International Space Weather Summer Camp 2022: How to turn measurements into an analytical model – at the example of VLF data

David Wenzel

German Aerospace Center (DLR)
Institute of Solar-Terrestrial Physics
Space Weather Observations

E-Mail: david.wenzel@dlr.de

Discussion

Curve approximation

Handling discrete data

- often measurements only at specific points
 - → What is in between?
- interpolation with a polynome
- linear interpolation
- spline interpolation
- approximation
 - → following a "trend"
 - → eliminating oscillations

Handling discrete data

- often measurements only at specific points
 - → What is in between?
- interpolation with a polynome
- linear interpolation
- spline interpolation
- approximation
 - → following a "trend"
 - → eliminating oscillations

Handling discrete data

- often measurements only at specific points
 - → What is in between?
- interpolation with a polynome
- linear interpolation
- spline interpolation
- approximation
 - → following a "trend"
 - → eliminating oscillations

An algebraic approach

Estimating relationship between dependent and independent variables

(whiteboard)

→ attempt to solve overdetermined system

Why squaring the problem?

Pros:

- It turns things easier!
- absolute values not differentiable
- always unique fit line (unlike absolute distance)
- directly solvable
- small errors even reduced

Cons:

- large errors over-weighted
- more sensitive to outliers (than abs method)
- duplicates influence outcome

$$\sum_{i=0}^{N} (y_i - f(x_i))^2 \to \min$$

Statistics' point of view: "regression"

- deterministic $y = f(x) \rightarrow \text{stochastic } y = f(x) + \varepsilon$
- standard deviation minimized
- minimum uncertainty
- maximal plausability
- → only statistical, not causal relations

Dispute

Adrien Marie Legendre, 1805

Nouvelles methodes pour la determination

des orbites des come

→ first clear explanation with working example

Carl Friedrich Gauß, 1809

Theoria motus corporum coelestium
in sectionibus conicus solem ambientium

→ much more refined and applicable
claimed use since 1795

Usage in astronomy and geodesy

- early 1801 Joseph Piazzi discovered a planetoid
- lost after 41 days of observation in Sun's light
- "Where's Ceres?" challenge
- Euler, Lagrange, Laplace, ...
- late 1801 found very close to prediction

- 1793 republican France defines meter
- 10 mio. part of meridian quadrant
- angle measurements from Dunkirk to Barcelona
- calculated Earth's ellipticity
- notion of curvature

Sketch of the orbits of Ceres and Pallas (nachlaß Gauß, Handb. 4). Courtesy of Universitätsbibliothek Göttingen.

Physics' perspective

Balancing forces of springs

Really?

Hooke's law: $F \sim \Delta x$

→ Why is quadratic right and not absolute?

Variants

- "linear" does not mean "line"
 - → linear combinations of arbitrary functions (remember what you get: simple ansatz is better)
- non-linear regression has unknown inside basis functions
 → iteratively solving adapted linear problems

$$a \sin x + b \cos 2x + cx^3 \leftrightarrow ab$$
, $\sin ax$, 2^b , x^c

- L₁ regression keeps distance proportions
 → but: possibly not unique
- Deming regression treats both variables equally
 more "geometric"

Do not "make" it fit!

Tasks

- pick a day of your measurements
- get rid of the night according to your previously explored scheme
- calculate a fit
- plot the original data and the fit together
- repeat the computation for the other days
- arrange all fit curves in one 3D plot

Useful:

- scipy.optimize
- SciPy is no SciFi use it, but be aware of its power!

Improvements

Outliers

Remember sensitivity of LSM to outliers!

How can one detect and remove these...

...without manual selection?

Algorithmic approach:

- calculate the "errors" between measurement and fit
- determine *min* and *max*, as well as *mean*
- find a rule...
- e.g. delete all points with error greater *mean+K**(*mean-min*)
- refit the reduced data set
- → actual deviation from the fit instead fixed value
- → no subjective choice such as eliminating flares or outages

Maximum

- ToD of different days are not "comparable"
 - → fitting parameters may be distorted from one day to the other
 - → the fitted solution may have an undesired shape (like maximum in the morning or even two maxima)

- one can normalise the time
 - → for each day, fit amplitude over time-zenith instead over time
- incorporates physically plausible information in the model
 - → attach the maximum to the zenith
 - → use cos directly instead of a shifted sin
 - → simplify ansatz function by utilising approximation theorems

Symmetry

- polynomes or phase-shifted trigonometrics may be placed "wrongly"
- forcing the symmetry is possible
 - → respect the axis in the model?

- Yes, if time is normalised!
- one can simply use ax^4+cx^2+e instead of $ax^4+bx^3+cx^2+dx+e$
 - → reduce parameter number
- enforce known relations
 - → match morning and afternoon lengths via deterministic formula directly inside the model

