Problema de Dirichlet no Círculo e em Regiões Circulares

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

5 de outubro de 2010

Vamos resolver o problema de Dirichlet no círculo

$$\begin{cases} \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ 0 \le r < a \\ u(a, \theta) = f(\theta), \ 0 < \theta < 2\pi \end{cases}$$

Vamos procurar uma solução na forma de um produto de uma função de r por uma função de θ , ou seja,

$$u(r,\theta) = R(r)\Theta(\theta).$$

Derivando e substituindo na equação diferencial obtemos

$$R''(r)\Theta(\theta) + \frac{1}{r}R'(r)\Theta(\theta) + \frac{1}{r^2}R(r)\Theta(\theta) = 0,$$

que pode ser reescrita como

$$\frac{\Theta''(\theta)}{\Theta(\theta)} = -r^2 \frac{R''(r)}{R(r)} - r \frac{R'(r)}{R(r)}.$$

O primeiro membro depende apenas de θ , enquanto o segundo depende apenas de r. Isto só é possível se eles forem iguais a uma constante, ou seja,

$$\frac{\Theta''(\theta)}{\Theta(\theta)} = -r^2 \frac{R''(r)}{R(r)} - r \frac{R'(r)}{R(r)} = \lambda.$$

Obtemos então duas equações diferenciais ordinárias com a condição de $\Theta(\theta)$ ser periódica de período 2π :

$$\begin{cases}
\Theta''(\theta) - \lambda\Theta(\theta) = 0, & \Theta(\theta) = \Theta(\theta + 2\pi), \\
r^2 R''(t) + rR'(r) + \lambda R(r) = 0.
\end{cases} \tag{1}$$

A equação $\Theta''(\theta) - \lambda \Theta(\theta) = 0$ pode ter como soluções,

Se
$$\lambda > 0$$
: $\Theta(\theta) = c_1 e^{\sqrt{\lambda} \theta} + c_2 e^{-\sqrt{\lambda} \theta}$.

Se
$$\lambda = 0$$
: $\Theta(\theta) = c_1 + c_2 \theta$.

Se
$$\lambda < 0$$
: $\Theta(\theta) = c_1 \operatorname{sen}(\sqrt{-\lambda}\theta) + c_2 \cos(\sqrt{-\lambda}\theta)$.

A condição $\Theta(\theta) = \Theta(\theta + 2\pi)$, para todo $\theta \in \mathbb{R}$, implica que (11) tem solução não identicamente nula somente se $\lambda \leq 0$, mais que isso λ tem que ter valores dados por

$$\lambda = -n^2$$
, $n = 0, 1, 2, 3, ...$

ou seja, o problema de valor de fronteira (11) tem soluções fundamentais

$$\Theta_n^{(1)}(\theta) = \cos n\theta, \text{ para } n = 0, 1, 2, 3, \dots$$

$$\Theta_n^{(2)}(\theta) = \sin n\theta, \text{ para } n = 1, 2, 3, \dots$$

Substituindo-se $\lambda = -n^2$ na equação diferencial (12) obtemos

$$r^2R''(t) + rR'(r) - n^2R(r) = 0,$$

que tem como solução

$$R(r) = c_1 + c_2 \ln r$$
, para $n = 0$; $R(r) = c_1 r^{-n} + c_2 r^n$, para $n = 1, 2, 3, ...$

Como R(r) tem que estar definido para r=0, as soluções fundamentais são

$$R_0(r) = 1$$
, $R_n(r) = r^n$, para $n = 1, 2, 3, ...$

Logo o problema formado pela equação diferencial parcial na região r < a tem soluções fundamentais

$$u_0(r,\theta) = 1$$

$$u_n^{(1)}(r,\theta) = R_n(r)\Theta_n^{(1)}(\theta) = r^n \cos n\theta, \quad u_n^{(2)}(r,\theta) = R_n(r)\Theta_n^{(2)}(\theta) = r^n \sin n\theta.$$

