News Article Classification

NLP Project

Part B: News Article Classification

Deliverables

Dataset Information:

<class 'pandas.core.frame.DataFrame'>

1. Data Collection and Preprocessing

```
[58]: import pandas as pd
      import re
      import nltk
      from nltk.corpus import stopwords
      from nltk.tokenize import word_tokenize
      from nltk.stem import WordNetLemmatizer
      # Download NLTK resources if not already downloaded
      nltk.download('stopwords')
      nltk.download('punkt')
      nltk.download('wordnet')
      # Load the dataset (update the file path if necessary)
      df = pd.read_csv("data_news.csv")
      # Display basic information about the dataset
      print("Dataset Information:")
      print(df.info())
      print("\nFirst few rows:")
      print(df.head())
     [nltk_data] Downloading package stopwords to
     [nltk_data]
                     C:\Users\91951\AppData\Roaming\nltk_data...
     [nltk data]
                   Package stopwords is already up-to-date!
     [nltk_data] Downloading package punkt to
                     C:\Users\91951\AppData\Roaming\nltk_data...
     [nltk_data]
     [nltk_data]
                   Package punkt is already up-to-date!
     [nltk_data] Downloading package wordnet to
                     C:\Users\91951\AppData\Roaming\nltk_data...
     [nltk_data]
     [nltk_data]
                   Package wordnet is already up-to-date!
```

```
Data columns (total 5 columns):
          Column
                             Non-Null Count Dtype
          _____
      0
          category
                             50000 non-null object
      1
          headline
                             50000 non-null object
      2
          links
                             50000 non-null object
          short_description 50000 non-null object
          keywords
                             47332 non-null object
     dtypes: object(5)
     memory usage: 1.9+ MB
     None
     First few rows:
        category
                                                            headline \
     O WELLNESS
                              143 Miles in 35 Days: Lessons Learned
     1 WELLNESS
                       Talking to Yourself: Crazy or Crazy Helpful?
     2 WELLNESS
                  Crenezumab: Trial Will Gauge Whether Alzheimer...
     3 WELLNESS
                                      Oh, What a Difference She Made
     4 WELLNESS
                                                    Green Superfoods
                                                     links \
     0 https://www.huffingtonpost.com/entry/running-l...
     1 https://www.huffingtonpost.com/entry/talking-t...
     2 https://www.huffingtonpost.com/entry/crenezuma...
     3 https://www.huffingtonpost.com/entry/meaningfu...
     4 https://www.huffingtonpost.com/entry/green-sup...
                                        short_description \
     O Resting is part of training. I've confirmed wh...
     1 Think of talking to yourself as a tool to coac...
     2 The clock is ticking for the United States to ...
     3 If you want to be busy, keep trying to be perf...
     4 First, the bad news: Soda bread, corned beef a...
                                  keywords
     0
                           running-lessons
     1
                 talking-to-yourself-crazy
        crenezumab-alzheimers-disease-drug
                           meaningful-life
     3
     4
                          green-superfoods
[60]: # The 'links' column is not useful for text classification, so we remove it
      df = df.drop(columns=["links"])
      # Fill missing values in the 'keywords' column with an empty string
      df["keywords"].fillna("", inplace=True)
```

RangeIndex: 50000 entries, 0 to 49999

```
# Initialize Lemmatizer
     lemmatizer = WordNetLemmatizer()
     stop_words = set(stopwords.words("english"))
      # Function to clean and preprocess text
     def preprocess_text(text):
         text = text.lower() # Convert to lowercase
         text = re.sub(r"[^\w\s]", "", text) # Remove punctuation
         text = re.sub(r"\d+", "", text) # Remove numbers
         words = word tokenize(text) # Tokenization
         words = [word for word in words if word not in stop_words]
                                                                     # Remove
       \hookrightarrowstopwords
         words = [lemmatizer.lemmatize(word) for word in words] # Lemmatization
         return " ".join(words) # Convert list back to string
      # Apply the function to text columns
     text_columns = ["headline", "short_description", "keywords"]
     for col in text_columns:
         df[col] = df[col].apply(preprocess_text)
[62]: # Check the dataset structure
     print(df.info())
     # Display some preprocessed text
     print(df.head())
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 50000 entries, 0 to 49999
     Data columns (total 4 columns):
      # Column
                            Non-Null Count Dtype
     --- -----
                            -----
      0 category
                           50000 non-null object
         headline
                           50000 non-null object
          short_description 50000 non-null object
      3
          keywords
                            50000 non-null object
     dtypes: object(4)
     memory usage: 1.5+ MB
     None
        category
                                                          headline \
     O WELLNESS
                                           mile day lesson learned
     1 WELLNESS
                                        talking crazy crazy helpful
     2 WELLNESS crenezumab trial gauge whether alzheimers drug...
     3 WELLNESS
                                                 oh difference made
     4 WELLNESS
                                                  green superfoods
                                        short description \
     O resting part training ive confirmed sort alrea...
```

