Matematická Analýza

1. Limita reálnej funkcie jednej reálnej premennej (definícia vlastnej a nevlastnej limity, vety o výpočte limít, číslo e, Cauchy-Bolzanovo kritérium konvergencie postupnosti)

$\forall \varepsilon > 0$	$\exists \delta > 0$	$\forall x \in D(f), x \neq a:$	$ x-a <\delta$	⇒	$ f(x) - L < \varepsilon$	$ \lim_{x \to a} f(x) = L $
						$\lim_{x \to a} f(x) = \infty$
$\forall K \in \mathbb{R}$	$\exists \delta > 0$	$\forall x \in D(f), x \neq a$	$ x-a <\delta$	\Rightarrow	f(x) < K	$\lim_{x \to a} f(x) = -\infty$
$\forall \varepsilon > 0$	$\exists M \in \mathbb{R}$	$\forall x \in D(f), x \neq a:$	x > M	⇒	$ f(x) - L < \varepsilon$	$\lim_{x \to \infty} f(x) = L$
$\forall K \in \mathbb{R}$	$\exists M \in \mathbb{R}$	$\forall x \in D(f), x \neq a:$	x > M	⇒	f(x) > K	$\lim_{x\to\infty}f(x)=\infty$
						$\lim_{x\to\infty}f(x)=-\infty$
						$\lim_{x \to -\infty} f(x) = L$
$\forall K \in \mathbb{R}$	$\exists M \in \mathbb{R}$	$\forall x \in D(f), x \neq a:$	x < M	⇒	f(x) > K	$\lim_{x\to-\infty}f(x)=\infty$
						$\lim_{x \to -\infty} f(x) = -\infty$

okolie bodu

DEFINÍCIA.

	$a \in \mathbb{R}$	je každý	$(a-\varepsilon;a+\varepsilon),$	kde $arepsilon$ je kladné číslo
okolie bodu	+∞	interval tvaru	(K;∞),	ledo V io moilmo Xiolo
	-∞		(−∞; <i>K</i>),	kde <i>K</i> je reálne číslo

Okolie bodu $a \in \mathbb{R}^*$ značíme O(a).

prstencové okolie bodu

DEFINÍCIA. Prstencové okolie bodu a je množina P(a), pre ktorú platí $P(a) := O(a) \setminus \{a\}$.

Jednotný zápis limity pre všetkých 9 prípadov:

$\forall O(l)$ $\exists P(A)$	$\forall x \in D(f)$:	$x \in P(A)$	⇒	$f(x)\in O(l)$	$\lim_{x \to A} f(x) = l$
-------------------------------	------------------------	--------------	---	----------------	---------------------------

hromadný bod množiny **DEFINÍCIA**. Bod $a \in \mathbb{R}^*$ sa nazýva **hromadný bod množiny** $M \subset \mathbb{R}$, ak (*pozor, toto je "definitorické ak"*) v každom jeho prstencovom okolí leží aspoň jeden prvok množiny M.

limita funkcie

DEFINÍCIA. Nech $A \in \mathbb{R}^*$ je hromadný bod definičného oboru D(f) funkcie f. Hovoríme, že bod $l \in \mathbb{R}^*$ je limita funkcie f v bode A (resp. pre x idúce k A). Inak povedané f má v bode A limitu l, zapisujeme $\lim_{x \to A} f(x) = l$), ak

$$\forall O(l) \ \exists P(A) \underbrace{\forall x \in D(f) \colon x \in P(A) \Rightarrow}_{\forall x \in D(f) \cap P(A):} f(x) \in O(l)$$

$L \in \mathbb{R}$	vlastná limita, konečná limita
$L = \infty$ alebo $L = -\infty$	nevlastná limita
$a \in \mathbb{R}$	(limita vo vlastnom bode)
$a = \infty$ alebo $a = -\infty$	(limita v nevlastnom bode)

Vety o vypocte limit:

limita konštatného násobku

TVRDENIE (Limita konštantného násobku na konkrétnom príklade).

Ak
$$\lim_{x \to a} f(x) = L \in \mathbb{R}$$
, tak $\lim_{x \to a} (2 \cdot f(x)) = \dots 2$ (doplňte)

tvrdenie (veta) "0 · ohraničená → 0" **Pomocné TVRDENIE.** Ak funkcie f, g sú definované na množine M, pričom $\lim_{x\to a} f(x) = 0$ a funkcia g je ohraničená, tak $\lim_{x\to a} (f(x)g(x)) = \dots (doplňte)$.

veta " $0 \cdot$ ohraničená $\rightarrow 0$ "

VETA. Ak funkcie f, g sú definované na množine M, pričom $\lim_{x\to a} f(x) = 0$ a

funkcia
$$g$$
 je ohraničená na niektorom prstencovom okolí $P^*(a)$, $(t.j. \exists K > 0 \exists P^*(a) \forall x \in M \cap P^*(a): |g(x)| < K)$

$$tak \lim_{x \to a} (f(x)g(x)) = 0.$$

veta o limite súčinu VETA (o limite súčinu).

