Tight binding in diamond anc zinc-blende crystals

- Tight binding approximation for tetrahedrally coordinated orbitals
- •Combination of s, p_x , p_y and p_z orbitals: the sp³ model
- Orbital symmetry and overlap integrals
- •The sp³s* model
- The bandstructure of Si, Ge and GaAs

Semiconductor Nanostructures

03/11/2

- 1) TETRAGONAL COORD

- 11) S, PORBITALS

$$H_{C} = FULL CRYSTAL$$
 $HAMILTONIAN$
 $V = \sum_{n=1}^{\infty} \lambda_{NION} (n-n) + \sum_{n=1}^{\infty} \lambda_{NION} (n-n)$
 $V = \sum_{n=1}^{\infty} \lambda_{NION} (n-n) + \sum_{n=1}^{\infty} \lambda_{NION} (n-n)$

1 <

NEAR NEIGHBOUR

$$\psi = \chi_{e} + \sum_{d=(d_{1}, d_{2}, d_{3}, d_{4})} ihd \chi_{c}$$

$$d = (d_{1}, d_{2}, d_{3}, d_{4})$$

$$d = \begin{cases} P_{2} & P_{4} \\ e \end{cases} \qquad d = \begin{cases} P_{1} & P_{2} \\ e \end{cases} \qquad d = \begin{cases} P_{2} & P_{3} \\ e \end{cases} \qquad d = \begin{cases} P_{2} & P_{3} \\ e \end{cases} \qquad d = \begin{cases} P_{2} & P_{3} \\ e \end{cases} \qquad d = \begin{cases} P_{3} &$$

TB in a zinc-blende lattice with sp3 orbitals

Hamiltonian

$$H_c|\Psi_{\mathbf{k}}>=E(\mathbf{k})|\Psi_{\mathbf{k}}>,$$

The guess wavefunction: summation of wavefunctions placed on the atomic sites

$$\Psi_{\mathbf{k}} = \sum_{\mathbf{R}} \exp(i\mathbf{R}\mathbf{k}) (\mathbf{r} - \mathbf{R}) + \exp(i\mathbf{d}\mathbf{k}) (\mathbf{r} - \mathbf{R} - \mathbf{d})),$$

Each wavefunction is the linear combination of different orbitals

$$\oint \phi_a(\mathbf{r}) = a_s \phi_a^s(\mathbf{r}) + a_{p_x} \phi_a^{p_x}(\mathbf{r}) + a_{p_y} \phi_a^{p_y}(\mathbf{r}) + a_{p_z} \phi_a^{p_z}(\mathbf{r})$$

$$= \sum_{i=s, p_x, p_y, p_z} a_i \phi_a^i(\mathbf{r}),$$

$$\oint_{\mathbf{x}} (\mathbf{r} - \mathbf{d}) = c_s \phi_c^s(\mathbf{r} - \mathbf{d}) + c_{p_x} \phi_c^{p_x}(\mathbf{r} - \mathbf{d}) + c_{p_y} \phi_c^{p_y}(\mathbf{r} - \mathbf{d}) + c_{p_z} \phi_c^{p_z}(\mathbf{r} - \mathbf{d})$$

$$= \sum_{i=s, p_x, p_y, p_z} c_i \phi_c^i(r),$$

2

Semiconductor Nanostructures

03/11/2

TB in a zinc-blende lattice and sp orbitals

If we limit the interaction over near-neighbours the summation is limited to the four tetrahedrally coordinated atoms around a central atom

$$\begin{split} \Psi_{\mathbf{k}} &= \phi_a(\mathbf{r}) + \sum_{\mathbf{d}} \exp\left(i\mathbf{d}\mathbf{k}\right) \phi_c(\mathbf{r} - \mathbf{d}), \\ &= \sum_{n=s, p_x, p_y, p_z} a_n \phi_a^n(r) + \sum_{\mathbf{d}} \exp\left(i\mathbf{d}\mathbf{k}\right) \sum_{n=s, p_x, p_y, p_z} c_n \phi_c^n(r - \mathbf{d}) \end{split}$$

$$\begin{aligned} \mathbf{d_1} &= \frac{a}{4}[1,1,1] \\ \mathbf{d_2} &= \frac{a}{4}[1,-1,-1] \\ \mathbf{d_3} &= \frac{a}{4}[-1,1,-1] \\ \mathbf{d_4} &= \frac{a}{4}[-1,-1,1]. \end{aligned}$$

