| AD   |  |  |
|------|--|--|
| 1110 |  |  |
|      |  |  |

Award Number: DAMD17-00-1-0489

TITLE: A Potential Therapeutic Role of J Series Prostaglandins

in PPARy Mediated Treatment of Breast Cancer

PRINCIPAL INVESTIGATOR: Carl E. Clay

Dr. Floyd H. Chilton Dr. Kevin P. High

CONTRACTING ORGANIZATION: Wake Forest University

School of Medicine

Winson-Salem, North Carolina 27157

REPORT DATE: June 2001

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;

Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

20010925 201

# REPORT DOCUMENTATION PAGE

Form Approved OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of

| 1. AGENCY USE ONLY (Leave blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            | 3. REPORT TYPE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATES COVERE                                                                                                                                                      | D                                                                                                                                                                                                                                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. AGENCY OSE ONE! (Leave blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | June 2001                                                                                                                                                                                                                                                                                                                                  | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (15 May 00 - 14 May 01)                                                                                                                                           |                                                                                                                                                                                                                                                                                                |  |  |
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   | 5. FUNDING NUMBERS                                                                                                                                                                                                                                                                             |  |  |
| A Potential Therapeutic Role of J Series Prostaglandins in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DAMD17-00                                                                                                                                                         | -1-0489                                                                                                                                                                                                                                                                                        |  |  |
| PPARy Mediated Treatment of Breast Cancer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| 6. AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| Carl E. Clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| Dr. Floyd H. Chilton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| Dr. Kevin P. High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| TO THE PROPERTY OF THE PROPERT |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8. PERFORMING ORGANIZATION                                                                                                                                        |                                                                                                                                                                                                                                                                                                |  |  |
| 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Wake Forest University School of Medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REPORT NUMBER                                                                                                                                                     |                                                                                                                                                                                                                                                                                                |  |  |
| Winston-Salem, North Carolina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| E-Mail: cclay@wfubmc.edu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40 CDONCOD                                                                                                                                                        | NO / MONITORING                                                                                                                                                                                                                                                                                |  |  |
| 9. SPONSORING / MONITORING AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GENCY NAME(S) AND ADDRESS(ES                                                                                                                                                                                                                                                                                                               | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                   | NG / MONITORING<br>REPORT NUMBER                                                                                                                                                                                                                                                               |  |  |
| U.S. Army Medical Research and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Materiel Command                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| Fort Detrick, Maryland 21702-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| 12a. DISTRIBUTION / AVAILABILITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STATEMENT                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   | 12b. DISTRIBUTION CODE                                                                                                                                                                                                                                                                         |  |  |
