5 - Grammatiche e macchine

(Forniti gentilmente dal pasticcino alla crema di Pice)

Gerarchia di Chomsky

Sia G = (X, V, S, P) una grammatica, dalla sua definizione si ha:

$$P = \{v \rightarrow w | v \in (X \cup V)^+ \text{ e v contiene almeno un NT}, w \in (X \cup V)^* \}$$

Classificazione

A seconda delle restrizioni imposte sulle regole di produzione, si distinguono le varie classi di grammatiche:

- **Tipo 0**: quando le stringhe che appaiono nella produzione non sono soggette ad alcuna limitazione
- Tipo 1 Dipendenti da contesto: quando le produzioni sono limitate alla forma
 - 1. $yAz \rightarrow ywz$ con $A \in V, \ y,z \in (X \cup V)^*, \ w \in (X \cup V)^*$
 - 2. $S \rightarrow \lambda$, purché S non compaia nella parte destra di alcuna produzione
- Tipo 2 Libera da contesto: quando le produzioni sono limitate alla forma $v o w \ {
 m con} \ v \in V$
- Tipo 3 Lineare destra: quando le produzioni sono limitate alla forma
 - 1. $A \rightarrow bC \operatorname{con} A, C \in V \operatorname{e} b \in X$ (A e C producono terminale, b produce non terminale)
 - 2. $A \rightarrow b \operatorname{con} A \in V \operatorname{e} b \in X \cup \{\lambda\}$ (A produce terminale e b produce nulla)

Una grammatica di tipo '3' è detta **lineare destra** perché il simbolo NT, se c'è, compare a destra (nella parte destra della produzione).

Un linguaggio generato da una tale grammatica è detto di tipo '3' o lineare a destro

Teorema della gerarchia

Il **Teorema della Gerarchia di Chomsky** dimostra che le quattro classi di linguaggi formali (classificate come tipo 0, 1, 2 e 3) formano una gerarchia strettamente inclusiva, dove ogni classe è un sottoinsieme proprio della precedente.

Denotiamo con \mathcal{L}_i (insieme dei linguaggi di tipo i) il seguente insieme:

$$\mathcal{L}_i = \{L \subset X^* | L = L(G), G ext{ di tipo i} \}$$

La gerarchia di Chomsky è una gerarchia in senso stretto di classi di linguaggi:

$$\mathcal{L}_3 \subset_{\neq} \mathcal{L}_2 \subset_{\neq} \mathcal{L}_1 \subset_{\neq} \mathcal{L}_0$$

Dimostrazione

$$\mathcal{L}_3 \subset \mathcal{L}_2$$

- Inclusione: Ogni grammatica di tipo 3 (lineare destra) è anche di tipo 2 (libera da contesto), poiché le produzioni $A \to bC$ o $A \to b$ soddisfano la definizione di grammatica libera da contesto.
- Inclusione stretta: Esiste almeno un linguaggio di tipo 2 che non è di tipo 3.
 Esempio:

$$L = a^n b^n \mid n > 0$$

Questo linguaggio è generato da una grammatica libera da contesto ma non può essere generato da una grammatica lineare destra.

• $\mathcal{L}_3 \subseteq \mathcal{L}_2$ discende dalle definizioni di linguaggio di tipo 3 e di grammatica di tipo 2. Infatti, si osserva facilmente che ogni grammatica di tipo 3 è anche una grammatica di tipo 2

$${\cal L}_2 \subset {\cal L}_1$$

• Inclusione: Ogni grammatica libera da contesto è anche dipendente da contesto, con l'eccezione delle produzioni $A \to \lambda$ (dove $A \neq S$). Lo definiamo come:

$$\forall L: L \in \mathcal{L}_2 \Leftrightarrow \exists G, G \ \text{\'e} \ \text{C.F.} : L = LG$$

Tuttavia, il **Lemma della stringa vuota** permette di eliminare queste produzioni senza alterare il linguaggio generato, rendendo la grammatica di tipo 1

Inclusione stretta: Esiste almeno un linguaggio di tipo 1 che non è di tipo 2.
 Esempio:

$$L = a^n b^n c^n \mid n > 0$$

Questo linguaggio è dipendente da contesto ma non libero da contesto.

