TIME-TO-FAILURE PREDICTION (TTF)

Forecasting plane engine failure with sensors data

Goal: Predicting airplane's engine failure before it happens

Objectives:

Offer continuous maintenance assistance

Decrease components production

Decrease maintenance time

Improve the engine efficiency

Value proposition:

A survival analysis framework for aircraft components supports the UN Sustainable Development Goals by **improving component lifespan**, **reducing waste**, and **fostering innovation**

How can we deal with trajectories having different length?

 Which are the most relevant features to collect?

Symbol	Description	Units
T2	Total temperature at fan inlet	°R
T24	Total temperature at LPC outlet	°R
T30	Total temperature at HPC outlet	°R
T50	Total temperature at LPT outlet	°R
P2	Pressure at fan inlet	psia
P15	Total pressure in bypass-duct	psia
P30	Total pressure at HPC outlet	psia
Nf	Physical fan speed	rpm
Nc	Physical core speed	rpm
epr	Engine pressure ratio (P50/P2)	
Ps30	Static pressure at HPC outlet	psia
phi	Ratio of fuel flow to Ps30	pps/psi
NRf	Corrected fan speed	rpm
NRc	Corrected core speed	rpm
BPR	Bypass Ratio	9 22
farB	Burner fuel-air ratio	C
htBleed	Bleed Enthalpy	,
Nf_dmd	Demanded fan speed	rpm
PCNfR_dmd	Demanded corrected fan speed	rpm
W31	HPT coolant bleed	lbm/s
W32	LPT coolant bleed	lbm/s

Which are the most relevant features to collect?

 How can sensor noise in time-series data be effectively mitigated to improve the accuracy in our RUL predictions?

Other challenges?

Functional diagram:

Zoom on the software:

Strategies:

- Machine Learning Models
- Long Short-Term Memory
- Transformers

Machine Learning Models

Windowing for LSTM and Transformers

Long Short-Term Memory

LSTM networks, a specialized type of RNN, that use a cell state, an input, a forget and an output gate to control the flow of information, capturing both short-term and long-term dependencies in sequential data

Transformers

- Transformers, leveraging self-attention mechanisms, excel in modeling long-term dependencies in sequential data, making them ideal for predicting Remaining Useful Life (RUL)
- The versatility of this powerful architecture allow us to carry on several approaches related to it.

e.g: Transformers can be pre-trained to predict the next window from sequential data, capturing global dependencies, and fine-tuned for regression to ensure accurate RUL prediction.

Unsupervised Pre-Training +

Self-supervised Fine-Tuning

Any question?

- Tanguy Dugas du Villard
- Vito Perrucci
- Lorenzo Suppa