ISBN 07729-0010-8

NANTICOKE ENVIRONMENTAL MANAGEMENT PROGRAM

ANALYSIS OF O₃ EXCEEDANCE EPISODES IN THE HALDIMAND-NORFOLK REGION FOR 1979-1983

REPORT NO. ARB-005-85-ARSP January, 1985 Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

NANTIGOKE

ENVIRONMENTAL

MANAGEMENT

PROGRAM

880 Bay St., Toronto, Ontario M5S 1Z8 Phone: (416) 965-4081 NEMP Co-Ordinator — Dr. M. Lusis

ISBN 07729-0010-8

NANTICOKE ENVIRONMENTAL MANAGEMENT PROGRAM

ANALYSIS OF O₃ EXCEEDANCE EPISODES IN THE HALDIMAND-NORFOLK REGION FOR 1979-1983

REPORT NO. ARB-005-85-ARSP January, 1985

Table of Contents

			Page				
	List	of Tables	i				
	List of Figures						
	Ackn	owledgements	iv				
1.0	Intro	Introduction					
2.0	Seaso	Seasonal, Daily and Directional Influences					
	on El	evated Ozone Levels in the Haldimand-Norfolk Region					
3.0	Ozone Episode Analysis						
	3.1	Statistics on Ozone Episodes and	3				
		Associated Meteorological Conditions					
	3.2	Ozone Episodes and High Pressure Systems	4				
	3.3	Ozone Episodes Associated With Lake Breeze Influence	5				
	3.4	Ozone Episodes Observed With Frontal Activity	6				
	3.5	Ozone and Northerly Flows	8				
4.0	Summary						
	References						
	Tables						
	Figures						
	Appendix: Ozone Episode Data Summary by Station						

List of Tables

Table No	•	Pag
1	Ozone Episodes by Month and Year - 1979 to 1983	11
2	Frequency of the Number of Hours that Ozone Exceeded	11
	80 ppb on Episode Days	

List of Figures

		Page						
Figure !	No.							
1	Ozone Monitoring Network in the Haldimand-Norfolk							
	Region							
2	Distribution of Hourly Ozone Exceedances	13						
	by Year and Station.							
3.	Hourly Averaged Ozone Concentrations for the	14						
	Summer Months of 1980.							
4.	Diurnal Trend in Ozone Exceedances and Air Temperature							
5.	Concentration Rose for Hourly Ozone Exceedances	16						
6.	Frequency Distribution of Hourly Wind Direction	17						
	for Hourly Ozone Exceedances during Peak Ozone							
	Daylight Hours (1300 to 1900 EST)							
7	Frequency Distribution of Hourly Wind Speed	17						
	for Hourly Ozone Exceedances during Peak Ozone							
	Daylight Hours (1300 to 1900 EST)							
8	Frequency With Which Peak Ozone Levels Occur	18						
	at Various Hours of the Day on Episode Days							
9	A Schematic Diagram of the Relationship of	19						
	Ozone Level and Synoptic Weather Situation							
10	Surface Synoptic Map for September 10, 1982 at 1300 EST	20						
11	 a) Diurnal Pattern of Winds for September 10, 1982 	21						
	at Jarvis Met. Tower							
	b) Mixed Layer Heights for September 10, 1982	21						
	c) Diurnal Pattern of Ozone Concentraton for	22						
	September 10, 1982							
	d) 48 Hour Back Trajectory Plot for September 10, 1982	22						
12	Surface Synoptic Map for September 11, 1982 at 1300 EST 23							
13	Surface Synoptic Map for September 12, 1982 at 1300 EST 24							
14	Surface Synoptic Map for September 13, 1982 at 1300 EST 25							
15	a) Diurnal Pattern of Winds for September 13, 1982	26						
	at Jarvis Met. Tower							
	b) 48 Hour Back Trajectory Plot for September 13, 1982	26						
	c) Diurnal Pattern of Ozone Concentration for	26						
	September 13, 1982							
16	Surface Synoptic Map for July 8, 1979 at 1300 EST	27						

List of Figures

			Page
Figure N	10.		
17	a)	Diurnal Pattern of Winds for July 8, 1979	28
		at the Jarvis Met. Tower	
	b)	Diurnal Pattern of Ozone Concentrations for	28
		July 8, 1979	
18	Sur	face Synoptic Map for July 19, 1981 at 0100 EST	29
19	a)	Diurnal Pattern of Ozone Concentrations	30
		for July 19, 1981	
	b)	48 Hour Back Trajectory Plot for July 19, 1981	30
20	Sur	face Synoptic Map for June 3, 1982 at 1300 EST	31
21	a)	Diurnal Pattern of Ozone Concentrations for	32
		June 3, 1982	
	ь)	48 Hour Back Trajectory Plot for June 3, 1982	32

ACKNOWLEDGEMENTS

This report was prepared by P. Kiely, and H. Sahota, Air Resources Branch, Ministry of the Environment, (MOE).

The data analysed in this report were collected by Moniteq Limited (under contract to Stelco Inc., Texaco Canada Inc. and the Ministry of the Environment), as well as by Ontario Hydro and the Ministry of the Environment's West Central Region.

Comments on the manuscript by Keith Heidorn of the Air Resources Branch and members of the NEMP Technical Committee are gratefully acknowledged.

1.0 Introduction

At high concentrations, ozone can cause damage to vegetation, destruction of materials and human discomfort, (Mukammal (1965), Heck et al (1982)). Of all the contaminants which are monitored in the Haldimand-Norfolk region, the hourly air quality criterion (AQC) for ozone (80 ppb) is most frequently exceeded. It is worth noting here that ozone is not directly emitted from industrial processes but is produced by chemical reactions in the atmosphere. Emissions of hydrocarbons and nitrogen oxides act as precursors which, in the presence of sunlight, eventually lead to the formation of ozone. Local industrial operations are not an important contributor to elevated ozone levels in the Haldimand-Norfolk region of southern Ontario.

Three stations in the NEMP network (Figure 1) monitor ozone levels -Long Point (SW37), Simcoe (WNW19) and Binbrook (NNE39). Over the five year period 1979 to 1983, there have been a total of 1497 exceedances of the AQC for ozone recorded at the above three stations. Most of these have occurred during the summer months (June to August), with isolated occurrences in April, May and September. Warm temperatures and strong insolation combined with southerly flows during this time of the year coincide with the elevated ozone levels. The specific meteorological conditions coincident with elevated ozone concentrations have been described by Vukovich et al. (1977), Yap and Chung (1977) and Mukammal and Neumann (1981) - namely, southerly flows associated with the back (westerly) portion of anticyclones, the stagnation of anticyclones, the development of land/lake breeze circulation cells and the passage of warm fronts.

