5. Continuous functions

- cluster points of sets
- limits of functions and sequential properties
- left and right limits
- continuous functions
- operations that preserves continuity
- extreme value theorem
- intermediate value theorem
- uniform and Lipschitz continuity

Cluster points of sets

Definition 5.1 Let $S \subseteq \mathbf{R}$. We say that the point $c \in \mathbf{R}$ is a **cluster point** of S if for all $\delta > 0$, we have $(c - \delta, c + \delta) \cap S \setminus \{c\} \neq \emptyset$, *i.e.*, for all $\delta > 0$, there exists some $x \in S$, such that $0 < |x - c| < \delta$.

examples:

- $S = \{1/n \mid n \in \mathbb{N}\}$ has a cluster point c = 0
- S = (0,1) has a set of cluster points given by [0,1]
- ullet $S={f Q}$ has a set of cluster points given by ${f R}$
- $S = \{0\}$ has no cluster points
- $S = \mathbf{Z}$ has no cluster points

Theorem 5.2 Let $S \subseteq \mathbf{R}$. Then $c \in \mathbf{R}$ is a cluster point of S if and only if there exists a sequence $(x_n)_{n=1}^{\infty}$ of elements in $S \setminus \{c\}$ such that $\lim_{n\to\infty} x_n = c$.

proof:

- suppose c is a cluster point of S, then $\forall \delta > 0$, $\exists x \in S$ such that $0 < |x c| < \delta$
 - $\forall n \in \mathbb{N}$, choose $x_n \in S$ such that $0 < |x_n c| < \frac{1}{n}$
 - $-\frac{1}{n} \to 0 \implies |x_n c| \to 0 \implies x_n \to c$
- suppose there exists a sequence $(x_n)_{n=1}^{\infty}$ with $x_n \in S \setminus \{c\}$ for all $n \in \mathbb{N}$ such that $x_n \to c$, let $\delta > 0$
 - $-x_n \to c \text{ with } x_n \in S \setminus \{c\} \implies \exists M \in \mathbf{N} \text{ such that } \forall n \geq M,$ $0 < |x_n c| < \delta$
 - choose $x=x_M$, then we have $0<|x-c|<\delta \implies S$ has cluster point c

Limits of functions

Definition 5.3 Let $f \colon S \to \mathbf{R}$ be a function and c be a cluster point of $S \subseteq \mathbf{R}$. Suppose there exists an $L \in \mathbf{R}$, and for all $\epsilon > 0$, there exists some $\delta > 0$ such that for all $x \in S$ and $0 < |x - c| < \delta$, we have $|f(x) - L| < \epsilon$. We then say f(x) **converges** to L as x goes to c, and we write

$$f(x) \to L$$
 as $x \to c$.

We say L is a **limit** of f(x) as x goes to c, and if L is unique, we write

$$\lim_{x \to c} f(x) = L.$$

Remark 5.4 The function $f\colon S\to \mathbf{R}$ does not converge to $L\in \mathbf{R}$ as x goes to a cluster point c of S implies that there exists some $\epsilon>0$, such that for all $\delta>0$, there exists some $x\in S$ and $0<|x-c|<\delta$, so that $|f(x)-L|\geq \epsilon$.

Theorem 5.5 Let $f: S \to \mathbf{R}$ be a function and c be a cluster point of $S \subseteq \mathbf{R}$. If $f(x) \to L_1$ and $f(x) \to L_2$ as $x \to c$, then $L_1 = L_2$.

proof: let $\epsilon > 0$

- $f(x) \to L_1$ as $x \to c \implies \exists \delta_1 > 0$ such that for all $x \in S$ and $0 < |x c| < \delta_1$, $|f(x) L_1| < \epsilon/2$
- $f(x) \to L_2$ as $x \to c \implies \exists \delta_2 > 0$ such that for all $x \in S$ and $0 < |x c| < \delta_2$, $|f(x) L_2| < \epsilon/2$
- choose $\delta=\min\{\delta_1,\delta_2\}$, then for all $x\in S$ and $0<|x-c|<\delta$, we have $|L_1-L_2|=|L_1-f(x)+f(x)-L_2|\leq |f(x)-L_1|+|f(x)-L_2|<\epsilon/2+\epsilon/2=\epsilon$ $\Longrightarrow L_1=L_2$

Example 5.6 Let the function f(x) = ax + b. Then, for all $c \in \mathbf{R}$, we have $\lim_{x\to c} f(x) = ac + b$.

proof: let $\epsilon>0$, choose $\delta=\frac{\epsilon}{|a|+1}$, then for all $x\in\mathbf{R}$ and $0<|x-c|<\delta$, we have

$$|f(x) - (ac + b)| = |(ax + b) - (ac + b)| = |a||x - c| < |a|\delta = \frac{|a|}{|a| + 1}\epsilon \le \epsilon$$

Example 5.7 Let $f:(0,\infty)\to \mathbf{R}$ with $f(x)=\sqrt{x}$. Then, for all c>0, we have $\lim_{x\to c} f(x)=\sqrt{c}$.

