Math 252 Exam 1 Practice Test (Problems)

- 1. Using $\mathbf{u} = \langle -4, 6, 5 \rangle$ and $\mathbf{v} = \langle 2, -3, 1 \rangle$,
 - a. Find $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$.
 - b. Find $\mathbf{u} \cdot \mathbf{v}$.
 - c. Find the angle θ between **u** and **v**.
 - d. Find proj_vu.
 - e. Find $\mathbf{u} \times \mathbf{v}$.
- 2. Using P(-4,1,2), Q(1,-3,4), R(-1,0,2),
 - a. Find an equation of the plane passing through the points.
 - b. Find parametric equations for the line through P and parallel to $a = \langle 2, -1, 4 \rangle$.
 - c. Find the distance from the point (5, -3, 2) to the plane.
 - d. Find the area of the parallelogram determined by P, Q, and R.
- 3. Identify the surface $x = y^2$.
- 4. Identify the surface $4x^2 + 4y^2 + z^2 = 4$.
- 5. Identify the surface $2x^2 3y^2 + 6z^2 = 6$.
- 6. Identify the surface $x^2 6y + 5z^2 = 0$.
- 7. A baseball is thrown from the stands 128 feet above the field at an angle of 30 degrees up from the horizontal with an initial speed of 64 feet per second.
 - a. Give the position vector for any time t.
 - b. When will the ball strike the ground?
 - c. How far away will the ball strike the ground?
 - d. What is the speed of the ball when it strikes the ground?
- 8. Using $\mathbf{r}(t) = \langle t \cos t, t \sin t, t^2 \rangle$ at t = 0,
 - a. Find \mathbf{v} and \mathbf{a} .
 - b. Find T and N.
 - c. Find K.
 - d. By first finding $a_{\mathbf{T}}$ and $a_{\mathbf{N}}$, express $a = a_{\mathbf{T}}\mathbf{T} + a_{\mathbf{N}}\mathbf{N}$.

Math 252 Exam 1 Practice Test (Answers)

- 1. a. $\|\mathbf{u}\| = \sqrt{77}$ $\|\mathbf{v}\| = \sqrt{14}$

 - b. $\mathbf{u} \cdot \mathbf{v} = -21$
 - c. $\theta = \arccos\left(\frac{-21}{7\sqrt{22}}\right)$
- 2. a. 2x + 6y + 7z 12 = 0
 - b. x = 2t 4, y = -t + 1, z = 4t + 2
 - c. $D = \frac{6}{\sqrt{89}}$
 - d. $A = \sqrt{89}$
- 3. Parabolic cylinder
- 4. ANSWER
- 5. ANSWER
- 6. ANSWER
- 7. ANSWER
- 8. a. $\mathbf{v} = \langle -t \sin t + \cos t, t \cos t + \sin t, 2t \rangle$
 - $\mathbf{a} = \langle -t\cos t 2\sin t, -t\sin t + 2\cos t, 2 \rangle$
 - b. $\|{\bf v}\| =$
 - T =
 - N =