Universität Würzburg Institut für Mathematik Lehrstuhl für Komplexe Analysis

Prof. Dr. Oliver Roth Annika Moucha

Einführung in die Funktionentheorie

8. Übungsblatt, Abgabe bis 10. Juni 2024 um 10 Uhr

Hausaufgaben

H8.1 Spezielle ganze Funktionen (3)

Es sei $n \in \mathbb{N}_0$. Bestimmen Sie alle ganzen Funktionen, die für alle r > 0 folgende Eigenschaft erfüllen:

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})| \, dt \le r^n.$$

H8.2 Eine ganze Funktion (3)

Es sei r>0 und $f\in \mathcal{H}(K_r(0))$. Ferner sei für $z\in\mathbb{C}$ die (formale) Potenzreihe

$$F(z) := \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{(k!)^2} z^k$$

gegeben. Zeigen Sie, dass $F: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion definiert und dass für alle $z \in \mathbb{C}$ und alle $0 \le R < r$ folgende Ungleichung gilt

$$|F(z)| \le ||f||_{\partial K_R(0)} \exp\left(\frac{|z|}{R}\right).$$

H8.3 Konstante Funktion (3)

Es sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze, nullstellenfreie Funktion mit der Eigenschaft

$$|f(2z)| \le 2|f(z)|, \qquad z \in \mathbb{C}.$$

Zeigen Sie, dass f konstant ist.

H8.4 Holomorphe Fortsetzungen (2+3)

Seien $U \subseteq \mathbb{C}$ offen, $z_0 \in U$ und $f \in \mathcal{H}(U \setminus \{z_0\})$. Zeigen Sie, dass jede der folgenden Voraussetzungen hinreichend für die Existenz einer holomorphen Fortsetzung $\tilde{f}: U \longrightarrow \mathbb{C}$ von f auf U ist.

- (a) $f(U \setminus \{z_0\}) \subseteq \mathbb{H}^+ = \{z \in \mathbb{C} \mid \operatorname{Re}(z) > 0\}.$
- (b) Es existieren C > 0 und $\alpha > -1$ derart, dass

$$|f(z)| \le C|z - z_0|^{\alpha}$$

für alle $z \in U \setminus \{z_0\}$ ist.