Manipulação e Visualização da Tabela Periódica

Gustavo J. V. Meira Filho

Table of contents

Objetivo	3
Bibliotecas e Importações	4
Pandas	5
Extração	5
Manipulação de Dados	
Filtros	8
Pré-Processamento e Localização	10
Análise de Dados	13
√isualização de Dados	15
Dispersão	15
Barras	19
Boxplot	23
Heatmap	26

Objetivo

Introduzir Python, manipulação de dados e visualização.

- Conceitos de programação:
 - Tipos básicos (int, float, str, list, dict)
 - Loops
 - Funções simples.
- Bibliotecas:
 - pandas (dados tabulares)
 - plotly (visualização gráfica pode substituir pelo matplotlib).
- Aplicações:
 - Importar uma base de dados da tabela periódica (existe em CSV no Kaggle).
 - Explorar propriedades como massa atômica, eletronegatividade, número atômico.
 - Criar gráficos (ex.: massa atômica vs número atômico; cores por família).

Bibliotecas e Importações

```
# Nativas Python
import sys
import os

# Dados Tabulares
import pandas as pd
import numpy as np

# Visualização
import plotly.graph_objects as go
import plotly.express as px
import plotly.figure_factory as ff
import plotly.io as pio
from graphmodex import plotlymodex

import matplotlib.pyplot as plt
import seaborn as sns
```

```
# Imagem png ou interativa (notebook)
pio.renderers.default = 'png'
```

Pandas

Extração

Precisamos extrair a base de dados para conseguir trabalhar em cima dela! Para conseguirmos visualizar e manipular os dados, armazenamos ela como um objeto pandas que já possui tratamentos internos para vatorização e é a biblioteca coringa para todas as libs de visualização.

- Começando na Biblioteca
- Guia do Usuário
- Documentação

Note que a tabela periódica é um .csv na pasta data. Vamos armazenar esses dados em uma DataFrame chamada df

```
df = pd.read_csv(r'..\data\elementdatavalues.csv')

# Mostrar as 10 primeiras linhas das 4 primeiras colunas
df[['Name', 'Symbol', 'Atomic_Number', 'Atomic_Weight']].head(10)
```

	Name	Symbol	Atomic_Number	Atomic_Weight
0	Hydrogen	Н	1	1.007940
1	Helium	He	2	4.002602
2	Lithium	Li	3	6.941000
3	Beryllium	Be	4	9.012182
4	Boron	В	5	10.811000
5	Carbon	\mathbf{C}	6	12.010700
6	Nitrogen	N	7	14.006700
7	Oxygen	O	8	15.999400
8	Fluorine	\mathbf{F}	9	18.998403
9	Neon	Ne	10	20.179700

```
# Vamos usar isso no futuro!
pivot_df = df[[
    'Name', 'Symbol', 'Atomic_Number', 'Atomic_Weight',
    'Density', 'Melting_Point', 'Group', 'Period', 'Boiling_Point'
]].copy(deep=True)
```

```
# Informações sobre quantidade de inforação e tipo
pivot_df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 118 entries, 0 to 117 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Name	118 non-null	object
1	Symbol	118 non-null	object
2	Atomic_Number	118 non-null	int64
3	Atomic_Weight	117 non-null	float64
4	Density	95 non-null	float64
5	Melting_Point	101 non-null	float64
6	Group	90 non-null	float64
7	Period	118 non-null	int64
8	Boiling_Point	94 non-null	float64
dtype	es: float64(5),	int64(2), object	t(2)

memory usage: 8.4+ KB

```
# Principais estatísticas das colunas da tabela
df[['Atomic_Weight', 'Density', 'Melting_Point', 'Critical_Temperature']].describe()
```

	Atomic_Weight	Density	Melting_Point	Critical_Temperature
count	117.000000	95.000000	101.000000	21.000000
mean	144.876991	7645.567604	1296.574455	963.735238
std	88.495972	5957.801744	883.225454	1000.908102
\min	1.007940	0.089900	14.010000	5.190000
25%	65.409000	2545.000000	544.450000	150.870000
50%	140.907650	7140.000000	1204.150000	416.900000
75%	226.000000	10385.000000	1811.150000	1766.000000
max	294.000000	22650.000000	3823.150000	3223.000000

