

CIRCUIT & MECHANISM DESCRIPTIONS REPAIR & ADJUSTMENTS

ORDER NO. ARP-256-0

STEREO TURNTABLE

PL-707

MODEL PL-707 COMES IN FOUR VERSIONS DISTINGUISHED AS FOLLOWS:

Туре	Voltage	Remark
KUT	AC120V only	U. S. A. model (Without cartridge)
HE	AC220V, 240V (switchable)	European continent model
нв	AC220V, 240V (switchable)	United Kingdom model
S	AC110V, 120V, 220V, 240V (switchable)	General export model

- This service manual is applicable to the KUT type. For servicing of the other types, please refer to page 56.
- Ce manuel d'instruction se refère au mode de réglage, en français.
- Este manual de servicio traat del método de ajuste escrito en español.

CONTENTS

1. SPECIFICATIONS 2	10. P.	C. BOARDS CONNECTION DIAGRAM	36
2. FRONT PANEL FACILITIES	11. SC	CHEMATIC DIAGRAM	39
3. BLOCK DIAGRAM 5	12. EL	ECTRICAL PARTS LIST	42
4. MECHANISM DESCRIPTION 7	13. TR	ROUBLESHOOTING	44
5. CIRCUIT DESCRIPTIONS 13	14. AD	DJUSTMENTS	50
6. DISASSEMBLY	RÉ	ÉGLAGE	52
7. PARTS LOCATION 27	AJ	JUSTE	54
8. EXPLODED VIEW AND PARTS LIST 29	15. FO	OR HE, HB AND S TYPES	56
9. PACKING	16. SA	AFETY INFORMATION	58

1. SPECIFICATIONS

Motor and Turntable
Drive System
Motor
Turntable Platter 310 mm diam, aluminum alloy die-cast
Speeds
Wow and Flutter Less than *0.012% (WRMS)
0.025% (WRMS)
+ 0.035% WTD Peak (DIN)
Values marked with an "*" designate the wow and flutter for
motor, and do not include the cartridge or tonearm load.
Signal-to-Noise-Ratio
(with Pioneer cartridge model PC-6MC)
(William to the control of the control of the control
Tonearm
Type Static-balance type, Straight pipe arm
Effective Arm Length
Overhang 15 mm
Usable Cartridge Weight 3 g (min.) to 8 g (max.)
PC-6MC Specifications
Type Moving coil type
Stylus 0.3 x 0.7 mil diamond (PN-6 MC)
Output Voltage
(1 kHz, 5 cm/s LAT. Peak)
Tracking Force
Frequency Response
Recommended Load 50 k Ω Weight 3.3 g

Auto lead in, Auto return, Auto cut, Repeat, Quick play, Quick stop, Anti-skating, Arm elevation, Tracking-force direct-readout, Tonearm height adjusting device (± 3 mm), Insulator height adjusting device, Free stop hinges.

Miscellaneous

Power Requirements	
HE, HB, HP models	AC 220 V/240 V
	(switchable), 50, 60 Hz
KUT, KCT models	AC 120 V, 60 Hz
S, S/G models	AC 110 V/120 V/220 V/240 V
	(switchable), 50, 60 Hz
Power Consumption	
HE, HB, HP models	9W
KUT, KCT models	10W
S, S/G models	7W
Dimensions	460 (W) x 164 (H) x 409 (D) mm
18-	1/8 (W) x 6-1/2 (H) x 16-1/8 (D) in.
Weight	8.1 kg/17 lb 14 oz
Accessories	
EP Adapter	
Operating Instructions	
Catridge mounting parts (F	or KUT and KCT models)
Screws (L)	
Screws (M)	
Screws (S)	
Washers	
Nuts	
NOTE:	

Specifications and design subject to possible modification without notice, due to improvements.

Subfunctions

2. FRONT PANEL FACILITIES

1 POWER SWITCH

Press this switch to turn the power on and off. [ON] (depressed position): Power is switched ON. [OFF] (released position): Power is switched OFF, When the POWER switch is set to ON, the following switches are set automatically.

- SPEED switch [33]
- RECORD SIZE switch [30]
- REPEAT switch [OFF]

② SPEED SWITCH

Set this switch in accordance with the speed of the record which is to be played.

[33] indicator lights:

For playing 33-1/3 rpm records.

[45] indicator lights:

For playing 45 rpm records.

③ RECORD SIZE SWITCH

Set this switch in accordance with the size of the record which is to be played.

[12"30] indicator lights:

For playing 30 cm (12") records.

[10"25] indicator lights:

For playing 25 cm (10") records.

[7"17] indicator lights:

For playing 17 cm (7") records.

(4) REPEAT SWITCH

Press this switch so that the indicator lights for repeat play.

⑤ ARM ELEVATION SWITCH

- · Use the switch to manual play.
- . Use the switch to suspend record play temporarily.
- . Use the switch when changing the tracks during manual play.
- [V] indicator lights:

The tonearm rises (the stylus moves away from the record).

[🗶] indicator lights:

The tonearm descends (the stylus is lowered onto the record).

(6) START/STOP SWITCH

Press this switch when starting auto play or when stopping

(7) QUARTZ LOCK INDICATOR

This lights when the platter is rotating at exactly 33-1/3 or 45 revolutions per minute.

(8) SPEED INDICATORS (33, 45)

These indicate the platter speed.

[33] lights:

Platter is rotating at 33-1/3 rpm.

[45] lights:

Platter is rotating at 45 rpm.

(9) SIZE INDICATORS (30, 25, 17)

These indicate the record size.

[12"30] lights - 30 cm (12")

[10"25] lights - 25 cm (10")

[7"17] lights - 17 cm (7")

(10) REPEAT INDICATOR (REPEAT)

This indicator lights up when the repeat play function is utilized.

ARM ELEVATION INDICATOR (▼ · ▼)

These indicators indicate whether the tonearm is the raised (up) or lowered (down) position.

[▼] lights:

The tonearm rises (the stylus moves away from the record).

[X] lights:

The tonearm descends (the stylus is lowered onto the record).

(12) START/STOP INDICATOR

- . This lights when the START/STOP switch has been pressed and auto play has been started.
- . This lights when the START/STOP switch is pressed to suspend play.

(13) CARTRIDGE (PC-6MC)

A cartridge is not provided with the KUT and KCT models and so your own cartridge should be mounted, following the instructions laid down in CARTRIDGE MOUNTING.

(A) HEADSHELL

(5) ANTI-SKATE CONTROL

This is rotated when performing the anti-skating adjustment.

(6) ARM REST

This serves to hold and clamp the tonearm. When moving the tonearm, release the clamp.

17) TONEARM

® TRACKING FORCE ADJUSTMENT WEIGHT

This is used when adjusting the tracking force.

- (19) PLATTER
- **② PLATTER SHAFT**
- ② RUBBER MAT

22 EP ADAPTER

This is used when playing records without a "middle."

23 CABINET

4 DUST COVER

3. BLOCK DIAGRAM

4. MECHANISM DESCRIPTION

To facilitate understanding the operation of the PL-9, the total unit may be broken down into blocks consisting of the tonearm drive mechanism, the sensing mechanism serving to sense lead in and lead out positions of the tonearm, the control section consisting of the full-auto control IC PD6003, and the motor section functioning to drive the turntable platter.

~ The operational and functional relationship between each block is quite complex, so in order to understand total system operation, it is first necessary to thoroughly understand the operation and function of each block, then carefully study their interrelationships.

This manual covers the subject in that order. First, the operation and function of each block will be described, then a timing chart is presented to clarify block relationships.

