Ex 1 <u>Démonstrations</u>: on se donne deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$

a) On suppose que $\lim u_n = +\infty$ et $\lim v_n = \ell \in \mathbb{R}$. Montrons que $\lim (u_n + v_n) = +\infty$.

Soit M > 0. On cherche $n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0, \ u_n + v_n \geqslant M$.

Avec " $\varepsilon=1$ ", on peut écrire : $\exists n_1 \in \mathbb{N} \ / \ \forall n \geqslant n_1, \ v_n \geqslant \ell-1$. Soit n_1 un tel entier.

Avec " $M' = M - \ell + 1$ ", on peut écrire : $\exists n_2 \in \mathbb{N} / \forall n \geqslant n_2, \ u_n \geqslant M - \ell + 1$. Soit n_2 un tel entier.

Posons $n_0 = \max(n_1, n_2)$. Alors $\forall n \geqslant n_0$, on a :

$$\left\{ \begin{array}{l} u_n \geqslant M - \ell + 1 \\ v_n \geqslant \ell - 1 \end{array} \right. \Rightarrow u_n + v_n \geqslant M \quad \text{CQFD}.$$

b) On suppose que $\lim u_n = -\infty$ et $\lim v_n = \ell < 0$. Montrons que $\lim (u_n v_n) = +\infty$

Soit M > 0. On cherche $n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0, \ u_n v_n \geqslant M$.

Avec " $\varepsilon = -\frac{\ell}{2} > 0$ ", on peut écrire : $\exists n_1 \in \mathbb{N} \ / \ \forall n \geqslant n_1, \ v_n \leqslant \ell - \frac{\ell}{2} = \frac{\ell}{2}$. Soit n_1 un tel entier.

Avec " $M' = \frac{2M}{\ell} < 0$ ", on peut écrire : $\exists n_2 \in \mathbb{N} / \forall n \geqslant n_2, \ u_n \leqslant \frac{2M}{\ell}$. Soit n_2 un tel entier.

Posons $n_0 = \max(n_1, n_2)$. Alors $\forall n \geqslant n_0$, on a :

$$\left\{ \begin{array}{ll} -u_n\geqslant -\frac{2M}{\ell}>0\\ -v_n\geqslant -\frac{\ell}{2}>0 \end{array} \right. \Rightarrow u_nv_n\geqslant M \quad \text{CQFD}.$$

c) On suppose que $\lim u_n = \ell \neq 0$ (et que (u_n) ne s'annule pas). Montrons que $\lim \frac{1}{u_n} = \frac{1}{\ell}$

On sait que le produite d'une suite bornée et d'une suite qui converge vers 0 converge vers 0. Or

$$\forall n \in \mathbb{N}, \ \frac{1}{u_n} - \frac{1}{\ell} = \frac{1}{\ell u_n} (\ell - u_n)$$

Il suffit donc de montrer que $\left(\frac{1}{\ell u_n}\right)_{n\in\mathbb{N}}$ est bornée.

Or avec $\varepsilon = \left| \frac{\ell}{2} \right| > 0$ on peut écrire, puisque $(|u_n|)_{n \in \mathbb{N}}$ converge vers $|\ell|$:

$$\exists n_0 \in \mathbb{N} / \forall n \geqslant n_0, \ |u_n| \geqslant |\ell| - \left| \frac{\ell}{2} \right| = \left| \frac{\ell}{2} \right| > 0$$

#on s'assure que " u_n ne s'approche pas trop de 0". donc

$$\forall n \geqslant n_0, \left| \frac{1}{\ell u_n} \right| \leqslant \frac{2}{\ell^2}$$

 $\left(\frac{1}{\ell u_n}\right)_{n\in\mathbb{N}}$ est donc localement bornée donc bornée, ce qui démontre notre propriété.

Ex 2 Montrons à l'aide de la définition que $\lim \arctan(n) = \frac{\pi}{2}$:

Soit $\varepsilon > 0$. On cherche $n_0 \in \mathbb{N}$ tel que $\forall n \geqslant n_0, \ \frac{\pi}{2} - \varepsilon \leqslant \arctan(n) \leqslant \frac{\pi}{2} + \varepsilon$.

L'inégalité de droite est toujours vérifiée, de même que celle de gauche lorsque $\varepsilon \geqslant \frac{\pi}{2}$

Si $\varepsilon < \frac{\pi}{2}$, alors $\frac{\pi}{2} - \varepsilon \in \left]0, \frac{\pi}{2}\right[$ et

$$\frac{\pi}{2} - \varepsilon \leqslant \arctan(n) \iff n \geqslant \tan\left(\frac{\pi}{2} - \varepsilon\right) = \frac{1}{\tan\varepsilon}$$

 $\text{Ainsi en posant } n_0 = \left\lceil \frac{1}{\tan \varepsilon} \right\rceil, \text{ on a bien } \forall n \geqslant n_0, \ n \geqslant \frac{1}{\tan \varepsilon}, \text{ donc } \frac{\pi}{2} - \varepsilon \leqslant \arctan\left(n\right), \text{ CQFD}.$

PCSI 1 Thiers 2019/2020

Ex 3 Pour $n \in \mathbb{N}$ on pose $u_n = \cos n$: montrons que $(u_n)_{n \in \mathbb{N}}$ diverge.

Par l'absurde, si $(u_n)_{n\in\mathbb{N}}$ convergeait vers ℓ , alors $(u_{n+1})_{n\in\mathbb{N}}$ et $(u_{n-1})_{n\geqslant 1}$ aussi.

Donc $(u_{n+1} + u_{n-1})_{n \ge 1}$ convergerait vers 2ℓ . Mais pour tout entier $n \ge 1$:

$$u_{n+1} + u_{n-1} = \cos(n+1) + \cos(n-1) = 2\cos(1)\cos(n) \to 2\ell\cos(1)$$

Par unicité de la limite on aurait

$$2\ell = 2\ell \cos(1) \iff (1 - \cos(1))\ell = 0 \iff \ell = 0 \quad (\text{car } \cos 1 \neq 1)$$

Par ailleurs la suite extraite $(u_{2n})_{n\in\mathbb{N}}$ devrait aussi converger vers ℓ . Or pour tout entier $n\geqslant 0$:

$$u_{2n} = \cos(2n) = 2\cos^2(n) - 1 = 2u_n^2 - 1 \to -1$$

Par unicité de la limite, $-1 = \ell = 0$, ce qui est absurde, d'où notre résultat.

