CHAPITRE 4

Assemblage et système linéaire équivalent

- Principe de construction (cas élasticité + isoparamétrique)
- Matrices de rigidité/conductivité et seconds membres élémentaires (cas isoparamétrique)
- Assemblage
 - Prise en compte des conditions aux limites

Méthodes de résolution - direct - i femile

J

Rappel: On souhaite écrire de manière matricielle les formulations faibles des problèmes de structure s'écrivant : $Trouver\ u^h \in U^h_{ad}(u^d)\ tel\ que$

$$a(\underline{u}^h,\underline{v}^h) = l(\underline{v}^h) \ \forall \underline{v}^h \in \ U_{ad}(\underline{u}^d)$$

$$\text{Réécriture du terme bilinéaire}: \ a(\underline{u}^h,\underline{v}^h) = \int_{\Omega^h} \underline{\underline{\varepsilon}}(\underline{u}^h) : \underline{\mathbb{A}}:\underline{\underline{\varepsilon}}(\underline{v}^h) dV = \int_{\Omega^h} \underline{\underline{\varepsilon}}(\underline{v}^h) : \underline{\mathbb{A}}:\underline{\underline{\varepsilon}}(\underline{u}^h) dV$$

Et avec la notation matricielle :
$$a(\underline{u}^h,\underline{v}^h) = \int_{\Omega_h} {}^t \left\{ \varepsilon(\underline{v}^h) \right\} [A] \left\{ \varepsilon(\underline{u}^h) \right\} dV$$

Utilisation de la représentation globale de $\{\epsilon\}$:

$$\left\{ \varepsilon(\underline{v}^h) \right\} = \left[\tilde{B}(\underline{x}) \right] \left\{ V \right\}$$
$$\left\{ \varepsilon(\underline{u}^h) \right\} = \left[\tilde{B}(\underline{x}) \right] \left\{ U \right\}$$

$$a(\underline{u}^h, \underline{v}^h) = \int_{\Omega^h} {}^t \{V\} {}^t \left[\tilde{B}(\underline{x}) \right] [A] \left[\tilde{B}(\underline{x}) \right] \{U\} dV$$

$$a(\underline{u}^h, \underline{v}^h) = {}^t \{V\} \int_{\Omega^h} {}^t \left[\tilde{B}(\underline{x}) \right] [A] \left[\tilde{B}(\underline{x}) \right] dV \{U\} \qquad \boxed{a(\underline{u}^h, \underline{v}^h) = {}^t \{V\} [K] \{U\}}$$

$$a(\underline{u}^h,\underline{v}^h) = {}^t \{V\} [\underline{K}] \{U\}$$

Symétrie

Réécriture du terme linéaire :
$$l(\underline{v}^h) = \int_{\Omega^h} \underline{f}_v.\underline{v}^h dV + \int_{\partial\Omega_F^h} \underline{F}^d.\underline{v}^h dS$$

Travail des efforts volumiques Travail des efforts surfaciques imposés

Avec la notation matricielle :

$$l(\underline{v}^h) = \int_{\Omega^h} {}^t \left\{ v^h \right\} \cdot \left\{ f_v \right\} dV + \int_{\partial \Omega_E^h} {}^t \left\{ v^h \right\} \cdot \left\{ F^d \right\} dS$$

Utilisation de l'interpolation globale : $\left\{v^h\right\} = \left[\tilde{N}(\underline{x})\right]\left\{V\right\}$

$$l(\underline{v}^h) = {}^{t} \left\{ V \right\} \left\{ \int_{\Omega^h} {}^{t} \left[\tilde{N}(\underline{x}) \right] \left\{ f_v \right\} dV + \int_{\partial \Omega_F^h} {}^{t} \left[\tilde{N}(\underline{x}) \right] \left\{ F^d \right\} ds \right\}$$

$$l(\underline{v}^h) = {}^t \{V\} \{F\}$$

Au final :
$$a(\underline{u}^h,\underline{v}^h)=l(\underline{v}^h)$$

Y V & R

Equivaut à :
$${}^t\left\{ {V} \right\}\left[{K} \right]\left\{ {U} \right\} = {}^t\left\{ {V} \right\}\left\{ {F} \right\}$$

 $[K]\{U\} = \{F\}$

Problème: On ne connaît pas toujours les matrices globales composant [K] et {F}

→ On évalue la contribution de chaque élément puis on somme,

sachant que :

$$\Omega^h = \bigcup E_e$$

Somme,
$$\int_{\mathbb{R}^h} \int_{\mathbb{R}^e} \int_$$

Il faudrait donc réécrire le système sous la forme:

Ne concerne que certains ddls propres à chaque élément → on ne peut pas simplifier, il faut utiliser une procédure d'assemblage.

4

En effet:

$$[connec] = \begin{bmatrix} (2) & (4) & (3) \\ (1) & (2) & (3) \end{bmatrix}$$

$$\sum_{e=1}^{N_{E_e}} {}^t \left\{ \boldsymbol{V}_e \right\} \left[\boldsymbol{K}_e \right] \left\{ \boldsymbol{U}_e \right\} = \sum_{e=1}^{N_{E_e}} {}^t \left\{ \boldsymbol{V}_e \right\} \left\{ \boldsymbol{F}_e \right\}$$

Dans la numérotation locale de chaque élément l'interpolation du déplacement a la même forme pour les 2 éléments : $(u^{(1)})$

$$\underline{u^{(i)}} = \sum_{k=1}^{3} N_k \underline{u}^{(k)} \qquad \{\underline{\underline{u^{(i)}}}\} = [N_e(\underline{a})] \, \{U_e\} = [N_e(\underline{a})] \, \begin{cases} u_1^{(1)} \\ u_2^{(1)} \\ \vdots \\ u_1^{(3)} \\ u_2^{(3)} \end{cases}$$
 Identique pour les deux éléments

Même forme dans la numérotation locale

$$\sum_{e=1}^{N_{E_e}} {}^t \left\{ \boldsymbol{V_e} \right\} \begin{bmatrix} \mathbf{6} \, \mathbf{x} \, \mathbf{6} \\ \boldsymbol{K_e} \end{bmatrix} \left\{ \boldsymbol{U_e} \right\} = \sum_{e=1}^{N_{E_e}} {}^t \left\{ \boldsymbol{V_e} \right\} \left\{ \boldsymbol{F_e} \right\}$$

Dans la numérotation locale de chaque élément l'interpolation du déplacement a la même forme pour les 2 éléments :

$$\underline{u^{(i)}} = \sum_{k=1}^{3} N_k \underline{u}^{(k)} \qquad \{\underline{u^{(i)}}\} = [N_e(\underline{a})] \ \{U_e\} = [N_e(\underline{a})] \ \{\underline{u^{(1)}}, u_2^{(1)}\}$$
 Identique pour les deux éléments

 $[connec] = \begin{bmatrix} (2) & (4) & (3) \\ (1) & (2) & (3) \end{bmatrix}$

Mais:

Global

Global

Même forme dans la numérotation locale

$$\{U_{1}\} \neq \{U_{2}\}$$

Rg : on définit des matrices de localisation telles que :

$$\{U_e\}=\{U_{(i)}\}=[L_{(i)}]\{U\}$$
 I definitely in the second $\{U_e\}$

N° local du nœud

$$connec(e, j) = (i)$$
 N° global du nœud

$$\{U_{\widehat{1}}\} = \begin{cases} u_1^{(2)} \\ u_2^{(2)} \\ u_2^{(4)} \\ u_1^{(4)} \\ u_2^{(3)} \\ u_2^{(4)} \\ u_1^{(4)} \\ u_2^{(4)} \\ u_2^{(4)} \\ u_2^{(4)} \\ u_2^{(4)} \\ u_1^{(4)} \\ u_2^{(4)} \\ u_2^{(4)} \\ u_1^{(4)} \\ u_2^{(4)} \\ u$$