```
# Colunas iniciais
print(df.shape)
print(df.columns, '\n')
# Aqui, estamos sobrescrevendo nossa tabela
# A partir dessa linha, só essas colunas estarão presentes!
df = df[[
    'Name', 'Symbol', 'Atomic_Number', 'Atomic_Weight',
    'Density', 'Melting_Point',
]]
# Colunas finais
print(df.shape)
print(df.columns)
```

```
(118, 82)
Index(['Name', 'Symbol', 'Atomic_Number', 'Atomic_Weight', 'Density',
       'Melting_Point', 'Boiling_Point', 'Phase', 'Absolute_Melting_Point',
       'Absolute_Boiling_Point', 'Critical_Pressure', 'Critical_Temperature',
```

```
'Heat_of_Fusion', 'Heat_of_Vaporization', 'Heat_of_Combustion',
       'Specific_Heat', 'Adiabatic_Index', 'Neel_Point',
       'Thermal_Conductivity', 'Thermal_Expansion', 'Density_Liquid',
       'Molar_Volume', 'Brinell_Hardness', 'Mohs_Hardness', 'Vickers_Hardness',
       'Bulk_Modulus', 'Shear_Modulus', 'Young_Modulus', 'Poisson_Ratio',
       'Refractive_Index', 'Speed_of_Sound', 'Valence', 'Electronegativity',
       'ElectronAffinity', 'Autoignition_Point', 'Flashpoint',
       'DOT_Hazard_Class', 'DOT_Numbers', 'EU_Number', 'NFPA_Fire_Rating',
       'NFPA_Health_Rating', 'NFPA_Reactivity_Rating', 'RTECS_Number',
       'Alternate_Names', 'Block', 'Group', 'Period', 'Electron_Configuration',
       'Color', 'Gas_phase', 'CAS_Number', 'CID_Number', 'Gmelin_Number',
       'NSC_Number', 'Electrical_Type', 'Electrical_Conductivity',
       'Resistivity', 'Superconducting_Point', 'Magnetic_Type', 'Curie_Point',
       'Mass_Magnetic_Susceptibility', 'Molar_Magnetic_Susceptibility',
       'Volume_Magnetic_Susceptibility', 'Percent_in_Universe',
       'Percent_in_Sun', 'Percent_in_Meteorites', 'Percent_in_Earths_Crust',
       'Percent_in_Oceans', 'Percent_in_Humans', 'Atomic_Radius',
       'Covalent_Radius', 'Van_der_Waals_Radius', 'Space_Group_Name',
       'Space_Group_Number', 'HalfLife', 'Lifetime', 'Decay_Mode',
       'Quantum_Numbers', 'Neutron_Cross_Section', 'Neutron_Mass_Absorption',
       'Graph.Period', 'Graph.Group'],
      dtype='object')
(118, 6)
Index(['Name', 'Symbol', 'Atomic_Number', 'Atomic_Weight', 'Density',
       'Melting_Point'],
     dtype='object')
```

Manipulação de Dados

Um interesse forte é saber como localizar linhas e colunas específicas, realizar filtros booleanos, lidar com valores ausentes e assim por diante! Aqui, trabalharemos tudo isso.

Filtros

Filtrar valores é algo muito simples mas pode parecer estranho no começo. Existe um método próprio para essas operações no pandas chamado .query, mas também podemos fazer isso através de indexação.

df.query("Melting_Point <= 25")</pre>

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
	Hydrogen		1	1.00794	0.0899	14.01
9	Neon	Ne	10	20.17970	0.9000	24.56

Hummm... aparentemente a temperatura está em Kelvin e não em °C. Podemos usar um conversor de unidades como o que fizemos aula passada na função .apply(lambda x: convert_temp(x) para irmos de K -> °C. Mas aqui, para ser mais prático, faremos de uma forma mais simples!

