Cálculo de Programas Trabalho Prático MiEI+LCC — 2020/21

Departamento de Informática Universidade do Minho

Junho de 2021

Grupo nr.	62
a93284	Ana Filipa Ribeiro Murta
a93268	Ana Paula Oliveira Henriques
axxxxx	Nome aluno
axxxxx	Nome aluno

1 Preâmbulo

Cálculo de Programas tem como objectivo principal ensinar a programação de computadores como uma disciplina científica. Para isso parte-se de um repertório de *combinadores* que formam uma álgebra da programação (conjunto de leis universais e seus corolários) e usam-se esses combinadores para construir programas *composicionalmente*, isto é, agregando programas já existentes.

Na sequência pedagógica dos planos de estudo dos dois cursos que têm esta disciplina, opta-se pela aplicação deste método à programação em Haskell (sem prejuízo da sua aplicação a outras linguagens funcionais). Assim, o presente trabalho prático coloca os alunos perante problemas concretos que deverão ser implementados em Haskell. Há ainda um outro objectivo: o de ensinar a documentar programas, a validá-los e a produzir textos técnico-científicos de qualidade.

2 Documentação

Para cumprir de forma integrada os objectivos enunciados acima vamos recorrer a uma técnica de programação dita "literária" [1], cujo princípio base é o seguinte:

Um programa e a sua documentação devem coincidir.

Por outras palavras, o código fonte e a documentação de um programa deverão estar no mesmo ficheiro. O ficheiro cp2021t.pdf que está a ler é já um exemplo de programação literária: foi gerado a partir do texto fonte cp2021t.lhs¹ que encontrará no material pedagógico desta disciplina descompactando o ficheiro cp2021t.zip e executando:

```
$ lhs2TeX cp2021t.lhs > cp2021t.tex
$ pdflatex cp2021t
```

em que <u>lhs2tex</u> é um pre-processador que faz "pretty printing" de código Haskell em <u>L'TeX</u> e que deve desde já instalar executando

```
$ cabal install lhs2tex --lib
```

Por outro lado, o mesmo ficheiro cp2021t . 1hs é executável e contém o "kit" básico, escrito em Haskell, para realizar o trabalho. Basta executar

```
$ ghci cp2021t.lhs
```

¹O suffixo 'lhs' quer dizer *literate Haskell*.

Abra o ficheiro cp2021t.1hs no seu editor de texto preferido e verifique que assim é: todo o texto que se encontra dentro do ambiente

```
\begin{code}
...
\end{code}
```

é seleccionado pelo GHCi para ser executado.

3 Como realizar o trabalho

Este trabalho teórico-prático deve ser realizado por grupos de 3 (ou 4) alunos. Os detalhes da avaliação (datas para submissão do relatório e sua defesa oral) são os que forem publicados na página da disciplina na *internet*.

Recomenda-se uma abordagem participativa dos membros do grupo de trabalho por forma a poderem responder às questões que serão colocadas na *defesa oral* do relatório.

Em que consiste, então, o *relatório* a que se refere o parágrafo anterior? É a edição do texto que está a ser lido, preenchendo o anexo D com as respostas. O relatório deverá conter ainda a identificação dos membros do grupo de trabalho, no local respectivo da folha de rosto.

Para gerar o PDF integral do relatório deve-se ainda correr os comando seguintes, que actualizam a bibliografia (com BibTeX) e o índice remissivo (com makeindex),

```
$ bibtex cp2021t.aux
$ makeindex cp2021t.idx
```

e recompilar o texto como acima se indicou. Dever-se-á ainda instalar o utilitário QuickCheck, que ajuda a validar programas em Haskell e a biblioteca Gloss para geração de gráficos 2D:

```
$ cabal install QuickCheck gloss --lib
```

Para testar uma propriedade QuickCheck prop, basta invocá-la com o comando:

```
> quickCheck prop
+++ OK, passed 100 tests.
```

Pode-se ainda controlar o número de casos de teste e sua complexidade, como o seguinte exemplo mostra:

```
> quickCheckWith stdArgs { maxSuccess = 200, maxSize = 10 } prop
+++ OK, passed 200 tests.
```

Qualquer programador tem, na vida real, de ler e analisar (muito!) código escrito por outros. No anexo C disponibiliza-se algum código Haskell relativo aos problemas que se seguem. Esse anexo deverá ser consultado e analisado à medida que isso for necessário.

3.1 Stack

O Stack é um programa útil para criar, gerir e manter projetos em Haskell. Um projeto criado com o Stack possui uma estrutura de pastas muito específica:

- Os módulos auxiliares encontram-se na pasta *src*.
- O módulos principal encontra-se na pasta app.
- A lista de depêndencias externas encontra-se no ficheiro package.yaml.

Pode aceder ao GHCi utilizando o comando:

```
stack ghci
```

Garanta que se encontra na pasta mais externa **do projeto**. A primeira vez que correr este comando as depêndencias externas serão instaladas automaticamente.

Para gerar o PDF, garanta que se encontra na diretoria *app*.

Problema 1

Os *tipos de dados algébricos* estudados ao longo desta disciplina oferecem uma grande capacidade expressiva ao programador. Graças à sua flexibilidade, torna-se trivial implementar DSLs e até mesmo linguagens de programação.

Paralelamente, um tópico bastante estudado no âmbito de Deep Learning é a derivação automática de expressões matemáticas, por exemplo, de derivadas. Duas técnicas que podem ser utilizadas para o cálculo de derivadas são:

- Symbolic differentiation
- Automatic differentiation

Symbolic differentiation consiste na aplicação sucessiva de transformações (leia-se: funções) que sejam congruentes com as regras de derivação. O resultado final será a expressão da derivada.

O leitor atento poderá notar um problema desta técnica: a expressão inicial pode crescer de forma descontrolada, levando a um cálculo pouco eficiente. *Automatic differentiation* tenta resolver este problema, calculando **o valor** da derivada da expressão em todos os passos. Para tal, é necessário calcular o valor da expressão **e** o valor da sua derivada.

Vamos de seguida definir uma linguagem de expressões matemáticas simples e implementar as duas técnicas de derivação automática. Para isso, seja dado o seguinte tipo de dados,

```
 \begin{aligned} \mathbf{data} \ & ExpAr \ a = X \\ & \mid N \ a \\ & \mid Bin \ BinOp \ (ExpAr \ a) \ (ExpAr \ a) \\ & \mid Un \ UnOp \ (ExpAr \ a) \\ & \mathbf{deriving} \ (Eq, Show) \end{aligned}
```

onde BinOp e UnOp representam operações binárias e unárias, respectivamente:

```
\begin{aligned} \textbf{data} \ BinOp &= Sum \\ | \ Product \\ \textbf{deriving} \ (Eq, Show) \\ \textbf{data} \ UnOp &= Negate \\ | \ E \\ \textbf{deriving} \ (Eq, Show) \end{aligned}
```

O construtor E simboliza o exponencial de base e.

Assim, cada expressão pode ser uma variável, um número, uma operação binária aplicada às devidas expressões, ou uma operação unária aplicada a uma expressão. Por exemplo,

```
Bin\ Sum\ X\ (N\ 10)
```

designa x + 10 na notação matemática habitual.

1. A definição das funções inExpAr e baseExpAr para este tipo é a seguinte:

```
\begin{split} in ExpAr &= [\underline{X}, num\_ops] \text{ where} \\ num\_ops &= [N, ops] \\ ops &= [bin, \widehat{Un}] \\ bin &(op, (a, b)) = Bin \ op \ a \ b \\ base ExpAr \ f \ g \ h \ j \ k \ l \ z = f + (g + (h \times (j \times k) + l \times z)) \end{split}
```

Defina as funções *outExpAr* e *recExpAr*, e teste as propriedades que se seguem.