| Approved for Public Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lease; Distribution Unl                                                                                                                                                                                                                                                                                                                    | limited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| 13. ABSTRACT (Maximum 200 Work Cyclopentenone prostaglan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                            | idonic acid are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | omising mol                                                                                                                                                       | ecules in the fight                                                                                                                                                                                                                                                                            |  |  |
| against cancer, but their                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mechanism of action is r                                                                                                                                                                                                                                                                                                                   | not well understoo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d. Several                                                                                                                                                        | investigators have                                                                                                                                                                                                                                                                             |  |  |
| against cancer, but their mechanism of action is not well understood. Several investigators have shown that the terminal derivative of prostaglandin $J_2$ (PGJ <sub>2</sub> ) metabolism 15deoxy $\Delta^{12,14}$ PGJ <sub>2</sub> (15dPGJ <sub>2</sub> ) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| a potent activator of the nuclear hormone receptor peroxisome proliferator activated receptor gamma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| (PPARγ), but 15dPGJ <sub>2</sub> effects can be mediated by PPARγ-dependent and PPARγ-independent mechanisms. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
| candidate PPAR $\gamma$ independent mechanism is $15dPGJ_2$ induced inhibition of NF $\kappa$ B $via$ covalent modification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt mechanism is $15 	ext{dPGJ}_2$ i                                                                                                                                                                                                                                                                                                        | nduced inhibition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of NFKB via                                                                                                                                                       | covalent modification                                                                                                                                                                                                                                                                          |  |  |
| of IKK, IκBα and the DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt mechanism is $15 	ext{dPGJ}_2$ ibinding domain of NF $\kappa$ B. W                                                                                                                                                                                                                                                                      | nduced inhibition<br>We have shown prev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of NFkB <i>via</i><br>iously that                                                                                                                                 | covalent modification 15dPGJ <sub>2</sub> potently                                                                                                                                                                                                                                             |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nt mechanism is $15 \mathrm{dPGJ_2}$ i binding domain of NF $\kappa$ B. We st cancer cells and that                                                                                                                                                                                                                                        | nduced inhibition<br>We have shown prev<br>$15dPGJ_2$ regulates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of NFkB via<br>iously that<br>gene expre                                                                                                                          | covalent modification $15dPGJ_2$ potently ssion critical to                                                                                                                                                                                                                                    |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt mechanism is $15dPGJ_2$ ibinding domain of NFkB. We st cancer cells and that $15dPGJ_2$ induces potent and                                                                                                                                                                                                                              | nduced inhibition<br>We have shown prev<br>15dPGJ <sub>2</sub> regulates<br>d irreversible S- <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of NFkB via<br>iously that<br>gene expre-<br>phase arres                                                                                                          | covalent modification $15 \mathrm{dPGJ}_2$ potently ssion critical to that