Linear Algebra and its Applications HW#08

- 1. Find the matrix that projects every vector in \mathbb{R}^3 onto the intersection of the planes $x_1+x_2+x_3=0$ and $x_1-x_3=0$, which is a line.
- 2. Suppose the values b_1 =1 and b_2 =7 at times t_1 =1 and t_2 =5 are fitted by a line b=Dt through the origin. Find \hat{D} by least square and sketch the observations with the best-fit line. Find \hat{D} by projection and sketch the projection of b onto the column space of t.
- 3. Write out $E^2 = ||Ax b||^2$ and set to zero its derivatives with respect to u and v, if

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, \ x = \begin{bmatrix} u \\ v \end{bmatrix}, \ b = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

Compare the resulting equations with the normal equations. Find the least squared approximate of x and the b's projection onto the column space of A.

- 4. If V is the subspace spanned by (1, 1, 0, 1) and (0, 0, 1, 0), find
 - (a) a basis for the orthogonal complement V^{\perp}
 - (b) the projection matrix P onto V^{\perp}
 - (c) the vector in V closest to the vector b = (0, 1, 0, -1) in V^{\perp}
- 5. If P is the projection matrix onto a k-dimensional subspace S of the whole space \mathbb{R}^n , what is the column space and nullspace of P and what is its rank?
- 6. If u is a unit vector, show that $Q=I-2uu^T$ is a reflection transformation. Compute Q when $u^T=(1/2, 1/2, -1/2, -1/2)$ and explain what Q does to x with Qx.
- 7. (a) Find the bases for the null space and the row space of

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix}.$$

- (b) Split $x = (3, 3, 3)^T$ into a row-space component x_r and a null-space component x_n .
- (c) Find the pseudoinverse A^+ such that $A^+Ax=x_r$.
- (d) Let $Ax = (9, 21)^T$. Recover the row space component of x.
- (e) Show that the pseudoinverse found in (c) is the right inverse of A.