Math 15910: Problem Set 8

Underland, Jake

2021-08-09

Contents

Exercise 1 Problem 3.2.9	1 1
Exercise 2	2
Exercise 3	2
Exercise 4	2
Exercise 5 Problem 3.6.13	3
Exercise 6	3
Exercise 7 Problem 3.6.18	4 4
Exercise 8 Problem 3.6.21	5

Exercise 1

Problem 3.2.9

 $Suppose \ \lim\nolimits_{n \to \infty} x_n = x \ \ and \ \lim\nolimits_{n \to \infty} y_n = y$

1. Show that $\lim_{n\to\infty}(x_n+y_n)=x+y$

Proof. From the supposition, we know that for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that for all n > N,

$$|x_n - x| < \epsilon$$

$$|y_n - y| < \epsilon$$

Let $\epsilon = \frac{\epsilon'}{2}$. Then,

$$|x_n-x|<\frac{\epsilon'}{2}$$

$$|y_n-y|<\frac{\epsilon'}{2}$$

From triangle inequality,

$$\begin{split} |x_n+y_n-x-y| \leq |x_n-x|+|y_n-y| < \frac{\epsilon'}{2} + \frac{\epsilon'}{2} \\ |x_n+y_n-(x+y)| < \epsilon' \end{split}$$

This holds for all $\epsilon' > 0$. Thus, x + y is the limit.

2. Show that if for all $n \in \mathbb{N}y_n \neq 0$ and $y \neq 0$, then $\lim_{n \to \infty} (\frac{1}{y_n}) = \frac{1}{y}$.

Proof. Since $\lim_{n\to\infty}y_n=y$, it is obvious that $\lim_{n\to\infty}|y_n|=|y|$. Then, for all $\epsilon>0$, there exists an N such that for all n>N, $|y_n|$ becomes arbitrarily close to |y|. Thus, we can say with certainty that there exists N_1 such that for all $n>N_1$, $|y_n|>\frac{|y|}{2}$. This implies $\frac{1}{|y_n|}<\frac{2}{|y|}$. Further, let $\epsilon=\epsilon'\frac{|y|^2}{2}$. Then, there also exists N_2 such that for all $n>N_2$, $|y_n-y|<\epsilon$. Now, let us set $N=\max\{N_1,N_2\}$. Then,

$$\begin{aligned} &|\frac{1}{y_n} - \frac{1}{y}| \\ &= &|\frac{y - y_n}{y_n y}| \\ &= &\frac{|y_n - y|}{|y_n||y|} \\ &< \epsilon' \frac{|y|^2}{2} \cdot \frac{2}{|y|} \cdot \frac{1}{|y|} \\ &= \epsilon' \end{aligned}$$

Therefore, for all $\epsilon'>0$, there exists $N\in\mathbb{N}$ such that for all n>N, $|\frac{1}{y_n}-\frac{1}{y}|<\epsilon'$. Thus, $\lim_{n\to\infty}(\frac{1}{y_n})=\frac{1}{y}$.

Exercise 2

Let $m \in \mathbb{N}$. Prove that $(x_n)_{n \in \mathbb{N}}$ converges iff $(x_{m+n})_{n \in \mathbb{N}}$ converges. Moreover, show that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{m+n}$

Proof. If $(x_n)_{n\in\mathbb{N}}$ converges to x, then we know that for all $\epsilon>0$ there exists an $N\in\mathbb{N}$ such that for all n>N, $|x_n-x|<\epsilon$. Since m+n>n, (x_{m+n}) also converges to the same limit x.

If $(x_{m+n})_{n\in\mathbb{N}}$ converges to x, then for all $\epsilon>0$ there exists an $N_1\in\mathbb{N}$ such that for all $m+n>N_1$, $|x_{m+n}-x|<\epsilon$. Then, take $N_2=N_1+m$. For all $n+m>N_2, n+m>N_1+m>N_1$. Furthermore, $n+m>N_1+m\implies n>N_1$. Thus, $|x_n-x|<\epsilon$. Such an N_2 exists for all ϵ , given that $(x_{m+n})_{n\in\mathbb{N}}$ converges. Thus, $(x_n)_{n\in\mathbb{N}}$ converges iff $(x_{m+n})_{n\in\mathbb{N}}$, and their limits are equivalent.

Exercise 3

Show that $(x_n)_{n\in\mathbb{N}}$ converges to L if and only if every subsequence of $(x_n)_{n\in\mathbb{N}}$ converges to L

Proof. Let b_n be a subsequence of x_n . Note that for all x_n , $b_n = x_m$ for m > n. By definition of convergence, for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that for all n > N, $|x_n - L| < \epsilon$. Then, since $b_n = x_m$ where m > n, $|b_n - L| < \epsilon$, and thus b_n converges to L. If every subsequence of $(x_n)_{n \in \mathbb{N}}$ converges to L, since a sequence is a subsequence of itself, it follows that $(x_n)_{n \in \mathbb{N}}$ converges to L.

