1. Basic ODEs

(a) separatable:
$$y' = \frac{F(x)}{G(y)}$$

 $\Rightarrow \frac{dy}{dx} = \frac{F(x)}{G(y)} \Rightarrow \int G(y)dy = \int F(x)dx$

(b) Linear:
$$y' + p(x)y = q(x)$$

Integrating Factor: $e^{\int p(x)dx}$
 $\Rightarrow (e^{\int p(x)dx}y)' = e^{\int p(x)dx}q(x)$
 $\Rightarrow e^{\int p(x)dx}y = \int e^{\int p(x)dx}q(x)dx$

(c)
$$ay'' + by' + cy = 0$$
 (constant coefficient)
characteristc EQ: $ar^2 + br + c = 0$
 $\Delta > 0, y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
 $\Delta = 0, y = C_1 e^{rx} + C_2 x e^{rx}$
 $\Delta < 0, r = p \pm qi : y = e^{px} [c_1 cos(qx) + c_2 sin(qx)]$

(d)
$$ay'' + by' + cy = f(x)$$

 $y = y_c + y_p$, y_c is solution to homogeneous DIFF EQ
 $f(x)$:a polynomial in x or single sin/cos function
 $y_p = x^k$ (a polynomial of the same degree), k: # char
eq's zero roots (0,1,2)
 $f(x) = e^{ax}$ (a polynomial in x)

$$y_p = x^k e^{ax}$$
 (same degree), k: # char eq's roots = a (0,1,2)
 $f(x) = e^{ax} cos(bx)$ (poly in x) or $e^{ax} sin(bx)$ (apoly in x)

$$f(x) = e^{ax}cos(bx)$$
(poly in x) or $e^{ax}sin(bx)$ (apolyinx)
 $y_p = x^k e^{ax}$ [(poly in x) $cos(bx)$ + (poly in x) $sin(bx)$]
k: # char eq's root = $a \pm bi$ (0,1)

2. Laplace Transform

Def:
$$\mathcal{L}[f(t)] = \int_0^\infty f(t)e^{-st}dt$$

$$Def: H_a(t) = H(t - a) = \begin{cases} 1, & t \ge a \\ 0, & t < a \end{cases}$$
 (1)

Def:
$$erf(x) = \frac{2}{\pi} \int_0^x e^{-u^2} du$$
, $erfc(x) = 1 - erf(x)$

$f(t) = \mathcal{L}^{-1}F(t)$	$F(t) = \mathcal{L}f(s)$
$f^{(n)}(t)$ (nth derivative)	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
H(t-a)f(t-a)	$e^{-as}F(s)$
$e^{at}f(t)$	F(s-a)
(f * g)(t)	F(s)G(s)
1	$\frac{1}{s} (s > 0)$
t^n (n is positive integer)	$\frac{n!}{s^{n+1}}$ (s > 0)
e^{at}	$\frac{3}{s-a}$ $(s>a)$
sin(at)	
cos(at)	$\frac{\ddot{a}}{s^2 + a^2} (s > 0)$ $\frac{s}{s^2 + a^2} (s > 0)$
sinh(at)	$\frac{s^{2}+a^{2}}{s^{2}-a^{2}}$ $(s> a)$
cosh(at)	$\frac{s^2-a^2}{s^2-a^2}$ $(s> a)$
$\delta(t-a) \ (a \ge 0)$	e^{-as}
$t^n e^{at}$	$\frac{n!}{(n-1)^{n+1}}$
e ^{at} sinht	$\frac{\frac{n!}{(s-a)^{n+1}}}{\frac{b}{((s-a)^2+b^2)}}$
	$\overline{((s-a)^2+b^2)}$
$e^a t cosbt$	$\frac{s-a}{((s-a)^2+b^2)}$
$\operatorname{erfc}(\frac{a}{2\sqrt{t}})$	$\frac{1}{s}e^{-a\sqrt{s}}$
$-a\sqrt{\frac{t}{\pi}}e^{-\frac{a^2}{4t}} + (\frac{1}{2}a^2 + t)\operatorname{erfc}\frac{a}{2\sqrt{t}}$	
$-a\sqrt{\frac{1}{\pi}}e^{-4t} + (\frac{1}{2}a^2 + t) \operatorname{erfc} \frac{a}{2\sqrt{t}}$	$\frac{1}{s^2}e^{-u}v^s$

Example:

$$\mu_{tt}(x,t) = \mu_{xx}(x,t) + 1, \ \mu(x,0) = \mu_t(x,0) = -1, \ \mu(0,t) = t$$

$$\mathcal{L}\mu_{tt} = s^2 U - s\mu(x,0) - \mu_t(x,0) = s^2 U + 1$$

$$\mathcal{L}\mu_{xx} + 1 = U_{xx} + \frac{1}{s}$$

$$\Rightarrow U'' - s^2 U = 1 - \frac{1}{s} \text{ (x is variable, s is scalar)}$$

$$U_c = k_1 e^{sx} + k_2 e^{-sx}, \ k_1 = 0$$

$$U_p = \frac{1 - \frac{1}{s}}{-s^2} = \frac{1}{s^3} - \frac{1}{s^2}$$

$$\mathcal{L}\mu(0,t) = \mathcal{L}t = \frac{1}{s} = U(0,s)$$

$$\Rightarrow k_2 + \frac{1}{s^3} - \frac{1}{s^2} = \frac{1}{s^2}$$

$$\Rightarrow U = (\frac{2}{s^2} - \frac{1}{s^3})e^{-sx} - \frac{1}{s^2} + \frac{1}{s^3}$$

$$\mu = \mathcal{L}^{-1}(U) = H(t-x)[2(t-x) - \frac{1}{2}(t-x)^2] - t + \frac{1}{2}t^2$$