Formule logique : Sémantique

Quentin Fortier

April 10, 2022

Définition

Une **distribution de vérité** sur un ensemble V de variables est une fonction de V vers $\{0, 1\}$.

0 est parfois noté Faux ou \bot . 1 est parfois noté Vrai ou \top .

Définition

Une distribution de vérité sur un ensemble V de variables est une fonction de V vers $\{0, 1\}$.

0 est parfois noté Faux ou \bot . 1 est parfois noté Vrai ou \top .

Définition

Soit d une distribution de vérité sur V.

L'**évaluation** $[\![\varphi]\!]_d$ d'une formule φ sur d est définie inductivement :

- $[T]_d = 1$, $[F]_d = 0$
- $[x]_d = d(x)$ si $x \in V$
- $\bullet \ \llbracket \neg \varphi \rrbracket_d = 1 \llbracket \varphi \rrbracket_d$
- $\bullet \ \llbracket \varphi \wedge \psi \rrbracket_d = \min(\llbracket \varphi \rrbracket_d, \llbracket \psi \rrbracket_d)$
- $\bullet \ \llbracket \varphi \lor \psi \rrbracket_d = \max(\llbracket \varphi \rrbracket_d, \llbracket \psi \rrbracket_d)$

Si $[\![\varphi]\!]_d=1$, on note $d\models\varphi$ et on dit que d est un **modèle** pour φ .

lci une distribution de vérité d à valeur booléenne est utilisée.

Définition

Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute distribution de vérité $d:V \to \{0,\ 1\}$:

$$\llbracket \varphi \rrbracket_d = \llbracket \psi \rrbracket_d$$

Définition

Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute distribution de vérité $d:V \to \{0,\ 1\}$:

$$\llbracket \varphi \rrbracket_d = \llbracket \psi \rrbracket_d$$

Lois de de Morgan

Pour toutes formules φ , ψ :

$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$$

Définition

Deux formules φ et ψ sur V sont **équivalentes** (et on note $\varphi \equiv \psi$) si, pour toute distribution de vérité $d:V \to \{0,\ 1\}$:

$$[\![\varphi]\!]_d=[\![\psi]\!]_d$$

Lois de de Morgan

Pour toutes formules φ , ψ :

$$\neg(\varphi \lor \psi) \equiv \neg\varphi \land \neg\psi$$
$$\neg(\varphi \land \psi) \equiv \neg\varphi \lor \neg\psi$$

Définition

Une formule toujours évaluée à 1 est une **tautologie**.

Une formule toujours évaluée à 0 est une antilogie.

Une formule qui possède au moins une évaluation à $1\ \mathrm{est}\ \mathrm{satisfiable}.$

Soit G = (V, E) un graphe.

Exercice

Définir une formule logique satisfiable si et seulement si G est biparti (c'est-à-dire : $\exists A\subseteq V$ tel que les seules arêtes G soient entre un sommet de A et un sommet de cA).

Écrire une fonction OCaml pour effectuer cette transformation.

Quelques équivalences importantes :

$$\neg \neg \varphi \equiv \varphi$$

$$\varphi \wedge \varphi \equiv \varphi$$

$$\varphi \vee \varphi \equiv \varphi$$

$$\varphi_1 \wedge (\varphi_2 \wedge \varphi_3) \equiv (\varphi_1 \wedge \varphi_2) \wedge \varphi_3$$

$$\varphi_1 \vee (\varphi_2 \vee \varphi_3) \equiv (\varphi_1 \vee \varphi_2) \vee \varphi_3$$

$$\varphi_1 \vee (\varphi_2 \wedge \varphi_3) \equiv (\varphi_1 \vee \varphi_2) \wedge (\varphi_1 \vee \varphi_3)$$

$$\varphi_1 \wedge (\varphi_2 \vee \varphi_3) \equiv (\varphi_1 \wedge \varphi_2) \vee (\varphi_1 \wedge \varphi_3)$$

En notant \overline{a} au lieu de $\neg a$, a+b au lieu de $a \lor b$, ab au lieu de $a \land b$, les équivalences précédentes deviennent :

$$\overline{a} \equiv a$$

$$aa \equiv a$$

$$a + a \equiv a$$

$$a(bc) \equiv (ab)c$$

$$a + (b+c) \equiv (a+b) + c$$

$$a + bc \equiv (a+b)(a+c)$$

$$a(b+c) \equiv ab + ac$$

Et les lois de De Morgan :

$$\overline{a+b} \equiv \overline{a}\overline{b}$$

$$\overline{ab} \equiv \overline{a} + \overline{b}$$

Exercice

Comment peut-on réécrire $(\bigvee_i \varphi_i) \wedge (\bigvee_j \psi_j)$?

