

PCTWELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales BüroINTERNATIONALE ANMELDUNG VERÖFFENTLICH NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : C08F 4/602, 10/00	A1	(11) Internationale Veröffentlichungsnummer: WO 98/01481 (43) Internationales Veröffentlichungsdatum: 15. Januar 1998 (15.01.98)
(21) Internationales Aktenzeichen: PCT/EP97/03132	(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).	
(22) Internationales Anmeldedatum: 17. Juni 1997 (17.06.97)	(81) Bestimmungsstaaten: AU, CN, JP, KR, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Prioritätsdaten: 196 26 834.6 4. Juli 1996 (04.07.96) DE 197 20 979.3 20. Mai 1997 (20.05.97) DE		
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).	Veröffentlicht <i>Mit internationalem Recherchenbericht.</i>	
(72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): BIDELL, Wolfgang [DE/DE]; Dahlienstrasse 19, D-67112 Mutterstadt (DE). LANGHAUSER, Franz [DE/DE]; Haagweg 18, D-67152 Ruppertsberg (DE). MOLL, Ulrich [DE/DE]; Heinrich-Lorenz-Strasse 8, D-67487 St Martin (DE). MC KENZIE, Ian, David [GB/GB]; P.O. Box 6, Welwyn Garden City AL6 0JY (GB). FISCHER, David [DE/DE]; Raiffeisenstrasse 12, D-67161 Gönheim (DE). HINGMANN, Roland [DE/DE]; Stahlbühlring 54, D-68526 Ladenburg (DE). SCHWEIER, Günther [DE/DE]; Friedrich-Pietzschi-Strasse 14, D-67159 Friedelsheim (DE).		

(54) Title: PROCESS FOR PREPARING CARRIER-BORNE TRANSITION METAL CATALYSTS

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON GETRÄGERTEN ÜBERGANGSMETALLKATALYSATOREN

(57) Abstract

The invention concerns a process for preparing a carrier-borne transition metal catalyst which contains a particulate organic or inorganic carrier material, a transition metal complex and a metallocenium-ion-forming compound, characterized in that the process comprises the following steps: a) bringing a solution of a metallocenium-ion-forming compound into contact with a second solvent in which this compound is only slightly soluble, in the presence of the carrier material; b) removing at least some of the solvent from the carrier material; and c) bringing a solution of a mixture of a metallocenium-ion-forming compound and a transition metal complex into contact with a second solvent in which this mixture is only slightly soluble, in the presence of the carrier material obtained according to a) and b).

(57) Zusammenfassung

Verfahren zur Herstellung eines geträgerten Übergangsmetallkatalysators, welcher ein partikuläres organisches oder anorganisches Trägermaterial, einen Übergangsmetallkomplex und eine metalloceniumionenbildende Verbindung enthält, dadurch gekennzeichnet, daß es die folgenden Verfahrensschritte umfaßt: a) Kontaktierung einer Lösung einer metalloceniumionenbildenden Verbindung mit einem zweiten Lösungsmittel, in welchem diese Verbindung nur wenig löslich ist, in Gegenwart des Trägermaterials, b) Entfernung zumindest eines Teils der Lösungsmittel vom Trägermaterial und c) Kontaktierung einer Lösung eines Gemisches einer metalloceniumionenbildenden Verbindung und eines Übergangsmetallkomplexes mit einem zweiten Lösungsmittel, in welchem dieses Gemisch nur wenig löslich ist, in Gegenwart des nach a) und b) erhaltenen Trägermaterials.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LJ	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Verfahren zur Herstellung von geträgererten Übergangsmetallkatalysatoren

5 Beschreibung

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines geträgererten Übergangsmetallkatalysators, welcher ein partikuläres organisches oder anorganisches Trägermaterial, 10 einen Übergangsmetallkomplex und eine metalloceniumionen-bildende Verbindung enthält.

Weiterhin ist Gegenstand der vorliegenden Erfindung ein geträgerter Katalysator erhältlich nach diesem Verfahren, ein 15 Verfahren zur Herstellung von Polymerisaten mittels dieses Katalysators sowie die Verwendung dieser Polymerisate zur Herstellung von Fasern, Folien und Formkörpern.

Geträgerete Übergangsmetallkatalysatoren sind seit langem bekannt 20 und werden beispielsweise zur Olefinpolymerisation eingesetzt. Die Aktivität und Produktivität dieser Katalysatoren hängt dabei wesentlich von ihrem Herstellverfahren ab. Durch die Auswahl der Beladungsparameter wird im allgemeinen versucht, eine ausreichend 25 feste Bindung des Katalysators und gegebenenfalls der Cobaltkatalysatoren an den Träger sowie eine möglichst homogene Verteilung der aktiven Komponenten auf dem Träger zu erreichen.

In WO 94/28034 wird die Herstellung eines geträgerten Katalysators zur Olefinpolymerisation beschrieben, wobei ein Metallocenkomplex zusammen mit einem Alumoxan oder Methylalumoxan in einem 30 flüssigen Kohlenwasserstoff mit einem inerten Träger, typischerweise Kieselgel, in Kontakt gebracht wird und anschließend das Lösungsmittel durch Destillation entfernt wird.

35 In EP-A1-295 312 werden verschiedene Verfahren zur Herstellung von geträgerten Olefinpolymerisationskatalysatoren beschrieben. Gemeinsames Merkmal dieser Verfahren ist, daß eine Lösung eines Alumininoxans mit einem zweiten Lösungsmittel, in welchem das Aluminoxan unlöslich ist, in Gegenwart eines partikulären organischen oder anorganischen Trägers in Kontakt gebracht wird, wo- 40 durch sich das Aluminoxan auf dem Träger niederschlägt. In den verschiedenen Ausführungsformen wird entweder schrittweise zuerst das Aluminoxan und nachfolgend ein Metallocenkomplex auf dem Träger abgeschieden, oder es wird gleichzeitig eine Mischung von 45 Aluminoxan und Metallocenkomplex abgeschieden.

2

Die genannten Herstellverfahren führen jedoch zu geträgerten Katalysatoren, die hinsichtlich ihrer Aktivität und Produktivität noch zu wünschen übrig lassen.

5 Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein Herstellverfahren für geträgte Übergangsmetallkatalysatoren zu finden, welches zu Katalysatoren höherer Produktivität führt.

Demgemäß wurde ein Verfahren zur Herstellung eines geträgerten
10 Übergangsmetallkatalysators, welcher ein partikuläres organisches oder anorganisches Trägermaterial, einen Übergangsmetallkomplex und eine metalloceniumionen-bildende Verbindung enthält, gefunden, welches dadurch gekennzeichnet ist, daß es die folgenden Verfahrensschritte umfaßt:

15 a) Kontaktierung einer Lösung einer metalloceniumionen-bildenden Verbindung mit einem zweiten Lösungsmittel, in welchem diese Verbindung nur wenig löslich ist, in Gegenwart des Trägermaterials,

20 b) Entfernung zumindest eines Teils der Lösungsmittel vom Trägermaterial und

c) Kontaktierung einer Lösung eines Gemisches einer metalloceniumionen-bildenden Verbindung und eines Übergangsmetallkomplexes mit einem zweiten Lösungsmittel, in welchem dieses Gemisch nur wenig löslich ist, in Gegenwart des nach a) und b) erhaltenen Trägermaterials.

30 Weiterhin wurde ein geträgter Katalysator, der nach diesem Verfahren erhältlich ist, ein Verfahren zur Herstellung von Polymerisaten mittels dieses Katalysators sowie die Verwendung dieser Polymerisate zur Herstellung von Fasern, Folien und Formkörpern gefunden.

35 Als partikuläres organisches oder anorganisches Trägermaterial kommen beispielsweise Polyolefine wie Polyethylen, Polypropylen, Poly-1-butene und Polymethyl-1-penten und Copolymeren mit den diesen Polymeren zugrundeliegenden Monomeren, weiterhin Polyester,

40 Polyamide, Polyvinylchlorid, Polyacrylate und -methacrylate und Polystyrol in Betracht. Bevorzugt sind jedoch anorganische Trägermaterialien wie poröse Oxide, z.B. SiO_2 , Al_2O_3 , MgO , ZrO_2 , TiO_2 , B_2O_3 , CaO , ZnO . Auch Metallhalogenide wie MgCl_2 kommen als Träger in Betracht. Die Trägermaterialien weisen vorzugsweise

45 einen Teilchendurchmesser zwischen 1 und 300 μm auf, insbesondere von 30 bis 70 μm . Besonders bevorzugte Träger sind beispielsweise Kieselgele, bevorzugt solche der Formel $\text{SiO}_2 \cdot a \text{ Al}_2\text{O}_3$, worin a

3

für eine Zahl im Bereich von 0 bis 2 steht, vorzugsweise 0 bis 0,5; dies sind also Alumosilikate oder Siliciumdioxid. Derartige Produkte sind im Handel erhältlich, z.B. Silica Gel 332 der Fa. Grace.

5

Besonders bevorzugte Kieselgele sind solche, die Hohlräume und Kanäle aufweisen, deren makroskopischer Volumenanteil am Gesamt-
partikel im Bereich von 5 bis 30 % liegt. Bevorzugt werden solche Kieselgelträger eingesetzt, die einen mittleren Teilchendurch-
messer von 5 bis 200 µm, insbesondere 20 bis 90 µm, und einen mittleren Teilchendurchmesser der Primärpartikel von 1 bis 20 µm, insbesondere 1 bis 10 µm, aufweisen. Bei den sogenannten Primär-
partikeln handelt es sich dabei um poröse, granuläre Partikel.
Die Primärpartikel weisen Poren mit einem Durchmesser von ins-
besondere 1 bis 1000 Angström auf. Weiterhin sind die zu verwen-
denden anorganischen Oxide u.a. auch noch dadurch charakteri-
siert, daß sie über Hohlräume und Kanäle mit einem Durchmesser von 1 bis 20 µm, verfügen. Diese Kieselgele weisen ferner ins-
besondere noch ein Porenvolumen von 0,1 bis 10 cm³/g, bevorzugt
von 1,0 bis 5,0 cm³/, und eine spezifische Oberfläche von 10 bis 1000 m²/g auf. Derartige Produkte sind im Handel erhältlich, z.B. Sylopol 2101 (Fa. Grace), ES 70X (Fa. Crosfield) oder MS 3040 (Fa. PQ Corporation). Weitere Einzelheiten zu solchen Kieselgelen-
sind in der älteren deutschen Patentanmeldung 19 623 225.2 be-
schrieben, deren Inhalt als Bestandteil dieser Schrift gilt.

