

ECC è stata inventata indipendentemente da Neal Koblitz nel 1987 e

nel 1986 da Victor Miller

Crittografia basata su

Curve Ellitiche

ECC Elliptic Curve Cryptography

Perché ECC

- Schemi asimmetrici come RSA, DEKE, El Gamal si basano sul calcolo di potenze modulari in gruppi o campi finiti con parametri di grande dimensione (più di 1000 bit)
 - Elevata complessità computazionale
 - Problemi nell'utilizzo in sistemi con potenza limitata (e.g., sistemi embedded)
- È possibile utilizzare campi più piccoli conservando lo stesso livello di sicurezza?
 - Si usano punti di una curva quali elementi del gruppo/campo rappresentabili con 160-256 bit

Curve Ellittiche

 Le curve ellittiche sono polinomi che definiscono punti basati sull'equazione semplificata di Weierstraß

$$y^2 = x^3 + a \cdot x + b$$

- I parametri a e b specificano la forma della curva
- Le curve ellittiche non sono definite solo su R, ma anche su molti tipi di campi finiti

Esempi

La curva a destra è definita dalle coppie $(x,y) \in R^2$ che soddisfano l'equazione $y^2 = x^3 - 4x + 0.67$

Curve ellittiche in campi finiti

- In crittografia K=Z_p con p primo e maggiore di 3
- Una curva ellittica è l'insieme dei punti di un campo K che soddisfano un'equazione della forma $y^2 = x^3 + ax + b$
- Se 4a³ + 27b² ≠ 0 mod p, allora la curva può essere utilizzata per definire un gruppo
 - Nel gruppo ci saranno i punti della curva più un elemento speciale θ detto punto all'infinito
 - θ sarà l'identità del gruppo

Curve Ellittiche

- La curva ellittica è simmetrica rispetto all'asse x
- Per ogni punto P=(x,y), l'inverso di P è definito come -P=(x, -y)
- Per comodità disegniamo le curve in R anche se sono costruite su Z_p
- Su un campo finito avrebbero un altro aspetto

$$y^2 = x^3 - 3 \cdot x + 3$$
 in R

Esempi

Figura 1.4: La curva $y^2 + y = x^3 - x$ definita sul campo finito F_{389}

F_n campo finito con n elementi

Sicurezza Informatica Prof. Carlo Blundo 7

Curva Ellittica $y^2 = x^3 - x + 1$

in R in F₉₇

Addizione su Curve Ellittiche

- Per qualsiasi punto P della curva vale che $P+\theta=\theta+P=P$
- Dati $P=(x_1,y_1)$ e $Q=(x_2,y_2)$, vogliamo calcolare R=P+Q, quindi $(x_3,y_3)=(x_1,y_1)+(x_2,y_2)$
- Se P≠Q (point addition)
 - Si traccia la retta che unisce P e Q. La retta individua un terzo punto X sulla curva. R sarà uguale a –X
- Se P=Q (point doubling, R=P+P = 2P)
 - Si considera la tangente in P e si prosegue come nel caso precedente

Interpretazione geometrica su R

Esempio addizione

Fonte: https://en.wikipedia.org/wiki/File:EllipticGroup.gif

gif animata

Addizione in EC su campo finito

Campo finito con 97 elementi F_{97} $y^2 = x^3 + 2x + 3$

$$y^2 = x^3 + 2x + 3$$

$$P = (17, 10) Q = (95, 31)$$

$$R = P + Q$$
 $R = (1, 54)$

Allineamento di tre punti in F_n ?

Informalmente, una linea in F_p è l'insieme dei punti (x,y) in $F_p x F_p$ che soddisfano l'equazione $\alpha x + \beta y + \gamma \equiv 0 \mod p$

La curva ha 100 punti compreso il punto all'infinito

Algebricamente

$$y^2 = x^3 + ax + b$$

- $P=(x_1,y_1)$ e $Q=(x_2,y_2)$, vogliamo calcolare $R=(x_3,y_3)=(x_1,y_1)+(x_2,y_2)$
- Calcoliamo

a coefficiente della x

$$s = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} \mod p \text{ ; if } P \neq Q \text{ (point addition)} \\ \frac{3x_1^2 + a}{2y_1} \mod p \text{ ; if } P = Q \text{ (point doubling)} \end{cases}$$

