CMSC 25025 / STAT 37601: Machine Learning and Large Scale Data Analysis

Assignment 5 Sample Solutions

1. k-Means Business (50 points)

(a) The optimal population quantization C^* minimizes R(C). Show that $R(\widehat{C})$ being close to $R(C^*)$ does not imply that \widehat{C} is close to C^* .

Solution:

Consider this distribution: $\mathbb{P}(x=-1) = \mathbb{P}(x=0) = \mathbb{P}(x=1) = \frac{1}{3}$. Then, when K=2, $C^*=\{-\frac{1}{2},1\}$ is an optimal population quantization. Meanwhile, $\widehat{C}=\{-1,\frac{1}{2}\}$ gives the same risk. But \widehat{C} is not close to C^* .

(b) Let $R^{(k)}$ denote the minimal risk among all possible clusterings with k clusters. Show that $R^{(k)}$ is nonincreasing in k.

Solution:

Let C_k denote all codebooks of length k. Suppose C_k^* is the optimal codebook that gives the minimum risk $R^{(k)}$. Let c_{k+1} be an arbitrary point in the sample space. Then,

$$R^{(k+1)} = \min_{C \in \mathcal{C}_{k+1}} R(C) \le R(C_k^* \cup \{c_{k+1}\}) = \mathbb{E} \min_{c_j \in C_k^* \cup \{c_{k+1}\}} \|X - c_j\|^2$$

$$\le \mathbb{E} \min_{c_j \in C_k^*} \|X - c_j\|^2 = R^{(k)}$$

Therefore, $R^{(k)}$ is nonincreasing in k.

(c) Show that, under appropriate conditions on the distribution P from which the random variables X_i are drawn, the optimal k-means risk satisfies $R^{(k)} \to 0$ as $k \to \infty$.

Proof:

Denote the pdf of distribution P as f(x). Assume P has a finite variance, σ^2 . i.e. $\int_{\Omega} \|x - \mu\|^2 f(x) dx = \sigma^2 < \infty$, where $\mu = \mathbb{E}X$ and Ω is the sample space. Consider such a sequence of spherical balls centered at μ : $B_n = B(\mu, n)$. Then, we have $\lim_{n \to \infty} \int_{B_n} \|x - \mu\|^2 f(x) dx \to \sigma^2$. In another word, for any given $\epsilon > 0$, $\exists n_{\epsilon}$, s.t. $\int_{\Omega \setminus B_{n_{\epsilon}}} \|x - \mu\|^2 f(x) dx < \epsilon/2$.

Let C_k be a set of k centers including μ .

$$\begin{split} R(C_k) &= \int_{\Omega} \min_{c \in C_k} \|x - c\|^2 f(x) \, dx \\ &= \int_{B_{n_\epsilon}} \min_{c \in C_k} \|x - c\|^2 f(x) \, dx + \int_{\Omega \backslash B_{n_\epsilon}} \min_{c \in C_k} \|x - c\|^2 f(x) \, dx \\ &\leq \int_{B_{n_\epsilon}} \min_{c \in C_k} \|x - c\|^2 f(x) \, dx + \int_{\Omega \backslash B_{n_\epsilon}} \|x - \mu\|^2 f(x) \, dx \\ &= I + II \end{split}$$

We already know $II < \epsilon/2$. By noticing that I integrates over $B_{n_{\epsilon}}$ which is a bounded area, we can add finite number of cluster centers to C_k to form a grid inside $B_{n_{\epsilon}}$ with grid size $\epsilon/4$. This could ensure that, for any $x \in B_{n_{\epsilon}}$, there exists a cluster center that is within a distance of $\epsilon/2$ to x. Denote this enhanced set of cluster centers as C_{ϵ} and suppose it has size k_{ϵ} . Then, $I = \int_{B_n} \min_{c \in C_{\epsilon}} ||x - c||^2 f(x) dx < \epsilon/2$ and, further, $R(C_{\epsilon}) < \epsilon$.

Since for any ϵ , we may create such a finite set C_{ϵ} and $R^{(k_{\epsilon})} \leq R(C_{\epsilon}) < \epsilon$, it must be true that $R^{(k)} \to 0$ as $k \to \infty$.

Please notice that, if the distribution does not have a finite variance, the result may not be true. For example, consider a Cauchy distribution with parameter x_0 and γ . It has pdf $f(x) = \frac{1}{\pi\gamma\left[1+\left(\frac{x-x_0}{\gamma}\right)^2\right]}$, $x \in R$. In this case, any finite set of

cluster centers $\bar{C}_k = \{c_1, c_2, ..., c_k\}$ would have population clustering risk:

$$R(\bar{C}_k) = \int_{R} \min_{c \in \bar{C}_k} ||x - c||^2 f(x) \, dx$$

$$> \int_{c_{(k)}}^{\infty} (x - c_{(k)})^2 f(x) \, dx$$

$$= \int_{c_{(k)}}^{\infty} \frac{(x - c_{(k)})^2}{\pi \gamma \left[1 + \left(\frac{x - x_0}{\gamma} \right)^2 \right]} \, dx$$

where $c_{(k)} = \max\{c_1, c_2, ..., c_k\}$. Since this holds for any finite codebook C, $R^{(k)}$ is unbounded regardless of the choice of k.