In this report, ozone exceedance events which occurred in the Haldimand-Norfolk region (1979 to 1983) are classified according to the meteorological conditions existing at the time of their occurrence. After an analysis of the number of local AQC exceedances by season, time of day and wind direction (Section 2), a selected number of events will be considered in more detail (Section 3), for purposes of illustration, including an analysis of the concurrent synoptic weather conditions, local meteorology, back air trajectories and mixed layer heights (when available). Details of meteorological conditions on days when O₃ concentrations exceeded the hourly provincial AQC (80 ppb) on three consecutive hours are given in the Appendix.

2.0 Seasonal, Daily and Directional Influences

on Ozone Levels in the Haldimand-Norfolk Region

The distribution of O₃ exceedances of the AQC in the Haldimand-Norfolk region (1979-1983) by station is shown in Figure 2. Hourly averaged O₃ exceedances were most frequent at Long Point (770 exceedances) and decreased inland (Simcoe - 583 exceedances and Binbrook - 144 exceedances) Figure 3 presents the hourly averaged O₃ concentrations by station for the summer period of 1980. Average O₃ levels are highest at the coastal site and decrease as distance from the shoreline increases.

The diurnal trend in ozone exceedances for the entire period 1979 to 1983 is illustrated in Figure 4. Ozone exceedances are most frequent during the late afternoon (1500 to 1900 EST) and least frequent during the early morning period (0400 to 0900 EST). In addition, the diurnal patterns for temperature and O_3 concentration are similar.

Relatively low ozone levels (30-50 ppb range) usually occur on days of cooler air temperatures and northerly winds. During exceedance events (1979 to 1983) the maximum surface air temperature averaged 27°C whereas the maximum air temperature for the entire summer averaged only 24°C.

Seasonally, ozone exceedances occur most often during the summer period (June, July and August). Seventy-eight percent of the total number of hourly ozone exceedances (1979 to 1983) occurred during the summer compared with 15% and 7% during the spring (March, April and May) and fall (September, October and November) seasons respectively. There were no exceedances during winter. The growing season (May to September) recorded 98% of the ozone exceedances throughout 1979 to 1983.

In the Haldimand-Norfolk region, O₃ exceedances occur most frequently with winds from the S to SW sector, as illustrated in Figures 5 and 6. Eighty-six percent of the hourly ozone exceedances during peak ozone daylight hours (1300 to 1900 EST inclusive) for the five summers (June, July and August 1979-1983) coincided with winds from the ESE to WSW sector. Ozone exceedances coincided with wind flow from the northwest to northeast sector a mere 6% of the time. The above daylight hours were chosen because ozone concentrations were generally higher and available wind measurements were more representative of the actual large scale circulation during these hours.

Examination of the percentage frequency of occurrence of hourly averaged wind speed with ozone levels exceeding 80 ppb is presented in Figure 7, for the hours 1300 to 1900 EST during the summer seasons (1979 to 1983). Ozone exceedances occurred most frequently with moderate (16-30 km/hr) wind speeds.

3.0 Ozone Episode Analysis

The identification and analysis of occasions during which episodes of elevated ozone levels occur in the Haldimand-Norfolk region is the main aspect of this report. For the purpose of analysis, an episode was defined as the occurrence of ozone levels greater than 80 ppb for three or more hours at any one station on the same day.

Throughout the 5 year period (1979 to 1983), there were 133 ozone episodes. The majority of these episodes occurred in June (39) and July (43). The distribution of ozone episodes by month is presented in table 1. Out of the total number of ozone episodes, 129 occurred during the growing season.

The daily peak ozone level for ozone episodes occurred at 1700 EST. The frequency with which peak O₃ levels occurred at each hour of the day is shown in Figure 8.

The number of hours that the hourly ozone levels exceeded 80 ppb (on any episode day) is indicative of the severity of the ozone episode. Table 2 shows the frequencies of occurrences of these duration periods in the Haldimand-Norfolk region.

3.1 Statistics on Ozone Episodes and Associated Meteorological Conditions

In the Appendix, each event is described according to the meteorological conditions which existed at the time of it's occurrence. Of the 133 episodes which were recorded in the Haldimand-Norfolk region throughout 1979 to 1983; 91 coincided with an anticyclonic weather system and accompanying clear skies, warm temperatures and southerly winds; 19 were observed with frontal activity (on 9 of these occasions precipitation was recorded) and 23 coincided with a lake breeze influence.

In the following section of the report, typical examples of ozone episodes during the above meteorological categories will be discussed.

3.2 Ozone Episodes and High Pressure Systems

It has been previously noted that elevated ozone occurs with high pressure systems, and in particular, the largest O₃ concentrations are found on the backside of a moving high pressure system, (Vukovich et al. 1977). Figure 9, taken from Yap and Chung (1977), describes the synoptic weather situation often accompanying elevated ozone levels in the Haldimand-Norfolk region. Ozone episodes are typically associated with a high pressure system centred to the east of the lower Great Lakes, creating a south to south-southwesterly flow on the backside of the anticyclone. Accompanying the moist southerly flows are warm temperatures.

The episode of September 10-13, 1982 is a good example of the occurrence of elevated ozone concentrations when southerly flows occur with a quasi - stationary high pressure system situated near the study area. On the morning of September 10, 1982 a high pressure system centred to the east of the Nanticoke area, created a southerly flow across the region (Figure 10). Surface winds (as measured by the 10 m level of the Jarvis met. tower) were calm throughout the night becoming southerly (10-15 km/hr) during the afternoon (Figure 11a). Surface air temperatures reached a maximum 28°C. Skies were free of clouds; however visibility was restricted by haze. Mixed layer heights (as measured by the acoustic sounder located 7 km north of the shoreline) remained below 200 m for the entire afternoon period (Figure 11b). Ozone levels exceeded the 80 ppb hourly AQC for nine consecutive hours (1300 to 2100 EST) at Long Elevated ozone was also recorded at Simcoe (maximum 81 ppb) and Binbrook (maximum 79 ppb) - see Figure 11c. Back trajectories of the air parcels which arrived in Southern Ontario on September 10, showed origins to the west-southwest (Figure 11d). These air parcels traversed the highly industrialized Detroit, Michigan area before arriving at Nanticoke, and in doing so accumulated ozone and ozone precursors. Note that these trajectories are based on the gradient wind as computed from the height field at the 850 mb pressure level and they are used to follow the air mass back 48 hours (in 6 hour increments) to find its origin.

