aattggata
30781 aagttcctga atcaacagga accaagcagt atgggtggc tggcttgac cactctggct
30841 ttataatgtg gctgaaaatt ggtaactatt tggttgatca aaacatttg cgcacactct
30901 gacagttatt gacagtctat ctttctatct ggtctacaat aaccctacag tatccctaga
30961 gtatacagta gcccgtacta tctctctacc aaaaccaact gttcctcaat tgaaatacaa
31021 aaacccttta aaaaaacaaa aaaaccctaa caaaaaccca tcctacagca ctcatacggt
31081 actacagtagc ccctgcagta ctacagtgc cccacattac tcctacagta tccctaaact
31141 aacccactta gtatagaaac ttaaattcca tggatatttc tagtgacaa tttttgtatg
31201 ttccagtttta aattggccaa agcgaaaaact atacttcctt ttccaaattc tgcaaatttg
31261 ccgtttctc tagttttatt tgaaaaaaaaac ccaatattta attagattac ttctgcaaca
31321 ttatcactca tctcatgacc ttccatcccc tccttttca tggtcacctt gagaactcgt
31381 aacacaaatc aaaactgtac tcttctccc cctcccgccc gcgatcaat ttctcattgt
31441 ctggcgcgtg taaaatggtag caaaagctgg ttgtaatcat aattacactt tgacatttca
31501 ctcgttgcat tggttgatca cactcacttt ttccatttt ctcgctgacc tcctcattgc
31561 agatggacga actaatcacc ctggaaagggtg ctgtcaatc tgaacaaatc attggatccc
31621 atgatttttgc aacttttcc aatatcaccc atcatgagca cgatgagca tcgatttcga
31681 ttgtctgggt gggcaacgtg gcaggtttac ccgtgattgc tctgatagga ttggcttgta
31741 atctacttaa tatggcggtg ctgacctcga ataaaacacg acggcgaatc cttcgtgga
31801 accttttaat agctctcgca gtatgtgata gcttattttt gatatttgat actctggatg
31861 taactccatt atctattcca tcactggcat ttccacttc ttcaatcat ttttattcaa
31921 gaatttgtct ttatattcg acattggcat caactttcta caaaagcagt gttttgtaaag
31981 ttttagtttt tggaaattttt attttattttt aaggtcgtaa tattccaaaa agtaagttt
32041 tggcaactg ccaaattttg gaaaaattta ggcgtatata taggcgtat tgacctattt
32101 tttgattatt tcatacatag ttgttcaatt taagattttt aagctattttt taaccttcat
32161 ttcaaaatat aatcgaaacga ctcaaatcca ttccacata gcatttaat tatttcacat
32221 ttgcctaata cttttttca attttgcaag tattccagaa ttgttggc cttcaacatt
32281 gaacgttacc tggcgtcgt ttgtccgcta aactcgcata gatgggtgtac ttcaagaaac
32341 tcgaaaaatg cgattgcccac tgcgtaaatg ggggttctat ttttagcggg attatttgta
32401 aatctataag aaataactgg gtcaacagtt ttggtaattt gaagttatga ttctaaattg
32461 tggatattttt gaaattccag ggagttgaag atccaggagt tatggtagtt acgcagaaag
32521 tccaatttttgc gaaatatttgc gaaatttaca aaaactttaa attaaaattt caaaaatcta
32581 aaactgcaca ttgttagtgc ttgttttgc caaaaaaaaaat ttcctccag ttttaagttt
32641 aaaatgtgtg cataacaaaaa ctggcataa ctcgattaat tccagaattt tgctctcatt
32701 cctgtgctcc attcaatggc cattggcata tgacacaatt cgttgcattttcg aaagcaattc
32761 aaatcaatac tactacgtgc ttctaatgtc gacaaaccgt gctttcagg tatttaccat
32821 gttctcttt cctacactt ttgttttgc ttccatgg cattgtggcg caaagtatgt
32881 acttgatatac cgccactgag ttgttgcatttta attagaaaaa ctttactta ctgtttggag
32941 aaggtaattt agaaagatgg ggaggttagga atctttggaa ttatatttttta gaatcaaaat
33001 gagcaaatcg gatttgcaca aacacattga gaagtaaaca taacacccga ttagttgaca
33061 gtttgcactt ggaatgacta attgttttgc ttctatgtaa ttgcgtgagc agggggaaaaa
33121 tggcgggaga atagaggatca aaaagatgtat aggttaattt ggtcagtttta ggttttaggt
33181 gggaaatttttgc ttagggac ttgtggac ttgcacata agaactaatg tattttttgc
33241 ctccttttag aaatataat agtaatgtat agtaatattt taactttctg aaaacaatgt
33301 tactttactt atatgattttt ggaacattgc tcaaaaaatgc ccattaaatg tgcaatgtga
33361 tggcgtatca gaacattgtt actttgaggc agtagttgatca caatttttgc aaatgttcat
33421 taaaatgttgc gttatatttgc gaaagttcaat atattgttgc ttatatttccat atacgtttt
33481 aaaaagaaaaa cttcgacaac catgagaaaaa aaggaattttt gtgaaacaag ctggaaatatt
33541 gatctcgaca atttttgcatttca attcaatggc attcaaaaaat tctagatttt ttatatttgc
33601 ttgtttcaat caaaatttttgc cataaatttc caatttttgc ccagatttac taccgaacaa
33661 tggactatgt gtcttttgc gtttcaatg tcctccat tattttgc ttctacatgc
33721 attctcgatca aatcttcactt cttcgacatg ttgttgcatttgc agattcaaga aaatcgaaag
33781 aaaccaaaact ttccgatggt ttgttgcatttgc atgatgtatca taacaaccga actatgagag
33841 caaatcgatca gcttttcgc gtcgtctca tgcttttgc ttgttggc cctcaggctc
33901 ctgcagaat tctgttgcatttgc atgtatggac agtacatcccaat ctttatgtat