Ex 4 Soit $n \geqslant 2$ et $k \in [[2, n-2]]$. Montrons que $\binom{n}{k} \geqslant \binom{n}{2}$:

- Première méthode : on écrit

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} = \frac{n(n-1)}{2} \times \frac{(n-2)\cdots(n-k+1)}{3\times\cdots\times k}$$

Soit

$$\binom{n}{k} = \binom{n}{2} \frac{\prod\limits_{i=3}^{k} (n-i+1)}{\prod\limits_{i=3}^{k} i}$$

Après inversion du compteur $(3 \times \cdots \times k = k \times \cdots \times 3)$:

$$\binom{n}{k} = \binom{n}{2} \frac{\prod_{i=3}^{k} (n-i+1)}{\prod_{i=3}^{k} (k+3-i)} = \binom{n}{2} \prod_{i=3}^{k} \frac{n-i+1}{k+3-i}$$

Il suffit alors de montrer que la fraction est supérieure à 1 : or

$$\forall i \in [3, k], (n - i + 1) - (k + 3 - i) = n - 2 - k \ge 0 \text{ car } k \in [2, n - 2]$$

Comme de plus les facteurs sont positifs, il en résulte que

$$\forall i \in [3, k], \frac{n - i + 1}{k + 3 - i} \geqslant 1$$

et par produit

$$\prod_{i=3}^k \frac{n-i+1}{k+3-i} \geqslant 1 \quad \text{CQFD}.$$

- <u>Deuxième méthode</u> : on étudie la monotonie de la suite de terme général $a_k = \binom{n}{k}$: $\forall k \in \llbracket 1, n \rrbracket$,

$$a_k - a_{k-1} = \frac{n!}{k! (n-k)!} - \frac{n!}{(k-1)! (n-k+1)!}$$

$$= n! \frac{(n-k+1)-k}{k! (n-k+1)!}$$

$$= n! \frac{n+1-2k}{k! (n+1-k)!}$$

Or

$$n+1-2k > 0 \Longleftrightarrow k < \frac{n+1}{2} \Longleftrightarrow k \leqslant \left\lfloor \frac{n}{2} \right\rfloor$$

 (a_k) croit donc de 0 à $\left\lfloor \frac{n}{2} \right\rfloor$ et décroit de $\left\lfloor \frac{n}{2} \right\rfloor$ à n.

k	2		$\left\lfloor \frac{n}{2} \right\rfloor$		n-2
$\binom{n}{k}$	$\binom{n}{2}$	7		>	$\binom{n}{2}$

En particulier, comme $a_2 = a_{n-2} = \binom{n}{2}$, on a

$$\forall k \in [[2, n-2]], \ a_k \geqslant a_2 \quad \operatorname{soit}\binom{n}{k} \geqslant \binom{n}{2}$$

On en déduit alors pour tout $n \geqslant 2$:

$$\sum_{k=0}^{n} \binom{n}{k}^{-1} = \frac{1}{1} + \frac{1}{n} + \sum_{k=2}^{n-2} \binom{n}{k}^{-1} + \frac{1}{n} + \frac{1}{1} = 2 + \frac{2}{n} + \sum_{k=2}^{n-2} \binom{n}{k}^{-1}$$

Mais

$$0 \leqslant \sum_{k=2}^{n-2} \binom{n}{k}^{-1} \leqslant \sum_{k=2}^{n-2} \binom{n}{2}^{-1} = \frac{2}{n\left(n-1\right)} \sum_{k=2}^{n-2} 1 = \frac{2\left(n-3\right)}{n\left(n-1\right)}$$

On peut alors encadrer u_n :

$$2 + \frac{1}{n} \le u_n \le 2 + \frac{1}{n} + \frac{2(1 - 3/n)}{n(1 - 1/n)}$$

Le théorème des gendarmes permet de conclure :

$$(u_n)_{n\in\mathbb{N}}$$
 converge vers 2

Ex 5 Soit $(I_n)_{n\in\mathbb{N}}$ la suite définie par $\forall n\in\mathbb{N},\ I_n=\int_0^n x^n e^{-nx} \mathrm{d}x=\int_0^n \left(xe^{-x}\right)^n \mathrm{d}x.$

Etudions sur \mathbb{R}^+ la fonction $f: x \mapsto xe^{-x}$: On a $f': x \mapsto (1-x)e^{-x}$, qui a le signe de (1-x):

x	0		1		$+\infty$
f'(x)		+	0	_	
f(x)	0	7	1/e	>	0

Il s'ensuit

$$\forall x \geqslant 0, \ 0 \leqslant f(x) \leqslant \frac{1}{e}$$

D'où pour tout $n \in \mathbb{N}$,

$$\forall x \geqslant 0, \ 0 \leqslant x^n e^{-nx} \leqslant \frac{1}{e^n}$$

Par intégration, il vient

$$0 \leqslant I_n \leqslant \frac{1}{e^n} \int_0^n \mathrm{d}x = \frac{n}{e^n}$$

Sachant que $n=o\left(e^{-n}\right)$, le résultat résulte du théorème des gendarmes.

2019/2020

Ex 6 Pour
$$n \in \mathbb{N}^*$$
 on pose $u_n = \sum_{k=1}^n \frac{1}{k^2}$. Soit $k \geqslant 2$. On a

$$\frac{1}{k-1} - \frac{1}{k} = \frac{1}{k(k-1)} \geqslant \frac{1}{k^2} \quad \text{car } k \geqslant k-1 > 0$$

Soit n un entier supérieur à 2. En sommant de 2 à n, il vient

$$u_n = \sum_{k=1}^n \frac{1}{k^2} = 1 + \sum_{k=2}^n \frac{1}{k^2} \le 1 + \sum_{k=2}^n \left(\frac{1}{k-1} - \frac{1}{k}\right) = 1 + 1 - \frac{1}{n} \le 2$$

Or la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante car $\forall n\geqslant 1,\ u_{n+1}-u_n=\frac{1}{(n+1)^2}>0$. Elle est majorée par 2, donc on peut

$$(u_n)_{n\in\mathbb{N}^*}$$
 converge

Ex 7 Soit
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$
.

a) Démontrons que pour tout $n \in \mathbb{N}^*$, $2\sqrt{n+1} - 2 \leqslant S_n \leqslant 2\sqrt{n}$ (\heartsuit):

On a pour tout $k \in \mathbb{N}^*$

$$2\left(\sqrt{k+1} - \sqrt{k}\right) = \frac{2}{\sqrt{k+1} + \sqrt{k}} \leqslant \frac{2}{\sqrt{k} + \sqrt{k}} = \frac{1}{\sqrt{k}}$$

et

$$2\left(\sqrt{k} - \sqrt{k-1}\right) = \frac{2}{\sqrt{k} + \sqrt{k-1}} \geqslant \frac{2}{\sqrt{k} + \sqrt{k}} = \frac{1}{\sqrt{k}}$$

Ainsi

$$2\left(\sqrt{k+1}-\sqrt{k}\right)\leqslant\frac{1}{\sqrt{k}}\leqslant2\left(\sqrt{k}-\sqrt{k-1}\right)\quad(*)$$
 et par sommation puis télescopage, pour tout $n\in\mathbb{N}^*$

$$2\sqrt{n+1}-2=2\sum_{k=1}^n\left(\sqrt{k+1}-\sqrt{k}\right)\leqslant S_n\leqslant 2\sum_{k=1}^n\left(\sqrt{k}-\sqrt{k-1}\right)=2\sqrt{n}\quad \text{CQFD}.$$

En divisant par \sqrt{n} , il vient

$$2\sqrt{1+\frac{1}{n}} - \frac{2}{\sqrt{n}} \leqslant \frac{S_n}{\sqrt{n}} \leqslant 2$$

Le théorème des gendarmes donne alors $\lim \frac{S_n}{\sqrt{n}} = 2$, d'où

$$S_n \sim 2\sqrt{n}$$

b) Posons pour tout $n \in \mathbb{N}^*$, $R_n = S_n - 2\sqrt{n}$. Alors

$$\forall n \geqslant 2, \ T_n - T_{n-1} = S_n - S_{n-1} - 2\sqrt{n} + 2\sqrt{n-1} = \frac{1}{\sqrt{n}} - 2\left(\sqrt{n} - \sqrt{n-1}\right) \leqslant 0$$

d'après l'encadrement (*). $(R_n)_{n\in\mathbb{N}^*}$ est donc décroissante. De plus l'encadrement (\heartsuit) donne:

$$\forall n \geqslant 1, \ R_n \geqslant 2\sqrt{n+1} - 2\sqrt{n} - 2 = 2\left(\frac{1}{\sqrt{n+1} + \sqrt{n}} - 1\right) \geqslant -2$$

La suite $(R_n)_{n\in\mathbb{N}^*}$ est décroissante et minorée, donc converge.

