ARCHITETTURA DEGLI ELABORATORI

A.A. 2020-2021

Università di Napoli Federico II Corso di Laurea in Informatica

Docenti

Proff. Luigi Sauro gruppo 1 (A-G)

Silvia Rossi gruppo 2 (H-Z)

ALGEBRA DI BOOLE E RETI COMBINATORIE

Some Definitions

- Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}
- Literal: variable or its complement $A, \overline{A}, B, \overline{B}, C, \overline{C}$
- Implicant: product of literals
 ABC, AC, BC
- Minterm: product that includes all input variables
 ABC, ABC, ABC
- Maxterm: sum that includes all input variables (A+B+C), $(\overline{A}+B+\overline{C})$, $(\overline{A}+B+C)$

La forma SOP

I mintermini sono enumerati rigo dopo rigo a partire da 0,1 e così via. Quindi ogni mintermine è denotato dal numero binario della configurazione di input corrispondente.

Α	В	Y	minterm	minterm name
0	0	0	Ā B	m_0
0	1	1	ĀВ	m_1
1	0	0	$A\overline{B}$	m_2
1	1	0	АВ	m_3

La forma SOP

 Quindi ad ogni tabella di verità corrisponde una espressione booleana ottenuta sommando tutti i mintermini per cui il valore dell'output Y è pari a 1

Α	В	Y	minterm	minterm name
0	0	0	$\overline{A} \overline{B}$	$m_{\rm O}$
0	1	1	ĀB	m_1
1	0	0	\overline{A} \overline{B}	m_2
(1	1	1	АВ	m_3

$$Y = \overline{A}B + AB$$

$$Y = \Sigma(1,3)$$

La forma POS

Anche i maxtermini sono enumerati come i mintermini.

Α	В	Y	maxterm	maxterm name
_		_		
(0	0	0	A + B	$M_{\rm O}$
0	1	1	$A + \overline{B}$	M_1
(1	0	0	$\overline{A} + B$	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

- La forma normale POS di una funzione booleana si ottiene come prodotto dei maxtermini per cui la funzione ritorna 0
 - $Y=(A+B)\cdot(\bar{A}+B)$
 - $Y = \prod (0,2)$

Algebra di Boole

- Come abbiamo visto la medesima funzione può essere descritta da espressioni booleane distinte
- Alcune di queste possono essere più semplici di altre

1	В	V	minterm	minterm name
A	D	ı	IIIIIIII	Harrie
0	0	0	$\overline{A} \overline{B}$	m_{0}
0	1	1	ĀB	m_1
1	0	0	$\overline{A} \overline{B}$	m_2
(1	1	1	АВ	m_3

$$Y = \overline{A}B + AB$$

$$Y = (A + B) \cdot (\overline{A} + B)$$

$$Y = B$$

 Come si fa con l'aritmetica, possiamo utilizzare un algebra per semplificare le espressioni

$$\frac{1}{x}(x+xy) \implies \frac{x}{x}(1+y) \implies (1+y)$$

Number	Axiom	Name
A1	$B = 0 \text{ if } B \neq 1$	Binary Field
A2	0 = 1	NOT
A3	0 • 0 = 0	AND/OR
A4	1 • 1 = 1	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	AND/OR

Number	Axiom	Name
A1	$B = 0 \text{ if } B \neq 1$	Binary Field
A2	0 = 1	NOT
A3	0 • 0 = 0	AND/OR
A4	1 • 1 = 1	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	AND/OR

Dual: Replace: • with +

0 with 1

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	1 = 0	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

Dual: Replace: • with +

0 with 1

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	1 = 0	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

■ A1 e A1' ci dicono che il valore di una variabile booleana può essere 0 oppure 1

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	1 = 0	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

- A1 e A1' ci dicono che il valore di una variabile booleana può essere 0 oppure 1
- A2 e A2' definiscono l'operatore NOT (di fatto questi assiomi ripropongono la tabella di verità dell'operatore

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	1 = 0	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

- A1 e A1' ci dicono che il valore di una variabile booleana può essere 0 oppure 1
- A2 e A2' definiscono l'operatore NOT (di fatto questi assiomi ripropongono la tabella di verità dell'operatore

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	0 = 1	1 = 0	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

- A3, A4 e A5 definiscono l'operatore AND
- A3', A4' e A5' definiscono l'operatore OR
- Notate che ogni assioma «primato» si ottiene dal corrispondente non primato invertendo, da un lato, OR e AND e dall'altro gli 0 e 1. Questo è un principio generale detto principio di dualità.

