MATH 644

Chapter 5

SECTION 5.2: WINDING NUMBER

Contents

The Winding Number	2
Homologous Curves	6
Simply-Connected Regions	7
Logarithm	12

Created by: Pierre-Olivier Parisé Spring 2023

THE WINDING NUMBER

Lemma 1. If γ is a cycle and $a \notin \gamma$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - a} \, d\zeta$$

is an integer.

<u>Proof.</u>

DEFINITION 2. If γ is a cycle, then the **index** or **winding number** of γ about a is

$$n(\gamma, a) := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\zeta - a} d\zeta \quad (a \notin \gamma).$$

Proposition 3. Let γ be a cycle.

- (a) $n(\gamma, a)$ is an analytic function of a, for $a \notin \gamma$.
- **(b)** $n(\gamma, a)$ is constant in each component of $\mathbb{C}\backslash\gamma$.
- (c) $n(\gamma, a) \to 0$ as $a \to \infty$. In particular, $n(\gamma, a) = 0$ for any a in the unbounded component of $\mathbb{C}\backslash\gamma$.
- (d) $n(-\gamma, a) = -n(\gamma, a)$.
- (e) $n(\gamma_1 + \gamma_2, a) = n(\gamma_1, a) + n(\gamma_2, a)$.

Proof.

a	T .		
Some	Int:	unti	on:

① Difference in the argument.

② Rays and number of connected components.

HOMOLOGOUS CURVES

DEFINITION 4. Closed curves γ_1 and γ_2 are **homologous** in a region Ω if $n(\gamma_1 - \gamma_2, a) = 0$ for all $a \notin \Omega$ and we write $\gamma_1 \sim \gamma_2$.

Remarks:

- Homology is an equivalence relation on curves in Ω .
- A closed curve is said to be **homologous to 0** if $n(\gamma, a) = 0$ for all $a \notin \Omega$. In this case, we write $\gamma \sim 0$.

EXAMPLE 5. Show that $\gamma_1(t) = r_1 e^{it}$ and $\gamma_2(t) = r_2 e^{it}$ $(0 \le t \le 2\pi)$ are homologous in $\Omega := \{z : |z| < R\}$, where $r_1 < r_2 < R$.

DEFINITION 6. Let Ω be a bounded region in \mathbb{C} bounded by finitely many piecewise continuously differentiable simple closed curves. The **positive orientation** of $\partial\Omega$ is a parametrization that has the following property:

(a) for each $t \in [0, 1]$ where the derivative exists, there is an $\varepsilon(t) > 0$ such that $\gamma(t) + ui\gamma'(t) \in \Omega$, for all $u \in [0, \varepsilon(t)]$.

Notes:

- ① When the positive orientation is chosen for $\partial\Omega$, then
 - $n(\partial\Omega, a) = 0$, for each $a \notin \overline{\Omega}$;
 - $n(\partial\Omega, a) = 1$, for each $a \in \Omega$.

EXAMPLE 7. Find the positive orientation of the boundary of the closed annulus $A := \{z : r_1 \le |z| \le r_2\}$.

SIMPLY-CONNECTED REGIONS

DEFINITION 8.

- (a) A region $\Omega \subset \mathbb{C}^*$ is called **simply-connected** if $\mathbb{C}^* \setminus \Omega$ is connected.
- (b) Equivalently, a region Ω is simply-connected if $\mathbb{S}^2 \setminus \pi(\Omega)$ is connected, where π is the stereographic projection.

EXAMPLE 9. Show that

- (a) the unit disk is simply connected;
- (b) the vectical strip $\Omega = \{z : 0 < \operatorname{Re} z < 1\}$ is simply connected;
- (c) $\mathbb{C}\setminus\{0\}$ is not simply connected.

THEOREM 10.

- (a) A region $\Omega \subset \mathbb{C}$ is simply-connected if and only if every cycle in Ω is homologous to 0 in Ω .
- (b) If Ω is not simply-connected then we can find a simple closed polygonal curve contained in Ω which is not homologous to 0.

Proof.

COROLLARY 11. Suppose f is analytic on a simply-connected region Ω . Then

- (a) $\int_{\gamma} f(z)dz = 0$ for all closed curves $\gamma \subset \Omega$;
- (b) there exists a function F analytic on Ω such that F'=f;
- (c) if also $f(z) \neq 0$ for all $z \in \Omega$, then there exists a function g analytic on Ω such that $f = e^g$.

Proof.

Logarithm

① "Uniqueness" in (b).

② "Uniqueness" in (c).

DEFINITION 12. If g is analytic in a region Ω and if $f = e^g$ then g is called a **logarithm** of f in Ω and is written $g(z) = \log f(z)$. The function g is uniquely determined by its value at one point $z_0 \in \Omega$.

Notes:

- ① f has countably many logarithms, which differ by $2\pi ki$. To specify $\log f(z)$ uniquely, we have to specify its value at one point $z_0 \in \Omega$.
- ② We do not claim that we can define a logarithm on $f(\Omega)$ and then composed with f to obtain $\log f(z)$.

EXAMPLE 13. Consider the function $z \mapsto (z-1)/(z+1)$, for $z \in \mathbb{D}$.