Ak f, g sú definované na množine M, pričom $\lim_{x \to a} f(x) = r$ a $\lim_{x \to a} g(x) = s$, tak

$$\lim_{x \to a} (f(x)g(x)) = rs$$

vety o výpočte limít: Limita funkcií $f \pm g, fg, \frac{f}{g}, g \circ f$

.15 Veta. Nech funkcie f a g sú definované na množine M, nech $\lim_{x\to a} f(x) = r \in \mathbf{R}$, $\lim_{x\to a} g(x) = s \in \mathbf{R}$. Potom

(a)
$$\lim_{x\to a} (f(x) + g(x)) = r + s$$
, tj.

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) ;$$

Dollary cux prstencovó cuolia

(b)
$$\lim_{x\to a} (f(x) - g(x)) = r - s$$
, tj.

$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) ;$$

(c)
$$\lim_{x\to a} (f(x)g(x)) = r \cdot s$$
, tj.

$$\lim (f(x)g(x)) = \lim f(x) \cdot \lim g(x);$$

(c)
$$\lim_{x\to a} \frac{f(x)}{f(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$$
 $\lim_{x\to a} g(x) \neq 0$

Cauchy-Bolzanovo kritérium konvergencie postupnosti:

C-B kritérium konvergencie číselných postupností

fundamentálne (cauchyovské) postupnosti VETA (Cauchyho-Bolzanovo kritérium konvergencie číselných postupností).

Ak pre postupnosť $\{a_n\}_{n=1}^{\infty}$ platí

$$\forall \varepsilon > 0 \ \exists n_0 \ \forall n,k \geq n_0 \colon |a_n - a_k| < \varepsilon, \quad (*)$$

postupnosti spĺňajúce túto podmienku sa nazývajú fundamentálne alebo cauchyovské

tak $\{a_n\}_{n=1}^{\infty}$ má konečnú limitu.

(Stručná formulácia: každá fundamentálna postupnosť je konvergentná.)

Cislo e:

2. Spojité funkcie a ich základné vlastnosti (definícia spojitej funkcie, Darbouxova vlastnosť, vlastnosti spojitých funkcií na uzavretých ohraničených intervaloch)

funkcia spojitá v bode a **DEFIN**ÍCIA. Hovoríme, že funkcia f je spojitá v bode $a \in D(f)$, ak $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D(f) \colon |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon \tag{*}$

spojitosť funkcií $f + g, f - g, f \cdot g$

VETA. Ak sú funkcie f, g spojité v bode a, tak sú tam spojité aj funkcie f + g, f - g, $f \cdot g$.

spojitosť zloženej funkcie **VETA (o spojitosti zloženej funkcie).** Ak funkcia f je spojitá v bode a a funkcia g je spojitá v bode f(a), tak zložená funkcia z(x) = g(f(x)) je spojitá v bode a.

spojitá funkcia, funkcia spojitá na množine **DEFINÍCIA**. Funkcia sa nazýva spojitá, ak je spojitá v každom bode svojho definičného oboru. Funkcia sa nazýva spojitá na množine $M \subset D(f)$, ak je spojitá funkcia f|M (teda zúženie funkcie f na množinu M).

"veta o prechode rieky" **VETA**. Nech f je spojitá funkcia definovaná na intervale I, nech $a,b \in I$, a < b, pričom $f(a) \cdot f(b) < 0$. Potom

 $\exists c \in (a;b) : f(c) = 0.$

pre niektoré c medzi a a b platí f(c) = 0.

prvá veta o spojitosti na intervale **VETA.** Nech f je spojitá funkcia definovaná na intervale I, nech $a,b \in I$, a < b, pričom $A = f(a) \neq f(b) = B$. Potom funkcia f nadobudne na intervale (a;b)

každú hodnotu "medzi *A* a *B*".

precíznejšie formulácie:

- ako funkčnú hodnotu každé číslo ležiace v otvorenom intervale s krajnými bodmi A a B,
- všetky hodnoty z intervalu (min{A; B}; max{A; B}).

druhá veta o spojitosti na intervale **VETA**. Ak f je spojitá funkcia definovaná na intervale I, tak pre každý interval $J \subset I$ platí: množina $f(J) \coloneqq \{f(x); x \in J\}$ je interval alebo jednoprvková množina.

darbouxovská funkcia **DEFINÍCIA**. Hovoríme, že funkcia f definovaná na na intervale I je darbouxovská (*vyslov darbuovská*) (má Darbouxovu vlastnosť), ak pre každý interval $J \subset I$ platí: množina $f(J) \coloneqq \{f(x); x \in J\}$ je interval alebo jednoprvková množina.

veta o obore hodnôt monotónnej, na intervale spojitej funkcie

VETA. Monotónna funkcia f definovaná na intervale I je spojitá práve vtedy, keď jej obor hodnôt je jednoprvková množina alebo interval.

