ARMA모형 모수 추정

다음과 같은 ARMA(p,q) 모형과 표본 시계열 자료가 있는 경우 최대 가능도 추정법으로 모수 ϕ_i , θ_i 를 구할 수 있다.

$$Y_t + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} - \dots + \theta_a \epsilon_{t-a}$$

MLE를 사용하기 위한 가능도 함수는 다음과 같다.

$$\mathcal{L}(\theta; \{y_j\}) = \mathcal{L}(\phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q; y_1, y_2, \dots, y_N)$$

= $f_{Y_1, \dots, Y_N}(y_1, y_2, \dots, y_N; \phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q)$

ARMA(p,q)의 가능도 함수

확률변수와 달리 확률과정 모형에서는 ϵ 값을 알아야 하기 때문에 다음처럼 반복적 방법을 사용한다.

(1)

우선 임의의 ϵ 값을 초기값으로 가정한다.

 Y_t 는 $Y_{t-1}, \cdots, Y_{t-n}, \epsilon_{t-1}, \cdots, \epsilon_{t-n}$ 에 의존하는 정규 분포 확률변수가 된다.

$$Y_t \sim -\phi_1 Y_{t-1} - \phi_2 Y_{t-2} - \cdots - \phi_p Y_{t-p} + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \cdots + \theta_a \epsilon_{t-a}$$

선형회귀방법으로 모수 $\phi_1, \cdots, \phi_p, \theta_1, \cdots, \theta_q$ 를 추정한다.

(2)

 ϵ 값을 계산한다. 우선 다음과 같은 초기값 가정을 하자

$$\epsilon_p = \epsilon_{p-1} = \dots = \epsilon_{p-q} = 0$$

그런 $\epsilon_{p+1}, \cdots, \epsilon_N$ 은 다음 공식에서 구할 수 있다.

$$\begin{split} \epsilon_{p+1} &= Y_{p+1} + \phi_1 Y_p + \phi_2 Y_{p-1} + \dots + \phi_p Y_1 \\ \epsilon_{p+2} &= Y_{p+2} + \phi_1 Y_{p+1} + \phi_2 Y_p + \dots + \phi_p Y_2 - \theta_1 \epsilon_{p+1} \\ & \vdots \end{split}$$

이 ϵ 값을 이용하여 다시 (1)의 회귀분석을 실시하여 모수 $\phi_1,\cdots,\phi_p,\theta_1,\cdots,\theta_q$ 를 추정한다.

statsmodels 패키지를 사용한 ARMA 모수 추정

statsmodels 패키지는 ARMA 모수 추정을 위한 ARMA 라는 클래스와 이 클래스의 fit 메서드를 제공한다. ARMA 클래스의 인수로 시계열 표본과 차수를 넣어 인스턴스를 생성한 뒤 fit 메서드를 호출하면 추정 결과값을 가진 ARMAResults 클래스 자료를 반환한다. 다만 주의할 점은 ARMAResults **에서는 AR계수 \phi에 대해** ArmaProcess **클래스에서 정한 부호와 반대의 부호를 출력**한다.

ARMA 클래스와 몇가지 이론적 모형에서 시뮬레이션하여 나온 시계열 자료를 사용하여 모수를 측정하여 보자.

MA(1) 모수 추정의 예

$$Y_t = \epsilon_t + 0.9\epsilon_{t-1}$$

In [1]:

```
np.random.seed(0)
p = sm.tsa.ArmaProcess([1], [1, 0.9])
y = p.generate_sample(1000)
m = sm.tsa.ARMA(y, (0, 1))
r = m.fit()
print(r.summary())
```

ARMA Model Results

Dep. Variable Model: Method: Date: Time: Sample:		ARMA(0, css- n, 01 Jul 2 20:29	-mle 2019	Log Lik	servations: kelihood f innovation	18	1000 -1405.255 0.986 2816.509 2831.233 2822.105
========	coef	std err	=====	Z	P> z	[0.025	0.975]
const ma.L1.y	-0.0853 0.9174	0.060 0.013		.429).513 ots	0.153 0.000	-0.202 0.892	0.032
	Real	In	nagina	ıry	Modul.	IS	Frequency
MA.1	-1.0900		-0.000)0 j	1.090	00	0.5000

AR(1) 모수 추정의 예

$$Y_t = 0.9Y_{t-1} + e_t$$

In [2]:

```
np.random.seed(0)
p = sm.tsa.ArmaProcess([1, -0.9], [1])
y = p.generate_sample(1000)
m = sm.tsa.ARMA(y, (1, 0))
r = m.fit()
print(r.summary())
```