Exercise 4

Prove directly from the definition that $a_n = \frac{n+2}{2n+1}$ is Cauchy.

2

Proof. Let $N = \frac{3}{2\epsilon}$. Then, for m, n > N,

$$\begin{split} |\frac{n+2}{2n+1} - \frac{m+2}{2m+1}| &= |\frac{3m-3n}{(2n+1)(2m+1)}| \\ &= |\frac{3n-3m}{(2n+1)(2m+1)}| \\ &\leq |\frac{3n}{(2n+1)(2m+1)}| + |\frac{3m}{(2n+1)(2m+1)}| \\ &\leq |\frac{3n}{(2n2m)}| + |\frac{3m}{(2n2m)}| \\ &= |\frac{3}{4m}| + |\frac{3}{4n}| \\ &< |\frac{\epsilon}{2}| + |\frac{\epsilon}{2}| \\ &= \epsilon \end{split}$$

Thus, a_n is Cauchy.

Exercise 5

Problem 3.6.13

Prove that every Cauchy sequence in \mathbb{R} is bounded.

Proof. Since the sequence is Cauchy, for all $\epsilon>0$, there exists N such that for all m,n>N, $|a_n-a_m|<\epsilon$. Let $\epsilon=\epsilon_0$ and $N=N_0$ be the N such that for all $m,n>N_0$, $|a_n-a_m|<\epsilon_0$. Furthermore, let $m=m_0>N_0$. Then, from triangle inequality,

$$\begin{split} |a_n-a_{m_0}| &< \epsilon_0 \\ \implies |a_n-a_{m_0}| + |a_{m_0}| &< \epsilon_0 + |a_{m_0}| \end{split}$$

From triangle inequality,

$$\begin{aligned} |a_n| &= |a_n - a_{m_0} + a_{m_0}| \leq |a_n - a_{m_0}| + |a_{m_0}| < \epsilon_0 + |a_{m_0}| \\ &\implies |a_n| < \epsilon_0 + |a_{m_0}| \end{aligned}$$

Thus, $|a_n|$ is bounded.

Theorem 3.6.14 shows that a sequence is convergent if and only if it is Cauchy. Since we know that Cauchy sequences are bounded, we can therefore deduce that all convergent sequences are bounded.

Exercise 6

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of strictly positive real numbers and suppose that $(a_n)\to a$

1. Show that $a \ge 0$. Proof. Suppose a < 0. Note that $a_n > 0$ for all n. Then, since a is the limit of a_n , for all $\epsilon > 0$, there exists N such that for all n > N, $|a_n - a| < \epsilon$. Let $\epsilon = \frac{|a|}{2} > 0$. Since a < 0 and $a_n > 0$,

$$|a_n - a| = a_n - a < \epsilon = -\frac{a}{2}$$

$$\implies a_n < -\frac{a}{2} + a = \frac{a}{2}$$

But $\frac{a}{2} < 0$, and $a_n > 0$, which is a contradiction. Thus, $a \ge 0$.

2. Show that $(\sqrt{a_n}) \to \sqrt{a}$. Proof. Let $\epsilon = \frac{\epsilon'}{\sqrt{a}}$. Then, there exists $N \in \mathbb{N}$ such that for all n > N, the below holds.

$$\begin{split} |\sqrt{a_n} - \sqrt{a}| &= \frac{|\sqrt{a_n} - \sqrt{a}| \cdot |\sqrt{a_n} + \sqrt{a}|}{|\sqrt{a_n} + \sqrt{a}|} \\ &= \frac{|a_n - a|}{\sqrt{a_n} + \sqrt{a}} \\ &< \frac{|a_n - a|}{\sqrt{a}} \\ &< \frac{\epsilon}{\sqrt{a}} = \epsilon' \end{split}$$

Thus, the limit of $\sqrt{a_n}$ is \sqrt{a} .

Exercise 7

Problem 3.6.18

Find the accumulation points of the following sets in \mathbb{R}

1. S = (0,1);

Since the interval (0,1) is continuous within its end points, it is clear that for any $x \in (0,1)$, for all $\epsilon > 0$, $(x - \epsilon, x + \epsilon) \cap (0,1) \setminus \{x\} \neq \emptyset$. Now, take 0 and 1. If x = 0, then there exists $x + \epsilon_0 \in (x - \epsilon, x + \epsilon)$ such that $x + \epsilon_0 \in (0,1)$ where $\epsilon_0 < \epsilon, \epsilon_0 < 1$. Further, if x = 1, then there exists $x - \epsilon_0 \in (x - \epsilon, x + \epsilon)$ such that $x - \epsilon_0 \in (0,1)$ where $\epsilon_0 < \epsilon, \epsilon_0 < 1$. Thus, 1 and 0 are included, and the accumulation points of (0,1) are [0,1].