Fig. 4-1 Tonearm drive mechanism

4.1 TONEARM DRIVE MECHANISM

- The tonearm drive mechanism consists of the tonearm drive motor, worm-gear, gear (A), gear (B), trip gear, trip wheel, cam, switch SW1, and switch SW2. (Fig. 4-1)
- 2. The gear cluster is shown in Fig. 4-2. When the cam is held immoveable and gear (A) is rotated in a counterclockwise direction, a small amount of friction is felt, but gear (B) and trip gear also rotate. Note that rotation of the trip gear also rotates the trip wheel. (Fig. 4-3) Also note that when the cam is free to rotate, friction will cause it to rotate in the same direction as gear (A) and (B).
- 3. Refer to Fig. 4-4. The elevation shaft contacts the sloping area located around the center shaft of the cam. Also note the position of the cam at this time. This is the position the mechanism will be in prior to starting up the unit. The tonearm will be on the arm rest, and arm-elevation will be in the DOWN position.

Cam Prevent the cam from turning

Gear (A)

Friction plate

Gear (B)

Fig. 4-3 Gear cluster operation

Fig. 4-5 Return operation

- 4. Turn the worm gear by hand imitating what would occur if the START/STOP button were depressed causing the motor to rotate the gear. Worm gear rotation causes gear (A) to rotate, and the gears shown in Fig. 4-2 and 4-3 of item 2 above all turn in a clockwise direction.
- The elevation shaft raises as the gear/cam assembly rotates, and this in turn causes the tonearm to raise. The two switches, SW2 and SW1 are also turned OFF.
- 6. As the assembly rotates further, the trip wheel and PU plate attached to the tonearm shaft come into contact, creating the same condition as occurred in item 2 where the cam was held in an immoveable position. Continued rotation of the trip wheel causes the PU plate attached to the tonearm shaft to turn.
- Rotation of the PU plate moves the tonearm to the point specified by the sensing and control mechanisms (covered in the following paragraphs). When the tonearm reaches that

- specified point, the motor reverses itself, and the cam switches SW1 and SW2 ON in sequence. Arm-elevation goes to the DOWN position and playback starts.
- 8. In practice, each of the above operational steps are controlled either directly or indirectly from the control section or by the forward or reverse rotation of the motor. The control section picks up its operational cues by detecting the ON or OFF status of switch SW1 and SW2, and these switches are controlled by the movement of the mechanism positioning the cam.

4.2 SENSING MECHANISM

As shown in Fig. 4-6, the shutter fixed to the tonearm is positioned to travel in the space between the phototransistors and LEDs mounted on

Fig. 4-6 Sensing mechanism

their respective boards. The shutter has three 0.7mm slits cut out of its outer circumference at the position the outer edge of a 30cm, 25cm, or 17cm record disc would be located. The slit, or opening located inside of those three slits is the end sensor slit (Fig. 4-7).

Fig 4-7 Shutter

Lowering Position Detector

- This unit is mechanically designed to allow the shutter to pass between two boards mounting the sensing elements or photocoupler. The photocoupler consists of an LED and phototransistor.
- The shutter moves with the tonearm, and a signal is transmitted to the control section by the light emitted from the LED (normally interrupted by the opaque portion of the shutter) being passed through the 30cm, 25cm, or 17cm slit and triggering the phototransistor ON.

End Sensor

- As the tonearm travels toward the inside of the record disc and reaches the end sensor zone (end sensor slit), the light transmitted by the LED is passed through the end sensor slit and turns the phototransistor ON, then OFF. This causes the pulse signal transmitted by end sensor A and B to go 90° out of phase.
- The pulse frequency is compared with the rotational speed (movement) of the tonearm, and then sent to the control section as the record disc lead-out groove sensor signal.

Arm Rest Position Sensor

- When the three sensors consisting of the lowering position sensor and end sensor (A) and (B) are all simultaneously picking up transmitted light, control determines that the tonearm is at the arm rest position.
- This status is used to control starting and stopping of the turntable motor during manual operations, or, in the auto-return mode, simply perceives that the tonearm has returned to the arm rest.

IC PD6003 pins

Pin	Function	Timing	Pin	Function	Timing
Ο,	Repeat display output	- -	R,	CW rotation output	
Ο,	EV-UP display output	_•	R,	SW1 input	-
0,	START-STOP display output		R,	SW2 input	_
0,	Speed selector output	H:33 L:45	R,		
٥,	Turntable motor stop output	H:STOP	R,		
0.	30cm display output	-t	R ₁₀	Size selector switch input	J
0,	25cm display output	- -			
0,	17cm display output	1	K.	End sensor B input	-
			K,	End sensor A input	_
R.	Repeat switch input	T	K,	Lowering position sensor input	J.
R,	EV switch input	·	K,		
R,	START-STOP switch input				
R.	Speed selector switch input	T.			
R.	CCW rotation output				

PD6003 Pin Function Table

Fig. 4-8 PD6003

4.3 CONTROL SECTION

The functions of the full-auto control IC PD603 are described in this section. The table shown in Fig. 4-8 lists the function performed by each pin of PD6003. Please refer to this table as the detailed explanation progresses.

- When the tonearm is at the arm rest position, pressing the START/STOP button causes the turntable motor to start rotating and illuminates the LED built into the START/STOP button and the EV UP display LED. At the same time the tonearm drive motor moves the tonearm toward the lead in groove of the record.
- The tonearm drive motor continues rotating until it reaches the point where the signal from the lowering position sensor is picked up. When that point is reached, the drive motor is reversed, lowering the tonearm.
- 3. End sensor A and B is used to detect the end of playback, but if the START/STOP button is depressed during playback, the tonearm drive motor starts rotating in the return direction and tonearm return operation is started. When the tonearm reaches the point directly above the arm rest, the tonearm drive motor starts rotating in the reverse direction and lowers the tonearm on the arm rest.
- 4. If the operation in the above step is carried out with the repeat switch ON, the tonearm again will return to the lead in groove. If the repeat switch is OFF, the turntable motor will stop at this point.

4.4 ACTUAL OPERATION (PLAYBACK OF A 33 rpm, 17cm RECORD DISC)

Automatic Lead in

- Depress the button and turn the power switch ON. Set the speed for the record to be played (33 rpm). When the 33 rpm button is depressed, an instruction signal from the motor assembly will illuminate the 33 rpm display LED, D22.
 Next, set the proper size for the record to be played (17cm in this case). When the size selector switch is depressed twice, the 11 pin of PD6003 will go to a low level, and the 17cm display LED, D26 will be illuminated.
- 2. With the turntable thus set up, depressing the START/STOP button causes the 15 pin of PD6003 to go to a low level. Also 6 pin goes to a low level, illuminating the START/ STOP display LED, D30. At the same time, pin 17 goes to a low level and pin 18 goes high,

- starting rotation of the tonearm drive motor in the mechanism section.
- The worm gear is coupled to the rotating motor by belt, and the worm gear turns gear (A) (and cam) in a clockwise direction. The tonearm is lifted by the arm-elevation mechanism, and switch SW2 and SW1 go OFF.
- 4. Gear (A) (and the cam) continue rotating until finally, the cam makes contact with the PU plate fixed to the tonearm shaft. When the cam contacts the PU plate, it stops rotating. However, the trip wheel continues rotation along with gear (B).

Fig. 4-9 Mechanism section

- The trip wheel is making contact with the arm rotation stopper, and the rotating trip wheel causes the PU plate to turn. The turning PU plate moves the tonearm toward the center of the platter.
- 6. As the tonearm moves, so does the shutter attached to the tonearm shaft. The tonearm (and shutter) go past the 30cm and 25cm lowering position until it reaches the 17cm record disc lead-in groove where the third pulse signal from the lowering position sensor (light from LED passes through the slit in the shutter fixed to tonearm shaft turning phototransistor ON) causes the 26 pin of PD6003 to go to a low level. (Pulse signals are also produced at 30cm and 25cm positions.)

