Отчёт по лабораторной работе №16

Задачи оптимизации. Модель двух стратегий обслуживания

Гэинэ Андрей НФИбд-02-22

Содержание

Цель работы	5
Задание	6
Выполнение лабораторной работы	7
Постановка задачи	7
Построение модели	7
Оптимизация модели двух стратегий обслуживания	12
Выводы	19

Список иллюстраций

1	Прибывающие автомобили образуют две очереди и обсл. соот-	
	ветств. пропускными пунктами	8
2	Отчет. Прибывающие автомобили образуют две очереди и обсл.	
	соответств. пропускными пунктами	ć
3	Прибывающие автомобили образуют одну очередь и обсл. освобо-	
	дившимися пропускными пунктами	10
4	Отчет. Прибывающие автомобили образуют одну очередь и обсл.	
	освободившимися пропускными пунктами	11
5	Модель с одним пунктам	13
6	Отчет. Модель с одним пунктам	13
7	Модель с тремя пунктами	14
8	Отчет. Модель для первой стратегии с 3 пропускными пунктами .	15
9	Модель с четырьмя пунктам	15
10	Отчет. Модель с четырьмя пунктам	16
11	Модель для второй стратегии с 3 пропускными пунктами	16
12	Отчет. Модель для второй стратегии с 3 пропускными пунктами .	17
13	Модель для второй стратегии с 4 пропускными пунктами	17
14	Отчет. Модель для второй стратегии с 4 пропускными пунктами .	18

Список таблиц

1	Сравнение стра-	тегий {#tbl:strategy}:																	•	11	İ
---	-----------------	------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----	---

Цель работы

Реализовать с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.

Задание

Реализовать с помощью gpss:

- модель с двумя очередями;
- модель с одной очередью;
- изменить модели, чтобы определить оптимальное число пропускных пунктов.

Выполнение лабораторной работы

Постановка задачи

На пограничном контрольно-пропускном пункте транспорта имеются 2 пункта пропуска. Интервалы времени между поступлением автомобилей имеют экспоненциальное распределение со средним значением μ . Время прохождения автомобилями пограничного контроля имеет равномерное распределение на интервале [a,b]. Предлагается две стратегии обслуживания прибывающих автомобилей:

- 1) автомобили образуют две очереди и обслуживаются соответствующими пунктами пропуска;
- 2) автомобили образуют одну общую очередь и обслуживаются освободившимся пунктом пропуска. Исходные данные: μ = 1, 75 мин, a = 1 мин, b = 7 мин.

Построение модели

Целью моделирования является определение:

 характеристик качества обслуживания автомобилей, в частности, средних длин очередей; среднего времени обслуживания автомобиля; среднего времени пребывания автомобиля на пункте пропуска;

- наилучшей стратегии обслуживания автомобилей на пункте пограничного контроля;
- оптимального количества пропускных пунктов.

В качестве критериев, используемых для сравнения стратегий обслуживания автомобилей, выберем:

- коэффициенты загрузки системы;
- максимальные и средние длины очередей;
- средние значения времени ожидания обслуживания.

Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами (рис. [-@fig:001]).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TEST LE Q$Other1,Q$Other2,Obsl_2 ; длина оч. 1<= длине оч. 2
TEST E QSOther1,QSOther2,Obsl_1 ; плина оч. 1= плине оч. 2
TRANSFER 0.5, Obsl_1, Obsl_2 ; длины очередей равны,
; выбираем произв. пункт пропуска
; моделирование работы пункта 1
Obsl_1 QUEUE Other1 ; присоединение к очереди 1
SEIZE punkt1 ; занятие пункта 1
DEPART Other1 ; выход из очереди 1
ADVANCE 4,3 ; обслуживание на пункте 1
RELEASE punkt1 ; освобождение пункта 1
TERMINATE ; автомобиль похидает систему
; моделирование работы пункта 2
Obsl 2 QUEUE Other2 ; присоединение к очереди 2
SEIZE punkt2 ; занятие пункта 2
DEPART Other2 ; выход из очереди Д
ADVANCE 4,3 ; обслуживание на пункте 2
RELEASE punkt2 ; освобождение пункта 2
TERMINATE ; автомобиль покидает систему
; задажие условия остановки процедуры моделирования
```

Рис. 1: Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами

Отчет. Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами (рис. [-@fig:002]).

	START	TIME		ND TIME			ACILIT	IES	STORAG	GES	
	(0.000	100	080.000	18	1	2		0		
	NAI	-			VALUE						
	OBSL_1				5.00	0					
	OBSL_2				11.00	0					
	OTHER1			10	000.00	0					
	OTHER2			10	001.00	0					
	PUNKT1			10	003.00	0					
	PUNKT2			10	002.00	0					
LABEL		toc	BLOCK TY	or :	PNTDV	COUNT	CHEE	NT CO	MINT DI	TDV	
			GENERATE		585		00000	0		0	
			TEST		-	3		0		0	
		3	TEST		416			0		0	
			TRANSFER		243			ő		0	
OBSL 1			QUEUE			8		387		0	
		-	SEIZE			1		0		0	
			DEPART			1		0		0	
			ADVANCE			1		1		0	
			RELEASE			0		ô		ō	
			TERMINATE			0		ő		ō	
OBSL 2			QUEUE	-		5		388		0	
			SEIZE		253			0		0	
			DEPART		253			ō		0	
			ADVANCE		253			1		ō	
			RELEASE		253			ō		ō	
		16	TERMINATE	2	253	6		0		0	
			GENERATE			1		0		0	
			TERMINATE			1		ō		0	
FACILITY			UTIL.								
PUNKT2			0.996	3	.957	1	5078 5079	0	0	0	388
PUNKT1		2541	0.997	3	.955	1	5079	0	0	0	387
QUEUE			ONT. ENTRY								
OTHER1		393	387 2928	8 1:	2 18	7.098	64	4.107	6	16.758	0
OTHER2			388 2925				64				
EC XN			ASS!				PARAM	ETER	VA	LUE	
5855	0	10081.	102 5855	-	-	1					
					8	9					
						15					
					Ų	17					

Рис. 2: Отчет. Прибывающие автомобили образуют две очереди и обсл. соответств. пропускными пунктами

Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами (рис. [-@fig:003]).

```
punkt STORAGE 2
GENERATE (Exponential(1,0,1.75))

QUEUE Other;
Enter punkt,1
DEPART Other
ADVANCE 4,3
LEAVE punkt,1
TERMINATE;

