Problème. Nombres et polynômes de Bernoulli.

On définit la suite $(b_n)_{n\geq 0}$ des nombres de Bernoulli par récurrence en posant :

$$b_0 = 1$$
 et $\forall n \ge 1$ $\sum_{k=0}^{n} {n+1 \choose k} b_k = 0$.

On définit la famille (B_n) des polynômes du même nom en posant

$$\forall n \in \mathbb{N} \quad B_n = \sum_{k=0}^n \binom{n}{k} b_{n-k} X^k.$$

- 1. Prise de contact.
 - (a) Calculer b_1 , b_2 , b_3 et b_4
 - (b) Calculer B_0 , B_1 , B_2 , B_3 et B_4 . Factoriser B_3 (il est scindé sur \mathbb{R}).
 - (c) Justifier que $(b_n)_{n\in\mathbb{N}}$ est une suite de rationnels.
 - (d) Pour n donné, quel est le degré de B_n ? son coefficient dominant?
- 2. Une relation de récurrence.

Soit $n \in \mathbb{N}^*$.

- (a) Montrer que si n est supérieur à 2, $b_n = B_n(0) = B_n(1)$.
- (b) Montrer que $B'_n = nB_{n-1}$.
- (c) En déduire que $\forall k \in [0, n]$ $B_n^{(k)} = \frac{n!}{(n-k)!} B_{n-k}$.
- 3. Identité de translation.

Soit $n \in \mathbb{N}^*$.

On veut montrer que $B_n(X+1) - B_n(X) = nX^{n-1}$. On pose $D(X) = B_n(X+1) - B_n(X)$.

- (a) Pour $0 \le p \le n$ calculer $D^{(p)}(X)$ en fonction de B_{n-p} .
- (b) Montrer que $D^{(p)}(0) = \begin{cases} 0 & \text{si } p \neq n-1 \\ n! & \text{si } p = n-1. \end{cases}$
- (c) Justifier que deg $D \le n$ et conclure que $D(X) = nX^{n-1}$.

- 4. Formule de Faulhaber.
 - (a) Soit $(n, p) \in \mathbb{N}^2$. Montrer que

$$\sum_{k=0}^{n} k^{p} = \frac{1}{p+1} \left(B_{p+1}(n+1) - B_{p+1}(0) \right).$$

- (b) Retrouver la factorisation connue pour $\sum_{k=0}^{n} k$, $\sum_{k=0}^{n} k^2$ et $\sum_{k=0}^{n} k^3$.
- 5. La relation de récurrence de 2 caractérise (B_n) .

Considérons (P_n) , une suite de polynômes satisfaisant

i)
$$P_0 = 1_{\mathbb{K}[X]}$$
 ii) $\forall n \ge 2 \ P_n(0) = P_n(1)$ iii) $\forall n \ge 1 \ P'_n = n P_{n-1}$.

Nous souhaitons prouver que pour tout $n \in \mathbb{N}$, $P_n = B_n$.

- (a) Supposons que $P_n = B_n$ pour $n \in \mathbb{N}$. Montrer qu'il existe une constante $\lambda \in \mathbb{R}$ tel que $P_{n+1} = B_{n+1} + \lambda$.
- (b) Montrer qu'il existe $\mu \in \mathbb{R}$ telle que $P_{n+2} = B_{n+2} + \lambda(n+2)X + \mu$.
- (c) En évaluant en 0 et en 1, démontrer que λ vaut 0. Conclure.
- 6. Identités découlant de la question précédente.
 - (a) Montrer que pour tout $n \in \mathbb{N}$ $(-1)^n B_n (1-X) = B_n$.
 - (b) Montrer que pour tout $n \in \mathbb{N}$,

$$2^{n-1}\left(B_n\left(\frac{X}{2}\right) + B_n\left(\frac{X+1}{2}\right)\right) = B_n$$

- 7. Les indices impairs.
 - (a) Prouver que $\forall k \in \mathbb{N}^* \ b_{2k+1} = 0$.
 - (b) Justifier que pour tout $k \in \mathbb{N}^*$, B_{2k+1} a pour racines 0, 1 et $\frac{1}{2}$.
 - (c) Démontrer par récurrence sur $k \in \mathbb{N}^*$ que 0, 1 et $\frac{1}{2}$ sont les seules racines de B_{2k+1} qui appartiennent à [0,1].

- 8. Les indices pairs (partie facultative) Soit $k \in \mathbb{N}^*$.
 - (a) Démontrer que le polynôme B_{2k} possède une unique racine dans $]0,\frac{1}{2}[$ et une unique racine dans $]\frac{1}{2},1[$.
 - (b) Prouver que $B_{2k}(0)$, $B_{2k}(\frac{1}{2})$ et $B_{2k}(1)$ sont tous les trois non nuls et établir que $|B_{2k}(\frac{1}{2})| < |b_{2k}|$.
 - (c) Soit $k \in \mathbb{N}^*$. Justifier que $\max_{x \in [0,1]} |B_{2k}(x)| = |b_{2k}|$.