The κ -Strongly Proper Forcing Axiom

David Asperó

University of East Anglia

Fifth Workshop on Generalised Baire Spaces
Bristol, February 2020

Properness and strong properness

(Shelah) A partial order \mathcal{P} is *proper* iff for every large enough cardinal θ (i.e., such that $\mathcal{P} \in H(\theta)$), every countable $N \preccurlyeq H(\theta)$ such that $\mathcal{P} \in N$ and every $p \in \mathcal{P} \cap N$ there is some $q \leq_{\mathcal{P}} p$ which is (N,\mathcal{P}) -generic, i.e., for every $q' \leq_{\mathcal{P}} q$ and every dense set $D \subseteq \mathcal{P}$ such that $D \in N$, q' is compatible with some condition in $D \cap N$.

(Mitchell) A partial order \mathcal{P} is *strongly proper* iff for every large enough cardinal θ , every countable $N \leq H(\theta)$ such that $\mathcal{P} \in N$ and every $p \in \mathcal{P} \cap N$ there is some $q \leq_{\mathcal{P}} p$ which is *strongly* (N,\mathcal{P}) -*generic*, i.e., for every $q' \leq_{\mathcal{P}} q$ there is some $\pi_N(q') \in \mathcal{P} \cap N$ weaker than q' and such that every $r \in \mathcal{P} \cap N$ such that $r \leq_{\mathcal{P}} \pi_N(q')$ is compatible with q'.

Examples of strongly proper partial orders:

- Cohen forcing
- Baumgartner's forcing for adding a club of ω_1 with finite conditions.
- Given a cardinal λ ≥ ω₂, the forcing of finite ∈-chains of countable N ≼ H(λ).

Caution: ccc does not imply strongly proper. In fact, most ccc forcings are not strongly proper.

Some basic facts

Fact

If $\mathcal P$ is strongly proper, $N \preccurlyeq H(\theta)$ is countable, $\mathcal P \in N$, q is strongly $(N,\mathcal P)$ -generic, $G \subseteq \mathcal P$ is generic over V, and $q \in G$, then $G \cap N$ is $\mathcal P \cap N$ -generic over V.

Fact

Every ω -sequence of ordinals added by a strongly proper forcing notion is in a generic extension of V by Cohen forcing.

Proof.

Let \mathcal{P} be strongly proper, \dot{r} a \mathcal{P} -name for an ω -sequence of ordinals, $p \in \mathcal{P}$, and $N \preccurlyeq H(\theta)$ countable and such that \mathcal{P} , p, $\dot{r} \in N$.

Let $q \leq_{\mathcal{P}} p$ be strongly (N, \mathcal{P}) -generic. Then, if G is \mathcal{P} -generic over V and $q \in G$, $H = G \cap N$ is $\mathcal{P} \cap N$ -generic over V.

But $\mathcal{P} \cap N$ is countable and non-atomic, and therefore forcing-equivalent to Cohen forcing.

And of course $\dot{r}_G = \dot{r}_H$.

Lemma

(Neeman) Suppose $\mathcal P$ is strongly proper, f is a $\mathcal P$ -name for a function with $\mathrm{dom}(f)=\alpha\in Ord$. Let $N\preccurlyeq H(\theta)$ countable and such that $\mathcal P$, $f\in N$. Let q be strongly $(N,\mathcal P)$ -generic, let G be $\mathcal P$ -generic over V such that $q\in G$, and suppose $f_G\upharpoonright M\in V$. Then $f_G\in V$.

Corollary

(Neeman) Suppose \mathcal{P} is strongly proper. Then \mathcal{P} does not add new branches through trees T such that $\operatorname{cf}(ht(T)) \geq \omega_1$.

Lemma

(Neeman) Suppose \mathcal{P} , \mathcal{Q} are forcing notions, $N \preccurlyeq H(\theta)$ is countable and such that \mathcal{P} , $\mathcal{Q} \in N$, p is strongly (N, \mathcal{P}) -generic, and q is (N, \mathcal{Q}) -generic. Then (p, q) is $(N, \mathcal{P} \times \mathcal{Q})$ -generic.

Extending to $\kappa > \omega$

This part is joint work with Sean Cox, Asaf Karagila, and Christoph Weiss.

