Μαθηματικά Γ' Λυκείου - Πετρίδης Κωνσταντίνος Αντίστροφες Τριγωνομετρικές Συναρτήσεις

1. Να υπολογίσετε τις παρακάτω παραστάσεις.

i.
$$to\xi\eta\mu\left(\frac{\sqrt{3}}{2}\right)$$

- ii. τοξσυν(1)
- iii. τοξε $\phi(1)$
- iv. $\tau o \xi \eta \mu (\eta \mu (2\pi/3))$

v. συν
$$\left(τοξημ\left(\frac{1}{2}\right) \right)$$

vi. ημ $(2 το ξεφ\sqrt{2})$

Λύση: (Ασχ. 1/120)

i.

τοξημ
$$\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$$
, διότι ημ $\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$.

ii.

τοξσυν
$$(1) = 0$$
, διότι συν $(0) = 1$.

iii.

τοξεφ(1) =
$$\frac{\pi}{4}$$
, διότι $\tan(\frac{\pi}{4}) = 1$.

iv.

$$\text{toxgh}(\eta\mu(2\pi/3))=\text{toxh}\left(\frac{\sqrt{3}}{2}\right)=\tfrac{\pi}{3}.$$

 $\mathbf{v}.$

sun (tox
$$\eta\mu\left(\frac{1}{2}\right)$$
) = $\sqrt{1-\left(\frac{1}{2}\right)^2}=\frac{\sqrt{3}}{2}.$

vi. Έστω $\alpha = \text{τοξεφ}\sqrt{2}$. Τότε $\tan \alpha = \sqrt{2}$. Άρα:

$$\eta\mu(2\alpha) = \frac{2\tan\alpha}{1+\tan^2\alpha} = \frac{2\sqrt{2}}{1+2} = \frac{2\sqrt{2}}{3}.$$

2. Να υπολογίσετε τις παραστάσεις:

i.
$$\eta\mu\left(\tau o\xi\sigma\phi\left(-\frac{1}{2}\right)\right)$$

ii. συν
$$\left(τοξσφ\left(-\frac{1}{2}\right) \right)$$

Λύση: (Ασκ. 2/120)

Θέτουμε

$$\theta = \text{toxg}\left(-\frac{1}{2}\right) \ \Rightarrow \ \text{sg}\ \theta = -\frac{1}{2}, \quad \theta \in (0,\pi).$$

Εφόσον σφ $\theta<0$, προκύπτει $\theta\in\left(\frac{\pi}{2},\pi\right)$, άρα ημ $\theta>0$ και συν $\theta<0$.

Χρησιμοποιούμε την ταυτότητα

$$1 + \sigma \varphi^2 \theta = \frac{1}{\eta \mu^2 \theta},$$

η οποία προκύπτει από σφ $\theta=\frac{\text{συν }\theta}{\text{ημ }\theta}$ και ημ $^2\theta+\text{συν}^2\theta=1$:

$$1 + \left(\frac{\sigma \cup \nu \theta}{\eta \mu \theta}\right)^2 = \frac{\eta \mu^2 \theta + \sigma \cup \nu^2 \theta}{\eta \mu^2 \theta} = \frac{1}{\eta \mu^2 \theta}.$$

Με σφ $\theta = -\frac{1}{2}$ έχουμε

$$\eta\mu\,\theta = \frac{1}{\sqrt{1+\sigma\phi^2\theta}} = \frac{1}{\sqrt{1+\left(\frac{1}{2}\right)^2}} = \frac{1}{\sqrt{\frac{5}{4}}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5} > 0.$$

Επίσης συν $\theta = \sigma \varphi \, \theta \cdot \eta \mu \, \theta$, οπότε

συν
$$\theta = \left(-\frac{1}{2}\right) \cdot \frac{2}{\sqrt{5}} = -\frac{1}{\sqrt{5}} = -\frac{\sqrt{5}}{5} < 0.$$

3. Να αποδείξετε ότι, για $x \neq 0$,

$$\label{eq:toxino} \text{toxef}\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} - \text{toxef}\,x, & x>0, \\ -\frac{\pi}{2} - \text{toxef}\,x, & x<0 \;. \end{cases}$$

Λύση: (Ασχ. 3/120)

Θέτουμε $\theta=$ τοξεφ x. Τότε εφ $\theta=x$ και $\theta\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. Θέτουμε επίσης $\varphi=\frac{\pi}{2}-\theta$. Έχουμε

$$\varepsilon \varphi \varphi = \varepsilon \varphi \left(\frac{\pi}{2} - \theta\right) = \sigma \varphi \theta = \frac{1}{\varepsilon \varphi \theta} = \frac{1}{x}.$$

Άρα φ είναι κάποια γωνία με εφαπτομένη 1/x. Επειδή η τοξεφ παίρνει τιμές στο $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, εξετάζουμε δύο περιπτώσεις:

i. x>0. Τότε $\theta\in(0,\frac{\pi}{2})$ και άρα $\varphi=\frac{\pi}{2}-\theta\in(0,\frac{\pi}{2})$. Επομένως η κύρια τιμή είναι ακριβώς αυτή:

