1) LE CIRCUIT EL	ECTRIQUE EL	EMENTAIRE:			
Il est composé de:					
D'un générateur de		→	+		
D'un consommateu	r:				
D'un contacteur:				*	
De liaisons électriq		T			
2) DEFINITION DU	COURANT EL	ECTRIQUE:			
•	négativement, les éle attirés par la sphère p rons entre les atomes	ectrons positive. du conducteur qui est appelé			
Ce courant electriq	que existe que si les (leux pôlespar un	conducteur ele	ectrique.	
3) SENS CONVENT	TIONNEL DU CO	DURANT:			
Le sens conventionnel du réel de déplacement des é		du sens			
Le sens conventionnel a é antérieurement à la décou					
4) QUANTITE D'EI	LECTRICITE:				
Si une quantité Q traverse nous définirons l'intensité		nducteur pendant le temps \mathbf{T} , pport:			
L'unité d'intensité est _	(A).		∆ .+		
<u>Définition:</u>		$I = \frac{Q}{T}$			
Un courant de 1 ampère correspond au passage d'une quantite u circurière egare à un coulomb (C) par seconde. L'intensité se mesure avec un					
L'intensité se mesure av	ec un	·	B <u>-</u>		
	Г				
LPR LA BRIQUERIE		E TECHNIQUE	Année /	N° Ordre:	
57100 THIONVILLE	l L'E	LECTRICITE	Doc N° 1/8	FISNE D.	

5) NOTIONS DE RESISTANCE: La **résistance** électrique d'un conducteur est sa propriété de réduire l'intensité qui le traverse. L'unité est _____. L'_____ est la résistance qui existe entre deux points d'un fil conducteur **Définition:** lorsqu'une différence de potentiel de 1 volt entre ces deux points produit dans ce conducteur un courant de 1 ampère. La résistance d'un conducteur se mesure avec un _____ 6) DIFFERENCE DE POTENTIEL OU TENSION: C'est la différence de charge électrique de deux points A et B. Elle s'exprime en ____: U **Définition:** Une différence de potentiel est égale à un volt lorsqu'elle produit un courant de 1 ampère à travers une résistance de 1 Ohm. La différence de potentiel ou tension se mesure avec un ______. 6) LOI D'OHM GENERALISEE: La différence de potentiel ou tension est égale à la résistance multipliée par l'intensité.

$$\mathbf{U} = \mathbf{R} \times \mathbf{I} = = > \mathbf{I} = \frac{\mathbf{U}}{\mathbf{R}} = = > \mathbf{R} = \frac{\mathbf{U}}{\mathbf{I}}$$

U en VOLTS R en OHMS I en AMPERES

EXEMPLES:

$$\begin{array}{lll} I = 5 \; Amp\`eres & I = 0,2 \; Amp\`eres & U = \underline{\hspace{1cm}} \; Volts \\ R = 15 \; Ohms & U = \underline{\hspace{1cm}} \; Volts & R = 3 \; Ohms \\ \end{array}$$

7) UNITES DE MESURE ELECTRIQUES ET EQUIVALENCES:

A) TENSION en Volts

LPR LA BRIQUERIE	THEME TECHNIQUE	Année /	N° Ordre:
57100 THIONVILLE	L'ELECTRICITE	Doc N° 2/8	FISNE D.

7) UNITES DE MESURE ELECTRIQUES ET EQUIVALENCES:

B) INTENSITE en Ampères

1 A (ampère) = 1 A 1 m A (milliampère) = 1/1000 ou 0,001 A 1 A (microampère) = 1/1 000 000 ou 0,000 001 A

C) RESISTANCE en OHMS

1 M (mégohms) = 1 000 000 Ohms 1 K (Kilohms) = 1000 Ohms 1 (Ohms) = 1 Ohm

D) PUISSANCE en Watts

1 M W (mégawatt) = 1 000 000 Watts 1 K W (Kilowatt) = 1000 Watts 1 W (Watt) = 1 Watt 1 mW (milliwatt) = 1/1000 = 0,001 Watt

E) TABLEAU DE CONVERSION:

Km	Hm	Dam	m	Dm	Cm	mm	1/10mm	1/100mm	Micron
				=					
KV	HV	Da V	V	dV	cv	mV	1/10 mV	1/100mV	microV
						0	0	0	1
						0	0	1	0
						0	1	0	0
			0	0	0	1			
			0	0	1	0			
			0	1	0	0			
			1	0	0	0			
		1	0						
	1	0	0						
1	0	0	0						

F) EXERCICES:

0,047 V	====>	mV (milivolts)	630 mW	===>	W
647 mV	====>	v	0,036 mA	===>	A
6500 V	====>	KV	0,156 A	===>	mA
33 mA	====>	A	1200W	===>	KW
0,27 A	====>	mA	101 mA	===>	A

LPR LA BRIQUERIE	THEME TECHNIQUE	Année /	N° Ordre:
57100 THIONVILLE	L'ELECTRICITE	Doc N° 3/8	FISNE D.

8) LES MONTAGES ELECTRIQUES:

TENSION, INTENSITE .. CIRCUIT SERIE ET PARALLELE

CIRCUIT SERIE

CIRCUIT PARALLELE

U totale = U 1 = U 2 = U 3

La tension U totale aux bornes de l'ensemble des récepteurs est égale à la ______ des tensions aux bornes de chaque récepteur.

La tension U totale aux bornes de l'ensemble des récepteurs _____aux bornes de chaque récepteur.