Similar meteorological conditions continued on into September 11 and 12 (Figure 12 and 13 respectively). Consequently, the surface winds remained light and southerly for the entire two day period. Once again, surface air temperatures increased rapidly after sunrise, reaching 27°C on September 11 and 28°C on September 12. Visibility was restricted by haze on both days. At Long Point, ozone exceedances were recorded for 10 continuous hours (1400 to 2400 EST) on September 11 and for 5 hours (1600 to 1800; 2200 to 2300 EST) on September 12. One hourly exceedance (82 ppb at 2300 EST) was recorded at Simcoe on the 11th and two (1500 and 1600 EST) on September 12. Binbrook ozone levels reached 71 ppb on September 11 and 80 ppb on September 12.

On September 13, the high pressure system moved northeastward and by 1300 EST, it was centred over the Atlantic seaboard to the east of Quebec City (Figure 14). Surface winds were light (11 km/hr) and from the south throughout the afternoon becoming calm by early evening (Figure 15a). The air mass over Nanticoke on September 13 showed a previous 48 hour movement from the Ohio Valley, north-northeastward to Nanticoke (Figure 15b). Ozone levels peaked at 97 ppb at Long Point and exceeded the hourly AQC for 7 consecutive hours. The maximum hourly concentration at Simcoe and Binbrook was 73 and 53 ppb respectively (Figure 15c).

On September 14 a cold front passing through the Nanticoke area produced cloudy skies, northerly winds and a gradual drop in air temperature. The ozone levels did not exceed the AQC on this day.

Meteorological conditions were similar throughout the four day ozone episode (September 10 to 13, 1982), namely; light southerly winds on the backside of the anticyclone; maximum surface air temperatures in the 27-29°C range; clear skies and previous air mass movement over the highly industrialized areas of the U.S.A.

3.3 Ozone Episodes Associated with Lake Breeze Influence

Lake breeze days are characterized by light winds, weak pressure gradients, warm temperatures and sunny skies. Mukammal et al. (1981) have attributed some incidences of elevated ozone near Lake Erie to the onset of lake breezes. The effects of lake breeze circulation on pollutant dispersal have been

discussed in detail by Lyons and Olsson (1973) and Keen and Lyons (1978). Pollutants are trapped and recirculated within the lake breeze cell with stratified layers forming over the lake and a fumigation zone occurring when layers aloft intersect the developing thermal internal boundary layer. At night weak land breezes tend to move pollutants offshore, where they accumulate and become part of the lake breeze circulation during the following day. In our study, ozone episodes associated with lake breeze occurrence have arisen from precursors emitted into the circulation locally as well as across the border at major industrial complexes such as Cleveland and Detroit. Examination of the winds prior to the onset of the lake breeze indicates the problable source of the pollutant. Westerly winds implicate Detroit emissions; southerly winds, those from Cleveland; and calm conditions or northerly flows, those from local sources.

July 8, 1979 is an example of an occasion on which elevated ozone levels in the Haldimand-Norfolk region coincided with a lake breeze influence. On this day a high pressure cell was centred off the Atlantic coast (Figure 16). The pressure gradient in the Nanticoke area was weak, the sky was free of clouds and the maximum surface land temperature was 27°C. These conditions all contributed to the development of a lake breeze regime. Surface winds in the Nanticoke area were calm throughout the early morning hours becoming southerly by 1100 EST (Figure 17a). The lake breeze persisted for eight hours. The breakdown of the lake breeze around 1800 EST coincided with the beginning of a decrease in ozone levels (Figure 17b). Ozone concentrations were lowest at Binbrook, the furthest monitor location inland. Such a decrease in ozone concentration inland from the lake reflects the degree of penetration of the lake induced circulation.

3.4 Ozone Episodes Observed With Frontal Activity

The previous mentioned features by no means encompass all conditions under which elevated ozone levels were observed. Mukammal et al. (1981) have attributed an increase in ozone levels to the presence of synoptic fronts and in particular Mukammal (1965) suggested that on occasion, thunderstorm activity associated with these frontal systems may have contributed to higher ozone concentrations.

There were 19 ozone episodes in the Haldimand-Norfolk region which were observed during frontal activity. Meteorological conditions associated with these episodes can be described by one of the following synoptic situations. The first synoptic situation showed a weak frontal disturbance over the Great Lakes, orientated along a NE/SW axis with a high pressure cell situated to the northwest and southeast. Thunderstorm activity was observed in the Nanticoke area during these occasions. The second synoptic situtation showed a cold front approaching from the northwest while the third situation showed that a warm front had passed through the region prior to the exceedance The diurnal pattern of ozone during the above synoptic situations usually showed a very sharp peak and on occasion there was a secondary peak in the early morning hours. The AQC under these conditions exceeded only for a short duration. Thunderstom activity and/or strong vertical mixing associated with the front are the likely mechanisms responsible for the high levels of 0_3 at the ground. However, warm, southerly flows associated with the backside of the high pressure system may have initially transported the ozone and ozone precursors into the region. For the majority of episodes observed with frontal activity it is difficult to determine the time of frontal passage from the 6 hour synoptic maps, making it difficult to assess its impact on the ozone levels.

The episode of July 19, 1981 is an example of elevated ozone observed with frontal activity. The normal diurnal ozone pattern is changed due to thunderstorm activity associated with a frontal disturbance. On July 18, 1981, mid afternoon ozone levels reached over 100 ppb in the area. After sunset, ozone levels dropped to 50 ppb but remained higher in a layer at the top of the inversion. Downdrafts associated with the thunderstorm activity during the early morning hours of July 19 (Figure 18), may have caused the sharp increase in ozone concentrations (as high as 82 ppb) at 0500 EST. Following the thunderstorm, ozone levels returned to near 50 ppb during the morning, and increased again to about 100 ppb during the late afternoon, Figure 19a. Back trajectory analyses indicate that the air mass which brought high ozone levels to the area during the episodes of July 18 and 19 passed over the highly industrialized area of southern Michigan, Figure 19b.

3.5 Ozone and Northerly Flows

In conclusion, it should be pointed out that northerly flows typically are associated with low ozone concentrations in the Nanticoke area. Such flows usually occur on the east side of an approaching anticyclone. June 3, 1982 is one of many examples of this type of situation. On this day, a high pressure system centred over the upper Great Lakes produced a light northeasterly flow over the Nanticoke region (Figure 20). Ozone levels were low (<40 ppb) at all three monitoring locations for the entire 24 hour period (Figure 21a). Accompanying the northerly winds were cool surface air temperatures (maximum 14°C) and clouds, conditions which do not favour the formation of ozone. Finally, the 48 hour back air trajectory showed an air mass origin to the northwest of Nanticoke (Figure 21b).