proof: let $\epsilon>0$, choose $\delta=\epsilon\sqrt{c}$, then for all x>0 and $0<|x-c|<\delta$, we have

$$|f(x) - \sqrt{c}| = |\sqrt{x} - \sqrt{c}| = \left| \frac{(\sqrt{x} - \sqrt{c})(\sqrt{x} + \sqrt{c})}{\sqrt{x} + \sqrt{c}} \right|$$
$$= \left| \frac{x - c}{\sqrt{x} + \sqrt{c}} \right| \le \frac{|x - c|}{\sqrt{c}} < \frac{\delta}{\sqrt{c}} < \epsilon$$

Example 5.8 Let
$$f(x) = \begin{cases} 1 & x \neq 0 \\ 2 & x = 0 \end{cases}$$
. Then, $\lim_{x \to 0} f(x) = 1 \ (\neq f(0))$.

proof: let $\epsilon > 0$, choose $\delta = 1$, then $\forall x$ satisfies $0 < |x| < \delta$, we have $x \neq 0 \implies \forall x$ satisfies $0 < |x| < \delta$, we have $|f(x) - 1| = |1 - 1| = 0 < \epsilon$

Theorem 5.9 Let $f: S \to \mathbf{R}$ be a function and c be a cluster point of $S \subseteq \mathbf{R}$. Then, the following statements are equivalent:

• The function f(x) converges to $L \in \mathbf{R}$ as x goes to c, i.e.,

$$\lim_{x \to c} f(x) = L.$$

• For all sequences $(x_n)_{n=1}^{\infty}$ in $S \setminus \{c\}$ such that $\lim_{n \to \infty} x_n = c$, we have $\lim_{n \to \infty} f(x_n) = L$.

proof:

- suppose $\lim_{x\to c} f(x) = L$, let $\epsilon > 0$
 - $\exists \delta > 0$, such that for all $x \in S$ and $0 < |x c| < \delta$, we have $|f(x) L| < \epsilon$
 - $-x_n \to c, x_n \in S \setminus \{c\} \implies \exists M \in \mathbf{N} \text{ such that } \forall n \geq M,$ $0 < |x_n c| < \delta \implies \forall n \geq M, \text{ we have } |f(x_n) L| < \epsilon, i.e.,$ $f(x_n) \to L$
- ullet suppose for all sequences in $S\setminus\{c\}$ s.t. $x_n\to c$, we have $f(x_n)\to L$
 - assume $\lim_{x\to c} f(x) \neq L \implies \exists \epsilon > 0$ s.t. $\forall \delta > 0$, there exists some $x \in S$ and $0 < |x-c| < \delta$, so that $|f(x) L| \ge \epsilon$
 - choose a sequence $(x_n)_{n=1}^{\infty}$ such that $\forall n \in \mathbb{N}$, $x_n \in S \setminus \{c\}$, $0 < |x_n c| < \frac{1}{n}$, and $|f(x_n) L| \ge \epsilon$ for all $n \in \mathbb{N}$
 - however, $\frac{1}{n} \to 0 \implies x_n \to c \implies f(x_n) \to L \implies \exists M \in \mathbb{N}$ s.t. $\forall n \geq M$, $|f(x_n) L| < \epsilon$, which is a contradiction

Theorem 5.10 For all $c \in \mathbf{R}$, we have $\lim_{x \to c} x^2 = c^2$.

proof: let $(x_n)_{n=1}^{\infty}$ be a sequence in $\mathbf{R} \setminus \{c\}$ such that $x_n \to c$, then according to theorem 3.24, we have $x_n^2 \to c^2 \implies \lim_{x \to c} x^2 = c^2$ (theorem 5.9)

Theorem 5.11 The limit $\lim_{x\to 0}\sin(1/x)$ does not exist, but $\lim_{x\to 0}x\sin(1/x)=0$.

proof:

- we first show that $\lim_{x\to 0} x \sin(1/x) = 0$: let $(x_n)_{n=1}^{\infty}$ be a sequence in $\mathbf{R}\setminus\{0\}$ such that $x_n\to 0$; since $\forall n\in\mathbf{N}$, $0\leq |x_n\sin(1/x_n)|\leq |x_n|$, and $x_n\to 0$, we have $|x_n\sin(1/x_n)|\to 0 \implies \lim_{x\to 0} x\sin(1/x)=0$
- we now show that $\lim_{x\to 0} \sin(1/x)$ does not exist:
 - choose a sequence $(x_n)_{n=1}^{\infty}$ where $x_n = \frac{2}{(2n-1)\pi}$, then we have $x_n \to 0$

- consider the sequence $(\sin(1/x_n))_{n=1}^{\infty}$, we have

$$\sin(1/x_n) = \sin\left(\frac{(2n-1)\pi}{2}\right) = (-1)^{n+1}$$

 $\implies (\sin(1/x_n))_{n=1}^{\infty}$ does not converge $\implies \lim_{x\to 0} \sin(1/x)$ does not exist

