

PHYSICS LETTERS A

www.elsevier.com/locate/pla

Physics Letters A 350 (2006) 87–88

Homotopy perturbation method for solving boundary value problems

Ji-Huan He

College of Science, Donghua University, 1882 Yan-an Xilu Road, Shanghai 200051, China
Received 6 September 2005; accepted 5 October 2005

Available online 7 October 2005

Communicated by R. Wu

Abstract

Homotopy perturbation method is applied to nonlinear boundary value problems. Comparison of the result obtained by the present method with that obtained by Adomian method [A.M. Wazwaz, Found. Phys. Lett. 13 (2000) 493] reveals that the present method is very effective and convenient.

© 2005 Elsevier B.V. All rights reserved.

Recently Adomian method [1–5] has been widely applied to nonlinear problems. Liu [6] and He [7] found that Adomian method could not always satisfy all its boundary conditions, leading to an error at its boundaries. Wazwaz [8] overcame the difficulty arising in boundary value problems, but it is still a very intricate problem to calculate the so-called Adomian polynomials, if it is not a difficult problem. Abdou, Soliman [9] and Momani, Abuasad [10] found that the variational iteration method [11] can completely overcome the difficulty arising in calculating Adomian polynomials. In this Letter, we will use the homotopy perturbation method [12–15], which is proved to be very effective, simple, and convenient to solve nonlinear boundary value problems.

Consider a special nonlinear PDE [8]

$$\nabla^2 u + \left(\frac{\partial u}{\partial y}\right)^2 = 2y + x^4,\tag{1}$$

subject to boundary conditions

$$u(0, y) = 0,$$
 $u(1, y) = y + a,$
 $u(x, 0) = ax,$ $u(x, 1) = x(x + a),$ (2)

where a is a constant.

Liu [6] obtained the following approximate solution by Adomian method

$$u(x, y) = x(xy + a)$$

$$+\frac{1}{2}\left[y(y-1)\left(\frac{x^4}{2} + \frac{y+1}{3}\right) + \frac{x}{30}(x^5 - 1)\right].$$
 (3)

It is obvious that the obtained solution does not satisfy the given boundary condition. Liu [6] suggested a weighted residual method and obtained the following approximation

$$u(x, y) = x(xy + a) + \frac{1}{4}xy(y - 1)(1 - x^3)$$
(4)

which satisfies all boundary conditions. The accuracy of Liu's method, however, depends upon the choice of weighted factors.

Hereby we suggest a simple but powerful homotopy perturbation method [12–15] to the discussed problem. According to the homotopy perturbation, we construct the following simple homotopy:

$$\nabla^2 u - 2y = p \left[x^4 - \left(\frac{\partial u}{\partial y} \right)^2 \right]. \tag{5}$$

The homotopy parameter p always changes from zero to unity. In case p = 0, Eq. (5) becomes a linear equation, $\nabla^2 u - 2y = 0$, which is easy to be solved; and when it is one, Eq. (5) turns out to be the original one, Eq. (1).

In view of homotopy perturbation method, we use the homotopy parameter p to expand the solution

$$u = u_0 + pu_1 + p^2 u_2 + \cdots. (6)$$

E-mail addresses: jhhe@dhu.edu.cn, ijnsns@yahoo.com.cn (J.-H. He).

The approximate solution can be obtained by setting p = 1:

$$u = u_0 + u_1 + u_2 + \cdots. (7)$$

The convergence of the method has been proved in [1,14]. Substituting Eq. (6) into Eq. (5), and equating the terms with the identical powers of p, we can obtain a series of linear equations, and we write only the first two linear equations:

$$\nabla^2 u_0 - 2y = 0, (8)$$

$$\nabla^2 u_1 = x^4 - \left(\frac{\partial u_0}{\partial y}\right)^2. \tag{9}$$

The special solution of Eq. (7) can be easily obtained, which reads

$$u_0 = x^2 y. (10)$$

Substituting u_0 into Eq. (9), we obtain a differential equation for u_1 ,

$$\nabla^2 u_1 = 0. \tag{11}$$

If the first-order approximate solution is sought, $u = u_0 + u_1$, then the boundary conditions for u_1 are

$$u_1(0, y) = u(0, y) - u_0(0, y) = 0,$$

$$u_1(1, y) = u(1, y) - u_0(1, y) = y + a - y = a,$$

$$u_1(x, 0) = u(x, 0) - u_0(x, 0) = ax,$$

$$u_1(x, 1) = u(x, 1) - u_0(x, 1) = x(x + a) - x^2 = ax.$$
 (12)

Considering the boundary conditions (12), we can solve Eq. (11) easily. The solution reads

$$u_1 = ax. (13)$$

So the first-order approximate solution is

$$u = u_0 + u_1 = x^2 y + ax, (14)$$

which happens to be the exact solution.

Wazwaz [8] applied Adomian method and obtained an infinite series which converges to the exact solution.

Compared with Adomian method [8], the present method has some obvious merits: (1) the method needs not to calculate Adomian polynomials; (2) the method is very straightforward, and the solution procedure can be done by pencil-and-paper only.

Acknowledgement

This work is supported by the Program for New Century Excellent Talents in University.

References

- [1] J.H. He, Perturbation Methods: Basic and Beyond, Elsevier, Amsterdam, 2006.
- [2] S. Pamuk, Phys. Lett. A 344 (2005) 184.
- [3] T.A. Abassy, M.A. El-Tawil, H.K. Saleh, Int. J. Nonlinear Sci. Numer. Simulation 5 (2004) 327.
- [4] S.M. El-Sayed, D. Kaya, S. Zarea, Int. J. Nonlinear Sci. Numer. Simulation 5 (2004) 105.
- [5] T.S. El-Danaf, M.A. Ramadan, et al., Chaos Solitons Fractals 26 (2005) 747
- [6] G.L. Liu, Weighted residual decomposition method in nonlinear applied mathematics, in: Proceedings of 6th Congress of Modern Mathematical and Mechanics, Suzhou, China, 1995, p. 643 (in Chinese).
- [7] J.H. He, Commun. Nonlinear Sci. Numer. Simulation 2 (1997) 230.
- [8] A.M. Wazwaz, Found. Phys. Lett. 13 (2000) 493.
- [9] M.A. Abdou, A.A. Soliman, J. Comput. Appl. Math. 181 (2005) 245.
- [10] S. Momani, S. Abuasad, Chaos Solitons Fractals 27 (5) (2006) 1119.
- [11] J.H. He, Int. J. Nonlinear Mech. 34 (1999) 699.
- [12] J.H. He, Chaos Solitons Fractals 26 (2005) 695.
- [13] J.H. He, Int. J. Nonlinear Sci. Numer. Simulation 6 (2005) 207.
- [14] J.H. He, Int. J. Nonlinear Mech. 35 (2000) 37.
- [15] M. El-Shahed, Int. J. Nonlinear Sci. Numer. Simulation 6 (2005) 163.