3. Derivácia funkcie a jej využitie na vyšetrovanie priebehu funkcie (definícia derivácie, vety o výpočte derivácií, vety o strednej hodnote, derivácie vyšších rádov, vyšetrovanie monotónnosti, extrémov a konvexnosti pomocou derivácií).

derivácia funkcie

DEFINÍCIA. Ak $a \in D(f)$ je hromadný bod definičného oboru D(f) funkcie f a existuje (vlastná alebo nevlastná) limita

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 čo je to isté ako
$$\lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

tak túto hodnotu označujeme f'(a) alebo $\frac{df}{dx}$. Ak f'(a) je reálne číslo, hovoríme, že f má v bode a deriváciu (f je diferencovateľná v bode a).

nevlastná derivácia

Ak $f'(a) = \pm \infty$, hovoríme, že f má v bode a nevlastnú deriváciu.

veta o spojitosti diferencovateľnej funkcie v bode α

VETA. Ak f je v bode a diferencovateľná, tak je tam aj spojitá.

derivácia zloženej funkcie **VETA.** (o derivácii zloženej funkcie). Nech $a \in D(g \circ f)$ je hromadný bod definičného oboru funkcie $g \circ f$, nech f je diferencovateľná v bode a a g je diferencovateľná v bode f(a). Potom zložená funkcia g = g(f(x)) je diferencovateľná v bode g a platí

$$(g\circ f)'(a)=g'\bigl(f(a)\bigr)f'(a).$$

derivácia inverznej funkcie **V**ETA. (o derivácii inverznej funkcie). Nech f je prostá spojitá funkcia definovaná na intervale I, ktorá je diferencovateľná v bode $f^{-1}(a)$. Potom inverzná funkcia f^{-1} má v bode a vlastnú alebo nevlastnú deriváciu, pričom platí:

(i) ak
$$f'(f^{-1}(a)) \neq 0$$
, tak $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$,

(ii) ak
$$f'(f^{-1}(a)) = 0$$
 a f rastie, tak $(f^{-1})'(a) = \infty$,

(iii) ak
$$f'(f^{-1}(a)) = 0$$
 a f klesá, tak $(f^{-1})'(a) = -\infty$.

Derivácia ako funkcia, derivácie vyšších rádov

Zatiaľ sme definovali deriváciu ako číslo – daná bola funkcia f, bod $a \in D(f)$, hľadali sme číslo f'(a) (ktoré môže, ale nemusí existovať).

derivácia

Ak tento postup uplatníme na každý bod definičného oboru funkcie f, dostaneme funkciu: jej definičný obor bude množina všetkých tých bodov $a \in D(f)$, v ktorých má funkcia f vlastnú deriváciu, funkčnou hodnotou bude hodnota f'(a) (teda každé mu bodu $a \in D(f)$, v ktorom je f diferencovateľná, priradíme hodnotu jej derivácie v tomto bode). Takto definovaná funkcia sa nazýva derivácia funkcie f a označuje sa f'.

Teda napr. sin' = cos, cos' = -sin.

Všimnime si ešte raz predchádzajúcu dvojicu zápisov: $-\sin = \cos' = (\sin')'$, teda funkciu $-\sin$ dostaneme, ak funkciu sin derivujeme a výsledok tohto derivovania - čo je zasa funkcia - derivujeme ešte raz. Celkovo sme teda derivovali funkciu sin dvakrát, preto sa $-\sin$ nazýva druhá derivácia funkcie sin.

druhá derivácia funkcie

vyšších rádov

derivácie

Takto môžeme definovať druhú, tretiu, ... deriváciu:

$$f'' := (f')', \quad f''' := (f'')', \quad ..., \quad f^{IV} := (f''')', \quad ...$$
(už je asi zrejmé, že tie čiarky sú rímske čísla ©)

Iné dohodnuté označenie pre n-tú deriváciu: $f^{(n)}$, symbol $f^{(0)}$ označuje funkciu f.

Grafická interpetácia druhej derivácie

Čo znamená, že $f''(a) = \mathbb{Z}$. Číslo f''(a) je derivácia funkcie y = f'(x), teda vyjadruje rýchlosť zmeny funkcie y = f'(x) v bode a. Ak sa z hodnoty a posunieme o h, tak funkčná hodnota skúmanej funkcie (teda hodnota f'(x)) sa zmení približne o $\mathbb{Z}h$, t. j. $f'(a+h) \approx f'(a) + 2h$. Vieme, že číslo f'(t) je smernica dotyčnice ku grafu funkcie f v bode [t; f(t)].

Zhrnuté: ak sa z hodnoty a posunieme o h, tak sa smernica dotyčnice ku grafu funkcie f zmení približne o 2h = f''(a)h.