- $[K_e] = \int_{E_e}^{t} [B_e(\underline{a})] [A] [B_e(\underline{a})] dV_{E_e}$ Intégrales du type :
- Pour systématiser les calculs on utilise la représentation paramétrique :

$$[K_{e}] = \int_{E_{e}}^{t} [B_{e}(\underline{a})] [A] [B_{e}(\underline{a})] dV_{E_{e}} = \int_{\Delta_{e}}^{t} [B_{e}(\underline{a})] [A] [B_{e}(\underline{a})] J_{e}(\underline{a}) dV_{\Delta_{e}}$$

$$\downarrow dx_{1} dx_{2} dx_{3}$$

$$da_{1} da_{2} da_{3}$$

- Intégrales restent complexes à calculer à cause de [Be(a)] et J(a), mais :
 - il existe des méthodes d'approximation (cf suite du cours)
 - Pour les éléments les plus simples [Be] et J ne dépendent pas de a

Intégrales du type :

$$\{F^e\} = \int_{E_e}{}^t \left[N_e(\underline{a})\right] \{f_v\} \, dV + \int_{\partial E_e \bigcap \partial \Omega_F^h}{}^t \left[N_e(\underline{a})\right] \{F^d\} \, dS$$
 nodales élémentaires

Forces nodales élémentaires

= (nodal forces)

Intersection de la frontière de l'élément avec la frontière sur laquelle des efforts sont imposés

$$=\partial\Omega_F^e$$

$$\{F^e\} = \{F^e_v\} + \{F^e_S\}$$

- Pour systématiser les calculs on utilise la représentation paramétrique :
 - > Efforts volumiques :

$$\{F_v^e\} = \int_{E_e} {}^t \left[N_e(\underline{a}) \right] \{f_v\} \, dV_{E_e} = \int_{\Delta_e} {}^t \left[N_e(\underline{a}) \right] \{f_v\} \, J_e(\underline{a}) dV_{\Delta_e}$$

> Efforts surfaciques :

$$\{F_S^e\} = \int_{\partial\Omega_D^e} {}^t \left[N_e(\underline{a})\right] \left\{F^d\right\} dS$$

Impossible d'utiliser la relation : $dV_{E_e} = J(\underline{a})dV_{\Delta_e}$

$$\underline{x} = \sum_{Noeuds \ de \ \partial \Omega_F^e} \hat{N}_k(\underline{b}) \underline{x}^{(k)}$$

$$Ex: (b_1,b_2) = (a_1,1,a_3)$$

Restrictions des fonctions de forme du Hex8/Cub8 = celles du Q4

$$\hat{N}_k(b_1, b_2) = N_k(b_1, 1, b_2)$$

On utilise ensuite la formule de transport de l'aire :

$$\underline{n}dS = d\underline{x} \wedge d\underline{x}'$$

$$d\underline{x} = \frac{\partial \underline{x}}{\partial b_1} db_1 + \frac{\partial \underline{x}}{\partial b_2} db_2 = \sum_{k=1}^{n_e} \frac{\partial \hat{N}_k(\underline{b})}{\partial b_1} \underline{x}^{(k)} db_1 + \sum_{k=1}^{n_e} \frac{\partial \hat{N}_k(\underline{b})}{\partial b_2} \underline{x}^{(k)} db_2$$

> Efforts surfaciques :

Après développement et simplification + propriétés des fonctions de forme :

$$\underline{n}dS = \left\{ \left(\sum_{k} \frac{\partial \hat{N}_{k}}{\partial b_{1}} \underline{x}^{(k)} \right) \wedge \left(\sum_{k} \frac{\partial \hat{N}_{k}}{\partial b_{2}} \underline{x}^{(k)} \right) \right\} db_{1}db_{2}$$

$$\underline{\hat{J}}(\underline{b}) \qquad \qquad \underline{dS_{\Delta_{e}}}$$

$$\underline{F}^d$$

Et au final :
$$dS = |\hat{\underline{J}}(\underline{b})| dS_{\Delta_e} = \hat{J}(\underline{b}) dS_{\Delta_e}$$

$$\{F_S^e\} = \int_{\Delta_-}^{t} \left[\hat{N}(\underline{b}) \right] \left\{ F^d(\underline{x}(\underline{b})) \right\} \hat{J}(\underline{b}) db_1 b_2$$

$$^{t}\left[N(\underline{b})\right]$$

= Matrice d'interpolation dérivée de celle du Q4 avec ex précédent

Bilan : Intégrales plus complexes à calculer / terme volumique (norme -> racine carrée)

Cas particulier = celui des pressions (normale) \underline{F}^{d} =-pn

$$\{F_S^e\} = \int_{\Delta} -p(\underline{x}(\underline{b}))^t \left[\hat{N}(\underline{b}) \right] \left\{ \hat{J}(\underline{b}) \right\} dS_{\Delta_e}$$

Travail par unité d'épaisseur : $\int_{S_{\Delta_e}} dS_{\Delta_e} = \int_{l_{\Delta_e}} dl_{\Delta_e} \times 1$ a en élacticité 2D :

Ex de restriction des fonctions de forme en élasticité 2D :

$$\int_{\Omega_F^e} dS_{\Omega_F^e} = \int_{l_{\Omega_F^e}} dl_{\Omega_F^e} \times 1$$

$$\int_{\Omega_F^e} dS_{\Omega_F^e} = \int_{l_{\Omega_F^e}} dl_{\Omega_F^e} \times 1$$

$$U = \{N_e(\underline{a})\} \begin{Bmatrix} u^{(1)} \\ u^{(2)} \end{Bmatrix} = \{N_1 N_2\} \begin{Bmatrix} u^{(1)} \\ u^{(2)} \end{Bmatrix}$$

$$\int_{e} dS_{\Omega_F^e} = \int_{l_{\Omega_F^e}} dl_{\Omega_F^e} \times 1$$

$$\int_{\Omega_F^e} dS_{\Omega_F^e} = \int_{l_{\Omega_F^e}} dl_{\Omega_F^e} \times 1$$

$$\int_{(1)}^{(2)} \underline{F}^d \underline{v}^h dl = \int_{(1)}^{(2)} {}^t \left\{ V_e \right\} {}^t \left[\hat{N}(\underline{b}) \right] \left\{ F^d \right\} dl$$

$$= \int_{-1}^{1} {}^t \left\{ V_e \right\} {}^t \left[\hat{N}(\underline{b}) \right] \left\{ F^d \right\} J_e db$$

$$\int_{(1)}^{(2)} \underline{F}^{d} \underline{v}^{h} dl = {}^{t} \{ V_{e} \} \frac{L}{2} \int_{-1}^{1} {}^{t} \begin{bmatrix} \frac{1-b}{2} & 0 & \frac{1+b}{2} & 0 \\ 0 & \frac{1-b}{2} & 0 & \frac{1+b}{2} \end{bmatrix} db \begin{Bmatrix} -p \\ 0 \end{Bmatrix}$$

$$\{ F_{e}^{S} \} = \frac{-pL}{2} \begin{Bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{Bmatrix} \begin{Bmatrix} F_{e}^{(1)} \end{Bmatrix}$$

Seconds membres élémentaires induits par une précontrainte $\{\sigma_0\}$:

Présence d'un terme supplémentaire au second membre dans la formulation faible

$$F_0^h = -\int_{\Omega^h} \underline{\underline{\sigma}}_0 : \underline{\underline{\varepsilon}}(\underline{v}^h) dV$$

notation matricielle :
$$F_0^h = -\int_{\Omega^h} {}^t \left\{ \varepsilon(\underline{v}^h) \right\} \left\{ \sigma_0 \right\} dV$$

On peut alors décomposer par élément :

$$\left\{ \varepsilon_{e}(\underline{v}^{h}) \right\} = \left[B_{e}(\underline{a}) \right] \left\{ V_{e} \right\}$$
 $-\sum_{e=1}$

$$-\sum_{e=1}^{N_E} \int_{E_e} t \left\{ \varepsilon^e(\underline{v}^h) \right\} \left\{ \sigma_0 \right\} dV$$

$$\sum_{e=1}^{N_E} {}^t \left\{ V_e \right\} \int_{E_e} - {}^t \left[B_e(\underline{a}) \right] \left\{ \sigma_0(\underline{x}(\underline{a})) \right\} dV \qquad = \sum_{e=1}^{N_E} {}^t \left\{ V_e \right\} \left\{ F_0^e \right\}$$
 II faut ensuite assembler