- 1 think talking tool coach challenge narrate exp...
- 2 clock ticking united state find cure team work...
- 3 want busy keep trying perfect want happy focus...
- 4 first bad news soda bread corned beef beer hig...

```
keywords

runninglessons

talkingtoyourselfcrazy

crenezumabalzheimersdiseasedrug

meaningfullife

greensuperfoods
```

2. Feature Extraction

```
[65]: from sklearn.feature_extraction.text import TfidfVectorizer
     # Combine headline, short description, and keywords

df ["keywords"].fillna("")

     # Initialize TF-IDF Vectorizer
     tfidf vectorizer = TfidfVectorizer(max features=5000)
     # Fit and transform the combined text data
     X_tfidf = tfidf_vectorizer.fit_transform(df["combined_text"])
     # Convert to a DataFrame for better understanding
     tfidf_df = pd.DataFrame(X_tfidf.toarray(), columns=tfidf_vectorizer.
      ⇔get_feature_names_out())
     # Display shape and first few rows
     print("TF-IDF Feature Shape:", tfidf_df.shape)
     print(tfidf_df.head())
    TF-IDF Feature Shape: (50000, 5000)
       aaron abandoned abc ability able aboard abortion abroad
                                                                   absence \
    0
         0.0
                   0.0 0.0
                                0.0
                                      0.0
                                             0.0
                                                       0.0
                                                              0.0
                                                                       0.0
         0.0
                                             0.0
                                                       0.0
                                                              0.0
                                                                      0.0
     1
                   0.0 0.0
                                0.0
                                      0.0
     2
         0.0
                   0.0 0.0
                                0.0
                                      0.0
                                             0.0
                                                       0.0
                                                              0.0
                                                                      0.0
         0.0
     3
                   0.0 0.0
                                0.0
                                      0.0
                                             0.0
                                                       0.0
                                                              0.0
                                                                      0.0
         0.0
                   0.0 0.0
                                0.0
                                      0.0
                                             0.0
                                                       0.0
                                                              0.0
                                                                      0.0
       absolute ...
                   youre youth youtube youve zealand zen zero zika zoe \
    0
            0.0 ...
                     0.0
                            0.0
                                    0.0
                                          0.0
                                                   0.0 0.0
                                                             0.0
                                                                   0.0 0.0
            0.0 ...
    1
                     0.0
                            0.0
                                    0.0
                                          0.0
                                                   0.0 0.0
                                                             0.0
                                                                   0.0 0.0
            0.0 ...
    2
                     0.0
                           0.0
                                    0.0
                                          0.0
                                                   0.0 0.0
                                                             0.0
                                                                   0.0 0.0
                            0.0
                                          0.0
                                                   0.0 0.0
    3
            0.0 ...
                     0.0
                                    0.0
                                                             0.0
                                                                   0.0 0.0
    4
            0.0 ...
                     0.0
                            0.0
                                    0.0
                                          0.0
                                                   0.0 0.0
                                                             0.0
                                                                   0.0 0.0
```

```
zone
     0
         0.0
     1
         0.0
        0.0
     2
         0.0
     4 0.0
     [5 rows x 5000 columns]
[67]: import matplotlib.pyplot as plt
      import seaborn as sns
      # Count articles per category
      category_counts = df["category"].value_counts()
      # Display category distribution
      print(category_counts)
     category
     WELLNESS
                       5000
     POLITICS
                       5000
     ENTERTAINMENT
                       5000
                       5000
     TRAVEI.
     STYLE & BEAUTY
                       5000
     PARENTING
                       5000
     FOOD & DRINK
                       5000
     WORLD NEWS
                       5000
     BUSINESS
                       5000
     SPORTS
                       5000
     Name: count, dtype: int64
[69]: # Bar Plot
      plt.figure(figsize=(10, 5))
      sns.barplot(x=category_counts.index, y=category_counts.values,_
       ⇔palette="viridis")
      plt.xticks(rotation=45)
      plt.xlabel("Category")
      plt.ylabel("Number of Articles")
      plt.title("News Article Distribution by Category")
      plt.show()
      # Pie Chart
      plt.figure(figsize=(8, 8))
      plt.pie(category_counts, labels=category_counts.index, autopct="%1.1f%%", __
       ⇔colors=sns.color_palette("pastel"))
      plt.title("Category Distribution (Pie Chart)")
      plt.show()
```


