Online Optimization, Learning, and Games (O2LG) Lesson 1: Introduction to Game Theory

Vinh Thanh Ho*, Panayotis Mertikopoulos

*Faculté des Sciences et Techniques Université de Limoges vinh-thanh.ho@unilim.fr

Table of Contents

Motivation

 Basics of Game Theory Introduction Strategic dominance Best responses and Nash equilibrium

Motivation

Why game theory?

Why learning?

Why game theory?

- **Game theory** is the study of *strategic decision-making*.
- Provide a framework for understanding how agents interact with each other in competitive and cooperative environments.
- Model a wide variety of real-world situations, e.g., traffics, economics, sports, etc.
- Design algorithms that are robust to adversarial behavior.

Example: Traffic Congestion

2021→2022 INRIX Global Traffic Scorecard

- **London** is the most congested city in the world.
- 148 → 156 hours lost per driver to delay.
- Congestion cost of £5.1 (1% GDP) → £5.7 billion.
- £212 (2022) fuel surcharge per driver.

How to deal with traffic congestion?

Traffic Congestion in London

Example: Traffic Congestion

Greater London map

London

- Population (2023): \approx 10 million.
- 21.6 million daily trips^a (2021)
- 831 stations & 107,000 roads ^b

^aTravel in London Report 15

^bGreater London map

How to model traffic congestion?

- Consider a network of roads with each road of a limited capacity.
- The *vehicles choose which roads* to travel from one station to another on the network. But if *too many vehicles* choose the *same road*, then the *road will become congested*.
- Model as a congestion game: player = vehicle; player's action = which road to take; player's payoff = travel time. Goal of each player: minimize their travel time.

A very large game!

Why learning?

- **Learning** is the ability to *improve performance* over time *by experience*.
- Key component of many online optimization and game-playing algorithms.
- Online optimization + Learning: Adapt to changes in the environment.

Example: Traffic Congestion (cont.)

Traffic Congestion

Learning can be used to deal with traffic congestion:

- Predictive traffic modeling: predict traffic patterns
 ⇒ improve traffic flow and optimize routing decisions
 ★ Online learning: adapt to changes in traffic patterns.
- Dynamic routing: provide drivers with real-time routing information that takes into account traffic conditions
 ⇒ avoid congested areas and find the fastest routes.
- Parking optimization: optimize parking availability/pricing
 ⇒ find parking more easily and reduce congestion.
- Smart traffic lights: control traffic lights in real time
 ⇒ reduce congestion and improve traffic safety.

Questions we'll try to answer

How should we model player interactions?

- Types of situations (e.g. traffic congestion),
- Types of players (e.g. vehicles),
- Types of interactions (e.g. competition),...

What is a desired operational state?

- Different goals (e.g., reduce congestion),
- Types of states (equilibrium, optimum),...

How to compute it?

- Calculation (simple, well-understanding),
- Implementation (simple, easy to control),
- Learning (complex).

Table of Contents

Motivation

 Basics of Game Theory Introduction Strategic dominance Best responses and Nash equilibrium

Introduction: Let's play a game

How to model this game **mathematically**?

How to model the rock-paper-scissors game?

- **Players**: *N* = {1,2}
- **Actions** associated to each player: $A_i = \{R, P, S\}, i \in \mathcal{N}$
- **Payoff matrix** (win: 1€; lose: −1€; tie: 0€):

		Player 2		
		R	P	S
7	R	(0,0)	(-1,1)	(1,-1)
layeı	Ρ	(1, -1)	(0,0)	(-1,1)
Pla	S	(-1,1)	(1, -1)	(0,0)

• Payoff functions: for each player

Player 1: $u_1 : A_1 \times A_2 \to \mathbb{R}$ defined by $u_1(R, R) = 0$, $u_1(R, P) = -1$, $u_1(R, S) = 1$,... Player 2: $u_2 : A_1 \times A_2 \to \mathbb{R}$ defined by $u_2(R, R) = 0$, $u_2(R, P) = 1$, $u_2(R, S) = -1$,...

Finite games

Definition 1 (Finite games)

A *finite game in normal (or strategic) form* is a tuple $(\mathcal{N}, \{A_i\}_{i \in \mathcal{N}}, \{u_i\}_{i \in \mathcal{N}})$, where:

- $\mathcal{N} = \{1, 2, \dots, N\}$ is a finite set of *players*.
- For each player $i \in \mathcal{N}$, \mathcal{A}_i is a finite set of *actions* (or *pure strategies*) for player i.
- For each player $i \in \mathcal{N}$, $u_i : \Pi_{j \in \mathcal{N}} \mathcal{A}_j \to \mathbb{R}$ is a **payoff function** mapping each combination (or **profile**) of actions $(a_1, ..., a_N)$ to a real number $u_i(a_1, ..., a_N)$ that is the payoff to player i when players 1, 2, ..., N do actions $a_1, a_2, ..., a_N$, respectively.