- 7. This causes the PD6003 17 pin to go low, and the 18 pin to go to a high level, and after the tonearm drive motor stops, it commences reverse rotation. As it rotates, the arm-elevation shaft riding on the sloping area of the cam moves down off the slope and playback starts.
- 8. When the tonearm drive motor rotating in reverse (switch SW1 ON) turns switch SW2 ON, the PD6003 6 pin goes to a high level, extinguishing the START/STOP display LED, D30. The turntable will not go into the auto-stop until the START/STOP display LED is extinguished even though the START/STOP button is depressed. Also, when both the tonearm dirve motor and switch SW2 are ON, PD6003 17 and 18 pin both go high, stopping the drive motor.
- 9. If the tonearm does not move off the arm rest within 8 seconds after the START/STOP button is depressed (tonearm clamped in arm rest), the START/STOP display indicator starts flashing. If this status (flashing) continues for another 11 seconds, the start instruction is cancelled and the tonearm lowers in the arm rest.
- 10. The elevation -up display LED, D28 illuminates when the START/STOP button is depressed, and when the tonearm moves to the record disc and lowers down, D14 is extinguished. PD6003 senses the first pulse as the 30cm position, the second as the 25cm, and the third as the 17cm record size position. When it determines that the tonearm has reached the proper lowering position, pin 5 goes to a high level, extinguishing the display.

Fig. 4-10 Switch SW1, 2 position

Arm-elevation UP and DOWN

- When the arm-elevation switch is depressed during record playback, arm-elevation goes UP and playback is temporarily stopped.
- When the arm-elevation switch is depressed, the 13 pin of PD6003 goes to a low level. Pin 5 also goes low, and illuminating the elevation display LED, D28.
- 3. At the same time, pin 17 goes to a low level and pin 18 goes high, starting tonearm drive motor rotation. This causes the cam to turn, and the elevation shaft to ride up on the sloping section of the cam. This action causes the arm-elevation to go to the UP position, stopping record playback.
- The tonearm drive motor continues to move the cam until the position is reached where SW1 is turned OFF (tonearm still in UP position).
- To restart playback, the arm-elevation switch is depressed again. This causes the 13 pin of PD6003 to go to a low level. The 5 pin goes high, extinguishing the elevation display LED, D14.
- 6. At the same time, pin 17 goes high and pin 18 goes low, causing the tonearm drive motor to rotate in an opposite direction of that in the UP position. As the cam turns, the elevation shaft drops down off the slope, lowering the tonearm and starting playback again.
- The tonearm drive motor continues to move the cam until the position is reached where SW2 is turned ON (tonearm still in DOWN position).

For manual playbackoperation, depress the arm-elevation switch to raise the tonearm up off the arm rest (UP), then move it to the desired point over the record by hand. Depressing the arm-elevation switch again will then lower (DOWN) the tonearm onto the record. Operationally, this follows the sequence listed in items 2 through 7 above.

Also during manual play, when the tonearm is manually moved toward the center of the record (off the arm rest), the platter commences rotation. When the tonearm is moved off the arm rest, PD6003 26 pin (signal pin from lowering position sensor) goes to a high level, and the 8 pin goes to a low level, starting the motor rotation.

Auto-return

 When record playback is over, the tonearm stylus goes from the band of audio grooves into the lead out groove, and the pulse width of the signal output from end sensor A and B become more narrow. This informs PD6003 that record playback has ended.

The phase of the pulse from end sensor A and B is set so that B leads A by 90°, however this phase offset is not used for detection of the end of playback, but to prevent any unintentional operations from sources such as record disc eccentricity.

- When playback completion is detected, PD6003 pin 17 goes to a high level and pin 18 goes low, starting the tonearm drive motor rotating. As rotation moves the cam, the slope causes the arm-elevation to go UP, raising the tonearm.
- 3. As the cam continues rotating, it strikes the PU plate. This stops cam movement, but the trip wheel continues rotating and turns the PU plate. This results in the tonearm being returned to a position above the arm rest.
- At this position, light strikes the lowering position detector and end sensor A and B (all three at once), and pin 24, 25, and 26 of PD6003 go to a low level.
- 5. One to two seconds later, PD6003 pin 17 goes low and pin 18 goes high, and after the tonearm drive motor stops, it reverses rotation and sends the arm-elevation back down the cam slope. This lowers the tonearm on the arm rest ending playback.
- 6. At the same time, the cam turns switch SW1 ON (switch SW2 is already ON). When both switches come ON, both pin 17 and 18 (PD6003) go to a high level, stopping the tonearm drive motor. Also, when the tonearm reaches the arm rest position, pin 8 goes high, lowering the tonearm and causing pin 5 to go high. This causes the platter to stop rotating and extinguishes the elevation-up display LED, D28.

Auto-stop

- When it is desired to stop record playback in the middle of the record, depress the START/ STOP button. As the START/STOP button is depressed, PD6003 pin 15 goes to a low level. Pin 17 goes high and pin 18 goes low, starting rotation of the tonearm drive motor. Rotation causes the arm-elevation to ride up on the slope of the turning cam raising the tonearm.
- Also 6 pin goes to a low level, thereby illuminating the START/STOP display LED, D30.
 From here the operation is the same as that for auto-return (above), items 3 through 6.
- The START/STOP display LED, D30 are extinguished by the tonearm drive motor reversing rotation and turning switch SW1 ON and sending PD6003 pin 6 to a high level.

Auto-repeat

- To repeat playback of the same record, depress the repeat button. This causes PD6003 pin 12 to go to a low level. At the same time, pin 4 also goes low, illuminating the repeat display LED, D27.
- When the repeat button has been depressed, after autoretum operations have returned and lowered the tonearm on the arm rest, the unit again goes into autolead in operations and continues playback. (The platter motor continues to rotate.)

5. CIRCUIT DESCRIPTIONS

5.1 SIMPLE SIGNAL PATH

The PL-707 motor drive circuit consists of the control IC PA2007, reference phase generator IC PD1003, motor drive IC PA2008, and IC TD62504P functioning to produce the various operational switch signals.

The signal picked up from the speed sensor section is amplified by the FG amp, then converted to the speed sensor signal voltage (DC) by the F/V converter.

Reference phase voltage is obtained by extracting the reference phase from PD1003 pin 15, passing it through the 1/2 divider, then sending it through the P/V converter to be used as reference phase voltage (DC).

The speed sensor signal voltage and reference phase voltage are each passed through a buffer amp and resistance and combined (compared). The resulting voltage is taken from the IC PA2008 pin 6 and input into the absolute value amp, and is used to control the 4-phase drive circuit motor rotation voltage, maintaining the motor at a fixed speed.

5.2 SPEED SENSOR SECTION

- The speed sensor board consists of a single printed circuit.
- Above this, rotates a rotor with 400 magnetized poles on its lower face. Output varies in accordance with the rotational speed of the rotor.
- 3. The output (frequency) from the speed sensor board is 111Hz for 33 1/3 rpm and 150Hz for 45 rpm.
- The output signal is sent to PA2007 as a balanced input.

5.3 FG AMP

In order to square the waveform of the signal obtained from the speed sensor section (output: 0.5-2.0 mV rms) prior to inputting it into the F/V converter, it is amplified 69dB across a band width of 20 to 160Hz.

5.4 F/V CONVERTER

- Since the rotational speed is detected at a fixed frequency, the frequency must be converted to a voltage (DC). This function is performed by the F/V converter.
- Previously (in PA2004) this was done by a 2-frequency F/V converter, however, increasing control gain of PA2007 allows a signal-frequency F/V to be used.

- F/V converter gain does not change even with rpm changes.
- Switching reference frequency is shown in Fig. 5-1.
 - When the switch is OFF, speed is set to $33\,1/3$ rpm, and when the switch is ON, the variable resistor used by $33\,1/3$ rpm is connected parallel to the 45 rpm variable resistor. The resulting total impedance establishes rotational speed. Thus, each time $33\,1/3$ rpm is adjusted, 45 rpm must also be adjusted. This arrangement prevents any rotational instability that might result from both switches being temporarily OFF when speed changes are made by switching from $33\,1/3-45$ rpm.
- Co, Ct, Rt, and Rfv are each connected to ground, but the grounding point is very close to that of PA2007. Also, Rt is a 0.01 μF ceramic capacitor for noise and oscillation removal, and it is grounded in close proximity to PA2007 too.