Vamos supor que a solução do problema de Dirichlet seja a série

$$u(r,\theta) = c_0 + \sum_{n=1}^{\infty} (c_n u_n^{(1)}(r,\theta) + d_n u_n^{(2)}(r,\theta)) = c_0 + \sum_{n=1}^{\infty} r^n (c_n \cos n\theta + d_n \sin n\theta).$$
 (3)

Para satisfazer a condição $u(a, \theta) = f(\theta)$, temos que impor a condição

$$f(\theta) = u(a, \theta) = c_0 + \sum_{n=1}^{\infty} a^n (c_n \cos n\theta + d_n \sin n\theta).$$

Esta é a série de Fourier de $f(\theta)$ com período 2π . Assim, se a função $f:[0,2\pi]\to\mathbb{R}$ é contínua por partes tal que a sua derivada f' também seja contínua por partes, então

os coeficientes da série são dados por

$$c_0 = \frac{1}{2\pi} \int_0^{2\pi} f(\theta) d\theta,$$

$$a^n c_n = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \cos n\theta d\theta,$$

$$a^n d_n = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \sin n\theta d\theta.$$
(4)

para n = 1, 2, 3...

Deixamos para o leitor verificar que realmente (13) com os coeficientes dados por (15) é a solução do problema de valor inicial.

Exercícios

1. Resolva o problema de Dirichlet no semicírculo

$$\begin{cases} \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ 0 \le r < a \\ u(a, \theta) = f(\theta), \ 0 < \theta < \pi \\ u(r, 0) = u(r, \pi) = 0, \ 0 \le r < a \end{cases}$$

2. Resolva o problema de Dirichlet no setor circular

$$\begin{cases} \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ 0 \le r < a \\ u(a, \theta) = f(\theta), \ 0 < \theta < \alpha \\ u(r, 0) = u(r, \alpha) = 0, \ 0 \le r < a \end{cases}$$

3. Resolva o problema de Dirichlet na coroa circular

$$\begin{cases} \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, \ a < r < b \\ u(a, \theta) = 0, \ u(b, \theta) = g(\theta), \ 0 < \theta < 2\pi \end{cases}$$

Respostas dos Exercícios

1. Vamos procurar uma solução na forma de um produto de uma função de r por uma função de θ , ou seja,

$$u(r,\theta) = R(r)\Theta(\theta).$$

Derivando e substituindo na equação diferencial obtemos

$$R''(r)\Theta(\theta) + \frac{1}{r}R'(r)\Theta(\theta) + \frac{1}{r^2}R(r)\Theta(\theta) = 0,$$

que pode ser reescrita como

$$\frac{\Theta''(\theta)}{\Theta(\theta)} = -r^2 \frac{R''(r)}{R(r)} - r \frac{R'(r)}{R(r)}.$$

O primeiro membro depende apenas de θ , enquanto o segundo depende apenas de r. Isto só é possível se eles forem iguais a uma constante, ou seja,

$$\frac{\Theta''(\theta)}{\Theta(\theta)} = -r^2 \frac{R''(r)}{R(r)} - r \frac{R'(r)}{R(r)} = \lambda.$$

Obtemos então duas equações diferenciais ordinárias com a condição de fronteira $\Theta(0) = \Theta(2\pi)$:

$$\begin{cases} \Theta''(\theta) - \lambda \Theta(\theta) = 0, & \Theta(0) = \Theta(\pi) = 0, \\ r^2 R''(t) + r R'(r) + \lambda R(r) = 0. \end{cases}$$
 (5)

A equação $\Theta''(\theta) - \lambda \Theta(\theta) = 0$ pode ter como soluções,

Se
$$\lambda > 0$$
: $\Theta(\theta) = c_1 e^{\sqrt{\lambda} \theta} + c_2 e^{-\sqrt{\lambda} \theta}$.

Se
$$\lambda = 0$$
: $\Theta(\theta) = c_1 + c_2\theta$.

Se
$$\lambda < 0$$
: $\Theta(\theta) = c_1 \operatorname{sen}(\sqrt{-\lambda}\theta) + c_2 \cos(\sqrt{-\lambda}\theta)$.

