K means

1. Overview 架構:

- (1) 先把 centeroid 資料的檔案在本地用 filesystem 吃進來(一開始是 c1.txt 或 c2.txt,之後會用新的 centroid-r-00000), 之後用 conf.setDouble 的方式將 10 個 centroid 的存進 conf 中(其中 name property 爲 C_i_j ,i 爲 centroid 編號、j 爲該 centroid 的 feature 編號)
- (2) 進入 Map Reduce 產生出新的 centroid 檔案(centroid-r-00000), 同時產生一個 cost 檔案紀錄每個 cluster 的 cost(cost-r-00000)
- (3) 把 cost-r-00000 中每個 cost 加起來即是該次的總 cost,並記錄在本地的 cost.csv 中(一次一筆,最後會有 20 筆)
- (4) 回到 1 並做 20 次

檔案説明:

Kmeans.java: kmeans code

Cost_c1_E.xlsx: 用 c1 做 Euclidean distance 20 次的結果(附圖) Cost_c2_E.xlsx: 用 c2 做 Euclidean distance 20 次的結果(附圖) Cost_c1_M.xlsx: 用 c1 做 Manhattan distance 20 次的結果(附圖) Cost_c2_M.xlsx: 用 c2 做 Manhattan distance 20 次的結果(附圖)

2. Mapper

Input: LongWritable, Text Output: IntWritable, Text

let point a has features a1, a2, ..., a58

	Key		Value		
Inpu	Туре	Format	Type	Format	
t	LongWrita ble		IntWrita ble	a1, a2,, a58	
Outp ut	IntWritabl e	Format	IntWrita ble	Format	
	IntWritabl e	centroidID	Text	a1, a2,, a58, distance(centroid , a)	

將一個個 point 讀進來後,對每個 centroid 做距離計算(用

Euclidean 或 Manhattan), 並把該 point 分到最近的 centroid 的 cluster 中, 並以 centorid id 爲 key, 該 point 的 features 加上最近 distance 爲 value 輸出。

3. Reducer

Input: IntWritable, Iterable < Text >

Output: Null, Text

Output: Null, Text						
	Key		Value			
Input	Type	Format	Туре	Format		
_	IntWritabl	centroidID	Text	Iterable<(a1,		
	е			a2,, a58,		
				distance(centro		
				id, a))>		
Outpu	Туре	Format	Туре	Format		
t1:	NullWrita	Null	Text	58 float values		
New	ble			(new centroid)		
Centroid						
S						
Outpu	Туре	Format	Туре	Format		
t2:	NullWrita	Null	Text	New Cost		
Costs	ble					
per						
Cluster						

用 cluster 中的每個點算出新的 centroid(取平均)並把每個點的 distance 加起來成為 cost,最後把 centroid 輸出一個檔案, cost 輸出到另一個檔案

4. 問題討論

● Euclidean 中用 c1 跟 c2 差別

c1:

C2:

可以看到 c2 的曲線更平滑地收斂,且下降的比率也高很多。

不過最後是 C1 的 COSt 較低,代表平均而言 Cluster 内的相似度更高(歸類更精確),所以較佳。

Manhattan 中用 c1 跟 c2 差別 c1:

c2:

同樣地,可以看到 C2 的曲線更平滑地收斂,且下降的比率 也高很多。

不過最後是 C1 的 COSt 較低,代表平均而言 Cluster 内的相似度更高(歸類更精確),所以較佳。