Open Data Science

Leo Lahti University of Turku, Finland

@openreslabs

Elements of open data science

Data Science Workflow

Program

1. Open Data

Human genome project: a prime example on research data sharing enabled timely genome sequencing and assembly

Nature Reviews Genetics 14, 89-99 (February 2013) | doi:10.1038/nrg3394

Reuse of public genome-wide gene expression data

Johan Rung¹ & Alvis Brazma¹ About the authors

Open data now supporting research & enabling cross-disciplinary collaboration and discovery at an unprecedented scale from natural to social sciences and humanities.

Open data: from natural sciences to humanities

Eurostat: average household expenditure in 2011

Science e.g. human genome project, EBI

Health National Institutes of Health

Populations & demography Eurostat, FAO, National statistical authorities

Economics World Bank

Cultural heritage Digitized collections of books, artwork etc.

Weather Finnish Meteorological Institute

Geospatial Open Street Maps; Geonames; Land Survey Finland

Bottlenecks in data access

- Findability
- Accessibility (scattered, noisy, incomplete, non-machine-readable)
- Interoperability
- Reusability (quality, rights, life span, documentation..)

Technical, cultural, and historical challenges still forming bottlenecks for research code and data sharing

2. Open Methods

Computational workflows have an increasingly central role in research

Science 13 April 2012: Vol. 336 no. 6078 pp. 159-160 DOI: 10.1126/science.1218263

POLICY FORUM

RESEARCH PRIORITIES
Shining Light into Black Boxes

A. Morin 1 , J. Urban 2 , P. D. Adams 3 , I. Foster 4 , A. Sali 5 , D. Baker 6 , P. Sliz 1,*

Open methods development can complement FAIR data sharing

Browse

For Authors

About Us

<

OPEN ACCESS

ESSAY

898,944 1,119
VIEWS CITATIONS

Why Most Published Research Findings Are False

John P. A. Ioannidis

Published: Aug 30, 2005 • DOI: 10.1371/journal.pmed.0020124

How to Make More Published Research True

John P. A. Ioannidis

Published: October 21, 2014 • DOI: 10.1371/journal.pmed.1001747

RESEARCH PRIORITIES

Shining Light into Black Boxes

A. Morin¹, J. Urban², P. D. Adams³, I. Foster⁴, A. Sali⁵, D. Baker⁶, P. Sliz¹,*

Number of open analysis tools has grown exponentially

3. Open Collaboration

Open collaboration through open research software ecosystems can improve efficiency & methods base

Enabling transparent and collaborative computational analysis of 12 tumor types within The Cancer Genome Atlas

Larsson Omberg, Kyle Ellrott, Yuan Yuan, Cyriac Kandoth, Chris Wong, Michael R Kellen, Stephen H Friend, Josh Stuart, Han Liang & Adam A Margolin

Affiliations | Contributions | Corresponding authors

Nature Genetics **45**, 1121–1126 (2013) | doi:10.1038/ng.2761 Published online 26 September 2013

Social coding revolution

- 20+ pkgs (14 in CRAN)
- 80k downloads 2017

open data science network

Timeline on community building

First R **Finnish** rOpenGov (ICML/MLOSS packages collection Stabilization (2005)2013) (2011)fmi helsinki eurostat pollstR pxweb r pen Gov gisfin bioinfo fmi hansard osmar

Retrieval and Analysis of Eurostat Open Data with the eurostat Package

by Leo Lahti, Janne Huovari, Markus Kainu, and Przemysław Biecek

R packages:

- eurostat
- eurostat_geospatial

Documentation & cheat sheets

Online tutorials & blog posts

Issue tracker

Automated unit tests

Project homepage

The eurostat package R tools to access open data from Eurostat database

Search and download

Data in the Eurostat database is stored in tables. Each table has an identifier, a short table_code, and a description (e.g. *tsdtr420* - People killed in road accidents).

Key eurostat functions allow to find the table_code, download the

Key eurostat functions allow to find the table_code, download the eurostat table and polish labels in the table.

Find the table code

The ${\bf search_eurostat(pattern,...)}$ function scans the directory of Eurostat tables and returns codes and descriptions of tables that match pattern.

library("eurostat") query <- search_eurostat("road", type = "table")</pre>

Download the table

The <code>get_eurostat(id, time_format="date", filters="none", type="code", cache = TRUE, ...)</code> function downloads the requested table from the <code>Eurostat</code> bulk download facility or from <code>The Eurostat</code> Web Services JSON API (if filters are defined). Downloaded data is cached (if <code>cache=TRUE</code>). Additional arguments define how to read the time column (time_format) and if table dimensions shall be kept as codes or converted to labels (type).

dat <- get_eurostat(id="tsdtr420", time_format="num") head(dat)</pre>

##		unit	sex	geo	time	value:
##	1	NR	T	AT	1999	1079
##	2	NR	Т	BE	1999	139
##	3	NR	Т	CZ	1999	145
##	4	NR	T	DK	1999	514
##	5	NR	Т	EL	1999	2110
###	6	ND	т	EC	1000	573