Boolean Theorems of One Variable

Number	Theorem	Name
T1	B • 1 = B	Identity
T2	B • 0 = 0	Null Element
T3	B • B = B	Idempotency
T4	$\overline{\overline{B}} = B$	Involution
T5	$B \bullet \overline{B} = 0$	Complements

Boolean Theorems of One Variable

Number	Theorem	Name
T1	B • 1 = B	Identity
T2	B • 0 = 0	Null Element
T3	B • B = B	Idempotency
T4	$\overline{\overline{B}} = B$	Involution
T5	$B \bullet \overline{B} = 0$	Complements

Dual: Replace: • with +

0 with 1

Boolean Theorems of One Variable

Number	Theorem Dual		Name
T1	B • 1 = B	B + 0 = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4			Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

Dual: Replace: • with +

0 with 1

Teoremi ad una variabile

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

Teorema B·1=B

Dimostrazione:

- Supponiamo B=1, allora B·1=1·1=1=B
- Supponiamo B=0, allora B·1=0·1=0=B

Teorema $B + \bar{B} = 1$

Dimostrazione:

- Supponiamo B=1, allora $B + \bar{B} = 1 + 0 = 1$
- Supponiamo B=0, allora $B + \bar{B} = 0 + 1 = 1$

T1: Identity Theorem

- $B \cdot 1 = B$
- B + 0 = B

T1: Identity Theorem

•
$$B \cdot 1 = B$$

•
$$B + 0 = B$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 $=$ B

T2: Null Element Theorem

- B 0 = 0
- B + 1 = 1

T2: Null Element Theorem

• B •
$$0 = 0$$

•
$$B + 1 = 1$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

T3: Idempotency Theorem

- $B \cdot B = B$
- B + B = B

T3: Idempotency Theorem

•
$$B \cdot B = B$$

•
$$B + B = B$$

$$B \rightarrow B \rightarrow B$$

T4: Identity Theorem

$$\bullet \stackrel{=}{B} = B$$

T4: Identity Theorem

$$\bullet \stackrel{=}{B} = B$$

T5: Complement Theorem

• B • B =
$$0$$

•
$$B + \overline{B} = 1$$

T5: Complement Theorem

• B • B =
$$0$$

•
$$B + \overline{B} = 1$$

$$\frac{B}{B}$$
 = 0

$$\frac{B}{B} \longrightarrow = 1$$

Recap: Basic Boolean Theorems

Number	Theorem	Dual	Name
T1	B • 1 = B	B + O = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4	$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

Dual: Replace: • with +

0 with 1

Boolean Theorems of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutatività
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associatività
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributività
Т9	B• (B+C) = B	Assorbimento
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combinazione
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consenso

Teoremi più variabili: dualità

#	Theorem	Dual	Name
Т6	B•C = C•B	B+C = C+B	Commutativity
T7	(B•C) • D = B • (C•D)	(B + C) + D = B + (C + D)	Associativity
Т8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
Т9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Principio di dualità: $+\leftarrow\rightarrow$ $1\leftarrow\rightarrow0$

Boolean Theorems of Several Vars

Number	Theorem	Name
Т6	$B \bullet C = C \bullet B$	Commutatività
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associatività
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributività
Т9	B• (B+C) = B	Assorbimento
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combinazione
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consenso

How do we prove these are true?