As condições de fronteira $\Theta(0)=\Theta(\pi)=0$ implica que (5) tem solução não identicamente nula somente se $\lambda<0$, mais que isso λ tem que ter valores dados por

$$\lambda = -n^2$$
, $n = 1, 2, 3, ...$

ou seja, o problema de valor de fronteira tem soluções fundamentais

$$\Theta_n(\theta) = \operatorname{sen} n\theta$$
, para $n = 1, 2, 3, \dots$

Substituindo-se $\lambda = -n^2$ na equação diferencial (12) obtemos

$$r^2R''(t) + rR'(r) - n^2R(r) = 0,$$

que tem como solução

$$R(r) = c_1 + c_2 \ln r$$
, para $n = 0$; $R(r) = c_1 r^{-n} + c_2 r^n$, para $n = 1, 2, 3, ...$

Como R(r) tem que estar definida para r=0, as soluções fundamentais são

$$R_n(r) = r^n$$
, para $n = 1, 2, 3, ...$

Logo o problema formado pela equação diferencial parcial e as condições de fronteira tem soluções fundamentais da forma

$$u_n(r,\theta) = R_n(r)\Theta_n(\theta) = r^n \operatorname{sen} n\theta.$$

Vamos supor que a solução do problema de Dirichlet seja a série

$$u(r,\theta) = \sum_{n=1}^{\infty} c_n u_n(r,\theta) = \sum_{n=1}^{\infty} r^n c_n \operatorname{sen} n\theta.$$
 (7)

Então para satisfazer a condição $u(a, \theta) = f(\theta)$, temos que impor a condição

$$f(\theta) = u(a, \theta) = \sum_{n=1}^{\infty} a^n c_n \operatorname{sen} n\theta.$$

Esta é a série de Fourier de $f(\theta)$ de senos com período 2π . Assim, se a função

 $f:[0,\pi]\to\mathbb{R}$ é contínua por partes tal que a sua derivada f' também seja contínua por partes, então os coeficientes da série são dados por

$$a^n c_n = \frac{2}{\pi} \int_0^{\pi} f(\theta) \operatorname{sen} n\theta \, d\theta$$
, para $n = 1, 2, 3 \dots$

2. Vamos procurar uma solução na forma de um produto de uma função de r por uma função de θ , ou seja,

$$u(r,\theta) = R(r)\Theta(\theta).$$

Derivando e substituindo na equação diferencial obtemos

$$R''(r)\Theta(\theta) + \frac{1}{r}R'(r)\Theta(\theta) + \frac{1}{r^2}R(r)\Theta(\theta) = 0,$$

que pode ser reescrita como

$$\frac{\Theta''(\theta)}{\Theta(\theta)} = -r^2 \frac{R''(r)}{R(r)} - r \frac{R'(r)}{R(r)}.$$

O primeiro membro depende apenas de θ , enquanto o segundo depende apenas de r. Isto só é possível se eles forem iguais a uma constante, ou seja,

$$\frac{\Theta''(\theta)}{\Theta(\theta)} = -r^2 \frac{R''(r)}{R(r)} - r \frac{R'(r)}{R(r)} = \lambda.$$

Obtemos então duas equações diferenciais ordinárias com a condição de fronteira $\Theta(0) = \Theta(2\pi)$:

$$\begin{cases} \Theta''(\theta) - \lambda \Theta(\theta) = 0, & \Theta(0) = \Theta(\alpha) = 0, \\ r^2 R''(t) + r R'(r) + \lambda R(r) = 0. \end{cases}$$
 (8)

A equação $\Theta''(\theta) - \lambda \Theta(\theta) = 0$ pode ter como soluções,

Se
$$\lambda > 0$$
: $\Theta(\theta) = c_1 e^{\sqrt{\lambda} \theta} + c_2 e^{-\sqrt{\lambda} \theta}$.

Se
$$\lambda = 0$$
: $\Theta(\theta) = c_1 + c_2\theta$.

Se
$$\lambda < 0$$
: $\Theta(\theta) = c_1 \operatorname{sen}(\sqrt{-\lambda}\theta) + c_2 \cos(\sqrt{-\lambda}\theta)$.