Als Übergangsmetallkomplexe kommen beispielsweise Metallkomplexe mit Metallocenliganden oder anderen organischen Liganden wie beispielsweise β-Diketiminat- oder Azaallylliganden in Betracht,
wie sie z.B. in J. Organomet.-Chem. 500, 203-217 (1995), in WO 95/33776 sowie in der älteren deutschen Patentanmeldung 19 616 523.7 beschrieben sind. Besonders geeignete Übergangs-
metallkomplexe zum Einsatz in dem erfindungsgemäßen Verfahren sind Metallocenkomplexe von Elementen der 4. und 5. Nebengruppe des Periodensystems. Besonders geeignete Übergangsmetallkomplexe sind weiterhin solche, die Benzindenylliganden enthalten. Diese Benzindenylliganden können substituiert oder unsubstituiert sein.

40

45

4

Als Metallocenkomplexe eignen sich besonders solche der allgemeinen Formel III

5

10

in der die Substituenten folgende Bedeutung haben:

15 M Titan, Zirkonium, Hafnium, Vanadium, Niob oder Tantal

X Fluor, Chlor, Brom, Iod, Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl mit 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest, -OR⁷ oder -NR⁷R⁸,

wobei

25 R⁷ und R⁸ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Fluoralkyl oder Fluoraryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest bedeuten,

30 R² bis R⁶ Wasserstoff, C₁- bis C₁₀-Alkyl, 5- bis 7-gliedriges Cycloalkyl, das seinerseits ein C₁- bis C₁₀-Alkyl als Substituent tragen kann, C₆- bis C₁₅-Aryl oder Arylalkyl, wobei gegebenenfalls auch zwei benachbarte Reste gemeinsam für 4 bis 15 C-Atome aufweisende gesättigte oder ungesättigte cyclische Gruppen stehen können oder Si(R⁹)₃ mit

35 R⁹ C₁- bis C₁₀-Alkyl, C₃- bis C₁₀-Cycloalkyl oder C₆- bis C₁₅-Aryl,

5

Z für X oder
5

steht,

wobei die Reste

10 R¹⁰ bis R¹⁴ Wasserstoff, C₁- bis C₁₀-Alkyl,
5- bis 7-gliedriges Cycloalkyl, das seinerseits
ein C₁- bis C₁₀-Alkyl als Substituent tragen kann,
C₆- bis C₁₅-Aryl oder Arylalkyl bedeuten und wobei
gegebenenfalls auch zwei benachbarte Reste ge-
meinsam für 4 bis 15 C-Atome aufweisende gesät-
tigte oder ungesättigte cyclische Gruppen stehen
können, oder Si(R¹⁵)₃ mit

15 R¹⁵ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl oder
C₃- bis C₁₀-Cycloalkyl,

20 oder wobei die Reste R⁵ und Z gemeinsam eine Gruppierung -R¹⁶-A-
bilden, in der

25

30

35 = BR¹⁷, = AlR¹⁷, -Ge-, -Sn-, -O-, -S-, = SO, = SO₂, = NR¹⁷,
40 = CO, = PR¹⁷ oder = P(O)R¹⁷ ist.

wobei

45 R¹⁷, R¹⁸ und R¹⁹ gleich oder verschieden sind und ein Wasserstoff-
atom, ein Halogenatom, eine C₁-C₁₀-Alkylgruppe,
eine C₁-C₁₀-Fluoralkylgruppe, eine C₆-C₁₀-Fluor-
arylgruppe, eine C₆-C₁₀-Arylgruppe, eine

6

C_1-C_{10} -Alkoxygruppe, eine C_2-C_{10} -Alkenylgruppe, eine C_7-C_{40} -Arylalkylgruppe, eine C_8-C_{40} -Arylalkenylgruppe oder eine C_7-C_{40} -Alkylarylgruppe bedeuten oder wobei zwei benachbarte Reste jeweils mit den sie verbindenden Atomen einen Ring bilden, und

M² Silicium, Germanium oder Zinn ist,

¹⁰ A — O —, — S —, NR²⁰ oder PR²⁰ bedeuten,
mit

15 R²⁰ C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl,
C₃- bis C₁₀-Cycloalkyl, Alkylaryl oder Si(R²¹)₃,

R²¹ Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl,
das seinerseits mit C₁- bis C₄-Alkylgruppen sub-
stituiert sein kann oder C₃- bis C₁₀-Cycloalkyl

20 oder wobei die Reste R^5 und R^{13} gemeinsam eine Gruppierung - R^{16} .

Von den Metallocenkomplexen der allgemeinen Formel III sind

45

bevorzugt.

25 Besonders bevorzugt sind solche Übergangsmetallkomplexe, welche zwei miteinander verbrückte aromatische Ringsysteme als Liganden enthalten, also besonders die Übergangsmetallkomplexe der allgemeinen Formeln IIIb und IIIC.

30 Die Reste x können gleich oder verschieden sein, bevorzugt sind sie gleich.

Von den Verbindungen der Formel IIIa sind insbesondere diejenigen bevorzugt, in denen

35 Titan, Zirkonium oder Hafnium.

x Chlor, C₁-bis C₄-Alkyl oder Phenyl und

40 R² bis R⁶ Wasserstoff oder C₁- bis C₄-Alkyl bedeuten.

40 R² bis R⁶ Wasserstoff oder C₁- bis C₄-Alkyl bedeuten.

von den Verbindungen der Formel IIIb sind als bevorzugt diejenigen zu nennen, bei denen

45 M für Titan, Zirkonium oder Hafnium steht,

X für Chlor, C₁-bis C₄-Alkyl oder Phenyl,

R² bis R⁶ Wasserstoff, C₁- bis C₄-Alkyl oder Si(R⁹)₃,

5 R¹⁰ bis R¹⁴ Wasserstoff, C₁- bis C₄-Alkyl oder Si(R¹⁵)₃, bedeuten.

Insbesondere sind die Verbindungen der Formel IIIb geeignet, in denen die Cyclopentadienylreste gleich sind.

10

Beispiele für besonders geeignete Verbindungen sind u.a.:

Bis(cyclopentadienyl)zirkoniumdichlorid,

Bis(pentamethylcyclopentadienyl)-zirkoniumdichlorid,

Bis(methylcyclopentadienyl)-zirkoniumdichlorid,

15 Bis(ethylcyclopentadienyl)-zirkoniumdichlorid,

Bis(n-butylcyclopentadienyl)-zirkoniumdichlorid und

Bis(trimethylsilylcyclopentadienyl)-zirkoniumdichlorid

sowie die entsprechenden Dimethylzirkoniumverbindungen.

20 Von den Verbindungen der Formel IIIc sind diejenigen besonders geeignet, in denen

R² und R¹⁰ gleich sind und für Wasserstoff oder C₁- bis C₁₀-Alkylgruppen stehen,

25

R⁶ und R¹⁴ gleich sind und für Wasserstoff, eine Methyl-, Ethyl-, iso-Propyl- oder tert.-Butylgruppe stehen

R³, R⁴, R¹¹ und R¹² die Bedeutung

30 R⁴ und R¹² C₁- bis C₄-Alkyl

R³ und R¹¹ Wasserstoff

haben oder zwei benachbarte Reste R³ und R⁴ sowie R¹¹ und R¹² gemeinsam für 4 bis 12 C-Atome aufweisende cyclische Gruppen stehen,

35

M für Titan, Zirkonium oder Hafnium und

45

X für Chlor, C₁-bis C₄-Alkyl oder Phenyl stehen.

9

Beispiele für besonders geeignete Komplexverbindungen sind u.a.

Dimethylsilandiylbis(cyclopentadienyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(indenyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(tetrahydroindenyl)-zirkoniumdichlorid,

5 Ethylenbis(cyclopentadienyl)-zirkoniumdichlorid,

Ethylenbis(indenyl)-zirkoniumdichlorid,

Ethylenbis(tetrahydroindenyl)-zirkoniumdichlorid,

Tetramethylethylen-9-fluorenylcyclopentadienylzirkoniumdichlorid,

Dimethylsilandiylbis(-3-tert.butyl-5-methylcyclopentadienyl)-

10 zirkoniumdichlorid,

Dimethylsilandiylbis(-3-tert.butyl-5-ethylcyclopentadienyl)-

zirkoniumdichlorid,

Dimethylsilandiylbis(-2-methylindenyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(-2-isopropylindenyl)-zirkoniumdichlorid,

15 Dimethylsilandiylbis(-2-tert.butylindenyl)-zirkoniumdichlorid,

Diethylsilandiylbis(-2-methylindenyl)-zirkoniumdibromid,

Dimethylsilandiylbis(-3-methyl-5-methylcyclopentadienyl)-

zirkoniumdichlorid,

Dimethylsilandiylbis(-3-ethyl-5-isopropylcyclopentadienyl)-

20 zirkoniumdichlorid,

Dimethylsilandiylbis(-2-methylindenyl)-zirkoniumdichlorid,

Dimethylsilandiylbis(-2-methylbenzindenyl)-zirkoniumdichlorid

Dimethylsilandiylbis(2-ethylbenzindenyl)zirkoniumdichlorid,

Methylphenylsilandiylbis(2-ethylbenzindenyl)zirkoniumdichlorid,

25 Methylphenylsilandiylbis(2-methylbenzindenyl)zirkoniumdichlorid,

Diphenylsilandiylbis(2-methylbenzindenyl)zirkoniumdichlorid,

Diphenylsilandiylbis(2-ethylbenzindenyl)zirkoniumdichlorid, und

Dimethylsilandiylbis(-2-methylindenyl)-hafniumdichlorid

sowie die entsprechenden Dimethylzirkoniumverbindungen.

30

Bei den Verbindungen der allgemeinen Formel IIId sind als
besonders geeignet diejenigen zu nennen, in denen

M

für Titan oder Zirkonium,

35

X

für Chlor, C₁-bis C₄-Alkyl oder Phenyl stehen.

45

A für — O — , — S — , $\backslash \text{NR}^{20}$

5 und

R² bis R⁴ und R⁶ für Wasserstoff, C₁- bis C₁₀-Alkyl,
C₃- bis C₁₀-Cycloalkyl, C₆- bis C₁₅-Aryl oder
Si(R⁹)₃ stehen, oder wobei zwei benachbarte Reste
für 4 bis 12 C-Atome aufweisende cyclische
Gruppen stehen.

10

Die Synthese derartiger Komplexverbindungen kann nach an sich
bekannten Methoden erfolgen, wobei die Umsetzung der entsprechend
15 substituierten, cyclischen Kohlenwasserstoffanionen mit Halo-
geniden von Titan, Zirkonium, Hafnium, Vanadium, Niob oder
Tantal, bevorzugt ist.