Propriedade [QuickCheck] 1 inExpAr e outExpAr são testemunhas de um isomorfismo, isto é, inExpAr outExpAr = id e $outExpAr \cdot idExpAr = id$:

```
prop\_in\_out\_idExpAr :: (Eq\ a) \Rightarrow ExpAr\ a \rightarrow Bool

prop\_in\_out\_idExpAr = inExpAr \cdot outExpAr \equiv id

prop\_out\_in\_idExpAr :: (Eq\ a) \Rightarrow OutExpAr\ a \rightarrow Bool

prop\_out\_in\_idExpAr = outExpAr \cdot inExpAr \equiv id
```

2. Dada uma expressão aritmética e um escalar para substituir o X, a função

```
eval\_exp :: Floating \ a \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a
```

calcula o resultado da expressão. Na página 12 esta função está expressa como um catamorfismo. Defina o respectivo gene e, de seguida, teste as propriedades:

Propriedade [QuickCheck] 2 A função eval_exp respeita os elementos neutros das operações.

```
prop\_sum\_idr :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_sum\_idr \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} sum\_idr \ \mathbf{where}
   sum\_idr = eval\_exp \ a \ (Bin \ Sum \ exp \ (N \ 0))
prop\_sum\_idl :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_sum\_idl \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} sum\_idl \ \mathbf{where}
   sum\_idl = eval\_exp \ a \ (Bin \ Sum \ (N \ 0) \ exp)
prop\_product\_idr :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_product\_idr \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} prod\_idr \ \mathbf{where}
   prod\_idr = eval\_exp \ a \ (Bin \ Product \ exp \ (N \ 1))
prop\_product\_idl :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_product\_idl \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} prod\_idl \ \mathbf{where}
   prod\_idl = eval\_exp \ a \ (Bin \ Product \ (N \ 1) \ exp)
prop_{-e_{-}id} :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow Bool
prop_{-}e_{-}id \ a = eval_{-}exp \ a \ (Un \ E \ (N \ 1)) \equiv expd \ 1
prop\_negate\_id :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow Bool
prop\_negate\_id\ a = eval\_exp\ a\ (Un\ Negate\ (N\ 0)) \equiv 0
```

Propriedade [QuickCheck] 3 Negar duas vezes uma expressão tem o mesmo valor que não fazer nada.

```
prop\_double\_negate :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool

prop\_double\_negate \ a \ exp = eval\_exp \ a \ exp \stackrel{?}{=} eval\_exp \ a \ (Un \ Negate \ exp))
```

3. É possível otimizar o cálculo do valor de uma expressão aritmética tirando proveito dos elementos absorventes de cada operação. Implemente os genes da função

```
optmize\_eval :: (Floating \ a, Eq \ a) \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a
```

que se encontra na página 12 expressa como um hilomorfismo² e teste as propriedades:

Propriedade [QuickCheck] 4 A função optimize_eval respeita a semântica da função eval.

```
prop\_optimize\_respects\_semantics :: (Floating\ a, Real\ a) \Rightarrow a \rightarrow ExpAr\ a \rightarrow Bool\ prop\_optimize\_respects\_semantics\ a\ exp\ =\ eval\_exp\ a\ exp\ \stackrel{?}{=}\ optmize\_eval\ a\ exp
```

- 4. Para calcular a derivada de uma expressão, é necessário aplicar transformações à expressão original que respeitem as regras das derivadas:³
 - Regra da soma:

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}(f(x)) + \frac{d}{dx}(g(x))$$

²Qual é a vantagem de implementar a função *optimize_eval* utilizando um hilomorfismo em vez de utilizar um catamorfismo com um gene "inteligente"?

³Apesar da adição e multiplicação gozarem da propriedade comutativa, há que ter em atenção a ordem das operações por causa dos testes.

• Regra do produto:

$$\frac{d}{dx}(f(x)g(x)) = f(x) \cdot \frac{d}{dx}(g(x)) + \frac{d}{dx}(f(x)) \cdot g(x)$$

Defina o gene do catamorfismo que ocorre na função

```
sd :: Floating \ a \Rightarrow ExpAr \ a \rightarrow ExpAr \ a
```

que, dada uma expressão aritmética, calcula a sua derivada. Testes a fazer, de seguida:

Propriedade [QuickCheck] 5 A função sd respeita as regras de derivação.

```
prop_const_rule :: (Real a, Floating a) \Rightarrow a \rightarrow Bool

prop_const_rule a = sd (N a) \equiv N 0

prop_var_rule :: Bool

prop_sum_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow ExpAr a \rightarrow Bool

prop_sum_rule exp1 exp2 = sd (Bin Sum exp1 exp2) \equiv sum_rule where

sum_rule = Bin Sum (sd exp1) (sd exp2)

prop_product_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow ExpAr a \rightarrow Bool

prop_product_rule exp1 exp2 = sd (Bin Product exp1 exp2) \equiv prod_rule where

prod_rule = Bin Sum (Bin Product exp1 (sd exp2)) (Bin Product (sd exp1) exp2)

prop_e_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow Bool

prop_e_rule exp = sd (Un E exp) \equiv Bin Product (Un E exp) (sd exp)

prop_negate_rule :: (Real a, Floating a) \Rightarrow ExpAr a \rightarrow Bool

prop_negate_rule exp = sd (Un Negate exp) \equiv Un Negate (sd exp)
```

5. Como foi visto, *Symbolic differentiation* não é a técnica mais eficaz para o cálculo do valor da derivada de uma expressão. *Automatic differentiation* resolve este problema cálculando o valor da derivada em vez de manipular a expressão original.

Defina o gene do catamorfismo que ocorre na função

```
ad :: Floating \ a \Rightarrow a \rightarrow ExpAr \ a \rightarrow a
```

que, dada uma expressão aritmética e um ponto, calcula o valor da sua derivada nesse ponto, sem transformar manipular a expressão original. Testes a fazer, de seguida:

Propriedade [QuickCheck] 6 Calcular o valor da derivada num ponto r via ad é equivalente a calcular a derivada da expressão e avalia-la no ponto r.

```
prop\_congruent :: (Floating \ a, Real \ a) \Rightarrow a \rightarrow ExpAr \ a \rightarrow Bool
prop\_congruent \ a \ exp = ad \ a \ exp \stackrel{?}{=} eval\_exp \ a \ (sd \ exp)
```

Problema 2

Nesta disciplina estudou-se como fazer programação dinâmica por cálculo, recorrendo à lei de recursividade mútua.⁴

Para o caso de funções sobre os números naturais (\mathbb{N}_0 , com functor F X=1+X) é fácil derivar-se da lei que foi estudada uma *regra de algibeira* que se pode ensinar a programadores que não tenham estudado Cálculo de Programas. Apresenta-se de seguida essa regra, tomando como exemplo o cálculo do ciclo-for que implementa a função de Fibonacci, recordar o sistema

$$fib \ 0 = 1$$

 $fib \ (n+1) = f \ n$

⁴Lei (3.94) em [2], página 98.

```
f 0 = 1
f (n+1) = fib n + f n
```

Obter-se-á de imediato

```
fib' = \pi_1 \cdot \text{for loop init where}

loop\ (fib, f) = (f, fib + f)

init = (1, 1)
```

usando as regras seguintes:

- O corpo do ciclo loop terá tantos argumentos quanto o número de funções mutuamente recursivas.
- Para as variáveis escolhem-se os próprios nomes das funções, pela ordem que se achar conveniente.⁵
- Para os resultados vão-se buscar as expressões respectivas, retirando a variável n.
- Em init coleccionam-se os resultados dos casos de base das funções, pela mesma ordem.

