Elements Of Data Science - F2021

Week 6: Intro to Machine Learning Models Continued

10/18/2021

TODOs

- Readings:
 - PDSH 05.03 <u>Hyperparameters and Model Validation</u>
 - Recommended: https://scikit-learn.org/stable/model-selection.html
 - Recommended: PML Chapter 6 (Except for Pipelines)
 - Reference: https://scikit-learn.org/stable/supervised_learning.html
 - Reference: PML Chapter Chap 3 and 7
- Quiz 6, Due Sun Oct 24th, 11:59pm
- HW2 out end of the week
- Midterm
 - Online via gradescope, open-book, open-note, open-python
 - Released Monday Oct 25th 11:59pm
 - Due Wednesday Oct 27th 11:59pm
 - Have 24hrs after starting exam to finish
 - 30-40 questions (fill in the blank/multiple choice/short answer)
 - Questions asked/answered privately via Ed

Today

- Review Linear Models
- One Vs. Rest For Multiclass/Multilabel Classification
- Distance Based: kNN
- Tree Based: Decision Tree
- Ensembles: Bagging, Boosting, Stacking
- Model Review

Questions?

Environment Setup

Environment Setup

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from mlxtend.plotting import plot_decision_regions

from sklearn.linear_model import LinearRegression

sns.set_style('darkgrid')
%matplotlib inline
```

Environment Setup

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from mlxtend.plotting import plot_decision_regions
        from sklearn.linear_model import LinearRegression
        sns.set_style('darkgrid')
        %matplotlib inline
In [2]: def my_plot_decision_regions(X,y,model,figsize=(8,8)):
            '''Plot classifier decision regions, classification predictions and training data'''
            fig, ax = plt.subplots(1,1,figsize=figsize)
            # use mlxtend plot_decision_regions
            plot_decision_regions(X.values, y.values, model)
            ax.set_xlabel(X.columns[0]); ax.set_ylabel(X.columns[1]);
        def my_plot_regression(X, y, model, label='yhat', figsize=(8,8)):
            '''Plot regression predictions and training data'''
            # generate test data and make predictions
            X_{test} = np.linspace(X.iloc[:,0].min(),X.iloc[:,0].max(),1000).reshape(-1,1)
            y_hat = model.predict(X_test)
            # plot
            fig, ax = plt.subplots(1,1,figsize=figsize)
            ax.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
            ax.plot(X_test, y_hat, color="cornflowerblue", label=label, linewidth=2)
```

ax.set_xlabel(X.columns[0]); ax.set_ylabel(y.name); ax.legend();

Linear Models

- Simple/Multiple Linear Regression
- Logistic Regression
- SVM
- Perceptron, Multi-Layer Perceptron

Wine as Multi-Class Classification

Wine as Multi-Class Classification

One Vs. Rest (OvR) Classification For Multiclass, Multilabel

One Vs. Rest (OvR) Classification For Multiclass, Multilabel

- Can use any binary classifier for Multiclass/Multilabel classification by training multiple models:
 - model 1: class 1 vs (class 2 and class 3)
 - model 2 : class 2 vs (class 1 and class 3)
 - model 3 : class 3 vs (class 1 and class 2)
- For Multiclass
 - Predict \hat{y} using the model with highest $P(y = \hat{y} \mid x)$, or distance from boundary, or ...
- For Multilabel
 - Predict \hat{y} for any model that predicts a value above some threshold

OvR For Logistic Regression

OvR For Logistic Regression

OvR For Logistic Regression

Distance Based: k-Nearest Neighbor (kNN)

- What category do most of the k nearest neighbors belong to?

KNN in sklearn

KNN in sklearn

```
In [6]: from sklearn.neighbors import KNeighborsClassifier
        knn = KNeighborsClassifier(n_neighbors=5)
        knn.fit(X,y_c)
        my_plot_decision_regions(X,y_c,knn)
           2.5
           2.0
           1.5
           0.0
```

Effects of Standardization on Distance Based Methods

Effects of Standardization on Distance Based Methods

Curse of Dimensionality

The more dimensions, the less likely points are "close" to each other.

Curse of Dimensionality

The more dimensions, the less likely points are "close" to each other.

```
In [8]: # From Data Science From Scratch by Joel Grus

def random_distances(dim,num_pairs=10_000):
    return np.sqrt(np.square(np.random.rand(num_pairs,dim) - np.random.rand(num_pairs,dim)).sum(axis=1))

# calculate average and minimum distance for 1 to 100 dimensions
dimensions = range(1,100)
avg_distances = []
min_distances = []
min_avg_ratio = []
np.random.seed(0)
for d in dimensions:
    distances = random_distances(d)
    avg_distances.append(distances.mean())
    min_distances.append(distances.min())
    min_distances.append(distances.min() / distances.mean())
    min_avg_ratio.append(distances.min() / distances.mean())
```

Curse of Dimensionality Cont.

