Phần Lý thuyết

- 1. Giới thiệu chung Mô hình hệ VXL Nguyên tắc hoạt động
- 2. Cấu trúc và hoạt động của vi xử lý 8085
- 3. Quá trình thực hiện 1 lệnh trong VXL 8085
- 4. Giới thiệu về vi điều khiển PIC
- 5. Bộ công cụ nạp chương trình, công cụ mô phỏng vi điều khiển
- 6. Bộ định thời Timer
- 7. Ghép nối với bộ hiển thị
- 8. ADC
- 9. Giao tiếp truyền dữ liệu
- 10. Ngắt
- 11. PWM

PWM là gì?

- Điều chế độ rộng xung
- Mục đích là tạo ra xung vuông, trong đó phần năng lượng có ích tương đương một tín hiệu điện một chiều DC với điện áp điều chỉnh được

Điện áp thấp, thời gian ON của xung ngắn

Điện áp cao, thời gian ON của xung dài

Nguyên lý chung của PWM

$$Duty\ Cycle = \frac{On\ Time}{Period} \times 100\%$$

Cố định T (Period) và thay đổi D (Duty Cycle)

PWM trong PIC16F877A

Set Period bằng cách nạp giá trị vào thanh ghi PR2

Set Duty Cycle bằng cách nạp giá trị vào CCPR1L và CCP1CON

Các bước để setup PWM

• Xác định Periode bằng cách nạp vào thanh ghi PR2 giá trị thích hợp

PWM Period =
$$[(PR2) + 1] * 4 * T_{OSC} * (TMR2_{Prescale})$$

TMR2 Prescale được định nghĩa trong thanh ghi T2CON

T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits

00 = Prescaler is 1

01 = Prescaler is 4

1x = Prescaler is 16

Các bước để setup PWM

• Xác định Duty Cycle bằng cách nạp vào thanh ghi CCPR1L và CCP1CON giá trị thích hợp

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) * Tosc * (TMR2 Prescale)

Giá trị này gồm 10 bit bao gồm 8 bit trong CCPR1L và 2 bit thứ 5:4 trong thanh ghi CCP1CON

• Mở cổng CCP1 (chân RC2) là cổng output

Các bước để setup PWM

• Set TMR2 Prescale và enable Timer2 bằng cách nạp giá trị cho T2CON

T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	
bit 7							bit 0	
	TMR2ON: Timer2 On bit			T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits				
	1 = Timer2 is on		00 = Prescale	Prescaler is 1				
	0 = Timer2 is off			01 = Prescaler is 4				
				1x = Prescaler is 16				

• Cấu hình CCP1 để bộ PWM hoạt động

CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS 17h/1Dh)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

 $11xx = PWM \mod e$

Tạo ra điện áp DC

Tạo ra điện áp AC

Tín hiệu đưa ra từ PIC có công suất nhỏ nên cần KĐ, tín hiệu PWM từ PIC thường được dùng để đóng/mở các transistor trường khuếch đại công suất (không sử dụng trực tiếp)

PWM trong CCS

#use pwm(options)

Options có thể là một hay nhiều trường sau đây, phân biệt với nhau bởi dấu phẩy

pwmx	Chọn pwm thứ x của VĐK		
output=pin_xx	chọn chân đầu ra cho tín hiệu PWM	là một trong các chân CCP	
timer=x	chọn timer để thực hiện PWM	mặc định là Timer2	
frequency=x	chọn thông số Period cho PWM	Khi dịch chương trình, chọn 1 trong 2, lỗi cái này chọn cái kia	
period=x	Tương tự frequency=x		
duty=x	Chọn tỉ lệ duty cycle tính theo %	mặc định là 50%	
pwm_on	Khởi tạo bộ PWM chế độ ON		
pwm_off	Khởi tạo bộ PWM chế độ OFF		

Chú ý cần có #use delay trước khi khai báo pwm

PWM trong CCS

set_pwm_duty(x,value) Cập nhật giá trị duty cycle cho bộ PWM thứ x một giá trị value mới

setup_ccp1(mode) Chọn chế độ capture/compare hoặc PWM cho bộ CCP1

set_pwm1_duty(value) Cập nhật giá trị duty cycle cho bộ PWM thứ 1 một giá trị value mới

setup_pwm1(settings) Cài đặt giá trị cho bộ PWM tương ứng (Ví dụ là bộ PWM1)

pwm_enabled	Khởi tạo bộ PWM tương ứng
pwm_output	Khởi tạo chân PWM mặc định
pwm_active_low	ON state ở mức thấp

setup_pwm1(pwm_enabled|pwm_output)