Bootcamp : Physics

Baptiste Rouger

September 9, 2016

carles.blanch-mercader@curie.fr

Contents

Ι	Brownian motion	2
1	Historical aspects:	2
2	Random-walk	2

Part I

Brownian motion

Diffusion give rise to *material transport*. It gives a quantitative understanding of many phenomenon (permeability...).

1 Historical aspects:

1834: Clapeyron proposed a phenomenological equation for the ideal gas : PV = nRT, $PV = N.K_B.T$ (N : number of particules, K_B Boltzman constant $1.38 \times 10^{-23} \frac{kg.m}{K_s^2}$)

1828: Brown: studied pollen that was moving

1905: Einstein: $\langle x^2 \rangle = 2DT$ (D: diffusion coefficient)

1908: Perrin: confirmed the Einstein guess

2 Random-walk

Simplest model that describes Brownian motion. A particle has the same probability to move to the right and to the left. After two jumps, there is one way to $2(\frac{1}{4})$ and $-2(\frac{1}{4})$, and 2 ways to $0(\frac{1}{2})$.

$$\langle a \rangle = \frac{1}{m} \sum_{i=1}^{m} a_i = \sum_{i=1}^{m} p_i a_i$$

$$\langle a^2 \rangle = \frac{1}{m} \sum_{i=1}^m a_i^2$$

 $\langle a \rangle$ the average position, with m the number of realisations, i the i-th realisation and a_i the i-th realisation. In our example : $\langle a \rangle = \frac{1}{4}(2+-2+0+0) = 0$ and $\langle a^2 \rangle = \frac{1}{4}(2^2+-2^2+0^2+0^2) = 2$

In the 3 jumps case:

- 1 way to 3
- 1 way to -3
- 3 ways to 1
- 3 ways to -1

$$\langle a \rangle = \frac{1}{8}(3 + -3 + 3 \times 1 + 3 \times -1) = 0$$
 and $\langle a^2 \rangle = \frac{1}{8}(3^2 + -3^2 + (3 \times 1)^2 + (3 \times -1)^2) = 3$

$$N - jumps = \langle a \rangle = 0$$
 and $\langle a^2 \rangle = N$

If N is large enough, distribution of position is a binomial distribution.

If we say that the boxes have a l length, then $x = a \times l$, t_0 is the time delay between successive jumps. So $\frac{t}{t_0} = N$

$$\langle x \rangle = \langle a \rangle l = 0$$

$$\langle x^2 \rangle = \langle a^2 \rangle l^2$$

$$= l^2 N$$

$$= t \frac{l^2}{t_0}$$

$$= 2t \frac{l^2}{2t_0}$$

$$So D = \frac{l^2}{2t_0}$$

Example:

- $D = 100 \mu m^2/s$
- $l_{bacteria} = 1 \mu m$
- $l_{cell} = 20 \mu m$
- $l_{arm} = 1m$

$$t_{bacteria} = \frac{l^2}{2D} = \frac{(1\mu m)^2}{2(100\mu m^2/s)} = 5ms$$

$$t_{cell} = \frac{l^2}{2D} = \frac{(20\mu m)^2}{2(100\mu m^2/s)} = 2s$$

$$t_{arm} = \frac{l^2}{2D} = \frac{(1m)^2}{2(100\mu m^2/s)} = 300years$$