Fig. 5-1 Switching reference frequency

5.5 REFERENCE PHASE GENERATOR IC PD1003

- When power is turned ON, the X'tal oscillator block generates a 6.144 MHz signal by using the externally connected crystal oscillator.
- This is reduced to 6kHz by divider circuit 1 (1/1024), then this divided signal is input to divider circuit 2.
- The 6kHz signal input to divider circuit 2 is further divided 1/27 for 33 1/3 rpm operation, and 1/20 for 45 rpm, then transmitted from pin 15 to PA2007 pin 8.

33 1/3 rpm: 222.2Hz 45 rpm: 300Hz

5.6 1/2 DIVIDER AND P/V CONVERTER

The signal received at the 8 pin (item above) is further divided by 1/2 by the 1/2 divider, then input to the P/V converter. The P/V converter serves to convert the reference phase taken from the 1/2 divider to DC voltage.

The reference phase converted into DC voltage is combined (by the buffer amp and resistor) with the DC voltage from the F/V converter (and used for rotation speed) and transmitted from pin 11 as a motor rotation speed control signal to IC PA2008 pin 6, then finally to the absolute value amp (Fig. 5-2).

Fig. 5-2 (F-V) + (P-V) circuit

5.7 PHASE-LOCK DISCRIMINATOR CIRCUIT

When phase control is in effect, the output characteristics of the F/V converter appear as in Fig. 5-3. The portion that shows no change in speed when load torque is varied up and down can be considered as the phase-locked area, and the portion where large rotational speed changes occur (as in Fig. 5-4) is outside the phase-locked area. Thus, F/V converter output can be input into an absolute value comparator having an upper and lower threshold. A theoretical diagram of such a circuit is shown in Fig. 5-5.

Fig. 5-3 Input/output characteristics

Fig. 5-4 F/V converter output

Fig. 5-5 Phase-locked discrimination theoretical circuit

5.8 STOP DISCRIMINATOR CIRCUIT

- Depressing the START/STOP button of the PL-707 transmits a stop signal generating a reverse torque and applying a brake to the motor. Motor rotation stops almost immediately.
- The stop discriminator circuit functions to detect low or high rotation speed through the charge/discharge status of capacitors and resistors connected to IC PA2007 pin 10 (To/STOP), and when rotation drops below a certain speed, motor torque is dropped to zero. A theoretical circuit diagram is shown in Fig. 5-6.
- After that, the platter turns a small amount due to inertia, then stops.

Fig. 5-6 Stop discriminator theoretical circuit

5.9 ABSOLUTE VALUE AMP AND ROTAT-ION DIRECTION INDICATOR CIRCUIT

- The signal at the 6 pin (control input) is compared with the signal at the 5 pin (reference voltage) and the difference in voltage is used to generate current in the motor winding. The input/output characteristics are shown in Fig. 5-7.
- 2. The control input is higher than the reference voltage (Vref 5V) when the rotation of the platter is higher than specified speed. When this occurs, the absolute value amp sends an indication (instruction) to the rotation direction indicator circuit to generate reverse torque in order to drop the speed of the motor.
- 3. The control input is lower than the reference voltage (Vref 5V) when the rotation of the platter is lower than specified speed. When this occurs, the absolute value amp sends an indication (instruction) to the rotation direction indicator circuit to generate forward torque in order to increase the speed of the motor.

Reverse torque region Forward torque region No-load operating point No-load operating point O (Vref - Vin)

Fig. 5-7 Input/output characteristics

5.10 DRIVE CIRCUIT

- The HA and HB Hall elements (6 magnetized pole pieces fixed to the circumference of the motor) are attached electrically 90° out of phase with each other. These elements are used to sense the rotational position of the motor.
- The position sensing signal produced by the Hall elements are each output to the block diagram position signal synthesizing circuit, and their waveforms are shaped as shown in Fig. 5-8.
- The staircase waves are each input into the block diagram 4-phase drive circuit, and as shown in Fig. 5-8, LA and LB alternate back and forth in a 90° duty cycle (voltage) to turn the motor.
- LA and LB amplitude is in proportion to the output of the absolute value amp.

Fig. 5-8 Drive circuit waveforms

5.11 REVERSE ROTATION SENSING CIRCUIT

- The motor used in the PL-9 is the dual-direction drive circuit type, and if manually forced in the reverse direction, it will continue to apply a forward torque in an attempt to restore forward rotation as long as it does not exceed specified rotation speed.
- However, when reverse rotation exceeds 45 or 33 1/3 rpm, the rotation direction indicator circuit detects this as an overrun in the forward direction and applies reverse torque in an attempt to bring it to specified rotation speed.
- Reverse torque applied to the platter already rotating in reverse will further increase the speed and the turntable will run out of control.
- The reverse rotation guard circuit prevents the platter from running out of control.
- The equivalent circuit of the reverse rotation sensing circuit consists of a D type flip-flop (D input output at Q by CK triggering).

Fig. 5-9 Reverse rotation sensor equivalent circuit

Fig. 5-10 Forward direction mode

Fig. 5-11 Reverse direction mode

TIMING CHART 1

Operational sequence for a single cycle between power ON and automatic stop (full-automatic operation, 17cm record disc).

TIMING CHART 2

Operational sequence for a single cycle between power ON and automatic stop (full-automatic operation, 17cm record disc).

TIMING CHART 3

Operational sequence for a single cycle between power ON and automatic stop (full-automatic operation, 17cm record disc).

6. DISASSEMBLY

Disassembly

- 1. Remove the dust cover by pulling upwards.
- 2. Remove the rubber mat, and then the turntable platter by pulling upwards.
- After undoing screw and screwing off the insulator case units, remove the bottom plate by undoing screws .
- 4. Disconnect connector C, and undo screw 2 to remove the mechanism ass'y.
- 5. Disconnect connector D, and undo screw 8 to remove the photo transistor and LED units.
- 6. Undo screw 1 to remove the power transformer.
- 7. Disconnect connectors B and E, and undo screws 5 to remove the control unit.
- 8. Undo screw 6 to remove the motor.

• Tonearm Ass'y Removal

- Remove the tonearm lead wire soldering, and undo screw 1 to remove the sensor ass'y.
- Undo screw 2 to remove the ass'y drive mechanism.
- 3. Loosen screw 3 to enable the removal of the PU plate and shutter.
- 4. Undo screw 4 to remove the tonearm ass'y.

Fig. 6-2 Tonearm part remove.

- Mounting the PU plate and Shutter
- Mount the PU plate aligned with the edge of the shutter.
- 2. Align point A of the shutter with the triangular mark on the mechanism base unit.
- Adjust the separation between the PU plate and shutter to 13.8mm. Using a hexagonal wrench, tighten the PU plate in the reverse order to the disassembly procedure.

Fig. 6-3 PU plate attachment

7. PARTS LOCATION

NOTES:

- The imark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- For your Parts Stock Control, the fast moving items are indicated with the marks ** and *.
 ** GENERALLY MOVES FASTER THAN *

This classification shall be adjusted by each distributor because it depends on model number, temperature, humidity, etc.

Front Panel View

A cartridge is not supplied with the KUT type.

Top View

Bottom View

Rear Panel View

NOTES:

- · Parts without part number cannot be supplied.
- The Amark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- . For your Parts Stock Control, the fast moving items are indicated with the marks * * and *
 - ** GENERALLY MOVES FASTER THAN *

This classification shall be adjusted by each distributor because it depends on model number, temperature, humidity, etc.