Et
$$(\bigwedge_i \varphi_i) \vee (\bigwedge_j \psi_j)$$
 ?

Théorème

Soit φ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \varphi$ équivaut à :

- inverser les ∨ et ∧
- inverser les variables avec leurs négations

Théorème

Soit φ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \varphi$ équivaut à :

- inverser les ∨ et ∧
- inverser les variables avec leurs négations

Preuve: Par induction structurelle.

Théorème

Soit φ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \varphi$ équivaut à :

- inverser les ∨ et ∧
- inverser les variables avec leurs négations

Preuve: Par induction structurelle.

Par exemple si $\varphi = (x \vee y) \wedge ((\neg x \wedge z) \vee \neg y) \vee \neg z$ alors :

$$\neg \varphi \equiv (\neg x \land \neg y) \lor ((x \lor \neg z) \land y) \land z$$

Théorème

Soit φ une formule possédant des \neg uniquement sur des variables.

Alors $\neg \varphi$ équivaut à :

- inverser les ∨ et ∧
- inverser les variables avec leurs négations

Preuve: Par induction structurelle.

Par exemple si $\varphi = (x \vee y) \wedge ((\neg x \wedge z) \vee \neg y) \vee \neg z$ alors :

$$\neg \varphi \equiv (\neg x \land \neg y) \lor ((x \lor \neg z) \land y) \land z$$

On peut calculer sur des formules un peu comme sur les réels.

Par exemple, comme (a + b)(c + d)e = ace + ade + bce + bde:

$$(a \lor b) \land (c \lor d) \land e \equiv (a \land c \land e) \lor (a \land d \land e) \lor (b \land c \land e) \lor (b \land d \land e)$$

Soit $V=\{x_0,...,x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d:V\to\{0,1\}$.

Soit $V=\{x_0,...,x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d:V\to\{0,1\}$.

On peut représenter d par un entier dont le ième bit est $d(x_i)$ (bitset). On énumère alors tous les entiers de 0 à $2^n - 1$.

Soit $V=\{x_0,...,x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d:V\to\{0,1\}$.

On peut représenter d par un entier dont le ième bit est $d(x_i)$ (bitset). On énumère alors tous les entiers de 0 à $2^n - 1$.

Exercice

En déduire des fonctions OCaml tautologie et satisfiable. On pourra utiliser Int.logand, Int.logor, Int.shift_left pour les opérations bit à bit.

Complexité:

Soit $V=\{x_0,...,x_{n-1}\}$. Pour savoir si une formule est une tautologie, une méthode naïve est d'énumérer les 2^n distributions de vérité $d:V\to\{0,1\}$.

On peut représenter d par un entier dont le ième bit est $d(x_i)$ (bitset). On énumère alors tous les entiers de 0 à $2^n - 1$.

Exercice

En déduire des fonctions OCaml tautologie et satisfiable. On pourra utiliser Int.logand, Int.logor, Int.shift_left pour les opérations bit à bit.

Complexité : $\geq 2^n$.

Soit φ une formule sur V. On peut représenter les différentes valeurs des évaluations de φ par une **table de vérité**.

Soit φ une formule sur V. On peut représenter les différentes valeurs des évaluations de φ par une **table de vérité**.

Table de vérité de $(x \wedge y) \vee (\neg x \wedge \neg y)$:

\boldsymbol{x}	y	$(x \land y) \lor (\neg x \land \neg y)$
0	0	1
0	1	0
1	0	0
1	1	1

Chaque ligne correspond à une distribution de vérité d possible et $[\![\varphi]\!]_d$.

Soit φ une formule sur V. On peut représenter les différentes valeurs des évaluations de φ par une **table de vérité**.

Table de vérité de $(x \wedge y) \vee (\neg x \wedge \neg y)$:

\boldsymbol{x}	y	$(x \land y) \lor (\neg x \land \neg y)$
0	0	1
0	1	0
1	0	0
1	1	1

Chaque ligne correspond à une distribution de vérité d possible et $[\![\varphi]\!]_d$.

Deux formules sont équivalentes ssi elles ont la même table de vérité.

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Soient x= « le chemin de gauche conduit à une oasis » et y= « le chemin de droite conduit à une oasis ».

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Soient x= « le chemin de gauche conduit à une oasis » et y= « le chemin de droite conduit à une oasis ».

D'après l'hypothèse, la formule $\varphi=((x\vee y)\wedge \neg y)\vee (\neg(x\vee y)\wedge y)$ doit être vraie.