2. $S = \{(-1)^n + \frac{1}{n}\};$

Let us observe the cases when n is even and odd. When n is even, we will denote this n=2m for $m\in\mathbb{N}$. Then, $(-1)^n+\frac{1}{n}$ gets arbitrarily close to 1, since the greater m is, the smaller $\frac{1}{n}$ gets, where $(-1)^n$ always equals 1. In other words, for every $\epsilon>0$, there exists $m\in\mathbb{N}$ such that $2m>\frac{1}{\epsilon}$, or $\frac{1}{2m}<\epsilon$. Thus, $(1-\epsilon,1+\epsilon)\cap S\backslash\{1\}\neq\emptyset$. So, 1 is an accumulation point. Further, suppose n is odd, and n=2m+1 for $m\in\mathbb{N}$. Then, $(-1)^n=-1$, and there exists $m\in\mathbb{N}$ such that $2m>\frac{1}{\epsilon}$, or $\frac{1}{2m}<\epsilon$. Thus, $(-1-\epsilon,-1+\epsilon)\cap S\backslash\{-1\}\neq\emptyset$. So, -1 is an accumulation point. For any other $x\in\mathbb{R}$, let s denote the closes number of the form $(-1)^n+\frac{1}{n}$. Then, for any $\epsilon<|x-s|$, there exists no number that can be represented as $(-1)^n+\frac{1}{n}$ within $(x-\epsilon,x+\epsilon)$, or else it would contradict our supposition that s is the closest of such numbers to s. Thus, s0 will not be an accumulation point, and the only accumulation points are s1.

3. $S = \mathbb{Q}$;

Take $x \in \mathbb{R}$. Suppose x > 0. Then, $x + \epsilon > 0$. Since $x, \epsilon \in \mathbb{R}$, ϵ has a decimal expansion, either finite or infinite. Take this decimal expansion until the first nonzero digit in the decimal expansion of ϵ and denote this ϵ_1 . Then, $x < x + \epsilon_1 < x + \epsilon$. Now, take the decimal expansion of $x + \epsilon_1$ until the digit in the place after the place of the first digit of ϵ . Denote this $(x + \epsilon_1)'$. Then, $x < (x + \epsilon_1)' < x + \epsilon$, and $(x + \epsilon_1)'$ is rational. Similarly, we can find that for any $x \le 0$, $x - \epsilon < (x - \epsilon_1)' < x$. Thus, there exists a rational number in the neighborhood of every $x \in \mathbb{R}$, and the accumulation point of \mathbb{Q} is \mathbb{R} .

4. $S = \mathbb{Z}$;

The integers do not have an accumulation point. Suppose they do. Then, for any $x \in \mathbb{R}$, take $s = \max\{|x - \lfloor x \rfloor|, |x - \lceil x \rceil|\}$ and let $\epsilon < s$. Then, for all $(x - \epsilon, x + \epsilon)$, there does not exist any integer. Thus, there is not accumulation point for \mathbb{Z} .

5. S is the set of rational numbers whose denominators are prime.

We know that the sequence of primes is infinite and increasing, and therefore the sequence of fractions $\frac{1}{p_i}$, where p_i is a prime, is infinite and decreasing. For every $\epsilon > 0$, there exists $p_i > \epsilon$. Thus, for every $\epsilon = \frac{1}{\epsilon}$, there is a $\frac{1}{p_i} < \epsilon$. Therefore, $(-\epsilon, \epsilon) \cap S \neq \emptyset \Longrightarrow \{0\}$ is an accumulation point. For any other $x \in \mathbb{R}$, take p_i such that $\frac{1}{p_i} < \epsilon$. Then, there exists at least one $\frac{k}{p_i} \in (x - \epsilon, x + \epsilon), k \in \mathbb{Z}$. Thus, all $x \in \mathbb{R}$ is an accumulation point of S.

Exercise 8

Problem 3.6.21

1. Find an infinite subset of \mathbb{R} that does not have an accumulation point in \mathbb{R} \mathbb{Z} is an infinite subset of \mathbb{R} that does not have an accumulation point, as we saw earlier.

2. Find a bounded subset of \mathbb{R} that does not have an accumulation point in \mathbb{R} The set $\{1\}$ is a bounded subset but does not have an accumulation point. This is because for any $x \in \mathbb{R}$, there exists a small enough $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \setminus \{x\}$.

3. Find a bounded infinite subset of $\mathbb Q$ that does not have an accumulation point in $\mathbb Q$

The sequence

$$x_n = \lfloor \sqrt{2} \cdot 10^{n-1} \rfloor \cdot \frac{1}{10^{n-1}}$$

is bounded above by $\sqrt{2}$, below by 1, and is infinite. Its limit is $\sqrt{2}$, as x_n is just the decimal expansion of $\sqrt{2}$ until the n-1th digit after the decimal.