Número de Richardson (Gradiente)

O Número de Richardson é um número adimensional que relaciona estratificação com cisalhamento, e indica se a estratificação da coluna de água é estável.

É muito utilizado em estudos de hidrodinâmica costeira, onde quase sempre há alguma fonte de empuxo, especialmente aporte de água doce.

Article

Talk

Richardson number

From Wikipedia, the free encyclopedia

The Richardson number (Ri) is named after Lewis Fry Richardson (1881–1953

$$\mathrm{Ri} = \frac{\mathrm{buoyancy\; term}}{\mathrm{flow\; shear\; term}} = \frac{g}{\rho} \frac{\partial \rho/\partial z}{(\partial u/\partial z)^2}$$

where g is gravity, ρ is density, u is a representative flow speed, and z is depth.

In [18]:

OBS: as células de código tem um número do lado esquerdo entre [], e nestas célula # Carregando os pacotes básicos... Numpy para fazer operções numéricas e o Matplotlb import numpy as np import matplotlib.pyplot as plt

Para calcularmos o Ri precisamos de alguns números... um perfil vertical de corretnes e um perfil vertical de densidade.

Para o perfil vertical de correntes podemos usar a Lei da Parede para fornecer um perfil minimamente realista.

A equação da lei da parede:

$$u=rac{u_{ au}}{\kappa}\ln\,rac{y}{y_0}$$

u_⊤ ou u_{*} é a velocidade friccional, que pode ser obtida por

$$u_\star = \sqrt{rac{ au}{
ho}}$$

Onde τ é a tensão de cisalhamento do fundo e ρ é a densidade da água. A tensão de cisalhamento pode ser calculada por

$$\tau = \rho c_D u^2$$

Onde c_D é um coeficiente de arrasto (aproximado \sim 0.002), e u é a velocidade da corrente, normalmente a 1 m acima do fundo!

k é uma constante (von Karmann = 0.4), y é a distância da parede e y₀ é um coeficiente de rugosidade, normalmente o tamanho médio do grão do fundo.

A solução da equação da Lei da Parede fornece a velocidade em função da distância da parede (y na equação). Então, primeiramente devemos criar um domínio para a solução, que será a distância da parede!

```
In [19]:

# z será um arranjo que começa em 0.001 e vai até 20 com intervalo de 0.1. No caso, z = np.arange(0.001, 20, .1)
```

```
In [20]: # definindo a densidade e cd
    rho = 1000  # kg/m3
    cd = 0.002 # adimensional

# um valor de velocidade razoável...
    u = 0.2  # m/s

# calculando a tensão de cizalhamento
    tau = rho * cd * u**2

# calculando a velocidade friccional
    u_f = (tau / rho)**.5

# constante de von Karmann
    k = 0.4
```

```
# diametro médido, no caso 1 mm (areia)
z0 = 0.001

# e usando a equação!
u_z = u_f/k * np.log(z / z0)

# vendo o que deu...
plt.plot(u_z, z)
plt.xlabel('Velocidade (m/s)')
plt.ylabel('Distância do fundo (m)')
plt.show()
```



```
In [21]:
           # o cálculo acima nós podemos transformar uma 'função', onde entrando com u e z, for
           # e, a função pode ser modificada e posso adicionar outros valores de entrada, como
           def calc_u_z(u, z):
               rho = 1000
               cd = 0.002
               tau = rho * cd * u**2
               u_f = (tau / rho)**.5
               k = 0.4
               z0 = 0.001
               u_z = u_f/k * np.log(z / z0)
               return u_z
           # então, podemos usar a função para calcular vários resultados sem ter que repetir o
           u_z1 = calc_u_z(1, z)
           u_z01 = calc_u_z(0.1, z)
           plt.plot(u_z1, z, label='u = 1')
           plt.plot(u_z01, z, label='u = 0.1')
           plt.xlabel('Velocidade (m/s)')
           plt.ylabel('Distância da parede (m)')
           plt.legend()
           plt.show()
```


Tendo os perfis de velocidade, agora podemos obter o denominador do Ri. Para obter o cisalhamneto precisamos achar a razão da diferença de velocidade pela distância entre cadas.

```
In [22]:
           # função para achar (du/dz)**2
           def calc_s2(u, z):
               du = np.diff(u)
                                # diferencial de u = du
               dz = np.diff(z)
                                 # diferencial de z = dz
               s2 = (du/dz)**2
               z2 = (z[:-1]+z[1:])/2 # ao fazer o diferencial o tamanho do arranho diminui 1,
               return s2, z2
           s2_1, z2 = calc_s2(u_z1, z)
           s2_01, z2 = calc_s2(u_z01, z)
           plt.plot(s2_1, z2, label='u = 1')
           plt.plot(s2_01, z2, label='u = 0.1')
           plt.xlabel('Cizalhamento quadratico')
           plt.ylabel('Z')
           plt.xscale('log') # comente este linha (colocando um # na frente) e veja o gráfico
           plt.legend()
           plt.show()
```


Perfil de Densidade!

Um perfil de densidade tem que ser criado arbitrariamente!

Out[38]: [<matplotlib.lines.Line2D at 0x18f85c45700>]


```
In [39]: # para calcular a frequencia de empuxo / estratificação
def calc_N2(z, rho):
    dz = np.diff(z)
    drho = np.diff(rho) * -1 #o -1 é porque o sistema referencial de z está como o f
    g = 9.8
    rho_0 = 1025
    return g/rho_0 * drho/dz
```

```
In [40]: # vendo as condições que nós criamos!

fig, axs = plt.subplots(1,2, figsize=(9,5))
axs[0].plot(u_z1, z)
axs[0].plot(u_z01, z)
axs[0].set_xlabel('u(z) (m/s)')
axs[0].set_ylabel('z (m)')

axs[1].plot(rho_z3, z)
axs[1].set_xlabel(' Densidade (kg/m3)')
axs[1].set_ylabel(' Z (m)')
plt.show()
```



```
In [41]:
           # colinha... para lembrar dos nomes das variáveis!
           \# s2_1, z2 = calc_s2(u_z1, z)
           \# s2_01, z2 = calc_s2(u_z01, z)
           N2 = calc_N2(z, rho_z3)
           Ri_a = N2/s2_1
           Ri_b = N2/s2_01
           Ri_a = N2/s2_1
           Ri_b = N2/s2_01
           plt.plot(Ri_a, z2)
           plt.plot(Ri_b, z2)
           plt.xscale('log')
           plt.axvline(0.25, color='k') # para colocar o valor limite de 0.25
           plt.xlabel('Ri')
           plt.ylabel('Z (m)')
           plt.show()
```



```
In [42]:
    fig, ax = plt.subplots(1,3, figsize=(15,5))
    ax[0].plot(s2_1, z2, label='u = 1')
    ax[0].plot(s2_01, z2, label='u = 0.1')
```

```
ax[0].set_xscale('log')
ax[0].set_title('Cisalhamento Vertical')

ax[1].plot(N2, z2)
ax[1].set_title('Frequência de empuxo')

ax[2].plot(Ri_a, z2)
ax[2].plot(Ri_b, z2)
ax[2].set_title('No. de Richardson')
ax[2].set_xscale('log')
ax[2].axvline(0.25, color='k')

plt.show()
```


Interpretação:

Para para velocidade de 0,1 m/s, o Ri para a coluna de água onde ocorre a estratificação é bem maior do que o limite 0.25, o que indica que a estratificação é estável. Isto também parece ocorrer para a condição de velocidade de 1 m/s, poré os limites verticais de estabilidade são mais limitados verticalmente.