Curse of Dimensionality Cont.

```
In [9]: fig,ax = plt.subplots(1,2,figsize=(16,8))
         ax[0].plot(dimensions, avg_distances, label='avg distance');
         ax[0].plot(dimensions, min_distances, label='min distance');
         ax[0].legend()
         ax[0].set_title('min distance / average distance');
         ax[1].plot(dimensions, min_avg_ratio)
         ax[1].set_title('min distance / average distance');
                      min distance / average distance
                                                                  min distance / average distance
                                                                  m mm
                                                      0.7
          3.5
                                                      0.6
          3.0
                                                      0.5
          2.5
                                                      0.4
          2.0
                                                       0.3
          1.5
                                                       0.2
          1.0
          0.5
                                                      0.1
```

Regression with kNN

Regression with kNN

```
In [10]: from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
         knnr = KNeighborsRegressor(n_neighbors=5)
         knnr.fit(X_zscore[['proline']],alcohol_zscore)
         my_plot_regression(X_zscore[['proline']], alcohol_zscore, knnr)
```

Decision Tree

• What answer does a series of yes/no questions lead us to?

From PML

Decision Tree Classifier in sklearn

Decision Tree Classifier in sklearn

```
In [12]: from sklearn.tree import DecisionTreeClassifier
         dtc_md3 = DecisionTreeClassifier(max_depth=3) # max_depth: max number of questions
         dtc_md3.fit(X,y_c)
         my_plot_decision_regions(X,y_c,dtc_md3)
            2.5
            2.0
            0.0
```

Building a Decision Tree

• How to decide which question to choose? Reduce Impurity

Building a Decision Tree

• How to decide which question to choose? Reduce Impurity

From PML

Plot Learned Decision Tree Using sklearn

Plot Learned Decision Tree Using sklearn

Decision Tree: Increase Maximum Depth

Decision Tree: Increase Maximum Depth

```
In [15]: dtc_md10 = DecisionTreeClassifier(max_depth=10)
         dtc_md10.fit(X,y_c)
         fig, ax = plt.subplots(1, 2, figsize=(16, 8))
         plot_decision_regions(X.values, y_c.values, clf=dtc_md3, ax=ax[0]);
         ax[0].set_xlabel(X.columns[0]); ax[0].set_ylabel(X.columns[1]);
         plot_decision_regions(X.values, y_c.values, clf=dtc_md10, ax=ax[1]);
         ax[1].set_xlabel(X.columns[0]); ax[1].set_ylabel(X.columns[1]);
            2.5
            2.0
                                                      2.0
            1.5
            0.0
                                                      0.0
```

Plot Learned Decision Tree Using sklearn

- For tree with max_depth=10

Plot Learned Decision Tree Using sklearn

- For tree with max_depth=10

Regression with Decision Trees

Regression with Decision Trees

```
In [17]: from sklearn.tree import DecisionTreeRegressor
          dtr = DecisionTreeRegressor(max_depth=3)
          dtr.fit(X[['proline']], df_wine.alcohol)
          my_plot_regression(X[['proline']], df_wine.alcohol, dtr)
             15.0
             14.5
             14.0
             13.5
           ਫ਼ੂ 13.0
             12.0
             11.5
             11.0
                                   proline
```

Ensemble Methods

- "Wisdom of the crowd"
- Can often achieve better performance with collection of learners
- Often use shallow trees as base learners

Ensemble Methods

- "Wisdom of the crowd"
- Can often achieve better performance with collection of learners
- Often use shallow trees as base learners

Common methods for generating ensembles:

- Bagging (Bootstrap Aggregation)
 - Random Forest
- Boosting
 - Gradient Boosting
- Stacking

Random Forest and Gradient Boosted Trees

From https://www.researchgate.net/publication/301638643 Electromyographic Patterns during Golf Swing Activation Sequence Profiling and Prediction of Shot Effectiveness

Bagging with Random Forests

- Trees built with bootstrap samples and subsets of features
- Achieve variation with random selection of observations and features

Sample indices	Bagging round I	Bagging round 2	
	2	7	
2	2	3	
3	I	2	
4	3	I	
5	7	I	
6	2	7	
7	4	7	
	C_{I}	C ₂	C_m

