

Report No.: FR690630AC

Project No: CB10611333

FCC Test Report

Equipment : Liberty Wireless Module

Brand Name : Bowers & Wilkins

Model No. : CC72036

FCC ID : 2ACIX-LWM

Standard : 47 CFR FCC Part 15.247

Operating Band : 2400 MHz - 2483.5 MHz

Applicant : B&W Group Ltd.

Dale Road Worthing, West Sussex BN11 2BH, United

Kingdom

Manufacturer : B&W Group Ltd.

Dale Road Worthing, West Sussex BN11 2BH, United

Kingdom

The product sample received on Sep. 15, 2017 and completely tested on Nov. 17, 2017. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given inanes and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONALINC., the test report shall not be reproduced except in full.

Cliff Chang

SPORTON INTERNATIONAL INC.

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No.

: 1 of 28

Report Version

: Rev. 02

Issued Date

: Jan. 08, 2018

FCC Test Report

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Testing Applied Standards	
1.3	Testing Location Information	g
1.4	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	Test Channel Mode	10
2.2	The Worst Case Measurement Configuration	11
2.3	EUT Operation during Test	12
2.4	Accessories	13
2.5	Support Equipment	13
2.6	Test Setup Diagram	14
3	TRANSMITTER TEST RESULT	17
3.1	AC Power-line Conducted Emissions	17
3.2	20dB Bandwidth and Carrier Frequency Separation	19
3.3	Maximum Conducted Output Power	20
3.4	Number of Hopping Frequencies and Hopping Bandedge	21
3.5	Time of Occupancy (Dwell Time)	22
3.6	Emissions in Non-restricted Frequency Bands	23
3.7	Emissions in Restricted Frequency Bands	24
4	TEST EQUIPMENT AND CALIBRATION DATA	27
APPE	NDIX A. TEST RESULTS OF AC POWER-LINE CONDUCTED EMISSIONS	
APPE	NDIX B. TEST RESULTS OF 20DB BANDWIDTH AND CARRIER FREQUENCY SEPARATION	1
APPE	NDIX C. TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER	
APPE	NDIX D. TEST RESULTS OF NUMBER OF HOPPING FREQUENCIES AND HOPPING BANDE	DGE
APPE	NDIX E. TEST RESULTS OF TIME OF OCCUPANCY (DWELL TIME)	
APPE	NDIX F. TEST RESULTS OF EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
APPE	NDIX G. TEST RESULTS OF EMISSIONS IN RESTRICTED FREQUENCY BANDS	
APPE	NDIX H. TEST RESULTS OF RADIATED EMISSION CO-LOCATION	
APPE	NDIX I. TEST PHOTOS	
APPE	NDIX J. PHOTOGRAPHS OF EUT	

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 2 of 28
Report Version : Rev. 02

Issued Date

: Jan. 08, 2018

Summary of Test Result

	Conformance Test Specifications							
Report Clause	Ref. Std. Clause	Description	Limit	Result				
1.1.2	15.203	Antenna Requirement	FCC 15.203	Complied				
3.1	15.207	AC Power-line Conducted Emissions	FCC 15.207	Complied				
3.2	15.247(a)	20dB Bandwidth	15.247(a)	Complied				
3.2	15.247(a)	Carrier Frequency Separation	15.247(a)	Complied				
3.3	15.247(b)	Maximum Conducted Output Power	15.247(b)	Complied				
3.4	15.247(a)	Number of Hopping Frequencies and Hopping Band edge	15.247(a)	Complied				
3.5	15.247(a)	Time of Occupancy (Dwell Time)	15.247(a)	Complied				
3.6	15.247(d)	Emissions in Non-restricted Frequency Bands	15.247(d)	Complied				
3.7	15.247(d)	Emissions in Restricted Frequency Bands	Restricted Bands: FCC 15.209	Complied				

SPORTON INTERNATIONAL INC. TEL: 886-3-3273456

FAX: 886-3-3270973 FCC ID: 2ACIX-LWM

Page No. : 3 of 28 Report Version : Rev. 02 Issued Date

: Jan. 08, 2018

Revision History

Report No.	Version	Description	Issued Date
FR690630AC	Rev. 01	Initial issue of report	Dec. 15, 2017
FR690630AC	Rev. 02	Adding twelve dipole antennas	Jan. 08, 2018

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 4 of 28
Report Version : Rev. 02

Issued Date : Jan. 08, 2018

1 General Description

1.1 Information

1.1.1 RF General Information

Frequency Range (MHz)	Bluetooth Version	Ch. Frequency (MHz)	Channel Number
2400-2483.5	BR / EDR	2402-2480	0-78 [79]

Report No.: FR690630AC

Band	Mode	BWch (MHz)	Nant
2.4G	BT-BR	1	1
2.4G	BT-EDR	1	1

Note:

- Bluetooth BR uses a GFSK (1Mbps).
- Bluetooth EDR uses a combination of $\pi/4$ -DQPSK (2Mbps) and 8DPSK (3Mbps).
- Bluetooth BR/EDR uses as a system using FHSS modulation.
- BWch is the nominal channel bandwidth.
- Nss-Min is the minimum number of spatial streams.
- Nant is the number of outputs. e.g., 2(2, 3) means have 2 outputs for port 2 and port 3. 2 means have 2 outputs for port 1 and port 2.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 5 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

