Schweizer IMO - Selektion 1997

erste Prüfung - 17. Mai 1997

Zeit: 3 Stunden

Jede Aufgabe ist 7 Punkte wert.

- 1. Eine endliche Folge ganzer Zahlen a_0, a_1, \ldots, a_n heisst quadratisch, falls $|a_k a_{k-1}| = k^2$ gilt für $1 \le k \le n$.
 - (a) Beweise, dass es für zwei beliebige ganze Zahlen b und c stets eine natürliche Zahl n und eine quadratische Folge a_0, a_1, \ldots, a_n gibt mit $a_0 = b$ und $a_n = c$.
 - (b) Bestimme die kleinste natürliche Zahl n, für welche es eine quadratische Folge a_0, a_1, \ldots, a_n gibt mit $a_0 = 0$ und $a_n = 1997$.
- 2. Sei ABCD ein konvexes Viereck. Bestimme notwendige und hinreichende Bedingungen dafür, dass ein Punkt P im Innern von ABCD existiert, sodass die vier Dreiecke ABP, BCP, CDP und DAP alle denselben Flächeninhalt haben.
- 3. Ein 6×6 -Quadrat sei mit 18 Dominosteinen bedeckt. Zeige, dass es stets eine Gerade gibt, die das Quadrat in zwei Teile teilt, ohne einen Dominostein zu teilen.
- **4.** Es seien v und w verschiedene, zufällig gewählte Lösungen der Gleichung $z^{1997} 1 = 0$. Bestimme die Wahrscheinlichkeit, dass $\sqrt{2 + \sqrt{3}} \le |v + w|$ ist.