4.0 Summary

In the Haldimand-Norfolk region (1979 to 1983), there were 1497 hourly exceedances of the AQC (80 ppb) for ozone. Examination of the frequency of occurrence of these exceedances revealed that:

- 1) June (540) and July (469) were the months that recorded the greatest number of hourly ozone exceedances
- 85% of all ozone exceedances occurred during the growing season (May - September).
- 3) The daily peak ozone level occurred most frequently at 1700 EST
- 4) Daily mean ozone levels were highest at the shoreline site (Long Point) and decreased as distance inland increased
- Ozone exceedances occurred most frequently during moderate (16-30 km/hr) south to south-southwesterly winds

As suggested by other workers (Yap and Chung (1977); Vukovich (1977) and Mukammal et al. (1981)), it was confirmed that ozone episodes in the Haldimand-Norfolk region were observed with the following meteorological conditions: anticyclonic weather systems with accompanying clear skies, warm temperatures and southerly flows; pre cold/post warm frontal passages (with or without precipitation); and finally the lake breeze influence. Examination of 133 ozone episodes revealed that 68% coincided with back or centre of the high situations, 17% coincided with lake breeze influence and 14% with frontal activity.

Trajectory analysis suggests that air masses with previous origins to the south and west accumulate ozone and ozone precursors which contribute significantly to the levels of ozone in the Haldimand-Norfolk region. Local industrial operations are not important contributors.

AR36-10

References

- Heck, W.W., Taylor, O.C., Adams, R., Bingham, G., Miller, J., Preston, E., and Weinstein, L., 1982: Assessment of Crop Loss from Ozone. J. Air Poll. Control Assoc., 32, 353-361.
- Heidorn, K.C. and Yap, D., 1984: A Synoptic Climatology for Ozone in Southern Ontario-1976-1981. Air Resources Branch Internal Report ISBN 0-7743-9538-9.
- Keen, C.S. and Lyons, W.A., 1978: Lake/Land Breeze Circulations on the Western Shore of Lake Michigan. Amer. Meteor. Society, 17, 1843-1855.
- Lyons, W.A. and Olsson, L.E., 1973: Detailed Mesometeorological Studies of Air Pollution Disperison in the Chicago Lake Breeze. Mon. Wea. Rev., 101, 387-403.
- Lyons, W.A. and Cole, H.S., 1976: Photochemical Oxidant Transport: Mesoscale Lake Breeze and Synoptic-Scale Aspects. J. Apppl. Meteor., 15, 733-743.
- Mukammal, E.I., 1965: Ozone as a Cause of Tabacco Injury. Agr. Meteor.,
 2, 145-165.
- 7. Mukammal, E., 1984: Oxidant Climatology of Ontario. AES Internal Report. Canadian Climate Centre.
- 8. Mukammal, E.I. and Neumann, H.H., 1981: Meteorological Conditions Associated with Ozone in Southwesten Ontario, Canada. Atm. Envir., Vol. 16, No. 9, 2095-2106.
- Vukovich, F.M., Bach, W.D., Crissman, B.W., and King, W.J., 1977: On the Relationship Between High Ozone in the Rural Surface Layer and High Pressure Systems. Atm. Envir., Vol. 11, 967-983.
- Yap, D. and Chung, Y.S., 1977: Relationship of Ozone to Meteorological Conditions in Southern Ontario. Preprint, 70th Annual Meeting Air Poll. Control Assoc., Toronto, No. 77-204.

Table 1 Ozone Episodes by Month and Year - 1979 to 1983

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nav	Dec	!Total
1979	0	0	0	1	2	8	7	2	3	0	0	0	1 23
1980	0	0	0	0	3	6	11	4	0	0	0	0	24
1981	0	0	0	0	4	7	9	4	3	0	0	0	27
1982	0	0	0	1	4	5	8	4	4	0	0	0	26
1983	0	0	0	1	0	13	8	8	2	1	0	0	33
Total	0	0	0	з	13	39	43	55	12	1	0	0	1 133

Table 2
Frequency of the Number of Hours that Ozone
Exceeded 80 ppb on Episode Days

Duration *	Frequency
э	29
4	24
5	15
6	7
7	8
8	6
9	10
10	10
11	6
12	8
13	2
14	2
15	6

* number of hours on each episode day that 03 > 80 ppb

Figure 1
Ozone Monitoring Network in the Haldimand-Norfolk Region

Figure 2

Distribution of Hourly Ozone Exceedances by Year and Station

 $\label{eq:Figure 3} \\ \text{Hourly Averaged Ozone Concentrations for the Summer Months of } 1980$

Figure 4

Diurnal Trend in Ozone Exceedances and Air Temperature

Figure 5
Concentration Rose for Hourly Ozone Exceedances

Figure 6
Frequency Distribution of Hourly Wind Direction for Hourly Ozone Exceedances During Peak Ozone Daylight Hours (1300 to 1900 EST)

Figure 7
Frequency Distribution of Wind Speed for Hourly Ozone
Exceedances During Peak Ozone Daylight Hours (1300 to 1900 EST)

Figure 8
Frequency With Which Peak 03 Levels Occur at Various Hours of the Day on Episode Days
in Haldimand-Norfolk Region

A SCHEMATIC DIAGRAM OF THE RELATIONSHIP OF OZONE LEVEL
AND SYNOPTIC WEATHER SITUATION

Figure 9

FIGURE 10
SURFACE SYNOPTIC MAP FOR SEPTEMBER 10,1982
1300 EST

Figure 11a Diurnal Pattern of Winds for September 10,1982 at the Jarvis Met Tower