is correlated                                                                                                                                                                                                       |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt mechanism is $15\text{dPGJ}_2$ is binding domain of NFkB. We st cancer cells and that $15\text{dPGJ}_2$ induces potent and pression of at least 20 GA synthesis, using acting                                                                                                                                                           | nduced inhibition We have shown prev $15 dPGJ_2$ regulates in irreversible S-pof 1,176 genes as omycin D, or prote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of NFkB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi                                                                             | covalent modification $15 dPGJ_2$ potently ssion critical to t that is correlated by cDNA differential s, using                                                                                                                                                                                |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt mechanism is $15 dPGJ_2$ is binding domain of NFkB. We st cancer cells and that $15 dPGJ_2$ induces potent and pression of at least 20 GA synthesis, using acting apoptosis induced by $15 dPGJ_2$                                                                                                                                      | nduced inhibition We have shown prev $15 dPGJ_2$ regulates in irreversible S-pof 1,176 genes as omycin D, or prote $PGJ_2$ in breast candidates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of NFkB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi<br>cer cells.                                                               | covalent modification $15 dPGJ_2$ potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspase-                                                                                                                                                         |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates 3 activation follows the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt mechanism is $15 dPGJ_2$ i binding domain of NFkB. We st cancer cells and that $15 dPGJ_2$ induces potent and pression of at least 20 of A synthesis, using acting apoptosis induced by $15 dI$ induction of gene transcription.                                                                                                        | nduced inhibition We have shown prev $15dPGJ_2$ regulates of irreversible S-por 1,176 genes as compain D, or prote $2GJ_2$ in breast canceription and the period $2GJ_2$ of the second second $2GJ_2$ of the second $2GJ_2$ of the second second $2GJ_2$ of the second second second $2GJ_2$ of the second se     | of NFkB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi<br>cer cells.                                                               | a covalent modification 15dPGJ <sub>2</sub> potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspaseitor ZVAD-fmk blocks                                                                                                                            |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates 3 activation follows the apoptosis. These data sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt mechanism is $15 dPGJ_2$ i binding domain of NFkB. We st cancer cells and that $15 dPGJ_2$ induces potent and pression of at least 20 cA synthesis, using acting apoptosis induced by $15 dF$ induction of gene transomethat $de$ novo gene transomethat $de$ novo gene transomethat $de$ novo gene transomethat $de$ novo gene $de$    | nduced inhibition be have shown prev $15d\text{PGJ}_2$ regulates of irreversible S-pof 1,176 genes as mycin D, or prote $2\text{GJ}_2$ in breast canceription and the personner of the scription is necessive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of NFkB via<br>iously that<br>gene expre-<br>chase arres<br>determined<br>in synthesi<br>cer cells. I<br>ptide inhib<br>sary for 15                               | a covalent modification 15dPGJ <sub>2</sub> potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspaseitor ZVAD-fmk blocks dPGJ <sub>2</sub> induced                                                                                                  |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates 3 activation follows the apoptosis. These data sho apoptosis in breast cance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nt mechanism is 15dPGJ <sub>2</sub> i binding domain of NFkB. We st cancer cells and that 15dPGJ <sub>2</sub> induces potent and pression of at least 20 cA synthesis, using acting apoptosis induced by 15dB induction of gene transcript with the de novo gene transcript cells, that inhibition                                         | nduced inhibition we have shown prev $15d\text{PGJ}_2$ regulates of irreversible S-p of 1,176 genes as sometimes of D, or protection of D, or protection and the period of NFKB plays a material of the seription is necessing the seription of NFKB plays a material of NFKB play | of NFkB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi<br>cer cells. I<br>ptide inhib<br>sary for 15<br>inor role i                | a covalent modification  15dPGJ <sub>2</sub> potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspase- itor ZVAD-fmk blocks dPGJ <sub>2</sub> induced n 15dPGJ <sub>2</sub> induced                                                                 |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates 3 activation follows the apoptosis. These data sho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt mechanism is 15dPGJ <sub>2</sub> i binding domain of NFkB. We st cancer cells and that 15dPGJ <sub>2</sub> induces potent and pression of at least 20 ce A synthesis, using acting apoptosis induced by 15dB induction of gene transcript that de novo gene transcript cells, that inhibition cyclopentenone prostaglar                 | nduced inhibition we have shown prev $15d\text{PGJ}_2$ regulates of irreversible S-p of 1,176 genes as sometimes of D, or protection of D, or protection and the period of NFKB plays a material of the seription is necessing the seription of NFKB plays a material of NFKB play | of NFkB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi<br>cer cells. I<br>ptide inhib<br>sary for 15<br>inor role i                | a covalent modification  15dPGJ <sub>2</sub> potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspase- itor ZVAD-fmk blocks dPGJ <sub>2</sub> induced n 15dPGJ <sub>2</sub> induced                                                                 |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates 3 activation follows the apoptosis. These data sho apoptosis in breast cance apoptosis and identifies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt mechanism is 15dPGJ <sub>2</sub> i binding domain of NFkB. We st cancer cells and that 15dPGJ <sub>2</sub> induces potent and pression of at least 20 ce A synthesis, using acting apoptosis induced by 15dB induction of gene transcript that de novo gene transcript cells, that inhibition cyclopentenone prostaglar                 | nduced inhibition we have shown prev $15d\text{PGJ}_2$ regulates of irreversible S-p of 1,176 genes as sometimes of D, or protection of D, or protection and the period of NFKB plays a material of the seription is necessing the seription of NFKB plays a material of NFKB play | of NFkB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi<br>cer cells. I<br>ptide inhib<br>sary for 15<br>inor role i                | a covalent modification  15dPGJ <sub>2</sub> potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspase- itor ZVAD-fmk blocks dPGJ <sub>2</sub> induced n 15dPGJ <sub>2</sub> induced                                                                 |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates 3 activation follows the apoptosis. These data sho apoptosis in breast cance apoptosis and identifies mediated apoptosis in bre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt mechanism is 15dPGJ <sub>2</sub> i binding domain of NFkB. We st cancer cells and that 15dPGJ <sub>2</sub> induces potent and pression of at least 20 of A synthesis, using acting apoptosis induced by 15dWinduction of gene transors we that de novo gene transors cells, that inhibition cyclopentenone prostaglar ast cancer.       | nduced inhibition to have shown prev 15dPGJ <sub>2</sub> regulates dirreversible S-p of 1,176 genes as omycin D, or prote PGJ <sub>2</sub> in breast candiption and the pescription is necess of NFKB plays a madins and potentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of NFkB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi<br>cer cells. I<br>ptide inhib<br>sary for 15<br>inor role i                | a covalent modification  15dPGJ <sub>2</sub> potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspase- itor ZVAD-fmk blocks dPGJ <sub>2</sub> induced n 15dPGJ <sub>2</sub> induced ic molecules for PPARY  15. NUMBER OF PAGES 11                  |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates 3 activation follows the apoptosis. These data sho apoptosis in breast cance apoptosis and identifies mediated apoptosis in bre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt mechanism is 15dPGJ <sub>2</sub> i binding domain of NFkB. We st cancer cells and that 15dPGJ <sub>2</sub> induces potent and pression of at least 20 of A synthesis, using acting apoptosis induced by 15dWinduction of gene transors we that de novo gene transors cells, that inhibition cyclopentenone prostaglar ast cancer.       | nduced inhibition to have shown prev 15dPGJ <sub>2</sub> regulates dirreversible S-p of 1,176 genes as omycin D, or prote PGJ <sub>2</sub> in breast candiption and the pescription is necess of NFKB plays a madins and potentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of NFkB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi<br>cer cells. I<br>ptide inhib<br>sary for 15<br>inor role i                | a covalent modification 15dPGJ <sub>2</sub> potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspase- itor ZVAD-fmk blocks dPGJ <sub>2</sub> induced n 15dPGJ <sub>2</sub> induced ic molecules for PPARY                                           |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates 3 activation follows the apoptosis. These data sho apoptosis in breast cance apoptosis and identifies mediated apoptosis in bre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt mechanism is 15dPGJ <sub>2</sub> i binding domain of NFkB. We st cancer cells and that 15dPGJ <sub>2</sub> induces potent and pression of at least 20 of A synthesis, using acting apoptosis induced by 15dWinduction of gene transors we that de novo gene transors cells, that inhibition cyclopentenone prostaglar ast cancer.       | nduced inhibition to have shown prev 15dPGJ <sub>2</sub> regulates dirreversible S-p of 1,176 genes as omycin D, or prote PGJ <sub>2</sub> in breast candiption and the pescription is necess of NFKB plays a madins and potentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of NFkB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi<br>cer cells. I<br>ptide inhib<br>sary for 15<br>inor role i<br>l therapeut | a covalent modification  15dPGJ <sub>2</sub> potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspase- itor ZVAD-fmk blocks dPGJ <sub>2</sub> induced n 15dPGJ <sub>2</sub> induced ic molecules for PPARY  15. NUMBER OF PAGES 11                  |  |  |
| of IKK, IκBα and the DNA induces apoptosis of brea apoptosis. Specifically, with >2-fold increased ex display. Inhibition of RN cycloheximide, abrogates 3 activation follows the apoptosis. These data sho apoptosis in breast cance apoptosis and identifies mediated apoptosis in bre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nt mechanism is 15dPGJ <sub>2</sub> i binding domain of NFkB. We st cancer cells and that 15dPGJ <sub>2</sub> induces potent and pression of at least 20 of A synthesis, using acting apoptosis induced by 15dB induction of gene transcript with the de novo gene transcript cells, that inhibition cyclopentenone prostaglar ast cancer. | nduced inhibition he have shown prev 15dPGJ <sub>2</sub> regulates dirreversible S-p of 1,176 genes as omycin D, or prote PGJ <sub>2</sub> in breast candition and the pescription is necess of NFKB plays a madins and potentials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of NFKB via<br>iously that<br>gene expre-<br>phase arres<br>determined<br>in synthesi<br>cer cells. I<br>ptide inhib<br>sary for 15<br>inor role i<br>l therapeut | a covalent modification  15dPGJ <sub>2</sub> potently ssion critical to t that is correlated by cDNA differential s, using Additionally, caspase- itor ZVAD-fmk blocks dPGJ <sub>2</sub> induced n 15dPGJ <sub>2</sub> induced ic molecules for PPARY  15. NUMBER OF PAGES  11  16. PRICE CODE |  |  |

