Data Augmentation for NMT

~Nalin Kumar SMS, NISER

Data Augmentation

- NMT models need huge amount of training data.
- We need a transformation f, such that for input 'x', the augmented data f(x), should preserve the label and x and f(x) should be diverse enough from each other.

- Generating augmented data in NLP is relatively tougher than data augmentation in image classification tasks.
- Some augmentation techniques:
 - Using thesaurus^[1] (Replaced words with their synonym)
 - Using word embeddings [2] (Replaced words with their neighbouring words)
 - Back-translation [3]
 - Data diversification [4]
 - Cutoff [5]
 - 1. Zhang et al., "Character-level Convolutional Networks for Text Classification" (2015, NeurIPS)
 - 2. Wang et al., "That's So Annoying!!!: A Lexical and Frame-Semantic Embedding Based Data Augmentation Approach to Automatic Categorization of Annoying Behaviors using #petpeeve Tweets" (2015, EMNLP)

Used in classification tasks

- 3. Sennrich et al., "Improving Neural Machine Translation Models with Monolingual Data" (2016, ACL)
- 4. Nguyen et al., "Data Diversification: A Simple Strategy For Neural Machine Translation" (2020, NeurIPS))
- 5. Shen et al., "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation"

Back-Translation

• The technique was first proposed in "Improving Neural Machine Translation Models with Monolingual Data" by Rico Sennrich, Barry Haddow and Alexandra Birch (ACL 2016)

• Uses monolingual data (which is considered to be easily available in comparison to bilingual data).

- 1. Train $M_{T \to S}$ on "Target -> Source" bilingual corpus
- 2. Train $M_{S \rightarrow T}$ on $(M_{T \rightarrow S}(T'), T')) \bigcup D$.

 $M_{T-> S}(T')$ are referred as synthetic source sentences.

- In this paper, the NMT models are chosen to be RNN enc-dec models.
- They performed two sets of experiments:
 - o In the first set, they generated data by pairing the monolingual data with single word < null > token.
 - In the second experiment, they generated data by previous algorithm.

Results:

		BLEU			
name	training instances	newstest2014		newstest2015	
		single	ens-4	single	ens-4
syntax-based (Sennrich and Haddow, 2015)		22.6	-	24.4	-
Neural MT (Jean et al., 2015b)				22.4	-
parallel	37m (parallel)	19.9	20.4	22.8	23.6
+monolingual	49m (parallel) / 49m (monolingual)	20.4	21.4	23.2	24.6
+synthetic	44m (parallel) / 36m (synthetic)	22.7	23.8	25.7	26.5

Table 3: English \rightarrow German translation performance (BLEU) on WMT training/test sets. Ens-4: ensemble of 4 models. Number of training instances varies due to differences in training time and speed.

Data Diversification

- This technique was introduced in "Data Diversification: A Simple Strategy For Neural Machine Translation" by Xuan-Phi Nguyen, Shafiq Joty, Wu Kui and Ai Ti Aw (NIPS 2020).
- This technique does not involve any extra monolingual data.

Algorithm 1 Data Diversification: Given a dataset $\mathcal{D} = (S, T)$, a diversification factor k, the number of rounds N; return a trained source-target translation model $\hat{M}_{S \to T}$.

```
1: procedure TRAIN(\mathcal{D} = (S, T))
          Train randomly initialized M on \mathcal{D} = (S, T) until convergence
          return M
 3:
 1: procedure DATADIVERSE(\mathcal{D} = (S, T), k, N)
                                                                          \mathcal{D}_0 \leftarrow \mathcal{D}
         for r \in 1, \ldots, N do
           \mathcal{D}_r = (S_r, T_r) \leftarrow \mathcal{D}_{r-1}
              for i \in 1, \ldots, k do
 6:
                    M_{S \to T,r}^i \leftarrow \text{TRAIN}(\mathcal{D}_{r-1} = (S_{r-1}, T_{r-1}))
                                                                                                       > Train forward model
                    M_{T \to S_r}^i \leftarrow \text{Train}(\mathcal{D}_{r-1}' = (T_{r-1}, S_{r-1}))
                                                                                                     > Train backward model
                   \mathcal{D}_r \leftarrow \mathcal{D}_r \cup (S, M_{S \to T_r}^i(S))

    Add forward data

                    \mathcal{D}_r \leftarrow \mathcal{D}_r \cup (M_{T \to S,r}^i(T), T)

    Add backward data

          \hat{M}_{S \to T} \leftarrow Train(\mathcal{D}_N)
10:
                                                                                                       ▶ Train the final model
         return \hat{M}_{S \to T}
11:
```

$$\mathcal{D}_1 = (S, T) \bigcup \bigcup_{i=1}^k (S, M_{S \to T, 1}^i(S)) \bigcup \bigcup_{i=1}^k (M_{T \to S, 1}^i(T), T)$$

$$N = 1, K = 3$$

- We have $M_{S->T,1}^1$, $M_{S->T,1}^2$, $M_{S->T,1}^3$ forward models and $M_{T->S,1}^1$, $M_{T->S,1}^2$, $M_{T->S,1}^3$, backward models all trained on $D_0 = (S,T)$.
- D_1 is created by adding the outputs of above model along with the inputs to D_0 .
- The final model is then trained on D_1 .

