MAST30013 – Techniques in Operations Research Semester 1, 2021

Tutorial 9

1. Consider the constrained nonlinear program

min
$$\frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 - x_1 + x_2$$

subject to $x_1, x_2 \le 0$.

- (a) Write down the l_2 -penalty function $P_k(\mathbf{x})$ with penalty parameter k.
- (b) Write down $\nabla P_k(\boldsymbol{x})$ and show that the stationary points for $P_k(\boldsymbol{x})$ only occur when $x_1 > 0$ and $x_2 < 0$.
- (c) Find all stationary points $\boldsymbol{x}^k = (x_1^k, x_2^k)$ for $P_k(\boldsymbol{x})$ such that $x_1^k > 0$ and $x_2^k < 0$. Write down the limit $\boldsymbol{x}^* = \lim_{k \to \infty} \boldsymbol{x}^k$.
- (d) For each stationary point, write down an estimate λ^k of the optimal Lagrange multiplier vector, and find the limit $\lambda^* = \lim_{k \to \infty} \lambda^k$.
- 2. Consider the non-linear program

$$\min \quad \frac{1}{4}x_1^4 - \frac{1}{2}x_1^2 + x_2^2$$
 subject to
$$x_1 \ge 0$$

$$x_2 \ge 2.$$

- (a) Write down the l_2 -penalty function $P_k(\boldsymbol{x})$ with penalty parameter k.
- (b) Write down $\nabla P_k(\boldsymbol{x})$ and show that the stationary points for $P_k(\boldsymbol{x})$ only occur when $x_1 \geq 0$ and $x_2 < 2$.
- (c) Find all stationary points $\boldsymbol{x}^k = (x_1^k, x_2^k)$ for $P_k(\boldsymbol{x})$ such that $x_1^k \geq 0$ and $x_2^k < 2$. Write down the limit $\boldsymbol{x}^* = \lim_{k \to \infty} \boldsymbol{x}^k$.
- (d) For each stationary point, write down an estimate λ^k of the optimal Lagrange multiplier vector, and find the limit $\lambda^* = \lim_{k \to \infty} \lambda^k$.