Lemma della stringa vuota

Sia G=(X,V,S,P) una grammatica C.F. con almeno una λ -produzione, allora esiste una grammatica C.F. G' tale che:

- 1. L(G) = L(G') (con le due grammatiche che si equivalgono)
- 2. Se $\lambda
 otin L(G)$ allora in G' non esistono produzioni del tipo $A o \lambda$
- 3. Se $\lambda \in L(G)$ allora in G' esiste un'unica produzione $S' \to \lambda$, ove S' è il simbolo iniziale di G' ed S' non compare nella parte destra di alcuna produzione di G'

Se G ha almeno una λ -produzione, utilizziamo il Lemma della stringa vuota per determinare una grammatica C.F. G' equivalente a G, ma priva di λ -produzioni (al più, in G' compare la produzione , ed S' non compare nella parte destra di alcuna produzione di G'). G' è di tipo 1, dimostrando che $\mathcal{L}_2 \subset \mathcal{L}_1$

 $\mathcal{L}_1 \subset \mathcal{L}_0$

- **Inclusione**: Ogni grammatica di tipo 1 è anche di tipo 0, poiché le produzioni dipendenti da contesto sono un caso particolare delle produzioni non ristrette (tipo 0).
- Inclusione stretta: Esistono linguaggi ricorsivamente enumerabili (tipo 0) che non sono dipendenti da contesto. La dimostrazione formale richiede nozioni avanzate come le macchine di Turing.

Operazioni sui linguaggi

Siano L_1 ed L_2 due linguaggi definiti su uno stesso alfabeto $X (L_1, L_2, \subseteq X^*)$, le operazioni attuabili su essi sono:

Unione insiemistica

L'unione di due linguaggi è l'insieme di tutte le stringhe che appartengono **almeno a uno** dei due linguaggi, anche se definiti su alfabeti diversi.

$$L_1 \cup L_2 = \{w | w \in L_1 \lor w \in L_2\}$$

Concatenazione

La concatenazione genera tutte le possibili combinazioni prima una stringa di L_1 , poi una di L_2

$$L_1 \cdot L_2 = \{w | w = w_1 w_2, w \in L_1 \lor w \in L_2\}$$

Iterazione

L'iterazione è un operazione unaria, si parte da un linguaggio e si fa una generalizzazione dalle parole di uno stesso linguaggio. Si ottiene un linguaggio infinito, definito con la formula:

$$L_1^* = \{w|w=w_1w_2\dots w_n, n\geq 0 ext{ e } orall i: w_i\in L_1\}$$

 L^* = potenza all'ennesimo di tutti i linguaggi

Complemento

Il complemento è l'insieme di tutte le parole meno l'insieme di partenza, definito con la formula

$$\overline{L_1} = X^* - L_1$$

Intersezione

L'intersezione tra due linguaggi è l'operazione di prendere due elementi in comune tra due linguaggi, quindi stringhe presenti in entrambi.

$$L_1 \cap L_2 = \{w | w \in L_1 \land w \in L_2\}$$

L'intersezione, la concatenazione e l'unione sono dette operazioni binarie, in quanto prevedono l'uso di due insiemi. Complemento e iterazione sono invece operazioni unarie.

Proprietà

L'operazione di concatenazione gode delle seguenti proprietà:

Dati $L_1, L_2, L_3 \subseteq X^* \quad (\equiv L_1, L_2, L_3 \in 2^{X^*})$, si possono avere:

- Associatività, l'ordine in cui concateni tre linguaggi non cambia il risultato: $(L_1 \cdot L_2) \cdot L_3 = L_1 \cdot (L_2 \cdot L_3)$
- Non commutativa,l'ordine dei linguaggi influenza il risultato: $L_1 \cdot L_2
 eq L_2 \cdot L_1$
- Elemento neutro: $L_1 \cdot \{\lambda\} = \{\lambda_1\} \cdot L_1 = L_1$

 $(2^{X^*}, \cdot)$ è anch'esso un **monoide** (ovvero una struttura algebrica che ha elemento neutro e gode della proprietà commutativa) quindi, in quanto presenta:

- $L_1 \cdot \emptyset = \emptyset \cdot L_1 = \emptyset$, (\emptyset) è l'elemento assorbente
- Se un linguaggio contiene la stringa vuota ($\lambda \in L_1$ oppure $\lambda \in L_2$), valgono queste inclusioni:
 - $L_2 \subseteq L_1 \cdot L_2$
 - $L_2 \subseteq L_2 \cdot L_1$
 - $L_1 \subseteq L_1 \cdot L_2$
 - $L_1 \subseteq L_2 \cdot L_1$