Parts List of Exterior

Mark	_	No.	Part No.	Description	Mark	No.	Part No.	Description
		1.	PXB-326	Hinge assembly		41.	PBA-168	Screw
		2.	PNV-047	Dust cover		42.	PYC30P120FZK	Screw
		3.	PNR-185	Turntable platter		43.	PXB-566	Weight assembly
		4.	PBA-165	Screw		44.	PEC-087	Strain relief
		5.	PPZ30P100FMC	Screw	ð.	45.	PDG-055	Power cord
		6.	PXM-125	Motor		46.	PDE-197	PU cord
		7.	PDF-192	Earth lead unit		47.	PEC-051	Strain relief
		8.	PEB-250	Base rubber		48.	XWX-137	Photo transistor unit
A 1	*	9.	PTT-185	Power transformer		49.	PDE-223	Connector assembly (5P)
		10.	PBA-144	Screw		50.	PDE-090	Connector assembly (5P)
Æ.		11.	XWM-141	Control unit		51.	PDZ30P080FMC	Screw
		12.	PDE-240	Connector assembly (7P)		52.	PDF-200	Earth lead wire unit
		13.	PDF-194	Lead wire unit (6P)		53.	XWX-138	LED unit
		14.	PDF-195	Lead wire unit (8P)		54.	PNY-049	Panel
		15.	PDF-193	Lead wire unit (4P)		55.	PNY-066	Control case (B)
		16.	PYC40P120FMC	Screw		56.	XWX-136	Start unit
		17.	PXV-048	Insulator unit (E)		57.	GL9PR12	LED
		18.	PXB-331	Front panel assembly		58.	PDE-225	Connector assembly (2P)
		19.	PBA-159	Screw		59.	PPZ30P080FMC	Screw
		20.	PAD-079	Push button unit (A)		60.	BMZ40P080FMC	Screw
		21.	PAD-080	Push button unit (E)		61.	ZMD40H140FZK	Screw
		22.	PAD-081	Push button unit (C)		62.	PNY-127	PU plate
		23.	PBK-071	Spring		63.	PXT-430	Shutter unit
		24.	PYC40P080FMC	Screw				
		25.	PAD-083	Push button unit (D)		101.		Rubber foot
						102.		Rubber mat
		26.	PAD-084	Push button unit (F)		103.		Cord clamper
		27.	PAD-082	Push button unit (B)		104.		Front panel
		28.	PMM-197	Cabinet		106.		Plate (L)
		29.	PNY-114	Control case (A)				
		30	Y\$20FBT	Washer		107.		Plate (R)
						108.		Cord holder .
		31.	GL-2PR1	LED		109.		Switch base
		32.	PBA-104	Screw		110.		Cord fixer
	:	33.	PNX-092	Lever		111.		Bottom plate
	:	34.	iAZ30P060FMC	Screw				•
*	* :	35.	PSG-017	Push switch		112.		Mechanism base unit
				_		113.		Slit plate
		36.	PMA30P150FMC	Screw		114.		Spacer
Æ ★ 1		37.	PSF-022	Microswitch S3				
		38.	XWX-134	Control (A) unit				
		39.	XWX-135	Control (B) unit				
		40.	PXT-471	Insulator case unit				

8.2 MECHANISM ASSEMBLY

8.3 MOTOR ASSEMBLY

Parte	1	int	~f	Man	han	iem	

Parts L	ist of	f Mechanism		Parts	List o	f Motor	
Mark	No.	Part No.	Description	Mark	No.	Part No.	Description
	i.	PMA26P050FMC	Screw		1.	PXV-029	Rotor unit
	2.	PXT-322	Chassis unit (F)		2.	PWM-138	Circuit unit
**	3.	PSF-016	Microswitch		3.	PSZ30P050FMC	Screw
	4.	PMZ20G100FMC	Screw				
	5.	PNW-391	Collar		51.		Base
					52.		Spindle base uni
	6.	PNW-485	Worm unit				
	7.	PED-010	Felt washer				
	8.	PBF-009	Nyion washer				
	9.	PNW-393	Pulley				
	10	PEB-097	Belt				
	11.	PYY-117	Gear (F) assembly				
	12.	WA31D054D050	Washer				
	13.	YE25S	Washer				
	14.	PEB-249	Damper rubber (B)				
	15.	PXM-086	Motor				
	16.	PLM-008	Motor pulley				
	17.	PEB-248	Damper rubber (A)				
	18.	PNC-300	Frame				
	51.		Shield plate				

9. PACKING

Mark	No.	Part No.	Description	Mark	No.	Part No.	Description	
	1.	PHA-154	Protector (L)		6.	N93-603	EP adaptor	
	2.	PEA-065	Rubber mat assembly		7.	PHA-155	Protector (R)	
	3.	PRB-231	Operating instructions		8.	PXB-566	Weight assembly	
	4.	PHH-048	Packing case		9.	PHC-096	Spacer	
	5.	PHL-026	Sheet					

9. D.D. MOTOR CIRCUIT DESCRIPTIONS AND TROUBLE SHOOTING

9.1 BLOCK DIAGRAM

9.3 OPERATION OF THE PD1003 IC (OSCILLATOR STAGE)

- 1. Once the power supply is turned on, the quartz crystal oscillator generates a 6144kHz signal.
- 2. The frequency of this signal is reduced to 1.5kHz (1/4096 division) by frequency divider I. Part of the resultant signal is passed via the x'tal/RC switching circuit and applied to frequency divider II. The other part of the signal is applied to frequency divider selector II.
- 3. The 1.5kHz signal applied to frequency divider II is further divided into a 750Hz signal, and applied to frequency divider selector I where the signals are converted into sampling pulses for phase comparison purposes in PA2004.

33rpm 27.78Hz 45rpm 37.5Hz

(In both cases, the pulse width is 0.667ms).

4. Frequency divider selector II converts signals from frequency divider I into pulse signals for the stroboscope lamp drive circuit.

33rpm 55.5Hz 45rpm 75.0Hz

(In both cases, the pulse width is again 0.667ms).

- 5. The oscillation frequency (1.5kHz) of the RC o.s.c. block can be varied by ±6% with the SPEED ADJ control.
- 6. Since the reference signal is varied with the SPEED ADJ at Quartz Lock OFF, the speed of the turntable is also variable ±6%.

9.4 OPERATION OF THE PA2004 IC (COMPARATOR CONTROL)

1. Signals from the frequency generator in the motor rotation ass'y are changed into 50% duty square wave signals by the waveform rectifier. The frequencies at this stage are thus,

33rpm 55.55Hz 45rpm 75Hz

- 2. Part of the output is divided by ½ in the FF circuit, and subsequently applied to the FV converter circuit along with the other part of the output formed in step 1 above, thereby forming the FV converter gate pulse signals.
- 3. The output from the FV converter is applied to buffer amplifiers I and II.
- 4. The buffer amplifier I output is compared with the reference voltage in buffer amplifier III, and then applied to the output compose circuit.
- 5. Phase comparison of the sampling pulses from the PD1003 IC with the FV converter output occurs in buffer amplifier II, with the resultant output being applied to buffer amplifier IV.
- 6. The output from buffer amplifier IV is also applied to the output compose circuit.

- 7. This output compose circuit consists of a low-pass filter (cut-off frequency 23Hz, cut-off slope —6dB/oct.) which serves to eliminate the carrier component in the output of buffer amplifier II (phase comparison).
- 8. This final output signal is then passed onto the comparator control stage of the PA2005 IC for comparison with the reference voltage.

9.5 OPERATION OF THE PA2005 IC (DRIVE CONTROL)

- Start/stop indicator stage
- 1. The input signal to this stage is applied by means of an external start/stop switch. In the PL-630, this switch is a photo-transistor switch activated by tonearm movement.
- 2. If the switch is turned on when the motor is stationart, a start signal is generated, and is used to start up the drive circuit.
- 3. If the switch is turned on when the motor is rotating, the forward/reverse direction discriminator circuit will be notified of the subsequent generation of a reverse torque.
- 4. At the same time, a stop signal is applied to the quick-stop timing circuit.
- Quick stop timing circuit
- 1. The motor will rapidly stop as a result of the reverse torque generated by the stop signal.
- 2. When the turntable speed drops, the signal of Fig. 10-b will appear at the quick stop timing circuit (Pin 13 of PA2005).
- 3. As a result of this signal, the waveform at pin 14 of PA2005 will become as shown in Fig. 10-c.
- 4. When the motor speed falls off, the signal level at pin 14 of PA2005 will exceed the fixed value, whereupon the drive circuit will go off.
- 5. Subsequently, the turntable will continue to rotate under its own inertia for a brief interval and then stop.

Fig. 20

Stroboscope Pulse Circuit

- 1. The platter has only a single row of stroboscopic markings. Switchover for 45 and 33 rpm is effected by changing the frequency of the pulse to the stroboscopic lamp.
- 2. From the Frequency Divider Selector I, a frequency of either 75Hz (for 45 rpm, representing 1/80 of 6000Hz) or 55.5Hz (for 33 rpm, representing 1/108) is obtained and supplied to the transistor that drives the stroboscopic lamp.

• Reverse Rotation Prevention

- 1. PXM-061 operates indiscriminately in regard to the direction of rotation. If the platter is turned slowly in the reverse direction by hand, a forward torque will be applied until the platter stops, reverses its rotation and reaches rated speed in the proper direction.
- 2. If, however, the rotational speed in the reverse direction is in excess of 33 or 45 rpm, the Forward/Reverse Command Block may "misread" this as simply excessive speed ("overrun") and apply a reverse torque until rated speed is attained.
- 3. This reverse torque will further accelerate the turntable rotation in the reverse direction. This is known as "reverse run-away."
- 4. To prevent this from happening, a Reverse Rotation Prevention circuit has been included.
- 5. This Reverse Rotation Prevention circuit consists of two flip-flops and AND gates See Fig. 21.
- 6. The input for this circuit is derived from the Hall element position detection signals processed in the Reverse Rotation Prevention circuit.
- 7. As long as the platter is rotating in the proper direction, this pulse enters in the order B-A-C, and no "reverse" command is generated.
- 8. If, however, the platter rotates in the reverse direction, the pulse order becomes A-B-C, and a corrective command is given to the Forward/Reverse Command Circuit.

		ŀ	$^{\circ}$ F $_{1}$		С	AN	AND		
		S	R	Q	\bar{Q}		lout	2out	Q
	В	0	1	0	1	0	0	0	
tation	<u> </u>								
ed by	Α	1	0	1	0	0	0	0	
Forward notation	+								
_	С	0	0	1	0	1	1	0	1
ion	Α	1	0	1	0	0	0	0	
rotat	+								
Reverse rotation	В	0	1	0	1	0	0	0	
	ļ								
	C	0	0	0	1	1	0	1	0

Truth table

Comparator Control and Forward/Reverse Command Circuit

- 1. Two inputs are supplied to the Control Comparator: a) a 4V reference voltage from the voltage stabilizer; and b) the output from the active filters, which serves as the detection signal.
- 2. If the turntable rotates faster than rated speed, the detection signal is higher than the 4V reference.
- 3. When this happens, the Comparator Control sends a command to the Forward/Reverse Command Circuit, telling it to apply a reverse torque to the motor to slow it down.
- 4. Conversely, if turntable rotation is below rated speed, the detection signal voltage will be below the 4V reference.
- 5. In this case, the Comparator Control indicates to the Forward/Reverse Command Circuit that forward torque must be applied to the motor to accelerate it.

Fig. 22

External Appearance of Transistors and ICs

2SC945 2SC1815

PA2007 PD1003 TD62503P

Δ

2SC2458

PA2008

2SD1275

BA6208

PD6003

_

C

MB84011B TC4011BP

PH101

D

12. ELECTRICAL PARTS LIST

- When ordering resistors, first convert resistance values into code form as shown in the following examples.
- Ex. 1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47k ohm (tolerance is shown by J=5%, and K=10%).

560Ω 56 x 10° 561 RD%PS (5)(6)(1) J 47kΩ 47 × 103 473 RD%PS 42[2]3 J 0R5 RN2H @@G K 0.5Ω ÍΩ 010 RSIP @CIO K

Ex. 2 When there are 3 effective digits (such as in high precision metal film resistors).

5.62kΩ 562 x 10°

5621 RN%SR 5620 F

- The A mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- · For your Parts Stock Control, the fast moving items are indicated with the marks ** and * .
 - ** GENERALLY MOVES FASTER THAN *

This classification shall be adjusted by each distributor because it depends on model number, temperature, humidity, etc.

ASSEMBLY AND OTHERS

CAPACITORS

Mark	Part No.	Symbol & Description	Mark	Part No.	Symbol & Description
Δ	XWM-141	Control unit	<u> </u>	PCL-040	C1
	XWX-134	Control (A) unit		CEA 1ROM 50L	C6
	XWX-135	Control (B) unit		CEA 100M 16L	C9
	XWX-136	Start unit		CEA 101M 35L	C3
	XWX-137	Photo transistor unit		CEA 220M 10L	C7, C8
	XWX-138	LED unit		CEA 4R7M 35L	C4
	PWM-138	Circuit unit		CEA 471M 25L	C5
A *	PTT-185	Power transformer		PCL-043	C2
**	PSF-016	S1, S2 Microswitch		CKDYF 103Z50	C10
**		Push switch	RESIST	rons	
<u> </u>	PSF-022	S3 Microswitch	NOTE	When ordering res	sistors, convert the resistance value
	PXM-125	Motor			d then rewrite the part no. as before.
	PXM-086	Motor	Mark	Part No.	Symbol & Description
CONT	ROL LINIT (YWM.141\		RS2PF222J	R1 RS2PF222J

CONTROL UNIT (XWM-141) **SEMICONDUCTORS**

OTHERS

Mark	Part No.	Symbol & Description	OTHE	no			
			Mark	Part No.	Symbol & Description		
	PD6003	IC1				· · · · · · · · · · · · · · · · · · ·	
**	BA6208	IC2		PKC-016	T1, T2		
**	µPC78M05H	IC3		PKC-010	T3		
*	2SC1815	Q2, Q3		PDE-240	CN1	Connector assembly (7P)	
*	2SD1275	Ω1		PDF-194	JP1	Lead wier unit (6P)	
				PDF-193	JP2	Lead wier unit (4P)	
*	1S2473	D4. D5					
	(1S1555)	•		PDF-195	JP3	Lead wier unit (8P)	
*	PCX-010	D1, D2		KMFC1033S			
*	MZ-250	D3		VZB30P060FMC		Screw	
	(WZ-250)			PMZ30P060FMC		Screw	

CONTROL (A) UNIT (XWX-134)

R01/4PM @@@J

Mark	Part No.	Symbol & Description			
**	PSG-025	\$4, \$5 m21 - m23	Switch Resistor		