1.1.2 Antenna Information

							G	ain (dBi)	
Ant.	Port	Radio	Brand	P/N	Antenna Type	Connector	WLAN 2.4GHz	WLAN 5GHz	вт
1	1	R1	LUXSHARE ICT	DCIW303	Dipole Antenna	I-PEX	2.02	3.06	-
2	2	R1	LUXSHARE ICT	DCIW303	Dipole Antenna	I-PEX	2.02	-	-
3	1	R2	LUXSHARE ICT	DCIW303	Dipole Antenna	I-PEX	-	3.06	-
4	2	R2	LUXSHARE ICT	DCIW303	Dipole Antenna	I-PEX	-	3.06	-
5	1	R3/R4	LUXSHARE ICT	DCIW303	Dipole Antenna	I-PEX	-	3.06	2.02
6	2	R3	LUXSHARE ICT	DCIW303	Dipole Antenna	I-PEX	-	3.06	-
7	-	R2/R3	ACON	ZZ35343	Dipole Antenna	I-PEX 20670-001R -37	-	1.28	-
8	-	R1/R2/R3	ACON	ZZ35351	Dipole Antenna	I-PEX 20670-001R -37	1.92	2	-
9	-	R2/R3	ACON	ZZ35378	Dipole Antenna	I-PEX 20670-001R -37	-	1.77	-
10	-	R2/R3	ACON	ZZ35386	Dipole Antenna	I-PEX 20670-001R -37	-	2.93	-
11	-	R1	ACON	ZZ35394	Dipole Antenna	I-PEX 20670-001R -37	1.53	NA	-
12	ı	R1/R2/R3/ R4	ACON	ZZ35408	Dipole Antenna	I-PEX 20670-001R -37	1.92	1.52	1.92
13	1	R2/R3	ACON	ZZ35491	Dipole Antenna	I-PEX 20670-001R -37	-	2.12	,
14	-	R1/R2/R3	ACON	ZZ35505	Dipole Antenna	I-PEX 20670-001R -37	1.94	2.88	-
15	-	R2/R3	ACON	ZZ35513	Dipole Antenna	I-PEX 20670-001R -37	-	1.73	-
16	-	R2/R3	ACON	ZZ35521	Dipole Antenna	I-PEX 20670-001R -37	-	1.41	-
17	-	R1	ACON	ZZ35548	Dipole Antenna	I-PEX 20670-001R -37	1.91	-	-
18	-	R1/R2/R3/ R4	ACON	ZZ35556	Dipole Antenna	I-PEX	1.62	0.46	1.62

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 6 of 28
Report Version : Rev. 02
Issued Date : Jan. 08, 2018

FCC Test Report

Note:There are 18 antennas in the antenna table list, antenna 1~6 are the highest gain antennas.

Report No.: FR690630AC

They were selected to perform the test and recorded in this report.

For 2.4GHz function:

Radio 1

For IEEE 802.11b/g/n/ac mode (2TX/2RX)

Ant.1 (Port 1) and Ant.2 (Port 2) could transmit/receive simultaneously.

For 5GHz function:

Radio 1 (For B1~B4)

For IEEE 802.11a/n/ac mode (1RX)

Only Ant.1 (Port 1) can be used as receiving antenna.

Radio 2 (For B3~B4)

For IEEE 802.11a/n/ac mode (2TX/2RX)

Ant.3 (Port 1) and Ant.4 (Port 2) could transmit/receive simultaneously.

Radio 3 (For B1~B2)

For IEEE 802.11a/n mode (2TX/2RX)

Ant.5 (Port 1) and Ant.6 (Port 2) could transmit/receive simultaneously.

For bluetooth function:

Radio 4

For bluetooth mode (1TX/1RX)

Only Ant.5 (Port 1) can be used as transmitting/receiving antenna.

1.1.3 Mode Test Duty Cycle

Mode	DC	DCF(dB)	T(s)	VBW(Hz) ≥ 1/T
BT-BR(1Mbps)	0.828	0.82	2.906m	1k
BT-EDR(2Mbps)	0.791	1.018	2.915m	1k
BT-EDR(3Mbps)	0.763	1.175	2.916m	1k

 SPORTON INTERNATIONAL INC.
 Page No.
 : 7 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

FCC Test Report

1.1.4 EUT Operational Condition

EUT Power Type	From host system
Test Software Version	Blue Test3

1.1.5 Table for EUT functions

Radio	2.4GHz & 5GHz (B1~B4) (5GHz Scanning only)	5GHz (B1&B2)	5GHz (B3&B4)	Bluetooth
1	V	-	-	-
2	-	-	V	-
3	-	V	-	-
4	-	-	-	V

Turns of function	2.4GHz	5GHz (B1&B2)	5GHz (B3&B4)	5GHz (Radio 1)	Bluetooth
Type of function	(Radio 1)	(Radio 3)	(Radio 2)	(B1~B4) (Scanning only)	(Radio 4)
AP Mode (Master)	N/A	V	V	V	V
Station Mode					
(Slave without	V	V	V	N/A	V
radar detection)					
Station Mode					
(Slave without	N/A	V	V	V	V
radar detection)					
Took Mode	2.4GHz	5GHz (B1&B2)	5GHz (B3&B4)	5GHz (Radio 1)	Bluetooth
Test Mode	(Radio 1)	(Radio 3)	(Radio 2)	(B1~B4) (Scanning only)	(Radio 4)
AP Mode					
(For lisn and					
Emissions in	Station Mode	AP Mode	AP Mode	Not work (Note)	Not work
Non-restricted	Station wode	AP Mode			(Note)
Frequency Bands					
below 1GHz)					
Station Mode	Station Mode	Station Mode	Station Mode	Not work (Note)	Not work
Station Mode	Station Wode	Ctation Mode	Station wode	inot work (note)	(Note)
For Radiated Emiss	sion Co-location	1		T	_
AP Mode	Station Mode	AP Mode	AP Mode	Not work (Note)	AP Mode

Note: Normal link does not support BT link and RX Scanning function.

