

Universidade Federal do Amazonas Faculdade de Tecnologia Engenharia Elétrica - Eletrônica

Localização de Robôs Móveis Baseada em Odometria e Visão Computacional

Alexandre de Assis Ribeiro

Manaus – Amazonas

Dezembro de 2018

Alexandre de Assis Ribeiro

Localização de Robôs Móveis Baseada em Odometria e Visão Computacional

Monografia apresentada à Coordenação do Curso de Engenharia Elétrica - Eletrônica da Universidade Federal do Amazonas, como parte dos requisitos necessários à obtenção do título de Engenheiro Eletricista.

Orientador: Prof. Dr. João Edgar Chaves Filho

Resumo

Palavras-chave: .

Abstract

Sumário

Lista de Algoritmos								
Abreviações								
1	Introdução							
	1.1	Objetivo Geral	1					
	1.2	Objetivos Específicos	1					
	1.3	Organização do trabalho	1					
2	Fun	Fundamentação Teórica						
	2.1	Topologias de Medição	2					
		2.1.1 Métodos de medição de energia elétrica	2					
	2.2	Wi-Fi	2					
	2.3	Protocolo MQTT	2					
	2.4	Dispositivos de Chaveamento elétrico	2					
	2.5	Automação	2					
3	Arq	quitetura						
4	Imp	Implementação						
	4.1	Hardware	4					
		4.1.1 Componentes	4					
		4.1.2 Esquemáticos Elétricos	4					
		4.1.3 Layout da PCB	4					
		4.1.4 Fabricação	4					
		4.1.5 Módulo Placa de Automação de Refrigeração Residencial	4					

Re	Referências Bibliográficas						
6	Conclusão						
5	Testes e Avaliação de Desempenho						
		4.3.1	Interação com a Placa de Automação de Refrigeração Residencial	5			
	4.3	Softwo	nre	5			
		4.2.3	Monitoramento da qualidade da energia elétrica	5			
		4.2.2	Monitoramento de presença humana	5			
		4.2.1	Comunicação Wi-Fi e MQTT	5			
	4.2	pare	4				

Lista de Algoritmos

Abreviações

PCB - Placa de circuito impresso - do inglês Printed Circut Board

USB - Barramento universal serial - do inglês Universal Serial Bus

I2C - Circuito inter-integrado - do inglês Inter-Integrated Circuit

UART - Receptor-transmissor universal assíncrono - do inglês **U**niversal **A**ssyncronous **R**eceiver-Transmitter

MQTT - Protocolo de mensagens entre máquinas - do inglês Message Queuing Telemetry Transport

Introdução

- 1.1 Objetivo Geral
- 1.2 Objetivos Específicos
- 1.3 Organização do trabalho

Fundamentação Teórica

- 2.1 Topologias de Medição
- 2.1.1 Métodos de medição de energia elétrica
- 2.2 Wi-Fi
- 2.3 Protocolo MQTT
- 2.4 Dispositivos de Chaveamento elétrico
- 2.5 Automação

Arquitetura

Implementação

- 4.1 Hardware
- 4.1.1 Componentes
- 4.1.2 Esquemáticos Elétricos
- 4.1.3 Layout da PCB
- 4.1.4 Fabricação
- 4.1.5 Módulo Placa de Automação de Refrigeração Residencial

4.2 Firmware

Para elaboração inicial do *firmware*, foi utilizado o módulo NodeMCU Lol1n, mostrado na figura 4.1, que contém um módulo ESP-12E porém com os circuitos de alimentação e gravação por interface USB já embutidos nele. Esta metodologia de utilizar um módulo pronto foi utilizada com intuito de diminuir o tempo gasto com a elaboração de um circuito para gravação do microcontrolador e também para permitir o desenvolvimento do *firmware* antes do término da fabricação, montagem dos componentes e testes elétricos da PCB.

Figura 4.1: Módulo NodeMCU Lol1n.

- 4.2.1 Comunicação Wi-Fi e MQTT
- 4.2.2 Monitoramento de presença humana
- 4.2.3 Monitoramento da qualidade da energia elétrica
- 4.3 Software
- 4.3.1 Interação com a Placa de Automação de Refrigeração Residencial
- 4.3.1.1 Comunicação
- 4.3.1.2 Requisição de Ligar e Desligar o Aparelho Ar Condicionado
- 4.3.1.3 Requisição para Obtenção de Dados da Qualidade da Energia Elétrica

Testes e Avaliação de Desempenho

Conclusão

Referências Bibliográficas