Table 2: BLEU scores on newstest2014 for WMT'14 English-German (En-De) and English-French (En-Fr) translation tasks. Distill (T>S) (resp. T=S) indicates the teacher model is larger than (resp. equal to) the student model.

Method	WMT'14			
Witthou	En-De	En-Fr		
Transformer [28] [†]	28.4	41.8		
Trans+Rel. Pos [23] [†]	29.2	41.5		
Scale Transformer [18]	29.3	42.7^{6}		
Dynamic Conv [32] [†]	29.7	43.2		
Transformer with				
Multi-Agent [31] [†]	30.0	_		
Distill (T>S) [14]	27.6	38.6		
Distill (T=S) [14]	28.4	42.1		
Ens-Distill [7]	28.9	42.5		
Our Data Diversificati	on with	È		
Scale Transformer [18]	30.7	43.7		

Table 3: BLEU scores on IWSLT'14 English-German (En-De), German-English (De-En), and IWSLT'13 English-French (En-Fr) and French-English (Fr-En) translation tasks. Superscript † denotes the numbers are reported from the paper, others are based on our runs.

Method	IWS	LT'14	IWSLT'13		
Method	En-De	De-En	En-Fr	Fr-En	
Baselines	III III II II				
Transformer	28.6	34.7	44.0	43.3	
Dynamic Conv	28.7	35.0	43.8	43.5	
Transformer v	vith				
Multi-Agent†	28.9	34.7	-	-	
Distill (T>S)	28.0	33.6	43.4	42.9	
Distill (T=S)	28.5	34.1	44.1	43.4	
Ens-Distill	28.8	34.7	44.3	43.9	
Our Data Dive	rsificat	ion with	1		
Transformer	30.6	37.0	45.5	45.0	
Dynamic Conv	30.6	37.2	45.2	44.9	

- The technique exhibits strong correlation with ensemble of models. However, the ensemble model
 would take N times more computation than one individual model while performing inference,
 whereas the data diversification technique does not have this disadvantage.
- The method is complementary to back-translation.

Task	No back-translation		With back-translation			
24022	Baseline	Ours	D	Baseline	Ours	
IWSLT'14 En-De IWSLT'14 De-En	28.6 34.7	30.6 37.0	29× 29×	30.0 37.1	31.8 38.5	
WMT'14 En-De	29.3	30.7	$2.4 \times$	30.8	31.8	

Cutoff

- Introduced in "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation" by Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru Qu, Weizhu Chen (Oct 2020).
- They propose a general technique, which can be used in various Natural language Understanding and Natural Language Generation tasks.

- In the experiments, they found that token cutoff performs the best on machine translation tasks.
- This may be attributed to the fact that re-moving spans from both the source and target sentences would result in large information mismatch between the input and output, and thus the resulting pairs may be too challenging.

$$\mathcal{L} = \mathcal{L}_{ce}(x, y) + \alpha \sum_{i=1}^{N} \mathcal{L}_{ce}(x_{\text{cutoff}}^{i}, y)$$
$$+ \beta \mathcal{L}_{\text{divergence}}(x, x_{\text{cutoff}}^{1}, x_{\text{cutoff}}^{2}, ..., x_{\text{cutoff}}^{N}, y)$$

$$p_{avg} = \frac{1}{N+1} \sum_{i=0}^{N} p(y|x_{\text{cutoff}}^{i})$$

$$\mathcal{L}_{\text{divergence}} = \frac{1}{N+1} \sum_{i=0}^{N} \text{KL}[p(y|x_{\text{cutoff}}^{i})||p_{avg}]$$

$$KL(P||Q) = \sum p_{i}(x)log(\frac{p_{i}(x)}{q_{i}(x)})$$

Model	BLEU score
Actor-critic (Bahdanau et al., 2016)	28.5
Transformer Base (Vaswani et al., 2017)	34.4
Adversarial training (Wang et al., 2019)	35.2
Data Diversification (Nguyen et al., 2019)	37.2
MAT (Fan et al., 2020)	36.2
Mixed Representations (Wu et al., 2020)	36.4
MAT+Knee (Iyer et al., 2020)	36.6
Transformer Base & Cutoff (w/o JS loss)	36.7
Transformer Base & Cutoff (w/ JS loss)	37.6

Table 3: BLEU scores of the proposed cutoff method on the IWSLT2014 German-to-English machine translation task, relative to adversarial-based baseline and other state-of-the-art models.

Model	BLEU score	
Transformer Base (Vaswani et al., 2017)	27.3	
Admin (Liu et al., 2020a)	27.9	
Transformer Base ¹ (So et al., 2019)	28.2	
Evolved Transformer (So et al., 2019)	28.4	
Weighted Transformer (Ahmed et al., 2017)	28.4	
Adversarial Training (Wang et al., 2019)	28.4	
Transformer Base & Cutoff (w/o JS loss)	28.9	
Transformer Base & Cutoff (w/ JS loss)	29.1	

Table 2: BLEU scores of the proposed cutoff method on the WMT2014 English-to-German machine translation task, compared with adversarial-based baselines. All methods are built on top of 6-layer Transformer Base model (Vaswani et al., 2017).