COSC 290 Discrete Structures

Lecture 7: Argument Checking

Prof. Michael Hay Monday, Sep. 13, 2017 Colgate University

Entailment and tautologies

Plan for today

- 1. Entailment and tautologies
- 2. Proving a sentence is a tautology
- 3. Converting to CNF

Wumpus World

gold.

An logical agent would like to use its

 $\mbox{\it KB} = \mbox{\it wumpus-world rules} + \mbox{\it observations}$ to safely navigate the world and gather the

4	trust	(Table 1	PIT
а	1	PIT	(Process
2	treet	Paris i	
1	P START	RT	Fine:

Example from Wumpus World

Let

- φ₁ := b₁,₁ ⇔ (p₁,₂ ∨ p₂,₁)
 ("A square is breezy iff there is an adjacent pit.")
- $\varphi_2 := \neg b_{1,1}$ ("No breeze in [1,1]")
- $KB := \varphi_1 \wedge \varphi_2$
- $\alpha := \neg p_{1,2}$ ("[1,2] has no pit")

If $KB \models \alpha$, then agent is 100% certain that [1,2] is safe.

Credit: slides adapted from Russell & Norvig, At: A Modern Approach

(Recall from Lecture 6) Tautology

A proposition ψ is a tautology if it is true under every assignment of its variables. In other words, ψ is a tautology if $\psi \equiv true$.

Examples:

- p ∨ ¬p
- $\cdot q \Longrightarrow q$
- $p \land (p \implies q) \implies q \pmod{\text{modus ponens}}$
- $(p \implies q) \land \neg q \implies \neg p \text{ (modus tollens)}$

(Recall from Lecture 6) Entailment

Entailment means that one thing follows from another:

$$KB \models \alpha$$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true.

Ex: the KB containing "the Patriots won" entails "Either the Patriots won or the Packers won."

Ex: the KB containing rules of algebra and the fact x + y = 4 entails y = 4 - x.

Credit: slides adopted from Russell & Norvig, At: A Modern Approach

Entailment and propositional logic

Let $\it KB$ be a sentence in propositional logic.

Let α be a sentence in propositional logic.

The deduction theorem states that

 $\mathit{KB} \models \alpha \text{ if and only if } (\mathit{KB} \implies \alpha) \text{ is a tautology.}$

5

The agent needs an inference algorithm to show that (KB $\implies \alpha$) is a tautology.

Today: a look at algorithms for proving tautologies Lab 2: implementing a specific algorithm

Proving a sentence is a tautology

Ways to prove a sentence is a tautology

There are basically two ways to show $\psi \implies \varphi$ is a tautology:

- 1. Using a truth table.
 - Make a truth table with columns for ψ and φ .
 - Check that whenever ψ is true, φ is also true. (What about when ψ is false?)
- 2. Using known logical equivalences.
 - · Step-by-step approach, resembling a proof.
 - Start with this sentence ψ ⇒ φ and gradually transform it into simpler but equivalent sentence until eventually the sentence reduces to True.

Today: we will focus on approach 2.

Our Approach

- Given sentence S₁ := (ψ ⇒ φ), convert S₁ into an equivalent sentence S₂ where S₂ is in conjunctive normal form.
- 2. Check whether S2 is a tautology. (This step is easy.)

8

.

Conjunctive Normal Form

A proposition is in conjunctive normal form (CNF) if it is the conjunction of one or more clauses where each clause is the disjunction of one or more literals.

A literal is an atomic proposition or the negation of an atomic proposition (i.e. it's either p or $\neg p$ for some variable p).

Poll

Which of these propositions is not in CNE?

- A) ¬p
- B) p ∨ q
- C) $(p \lor q) \land (r \lor s)$ D) $(p \land q) \lor (r \land \neg p)$
- E) More than one is not CNF / All are in CNF

(Definition restated here)
A proposition is in CNF
if it is the conjunction
of one or more clauses
where each clause is the
disjunction of one or
more literals.

A literal is an atomic proposition or the negation of an atomic proposition (i.e. it's either p or ¬p for some variable p).

Checking a CNF sentence for tautology

If S is a proposition in CNF. Then checking for a tautology is easy.

- · S is a tautology if and only if each clause is a tautology.
- A clause from a CNF is a tautology if and only if it contains a literal and its opposite.

illustrate this on the board

Poll: is this CNF a tautology?

Consider

$$\varphi := (p \lor q \lor \neg p) \land (r \lor p \lor q \lor \neg q) \land \neg r$$

Is φ in CNF? Is φ a tautology?

- A) CNF: yes, tautology: yes
- B) CNF: yes, tautology: no
- C) CNF: no, tautology: yes
- D) CNF: no, tautology: no

11

Converting to CNF

ReplaceIf

Last lecture we looked closely at operators \iff , \implies , \oplus and showed each operator is logically equivalent to some expression involving only $\{\lor,\land,\lnot\}$.

Example: $\varphi \implies \psi \equiv \neg \varphi \lor \psi$

Let's think about how we could write a recursive algorithm for replacing every "if" statement (i.e., \implies operator).

Shown on board

Conversion process

Given φ not in CNF, we can convert to CNF by following these steps:

- Replace "unecessary" operators like ⇔, ⇒, ⊕ with a logically equivalent expression. Result: φ has only {∨, ∧, ¬} connectives.
- 2. Push negations down to obtain negation normal form. Result: the *only* places where \neg appears in φ is on a literal.
- 3. Distribute Or over And. Result: φ is in CNF.

Let's look at these steps in detail with a running example:

 $(p \land (p \implies q)) \implies q.$

Negation Normal Form

A sentence is in negation normal form if the negation connective is applied only to atomic propositions (i.e. variables) and not to more complex expressions. Furthermore, the only connectives allowed are \wedge , \vee , and \neg .

Yes:
$$\neg p \land (\neg p \lor q)) \lor \neg q$$

No:
$$\neg(p \land (\neg p \lor q)) \lor q$$

Exercise: Negation Normal Form

Given

$$\varphi := \neg(p \land (\neg p \lor q)) \lor q$$

let's write it in negation-normal form by "pushing negations down."
Hint: double negation and De Morgan's laws are useful.

$$\begin{array}{cccc} \neg(\neg\alpha) & \equiv & \alpha & \text{double-negation elimination} \\ \neg(\alpha \land \beta) & \equiv & (\neg\alpha \lor \neg\beta) & \text{De Morgan's law #1} \\ \neg(\alpha \lor \beta) & \equiv & (\neg\alpha \land \neg\beta) & \text{De Morgan's law #2} \\ \end{array}$$

17

Poll: thinking recursively

Imagine we have are defining a recursive function <code>DistOrOverAnd</code> that takes in a sentence φ that is in negation-normal form and returns a sentences in CNF. In other words, the function distributes ORs over ANDS.

Suppose

$$\varphi := \varphi_1 \vee \varphi_2$$

and we make recursive calls

$$\varphi_1 = DistOrOverAnd(\varphi_1)$$

and

$$\varphi_2 = DistOrOverAnd(\varphi_2)$$

Is $\varphi_1 \vee \varphi_2$ now in CNF?

Δ) Ves

B) Not necessarily

Distributing OR over AND

The last step is to distribute OR over AND

$$(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$$
 distributivity of \lor over \land

Example shown on board.