Ex 8 Constante d'Euler. Soient, pour
$$n \in \mathbb{N}^*$$
, $u_n = \sum_{k=1}^n \frac{1}{k}$ et $v_n = \sum_{k=1}^n \frac{1}{k} - \ln n$.

a) Soit $k \in \mathbb{N}^*$. On a par décroissance de la fonction inverse sur \mathbb{R}_+^*

$$\forall t > 0, \ \frac{1}{k+1} \leqslant \frac{1}{t} \leqslant \frac{1}{k}$$

Par intégration il vient

$$\frac{1}{k+1} \leqslant \int_{k}^{k+1} \frac{\mathrm{d}t}{t} \leqslant \frac{1}{k} \quad \text{soit} \quad \boxed{\frac{1}{k+1} \leqslant \ln(k+1) - \ln k \leqslant \frac{1}{k}} \quad (*)$$

b) On a pour tout $n \geqslant 1$:

$$v_{n+1} - v_n = u_{n+1} - u_n - \ln(n+1) + \ln(n) = \frac{1}{n+1} - \ln(n+1) + \ln(n) \le 0$$
 d'après (*)

Donc $(v_n)_{n\geqslant 1}$ est décroissante. De plus, en sommant (*) de 1 à n, on obtient

$$\sum_{k=1}^{n} (\ln (k+1) - \ln k) \leqslant \sum_{k=1}^{n} \frac{1}{k} \quad \text{d'où} \quad u_n \geqslant \ln (n+1)$$

d'où par télescopage:

$$u_n \geqslant \ln(n+1)$$
 i.e. $v_n \geqslant \ln(n+1) - \ln(n) \geqslant 0$

 $(v_n)_{n\geqslant 1}$ est décroissante et minorée, donc converge vers un réel γ , appelé constante d'Euler

c) On peut écrire alors $v_n=\gamma+o\left(1\right)$, i.e. $u_n=\ln n+\gamma+o\left(1\right)$. Comme $\gamma+o\left(1\right)\ll \ln n$, il vient

$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln\left(n\right)$$

Ex 9 Soient
$$f: x \mapsto \frac{x}{\sqrt{1+x}}$$
, et pour $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n f\left(\frac{k}{n^2}\right)$, et $T_n = \sum_{k=1}^n \frac{k}{n^2}$

Soit $x \ge 0$. Alors

$$x - f\left(x\right) = x\left(1 - \frac{1}{\sqrt{1 + x}}\right) = \frac{x\left(\sqrt{x + 1} - 1\right)}{\sqrt{1 + x}} \overset{\text{quantité conjuguée}}{=} \frac{x^2}{\left(\sqrt{x + 1} + 1\right)\sqrt{1 + x}}$$

Comme $\sqrt{1+x} \ge 1$, il vient facilement :

$$\boxed{0 \leqslant x - f(x) \leqslant \frac{x^2}{2}}$$

Pour $n \in \mathbb{N}^*$ et $k \in [1, n]$ écrivons cet encadrement pour $x = \frac{k}{n^2} \geqslant 0$

$$0 \leqslant \frac{k}{n^2} - f\left(\frac{k}{n^2}\right) \leqslant \frac{k^2}{2n^4}$$

En sommant:

$$0 \leqslant \frac{1}{n^2} \sum_{k=1}^{n} k - S_n \leqslant \frac{1}{2n^4} \sum_{k=1}^{n} k^2$$

Ce qui donne

$$0 \leqslant \frac{n+1}{2n} - S_n \leqslant \frac{1}{2n^4} \frac{n(n+1)(2n+1)}{6}$$

On a finalement l'encadrement

$$\frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \leqslant S_n \leqslant \frac{n+1}{2n}$$

Comme $\frac{n+1}{2n}\sim \frac{1}{2}$ et $\frac{(n+1)(2n+1)}{12n^3}\sim \frac{1}{6n}\to 0$, le théorème des gendarmes permet d'affirmer :

$$(S_n)_{n\in\mathbb{N}}$$
 converge vers $\frac{1}{2}$

Ex 10 Soit $u_n = 2^n \sqrt{2 - \sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}$ (il y a n radicaux).

a) Montrons par récurrence que
$$\forall n \in \mathbb{N}^*$$
,
$$\begin{cases} \cos \frac{\pi}{2^{n+1}} = \frac{1}{2} \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}} \\ \sin \frac{\pi}{2^{n+1}} = \frac{1}{2} \sqrt{2 - \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}} \end{cases}$$
 (H_n) * $H(1)$ est vraie car $\cos \frac{\pi}{4} = \sin \frac{\pi}{4} = \frac{1}{2} \sqrt{2}$.

* Soit $n \in \mathbb{N}^*$. Supposons H(n) et montrons H(n+1) : par linéarisation on a

$$\cos^2\frac{\pi}{2^{n+2}} = \frac{1}{2}\left(1 + \cos\frac{\pi}{2^{n+1}}\right) \quad \text{et} \quad \sin^2\frac{\pi}{2^{n+1}} = \frac{1}{2}\left(1 - \cos\frac{\pi}{2^{n+1}}\right)$$

Comme $\frac{\pi}{2^{n+2}} \in \left]0, \frac{\pi}{2}\right[, \cos\frac{\pi}{2^{n+2}} > 0 \text{ et } \sin\frac{\pi}{2^{n+2}} > 0, \text{ on a donc par hypothèse de récurrence}\right]$

$$\cos \frac{\pi}{2^{n+1}} = \frac{1}{2} \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}} \quad (n+1 \text{ radicaux})$$

$$\sin \frac{\pi}{2^{n+1}} = \frac{1}{4} \sqrt{2 - \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}} \quad (n+1 \text{ radicaux})$$

L'hérédité est établie.

b) On a alors pour tout $n \in \mathbb{N}^*$

$$u_n = 2^{n+1} \sin \frac{\pi}{2^{n+1}} \sim 2^{n+1} \frac{\pi}{2^{n+1}} = \pi$$

Ainsi

$$(u_n)_{n\geqslant 1}$$
 converge vers π

Ex 11 Soit (u_n) une suite strictement positive, telle que $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \ell \in [0, 1[.:]]$ montrons (u_n) converge vers 0.

– Première méthode : en écrivant la définition avec " $\varepsilon=1-\ell>0$ ", on obtient :

$$\exists n_0 \in \mathbb{N} / \forall n \geqslant n_0, \ 0 < \frac{u_{n+1}}{u_n} \leqslant 1$$

Cela signifie que (u_n) est décroissante à partir d'un certain rang.

Comme elle est minorée par 0, elle converge vers un réel $a \in [0, 1]$.

Par l'absurde, si $a \in]0,1]$ (i.e.. $a \neq 0$) alors on aurait $\lim \frac{u_{n+1}}{u_n} = \frac{a}{a} = 1$ contradiction.

On en déduit que a=0 CQFD.