Mais um exemplo, envolvendo polinómios do segundo grau $ax^2 + bx + c$ em \mathbb{N}_0 . Seguindo o método estudado nas aulas⁶, de $f = ax^2 + bx + c$ derivam-se duas funções mutuamente recursivas:

```
f \ 0 = c

f \ (n+1) = f \ n + k \ n

k \ 0 = a + b

k \ (n+1) = k \ n + 2 \ a
```

Seguindo a regra acima, calcula-se de imediato a seguinte implementação, em Haskell:

```
f' a b c = \pi_1 \cdot \text{for loop init where}

loop (f, k) = (f + k, k + 2 * a)

init = (c, a + b)
```

O que se pede então, nesta pergunta? Dada a fórmula que dá o n-ésimo número de Catalan,

$$C_n = \frac{(2n)!}{(n+1)!(n!)} \tag{1}$$

derivar uma implementação de C_n que não calcule factoriais nenhuns. Isto é, derivar um ciclo-for

```
cat = \cdots for loop\ init\ \mathbf{where}\ \cdots
```

que implemente esta função.

Propriedade [QuickCheck] 7 A função proposta coincidem com a definição dada:

$$prop_cat = (\geqslant 0) \Rightarrow (catdef \equiv cat)$$

Sugestão: Começar por estudar muito bem o processo de cálculo dado no anexo B para o problema (semelhante) da função exponencial.

Problema 3

As curvas de Bézier, designação dada em honra ao engenheiro Pierre Bézier, são curvas ubíquas na área de computação gráfica, animação e modelação. Uma curva de Bézier é uma curva paramétrica, definida por um conjunto $\{P_0,...,P_N\}$ de pontos de controlo, onde N é a ordem da curva.

O algoritmo de *De Casteljau* é um método recursivo capaz de calcular curvas de Bézier num ponto. Apesar de ser mais lento do que outras abordagens, este algoritmo é numericamente mais estável, trocando velocidade por correção.

 $^{^5}$ Podem obviamente usar-se outros símbolos, mas numa primeira leitura dá jeito usarem-se tais nomes.

⁶Secção 3.17 de [2] e tópico Recursividade mútua nos vídeos das aulas teóricas.

Figura 1: Exemplos de curvas de Bézier retirados da Wikipedia.

De forma sucinta, o valor de uma curva de Bézier de um só ponto $\{P_0\}$ (ordem 0) é o próprio ponto P_0 . O valor de uma curva de Bézier de ordem N é calculado através da interpolação linear da curva de Bézier dos primeiros N-1 pontos e da curva de Bézier dos últimos N-1 pontos.

A interpolação linear entre 2 números, no intervalo [0, 1], é dada pela seguinte função:

```
\begin{array}{l} linear1d :: \mathbb{Q} \to \mathbb{Q} \to OverTime \ \mathbb{Q} \\ linear1d \ a \ b = formula \ a \ b \ \mathbf{where} \\ formula :: \mathbb{Q} \to \mathbb{Q} \to Float \to \mathbb{Q} \\ formula \ x \ y \ t = ((1.0 :: \mathbb{Q}) - (to_{\mathbb{Q}} \ t)) * x + (to_{\mathbb{Q}} \ t) * y \end{array}
```

A interpolação linear entre 2 pontos de dimensão N é calculada através da interpolação linear de cada dimensão.

O tipo de dados NPoint representa um ponto com N dimensões.

```
type NPoint = [\mathbb{Q}]
```

Por exemplo, um ponto de 2 dimensões e um ponto de 3 dimensões podem ser representados, respetivamente, por:

```
p2d = [1.2, 3.4]

p3d = [0.2, 10.3, 2.4]
```

O tipo de dados *OverTime a* representa um termo do tipo *a* num dado instante (dado por um *Float*).

```
type OverTime\ a = Float \rightarrow a
```

O anexo C tem definida a função

```
calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint)
```

que calcula a interpolação linear entre 2 pontos, e a função

```
deCasteljau :: [\mathit{NPoint}] \rightarrow \mathit{OverTime}\ \mathit{NPoint}
```

que implementa o algoritmo respectivo.

1. Implemente *calcLine* como um catamorfismo de listas, testando a sua definição com a propriedade:

Propriedade [QuickCheck] 8 Definição alternativa.

```
prop\_calcLine\_def :: NPoint \rightarrow NPoint \rightarrow Float \rightarrow Bool

prop\_calcLine\_def \ p \ q \ d = calcLine \ p \ q \ d \equiv zipWithM \ linear1d \ p \ q \ d
```

2. Implemente a função de Casteljau como um hilomorfismo, testando agora a propriedade:

Propriedade [QuickCheck] 9 Curvas de Bézier são simétricas.

```
\begin{array}{l} prop\_bezier\_sym :: [[\mathbb{Q}]] \to Gen \ Bool \\ prop\_bezier\_sym \ l = all \ (<\Delta) \cdot calc\_difs \cdot bezs \ \langle \$ \rangle \ elements \ ps \ \mathbf{where} \\ calc\_difs = (\lambda(x,y) \to zipWith \ (\lambda w \ v \to \mathbf{if} \ w \geqslant v \ \mathbf{then} \ w - v \ \mathbf{else} \ v - w) \ x \ y) \\ bezs \ t = (deCasteljau \ l \ t, deCasteljau \ (reverse \ l) \ (from_{\mathbb{Q}} \ (1 - (to_{\mathbb{Q}} \ t)))) \\ \Delta = 1e-2 \end{array}
```

3. Corra a função *runBezier* e aprecie o seu trabalho⁷ clicando na janela que é aberta (que contém, a verde, um ponto inicila) com o botão esquerdo do rato para adicionar mais pontos. A tecla *Delete* apaga o ponto mais recente.

Problema 4

Seja dada a fórmula que calcula a média de uma lista não vazia x,

$$avg \ x = \frac{1}{k} \sum_{i=1}^{k} x_i \tag{2}$$

onde k = length x. Isto é, para sabermos a média de uma lista precisamos de dois catamorfismos: o que faz o somatório e o que calcula o comprimento a lista. Contudo, é facil de ver que

$$avg~[a]=a$$

$$avg(a:x)=\frac{1}{k+1}(a+\sum_{i=1}^k x_i)=\frac{a+k(avg~x)}{k+1}~\text{para}~k=length~x$$

Logo avg está em recursividade mútua com length e o par de funções pode ser expresso por um único catamorfismo, significando que a lista apenas é percorrida uma vez.

- 1. Recorra à lei de recursividade mútua para derivar a função $avg_aux = ([b, q])$ tal que $avg_aux = \langle avg, length \rangle$ em listas não vazias.
- 2. Generalize o raciocínio anterior para o cálculo da média de todos os elementos de uma LTree recorrendo a uma única travessia da árvore (i.e. catamorfismo).

Verifique as suas funções testando a propriedade seguinte:

Propriedade [QuickCheck] 10 A média de uma lista não vazia e de uma LTree com os mesmos elementos coincide, a menos de um erro de 0.1 milésimas:

```
prop\_avg :: Ord \ a \Rightarrow [a] \rightarrow Property

prop\_avg = nonempty \Rightarrow diff \leq 0.000001 where

diff \ l = avg \ l - (avgLTree \cdot genLTree) \ l

genLTree = [(lsplit)]

nonempty = (>[])
```

Problema 5

(**NB**: Esta questão é **opcional** e funciona como **valorização** apenas para os alunos que desejarem fazê-la.)

Existem muitas linguagens funcionais para além do Haskell, que é a linguagem usada neste trabalho prático. Uma delas é o F# da Microsoft. Na directoria fsharp encontram-se os módulos Cp, Nat e LTree codificados em F#. O que se pede é a biblioteca BTree escrita na mesma linguagem.

Modo de execução: o código que tiverem produzido nesta pergunta deve ser colocado entre o \begin{verbatim} e o \end{verbatim} da correspondente parte do anexo D. Para além disso, os grupos podem demonstrar o código na oral.

 $^{^7}$ A representação em Gloss é uma adaptação de um projeto de Harold Cooper.

