Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт Информационных Технологий, Математики и Механики

Направление: Прикладная математика и информатика

Магистерская программа: Компьютерные науки и приложения

ОТЧЕТ

по лабораторной работе №4

Тема:

«Начальная настройка весов полностью связанных нейронных сетей»

Выполнили: студенты группы 381803-	4м
Котова О	Α.
Подпи	— ІСЬ
Лицов	A.
Подпи	—— ІСЬ
Синицкая	O.
Подпи	— ісь
Преподаватель: доцент, к.т.н. Кустико В.	ва Д.
Подпи	<u> </u>

Нижний Новгород 2019

Оглавление

1. Постановка задачи	<u>3</u>
2. Тренировочные и тестовые наборы данных	
 Метрика качества решения 	
4. Разработанные программы	
5. Формат данных, предоставляющийся на вход сети	
6. Описание экспериментов и конфигурации	
7. Результаты экспериментов	
8. Выводы	

Постановка задачи

Цели

Цель настоящей работы состоит в том, чтобы использовать методы обучения без учителя для настройки начальных значений весов сетей, построенных при выполнении предшествующих практических работ.

Задачи

Выполнение практической работы предполагает решение следующих задач:

- 1. Выбор архитектур нейронных сетей, построенных при выполнении предшествующих практических работ.
- 2. Выбор методов обучения без учителя для выполнения настройки начальных значений весов сетей.
- 3. Применение методов обучения без учителя к выбранному набору сетей.
- 4. Сбор результатов экспериментов.

Тренировочные и тестовые наборы данных

Выбранная задача - Intel Image Classification:

https://www.kaggle.com/puneet6060/intel-image-classification.

Исходные данные хранятся в директориях seg_pred, seg_test, seg_train в формате jpg и размера 150x150.

- seg_pred содержит 7301 изображений
- seg test 3000 изображений, которые распределены по папкам
 - buildings
 - forest
 - o glacier
 - o mountain
 - o sea
 - street
- seg_train 14034 изображений, которые распределены по папкам
 - buildings
 - forest
 - o glacier
 - o mountain
 - o sea
 - street

Данные содержат около 25 тыс. цветных изображений размером 150х150, распределенных по 6 категориям: здания, лес, ледник, гора, море, улица. Изображения хранятся в формате jpg.

Тренировочная выборка содержит 14034 изображений.

Тестовая выборка содержит 3000 изображений.

Размер каждого изображения 150х150.

№	Категории	Размер тренировочной выборки	Размер тестовой выборки
1	mountain	2512	525

2	street	2382	501
3	glasier	2404	553
4	buildings	2191	437
5	sea	2274	510
6	forest	2271	474

Процентное соотношение категорий. Тренировочная выборка:

Процентное соотношение категорий. Тестовая выборка:

Метрика качества решения

Для оценки качества решения задачи выбрана метрика "Точность" ("Ассигасу"). Она вычисляет, как часто прогнозы соответствуют меткам. Иными словами, частота с которой у_pred совпадает с у_true.

$$accuracy(y_{pred}, y_{true}) = \frac{1}{N} \sum_{i=1}^{N} 1(y_{pred_i} == y_{true_i})$$

Разработанные программы

Lab4.ipynb – скрипт для обучения нейронных сетей.

Формат данных, предоставляющийся на вход сети

С помощью класса ImageDataGenerator и его метода flow_from_directory() генерируем пакеты. Данные возвращаются в формате (x, y), где x, y - numpy массивы.

Форма х: (batch_size, 150, 150, 3). Форма у: (batch_size, 6).

Методу fit_generator подается на вход генератор данных в формате (x, y). Сети подается на вход массив numpy формата (150, 150, 3), который "сглаживается" сетью с помощью метода Flatten().

Описание экспериментов и конфигурации

Эксперимент 1

Простой автокодировщик.

Конфигурация 1:

Input (150 * 150 RGB image)
Flatten
FC 1000, relu
FC 512, relu
FC 256, relu
FC 128, relu
FC 64, relu
FC 32, relu
FC 16, relu
FC 6, softmax

Эксперимент 2

Глубокий автокодировщик.

Конфигурация 2:

Input (150 * 150 RGB image)
Flatten
FC 1024, relu
FC 512, relu
FC 256, relu
FC 128, relu
FC 64, relu
FC 32, relu

FC 16, relu	
FC 6, softmax	

Эксперимент 3

Сверточный автокодировщик.

Конфигурация 3:

Input (150 * 150 RGB image)
Conv (3,3), 32, relu
Maxpooling(2,2), 1
Conv (3,3), 16, relu
Maxpooling(2,2), 1
Conv (3,3), 8, relu
Maxpooling(2,2), 1
Flatten
FC 1024, relu
FC 512, relu
FC 256, relu
FC 128, relu
FC 64, relu
FC 32, relu
FC 16, relu
FC 6, softmax
1 C 0, bottimax

Результаты экспериментов

В таблице приведены конфигурация системы и программное обеспечение, с помощью которых проводилось обучение и тестирование построенных моделей.

Параметры	Версия
GPU	Tesla P100, having 3584 CUDA cores, 16GB(16.28GB Usable) GDDR6 VRAM Tesla P100 Spec Sheet
Python	3.7.5
TensorFlow	2.0.0

Параметры обучения:

Количество эпох	20
Размер пачки	128

Результаты экспериментов:

Модель	1	1	2	2	3	3
	Простой	Без	Глубокий	Без авт	Сверточный	Без авт
	автокодировщик	автокодировщика	1019 0 0111111	200 0021	CD op 10 million	200 0021
	512	512	128	128	1024	1024
Количество	256	256	64	64	512	512
скрытых	128	128	32	32	256	256
нейронов	64	64	16	16	128	128
	32	32	6	6	64	64
	16	16			32	32
	6	6			16	16
					6	6
Батч	128	128	128	128	128	128
Количество эпох	20	20	20	20	20	20
Общее время (сек)	507	165	505	163	946	181
Точность (Ассигасу) на тренировочном наборе, %	67.27	60.49	60.16	61.22	97.86	97.56
Ошибка на тренировочном наборе	0.87	1.04	1.05	1.03	0.09	0.11
Точность (Ассигасу) на тестовом наборе, %	50.33	56.37	48.13	51.73	72.83	74.97
Ошибка на тестовом наборе	1.30	1.24	1.35	1.41	1.53	1.62

Выводы

В ходе выполнения лабораторной работы была получена модель 3, которая позволяет решать выбранную практическую задачу с достаточно высокими показателями качества. Была спроектирована и разработана программная реализация, позволяющая обучать различные конфигурации нейронных сетей. С помощью полученной реализации были произведены эксперименты на выбранном наборе данных. Во время экспериментов была измерена ошибка классификации. Полученные результаты отражены в настоящем отчете.