

Outline

- Binary system representations
- ◆ Definitions of BDDs, OBDDs and ROBDDs
- ◆ Logic operations on BDDs
- ◆The ITE operator
- ◆ Variable ordering (static and dynamic)

2024/3/21

Andy Yu-Guang Chen

Basic Definitions

- ♦ Let B = $\{0,1\}$ Y = $\{0,1,2\}$
 - A logic function f in n inputs $x_1, x_2, ..., x_n$ and m outputs $y_1, y_2, ..., y_m$ is a function $f: B^n \longrightarrow Y^m$

 $I: B_{n} \longrightarrow A_{m}$

 $X = [x_1, x_2, ..., x_n] \in B^n$ is the input $Y = [y_1, y_2, ..., y_m] \in Y^m$ is the output

>m=1 → a single output function
 >m>1 → a multiple output function

2024/3/21

Andy Yu-Guang Chen

2

Basic Definitions

- For each component f_i , i = 1,2, ...,m, define
 - \triangleright ON_SET: set of input values x such that $f_i(x) = 1$
 - \triangleright OFF_SET: set of input values x such that $f_i(x) = 0$
 - \triangleright DC_SET: set of input values x such that $f_i(x) = 2$
- ◆Completely specified function: DC_SET = ϕ , \forall f_i
- ◆Incompletely specified function: DC_SET ≠ φ, for some f_i

2024/3/21

Andy Yu-Guang Chen

Boolean Representations

- ◆ Algebraic representations
 - > Canonical sum of minterms

•
$$C_{out} = x'yC_{in} + xy'C_{in} + xyC_{in}' + xyC_{in}$$

- > Reduced sum of products
 - $C_{out} = yC_{in} + xC_{in} + xy$
 - $C_{out} = yC_{in} + xC_{in} + xyC_{in}'$
- > Multi-level representation
 - $C_{out} = C_{in}(x + y) + xy$

2024/3/21

Andy Yu-Guang Chen

7

Minterms and Maxterms

- ◆ Minterms and Maxterms
- ◆ A minterm (standard product): an AND term consists of all literals in their normal form or in their complement form
 - For example, two binary variables x and y
 - xy, xy', x'y, x'y'
 - ➤ It is also called a standard product
 - \triangleright n variables can be combined to form 2^n minterms
- ◆A maxterm (standard sums): an OR term
 - > It is also call a standard sum
 - $\geq 2^n$ maxterms

2024/3/21

Andy Yu-Guang Chen

Minterms and Maxterms

◆ Each *maxterm* is the complement of its corresponding *minterm*, and vice versa

Table 2.3
Minterms and Maxterms for Three Binary Variables

			Mi	nterms	Maxterms	
x	y	z	Term	Designation	Term	Designation
0	0	0	x'y'z'	m_0	x + y + z	M_0
0	0	1	x'y'z	m_1	x + y + z'	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'yz	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x' + y + z	M_4
1	0	1	xy'z	m_5	x' + y + z'	M_5
1	1	0	xyz'	m_6	x' + y' + z	M_6
1	1	1	xyz	m_7	x' + y' + z'	M_7
	2024/3/21		A	ndy Yu-Guang Chen		9

Standard Forms

- ◆Canonical forms are very seldom with the least number of literals
- ◆ Standard forms: the terms that form the function may obtain one, two, or any number of literals
 - Sum of Products (SOP): $F_1 = y' + xy + x'yz'$
 - ightharpoonup Product of Sums (POS): $F_2 = x(y' + z)(x' + y + z')$
 - Nonstandard form: $F_3 = AB + C(D + E)$

2024/3/21

Andy Yu-Guang Chen

Binary Decision Diagram (BDD)

- ◆ A BDD graph which has a vertex v as root corresponds to the function F_v:
 - >If v is a terminal node:
 - if value (v) is 1, then F_v = 1
 - if value (v) is 0, then F_v = 0
 - ➤ If F is a non-terminal node (with index(v) = i)
 - $F_v(x_i, ... x_n) = x_i' F_{low(v)}(x_{i+1}, ... x_n) + x_i F_{high(v)}(x_{i+1}, ... x_n)$

2024/3/21

Andy Yu-Guang Chen

BDD Tools

Tutorial 1: Write your first program with CUDD

The basic use of CUDD is easy:

- Initialize a DdManager using Cudd_Init
- Create the DI
- Shut down the DdManager using Cudd_Quit(DdManager* ddmanager)

Sample code for the main program

The program below creates a single BDD variable

```
int main (int argc, char *argv[])
{
    DdManager *gbm; /* GLobal BDD manager. */
    char filename[30];
    gbm = Cudd Init(0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHE_SLOTS,0); /* Initialize a new BDD manager. */
    DdMode *bdd = Cudd_bddMewWar(gbm); /*Create a new BDD variable*/
    Cudd Ref(bdd); /*Increases the reference count of a node*/
    Cudd_Quit(gbm);
    return 0;
}
```


2024/3/21

Andy Yu-Guang Chen

Logic Operations with ROBDD

- ◆ Problem: given two functions G and H, represented by their ROBDDs, compute the ROBDD of a function of (G,H)
- ◆ite operator:
 - ➤ite(f, g, h)
 - >If (f) then (g) else (h)
- ◆ Recursive paradigm

Exploit the generalized expansion of G and H

 \triangleright ite (f, g, h) = ite(x, ite(f_x, g_x, h_x), ite(f_{x'}, g_{x'}, h_{x'}))