Leibnitzov vzorec

VETA (Leibnitzov vzorec). Ak funkcie f a g sú n-krát diferencovateľné na intervale I (teda funkcie f, f', ..., $f^{(n)}$ sú všetky definované v každom bode intervalu I), tak

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)} g^{(k)}$$

nutná podmienka existencie lokálneho extrému

VETA (Eulerova nutná podmienka pre existenciu lokálneho extrému). Nech f nadobúda lokálny extrém vo vnútornom bode a svojho definičného oboru. Ak f má v bode a vlastnú alebo nevlastnú deriváciu, tak

$$f'(a) = 0.$$

Rolleho veta o strednej hodnote

VETA. (Rolleho veta o strednej hodnote).

Ak $f: [a; b] \to \mathbb{R}$ je

všeobecnejšia verzia		menej všeobecná, ľahšie zapamätateľná verzia
spojitá funkcia, ktorá má vlastnú alebo nevlastnú deriváciu v každom bode $x \in (a; b)$,	←	diferencovateľná funkcia,

pričom f(a) = f(b), tak

$$\exists c \in (a;b): f'(c) = 0$$
 t. j. v niektorom vnútornom bode intervalu $[a;b]$ má funkcia f nulovú deriváciu.

Lagrangeova veta o strednej hodnote **V**ETA. (**Lagrangeova veta o strednej hodnote**). Ak $f:[a;b] \to \mathbb{R}$ je spojitá funkcia, ktorá má vlastnú alebo nevlastnú deriváciu v každom bode $x \in (a;b)$, tak

$$\exists c \in (a;b): f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Veta (Cauchyho veta o strednej hodnote) Nech funkcie $f,g:[a;b] \to \mathbb{R}$ spĺňajú nasledujúce podmienky:

- (i) sú spojité na intervale [a; b],
- (ii) sú diferencovateľné v každom vnútornom bode intervalu [a; b],
- (iii) $g(b) \neq g(a)$,
- (iv) $\forall x \in (a;b): (f')^2(x) + (g')^2(x) > 0$ (t. j. v žiadnom bode $x \in (a;b)$ nemajú funkcie f, g súčasne nulovú deriváciu).

Potom

$$\exists c \in (a;b): \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$
 (*)

Prvý návrh dôkazu: Funkcie f, g spĺňajú predpoklady Lagrangeovej vety o strednej hodnote, podľa nej pre niektoré $c \in (a;b)$ platí

$$f(b) - f(a) = f'(c) \cdot (b - a)$$

$$g(b) - g(a) = g'(c) \cdot (b - a)$$

Z týchto dvoch rovností vyplýva

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)\cdot(b-a)}{g'(c)\cdot(b-a)} = \frac{f'(c)}{g'(c)},$$

čo sme chceli dokázať.

veta o súvise monotónnosti a derivácie

VETA. Nech $f: I \to \mathbb{R}$ je

všeobecnejšia verzia		menej všeobecná, ľahšie zapamätateľná verzia
spojitá funkcia, ktorá má vlastnú alebo nevlastnú deriváciu v každom vnútornom bode intervalu <i>I</i> .	⊭	diferencovateľná funkcia.
Potom a) f je neklesajúca práve vtedy, keď		
v každom vnútornom bode x intervalu I platí $f'(x) \ge 0$;		v každom vnútornom bode x intervalu I platí $f'(x) \ge 0$;
b) f je rastúca práve vtedy, keď		
v každom vnútornom bode x intervalu I platí $f'(x) \ge 0$		v každom vnútornom bode x intervalu I platí $f'(x) \ge 0$
a množina $\mathcal{N}_{f'} = \{x \in I; f'(x) = 0\}$ neo	bsah	uje žiadny interval.

lokálnych extrémoch

VETA. Nech funkcia f spolu s deriváciami f', f'', ..., $f^{(n)}$ $(n \ge 2)$ je definovaná na niektorom okolí bodu a, pričom

$$f'(a)=0,\,...,\,f^{(n-1)}(a)=0,\,f^{(n)}(a)\neq 0.$$

Potom

- a) ak n je párne a $f^{(n)}(a) > 0$, tak f má v bode a ostré lokálne minimum, b) ak n je párne a $f^{(n)}(a) < 0$, tak f má v bode a ostré lokálne maximum,
- c) ak n je nepárne, tak f nemá v bode a lokálny extrém.

Konvexné a konkávne funkcie

Najprv intuitívne: funkcia je konvexná (presnejšie: rýdzo konvexná), ak jej graf vyzerá takto:

a rýdzo konkávna, ak vyzerá takto:

Najst poznamky

4. Primitívna funkcia a neurčitý integrál (definícia neurčitého integrálu, metóda per partes a substitúcie, univerzálna trigonometrická substitúcia).

