Numbers & Indices

Outline

- Real Numbers
- Rational Numbers
- Irrational Numbers
- Integers
- Natural Numbers
- Prime Numbers
- Rules of Indices

Types of Numbers

Real Numbers (R)

- In Mathematics a real number is a value that represents a quantity along a continuous line.
- The Symbol of the set of real numbers is denoted by: R
- Positive or negative, large or small, whole numbers or decimal numbers are all Real Numbers.

Types of Real Numbers (R)

- There are many types of Real Numbers
- Here are some of them
 - Natural numbers
 - Whole numbers
 - Integers
 - Fractions
 - Rational numbers
 - Irrational numbers

Real Numbers

There are two kinds of real numbers:

Rational Numbers (Q)

 In mathematics, a rational number is any number that can be expressed as the quotient or fraction p/q of two integers, p and q, with the denominator q not equal to zero.

E.g.
$$\frac{2}{3}$$
, $\frac{-1}{3}$, $\frac{1}{2}$, 5

Note: 5 is also a rational number since $5 = \frac{5}{1}$

Rational Numbers-Fractions

- We call the top number the **Numerator**.
- We call the bottom number the **Denominator**.

Rational Numbers-Integers (Z)

- Set of numbers that consists of positive and negative whole numbers including zero is called Integers.
- Integers are denoted by (\mathbb{Z})
- We can write them as $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- Examples of integers: -16, -3, 0, 1, 198

Irrational Numbers

 If a number cannot be expressed as the quotient or fraction p/q of two integers, p and q, with the denominator q not equal to zero, then, the number is called an irrational number.

E.g.
$$\sqrt{2}$$
 , π , $\frac{\sqrt{3}}{3}$ are irrational numbers

Different Types of Decimal Numbers

Terminating Decimals

- 3/4 = 0.75
- Rational Number

Non terminating - Recurring decimals

- 2/3 = 0.666...
- Rational Number

Non terminating-Non recurring decimal

- $\sqrt{2}$ = 1.414...
- Irrational Number

Q1) Identify which of the following are rational / irrational numbers.

- 1. 2
- 2.5
- 3. 0.333...
- 4.0.666
- 5.0.125
- $6.\sqrt{5}$
- 7. $2\sqrt{3}$
- 8. $\frac{\sqrt{64}}{\sqrt{169}}$

1.
$$9\frac{5}{4}$$

- $2.\sqrt{53}$
- $3. \frac{2\pi}{7}$
- 4. $\frac{\sqrt{5}}{5}$
- *5.* −1.508
- 6. $\sqrt{36}$
- 7. 10
- 8. 0.3434...

Integers

Natural Numbers and Whole Numbers

- Positive integers excluding zero are called "Natural Numbers".
- Includes:
 - the counting numbers **{1, 2, 3, 4 ...}**

- Positive integers including zero are called "Whole Numbers".
- Includes:
 - numbers {0, 1, 2, 3, 4 ...}

Prime Numbers

- If a natural number r excluding 1 is divisible by r alone, then r is known as a "**Prime Number**".
 - Example { 2, 3, 5, 7, 11, 13, 17 ...},
- Numbers which are not prime are called "Composite Numbers".

• 0,1 are neither prime nor composite.

Q2) Find all the prime numbers less than 50.

Q3) Apart from 2 are there any even-numbers that could be treated as Prime Numbers?

Complex Numbers (C)

• A number of the form a + ib where a and b are real numbers.

•
$$i^2 = -1$$
 where $i = \sqrt{-1}$.

- A complex number has two part:
 - Real part: *a*
 - Imaginary part: *b*

Example: 2 + 3i, i, -3i ...

Different Number Sets

Rules of Indices

Rules of Indices

- Indices are a useful way of more simply expressing large numbers.
- To manipulate expressions, we can consider using the following Laws of Indices.