Figure 11b Mixed Layer Heights for September 10,1982

Figure 11c Diurnal Pattern of Ozone Concentration for September 10,1982

Figure 11d 48 Hour Back Trajectory Plot for September 10,1982

FIGURE 12 SURFACE SYNOPTIC MAP FOR SEPTEMBER 11,1982 1300 EST

FIGURE 13
SURFACE SYNOPTIC MAP FOR SEPTEMBER 12,1982
1300 EST

FIGURE 14
SURFACE SYNOPTIC MAP FOR SEPTEMBER 13,1982
1300 EST

Figure 15b 48 Hour Back Trajectory Plot for September 13,1982

Figure 15c Diurnal Pattern of Ozone Concentration for September 13,1982

Figure 16
SURFACE SYNOPTIC MAP FOR JULY 8,1979
1300 EST

Figure 17a Diurnal Pattern of Winds for July 8,1979 at the Jarvis Met Tower

Figure 17b Diurnal Pattern of Ozone Concentration for July 8,1979

FIGURE 18
SURFACE SYNOPTIC MAP FOR JULY 19,1981
0100 EST

Figure 19a Diurnal Pattern of Ozone Concentration for July 19,1981

Figure 19b 48 Hour Back Trajectory Plot for July 19,1981

FIGURE 20 SURFACE SYNOPTIC MAP FOR JUNE 3,1982 1300 EST

Figure 21a Diurnal Pattern of Ozone Concentration for June 3,1982

Figure 21b 48 Hour Back Trajectory Plot for June 3,1982

Appendix: Ozone Episode Data Summary by Station

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (KM/HR)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
791 4/25	SW37 NNE39 WNW19	- 3	- 1600-1800	77 69 82	- vsv	- 15	24	backside of anticyclone
79/ 5/ 8	SW37 NNE39 WNW19	8 - 4	1500-2200 1600-1900	104 75 89	SSW - SSW	2 4 - 2 3	29	backside of anticyclone
79/ 5/11	SW37 NNE39 WNW19	3	1500-1700	108 61 78	ssw - -	2 1 -	30	backside of anticyclone
79/6/1	SW37 NNE39 WNW19	- - - 1	- 1500-1800	6 9 8 0 9 8	- NE	- - 9	2 6	lake breese
79/6/4	SW37 NNE39 WNW19	- - 3	- 1700-1900	7 8 6 5 8 8	- sv	- 24	27	backside of anticyclone
79/ 6/14	SW37 NNE39 WNW19		- 1700-1900	- 87	- ssw	- 2 6	25	backside of anticyclone
79/ 6/15	SW37 NNE39 WNW19	_ 1 0	- 1300-2200	77 96	- sv	- 3 6	29	backside of anticyclone
79/ 6/16	SW37 NNE39 WNW19	- - 9	- 1100-1900	7 7 9 6	- sv	- 2 6	31	backside of anticyclone
791 6117	SW37 NNE39 WNW19	- 3 9	- 1800-2000 1200-2000	99 105	SSW SSW	25 30	2 9	backside of anticyclone
791 6126	SW37 NNE39 WNW19	- - 3	- 1700-1900	7 1 8 2	- ssw	- 2 0	2 4	backside of anticyclone

<u>ن</u> 4.

. .

. .

DATE YY/NM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (KM/HR)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
791 6127	SW37 NNE39 WNW19	5 - 3	1300-1700 1300-1500	90 71 84	SSW SSW	2 8 - 3 2	26	backside of anticyclone
791 71 8	SW37 NNE39 WNW19	4 - 2	1600-1900 1700-1800	9 1 7 0 8 1	sw - wsw	· - 7	27	lake breeze
79/ 7/11	SW37 NNE39 WNW19	8 - 2	1400-2100 1500-1600	114 85	vsv sv	2 0 - 2 2	2.8	lake breeze
791 7/12	SW37 NNE39 WNW19	- - 3	- 1500-1700	7 0 7 4 8 4	- SSW	- - 19	29	lake breese
79/ 7/13	SW37 NNE39 WNW19	<u>.</u>	1300-1600	1 1 8 7 8	ese -	14	31	frontal activity
791 7120	SW37 NNE39 WNW19	- 3 2	1800-2000 1100-1200	8 1 8 6	SSE SSW	119	27	lake breese
79/ 7/21	SW37 NNE39 WNW19	1 0 8	1200-2100 1300-2000	1 0 0 1 0 1	SSW SSW	17 17	29	lake breese
791 7122	SW37 NNE39 WNW19	1 2 1 1	1000-2200 1000-2000	90 148	SSW SSW	17 17	30	lake breeze
79/8/3	SW37 NNE39 WNW19	- 3	- 1200-1500	6 6 8 4	- sv	- - 2 8	27	backside of anticyclone
791 81 4	SW37 NNE39 WNW19	- - 4	- 1800-2100	5 0 8 5	- VSW	- - 20	2 9	backside of anticyclone

	DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (KM/HR)	MAX DAILY TEMP (C)	METEOROEOGICAL CONDITIONS
	79/ 9/ 1	SW37 NNE39 WNW19	- 1 4	1600-1600 1400-1700	81 93	SSE SSE	11 11	27	backside of anticyclone
	791 91 6	SW37 NNE39 WNW19	4 - -	1400-1700	1 2 4 5 9 1 9	v -	33 - -	2 8	frontal activity
	79/ 9/25	SW37 NNE39 WNW19	3 - -	1500-1700	8 8 5 9 6 4	88W - -	27	22	backside of anticyclone
	80/ 5/22	SW37 NNE39 WNW19	6 - -	1600-2100	8 8 7 8 6 9	vsv - -	17 -	27	backside of anticyclone
-36-	80/5/23	SW37 NNE39 WNW19	5 -	1500-2000	91 69 75	5 - -	- -	2 8	backside of anticyclone
	80/ 5/24	SW37 NNE39 WNW19	- 2 4	1500-1600 1500-1800	7 1 9 9 8 4	sv sv	1 0 8	27	backside of anticyclone
	80/ 6/18	SW37 NNE39 WNW19	5 - -	1700-2100	9 1 6 9 6 6	v :	1 5 - -	2 2	backside of anticyclone
	80/6/22	SW37 NNE39 WNW19	9 - -	1500-2300 - -	1 0 5 6 5 5 2	ssv - -	2 0 - -	2 6	backside of anticyclone
	80/6/23	SW37 NNE39 WNW19	1 2 3 -	1300-2300 1600-1800	108 82 75	sw -	1 7 1 9	28	backside of anticyclone
	80/ 6/24	SW37 NNE39 WNW19	1 4 8 7	1300-2400 1300-1900 1200-2000	1 1 8 1 0 2 9 2	5 5 5	1 2 1 0 1 0	28	backside of anticyclone

•

.