33961 gtttgagcca acaactggta ttcctgaatg cgtcactcaa tttctgtttg tattgtgttg
34021 tgtcaagag atatcgaacg ttgatgaaac agactttgaa gaagttcttg cacaaacttg
34081 aaggtagca acatttgaa attttgcga gctcgctcg catggtgtgt tgaagtttt
34141 ttcctggaaa tgtaagaaga aatatagaaa aatatttggaa ttatttggaa atgactttt
34201 caaattaaa tttaaaaaaa ttgctcaaaa attgactcaa agtcgcaatg tgcgagtgaa
34261 atatgccatt tgatatacg atatttgatt taattcttga gcaaattttt acaaatttca
34321 tataaaagtg aaactattt tagaaagtac aagtattttt ctatatttct atataaattt
34381 caaaaaaaaat acttaaacat aacgaagaga aaaaagggcc tgaaaacggc cttacataat
34441 ttcctacttc atgcgttaac taaagttgaa tatattccaa ttttcaggag tcgaccatcc
34501 attccaaatc aatctgaaac aaacaaagag cagctcgca catgtgacat ctcttgagga
34561 tcatcatgct cacctcatc aaaatgtcta gatcatactt gcttactcaa atcagataca
34621 cgggttctct ccctcattcc tagcattttg cacatacata tatgtattac taggttcatg
34681 ctttatatgt acttttattt cacgggtttt accttgattc cagtcctgt aattagaatg
34741 atgatctcg gagacagaga ataaatcggt attgtttttt gatttcttga tgattggta
34801 atggtgatga cgtgaagggg aaaggtgtgt ttggatgaa atttgacgat tttcagacgt
34861 caatagagaa gtttgattgg gggtcatcg ggaattatacg gcgctaatta ttgaatgaaa
34921 acaatgacga aaaatgttca aagtcagtg atctatacg gaaatttagt aagagacttg
34981 ccaaattact tatgcacatc ttcaattaa tctgagtggt tgtttacact tggagaactg
35041 tatttgatag ttttattttc acaaaaaatg tgcgttacatg cttttttttt atgcagcaaa
35101 tatctttaa aaattaaaaaa aaaaactaaa tattaaacaa aaaagttaac atttttattt
35161 actgtcaaaa aatggcaacc actcaattttt cgactatcaa aaaaagaat cgaaaagttt
35221 atattacaaa ttttttttac tgatttttagg ggttcaaaaca tgcaagaatg ctgc当地
35281 ctttggaaatg ccaattttt aatattccaa ttttagaaaaa ctgacagtaa atattgaaca
35341 ttttaattt ttttggtaac acatgttagt gtccagttaa tttggaaactt gccaatttca
35401 agattactt aataattact gcacaatctc tactagaatc gatttttga tctaagaatg
35461 ctttttgaat tttcaagcct ttttttttca acagtttgc acgtcaacta aaaaatgtt
35521 taatctaaa gtaattttaa actcacatca atagacttgc acttaccaag gtttccgtac
35581 tttttttttt catgctgtac ggcgttcaaa attatttttattt tttttttttt tttttttttt
35641 ttcaccatgtt gatattatca attttttttt tttttttttt tttttttttt tttttttttt
35701 taaaaccata gttttttttt caattttttt gaaattttctt cttttttttt tttttttttt
35761 acttcatagc ttcatgttagg cgtaatagct tcaattttttt tttttttttt tttttttttt
35821 cccactctgc cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
35881 cgcctctct gtcgtcatcg acgcgaatctt tttttttttt tttttttttt tttttttttt
35941 ctaaatatcatat cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36001 ttcttttgcattttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36061 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36121 gtattttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36181 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36241 agaaaaatat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36301 aaagtgtcg aatttgcgtt aaaaatactg tttttttttt tttttttttt tttttttttt
36361 tcaactttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36421 ttcagataat tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36481 aaaaattttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36541 cagaaaaatg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36601 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36661 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36721 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36781 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36841 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36901 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
36961 agagatgaca acaataaaaca aatagagttt tttttttttt tttttttttt tttttttttt
37021 cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
37081 gaaaattttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
37141 gagagcaaga aattttttttt tttttttttt tttttttttt tttttttttt tttttttttt
37201 ggacgcttca aatagttttt tttttttttt tttttttttt tttttttttt tttttttttt
37261 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
37321 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
37381 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
37441 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt
37501 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt

37561 aattgctcaa aaacctactc aaacatcaac gtgccgagtg aatgtgccaa ttgacacatt
37621 gaaatttgag tcagtttta ggcagttct taaaatttt aattgaatt taggtttta
37681 tcggaaagta cacatcttt tctatatcat caaataactt ttccaaaaat aacctagaca
37741 tgtcgattag aaaagtgggg ttttaaggga caaattttga aagtaggttt caaactttca
37801 gatgctctaa gaattacaga ctaaccatgt gattaacaga ataaaaaatg ctatttcca
37861 aaaaacctca atttctgaa attccaggtc tcgcccacggc tatcgcatg ctttcgaaa
37921 atcgccacaa tacgctgggt cgccggagat taaaatttg agccaactgg atccgataca
37981 cattctacgc cgtcaacggc atctatgcgc ttctttttt actaccagtt tacttcagaa
38041 tacctgatcc agaatgggc aactgttcc ttctaaaagt agtctgtaga ctttataac
38101 ttattgaatt tcaatgttcc tatatttcag attcttcgt gccctcatcc gtcatattt
38161 caatcgaaatg ttttggttt ttcaatggat atatcgcatg ttactggac ggctggaaata
38221 ttttgctat ttttctgac agaagtattc gtactttgca tccattcaag ttatTTCTG
38281 atgagctaa aaacacacat gtcaccaacc accagaaaat tacaacaaa attctttatc
38341 gatatgattt tccaagtggc cttttacttc tggtttctt aatttggaaat catttgcgc
38401 catcaatcaa caatgttgc cacgccttcc gtgtatcgct gggtggcgt atggaaaat
38461 acattttcag gtttcaatgc ctgtcggtt catcggtttt cccatgatct attgttttta
38521 ttcaatttgtt tggcagcagt ataatcagag taagtcatgg tgcatccgac cagctaaacc
38581 ataaaattgtt attctcccg ccacacatca caagctgggaa ttgctcccaa aatataagag
38641 acttccccca acgtggggcg taactttttt tggcggagta gcgagcaaca gcctacctgc
38701 ctggcggacc cgtttgcattt cctacaatgg gcaatggcg actaactggc gagtagtagg
38761 cgactccaaa tgcctaccatc tacctatatac octgcctacatc gtgcctgcattt
38821 gatcttcac ataacatgta catacggtca gtgttcaaca acattgcgt aatgtgcata
38881 tctctacacg gaatgtgctc aaccatcaca atgatctgcc tgaatccaac atatcgcat
38941 ttacactttt ccgtttgcac gtgttcttat tatgatccaa ctctcgaag aagctccgt
39001 atgaccgtgt ccccccgcac cgttcacaaa caaaaacattt gaatttttta aacgttttt
39061 ggtgataata aaaaaaaattt ttaagttgaa acttaattttt ttttcgaca attttcata
39121 ggcttcttgc ttcaacttcaa caactcggtt aatttttaattt tctattttgtt ctgttatgtt
39181 gcaattact ttcaaatggaa ggttccgcaaa tgatgggtt gccttaagt agtaaagtaa
39241 cctattttctt cgtaatcaat agcggaaaat tactagggtt actgtactac ttgaaggca
39301 catgtgtac tttttgcga aaatattttc gtggcggagaa atttggatct ttcaaagttg