Definícia. Funkcia F definovaná na intervale I sa nazýva primitívna funkcia k funkcii $f: I \to \mathbb{R}$, ak

$$\forall x \in I: F'(x) = f(x).$$

Veta. Nech $F: I \to \mathbb{R}$ je primitívna funkcia k funkcii $f: I \to \mathbb{R}$. Potom funkcia $G: I \to \mathbb{R}$ je primitívna k funkcii f práve vtedy, keď

$$\exists C \in \mathbb{R} \ \forall x \in I : G(x) = F(x) + C.$$

Dôkaz prenechávame ako cvičenie čitateľovi. Pri dôkaze implikácie ⇒ treba dokázať tvrdenie: ak h'(x) = 0 pre všetky $x \in I$, tak h je konštantná funkcia. To možno urobiť viacerými spôsobmi, napr. pomocou Lagrangeovej vety (prečo nie Rolleho?), alebo úvahou: ak je funkcia neklesajúca a súčasne nerastúca na intervale, tak ... (kde v tejto úvahe využívame, že je to *na intervale?*)

Z toho vyplýva, že množina všetkých primitívnych funkcií k danej funkcii $f:I\to\mathbb{R}$ má tvar $\{F(x) + C; C \in \mathbb{R}\}$. Táto množina sa nazýva *neurčitý integrál funkcie* $f: I \to \mathbb{R}$ a označuje sa $\int f(x) dx$.

\int	f	(x)	dx	
znak integrálu		integračná premenná		
		integrand		

Namiesto precízneho množinového zápisu

$$\int f(x)dx = \{F(x) + C; C \in \mathbb{R}\}\$$
$$\int f(x)dx = F(x) + C$$

sa používa zápis

$$\int f(x)\mathrm{d}x = F(x) + C$$

číslo C sa nazýva integračná konštanta.

Základné metódy integrovania

Integrácia rozkladom

"v reči" derivácií	"v reči" integrálov		
a	k		
$F'_1(x) = f_1(x),, F'_n(x) = f_n(x)$	$\int f_1(x) dx = F_1(x) + C, \qquad \dots, \qquad \int f_n(x) dx =$		
	$F_n(x) + C$		
a $k_1,, k_n$ sú reá	lne konštanty, tak		
$(k_1F_1(x) + \dots + k_nF_n(x))' =$ $= k_1f_1(x) + \dots + k_nf_n(x)$	$\int (k_1 f_1(x) + \dots + k_n f_n(x)) dx =$		
	$= k_1 \int f_1(x) dx + \dots + k_n \int f_n(x) dx =$		
	$= k_1 F_1(x) + \dots + k_n F_n(x)$		

Integrácia per partes

Integrácia rozkladom bola *de facto* len veta o derivácii súčtu a konštantného násobku (t. j. lineárnej kombinácie funkcií) prepísaná do podoby integrálu. Podobne teraz prepíšeme vetu o derivácii súčinu:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

$$f(x)g(x) + C = \int (f'(x)g(x) + f(x)g'(x)) dx$$

Ak existuje jeden z integrálov $\int f'(x)g(x) dx$, $\int f(x)g'(x) dx$, tak existuje aj druhý a platí (*toto si dobre rozmyslite*)

$$f(x)g(x) + C = \int f'(x)g(x) dx + \int f(x)g'(x) dx,$$

odtiaľ

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx,$$

tento vzťah – ktorým sa výpočet $\int f'(x)g(x) dx$ prevedie na výpočet "párového integrálu" $\int f(x)g'(x) dx$ – sa označuje ako metóda per partes (= po častiach).

Substitúcia

Teraz budeme do integrálnej podoby "prepisovat" vetu o derivácii zloženej funkcie:

tak $(F(\varphi(x)))' = F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x)$

Teda:

aby sme našli $\int f(\varphi(x)) \cdot \varphi'(x) dx,$		stačí nájsť $F(t) + C = \int f(t) dt$		a do výsledku dosadiť $t = \varphi(x)$
	$= \begin{vmatrix} \varphi(x) = t \\ \varphi'(x) dx = dt \end{vmatrix} =$	$\int f(t)dt = F(t) + C$	=	, , ,

Druhá veta o substitúcii

Začneme príkladom: hľadáme $\int \frac{dt}{(\sqrt{1-t^2})^3}$.

$\int f(\varphi(x))\varphi'(x)\mathrm{d}x$	$= \begin{vmatrix} \varphi(x) = t \\ \varphi'(x) dx = dt \end{vmatrix}$	$= \int f(t) dt$
4		
$\int \frac{\cos x \mathrm{d}x}{\left(\sqrt{1-\sin^2 x}\right)^3}$	$= \left \frac{\sin x = t}{\cos x \mathrm{d}x = \mathrm{d}t} \right =$	$=\int \frac{\mathrm{d}t}{\left(\sqrt{1-t^2}\right)^3}$

na intervale $\left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$ nadobúda $\sin x$ všetky hodnoty z intervalu (-1; 1) (to je definičný obor funkcie $\frac{1}{(\sqrt{1-t^2})^3}$, ktorej integrál hľadáme), pre x z tohto intervalu platí

$$\sqrt{1 - \sin^2 x} = \cos x, \text{ teda pre } x \in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$$

$$\int \frac{\cos x \, dx}{\left(\sqrt{1 - \sin^2 x}\right)^3} = \int \frac{\cos x \, dx}{\cos^3 x} = \int \frac{dx}{\cos^2 x} = \tan x + C$$

5. Riemannov určitý integrál (definícia riemannovsky integrovateľnej funkcie, integrovateľnosť monotónnych a spojitých funkcií, Newtonov-Leibnizov vzorec, integrál ako funkcia hranice).

