

Efflux Pumps Contributing to Antibiotic-Resistance are Conserved Across Species of *Pseudomonas*

Northwestern
OFFICE OF UNDERGRADUATE RESEARCH

Erica Littman, Alexander McFarland, Erica Hartmann Northwestern University Civil and Environmental Engineering

Introduction

Pseudomonas aeruginosa is an antibiotic resistant and opportunistic pathogen that commonly causes infections in cystic fibrosis patients. *P. aeruginosa* contains an intermembrane efflux pump encoded for by the *mexAB-oprM* operon that is responsible for expulsion of antibiotics and other toxins. Resistance is often caused by mutations in the MexAB-OprM repressor which creates increased expression of the *mexAB-oprM* operon.

Goal and Hypothesis

Goal To asses the genetic factors involved in Triclosan (TCS) resistance in *P. fluorescens* and *P. fulva*

Hypothesis Resistance in these strains is determined by their MexAB-OprM homolog and interruptions or mutations in the operon will result in a loss of resistance

Selection Plating M63+Gen30 Plates TSA + TCS

Sequencing and

Insertion Mapping

Results and Analysis

P. fulva Screening Statistics

Set	Colonies screened	Potential hits	TCS-Sensitive colonies
1	461	5	0
2	375	0	0
3	468	0	0
4	187	1	p2s4-A12
5	900	0	0
6	900	0	0
7	810	2	s7-8-B2, s7-8-H5
Total:	4101	8	3

P. fulva Minimal Inhibitory Concentration (MIC)

TCS Concentration	128 mg/L	64 mg/L	32 mg/L	16 mg/L	8 mg/L	4 mg/L	2 mg/L	1 mg/L	0.5 mg/L	.25 mg/L	.125 mg/L	.0625 mg/L
56A10 WT	0.556	0.564	0.623	1.033	1.39	1.432	1.434	1.38	1.351	1.345	1.338	0
56A10 WT	0.507	0.409	0.339	0.592	1.258	1.433	1.431	1.348	1.329	1.319	1.323	0
56A10 WT	0.546	0.499	0.346	0.701	1.247	1.421	1.392	1.36	1.319	1.277	1.314	0.001
56A10-p2s4- A12	0.006	0.006	0.004	0.11	0.012	0.542	1.204	1.207	1.22	1.221	1.23	0
56A10-p2s4- A12	0.006	0.006	0.005	0.002	0.006	0.455	1.184	1.248	1.252	1.25	1.259	0
56A10-p2s4- A12	0.005	0.006	0.005	0.002	0.08	0.642	1.226	1.312	1.281	1.259	1.26	0

Low MIC: Low Resistance

Chromosome

High MIC: High Resistance

Wild Type MIC: 128.00 mg/L Tn Mutant MIC: 8 mg/L

Conclusions

Knocking out the *mexA* gene through transposon mutagenesis successfully decreased triclosan resistance in *P. fulva,* indicating that the MexAB oprM efflux pump and the mechanism of resistance in *P. aeruginosa* is highly conserved between these two strains.

References

Oliver, Antonio, et al. "High Frequency of Hypermutable Pseudomonas Aeruginosa in Cystic Fibrosis Lung Infection." *Science*, American Association for the Advancement of Science, 19 May 2000, science.sciencemag.org/content/288/5469/1251.

Lambert, P.A. "Mechanisms of Antibiotic Resistance in Pseudomonas Aeruginosa." *National Center for Biotechnology Information*, Journal Of The Royal Society Of Medicine, 2002, www.ncbi.nlm.nih.gov/pmc/articles/PMC1308633/pdf/12216271.pdf.

The study resulting in this presentation was assisted by a grant administered by Northwestern University's Office of Undergraduate Research. However, the conclusions, opinions, and other statements in this publication [or presentation] are the author's and not necessarily those of the sponsoring institution.