On peut par ailleurs réécrire l'intégrale sur l'élément de référence :

$$\{F_0^e\} = -\int_{\Delta_e}^{t} \left[B_e(\underline{a})\right] \left\{\sigma_0(\underline{x}(\underline{a}))\right\} J(\underline{a}) dV_{\Delta_e}$$

Matrices de conductivité élémentaires

= intégrales du type :

THERMIQUÉ
$$[K_e] = \int_{E_e} k^{\ t} \left[B_e\right]. \left[B_e\right] dV$$

Rappel : attention matrice de taille différente / élasticité linéaire

Viennent des termes ci-dessous de la formulation faible :

$$\int_{E_0}^{t} \left\{ grad(\theta) \right\} k \left\{ grad(T) \right\} dV$$

On peut comme en élasticité utiliser la représentation paramétrique, de sorte que :

$$[K_e] = \int_{\Delta_e} k^t [B_e(\underline{a})] . [B_e(\underline{a})] J_e(\underline{a}) dV_{\Delta_e}$$

Seconds membres élémentaires (partie volumique – sources de chaleur) :

$$\int_{E_e} p \, \theta(\underline{x}) dV = \int_{E_e} p^t \{N_e\} \{\theta_e\} dV$$
$$= {}^t \{\theta_e\} \int_{E_e} p \{N_e\} dV$$
$$= {}^t \{F_{e \ v}\}$$

Que l'on réécrit :

$$\int_{E_{-}} p \; \theta(\underline{x}) dV = {}^{t} \left\{ \theta_{e} \right\} \int_{\Delta_{-}} p \left\{ N_{e}(\underline{a}) \right\} J_{e}(\underline{a}) dV_{\Delta_{e}}$$

Seconds membres élémentaires (partie **surfacique** – sources de chaleur) :

Intersection de la frontière de l'élément avec la frontière sur laquelle des flux sont imposés $=\partial\Omega^e_O$

Par les même méthodes qu'en élasticité on réécrit ce terme :

$${}^{t}\left\{\theta_{e}\right\}\left\{F_{e\ s}\right\} = {}^{t}\left\{\theta_{e}\right\} \int_{\Delta_{e}} \left\{N_{e}(\underline{b})\right\} {}^{t}\left\{q^{d}\right\}\left\{n\right\} \hat{J}(\underline{b}) dS_{\Delta_{e}}$$

Objectif = calculer la matrice de rigidité [K] sans faire appel aux fonctions d'interpolation globales (difficiles à calculer) mais en utilisant les matrices de rigidité élémentaires.

$$\left[K\right]\left\{U\right\} = \left\{F\right\} \qquad \sum_{e=1}^{N_{E_e}} {}^t \left\{V_e\right\} \left[K_e\right] \left\{U_e\right\} = \sum_{e=1}^{N_{E_e}} {}^t \left\{V_e\right\}^t \left\{F_e\right\}$$

Problème = $[K_e]$, $\{F_e\}$, $\{U_e\}$, $\{V_e\}$ et définis à partir d'une numérotation locale sur l'élément, mais [K], $\{F\}$, $\{U\}$, $\{V\}$ à partir d'une numérotation globale sur la structure.

Solution : utilisation des matrices de localisation

Pour le membre de gauche, rappel sur l'énergie de déformation de la structure \mathcal{E}_D :

Pour le membre de gauche, rappel sur l'énergie de déformation de la structure
$$\mathcal{E}_D$$
:
$$\mathcal{E}_D = \frac{1}{2} \ t \ \{U\} \ [K] \ \{U\} = \sum_{e=1}^{N_{E_e}} \frac{1}{2} \ t \ \{U_e\} \ [K_e] \ \{U_e\} \quad \text{où} \quad \{U_e\} = [L_e] \ \{U\} \quad \text{for e in Nombre elements}$$

$$\mathcal{E}_D = \frac{1}{2} \ t \ \{U\} \quad \sum_{e=1}^{N_{E_e}} \ t \ [L_e] \ [K_e] \ [L_e] \ \{U\} \quad \text{for in Nombre elements}$$

$$\mathcal{E}_D = \frac{1}{2} \ t \ \{U\} \quad \sum_{e=1}^{N_{E_e}} \ t \ [L_e] \ [K_e] \ [L_e] \ \{U\} \quad \text{for in Nombre elements}$$

$$Dim[K] = (N_N.D) \times (N_N.D)$$
 $Dim[K_e] = (n_e.D) \times (n_e.D)$

Et pour le second membre, rappel sur le travail des efforts extérieurs :

$$W = \sum_{e=1}^{N_{E_e}} W_e = \sum_{e=1}^{N_{E_e}} {}^{t} \{U_e\} \{F_e\}$$

$$W = {}^{t} \{U\} \sum_{e=1}^{N_{E_e}} {}^{t} [L_e] \{F_e\}$$

$$Dim \{F\} = (N_N.D) \times 1$$

$$Dim \{F_e\} = (n_e.D) \times 1$$

- → Voir pseudo-algorithme d'assemblage distribué
- + Application au maillage cicontre

Α	sse	mb	lage	9		[K]									{F}
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1															
2															
3															
4															
5					х	х	х	х					х	х	х
6					х	х	х	х					х	х	х
7															
8					х	х	х	Х					х	х	x
9					х	х	х	х					х	х	x
10															
11															
12															
4.0															
13					х	x	Ke ₁₃ ¹	х					Ke ₁₁ ¹	Ke ₁₂ ¹	Fe ¹
14			_		х	х	х	х					х	х	Х

A	sse	mb	lage	9				[K]	{F}						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1															
2															
3															
4															
5					ХX	x x	х	x			X	х	хх	хх	x x
6					x x	x x	х	х			Х	Х	хх	хх	x x
7					х	х	х	х					х	х	х
8					х	х	х	х					х	х	х
9															
10															
11					x	х					х	x	х	х	х
12					x	х					х	x	х	х	Х
13					хх	хх	Ke ₁₃	х			х	x	Ke ₁₁ ¹ x	Ke ₁₂ ¹ x	Fe ¹ x
14					хх	x x	х	Х			X	X	хх	хх	x x

A	sse	mb	lage	2				[K]		{F}					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1															
2															
3															
4															
5					xxx	x x x	х	x	x	x	x x	x x	хх	хх	x x x
6					x x x	x x x	х	х	x	x	x x	x x	хх	хх	x x x
7					х	х	х	х					х	х	х
8					х	х	х	х					х	х	х
9					x	x			x	х	х	х			x
10					x	x			x	х	x	х			х
11					x x	x x			x	х	хх	хх	Х	Х	хх
12					x x	хх			x	х	ХX	ХX	х	Х	ХX
13					хх	хх	Ke ₁₃ ¹	х			x	x	Ke ₁₁ ¹ x	Ke ₁₂ ¹ x	Fe ¹ x
14					x x	хх	х	х			X	x	хх	хх	x x

Α	sse	mb	olago	e				[K]]						{F}
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1															
2															
3			Х	х	Х	Х			х	Х					х
4			Х	Х	Х	х			х	Х					х
5			х	х	x x x x	x x x	х	х	хх	хх	x x	x x	хх	х×	x x x x
6			х	Х	x x x	x x x	х	х	хх	хх	x x	хх	хх	хх	x x x x
7					х	х	х	х					х	х	х
8					х	х	х	х					х	х	х
9			х	х	хх	хх			хх	хх	х	х			хх
10			х	х	хх	хх			хх	хх	х	х			хх
11					x x	хх			х	х	ХX	хх	X	X	хх
12					x x	хх			х	х	ХX	хх	X	X	хх
13					хх	x x	Ke ₁₃ ¹	х			X	х	Ke ₁₁ ¹ x	Ke ₁₂ ¹ x	Fe ¹ x
14					хх	ХX	х	х			x	x	хх	хх	x x

