DS 7 : Chimie & Magnétostatique & Optique Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

01-10	Obtention du plomb à partir du minerai		
01-09	Grillage du sulfure de plomb		
1	L'enthalpie standard et l'entropie standard de réaction de la réaction (1) sont différentes selon que la température est inférieure ou supérieure à 1161 K, car l'oxyde de plomb PbO est solide avant cette température et liquide après. La loi de Hess appliquée à la réaction (1) donne : $\Delta_r H_1^\circ = \Delta_f H^\circ(PbO_{(l)}) + \Delta_f H^\circ(SO_{2(g)}) - \Delta_f H^\circ(PbS_{(s)}) - \frac{3}{2} \times 0$	1	
	Or le tableau ne donne que $\Delta_f H^{\circ}(PbO_{(s)})$, il faut donc utiliser la réaction de fusion dont on donne $\Delta_{fus}H^{\circ}$		
	$PbO_{(s)} \to PbO_{(l)}$		
	$donc \ \Delta_{fus}H^{\circ} = \Delta_{f}H^{\circ}(PbO_{(l)}) - \Delta_{f}H^{\circ}(PbO_{(s)})$ $donc \ \Delta_{r}H^{\circ}_{1} = \Delta_{f}H^{\circ}(PbO_{(s)}) + \Delta_{fus}H^{\circ} + \Delta_{f}H^{\circ}(SO_{2(g)}) - \Delta_{f}H^{\circ}(PbS_{(s)}) - \frac{3}{2} \times 0$		
	$\Delta_f H^{\circ}(PbS_{(s)}) - \frac{3}{2} \times 0$		
	L'application numérique nous donne : $\Delta_r H_1^{\circ} = -383,7 \text{ kJ/mol}$ Par extensivité de l'entropie appliquée à la réaction (1) on obtient :		
	$\Delta_r S_1^{\circ} = S^{\circ}(PbO_{(l)}) + S^{\circ}(SO_{2(g)}) - S^{\circ}(PbS_{(s)}) - \frac{3}{2}S^{\circ}(O_{2(g)})$		
	on exploite aussi la réaction de fusion pour trouver $S^{\circ}(PbO_{(l)})$. C'est une réaction de changement d'état, donc elle est réversible donc $\Delta_{fus}G^{\circ} = \Delta_{fus}H^{\circ} - T_{fus}\Delta_{fus}S^{\circ} = 0$ donc $\Delta_{fus}S^{\circ} = \frac{\Delta_{fus}H^{\circ}}{T_{fus}} = S^{\circ}(PbO_{(l)}) - S^{\circ}(PbO_{(s)})$		
	$\operatorname{donc} \Delta_r S_1^{\circ} = S^{\circ}(PbO_{(s)}) + \frac{\Delta_{fus}H^{\circ}}{T_{fus}} + S^{\circ}(SO_{2(g)}) - S^{\circ}(PbS_{(s)}) - C^{\circ}(PbS_{(s)}) - $		
	$ \begin{vmatrix} \frac{3}{2}S^\circ(O_{2(g)}) \\ \text{L'application numérique donne } \Delta_r S_1^\circ = -74, 2 \text{ J.mol}^{-1}.\text{K}^{-1} $		
2	$\Delta_r H_1^{\circ} < 0$ donc la réaction est exothermique. $\Delta_r S_1^{\circ} < 0$ ce qui est cohérent avec la diminution du nombre de mole de gaz dans le sens direct de la réaction.	1	
3	Si T augmente, alors d'après la loi de Van't Hoff on a $\frac{d(\ln K_1^{\circ})}{dT}$	1	
	$\frac{\Delta_r H_1^{\circ}}{RT^2} < 0 \text{ donc } K_1^{\circ} \text{ diminue. Donc l'équilibre est déplacé dans le sens indirect.}$		
4	Dans l'approximation d'Ellingham $\Delta_r H_1^{\circ}$ et $\Delta_r S_1^{\circ}$ sont des constantes en dehors des changements d'état ce qui est le cas pour $T>1161$ K. On a alors $\Delta_r G_1^{\circ}=\Delta_r H_1^{\circ}-T\Delta_r S_1^{\circ}$ avec $\Delta_r H_1^{\circ}=-383,7$ kJ/mol et $\Delta_r S_1^{\circ}=-74,2$ J.mol $^{-1}$.K $^{-1}$	1	