## **Table of Contents**

| Cover1                        |
|-------------------------------|
| SF 2982                       |
| Table of Contents3            |
| Introduction4                 |
| Body5                         |
| Key Research Accomplishments7 |
| Reportable Outcomes7          |
| Conclusions9                  |
| References10                  |
| Appendices1                   |

### Introduction

The peroxisome proliferator activated receptor gamma (PPARγ), is a potential therapeutic target for the treatment of breast cancer but the endogenous ligand for PPARγ is not yet known. Recent data suggest that the endogenous ligand of PPARγ may be a bioactive metabolite of arachidonic acid that is synthesized in normal breast tissue. Activation of PPARγ with different agonists (e.g. 15deoxyΔ12,14PGJ₂, troglitazone) elicits different physiological responses in breast cancer cells (i.e. differentiation or apoptosis) raising questions of the role PPARγ plays in normal breast cell physiology. Results from our initial experiments show that prostaglandin metabolites of arachidonic acid inhibit cell cycle progression of MDA-MB-231 breast cancer cells. This cell cycle block induces apoptosis of breast cancer cells and inhibits tumor formation in nude mice. We hypothesize that human breast cancer cell lines (and human breast cancer tumors) have aberrant PPARγ mediated signal transduction pathways or contain disrupted pathways for the metabolism of fatty acid derivatives that act as PPARγ agonists. Understanding the metabolism of fatty acids in breast cancer cells, and elucidating the molecular and signal transduction events that are mediated by PPARγ agonists may lead to novel strategies for the prevention and treatment of breast cancer.

### **Body**

There is extensive literature on the use of retinoic acid and its derivatives, acting through their receptors (RAR and RXR), to arrest or reverse cancer in both animals and humans. Another member of the nuclear receptor superfamily, peroxisome proliferator activated receptor-gamma (PPARγ), has an important role in fat metabolism and adipocyte differentiation. Although its natural ligand is not yet known, synthetic thiazolidinediones, certain fatty acids and metabolites of arachidonic acid, activate PPARγ. Recent data reveal that PPARγ is expressed in colonic tumors and metastatic breast adenocarcinomas, which raises the critical question of its functional significance in human cancers. RXRα and PPARγ agonists together have been shown to induce apoptosis of estrogen receptor positive breast cancer cell lines in vitro and attenuate tumor growth in mice. Our studies show that prostaglandin agonists of PPARγ alone inhibit cell cycle progression of both estrogen receptor positive and negative breast cancer cell lines via apoptosis and inhibit tumor formation in nude mice.

There are three specific aims for the pre-doctoral research hypothesis that human breast cancer cell lines (and human breast cancer tumors) have aberrant PPARy mediated signal transduction pathways or contain disrupted pathways

for the metabolism of fatty acid derivatives that act as PPARy agonists.

The first aim is to determine the physiologic activities
of different PPARγ agonists on the proliferation of
human breast cancer cell lines and primary human
breast cancer cells. We will extend our published
findings to include other natural prostanoid and
eicosanoid agonists (e.g. PGE<sub>2</sub>, DHA), synthetic
PPARγ agonists (e.g. BRL49653, ciglitazone) and coactivators that can potentiate the effects of PPARγ
agonists (e.g. 9-cis-retinoic acid, all-trans-retinoic
acid).

- The second aim is to determine the molecular mechanisms and signal transduction events that underlie PPARγ mediated differentiation or apoptosis in breast cancer cells.
- The third aim is to determine the metabolism of Jseries prostaglandins in normal breast tissue and breast cancer cells.

Aim 1: Our studies of other natural and synthetic PPARy agonists show that several arachidonic acid (AA) metabolites, including 5- and 15-HETEs and 5-and 15-oxo-EETs, are activators of PPARy. However, of all the naturally occurring metabolites tested, the terminal



Figure 1. AA metabolites activate PPAR $\gamma$ , but the terminal derivative of PGJ<sub>2</sub> metabolism remains the most potent naturally occurring metabolite tested to date.

derivative of prostaglandin D<sub>2</sub> metabolism, 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> (15dPGJ<sub>2</sub>), remains the most potent (Figure 1). In addition, after attending the PPARs Keystone Symposium in February 2000, Mr. Clay was successful in obtaining a chemically synthesized selective PPARγ agonist (GW347845X) from GlaxoSmithKlein (GSK). This compound was shown to be 10,000 fold more potent in inducing PPARγ activation by luciferase reporter assays. Although Mr. Clay received this compound only recently, he has confirmed the reports by GSK and will add this compound to his arsenal of PPARγ agonists in determining the physiologic activity of these compounds in breast cancer cell lines. A major accomplishment of Mr. Clay's was his observation that the published literature cites different physiologic outcomes in various cancer cell lines according to the concentration of PPARγ agonist used. To this end, Mr. Clay authored a review article that documented the differing biological effects of PPARγ activation in diverse cell types (1). Furthermore, Mr. Clay undertook the responsibility of determining if these diverse and opposing biologic outcomes occur in a single cell type (2). Mr. Clay will investigate if agonists of RXRα, the heterodimeric partner of PPARγ, could potentiate the observed responses.