• $R = (x_3, y_3)$ sarà

$$x_3 = s^2 - x_1 - x_2 \mod p$$

 $y_3 = s(x_1 - x_3) - y_1 \mod p$

Esempio

• Data la curva $y^2 \equiv x^3 + 2 \cdot x + 2 \mod 17$ e P = (5, 1), vogliamo calcolare 2P = P + P

$$2P = P + P = (5,1) + (5,1) = (x_3, y_3)$$

$$s = \frac{3x_1^2 + a}{2y_1} = (2 \cdot 1)^{-1} (3 \cdot 5^2 + 2) = 2^{-1} \cdot 9 \equiv 9 \cdot 9 \equiv 13 \mod 17$$

$$x_3 = s^2 - x_1 - x_2 = 13^2 - 5 - 5 = 159 \equiv 6 \mod 17$$

$$y_3 = s(x_1 - x_3) - y_1 = 13(5 - 6) - 1 = -14 \equiv 3 \mod 17$$

$$2P = (5,1) + (5,1) = (6,3)$$

(6,3) appartiene alla curva $3^2 \equiv 6^3 + 2 \cdot 6 + 2 \mod 17$

$$y^2 \equiv x^3 + 2 \cdot x + 2 \mod 17$$

 $3^2 \equiv 6^3 + 2 \cdot 6 + 2 \mod 17$
 $9 = 230 \equiv 9 \mod 17$

Identità (elemento neutro)

- Indicato con θ , non appartiene alla curva
- Soddisfa $P = P + \theta$, per ogni punto della curva
- Definiamo l'inverso –P di P come P + (–P) = θ
- Se P = $(x_P, y_P), -P = (x_P, -y_P)$
- Dato che lavoriamo in Z_p , $-P = (x_p, p-y_p)$

Risultati

Э

Theorem 9.2.1 The points on an elliptic curve together with \mathcal{O} have cyclic subgroups. Under certain conditions all points on an elliptic curve form a cyclic group.

Esiste un punto che genera tutti i punti della curva

Theorem 9.2.2 Hasse's theorem

Given an elliptic curve E modulo p, the number of points on the curve is denoted by #E and is bounded by:

$$p+1-2\sqrt{p} \le \#E \le p+1+2\sqrt{p}$$
.

Per generare una curva con circa 2¹⁶⁰ punti il primo p deve essere lungo circa 160 bit

Esempio

E:
$$y^2 = x^3 + 2 \cdot x + 2 \mod 17$$

Dato P = (5,1), calcoliamo 2P, 3P, ..., (#E)P

P è un generatore della curva

2P = (5,1) + (5,1) = (6,3)	11P = (13, 10)
3P = 2P + P = (10,6)	12P = (0,11)
4P = (3,1)	13P = (16,4)
5P = (9,16)	14P = (9,1)
6P = (16, 13)	15P = (3, 16)
7P = (0,6)	16P = (10, 11)
8P = (13,7)	17P = (6, 14)
9P = (7,6)	18P = (5, 16)
10P = (7,11)	$19P = \mathscr{O}$

P = (5,1) è l'inverso di 18P = (5, 16)

Abbiamo un gruppo ed un generatore...

Sicurezza Informatica Prof. Carlo Blundo 17

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Definition 9.2.1 Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given is an elliptic curve E. We consider a primitive element P and another element T. The DL problem is finding the integer d, where $1 \le d \le \#E$, such that:

$$\underbrace{P + P + \dots + P}_{d \text{ times}} = dP = T. \tag{9.2}$$

base point

Il punto P è un generatore del gruppo Invece dell'elevamento a potenza si considera la somma di punti della curva

La somma è solo una notazione

Si ritiene che, per curve ellittiche scelte in maniera opportuna, ECDLP sia un problema difficile da risolvere

Come calcolare d·P?