5	On utilise la relation entre constante d'équilibre et $\Delta_r G_1^{\circ}$ avec	1	
	$K_1^{\circ} = \exp\left(-\frac{\Delta_r G_1^{\circ}}{RT}\right)$		
	L'application numérique donne $K_1^{\circ} = 7, 5.10^{11} \gg 1$ La réaction est dite quasi-totale.		
6	$Q = \frac{a(PbO_{(l)})a(SO_{2(g)})}{a(PbS_{(s)})a(O_{2(g)})^{3/2}} = \frac{1 \times P(SO_{2(g)})/P^{\circ}}{1 \times (P(O_{2(g)})/P^{\circ})^{3/2}} = \frac{x(SO_{2(g)})}{x(O_{2(g)})^{3/2}} \times \sqrt{\frac{P^{\circ}}{P}} = \frac{n'}{n^{3/2}} \times \sqrt{\frac{NP^{\circ}}{P}}$	1	
0	$Q - \frac{1}{a(PbS_{(s)})a(O_{2(g)})^{3/2}} - \frac{1}{1 \times (P(O_{2(g)})/P^{\circ})^{3/2}} - \frac{1}{1 \times (P(O_{2(g)})/P^{\circ})^{3/2}}$	1	
	$x(SO_{2(g)}) \sim \sqrt{P^{\circ}} - n' \sim \sqrt{NP^{\circ}}$		
	$ \overline{x(O_{2(g)})^{3/2}} \wedge \sqrt{P} - \overline{n^{3/2}} \wedge \sqrt{P} $		
7	Si on augmente P alors Q diminue or la réaction se fait toujours	1	
	dans le sens qui équilibre Q avec la constante d'équilibre, donc la		
	réaction se fait dans le sens direct pour avoir $Q \to K^{\circ}$. C'est cohérent avec le principe de Le Châtelier qui indique que		
	pour une augmentation de la pression l'équilibre est déplacé dans		
	le sens qui diminue le nombre de moles de gaz, ici le sens direct.		
8	La présence de diazote augmente $N,$ donc Q augmente, donc pour	1	
	atteindre l'équilibre la réaction doit se faire dans le sens indirect.		
	La présence de diazote défavorise donc la réaction.		
	La constante d'équilibre est très supérieure à 1 $K^{\circ} \approx 10^{12}$, donc la présence de diazote en proportion de l'air ne modifie pas le		
	caractère quasi-total de la réaction, et le coût d'utilisation d'air		
	ambiant est plus faible que celui de dioxygène pur.		
9	On a un système adiabatique $Q=0$, sans travail utile $W_u=0$ et	1	
	monobare (enthalpie) donc $\Delta H = 0$.		
	On décompose la réaction en deux étapes : $\Delta H = \Delta H_1 + \Delta H_2$ D'abord on effectue la réaction $\Delta H_1 = \xi \Delta_r H^{\circ}$		
	Puis on élève la température des espèces présentes à l'état final		
	de la réaction $\Delta H_2 = \sum_i n_i C_{p,i}^o(T_f - T_0)$		
	Il faut donc déterminer l'avancement et l'état final du système.		
	La réaction est quasi-totale et on part dans les proportions stœ-		
	chiométriques donc avec un tableau d'avancement on obtient		
	$n_f(PbS) = n_f(O_2) = 0$ et $\xi = n(PbO_{(l)}) = n(SO_{2(g)})$ et le diazote		
	étant spectateur il y a $n(N_{2(g)}) = 4n(O_{2(g)})_i = 6\xi$ Donc $0 = \xi \Delta_r H^{\circ} + \left[\xi C_p(PbO_{(l)}) + \xi C_p(SO_{2(g)}) + 6\xi C_p(N_{2(g)})\right] (T_f)$	_	
	$\begin{bmatrix} Done \ 0 = \zeta \Delta_r \Pi + [\zeta C_p(\Gamma \partial O(l)) + \zeta C_p(DO_{2(g)}) + 0\zeta C_p(N_{2(g)})] \end{bmatrix} (I_f \cap D)$		
	Λ H°		
	donc $T_f = T_0 - \frac{\Delta_r H}{C_p(PbO_{(l)}) + C_p(SO_{2(g)}) + 6C_p(N_{2(g)})}$		
	L'application numérique donne $T_f = 2750 \text{ K}$		
	L'élévation de la température défavorise la réaction qui ne va pas		
	pouvoir se faire. Donc on va travailler avec une température initiale la plus basse possible.		
	viene ne presi preside.		
I .	I and the second	I	

