Noise!

mjb@cs.oregonstate.edu

This work is licensed under a <u>Creative Commons</u>
<u>Attribution-NonCommercial-NoDerivatives 4.0</u>
<u>International License</u>

mjp – January 5, ∠∪⊺8

Noise:

- Can be 1D, 2D, or 3D
- Is a function of input value(s)
- Ranges from -1. to +1. or from 0. to 1.
- Might look random, but really isn't
- Has continuity
- Is repeatable (i.e., if you supply the same inputs, you will always get the same outputs)

Positional Noise

Idea: Pick a random number at the whole-number input values and then fit a piecewise smooth curve through those points.

The problem is that, due to the uncertainty of random numbers, you might et a good plus-or-minus distribution, or a not-so-good distribution.

University
Computer Graphics

Oregon State

Gradient Noise

Idea: Place points at the mid-line at the whole-number input values use random numbers to pick gradients (slopes) there, and then fit a piecewise smooth curve through those points with those slopes.

No matter what, you will get a good plus-or-minus distribution.

Quintic (5th order) Interpolation Creates More Continuity Than Cubic

Cubic: C^1 continuity at the whole-number values

Quintic: C^2 continuity at the whole-number values

Coefficients for Cubic and Quintic Forms

$$N(t) = C_{N0}N_{\downarrow 0} + C_{N1}N_{\downarrow 1} + C_{G0}G_{\downarrow 0} + C_{G1}G_{\downarrow 1} + C_{C0}C_{\downarrow 0} + C_{C1}C_{\downarrow 1}$$
Noise values Gradients Curvatures

Cubic

$$C_{N0} = 1 - 3t^{2} + 2t^{3}$$

$$C_{N1} = 3t^{2} - 2t^{3} = 1 - C_{N0}$$

$$C_{G0} = t - 2t^{2} + t^{3}$$

$$C_{G1} = -t^{2} + t^{3}$$

$$C_{C0} = 0$$

$$C_{C1} = 0$$
Oregon State
University

Computer Graphics

Quintic

$$C_{N0} = 1 - 10t^{3} + 15t^{4} - 6t^{5}$$

$$C_{N1} = 10t^{3} - 15t^{4} + 6t^{5} = 1 - C_{N0}$$

$$C_{G0} = t - 6t^{3} + 8t^{4} - 3t^{5}$$

$$C_{G1} = -4t^{3} + 7t^{4} - 3t^{5}$$

$$C_{C0} = \frac{1}{2}t^{2} - \frac{3}{2}t^{3} + \frac{3}{2}t^{4} - \frac{1}{2}t^{5}$$

$$C_{C1} = \frac{1}{2}t^{3} - t^{4} + \frac{1}{2}t^{5}$$

Noise Octaves

Idea: Add multiple noise waves, each one twice the frequency and half the amplitude of the previous one

1 Octave 4 Octaves

Image Representation of 2D Noise

3D Surface Representation of 2D Noise

Oregonstate
University
Computer Gra

3D Volume Rendering of 3D Noise

Has continuity in X, Y, and Z

3D Volume Isosurfaces of 3D Noise

1 Octave

The low half of the noise values are on side of the surface, the high half are on the other Computer Graphics

4 Octaves

Examples

Color Blending for Marble

Color Blending for Clouds

Deciding when to Discard for Erosion

Turbulence

Idea: Take the absolute value of the noise about the centerline, giving the noise a "sharper" appearance and creating "creases". *Warning: this is not the same as fluid "turbulence".*

Turbulence Example

Normal

How to Use Noise

Have an equation that relates some input value (x,y,z or u,v) to output values (color, height)

Have actual input values of where we are right now

Add Noise to the actual input values to produce new "fake" input values

Use those new "fake" input values in the original equation

Computer Graphics

Idea: The graphics system will display "here", using display parameters as if you were "over there.

N = NoiseMag * noise(NoiseFreq * PP);

Should PP be in Model or World coordinates? Why?

How much to increase the sampling rate

N = NoiseMag * noise(NoiseFreq * PP);

Surface Shader Only

Displacement Shader Only

Oregon State
University
Computer Graphics

Surface and Displacement Shaders together

mjb – January 5, 2018

What's the Difference Between These Two Images? Why?

Displacement-mapped

Bump-mapped