Aim 2: The molecular mechanisms and signal transduction events that underlie PPARy mediated differentiation or apoptosis in breast cancer cells are complex and not well understood. Mr. Clay has achieved great milestones in

elucidating parts of these pathways. In a screen of 1,176 gene produsts by cDNA array analysis, Mr. Clay identified particular gene products that are increased in breast cancer cell lines after treatment with 15dPGJ2. Of these, the expression of the cyclin dependent kinase inhibitors p21Waf1/Cip1 (p21) and p27Kip1 (p27) and the cyclins D and E is increased >2 fold. Additionally, the expression of several genes involved in DNA maintenance and repair is decreased >2 fold. Mr. Clay has performed post hoc analysis of p21 and p27 expression by Western blot analysis to confirm the results from the cDNA array (Figure 2) and will establish cell lines that express a dominant negative form of p21. Additionally, Mr. Clay has followed up on published reports of the effects of 15dPGJ<sub>2</sub> in other cell systems to devise a potential mechanism by which 15dPGJ<sub>2</sub>, or other cyclopentenone prostaglandins, may exert such potent antineoplastic activity in a variety of cancer cell types (Appendix 1). These studies have resulted in the preparation of a manuscript that Mr. Clay intends to submit to The Journal of Biological Chemistry (3). Mr. Clay will continue this line of investigation to include other gene products and further elucidate the mechanisms described. Furthermore, Mr. Clay has established breast cancer cell lines that express a dominant negative form of PPARy. He has shown that



Figure 2. cDNA array analysis of 1,176 genes shows that the the majority of expressed gene do not change in response to treatment with 15dPGJ<sub>2</sub>. The mRNA expression of cyclin dependent kinases p21 and p27 was increased >2 fold. Expression of p21 and p27 protein was confirmed by Western blot analysis.

transcriptional activation of PPAR $\gamma$  by 15dPGJ<sub>2</sub> is blocked in these cells (Figure 3) and will continue to investigate how the dominant negative cell lines affect apoptosis induced by 15dPGJ<sub>2</sub>. Recent publications suggest that 15dPGJ<sub>2</sub> negatively regulates the NF $\kappa$ B pathway of gene transcription. Mr. Clay has begun to investigate this critical pathway using NF $\kappa$ B inhibitors, Bay and Cape, and by establishing cell lines that express a dominant negative form of the NF $\kappa$ B regulator I $\kappa$ B $\alpha$ .

Aim 3: The studies of the metabolism of J-series prostaglandins in normal breast tissue and breast cancer cells are in the beginning stages. Mr. Clay was successful in obtaining a small amount of [3H]15dPGJ<sub>2</sub> through a collaborative effort with Dr. Kirk Maxey of Cayman Chemical. Using [3H]15dPGJ<sub>2</sub> to follow the metabolism of 15dPGJ<sub>2</sub> in the breast cancer cell line MDA-MB-231, Mr. Clay has noted that after 12 hours, the majority of label is still present as 15dPGJ<sub>2</sub>. In this preliminary study, 66% of [<sup>3</sup>H]15dPGJ<sub>2</sub> was recovered after 12 hours. The remaining 44% was in the form of more polar metabolites as determined by thin layer chromatography (TLC). These derivative may represent a class of reactive oxygen species (ROS) that further activate PPARy (Appendix 1). Mr. Clay was unable to determine the structure of these polar metabolites, or their biological activity, due to the limited quantity of material, but Mr. Clay has enlisted the analytical expertise of the laboratory of Dr. Robert Murphy (National Jewish Research Center, Denver, Colorado) to assist with the determination of these structures by negative ion chemical ionization gas chromatography/tandem mass spectrometry (NICI GC/MS/MS). Moreover, Mr. Clay has obtained critical reagents for the study of prostaglandin metabolism. Specifically, Mr. Clay has been promised the use of immuno-reactive antibodies to specific AA metabolizing enzymes. These include antibodies to fatty acid CoA ligase (FACL4), the enzyme that ligates free AA to Co-enzyme A, cyclooxygenase 2 (COX-2), the enzyme which catalyzes the oxidation and cyclization of AA to produce prostaglandin G2 (PGG2) and prostaglandin H2 (PGH2) and prostaglandin D<sub>2</sub> synthase (PGDS), the enzyme that catalyzes the formation of PGD<sub>2</sub> from PGG<sub>2</sub>/PGH<sub>2</sub>. These reagents will be helpful for the investigation of enzymatic levels of these critical metabolizing enzymes. In addition, enzymatic activity assay kits are readily available.