τοξεφ
$$\left(\frac{1}{x}\right) = \varphi = \frac{\pi}{2} - \theta = \frac{\pi}{2} - \text{τοξεφ} x.$$

ii. $\boldsymbol{x}<\boldsymbol{0}$. Τότε $\theta\in(-\frac{\pi}{2},0)$ και $\varphi=\frac{\pi}{2}-\theta\in(\frac{\pi}{2},\pi)$, άρα δεν ανήκει στο διάστημα τιμών της τοξεφ. Χρησιμοποιούμε την περιοδικότητα της εφαπτομένης $(\varepsilon\varphi(\alpha-\pi)=\varepsilon\varphi\alpha)$ και παίρνουμε

τοξεφ
$$\left(\frac{1}{x}\right) = \varphi - \pi = \left(\frac{\pi}{2} - \theta\right) - \pi = -\frac{\pi}{2} - \theta = -\frac{\pi}{2} - \text{τοξεφ} x.$$

Και στις δύο περιπτώσεις προχύπτει ο ζητούμενος τύπος.

4. Να εκφράσετε τις παραστάσεις ημ(τοξεφ x) και συν(τοξσφ x) ως αλγεβρικές παραστάσεις του x.

Λύση: (Ασκ. 4/120)

i. Θέτουμε $\theta=$ τοξεφ $x\Rightarrow$ εφ $\theta=x$ και $\theta\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\Rightarrow$ συν $\theta>0$. Από την ταυτότητα 1+ εφ $^2\theta=\frac{1}{\text{συν}^2\theta}$ παίρνουμε

$$\operatorname{sun}\theta = \frac{1}{\sqrt{1+x^2}}, \qquad \operatorname{hm}\theta = \operatorname{ef}\theta \cdot \operatorname{sun}\theta = \frac{x}{\sqrt{1+x^2}}.$$

Άρα

$$\text{hm}(\text{tokef}\,x) = \frac{x}{\sqrt{1+x^2}}\;, \qquad x \in \mathbb{R}.$$

ii. Θέτουμε $\varphi=$ τοξσφ $x\Rightarrow$ σφ $\varphi=x$ και $\varphi\in(0,\pi)\Rightarrow$ ημ $\varphi>0$. Από την ταυτότητα 1+ σφ $^2\varphi=\frac{1}{$ ημ $^2\varphi$ έχουμε

$$\operatorname{hm}\varphi = \frac{1}{\sqrt{1+x^2}}, \qquad \operatorname{sun}\varphi = \operatorname{sp}\varphi \cdot \operatorname{hm}\varphi = \frac{x}{\sqrt{1+x^2}}.$$

Άρα

συν(τοξσφ
$$x$$
) = $\frac{x}{\sqrt{1+x^2}}$, $x \in \mathbb{R}$.

5. Να υπολογίσετε τα πιο κάτω όρια.

i.
$$\lim_{x \to 0} \frac{\operatorname{tox} \eta \mu x}{e^{2x} - 1}$$

ii.
$$\lim_{x\to 0} \frac{\cos \mu x}{\cos (2x)}$$

iii.
$$\lim_{x\to 0} \frac{\eta \mu(2x)}{\text{τοξε}\varphi(2x)}$$

i.
$$\lim_{x\to 0} \frac{\operatorname{tox} \ln x}{e^{2x}-1}$$
 ii. $\lim_{x\to 0} \frac{\operatorname{tox} \ln x}{\operatorname{tox} (2x)}$ iii. $\lim_{x\to 0} \frac{\ln (2x)}{\operatorname{tox} (2x)}$ iv. $\lim_{x\to 0} \frac{\operatorname{tox} x-x+\frac{x^3}{3}}{x^3}$

Λύση:

 $(A\sigma x. 1/124)$

i. Μορφή 0/0. Εφαρμόζουμε de L'Hôpital:

$$\lim_{x \to 0} \frac{\cos \ln x}{e^{2x} - 1} = \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}}}{2e^{2x}} = \frac{1}{2}.$$

ii. Μορφή 0/0. De L'Hôpital:

$$\lim_{x \to 0} \frac{\cot \ln x}{\cot \cot (2x)} = \lim_{x \to 0} \frac{\frac{1}{\sqrt{1 - x^2}}}{\frac{2}{1 + (2x)^2}} = \lim_{x \to 0} \frac{1 + (2x)^2}{2\sqrt{1 - x^2}} = \frac{1}{2}.$$

iii. Μορφή 0/0. De L'Hôpital:

$$\lim_{x \to 0} \frac{\eta \mu(2x)}{\text{to}\xi \epsilon \varphi(2x)} = \lim_{x \to 0} \frac{2\text{sun}(2x)}{\frac{2}{1 + (2x)^2}} = \lim_{x \to 0} \text{sun}(2x) \left(1 + 4x^2\right) = 1.$$

iv. Μορφή 0/0. Θέτουμε $f(x) = τοξεφ x - x + \frac{x^3}{3}$. Εφαρμόζουμε de L'Hôpital δύο φορές:

$$\lim_{x \to 0} \frac{f(x)}{x^3} = \lim_{x \to 0} \frac{f'(x)}{3x^2}, \qquad f'(x) = \frac{1}{1+x^2} - 1 + x^2.$$