Vous êtes perdus dans le désert et vous avez le choix entre 2 chemins, gardés par 2 sphinx.

Le premier vous dit : « au moins un des chemins conduit à une oasis. » Le second ajoute : « le chemin de droite se perd dans le désert. » Sachant que les deux sphinx disent tous deux la vérité, ou bien mentent tous deux, que faites vous ?

Soient x= « le chemin de gauche conduit à une oasis » et y= « le chemin de droite conduit à une oasis ».

D'après l'hypothèse, la formule $\varphi=((x\vee y)\wedge \neg y)\vee (\neg(x\vee y)\wedge y)$ doit être vraie.

En écrivant la table de vérité de φ ou en utilisant notre fonction Caml, on trouve que la seule solution est x=1 et y=0: il faut donc prendre le chemin de gauche.

Nombre de tables de vérités différentes sur $\,n\,$ variables :

Nombre de tables de vérités différentes sur n variables : 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Nombre de tables de vérités différentes sur n variables : 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Question

Est-ce que toutes les tables de vérités possibles peuvent être obtenues par une formule logique?

Nombre de tables de vérités différentes sur n variables : 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Question

Est-ce que toutes les tables de vérités possibles peuvent être obtenues par une formule logique?

Exemple: comment obtenir la table suivante?

x	y	?
0	0	1
0	1	1
1	0	0
1	1	1

Nombre de tables de vérités différentes sur n variables : 2^{2^n} (2 choix pour chacune des 2^n distributions de vérité).

Question

Est-ce que toutes les tables de vérités possibles peuvent être obtenues par une formule logique?

Exemple: comment obtenir la table suivante?

x	y	?
0	0	1
0	1	1
1	0	0
1	1	1

Avec la formule $\neg x \lor y$, qu'on note aussi $x \implies y$.

2ème exemple:

\boldsymbol{x}	y	z	?
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Cette méthode marche tout le temps, et permet de prouver :

Théorème

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

Cette méthode marche tout le temps, et permet de prouver :

Théorème

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

De plus, la forme de la formule obtenue est bien particulière.

Définition

- Un **littéral** est une variable ou sa négation.
- Une **clause** est une conjonction de littéraux (c'est à dire de la forme $\ell_1 \wedge \ell_1 \wedge ... \wedge \ell_p$ où ℓ_i est un littéral).

Cette méthode marche tout le temps, et permet de prouver :

Théorème

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

De plus, la forme de la formule obtenue est bien particulière.

Définition

- Un littéral est une variable ou sa négation.
- Une **clause** est une conjonction de littéraux (c'est à dire de la forme $\ell_1 \wedge \ell_1 \wedge ... \wedge \ell_p$ où ℓ_i est un littéral).

Théorème

Toute formule logique est équivalente à une formule sous **forme normale disjonctive**, c'est à dire de la forme $c_1 \vee ... \vee c_k$ où c_i est une clause.

Cette méthode marche tout le temps, et permet de prouver :

Théorème

Toute table de vérité peut être obtenue avec une formule logique. Il existe donc exactement 2^{2^n} formules logiques à n variables, à équivalence près.

De plus, la forme de la formule obtenue est bien particulière.

Définition

- Un littéral est une variable ou sa négation.
- Une **clause** est une conjonction de littéraux (c'est à dire de la forme $\ell_1 \wedge \ell_1 \wedge ... \wedge \ell_p$ où ℓ_i est un littéral).

Théorème

Toute formule logique est équivalente à une formule sous **forme normale disjonctive**, c'est à dire de la forme $c_1 \vee ... \vee c_k$ où c_i est une clause.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

Preuve:

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$. Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan).

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

 $\begin{array}{l} \underline{\mathsf{Preuve}} : \neg \varphi \text{ est \'equivalente \`a une forme normale disjonctive, c'est \`a} \\ \mathsf{dire} \ \neg \varphi \equiv c_1 \lor \dots \lor c_k \ \mathsf{o\`u} \ \mathsf{chaque} \ c_i \ \mathsf{est} \ \mathsf{de} \ \mathsf{la} \ \mathsf{forme} \ \ell_1 \land \dots \land \ell_p. \\ \mathsf{Alors} \ \neg \neg \varphi = \neg (c_1 \lor \dots \lor c_k) \equiv \neg c_1 \land \dots \land \neg c_k \ \mathsf{(de Morgan)}. \\ \mathsf{Or} \ \neg c_i = \neg (\ell_1 \land \ell_2 \land \dots \land \ell_p) \equiv \neg \ell_1 \lor \dots \lor \neg \ell_p \ \mathsf{(de Morgan)}. \end{array}$

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$. Alors $\neg \neg \varphi = \neg(c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan).

