Total	No.	of	Quest	ions	:	5	١
-------	-----	----	-------	------	---	---	---

PA-2552

Total No. of Pages: 4

[5948] 102

M.C.A. (Management)

IT - 12 : DATA STRUCTURE AND ALGORITHMS (2020 Paftern) (Semester - I)

	(2020 I attern)	(Beiliester -)	
Time . 2	% Hours	[Max. Marks	: 50
	ions to the candidates:		
1)	All questions are compulsory.		
2)	From Q2 va Q5 having internal choi	ces.	
3)	Figure to be right indicate full mark	.s. <u></u>	
	The Co		
<i>Q1)</i> M	CO Si	(20×½	=10]
a)	In a linked list insertion can be	done as	
a)	i) beginning	ii) end	
	iii) middle	(iv) all	
		and another of DI L is	
b)	The minimum number of fields	Will Each hode of DEE is	
	i) 1	10 2	
	iii) 3) (iv) 4	
c)	In a stack if a user tries to rer	nove an element from empty stac	k, 11 18
	called	9	.00
	i) empty collection &	i) underflow	1
	iii) overflow	iv) garbage collection	ئي:
d)		eving the top element of the stack	without
u)	deleting it		Des
		ii) dequeue ()	5
	i) pop ()	iv) peek()	
	iii) push ()		ada san
e)	Binary tree is a special type of	freedata structure in which every r	lode can
	have a maximum cl	hildren O	
	i) 4	ii) 2	
	iii) 1	iv) Quality	
	m) 1	ft subtree and right subtree differ	in height
f)	A Binary search tree whose is	3	
	by at most 1 unit is called	" Diads trop	
	i) AVL tree	ii) Red Black tree	
	iii) Lemma tree	iv) Unique tree	
		a de	
		(,)	P.T.O
		S.	1.1.0

g)	The	Breadth first search traversal of	a gra	ph will result into?
	i)	Linked List	ii)	Tree
	iii)	Graph with back edges	iv)	None
h)	Tin	ne complexity of DFS is (V-num	ber o	f vertex, E-number of edges)
	i)	O (V+E)	ii)	O(V)
	iii)	O (E)	iv)	None
i)	He	ap can be used as		
	i)	Priority queue	ii)	stack
	iii)	A decreasing order array	iv)	Normal array
j)	Wl	nat is the Best case for linearsear	ch	g Care
	i)	O(nlog n)	ii)	O(logn)
	iii)	Q(n)	iv)	O(1)
k)	In .	linear search with array, how n	nany	comparsions are needed in best
	cas	4 -	1 may	
	(1)	0	(ii)	
	iii)	n	iv)	n/2
l)	Bac	cktracking algorithm is implem	ented	by constructing a tree of choice
	cal	led as	5.	= 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	i)	state - space tree	ii)	Back tracking tree
	iii)	state - space tree		Node tree
m)	Wh	at is meant by the power set of	a set	?
	i)	subset of all sets	ii)	set of all subsets emptyset rithm?
	iii)	set of particular subset	iv)	emptyset
n)	Wh	at is the other name of Dijkstra	Algo	rithm?
	i)	Single source shortest path		The same
	ii)	multiple source shortest path		0,0
	iii)	multiple destination		C. A.
	iv)	single destination shortest pa	th pr	oblem 3
o)	Whi	ich of the following standard a	lgori	thms is not a Greedy algorithm.
	i)	Dijkstra algorithm	ii)	Prim's
	iii)	Kruskal	iv)	Bellment Ford stortest path
	-,		1	% .
		2	0	<i>)</i>
8]-1	02	2	Dr.	

(را	Wh	at is the worst case complexity	of qui	ick sort?	
1 /	i)	O(n logn)	ii)	O(logn)	
	iii)	O(n)	iv)	$O(n^2)$	
q)	W	nich of the following method is	used f	or sorting in merge sort.	
	i)	merging	ii)	partitioning	
	iii)	selection (iv)		
r)	In	dynamic programming the outp	ut to		
	i)	stage n 1	ii)	stage n itself	
	iii)		,	stage n – 2	
s)	Cl	noose the recursive formula for	Fibor	nacci series (n > = 1)	
	i)	F(n) = F(n+1) + F(n+2)	ii)	F(n) = F(n) + F(n-1)	
	iii	F(n) = F(n-1) + F(n-2)	iv)	F(n) = F(n-1) - F(n-2)	
t)		1 - 1	s not	require extra memory for carryi	ng
		ut 🍀		1112	
	i)	in-place	11)	stable	
	Cit	i) unstable	, V) in-partition	
	V	N	00	9	
Q2) a)		Draw Binary tree from given tray	4	\$	[5]
		norder : 4, 2, 5, 1, 6, 7, 3, 8	17	3	
	I	Postorder: 4, 5, 2, 6, 7, 8, 3, 1	100		
b			Plink	ed list representation of undire	ected -
		graph.			13)
		w.			.0
		Q 2 23			1.5
		et/		%	
		ec / 1/2 @		Car V.	
		(4) 3 ey		64 54	
		0 68 0		Marie 12	
(c)	Define collisions.		0,0	[2]
	,	(OR		(-1
	`			The also	
8	a)			y search tree for following dat	a.
		10, 08, 15, 12, 13, 07, 09, 17,	, 20, 1	18,04,05	[5]
1	b)	Compare BFS and DFS.		55	[3
	c)	Explain Min Heap.		· 25	[2
	,	· ·		July .	14

Q3) a)	Apply Rain Terrace algorithm to following problem	
	Input: [4, 2, 0, 3, 2, 5] Draw the figure and find solution.	[4]
b)	Write on algorithm for knight's Tour.	[3]
c)	Discuss use of Priority queve	[3]
	OR	
a)	Apply the maximum subarray algorithm to the	
	Input: arr $[-2, -3, 6, -2, -3, 1, 5, -6]$ and find sum of maximum	mum
	subarray	[4]
b)	Give the explicit and implicit constraints in 8 queen's problem.	[3]
c)	Discuss Hamiltonian Cycle.	[3]
Q4) a)	Sort the following data using Mergesort [38, 27, 43, 3, 9, 82, 10].	[4]
b)	Consider the following array [1, 3, 5, 8, 9, 2, 6, 7, 6] what is min	imum
	number of jump required to reach the end of the array?	[4]
c)	Explain need of circular queve.	[2]
	QR CO	
a)	Write an algorithm of Kruskal's algorithm.	[4]
b)	Explain Rules for Tower of Hanol with an suitable example.	[4]
c)	What is the purpose of Linked Dist.	[2]
	7.3	10
Q5) a)	Write an algorithm to implement queue using linked list.	્રાર્કો
b)	Solve the following instance of 0/1 knapsack problem by ap	pplying
	Dynamic programming $n = 3 \text{ w} = (3, 5, 7) \text{ p}(3, 7, 12), M = 4$	§~ [7]
	OR OF	
a)	Write a algorithm to delete element from linked list whose sum is	equal to
	zero.	[3]
b)	Find the largest common subsequence for the following string	ng using
	Dynamic Programming	[7]
	X = [A, B, C, D, B, A, C, D, F]	
	Y = [C, B, A, F]	
	ين (و, ع, ١٠, ١٠)	
[5948]-1	Find the largest common subsequence for the following string Dynamic Programming X = [A, B, C, D, B, A, C, D, F] Y = [C, B, A, F]	
[5740]-1	v-	