

6. GRAPH ALGORITHMS HANDBOOK

Data Structures and Algorithms [19ECSC201]

PRAKASH HEGADE

SOCSE, KLE TU, Hubballi-31

CONTENTS

- 1. Dijkstra's Algorithm
- 2. Floyd's Algorithm
- 3. Warshall's Algorithm
- 4. Kruskal's Algorithm
- 5. Prim's Algorithm
- 6. Bellman-Ford Algorithm

Note: Bellman-Ford is referenced from CLRS and others from Levitin text book.

1. Dijkstra's Algorithm

```
ALGORITHM Dijkstra(G, s)
// Dijkstra's algorithm for single source shortest path
// Input: A weighted connected graph G(V, E) with non-negative weights and its vertex s
// Output: the length d_v of a shortest path from s to v and its penultimate vertex p_v for
             every vertex v in V
Initialize(Q) // Initialize vertex priority queue to empty
for every vertex v in V do
  d_v \leftarrow \infty
  p_v \leftarrow null
  Insert (Q, v, d_v)
                         // Initialize vertex priority in priority queue
d_s \leftarrow 0
Decrease (Q, s, d<sub>s</sub>) // Update priority of s with d<sub>s</sub>
V_T \leftarrow \emptyset
for i \leftarrow 0 to |V| - 1 do
  u^* \leftarrow DeleteMin(Q)
  V_T = V_T U \{u^*\}
  for every vertex u in V – V<sub>T</sub> that is adjacent to u* do
     if d_{u^*} + w(u^*, u) < d_u
        d_u \leftarrow d_{u^*} + w(u^*, u)
        p_u \leftarrow u^*
        Decrease (Q, u, d<sub>u</sub>)
```

Intuition:

Example: Find the shortest path form vertex c to all other vertices.

Vertices Mapping: {a:0, b:1, c:2, d:3, e:4}

cost [5][5] =

	0	1	2	3	4
0					
1					
2					
3					
4					

Initialization:

$$V - S = \{ 0, 1, 3, 4 \}$$

dist	
0	
1	
2	
3	
4	

path

0	
1	
2	
3	
4	

Iteration 01:

u =

S =

S = V - S =

	path
_	

0	
1	
2	
3	
4	

Iteration 02:

u =

dist

	p	ath
0		

0	
1	
2	
3	
4	

Working Space:

DSA – Graphs Handbook

Iteration 03:

u =	S =
dist[u] =	V – S =

dist	
0	
1	
2	
3	
4	

path		
0		
1		
2		
3		
4		

Iteration 04:

u =		S =
dist[u] =		V – S =
dict	nath	

dist	
0	
1	
2	
3	
4	

path						
0						
1						
2						
3						
4						

Trace the path from vertex 2 to vertex 4:

Design Technique:

2. Floyd's Algorithm

Intuition:

```
ALGORITHM Floyd (W[1..n,1..n])

// Implements Floyd's algorithm for all pair shortest path problem

// Input: The weight matrix W of the graph with no negative length cycle

// Output: The distance matrix of the shortest path's lengths

D ← W

for k ← 1 to n do

for i ← 1 to n do

for j ← 1 to n do

D [i, j] ← min {D[i, j], D[i, k] +D[k, j]}

return D
```

Example: Apply Floyd's algorithm on the given graph:

$$D^{(1)} = D^{(2)} =$$

$$D^{(3)} = D^{(4)} =$$

Design Technique:

3. Warshall's Algorithm Intuition:

```
ALGORITHM Warshall (A[1..n,1..n])

// Implements Warshall's algorithm for computing transitive closure

// Input: The adjacency matrix A of a diagraph with n vertices

// Output: The transitive closure of the diagraph

R^{(o)} \leftarrow A

for k \leftarrow 1 to n do

for i \leftarrow 1 to n do

for j \leftarrow 1 to n do

R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] or (R^{(k-1)}[i,k] and R^{(k-1)}[k,j])

return R^{(n)}
```

Example:

R^(o) =

 $R^{(1)} =$

 $R^{(2)} =$

 $R^{(3)} =$

 $R^{(4)} =$

Design Technique:

4. Kruskal's Algorithm

ALGORITHM Kruskal(G)

// Kruskal's algorithm to construct a minimum spanning tree

// Input: A weighted connected graph G(V, E)

// Output: E_T, the set of edges composing of MST of G

sort E in nondecreasing order of the edge weights $w(e_{i1}) \le ... \le w(e_{i|E|})$