Potenza di un linguaggio

Sia L un linguaggio definito su un alfabeto X, dicesi **potenza n-esima** di L, e si denota con L^n , $n \ge 0$, il seguente linguaggio:

$$L^n = \begin{cases} \{\lambda\} \text{ se n=0} \\ L^{n-1} \cdot L \text{ altrimenti} \end{cases}$$

Si ha dunque che:

 $L^+ = \bigcup_{i \geq i} L^i$, (unione di tutte le potenze maggiori di 1, quindi deve avere almeno una concatenazione)

Si può definire l'unione di tutte le potenze anche con la stringa vuota:

$$L^* = \{\lambda\} \cup L^+ = igcup_{i \geq 0} L^*$$

Proprietà di chiusura delle classi di linguaggi

Un linguaggio definito su un alfabeto è un insieme di parole, una classe di linguaggi è un insieme di linguaggi.

Definizione di chiusura

Si suppone di avere un operazione binaria, definita su una coppia di linguaggi ()

Teorema di chiusura

La classe dei linguaggi di tipo i, i=0,1,2,3 è chiusa rispetto alle operazioni di unione, concatenazione ed iterazione.

Dati quindi due linguaggi quindi, dopo aver effettuato una di queste operazioni tra i due linguaggi, si ottiene sempre un linguaggio della stessa classe.

Dimostrazione del teorema

Lo schema generale della dimostrazione è il seguente:

- consideriamo una certa operazione, denotata con a;
- date G_1 e G_2 , costruiamo una nuova grammatica G:

$$G = (X, V, S, P)$$

Per la quale si dimostra che:

- se G_1 e G_2 sono di tipo i, allora G è di tipo i;
- $L(G) = \alpha(L_1, L_2)$

Assumendo che non abbiano non terminali in comune.

Poniamo che: $V = V_1 \cup V_2 \cup \{S\}$

Lo schema generale della dimostrazione è il seguente:

- ullet consideriamo una certa operazione, denotata con lpha
- costruiamo una nuova grammatica G per cui dimostriamo che
 - se G_1 e G_2 sono di tipo i, allora G è di tipo i;
 - $L(G) = \alpha(L_1, L_2)$

Unione (per \mathcal{L}_2):

Costruiamo la grammatica $G_3 = (X, V, S, P_3)$ ove:

$$P_3=\{S o S_1,S o S_2\}\cup P_1\cup P_2$$

Osserviamo che, se G_1 e G_2 sono entrambe di tipo 2, lo è anche G_3 in quanto abbiamo aggiunto due produzioni libere da contesto:

- ullet $S o S_1$
- ullet $S o S_2$

Nel primo caso si avrà la derivazione: $S\Rightarrow S_1\stackrel{*}{\Rightarrow} w_1\in L_1$

Nel secondo caso si avrà la derivazione: $S \Rightarrow S_2 \stackrel{*}{\Rightarrow} w_2 \in L_2$

E' pertanto dimostrato che ℓ_2 è chiusa rispetto all'unione.

Unione (per \mathcal{L}_3):

Se G_1 e G_2 sono di tipo '3', G_3 non è lineare destra, perché le produzioni che abbiamo introdotto non sono lineari destre: $S \to S_1 \quad S \to S_2$

Per risolvere il problema dobbiamo introdurre produzioni lineari destre che simulino i passi iniziali delle derivazioni in G_1 ed in G_2 .

Costruiamo la grammatica $G_4 = (X, V, S, P_4)$ ove P_4 :

- per ogni regola $S_1 o w \in P_1$ aggiungiamo a P_4 la regola: S o w
- per ogni regola $S_2 o w \in P_2$ aggiungiamo a P_4 la regola: S o w

$$P_4 = \{S \to w | S_1 \to w \in P_1\} \cup \{S \to w | S_2 \to w \in P_2\} \cup P_1 \cup P_2.$$

Tutte le regole di P_4 sono lineari destre in quanto abbiamo aggiunto regole la cui parte destra rispetta il vincolo delle grammatiche di tipo '3': G_4 è di tipo '3'.

