西安电子科技大学 ICTT 实验室

业务能力介绍

计算机科学与技术学院

2025年7月1日

Contents

1	买验	ì室简介	2
	1.1	基本概况	2
	1.2	实验室定位	2
	1.3	核心优势	2
2	承担	B过的类似相关业务及证明	2
	2.1	数字系统设计验证项目	2
		2.1.1 高性能数据处理系统设计与验证	2
		2.1.2 嵌入式通信协议栈开发	3
		2.1.3 软硬件协同验证平台开发	3
		2.1.4 高速数据处理芯片验证	3
	2.2	通信系统开发项目	4
		2.2.1 星载通信系统设计	4
	2.3	相关资质与认证	4
3	履行	f合同必须的设备及专业技术能力简介	4
	3.1	硬件设备	4
		3.1.1 仿真测试设备	4
		3.1.2 专用测试设备	5
	3.2	软件工具	5
	3.3	专业技术能力	5
		3.3.1 集成电路设计验证	5
		3.3.2 通信协议实现	5
		3.3.3 系统集成与测试	6
	3.4	团队组织结构	6
4	质量	惺保证体系	6
	4.1	质量管理制度	6
	4.2	技术服务承诺	6
5	总结		7

1 实验室简介

1.1 基本概况

西安电子科技大学 ICTT 实验室隶属于西安电子科技大学计算机科学与技术学院,是一个专注于数字系统设计、软件开发和智能系统研究的高水平科研实验室。实验室依托学校雄厚的学科基础和人才优势,致力于为国家和行业发展提供高质量的技术服务和人才培养。

1.2 实验室定位

实验室以"产学研用"相结合为宗旨,面向国家重大战略需求和行业发展前沿,专注于:

- 数字系统设计与验证技术
- 嵌入式系统与软件开发
- 高性能计算与并行处理
- 通信协议栈与网络系统
- 智能系统与物联网应用

1.3 核心优势

- (1) **学术背景深厚**:依托西安电子科技大学计算机科学与技术学院,具有完整的学科体系和深厚的理论基础;
- (2) 人才队伍优秀: 汇聚了一批在计算机科学、软件工程、数字系统设计等领域的知名专家和优秀青年学者:
- (3) 科研实力强劲:承担了多项国家级、省部级重大科研项目,在计算机科学与技术领域具有丰富的理论与实践经验:
- (4) 产业结合紧密: 与多家知名企业建立了长期合作关系,科研成果转化能力强。

2 承担过的类似相关业务及证明

2.1 数字系统设计验证项目

2.1.1 高性能数据处理系统设计与验证

• 项目名称: 基于 FPGA 的高性能数据处理系统设计与实现

- 项目时间: 2019 年-2021 年
- 项目内容:设计并实现了面向实时数据处理的 FPGA 系统,包括数据采集、处理算法优化和接口 控制模块
- 技术成果: 系统处理速度达到 1Gbps, 延迟小于 10 s, 通过了完整的功能验证和性能测试
- 应用领域: 实时信号处理、工业控制系统

2.1.2 嵌入式通信协议栈开发

- 项目名称: 多协议嵌入式通信系统开发
- 项目时间: 2020 年-2022 年
- 项目内容: 开发了支持多种通信协议的嵌入式系统,包括 TCP/IP、CAN、RS485 等协议栈实现
- 技术成果: 系统稳定运行超过 8760 小时, 协议一致性测试通过率 100%
- 应用领域: 工业物联网、智能监控系统

2.1.3 软硬件协同验证平台开发

- 项目名称: 基于 SystemVerilog 的验证平台构建
- 项目时间: 2018 年-2020 年
- 项目内容: 构建了完整的软硬件协同验证平台,支持复杂数字系统的功能验证和性能测试
- 技术成果: 验证平台支持自动化测试,缩短验证周期 50%,提高了验证效率和覆盖率
- 应用领域: 数字芯片设计、系统级验证

2.1.4 高速数据处理芯片验证

- 项目名称: 高速数据处理芯片验证平台开发
- 项目时间: 2019 年-2021 年
- 项目内容: 为某型号高速数据处理芯片开发了专用验证平台, 完成了芯片的功能验证和性能测试
- 技术特点: 支持多种通信协议, 具备故障注入和自动化测试能力
- 验证结果: 成功发现并协助修复了 30 余个设计缺陷,确保了芯片的可靠性

2.2 通信系统开发项目

2.2.1 星载通信系统设计

• 项目名称: 星载通信系统关键技术研究与实现

• 项目时间: 2018 年-2020 年

• 项目内容: 完成了星载通信系统的总体设计、关键模块实现和系统集成测试

• 技术难点: 高可靠性设计、低功耗优化、辐射防护

• 项目成果: 系统通过了严格的环境试验和在轨验证, 性能指标达到国际先进水平

2.3 相关资质与认证

序号	资质名称	获得时间
1	高等学校科研实验室认定	2015年
2	陕西省重点实验室	2017年
3	国家集成电路人才培养基地	2019年
4	军工科研生产单位保密资格	2020年
5	ISO9001 质量管理体系认证	2021年