 $E_T \leftarrow \emptyset$

ecounter $\leftarrow 0$

 $k \leftarrow 0$

while ecounter < |V| - 1 do

 $k \leftarrow k + 1$

if E_T U {e_{ik}} is acyclic

 $E_T \leftarrow E_T \cup \{e_{ik}\}$

ecounter ←ecounter + 1

return E_⊤

Disjoint-Set:

For the given array, perform the said union operations:

0	1	2	3	4	5	6	7	8
				4				

Union (3, 4)

0	1	2	3	4	5	6	7	8

Union (1, 4)

0	1	2	3	4	5	6	7	8

Union (3, 7)

0	1	2	3	4	5	6	7	8

Union (6, 8)

0	1	2	3	4	5	6	7	8

Union (6, 5)

0	1	2	3	4	5	6	7	8

DSA – Graphs Handbook

Example:

Sorted Edges:

- 1. 2. 3. 4.
- 5. 6. 7. 8.
- 9. 10. 11.

steps	(u, v)	i=find(u) j=find(v)	output	Union(i, j)						
		j=find(v)		0	1	2	3	4	5	6
init										
1										
2										
3										
4										
5										
6										
7										
8										
9										

Design Technique:

5. Prim's Algorithm

ALGORITHM Prim(G)

// Prim's algorithm to construct a minimum spanning tree

// Input: A weighted connected graph G(V, E)

// Output: E_T, the set of edges composing of MST of G

 $V_T \leftarrow \{v_o\}$

 $E_T \leftarrow \emptyset$

for i \leftarrow 1 to |V| - 1 do

find a minimum weight edge $e^* = (v^*, u^*)$ along all the edges (v, u) such that v is in V_T and u is in $V - V_T$

 $V_T \leftarrow V_T \cup \{u^*\}$

 $E_T \leftarrow E_T \cup \{e^*\}$

return E_T

Intuition:

Example:

cost[][] =

	0	1	2	3	4	5	6
0							
1							
2							
3							
4							
5							
6							

Initialization: Step o

	-
dist	path

	aisc	Putil
0		
1		
2		
3		
4		
5		
6		

Initialization: Step 1

	aisc	Putil
0		
1		
2		
3		
4		
5		
6		

$$V - S =$$

Initialization: Step 2

dist	path
uist	Dati

	aist	patn
0		
1		
2		
3		
4		
5		
6		

$$V - S =$$

Initialization: Step 3

dist path

	uist	Patri
0		
1		
2		
3		
4		
5		
6		

$$V - S =$$

Initialization: Step 4

dist path

0	
1	
2	
3	
4	
5	
6	

$$V - S =$$

Initialization: Step 5

	dist	path
0		
1		
2		
3		
4		
5		

S =
V - S =
u =
dist[u] =
output =

Initialization: Step 6

	dist	path
0		
1		
2		
3		
4		
5		
6		

S	=		
٧	_	S	=

Cost of MST is _____

Design Technique:

6. Bellman Ford Algorithm

$$\begin{array}{l} d[s] \leftarrow 0 \\ \textbf{for } \operatorname{each} v \in V - \{s\} \\ \textbf{do } d[v] \leftarrow \infty \end{array} \end{array} \quad \text{initialization}$$

$$\begin{array}{l} \textbf{for } i \leftarrow 1 \ \textbf{to} \ |V| - 1 \\ \textbf{do for } \operatorname{each} \operatorname{edge} (u, v) \in E \\ \textbf{do if } d[v] > d[u] + w(u, v) \\ \textbf{then } d[v] \leftarrow d[u] + w(u, v) \end{array} \right\} \quad \begin{array}{l} \textbf{relaxation} \\ \textbf{step} \end{array}$$

$$\begin{array}{l} \textbf{for } \operatorname{each} \operatorname{edge} (u, v) \in E \\ \textbf{do if } d[v] > d[u] + w(u, v) \\ \textbf{then } \operatorname{report} \operatorname{that} \operatorname{a negative-weight} \operatorname{cycle} \operatorname{exists} \end{array}$$
 At the end, $d[v] = \delta(s, v)$, if no negative-weight cycles.

Example:

Edge List: (B, E), (D, B), (B, D), (A, B), (A, C), (D, C), (B, C), (E, D).

Iteration 01:

0 A 3 1 2 E ∞

Iteration 02:

Iteration 03:

Design Technique:

