

# Lecture 6

Cont. Forward Kinematics (FK) for Industrial Manipulators

- Task #1: Attach frames to the end of each link where the joints are located. We also attach a frame to the end of the end effector link right at the tip of the robot and we attach a frame to the base of the robot.
- Task #2: Find transformation matrix between each two consecutive frames starting from the base going to the end effector frame successively.
- Task #3: post multiply transformation matrices successively to derive the intended 4x4 homogeneous transformation matrix from the base to the end effector frame.



- Construct the transform that defines frame {i} relative to the frame {i−1}
- This transformation will be a function of the four link parameters



- Construct the transform that defines frame {i} relative to the frame {i−1}
- This transformation will be a function of the four link parameters
- Define three (3) intermediate frames for each link: {P}, {Q}, and {R}



- Construct the transform that defines frame {i} relative to the frame {i−1}
- This transformation will be a function of the four link parameters
- Define three (3) intermediate frames for each link: {P}, {Q}, and {R}
- Write the transformation that transforms vectors defined in {i} to their description in {i−1}



- Construct the transform that defines frame {i} relative to the frame {i−1}
- This transformation will be a function of the four link parameters
- Define three (3) intermediate frames for each link: {P}, {Q}, and {R}
- Write the transformation that transforms vectors defined in {i} to their description in {i−1}



 Frame {R} differs from frame {i-1} only by a rotation of α<sub>i-1</sub>

- Construct the transform that defines frame {i} relative to the frame {i−1}
- This transformation will be a function of the four link parameters
- Define three (3) intermediate frames for each link: {P}, {Q}, and {R}
- Write the transformation that transforms vectors defined in {i} to their description in {i−1}



- Frame {R} differs from frame {i-1}
   only by a rotation of α<sub>i-1</sub>
- Frame {Q} differs from {R} by a translation a<sub>i-1</sub>

- Construct the transform that defines frame {i} relative to the frame {i−1}
- This transformation will be a function of the four link parameters
- Define three (3) intermediate frames for each link: {P}, {Q}, and {R}
- Write the transformation that transforms vectors defined in {i} to their description in {i−1}



- Frame {R} differs from frame {i-1}
   only by a rotation of α<sub>i-1</sub>
- Frame {Q} differs from {R} by a translation a<sub>i-1</sub>
- Frame {P} differs from {Q} by a rotation of θ<sub>i</sub>

- Construct the transform that defines frame {i} relative to the frame {i−1}
- This transformation will be a function of the four link parameters
- Define three (3) intermediate frames for each link: {P}, {Q}, and {R}
- Write the transformation that transforms vectors defined in {i} to their description in {i−1}



- Frame {R} differs from frame {i-1}
   only by a rotation of α<sub>i-1</sub>
- Frame {Q} differs from {R} by a translation a<sub>i-1</sub>
- Frame {P} differs from {Q} by a rotation of θ<sub>i</sub>
- Frame {i} differs from {P} by a translation d<sub>i</sub>



- Frame {R} differs from frame {i-1}
   only by a rotation of α<sub>i-1</sub>
- Frame {Q} differs from {R} by a translation a<sub>i-1</sub>
- Frame {P} differs from {Q} by a rotation of θ<sub>i</sub>
- Frame {i} differs from {P} by a translation d<sub>i</sub>



- Frame {R} differs from frame {i-1}
   only by a rotation of α<sub>i-1</sub>
- Frame {Q} differs from {R} by a translation a<sub>i-1</sub>
- Frame {P} differs from {Q} by a rotation of θ<sub>i</sub>
- Frame {i} differs from {P} by a translation d<sub>i</sub>



- Frame {R} differs from frame {i-1} only by a rotation of α<sub>i-1</sub>
- Frame {Q} differs from {R} by a translation a<sub>i-1</sub>
- Frame {P} differs from {Q} by a rotation of θ<sub>i</sub>
- Frame {i} differs from {P} by a translation d<sub>i</sub>