```
df['Melting_Point'] = round(df['Melting_Point'] - 273.15, 2)

# Vamos visualizar esses átomos
df.query("Melting_Point <= 25").head(100)</pre>
```

	Name	Symbol	$Atomic_Number$	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1	1.007940	0.0899	-259.14
6	Nitrogen	N	7	14.006700	1.2510	-210.10
7	Oxygen	O	8	15.999400	1.4290	-218.30
8	Fluorine	F	9	18.998403	1.6960	-219.60
9	Neon	Ne	10	20.179700	0.9000	-248.59
16	Chlorine	Cl	17	35.453000	3.2140	-101.50
17	Argon	Ar	18	39.948000	1.7840	-189.30
34	Bromine	Br	35	79.904000	3120.0000	-7.30
35	Krypton	Kr	36	83.798000	3.7500	-157.36
53	Xenon	Xe	54	131.293000	5.9000	-111.80
79	Mercury	$_{ m Hg}$	80	200.590000	13534.0000	-38.83
85	Radon	Rn	86	222.000000	9.7300	-71.00

```
df.query("Melting_Point <= -200 | Melting_Point >= 3000").head(100)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1	1.007940	0.0899	-259.14
5	Carbon	\mathbf{C}	6	12.010700	2260.0000	3550.00
6	Nitrogen	N	7	14.006700	1.2510	-210.10
7	Oxygen	O	8	15.999400	1.4290	-218.30
8	Fluorine	\mathbf{F}	9	18.998403	1.6960	-219.60
9	Neon	Ne	10	20.179700	0.9000	-248.59
72	Tantalum	Ta	73	180.947900	16650.0000	3017.00
73	Tungsten	W	74	183.840000	19250.0000	3422.00
74	Rhenium	Re	75	186.207000	21020.0000	3186.00
75	Osmium	Os	76	190.230000	22610.0000	3033.00

```
df[
    (df["Melting_Point"] <= -200)
    | (df["Melting_Point"] >= 3000)
].head(100)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1	1.007940	0.0899	-259.14
5	Carbon	\mathbf{C}	6	12.010700	2260.0000	3550.00
6	Nitrogen	N	7	14.006700	1.2510	-210.10
7	Oxygen	O	8	15.999400	1.4290	-218.30
8	Fluorine	\mathbf{F}	9	18.998403	1.6960	-219.60
9	Neon	Ne	10	20.179700	0.9000	-248.59
72	Tantalum	Ta	73	180.947900	16650.0000	3017.00
73	Tungsten	W	74	183.840000	19250.0000	3422.00
74	Rhenium	Re	75	186.207000	21020.0000	3186.00
75	Osmium	Os	76	190.230000	22610.0000	3033.00

O exemplo abaixo mostra um filtro mais complexo e, principalmente, a importância do préprocessamento dos dados. Note que os resultados que eu obtenho ao procurar por letras minúsculas e maiúsculas é diferente! Padronizar tudo minúsculo é uma boa prática na programação. Agora vem uma pergunta, para o nome do composto aplicar um .lower é uma boa prática, mas isso também é válido para o símbolo?

```
df[
     (
          (df["Melting_Point"] <= -200)
          | (df["Melting_Point"] >= 3000)
     )
     & (df['Name'].str.contains("o|h"))
].head(100)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1	1.007940	0.0899	-259.14
5	Carbon	\mathbf{C}	6	12.010700	2260.0000	3550.00
6	Nitrogen	N	7	14.006700	1.2510	-210.10

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
8	Fluorine	F	9	18.998403	1.6960	-219.60
9	Neon	Ne	10	20.179700	0.9000	-248.59
74	Rhenium	Re	75	186.207000	21020.0000	3186.00

```
df[
     (
          (df["Melting_Point"] <= -200)
          | (df["Melting_Point"] >= 3000)
     )
     & (df['Name'].str.contains("0|H"))
].head(100)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	H	1	1.00794	0.0899	-259.14
7	Oxygen	O	8	15.99940	1.4290	-218.30
75	Osmium	Os	76	190.23000	22610.0000	3033.00

Pré-Processamento e Localização

Um filtro muito relevante é detectar a presença de valores ausentes .isna, além de duplicados, e tratá-los .fillna, replace, .dropna. .drop_duplicates.

Isso é importante pois caso nossa intenção seja tratar um modelo de regressão, por exemplo, valores ausentes não podem existir, e valores duplicados podem tendenciar nosso modelo.

