



## David Maykon Krepsky Silva Daniel Galbes Bassanezi

# Modulador AM

Data de realização do experimento:
20 de agosto de 2015
Série/Turma:
1000/1011
Prof. Dr. Jaime Laelson Jacob

#### Resumo

Neste trabalho foi realizado o estudo teórico e a simulação de dois circuitos moduladores AM DSB, de forma a comprovar, em simulação computacional, a validade e as limitações do projeto de moduladores, utilizando o modelo de pequenos sinais. As topologias utilizadas empregam transistores, para o primeiro circuito, e um diodo, para o segundo. Foi observado que, embora o circuito com diodo tenha um número pequeno de componentes, resultando em baixo custo, o mesmo possui um fator de mérito menor que o do modulador transistorizado.

# Sumário

| R | Resumo 1 |                                                        |    |  |  |
|---|----------|--------------------------------------------------------|----|--|--|
| 1 | Intr     | odução                                                 | 3  |  |  |
| 2 | Teo      | ria                                                    | 4  |  |  |
|   | 2.1      | Modulação AM DSB                                       | 4  |  |  |
|   | 2.2      | Medida do índice de modulação $\gamma$                 | 4  |  |  |
|   |          | 2.2.1 Método 1                                         | 5  |  |  |
|   |          | 2.2.2 Método 2                                         | 5  |  |  |
|   | 2.3      | Circuitos moduladores                                  | 6  |  |  |
|   |          | 2.3.1 Modulador série                                  | 6  |  |  |
|   |          | 2.3.2 Modulador a diodo                                | 6  |  |  |
| 3 | Met      | odologia Experimental                                  | 8  |  |  |
|   | 3.1      | Materiais                                              | 8  |  |  |
|   |          | 3.1.1 Modulador série                                  | 8  |  |  |
|   |          | 3.1.2 Modulador a diodo                                | 9  |  |  |
| 4 | Res      | ultados                                                | 11 |  |  |
|   | 4.1      | Onda de saída                                          | 11 |  |  |
|   | 4.2      | Influeência da ponta de prova                          |    |  |  |
|   | 4.3      | Variação da tensão de saída e critério de estabilidade |    |  |  |
| 5 | Dis      | russão e Conclusão                                     | 19 |  |  |

# 1 Introdução

O experimento tem como objetivo desenvolver o conhecimento dos alunos sobre circuitos que realizam a modulação AM DSB de um sinal. Foram estudados duas topologias, sendo elas um modulador com diodo e um com transistores, onde foram analisados o fator de mérito (Q) e o espectro do sinal de saída.

### 2 Teoria

### 2.1 Modulação AM DSB

A modulação em amplitude consiste em modificar a amplitude de um sinal de frequência constante, chamado de portadora, a partir de um sinal modulante (informação). O termo DSB significa double side band, pois o espectro do sinal modulado possui tanto a banda positiva quanto a banda negativa do sinal modulante.

O sinal modulado em AM DSB pode ser representado matematicamente pela equação

$$s(t) = A_c[1 + \gamma f(t)]\cos(w_c t). \tag{1}$$

Onde f(t) é o sinal de informação,  $A_c$  é a amplitude,  $\gamma$  é o índice de modulação e  $w_c$  é a frequência angular da portadora.

Sendo

$$f(t) = \cos(w_m t),$$

temos que

$$s(t) = A_c \left\{ sen(w_c t) + \frac{\gamma}{2} sen(w_c + w_m)t + \frac{\gamma}{2} sen(w_c - w_m)t \right\}.$$
 (2)

A transformada de Fourier do sinal da equação 2 (mostrada na figura 1 ) é

$$F(s) = \mathfrak{F}\{f(t)\} = A_c \delta(s - w_c) + A_c \frac{\gamma}{2} \delta(w_c + w_m) + A_c \frac{\gamma}{2} \delta(w_c - w_m)$$

Figura 1: Modulo do espectro complexo de Fourier da modulação AM DSB com sinal modulante cossenoidal.



### 2.2 Medida do índice de modulação $\gamma$

O índice de modulação  $(\gamma)$  pode ser obtido através da equação 3, onde os valores de a e b podem ser definidos de duas maneiras.

$$\gamma = \frac{a-b}{a+b} \tag{3}$$

#### 2.2.1Método 1

No método 1, o sinal modulado é colocado no eixo Y e o tempo é colocado no eixo X. O valor de a é dado pela amplitude de pico a pico do sinal modulado quando f(t) é máximo e o valor de b é dado pelo valor de pico a pico para quando o sinal f(t) é mínimo. A figura 2 mostra um exemplo do cálculo.

Figura 2: Exemplo para o calculo de  $\gamma$ , com  $a=3,\ b=1$  e  $\gamma=0.5$ . 0.5 -0.5 0.5 0.02 0.03

#### 2.2.2 Método 2

No método 2, o sinal modulado é colocado no eixo Y e o sinal modulante é colocado no eixo X. O valor de a é dado pela amplitude de pico a pico do da parte mais baixa da figura e o valor de b é dado pelo valor de pico a pico mais alto. A figura 3 mostra um exemplo do cálculo.



Figura 3: Exemplo para o calculo de  $\gamma$ , com a = 0.2, b = 0.6 e  $\gamma = 0.5$ .

O método 2 é preferível, pois evidencia a linearidade do modulador, independente da forma de onda do sinal modulante. Porém, quando são introduzidas distorções no sinal modulado, o método 1 deve ser utilizado.

#### 2.3 Circuitos moduladores

Abaixo são apresentadas duas topologias de circuito modulador AM DSB, uma utilizando transistores e a outra empregando um único diodo.