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 8 of 28
Report Version : Rev. 02

Report No.: FR690630AC

Issued Date : Jan. 08, 2018

1.2 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR690630AC

- 47 CFR FCC Part 15
- FCC Public Notice DA 00-705

1.3 Testing Location Information

	Testing Location							
	HWA YA ADD : No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.							
		TEL	:	886-3-327-3456 FAX : 886-3-318-0055				
\boxtimes	JHUBEI	ADD	:	No.8, Lane 724, Bo-ai St., Jhubei City, HsinChu County 302, Taiwan, R.O.C.				
		TEL	:	886-3-656-9065 FAX : 886-3-656-9085				

Test Condition	Test Site No.	Test Engineer	Test Environment	Test Date
RF Conducted	TH01-CB	Brian Sun & Eddie Weng	22°C / 54%	Sep. 26, 2017 ~ Nov. 16, 2017
Radiated 03CH01-CB		Paul Chen & DK Chang & Justin Lin & Joy Tseng & Zero Chen & Mason Chen	22°C / 54%	Sep. 28, 2017 ~ Oct. 06, 2017
AC Conduction	CO01-CB	Max Lin	25°C / 59%	Nov. 17, 2017

Test site Designation No. TW0006 with FCC.

Test site registered number IC 4086D with Industry Canada.

1.4 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Test Items	Uncertainty	Remark	
Conducted Emission (150kHz ~ 30MHz)	3.2 dB	Confidence levels of 95%	
Radiated Emission (30MHz ~ 1,000MHz)	3.6 dB	Confidence levels of 95%	
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%	
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%	
Conducted Emission	1.7 dB	Confidence levels of 95%	
Output Power Measurement	1.33 dB	Confidence levels of 95%	
Bandwidth Measurement	9.74 x10 ⁻⁸	Confidence levels of 95%	

 SPORTON INTERNATIONAL INC.
 Page No.
 : 9 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

2 Test Configuration of EUT

2.1 Test Channel Mode

Mode	Power Setting
BT-BR(1Mbps)	-
2402MHz	63
2440MHz	63
2480MHz	55
BT-EDR(2Mbps)	-
2402MHz	63
2440MHz	63
2480MHz	63
BT-EDR(3Mbps)	-
2402MHz	63
2440MHz	63
2480MHz	61

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 10 of 28
Report Version : Rev. 02
Issued Date : Jan. 08, 2018

2.2 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests			
Tests Item AC power-line conducted emissions			
Condition AC power-line conducted measurement for line and neutral			
Operating Mode Normal Link			
1 AP Mode			
2 Station Mode			
Mode 2 generated the worst test result, so it was recorded in this report.			

Report No.: FR690630AC

Т	The Worst Case Mode for Following Conformance Tests			
Tests Item	20dB Bandwidth Carrier Frequency Separation Maximum Conducted Output Power Number of Hopping Frequencies Hopping Bandedge Time of Occupancy (Dwell Time) Emissions in Non-restricted Frequency Bands			
Test Condition	Conducted measurement at transmit chains			

Th	The Worst Case Mode for Following Conformance Tests			
Tests Item	Emissions in Restricted Frequency Bands			
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.			
Operating Mode < 1GHz	Normal Link			
1	AP Mode-EUT in Y axis			
2	AP Mode-EUT in Z axis			
Mode 1 has been evaluate this same test mode.	ed to be the worst case among Mode 1~2, thus measurement for Mode 3 will follow			
3	Station Mode-EUT in Y axis			
Mode 1 generated the wor	st test result, so it was recorded in this report.			
	СТХ			
Operating Mode > 1GHz	The EUT was performed at X axis, Y axis and Z axis position for Emissions in Restricted Frequency Bands above 1GHz test, and the worst case was found at Z axis. So the measurement will follow this same test configuration.			
1	EUT in Z axis			

 SPORTON INTERNATIONAL INC.
 Page No.
 : 11 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

FCC Test Report

The Worst Case Mode for Following Conformance Tests			
Tests Item Simultaneous Transmission Analysis - Radiated Emission Co-location			
Test Condition	Radiated measurement		
Operating Mode	Normal Link		
1	EUT in X axis - R1 (2.4G / Station mode) + R3 (5G B1~B2 / AP mode) + R2 (5G B3~B4 / AP mode) + R4 (BT / AP mode)		
EUT in Y axis - R1 (2.4G / Station mode) + R3 (5G B1~B2 / AP mode) + F B3~B4 / AP mode) + R4 (BT / AP mode)			
BUT in Z axis - R1 (2.4G / Station mode) + R3 (5G B1~B2 / AP mode) + R2 B3~B4 / AP mode) + R4 (BT / AP mode)			
Mode 3 generated the worst test result, so it was recorded in this report.			
Refer to Appendix H for Radiated Emission Co-location.			

Report No.: FR690630AC

The Worst Case Mode for Following Conformance Tests			
Tests Item Simultaneous Transmission Analysis - Co-location RF Exposure Evaluation			
Operating Mode			
1 R1 (2.4G) + R3 (5G B1~B2) + R2 (5G B3~B4) + R4 (BT)			
Refer to Sporton Test Report No.: FA790630 for Co-location RF Exposure Evaluation.			

