Plan of the Lecture

- ▶ Review: prototype 2nd-order system
- ► Today's topic: transient response specifications

Goal: develop formulas and intuition for various features of the transient response: rise time, overshoot, settling time.

Reading: FPE, Sections 3.3–3.4; lab manual

Prototype 2nd-Order System

$$\int H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \qquad \qquad \int \zeta \quad \text{gain} = 1$$

By the quadratic formula, the poles are:

$$s = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \qquad \begin{cases} \zeta^2 > / \implies \zeta > 0 \\ 0 < \zeta \le 1 - 1 \end{cases}$$

$$= -\omega_n \left(\zeta \pm \sqrt{\zeta^2 - 1} \right) \qquad \begin{cases} \zeta^2 > / \implies \zeta > 0 \\ 0 < \zeta \le 1 - 1 \end{cases}$$

The nature of the poles changes depending on ζ :

- $\zeta > 1$ both poles are real and negative
- $\triangleright \zeta = 1$ one negative pole
- $ightharpoonup \zeta < 1$ two complex poles with negative real parts

$$s = -\sigma \pm j\omega_d$$
 where
$$\sigma = \zeta \omega_n, \ \omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Prototype 2nd-Order System

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \qquad \zeta < 1$$

The poles are

$$s = -\zeta \omega_n \pm j\omega_n \sqrt{1 - \zeta^2} = -\sigma \pm j\omega_d$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

Impulse response:

$$h(t) = \mathcal{L}^{-1}\{H(s)\} = \mathcal{L}^{-1}\left\{\frac{(\omega_n^2/\omega_d)\omega_d}{(s+\sigma)^2 + \omega_d^2}\right\}$$
$$= \frac{\omega_n^2}{\omega_d}e^{-\sigma t}\sin(\omega_d t) \qquad \text{(table, #20)}$$

Step response:

ep response:
$$\mathcal{L}^{-1}\left\{\frac{H(s)}{\underline{s}}\right\} = \mathcal{L}^{-1}\left\{\frac{\sigma^2 + \omega_d^2}{s[(s+\sigma)^2 + \omega_d^2]}\right\}$$

$$= 1 - e^{-\sigma t}\left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)$$
 (table, #21)

2nd-Order Step Response

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$
$$u(t) = 1(t) \longrightarrow y(t) = \underbrace{1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)}_{}$$

where $\sigma = \zeta \omega_n$ and $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ (damped frequency)

The parameter ζ is called the damping ratio

- $\downarrow \zeta > 1$: system is overdamped $\downarrow \zeta$
 - $\zeta < 1$: system is underdamped
- $\zeta = 0: \text{ no damping}$ $(\omega_d = \omega_n)$

2nd-Order Step Response

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$
$$u(t) = 1(t) \longrightarrow y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)$$

where $\sigma = \zeta \omega_n$ and $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ (damped frequency)

We will see that the parameters ζ and ω_n determine certain important features of the transient part of the above step response.

We will also learn how to pick ζ and ω_n in order to *shape* these features according to given *specifications*.

cesing PFE, a cuflicated (ie high olype) TF Con be decorpted as a tun of linear d greathalt TF Transient Response Specifications: Rise Time [14]

Let's first take a look at 1st-order step response

$$H(s) = \frac{a}{s+a}, \quad a > 0 \quad \text{(stable pole)}$$

$$DC \text{ gain} = 1 \text{ (by FVT)}$$

$$While linearly of R.$$

Step response:
$$Y(s) = \frac{H(s)}{s} = \frac{a}{s(s+a)} = \frac{1}{s} - \frac{1}{s+a}$$
$$y(t) = \mathcal{L}^{-1}\{Y(s)\} = 1(t) - e^{-at}$$

Rise time t_r : the time it takes to get from 10% of steady-state value to 90%

Rise Time

Step response: $y(t) = 1(t) - e^{-at}$

Rise time t_r : the time it takes to get from 10% of steady-state value to 90%

In this example, it is easy to compute t_r analytically:

$$1 - e^{-at_{0.1}} = 0.1, \quad e^{-at_{0.1}} = 0.9, \quad t_{0.1} = -\frac{\ln 0.9}{a}$$

$$1 - e^{-at_{0.9}} = 0.9, \quad e^{-at_{0.9}} = 0.1, \quad t_{0.9} = -\frac{\ln 0.1}{a}$$

$$\underline{t_r} = \underline{t_{0.9}} - \underline{t_{0.1}} = \frac{\ln 0.9 - \ln 0.1}{a} = \frac{\ln 9}{a} \approx \frac{2.2}{a}$$

Now let's consider the more interesting case: 2nd-order response

$$\omega_{d} = \omega_{n} \sqrt{1 - \zeta^{2}}$$

$$\sigma = \zeta \omega_{n} \qquad 0$$

$$y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$

Transient-Response Specs

Step response:
$$y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$

$$1.4$$

$$1.2$$

$$1.0$$

$$0.8$$

$$0.6$$

$$0.4$$

$$0.2$$

$$\omega_n t_r$$

$$\omega_n t_s$$

$$\omega_n t$$

- rise time t_r time to get from $0.1y(\infty)$ to $0.9y(\infty)$
- overshoot M_p and peak time t_p
- ▶ settling time t_s first time for transients to decay to within a specified small percentage of $y(\infty)$ and stay in that range (we will usually worry about 5% settling time)

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

Trade-offs among specs: decrease $t_r \longrightarrow \text{increase } M_p$, etc.