Notation: $A := \prod_{j} A_j$ the set of all profiles of actions, with a generic element $a := (a_1, ..., a_N)$.

Example 1: The Prisoner's Dilemma

Imagine the following situation:

- Two bank robbers, Thomas and Julian, have been arrested by the authorities and are being interrogated in separate rooms.
- The authorities need one robber to testify to convict them.
- Each robber faces a choice:
 - cooperate with his accomplice and remain silent
 - defect from the gang and testify for the prosecution
- There are a number of different scenarios that could occur:
 - If Thomas and Julian cooperate, they will each get 1 year in jail.
 - If one testifies against the other, the one who testifies goes free and the other gets 5 years.
 - If they both testify against each other, they will each get 3 years.

How to model this game in normal form?

Example 1: The Prisoner's Dilemma

Normal form representation

- Players: $\mathcal{N} = \{1 \text{ (Thomas)}, 2 \text{ (Julian)}\}$
- **Actions** associated to each player: $A_i = \{C(\text{ooperate}), D(\text{efect})\}, i \in \mathcal{N}$
- Payoff matrix:

• Payoff functions: for each player, Thomas: $u_1(C, C) = -1$, $u_1(C, D) = -5$, $u_1(D, C) = 0$, $u_1(D, D) = -3$. Julian: $u_2(C, C) = -1$, $u_2(C, D) = 0$, $u_2(D, C) = -5$, $u_2(D, D) = -3$.

Example 2: Split or Steal?

- The game **Split or Steal** is a two-player game.
- Each player must decide whether to split the pot of money in front of them or steal from the other player.
- One of these situations will occur.
 - If both players choose split, they each get half of the money.
 - If both players choose steal, neither player gets any money.
 - If only one player steals, the player who chooses steal gets all
 of the money and the other player gets nothing.

Watch a playthrough of the £66885 "Split or Steal" game and then model this game in normal form.

Example 2: Split or Steal?

Normal form representation

- Players: $\mathcal{N} = \{1 \text{ (Tony)}, 2 \text{ (Lucy)}\}$
- **Actions** associated to each player: $A_i = \{Sp(\text{lit}), St(\text{eal})\}, i \in \mathcal{N}$
- Payoff matrix:

		Lucy		
		Sp	St	
Tony	Sp	(£33442.5, £33442.5)	(£0,£66885)	
ř	St	(£66885,£0)	(£0,£0)	

Payoff functions: for each player,

Tony:
$$u_1(Sp, Sp) = £33442.5$$
, $u_1(Sp, St) = £0$, $u_1(St, Sp) = £66885$, $u_1(St, St) = £0$.
Lucy: $u_2(Sp, Sp) = £33442.5$, $u_2(Sp, St) = £66885$, $u_2(St, Sp) = £0$, $u_2(St, St) = £0$.

Example 3: Chicken game

- The Chicken Game is a game in which two players drive towards each other on a collision course.
- Each driver has two choices: swerve or go straight.
 - If both drivers swerve, they will both have a minor accident and get 0 points.
 - If one driver swerves and the other does not, the driver who swerves will be hit and get -1 point, while the driver who goes straight will be unharmed and get 1 point.
 - If neither driver swerves, they will both crash head-on and be seriously injured, so they will get -1000 points.

How to model this game in normal form?

Example 3: Chicken game

Normal form representation

- **Players**: *N* = {1 (Driver 1), 2 (Driver 2)}
- **Actions** associated to each player: $A_i = \{Sw(erve), St(raight)\}, i \in \mathcal{N}$
- Payoff matrix:

Driver 2 Sw St Sw (0,0) (-1,1) St (1,-1) (-1000,-1000)

Payoff functions: for each driver,

Driver 1: $u_1(Sw, Sw) = 0$, $u_1(Sw, St) = -1$, $u_1(St, Sw) = 1$, $u_1(St, St) = -1000$. Driver 2: $u_2(Sw, Sw) = 0$, $u_2(Sw, St) = 1$, $u_2(St, Sw) = -1$, $u_2(St, St) = -1000$.

Dominant Strategies

In some games, there is a *dominant strategy* that always produces the best outcome for a player, regardless of what the other players do.

Before definitions, note that for $i \in \mathcal{N}$, $(a', a_{-i}) := (a_1, \ldots, a_{i-1}, a', a_{i+1}, \ldots, a_N)$, $\mathcal{A}_{-i} := \Pi_{j \neq i} \mathcal{A}_j$.

