Laporan Praktikum Pembelajaran Mesin

Disusun oleh: Kelompok 3

1.	Gede Rangga Wira Aditya	(082011633048)
2.	Muhammad Rahmadhani Ferdiansyah	(082011633068)
3.	Arya Danu Triatmodjo	(082011633069)
4.	Mukhamad Ikhsanudin	(082011633086)

Kelas I3

PROGRAM STUDI S1 SISTEM INFORMASI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS AIRLANGGA SURABAYA

2021/2022

Chapter 2

Data Preprocessing

MATLAB

1. Outlier

1.1 Outlier Detection

Outlier detection used to handle outlier. Outlier detection used is isoutlier function

Result:

Value 0 = not *outliers*, and value 1 = *outliers*.

1.2 Outlier Handling

1. filloutlier

Source code:

```
3
4
a2 = [57 59 65 70 59 58 57 58 | 350 61 62 60 62 58 57]
5
c2 = std(a2)
6
Outlier = 3*c2
7
b2 = filloutliers(a2, 'nearest', 'mean')
8
```

Result:

```
c2 =
  74.9055
Outlier =
 224.7166
b2 =
   57
         59
                    70
                          59 58
                                     57
                                           58
                                                 61
                                                            62
                                                                  60
                                                                        62
                                                                             58
                                                                                   57
```

2. rmoutlier

Source code:

```
8
9
a3 = [57 59 65 70 59 58 57 58 350 61 62 60 62 58 57]
10
[m3, n3] = rmoutliers(a3, 'mean')
11
k3 = rmoutliers(a3, 'mean')
```

Result:

Variables M and K contain data whose outliers have been removed. Variable N is used to detect outliers. Value 0 = not outlier, value 1 = outlier.

2. Missing Value

2.1 Missing value detection

ismissing function.

```
Source code:
```

```
12

13 a4 = [2 4 NaN 6 NaN NaN 9]

14 b4 = ismissing(a4)

15
```

Result:

Value 0 = not missing value, value 1 = missin value.

2.2 Handling missing value

Functions that can be used in handling missing data are as follow:

1. missing

```
Tanggal = datetime({'2015-12-18 08:03:05';'2015-12-18 10:03:17';'2015-12-18 12:03:13'});
16
17
          Temperatur = [37.3;39.1;42.3];
         Arah_Angin = categorical({'NW';'NW';'N'});
18
         TT = timetable(Tanggal,Temperatur,Arah_Angin);
19
20
         disp(TT)
21
         TT.Tanggal(3) = missing;
22
         TT.Temperatur(3) = missing;
23
          TT.Arah_Angin(3) = missing;
24
         disp(TT)
```

Command Window

result:

2. fillmissing

Source code:

```
Temperatur = [37.3;NaN;42.3];
Arah_Angin = categorical({'NW';'N';'NW'});
TT = table(Temperatur,Arah_Angin);
disp(TT)
F = fillmissing(TT,'constant',0,'DataVariables',@isnumeric);
disp(F)

32
```

Result:

F = fillmissing(TT,'constant',0,'DataVariables',@isnumeric);

Source code:

```
Temperatur = [37.3;NaN;42.3];
Arah_Angin = categorical({'NW';'';'N'});
TT = table(Temperatur,Arah_Angin);
disp(TT)
F = fillmissing(TT,'previous','DataVariables',{'Arah_Angin'})
G = fillmissing(F,'pchip','DataVariables',{'Temperatur'});
disp(G)
```

Result:

'DataVariable' used to fill missing data on certain variables.

Source Code

Result:

Data

```
Data =

3×3 table

X1 X2 X3

-- -- --

1 2 3
4 150 6
7 8 NaN
```

1. Outlier Detection

2. Handling Outlier

Replace with value " 0 "

3x3 <u>table</u>

X1	X2	X3
1	2	3
4	0	6
7	8	NaN

Replace with previous value

```
15 =

3×3 table

X1 X2 X3

-- -- --

1 2 3
4 8 6
7 8 NaN
```

Remove Outlier

Missing Value detection

Handling Missing Value

Fill with value 0

Fill with closest value

4. Normalization

Z-score

Phyton

1. Outlier

Result:

Data (df)

```
Nomer1.py × untitled1.py* ×

1    import pandas as pd
2    import numpy as np
3    from scipy import stats
4    data=pd.read_csv(r"C:\Users\ACER\Downloads\df.csv")
5    df=pd.DataFrame(data)

6    7    z_scores = stats.zscore(df)
8    9    abs_z_scores = np.abs(z_scores)
10    filtered_entries = (abs_z_scores < 3).all(axis=1)
11    new_df = df[filtered_entries]
12
13    print(new_df)</pre>
```

