Math 411 Spring 2016 Homework #7

Due March 22, Tue in class

- 1. Textbook, 3.B, page 67: 6, 9, 13;
- 2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be $T((x_1, x_2, x_3)) = (x_2, x_3, x_1), \forall x = (x_1, x_2, x_3) \in \mathbb{R}^3$.
 - (1) Show that T is a linear map.
 - (2) Let W be a subspace of \mathbb{R}^3 , and $S = \{(x_2, x_3, x_1) : (x_1, x_2, x_3) \in W\}$. Show that S is a subspace of \mathbb{R}^3 using T. (*Hint*: How are S and the range of $T : W \to \mathbb{R}^3$ related?)
- 3. Let $T: V \to W$ be a surjective linear map, and $\{v_1, \ldots, v_n\}$ spans the vector space V. Show that $\{T(v_1), \ldots, T(v_n)\}$ spans the vector space W.

More practice problems: Do not submit

- 1. Textbook, 3.B, page 67: 10, 12, 15;
- 2. Let $T: V \to W$ and $S: W \to U$ be linear maps. Show that the composition $S \circ T: V \to U$ is a linear map.