The notion of strong properness can be naturally extended to higher cardinals:

Suppose κ is an infinite regular cardinal such that $\kappa^{<\kappa} = \kappa$. A partial order \mathcal{P} is κ -strongly proper iff for every $N \preccurlyeq H(\theta)$ such that $\mathcal{P} \in N$ and such that

- $|N| = \kappa$, and
- $<\kappa N \subset N$.

every \mathcal{P} -condition in N can be extended to a strongly (N,\mathcal{P}) -generic condition.

We will need the following closure property:

Given an infinite regular cardinal κ , a partial order \mathcal{P} is $<\kappa$ -directed closed with greatest lower bounds in case every directed subset X of \mathcal{P} (i.e., every finite subset of X has a lower bound in \mathcal{P}) such that $|X|<\kappa$ has a greatest lower bound in \mathcal{P} .

We will also say that \mathcal{P} is κ -lattice.

All fact about strongly proper (i.e., ω -strongly proper) forcing we have seen extend naturally to κ -strongly proper forcing notion which are κ -lattice (always assuming $\kappa^{<\kappa}=\kappa$).

For example, every κ -sequence of ordinals added by a forcing in this class belongs to a generic extension by adding a Cohen subset of κ .

Lemma

(Reflection Lemma) Let κ be an infinite regular cardinal such that $\kappa^{<\kappa}=\kappa$. Suppose $\mathcal P$ is a κ -lattice and κ -strongly proper forcing. If θ is large enough and $(Q_i)_{i<\kappa^+}$ is a \subseteq -continuous \in -chain of elementary submodels of $H(\theta)$ such that $\mathcal P\in Q_i$, $|Q_i|=\kappa$, and ${}^{<\kappa}Q_i\subseteq Q_i$ for all $i\in S_\kappa^{\kappa^+}$, then $\mathcal P\cap Q$ is κ -lattice and κ -strongly proper, for $Q=\bigcup_{i<\kappa^+}Q_i$.

Proof.

Given large enough cardinal χ and $N \preccurlyeq H(\chi)$ such that \mathcal{P} , $(Q_i)_{i < \kappa^+} \in N$, $|N| = \kappa$ and ${}^{<\kappa}N \subseteq N$, $N \cap Q = Q_\delta \in Q$ for $\delta = N \cap \kappa^+$. But any strongly (Q_δ, \mathcal{P}) -generic $q \in Q$ is $(N, \mathcal{P} \cap Q)$ -generic.

Compare the above reflection property with the reflection of κ -c.c. forcing to substructures Q such that ${}^{<\kappa}Q\subseteq Q$.

Theorem

Assume GCH, and let $\kappa < \kappa^+ < \theta$ be infinite regular cardinals. Then there is a κ -lattice and κ -strongly proper forcing $\mathcal P$ which forces $2^\kappa = \kappa^{++} = \theta$ together with the κ -Strongly Proper Forcing Axiom.

Proof sketch: By first forcing with $\operatorname{Coll}(\kappa^+, <\theta)$, we may assume that $\theta = \kappa^{++}$ and that $\diamondsuit(S_{\kappa^+}^\theta)$ holds. Hence there is a 'diamond sequence' $\vec{A} = (A_\alpha)_{\alpha \in S_{\kappa^+}^\theta}$, where $A_\alpha \subseteq H(\theta)$ for all α .

Let

$$E = \{ \alpha \in S_{\kappa^+}^{\theta} : (A_{\alpha}; \in, \vec{A} \upharpoonright \alpha) \preccurlyeq (H(\theta); \in, \vec{A}) \},\$$

$$\mathcal{T} = \{ \mathbf{A}_{\alpha} : \alpha \in \mathbf{E} \},\$$

and

$$S = \{ N \leq H(\theta) : |N| = \kappa, {}^{<\kappa}N \subseteq N \}$$

Our forcing \mathcal{P} is \mathcal{P}_{θ} , where $(\mathcal{P}_{\alpha} \in E \cup \{\theta\})$ is a $<\kappa$ -support iteration à la Neeman with models from $\mathcal{S} \cup \mathcal{T}$ as side conditions.