Anexos

A Como exprimir cálculos e diagramas em LaTeX/lhs2tex

Como primeiro exemplo, estudar o texto fonte deste trabalho para obter o efeito:⁸

$$id = \langle f, g \rangle$$

$$\equiv \qquad \{ \text{ universal property } \}$$

$$\begin{cases} \pi_1 \cdot id = f \\ \pi_2 \cdot id = g \end{cases}$$

$$\equiv \qquad \{ \text{ identity } \}$$

$$\begin{cases} \pi_1 = f \\ \pi_2 = g \end{cases}$$

Os diagramas podem ser produzidos recorrendo à package LATEX xymatrix, por exemplo:

$$\begin{array}{c|c} \mathbb{N}_0 \longleftarrow & \text{in} & 1 + \mathbb{N}_0 \\ \mathbb{I}_g \mathbb{N} \downarrow & & \downarrow id + \mathbb{I}_g \mathbb{N} \\ B \longleftarrow & g & 1 + B \end{array}$$

B Programação dinâmica por recursividade múltipla

Neste anexo dão-se os detalhes da resolução do Exercício 3.30 dos apontamentos da disciplina⁹, onde se pretende implementar um ciclo que implemente o cálculo da aproximação até i=n da função exponencial $exp\ x=e^x$, via série de Taylor:

$$exp x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$
 (3)

Seja $e \ x \ n = \sum_{i=0}^n \frac{x^i}{i!}$ a função que dá essa aproximação. É fácil de ver que $e \ x \ 0 = 1$ e que $e \ x \ (n+1) = e \ x \ n + \frac{x^{n+1}}{(n+1)!}$. Se definirmos $h \ x \ n = \frac{x^{n+1}}{(n+1)!}$ teremos $e \ x \ e \ h \ x$ em recursividade mútua. Se repetirmos o processo para $h \ x \ n$ etc obteremos no total três funções nessa mesma situação:

$$e \ x \ 0 = 1$$
 $e \ x \ (n+1) = h \ x \ n + e \ x \ n$
 $h \ x \ 0 = x$
 $h \ x \ (n+1) = x \ / \ (s \ n) * h \ x \ n$
 $s \ 0 = 2$
 $s \ (n+1) = 1 + s \ n$

Segundo a regra de algibeira descrita na página 3.1 deste enunciado, ter-se-á, de imediato:

$$e'$$
 $x = prj$ · for loop init where
init = $(1, x, 2)$
loop $(e, h, s) = (h + e, x / s * h, 1 + s)$
 prj $(e, h, s) = e$

⁸Exemplos tirados de [2].

⁹Cf. [2], página 102.

C Código fornecido

Problema 1

```
expd :: Floating \ a \Rightarrow a \rightarrow a

expd = Prelude.exp

\mathbf{type} \ OutExpAr \ a = () + (a + ((BinOp, (ExpAr \ a, ExpAr \ a)) + (UnOp, ExpAr \ a)))
```

Problema 2

Definição da série de Catalan usando factoriais (6):

```
catdef n = (2 * n)! \div ((n + 1)! * n!)
```

Oráculo para inspecção dos primeiros 26 números de Catalan¹⁰:

```
\begin{array}{l} oracle = [\\ 1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,\\ 35357670,129644790,477638700,1767263190,6564120420,24466267020,\\ 91482563640,343059613650,1289904147324,4861946401452\\ ] \end{array}
```

Problema 3

Algoritmo:

```
\begin{array}{l} deCasteljau :: [NPoint] \rightarrow OverTime \ NPoint \\ deCasteljau \ [] = nil \\ deCasteljau \ [p] = \underline{p} \\ deCasteljau \ l = \lambda pt \rightarrow (calcLine \ (p \ pt) \ (q \ pt)) \ pt \ \mathbf{where} \\ p = deCasteljau \ (init \ l) \\ q = deCasteljau \ (tail \ l) \end{array}
```

Função auxiliar:

```
\begin{array}{l} calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ calcLine\ [] = \underline{nil} \\ calcLine\ (p:x) = \overline{g}\ p\ (calcLine\ x)\ \mathbf{where} \\ g:: (\mathbb{Q}, NPoint \rightarrow OverTime\ NPoint) \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ g\ (d,f)\ l = \mathbf{case}\ l\ \mathbf{of} \\ [] \rightarrow nil \\ (x:xs) \rightarrow \lambda z \rightarrow concat\ \$\ (sequence A\ [singl\cdot linear1d\ d\ x,f\ xs])\ z \end{array}
```

2D:

```
\begin{array}{l} bezier2d :: [NPoint] \rightarrow OverTime \ (Float, Float) \\ bezier2d \ [] = \underline{(0,0)} \\ bezier2d \ l = \lambda z \rightarrow (from_{\mathbb{Q}} \times from_{\mathbb{Q}}) \cdot (\lambda[x,y] \rightarrow (x,y)) \ \$ \ ((deCasteljau \ l) \ z) \end{array}
```

Modelo:

```
 \begin{aligned} \mathbf{data} \ World &= World \ \{ \ points :: [ \ NPoint ] \\ , \ time :: Float \\ \} \\ initW :: World \\ initW &= World \ [ ] \ 0 \end{aligned}
```

¹⁰Fonte: Wikipedia.

```
tick :: Float \rightarrow World \rightarrow World
      tick \ dt \ world = world \ \{ \ time = (time \ world) + dt \}
      actions :: Event \rightarrow World \rightarrow World
      actions (EventKey (MouseButton LeftButton) Down \_ p) world =
         world \{ points = (points \ world) + [(\lambda(x, y) \rightarrow \mathsf{map} \ to_{\mathbb{Q}} \ [x, y]) \ p] \}
       actions (EventKey (SpecialKey KeyDelete) Down _ _) world =
         world \{ points = cond (\equiv []) id init (points world) \}
      actions \_world = world
      scaleTime :: World \rightarrow Float
      scaleTime\ w = (1 + cos\ (time\ w))/2
      bezier2dAtTime :: World \rightarrow (Float, Float)
      bezier2dAtTime\ w = (bezier2dAt\ w)\ (scaleTime\ w)
      bezier2dAt :: World \rightarrow OverTime (Float, Float)
      bezier2dAt \ w = bezier2d \ (points \ w)
      thicCirc :: Picture
      thicCirc = ThickCircle \ 4 \ 10
      ps :: [Float]
      ps = \mathsf{map}\ from_{\mathbb{Q}}\ ps'\ \mathbf{where}
         ps' :: [\mathbb{Q}]
         ps' = [0, 0.01..1] -- interval
Gloss:
      picture :: World \rightarrow Picture
      picture \ world = Pictures
         [animateBezier (scaleTime world) (points world)
         , Color\ white \cdot Line \cdot {\sf map}\ (bezier2dAt\ world)\ \$\ ps
         , Color blue · Pictures \ [Translate (from_{\mathbb{Q}} \ x) \ (from_{\mathbb{Q}} \ y) \ thicCirc \ | \ [x,y] \leftarrow points \ world]
         , Color green $ Translate cx cy thicCirc
          where
         (cx, cy) = bezier2dAtTime\ world
Animação:
       animateBezier :: Float \rightarrow [NPoint] \rightarrow Picture
       animateBezier \_[] = Blank
       animateBezier \ \_ \ [\_] = Blank
       animateBezier \ t \ l = Pictures
         [animateBezier\ t\ (init\ l)]
         , animateBezier t (tail l)
         , Color red \cdot Line \$ [a, b]
         , Color orange $ Translate ax ay thicCirc
         , Color orange $ Translate bx by thicCirc
          where
         a@(ax, ay) = bezier2d (init l) t
         b@(bx, by) = bezier2d (tail l) t
Propriedades e main:
      runBezier :: IO ()
      runBezier = play (InWindow "Bézier" (600,600) (0,0))
         black 50 initW picture actions tick
      runBezierSym :: IO ()
      runBezierSym = quickCheckWith (stdArgs \{ maxSize = 20, maxSuccess = 200 \}) prop\_bezier\_sym
    Compilação e execução dentro do interpretador:<sup>11</sup>
      main = runBezier
      run = do \{ system "ghc cp2021t"; system "./cp2021t" \}
```

¹¹Pode ser útil em testes envolvendo Gloss. Nesse caso, o teste em causa deve fazer parte de uma função *main*.

