

CURSO INTENSIVO 2022

ITA - 2022 Matemática

Prof. Victor So

Sumário

INTRODUÇÃO	4
1. ELEMENTOS BÁSICOS DA TRIGONOMETRIA	4
1.1. Conceitos Fundamentais	4
1.1.1. Arcos de Circunferência	4
1.1.2. Medida de um arco	4
1.1.3. Ângulo	
1.1.4. Medida de um ângulo	!
1.1.5. Classificação dos ângulos	(
1.1.6. Ângulos suplementares	•
1.1.7. Ângulos complementares	
1.1.8. Ângulos replementares	<u>-</u>
1.1.9. Unidades usuais de medidas1.1.10. Conversão de unidades de medida	
1.1.11. Triângulo	
1.1.12. Semelhança de Triângulos	10
1.1.12. Sememunya de Mangalos	1
2. RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO	10
2.1. Relação Fundamental	1:
2.2. Ângulos Complementares	1:
2.3. Ângulos Notáveis	12
3. CICLO TRIGONOMÉTRICO	13
3.1. Definição	13
3.2. Ângulos Notáveis	14
3.3. Quadrantes	14
3.4. Ângulos Congruentes	1!
3.5. Redução ao Primeiro Quadrante	19
4. FUNÇÕES TRIGONOMÉTRICAS	16
4.1. Funções Periódicas	16
4.1. Função Seno	10
4.1.1. Definição	10
4.1.2. Estudo do sinal	1
4.1.3. Ângulos Notáveis	1
4.1.4. Paridade	18
4.1.5. Gráfico	18
4.2. Função Cosseno	19
4.2.1. Definição	19
4.2.2. Estudo do sinal	19
4.2.3. Ângulos Notáveis	19
4.2.4. Paridade	20

4.2.5. Gráfico	21
4.3. Função Tangente	21
4.3.1. Estudo do sinal	22
4.3.2. Intervalo de valores	22
4.3.3. Paridade	22
4.3.4. Gráfico	23
4.4. Função Cotangente	23
4.4.1. Estudo do sinal	23
4.4.2. Intervalo de valores	24
4.5. Funções Secante e Cossecante	24
4.5.1. Estudo do sinal	24
4.5.2. Intervalo de valores	24
5. FUNÇÕES INVERSAS	25
5.1. Função Arco-Seno	25
5.2. Função Arco-Cosseno	26
5.3. Função Arco-Tangente	27
5. TRANSFORMAÇÕES	28
6.1. Soma e diferença de arcos	28
6.2. Arco duplo, arco triplo e arco metade	28
6.2.1. Fórmulas de arco duplo	28
6.2.2. Fórmulas de arco triplo	29
6.2.3. Fórmulas de arco metade	29
6.3. Fórmulas de Werner	29
6.4. Fórmulas de Prostaférese	30
7. QUESTÕES DE PROVAS ANTERIORES	33
B. GABARITO	46
9. QUESTÕES DE PROVAS ANTERIORES COMENTADAS	48

Introdução

Olá,

Vamos iniciar o estudo sobre trigonometria. Esse tema é muito cobrado nos concursos militares. Veremos todos os conceitos fundamentais que precisamos para resolver as questões dos concursos e vamos aprender a resolver cada tipo de questão das provas anteriores!

Nesse curso, tentei deixar os comentários das questões bem detalhados, então, se você for um aluno avançado ou intermediário, apenas confira o gabarito e tente resolver todas as questões dessa aula. Lembre-se! O importante é ganhar velocidade na hora da prova, então, tente resolver a maior quantidade de exercícios possível e não perca tempo verificando questões que você já sabe! Caso você seja um aluno iniciante, você pode conferir o passo a passo das resoluções e aprender com elas. Sem mais delongas, vamos começar!

Como se trata de um **curso intensivo**, o nosso objetivo é que você consiga estudar todas as principais questões que podem ser cobradas na prova e, por isso, teremos menos questões e nossa teoria será mais objetiva. Caso queira um material mais aprofundado e com mais questões, recomendo o nosso material do **curso extensivo**.

1. Elementos Básicos da Trigonometria

1.1. Conceitos Fundamentais

1.1.1. Arcos de Circunferência

Tomando-se dois pontos A e B em uma circunferência, esta fica dividida em duas partes. Cada uma dessas partes é um arco de circunferência. A e B são as extremidades desses arcos.

1.1.2. Medida de um arco

Para medir arcos de circunferência, precisamos estabelecer uma unidade de medida. Vamos definir a nossa unidade de medida como o arco a. Então, a medida de um arco \widehat{AB} é determinada pela quantidade de arco a que cabem nela:

Nesse exemplo, o arco \widehat{AB} equivale a 6 arco α :

$$\widehat{AB} = 6 \cdot arco a$$

Usando termos mais genéricos, temos:

$$\widehat{AB} = \frac{comprimento\ de\ \widehat{AB}}{comprimento\ da\ unidade}$$

1.1.3. Ângulo

Dados duas semirretas \overrightarrow{OA} e \overrightarrow{OB} de mesma origem O, a diferença de direção entre elas determina um ângulo:

 α é o ângulo $A\hat{O}B$.

Geralmente, usamos o alfabeto grego para nomear os ângulos: α (alfa), β (beta), γ (gama), θ (teta).

1.1.4. Medida de um ângulo

O ângulo central $A\hat{O}B$ é igual à medida do arco \widehat{AB} no caso em que o raio da circunferência é unitário:

$$A\widehat{O}B = \widehat{AB}$$

1.1.5. Classificação dos ângulos

Os ângulos podem ser classificados nos seguintes tipos:

1.1.6. Ângulos suplementares

Dois ângulos são suplementares quando sua soma é 180°.

 α e β são ângulos suplementares:

$$\alpha + \beta = 180^{\circ}$$

1.1.7. Ângulos complementares

Dois ângulos são complementares quando sua soma é 90°.

 α e β são ângulos complementares:

$$\alpha + \beta = 90^{\circ}$$

Dois ângulos são replementares quando sua soma é 360°.

 α e β são replementares:

$$\alpha + \beta = 360^{\circ}$$

1.1.9. Unidades usuais de medidas

Vimos que para medir um arco de circunferência, precisamos estabelecer uma unidade de medida como referência. Atualmente, temos três unidades de medidas mais famosos: grau, grado e radiano. Vamos estudar cada um deles:

I) Grau:

Um grau (1°) é a unidade de medida determinada pela divisão de uma circunferência em 360 partes iguais. Assim, se dividimos uma circunferência no meio, cada arco que obtemos terá a medida de 180° .

O grau pode ser subdividido em duas outras:

Definimos um minuto por $\mathbf{1}'$ e ele equivale a 1/60 do ângulo de um grau.

Um segundo é representado por 1" e equivale a 1/60 do ângulo de um minuto.

Dessa forma, temos as seguintes relações:

$$1' = \frac{1^{\circ}}{60} e 1'' = \frac{1'}{60}$$

 $1^{\circ} = 60' (60 \text{ minutos})$

1' = 60'' (60 segundos)

II) Grado

Um grado $(1\ gr)$ é a unidade de medida determinada pela divisão da circunferência em 400 partes iguais. Dessa forma, se dividimos a circunferência no meio, cada arco terá a medida de $200\ gr$.

III) Radiano

Um radiano $(1 \, rad)$ é a unidade de medida igual ao comprimento do raio da circunferência. O comprimento total de uma circunferência é dado por:

$$C = 2\pi r$$

Onde r é o raio da circunferência e \mathcal{C} é o seu comprimento total.

 π , lê-se "pi", e seu valor numérico é aproximadamente:

$$\pi \cong 3.14$$

Então, usando a fórmula:

$$\widehat{AB} = \frac{comprimento\ de\ \widehat{AB}}{comprimento\ da\ unidade}$$

E tomando \widehat{AB} como o arco de uma volta completa na circunferência, temos:

$$\widehat{AB} = \frac{2\pi r}{r} = 2\pi$$

Assim, o arco de uma volta completa corresponde a $2\pi rad$.

A tabela abaixo esquematiza essas relações:

Grau	Grado	Radiano
360°	400 <i>gr</i>	2π rad
180°	200 <i>gr</i>	π rad

1.1.10. Conversão de unidades de medida

Para converter ângulos em sistemas de medidas diferentes, podemos aplicar a regra de três. Sendo G a medida em graus e g a medida em grados, a conversão de graus em radianos é dada por:

$$360^{\circ} - 400 \ gr$$
 $G - g$

Aplicando a regra de três, temos:

$$360g = 400G$$
$$g = \frac{10}{9}G$$

Para converter graus em radianos, podemos usar a mesma ideia. Sendo \boldsymbol{r} a medida em radianos:

$$360^{\circ} - 2\pi \, rad$$

$$G - r$$

$$360r = 2\pi G$$

$$r = \frac{\pi}{180} \, G$$

1.1.11. Triângulo

Um triângulo é determinado por 3 pontos não colineares (que não estão em uma mesma reta):

No triângulo temos os seguintes elementos:

a) Vértices: A, B, C

b) Medida dos lados: $\overline{AB} = b$, $\overline{BC} = a$, $\overline{AC} = c$

c) Ângulos internos: $B\hat{A}C = \hat{A} = \alpha$, $A\hat{B}C = \hat{B} = \beta$, $A\hat{C}B = \hat{C} = \gamma$

Temos também a seguinte propriedade:

$$\alpha + \beta + \gamma = \pi$$

1.1.12. Semelhança de Triângulos

Dois triângulos são ditos semelhantes quando os seus lados forem proporcionais entre si e os seus ângulos correspondentes forem congruentes.

Veja:

Os triângulos ABC e DEF são semelhantes:

$$\hat{A} \equiv \hat{D}$$

$$\hat{B} \equiv \hat{E}$$

$$\hat{C} \equiv \hat{F}$$

$$\frac{a}{d} = \frac{c}{f} = \frac{b}{e}$$

2. Razões Trigonométricas no Triângulo Retângulo

Um triângulo é classificado como triângulo retângulo quando um de seus ângulos for igual a 90°:

No triângulo retângulo, chamamos de hipotenusa o lado BC e de catetos os lados AB e AC.

Na trigonometria temos as razões trigonométricas seno, cosseno e tangente. Além dessas, temos as razões secante, cossecante e cotangente. Elas são dadas por:

$$sen \alpha = \frac{cateto\ oposto}{hipotenusa} = \frac{AC}{BC} = \frac{b}{a}$$
 $cos \alpha = \frac{cateto\ adjacente}{hipotenusa} = \frac{AB}{BC} = \frac{c}{a}$

Perceba que também podemos escrever tangente como:

$$tg\alpha = \frac{b}{c} = \frac{\frac{b}{a}}{\frac{c}{a}} = \frac{sen\alpha}{cos\alpha}$$
$$tg\alpha = \frac{sen\alpha}{cos\alpha}$$

Para a cotangente, temos:

$$cotg\alpha = \frac{c}{b} = \frac{\frac{c}{a}}{\frac{b}{a}} = \frac{cos\alpha}{sen\alpha}$$
$$cotg\alpha = \frac{cos\alpha}{sen\alpha}$$

Ainda, das relações do triângulo retângulo, temos o Teorema de Pitágoras:

$$a^2 = b^2 + c^2$$

O Teorema de Pitágoras afirma que o quadrado da hipotenusa é igual à soma dos quadrados dos catetos.

2.1. Relação Fundamental

$$sen^2\alpha + \cos^2\alpha = 1$$

Podemos dizer que a soma dos quadrados do seno e cosseno de um ângulo vale 1. Se dividirmos a equação da relação fundamental por $\cos^2 \alpha$, obtemos:

$$\frac{sen^{2}\alpha}{\cos^{2}\alpha} + 1 = \frac{1}{\cos^{2}\alpha}$$
$$tg^{2}\alpha + 1 = \sec^{2}\alpha$$

Se dividirmos por $sen^2\alpha$, obtemos:

$$1 + \frac{\cos^2 \alpha}{\sin^2 \alpha} = \frac{1}{\sin^2 \alpha}$$
$$1 + \cot g^2 \alpha = \csc^2 \alpha$$

Essas relações são muito úteis para resolver as questões do militares. Então, decore! Além dessas apresentadas, temos mais duas que podem ajudar a resolver a questões da prova:

$$\cos^2 lpha = rac{1}{1 + tg^2 lpha}$$
 $sen^2 lpha = rac{tg^2 lpha}{1 + tg^2 lpha}$

2.2. Ângulos Complementares

Das relações do triângulo, temos:

$$\hat{A} + \hat{B} + \hat{C} = \pi$$

Na figura, $\hat{A}=\pi/2$. Substituindo na equação acima:

$$\frac{\vec{x}}{2} + \hat{B} + \hat{C} = \pi$$
$$\hat{B} + \hat{C} = \frac{\pi}{2}$$

 $\Rightarrow \widehat{B} \ e \ \widehat{C} \ s$ ao complementares

Dessa relação, temos as seguintes consequências:

$$\alpha + \beta = \frac{\pi}{2}$$

$$sen\alpha = cos\beta$$

$$sen\beta = cos\alpha$$

$$tg\alpha = \frac{1}{tg\beta}$$

$$tg\beta = \frac{1}{tg\alpha}$$

2.3. Ângulos Notáveis

Os ângulos $\pi/6$, $\pi/4$ e $\pi/3$ são considerados ângulos notáveis. Veja a tabela dos ângulos notáveis:

	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
Seno	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
Cosseno	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
Tangente	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

3. Ciclo Trigonométrico

3.1. Definição

O ciclo trigonométrico ou círculo trigonométrico é a representação de uma circunferência de raio 1 em um plano cartesiano ortogonal, onde o eixo horizontal é o cosseno e o eixo vertical é o seno:

No ciclo trigonométrico, o sentido de rotação positivo é o anti-horário e a origem se dá no extremo à direita:

Tomando-se um ponto qualquer na circunferência, a projeção horizontal desse ponto é o cosseno do ângulo entre o ponto e a reta horizontal. A projeção vertical desse ponto resulta no seno do ângulo. Veja:

3.2. Ângulos Notáveis

A seguinte figura ilustra os principais ângulos do círculo trigonométrico:

3.3. Quadrantes

Dividindo o ciclo trigonométrico em 4 partes iguais, obtemos 4 quadrantes. Elas recebem a seguinte denominação:

Cada quadrante possui os seguintes intervalos de valores:

1° Quadrante: $]0, \frac{\pi}{2}[$ 2° Quadrante: $]\frac{\pi}{2}, \pi[$

3° Quadrante: $]\pi, \frac{3\pi}{2}[$

4° Quadrante:] $\frac{3\pi}{2}$, 2π [

3.4. Ângulos Congruentes

O que acontece quando consideramos um arco maior do que 2π ?

Sabemos que no círculo trigonométrico, os arcos variam de 0 a 2π . Para calcular os valores do seno e cosseno de ângulos maiores do que 2π , devemos encontrar o seu ângulo congruente no intervalo de 0 a 2π .

Vamos ver a definição de ângulos congruentes:

$$\alpha \equiv \beta \Leftrightarrow \alpha = \beta + 2k\pi, k \in \mathbb{Z}$$

 α e β são congruentes se, e somente se, satisfazem a relação acima.

Essa relação é importante para encontrar todas as raízes de uma equação.

3.5. Redução ao Primeiro Quadrante

Conhecendo apenas as razões trigonométricas do primeiro quadrante, podemos encontrar o valor do seno e cosseno dos outros quadrantes. Essa técnica é conhecida como redução ao primeiro quadrante. Vejamos para o caso do arco de 30°:

4. Funções Trigonométricas

4.1. Funções Periódicas

Vimos que as funções seno e cosseno repetem seus valores a cada volta completo no ciclo trigonométrico. Antes de estudar as funções circulares, vamos ver o que é uma função periódica.

Definição:

Uma função $f: A \rightarrow B$ é periódica se vale a relação:

$$f(x+T) = f(x), \forall x \in A$$

Onde T>0, o menor valor de T que satisfaz essa relação é chamado de período fundamental da função f.

Exemplo gráfico:

Note que a função se repete a cada período T.

4.1. Função Seno

4.1.1. Definição

Seja $f: \mathbb{R} \to [-1, 1]$, a função seno é dada por:

f(x) = senx

O domínio da função é o conjunto dos reais e sua imagem é o intervalo [-1, 1].

A função seno é periódica e seu período vale 2π . A cada volta completa no ciclo trigonométrico os valores do seno se repetem.

Para uma função do tipo g(x) = sen(ax), o período fundamental é definido por:

$$T = \frac{2\pi}{|a|}$$

4.1.2. Estudo do sinal

Como o seno é o eixo vertical do ciclo trigonométrico, todos os pontos que estiverem no intervalo $[0,\pi]$ resultam em um seno positivo e no intervalo $[\pi,2\pi]$ temos seno negativo.

4.1.3. Ângulos Notáveis

Usando a seguinte figura, podemos ver o valor do seno dos ângulos notáveis:

Note que:

$$sen(0) = sen(\pi) = sen(2\pi) = 0$$

$$sen\left(\frac{\pi}{2}\right) = 1$$

$$sen\left(\frac{3\pi}{2}\right) = -1$$

$$sen\left(\frac{\pi}{6}\right) = sen\left(\frac{5\pi}{6}\right) = \frac{1}{2}$$

$$sen\left(\frac{\pi}{4}\right) = sen\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$sen\left(\frac{\pi}{3}\right) = sen\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$sen\left(\frac{7\pi}{6}\right) = sen\left(\frac{11\pi}{6}\right) = -\frac{1}{2}$$

$$sen\left(\frac{5\pi}{4}\right) = sen\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$sen\left(\frac{4\pi}{3}\right) = sen\left(\frac{5\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

4.1.4. Paridade

A função seno possui paridade ímpar, veja:

Pela figura, podemos ver que $sen(-\alpha) = -sen(\alpha)$. Isso caracteriza uma função ímpar.

4.1.5. Gráfico

A função seno possui o seguinte gráfico:

4.2. Função Cosseno

4.2.1. Definição

Seja $f: \mathbb{R} \to [-1, 1]$, a função cosseno é dada por:

$$f(x) = cosx$$

O domínio da função é o conjunto dos reais e sua imagem é o intervalo [-1, 1].

A função cosseno é periódica e seu período vale 2π . A cada volta completa no ciclo trigonométrico os valores do cosseno se repetem.

Para uma função do tipo g(x) = cos(ax), o período fundamental é definido por:

$$T = \frac{2\pi}{|a|}$$

4.2.2. Estudo do sinal

Como o cosseno é o eixo horizontal do ciclo trigonométrico, todos os pontos que estiverem no intervalo $\left[0,\frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2},2\pi\right]$ resultam em um cosseno positivo e no intervalo $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$ temos cosseno negativo.

4.2.3. Ângulos Notáveis

Usando a seguinte figura, podemos ver o valor do cosseno dos ângulos notáveis:

Note que:

$$cos\left(\frac{\pi}{2}\right) = cos\left(\frac{3\pi}{2}\right) = 0$$

$$cos(0) = cos(2\pi) = 1$$

$$cos\left(\pi\right) = -1$$

$$cos\left(\frac{\pi}{6}\right) = cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

$$cos\left(\frac{\pi}{4}\right) = cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$cos\left(\frac{\pi}{3}\right) = cos\left(\frac{5\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$cos\left(\frac{2\pi}{3}\right) = sen\left(\frac{4\pi}{3}\right) = -\frac{1}{2}$$

$$sen\left(\frac{3\pi}{4}\right) = sen\left(\frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

$$sen\left(\frac{5\pi}{6}\right) = sen\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$

4.2.4. Paridade

A função cosseno possui paridade par, veja:

Podemos ver que $cos(-\alpha) = cos(\alpha)$. Isso caracteriza uma função par.

4.2.5. Gráfico

A função cosseno possui o seguinte gráfico:

4.3. Função Tangente

Podemos representar a reta tangente no ciclo. Essa reta é paralela ao eixo do seno e é chamada de eixo das tangentes. Veja a figura:

Tomando-se um ponto P na circunferência, a reta que passa pela origem e por P resulta na projeção da sua tangente no eixo das tangentes.

Perceba que os triângulos POC e TOA são semelhantes. Pela figura, podemos escrever:

$$\frac{BC}{OC} = \frac{TA}{OA}$$

$$\frac{sen\alpha}{cos\alpha} = \frac{tg\alpha}{1}$$

$$\Rightarrow tg\alpha = \frac{sen\alpha}{cos\alpha}$$

Assim, verificamos a relação fundamental da tangente.

4.3.1. Estudo do sinal

Como a tangente é a razão entre o seno e cosseno, o sinal resultante será o produto dos sinais do numerador e denominador dessa razão.

