OneHotkey -- Math Formula Input Simplification Tool

This is a script that simplifies math formula inputs in OneNote, word and PowerPoint with AutoHotKey script, e.g., \a for α (\a 1pha).

Demonstration video (Early version):

• AutoHotKey增强OneNote公式输入测试1哔哩哔哩 bilibili

This project is still updating. Your suggestions and contributions are welcome.

If the formulas aren't displayed correctly, go to **README EN.pdf**.

How to Use

- 1. Download and run OneNote.exe.
- 2. Input the code of the symbol, then press Space to get the symbol. For example, input \a and press Space to get α .
- 3. For editting the symbol mapping, please refer to <u>Code Editing Guide</u>. If you need help, go to the AutoHotKey official website.
- 4. To stop the script, right click the H icon in the system tray and select Exit.

Table of Contents

- OneHotkey -- Math Formula Input Simplification Tool
 - How to Use
 - Table of Contents
 - Symbol Mapping
 - Overview
 - Full Table
 - Frequently Used Letters
 - Operators
 - Greek Letters
 - Matrix
 - Modifiers
 - Arrows
 - Symbols
 - Structures
 - Prefix for Fancy Letters
 - Multi-column Equations
 - Recommendations

- Experimental Features In folder experimental/
- Code Editing Guide

Symbol Mapping

Overview

The script contains multiple symbol mappings, including Greek letters, math fonts, frequently used letters, and structures. The following is a list of some typical mappings. Make sure that you have entered the formula input mode with Alt +=.

Code	Output	Category	Source
\a	α	lowercase Greek letters	\alpha
\D	Δ	uppercase Greek letters	\Delta
\R, \C, \Z, \N, \J	R, C, Z, N, J	frequently used letters	\doubleR,
\do X, \sc X, \fr X	\mathbb{X} , \mathcal{X} , \mathfrak{X}	fancy letter forms	\doublex,\\scriptX, \frakturX
\m3, \m4,	specific shape matrices	matrices	[\matrix(@@&&)],
x\h, x\~, x\d2	\hat{x} , \tilde{x} , \ddot{x}	modifiers	\hat,\tilde,\\ddot
\x, \x, \sq, \pa, \eq	\cdot , \times , $\sqrt{\square}$, \parallel , \equiv	operators	<pre>\cdot, \times, \sqrt, \parallel, \equiv</pre>
\pd, \di, \dt, \inf	∂ , d, $\frac{\mathrm{d}}{\mathrm{d}t}$, ∞	frequently used symbols	\partial, "d", "d" /"d" t, \infty
\limx,\limx0	$\lim_{x o\infty}$, $\lim_{x o 0}$	limits	<pre>lim_(x->\infty), lim_(x->0)</pre>
\1s	$\Box P$	left super-and-lowerscript	Λ_ P
\i,\j,\k	i, j, k	imaginary/quaternion symbols	"i", "j", "k"
\ejw	$e^{j\omega}$	complex exponential factor	e^j\omega

You shall notice that (space) is commonly used, which is the key feature of OneNote formula input.

Full Table

Frequently Used Letters

Code	Output	Source	Code	Output	Source
\pd	∂	\partial{Space}	\di	d	"d"
\inf	∞	\infty{Space}	\dt	$\frac{\mathrm{d}}{\mathrm{d}t}$	"d"{Space}/"d"{Space}t{Space}
\R	\mathbb{R}	\doubleR{Space}	E	$\mathbb{E}[]$	\doubleE{Space}[]{Space}{Left}
\Q	Q	\doubleQ{Space}	\Z	\mathbb{Z}	\doubleZ{Space}
\N	N	\doubleN{Space}	\c	C	\doubleC{Space}
/3	J	\doubleJ{Space}			

Operators

Code	Output	Source	Code	Output	Source
\x		\cdot{Space}	\X	×	\times{Space}
\sq	$\sqrt{\square}$	\sqrt{Space 2} {Left}	\pa		\parallel{Space}
\ss	\subset	\subset{Space}	\sse	\subseteq	\subseteq{Space}
\op	\oplus	\oplus{Space}	\ox	\otimes	\otimes{Space}
\od	•	\odot{Space}	\dd	·	\ddots{Space}
\cd		\cdots{Space}	\vd	:	\vdots{Space}
\map	\mapsto	\mapsto{Space}	\pro	\propto	\propto{Space}
\as	::	\because{Space}	\so		\therefore{Space}
\eq	≡	\equiv{Space}	\xe	×10 [□]	<pre>\times{Space}10{^}{Space} {Left}</pre>

Greek Letters

Code	Output	Source	Code	Output	Source
\a	α	\alpha{Space}	\b	β	\beta{Space}
\e	ε	\varepsilon{Space}	\ve	ϵ	\epsilon{Space}
\d	δ	\delta{Space}	\D	Δ	\Delta{Space}

Code	Output	Source	Code	Output	Source
\s	σ	\sigma{Space}	\s	Σ	\Sigma{Space}
\1	λ	\lambda{Space}	\L	Λ	\Lambda{Space}
\t	θ	\theta{Space}	\T	Θ	\Theta{Space}
\p	ϕ	\phi{Space}	\P	Φ	\Phi{Space}
\0	ω	\omega{Space}	\0	Ω	\Omega{Space}
\g	γ	\gamma{Space}	\G	Г	\Gamma{Space}

• ve means variant epsilon. For convenience, $\ensuremath{\setminus} e$ is set to $\ensuremath{\varepsilon}$ and $\ensuremath{\setminus} ve$ is set to $\ensuremath{\varepsilon}$, which is different from their original code.

