Towards Observability for Machine Learning Pipelines

Monitoring Streaming ML with Feedback Delays

Shreya Shankar, UC Berkeley **Service** February 2022

Agenda

- Dealing with machine learning (ML) pipelines sucks
- Shift recap & existing methods
- Toy ML task introduction
- Monitoring challenges & solution ideas

Dealing with ML Pipelines Sucks

Production ML

An on-call engineer's biggest nightmare 😡

Figure 1: High-level architecture of a generic end-to-end machine learning pipeline. Logos represent a sample of tools used to construct components of the pipeline, illustrating heterogeneity in the tool stack. Shankar et al. 2021

Production ML

An on-call engineer's biggest nightmare 🙀

- Many problems arise post-deployment
 - Corrupted upstream data
 - Model developer is on leave
 - Training assumptions don't hold in practice
 - Data "drifts" over time
 - And more...

Why Observability?

- Can't catch all bugs before they happen, but we want to minimize downtime
- We should:
 - Help engineers detect bugs
 - Help engineers diagnose bugs
- Need to support a wide variety of skill sets
 - Engineers, data scientists, etc.

Types of ML Data Management Solutions

Pre-training

- What do I need to start training a model?
- Feature stores, ETL pipelining, etc

Experiment Tracking

- What's the best model for a pipeline?
- mlflow, wandb, etc

Observability

- There's a bug in my pipeline; where is it?
- Real-time ML performance monitoring

Real-Time ML Performance Monitoring: Background

Why is this Hard?

Data "shifts"...

- Determining real-time performance requires labels
 - ...which are not always available post-deployment
- Is performance drop temporary (e.g., seasonal) or forever?
- Degenerate feedback loops
 - I.e., when predictions influence feedback (which labels are extracted from)

Shift Primer

Notation 1

- X is feature (covariate) space, Y is label space
- P(X): distribution of features
- P(Y): distribution of labels
- P(Y | X): distribution of labels given specific features
 - This is what ML models are trying to learn!

Shift Recap

Terminology 👰

- Covariate shift
 - \bullet P(Y | X) is the same but P(X) changes
- Concept shift
 - P(Y | X) changes but P(X) is the same

Existing Methods for Tackling Shift

Levels of sophistication 💍

- Straw-man approach
 - Tracking means & quantiles of features and outputs
- "I took a stats class" approach 💆
 - Tracking MMD, KS & Chi-Square test statistics, etc
 - <u>alibi-detect</u>
- Both approaches are label-unaware and don't use all the information we have. Can we do better?

Toy ML Task: Running Example

Task familiarization

- \bullet Binary classification task: predict whether a passenger in a NYC taxi ride will give the driver a "reasonable" tip (>10% of fare)
- Using NYC Taxi & Limousine Commission <u>public dataset</u>
- Using pd.DataFrame and sklearn Random Forest Classifier
- Evaluating accuracy

Pipeline familiarization

Pipeline familiarization

Feedback Delays Impact Accuracy

Shift Primer

Examples 🚇

- X = features (e.g., location), Y = labels (high tip indicator)
- Covariate shift
 - More taxi rides in Midtown area around NYE
- Concept shift
 - Heavy construction in certain areas causes people to tip less

Real-Time ML Performance Monitoring: Challenges

Challenge Tree

- "Coarse-grained" monitoring: detecting performance issues with label delays
 - Full-feedback, no-feedback, and partial-feedback cases
- "Fine-grained" monitoring: diagnosing performance issues
 - Teasing out engineering issues from data shift

Detecting performance issues: Feedback Delays

Detecting performance issues: Feedback Delays

Accuracy: ??

Detecting performance issues: Feedback Delays

Accuracy: 75% ??

Detecting performance issues: Feedback Delays

Accuracy: 86% 😜

- # predictions made = # labels received
- Simplest case
 - 1) Do streaming join on predictions & feedback
 - 2) Compute accuracy on result
- What if...data is too large to fit in memory?