Α	sse	mb	olage	9				[K]]						{F}
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	X	X	х	Х	X	x									X
2	X	X	Х	Х	X	х									X
3	Х	X	x x	ХX	x x	ХX			х	Х					x x
4	х	X	хх	ХX	x x	хх			х	х					××
5	Х	Х	x x	ХX	x x x x	x x x x	х	х	хх	хх	ХX	x x	хх	хх	x x x x x
6	X	X	x x	ХX	x x x x	x x x x	х	х	хх	хх	ХX	x x	хх	хх	x x x x
7					х	х	х	х					х	х	х
8					х	х	х	х					х	х	x
9			х	х	x x	хх			хх	хх	х	х			x x
10			Х	Х	ХX	хх			ХX	хх	X	х			x ×
11					хх	хх			х	х	хх	хх	х	х	ХX
12					x x	хх			x	x	ХX	хх	х	х	хх
13					ХX	x x	Ke ₁₃	х			х	х	Ke ₁₁ ¹ x	Ke ₁₂ ¹ x	Fe ¹ x
14					хх	x x	х	х			x	x	хх	хх	X X

Α	sse	mb	lage	9			[K]						{F}
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	X	X	х	х	х	x									X
2	X	X	х	х	Х	х									х
3	х	X	хх	хх	ХX	хх			х	Х					x x
4	X	x	хх	ХX	ХX	хх			х	х					x x
5	X	X	x x	ХX	x x x x	x x x x	х	х	хх	хх	ХX	x x	хх	хх	X X X X
6	X	X	x x	ХX	x x x x	x x x x	х	х	хх	хх	ХX	x x	ХX	хх	X X X X
7					х	х	х	х					х	х	х
8					х	х	х	х					х	х	х
9			Х	Х	хх	хх			ХX	ХX	X	X			хх
10			Х	Х	хх	хх			хх	ХX	x	x			ХX
11					хх	хх			x	х	ХX	ХX	Х	Х	ХX
12					хх	хх			X	X	хх	хх	х	х	ХX
13					хх	x x	Ke ₁₃	х			х	х	Ke ₁₁ ¹ x	Ke ₁₂ ¹ x	Fe ¹ x
14					ХX	ХX	х	х			X	X	xx	X X	x x

Remarques:
$$K_{IJ} = \int_{\Omega^h} {}^t \left\{ \underline{\underline{\varepsilon}}(\underline{\varphi}_I) \right\} [A] \left\{ \underline{\underline{\varepsilon}}(\underline{\varphi}_J) \right\} dV$$

$$\begin{array}{l} \text{Avec} : \ \begin{cases} \underline{\varphi}_I(\underline{x}) = \tilde{N}_m(\underline{x})\underline{e}_i \\ \underline{\varphi}_J(\underline{x}) = \tilde{N}_n(\underline{x})\underline{e}_j \end{cases} \quad I = N^o \ global \ de \ u_i^{(m)} \end{array}$$

$$\mathrm{Donc}: \quad K_{IJ} = \int_{\Omega(m) \, \cap \, \Omega(n)} \, {}^t \left\{ \underline{\underline{\varepsilon}} (\tilde{N}_m(\underline{x})\underline{e}_i) \right\} [A] \left\{ \underline{\underline{\varepsilon}} (\tilde{N}_n(\underline{x})\underline{e}_j) \right\} dV$$

Où $\Omega(m)$ = support géométrique de $\tilde{N}_m(\underline{x})$.

 $ightarrow K_{IJ}
eq 0$ si les nœuds (n) et (m) appartiennent à un même élément fini.

Remarques:
$$K_{IJ} = \int_{\Omega^h} {}^t \left\{ \underline{\underline{\varepsilon}}(\underline{\varphi}_I) \right\} [A] \left\{ \underline{\underline{\varepsilon}}(\underline{\varphi}_J) \right\} dV$$

$$\begin{array}{l} \text{Avec} : \ \begin{cases} \underline{\varphi}_I(\underline{x}) = \tilde{N}_m(\underline{x})\underline{e}_i \\ \underline{\varphi}_J(\underline{x}) = \tilde{N}_n(\underline{x})\underline{e}_j \end{cases} \quad I = N^o \ global \ de \ u_i^{(m)} \end{array}$$

Donc:
$$K_{IJ} = \int_{\Omega(m) \cap \Omega(n)} {}^t \left\{ \underline{\underline{\varepsilon}}(\tilde{N}_m(\underline{x})\underline{e}_i) \right\} [A] \left\{ \underline{\underline{\varepsilon}}(\tilde{N}_n(\underline{x})\underline{e}_j) \right\} dV$$

Où $\Omega(m)$ = support géométrique de $\tilde{N}_m(\underline{x})$.

 $ightarrow K_{IJ}
eq 0$ si les nœuds (n) et (m) appartiennent à un même élément fini.

Remarques :
$$K_{IJ} = \int_{\Omega^h}^{t} \left\{ \underline{\underline{\varepsilon}}(\underline{\varphi}_I) \right\} [A] \left\{ \underline{\underline{\varepsilon}}(\underline{\varphi}_J) \right\} dV$$

$$\begin{array}{l} \text{Avec} : \ \begin{cases} \underline{\varphi}_I(\underline{x}) = \tilde{N}_m(\underline{x})\underline{e}_i \\ \underline{\varphi}_J(\underline{x}) = \tilde{N}_n(\underline{x})\underline{e}_j \end{cases} \quad I = N^o \ global \ de \ u_i^{(m)} \end{array}$$

Donc:
$$K_{IJ} = \int_{\Omega(m) \cap \Omega(n)} t \left\{ \underline{\underline{\varepsilon}}(\tilde{N}_m(\underline{x})\underline{e}_i) \right\} [A] \left\{ \underline{\underline{\varepsilon}}(\tilde{N}_n(\underline{x})\underline{e}_j) \right\} dV$$

Où $\Omega(m)$ = support géométrique de $\tilde{N}_m(\underline{x})$.

 $ightarrow K_{IJ}
eq 0$ si les nœuds (n) et (m) appartiennent à un même élément fini.

$$\Omega(n) \bigcap \Omega(m) = \varnothing$$

$$K_{IJ} = 0$$

$$\Omega(n) \bigcap \Omega(m) = E_e \ double \ hachure$$

$$K_{IJ} \neq 0^{29}$$

$$\Omega(2) \bigcap \Omega(7) = \emptyset$$

$$K_{313} = K_{314} = K_{413} = K_{414} = 0$$

$$K_{133} = K_{134} = K_{143} = K_{144} = 0$$

$$\Omega(2) \bigcap \Omega(7) = \emptyset$$

$$K_{313} = K_{314} = K_{413} = K_{414} = 0$$

$$K_{133} = K_{134} = K_{143} = K_{144} = 0$$

$$\Omega(2) \bigcap \Omega(5) = 4$$

$$K_{3\,9} \neq 0 \ K_{3\,10} \neq 0 \ K_{4\,9} \neq 0 \ K_{4\,10} \neq 0$$

 $K_{9\,3} \neq 0 \ K_{9\,4} \neq 0 \ K_{10\,3} \neq 0 \ K_{10\,4} \neq 0$

Α	sse	mb	lage	9			[K]						{F}
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
1	X	X	х	х	х	х									X
2	X	X	х	Х	Х	х									х
3	х	X	хх	хх	ХX	хх			х	Х					x x
4	X	x	хх	ХX	ХX	хх			х	х					x x
5	X	X	x x	ХX	x x x x	x x x x	х	х	хх	хх	ХX	x x	хх	хх	X X X X
6	X	X	x x	ХX	x x x x	x x x x	х	х	хх	хх	ХX	x x	ХX	хх	X X X X
7					х	х	х	х					х	х	х
8					х	х	х	х					х	х	х
9			Х	Х	хх	хх			ХX	ХX	X	X			хх
10			Х	Х	хх	хх			хх	ХX	x	x			ХX
11					хх	хх			x	х	ХX	ХX	Х	Х	ХX
12					хх	хх			X	X	хх	хх	х	х	ХX
13					хх	x x	Ke ₁₃	х			х	х	Ke ₁₁ ¹ x	Ke ₁₂ ¹ x	Fe ¹ x
14					ХX	ХX	х	х			X	X	xx	X X	x x

Remarques:

- 1. Le nombre de termes non nuls sur une ligne ou une colonne ne dépend que de la configuration locale (éléments adjacents et numérotation)
- 1. La position des termes non nuls dans [K] est a priori quelconque (inconvénient pour stockage et rapidité)
 - → Il existe des algorithmes de <u>renumérotation automatique</u> qui assurent que dans un même élément les n° globaux des nœuds soient voisins. Ex : Cuthill et McKee (1969)

plt.spy(K)