Concatenazione (per \mathcal{L}_2):

Costruiamo la grammatica $G_5=(X,V,S,P_5)$, nella quale $P_5=\{S o S_1S_2\} \cup P_1 \cup P_2$.

Osservazione:

- se G_1 e G_2 sono di tipo '2', anche G_5 è di tipo '2'
- $L(G_5) = L_1 \cdot L_2$, poiché tutte le derivazioni sono del tipo:

$$S \Rightarrow S_1S_2 \stackrel{*}{\Rightarrow} w_1S_2 \stackrel{*}{\Rightarrow} w_1w_2 \in L_1 \cdot L_2$$

È pertanto dimostrato che ℓ_2 è chiusa rispetto alla concatenazione.

Concatenazione (per \mathcal{L}_3):

Osservazione:

Data una grammatica di tipo '3', ogni forma di frase derivata dal suo simbolo iniziale ha due peculiarità:

- 1. in essa compare al più un NT
- 2. se in essa compare un NT, questo è il simbolo più a destra

Quindi, se G_1 e G_2 sono di tipo '3', G_5 non è di tipo '3', per la presenza della produzione: $S \to S_1S_2$. C'è pertanto bisogno di una nuova grammatica in grado di simulare l'effetto di tale produzione.

Osserviamo che per generare una parola del linguaggio $L_1 \cdot L_2$ senza usare la produzione $S \to S_1S_2$, dovremmo "chiudere" (ovvero sostituire l'ultimo non terminale della forma di frase, ottenendo dunque una stringa terminale) la derivazione di una parola di L_1 (ovvero derivare S_1 fino ad ottenere solo caratteri terminali) per poi generare l'assioma di L_1 .

Studiando una generica derivazione di una parola di L_1 notiamo che:

$$S_1 \Rightarrow x_1 A \Rightarrow x_1 x_2 A \stackrel{*}{\Rightarrow} x_1 x_2 \dots x_{n-1} N \Rightarrow x_1 x_2 \dots x_n$$

Avremmo quindi due possibili derivazioni del nonterminale N:

- 1. N o lpha
- 2. $N o \lambda$

Caso 1:

Le regole del tipo $N \to \alpha$ vengono modificate in: $N \to \alpha S_2$, e quindi:

$$S_1\Rightarrow x_1A\Rightarrow x_1x_2A\overset{*}{\Rightarrow}x_1x_2\dots x_{n-1}N\Rightarrow x_1x_2\dots x_{n-1}lpha$$
 diventa:

$$S_1 \Rightarrow x_1 A \Rightarrow x_1 x_2 A \stackrel{*}{\Rightarrow} x_1 x_2 \dots x_{n-1} N \Rightarrow x_1 x_2 \dots x_{n-1} lpha S_2$$

Dall'assioma di S_2 si potrà successivamente generare una parola $w_2 \in L_2$, ottenendo una parola $\in L_1 \cdot L_2$

Caso 2:

Le regole del tipo $N \to \lambda$ non possono essere trasformate in $N \to S_2$ in quanto non sarebbe lineare destra.

Per tale regola dobbiamo risalire al non terminale che ha generato N ovvero alle regole del tipo: $M \to \alpha N$, con poi $N \to \lambda$, chiudendo quindi la derivazione di una parola di L_1 .

In pratica si deve intervenire su ogni λ -produzione e relative regole che generano il non terminale presente nella parte sinistra della λ -produzione.

Costruiamo quindi la grammatica $G_6=(X,V-\{S\},S_1,P_6)$. Le sue produzioni sono del tipo: $P_6=\{A\to bB|A\to bB\in P_1\}\cup\{A\to bS_2|A\to b\in P_1b\neq\lambda\}\cup\{A\to bS_2|B\to\lambda\in P_1,A\to bB\in F_1\}$ Questa grammatica tuttavia ha un problema, in quanto non è possibile derivare solo le parole di L_2 . (Dovremmo dunque implementare una sorta di $S_1\to\lambda$, non implementabile in quanto non sarebbe lineare destra.)

Per risolvere tale problema non dovremmo fare altro che innescare anche da S_1 la derivazione di parole di S_2 . Aggiungiamo quindi una nuova regola alle produzioni:

$$P_6=\{A o bB|A o bB\in P_1\}\cup\{A o bS_2|A o b\in P_1b
eq \lambda\}\cup\{A o bS_2|B o \lambda\in P_1,A o bB\in F_1\}$$
 Con l'ultima regola non andiamo a fare altro che a trascrivere S_1 con i non terminali di L_2 qualora ci sia una λ -produzione.