QuickCheck

Código para geração de testes:

```
instance Arbitrary\ UnOp\ where arbitrary\ =\ elements\ [Negate,E] instance Arbitrary\ BinOp\ where arbitrary\ =\ elements\ [Sum,Product] instance (Arbitrary\ a)\ \Rightarrow\ Arbitrary\ (ExpAr\ a)\ where arbitrary\ =\ do\ binop\ \leftarrow\ arbitrary\ unop\ \leftarrow\ arbitrary\ unop\ \leftarrow\ arbitrary\ exp1\ \leftarrow\ arbitrary\ exp1\ \leftarrow\ arbitrary\ exp2\ \leftarrow\ arbitrary\ a\ \rightarrow\ arbitrar
```

Outras funções auxiliares

Lógicas:

```
 \begin{aligned} &\inf \mathbf{x} \mathbf{r} \ 0 \Rightarrow \\ (\Rightarrow) & :: (\mathit{Testable prop}) \Rightarrow (a \to \mathit{Bool}) \to (a \to \mathit{prop}) \to a \to \mathit{Property} \\ p \Rightarrow f = \lambda a \to p \ a \Rightarrow f \ a \\ &\inf \mathbf{x} \mathbf{r} \ 0 \Leftrightarrow \\ (\Leftrightarrow) & :: (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \to a \to \mathit{Property} \\ p \Leftrightarrow f = \lambda a \to (p \ a \Rightarrow \mathit{property} \ (f \ a)) \ .\&\&. \ (f \ a \Rightarrow \mathit{property} \ (p \ a)) \\ &\inf \mathbf{x} \mathbf{r} \ 4 \equiv \\ (\equiv) & :: \mathit{Eq} \ b \Rightarrow (a \to b) \to (a \to b) \to (a \to \mathit{Bool}) \\ f \equiv g = \lambda a \to f \ a \equiv g \ a \\ &\inf \mathbf{x} \mathbf{r} \ 4 \leqslant \\ (\leqslant) & :: \mathit{Ord} \ b \Rightarrow (a \to b) \to (a \to b) \to (a \to \mathit{Bool}) \\ f \leqslant g = \lambda a \to f \ a \leqslant g \ a \\ &\inf \mathbf{x} \ 4 \land \\ (\land) & :: (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \to (a \to \mathit{Bool}) \\ f \land g = \lambda a \to ((f \ a) \land (g \ a)) \end{aligned}
```

D Soluções dos alunos

Os alunos devem colocar neste anexo as suas soluções para os exercícios propostos, de acordo com o "layout" que se fornece. Não podem ser alterados os nomes ou tipos das funções dadas, mas pode ser adicionado texto, disgramas e/ou outras funções auxiliares que sejam necessárias.

Valoriza-se a escrita de pouco código que corresponda a soluções simples e elegantes.

Problema 1

São dadas:

```
\begin{array}{l} {\it cataExpAr} \ g = g \cdot {\it recExpAr} \ ({\it cataExpAr} \ g) \cdot {\it outExpAr} \\ {\it anaExpAr} \ g = inExpAr \cdot {\it recExpAr} \ ({\it anaExpAr} \ g) \cdot g \\ {\it hyloExpAr} \ h \ g = {\it cataExpAr} \ h \cdot {\it anaExpAr} \ g \end{array}
```

```
eval\_exp :: Floating \ a \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a
       eval\_exp \ a = cataExpAr \ (g\_eval\_exp \ a)
       optmize\_eval :: (Floating \ a, Eq \ a) \Rightarrow a \rightarrow (ExpAr \ a) \rightarrow a
       optmize\_eval\ a = hyloExpAr\ (gopt\ a)\ clean
       sd :: Floating \ a \Rightarrow ExpAr \ a \rightarrow ExpAr \ a
       sd = \pi_2 \cdot cataExpAr \ sd\_gen
       ad :: Floating \ a \Rightarrow a \rightarrow ExpAr \ a \rightarrow a
       ad\ v = \pi_2 \cdot cataExpAr\ (ad\_gen\ v)
Definir:
       outExpAr X = i_1 ()
       outExpAr(N \ a) = (i_2 \cdot i_1)(a)
       outExpAr (Bin \ op \ a \ b) = (i_2 \cdot i_2 \cdot i_1) (op, (a, b))
       outExpAr (Un \ op \ a) = (i_2 \cdot i_2 \cdot i_2) (op, a)
       recExpAr\ g = baseExpAr\ id\ id\ id\ g\ g\ id\ g
       g_{-}eval_{-}exp \ a = [\underline{a}, num_{-}ops]  where
          num\_ops = [id, ops]
          ops = [bin, un]
          bin (Sum, (a, b)) = \widehat{(+)} (a, b)
          bin (Product, (a, b)) = \widehat{(*)} (a, b)
          un (Negate, a) = negate a
          un(E, a) = expd a
       clean = outExpAr \cdot c \cdot outExpAr
          c = [X, num\_ops] where
            num\_ops = [N, ops]
               ops = [bin, un]
               bin (Product, (N 0, b)) = N 0
               bin (Product, (a, N 0)) = N 0
               bin (op, (a, b)) = Bin op a b
               un(E, N 0) = N 1
               un(op, a) = Un op a
       gopt \ a = g_eval_exp \ a
       sd\_gen :: Floating \ a \Rightarrow
          () + (a + ((BinOp, ((ExpAr\ a, ExpAr\ a), (ExpAr\ a, ExpAr\ a))) + (UnOp, (ExpAr\ a, ExpAr\ a))))
          \rightarrow (ExpAr\ a, ExpAr\ a)
       sd\_qen = \bot
       ad\_gen = \bot
Problema 2
Definir
       loop (h, g, f) = (((g * h) 'div' f), (g + 4), (1 + f))
       inic = (1, 2, 2)
       prj(h, g, f) = h
por forma a que
```

 $cat = prj \cdot \text{for } loop \ inic$

seja a função pretendida. **NB**: usar divisão inteira. Apresentar de seguida a justificação da solução encontrada.

Os números de Catalan formam uma sequência de números naturais que ocorrem em vários problemas de contagem. Frequentemente, envolvem objetos definidos recursivamente.

O número de Catalan é definido pela fórmula dada no enunciado.

Mas também satisfaz a seguinte relação de recorrência:

$$C_0 = 1 (4)$$

$$C(n+1) = \frac{2(2n+1)Cn}{n+2} \tag{5}$$

(6)

Esta relação de recorrência obteve-se deste modo:

$$catdefn = \frac{(2n)!}{(n+1)!(n!)}$$

$$catdef(n+1) = \frac{(2(n+1))!}{((n+1)+1)!((n+1)!)}$$

$$catdef(n+1) = \frac{(2*n+2)!}{((n+2)!((n+1)!)}$$

$$catdef(n+1) = \frac{(2*n+2)(2*n+1)(2*n)!}{((n+2)(n+1)!((n+1)(n!))}$$

$$catdef(n+1) = \frac{(2*n+2)(2*n+1)}{(n+2)(n+1)!} * \frac{(2*n)!}{(n+1)!n!}$$

$$catdef(n+1) = \frac{2*(n+1)(2*n+1)}{(n+2)(n+1)} * \frac{(2*n)!}{(n+1)!n!}$$

$$catdef(n+1) = \frac{2*(2*n+1)}{(n+2)(n+1)} * catdefn$$

Da função catdef derivam-se três funções mutuamente recursivas:

$$h 0 = 1$$

$$h (n + 1) = ((g n) * (h n)) / (f n)$$

$$g 0 = 2$$

$$g (n + 1) = g n + 4$$

$$f 0 = 2$$

$$f (n + 1) = 1 + f n$$

Sendo

$$g \ n = 2 \ (2 * n + 1) \Rightarrow g \ (n + 1) = g \ n + 4$$

 $f \ n = n + 2 \Rightarrow f \ (n + 1) = 1 + f \ n$

Logo,

$$\begin{array}{l} cat = prj \cdot \text{for } loop \; inic \; \textbf{where} \\ loop \; (h,g,f) = (((g*h)/f),(g+4),(1+f)) \\ inic = (1,2,2) \\ prj \; (h,g,f) = h \end{array}$$

Problema 3

$$\begin{array}{l} calcLine :: NPoint \rightarrow (NPoint \rightarrow OverTime\ NPoint) \\ calcLine = cataList\ h\ \mathbf{where} \\ h = \bot \\ deCasteljau :: [NPoint] \rightarrow OverTime\ NPoint \\ deCasteljau = hyloAlgForm\ alg\ coalg\ \mathbf{where} \\ coalg = \bot \\ alg = \bot \\ hyloAlgForm = \bot \end{array}$$

Problema 4

Solução para listas não vazias:

```
\begin{split} avg &= \pi_1 \cdot avg\_aux \\ avg\_aux &= cataAvg \ g \\ cataAvg \ g &= g \cdot (id + (id \times (cataAvg \ g))) \cdot outL \\ g &= \langle h, k \rangle \\ h &= [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (id \times \widehat{(*)}), \mathsf{succ} \cdot \pi_2 \cdot (id \times \pi_2) \rangle] \\ k &= [\underline{1}, \mathsf{succ} \cdot \pi_2 \cdot (id \times \pi_2)] \\ outL \ [a] &= i_1 \ (a) \\ outL \ (a:x) &= i_2 \ (a,x) \end{split}
```

Solução para árvores de tipo LTree:

$$avgLTree = \pi_1 \cdot (|gene|) \text{ where}$$

$$gene = \langle h, k \rangle$$

$$h = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot ((\widehat{(*)} \times \widehat{(*)})), \widehat{(+)} \cdot (\pi_2 \times \pi_2) \rangle]$$

$$k = [\underline{1}, \widehat{(+)} \cdot (\pi_2 \times \pi_2)]$$

Resolução:

Diagrama de length para listas não vazias:

$$A* \longleftarrow \begin{array}{c} \mathbf{in} \\ (|g|) \\ \downarrow \\ B \longleftarrow \\ g \end{array} \longrightarrow A + A \times A* \\ \downarrow id + id \times (|g|) \\ A + A \times B$$

Vamos provar que:

$$length [a] = 1$$

 $length (a:x) = 1 + length x$

é equivalente a

$$length \cdot \mathbf{in} = k \cdot F < avg, length >$$

e identificar k.

Partindo agora para o calculo do gene(k) de length:

$$= \left\{ \text{Fusão-+} (20) \right\} \\ length \cdot [singl, cons] = \left[\underline{1}, \text{succ} \cdot length \cdot \pi_2 \right] \\ = \left\{ \text{Natural-id} \left(1 \right), \text{Natural-p2} \left(13 \right) \right\} \\ length \cdot [singl, cons] = \left[\underline{1} \cdot id, \text{succ} \cdot \pi_2 \cdot \left(id \times length \right) \right] \\ = \left\{ \text{Cancelamento-} \times \left(7 \right), \text{Natural-id} \left(1 \right) \right\} \\ length \cdot [singl, cons] = \left[\underline{1} \cdot id, \text{succ} \cdot \pi_2 \cdot \left(id \cdot id \times \pi_2 \cdot \langle avg, length \rangle \right) \right] \\ = \left\{ \text{Functor-} \times \left(14 \right) \right\} \\ length \cdot [singl, cons] = \left[\underline{1} \cdot id, \text{succ} \cdot \pi_2 \cdot \left(id \times \pi_2 \cdot id \times \langle avg, length \rangle \right) \right] \\ = \left\{ \text{Assoc-comp} \left(2 \right) \right\} \\ length \cdot [singl, cons] = \left[\underline{1} \cdot id, \left(\text{succ} \cdot \pi_2 \cdot \left(id \times \pi_2 \right) \right) \cdot \left(id \times \langle avg, length \rangle \right) \right] \\ = \left\{ \text{Absorção-+} \left(22 \right) \right\} \\ length \cdot [singl, cons] = \left[\underline{1}, \text{succ} \cdot \pi_2 \cdot \left(id \times \pi_2 \right) \right] \cdot \left(id + id \times \langle avg, length \rangle \right) \\ = \left\{ \text{Definição de in, Definição de Functor de listas} \right\} \\ length \cdot \mathbf{in} = \left[\underline{1}, \text{succ} \cdot \pi_2 \cdot \left(id \times \pi_2 \right) \right] \cdot F \left\langle avg, length \right\rangle \\ \Box$$

Logo, k = $[\underline{1}, \operatorname{succ} \cdot \pi_2 \cdot (id \times \pi_2)]$; Diagrama de avg para listas não vazias:

$$\begin{array}{c|c} A* \longleftarrow & \mathbf{in} & A+A\times A* \\ (\mid g\mid) & & & \downarrow id+id\times (\mid g\mid) \\ C \longleftarrow & & & A+A\times C \end{array}$$

Vamos provar que:

$$avg [a] = a$$

$$avg (a:x) = \frac{a + (length \ x) * (avg \ x)}{(length \ x) + 1}$$

é equivalente a

$$avg \cdot \mathbf{in} = h \cdot F < avg, length >$$

e identificar h.

Partindo agora para o calculo do gene(h) de avg:

$$\begin{cases} avg \ [a] = a \\ avg \ (a:x) = \frac{a + (avg \ x) * (length \ x)}{(length \ x) + 1} \end{cases}$$

$$\equiv \qquad \{ \text{ Definição de singl, definição de cons e definição de succ} \}$$

$$\begin{cases} avg \cdot singl \ a = a \\ avg \cdot cons \ (a,x) = \frac{a + (avg \ x) * (length \ x)}{\text{succ} \cdot (length \ x)} \end{cases}$$

$$\equiv \qquad \{ \text{ Def-id (73), Uncurry (84)} \}$$

$$\begin{cases} avg \cdot singl \ a = id \ a \\ avg \cdot cons \ (a,x) = \frac{\widehat{(+)} \ (a,\widehat{(*)} \ ((avg \ x),(length \ x)))}{\text{succ} \cdot (length \ x)} \end{cases}$$