Matrix

Code	Output	Source
\m4	4 by 4 empty matrix	[\matrix(@@@&&&){Space}]{Space}
\m3	3 by 3 empty matrix	[\matrix(@@&&){Space}]{Space}
\m2	2 by 2 empty matrix	[\matrix(@&){Space}]{Space}
\m	empty matrix awaiting & @ to set size.	[]{Space}{Left}\matrix(){Left}

Modifiers

Code	Output	Source
\d1	\dot{x}	\dot{Space 2}
\d2	\ddot{x}	\ddot{Space 2}
\d3	3 dots above	\dddot{Space 2}
\d4)	4 dots above	\ddddot{Space 2}
\~	$ ilde{x}$	\tilde{Space 2}
\v	$ec{x}$	\vec{Space 2}
\h	\hat{x}	\hat{Space 2}
\ub	\underline{x}	\underbar{Space 2}{Left}

Arrows

Code	Output	Source	Code	Output	Source
\1r	\leftrightarrow	\leftrightarrow{Space}	\1rs	$\stackrel{\longleftarrow}{\longrightarrow}$	\leftrightarrows{Enter}{Left}
\1a	←	\leftarrow{Space}	\La	=	\Leftarrow{Space}
\ra	\rightarrow	\rightarrow{Space}	\Ra	\Rightarrow	\Rightarrow{Space}
\down	↓	\downarrow{Space}	\up	†	\uparrow{Space}
\u1	_	\nwarrow{Space}	\ur	7	\nearrow{Space}
\d1	V	\swarrow{Space}	\dr	\searrow	\searrow{Space}

Symbols

Code	Output	Source	Code	Output	Source
\de	0	\degree{Space}	\st	*	\star{Space}

Structures

Code	Output	Source
\r	{□	\right.{Left}
\1eb	□}	<pre>\left\box{Space 2}{Left}</pre>
\ceil		<pre>\lceil{Space}\rceil{Space 2}{Left}</pre>
\floor		\lfloor{Space}\rfloor{Space 2}{Left}
\brak	⟨□⟩	\bra{Space}\ket{Space 2}{Left}
\1s	$\Box P$	^_ P {Left 4}
(\ab)	<u> </u>	\above{Space 2}
\be		\below{Space 2}
\fu	myfunction	\funcapply
\Norm		<pre>\norm{Space}\norm{Space 2}{Left}</pre>
\limx, \limx0	$\lim_{x o\infty}$, $\lim_{x o0}$	<pre>lim_(x->\infty{Space}){Space}, lim_(x->0{Space}){Space}</pre>
\limt, \limt0	$\lim_{t o\infty}$, $\lim_{t o0}$	<pre>lim_(t->\infty{Space}){Space}, lim_(t->0{Space}){Space}</pre>
(limn, (limk)	$\lim_{n o\infty}$, $\lim_{k o\infty}$	<pre>lim_(n->\infty{Space}){Space}, lim_(k->\infty{Space}) {Space}</pre>

Code	Output	Source
\1imh	$\lim_{h o 0}$	<pre>lim_(h->0{Space}){Space}</pre>

• \funcapply is a little different from \of. Have a try by yourself!

Prefix for Fancy Letters

Code	Output	Source
\sc	\mathcal{X}	\script
\do	X	\double
\fr	\mathfrak{X}	\fraktur

• For these mappings, your input should be like \sc X.

Multi-column Equations

Code	Output	Source
\eq2	Two-column equation	\eqarray(&=@&=){Space}{Left 6}
\eq3	Three-column equation	\eqarray(&=@&=@&=){Space}{Left 9}
\eq4	Four-column equation	\eqarray(&=@&=@&=){Space}{Left 12}
\eq5	Five-column equation	\eqarray(&=@&=@&=@&=){Space}{Left 15}

Note: Multi-column equations are used for aligning multiple equations, using @ as placeholder and & as alignment point.

Recommendations

- Learn more about the math input from this document: <u>UTN28-PlainTextMath-v3.pdf</u>. Page 39~47 is useful.
- Input Unicode characters directly: https://github.com/gtj1/symbol assist
- Intuitive Vim-like text cursor control: https://github.com/RUSRUSHB/AutoTextCursor

Experimental Features (In folder experimental/)

key_combination.exe

- Use key combinations to input special characters and structures
- Contains: Start formula inputting; Division line; Boxed text; Text block

rus_hotkey.exe

- Input Russian alphabets. They can be integrated into formula inputting.
- Format: \ +Romanized Alphabet+ R

• e.g., \dR generates д, \DR generates Д

Code Editing Guide

For editing the mapping, please: Edit symbol_assist.ahk, compile it with Ahk2Exe, and run the compiled .exe file. You are recommended to learn more about AutoHotKey from its website.

The code of symbol_assist_oneNote.ahk is very easy to understand, even if you have not learnt about AutoHotKey. For newcomers, the explanation of the code is as follows:

Each line of the code is a mapping of the input code to the output symbol. The format is : (parameters):input::output. For example, ::\a::\alpha means that when you input \a|, the script will output \alpha.

I added some parameters co?:

Parameter	Meaning	
С	Case-sensitive. \a and \a are different.	
0	Delete the Space you entered at the end.	
?	Output formula even if you have typed something before the code. Otherwise, it will fail in cases like x\h	