GENERATE 10080;
TERMINATE 1;
START 1;
```

Рис. 3: Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами

Отчет. Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами (рис. [-@fig:004]).

	GP:	SS World Sim	ulation Re	port -	labl6.2	.1		
		пятница,	октября 24	, 2025	01:28:5	7		
						CILITIES STO		
	NAM OTHER PUNKT	_		VALU: 10001.0: 10000.0:	00			
LABEL		1 GEN 2 QUE 3 ENT 4 DEF 5 ADV 6 LEA	ERATE UE ER PART VANCE	57. 57. 50: 50: 50:	19 19 51 51 51	CURRENT COUNT 0 668 0 0 2	0	
		8 GEN 9 TEF	ERATE MINATE		1	0	0	
QUEUE						607.138		
STORAGE PUNKT						AVE.C. UIII 2.000 1.00		
FEC XN 5721 5051 5052 5722	0	BDT 10080.466 10081.269 10083.431 20160.000	5052	5	6	PARAMETER	VALUE	

Рис. 4: Отчет. Прибывающие автомобили образуют одну очередь и обсл. освободившимися пропускными пунктами

Составим таблицу по полученной статистике

Таблица 1: Сравнение стратегий {#tbl:strategy}:

Показатель	стратегия 1			стратегия 2
	пункт 1	пункт 2	в целом	
Поступило автомобилей	2928	2925	5853	5719
Обслужено автомобилей	2540	2536	5076	5049
Коэффициент загрузки	0,997	0,996	0,9965	1
Максимальная длина	393	393	786	668
очереди				
Средняя длина очереди	187,098	187,114	374,212	344,466

Показатель	стратегия 1			стратегия 2
Среднее время ожидания	644,107	644,823	644,465	607,138

Анализ результатов моделирования двух систем показывает, что первая модель способна обработать большее количество автомобилей. Однако стоит отметить, что во второй модели разница между числом поступивших и обслуженных машин меньше, что свидетельствует о более эффективной работе системы. Кроме того, коэффициент загрузки для второй модели достигает 1, что означает полное использование всех пропускных пунктов без простоев. Также показатели, связанные с длиной очередей и временем ожидания, во второй стратегии оказались ниже. Это позволяет считать вторую стратегию более предпочтительной.

Оптимизация модели двух стратегий обслуживания

Изменим модели под следующие критерии:

- коэффициента загрузки прпускных пунктов принадлежат интервалу [0.5; 0.95];
- среднее число автомобилей, одновременно находящихся на контрольно пропускном пункте, не должно превышать 3;
- среднее время ожидания обслуживания не должно превышать 4 мин.

Для обеих стратегий модель с одним пунктам будет следующей (рис. [-@fig:005]).

```
GENERATE (Exponential(1,0,1.75))

QUEUE Other;
SEIZE punkt
DEPART Other
ADVANCE 4,3
RELEASE punkt
TERMINATE;

GENERATE 10080;
TERMINATE 1;
START 1;
```

Рис. 5: Модель с одним пунктам

Отчет. Модель с одним пунктам (рис. [-@fig:006]).

```
GPSS World Simulation Report = lab16.3.1
                     пятница, октября 24, 2025 01:30:22
             START TIME
                                    END TIME LLOCKS FACILITIES STORAGES
                NAME
                                                 VALUE
                                          10000.000
            OTHER
            PUNKT
                       LOC BLOCK TYPE ENTRY COUNT CURRENT COUNT RETRY
 LABEL
                       1 GENERATE 5744 0 0 0
2 QUEUE 5744 3233 0
3 SEIZE 2511 0 0
                            DEFART 2511 0
DEPART 2511 0
ADVANCE 2511 1
RELEASE 2510 0
TERMINATE 2510 0
GENERATE 1 0
TERMINATE
                        8 GENERATE
9 TERMINATE
FACILITY ENTRIES UTIL. AVE. TIME AVAIL. OWNER PEND INTER RETRY DELAY PUNKT 2511 1.000 4.014 1 2512 0 0 0 3233
                                              4.014 1
                   MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY 3234 3233 5744 1 1617.676 2838.819 2839.313 0
 OTHER
                                    ASSEM CURRENT NEXT PARAMETER VALUE
                    10080.255 2512
10080.384 5746
20160.000 5747
                                          5
  5747
```

Рис. 6: Отчет. Модель с одним пунктам

Здесь модель не проходит ни по одному из критериев, тк коэфиициенты загрузки, размер очереди и среднее время ожидания больше.

Модель для первой стратегии с 3 пропускными пунктами (рис. [-@fig:007]).

```
GENERATE (Exponential(1,0,1.75)); прибытие автомобилей
TRANSFER 0.33,go,Obsl_3;
go TRANSFER 0.5,Obsl_1,Obsl_2;
Obsl_1 QUEUE Other1;
SEIZE punktl;
DEPART Other1;
ADVANCE 4,3;
RELEASE punktl;
TERMINATE;
Obs1_2 QUEUE Other2;
SEIZE punkt2;
DEPART Other2;
ADVANCE 4,3;
RELEASE punkt2;
TERMINATE:
Obsl_3 QUEUE Other3
SEIZE punkt3
DEPART Other3
ADVANCE 4,3
RELEASE punkt3
TERMINATE
GENERATE 10080
TERMINATE 1
START 1
```

Рис. 7: Модель с тремя пунктами

Отчет. Модель для первой стратегии с 3 пропускными пунктами (рис. [-@fig:008]).