Και πάλι 0/0. Ξανά de L'Hôpital:

$$\lim_{x \to 0} \frac{f'(x)}{3x^2} = \lim_{x \to 0} \frac{-\frac{2x}{(1+x^2)^2} + 2x}{6x} = \lim_{x \to 0} \frac{-\frac{1}{(1+x^2)^2} + 1}{6} = \frac{0}{6} = 0.$$

6. Να βρείτε το πεδίο ορισμού και τις παραγώγους των πιο κάτω συναρτήσεων:

i.
$$f(x) = \text{toxnu}\left(\frac{x}{2}\right)$$

ii.
$$f(x) = τοξσυν\left(\frac{1-x}{\sqrt{2}}\right)$$

iii.
$$f(x) = \tau \circ \xi \varepsilon \varphi(\varepsilon \varphi^2 x)$$

iv.
$$f(x) = \tau o \xi \epsilon \phi (x + \sqrt{1 + x^2})$$

v.
$$f(x) = τοξσυν\left(\frac{1}{x}\right)$$

Λύση: (Ασκ. 2/124)

i. $f(x) = \tau o \xi \eta \mu(\frac{x}{2})$

Πεδίο ορισμού: $|x/2| \le 1 \implies x \in [-2, 2].$

Παράγωγος:

$$f'(x) = \frac{\frac{1}{2}}{\sqrt{1 - (x/2)^2}} = \frac{1}{\sqrt{4 - x^2}}, \quad x \in (-2, 2).$$

ii.
$$f(x) = τοξσυν\left(\frac{1-x}{\sqrt{2}}\right)$$

Πεδίο ορισμού: $-1 \le \frac{1-x}{\sqrt{2}} \le 1 \implies x \in [1-\sqrt{2}, \ 1+\sqrt{2}].$

Παράγωγος:

$$f'(x) = -\frac{-1/\sqrt{2}}{\sqrt{1 - \left(\frac{1-x}{\sqrt{2}}\right)^2}} = \frac{1}{\sqrt{1 + 2x - x^2}}, \quad x \in (1 - \sqrt{2}, 1 + \sqrt{2}).$$

iii.
$$f(x) = \tau \circ \xi \varepsilon \varphi(\varepsilon \varphi^2 x)$$

Πεδίο ορισμού: ορίζεται η εφ $x \Rightarrow x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}.$

Παράγωγος:

$$f'(x) = \frac{(\varepsilon \varphi^2 x)'}{1 + \varepsilon \varphi^4 x} = \frac{2 \varepsilon \varphi x \cdot \frac{1}{\sigma \cup \nu^2 x}}{1 + \varepsilon \varphi^4 x} = \frac{2 \varepsilon \varphi x \left(1 + \varepsilon \varphi^2 x\right)}{1 + \varepsilon \varphi^4 x}.$$

iv.
$$f(x) = \operatorname{to} \xi \varepsilon \varphi (x + \sqrt{1 + x^2})$$

Πεδίο ορισμού: για κάθε $x \in \mathbb{R}$, αφού $x + \sqrt{1 + x^2} > 0$.

Παράγωγος:

$$f'(x) = \frac{1 + \frac{x}{\sqrt{1+x^2}}}{1 + (x + \sqrt{1+x^2})^2} = \frac{1}{2(1+x^2)}, \quad x \in \mathbb{R}.$$

v.
$$f(x) = τοξσυν(\frac{1}{x})$$

Πεδίο ορισμού: $\left|\frac{1}{x}\right| \le 1 \implies x \in (-\infty, -1] \cup [1, \infty).$

Παράγωγος:

$$f'(x) = -\frac{-1/x^2}{\sqrt{1 - (1/x)^2}} = \frac{1/x^2}{\sqrt{1 - 1/x^2}} = \frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| \ge 1, \ x \ne 0.$$

7. Να βρείτε τα κρίσιμα σημεία της $f(x) = 3x - \text{τοξημ}\,x$, με $A_f = [-1,1]$.

Λύση: (Ασκ. 3/124)

Για $x \in (-1,1)$ έχουμε

$$f'(x) = 3 - \frac{1}{\sqrt{1 - x^2}}.$$

Θέτουμε f'(x) = 0:

$$3 = \frac{1}{\sqrt{1 - x^2}} \iff \sqrt{1 - x^2} = \frac{1}{3} \iff x^2 = \frac{8}{9} \iff x = \pm \frac{2\sqrt{2}}{3}.$$
$$x = \pm \frac{2\sqrt{2}}{3}$$

Σχόλιο: Στα άχρα $x=\pm 1$ η παράγωγος δεν ορίζεται χάποια σχολιχά τα περιλαμβάνουν ως «χρίσιμα» μόνο όταν ζητούνται άχρα σε χλειστό διάστημα. Εδώ, ως εσωτεριχά χρίσιμα σημεία, είναι μόνο τα $\pm \frac{2\sqrt{2}}{3}$.