ARMA	Mode I	Resul	ts
	INIOGO	110341	ιo

Dep. Variable: Model: Method: Date: Time: Sample:		ARMA(1, css- , 01 Jul 2 20:29	0) mle 019 :27	Log Like	ervations: elihood innovations		1000 -1404.871 0.985 2815.742 2830.465 2821.337
=========	coef	std err		z	P> z	[0.025	0.975]
const ar.L1.y	-0.4251 0.9144	0.360 0.013	-1. 72. Root	007	0.238 0.000	-1.131 0.890	0.281 0.939
	Real	Im	aginar	у	Modulus		Frequency
AR.1	1.0936	+	0.0000	j	1.0936		0.0000

AR(2) 모수 추정의 예

$$Y_t = 1.5Y_{t-1} - 0.75Y_{t-2} + \epsilon_t$$

In [3]:

```
np.random.seed(0)
p = sm.tsa.ArmaProcess([1, -1.5, 0.75], [1])
y = p.generate_sample(1000)
m = sm.tsa.ARMA(y, (2, 0))
r = m.fit()
print(r.summary())
```

		ARM/	A Model Re	esults		
Dep. Variable Model: Method: Date: Time: Sample:		ARMA(2 css n, 01 Jul 2 20:29	, 0) Log -mle S.[2019 Al(3		1000 -1406.159 0.986 2820.319 2839.950 2827.780
========	coef	std err		z P> z	[0.025	0.975]
const ar.L1.y ar.L2.y	-0.1847 1.4866 -0.7371	0.124 0.021 0.021	-1.484 69.795 -34.614 Roots	0.000	-0.429 1.445 -0.779	0.059 1.528 -0.695
	Real	 I	maginary	Mod	dulus	Frequency
AR.1 AR.2	1.0084 1.0084		-0.5829j +0.5829j		. 1648 . 1648	-0.0834 0.0834

ARMA(1,1) 모수 추정의 예

$$Y_t = 0.6Y_{t-1} + \epsilon_t + 0.3\epsilon_{t-1}$$

In [4]:

```
np.random.seed(0)
p = sm.tsa.ArmaProcess([1, -0.6], [1, 0.3])
y = p.generate_sample(1000)
m = sm.tsa.ARMA(y, (1, 1))
r = m.fit()
print(r.summary())
```

ARMA Model Results

Dep. Variable Model: Method: Date: Time: Sample:		ARMA(1, css- n, 01 Jul 2 20:29	1) Log L mle S.D. 2019 AIC	Dbservations: Likelihood of innovation	:	1000 -1405.147 0.986 2818.295 2837.926 2825.756
	coef	std err	Z	P> z	[0.025	0.975]
const ar.L1.y ma.L1.y	-0.1436 0.6175 0.2606	0.103 0.034 0.043	-1.400 18.294 6.090 Roots	0.162 0.000 0.000	-0.345 0.551 0.177	0.057 0.684 0.344
	====== Real	I m	aginary	 Modulu	======= IS	Frequency
AR.1 MA.1	1.6195 -3.8370		0.0000j 0.0000j	1.619 3.837		0.0000

실제 시계열 자료에 대한 ARMA 모형 계수 추정

이번에는 실제 시계열 자료에 대해 ARMA 모형 계수를 추정해 보자.

황체형성 호르몬 모형 계수 추정

황체형성 호르몬의 모형 차수는 AR(1)로 추정했었다. 이 때 계수는 다음처럼 구한다.

In [5]:

```
data = sm.datasets.get_rdataset("Ih")
df = data.data
df.plot(x="time", y="value")
plt.show()
```


이 시계열을 AR(1) 모형으로 보고 모수를 추정한 결과는 다음과 같다.

In [6]:

```
m = sm.tsa.ARMA(df.value, (1, 0))
r = m.fit()
print(r.summary())
```

ARMA Model Results Dep. Variable: value No. Observations: 48 Log Likelihood -29.379 Model: ARMA(1, 0)S.D. of innovations Method: css-mle 0.444 Date: Mon, 01 Jul 2019 AIC 64.758 Time: 20:29:30 BIC 70.372 HQIC Sample: 0 66.880 P>|z| [0.025 0.975coef std err 0.147 16.460 0.000 2.126 2.701 const 2.4133 ar.L1.value 0.5739 0.116 4.939 0.000 0.346 0.802 Roots Real Imaginary Modulus Frequency AR.1 1.7424 +0.0000j 1.7424 0.0000

이 모수를 사용하여 다시 시뮬레이션한 결과는 다음과 같다. 굵은 실선이 원래 자료이다.

