Section 1.5 – Exponential and Logarithmic Equations

Properties of Logarithms For M > 0 and N > 0

Product Rule $\log_b MN = \log_b M + \log_b N$

Power Rule $\log_b M^p = p \log_b M$

Quotient Rule $\log_b \frac{M}{N} = \log_b M - \log_b N$

Example

Express $\log_a \frac{x^3 \sqrt{y}}{z^2}$ in terms of logarithms of x, y, and z.

Solution

$$\log_a \frac{x^3 \sqrt{y}}{z^2} = \log_a x^3 y^{1/2} - \log_a z^2$$

$$= \log_a x^3 + \log_a y^{1/2} - \log_a z^2$$

$$= 3\log_a x + \frac{1}{2}\log_a y - 2\log_a z$$
Power Rule

Example

Express as one logarithm: $\frac{1}{3}\log_a(x^2-1)-\log_a y-4\log_a z$

$$\frac{1}{3}\log_{a}\left(x^{2}-1\right)-\log_{a}y-4\log_{a}z=\log_{a}\left(x^{2}-1\right)^{1/3}-\log_{a}y-\log_{a}z^{4} \qquad \textit{Power Rule}$$

$$=\log_{a}\sqrt[3]{x^{2}-1}-\left(\log_{a}y+\log_{a}z^{4}\right) \qquad \textit{Factor (-)}$$

$$=\log_{a}\sqrt[3]{x^{2}-1}-\left(\log_{a}yz^{4}\right) \qquad \textit{Product Rule}$$

$$=\log_{a}\frac{\sqrt[3]{x^{2}-1}}{\sqrt[3]{x^{4}}} \qquad \textit{Quotient Rule}$$

Exponential Functions are One-to-One

$$b^{\mathbf{M}} = b^{\mathbf{N}} \iff \mathbf{M} = \mathbf{N} \text{ for any } b > 0, \neq 1$$

Example

Solve
$$8^{x+2} = 4^{x-3}$$

Solution

$${23}x+2 = {22}x-3$$

$$23(x+2) = 22(x-3)$$

$$3(x+2) = 2(x-3)$$

$$3x+6=2x-6$$

$$3x-2x=-6-6$$

$$x=-12$$

Using Natural Logarithms

- 1. Isolate the exponential expression
- 2. Take the natural logarithm on both sides of the equation
- 3. Simplify using one of the following properties: $\ln b^x = x \ln b$ or $\ln e^x = x$
- 4. Solve for the variable

Example

Solve the equation $3^x = 21$

1 st method		2 nd m	2 nd method	
$3^{x} = 21$	ln both sides	$3^x = 21 \Rightarrow x = \log_3 21$	Convert to log form	
$\ln 3^x = \ln 21$		$x = \frac{\ln 21}{\ln 3}$	Change of base	
$x \ln 3 = \ln 21$		ln 3		
$x = \frac{\ln 21}{\ln 3}$				

Example

Solve the equation $5^{2x+1} = 6^{x-2}$

Solution

$$\ln 5^{2x+1} = \ln 6^{x-2}$$

$$(2x+1)\ln 5 = (x-2)\ln 6$$

$$2x\ln 5 + \ln 5 = x\ln 6 - 2\ln 6$$

$$2x\ln 5 - x\ln 6 = -2\ln 6 - \ln 5$$

$$x(2\ln 5 - \ln 6) = -\ln 6^2 - \ln 5$$

$$x(\ln 5^2 - \ln 6) = -(\ln 36 + \ln 5)$$

$$x(\ln \frac{25}{6}) = -\ln(36 \times 5)$$

$$|x| = -\frac{\ln(180)}{\ln \frac{25}{6}} \approx -3.64$$

Example

Solve the equation $\frac{5^x - 5^{-x}}{2} = 3$

$$5^{x} - 5^{-x} = 6$$

$$5^{x} - 5^{-x} = 65^{x}$$

$$5^{x} - 5^{-x} = 65^{x}$$

$$5^{x} - 5^{-x} = 65^{x}$$

$$5^{x} - 1 = 6 = 65^{x}$$

$$1 - 1 = 65^{x}$$

Logarithmic Equations

- **1.** Express the equation in the form $\log_b M = c$
- 2. Use the definition of a logarithm to rewrite the equation in exponential form:

$$\log_{\mathbf{h}} M = c \implies \mathbf{b}^{\mathbf{c}} = M$$

- 3. Solve for the variable
- **4.** Check proposed solution in the original equation. Include only the set for M > 0