Output:

```
In [2]: runfile('C:/Users/ACER/tugas 2/untitled1.py',
wdir='C:/Users/ACER/tugas 2')
   Column_1 Column_2
0
          1
                    1
          1
                    1
          1
                    1
          1
                    1
                    1
6
          1
                    1
                    1
          1
8
          1
                    1
9
          1
                    1
```

2. Missing Value

2.1 Missing Value Detection

```
Nomer1.py × untitled1.py ×

import pandas as pd
import numpy as np
from scipy import stats
data=pd.read_csv(r"C:\Users\ACER\Downloads\titanic.csv")
fepd.DataFrame(data)

new_df=df.isna().sum()

print(new_df)
```

Output

```
In [4]: runfile('C:/Users/ACER/tugas 2/untitled1.py',
wdir='C:/Users/ACER/tugas 2')
PassengerId
Survived
                 0
                 0
Pclass
                 0
Name
                 0
Sex
               177
Age
SibSp
                 0
                 0
Parch
Ticket
Fare
                 0
Cabin
               687
Embarked
                 2
dtype: int64
```

Dengan bantuan fungsi *isna()* dan *sum()* kita tahu bahwa dalam dataset semua kolom tidak ada nilai yang kosong kecuali kolom Age dengan 177 missing value, Kolom Cabin 687 dan kolom Embarked 2

2.2 Handling Missing Value

Replace missing value with mean

```
untitled3.py*
Nomer1.py × untitled1.py × untitled0.py × untitled2.py* ×
          import pandas as pd
         import numpy as np
         from scipy import stats
         data=pd.read_csv(r"C:\Users\ACER\Downloads\titanic.csv")
         df=pd.DataFrame(data)
         # Langkah 1
         df_age=df
         # Langkah 2
         rata_umur = df['Age'].mean()
         # Langkah 3
         df['Age'] = df['Age'].fillna(rata_umur)
         # Langkah 4
         df['Age'].isna().sum()
         print(df_age)
```

Output

```
In [2]: runfile('C:/Users/ACER/tugas 2/untitled3.py', wdir='C:/Users/ACER/tugas 2')
     PassengerId Survived Pclass ... Fare Cabin Embarked
0
                       0
                                        7.2500 NaN
             1
                                                             c
1
              2
                        1
                               1 ... 71.2833
                                                 C85
                              3 ... 7.9250 NaN
1 ... 53.1000 C123
3 ... 8.0500 NaN
2
              3
                                                             s
3
                                                              s
                        1
4
                                        8.0500 NaN
                                                              s
                        0 2 ... 13.0000 NaN
1 1 ... 30.0000 B42
886
            887
            888
887
                              3 ... 23.4500 NaN
888
            889
                      1
                              1 ... 30.0000 C148
889
            890
                                                             C
890
            891
                        0
                                         7.7500
                                                  NaN
                                                             Q
[891 rows x 12 columns]
```

Remove missing value

```
untitled4.
□ Nomer1.py
                untitled1.py
                             untitled0.py >
                                           untitled2.py* ×
                                                         untitled3.py*
          import pandas as pd
          import numpy as np
          from scipy import stats
          data=pd.read csv(r"C:\Users\ACER\Downloads\titanic.csv")
          df=pd.DataFrame(data)
          # Langkah 1
          df_cabin=df
          # Langkah 2
          df_cabin=df.dropna(axis='columns')
   13
          df.head()
          print(df_cabin)
```

Output

```
In [6]: runfile('C:/Users/ACER/tugas 2/untitled4.py', wdir='C:/Users/ACER/
tugas 2')
     PassengerId Survived Pclass ... Parch
                                                            Ticket
                                                                         Fare
                               3 ... 0
                                                         A/5 21171 7.2500
PC 17599 71.2833
0
                                  1 ... 0 PC 17599 71.2833
3 ... 0 STON/O2. 3101282 7.9250
1 ... 0 113803 53.1000
                          1
1
2
3
               4
4
                                             0
                          0
                                                            373450 8.0500
                                2 ... 0
1 ... 0
3 ... 2
                                                          211536 13.0000
886
             887
             888
                                                       112053 30.0000
W./C. 6607 23.4500
887
             889
                         0
888
889
             890
                                                           111369 30.0000
                                              0
                         0
890
             891
                                                             370376
                                                                      7.7500
[891 rows x 9 columns]
```