Hovoríme, že ohraničená funkcia $f:[a;b] \to \mathbb{R}$ je riemannovsky integrovateľná (na intervale [a;b]), ak

$$\int_{a}^{b} f(x) dx = \int_{a}^{\overline{b}} f(x) dx,$$

zapisujeme $f \in \mathcal{R}(a;b)$. Spoločná hodnota $\int_{\underline{a}}^{b} f(x) dx$ a $\int_{a}^{\overline{b}} f(x) dx$ sa nazýva *Riemannov* integrál funkcie f (na intervale [a;b]) a označuje sa $\int_{a}^{b} f(x) dx$.

Kritériá riemannovskej integrovateľnosti

Veta. Ohraničená funkcia $f:[a;b] \to \mathbb{R}$ je riemannovsky integrovateľná práve vtedy, keď pre každé $\varepsilon > 0$ existuje delenie D intervalu [a;b] také, že

Veta. Každá monotónna funkcia $f:[a;b] \to \mathbb{R}$ je riemannovsky integrovateľná.

Veta. Každá spojitá funkcia $f:[a;b] \to \mathbb{R}$ je riemannovsky integrovateľná.

Veta (Newtonov – Leibnizov vzorec) Ak $f:[a;b] \to \mathbb{R}$ je riemannovsky integrovateľná a existuje funkcia $F:[a;b] \to \mathbb{R}$, ktorá je diferencovateľná, pričom platí F'(x) = f(x), tak

$$\int_{a}^{b} f(x) dx = F(b) - F(a) =: [F(x)]_{a}^{b}$$

Per partes a substitúcia pre Riemannov určitý integrál

Veta. Ak funkcie $f, g: [a; b] \to \mathbb{R}$ sú diferencovateľné a ich derivácie f', g' sú Rintegrovateľné, tak

$$\int_{a}^{b} f'(x)g(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx.$$

Veta. Nech $f:[A;B] \to \mathbb{R}$ je spojitá funkcia, nech $\varphi:[a;b] \to [A;B]$ je diferencovateľná funkcia, ktorej derivácia je R-integrovateľná. Potom

$$\int_{a}^{b} f(\varphi(x))\varphi'(x)dx = \int_{\varphi(a)}^{\varphi(b)} f(x)dx.$$

integrál ako funkcia hranice:

Integrál ako funkcia hornej (dolnej) hranice

Veta 14. Nech $f \in \mathcal{R}[a,b]$, $c \in [a,b]$ a nech funkcia $F:[a,b] \to \mathbf{R}$ je daná predpisom

$$F(x) = \int_{c}^{x} f(t) dt$$
12.

Potom

a) F je spojitá funkcia;

b) ak funkcia f je spojitá v bode $x_0 \in [a,b]$, tak funkcia F má v bode x_0 vlastnú deriváciu (v prípade $x_0 = a$ alebo $x_0 = b$ príslušnú jednostrannú deriváciu) rovnú $f(x_0)$.

6. Číselné rady (definícia číselného radu, Cauchyho-Bolzanovo kritérium konvergencie radu, kritériá pre konvergenciu radov s nezápornými členmi, Leibnizovo kritérium, relatívne a absolútne konvergentné rady, prerovnanie radov).

Definícia. Nech je daná postupnosť $\{a_n\}_{n=1}^{\infty}$, definujme novú postupnosť $\{S_n\}_{n=1}^{\infty}$ predpisom

$$S_n := a_1 + a_2 + \dots + a_n.$$

Postupnosť $\{S_n\}_{n=1}^{\infty}$ sa nazýva *číselný rad* a označuje sa symbolom $\sum_{n=1}^{\infty} a_n$ (suma n rovná sa 1 až nekonečno a_n ; ešte presnejšie by bolo definovať číselný rad ako dvojicu postupností $(\{a_n\}_{n=1}^{\infty}, \{S_n\}_{n=1}^{\infty})$, alebo $a_1 + a_2 + \cdots + a_n + \cdots$:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots .$$

Číslo S_n sa nazýva n-tý čiastočný súčet radu $\sum_{n=1}^{\infty} a_n$, číslo a_n je n-tý člen radu $\sum_{n=1}^{\infty} a_n$.

Keďže rad je špeciálny prípad postupnosti, vzťahuje sa naň terminológia postupností (konvergentný, divergentý rad).