2024/3/21

Andy Yu-Guang Chen

35

□ Recursive operation of ITE

 $= v (f g + f' h)_{v} + v' (f g + f' h)_{v'}$ = v (f_{v} g_{v} + f'_{v} h_{v}) + v' (f_{v'} g_{v'} + f'_{v'} h_{v'})

= ite(v, ite(f_v , g_v , h_v), ite($f_{v'}$, $g_{v'}$, $h_{v'}$))

Let v be the top-most variable of BDDs f, g, h

Ite(f,g,h)

Example

- ◆Apply AND to two ROBDDs: f, g
 - > fg = ite(f, g, 0)
- ◆Apply OR to two ROBDDs: f, g
 - \triangleright f+g = ite(f, 1, g)
- ◆Similar for other Boolean operators

2024/3/2

Andy Yu-Guang Chen

Recursive Step

- $\Phi G(x,...) = x' G_{x=0} + x G_{x=1}$
- $Arr H(x,...) = x' H_{x=0} + x H_{x=1}$

♦ $F = GH = x' G_{x=0} H_{x=0} + x G_{x=1} H_{x=1}$ Now we have reduced the problem to computing 2 ANDs of smaller functions

2024/3/21

Andy Yu-Guang Chen

39

One Last Problem

- ◆Suppose, we have computed
 - $ightharpoonup G_{x=0} H_{x=0}$ and $G_{x=1} H_{x=1}$
- ◆We need to construct a new node,
 - ➤ label: x
 - \triangleright 0-cofactor($F_{x=0}$): ROBDD of $G_{x=0}$ $H_{x=0}$
 - \triangleright 1-cofactor($F_{x=1}$): ROBDD of $G_{x=1}$ $H_{x=1}$
- ◆BUT, first we need to make sure that we don't violate the reduction rules!

2024/3/21

Andy Yu-Guang Chen

The Unique Table

- ◆To obey reduction rule #1:
 - \rightarrow if $F_{x=0} == F_{x=1}$, the result if just $F_{x=0}$
- ◆To obey reduction rule #2:
 - ➤ We keep a unique table of all the BDD nodes and check first if there is already a node
 - \triangleright (x, $F_{x=0}$, $F_{x=1}$)
- ◆Otherwise, we build the new node

 ➤ and add it to the unique table

2024/3/21

Andy Yu-Guang Chen

41

The Unique Table

- ◆Unique table : hash table mapping (Xi, G, H) into a node in the DAG
 - before adding a node to the DAG, check to see if it already exists
 - avoids creating two nodes with the same function
 - > canonical form : pointer equality determines function equality

2024/3/21

Andy Yu-Guang Chen

```
Putting All Together
            AND(G,H) {
                     if (G==0) || (H==0) return 0;
                     if (G==1) return H;
                     if (H==1) return G;
                     cmp = computed_table_lookup(G,H);
                     if (cmp != NULL) return cmp;
                     x = top_variable(G,H);
                     G1 = G.then; H1 = H.then;
                     G0 = G.else; H0 = H.else;
                     F0 = AND(G0,H0);
                     F1 = AND(G1,H1);
                     if (F0 == F1) return F0;
                     F = find_or_add_unique_table(x,F0,F1);
                     computed_table_insert(G,H,F);
                     return F;
2024/3/21
                           Andy Yu-Guang Chen
                                                                 43
```


Logic Operations – Summary

- ◆ Recursive routines traverse the DAGs depth first
- **◆**Two tables:
 - ➤ Unique table hash table with and entry for each BDD node
 - ➤ Computed table store previously computed partial results
- ◆To perform other operations, just change the terminal cases

2024/3/21

Andy Yu-Guang Chen

Ordering Results

Function type	Best order	Worst order
addition	linear	exponential
symmetric	linear	quadratic
multiplication	exponential	exponential

- ◆In practice:
 - ➤ Many common functions have reasonable size
 - Can build ROBDDs with millions of nodes
 - > Algorithms to find good variables ordering

2024/3/21

Andy Yu-Guang Chen

49

Variable Ordering Algorithms

- ◆ Problem: given a function F, find the variable order that minimizes the size of its ROBBDs
- ◆Answer: problem is intractable
- **◆**Two heuristics
 - ➤ Static variable ordering (1988)
 - ➤ Dynamic variable ordering (1993)

2024/3/21

Andy Yu-Guang Chen

Static Variable Ordering

- Variables are ordered based on the network topology
 - ➤ How: put at the bottom the variables that are closer to circuit's outputs
 - ➤ Why: because those variables only affect a small part of the circuit

good order: a < b < c

DISCIA 2024/3/21

Disclaimer: it's a heuristic, results are not guaranteed

21 Andy Yu-Guang Chen

51

Dynamic Variable Ordering

- Changes the variable order on-the-fly whenever ROBDDs become too big
- ♦ How: trial and error SIFTING ALGORITHM
 - 1. Choose a variable
 - 2. Move it in all possible positions of the variable order
 - 3. Pick the position that leaves you with the smallest ROBDDs
 - 4. Choose another variable ...

2024/3/21

Andy Yu-Guang Chen

Dynamic Variable Ordering

- Key idea: swapping two variables can be done locally
 - ➤ Efficient:
 - Can be done just by sweeping the unique table
 - >Robust:
 - Works well on many more circuits
 - ➤ Warning:
 - The technique is still non optimal
 - At convergence, you most probably have found only a local minimum

2024/3/21

Andy Yu-Guang Chen