Random Forests with sklearn

Random Forests with sklearn

Regression with RandomForests

Regression with RandomForests

```
In [19]: from sklearn.ensemble import RandomForestRegressor
          rfr = RandomForestRegressor(n_estimators=3, n_jobs=-1)
          rfr.fit(df_wine[['proline']],df_wine.alcohol)
         my_plot_regression(df_wine[['proline']], df_wine.alcohol, rfr)
            15.0
            14.5
            14.0
            13.5
           을 13.0
            12.0
            11.5
            11.0
```

Gradient Boosted Trees

- Trees built by adding weight to mis-classification
- Achieve variation due to changes in weights on observations

From PML

Gradient Boosted Trees in sklearn

Gradient Boosted Trees in sklearn

```
In [20]: from sklearn.ensemble import GradientBoostingClassifier
         gbc = GradientBoostingClassifier(n_estimators=10)
         gbc.fit(X,y_c)
         my_plot_decision_regions(X,y_c,gbc)
            2.5
            2.0
            1.5
            0.5
            0.0
```

Regression with Gradient Boosted Trees

Regression with Gradient Boosted Trees

```
In [21]: from sklearn.ensemble import GradientBoostingRegressor
          gbr = GradientBoostingRegressor(n_estimators=10)
          gbr.fit(df_wine.proline.values.reshape(-1,1),df_wine.alcohol)
          my_plot_regression(df_wine[['proline']], df_wine.alcohol, gbr)
            15.0
            14.5
            14.0
            13.5
           을 13.0
            11.5
            11.0
                                  proline
```

Stacking

From https://blogs.sas.com/content/subconsciousmusings/2017/05/18/stacked-ensemble-models-win-data-science-competitions/

Stacking for Classification

Stacking for Classification

Stacking for Regression

Stacking for Regression

Review of Models

Model Review: Simple/Multiple Linear Regression

- Use for: Regression
- Pros:
 - fast to train
 - interpretable coefficients
- Cons:
 - assumes linear relationship
 - depends on removing colinear features

Model Review: Logistic Regression

- Use for: Classification
- Pros:
 - fast to train
 - interpretable coefficients (log odds)
- Cons:
 - assumes linear boundary
 - depends on removing colinear features

Model Review: Support Vector Machine (SVM)

- Use for: Classification and Regression
- Pros:
 - fast to evaluate
 - can use kernel trick to learn non-linear functions
- Cons:
 - slow to train
 - can fail to converge on very large datasets

Model Review: Multi-Layer Perceptron

- Use for Classification or Regression
- Pros:
 - non-linear boundary
- Cons:
 - non-convex loss function (sensitive to initial weights)
 - sensitive to feature scaling
 - no GPU support in sklearn: use tensorflow or pytorch

Model Review: k Nearest Neighbor (kNN)

- Use for: Classification or Regression
- Pros:
 - fast to train
 - non-linear boundary
- Cons:
 - potentially slow to predict
 - curse of dimensionality

Model Review: Decision Tree

- Use for: Classification or Regression
- Pros:
 - very interpretable
 - quick to predict
 - can handle numeric and categorical variables without transformation
- Cons:
 - tendency to overfit (learn training set too well, more next class!)

Model Review: Random Forest (Ensemble via Bagging)

- Use for: Classification or Regression
- Pros:
 - less likely to overfit than decision tree
 - quick to train (through parallelization, quick to predict
- Cons:
 - less interpretible, though still possible

From https://www.researchgate.net/publication/301638643 Electromyographic Patterns during Golf Swing Activation Sequence Profiling and Prediction of Shot Effectiveness

Model Review: Gradient Boosted Trees (Ensemble via Boosting)

- Use for: Classification or Regression
- Pros:
 - pays more attention to difficult decision regions
 - quick to predict
 - tends to work well on difficult tasks
- Cons:
 - slow to train (parallelization not possible)
 - less interpretible, though still possible

Model Review: Ensemble via Stacking

- Use for: Classification (or Regression)
- Pros:
 - combines benefits of multiple learning types
 - easy to implement
 - tends to win competitions
- Cons:
 - difficult to interpret
 - training/prediction time depends on component models

Neural Networks (aka Deep Learning)

- Pros and Cons of Deep Learning
 - sensitive to initialization and structure
 - high complexity -> needs more data
 - low interpretability
 - can learn complex interactions
 - performs well on tasks involving complex signals (ex images, sound, etc)

Questions?