– <u>Deuxième méthode</u> : soit $q\in]\ell,1[$. En appliquant la définition avec " $\varepsilon=q-\ell>0$ ", on a

$$\exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, \ 0 < \frac{u_{n+1}}{u_n} \leqslant q \quad \text{soit} \quad 0 < u_{n+1} \leqslant q u_n$$

Une récurrence facile laissée au lecteur donne alors (cf. suites géométriques) :

$$\forall n \geqslant n_0, \ 0 < u_n \leqslant q^{n-n_0} u_{n_0} = \frac{u_{n_0}}{q^{n_0}} q^n$$

Comme 0 < q < 1, le théorème des gendarmes assure alors que (u_n) converge vers 0.

- Application : montrons que pour $a > 1, \ a^n \ll n! \ll n^n$.

On considère les suites (u_n) et (v_n) de terme général $\frac{a^n}{n!}$ et $\frac{n!}{n^n}$. Alors pour tout entier n:

$$\frac{u_{n+1}}{u_n} = \frac{a^{n+1}}{(n+1)!} \frac{n!}{a^n} = \frac{1}{a(n+1)} \to 0 = \ell$$

Par application du résultat précédent, on déduit (u_n) converge vers 0, i.e. $a^n \ll n!$. De même

$$\frac{v_{n+1}}{v_n} = \frac{(n+1)!}{(n+1)^{n+1}} \frac{n^n}{n!} = \frac{n^n}{(n+1)^n} = \left(\frac{n}{n+1}\right)^n = e^{n\ln\left(\frac{n}{n+1}\right)}$$

Comme $n \ln \left(\frac{n}{n+1}\right) \sim n \times \left(\frac{n}{n+1} - 1\right) = -\frac{n}{n+1} \sim -1$, on en déduit que $\lim \frac{v_{n+1}}{v_n} = e^{-1} \in \left]0,1\right[$, d'où (v_n) converge vers 0, i.e. $n! \ll n^n$.

Ex 12 a) Soit $n \in \mathbb{N}^*$. Montrons que l'équation $x^n + x - 1 = 0$ admet une unique solution $x_n \in]0,1[$.

La fonction φ définie sur]0,1[par $\varphi(x)=x^n+x-1=0$ est continue srictement croissante (somme de fonctions strictement croissantes), donc réalise une bijection de]0,1[sur son image, soit]-1,1[qui contient 0. Il existe donc un unique $x_n\in]0,1[$ tel que $\varphi(x_n)=0$, soit

$$x^n + x_m - 1 = 0$$

b) Soit
$$f: x \mapsto \frac{\ln{(1-x)}}{\ln{x}} = \frac{-\ln{(1-x)}}{-\ln{x}}$$
 définie sur $]0,1[$.

 $x \mapsto -\ln(1-x)$ est continue positive strictement croissante sur]0,1[, de même que $x \mapsto -\frac{1}{\ln x}$. Par produit,

f est continue strictement croissante sur]0,1[, donc réalise une bijection de]0,1[sur son image $]0,+\infty[$. (En effet $\lim_{\longrightarrow} f=0$ et $\lim_{\longrightarrow} f=+\infty$). On a alors $\forall n\in\mathbb{N}^*$,

$$x_n^n + x_n - 1 = 0 \iff x_n^n = 1 - x_n \iff n \ln x_n = \ln (1 - x_n) \iff n = f(x_n)$$

Finalement

$$x_n = f^{-1}(n)$$

Or

$$\lim_{x \to 1} f(x) = +\infty \Longrightarrow \lim_{y \to +\infty} f^{-1}(y) = 1$$

On en déduit ainsi

$$\lim x_n = 1$$

Ex 13 a) Soit $n \in \mathbb{N}$. Montrons que l'équation $\tan x = x$ admet une unique solution $x_n \in \left[-\frac{\pi}{2} + n\pi, \frac{\pi}{2} + n\pi \right] = I_n$. On étudie la fonction $f: x \mapsto \tan(x) - x \operatorname{sur} I_n$.

Sa dérivée sur I_n est $f': x \mapsto \tan^2(x) > 0$ sauf en $n\pi$, donc f est continue strictement croissante sur I_n et réalise une bijection de I_n sur son intervalle image, ici \mathbb{R} , puisque $\lim_{-\pi/2+n\pi+} f = -\infty$ et $\lim_{\pi/2+n\pi-} f = +\infty$.

Il s'ensuit que l'équation $f\left(x\right)=0$ admet une unique solution notée x_{n} , vérifiant donc

$$\begin{cases} -\frac{\pi}{2} + n\pi < x_n < \frac{\pi}{2} + n\pi & (1) \\ \tan(x_n) = x_n & (2) \end{cases}$$

D'après (1), il est évident que

$$(x_n)$$
 diverge vers $+\infty$

Mais de plus

$$-\frac{1}{2n} + 1 < \frac{x_n}{n\pi} < \frac{1}{2n} + 1$$

 $-\frac{1}{2n}+1<\frac{x_n}{n\pi}<\frac{1}{2n}+1$ D'après le théorème des gendarmes, $\lim\frac{x_n}{n\pi}=1$, i.e. $\boxed{x_n\sim n\pi}$ ou

$$x_n = n\pi + o\left(n\right)$$

b) Posons, pour $n\in\mathbb{N},\ y_n=x_n-n\pi.$ Alors $y_n\in\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. De plus par π -périodicité

$$\tan(y_n) = \tan(x_n) = x_n$$

On en déduit

$$y_n = \arctan(x_n)$$

Comme $\lim x_n = +\infty$, on a par composée

$$\boxed{\lim y_n = \frac{\pi}{2}}$$

Autrement dit $y_n = \frac{\pi}{2} + o(1)$, soit encore

$$x_n = n\pi + \frac{\pi}{2} + o(1)$$

Posons alors $u_n=x_n-n\pi-\frac{\pi}{2}=y_n-\frac{\pi}{2}$. Comme $x_n>0$ on a pour tout $n\in\mathbb{N}^*$:

$$u_n = \arctan(x_n) - \frac{\pi}{2} = -\arctan\left(\frac{1}{x_n}\right)$$

Mais comme $\frac{1}{x_n}$ converge vers 0 et $\arctan x \sim x$, on a ainsi:

$$u_n \sim -\frac{1}{x_n} \sim -\frac{1}{n\pi}$$

Cela s'écrit $u_n=-rac{1}{n\pi}+o\left(rac{1}{n}
ight)$, d'où finalement le développement à trois termes :

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + o\left(\frac{1}{n}\right)$$

Ex 14 Soient
$$u_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$$
, $v_n = u_{2n}$, et $w_n = u_{2n+1}$.

- a) Montrons que $(v_n)_{n\in\mathbb{N}^*}$ et $(w_n)_{n\in\mathbb{N}^*}$ sont adjacentes :
 - * Pour tout $n \in \mathbb{N}^*$:

$$v_{n+1} - v_n = \sum_{k=1}^{2n+2} \frac{(-1)^{k-1}}{k} - \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \frac{1}{2n+1} - \frac{1}{2n+2} > 0$$

$$w_{n+1} - w_n = \sum_{k=1}^{2n+3} \frac{(-1)^{k-1}}{k} - \sum_{k=1}^{2n+1} \frac{(-1)^{k-1}}{k} = \frac{1}{2n+3} - \frac{1}{2n+2} < 0$$

Donc (v_n) est croissante et (w_n) décroissante.