R2 - R8

CONT	ROL (B) UNIT	(XWX-13	5)	CAPA	CITORS				
Mark	Part No.	Symbol	& Description	Mark	Part No.	Symbo	of & Description		
	PSG-025	\$6 - \$8	Switch		CQMA 123K 50	C5			
	BO1/4044001	504.54			CQPA 473J 50	C8			
	RD1/4PM102J		25 Resistor		CKDYF 103Z 50 CKDYF 223Z 50	C2, C4, C9, C12 C15 — C18			
START	ART UNIT (XWX-136)				CCDCH 330J 50	C1	010		
Mark	Part No.	Symbol	& Description	_					
*	GL9PR12	D30	LED	 '	CCDCH 560J 50	C3			
					PCL-046 CEANL R22M 50	C6, C7 C19			
	RD1/4PM102J	R26	Resistor		CEA R47M 50	C11, C	20		
					CEA 010M 50	C13, C			
	PDE-225	CN4	Connector assembly (2	P)	CEA 100M 10	040			
PHOTO	O TRANSISTOR	R UNIT (XWX-137)		CEA 100M 16 CEA 100M 35	C10	C26, C29		
Mark	Part No.		Symbol & Description		CEA 330M 10	C23	C20, C29		
				_	CEA 101M 10	C14			
**	PH101-S	Q1 Q	3		CSZA R22M 35	C21			
**	TC40118P	IC1			CEANP 470M 25	C27, C	28		
	(MB84011B) RGSD4X822J	R1		RESI	STORS				
	11050476223	11.1		NOT	E: When ordering resi	stors con	vert the resistance valu		
	PDE-223		Connector assembly (5				ite the part no. as before		
LED L	LED UNIT (XWX-138)		Mark	Part No.	Symbol & Description				
Mark	Part No.	Symbol	& Description		PCP-006	VR1	Semi-fiexed (15k-B)		
*	TLR121	D1 - D3	B		PCP-072	VR2	Semi-fiexed (47k-B)		
					RN1/4PR563G	R3			
	PCP-013	VR1, VE	R2 Semi-fixed (22k-B)		RN1/4PR154G	R4			
	RGSD5X561J	R2			RD1/2PS2R2J	R11			
					RD1/4PM @@@J		Others		
	PDF-192		lead wire unit				3.7.3.3		
	PDF-200		d wire unit	OTHE	RS				
	PPZ30P080FMC	Screw		Mark	Part No.	Symbol	8 Description		
CIRCU	IT UNIT (PWM	-138)			RNH-199		Earth terminal		
SEMICO	NDUCTORS				SD-5048-07A		Screw		
Mark	Part No.	Symbol	& Description		PSZ30P050FMC		Screw		
**	PA2007	IC1		_					
**		1C2							
**	PD1003	IC3							
**	TD62503P	IC4	•						
**	2SC1815	Q1							
	(2SC945)	٠.							
	(2SC2458)								
*	PCX-057	на, нв	Hall element						
,-	PSS-003	uw de	X'tal						
	152473	D4							
*	1324/3	D1							

13. TROUBLESHOOTING

14. ADJUSTMENTS

14.1 STYLUS LOWERING POSITION

- 1. Remove the rubber plug (Fig. 14-1).
- 2. If the tonearm lowers too far to the outside of the record, turn the adjusting screw clockwise.
- If the tonearm lowers too far to the inside of the record, turn the adjusting screw counterclockwise.

Specifications for test record use.

30cm lowering position...adjust to lower between count 305 and 316.

17cm lowering position... adjust to lower between count 174 and 185.

Fig. 14-1 Stylus lowering position

14.2 END SENSOR SENSITIVITY ADJUSTMENT

- 1. Remove the platter and top cover unit.
- Make certain the shutter will pass between the sensor board assembly positioned slightly above center (Fig. 14-2).

Fig. 14-2 Shutter position

- Connect an oscilloscope to PD6003 pin 25 (end sensor A) (CN2 3 pin), and PD6003 pin 24 (end sensor B) (CN2 2 pin).
- 4. Turn the power ON and set the arm-elevation to UP

Position the tonearm over the lead out groove zone of the record as if playback were in progress. While making certain outside light is not directly striking the sensor section, adjust VR1 and VR2 so that the output waveform (pulse) for sensors A and B are both at approximately 50% duty cycle (Fig. 14-3, 14-5).

Adjust pulse width of end sensor A and B to 50% duty cycle.

Fig. 14-3 Output waveform 1

90°. Fig. 14-4 Output waveform 2

- Next, move the tonearm toward the inside of the record at about the speed the tonearm would normally trace the lead out groove.
- Make certain the phase of end sensor B is 90° advanced over end sensor A (Fig. 14-4).

Fig. 14-5 VR1, VR2 position

14.3 MOTOR OPERATING POINT ADJUST-

- Set the speed to 33 1/3 rpm and depress the START/STOP button to put the unit into the operational mode.
- Connect a buffer amp to pin 1 of IC PA2007, and connect the output to a oscilloscope (Fig. 14-6).
- 3. When a waveform like that shown in Fig. 14-7 is obtained, vary oscilloscope gain until a sawtooth wave with 5 div peak-to-peak is obtained. Then, referring to Fig. 14-7, adjust VR1 until a to b equals 2.8 to 2.2 (Make sure noise does not affect adjustment.)
- 4. When the 33 1/3 rpm adjustment is completed, adjust VR2 using the same procedure (item 2 and 3 above) for 45 rpm. Always adjust 33 1/3 first, and always adjust 33 1/3 if 45 rpm is to be adjusted even though it might be accurate.
- Connect pin 7 of PA2007 to a oscilloscope and make certain the frequency for 33 1/3 rpm is 55.5Hz, and that for 45 rpm is 75Hz.

Fig. 14-6 Connect buffer amp

Fig. 14-7 Waveform

Fig. 14-8 VR1, VR2 position

14. RÉGLAGE

14.1 POSITION DE DESCENTE DE LA POINTE DE LECTURE

- 1. Retirer l'obturateur en caoutchouc (Fig. 14-1).
- Si le bras acoustique descend trop loin à l'extérieur du disque, tourner la vis de réglage dans le sens des aiguilles d'une montre.
- Si le bras acoustique descend trop loin sur le disque, tourner la vis de réglage dans le sens inverse des aiguilles d'une montre.

Caractéristiques de descente sur disque:

Position de descente sur

disque 30 cm régler pour une descente entre 305 et 316.

Position de descente sur

disque 17 cm régler pour une descente entre 174 et 185.

Fig. 14-1 Position de descente de la pointe de lecture

14.2 REGLAGE DE SENSIBILITE DE CAPTEUR DE FIN DE DISQUE

- Déposer le plateau ainsi que le capot antipoussière.
- Veiller à ce que le volet passe entre l'ensemble de plateau de capteur positionné légèrement au-dessus du centre (Fig. 14-2).

Fig. 12-2 Position du volet

- Connecter un oscilloscope à la broche 25 de PD6003 (capteur A de fin de disque) (CN2 à 3 broches) et la broche 24 de PD6003 (capteur B de fin de disque) (CN2 à 2 broches).
- Mettre sous tension et amener le lève-bras sur Up. Positionner le bras acoustique au-dessus du sillon de sortie du disque, comme à la fin de sa reproduction normale.
- 5. Tout en veillant à ce qu'aucune lumière extérieure n'atteigne le capteur, régler VR1 et VR2 de manière à ce que la forme d'onde de sortie (impulsion) pour les capteurs A et B soit d'environ 50 % du cycle efficace (Fig. 14-3, 14-5).

Fig. 14-3 Forme d'onde de sortie 1

disque est en avance de 90 sur le capteur B.

Fig. 14-4 Forme d'onde de sortie 2

- Amener le bras acoustique vers l'intérieur du disque à environ la vitesse à laquelle il avancerait sur le sillon de sortie.
- Veiller à ce que la phase du capteur B de fin de disque soit en avance de 90° sur celle du capteur A (Fig. 14-4).

