

Monday 20 May 2013 – Afternoon

AS GCE PHYSICS A

G481/01 Mechanics

Candidates answer on the Question Paper.

OCR supplied materials:

 Data, Formulae and Relationships Booklet (sent with general stationery)

Other materials required:

- Electronic calculator
- Protractor
- Ruler (cm/mm)

Duration: 1 hour

Candidate forename		Candidate surname					
Centre number				Candidate nu	ımber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **60**.
- You may use an electronic calculator.
- You are advised to show all the steps in any calculations.

Where you see this icon you will be awarded marks for the quality of written communication in your answer.

This means for example you should:

- ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear;
- organise information clearly and coherently, using specialist vocabulary when appropriate.
- This document consists of **16** pages. Any blank pages are indicated.

2 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Answer all the questions.

1 (a) A student writes four incorrect statements shown in the table below. The error in each statement is circled. Write the correct answer for the circled unit or number; one has already been done for you.

Incorrect statement	Correct unit or number
The weight of a person is about 700 kg.	N
The atmosphere exerts a pressure of about 1.0×10^5 (N m ²).	
A force of 1 N may be written as 1 kg m ⁻¹ s ⁻¹ .	
1 GW is 10 times bigger than 1 MW.	

[2]

(b) Fig. 1.1 shows the apparatus used to determine the density of glass.

Fig. 1.2

The glass test tube has mass 1.6×10^{-2} kg. The measuring cylinder is partly filled with water. The test tube is gently pushed into the water until it is fully submerged as shown in Fig. 1.2. The level of the water inside the measuring cylinder increases from 75 cm³ to 82 cm³.

Calculate the density of the test tube glass in kg m⁻³.

density = $kg m^{-3}$ [2]

[Total: 4]

Turn over © OCR 2013

2 (a) Explain why force is a <i>vector</i> quant

In your answer, you should use appropriate technical terms, spelled correctly.	
	F41

(b) Fig. 2.1 shows the forces acting on a water drop on the windscreen of a stationary car.

Fig. 2.1

The windscreen makes an angle of 30° to the horizontal. The weight of the water drop is $8.0 \times 10^{-5} \,\mathrm{N}$. The normal contact force on the water drop is R. There is also a force F acting on the water drop as shown. The water drop is **stationary**.

- (i) Use Fig. 2.1 to determine the component of the weight of the water drop
 - 1 perpendicular to the windscreen

2 parallel to the windscreen.

etermine the magnitude of <i>F</i> . Explain your answer.	(ii)
[2]	
[Total: 5]	

Question 3 begins on page 6

3	(a)	Define the force constant of a spring.

(b) Fig. 3.1 shows a trolley attached by two **stretched** springs **A** and **B** to fixed supports.

Fig. 3.1

The trolley is on a horizontal table and at rest. The springs **A** and **B** are identical.

- (i) On Fig. 3.1, draw an arrow to show the direction of the force exerted by spring A on the trolley. Label this arrow F.[1]
- (ii) The mass of the trolley is 0.80 kg. The force constant of each spring is 14 N m⁻¹. A student pulls the trolley to the left as shown in Fig. 3.2.

Fig. 3.2

The extension of spring A is 0.30 m and the extension of spring B is 0.50 m.	The student
releases the trolley. Calculate the initial values of	

1	the accelera	ation of the troll	еу					
•	Ale e wedie		accele	ration =			n	ns ^{–2} [3]
2	the ratio	elastic poter						
				ratio =				[2]
Ex rigl		acceleration of	the trolle	ey decre	ases as it	travels a	small distanc	e to the
								[1]
		n how the acce		in your a	nswer to	(ii)1 would	l be different	when a
								[2]

[Total: 10]

Turn over

4 Fig. 4.1 shows a metal ball held stationary above a tube containing oil.

Fig. 4.1

(a) The ball is 0.70 m above the surface of the oil in the tube. Calculate the time taken for the ball to reach the surface of the oil when it is dropped from this height. Assume air resistance has negligible effect on the motion of the ball.

(b) Fig. 4.2 shows the graph of velocity v against time t for the ball as it travels through the oil. The ball enters the oil at time t = 0.

