Advanced Econometrics 4EK608

Vysoká škola ekonomická v Praze

Outline

- Stochastic processes
- 2 Unit roots
- Cointegration
- Error correction models

Czech terminology

Testy jednotkových kořenů, silně závislé časové řady, zdánlivá regrese, kointegrace, model korekce chyby, MA proces, AR proces, náhodná procházka s driftem, integrovaná časová řada, řád integrace, korelogram, ADF test, stochatický trend, deterministický trend, trendově stacionární časová řada,

Weakly dependent time series

- Moving average process of order one MA(1) $x_t = e_t + \alpha_1 e_{t-1}$, where e_t is *i.i.d.* time series. Observations with higher time distance than 1 are uncorrelated. This process is stationary.
- Autoregressive process of order 1: AR(1) $y_t = \rho_1 y_{t-1} + e_t \Rightarrow Corr(y_t, y_{t+h}) = \rho_1^h$
- If stability condition $|\rho| < 1$ holds, the process is weakly dependent because correlation converges to zero with growing h. Also, this process is stationary for $y_0 = 0$.

Random walk:

$$y_t = y_{t-1} + e_t$$

 $y_t = y_{t-2} + e_{t-1} + e_t$
...
 $y_t = e_t + e_{t-1} + \dots + e_1 + y_0$

Shocks have permanent effects, the series is not covariance stationary and is strongly dependent.

$$E(y_t) = E(y_0)$$

$$Var(y_t) = \sigma_e^2 t$$

$$Corr(y_t, y_{t+h}) = \sqrt{t/(t+h)}$$

Correlation decreases very slowly and speed depends on t.

• Two realizations of a random walk

• Random walk with a drift

$$y_t = \alpha_0 + y_{t-1} + e_t \Rightarrow y_t = \alpha_0 t + e_t + e_{t-1} + \dots + e_1 + y_0$$

A linear trend with random walk around the trend. It is neither covariance stationary nor weakly dependent.

$$E(y_t) = \alpha_0 t + E(y_0)$$
$$Var(y_t) = \sigma_e^2 t$$
$$Corr(y_t, y_{t+h}) = \sqrt{t/(t+h)}$$

Correlation decreases very slowly and decline speed depends on t.

• Realization of random walk with a drift

• Different realizations of trending TS may produce similar time series.

$$y_t = |1 \cdot y_{t-1}| + |u_t| = y_{t-1} + u_t$$

- Unit root process: $y_t = y_{t-1} + u_t$; u_t is a weakly dependent series.
- Random walk is a special case of the unit root process where: $u_t \sim Distr(0, \sigma_u^2)$, iid

We need to distinguish strongly and weakly dependent TS:

- Economic reasons:
 In strongly dependent series, shocks or policy changes have long or permanent effects; in weakly dependent series, their effect is only temporary.
- Statistical reasons:
 Analysis with strongly dependent series must be handled in specific ways.

Integrated series

Terminology - Order of integration

- Weakly dependent TS are integrated of order zero: I(0).
- If we have to difference a TS once to get a weakly dependent TS, then it is integrated of order 1: I(1).
- Example of a I(1) process:

$$y_t = y_{t-1} + e_t \quad \Rightarrow \Delta y_t = y_t - y_{t-1} = e_t$$
$$\log y_t = \log y_{t-1} + e_t \Rightarrow \Delta \log y_t = e_t$$

• A time series is integrated of order d: I(d), if it becomes a weakly dependent TS after being differenced d times.

