

361CCS: Artificial Intelligence Prepared by Dr. Aliya Aleryani

Class Information

Book:

Artificial Intelligence: A Modern Approach Stuart Russell & Peter Norvig 4th edition

Why AI?

Labor

Appliances

Science/Research

Medicine/Diagnosis

Search engines

amazon

Recommendation

Why AI?

- Honda ASIMO
 - Advanced Step in Innovation Mobility
- Humanoid Robot
- Capable of recognizing:
 - Moving objects
 - Postures
 - Gestures
 - Handshake
 - Sounds
- Capable of walking and running

Introduction – Chapter 1

Chapter-1
Topics

• Al Definition (Section 1.1)

aVR

III

II

- Al Foundation (Section 1.2)
- Al History (Section 1.3)
- State of Art (Section 1.4)
- Al Risks and Benefits (Section 1.5)

- The exciting new effort to make computers thinks ...
 machine with minds, in the full and literal sense"
 (Haugeland 1985)
- The automation of activities that we associate with human thinking, activities such as decision-making, problem solving, learning,...(Bellman, 1978)

Think Like Humans

- "The art of creating machines that perform functions that require intelligence when performed by people" (Kurzweil, 1990)
- "The study of how to make computers do things at which, at the moment, people do better", (Rich and Knight, 1991)

Act Like Humans

- "The study of mental faculties through the use of computational models", (Charniak et al. 1985)
- "The study of the computations that make it possible to perceive, reason and act", (Winston, 1992)

Think Rationally

- "Computational Intelligence is the study of the design of intelligent agents" (Poole et al, 1998)
- "AI....is concerned with intelligent behavior in artifact", (Nilsson, 1998)

Act Rationally

How to Achieve AI?

Acting Humanly: The Turing Test

http://en.wikipedia.org/wiki/Turing_test

Alan Turing 1912-1954

• To be intelligent, a program should simply act like a human

Acting Humanly

- To pass the Turing test, the computer/robot needs:
 - Natural language processing to communicate successfully.
 - Knowledge representation to store what it knows or hears.
 - Automated reasoning to answer questions and draw conclusions using stored information.
 - Machine learning to adapt to new circumstances and to detect and extrapolate patterns.

These are the main branches of AI.

Acting Humanly: The Turing Test

http://en.wikipedia.org/wiki/Turing test

+ physical interaction => Total Turing Test

 Recognize objects and gestures

- Move objects

Alan Turing 1912-1954

To be intelligent, a program should simply act like a human

Acting Humanly – for Total Turing

- To pass the Turing test, the computer/robot needs:
 - Natural language processing to communicate successfully.
 - Knowledge representation to store what it knows or hears.
 - Automated reasoning to answer questions and draw conclusions using stored information.
 - Machine learning to adapt to new circumstances and to detect and extrapolate patterns.
 - Computer vision to perceive objects. (Total Turing test)
 - Robotics to manipulate objects and move. (Total Turing test)
 - These are the main branches of AI.

Thinking Humanly

- Real intelligence requires thinking

 think like a human!
- First, we should know how a human think
 - Introspect ones thoughts
 - Physiological experiment to understand how someone thinks
 - Brain imaging
- Then, we can build programs and models that think like humans
 - Resulted in the field of cognitive science: a merger between AI and psychology.

Problems with Imitating Humans

- The human thinking process is difficult to understand: how does the mind raises from the brain? Think also about unconscious tasks such as vision and speech understanding.
- Humans are not perfect! We make a lot of systemic mistakes:

Thinking Rationally

- Instead of thinking like a human: think rationally.
- Find out how correct thinking must proceed: the laws of thought.
- Aristotle syllogism: "Socrates is a man; all men are mortal, therefore Socrates is mortal."
- This initiated logic: a traditional and important branch of mathematics and computer science.
- Problem: it is not always possible to model thought as a set of rules; sometimes there uncertainty.
- Even when a modeling is available, the complexity of the problem may be too large to allow for a solution.

Acting Rationally

- Rational agent: acts as to achieve the best outcome
- Logical thinking is only one aspect of appropriate behavior: reactions like getting your hand out of a hot place is not the result of a careful deliberation, yet it is clearly rational.
- Sometimes there is no correct way to do, yet something must be done.
- Instead of insisting on how the program should think, we insist on how the program should act: we care only about the final result.
- Advantages:
 - more general than "thinking rationally" and more
 - Mathematically principled; proven to achieve rationality unlike human behavior or thought

Acting Rationally

This is how birds fly

Humans tried to mimic birds for centuries

This is how we finally achieved "artificial flight"

The Foundations of Al

Philosophy	Logic, methods of reasoning and rationality.
Mathematics	Formal representation and proof, algorithms, computation, (un)decidability, (in)tractability, probability.
\$ Economics	utility, decision theory (decide under uncertainty)
Neuroscience	neurons as information processing units.
Psychology/Cognitive Science	how do people behave, perceive, process information, represent knowledge.
Computer engineering	building fast computers
Control theory	design systems that maximize an objective function over time
Linguistics	knowledge representation, grammar

Al History

The inception of artificial intelligence

- •In 1943, Warren McCulloch and Walter Pitt proposed a binary-based model of neurons
- •1950, Turing test, reinforcement learning and machine learning

A dose of reality

- •Computational intractability of many AI problems
- •Neural Network starts to disappear

1952-1969

1969-1986

1943-1956

1966-1973

Early Enthusiasm and great Expectation

- General Problem Solver imitates the human way of thinking
- •LISP (AI programming language) was defined
- •1965, Robinson discovered the resolution method
- logical reasoning

Expert systems

- •The first successful commercial expert system, R1
- •Wide range of representation and reasoning tools

Al History

The return of neural networks

•With the back-propagation algorithm

Big data

•Deng et al. (2009) the availability of tens of millions of images in the ImageNet database sparked a revolution in computer vision

1987-present

2011-present

1986-present

2001-present

Probabilistic reasoning and machine learning

•Judea Pearl's (1988) Probabilistic Reasoning in Intelligent Systems led to a new acceptance of probability and decision theory in AI

Deep learning

 Krizhevsky et al. (2013) a deep learning system demonstrated a dramatic improvement over previous systems, which were based largely on handcrafted features

The State of the Art

- Robotics Vehicle
- Speech Recognition
 - Alexa, Siri, and Google offer assistants that can answer questions and carry out tasks for the user
- Autonomous Planning and Scheduling
 - Remote Agent: Plan and control spacecraft
 - Google Maps
- Recommendations
 - Amazon, Facebook, Netflix, Spotify, YouTube and others
- Image Understanding
- Medicine
- Machine Translation
- Climate Science

Al Risks and Benefits

Risks

- Lethal autonomous weapons
- Surveillance and persuasion
- · Biased decision making
- Impact on employment
- Safety-critical applications
- Cybersecurity

Benefits

- Free humanity from menial repetitive work
- Increase the production of goods and services
- Diseases treatments
- Solutions for climate change and resource shortages