Statistical Properties

Richard Yi Da Xu

School of Computing & Communication, UTS

June 22, 2018

Change in variables

 $\blacktriangleright \text{ Let } y = T(x) \implies x = T^{-1}(y):$

$$F_Y(y) = \Pr(T(X) \le y)$$

= $\Pr(X \le T^{-1}(y))$ preserve the same volume
= $F_X(T^{-1}(y))$
= $F_X(x)$

$$f_{Y}(y) = \frac{dF_{Y}(y)}{dy} = \frac{F_{X}(T^{-1}(y))}{dx} \times \left| \frac{dx}{dy} \right|$$

$$= f_{X}(x) \left| \frac{dx}{dy} \right|$$

$$\implies f_{Y}(y) |dy| = f_{X}(x) |dx| \quad \text{without change of limits}$$

$$f_{Y}(y) dy = f_{X}(x) dx \quad \text{with change of limits}$$

▶ something about using absolute values: compute $\int_0^1 dx$, change of variable u = -x:

$$\int_0^{-1} -1 \ du = \int_{-1}^0 1 \ du = \int_{[-1,0]}^1 1 \ du$$

Some thoughts on Floor function

- ▶ We let $X \sim \text{Exp}(1)$, i.e., $X \sim e^{-x}$.
- $ightharpoonup Y = \lfloor X \rfloor$, and
- $ightharpoonup Z = X \lfloor X \rfloor$

$$Pr(Y = \lfloor x \rfloor) = P(X < (x + 1)) - P(X < x)$$

$$= \int_{t=0}^{x+1} e^{-t} dt - \int_{t=0}^{x} e^{-t} dt$$

$$= e^{-x} - e^{-(x+1)} = e^{-x} (1 - e^{-1})$$

Let
$$0 \le z \le 1$$
:
$$\Pr(Z < z) = \int_{t=0}^{z} \sum_{i=0}^{\infty} \rho(t+i=z+i) dt$$

$$= \int_{t=0}^{z} \sum_{i=0}^{\infty} e^{-(t+i)} dt = \sum_{i=0}^{\infty} \int_{t=0}^{z} e^{-(t+i)} dt$$

$$= \sum_{i=0}^{\infty} \left[-e^{-(t+i)} \right]_{t=0}^{z} = \sum_{i=0}^{\infty} e^{-i} - e^{-(z+i)}$$

$$= \sum_{i=0}^{\infty} e^{-i} (1 - e^{-z}) = (1 - e^{-z}) \sum_{i=0}^{\infty} e^{-i} = (1 - e^{-z}) \frac{1 - (\exp^{-\infty})}{1 - e^{-1}}$$

$$= \frac{1 - e^{-z}}{1 - e^{-1}} \qquad \text{A valid CDF, as } \Pr(Z \le 0) = 0 \text{ and } \Pr(Z \le 1) = 1$$

▶ Therefore, P(Z < z) is independent of $P(Y = \lfloor x \rfloor)$, as it does NOT contain x terms.

Useful inequalities: Markov's inequality

Markovs inequality

Let X be a nonnegative random variable. Then, for any $b \in \mathbb{R}^+$:

$$\Pr(X \ge b) \le \frac{\mathbb{E}[X]}{b}$$

Why?

$$\mathbb{E}[X] = \int_0^\infty x p(x) dx = \int_0^b x p(x) dx + \int_b^\infty x p(x) dx$$

$$\implies \mathbb{E}[X] \ge \int_b^\infty x p(x) dx$$

$$\ge \int_b^\infty b p(x) dx$$

$$= b \int_b^\infty p(x) dx$$

$$= b \Pr(X > b)$$

how is this useful? provides an **upper bound** of probability that a nonnegative random variable is greater than an arbitrary positive constant by relating a probability to an expectation.

Useful inequalities: Chebyshev's inequality

Let X be a nonnegative random variable. Then, for any $b \in \mathbb{R}^+$:

$$\Pr(X \ge b) \le \frac{\mathbb{E}[X]}{b}$$

substitute $X \to (X - \mu)^2$ and $b \to k^2$:

$$\implies \Pr\left((X - \mu)^2 \ge k^2\right) \le \frac{\mathbb{E}[(X - \mu)^2]}{k^2} = \frac{\sigma^2}{k^2}$$

$$\implies \Pr(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$$

substitute $X \to (X - \mu)^2$ and $b \to \sigma^2 k^2$:

$$\implies \Pr\left((X - \mu)^2 \ge \sigma^2 k^2\right) \le \frac{\mathbb{E}[(X - \mu)^2]}{\sigma^2 k^2} = \frac{1}{k^2}$$
$$\implies \Pr(|X - \mu| \ge \sigma k) \le \frac{1}{k^2}$$