Beispiele für entsprechende Herstellungsverfahren sind u.a.
20 im Journal of Organometallic Chemistry, 369 (1989), 359-370
beschrieben.

Es können auch Mischungen verschiedener Metallocenkomplexe einge-
setzt werden.

25

Als weitere Komponente enthält der nach dem erfindungsgemäßen
Verfahren hergestellte Katalysator eine metalloceniumionen-
bildende Verbindung.

30 Geeignete metalloceniumionen-bildende Verbindungen sind starke,
neutrale Lewissäuren, ionische Verbindungen mit lewissauren
Kationen und ionische Verbindungen mit Brönsted-Säuren als
Kation.

35 Als starke, neutrale Lewissäuren sind Verbindungen der allge-
meinen Formel IV

40 bevorzugt, in der

M³ ein Element der III. Hauptgruppe des Periodensystems be-
deutet, insbesondere B, Al oder Ga, vorzugsweise B,

45 X¹, X² und X³

für Wasserstoff, C₁- bis C₁₀-Alkyl, C₆- bis C₁₅-Aryl, Alkyl-
aryl, Arylalkyl, Halogenalkyl oder Halogenaryl mit jeweils 1

11

bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atome im Arylrest oder Fluor, Chlor, Brom oder Jod stehen, insbesondere für Halogenaryl, vorzugsweise für Pentafluorphenyl.

5 Besonders bevorzugt sind Verbindungen der allgemeinen Formel IV, in der X¹, X² und X³ gleich sind, vorzugsweise Tris(pentafluorphenyl)boran.

Als ionische Verbindungen mit lewissäuren Kationen sind
10 Verbindungen der allgemeinen Formel V

geeignet, in denen

15 Y ein Element der I. bis VI. Hauptgruppe oder der I. bis VIII. Nebengruppe des Periodensystems bedeutet,

20 Q₁ bis Q_z für einfach negativ geladene Reste wie C₁- bis C₂₈-Alkyl, C₆- bis C₁₅-Aryl, Alkylaryl, Arylalkyl, Halogenalkyl, Halogenaryl mit jeweils 6 bis 20 C-Atomen im Aryl- und 1 bis 28 C-Atome im Alkylrest, C₁- bis C₁₀-Cycloalkyl, welches gegebenenfalls mit C₁- bis C₁₀-Alkylgruppen substituiert sein kann, Halogen, C₁- bis C₂₈-Alkoxy, C₆- bis C₁₅-Aryloxy, Silyl- oder Mercaptylgruppen

25 a für ganze Zahlen von 1 bis 6 steht

30 z für ganze Zahlen von 0 bis 5

d der Differenz a-z entspricht, wobei d jedoch größer oder gleich 1 ist.

35 Besonders geeignet sind Carboniumkationen, Oxoniumkationen und Sulfoniumkationen sowie kationische Übergangsmetallkomplexe. Insbesondere sind das Triphenylmethylkation, das Silberkation und das 1,1'-Dimethylferrocenylkation zu nennen. Bevorzugt besitzen 40 sie nicht koordinierende Gegenionen, insbesondere Borverbindungen, wie sie auch in der WO 91/09882 genannt werden, bevorzugt Tetrakis(pentafluorphenyl)borat.

12

Ionische Verbindungen mit Brönsted-Säuren als Kationen und vorzugsweise ebenfalls nicht koordinierende Gegenionen sind in der WO 91/09882 genannt, bevorzugtes Kation ist das N,N-Dimethyl-anilinium.

5

Besonders geeignet als metalloceniumionen-bildende Verbindung sind offenkettige oder cyclische Alumoxanverbindungen der allgemeinen Formel I oder II

10

15

20

wobei R^1 eine C_1 - bis C_4 -Alkylgruppe bedeutet, bevorzugt eine Methyl- oder Ethylgruppe und m für eine ganze Zahl von 5 bis 30, bevorzugt 10 bis 25 steht.

25 Die Herstellung dieser oligomeren Alumoxanverbindungen erfolgt üblicherweise durch Umsetzung einer Lösung von Trialkylaluminium mit Wasser und ist u.a. in der EP-A 284 708 und der US A 4,794,096 beschrieben.

30 In der Regel liegen die dabei erhaltenen oligomeren Alumoxanverbindungen als Gemische unterschiedlich langer, sowohl linearer als auch cyclischer Kettenmoleküle vor, so daß m als Mittelwert anzusehen ist. Die Alumoxanverbindungen können auch im Gemisch mit anderen Metallalkylen, bevorzugt mit Aluminiumalkylen vor-
35 liegen.

Weiterhin können als metalloceniumionen-bildende Verbindungen Aryloxyalumoxane, wie in der US-A 5,391,793 beschrieben, Aminoaluminoxane, wie in der US-A 5,371,260 beschrieben, Aminoaluminoxanehydrochloride, wie in der EP-A 633 264 beschrieben, Siloxyaluminoxane, wie in der EP-A 621 279 beschrieben, oder Mischungen daraus eingesetzt werden.

Der erste Verfahrensschritt a) zur erfindungsgemäßen Herstellung 45 der geträgerten Übergangsmetallkatalysatoren besteht in der Kontaktierung einer Lösung einer metalloceniumionenbildenden Verbindung mit einem zweiten Lösungsmittel, in welchem diese Ver-

13

bindung nur wenig löslich ist, in Gegenwart des Trägermaterials. Dazu wird die metalloceniumionen-bildende Verbindung zunächst in einem ersten Lösungsmittel gelöst, in welchem sie gut löslich ist. Für viele metalloceniumbildende Verbindungen, insbesondere für die Alumoxanverbindungen der Formel I und II kommen als Lösungsmittel beispielsweise aromatische Lösungsmittel wie Benzol, Toluol, Ethylbenzol, Xylool oder Chlorbenzol sowie chlorierte Kohlenwasserstoffe wie Dichlorethan oder Methylenchlorid in Betracht.

10

Als zweites Lösungsmittel, in welchem die metalloceniumionen-bildende Verbindung nur wenig löslich ist, kommen vor allem lineare oder verzweigte aliphatische Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Octan, Decan, Dodecan, insbesondere Isododecan, in Betracht. Auch technische Gemische verschiedener solcher Kohlenwasserstoffe wie Kerosin und das genannte Isododecan, können verwendet werden. Weiterhin sind als zweites Lösungsmittel cycloaliphatische Lösungsmittel wie Cyclohexan und Norbornan zu nennen. Wenig löslich soll in diesem Zusammenhang bedeuten, daß bei den gegebenen Konzentrationen der metalloceniumionen-bildenden Verbindung der größte Teil dieser Verbindung durch das Lösungsmittel ausfällbar ist.

Zur Kontaktierung sind hier verschiedene Varianten möglich. So kann beispielsweise die Lösung der metalloceniumionen-bildenden Verbindung vorgelegt werden und mit einer Suspension des Trägermaterials im zweiten Lösungsmittel versetzt werden oder umgekehrt. Auch kann eine Suspension des Trägermaterials im ersten Lösungsmittel oder in einer Lösung der metalloceniumionen-bildenden Verbindung vorgelegt werden und mit dem zweiten Lösungsmittel versetzt werden. Als besonders bevorzugt hat sich die Variante erwiesen, das Trägermaterial im zweiten Lösungsmittel zu suspendieren und zu dieser Suspension langsam die Lösung der metalloceniumionen-bildenden Verbindung zuzugeben, wobei die Suspension ständig gerührt werden sollte.

Für Verfahrensschritt a) ist es vorteilhaft, folgende Gewichtsverhältnisse einzuhalten:

40 Das Verhältnis von metalloceniumionen-bildender Verbindung zum Trägermaterial soll möglichst groß gewählt werden, um eine möglichst große Belegung des Trägers zu erreichen. Es beträgt vorzugsweise 1:1 bis 0,05:1, besonders bevorzugt 0,8:1 bis 0,3:1.

14

Das Verhältnis von metalloceniumionen-bildender Verbindung zum ersten Lösungsmittel sollte möglichst so groß sein, wie es die Löslichkeit zuläßt, im allgemeinen also 0,5:1 bis 0,01:1, besonders bevorzugt 0,3:1 bis 0,1:1.

5

Das Verhältnis vom ersten Lösungsmittel zum zweiten Lösungsmittel sollte möglichst gering sein, um eine möglichst wirksame Ausfällung der metalloceniumionen-bildenden Verbindung auf den Träger zu erreichen. Bevorzugt ist ein Gewichtsverhältnis von 1:1 bis 10 0,05:1, besonders bevorzugt von 0,5:1 bis 0,1:1.

Im nachfolgenden Verfahrensschritt b) wird zumindest ein Teil der Lösungsmittel vom gemäß a) modifizierten Trägermaterial entfernt. Dies kann beispielsweise durch Destillation, vorzugsweise durch 15 fraktionierte Destillation erfolgen. Für den Fall einer Entfernung von Lösungsmittel durch Destillation empfiehlt es sich, das Lösungsmittelpaar so zu wählen, daß das erste Lösungsmittel einen niedrigeren Siedepunkt, bevorzugt einen um mehr als 20°C niedrigeren Siedepunkt aufweist als das zweite Lösungsmittel. Auf diese 20 Weise kann der größte Teil des ersten Lösungsmittels aus der Suspension entfernt werden und dadurch eine effektivere Ausfällung der Katalysatorkomponenten im Schritt c) erreicht werden.

Als noch günstiger als die destillative Entfernung des Lösungsmittels hat sich eine mechanische Trennung der Suspension, beispielsweise durch Filtration, erwiesen. Auf diese Weise können auch nicht flüchtige ungebundene Bestandteile der Lösung der metalloceniumionen-bildenden Verbindung vom Trägermaterial entfernt werden. Besonders eine Ausführungsform des erfindungsgemäßen Verfahrens, bei dem das Trägermaterial abfiltriert wird und dann erst mit dem ersten Lösungsmittel, oder einem anderen Lösungsmittel, in welchem die metalloceniumionen-bildende Verbindung gut löslich ist, und anschließend mit dem zweiten Lösungsmittel gewaschen wird, hat sich als vorteilhaft erwiesen, da auf diese 35 Weise Katalysatoren besonders hoher Produktivität hergestellt werden können.