Note: All the specification of test configurations and test modes were based on customer's request.

2.3 EUT Operation during Test

For CTX Mode:

The EUT was programmed to be in continuously transmitting mode.

For Normal Link:

During the test, the EUT operation to normal function.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 12 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

2.4 Accessories

N/A

2.5 Support Equipment

For Test Site No: CO01-CB

10110	OF TEST ONE NO. COOT-OB				
	Support Equipment				
No.	No. Equipment Brand Name Model Name FCC ID				
1	NB*4	DELL	E6430	DoC	
2	AP Router*3	Planex	GW-AP54SGX	KA220030603014-1	
3	Mouse	Logitech	M-U0026	DoC	
4	Earphone	e-Power	\$90W	DoC	
5	Test fixture	Arcadyan	WN9722BTBAC22-WB JIG TEST	N/A	

Report No.: FR690630AC

For Test Site No: 03CH01-CB (below 1GHz)

	Support Equipment				
No.	No. Equipment Brand Name Model Name				
1	NB*4	DELL	E4300	DoC	
2	WLAN AP	D-LINK	DIR860L	KA2IR860LA1	
3	Mouse	Logitech	M-U0026	DoC	
4	Earphone	SHYARO CHI	MIC-04	N/A	
5	Test fixture	Arcadyan	WN9722BTBAC22-WB JIG TEST	N/A	

For Test Site No: 03CH01-CB (above 1GHz)

 TOT TEST SITE ITO: SECTION OF (ABOVE TOTIE)				
Support Equipment				
No. Equipment Brand Name Model Name FCC ID				FCC ID
1	NB	DELL	E4300	DoC
2	Test fixture	Arcadyan	WN9722BTBAC22-WB JIG TEST	N/A

For Test Site No: TH01-CB

	Support Equipment				
No.	No. Equipment Brand Name Model Name FCC ID				
1	NB	DELL	E4300	DoC	
2	Test fixture	Arcadyan	WN9722BTBAC22-WB JIG TEST	N/A	

 SPORTON INTERNATIONAL INC.
 Page No.
 : 13 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

Report No.: FR690630AC

Test Setup Diagram 2.6

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM

: 14 of 28 Page No. Report Version : Rev. 02 Issued Date : Jan. 08, 2018

Report No.: FR690630AC SPORTON LAB. Test Setup Diagram - Radiated Test < 1GHz AC MAIN AC MAIN

Item	Connection	Shielded	Length
1	Power cable	No	3m
2	USB cable	Yes	1m
3	RJ-45 cable	No	1.5m
4	Power cable	No	1.3m
5	USB cable	Yes	1m
6	Audio cable	No	1.1m
7	USB cable	Yes	1.8m

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM

Page No. : 15 of 28 Report Version : Rev. 02 Issued Date : Jan. 08, 2018

Test Setup Diagram - Radiated Test > 1GHz AC MAIN AC MAIN EUT NB Test fixture Item Connection Shielded Length 1 Power cable No 3m 2 USB cable Yes 1m 3 Power cable No 1.3m 4 USB cable Yes 1m

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 16 of 28
Report Version : Rev. 02
Issued Date : Jan. 08, 2018

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

Frequency Emission (MHz) Quasi-Peak Average							
66 - 56 *	56 - 46 *						
56	46						
60	50						
	66 - 56 * 56						

3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method	
 Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions. 	

3.1.4 Test Setup

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 17 of 28
Report Version : Rev. 02
Issued Date : Jan. 08, 2018

FCC Test Report

3.1.5 Test Result of AC Power-line Conducted Emissions

Report No.: FR690630AC

Refer as Appendix A

 SPORTON INTERNATIONAL INC.
 Page No.
 : 18 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

3.2 20dB Bandwidth and Carrier Frequency Separation

3.2.1 20dB Bandwidth and Carrier Frequency Separation Limit

	20dB Bandwidth and Carrier Frequency Separation Limit for Frequency Hopping Systems						
•	■ 902-928 MHz Band:						
	 N ≥50 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth≤ 250 kHz. 						
	■ 50 >N≥25 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth>250 kHz.						
•	■ 2400-2483.5 MHz Band:						
	 N ≥75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz). 						
	 75>N ≥ 15 and ChS ≥ MAX (20 dB bandwidth 2/3,25 kHz). 						
•	■ 5725-5850 MHz Band:						
	N ≥ 75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth≤ 1 MHz.						
N:N	N:Number of Hopping Frequencies; ChS: Hopping Channel Separation						

Report No.: FR690630AC

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

Test Method Refer as ANSI C63.10-2013, clause 6.9.1 for 20 dB bandwidth measurement. Refer as ANSI C63.10-2013, clause 7.8.2 for carrier frequency separation measurement.

3.2.4 Test Setup

3.2.5 Test Result of 20dB Bandwidth

Refer as Appendix B

3.2.6 Test Result of Carrier Frequency Separation

Refer as Appendix B

 SPORTON INTERNATIONAL INC.
 Page No.
 : 19 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

3.3 Maximum Conducted Output Power

3.3.1 Maximum Conducted Output Power Limit

	Maximum Conducted Output Power Limit					
•	■ 902-928 MHz Band:					
	■ N ≥50; Power 30dBm; EIRP 36dBm					
	■ 50 >N≥ 25; Power 24dBm; EIRP 30dBm					
•	2400-2483.5 MHz Band:					
	■ N ≥ 75; Power 30dBm; EIRP 36dBm					
	■ 75 >N ≥ 15; Power 21dBm; EIRP 27dBm					
•	5725-5850 MHz Band:					
	N ≥ 75; Power 30dBm; EIRP 36dBm					
N:N	lumber of Hopping Frequencies					

Report No.: FR690630AC

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

	Test Method
•	Refer as ANSI C63.10-2013, clause 7.8.5 for output power measurement.