In [7]:

```
plt.figure(figsize=(10, 10))
np.random.seed(0)
p = sm.tsa.ArmaProcess(np.r_[1, -r.arparams], [1])
plt.subplot(6, 1, 1)
plt.plot(df.value, lw=5)
for i in range(5):
    plt.subplot(6, 1, i + 2)
    y = p.generate_sample(len(df), burnin=100) * np.sqrt(r.sigma2) + r.params[0]
    plt.plot(y)
plt.tight_layout()
plt.show()
```


MA(1) 모형으로 추정한 결과는 다음과 같다. AR(1) 모형보다 성능이 좋지 않음을 알 수 있다.

In [8]:

```
m = sm.tsa.ARMA(df.value, (0, 1))
r = m.fit()
print(r.summary())
```

		ARMA Mo	del Resu	ılts		
Dep. Variable: Model: Method: Date: Time: Sample:	Mon	value ARMA(0, 1) css-mle , 01 Jul 2019 20:29:31	Log L S.D. AIC BIC	Dbservations: .ikelihood of innovations		48 -31.052 0.461 68.104 73.717 70.225
	coef	std err	Z	P> z	[0.025	0.975]
const ma.L1.value	2.4050 0.4810	0.098 0.094 R	24.576 5.093 doots	0.000	2.213 0.296	2.597 0.666
	======= Real	 Imagi	nary	Modulus	======	Frequency
MA.1	-2.0790	+0.0	000 j	2.0790		0.5000

ARMA(1,1)모형으로 추정하면 가능도는 높지만 AIC, BIC가 나쁘다.

In [9]:

```
m = sm.tsa.ARMA(df.value, (1, 1))
r = m.fit()
print(r.summary())
```

		ARMA M	odel Result	ts		
Dep. Variable: Model: Method: Date: Time: Sample:	Mon	valu ARMA(1, 1 css-ml , 01 Jul 201 20:29:3) Log Lik e S.D. of 9 AIC	servations: kelihood f innovations		48 -28.762 0.439 65.524 73.009 68.353
=======================================	coef	std err	z	P> z	[0.025	0.975]
const ar.L1.value ma.L1.value	2.4101 0.4522 0.1982	0.171	17.754 2.556 1.162 Roots	0.000 0.014 0.251	2.144 0.105 -0.136	0.799
	Real	lmag	inary	Modulus		Frequency
AR.1 MA.1	2.2114 -5.0462		0000j 0000j	2.2114 5.0462		0.0000

호흡기질환 사망자수

In [10]:

```
data = sm.datasets.get_rdataset("deaths", "MASS")
df = data.data
df["logvalue"] = np.log(df.value)
df.plot(y="logvalue")
plt.show()
```


이 시계열을 AR(2) 모형으로 보고 모수를 추정한 결과는 다음과 같다.

In [11]:

```
m = sm.tsa.ARMA(df.logvalue, (2, 0))
r = m.fit()
print(r.summary())
```

ARMA Model Results No. Observations: 72 Dep. Variable: logvalue Model: ARMA(2, 0)Log Likelihood 35.739 Method: css-mle S.D. of innovations 0.146 Date: Mon, 01 Jul 2019 AIC -63.478Time: 20:29:33 BIC -54.372 HQIC -59.853 Sample: 0 P>|z|[0.025 0.975coef std err 7.5970 0.057 133.468 0.000 7.485 7.709 const 12.046 ar.L1.logvalue 1.2123 0.101 0.000 1.015 1.410 ar.L2.logvalue -0.51170.101 -5.090 0.000 -0.709-0.315Roots Real **Imaginary** Modulus Frequency AR.1 1.1845 -0.7423j1.3979 -0.0891 AR.2 +0.7423j0.0891 1.1845 1.3979

이 모수를 사용하여 다시 시뮬레이션한 결과는 다음과 같다. 굵은 실선이 원래 자료이다.

In [12]:

```
plt.figure(figsize=(10, 10))
np.random.seed(0)
p = sm.tsa.ArmaProcess(np.r_[1, -r.arparams], [1])
plt.subplot(6, 1, 1)
plt.plot(df.logvalue, lw=5)
for i in range(5):
    plt.subplot(6, 1, i + 2)
    y = p.generate_sample(len(df), burnin=100) * np.sqrt(r.sigma2) + r.params[0]
    plt.plot(y)
plt.tight_layout()
plt.show()
```


AR(1,0), AR(1,1), AR(2,0), AR(2,1), AR(1,2), AR(2,2) 모형을 사용한 결과는 다음과 같다.