More specifically, given $\beta \in E \cup \{\theta\}$, \mathcal{P}_{β} is the set of all pairs $\langle p, s \rangle$ such that:

- (1) $s \in [S \cup T]^{<\kappa}$ and \in is a weak total order on s.
- (2) p is a function with $dom(p) \in [E \cap \beta]^{<\kappa}$ such that for each $\alpha \in dom(p)$,
 - (a) A_{α} is a \mathcal{P}_{α} -name for a κ -lattice κ -strongly proper forcing notion whose conditions are ordinals,
 - (b) $H(\alpha) \in s$, and
 - (c) $p(\alpha)$ is a nice \mathcal{P}_{α} -name such that $\Vdash_{\alpha} p(\alpha) \in A_{\alpha}$.
- (3) For every $\alpha \in \text{dom}(p)$ and every $N \in s \cap S$ such that $\alpha \in N$, $\langle p \upharpoonright \alpha, s \cap H(\alpha) \rangle$ is a condition in \mathcal{P}_{α} which forces in \mathcal{P}_{α} that $p(\alpha)$ is a strongly $(N[\dot{G}_{\alpha}], A_{\alpha})$ -generic condition.

Extension relation: $\langle p_1, s_1 \rangle \leq_{\beta} \langle p_0, s_0 \rangle$ iff

- (i) $s_0 \subseteq s_1$,
- (ii) $dom(p_0) \subseteq dom(p_1)$, and
- (ii) for all $\alpha \in \text{dom}(p_0)$, $\langle p_1 \upharpoonright \alpha, s_1 \cap H(\alpha) \rangle \Vdash_{\alpha} p_1(\alpha) \leq_{A_{\alpha}} p_0(\alpha)$.

The Reflection Property is used to show that our construction captures κ -strongly proper forcings of arbitrary size.

Also: The proof crucially uses the fact that our forcings are κ -lattice (it would not work if we just assumed $<\kappa$ -directed closedness). \square

The κ -Strongly Proper Forcing Axiom does not decide 2^{κ} . In fact:

Theorem

Assume GCH, and let $\kappa < \kappa^+ < \kappa^{++} \le \theta$ be infinite regular cardinals. Suppose $\diamondsuit(S_\kappa^{\kappa^{++}})$ holds. Then there is a κ -lattice and κ -strongly proper forcing $\mathcal P$ which forces $\mathbf 2^\kappa = \theta$ together with the κ -Strongly Proper Forcing Axiom.

Proof sketch: We fix 'diamond sequence' $\vec{A} = \langle A_{\alpha} : \alpha \in S_{\kappa^+}^{\kappa^{++}} \rangle$, where $A_{\alpha} \subseteq H(\kappa^{++})$ for all α , and build an iteration $(\mathcal{P}_{\alpha} \in \alpha \in E \cup \{\kappa^{++}\})$ as before, except that at each stage $\alpha \in E$ now we look at whether A_{α} is a $\mathcal{P}_{\alpha} \times \operatorname{Add}(\kappa, \kappa^{+})$ -name for a κ -lattice and κ -strongly proper poset (and if so we force with it).

The forcing witnessing the theorem is

$$\mathcal{P} = \mathcal{P}_{\kappa^{++}} \times \mathsf{Add}(\kappa, \, \theta)$$

To see this, take a κ -lattice κ -strongly proper forcing in the

extension via \mathcal{P} . By the Reflection Property it reflects to a forcing of size κ^+ . Let \dot{Q} be a \mathcal{P} -name for the corresponding forcing.

By κ^{++} -c.c. of $\mathcal P$ we may identify Q with a $\mathcal P_{\kappa^{++}} \times \operatorname{Add}(\kappa,\kappa^+)$ -name, which of course we may assume is a subset of $H(\kappa^{++})$. Now we use our diamond $\vec A$ to capture Q by some A_α as in the proof of the previous theorem.

The final point is that A_{α} will be a $\mathcal{P}_{\alpha} \times \operatorname{Add}(\kappa, \kappa^+)$ -name for a κ -lattice κ -strongly proper forcing. This uses the fact that every κ -sequence of ordinals is in a κ -Cohen extension since $\mathcal{P}_{\alpha} \times \operatorname{Add}(\kappa, \kappa^+)$ is κ -lattice and κ -strongly proper (which enables A_{α} to have enough access to arbitrary $\mathcal{P}_{\alpha} \times \operatorname{Add}(\kappa, \kappa^+)$ -names for κ -sized elementary submodels N). \square

As far as I know this is the first example of a forcing axiom $\mathsf{FA}_{\kappa^+}(\Gamma)$ such that $\mathsf{FA}_{\kappa^{++}}(\Gamma)$ is false but nevertheless $\mathsf{FA}_{\kappa^+}(\Gamma)$ is compatible with 2^κ arbitrarily large.