Tecniche di dimostrazione

- Vi sono diversi metodi per dimostrare l'equivalenza di due espressioni.
 - Perfect induction: se le tabelle di verità di due espressioni coincidono allora le due espressioni sono equivalenti
 - usare assiomi e teoremi precedentemente provati per manipolare le espressioni fino ad ottenere espressioni uguali

Proof by Perfect Induction

- Also called: proof by exhaustion
- Check every possible input value
- If two expressions produce the same value for every possible input combination, the expressions are equal

Example: Proof by Perfect Induction

Number	Theorem	Name
T6	$B \bullet C = C \bullet B$	Commutativity

В	C	BC	СВ	
0	0			
0	1			
1	0			
1	1			

Example: Proof by Perfect Induction

Number	Theorem	Name
T6	$B \bullet C = C \bullet B$	Commutativity

В	С	BC	СВ	
0	0	0	0	
0	1	0	0	
1	0	0	0	
1	1	1	1	

T7: Associativity

Number	Theorem	Name
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	Associativity

T8: Distributivity

Number	Theorem	Name
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity

Number	Theorem	Name
Т9	B • (B+C) = B	Assorbimento

Prove true by:

- Method 1: Perfect induction
- Method 2: Using other theorems and axioms

Number	Theorem	Name
Т9	B • (B+C) = B	Covering

Method 1: Perfect Induction

В	C	(B+C)	B(B+C)
0	0		
0	1		
1	0		
1	1		

Number	Theorem	Name
Т9	B • (B+C) = B	Covering

Method 1: Perfect Induction

В	C	(B+C)	B(B+C)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Number	Theorem	Name
Т9	B• (B+C) = B	Covering

Method 1: Perfect Induction

В	С	(B+C)	B(B+C)
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

Number	Theorem	Name
Т9	B • (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

Number	Theorem	Name
Т9	B • (B+C) = B	Assorbimento

Method 2: Prove true using other axioms and theorems.

$$B \bullet (B+C)$$
 = $B \bullet B + B \bullet C$ T8: Distributivity
= $B + B \bullet C$ T3: Idempotency
= $B \bullet (1 + C)$ T8: Distributivity
= $B \bullet (1)$ T2: Null element
= $B \bullet (1)$ T1: Identity

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combinazione

Prove true using other axioms and theorems:

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining

Prove true using other axioms and theorems:

$$B \bullet C + B \bullet \overline{C} = B \bullet (C + \overline{C})$$
 T8: Distributivity

 $= B \bullet (1)$ T5': Complements

= B T1: Identity

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove true using (1) perfect induction or (2) other axioms and theorems.

Perfect induction: consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

В	С	D	$BC + \overline{B}D + CD$	BC+BD
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove using other theorems and axioms:

$$B \bullet C + \overline{B} \bullet D + C \bullet D$$

$$= BC + \overline{B}D + (CDB + CD\overline{B})$$

$$= BC + \overline{B}D + BCD + \overline{B}CD$$

$$= BC + BCD + \overline{B}D + \overline{B}CD$$

$$= BC + BCD + \overline{B}D + \overline{B}CD$$

$$= (BC + BCD) + (\overline{B}D + \overline{B}CD)$$

$$= BC + \overline{B}D$$
T6: Commutativity
$$= (BC + BCD) + (\overline{B}D + \overline{B}CD)$$

$$= BC + \overline{B}D$$
T7: Associativity
$$= BC + \overline{B}D$$
T9': Covering

Boolean Theorems of Several Vars

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
T9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Warning: T8' differs from traditional algebra: OR (+) distributes over AND (●)

Limiti del perfect induction

- La tecnica del perfect induction è semplice ma «priva di intelligenza»
- Al crescere della lunghezza delle espressioni diventa sempre più laboriosa
- Al crescere delle variabili che occorrono nelle espressioni diventa estremamente più laboriosa
 - \blacksquare 4 \rightarrow 16 checks
 - 5 \rightarrow 32 checks
 - $6 \rightarrow 64$ checks
 - **-** ...