- What if...data is too large to fit in memory?
 - Approximate streaming joins
 - Uniformly subsampling streams before joins yields quadratically fewer resulting tuples
- Idea: stratified subsampling
 - How to construct strata?

- **Problem**: randomly subsampling predictions and labels before the join yields quadratically fewer samples to compute accuracy on
- Solution: stratified sampling
- How to construct strata/buckets?
 - Want: most accurate overall approximate accuracy
 - Need: buckets with similar prediction errors/losses

- How to create dynamically evolving buckets with similar prediction errors/ losses?
- Solution ideas
 - Train decision tree to predict loss & use leaves as clusters
 - Frequent item-set or predicate search in loss "clusters"
- Lots of hyperparameters to decide 😔
- Need to constantly retrain bucket models?

- Occurs immediately after deployment
- Problem: no labels
- Solution: importance-weight training bucket accuracy
 - Split train set into buckets
 - Create criteria for buckets
 - Determine training accuracy for each bucket

- At inference, classify data point (feature vector) into bucket
- Importance-weight bucket training accuracies by inference representation
- Example
 - Buckets FiDi and Midtown have accuracies of 80% and 50%
 - After deployment, we see 100 FiDi rides and 500 Midtown rides
 - Estimated accuracy = $0.8 \times 100 + 0.5 \times 500 = \frac{80 + 250}{500} = 55\%$

Detecting performance issues: no-feedback

Importance-weighted estimated vs real accuracy on a weekly basis.

- Solution: importance-weight training bucket accuracy
- How to construct buckets?
 - Want: most accurate overall approximate accuracy
 - Need: buckets with good representation in train and inference sets

- How to create buckets with substantial representation in train sets?
- Solution ideas
 - Clustering weighted combinations of train & inference sets
 - Hierarchical aggregate summaries (e.g., PASS from Liang et al.)
- Lots of hyperparameters to decide 😔
- Need to constantly recompute buckets

Detecting performance issues: partial-feedback

- Hybrid of full-feedback & no-feedback?
- Some data points have longer feedback delays than others
 - Delays aren't necessarily uniformly distributed
 - Why?
- Additional problem: identify groups of data points with similar feedback delays

Fine-grained Monitoring

- Instrument pipelines with data quality checks
 - Alert on missing data
 - Set upper and lower bounds for feature values
- Tedious to scale to 1000s of features
- Practitioners push DQ verification onto "shift" detection...

Fine-grained Monitoring

Diagnosing performance issues: towards retraining models 2

- Using existing methods to compute shift doesn't work in practice
 - E.g., KS test has low p-values for O(1000) data points
 - Alert fatigue when monitoring every feature and output column
 - Seasonal & expected shifts
- Idea: look into these statistics when coarse-grained approximated metrics are low

Fine-grained Monitoring

Diagnosing performance issues: towards retraining models 2

- Different shifts imply different retraining strategies, e.g.,
 - Covariate shift: augment some buckets in training
 - Concept shift: retrain on recent window
- Research question: how to create self-adapting training sets?

mltrace: Ongoing Work

Ongoing Research Projects

• <u>mltrace</u>: lightweight, "bolt-on" ML observability tool in the making with projects in several research areas

Data Systems	Machine Learning	HCI
 Mitigating effects of feedback delays on real-time ML performance Differential dataflow to compute streaming ML metrics quickly and efficiently at scale 	 Creating streaming ML benchmarks Building repository of tasks with "temporally evolving tabular data" (e.g. Ethereum gas price prediction) 	 Interview study on best practices in CI / CD for ML Visualizing large-scale data drift

Readings and Resources

- Towards Observability for Machine Learning Pipelines
- The Modern ML Monitoring Mess
 - Rethinking Streaming ML Evaluation
 - Categorizing Post-Deployment ML Issues
 - Failure Modes in Existing Observability Tools
 - Research Challenges

• Contact: shreyashankar@berkeley.edu