Area of a Surface of Revolution

1. Lyrics.

You say you want a revolution Well, you know We all want to change the world

••••

You say you got a real solution Well, you know We'd all love to see the plan

John Lennon (1940-1980) / Paul McCartney (1942-)

2. **Problem.** Find the surface area of the paraboloid which is obtained by revolving the parabolic arc $y = \sqrt{x}$, $0 \le x \le 2$, about the *x*-axis.

3. Surface Area.

Let a smooth curve C be given by y = f(x), $x \in [a, b]$.

(a) The area of the surface obtained by rotating C about the x-axis is defined as

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + [f'x)]^{2}} dx.$$

(b) The area of the surface obtained by rotating C about the y-axis is defined as

$$S = \int_{a}^{b} 2\pi x \sqrt{1 + [f'(x)]^2} dx.$$

4. Area formulas for surfaces of revolution.

Description of	Revolution about	Revolution about
$\operatorname{\mathbf{curve}} C$	x-axis	y-axis
$y = f(x)$ $x \in [a, b]$	$\int_a^b 2\pi f(x)\sqrt{1+[f'(x)]^2}\ dx$	$\int_{a}^{b} 2\pi x \sqrt{1 + [f'(x)]^2} dx$
$x = g(y)$ $y \in [c, d]$	$\int_{c}^{d} 2\pi y \sqrt{1 + [g'(y)]^2} dy$	$\int_{c}^{d} 2\pi g(y)\sqrt{1+[g'(y)]^2} dy$

5. **Examples.** Find the area of the surface obtained by rotating the given arc about the corresponding axis.

(a)
$$y = \sqrt{x}$$
, $0 \le x \le 2$, about the *x*-axis

(b) $y = x^2$, $0 \le x \le \sqrt{2}$, about the *y*-axis

(c) $y = x^3$, $0 \le x \le 2$, about the *x*-axis

6. **Example.** Find the surface area of the torus.

Notes.