

# The Beaming Turret



การทดสอบความสามารถในการแก้ปัญหาโดยการเขียนโปรแกรม

เขียนวันที่ 2 ส.ค. 2566

เหนือพื้นผิวดาวมอง คลารามอรี่เป็นสนามซ้อมรบอวกาศมีขอบเขตขนาดกว้าง N วา ยาว M วา สูง O วา แบ่งเป็นพื้นที่ย่อยๆ ขนาด  $1 \times 1 \times 1$  ลูกบาศก์วาจำนวน N  $\times$  M  $\times$  O ช่อง ( $1 \le$  N, M, O  $\le$  100,000) แต่ละ ช่องในพื้นที่นี้จะระบุด้วยสามสิ่งอันดับ (X, Y, Z) ที่  $1 \le$  X  $\le$  N,  $1 \le$  Y  $\le$  M และ  $1 \le$  Z  $\le$  O โดย X แทนค่า พิกัดในแนวกว้าง Y แทนค่าพิกัดในแนวยาว และ Z แทนค่าพิกัดในแนวสูง



ป้อมปืนรางไฟฟ้า (railgun) ในช่องจำนวน T ช่อง ( $1 \le T \le 1,000$ ) ระบุด้วยสามสิ่งอันดับ ( $X_1, Y_1, Z_1$ ), ( $X_2, Y_2, Z_2$ ), ..., ( $X_T, Y_T, Z_T$ ) ปืนรางไฟฟ้าเหล่านี้สามารถยิงกระสุนพลังทำลายล้างสูงได้หกทิศในระยะไม่จำกัด ดังนั้นสำหรับเครื่องยิงที่ i ที่อยู่ที่ช่อง ( $X_i, Y_i, Z_i$ ) เครื่องยิงดังกล่าวจะสามารถยิงไปยังทุกช่อง (A, B, C) ที่  $A = X_i, B = Y_i$  หรือ  $C = Z_i$  นอกเสียจากจะยิงไปชนสนามพลังเลเซอร์จากเครื่องกำเนิดผนังกำบังในช่องนั้นๆ ซึ่งมี อยู่จำนวน B เครื่อง ( $0 \le B \le 100$ ) ระบุด้วยสามสิ่งอันดับ ( $X_1, Y_1, Z_1$ ), ( $X_2, Y_2, Z_2$ ), ..., ( $X_B, Y_B, Z_B$ )

เราจะกล่าวว่าช่องในพื้นที่นั้น**ปลอดภัย** ถ้าไม่มีปืนรางไฟฟ้าเครื่องใดเลยที่ยิงไปยังช่องดังกล่าวได้

พิจารณาตัวอย่างพื้นที่ที่ N=4, M=5, O=1, มีป้อมปืนรางไฟฟ้าจำนวน T=3 ป้อมแสดงด้วยสี่เหลี่ยมสี เหลือง และมีเครื่องกำเนิดผนังกำบังสนามพลังเลเซอร์จำนวน B=4 เครื่องแสดงด้วยสี่เหลี่ยมสีเขียว ช่องที่ถูก ยิงได้แสดงเป็นสีแดง ช่องที่ปลอดภัยเป็นสีฟ้า



ให้เขียนโปรแกรมคำนวณว่าขอบเขตดังกล่าวมีช่องที่ปลอดภัยทั้งหมดกี่ช่อง ให้ตอบเป็นเศษของการหารด้วย 25,621 (มีรายละเอียดอธิบายตอนท้ายโจทย์)

มีข้อมูลทดสอบที่มีคะแนน 20% ที่ N, M, O < 45; T < 50; B < 1

## ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็มห้าจำนวน N M O T B (1 ≤ N, M, O ≤ 100,000; 1 ≤ T ≤ 1,000; 0 ≤ B ≤ 1,000)