Rule 1	$a^m \times a^n = a^{(m+n)}$
Rule 2	$(a^m)^n = a^{m \times n}$
Rule 3	$a^m \div a^n = a^{(m-n)}$
Rule 4	$a^m = \frac{1}{a^{-m}}$ and $a^{-m} = \frac{1}{a^m}$
Rule 5	$a^0 = 1$
Rule 6	$a^{\frac{1}{m}} = \sqrt[m]{a}$ and $a^{m/n} = \sqrt[n]{a^m}$
Rule 7	$(ab)^m = a^m \times b^m$
Rule 8	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

Examples

- 1) Rule 1: $2^3 \times 2^2 = 2^{(3+2)} = 2^5 = 32$
- 2) Rule 2: $(2^3)^2 = 2^{(6)} = 64$
- 3) Rule 3: $2^3 \div 2^2 = 2^{(3-2)} = 2$
- 4) Rule 4: $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$ and $2^3 = \frac{1}{2^{-3}}$
- 5) Rule 6: $2^{\frac{1}{3}} = \sqrt[3]{2}$ and $2^{\frac{2}{3}} = \sqrt[3]{2^2} = \sqrt[3]{4} = 4^{\frac{1}{3}}$
- 6) Rule 7: $(2 \times 3)^2 = 2^2 \times 3^2 = 4 \times 9 = 36$
- 7) Rule 8: $\left(\frac{2}{3}\right)^2 = \frac{2^2}{3^2} = \frac{4}{9}$

Answer the following questions

Q1) Find the simplified form of the following. Each expression should have positive exponents.

- $(p^5)^4$
- ii. $(p^4)^5$
- iii. $(p^{-5})^4$
- iv. $y^3(y^{-5})^2$
- v. $(4m)^3$
- vi. $\frac{1}{y^{-4}}$ vii. $(2x^3y^{-3})^{-2}$

Q2) Simplify each expression.

i.
$$3^2(3x)^3$$

ii.
$$(4.1)^5(4.1)^{-5}$$

iii.
$$(b^5)^3b^2$$

iv.
$$(-5x)^2 + 5x^2$$

v.
$$(-2a^2b)^3(ab)^3$$

vi.
$$(2x^{-3})^2(0.2x)^2$$

vii.
$$4xy^20^4(-y)^{-3}$$

viii.
$$(10^3)^4(4.3 \times 10^{-8})$$

ix.
$$(3^7)^2(3^{-4})^3$$

x.
$$(2xy^4)(xy)^6$$

Q3) Complete each equation.

i.
$$(b^2)^{\Box} = b^8$$

ii.
$$\left(m^{\square}\right)^3 = m^{-12}$$

iii.
$$\left(x^{\square}\right)^7 = x^6$$

iv.
$$(n^9)^{\square} = 1$$

v.
$$(y^{-4})^{\square} = y^{12}$$

vi.
$$7(c^1)^{\Box} = 7c^8$$

vii.
$$(5x^{-})^2 = 25x^{-4}$$

viii.
$$(3x^3y^{\Box})^3 = 27x^9$$

ix.
$$(m^2n^3)^{-} = \frac{1}{m^6n^9}$$

$$x. \qquad \frac{a^{\square}b^2}{a^2b^{\square}} = \frac{a}{b^2}$$

Q4) Solve each equation. Use the fact that if $a^x = a^y$ then x = y.

i.
$$5^x = 25^x$$

ii.
$$3^x = 27^4$$

iii.
$$8^2 = 2^x$$

iv.
$$4^x = 2^6$$

v.
$$3^{2x} = 9^4$$

vi.
$$2^x = \frac{1}{32}$$

vii.
$$(27)^{2/3} = 3^x$$

Q5) What is the simplified form of each expression?

- i. $\frac{y^5}{y^4}$
- ii. $\frac{d^3}{d^9}$
- iii. $\frac{k^6 j^2}{k i^5}$
- iv. $\frac{a^{-3}b^7}{a^5b^2}$
- $V. \qquad \frac{x^4 y^{-1} z^8}{z x^4 y^5}$

Thank You!