LAST LAYER RE-TRAINING IS SUFFICIENT FOR ROBUSTNESS TO SPURIOUS CORRELATIONS

Elnikov Vlad

Для чего это статья? - для борьбы с плохими корреляциями

Предложенный метод решения

Цели данной статьи

- 1. Исследование влияния шумовых корреляций на работу нейронных сетей и оценка их влияния на точность классификации.
- 2. Проверка гипотезы о том, что переобучение только последнего слоя нейронной сети может быть достаточно для улучшения устойчивости модели к шумовым корреляциям.
- 3. Экспериментальное подтверждение эффективности метода переобучения последнего слоя на различных наборах данных и задачах классификации.
- 4. Сравнение результатов метода переобучения последнего слоя с другими методами улучшения устойчивости модели к шумовым корреляциям.

Метод обучения (DFR)

- 1. Инициализация модели: сначала модель обучается на обучающем наборе данных.
- 2. Оценка качества модели: оценивается качество модели на тестовом наборе данных.
- 3. Переобучение последнего слоя: далее происходит переобучение только последнего слоя модели на меньшем взвешенном наборе данных. Это позволяет модели адаптироваться к новым данным и фокусироваться на ключевых признаках, игнорируя шумовые корреляции.
- 4. Оценка улучшения качества: после переобучения модель снова оценивается на тестовом наборе данных.

(a) IN-9 Original (Xiao et al., 2020) (b) IN-9 FG-Only (Xiao et al., 2020) (c) IN-9 Mixed-Rand (Xiao et al., 2020)

(f) ImageNet-9, Paintings-BG (ours)

Результаты работы

Method	Group Info	Waterbirds		CelebA		MultiNLI		CivilComments	
	Train / Val	Worst(%)	Mean(%)	Worst(%)	Mean(%)	Worst(%)	Mean(%)	Worst(%)	Mean(%)
JTT	X/✓	86.7	93.3	81.1	88.0	72.6	78.6	69.3	91.1
CnC	X/V	$88.5_{\pm 0.3}$	$90.9_{\pm 0.1}$	$88.8_{\pm 0.9}$	$89.9_{\pm 0.5}$	-	-	$68.9_{\pm 2.1}$	$81.7_{\pm 0.5}$
SUBG	111	$89.1_{\pm 1.1}$	-	$85.6_{\pm 2.3}$	-	$68.9_{\pm 0.8}$	-	-	=
SSA	XIVV	$89.0_{\pm 0.6}$	$92.2_{\pm 0.9}$	$89.8_{\pm 1.3}$	$92.8_{\pm 0.1}$	$76.6_{\pm 0.7}$	$79.9_{\pm 0.87}$	$69.9_{\pm 2}$	$88.2_{\pm 2.}$
Group DRO	\checkmark 1 \checkmark	91.4	93.5	88.9	92.9	77.7	81.4	69.9	88.9
Base (ERM)	X/X	$74.9_{\pm 2.4}$	$98.1_{\pm 0.1}$	$46.9_{\pm 2.8}$	$95.3_{\pm 0}$	$65.9_{\pm0.3}$	$82.8_{\pm 0.1}$	$55.6_{\pm 0.6}$	$92.1_{\pm 0.1}$
DFR_{Tr}^{Val}	X / < <	$92.9_{\pm0.2}$	$94.2_{\pm0.4}$	$88.3_{\pm 1.1}$	$91.3{\scriptstyle\pm0.3}$	$74.7_{\pm0.7}$	$82.1_{\pm0.2}$	$\textbf{70.1}_{\pm0.8}$	$87.2_{\pm0.3}$

Результаты работы

Выводы

- + Простота реализации: переобучение только последнего слоя требует меньше вычислительных ресурсов и времени
- + Эффективность: исследования показывают, что переобучение последнего слоя может значительно улучшить устойчивость модели
- + Меньшая вероятность переобучения
- Ограниченность: переобучение только последнего слоя может быть недостаточным
- Потеря информации: ограничение переобучения только последнего слоя может привести к потере информации
- Не всегда эффетивен