Topics:

- ...

Necessary condition of optimality

 $f: \mathbb{R} \to \mathbb{R}$ is some function like $y = x^2$

If function has derivative everywhere then we can compute derivate everywhere

 $f': \mathbb{R} \to \mathbb{R}$ for example above it's y = 2x

Value f'(x) means in point "x" different things:

- Speed with which your function moves along y
- 2. Tangent of angle for local approximation with tangent.

Necessary condition of optimality

Function $f: \mathbb{R} \to \mathbb{R}$ decreases then increases. f'(x) should in some point x^* have value f'(x) = 0

Function $f: \mathbb{R} \to \mathbb{R}$ increases then decreases . f'(x) should in some point x^* have value f'(x) = 0

We assume that f' has derivative everywehre

Necessary condition of optimality

For $f: \mathbb{R}^n \to \mathbb{R}$ the nessesary condition is that $\nabla f = 0$

Consider constraint problem:

$$\min_{x} f(x) \\ h(x) = 0$$

It's another situation h(x) = 0 and directly it's not so clear how handle it. Todo it we introduce **Lagrange Function**:

$$L(x,\lambda) = f(x) + \lambda \cdot h(x)$$

Equality constraint optimization

Simple description why

$$\min_{x,\lambda} L(x,\lambda)$$

$$L(x,\lambda) = f(x) + \lambda \cdot h(x)$$

Lead to the same solution as

$$\min_{x} f(x)$$

$$h(x) = 0$$

Proves that we do not loose anything

$$\min_{x,\lambda} f(x) + \lambda \cdot h(x)$$

1. If "f" and "h" are differentiable then nesessary condition for optimality is

$$\frac{\partial \big(f(x) + \lambda \cdot h(x)\big)}{\partial x} = 0$$

$$\frac{\partial (f(x) + \lambda \cdot h(x))}{\partial \lambda} = h(x) = 0$$

2. Lagrange function achieves minimum in a point (x, λ) where both condition holds. Particulary $h(x^*) = 0$

3. And we have
$$f(x^*) + \lambda^* \cdot h(x^*) = f(x^*) + \lambda^* \cdot 0 = f(x^*)$$

4. To make $f(x^*) + \lambda^* \cdot 0$ as small as possible we need to make $f(x^*)$ as small as possible.

5. So

 $\min_{x,\lambda} f(x) + \lambda \cdot h(x)$ **solves** same optimization problem as

$$\min_{x} f(x)$$

$$h(x) = 0$$

Summary so far about nessesary condition for optimality

If there are several equality constraints. The Lagrange function has the following form:

$$L(x,\lambda) = f(x) + \sum_{i=1}^{n} \lambda_i \cdot h_i(x)$$

We know currently that nesessary optimality condition is the following

$$\nabla_{x,\lambda}L(x^*,\lambda^*)=\mathbf{0}$$