Unit root tests help to decide if a time series is I(0) or not

- Use either some informal procedure or a unit root test
- Informal procedures
 - Analyze autocorrelation of the first order

$$\hat{\rho}_1 = \hat{Corr}(y_t, y_{t-1})$$

- If $\hat{\rho}_1$ approaches 1, it indicates that the series can have unit root. Alternatively, it could have a deterministic trend.
- We can analyze sample autocorrelations using a correlogram

Correlogram:

$$\rho_h = \frac{cov(y_t, y_{t-h})}{\sigma_{y_t} \cdot \sigma_{y_{t-h}}}$$

I(1)-like series

I(1)-like series

I(0)-like series

Dickey-Fuller (DF) test – motivation

Unit root test in an ar(1) process:

$$y_t = \alpha + \rho y_{t-1} + e_t$$

$$H_0: \rho = 1, \ H_1: \rho < 1$$

- Under H_0 , y_t has a unit root.
 - For $\rho = 1 \land \alpha = 0 \rightarrow y_t$ is a random walk.
 - For $\rho = 1 \land \alpha \neq 0 \rightarrow y_t$ is a randomw walk with a drift and $E(y_t)$ is a linear function of t.
- Under H_1 , y_t is a weakly dependent ar(1) process.

Dickey-Fuller (DF) test – motivation

Unit root test in an ar(1) process:

$$y_t = \alpha + \rho y_{t-1} + e_t$$

$$H_0: \rho = 1, \ H_1: \rho < 1$$

For DF tests, $H_1: \rho < 1$ is a common simplification to the full space of alternatives to $H_0: \rho = 1$.

- For $|\rho| < 1$, y_t is weakly dependent (as $plim \, \rho^h = 0$) However, if unit root is likely to be present, the probability of $\rho < 0$ is negligible.
- We usually ignore the possibility of $\rho > 1$, as it would lead to explosive behavior in y_t .
 - $\ldots |\rho| > 1$ would allow for explosive oscillations in y_t .

Dickey Fuller (DF) test

- Basic equation for unit root test in an ar(1) process: $y_t = \alpha + \rho y_{t-1} + e_t$
- For DF test, we apply a suitable transformation to y_t : we subtract y_{t-1} from both sides of the equation:

$$\Delta y_t = \alpha + (\rho - 1)y_{t-1} + e_t; \text{ apply substitution: } \theta = (\rho - 1)$$
 i.e.
$$H_0 : \rho = 1 \Leftrightarrow H_0 : \theta = 0$$
$$\Delta y_t = \alpha + \theta y_{t-1} + e_t; \text{ now: } H_1 : \rho < 1 \Leftrightarrow H_1 : \theta < 0$$

- We use a t-ratio for testing $H_0: \theta = 0$. However: Under H_0 , t-ratios don't have a t-distribution, but follow a DF-distribution. (-negative- critical values of the DF distribution are much farther from zero)
- Critical values for the DF distribution are available from statistical tables and implemented in most relevant SW packages.

DF test & ADF test

Unit root time series can manifest various levels of complexity. Hence, DF test is usually performed using the following three specifications:

$$\Delta y_t = \theta y_{t-1} + e_t \qquad \text{random walk}$$

$$\Delta y_t = \alpha + \theta y_{t-1} + e_t \qquad \text{random walk with a drift}$$

$$\Delta y_t = \alpha + \theta y_{t-1} + \delta t + e_t \qquad \text{random walk with a drift and trend}$$

DF test is the same $(H_0: \theta = 0)$ for all specifications /critical values difffer/

Augmented Dickey-Fuller (ADF) test is a common generalization of DF test (example: Augmentation of the DF test for the 2^{nd} specification)

$$\Delta y_t = \alpha + \left[\theta y_{t-1}\right] + \gamma_1 \Delta y_{t-1} + \dots + \gamma_p \Delta y_{t-p} + e_t$$

- When estimating θ , we control for possible ar(p) behavior in Δy_t .
- ADF test has the same null hypothesis as a DF test $\rightarrow H_0: \theta = 0$.