8. Να βρείτε τα τοπικά μέγιστα/ελάχιστα των παρακάτω συναρτήσεων και να συμπληρώσετε τον πίνακα μονοτονίας:

i.
$$f(x) = x - 2$$
 τοξεφ x

ii.
$$f(x) = τοξσυν(x^2)$$

iii.
$$f(x) = \tau o \xi \eta \mu(e^x)$$
.

Λύση: (Ασκ. 4/124)

i. f(x) = x - 2 τοξεφ x.

$$f'(x) = 1 - \frac{2}{1+x^2} = \frac{x^2-1}{1+x^2}.$$

Κρίσιμα σημεία (εσωτερικά): $x = \pm 1$.

Πίναχας μονοτονίας:

$$\begin{array}{c|ccccc}
x & -\infty & -1 & 1 \\
+\infty & & & & \\
\hline
f'(x) & + 0 & - 0 & + \\
f(x) & \nearrow & TM & \searrow & TE & \nearrow
\end{array}$$

Άρα: τοπικό μέγιστο στο x=-1 με $f(-1)=-1+\frac{\pi}{2},$ τοπικό ελάχιστο στο x=1 με $f(1)=1-\frac{\pi}{2}.$

ii.

 $f(x) = \operatorname{to}\xi\operatorname{sun}(x^2).$

$$A_f = [-1, 1], f'(x) = -\frac{2x}{\sqrt{1 - x^4}}, |x| < 1.$$

Εσωτερικό κρίσιμο σημείο: x = 0.

Πίναχας μονοτονίας στο [-1,1]:

$$\begin{array}{c|cccc} x & -1 & 0 & 1 \\ \hline f'(x) & + & 0 & - \\ f(x) & \nearrow & TM & \searrow \end{array}$$

Επιπλέον, στα άχρα: $f(\pm 1)=$ τοξσυν(1)=0 (τοπικά ελάχιστα στο χλειστό διάστημα). Στο x=0: τοπικό μέγιστο f(0)= τοξσυν $(0)=\frac{\pi}{2}$. iii.

 $f(x) = \tau o \xi \eta \mu(e^x).$

$$A_f = (-\infty, 0], \qquad f'(x) = \frac{e^x}{\sqrt{1 - e^{2x}}}, \quad x < 0.$$

Για x < 0, f'(x) > 0 (αύξουσα).

Πίναχας μονοτονίας:

$$\begin{array}{c|cccc} x & -\infty & 0 \\ \hline f'(x) & + \\ f(x) & \nearrow & \text{Μέγιστο στο άχρο} \\ \end{array}$$

Τιμές: $\lim_{x\to -\infty} f(x) = \text{τοξημ}(0) = 0$, ενώ $f(0) = \text{τοξημ}(1) = \frac{\pi}{2}$. Άρα στο x=0 η f έχει (καθολικό/τοπικό) μέγιστο στο άκρο του πεδίου.

9. Να δείξετε ότι:

$$x \le \operatorname{tokym} x, \quad \forall x \in [0, 1].$$

Λύση: (Ασχ. 5/124)

Θέτουμε g(x)= τοξημx-x για $x\in [0,1]$. Η g είναι συνεχής στο [0,1] και παραγωγίσιμη στο (0,1). Υπολογίζουμε την παράγωγο:

$$g'(x) = \frac{1}{\sqrt{1 - x^2}} - 1.$$

Για $x \in [0,1)$ ισχύει $\sqrt{1-x^2} \le 1$, άρα $g'(x) \ge 0$ (και μάλιστα g'(x) > 0 για κάθε $x \in (0,1)$). Επομένως η g είναι αύξουσα στο [0,1] και

$$g(x) \ge g(0) = \cos g \mu 0 - 0 = 0.$$

Άρα

$$x \le \text{toxgnm} x, \qquad \forall x \in [0, 1],$$

με ισότητα μόνο στο x=0 (διότι για $x\in(0,1)$ έχουμε $g'(x)>0\Rightarrow g(x)>0).$

Εναλλακτικά: Θέτουμε y= τοξημ $x\in[0,\frac{\pi}{2}]\Rightarrow x=$ ημy. Η ημ είναι κοίλη στο $[0,\pi],$ άρα βρίσκεται κάτω από την εφαπτομένη της στο 0: ημ $y\leq y$ για $y\in[0,\frac{\pi}{2}].$ Άρα x= ημ $y\leq y=$ τοξημx.

