Wszystkie udostępniane materiały, skrypty, notatniki są wyłącznie przeznaczone do użytku prywatnego w celu łatwiejszego opanowania wiedzy.

Nie wolno ich rozprzestrzeniać, ani umieszczać w Internecie.

Przypomnienie

Twierdzenie Taylora dla funkcji jednej zmiennej.

Jeżeli y=f(x) jest funkcją ciągłą w przedziale [a,a+h] i ma w tym przedziale ciągłe pochodne do rzędu n-1 włącznie, przy czym wewnątrz tego przedziału istnieje pochodna rzędu n, to zachodzi:

$$f(a+h) = f(a) + \frac{h}{1!}f'(a) + \frac{h^2}{2!}f''(a) + \cdots$$
$$+ \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(a) + \frac{h^n}{n!}f^n(a+\theta h)$$

gdzie $0 < \theta < 1$. Wielkość h może przyjmować wartości dodatnie jak i ujemne.

Różniczkowanie numeryczne stosujemy gdy: dla danej funkcji y = f(x) chcemy wyliczyć jej pochodne w punkcie $x = x_k$.

Dana funkcja f(x) jest rozumiana w ten sposób, iż mamy algorytm/formułę umożliwiają wyliczenie wartości funkcji lub zbiór punktów (x_i, y_i) , i = 0, 1, ..., n.

Numeryczne różniczkowanie jest powiązane z interpolacją (o tym na wykładzie dotyczącym interpolacji).

Różniczkowanie numeryczne nie jest procesem szczególnie dokładnym. Jest to związane z błędami zaokrąglania oraz błędami interpolacji. Z tego powodu pochodna funkcji nigdy nie może być obliczona z taką samą dokładnością jak sama funkcja.

Interpretacja geometryczna

nachylenie stycznej do funkcji w punkcie a

Wyznaczanie wielkości definiowanych różniczką

- czułość przyrządu, nachylenie charakterystyki przetwarzania, wrażliwość układu
- prędkość i przyspieszenie wyznaczane na podstawie sygnału położenia
- nachylenie (gradient) w metodach poszukiwania minimum funkcji

Wyprowadzenie metody różnic skończonych dla pochodnych funkcji f(x) bazuje na rozwinięciu szeregu Taylora dla f(x) w przód i w tył:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \cdots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) - \cdots$$

$$f(x+2h) = f(x) + 2hf'(x) + \frac{(2h)^2}{2!}f''(x) + \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^{(4)}(x) + \cdots$$

$$f(x-2h) = f(x) - 2hf'(x) + \frac{(2h)^2}{2!}f''(x) - \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^{(4)}(x) - \cdots$$

Możemy również zapisać sumy i różnice rozwinięć:

$$f(x+h) + f(x-h) = 2f(x) + h^2 f''(x) + \frac{h^4}{12} f^{(4)}(x) + \cdots$$

 $f(x+h) - f(x-h) = 2hf'(x) + \frac{h^3}{3}f'''(x) + \dots$

$$f(x+2h) + f(x-2h) = 2f(x) + 4h^2f''(x) + \frac{4h^4}{3}f^{(4)}(x) + \cdots$$

$$f(x+2h) - f(x-2h) = 4hf'(x) + \frac{8h^3}{3}f'''(x) + \cdots$$

SUMY TYLKO PARZYSTE POCHODNE

RÓŻNICE TYLKO NIEPARZYSTE POCHODNE

RN – różnice centralne

Wyznaczmy f'(x) z równania:

$$f(x+h) - f(x-h) = 2hf'(x) + \frac{h^3}{3}f'''(x) + \dots$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} \left(\frac{h^2}{6} f'''(x) - \dots \right)$$

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

Błąd odcięcia w notacji dużego *O*

Przybliżenie pierwszej pochodnej **RÓŻNICĄ CENTRALNĄ**

RN – różnice centralne

Analogicznie wyznaczymy f''(x) z równania:

$$f(x+h) + f(x-h) = 2f(x) + h^{2}f''(x) + \frac{h^{4}}{12}f^{(4)}(x) + \cdots$$

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^{2}} + \frac{h^{2}}{12}f^{(4)}(x) + \cdots$$

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^{2}} + \mathcal{O}(h^{2})$$