#### 2.3.1 Modulador série

A figura 4 apresenta a configuração do circuito utilizado em um modulador AM/DSB série. Os moduladores série modificam diretamente a amplitude do sinal de RF, assim, evitando distorções na frequência do sinal modulado.

O transistor Q1 acopla sinal de informação ao coletor do amplificador de RF de saída, Q2, evitando a necessidade de um transformador, o que reduz o custo e o tamanho do circuito.

O filtro passa-baixas composto por  $C_{f1}$ ,  $C_{f2}$ ,  $C_p$  e  $L_f$  atua, também, como um circuito LC paralelo sintonizado na frequência da portadora  $(f_c)$  e como uma rede  $\pi$  casadora de impedância.



Figura 4: Circuito do modulador série.

#### 2.3.2 Modulador a diodo

A figura 5 apresenta a configuração do circuito utilizado em um modulador AM/DSB simples. Os moduladores série modificam diretamente a amplitude do sinal de RF, assim, evitando distorções na frequência do sinal modulado.

Figura 5: Circuito do modulador a diodo.



A chave S1, quando o circuito está em operação, fica normalmente fechada. O filtro passafaixa composto por  $C_f$  e  $L_f$  é sintonizado em  $f_c$ . Assim, para cada semi-ciclo positivo de  $f_c$  o circuito ressonante paralelo produz um semi-ciclo negativo, resultando à saída a forma de onda E da figura 6.

Figura 6: Formas de onda em um modulador a diodo.



## 3 Metodologia Experimental

#### 3.1 Materiais

O material utilizado foi:

- Computador.
- Software Orcad.

O experimento foi dividido em duas partes, sendo a parte 1 para o modulador série e a parte 2 com o modulador a diodo.

#### 3.1.1 Modulador série

Para execução da parte 1 do experimento, faz-se necessário executar os seguintes passos (com base no circuito da figura 7:

- montar o circuito mostrado na figura 7 no software Orcad;
- $\bullet$ utilizar um sinal senoidal de 200 Hz (2<br/>  $V_{pp})$  como modulante e um sinal de 100 kHz como portadora;
- Obter o índice de modulação  $\gamma$  do circuito através do método 1 e do método 2;
- verificar quais são os limites para  $\gamma$ ;
- caso seja possível obter índice m > 1,observe o que ocorre com sinal quando se utiliza o método 2. É possível aplicar este método na avaliação de índices de modulação maiores que 100
- determinar o fator de mérito do modulador, utilizando como carga um resistor de 10 M $\Omega$  e um capacitor de 20pF, simulando a ponta de prova do osciloscópio.
- analisar o sinal de saída no domínio da frequência;
- como é possível reduzir eventuais componentes de frequência espúrias à saída?

Figura 7: Modulador série. +12V Sinal 100K ≤ Modulante 22uF Q1 BF494 68K 1K 10K≤ 1nF AM - DSB 100nF Q2 Sinal de BF494 Portadora 10K≤

#### 3.1.2 Modulador a diodo

Para execução da parte 2 do experimento, faz-se necessário executar os seguintes passos (com base no circuito da figura 8):

- montar o circuito mostrado na figura 8 no software Orcad;
- utilizar um sinal senoidal de 2kHz (2  $V_{pp}$ ) como modulante e um sinal de 100kHz (5  $V_{pp}$ ) como portadora;
- calcular o valor de  $L_1$  e  $C_1$  de modo que a frequência de ressonância fique próxima de  $f_c$ .
- verificar se o sinal modulante é banda estreita;
- Obter o índice de modulação  $\gamma$  do circuito através do método 1 e do método 2;
- caso seja possível obter índice m > 1,observe o que ocorre com sinal quando se utiliza o método 2. É possível aplicar este método na avaliação de índices de modulação maiores que 100
- determinar o fator de mérito do modulador, utilizando como carga um resistor de 10 M $\Omega$  e um capacitor de 20pF, simulando a ponta de prova do osciloscópio.
- analisar o sinal de saída no domínio da frequência;

Figura 8: Modulador a diodo.



### 4 Resultados

### 4.1 Onda de saída

Imagens/saida.jpg

Figura 9: Onda de saída para o oscilador a cristal.

Imagens/lissajous.jpg

Figura 10: Figura de lissajous.

### 4.2 Influeência da ponta de prova

Após colocar a ponta de prova do osciloscópio, a frequência alterou para 10.01155MHz, mostrando que há uma pequena interferência no periodo do oscilador.

### 4.3 Variação da tensão de saída e critério de estabilidade

A tabela 1 mostra os dados obtidos variando-se a tensão.

Tabela 1: Frequência de oscilação obtida variando-se a tensão de circuito

| Tensão de   | Frequência [MHz] |
|-------------|------------------|
| entrada [V] |                  |
| 9.6         | 10.01071         |
| 12.0        | 10.01088         |
| 14.4        | 10.01119         |

A estabilidade relativa obtida foi de 47,948 [ppm].

### 5 Discussão e Conclusão

Neste experimento foi possível analisar o projeto de dois circuitos moduladores de AM/DSB, onde foi possível constatar que a teoria envolvida na análise da modulação AM é coerente e se aplica na prática. Um dos fatores importantes observado foi em relação ao calculo do índice de modulação  $(\gamma)$  através do método do trapézio para quando  $\gamma>1$ . Observou-se que, devido a cuva de amplitudes não ser linear, o valor obtido não foi o real. Notório também é a diferença de qualidade, do sinal modulado, entre as duas topologias. O modulador a diodo, apesar de possuir fácil implementação e baixo custo, possui um fator Q (índice de mérito) baixo, o que faz com que mais energia seja perdida em frequências próximas à frequência da portadora e das bandas do sinal modulante.

# Referências

[1] T. Abrao, Notas de aula - Circuitos de Comunicação. publisher, 2002.