

Infraestructura computacional

Infraestructura de TI: planeamiento de la capacidad

- Determinar la infraestructura de TI (procesamiento, almacenamiento, comunicaciones, etc.) necesaria para prestar eficientemente un servicio a lo largo del tiempo a un cierto nivel de efectividad considerado satisfactorio
 - Definir el nivel de servicio requerido: precisar los servicios, sus alcances y características
 - 2 Analizar la capacidad actual
 - B Hacer prospectiva

- Definir los requerimientos: caracterizar el servicio prestado y determinar las expectativas de los usuarios
 - Definir la carga de trabajo (workload): clasificación del trabajo realizado por el sistema según un cierto criterio :
 - quién lo hace
 - qué hace
 - · cómo lo hace, etc.
 - Definir la unidad de carga
 - En términos del negocio
 - No son los recursos utilizados
 - Establecer los niveles de servicio
 - Acuerdo entre proveedor y cliente para definir "aceptable"
 - En términos del cliente (puede ser en términos de la carga de trabajo)
 - Típicamente tiempos de respuesta, o productividad

Determinar requerimientos:
 Componentes de una solución informática

- Determinar requerimientos:
 Tipos de requerimientos:
 - En cuanto al procesamiento
 - Capacidad
 - Escalabilidad
 - Desempeño
 - En cuanto a la seguridad:
 - Confidencialidad
 - Integridad
 - Disponibilidad

• **0** Determinar requerimientos:

	Aplicación	Servidor	BD	Almacenamiento	Red
Capacidad					
Escalabilidad					
Desempeño					
Confidencialidad					
Integridad					
Disponibilidad					

- Determinar requerimientos:
 Tipos de requerimientos:
 - Capacidad: carga que debe soportar el sistema. Volumen de información procesada, almacenada o enviada.
 - Escalabilidad: capacidad de asignar recursos adicionales (procesamiento, almacenamiento, comunicación) perturbando al mínimo el funcionamiento de la infraestructura
 - Desempeño: tiempo de respuesta. Velocidad con la que se desempeña la infraestructura
 - Disponibilidad: accesibilidad ininterrumpida a la información (o con mínimos trastornos)

- Determinar requerimientos:
 - Métricas:
 - Reactividad Productividad
 - Particular Global
 - Métricas usuales:
 - Tiempo de respuesta: tiempo desde que se emite el requerimiento hasta que se recibe la respuesta
 - Tiempo de retorno (turnaround): tiempo desde que se emite una tarea (batch) hasta el retorno de la salida completa
 - Tiempo de reacción: tiempo desde que se emite el requerimiento hasta que empieza su ejecución
 - Rendimiento: rata a la cual se procesan los requerimientos (requerimientos / tiempo)

Determinar requerimientos:
 Tiempo de respuesta:

- Determinar requerimientos:
 Medida de la capacidad de procesamiento:
 - Productividad = Número de tareas despachadas por unidad de tiempo
 - Carga = Número tareas activas al mismo tiempo
 - Tarea: transacción, job, etc.
 - Unidad de tiempo: depende de lo demorado de la tarea (segundo, minuto, etc.)

- Determinar requerimientos:
 Medida de la capacidad de almacenamiento:
 - Datos operativos
 - Archivo
 - Lapso cubierto (desde hasta)
 - · Ciclo de vida de la información
 - Niveles de archivo
 - Backup
 - Frecuencia
 - Número de versiones

- Determinar requerimientos:
 - Escalabilidad:
 - Crecimiento sostenido
 - Variabilidad en la demanda (dinámica)
 - Picos eventuales
 - Predecibles
 - No predecibles

- Determinar requerimientos:
 Disponibilidad:
 - Medida de la frecuencia o del tiempo que un servicio o componente está disponible
 - Se suele medir como porcentaje de tiempo en que un servicio o componente del sistema está disponible:
 - disponibilidad = Td / (Td + Tnd)
 Td = Tiempo disponible
 Tnd = Tiempo no disponible

- Determinar requerimientos:
 Disponibilidad:
 - Confiabilidad (Reliability): probabilidad de que un sistema se mantenga funcionando continuamente. Se suele expresar por:
 - MTBF = Mean Time Between Failures
 - Facilidad de mantenimiento (Serviceability): medida de la facilidad para reparar un servicio. Se puede expresar por:
 - MTTR = Mean Time To Repair
 - Disponibilidad (Availability):
 - Disponibilidad = MTBF / (MTBF + MTTR)

- Determinar requerimientos:
 Porcentaje de disponibilidad ("número de nueves"):
 - Disponibilidad anual:

Disponibilidad	Tiempo de indisponibilidad		
90.0 %	36 días 12 horas		
95.0 %	18 días 6 horas		
99.0 %	87 horas 36 minutos		
99.50 %	43 horas 48 minutos		
99.90 %	8 horas, 45 minutos, 36 segundos		
99.99 %	52 minutos 33 segundos		
99.999 %	5 minutos 15 segundos		
99.999 %	32 segundos		

- 2 Analizar la capacidad actual:
 - Mediciones:
 - Carga de trabajo (qué)
 - Niveles de servicio (cómo)
 - Consumo de recursos (con qué):
 - Determinar nivel de agregación del consumo de recursos: global, local
 - Discriminar los componentes del tiempo de respuesta: procesamiento (¿dónde?), tránsito, entrada/salida
 - Determinar frecuencia de muestreo y periodo de observación
 - Tendencia (histórico)
 - Estacionalidad
 - Picos

2 Analizar la capacidad actual

Mediciones:

Máximo (domingos)

Mínimo (viernes)

- Analizar la capacidad actual Mediciones:
 - Determinar frecuencia de muestreo
 - Poco frecuente:
 Se pueden pasar cosas por alto
 - Muy frecuente:
 Se puede atafagar de datos inútiles
 Se puede perder perspectiva
 Se genera recarga en el sistema

Analizar la capacidad actual
 Tiempo de respuesta - Rendimiento:

- Analizar la capacidad actual: Tiempo de procesamiento:
 - Usuario (t_u)
 - Sistema (t_s)
 - Total (o de CPU) = $t_u + t_s$
 - Real: transcurrido ("wall clock)"

- 2 Analizar la capacidad actual Tiempo de procesamiento:
 - Alarmas:

$$t_u + t_s << t_r$$

 $t_s > 10\%$

– Unix:

```
$ time comando
s.mmmu s.mmms m:ss.cc n.n%
```


② Analizar la capacidad actual

Uso del procesador:

- Eficiencia = $(t_u + t_s)/t_r$

Nivel de uso:

< 80%: hay disponibilidad

= 80%: saturación

• > 80%: recargado

"The art of capacity planning", John Allspaw

- ② Analizar la capacidad actual
 Uso del procesador: multiprocesadores
 - Aumento de velocidad ("speedup") = T_{secuencial} / T_{paralelo}
 - Debe ser mayor que 1
 - Deseable que sea proporcional al número de procesadores

- ② Analizar la capacidad actual
 Uso del procesador: multiprocesadores
 - Costo = t_r* Número procesadores
 - Total de tiempo de cómputo invertido
 - Eficiencia = Σt_{it} / Costo
 - No puede ser mayor que 1

"Information Storage and Management"; G. Somasundaram, Alok Shrivastava (editores). EMC

- Analizar la capacidad actual Desempeño de discos:
 - Ley de Little:

N = aR

- N: Número total de requerimientos en el sistema
- a: tasa de llegada (número de requerimientos que llegan por unidad de tiempo)
- R: tiempo de retorno

"Information Storage and Management"; G. Somasundaram, Alok Shrivastava (editores). EMC

- Analizar la capacidad actual Desempeño de discos:
 - Ley de uso:

$$U = aR_s$$

- U: uso del controlador
- R_s: tiempo de servicio (tiempo promedio que se gasta en el controlador)
- Tiempo promedio entre llegadas: R_a:= 1 / a
- $U = R_s / R_a$
- $R = R_s / (1-U)$

 Analizar la capacidad actual Desempeño de discos:

- 2 Analizar la capacidad actual Capacidad de almacenamiento:
 - Datos operativos:
 - Tipos
 - Número de cada tipo
 - Tamaño de cada tipo
 - Archivo
 - Determinar niveles del ciclo de vida
 - Qué se conserva de lo operativo
 - En general: qué se conserva entre niveles
 - Cuántos periodos
 - Backup
 - Frecuencia
 - Número de versiones

- ② Analizar la capacidad actual Disponibilidad - Principios:
 - Robustez: disminuir el potencial de fallas
 "Tan simple como sea posible, pero tan complejo como sea necesario"
 - Redundancia: recursos adicionales de respaldo "Pluralitas non est ponenda sine necessitate"
 - Prevenir puntos únicos de fallo
 - Es una decisión del negocio
 - No existe la seguridad total
 - Alta disponibilidad: protección contra o recuperación ante fallas menores en corto tiempo
 - Disponibilidad continua: prestación ininterrumpida del servicio
 - Tolerancia a fallas: las fallas no se hacen visibles al usuario

 2 Analizar la capacidad actual Disponibilidad - análisis:

 $P(A_i)$ = disponibilidad del elemento A_i

Dependencia secuencial

$$P(S) = P(A_1 \text{ and } A_2 \dots \text{ and } A_n) = \prod_i P(A_i)$$

$$P(S) = P(A_1 \text{ or } A_2 \dots \text{ or } A_n) =$$

 $\sum_i P(A_i) - \sum_i P(\text{todas las intersecciones})$

- ② Analizar la capacidad actual Disponibilidad - análisis:
 - La disponibilidad es una cadena
 - 99.99 % = 53 minutos
 - $99.99^7\% = 99.93\% = 6:08 \text{ h}$
 - 99.99⁶ % *99 %= 98.94 % = 92:48 h
 - Dan rendimientos decrecientes

- • Hacer prospectiva:
 - Elaborar pronóstico de necesidades de procesamiento:
 - Crecimiento del volumen de negocio
 - Planeado
 - Tendencia
 - Nuevas aplicaciones
 - Expansión del negocio
 - Limitaciones presupuestales
 - Elaborar modelo:
 - niveles del servicio = f(carga, recursos)
 - Definir acciones

B Hacer prospectiva:

Elaborar modelo:

 • 3 Hacer prospectiva: Elaborar modelo:

- S Hacer prospectiva:
 Definir acciones:
 - Determinar configuración:
 niveles del servicio = f(carga, recursos)
 - Encontrar límites de crecimiento:
 niveles del servicio = f(carga, recursos)
 - Redefinir niveles de servicio:
 niveles del servicio = f(carga, recursos)

- • Hacer prospectiva: Elaborar modelo:
 - Aumento de velocidad

Sistemas de recolección de métricas

Referencias

Capacity planning. The art of capacity planning; John Allspaw. Capítulo 3 (hasta pág. 39)

Capacity planning. Métricas. Art of Computer Systems Performance Analysis; Raj Jain. Secciones 3.2-3.3.