ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

$\frac{\Sigma X O Λ H H Λ ΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ}$

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

(2020-2021)

3η Σειρά Γραπτών Ασκήσεων

Ονοματεπώνυμο:

> Χρήστος Τσούφης

Αριθμός Μητρώου:

> 03117176

Στοιχεία Επικοινωνίας:

► el17176@mail.ntua.gr

1η Άσκηση

1. Έστω ότι υπάρχουν έξι διανύσματα δεδομένων, καθένα από τα οποία ανήκει σε μία από δύο κλάσεις Α και Β. Συγκεκριμένα:

 $(0,1,3) \in B \ , (3,0,-1) \in A \ , (1,2,0) \in B \ , (3,-1,0) \in A \ , (-2,1,-2) \in B \ , (0,-2,-1) \in A$ Εκπαιδεύστε ένα perceptron με αρχικό διάνυσμα βαρών $(w_0,w_1,w_2,w_3) = (1,1,-1,-1)$, βήμα μάθησης $\beta = 0.2$ και συνάρτηση ταξινόμησης $f(x) = \begin{cases} 1, & \text{an } x \geq 0 \\ 0, & \text{an } x < 0 \end{cases}$ έτσι ώστε να ταξινομεί σωστά τα παραπάνω διανύσματα δεδομένων δίνοντας έξοδο 0 για την κλάση A και 1 για την κλάση B.

Είναι γνωστό ότι $w(k+1) = w(k) + \beta \cdot (y(k) - f(x(k)))$ με $f(\sum_i (w_i x_i + w_o))$

Εποχή	Βήμα	x(k)	y(k)	f(x(k))	y(k)-	Update	Weights
					f(x(k))		(1,1,-1,-1)
1	1	(1,0,1,3)	1	f(-3)=0	1-0=1	(0.2,0,0.2,0.6)	(1.2,1,-0.8,-0.4)
	2	(1,3,0,-1)	0	f(4.6)=1	0-1=-1	(-0.2,-0.6,0,0.2)	(1,0.4,-0.8,-0.2)
	3	(1,1,2,0)	1	f(-0.2)=0	1-0=1	(0.2, 0.2, 0.4, 0)	(1.2,0.6,-0.4,-0.2)
	4	(1,3,-1,0)	0	f(3.4)=1	0-1=-1	(-0.2, -0.6, 0.2, 0)	(1,0,-0.2,-0.2)
	5	(1,-2,1,-2)	1	f(1.2)=1	1-1=0	(0,0,0,0)	(1,0,-0.2,-0.2)
	6	(1,0,-2,-1)	0	f(1.6)=1	0-1=-1	(-0.2,0,0.4,0.2)	(0.8,0,0.2,0)
2	7	(1, 0, 1, 3)	1	f(1)=1	1-1=0	(0,0,0,0)	(0.8,0,0.2,0)
	8	(1,3,0,-1)	0	f(0.8)=1	0-1=-1	(-0.2,-0.6,0,0.2)	(0.6, -0.6, 0.2, 0.2)
	9	(1,1,2,0)	1	f(0.4)=1	1-1=0	(0,0,0,0)	(0.6, -0.6, 0.2, 0.2)
	10	(1,3,-1,0)	0	f(-1.4)=0	0-0=0	(0,0,0,0)	(0.6, -0.6, 0.2, 0.2)
	11	(1,-2,1,-2)	1	f(1.6)=1	1-1=0	(0,0,0,0)	(0.6, -0.6, 0.2, 0.2)
	12	(1,0,-2,-1)	0	f(0)=1	0-1=-1	(-0.2,0,0.4,0.2)	(0.4, -0.6, 0.6, 0.4)
3	13	(1,0,1,3)	1	f(2.2)=1	1-1=0	(0,0,0,0)	(0.4, -0.6, 0.6, 0.4)
	14	(1,3,0,-1)	0	f(-1.8)=0	0-0=0	(0,0,0,0)	(0.4, -0.6, 0.6, 0.4)
	15	(1,1,2,0)	1	f(1)=1	1-1=0	(0,0,0,0)	(0.4, -0.6, 0.6, 0.4)
	16	(1,3,-1,0)	0	f(-2)=0	0-0=0	(0,0,0,0)	(0.4, -0.6, 0.6, 0.4)
	17	(1,-2,1,-2)	1	f(1.4)=1	1-1=0	(0,0,0,0)	(0.4, -0.6, 0.6, 0.4)
	18	(1,0,-2,-1)	0	f(-1.2)=0	0-0=0	(0,0,0,0)	(0.4, -0.6, 0.6, 0.4)

2. Θεωρήστε ότι σας δίνεται το διάνυσμα (3, -1, 3). Το perceptron θα το ταξινομήσει στην κλάση:

Διάνυσμα βαρών: $(w_0, w_1, w_2, w_3) = (0.4, -0.6, 0.6, 0.4)$

Συνάρτηση ταξινόμησης: βηματική συνάρτηση f.

Για είσοδο (3, -1, 3) θα ισχύει ότι:

$$(w_0, w_1, w_2, w_3) \cdot {\binom{\frac{1}{3}}{\frac{-1}{3}}} = (0.4, -0.6, 0.6, 0.4) \cdot {\binom{\frac{1}{3}}{\frac{-1}{3}}} = 0.4 \cdot 1 + (-0.6) \cdot 3 + 0.6 \cdot (-1) + 0.4 \cdot 3 = -0.8$$

Oπότε, f(-0.8) = 0

Συνεπώς, ο perceptron θα το ταξινομήσει στην κλάση A.