Unit root tests in R: package {urca}

Description of the options for the ur.df() function:

- type "none" $\Delta y_t = \theta y_{t-1} + e_t$ tau1: we test for $H_0: \theta = 0$ (unit root)
- ② type "drift" $\Delta y_t = \alpha + \theta y_{t-1} + e_t$ tau2: $H_0: \theta = 0$ (unit root) phi1: $H_0: \theta = \alpha = 0$ (unit root and no drift)
- type "trend" $\Delta y_t = \alpha + \theta y_{t-1} + \delta t + e_t$ tau3: $H_0: \theta = 0$ (unit root) phi2: $H_0: \theta = \alpha = \delta = 0$ (unit root, no drift, no trend) phi3: $H_0: \theta = \delta = 0$ (unit root and no trend)

• ADF test for TS with trend

$$\Delta y_t = \alpha + \theta y_{t-1} + \delta t + \gamma_1 \Delta y_{t-1} + \dots + \gamma_p \Delta y_{t-p} + e_t$$

Under the alternative hypothesis of no unit root, the process is trend-stationary.

- The critical values in the ADF distribution with time trend are even more negative as compared to random walk and random walk with a drift.
- When using DF/ADF specification 1 or 2 (R-W, R-W with drift) to test for unit root in a clearly trending TS, the test would not have sufficient power (we would not reject H_0 for trending weakly dependent TS).

Unit roots and trend-stationary series

- $\Delta y_t = \alpha + \theta y_{t-1} + \delta t + \gamma_1 \Delta y_{t-1} + \cdots + \gamma_n \Delta y_{t-n} + e_t$
- Terminology:
 - Stochastic trend: $\theta = 0$ Also called **difference-stationary process**: y_t can be turned into I(0) series by differencing. Terminology emphasizes stationarity after differencing y_t instead of weak dependence in differenced TS.
 - Deterministic trend: $\delta \neq 0$, $\theta < 0$ Also called **trend-stationary process**: has a linear trend, not a unit root. y_t is weakly dependent - I(0) - around its trend. We can use such series in LRMs, if trend is also used as regressor.
- DF/ADF tests are not precise tools. Distinguishing between stochastic and deterministic trend is not easy (sample size!).

Handling trend-stationary time series

• Trend-stationary TS fulfill TS.1' assumption (look at Week1 presentation).

We can use them in regressions if we have time trend among regressors.

Handling strongly dependent time series

- Strongly dependent time series do not fulfill TS.1' assumption (look at Week1 presentation). We cannot use them in regressions directly.
- Sometimes, taking logarithms helps.
- Sometimes, we can transform such series into weakly dependent time series.
- Differencing is popular, but it has drawbacks.

Handling strongly dependent time series

Example

$$Y_t = \beta_1 + \beta_2 X_t + \varepsilon_t \qquad Y_t, X_t \sim I(1) \tag{1}$$

$$Y_{t-1} = \beta_1 + \beta_2 X_{t-1} + \varepsilon_{t-1} \qquad \varepsilon_t \sim i.i.d. \qquad (2)$$

$$\Delta Y_t = \beta_2 \Delta X_t + v_t \qquad v_t = \varepsilon_t - \varepsilon_{t-1} \qquad (3)$$

- If we work with logarithms, it has an additional advantage: $\log Y_t \log Y_{t-1} = \log \left(\frac{Y_t}{Y_{t-1}} \right) \doteq \frac{Y_t Y_{t-1}}{Y_{t-1}}$ i.e.: nice interpretation as rate of growth of Y_t
- 2 Three problems
 - $\mathbf{0}$ v_t is no more i.i.d.
 - We loose information linked with the levels of variables, short term relation are stressed
 - Sestimates often generate bad long-term predictions: $\Delta \hat{Y}_t = \hat{\beta}_2 \Delta X_t$; ... what if $\beta_1 \neq 0$?

Handling strongly dependent time series

Some properties of integrated processes

- The sum of stationary and non-stationary series must be non-stationary.
- 2 Consider a process $y_t = \alpha + \beta x_t$:
 - · If x_t is stationary then y_t will be stationary.
 - If x_t is non-stationary then y_t will be non-stationary.
- 3 If two time series are integrated of different orders, then any linear combination of the series will be integrated at the higher of the two orders of integration.
- Sometimes it turns out a linear combination of two I(d)series is integrated of order less then d.