Zu diesem Waschschritt werden vorzugsweise 5 bis 40 Volumenteile des jeweiligen Lösungsmittels, besonders bevorzugt 10 bis 40 20 Volumenteile eingesetzt, jeweils bezogen auf das Volumen des Trägermaterials. Auch mehrmaliges Waschen mit den entsprechenden Lösungsmitteln hat sich als vorteilhaft erwiesen.

Der Schritt c) des erfindungsgemäßen Verfahrens beinhaltet die Beladung des Trägers mit dem eigentlichen Katalysatorkomplex. Für Schritt c) kommen sinngemäß die gleichen Varianten in Betracht, wie sie für Schritt a) genannt wurden. Auch hier hat es sich als

15

vorteilhaft erwiesen, eine Suspension des Trägermaterials im zweiten Lösungsmittel vorzulegen und zu dieser Suspension langsam die Lösung eines Gemisches aus der metalloceniumionen-bildenden Verbindung und des Übergangsmetallkomplexes im ersten Lösungsmittel zuzugeben, vorzugsweise unter ständigem Rühren.

Nach der Zugabe der Lösung des Gemisches aus metalloceniumionenbildender Verbindung und des Übergangsmetallkomplexes kann es von Vorteil sein, durch destillative Entfernung des ersten Lösungsmittels, welches in diesem Fall einen niedrigeren Siedepunkt als das zweite Lösungsmittel aufweisen muß, eine Vervollständigung der Ausfällung zu erreichen. Dies ist besonders dann der Fall, wenn aus Löslichkeitsgründen eine große Menge des ersten Lösungsmittels eingesetzt werden mußte.

15

Das Gemisch aus metalloceniumionen-bildender Verbindung und Übergangsmetallkomplex enthält diese beiden Komponenten vorzugsweise im Gewichtsverhältnis von 40:1 bis 3:1, besonders bevorzugt von 20:1 bis 5:1.

20

Die Lösung des Gemisches sollte möglichst hoch konzentriert sein. Vorzugsweise enthält diese Lösung 5 bis 50 Gew.-% des Gemisches, besonders bevorzugt 20 bis 30 Gew.-%.

25 Für die anderen Volumen- und Gewichtsanteile gelten die für den Verfahrensschritt a) genannten Verhältnisse.

Die Verfahrenstemperatur der Beladungsschritte hängt unter anderem von der Stabilität der metalloceniumionen-bildenden Verbindung und des Übergangsmetallkomplexes ab. Die Temperatur der Trägersuspension sollte vorzugsweise niedrig, die Temperatur der Lösung der Aktivkomponenten gemäß Verfahrensschritt a) und c) sollte eher höher sein, jedoch führt auch eine einheitliche Verfahrenstemperatur zu guten Ergebnissen. Im allgemeinen liegt die Verfahrenstemperatur zwischen -10 und +60°C, vorzugsweise zwischen +10 und +40°C, besonders bevorzugt zwischen 20 und 30°C.

Der Druck hat kaum Einfluß auf das Verfahrensergebnis, lediglich bei der Destillation gemäß Verfahrensschritt c) kann ein verminderter Druck vorteilhaft sein.

Das erfindungsgemäße mehrstufige Verfahren zur Herstellung eines geträgerten Übergangsmetallkatalysators führt zu Katalysatoren mit sehr homogen verteilten Aktivkomponenten und hohen Beladungen. Diese Vorteile beruhen auf der Kombination der Verfahrensschritte a), b) und c). Im Schritt a) wird eine intensive Beladung des Trägers mit der metalloceniumionen-bildenden

Verbindung erreicht. Schritt b) entfernt Bestandteile, die auf den nachfolgenden Schritt c) störend wirken. Schritt c) bewirkt durch die Vorreaktion des Übergangsmetallkomplexes mit der metalloceniumionen-bildenden Verbindung die Bildung eines aktiven Katalysatorkomplexes und eine Erhöhung der Löslichkeit des Übergangsmetallkomplexes, wodurch eine höhere und homogenere Beladung des Trägers ermöglicht wird. Die Erhöhung der Löslichkeit kommt besonders bei schwerlöslichen Komplexen wie den Übergangsmetallkomplexen mit zwei miteinander verbrückten aromatischen Ring- systemen zum Tragen. Ohne die Vorbehandlung des Trägers gemäß Verfahrensschritt a) führt Verfahrensschritt c) jedoch zu unbefriedigenden Ergebnissen.

Erfnungsgemäß eignet sich der hier beschriebene geträgerete Übergangsmetallkatalysator besonders für Verfahren zur Herstellung von Polymerisaten von C₂-C₁₂-Alk-1-enen bei Temperaturen im Bereich von -50 bis 300°C und Drücken von 0,5 bis 3000 bar.

Von den bei dem erfundungsgemäßen Verfahren zur Herstellung von Polymerisaten eingesetzten C₂- bis C₁₂-Alk-1-enen sind Ethylen, Propen, But-1-en, Pent-1-en, 4-Methyl-pent-1-en, Hex-1-en, Hept-1-en oder Oct-1-en, sowie Gemische aus diesen C₂- bis C₁₂-Alk-1-enen bevorzugt. Besonders bevorzugt sind Homo- oder Copolymerisate des Propens, wobei der Anteil an Propen in den Copolymerisaten mindestens 50 mol-% beträgt. Bei den Copolymerisaten des Propens sind diejenigen bevorzugt, die als weitere Monomere Ethylen oder But-1-en oder deren Mischungen enthalten.

Das erfundungsgemäße Verfahren zur Herstellung von Polymerisaten wird bei Temperaturen im Bereich von -50 bis 300°C, vorzugsweise im Bereich von 0 bis 150°C und bei Drücken im Bereich von 0,5 bis 3000 bar, vorzugsweise im Bereich von 1 bis 80 bar durchgeführt.

Die Polymerisation kann in Lösung, in Suspension, in flüssigen Monomeren oder in der Gasphase durchgeführt werden. Bevorzugt erfolgt die Polymerisation in flüssigen Monomeren oder in der Gasphase, wobei die gerührte Gasphase bevorzugt ist.

Das Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden. Geeignete Reaktoren sind u.a. kontinuierlich betriebene Rührkessel, wobei man gegebenenfalls auch eine Reihe von mehreren hintereinander geschalteten Rührkesseln verwenden kann (Reaktorkaskade).

Das erfindungsgemäße Polymerisationsverfahren zeichnet sich durch gute Durchführbarkeit im technischen Maßstab, gute Polymermorphologie, gleichmäßige Polymerkettenlängen, keine Belagbildung, keine Agglomeratbildung und gute Produktivität aus.

5

Eine bevorzugte Ausführungsform des erfindungsgemäßen Polymerisationsverfahrens besteht in der Polymerisation in Gegenwart von Wasserstoff als Molmassenregler. Das erfindungsgemäße Katalysatorsystem reagiert schon auf geringe Mengen Wasserstoff mit einer ausgeprägten Produktivitätssteigerung. Vorzugsweise beträgt der Anteil des Wasserstoffs z.B. bei einer Gasphasenpolymerisation 0,01 bis 1,2 Vol-%, besonders bevorzugt 0,05 bis 0,9 Vol-%, bezogen auf das Gesamtvolumen des Polymerisationsgasgemisches.

15

Die nach dem erfindungsgemäßen Polymerisationsverfahren erhaltenen Polymerivate eignen sich beispielsweise gut zur Herstellung von Fasern, Folien und Formkörpern.

20 Beispiele

Beispiel 1

1.1 Herstellung des Katalysators

25

20 g Kieselgel SG 332 (Hersteller Grace, Worms) wurden im Vakuum 8 h bei 180°C partiell dehydratisiert, in 170 ml Pentan suspendiert, und anschließend wurde innerhalb von 4 h 160 ml 1,53 M Methylalumoxan (MAO) in Toluol (Hersteller Witco, Bergkamen) bei 25°C langsam zugetropft. Nach 12 h bei 25°C wurde die überstehende farblose Lösung abdekantiert und der MAO-beladene Träger mit 2 x 50 ml Toluol und anschließend mit 2 x 50 ml Pentan gewaschen. Das MAO-beladene Kieselgel wurde in 150 ml Pentan resuspendiert und innerhalb von 4 Stunden mit einer Lösung von 115 mg rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilyandiylzirkoniumdichlorid in 30,6 ml 1,53 M MAO (Toluollösung) versetzt. Nach 1 h wurde der geträgerete Katalysator durch Filtration isoliert, mit 2 x 50 ml Pentan gewaschen und im N₂-Strom bei 25°C getrocknet.

30

35

40

Ausbeute: 29 g

45

1.2 Polymerisation

In einen trockenen mit Stickstoff gespülten 10 l Autoklaven wurden nacheinander 50 g Polypropylengries und 10 ml Triisobutylaluminium (2 M in Heptan) gegeben und 15 min gerührt. Anschließend wurden 510 mg geträgerter Katalysator im Stickstoffgegenstrom in den Reaktor gefüllt, dieser wurde verschlossen und bei einer Rührerdrehzahl von 350 U/min bei 25°C mit 1,5 l flüssigem Propylen befüllt. Nach 30 min Vorpolymerisation wurde schrittweise die Temperatur auf 65°C erhöht, wobei der Innendruck stufenweise durch automatische Druckregelung bis zum Enddruck von 25 bar erhöht wurde. Anschließend wurden 60 min bei automatischer Propylengasdruckregelung (25 bar) in der Gasphase bei 65°C polymerisiert.

Nach beendeter Polymerisation wurde 10 min lang auf Atmosphärendruck entspannt und das entstandene Polymerisat im Stickstoffstrom ausgetragen. Man erhält 815 g Polypropylengrieß, was einer Produktivität von 1500 g PP/g Katalysator/h entspricht. Die zugehörigen Katalysator- und Polymerdaten sind in Tabelle 1 und 2 aufgelistet.

Beispiel 2

Die Präparation des Katalysators erfolgte analog zu Beispiel 1. Hierbei wurde die MAO-Beladung des partiell dehydratisierten Kieselgels in der oben beschriebenen Weise durchgeführt. Bei der Metallocenbeladung wurden 288 mg rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilandiylylzirkoniumdichlorid in 65 ml 1,53 M MAO (Toluollösung) verwendet. Die Ausbeute betrug 30,1 g.

413 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen (entsprechend der Polymerisation von Beispiel 1) 1065 g Polymerriegel, was einer Produktivität von 2450 g PP/g Katalysator/h entspricht. Die zugehörigen Katalysator- und Polymerdaten sind in Tabelle 1 und 2 aufgelistet.