Sequential properties

Theorem 5.12 Let $f,g: S \to \mathbf{R}$ be functions and c be a cluster point of $S \subseteq \mathbf{R}$. Suppose $f(x) \leq g(x)$ for all $x \in S$, and we have $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ both exist, then $\lim_{x \to c} f(x) \leq \lim_{x \to c} g(x)$.

proof: let $(x_n)_{n=1}^{\infty}$ be a sequence in $S \setminus \{c\}$ such that $x_n \to c$

- $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ exist $\implies (f(x_n))_{n=1}^{\infty}$ and $(g(x_n))_{n=1}^{\infty}$ converges
- let $f(x_n) \to L_1$, $g(x_n) \to L_2$, since $f(x) \le g(x)$ for all $x \in S$, we have $L_1 \le L_2$, i.e., $\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$

similarly, we can prove the following theorems:

Theorem 5.13 Let $f: S \to \mathbf{R}$ be a function and c be a cluster point of $S \subseteq \mathbf{R}$. Suppose the limit $\lim_{x \to c} f(x)$ exists, and there exists $a, b \in \mathbf{R}$ such that $a \le f(x) \le b$ for all $x \in S \setminus \{c\}$, then $a \le \lim_{x \to c} f(x) \le b$.

Theorem 5.14 Let c be a cluster point of $S \subseteq \mathbf{R}$, and $f, g, h \colon S \to \mathbf{R}$ be functions such that $f(x) \leq g(x) \leq h(x)$ for all $x \in S \setminus \{c\}$. Suppose $\lim_{x \to c} f(x) = \lim_{x \to c} h(x)$, then

$$\lim_{x \to c} g(x) = \lim_{x \to c} f(x) = \lim_{x \to c} h(x).$$

Theorem 5.15 Let c be a cluster point of $S \subseteq \mathbf{R}$, and $f, g \colon S \to \mathbf{R}$ be functions such that $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist, we have:

- $\lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) + \lim_{x\to c} g(x);$
- $\lim_{x\to c} (f(x) \cdot g(x)) = \lim_{x\to c} f(x) \cdot \lim_{x\to c} g(x);$
- if $\lim_{x\to c} g(x) \neq 0$ and $g(x) \neq 0$ for all $x \in S \setminus \{c\}$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}.$$

Theorem 5.16 Let c be a cluster point of $S \subseteq \mathbf{R}$ and $f \colon S \to \mathbf{R}$ be a function such that $\lim_{x \to c} f(x)$ exists, then we have

$$\lim_{x \to c} |f(x)| = |\lim_{x \to c} f(x)|.$$

Left and right limits

Definition 5.17 Let $S \subseteq \mathbf{R}$ and $f \colon S \to \mathbf{R}$ be a function.

Suppose c is a cluster point of $S\cap (-\infty,c)$, we say f(x) converges to L as $x\to c^-$, if for all $\epsilon>0$, there exists a $\delta>0$ such that for all $x\in S$ and $c-\delta < x < c$, we have $|f(x)-L|<\epsilon$. We call such a limit the **left limit** of f at c, denoted $\lim_{x\to c^-} f(x)$.

Suppose c is a cluster point of $S\cap (c,\infty)$, we say f(x) converges to L as $x\to c^+$, if for all $\epsilon>0$, there exists a $\delta>0$ such that for all $x\in S$ and $c< x< c+\delta$, we have $|f(x)-L|<\epsilon$. We call such a limit the **right limit** of f at c, denoted $\lim_{x\to c^+}f(x)$.

Example 5.18 Consider the function f given by

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0, \end{cases}$$

then $\lim_{x\to 0^-} f(x) = 0$ and $\lim_{x\to 0^+} f(x) = 1$, even if f(0) is undefined.

Continuous functions

Definition 5.19 Let $S \subseteq \mathbf{R}$ and $c \in S$. We say the function f is **continuous** at c if for all $\epsilon > 0$, there exists a $\delta > 0$ such that for all $x \in S$ and $|x - c| < \delta$, we have $|f(x) - f(c)| < \epsilon$.

We say the function f is continuous on the set U for $U \subseteq S$ if f is continuous at every point of U.

Remark 5.20 The function f is not continuous at point $c \in S$ if there exists some $\epsilon > 0$ such that for all $\delta > 0$, there exists some $x \in S$ and $|x - c| < \delta$, so that $|f(x) - f(c)| \ge \epsilon$.

Example 5.21 The function f(x) = ax + b is continuous on \mathbf{R} .

proof: let $c \in \mathbf{R}$, $\epsilon > 0$, choose $\delta = \frac{\epsilon}{|a|+1}$, then for all $x \in \mathbf{R}$, $|x-c| < \delta$:

$$|f(x) - f(c)| = |ax + b - ac - b| = |a||x - c| < |a|\delta = \frac{|a|}{|a| + 1}\epsilon \le \epsilon$$

Example 5.22 The function f given by

$$f(x) = \begin{cases} 1 & x \neq 0 \\ 2 & x = 0 \end{cases}$$

is not continuous at c=0.

proof: choose $\epsilon = 1$ and let $\delta > 0$, then $x = \delta/2$ satisfies $|x| < \delta$, but

$$|f(x) - f(0)| = |1 - 0| = 1 \ge \epsilon$$

Theorem 5.23 Let $S \subseteq \mathbf{R}$ be a set, $c \in S$ be a point, and $f : S \to \mathbf{R}$ be a function.