Przybliżenie drugiej pochodnej **RÓŻNICĄ CENTRALNĄ**

Błąd odcięcia w notacji dużego *O*

RN – różnice centralne

Różnice centralne dla wyższych pochodnych można wyznaczyć analogicznie na podstawie rozwinięć:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \cdots$$

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) - \cdots$$

$$f(x+2h) = f(x) + 2hf'(x) + \frac{(2h)^2}{2!}f''(x) + \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^{(4)}(x) + \cdots$$

$$f(x-2h) = f(x) - 2hf'(x) + \frac{(2h)^2}{2!}f''(x) - \frac{(2h)^3}{3!}f'''(x) + \frac{(2h)^4}{4!}f^{(4)}(x) - \cdots$$

$f(x+h) + f(x-h) = 2f(x) + h^2 f''(x) + \frac{h^3}{12}$ $f(x+h) - f(x-h) = 2hf'(x) + \frac{h^3}{3}f'''(x) + \frac{h^3}{3}f'''(x)$		f(x-2h)	f(x-h)	f(x)	f(x+h)	f(x+2h)
$f(x+n) - f(x-n) = 2nf(x) + \frac{1}{3}f(x) + \frac$	2hf'(x)		-1	0	1	
$f(x+2h) + f(x-2h) = 2f(x) + 4h^2f''(x) +$	$h^2f''(x)$		1	-2	1	
$f(x+2h) - f(x-2h) = 4hf'(x) + \frac{8h^3}{3}f'''(x)$	$2h^3f'''(x)$	-1	2	0	-2	1
	$h^4 f^{(4)}(x)$	1	-4	6	-4	1

RN – różnice niecentralne

Różnice centralne nie zawsze są użyteczne.

Załóżmy, że mamy zbiór próbek x_0, x_1, \dots, x_n . Metoda różnic centralnych wykorzystuje próbkę poprzednią i następną. W konsekwencji nie będziemy w stanie wyznaczyć pochodnej dla x_0 i x_n

Rozwiązanie: różnice niecentralne -> w przód i w tył (różnica progresywna, wsteczna). Możemy je uzyskać analogicznie jak r.c.

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \frac{h^4}{4!}f^{(4)}(x) + \cdots$$
$$f'(x) = \frac{f(x+h) - f(x)}{h} - \frac{h}{2}f''(x) - \frac{h^2}{6}f'''(x) - \frac{h^3}{4!}f^{(4)}(x) - \cdots$$

RN – różnice niecentralne, pierwsze

RÓŻNICA WSTECZNA

RÓŻNICA PROGRESYWNA

$$f'(x) = \frac{f(x) - f(x - h)}{h} + O(h)$$

$$RZAD h$$

$$RZAD h$$

Różnica Wsteczna, pierwsza, O(h)					Różnica Progresywna, pierwsza, O(h)					
f(x-4h)	f(x-3h)	f(x-2h)	f(x-h)	f(x)		f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)
			-1	1	hf'(x)	-1	1			
		1	-2	1	$h^2f^{\prime\prime}(x)$	1	-2	1		
	-1	3	-3	1	$h^3f^{\prime\prime\prime}(x)$	-1	3	-3	1	
1	-4	6	-4	1	$h^4f^{(4)}(x)$	1	-4	6	-4	1

Wada wszystkich wzorów na różnice pierwsze: niska dokładność (błąd rzędu O(h))

RN – różnice niecentralne, drugie

Żeby uzyskać różnice niecentralne z błędem $O(h^2)$ musimy zachować więcej składników rozwinięcia szeregu Taylora.

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(x) + \cdots$$
$$f(x+2h) = f(x) + 2hf'(x) + 2h^2f''(x) + \frac{4h^3}{3}f'''(x) + \frac{2h^4}{3}f^{(4)}(x) + \cdots$$

Wyeliminujmy f''(x) mnożąc pierwsze równanie przez 4 i odejmując stronami:

$$f(x+2h) - 4f(x+h) = -3f(x) - 2hf'(x) + \frac{h^4}{2}f^{(4)}(x) + \cdots$$
$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + \frac{h^2}{4}f^{(4)}(x) + \cdots$$

