МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского» (ННГУ)

Институт информационных технологий, математики и механики
Кафедра математического обеспечения и суперкомпьютерных технологий

Направление подготовки: «Прикладная математика и информатика»
Профиль подготовки: «Вычислительная математика и суперкомпьютерные
технологии»

Отчет по лабораторной работе №2 «Метод сопряженных градиентов для решения СЛАУ с разреженной матрицей»

Выполнил: студент группы	381903-3м
	Панов А.А.
Подпись	
Проверил:	
к.фм. н., доц., доцент каф.	MOCT
Б	аркалов К.А.
Подпись	

Нижний Новгород

Содержание

Введение	3
1. Постановка задачи	
2. Разреженные матрицы	
2.1 CRS. Сжатое хранение строкой	
2.2 Умножение разреженной матрицы в формате CRS на плотный вектор	
2.2.1 Особенности умножения для симметричной матрицы в формате CRS	
2.2.2 Особенности умножения для параллельной версии	
3. Метод сопряженных градиентов	
3.1 Реализация	
3.2 Структуры данных	
3.3 Основной алгоритм	
4. Вычислительные эксперименты	
5. Заключение	
Список литературы	
Chron hitepat ypb	

Введение

Для решения некоторых задач необходимы решать системы Ax = b, где A разреженная матрицы (значительная часть элементов этой матрицы равны нулю, количество ненулевых элементов в таком случае обычно пропорционально O(n), где n — размер матрицы). Для хранения разреженных матриц используют специальные форматы хранения (позволяющих не хранить нулевые элементы матрицы) и специальные алгоритмы. В данной лабораторной будет рассмотрен один из форматов хранения разреженных матриц (сжатое хранение строкой CSR - compressed sparse row, CRS - compressed row storage) и один из алгоритмов решения СЛАУ (метод сопряженных градиентов).

1. Постановка задачи

Реализовать метод сопряженных градиентов для решения СЛАУ с разреженной матрицей, используя технологию OpenMP: Ax = b, где A – разреженная квадратная симметричная положительно определённая матрица, x, b – плотные векторы.

Программа на языке C++ должна реализовывать функцию со следующим заголовком:

Функция получает в аргументах следующие переменные: ${f A}$ – указатель на структуру CRSMatrix, в которой хранится симметричная матрица ${f A}$ размера ${\bf n} \times {\bf n}$ в симметричном CRS формате (хранятся только элементы не ниже главной диагонали) ${f b}$ – указатель на массив, в котором по строкам хранится столбец ${\bf b}$ размера ${\bf n} \times {\bf 1}$ ерs – критерий остановки:

$$\frac{\left\|x_{k}-x_{k+1}\right\|_{2}}{\|b\|_{2}}<\mathbf{eps}$$

max_iter — критерий остановки: число итераций больше max_iter count — число выполненных итераций алгоритмом.

Ответ считается корректным, если:

$$\frac{\|Ax-b\|_2}{\|A\|_2}<10^{-8}$$

Размерность матрицы $n \le 100000$, число ненулевых элементов $nz \le 10^7$.

2. Разреженные матрицы

Обычно матрицу размера NxN называют разреженной, если количество её ненулевых элементов O(N). Но классификации матрицы в первую очередь зависит от её реализации. Например, трех диагональная матрица имеет всего 3N элементов, но для нее выгодней использовать собственную структуру данных, а не одно из представлений разряженной матрицы. Если же матрицы не имеет четкой структуры, то для нее имеет смысл использовать одно из представлений разреженной матрицы.

2.1 CRS. Сжатое хранение строкой

Разреженная матрица A размера n на n, c nz ненулевыми элементами хранится в трех массивах:

- 1. Массив val «построчно» хранит значения ненулевых элементов, размер массива nz.
- 2. Maccub colIndexes хранит номера столбцов для каждого элемента, размер массива nz.
- 3. Массив rowPtr хранит индексы, указывающие с какого элемента в массиве val начинается каждая строка. Например, в матрице нулевая строка «пустая», а в первой строке есть 3 ненулевых элемента. Тогда первые три элемента массива row равны 0; 0; 3. Размер массива n+1, первый элемент всегда равен 0, последний равен nz.

2.2 Умножение разреженной матрицы в формате CRS на плотный вектор

Данная операция понадобится в дальнейшем при реализации метода сопряженных градиентов.