- Frame {R} differs from frame {i-1}
   only by a rotation of α<sub>i-1</sub>
- Frame {Q} differs from {R} by a translation a<sub>i-1</sub>
- Frame {P} differs from {Q} by a rotation of θ<sub>i</sub>
- Frame {i} differs from {P} by a translation d<sub>i</sub>



- Frame {R} differs from frame {i-1} only by a rotation of  $\alpha_{i-1}$
- Frame {Q} differs from {R} by a translation  $a_{i-1}$
- Frame {P} differs from {Q} by a rotation of  $\theta_i$
- Frame {i} differs from {P} by a translation d<sub>i</sub>





- Frame {R} differs from frame {i-1} only by a rotation of  $\alpha_{i-1}$
- Frame {Q} differs from {R} by a translation  $a_{i-1}$
- Frame {P} differs from {Q} by a rotation of  $\theta_i$
- Frame {i} differs from {P} by a translation  $d_i$





### **Link transformations - MATLAB**

# **RPR** manipulator - Example 1

- Consider the RPR cylindrical manipulator
- Known DH parameters
- Calculate the  ${}_{1}^{0}T$ ,  ${}_{2}^{1}T$ ,  ${}_{3}^{2}T$



| i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $\theta_i$ |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $\theta_1$ |
| 2 | 90°            | 0         | $d_2$ | 0          |
| 3 | 0              | 0         | $L_2$ | $\theta_3$ |

Substitute parameters

 Substituting the DH parameters into link transformation equations → we get:

|           | $c	heta_i$                | $-s\theta_i$              | 0                | $a_{i-1}$                              |
|-----------|---------------------------|---------------------------|------------------|----------------------------------------|
| $i^{-1}T$ | $s\theta_i c\alpha_{i-1}$ | $c\theta_i c\alpha_{i-1}$ | $-s\alpha_{i-1}$ | $-s\alpha_{i-1}d_i$ $c\alpha_{i-1}d_i$ |
| - i 1 -   | $s\theta_i s\alpha_{i-1}$ | $c\theta_i s\alpha_{i-1}$ | $c\alpha_{i-1}$  | $c\alpha_{i-1}d_i$                     |
|           | 0                         | 0                         | 0                | 1                                      |

| i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $	heta_i$ |
|---|----------------|-----------|-------|-----------|
| 1 | 0              | 0         | 0     | $	heta_1$ |

Substitute parameters

 Substituting the DH parameters into link transformation equations → we get:

|              |                                                      | · ·                       |                  | $a_{i-1}$           |
|--------------|------------------------------------------------------|---------------------------|------------------|---------------------|
| $I^{i-1}T =$ | $s\theta_i c\alpha_{i-1} \\ s\theta_i s\alpha_{i-1}$ | $c\theta_i c\alpha_{i-1}$ | $-s\alpha_{i-1}$ | $-s\alpha_{i-1}d_i$ |
| $i^{-1}$     | $s\theta_i s\alpha_{i-1}$                            | $c\theta_i s\alpha_{i-1}$ | $c\alpha_{i-1}$  | $c\alpha_{i-1}d_i$  |
|              | 0                                                    | 0                         | 0                | 1                   |

| i | $lpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $	heta_i$ |
|---|--------------|-----------|-------|-----------|
| 1 | 0            | 0         | 0     | $	heta_1$ |
| 2 | 90°          | 0         | $d_2$ | 0         |