2

Semiconductor Nanostructures

03/11/2

TB in a zinc-blende lattice and sp orbitals

$\phi_a^{\scriptscriptstyle Py}$	0	$-V(s_c, p_a)g_2$	0	$V(z,y)g_3$	E(p,a)	$V(z,z)g_0$	0	$V(z,y)g_1$
$\phi_c^{p_y}$	$V(s_a, p_c)g_2^*$	0	$V(z,y)g_3^*$	0	$V(z,z)g_0^{\ast}$	E(p,c)	$V(z,y)g_1^{\ast}$	0
$\phi_a^{p_z}$	0	$-V(s_c, p_a)g_3$	0	$V(z,y)g_2$	0	$V(z,y)g_1$	E(p,a)	$V(z,z)g_0$
$\phi_c^{p_z}$	$V(s_a, p_c)g_3^*$	0	$V(z,y)g_2^*$	0	$V(z,y)g_1^*$	0	$V(z,z)g_0^*$	E(p,c)

Diagonal terms are obtained by the overlap of the same atomic orbital on the same atomic site

Null term are obtain by the overlap of orbitals of different parity on the same atomic site

4 Semiconductor Nanostructures

03/11/2

TB in a zinc-blende lattice and sp orbitals

$$g_0(\mathbf{k}) = \frac{1}{4} \left(+ \exp\left(i\mathbf{k}\,\mathbf{d_1}\right) + \exp\left(i\mathbf{k}\,\mathbf{d_2}\right) + \exp\left(i\mathbf{k}\,\mathbf{d_3}\right) + \exp\left(i\mathbf{k}\,\mathbf{d_4}\right) \right)$$

$$g_1(\mathbf{k}) = \frac{1}{4} \left(+ \exp\left(i\mathbf{k}\,\mathbf{d_1}\right) + \exp\left(i\mathbf{k}\,\mathbf{d_2}\right) - \exp\left(i\mathbf{k}\,\mathbf{d_3}\right) - \exp\left(i\mathbf{k}\,\mathbf{d_4}\right) \right)$$

$$g_2(\mathbf{k}) = \frac{1}{4} \left(+ \exp\left(i\mathbf{k}\,\mathbf{d_1}\right) - \exp\left(i\mathbf{k}\,\mathbf{d_2}\right) + \exp\left(i\mathbf{k}\,\mathbf{d_3}\right) - \exp\left(i\mathbf{k}\,\mathbf{d_4}\right) \right)$$

$$g_3(\mathbf{k}) = \frac{1}{4} \left(+ \exp\left(i\mathbf{k}\,\mathbf{d_1}\right) - \exp\left(i\mathbf{k}\,\mathbf{d_2}\right) - \exp\left(i\mathbf{k}\,\mathbf{d_3}\right) + \exp\left(i\mathbf{k}\,\mathbf{d_4}\right) \right)$$

TB in a zinc-blende lattice and sp orbitals

414

D. J. CHADI and M. L. COHEN

Table 3

Interaction parameters (in eV) appropriate for C, Si, and Ge when second-nearest-neighbor interactions are ignored. The parameter E_s is arbitrary

	E_s	(E_p-E_s)	V_{ss}	V_{sp}	V_{xx}	V_{xy}
9	_	7.40	-15.2	10.25	3.0	8.3
i		7.20	-8.13	5.88	3.17	7.51
łе	-	8.41	-6.78	5.31	2.62	6.82

