Aries Precision
Controller Retuning
with Reaction Wheel
Time Delay

Tycho Bogdanowitsch

8/8/25

Background

- Reaction wheel actuation delay of up to ~250 ms
- Standard and precision controller run at 10 Hz (0.1 sec / cycle)
 - Conservative estimate of maximum delay of 3 cycles (300 ms)
- Last time precision controller with current gains
 - No delay case
 - GM = 12.2 dB (ZOH), 12.5 dB (Tustin)
 - PM = 43.8 deg (ZOH), 46.6 dB (Tustin)
 - 3 cycles of delay case
 - GM = 8.31 dB (ZOH), 9.37 dB (Tustin)
 - PM = 27 deg (ZOH), 29.8 deg (Tustin)
- · Goal: With delay included, margins of 8 dB and 45 deg & 5% settling time of 10 seconds (ISI)
- ZOH

 more representative of MAX implementation on spacecraft (plant)
- Tustin -> preserves phase better, used for frequency domain performance (controller)
- MATLAB time delays
 - Continuous \rightarrow 5th order Pade approximation
 - Discrete \rightarrow (Z)^(-k), k = # of samples

MAX Controller: PIID


```
// Compute Delta-Quaternion from Previous Cycle to Current Cycle.
QUATERNION qDelta = Qinv_Q_Mult(qcmd_CBI2BDY[0], qcmd_CBI2BDY[1]);

// Calculate Delta Angles using small-angle approximation.
VECTOR deltaAng_rd = 2.0 * Sign(qDelta[3]) * VECTOR(qDelta[0], qDelta[1], qDelta[2]);

// Determine Rate and Accel from delta Angle and delta T.
m_Data.WCmd_BDY_rdps = deltaAng_rd / thisDeltaTime_s;
```

Rate command (and error) is calculated through finite differencing of position command

Rate command (and error) is calculated through finite differencing of position command

Previous Implementation: Basic PID

$$u(t) = K_p \theta_e(t) + K_i \int_0^t \theta_e(\tau) d\tau + K_d \frac{d\theta_e(t)}{dt}$$
$$\theta_e(t) = \theta_{cmd}(t) - \theta_{meas}(t)$$

```
1  % 10 Hz controller
2  Ts = 0.1; % sec
3
4  % Discrete Low-pass filter
5  lpfilter = tf([ 8.507829e-2 1.7015657e-1 8.50782e-2 ],[ 1.0e+0 -9.1530955e-1 2.5562269e-1 ], Ts);
6
7  % Continuous precision PID controller
8  C = tf(0.5, 1) + tf(0.1, [1 0]) + tf([0.95 0], 1);
9
10  % Continuous double-integrator plant model
11  P = tf(1, [1 0 0]);
12
13  % Open-loop discrete system wihout delay
14 discPC = c2d(C * P, Ts, 'zoh') * lpfilter;
```

Rate error is not represented well

Instead K_d acts on derivative of position error

New Implementation: PID with Rate Feedback

$$u(t) = K_p \,\theta_e(t) + K_i \int_0^t \theta_e(\tau) \,d\tau + K_d \,\omega_e(t)$$
$$\omega_e(t) = \omega_{\rm cmd}(t) - \omega_{\rm meas}(t)$$
$$\omega_{\rm cmd}(t) = \frac{\Delta \theta_{\rm cmd}(t)}{\Delta t}$$

Rate error is more representative of MAX implementation

Calculated from difference in rate command and measured rate from plant

Rate command calculated from finite differencing (discrete differentiation) as in MAX

Retuning Script

• Current gains on spacecraft now: Kp = 0.5, Ki = 0.1, Kd = 0.95

Kp_list = linspace(0.25, 1.25, 21);
Ki_list = linspace(0.005, 0.3, 21);
Kd_list = linspace(0.75, 1.5, 21);

- Leave low-pass filters the same
- Iterate through combinations of Kp, Ki, Kd centered on current gains
- Linearize Simulink model to get open-loop transfer function
- Calculate GM, PM, wgc, wpc using margin()
- Calculate 5% settling time (Ts5) for step response of closed-loop transfer function
- Assign cost to each candidate by comparing to desired GM, PM and Ts5
 - Could add weights
- Return lowest cost set of gains
- Plot Nichols and step response for verification
- Fine-tune by hand

```
J = (max(0,PM_des-PM)/PM_des)^2 + (max(0,GM_des-GMdB)/GM_des)^2 + (max(0, Ts5 - Ts5_des) / Ts5_des)^2;
if J < best
best = J; bestG = [Kp Ki Kd]; bestL = Lo; bestT = T; bestStats = struct('PM',PM,'GMdB',GMdB,'Ts5',Ts5,'wgc_Hz',wgc_Hz);
end</pre>
```


Previous vs New Implementation (Current Gains)

No Delay					
Implementation	GM (dB)	PM (deg)	Ts (sec)	wgc (Hz)	
Previous	12.2	43.8		0.156	
New	14.6	38.3	10.1	0.27	

3 Cycles of Delay					
Implementation	GM (dB)	PM (deg)	Ts (sec)	wgc (Hz)	
Previous	8.31	27	,	0.156	
New	7.4	35.6	9.4	0.27	

Retuning of New Implementation

No Delay						
Кр	Ki	Kd	GM (dB)	PM (deg)	Ts (sec)	wgc (Hz)
0.5	0.1	0.95	14.6	38.3	10.1	0.27
0.75	0.133	1.183	13.3	44.2	10	0.313

3 Cycles of Delay						
Кр	Ki	Kd	GM (dB)	PM (deg)	Ts (sec)	wgc (Hz)
0.5	O.1	0.95	7.4	35.6	9.4	0.195
0.361	0.01	0.75	9.6	50.8	8.7	0.186
0.694	0.02	1.333	7.4	- 63	8.2	0.258
0.625		1.172	7.7			

Next Steps

- Decide which implementation to use
- Finalize tuning in MATLAB
- Test in MAX