Or $\neg c_i = \neg(\ell_1 \land \ell_2 \land \dots \land \ell_p) \equiv \neg \ell_1 \lor \dots \lor \neg \ell_p$ (de Morgan).

Donc $\varphi \equiv \neg \neg \varphi$ est bien équivalente à une forme normale conjonctive.

Définition

Une **forme normale conjonctive** est une conjonction de disjonctions de littéraux, c'est à dire une formule de la forme $c_1 \wedge ... \wedge c_k$ où chaque c_i est de la forme $\ell_1 \vee ... \vee \ell_p$.

Théorème

Toute formule logique φ est équivalente à une formule sous forme normale conjonctive.

<u>Preuve</u>: $\neg \varphi$ est équivalente à une forme normale disjonctive, c'est à dire $\neg \varphi \equiv c_1 \lor ... \lor c_k$ où chaque c_i est de la forme $\ell_1 \land ... \land \ell_p$. Alors $\neg \neg \varphi = \neg (c_1 \lor ... \lor c_k) \equiv \neg c_1 \land ... \land \neg c_k$ (de Morgan).

Or $\neg c_i = \neg(\ell_1 \land \ell_2 \land \dots \land \ell_p) \equiv \neg \ell_1 \lor \dots \lor \neg \ell_p$ (de Morgan).

Donc $\varphi \equiv \neg \neg \varphi$ est bien équivalente à une forme normale conjonctive.

Autre preuve possible : par induction structurelle sur φ .

Exercice X2016

Question 20 Pour chacune des formules suivantes, utiliser l'involutivité de la négation, l'associativité et la distributivité des connecteurs \wedge et \vee , ainsi que les lois de De Morgan pour transformer la formule en FNC. Seul le résultat du calcul est demandé :

- a) $(x_1 \vee \neg x_0) \wedge \neg (x_4 \wedge \neg (x_3 \wedge x_2))$
- b) $(x_0 \wedge x_1) \vee (x_2 \wedge x_3) \vee (x_4 \wedge x_5)$

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

1-SAT :

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

- \bullet 1-SAT : satisfiable ssi φ ne contient pas à la fois une variable et sa négation.
 - Complexité : O(n), n étant le nombre de variables dans φ .
- **2**-SAT:

Problème k-SAT

Le problème k-SAT consiste à déterminer si une formule φ , sous forme normale conjonctive dont chaque clause comporte k littéraux, est satisfiable.

- \bullet 1-SAT : satisfiable ssi φ ne contient pas à la fois une variable et sa négation.
 - Complexité : O(n), n étant le nombre de variables dans φ .
- 2-SAT : se ramène à un problème de graphe dont les sommets sont les littéraux de φ .
 - Pour toute clause $\ell_1 \vee \ell_2$, équivalente à $\neg \ell_1 \implies \ell_2$, on ajoute un arc $(\neg \ell_1, \ell_2)$.
 - φ est alors satisfiable ssi aucune composante fortement connexe ne contient une variable et sa négation.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

<u>Preuve</u> : soit φ une formule k-SAT et $c=\ell_1\vee\ldots\vee\ell_k$ une de ses clauses.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

<u>Preuve</u> : soit φ une formule k-SAT et $c=\ell_1\vee\ldots\vee\ell_k$ une de ses clauses. Alors :

$$c \equiv (\ell_1 \vee \ell_2 \vee x_1) \wedge (\neg x_1 \vee \ell_3 \vee x_2) \wedge (\neg x_2 \vee \ell_4 \vee x_3) \dots \wedge (\neg x_{k-3} \vee \ell_{k-1} \vee \ell_k)$$

où x_1 , ..., x_{k-3} sont des nouvelles variables.

Théorème

Si on peut résoudre 3-SAT en complexité polynomiale (en le nombre de variables), alors on peut aussi résoudre k-SAT en complexité polynomiale.

<u>Preuve</u> : soit φ une formule k-SAT et $c=\ell_1\vee\ldots\vee\ell_k$ une de ses clauses. Alors :

$$c \equiv (\ell_1 \vee \ell_2 \vee x_1) \wedge (\neg x_1 \vee \ell_3 \vee x_2) \wedge (\neg x_2 \vee \ell_4 \vee x_3) \dots \wedge (\neg x_{k-3} \vee \ell_{k-1} \vee \ell_k)$$

où x_1 , ..., x_{k-3} sont des nouvelles variables.

On peut donc transformer φ en une formule 3-SAT, en multipliant au plus par 2 le nombre de variables.