Contents

1	Structure of $\mathbf{GL}(n,\mathbb{F})$	1
	1.1 $P, Q \in \Pi_n : PN = MQ \Rightarrow P = Q \dots \dots$	1
	1.1.1 $MQ = PN$ zero columns also in P, Q	1
	1.1.2 Final proof using the above result	1
)	Exercises	1
_	2.1 Ex 4.3.16	1

1 Structure of $GL(n, \mathbb{F})$

$$\mathrm{GL}(n,\mathbb{F}) = \mathcal{L}_n(\mathbb{F}) \cdot P(n) \cdot \mathcal{D}_n(\mathbb{F}) \cdot \mathcal{U}_n(\mathbb{F})$$

1.1
$$P, Q \in \Pi_n : PN = MQ \Rightarrow P = Q$$

1.1.1 MQ = PN zero columns also in P, Q

Note that $M \in \mathcal{L}_n(\mathbb{F})$ and N is non-singular and upper triangular.

First we prove P and Q have the same zero columns. Let the jth column of Q be zero, so $q_{kj} = 0 \ \forall k \in [n]$.

Let
$$M = (\mathbf{m_1 \cdots m_n})$$
, then $(MQ)_{:j} = q_{1j}\mathbf{m_1} + \cdots + q_{nj}\mathbf{m_n} = \mathbf{0}$. But $MQ = PN \Rightarrow (MQ)_{:j} = (PN)_{:j} = \mathbf{0}$.

Next we prove that the jth column of P is also zero. Let $p_{ij} \neq 0$, but $p_{ir} = 0$ for all $r \neq j$ since it is a permutation matrix and there is only a single nonzero value per row.

$$\begin{split} (PN)_{ij} &= p_{i1}n_{1j} + \dots + p_{ij}n_{jj} + \dots + p_{in}n_{nj} \\ &= p_{ij}n_{jj} \end{split}$$

But N is nonsingular and it is upper trianglar so a basic property is that its diagonals are nonzero $\Rightarrow n_{jj} \neq 0$. This means $(PN)_{:j}$ is nonzero which contradicts the first part of this proof.

Lastly by the same argument $QN^{-1} = M^{-1}P$ means every zero column of P is also a zero column of Q.

1.1.2 Final proof using the above result

Suppose the jth columns of P and Q are nonzero.

$$p_{rj}=q_{sj}=1\,$$

$$\begin{split} (PN)_{rj} &= p_{rj} n_{jj} \neq 0 \\ &= (MQ)_{rj} \\ &= m_{r1} q_{1j} + \dots + m_{rn} q_{nj} \end{split}$$

M does downward transvections so the row terminates after the center

$$(PN)_{rj} = m_{r1}q_{1j} + \dots + m_{rr}q_{rj}$$

Since this cell is nonzero, one of $q_{1j},...,q_{rj}$ is also nonzero, and so it follows $s \leq r$.

Likewise applying the same logic to $QN^{-1} = M^{-1}P$, we see $r \leq s$.

Therefore $r = s \Rightarrow P = Q$.

2 Exercises

2.1 Ex 4.3.16

Matrix is symmetric so by eliminating mirror entries, we end up with $U = L^T$.

$$LPDU = (LPDU)^T = U^TD^TP^TL^T = LD^TP^TU \Rightarrow D^TP^T = PD \Rightarrow P = P^T$$
 by $MP = NQ$. But $P(n) \subseteq O(n) \Rightarrow P^T = P^{-1}$ so $P = P^{-1} \Rightarrow D^TP = PD$ but $D^T = D$ so $DP = PD$.

Likewise $DP = D^T P = D^T P^T = PD = (PD)^T$ so is symmetric and $L = U^T$ preserves symmetry.