* Pour tout $n \in \mathbb{N}^*$:

$$w_n - v_n = \sum_{k=1}^{2n+1} \frac{(-1)^{k-1}}{k} - \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \frac{1}{2n+1} \to 0 \quad \text{CQFD}.$$

Ainsi $(v_n)_{n\in\mathbb{N}^*}$ et $(w_n)_{n\in\mathbb{N}^*}$ convergent vers la même limite, autrement dit les deux suites extraites (u_{2n}) et (u_{2n+1}) convergent vers la même limite, ce qui assure la convergentce de $(u_n)_{n\in\mathbb{N}^*}$

b) On sait que pour tout $k \in \mathbb{N}^*, \frac{1}{k} = \int_0^1 x^{k-1} \mathrm{d}x$, donc par linéarité de l'intégralepour $n \geqslant 1$:

$$u_n = \sum_{k=1}^n (-1)^{k-1} \int_0^1 x^{k-1} dx = \int_0^1 \left(\sum_{k=1}^n (-1)^{k-1} x^{k-1} \right) dx$$

Or pour tout $x \in [0, 1]$,

$$\sum_{k=1}^{n} (-1)^{k-1} x^{k-1} = \sum_{k=1}^{n} (-x)^{k-1} = \sum_{k=0}^{n-1} (-x)^k = \frac{1 + (-x)^n}{1 + x} \quad \text{car } -x \neq 1$$

Donc

$$u_n = \int_0^1 \frac{1 + (-x)^n}{1 + x} dx = \int_0^1 \frac{dx}{1 + x} + (-1)^n \int_0^1 \frac{x^n}{1 + x} dx = \ln 2 + (-1)^n \int_0^1 \frac{x^n}{1 + x} dx$$

Or

$$\forall x \in [0, 1], \ 0 \le \frac{x^n}{1+x} \le x^n \Rightarrow 0 \le \int_0^1 \frac{x^n}{1+x} \, \mathrm{d}x \le \frac{1}{n+1}$$

Le théorème des gendarmes permet d'affirmer que $\int_0^1 \frac{x^n}{1+x} dx$ converge vers 0, donc aussi $(-1)^n \int_0^1 \frac{x^n}{1+x} dx$ par produit avec une suite bornée. Finalement

$$\lim u_n = \ln 2$$

Ex 15 Montrons que les suites suivantes sont adjacentes :

a)
$$u_n=\sum_{k=1}^n\frac{1}{k^p}$$
 et $v_n=u_n+\frac{1}{n^{p-1}}$ $(p\geqslant 2).$

$$* Il est évident que $v_n-u_n=\frac{1}{n^{p-1}}\to 0 \text{ puisque } p-1>0.$$$

* Pour tout $n \in \mathbb{N}$,

et

$$\begin{aligned} u_{n+1} - u_n &= \frac{1}{(n+1)^p} > 0 \quad \text{donc } (u_n) \text{ croît} \\ v_{n+1} - v_n &= u_{n+1} - u_n + \frac{1}{(n+1)^{p-1}} - \frac{1}{n^{p-1}} \\ &= \frac{1}{(n+1)^p} + \frac{1}{(n+1)^{p-1}} - \frac{1}{n^{p-1}} \\ &= \frac{n+2}{(n+1)^p} - \frac{1}{n^{p-1}} \\ &= -\frac{(n+1)^p - n^{p-1} (n+2)}{(n+1)^p n^{p-1}} \\ &= -\frac{(n+1)^p - n^p - 2n^{p-1}}{(n+1)^p n^{p-1}} \end{aligned}$$

On développe avec la formule du binôme :
$$v_{n+1} - v_n = -\frac{n^p + pn^{p-1} + \sum\limits_{k=0}^{p-2} \binom{p}{k} n^k - n^p - 2n^{p-1}}{(n+1)^p \, n^{p-1}}$$

$$= -\frac{(p-2) \, n^{p-1} + \sum\limits_{k=0}^{p-2} \binom{p}{k} n^k}{(n+1)^p \, n^{p-1}}$$

Comme $p-2 \ge 0$, et que tous les autre protagonistes de cette expression sont positifs, il vient $v_{n+1}-v_n \le 0$, donc (v_n) est décroissante, et les deux suites sont adjacentes.

b)
$$u_n = \prod_{k=1}^n \left(1 + \frac{1}{k^2}\right)$$
 et $v_n = \left(1 + \frac{1}{n}\right)u_n$.

* Les deux suites sont strictement positives, on étudie donc les quotients, plus pratiques : pour tout $n \in \mathbb{N}^*$:

et
$$\frac{u_{n+1}}{u_n} = 1 + \frac{1}{(n+1)^2} > 1 \quad \text{donc } (u_n) \text{ croît}$$

$$\frac{v_{n+1}}{v_n} = \left(1 + \frac{1}{n+1}\right) \left(1 + \frac{1}{n}\right)^{-1} \frac{u_{n+1}}{u_n}$$

$$= \left(1 + \frac{1}{n+1}\right) \times \frac{n}{n+1} \times \left(1 + \frac{1}{(n+1)^2}\right)$$

$$= \left(1 + \frac{1}{n+1}\right) \left(1 - \frac{1}{n+1}\right) \left(1 + \frac{1}{(n+1)^2}\right) \quad \#" + 1 - 1"$$

$$= \left(1 - \frac{1}{(n+1)^2}\right) \left(1 + \frac{1}{(n+1)^2}\right)$$

$$= 1 - \frac{1}{(n+1)^4} < 1 \quad \text{donc } (v_n) \text{ décroît}$$

Alors pour tout $n \ge 1$:

$$0 < v_n - u_n = \left(1 + \frac{1}{n}\right)u_n - u_n = \frac{u_n}{n} \leqslant \frac{v_n}{n} \stackrel{(v_n) \text{ décroît}}{\leqslant} \frac{v_0}{n}$$

Le théorème des gendarmes assure ainsi que $(v_n - u_n)_{n \in \mathbb{N}^*}$ converge vers 0 et que les deux suites sont adjacentes.

Ex 16 Soient $0 . On définit les suites <math>(u_n)$ et (v_n) par $u_0 = p$, $v_0 = q$, et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{qu_n + pv_n}{p+q}, \quad v_{n+1} = \frac{pu_n + qv_n}{p+q}$$

Montrons que (u_n) et (v_n) sont adjacentes :

- Pour tout $n \in \mathbb{N}$

$$v_{n+1} - u_{n+1} = \frac{pu_n + qv_n}{p+q} - \frac{qu_n + pv_n}{p+q}$$
$$= \frac{q-p}{q+p}(v_n - u_n)$$

La suite $(v_n - u_n)_{n \in \mathbb{N}}$ est donc géométrique de raison $\frac{q-p}{q+p} \in]0,1[$. Donc

$$\forall n \in \mathbb{N}, \ v_n - u_n = \left(\frac{q-p}{q+p}\right)^n (v_0 - u_0) = \left(\frac{q-p}{q+p}\right)^n (q-p) \geqslant 0$$

En particulier, on a $\forall n \in \mathbb{N}, \ u_n \leqslant v_n$ et $\lim (v_n - u_n) = 0$

Monotonie:

$$\forall n \in \mathbb{N}, \ u_{n+1} - u_n = \frac{qu_n + pv_n}{p+q} - u_n = \frac{p}{p+q} (v_n - u_n) \geqslant 0$$

$$\forall n \in \mathbb{N}, \ v_{n+1} - v_n = \frac{pu_n + qv_n}{p+q} - v_n = \frac{p}{p+q} (u_n - v_n) \leqslant 0$$

On en déduit que (u_n) est croissante et (v_n) décroissante.

