Laboratorium		Badanie oporu w funkcj	Zespół w składzie:	
Fizyki Ciała Stałego		(metale, półprzewodnik	1. Paweł Rzońca	
Wydział: WFiIS	Kierı	mek: Fizyka Techniczna	Rok: 3	2. Paweł Kozioł
Data wykonania: 22.10.2015		Data oddania: 5.11.2015	Ocena:	3. Agata Sławska

Aparatura i metodyka

Aparatura

W ćwiczeniu wykorzystaliśmy:

- Multimetry ustawione na wyznaczanie oporu próbek półprzewodników (Ge oraz InSb).
- Wzorcowy opornik platynowy podłączony do ommomierza.
- Szklany kriostat, w którym umieszczono próbki półprzewodników.
- Pompę odpompowującą powietrze z kriostatu.
- Ciekły azot nalany do termosa, w którym zanurzano kriostat.
- Grzałka elektryczna, której moc regulowano pokrętłem, a którą używano do ogrzewania kriostatu.

Przeprowadzenie ćwiczenia

- 1. Ustawiono odpowiedni zakres ommomierzy.
- 2. Odpompowano powietrze z kriostatu.
- 3. Nalano ciekły azot do termosa i zanurzono w nim kriostat.
- 4. W czasie oczekiwania na odpowiednie schłodzenie próbki (38 omów na wzorcowym platynowym oporniku) wykreślono krzywą umożliwiajacą zamianę wskazań ommomierza podłaczonego do platyny na temperaturę.
- 5. Po uzyskaniu odpowiedniej temperatury włączono grzałkę i rozpoczęto pomiary oporu poszczególnych próbek w funkcji oporu platynowego opornika.
- 6. Wyniki zapisywano do momentu uzyskania oporu platyny rownego 130 omów.

Opracowanie wyników

A. Temperaturowa zależność oporu elektrycznego dla wzorcowego termometru platynowego

W zakresie temperatur od ok. 40 K do 1400 K opór platyny zmienia się liniowo wraz z temperaturą co częściowo przedstawiono na wykresie 1.

Zależność ta można wyrazić za pomoca wzoru:

$$R_{Pt\ 100}(T) = A \cdot T - B \tag{1}$$

Rysunek 1: Wykres zależności oporu platyny $R_{Pt\ 100}$ według wzoru 1, w zakresie temperatur od 100 K do 400 K.

B. Zależność oporu półprzewodników od temperatury, szerokość pasma wzbronionego

Do poniższej tabeli wpisano wyniki pomiarów dla badanych próbek. Następnie przeliczono opór termometru platynowego na temperaturę w Kelwinach (korzystając z charakterystyki termometru platynowego 1) i obliczono jej odwrotność. Wyznaczono również przewodność badanych próbek oraz ich logarytm naturalny. W oparciu o te dane sporządzono wykresy (2, 3) przedstawiające zależność logarytmu naturalnego od odwrotności temperatury dla obu badanych materiałów.

Na każdym z wykresów dopasowano funkcję liniową (dla InSB w dwu zakresach). Na podstawie uzyskanych współczynników nachylenia prostych, A, korzystając z zależności 2 obliczono szerokości pasma wzbronionego ΔE_G oraz przerwy domieszkowej ΔE_D w InSb oraz ΔE_G termistora.

$$A = |\Delta E/k_B| \tag{2}$$

gdzie

$$k_B = (8,617343 \pm 0,000015) \cdot 10^{-5} \frac{\text{eV}}{\text{K}}$$
 [Źr. [1]]

Rysunek 2: Wykres logarytmu naturalnego przewodniości od odwrotności temperatury dla InSb

Rysunek 3: Wykres logarytmu naturalnego przewodniości od odwrotności temperatury dla termistora

Podsumowanie

Uzyskano następujące wyniki szerokości pasma wzbronionego ΔE_G oraz przerwy domieszkowej ΔE_D w InSb oraz ΔE_G termistora:

$$\begin{array}{lll} A_{1,InSb} = -3120 \pm 240 [\mathrm{K}] & \Longrightarrow & \Delta E_G = 0,269 \pm 0,020 [\mathrm{eV}] \\ A_{2,InSb} = -219 \pm 32 [\mathrm{K}] & \Longrightarrow & \Delta E_D = 0,0189 \pm 0,0028 [\mathrm{ev}] \\ A_{term} = -3729 \pm 156 [\mathrm{K}] & \Longrightarrow & \Delta E_{term} = 0,321 \pm 0,013 [\mathrm{eV}] \end{array}$$

gdzie za współczynnik rozszerzenia niepewności przyjęliśmy k=2. Dla InSb wartości tablicowe ΔE_G wynosi

$$\Delta E_G = 0,1725 \ (T = 300 \ \text{K}). \ \ [\text{Źr.} \ [2]]$$

Rozbieżność wyniku jest duża w porównaniu do niepewności wyznaczonej z dopasowania funkcji liniowej. Może to wynikać z niedokładności odczytu oporu, która wynikała przede wszystkim z faktu, iż pomiar nie był wykonywany w stanie ustalonym.

Literatura

- [1] http://const.physics.edu.pl/
- [2] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/InSb/bandstr.html

Aneks

Tabela 1: Wyniki pomiarów oraz obliczeń dla InSboraz termistora.