The final point is that A_{α} will be a $\mathcal{P}_{\alpha} \times \operatorname{Add}(\kappa, \kappa^{+})$ -name for a κ -lattice κ -strongly proper forcing. This uses the fact that every κ -sequence of ordinals is in a κ -Cohen extension since $\mathcal{P}_{\alpha} \times \operatorname{Add}(\kappa, \kappa^{+})$ is κ -lattice and κ -strongly proper (which enables A_{α} to have enough access to arbitrary $\mathcal{P}_{\alpha} \times \operatorname{Add}(\kappa, \kappa^{+})$ -names for κ -sized elementary submodels N). \square

As far as I know this is the first example of a forcing axiom $\mathsf{FA}_{\kappa^+}(\Gamma)$ such that $\mathsf{FA}_{\kappa^{++}}(\Gamma)$ is false but nevertheless $\mathsf{FA}_{\kappa^+}(\Gamma)$ is compatible with 2^κ arbitrarily large.

Some applications of the κ -Strongly Proper Forcing Axiom

- $\mathfrak{d}(\kappa) > \kappa^+$
- The covering number of natural meagre ideals is $> \kappa^+$.
- Weak failures of Club-Guessing at κ .
- Suppose $(C_{\alpha}: \alpha \in \mathcal{S}_{\kappa}^{\kappa^{+}})$ is a club sequence of $\mathcal{S}_{\kappa}^{\kappa^{+}}$, and let $\vec{F} = (f_{\alpha}, \alpha \in \mathcal{S}_{\kappa}^{\kappa^{+}})$ be a colouring, i.e., for each α , $f_{\alpha}: C_{\alpha} \longrightarrow \{0, 1\}$. Then there is $G: \kappa^{+} \to \{0, 1\}$, and clubs $D_{\alpha} \subseteq C_{\alpha}$, for $\alpha \in \mathcal{S}_{\kappa}^{\kappa^{+}}$, such that $G(\beta) = f_{\alpha}(\beta)$ for all α and all $\beta \in D_{\alpha}$.

Getting rid of strongness?

No:

Theorem

(Veličković) Suppose $\kappa \geq \omega_1$ is a regular cardinal and $\kappa^{<\kappa} = \kappa$. Then $FA_{\kappa^+}(\{\mathcal{P}: \mathcal{P} \text{ } \kappa\text{-lattice and } \kappa\text{-proper}\})$ is false.

Proof.

Let $(C_{\alpha}: \alpha \in \mathcal{S}_{\kappa}^{\kappa^{+}})$ be a club sequence of $\mathcal{S}_{\kappa}^{\kappa^{+}}$, and let $\vec{F} = (f_{\alpha}, \alpha \in \mathcal{S}_{\kappa}^{\kappa^{+}})$ be a colouring which cannot be uniformized, i.e., there is no $G: \kappa^{+} \to \{0,1\}$ such that for every $\alpha \in \mathcal{S}_{\kappa}^{\kappa^{+}}$, $G(\beta) = f_{\alpha}(\beta)$ for all β on a tail of C_{α} (by a result of Shelah, there is always such an \vec{F}). But the natural forcing \mathcal{P} for adding a uniformizing function G by approximations of size less than κ and using an \in -chain, of length less than κ , of κ -sized models as side conditions is κ -lattice and κ -proper and $\mathsf{FA}_{\kappa^{+}}(\{\mathcal{P}\})$ would give rise to a uniformizing function for \vec{F} .

Getting rid of g.l.b.'s?

No:

Theorem

(Shelah) Suppose $\kappa \geq \omega_1$ is a regular cardinal and $\kappa^{<\kappa} = \kappa$. Then $FA_{\kappa^+}(\{\mathcal{P}: \mathcal{P} < \kappa\text{-directed closed and }\kappa\text{-strongly proper}\})$ is false.

Proof.

Similar as previous proof, with slightly different forcing.

These results are related to:

Theorem

(A.) $FA_{\aleph_2}(\{\mathcal{P}:\mathcal{P} \text{ proper and } \aleph_2\text{-c.c.}\})$ is false.

