CE 363-364 Homework-1

State all assumptions clearly. For all questions, you may take $\rho_w=1$ g/cc, g=10 m/s².

- 1) A shelby tube sampler is cut such that the volume of the soil in the cut piece is determined to be 860 cm³. The mass of the soil was 1500 grams. After drying, its mass was found as 1200 grams. Specific gravity of solid particles is measured to be 2.65.
 - a) Draw the phase diagram with volumes and masses (or weights) of each phase
 - b) Calculate water content, bulk density, void ratio, degree of saturation, porosity
 - c) What would be the total unit weight and water content if the soil were fully saturated at the same void ratio in its natural state?
- 2) In a Proctor compaction test, the maximum dry density that corresponds to the optimum water content is found as 1.7 g/cc. Specific gravity of solids is 2.65, maximum void ratio is 0.86, and minimum void ratio is 0.52. A 1.5m (height) x 20m x 20m embankment of this soil is compacted to "98% of Proctor maximum dry density".
 - a) Calculate the relative density of the embankment.
 - b) Earthworks are priced by volume of soil moved. If hauling soil costs 15 lira/m³, calculate the <u>maximum</u> possible cost of hauling the soil necessary for this embankment. (*Hint: maximum possible cost would correspond to the maximum possible volume of loose soil to be hauled. This loose soil will be compacted into the embankment at the specified density)*
- 3) The results of particle size analysis and, where appropriate, Atterberg limit tests on samples of four soils are given in the table below.

Particle size (mm)	Percentage smaller (%)			
	Soil A	Soil B	Soil C	Soil D
19	100	-	-	-
4.75	93	100	-	-
2	70	97	-	-
0.65	31	89	100	-
0.212	14	66	96	100
0.074	3	38	72	98
0.020	-	21	47	89
0.006	-	12	24	70
0.002	-	5	14	59
Liquid limit (%)	-	Non-plastic	27	75
Plastic limit (%)	-		19	38

- a) Plot the grain size distribution curve of each soil (use Excel or graphing softwares)
- b) Determine the percentages of gravel, sand and the fines in samples A and B.
- c) Determine D₁₀, D₃₀, D₆₀, C_U and C_Z of soils A and B, and comment on their gradation.
- d) Classify each soil according to Unified Soil Classification System, write both 2-letter abbreviated form and the open form.
- e) For soil D, if the natural water content is 55%, what is the consistency in its natural state. Determine also the plasticity index and liquidity index of soil D.