3.3.4 Test Setup

3.3.5 Test Result of Maximum Conducted Output Power

Refer as Appendix C

 SPORTON INTERNATIONAL INC.
 Page No.
 : 20 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

3.4 Number of Hopping Frequencies and Hopping Bandedge

3.4.1 Number of Hopping Frequencies Limit

	Number of Hopping Frequencies Limit					
•	■ 902-928 MHz Band:					
	N ≥50 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth≤ 250 kHz.					
	■ 50 >N≥ 25 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth>250 kHz.					
•	2400-2483.5 MHz Band:					
	 N ≥ 75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz). 					
	 75 >N ≥ 15 and ChS ≥ MAX (20 dB bandwidth 2/3,25 kHz). 					
•	■ 5725-5850 MHz Band:					
	N ≥ 75 and ChS ≥ MAX (20 dB bandwidth, 25 kHz); 20 dB bandwidth≤ 1 MHz.					
N:N	N:Number of Hopping Frequencies; ChS: Hopping Channel Separation					

Report No.: FR690630AC

3.4.2 Hopping Bandedge Limit

Refer clause 3.6.1 and clause 3.7.1

3.4.3 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.4 Test Procedures

Test Method Refer as ANSI C63.10-2013, clause 7.8.3 for number of hopping frequencies measurement. Refer as ANSI C63.10-2013, clause 7.8.6 for hopping frequencies Bandedge measurement.

3.4.5 Test Setup

3.4.6 Test Result of Number of Hopping Frequencies

Refer as Appendix D

3.4.7 Test Result of Number of Hopping Frequencies Bandedge

Refer as Appendix D

 SPORTON INTERNATIONAL INC.
 Page No.
 : 21 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

3.5 Time of Occupancy (Dwell Time)

3.5.1 Time of Occupancy (Dwell Time) Limit

20dB Bandwidth and Carrier Frequency Separation Limit for Frequency Hopping Systems						
■ 902-928 MHz Band:						
■ N ≥50; 0.4s in 20s period						
■ 50 >N≥ 25; 0.4s in 10s period						
• 2400-2483.5 MHz Band:						
N ≥ 75; 0.4s in N x 0.4 period						
■ 75 >N ≥ 15; 0.4s in N x 0.4 period						
■ 5725-5850 MHz Band:						
N ≥ 75; 0.4s in 30s period						
N:Number of Hopping Frequencies						

Report No.: FR690630AC

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

Test Method

Refer as ANSI C63.10-2013, clause 7.8.4 for dwell time measurement.

maximum 1600/79/6 = 3.37 hops per second in each channel.

- Bluetooth ACL packets can be 1, 3, or 5 time slots. Following as dwell time. Operate DH5 at maximum dwell time and maximum duty cycle.
 - The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms.DH5 Packet permit

3.5.4 Test Setup

3.5.5 Test Result of Time of Occupancy (Dwell Time)

Refer as Appendix E

 SPORTON INTERNATIONAL INC.
 Page No.
 : 22 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

3.6 Emissions in Non-restricted Frequency Bands

3.6.1 Emissions in Non-restricted Frequency Bands Limit

Un-restricted Band Emissions Limit				
RF output power procedure	Limit (dB)			
Peak output power procedure	20			

Report No.: FR690630AC

Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

Test Method	
 Refer as ANSI C63.10-2013, clause 7.8.8 for unwanted emissions into non-restricted bands. 	

3.6.4 Test Setup

3.6.5 Test Result of Emissions in Non-restricted Frequency Bands

Refer as Appendix F

 SPORTON INTERNATIONAL INC.
 Page No.
 : 23 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

3.7 Emissions in Restricted Frequency Bands

3.7.1 Emissions in Restricted Frequency Bands Limit

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0 30		29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960 200		46	3				
Above 960	500	54	3				

Report No.: FR690630AC

- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB / decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.
- Note 3: Using the distance of 1m during the test for above 18 GHz, and the test value to correct for the distance factor at 3m.

3.7.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.7.3 Test Procedures

Test Method

- The average emission levels shall be measured in [hopping duty factor].
- Refer as ANSI C63.10; clause 6.9.2.2 band-edge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
- For the transmitter unwanted emissions shall be measured using following options below:
 - Refer as ANSI C63.10, clause 4.1.4.2.1 QP value.
 - Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak.
 - Refer as ANSI C63.10, clause 4.1.4.2.4 average value of hopping pulsed emissions.