Category Distribution (Pie Chart)


```
[71]: # Create a new column for text length
df["text_length"] = df["combined_text"].apply(lambda x: len(x.split()))

# Boxplot to compare text lengths per category
plt.figure(figsize=(10, 5))
sns.boxplot(x="category", y="text_length", data=df, palette="coolwarm")
plt.xticks(rotation=45)
plt.xlabel("Category")
plt.ylabel("Text Length (Words)")
plt.title("Text Length Distribution by Category")
plt.show()
```


3. Model Development and Training

Train Size: (40000, 5000) Test Size: (10000, 5000)

```
[76]: from sklearn.linear_model import LogisticRegression
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.svm import SVC

# Initialize models
    log_reg = LogisticRegression(max_iter=1000)
    nb = MultinomialNB()
    svm = SVC(kernel="linear")
```

```
# Train models
log_reg.fit(X_train, y_train)
nb.fit(X_train, y_train)
svm.fit(X_train, y_train)

# Predictions
y_pred_log = log_reg.predict(X_test)
y_pred_nb = nb.predict(X_test)
y_pred_svm = svm.predict(X_test)
```

```
[77]: # Tune Logistic Regression
from sklearn.model_selection import GridSearchCV

# Define parameter grid
param_grid_log = {"C": [0.1, 1, 10, 100]}

# Perform GridSearchCV
grid_log = GridSearchCV(LogisticRegression(max_iter=1000), param_grid_log,___
cv=5, scoring="accuracy", n_jobs=-1)
grid_log.fit(X_train, y_train)

# Best parameters
print("Best Parameters (Logistic Regression):", grid_log.best_params_)

# Train optimized model
best_log = grid_log.best_estimator_
```

Best Parameters (Logistic Regression): {'C': 1}

Best Parameters (Naive Bayes): {'alpha': 1}

```
[82]: # Tune SVM
# Define parameter grid
param_grid_svm = {"C": [0.1, 1, 10], "kernel": ["linear", "rbf"]}

# Perform GridSearchCV
grid_svm = GridSearchCV(SVC(), param_grid_svm, cv=5, scoring="accuracy",u=n_jobs=-1)
grid_svm.fit(X_train, y_train)

# Best parameters
print("Best Parameters (SVM):", grid_svm.best_params_)

# Train optimized model
best_svm = grid_svm.best_estimator_

Best Parameters (SVM): {'C': 10, 'kernel': 'rbf'}

[83]: from sklearn.model_selection import cross_val_score
```

Logistic Regression Cross-Validation Accuracy: 0.79245 Naive Bayes Cross-Validation Accuracy: 0.7802 SVM Cross-Validation Accuracy: 0.810225

4. Model Evaluation

```
y_pred = model.predict(X_test)

print(f"\n Model: {model_name}")
    print("Accuracy:", accuracy_score(y_test, y_pred))
    print("Classification Report:\n", classification_report(y_test, y_pred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))

# Evaluate Logistic Regression
evaluate_model(best_log, X_test, y_test, "Logistic Regression")

# Evaluate Naive Bayes
evaluate_model(best_nb, X_test, y_test, "Naive Bayes")

# Evaluate SVM
evaluate_model(best_svm, X_test, y_test, "SVM")
```

Model: Logistic Regression

Accuracy: 0.7995

Classification Report:

	precision	recall	f1-score	support
0	0.73	0.78	0.76	955
1	0.77	0.78	0.77	985
2	0.85	0.82	0.84	1021
3	0.78	0.76	0.77	1030
4	0.79	0.74	0.77	1034
5	0.87	0.89	0.88	995
6	0.86	0.85	0.85	986
7	0.83	0.80	0.82	1008
8	0.73	0.76	0.74	1009
9	0.79	0.81	0.80	977
accuracy			0.80	10000
macro avg	0.80	0.80	0.80	10000
weighted avg	0.80	0.80	0.80	10000

${\tt Confusion\ Matrix:}$

[[747 20 11 19 54 14 2 9 44 351 [23 765 14 36 32 27 22 19] 31 16 [21 11 839 17 6 18 19 35 46 9] [27 35 10 786 28 16 27 15 81 5] [75 26 2 20 764 12 17 17 96] 5 [11 29 4 15 11 888 9 6 10 12] [17 44 16 20 3 6 841 9 24 6] [25 28 41 6 12 22 23] 21 19 811 [40 23 47 50 15 17 21 23 763 10] [32 12 1 23 43 14 32 21 791]] 8