10. Να υπολογίσετε την τιμή της παράστασης:

$$A = \eta\mu\bigg(au o \xi \eta\mu\bigg(rac{4}{5}\bigg)\bigg)$$
 .

Λύση: (Ασκ. 1/125)

Θέτουμε $\theta=$ τοξημ $\left(\frac{4}{5}\right)$. Τότε ημ $\theta=\frac{4}{5}$ και $\theta\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ (κύριο διάστημα τιμών της τοξημ). Άρα

$$A = \eta \mu(\theta) = \frac{4}{5}$$

11. Να δείξετε ότι

τοξσυν
$$\left(\frac{3}{4}\right)$$
 + τοξσυν $\left(\frac{\sqrt{7}}{4}\right)$ = $\frac{\pi}{2}$.

Λύση: (Ασκ. 2/125)

Θέτουμε

$$\alpha = \cos \cos \cos \left(\frac{3}{4} \right), \qquad \beta = \cos \sin \left(\frac{\sqrt{7}}{4} \right).$$

Τότε

συν $\alpha=\frac{3}{4},$ συν $\beta=\frac{\sqrt{7}}{4},$ $\alpha,\beta\in\left[0,\frac{\pi}{2}\right]$ (αφού οι συνημίτονες είναι θετιχοί).

Άρα

$$\eta \mu \, \alpha = \sqrt{1 - \left(\frac{3}{4}\right)^2} = \frac{\sqrt{7}}{4}, \qquad \eta \mu \, \beta = \sqrt{1 - \left(\frac{\sqrt{7}}{4}\right)^2} = \frac{3}{4}.$$

Υπολογίζουμε το συν $(\alpha + \beta)$:

$$\operatorname{sun}(\alpha+\beta) = \operatorname{sun}\alpha\operatorname{sun}\beta - \operatorname{hm}\alpha\operatorname{hm}\beta = \frac{3}{4}\cdot\frac{\sqrt{7}}{4} - \frac{\sqrt{7}}{4}\cdot\frac{3}{4} = 0.$$

Επειδή $\alpha, \beta \in [0, \frac{\pi}{2}]$, έχουμε $\alpha + \beta \in [0, \pi]$. Η μοναδική γωνία στο $[0, \pi]$ με συν $(\alpha + \beta) = 0$ είναι $\alpha + \beta = \frac{\pi}{2}$. Επομένως

τοξσυν
$$\left(\frac{3}{4}\right)$$
 + τοξσυν $\left(\frac{\sqrt{7}}{4}\right)$ = $\frac{\pi}{2}$

12. Να δείξετε ότι

$$\lim_{x \to 0^+} \frac{\text{to}\xi\text{sun}(1-x)}{\sqrt{x}} = \sqrt{2}.$$

Λύση: (Ασκ. 3/125)

Για $x \to 0^+$ έχουμε τοξσυν $(1-x) \to$ τοξσυν(1)=0 και $\sqrt{x} \to 0$, άρα η μορφή είναι 0/0 και εφαρμόζουμε τον κανόνα de L'Hôpital:

$$\lim_{x\to 0^+} \frac{\operatorname{to}\xi\operatorname{sun}(1-x)}{\sqrt{x}} = \lim_{x\to 0^+} \frac{\frac{d}{dx} \left[\operatorname{to}\xi\operatorname{sun}(1-x)\right]}{\frac{d}{dx} \left[\sqrt{x}\right]}.$$

Ισχύει $\frac{d}{dx}$ τοξσυν $u=-\frac{u'}{\sqrt{1-u^2}}.$ Με $u=1-x\Rightarrow u'=-1$ παίρνουμε

$$\left(\log \sin(1-x) \right)' = \frac{1}{\sqrt{1 - (1-x)^2}} = \frac{1}{\sqrt{2x - x^2}}, \qquad (\sqrt{x})' = \frac{1}{2\sqrt{x}}.$$

Άρα

$$\lim_{x \to 0^+} \frac{\text{to}\xi\text{sun}(1-x)}{\sqrt{x}} = \lim_{x \to 0^+} \frac{\frac{1}{\sqrt{2x-x^2}}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to 0^+} \frac{2\sqrt{x}}{\sqrt{2x-x^2}} = \lim_{x \to 0^+} \frac{2}{\sqrt{2-x}} = \sqrt{2}.$$

13. Να βρείτε το πεδίο ορισμού και τις παραγώγους των πιο κάτω συναρτήσεων:

i.
$$f(x) = \frac{x}{2} \cos (\pi x) + \frac{x}{2} \sqrt{1 - x^2}$$

ii.
$$f(x) = 2x$$
 τοξεφ $x - \ln(1 + x^2)$

iii.
$$f(x) = \text{toxy}(\sqrt{1-x})$$

Λύση: (Ασκ. 4/125)

i.

$$A_f = [-1,1], \qquad f'(x) = \frac{1}{2} \cos \ln x + \frac{x}{2\sqrt{1-x^2}} + \frac{1}{2} \sqrt{1-x^2} - \frac{x^2}{2\sqrt{1-x^2}}, \quad |x| < 1.$$