Formulas for TD Specs: Rise Time

Rise time $\underline{t_r}$ — hard to calculate analytically.

Empirically, on the normalized time scale $(t \to \omega_n t)$, rise times are approximately the same

$$\sqrt{w_n t_r \approx 1.8} \quad \text{(exact for } \underline{\zeta = 0.5})$$
 So, we will work with $t_r \approx \frac{1.8}{\omega_n}$ (good approx. when $\underline{\zeta} \approx 0.5$)

Formulas for TD Specs: Overshoot & Peak Time

 t_p is the first time t > 0 when y'(t) = 0

$$y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$

 $\underbrace{\frac{d}{dt}}_{\text{LL}}(t) = \underbrace{\left(\frac{\sigma^2}{\omega_d} + \omega_d\right)}_{\text{LL}} e^{-\sigma t} \sin(\underline{\omega_d t}) = 0 \text{ when } \omega_d t = 0, \pi, 2\pi, \dots$

$$\omega_d t = 0, \pi, 2\pi,$$

Formulas for TD Specs: Overshoot & Peak Time , Wat =A

We have just computed
$$t_p = \frac{\pi}{\omega_d}$$

To find M_p , plug this value into y(t):

To find
$$M_p$$
, plug this value into $y(t)$:
$$M_p = y(t_p) - 1 = -e^{-\frac{\sigma\pi}{\omega_d}} \left(\cos\left(\omega_d \frac{\pi}{\omega_d}\right) + \frac{\sigma}{\omega_d} \sin\left(\omega_d \frac{\pi}{\omega_d}\right) \right)$$

$$= \exp\left(-\frac{\sigma\pi}{\omega_d}\right) = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right) \quad - \text{ exact formula}$$

Formulas for TD Specs: Settling Time

$$t_s = \min \left\{ t > 0 : \frac{|y(t') - y(\infty)|}{y(\infty)} \le 0.05 \text{ for all } t' \ge t \right\} \text{ (here, } y(\infty) = 1)$$

$$|y(t) - 1| = e^{-\sigma t} \left[\cos(\omega_d t) + \frac{\sigma_s}{\omega_d} \sin(\omega_d t) \right]$$

here, $e^{-\sigma t}$ is what matters (sin and cos are bounded between ± 1), so $e^{-\sigma t_s} \leq 0.05$ this gives $t_s = -\frac{\ln 0.05}{\sigma} \approx \frac{3}{\sigma}$

Formulas for TD Specs

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\sigma^2 + \omega_d^2}{(s+\sigma)^2 + \omega_d^2}$$

$$t_r pprox rac{1.8}{\omega_n}$$
 $t_p = rac{\pi}{\omega_d}$
 $M_p = \exp\left(-rac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$
 $t_s pprox rac{3}{\sigma}$

TD Specs in Frequency Domain

We want to visualize time-domain specs in terms of admissible $pole\ locations$ for the 2nd-order system

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\sigma^2 + \omega_d^2}{(s+\sigma)^2 + \omega_d^2}$$
where $\sigma = \zeta\omega_n$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Step response: $y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$

$$\omega_n^2 = \sigma^2 + \omega_d^2$$

$$\zeta = \cos \varphi$$

Rise Time in Frequency Domain

Suppose we want $t_r \leq c$ (c is some desired given value)

$$t_r \approx \frac{1.8}{\omega_n} \leq c \implies \omega_n \geq \frac{1.8}{c} \qquad \text{with a Synthetical C.}$$

Geometrically, we want poles to lie in the shaded region:

(recall that ω_n is the magnitude of the poles)

Overshoot in Frequency Domain

Suppose we want $M_p \leq c$ Mo soll -

$$c = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right) \le c \qquad -\text{need large damping ratio}$$

$$\frac{1}{\sqrt{1-\zeta^2}} \le c \qquad -\text{need large damping ratio}$$

$$\frac{1}{\sqrt{1-\zeta^2}} \le c \qquad -\text{need large damping ratio}$$

decreasing function

Geometrically, we want poles to lie in the shaded region: Im— need φ to be small

Intuition: good damping \rightarrow good decay in 1/2 period

Settling Time in Frequency Domain

Suppose we want $t_s \leq c$

$$\left[t_s \approx \frac{3}{\sigma}\right] \le c \qquad \Longrightarrow \qquad \sigma \ge \frac{3}{c}$$

Want poles to be sufficiently fast (large enough magnitude of real part):

Combination of Specs

If we have specs for any combination of t_r, M_p, t_s , we can easily relate them to allowed pole locations:

The shape and size of the region for admissible pole locations will change depending on which specs are more severely constrained.

This is very appealing to engineers: easy to visualize things, no such crisp visualization in time domain.

But: not very rigorous, and also only valid for our prototype 2nd-order system, which has only 2 poles and no zeros ...