As condições de fronteira $\Theta(0)=\Theta(\alpha)=0$ implica que (8) tem solução não identicamente nula somente se $\lambda\leq 0$, mais que isso λ tem que ter valores dados por

$$\lambda = -\frac{n^2\pi^2}{\alpha^2}, \ n = 1, 2, 3, \dots$$

ou seja, o problema de valor de fronteira tem soluções fundamentais

$$\Theta(\theta) = \operatorname{sen} \frac{n\pi\theta}{\alpha}$$
, para $n = 1, 2, 3, ...$

Substituindo-se $\lambda = -\frac{n^2\pi^2}{\alpha^2}$ na equação diferencial (9) obtemos

$$r^2R''(t) + rR'(r) - \frac{n^2\pi^2}{\alpha^2}R(r) = 0,$$

que tem como solução

$$R(r) = c_1 + c_2 \ln r$$
, para $n = 0$; $R(r) = c_1 r^{-\frac{n\pi}{\alpha}} + c_2 r^{\frac{n\pi}{\alpha}}$, para $n = 1, 2, 3, \dots$

Como R(r) tem que estar definido para r=0, as soluções fundamentais são

$$R_n(r) = r^{\frac{n\pi}{\alpha}}$$
, para $n = 1, 2, 3, ...$

Logo o problema formado pela equação diferencial parcial e as condições de fronteira tem soluções fundamentais da forma

$$u_n(r,\theta) = R(r)\Theta(\theta) = r^{\frac{n\pi}{\alpha}} \operatorname{sen} \frac{n\pi\theta}{\alpha}.$$

Vamos supor que a solução do problema de Dirichlet seja a série

$$u(r,\theta) = \sum_{n=1}^{\infty} c_n u_n(r,\theta) = \sum_{n=1}^{\infty} r^{\frac{n\pi}{\alpha}} c_n \operatorname{sen} \frac{n\pi\theta}{\alpha}.$$
 (10)

Então para satisfazer a condição $u(a, \theta) = f(\theta)$, temos que impor a condição

$$f(\theta) = u(a, \theta) = \sum_{n=1}^{\infty} a^{\frac{n\pi}{\alpha}} c_n \operatorname{sen} \frac{n\pi\theta}{\alpha}.$$

Esta é a série de Fourier de $f(\theta)$ de senos com período 2α . Assim, se a função

 $f:[0,\alpha]\to\mathbb{R}$ é contínua por partes tal que a sua derivada f' também seja contínua por partes, então os coeficientes da série são dados por

$$a^{\frac{n\pi}{\alpha}}c_n=\frac{2}{\alpha}\int_0^{\alpha}f(\theta)\sin\frac{n\pi\theta}{\alpha}d\theta$$
, para $n=1,2,3...$

3. Vamos procurar uma solução na forma de um produto de uma função de r por uma função de θ , ou seja,

$$u(r,\theta) = R(r)\Theta(\theta).$$

Derivando e substituindo na equação diferencial obtemos

$$R''(r)\Theta(\theta) + \frac{1}{r}R'(r)\Theta(\theta) + \frac{1}{r^2}R(r)\Theta(\theta) = 0,$$

que pode ser reescrita como

$$\frac{\Theta''(\theta)}{\Theta(\theta)} = -r^2 \frac{R''(r)}{R(r)} - r \frac{R'(r)}{R(r)}.$$

O primeiro membro depende apenas de θ , enquanto o segundo depende apenas de r. Isto só é possível se eles forem iguais a uma constante, ou seja,

$$\frac{\Theta''(\theta)}{\Theta(\theta)} = -r^2 \frac{R''(r)}{R(r)} - r \frac{R'(r)}{R(r)} = \lambda.$$

Obtemos então duas equações diferenciais ordinárias com a condição de $\Theta(\theta)$ ser periódica de período 2π :

$$\begin{cases} \Theta''(\theta) - \lambda \Theta(\theta) = 0, & \Theta(\theta) = \Theta(\theta + 2\pi), \\ r^2 R''(t) + rR'(r) + \lambda R(r) = 0, & R(a) = 0. \end{cases}$$
 (11)

A equação $\Theta''(\theta) - \lambda \Theta(\theta) = 0$ pode ter como soluções,

Se
$$\lambda > 0$$
: $\Theta(\theta) = c_1 e^{\sqrt{\lambda} \theta} + c_2 e^{-\sqrt{\lambda} \theta}$.