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (KM/HR)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
80/ 6/25	SW3 7 NNE 3 9 WNW 1 9	3 2 1	1300-1500 1300-1400 1200-1200	8 8 8 9 8 3	SSW SSW SSW	2 1 1 9 1 5	2 8	backside of anticyclone
80/ 6/26	SW37 NNE39 WNW19	- 7	- 1400-2000	77 70 95	- sv	- - 2 8	29	backside of anticyclone
80/7/1	SW37 NNE39 WNW19	4 - -	1700-2000 - -	93 65 62	ssw - -	2 2 - -	2 4	backside of anticyclone
80/7/4	SW37 NNE39 WNW19	8 - -	1600-2300	93 70 63	ssv - -	-	28	backside of anticyclone
80/ 7/19	SW37 NNE39 WNW19	15 - 7	1200-2300 - 1300-2000	1 2 3 9 9	wsw sv	2 4 2 5	29	frontal activity thunderstorm
80/ 7/20	SW37 NNE39 WNW19	15 -7	1 1 0 0 - 2 2 0 0 - 1 5 0 0 - 2 1 0 0	111 73	ssw - ssw	2 0 - 1 9	30	frontal activity/ influence of anticyclone
80/ 7/21	SW37 NNE39 WNW19	1 2 - -	1500-2300	111	s v - -	2 0 - -	31	frontal activity thunderstorm
80/ 7/22	SW37 NNE39 WNW19	10	1500-2200 - -	100	s - -	14 -	24	frontal activity thunderstorm
80/ 7/25	SW37 NNE39 WNW19	5 - -	1300-1700	1 0 8 6 2 6 7	ssw - -	2 8 - -	28	backside of anticyclone
80/ 7/26	SW37 NNE39 WNW19	4 - -	1300+1600	113 52 65	NV - -	1 0 - -	2 5	frontal activity showers

-3/

DATE YY/MM/	STATION DD ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (KM/HR)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
80/ 7/	27 SW37 NNE39 WNW19	6 - -	1300-1800	93 51 79	NE -	10	27	frontal activity thunderstorm
80/ 7/	29 SW37 NNE39 WNW19	8 - -	1900-2300	9 9 7 1	vsv -	17 -	27	backside of anticyclone
80/ 7/	31 SW37 NNE39 WNW19	3 - -	1200-1400	93 53	SSE - -	1 3 - -	24	frontal activity showers
80/ 8/	1 SW37 NNE39 WNW19	8 2	1400-2100 1800-1900	1 2 1 6 1 8 7	vsv sv	1 9 - 2 0	29	frontal activity influence of anticyclone
\$ 80/ 8/	6 SW37 NNE39 WNW19	3 - -	1800-2000 - -	8 9 5 3 6 6	sw -	19 - -	29	backside of anticyclone
80/ 8/	7 SW37 NNE39 WNW19	7 - -	1300-1900 - -	9 2 6 7 7 7	sw - -	30 - -	29	backside of anticyclone
80/8/	2 6 SW3 7 NNE 3 9 WNW 1 9	3 - 4	2100-2300 1500-1800	9 0 4 2 8 2	wsw ssw	1 8 - 2 0	2.6	backside of anticyclone
81/ 5/	5 SW37 NNE39 WNW19	1 3	- 1500-1500 1300-1500	75 81 91	-	2 i 1 8	2 4	frontal activity

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (KM/HR)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
81/ 5/22	SW37 NNE39 WNW19	6 5 1	1600-2100 1400-1800 1400-1400	98 93 81	ESE ESE ESE	1 2 1 5 1 8	27	backside of anticyclone
81/ 5/23	SW37 NNE39 WNW19	1 1 7 8	1 4 0 0 - 2 3 0 0 1 2 0 0 - 2 0 0 0 1 2 0 0 - 1 9 0 0	129 84 107	SSW S S	1 4 1 3 1 3	2 6	backside of anticyclone
81/ 5/24	SW37 NNE39 WNW19	7 9	- 1400-1900 1300-1800	91 100	ssw ssw	1 0 1 2	2 6	frontal activity/ influence of anticyclone
81/6/4	SW37 NNE39 WNW19	5	1500-1900	9 1 6 3 6 1	WNW - -	1 6 - -	24	frontal activity
81/ 6/ 5	SW37 NNE39 WNW19	1 0 1 0 1 1	1 4 0 0 - 2 3 0 0 1 3 0 0 - 2 2 0 0 1 2 0 0 - 2 2 0 0	104 103 107	SW SW SV	2 1 2 1 2 1	26	backside of anticyclone
81/6/8	SW37 NNE39 WNW19	1 3	- 1700-1700 1500-1700	65 83 85	SSW SSW	- 3 5 3 4	25	frontal activity thunderstorm
81/ 6/12	SW37 NNE39 WNW19	4 - -	1500-1800	95 55 76	wsw - -	2 1 -	2 6	backside of anticyclone
81/ 6/18	SW37 NNE39 WNW19	- -	- 1700-1900	7 1 8 6	- - sw	- - 18	2 4	backside of anticyclone
81/ 6/19	SW37 NNE39 WNW19	5 - 4	1300-1700 - 1200-1500	8 9 - 8 6	- sv	1 5 - 2 0	2 6	backside of anticyclone
81/6/29	SW37 NNE39 WNW19	13	- 1200-2300	78 110	- sw	- 27	29	backside of anticyclone

229

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (KM/HR)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
81/8/2	SW37 NNE39 WNW19	5 - -	1500-1900 - -	87 73 -	SSW - -	18 - -	28	backside of anticyclone
81/ 8/22	SW37 NNE39 WNW19	1 0 1 4	1400-2300 1700-1700 1300-1700	8 8 8 6 9 9	- SSW	3 8	2 5	backside of anticyclone
81/8/29	SW37 NNE39 WNW19	5 - -	1600-2000	92 76 79	SE - -	16 - -	2 3	backside of anticyclone
81/ 9/11	SW37 NNE39 WNW19	3 - 2	1700-1900 - 1700-1800	8 9 5 5 8 6	SSW SSW	1.5 1.3	23	backside of anticyclone
81/ 9/13	SW37 NNE39 WNW19	- - 7	- 1200-1800	8 0 6 9 9 5	- sv	- - 21	27 27	backside of anticyclone
81/ 9/26	SW37 NNE39 WNW19	2 - 3	1700-1800 1700-1900	83 72 84	SSW SSW	30 - 32	2 2	backside of anticyclone
82/ 4/25	SW37 NNE39 WNW19	8 - 5	1600-2300 1400-1800	9 4 6 1 8 9	SE SV	8 - 17	21	backside of anticyclone
82/ 5/ 6	SW37 NNE39 WNW19	8 1 2	1500-2200 1100-1800	1 0 2 7 0 9 8	ssw sv	1 9 2 0	2.8	backside of anticyclone
82/ 5/12	SW37 NNE39 WNW19	- 4	- 1400-1700	76 67 94	-	- 8	25	backside of anticyclone
82/ 5/29	SW37 NNE39 WNW19	1 - 3	1500-1500 - 1500-1700	8 2 6 8 8 3	- SE	-,	2 3	lake breeze

4

. .

.

.

