		Mathews
•	Interpolation	4.1-4.4
	 Lagrange interpolation 	4.3
	 Triangular families 	4.4
	 Newton's iteration method 	4.4
	 Equidistant Interpolation 	4.4
•	Numerical Differentiation	6.1-6.2
•	Numerical Integration	7.1-7.3
	 Error of numerical integration 	

Numerical Differentiation

Taylor Series

$$f(x) = f_0 + \frac{\Delta f_0}{h}(x - x_0) + \frac{\Delta^2 f_0}{2!h^2}(x - x_0)(x - x_1) \cdots$$

$$= + \frac{\Delta^n f_0}{2!h^2}(x - x_0)(x - x_1) \cdots (x - x_{n-1} + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0) \cdots (x - x_n)$$

First order

$$n = 1$$

$$f(x) = f_0 + \frac{\Delta f_0}{h}(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0)(x - x_1)$$

$$f'(x) = \frac{\Delta f_0}{h} + O(h) = \frac{1}{h}(f_1 - f_0) + O(h)$$

Numerical Differentiation

Second order

$$n=2$$

$$f(x) = f_0 + \frac{\Delta f_0}{h}(x - x_0) + \frac{\Delta^2 f_0}{2!h^2}(x - x_0)(x - x_1) + \frac{f'''(\xi)}{3!}(x - x_0)(x - x_1)(x - x_2)$$

$$f'(x) = \frac{\Delta f_0}{h} + \frac{\Delta^2 f_0}{h}(x - x_0) + \frac{\Delta^2 f_0}{h}(x - x_0)$$

$$f'(x_0) = \frac{f_1 - f_0}{h} - \frac{1}{2h}(f_2 - 2f_1 + f_0) + O(h^2)$$

$$= \frac{2f_1 - 2f_0 - f_2 + 2f_1 - f_0}{2h} + O(h^2)$$

$$= \frac{1}{h}(-\frac{3}{2}f_0 + 2f_1 - \frac{1}{2}f_2) + O(h^2)$$

$$f'(x_1) = \frac{f_1 - f_0}{h} + \frac{1}{2h}(f_2 - 2f_1 + f_0) + O(h^2)$$
$$= \boxed{\frac{1}{2h}(f_2 - f_0) + O(h^2)}$$

Second Derivatives

$$n=3$$
 $f''(x_1) = \frac{1}{h^2}(f_0 - 2f_1 + f_2) + O(h^2)$

Central Difference

Numerical Integration

Lagrange Interpolation

$$I = \int_{a}^{b} f(x)dx$$

$$f(x) \simeq p(x) = \sum_{k=0}^{n} L_k(x) f(x_k)$$

$$L_k(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

Equidistant Sampling

$$x_k = x_0 + kh$$

$$x = x_0 + sh$$

$$L_k(x) = \frac{s(s-1)(s-2)\cdots(s-k+1)(s-k-1)\cdots(s-n)}{k(k-1)(k-2)\cdots(1)(-1)\cdots(k-n)}$$

$$I = \int_{a}^{b} f(x)dx \simeq \int_{x_{0}}^{x_{n}} p(x)dx = h \sum_{k=0}^{n} f(x_{k}) \int_{0}^{n} L_{k}(s)ds = nh \sum_{k=0}^{n} f(x_{k})C_{k}^{n}$$

Integration Weights (Cote's Numbers)

$$C_k^n = \frac{1}{n} \int_0^n L_k(s) ds$$

Properties

$$C_k^n = C_{n-k}^n$$

$$\sum_{k=0}^{n} C_k^n = 1$$

Numerical Integration

n = 1

Trapezoidal Rule

$$k = 0$$
: $C_0^1 = \int_0^1 \frac{s-1}{-1} ds = 1 - 1/2 = 0.5$

$$k=1: C_1^1 = \int_0^1 \frac{s}{1} ds = 1/2 = 0.5$$

$$\int_{x_0}^{x_1} f(x)dx \simeq 1 \cdot (x_1 - x_0) \left(\frac{1}{2} f(x_0) + \frac{1}{2} f(x_1) \right) = \frac{1}{2} (x_1 - x_0) (f(x_0) + f(x_1))$$