- If c is not a cluster point of S, then the function f is continuous at c.
- If c is a cluster point of S, then the function f is continuous at c if and only if $\lim_{x\to c} f(x) = f(c)$.
- The function f is continuous at c if and only if for all sequences $(x_n)_{n=1}^{\infty}$ in S with $\lim_{n\to\infty} x_n = c$, we have $\lim_{n\to\infty} f(x_n) = f(c)$.

proof: to show the first statement, let $\epsilon > 0$

• $c \in S$ and c is not a cluster point of $S \implies \exists \delta > 0$ such that

$$(c - \delta, c + \delta) \cap S = \{c\}$$

ullet then for all $x \in S$ such that $|x - c| < \delta$, we have x = c, and hence,

$$|f(x) - f(c)| = |f(c) - f(c)| = 0 < \epsilon$$

we now show the second statement:

- suppose f is continuous at c, let $\epsilon > 0$
 - f is continuous at $c \implies \exists \delta > 0$ such that for all $x \in S$ and $|x-c| < \delta$, we have $|f(x)-f(c)| < \epsilon$
 - then $\forall x \in S$ such that $0 < |x-c| < \delta$, $|f(x)-f(c)| < \epsilon \implies \lim_{x \to c} f(x) = f(c)$
- suppose $\lim_{x\to c} f(x) = f(c)$, let $\epsilon > 0$
 - $f(x) \to f(c)$ as $x \to c \implies \exists \delta > 0$ such that for all $x \in S$ and $0 < |x c| < \delta$, we have $|f(x) f(c)| < \epsilon$
 - then for all $x \in S$ such that $|x c| < \delta$: if x = c, we have

$$|f(x) - f(c)| = |f(c) - f(c)| = 0 < \epsilon$$

if $x \neq c$, we have $0 < |x - c| < \delta \implies |f(x) - f(c)| < \epsilon$

- put together, we conclude that the function f is continuous at c

we now show the third statement

- suppose f is continuous at c, let $(x_n)_{n=1}^{\infty}$ be a sequence in S, $x_n \to c$, let $\epsilon > 0$
 - f is continuous at $c \implies \exists \delta > 0$ such that for all $x \in S$ and $|x-c| < \delta$, we have $|f(x)-f(c)| < \epsilon$
 - $-x_n \to c \implies \exists M \in \mathbf{N} \text{ such that } \forall n \geq M, |x_n c| < \delta \implies \forall n \geq M, |f(x_n) f(c)| < \epsilon \implies (f(x_n))_{n=1}^{\infty} \to f(c)$
- suppose for all $(x_n)_{n=1}^{\infty}$ in S such that $x_n \to c$, we have $f(x_n) \to f(c)$
 - assume f is not continuous at $c \implies \exists \epsilon > 0$, $\forall \delta > 0$, $\exists x \in S$ such that $|x-c| < \delta$, but $|f(x)-f(c)| \ge \epsilon$
 - choose $x_n \in S$ s.t. $\forall n \in \mathbb{N}$, $0 \le |x_n c| < \frac{1}{n}$ but $|f(x_n) f(x)| \ge \epsilon$
 - $-\frac{1}{n} \to 0 \implies x_n \to c \implies f(x_n) \to f(c) \implies \exists M \in \mathbb{N}$ such that $\forall n \geq M$, $|f(x_n) f(c)| < \epsilon$, which is a contradiction

Theorem 5.24 The functions $\sin x$ and $\cos x$ are continuous on \mathbf{R} .

proof:

- recall the following properties of $\sin x$ and $\cos x$ for all $x \in \mathbf{R}$:
 - $-\sin^2(x) + \cos^2(x) = 1 \implies |\sin x| \le 1$ and $|\cos x| \le 1$
 - $-|\sin x| \le |x|$
 - $-\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b)$
 - $-\sin(a) \sin(b) = 2\sin\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$
- we first show that $\sin x$ is continuous, let $c \in \mathbf{R}$, let $\epsilon > 0$, choose $\delta = \epsilon$, then for all $x \in \mathbf{R}$ such that $|x c| < \delta$, we have

$$|\sin x - \sin c| = \left| 2\sin\left(\frac{x-c}{2}\right)\cos\left(\frac{x+c}{2}\right) \right| \le 2\left|\sin\left(\frac{x-c}{2}\right)\right| \le 2\frac{|x-c|}{2} = |x-c| < \epsilon$$

• we now show that $\cos x$ is continuous, let $c \in \mathbf{R}$, let $(x_n)_{n=1}^{\infty}$ be a sequence with $x_n \to c$, then we have $x_n + \frac{\pi}{2} \to c + \frac{\pi}{2}$, and hence,

$$\lim_{n \to \infty} \cos x_n = \lim_{n \to \infty} \sin \left(x_n + \frac{\pi}{2} \right) = \sin \left(c + \frac{\pi}{2} \right) = \cos c$$

