Поиск аномалий

HBOS u ECOD

Обо мне

- Старший специалист по машинному обучению
- Deep learning engineer
- NLP, CV, anomaly detection
- Open source contributor
- Выпускник и амбассадор Яндекс
 Практикума
- Выпускник DLS ФПМИ МФТИ

Аномалии

Применение

Свойства

Методы

- [1] Markus Goldstein and Andreas Dengel. Histogram-based outlier score (hbos): a fast unsupervised anomaly detection algorithm. *KI-2012: Poster and Demo Track*, pages 59–63, 2012.
- [2] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and H. George Chen. Ecod: unsupervised outlier detection using empirical cumulative distribution functions. *IEEE Transactions on Knowledge and Data Engineering*, 2022.

\$ pip install pyod

Три сигмы

Пионеры и пенсионеры

Гистограмма в таблице

(20.4, 25.4]	95		
(25.4, 30.3]	6		
(30.3, 35.3]	3		
(35.3, 40.3]	1		
(40.3, 45.3]	0		
(45.3, 50.3]	2		
(50.3, 55.2]	26		
(55.2, 60.2]	83		
(60.2, 65.2]	70		
(65.2, 70.2]	19		

Плотность вероятности

(20.4, 25.4]	95	95 / 305 / 5.0
(25.4, 30.3]	6	6 / 305 / 5.0
(30.3, 35.3]	3	3 / 305 / 5.0
(35.3, 40.3]	1	1 / 305 / 5.0
(40.3, 45.3]	0	0 / 305 / 5.0
(45.3, 50.3]	2	2 / 305 / 5.0
(50.3, 55.2]	26	26 / 305 / 5.0
(55.2, 60.2]	83	83 / 305 / 5.0
(60.2, 65.2]	70	70 / 305 / 5.0
(65.2, 70.2]	19	19 / 305 / 5.0

Плотность вероятности

(20.4, 25.4]	95	0.063
(25.4, 30.3]	6	0.004
(30.3, 35.3]	3	0.002
(35.3, 40.3]	1	0.001
(40.3, 45.3]	0	0.000
(45.3, 50.3]	2	0.001
(50.3, 55.2]	26	0.017
(55.2, 60.2]	83	0.055
(60.2, 65.2]	70	0.046
(65.2, 70.2]	19	0.013

Перемножаем

(20.4, 25.4]	95	0.063	0.063 *	
(25.4, 30.3]	6	0.004		
(30.3, 35.3]	3	0.002		
(35.3, 40.3]	1	0.001		
(40.3, 45.3]	0	0.000		
(45.3, 50.3]	2	0.001		
(50.3, 55.2]	26	0.017		
(55.2, 60.2]	83	0.055		
(60.2, 65.2]	70	0.046		
(65.2, 70.2]	19	0.013		

Перемножаем $log_2(x y) = log_2(x) + log_2(y)$

(20.4, 25.4]	95	0.063	0.063 *	
(25.4, 30.3]	6	0.004		
(30.3, 35.3]	3	0.002		
(35.3, 40.3]	1	0.001		
(40.3, 45.3]	0	0.000		
(45.3, 50.3]	2	0.001		
(50.3, 55.2]	26	0.017		
(55.2, 60.2]	83	0.055		
(60.2, 65.2]	70	0.046		
(65.2, 70.2]	19	0.013		

Складываем логарифмы

(20.4, 25.4]	95	0.063	log ₂ (0.063) +
(25.4, 30.3]	6	0.004	log ₂ (0.004) +
(30.3, 35.3]	3	0.002	log ₂ (0.002) +
(35.3, 40.3]	1	0.001	log ₂ (0.001) +
(40.3, 45.3]	0	0.000	log ₂ (0.000) +
(45.3, 50.3]	2	0.001	log ₂ (0.001) +
(50.3, 55.2]	26	0.017	log ₂ (0.017) +
(55.2, 60.2]	83	0.055	log ₂ (0.055) +
(60.2, 65.2]	70	0.046	log ₂ (0.046) +
(65.2, 70.2]	19	0.013	log ₂ (0.013) +