Ainsi (u_n) et (v_n) sont adjacentes, et convergent donc vers une même limite ℓ . Or

$$\forall n \in \mathbb{N}, \ u_{n+1} + v_{n+1} = \frac{qu_n + pv_n}{p+q} + \frac{pu_n + qv_n}{p+q} = u_n + v_n$$

La suite $(u_n + v_n)$ est donc constante :

$$\forall n \in \mathbb{N}, \ u_n + v_n = u_0 + v_0 = p + q$$

En passant à la limite, il vient facilement

$$\ell = \frac{p+q}{2}$$

Ex 17 Critère de Cauchy: on suppose que $(x_n) \in \mathbb{R}^{\mathbb{N}}$ vérifie $\lim_{\min(p,q) \to \infty} |x_q - x_p| = 0$. On considère $M_n = \sup_{p \geqslant n} (x_p)$ et $m_n = \inf_{p \geqslant n} (x_p)$. Montrons que (M_n) et (m_n) sont adjacentes:

- On a pour tout $n \in \mathbb{N}, \{x_p, p \ge n+1\} \subset \{x_p, p \ge n\}$. On en déduit

$$\begin{cases} \sup \{x_p, p \geqslant n+1\} \leqslant \sup \{x_p, \ p \geqslant n\} \\ \inf \{x_p, p \geqslant n+1\} \geqslant \inf \{x_p, \ p \geqslant n\} \end{cases} \text{ soit } \begin{cases} M_{n+1} \leqslant M_n \\ m_{n+1} \geqslant m_n \end{cases}$$

Ainsi (M_n) décroît tandis que (m_n) croît.

- Soit $\varepsilon > 0$. Par hypothèse, il existe $n_0 \in \mathbb{N}$ tel que $\forall p \ge n_0, \ |x_q - x_p| \le \varepsilon$.

Soit $n \geqslant n_0$. Alors $\forall p \geqslant n, \ \forall q \geqslant n, \ |x_q - x_p| \leqslant \varepsilon, \text{donc } x_q \leqslant x_p + \varepsilon$.

A $p\geqslant n$ fixé, on a donc $\forall q\geqslant n,\ x_q\leqslant x_p+\varepsilon$ et par "passage au sup" $M_n\leqslant x_p+\varepsilon$.

Mais alors $\forall p \geqslant n, \ x_p \geqslant M_n - \varepsilon$ et "passage à l'inf" $m_n \geqslant M_n - \varepsilon$. Finalement

$$M_n - m_n \leqslant \varepsilon$$

On en déduit que $(M_n - m_n)_{n \in \mathbb{N}}$ converge vers 0.

Ainsi (M_n) et (m_n) convergent vers la même limite ℓ . Mais $\forall n \in \mathbb{N}, x_n \in \{x_p, p \ge n\}$, donc

$$m_n \leqslant x_n \leqslant M_n$$

Le théorème des gendarmes donne immédiatement

$$(x_n)_{n\in\mathbb{N}}$$
 converge (vers ℓ)

Ex 18 Soit (u_n) la suite définie par récurrence par $\left\{ \begin{array}{l} 0 < u_0 < \frac{\pi}{2} \\ \forall n \in \mathbb{N}, \ u_{n+1} = \sin u_n \end{array} \right. .$

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sin u_n$$

a) \sin est croissante $\sup \left[0, \frac{\pi}{2}\right]$ donc $\sin\left(\left[0, \frac{\pi}{2}\right]\right) = \left[0, 1\right] \subset \left[0, \frac{\pi}{2}\right]$.

L'intervalle $\left[0, \frac{\pi}{2}\right]$ est stable par sinus, et une récurrence facile montre que $\forall n \in \mathbb{N}, u_n \in \left[0, \frac{\pi}{2}\right]$.

On peut même dire que]0,1[est stable par \sin , et donc $\forall n \geqslant 1, \ 0 < u_n < 1.$

Etudions $\varphi: x \mapsto \sin{(x)} - x \text{ sur } \left[0, \frac{\pi}{2}\right]$. On a $\varphi': x \mapsto \cos{(x)} - 1$. Donc $\varphi' > 0$ sauf en 0, et φ est strictement

décroissante sur $\left[0,\frac{\pi}{2}\right]$. Comme $\varphi\left(0\right)=0$, on en déduit que φ est négative sur $\left[0,\frac{\pi}{2}\right]$ et ne s'annule qu'en 0.

Ainsi l'unique point fixe de la fonction (continue) sinus sur $\left[0, \frac{\pi}{2}\right]$ est 0. De plus

$$\forall n \in \mathbb{N}, \ u_{n+1} - u_n = \sin(u_n) - u_n = \varphi(u_n) \leqslant 0$$

Donc (u_n) est décroissante.

b) Minorée par 0 et décroissante :

la suite (u_n) converge vers son unique point fixe, c'est-à-dire 0

De plus comme $\lim u_n = 0$, on a $\sin (u_n) \sim u_n$, i.e.

$$u_{n+1} \sim u_n$$

Ex 19 Soit (u_n) la suite définie par $u_0 = 9$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{6 + u_n}$. On pose $f: x \mapsto \sqrt{6 + x}$.

- a) La fonction f est croissante sur l'intervalle $[-6, +\infty[$, et en particulier sur $I=[3, +\infty[$. De plus $\lim_{+\infty} f = +\infty$, donc $f(I) = [f(3), +\infty[= [3, +\infty[= I.$ Ainsi \underline{I} est stable par \underline{f} .
 - * On en déduit, puisque $u_0 \in I$ que $\forall n \in \mathbb{N}, \ u_n \in I$ (par récurrence : c'est vrai d' u_0 , et si $u_n \in I$, alors $u_{n+1} = f(u_n) \in I$). En particulier (u_n) est minorée par 3.
 - * Comme f est continue, les seules limites possibles de (u_n) sont des points fixes. On résout :

$$f\left(x\right)=x\Longleftrightarrow\sqrt{x+6}=x\Longleftrightarrow\left\{\begin{array}{ll}x+6=x^{2}\\x\geqslant0\end{array}\right.$$

3 est l'unique limite possible de (u_n) .

b) On sait, f étant croissante sur I stable par f, que la suite (u_n) est monotone. Or $u_1 = \sqrt{15} < 9$, donc (u_n) est décroissante. Minorée par 3, elle converge donc vers son unique point fixe :

$$(u_n)$$
 converge vers 3

Remarque : on peut aussi étudier $g: x \mapsto f(x) - x: \forall x \geqslant 3$

$$g(x) = \frac{x+6-x^2}{\sqrt{x+6}+x} = \frac{-(x-3)(x+2)}{\sqrt{x+6}+x} \le 0$$

Donc $\forall n \in \mathbb{N}$, comme $u_n \geqslant 3$, on a $u_{n+1} - u_n = g\left(u_n\right) \leqslant 0$

c) On a sur $]-6, +\infty[$:

$$f': x \mapsto \frac{1}{2\sqrt{x+6}}$$

qui est décroissante sur I et tend vers 0 en $+\infty$.