Table 5

Interaction parameters (in eV) for GaAs and ZnSe. The four intra-atomic parameters E_{s_0} , E_{s_1} , E_{p_0} , and E_{p_1} give information only on the relative energy differences between the tight-binding s- and p-functions. The subscripts 0 and 1 refer to As (or Se) and Ga (or Zn), respectively

1	E_{s_0}	E_{s_1}	E_{p_0}	E_{p_1}	V_{ss}	V_{s_0p}	V_{s_1p}	V_{xx}	V_{xy}
GaAs	-6.01	-4.79	0.19	4.59	-7.00	7.28	3.70	0.93	4.72
ZnSe	-8.92	-0.28	0.12	7.42	-6.14	5.47	4.73	0.96	4.38

6

Semiconductor Nanostructures

03/11/2

TB in a zinc-blende lattice and sp orbitals

Lawrence Berkeley Laboratory, Berkeley, California

Tight-Binding Calculations of the Valence Bands of Diamond and Zincblende Crystals

By

D. J. CHADI and M. L. COHEN

Using the tight-binding method, the valence band structures and densities of states for C, Si, Ge, GaAs, and ZnSe are calculated. Very good agreement is obtained with other cal-

Sp3s* tight binding

A SEMI-EMPIRICAL TIGHT-BINDING THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTORS†

P. VOGL Institut für Theoretische Physik, Universität Graz, Graz, Austria

and

HAROLD P. HJALMARSON[‡] and JOHN D. DOW
Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, U.S.A.

(Received 28 September 1981; accepted 19 November 1981)

(sa) E(s,a)	(s,s)g ₀	(p _x a)	pya)	[pza)	p _x c)	(pyc)	(pgc)	s*a)	s*c)
	V(s,s)g ₀								
			0	0	V(sa,pc)gj	V(sa,pc)g ₂	V(sa,pc)g3	0	0
(a,a)g(*	E(s,c)	-V(pa,sc)g ₁ *	-V(pa,sc)g2*	-V(pa,sc)g ₃ *	0	0	0	0	0
0	-v(pa,sc)g1	E(p,a)	0	0	V(x,x)g ₀	V(x,y)g3	V(x,y)g2	0	-V(pa,s*c)g1
0	-V(pa,sc)g ₂	0	E(p,a)	0	V(x,y)g3	V(x,x)g ₀	V(x,y)g1	0	-V(pe,s*c)g2
0	-V(pa,sc)gg	0	0	E(p,a)	V(x,y)g2	V(x,y)g1	V(x,x)g ₀	0	-V(ps,s*c)g3
(sa,pc)g ₁ *	0	V(x,x)g0*	V(x,y)g3*	V(x,y)g2*	E(p,c)	0	0	V(s*a,pc)g1	0
(sa,pc)g2*	0	V(x,y)g3*	V(x,x)g0*	V(x,y)g1*	0	E(p,c)	0	V(s*s,pc)g2	0
(es,pc)g3*	0	V(x,y)g2*	V(x,y)g1*	V(x,x)g0*	0	0	E(p,c)	V(s*a,pc)g3	0
0	0	0	0	0	V(sta,pc)g1	V(s*a,pc)g2	V(e*a,pc)g3	E(s*,a)	V(s*,s*)g _O
0	. 0	-V(pa,s*c)g ₁ *	-V(pa,s*c)g ₂ *	-V(pa,s*c)g3*	0	0	0	V(s*,s*)g ₀ *	E(a*,c)
4	0 0 0 (8a,pc)8 ₁ * (ea,pc)8 ₂ * (ea,pc)8 ₃ *	0 -v(pa,ac)g ₁ 0 -v(pa,ac)g ₂ 0 -v(pa,ac)g ₃ (sa,pc)g ₁ * 0 (sa,pc)g ₂ * 0 (sa,pc)g ₃ * 0 (sa,pc)g ₃ * 0	0 -v(pa,sc)g ₁ E(p,a) 0 -v(pa,sc)g ₂ 0 0 -v(pa,sc)g ₃ 0 v(x,x)g ₀ * 0 v(x,x)g ₀ * v(x,y)g ₃ * 0 v(x,y)g ₂ * 0 0 0	0 -v(pa,sc)g ₁ E(p,a) 0 0 -v(pa,sc)g ₂ 0 E(p,a) 0 -v(pa,sc)g ₃ 0 0 (sa,pc)g ₁ * 0 v(x,x)g ₀ * v(x,y)g ₃ * (sa,pc)g ₂ * 0 v(x,y)g ₃ * v(x,x)g ₀ * (sa,pc)g ₃ * 0 v(x,y)g ₂ * v(x,y)g ₁ * 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Semiconductor Nanostructures

