xample 1: Burgers equation xample 2: Linear systems

Lecture 4

Hyperbolic Equations of first order - Part 1

Example 1: Burgers equation

Example 2: Linear systems

Characteristics: Example 1, Burgers equation.

Characteristics - Understanding solutions

Example: Understanding Burger's equation, where $f(u) = \frac{1}{2}u^2$:

$$\partial_t \mathbf{u} + \mathbf{u} \ \partial_x \mathbf{u} = \mathbf{0}.$$

For the initial value we assume $v \in C^{\infty}(\mathbb{R})$ and there are x_0 and x_1 with

$$x_1 < x_2$$
 and $v(x_1) > v(x_2)$.

Since $f(u) = \frac{1}{2}u^2$ we have f'(u) = u and hence

$$\gamma_1(t) = \mathbf{v}(x_1) \cdot t + x_1$$
 and $\gamma_2(t) = \mathbf{v}(x_2) \cdot t + x_2$.

For $t_0=-rac{\chi_1-\chi_2}{v(\chi_1)-v(\chi_2)}>0$ we have $\gamma_1(t_0)=\gamma_2(t_0)$ and hence

$$\mathbf{v}(\mathbf{x_1}) = \mathbf{u}(\gamma_1(\mathbf{t_0}), \mathbf{t_0}) = \mathbf{u}(\gamma_2(\mathbf{t_0}), \mathbf{t_0}) = \mathbf{v}(\mathbf{x_2}) < \mathbf{v}(\mathbf{x_1}) \quad \Rightarrow \text{ Contradiction.}$$

What does that imply? For $t \ge t_0$ there exists no classical solution u.

Example 1: Burgers equation

SF2521

Characteristics - Understanding solutions

For the initial value we assume $v \in C^{\infty}(\mathbb{R})$ and there are x_0 and x_1 with

$$x_1 < x_2$$
 and $v(x_1) > v(x_2)$.

Since $f(u) = \frac{1}{2}u^2$ we have f'(u) = u and hence

$$\gamma_1(t) = \mathbf{v}(x_1) \cdot t + x_1$$
 and $\gamma_2(t) = \mathbf{v}(x_2) \cdot t + x_2$.

For $t_0 = -\frac{x_1 - x_2}{v(x_1) - v(x_2)} > 0$ we have $\gamma_1(t_0) = \gamma_2(t_0)$ and hence

$$v(x_1) = u(\gamma_1(t_0), t_0) = u(\gamma_2(t_0), t_0) = v(x_2) < v(x_1) \implies \text{Contradiction.}$$

Crash of conservation laws Observe

▶ Physical interpretation: $\gamma_1(t) = v(x_1) t + x_1$

Wave speed

Wave speed higher the larger the value of $v(x_1)$.

- Particles in the wave peak are fastest
- ightharpoonup wave must eventually develop a discontinuity \Rightarrow "Shock waves".
- if $v(x_1) < v(x_2)$ we have $t_0 < 0$ and no contradiction;

Characteristics - Understanding solutions

Example: $v(x) = \sin(\pi x)$. It holds

$$\gamma(t) = \sin(\pi x_0) \cdot t + x_0.$$

Characteristics will cross \Rightarrow discontinuous solution for $t \geq t_0$.

Example 1: Burgers equation

Characteristics - Understanding solutions

The examples shows the following result:

Theorem

Conservation laws do not necessarily have classical solutions for all times $t \in (0, \infty)$. Not even for very regular initial data.