Beispiel 3

Die Präparation des Katalysators erfolgte analog zu Beispiel 1. Hierbei wurde die MAO-Beladung des partiell dehydratisierten Kieselgels in der oben beschriebenen Weise durchgeführt. Bei der Metallocenbeladung wurden 576 mg rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilandiylylzirkoniumdichlorid in 130 ml 1,53 M MAO (Toluollösung) verwendet. Die Ausbeute betrug 32,4 g.

19

305 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen (entsprechend der Polymerisation von Beispiel 1) 1180 g Polymergriff, was einer Produktivität von 3700 g PP/g Katalysator/h entspricht. Die zugehörigen Katalysator- und Polymerdaten sind in Tabelle 1 und 2 aufgelistet.

Beispiel 4

Die Präparation des Katalysators erfolgte analog zu Beispiel 1.
10 Hierbei wurde die MAO-Beladung des partiell dehydratisierten Kieselgels in der oben beschriebenen Weise durchgeführt. Bei der Metallocenbeladung wurden 1152 mg rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilylazirkoniumdichlorid in 260 ml 1,53 M MAO (Toluollösung) verwendet. Die Ausbeute betrug 32,9 g.

15 227 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen (entsprechend der Polymerisation von Beispiel 1) 1180 g Polymergriff, was einer Produktivität von 4950 g PP/g Katalysator/h entspricht. Die zugehörigen Katalysator- und Polymerdaten sind in Tabelle 1 und 2 aufgelistet.

Beispiel 5

Die Präparation des Katalysators erfolgte analog zu Beispiel 1.
25 Hierbei wurde die MAO-Beladung des partiell dehydratisierten Kieselgels in der oben beschriebenen Weise durchgeführt. Bei der Metallocenbeladung wurden 2304 mg rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilylazirkoniumdichlorid in 520 ml 1,53 M MAO (Toluollösung) verwendet. Die Ausbeute betrug 33,4 g.

30 108 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen (entsprechend der Polymerisation von Beispiel 1) 695 g Polymergriff, was einer Produktivität von 4950 g PP/g Katalysator/h entspricht. Die zugehörigen Katalysator- und Polymerdaten sind in Tabelle 1 und 2 aufgelistet.

Beispiel 6

6.1 Herstellung des Katalysators

40 20 g Kieselgel SG 332 wurden im Vakuum 8 h bei 180°C partiell dehydratisiert, in 200 ml iso-Dodekan suspendiert und anschließend innerhalb von 4 h 160 ml 1,53 M MAO (Toluollösung) bei 0°C langsam zugetropft. Nach 12 h bei 0°C wurde die überstehende farblose Lösung abfiltriert und der MAO-beladene Träger mit 2 x 50 ml Toluol und anschließend mit 2 x 50 ml

20

Pentan gewaschen. Trocknen im N₂-Strom bei 25°C ergab 28,2 g MAO-beladenes Kieselgel.

5 5,0 g des so hergestellten MAO-beladenen Kieselgels wurden in 200 ml iso-Dodekan suspendiert und innerhalb von 4 h bei 0°C mit einer Lösung von 288 mg Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilandiylzirkoniumdichlorid in 65 ml 1,53 M MAO (Toluollösung) versetzt. Nach 1 h wurde der geträgerte Katalysator durch Filtration isoliert, mit
10 2 x 25 ml Pentan gewaschen und im N₂-Strom bei 25°C getrocknet. Die Ausbeute betrug 5,6 g.

6.2 Polymerisation

15 Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 198 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen 1050 g Polymergriff, was einer Produktivität von 5050 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

20 7.1 Herstellung des Katalysators

160 ml 1,53 M MAO (Toluollösung) wurde bei 25°C im Hochvakuum bis auf 60 ml eingeengt (100 ml abdestilliert). Die eingeengte MAO-Toluol-Lösung wurde innerhalb von 4 h bei 0°C langsam zu einer Suspension von 20 g Kieselgel SG 332 (im Vakuum 8 h bei 180°C partiell dehydratisiert) und 200 ml iso-Dodekan zugetropft. Nach 12 h bei 0°C wurde die überstehende farblose Lösung abfiltriert und der MAO-beladene Träger mit 2 x 50 ml Toluol und anschließend mit 2 x 50 ml Pentan gewaschen. Trocknen im N₂-Strom bei 25°C ergab 33,8 g MAO-beladenes Kieselgel.

35 Eine Lösung von 288 mg rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilandiylzirkoniumdichlorid in 65 ml 1,53 M MAO-Toluol-Lösung wurde bei 25°C im Hochvakuum bis auf 30 ml Volumen reduziert. Anschließend wurde die eingeengte MAO-Metallocen-Lösung innerhalb von 4 h bei 25°C langsam zu einer Suspension von 5,0 g des oben hergestellten MAO-beladenen Kieselgels in 200 ml iso-Dodekan zugetropft. Nach 1 h wurde der geträgerte Katalysator durch Filtration isoliert, mit 2 x 25 ml Pentan gewaschen und im N₂-Strom bei 25°C getrocknet. Die Ausbeute betrug 6,1 g.

7.2 Polymerisation

Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 142 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen 860 g Polymergriff, was einer Produktivität von 5700 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

Beispiel 8

5 g Kieselgel SG 332 wurden im Vakuum 8 h bei 180°C partiell dehydratisiert, in 50 ml iso-Dodekan suspendiert und anschließend innerhalb von 4 h 160 ml 1.53 M MAO in Toluollösung langsam zugeropft. Nach 12 h bei 25°C wurde die überstehende farblose Lösung abdekantiert und der MAO-beladene Träger mit 2 x 10 ml Toluol gewaschen. Anschließend wird das MAO-beladene Kieselgel in 100 ml iso-Dodekan resuspendiert und mit der Hälfte von einer Lösung von 288 mg rac-Bis-[3,3'-(2-Methyl-benzo[e]indenyl)]dimethyldimethylzirkoniumdichlorid in 65 ml 1,53 M MAO (Toluollösung) unter Röhren bei 25°C innerhalb von 2 h versetzt. Nach 0,5 h wurde das Lösungsmittel mittels Filtration entfernt und der Feststoff erneut in 100 ml iso-Dodekan aufgenommen. Anschließend wurde der noch verbliebene Rest der rac-Bis-[3,3'-(2-Methyl-benzo[e]indenyl)]dimethyldimethylzirkoniumdichlorid - MAO-Lösung innerhalb von weiteren 2 h zugetropft. Nach erfolgter Zugabe wurde die Suspension bei 25°C weitere 0,5 h gerührt und dann der Feststoff filtriert. Waschen mit 2 x 20 ml Pentan ergab 8,5 g Katalysator.

30 Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 213 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen 1120 g Polymergriff, was einer Produktivität von 5000 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

35

Beispiel 9

5 g Kieselgel SG 332 wurden im Vakuum 8 h bei 180°C partiell dehydratisiert, in 50 ml Pentan suspendiert, und anschließend wurde innerhalb von 1 h ein Viertel von 160 ml 1.53 M MAO (Toluol-lösung) bei 25°C langsam zugetropft. Nach 3 h wurde der Feststoff filtriert und in 50 ml Pentan resuspendiert. Anschließend wurde das zweite Viertel der oben verwendeten MAO-Lösung zugetropft (1 h Zugabe, 3 h Nachröhren). Nach erneuter Filtration und Resuspension des Feststoffs in 50 ml Pentan wurde die MAO-Beladung mit weiteren 40 ml MAO-Lösung fortgesetzt (1 h Zugabe, 3 h Nachröhren). Die letzten 40 ml MAO-Lösung wurden wieder nach Fil-

tration und Resuspension des Feststoffs in 50 ml Pentan bei 25°C langsam zugegeben (1 h). Nach 12 h bei 25°C wurde die überstehende farblose Lösung abfiltriert und der MAO-beladene Träger mit 2 x 10 ml Toluol gewaschen. Anschließend wurde das MAO-beladene Kieselgel in 100 ml iso-Dodekan resuspendiert und mit der Hälfte von einer Lösung von 288 mg rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilylidenylzirkoniumdichlorid in 65 ml 1,53 M MAO (Toluollösung) unter Rühren bei 25°C innerhalb von 2 h versetzt. Nach 0,5 h wurde das komplette Lösungsmittel mittels Filtration entfernt und der Feststoff erneut in 100 ml iso-Dodekan aufgenommen. Anschließend wurde der noch verbliebene Rest der rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilylidenylzirkoniumdichlorid - MAO - Lösung innerhalb von weiteren 2 h zuge tropft. Nach erfolgter Zugabe wurde die Suspension bei 25°C weiter 0,5 h gerührt und dann der Feststoff filtriert. Waschen mit 2 x 20 ml Pentan ergab 8,9 g Katalysator.

Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 197 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen 1095 g Polymergriff, was einer Produktivität von 5300 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

Beispiel 10
25 10.1 Herstellung des Katalysators

20 g Kieselgel SG 332 wurden im Vakuum 8 h bei 180°C partiell dehydratisiert, in 200 ml iso-Dekan suspendiert und anschließend innerhalb von 4 h 160 ml 1,53 M MAO (Toluollösung) bei 25°C langsam zugetropft. Nach 12 h bei 25°C wurde die überstehende farblose Lösung abfiltriert und der MAO-beladene Träger mit 2 x 10 ml Toluol und anschließend 2 x 50 ml Pentan gewaschen. Trocknen im N₂-Strom bei 25°C ergab 28,1 g MAO-deaktiviertes Kieselgel. Eine Lösung von 576 mg rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilylidenylzirkoniumdichlorid in 130 ml 1,53 M MAO-Toluol-Lösung wurde bei 25°C im Hochvakuum bis auf 50 ml Volumen reduziert. Anschließend wurde die eingeengte MAO-Metallocen-Lösung innerhalb von 4 h bei 25°C langsam zu einer Suspension von 5,0 g des wie oben beschrieben hergestellten MAO-beladenen Kieselgels in 250 ml iso-Dekan zugetropft. Nach 1 h wurde der geträgerte Katalysator durch Filtration isoliert, mit 2 x 20 ml Pentan gewaschen und im N₂-Strom bei 25°C getrocknet. Die Ausbeute betrug 6,4 g.