 SPORTON INTERNATIONAL INC.
 Page No.
 : 24 of 28

 TEL: 886-3-3273456
 Report Version
 : Rev. 02

 FAX: 886-3-3270973
 Issued Date
 : Jan. 08, 2018

3.7.4 Test Setup

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 25 of 28
Report Version : Rev. 02
Issued Date : Jan. 08, 2018

3.7.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

3.7.6 Transmitter Radiated Unwanted Emissions

Refer as Appendix G

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 26 of 28
Report Version : Rev. 02
Issued Date : Jan. 08, 2018

Test Equipment and Calibration Data 4

					Calibratian	Calibration	
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
EMI Receiver	Agilent	N9038A	My52260123	9kHz ~ 8.45GHz	Jan. 23, 2017	Jan. 22, 2018	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-1 6-2	04083	150kHz~100MHz	Dec. 14, 2016	Dec. 13, 2017	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 21, 2016	Dec. 20, 2017	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 23, 2017	May 22, 2018	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA with 6dB Attenuator	TESEQ & EMCI	CBL6112D & N-6-06	37880 & AT-N0609	20MHz ~ 2GHz	Aug. 30, 2017	Aug. 29, 2018	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2016*	Mar. 15, 2018*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~ 8GHz	Nov. 10, 2016	Nov. 09, 2017	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 05, 2017	Jul. 04, 2018	Radiation (03CH01-CB)
Pre-Amplifier	EMCI	EMC330N	980332	20MHz ~ 3GHz	May 02, 2017	May 01, 2018	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 16, 2017	Jan. 15, 2018	Radiation (03CH01-CB)
Pre-Amplifier	MITEQ	TTA1840-35-HG	1864479	18GHz ~ 40GHz	Jul. 10, 2017	Jul. 09, 2018	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Nov. 22, 2016	Nov. 21, 2017	Radiation (03CH01-CB)
EMI Test	R&S	ESCS	100355	9kHz ~ 2.75GHz	May 06, 2017	May 05, 2018	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-16+17	N/A	30 MHz ~ 1 GHz	Oct. 24, 2016	Oct. 23, 2017	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Oct. 24, 2016	Oct. 23, 2017	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16+17	N/A	1 GHz ~ 18 GHz	Oct. 24, 2016	Oct. 23, 2017	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G#1	N/A	18GHz ~ 40 GHz	Oct. 24, 2016	Oct. 23, 2017	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G#2	N/A	18GHz ~ 40 GHz	Oct. 24, 2016	Oct. 23, 2017	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	N/A	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 26, 2016	Dec. 25, 2017	Conducted (TH01-CB)

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM

Page No. : 27 of 28 Report Version : Rev. 02 : Jan. 08, 2018

Report No.: FR690630AC

Issued Date

FCC Test Report

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Calibration Due Date	Remark
RF Cable-high	Woken	RG402	High Cable-6	1 GHz –26.5 GHz	Oct. 24, 2016	Oct. 23, 2017	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-06	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz –26.5 GHz	Oct. 24, 2016	Oct. 23, 2017	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-07	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz –26.5 GHz	Oct. 24, 2016	Oct. 23, 2017	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-08	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz –26.5 GHz	Oct. 24, 2016	Oct. 23, 2017	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-09	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz –26.5 GHz	Oct. 24, 2016	Oct. 23, 2017	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz –26.5 GHz	Oct. 11, 2017	Oct. 10, 2018	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 22, 2016	Nov. 21, 2017	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

SPORTON INTERNATIONAL INC.

TEL: 886-3-3273456 FAX: 886-3-3270973 FCC ID: 2ACIX-LWM Page No. : 28 of 28
Report Version : Rev. 02

Issued Date

: Jan. 08, 2018

[&]quot;*" Calibration Interval of instruments listed above is two years.

AC Power-line Conducted Emissions Result

Title 2. Title Thouse Teaming Found of Hospital (The officering Hospital)

AC Power-line Conducted Emissions Result

SPORTON INTERNATIONAL INC. Page No. : 2 of 2

EBW-FS Result Appendix B.1

Summary

Mode	Max-N dB	Max-OBW	ITU-Code	Min-N dB	Min-OBW
	(Hz)	(Hz)		(Hz)	(Hz)
2.4-2.4835GHz	-	-	-	-	-
BT-BR(1Mbps)	921.25k	872.064k	872KF1D	913.75k	852.074k
BT-EDR(2Mbps)	1.278M	1.284M	1M28G1D	1.264M	1.236M
BT-EDR(3Mbps)	1.274M	1.252M	1M25G1D	1.259M	1.229M

Max-N dB = Maximum 20dB down bandwidth; Max-OBW = Maximum 99% occupied bandwidth; Min-N dB = Minimum 20dB down bandwidth; Min-OBW = Minimum 99% occupied bandwidth;

Result

Mode	Result	Port 1-N dB	Port 1-OBW
		(Hz)	(Hz)
BT-BR(1Mbps)	-	-	-
2402MHz	Pass	921.25k	872.064k
2440MHz	Pass	913.75k	852.074k
2480MHz	Pass	913.75k	857.071k
BT-EDR(2Mbps)	-	-	-
2402MHz	Pass	1.264M	1.236M
2440MHz	Pass	1.275M	1.269M
2480MHz	Pass	1.278M	1.284M
BT-EDR(3Mbps)	-	-	-
2402MHz	Pass	1.259M	1.229M
2440MHz	Pass	1.274M	1.243M
2480MHz	Pass	1.259M	1.252M

Port X-N dB = Port X 20dB down bandwidth; Port X-OBW = Port X 99% occupied bandwidth;

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 1 of 1

Channel Separation-FS Result

Appendix B.2

Summary

Mode	Max-Space	Min-Space
	(Hz)	(Hz)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	1.0005M	999k
BT-EDR(2Mbps)	1.0035M	999k
BT-EDR(3Mbps)	1.002M	1.0005M

