

SVM, Bayesian Network, and Markov Models / Chains

Topics

- Support vector machines
- Bayesian networks
- Markov models / chains

Which Solution?

Support vector machine

Clear definition of unique solution via margin

Nonlinear and soft margin

Some points now in the margin and others in the wrong class Slack variables let us relax the SVM and solve! (regularization)

Nonlinear and kernel

No linear solution, so perform "mapping" to a new space!

https://www.jeremyjordan.me/support-vector-machines/

Kernels

- Avoid manually mapping low to high space
- Kernel function works on low dimensional data
- Gives same result as inner product in high space
- But ... which kernel?

$$K(x_1, x_2) = exp(-\gamma * (x_1 - x_2)^2)$$

Linear Kernel

C hyperparameter

Polynomial Kernel

C plus gamma, degree and coefficient hyperparameters

RBF Kernel

C plus gamma hyperparameter

Yes, overfitting can and does occur

https://people.revoledu.com/kardi/tuto rial/Python/SVM+in+Python.html

Multi-Class SVM One vs. All

https://houxianxu.github.io/2015/04/25/support-vector-machine/

Markov Models / Chains

- Stochastic process
- States
- Transitions
- Markov property

http://setosa.io/ev/markov-chains/

https://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans/

https://en.wikipedia.org/wiki/Markov_chain

Markov chains

- Transition matrix
 - P(i,j) = P(go from state i to state j)
- Conditional independence
 - P(X(t+1) | X(t), X(t-1), ...) = P(X(t+1) | X(t))
- Answers questions like
 - What's the probability of current state at any moment?
 - What's the average time for the system to go back to each state?

Questions?