 Substituting the DH parameters into link transformation equations → we get:

|                                |                                                      | $-s\theta_i$              |                  | $a_{i-1}$           |
|--------------------------------|------------------------------------------------------|---------------------------|------------------|---------------------|
| $I^{i-1}T =$                   | $s\theta_i c\alpha_{i-1} \\ s\theta_i s\alpha_{i-1}$ | $c\theta_i c\alpha_{i-1}$ | $-s\alpha_{i-1}$ | $-s\alpha_{i-1}d_i$ |
| $_{i}$ $^{\prime}$ $^{\prime}$ | $s\theta_i s\alpha_{i-1}$                            | $c\theta_i s\alpha_{i-1}$ | $c\alpha_{i-1}$  | $c\alpha_{i-1}d_i$  |
|                                | 0                                                    | 0                         | 0                | 1                   |

| i | $lpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $	heta_i$  |
|---|--------------|-----------|-------|------------|
| 1 | 0            | 0         | 0     | $	heta_1$  |
| 2 | 90°          | 0         | $d_2$ | 0          |
| 3 | 0            | 0         | $L_2$ | $\theta_3$ |

### **RPR manipulator - Example 1 - Solution - MATLAB**



- Transformation(alphai\_1, ai\_1, di, thi)
- $T_0_1 = Transformation(0, 0, 0, th1);$

### **RPR manipulator - Example 1 - Solution - MATLAB**

| i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $	heta_i$ |
|---|----------------|-----------|-------|-----------|
| 1 | 0              | 0         | 0     | $	heta_1$ |
| 2 | 90°            | 0         | $d_2$ | 0         |

- Transformation(alphai\_1, ai\_1, di, thi)
- T\_1\_2 = Transformation(pi/2, 0, d2, 0);

### **RPR manipulator - Example 1 - Solution - MATLAB**

| i | $\alpha_{i-1}$ | $a_{i-1}$ | $d_i$ | $	heta_i$  |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $	heta_1$  |
| 2 | 90°            | 0         | $d_2$ | 0          |
| 3 | 0              | 0         | $L_2$ | $\theta_3$ |

- Transformation(alphai\_1, ai\_1, di, thi)
- $T_2_3 = Transformation(0, 0, L2, th3);$
- $T_2_3 = [\cos(th3), -\sin(th3), 0, 0]$   $[\sin(th3), \cos(th3), 0, 0]$
- [sin(th3), cos(th3), 0, 0]
  [ 0, 0, 1, L2]
  [ 0, 0, 0, 1]

Transformation matrix between the base frame {0} and the end-effector frame {n}:

$${}_{n}^{0}T = {}_{1}^{0}T \cdot {}_{2}^{1}T \cdot {}_{2}^{2}T \cdot \dots \cdot {}_{n}^{n-1}T$$

$${}_{n}^{0}T = {}_{1}^{0}T \cdot {}_{2}^{1}T \cdot {}_{3}^{2}T \cdot \dots \cdot {}_{n}^{n-1}T$$

 $T_0_3 = T_0_1 * T_1_2 * T_2_3;$ 

 ${}_{n}^{0}\mathbf{R}$  - rotation of {n} with respect to {0}

end-effector in {0}

 $T_0_3 =$ 

- th1 = 0;
- $\blacksquare$  th3 = 0;
- L2 = 1;
- d2 = 2;





 $T_0_3 =$ 



 $T_0_3 =$ 





## **Actuator - Joint - Cartesian spaces**

- Joint space: the space of all joint vectors indicating the manipulator's position of the links - joint variables
- Cartesian space: the positions are measured along orthogonal axes and the orientation is measured according to any rotational conventions (i.e., ZYX Euler angles)
- Actuator space: the boundaries of a function that maps the joint vectors with the actuator values received from sensors measurements.



### **Actuator - Joint - Cartesian spaces - WAM robot**



Figure 35 – WAM 4-DOF dimensions and D-H frames



Figure 40: WAM Arm Joint 4 Frames and Limits

| i | a <sub>i</sub> | a <sub>i</sub> | d <sub>i</sub> | $\theta_{i}$ |
|---|----------------|----------------|----------------|--------------|
| 1 | 0              | -п/2           | 0              | $\theta_1$   |
| 2 | 0              | п/2            | 0              | $\theta_2$   |
| 3 | 0.045          | -п/2           | 0.55           | $\theta_3$   |
| 4 | -0.045         | п/2            | 0              | $\theta_4$   |
| Т | 0              | 0              | 0.35           | 5            |