10-10	Réduction du monoxyde de plomb		
10	On calcule $K_2^{\circ} = \exp\left(-\frac{\Delta_r G_2^{\circ}}{RT}\right)$	1	
	On obtient numériquement que $K_2^{\circ} = 2.10^8 \gg 1$ donc la réaction		
	est dite quasi-totale.		
11-26	Pince ampèremétrique		
11-17	Principe		
11	Pour avoir la direction du champ magnétique, on utilise les symétries. Ici le plan contenant le fil et le point M est un plan de symétrie de la distribution de courant donc $\Pi = (M, \vec{e}_r, \vec{e}_z)$ est un plan de symétrie. Donc \vec{B}_1 est perpendiculaire à Π , donc $\vec{B}_1(M,t) = B_1(M,t)\vec{e}_{\theta}$.	1	
12	Un plan perpendiculaire au fil est un plan d'anti-symétrie de la distribution de courant donc les lignes de champs seront contenues dans ce plan. De plus la direction \vec{e}_{θ} du champ indique que les lignes de champs forment des cercles concentriques de centre sur le fil. Pour orienter les lignes de champs, elles tournent dans le sens direct autour de i_1 .	1	
13	On étudie les invariances, ici le fil est infini donc il y a invariance par translation selon \vec{e}_z donc $\vec{B}_1(M,t) = B_1(r,\theta,t)\vec{e}_\theta$. Il y a aussi invariance par rotation d'axe le fil donc $\vec{B}_1(M,t) = B_1(r,t)\vec{e}_\theta$. On choisit comme contour fermé la ligne de champs passant par M, soit le cercle de rayon r passant par M et de centre le projeté de M sur le fil. Et on applique le théorème d'Ampère sur ce contour. $\oint \vec{B}.\vec{dl} = \mu_0 i_{enlace}$ donc $2\pi r B_1(r,t) = \mu_0 i_1(t)$ donc $B_1(r,t) = \frac{\mu_0 i_1(t)}{2\pi r}$ donc $\vec{B}_1 = \frac{\mu_0 i_1(t)}{2\pi r}\vec{e}_\theta$	1	

14	$\phi = \iint_S \vec{B}_1 . d\vec{S}, \text{ la surface S de la spire est comprise entre } r = r_0 - \frac{a}{2} \text{ et } r = r_0 + \frac{a}{2}, \text{ ainsi que } z = -\frac{a}{2} \text{ et } z = \frac{a}{2}.$ $\text{donc } \phi = \int_{r_0 - a/2}^{r_0 + a/2} dr \int_{-a/2}^{a/2} dz \times \frac{\mu_0 i_1(t)}{2\pi r}$ $\text{donc } \phi = \frac{\mu_0 i_1(t) a}{2\pi} \int_{r_0 - a/2}^{r_0 + a/2} \times \frac{dr}{r}$ $\text{donc } \phi = \frac{\mu_0 i_1(t) a}{2\pi} \ln \left(\frac{r_0 + a/2}{r_0 - a/2} \right)$ Or il y a N spires donc $\Phi = N\phi = \frac{N\mu_0 i_1(t) a}{2\pi} \ln \left(\frac{r_0 + a/2}{r_0 - a/2} \right)$	1	
15	Si le champs magnétique est supposé uniforme alors le terme $\int_{r_0-a/2}^{r_0+a/2} \times \frac{dr}{r} \text{ devient } \int_{r_0-a/2}^{r_0+a/2} \times \frac{dr}{r_0} = \frac{a}{r_0}$ $\text{donc } \phi = \frac{\mu_0 i_1(t) a^2}{2\pi r_0}$ $\text{et } \Phi_{21} = N\phi = \frac{N\mu_0 i_1(t) a^2}{2\pi r_0}$	1	
16	On calcule $\frac{\Phi_{21}}{\Phi} = \frac{a}{r_0} \ln \left(\frac{r_0 + a/2}{r_0 - a/2} \right)$ On fait l'application numérique et on trouve 0,997 donc l'erreur relative est de 3%	1	
17	Il y a un champ magnétique dépendant du temps à travers le circuit 2, donc par induction il y a une force électromagnétique qui apparaît. $u_2(t) = -\frac{d\Phi_{21}}{dt} = -\frac{N\mu_0 a^2}{2\pi r_0} \times \frac{di_1}{dt}$ Si i_1 est constante alors $u_2(t) = 0$, car il n'y a pas de couplage inductif entre les circuits pour un courant continu. Une pince ampèremétrique ne peut donc pas mesurer les courants continus.	1	
18-20	Mesures		
18	$u_2(t) = -\frac{N\mu_0 a^2}{2\pi r_0} \times \frac{di_1}{dt} \text{ et } i_1(t) = I_m \cos(\omega t)$ $\text{donc } u_2(t) = \frac{N\mu_0 a^2}{2\pi r_0} \times \omega I_m \sin(\omega t)$	1	
19	L'expression de $u_2(t)$ obtenue ci-dessous $u_2(t) = U_2 \sin(\omega t)$ nous indique que la tension mesurée et le courant i_1 ont la même pulsation donc la même fréquence. On lit une période sur l'oscilloscope de 20 ms, soit une fréquence de $f = 50 \text{ Hz}$	1	