κ -strong semiproperness

Note: Given a forcing notion \mathcal{P} , a relevant countable model N and $q \in \mathcal{P}$, q is (N, \mathcal{P}) -generic iff for every \mathcal{P} -generic filter G such that $q \in G$, $N[G] \cap \text{Ord} = N \cap \text{Ord}$.

(Shelah) A forcing notion \mathcal{P} is *semiproper* in case for every relevant countable model N and every $p \in \mathcal{P} \cap N$ there is some $q \leq_{\mathcal{P}} p$ which is (N,\mathcal{P}) -semi-generic, i..e., $q \Vdash_{\mathcal{P}} N[G] \cap \omega_1^V = N[G] \cap \omega_1^V$.

Let κ be an infinite regular cardinal such that $\kappa^{<\kappa}=\kappa$. Let us say that a forcing notion $\mathcal P$ is κ -strongly semiproper if and only if for every large enough θ and every $N \preccurlyeq H(\theta)$ such that $\mathcal P \in N$, $|N|=\kappa$, and ${}^{<\kappa}N\subseteq N$, every $p\in \mathcal P\cap N$ can be extended to some $q\in \mathcal P$ which is κ -strongly semiproper, i.e., the following holds.

- (1) q is κ - (N, \mathcal{P}) -semiproper: $q \Vdash_{\mathcal{P}} N[\dot{G}] \cap (\kappa^+)^V = N \cap (\kappa^+)^V$.
- (2) q forces that for every $q' \leq_{\mathcal{P}} q$ there is some $\pi_{N[\dot{G}]}(q') \in \mathcal{P} \cap N[\dot{G}]$ weaker than q' and such that every $r \in \mathcal{P} \cap N[\dot{G}]$ such that $r \leq_{\mathcal{P}} \pi_{N[\dot{G}]}(q')$ is compatible with q'.

Given infinite regular κ , let the κ -Strongly Semiproper Forcing Axiom be

 $\mathsf{FA}_{\kappa^+}(\{\mathcal{P}: \mathcal{P} \ \kappa\text{-lattice and } \kappa\text{-strongly semiproper}\})$

A reflection principle

Given an infinite regular κ such that $\kappa^{<\kappa}=\kappa$, let $SRP(\kappa^+,1)$ be the following reflection principle: Suppose X is a set and $\mathcal{S}\subseteq [X]^\kappa$. If λ is such that $X\in H(\lambda)$, there is a \subseteq -continuous \in -chain $(N_i)_{i<\kappa^+}$ such that for each $i<\kappa^+$ such that $cf(i)=\kappa$:

- (1) $N \leq H(\lambda)$ and $|N| = \kappa$.
- (2) $N_i \cap X \notin S$ if and only if there is no $x \in X$ such that
 - (a) $\operatorname{Sk}_{\lambda}(N \cup \{x\})$ is a κ^+ -end-extension of N (i.e., $\operatorname{Sk}_{\lambda}(N \cup \{x\}) \cap \kappa^+ = N \cap \kappa^+$), and
 - (b) $\operatorname{Sk}_{\lambda}(N \cup \{x\}) \cap X \in \mathcal{S}$.

Easy: The κ -Strongly Semiproper Forcing Axiom implies $SRP(\kappa^+, 1)$.

Note: $SRP(\kappa^+,1)$ is the simplest application of the κ -Strongly Semiproper Forcing Axiom not covered by the κ -Strongly Proper Forcing Axiom.

A reflection principle

Given an infinite regular κ such that $\kappa^{<\kappa}=\kappa$, let $SRP(\kappa^+,1)$ be the following reflection principle: Suppose X is a set and $\mathcal{S}\subseteq [X]^\kappa$. If λ is such that $X\in H(\lambda)$, there is a \subseteq -continuous \in -chain $(N_i)_{i<\kappa^+}$ such that for each $i<\kappa^+$ such that $\mathrm{cf}(i)=\kappa$:

- (1) $N \leq H(\lambda)$ and $|N| = \kappa$.
- (2) $N_i \cap X \notin S$ if and only if there is no $x \in X$ such that
 - (a) $\operatorname{Sk}_{\lambda}(N \cup \{x\})$ is a κ^+ -end-extension of N (i.e., $\operatorname{Sk}_{\lambda}(N \cup \{x\}) \cap \kappa^+ = N \cap \kappa^+$), and
 - (b) $\operatorname{Sk}_{\lambda}(N \cup \{x\}) \cap X \in \mathcal{S}$.