Donc $f'(I) =]0, f'(3)] = [0, \frac{1}{6}]$, et on en déduit : sup $f' = \frac{1}{6}$. Alors en intégrant :

$$\forall t \in I, \ f'(t) \leqslant \frac{1}{6} \Rightarrow \forall x \geqslant 3, \ \int_{3}^{x} f'(t) \, \mathrm{d}t \leqslant \frac{1}{6} (x - 3) \Rightarrow \forall x \geqslant 3, \ f(x) - f(3) \leqslant \frac{1}{6} (x - 3)$$

Pour $n \in \mathbb{N}$, on substitue u_n à x : comme f(3) = 3, on obtient

$$u_{n+1} - 3 \leqslant \frac{1}{6} (u_n - 3) \quad (*)$$

On montre alors par récurrence que $\forall n \in \mathbb{N}$,

$$0 < u_n - 3 \leqslant \frac{1}{6^{n-1}}$$

- * C'est vrai de u_0 $(0 < 9 3 \le \frac{1}{6^{-1}})$
- * Si $n \in \mathbb{N}$ et $0 < u_n 3 \leqslant \frac{1}{6^{n-1}}$ alors (*) entraine

$$0 < u_{n+1} - 3 \leqslant \frac{1}{6} \left(u_n - 3 \right) \stackrel{\mathrm{HdR}}{\leqslant} \frac{1}{6^n} \quad \mathrm{CQFD}$$

(on a $u_{n+1}-3>0$ car $]3,+\infty[$ est stable par f donc $u_{n+1}=f(u_n)>3)$

Ex 20 Soit $f: x \mapsto \ln \frac{e^x - 1}{x}$. On rappelle que $\forall x \in \mathbb{R}^*, \ e^x > 1 + x$.

a) On a:

$$\lim_{x\to 0}\frac{e^{x}-1}{x}=\exp '\left(0\right) =1\quad \mathrm{donc}\quad \lim_{x\to 0}f\left(x\right) =0$$

Ainsi

$$f$$
 se prolonge en une fonction continue sur \mathbb{R}_+ en posant $f(0)=0$

De plus pour tout x > 0,

$$e^x > 1 + x \Rightarrow \frac{e^x - 1}{r} > 1 \Rightarrow \ln \frac{e^x - 1}{r} > 0$$

f est donc strictement positive sur \mathbb{R}_+^* .

b) Soit $g: x \mapsto f(x) - x$. Alors pour tout x > 0,

$$g(x) = \ln \frac{e^x - 1}{x} - \ln e^x = \ln \frac{e^x - 1}{xe^x} = \ln \frac{1 - e^{-x}}{x}$$

Mais l'inégalité rappelée donne en substitant -x à x:

$$e^{-x} > 1 - x$$
 d'où $0 < 1 - e^{-x} < x$ et $0 < \frac{1 - e^{-x}}{x} < 1$

Il vient donc facilement

$$\forall x > 0, \ g\left(x\right) < 0$$

c) Soit (u_n) la suite définie par

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$

L'étude de f montre que l'intervalle $]0, +\infty[$ est stable par f, donc

$$\forall n \in \mathbb{N}, u_n \text{ existe} \quad \text{et} \quad u_n > 0 \quad \text{\#r\'ecurrence}$$

L'étude de g montre que pour tout $n \in \mathbb{N}, \ u_{n+1} - u_n = g\left(u_n\right) < 0,$ donc (u_n) décroît.

Décroissante et minorée (par 0), la suite (u_n) converge, et comme f est continue sur \mathbb{R}_+ , sa limite est un point fixe de f (ou une racine de g). Mais l'étude du b) montre que g ne s'annule qu'en 0, et donc que 0 est l'unique point fixe de f. On peut conclure

Ex 21 Soit a > 0 et (u_n) la suite définie par

$$u_1 = \ln a$$
 et $\forall n \ge 2, \ u_n = \sum_{k=1}^{n-1} \ln (a - u_k)$

On a pour tout $n \geqslant 1$:

$$u_{n+1}=\sum_{k=1}^n\ln\left(a-u_k\right)=u_n+\ln\left(a-u_n\right)$$
 En posant $f:x\mapsto x+\ln\left(a-x\right)$, la suite (u_n) vérifie la relation :

$$u_1 = \ln a$$
 et $\forall n \geqslant 1, u_n = f(u_n)$

Notons que f est définie sur l'intervalle $I=\left]-\infty,a\right]$, et que

$$f': x \mapsto 1 - \frac{1}{a - x} = \frac{a - 1 - x}{a - x}$$

On a le tableau de variations suivant :

x	$-\infty$		a-1		a
f'(x)		+	0	_	
f(x)	$-\infty$	7	a-1	>	$-\infty$

Pour la limite en $-\infty$, on pose $y=a-x\underset{x\to -\infty}{\to}+\infty.$ Alors

$$\lim_{x \to +\infty} \big(x + \ln\big(a - x\big)\big) = \lim_{y \to +\infty} a - y + \ln y = -\infty \quad \text{car} \quad \ln y \, \underset{y \to +\infty}{\ll} \, y$$

Comme f est croissante sur $I =]-\infty, a-1]$, on a $f(J) =]-\infty, f(a-1)] =]-\infty, a-1] = J$.

L'intervalle J est donc stable par f. Comme $u_1 = \ln a \leqslant a - 1$ (inégalité très classique), on a par récurrence

$$\forall n \geqslant 1, \ u_n \text{ existe et } u_n \leqslant a-1$$

De plus

$$\forall n \geqslant 1, \ u_{n+1} - u_n = \ln(a - u_n) \geqslant 0 \quad \text{car} \quad a - u_n \geqslant 1$$

Il s'ensuit que (u_n) est majorée (par a-1) et croissante, donc converge.

Comme f est continue sur J, la limite de (u_n) est nécessairement un point fixe de f, solution de :

$$f(x) = x \iff \ln(a - x) = 0 \iff a - x = 1 \iff x = a - 1$$

Finalement

$$(u_n)$$
 converge vers $a-1$

Ex 22 Etude de la suite définie par

$$u_0 = \frac{1}{2}$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = 1 - u_n^2$

On pose $f: x \mapsto 1 - x^2$.

- Il est clair que f est décroissante sur [0,1], donc f([0,1]) = [f(1),f(0)] = [0,1]L'intervalle [0,1] est stable par f, et on en déduit par une récurrence rapide que $\forall n \in \mathbb{N}, \ 0 \leq u_n \leq 1$ (C'est vrai pour n = 0, et si c'est vrai pour $n \in \mathbb{N}$, alors $u_{n+1} = f(u_n) \in [0, 1]$).

- La fonction f est continue sur \mathbb{R} , donc une éventuelle limite ℓ de (u_n) doit vérifier $f(\ell) = \ell$. Or $f(x) = x \Leftrightarrow x^2 + x - 1 = 0$. Les seules limites possibles de (u_n) sont

$$\boxed{\alpha = \frac{\sqrt{5} - 1}{2} \in [0, 1]} \quad \text{et} \quad \boxed{\beta = -\frac{1 + \sqrt{5}}{2} \notin [0, 1]}$$

On pose pour tout $n \in \mathbb{N}, \ v_n = u_{2n}, w_n = u_{2n+1}, \text{ et } g = f \circ f.$ On a

$$v_0 = u_0 = \frac{1}{2}$$
 et $w_0 = u_1 = f(u_0) = \frac{3}{4}$

De plus, $\forall n \in \mathbb{N}$,

$$v_{n+1} = u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})) = g(v_n)$$

 $w_{n+1} = u_{2n+3} = f(u_{2n+2}) = f(f(u_{2n+1})) = g(w_n)$.

 (v_n) et (w_n) vérifient donc la même relation de récurrence donnée par la fonction $h = f \circ f$.

Remarque : α et β sont points fixes de g. Sont-ils les seuls?