ASSIGNMENT:

- 1. Try all the source code that has been written above
- 2. Look for any data that can be downloaded
- 3. Do preprocessing on data you have found using Matlab and Python
- 4. Make a report containing a print screen of the results of the code that has been written and provide an explanation
- 5. Name the file with "laporan preprocessing KelompokXXX.pdf

MATLAB:

1. Outlier

1.2 Outlier Detection

```
/ > MATLAB Drive >

untitled.m × +

a = [2 1 29 28 100 38 29 2 13]
b = isoutlier(a)
```

Result:

```
New to MATLAB? See resources for Getting Started.

a =

2 1 29 28 100 38 29 2 13

b =

1x9 logical array

0 0 0 0 1 0 0 0 0
```

1.2 Oulier Handling

1. fill outlier

Result:

```
c2 =

215.3058

Outlier =

645.9175

b2 =

Columns 1 through 10

94 73 47 34 73 63 63 44 75 62
```

2. rmoutlier

```
8
9
a3 = [23 47 29 384 62 36 42 93 84 76 23 84]
.0
[m3,n3] = rmoutliers(a3,'mean')
.1
k3 = rmoutliers(a3,'mean')
.2
```

Result:

```
m3 =

23 47 29 62 36 42 93 84 76 23 84

n3 =

1x12 logical array

0 0 0 1 0 0 0 0 0 0 0 0 0

k3 =

23 47 29 62 36 42 93 84 76 23 84
```

2. Missing Value

2.1 Missing value detection

```
13 a4 = [1 2 NaN 3 NaN NaN 8]
14 b4 = ismissing(a4)
15
```

Result:

2.2 Handling missing value

1. missing

```
Tanggal = datetime({'2022-03-16 08:03:05';'2022-03-16 10:03:17';'2022-03-16 12:03:13'});
17
         Temperatur = [35.3;37.1;45.3];
         Arah_Angin = categorical({'NW';'NW';'N'});
18
19
         TT = timetable(Tanggal,Temperatur,Arah_Angin);
         disp(TT)
20
21
         TT.Tanggal(3) = missing;
22
         TT.Temperatur(3) = missing;
         TT.Arah_Angin(3) = missing;
23
24
         disp(TT)
```

Result:

Tanggal	Temperatur	Arah_Angin
16-Mar-2022 08:03:05	35.3	NW
16-Mar-2022 10:03:17	37.1	NW
16-Mar-2022 12:03:13	45.3	N
Tanggal	Temperatur	Arah_Angin
Tanggal 16-Mar-2022 08:03:05	Temperatur ————	Arah_Angin —————

2. fillmissing

```
untitled.m ×
25
16
         Temperatur = [35.3;NaN;41.3];
         Arah_Angin = categorical({'NW';'N';'NW'});
27
8.
         TT = table(Temperatur,Arah_Angin);
19
         disp(TT)
0
         F = fillmissing(TT, 'constant',0, 'DataVariables',@isnumeric);
1
         disp(F)
2
         Temneratur = [35.3:NaN:41.3]:
```

Result:

Temperatur	Arah_Angin
35.3	NW
NaN	N
41.3	NW
Temperatur	Arah Angin
	Aran_Angin
35.3	NW

source code:

```
------ /· /
32
33
          Temperatur = [35.3;NaN;41.3];
          Arah_Angin = categorical({'NW';'';'N'});
34
35
          TT = table(Temperatur, Arah_Angin);
          disp(TT)
36
37
          F = fillmissing(TT, 'previous', 'DataVariables', {'Arah_Angin'})
38
          G = fillmissing(F,'pchip','DataVariables',{'Temperatur'});
39
          disp(G)
40
```

Result:

Source code:

```
40
41
           Data = readtable('BenderlyZwick.csv')
42
           Outlier = isoutlier(Data)
           b5 = filloutliers(Data,0)
43
           15 = filloutliers(Data, 'nearest', 'DataVariables', { 'growth' })
44
45
           k5 = rmoutliers(Data)
46
           missing1 = ismissing(b5)
47
           missing2 = ismissing(k5)
48
           x = fillmissing(b5,'constant',0,'DataVariables',@isnumeric)
           y = fillmissing(k5,'constant',0,'DataVariables',@isnumeric)
z = fillmissing(b5,'previous','DataVariables',{'inflation'})
49
50
51
           normalisasi = normalize(x,'zscore')
```