```
# Agora, é possível saber exatamente quais são os valores ausentes
df[df['Density'].isna()].head(5)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
84	Astatine	At	85	210.0	NaN	302.0
86	Francium	Fr	87	223.0	NaN	NaN
94	Americium	Am	95	243.0	NaN	1176.0
98	Einsteinium	Es	99	252.0	NaN	860.0
99	Fermium	Fm	100	257.0	NaN	1527.0

```
# E também os não ausentes...

df[~df['Density'].isna()].head(5)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1	1.007940	0.0899	-259.14
1	Helium	He	2	4.002602	0.1785	NaN
2	Lithium	Li	3	6.941000	535.0000	180.54
3	Beryllium	Be	4	9.012182	1848.0000	1287.00
4	Boron	В	5	10.811000	2460.0000	2075.00

```
# Vamos criar um elemento repetido, só para simular e brincar
df.loc[len(df)+1] = np.nan

# Vamos fingir que esse elemento é o Helio 2.0
df.iloc[-1, :] = ['Mentira', 'H', 90, 1, 90, np.nan,]

df.tail(3)
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
116	Ununseptium	Uus	117.0	NaN	NaN	NaN
117	Ununoctium	Uuo	118.0	294.0	NaN	NaN
119	Mentira	H	90.0	1.0	90.0	NaN

```
# Ok, agora temos dois símbolos H
df.query("Symbol == 'H'")
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.00794	0.0899	-259.14
119	Mentira	H	90.0	1.00000	90.0000	NaN

```
# Só para demonstrar o replace() e o fillna()
df.loc[df["Symbol"] == "H"] = df.loc[df["Symbol"] == "H"].replace(90, np.nan)
df.loc[df["Symbol"] == "H"] = df.loc[df["Symbol"] == "H"].fillna(0)

df.query("Symbol == 'H'")
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.00794	0.0899	-259.14
119	Mentira	H	0.0	1.00000	0.0000	0.00

```
# A importância de especificar a ordem de exclusão
# Veja que aqui a gente não está sobrescrevendo nada
df.drop_duplicates(
    subset='Symbol',
    keep='last'
).query("Symbol == 'H'")
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
119	Mentira	Н	0.0	1.0	0.0	0.0

```
df = df.drop_duplicates(
    subset='Symbol',
    keep='first'
)

df.query("Symbol == 'H'")
```

	Name	Symbol	Atomic_Number	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1.0	1.00794	0.0899	-259.14

Também podemos renomear nossas colunas e converter seus tipos.

	Name	simbolo	n	Atomic_Weight	Density	Melting_Point
0	Hydrogen	Н	1	1.008	0.0899	-259.14
1	Helium	He	2	4.003	0.1785	NaN
2	Lithium	Li	3	6.941	535.0000	180.54
3	Beryllium	Be	4	9.012	1848.0000	1287.00
4	Boron	В	5	10.811	2460.0000	2075.00

Análise de Dados

A análise mais simples que temos é baseada em ordenamento .sort_index ou .sort_values

```
# Vamos ordenar de outra forma
nova_df.sort_values(by='Density', ascending=False).head(5)
```

	Name	simbolo	n	Atomic_Weight	Density	Melting_Point
76	Iridium	Ir	77	192.217	22650.0	2466.0
75	Osmium	Os	76	190.230	22610.0	3033.0
77	Platinum	Pt	78	195.078	21090.0	1768.3
74	Rhenium	Re	75	186.207	21020.0	3186.0
92	Neptunium	Np	93	237.000	20450.0	644.0

Uma das ferramentas mais importantes da análise de dados é o agrupamento! podemos usar o .groupby para isso.

Group	18.0	17.0	1.0	16.0	12.0
Melting_Point	117.54	290.61	298.191667	437.434	507.073333

Group	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
Melting_Point	6	6	4	3	3	3	3	3	3	3

```
# A função de pivoteamento é extremamente importante!
# Aqui no pdf faremos ela somente para alguns grupos!
pivot_df.pivot_table(
    values='Symbol',
    columns='Group',
    index='Period',
    aggfunc='first'
).fillna('-').iloc[:, list(range(0, 7)) + list(range(-7, 0))]
```

Group Period	1.0	2.0	3.0	4.0	5.0	6.0	7.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0
1	Н	-	-	-	_	-	-	-	-	-	-	-	-	He
2	Li	Be	-	-	-	-	-	-	В	\mathbf{C}	N	O	\mathbf{F}	Ne
3	Na	Mg	-	-	-	-	-	-	Al	Si	Ρ	\mathbf{S}	Cl	Ar
4	K	Ca	Sc	Ti	V	Cr	Mn	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Cd	In	Sn	Sb	${ m Te}$	I	Xe
6	Cs	Ba	Lu	Hf	Ta	W	Re	$_{ m Hg}$	Tl	Pb	Bi	Po	At	Rn
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo

Visualização de Dados

```
pivot_df['Melting_Point'] = round(pivot_df['Melting_Point'] - 273.15, 2)
pivot_df['Boiling_Point'] = round(pivot_df['Boiling_Point'] - 273.15, 2)
```

Dispersão

Gráficos de dispersão sáo ótimos para visualizações de padrões, séries temporais, correlações e regressões!