Se
$$\lambda = 0$$
: $\Theta(\theta) = c_1 + c_2\theta$.

Se
$$\lambda < 0$$
: $\Theta(\theta) = c_1 \operatorname{sen}(\sqrt{-\lambda}\theta) + c_2 \cos(\sqrt{-\lambda}\theta)$.

A condição $\Theta(\theta) = \Theta(\theta + 2\pi)$, para todo $\theta \in \mathbb{R}$, implica que (11) tem solução não identicamente nula somente se $\lambda \leq 0$, mais que isso λ tem que ter valores dados por

$$\lambda = -n^2$$
, $n = 0, 1, 2, 3, ...$

ou seja, o problema de valor de fronteira (11) tem soluções fundamentais

$$\Theta_n^{(1)}(\theta) = \cos n\theta$$
, para $n = 0, 1, 2, 3, \dots$

$$\Theta_n^{(2)}(\theta) = \operatorname{sen} n\theta$$
, para $n = 1, 2, 3, \dots$

Substituindo-se $\lambda = -n^2$ na equação diferencial (12) obtemos

$$r^2R''(t) + rR'(r) - n^2R(r) = 0,$$

que tem como solução

$$R(r) = c_1 + c_2 \ln r$$
, para $n = 0$; $R(r) = c_1 r^{-n} + c_2 r^n$, para $n = 1, 2, 3, ...$

Como R(a) = 0, as soluções fundamentais são

$$R_0(r) = \ln \frac{r}{a}$$
, $R_n(r) = r^n - a^{2n}r^{-n}$, para $n = 1, 2, 3, ...$

Logo o problema formado pela equação diferencial parcial e a condição de que $u(a,\theta)=0$ tem soluções fundamentais

$$u_0(r,\theta) = \ln \frac{r}{a}$$

$$u_n^{(1)}(r,\theta) = R_n(r)\Theta_n^{(1)}(\theta) = r^n \cos n\theta, \quad u_n^{(2)}(r,\theta) = R_n(r)\Theta_n^{(2)}(\theta) = r^n \sin n\theta.$$

Vamos supor que a solução do problema de Dirichlet seja a série

$$u(r,\theta) = c_0 \ln \frac{r}{a} + \sum_{n=1}^{\infty} (c_n u_n^{(1)}(r,\theta) + d_n u_n^{(2)}(r,\theta))$$
(13)

$$= c_0(1 - \frac{\ln r}{\ln a}) + \sum_{n=1}^{\infty} (r^n - a^{2n}r^{-n})(c_n \cos n\theta + d_n \sin n\theta).$$
 (14)

Então para satisfazer a condição $u(b,\theta)=g(\theta)$, temos que impor a condição

$$g(\theta) = u(b,\theta) = c_0 \ln \frac{b}{a} + \sum_{n=1}^{\infty} (b^n - a^{2n}b^{-n})(c_n \cos n\theta + d_n \sin n\theta).$$

Esta é a série de Fourier de $g(\theta)$ com período 2π . Assim, se a função $g:[0,2\pi]\to\mathbb{R}$ é contínua por partes tal que a sua derivada g' também seja contínua por partes, então os coeficientes da série são dados por

$$(\ln \frac{b}{a})c_0 = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) d\theta,$$

$$(b^n - a^{2n}b^{-n})c_n = \frac{1}{\pi} \int_0^{2\pi} g(\theta) \cos n\theta d\theta,$$

$$(b^n - a^{2n}b^{-n})d_n = \frac{1}{\pi} \int_0^{2\pi} g(\theta) \sin n\theta d\theta.$$
(15)

para n = 1, 2, 3...