Assim, temos a seguinte ilustração:

4.3.2. Intervalo de valores

Um fato a se notar é que quando P percorre a circunferência, passando em cada quadrante, a tangente vai aumentando seu valor indefinidamente. Assim, podemos ver que ela assume qualquer valor real, diferentemente do seno e cosseno. Ainda, como a tangente é a razão entre seno e cosseno, sabemos que o denominador não pode ser nulo, caso contrário, o valor da tangente fica indefinido. Assim, todos os ângulos que resultam em cosseno nulo não pertencem ao domínio da tangente:

$$tg\alpha\in]-\infty,+\infty[,\alpha\neq\frac{\pi}{2}+k\pi$$

A função tangente também é periódica e seu período vale π .

Para uma função do tipo g(x) = tg(ax), o período fundamental é definido por:

$$T = \frac{\pi}{|a|}$$

4.3.3. Paridade

Vamos verificar a paridade da função tangente:

$$tg(-\alpha) = \frac{sen(-\alpha)}{\cos(-\alpha)} = -\frac{sen(\alpha)}{\cos(\alpha)} = -tg(\alpha)$$

Podemos concluir que a função tangente é ímpar.

4.3.4. Gráfico

A função tangente possui o seguinte gráfico:

4.4. Função Cotangente

O eixo da cotangente também pode ser representado no ciclo trigonométrico. Veja a figura:

Os triângulos POC e OTA são semelhantes, assim, podemos escrever as seguintes razões:

emeinantes, assim, podemo

$$\frac{AT}{AO} = \frac{OC}{BC}$$

$$\frac{\cot g\alpha}{1} = \frac{\cos \alpha}{\sin \alpha}$$

$$\Rightarrow \cot g\alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{1}{tg\alpha}$$

O que nos mostra que a relação fundamental é satisfeita.

4.4.1. Estudo do sinal

Como a cotangente é o inverso da tangente, o seu sinal seguirá o mesmo padrão:

4.4.2. Intervalo de valores

A cotangente também assume valores no conjunto dos reais, a sua única limitação é quando o seno é nulo. Assim, temos:

$$cotg\alpha \in]-\infty,+\infty[,\alpha \neq k\pi,k \in \mathbb{Z}$$

4.5. Funções Secante e Cossecante

4.5.1. Estudo do sinal

As funções secante e cossecante são o inverso do cosseno e seno, respectivamente. Desse modo, o sinal dessas funções seguirá o mesmo padrão das funções a elas relacionadas:

4.5.2. Intervalo de valores

As funções seno e cosseno variam entre os valores -1 e 1. Então, as funções secante e cossecante, sendo inversas, assumirão os seguintes intervalos de valores:

$$-1 \le sen\alpha \le 1 \Rightarrow \frac{1}{sen\alpha} \ge 1 \ ou \frac{1}{sen\alpha} \le -1$$

Temos que observar a condição de existência da secante e cossecante. Para cada um dos casos, temos:

$$sec\alpha = \frac{1}{cos\alpha} \Rightarrow cos\alpha \neq 0 \Rightarrow \alpha \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$$
$$csc\alpha = \frac{1}{sen\alpha} \Rightarrow sen\alpha \neq 0 \Rightarrow \alpha \neq k\pi, k \in \mathbb{Z}$$

5. Funções Inversas

Iniciemos o estudo das funções inversas. Devemos lembrar que uma função possui inversa se, e somente se, for bijetora. Assim, temos que restringir o domínio das funções circulares de modo que elas sejam bijetoras.

5.1. Função Arco-Seno

Seja $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$, se f(x) = senx a função arco-seno é dada por:

$$f^{-1}: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
$$f^{-1}(x) = arcsenx$$

Note que no domínio $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, a função seno é bijetora:

O gráfico da função arco-seno é dado por:

5.2. Função Arco-Cosseno

Seja $f\colon [0,\pi]\to [-1,1]$, se $f(x)=\cos x$ a função arco-cosseno é dada por: $f^{-1}\colon [-1,1]\to [0,\pi]$ $f^{-1}(x)=\arccos x$

$$f^{-1}$$
: $[-1,1] \to [0,\pi]$
 $f^{-1}(x) = arccosx$

Note que no domínio $[0,\pi]$, a função cosseno é bijetora:

O gráfico da função arco-cosseno é dado por:

5.3. Função Arco-Tangente

Seja $f:]-\frac{\pi}{2}, \frac{\pi}{2}[\to \mathbb{R}, \text{ se } f(x)=tgx \text{ a função arco-tangente \'e dada por: }$

$$f^{-1}: \mathbb{R} \to]-\frac{\pi}{2}, \frac{\pi}{2}[$$

$$f^{-1}(x) = arctgx$$

 $f^{-1} \colon \mathbb{R} \to] - \frac{\pi}{2}, \frac{\pi}{2}[$ $f^{-1}(x) = \operatorname{arctgx}$ A função tangente é bijetora no domínio $] - \frac{\pi}{2}, \frac{\pi}{2}[$.

O gráfico da sua inversa é dado por:

6. Transformações

Vamos estudar as principais transformações que podem ser cobradas no vestibular. Tente decorar pelo menos as fórmulas de soma e diferença de arcos. Assim, se você esquecer as outras, você saberá deduzi-las na hora da prova.

6.1. Soma e diferença de arcos

Esse assunto é muito cobrado nas questões de trigonometria das provas! Então, tente decorar todas elas!

$$\begin{aligned} \cos(A+B) &= \cos(A)\cos(B) - sen(A)sen(B) \\ \cos(A-B) &= \cos(A)\cos(B) + sen(A)sen(B) \\ \hline sen(A+B) &= sen(A)\cos(B) + sen(B)\cos(A) \\ \hline sen(A-B) &= sen(A)\cos(B) - sen(B)\cos(A) \\ \hline tg(A+B) &= \frac{tg(A) + tg(B)}{1 - tg(A)tg(B)} \\ \hline tg(A-B) &= \frac{tg(A) - tg(B)}{1 + tg(A)tg(B)} \end{aligned}$$

6.2. Arco duplo, arco triplo e arco metade

Agora que conhecemos as fórmulas da soma e diferença de arcos, podemos expandir o conhecimento para arco duplo, arco triplo e arco metade.

6.2.1. Fórmulas de arco duplo

$$\cos(2A) = \cos^2 A - \sin^2 A$$

$$sen(2A) = 2senAcosA$$

$$tg(2A) = \frac{2tgA}{1 - tg^2A}$$

6.2.2. Fórmulas de arco triplo

$$cos(3A) = 4 cos3 A - 3 cos A$$

$$sen(3A) = 3 sen A - 4 sen3 A$$

$$tg(3A) = \frac{3 tgA - tg3 A}{1 - 3 tg2 A}$$

6.2.3. Fórmulas de arco metade

$$\cos\left(\frac{A}{2}\right) = \pm \sqrt{\frac{1 + \cos A}{2}}$$

$$\sin\left(\frac{A}{2}\right) = \pm \sqrt{\frac{1 - \cos A}{2}}$$

$$tg\left(\frac{A}{2}\right) = \pm \sqrt{\frac{1 - \cos A}{1 + \cos A}}$$

$$tg\left(\frac{A}{2}\right) = \frac{1 - \cos A}{senA} = \frac{senA}{1 + \cos A}$$

$$senA = \frac{2tg\left(\frac{A}{2}\right)}{1 + tg^2\left(\frac{A}{2}\right)}$$

$$\cos(A) = \frac{1 - tg^2\left(\frac{A}{2}\right)}{1 + tg^2\left(\frac{A}{2}\right)}$$

$$tgA = \frac{2tg\left(\frac{A}{2}\right)}{1 - tg^2\left(\frac{A}{2}\right)}$$

6.3. Fórmulas de Werner

As fórmulas de Werner são a transformação de produto em soma. Elas estão listadas abaixo:

$$2cosAcosB = cos(A + B) + cos(A - B)$$

$$-2senAsenB = cos(A + B) - cos(A - B)$$

$$2senAcosB = sen(A + B) + sen(A - B)$$

$$2senBcosA = sen(A + B) - sen(A - B)$$

6.4. Fórmulas de Prostaférese

Ao nos depararmos com equações trigonométricas, algumas questões podem exigir que você saiba como aplicar uma transformação trigonométrica para conseguir resolvê-las. Vamos estudar cada uma delas.

As fórmulas abaixo são a transformação de soma em produto:

$$sen(p) + sen(q) = 2sen\left(\frac{p+q}{2}\right)cos\left(\frac{p-q}{2}\right)$$

$$sen(p) - sen(q) = 2sen\left(\frac{p-q}{2}\right)cos\left(\frac{p+q}{2}\right)$$

$$cos(p) + cos(q) = 2cos\left(\frac{p+q}{2}\right)cos\left(\frac{p-q}{2}\right)$$

$$cos(p) - cos(q) = -2sen\left(\frac{p+q}{2}\right)sen\left(\frac{p-q}{2}\right)$$

1. Calcule:

a)
$$sen\left(arctg(\sqrt{2})\right)$$

b)
$$tg\left(2arctg\left(\frac{1}{5}\right)\right)$$

c)
$$tg\left(arcsen\left(\frac{3}{5}\right) - arctg\left(\frac{5}{12}\right)\right)$$

Resolução:

a) Vamos fazer $\alpha = arctg(\sqrt{2})$, assim, temos:

$$tg\alpha = \sqrt{2}$$

Queremos calcular $sen\alpha$, podemos a seguinte identidade:

$$sen^2\alpha = \frac{tg^2\alpha}{1 + tg^2\alpha}$$

$$sen\alpha = \pm \sqrt{\frac{\sqrt{2}^2}{1+\sqrt{2}^2}}$$

$$sen\alpha = \pm \sqrt{\frac{2}{3}}$$

$$\Rightarrow sen\alpha = \pm \frac{\sqrt{6}}{3}$$

b) Fazendo $\alpha = 2arctg\left(\frac{1}{5}\right)$:

$$tg\left(\frac{\alpha}{2}\right) = \frac{1}{5}$$

Queremos calcular $tg\alpha$, vamos usar a seguinte identidade:

$$tg\alpha = \frac{2tg\left(\frac{\alpha}{2}\right)}{1 - tg^2\left(\frac{\alpha}{2}\right)}$$

$$tg\alpha = \frac{2\left(\frac{1}{5}\right)}{1-\left(\frac{1}{5}\right)^2}$$

$$tg\alpha = \frac{\frac{2}{5}}{\frac{24}{25}} = \frac{5}{12}$$

c) Fazendo $\alpha = arcsen\left(\frac{3}{5}\right)$ e $\beta = arctg\left(\frac{5}{12}\right)$, temos:

$$sen\alpha = \frac{3}{5}$$

$$tg\beta = \frac{5}{12}$$

Queremos calcular $tg(\alpha - \beta)$. Podemos usar a diferença de arcos da tangente:

$$tg(\alpha - \beta) = \frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta}$$

Conhecemos o valor de $tg\beta$, vamos encontrar $tg\alpha$:

$$sen^2\alpha = \frac{tg^2\alpha}{1 + tg^2\alpha}$$

$$\left(\frac{3}{5}\right)^2 = \frac{tg^2\alpha}{1+tg^2\alpha}$$

$$9 + 9tg^2\alpha = 25tg^2\alpha$$

$$tg^2\alpha = \frac{9}{16}$$

$$tg\alpha = \pm \frac{3}{4}$$

Para $tg\alpha = 3/4$, temos:

$$tg(\alpha - \beta) = \frac{\frac{3}{4} - \frac{5}{12}}{1 + \frac{3}{4} \cdot \frac{5}{12}}$$

$$tg(\alpha - \beta) = \frac{\frac{4}{12}}{\frac{63}{48}} = \frac{16}{63}$$

Para $tg\alpha = -3/4$, temos:

$$tg(\alpha - \beta) = \frac{\left(-\frac{3}{4} - \frac{5}{12}\right)}{1 + \left(-\frac{3}{4}\right) \cdot \frac{5}{12}}$$

$$tg(\alpha - \beta) = \frac{\left(-\frac{14}{12}\right)}{\frac{33}{48}} = -\frac{56}{33}$$

Gabarito: a) $sen\alpha=\pm\frac{\sqrt{6}}{3}$ b) $tg\alpha=\frac{5}{12}$ c) $tg(\alpha-\beta)=\frac{16}{63}$ ou $tg(\alpha-\beta)=-\frac{56}{33}$

2. Calcule a soma das soluções da equação $arctg\left(\frac{x}{2}\right) + arctg\left(\frac{x}{3}\right) = arctg\left(\frac{1}{5}\right)$.

Resolução:

Fazendo $\alpha = arctg\left(\frac{x}{2}\right)$, $\beta = arctg\left(\frac{x}{3}\right)$ e $\gamma = arctg\left(\frac{1}{5}\right)$, temos:

$$tg\alpha = \frac{x}{2}$$

$$tg\beta = \frac{x}{3}$$

$$tg\gamma = \frac{1}{5}$$

Aplicando a tangente na equação, obtemos:

$$tg(\alpha + \beta) = tg\gamma$$

$$\frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta} = tg\gamma$$

Substituindo os valores das tangentes:

$$\frac{\left(\frac{x}{2} + \frac{x}{3}\right)}{1 - \frac{x}{2} \cdot \frac{x}{3}} = \frac{1}{5}$$

$$\frac{5x}{6-x^2} = \frac{1}{5}$$

$$25x = 6 - x^2$$

$$x^2 + 25x - 6 = 0$$

$$x = \frac{-25 \pm \sqrt{625 + 24}}{2} = \frac{-25 \pm \sqrt{649}}{2}$$

A soma das soluções é dada por:

$$x_1 + x_2 = -25$$

Gabarito: $x_1 + x_2 = -25$

3. Se $cos(2x) = \frac{1}{3}$, onde $x \in (0, \pi)$, calcule o valor de y = (sen(3x) - sen(x))/cos(2x).

Resolução:

Vamos transformar a subtração em produto usando a fórmula de Prostaférese:

$$senp - senq = 2sen\left(\frac{p-q}{2}\right)\cos\left(\frac{p+q}{2}\right)$$

$$y = \frac{sen(3x) - sen(x)}{\cos(2x)}$$

$$y = \frac{2sen\left(\frac{3x-x}{2}\right)\cos\left(\frac{3x+x}{2}\right)}{\cos(2x)}$$

$$y = \frac{2senxcos(2x)}{\cos(2x)}$$

$$y = 2senx$$

Usando a informação cos(2x) = 1/3, temos:

$$\cos(2x) = 1 - 2sen^2x = \frac{1}{3}$$
$$\frac{2}{3} = 2sen^2x$$
$$senx = \pm \frac{\sqrt{3}}{3}$$

Como $x \in (0, \pi)$, sen x > 0, então:

$$senx = \frac{\sqrt{3}}{3}$$

$$\Rightarrow y = \frac{2\sqrt{3}}{3}$$

Gabarito: $y = 2\sqrt{3}/3$

- **4.** Transformando-se $sen40^{\circ} + cos10^{\circ}$ em produto, obtemos:
- a) $\frac{\sqrt{3}}{2}$ sen 40°
- b) $\sqrt{3}sen20^{\circ}$
- c) $\sqrt{3}cos20^{\circ}$
- d) $\sqrt{2}sen20^{\circ}$

Resolução:

Podemos usar o ângulo complementar e escrever:

$$\cos 10^{\circ} = sen 80^{\circ}$$

Assim, podemos usar a fórmula de Prostaférese:

$$senp + senq = 2sen\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$sen40^{\circ} + sen80^{\circ} = 2sen\left(\frac{40^{\circ} + 80^{\circ}}{2}\right)\cos\left(\frac{80^{\circ} - 40^{\circ}}{2}\right)$$

$$sen40^{\circ} + sen80^{\circ} = 2sen60^{\circ}cos20^{\circ}$$

$$\Rightarrow sen40^{\circ} + sen80^{\circ} = \sqrt{3}cos20^{\circ}$$

Gabarito: "c".

7. Questões de Provas Anteriores

7. (ITA/2019)

Seja $f:[-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ a função definida por f(x)=arcsen(x). Então, a soma $\sum_{n=0}^4 f\left(\cos\left(\frac{2\pi}{3^n}\right)\right)$ é igual a

- a) $\frac{253}{162}\pi$
- b) $\frac{245}{162}\pi$
- c) $-\frac{152}{81}\pi$
- d) $-\frac{82}{81}\pi$
- e) $-\frac{79}{162}\pi$

8. (ITA/2019)

Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MÂN é igual a

- a) $\frac{1}{35}$
- b) $\frac{2}{35}$
- c) $\frac{4}{35}$
- d) $\frac{8}{35}$
- e) $\frac{16}{35}$

9. (ITA/2019)

Sejam a,b e c três números reais em progressão aritmética crescente, satisfazendo

$$\cos a + \cos b + \cos c = 0$$
 e $\sin a + \sin b + \sin c = 0$.

Encontre a menor razão possível para essa progressão aritmética.

10. (ITA/2017)

O maior valor de tgx, com $x = \frac{1}{2} arcsen\left(\frac{3}{5}\right)$ e $x \in \left[0, \frac{\pi}{2}\right]$, é

- a) $\frac{1}{4}$
- b) $\frac{1}{3}$
- c) $\frac{1}{2}$
- d) 2
- e) 3

11. (ITA/2016)

Se $tgx = \sqrt{7}$ e $x \in \left[\pi, \frac{3\pi}{2}\right]$, então sen(3x) é igual a

- a) $-\frac{\sqrt{14}}{8}$
- b) $\frac{\sqrt{14}}{8}$
- c) $\frac{\sqrt{14}}{4}$
- d) $-\frac{\sqrt{14}}{4}$
- e) $\frac{\sqrt{14}}{6}$

12. (ITA/2015)

Os valores de $x \in [0,2\pi]$ que satisfazem a equação $2sen(x) - \cos x = 1$ são

- a) $\arccos\left(\frac{3}{5}\right)$ e π
- b) $\arcsin\left(\frac{3}{5}\right) e \pi$
- c) arcsen $\left(-\frac{4}{5}\right)$ e π
- d) $\arcsin\left(-\frac{4}{5}\right)$ e π
- e) $\arcsin\left(\frac{4}{5}\right)$ e π

13. (ITA/2014)

Sabendo que $senx = \frac{2ab}{a^2 + b^2}$, $a \neq 0$ e $b \neq 0$, um possível valor para $cossec(2x) - \frac{1}{2}tgx$ é

- a) $\frac{a-b}{ab}$
- b) $\frac{a+b}{2ab}$
- c) $\frac{a^2-b^2}{ab}$
- d) $\frac{a^2+b^2}{4ab}$
- e) $\frac{a^2-b^2}{4ab}$

14. (ITA/2013)

Se $\cos 2x = \frac{1}{2}$, então um possível valor de $\frac{cotgx-1}{cossec(x-\pi)-sec(\pi-x)}$ é

- a) $\frac{\sqrt{3}}{2}$
- b) 1
- c) $\sqrt{2}$
- d) $\sqrt{3}$

e) 2

15. (ITA/2012)

Seja $S = \left\{ x \in \mathbb{R} \middle| arcsen\left(\frac{e^{-x} - e^x}{2}\right) + arccos\left(\frac{e^x - e^{-x}}{2}\right) = \frac{\pi}{2} \right\}$. Então

- a) $S = \emptyset$
- b) $S = \{0\}$
- c) $S = \mathbb{R}^+ \setminus \{0\}$
- d) $S = \mathbb{R}^+$
- e) $S = \mathbb{R}$

16. (ITA/2012)

A soma $\sum_{k=0}^{n}\cos(\alpha+k\pi)$, para todo $\alpha\in[0,2\pi]$, vale

- a) $-\cos(\alpha)$ quando n é par.
- b) $-\text{sen}(\alpha)$ quando n é impar.
- c) $cos(\alpha)$ quando n é impar.
- d) $sen(\alpha)$ quando n é par.
- e) zero quando n é impar.

17. (ITA/2012)

Seja $x \in [0, 2\pi]$ tal que $sen(x) \cos(x) = \frac{2}{5}$. Então, o produto e a soma de todos os possíveis valores de tg(x) são, respectivamente,

- a) 1 e 0
- b) 1 e $\frac{5}{2}$.
- c) -1 e 0.
- d) 1 e 5.
- e) $-1 e^{-\frac{5}{2}}$.

