NCERT 11.9.4 8Q

EE23BTECH11010 - Venkatesh D Bandawar *

Question: Find the sum to n terms of series, whose n^{th} term is : n(n+1)(n+4).

Solution

Parameter	Description	Value
x(n)	<i>n</i> th term of series	n(n+1)(n+4)u(n)
y(n)	sum of n terms of series	

TABLE 0: Given parameters

From equation (??) to (??),

$$X(z) = \frac{z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^4} + \frac{5z^{-1} \left(z^{-1} + 1\right)}{\left(1 - z^{-1}\right)^3} + \frac{4z^{-1}}{\left(1 - z^{-1}\right)^2} \{|z| > 1\} \quad (1)$$

$$Y(z) = X(z)U(z)$$

$$= \frac{z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^5} + \frac{5z^{-1} \left(z^{-1} + 1\right)}{\left(1 - z^{-1}\right)^4} + \frac{4z^{-1}}{\left(1 - z^{-1}\right)^3} = \left(\frac{n^2 (n+1)^2}{4} + \frac{5n(n+1)(2n+1)}{6} + \frac{4n(n+1)}{2}\right)u(n)$$
(1)

$$= \frac{1}{4} \left[\frac{z^{-1} \left(1 + 11z^{-1} + 11z^{-2} + z^{-3} \right)}{\left(1 - z^{-1} \right)^{5}} \right]$$

$$+ \frac{13}{6} \left[\frac{z^{-1} \left(1 + 4z^{-1} + z^{-2} \right)}{\left(1 - z^{-1} \right)^{4}} \right] + \frac{19}{4} \left[\frac{z^{-1} \left(1 + z^{-1} \right)}{\left(1 - z^{-1} \right)^{3}} \right]$$

$$+ \frac{17}{6} \left[\frac{z^{-1}}{\left(1 - z^{-1} \right)^{2}} \right] \{ |z| > 1 \} \quad (4) \quad \text{Ex}$$

where,

$$nu(n) \longleftrightarrow \frac{z}{(1-z^{-1})^2} \{|z| > 1\}$$
 (5)

$$n^2 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} \left(1 + z^{-1}\right)}{\left(1 - z^{-1}\right)^3} \{|z| > 1\}$$
 (6)

$$n^3 u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1} \left(1 + 4z^{-1} + z^{-2}\right)}{\left(1 - z^{-1}\right)^4} \{|z| > 1\}$$
 (7)

$$n^{4}u(n) \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z^{-1}\left(1 + 11z^{-1} + 11z^{-2} + z^{-3}\right)}{\left(1 - z^{-1}\right)^{5}} \{|z| > 1\}$$
(8)

Taking reverse z transform, using equations (5) to (8)

$$y(n) = \left(\frac{n^4}{4} + \frac{13n^3}{6} + \frac{19n^2}{4} + \frac{17n}{6}\right)u(n)$$
 (9)

$$= \left(\frac{n^4}{4} + \frac{2n^3}{4} + \frac{10n^3}{6} + \frac{n^2}{4} + \frac{15n^2}{6} + \frac{4n^2}{2} + \frac{5n}{6} + \frac{4n}{2}\right) u(n) \tag{10}$$

$$+\frac{4z^{-1}}{(1-z^{-1})^2}\{|z| > 1\} \quad (1) \qquad = \left(\frac{n^4 + 2n^3 + n^4}{4}\right)u(n) + \left(\frac{10n^3 + 15n^2 + 5n}{6}\right)u(n) + \left(\frac{4n^2 + 4n}{2}\right)u(n) \quad (11)$$

$$= \left(\frac{n^2 (n+1)^2}{4} + \frac{5n(n+1)(2n+1)}{6} + \frac{4n(n+1)}{2}\right) u(n)$$
(12)

Fig. 0: Sum of n terms of series