$$f'(x) = \frac{-f(x+2h) + 4f(x+h) - 3f(x)}{2h} + \mathcal{O}(h^2)$$

RÓŻNICA PROGRESYWNA, DRUGA

RN – różnice niecentralne, drugie

Różnice niecentralne z błędem $O(h^2)$ dla wyższych pochodnych

Różnica Wsteczna, druga O(h²)						Różnica Progresywna, druga <i>O(h²)</i>						
f(x - 5h)	f(x - 4h)	f(x - 3h)	f(x - 2h)	f(x - h)	f(x)		f(x)	f(x + h)	f(x + 2h)	f(x+3h)	f(x + 4h)	f(x - 5h)
			1	-4	3	2hf'(x)	-3	4	-1			
		-1	4	-5	2	$h^2f''(x)$	2	-5	4	-1		
	3	-14	24	-18	5	$2h^3f^{\prime\prime\prime}$	-5	18	-24	14	-3	
-2	11	-24	26	-14	3	$h^4f^{(4)}(x$	3	-14	26	-24	11	-2

RN - przykład

Pochodna funkcji

Przykład:

W2 1 FDM.ipynb

RN – metody różnic, błędy

- We wszystkich wyrażeniach w metodzie różnic, suma współczynników wynosi zero.
- Uwaga na błędy zaokrągleń. Jeżeli h jest bardzo małe (teoretycznie dobrze), to wartości f(x), $f(x \pm h)$, $f(x \pm 2h)$, ... będą w przybliżeniu równe. Ryzyko utraty cyfr znaczących.
- Sytuację może polepszyć stosowanie podwójnej precyzji oraz wyrażeń z błędem $O(h^2)$.

RN – przykład

Dla danych pomiarowych:

x	0	0.1	0.2	0.3	0.4
f(x)	0.0000	0.0819	0.1341	0.1646	0.1797

wyznacz f'(x), f''(x) dla x = 0 i x = 2 z błędem $O(h^2)$.

Dla x = 0 stosujemy różnicę progresywną:

$$f'(0) = \frac{-3f(0) + 4f(0.1) - f(0.2)}{2(0.1)} = \frac{-3(0) + 4(0.0819) - 0.1341}{0.2} = 0.967$$

$$f''(0) = \frac{2f(0) - 5f(0.1) + 4f(0.2) - f(0.3)}{(0.1)^2}$$

$$= \frac{2(0) - 5(0.0819) + 4(0.1341) - 0.1646}{(0.1)^2} = -3.77$$

Dla x = 2 centralną:

$$f'(0.2) = \frac{-f(0.1) + f(0.3)}{2(0.1)} = \frac{-0.0819 + 0.1646}{0.2} = 0.4135$$

$$f''(0.2) = \frac{f(0.1) - 2f(0.2) + f(0.3)}{(0.1)^2} = \frac{0.0819 - 2(0.1341) + 0.1646}{(0.1)^2} = -2.17$$

- Załóżmy, że mamy przybliżony sposób obliczenia pewnej wielkości G.
- Dodatkowo załóżmy, że wynik zależy od parametru h.
- Możemy tą sytuację opisać wzorem G = g(h) + E(h) BŁĄD
- Ekstrapolacja Richardsona może usunąć prybliżona błąd jeżeli jest on postaci: $E(h)=ch^p$
- Wyznaczamy g(h) dla jakiegoś h np. $h=h_1$ oraz $h=h_2$
- Otrzymujemy $G = g(h_1) + ch_1^p$ oraz $G = g(h_2) + ch_2^p$
- Eliminując c otrzymujemy: $G = \frac{\left(\frac{h_1}{h_2}\right)^p g(h_2) g(h_1)}{\left(\frac{h_1}{h_2}\right)^p 1}$

• Wyrażenie na Ekstrapolację Richardsona:
$$G = \frac{\left(\frac{h_1}{h_2}\right)^p g(h_2) - g(h_1)}{\left(\frac{h_1}{h_2}\right)^p - 1}$$

• W praktyce często przyjmuje się $h_2 = \frac{h_1}{2}$

•
$$G = \frac{2^p g(\frac{h_1}{2}) - g(h_1)}{2^p - 1}$$

Wróćmy do przykładu -> Dla danych pomiarowych:

x	0	0.1	0.2	0.3	0.4
f(x)	0.0000	0.0819	0.1341	0.1646	0.1797

wyznacz f'(x), f''(x) dla x = 0 i x = 2 z błędem $O(h^2)$.

x	0	0.1	0.2	0.3	0.4
f(x)	0.0000	0.0819	0.1341	0.1646	0.1797

- Dla tych samych danych wyznaczmy f'(x) dla x = 0 tak dokładnie jak możemy.
- Wyznaczamy dwie różnice progresywne z błędem rzędu O(h²), h=0.2 oraz h=0.1