Boolean Theorems of Several Vars

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
T9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Axioms and theorems are useful for simplifying equations.

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Recall:

Implicant: product of literals

$$A\overline{B}C$$
, $\overline{A}C$, $\overline{B}C$

Literal: variable or its complement

$$A, \overline{A}, B, \overline{B}, C, \overline{C}$$

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Recall:

Implicant: product of literals

Literal: variable or its complement

$$A, \overline{A}, B, \overline{B}, C, \overline{C}$$

Also called **minimizing** the equation

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$\overline{PA} + PA = P$$

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$\overline{PA} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$P\overline{A} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Proving the "Simplification" Theorem

"Simplification" theorem

$$PA + \overline{A} = P + \overline{A}$$

Method 1:
$$PA + \overline{A} = PA + (\overline{A} + \overline{A}P)$$
 T9
$$= PA + P\overline{A} + \overline{A}$$
 T6
$$= P(A + \overline{A}) + \overline{A}$$
 T8
$$= P(1) + \overline{A}$$
 T5
$$= P + \overline{A}$$
 T1

T9' Covering

T6 Commutativity

T8 Distributivity

T5' Complements

T1 Identity

Proving the "Simplification" Theorem

"Simplification" theorem

$$PA + \overline{A} = P + \overline{A}$$

Method 2:
$$PA + \overline{A} = (\overline{A} + A) (\overline{A} + P)$$
 T8' Distributivity
$$= 1(\overline{A} + P)$$
 T5' Complements
$$= \overline{A} + P$$
 T1 Identity

Boolean Theorems of Several Vars

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
T9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$P\overline{A} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 1:

$$Y = AB + A\overline{B}$$

Example 1:

$$Y = AB + A\overline{B}$$

$$Y = A$$

T10: Combining

or

$$= A(B + \overline{B})$$
 T8: Distributivity

$$= A(1)$$
 T5': Complements

$$= A$$
 T1: Identity

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$P\overline{A} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 2:

$$Y = A(AB + ABC)$$

Example 2:

$$Y = A(AB + ABC)$$

$$=A(AB(1+C))$$

$$=A(AB(1))$$

$$=A(AB)$$

$$= (AA)B$$

$$= AB$$

T8: Distributivity

T2': Null Element

T1: Identity

T7: Associativity

T3: Idempotency

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$\overline{PA} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$P\overline{A} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 3:

$$Y = A'BC + A'$$

Recall: $A' = \overline{A}$

Example 3:

$$Y = A'BC + A'$$

$$= A'$$

or

$$= A'(BC + 1)$$

$$= A'(1)$$

$$= A'$$

Recall: A' = A

T9' Covering:
$$X + XY = X$$

T8: Distributivity

T2': Null Element

T1: Identity

Example 4:

$$Y = AB'C + ABC + A'BC$$

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$P\overline{A} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overline{PA} + A = P + A$$

$$PA + \overline{A} = P + \overline{A}$$

Example 4:

$$Y = AB'C + ABC + A'BC$$

= AB'C + ABC + ABC + A'BC T3': Idempotency

= (AB'C+ABC) + (ABC+A'BC) T7': Associativity

= AC + BC T10: Combining

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$PA + PA = P$$

$$P = PA + PA$$

$$A = A + AP$$

$$A = A + A$$

• "Simplification" theorem
$$PA + A = P + A$$

$$PA + A = P + A$$

$$PA + A = P + A$$

Example 5:

$$Y = AB + BC + B'D' + AC'D'$$

Method 1:

$$Y = AB + BC + B'D' + (ABC'D' + AB'C'D')$$

= $(AB + ABC'D') + BC + (B'D' + AB'C'D')$

$$= AB + BC + B'D'$$

Method 2:

$$Y = AB + BC + B'D' + AC'D' + AD'$$

= AB + BC + B'D' + AD'
= AB + BC + B'D'

T10: Combining

T6: Commutativity

T7: Associativity

T9: Covering

T11: Consensus

T9: Covering

T11: Consensus

