Online Participatory Budgeting

Matthieu Hervouin ¹ Jan Maly ²

¹LAMSADE, Université Paris Dauphine ²DBAI, TU Wien

16th September, 2024

Outline

- 1 Introduction to Online Optimization
- Introduction to Participatory Budgeting
- 3 Online Participatory Budgeting

Online LP

Borodin and El-Yaniv [2005]

$$\max_{s.t.} c^T x$$

$$s.t. \quad Ax \le b$$

$$x \ge 0$$

Object x come 1 by 1

Online Knapsack/ Secretary problem

Marchetti-Spaccamela and Vercellis [1995], Bateni et al. [2013]

- Utility function f
- Constraint (Cardinal or Knapsack)
- Look for approx guarantees

Results

- no constant approx Marchetti-Spaccamela and Vercellis [1995], Chakrabarty et al. [2008]
- 1/10e approx by Babaioff et al. [2007] for random order
- 1/2e approx by Vaze [2017] for small individual contributions

The setting

Budget b = 50

project	cost	votes
chocolate cake	50	
carrot cake	20	
banana bread	30	

Most common type of vote \rightarrow approval $(A = A_1, \dots, A_n)$

How to take votes into account?

Welfarist rules (score maximization)

- Approval Voting: number of approved projects
- Proportional Approval Voting: $1 + \frac{1}{2} + \ldots + \frac{1}{\Delta V}$

Method of Equal Shares

Peters et al. [2021]

Figure: https://equalshares.net

How to evaluate an outcome?

Rey and Maly [2023]

Definition

Priceability: Possible to explain outcome by a contribution graph

Definition

Local Fair Share: equal contribution function \Rightarrow no more project affordable

Definition

Cohesiveness: For $S \subseteq N$, $Q \subseteq P$ if $\frac{|S|}{n} \ge \frac{c(Q)}{b}$ and $\forall i \in S$, $Q \subseteq A_i$. Proportionality: S is Q-cohesive, $\mathsf{sat}_S(\pi) \ge \mathsf{sat}_S(Q)$.

About proportionality

Definition

Satisfaction Function: mapping from $\mathcal{P}(P)$ to \mathbb{R}

Different variations

- Perfect Justified Representation: $\operatorname{sat}_S(\pi) = \min_{i \in S} \operatorname{sat}(A_i \cap \pi)$ Not always possible
- Extended Justified Representation: $\mathsf{sat}_{\mathcal{S}}(\pi) = \max_{i \in \mathcal{S}} \mathsf{sat}(A_i \cap \pi)$
- Proportional Justified Representation: $sat_S(\pi) = sat(\bigcup_{i \in S} A_i \cap \pi)$

Results for Offline PB

Axiom	Priceability	PJR-1	EJR-1	LFS
MES	✓	✓	✓	X
MES(share)	✓	✓	✓	✓
PAV	×	X	X	X

The framework

From Online ABC elections Do et al. [2022]

Example: vote for funding missions

project	cost	voter 1	voter 2	voter 3
IJCAI (South Corea)	3k	✓	✓	✓
ECAI (Spain)	1k	X	✓	✓
SAGT (Amsterdam)	1k	✓	X	✓

NB: We can have predictions

The Greedy Budgeting rule

Split budget and pay for affordable projects

- Satisfies Priceability (then PJR[cost]-1)
- 2 versions

Results

Introducing Efficient Priceability

project	1	2	3	price
p_1	1	0	1	5 <i>k</i>
p_2	1	0	1	2 <i>k</i>
p_3	0	1	1	4 <i>k</i>
p_4	1	0	0	1 <i>k</i>

budget b = 6001

Results

1	2	3	price
0	0	1	2 <i>k</i>
0	1	1	2 <i>k</i>
0	0	0	3 <i>k</i>
1	1	0	2 <i>k</i>
1	0	0	1 <i>k</i>
	0 0 0 1	0 0 0 1 0 0 1 1	0 0 1 0 1 1 0 0 0 1 1 0

Approximating axioms

Definition

 α -Cohesiveness: For $S \subseteq N$, $Q \subseteq P$ if $\frac{|S|}{n} \ge \alpha \frac{c(Q)}{b}$ and $\forall i \in S$, $Q \subseteq A_i$

Proportionality: S is α -Q-cohesive, it deserves $\mathsf{sat}_S(\pi) \ge \mathsf{sat}_S(Q)$ of the budget.

	JR	PJR	EJR
sat ^{card} sat ^{cost}	JR[sat ^{card}] 2-JR[sat ^{cost}]		γ_b -EJR[sat^{card}] τ_b -EJR[sat^{cost}]

$$b/\tau_b(\log_2(b/\tau_b) + 1) = b = \lfloor b/\gamma_b H(b/\gamma_b) \rfloor$$

 $b = 1000 \implies \gamma_b \simeq \tau_b = 8$

Conclusion

Pros	Some optimal fairness guarantees
	Online better than repeated one-shot on PJR[cost]
Cons/	optimal ∌ good
Further	How to integrate predictions?
Questions	Perpetual PB
	JR+ properties

References

- M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A knapsack secretary problem with applications. In *International* Workshop on Approximation Algorithms for Combinatorial Optimization, pages 16–28. Springer, 2007.
- M. Bateni, M. Hajiaghayi, and M. Zadimoghaddam. Submodular secretary problem and extensions. ACM Transactions on Algorithms (TALG), 9(4):1–23, 2013.
- A. Borodin and R. El-Yaniv. *Online computation and competitive* analysis. cambridge university press, 2005.
- D. Chakrabarty, Y. Zhou, and R. Lukose. Online knapsack problems. In Workshop on internet and network economics (WINE), 2008.

References

References (cont.)

- V. Do, M. Hervouin, J. Lang, and P. Skowron. Online approval committee elections. arXiv preprint arXiv:2202.06830, 2022.
- A. Marchetti-Spaccamela and C. Vercellis. Stochastic on-line knapsack problems. *Mathematical Programming*, 68(1-3): 73–104. 1995.
- D. Peters, G. Pierczyński, and P. Skowron. Proportional participatory budgeting with additive utilities. Advances in Neural Information Processing Systems, 34:12726–12737, 2021.
- S. Rey and J. Maly. The (computational) social choice take on indivisible participatory budgeting. arXiv preprint arXiv:2303.00621, 2023.
- R. Vaze. Online knapsack problem and budgeted truthful bipartite matching. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications, pages 1–9. IEEE, 2017.