Example

Solve: $\log x + \log(x - 3) = 1$

Solution

$$\log[x(x-3)] = 1$$

$$x(x-3) = 10^{1}$$

$$x^{2} - 3x = 10$$

$$x^{2} - 3x - 10 = 0$$

$$\Rightarrow x = -2, 5$$

Product Rule

Convert to exponential form

Solve for x

Check:
$$x = -2 \Rightarrow \log(-2) + \log(x - 3) = 1$$

 $x = 5 \Rightarrow \log(5) + \log(5 - 3) = 1$

Example

Solve the equation $\log_2 x + \log_2 (x+2) = 3$

$$\log_2[x(x+2)] = 3$$
 Product Rule
$$x(x+2) = 2^3$$
 Change to exponential form
$$x^2 + 2x - 8 = 0$$
 Solve for x

$$x = -4 \quad x = 2$$

Check:
$$\log_2(-4) + \log_2(-4+2) = 3$$
 Not a solution (negative inside the log) $\log_2(2) + \log_2(2+2) = 3$ Only solution

Property of Logarithmic Equality

The logarithmic function with base b is 1-1. Thus the following equivalent conditions are satisfied for positive real numbers M and N.

For any
$$M > 0$$
, $N > 0$, $b > 0$, $\neq 1$

If $\log_b M = \log_b N \implies M = N$

If $M \neq N \implies \log_b M \neq \log_b N$

Example

Solve the equation $\log_6 (4x-5) = \log_6 (2x+1)$

Solution

$$\log_{6}(4x-5) = \log_{6}(2x+1)$$

$$4x-5 = 2x+1$$

$$4x-2x = 5+1$$

$$2x = 6$$

$$x = 3$$
Check:
$$\log_{6}(4(3)-5) = \log_{6}(2(3)+1)$$

$$\log_{6}(7) = \log_{6}(7)$$
True statement
$$\boxed{x=3}$$
 is a solution

Example

Solve the equation $\ln(x+6) - \ln 10 = \ln(x-1) - \ln 2$

$$\ln(x+6) - \ln 10 = \ln(x-1) - \ln 2$$

$$\ln(x+6) - \ln(x-1) = \ln 10 - \ln 2$$

$$\ln\left(\frac{x+6}{x-1}\right) = \ln\frac{10}{2}$$

$$\frac{x+6}{x-1} = 5$$

$$x+6 = 5(x-1)$$

$$x+6 = 5x-5$$

$$x-5x = -5-6$$

$$-4x = -11$$

$$x = \frac{11}{4}$$

Check:
$$\ln\left(\frac{11}{4} + 6\right) - \ln 10 = \ln\left(\frac{11}{4} - 1\right) - \ln 2$$

 $\ln\left(\frac{35}{4}\right) - \ln 10 = \ln\left(\frac{7}{4}\right) - \ln 2$

$$x = \frac{11}{4}$$
 is the solution

Example

Solve the equation $\log \sqrt[3]{x} = \sqrt{\log x}$ for x.

Solution

$$\log x^{1/3} = \sqrt{\log x}$$
$$\left(\frac{1}{3}\log x\right)^2 = \left(\sqrt{\log x}\right)^2$$
$$\frac{1}{9}(\log x)^2 = \log x$$

$$(\log x)^2 = 9\log x$$

$$(\log x)^2 - 9\log x = 0$$

$$\log x (\log x - 9) = 0$$

$$\log x = 0 \qquad \log x - 9 = 0$$

$$\boxed{x = 1} \qquad \log x = 9$$

$$\boxed{x = 10^9}$$

Check:
$$x = 1 \implies \log \sqrt[3]{1} = \sqrt{\log 1} \rightarrow 0 = 0$$

$$x = 10^9 \implies \log \sqrt[3]{10^9} = \sqrt{\log 10^9} \rightarrow 3 = 3$$

The equation has two solutions: $\underline{x = 1, 10^9}$

Example (hyperbolic secant function)

Solve the equation $y = \frac{2}{e^x + e^{-x}}$ for x in terms of y.