18. (ITA/2011)

Entre duas superposições consecutivas dos ponteiros das horas e dos minutos de um relógio, o ponteiro dos minutos varre um ângulo cuja medida, em radianos, é igual a

- a) $\frac{23}{11}\pi$
- b) $\frac{16}{6}\pi$
- c) $\frac{24}{11}\pi$

e)
$$\frac{7}{3}\pi$$

19. (ITA/2011)

a) Calcule
$$\left(\cos^2\left(\frac{\pi}{5}\right) - sen^2\left(\frac{\pi}{5}\right)\right)\cos\frac{\pi}{10} - 2sen\left(\frac{\pi}{5}\right)\cos\left(\frac{\pi}{5}\right)sen\left(\frac{\pi}{10}\right)$$
.

b) Usando o resultado do item anterior, calcule $sen\left(\frac{\pi}{10}\right)\cos\left(\frac{\pi}{5}\right)$

20. (ITA/2010)

A equação em x, $arctg(e^x + 2) - arccotg(\frac{e^x}{e^{2x} - 1}) = \frac{\pi}{4}$, $x \in \mathbb{R} \setminus \{0\}$

- a) admite infinitas soluções, todas positivas.
- b) admite uma única solução, e esta é positiva.
- c) admite três soluções que se encontram no intervalo] $-\frac{5}{2}, \frac{3}{2}$ [.
- d) admite apenas soluções negativas.
- e) não admite solução.

21. (ITA/2010)

O valor da soma $\sum_{n=1}^{6} sen\left(\frac{2\alpha}{3^n}\right) sen\left(\frac{\alpha}{3^n}\right)$, para todo $\alpha \in \mathbb{R}$, é igual a

a)
$$\frac{1}{2} \left[\cos \left(\frac{\alpha}{729} \right) - \cos \alpha \right]$$

b)
$$\frac{1}{2} \left[\operatorname{sen} \left(\frac{\alpha}{243} \right) - \operatorname{sen} \left(\frac{\alpha}{729} \right) \right]$$

c)
$$\left[\cos\left(\frac{\alpha}{243}\right) - \cos\left(\frac{\alpha}{729}\right)\right]$$

d)
$$\frac{1}{2} \left[\cos \left(\frac{\alpha}{729} \right) - \cos \left(\frac{\alpha}{243} \right) \right]$$

e)
$$\left[\cos\left(\frac{\alpha}{729}\right) - \cos\alpha\right]$$

22. (ITA/2008)

O conjunto imagem e o período de $f(x) = 2sen^2(3x) + sen(6x) - 1$ são, respectivamente,

a)
$$[-3,3]$$
 e 2π

b)
$$[-2, 2] e^{\frac{2\pi}{3}}$$

c)
$$[-\sqrt{2}, \sqrt{2}] e^{\frac{\pi}{3}}$$

d)
$$[-1,3] e^{\frac{\pi}{3}}$$

e)
$$[-1,3]$$
 e $\frac{2\pi}{3}$

23. (ITA/2008)

Sendo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ o contradomínio da função arco-seno e $[0,\pi]$ o contradomínio da função arco-cosseno, assinale o valor de

$$\cos\left[arcsen\left(\frac{3}{5}\right) + arccos\left(\frac{4}{5}\right)\right]$$

- a) $\frac{1}{\sqrt{12}}$
- b) $\frac{7}{25}$
- c) $\frac{4}{15}$
- d) $\frac{1}{\sqrt{15}}$
- e) $\frac{1}{2\sqrt{5}}$

24. (ITA/2007)

Assinale a opção que indica a soma dos elementos de $A \cup B$, sendo:

$$A = \left\{ x_k = sen^2 \left(\frac{k^2 \pi}{24} \right) : k = 1, 2 \right\} e$$

$$B = \left\{ y_k = sen^2 \left(\frac{(3k+5)\pi}{24} \right) : k = 1, 2 \right\}.$$

- a) 0
- b) 1
- c) 2

d)
$$(2 - \sqrt{2 + \sqrt{3}})/3$$

e)
$$(2 + \sqrt{2 - \sqrt{3}})/3$$

25. (ITA/2004)

Considerando as funções

$$arcsen: [-1, 1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] e$$

$$arccos: [-1,1] \rightarrow [0,\pi],$$

Assinale o valor de $\cos \left[arcsen \left(\frac{3}{5} \right) + arccos \left(\frac{4}{5} \right) \right]$.

- a) 6/25
- b) 7/25
- c) 1/3
- d) 2/5

e) 5/12

26. (ITA/2004)

Prove que, se os ângulos internos α, β e γ de um triângulo satisfazem a equação: $sen(3\alpha) + sen(3\beta) + sen(3\gamma) = 0$, então, pelo menos, um dos três ângulos α, β ou γ é igual a 60° .

27. (ITA/2003)

Considere os contradomínios das funções arco-seno e arco-cosseno como sendo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ e $\left[0,\pi\right]$, respectivamente.

Com respeito à função $f: [-1, 1] \rightarrow \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right], f(x) = arcsenx + arccosx$, temos que:

- a) f é não-crescente e impar.
- b) f não é par nem ímpar.
- c) f é sobrejetora.
- d) f é injetora.
- e) f é constante.

28. (ITA/2003)

Considere um quadrado ABCD. Sejam E o ponto médio do segmento CD e F um ponto sobre o segmento CE tal que m(BC) + m(CF) = m(AF). Prove que $cos\alpha = cos2\beta$, sendo os ângulos $\alpha = B\hat{A}F$ e $\beta = E\hat{A}D$.

29. (ITA/2003)

Para todo $x \in \mathbb{R}$, a expressão $[\cos(2x)]^2[sen(2x)]^2senx$ é igual a:

- a) $2^{-4}[sen(2x) + sen(5x) + sen(7x)]$.
- b) $2^{-4}[2sen(x) + sen(7x) sen(9x)]$.
- c) $2^{-4}[-sen(2x) sen(3x) + sen(7x)]$.
- d) $2^{-4}[-sen(x) + 2sen(5x) sen(9x)].$
- e) $2^{-4}[sen(x) + 2sen(3x) + sen(5x)]$.

30. (ITA/2002)

Seja $f: \mathbb{R} \to P(\mathbb{R})$ dada por $f(x) = \{y \in \mathbb{R}; seny < x\}$.

Se A é tal que $f(x) = \mathbb{R}, \forall x \in A$, então

- a) A = [-1, 1].
- b) $A = [a, \infty), \forall a > 1$.
- c) $A = [a, \infty), \forall a \ge 1$.

- d) $A = (-\infty, a], \forall a < -1.$
- e) $A = (-\infty, a], \forall a \le -1.$

31. (ITA/2002)

Se x, y e z são ângulos internos de um triângulo ABC e senx = (seny + senz)/(cosy + cosz), prove que o triângulo ABC é retângulo.

32. (ITA/2001)

Considere as funções

$$f(x) = \frac{5+7^x}{4}$$
, $g(x) = \frac{5-7^x}{4}$ e $h(x) = arctgx$

Se $a \in tal que h(f(a)) + h(g(a)) = \pi/4$, então f(a) - g(a) vale:

- a) 0
- b) 1
- c) 7/4
- d) 7/2
- e) 7

33. (ITA/2001)

Sendo α e β os ângulos de um triângulo retângulo, e sabendo que $sen^22\beta-2cos2\beta=0$, então $sen\alpha$ é igual a:

- a) $\sqrt{2}/2$
- b) $\sqrt[4]{2}/2$
- c) $\sqrt[4]{8}/2$
- d) $\sqrt[4]{8}/4$
- e) zero

34. (ITA/2000)

Considere $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = 2sen3x - \cos\left[\frac{x-\pi}{2}\right]$. Sobre f podemos afirmar que:

- a) é uma função par.
- b) é uma função ímpar e periódica de período fundamental 4π .
- c) é uma função ímpar e periódica de período fundamental $4\pi/3$.
- d) é uma função periódica de período fundamental 2π .
- e) não é par, não é impar e não é periódica.

35. (ITA/1999)

Seja $a \in \mathbb{R}$ com $0 < a < \pi/2$. A expressão $\left[sen\left(\frac{3\pi}{4} + a\right) + sen\left(\frac{3\pi}{4} - a\right)\right]sen\left(\frac{\pi}{2} - a\right)$ é idêntica a:

- a) $\frac{\sqrt{2}cotg^2a}{1+cotg^2a}$
- b) $\frac{\sqrt{2}cotga}{1+cotg^2a}$
- c) $\frac{\sqrt{2}}{1+cotg^2a}$
- d) $\frac{1+3cotga}{2}$
- e) $\frac{1+2cotga}{1+cotga}$

36. (ITA/1999)

Se $x \in [0, \pi/2[$ é tal que $4tg^4x = \frac{1}{\cos^4 x} + 4$, então o valor de sen(2x) + sen(4x) é:

- a) $\sqrt{15}/4$
- b) $\sqrt{15}/8$
- c) $3\sqrt{5}/8$
- d) 1/2
- e) 1

37. (ITA/1996)

Seja α um número real tal que $\alpha > 2(1+\sqrt{2})$ e considere a equação $x^2 - \alpha x + \alpha + 1 = 0$. Sabendo que as raízes reais dessa equação são as cotangentes de dois dos ângulos internos de um triângulo, então o terceiro ângulo interno desse triângulo vale:

- a) 30°
- b) 45°
- c) 60°
- d) 135°
- e) 120°

38. (ITA/1996)

Seja $\alpha \in \left[0, \frac{\pi}{2}\right]$, tal que $sen\alpha + cos\alpha = m$. Então, o valor de $y = sen2\alpha/(sen^3\alpha + cos^3\alpha)$ será:

- a) $\frac{2(m^2-1)}{m(4-m^2)}$
- b) $\frac{2(m^2+1)}{m(4+m^2)}$

- d) $\frac{2(m^2-1)}{m(3+m^2)}$
- e) $\frac{2(m^2+1)}{m(3-m^2)}$

39. (ITA/1995)

Seja a função $f: \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = \begin{cases} a\left(x + \frac{\pi}{2}\right), se \ x < \frac{\pi}{2} \\ \frac{\pi}{2} - \frac{a}{x} senx, se \ x \ge \frac{\pi}{2} \end{cases}$$

Onde a > 0 é uma constante. Considere $K = \{y \in \mathbb{R}; f(y) = 0\}$. Qual o valor de a, sabendose que $f\left(\frac{\pi}{2}\right) \in K$?

- a) $\pi/4$
- b) $\pi/2$
- c) π
- d) $\pi^2/2$
- e) π^2

40. (ITA/1995)

Um dispositivo colocado no solo a uma distância d de uma torre dispara dois progéteis em trajetórias retilíneas. O primeiro, lançado sob um ângulo $\theta \in \left(0, \frac{\pi}{4}\right)$, atinge a torre a uma altura h. Se o segundo, disparado sob um ângulo 2θ , atinge-a a uma altura H, a relação entre as duas alturas será:

a)
$$H = 2hd^2/(d^2 - h^2)$$

b)
$$H = 2hd^2/(d^2 + h)$$

c)
$$H = 2hd^2/(d^2 - h)$$

d)
$$H = 2hd^2/(d^2 + h^2)$$

e)
$$H = hd^2/(d^2 + h)$$

41. (ITA/1995)

A expressão $sen\theta/(1+cos\theta),\ 0<\theta<\pi,$ é idêntica a:

- a) $\sec\left(\frac{\theta}{2}\right)$
- b) $cossec\left(\frac{\theta}{2}\right)$
- c) $cotg\left(\frac{\theta}{2}\right)$

e)
$$\cos\left(\frac{\theta}{2}\right)$$

42. (IME/2020)

Seja $\frac{1}{b} = sen \frac{\pi}{14} \cdot sen \frac{3\pi}{14} \cdot sen \frac{5\pi}{14}$. Determine b, onde b pertence ao conjunto dos números inteiros não nulos.

43. (IME/2019)

Os ângulos $\theta_1, \theta_2, \theta_3, \dots, \theta_{100}$ são os termos de uma progressão aritmética na qual $\theta_{11} + \theta_{26} + \theta_{75} + \theta_{90} = \frac{\pi}{4}$. O valor de $sen(\sum_{i=1}^{100} \theta_i)$ é

a)
$$-1$$

b)
$$-\frac{\sqrt{2}}{2}$$

d)
$$\frac{\sqrt{2}}{2}$$

44. (IME/2017)

Calcule o valor de $\frac{sen^4\alpha + cos^4\alpha}{sen^6\alpha + cos^6\alpha}$, sabendo-se que $sen\alpha cos\alpha = \frac{1}{5}$.

a)
$$\frac{22}{21}$$

b)
$$\frac{23}{22}$$

c)
$$\frac{25}{23}$$

d)
$$\frac{13}{12}$$

e)
$$\frac{26}{25}$$

45. (IME/2017)

Se
$$\frac{\cos x}{\cos y} + \frac{\sin x}{\sin y} = -1$$
, calcule o valor de *S*.

$$S = \frac{3\cos y + \cos 3y}{\cos x} + \frac{3\sin y - \sin 3y}{\sin x}$$

46. (IME/2015)

Os lados $a, b \in c$ de um triângulo estão em PA nesta ordem, sendo opostos aos ângulos internos $A, B \in C$, respectivamente. Determine o valor da expressão:

- a) $\sqrt{2}$
- b) 2
- c) $2\sqrt{2}$
- d) 3
- e) 4

47. (IME/2014)

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função real definida por $f(x) = x^2 - \pi x$. Sejam também a, b, c e d números reais tais que:

$$a = sen^{-1}\left(\frac{1}{3}\right)$$
; $b = tan^{-1}\left(\frac{5}{4}\right)$; $c = cos^{-1}\left(-\frac{1}{3}\right)$ e $d = cotg^{-1}\left(-\frac{5}{4}\right)$

A relação de ordem, no conjunto dos reais, entre as imagens f(a), f(b), f(c) e f(d) é

- a) f(b) > f(a) > f(d) > f(c)
- b) f(d) > f(a) > f(c) > f(b)
- c) f(d) > f(a) > f(b) > f(c)
- d) f(a) > f(d) > f(b) > f(c)
- e) f(a) > f(b) > f(d) > f(c)

48. (IME/2014)

Sejam $f(x) = sen(\log x)$ e $g(x) = \cos(\log x)$ duas funções reais, nas quais $\log x$ representa o logaritmo decimal de x. O valor da expressão $f(x) \cdot f(y) - \frac{1}{2} \left[g\left(\frac{x}{y}\right) - g(x \cdot y) \right]$ é

- a) 4
- b) 3
- c) 2
- d) 1
- e) 0

49. (IME/2014)

Sabe-se que uma das raízes da equação $y^2-9y+8=0$ pode ser representada pela expressão $e^{\left(sen^2x+sen^4x+sen^6x+\cdots\right)\ln 2}$. Sendo $0< x<\frac{\pi}{2}$, o valor da razão $\frac{\cos x}{\cos x+sen x}$ é

Observação: ln 2 representa o logaritmo neperiano de 2.

a)
$$\frac{\sqrt{3}-1}{2}$$

- b) $\sqrt{3} 1$
- c) $\sqrt{3}$
- d) $\frac{\sqrt{3}+1}{2}$
- e) $\sqrt{3} + 1$

50. (IME/2013)

Assinale a alternativa que representa o mesmo valor da expressão $[4\cos^2(9^\circ) - 3][4\cos^2(27^\circ) - 3]$:

- a) sen(9°)
- b) tg (9°)
- c) cos(9°)
- d) sec(9°)
- e) cossec (9°)

51. (IME/2012)

Seja $arcsenx + arcseny + arcsenz = \frac{3\pi}{2}$, onde x,y e z são números reais pertencentes ao intervalo [-1,1]. Determine o valor de $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$.

- a) -2
- b) -1
- c) 0
- d) 1
- e) 2

52. (IME/2012)

O valor de $y = sen70^{\circ}cos50^{\circ} + sen260^{\circ}cos280^{\circ}$ é:

- a) $\sqrt{3}$
- b) $\frac{\sqrt{3}}{2}$
- c) $\frac{\sqrt{3}}{3}$
- d) $\frac{\sqrt{3}}{4}$
- e) $\frac{\sqrt{3}}{5}$

53. (IME/2010)

Determine o produto dos 20 primeiros termos dessa sequência.

54. (IME/2001)

Calcule o valor exato de:

$$sen\left[2arccotg\left(\frac{4}{3}\right)\right] + cos\left[2arccossec\left(\frac{5}{4}\right)\right]$$

55. (IME/1997)

Se tga e tgb são as raízes da equação $x^2 + px + q = 0$, calcule, em função de p e q, o valor simplificado da expressão:

$$y = sen^{2}(a+b) + psen(a+b)\cos(a+b) + qcos^{2}(a+b)$$

Considere $p, q \in \mathbb{R}$ com $q \neq 1$.

56. (IME/1991)

Mostre que se num triângulo ABC vale a relação:

$$\frac{\cos(B-C)}{senA + sen(C-B)} = tgB$$

Então o triângulo é retângulo com ângulo reto em ${\cal A}$.

57. (IME/1991)

Sejam A, B, C os ângulos de um triângulo. Mostre que:

$$sen(2A) + sen(2B) + sen(2C) = 4senAsenBsenC$$

58. (IME/1989)

Provar que, se os ângulos de um triângulo ABC verificam a relação:

$$sen(4A) + sen(4B) + sen(4C) = 0$$

Então, o triângulo ABC é retângulo.

8. Gabarito

- 7. b
- 8. c
- 9. $r_{min} = 2\pi/3$
- 11. b
- 12. a
- 13. e
- 14. a
- 15. b
- 16. e 17. b
- 18. c
- 19. a) **0** b) $sen\left(\frac{\pi}{10}\right)\cos\left(\frac{\pi}{5}\right) = \frac{1}{4}$
- 20. b
- 21. a
- 22. c
- 23. b
- 24. c
- 25. b
- 26. Demonstração
- 27. e
- 28. Demonstração
- 29. b
- 30. b
- 31. Demonstração
- 32. d
- 33. c
- 34. b
- 35. a
- 36. b
- 37. d
- 38. c
- 39. d
- 40. a
- 41. d
- 42. b = 8
- 43. d
- 44. b
- 45. **S** = **4**
- 46. b
- 47. d
- 48. e
- 49. a
- 50. b
- 51. c
- 52. d
- 53. $\mathbf{P} = \frac{\sqrt{3}}{2^{21}} \cdot \frac{1}{sen(\frac{\pi}{3} \cdot \frac{1}{2^{20}})}$

55.
$$y = q$$

56. Demonstração

57. Demonstração

58. Demonstração

9. Questões de Provas Anteriores Comentadas

7. (ITA/2019)

Seja $f:[-1,1] \to \left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ a função definida por f(x) = arcsen(x). Então, a soma $\sum_{n=0}^4 f\left(\cos\left(\frac{2\pi}{3^n}\right)\right)$ é igual a

a)
$$\frac{253}{162}\pi$$

b)
$$\frac{245}{162}\pi$$

c)
$$-\frac{152}{81}\pi$$

d)
$$-\frac{82}{81}\pi$$

e)
$$-\frac{79}{162}\pi$$

Comentários

Vamos calcular o valor de cada termo:

Para n = 0:

$$\cos\left(\frac{2\pi}{3^0}\right) = 1 \Rightarrow f(1) = arcsen(1) = \frac{\pi}{2}$$

Para n = 1:

$$\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \Rightarrow f\left(-\frac{1}{2}\right) = arcsen\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

Para n = 2:

Temos que usar a relação $cos\alpha = sen\left(\frac{\pi}{2} - \alpha\right)$:

$$\cos\left(\frac{2\pi}{3^2}\right) = \cos\left(\frac{2\pi}{9}\right) = sen\left(\frac{\pi}{2} - \frac{2\pi}{9}\right) \Rightarrow f\left(sen\left(\frac{\pi}{2} - \frac{2\pi}{9}\right)\right) = arcsen\left(sen\left(\frac{\pi}{2} - \frac{2\pi}{9}\right)\right) = \frac{\pi}{2} - \frac{2\pi}{9}$$

Para n = 3:

$$\cos\left(\frac{2\pi}{3^3}\right) = sen\left(\frac{\pi}{2} - \frac{2\pi}{27}\right) \Rightarrow f\left(sen\left(\frac{\pi}{2} - \frac{2\pi}{27}\right)\right) = arcsen\left(sen\left(\frac{\pi}{2} - \frac{2\pi}{27}\right)\right) = \frac{\pi}{2} - \frac{2\pi}{27}$$

Para n = 4:

$$\cos\left(\frac{2\pi}{3^4}\right) = sen\left(\frac{\pi}{2} - \frac{2\pi}{81}\right) \Rightarrow f\left(sen\left(\frac{\pi}{2} - \frac{2\pi}{81}\right)\right) = arcsen\left(sen\left(\frac{\pi}{2} - \frac{2\pi}{81}\right)\right) = \frac{\pi}{2} - \frac{2\pi}{81}$$

A soma desses valores nos dá:

$$S = \frac{\pi}{2} + \left(-\frac{\pi}{6}\right) + \left(\frac{\pi}{2} - \frac{2\pi}{9}\right) + \left(\frac{\pi}{2} - \frac{2\pi}{27}\right) + \left(\frac{\pi}{2} - \frac{2\pi}{81}\right) = \frac{245}{162}\pi$$

Gabarito: "b".

