Time Series specificities

Data analyst classroom trainings

Fabrice Jimenez
Data Scientist & Artificial Intelligence Engineer
Airbus Commercial Aircraft

Time Series: definition and scope

"Usual" dataset

Time series dataset

categorical

continuous

categorical

continuous

continuous

Index	Average price (€)	Distance (km)	Туре	
restaurant_1	15	2.2	Italian	
restaurant_2	10	5.1	Vietnamese	
restaurant_3	25	0.4	Spanish	

Time	Stock price (€)	Temp (°C)	Website clicks
00:01	15	22.5	4
00:02	14.2	24	6
00:03	15.6	26.5	20

Time series = subcategory of what we already know...

→ Same principles and techniques will apply: scaling, PCA, clustering, statistics, predictive models....

Then what more do I have to learn?

→ Restricted scope = more possibilities because of:

Relationship between rows

Not independent anymore...

All continuous variables

Time Series: for which task?

Regression

Clustering

Inside time series

Anomaly detection

Between time series

Clearly define your question: inside or between time series is possible for all tasks

For example:

Next point prediction

Time Series: for which task?

Clearly define your question: inside or between time series is possible for all tasks

Main focus of this class

Each row is a data point: usual techniques apply, but how to take advantage of rows relationships?

Not very specific to time series

Rolling window principle

Analysis between windows

= group of successive points = smaller time series

Preprocessing: what to be careful with?

Sometimes, time index is not regular

Irregular sampling, missing values...

Problems?

- → Time intervals between rows are not comparable
- → Can be interesting to keep it, but be careful with the approach

Solutions?

- → Resampling: modify index to have regular timestamps
- → Grouping and interpolation strategy to define: be careful!

Subsampling

Oversampling

Transformation steps

Input: groups of points with n variables (n time series)

Before applying any technique:

How can we transform the data to take advantage of its structure?

1D: for each time series at a time

I want to remove noise

Rolling mean / median Statistical filter (Hodrick-Prescott...) Frequency filter (low pass, wavelet...)

I want to study the dynamics / evolution

Derivative, differentiation
→ makes the series stationary
(independent of 1st point)

Cumulated sum

→ aggregates history in value of current point

I want to study periodicity

Autocorrelation: Pearson correlation of the series with itself shifted by a lag

→ high correlation = identify period duration

Transformation steps

Input: groups of points with n variables (n time series)

Before applying any technique:

How can we transform the data to take advantage of its structure?

Careful with scaling!

nD: for multiple time series at a time

I want to align 2 time series

Cross-correlation

- → correlation of 1 time series with another shifted by a lag
- → high correlation = shift to apply

I want to study the relative behavior of 2 or more time series

Pointwise difference of 2 time series

→ relative behavior of the 2

Pointwise difference of 1 time series with mean / median of others

→ relative behavior of 1 w.r.t the group

I want to aggregate all time series

PCA: we can keep 1 or more component

- → careful with scaling!
- → careful with interpretation!

Feature Engineering

Input: groups of points with n variables (n time series)

→ we have transformed our dataset according to steps above, we consider our time series are relevant for analysis and aggregate all information we need

Goal: summarize each time series in a set of p features in order to apply classical statistics and machine learning approaches

Features dataset

	ts1_F1	ts1_F2	 ts1_Fp	ts2_F1	ts2_F2	 ts2_Fp
Sample 1	48.5	-7.2	 9.3	8.5	-4.3	 0.8
Sample 2	32.9	8.6	 -1.3	14.7	22.2	 4.7

Why building features?

Why not directly applying known techniques on the relevant time series?

- → Our task: for each sample we need to assign a value (float or category)
- → Samples might not have the same length...
- → The interesting pattern might happen at different time steps (delay...)

We summarize the behavior of time series in time for each sample

Feature Engineering: which features?

Of course, for each time series in the sample, we can compute classical statistics: mean, standard deviation, min, max, median, quartiles...

→ But also more complex features according to what you are looking for:

Energy-related

Sum, sum of absolute values Energy $x_1^2 + x_2^2 + \ldots + x_n^2$

Quadratic mean

$$Q = \sqrt{\frac{x_1^2 + x_2^2 + \ldots + x_n^2}{n}}$$

→ Careful when summing values: not normalized by the length of the time series! Longer = higher...

Dynamic-related

All features on derivative or absolute derivative (obtained at transformation step)

Number of mean crossings

Number of peaks (defined with (rolling) mean and std or median and mad)

Distribution-related

Kurtosis: how spread out is my distribution?

Skewness: how symmetrical is my distribution?

Entropy: how random is my distribution?

Frequency-related

Fourier coefficients with FFT
Wavelet decomposition with approximation and detail coefficients (with choice of wavelet):
Example: noise energy = energy or quadratic mean of wavelet detail coefficients

Formulate the problem Synthesis What task? What scale? Using raw points is enough Necessity to exploit time series structure **Preprocessing** Regular approach **Transformation steps Unsupervised methods** Supervised methods **Feature Engineering Method validation** Interpretation of results

Change some steps

Reformulate the problem

10

Find a decision model

Example

Formulate the problem

Regression problem: Input = group of successive points Output = value (of the following point)

As we don't have labeled samples, we can only use this time series: we use the rolling window strategy:

Each window = 1 sample Following point = label output

Predict the next point!

Preprocessing

We use resampling with mean to have regular timestamps

Transformation steps

We are interested by global dynamics of time series: we smooth the signal with rolling mean, and compute the derivative to be independent of first point

Method validation

We use mean square error to measure accuracy of our predictions: not so good! Let's try to change:

- → smoothing: too strong?
- → add or change features?
- → linear regression maybe too simple?

Regular approach

With features and output values for each window, we train a linear regression

Feature engineering

For each rolling window, we compute mean, median, std, min and max

Time Series specificities: application

It's time to build your own time series analysis pipeline

Main interest = adopt workflow and mindset, make justified choices and implement them

Questions?