Theorem 5.25 Dirichlet function. The Dirichlet function given by

$$f(x) = \begin{cases} 1 & x \in \mathbf{Q} \\ 0 & x \notin \mathbf{Q} \end{cases}$$

is not continuous on all of \mathbf{R} .

proof: let $c \in \mathbf{R}$

• if $c \in \mathbf{Q}$, then for all $n \in \mathbf{N}$, there exists $x_n \notin \mathbf{Q}$ s.t. $c < x_n < c + \frac{1}{n}$; $\frac{1}{n} \to 0 \implies x_n \to c$, however,

$$\lim_{n \to \infty} f(x_n) = 0 \neq f(c) = 1$$

 $\implies (f(x_n))_{n=1}^{\infty}$ does not converge to f(c)

• if $c \notin \mathbf{Q}$, then for all $n \in \mathbf{N}$, there exists $x_n \in \mathbf{Q}$ s.t. $c < x_n < c + \frac{1}{n}$; $\frac{1}{n} \to 0 \implies x_n \to c$, however,

$$\lim_{n \to \infty} f(x_n) = 1 \neq f(c) = 0$$

 $\implies (f(x_n))_{n=1}^{\infty}$ does not converge to f(c)

Operations that preserves continuity

Theorem 5.26 Let $f, g \colon S \to \mathbf{R}$ be functions on $S \subseteq \mathbf{R}$ and are continuous at $c \in S$.

- The function f + g is continuous at c.
- The function $f \cdot g$ is continuous at c.
- If $g(x) \neq 0$ for all $x \in S$, then the function f/g is continuous at c.

proof: we show that the function f+g is continuous at c, the other two statements can be proved similarly; let $(x_n)_{n=1}^{\infty}$ be a sequence in S with $x_n \to c$

- f is continuous at $c \implies \lim_{n \to \infty} f(x_n) = f(c)$
- g is continuous at $c \implies \lim_{n \to \infty} g(x_n) = g(c)$
- hence, $\lim_{n\to\infty}(f(x_n)+g(x_n))=f(c)+g(c)\implies f+g$ is continuous at c

Theorem 5.27 Let $f: B \to \mathbf{R}$ and $g: A \to B$ be functions on $A, B \subseteq \mathbf{R}$. If g is continuous at $c \in A$ and f is continuous at $g(c) \in B$, then $f \circ g$ is continuous at c.

proof: let $(x_n)_{n=1}^{\infty}$ be a sequence in A and $x_n \to c \implies g(x_n) \to g(c) \implies f(g(x_n)) \to f(g(c)) \implies f \circ g$ is continuous at c

Theorem 5.28 Let f be a polynomial function of the form

$$f(x) = a_p x^p + \dots + a_1 x + a_0.$$

Then, the function f is continuous on \mathbf{R} .

proof: let $c \in \mathbf{R}$, let $(x_n)_{n=1}^{\infty}$ be a sequence in \mathbf{R} and $x_n \to c$, then:

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} (a_p x_n^p + \dots + a_1 x_n + a_0)$$

$$= a_p \lim_{n \to \infty} x_n^p + \dots + a_1 \lim_{n \to \infty} x_n + a_0$$

$$= a_p c^p + \dots + a_1 c + a_0 = f(c)$$

Example 5.29 Theorems 5.26 and 5.27 allows us to show that some given function is continuous without a huge $\epsilon - \delta$ proof, for example:

- The function $1/x^2$ is continuous on $(0,\infty)$, since x^2 is continuous on $(0,\infty)$.
- The function $(\cos(1/x^2))^2$ is continuous on $(0, \infty)$, since $\cos x$ is continuous on \mathbf{R} , and x^2 is continuous on $(0, \infty)$.

Continuous functions

Extreme value theorem

Definition 5.30 A function $f: S \to \mathbf{R}$ is **bounded** if there exists some $B \ge 0$ such that for all $x \in S$, we have $|f(x)| \le B$.

Theorem 5.31 If the function $f:[a,b] \to \mathbf{R}$ is continuous then f is bounded.

proof:

- suppose f is unbounded, then $\forall B \geq 0$, $\exists x \in [a,b]$ such that |f(x)| > B
- let $(x_n)_{n=1}^{\infty}$ be a sequence in [a,b] such that for all $n \in \mathbb{N}$, $|f(x_n)| > n$
- $(x_n)_{n=1}^{\infty}$ is in $[a,b] \Longrightarrow (x_n)_{n=1}^{\infty}$ is bounded \Longrightarrow there exists a subsequence $(x_{n_i})_{i=1}^{\infty}$ (theorem 3.37) that converges to $c \in \mathbf{R}$

- $a \le x_n \le b \implies a \le x_{n_i} \le b \implies c \in [a, b]$
- f is continuous on $[a,b] \implies f(x_{n_i}) \to f(c) \implies (f(x_{n_i}))_{i=1}^{\infty}$ is bounded
- $|f(x_{n_i})| > n_i \implies (n_i)_{i=1}^{\infty}$ is bounded, which is a contradiction

Definition 5.32 Let $f: S \to \mathbf{R}$ be a function. We say the function f achieves an **absolute minimum** at c if $f(x) \geq f(c)$ for all $x \in S$. We say the function f achieves an **absolute maximum** at d if $f(x) \leq f(d)$ for all $x \in S$.

