刀

(19) RU (11) 2 105 817 (13) C1

(51) Int. Cl.⁶ C 13 D 3/02

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 95108412/13, 29.05.1995

(46) Date of publication: 27.02.1998

- (71) Applicant:
 Voronezhskaja gosudarstvennaja
 tekhnologicheskaja akademija,
 Aktsionernoe obshchestvo otkrytogo tipa
 "Uvarovosakhar"
- (72) Inventor: Loseva V.A., Naumchenko I.S., Tikunov M.E., Mikhalev Ju.A., Shakhbulatova L.N.
- (73) Proprietor:
 Voronezhskaja gosudarstvennaja
 tekhnologicheskaja akademija,
 Aktsionernoe obshchestvo otkrytogo tipa
 "Uvarovosakhar"

(54) METHOD OF DIFFUSION SAP REFINING

(57) Abstract:

FIELD: sugar industry. SUBSTANCE: method involves progressive predefecation, addition of polyacrylamide at amount 0.009-0.011% of sap mass at pH 9.5-10.0 and predefecated sap settling. The obtained cleared sap is fed to basic defecation, I-st saturation, filtration and II-d saturation. The defecated precipitate is mixed separated

recirculated with suspension precipitate after the I-st saturation, 0.1-0.3% CaO is added to mixture and saturated to pH 10.0-10.2 followed by filtration. The filtrate obtained is fed the basic to defecation and precipitate is removed from process. EFFECT: improved technology of process. 1 tbl

 ∞

3

CI

 α

 ∞

5

0

CI

~

(19) RU (11) 2 105 817 (13) C1

(51) MПК⁶ C 13 D 3/02

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 95108412/13, 29.05.1995
- (46) Дата публикации: 27.02.1998
- (56) Ссылки: 1. SU, авторское свидетельство N 1118675, C 13 D 3/04, 1984. 2. SU, авторское свидетельство 1100312, C 13 D 3/02, 1984.
- (71) Заявитель:
 Воронежская государственная технологическая академия,
 Акционерное общество открытого типа
 "Уваровосахар"
- (72) Изобретатель: Лосева В.А., Наумченко И.С., Тикунов М.Е., Михалев Ю.А., Шахбулатова Л.Н.
- (73) Патентообладатель:
 Воронежская государственная технологическая академия,
 Акционерное общество открытого типа
 "Уваровосахар"

(54) СПОСОБ ОЧИСТКИ ДИФФУЗИОННОГО СОКА

(57) Реферат:

Использование: изобретение относится к технологии сахарной промышленности. Сущность: способ очистки диффузионного сока предусматривает прогрессивную преддефекацию, введение в сок при достижении рН 9,5 - 10,0 раствора полиакриламида в количестве 0,009 - 0,011% массе сока И отстаивание преддефекованного сока. Полученный при

этом осветленный сок направляют на дефекацию, основную сатурацию, фильтрацию и II сатурацию. Отделенный преддефекованный осадок смешивают с рециркулируемой суспензией осадка сатурации, вводят в смесь 0,1 - 0,3% СаО и сатурируют до рН 10,0 - 10,2 с последующей фильтрацией. Полученный фильтрат направляют на основную дефекацию, а осадок выводят из процесса. 1 табл.

21058

Изобретение относится к технологии сахарной промышленности.

Известен способ очистки диффузионного сока, предусматривающий преддефекацию, дополнительное осаждение несахаров бикарбонатом кальция, образующимся при сатурировании сока до кислотности по фенолфталеину 0,01 - 0,05% СаО, нагревание сока до 80°С, его дефекацию, 1-сатурацию до рН 10,8, фильтрацию сока и 11 сатурацию фильтрованного сока [1]

Недостатком способа является то, что суспензия преддефекованного сока имеет осадок с недостаточно хорошими фильтрационными свойствами и в связи с эти создаются трудности при его отделении на фильтрационном оборудовании.

