Χ

2111cs010077@mallareddyuniversity.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Deep Learning - IIT Ropar (course)

Course outline

About NPTEL ()

How does an NPTEL online course work? ()

Week 1 ()

Week 2 ()

Week 3 ()

- Feedforward Neural Networks

 (a.k.a
 multilayered
 network of
 neurons)
 (unit?
 unit=46&lesso
 n=47)
- Learning
 Paramters of
 Feedforward
 Neural
 Networks
 (Intuition)

Week 3: Assignment 3

The due date for submitting this assignment has passed.

Due on 2024-08-14, 23:59 IST.

Assignment submitted on 2024-08-08, 16:02 IST

Use the following data to answer the questions 1 to 3

The diagram below shows a neural network. The network contains two hidden layers and one output layer. The input to the network is a column vector $x \in \mathbb{R}^3$. The first hidden layer contains 6 neurons, the second hidden layer contains 4 neurons and the output layer contains 2 neurons. Each neuron in the l^{th} layer is connected to all the neurons in the $(l+1)^{th}$ layer. Each neuron has a bias connected to it (not explicitly shown in the figure).

Hidden layer 1

In the diagram, $\mathbf{W_1}$ is a matrix and $\mathbf{x}, \mathbf{a_1}, \mathbf{h_1}$, and \mathbf{O} are all column vectors. The notation $\mathbf{W_i}[\mathbf{j}, \mathbf{:}]$ denotes the j^{th} row of the matrix $\mathbf{W_i}$, $\mathbf{W_i}[\mathbf{:}, \mathbf{j}]$ denotes the j^{th} column of the matrix $\mathbf{W_i}$ and $\mathbf{W_{k_i}}$ denotes an element at i^{th} row and j^{th} column of the matrix $\mathbf{W_k}$.

1) Choose the correct dimensions of $\mathbf{W_1}$ and $\mathbf{a_1}$

1 point

(unit? unit=46&lesso n=48)	$\mathbf{W_1} \in \mathbb{R}^{6 imes 3}$ $\mathbf{W_1} \in \mathbb{R}^{3 imes 6}$	
Output functions and Loss functions (unit? unit=46&lesso n=49)	$\mathbf{W_1} \in \mathbb{R}^{1 imes 6}$ $\mathbf{a_1} \in \mathbb{R}^{6 imes 1}$ $\mathbf{a_1} \in \mathbb{R}^{1 imes 6}$	
Backpropagati on (Intuition) (unit? unit=46&lesso n=50)	$\mathbf{a_1} \in \mathbb{R}^{1 imes 1}$ Yes, the answer is correct. Score: 1 Accepted Answers: $\mathbf{W_1} \in \mathbb{R}^{6 imes 3}$	
O Backpropagati on: Computing Gradients w.r.t. the Output Units (unit? unit=46&lesso n=51)	${f a_1}\in\mathbb{R}^{6 imes 1}$ 2) How many learnable parameters(including bias) are there in the network? 62 Yes, the answer is correct. Score: 1	
O Backpropagati on: Computing Gradients w.r.t. Hidden Units (unit? unit=46&lesso n=52)		1 point 1 point
Backpropagati on: Computing Gradients w.r.t. Parameters (unit? unit=46&lesso n=53)	 Cross entropy Both Mean Squared Error and Cross Entropy loss can be used No, the answer is incorrect. Score: 0 Accepted Answers: Both Mean Squared Error and Cross Entropy loss can be used 	
O Backpropagati on: Pseudo code (unit? unit=46&lesso n=54)	4) We have a multi-classification problem that we decide to solve by training a feedforward neural network. What activation function should we use in the output layer to go best results? Logistic	1 point get the
Derivative of the activation function (unit? unit=46&lesso n=55)	Step function Softmax linear Yes, the answer is correct. Score: 1	
Information content, Entropy & cross entropy (unit?	Accepted Answers: Softmax	1 point s with

unit=46&lesso [0.49, 0.30, 0.21]n=56) Lecture [0.44, 0.33, 0.22]Material for Week 3 (unit? [0.50, 0.30, 0.20]unit=46&lesso n=57) [0.44, 0.39, 0.19]Quiz: Week 3 Yes, the answer is correct. : Assignment Score: 1 Accepted Answers: (assessment? [0.44, 0.33, 0.22]name=287) 6) Which of the following statements about backpropagation is true? 1 point Week 3 It is used to compute the output of a neural network. Feedback Form: Deep It is used to initialize the weights in a neural network. Learning - IIT It is used to optimize the weights in a neural network. Ropar (unit? unit=46&lesso It is used to regularize the weights in a neural network. n=186) Yes, the answer is correct. Score: 1 week 4 () Accepted Answers: It is used to optimize the weights in a neural network. Week 5 () 7) Given two probability distributions p and q, under what conditions is the cross 1 point Week 6 () entropy between them minimized? Week 7 () All the values in p are lower than corresponding values in qWeek 8 () All the values in p are lower than corresponding values in qWeek 9 () p = 0(0 is a vector) week 10 () p = qYes, the answer is correct. Week 11 () Score: 1 Accepted Answers: p = qWeek 12 () 8) Given that the probability of Event A occurring is 0.80 and the probability of Event B 1 point **Download** occurring is 0.20, which of the following statements is correct? Videos () Event A has a low information content Books () Event A has a high information content Event B has a low information content **Text Transcripts** Event B has a high information content Yes, the answer is correct. Score: 1 **Problem** Accepted Answers: Solving Event A has a low information content Session -Event B has a high information content

July 2024 ()

Use the following data to answer the questions 9 and 10 The following diagram represents a neural network containing two hidden layers and one output layer. The input to the network is a column vector $x \in R^3$. The activation function used in hidden layers is sigmoid. The output layer doesn't contain any activation function and the loss used is squared error loss $(pred_y-true_y)^2$.

The following network doesn't contain any biases and the weights of the network are given below:

$$\mathbf{W}_{1} = \begin{bmatrix} 1 & 1 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \mathbf{W}_{2} = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix} \mathbf{W}_{3} = \begin{bmatrix} 2 & 3 \end{bmatrix}$$

The input to the network is: $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

The target value y is: $\mathbf{y} = 8$

9) What is the predicted output for the given input x after doing the forward pass? (Choose the option closest to your answer)

4.8949

Yes, the answer is correct.

Score: 1

Accepted Answers:

(Type: Range) 4.7,5.2

1 point

10) Compute and enter the loss between the output generated by input x and the true output y

9.6478

Yes, the answer is correct.

Score: 1

Accepted Answers:

(Type: Range) 8.82,9.74

1 point