Result

Mode	Result	FI	Fh	Ch.Space	Limit
		(Hz)	(Hz)	(Hz)	(Hz)
BT-BR(1Mbps)	-	-	-	-	-
2402MHz	Pass	2.402002G	2.403003G	1.0005M	613.5525k
2440MHz	Pass	2.440001G	2.441G	999k	608.5575k
2480MHz	Pass	2.479001G	2.48G	999k	608.5575k
BT-EDR(2Mbps)	-	-	-	-	-
2402MHz	Pass	2.402002G	2.403006G	1.0035M	841.824k
2440MHz	Pass	2.440002G	2.441001G	999k	849.15k
2480MHz	Pass	2.479002G	2.480001G	999k	851.148k
BT-EDR(3Mbps)	-	-	-	-	-
2402MHz	Pass	2.402002G	2.403004G	1.002M	838.494k
2440MHz	Pass	2.440001G	2.441003G	1.002M	848.484k
2480MHz	Pass	2.479001G	2.480001G	1.0005M	838.494k

SPORTON INTERNATIONAL INC.

Appendix C.1

Summary

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	9.64	0.00920
BT-EDR(2Mbps)	8.93	0.00782
BT-EDR(3Mbps)	8.58	0.00721

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	2.02	9.19	21.00
2440MHz	Pass	2.02	9.61	21.00
2480MHz	Pass	2.02	9.64	21.00
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	2.02	7.50	21.00
2440MHz	Pass	2.02	8.38	21.00
2480MHz	Pass	2.02	8.93	21.00
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	2.02	7.45	21.00
2440MHz	Pass	2.02	8.38	21.00
2480MHz	Pass	2.02	8.58	21.00

SPORTON INTERNATIONAL INC.

PK Power Result Appendix C.2

Summary

Mode	Power	Power
	(dBm)	(W)
2.4-2.4835GHz	-	-
BT-BR(1Mbps)	10.53	0.0113
BT-EDR(2Mbps)	10.67	0.01167
BT-EDR(3Mbps)	10.54	0.01132

Result

Mode	Result	Gain	Power	Power Limit
		(dBi)	(dBm)	(dBm)
BT-BR(1Mbps)	-	-	-	-
2402MHz	Pass	2.02	9.76	21.00
2440MHz	Pass	2.02	10.49	21.00
2480MHz	Pass	2.02	10.53	21.00
BT-EDR(2Mbps)	-	-	-	-
2402MHz	Pass	2.02	9.55	21.00
2440MHz	Pass	2.02	10.41	21.00
2480MHz	Pass	2.02	10.67	21.00
BT-EDR(3Mbps)	-	-	-	-
2402MHz	Pass	2.02	9.82	21.00
2440MHz	Pass	2.02	10.42	21.00
2480MHz	Pass	2.02	10.54	21.00

SPORTON INTERNATIONAL INC.

Page No. : 1 of 1

Hopping Channel and Bandedge-FS Result

Summary

Mode	Max-Hop No
2.4-2.4835GHz	-
BT-BR(1Mbps)	79
BT-EDR(2Mbps)	79
BT-EDR(3Mbps)	79

Result

Mode	Result	Hopping No	Limit
BT-BR(1Mbps)	-	-	-
2440MHz	Pass	79	15
BT-EDR(2Mbps)	-	-	-
2440MHz	Pass	79	15
BT-EDR(3Mbps)	-	-	-
2440MHz	Pass	79	15

SPORTON INTERNATIONAL INC.

Appendix E

Summary

Mode	Max-Dwell
	(s)
2.4-2.4835GHz	-
BT-BR(1Mbps)	310.206m
BT-EDR(2Mbps)	311.3786m
BT-EDR(3Mbps)	311.4852m

Result

Mode	Result	Period	Dwell	Limit	Tx On
		(s)	(s)	(s)	(s)
BT-BR(1Mbps)	-	-	-	-	-
2440MHz	Pass	31.6	310.206m	400m	2.91m
BT-EDR(2Mbps)	-	-	-	-	-
2440MHz	Pass	31.6	311.3786m	400m	2.921m
BT-EDR(3Mbps)	-	-	-	-	-
2440MHz	Pass	31.6	311.4852m	400m	2.922m

SPORTON INTERNATIONAL INC.

CSE Non-restricted Band-FS Result

Appendix F

Page No.

: 1 of 4

Summary

Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
2.4-2.4835GHz	-	-	-	-	-	-	-	-	-	-	-	-	-
BT-BR(1Mbps)	Pass	2.402004G	9.06	-10.94	2.194352G	-56.35	2.399992G	-32.48	2.484416G	-61.86	2.555858G	-43.57	1
BT-EDR(2Mbps)	Pass	2.401837G	8.07	-11.93	2.398G	-57.05	2.399996G	-33.78	2.483712G	-61.59	2.555858G	-46.38	1
BT-EDR(3Mbps)	Pass	2.402004G	8.32	-11.68	2.398G	-53.36	2.399992G	-33.70	2.484996G	-60.79	2.555858G	-45.13	1