表 1: 实验室相关资质认证

3 履行合同必须的设备及专业技术能力简介

3.1 硬件设备

3.1.1 仿真测试设备

- 高性能仿真服务器: 配置多台高性能服务器,总计算能力超过 1000 核心,支持大规模并行仿真
- FPGA 开发平台: Xilinx Vivado 开发环境,配备多种型号 FPGA 开发板
- 逻辑分析仪: Agilent 16902A 等高端逻辑分析仪, 支持高速信号分析
- 示波器: Keysight DSOX6004A 等数字示波器, 带宽达 4GHz
- 信号发生器: Agilent 33600A 系列任意波形发生器

3.1.2 专用测试设备

- 1553B 总线测试设备: DDC BU-65590 系列 1553B 总线测试仪
- 协议分析仪: 支持多种军用总线协议的专业分析设备
- 环境试验设备: 高低温试验箱、振动试验台等环境测试设备
- EMC 测试设备: 电磁兼容性测试相关设备

3.2 软件工具

类别	软件名称	主要功能
	Cadence Incisive	数字电路仿真验证
EDA 工具	Synopsys VCS	高性能 RTL 仿真
	Mentor Graphics QuestaSim	混合信号仿真
综合工具	Xilinx Vivado	FPGA 综合与实现
	Intel Quartus Prime	FPGA 开发环境
验证工具	SystemVerilog UVM	通用验证方法学
巡Ш上光	Python/C++	测试脚本开发
分析工具	MATLAB/Simulink	算法建模与仿真
月 7771 上共	Verdi	波形分析与调试

表 2: 主要软件工具清单

3.3 专业技术能力

3.3.1 集成电路设计验证

- (1) **RTL 设计能力**: 熟练掌握 Verilog/SystemVerilog/VHDL 等硬件描述语言,具备复杂数字电路设计经验;
- (2) 验证方法学: 精通 UVM、OVM 等先进验证方法学, 具备大规模 SoC 验证经验;
- (3) **覆盖率驱动验证**:具备完整的覆盖率驱动验证流程,包括功能覆盖率、代码覆盖率、断言覆盖率等:
- (4) 形式化验证: 掌握形式化验证技术, 能够进行属性检查和等价性验证。

3.3.2 通信协议实现

- (1) 军用总线协议:深入理解 1553B、ARINC429、CAN 等军用/航空总线协议;
- (2) 高速串行协议: 熟悉 PCIe、USB、SATA 等高速串行接口协议;

- (3) 网络通信协议:掌握 TCP/IP、Ethernet 等网络通信协议栈;
- (4) 协议一致性测试:具备完整的协议符合性测试能力和丰富的测试经验。

3.3.3 系统集成与测试

- (1) 系统级验证: 具备完整的系统级验证能力,包括硬件在环测试、软硬件协同验证等;
- (2) 故障诊断: 具备强大的故障定位和诊断能力,能够快速识别和解决复杂的技术问题;
- (3) 性能优化: 具备系统性能分析和优化经验,能够在功耗、面积、速度等方面进行权衡优化:
- (4) 可靠性设计: 具备高可靠性系统设计经验,熟悉容错设计和冗余技术。

3.4 团队组织结构

职位	人数	学历结构	主要职责
项目负责人	1	博士/教授	项目总体规划与技术指导
高级工程师	3	博士/硕士	核心技术攻关与架构设计
验证工程师	5	硕士/学士	验证平台开发与测试执行
设计工程师	4	硕士/学士	RTL 设计与 IP 核开发
测试工程师	2	学士	硬件测试与系统集成

表 3: 项目团队组织结构

4 质量保证体系

4.1 质量管理制度

实验室建立了完善的质量管理体系,通过了 ISO9001:2015 质量管理体系认证,具备以下质量保证能力:

- 标准化流程: 建立了标准化的项目管理流程和技术开发流程
- 文档管理: 具备完善的技术文档管理和版本控制体系
- 质量评审:实施多层次的质量评审机制,确保交付质量
- 风险控制: 建立了完整的风险识别和控制机制

4.2 技术服务承诺

(1) 严格按照合同要求和技术标准执行项目,确保按时按质交付;

- (2) 提供全过程的技术支持和服务,及时响应客户需求;
- (3) 建立专项技术档案,确保技术资料的完整性和可追溯性;
- (4) 提供必要的技术培训和知识转移,确保客户能够有效使用交付成果。

5 总结

西安电子科技大学 ICTT 实验室凭借深厚的学术底蕴、丰富的项目经验、先进的设备条件和专业的技术团队,具备承担各类集成电路设计验证和通信系统开发项目的综合能力。实验室将以严谨的科学态度、专业的技术水平和优质的服务质量,为客户提供满意的技术解决方案。