03/11/2

Sp3s* tight binding

		nts of the	crate the	ugntes tu	order to	eliminat	e any	problem wi	th round-o	ff errors		
Compound					(p,c)	E(5*,a)						
С	-4.54	50 3.84	00 -4	-5450	3.8400	11.3700	11.	3700				
Sí	-4.200	00 1.71			1.7150	6,6850		6850				
Ge	-5.880		00 -5		1.6100	6.3900		3900				
Sn	-5.670	00 1.33			1.3300	5.9000		9000				
SIC	-8.453	7 2.12			4.3466	9.6534		3166				
AlP	-7.846	6 1.31			4.2831	8,7069		4231				
AlAn	-7.527	3 0.98	33 -1		3.5867	7.4833		7267				
Alsb	-6.171	4 0.98			3.0163	6.7607		1543				
CaP	-8.112	4 1.12			4.1150	8.5150		1850				_
GaAs	-8.343				3.6686	8.5014		1380				
GaSb	-7.320		543		2.9146	6.6354		9846				
InP	-8.527	4 0.87			4.0465	8.2635		0665				
InAs	-9.538	1 0.90			3.7201	7.4099		7401				
InSb	-8.015	7 0.67			2.9162	6.4530		9362				
ZnSe	-11.838	3 1.50			.9928	7.5872		9928				
ZnTe	-9.815			9350 5	.2666	7.0834		2666				
Gash	-7.125	0.67	18 -3	7042	2.7312	6.6354		9846				
Compound	V(s,s)	V(x,x)	V(x,y)	V(ss,pc) V(sc.	pa) V(s*	a,pc)	V(pa,8*c)	V(50 tc)	V(sc.te)	V (5 4, pc)	V(ra.
	-22.7250	3.8400	11.6700	15.220	6 15.22	206 0	2100					1 1
Si	-8.3000	1.7150	4.5750				2109	8.2109				
Ge	-6.7800	1.6100	4.9000				3749	5.3749				
Sn	-5.6700	1.3300	4.0800	4.3291			1665	5-2191	4.9617	4.9617	4.5434	4.5434
S1C .	-12.4197	3.0380	5.9216	91490				3.9665	4.2288	4.6288	3.4665	3.966
AIP	-7.4535	2.3749	4.8378	50245			7138	4.4051				
AlAs	-6.6642	1.8780	4.2919	5.110			2508	4.6388				
Alsb	-5.6448	1.7199	3.6648	4.912			5216	4.9950				
GaP	-7.4709	2.1516	5.1369	4.277			5662	3.0739				
GaAs	-6.4513	1.9546	5.0779	4-4800			4422	5.0950				
Cosh	-6-1567-	1.5709-	4-1285	-4.9601				4-8077	4.2485	5.2671	4.7545	4.254
InP	-5.3614	1.8801	4.2324	2.2265			895	4.2180				
Inas	-5.6052	1.8398	4.4693	3.0354			623	4.4814				
InSb	-5.5193	1.4018	3.8761	3.7880			744	3,9097				
ZnSe	-6.2163	3.0054	5.9942	3.4980			666	3.4048				
ZnTe	-6.5765	2,7951	5.4670	5.9827			891	3.9533				
Gasb	-5.9854	1.3546	4.4438	6.169			609	4.4144				