10.2 Polymerisation

Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 98 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen 850 g Polymergruß, was einer Produktivität von 8150 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

Beispiel 11

10 11.1 Herstellung des Katalysators

20 g Kieselgel SG 332 wurden im Vakuum 8 h bei 180°C partiell dehydratisiert und langsam zu 160 ml 1.53 M MAO (Toluol-lösung) gegeben, so daß die Temperatur nicht über 35°C anstieg. Anschließend wurden innerhalb von 4 h 200 ml n-Dekan zu der Kieselgel-MAO-Toluol Suspension getropft und noch 4 h bei 35°C nachgerührt. Anschließend wurde die überstehende farblose Lösung abfiltriert und der MAO-beladene Träger mit 2 x 50 ml Toluol und anschließend mit 2 x 50 ml Pentan gewaschen. Trocknen im N₂-Strom bei 25°C ergab 27,5 g MAO-beladenes Kieselgel. 5,0 g des so hergestellten MAO-beladenen Kieselgels wurden bei 35°C mit einer Lösung von 288 mg rac-Bis-[3,3'-(2-Methyl-benzo[e]indenyl)]dimethylsilandiylzirkoniumdichlorid in 65 ml 1,53 M MAO (Toluollösung) versetzt. Innerhalb von 4 h wurde 200 ml n-Dekan zugetropft und nach 1 h wurde der geträgerte Katalysator durch Filtration isoliert, mit 2 x 20 ml Pentan gewaschen und im N₂-Strom bei 25°C getrocknet. Die Ausbeute beträgt 5,5 g.

30 11.2 Polymerisation

Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 204 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen 1095 g Polymergruß, was einer Produktivität von 5100 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

Beispiel 12

40 5,0 g MAO-beladenes Trägermaterial gemäß Bsp. 11.1 wurden bei 25°C in einer Lösung von 288 mg rac-Bis-[3,3'-(2-Methyl-benzo[e]indenyl)]dimethylsilandiylzirkoniumdichlorid in 65 ml 1,53 M MAO-Toluol-Lösung (Witco, Toluollösung) suspendiert und 45 nach erfolgter Zugabe tropfenweise mit 100 ml n-Dekan versetzt. Nach einer weiteren Stunde bei 25°C wurde im Hochvakuum bei 35°C das Toluol fraktioniert abdestilliert. Die verbleibende Suspen-

sion wurde filtriert, der Feststoff mit 2 x 20 ml Pentan gewaschen und im N₂-Strom getrocknet. Die Ausbeute betrug 5,8 g.

Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 395 mg 5 geträgerter Katalysator lieferten bei der Polymerisation von Propylen 860 g Polymergriff, was einer Produktivität von 2050 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

10 Beispiel 13

Es wurde analog zu Beispiel 11 verfahren, jedoch wurde anstatt 15 der MAO-Lösung eine Lösung von PMAO, 20 gew.-%ig in Toluol (Hersteller Akzo, Deventer, Niederlande) zur Trägerung des Katalysators eingesetzt. Hierbei wurde jeweils entsprechend weniger 20 % PMAO-Toluollösung eingesetzt, um die gleichen molaren Mengen einzusetzen. Die Ausbeute an geträgertem Katalysator betrug 5,6 g.

20 Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 207 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen 1140 g Polymergriff, was einer Produktivität von 5250 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

25

Beispiel 14

Es wurde analog zu Beispiel 12 verfahren, jedoch wurde der 30 geträgerte Katalysator mit 20 gew.-%iger PMAO (Toluollösung) hergestellt. Hierbei wurde jeweils entsprechend weniger PMAO-Toluollösung eingesetzt, um die gleichen molaren Mengen einzusetzen. Die Ausbeute betrug 5,7 g.

Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 413 mg 35 geträgerter Katalysator lieferten bei der Polymerisation von Propylen 920 g Polymergriff, was einer Produktivität von 2100 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

40 Beispiel 15

Es wurde analog zu Beispiel 13 verfahren, jedoch wurde das Trägermaterial und der geträgerte Katalysator mit einer 30 gew.-%igen MAO-Lösung in Toluol hergestellt. Hierbei wurde je 45 weils entsprechend weniger von dieser MAO-Toluollösung einge-

25

setzt, um die gleichen MAO-Mengen einzusetzen. Die Ausbeute an geträgertem Katalysator betrug 5,5 g.

Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 413 mg 5 geträgerter Katalysator lieferten bei der Polymerisation von Propylen 920 g Polymergriff, was einer Produktivität von 2100 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

10 Beispiel 16

Es wurde analog zu Beispiel 14 verfahren, jedoch wurde das Trägermaterial und der geträgerte Katalysator mit einer 30 gew.-%igen MAO-Toluollösung wie in Bsp. 15 hergestellt. Hier- 15 bei wurde jeweils entsprechend weniger 30 gew.-%ige MAO-Toluollösung eingesetzt, um die gleichen MAO-Mengen einzusetzen. Die Ausbeute an geträgertem Katalysator betrug 5,6 g.

Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 443 mg 20 geträgerter Katalysator lieferten bei der Polymerisation von Propylen 920 g Polymergriff, was einer Produktivität von 1900 g PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind in Tabelle 3 aufgelistet.

25 Beispiel 17

17.1 Herstellung des Katalysators

20 g Aluminiumoxid (ICN Alumina A, Akt. I, ICN-Biomedicals, Eschwege) wurden in 200 ml n-Dekan suspendiert und anschlie- 30 ßend wurde innerhalb von 4 h 160 ml 1,53 M MAO (Witco, Toluollösung) bei 25°C langsam zugetropft. Nach 12 h bei 25°C wurde die überstehende farblose Lösung abfiltriert und der 35 MAO-beladene Träger mit 2 x 50 ml Toluol und anschließend mit 2 x 50 ml Pentan gewaschen. Trocknen im N₂-Strom bei 25°C er- gab 28,9 g MAO-beladenes Aluminiumoxid. 5,0 g des so herge- stellten MAO-beladenen Aluminiumoxids wurden in einer Lösung von 145 mg rac-Bis-[3,3'-(2-Methyl-benzo[e]indenyl)]dimethyl- 40 silandiylzirkoniumdichlorid und 35 ml 1,53 M MAO (Toluol- lösung) suspendiert und innerhalb von 4 h in 5°C Schritten auf 0°C heruntergekühlt. Anschließend wurde bei 0°C 250 ml n- Dekan zugetropft. Nach 1 h wurde der geträgerte Katalysator durch Filtration isoliert, mit 2 x 20 ml Pentan gewaschen und im N₂-Strom bei 25°C getrocknet. Die Ausbeute betrug 5,5 g.

17.2 Polymerisation

In einen trockenen mit Stickstoff gespülten 10 l Autoklaven wurden 50 g Polypropylengrieß vorgelegt. Anschließend wurden 5 nacheinander 4 l flüssiges Propylen, 10 ml Triisobutyl-aluminium (2 M in Heptan) und 504 mg Katalysator über eine Schleuse in den Reaktor gegeben. Bei einer Rührerdrehzahl von 350 U/min wurde bei 25°C der Autoklav mit weiteren 3 l Propylen befüllt. Anschließend wurde schrittweise die 10 Temperatur auf 65°C erhöht, wobei sich der Innendruck auf 26 bar einstellte. Es wurde 60 min bei 65°C polymerisiert und das Polymerisat im Stickstoffstrom ausgetragen. Man erhielt 910 g Polypropylen, was einer Produktivität von 1700 g PP/g 15 Katalysator/h entspricht. Die zugehörigen Polymerdaten sind 15 in Tabelle 3 aufgelistet.

Beispiel 18

Die Herstellung des Trägermaterials erfolgte analog zu Beispiel 6, jedoch wurde das Trägermaterial auf Basis von Aluminium-oxid (ICN Alumina A, Akt. I) und unter Substitution von iso-Dodekan durch n-Dekan hergestellt. 5,0 g so hergestelltes MAO-beladenes Trägermaterial wurde bei 25°C in einer Lösung von 145 ml rac-Bis-[3,3'-(2-Methyl-benzo[e]indenyl)]dimethylsilandiylzirkonium-dichlorid und 35 ml 1,53 M MAO (Toluollösung) suspendiert. Innerhalb von 4 h wurde bei 25°C 250 ml n-Dekan zugetropft. Nach 1 h 20 wurde im Hochvakuum bei 25°C das enthaltene Toluol abdestilliert. Die verbleibende Suspension wurde filtriert, der Feststoff 25 2 x 50 ml Pentan gewaschen und im N₂-Strom getrocknet. Die 30 Ausbeute betrug 5,8 g.

Die Polymerisation wurde analog zu Bsp. 17 durchgeführt. 751 mg geträgerter Katalysator lieferten bei der Polymerisation von Propylen 640 g Polymergrüß, was einer Produktivität von 850 g 35 PP/g Katalysator/h entspricht. Die zugehörigen Polymerdaten sind 35 in Tabelle 3 aufgelistet.

Beispiel 19**40 19.1 Herstellung des Katalysators**

250 g Kieselgel SG 332 wurden im Vakuum 8 h bei 180°C partiell dehydratisiert, in 250 ml iso-Dodekan suspendiert und anschließend innerhalb von 8 h 2 l 1.53 M MAO (Toluollösung) 45 bei 25°C langsam zugetropft. Nach 12 h bei 25°C wurde die überstehende farblose Lösung abfiltriert und der MAO-beladene Träger mit 3 x 1 l Toluol und anschließend mit 2 x 1 l iso-

27

Dodekan gewaschen. Das MAO-beladene Kieselgel wurde in 4,5 l iso-Dodekan resuspendiert und innerhalb von 8 Stunden mit einer Lösung von 11,69 g rac-Bis-[3,3'-(2-Methylbenzo[e]indenyl)]dimethylsilandiylzirkoniumdichlorid in 5 2,63 l 1,53 M MAO (Toluollösung) versetzt. Nach 1,5 h wurde der geträgte Katalysator durch Filtration isoliert, mit 2 x 1 l Pentan gewaschen und im N₂-Strom bei 25°C getrocknet. Die Ausbeute beträgt 385 g.

10 19.2 Polymerisation im kontinuierlichen 200 l-Gasphasenreaktor

Die Polymerisation wurde in einem vertikal durchmischten Gasphasenreaktor mit einem Nutzvolumen von 200 l durchgeführt. Der Reaktor enthielt ein bewegtes Festbett aus feinteiligem 15 Polymerisat. Der Reaktorausstoß betrug in allen Fällen 20 kg Polypropylen pro Stunde.