Chebyshev's inequality applications (1)

Provides bounds of random variables from any distributions when their means and variances are known. Each k tells us one bound, for example, when k = 2:

$$\begin{split} \Pr(|X - \mu| \geq 2\sigma) &\leq \frac{1}{4} \implies \Pr(\mu - X \geq 2\sigma, \mu + X \geq 2\sigma) \leq \frac{1}{4} \\ &\implies \Pr(X \leq \mu - 2\sigma, X \geq \mu + 2\sigma) \leq \frac{1}{4} \\ &\implies \Pr(\mu - 2\sigma \leq X \geq \mu + 2\sigma) \geq 1 - \frac{1}{4} = \frac{3}{4} \end{split}$$

For Guassian distribution, $\Pr(\mu - 2\sigma \le X \ge \mu + 2\sigma) \approx 0.995$

Chebyshev's inequality applications (2)

Let $X_n \in \text{Gamma}(n, \frac{1}{n})$, therefore:

$$\mathbb{E}[X_n] = n \times \frac{1}{n} = 1$$
 $\mathbb{VAR}[X_n] = n \times \left(\frac{1}{n}\right)^2 = \frac{1}{n}$

Therefore,

$$\Pr(|X - \mu| > k) \le \frac{\sigma^2}{k^2}$$

$$\implies \Pr(|X_n - 1| > \epsilon) \le \frac{\sigma^2}{\epsilon^2} = \frac{1}{n\epsilon^2} \to 0 \quad \text{as } n \to \infty$$

Definition X_n **converges in probability** to the random variable X i.e., $X_n \xrightarrow{P} X$:

$$\Pr(|X_n - X| > \epsilon) \to 0$$
 as $n \to \infty$

Chebyshev's inequality applications (3)

law of large numbers

- Let $X1, X2, ... X_n$ be a sequence of i.i.d. random variables with mean μ and finite variance σ^2
- Let $S_n = \frac{X_1 + X_2 + \dots + X_n}{n}$. $\mathbb{VAR}(aX + bY) = a^2 \mathbb{VAR}(X) + b^2 \mathbb{VAR}(Y)$ if X and Y are independent

$$\mathbb{E}\left[S_{n}\right] = \frac{\mathbb{E}\left[X_{1}\right]}{n} + \dots + \frac{\mathbb{E}\left[X_{n}\right]}{n} = \mu$$

$$\mathbb{VAR}\left[S_{n}\right] = \frac{\mathbb{VAR}\left[X_{1}\right]}{n^{2}} + \dots + \frac{\mathbb{VAR}\left[X_{n}\right]}{n^{2}} = \frac{\sigma^{2}}{n}$$

Therefore,

$$\Pr(|X - \mu| > \epsilon) \le \frac{\mathbb{VAR}[S_n]}{\epsilon^2} \implies \Pr(|S_n - \mu| > \epsilon) \le \frac{\sigma^2}{n\epsilon^2}$$
$$\implies \Pr(|S_n - \mu| > \epsilon) \to 0 \quad \text{as } n \to \infty$$

▶ The law of large numbers states that $S_n \xrightarrow{P} \mu$

$$\Pr(|S_n - \mu| > \epsilon) \to 0$$
 as $n \to \infty$

Uniqueness in almost surely Convergence (1)

▶ X_n converges almost surely (a.s.) to the random variable X as $n \to \infty$ iff:

$$P(\{\omega: X_n(\omega) \to X(\omega)\}) = 1$$
 as $n \to \infty$

- Let $X_1, X_2, \ldots X_n$ be a sequence of random variables. If X_n converges almost surely, then the limiting random variable (distribution) X is unique.
- ▶ Suppose **not** unique: $X_n \xrightarrow{\text{a.s.}} X$ and $X_n \xrightarrow{\text{a.s.}} Y$ as $n \to \infty$.