Result data:

Data = 31×6 <u>table</u>

Var1	returns	growth	inflation	growth2	inflation
1	NaN	NaN	NaN	3.9	2.2
2	NaN	NaN	NaN	4	2.1
3	53	6.7	-0.4	-1.3	0.6
4	31.2	2.1	0.4	5.6	1.3
5	3.7	1.8	2.9	2.1	1.9
:	:	:	:	:	:
27	-1.3	2.8	7.9	5.3	7.3
28	8.6	-0.3	9.8	2.5	9.2
29	22.2	2.6	10.2	-0.2	10.7
30	-12.2	-1.9	7.3	1.9	9.2

1. <u>outlier detection</u>

2. Handling outlier

×6 <u>tab</u>	<u>le</u>				
Var1	returns	growth	inflation	growth2	inflation2
1	NaN	NaN	NaN	3.9	2.2
2	NaN	NaN	NaN	4	2.1
3	53	6.7	-0.4	-1.3	0.6
4	31.2	2.1	0.4	5.6	1.3
5	3.7	1.8	2.9	2.1	1.9
:	:	:	:	:	:
27	-1.3	2.8	7.9	5.3	7.3
28	8.6	-0.3	9.8	2.5	9.2
29	22.2	2.6	10.2	-0.2	0
30	-12.2	-1.9	7.3	1.9	9.2
31	NaN	NaN	NaN	-2.5	5.7

Replace with previous value

15 =

31×6 table

Var1	returns	growth	inflation	growth2	inflation2
1	NaN	NaN	NaN	3.9	2.2
2	NaN	NaN	NaN	4	2.1
3	53	6.7	-0.4	-1.3	0.6
4	31.2	2.1	0.4	5.6	1.3
5	3.7	1.8	2.9	2.1	1.9
:	:	:	:	:	:
27	-1.3	2.8	7.9	5.3	7.3
28	8.6	-0.3	9.8	2.5	9.2
29	22.2	2.6	10.2	-0.2	10.7
30	-12.2	-1.9	7.3	1.9	9.2
31	NaN	NaN	NaN	-2.5	5.7

Remove Outlier

k5 = 29×6 <u>table</u>

Var1	returns	growth	inflation	growth2	inflation2
1	NaN	NaN	NaN	3.9	2.2
2	NaN	NaN	NaN	4	2.1
3	53	6.7	-0.4	-1.3	0.6
4	31.2	2.1	0.4	5.6	1.3
5	3.7	1.8	2.9	2.1	1.9
:	:	:	:	:	:
26	-13.1	5	5.9	4.7	6.5
27	-1.3	2.8	7.9	5.3	7.3
28	8.6	-0.3	9.8	2.5	9.2
30	-12.2	-1.9	7.3	1.9	9.2
31	NaN	NaN	NaN	-2.5	5.7

Missing value detection

```
WORKSPACE CURRE
 missing2 =
   29×6 <u>logical</u> array
   0 1
          1
             1
                   0
    0 1 1 1
                   0
                   0
    0
      0 0 0 0
                   0
      0
         0 0
                   0
    0 0 0 0
                   0
      0
         0 0
    0
                   0
      0 0 0
                   0
    0 0 0 0
                   0
      0 0 0 0
                   0
                   0
```

Handling missing value

fit with value 0

x =
31x6 table

Var1	returns	growth	inflation	growth2	inflation2
1	0	0	0	3.9	2.2
2	0	0	0	4	2.1
3	53	6.7	-0.4	-1.3	0.6
4	31.2	2.1	0.4	5.6	1.3
5	3.7	1.8	2.9	2.1	1.9
:	:	:	:	:	:
27	-1.3	2.8	7.9	5.3	7.3
28	8.6	-0.3	9.8	2.5	9.2
29	22.2	2.6	10.2	-0.2	0
20	12.2	1.0	7 7	1 0	0.0
	1 2 3 4 5 :	1 0 2 0 3 53 4 31.2 5 3.7 : : 27 -1.3 28 8.6 29 22.2	1 0 0 0 2 0 3 53 6.7 4 31.2 2.1 5 3.7 1.8 : : : : : : : : : : : : : : : : : : :	1 0 0 0 0 0 2 0 3 53 6.7 -0.4 4 31.2 2.1 0.4 5 3.7 1.8 2.9 : : : : : : : : : : : : : : : : : : :	1 0 0 0 3.9 2 0 0 0 4 3 53 6.7 -0.4 -1.3 4 31.2 2.1 0.4 5.6 5 3.7 1.8 2.9 2.1 : : : : : 27 -1.3 2.8 7.9 5.3 28 8.6 -0.3 9.8 2.5 29 22.2 2.6 10.2 -0.2

