A Statistical Data Analysis

World University Rankings Dataset, THE

About the team

The Mean Squares, Section B

Anushka S. Hebbar Chandradhar Rao Ayush M. Kapasi Chaitra B. Kayi

November 2020 Department of Computer Science and Engineering PES University

The Dataset

World University Rankings

Curated by The Times Higher Education (THE)

Global performance tables that judge research-intensive universities.

These 5 factors are represented as 14 features (or columns) in the dataset.

#	Column	Non-I	Null Count	Dtype	
0	world_rank	2603	non-null	object	
1	university_name	2603	non-null	object	
2	country	2603	non-null	object	
3	teaching	2603	non-null	float64	
4	international	2603	non-null	object	
5	research	2603	non-null	float64	
6	citations	2603	non-null	float64	
7	income	2603	non-null	object	
8	total_score	2603	non-null	object	
9	num_students	2544	non-null	object	
10	student_staff_ratio	2544	non-null	float64	
11	international_students	2536	non-null	object	
12	female_male_ratio	2370	non-null	object	
13	year	2603	non-null	int64	
dtypes: float64(4), int64(1), object(9)					
memo	ry usage: 284.8+ KB				
None					

Libraries Used

- Pandas
 - Used for data manipulation
- Math
 - Provides access to mathematical functions
- Copy
 - Used to copy lists (shallow and deep copy)
- Numpy
 - Used for high level mathematical functions to find mean, roots etc.
- Matplotlib
 - Major plotting library used (for box plots, bar graphs etc)
- Plotly
 - Library used for plotting
- Scipy
 - Used for technical computing, eg-to find p value
- Seaborn
 - data visualisation

Data Wrangling

Processing num_students (to remove commas)

After processing 'num_students':

```
20152.0, 2243.0, 11074.0, 15596.0, 7929.0, 18812.0, 19919.0, 36186.0, 15060.0, 11751.0, 38206.0, 14221.0, 15128.0, 21424.0, 18178.0, 41786.0, 66198.0, 25055.0, 20376.0
```

Before processing 'num_students:

```
20,152, 2,243, 11,074, 15,596, 7,929, 18,812, 19,919, 36,186, 15,060, 11,751, 38,206, 14,221, 15,128, 21,424, 18,178, 41,786, 66,198, 25,055, 20,376, 11,885
```

Processing international_students (to remove % symbols)

```
After processing 'international_students':
```

```
25.0, 27.0, 33.0, 22.0, 27.0, 34.0, 34.0, 15.0, 51.0, 20.0, 15.0, 21.0, 23.0, 19.0, 37.0, 16.0, 15.0, 28.0, 20.0, 35.0, 38.0, 46.0, 13.0, 17.0, 15.0, 10.0, 26.0, 4.0, 11.0, 25.0
```

Before processing international students:

```
25%, 27%, 33%, 22%, 27%, 34%, 34%, 15%, 51%, 20%, 15%, 21%, 23%, 19%, 37%, 16%, 15%, 28%, 20%, 35%, 38%, 46%, 13%, 17%, 15%, 10%, 26%, 4%, 11%, 25%
```

Processing female ratio

After processing 'female_ratio':

```
nan, 0.33, 0.37, 0.42, 0.45, 0.46, 0.46, 0.5, 0.37, 0.5, 0.52, 0.42, 0.5, 0.48, 0.31, 0.48, nan, nan, 0.51, 0.39
```

Before processing female_ratio:

```
nan, 33: 67, 37: 63, 42: 58, 45: 55, 46: 54, 46: 54, 50: 50, 37: 63, 50: 50, 52: 48, 42: 58, 50: 50, 48: 52, 31: 69, 48: 52, nan, nan, 51: 49, 39: 61
```

Before Data Type Appropriation

```
world rank : <class 'str'>
university_name : <class 'str'>
country : <class 'str'>
teaching: <class 'numpy.float64'>
international : <class 'float'> <class 'str'>
research : <class 'numpy.float64'>
citations : <class 'numpy.float64'>
income : <class 'float'> <class 'str'>
total score : <class 'float'> <class 'str'>
num_students : <class 'numpy.float64'>
student_staff_ratio: <class 'numpy.float64'>
international_students: <class 'numpy.float64'>
female_ratio : <class 'numpy.float64'>
year : <class 'numpy.int64'>
```

After Data Type Appropriation

world_rank : <class 'str'> university_name : <class 'str'> country : <class 'str'> teaching: <class 'numpy.float64'> international : <class 'numpy.float64'> research : <class 'numpy.float64'> citations: <class 'numpy.float64'> income: <class 'numpy.float64'> total_score : <class 'numpy.float64'> num_students : <class 'numpy.float64'> student_staff_ratio: <class 'numpy.float64'> international_students: <class 'numpy.float64'> female_ratio : <class 'numpy.float64'> year : <class 'numpy.int64'>

Handling Missing Values

Before

```
Missing categorical values :
[0, 0, 0, 0]

Missing numerical values :
('teaching', 0)
('international', 9)
('research', 0)
('citations', 0)
('income', 218)
('total_score', 1402)
('num_students', 59)
('student_staff_ratio', 59)
```

'international students', 67)

'female ratio', 236)

After

```
world_rank
university name
country
teaching
international
research
citations
income
total score
num_students
student_staff_ratio
international_students
female_ratio
year
dtype: int64
```


Determine the measure of central tendency with which to replace missing values in numerical variables.

Data Visualization

Which countries around the world feature in the top 10 universities and how many times?

How do the ratios of female students in universities located in Germany and the UK in the year 2011 differ?