© The Numerical Algorithms Group Ltd, Oxford, UK. 2009–2013

a. Méthode du terme diagonal unité :

ldée = faire passer au second membre les termes connus. Si U_i est un déplacement connu et $U_i=U^D$ il faut :

• Mettre à zéro tous les K_{ij} et K_{ji} $\forall j \neq i$

$$\begin{bmatrix} K_{1}1 & \dots & K_{1 \ i-1} & 0 & K_{1 \ i-1} & \dots & K_{1 \ N} \\ \vdots & & \vdots & & \vdots & & \vdots \\ K_{i-1 \ 1} & \dots & K_{i-1 \ i-1} & 0 & K_{i-1 \ i+1} & \dots & K_{i-1 \ N} \\ 0 & \dots & 0 & \dots & 0 \\ K_{i+1 \ 1} & \dots & K_{i+1 \ i-1} & 0 & K_{i+1 \ i+1} & \dots & K_{i+1 \ N} \\ \vdots & & \vdots & & \vdots & & \vdots \\ K_{N \ 1} & \dots & K_{N \ i-1} & 0 & K_{N \ i+1} & \dots & K_{N \ N} \end{bmatrix} \begin{bmatrix} U_{1} \\ \dots \\ U_{i-1} \\ U_{i} \\ U_{i+1} \\ \dots \\ U_{N} \end{bmatrix} = \begin{bmatrix} F_{1} \\ \dots \\ F_{i-1} \\ F_{i+1} \\ \dots \\ F_{N} \end{bmatrix}$$

a. Méthode du terme diagonal unité:

Idée = faire passer au second membre les termes connus. Si U_i est un déplacement connu et $U_i=U^D$ il faut :

- Mettre à zéro tous les K_{ij} et K_{ji} $\forall j \neq i$
- Poser $K_{ii}=1$

$$\begin{bmatrix} K_{1}1 & \dots & K_{1\ i-1} & 0 & K_{1\ i-1} & \dots & K_{1\ N} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ K_{i-1\ 1} & \dots & K_{i-1\ i-1} & 0 & K_{i-1\ i+1} & \dots & K_{i-1\ N} \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ K_{i+1\ 1} & \dots & K_{i+1\ i-1} & 0 & K_{i+1\ i+1} & \dots & K_{i+1\ N} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ K_{N\ 1} & \dots & K_{N\ i-1} & 0 & K_{N\ i+1} & \dots & K_{N\ N} \end{bmatrix} \begin{bmatrix} U_{1} \\ \dots \\ U_{i-1} \\ U_{i} \\ U_{i+1} \\ \dots \\ U_{N} \end{bmatrix} = \begin{bmatrix} F_{1} \\ \dots \\ F_{i-1} \\ F_{i+1} \\ \dots \\ F_{N} \end{bmatrix}$$

a. Méthode du terme diagonal unité:

Idée = faire passer au second membre les termes connus. Si U_i est un déplacement connu et $U_i=U^D$ il faut :

- Mettre à zéro tous les K_{ij} et K_{ji} $\forall j \neq i$
- Poser $K_{ii} = 1$
- Tenir compte du retrait de la ligne dans le second membre et poser $F_i=U^D$

$$\begin{bmatrix} K_{1}1 & \dots & K_{1 \ i-1} & 0 & K_{1 \ i-1} & \dots & K_{1 \ N} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ K_{i-1 \ 1} & \dots & K_{i-1 \ i-1} & 0 & K_{i-1 \ i+1} & \dots & K_{i-1 \ N} \\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ K_{i+1 \ 1} & \dots & K_{i+1 \ i-1} & 0 & K_{i+1 \ i+1} & \dots & K_{i+1 \ N} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ K_{N \ 1} & \dots & K_{N \ i-1} & 0 & K_{N \ i+1} & \dots & K_{N \ N} \end{bmatrix} \begin{bmatrix} U_{1} \\ \dots \\ U_{i-1} \\ U_{i} \\ U_{i+1} \\ \dots \\ U_{N} \end{bmatrix} = \begin{bmatrix} F_{1} - K_{1i}U^{D} \\ \dots \\ F_{i-1} - K_{i-1} \ iU^{D} \\ U_{i+1} \\ \dots \\ \vdots \\ \vdots \\ F_{N} - K_{Ni}U^{D} \end{bmatrix}$$

b. <u>Méthode du partitionnement</u>:

Idée =

• scinder le vecteur des déplacements en 2 sous-vecteurs correspondant respectivement aux déplacements inconnus et imposés.

$$\{U\} = \left\{ \begin{matrix} U_{inc} \\ U_{imp} \end{matrix} \right\} = \left\{ \begin{matrix} U^{(0)} \\ U^{(D)} \end{matrix} \right\} \qquad \text{$"$ vrais $"$ ddl}$$

b. <u>Méthode du partitionnement</u>:

Idée =

• scinder le vecteur des déplacements en 2 sous-vecteurs correspondant respectivement aux déplacements inconnus et imposés.

$$\{U\} = \left\{ \begin{matrix} U_{inc} \\ U_{imp} \end{matrix} \right\} = \left\{ \begin{matrix} U^{(0)} \\ U^{(D)} \end{matrix} \right\} \qquad \text{$"$ vrais $"$ ddl}$$

Il faut ensuite réorganiser le second membre en conséquence.

$$\{F\} = \begin{Bmatrix} F_{imp} \\ F_{inc} \end{Bmatrix} = \begin{Bmatrix} F^{(0)} \\ F^{(D)} \end{Bmatrix}$$

Travail des efforts liés aux ddls restants

(chargement en efforts imposés y compris bords libres)

Travail des réactions d'appui (efforts apparaissant là où les déplacements sont imposés)

Méthode du partitionnement : b.

- On réorganise et partitionne alors la matrice de rigidité sous la forme :

On a donc deux groupes d'équations à résoudre:

$$[K] = \begin{bmatrix} K^{(00)} & K^{(0D)} \\ K^{(D0)} & K^{(DD)} \end{bmatrix} \qquad \begin{bmatrix} K^{(00)} & K^{(0D)} \\ K^{(D0)} & K^{(DD)} \end{bmatrix} \begin{Bmatrix} U^{(0)} \\ U^{(D)} \end{Bmatrix} = \begin{Bmatrix} F^{(0)} \\ F^{(D)} \end{Bmatrix}$$

Méthode du partitionnement : b.

On réorganise et partitionne alors la matrice de rigidité sous la forme :

On a donc deux groupes d'équations à résoudre:

$$[K] = \begin{bmatrix} K^{(00)} & K^{(0D)} \\ K^{(D0)} & K^{(DD)} \end{bmatrix}$$

$$[K] = \begin{bmatrix} K^{(00)} & K^{(0D)} \\ K^{(D0)} & K^{(DD)} \end{bmatrix} \qquad \begin{bmatrix} K^{(00)} & K^{(0D)} \\ K^{(D0)} & K^{(DD)} \end{bmatrix} \begin{Bmatrix} U^{(0)} \\ U^{(D)} \end{Bmatrix} = \begin{Bmatrix} F^{(0)} \\ F^{(D)} \end{Bmatrix}$$

1^{er} groupe = système permettant de trouver la solution du problème (déplacements inconnus)

$$\left[K^{(00)} \right] \left\{ U^{(0)} \right\} = \left\{ F^{(0)} \right\} - \left[K^{(0D)} \right] \left\{ U^{(D)} \right\}$$
 uses du problème connu

Inconnues du problème

b. Méthode du partitionnement :

 On réorganise et partitionne alors la matrice de rigidité sous la forme :

On a donc deux groupes d'équations à résoudre :

$$[K] = \begin{bmatrix} K^{(00)} & K^{(0D)} \\ K^{(D0)} & K^{(DD)} \end{bmatrix}$$

$$\begin{bmatrix} K^{(00)} & K^{(0D)} \\ K^{(D0)} & K^{(DD)} \end{bmatrix} \begin{Bmatrix} U^{(0)} \\ U^{(D)} \end{Bmatrix} = \begin{Bmatrix} F^{(0)} \\ F^{(D)} \end{Bmatrix}$$