Soit $\varphi: x \mapsto g(x) - x$. On a

$$\begin{array}{llll} g\left(0\right) & = & f\left(1\right) = 0 & \mathrm{donc} & \varphi\left(0\right) = 0 \\ g\left(1\right) & = & f\left(0\right) = 1 & \mathrm{donc} & \varphi\left(1\right) = 0 \\ g\left(\alpha\right) & = & f\left(\alpha\right) = \alpha & \mathrm{donc} & \varphi\left(\alpha\right) = 0 \\ g\left(\beta\right) & = & f\left(\beta\right) = \beta & \mathrm{donc} & \varphi\left(\beta\right) = 0 \end{array}$$

De plus pour tout réel x:

$$\varphi(x) = 1 - (1 - x^2)^2 - x$$

 $\varphi\left(x\right)=1-\left(1-x^{2}\right)^{2}-x$ est polynomiale de degré 4 et de coefficient dominant -1. Donc

$$\varphi(x) = -x(x-1)(x-\alpha)(x-\beta)$$

On obtient alors aisément le signe de φ sur l'intervalle [0,1] : (β est négatif)

x	0		α		1
$\varphi(x)$	0	_	0	+	0

Au passage, g admet trois points fixes sur $[0,1]:0,\alpha$ et 1.

On sait que f est décroissante sur [0, 1]. Donc

$$0 \leqslant a \leqslant b \leqslant 1 \Rightarrow 0 \leqslant f(b) \leqslant f(a) \leqslant 1 \Rightarrow 0 \leqslant f(f(a)) \leqslant f(f(b)) \leqslant 1$$

g est donc croissante sur [0,1] ..En particulier

$$g([0, \alpha]) = [g(0), g(\alpha)] = [0, \alpha]$$
 et $g([\alpha, 1]) = [g(\alpha), g(1)] = [\alpha, 1]$

 $[0, \alpha]$ et $[\alpha, 1]$ sont donc stables par g.

Or $v_0 = \frac{1}{2} \in [0, \alpha]$ et $w_0 = \frac{3}{4} \in [\alpha, 1]$. Par récurrence (comme plus haut),

$$\forall n \in \mathbb{N}, \ 0 \leqslant v_n \leqslant \alpha \quad \text{et} \quad \alpha \leqslant w_n \leqslant 1$$

De plus $\forall n \in \mathbb{N}$,

$$\begin{array}{lcl} v_{n+1}-v_n & = & g\left(v_n\right)-v_n=\varphi\left(v_n\right)\leqslant 0 \quad \text{puisque } v_n\in[0,\alpha] \\ w_{n+1}-w_n & = & g\left(w_n\right)-w_n=\varphi\left(w_n\right)\geqslant 0 \quad \text{puisque } w_n\in[\alpha,1] \end{array}$$

Donc (v_n) est minorée (par 0) et décroissante, donc converge vers un point fixe de g inférieur à $v_0 = \frac{1}{2} < \alpha$. D'où

$$\lim v_n = 0$$

De même (w_n) est majorée (par 1) et croissante, donc converge vers un point fixe de g supérieur à $w_0 = \frac{3}{4} > \alpha$. D'où

$$\lim w_n = 1$$

- Si la suite (u_n) convergeait vers un réel a, on aurait $\lim u_{2n} = \lim u_{2n+1} = a$.

Ce n'est visiblement pas le cas puisque les limites de $(v_n) = (u_{2n})$ et $(w_n) = (u_{2n+1})$ sont distinctes. Donc

$$(u_n)$$
 est divergente

Remarque: une méthode plus courte. Comme g est croissante sur [0,1] stable par g, on en déduit que les suites (v_n) et (w_n) sont monotones. On calcule

$$v_1 = u_2 = 1 - u_1^2 = 1 - \left(\frac{3}{4}\right)^2 = \frac{7}{16} < v_0 \quad \text{et} \quad w_1 = u_3 = 1 - u_2^2 = 1 - \left(\frac{7}{16}\right)^2 = \frac{207}{256} > w_0$$

On en déduit que (v_n) est décroissante et (w_n) est croissante, donc $(w_n - v_n)$ est croissante.

Comme $w_0 - v_0 > 0$, cette différence ne peut pas tendre vers 0, ce qui interdit la convergence de (u_n) .

Cette méthode ne donne pas les limites des suites extraites (u_{2n}) et (u_{2n+1}) , appelées **valeurs d'adhérence** de (u_n) .

Ex 23 Méthode de Césarò: si $(u_n)_{n\geqslant 1}$ est une suite, on pose $v_n=\frac{u_1+u_2+\cdots+u_n}{n}$

a) On suppose que (u_n) converge vers 0. Soit $\varepsilon > 0$.

Par définition de $\lim u_n = 0$, $\exists n_0 \in \mathbb{N}^*$ tel que $\forall n \geqslant n_0$, $|u_n| \leqslant \frac{\varepsilon}{2}$

Mais alors $\forall n \geqslant n_0$,

$$\left| \frac{u_{n_0} + u_{n_0+1} + \dots + u_n}{n} \right| \leqslant \frac{|u_{n_0}| + |u_{n_0+1}| + \dots + |u_n|}{n} \leqslant \frac{(n - n_0 + 1) \times \varepsilon/2}{n} \leqslant \frac{\varepsilon}{2}$$

 $\operatorname{car} n - n_0 + 1 \leqslant n.$

 n_0 ainsi fixé, la suite $\frac{u_1 + u_2 + \dots + u_{n_0 - 1}}{n}$ converge vers 0 (son numérateur est constant).

Il existe donc un entier $n_1 \in \mathbb{N}^*$ tel que

$$\forall n \geqslant n_1, \quad \left| \frac{u_1 + u_2 + \dots + u_{n_0 - 1}}{n} \right| \leqslant \frac{\varepsilon}{2}$$

Alors, en posant $n_2 = \max(n_0, n_1)$, on a $\forall n \ge n_2$:

$$|v_n| \stackrel{\text{I.T.}}{\leqslant} \left| \frac{u_1 + u_2 + \dots + u_{n_0 - 1}}{n} \right| + \left| \frac{u_{n_0} + u_{n_0 + 1} + \dots + u_n}{n} \right| \leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Ce qui assure que

$$(v_n)$$
 converge vers 0

Cette méthode, qui consiste à partager une expression en plusieurs parties dont la "petitesse" est assurée par des arguments différents, s'appelle la **méthode de Césaro**, elle est employée dans de multiples situations.

b) On suppose si (u_n) converge vers $\ell \in \mathbb{R}$. On peut écrire alors $u_n = \ell + \delta_n$, où (δ_n) converge vers 0. Donc

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n} = \frac{n\ell + \delta_1 + \dots + \delta_n}{n} = \ell + \frac{\delta_1 + \dots + \delta_n}{n}$$

D'après la question précédente, $\frac{\delta_1+\cdots+\delta_n}{n}$ converge vers 0, d'où l'on déduit que

$$(v_n)$$
 converge vers ℓ

c) On suppose que $\lim (u_{n+1} - u_n) = \ell \neq 0$, alors en appliquant le résultat précédent à la suite (w_n) de terme général $w_n = u_n - u_{n-1}$, on obtient

$$\frac{1}{n} \sum_{k=1}^{n} (u_k - u_{k-1}) \to \ell \quad \text{soit} \quad \frac{1}{n} (u_n - u_0) \to \ell \quad \text{et donc} \quad \frac{u_n}{n} \to \ell$$

On conclut à

$$u_n \sim n\ell$$

Ce résultat s'appelle le **lemme de l'escalier**.