In den Gasphasenreaktor wurde bei einem Druck von 24 bar und einer Temperatur von 60°C flüssiges Propylen entspannt. Bei 20 einer mittleren Verweilzeit von 2,5 Stunden wurde das beschriebene Katalysatorsystem kontinuierlich polymerisiert. Die Dosierung des Katalysators erfolgte zusammen mit dem zur Druckregelung zugesetzten Propylen. Die zudosierte 25 Katalysatormenge wurde so bemessen, daß der mittlere Ausstoß von 20 kg/h aufrecht erhalten wurde. Ebenfalls zudosiert wurde Triisobutylaluminium in einer Menge von 30 mmol/h als 1 molare Lösung in Heptan. Durch kurzzeitiges Entspannen des Reaktors über ein Tauchrohr wurde sukzessive Polymer aus dem 30 Reaktor entfernt. Die Berechnung der Produktivität erfolgte aus dem Siliciumgehalt der Polymeren nach der folgenden Formel:

$$p = \text{Si-Gehalt des Katalysators/Si-Gehalt des Produkts}$$

35 Die verfahrenstechnischen Parameter und charakteristischen Produkteigenschaften gehen aus Tabelle 4 hervor.

Beispiel 20

40 Die Präparation des Katalysators erfolgte analog zu Beispiel 19 und die Polymerisation im kontinuierlichen 200 l-Gasphasenreaktor wurde analog zu Beispiel 19.2 durchgeführt, wobei als Molekulargewichtsregler Wasserstoff zugesetzt wurde. Die Wasserstoffkonzentration im Reaktionsgas betrug 0,08 Vol.-% und wurde gaschromatographisch ermittelt.

Die verfahrenstechnischen Parameter und charakteristischen Produkteigenschaften gehen aus Tabelle 4 hervor.

Beispiel 21

5

Die Präparation des Katalysators und die Polymerisation im kontinuierlichen 200 l-Gasphasenreaktor erfolgte analog zu Beispiel 20. Die Wasserstoffkonzentration im Reaktionsgas betrug 0,115 Vol.-% und wurde gaschromatographisch ermittelt.

10

Die verfahrenstechnischen Parameter und charakteristischen Produkteigenschaften gehen aus Tabellen 4 hervor.

Beispiel 22

15

22.1 Herstellung des Katalysators

20

10 g sprühgetrocknetes Kieselgel (Teilchendurchmesser: 20 bis 45 µm; spezifische Oberfläche: 325 m²/g; Porenvolumen: 1,50 cm³/g) wurden im Vakuum 8 Stunden lang bei 180°C dehydratisiert, danach in 40 ml Toluol suspendiert und anschließend mit 78 ml 1,53 M Methylalumoxan (Toluollösung) bei 25°C versetzt. Nach 12 Stunden wurde innerhalb von 4 h 150 ml iso-Dodekan langsam zugegeben und weitere 1,5 h bei 25°C gerührt. Anschließend wurde das mit Methylalumoxan desaktivierte Kieselgel abfiltriert, zweimal mit je 20 ml Toluol und zweimal mit je 20 ml Pentan gewaschen und im Stickstoffwirbelstrom getrocknet.

30

Das MAO-beladene Kieselgel wurde zu einer Mischung von 525 mg Bis-[3,3'-(2-Methyl-benzo[e]indenyl)]dimethylsilandiyl-zirkoniumdichlorid und 120 ml 1,53 M Methylalumoxanlösung (in Toluol) gegeben und bei 25°C gerührt. Nach 20 h wurde innerhalb von 4 h 250 ml iso-Dodekan langsam zugegeben und weitere 1,5 h gerührt. Anschließend wurde der Feststoff abfiltriert, zweimal mit je 20 ml Pentan gewaschen und im Stickstoffwirbelstrom getrocknet. Die Ausbeute am geträgernten Katalysator betrug 16,8 g.

35

40

22.2 Polymerisation von Propylen

45

Die Polymerisation wurde analog zu Bsp. 1.2 durchgeführt. 84 mg geträgerter Katalysator lieferten bei der Polymerisation 1100 g Polymergrünes, was einer Produktivität von 12500 g PP/g Katalysator/h entspricht.

Tabelle 1: Eigenschaften erhalten Polymere

	Beispiel 1	Beispiel 2	Beispiel 3	Beispiel 4	Beispiel 5
Schüttdichte [g/l]	427	438	418	385	390
Rieselfähigkeit R 20 [g/sec]	40,5	40,5	41,5	42,0	42,5
Siebanalyse:					
<0,1 mm [%]	0,0	0,1	0,2	0,0	0,0
0,1 mm - 0,5 mm [%]	0,2	0,8	1,5	0,4	0,5
0,25 mm - 0,5 mm [%]	7,0	11,6	4,3	1,4	1,8
0,5 mm - 1,0 mm [%]	72,5	68,5	30,1	14,7	8,7
1,0 mm - 2,0 mm [%]	20,0	18,2	62,9	83,0	88,1
>2,0 mm [%]	0,3	0,8	1,0	0,5	0,9

Tabelle 2: Ergebnisse der Polymerisationsversuche

	Beispiel 1	Beispiel 2	Beispiel 3	Beispiel 4	Beispiel 5
Produktivität [g Polymer/g Katalysator/h]	1 500	2 450	3 700	4 950	5 950
Aktivität [g Polymer/mmol Zr/h]	214 286	180 147	151 639	137 119	123 444
Zr · Gehalt [$\mu\text{mol Zr/g Katalysator}$]	7,0	13,6	24,4	36,1	48,2
Al · Gehalt [Gew.-%]	14,3	14,8	14,9	15,0	16,8
[Al] / [Zr] · Verhältnis	757	403	226	154	129
XL [Gew.-%]*	0,6	0,3	0,3	0,4	0,6
MFI [g/10 min]**	4,4	5,7	4,6	4,7	4,0
Viskosität η [dl/g]	2,28	2,09	2,17	2,17	2,67
Schmelzpkt. (DSC) [°C]	146,7	143,6	146,3	146,3	145,4
M_w [g/mol]	295 027	246 368	276 562	288 197	331 045
M_w/M_n	2,0	1,8	1,7	1,9	1,9

* XL = Xylool-löslicher Anteil nach ISO 1873-1: 1991 (E)

** MFI = Melt Flow Index nach DIN ISO 1133, Methode B bei 230°C/2,16 kg

31

Tabelle 3: Ergebnisse der Polymerisationsversuche

	Beispiel 6	Beispiel 7	Beispiel 8	Beispiel 9	Beispiel 10
Produktivität [g Polymer/g Katalysator/h]	5 050	5 700	5 000	5 300	8 150
XL [Gew.-%]	0,3	0,6	0,4	0,5	0,3
MFI [g/10 min]	5,6	5,8	5,9	3,7	7,2
Viskosität η [dl/g]	2,15	2,14	2,01	2,12	2,14

	Beispiel 11	Beispiel 12	Beispiel 13	Beispiel 14	Beispiel 15
Produktivität [g Polymer/g Katalysator/h]	5 100	2 050	5 200	2 100	4 550
XL [Gew.-%]	0,5	0,3	0,4	0,6	0,1
MFI [g/10 min]	6,1	4,3	5,8	8,93	7,17
Viskosität η [dl/g]	2,13	2,18	2,10	1,93	2,02

	Beispiel 16	Beispiel 17	Beispiel 18	Beispiel 22
Produktivität [g Polymer/g Katalysator/h]	1 900	1 700	850	12500
XL [Gew.-%]	0,8	0,6	0,6	0,4
MFI [g/10 min]	3,6	5,3	5,3	2,9
Viskosität η [dl/g]	2,29	2,12	2,12	2,37

Tabelle 4: Einfluß von Wasserstoff auf die Polymerisation

	Beispiel 19	Beispiel 20	Beispiel 21
p/T [bar/°C]	24/60	24/60	24/60
TIBA* [mmol/h]	30	30	30
H ₂ [Vol %]	0	0,08	0,115
MFI [g/10']	4,8	9,1	21,6
DSC [°C]	146,2	145,9	146,3
eta [gl/g]	2,15	1,81	1,58
XL [%]	0,4	0,5	0,5
Si [ppm]	45,6	30,2	29,2
P [gPP/gKat]	5700	8600	8900
R20* [g/sec]	41,7	45,5	40
Schüttd. [g/l]	353	405	375
d' [mm]	1,34	1,35	1,38
<0,125 mm [%]	0,01	0,04	0,04
<0,25 mm [%]	0,3	0,57	0,6
<0,50 mm [%]	2,22	4,02	4,73
<1,0 mm [%]	35,78	34,16	31,17
<2,0 mm [%]	61,2	58,53	59,75
>2,0 mm [%]	0,49	2,68	3,71

* TIBA = Triisobutylaluminium

* R20 = Rieselfähigkeit nach DIN 53492 (1992), ISO 6186 (1980)

Patentansprüche

1. Verfahren zur Herstellung eines geträgererten Übergangsmetallkatalysators, welcher ein partikuläres organisches oder anorganisches Trägermaterial, einen Übergangsmetallkomplex und eine metalloceniumionen-bildende Verbindung enthält, dadurch gekennzeichnet, daß es die folgenden Verfahrensschritte umfaßt:
- a) Kontaktierung einer Lösung einer metalloceniumionenbildenden Verbindung mit einem zweiten Lösungsmittel, in welchem diese Verbindung nur wenig löslich ist, in Gegenwart des Trägermaterials,
- b) Entfernung zumindest eines Teils der Lösungsmittel vom Trägermaterial und
- c) Kontaktierung einer Lösung eines Gemisches einer metalloceniumionen-bildenden Verbindung und eines Übergangsmetallkomplexes mit einem zweiten Lösungsmittel, in welchem dieses Gemisch nur wenig löslich ist, in Gegenwart des nach a) und b) erhaltenen Trägermaterials.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als metalloceniumionen-bildende Verbindung offenkettige oder cyclische Alumoxanverbindungen der allgemeinen Formel I oder II

40 wobei R^1 eine C_1 - bis C_4 -Alkylgruppe bedeutet und m für eine ganze Zahl von 5 bis 30 steht, eingesetzt werden.

3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß als Übergangsmetallkomplexe Metallocenkomplexe von Elementen der 4. und 5. Nebengruppe des Periodensystems eingesetzt werden.

4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß als Übergangsmetallkomplexe solche mit Benzindenyl-liganden eingesetzt werden.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Übergangsmetallkomplexe zwei miteinander verbrückte aromatische Ringsysteme als Liganden enthalten.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß im Verfahrensschritt b) zumindest ein Teil der Lösungsmittel durch Filtration des Trägermaterials entfernt wird.
7. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß im Verfahrensschritt b) zumindest ein Teil der Lösungsmittel durch Destillation entfernt wird.
8. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß das Trägermaterial vor dem Verfahrensschritt c) mit einem Lösungsmittel, in welchem die metalloceniumionenbildende Verbindung gut löslich ist, gewaschen wird.
9. Geträgerter Katalysator erhältlich nach einem Verfahren gemäß den Ansprüchen 1 bis 8.
10. Verfahren zur Herstellung von Polymerisaten von C₂-C₁₂-Alk-1-enen bei Temperaturen im Bereich von -50 bis 300°C und Drücken von 0,5 bis 3000 bar in Gegenwart eines Katalysators gemäß Anspruch 9.
11. Verwendung der gemäß Anspruch 10 erhaltenen Polymerivate zur Herstellung von Fasern, Folien und Formkörpern.