29×6 <u>table</u>

Var1	returns	growth	inflation	growth2	inflation2
					
1	0	0	0	3.9	2.2
2	0	0	0	4	2.1
3	53	6.7	-0.4	-1.3	0.6
4	31.2	2.1	0.4	5.6	1.3
5	3.7	1.8	2.9	2.1	1.9
:	:	:	:	:	:
26	-13.1	5	5.9	4.7	6.5
27	-1.3	2.8	7.9	5.3	7.3
28	8.6	-0.3	9.8	2.5	9.2
20	40.0	4 0		4 0	

Fill with closent value

2 =

31x6 table

31×6 <u>table</u>						
Var1	returns	growth	inflation	growth2	inflation2	
	NaN	Nahi	NaN.		2.2	
					2.2	
2	NaN	NaN	NaN	4	2.1	
3	53	6.7	-0.4	-1.3	0.6	
4	31.2	2.1	0.4	5.6	1.3	
5	3.7	1.8	2.9	2.1	1.9	
:	:	:	:	:	:	
27	-1.3	2.8	7.9	5.3	7.3	
28	8.6	-0.3	9.8	2.5	9.2	
29	22.2	2.6	10.2	-0.2	0	
	Var1 1 2 3 4 5 :	1 NaN 2 NaN 3 53 4 31.2 5 3.7 : :	Var1 returns growth	Var1 returns growth inflation	Var1 returns growth inflation growth2 1 NaN NaN NaN 3.9 2 NaN NaN NaN 4 3 53 6.7 -0.4 -1.3 4 31.2 2.1 0.4 5.6 5 3.7 1.8 2.9 2.1 : : : : : 27 -1.3 2.8 7.9 5.3 28 8.6 -0.3 9.8 2.5	

Normalization

normalisasi =

31x6 table

Var1	returns	growth	inflation	growth2	inflation2
-1.6498	-0.34644	-1.1085	-1.1803	0.41391	-0.52834
-1.5398	-0.34644	-1.1085	-1.1803	0.45413	-0.56697
-1.4298	2.3783	1.4468	-1.3065	-1.6777	-1.1464
-1.3198	1.2576	-0.30756	-1.054	1.0977	-0.876
-1.2098	-0.15622	-0.42198	-0.26477	-0.31011	-0.64423
:	:	:	:	:	:
1.2098	-0.41327	-0.040598	1.3137	0.97704	1.4417
1.3198	0.095689	-1.2229	1.9135	-0.14922	2.1757
1.4298	0.79487	-0.11687	2.0397	-1.2352	-1.3782
1.5398	-0.97364	-1.8331	1.1242	-0.39056	2.1757
1.6498	-0.34644	-1.1085	-1.1803	-2.1604	0.82367

PYTHON:

1. Outlier

```
dataset= [18,17,9,13,7,14,80,13,15,5,4]
import numpy as np
import pandas as pd
outliers = []
def detect_outlier(data_1):
threshold=3
mean_1=np.mean(data_1)
std_1=np.std(data_1)

for y in data_1:
    z_score=(y-mean_1)/std_1
    if np.abs(z_score)>threshold:
    outliers_append(y)
return outliers

outliers_datapoints = detect_outlier(dataset)
print(outliers_datapoints)

numbided5.py* × untitled6.py* × untitled7.py* × untitled8.py* × | | | = |

dataset= [18,17,9,13,7,14,80,13,15,5,4]
import numpy as np
i
```

Output

```
In [30]: runfile('C:/Users/ACER/tugas 2/untitled5.py', wdir='C:/Users/ACER/tugas 2')
[80]
```

2. Missing Value

a. Missing Value Detection

```
import pandas as pd
import numpy as np
from scipy import stats
data=pd.read_csv(r"C:\Users\ACER\DownLoads\BenderlyZwick.csv")
fepd.DataFrame(data)
new_df=df.isna().sum()
print(new_df)
```