**Table 8: Arm Transmission Ratios** 

| Parameter      | Value |
|----------------|-------|
| $N_1$          | 42.0  |
| $N_2$          | 28.25 |
| N <sub>3</sub> | 28.25 |
| n <sub>3</sub> | 1.68  |
| $N_4$          | 18.0  |
| N <sub>5</sub> | 9.48  |
| $N_6$          | 9.48  |
| N <sub>7</sub> | 14.93 |
| n <sub>6</sub> | 1     |
|                |       |

$$\begin{bmatrix} J\theta_1 \\ J\theta_2 \\ J\theta_3 \\ J\theta_4 \end{bmatrix} = \begin{bmatrix} \frac{-1}{N_1} & 0 & 0 & 0 \\ 0 & \frac{1}{2N_2} & \frac{-1}{2N_2} & 0 \\ 0 & \frac{-n_3}{2N_2} & \frac{-n_3}{2N_2} & 0 \\ 0 & 0 & 0 & \frac{-1}{N_4} \end{bmatrix} \begin{bmatrix} M\theta_1 \\ M\theta_2 \\ M\theta_3 \\ M\theta_4 \end{bmatrix}$$

**Equation 6: WAM Motor-to-Joint position transformations** 

$$\begin{bmatrix} J\theta_5 \\ J\theta_6 \\ J\theta_7 \end{bmatrix} = \begin{bmatrix} \frac{1}{2N_5} & \frac{1}{2N_5} & 0 \\ \frac{-n_6}{2N_5} & \frac{n_6}{2N_5} & 0 \\ 0 & 0 & \frac{1}{N_7} \end{bmatrix} \begin{bmatrix} M\theta_5 \\ M\theta_6 \\ M\theta_7 \end{bmatrix}$$

**Equation 7: Wrist Motor-to-Joint position transformations** 

### **PUMA 560 - Unimate robot**



- Courtesy of Unimation Incorporated
- 6 DoFs
- All rotational joints
- RRRRRR mechanism

### **PUMA 560 - Unimate robot - Mechanical chain**



### **PUMA 560 - Unimate robot - Mechanical chain**



#### **PUMA 560 - Unimate robot - Attach frames**



#### **PUMA 560 - Unimate robot - Attach frames**



- Figure → All joints angles equal to zero
- $\{0\}$  not shown coincident with frame  $\{1\}$  when  $\theta_1$  is zero
- The joint axes of joints 4,5,6 all intersect at a common point and this point of intersection coincides with the origin of frames {4},{5},{6}. Also, they are orthogonal



\*\*\* Unimation has used a slightly different assignment of zero location of the joints, such that  $\theta_3^* = \theta_3 - 180^\circ$ , where  $\theta_3^*$  is the position of joint 3 in Unimation's convention.

#### **PUMA 560 - Unimate robot - Attach frames**



# **PUMA 560 - Unimate robot - DH parameters**



| i | $\alpha_i - 1$ | $a_i - 1$ | $d_i$ | $\theta i$ |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $\theta_1$ |
| 2 | -90°           | 0         | 0     | $\theta_2$ |
| 3 | 0              | $a_2$     | $d_3$ | $\theta_3$ |
| 4 | -90°           | $a_3$     | $d_4$ | $\theta_4$ |
| 5 | 90°            | 0         | 0     | $\theta_5$ |
| 6 | -90°           | 0         | 0     | $\theta_6$ |

## **PUMA 560 - Unimate robot - DH parameters**



- Gearing arrangement in the wrist couples together the motions of joints 4, 5, and 6.
- We must make a distinction between joint space and actuator space and solve the complete kinematics in two steps