Рассмотрим умножение разреженной матрицы A размера n на n, c nz ненулевыми элементами, в формате CRS, на плотный вектор b длины n.

```
void mul(const double* vec, double* res) const
{
    int curIndx = 0;
    for (int i = 0; i < n; i++)
    {
        const int rowElements = rowPtr[i + 1] - rowPtr[i];
        const int endRow = curIndx + rowElements;
        for (curIndx; curIndx < endRow; curIndx++)
        {
            const int j = colIndex[curIndx];
            const double vv = val[curIndx];
            res[i] += vv * vec[j];
        }
    }
    return res;
}</pre>
```

2.2.1 Особенности умножения для симметричной матрицы в формате CRS

Если разреженная матрицы A размера n на n, c nz ненулевыми элементами, является симметричной, то появляется возможность хранить в два раза меньше элементов. Но появляется проблема корректного умножения такой матрицы на вектор. Существует несколько способов корректно выполнить умножение:

- 1. Дополнить «половину» симметричной матрицы до полного представления. Данный способ требует выделения дополнительной памяти. В итоге матрица будет занимать (2*nz+n)*sizeof(elementOfMatrix) байт.
- 2. Создать транспонированную копию «половинки» симметричной матрицы без главной диагонали. Умножить вектор на транспонированную копию, умножить вектор на оригинал, результаты умножений сложить. Данный способ требует выделения дополнительной памяти. В итоге две половинки матрицы будут занимать (2*nz + n)*sizeof(elementOfMatrix) байт.
- 3. Выполнить корректное умножение «половинки» матрицы на вектор можно добавив к последовательной версии после строки res[i] += vv * vec[j]; следующий код:

Данный способ не требует выделения дополнительной памяти (в последовательной версии).

2.2.2 Особенности умножения для параллельной версии

При распараллеливании внешнего цикла (по і) возможна ситуация, когда несколько потоков одновременно обратятся к res[j] и некорректно выполнят сложение. Чтобы этого избежать достаточно в каждом потоке выделить дополнительный массив tmp длины n и выполнять сложение по j в него. После того, как внешний цикл будет выполнен, нужно прибавить к res элементы из вспомогательных массивов tmp. Данная реализация потребует выделения дополнительной памяти в размере n*число потоков.

```
void mul(const double* vec, double* res, double* t) const
        const int numThreads = omp_get_max_threads();
        #pragma omp parallel
        {
            const int indxThread = omp_get_thread_num();
            const int size = n / numThreads;
            const int start = indxThread * size;
            int ostatok = 0;
            if (indxThread == numThreads - 1)
                ostatok = n % numThreads;
            const int end = start + size + ostatok;
            double *tmp = t + indxThread * n;
            int elIndx = rowPtr[start];
            for (int i = start; i < end; i++)</pre>
                const int endRow = elIndx + (rowPtr[i + 1] - rowPtr[i]);
                res[i] = 0.0;
                for (elIndx; elIndx < endRow; elIndx++)</pre>
                     const int j = colIndexes[elIndx];
                    const double vv = val[elIndx];
                    res[i] += vv * vec[j];
                     if (j != i)
                         tmp[j] += vv * vec[i];
                }
            }
        }
        //редукция в res[i]
        for (int thr = numThreads - 1; thr >= 0; thr--)
        {
            double *tmp = t + thr * n;
            #pragma omp parallel for
            #pragma ivdep
            for (int i = 0; i < n; i++)</pre>
                res[i] += tmp[i];
                tmp[i] = 0.0;
            }
        }
    }
};
```

3. Метод сопряженных градиентов

Идея метода сопряженных градиентов: решение системы линейных уравнений:

Ax = b, где A - SPD (симметричная, положительно определенная), эквивалентно решению задачи минимизации функции.

$$F(x) = \frac{1}{2}(Ax, x) - (b, x)$$

Минимум находится из условия:

$$\nabla F(x) = Ax - b = 0$$

Предварительный шаг: вычисляются начальный вектор невязки r_0 и вектор направления p_0 :

$$r_0 = p_0 = b - Ax_0$$

Основные шаги:

for i=0,..., n do
$$\alpha_i = \frac{(r_i, r_i)}{(Ap_i, p_i)}$$

$$x_{i+1} = x_i + \alpha_i p_i$$

$$r_{i+1} = r_i - \alpha_i Ap_i$$

$$\beta_i = \frac{(r_{i+1}, r_{i+1})}{(r_i, r_i)}$$

$$p_{i+1} = r_{i+1} + \beta_i p_i$$

За критерий «досрочной» остановки можно принять условие:

$$\frac{||x_i - x_{i+1}||_2}{||b||_2} < eps$$

3.1 Реализация

Самая трудоемкая операция в методе сопряженных градиентов это скалярное умножение. Его реализация для разреженных матриц описана выше. Остальные этапы алгоритма несложно реализовать. Для удобства поверх структуры CRSMatrix была добавлена структура SLECRSMatrix.

