MATH H113: Honors Introduction to Abstract Algebra

2016-01-22

- Well-defined functions
- Properties of \mathbb{Z}

Homework due Fri. 2016-01-29:

- 0.1: 5, 7
- 0.2: 1d
- 0.3: 2, 12, 13, 14

Error in Proposition 1 (0.1)

 $f:A\to B$ is injective \iff has a left inverse. If $A=\emptyset, B=1$ then $f:A\to B$ is 1-1 but there's no left inverse $g:B\to A$ because there's no function $g:B\to A$. Attempted proof that f is 1-1 \implies there's a left inverse: Define $g:B\to A$ by g(b)=a if $b\in f(A)$ and $a\in A$ satisfies f(a)=b (there's only one such a because f is 1-1 g is well defined) If $b\notin f(A)$ then let g(b)=a any element of g(b)=a (where things went wrong).

Note: Part 3 is still true. The above proof works if f is bijective (includes $f:\emptyset\to\emptyset$), because the 2nd part never comes up. (3. f is bijective $\iff f$ has a two-sided inverse g.)

Well-Defined

Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} |x| & x \geq 0 \\ x & x \leq 1 \end{cases}$ is well-defined (sets not disjoint, but this is OK because |x| = x where they overlap. On the other hand, $g: \mathbb{R} \to \mathbb{R}$ given by $g(x) = \begin{cases} |x| & x \geq 0 \\ 2x & x \leq 1 \end{cases}$ is not well-defined since $g(\frac{1}{2}) = \frac{1}{2}$ if you use the first part, but $g(\frac{1}{2}) = 1$ if you use the second part.

More typical example: $f:[-1,1] \to \mathbb{R}$ defined by $f(x) = \sin(\theta)$, where θ is such that $\cos(\theta) = x$ is not well-defined: $f(\frac{1}{2})$ if $\theta = \frac{\pi}{3}$ then f(x) would be $\frac{\sqrt{3}}{2}$ if $\theta = \frac{\pi}{3}$ then f(x) would be $\frac{-\sqrt{3}}{2}$ (this is not really $f(x) = \sin(\cos^{-1}(x))$

Is well-defined: $f(x) = |\sin(\theta)|$, if θ is such that $\cos(\theta) = x$.

Properties of the Integers

Well-Ordering Property of \mathbb{N}

Any non-empty subset A of \mathbb{N} has a smallest element (smallest element means an element $m \in A$ such that $m \leq a$ for all $a \in A$).

Definition: let $a, b \in \mathbb{Z}$. We say that $a \mid b$ (a divides b) iff there is an integer q such that aq = b (I do not require $a \neq 0$).

If a does not divide b, we write $a \nmid b$.

Examples: $-7 \mid 21, 0 \mid 0 \text{ (any } q \text{ will work)}, 3 \mid 0, 0 \nmid 3, 2 \nmid 7$

Theorem (Division Algorithm): For all $a, b \in \mathbb{Z}$ with $b \neq 0$ there exist unique integers q and r such that a = qb + r and 0 < r < |b|.

Proof:

- Case 1: b > 0
 - Uniqueness: Suppose $q, r, q', r' \in \mathbb{Z}$ satisfy a = qb + r = q'b + r', $0 \le r < b, \ 0 \le r' < b$

Then qb - q'b = r' - r $q - q' = \frac{r' - r}{b}, r' - r < b$, similarly r' - r > -bSo $1 < \frac{r - r'}{b} < 1 - 1 < q - q' < 1$ (where $q - q' \in \mathbb{Z}$) so q - q' = 0, r' - r = 0.

- Existence: Let $A = \{a - qb : q \in \mathbb{Z}\} \cap \mathbb{N}$

Then A is a subset of \mathbb{N} .

Want to check that $A \neq \emptyset$.

If $a \geq 0$ then $a \in A$ (take q = 0, note that $a \in \mathbb{N}$)

If a < 0 then take q = a.

Then $a-ab \in A$ because you can take q = a and $a-ab = (-a)(b-1) \ge a$ 0 it it's in \mathbb{N} .

By the well-ordering property of \mathbb{N} , the set A has a smallest element r. Since $r \in A$,

- i. r = a qb for some $q \in \mathbb{Z}$, so a = qb + r
- ii. $r \geq 0$ because $r \in A \subseteq \mathbb{N}$
- iii. r < b, because if $r \ge b$ then $r b \ge 0$ and r = a (q+1)b, so $r b \in A$ so r is not the smallest element of A (r - b < r).
- Case 2: b < 0 By case I, a = q(-b) + r for some $q, r \in \mathbb{Z}$ such that 0 < r < -b = |b|. Then a = (-q)b + r. QED

Definition: If $a, b \in \mathbb{Z}$ and $a \mid b$ then we say that a is a divisor of b, and the b is a multiple of a.

Definition: If $a, b \in \mathbb{Z}$ then a common divisor of a and b is an integer d such that $d \mid a$ and $d \mid b$.

Definition: If $a, b \in \mathbb{Z}$, not both zero. The *greatest common divisor* of a and b is a positive integer d such that

- i. d is a common divisor of a and b
- ii. $d' \mid d$ whenever d' is a common divisor of a and b

```
We write d = \gcd(a, b)
(Note: \gcd(0, 0) is not defined.)
Also: \gcd(a, b) = \gcd(b, a)
```

Theorem: For all $a, b \in \mathbb{Z}$, not both zero, there is a unique gcd of a and b **Proof**:

- Uniqueness: Suppose d_1 and d_2 both satisfy the definition of gcd(a,b). Then $d_1 \mid d_2$ because d_1 is a common divisor and d_2 satisfies (ii). $d_1 \leq d_2$ because $d_2 > 0$. If $d_1 > d_2$ and $d_1r = d_2$ then $r = \frac{d_1}{d_2} < 1$ so $f \notin \mathbb{Z}$ or $r \leq 0 \implies d \leq 0$ not true Similarly $d_2 \mid d_1$ so $d_2 \leq d_1 : d_1 = d_2$
- Existence: Euclidean algorithm (next time).