## **Key Research Accomplishments**

- 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> remains the most potent naturally occurring PPARγ agonist identified.
- The degree of PPARy activation dictates distinct and opposing biological responses in breast cancer cells, ranging form increased proliferation to differentiation and apoptosis.
- 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> induced apoptosis requires de novo expression of critical gene products.
- Dominant negative expression of PPARγ completely abrogates transcriptional activation induced by 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub>.
- The mechanism of action of 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> is not limited to PPARγ activation. 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> can inhibit NFκB, activate PPARγ and can stimulate reactive oxygen species generation. Together, these events lead to induced expression of key gene products that are involved in PPARγ mediated apoptosis in breast cancer cells.
- 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> is metabolized to polar derivatives by breast cancer cells.

## **Reportable Outcomes**

### Manuscripts

 Clay CE, Namen AM, Fonteh AN, Atsumi G, High KP, Chilton FH, 2000, 15deoxyΔ12,14PGJ<sub>2</sub> induces diverse biological responses via PPARγ activation in cancer cells. Prostaglandins and Other Lipid Mediators 62:23-32



Figure 3. Expression of dominant negative PPARγ blocks transcriptional activation in duced by 15dPGJ<sub>2</sub>.

- 2. Clay CE, Namen AM, Atsumi G, Trimboli AJ, Fonteh AN, High KP, Chilton FH, 2001, The magnitude of PPARγ activation is associated with important and seemingly opposite biological responses in breast cancer cells. Journal of Investigational Medicine (in press)
- 3. Clay CE, Atsumi G, High KP, Chilton FH. 2001, 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> induced apoptosis is not mediated by NFκB in breast cancer cells: requirement for *de novo* gene expression. (in preparation)
- 4. Clay CE, Atsumi G, High KP, Chilton FH. 2001, PPARγ dependent and independent mechanisms of apoptosis in breast cancer cells (in preparation)

#### Abstracts

- 1. PPARy induced apoptosis requires de novo gene expression that is suppressed by a dominant negative mutant in breast cancer cells. FASEB: Receptors and Signal Transduction, Copper Mountain, CO July 2-9, 2000
- 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> inhibits breast cancer cell proliferation via PPARγ activation. International Society for Preventive Oncology, 5<sup>th</sup> International Meeting, Geneva, Switzerland, October 28-31, 2000, Satellite Symposium October 29, 2000
- 3. PPARy induced apoptosis requires de novo gene expression that is suppressed by a dominant negative mutant in breast cancer cells. Wake Forest University, Breast Cancer Center of Excellence, Winston Salem, NC, November 16, 2000
- 4. PPARγ induced apoptosis requires de novo gene expression that is suppressed by a dominant negative mutant in breast cancer cells. Keystone Symposium: PPARs a transcription odyssey, Keystone, CO, February 2-9, 2001

#### Presentations

- 1. PPARy induced biologic responses require de novo gene expression that is suppressed by a dominant negative mutant in breast cancer cells. Wake Forest University Cancer Center Faculty Retreat, Winston-Salem, NC, August 11-12, 2000
- 2. 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> induced apoptosis in suppressed by a PPARγ dominant negative. South Eastern Regional Lipid Conference, Cashiers, NC, November 1-3, 2000
- 3. Mechanisms of Apoptosis in breast cancer cells: 15deoxyΔ<sup>12,14</sup>PGJ<sub>2</sub> and PPARγ. University of Colorado Health Sciences Center, Denver, CO, February 9, 2001.