8. (ITA/2019)

Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MÂN é igual a

- a) $\frac{1}{35}$
- b) $\frac{2}{35}$
- c) $\frac{4}{35}$
- d) $\frac{8}{35}$
- e) $\frac{16}{35}$

Comentários

Pelos dados do enunciado e para simplificar nossos cálculos, vamos escrever AB=8L, BM=2L e MN=L. Queremos descobrir β que é o ângulo de $M\hat{A}N$. Assim, temos a seguinte figura:

Vamos aplicar a tangente nos triângulos ABM e AMN: ΔABM :

$$tg(\alpha) = \frac{2L}{8L} = \frac{1}{4}$$

 ΔABN :

$$tg(\alpha + \beta) = \frac{3L}{8L} = \frac{3}{8}$$

Usando a fórmula da soma da tangente:

$$tg(\alpha + \beta) = \frac{tg\alpha + tg\beta}{1 - tg\alpha tg\beta} = \frac{3}{8}$$

Substituindo o valor de $tg(\alpha)$ na equação, obtemos:

$$\frac{\frac{1}{4} + tg\beta}{1 - \frac{tg\beta}{4}} = \frac{3}{8}$$
$$\frac{1 + 4tg\beta}{4 - tg\beta} = \frac{3}{8}$$
$$8 + 32tg\beta = 12 - 3tg\beta$$
$$35tg\beta = 12$$

Portanto, a tangente de $M\hat{A}N$ é dada por:

$$tg\beta = \frac{4}{35}$$

Gabarito: "c".

9. (ITA/2019)

Sejam $a, b \in c$ três números reais em progressão aritmética crescente, satisfazendo

$$\cos a + \cos b + \cos c = 0$$
 e $\sin a + \sin b + \sin c = 0$.

Encontre a menor razão possível para essa progressão aritmética.

Comentários

(a,b,c) é uma PA crescente, vamos escrevê-lo como (b-r,b,b+r), com r sua razão. Para as condições do problema, temos:

$$\cos a + \cos b + \cos c = 0 \Rightarrow \cos(b - r) + \cos b + \cos(b + r) = 0$$

Aplicando as transformações trigonométricas:

$$\cos b \cos r + \sin b \sin r + \cos b + \cos b \cos r - \sin b \sin r = 0$$

 $2 \cos b \cos r + \cos b = 0 \Rightarrow \cos b (2 \cos r + 1) = 0$

$$\cos b = 0 \text{ ou } \cos r = -\frac{1}{2}$$

$$\operatorname{sen} a + \operatorname{sen} b + \operatorname{sen} c = 0 \Rightarrow \operatorname{sen}(b - r) + \operatorname{sen} b + \operatorname{sen}(b + r) = 0$$

$$sen b cos r - sen r cos b + sen b + sen b cos r + sen r cos b = 0$$

$$2 \operatorname{sen} b \cos r + \operatorname{sen} b = 0 \Rightarrow \operatorname{sen} b (2 \cos r + 1) = 0$$

$$sen b = 0 ou \cos r = -\frac{1}{2}$$

Se $\cos b = 0$, temos $\sec b \neq 0$, logo, $\cos r = -1/2$. Se $\sec b = 0$, temos, analogamente, $\cos r = -1/2$.

Como a PA é crescente, devemos ter r>0, desse modo:

$$\cos r = -\frac{1}{2} \Rightarrow r = \pi \pm \frac{\pi}{3} + 2k\pi, k \in \mathbb{Z}$$

O menor valor possível é:

$$r_{min} > 0 \Rightarrow r_{min} = \pi - \frac{\pi}{3} \Rightarrow r_{min} = \frac{2\pi}{3}$$

Gabarito:
$$r_{min} = \frac{2\pi}{3}$$

10. (ITA/2017)

O maior valor de tgx, com $x = \frac{1}{2} arcsen\left(\frac{3}{5}\right)$ e $x \in \left[0, \frac{\pi}{2}\right]$, é

- a) $\frac{1}{4}$
- b) $\frac{1}{3}$
- c) $\frac{1}{2}$
- d) 2
- e) 3

O bizu nessa questão é usar a fórmula da tangente em função de seno e cosseno:

$$tgx = \frac{sen2x}{1 + cos2x}$$

O enunciado nos dá:

$$x = \frac{1}{2} \arcsin\left(\frac{3}{5}\right)$$

$$\Rightarrow 2x = arcsen\left(\frac{3}{5}\right)$$

$$sen2x = \frac{3}{5}$$

$$\cos 2x = \frac{4}{5}$$

Substituindo em tgx, encontramos:

$$tgx = \frac{\frac{3}{5}}{1 + \left(\frac{4}{5}\right)} = \frac{1}{3}$$

Gabarito: "b".

11. (ITA/2016)

Se $tgx = \sqrt{7}$ e $x \in \left[\pi, \frac{3\pi}{2}\right]$, então sen(3x) é igual a

a)
$$-\frac{\sqrt{14}}{8}$$

c)
$$\frac{\sqrt{14}}{4}$$

d)
$$-\frac{\sqrt{14}}{4}$$

e)
$$\frac{\sqrt{14}}{6}$$

Devemos trabalhar com os ângulos.

Usando a identidade $\sec^2 x = 1 + tg^2 x$:

$$\sec^2 x = 1 + tg^2 x$$

$$\frac{1}{\cos^2 x} = 1 + 7$$

$$\cos^2 x = \frac{1}{8} \Rightarrow sen^2 x = \frac{7}{8}$$

Calculando sen(3x):

$$sen(3x) = sen(2x + x) = sen(2x)\cos(x) + sen(x)\cos(2x)$$
$$2sen(x)\cos^{2}(x) + sen(x)(1 - 2sen^{2}(x))$$
$$\Rightarrow sen(3x) = 3sen(x) - 4sen^{3}(x)$$

Como $sen^2x = \frac{7}{8} e x \in \left[\pi, \frac{3\pi}{2}\right]$, temos:

$$senx = -\sqrt{\frac{7}{8}} = -\frac{\sqrt{14}}{4}$$

$$sen(3x) = 3\left(-\frac{\sqrt{14}}{4}\right) - 4\left(-\frac{\sqrt{14}}{4}\right)^3$$

$$sen(3x) = -\frac{3}{4}\sqrt{14} + 4 \cdot 14 \cdot \frac{\sqrt{14}}{4^3}$$

$$sen(3x) = -\frac{3}{4}\sqrt{14} + \frac{14}{16}\sqrt{14}$$

$$sen(3x) = \frac{2}{16}\sqrt{14} = \frac{\sqrt{14}}{8}$$

Gabarito: "b".

12. (ITA/2015)

Os valores de $x \in [0,2\pi]$ que satisfazem a equação $2sen(x) - \cos x = 1$ são

- a) $\arccos\left(\frac{3}{5}\right)$ e π
- b) $\arcsin\left(\frac{3}{5}\right) e \pi$
- c) $\arcsin\left(-\frac{4}{5}\right)$ e π

e)
$$\arcsin\left(\frac{4}{5}\right)$$
 e π

A equação possui seno e cosseno do mesmo ângulo. Vamos elevá-lo ao quadrado (lembrando que devemos verificar as raízes):

$$2sen(x) - \cos(x) = 1$$

$$\cos(x) + 1 = 2sen(x)$$

$$\cos^{2}(x) + 2\cos(x) + 1 = 4sen^{2}(x)$$

$$\cos^{2}(x) + 2\cos(x) + 1 = 4(1 - \cos^{2}(x))$$

$$5\cos^{2}x + 2\cos x - 3 = 0$$

As raízes são dadas por:

$$cosx = \frac{\left(-1 \pm \sqrt{16}\right)}{5} = -1 \text{ ou } \frac{3}{5}$$
$$cosx = -1 \Rightarrow x = \pi$$
$$cosx = \frac{3}{5} \Rightarrow x = \arccos\left(\frac{3}{5}\right)$$

Testando os valores:

$$x = \pi \Rightarrow 2sen\pi - cos\pi = -(-1) = 1$$
$$cosx = \frac{3}{5} \Rightarrow senx = \frac{4}{5} \Rightarrow 2senx - cosx = 2\left(\frac{4}{5}\right) - \frac{3}{5} = 1$$

Gabarito: "a".

13. (ITA/2014)

Sabendo que $senx = \frac{2ab}{a^2 + b^2}$, $a \neq 0$ e $b \neq 0$, um possível valor para $cossec(2x) - \frac{1}{2}tgx$ é

a)
$$\frac{a-b}{ab}$$

b)
$$\frac{a+b}{2ab}$$

c)
$$\frac{a^2-b^2}{ab}$$

d)
$$\frac{a^2+b^2}{4ab}$$

e)
$$\frac{a^2-b^2}{4ab}$$

Comentários

Vamos analisar a expressão:

$$cossec(2x) - \frac{1}{2}tgx = \frac{1}{sen(2x)} - \frac{1}{2}tg(x) = \frac{1}{2sen(x)\cos(x)} - \frac{tg(x)}{2}$$

Do enunciado, temos:

$$sen(x) = \frac{2ab}{a^2 + b^2}$$

$$cos(x) = \pm \sqrt{1 - sen^2(x)} = \pm \sqrt{1 - \left(\frac{2ab}{a^2 + b^2}\right)^2} = \pm \sqrt{\frac{(a^2 - b^2)^2}{(a^2 + b^2)^2}} = \pm \left(\frac{a^2 - b^2}{a^2 + b^2}\right)$$

Encontrando o valor da expressão:

$$\frac{1}{2sen(x)\cos(x)} - \frac{tg(x)}{2} = \frac{1}{2sen(x)\cos(x)} - \frac{sen(x)}{2\cos(x)} = \frac{1}{2\cos(x)} \left(\frac{1}{sen(x)} - sen(x)\right)$$

$$\frac{1}{2\left(\pm\left(\frac{a^2 - b^2}{a^2 + b^2}\right)\right)} \left(\frac{1}{\frac{2ab}{a^2 + b^2}} - \frac{2ab}{a^2 + b^2}\right)$$

Vamos simplificar a expressão:

$$\pm \frac{1}{2} \frac{(a^2 + b^2)}{(a^2 - b^2)} \left(\frac{((a^2 + b^2)^2 - 4a^2b^2)}{2ab(a^2 + b^2)} \right) \\
\pm \frac{1}{2(a^2 - b^2)} \left(\frac{(a^4 + b^4 + 2a^2b^2 - 4a^2b^2)}{2ab} \right) \\
\pm \frac{1}{2(a^2 - b^2)} \left(\frac{(a^2 - b^2)^2}{2ab} \right) \\
\pm \frac{a^2 - b^2}{4ab}$$

Analisando as alternativas, encontramos o gabarito na letra e.

Gabarito: "e".

14. (ITA/2013)

Se $\cos 2x = \frac{1}{2}$, então um possível valor de $\frac{cotgx-1}{cossec(x-\pi)-sec(\pi-x)}$ é

- a) $\frac{\sqrt{3}}{2}$
- b) 1
- c) $\sqrt{2}$
- d) $\sqrt{3}$
- e) 2

Comentários

Analisando o cosseno dado, temos:

$$cos2x = \frac{1}{2}$$

$$1 - 2sen^2x = \frac{1}{2}$$

$$sen^2x = \frac{1}{4}$$

$$senx = \pm \frac{1}{2}$$
$$cosx = \pm \frac{\sqrt{3}}{2}$$

Calculando o valor da expressão:

$$\frac{\cot gx - 1}{\cos sec(x - \pi) - \sec(\pi - x)} = \frac{\frac{\cos x}{senx} - 1}{\frac{1}{sen(x - \pi)} - \frac{1}{\cos(\pi - x)}}$$

$$*sen(x - \pi) = senxcos\pi - sen\pi cosx = -senx$$

$$*cos(\pi - x) = cos\pi cosx + sen\pi senx = -cosx$$

$$\left(\frac{\cos x - senx}{senx}\right) \left(\frac{1}{\frac{1}{-senx} + \frac{1}{cosx}}\right)$$

$$\left(\frac{\cos x - senx}{senx}\right) \left(\frac{senxcosx}{cosx - senx}\right)$$

Sabemos que $cos x = \pm \frac{\sqrt{3}}{2}$. Analisando as alternativas, encontramos o gabarito na letra a.

Gabarito: "a".

15. (ITA/2012)

Seja
$$S = \left\{ x \in \mathbb{R} \middle| arcsen\left(\frac{e^{-x} - e^x}{2}\right) + arccos\left(\frac{e^x - e^{-x}}{2}\right) = \frac{\pi}{2} \right\}$$
. Então

a)
$$S = \emptyset$$

b)
$$S = \{0\}$$

c)
$$S = \mathbb{R}^+ \setminus \{0\}$$

d)
$$S = \mathbb{R}^+$$

e)
$$S = \mathbb{R}$$

Comentários

Fazendo
$$\alpha=arcsen\left(\frac{e^{-x}-e^x}{2}\right)$$
 e $\beta=arccos\left(\frac{e^x-e^{-x}}{2}\right)$:
$$\alpha+\beta=\frac{\pi}{2}$$

$$\alpha=\frac{\pi}{2}-\beta$$

$$sen\alpha=sen\left(\frac{\pi}{2}-\beta\right)=cos\beta$$

Conhecemos os valores de $sen\alpha$ e $cos\beta$. Dessa forma:

$$\frac{e^{-x} - e^x}{2} = \frac{e^x - e^{-x}}{2}$$
$$2e^{-x} = 2e^x$$

$$e^{2x} = 1$$

$$2x = 0 \Rightarrow x = 0$$

$$\therefore S = \{0\}$$

Gabarito: "b".

16. (ITA/2012)

A soma $\sum_{k=0}^{n} \cos(\alpha + k\pi)$, para todo $\alpha \in [0, 2\pi]$, vale

- a) $-\cos(\alpha)$ quando n é par.
- b) $-\text{sen}(\alpha)$ quando n é impar.
- c) $cos(\alpha)$ quando n é impar.
- d) $sen(\alpha)$ quando n é par.
- e) zero quando n é impar.

Comentários

Vamos analisar a expressão $cos(\alpha + k\pi)$:

$$\cos(\alpha + k\pi) = \cos\alpha \cos(k\pi) - \sin\alpha \sin(k\pi) = \cos\alpha \cos(k\pi)$$

Para os valores de k, temos:

$$k par \Rightarrow \cos(\alpha + k\pi) = \cos\alpha$$

$$k \text{ impar} \Rightarrow \cos(\alpha + k\pi) = -\cos\alpha$$

Portanto, a soma depende do valor de n:

$$S = \sum_{k=0}^{n} \cos(\alpha + k\pi) = \cos\alpha - \cos\alpha + \cos\alpha - \dots + \cos\alpha$$

$$S = \begin{cases} \cos\alpha, n \ par \\ 0, n \ impar \end{cases}$$

Analisando as alternativas, encontramos o gabarito na letra e.

Gabarito: "e".

17. (ITA/2012)

Seja $x \in [0, 2\pi]$ tal que $sen(x)\cos(x) = \frac{2}{5}$. Então, o produto e a soma de todos os possíveis valores de tg(x) são, respectivamente,

- a) 1 e 0
- b) 1 e $\frac{5}{2}$.
- c) -1 e 0.
- d) 1 e 5.
- e) $-1 e^{-\frac{5}{2}}$.

Comentários

Do enunciado:

$$sen(x)\cos(x) = \frac{2}{5}$$
$$2sen(x)\cos(x) = \frac{4}{5}$$

$$sen(2x) = \frac{4}{5}$$

Usando a fórmula $sen(2x) = \frac{2tgx}{1+tg^2x'}$ temos:

$$\frac{2tgx}{1+tg^2x} = \frac{4}{5}$$

$$10tgx = 4 + 4tg^2x$$

$$2tg^2x - 5tgx + 2 = 0$$

Raízes:

$$tgx = \frac{5 \pm \sqrt{9}}{4} = 2 ou \frac{1}{2}$$

Encontrando o que se pede:

$$S = tgx_1 + tgx_2 = \frac{1}{2} + 2 = \frac{5}{2}$$

$$P = tgx_1 tgx_2 = 2\left(\frac{1}{2}\right) = 1$$

Gabarito: "b".

18. (ITA/2011)

Entre duas superposições consecutivas dos ponteiros das horas e dos minutos de um relógio, o ponteiro dos minutos varre um ângulo cuja medida, em radianos, é igual a

- a) $\frac{23}{11}\pi$
- b) $\frac{16}{6}\pi$
- c) $\frac{24}{11}\pi$
- d) $\frac{25}{11}\pi$
- e) $\frac{7}{3}\pi$

Comentários

Supondo a situação inicial dada pela figura:

Após a segunda superposição, temos a seguinte figura:

Quando os ponteiros dos minutos percorrerem 2π radianos, o ponteiro das horas percorrerá $\pi/6$ radianos. Assim, podemos calcular o ângulo α usando a regra de 3:

$$\frac{2\pi + \alpha}{\alpha} = \frac{2\pi}{\frac{\pi}{6}}$$

$$2\pi + \alpha = 12\alpha$$

$$\alpha = \frac{2\pi}{11}$$

Portanto, o ponteiro dos minutos após 2 superposições, percorrerá $2\pi + \alpha$ radianos:

$$2\pi + \alpha = 2\pi + \frac{2\pi}{11} = \frac{24\pi}{11}$$

Gabarito: "c".

19. (ITA/2011)

a) Calcule
$$\left(\cos^2\left(\frac{\pi}{5}\right) - sen^2\left(\frac{\pi}{5}\right)\right)\cos\frac{\pi}{10} - 2sen\left(\frac{\pi}{5}\right)\cos\left(\frac{\pi}{5}\right)sen\left(\frac{\pi}{10}\right)$$
.

b) Usando o resultado do item anterior, calcule $sen\left(\frac{\pi}{10}\right)\cos\left(\frac{\pi}{5}\right)$

Comentários

a) Vamos calcular o valor da expressão:

$$\left(\cos^{2}\left(\frac{\pi}{5}\right) - sen^{2}\left(\frac{\pi}{5}\right)\right)\cos\frac{\pi}{10} - 2sen\left(\frac{\pi}{5}\right)\cos\left(\frac{\pi}{5}\right)sen\left(\frac{\pi}{10}\right)$$
$$\cos\left(\frac{2\pi}{5}\right)\cos\left(\frac{\pi}{10}\right) - sen\left(\frac{2\pi}{5}\right)sen\left(\frac{\pi}{10}\right)$$

$$\cos\left(\frac{2\pi}{5} + \frac{\pi}{10}\right)$$

$$\cos\left(\frac{5\pi}{10}\right) = \cos\left(\frac{\pi}{2}\right) = 0$$

$$\Rightarrow \left(\cos^2\left(\frac{\pi}{5}\right) - sen^2\left(\frac{\pi}{5}\right)\right)\cos\frac{\pi}{10} - 2sen\left(\frac{\pi}{5}\right)\cos\left(\frac{\pi}{5}\right)sen\left(\frac{\pi}{10}\right) = 0$$

b) Usando o que acabamos de mostrar em a):

$$\left(\cos^{2}\left(\frac{\pi}{5}\right) - sen^{2}\left(\frac{\pi}{5}\right)\right)\cos\frac{\pi}{10} - 2sen\left(\frac{\pi}{5}\right)\cos\left(\frac{\pi}{5}\right)sen\left(\frac{\pi}{10}\right) = 0$$

$$\left(\cos^{2}\left(\frac{\pi}{5}\right) - sen^{2}\left(\frac{\pi}{5}\right)\right)\cos\frac{\pi}{10} = 2sen\left(\frac{\pi}{5}\right)\cos\left(\frac{\pi}{5}\right)sen\left(\frac{\pi}{10}\right)$$

$$sen\left(\frac{\pi}{10}\right)\cos\left(\frac{\pi}{5}\right) = \frac{\cos\left(\frac{2\pi}{5}\right)\cos\left(\frac{\pi}{10}\right)}{2sen\left(\frac{\pi}{5}\right)}$$

$$sen\left(\frac{\pi}{10}\right)\cos\left(\frac{\pi}{5}\right) = \frac{\cos\left(\frac{2\pi}{5}\right)\cos\left(\frac{\pi}{10}\right)}{4sen\left(\frac{\pi}{10}\right)\cos\left(\frac{\pi}{10}\right)}$$

$$sen\left(\frac{\pi}{10}\right)\cos\left(\frac{\pi}{5}\right) = \frac{1}{4}\frac{\cos\left(\frac{2\pi}{5}\right)}{sen\left(\frac{\pi}{10}\right)}$$

Agora, basta perceber que
$$\frac{2\pi}{5} + \frac{\pi}{10} = \frac{\pi}{2}$$
:

$$\frac{2\pi}{5} + \frac{\pi}{10} = \frac{\pi}{2}$$

$$\Rightarrow \frac{\pi}{10} = \frac{\pi}{2} - \frac{2\pi}{5}$$

$$\operatorname{sen}\left(\frac{\pi}{10}\right) \cos\left(\frac{\pi}{5}\right) = \frac{1}{4} \left(\frac{\cos\left(\frac{2\pi}{5}\right)}{\sin\left(\frac{\pi}{2} - \frac{2\pi}{5}\right)}\right)$$

$$\operatorname{sen}\left(\frac{\pi}{10}\right) \cos\left(\frac{\pi}{5}\right) = \frac{1}{4} \left(\frac{\cos\left(\frac{2\pi}{5}\right)}{\cos\left(\frac{2\pi}{5}\right)}\right)$$

$$\Rightarrow \operatorname{sen}\left(\frac{\pi}{10}\right) \cos\left(\frac{\pi}{5}\right) = \frac{1}{4}$$

Gabarito: a) 0 b) $sen\left(\frac{\pi}{10}\right)\cos\left(\frac{\pi}{5}\right) = \frac{1}{4}$

20. (ITA/2010)

A equação em x, $arctg(e^x + 2) - arccotg(\frac{e^x}{e^{2x} - 1}) = \frac{\pi}{4}$, $x \in \mathbb{R} \setminus \{0\}$

a) admite infinitas soluções, todas positivas.