$$y = \frac{2}{e^{x} + e^{-x}}$$

$$y(e^{x} + e^{-x}) = 2$$

$$ye^{x} + ye^{-x} = 2$$

$$ye^{x}e^{x} + ye^{-x}e^{x} = 2e^{x}$$

$$y(e^{x})^{2} - 2e^{x} + y = 0$$

$$e^{x} = \frac{2 \pm \sqrt{4 - 4y^{2}}}{2y}$$

$$= \frac{2 \pm \sqrt{4(1 - y^{2})}}{2y}$$

$$= \frac{2 \pm 2\sqrt{1 - y^{2}}}{2y}$$

$$= \frac{1 \pm \sqrt{1 - y^{2}}}{y}$$

$$\ln e^{x} = \ln \left(\frac{1 \pm \sqrt{1 - y^{2}}}{y}\right)$$

$$x = \ln \frac{1 \pm \sqrt{1 - y^{2}}}{y}$$

Exercises Section 1.5 – Exponential and Logarithmic Equations

(1-31) Express the following in terms of sums and differences of logarithms

1. $\log_3(ab)$

2. $\log_{7}(7x)$

 $3. \quad \log \frac{x}{1000}$

 $4. \qquad \log_5\left(\frac{125}{y}\right)$

 $5. \quad \log_b x^7$

6. $\ln \sqrt[7]{x}$

 $7. \quad \log_a \frac{x^2 y}{z^4}$

 $8. \quad \log_b \frac{x^2 y}{b^3}$

 $9. \quad \log_b \left(\frac{x^3 y}{z^2} \right)$

 $10. \quad \log_b \left(\frac{\sqrt[3]{x}y^4}{z^5} \right)$

11. $\log \left(\frac{100x^3 \sqrt[3]{5-x}}{3(x+7)^2} \right)$

12. $\log_a \sqrt[4]{\frac{m^8 n^{12}}{a^3 b^5}}$

13. $\log_p \sqrt[3]{\frac{m^5 n^4}{t^2}}$

14. $\log_b \sqrt[n]{\frac{x^3 y^5}{z^m}}$

 $15. \quad \log_a \sqrt[3]{\frac{a^2 b}{c^5}}$

16. $\log_b \left(x^4 \sqrt[3]{y} \right)$

 $17. \quad \log_5\left(\frac{\sqrt{x}}{25y^3}\right)$

18. $\log_a \frac{x^3 w}{y^2 z^4}$

 $19. \quad \log_a \frac{\sqrt{y}}{x^4 \sqrt[3]{z}}$

20. $\ln 4 \sqrt{\frac{x^7}{y^5 z}}$

21. $\ln x \sqrt[3]{\frac{y^4}{z^5}}$

22. $\log_b \sqrt[5]{\frac{m^4 n^5}{x^2 a b^{10}}}$

23. $\log_b \frac{a^5 b^{10}}{c^2 \sqrt[4]{d^3}}$

 $24. \quad \ln\left(x^2\sqrt{x^2+1}\right)$

25. $\ln \frac{x^2}{x^2 + 1}$

26. $\ln\left(\frac{x^2(x+1)^3}{(x+3)^{1/2}}\right)$

27. $\ln \sqrt{\frac{(x+1)^5}{(x+2)^{20}}}$

28. $\ln \frac{(x^2+1)^5}{\sqrt{1-x}}$

29. $\ln \left(\sqrt[3]{\frac{x(x+1)(x-2)}{(x^2+1)(2x+3)}} \right)$

 $30. \quad \ln\left(\sqrt{\frac{1}{x(x+1)}}\right)$

31. $\ln\left(\sqrt{(x^2+1)(x-1)^2}\right)$

(32-55) Write the expression as a single logarithm and simplify if necessary

32. $\log(x+5) + 2\log x$

33. $3\log_b x - \frac{1}{3}\log_b y + 4\log_b z$

34. $\frac{1}{2}\log_b(x+5) - 5\log_b y$

35. $\ln(x^2 - y^2) - \ln(x - y)$

 $36. \quad \ln\left(xz\right) - \ln\left(x\sqrt{y}\right) + 2\ln\frac{y}{z}$

 $37. \quad \log(x^2y) - \log z$

38. $\log(z^2\sqrt{y}) - \log z^{1/2}$

39. $2\log_a x + \frac{1}{3}\log_a (x-2) - 5\log_a (2x+3)$

- **40.** $5\log_a x \frac{1}{2}\log_a (3x 4) 3\log_a (5x + 1)$ **48.** $\frac{1}{2}\log_y p^3 q^4 \frac{2}{3}\log_y p^4 q^3$
- **41.** $\log(x^3y^2) 2\log(x\sqrt[3]{y}) 3\log(\frac{x}{y})$
- **42.** $\ln y^3 + \frac{1}{3} \ln \left(x^3 y^6 \right) 5 \ln y$
- **43.** $2 \ln x 4 \ln \left(\frac{1}{y} \right) 3 \ln (xy)$
- **44.** $4 \ln x + 7 \ln y 3 \ln z$
- **45.** $\frac{1}{3} \left[5 \ln(x+6) \ln x \ln(x^2 25) \right]$
- **46.** $\frac{2}{3} \left[\ln \left(x^2 4 \right) \ln \left(x + 2 \right) \right] + \ln (x + y)$
- **47.** $\frac{1}{2}\log_{h}m + \frac{3}{2}\log_{h}2n \log_{h}m^{2}n$
- (56 169) Solve the equations