2η Άσκηση

Χρησιμοποιώντας τα δεδομένα της προηγούμενης άσκησης, υπολογίστε σε ποια κλάση θα το ταξινομήσει το διάνυσμα (3, -1, 3) ένας ταξινομητής πλησιέστερου γείτονα και ένας ταξινομητής 3 πλησιέστερων γειτόνων που χρησιμοποιεί ως απόσταση την ευκλείδεια απόσταση.

Υπολογισμός ευκλείδειας απόστασης (sorted):

- $r = (r_1, r_2, r_3) = (3, -1, 3)$
- $\sin(\mathbf{r}, \mathbf{d}_{i}) = \sqrt{(r_{1} d_{i1})^{2} + (r_{2} d_{i2})^{2} + (r_{3} d_{i3})^{2}}$

Οπότε,

- $\begin{aligned} & sim(r,\,d_1) = \sqrt{(3-0)^2 + (-1-1)^2 + (3-3)^2} = \sqrt{13} \\ & sim(r,\,d_2) = \sqrt{(3-3)^2 + (-1-0)^2 + (3+1)^2} = \sqrt{17} \end{aligned}$
- $sim(r, d_3) = \sqrt{(3-1)^2 + (-1-2)^2 + (3-0)^2} = \sqrt{22}$
- $sim(r, d_4) = \sqrt{(3-3)^2 + (-1+1)^2 + (3-0)^2} = \sqrt{9}$
- $sim(r, d_5) = \sqrt{(3+2)^2 + (-1-1)^2 + (3+2)^2} = \sqrt{54}$
- $sim(r, d_6) = \sqrt{(3-0)^2 + (-1+2)^2 + (3+1)^2} = \sqrt{26}$

Ταζινομητής πλησιέστερου γείτονα:

Το διάνυσμα είναι το $d_4 = (3, -1, 0)$ που ανήκει στην κλάση A

Συνεπώς, το (3, -1, 3) θα ταξινομηθεί στην κλάση Α.

Ταζινομητής 3 πλησιέστερων γειτόνων:

Τα διανύσματα αυτά είναι το $d_1 = (0, 1, 3)$ που ανήκει στην κλάση B, το $d_2 = (3, 0, -1)$ που ανήκει επίσης στην κλάση A και το $d_4 = (3, -1, 0)$ που ανήκει στην κλάση A.

Συνεπώς, δύο ανήκουν στην κλάση Α και ένα στην κλάση Β άρα το (3, -1, 3) θα ταξινομηθεί στην κλάση Α.

3^η Άσκηση

Δίνονται τα ασαφή σύνολα: $A_1 = 0.6/x_1 + 0.8/x_2 + 1/x_3$, $A_2 = 0.4/y_1 + 1/y_2$, $B = 1/z_1 + 0.5/z_2$

και ο ασαφής κανόνας: "αν η X είναι A_1 και η Y είναι A_2 , τότε η Z είναι B" ο οποίος αποτελεί ένα ασαφές σύστημα.

Χρησιμοποιώντας τους συνήθεις ασαφείς τελεστές και τη συνεπαγωγή Mamdani, υπολογίστε το ασαφές σύνολο εξόδου του συστήματος αν η τιμή της εισόδου είναι x_2 για τη μεταβλητή X και y_1 για τη μεταβλητή Y.

Ισχύει ότι:

- $A_1' = 1/x_2$, $A_2' = 1/y_1 \rightarrow A_1' \cap A_2' = min(1, 1)/\langle x_2, y_1 \rangle = 1/\langle x_2, y_1 \rangle = A'$
- $B'(z) = \sup_{x,y \in X \times Y} \min\{A'(x, y), R(x, y, z)\}$
- $R(x, y, z) = min\{S(x, y), B(z)\}$ & $S(x, y) = min\{A_1(x), A_2(y)\}$ $T \acute{o} \tau \epsilon, R(x, y, z) = min\{A_1(x), A_2(y), B(z)\}$
- Έτσι,

$$\begin{split} R &= 0.4 / < x_1, y_1, z_1 > + 0.4 / < x_1, y_1, z_2 > + 0.6 / < x_1, y_2, z_1 > + 0.5 / < x_1, y_2, z_2 > + \\ &+ 0.4 / < x_2, y_1, z_1 > + 0.4 / < x_2, y_1, z_2 > + 0.8 / < x_2, y_2, z_1 > + 0.5 / < x_2, y_2, z_2 > + \\ &+ 0.4 / < x_3, y_1, z_1 > + 0.4 / < x_3, y_1, z_2 > + 1 / < x_3, y_2, z_1 > + 0.5 / < x_3, y_2, z_2 > \end{split}$$

- $B'(z_1) = \sup_{x,y \in X \times Y} \min\{A'(x,y), R(x,y,z_1)\} = \min\{A'(x_2,y_1), R(x_2,y_1,z_1)\} = \min\{1,0.4\} = 0.4$
- B'(z₂) = $\sup_{x,y \in X \times Y} \min\{A'(x, y), R(x, y, z_2)\} = \min\{A'(x_2, y_1), R(x_2, y_1, z_2)\} = \min\{1, 0.4\} = 0.4$

$$A\rho\alpha$$
, $B' = 0.4/\langle x_2, y_1, z_1 \rangle + 0.4/\langle x_2, y_1, z_2 \rangle$