n = 2

Simpson's Rule

$$k = 0: C_0^2 = \frac{1}{2} \int_0^2 \frac{(s-1)(s-2)}{(-1)(-2)} ds$$

$$= \frac{1}{4} \int_0^2 (s^2 - 3s + 2) ds$$

$$= \frac{1}{4} \left[\frac{s^3}{3} - \frac{3s^2}{2} + 2s \right]$$

$$= \frac{1}{4} \left[\frac{8}{3} - \frac{12}{2} + 4 \right] = \frac{1}{4} \cdot \frac{4}{6} = \frac{1}{6}$$

$$k = 1: C_1^2 = \frac{1}{2} \int_0^2 \frac{s(s-2)}{(1)(-1)} ds$$

$$= \frac{1}{2} \int_0^2 (2s - s^2) ds$$

$$= \frac{1}{2} \left[s^2 - \frac{s^3}{3} \right]$$

$$= \frac{1}{2} \left[4 - \frac{8}{3} \right] = \frac{2}{3}$$

$$k = 2: C_2^2 = C_0^2 = \frac{1}{6}$$

$$\int_{x_0}^{x_1} f(x)dx \simeq 2h \frac{1}{6} \left(f(x_0) + 4f(x_1) + f(x_2) \right) = \frac{h}{3} \left(f(x_0) + 4f(x_1) + f(x_2) \right)$$

Numerical Integration Error Analysis

Simpson's Rule

n = 1

$$e(x) = p(x) - f(x) = -\frac{f''(\xi)}{2}(x - x_0)(x - x_1)$$

Local Absolute Error

$$|\epsilon| = \left| -\int_{x_0}^{x_1} \frac{f''(\xi)}{2} (x - x_0)(x - x_1) dx \right|$$

$$\leq -\frac{\max|f''|}{2} (x - x_0)(x - x_1) dx$$

$$= \frac{\max|f''|}{2} h^3 \int_0^1 s(s - 1) ds = \frac{h^3}{12} \max|f''| \simeq O(h^3)$$

N Intervals

$$E = \sum_{i=1}^{N} \epsilon_i \le \frac{h^3}{12} \sum_{i=1}^{N} \max |f''| \le \frac{Nh^3}{12} \max |f''| = \frac{(b-a)h^2}{12} \max |f''| \ge O(h^2)$$

 $I = \int_{x_{m-1}}^{x_{m+1}} f(x) dx \simeq rac{h^3}{3} [f_{m-1} + 4f_m + f_{m+1}]$ Local Error $\epsilon_m = -\int_{x_{m-1}}^{x_{m+1}} rac{f'''(\xi)}{6} (x - x_{m-1})(x - x_m)(x - x_{m+1}) dx \simeq O(h^4)$ Global Error $E = O(h^3)$ $x_m = 0, \; x_{m-1} = -h, \; x_{m+1} = h$ $f(x) = f_0 + x f_0' + rac{x^2}{2} f_0'' + rac{x^3}{3!} f_0''' + O(h^4)$

$$I = \int_{-h}^{h} f(x)dx$$

$$= f_0 \int_{-h}^{h} x dx + \frac{f_0''}{2} \int_{-h}^{h} x^2 dx + \frac{f_0'''}{6} \int_{-h}^{h} x^3 dx + O(h^4)$$

$$= 2h f_0 + 0 + \frac{h^3}{3} f_0'' + 0 + O(h^5)$$

$$f_0'' = \frac{1}{h^2} (f_{-1} - 2f_0 + f_1) + O(h^2)$$

$$I = 2h f_0 + \frac{h}{3} (f_{-1} - 2f_0 + f_1) + O(h^5)$$
Local Error
$$= \frac{h}{3} (f_{-1} + 4f_0 + f_1) + O(h^5)$$

Global Error

$$E = O(h^4)$$