R_{Pt100}	R_{InSb}	R_{term}	T	1/T	σ_{InSb}	$\ln(\sigma_{InSb})$	σ_{term}	$\ln(\sigma_{InSb})$
$[\Omega]$	$[k\Omega]$	$[k\Omega]$	[K]	$[\mathrm{K}^{-1}]$	$[\Omega^{-1}]$		$[\Omega^{-1}]$	
32,7	78530	-	90,09	$1,110\cdot10^{-2}$	$1,273\cdot10^{-8}$	-18,179	-	-
35	73300	-	96,06	$1,041\cdot10^{-2}$	$1,364\cdot10^{-8}$	-18,110	-	-
37	67100	-	101,25	$9,876 \cdot 10^{-3}$	$1,490\cdot10^{-8}$	-18,022	-	-
39	60800	-	106,45	$9,394 \cdot 10^{-3}$	$1,645\cdot10^{-8}$	-17,923	-	-
41	56500	-	111,64	$8,957 \cdot 10^{-3}$	$1,770\cdot10^{-8}$	-17,850	-	-
43	49800	-	116,84	$8,558 \cdot 10^{-3}$	$2,008\cdot10^{-8}$	-17,724	-	-
45	44800	-	122,03	$8,194\cdot10^{-3}$	$2,232\cdot10^{-8}$	-17,618	-	-
47	40400	-	127,23	$7,859 \cdot 10^{-3}$	$2,475\cdot10^{-8}$	-17,514	-	-
49	36600	-	132,42	$7,551 \cdot 10^{-3}$	$2,732\cdot10^{-8}$	-17,416	-	-
50	34500	-	135,02	$7,406\cdot10^{-3}$	$2,900\cdot10^{-8}$	-17,356	-	-
54	27400	-	145,41	$6,877 \cdot 10^{-3}$	$3,650\cdot10^{-8}$	-17,126	-	-
58	20700	-	155,80	$6,418\cdot10^{-3}$	$4,831\cdot10^{-8}$	-16,846	-	-
62	14400	-	166,19	$6,017\cdot10^{-3}$	$6,944 \cdot 10^{-8}$	-16,483	-	-
66	10200	-	176,58	$5,663\cdot10^{-3}$	$9,800\cdot10^{-8}$	-16,138	-	-
70	6700	-	186,97	$5,348 \cdot 10^{-3}$	$1,493\cdot10^{-7}$	-15,718	-	-
74	4300	5800	197,36	$5,066 \cdot 10^{-3}$	$2,326\cdot10^{-7}$	-15,274	$1,724\cdot10^{-7}$	-15,573
78	2800	2900	207,75	$4.813 \cdot 10^{-3}$	$3,571\cdot10^{-7}$	-14,845	$3,448\cdot10^{-7}$	-14,880
82	1900	1550	218,14	$4,584\cdot10^{-3}$	$5,263\cdot10^{-7}$	-14,457	$6,452\cdot10^{-7}$	-14,254
86	1268	820	228,53	$4,375\cdot10^{-3}$	$7,886 \cdot 10^{-7}$	-14,053	$1,220\cdot10^{-6}$	-13,617
90	853	420	238,92	$4,185\cdot10^{-3}$	$1,172\cdot10^{-6}$	-13,657	$2,381\cdot10^{-6}$	-12,948
94	525	220	249,31	$4,011\cdot10^{-3}$	$1,905\cdot10^{-6}$	-13,171	$4,545\cdot10^{-6}$	-12,301
98	317	110	259,70	$3,850\cdot10^{-3}$	$3{,}155{\cdot}10^{-6}$	-12,667	$9,091\cdot10^{-6}$	-11,608
102	290	65	270,09	$3,702\cdot10^{-3}$	$3,448 \cdot 10^{-6}$	-12,578	$1,538\cdot10^{-5}$	-11,082
106	210,9	35,6	280,47	$3,565\cdot10^{-3}$	$4,742 \cdot 10^{-6}$	-12,259	$2,809\cdot10^{-5}$	-10,480
110	150,6	20,5	290,86	$3,438\cdot10^{-3}$	$6,640 \cdot 10^{-6}$	-11,922	$4,878 \cdot 10^{-5}$	-9,928
114	104,4	11,98	301,25	$3,319\cdot10^{-3}$	$9,579 \cdot 10^{-6}$	-11,556	$8,347\cdot10^{-5}$	-9,391
118	76,52	7,68	311,64	$3,208\cdot10^{-3}$	$1,307\cdot10^{-5}$	-11,245	$1,302\cdot10^{-4}$	-8,946
122	44,86	5,275	322,03	$3,105\cdot10^{-3}$	$2,229\cdot10^{-5}$	-10,711	$1,896 \cdot 10^{-4}$	-8,571
126	35,323	3,575	332,42	$3,008\cdot10^{-3}$	$2,831\cdot10^{-5}$	-10,472	$2,797\cdot10^{-4}$	-8,182
130	27,29	2,495	342,81	$2,917\cdot10^{-3}$	$3,664\cdot10^{-5}$	-10,214	$4,008\cdot10^{-4}$	-7,822