Theorem 5.33 Extreme value theorem. Let $f: [a,b] \to \mathbf{R}$ be a function on a closed, bounded interval [a,b]. If the function f is continuous on [a,b], then f achieves absolute maximum and absolute minimum on [a,b].

proof: we show the case for absolute maximum

- f is continuous on $[a,b] \Longrightarrow f$ is bounded \Longrightarrow the set $E = \{f(x) \mid x \in [a,b]\}$ is bounded $\Longrightarrow \sup E \in \mathbf{R}$ exists
- $\sup E$ is the supremum of $\{f(x) \mid x \in [a,b]\} \implies \forall x \in [a,b]$, $f(x) \leq \sup E$, and, there exists some sequence $(f(x_n))_{n=1}^{\infty}$ with $x_n \in [a,b]$ such that $f(x_n) \to \sup E$
- $(x_n)_{n=1}^{\infty}$ is in $[a,b] \Longrightarrow$ there exists a subsequence $(x_{n_i})_{i=1}^{\infty}$ such that $x_{n_i} \to d$ and $d \in [a,b] \Longrightarrow f(x_{n_i}) \to f(d)$ (since f is continuous)
- $f(x_n) \to \sup E \implies f(x_{n_i}) \to \sup E \implies \sup E = f(d) \implies$ there exists a point $d \in [a,b]$ such that $f(x) \le f(d)$ for all $x \in [a,b]$

Remark 5.34 To apply the extreme value theorem, the function f has to be continuous on a closed, bounded interval.

If the function $f \colon [a,b] \to \mathbf{R}$ is not continuous, consider the function given by

$$f(x) = \begin{cases} \frac{1}{2} & x = 0 \text{ or } x = 1\\ x & x \in (0, 1), \end{cases}$$

which neither achieves an absolute maximum nor an absolute minimum on [0,1].

If the function $f\colon S\to \mathbf{R}$ is continuous but S not closed and bounded, consider the function given by

$$f(x) = \frac{1}{x} - \frac{1}{1-x}, \quad S = (0,1),$$

which neither achieves an absolute maximum nor an absolute minimum on [0,1].

Intermediate value theorem

Theorem 5.35 Let $f:[a,b] \to \mathbf{R}$ be a continuous function. If f(a) < 0 and f(b) > 0, then there exists some $c \in (a,b)$ such that f(c) = 0.

proof: let $a_1 = a$, $b_1 = b$, for all $n \in \mathbb{N}$, given a_n and b_n , define a_{n+1} and b_{n+1} as:

•
$$a_{n+1} = a_n$$
, $b_{n+1} = \frac{a_n + b_n}{2}$, if $f\left(\frac{a_n + b_n}{2}\right) \ge 0$

•
$$a_{n+1} = \frac{a_n + b_n}{2}$$
, $b_{n+1} = b_n$, if $f\left(\frac{a_n + b_n}{2}\right) < 0$

then the sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ has the following properties:

- $a \le a_n \le a_{n+1} \le b_{n+1} \le b_n \le b$ for all $n \in \mathbb{N} \Longrightarrow (a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are monotone and bounded $\Longrightarrow (a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ converge, let $a_n \to c$, $b_n \to d$
- $f(a_n) \leq 0$, $f(b_n) \geq 0$ for all $n \in \mathbb{N}$, since f is continuous, $c, d \in [a, b]$ $\implies \lim_{n \to \infty} f(a_n) = f(c) \leq 0$ and $\lim_{n \to \infty} f(b_n) = f(d) \geq 0$

• $b_{n+1}-a_{n+1}=\frac{b_n-a_n}{2}=\frac{b_{n-1}-a_{n-1}}{2^2}=\cdots=\frac{b-a}{2^n}\implies b_n-a_n=\frac{b-a}{2^{n-1}}$, and hence, we have

$$\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b - a}{2^{n-1}} = 0 = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n$$

$$\implies \lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n \implies c = d$$

put together, we have $f(c) \leq 0$, $f(d) \geq 0$, and f(c) = f(d) $\implies f(c) = f(d) = 0 \implies \exists c \in (a,b) \text{ such that } f(c) = 0$

Theorem 5.36 Bolzano's intermediate value theorem. Let $f: [a,b] \to \mathbf{R}$ be a continuous function. Suppose $y \in \mathbf{R}$ such that f(a) < y < f(b) or f(b) < y < f(a), then there exists a $c \in (a,b)$ such that f(c) = y.

proof: we consider the case for f(a) < y < f(b), the other case is similar

- let $g: [a,b] \to \mathbf{R}$ be a function given by g(x) = f(x) y, then g is continuous on [a,b] (theorem 5.26)
- $f(a) < y < f(b) \implies g(a) = f(a) y < 0$, g(b) = f(b) y > 0 $\implies \exists c \in (a,b) \text{ such that } g(c) = f(c) - y = 0 \text{ (theorem 5.35)}$ $\implies \exists c \in (a,b) \text{ such that } f(c) = y$

