MATH 121, Calculus I — Exam I (Spring 2014)

Name:	
KU ID No.:	

This exam has a total value of 100 points. There are 9 problems in total to be solved. The first seven are worth 10 points, the remaining two are worth 15 points. This is strictly a closed-book exam. Be sure to show all work. If you need to find a derivative, use the limit definition of the derivative unless otherwise directed.

Score

# 1	# 2	# 3	# 4	# 5	# 6	# 7	# 8	# 9	Total

1. [10 points] Find the exact value of $\lim_{x\to 0} \frac{\sqrt{5-x}-\sqrt{5}}{x}$.

Answer:	
---------	--

2. [10 points] Which of the following statements are true? (Since there may be more than one correct answer, determine all correct answers.)

- (A) If $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}$ exists, then f is differentiable at a.
- (B) If f is continuous at a, then f is differentiable at a.
- (C) If $\lim_{x\to a} f(x)$ exists, then f is differentiable at a.
- (D) If f is differentiable at a, then $\lim_{x\to a} f(x) = f(a)$.

3. [10 points] Evaluate $\lim_{x\to 0} x^2 \cos(x)$.

Answer:	
---------	--

4. [10 points] For what value of the constants a and b is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x < 2\\ ax^2 - bx + 3 & \text{if } 2 < x < 3\\ 2x - a + b & \text{if } x \ge 3 \end{cases}$$

5.	. [10 points] For what values of x does the graph of $f(x) = x^2 - 2$ ha	ave a horizontal
	tangent? You may use derivative rules from chapter 3 if applicable.	

Answer:

6. [10 points] Find an equation of the tangent line to the curve y = 1/x at the point (1,1).

7. [10 **points**] Find the value of $\lim_{x \to \infty} \frac{3x^2 - x + 2}{x^3 + 3x + 1}$.

Answer:

8. [15 points] Let $f(t) = 5t - 9t^2$. Use the limit definition of the derivative to find f'(t).

- 9. [15 points] The position function of a particle is given by s(t) = t/2 + 3, $t \ge 0$.
 - (a) When does the particle reach a velocity of 5 m/s? Explain the significance of this.
 - (b) When does the particle have acceleration 0 m/s^2 ? Explain the significance of this.

Bonus. [5 points] On what interval(s) is the function $f(x) = (x^3 + 3x^2) e^x$ decreasing? You may use derivative rules from chapter 3 if applicable.