Sp3s* tight binding

Silicon

10

Semiconductor Nanostructures

03/11/2

Sp3s* tight binding

Germanium

Sp3s* tight binding

Gallium Arsenide

12

Semiconductor Nanostructures

03/11/2

Eigenvectors at k=0

$$k=0 \Gamma point$$

 $g_0 \neq 0 g_1 = g_2 = g_3 = 0$

	ϕ_a^s	ϕ_c^s	$\phi_a^{p_x}$	$\phi_c^{p_x}$	$\phi_a^{p_y}$	$\phi_c^{p_y}$	$\phi_a^{p_z}$	$\phi_c^{p_z}$
ϕ_a^s	E(s,a)	$V(s_a, s_c)g_0$	0	0	0	0	0	0
ϕ_c^s	$V(s_a, s_c)g_0^*$	E(s,c)	0	0	0	0	0	0
$\phi_a^{p_x}$	0	0	E(p,a)	$V(z,z)g_0$	0	0	0	0
$\phi_c^{p_x}$	0	0	$V(z,z)g_0^*$	E(p,c)	0	0	0	0
$\phi_a^{p_y}$	0	0	0	0	E(p,a)	$V(z,z)g_0$	0	0
$\phi_c^{p_y}$	0	0	0	0	$V(z,z)g_0^*$	E(p,c)	0	0
$\phi_a^{p_z}$	0	0	0	0	0	0	E(p,a)	$V(z,z)g_0$
$\phi_c^{p_z}$	0	0	0	0	0	0	$V(z,z)g_0^*$	E(p,c)

2 (bonding and antibonding) s-type bands

6 (bonding and antibonding) p-type bands

Table 1: 8×8 secular matrix for the sp^3 tight-binding problem at $\mathbf{k}=0,\,\Gamma$ point.

Eigenvectors along k=[001]

K along [001] Δ $g_0 \neq 0$ $g_3 \neq 0$ $g_1 = g_2 = 0$

	ϕ_a^s	ϕ_c^s	$\phi_a^{p_z}$	$\phi_c^{p_z}$	$\phi_a^{p_x}$	$\phi_c^{p_x}$	$\phi_a^{p_y}$	$\phi_c^{p_y}$
ϕ_a^s	E(s,a)	$V(s_a, s_c)g_0$	0	$V(s_a, p_c)g_3$	0	0	0	0
ϕ_c^s	$V(s_a, s_c)g_0^*$	E(s,c)	$-V(s_c,p_a)g_3^* \\$	0	0	0	0	0
$\phi_a^{p_z}$	0	$-V(s_c, p_a)g_3$	E(p,a)	$V(z,z)g_0$	0	0	0	0
$\phi_c^{p_z}$	$V(s_a, p_c)g_3^*$	0	$V(z,z)g_0^\ast$	E(p,c)	0	0	0	0
$\phi_a^{p_x}$	0	0	0	0	E(p,a)	$V(z,z)g_0$	0	$V(z,y)g_3$
$\phi_c^{p_x}$	0	0	0	0	$V(z,z)g_0^*$	E(p,c)	$V(z,y)g_3^{\ast}$	
$\phi_a^{p_y}$	0	0	0	0	0	$V(z,y)g_3$	E(p,a)	$V(z,z)g_0$
$\phi_c^{p_y}$	0	0	0	0	$V(z,y)g_3^*$	0	$V(z,z)g_0^{\ast}$	E(p,c)

Table 1: 8×8 secular matrix for the sp^3 tight-binding problem along the $\mathbf{k} = [001]$ direction, Δ .

4 (bonding and antibonding) s+p_z bands

4 (bonding and antibonding) p_x and p_y bands

14

Semiconductor Nanostructures

03/11/2

Valence band

Heavy and light holes

In the TB description of semiconductor bandstructure the top of the valence band (VB) originates from p-type states. Some relevant features of the VB can be understood considering a simple cubic latice of p_x , p_y , p_z orbitals.

In this picture we obtain two degenerate 'heavy hole' (HH) band and one "light hole" (LH) band.