Theorem 5.37 Let $f:[a,b] \to \mathbf{R}$ be a continuous function. Suppose the function f achieves absolute minimum at $c \in [a,b]$, and achieves absolute maximum at $d \in [a,b]$. Then, we have f([a,b]) = [f(c),f(d)], *i.e.*, every value between the absolute minimum value and the absolute maximum value is achieved.

proof:

- ullet according to theorem 5.33, we have $f([a,b])\subseteq [f(c),f(d)]$
- according to theorem 5.36, we have $[f(c), f(d)] \subseteq f([c, d]) \subseteq f([a, b])$
- hence, f([a, b]) = [f(c), f(d)]

Remark 5.38 Similarly, theorem 5.36 is false if f is not continuous.

Example 5.39 The polynomial given by $f(x) = x^{2021} + x^{2020} + 9.03x + 1$ has at least one real root.

proof: we have f(0)=1>0 and f(-1)=-8.03<0, hence, by theorem 5.36, there exists some $c\in(-1,0)$ such that f(c)=0

Uniform continuity

Example 5.40 The function $f(x) = \frac{1}{x}$ is continuous on (0,1).

proof: let $c\in(0,1)$ and $\epsilon>0$, choose $\delta=\min\left\{\frac{c}{2},\frac{c^2}{2}\epsilon\right\}$, then $\forall x\in(0,1)$ such that $|x-c|<\delta$, we have

•
$$||x| - |c|| \le |x - c| < \delta \le \frac{c}{2} \implies -\frac{c}{2} < |x| - c \implies \frac{1}{|x|} < \frac{2}{c}$$

$$\bullet \text{ hence, } \left| \frac{1}{x} - \frac{1}{c} \right| = \frac{|x-c|}{|x|c} < \frac{\delta}{|x|c} < \frac{2\delta}{c^2} \le \frac{2}{c^2} \cdot \frac{c^2}{2}\epsilon = \epsilon$$

Remark 5.41 Example 5.40 shows that in the definition of function continuity, the number δ can depend on both the number ϵ and the point c.

Definition 5.42 Let $f \colon S \to \mathbf{R}$ be a function. We say the function f is **uniformly continuous** on S if for all $\epsilon > 0$, there exists some $\delta > 0$ such that for all $x, c \in S$ and $|x - c| < \delta$, we have $|f(x) - f(c)| < \epsilon$.

Remark 5.43 In the definition of uniform continuity, the number δ only depends on ϵ .

Example 5.44 The function $f(x) = x^2$ is uniformly continuous on [0,1].

proof: let $\epsilon>0$, choose $\delta=\frac{\epsilon}{2}$, then for all $x,c\in[0,1]$ and $|x-c|<\delta$, we have $|x+c|\leq 2$, and hence,

$$|f(x) - f(c)| = |x^2 - c^2| = |x + c||x - c| < |x + c|| \delta \le 2\delta = 2 \cdot \epsilon = \epsilon$$

Remark 5.45 Let $f\colon S\to \mathbf{R}$ be a function. We say the function f is not uniformly continuous on S if there exists some $\epsilon>0$ such that for all $\delta>0$, there exists some $x,c\in S$ and $|x-c|<\delta$ so that $|f(x)-f(c)|\geq \epsilon$.

Example 5.46 The function given by $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1).

proof: choose $\epsilon=2$, let $\delta>0$, choose $c=\min\left\{\delta,\frac{1}{2}\right\}$, $x=\frac{c}{2}$, then:

- $x,c\in(0,1)$ and $|x-c|=\frac{c}{2}\leq\frac{\delta}{2}<\delta$
- $\left| \frac{1}{x} \frac{1}{c} \right| = \frac{|x c|}{|x||c|} = \frac{c}{2} \cdot \frac{2}{c^2} = \frac{1}{c} \ge 2 = \epsilon$

Example 5.47 The function $f(x) = x^2$ is not uniformly continuous on \mathbf{R} .

proof: choose $\epsilon=2$, let $\delta>0$, choose $c=\frac{2}{\delta}$, $x=c+\frac{\delta}{2}$, then we have

- $x, c \in \mathbf{R}$ and $|x c| = \frac{\delta}{2} < \delta$
- $|x^2 c^2| = |x + c||x c| = (2c + \frac{\delta}{2}) \cdot \frac{\delta}{2} = (\frac{4}{\delta} + \frac{\delta}{2}) \cdot \frac{\delta}{2} = 2 + \frac{\delta^2}{4} \ge 2 = \epsilon$

Theorem 5.48 Let $f:[a,b] \to \mathbf{R}$ be a function. Then, the function f is continuous on [a,b] if and only if f is uniformly continuous on [a,b].

proof:

- suppose f is uniformly continuous on [a,b]: let $c \in [a,b]$, $\epsilon > 0$, then according to uniform continuity, $\exists \delta > 0$ such that for all $x \in [a,b]$ and $|x-c| < \delta$, we have $|f(x)-f(c)| < \epsilon$
- ullet suppose f is continuous on [a,b]
 - assume f is not uniformly continuous on [a,b], then $\exists \epsilon>0$ such that $\forall \delta>0$, there exists $x,c\in [a,b]$ s.t. $|x-c|<\delta$ but $|f(x)-f(c)|\geq \epsilon$
 - choose sequences $(x_n)_{n=1}^{\infty}$ and $(c_n)_{n=1}^{\infty}$ such that for all $n \in \mathbb{N}$, $x_n, c_n \in [a, b]$, $|x_n c_n| < \frac{1}{n}$, but $|f(x_n) f(c_n)| \ge \epsilon$
 - since $x_n \in [a, b]$ for all $n \in \mathbb{N}$, there exists a subsequence $(x_{n_i})_{i=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ such that $x_{n_i} \to c$ and $c \in [a, b]$ (theorem 3.37)

- take subsequence $(c_{n_i})_{i=1}^{\infty}$ of $(c_n)_{n=1}^{\infty}$ according to the indexes n_i of $(x_{n_i})_{i=1}^{\infty}$, then $c_{n_i} \in [a,b]$ for all $n \in \mathbb{N} \implies$ there exists a subsequence $(c_{n_{i_j}})_{j=1}^{\infty}$ such that $c_{n_{i_j}} \to d$ and $d \in [a,b]$
- take subsequence $\left(x_{n_{i_j}}\right)_{j=1}^{\infty}$ of $\left(x_{n_i}\right)_{i=1}^{\infty}$ according to the indexes n_{i_j} of $\left(c_{n_{i_j}}\right)_{j=1}^{\infty}$, then $x_{n_{i_j}} \to c$ since $x_{n_i} \to c$
- $\begin{array}{lll} & 0 \leq |x_{n_{i_j}} c_{n_{i_j}}| < \frac{1}{n_{i_j}} \text{ and } \frac{1}{n_{i_j}} \to 0 & \Longrightarrow & \lim_{j \to \infty} |x_{n_{i_j}} c_{n_{i_j}}| = 0 \\ & \Longrightarrow & \lim_{j \to \infty} x_{n_{i_j}} = \lim_{j \to \infty} c_{n_{i_j}} & \Longrightarrow & c = d \end{array}$
- since f is continuous on [a,b] and $x_{n_{i_j}} \to c$, $c_{n_{i_j}} \to c$, we have

$$\lim_{j \to \infty} f(x_{n_{i_j}}) = \lim_{j \to \infty} f(c_{n_{i_j}}) = f(c)$$

$$\implies 0 = |f(c) - f(c)| = \lim_{j \to \infty} |f(x_{n_{i_j}}) - f(c_{n_{i_j}})| \ge \epsilon,$$

which is a contradiction

Lipschitz continuity

Definition 5.49 Let $f: S \to \mathbf{R}$ be a function. We say the function f is **Lipschitz continuous** on S if there exists some $K \geq 0$ such that for all $x, y \in S$, we have $|f(x) - f(y)| \leq K|x - y|$.

Remark 5.50 Geometrically, the function f is Lipschitz continuous if and only if all lines intersects the graph of f in at least two distinct points has slope in absolute value less than or equal to K.

Theorem 5.51 Let $f: S \to \mathbf{R}$ be a function. If the function f is Lipschitz continuous, then f is uniformly continuous.

proof: let $\epsilon > 0$

- f is Lipschitz continuous $\Longrightarrow \exists K \geq 0$ such that for all $x,y \in S$, we have $|f(x)-f(y)| \leq K|x-y|$
- ullet choose $\delta = \epsilon/(K+1)$, then for all $x,y \in S$ and $|x-y| < \delta$, we have

$$|f(x) - f(y)| \le K|x - y| < K\delta = \frac{K}{K+1}\epsilon < \epsilon$$

Example 5.52 The function $f(x) = \sqrt{x}$ is Lipschitz continuous on $[1, \infty)$, but is not Lipschitz continuous on $[0, \infty)$.

proof:

ullet consider the function $f\colon [1,\infty)\to \mathbf{R}$ given by $f(x)=\sqrt{x}$, then $\forall x,y\in [1,\infty)$:

$$-x \ge 1, y \ge 1 \implies \sqrt{x} + \sqrt{y} \ge 2$$

hence,

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2}|x - y|$$

 $\implies f$ is Lipschitz continuous with K=1/2

• consider the function $g\colon [0,\infty)\to \mathbf{R}$ given by $g(x)=\sqrt{x}$, let $K\geq 0$, choose x=0, $y=\frac{1}{K^2+1}$, then

$$\left| \frac{f(x) - f(y)}{x - y} \right| = \left| \frac{\sqrt{x} - \sqrt{y}}{x - y} \right| = \frac{\sqrt{y}}{y} = \frac{1}{\sqrt{y}} = \sqrt{K^2 + 1} > \sqrt{K^2} = K$$

$$\implies |f(x) - f(y)| > K|x - y|$$