Scores assigned to the top 10 universities in the year 2016 using spyder / radar Plots

Ranked # 1

Ranked # 2

Normalization and Standardization

Before normalization, the mean and variance of the columns were:

teaching	37.801498
international	52.013484
research	35.910257
citations	60.921629
income	49.039800
total_score	45.517022
num_students	23805.244333
student_staff_ratio	18.392124
international_studen	ts 15.381099
female_ratio	0.496681
year	2014.075682
dtype: float64	

```
teaching
                          3.099085e+02
international
                          4.883810e+02
research
                          4.517667e+02
citations
                          5.323734e+02
income
                          4.507805e+02
total score
                          2.842290e+02
num students
                         3.055571e+08
student staff ratio
                         1.284464e+02
international students
                         1.094404e+02
female ratio
                         1.166354e-02
                          2.841695e+00
year
dtype: float64
```

After normalization, the mean and variance of the data columns were:

Means:	
teaching	0.310707
international	0.483461
research	0.342075
citations	0.604470
income	0.327702
total_score	0.386434
num_students	0.061629
student_staff_ratio	0.109828
international_students	0.187574
female_ratio	0.495851
year	2014.075682
dtype: float64	

Variance:	
teaching	0.038431
international	0.056588
research	0.048513
citations	0.054538
income	0.078456
total score	0.042838
num students	0.002130
student staff ratio	0.004894
international students	0.016276
female ratio	0.018224
year	2.841695
dtype: float64	

The normalized data set represented through histograms

After normalizing

We observe that numeric values in the data set have a common scale between 0 to 1.

For teaching: Max value: 1.0 Min value: 0.0 For international: Max value: 1.0 Min value: 0.0 For research: Max value: 1.0 Min value: 0.0 For citations: Max value: 1.0 Min value: 0.0 For income: Max value: 1.0 Min value: 0.0 For total score: Max value: 1.0 Min value: 0.0 For num students: Max value: 1.0 Min value: 0.0 For student staff ratio: Max value: 1.0 Min value: 0.0 For international students: Max value: 1.0 Min value: 0.0 For female ratio: Max value: 1.0 Min value: 0.0

The mean after standardization is -9.519853211538031e-17 std after standardization is 0.9999999999999984 The mean after standardization is 8.675350104062882e-17 The std after standardization is 1.0 mean after standardization is -1.0987070731595863e-16 std after standardization is 0.999999999999999 mean after standardization is 3.5017022789752346e-16 std after standardization is 1.000000000000000007 mean after standardization is -1.1793187334185777e-17 std after standardization is 0.9999999999999999 mean after standardization is -7.569818763368144e-16 std after standardization is 1.000000000000000013 The mean after standardization is 4.486955904362907e-17 std after standardization is 0.9999999999999997 mean after standardization is -2.317798490806476e-16 std after standardization is 0.9999999999999999 mean after standardization is 1.6327060077852858e-16 std after standardization is 0.9999999999999971 mean after standardization is 1.518399526571478e-17 The std after standardization is 0.9999999999999988

After standardizing

We observe the mean and standard deviation of the numeric columns.

Hypothesis Testing

Is the average percentage of international students in UK universities higher than that in the US?

Our Hypotheses

Null Hypothesis

There is no difference between the average percentage of US and UK university students who are of international origin over the years.

$$H_0: \mu_{\mathcal{X}} = \mu_{\mathcal{Y}}$$

Alternative Hypothesis

The average percentage of UK university students who are of international origin over the years, is higher than in the US.

$$H_1: \mu_x > \mu_y$$

 ${\mathcal X}$: Set of UK international students percentages

Y: Set of US international students percentages

Statistical Testing

- Sample sizes are different
- Sample variances are different
- Unequal variances and sample sizes
- Sample sizes > 30. Implies approximately normal distributions

Sample means: US = 0.16743772900551437, UK = 0.3550813008130085 Sample variance: US = 0.006994389532519845, UK = 0.012567629092148647

international students

Sample sizes: US = 659, UK = 300

Student's t-test cannot be predictably used.

Therefore, we use the Welch t-test

Observation and Conclusion

Obtained p value lesser than the considered statistical significance coefficient

(alpha = 0.005)

We reject $H_o: \mu_x = \mu_y$, where

x: Set of UK international_students y: Set of US international_students

Mathematical Representation:

 $x: Set of UK international_students \\ y: Set of US international_students$

$$H_o: \mu_x = \mu_y$$

 $H_1: \mu_x > \mu_y$

The t-score is calculated using,

$$t_{score} = rac{ar{X}_1 - ar{X}_2}{s_{Welch}}$$

where $ar{X}_1 - ar{X}_2$ is the difference of sample means, and,

$$s_{Welch} = \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$$

p < 0.005

Null hypothesis has enough evidence to be rejected.

Null hypothesis rejected.

Correlation

What is the correlation between teaching and total_score?

Positive

What is the correlation between student_staff_ratio and international students?

Negative

What is the correlation between research and citation in the year 2015 and 2016?

References

The Pitfalls of Data Normalization:

 $\underline{https://radiant-brushlands-42789.herokuapp.com/towardsdatascience.com/pitfalls-of-data-normalization-bf05d65f1f4c}$

How Low Can A p - Value Go?:

https://stats.stackexchange.com/questions/11812/sanity-check-how-low-can-a-p-value-go

Welch t - Testing Notes:

https://ocw.mit.edu/resources/res-6-009-how-to-process-analyze-and-visualize-data-january-iap-2012/lectures-and-labs/MI
TRES 6 009IAP12 lab3a.pdf