56.
$$2^x = 128$$

57.
$$3^x = 243$$

58.
$$5^x = 70$$

59.
$$6^x = 50$$

60.
$$5^x = 134$$

61.
$$7^x = 12$$

62.
$$9^x = \frac{1}{\sqrt[3]{3}}$$

63.
$$49^x = \frac{1}{343}$$

64.
$$2^{5x+3} = \frac{1}{16}$$

65.
$$\left(\frac{2}{5}\right)^x = \frac{8}{125}$$

66.
$$2^{3x-7} = 32$$

67.
$$4^{2x-1} = 64$$

68.
$$3^{1-x} = \frac{1}{27}$$

69.
$$2^{-x^2} = 5$$

48.
$$\frac{1}{2}\log_y p^3 q^4 - \frac{2}{3}\log_y p^4 q^3$$

49.
$$\frac{1}{2}\log_a x + 4\log_a y - 3\log_a x$$

50.
$$\frac{2}{3} \left[\ln \left(x^2 - 9 \right) - \ln \left(x + 3 \right) \right] + \ln \left(x + y \right)$$

51.
$$\frac{1}{4}\log_b x - 2\log_b 5 - 10\log_b y$$

52.
$$2 \ln (x+4) - \ln x - \ln (x^2-3)$$

53.
$$\ln x + \ln (y+3) + \ln (y+2) - \ln (y^2 + 5y + 6)$$

54.
$$\ln x + \ln (x+4) + \ln (x+1) - \ln (x^2 + 5x + 4)$$

55.
$$\ln(x^2-25)-2\ln(x+5)+\ln(x-5)$$

70. $2^{-x} = 8$

71.
$$\left(\frac{1}{3}\right)^x = 81$$

72.
$$3^{-x} = 120$$

73.
$$27 = 3^{5x} 9^{x^2}$$

74.
$$4^{x+3} = 3^{-x}$$

75.
$$2^{x+4} = 8^{x-6}$$

76.
$$8^{x+2} = 4^{x-3}$$

77.
$$7^x = 12$$

78.
$$5^{x+4} = 4^{x+5}$$

79.
$$5^{x+2} = 4^{1-x}$$

80.
$$3^{2x-1} = 0.4^{x+2}$$

81.
$$4^{3x-5} = 16$$

82.
$$4^{x+3} = 3^{-x}$$

83.
$$7^{2x+1} = 3^{x+2}$$

84.
$$3^{x-1} = 7^{2x+5}$$

85.
$$4^{x-2} = 2^{3x+3}$$

86.
$$3^{5x-8} = 9^{x+2}$$

87.
$$3^{x+4} = 2^{1-3x}$$

88.
$$3^{2-3x} = 4^{2x+1}$$

89.
$$4^{x+3} = 3^{-x}$$

90.
$$7^{x+6} = 7^{3x-4}$$

91.
$$2^{-100x} = (0.5)^{x-4}$$

92.
$$4^x \left(\frac{1}{2}\right)^{3-2x} = 8.\left(2^x\right)^2$$

93.
$$5^x + 125(5^{-x}) = 30$$

94.
$$4^x - 3(4^{-x}) = 8$$

95.
$$5^{3x-6} = 125$$

96.
$$e^x = 15$$

97.
$$e^{x+1} = 20$$

98.
$$9e^x = 107$$

99.
$$e^{x \ln 3} = 27$$

100.
$$e^{x^2} = e^{7x-12}$$

101.
$$f(x) = xe^x + e^x$$

102.
$$f(x) = x^3 (4e^{4x}) + 3x^2 e^{4x}$$

103.
$$e^{2x} - 2e^x - 3 = 0$$

104.
$$e^{0.08t} = 2500$$

105.
$$e^{x^2} = 200$$

106.
$$e^{2x+1} \cdot e^{-4x} = 3e^{-4x}$$

107.
$$e^{2x} - 8e^x + 7 = 0$$

108.
$$e^{2x} + 2e^x - 15 = 0$$

109.
$$e^x + e^{-x} - 6 = 0$$

110.
$$e^{1-3x} \cdot e^{5x} = 2e$$

111.
$$6 \ln(2x) = 30$$

112.
$$\log_5(x-7) = 2$$

113.
$$\log_4 (5+x) = 3$$

114.
$$\log(4x-18)=1$$

115.
$$\log_3 x = -2$$

116.
$$\log(x^2 + 19) = 2$$

117.
$$\ln(x^2 - 12) = \ln x$$

118.
$$\log(2x^2 + 3x) = \log(10x + 30)$$

119.
$$\log_5 (2x+3) = \log_5 11 + \log_5 3$$

120.
$$\log_3 x - \log_9 (x + 42) = 0$$

121.