39361 accgattttac agacaatgac tcattctgtg gtatgttgcgaaaatgtgaa atccgaatat
39421 cggatcggtc tccgaaacac ctcgatttac gacgtggcag tgaagattgtt gaatccgaac
39481 gaaagcccaa agcttgagcg ttacgaatgc ctgggtctat ccaataagta cacggaaagtc
39541 gcaatcccttgc aaacaccgtc caaagccgtt ctgtcgatggaa acaagccgtt cgagatctac
39601 gctaggggcca tctaccggta caatcgcaaa aacattcgcc attggattga aggacacgtg
39661 tcggacaagc cacatcatct cgtccagtcg ctcaatttttgcgcgacaa tgcaatgt
39721 tcggcggaaaa cggtaaaaaaa agtttaacgc agtcagcagg attcgaacctt acgcggcag
39781 agcccaatttgc atttcttagtc aatctccatc cacaggtgtat tcgcccacggc cgcataatgc
39841 ctcaagaccc attatgcgcg tggttgcgaa cgaggaccc acattatgtt cgttttgcg
39901 aagcgttcgc agaaacgagc ataatgcctc gccgatggc acaatgcgaa cgctcgcaat
39961 gtgcgcattt tggttgcgcg ttattttccat cattaaagcg ctcatttcag ttatgtttaaa
40021 gctatttttta ttgagttct ctgttttattt actgtttttt tgctgataact aaagtttctg
40081 aaaaacaaaaa ctctcgattt agaaggaact tgcagattt cgaaaatcat aagggtccac
40141 ccttatgata taaaattttt gatggaaattt ttttgggtttt aaaaattttt cggaaaacatg
40201 ttgaacgtgt agaaaatgtt cagtttgata tttttccatcaaa gtgtgagagt tcacaatgaa
40261 tggtcagcca agaaatcatg gaaagtcttagt agttgggtca tttccgttgc tcaaggcatt
40321 gtgcaatccg aagacaaagg tcgagacgtt ggcacatggg gagacaaaatg ctaaatctag
40381 tggaaatgaaa acttatgtat cgaataaaaaa tgcgttgcgaa ttatcataca tcaatgt
40441 aactacaatg atattctgaa atatacaaga aattcaaaaaa ataaacacag ggagagagga
40501 gagagaggtg ttgaggggggt gaaagatacg gcgggttaac gaatcaaaaaa tattttgtt
40561 cacggaaatgtt gttatattat tagataacag aggtttcagt agtgggttgc tgcgtggaaag
40621 agccaaattcg ttttggtaga ccatgatcca ttgaaggcattt cttcgtagat tccagcgaaa
40681 aactttctcg cttcttctt gctttctcca ttgcagaaga gggtttctg aaaaaaaaaaac
40741 aaattttat atgaaagaaga aatgctaattt agaaaatgtgaa tacttttcat caaaacgaat
40801 ttattaccatc gacgaaagac tggttttttc tcttagaaata cggtagccgg tctcgccaca
40861 ataaaactttt gtttaatgca aggaagtgtg cgcctttaag gggtaactgtt gtttttttt
40921 ttaagttttt tcatttggtc atttggattt tcaagcaattt aattttttt aatcgcaaaa
40981 ctatgaaaaaa tcaatgcaat tttttttcag tagcaacaag ttttgcactt acagttactct
41041 ttattttttttt ggcacacactt acaaaaaatg tcgtttcggag gcccgggttacc
41101 gtaattttga cggtaatattt aataatgtt ttacctactg atttttattt tttttttttt

