

Qualification Round 2012

A. Speaking in Tongues

B. Dancing With the Googlers

C. Recycled Numbers

D. Hall of Mirrors

Contest Analysis

Questions asked

Submissions

Speaking in Tongues

15pt | Not attempted 17356/19464 users correct (89%)

Dancing With the Googlers

10pt | Not attempted 12384/13899 users correct (89%)

10pt | Not attempted 10762/12138 users correct (89%)

Recycled Numbers

15pt | **Not attempted 6811/10604 users** correct (64%)

Hall of Mirrors

15pt Not attempted 551/879 users correct (63%)

Not attempted 184/259 users correct (71%)

Top Scores	
hos.lyric	100
qnighy	100
DjinnKahn	100
levlam	100
iwiskimo	100
mystic	100
TripleM	100
aleksey	100
royf	100
krijgertje	100

Problem C. Recycled Numbers

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the <u>Quick-Start Guide</u> to get started.

Small input 10 points

Solve C-small

Large input 15 points

Solve C-large

Problem

Do you ever become frustrated with television because you keep seeing the same things, recycled over and over again? Well I personally don't care about television, but I do sometimes feel that way about numbers.

Let's say a pair of distinct positive integers (n, m) is recycled if you can obtain m by moving some digits from the back of n to the front without changing their order. For example, (12345, 34512) is a recycled pair since you can obtain 34512 by moving 345 from the end of 12345 to the front. Note that n and m must have the same number of digits in order to be a recycled pair. Neither n nor m can have leading zeros.

Given integers **A** and **B** with the same number of digits and no leading zeros, how many distinct recycled pairs (n, m) are there with $\mathbf{A} \le n < m \le \mathbf{B}$?

Input

The first line of the input gives the number of test cases, $\bf T$. $\bf T$ test cases follow. Each test case consists of a single line containing the integers $\bf A$ and $\bf B$.

Output

For each test case, output one line containing "Case #x: y", where x is the case number (starting from 1), and y is the number of recycled pairs (n, m) with $\mathbf{A} \le n < m < \mathbf{B}$.

Limits

 $1 \le \mathbf{T} \le 50$.

 $\boldsymbol{\mathsf{A}}$ and $\boldsymbol{\mathsf{B}}$ have the same number of digits.

Small dataset

 $1 \le \mathbf{A} \le \mathbf{B} \le 1000$.

Large dataset

 $1 \le \mathbf{A} \le \mathbf{B} \le 2000000$.

Sample

Input	Output
4 1 9 10 40 100 500 1111 2222	Case #1: 0 Case #2: 3 Case #3: 156 Case #4: 287

Are we sure about the output to Case #4?

Yes, we're sure about the output to Case #4.