CIRCUIT SERIE

CIRCUIT PARALLELE

| totale = | 1 + | 2 + | 3

Dans un circuit série, l'intensité totale I T du circuit est égale à celle qui traverse _____ récepteur.

Dans un circuit série, l'intensité totale I T du circuit est égale ______des intensités qui traverse chaque récepteur.

LPR LA BRIQUERIE	THEME TECHNIQUE	Année /	N° Ordre:
57100 THIONVILLE	L'ELECTRICITE	Doc N° 4/8	FISNE D.

9) NOTION DE RESISTIVITE:					
9.1) La résistance d'un conducteur est:					
-					
		rion conductour			
La résistivité est la résistance spécifique d		riau conducteur.			
Le symbole employé est la lettre grecque L'unité employée est: W mm²/m	r(rho).				
Calcul: R = r	L : mè R: W	tres			
Calcul: $R = 1$ S	S:mm				
9.2) Résistivité des matériaux:	r :W m	ım²			
Conditions de mesure		LONGUEUR	1 1	mètre	
de la résistance d'un conducteur.		SECTION	1	mm²	
		TEMPERATURE	ATURE 15 °C		
9.3) CHOIX DES CONDUCTEURS:					
Le fil de cuivre est généralement employé en automobile.		Exemples	de résistivit	<u>é:</u>	
Il convient de choisir:		METAUX	ê m	ê mm²/m	
	.,,	Argent	0,0	0,00163	
- Une long ueur de fil la plus poss ==> (Chute de tension dans les conducteurs)	sible.	Cuivre	0,0175		
- Une section adaptée à traversant le conducteur.		Or	0,	022	
==> (Risque d'échauffement) Une couleur adaptée à l'usage.		Aluminium	0,029		
En pratique, on admet une intensité de 3	à 4	Laiton	0,08		
ampères par mm² de section.	4 4	Étain	0,	0,142	
9.4) CALCUL DE L'INTENSITE D'UN CIRC	UIT:				
EXEMPLE:					
Un conducteur alimente deux ampoules de 36 v	watts de p	uissance chacune so	ous une tensio	on de 12 volts.	
La puissance des 2 lampes est égale à		Watts			
LPR LA BRIQUERIE THEME	TECHN	QUE	Année /	N° Ordre:	
57100 THIONVILLE L'ELE	CTRICI	TE	Doc N° 5/8	FISNE D.	

Calcul de l'intensité:

L'intensité consommée est égale à la puissance divisée par la tension d'alimentation: P = U x I

Intensité consommée: 72 / 12 = _____Ampères.

Choix du conducteur(base de calcul :3 A par mm² de section):

6/3 = 2 mm² de section ===> Le conducteur choisi sera de _____.

DIAMETRE DES CONDUCTEURS									
7/10	9/10	10/10	12/10	16/10	20/10	25/10	30/10	45/10	51/10
SECTION	SECTION APPROCHEE EN mm ²								
0,4	0,6	0,8	1,2	2	3	5	7	14	20
INTENSI	INTENSITE ACCEPTABLE								
0,5 A	1 A	2,3 A	5 A	5-10 A	25 A	30-40 A	50-60 A	70-80 A	80-100 A

10) LA PROTECTION DES CIRCUITS:

Le fil de cuivre est protégé par une gaine isolante. Les circuits électriques sont protégés par des fusibles.

10.1 LES DIFFERENTS TYPES DE FUSIBLES:

Tube de verre renfermant un fil très fin en argent monté dans un porte-fusible. (Utilisé pour le montage d'autoradio).

Cylindre en bakélite de couleur codée sur lequel est serti un fil calibré d'alliage de plomb (60 %) et d'étain (40 %)

Fusibles montés sur une platine de servitude. **Cosses plates. Pince d'extraction.**

LPR LA BRIQUERIE	THEME TECHNIQUE	Année /	N° Ordre:
57100 THIONVILLE	L'ELECTRICITE	Doc N° 6/8	FISNE D.

11)LES LIAISONS:

La liaison entre le câblage et les éléments électriques s'effectue au moyen de:

- cosses, connecteurs, raccords, embouts, clips, soudure etc..

Le choix s'effectue en fonction de:

- Diamètre du câble.
- La liaison à effectuer.
- La protection nécessaire.

Les Cosses:

Cosses plates males et femelles Largeur: 2,8 mm;4,8 mm;6,3 mm

Cosses rondes isolées Largeur: 2;3;4;5;6;8;10 mm **Fiches et douilles:** Diamètre: 1,9;3;4;5 mm

Languettes:

Diamètre:3,7;4,3;5,3 mm Largeur: 4,8;6,3;9,5 mm

Cosses de batterie:

Cosses à souder:

Cosses HP:

Connecteurs/barrettes/Clips/Dominos:

LPR LA BRIQUERIE

57100 THIONVILLE

THEME TECHNIQUE L'ELECTRICITE

Doc N° 7/8

FISNE D.

12) EXERCICE D'APPLICATION:

<u>ENONCE:</u> Un circuit électrique est composé d'une batterie, d'un bouton poussoir et d'une ampoule.

Précisez dans les symboles la tension mesurée dans les deux cas suivants.

2 EME CAS:

LPR LA BRIQUERIE	THEME TECHNIQUE	Année /	N° Ordre:	
57100 THIONVILLE	L'ELECTRICITE	Doc N° 8/8	FISNE D.	