Apparel Image Classification

Springboard Data Science Career Track - Capstone Two

Rose Zdybel 2020 July

Image Classification has a wide range of applications

- Medical applications
- Facial recognition
- Self driving cars image recognition
- Online retailer automatic image classification
- Product locater based on user pictures

Project Objective: Image Classification Fundamentals

- Understand fundamental mechanisms used in image classification
 - To get experience in the challenges from training a model from scratch
- Maximize predictive capabilities

EDA

Exploratory Data Analysis

Image size

Categories

Data: Kaggle Apparel Image Data Set

- Subsetted due to resource constraints:
 - Compute:
 - Memory
 - GPU unavailability (initially)

871 black_pants

818 white_dress

800 red_dress

798 blue_pants

40 brown_shorts

Training time

766 black_shoes 741 blue_shirt 715 black_shirt 610 red_shoes 600 white_shoes 523 blue_shoes We used 502 blue_dress categories with 464 brown_shoes the largest 455 green_shoes number of 450 black_dress samples 328 black shorts 311 brown_pants 308 red pants 299 blue_shorts 274 white_pants 230 green_shirt 227 green_pants 135 green_shorts 120 white_shorts

Sample data

Approach

"Experiments"

Training	Test	Validation
0.7	0.15	0.15

Data Splits

Initial exploratory results influenced approach

- Issues from initial model exploration on laptop:
 - Memory deficiency
 - Training time
 - Complex models
 - Large number of pixels
 - Lack of convergence

Change	Training time	Model Stability	CPU resources	Memory resources	Accuracy
Colab Env	+		+	+	
Data set size reduction	+				-
Image size reduction options	+			+	+/-
Optimizer/LR options		+			+/-

Approach: Investigate most influential parameters

Model Architecture

- Block* configuration
- # blocks
- # nodes per layer

Optimizers & Learning Rate

- Use LR-Finder
- Verified results on selected parameter combinations

Image Size

- Source size varies
- Use single size
- Larger size increases training time

*Block: one or more convolution layers plus a pool layer

Example: Model 3; AMSGRAD optimizer:

Parameter Grid

- Machine Learning grid searchlike mechanism
 - Ran experiments with a subset of parameters based on initial exploratory results
 - Shown later in results section

OPTION	VALUES
Optimizer	SGD , AMSGRAD(AMSGrad)
Learning Rate	.01, 0.001, .0001
Models	M1, M3, M6, M7, M8
Image Size ("pixels")	150x150, 300x300

Model Architectures

- VGG16 shown for reference
 - Did not train or use pretrained model
 - For future consideration

Results

After Initial exploration, ran most promising parameter combinations

optimizer	Ir	pixels	M1	M3	M6	M7	M8
Sgd	0.01	150	0.8879		0.8796	0.9449	1 0.9421
Sgd	0.01	300	None	None	None	None	1 0.9357
Sgd	0.001	150	None	None	None	None	None
Sgd	0.001	300	None	None	None	None	None
Sgd	0.0001	150	None	None	None	None	None
Sgd	0.0001	300	None	None	None	None	None
amsgrad	0.01	150	None	None	None	None	None
amsgrad	0.01	300	None	None	None	None	None
amsgrad	0.001	150	3 0.9136	0.9476	⋺ 0.9274	0.9449	0.9513
amsgrad	0.001	300	3 0.909	1 0.9403	⇒ 0.9081	0.943	1 0.9338
amsgrad	0.0001	150	None	1 0.9292	None	0.943	None
amsgrad	0.0001	300	None	None	None	None	None

Metric: Test (Holdout) Data Accuracy

Optimizer Comparison

AMSGrad* did better or equivalent to SGD for all models * **NOTE**: Adam optimizer with AMSGrad option

Image Size Comparison

- We used two sizes
 - 150 x 150
 - 300 x 300
- Smaller size produced better results
 - Should consider smaller sizes in future work

Learning Rate Comparison

- We selectively confirmed LR-finder recommendations:
 - Models
 - M3
 - M7
 - Optimizer: AMSGrad

Best Model

Based on test data prediction accuracy

optimizer	lr	pixels	M1	M3	M6	M7	M8
Sgd	0.01	150	0.8879		4 0.8796	1 0.9449	1 0.9421
Sgd	0.01	300	None	None	None	None	1 0.9357
Sgd	0.001	150	None	None	None	None	None
Sgd	0.001	300	None	None	None	None	None
Sgd	0.0001	150	None	None	None	None	None
Sgd	0.0001	300	None	None	None	None	None
amsgrad	0.01	150	None	None	None	None	None
amsgrad	0.01	300	None	None	None	None	None
amsgrad	0.001	150	→ 0.9136	1 0.9476		1 0.9449	1 0.9513
amsgrad	0.001	300	3 0.909	• 0.9403	→ 0.9081	0.943	1 0.9338
amsgrad	0.0001	150	None	1 0.9292	None	0.943	None
amsgrad	0.0001	300	None	None	None	None	None

Test Data Accuracy	0.951
Model	M8
lmage Size	150 x 150
Optimizer	AMSGrad
Learning Rate	.001

Confusion Matrix

- Major Model issues
 - White shoes classified as white dress (6)
 - Black shoes classified as black pants (5)

Mis-classified image examples

- Actual | Predicted
 - White shoes | white dress
 - Black shoes | black pants

Conclusion

- Explored developing a Convolution Neural Network from scratch
- Explored the effect of influential parameters
- Used Colab due to local compute resource limitations
- Developed a model with 95% predictive accuracy

•

- Future work considerations
 - Investigate multi-class model
 - Potential for better predictive capability
 - Investigate more parameter values: image sizes, optimizers
 - Investigate models with more blocks/layers
 - Investigate use of one or more pre-trained models