```
| CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONTROL | CONT
```

Рис. 8: Отчет. Модель для первой стратегии с 3 пропускными пунктами

Здесь сред кол-во автомобилей в очереди меньше 3 и коэффициента загрузки в нужном диапазоне. Однако сред время ожидания больше 4.

Модель для первой стратегии с 4 пропускными пунктами (рис. [-@fig:009]).

```
GENERATE (Exponential(1,0,1.75)); mpx6mrue astomo6unex

TRANSFER 0.33,a.b;
a TRANSFER 0.5,Obsll_1,Obsll_2
b TRANSFER 0.5,Obsll_1,Obsll_2
Obsl_1 QUEUE Other1;
DEPART Other1;
ADVANCE 4,3;
RELEASE punkt1;
TERMINATE;
Obsl_2 QUEUE Other2;
SELZE punkt2;
DEPART Other2;
ADVANCE 4,3;
RELEASE punkt2;
TERMINATE;
Obsl_3 QUEUE Other3;
SELZE punkt3;
DEPART Other3;
ADVANCE 4,3;
RELEASE punkt3;
TERMINATE;
Obsl_4 QUEUE Other4;
SELZE punkt3;
TERMINATE;
Obsl_4 QUEUE Other4;
SELZE punkt4;
DEPART Other4;
ADVANCE 4,3;
RELEASE punkt4;
TERMINATE;

GENERATE 10080;
TERMINATE 1;
START 1;
```

Рис. 9: Модель с четырьмя пунктам

Отчет. Модель для первой стратегии с 4 пропускными пунктами (рис. [-@fig:010]).

Рис. 10: Отчет. Модель с четырьмя пунктам

В этом случае все критерии выполнены, поэтому 4 пункта являются оптимальным количеством для первой стратегии.

Модель для второй стратегии с 3 пропускными пунктами (рис. [-@fig:011]).

```
punkt STORAGE 3
GENERATE (Exponential(1,0,1.75))

QUEUE Other;
Enter punkt;
DEPART Other;
ADVANCE 4,3;
LEAVE punkt;
TERMINATE;

GEENRATE 10080;
TERMINATE 1;
START 1;
```

Рис. 11: Модель для второй стратегии с 3 пропускными пунктами

Отчет. Модель для второй стратегии с 3 пропускными пунктами (рис. [-@fig:012]).

Рис. 12: Отчет. Модель для второй стратегии с 3 пропускными пунктами

Все критерии выполняются => модель оптимальна.

Модель для второй стратегии с 4 пропускными пунктами (рис. [-@fig:013]).

```
punkt STORAGE 4
GENERATE (Exponential(1,0,1.75))

QUEUE Other;
Enter punkt;
DEPART Other;
ADVANCE 4,3;
LEAVE punkt;
TERMINATE;

GEENRATE 10080;
TERMINATE 1;
START 1;
```

Рис. 13: Модель для второй стратегии с 4 пропускными пунктами

Отчет. Модель для второй стратегии с 4 пропускными пунктами (рис. [- @fig:014]).

Рис. 14: Отчет. Модель для второй стратегии с 4 пропускными пунктами

В данной ситуации все критерии соблюдены, при этом время ожидания и среднее количество автомобилей оказываются ниже, чем во втором варианте стратегии с тремя пунктами. Однако уровень загрузки также снижается, что говорит о возможной избыточности четвёртого пункта пропуска.

Таким образом, на основе проведённого анализа можно заключить, что оптимальное количество пропускных пунктов составляет три при втором типе обслуживания и четыре при первом.

Выводы

Реализовал с помощью gpss модель двух стратегий обслуживания и оценить оптимальные параметры.