```
x='Density'
y='Melting_Point'

fig = go.Figure()

fig.add_trace(go.Scatter(
    x=pivot_df.Density, y=pivot_df.Melting_Point,
    mode='markers', showlegend=False,
    marker=dict(
        color=pivot_df.Group, size=10,
    )

plotlymodex.main_layout(
    fig, x=x, y=y, title=x+' x '+y
)
```

Density x Melting_Point


```
fig = px.scatter(
    pivot_df.sort_values(y), x=x, y=y, color='Group', size='Period',
    color_continuous_scale='jet'
)
plotlymodex.main_layout(
    fig, x=x, y=y, title=x+' x '+y
)
```

Density x Melting_Point


```
plt.figure(figsize=(8, 6))
# Criar o scatter plot
scatter = plt.scatter(
    pivot_df[x],
    pivot_df[y],
    c=pivot_df['Group'], # cor por grupo
                          # tamanho dos pontos
    s=100,
    cmap='jet',
                          # colormap opcional
    alpha=0.8
)
# Adicionar rótulos e título
plt.xlabel('Density')
plt.ylabel('Melting Point')
plt.title('Relação entre Density e Melting Point')
# Adicionar barra de cores (legenda para o "Group")
plt.colorbar(scatter, label='Group')
plt.show()
```


Barras

Group x Melting_Point


```
fig_barra.add_trace(go.Scatter(
    x=[1, 18], y=[1500, 1500],
    showlegend=False, mode='lines',
    line=dict(color='black', dash='dot')
))
```

Group x Melting_Point

px.bar(barra_df, y=y, title=x+' x '+y)

Group x Melting_Point


```
plt.figure(figsize=(8, 5))
plt.bar(barra_df.index, barra_df.values, color="#7336bacc")

plt.xlabel(x)
plt.ylabel(y)
plt.title("Gráfico de Barras (Matplotlib)")
plt.show()
```


Boxplot

```
categorias = pivot_df.sort_values('Group')['Group'].unique()
y = 'Boiling_Point'

fig = go.Figure()

for cat in categorias:
    fig.add_trace(go.Box(
        y=pivot_df[pivot_df['Group'] == cat][y],
        name=cat
    ))

plotlymodex.main_layout(
    fig, x=x, y=y, title=x+' x '+y,
    width=1000
)
```



```
fig = px.box(
    pivot_df, x='Group', y='Boiling_Point', # eixo Y: valores numéricos
    title='Group x Boiling_Point', width=1000
)
fig.show()
```



```
pivot_df.boxplot(column='Boiling_Point', by='Group', grid=False, figsize=(12, 6))
plt.title('Group x Boiling_Point')
plt.suptitle('')  # remove título automático do pandas
plt.xlabel('Group')
plt.ylabel('Boiling_Point')
plt.show()
```



```
plt.figure(figsize=(12, 6))
sns.boxplot(data=pivot_df, x='Group', y='Boiling_Point')
plt.title('Group x Boiling_Point')
plt.xlabel('Group')
plt.ylabel('Boiling_Point')
plt.show()
```


Heatmap

```
y = 'Boiling_Point'
heatmap_df = pivot_df.pivot_table(
    values=y,
    columns='Group',
    index='Period',
    aggfunc='first'
)
heatmap_df = heatmap_df.round(0).fillna('-')
fig = go.Figure()
fig.add_trace(go.Heatmap(
    z=heatmap_df,
    text=heatmap_df.values,
    texttemplate="%{text}", # <-- faz o texto aparecer</pre>
    textfont={"size": 12},
                             # opcional: tamanho da fonte
    colorscale="Plasma"
                             # opcional: paleta de cores
))
plotlymodex.main_layout(
    fig, x=x, y=y, title=x+' x '+y,
    width=1000
)
fig.update_yaxes(autorange='reversed')
```