Ближайшим техническим решением к предложенному является способ очистки диффузионного сока, предусматривающий прогрессивную преддефекацию с введением флокулянта раствора полиакриламида при достижении рН 20 сока 10,2 11,3 в количестве 0,0011-0,008% к массе сухих веществ сока, основную дефекацию, I сатурацию, фильтрацию сока I сатурации с отделением суспензии осадка I сатурации, II сатурацию и рециркуляцию суспензии осадка I сатурации на преддефекацию [2]

Недостатком способа является то, что осадок, образующийся на преддефекации, не обладает достаточно хорошими седиментационно-фильтрационными свойствами, позволяющими эффективно его отделять. Дальнейшая очистка сока без отделения преддефекованного осадка приводит к снижению эффекта очистки.

Технический результат изобретения заключается в улучшении седиментационно-фильтрационных свойств осадка преддефекованного сока и улучшении качества очищенного сока.

刀

N

__

0

S

 ∞

 \neg

C

Для достижения этого результата в предложенном способе диффузионного сока, предусматривающем прогрессивную преддефекацию с введением флокулянта раствора полиакриламида. основную дефекацию, сатурацию, фильтрацию сока і сатурации с отделением суспензии осадка I сатурации, II сатурацию и рециркуляцию суспензии осадка І сатурации, полиакриламида раствор вводят преддефекации при достижении рН сока 9,5-10,0 в количестве 0,009-0,011% к массе сока и преддефекованный сок отстаивают, при этом осветленный сок направляют на основную дефекацию, а отделенный преддефекованный осадок смешивают с рециркулируемой суспензией осадка сатурации. Вводят в смесь 0,1-0,3% СаО и сатурируют до рН 10,0-10,2 с последующей фильтрацией. Полученный фильтрат направляют на основную дефекацию, а осадок выводят из процесса.

Способ очистки диффузионного сока заключается в следующем. Диффузионный сок нагревают до температуры 55-60°С, проводят прогрессивную прреддефекацию возвратом нефильтрованного сока I сатурации и известковым молоком. При достижении рН сока на преддефекации, равном 9,5-10,0, вводят в него раствор полиакриламида в количестве 0,009-0,011% к массе сока. При достижении заданного конечного значения рН сока его отстаивают

10,6-10,7. при pH Осветленный COK направляют на основную дефекацию известковым молоком, затем I сатурацию, фильтрацию и II сатурацию. Отделенный преддефекованный осадок смешивают с рециркулируемой суспензией осадка сатурации, вводят в смесь 0,1-0,3% СаО (до рН 11,2-11,3) и сатурируют до рН 10,0-10,2 с последующей фильтрацией. Полученный фильтрат направляют на основную дефекацию, а осадок выводят из процесса. Отделение основной массы высокомолекулярных веществ (ВМС) до основной дефекации позволяет получить на 1 сатурации ПОЧТИ чистый CaCO₃. Следовательно, при проведении процесса прогрессивной предварительной дефекации с введением раствора полиакриламида (ПАА) преддефекации при pH 9,5-10,0. образуется более прочная мостиковая связь между частицами СаСО3 и молекулами ПАА, что приводит к образованию укрупненных конгломератов, отличающихся ВЫСОКОЙ скоростью осаждения. Это приводит к уменьшению времени пребывания в отстойниках и снижению распада сахарозы и нарастанию цветности. Возврат суспензии I сатурации и дополнительное введение известкового молока в количестве 0,1-0,3% к массе СаО с последующим сатурированием увеличивает удельную поверхность СаО 3 для дополнительной адсорбции несахаров, что также улучшает скорость фильтрования и качество фильтрата. Это позволяет использовать существующее на заводе фильтрационное оборудование без дополнительных затрат.

Таким образом, только комплексное использование флокулянта ПАА при его оптимальном режиме на преддефекации в сочетании с сатурированием отделенного преддефекованного осадка дополнительным количеством СаО приводит к созданию условий для более полной коагуляции высокомолекулярных коллоидных веществ на прогрессивной предварительной дефекации и получению структуры осадка преддефекованного сока с **ВРІСОКИМИ** седиментационно-фильтрационными

свойствами, что позволяет отделить его путем отстаивания в обычных заводских отстойниках.

