Interrogation de contrôle continu n°3 (1h)

Les calculatrices et les documents de cours et de TD sont interdits.

Il est fortement conseillé de :

- lire le sujet en entier.
- écrire de façon lisible et d'encadrer ou souligner ses résultats.
- rédiger de façon la plus détaillée possible (mieux vaut trop écrire que pas assez).
- prendre un peu de temps pour se relire.

Exercice 1. Questions de cours (4 pts)

Donner la définition, calculer la dérivée et dessiner le graphe de la fonction arcsinus.

Exercice 2. Equation différentielle (5 pts)

- 1. Calculer la dérivée de $\varphi(x) = -\frac{1}{2}\ln(1+x^2), \quad x \in \mathbb{R}.$
- 2. Trouver les solutions de l'équation différentielle :

$$(x^2 + 1)y' + xy = 0.$$

3. Trouver les solutions de l'équation différentielle :

$$(x^2 + 1)y' + xy = 2x.$$

Exercice 3. Fonctions réciproques et développements limités (11 pts)

Soit g la fonction définie sur \mathbb{R} par :

$$g(x) = \arctan(x) - x + \frac{x^3}{3}$$

- 1. (a) Montrer que la fonction g est strictement croissante sur \mathbb{R} .
 - (b) On note $J = g(]0, +\infty[)$. Déterminer l'ensemble J.
 - (c) Montrer que pour tout $\lambda \in \mathbb{R}$, l'équation $g(x) = \lambda$ possède une unique solution $c = c(\lambda)$ et que l'on a $c(\lambda) \in]0, +\infty[$ lorsque $\lambda > 0$.
 - (d) Montrer que la fonction $c(\lambda)$ est dérivable sur $]0, +\infty[$ et que pour $\lambda > 0$:

$$c'(\lambda) = \frac{1 + c^2(\lambda)}{c^4(\lambda)}$$

- (e) La fonction $c(\lambda)$ a-t-elle un développement limité d'ordre 1 en 0?
- 2. Ces questions peuvent être traitées sans avoir traité les questions précédentes :
 - (a) Calculer le développement limité en 0 à l'ordre 5 de g.
 - (b) En déduire l'équation de la tangente à la courbe Γ de g en 0 et la position relative de cette tangente par rapport à Γ au voisinage de 0.