Складываем логарифмы

(20.4, 25.4]	95	0.063	-2.621
(25.4, 30.3]	6	0.004	-3.266
(30.3, 35.3]	3	0.002	-3.294
(35.3, 40.3]	1	0.001	-3.312
(40.3, 45.3]	0	0.000	-3.322
(45.3, 50.3]	2	0.001	-3.303
(50.3, 55.2]	26	0.017	-3.094
(55.2, 60.2]	83	0.055	-2.693
(60.2, 65.2]	70	0.046	-2.775
(65.2, 70.2]	19	0.013	-3.152

Меняем знак

(20.4, 25.4]	95	0.063	-2.621	2.621
(25.4, 30.3]	6	0.004	-3.266	3.266
(30.3, 35.3]	3	0.002	-3.294	3.294
(35.3, 40.3]	1	0.001	-3.312	3.312
(40.3, 45.3]	0	0.000	-3.322	3.322
(45.3, 50.3]	2	0.001	-3.303	3.303
(50.3, 55.2]	26	0.017	-3.094	3.094
(55.2, 60.2]	83	0.055	-2.693	2.693
(60.2, 65.2]	70	0.046	-2.775	2.775
(65.2, 70.2]	19	0.013	-3.152	3.152

Histogram-Based Outlier Score [1]

Выборочная эмпирическая функция распределения


```
>>> x = -1
>>> (df['данные'] <= x).mean()
np.float64(0.155)
```


ЭФР и 1 - ЭФР

Удавы	ЭФР	1 - ЭФР		
-2.87	0.48	0.52		
-2.83	0.51	0.50		
-3.34	0.26	0.75		
-2.88	0.48	0.53		
-0.55	0.85	0.16		
1.53	0.90	0.11		
1.01	0.89	0.12		
4.81	0.96	0.05		

Negative log probs

Удавы	ЭФР	1 - ЭФР	- log(ЭФР)	-log(1 - ЭФР)
-2.87	0.48	0.52	0.73 +	0.64 +
-2.83	0.51	0.50	0.67 +	0.70 +
-3.34	0.26	0.75	1.37 +	0.29 +
-2.88	0.48	0.53	0.74 +	0.63 +
			•••	
-0.55	0.85	0.16	0.16 +	1.86 +
1.53	0.90	0.11	0.11 +	2.21 +
1.01	0.89	0.12	0.12 +	2.16 +
4.81	0.96	0.05	0.05 +	3.00 +

Negative log probs

Удавы	ЭФР	1 - ЭФР	- log(ЭФР)	-log(1 - ЭФР)
-2.87	0.48	0.52	1.03	1.99
-2.83	0.51	0.50	1.34	1.42
-3.34	0.26	0.75	1.61	1.78
-2.88	0.48	0.53	0.84	2.99
-0.55	0.85	0.16	2.13	2.01
1.53	0.90	0.11	3.62	2.23
1.01	0.89	0.12	4.32	2.17
4.81	0.96	0.05	1.39	3.29

ECOD

Удавы	ЭФР	1 - ЭФР	- log(ЭФР)	-log(1 - ЭФР)	max
-2.87	0.48	0.52	1.03	1.99	1.99
-2.83	0.51	0.50	1.34	1.42	1.42
-3.34	0.26	0.75	1.61	1.78	1.78
-2.88	0.48	0.53	0.84	2.99	2.99
-0.55	0.85	0.16	2.13	2.01	2.13
1.53	0.90	0.11	3.62	2.23	3.62
1.01	0.89	0.12	4.32	2.17	4.32
4.81	0.96	0.05	1.39	3.29	3.29

Empirical Cumulative Outlier Detection [2]

Резюме

Вопросы?