Easy: The κ -Strongly Semiproper Forcing Axiom implies $SRP(\kappa^+, 1)$.

Note: SRP(κ^+ , 1) is the simplest application of the κ -Strongly Semiproper Forcing Axiom not covered by the κ -Strongly Proper Forcing Axiom.

Saturation

Given an infinite regular κ and a stationary $S \subseteq \kappa^+$, $NS_{\kappa^+} \upharpoonright S$ is saturated iff every collection $\mathcal A$ of stationary subsets of S such that $S_0 \cap S_1$ is nonstationary for all $S_0 \neq S_1$ in $\mathcal A$ is such that $|\mathcal A| \leq \kappa^+$.

Fact

(Shelah) If $S \subseteq S_{<\kappa}^{\kappa^+}$ is stationary, then $NS_{\kappa^+} \upharpoonright S$ is not saturated.

Proof.

If $NS_{\kappa^+} \upharpoonright S$ is saturated, then $\mathcal{P}(\kappa^+)/(NS_{\kappa^+} \upharpoonright S)$ preserves κ^{++} .

 $\mathcal{P}(\kappa^+)/(NS_{\kappa^+} \upharpoonright S)$ forces $\mathrm{cf}((\kappa^+)^V) = \mu < \kappa$ for some $\mu < \kappa$ (as this is true in the corresponding generic ultrapower of V).

Also, $\mathcal{P}(\kappa^+)/(NS_{\kappa^+}\upharpoonright S)$ preserves κ and μ (since the generic embedding has critical point κ^+ and the generic ultrapower is closed under $(\kappa^+)^V$ -sequences in the extension by saturation of $NS_{\kappa^+}\upharpoonright S$.

But by a theorem of Shelah, if λ is regular, and $\mathbb P$ is a partial order forcing $cf(\lambda) \neq |\lambda|$, then $\mathbb P$ collapses λ^+ . Contradiction.

Fact

If κ is an infinite regular cardinal, $SRP(\kappa^+, 1)$ implies that $NS_{\kappa^+} \upharpoonright S_{\kappa}^{\kappa^+}$ is saturated.

Proof: Let \mathcal{A} be a collection of stationary subsets of $S_{\kappa}^{\kappa^+}$ with pairwise nonstationary intersection. We want to show $|\mathcal{A}| \leq \kappa^+$. Let $X = \mathcal{A} \cup \kappa^+$ and let \mathcal{S} be the collection of $Z \in [X]^{\kappa}$ such that

- $\delta_Z := Z \cap \kappa^+ \in \kappa^+$ and
- $\delta_Z \in S$ for some $S \in A \cap Z$.

Let $(N_i)_{i<\kappa^+}$ be a reflecting sequence for $\mathcal S$ as given by $\mathsf{SRP}(\kappa^+,1)$, and suppose $\mathcal S\in\mathcal A\setminus\bigcup_{i<\kappa^+}N_i$. Let $N_i'=\mathsf{Sk}_\lambda(N_i\cup\{\mathcal S\})$ for all i and note that

$$\{i < \kappa^+ : \mathsf{cf}(i) = \kappa \Rightarrow \mathsf{N}'_i \cap \kappa^+ = \mathsf{N}_i \cap \kappa^+\}$$

contains a club $C \subseteq \kappa^+$.

Hence, for every $i \in C \cap S$ there is some $S(i) \in N_i$ such that $N_i \cap \kappa^+ \in S(i)$. By Fodor's lemma there is some S_0 such that

$$T = \{i \in S \cap C : S(i) = S_0\}$$

is stationary. But that is a contradiction since $N_i \cap \kappa^+ \in S \cap S_0$ for every $i \in T$ and therefore $S \cap S_0$ is stationary.

Question: Can there be any regular cardinal $\kappa \ge \omega_1$ such that the κ -Strongly Semiproper Forcing Axiom holds?

Question: Suppose $\kappa \geq \omega_1$ is regular and $NS_{\kappa^+} \upharpoonright S_{\kappa}^{\kappa^+}$ is saturated. Does it follow that GCH cannot hold below κ ?

Thank you!