È pertanto dimostrato che L_3 è chiusa rispetto alla concatenazione

Iterazione (per \mathcal{L}_2)

Costruiamo la grammatica G_7 partendo da G_1 : $G_7=(X,V_1\cup\{S\},S,P_7)$ dove $P_7=\{S\to\lambda,S\to S_1S\}\cup P_1.$

Osserviamo che se G_1 è di tipo 2, lo è anche G_3 in quanto abbiamo aggiunto due produzioni libere da contesto

Iterazione (per \mathcal{L}_{β})

Anche qui nasce il problema che $S \to S_1 S$ non è lineare destra.

Dobbiamo costruire una nuova grammatica G_8 il cui assioma S produca λ e tutte le parti destre dell'assioma di G_1 , in modo da garantire che ogni derivazione di G_8 inizi esattamente come una di G.

Osservazione preliminare:

L'operatore \mathcal{L}_3 produce stringhe costituite da **concatenazioni di zero o più stringhe di** $L(G_1)$, quindi serve una grammatica che permetta sia di generare una singola stringa di G_1 , sia di ripeterla quante volte si vuole, sia di fermarsi (producendo λ).

Algoritmo per costruire $G_8=(V_8,\Sigma,P_8,S)$ a partire da $G_1=(V_1,\Sigma,P_1,S_1)$:

- 1. Aggiungiamo una nuova variabile $S \notin V_1$ come nuovo assioma.
- 2. Poniamo $V_8 = V_1 \cup \{S\}$
- 3. Inizializziamo $P_8 = \{S \rightarrow \lambda\}$
- 4. Per ogni produzione $S_1 \to w \in P_1$, aggiungiamo **due produzioni** a P_8 :
 - ullet S o w
 - ullet S o wS

In simboli:

•
$$P_8 = \{S \to \lambda\} \cup \{S \to w, S \to wS \mid S_1 \to w \in P_1\}$$

Verifica della correttezza: due casi

1. Caso 1: G_1 non produce λ

Allora
$$L(G_8) = L(G_1)^*$$

Ogni stringa generata da G_8 è ottenuta concatenando zero o più stringhe generate da G_1 .

2. Caso 2: G_1 produce λ

Allora λ è già incluso in $L(G_8)$ tramite la regola $S \to \lambda$, ma attenzione: se $S_1 \to \lambda$ è una regola in G_1 , allora:

- $S \rightarrow \lambda$ (già presente)
- $S \to \lambda S$ (aggiunta come $S_1 \to \lambda \Rightarrow S \to \lambda S$) Quindi bisogna notare che:
- $S \Rightarrow \lambda$
- $S \Rightarrow \lambda S \Rightarrow \lambda \lambda S \Rightarrow \dots$

Ovvero, si generano **infinite derivazioni** della parola vuota, ma l'insieme delle stringhe generate rimane $L(G_1)^*$, come desiderato.

Altri teoremi di chiusura

- 1. La classe dei linguaggi lineari destri (tipo '3') è chiusa rispetto al complemento ed all'intersezione
- 2. La classe dei linguaggi liberi da contesto (tipo '2') non è chiusa rispetto al complemento ed all'intersezione
- 3. La classe dei linguaggi dipendenti da contesto (tipo '1') è chiusa rispetto al complemento e all'intersezione
- 4. La classe dei linguaggi di tipo '0' non è chiusa rispetto al complemento

Dimostrazioni:

1. Per la classe di tipo 3 (lineari destri):

Assumiamo dimostrata la chiusura di ℓ_3 rispetto al complemento. Secondo le Leggi di De Morgan:

$$L_1\cap L_2=\overline{\overline{L_1}\cup\overline{L_2}}$$

Allora, poiché i linguaggi regolari (tipo 3) sono chiusi per:

- **complemento**: \mathcal{L}_3 è chiuso rispetto al complemento
- unione: L₃ è chiuso rispetto all'unione ne segue che anche l'intersezione è chiusa:

$$L_1\cap L_2=\overline{\overline{L_1}\cup\overline{L_2}}\in\ell_3$$

Poiché tutte le operazioni usate sono chiuse in \mathcal{L}_3 , anche $L_1\cap L_2$ appartiene a \mathcal{L}_3 .