#### PUMA 560 - Example 2



Given the DH parameters and the link transformations formular above, **find the transformations** below:

$${}_{1}^{0}T$$
,  ${}_{2}^{1}T$ ,  ${}_{3}^{2}T$ ,  ${}_{4}^{3}T$ ,  ${}_{5}^{4}T$ ,  ${}_{6}^{5}T$ 

• Also, find the:  ${}_{6}^{0}T$ 



#### **PUMA 560 - Example 2 - Solution**

| i | $\alpha_i - 1$ | $a_i - 1$ | $d_i$ | $\theta i$ |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $\theta_1$ |
| 2 | -90°           | 0         | 0     | $\theta_2$ |
| 3 | 0              | $a_2$     | $d_3$ | $\theta_3$ |
| 4 | -90°           | $a_3$     | $d_4$ | $\theta_4$ |
| 5 | 90°            | 0         | 0     | $\theta_5$ |
| 6 | -90°           | 0         | 0     | $\theta_6$ |

#### PUMA 560 - Example 2 - Solution - T\_0\_1

| i | $\alpha_i - 1$ | $a_i - 1$ | $d_i$ | $\theta i$ |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $	heta_1$  |

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

#### PUMA 560 - Example 2 - Solution - T\_1\_2

| i | $\alpha_i - 1$ | $a_i - 1$ | $d_i$ | heta i     |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $	heta_1$  |
| 2 | -90°           | 0         | 0     | $\theta_2$ |

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0\\ 0 & 0 & 1 & 0\\ -s\theta_{2} & -c\theta_{2} & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix},$$

#### PUMA 560 - Example 2 - Solution - T\_2\_3

| i | $\alpha_i - 1$ | $a_i - 1$ | $d_i$ | heta i     |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $	heta_1$  |
| 2 | -90°           | 0         | 0     | $\theta_2$ |
| 3 | 0              | $a_2$     | $d_3$ | $\theta_3$ |

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}_{2}^{1}T = \left[ \begin{array}{cccc} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right],$$

$${}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

## PUMA 560 - Example 2 - Solution - T\_3\_4

| i | $\alpha_i - 1$ | $a_i - 1$ | $d_i$ | heta i     |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $\theta_1$ |
| 2 | -90°           | 0         | 0     | $\theta_2$ |
| 3 | 0              | $a_2$     | $d_3$ | $\theta_3$ |
| 4 | -90°           | $a_3$     | $d_4$ | $\theta_4$ |

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad {}^{3}_{4}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}^{1}_{2}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

#### PUMA 560 - Example 2 - Solution - T\_4\_5

| i | $\alpha_i - 1$ | $a_{i} - 1$ | $d_i$ | θі         |
|---|----------------|-------------|-------|------------|
| 1 | 0              | 0           | 0     | $	heta_1$  |
| 2 | -90°           | 0           | 0     | $\theta_2$ |
| 3 | 0              | $a_2$       | $d_3$ | $\theta_3$ |
| 4 | -90°           | $a_3$       | $d_4$ | $\theta_4$ |
| 5 | 90°            | 0           | 0     | $\theta_5$ |

$${}_{1}^{0}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad {}_{4}^{3}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}_{1}^{2}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad {}_{5}^{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}_{2}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

## PUMA 560 - Example 2 - Solution - T\_5\_6

| i | $\alpha_i - 1$ | $a_i - 1$ | $d_i$ | θі         |
|---|----------------|-----------|-------|------------|
| 1 | 0              | 0         | 0     | $	heta_1$  |
| 2 | -90°           | 0         | 0     | $\theta_2$ |
| 3 | 0              | $a_2$     | $d_3$ | $\theta_3$ |
| 4 | -90°           | $a_3$     | $d_4$ | $\theta_4$ |
| 5 | 90°            | 0         | 0     | $\theta_5$ |
| 6 | -90°           | 0         | 0     | $\theta_6$ |

$${}^{0}_{1}T = \begin{bmatrix} c\theta_{1} & -s\theta_{1} & 0 & 0 \\ s\theta_{1} & c\theta_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \qquad {}^{3}_{4}T = \begin{bmatrix} c\theta_{4} & -s\theta_{4} & 0 & a_{3} \\ 0 & 0 & 1 & d_{4} \\ -s\theta_{4} & -c\theta_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \end{bmatrix}$$

