

Poisoning the Unlabeled Dataset of Semi-Supervised Learning

Nicholas Carlini, Google USENIX Security Symposium, 2021

Semi-supervised learning

• Collecting "Labeled" Data is Expensive.

Semi-supervised learning

• Transform into Fully-supervised Problem

Semi-supervised learning

• Transform into Fully-supervised Problem

Threat Model

Transform into Fully-supervised Problem

Problem

How a task should be completed

What should be done

Teach itself from this unlabeled data

Interpolation Consistency Poisoning

(a) A classifier trained on a semisupervised dataset of red \odot s, blue \times s, and *unlabeled* \otimes s. During training the unlabeled \otimes s are given pseudo-labels such that the correct original decision boundary is learned.

Interpolation Consistency Poisoning

(b) When inserting just one new *unla-beled* poisoned example near the boundary, the model gives it the correct pseudo label of the blue ×s. The poisoning attempt fails, and the decision boundary remains largely unchanged.

Interpolation Consistency Poisoning

Interpolation Strategy

$$interp(x', x^*, \alpha) = x' \cdot (1 - \alpha) + x^* \cdot \alpha$$

• Density of poisoned samples.

$$\hat{\rho}(x) = \rho(x) \cdot \left(\int_0^1 \rho(x) \, dx \right)^{-1} \quad \Pr[p < \alpha < q] = \int_p^q \hat{\rho}(x) \, dx$$

Evaluation across source- and target-image

Evaluation across training techniques

Evaluation across datasets

Dataset	CIFAR-10			SVHN			STL-10		
(% poisoned)	0.1%	0.2%	0.5%	0.1%	0.2%	0.5%	0.1%	0.2%	0.5%
MixMatch	5/8	6/8	8/8	4/8	5/8	5/8	4/8	6/8	7/8
UDA	5/8	7/8	8/8	5/8	5/8	6/8	_	-	-
FixMatch	7/8	8/8	8/8	7/8	7/8	8/8	6/8	8/8	8/8

• Evaluation across number of labeled examples

Dataset		CIFAR	-10	SVHN			
(# labels)	40	250	4000	40	250	4000	
MixMatch	5/8	4/8	1/8	6/8	4/8	5/8	
UDA	5/8	5/8	2/8	5/8	4/8	4/8	
FixMatch	7/8	7/8	7/8	7/8	6/8	7/8	

• Why does this attack work?

Defense

Monitoring Training Dynamics

Defense

Computing Pairwise Influence

Difference in the model f predictions on example j from i epoch to i+1.

$$\partial f_{\theta_i}(u_j) = f_{\theta_{i+1}}(u_j) - f_{\theta_i}(u_j)$$

Model's collection of prediction difference from epoch a to epoch b.

$$\mu_j^{(a,b)} = \begin{bmatrix} \partial f_{\theta_a}(u_j) & \partial f_{\theta_{a+1}}(u_j) & \dots & \partial f_{\theta_{b-1}}(u_j) & f_{\theta_b}(u_j) \end{bmatrix}$$

The influence of example u_i on u_i

Influence
$$(u_i, u_j) = \|\mu_i^{(0,K-2)} - \mu_j^{(1,K-1)}\|_2^2$$

Defenses

• Identifying Poisoned Example