20	Sur l'écran de l'oscilloscope on peut relever la valeur de $U_2=1$ V. Or $U_2=\frac{N\mu_0a^2}{2\pi r_0}\times \omega I_m$ donc $I_m=\frac{2\pi r_0}{N\mu_0a^2\omega}U_2$ l'application numérique donne $I_m=1,0.10^5$ A, la valeur efficace est $\frac{I_m}{\sqrt{2}}$. Cette valeur est très grande, la pince ampèremétrique ne peut me-	1	
	surer que des courants élevées et il y a surement un étage d'amplification entre la pince ampèremétrique et l'oscilloscope qui n'a pas été pris en compte.		
21-26	Influence de la position du fil		
21	On définit M_{21} comme $\Phi_{21}=M_{21}i_1$ or on a calculé que $\Phi_{21}=\frac{N\mu_0i_1(t)a^2}{2\pi r_0},$ donc $M_{21}=\frac{N\mu_0a^2}{2\pi r_0}.$	1	
22	On utilise à nouveau un plan de symétrie. Ici le plan $(M, \vec{e_r}, \vec{e_z})$ est plan de symétrie de la distribution de courant. Donc $\vec{B}_2(M,t)$ est orthogonal au plan de symétrie donc $\vec{B}_2(M,t) = B_2(M,t)\vec{e_\theta}$.	1	
23	On a invariance par rotation d'axe $(O\vec{e}_z)$ et d'angle θ , donc $\vec{B}_2(M,t) = B_2(r,z,t)\vec{e}_{\theta}$ Les lignes de champs sont des cercles de centre sur l'axe de révolution du tore et dans le plan perpendiculaire à ce même axe. On choisit comme contour fermé la ligne de champ passant par M. Le champ est uniforme sur cette ligne de champ donc le théorème d'Ampère s'écrit $2\pi r B_2(r,z,t) = \mu_0 i_{enlace}$ si M est en dehors du tore alors $i_{enlac\acute{e}} = 0$ si M est dans le tore alors $i_{enlac\acute{e}} = Ni_2$ donc en dehors du tore $B_2 = 0$ et à l'intérieur du tore $\vec{B}_2 = \frac{\mu_0 N i_2}{2\pi r} \vec{e}_{\theta}$	1	

24	On doit calculé le flux de \vec{B}_2 à travers toute la boucle formé par le fil (1), mais B_2 est non nul uniquement à l'intérieur du tore (2), donc le flux à travers toute la boucle (1) est égal au flux à travers une spire de (2). De plus on suppose B_2 uniforme donc $\Phi_{12} = B_2 \times a^2$ donc $\Phi_{12} = \frac{\mu_0 N a^2}{2\pi r_0} i_2$ donc $M_{12} = \frac{\mu_0 N a^2}{2\pi r_0}$. On remarque que $M_{21} = M_{12}$, c'est une propriété générale des	1	
25	inductances mutuelles. La position exacte du fil (1) ne change pas le calcul du flux Φ_{12} , fait à la question précédente car le champ est non nul uniquement à l'intérieur du tore. Donc M_{12} est inchangé, or $M_{21}=M_{12}$ donc M_{21} est inchangé. Donc les relations établies au paragraphes Mesures, sont identiques.	1	
26	avantages : pas besoin de venir se brancher sur le circuit, donc pas de problème de sécurité pour les circuits de puissance et pas d'effet Joule dans l'appareil. inconvénients : ne mesure que les courants alternatifs, et ne mesure que les courants très élevés avec amplification de la mesure de tension. Un ampèremètre peut mesurer les courants continus ou alternatifs et peut mesurer les petits courants. Donc on préfèrera un ampèremètre pour les signaux faibles.	1	