- b) admite uma única solução, e esta é positiva.
- c) admite três soluções que se encontram no intervalo] $-\frac{5}{2}, \frac{3}{2}$ [.
- d) admite apenas soluções negativas.
- e) não admite solução.

Fazendo
$$\alpha=arctg(e^x+2)$$
 e $\beta=arccotg\left(\frac{e^x}{e^{2x}-1}\right)$:
$$tg\alpha=e^x+2$$

$$cotg(\beta)=\frac{e^x}{e^{2x}-1}\Rightarrow tg(\beta)=\frac{e^{2x}-1}{e^x}$$

$$\alpha-\beta=\frac{\pi}{4}$$

Aplicando a tangente na equação acima, temos:

$$tg(\alpha - \beta) = tg\left(\frac{\pi}{4}\right)$$
$$\frac{tg\alpha - tg\beta}{1 + tg\alpha tg\beta} = 1$$

Substituindo $tg\alpha$ e $tg\beta$:

$$(e^{x} + 2) - \left(\frac{e^{2x} - 1}{e^{x}}\right) = 1 + (e^{x} + 2)\left(\frac{e^{2x} - 1}{e^{x}}\right)$$
$$e^{2x} + 2e^{x} - e^{2x} + 1 = e^{x} + e^{3x} - e^{x} + 2e^{2x} - 2$$
$$e^{3x} + 2e^{2x} - 2e^{x} - 3 = 0$$

Fazendo $y = e^x$:

$$y^3 + 2y^2 - 2y - 3 = 0$$

Fatorando:

$$y^{3} + y^{2} + y^{2} - 2y - 2 - 1 = 0$$

$$y^{2}(y+1) + y^{2} - 1 - 2(y+1) = 0$$

$$y^{2}(y+1) + (y-1)(y+1) - 2(y+1) = 0$$

$$(y+1)(y^{2} + y - 1 - 2) = 0$$

$$(y+1)(y^{2} + y - 3) = 0$$

Raízes:

$$y = -1$$
$$y = \frac{-1 \pm \sqrt{13}}{2}$$

Como $y = e^x > 0$, temos uma única solução:

$$e^x = \frac{-1 + \sqrt{13}}{2}$$

Analisando as alternativas, encontramos o gabarito na letra b.

Gabarito: "b".

21. (ITA/2010)

O valor da soma $\sum_{n=1}^{6} sen\left(\frac{2\alpha}{3^n}\right) sen\left(\frac{\alpha}{3^n}\right)$, para todo $\alpha \in \mathbb{R}$, é igual a

a)
$$\frac{1}{2} \left[\cos \left(\frac{\alpha}{729} \right) - \cos \alpha \right]$$

b)
$$\frac{1}{2} \left[\operatorname{sen} \left(\frac{\alpha}{243} \right) - \operatorname{sen} \left(\frac{\alpha}{729} \right) \right]$$

c)
$$\left[\cos\left(\frac{\alpha}{243}\right) - \cos\left(\frac{\alpha}{729}\right)\right]$$

d)
$$\frac{1}{2} \left[\cos \left(\frac{\alpha}{729} \right) - \cos \left(\frac{\alpha}{243} \right) \right]$$

e)
$$\left[\cos\left(\frac{\alpha}{729}\right) - \cos\alpha\right]$$

Comentários

Podemos escrever o produto do seno dessa forma:

$$sen\left(\frac{2\alpha}{3^n}\right)sen\left(\frac{\alpha}{3^n}\right) = \frac{1}{2}\left[\cos\left(\frac{\alpha}{3^n}\right) - \cos\left(\frac{\alpha}{3^{n-1}}\right)\right]$$

Assim, a soma fica:

$$S = \sum_{n=1}^{6} sen\left(\frac{2\alpha}{3^n}\right) sen\left(\frac{\alpha}{3^n}\right)$$

$$S = \sum_{n=1}^{6} \frac{1}{2} \left[\cos\left(\frac{\alpha}{3^n}\right) - \cos\left(\frac{\alpha}{3^{n-1}}\right)\right]$$

$$S = \frac{1}{2} \left[\left(\cos\left(\frac{\alpha}{3}\right) - \cos(\alpha)\right) + \left(\cos\left(\frac{\alpha}{3^2}\right) - \cos\left(\frac{\alpha}{3}\right)\right) + \dots + \left(\cos\left(\frac{\alpha}{3^6}\right) - \cos\left(\frac{\alpha}{3^5}\right)\right)\right]$$

$$S = \frac{1}{2} \left[\cos\left(\frac{\alpha}{3^6}\right) - \cos(\alpha)\right]$$

$$S = \frac{1}{2} \left[\cos\left(\frac{\alpha}{3^6}\right) - \cos(\alpha)\right]$$

Gabarito: "a".

22. (ITA/2008)

O conjunto imagem e o período de $f(x) = 2sen^2(3x) + sen(6x) - 1$ são, respectivamente,

a)
$$[-3,3]$$
 e 2π

b)
$$[-2, 2] e^{\frac{2\pi}{3}}$$

c)
$$[-\sqrt{2}, \sqrt{2}] e^{\frac{\pi}{3}}$$

d)
$$[-1,3] e^{\frac{\pi}{3}}$$

e)
$$[-1,3]$$
 e $\frac{2\pi}{3}$

Comentários

Perceba que temos o termo escondido $cos(6x) = 1 - 2sen^2(3x)$.

Assim, podemos escrever:

$$f(x) = sen(6x) - (1 - 2sen^2(3x))$$
$$f(x) = sen(6x) - \cos(6x)$$

Agora, encontramos uma equação clássica. Veja o pulo do gato:

$$f(x) = \frac{\sqrt{2}}{\sqrt{2}}(sen(6x) - \cos(6x))$$

$$f(x) = \sqrt{2}\left(sen(6x)\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}\cos(6x)\right)$$

$$f(x) = \sqrt{2}\left(sen(6x)\cos\left(\frac{\pi}{4}\right) - sen\left(\frac{\pi}{4}\right)\cos(6x)\right)$$

Essa é a fórmula da diferença do seno:

$$f(x) = \sqrt{2} \left(sen \left(6x - \frac{\pi}{4} \right) \right)$$

Sabemos que a função seno pertence ao intervalo [-1; 1], dessa forma:

$$-1 \le sen\left(6x - \frac{\pi}{4}\right) \le 1$$
$$-\sqrt{2} \le \sqrt{2}sen\left(6x - \frac{\pi}{4}\right) \le \sqrt{2}$$
$$-\sqrt{2} \le f(x) \le \sqrt{2}$$
$$\Rightarrow Im(f) = \left[-\sqrt{2}; \sqrt{2}\right]$$

Para encontrar o período da função, podemos usar a definição:

$$f(x+T) = f(x)$$

$$\sqrt{2}sen\left(6(x+T) - \frac{\pi}{4}\right) = \sqrt{2}sen\left(6x - \frac{\pi}{4}\right)$$

Sabemos que o período da função seno é $2k\pi$, $k \in \mathbb{Z}$:

$$6x + 6T - \frac{\pi}{4} = 6x - \frac{\pi}{4} + 2k\pi$$
$$6T = 2k\pi$$
$$T = \frac{k\pi}{3}$$

O período é dado pelo menor valor positivo de T:

$$\Rightarrow T = \frac{\pi}{3}$$

Com isso, encontramos o gabarito na letra "c".

Gabarito: "c".

23. (ITA/2008)

Sendo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ o contradomínio da função arco-seno e $[0,\pi]$ o contradomínio da função arco-cosseno, assinale o valor de

$$\cos\left[arcsen\left(\frac{3}{5}\right) + arccos\left(\frac{4}{5}\right)\right]$$

- a) $\frac{1}{\sqrt{12}}$
- b) $\frac{7}{25}$
- c) $\frac{4}{15}$
- d) $\frac{1}{\sqrt{15}}$
- e) $\frac{1}{2\sqrt{5}}$

Comentários

Fazendo $\alpha = arcsen\left(\frac{3}{5}\right)$ e $\beta = arccos\left(\frac{4}{5}\right)$, temos:

$$sen\alpha = \frac{3}{5}$$

$$\cos\beta = \frac{4}{5}$$

Perceba que podemos usar a relação fundamental:

$$sen^2\alpha + \cos^2\alpha = 1$$

$$\cos \alpha = \pm \frac{4}{5}$$

Como o contradomínio da função arco-seno é $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

$$sen\alpha = \frac{3}{5} \Rightarrow \alpha \in \left(0, \frac{\pi}{2}\right] \Rightarrow cos\alpha = \frac{4}{5}$$

O contradomínio da função arco-cosseno é $[0,\pi]$, então:

$$\cos\beta = \frac{4}{5} \Rightarrow \beta \in \left(0, \frac{\pi}{2}\right]$$

Assim, podemos afirmar que $\alpha = \beta$, pois $cos\alpha = cos\beta = 4/5$.

Calculando o valor da expressão:

$$\cos(\alpha + \beta) = \cos(2\alpha) = 1 - 2sen^2\alpha = 1 - 2\left(\frac{3}{5}\right)^2 = \frac{7}{25}$$

Gabarito: "b".

24. (ITA/2007)

Assinale a opção que indica a soma dos elementos de $A \cup B$, sendo:

$$A = \left\{ x_k = sen^2 \left(\frac{k^2 \pi}{24} \right) : k = 1, 2 \right\} e$$

$$B = \left\{ y_k = sen^2 \left(\frac{(3k+5)\pi}{24} \right) : k = 1, 2 \right\}.$$

- a) 0
- b) 1
- c) 2

d)
$$(2 - \sqrt{2 + \sqrt{3}})/3$$

e)
$$(2 + \sqrt{2 - \sqrt{3}})/3$$

Vamos encontrar os elementos de cada conjunto:

$$A = \left\{ x_k = sen^2 \left(\frac{k^2 \pi}{24} \right) : k = 1, 2 \right\}$$

$$x_1 = sen^2 \left(\frac{1^2 \pi}{24} \right) = sen^2 \left(\frac{\pi}{24} \right)$$

$$x_2 = sen^2 \left(\frac{2^2 \pi}{24} \right) = sen^2 \left(\frac{\pi}{6} \right)$$

$$B = \left\{ y_k = sen^2 \left(\frac{(3k+5)\pi}{24} \right) : k = 1, 2 \right\}$$

$$y_1 = sen^2 \left(\frac{(3+5)\pi}{24} \right) = sen^2 \left(\frac{\pi}{3} \right)$$

$$y_2 = sen^2 \left(\frac{(6+5)\pi}{24} \right) = sen^2 \left(\frac{11\pi}{24} \right)$$

Os elementos de $A \cup B$ são dados por:

$$A \cup B = \{x_1, x_2\} \cup \{y_1, y_2\} = \left\{ sen^2\left(\frac{\pi}{24}\right), sen^2\left(\frac{\pi}{6}\right), sen^2\left(\frac{\pi}{3}\right), sen^2\left(\frac{11\pi}{24}\right) \right\}$$

Queremos a soma dos elementos desse conjunto:

$$S = sen^{2}\left(\frac{\pi}{24}\right) + sen^{2}\left(\frac{\pi}{6}\right) + sen^{2}\left(\frac{\pi}{3}\right) + sen^{2}\left(\frac{11\pi}{24}\right)$$

Perceba que temos ângulos complementares:

$$\frac{\pi}{24} = \frac{\pi}{2} - \frac{11\pi}{24} \Rightarrow sen^2\left(\frac{11\pi}{24}\right) = \cos^2\left(\frac{\pi}{24}\right)$$
$$\frac{\pi}{6} = \frac{\pi}{2} - \frac{\pi}{3} \Rightarrow sen^2\left(\frac{\pi}{3}\right) = \cos^2\left(\frac{\pi}{6}\right)$$

Reescrevendo a soma:

$$S = \underbrace{sen^2\left(\frac{\pi}{24}\right) + \cos^2\left(\frac{\pi}{24}\right)}_{1} + \underbrace{sen^2\left(\frac{\pi}{6}\right) + \cos^2\left(\frac{\pi}{6}\right)}_{1}$$

$$\Rightarrow S = 2$$

Gabarito: "c".

Considerando as funções

$$arcsen: [-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] e$$

$$arccos: [-1,1] \rightarrow [0,\pi],$$

Assinale o valor de $\cos \left[arcsen\left(\frac{3}{5}\right) + arccos\left(\frac{4}{5}\right) \right]$.

- a) 6/25
- b) 7/25
- c) 1/3
- d) 2/5
- e) 5/12

Comentários

Fazendo $\alpha = arcsen\left(\frac{3}{5}\right)$ e $\beta = arccos\left(\frac{4}{5}\right)$, temos:

$$sen\alpha = \frac{3}{5} \Rightarrow cos\alpha = \pm \frac{4}{5}$$

Como $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ e $sen\alpha = 3/5$, temos $cos\alpha > 0$:

$$cos\alpha = \frac{4}{5}$$

Para β :

$$\cos\beta = \frac{4}{5} \Rightarrow \sin\beta = \pm \frac{3}{5}$$

Como $\beta \in [0, \pi]$, temos $sen\beta > 0$:

$$sen\beta = \frac{3}{5}$$

Queremos calcular o valor da expressão:

$$cos(\alpha + \beta) = cos\alpha cos\beta - sen\alpha sen\beta$$

Substituindo os valores:

$$\cos(\alpha + \beta) = \frac{4}{5} \cdot \frac{4}{5} - \frac{3}{5} \cdot \frac{3}{5} = \frac{16 - 9}{25} = \frac{7}{25}$$

Gabarito: "b".

26. (ITA/2004)

Prove que, se os ângulos internos α , β e γ de um triângulo satisfazem a equação: $sen(3\alpha) + sen(3\beta) + sen(3\gamma) = 0$, então, pelo menos, um dos três ângulos α , β ou γ é igual a 60° .

Comentários

Se α , β , γ são os ângulos internos do triângulo, temos:

$$\alpha + \beta + \gamma = 180^{\circ}$$

$$\gamma = 180^{\circ} - (\alpha + \beta)$$

Vamos transformar a soma $sen(3\alpha) + sen(3\beta)$ em produto e substituir $\gamma = 180^{\circ} - (\alpha + \beta)$: Lembrando que:

$$sen(p) + sen(q) = 2sen\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

$$sen(3\alpha) + sen(3\beta) + sen(3\gamma) = 0$$

$$2sen\left(\frac{3\alpha + 3\beta}{2}\right)\cos\left(\frac{3\alpha - 3\beta}{2}\right) + sen(3 \cdot 180^{\circ} - 3(\alpha + \beta)) = 0$$

Sabemos que $sen(3 \cdot 180^{\circ} - 3(\alpha + \beta)) = sen(3\alpha + 3\beta)$, usando a fórmula do arco metade:

$$2sen\left(\frac{3\alpha+3\beta}{2}\right)\cos\left(\frac{3\alpha-3\beta}{2}\right) + 2sen\left(\frac{3\alpha+3\beta}{2}\right)\cos\left(\frac{3\alpha+3\beta}{2}\right) = 0$$

$$2sen\left(\frac{3\alpha+3\beta}{2}\right)\left(\cos\left(\frac{3\alpha-3\beta}{2}\right) + \cos\left(\frac{3\alpha+3\beta}{2}\right)\right) = 0$$

$$2sen\left(\frac{3\alpha+3\beta}{2}\right)\left(\cos\left(\frac{3\alpha}{2}\right)\cos\left(\frac{3\beta}{2}\right) + sen\left(\frac{3\alpha}{2}\right)sen\left(\frac{3\beta}{2}\right) + \cos\left(\frac{3\alpha}{2}\right)\cos\left(\frac{3\beta}{2}\right)\right)$$

$$-sen\left(\frac{3\alpha}{2}\right)sen\left(\frac{3\beta}{2}\right)\right) = 0$$

$$2sen\left(\frac{3\alpha+3\beta}{2}\right)\left(2\cos\left(\frac{3\alpha}{2}\right)\cos\left(\frac{3\beta}{2}\right)\right) = 0$$

$$\Rightarrow sen\left(\frac{3\alpha+3\beta}{2}\right) = 0 \text{ ou } \cos\left(\frac{3\alpha}{2}\right)ou\cos\left(\frac{3\beta}{2}\right) = 0$$

Para $sen\left(\frac{3\alpha+3\beta}{2}\right)=0$:

$$\frac{3\alpha + 3\beta}{2} = k180^{\circ} \Rightarrow \alpha + \beta = k120^{\circ}$$

Como $\alpha, \beta, \gamma \in (0, 180^{\circ})$, temos:

$$\alpha + \beta = 120^{\circ}$$

Substituindo $\alpha + \beta = 180^{\circ} - \gamma$:

$$180^{\circ} - \gamma = 120^{\circ} \Rightarrow \gamma = 60^{\circ}$$

Para $\cos\left(\frac{3\alpha}{2}\right) = 0$:

$$\frac{3\alpha}{2} = 90^{\circ} \Rightarrow \alpha = 60^{\circ}$$

Para $\cos\left(\frac{3\beta}{2}\right) = 0$:

$$\frac{3\beta}{2} = 90^{\circ} \Rightarrow \beta = 60^{\circ}$$

Portanto, em qualquer uma das situações temos que um dos três ângulos é 60°.

Gabarito: Demonstração

27. (ITA/2003)

Considere os contradomínios das funções arco-seno e arco-cosseno como sendo $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ e $[0,\pi]$, respectivamente.

Com respeito à função $f: [-1,1] \to \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right], f(x) = arcsenx + arccosx$, temos que:

- a) f é não-crescente e impar.
- b) f não é par nem ímpar.
- c) f é sobrejetora.
- d) f é injetora.
- e) f é constante.

Comentários

Fazendo $\alpha = arcsenx$ e $\beta = arccosx$ tal que $\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ e $\beta \in [0, \pi]$, temos:

$$sen\alpha = x$$

$$cos\beta = x$$

Igualando os dois valores de x:

$$sen\alpha = cos\beta$$

$$sen\alpha = sen\left(\frac{\pi}{2} - \beta\right)$$

$$-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$$

$$0 \le \beta \le \pi \Rightarrow -\pi \le -\beta \le 0 \Rightarrow -\frac{\pi}{2} \le \frac{\pi}{2} - \beta \le \frac{\pi}{2}$$

Devido às restrições dos intervalos, podemos escrever:

$$\alpha = \frac{\pi}{2} - \beta$$

$$\alpha + \beta = \frac{\pi}{2}$$

$$arcsenx + arccosx = \frac{\pi}{2}$$

$$f(x) = \frac{\pi}{2}$$

 $\therefore f$ é constante

Gabarito: "e".

28. (ITA/2003)

Considere um quadrado ABCD. Sejam E o ponto médio do segmento CD e F um ponto sobre o segmento CE tal que m(BC) + m(CF) = m(AF). Prove que $cos\alpha = cos2\beta$, sendo os ângulos $\alpha = B\hat{A}F$ e $\beta = E\hat{A}D$.

