Sergio E. Garcia Tapia Algorithms by Sedgewick and Wayne (4th edition) [SW11] September 30th, 2024

1.4: Analysis of Algorithms

Exercise 1. Show that the number of different triples that can be chosen from n items is precisely n(n-1)(n-2)/6. *Hint*: Use mathematical induction or a counting argument.

Solution.

Proof. This is the problem of choosing a combination of 3 out of n, which is given by $\binom{n}{3}$, and

$$\binom{n}{3} = \frac{n!}{3!(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{3!(n-3)!} = \frac{n(n-1)(n-2)}{6}$$

Exercise 2. Modify ThreeSum to work properly even when the int values are so large that adding two of them might cause integer overflow.

Solution. There are two cases when it comes to overflow:

- (i) Positive overflow. The sum exceeds Integer.MAX_VALUE. If two terms sum to Integer.MAX_VALUE + 1, overflow occurs, and the value wraps around to Integer.MIN_VALUE. Thus, if $a + b = \text{Integer.MAX}_{VALUE} + 1$ and $c = \text{Integer.MIN}_{VALUE}$, then we have a valid sum. However, if a + b sums to anything larger, then no value of c will do because c cannot be smaller than Integer.MIN_VALUE.
- (ii) Negative overflow. The sum of two negative numbers a and b, yielding a value below Integer.MIN_VALUE. In this case, it's impossible to have a+b=c for any 32-bit two's complement integer c.

References

[SW11] Robert Sedgewick and Kevin Wayne. *Algorithms*. 4th ed. Addison-Wesley, 2011. ISBN: 9780321573513.