Ak je rad $\sum_{n=1}^{\infty} a_n$ konvergentný, tak číslo $S \coloneqq \lim_{n \to \infty} S_n$ sa nazýva súčet radu $\sum_{n=1}^{\infty} a_n$ a označuje sa rovnakým symbolom ako rad:

$$S = \sum_{k=1}^{\infty} a_k := \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^{n} a_k.$$

Vieme, že postupnosť $\{S_n\}_{n=1}^{\infty}$ konverguje práve vtedy, keď

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall r,s \in \mathbb{N} : r,s \geq N \Rightarrow |S_r - S_s| < \varepsilon$$

Veta (Cauchyho-Bolzanovo kritérium konvergencie číselných radov). Číselný rad $\sum_{n=1}^{\infty} a_n$ konverguje práve vtedy, keď

$$\forall \varepsilon>0 \ \exists N\in \mathbb{N} \ \forall n\in \mathbb{N}, n\geq N \ \forall k\in \mathbb{N} \colon |a_{n+1}+\cdots+a_{n+k}|<\varepsilon.$$

Rady s nezapornymi clenmi:

Veta (1. porovnávacie kritérium) Nech pre postupnosti nezáporných čísel $\{a_n\}_{n=1}^{\infty}$ a $\{b_n\}_{n=1}^{\infty}$ platí

$$0 \le a_n \le b_n, \qquad n \in \mathbb{N}. \tag{*}$$

Potom

- (i) ak rad $\sum_{n=1}^{\infty}b_n$ konverguje, tak konverguje aj rad $\sum_{n=1}^{\infty}a_n$, (ii) ak rad $\sum_{n=1}^{\infty}a_n$ diverguje, tak diverguje aj rad $\sum_{n=1}^{\infty}b_n$.

Veta (Cauchyho odmocninové kritérium) Nech $\sum_{n=1}^{\infty} a_n$ je rad s nezápornými členmi. Potom

(i) ak

$$\exists q \in [0; 1) \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \ge n_0 : \sqrt[n]{a_n} \le q < 1,$$

tak rad $\sum_{n=1}^{\infty} a_n$ konverguje,

(ii) ak

pre nekonečne veľa
$$n \in \mathbb{N}$$
 platí $\sqrt[n]{a_n} \ge 1$,

tak rad $\sum_{n=1}^{\infty} a_n$ diverguje.

(Všimnite si, ako je kritérium "zostavené": $\sqrt[n]{a_n}$: má úlohu "testovacieho výrazu", ku ktorému sa vzťahuje pozitívna možnosť (i) aj negatívna možnosť (ii).)

Veta (limitná podoba Cauchyho odmocninového kritéria). Nech $\{a_n\}_{n=1}^{\infty}$ je postupnosť nezáporných čísel, pre ktorú existuje $\lim_{n\to\infty} \sqrt[n]{a_n} \coloneqq L \in \mathbb{R}^*$. Potom platí

- (i) ak L < 1, tak rad $\sum_{n=1}^{\infty} a_n$ konverguje,
- (ii) ak L > 1 ($znak > je tam kvôli možnosti <math>L = \infty$), tak rad $\sum_{n=1}^{\infty} a_n$ diverguje.

Veta (2. porovnávacie kritérium). Nech $\sum_{n=1}^{\infty} a_n$ a $\sum_{n=1}^{\infty} b_n$ sú rady s kladnými členmi, nech

$$\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq n_0 \colon \frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}.$$

Potom platí

- (i) ak rad $\sum_{n=1}^{\infty} b_n$ konverguje, tak konverguje aj rad $\sum_{n=1}^{\infty} a_n$, (ii) ak rad $\sum_{n=1}^{\infty} a_n$ diverguje, tak diverguje aj rad $\sum_{n=1}^{\infty} b_n$.

Veta (d'Alembertovo podielové kritérium) Nech $\sum_{n=1}^{\infty} a_n$ je rad s kladnými členmi. Potom platí

(i) ak

$$\exists q \in [0;1) \ \exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N}, n \geq n_0 \colon \frac{a_{n+1}}{a_n} \leq q < 1,$$

Absolútne a relatívne konvergentné rady

Veta. Ak konverguje rad $\sum_{n=1}^{\infty} |a_n|$, tak konverguje aj rad $\sum_{n=1}^{\infty} a_n$.

Definicia Konvergentný rad $\sum_{n=1}^{\infty} a_n$ sa nazýva

absolútne konvergentný,	alr and ∇^{∞} lad	konverguje,
relatívne konvergentný	ak rad $\sum_{n=1}^{\infty} a_n $	diverguje.

(o existencii relatívne konvergentných radov sa presvedčíme po dôkaze Leibnizovho kritéria).

Veta (Leibnizovo kritérium). Ak

$\{a_n\}_{n=1}^{\infty}$	je	monotónna	postupnosť	t. j. $\{a_n\}_{n=1}^{\infty}$ je buď nerastúca postupnosť
s limitou	0,			kladných čísel alebo

tak rad

$$\sum\nolimits_{n = 1}^\infty {(- 1)^{n + 1} {a_n}} = {a_1} - {a_2} + {a_3} - {a_4} + \cdots$$

konverguje a platí

$$\left| \sum_{n=k+1}^{\infty} (-1)^{n+1} a_n \right| \le |a_{k+1}| \tag{*}$$

(teda rozdiel medzi súčtom radu a jeho k-tym čiastočným súčtom je menší ako $|a_{k+1}|$).