EXHIBIT C

C. elegans Protein

Entrez	PubMed	Nucleotide	Protein	Genome	Structure	PMC	Taxonomy	Books
Search <input type="text" value="Nucleotide"/> <input checked="" type="checkbox"/> for <input type="text"/>				<input type="button" value="Go"/>	<input type="button" value="Clear"/>			
<input type="button" value="Limits"/>			<input type="button" value="Preview/Index"/>		<input type="button" value="History"/>	<input type="button" value="Clipboard"/>	<input type="button" value="Details"/>	
<input type="button" value="Display"/>		<input type="button" value="default"/>	Show: <input type="text" value="20"/> <input type="button" value="▼"/>	<input type="button" value="Send to"/>	<input type="button" value="File"/>	<input type="button" value="Get Subsequence"/>	<input type="button" value="Features"/>	

1: CAA91377. C. elegans AGE-1 ...[gi:6018364]

BLink, Domains, Links

LOCUS CAA91377 1146 aa linear INV 23-OCT-2003
DEFINITION C. elegans AGE-1 protein (corresponding sequence B0334.8).
ACCESSION CAA91377
VERSION CAA91377.2 GI:6018364
DBSOURCE embl locus CEY62F5A, accession AL110499.1
 embl locus CEB0334, accession Z66519.2
KEYWORDS Caenorhabditis elegans
SOURCE Caenorhabditis elegans
ORGANISM Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida;
 Rhabditoidea; Rhabditidae; Peloderinae; Caenorhabditis.
REFERENCE 1
AUTHORS none.
TITLE Genome sequence of the nematode *C. elegans*: a platform for investigating biology. The *C. elegans* Sequencing Consortium
JOURNAL Science 282 (5396), 2012-2018 (1998)
MEDLINE 99069613
PUBMED 9851916
REMARK The *C. elegans* Sequencing Consortium.
REFERENCE 2 (residues 1 to 1146)
AUTHORS Swinburne, J.
TITLE Direct Submission
JOURNAL Submitted (27-OCT-1995) Nematode Sequencing Project, Sanger Institute, Hinxton, Cambridge CB10 1SA, England and Department of Genetics, Washington University, St. Louis, MO 63110, USA. E-mail: jes@sanger.ac.uk or rw@nematode.wustl.edu
COMMENT On Oct 11, 1999 this sequence version replaced gi:3873748.
 Coding sequences below are predicted from computer analysis, using predictions from Genefinder (P. Green, U. Washington), and other available information.
 Current sequence finishing criteria for the *C. elegans* genome sequencing consortium are that all bases are either sequenced unambiguously on both strands, or on a single strand with both a dye primer and dye terminator reaction, from distinct subclones. Exceptions are indicated by an explicit note.
 This sequence is the entire insert of clone B0334. The true right end of clone W02B12 is at 4181 in this sequence. The start of this sequence (1..104) overlaps with the end of sequence Z66521. The end of this sequence (41657..41812) overlaps with the start of sequence AL110499.
 For a graphical representation of this sequence and its analysis see:- <http://wormbase.sanger.ac.uk/perl/ace/elegans/seq/sequence?name=B0334>
IMPORTANT: This sequence is NOT necessarily the entire insert of the specified clone. It may be shorter because we only sequence overlapping sections once, or longer because we arrange for a small

EXHIBIT C

overlap between neighbouring submissions.
[020104 d1] Sequence correction based on Thierry-Mieg EST analysis.

FEATURES
source Location/Qualifiers
1..1146
/organism="Caenorhabditis elegans"
/strain="Bristol N2"
/db_xref="taxon:6239"
/chromosome="II"
/clone="B0334"

Protein . 1..1146
/product="C. elegans AGE-1 protein (corresponding sequence
B0334.8)"