Comentários

De acordo com o enunciado, temos a seguinte figura:

Usando o teorema de Pitágoras nos triângulos *EAD* e *GAF*:

$$AE^{2} = \left(\frac{l}{2}\right)^{2} + l^{2}$$

$$AE = \frac{\sqrt{5}}{2}l$$

$$AF^{2} = l^{2} + (l - x)^{2}$$

Do enunciado, temos:

$$m(BC) + m(CF) = m(AF)$$

$$AF = l + x$$

$$\Rightarrow (l + x)^{2} = l^{2} + (l - x)^{2}$$

$$l^{2} + 2lx + x^{2} = l^{2} + l^{2} - 2lx + x^{2}$$

$$l^{2} + 2lx + x^{2} = l^{2} + l^{2} - 2lx + x^{2}$$

$$l^{2} - 4lx = 0$$

$$l(l - 4x) = 0$$

Como $l \neq 0$:

$$l = 4x \Rightarrow x = \frac{l}{4}$$

Assim, os valores dos cossenos são dados por:

$$\cos\alpha = \frac{AG}{AF} = \frac{\frac{3l}{4}}{\frac{5l}{4}} = \frac{3}{5}$$

$$\cos\beta = \frac{AD}{AE} = \frac{l}{\frac{\sqrt{5}}{2}l} = \frac{2\sqrt{5}}{5}$$

Calculando $cos(2\beta)$:

$$\cos(2\beta) = 2\cos^2\beta - 1 = 2\left(\frac{2\sqrt{5}}{5}\right)^2 - 1 = \frac{8}{5} - 1 = \frac{3}{5}$$

$$\therefore \cos(2\beta) = \cos \alpha$$

Gabarito: Demonstração

29. (ITA/2003)

Para todo $x \in \mathbb{R}$, a expressão $[\cos(2x)]^2[sen(2x)]^2senx$ é igual a:

a)
$$2^{-4}[sen(2x) + sen(5x) + sen(7x)].$$

b)
$$2^{-4}[2sen(x) + sen(7x) - sen(9x)]$$
.

c)
$$2^{-4}[-sen(2x) - sen(3x) + sen(7x)]$$
.

d)
$$2^{-4}[-sen(x) + 2sen(5x) - sen(9x)]$$
.

e)
$$2^{-4}[sen(x) + 2sen(3x) + sen(5x)]$$
.

Comentários

Podemos simplificar a expressão:

$$[\cos(2x) \operatorname{sen}(2x)]^2 \operatorname{sen}(2x) = \left[\frac{\operatorname{sen}(4x)}{2}\right]^2 \operatorname{sen}(2x) = \frac{\operatorname{sen}(4x) \operatorname{sen}(4x) \operatorname{sen}(4x)}{4}$$

Analisando as alternativas, devemos transformar o produto em soma. Usando a seguinte fórmula de Werner:

$$\frac{-2senAsenB = \cos(A+B) - \cos(A-B)}{2senAsenB = \cos(A-B) - \cos(A+B)}$$
$$\frac{sen(4x)sen(4x)senx}{4} = \frac{2sen(4x)[sen(4x)senx]}{8}$$
$$\frac{sen(4x)[\cos(3x) - \cos(5x)]}{9} = \frac{2sen(4x)\cos(3x) - 2sen(4x)\cos(5x)}{16}$$

Usando a outra fórmula de Werner:

$$\frac{2senAcosB = sen(A + B) + sen(A - B)}{sen(7x) + sen(x) - \left(sen(9x) + \underbrace{sen(-x)}_{-sen(x)}\right)}{16}$$

$$\frac{1}{2^4} \left(sen(7x) + sen(x) - sen(9x) - \left(-sen(x)\right)\right)$$

$$\frac{1}{2^4} \left(2sen(x) + sen(7x) - sen(9x)\right)$$

Gabarito: "b".

30. (ITA/2002)

Seja $f: \mathbb{R} \to P(\mathbb{R})$ dada por $f(x) = \{y \in \mathbb{R}; seny < x\}.$

Se A é tal que $f(x) = \mathbb{R}, \forall x \in A$, então

- a) A = [-1, 1].
- b) $A = [a, \infty), \forall a > 1$.
- c) $A = [a, \infty), \forall a \ge 1$.
- d) $A = (-\infty, a], \forall a < -1.$
- e) $A = (-\infty, a], \forall a \le -1.$

Comentários

Analisando a função e de acordo com o enunciado:

$$f(x) = \mathbb{R}, \forall x \in A$$
$$f(x) = \{y \in \mathbb{R}; seny < x\}$$
$$\Rightarrow \{y \in \mathbb{R}; seny < x\} = \mathbb{R}$$

Para todo real y, temos $seny \le 1$, então, se x > 1 a igualdade acima torna-se verdadeira.

Portanto, $x \in A \Leftrightarrow x > 1$.

$$A = [a, \infty], \forall a > 1$$

Analisando as alternativas, encontramos o gabarito na letra b.

Gabarito: "b".

31. (ITA/2002)

Se x, y e z são ângulos internos de um triângulo ABC e senx = (seny + senz)/(cosy + cosz), prove que o triângulo ABC é retângulo.

Comentários

Como x, y, z são os ângulos internos do triângulo ABC, temos:

$$x + y + z = \pi$$

$$y + z = \pi - x$$

Vamos transformar as somas em produto, usando as seguintes transformações:

$$sen(p) + sen(q) = 2sen\left(\frac{p+q}{2}\right)cos\left(\frac{p-q}{2}\right)$$

$$cos(p) + cos(q) = 2cos\left(\frac{p+q}{2}\right)cos\left(\frac{p-q}{2}\right)$$

$$senx = \frac{2sen\left(\frac{y+z}{2}\right)cos\left(\frac{y-z}{2}\right)}{2cos\left(\frac{y+z}{2}\right)cos\left(\frac{y-z}{2}\right)}$$

$$senx = tg\left(\frac{y+z}{2}\right)$$

Substituindo $y + z = \pi - x$:

$$senx = tg\left(\frac{\pi}{2} - \frac{x}{2}\right) = cotg\left(\frac{x}{2}\right)$$

Usando a fórmula de arco metade do seno:

$$2sen\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = \frac{\cos\left(\frac{x}{2}\right)}{sen\left(\frac{x}{2}\right)}$$

Sabemos que $x < \pi$, então, $\frac{x}{2} < \frac{\pi}{2} \Rightarrow \cos(x) \neq 0$. Assim, temos:

$$2sen\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = \frac{\cos\left(\frac{x}{2}\right)}{sen\left(\frac{x}{2}\right)}$$

$$2sen^2\left(\frac{x}{2}\right) = 1$$

$$sen\left(\frac{x}{2}\right) = \pm \frac{\sqrt{2}}{2}$$

Como x é um ângulo do triângulo, temos x > 0, então:

$$sen\left(\frac{x}{2}\right) = \frac{\sqrt{2}}{2} \Rightarrow \frac{x}{2} = \frac{\pi}{4} \Rightarrow x = \frac{\pi}{2}$$

Portanto, o triângulo ABC é retângulo.

Gabarito: Demonstração

32. (ITA/2001)

Considere as funções

$$f(x) = \frac{5+7^x}{4}$$
, $g(x) = \frac{5-7^x}{4}$ e $h(x) = arctgx$

Se $a \in tal que h(f(a)) + h(g(a)) = \pi/4$, então f(a) - g(a) vale:

- a) 0
- b) 1
- c) 7/4
- d) 7/2
- e) 7

Comentários

Usando os dados do problema, temos:

$$arctg(f(a)) + arctg(g(a)) = \frac{\pi}{4}$$

Fazendo $\alpha=arctgig(f(a)ig)$ e $\beta=arctgig(g(a)ig)$ e aplicando a função tangente na equação acima:

$$tg\alpha = f(a) e tg\beta = g(a)$$

$$tg(\alpha+\beta)=tg\left(\frac{\pi}{4}\right)$$

$$\frac{tg(\alpha) + tg(\beta)}{1 - tg(\alpha)tg(\beta)} = 1$$

$$tg(\alpha) + tg(\beta) = 1 - tg(\alpha)tg(\beta)$$

$$f(a) + g(a) = 1 - f(a)g(a)$$

Substituindo os valores das funções:

$$\frac{5+7^{a}}{4} + \frac{5-7^{a}}{4} = 1 - \left(\frac{5+7^{a}}{4}\right) \left(\frac{5-7^{a}}{4}\right)$$

$$\frac{10}{4} = 1 - \frac{25-7^{2a}}{16}$$

$$\frac{10}{4} = \frac{7^{2a}-9}{16}$$

$$49 = 7^{2a}$$

$$a = 1$$

Calculando o valor da expressão f(a) - g(a):

$$f(a) = f(1) = \frac{5+7}{4} = 3$$
$$g(a) = g(1) = \frac{5-7}{4} = -\frac{1}{2}$$
$$f(a) - g(a) = 3 - \left(-\frac{1}{2}\right) = \frac{7}{2}$$

Gabarito: "d".

33. (ITA/2001)

Sendo α e β os ângulos de um triângulo retângulo, e sabendo que $sen^22\beta-2cos2\beta=0$, então $sen\alpha$ é igual a:

- a) $\sqrt{2}/2$
- b) $\sqrt[4]{2}/2$
- c) $\sqrt[4]{8}/2$
- d) $\sqrt[4]{8}/4$
- e) zero

Comentários

Substituindo $sen^2 2\beta = 1 - \cos^2 2\beta$:

$$1 - \cos^2 2\beta - 2\cos 2\beta = 0$$
$$\cos^2 2\beta + 2\cos 2\beta - 1 = 0$$

Encontrando as raízes:

$$\cos 2\beta = -1 \pm \sqrt{2}$$

Como $-1 \le \cos 2\beta \le 1$, temos:

$$\cos 2\beta = \sqrt{2} - 1$$

Reescrevendo o cosseno:

$$2\cos^2\beta - 1 = \sqrt{2} - 1$$
$$\cos^2\beta = \frac{\sqrt{2}}{2}$$

 $\cos \beta$ é positivo, pois é ângulo de um triângulo. Então:

$$\cos\beta = \frac{\sqrt[4]{2}}{\sqrt{2}}$$

$$\cos\beta = \frac{\sqrt[4]{2}}{2}\sqrt{2} = \frac{\sqrt[4]{2}}{2}\sqrt[4]{2^2} = \frac{\sqrt[4]{8}}{2}$$

Queremos calcular o valor de $sen \alpha$, sendo α e β ângulos de um triângulo retângulo, temos a seguinte relação:

$$sen\alpha = \cos\left(\frac{\pi}{2} - \alpha\right) = \cos\beta = \frac{\sqrt[4]{8}}{2}$$

Gabarito: "c".

34. (ITA/2000)

Considere $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = 2sen3x - \cos\left[\frac{x-\pi}{2}\right]$. Sobre f podemos afirmar que:

- a) é uma função par.
- b) é uma função ímpar e periódica de período fundamental 4π .
- c) é uma função ímpar e periódica de período fundamental $4\pi/3$.
- d) é uma função periódica de período fundamental 2π .
- e) não é par, não é impar e não é periódica.

Comentários

Como a função cosseno é par, podemos escrever:

$$f(x) = 2sen3x - \cos\left[\frac{x-\pi}{2}\right] = 2sen3x - \cos\left[\frac{\pi-x}{2}\right] = 2sen3x - sen\left(\frac{x}{2}\right)$$

Analisando a paridade da função:

$$f(-x) = 2sen(-3x) - sen\left(-\frac{x}{2}\right)$$
$$f(-x) = -2sen(3x) + sen\left(\frac{x}{2}\right)$$
$$f(-x) = -f(x)$$
$$\therefore f \in \text{impar}$$

O período da função sen(3x) é:

$$T_1 = \frac{2\pi}{3}$$

O período da função $sen\left(\frac{x}{2}\right)$ é:

$$T_2 = \frac{2\pi}{\frac{1}{2}} = 4\pi$$

Perceba que $T_2=4\pi=6\left(\frac{2\pi}{3}\right)=6T_1$. Portanto, o período fundamental da função f é:

$$T = T_2 = 4\pi$$

Gabarito: "b".

35. (ITA/1999)

Seja $a \in \mathbb{R}$ com $0 < a < \pi/2$. A expressão $\left[sen\left(\frac{3\pi}{4} + a\right) + sen\left(\frac{3\pi}{4} - a\right)\right]sen\left(\frac{\pi}{2} - a\right)$ é idêntica a:

- a) $\frac{\sqrt{2}cotg^2a}{1+cotg^2a}$
- b) $\frac{\sqrt{2}cotga}{1+cotg^2a}$
- c) $\frac{\sqrt{2}}{1+cotg^2a}$
- d) $\frac{1+3cotga}{2}$
- e) $\frac{1+2cotga}{1+cotga}$

Comentários

Perceba que $sen\left(\frac{\pi}{2}-a\right)=\cos a$. Vamos transformar a soma do seno em produto, usando a seguinte fórmula:

$$sen(p) + sen(q) = 2sen\left(\frac{p+q}{2}\right)\cos\left(\frac{p-q}{2}\right)$$

A expressão fica:

$$\left[2sen\left(\frac{3\pi}{4} + a + \frac{3\pi}{4} - a\right)\cos\left(\frac{3\pi}{4} + a - \frac{3\pi}{4} + a\right)\right]\cos a$$

$$\left[2sen\left(\frac{3\pi}{4}\right)\cos a\right]\cos a$$

$$\frac{2\sqrt{2}}{2}\cos^2 a$$

$$\sqrt{2}\cos^2 a$$

Analisando as alternativas, vemos que devemos escrever o cosseno como cotangente:

$$\sqrt{2}\cos^2 a = \frac{\sqrt{2}\cos^2 a}{sen^2 a} \cdot sen^2 a = \frac{\sqrt{2}cotg^2 a}{cossec^2 a} = \frac{\sqrt{2}cotg^2 a}{1 + cotg^2 a}$$

Gabarito: "a".

36. (ITA/1999)

Se $x \in [0, \pi/2[$ é tal que $4tg^4x = \frac{1}{\cos^4 x} + 4$, então o valor de sen(2x) + sen(4x) é:

- b) $\sqrt{15}/8$
- c) $3\sqrt{5}/8$
- d) 1/2
- e) 1

Usando os dados do enunciado, temos:

$$4tg^{4}x = \frac{1}{\cos^{4}x} + 4$$

$$\frac{4sen^{4}x}{\cos^{4}x} = \frac{1 + 4\cos^{4}x}{\cos^{4}x}$$

$$4sen^{4}x - 4\cos^{4}x = 1$$

$$4(sen^{2}x - \cos^{2}x)\left(\frac{sen^{2}x + \cos^{2}x}{1}\right) = 1$$

$$4(-\cos(2x)) = 1$$

$$\cos(2x) = -\frac{1}{4}$$

Aplicando o teorema fundamental:

$$sen(2x) = \pm \sqrt{1 - \cos^2(2x)} = \pm \sqrt{1 - \frac{1}{16}} = \pm \frac{\sqrt{15}}{4}$$

O enunciado afirma que x pertence ao intervalo:

$$0 \le x < \frac{\pi}{2} \Rightarrow 0 \le 2x < \pi$$

Para esses valores, temos sen(2x) > 0, desse modo:

$$sen(2x) = \frac{\sqrt{15}}{4}$$

Calculando o valor da expressão:

$$sen(2x) + sen(4x) = sen(2x) + 2sen(2x)\cos(2x)$$

Substituindo os valores:

$$\frac{\sqrt{15}}{4} + \frac{2\sqrt{15}}{4} \left(-\frac{1}{4} \right) = \frac{\sqrt{15}}{8}$$

Gabarito: "b".

37. (ITA/1996)

Seja α um número real tal que $\alpha > 2(1+\sqrt{2})$ e considere a equação $x^2 - \alpha x + \alpha + 1 = 0$. Sabendo que as raízes reais dessa equação são as cotangentes de dois dos ângulos internos de um triângulo, então o terceiro ângulo interno desse triângulo vale:

a) 30°

- c) 60°
- d) 135°
- e) 120°

Seja θ , β , γ os ângulos internos de um triângulo ABC. Vamos calcular as raízes da equação:

$$x^{2} - \alpha x + \alpha + 1 = 0$$

$$x_{1,2} = \frac{\alpha \pm \sqrt{\alpha^{2} - 4(\alpha + 1)}}{2}$$

$$x_{1,2} = \frac{\alpha \pm \sqrt{\alpha^{2} - 4\alpha - 4}}{2}$$

$$x_{1} = \frac{\alpha - \sqrt{\alpha^{2} - 4\alpha - 4}}{2} e x_{2} = \frac{\alpha + \sqrt{\alpha^{2} - 4\alpha - 4}}{2}$$

Definindo $cotg\beta=x_1\ e\ cotg\gamma=x_2$, temos da propriedade do triângulo:

$$\theta + \beta + \gamma = 180^{\circ}$$

$$\beta + \gamma = 180^{\circ} - \theta$$

$$\cot g(\beta + \gamma) = \cot g(180^{\circ} - \theta) = -\cot g(\theta)$$

$$\cot g(\theta) = -\cot g(\beta + \gamma)$$

Calculando $cot g(\theta)$:

$$cotg(\theta) = -cotg(\beta + \gamma) = -\frac{1}{tg(\beta + \gamma)} = \frac{tg\beta tg\gamma - 1}{tg\beta + tg\gamma}$$
$$cotg(\theta) = \frac{\left(\frac{1}{cotg\beta cotg\gamma} - 1\right)}{\frac{1}{cotg\beta} + \frac{1}{cotg\gamma}} = \frac{1 - cotg\beta cotg\gamma}{cotg\beta + cotg\gamma}$$

Sabemos que:

$$cotg\beta = \frac{\alpha - \sqrt{\alpha^2 - 4\alpha - 4}}{2} e \cot g\gamma = \frac{\alpha + \sqrt{\alpha^2 - 4\alpha - 4}}{2}$$
$$\Rightarrow \cot g\beta + \cot g\gamma = \alpha$$
$$\Rightarrow \cot g\beta \cot g\gamma = \frac{\alpha^2 - (\alpha^2 - 4\alpha - 4)}{4} = \alpha + 1$$

*Poderíamos ter aplicado diretamente as relações de Girard na equação para encontrar esses valores. Ainda estudaremos esse tema na aula de Polinômios.

Substituindo esses valores na equação da cotangente:

$$cotg(\theta) = \frac{1 - (\alpha + 1)}{\alpha} = -\frac{\alpha}{\alpha} = -1$$

Logo:

$$\theta = 135^{\circ}$$

Gabarito: "d".

38. (ITA/1996)

Seja $\alpha \in \left[0, \frac{\pi}{2}\right]$, tal que $sen\alpha + cos\alpha = m$. Então, o valor de $y = sen2\alpha/(sen^3\alpha + cos^3\alpha)$ será:

- a) $\frac{2(m^2-1)}{m(4-m^2)}$
- b) $\frac{2(m^2+1)}{m(4+m^2)}$
- c) $\frac{2(m^2-1)}{m(3-m^2)}$
- d) $\frac{2(m^2-1)}{m(3+m^2)}$
- e) $\frac{2(m^2+1)}{m(3-m^2)}$

Comentários

Usando os dados do enunciado, temos:

$$sen\alpha + cos\alpha = m \Rightarrow \underbrace{sen^2\alpha + cos^2\alpha}_{1} + \underbrace{2sen\alpha cos\alpha}_{sen(2\alpha)} = m^2 \Rightarrow sen(2\alpha) = m^2 - 1$$

Vamos fatorar a expressão:

$$y = \frac{sen(2\alpha)}{sen^3\alpha + \cos^3\alpha}$$

$$y = \frac{sen(2\alpha)}{(sen\alpha + \cos\alpha)(sen^2\alpha - sen\alpha\cos\alpha + \cos^2\alpha)}$$

$$y = \frac{sen(2\alpha)}{(sen\alpha + \cos\alpha)\left(1 - \frac{sen(2\alpha)}{2}\right)}$$

Substituindo os valores das variáveis, obtemos:

$$y = \frac{m^2 - 1}{m\left(1 - \frac{m^2 - 1}{2}\right)}$$
$$y = \frac{2(m^2 - 1)}{m(3 - m^2)}$$

Gabarito: "c".

39. (ITA/1995)

Seja a função $f: \mathbb{R} \to \mathbb{R}$ definida por:

$$f(x) = \begin{cases} a\left(x + \frac{\pi}{2}\right), se \ x < \frac{\pi}{2} \\ \frac{\pi}{2} - \frac{a}{x} senx, se \ x \ge \frac{\pi}{2} \end{cases}$$

Onde a > 0 é uma constante. Considere $K = \{y \in \mathbb{R}; f(y) = 0\}$. Qual o valor de a, sabendose que $f\left(\frac{\pi}{2}\right) \in K$?