Prerovnanie radov

Vieme, že pre konečné súčtu platí komutatívny zákon: v akomkoľvek poradí sčítame konečný počet sčítancov, výsledok je vždy rovnaký. Zaujíma nás, či to platí aj v prípade nekonečných súčtov – teda číselných radov.

Definicia. Hovorime, že rad $\sum_{n=1}^{\infty} b_n$ je *prerovnanie* radu $\sum_{n=1}^{\infty} a_n$, ak existuje bijekcia $n \mapsto k(n)$ množiny \mathbb{N} na množinu \mathbb{N} tak, že

$$b_n = a_{k(n)}$$
.

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
k(n)	37	2	18	516	29 584	1	266	866	12	8 542 147	37 116	8	1 147	26 514	

 $\begin{subarray}{l} {\it Veta} \end{subarray}$ (Riemannova veta o prerovnaní). Ak $\sum_{n=1}^\infty a_n$ je relatívne konvergentný rad a A je ľubovoľné reálne číslo, tak existuje prerovnanie radu $\sum_{n=1}^\infty a_n$, ktorého súčet je A. Rovnako existujú prerovnania radu $\sum_{n=1}^\infty a_n$, ktoré divergujú k $+\infty$, divergujú k $-\infty$, resp. oscilujú.

 \underline{Veta} (o prerovnaní absolútne konvergentného radu) Ľubovoľné prerovnanie absolútne konvergentného radu $\sum_{n=1}^{\infty} a_n$ je absolútne konvergentné a má ten istý súčet ako pôvodný rad $\sum_{n=1}^{\infty} a_n$.

7. Mocninové a Taylorove rady (definícia mocninového radu, polomer a interval konvergencie, derivovanie a integrovanie mocninových radov, definícia Taylorovho radu, pojem analytickej funkcie).

Definicia. Ak $a \in \mathbb{R}$ je dané číslo a $\{a_n\}_{n=0}^{\infty}$ daná postupnosť čísel, tak postupnosť polynómov

$$S_0(x) \equiv a_0$$
, $S_1(x) = a_0 + a_1(x - a)$, $S_2(x) = a_0 + a_1(x - a) + a_2(x - a)^2$, ..., $S_n(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n$, ...

sa nazýva mocninový rad so stredom (v bode) a a označuje sa symbolom

$$\sum_{n=0}^{\infty} a_n (x-a)^n = a_0 + a_1 (x-a) + a_2 (x-a)^2 + \dots + a_n (x-a)^n + \dots$$

Definícia. Hovoríme, že mocninový rad $\sum_{n=0}^{\infty} a_n (x-a)^n$ konverguje / relatívne konverguje / absolútne konverguje v bode x_0 , ak číselný rad $\sum_{n=0}^{\infty} a_n (x_0-a)^n$ konverguje / relatívne konverguje / absolútne konverguje / diverguje.

- Mocninový rad iste konverguje v svojom strede.
- Všetky úvahy o rade $\sum_{n=0}^{\infty} a_n (x-a)^n$ možno substitúciou x-a=t previesť na úvahy o rade $\sum_{n=0}^{\infty} a_n t^n$.

Veta. Ak rad $\sum_{n=0}^{\infty} a_n x^n$ konverguje v bode $x_0 \neq 0$, tak konverguje absolútne v každom bode $x \in (-|x_0|;|x_0|)$.

obor konvergencie	polomer konvergencie R (vzdialenosť medzi stredom radu a krajným bodom oboru	interval konvergencie (množina všetkých vnútorných bodov oboru			
·····	konvergencie)	konvergencie)			
{0}	R = 0	nedefinuje sa			
(-a; a) (-a; a] [-a; a)	R = a	$\left.\begin{array}{c}\\\\\\\\\end{array}\right\} \qquad (-a;a)$			
[-a;a]	,	,			
\mathbb{R}	$R = \infty$	\mathbb{R}			

Veta. Mocninové rady $\sum_{n=0}^{\infty} a_n x^n$, $\sum_{n=1}^{\infty} n a_n x^{n-1}$ a $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$ (druhý vznikne derivovaním členov prvého, tretí ich integrovaním) majú rovnaký polomer konvergencie.

Taylorove a Maclaurinove rady, analytické funkcie

Veta. Ak funkcia f je súčet mocninového radu $\sum_{n=0}^{\infty} a_n x^n$ s nenulovým polomerom konvergencie, tak

$$a_n = \frac{f^{(n)}(0)}{n!}, \quad n = 0, 1, 2, ...$$

Definícia. Funkcia f sa nazýva analytická v bode 0, ak je definovaná na niektorom okolí bodu 0, má v tomto bode derivácie všetkých rádov a pre všetky x z niektorého okolia bodu 0 platí rovnosť

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} \cdot x^n.$$