27-36	Étude de la traversée d'un biprisme de Fresnel non dif-		
	fractant par une lumière monochromatique		
27-35	Interférence de deux ondes lumineuses planes progressives et cohérentes		
27	Pour obtenir des ondes planes, on peut soit utiliser une source ponctuelle lointaine comme une étoile, ou placer une source ponc- tuelle dans le plan focal objet d'une lentille.	1	
28	La déviation D est l'angle entre le rayon réfracté en sortie du prisme et le rayon incident. Le rayon incident est normal au premier dioptre, donc il n'est pas dévié. Il arrive sur le second dioptre qui est dévié d'un angle A par rapport à la verticale avec un angle d'incidence $i=A$. Il ressort donc avec un angle r par rapport à la normale au dioptre. Avec un schéma on remarque que la déviation est donc $D=r-i$, or $i=A$ et $n\sin i=\sin r$ donc dans l'approximation des petits angles $r=ni=nA$ donc $D=nA-A=(n-1)A$. L'application numérique donne : $D=2,5.10^{-3}$ rad	1	
29	Le prisme du haut dévie tous les rayons avec une même déviation D donc pour les rayons passant par le prisme du dessus, on obtient donc des rayons parallèle entre eux donc une onde plane (O1). De même le prisme du bas à un angle au sommet $-A$ donc dévie les rayons lumineux avec une déviation $-D$ et on obtient une onde plane (O2). C'est deux ondes planes proviennent de la division de front d'onde d'une même source primaire, elles sont donc cohérentes. Chacune fait un angle D par rapport à la direction (Oy) donc elles font un angle $2D$ entre elles. La norme des vecteurs d'onde est $ \vec{k} = \frac{2\pi}{\lambda}$ et ils sont dirigés selon les rayons lumineux donc $\vec{k}_1 = \frac{2\pi}{\lambda} \left(\cos D\vec{e}_y - \sin D\vec{e}_z\right)$ et $\vec{k}_2 = \frac{2\pi}{\lambda} \left(\cos D\vec{e}_y + \sin D\vec{e}_z\right)$	1	

30	Ils faut tracer les 4 rayons limites passant par les deux extrémités des deux prismes. On remarque alors qu'ils délimitent un losange. Suivant l'axe (Oy) la dimension du losange est donné par un triangle rectangle formé du rayon passant par l'extrémité haute comme hypoténuse, de la hauteur h comme côté opposé et de L_y comme côté adjacent. En repérant l'angle D , on en déduit que $L_y = \frac{h}{\tan D} = 4m$. Suivant l'axe (Oz) par construction géométrique on remarque que la dimension maximale suivant (Oz) se trouve à $L_y/2$ on a donc une hauteur de moitiée donc $L_z = 2\frac{h}{2} = h = 1cm$	1	
31	Lorsque le point M est décalé de z , comme les rayons provenant de $(O1)$ et de $(O2)$ sont toujours d'angle D et $-D$, il faut décaler les rayons.	1	
32	en O on remarque que le trajet des rayons est symétrique par rapport à (Oy), donc ils ont parcouru le même chemin optique, donc leur différence de marche est nulle, donc ils sont en phase.	1	
33	Les rayons interférant en O sont en phase donc on peut comparer chaque rayon à celui correspondant passant par O avec $\delta = (SM)_1 - (SM)_2 = (SM)_1 - (SO)_1 + (SO)_2 - (SM)_2$ On remarque en construisant les plan d'onde que la différence de marche $(SM)_1 - (SO)_1$ est le côté opposé d'un triangle rectangle d'hypoténuse z et d'angle au sommet D donc $(SM)_1 - (SO)_1 = -\sin(D)z$. De même on montre que $(SO)_2 - (SM)_2 = -\sin(D)z$ donc $\delta = -2z\sin D$	1	
34	On utilise la formule de Fresnel d'interférence à 2 ondes cohérentes et de même intensité $I(z) = 2I_0 \left(1 + \cos(\frac{2\pi\delta}{\lambda})\right) = 2I_0 \left(1 + \cos(\frac{4\pi z \sin D}{\lambda})\right)$ L'interfrange est donc la périodicité spatiale de $I(z)$ soit $i = \frac{\lambda}{2\sin D}$ et ne dépend pas de la position de l'écran d .	1	

35	Pour obtenir la largeur du champ d'interférence on remarque que $d=L_y/2$ donc $L_z=1$ cm Le nombre de franges brillantes observée est donc $\frac{L_z}{i}$ puis	1	
36-36	Mesures Interférométriques		
36	La lentille (L) créé deux sources secondaires dans son plan focal image car les ondes (O1) et (O2) sont deux ondes planes. On observe donc sur l'écran la figure d'interférence de deux trous d'Young. Les trous d'Young se trouvent à une distance f' de l'écran et ils sont séparés d'une distance $2f'$ tan D . On obtient donc une différence de marche $\delta = -\frac{z \times 2f' \tan D}{f'} = -2z \tan D$. On observe donc sur l'écran la même figure d'interférence que précédemment $I(z) = 2I_0\left(1 + \cos(\frac{4\pi z \tan D}{\lambda})\right)$ On déduit de l'interfrange la valeur de D , puis la valeur de A .	1	