- Si usa la stessa tecnica dell'elevamento a potenza
 - Square-and-Multiply

```
Double-and-Add Algorithm for Point Multiplication
Input: elliptic curve E together with an elliptic curve point P a scalar d = \sum_{i=0}^{t} d_i 2^i with d_i \in 0, 1 and d_t = 1
Output: T = dP
Initialization:
T = P
Algorithm:
1 \quad \text{FOR } i = t - 1 \text{ DOWNTO } 0
1.1 \quad T = T + T \text{ mod } n
\text{IF } d_i = 1
1.2 \quad T = T + P \text{ mod } n
2 \quad \text{RETURN } (T)
```

Elliptic Curve e Diffie-Hellman

- Possiamo realizzare DHKE utilizzando come gruppo uno generato da una curva ellittica
- In tal caso si fa riferimento a Elliptic Curve Diffie-Hellman key exchange (ECDH)

 Abbiamo bisogno di una curva ellittica opportuna e di un generatore del gruppo che definiranno i parametri del protocollo

Generazione dei parametri + ECDH

ECDH Domain Parameters

1. Choose a prime p and the elliptic curve

$$E: y^2 \equiv x^3 + a \cdot x + b \mod p$$

2. Choose a primitive element $P = (x_P, y_P)$

The prime p, the curve given by its coefficients a, b, and the primitive element P are the domain parameters.

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Alice Substitute the choose
$$k_{prA} = a \in \{2,3,\ldots,\#E-1\}$$
 compute $k_{pubA} = aP = A = (x_A,y_A)$ choose $k_{prB} = b \in \{2,3,\ldots,\#E-1\}$ compute $k_{pubB} = bP = B = (x_B,y_B)$ compute $aB = T_{AB}$ co

 T_{AB} è usato per derivare una chiave di sessione. Dato che y_{AB} dipende da x_{AB} , si usa solo x_{AB} per derivare la chiave

ECDH

Sicurezza ECDH

- Attacchi a gruppi basati su curve ellittiche sono meno efficienti degli attuali attacchi alla fattorizzazione o a DLP
- I migliori attacchi a gruppi basati su curve ellittiche sono i metodi Baby-Step Giant-Step e Pollard-Rho
- Complessità dei metodi indicati: in media, sono necessari circa p^{1/2} passi per risolvere ECDLP

NIST SP 800-57, Part 1, Revision 4

Security Strength	ECC (e.g., ECDSA)
≤ 80	f= 160-223
112	f= 224-255
128	f= 256-383
192	f=384-511
256	f=512+

- ECC
 - Elliptic Curve Cryptography
- f
 - Intervallo di valori (in bit) per n
 - n è l'ordine del base point della curva
 - Generalmente f è considerata la dimensione della chiave in bit

Confronto Security Strength

Security Strength	Symmetric key algorithms	FFC (e.g., DSA, D-H)	IFC (e.g., RSA)	ECC (e.g., ECDSA)
≤80	2TDEA ²¹	L = 1024 N = 160	k = 1024	f= 160-223
112	3TDEA	L = 2048 $N = 224$	k = 2048	f= 224-255
128	AES-128	L = 3072 $N = 256$	k = 3072	f=256-383
192	AES-192	L = 7680 N = 384	k = 7680	f=384-511
256	AES-256	L = 15360 N = 512	k = 15360	f=512+

Impronta energetica

- Per visualizzare quanto è difficile rompere un algoritmo crittografico, Lenstra, Kleinjung e Thomé hanno introdotto il concetto di Global Security
- Si può calcolare quanta energia è necessaria per rompere un algoritmo crittografico e confrontarla con la quantità di acqua (a 20°) che quell'energia potrebbe portare ad ebollizione
 - Si calcola una sorta di Impronta Energetica (carbon footprint)

Impronta energetica

- L'energia necessaria per rompere una chiave RSA di 228 bit è inferiore a quella necessaria per portare ad ebollizione un cucchiaino da the di acqua
- Rompere una chiave EC di 228 bit richiede una quantità di energia sufficiente a portare ad ebollizione tutta l'acqua sulla terra
 - Per ottenere lo stesso livello di sicurezza con RSA è necessaria una chiave di 2.380 bit