$$\equiv \qquad \{ \text{ Def-split (76), Def-id (73)} \}$$

$$\begin{cases} avg \cdot singl \ a = id \ a \\ avg \cdot cons \ (a,x) = \frac{\widehat{(+)} \ (id \ a,\widehat{(*)} \cdot \langle avg, length \rangle \ x)}{\text{succ} \cdot (length \ x)} \end{cases}$$

```
\{ \text{ Def-} \times (77), \text{ Def-proj}(79) \}
                         avg \cdot singl \ a = id \ a
avg \cdot cons \ (a, x) = \frac{\widehat{(+)} \cdot (id \times (\widehat{(*)} \cdot \langle avg, length \rangle)) \ (a, x)}{\mathsf{succ} \cdot length \cdot \pi_2 \ (a, x)}
                               { Uncurry (84) }
                     \left\{ \begin{array}{l} avg \cdot singl \ a = id \ a \\ avg \cdot cons \ (a,x) = \widehat{(/)} \ \widehat{((+)} \cdot (id \times \widehat{((*)} \cdot \langle avg, length \rangle)) \ (a,x), \mathsf{succ} \ \cdot length \cdot \pi_2 \ (a,x)) \end{array} \right.
                                { Def-split (76), Igualdade extensional (71) }
                      \left\{\begin{array}{l} avg \cdot singl = id \\ avg \cdot cons = \widehat{(/)} \cdot \widehat{\langle (+)} \cdot (id \times \widehat{((*)} \cdot \langle avg, length \rangle)), \mathsf{succ} \cdot length \cdot \pi_2 \rangle \end{array}\right.
                    [\mathit{avg} \cdot \mathit{singl}, \mathit{avg} \cdot \mathit{cons}] = [\mathit{id}, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\mathit{id} \times (\widehat{(*)} \cdot \langle \mathit{avg}, \mathit{length} \rangle)), \mathsf{succ} \cdot \mathit{length} \cdot \pi_2 \rangle]
                                { fusão-+ (20) }
                     avg \cdot [singl, cons] = [id, \widehat{(/)} \cdot \widehat{(+)} \cdot (id \times \widehat{(*)} \cdot \langle avg, length \rangle)), succ \cdot length \cdot \pi_2)]
                                { Natural-id (1); Natural p2 (13) }
                     avg \cdot [singl, cons] = [id, \widehat{(/)} \cdot \widehat{((+)} \cdot ((id \cdot id) \times (\widehat{(*)} \cdot \langle avg, length \rangle)), succ \cdot \pi_2 \cdot (id \times length))]
                                \{ Functor-\times (14) \}
           \equiv
                     avg \cdot [singl, cons] = [id, \widehat{(/)} \cdot \widehat{(+)} \cdot ((id \times \widehat{(*)}) \cdot (id \times \langle avg, length \rangle)), succ \cdot \pi_2 \cdot (id \times length))]
                                { Natural-id (1), Cancelamento-\times (7) }
                     avg \cdot [singl, cons] = [id, \widehat{(/)} \cdot \widehat{(+)} \cdot ((id \times \widehat{(*)}) \cdot (id \times \langle avg, length \rangle)), succ \cdot \pi_2 \cdot (id \cdot id \times \pi_2 \cdot \langle avg, length \rangle))
                                { Functor-\times (14) }
           \equiv
                     avg \cdot [singl, cons] = [id, \widehat{(/)} \cdot \widehat{((+)} \cdot ((id \times \widehat{(*)}) \cdot (id \times \langle avg, length \rangle)), succ \cdot \pi_2 \cdot ((id \times \pi_2) \cdot (id \times \langle avg, length \rangle))
                                { Assoc-comp (2) }
           \equiv
                    avg \cdot [singl, cons] = [id, \widehat{(/)} \cdot \widehat{(+)} \cdot ((id \times \widehat{(*)}) \cdot (id \times \langle avg, length \rangle)), (succ \cdot \pi_2 \cdot (id \times \pi_2)) \cdot (id \times \langle avg, length \rangle)
                                { Fusão-\times (9) }
           \equiv
                     avg \cdot [singl, cons] = [id, \widehat{(/)} \cdot \widehat{((+)} \cdot (id \times \widehat{(*)}), succ \cdot \pi_2 \cdot (id \times \pi_2)) \cdot (id \times \langle avg, length \rangle)]
                                { Natural-id (1), Absorção-+ (22) }
                     avg \cdot [singl, cons] = [id, \widehat{(/)} \cdot \widehat{(+)} \cdot (id \times \widehat{(*)}), succ \cdot \pi_2 \cdot (id \times \pi_2))] \cdot (id + id \times \langle avg, length \rangle)
                                { Definição de in, definição de Functor de listas }
                     avg \cdot \mathbf{in} = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (id \times \widehat{(*)}), succ \cdot \pi_2 \cdot (id \times \pi_2) \rangle] \cdot F \langle avg, length \rangle
\mathbf{Logo}, \mathbf{h} = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (id \times \widehat{(*)}), \mathsf{succ} \, \cdot \pi_2 \cdot (id \times \pi_2) \rangle ];
Deste modo:
                     \left\{\begin{array}{l} avg \cdot \mathbf{in} = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (id \times \widehat{(*)}), \mathsf{succ} \ \cdot \pi_2 \cdot (id \times \pi_2) \rangle] \cdot F \ \langle avg, length \rangle \\ length \cdot \mathbf{in} = [\underline{1}, \mathsf{succ} \ \cdot \pi_2 \cdot (id \times \pi_2)] \cdot F \ \langle avg, length \rangle \end{array}\right.
                                { Fokkinga (52) }
           \equiv
                     \langle avg, length \rangle = (\langle [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (id \times \widehat{(*)}), succ \cdot \pi_2 \cdot (id \times \pi_2) \rangle), [\underline{1}, succ \cdot \pi_2 \cdot (id \times \pi_2)] \rangle)
                                { Lei da troca (28) }
           \equiv
```

$$\langle avg, length \rangle = \langle [\langle id, \underline{1} \rangle, \langle \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (id \times \widehat{(*)}), succ \cdot \pi_2 \cdot (id \times \pi_2) \rangle, succ \cdot \pi_2 \cdot (id \times \pi_2) \rangle] \rangle$$

Generalizando o raciocínio anterior para o cálculo da média de todos os elementos de uma LTree (recorrendo a uma unica travessia da árvore) e tendo por base o seguinte diagrama:

$$\begin{array}{c|c} \mathsf{LTree}\ A \lessdot & \stackrel{\mathbf{in}}{\longleftarrow} A + \mathsf{LTree}\ A \times \mathsf{LTree}\ A \\ \emptyset g \emptyset \bigvee_{} & \bigvee_{} id + (\emptyset g) \times (\emptyset g) \\ D \times E \lessdot & \longrightarrow_{} q & A + (D \times E) \end{array}$$

Partindo agora para o calculo do gene(k) de length para LTree:

$$\begin{cases} length \ Leaf \ a = 1 \\ length \ Fork \ (t1,t2) = (length \ t1) + (length \ t2) \end{cases} \\ &= \begin{cases} \text{Def-comp} \ (72), \text{Def-const} \ (74) \ \} \\ \begin{cases} length \cdot Leaf \ a = \underline{1} \ a \\ length \cdot Fork \ (t1,t2) = (length \ t1) + (length \ t2) \end{cases} \\ &= \begin{cases} \text{Uncurry } (84) \ \} \\ \begin{cases} length \cdot Leaf \ a = \underline{1} \ a \\ length \cdot Fork \ (t1,t2) = \widehat{(+)} \ (length \ t1, length \ t2) \end{cases} \\ &= \begin{cases} \text{Def-x} \ (77) \ \} \\ \begin{cases} length \cdot Leaf \ a = \underline{1} \ a \\ length \cdot Fork \ (t1,t2) = \widehat{(+)} \cdot (length \ \times length) \ (t1,t2) \end{cases} \\ &= \begin{cases} length \cdot Leaf \ a = \underline{1} \ a \\ length \cdot Fork \ (t1,t2) = \widehat{(+)} \cdot (length \ \times length) \ (t1,t2) \end{cases} \\ &= \begin{cases} length \cdot Leaf \ a = \underline{1} \ a \\ length \cdot Fork \ (\underline{-(+)} \cdot (length \ \times length) \ (t1,t2) \end{cases} \\ &= \begin{cases} length \cdot Leaf \ (\underline{-(+)} \cdot (length \ \times length)) \ (t1,t2) \end{cases} \\ &= \begin{cases} length \cdot [Leaf, Fork] = [\underline{1}, \widehat{(+)} \cdot (length \ \times length)] \ (\underline{-(+)} \cdot (length \ \times length)) \ (\underline{-(+)} \cdot (length \ \times length)$$