$${}_{2}^{1}T = \begin{bmatrix} c\theta_{2} & -s\theta_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{2} & -c\theta_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad {}_{5}^{4}T = \begin{bmatrix} c\theta_{5} & -s\theta_{5} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s\theta_{5} & c\theta_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$${}_{3}^{2}T = \begin{bmatrix} c\theta_{3} & -s\theta_{3} & 0 & a_{2} \\ s\theta_{3} & c\theta_{3} & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad {}_{6}^{5}T = \begin{bmatrix} c\theta_{6} & -s\theta_{6} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s\theta_{6} & -c\theta_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

## PUMA 560 - Example 2 - Solution - T\_1\_6

• Form the  ${}^0_6T$  by multiplication of the individual link matrices

$${}_{6}^{4}T = {}_{5}^{4}T {}_{6}^{5}T = \begin{bmatrix} c_{5}c_{6} & -c_{5}s_{6} & -s_{5} & 0 \\ s_{6} & c_{6} & 0 & 0 \\ s_{5}c_{6} & -s_{5}s_{6} & c_{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{3}T = {}_{4}^{3}T {}_{6}^{4}T = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & -c_{4}s_{5} & a_{3} \\ s_{5}c_{6} & -s_{5}s_{6} & c_{5} & d_{4} \\ -s_{4}c_{5}c_{6} - c_{4}s_{6} & s_{4}c_{5}s_{6} - c_{4}c_{6} & s_{4}s_{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{1}T = {}_{2}^{1}T {}_{3}^{2}T = \begin{bmatrix} c_{23} & -s_{23} & 0 & a_{2}c_{2} \\ 0 & 0 & 1 & d_{3} \\ -s_{23} & -c_{23} & 0 & -a_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## PUMA 560 - Example 2 - Solution - T\_1\_6

• Form the  ${}^0_6T$  by multiplication of the individual link matrices

$${}_{6}^{4}T = {}_{5}^{4}T {}_{6}^{5}T = \begin{bmatrix} c_{5}c_{6} & -c_{5}s_{6} & -s_{5} & 0 \\ s_{6} & c_{6} & 0 & 0 \\ s_{5}c_{6} & -s_{5}s_{6} & c_{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{3}T = {}_{4}^{3}T {}_{6}^{4}T = \begin{bmatrix} c_{4}c_{5}c_{6} - s_{4}s_{6} & -c_{4}c_{5}s_{6} - s_{4}c_{6} & -c_{4}s_{5} & a_{3} \\ s_{5}c_{6} & -s_{5}s_{6} & c_{5} & d_{4} \\ -s_{4}c_{5}c_{6} - c_{4}s_{6} & s_{4}c_{5}s_{6} - c_{4}c_{6} & s_{4}s_{5} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{3}^{1}T = {}_{2}^{1}T {}_{3}^{2}T = \begin{bmatrix} c_{23} & -s_{23} & 0 & a_{2}c_{2} \\ 0 & 0 & 1 & d_{3} \\ -s_{23} & -c_{23} & 0 & -a_{2}s_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}_{6}^{1}T = {}_{3}^{1}T {}_{6}^{3}T = \begin{bmatrix} {}_{1}^{1} & {}_{1}^{1}r_{12} & {}_{1}^{1}r_{13} & {}_{1}^{1}p_{x} \\ {}_{1}^{1}r_{21} & {}_{1}^{1}r_{22} & {}_{1}^{1}r_{23} & {}_{1}^{1}p_{y} \\ {}_{1}^{1}r_{31} & {}_{1}^{1}r_{32} & {}_{1}^{1}r_{33} & {}_{1}^{1}p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