In [13]:

```
from itertools import product

result = []
for p, q in product(range(3), range(3)):
    if (p == 0 & q == 0):
        continue
    m = sm.tsa.ARMA(df.logvalue, (p, q))
    try:
        r = m.fit()
        result.append({"p": p, "q": q, "LLF": r.llf, "AIC": r.aic, "BIC": r.bic})
    except:
        pass

pd.DataFrame(result)
```

Out[13]:

	AIC	BIC	LLF	р	q
0	-43.788594	-36.958595	24.894297	1	0
1	-55.965203	-46.858539	31.982602	1	1
2	-55.193694	-43.810363	32.596847	1	2
3	-63.478243	-54.371579	35.739122	2	0
4	-79.025760	-67.642430	44.512880	2	1

In [14]:

```
m = sm.tsa.ARMA(df.value.astype(float), (2, 1))
r = m.fit()
print(r.summary())
```

ARMA Model Results

Model: ARMA(2, 1		72 -516.137 309.351 1042.275 1053.658 1046.806
------------------	--	---

	coef	std err	Z	P> z	[0.025	0.975]
const ar.L1.value ar.L2.value ma.L1.value	2065.9330 1.6097 -0.8503 -0.7315	42.605 0.067 0.061 0.076	48.490 24.173 -13.842 -9.639	0.000 0.000 0.000 0.000	1982.428 1.479 -0.971 -0.880	2149.438 1.740 -0.730 -0.583
			Roots			

	 Real	====== maginary	Modulus	Frequency
AR.1	0.9466	-0.5293j	1.0845	-0.0811
AR.2	0.9466	+0.5293j	1.0845	0.0811
MA.1	1.3670	+0.0000j	1.3670	0.0000

In [15]:

```
plt.figure(figsize=(10, 10))
np.random.seed(0)
p = sm.tsa.ArmaProcess(np.r_[1, -r.arparams], [1])
plt.subplot(6, 1, 1)
plt.plot(df.value, lw=5)
for i in range(5):
    plt.subplot(6, 1, i + 2)
    y = p.generate_sample(len(df), burnin=100) * np.sqrt(r.sigma2) + r.params[0]
    plt.plot(y)
plt.tight_layout()
plt.show()
```


결정론적 Seasonality 모형

In [16]:

```
def yearfraction2datetime(yearfraction, startyear=0):
    import datetime
    import dateutil
    year = int(yearfraction) + startyear
    month = int(round(12 * (yearfraction - year)))
    delta = dateutil.relativedelta.relativedelta(months=month)
    date = datetime.datetime(year, 1, 1) + delta
    return date

df["datetime"] = df.time.map(yearfraction2datetime)
df["month"] = df.datetime.dt.month

result = sm.OLS.from_formula('logvalue ~ C(month) + time + 0', data=df).fit()
y_seasonal = result.fittedvalues
y_nonseasonal = df.logvalue - y_seasonal
```

In [17]:

```
from itertools import product

result = []
for p, q in product(range(3), range(3)):
    if (p == 0 & q == 0):
        continue
    m = sm.tsa.ARMA(y_nonseasonal, (p, q))
    try:
        r = m.fit()
        result.append({"p": p, "q": q, "LLF": r.llf, "AIC": r.aic, "BIC": r.bic})
    except:
        pass

pd.DataFrame(result)
```

Out[17]:

	AIC	BIC	LLF	р	q
0	-151.064548	-144.234550	78.532274	1	0
1	-153.188303	-144.081638	80.594151	1	1
2	-155.929051	-144.545721	82.964526	1	2
3	-155.380672	-146.274008	81.690336	2	0
4	-153.684707	-142.301376	81.842353	2	1
5	-154.211493	-140.551497	83.105747	2	2

In [18]:

```
m = sm.tsa.ARMA(y_nonseasonal, (2, 2))
r = m.fit()

plt.figure(figsize=(10, 10))
np.random.seed(0)
p = sm.tsa.ArmaProcess(np.r_[1, -r.arparams], [1])
plt.subplot(6, 1, 1)
plt.plot(df.logvalue, lw=5)
for i in range(5):
    plt.subplot(6, 1, i + 2)
    y2 = p.generate_sample(len(df), burnin=100) * np.sqrt(r.sigma2) + r.params[0]
    y = y_seasonal + y2
    plt.plot(y)
plt.tight_layout()
plt.show()
```