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (KM/HR)	MAX DAILY TEMP ('C)	METEOROLOGICAL CONDITIONS
82/ 5/31	SW37 NNE39 WNW19	- - 4	- 1600-1900	7 7 4 5 8 4	- s	- 15	25	lake breeze
82/6/14	SW37 NNE39 WNW19	3 - -	1800-2000	8 8 3 7 7 8	v -	15 - -	2 4	backside of anticyclone
82/6/18	SW37 NNE39 WNW19	1 0 - 5	1500-2300 - 1400-1800	93 52 89	SSW SSW	1 1 - 1 5	2 4	backside of anticyclone
82/6/24	SW37 NNE39 WNW19	6	1600-2100 - -	9 4 5 0 6 6	ssw - -	2 1 - -	2 1	backside of anticyclone
82/ 6/25	SW37 NNE39 WNW19	12	1300-2300 	101 49 89	wsw _ wsw	15 - 16	2 3	backside of anticyclone
82/ 6/28	SW37 NNE39 WNW19	3 - 4	1700-1900 - 1200-1700	8 4 6 0 8 4	SSE - -	- <mark>8</mark>	2 6	backside of anticyclone
821716	SW37 NNE39 WNW19	- - 3	- 1700-1900	6 0 6 1 8 9	- ssw	16	2 9	backside of anticyclone
82/ 7/10	SW37 NNE39 WNW19	- - 4	- - 1500-1800	76 111	- ESE	- 11	2.8	backside of anticyclone
82/ 7/15	SW 3 7 NNE 3 9 WNW 1 9	- - 6	1400-1900	4 1 9 0	- SSW	- 16	30	lake breeze
82/ 7/16	SW37 NNE39 WNW19	1 4 - 1 0	1300-2300 - 1200-1900	114 - 115	s - ssw	13 - 12	30	backside of anticyclone

PERIOD OF MAXIMUM AVG WIND EXCEEDANCE CONC (PPb) DIRECTION

71 82

EXCEEDANCE HOURS

82/ 7/17	SW37	- 5	1500-1900	87	SW	20	29	backside of anticyclone
	NNE 3 9	=			-	-	4 7	packside of anticyclone
	WNW 1 9	1	1200-1200	8 4	-	-		
821 7122	SW37	3	1700-1900	91	-	9		
021 1122	NNE39	1	1600-1600	8 2	-	-	2 8	lake breeze
	WNW19	-	_	77	_	-		

	61122		1400-2300	8 9	wsw	2 3		
82/ 7/25	SW37	11	1400-2300	76	*3*	_	30	backside of anticyclone
	NNE 3 9	-	1300-2000	93	WSW	2 4	•••	
	WNW 1 9	8	1300-2000	7.3	wsw	2.1		
82/ 7/30	SW37	_	-		-	-	2 8	backside of anticyclone
	NNE 39	-		65		7.	20	packside of anticyclone
	WNW19	3	1700-2000	83	SSW	1 3		
82/ 8/14	SW37	-	-	7	-	=		total tabasa
	NNE39	_		79		7.	25	lake breeze
	WNW 1 9	5	1500-1900	93	SSW	19		
82/ 8/15	SW37		*	-	× -	-		
	NNE 39	8	1200-1900	8 9	SSW	14	26	lake breeze
	WNW 1 9	1 2	1000-2100	102	SSW	1 2		
82/ 8/16	SW37	-	=	-	-	-		
	NNE 39	-	=	80		-	28	lake breeze
	WNW 1 9	7	1100-1900	8 9	sw	13		
82/ 8/30	SW37	3	1700-1900	92	SV	1 6		
027 0730	NNE39	_	-	4 2	-	_	2 4	backside of anticyclone
	WNW19	_	_		-	-		
	WIGHTY	_						
02/ 0/10	C112.7	•	1300-2100	106	SSW	16		
82/ 9/10	SW37	9	1300-2100	79		-	28	backside of anticyclone
	NNE 3 9	-	_	81	-	-		
	WNW 1 9	1	-	0.1	-	,-		
82/ 9/11	SW37	10	1500-2300	97	S	1 4	2.7	backside of anticyclone

-43

DATE

YY/MM/DD

STATION

NNE39 WNW19

ID

...

27

MAX DAILY

AVG SPEED

(KM/HR)

METEOROLOGICAL CONDITIONS

backside of anticyclone

•

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (KM/HR)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
81/7/7	SW37 NNE39	6	1900-2300	98	vsv	2 6	32	lake breeze
	WNW 1 9	7	1700-2300	98	WSW	2 2		
81/ 7/ 8	SW37	7	1300-1900	98	WSW	24		
	NNE39	2	1100-1200	84	wsw	18	3 2	backside of anticyclone
	WNW 1 9	15	1000-2200	105	WSW	22		
81/ 7/11	SW37	5	1900-2300	85	WSW	17		
017 7711	NNE39	-	-	5 5	-	-	30	lake breeze
	WNW19	-	= ™	61	-	-		
81/ 7/12	SW37	9	1600-2300	113	sw	15		
011 7712	NNE 39	á	1500-1800	85	sw	12	30	backside of anticyclone
	WNW 1 9	8	1800-2300	100	SW	1 6		•
81/ 7/13	SW37	_		-	_	-		frontal activity/
01/ //13	NNE 39	-		69	-	-	30	influence of anticyclone
	WNW 1 9	3	100- 300	96	WSW	21		
81/ 7/17	5W37	_	-	79		-		
017 7717	NNE 39	_	-	68	-	_	2 8	lake breeze
	WNW 1 9	4	1700-2000	9 0	SSW	2 1		
81/ 7/18	SW37	11	1300-2300	119	SSW	15		
017 7710	NNE 39	• •	-	68	-	-	30	backside of anticyclone
	WNW1 9	5	1700-2000	93	SW	14		
81/ 7/19	SW37	9	1200-2000	97	SW	17		frontal activity/
017 7717	NNE 39		-	79	-	-	30	influence of anticyclone
	WNW 1 9	9	1300-2100	111	SW	17		
81/ 7/25	SW37	10	1500-2300	113	SSW	1 2		
01/ //20	NNE 39	3	1400-1700	87	S	1 2	28	backside of anticyclone
	WNW1 9							
81/8/1	SW37	9	1500-2300	92	SSW	14		
017 07 1	NNE 39		-	73	-	-	2 7	backside of anticyclone
	WNW 1 9	-	-	_	·-	-		