$$\log_5 x + \log_5 (4x - 1) = 1$$

122.
$$\log x - \log(x+3) = 1$$

123.
$$\log x + \log (x - 9) = 1$$

124.
$$\log_2(x+1) + \log_2(x-1) = 3$$

125.
$$\log_8(x+1) - \log_8 x = 2$$

126.
$$\ln(x+8) + \ln(x-1) = 2 \ln x$$

127.
$$\ln(4x+6) - \ln(x+5) = \ln x$$

128.
$$\ln(5+4x) - \ln(x+3) = \ln 3$$

129.
$$\ln \sqrt[4]{x} = \sqrt{\ln x}$$

130.
$$\sqrt{\ln x} = \ln \sqrt{x}$$

131.
$$\log x^2 = (\log x)^2$$

132.
$$\log x^3 = (\log x)^2$$

133.
$$\log(\log x) = 1$$

134.
$$\log(\log x) = 2$$

135.
$$\ln(\ln x) = 2$$

136.
$$\ln\left(e^{x^2}\right) = 64$$

137.
$$e^{\ln(x-1)} = 4$$

138.
$$10^{\log(2x+5)} = 9$$

139.
$$\log \sqrt{x^3 - 9} = 2$$

140.
$$\log \sqrt{x^3 - 17} = \frac{1}{2}$$

141.
$$\log_4 x = \log_4 (8 - x)$$

142.
$$\log_7(x-5) = \log_7(6x)$$

143.
$$\ln x^2 = \ln (12 - x)$$

144.
$$\log_2(x+7) + \log_2 x = 3$$

145.
$$\ln x = 1 - \ln (x + 2)$$

146.
$$\ln x = 1 + \ln (x+1)$$

147.
$$\log_6 (2x-3) = \log_6 12 - \log_6 3$$

148.
$$\log(3x+2) + \log(x-1) = 1$$

149.
$$\log_5(x+2) + \log_5(x-2) = 1$$

150.
$$\log_2 x + \log_2 (x - 4) = 2$$

151.
$$\log_3 x + \log_3 (x+6) = 3$$

152.
$$\log_3(x+3) + \log_3(x+5) = 1$$

153.
$$\ln x = \frac{1}{2} \ln \left(2x + \frac{5}{2} \right) + \frac{1}{2} \ln 2$$

154.
$$\ln(-4-x) + \ln 3 = \ln(2-x)$$

155.
$$\log_4 x + \log_4 (x-2) = \log_4 (15)$$

156.
$$\ln(x-5) - \ln(x+4) = \ln(x-1) - \ln(x+2)$$

157.
$$\ln(4-x) = \ln(x+8) + \ln(2x+13)$$

158.
$$\log(x^2+4) - \log(x+2) = 2 + \log(x-2)$$

159.
$$\log_3(x-2) = \log_3 27 - \log_3(x-4) - 5^{\log_5 1}$$

160.
$$\log_2(x+3) = \log_2(x-3) + \log_3 9 + 4^{\log_4 3}$$

161.
$$\frac{10^x - 10^{-x}}{2} = 20$$

162.
$$\frac{10^x + 10^{-x}}{2} = 8$$

163.
$$\frac{10^x + 10^{-x}}{10^x - 10^{-x}} = 5$$

164.
$$\frac{10^x + 10^{-x}}{10^x - 10^{-x}} = 2$$

165.
$$\frac{e^x + e^{-x}}{2} = 15$$

166.
$$\frac{e^x - e^{-x}}{2} = 15$$

167.
$$\frac{1}{e^x - e^{-x}} = 4$$

168.
$$\frac{e^x + e^{-x}}{e^x - e^{-x}} = 3$$

169.
$$\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = 6$$

(170 - 173) Use common logarithms to solve for x in terms of y

170.
$$y = \frac{10^x + 10^{-x}}{2}$$

172.
$$y = \frac{e^x - e^{-x}}{2}$$

171.
$$y = \frac{10^x - 10^{-x}}{10^x + 10^{-x}}$$

173.
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

174. Solve for *t* using logarithms with base *a*: $2a^{t/3} = 5$

175. Solve for *t* using logarithms with base *a*: $K = H - Ca^t$