Model: Naive Bayes
Accuracy: 0.7818

Classification Report:

	precision	recall	f1-score	support
0	0.71	0.73	0.72	955
	0.79	0.74	0.76	985
	0.82	0.85	0.84	1021
3	0.69	0.74	0.72	1030
4	0.79	0.73	0.76	1034
5	0.87	0.86	0.86	995
6	0.85	0.84	0.84	986
	0.79	0.81	0.80	1008
	0.72	0.72	0.72	1009
9	0.79	0.81	0.80	977
accuracy			0.78	10000
macro avg	0.78	0.78	0.78	10000
weighted avg	0.78	0.78	0.78	10000

Confusion Matrix:

[[697 16 14 38 61 13 8 17 60 31] [18 726 17 52 35 24 52 27 21 13] Γ 14 8 867 27 2 9 13 48 30 3] [33 33 19 767 23 19 23 19 90 4] [68 19 3 21 750 20 9 17 21 106] [20 37 7 25 11 854 5 10 7 19] [25 31 3 2 825 21 22 5] 28 24 [23 21 41 37 6 11 16 813 18 22] [36 15 59 93 15 17 14 26 727 7] [44 11 2 19 40 13 8 28 20 792]]

Model: SVM Accuracy: 0.8174 Classification Report:

	-			
	precision	recall	f1-score	support
•	0.00	0.00	0.00	٥٥٥
0	0.80	0.86	0.83	955
1	0.77	0.80	0.78	985
2	0.85	0.84	0.85	1021
3	0.78	0.76	0.77	1030
4	0.81	0.76	0.78	1034
5	0.93	0.93	0.93	995
6	0.87	0.85	0.86	986
7	0.83	0.81	0.82	1008
8	0.73	0.77	0.75	1009
9	0.80	0.81	0.81	977

```
0.82
                                                   10000
         accuracy
                                 0.82
                                           0.82
                                                   10000
        macro avg
                       0.82
     weighted avg
                       0.82
                                 0.82
                                          0.82
                                                   10000
     Confusion Matrix:
      [[820 13
                 9 12 33
                             4
                                 3
                                           281
                                       23
                                          187
      [ 18 790 13
                   33
                       32 16 27 15
      [ 16 17 858 14
                        3
                            8 18 38
                                       42
                                           71
      Г 16 41 13 784 24
                               27 22
                                       90
                                           41
                            9
      [ 57 29
                6 24 784
                            3
                                5 17
                                       19 90]
      [ 8 19
               1 12
                        6 921
                                3
                                  10
                                      6
                                           9]
      [ 14 48 15 18
                            5 841
                                           5]
                       6
                                  13 21
      [ 20 28 44 22 11
                            3 17 812
                                      28 231
      [ 28 27 45 55 16
                               23 22 773 10]
                           10
      [ 28 16
                0
                   25 49
                           10
                                6 30
                                       22 791]]
[86]: import seaborn as sns
     import matplotlib.pyplot as plt
     # Function to plot confusion matrix
     def plot_confusion_matrix(model, X_test, y_test, model_name):
         y_pred = model.predict(X_test)
         cm = confusion_matrix(y_test, y_pred)
         plt.figure(figsize=(5,4))
         sns.heatmap(cm, annot=True, fmt="d", cmap="Blues",
       axticklabels=label_encoder.classes_, yticklabels=label_encoder.classes_)
         plt.xlabel("Predicted")
         plt.ylabel("Actual")
         plt.title(f"Confusion Matrix - {model_name}")
         plt.show()
     # Plot for Logistic Regression
     plot_confusion_matrix(best_log, X_test, y_test, "Logistic Regression")
     # Plot for Naive Bayes
     plot_confusion_matrix(best_nb, X_test, y_test, "Naive Bayes")
     # Plot for SVM
     plot_confusion_matrix(best_svm, X_test, y_test, "SVM")
```