(εναλλαχτικά:
$$f'(x) = \frac{1}{2}$$
 τοξημ $x + \frac{1}{2}\sqrt{1-x^2} + \frac{x-x^2}{2\sqrt{1-x^2}}$.)

ii.

$$A_f = \mathbb{R}, \qquad f'(x) = 2$$
 τοξεφ $x \quad (διότι (2x) \cdot \frac{1}{1+x^2} - \frac{2x}{1+x^2} = 0).$

iii.

$$A_f = [0, 1],$$
 $f'(x) = \frac{(\sqrt{1-x})'}{\sqrt{1 - (\sqrt{1-x})^2}} = -\frac{1}{2\sqrt{1-x}\sqrt{x}},$ $0 < x < 1.$

15. Δίνεται η συνάρτηση $f(x) = \text{τεμ } x, \ x \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$. Να βρείτε το πεδίο ορισμού της f^{-1} και να σχεδιάσετε πρόχειρα τη γραφική παράστασή της.

Λύση: (Ασκ. 5/125)

(i) Μονοτονία και εικόνα της f.

$$f'(x) = (\operatorname{tem} x)' = \operatorname{tem} x \cdot \operatorname{ep} x.$$

Στα $(0,\frac{\pi}{2})$ και $(\frac{\pi}{2},\pi)$ ισχύει τεμ $x\cdot$ εφ $x>0\Rightarrow f$ γνησίως αύξουσα σε καθένα. Επίσης

$$\label{eq:temperature} \operatorname{tem} 0 = 1, \qquad \operatorname{tem} \pi = -1, \qquad \lim_{x \to (\pi/2)^-} \operatorname{tem} x = +\infty, \quad \lim_{x \to (\pi/2)^+} \operatorname{tem} x = -\infty.$$

Άρα

$$Im(f) = (-\infty, -1] \cup [1, +\infty).$$

(ii) Πεδίο ορισμού και τύπος της f^{-1} . Η f είναι 1–1 στο δοθέν πεδίο της, επομένως αντιστρέψιμη, με

$$A_{f^{-1}} = (-\infty, -1] \cup [1, +\infty)$$

Από y= τεμ $x\iff$ συν $x=\frac{1}{y}$ (και τοξσυν : $[-1,1]\to[0,\pi]$) προκύπτει

$$f^{-1}(y) =$$
 τοξσυν $\left(\frac{1}{y}\right), \qquad |y| \ge 1$

(iii) Οδηγός για το σκίτσο της f^{-1} . Δύο κλάδοι, συμμετρικοί της γραφικής της f ως προς y=x:

$$\begin{split} y & \geq 1: \quad f^{-1}(y) = \operatorname{toxgon}\left(\frac{1}{y}\right), \quad y(=x) \uparrow, \ f^{-1}(1) = 0, \quad \lim_{y \to +\infty} f^{-1}(y) = \frac{\pi}{2}^-, \\ y & \leq -1: \quad f^{-1}(y) = \operatorname{toxgon}\left(\frac{1}{y}\right), \quad y(=x) \uparrow, \ f^{-1}(-1) = \pi, \quad \lim_{y \to -\infty} f^{-1}(y) = \frac{\pi}{2}^+. \end{split}$$

(Οριζόντια ασύμπτωτη και στους δύο κλάδους: $y=\frac{\pi}{2}.$)

16. Να βρείτε τα τοπικά ακρότατα της συνάρτησης f(x) = 4 τοξεφ $x - 2x, \ x \in \mathbb{R}$.

Λύση: (Ασκ. 6/125)

Παράγωγος:

$$f'(x) = \frac{4}{1+x^2} - 2 = \frac{2-2x^2}{1+x^2}.$$

Κρίσιμα σημεία από f'(x) = 0:

$$\frac{4}{1+x^2} - 2 = 0 \iff 4 = 2(1+x^2) \iff x^2 = 1 \iff x = \pm 1.$$

Πίναχας μονοτονίας:

Τιμές στα κρίσιμα:

$$f(-1) = 4 \operatorname{tokep}(-1) - 2(-1) = -\pi + 2, \qquad f(1) = 4 \operatorname{tokep}(1) - 2 = \pi - 2.$$

Τοπικό ελάχιστο στο x=-1 με $f(-1)=2-\pi$, Τοπικό μέγιστο στο x=1 με $f(1)=\pi-2$

17. Δίνεται η συνάρτηση f(x)= τοξεφ $x-x+\frac{x^3}{3}$. Να αποδείξετε ότι $x-\frac{x^3}{3}<$ τοξεφ x, $\forall x\in(0,+\infty).$

Λύση: (Ασκ. 7/125)

Θέτουμε

$$g(x) = \operatorname{to} \operatorname{deg} x - x + \frac{x^3}{3}.$$

Τότε

$$g'(x) = \frac{1}{1+x^2} - 1 + x^2 = \frac{-x^2}{1+x^2} + x^2 = \frac{x^4}{1+x^2} > 0, \quad \forall x > 0.$$

Άρα η g είναι $\gamma \nu \eta \sigma i \omega \varsigma$ αύξουσα στο $(0, +\infty)$.