CDS 1..1146
/gene="age-1"
/standard_name="B0334.8"
/coded_by="join(complement(AL110499.1:6114..6178),
complement(AL110499.1:5742..6027),
complement(AL110499.1:5129..5689),
complement(AL110499.1:3804..5080),
complement(AL110499.1:2872..3132),
complement(AL110499.1:2446..2820),
complement(AL110499.1:350..700),
complement(Z66519.2:41436..41568),
complement(Z66519.2:40596..40727))"
/note="contains similarity to Pfam domain: PF00454
(Phosphatidylinositol 3- and 4-kinases), Score=271.3,
E-value=4e-78, N=2; PF00613 (Phosphoinositide 3-kinase
family, accessory domain (PIK domain)), Score=41.6,
E-value=6.8e-10, N=1; PF00792 (C2 domain), Score=96.6,
E-value=1.6e-25, N=1; PF00794 (PI3-kinase family,
ras-binding domain), Score=141.9, E-value=3.7e-39, N=1;
PF02192 (PI3-kinase family, p85-binding domain),
Score=172.3, E-value=2.6e-48, N=1
cDNA EST CEMSC28F comes from this gene
cDNA EST yk152c9.3 comes from this gene
cDNA EST yk152c9.5 comes from this gene
cDNA EST U56101 comes from this gene
cDNA EST yk192d4.3 comes from this gene
cDNA EST yk260g10.3 comes from this gene
cDNA EST yk302a12.3 comes from this gene
cDNA EST yk355b7.3 comes from this gene
cDNA EST yk360d11.3 comes from this gene
cDNA EST yk192d4.5 comes from this gene
cDNA EST yk260g10.5 comes from this gene
cDNA EST yk302a12.5 comes from this gene
cDNA EST yk355b7.5 comes from this gene
cDNA EST yk360d11.5 comes from this gene
cDNA EST yk543g10.3 comes from this gene
cDNA EST yk543g10.5 comes from this gene
cDNA EST yk601d4.5 comes from this gene
cDNA EST yk847g08.5 comes from this gene
cDNA EST yk1126g04.5 comes from this gene"
/db_xref="GOA:Q94125"
/db_xref="SWISS-PROT:Q94125"

ORIGIN

1 mhvnihpql qtmveqwqmr erpsleteng kgsllleneg vaditmcpf gevisvvfpw
61 flanvrtsle iklsdfkhql feliapmkwg tysvpqdqv frqlnnfgei evifnndqpl
121 sklelhgtfp mlflyqpdpdi nrkelmsdi shclgysldk leesldeelr qfraslwart
181 kktcltrgle gtshyafpee qylcvgescp kdleskvkaa klsyqmfwrk rkaeingvce
241 kmmkiqiefn pnetpksllh tflyemrkld vydtddpade gwflqlagrt tfvtnpdvkl

EXHIBIT C

301 tsydgvrsel esyrcpgfvv rrqslvlky crpkplyeph yvraherkla ldvlsvsids
361 tpkqsknsdm vmtdf rptas lkqvslwdld anlmirpvni sgdfpadvd myvriefsvy
421 vgtltasks ttkvnaqfak wnkemytfdl ymkdmppsa l sirvlygkv k lkseefevg
481 wvnmsltdwr delrqgqflf hwapeptan rsrigengar igtnaavtie issygrvrm
541 psqgqytylv khrstwtetl nimgddyesc irdpgykkliq mlvkhessgi vleedeqrhv
601 wmwrryiqkq epdllivlse lafvwtdren fselyvmlek wkppsvaaal t llgkrctdr
661 virkfavekli neqlspvtfh lfilpliqal kyepraqsev gmmlltralc dyrighrlfw
721 llraeiarlr dcclkseeyr risllmeayl rgneehikii trqvdmvdel t ristlvkgm
781 pkdvatmklr delrsishkm enmdspldpv yklgemidk aivilgsakrp lmlhwknknp
841 ksdlhlpfca mifkngddlr qdmlvlqvle vmdniwkaan idcclnpyav lpmgemigii
901 evvpncktif eiqvgtgfnn tavrsidpsf mnkwirkqcq iedekkskk dstknpiekk
961 idntqamkky fesvdrflys cvgysvatyi mgikdrhsdn lmltedgkyf hidfghilgh
1021 gktklgiqrd rqpfiltrehf mtvirsgksv dgnshelqkf ktlcveayev mwnnrdlfvs
1081 lftlmlgmel pelstkadld hlkktlfcng eskeearkff agiyeeafng swstktnwlf
1141 havkhy

//

[Disclaimer](#) | [Write to the Help Desk](#)
[NCBI](#) | [NLM](#) | [NIH](#)