LECTURE 14: LEGENDRE TRANSFORMATIONS Friday, February 14, 2020

Recall from last lecture that we defined the Legendre transformation:

$$g(p) = \min_{x} \{f(x) - xp\}$$
 (Legendre Transformation)
$$f(x) = \max_{p} \{g(p) + px\}$$
 (Inverse Legendre Transformation)

where

$$f'(x) = p$$
 or $df = p dx$
 $g'(p) = -x$ or $dg = -x dp$

The plus and minus in the transform and its inverse can be switched with no effect to the validity of the transformation.

0.1 Helmholtz Free Energy

We start with the entropy S(U,V,N) which we know is monotonically increasing in U since $\frac{\partial S}{\partial U} = \frac{1}{T}$. We know it's also concave in U. We can solve this for U(S,V,N) (we don't care about V and N right now, they're just coming along for the ride). The same information is contained in both equations, so this is still a thermodynamic potential.

$$\mathrm{d}U = \underbrace{T}_{\left(\frac{\partial U}{\partial S}\right)_{V,N}} \mathrm{d}S \underbrace{-P}_{\left(\frac{\partial U}{\partial V}\right)_{S,N}} \mathrm{d}V + \underbrace{\mu}_{\left(\frac{\partial U}{\partial N}\right)_{S,V}} \mathrm{d}N$$

Because S(U) is concave, U(S) is convex (and still monotonically increasing). S is an awkward variable. Let's change it to $T = \left(\frac{\partial U}{\partial S}\right)_{V.N}$. We can do this with a Legendre transform:

$$F(T,V,N) = \min_{S} \left\{ U(S,V,N) - TS \right\} \tag{Helmholtz Free Energy}$$

This function F is the Helmholtz free energy. We could choose either a minus or plus sign, but minus is conventionally used. In order to turn T dS into -S dT, we need a minus sign. Say we would like to calculate dF:

$$\begin{split} \mathrm{d}F &= \mathrm{d}\left(U - TS\right) \\ &= \mathrm{d}U - \left(T\,\mathrm{d}S + S\,\mathrm{d}T\right) \\ &= T\,\mathrm{d}S - P\,\mathrm{d}V + \mu\,\mathrm{d}N - T\,\mathrm{d}S - S\,\mathrm{d}T \\ &= -S\,\mathrm{d}T - P\,\mathrm{d}V + \mu\,\mathrm{d}N \end{split}$$

If we had chosen a + here, the T dS terms would not have canceled nicely. This will turn out differently for other situations. With this function, we now have some additional definitions for the entropy, pressure, and chemical potential:

$$-\,S = \left(\frac{\partial F}{\partial T}\right)_{V,N} \qquad -\,P = \left(\frac{\partial F}{\partial V}\right)_{T,N} \qquad \mu = \left(\frac{\partial F}{\partial N}\right)_{T,V}$$

Notice that we now have a function S(T, V, N), which is not a thermic potential.

Consider a system at constant T and N such that dT = dN = 0:

$$\mathrm{d}F = -P\,\mathrm{d}V = \mathrm{d}W$$

The maximum amount of work that can be extracted from a system at fixed T and N is equal to the free energy difference between the initial and final states. Note the distinction between the energy and free energy. If you let a system do work and want to see how much work was done, you can't just use the difference in energies ΔU , you have to use the difference in the Helmholtz free energies ΔF . We can do this by replacing other variables other than S with T.

0.2 Enthalpy

Instead of replacing S with T, replace V with P. The result is called the enthalpy:

$$H(S, P, N) = \min_{V} \{U(S, V, N) + PV\}$$
 (Enthalpy)

We need the transformation to have a different sign because dU has a -P dV term.

$$dH = T dS + V dP + \mu dN$$

$$T = \left(\frac{\partial H}{\partial S}\right)_{P,N} \qquad V = \left(\frac{\partial H}{\partial P}\right)_{S,N} \qquad \mu = \left(\frac{\partial H}{\partial N}\right)_{S,P}$$

Let's look at a system with constant P and N (imagine a liquid in a test tube, if the tube is open, the pressure is just 1atm and the number of particles is not changing):

$$dH = T dS = dQ$$

The change in heat under these conditions is the change in enthalpy.

0.3 Gibbs Free Energy (Free Enthalpy)

What if we exchanged both S for T and V for P?

$$G(T,P,N) = \min_{S,V} \left\{ U(S,V,N) - TS + PV \right\} \tag{Gibbs Free Energy}$$

$$dG = -S dT + V dP + \mu dN$$

$$-\,S = \left(\frac{\partial G}{\partial T}\right)_{P,N} \qquad V = \left(\frac{\partial G}{\partial P}\right)_{T,V} \qquad \mu = \left(\frac{\partial G}{\partial N}\right)_{T,P}$$

For a system with constant T and P,

$$dG = \mu dN$$

The change in the Gibbs free energy when adding one particle is the chemical potential.

0.4 Grand Potential

Now let's exchange S for T and N for μ :

$$\Omega(T,V,mu) = \min_{S,N} \left\{ U(S,V,N) - TS - \mu N \right\} \tag{Grand Potential}$$

$$d\Omega = -S dT - P dV - N d\mu$$

$$-S = \left(\frac{\partial \Omega}{\partial T}\right)_{V,\mu} \qquad -P = \left(\frac{\partial \Omega}{\partial V}\right)_{T,\mu} \qquad -N = \left(\frac{\partial \Omega}{\partial \mu}\right)_{T,V}$$

This potential is useful when the number of particles is not fixed, and turns out to be very helpful in quantum statistics.

One Final Trick

The expressions

$$\min_{S} \{U(S, V, N) - TS \pm \cdots \}$$

and

$$\min_{U,\dots} \{U - TS(U, V, N) \pm \dots\}$$

are equivalent! We are just running over the same set of U, V, and N, but labeling U and S differently.