Livelli di sicurezza intuitivi

	bit-lengths			
security level	volume of water to bring to a boil	symmetric key	cryptographic hash	RSA modulus
teaspoon security	0.0025 liter	35	70	242
shower security	80 liter	50	100	453
pool security	2500000 liter	65	130	745
rain security	$0.082\mathrm{km}^3$	80	160	1130
lake security	$89\mathrm{km}^3$	90	180	1440
sea security	$3750000 \mathrm{km}^3$	105	210	1990
global security	$1400000000\mathrm{km^3}$	114	228	2380
solar security	11 2	140	280	3730

Utilizzare la Security Strength illustrata nelle slide e lezioni precedenti

Parametri NIST

- Descritti in FIPS PUB 186-4
 Digital Signature Standard (DSS), luglio 2013
- Sono descritte curve su GF(p), p primo, e GF(2^m)
 - Per GF(2^m) è descritta anche una curva di Kobliz

$$\mathbb{F}_p = \mathsf{GF}(p) \in \mathbb{F}_{2^m} = \mathsf{GF}(2^m)$$

• Le curve sono descritte tramite parametri

Parametri curva

- a e b: Coefficienti della curva
- N: Ordine del gruppo della curva
 - #Punti sulla curva + 1 (elemento neutro)
- G: base point (generatore)
 - Generatore del sottogruppo ciclico di E
- n : Ordine del sottogruppo generato da G
- h: Cofattore del sottogruppo
 - $-N = h \cdot n$

Serve a far vedere che b non è stato generato ad-hoc dato che SHA-1 non è efficientemente invertibile

Curve su GF(p)

- Curva: $y^2 \equiv x^3 3x + b \mod p$
 - p numero primo
 - a fissato al valore -3 motivi di efficienza
 - b generato a partire da un seme casuale (seed)
 - c = PRNG(seed), b soddisfa $b^2c \equiv -27 \mod p$
 - N primo, quindi n=N ed h=1
 - Base point $G=(G_x, G_y)$. A partire da G si possono generare altri base point seguendo le indicazioni in ANSI X9.62 oppure IEEE Standard 1363-2000

PRNG generatore basato su SHA-1 descritto in ANSI X9.62

Esempio

D.1.2.1 Curve P-192 p = 6277101735386680763835789423207666416083908700390324961279 n = 6277101735386680763835789423176059013767194773182842284081 SEED = 3045ae6f c8422f64 ed579528 d38120ea e12196d5 c = 3099d2bb bfcb2538 542dcd5f b078b6ef 5f3d6fe2 c745de65 b = 64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1 $G_x = 188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012$ $G_y = 07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811$

Possibili grandezze in bit di p: 192, 224, 256, 384 e 521

521 non è un errore, non è 512

Curve su GF(2^m)

Curva non-Kobliz (curva pseudo-random)

$$y^2 + xy = x^3 + x^2 + b$$

- h = 2

Curva di Kobliz

$$y^2 + xy = x^3 + ax^2 + 1$$

- Se a=0, allora h=2
- Se a=1, allora h=4

Possibili valori di m: 163, 233, 283, 409 e 571

Dove è usata ECC?

IPSec/TLS

- Nei browser, se il server è configurato per supportare ECC
 - Il browser Tor (The Onion Router) utilizza una curva progettata da Daniel J. Bernstein
 - Parametri scelti per efficienza (sicurezza almeno di 128 bit) e per mancanza di fiducia nei parametri del NIST
- Bitcoin
 - Per assicurare che le monete siamo spese dal legittimo possessore (firma ECDSA)
- iMessage
 - Instant messaging system di Apple
- Playstation 3
 - Software firmato con ECDSA

Dettagli su https://fail0verflow.com/

Chiave segreta estratta nel 2010 per un cattiva implementazione di ECDSA Stessa randomness riutilizzata

TOR: Curve25519

9 è un parametro fissato della curva

La chiave segreta di Alice, la chiave segreta di Bob e quella condivisa sono di 32 byte

Riferimenti

Christof Paar and Jan Pelzl
Understanding Cryptography
Capitolo 9 Elliptic Curve Cryptosystems

A. K. Lenstra, T. Kleinjung, E. Thomé Universal security, from bits and mips to pools, lakes – and beyond, 2013