- b) $\pi/2$
- c) π
- d) $\pi^2/2$
- e) π^2

De acordo com o enunciado, temos:

$$f\left(\frac{\pi}{2}\right) \in K \Rightarrow f\left(f\left(\frac{\pi}{2}\right)\right) = 0$$

Calculando $f\left(\frac{\pi}{2}\right)$:

$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} - \frac{a}{\left(\frac{\pi}{2}\right)} sen\left(\frac{\pi}{2}\right)$$
$$f\left(\frac{\pi}{2}\right) = \frac{\pi}{2} - \frac{2a}{\pi}$$

Temos que calcular $f\left(\frac{\pi}{2} - \frac{2a}{\pi}\right)$:

Como a > 0, temos:

$$-a < 0 \Rightarrow -\frac{2a}{\pi} < 0$$

Então:

$$\frac{\pi}{2} - \frac{2a}{\pi} < \frac{\pi}{2}$$

$$f\left(\frac{\pi}{2} - \frac{2a}{\pi}\right) = a\left(\frac{\pi}{2} - \frac{2a}{\pi} + \frac{\pi}{2}\right)$$

$$f\left(\frac{\pi}{2} - \frac{2a}{\pi}\right) = a\left(\pi - \frac{2a}{\pi}\right)$$

$$f\left(\frac{\pi}{2} - \frac{2a}{\pi}\right) = 0 \Rightarrow a\left(\pi - \frac{2a}{\pi}\right) = 0$$

Como a > 0:

$$\pi - \frac{2a}{\pi} = 0$$

$$\Rightarrow a = \frac{\pi^2}{2}$$

Gabarito: "d".

40. (ITA/1995)

Um dispositivo colocado no solo a uma distância d de uma torre dispara dois progéteis em trajetórias retilíneas. O primeiro, lançado sob um ângulo $\theta \in \left(0, \frac{\pi}{4}\right)$, atinge a torre a uma altura h. Se o segundo, disparado sob um ângulo 2θ , atinge-a a uma altura H, a relação entre as duas alturas será:

b)
$$H = 2hd^2/(d^2 + h)$$

c)
$$H = 2hd^2/(d^2 - h)$$

d)
$$H = 2hd^2/(d^2 + h^2)$$

e)
$$H = hd^2/(d^2 + h)$$

De acordo com o enunciado, temos o seguinte triângulo ABC:

Assim, temos as seguintes razões:

$$tg\theta = \frac{h}{d}$$

$$tg(2\theta) = \frac{H}{d}$$

$$\frac{2tg\theta}{1 - tg^2\theta} = \frac{H}{d}$$

$$\frac{\frac{2h}{d}}{1 - \left(\frac{h}{d}\right)^2} = \frac{H}{d}$$

$$H = \frac{2hd^2}{d^2 - h^2}$$

Gabarito: "a".

41. (ITA/1995)

A expressão $sen\theta/(1+cos\theta),\ 0<\theta<\pi,$ é idêntica a:

- b) $cossec\left(\frac{\theta}{2}\right)$
- c) $cotg\left(\frac{\theta}{2}\right)$
- d) $tg\left(\frac{\theta}{2}\right)$
- e) $\cos\left(\frac{\theta}{2}\right)$

Vamos simplificar a expressão:

$$\frac{sen\theta}{1+cos\theta} = \frac{2sen\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}{1+2\cos^2\left(\frac{\theta}{2}\right)-1} = \frac{sen\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} = tg\left(\frac{\theta}{2}\right)$$

Gabarito: "d".

42. (IME/2020)

Seja $\frac{1}{b} = sen \frac{\pi}{14} \cdot sen \frac{3\pi}{14} \cdot sen \frac{5\pi}{14}$. Determine b, onde b pertence ao conjunto dos números inteiros não nulos.

Comentários

De acordo com o enunciado, temos a seguinte expressão:

$$E = sen\left(\frac{\pi}{14}\right) \cdot sen\left(\frac{3\pi}{14}\right) \cdot sen\left(\frac{5\pi}{14}\right)$$

Multiplicando os dois lados por $2 \cdot \cos\left(\frac{\pi}{14}\right)$, temos:

$$2 \cdot \cos\left(\frac{\pi}{14}\right) \cdot E = \underbrace{2 \cdot \cos\left(\frac{\pi}{14}\right) \cdot sen\left(\frac{\pi}{14}\right)}_{sen\left(2 \cdot \frac{\pi}{14}\right)} \cdot sen\left(\frac{3\pi}{14}\right) \cdot sen\left(\frac{5\pi}{14}\right)$$
$$2 \cdot \cos\left(\frac{\pi}{14}\right) \cdot E = sen\left(\frac{\pi}{7}\right) \cdot sen\left(\frac{3\pi}{14}\right) \cdot sen\left(\frac{5\pi}{14}\right)$$

Entretanto:

$$\frac{\pi}{2} - \frac{\pi}{7} = \frac{5\pi}{14} \Rightarrow \cos\left(\frac{5\pi}{14}\right) = sen\left(\frac{\pi}{7}\right)$$

Logo:

$$2 \cdot \cos\left(\frac{\pi}{14}\right) \cdot E = \underbrace{sen\left(\frac{5\pi}{14}\right) \cdot \cos\left(\frac{5\pi}{14}\right)}_{\underbrace{\frac{sen\left(2\cdot\frac{5\pi}{14}\right)}{2}}} \cdot sen\left(\frac{3\pi}{14}\right)$$
$$2 \cdot \cos\left(\frac{\pi}{14}\right) \cdot E = \frac{1}{2} \cdot sen\left(\frac{5\pi}{14}\right) \cdot sen\left(\frac{3\pi}{14}\right)$$

Por outro lado:

$$\frac{\pi}{2} - \frac{5\pi}{7} = -\frac{3\pi}{14} \Rightarrow \cos\left(-\frac{3\pi}{14}\right) = sen\left(\frac{5\pi}{7}\right) \Rightarrow \cos\left(\frac{3\pi}{14}\right) = sen\left(\frac{5\pi}{7}\right)$$
$$2 \cdot \cos\left(\frac{\pi}{14}\right) \cdot E = \frac{1}{2} \cdot \cos\left(\frac{3\pi}{14}\right) \cdot sen\left(\frac{3\pi}{14}\right)$$
$$\frac{sen\left(2\frac{3\pi}{14}\right)}{\frac{sen\left(2\frac{3\pi}{14}\right)}{\frac{3\pi}{14}}}$$

Mas:

$$\frac{\pi}{2} - \frac{\pi}{14} = \frac{3\pi}{7} \Rightarrow \cos\left(\frac{\pi}{14}\right) = sen\left(\frac{3\pi}{7}\right)$$

Portanto:

$$E = \frac{1}{8} = \frac{1}{b}$$
$$\therefore \boxed{b = 8}$$

Gabarito: b = 8.

43. (IME/2019)

Os ângulos $\theta_1, \theta_2, \theta_3, \dots, \theta_{100}$ são os termos de uma progressão aritmética na qual $\theta_{11} + \theta_{26} + \theta_{75} + \theta_{90} = \frac{\pi}{4}$. O valor de $sen(\sum_{i=1}^{100} \theta_i)$ é

- a) -1
- b) $-\frac{\sqrt{2}}{2}$
- c) 0
- d) $\frac{\sqrt{2}}{2}$
- e) 1

Comentários

Calculando o valor do somatório usando a fórmula da soma de uma PA:

$$\sum_{i=1}^{100} \theta_i = \frac{(\theta_1 + \theta_{100})100}{2} = 50(\theta_1 + \theta_{100})$$

O bizu nessa questão é perceber que os termos $\theta_1+\theta_{100}=\theta_{11}+\theta_{90}=\theta_{26}+\theta_{75}$ são equidistantes. Assim, basta substituir:

$$\begin{aligned} \theta_{11} + \theta_{26} + \theta_{75} + \theta_{90} &= \frac{\pi}{4} \\ 2(\theta_1 + \theta_{100}) &= \frac{\pi}{4} \\ (\theta_1 + \theta_{100}) &= \frac{\pi}{8} \\ sen\left(\sum_{i=1}^{100} \theta_i\right) &= sen\left(50(\theta_1 + \theta_{100})\right) &= sen\left(\frac{50\pi}{8}\right) = sen\left(6\pi + \frac{\pi}{4}\right) = sen\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \\ \therefore sen\left(\sum_{i=1}^{100} \theta_i\right) &= \frac{\sqrt{2}}{2} \end{aligned}$$

Gabarito: "d".

44. (IME/2017)

Calcule o valor de $\frac{sen^4\alpha + cos^4\alpha}{sen^6\alpha + cos^6\alpha}$, sabendo-se que $sen\alpha cos\alpha = \frac{1}{5}$.

b)
$$\frac{23}{22}$$

c)
$$\frac{25}{23}$$

d)
$$\frac{13}{12}$$

e)
$$\frac{26}{25}$$

Vamos fatorar a expressão:

$$\frac{sen^{4}\alpha + \cos^{4}\alpha}{sen^{6}\alpha + \cos^{6}\alpha}$$

$$\frac{(sen^{2}\alpha + \cos^{2}\alpha)^{2}}{sen^{4}\alpha + \cos^{4}\alpha + 2sen^{2}\alpha\cos^{2}\alpha - 2sen^{2}\alpha\cos^{2}\alpha}$$

$$\frac{sen^{4}\alpha + \cos^{4}\alpha + 2sen^{2}\alpha\cos^{2}\alpha - 2sen^{2}\alpha\cos^{2}\alpha}{(sen^{2}\alpha + \cos^{2}\alpha)(sen^{4}\alpha - sen^{2}\alpha\cos^{2}\alpha + \cos^{4}\alpha)}$$

$$\frac{1 - 2sen^{2}\alpha\cos^{2}\alpha}{(sen^{4}\alpha + \cos^{4}\alpha - sen^{2}\alpha\cos^{2}\alpha)}$$

$$\frac{1 - 2sen^{2}\alpha\cos^{2}\alpha - sen^{2}\alpha\cos^{2}\alpha}{1 - 2(sen\alpha\cos\alpha)^{2}}$$

$$\frac{1 - 2(sen\alpha\cos\alpha)^{2}}{1 - 3(sen\alpha\cos\alpha)^{2}}$$

Usando a informação dada no enunciado:

$$sen\alpha cos\alpha = \frac{1}{5}$$

$$\frac{1 - 2(sen\alpha cos\alpha)^{2}}{1 - 3(sen\alpha cos\alpha)^{2}} = \frac{1 - 2\left(\frac{1}{5}\right)^{2}}{1 - 3\left(\frac{1}{5}\right)^{2}} = \frac{\frac{23}{25}}{\frac{22}{25}} = \frac{23}{22}$$

Gabarito: "b".

45. (IME/2017)

Se
$$\frac{\cos x}{\cos y} + \frac{\sin x}{\sin y} = -1$$
, calcule o valor de S.

$$S = \frac{3\cos y + \cos 3y}{\cos x} + \frac{3\sin y - \sin 3y}{\sin x}$$

Comentários

Essa questão é trabalhosa e para resolvê-la, temos que usar o método da tentativa e erro. Inicialmente, tentamos simplificar a expressão e depois usamos a informação dada no enunciado para obter algum resultado numérico.

Para os termos cos3y e sen3y, temos:

$$\cos(3y) = 4\cos^3 y - 3\cos y$$

$$sen(3y) = 3seny - 4sen^3y$$

Substituindo na expressão:

$$S = \frac{3\cos y + \cos 3y}{\cos x} + \frac{3\sin y - \sin 3y}{\sin x}$$

$$S = \frac{3\cos y + 4\cos^3 y - 3\cos y}{\cos x} + \frac{3\sin y - (3\sin y - 4\sin^3 y)}{\sin x}$$

$$S = \frac{4\cos^3 y}{\cos x} + \frac{4\sin^3 y}{\sin x}$$

$$S = \frac{4}{\sin x \cos x} (\sin x \cos^3 y + \sin^3 y \cos x)$$

Vamos expandir os termos cúbicos:

$$S = \frac{4}{senxcosx}(senxcosy(\cos^2 y) + (sen^2 y)senycosx)$$

$$S = \frac{4}{senxcosx}(senxcosy(1 - sen^2 y) + (1 - \cos^2 y)senycosx)$$

$$S = \frac{4}{senxcosx}(senxcosy - senxcosysen^2 y + senycosx - senycosxcos^2 y)$$

$$S = \frac{4}{senxcosx}(senxcosy + senycosx - senxcosysen^2 y - senycosxcos^2 y)$$

$$S = \frac{4}{senxcosx}(sen(x + y) - senycosy(senxseny + cosxcosy))$$

$$S = \frac{4}{senxcosx}(sen(x + y) - senycosy(cos(x - y)))$$

$$S = \frac{4}{senxcosx}(sen(x + y) - senycosy(cos(x - y)))$$

Agora, vamos analisar a informação dada no enunciado:

$$\frac{\cos x}{\cos y} + \frac{\sin x}{\sin y} = -1$$

$$\frac{\sin y \cos x + \sin x \cos y}{\sin y \cos y} = -1$$

$$\frac{\sin(x+y)}{\sin y \cos y} = -1$$

$$\sin(x+y) = -\sin y \cos y$$

$$\Rightarrow -\frac{1}{2}\sin(2y) = \sin(x+y)$$

Substituindo essa informação na soma, obtemos:

$$S = \frac{4}{senxcosx} \left(sen(x+y) + sen(x+y)cos(x-y) \right)$$

Vamos transformar o produto sen(x + y) cos(x - y) em soma:

Usando a seguinte identidade, temos:

$$sen(A + B) + sen(A - B) = 2senA cos B$$

$$sen(x+y)\cos(x-y) = \frac{1}{2}[sen(x+y+x-y) + sen(x+y-x+y)]$$

$$\Rightarrow sen(x+y)\cos(x-y) = \frac{1}{2}[sen(2x) + sen(2y)]$$

$$S = \frac{4}{senxcosx} \left(sen(x+y) + \frac{1}{2}[sen(2x) + sen(2y)] \right)$$

Substituindo $sen(x + y) = -\frac{1}{2}sen(2y)$:

$$S = \frac{4}{senxcosx} \left(-\frac{1}{2} sen(2y) + \frac{1}{2} [sen(2x) + sen(2y)] \right)$$
$$S = \frac{4}{sen(2x)} (sen(2x))$$
$$\therefore S = 4$$

Gabarito: S = 4

46. (IME/2015)

Os lados $a,b \in c$ de um triângulo estão em PA nesta ordem, sendo opostos aos ângulos internos $A,B \in C$, respectivamente. Determine o valor da expressão:

$$\frac{\cos\left(\frac{A-C}{2}\right)}{\cos\left(\frac{A+C}{2}\right)}$$

- a) $\sqrt{2}$
- b) 2
- c) $2\sqrt{2}$
- d) 3
- e) 4

Comentários

De acordo com o enunciado, (a, b, c) estão em PA. Temos a seguinte figura:

Se r é a razão da PA, podemos reescrever os seus termos dessa forma:

$$a = b - r$$

$$c = b + r$$

$$(b - r, b, b + r)$$

Vamos calcular o valor da expressão:

$$\frac{\cos\left(\frac{A-C}{2}\right)}{\cos\left(\frac{A+C}{2}\right)} = \frac{\cos\left(\frac{A}{2} - \frac{C}{2}\right)}{\cos\left(\frac{A}{2} + \frac{C}{2}\right)} = \frac{\cos\left(\frac{A}{2}\right)\cos\left(\frac{C}{2}\right) + sen\left(\frac{A}{2}\right)sen\left(\frac{C}{2}\right)}{\cos\left(\frac{A}{2}\right)\cos\left(\frac{C}{2}\right) - sen\left(\frac{A}{2}\right)sen\left(\frac{C}{2}\right)}$$

Dividindo o numerador e o denominador por $\cos\left(\frac{A}{2}\right)\cos\left(\frac{C}{2}\right)$, encontramos:

$$\frac{1 + tg\left(\frac{A}{2}\right)tg\left(\frac{C}{2}\right)}{1 - tg\left(\frac{A}{2}\right)tg\left(\frac{C}{2}\right)}$$

Precisamos calcular o valor de $tg\left(\frac{A}{2}\right)$ e $tg\left(\frac{C}{2}\right)$, vamos encontrar essa informação no triângulo dado:

Usando a Lei dos Cossenos em A e C:

$$a^{2} = b^{2} + c^{2} - 2bc \cos(A)$$

$$\cos(A) = \frac{b^{2} + c^{2} - a^{2}}{2bc} = \frac{b^{2} + (b+r)^{2} - (b-r)^{2}}{2b(b+r)}$$

$$\cos(A) = \frac{b^{2} + b^{2} + 2br + r^{2} - b^{2} + 2br - r^{2}}{2b(b+r)}$$

$$\cos(A) = \frac{b^{2} + 4br}{2b(b+r)}$$

$$\cos(A) = \frac{b + 4r}{2(b+r)}$$

Analogamente para C:

$$c^{2} = a^{2} + b^{2} - 2ab\cos(C)$$

$$\cos(C) = \frac{(b-r)^{2} + b^{2} - (b+r)^{2}}{2(b-r)b}$$

$$\cos(C) = \frac{b^{2} - 4br}{2b(b-r)}$$

$$\cos(C) = \frac{b - 4r}{2(b-r)}$$

Vamos usar a identidade:

$$tg\left(\frac{A}{2}\right) = \pm \sqrt{\frac{1 - \cos A}{1 + \cos A}}$$

Como $0 < A < \pi$ (das condições do triângulo), temos $0 < \frac{A}{2} < \frac{\pi}{2}$. Assim, podemos escrever:

$$tg\left(\frac{A}{2}\right) = \sqrt{\frac{1 - cosA}{1 + cosA}}$$

Substituindo cosA na equação:

$$tg\left(\frac{A}{2}\right) = \sqrt{\frac{1 - \left(\frac{b+4r}{2(b+r)}\right)}{1 + \left(\frac{b+4r}{2(b+r)}\right)}} = \sqrt{\frac{1 - \left(\frac{b+4r}{2(b+r)}\right)}{1 + \left(\frac{b+4r}{2(b+r)}\right)}} = \sqrt{\frac{b-2r}{3b+6r}} = \sqrt{\frac{b-2r}{3(b+2r)}}$$

Fazendo o mesmo para cosC:

$$tg\left(\frac{\mathcal{C}}{2}\right) = \sqrt{\frac{1 - \left(\frac{b - 4r}{2(b - r)}\right)}{1 + \left(\frac{b - 4r}{2(b - r)}\right)}} = \sqrt{\frac{b + 2r}{3(b - 2r)}}$$

Substituindo esses valores na expressão, obtemos:

$$\frac{1 + tg\left(\frac{A}{2}\right)tg\left(\frac{C}{2}\right)}{1 - tg\left(\frac{A}{2}\right)tg\left(\frac{C}{2}\right)}$$

$$\frac{1 + \sqrt{\frac{b - 2r}{3(b + 2r)}}\sqrt{\frac{b + 2r}{3(b - 2r)}}}{1 - \sqrt{\frac{b - 2r}{3(b + 2r)}}\sqrt{\frac{b + 2r}{3(b - 2r)}}$$

$$\frac{1 + \frac{1}{3}}{1 - \frac{1}{3}}$$

$$\Rightarrow \frac{4}{2} = 2$$

Portanto, encontramos o gabarito na letra b.

Gabarito: "b".

47. (IME/2014)

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função real definida por $f(x) = x^2 - \pi x$. Sejam também a, b, c e d números reais tais que:

$$a = sen^{-1}\left(\frac{1}{3}\right)$$
; $b = tan^{-1}\left(\frac{5}{4}\right)$; $c = cos^{-1}\left(-\frac{1}{3}\right)$ e $d = cotg^{-1}\left(-\frac{5}{4}\right)$

A relação de ordem, no conjunto dos reais, entre as imagens f(a), f(b), f(c) e f(d) é

a)
$$f(b) > f(a) > f(d) > f(c)$$

b)
$$f(d) > f(a) > f(c) > f(b)$$

c)
$$f(d) > f(a) > f(b) > f(c)$$

d)
$$f(a) > f(d) > f(b) > f(c)$$

e)
$$f(a) > f(b) > f(d) > f(c)$$

Comentários

Inicialmente, vamos analisar a função:

Esboçando o gráfico dessa função:

A função f é decrescente para $x \le \frac{\pi}{2}$ e crescente para $x \ge \frac{\pi}{2}$.

Vamos analisar os ângulos da questão:

Devemos usar o círculo trigonométrico para fazer as comparações.

Para cada ângulo, devemos analisar o domínio da função arco:

$$a = arcsen\left(\frac{1}{3}\right) \Rightarrow a \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$b = arctg\left(\frac{5}{4}\right) \Rightarrow b \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$c = arccos\left(-\frac{1}{3}\right) \Rightarrow c \in [0, \pi]$$

$$d = arccotg\left(-\frac{5}{4}\right) \Rightarrow d \in (0, \pi)$$

Perceba que temos ângulos complementares:

$$sena = \frac{1}{3} e cosc = -\frac{1}{3} \Rightarrow a = c - \frac{\pi}{2}$$
$$tgb = \frac{5}{4} e cotgd = -\frac{5}{4} \Rightarrow b = d - \frac{\pi}{2}$$

Colocando os ângulos no círculo, temos:

Para comparar os valores de f(a), f(b), f(c) e f(d), devemos lembrar que a função f é simétrica em relação à reta $x=\pi/2$. Assim, temos que escolher um lado da parábola para fazer as comparações:

Vamos escolher o lado crescente da função e comparar os valores $x \ge \pi/2$. De acordo com o círculo, $0 < a < b < \pi/2$. Devemos pegar o simétrico de a e b. Assim, temos:

$$f(a) = f(\pi - a)$$

$$f(b) = f(\pi - b)$$

Usando o círculo trigonométrico:

Agora, com os ângulos no segundo quadrante, basta comparar os valores:

$$f(\pi - a) > f(d) > f(\pi - b) > f(c)$$

 $f(a) > f(d) > f(b) > f(c)$

Gabarito: "d".