Result

Kesuit													
Mode	Result	Ref	Ref	Limit	Freq	Level	Freq	Level	Freq	Level	Freq	Level	Port
		(Hz)	(dBm)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	(Hz)	(dBm)	
BT-BR(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	2.402004G	9.06	-10.94	2.194352G	-56.35	2.399992G	-32.48	2.484416G	-61.86	2.555858G	-43.57	1
2440MHz	Pass	2.44008G	10.30	-9.70	794.864M	-62.89	2.398472G	-62.44	2.484068G	-61.54	2.595258G	-43.54	1
2480MHz	Pass	2.479993G	9.32	-10.68	1.994256G	-62.35	2.398104G	-62.37	2.484G	-48.44	2.584001G	-52.02	1
BT-EDR(2Mbps)	-	-	-	-	•	-	-	-	-	-	-	-	-
2402MHz	Pass	2.401837G	8.07	-11.93	2.398G	-57.05	2.399996G	-33.78	2.483712G	-61.59	2.555858G	-46.38	1
2440MHz	Pass	2.44008G	7.52	-12.48	2.188432G	-61.73	2.399816G	-61.33	2.483916G	-61.18	2.595258G	-45.99	1
2480MHz	Pass	2.479659G	6.36	-13.64	645.68M	-62.20	2.398024G	-62.00	2.483532G	-44.00	2.634659G	-46.82	1
BT-EDR(3Mbps)	-	-	-	-	-	-	-	-	-	-	-	-	-
2402MHz	Pass	2.402004G	8.32	-11.68	2.398G	-53.36	2.399992G	-33.70	2.484996G	-60.79	2.555858G	-45.13	1
2440MHz	Pass	2.439913G	7.15	-12.85	908.528M	-61.95	2.399148G	-61.94	2.485104G	-60.85	2.595258G	-43.46	1
2480MHz	Pass	2.479993G	8.62	-11.38	735.664M	-61.63	2.398532G	-61.29	2.483508G	-46.85	2.634659G	-48.60	1

SPORTON INTERNATIONAL INC.

SPORTON INTERNATIONAL INC.

SPORTON INTERNATIONAL INC.

SPORTON INTERNATIONAL INC.

Operating Mede			below 1GH	1	otion		Horizontal			
Operating Mode		1		Polarization			HOHZOHIAI			
Operating Function		Normal Lini	c - AP mode:	EUT in Y	axis					
407 Lev	el (dBuV/m)					Date: 20	17-09-28 Ti	me: 23:36:05		
100										
80										
60							FC	C CLASS-B		
								-6dB		
40	3 4	6 M.								
	The sale of the sa	Manual	wand burken		1	111	ال المالية	and described of the second		
20	Mil. r. Jana	the subtilization	N. Wilderford (Boy Lubertor)	hand would	والإدارية والدريط البداية	llander stall and	And the second s	A CALL CO. L. C.		
20 1										
030	100. 200.	300. 4	00. 500		00. 70	00.	800. 9	900. 1000		
			Frequen	cy (MHz)						

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1	30.00	36.92	40.00	-3.08	43.40	0.53	24.45	31.46	150	357	QP	HORIZONTAL
2	32.91	32.33	40.00	-7.67	40.70	0.53	22.62	31.52	200	197	QP	HORIZONTAL
3	119.24	40.06	43.50	-3.44	52.75	0.87	18.29	31.85	300	248	Peak	HORIZONTAL
4	258.92	40.38	46.00	-5.62	51.77	1.27	19.30	31.96	125	237	Peak	HORIZONTAL
5	265.71	41.69	46.00	-4.31	53.19	1.29	19.20	31.99	150	305	Peak	HORIZONTAL
6	281.23	41.64	46.00	-4.36	53.55	1.33	18.76	32.00	125	181	Peak	HORIZONTAL

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

Note 1: ">20dB" means emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found emissions (No emissions were detected.)

RSE TX above 1GHz Result

Appendix G.2

Page No. : 1 of 25

Summary

Mode	Result	Туре	Freq	Level	Limit	Margin	Factor	Dist	Pol.	Azimuth	Height	Comments
			(Hz)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(m)	(H/V)	(°)	(m)	
BT-BR(1Mbps)	-	-	-	-	-	-	-	-	-	-	-	-
2.4-2.4835GHz	Pass	AV	2.483502G	52.91	54.00	-1.09	30.86	3	Н	6	1.41	-

SPORTON INTERNATIONAL INC.

Page No. : 2 of 25

Page No. : 7 of 25

Page No. : 11 of 25

Page No. : 13 of 25

Page No. : 14 of 25

Page No. : 17 of 25

Page No. : 19 of 25

Page No. : 23 of 25

RSE Co-location Result										
Operating Mode	3	Polarization	Horizontal							
	Normal Link - EUT in Z axis - R1 (2.4G / Station mode) + R3 (5G B1~B2 / AP mod (5G B3~B4 / AP mode) + R4 (BT / AP mode)									

	F	1						Preamp		T/Pos	Dama ala	D-1/Db
	Freq	rever	Line	Limit	revei	LOSS	ractor	Factor			Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	1200.01	37.67	54.00	-16.33	46.83	3.69	24.55	37.40	195	197	Average	HORIZONTAL
2	1200.09	40.85	74.00	-33.15	50.01	3.69	24.55	37.40	195	197	Peak	HORIZONTAL

SPORTON INTERNATIONAL INC. Page No. : 1 of 2

RSE Co-location Result										
Operating Mode	3	Polarization	Vertical							
	Normal Link - EUT in Z axis - R1 (2.4G / Station mode) + R3 (5G B1~B2 / AP mod R2 (5G B3~B4 / AP mode) + R4 (BT / AP mode)									

	Freq	Level		Over Limit					-	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	1197.94	39.95	74.00	-34.05	49.12	3.69	24.54	37.40	166	294	Peak	VERTICAL
2	1200.01	35.26	54.00	-18.74	44.42	3.69	24.55	37.40	166	294	Average	VERTICAL

SPORTON INTERNATIONAL INC. Page No. : 2 of 2