 1^{er} groupe = système permettant de trouver la solution du problème (déplacements inconnus)

$$\left[K^{(00)}\right]\underbrace{\left\{U^{(0)}\right\}}_{} = \underbrace{\left\{F^{(0)}\right\} - \left[K^{(0D)}\right]\left\{U^{(D)}\right\}}_{}$$
 Inconnues du problème connu

• 2^{ème} groupe = système permettant de calculer les réactions d'appui

$$\begin{bmatrix} K^{(D0)} \end{bmatrix} \left\{ U^{(0)} \right\} + \begin{bmatrix} K^{(DD)} \end{bmatrix} \left\{ U^{(D)} \right\} = \left\{ F^{(D)} \right\}$$
 connu après la résolution du premier système Inconnues du problème

b. Méthode du partitionnement :

• On réorganise et partitionne alors la matrice de rigidité sous la forme :

On a donc deux groupes d'équations à résoudre :

$$[K] = \begin{bmatrix} K^{(00)} & K^{(0D)} \\ K^{(D0)} & K^{(DD)} \end{bmatrix}$$

$$\begin{bmatrix} K^{(00)} & K^{(0D)} \\ K^{(D0)} & K^{(DD)} \end{bmatrix} \begin{Bmatrix} U^{(0)} \\ U^{(D)} \end{Bmatrix} = \begin{Bmatrix} F^{(0)} \\ F^{(D)} \end{Bmatrix}$$

 1^{er} groupe = système permettant de trouver la solution du problème (déplacements inconnus)

$$\left[K^{(00)}\right]\underbrace{\left\{U^{(0)}\right\}}_{\text{Inconnues du problème}} = \underbrace{\left\{F^{(0)}\right\} - \left[K^{(0D)}\right]\left\{U^{(D)}\right\}}_{\text{connu}}$$

• 2^{ème} groupe = système permettant de calculer les réactions d'appui

$$\left[K^{(D0)}\right]\left\{U^{(0)}\right\} + \left[K^{(DD)}\right]\left\{U^{(D)}\right\} = \left\{F^{(D)}\right\}$$

connu après la résolution du premier système

Inconnues du problème

- Avantage : de l'ordre de la matrice de rigidité pour trouver les déplacements inconnus
 de la vitesse de résolution
- Inconvénient : Nécessite une restructuration du système
- En pratique combinaison des méthodes a) et b)

- c. <u>Méthode de la **pénalisation** (terme diagonal dominant)</u>:
- Si $U_i=U^D$ est le ddl connu
- On remplace K_{ii} par $10^{30} + K_{ii}$ et F_i par $10^{30} \times U^D$ avec $K_{ii} << 10^{30}$
- La i-ème équation à résoudre se réduit alors à $10^{30} \times U_i = U^D \times 10^{30}$ (terme $K_{ii}U_i$ négligeable devant $10^{30} \times U_i$)

• Une variante consiste à remplacer $\,K_{ii}\,$ par $\,10^{30} imes K_{ii}\,$

Il faut alors remplacer F_i par $10^{30}K_{ii}U^D$

→ moins pratique

d. Multiplicateurs de Lagrange (système linéaire augmenté) :

- Permet de revenir sur les conditions d'admissibilité des champs solution.
- On les impose de façon explicite par des équations supplémentaires (au lieu de réduire l'espace de recherche des solutions).

Multiplicateurs de Lagrange (système linéaire augmenté) :

Formulation variationnelle associée = Rendre stationnaire la fonctionnelle :

$$\begin{cases} \mathcal{L}(\underline{v}, \underline{T}) = I(\underline{v}) - \int_{\partial \Omega_u} (\underline{v} - \underline{u}^d) . \underline{T} dS \\ \forall \underline{v} \in U \ et \ \forall \underline{T} \in \mathcal{F}(\partial \Omega_u) \end{cases}$$

Sous sa forme discrétisée et en notation matricielle le Langrengien devient :

$$\mathcal{L}(\{U\}, \{T\}) = \frac{1}{2} \{U\}^{t} [K] \{U\} - \{U\}^{t} \{F\} + \{T\}^{t} ([C] \{U\} - \{U^{(D)}\})$$

Et on cherche les solutions des conditions de stationnarité :

$$\begin{cases}
\frac{\partial \mathcal{L}}{\partial \{U^*\}} \left(\{U\}, \{T\} \right) = 0 \\
\frac{\partial \mathcal{L}}{\partial \{T^*\}} \left(\{U\}, \{T\} \right) = 0
\end{cases}$$

$$\begin{bmatrix}
[K] & -[L] \\
-^t [L] & [0]
\end{bmatrix}
\begin{cases}
\{U\} \\
\{T\}
\end{cases} = \begin{cases}
\{F\} \\
-\{U^{(D)}\}
\end{cases}$$

d. Multiplicateurs de Lagrange (système linéaire augmenté) :

- Permet de revenir sur les conditions d'admissibilité des champs solution.
- On les impose de façon explicite par des équations supplémentaires (au lieu de réduire l'espace de recherche des solutions).
- Cela revient à résoudre le problème sous la formulation faible suivante :

• Trouver
$$(\underline{u},\underline{T}) \in (U^h \times \mathcal{F}(\partial \Omega^h_u))$$
 tels que :
$$\int_{\Omega^h} \underline{\underline{\varepsilon}}(\underline{u}) : \mathbb{A} : \underline{\underline{\varepsilon}}(\underline{v}) dV - \int_{\partial \Omega^h_u} \underline{T}.\underline{v} dS = \int_{\Omega^h} \underline{f}_v.\underline{v} dV + \int_{\partial \Omega^h_F} \underline{T}^d.\underline{v} dS \ \forall \underline{v} \in U^h$$

$$\int_{\partial \Omega^h_u} \underline{u}.\underline{T}' dS = \int_{\partial \Omega^h_u} \underline{u}^d.\underline{T}' dS \ \forall \underline{T}' \in \mathcal{F}(\partial \Omega^h_u)$$

Vecteur contrainte test défini sur $\mathcal{F}(\partial\Omega_u^h)$ tel que les intégrales sur $\partial\Omega_u^h$ soient définies pour tout champ de U^h

d. Multiplicateurs de Lagrange (système linéaire augmenté) :

• [L] = matrice de localisation = matrice rectangulaire telle que :

$$^{t}\left[L\right] .\left\{ U\right\} =\left\{ U^{\left(D\right) }\right\} \hspace{0.5cm} \text{Restriction aux nœuds supportant des déplacements imposés}$$

• Au final il faut résoudre le système augmenté suivant :

$$\begin{bmatrix} [K] & -[L] \\ -^t [L] & [0] \end{bmatrix} \left\{ \begin{cases} U \\ \{T \} \end{cases} \right\} = \left\{ \begin{cases} \{F \} \\ -\left\{ U^{(D)} \right\} \end{cases} \right\}$$

$$[K_{aug}] = (\text{nb total de ddl} + \text{nb de liaisons})^2$$

- [K] non inversible, mouvement de corps rigide non retirés (inclus dans U^h espace des solutions)
- [K_{aug}] inversible mais pas définie positive (à cause de [0]) → attention à la méthode de résolution choisie, LU pas applicable.
- La résolution du système permet d'obtenir directement {T}. Intéressant pour contact ou problème pour lesquels on a des relations linéaires entre ddl (ex. appui glissant hors axes)

- [K] est symétrique définie positive si les CL bloquent les mouvements de corps rigides (vient des propriétés de a(u,v)) $^{t}\{U\}[K]\{U\} > 0 \ \forall \{U\} \in U_{ad}^{h}(u^{d})$ ${}^{t}\{U\}[K]\{U\} = 0 \Rightarrow \{U\} = \{0\}$
- On appelle **demie-largeur de bande** le nombre entier L_R tel que :
 - $L_B \leq nb \ ddl \ total$