Definition 2 (Dominant strategies)

- **1** A strategy $a_i \in A_i$ weakly dominates $a_i' \in A_i$ (noted by $a_i \succcurlyeq a_i'$) if
 - $u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i})$ for all $a_{-i} \in \mathcal{A}_{-i}$ and $u_i(a_i, a_{-i}) > u_i(a_i', a_{-i})$ for some $a_{-i} \in \mathcal{A}_{-i}$.
- **2** A strategy $a_i \in A_i$ strictly dominates $a_i' \in A_i$ (noted by $a_i \succ a_i'$) if

$$u_i(a_i, a_{-i}) > u_i(a_i', a_{-i})$$
 for all $a_{-i} \in \mathcal{A}_{-i}$.

- **3** A strategy $a_i \in A_i$ is **weakly dominant** if $a_i \succcurlyeq a_i'$ for all $a_i' \in A_i$.
- **4** A strategy $a_i \in A_i$ is **strictly dominant** if $a_i \succ a_i'$ for all $a_i' \in A_i$, $a_i' \neq a_i$.

In other words, $a_i \succcurlyeq a_i'$ (resp. $a_i \succ a_i'$) means that a_i' is **weakly** (resp. **strictly**) **dominated** by a_i .

Return to Examples 1-3

Weakly / Strictly dominant strategies for players for each example?

Example 1: The Prisoner's Dilemma

Example 2: Split or Steal?

Example 3: Chicken game

		Driver 2	
		Sw	St
/er 1	Sw	(0,0) (1,-1)	(-1,1)
Dri	St	(1,-1)	(-1000, -1000)

Driver 2

Iteratively Dominated Strategies

Given a 2-player game with the following payoff matrix:

		Player 2		
		Α	В	С
Player 1	X Y Z	(4,10) (3,5) (2,3)	(1,0) (6,4) (0,6)	(1,2) (5,3) (8,2)

Questions: In this game,

- What are the strictly dominated strategies (by which strategies) for players?
- What happens to this game if eliminating one of these strategies? Does new strictly dominated strategies appear?
- 3 If repeating elimination iteratively, what does the game become?

Dominance-Solvable Game

After repeating elimination iteratively, the game becomes as follows:

		Player 2		
		Α	В	С
Player 1	Χ Υ Ζ	(4,10) (3,5) (2,3)	(1,0) (6,4) (0,6)	(1,2) (5,3) (8,2)

Definition 3 (Dominance-solvable game)

A game is called **dominance-solvable** if the iterated elimination of dominated strategies leads to **a singleton**.

Best Responses

How to make a good decision if we only know the strategy of the opposing players?

Definition 4 (Best responses)

• A strategy $a_i^* \in A_i$ is a **best response** (or **best reply**) of player i to a profile of strategies $a_{-i} \in A_{-i}$ for the other players if

$$u_i(a_i^*, a_{-i}) \ge u_i(a_i, a_{-i})$$
 for all $a_i \in \mathcal{A}_i$, equivalently, $a_i^* \in \operatorname{argmax}_{a_i \in \mathcal{A}_i} u_i(a_i, a_{-i})$.

• A **best-response correspondence** of player *i* is a set-valued function $BR_i : A_{-i} \to A_i$ defined by

$$\mathsf{BR}_i(a_{-i}) := \mathsf{argmax}_{a_i \in \mathcal{A}_i} u_i(a_i, a_{-i})$$

Return to Examples 1-3

Best-response correspondence for players for each example?

Example 1: The Prisoner's Dilemma

Example 2: Split or Steal?

Example 3: Chicken game

		DIIVCI Z	
		Sw	St
/er 1	Sw	(0,0) (1,-1)	(-1,1)
Dri	St	(1,-1)	(-1000, -1000)

Driver 2

Nash equilibrium

Definition 5 (Nash equilibrium)

A profile of strategies $a^* = (a_1^*, \dots, a_i^*, \dots, a_N^*) \in A$ is a **Nash equilibrium** (NE) if

$$a_i^* \in \mathsf{BR}_i({\color{red}a_{-i}^*}) ext{ for all } i \in \mathcal{N}$$

or, equivalently, if

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*)$$
 for all $i \in \mathcal{N}$ and for all $a_i \in \mathcal{A}_i$.

Properties

- **Stability**: No player has any incentive to change their current strategy. In other words, no player regrets their decision in an NE.
- **Unilateral resilience**: An NE is resilient to **uni**lateral deviations, but it may not be stable for **multi**-lateral deviations.
- Non-uniqueness: In many games, there are multiple Nash equilibria.

Return to Examples 1-3

Nash equilibrium for each example?

Example 1: The Prisoner's Dilemma

Example 2: Split or Steal?

Example 3: Chicken game

		DIIVCI Z	
		Sw	St
/er 1	Sw	(0,0) (1,-1)	(-1,1)
Dri	St	(1,-1)	(-1000, -1000)

Driver 2

Return to the rock-paper-scissors game

Nash equilibrium?

Summary

This lesson

- Finite games: definition + examples
- Strategic dominance: strict, weak, iterated
- Best responses and Nash equilibrium

Next lesson

- Mixed strategies
- Nash's existence theorem
- ...