Summary Report: House Price Prediction

Introduction

This project aims to predict house prices using the **Ames Housing Dataset**. The approach includes **data preprocessing, feature engineering, exploratory data analysis, model training, and evaluation**. Two machine learning models—**Random Forest Regression** and **Neural Network Regression**—were compared based on their performance.

Data Preprocessing & Feature Engineering

Dataset Overview

- The dataset contains 2930 observations and 82 features.
- Only the most relevant features were selected.

Data Cleaning

- Missing values were identified and handled using median imputation for numerical features and 'Unknown' category for categorical features.
- The dataset was transformed by one-hot encoding categorical features and standardizing numerical features.

Exploratory Data Analysis

Several visualizations were used to understand the dataset:

- **Correlation Heatmap**: Showed strong correlations between SalePrice and variables like Overall Qual, Gr Liv Area and Garage Cars.
- Histograms and Scatter Plots: Helped in identifying distributions and relationships between features.
- **Bar Plots**: Showed the effect of categorical variables like Neighborhood, Kitchen Qual and Bsmt Qual on sale price.

Model Training and Results

Random Forest Regression

- A Random Forest Regressor was trained on the dataset.
- Initial prformance:
 - Mean Absolute Error (MAE): 17,131

- Root Mean Squared Error (RMSE): 29,788
- o R-squared (R2): 0.878

Hyperparameter Tuning

- **Hyperparameter tuning** done using Grid Search, leading to the best parameters:
 - Best parameters: max_depth=15, min_samples_leaf=1, min_samples_split=2,
 n estimators=150
- After tuning, model performance:
 - o R² Score: 0.882

Neural Network Regression

- A **Neural Network Model** was built using PyTorch:
 - o **Input Layer**: Number of features
 - Hidden Layers: Two layers with ReLU activation and dropout (0.2)
 - Output Layer: Single node for regression
- Training was done for 150 epochs with Adam optimizer and MSE Loss.
- Final result:
 - o R² Score: 0.822

Model Comparison & Conclusion

- The Random Forest model performed better with an R² score of 0.882, compared to 0.822 from the Neural Network.
- A bar chart comparison confirmed that Random Forest was the more accurate model.
- **Final Conclusion**: Random Forest is the preferred model for predicting house prices due to its better accuracy and stability.

This report outlines the **key steps**, **insights**, **and model comparisons** for predicting house prices. The Random Forest model was found to be the best performer based on R2 score.