Επιπλέον

$$\lim_{x \to 0^+} g(x) = \text{toxeq } 0 - 0 + 0 = 0.$$

Με την αύξηση της g παίρνουμε g(x)>0 για κάθε x>0, δηλαδή

$$x - \frac{x^3}{3} < \text{tokef} x, \qquad \forall x \in (0, +\infty)$$

(ισότητα μόνο στο x=0).

$$\begin{array}{c|ccc} x & 0 & +\infty \\ \hline g'(x) & + & \\ g(x) & 0 & \nearrow \end{array}$$

18. Να δείξετε ότι

$$\operatorname{toxep}\left(\frac{1}{2}\right) + \operatorname{toxep}\left(\frac{1}{3}\right) = \frac{\pi}{4} \qquad \text{ fail } 2\operatorname{toxep}\left(\frac{1}{3}\right) + \operatorname{toxep}\left(\frac{1}{7}\right) = \frac{\pi}{4}.$$

Λύση: (Ασχ. 1/126)

Χρησιμοποιούμε τους τύπους

$$\label{eq:definition} \operatorname{tokef} a + \operatorname{tokef} b = \operatorname{tokef} \left(\frac{a+b}{1-ab}\right) \quad (\text{όταν } ab < 1), \qquad 2\operatorname{tokef} t = \operatorname{tokef} \left(\frac{2t}{1-t^2}\right) \quad (|t| < 1).$$

(i) Με $a=\frac{1}{2},\ b=\frac{1}{3}$ έχουμε $ab=\frac{1}{6}<1$ και

$$\operatorname{tokep}\left(\frac{1}{2}\right) + \operatorname{tokep}\left(\frac{1}{3}\right) = \operatorname{tokep}\left(\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{6}}\right) = \operatorname{tokep}(1) = \frac{\pi}{4}.$$

(ii) Πρώτα

$$2 \operatorname{toxep}\left(\frac{1}{3}\right) = \operatorname{toxep}\left(\frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2}\right) = \operatorname{toxep}\left(\frac{2/3}{8/9}\right) = \operatorname{toxep}\left(\frac{3}{4}\right).$$

Έπειτα, με $a=\frac{3}{4},\ b=\frac{1}{7}$ (έτσι $ab=\frac{3}{28}<1$):

$$\text{tokeg}\left(\frac{3}{4}\right) + \text{tokeg}\left(\frac{1}{7}\right) = \text{tokeg}\left(\frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}}\right) = \text{tokeg}\left(\frac{25/28}{25/28}\right) = \text{tokeg}(1) = \frac{\pi}{4}.$$

Άρα ισχύει

τοξεφ
$$\left(\frac{1}{2}\right)$$
 + τοξεφ $\left(\frac{1}{3}\right)$ = $\frac{\pi}{4}$ = 2 τοξεφ $\left(\frac{1}{3}\right)$ + τοξεφ $\left(\frac{1}{7}\right)$

19. Να αποδείξετε ότι η συνάρτηση $f(x) = \text{τοξημ}\,x, \ x \in [-1,1]$ είναι περιττή.

Λύση: (Ασκ. 2/126)

Θυμόμαστε τον ορισμό: μια συνάρτηση f είναι περιττή αν f(-x)=-f(x) για κάθε x του πεδίου της.

Έστω $x \in [-1,1]$ και θέτουμε

$$\theta = \operatorname{toxgnm} x \; \in \; \left[\, - \, \frac{\pi}{2}, \, \frac{\pi}{2} \, \right] \quad \Longrightarrow \quad \operatorname{nm} \theta = x.$$

Τότε και $-\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ και

$$\eta\mu(-\theta) = -\eta\mu\,\theta = -x.$$

Με βάση τον ορισμό της τοξημ (η μοναδική γωνία του $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ με δεδομένο ημίτονο), προκύπτει

$$\operatorname{toxym}(-x) = -\theta = -\operatorname{toxym} x.$$

Άρα f(-x) = -f(x) για κάθε $x \in [-1,1]$, δηλαδή η f είναι περιττή. \Box

20. Να αποδείξετε ότι η συνάρτηση $f(x) = \text{τοξσυν } x, x \in [-1,1]$, δεν είναι ούτε περιττή ούτε άρτια.

Λύση: (Ασκ. 3/126)

Για κάθε $x \in [-1,1]$ ισχύει

$$τοξσυν(-x) = π - τοξσυν(x).$$

Πράγματι, αν θέσουμε $\theta = \text{τοξσυν}(x) \in [0, \pi]$, τότε $\cos \theta = x$ και $\cos(\pi - \theta) = -\cos \theta = -x$.

