Nom : Douaille Prénom : Erwan Groupe : M1 Info groupe 4

README

Pour effectuer la mesure sur la q1

> java -Xint Mesure 1 > q1.txt

Pour effectuer la mesure sur la q5

> java -Xint Mesure 5 > q5.txt

Et ainsi de suite ...

Concernant les graphiques ils peuvent être généré via :

> gnuplot gnuplotGeneration.plot

Question 1

FIGURE 1 – les temps d'execution des methodes aleaL et aleaT

Question 2

Non, on remarque que les courbes min et max de chaque méthodes sont similaires.

Question 3

On peut également remarquer que les temps de calcul de l'algorithme aleaL sont plus faible que ceux de aleaT.

Nom: Douaille Prénom: Erwan Groupe: M1 Info groupe 4

Question 4

Dans le cas d'un non pseudo aleatoire tout les éléments du tableau ont la même d'être intervertis à la première iteration. Pour les itérations suivantes la probabilitée est la même excepté qu'elle ne peut pas être intervertis avec les itérations précédentes. Mais comme on a montrer qu'a la première itération le deuxième élément a autant de chance que les autres élément d'être interverti avec le premier élément par inversion le première élément a autant de chance que les autres dêtre interverti avec le second et donc que chaque permutation des éléments du tableau est équiprobablement obtenue

Groupe : M1 Info groupe 4

Question 5

FIGURE 2 – les temps d'execution des methodes aleaL et aleaT

Question 6

Oui la différence est considérable notamment pour l'algorithme rechercheL.

Question 7

On remarque que rechercheT max est plus performant que rechercheL min.

Question 8

Lorsque le tableau est trié.

Question 9

On en conclut que la sélection d'un algorithme doit se faire en fonction du nombre de répetition.

Groupe : M1 Info groupe 4

Question 10

Question 11

Question 12

Peu importe l'utiltisation le tableau est plus performant que l'arrayList

Groupe: M1 Info groupe 4

Question 13

Question 14

Question 15

Que ce soit une ArrayList ou un tableau, la recherche d'un minima est bien plus performante sans le tri.

Nom : Douaille Prénom : Erwan Groupe : M1 Info groupe 4

Question 16

Groupe : M1 Info groupe 4

Question 17

Comme on peut le voir sur les graphiques ci-dessus, chaque fonction de référence à son ordre de grandeur. $\log \in \mathcal{O}(\text{nlogn})$, $\text{nlogn} \in \mathcal{O}(\text{NpK})$, $\text{NpK} \in \mathcal{O}(\text{KpN})$, $\text{KpN} \in \mathcal{O}(\text{Exp})$

Nom: Douaille

 $\mathbf{Pr\acute{e}nom}: \mathbf{Erwan}$

Groupe : M1 Info groupe 4

Question 18

Question 19

 $\log\,n\in\Theta(\log\,n^k)$

Nom: Douaille

Prénom : Erwan

Groupe: M1 Info groupe 4

Question 20

Question 21

Question 22

 $log\; n \in \mathcal{O}(n^{\varepsilon})$

Nom: Douaille

Prénom : Erwan

 ${\bf Groupe}$: M1 Info groupe 4

Question 23

Question 24

Question 25

 $2^n\in\mathcal{O}(n^k)$

Groupe: M1 Info groupe 4

Question 26

Question 27

Question 28

 $2^n\in\mathcal{O}(k^n)$

Question 29