Spurious regression or cointegration

- Spurious regression Regressing one I(1)-series on another I(1)-series may lead to extremely high t-statistics even if the series are completely independent. Similarly, the R^2 of such regressions tend to be very high. Regression analysis involving time series that have a unit root may generate completely misleading inferences.
- Cointegration Fortunately, regressions with I(1)-variables are not always spurious: If there is a stable relationship between time series that, individually, display unit root behavior, these time series are called "cointegrated".

Spurious regression or cointegration

General definition of cointegration

Two I(1)-time series y_t , x_t are said to be cointegrated if there exists a stable relationship between them, where:

$$y_t = \alpha + \beta x_t + e_t, \quad e_t \sim I(0)$$

Cointegration (CI) test if CI parameters are known

For residuals of the known CI relationship:

$$e_t := y_t - \alpha - \beta x_t,$$

test whether the residuals have a unit root. If the unit root H_0 is rejected, y_t , x_t are cointegrated.

Spurious regression or cointegration

- Testing for CI if the parameters are unknown If the potential relationship is unknown, it can be estimated by OLS. After that, we test whether the regression residuals have a unit root. If the unit root is rejected, this means that y_t , x_t are cointegrated. Due to the pre-estimation of parameters, critical values are different than in the case of known parameters. (Software handles this automatically.)
- The CI relationship may include a time trend If the two series have differential time trends (drifts in this case), the deviation between them may still be I(0) but with a linear time trend. In this case one should include a time trend in the CI-regression. Also, we have to use different critical values when testing residuals. (Software handles this automatically.)

Cointegration tests based on regression residuals

Engle-Granger test estimates a *p*-lag ADF equation:

$$\Delta \hat{u}_t = \theta \, \hat{u}_{t-1} + \sum_{j=1}^p \Delta \hat{u}_{t-j} + e_t$$

- Esentially, this is an ADF test on \hat{u}_t [$\theta = (\rho 1)$]
- Specific critical values apply (farther from 0 than t or DF).

Phillips-Ouliaris test estimates a DF equation:

$$\Delta \hat{u}_t = \theta \, \hat{u}_{t-1} + e_t$$

• The t-ratio is based on robust standard errors, different estimator exist for the robust standard errors.

In both cases (EG and PO), H_0 of unit root in \hat{u} i.e. "no-cointegration" is tested.

Error correction model (ECM)

• It can be shown that when variables are cointegrated, i.e. when there exists a long-term relationship among them, their short-term dynamics are related as in a so-called error correction model (ECM).

Error Correction Models - motivation

Autoregressive distributed lag models

Autoregressive distributed lag model with one regressor

ADL
$$(p,q)$$
: $y_t = \beta_0 + \sum_{i=1}^p \beta_i y_{t-i} + \sum_{j=0}^q \gamma_j x_{t-j} + u_t$, $u_t \sim iid(0, \sigma^2)$

• There are many useful modifications/simplifications to the ADL(p,q) process. For example:

ADL(1,1):
$$y_t = \beta_0 + \beta_1 y_{t-1} + \gamma_0 x_t + \gamma_1 x_{t-1} + u_t$$
. (4)

Additional ADL(1,1) restriction: $\beta_1 = 1$ and $\gamma_1 = -\gamma_0$

gives a model in 1st diffs.: $\Delta y_t = \beta_0 + \gamma_0 \Delta x_t + u_t$.

For ADL(1,1) model (4), suppose there is an equilibrium value x° and in the absence of shocks, $x_t \to x^{\circ}$ as $t \to \infty$. Then, assuming absence of u_t errors, y_t converges to steady state: y° .