Confusion Matrix - Naive Bayes BUSINESS -697 16 14 61 13 60 31 ENTERTAINMENT - 18 FOOD & DRINK - 14 - 600 PARENTING - 33 33 - 500 POLITICS - 68 19 21 106 SPORTS - 20 37 - 400 STYLE & BEAUTY - 25 28 - 300 TRAVEL - 23 21 - 200 WELLNESS - 36 - 100 WORLD NEWS - 44 WELLNESS -WORLD NEWS SPORTS BUSINESS FOOD & DRINK PARENTING ENTERTAINMENT POLITICS STYLE & BEAUTY TRAVEL Predicted


```
[88]: # Function to get model evaluation metrics

def get_model_metrics(model, X_test, y_test):
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    report = classification_report(y_test, y_pred, output_dict=True)
    f1_score = report["weighted avg"]["f1-score"]
    precision = report["weighted avg"]["precision"]
    recall = report["weighted avg"]["recall"]

    return [accuracy, precision, recall, f1_score]

# Store results in a DataFrame
models = {
    "Logistic Regression": best_log,
    "Naive Bayes": best_nb,
    "SVM": best_svm
}
```

```
# Store results in a dictionary
results = {name: get_model_metrics(model, X_test, y_test) for name, model in_\( \) \( \) \( \) \( \) models.items() \) \( \) df_results = pd.DataFrame(results, index=["Accuracy", "Precision", "Recall", \( \) \( \) \( \) "F1-Score"]).T

# Display results
print("\n Model Comparison Table:")
print(df_results)
```

Model Comparison Table:

```
Accuracy Precision Recall F1-Score
Logistic Regression 0.7995 0.800326 0.7995 0.799607
Naive Bayes 0.7818 0.782944 0.7818 0.781951
SVM 0.8174 0.818213 0.8174 0.817492
```

```
[93]: # Select the best model based on highest F1-score
best_model_name = df_results["F1-Score"].idxmax()
print(f"\n Best Model for News Classification: {best_model_name}")
```

Best Model for News Classification: SVM

```
[95]: df_results.plot(kind="bar", figsize=(8,5), colormap="coolwarm")
   plt.title("Model Performance Comparison")
   plt.ylabel("Score")
   plt.ylim(0, 1) # Scores range from 0 to 1
   plt.xticks(rotation=45)
   plt.legend(loc="lower right")
   plt.show()
```


5. Final Report and Presentation

1 News Article Classification Project

1.1 1. Introduction

In this project, we developed a machine learning model to classify news articles into categories like Sports, Politics, and Technology. We followed NLP techniques for preprocessing, feature extraction, model training, and evaluation.

1.2 2. Data Collection and Preprocessing

Loaded a labeled dataset of news articles.

Cleaned text data (removing stopwords, punctuation, and lowercasing).

Handled missing data.

Prepared the text for feature extraction.

1.3 3. Feature Extraction

Used TF-IDF vectorization to convert text into numerical features.

Performed Exploratory Data Analysis (EDA) to understand category distributions.

1.4 4. Model Development & Training

Built classification models:

Logistic Regression

Naive Bayes

Support Vector Machine (SVM)

Tuned hyperparameters to improve performance.

Used cross-validation to ensure robust evaluation.

1.5 5. Model Evaluation

Evaluated models using:

Accuracy

F1-Score

Used weighted F1-score for comparison.

1.6 6. Best Model Selection

Compared the performance of different models.

SVM achieved the highest accuracy and F1-score.

Selected SVM as the final model.

1.7 7. Key Findings

NLP techniques effectively classify news articles.

Automated classification helps in efficient content categorization.

Feature extraction (TF-IDF) significantly impacts model performance.

1.8 8. Conclusion

This project demonstrates how machine learning and NLP techniques can be used for text classification, making content management more efficient.

1.9 9. Future Improvements

Experiment with deep learning models (LSTMs, BERT) for better accuracy.

Expand dataset with more categories.

Optimize feature engineering techniques.

Performed Exploratory Data Analysis (EDA) to understand category distributions.

1.4 4. Model Development & Training

Built classification models:

Logistic Regression

Naive Bayes

Support Vector Machine (SVM)

Tuned hyperparameters to improve performance.

Used cross-validation to ensure robust evaluation.

1.5 5. Model Evaluation

Evaluated models using:

Accuracy

F1-Score

Used weighted F1-score for comparison.

1.6 6. Best Model Selection

Compared the performance of different models.

SVM achieved the highest accuracy and F1-score.

Selected SVM as the final model.

1.7 7. Key Findings

NLP techniques effectively classify news articles.

Automated classification helps in efficient content categorization.

Feature extraction (TF-IDF) significantly impacts model performance.

1.8 8. Conclusion

This project demonstrates how machine learning and NLP techniques can be used for text classification, making content management more efficient.

1.9 9. Future Improvements

Experiment with deep learning models (LSTMs, BERT) for better accuracy.

Expand dataset with more categories.

Optimize feature engineering techniques.