35

40

45

Verfahren zur Herstellung von geträgererten Übergangsmetallkatalysatoren

5 Zusammenfassung

Verfahren zur Herstellung eines geträgererten Übergangsmetallkatalysators, welcher ein partikuläres organisches oder anorganisches Trägermaterial, einen Übergangsmetallkomplex und eine metalloceniumionen-bildende Verbindung enthält, dadurch gekennzeichnet, daß es die folgenden Verfahrensschritte umfaßt:

- a) Kontaktierung einer Lösung einer metalloceniumionenbildenden Verbindung mit einem zweiten Lösungsmittel, in welchem diese Verbindung nur wenig löslich ist, in Gegenwart des Trägermaterials,
- b) Entfernung zumindest eines Teils der Lösungsmittel vom Trägermaterial und
- c) Kontaktierung einer Lösung eines Gemisches einer metalloceniumionen-bildenden Verbindung und eines Übergangsmetallkomplexes mit einem zweiten Lösungsmittel, in welchem dieses Gemisch nur wenig löslich ist, in Gegenwart des nach a) und b) erhaltenen Trägermaterials.

30

35

40

45

INTERNATIONAL SEARCH REPORT

Internal Application No
PCT/EP 97/03132

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C08F4/602 C08F10/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 94 07928 A (THE DOW CHEMICAL) 14 April 1994 see claim 1 see page 41; examples 4,5 ---	1-3,9,10
A	US 5 470 993 A (DEVORE DAVID D.) 28 November 1995 see column 35; example 32 ---	1-3,9,10
A	EP 0 685 494 A (PCD-POLYMERE GESELLSCHAFT) 6 December 1995 siehe Vergleichbeispiele I-III, Seite 11 ---	1-3,5,9, 10
A	US 5 057 475 A (CANICH JO ANN M.) 15 October 1991 see column 19 - column 20; example 1 see column 21; example 6 -----	1,3,9,10

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

1

Date of the actual completion of the international search	Date of mailing of the international search report
24 September 1997	14.10.97
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+ 31-70) 340-3016	Authorized officer Fischer, B

INTERNATIONAL SEARCH REPORT

Interna. J Application No

PCT/EP 97/03132

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9407928 A	14-04-94	CA 2146012 A DE 69312306 D EP 0662979 A FI 951548 A JP 8502093 T NO 951267 A	14-04-94 21-08-97 19-07-95 29-05-95 05-03-96 31-05-95
US 5470993 A	28-11-95	AT 147748 T AU 681678 B AU 7111194 A BR 9407034 A CN 1125951 A CZ 9503438 A DE 69401509 D DE 69401509 T EP 0705269 A ES 2096475 T FI 956244 A HU 74312 A JP 8511804 T NO 955290 A PL 312274 A WO 9500526 A US 5624878 A US 5556928 A ZA 9404510 A	15-02-97 04-09-97 17-01-95 19-03-96 03-07-96 12-06-96 27-02-97 17-07-97 10-04-96 01-03-97 15-02-96 30-12-96 10-12-96 23-02-96 15-04-96 05-01-95 29-04-97 17-09-96 27-12-95
EP 685494 A	06-12-95	BR 9502617 A CA 2150890 A CN 1120550 A CZ 9501429 A FI 952640 A HU 73069 A JP 8048712 A NO 952191 A SK 73495 A	05-03-96 04-12-95 17-04-96 13-12-95 04-12-95 28-06-96 20-02-96 04-12-95 06-12-95
US 5057475 A	15-10-91	AT 132507 T AU 656498 B AU 8651891 A	15-01-96 02-02-95 15-04-92

INTERNATIONAL SEARCH REPORT

Internal Application No

PCT/EP 97/03132

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5057475 A		CA 2090972 A	14-03-92
		DE 69116157 D	15-02-96
		DE 69116157 T	02-05-96
		EP 0548257 A	30-06-93
		ES 2082233 T	16-03-96
		JP 6501037 T	27-01-94
		WO 9205203 A	02-04-92
		US 5227440 A	13-07-93
		AT 141275 T	15-08-96
		AT 151429 T	15-04-97
		AU 6248390 A	21-03-91
		AU 643237 B	11-11-93
		AU 6443990 A	18-04-91
		CA 2024899 A	14-03-91
		CA 2065745 A	14-03-91
		DE 69028057 D	19-09-96
		DE 69030442 D	15-05-97
		DE 420436 T	15-02-96
		DE 662484 T	27-06-96
		EP 0420436 A	03-04-91
		EP 0491842 A	01-07-92
		EP 0662484 A	12-07-95
		EP 0671404 A	13-09-95
		EP 0643066 A	15-03-95
		ES 2091801 T	16-11-96
		ES 2079332 T	16-01-96
		JP 3188092 A	16-08-91
		NO 178891 B	18-03-96
		NO 178895 B	18-03-96
		NO 953466 A	14-03-91
		RU 2067981 C	20-10-96
		WO 9104257 A	04-04-91
		US 5631391 A	20-05-97
		US 5621126 A	15-04-97
		US 5420217 A	30-05-95
		US 5547675 A	20-08-96
		US 5504169 A	02-04-96
		US 5055438 A	08-10-91
		US 5026798 A	25-06-91
		US 5168111 A	01-12-92

INTERNATIONAL SEARCH REPORTInternal Application No
PCT/EP 97/03132

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5057475 A		US 5264405 A	23-11-93

INTERNATIONALER RECHERCHENBERICHT

Internat. Aktenzeichen
PCT/EP 97/03132

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 C08F4/602 C08F10/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)
IPK 6 C08F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 94 07928 A (THE DOW CHEMICAL) 14.April 1994 siehe Anspruch 1 siehe Seite 41; Beispiele 4,5 ---	1-3,9,10
A	US 5 470 993 A (DEVORE DAVID D.) 28.November 1995 siehe Spalte 35; Beispiel 32 ---	1-3,9,10
A	EP 0 685 494 A (PCD-POLYMERE GESELLSCHAFT) 6.Dezember 1995 siehe Vergleichbeispiele I-III, Seite 11 ---	1-3,5,9, 10
A	US 5 057 475 A (CANICH JO ANN M.) 15.Oktober 1991 siehe Spalte 19 - Spalte 20; Beispiel 1 siehe Spalte 21; Beispiel 6 -----	1,3,9,10

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen.

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *'A' Veröffentlichung, die den allgemeinen Stand der Technik definieren, aber nicht als besonders bedeutsam anzusehen ist
- *'E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- *'T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipiell oder der ihr zugrundeliegenden Theorie angegeben ist
- *'Y' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- *'V' Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *'&' Veröffentlichung, die Mitglied derselben Patentfamilie ist

1

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
24.September 1997	14.10.97
Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Bevollmächtigter Bediensteter Fischer, B

INTERNATIONALER RECHERCHENBERICHT

Intern. als Aktenzeichen

PCT/EP 97/03132

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9407928 A	14-04-94	CA 2146012 A DE 69312306 D EP 0662979 A FI 951548 A JP 8502093 T NO 951267 A	14-04-94 21-08-97 19-07-95 29-05-95 05-03-96 31-05-95
US 5470993 A	28-11-95	AT 147748 T AU 681678 B AU 7111194 A BR 9407034 A CN 1125951 A CZ 9503438 A DE 69401509 D DE 69401509 T EP 0705269 A ES 2096475 T FI 956244 A HU 74312 A JP 8511804 T NO 955290 A PL 312274 A WO 9500526 A US 5624878 A US 5556928 A ZA 9404510 A	15-02-97 04-09-97 17-01-95 19-03-96 03-07-96 12-06-96 27-02-97 17-07-97 10-04-96 01-03-97 15-02-96 30-12-96 10-12-96 23-02-96 15-04-96 05-01-95 29-04-97 17-09-96 27-12-95
EP 685494 A	06-12-95	BR 9502617 A CA 2150890 A CN 1120550 A CZ 9501429 A FI 952640 A HU 73069 A JP 8048712 A NO 952191 A SK 73495 A	05-03-96 04-12-95 17-04-96 13-12-95 04-12-95 28-06-96 20-02-96 04-12-95 06-12-95
US 5057475 A	15-10-91	AT 132507 T AU 656498 B AU 8651891 A	15-01-96 02-02-95 15-04-92

INTERNATIONALER RECHERCHENBERICHT

Internat. des Aktenzeichen

PCT/EP 97/03132

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5057475 A		CA 2090972 A	14-03-92
		DE 69116157 D	15-02-96
		DE 69116157 T	02-05-96
		EP 0548257 A	30-06-93
		ES 2082233 T	16-03-96
		JP 6501037 T	27-01-94
		WO 9205203 A	02-04-92
		US 5227440 A	13-07-93
		AT 141275 T	15-08-96
		AT 151429 T	15-04-97
		AU 6248390 A	21-03-91
		AU 643237 B	11-11-93
		AU 6443990 A	18-04-91
		CA 2024899 A	14-03-91
		CA 2065745 A	14-03-91
		DE 69028057 D	19-09-96
		DE 69030442 D	15-05-97
		DE 420436 T	15-02-96
		DE 662484 T	27-06-96
		EP 0420436 A	03-04-91
		EP 0491842 A	01-07-92
		EP 0662484 A	12-07-95
		EP 0671404 A	13-09-95
		EP 0643066 A	15-03-95
		ES 2091801 T	16-11-96
		ES 2079332 T	16-01-96
		JP 3188092 A	16-08-91
		NO 178891 B	18-03-96
		NO 178895 B	18-03-96
		NO 953466 A	14-03-91
		RU 2067981 C	20-10-96
		WO 9104257 A	04-04-91
		US 5631391 A	20-05-97
		US 5621126 A	15-04-97
		US 5420217 A	30-05-95
		US 5547675 A	20-08-96
		US 5504169 A	02-04-96
		US 5055438 A	08-10-91
		US 5026798 A	25-06-91
		US 5168111 A	01-12-92

INTERNATIONALER RECHERCHENBERICHTInternat. Aktenzeichen
PCT/EP 97/03132

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
US 5057475 A		US 5264405 A	23-11-93

THIS PAGE BLANK (USPTO)