Hence, the ADL(1,1) model (4) can be re-written as:

$$y^{\circ} = \beta_0 + \beta_1 y^{\circ} + (\gamma_0 + \gamma_1) x^{\circ}$$

Solving this for y° as a function of x° , we get

$$y^{\circ} = \frac{\beta_0}{1 - \beta_1} + \frac{\gamma_0 + \gamma_1}{1 - \beta_1} x^{\circ} = \frac{\beta_0}{1 - \beta_1} + \lambda x^{\circ}$$

where $\lambda \equiv \frac{\gamma_0 + \gamma_1}{1 - \beta_1}$ and $|\beta_1| < 1$ is assumed.

Error Correction Models - motivation

$$y^{\circ} = \frac{\beta_0}{1 - \beta_1} + \lambda x^{\circ}$$
$$\lambda \equiv \frac{\gamma_0 + \gamma_1}{1 - \beta_1}$$

- λ is the long-run derivative of y° with respect to x° .
- λ is an elasticity if both y° and x° are in logs.
- $\hat{\lambda}$ can be computed directly from the estimated parameters of the ADL(1,1) model (4).

The ADL(1,1) equation (4) - repeated here for convenience:

$$y_t = \beta_0 + \beta_1 y_{t-1} + \gamma_0 x_t + \gamma_1 x_{t-1} + u_t,$$

can be equivalently rewritten as follows:

$$\Delta y_t = \beta_0 + (\beta_1 - 1)(y_{t-1} - \lambda x_{t-1}) + \gamma_0 \Delta x_t + u_t.$$
 (5)

Again, $\lambda \equiv \frac{\gamma_0 + \gamma_1}{1 - \beta_1}$ and $|\beta_1| < 1$ is assumed.

Equation (5) is an error-correction model (ECM).

Error Correction Models

ECM:
$$\Delta y_t = \beta_0 + (\beta_1 - 1)(y_{t-1} - \lambda x_{t-1}) + \gamma_0 \Delta x_t + u_t$$
.

- $(y_{t-1} \lambda x_{t-1})$ measures the extent to which the long run equilibrium between y_t and x_t is not satisfied (at t-1).
- Consequently, $(\beta_1 1)$ can be interpreted as the proportion of the disequilibrium $(y_{t-1} - \lambda x_{t-1})$ that is reflected in the movement of y_t , i.e. in Δy_t .
- $(\beta_1 1)(y_{t-1} \lambda x_{t-1})$ is the error-correction term.
- Many ADL(p,q) specifications can be re-written as ECMs.
- ECMs can be used with non stationary TS (Week 3).
- ECMs $(\beta_1 1)$ is essentially the same as θ from Partial adjustment model (see Week 4).

Box 1: Partial Adjustment Models (Will be put into context in the 4th week)

$$Y_t^* = \alpha + \beta X_t + u_t$$
 Y_t^* : optimal value or target value (6) or long-run equilibrium value

$$Y_t - Y_{t-1} = \theta(Y_t^* - Y_{t-1}) \quad 0 < \theta < 1$$

$$\theta \sim \text{coefficient of adjustment}$$

$$Y_t = \theta Y_t^* + (1 - \theta) Y_{t-1}$$

$$(7)$$

As $\theta \to 1$, the speed of contemporaneous adjustment of Y_t towards Y_t^* grows.

Substituting Y_t^* from (6) to (7) yields

$$Y_t = \alpha \theta + \beta \theta X_t + (1 - \theta) Y_{t-1} + \theta u_t \tag{8}$$

We estimate (8) and then calculate parameters in (6) and (7).

Error Correction Models

Some more complicated ECMs:

1) We can use higher order lags, e.g. ADL(2,2):

$$y_t = \beta_0 + \beta_1 y_{t-1} + \beta_2 y_{t-2} + \gamma_0 x_t + \gamma_1 x_{t-1} + \gamma_2 x_{t-2} + u_t,$$

to establish ECMs. It is again possible to rearrange and re-parametrize $\mathrm{ADL}(2,2)$ to get an ECM. More than one re-parameterization is possible.

2) More than two variables can enter into an equilibrium relationship.