K Means Clustering on diabetes dataset

Code ▼

Install and load libraries: mlr

Hide

```
# install.packages("mlr", dependencies = TRUE)
```

Install and load libraries: tidyverse and mclust

Hide

```
# install.packages("tidyverse")
# install.packages("mclust")
```

Load the diabetes data:

Hide

```
data(diabetes, package = "mclust")
```

Use the installed libs:

Hide

```
library(mlr)
library(tidyverse)
```

Format and display data:

Hide

```
diabetesTib <- as_tibble(diabetes)
diabetesTib</pre>
```

class	glucose	insulin	sspg
<fctr></fctr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Normal	80	356	124
Normal	97	289	117
Normal	105	319	143
Normal	90	356	199
Normal	90	323	24
Normal	86	381	15
Normal	100	350	22
Normal	85	301	180
Normal	97	379	14:

class <fctr></fctr>	glucose <dbl></dbl>	insulin <dbl></dbl>	sspg <dbl></dbl>
Normal	97	296	131
1-10 of 145 rows	Previous 1 2	3 4 5 6	15 Next

Get some stats of the data:

Hide

summary(diabetesTib)

```
glucose
     class
                                insulin
                                                    sspg
Chemical:36
              Min.
                      : 70
                                    : 45.0
                                                      : 10.0
                             Min.
                                               Min.
              1st Qu.: 90
Normal :76
                             1st Qu.: 352.0
                                               1st Qu.:118.0
Overt
              Median : 97
                             Median : 403.0
                                               Median :156.0
        :33
              Mean
                      :122
                             Mean
                                     : 540.8
                                               Mean
                                                      :186.1
              3rd Qu.:112
                             3rd Qu.: 558.0
                                               3rd Qu.:221.0
                      :353
                                     :1568.0
                                                       :748.0
              Max.
                             Max.
                                               Max.
```

Keep the classes for visualisation purposes, remove them for the clustering part (unsupervised)

Hide

```
diabetesTib_without_class <- select(diabetesTib, -class)</pre>
```

Plot the data around some of its classes:

Hide

```
ggplot(diabetesTib, aes(glucose, insulin, col = class)) +
  geom_point()
```


Hide

```
ggplot(diabetesTib, aes(sspg, insulin, col = class)) +
  geom_point()
```


ggplot(diabetesTib, aes(glucose, sspg, col = class)) +
 geom_point()

Define a Task:

```
Hide
 diabetesTask <- makeClusterTask(data = diabetesTib_without_class)</pre>
 Provided data is not a pure data.frame but from class tbl_df, hence it will be converted.
                                                                                                     Hide
 diabetesTask
 Unsupervised task: diabetesTib without class
 Type: cluster
 Observations: 145
 Features:
    numerics
                   factors
                                ordered functionals
                                      0
            3
 Missings: FALSE
 Has weights: FALSE
 Has blocking: FALSE
 Has coordinates: FALSE
Define a learner: K Means Clustering
                                                                                                     Hide
 knn <- makeLearner("cluster.kmeans", centers = 3)</pre>
Train the model:
                                                                                                     Hide
 knnModel <- train(knn, diabetesTask)</pre>
Get the predictions:
                                                                                                     Hide
 pred <- predict(knnModel, task = diabetesTask)</pre>
Get some performance score results : we select these from the list below
"db" is Davies-Bouldin cluster separation measure "G1" is Calinski-Harabasz pseudo F statistic "G2" is Baker
and Hubert adaptation of Goodman-Kruskal's gamma statistic "Silhouette" is Rousseeuw's silhouette internal
cluster quality index
                                                                                                     Hide
 listMeasures("cluster")
```

Compute the scores from the predictions

"db"

[1] "featperc"

[8] "G2"

"timeboth"

"timetrain"

"timepredict" "silhouette" "G1"

Hide

```
performance(pred, measures = list(db, G1, G2, silhouette), task = diabetesTask)
```

```
db G1 G2 silhouette
0.9617377 293.5111025 0.9230416 0.7158229
```

We can plot the clustering model:

Hide

plotLearnerPrediction(learner = knn, task = diabetesTask)