3.2 Структуры данных

```
struct SLECRSMatrix
{
    const int &n; // Число строк в матрице
    const int &m; // Число столбцов в матрице
    const int &nz; // Число ненулевых элементов в разреженной симметричной матрице, лежащих не ниже главной диагонали
    const vector<double> &val; // Массив значений матрицы по строкам
    const vector<int> &colIndexes; // Массив номеров столбцов
    const vector<int> &rowPtr; // Массив индексов начала строк
    SLECRSMatrix(const CRSMatrix &matr);
    void mul(const double* vec, double* res, double* t) const
}
```

Код функции mul приведен выше.

3.3 Основной алгоритм

Основной этап выглядит довольно просто в соответствии с формулами метода сопряженных градиентов.

```
for (count = 0; count < max_iter; count++)</pre>
    // alpha_i
    mA.mul(&p[0], &Ap[0], &tmp[0]);
    alpha = scalar(&r0[0], &r0[0], n) / scalar(&Ap[0], &p[0], n);
    // копируем в х0 "предыдущий" ответ
    // x_i = x_i+1
    copy_ar(&x[0], &x0[0], n);
    // x_i+1 = ...
    addVector(&x[0], &p[0], alpha, &x[0], n);
    // r i+1 = ...
    subtractVector(&r0[0], &Ap[0], alpha, &r1[0], n);
    // beta i = ...
    beta = scalar(&r1[0], &r1[0], n) / scalar(&r0[0], &r0[0], n);
    // p i+1 = ...
    addVector(&r1[0], &p[0], beta, &p[0], n);
    // r_0 = r_i
    copy_ar(&r1[0], &r0[0], n);
    double error = gerError(&x0[0], x, b, n);
    if (error < eps)</pre>
        count++;
        return;
    }
 }
```

4. Вычислительные эксперименты

Метод сопряженных градиентов выполнялся для симметричной, положительно определенной пяти диагональной матрицы А размера n*n (итого 5n ненулевых элементов). Так как матрица симметричная хранились только элементы не ниже главной диагонали. Благодаря использованию формата CRS всего хранилось 3n+3n+n=7n элементов. Для проверки корректности выполнялось вычисление невязки (Ax-b).

Запуск производился на восьми ядерном процессоре Intel core i7 9700K, 16 gb ОЗУ. Использовался Intel® C++ Compiler 19.0 for Windows* с оптимизацией О2.

Размер пяти диагональной матрицы n=18000, число итераций 80000.

Время, сек.	1 core	2 core	4 core	6 core	8 core
n = 18000	20	10.8	6.2	5.1	4.7
num_it=80000		10.0	0.2	5.1	7.7

Таблица 1. Время работы метода сопряженных градиентов.

Время, сек.	1 core	2 core	4 core	6 core	8 core
n = 18000	1	0,93	0,81	0,65	0,53
num_it=80000	1	0,75	0,01	0,03	0,55

Таблица 2. Масштабируемость метода сопряженных градиентов.

Время, сек.	1 core	2 core	4 core	6 core	8 core
n = 18000	1	1,85	3,23	3,92	4,26
num_it=80000	1	1,00	3,23	3,72	1,20

Таблица 3. Ускорение метода сопряженных градиентов.

5. Заключение

Численный эксперимент показал, что на 4 ядрах алгоритм имеет неплохую масштабируемость в 81%. При увеличении числа ядер ускорение продолжает расти (4.26 на 8 ядрах), но масштабируемость падает до 53%. В целом, распараллеливание алгоритма сопряженных градиентов может принести значительное ускорение.

Список литературы

- 1. Баркалов К.А. Параллельные численные методы.
- 2. Самарский А. А. Введение в численные методы. Лань, 2009.