where

Worcester Polytechnic Institute

#### PUMA 560 - Example 2 - Solution - T\_0\_6

$${}_{6}^{0}T = {}_{1}^{0}T {}_{6}^{1}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Here,

$$\begin{split} r_{11} &= c_1[c_{23}(c_4c_5c_6 - s_4s_5) - s_{23}s_5c_5] + s_1(s_4c_5c_6 + c_4s_6), \\ r_{21} &= s_1[c_{23}(c_4c_5c_6 - s_4s_6) - s_{23}s_5c_6 - c_1(s_4c_5c_6 + c_4s_6), \\ r_{31} &= -s_{23}(c_4c_5c_6 - s_4s_6) - c_{23}s_5c_6, \end{split}$$

$$r_{12} = c_1[c_{23}(-c_4c_5s_6 - s_4c_6) + s_{23}s_5s_6] + s_1(c_4c_6 - s_4c_5s_6),$$
  

$$r_{22} = s_1[c_{23}(-c_4c_5s_6 - s_4c_6) + s_{23}s_5s_6] - c_1(c_4c_6 - s_4c_5s_6),$$
  

$$r_{32} = -s_{23}(-c_4c_5s_6 - s_4c_6) + c_{23}s_5s_6,$$

$$r_{13} = -c_1(c_{23}c_4s_5 + s_{23}c_5) - s_1s_4s_5,$$
  

$$r_{23} = -s_1(c_{23}c_4s_5 + s_{23}c_5) + c_1s_4s_5,$$
  

$$r_{33} = s_{23}c_4s_5 - c_{23}c_5,$$

$$\begin{split} p_x &= c_1[a_2c_2 + a_3c_{23} - d_4s_{23}] - d_3s_1, \\ p_y &= s_1[a_2c_2 + a_3c_{23} - d_4s_{23}] + d_3c_1, \\ p_z &= -a_3s_{23} - a_2s_2 - d_4c_{23}. \end{split}$$

#### PUMA 560 - Example 2 - Solution - T\_0\_6 - RTB

$${}_{6}^{0}T = {}_{1}^{0}T {}_{6}^{1}T = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_{x} \\ r_{21} & r_{22} & r_{23} & p_{y} \\ r_{31} & r_{32} & r_{33} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Here,

$$\begin{split} r_{11} &= c_1[c_{23}(c_4c_5c_6 - s_4s_5) - s_{23}s_5c_5] + s_1(s_4c_5c_6 + c_4s_6), \\ r_{21} &= s_1[c_{23}(c_4c_5c_6 - s_4s_6) - s_{23}s_5c_6 - c_1(s_4c_5c_6 + c_4s_6), \\ r_{31} &= -s_{23}(c_4c_5c_6 - s_4s_6) - c_{23}s_5c_6, \end{split}$$

$$r_{12} = c_1[c_{23}(-c_4c_5s_6 - s_4c_6) + s_{23}s_5s_6] + s_1(c_4c_6 - s_4c_5s_6),$$
  

$$r_{22} = s_1[c_{23}(-c_4c_5s_6 - s_4c_6) + s_{23}s_5s_6] - c_1(c_4c_6 - s_4c_5s_6),$$
  

$$r_{32} = -s_{23}(-c_4c_5s_6 - s_4c_6) + c_{23}s_5s_6,$$

$$r_{13} = -c_1(c_{23}c_4s_5 + s_{23}c_5) - s_1s_4s_5,$$
  

$$r_{23} = -s_1(c_{23}c_4s_5 + s_{23}c_5) + c_1s_4s_5,$$
  

$$r_{33} = s_{23}c_4s_5 - c_{23}c_5,$$

$$\begin{split} p_x &= c_1[a_2c_2 + a_3c_{23} - d_4s_{23}] - d_3s_1, \\ p_y &= s_1[a_2c_2 + a_3c_{23} - d_4s_{23}] + d_3c_1, \\ p_z &= -a_3s_{23} - a_2s_2 - d_4c_{23}. \end{split}$$



## ... end of Lecture 6