Επειδή $\pi - \theta \in [0, \pi]$ (το διάστημα τιμών της τοξσυν), η μοναδικότητα δίνει τοξσυν $(-x) = \pi - \theta = \pi - \text{τοξσυν}(x)$.

Όχι άρτια:

Αν ήταν άρτια, θα είχαμε f(-x)=f(x) για όλα τα x, δηλαδή π – τοξσυν(x)= τοξσυν $(x)\Rightarrow$ τοξσυν $(x)=\frac{\pi}{2}$ για όλα τα x. Αυτό είναι ψευδές $(\pi.\chi.\ f(1)=$ τοξσυν $(1)=0\neq\frac{\pi}{2})$. Άρα η f δεν είναι άρτια.

Όχι περιττή:

Αν ήταν περιττή, θα είχαμε f(-x)=-f(x) για όλα τα x, δηλαδή π -τοξσυν(x)=-τοξσυν $(x)\Rightarrow$ τοξσυν $(x)=\frac{\pi}{2}$ για όλα τα x, που επίσης είναι ψευδές $(\pi.\chi.\ f(1)=0)$. Άρα η f δεν είναι περιττή.

Η f(x) = τοξσυν x στο [-1,1] δεν είναι ούτε περιττή ούτε άρτια.

21. Δίνεται η συνάρτηση $f(x) = \text{τοξεφ}\,x,\,x \in (0,+\infty)$. Να αποδείξετε ότι

$$\frac{x}{1+x^2} < \operatorname{tokeg} x < x, \qquad \forall x \in (0,+\infty).$$

Λύση: (Ασκ. 4/126)

(a) Άνω φράγμα. Θέτουμε h(x) = x - τοξεφ x, για x > 0. Τότε

$$h'(x) = 1 - \frac{1}{1+x^2} = \frac{x^2}{1+x^2} > 0, \quad x > 0,$$

άρα η h είναι γνησίως αύξουσα στο $(0,+\infty)$. Επειδή $\lim_{x\to 0^+}h(x)=0$, παίρνουμε $h(x)>0\Rightarrow$ τοξεφ x< x για κάθε x>0.

(β) Κάτω φράγμα. Θέτουμε g(x)= τοξεφ $x-\frac{x}{1+x^2},$ για x>0. Τότε

$$g'(x) = \frac{1}{1+x^2} - \frac{1-x^2}{(1+x^2)^2} = \frac{(1+x^2) - (1-x^2)}{(1+x^2)^2} = \frac{2x^2}{(1+x^2)^2} > 0,$$

οπότε η g είναι γνησίως αύξουσα στο $(0,+\infty)$ και $\lim_{x\to 0^+}g(x)=0\Rightarrow g(x)>0$. Άρα τοξεφ $x>\frac{x}{1+x^2}$ για κάθε x>0.

$$\frac{x}{1+x^2} < \operatorname{toxeq} x < x, \quad \forall x > 0$$

22. Να αποδείξετε ότι

τοξεφ
$$\left(\frac{1+x}{1-x}\right)$$
 = τοξεφ $x + \frac{\pi}{4}$, $\forall x \in (-\infty, 1)$,

και να βρείτε ανάλογη σχέση για x>1.

Λύση: (Ασχ. 5/126)

Θέτουμε $\theta = \text{τοξεφ } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \Rightarrow \tan \theta = x.$

Για $\varphi = \theta + \frac{\pi}{4}$ έχουμε

$$\tan \varphi = \tan \left(\theta + \frac{\pi}{4}\right) = \frac{\tan \theta + 1}{1 - \tan \theta} = \frac{1 + x}{1 - x}.$$

• An x < 1, that $\theta < \frac{\pi}{4} \Rightarrow \varphi = \theta + \frac{\pi}{4} \in \left(-\frac{\pi}{4}, \frac{\pi}{2}\right) \subset \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Άρα η κύρια τιμή της τοξεφ είναι ακριβώς η φ :

τοξεφ
$$\left(\frac{1+x}{1-x}\right) = \varphi =$$
τοξεφ $\left(x + \frac{\pi}{4}\right)$.

• Αν x>1, τότε $\theta\in\left(\frac{\pi}{4},\frac{\pi}{2}\right)$ και $\varphi=\theta+\frac{\pi}{4}\in\left(\frac{\pi}{2},\pi\right)$.

Η τοξεφ επιστρέφει τιμές στο $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, γι' αυτό παίρνουμε την συνεκτική γωνία $\varphi-\pi$:

$$\log \varphi \left(\tfrac{1+x}{1-x} \right) = \varphi - \pi = \log \varphi \, x + \tfrac{\pi}{4} - \pi = \log \varphi \, x - \tfrac{3\pi}{4}, \qquad x > 1.$$

$$\label{eq:toxino} \text{toxeff}\left(\frac{1+x}{1-x}\right) = \begin{cases} \text{toxef}\,x + \frac{\pi}{4}, & x < 1, \\ \text{toxef}\,x - \frac{3\pi}{4}, & x > 1 \;. \end{cases}$$