-40-

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVC SPEED (KM/HR)	MAX DAILY	METEOROLOGICAL CONDITIONS
82/ 9/12	SW 3 7 NNE 3 9 WNW 1 9	5 - 2	1800-2300 1500-1600	8 2 8 0 8 3	ESE SSE	2 0 - 9	2 8	backside of quari- stationary anticyclone
82/ 9/13	SW37 NNE39 WNW19	7 - -	1500-2100 - -	97 53 73	SSE - -	11 -	2 9	backside of quasi- stationary anticyclone
83/ 4/27	SW37 NNE39 WNW19	- - 3	- 1700-1900	7 8 6 6 8 9	- Vsv	- - 2 1	2 2	backside of anticyclone
83/ 6/10	SW37 NNE39 WNW19	- - 7	- 1300-1900	61 73 98	- SV	Ē	2 6	backside of anticyclone
83/ 6/11	SW37 NNE39 WNW19	- 3 10	1600-1800 1400-2300	87 100	SSW SW	1 8 1 7	26	backside of anticyclone
83/ 6/12	SW37 NNE39 WNW19	7 15	1200-1800 1000-2100	9 2 1 1 3	SSW SSW	16 14	30	lake breeze
83/ 6/13	SW37 NNE39 WNW19	3 11	1300-1500 1000-2000	95 97	s ssw	1 3 1 0	29	lake breeze
83/ 6/14	SW37 NNE39 WNW19	1 1 9 1 5	1400-2300 1100-1900 900-2300	1 1 6 1 2 3	SE	6 9 6	30	backside of anticyclone
83/ 6/15	SW 3 7 NN E 3 9 WNW 1 9	13 3 13	1200-2100 1600-1800 200- 500	107 93 109	SSW SW SE	1 6 1 6 1 3	30	backside of anticyclone
83/ 6/16	SW37 NNE39 WNW19	9 3 2	1600-2300 1200-1400 1000-1100	127 85 85	sw s	1 6 1 2 5	2 9	lake breeze

OZONE (O3) DATA SUMMARY BY STATION

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (km/hr)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
83/ 6/17	5W37 NNE39 WNW19	1 4	100- 100 - 1400-1800	8 5 7 3 8 5	SSW SSW	15 14	29	lake breeze
83/ 6/21	SW37 NNE39 WNW19	3 -	1700-1900	9 1 6 0 7 7	NE - -	1 6 -	2 9	backside of anticyclone
83/ 6/22	5W37 NNE39 WNW19	5	1500-1900	8 8 6 3 7 9	s - -	• -	28	backside of anticyclone
83/ 6/23	SW37 NNE39 WNW19	1 0 2 9	1300-2200 1400-1500 1300-2100	1 1 2 8 1 9 2	SSW SSW SW	2 3 2 4 2 4	31	backside of anticyclone
83/ 6/26	SW37 NNE39 WNW19	11 1 11	1300-2300 1800-1800 1300-2300	106 83 103	SW SW SW	25 26 25	31	backside of anticyclone
83/ 6/27	SW37 NNE39 WNW19	2 - 6	1300- 000 - 1000-1500	93 77 105	SSW SSW	17 13	31	frontal activity/ influence of anticyclone
83/ 7/ 1	SW37 NNE39 WNW19	1 - 4	1500-1500 - 1400-1700	8 1 5 7 9 2	sv - sv	36 - 33	2 9	backside of anticyclone
83/7/3	SW37 NNE39 WNW19	- - 3	- - 1700-1900	7 6 5 6 9 1	- - ssw	- - 21	31	backside of anticyclone
83/ 7/11	SW37 NNE39 WNW19	10	1500-2300 	1 0 2 7 8 9 0	sv - -	21 - 26	27	backside of anticyclone
83/ 7/12	SW37 NNE39 WNW19	4 - 2	1400-1700	9 5 7 5 8 5	wnw "	2 6 - 1 8	3 2	backside of anticyclone

OZONE (O3) DATA SUMMARY BY STATION

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (km/hr)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
83/ 7/14	SW37 NNE39 WNW19	9 6 1 2	1600-2300 1700-2300 1300-2300	96 94 104	VSV VSV SV	23 23 22	3 2	backside of anticyclone
83/ 7/15	SW37 NNE39 WNW19	16	1200-2300	1 1 9 7 3 8 0	VNV - -	2 5 -	34	backside of anticyclone
83/ 7/16	SW37 NNE39 WNW19	12	1200-2200	1 0 7 5 6 6 7	WNW	2 5 - -	34	backside of anticyclone
83/ 7/28	SW37 NNE39 WNW19	7 3 9	1200-1800 1400-1600 1100-1900	1 1 2 8 7 9 2	SSW SW SSW	23 23 22	30	frontal activity thunderstorm
83/8/3	SW37 NNE39 WNW19	3 -	1800-2000 - -	9 2 6 6 7 4	sw - -	14 -	2 8	backside of anticyclone
83/8/7	SW37 NNE39 WNW19	- 3	_ 1800-2000	78 62 93	- vsv	17	2 9	lake breeze
83/8/8	SW37 NNE39 WNW19	- 1 4	1800-1800 1500-1800	55 81 105	VSW VSW	3 4 3 1	29	backside of anticyclone
B3/ B/16	SW37 NNE39 WNW19	-	- 1400-1700	8 0 8 7	- SSW	- 13	27	lake breeze
83/ 8/17	SW37 NNE39 WNW19	- - 5	1300-1700	- 96	- s v	- 16	29	frontal activity thunderstorm
83/ 8/19	SW37 NNE39 WNW19	7 - 6	1600-2200 - 1800-2300	136 - 107	ssv - sv	2 6 - 3 0	2 9	backside of anticyclone

OZONE (O3) DATA SUMMARY BY STATION

DATE YY/MM/DD	STATION ID	EXCEEDANCE HOURS	PERIOD OF EXCEEDANCE	MAXIMUM CONC (ppb)	AVG WIND DIRECTION	AVG SPEED (km/hr)	MAX DAILY TEMP (C)	METEOROLOGICAL CONDITIONS
83/ 8/25	SW37 NNE39 WNW19	10 - 2	1400-2300 1600-2300	1 0 0 - 8 3	s s	10 - 11	27	backside of anticyclone
83/ 8/26	SW 3 7 NNE 3 9 WNW 1 9	- - 4	- 1700-1900	8 0 8 7	- sw	- 15	2.9	backside of anticyclone
83/ 9/ 9	SW37 NNE39 WNW19	9 - 5	1300-2100 - 1800-2200	107	sv sv	25 - 25	28	backside of anticyclone
83/ 9/10	SW37 NNE39 WNW19	6 1	1400-1900 - 1700-1700	85 - 81	sw sw	2 5 - 2 5	3 2	backside of anticyclone
83/1-0/ 3	SW37 NNE39 WNW19	4 -	1600-1900 - 1500-1800	8 7 - 8 2	sw - sw	2 8 - 3 2	25	backside of anticyclone

-47

LABORATORY LIBRARY

96936000119786

LABORATORY & RESEARCH LIBRARY MINISTRY OF THE ENVIRONMENT