Fig. 4.2

(i)	Complete the sentence below.
	The gradient of the graph is equal to the of the ball an
	the area under the graph is equal to the
(ii)	Use Fig. 4.2 to determine the magnitude of the deceleration of the ball at time $t = 0.05$ (point A). Show your working.
	deceleration = m s ⁻² [3
<i>a</i>	•
(iii)	In terms of the forces acting on the ball, describe and explain its motion when
	1 time $t = 0.05 s$ (point A)
	2 time $t = 0.25$ s (point B).
	[4
(iv)	Describe the energy transfers taking place between $t = 0.25$ s and $t = 0.35$ s (point B to C
	r -

[Total: 12] Turn over

5	(a)	State what is meant by the <i>centre of gravity</i> of an object.
	(b)	Define moment of a force.
		[1]

(c) Fig. 5.1 shows a baby's mobile toy.

Fig. 5.1

The toy consists of a horizontal rod from which two objects shaped as a crescent moon \mathbf{M} and a star \mathbf{S} are suspended from lengths of string. The weight of the rod is negligible and it is pivoted about an axis passing through point \mathbf{A} perpendicular to the plane of the diagram. The weights of \mathbf{M} and \mathbf{S} and the separation between the strings are shown in Fig. 5.1. The distance between the string on the left and point \mathbf{A} is x. The arrangement shown in Fig. 5.1 is in equilibrium.

(i)	State two conditions necessary for the rod to be in equilibrium.
	[2

	II .
(ii)	By taking moments about A determine the distance <i>x</i> .
	x = m [3]
	x =
(iii)	Determine the magnitude of the tension in the string attached to A.
	tension = N [1]
	[Total: 8]

© OCR 2013 Turn over

(a)	Power can be measured in watts. Define the watt.				
		[1]			
(b)	ver	An electric motor-driven crane is used to raise a load of bricks of mass 700 kg through a vertical height of 8.5 m in a time of 45 s. The efficiency of the motor-driven crane is 30%. Calculate			
	(i)	the gravitational potential energy $\boldsymbol{E}_{\mathrm{p}}$ gained by the bricks			
		E _p = J [1]			
	(ii)	the output power of the motor-driven crane			
		output power = W [1]			
	(iii)	the input power to the motor-driven crane.			
		input power = W [1]			
		[Total: 4]			

7	(a)			of mass m is at rest. A constant net force F acts on the car and it moves a distance x in ection of the force. The final velocity of the car is v .		
		(i)	W	rite down the equation		
			1	for the work done by the force F		
			2	relating force F and acceleration a.		
		(ii)	Не	[1] ence show that the kinetic energy of the car is given by the equation $E_{\rm k} = \frac{1}{2} m v^2$.		
				[3]		
	(b)	The braking distance of an empty van travelling at a steady speed on a level road is 50 m. The van is now fully loaded with goods and travels at the same speed on the same road.				
				whether or not the braking distance would be the same. Assume that the driver the same braking force.		
				[3]		
				[Total: 7]		

© OCR 2013 Turn over

8 (a) Fig. 8.1 shows the stress against strain graph obtained from a test on a sample of wire of a ductile material.

Fig. 8.1

(i) Use Fig. 8.1 to determine the Young modulus of the material.

		roung modulus = Pa [[د
(ii)	Use	Fig. 8.1 to describe the behaviour of the material	
	1	in section AB	
		[1]
	2	in section BC .	
		r	41

	•	J						
(iii)	State and explain the effect on the lir same wire, but of twice the original le		the graph when a sample of the					
			[2]					
mate	8.2 shows a force against extension gerial during loading (upward arrow) is load is removed (downward arrow).							
force		force	unloading					
C	0 extension	0	extension					
	Fig. 8.2	ا	Fig. 8.3					
Fig. 8.3 shows the force against extension graph for a material used to make as tyres. Aeroplane tyres experience sudden impact forces during landing.								
	Identify the type of material from Fig suggest why this material is suitable to							
	In your answer, you should use appro	opriate technical ter	ms, spelled correctly.					

In your answer, you snould use appropriate technical terms, spelled correctly.

[Total: 10]

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the lined page below. The question number(s) must be clearly shown in the margin.					
	,				

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.