Simulation et ajustement de modèles de croissance de populations biologiques

Partie 1 : Les modèles exponentiel et logistique

Partie 2:

Extensions du modèle logistique : compétition, proie-prédateur, chasse ...

Kevin.caye@imag.fr

Pourquoi modéliser

• Prédire :

- Prédiction météo
- Prédire la trajectoire d'un fusée

Optimiser :

Trouver la meilleur forme pour une voiture de course

Comprendre :

Comprendre comment croit une population

Les étapes de la modélisation

Les étapes de la modélisation

Modèle : équations

- Construction du modèle :
 - Analyse
 - Hypothèses
 - Equations...

• Simulation: ordinateur

Les étapes de la modélisation

Ajustement : trouver les bons paramètres

 Validation : Calculer la pertinence par rapport à la réalité

Croissance de populations cellulaires?

- Anticiper l'évolution
- Pouvoir la quantifier et comparer

Avant de modéliser!

Expériences :

Erreurs => plusieurs mesures mieux qu'une

Modèles continues de la dynamique des population

 Effectif d'une population est représenté par une fonction réelle

$$P: \mathbb{R}_+ \to \mathbb{R}_+$$

 Equation différentielle pour modéliser la dynamique

$$\frac{P(t+dt)-P(t)}{dt} = \frac{dP}{dt}(t) = f(t,P(t))$$

Simulation des modèles continues

 Soit on connait la solution analytique de l'équation différentielle

$$P(t) = \dots$$

Méthodes numériques : méthode d'euler, ...

$$P(t + dt) = p(t) + dt f(t, P(t))$$

Mesure de population de levure :

Loi générale :

$$\frac{dP}{dt}(t) = taux instantané de[naissance - décès + migration]$$

Hypothèse :

- Le milieu contient seulement des levures
- Toutes les levures sont identiques
- Pas de migration
- Les ressources et éléments vitaux sont illimités

- On propose se modèle
 - Taux instantané de croissance proportionnel à l'effectif et ne dépend pas du temps
 - k = taux de natalité taux de mortalité

$$\frac{dP}{dt}(t) = kP(t)$$

- Solution analytique
 - $-P_0$: les conditions initiales $P(t) = P_0 e^{kt}$

 C'est pour cela qu'on l'appel modèle exponentiel

Simulations

- En utilisant directement la solution analytique
 - On sait exactement qui est P(t)

- En utilisant des outils de calcul numérique
 - Ex : fonction « ode » de scilab

• Comment trouver P_0 et k pour ajuster ?

Méthode graphique (voir tp)

 ICI on peut faire une transformation logarithmique PK?

Transformation logarithmique

Validation

Pour temps court

Pour temps long

D19

tions biologiques

Le modèle logistique de Vershulst

• l'environnement limite son potentiel biotique

- Pas de nourriture
- Pas de place

Le modèle logistique de Vershulst

- · Comment modéliser cela?
 - M est la capacité biotique

$$\frac{P(t+dt)-P(t)}{dt}=kP(t)\frac{M-P(t)}{M}$$

- Pourquoi ?
 - Que se passe-t-il si P(t) = M?
 - Si P(t) > M

Le modèle logistique de Vershulst

Solution analytique

$$P(t) = M \frac{1}{1 + \left(\frac{M}{P_0} - 1\right)e^{-kt}}$$

$$-t \rightarrow \infty$$
?

Simulation

- En utilisant directement la solution analytique
 - On sait exactement qui est P(t)

- En utilisant des outils de calcul numérique
 - Ex : fonction « ode » de scilab

• Graphiquement M, P₀, k?

D24

• Existe outils mathématique voir TP

D25

Modélisation de la croissance de populations biologiques

Partie 1 : Les modèles exponentiel et logistique

Illustration ⇔TP1