Output

```
In [15]: runfile('C:/Users/ACER/tugas 2/untitled8.py', wdir='C:/Users/A
tugas 2')
Unnamed: 0      0
returns      3
growth      3
inflation      3
growth2      0
inflation2      0
dtype: int64
```

b. Handling Missing Value

Replace missing value with mean

```
import pandas as pd
import numpy as np
from scipy import stats
data=pd.read_csv(r"C:\Users\ACER\Downloads\BenderlyZwick.csv")
f=pd.DataFrame(data)

# Langkah 1
# Langkah 2
# Langkah 2
# Langkah 3
# Langkah 3
# Langkah 3
# Langkah 4
# Langkah 4
# df['growth'] = df['growth'].fillna(rata_umur)
# Langkah 4
# df['growth'].isna().sum()

print(df_growth)
```

output

```
In [10]: runfile('C:/Users/ACER/tugas 2/untitled6.py', wdir='C:/Users/ACER/
                           growth inflation growth2 inflation2
   Unnamed: 0 returns
             1
                    NaN 3.217857
                                                  3.9
                                                                2.2
                    NaN 3.217857
1
                                                                2.1
             2
                                          NaN
                                                   4.0
                  53.0 6.700000
                                        -0.4
                                                               0.6
                                                 -1.3
                 31.2 2.100000
3.7 1.800000
-13.8 -0.400000
                                        0.4
                                                               1.3
             4
                                                 5.6
                                                 2.1
                                         2.9
3.0
             5
                                                                1.9
                                                   1.7
                                                                3.2
6
                                         1.7
                  41.7 6.000000
                                                  -0.8
                                                                1.8
                  10.5 2.100000
                                         1.5
                                                  5.8
                                                                2.2
            9 -1.3 2.600000
10 26.1 5.800000
11 -10.5 4.000000
8
                                         1.8
                                                 2.2
                                                                1.9
                                                  2.6
5.3
9
                                          0.8
                                                                1.2
10
                                          1.8
                                                                1.8
11
            12
                  21.2 5.300000
                                         1.6
                                                  4.1
                                                               1.5
                  15.5 6.000000
10.2 6.000000
-13.3 2.700000
21.3 4.600000
12
           13
                                         1.0
                                                  5.3
                                                               1.7
                                                  5.8
13
            14
                                          2.3
                                                                1.7
14
                                          3.2
                                                   5.8
                                                                3.1
15
            16
                                          2.7
                                                   2.9
                                                               2.5
16
                   6.8 2.800000
                                          4.3
                                                   4.1
                                                                4.5
                  -13.5 -0.200000
17
            18
                                          5.0
                                                   2.4
                                                                4.3
18
            19
                  -0.4 3.400000
                                          4.4
                                                   -0.3
                                                                4.6
```

```
import pandas as pd
import numpy as np
from scipy import stats
data=pd.read_csv(r"C:\Users\ACER\Downloads\BenderlyZwick.csv")
ff=pd.DataFrame(data)

# Langkah 1
df_returns=df
# Langkah 2
df_returns=df.dropna(axis='columns')
df.head()

print(df_returns)
```

Output

```
In [14]: runfile('C:/Users/ACER/tugas 2/untitled7.py', wdir='C:/Users/ACER/
tugas 2')
   Unnamed: 0 growth2 inflation2
0
            1
                   3.9
                              2.2
            2
                  4.0
                              2.1
2
            3
                  -1.3
                              0.6
            4
                   5.6
                              1.3
4
            5
                   2.1
                              1.9
                  1.7
                              3.2
5
            6
6
            7
                 -0.8
                              1.8
                 5.8
2.2
2.6
5.3
4.1
            8
                              2.2
                              1.9
8
           9
                              1.2
9
           10
                              1.8
10
           11
                              1.5
11
           12
                 5.3
          13
12
                              1.7
                 5.8
                              1.7
13
           14
                 5.8
          15
                              3.1
14
                 2.9
          16
                              2.5
15
16
          17
                  4.1
                              4.5
          18
17
                  2.4
                              4.3
          19
18
                 -0.3
                              4.6
           20
                 2.8
19
                              4.7
                 5.0
20
          21
                              4.0
                  5.2
21
          22
                              6.2
                             10.5
22
          23
                  -0.5
23
           24
                 -1.3
                              8.0
24
           25
                  4.9
                              5.7
25
           26
                  4.7
                              6.5
26
           27
                  5.3
                              7.3
           28
                  2.5
                              9.2
27
28
           29
                 -0.2
                             10.7
29
           30
                  1.9
                              9.2
           31
                  -2.5
                              5.7
30
```