Пример. Берут пробу диффузионного сока, нагревают до температуры 60°С, проводят преддефекацию добавлением 50% нефильтрованного сока I сатурации и известковым молоком. При рН 10,0 вводят 1%-ный раствор полиакриламида в количестве 0,011% к массе сока, доводят до 10,7 и направляют на отстаивание.

После отстаивания декантат нагревают до температуры 85°С, проводят основную дефекацию известковым молоком (1,5% СаО к массе сока), I сатурацию, фильтрование II сатурацию, фильтрование. Очищенный сок анализируют.

Преддефекованную суспензию смешивают с суспензией осадка I сатурации (50% к массе преддефекованной суспензии), добавляют 0,3% CaO (pH 11,3), сатурируют до pH10,2 и фильтруют. Параллельно проводят очистку диффузионного сока по известному способу.

В таблице приведены сравнительные данные по качеству сока, полученные

-3-

предложенным и известным способами.

Из приведенных данных в таблице можно сделать вывод, что предложенный способ позволяет повысить S_8 -скорость отстаивания преддефекованного сока в 1,2 раза, снизить F_{κ} -коэффициент фильтрации преддефекованной суспензии в 1,4 раза. При этом улучшается качество очищенного сока. Так, Ч-чистота увеличивается на 0,3% уменьшается содержание солей Са на 20-25% РВ редуцирующих веществ на 10-12% D-оптическая плотность снижается на 7-8%

Формула изобретения:

Способ очистки диффузионного сока, предусматривающий прогрессивную преддефекацию с введением флокулянта раствора полиакриламида, основную

N

0

S

 ∞

дефекацию, І сатурацию, фильтрацию сока 1 сатурации с отделением суспензии осадка I сатурации, II сатурацию и рециркуляцию суспензии осадка І сатурации, отличающийся тем, что раствор полиакриламида вводят на преддефекации при достижении рН сока 9,5 10,0 в количестве 0,009 0,011% к массе сока преддефекованный сок отстаивают, при этом осветленный сок направляют на основную дефекацию, а отделенный преддефекованный смешивают рециркулируемой суспензией осадка сатурации, вводят в смесь 0,1 0,3% СаО и сатурируют до рН 10,0 10,2 с последующей фильтрацией, причем полученный фильтрат направляют на основную дефекацию, а осадок выводят из процесса.

20

25

30

35 .

40

45

50

55

60

-4-

RU 2105817 C1

95108412

윋	₹	전	돕	CaO	H	Предде	Преддефекованный сок		Sox	Сок II сатурации	
Ų	% ×	предде-	-98B	-еддо вит	суспензии	S,	1 4	% 'h	Д-оптическая	Соли Са, % к	PB, % K
	массе сока	фекации	Дения	ботки сус-	после са-	см/мин	преддефекован-		IOD r CR	массе СВ сока	Macce CB
1						Предла	Предлагаемый способ				
_	0,009	10,60	9,50	0.20	10,1	6,2	2,0	6'68	0.193	0.039	0.120
2	0,010	10,65	9,75	0,10	10,0	7.0	2,0	90.2	0,170	0.018	0,100
	0,011	10,70	10,00	0,30	10,2	5,0	5	90,0	0.210	0.027	0,116
	0,008	10,50	9,40	0,05	96	8,4	3,5	89.0	0.270	0,043	0,130
	0,012	10,80	10,10	0,40	10,5	4,3	3,0	89,5	0,230	0.041	0.126
						Извес	Известный способ			-	-
	0,0011	11,0	10,2	•	•	5,3	6,3	89.4	0.224	0.057	0.135
	0,005	11,2	10,8	•	•	6,0	8,4	89.5	0,195	0.030	•
	0,008	11,3	11,3	•	•	4 3	3,7	89,2	0,240	0.043	0.137
4	0,0009	10,9	10.1	٠	•	4,0	3,9	88.8	0.265	0.040	•
	0.00	7 7 7	11.4			a	~ ~	000	1000		

Таблица