	Różnica Progresywna, druga <i>O(h²)</i>							
	f(x)	f(x+h)	f(x+2h)	f(x+3h)	f(x+4h)	f(x-5h)		
2hf'(x)	-3	4	-1					
$h^2f''(x)$	2	-5	4	-1				
$2h^3f^{\prime\prime\prime}(x)$	-5	18	-24	14	-3			
$h^4 f^{(4)}(x)$	3	-14	26	-24	11	-2		

$$g(0.2) = \frac{-3f(0) + 4f(0.2) - f(0.4)}{2(0.2)} = \frac{3(0) + 4(0.1341) - 0.1797}{0.4} = 0.8918$$

$$g(0.1) = \frac{-3f(0) + 4f(0.1) - f(0.2)}{2(0.1)} = \frac{-3(0) + 4(0.0819) - 0.1341}{0.2} = 0.9675$$

x	0	0.1	0.2	0.3	0.4
f(x)	0.0000	0.0819	0.1341	0.1646	0.1797

$$g(0.2) = \frac{-3f(0) + 4f(0.2) - f(0.4)}{2(0.2)} = \frac{3(0) + 4(0.1341) - 0.1797}{0.4} = 0.8918$$
$$g(0.1) = \frac{-3f(0) + 4f(0.1) - f(0.2)}{2(0.1)} = \frac{-3(0) + 4(0.0819) - 0.1341}{0.2} = 0.9675$$

- W obu formułach błąd jest rzędu $O(h^2)$ $E(h) = c_1 h^2 + c_2 h^4 + \cdots$
- Używając Ekstrapolacji Richardsona możemy usunąć dominujący składnik błędu $G=rac{2^pg\left(rac{h_1}{2}
 ight)-g(h_1)}{2^p-1}$

$$f'(0) \approx G = \frac{2^2 g(0.1) - g(0.2)}{2^2 - 1} = \frac{4(0.9675) - 0.8918}{3} = 0.9927$$

$$O(h^4)$$

Pochodne cząstkowe

Pochodne cząstkowe

Pochodne cząstkowe wyznaczamy analogicznie jak w przypadku funkcji jednej zmiennej. Przykładowo, dla f(x,y) równomiernie próbkowanej, pierwsza pochodna cząstkowa może być przedstawiona z wykorzystaniem różnicy centralnej:

$$\frac{\partial f}{\partial x} = \frac{f(x + \Delta x, y) - f(x - \Delta x, y)}{2\Delta x}$$
$$\frac{\partial f}{\partial y} = \frac{f(x, y + \Delta y) - f(x, y - \Delta y)}{2\Delta y}$$

Wszystkie pozostałe, omówione metody można wykorzystać w analogiczny sposób.

Pochodne cząstkowe mieszane

Dla wyższych rzędów możemy potrzebować wyznaczyć pochodne mieszane. Przykładowo, dla f(x,y) równomiernie próbkowanej, pochodna mieszana będzie postaci:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)$$

Żeby ją policzyć, najpierw policzymy w kierunku x, a następnie w kierunku y:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\frac{\partial f}{\partial y}(x + \Delta x, y) - \frac{\partial f}{\partial y}(x - \Delta x, y)}{2\Delta x}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\frac{f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y - \Delta y)}{2\Delta y} - \frac{f(x - \Delta x, y + \Delta y) - f(x - \Delta x, y - \Delta y)}{2\Delta y}}{2\Delta x}$$

Pochodne cząstkowe mieszane

Finalnie po uproszczeniu

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\frac{f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y - \Delta y)}{2\Delta y} - \frac{f(x - \Delta x, y + \Delta y) - f(x - \Delta x, y - \Delta y)}{2\Delta y}}{2\Delta x}$$

otrzymujemy:

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y - \Delta y) - f(x - \Delta x, y + \Delta y) + f(x - \Delta x, y - \Delta y)}{4\Delta x \Delta y}$$

Przykład:

W2_2_Gradient.ipynb

RN

- Przy okazji innych wykładów będą poruszane kwestie związane z różniczkowaniem:
 - Wykład dotyczący interpolacji:
 - różniczkowanie z wykorzystaniem interpolacji
 - wyznaczanie pochodnych nierównomiernie próbkowanych