Fig. 14-5 Position de VR1 et VR2

14.3 REGLAGE DE POINT D'ACTIONNE-MENT DU MOTEUR

- Passer sur 33 1/3 tr/mn et appuyer sur la touche START/STOP afin de mettre la table de lecture en marche.
- Brancher un amplificateur intermédiaire sur la broche 1 du CI PA2007 et connecter la sortie à un oscilloscope (Fig. 14-6).
- 3. Si la forme d'onde est semblable à celle de la Fig. 14-7, faire varier le gain du oscilloscope jusqu'à ce qu'elle soit en dents de scie avec 5 divisions crête à crête puis, en se reportant à la Fig. 14-7, régler VR1 jusqu'à ce que a à b soit égal à 2.8 à 2.2 (veiller à ce qu'aucun bruit ne gêne le réglage).
- 4. Lorsque le réglage de 33-1/3 tr/mn est terminé, régler VR2 de la même manière (alinéas 2 et 3 ci-dessus) pour 45 tr/mn. Toujours commencer par régler 33-1/3. Si 45 tr/mn doit être réglée, il convient de commencer par régler 33-1/3 tr/mn, même si cette dernière vitesse est bonne.
- Connecter la broche 7 de PA2007 à un oscilloscope et vérifier si la fréquence est bien de 55.5Hz pour 33-1/3 tr/mn et de 75Hz pour 45 tr/mn.

Fig. 14-6 Connexion de l'amplificateur intermédiaire

Fig. 14-7 Forme d'onde

Fig. 14-8 Position de VR1 et VR2

14. AJUSTE

14.1 POSICIÓN DE DESCENSO DE LA **AGUJA**

- 1. Sacar el enchufe de goma (Fig. 14-1).
- 2. Si el brazo fonocaptor desciende muy lejos del tocadiscos, girar el tornillo ajustador hacia la derecha.
- 3. Si el brazo fonocaptor desciende muy lejos dentro del tocadiscos, girar el tornillo ajustador hacía la izquierda.

Especificaciones para el uso del tocadiscos de prueba:

Posición de descenso

de 30 cm Ajustar para descender entre el valor 305 y 316.

Posición de descenso

de 17 cm Ajustar para descender el valor 174 y 185.

Fig. 14-1 Posición de descenso de la aguja

14.2 AJUSTE DE LA SENSIBILIDAD DEL SENSOR

- 1. Sacar el plato y la cubierta de la parte superior. 2. Estar seguros que el obturador pasa entre el
- conjunto de placa del sensor colocada ligeramente encima del centro (Fig. 14-2).

Fig. 14-2 Posición del obturador

- 3. Conectar un osciloscopio a la pastilla 25 del PD6003 (sensor A) (pastilla 3 CN2) y la pastilla 24 del PD6003 (sensor B) (pastilla 2 CN2).
- 4. Conectar la alimentación y ajustar la elevación del brazo a UP. Poner el brazo fonocaptor en la parte del surco de la salida del disco como si la reprodución estuviera realizandose.
- 5. Mientras se está seguro que las luces externas no están dando directamente a la sección del sensor, aiustar VR1 y VR2 de forma que que la forma de ondas de salida para los sensores A y B sean ambas aproximadamente del ciclo de rendimiento del 50 % (Fig. 14-3, 14-5).

Fig. 14-3 : Forma de ondas de salida 1

La fese del sensor Riestá delante

Fig. 14-4 Forma de onda de salida

- 6. Luego mover el brazo fonocaptor hacia el interior del disco y la velocidad el brazo fonocaptor trazará normalmente el surco de salida.
- 7. Estar seguros que la fase del sensor B está 90° adelantada sobre el sensor A. (Fig. 14-4)

Fig. 14-5 Posiciones de VR1, VR2

14.3 AJUSTAR DEL PUNTO DE FUNCIONA-MIENTO DEL MOTOR

- 1. Aiustar la velocidad a 33-1/3 rpm y presionar el botón START/STOP para poner el aparato en el modo de funcionamiento.
- 2. Conectar un amplificador intermedio a la pastilla 1 del IG PA2007 y conectar la salida a un osciloscopio (Fig. 14-6).
- 3. Cuando una forma de onda como la mostrada en la figura 14-7 es obtenida, variar la ganancia del osciloscopio hasta que la onda de dientes de sierra se obtenga 5 divisiones de pico a pico. Luego refiriéndose a la figura 14-7 ajstar VR-1 hasta que a-b iguale 2.8 a 2.2 (estar seguros que el ruido no afecta el ajuste).
- 4. Cuando el ajuste a 33-1/3 rom es completo. ajustar VR2 utilizando el mismo procedimiento (puntos 2 y 3 de arriba) para 45 rpm. Siempre ajustar a 33-1/3 primero, y siempre ajustar 33-1/3 si tiene que ajustar 45 rpm, con pre-
- 5. Conectar la pastilla 7 del PA2007 al osciloscopio y estar seguro que la frecuencia de 33-1/3 rpm es de 55.5Hz v que para 45 rpm es de 75Hz.

Fig. 14-6 Conectar al amplificador intermedio

Fig. 14-7 Forma de onda

Lado frontal de PL-707

Fig. 14-8 Posiciones de VR1 y VR2

15. FOR HE, HB AND S TYPES

 PL-707/HE, HB and S types are the same as PL-707/KUT type with the exception of the following sections.

15.1 CONTRAST OF MISCELLANEOUS PARTS

		Part No.				
Mark	Symbol & Description	KUT type	HE type	HB type	S type	Remarks
	entrol unit	XWM-141	XWM-142	XWM-142	XWM-141	
A ★ Po A ★ Po A ★ Po	wer transformer (120V)	PTT-185				
<u>^</u> ★ Po	wer transformer (220/240V)		PTT-186	PTT-186		
	wer transformer (110/120/220/ 240V)				PTT-187	
i ** Po c. Po £. Fu	wer switch	PSF-022	PSF-021	PSF-021	PSF-021	
ė Po	wer cord	PDG-055	PDG-025	PDG-026	PDG-052	
ć. Fu	ise T800mA/250V		PEK-042	PEK-042		
🏝 🚶 Li	ne voltage selector	'	PSB-002	PSB-002		
(20,	witchable 2 position)					
<u>.</u> Li	ne voltage selector				PSB-007	
(sv	witchable 4 position)			1		
Pa	cking case	PHH-048	PHH-050	PHH-050	PHH-050	
	perating instructions English)	PRB-231		PRB-231	PRB-231	
	perating instructions English/German/French/Italian)		PRE-013		,	
Ca	binet	PMM-197	PMM-198	PMM-198	PMM-198	
Pa	nel	PNY-049	PNY-100	PNY-100	PNY-100	
PL	l cord	PDE-197	PDE-142	PDE-142	PDE-142	
Str	ain relief	PEC-087	PEC-088	PEC-088	PEC-087	

15. 2 SCHEMATIC DIAGRAM

• HE, HB types

S type

16. SAFETY INFORMATION

1. SAFETY PRECAUTIONS

The following check should be performed for the continued protection of the customer and service tecnician.

LEAKAGE CURRENT CHECK

Measure leakage current to a known earth ground (water pipe, conduit, etc.) by connecting a leakage current tester such as Simpson Model 229-2 or equivalent between the earth ground and all exposed metal parts of the appliance (input/output terminals, screwheads, metal overlays, control shaft, etc.). Plug the AC line cord of the appliance directly into a 120V AC 60Hz outlet and turn the AC power switch on. Any current measured must not exceed 0.5mA.

AC Leakage Test

ANY MEASUREMENTS NOT WITHIN THE LIMITS OUTLINED ABOVE ARE INDICATIVE OF A POTENTIAL SHOCK HAZARD AND MUST BE CORRECTED BEFORE RETURNING THE APPLIANCE TO THE CUSTOMER.

2. PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in the appliance have special safety related characteristics. These are often not evident from visual inspection nor the protection afforded by them necessarily can be obtained by using replacement components rated for voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this Service Manual.

Electrical components having such features are identified by marking with a $\hat{\Delta}$ on the schematics and on the parts list in this Service Manual.

The use of a substitute replacement component which dose not have the same safety characteristics as the PIONEER recommended replacement one, shown in the parts list in this Service Manual, may create shock, fire, or other hazards.

Product Safety is continuously under review and new instructions are issued from time to time. For the latest information, always consult the current PIONEER Service Manual. A subscription to, or additional copies of, PIONEER Service Manual may be obtained at a nominal charge from PIONEER.