48. (IME/2014)

Sejam $f(x) = sen(\log x)$ e $g(x) = \cos(\log x)$ duas funções reais, nas quais $\log x$ representa o logaritmo decimal de x. O valor da expressão $f(x) \cdot f(y) - \frac{1}{2} \left[g\left(\frac{x}{y}\right) - g(x \cdot y) \right]$ é

- a) 4
- b) 3
- c) 2
- d) 1
- e) 0

Comentários

Se $f(x) = sen(\log x)$ e $g(x) = cos(\log x)$, temos:

$$g\left(\frac{x}{y}\right) = \cos\left(\log\left(\frac{x}{y}\right)\right) = \cos(\log x - \log y)$$

$$g(x \cdot y) = \cos(\log(x \cdot y)) = \cos(\log x + \log y)$$

Calculando o valor da expressão:

$$f(x) \cdot f(y) - \frac{1}{2} \left[g\left(\frac{x}{y}\right) - g(x \cdot y) \right]$$

$$sen(\log x) \cdot sen(\log y) - \frac{1}{2} [\cos(\log x - \log y) - \cos(\log x + \log y)]$$

$$sen(\log x) \cdot sen(\log y) - \frac{1}{2} [2sen(\log x) sen(\log y)] = 0$$

Portanto, o valor da expressão é zero.

Gabarito: "e".

49. (IME/2014)

Sabe-se que uma das raízes da equação $y^2-9y+8=0$ pode ser representada pela expressão $e^{\left(sen^2x+sen^4x+sen^6x+\cdots\right)\ln 2}$. Sendo $0< x<\frac{\pi}{2}$, o valor da razão $\frac{\cos x}{\cos x+sen x}$ é

Observação: ln 2 representa o logaritmo neperiano de 2.

a)
$$\frac{\sqrt{3}-1}{2}$$

b)
$$\sqrt{3} - 1$$

c)
$$\sqrt{3}$$

d)
$$\frac{\sqrt{3}+1}{2}$$

e)
$$\sqrt{3} + 1$$

Comentários

Vamos encontrar as raízes da equação:

$$y^2 - 9y + 8 = 0$$
$$y = \frac{9 \pm \sqrt{49}}{2}$$

$$y_1 = 1 e y_2 = 8$$

Agora, vamos analisar a expressão:

$$e^{(sen^2x+sen^4x+sen^6x+\cdots)\ln 2}$$

Como $0 < x < \pi/2$, temos 0 < senx < 1. Então, a soma $sen^2x + sen^4x + \cdots$ é uma soma de PG infinita de razão sen^2x . Dessa forma, temos:

$$sen^{2}x + sen^{4}x + \dots = \frac{sen^{2}x}{1 - sen^{2}x}$$

$$e^{\left(\frac{sen^{2}x}{1 - sen^{2}x}\right)\ln 2} = e^{\log e^{\frac{sen^{2}x}{1 - sen^{2}x}}} = 2\frac{sen^{2}x}{1 - sen^{2}x} = 2\frac{sen^{2}x}{\cos^{2}x} = 2^{tg^{2}x}$$

De acordo com o enunciado, uma das raízes é o valor dessa expressão:

$$2^{tg^2x} = 1 \ ou \ 2^{tg^2x} = 8$$

Para $2^{tg^2x} = 1$:

$$tg^2x = 0 \Rightarrow$$
 não tem solução

Para
$$2^{tg^2x} = 8$$
:

$$2^{tg^2x} = 2^3 \Rightarrow tg^2x = 3 \Rightarrow tgx = \pm\sqrt{3}$$

Como $0 < x < \pi/2$, temos:

$$tgx = \sqrt{3}$$
$$\Rightarrow x = \frac{\pi}{3}$$

Calculando o valor da razão, temos:

$$\frac{\cos x}{\cos x + sen x} = \frac{\cos \left(\frac{\pi}{3}\right)}{\cos \left(\frac{\pi}{3}\right) + sen \left(\frac{\pi}{3}\right)} = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{\sqrt{3}}{2}} = \frac{1}{1 + \sqrt{3}} = \frac{\sqrt{3} - 1}{2}$$

Gabarito: "a".

50. (IME/2013)

Assinale a alternativa que representa o mesmo valor da expressão $[4\cos^2(9^\circ) - 3][4\cos^2(27^\circ) - 3]$:

- a) sen(9°)
- b) tg (9°)
- c) cos(9°)
- d) $sec(9^\circ)$
- e) cossec (9°)

Comentários

Perceba que os termos da expressão são muito próximos da fórmula do arco triplo:

$$[4\cos^2(9^\circ) - 3][4\cos^2(27^\circ) - 3]$$

Lembrando que o arco triplo é dado por:

$$\cos(3A) = 4\cos^3 A - 3\cos A$$

Como $\cos(9^\circ) > 0$ e $\cos(27^\circ) > 0$, podemos multiplicar a expressão por $\cos(27^\circ)\cos(9^\circ)$ e obter:

$$[4\cos^{2}(9^{\circ}) - 3][4\cos^{2}(27^{\circ}) - 3] = \frac{[4\cos^{3}(9^{\circ}) - 3\cos(9^{\circ})][4\cos^{3}(27^{\circ}) - 3\cos(27^{\circ})]}{\cos(27^{\circ})\cos(9^{\circ})} = \frac{\sin(9^{\circ})}{\cos(9^{\circ})} = tg(9^{\circ})$$

Gabarito: "b".

51. (IME/2012)

Seja $arcsenx + arcseny + arcsenz = \frac{3\pi}{2}$, onde x, y e z são números reais pertencentes ao intervalo [-1,1]. Determine o valor de $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$.

- a) -2
- b) -1
- c) 0

e) 2

Comentários

Do enunciado, temos:

$$arcsenx + arcseny + arcsenz = \frac{3\pi}{2}$$

Sabemos que a imagem da função arco-seno é:

$$arcsen(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Então, a única possibilidade é quando a função arco-seno assume seu valor máximo:

$$arcsenx = arcseny = arcsenz = \frac{\pi}{2}$$

 $\Rightarrow x = y = z = sen(\frac{\pi}{2}) = 1$

Substituindo esses valores na expressão, obtemos:

$$x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}} = 1^{100} + 1^{100} + 1^{100} - \frac{9}{1^{101} + 1^{101} + 1^{101}} = 3 - \frac{9}{3} = 0$$

Gabarito: "c".

52. (IME/2012)

O valor de $y = sen70^{\circ}cos50^{\circ} + sen260^{\circ}cos280^{\circ}$ é:

- a) $\sqrt{3}$
- b) $\frac{\sqrt{3}}{2}$
- c) $\frac{\sqrt{3}}{3}$
- d) $\frac{\sqrt{3}}{4}$
- e) $\frac{\sqrt{3}}{5}$

Comentários

Vamos calcular o valor da expressão:

$$y = sen70^{\circ}cos50^{\circ} + sen260^{\circ}cos280^{\circ}$$

$$y = sen70^{\circ}cos50^{\circ} + sen(180^{\circ} + 80^{\circ})cos(180^{\circ} + 100^{\circ})$$

$$*sen(180^{\circ} + 80^{\circ}) = sen(180^{\circ})cos(80^{\circ}) + sen(80^{\circ})cos(180^{\circ}) = -sen(80^{\circ})$$

$$*cos(180^{\circ} + 100^{\circ}) = cos(180^{\circ})cos(100^{\circ}) - sen(180^{\circ})sen(100^{\circ}) = -cos(100^{\circ})$$

$$y = sen70^{\circ}cos50^{\circ} + (-sen(80^{\circ}))(-cos(100^{\circ}))$$

$$y = sen70^{\circ}cos50^{\circ} + sen80^{\circ}cos100^{\circ}$$

Vamos transformar o produto em soma usando a fórmula de Prostaférese:

$$senAcosB = \frac{1}{2} (sen(A+B) + sen(A-B))$$

$$sen70^{\circ}cos50^{\circ} = \frac{1}{2} \left(sen(120^{\circ}) + sen(20^{\circ}) \right)$$

$$sen80^{\circ}cos100^{\circ} = \frac{1}{2} \left(sen(180^{\circ}) + sen(-20^{\circ}) \right) = \frac{1}{2} \left(sen(180^{\circ}) - sen(20^{\circ}) \right)$$

$$\Rightarrow y = \frac{1}{2} \left(sen(120^{\circ}) + sen(20^{\circ}) \right) + \frac{1}{2} \left(sen(180^{\circ}) - sen(20^{\circ}) \right)$$

$$\Rightarrow y = \frac{1}{2} \left(\frac{\sqrt{3}}{2} \right) = \frac{\sqrt{3}}{4}$$

Gabarito: "d".

53. (IME/2010)

Considere a sequência
$$a_1 = \sqrt{\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}}, a_2 = \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}}}, a_3 = \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}}}}, \dots$$

Determine o produto dos 20 primeiros termos dessa sequência.

Comentários

Vamos analisar cada termo da sequência:

$$a_1 = \sqrt{\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{\sqrt{3}}{2}$$

$$a_2 = \sqrt{\frac{1}{2} + \frac{1}{2}a_1}$$

$$2a_2^2 = 1 + a_1$$

A relação acima nos lembra da seguinte fórmula do cosseno:

$$cos(2\theta) = 2cos^{2}(\theta) - 1$$
$$2cos^{2}(\theta) = 1 + cos(2\theta)$$

Vamos escrever os termos em função do cosseno:

$$a_1 = \frac{\sqrt{3}}{2} = \cos\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{3} \cdot \frac{1}{2^1}\right)$$
$$2a_2^2 = 1 + \cos\left(\frac{\pi}{6}\right) = 2\cos^2\left(\frac{\pi}{12}\right) \Rightarrow a_2 = \cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3} \cdot \frac{1}{2^2}\right)$$

Analogamente para os outros termos, encontramos:

$$a_3 = \cos\left(\frac{\pi}{24}\right) = \cos\left(\frac{\pi}{3} \cdot \frac{1}{2^3}\right)$$

$$\vdots$$

$$a_{20} = \cos\left(\frac{\pi}{3} \cdot \frac{1}{2^{20}}\right)$$

Queremos calcular o produto dos 20 primeiros termos da sequência:

$$P = a_1 \cdot a_2 \cdot \dots \cdot a_{20}$$

Podemos usar a fórmula do arco duplo do seno:

$$sen(2\alpha) = 2sen\alpha cos\alpha$$

Vamos multiplicar essa expressão por $2^{20}sen\left(\frac{\pi}{3}\cdot\frac{1}{2^{20}}\right)$:

$$2^{20}sen\left(\frac{\pi}{3}\cdot\frac{1}{2^{20}}\right)P$$

$$=\cos\left(\frac{\pi}{6}\right)\cdot\cos\left(\frac{\pi}{12}\right)\cdot\cos\left(\frac{\pi}{24}\right)\cdot\dots\cdot\cos\left(\frac{\pi}{3}\cdot\frac{1}{2^{19}}\right)\cdot\cos\left(\frac{\pi}{3}\cdot\frac{1}{2^{20}}\right)\cdot sen\left(\frac{\pi}{3}\cdot\frac{1}{2^{20}}\right)\cdot 2^{20}$$

$$2^{20}sen\left(\frac{\pi}{3}\cdot\frac{1}{2^{20}}\right)P = \cos\left(\frac{\pi}{6}\right)\cdot\cos\left(\frac{\pi}{12}\right)\cdot\cos\left(\frac{\pi}{24}\right)\cdot\dots\cdot\cos\left(\frac{\pi}{3}\cdot\frac{1}{2^{19}}\right)\cdot sen\left(\frac{\pi}{3}\cdot\frac{1}{2^{19}}\right)\cdot 2^{19}$$

$$2^{20}sen\left(\frac{\pi}{3}\cdot\frac{1}{2^{20}}\right)P = \cos\left(\frac{\pi}{6}\right)\cdot\cos\left(\frac{\pi}{12}\right)\cdot\cos\left(\frac{\pi}{24}\right)\cdot\dots\cdot sen\left(\frac{\pi}{3}\cdot\frac{1}{2^{18}}\right)\cdot 2^{18}$$

$$\vdots$$

$$2^{20}sen\left(\frac{\pi}{3}\cdot\frac{1}{2^{20}}\right)P = sen\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$$

$$\Rightarrow P = \frac{\sqrt{3}}{2^{21}}\cdot\frac{1}{sen\left(\frac{\pi}{3}\cdot\frac{1}{2^{20}}\right)}$$

Gabarito:
$$P=rac{\sqrt{3}}{2^{21}}\cdotrac{1}{sen\left(rac{\pi}{3}-rac{1}{2^{20}}
ight)}$$

54. (IME/2001)

Calcule o valor exato de:

$$sen\left[2arccotg\left(\frac{4}{3}\right)\right] + cos\left[2arccossec\left(\frac{5}{4}\right)\right]$$

Comentários

Fazendo as seguintes substituições:

Para $\alpha \in]0,\pi[$:

$$\alpha = \operatorname{arccotg}\left(\frac{4}{3}\right) \Rightarrow \operatorname{cotg}\alpha = \frac{4}{3} \Rightarrow \operatorname{cotg}^2\alpha = \frac{16}{9} \Rightarrow \operatorname{cossec}^2\alpha - 1 = \frac{16}{9}$$
$$\frac{1}{\operatorname{sen}\alpha} = \pm \frac{5}{3}$$

Como $\alpha \in]0,\pi[$, temos $sen\alpha > 0$:

$$\Rightarrow sen\alpha = \frac{3}{5}$$

$$\Rightarrow \frac{cos\alpha}{sen\alpha} = \frac{4}{3} \Rightarrow cos\alpha = \frac{4}{5}$$

Para $\beta \in]-\pi/2$,0[\cup]0, $\pi/2$ [:

Queremos calcular:

$$sen(2\alpha) + \cos(2\beta) = 2sen\alpha\cos\alpha + 1 - 2sen^{2}\beta$$
$$2\left(\frac{3}{5}\right)\left(\frac{4}{5}\right) + 1 - 2\left(\frac{4}{5}\right)^{2} = \frac{24}{25} - \frac{7}{25} = \frac{17}{25}$$
$$\therefore sen(2\alpha) + \cos(2\beta) = \frac{17}{25}$$

Gabarito: 17/25

55. (IME/1997)

Se tga e tgb são as raízes da equação $x^2 + px + q = 0$, calcule, em função de p e q, o valor simplificado da expressão:

$$y = sen^{2}(a+b) + psen(a+b)\cos(a+b) + qcos^{2}(a+b)$$

Considere $p, q \in \mathbb{R}$ com $q \neq 1$.

Comentários

Vamos encontrar as raízes da equação:

$$x_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$$

$$x_1 + x_2 = tga + tgb = -p$$

$$x_1x_2 = tgatgb = q$$

Agora, dividindo a expressão por $\cos^2(a+b)$:

$$\frac{y}{\cos^2(a+b)} = tg^2(a+b) + ptg(a+b) + q$$

$$y = \frac{tg^2(a+b) + ptg(a+b) + q}{\sec^2(a+b)}$$

$$y = \frac{tg^2(a+b) + ptg(a+b) + q}{1 + tg^2(a+b)}$$

Calculando tg(a + b):

$$tg(a+b) = \frac{tga + tgb}{1 - tgatgb} = -\frac{p}{1 - q} = \frac{p}{q - 1}$$

Substituindo o valor na expressão:

$$y = \frac{\left(\frac{p}{q-1}\right)^2 + p\left(\frac{p}{q-1}\right) + q}{1 + \left(\frac{p}{q-1}\right)^2}$$
$$y = \frac{p^2 + p^2(q-1) + q(q-1)^2}{(q-1)^2 + p^2}$$

Gabarito: y = q

56. (IME/1991)

Mostre que se num triângulo ABC vale a relação:

$$\frac{\cos(B-C)}{senA + sen(C-B)} = tgB$$

Então o triângulo é retângulo com ângulo reto em A.

Comentários

Se A, B, C são os ângulos internos de um triângulo ABC, temos:

$$A + B + C = \pi \Rightarrow A = \pi - (B + C)$$

Vamos simplificar o lado esquerdo da expressão:

$$\frac{\cos(B-C)}{sen(\pi-(B+C))+sen(C-B)}$$

$$\frac{\cos(B-C)}{sen(B+C)+sen(C-B)}$$

$$\cos B \cos C + senBsenC$$

$$\frac{senBcosC}{senBcosC} + senCcosB + senCcosB - senBcosC$$

$$\frac{cosBcosC + senBsenC}{2senCcosB}$$

$$\frac{cotgC + tgB}{2}$$

Usando a relação do enunciado:

$$\frac{\cot gC + tgB}{2} = tgB$$

$$\cot gC = tgB$$

$$\frac{\cos C}{\sec C} = \frac{\sec nB}{\cos B}$$

$$\cos B \cos C - \sec B \sec C = 0$$

$$\cos (B + C) = 0$$

Usando a relação dos ângulos internos do triângulo:

$$cos(\pi - A) = 0$$
$$-cos(A) = 0$$

Como $A \in]0,\pi[$, temos:

 $A = \frac{\pi}{2}$

Portanto, o triângulo é retângulo em A.

Gabarito: Demonstração

57. (IME/1991)

Sejam A, B, C os ângulos de um triângulo. Mostre que:

$$sen(2A) + sen(2B) + sen(2C) = 4senAsenBsenC$$

Comentários

Se A, B, C são ângulos internos de um triângulo, temos:

$$A + B + C = \pi$$

$$2A = 2\pi - 2(B + C)$$

Calculando o valor da expressão:

$$sen(2A) + sen(2B) + sen(2C)$$

$$sen(2\pi - 2(B+C)) + sen(2B) + sen(2C)$$

$$-sen(2(B+C)) + sen(2B) + sen(2C)$$

$$-(sen(2B)\cos(2C) + sen(2C)\cos(2B)) + sen(2B) + sen(2C)$$

$$sen(2B)(1 - cos(2C)) + sen(2C)(1 - cos(2B))$$

$$2senBcosB(2sen^2C) + 2senCcosC(2sen^2B)$$

4senBsenC(senCcosB + senBcosC)

4senBsenCsen(B+C)

 $4senBsenCsen(\pi - A)$

4senAsenBsenC

Portanto:

$$sen(2A) + sen(2B) + sen(2C) = 4senAsenBsenC$$

Gabarito: Demonstração

58. (IME/1989)

Provar que, se os ângulos de um triângulo ABC verificam a relação:

$$sen(4A) + sen(4B) + sen(4C) = 0$$

Então, o triângulo ABC é retângulo.

Comentários

Como A, B, C são ângulos de um triângulo ABC, temos:

$$A + B + C = \pi$$

$$4A = 4\pi - 4(B+C)$$

Vamos calcular o valor da expressão:

$$sen(4A) + sen(4B) + sen(4C)$$

$$sen(4\pi - 4(B + C)) + sen(4B) + sen(4C)$$

$$-sen(4B + 4C) + sen(4B) + sen(4C)$$

$$-sen(4B) \cos(4C) - sen(4C) \cos(4B) + sen(4B) + sen(4C)$$

$$sen(4B)(1 - \cos(4C)) + sen(4C)(1 - \cos(4B))$$

$$2sen(2B) \cos(2B) (2 sen^{2}(2C)) + 2sen(2C) \cos(2C)(2 sen^{2}(2B))$$

$$4sen(2B) sen(2C) (sen(2C) \cos(2B) + sen(2B) \cos(2C))$$

$$4 sen(2B) sen(2C) (sen(2B + 2C))$$

$$4 sen(2B) sen(2C) sen(2\pi - 2A)$$

$$-4sen(2A) sen(2B) sen(2C)$$

Usando a relação do enunciado:

$$-4 \operatorname{sen}(2B) \operatorname{sen}(2C) \operatorname{sen}(2A) = 0$$

Como A, B, C são ângulos internos de um triângulo, temos $A, B, C \in (0, \pi)$. Então:

$$sen(2A) = 0 \Rightarrow 2A = \pi \Rightarrow A = \frac{\pi}{2}$$
Ou

$$sen(2B) = 0 \Rightarrow 2B = \pi \Rightarrow B = \frac{\pi}{2}$$

Ou

$$sen(2C) = 0 \Rightarrow 2C = \pi \Rightarrow C = \frac{\pi}{2}$$

Para qualquer um dos casos, temos que o triângulo possui um ângulo reto.

Gabarito: Demonstração