อีก T บรรทัดระบุข้อมูลป้อมปืนรางไฟฟ้า กล่าวคือบรรทัดที่ i+1 เมื่อ  $1 \le i \le T$  จะระบุข้อมูลของป้อมปืนที่ i ด้วยจำนวนเต็มสามจำนวน  $X_i$ ,  $Y_i$  และ  $Z_i$  ( $1 \le X_i \le N$ ;  $1 \le Y_i \le M$ ;  $1 \le Z_i \le O$ ) รับประกันว่าไม่มีป้อมปืน สองป้อมที่อยู่ในช่องเดียวกัน

อีก B บรรทัดระบุข้อมูลเครื่องกำเนิดผนังกำบังสนามพลังเลเซอร์ กล่าวคือบรรทัดที่ T+i+1 เมื่อ  $1\leq i\leq B$  จะระบุข้อมูลของเครื่องกำเนิด i ด้วยจำนวนเต็มสามจำนวน  $X_i, Y_i$  และ  $Z_i$  ( $1\leq X_i\leq N; 1\leq Y_i\leq M; 1\leq Z_i\leq O$ ) รับประกันว่าไม่มีเครื่องกำเนิดสองเครื่องที่อยู่ในช่องเดียวกัน

## ข้อมูลส่งออก

มีหนึ่งบรรทัด เป็นจำนวนเต็มหนึ่งจำนวนที่เป็นเศษของการหารจำนวนช่องที่ปลอดภัยด้วย 25,621

#### เงื่อนไขการทำงาน

โปรแกรมต้องทำงานภายใน 1 วินาที ใช้หน่วยความจำไม่เกิน 64 MB

#### ตัวอย่าง 1

| Input     | Output |
|-----------|--------|
| 4 5 1 3 4 | 7      |
| 2 1 1     |        |
| 5 1 3     |        |
| 4 1 3     |        |
| 1 1 2     |        |
| 3 1 4     |        |
| 4 1 1     |        |
| 3 1 3     |        |

#### ตัวอย่าง 2

| Input                                            | Output |
|--------------------------------------------------|--------|
| 1000 1000 1000 3 0<br>2 50 1<br>5 50 3<br>3 50 3 | 18678  |

จำนวนช่องที่ปลอดภัยคือ 994,010,994 เมื่อหารด้วย 25,621 ได้เศษ 18,678

(รายละเอียดเพิ่มเติมสำหรับการเขียนโปรแกรมอยู่หน้าถัดไป)

### รายละเอียดเพิ่มเติมในการเขียนโปรแกรม

การตอบคำตอบเป็นเศษของการหารด้วย 25,621 ทำให้คนที่ใช้ภาษา C/C++ ไม่จำเป็นต้องใช้ตัวแปรชนิดที่ ใหญ่กว่า **int** ในการประมวลผลใดๆ ที่เกี่ยวกับจำนวนช่องดังกล่าว สามารถหารด้วย 25,621 เอาเศษได้ ตลอดเวลา โดยไม่ทำให้ผลลัพธ์เปลี่ยนแปลง การหารเพื่อเอาเศษ (modulo) นี้ในภาษา C/C++ และ Python ทำด้วยตัวดำเนินการ % ดังตัวอย่างด้านล่าง

## 1000000 % 25621 // ได้ผลลัพธ์เป็น 781

ด้านล่างเป็นตัวอย่างโปรแกรมภาษา C ที่หารค่าตัวแปร  ${f x}$  ด้วน 25.621 และเก็บเศษไว้ที่  ${f x}$ 

x %= 25621;

ถ้าเป็นภาษา Python จะเขียนดั้งนี้

x %= 25621

ถ้านักเรียนเขียนโปรแกรมด้วยภาษา Python อาจไม่ต้องสนใจเรื่องขนาดตัวแปรก็ได้ แต่ต้องการเพื่อหาเศษ ด้วย 25,621 ก่อนที่จะตอบคำตอบ ตัวอย่างด้านล่างสมมติว่าคำตอบเก็บอยู่ในตัวแปร **y** เมื่อจะพิมพ์คำตอบให้ ตอบดังนี้

print(y % 25621)