•
$$\forall I, J = 1...nb \ ddl \ total$$

 $|I - J| > L_B \ K_{IJ} = 0$

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 \\ K_{21} & K_{22} & K_{23} & 0 \\ 0 & K_{32} & K_{33} & K_{34} \\ 0 & 0 & K_{43} & K_{44} \end{bmatrix}$$

$$|I-J| > L_B \quad K_{IJ} = 0$$

$$K_{11} \neq 0 \quad |1-1| = 0 \quad K_{21} \neq 0 \quad |2-1| = 1$$

$$K_{12} \neq 0 \quad |1-2| = 1 \quad K_{22} \neq 0 \quad |2-2| = 0$$

$$K_{13} = 0 \quad |1-3| = 2 \quad K_{23} \neq 0 \quad |2-3| = 1$$

$$K_{14} = 0 \quad |1-4| = 3 \quad K_{24} = 0 \quad |2-4| = 2$$

$$K_{31} = 0 \quad |3-1| = 2 \quad K_{41} = 0 \quad |4-1| = 3$$

$$K_{32} \neq 0 \quad |3-2| = 1 \quad K_{42} = 0 \quad |4-2| = 2$$

$$K_{33} \neq 0 \quad |3-3| = 0 \quad K_{43} \neq 0 \quad |4-3| = 1$$

$$K_{34} \neq 0 \quad |3-4| = 1 \quad K_{44} \neq 0 \quad |4-4| = 0$$

- [K] est **symétrique** définie positive si les CL bloquent les mouvements de corps rigides (vient des propriétés de a(u,v)) $^{t}\{U\}[K]\{U\} > 0 \ \forall \{U\} \in U_{ad}^{h}(u^{d})$ $^{t}\{U\}[K]\{U\} = 0 \Rightarrow \{U\} = \{0\}$
- On appelle **demie-largeur de bande** le nombre entier L_R tel que :
 - $L_B \leq nb \ ddl \ total$

•
$$\forall I, J = 1...nb \ ddl \ total$$

 $|I - J| > L_B \ K_{IJ} = 0$

$$\begin{bmatrix} K_{11} & K_{12} & 0 & 0 \\ K_{21} & K_{22} & K_{23} & 0 \\ 0 & K_{32} & K_{33} & K_{34} \\ 0 & 0 & K_{43} & K_{44} \end{bmatrix}$$

$$L_{B} = 1$$

- Matrice diagonale : $L_B=0$
- Tous les coefficients non nuls sont situés dans une **bande** de largeur $\,2L_B+1\,$
- On appelle **demie largeur de bande** la plus grande différence entre n° d'inconnues appartenant au même élément.
- Pour chaque colonne J on définit un **profil** L(J) $1 \le L(J) \le J$ tel que :

$$L(J) = min\left\{I \; / \; K_{IJ}
eq 0
ight\}$$
 ~localisation du début des colonnes

On a alors la relation:

$$L_B = \max_{1 \le J \le nb} ddl \{J - L(J)\}$$

J 1 2 3 4 5 6 7 8 9 10 L(J) 1 1 1 1 2 3 4 6 5 7 J-L(J) 0 1 2 3 3 3 3 2 4 3 Tiré de M. Bonnet et A. Frangi : Analyse des solides déformables par la méthode

Stockage en **bande symétrique.** On stocke [K] dans un vecteur A^(k) sous forme de sa demie bande:

$$^{t}\left\{A^{(k)}\right\} = \left\{K_{11}, K_{12}, K_{13}, K_{14}, K_{15}, K_{22}, K_{23}, K_{24}, K_{25}, K_{26}, K_{33}, \ldots\right\}$$

Pb dans ce cas on stocke beaucoup de 0

Stockage **profil** ou **ligne de ciel** ou **skyline** : On stocke [K] dans un vecteur suivant son profil et L(J) → on réduit de beaucoup le nb de zéros mais il en reste

• Stockage Morse : On ne stocke que les coefficients non nuls

Utile pour méthodes de résolution itératives

Rappels : 2 grandes classes de résolution de systèmes linéaires :

- solveurs directs (Faciles à mettre en œuvre, taille du système élevée, résultat n'est jamais rigoureusement exact, erreur mal estimée,...)
- solveurs itératifs (ne convergent pas toujours rapidement, impossible de prévoir le nb d'opérations à l'avance, la convergence dépend de l'initialisation mais : pas d'algorithme de décomposition, Suite convergeant vers la solution, erreur estimée)

Solveurs directs

Avantages:

- méthode fiable + permet la détection des singularités
- méthode bien adaptée au stockage en bande de la matrice de rigidité
- nb d'opération connu à l'avance
- bien adapté à la mise en œuvre par technique frontale et/ou sous-structures

1 - Méthode d'élimination de Gauss

On part de :
$$\begin{bmatrix} K_{11} & K_{12} & ... & K_{1N} \\ K_{21} & K_{22} & ... & K_{2N} \\ ... & & & \\ K_{N1} & K_{N2} & ... & K_{NN} \end{bmatrix} \begin{pmatrix} U_1 \\ U_2 \\ ... \\ U_N \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \\ ... \\ F_N \end{pmatrix}$$

On calcule U₁ dans l'équation n°1 et on l'élimine dans les équations 2 à N :

$$U_1 = \frac{F_1}{K_{11}} - \frac{K_{12}}{K_{11}} U_2 - \dots - \frac{K_{1N}}{K_{11}} U_N$$

$$\begin{bmatrix} 1 & K_{12}/K_{11} & \dots & K_{1N}/K_{11} \\ 0 & K_{22} - \frac{K_{21}}{K_{11}}K_{12} & \dots & K_{2N} - \frac{K_{21}}{K_{11}}K_{1N} \\ | & & \dots & & \\ 0 & K_{N2} - \frac{K_{N1}}{K_{11}}K_{12} & \dots & K_{NN} - \frac{K_{N1}}{K_{11}}K_{1N} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \dots \\ U_N \end{bmatrix} = \begin{bmatrix} F_1/K_{11} \\ F_2 - K_{21}\frac{F_1}{K_{11}} \\ \dots \\ F_N - K_{N1}\frac{F_1}{K_{11}} \end{bmatrix}$$

Ce qui se réécrit :

$$\begin{bmatrix} K_{11} & K_{12} & \dots & K_{1N} \\ 0 & K_{22}^{\bullet} & \dots & K_{2N}^{\bullet} \\ | & & \dots & \\ 0 & K_{N2}^{\bullet} & \dots & K_{NN}^{\bullet} \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ \dots \\ U_N \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2^{\bullet} \\ \dots \\ F_N^{\bullet} \end{bmatrix}$$
 Exposant = nb d'inconnues éliminées

On calcule U_2 dans l'équation n°2 et on l'élimine dans les équations 3 à N :

$$U_2 = \frac{F_2^1}{K_{22}^1} - \frac{K_{23}^1}{K_{22}^1} U_3 - \dots - \frac{K_{2N}^1}{K_{22}^1} U_N$$

[...]

On calcule U_{N-1} avec l'équation n°N-1 et on l'élimine dans l'équation N, ce qui donne un système de la forme :

Matrice triangulaire supérieure

$$\underbrace{ \begin{bmatrix} K_{11} & K_{12} & \dots & & K_{1N} \\ 0 & K_{22}^{\bullet} & \dots & & K_{2N}^{\bullet} \\ | & & \dots & & \\ 0 & 0 & \dots & 0 & K_{NN}^{\bullet - \bullet} \end{bmatrix}}_{[S]} \underbrace{ \begin{bmatrix} U_1 \\ U_2 \\ \dots \\ U_N \end{bmatrix}}_{\{U\}} = \underbrace{ \begin{bmatrix} F_1 \\ F_2^{\bullet} \\ \dots \\ F_N^{\bullet - \bullet} \end{bmatrix}}_{\{F'\}}$$

On effectue alors une analyse « montante » pour résoudre le système à partir de l'équation N :

$$\underbrace{\begin{bmatrix} K_{11} & K_{12} & \dots & & K_{1N} \\ 0 & K_{22}^{\bigcirc} & \dots & & K_{2N}^{\bigcirc} \\ | & & \dots & & \\ 0 & 0 & \dots & 0 & K_{NN}^{\bigcirc} \end{bmatrix}}_{[S]} \underbrace{\begin{bmatrix} U_1 \\ U_2 \\ \dots \\ U_N \end{bmatrix}}_{\{U\}} = \underbrace{\begin{bmatrix} F_1 \\ F_2^{\bigcirc} \\ \dots \\ F_N^{\bigcirc} \end{bmatrix}}_{\{F'\}}$$

- Calcul de U
$$_{
m N}$$
 $U_N=rac{F_N^{N-1}}{K_{NN}^{N-1}}$

- On remplace U_N par son expression dans l'équation N-1 et on trouve U_{N-1} , etc jusqu'à trouver U_1 .