$$\Phi_X = \{\omega : X_n(\omega) \not\to X(\omega) \text{ as } n \to \infty\} \text{ and }$$

$$\Phi_Y = \{\omega : Y_n(\omega) \not\to X(\omega) \text{ as } n \to \infty\}$$

- ▶ First we proved that $\omega \notin (\Phi_X \cup \Phi_Y) \implies X(\omega) = Y(\omega)$
- ▶ Since $\omega \in (\Phi_X^c \cap \Phi_Y^c) \equiv \omega \notin (\Phi_X \cup \Phi_Y) \equiv \omega \in (\Phi_X \cup \Phi_Y)^c$:

$$|X(\omega) - Y(\omega)| \le |X(\omega) - X_n(\omega)| + |X_n(\omega) - Y(\omega)|$$

$$= |X(\omega) - X(\omega)| + |Y(\omega) - Y(\omega)| \quad \text{as } n \to \infty$$

$$= 0 + 0$$

$$= 0$$

Uniqueness in almost surely Convergence (2)

• We assume there are some domain $\Omega_{\Phi} \subseteq (\Phi_X \cup \Phi_Y)$. such that $\{ \forall \ \omega \in \Omega_{\Phi} : X(\omega) \neq Y(\omega) \}$ as $n \to \infty$:

$$P(X \neq Y) = P(\{\omega \in \Omega_{\Phi} : X(\omega) \neq Y(\omega)\})$$

$$\leq P(\{\omega \in (\Phi_X \cup \Phi_Y)\})$$

$$\leq P(\{\omega \in \Phi_X\} + P\{\omega \in \Phi_Y\})$$

▶ Now, what is the upper-bound $P(\{\omega \in \Phi_X\})$ and $P\{\omega \in \Phi_Y\}$?

If
$$\Phi_X = \{\omega : X_n(\omega) \not\rightarrow X(\omega) \text{ as } n \to \infty\}$$

 $\Longrightarrow \Phi_X^c = \{\omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}$
 $\Longrightarrow P(\Phi_X^c) = 1 \text{ (by definition of almost sure convergence)}$
 $\Longrightarrow P(\Phi_X) = 1 - P(\Phi_X^c) = 0$

- Likewise, $P(\Phi_Y) = 1 P(\Phi_Y^c) = 0$
- Therefore, we proved

$$P(X \neq Y) \leq P(\{\omega \in \Phi_X\} + P\{\omega \in \Phi_Y\}) = 0 + 0 = 0$$

Proof almost surely Convergence ⇒ convergence in probability

• We assume there are some domain $\Omega_{\Phi} \subseteq (\Phi_X \cup \Phi_Y)$. such that $\{ \forall \ \omega \in \Omega_{\Phi} : X(\omega) \neq Y(\omega) \}$ as $n \to \infty$:

$$P(X \neq Y) = P(\{\omega \in \Omega_{\Phi} : X(\omega) \neq Y(\omega)\})$$

$$\leq P(\{\omega \in (\Phi_X \cup \Phi_Y)\})$$

$$\leq P(\{\omega \in \Phi_X\} + P\{\omega \in \Phi_Y\})$$

▶ Now, what is the upper-bound $P(\{\omega \in \Phi_X\})$ and $P\{\omega \in \Phi_Y\}$?

If
$$\Phi_X = \{\omega : X_n(\omega) \not\to X(\omega) \text{ as } n \to \infty\}$$

 $\Longrightarrow \Phi_X^c = \{\omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}$
 $\Longrightarrow P(\Phi_X^c) = 1 \text{ (by definition of almost sure convergence)}$
 $\Longrightarrow P(\Phi_X) = 1 - P(\Phi_X^c) = 0$

- Likewise, $P(\Phi_Y) = 1 P(\Phi_Y^c) = 0$
- Therefore, we proved

$$P(X \neq Y) \leq P(\{\omega \in \Phi_X\} + P\{\omega \in \Phi_Y\}) = 0 + 0 = 0$$

Useful inequalities: Cauchy-Schwarz's inequality

Let X and Y be jointly distributed random variables on $\mathbb R$ with each having finite variance. Then:

$$(\mathbb{E}[XY])^2 \leq E[X^2]E[Y^2]$$

Inverse of a Low-rank Matrix

Woodbury matrix identity, which says:

$$\underbrace{(A + UCV)^{-1}}_{N \times N} = A^{-1} - A^{-1} U \underbrace{(C^{-1} + VA^{-1}U)^{-1}}_{M \times M} VA^{-1}$$

This is particularly useful when we have problems such as:

$$\left(\sigma^2 I_{n \times n} + \sum_{i=1}^{M} v_i v_i^T\right)^T$$

```
N = 10;
M = 3;
sigma = 1;
U = randn(N,M); V = randn(M,N);
A = sigma * eye(N); C = randn(M,M);
answer1 = inv(A + U*C*V);
display(answer1);
answer2 = inv(A) - inv(A)*U * inv(inv(C) + V * inv(A)*U ) * V*inv(A);
display(answer2);
```