## • Development of cell lines

- 1. PPARy Dominant Negative
- 2. IkBa Dominant Negative
- 3. p21 Dominant Negative

#### Awards

- Comprehensive Cancer Center Award: Best graduate student presentation (monetary award) PPARγ
  induced biologic changes require de novo gene expression that is suppressed by a dominant negative
  mutant in breast cancer cells. Wake Forest University Cancer Center Faculty Retreat, August 11-12, 2000
- Avanti Founder's Award: Best graduate student presentation (monetary award and conference expenses)
   15deoxy Δ<sup>12,14</sup>PGJ<sub>2</sub> induced apoptosis in suppressed by a PPARγ dominant negative. South Eastern
   Regional Lipid Conference, Cashiers, NC, November 1-3, 2000

### • Funding applied for based on work supported by this award

- Susan G. Komen Breast Cancer Foundation Dissertation Award. PPARγ Induced Apoptosis Requires de novo Gene Expression in Breast Cancer Cells: searching for key molecular targets. (submitted March 15, 2001)
- 2. Wake Forest University Comprehensive Cancer Center. PPARγ and soy phytoestrogens as possible therapy for breast cancer. \$10,000 (submitted March 15, 2001)

### **Conclusions**

Naturally occurring derivatives of arachidonic acid metabolism are potent and effective activators of PPAR $\gamma$ . The most potent of these derivatives is  $15\text{deoxy}\Delta^{12,14}\text{PGJ}_2$  ( $15\text{dPGJ}_2$ ), the dehydration and isomerization product of prostaglandin  $D_2$  (PGD $_2$ ).  $15\text{dPGJ}_2$  induces PPAR $\gamma$  mediated transcriptional activation leading to the synthesis of critical gene products involved in cell cycle arrest and apoptosis. Of these gene products, expression of the cyclin dependent kinase inhibitors, p21 and p27, is associated with marked cell cycle arrest with subsequent apoptosis involving caspase-3. Although  $15\text{dPGJ}_2$  inhibits NF $\kappa$ B mediated transcription, this likely represents a minor contribution to  $15\text{dPGJ}_2$  induced apoptosis in breast cancer cells. Investigations into altered fatty acid metabolism pathways are underway and may yield clues as to how arachidonic acid derivative exert such potent anti-neoplastic activity in breast cancer cells.  $15\text{dPGJ}_2$  may represent a novel class of therapeutic molecules for the PPAR $\gamma$  mediated treatment of breast cancer.

### References

- Clay CE, Namen AM, Fonteh AN, Atsumi G, High KP, Chilton FH, 2000, 15deoxyΔ12,14PGJ<sub>2</sub> induces diverse biological responses via PPARγ activation in cancer cells. Prostaglandins and Other Lipid Mediators 62:23-32
- 2. Clay CE, Namen AM, Atsumi G, Trimboli AJ, Fonteh AN, High KP, Chilton FH, 2001, The magnitude of PPARγ activation is associated with important and seemingly opposite biological responses in breast cancer cells. *Journal of Investigational Medicine* (in press)

**Appendices** 

Appendix 1: Mechanisms of  $15\text{deoxy}\Delta^{12,14}PGJ_2$  induces apoptosis in breast cancer cells.  $15\text{dPGJ}_2$  induced apoptosis in breast cancer cells involves the expression of critical gene products, such as p21 and p27, via the activation of PPAR $\gamma$ . NF $\kappa$ B signaling represents a minor contribution, if any, to  $15\text{dPGJ}_2$  induced apoptosis in breast cancer cells. Activation of phospholipases (PLA $_2$ ) and inhibitors of AA metabolism, such as NSAIDs, triacsin C and CoA-IT inhibitors, increase free AA levels.  $15\text{dPGJ}_2$  induced reactive oxygen species (ROS) that oxidize arachidonic acid may generate oxidized lipid products that may further activate PPAR $\gamma$ .

