Respostas da Tarefa 04 - GA - Entrega dia 27/04

1. Considere uma matriz A e sejam L_i , i = 1, 2, 3, 4, as linhas da matriz A. Suponha que a matriz

$$B = \left[\begin{array}{cccc} 2 & 10 & 9 & 11 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 1 & 15 \\ 0 & 0 & 0 & 2 \end{array} \right]$$

tenha sido obtida de A aplicando-se sucessivamente as seguintes operações elementares:

- (a) Troca da linha L_2 com a linha L_3 ;
- (b) Substituição da linha L_3 por $L_3 + 7L_1$;
- (c) Substituição da linha L_4 por $\frac{1}{3}L_4$.

Dessa forma, calcule det(A).

RESPOSTA: Observe que $\det(B) = 2 \cdot (-1) \cdot 1 \cdot 2 = -4$. Assim fazendo o procedimento inverso temos:

- (c) Substituição da linha L_4 por $\frac{1}{3}L_4$, implica que $\det = 3 \cdot \det(B)$.
- (b) Substituição da linha L_3 por $L_3 + 7L_1$ implica que não houve mudança no determinante.
- (a) Troca da linha L_2 com a linha L_3 implica que o sinal do determinante se inverte.

Logo $det(A) = (-1) \cdot 3 \cdot det(B) = 12$.

2. Seja *C* a matriz

$$C = \begin{bmatrix} 2 & 1 & -3 & 0 \\ 1 & 2 & -1 & 2 \\ 0 & 1 & 3 & 0 \\ 1 & 3 & 0 & 4 \end{bmatrix}$$

determine

(a) det(C);

RESPOSTA: Fazendo o determinte em cofatore, por exemplo da terceira linha obtemos $det(C) = -1 det(\widetilde{A}_{32}) + 3 det(\widetilde{A}_{33}) = 8$

(b) o determinante da matriz inversa de *C*.

RESPOSTA: Como $\det^{-1}(C) = \frac{1}{\det(C)}$ então $\det^{-1}(C) = \frac{1}{8}$.

3. Sejam

$$A = \begin{bmatrix} 2 & 5 & -3 & -2 \\ -2 & -3 & 2 & -5 \\ 1 & 3 & -2 & 2 \\ -1 & -6 & 4 & 3 \end{bmatrix} \quad e \quad B = \begin{bmatrix} 3 & 10 & -30 & 0 \\ 0 & -1 & e^{\pi} & 5 \\ 0 & 0 & \sqrt{2} & 42 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Calcule

(a) Calule det(A);

(b)
$$\det\left(\frac{e^{\pi}}{\sqrt{2}}(A^{-1})^t B\right)$$
;

(c)
$$A^{-1}$$
.

RESPOSTA:

(a)
$$\det(A) = -4$$
.

(b) Como
$$\det((A^{-1})^t) = \det((A^{-1})) = \frac{1}{\det(A)} = \frac{-1}{4} \operatorname{e} \det(B) = -15\sqrt{2}$$
, então
$$\det\left(\frac{e^{\pi}}{\sqrt{2}}(A^{-1})^t B\right) = \left(\frac{e^{\pi}}{\sqrt{2}}\right)^4 \det((A^{-1})^t) \det(B) = \frac{15\sqrt{2}e^{4\pi}}{16}$$

(c) Aplicando Eliminação de Gauss-Jordan temos que

$$\begin{bmatrix} 2 & 5 & -3 & -2 & 1 & 0 & 0 & 0 \\ -2 & -3 & 2 & -5 & 0 & 1 & 0 & 0 \\ 1 & 3 & -2 & 2 & 0 & 0 & 1 & 0 \\ -1 & -6 & 4 & 3 & 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 5 & -3 & -2 & 1 & 0 & 0 & 0 \\ 0 & 2 & -1 & -7 & 1 & 1 & 0 & 0 \\ 0 & 0 & \frac{-1}{4} & \frac{19}{4} & \frac{-3}{4} & \frac{-1}{4} & 1 & 0 \\ 0 & 0 & 0 & 4 & 0 & 1 & 3 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \frac{-7}{4} & \frac{-13}{4} & \frac{-3}{4} \\ 0 & 1 & 0 & 0 & 2 & \frac{17}{4} & \frac{31}{4} & \frac{13}{4} \\ 0 & 0 & 1 & 0 & 3 & \frac{23}{4} & \frac{41}{4} & \frac{19}{4} \\ 0 & 0 & 0 & 1 & 0 & \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \end{bmatrix}$$

Logo

$$A^{-1} = \begin{bmatrix} 0 & \frac{-7}{4} & \frac{-13}{4} & \frac{-3}{4} \\ 2 & \frac{17}{4} & \frac{31}{4} & \frac{13}{4} \\ 3 & \frac{23}{4} & \frac{41}{4} & \frac{19}{4} \\ 0 & \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \end{bmatrix}$$

4. Considere a matriz:

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Encontre todos os valores do escalar λ para os quais o sistema de equações $(A - \lambda I_3)X = \overline{0}$ tem solução não trivial. Nestes casos descreva o conjunto-solução.

RESPOSTA: $(A - \lambda I_3)X = \overline{0}$ tem solução não trivial se, e somente se, $\det(A - \lambda I_3) = 0$. Neste caso

$$A - \lambda I_3 = \begin{bmatrix} -\lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 0 & -\lambda \end{bmatrix} \Rightarrow \det(A - \lambda I_3) = -\lambda^3 + \lambda^2 + \lambda - 1 = 0$$

$$\Leftrightarrow \lambda = 1 \text{ ou } \lambda = -1$$

Para $\lambda = -1$ temos que

$$(A - \lambda I_3) = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{vmatrix}$$

Assim, escalonoando o sistema temos

$$\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 \\
0 & 2 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right] \sim \left[\begin{array}{ccccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

o que nos leva a $S = \{(-z, 0, z), z \in \mathbb{R}\}$

Para $\lambda = 1$ temos que

$$(A - \lambda I_3) = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & -1 \end{bmatrix}$$

Assim, escalonoando o sistema temos

$$\left[\begin{array}{cccc} -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \end{array}\right] \sim \left[\begin{array}{ccccc} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right]$$

o que nos leva a $S = \{(z, y, z), y, z \in \mathbb{R}\}$

5. Seja

$$A = \begin{bmatrix} \alpha - 2 & 0 & 0 & -5 \\ 0 & 2 & 0 & 0 \\ -2 & -6 & -3 & 7 \\ 0 & -2 & 0 & \alpha^2 - 1 \end{bmatrix}$$

- (a) Encontre todos os valores de α para os quais $\det(A) = 0$.
- (b) Escolha um destes valores e substitua na matriz A. Em seguida dê exemplos de matrizes 4×1 (matriz coluna) B_1 e B_2 para os quais o sistema $AX = B_1$ tenha solução e o sistema $AX = B_2$ não tenha, justificando sua resposta (*não precisa resolver o sistema*!).

RESPOSTA:

- (a) Temos que $det(A) = 6(\alpha 2)(\alpha^2 1) = 0 \Leftrightarrow \alpha = 1, -1, 2.$
- (b) Para qualquer um destes valores, a matriz é não invertível e seu posto é igual a 3. Basta então escolhermos duas matrizes B_1 e B_2 tais que os postos da matriz ampliada sejam 3 e 4 respectivamente.