Add labels

The label_eurostat(x, lang = "en", ...) gets definitions for Eurostat codes and replace them with labels in given language ("en", "fr" or "de").

dat <- label_eurostat(dat) head(dat)</pre>

head(dat)								
##		unit	sex		geo	time	values	
##	1	Number	Total		Austria	1999	1079	
##	2	Number	Total		Belgium	1999	1397	
##	3	Number	Total	Czech	Republic	1999	1455	
##	4	Number	Total		Denmark	1999	514	
##	5	Number	Total		Greece	1999	2116	
##	6	Number	Total		Spain	1999	5738	

This onepager presents the eurostat package

Leo Lahti, Janne Huovari, Markus Kainu, Przemysław Biecek 2014-2017 package version 2.2.43 URL: https://github.com/rOpenGov/eurostat

eurostat and plots

The <code>get_eurostat()</code> function returns tibbles in the long format. Packages <code>dplyr</code> and <code>tidyr</code> are well suited to transform these objects. The <code>ggplot2</code> package is well suited to plot these objects.

ggplot(t1, aes(x = time, y = values, color = geo,
 group = geo, shape = geo)) +
 geom_point(size = 2) +
 geom_line() + theme_bw() +

labs(title="Road accidents", x = "Year", y = "Victims")

library("dplyn")
t2 <- t1 %-% filter(time == "2014-01-01")
ggplot(t2, aes(geo, values, fill=geo)) +
geom_bar(stat = "identity") + theme_bw() +
theme(legend.position = "none")</pre>

eurostat and maps

Fetch and process data

There are three function to work with geospatial data from GISCO. The get_eurostat_geospatial() returns preprocessed spatial data as sp-objects or as data farmes. The merge_eurostat_geospatial() both downloads and merges the geospatial data with a preloaded tabular data. The cut_to_classes() is a wrapper for cut() -function and is used for categorizing data for maps with tidy labels.

library("eurostat") library("dplyr")

fertility <- get_eurostat("demo_r_frate3") %>%
 filter(time == "2014-01-01") %>%
 mutate(cat = cut_to_classes(values, n=7, decimals=1))

head(select(mapdata,geo,values,cat,long,lat,order,id))

##		geo	values			cat	long	lat	order	id
##	1	AT124	1.39	1.3	~<	1.5	15.54245	48.90770	214	10
##	2	AT124	1.39	1.3	~<	1.5	15.75363	48.85218	215	10
##	3	AT124	1.39	1.3	~<	1.5	15.88763	48.78511	216	10
##	4	AT124	1.39	1.3	~<	1.5	15.81535	48.69270	217	10
##	5	AT124	1.39	1.3	~<	1.5	15.94094	48.67173	218	10
##	6	AT124	1.39	1.3	~<	1.5	15.90833	48.59815	219	10

Draw a cartogram

The object returned by **merge_eurostat_geospatial()** are ready to be plotted with ggplot2 package. The **coord_map()** function is useful to set the projection while **labs()** adds annotations of the plot.

library("ggplot2")

ggplot(mopdata, des(x = long, y = lat, group = group))+
geom.polygon(aes(fill=cat), color="grey", size = .1)+
scale_fill_brewer(palette = "RdYlBu") +
labs(title="Fertility rate, by NUTS-3 regions, 2014",

labs(title="Fertility rate, by NUTS-3 regions, 2014", subtitle="Avg. number of live births per woman", fill="Total fertility rate(%)") + theme_light()+ coord_map(xlim=c(-12,44), ylim=c(35,67))

CC BY Przemyslaw Biecek https://creativecommons.org/licenses/by/4.0/

From specific packages to package ecosystems

eurostat & eurostat_geospatial

pxweb for PX-Web/PC-Axis data from stats authorities in: Denmark, Finland, Greenland, Iceland, Latvia, Norway, Sweden, Various cities...

Unexpected outcomes from open collaboration

lib.aalto.fi

The future is made today.

Donate to Aalto University

18/23

Freedom of Information & Open science activism

FOI requests to Finnish universities (2014) Data collection

- ~ 70 institutions
- 2010-2017

Open data released by MoE (2016-2018)

Two years from the initial requests to actual data release

Finland takes leading role in the openness of academic journal pricing

June 13, 2016

Journal subscription prices 2010-2017 for \sim 70 Finnish institutions as open data from MoE.

Rapid increase in costs (roughly 10% annually).

Figure & Data release: Ministry of Education and Culture of Finland / Open Science and Research Initiative 2014–2017

Elements of open data science

Challenges in Open Data Science projects

Community building

Focus & Research questions

Scattered resources

Sustainability (data, methods, workflows)

Thank You!

Mikko Tolonen
Joona Lehtomäki
Markus Kainu
Juuso Parkkinen
Przemyslaw Biecek
Måns Magnusson
Sudarshan Shetty
Ville Laitinen
Aaro Salosensaari

@openreslabs openresearchlabs.github.io

Helsinki Computational History Group