2. Per la classe di tipo 2 (liberi da contesto):

Non vale la chiusura né per il **complemento** né per l'**intersezione**.

È possibile dimostrarlo con un controesempio:

- Sia $L_1=\{a^nb^nc^m\mid n,m\geq 0\}$ (libero da contesto)
- Sia $L_2=\{a^mb^nc^n\mid m,n\geq 0\}$ (libero da contesto)

Allora:

$$L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$$

che non è un linguaggio libero da contesto.

Quindi la classe dei CFL (tipo 2) non è chiusa rispetto all'intersezione.

Inoltre, se fosse chiusa rispetto al **complemento**, allora anche l'intersezione lo sarebbe (per De Morgan), il che porterebbe a una contraddizione.

Quindi anche la chiusura per complemento fallisce.

Riflessione

Definizione di stringa riflessa

Sia w una parola su un alfabeto $X = \{x_1, x_2, \dots, x_k\}$, con $w = x_{i_1}, x_{i_2}, \dots, x_{i_{n-1}}, x_{i_n}$, si dice **stringa riflessa** o **riflessione** di w la stringa:

$$w^R = x_{i_n}, x_{i_{n-1}} \dots x_{i_2}, x_{i_1}$$

Operazione di riflessione

Sia w una parola su un alfabeto $X = \{x_1, x_2, \dots, x_k\}$ e sia w^R la stringa riflessa di w, l'operazione di trasformazione si chiama **operazione di riflessione**

Definizione di parola palindromica

Un **palindromo** o **parola palindromica** è una parola la cui lettera a ritroso riproduce la parola di partenza:

$$w \quad palindromo \overset{def}{\Longleftrightarrow} w = w^R$$

Un palindromo è dunque una parola che coincide con la sua riflessione

I palindromi possono essere di due tipi:

- Lunghezza pari, con asse di simmetria costituito dalla parola vuota
- Lunghezza dispari, con asse di simmetria costituito da uno dei simboli dell'alfabeto

Più precisamente si ha la seguente caratterizzazione:

Teorema sulla parola palindroma

Sia w una parola su un alfabeto X, w è un palindromo se e solo se:

$$w=axa^R, x\in X\cup\{\lambda\}$$

Teorema sulla riflessione

La classe dei linguaggi non contestuali (tipo '2') è **chiusa** rispetto all'operazione di **riflessione**. In altre parole, se un linguaggio L è generato da una grammatica libera da contesto (CFG), allora anche il linguaggio riflesso $L^R = \{w^R \mid w \in L\}$ è libero da contesto.

Dimostrazione

Sia $G_1 = (X, V_1, S_1, P_1 \$$ una grammatica CFG che genera L. Costruiamo una nuova grammatica G_9 come segue:

$$G_9 = (X, V_1, S_1, P_9),$$
 dove:

$$P_9 = \{A
ightarrow lpha^R \mid A
ightarrow lpha \in P_1\}.$$

Passaggi:

1. Inversione delle Produzioni:

Per ogni produzione A o lpha in P_1 , aggiungiamo a P_9 la produzione $A o lpha^R$.

• Esempio: Se P_1 contiene $A \to aBb$, allora P_9 conterrà $A \to bBa$.

2. Preservazione del Tipo '2':

Poiché G_1 è CFG, ogni produzione ha un singolo non terminale a sinistra (es. $A \to \alpha$). Invertire α non cambia questo vincolo, dunque G_9 rimane di tipo '2'.

3. Correttezza:

- Ogni derivazione in G_1 che genera w corrisponde a una derivazione in G_9 che genera w^R , grazie all'inversione delle produzioni.
- Struttura induttiva: Se $S_1 \Rightarrow^* w$ in G_1 , allora $S_1 \Rightarrow^* w^R$ in G_9 , poiché ogni passo di derivazione riflette l'ordine dei simboli.

Esempio

• Grammatica Originale (G_1):

$$S o aSb \mid \lambda$$
 genera $L = \{a^nb^n \mid n \geq 0\}.$

• Grammatica Riflessa (G_9):

$$S o bSa \mid \lambda$$
 genera $L^R = \{b^na^n \mid n \geq 0\}.$