Remarques:

- Cette méthode exige que tous les pivots (K₁₁, K¹₂₂, K²₃₃,...) soient positifs ce qui est le cas en élasticité et thermique
- En cours de résolution les sous-matrices [Ki] après i éliminations restent symétriques.
- Le rapport λ=pivot minimal/pivot maximal est appelé le rapport de singularité. Il indique la qualité du conditionnement de la matrice.
- Si λ <10⁻¹² en 32 bits et λ <10⁻²⁰ en 64 bits la fiabilité du calcul est mauvaise (s'évite en excluant les éléments distordus ou trop rigides).

2- Méthode de décomposition de Gauss (aussi appelée méthode [L][U])

La matrice [K] **symétrique** (OK en élasticité et thermique) → produit de 2 matrices triangulaires :

[K] = [L].[M] = [L].[U]

Matrice triangulaire inférieure (Lower) avec des 1 sur la diagonale

Crout (matrice symétrique)

$$\left[K\right]=\left[L\right].\left[D\right].^{t}\left[L\right]$$

Matrice triangulaire inférieure (Lower) avec des 1 sur la diagonale

₩
 Matrice diagonale

Cholesky (matrice symétrique définie positive)

$$[K] = [L] \cdot^t [L]$$

Méthode la plus utilisée car stockage d'une seule matrice triangulaire

$$[K]{U} = {F}$$
 $[K] = [L][M]$

La résolution se fait en 2 étapes :

$$egin{aligned} [L]\{Y\} &= \{F\} \ & ext{Analyse descendante donne } \{Y\} \ & [M]\{U\} &= \{Y\} \ & ext{Analyse montante donne } \{U\} \end{aligned}$$

$$[L] = \begin{bmatrix} L_{11} & 0 & & & & 0 \\ L_{21} & L_{22} & & & & | \\ & & & & & | \\ & & & & & | \\ L_{N1} & L_{N2} & & & & & L_{NN} \end{bmatrix}$$

Analyse descendante:

1ère ligne :
$$L_{11}Y_1 = F_1 \Rightarrow Y_1 = \frac{F_1}{L_{11}}$$

lème ligne donne :
$$Y_I = \frac{1}{L_{II}}[F_I - L_{I1}Y_1 - - L_{I(I-1)}Y_{I-1}] = \frac{1}{L_{II}}[F_I - \sum_{J=1}^{I-1}L_{IJ}Y_J]$$

Analyse montante:

N^{ème} ligne :
$$M_{NN}U_N=Y_N \;\;\Rightarrow\;\; U_N=rac{Y_N}{M_{NN}}$$

lème ligne donne :
$$U = \frac{1}{V}$$

lème ligne donne :
$$U_I = \frac{1}{M_{II}} [Y_I - \sum_{J=I+1}^N U_{IJ} Y_J]$$

$$[M] = egin{bmatrix} M_{11} & M_{12} & M_{1N} \ 0 & M_{22} & | \ | & | \ 0 & 0 & M_{NN} \end{bmatrix}$$

Solveurs itératifs

Initialisation + test de convergence

[K] = [D] - [Ls] - [Ms]

Diagonale de [K] inversible [Ls]-[Ms] strictement Matrice supérieure strictement inférieure

Méthode de Jacobi:

$$\left\{ U^{(k+1)} \right\} = [D]^{-1} ([Ls] + [Ms]) \left\{ U^{(k)} \right\} + [D]^{-1} \left\{ F \right\}
U_I^{(k+1)} = -\frac{1}{K_{II}} \sum_{i=1}^n K_{IJ} U_j^{(k)} + \frac{F_I}{K_{II}}, \ i = 1, ..., n \ k = 0, 1, 2, ...$$

OK même si [K] pas symétrique définie positive

Matrice

conditions sur termes diagonaux ou valeurs propres pour assurer la

convergence

Attention aux

Méthode de Gauss Seidel:

$$\left\{ U^{(k+1)} \right\} = ([D] - [Ls])^{-1} [Ms] \left\{ U^{(k)} \right\} + ([D] - [Ls])^{-1} \left\{ F \right\}$$

Méthode du gradient conjugué (résidu) :

OK seulement si [K] est symétrique définie positive a_k un scalaire (formule existe pour déterminer l'optimum)

$$\left\{ U^{(k+1)} \right\} = \left\{ U^{(k)} \right\} + a_k \left\{ P^{(k)} \right\}$$

$$\left\{ R^{(k+1)} \right\} = \left\{ R^{(k)} \right\} - a_k[K] \left\{ P^{(k)} \right\}$$

P(k) = directions de descente

Solveurs directs:

- Faciles à mettre en œuvre
- Mais : Taille du système élevée nombre d'opérations important
 Or les erreurs de calcul dépendent directement du nombre de calculs.
- Utilisent des propriétés mathématiques nécessitant un calcul exact → difficile de tenir compte des erreurs de calcul dans ce processus
- Donc le résultat n'est jamais rigoureusement exact.

Solveurs itératifs :

Inconvénients:

- ne convergent pas toujours rapidement
- impossible de prévoir le nb d'opérations à l'avance
- la convergence dépend de l'initialisation
- Nécessité de « pré-conditionneurs »

Avantages:

- pas d'algorithme de décomposition
- Suite convergeant vers la solution, erreur estimée.

Questions de convergence en élasticité linéaire

Estimation d'erreur:

Champ approché après discrétisation

Champ solution du problème physique (inconnu, existence supposée)

Définition de la fonction erreur :

$$\underline{e}(\underline{x},t) = \underline{\underline{u}}^h(\underline{x},t) - \underline{\underline{u}}(\underline{x},t)$$

Mesure pratique = norme (champ scalaire)

$$|e_u|_{L_2} = \sqrt{\int_{\Omega} e^2(\underline{x},t) d\Omega} = \sqrt{\int_{\Omega} \left(\underline{u}^h - \underline{u}\right)^t \cdot \left(\underline{u}^h - \underline{u}\right) d\Omega} \qquad \text{évaluées pour tout le domaine pour ou un élément i de sorte que } \\ |e_{\sigma}|_{L_2} = \sqrt{\int_{\Omega} \left(\underline{\underline{\sigma}}^h - \underline{\underline{\sigma}}\right) : \left(\underline{\underline{\sigma}}^h - \underline{\underline{\sigma}}\right) d\Omega} \qquad \qquad |e_{\sigma}|_{L_2} = \sqrt{\int_{\Omega} \left(\underline{\underline{\sigma}}^h - \underline{\underline{\sigma}}\right) : \left(\underline{\underline{\sigma}}^h - \underline{\underline{\sigma}}\right) d\Omega}$$

domaine pour ou un élément i de sorte que : N_e

Si finesse = h + fonctions d'interpolation polynômiales d'ordre p, la solution obtenue rejoint exactement le développement de Taylor jusqu'à cet ordre \rightarrow l'erreur commise sera de l'ordre de $O(h^{p+1}).$

> Ex : en élasticité plane, si on utilise des développements linéaires on obtient un taux de convergence d'ordre O(h²) en déplacement (convergence quadratique)

L'erreur faite sur les déformations et contraintes (qui font intervenir les n-ièmes dérivées du déplacement) sont de l'ordre de O(hp+1-n).

Ex : sur le même problème, n=1 l'erreur sur les déf. et cont sera donc $O(h^1)$ (convergence linéaire)

- L'erreur sur l'énergie (qui fait intervenir un produit cont./déf.) sera de l'ordre de O(h^{2(p+1-n)}) Ex : toujours sur le même exemple : $O(h^2)$ (convergence quadratique)
- Meilleure précision et convergence plus rapide avec des éléments d'ordre supérieur (quadratique > linéaire) si la solution attendue est régulière (pas de variation abrupte)
- Ordre supérieur préférable pour la statique, inverse pour la dynamique rapide