

GRAPH FLOWS

Algorithms and Data Structures 2 Exercise – 2023W Martin Schobesberger, Markus Weninger, Markus Jäger, Florian Beck, Achref Rihani

Institute of Pervasive Computing Johannes Kepler University Linz

teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Flow graph

directed graph with distinct vertices s (source) and t (sink)

Source

Flow graph

directed graph with distinct vertices s (source) and t (sink)

Capacities

• weights on the edges: c(u,v) >= 0

Flow graph

directed graph with distinct vertices s (source) and t (sink)

Capacities

• weights on the edges: c(u,v) >= 0

Flows

- assign flows f(u,v) to the edges such that
 - Capacity Condition: $0 \le f(u,v) \le c(u,v)$
 - Conservation Condition:

$$\sum_{u \in in(v)} f(u, v) = \sum_{w \in out(v)} f(v, w) \ \forall \ v \in V \setminus \{s, t\}$$

→ flow conservation: flow going into a vertex other than s and t equals the flow going out

$$\sum_{w \in out(s)} f(s, w) (= \sum_{u \in in(t)} f(u, t))$$

→ flow conservation: out flow of **source** must be the same as the in flow of **sink**

Problem

maximize $\sum_{w \in out(s)} f(s, w) = \sum_{u \in in(t)} f(u, t)$, the flow from source to sink

 $Flow_{in} = Flow_{out}$

current flow f(s,v) / capacity c(s,v)

FLOW EXAMPLE 1/2

Network with capacities

FLOW EXAMPLE 2/2

Two possible flows within the network

current flow / capacity

FLOW EXAMPLE 2/2

Two possible flows within the network

maximum flow = 30

RESIDUAL GRAPH

Flow graph showing the remaining capacity

Flow graph G

Residual graph G_R

- G: edge e from u to v with capacity c and flow f
- G_R : edge e' from u to v with remaining capacity c f
- G_R: edge e" from v to u with flow f

AUGMENTING PATH LEMMA

Let $P = v_1, v_2, ..., v_k$ be a path from s to t with **minimum** capacity **b** in the residual graph.

Then **b** units of flow can be added along the path *P* in the flow graph.

Flow graph

AUGMENTING PATH LEMMA

Let $P = v_1, v_2, ..., v_k$ be a path from s to t with **minimum** capacity **b** in the residual graph.

Algorithms and Data Structures 2 // 2023W // 11

Then **b** units of flow can be added along the path *P* in the flow graph.

CONCEPT OF THE "BACKEDGE"

- → Edge in the residual graph which has capacity left
- → Can be used like a regular edge to find an augmenting path
- → In the flow graph the flow along this edge is decreased

CONCEPT OF THE "BACKEDGE"

- → Edge in the residual graph which has capacity left
- → Can be used like a regular edge to find an augmenting path
- → In the flow graph the flow along this edge is decreased

CONCEPT OF THE "BACKEDGE"

- → Edge in the residual graph which has capacity left
- → Can be used like a regular edge to find an augmenting path
- → In the flow graph the flow along this edge is decreased

FORD-FULKERSON ALGORITHM (1956)

Pseudo code:

```
initialize all flows for graph G with 0 do construct residual graph G_{\mbox{\tiny R}}
```

find a source-sink path P in G_R with capacity b>0 if P found: update the flow along P with b units in G_R while P found

If the sum of the capacities of edges leaving source S is at most C, then the algorithm takes at most C iterations.

A = SourceG = Sink

Initial graph with current flow = 0

Updated graph

Flow along the path A->D->E->G increased by 1

Residual graph

Intermediate graph with current flow = 4

Updated graph

Flow along the path A->B->C->E->D->F->G increased by 1

<u>Attention</u>: E->D is a "backedge" where flow is **decreased**

Final graph with current/max flow = 5

Residual graph

ASSIGNMENT 05

JOHANNES KEPLER UNIVERSITY LINZ

Altenberger Straße 69 4040 Linz, Austria jku.at

GRAPH FLOWS

Algorithms and Data Structures 2 Exercise – 2023W Martin Schobesberger, Markus Weninger, Markus Jäger, Florian Beck, Achref Rihani

Institute of Pervasive Computing Johannes Kepler University Linz

teaching@pervasive.jku.at

JOHANNES KEPLER UNIVERSITY LINZ Altenberger Straße 69 4040 Linz, Austria jku.at