Logo, $k = [\underline{1}, \widehat{(+)} \cdot (\pi_2 \times \pi_2)];$

Partindo agora para o calculo do gene(k) de avg para Ltree:

$$\begin{cases} avg \ Leaf \ a = a \\ avg \ Fork \ (t1, t2) = \frac{(avg \ t1)*(length \ t1) + (avg \ t2)*(length \ t2)}{(length \ t1) + (length \ t2)} \end{cases}$$

```
{ Def-id (73), Def-comp (72), Uncurry (84) }
                                                         avg \cdot Fork \ (t1, t2) = \frac{\widehat{(+)} \ \widehat{((*)} \ ((avg \ t1), (length \ t1)), \widehat{(*)} \ ((avg \ t2), (length \ t2)))}{\widehat{(+)} \ ((length \ t1), (length \ t2))}
                                                                   { Def-split (76), Def-\times (77) }
                                              \left\{ \begin{array}{l} avg \cdot Leaf \ a = id \ a \\ avg \cdot Fork \ (t1,t2) = \frac{\widehat{((+)} \ \widehat{((*)} \cdot \langle avg, length \rangle \ t1, \widehat{(*)} \cdot \langle avg, length \rangle \ t2))}{\widehat{(+)} \cdot (length \times length) \ (t1,t2)} \end{array} \right. 
                                                                   { Def-\times (77) }
                                               \begin{cases} avg \cdot Leaf \ a = id \ a \\ avg \cdot Fork \ (t1, t2) = \frac{\widehat{(+)} \cdot (\widehat{(*)} \cdot \langle avg, length \rangle) \times \widehat{(*)} \cdot \langle avg, length \rangle)) \ (t1, t2)}{\widehat{(+)} \cdot (length \times length) \ (t1, t2)} \end{cases} 
                                                                   { Uncurry (84) }
                                                \left\{ \begin{array}{l} avg \cdot Leaf \ a = id \ a \\ avg \cdot Fork \ (t1,t2) = \widehat{(/)} \cdot \widehat{((+)} \cdot (\widehat{(*)} \cdot \langle avg, length \rangle) \times \widehat{((*)} \cdot \langle avg, length \rangle)) \ (t1,t2)) \ \widehat{((+)} \cdot (length \times length)) \end{array} \right. 
                                               \left\{ \begin{array}{l} \mathit{avg} \cdot \mathit{Leaf} \ \mathit{a} = \mathit{id} \ \mathit{a} \\ \mathit{avg} \cdot \mathit{Fork} \ (\mathit{t1}, \mathit{t2}) = \widehat{(/)} \cdot \widehat{\langle (+)} \cdot (\widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle) \times \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle)), \widehat{(+)} \cdot (\mathit{length} \times \mathit{length}) \right\} (\mathit{t1}, \mathit{t2}) = \widehat{(/)} \cdot \widehat{\langle (+)} \cdot \widehat{\langle (+)} \cdot \langle \mathit{avg}, \mathit{length} \rangle) \times \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle), \widehat{(+)} \cdot (\mathit{length} \times \mathit{length}) \right\} (\mathit{t1}, \mathit{t2}) = \widehat{(/)} \cdot \widehat{\langle (+)} \cdot \widehat{\langle (+)} \cdot \langle \mathit{avg}, \mathit{length} \rangle) \times \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle), \widehat{(+)} \cdot (\mathit{length} \times \mathit{length}) \right\} (\mathit{t1}, \mathit{t2}) = \widehat{(/)} \cdot \widehat{\langle (+)} \cdot \langle \mathit{avg}, \mathit{length} \rangle) \times \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle), \widehat{(+)} \cdot \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle) \times \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle), \widehat{(+)} \cdot \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle), \widehat{(+)} \cdot \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle) = \widehat{((\ast)} \cdot \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle), \widehat{(+)} \cdot \widehat{(+)} \cdot \widehat{((\ast)} \cdot \langle \mathit{avg}, \mathit{length} \rangle), \widehat{(+)} \cdot \widehat{(
                                                                   { Igualdade extensional (71) }
                                              \left\{\begin{array}{l} \operatorname{avg} \cdot \operatorname{Leaf} = \operatorname{id} \\ \operatorname{avg} \cdot \operatorname{Fork} = \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\widehat{(*)} \cdot \langle \operatorname{avg}, \operatorname{length} \rangle) \times \widehat{((*)} \cdot \langle \operatorname{avg}, \operatorname{length} \rangle)), \widehat{(+)} \cdot (\operatorname{length} \times \operatorname{length}) \rangle \end{array}\right.
                                                                    { Eq-+ (27) }
                                            [\mathit{avg} \cdot \mathit{Leaf}, \mathit{avg} \cdot \mathit{Fork}] = [\mathit{id}, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\widehat{(*)} \cdot \langle \mathit{avg}, \mathit{length} \rangle) \times (\widehat{(*)} \cdot \langle \mathit{avg}, \mathit{length} \rangle)), \widehat{(+)} \cdot (\mathit{length} \times \mathit{length}))
                                                                    { Fusão-+ (20) }
                                             avg \cdot [Leaf, Fork] = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\widehat{(*)} \cdot \langle avg, length \rangle) \times (\widehat{(*)} \cdot \langle avg, length \rangle), \widehat{(+)} \cdot (length \times length))]
                                             avg \cdot [Leaf, Fork] = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\widehat{(*)} \times \widehat{(*)}) \cdot (\langle avg, length \rangle \times \langle avg, length \rangle)), \widehat{(+)} \cdot (length \times length) \rangle]
                                                                    { Cancelamento-\times (7) }
                                              avg \cdot [Leaf, Fork] = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\widehat{(*)} \times \widehat{(*)}) \cdot (\langle avg, length \rangle \times \langle avg, length \rangle)), \widehat{(+)} \cdot (\pi_2 \cdot \langle avg, length \rangle \times \pi_2 \cdot (\langle avg, length \rangle))
                                                                    \{ Functor-\times (14) \}
                                            avg \cdot [Leaf, Fork] = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\widehat{(*)} \times \widehat{(*)}) \cdot (\langle avg, length \rangle \times \langle avg, length \rangle)), \widehat{(+)} \cdot ((\pi_2 \times \pi_2) \cdot (\langle avg, length \rangle))
                                                                     { Fusão-\times (9), Natural-id (1) }
                                              avg \cdot [Leaf, Fork] = [id \cdot id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\widehat{((*)} \times \widehat{(*)})), \widehat{(+)} \cdot (\pi_2 \times \pi_2) \rangle \cdot (\langle avg, length \rangle \times \langle avg, length \rangle)]
                                                                    { Absorção-+ (22) }
                                             avg \cdot [Leaf, Fork] = [id, \widehat{(/)} \cdot \widehat{((+)} \cdot (\widehat{(+)} \times \widehat{(*)})), \widehat{(+)} \cdot (\pi_2 \times \pi_2))] \cdot (id + (\langle avg, length \rangle \times \langle avg, length \rangle))
                                                                     { Definição de in, Definição de Functor de LTree }
                                             avg \cdot \mathbf{in} = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\widehat{(*)} \times \widehat{(*)}), \widehat{(+)} \cdot (\pi_2 \times \pi_2) \rangle] \cdot F \langle avg, length \rangle
                        Logo, h = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot (\widehat{(*)} \times \widehat{(*)}), \widehat{(+)} \cdot (\pi_2 \times \pi_2) \rangle];
```

$$\begin{cases} avg \cdot \mathbf{in} = [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot ((\widehat{(*)} \times \widehat{(*)})), \widehat{(+)} \cdot (\pi_2 \times \pi_2) \rangle] \cdot F \ \langle avg, length \rangle \\ length \cdot \mathbf{in} = [\underline{1}, \widehat{(+)} \cdot (\pi_2 \times \pi_2)] \cdot F \ \langle avg, length \rangle \end{cases}$$

$$\equiv \qquad \{ \text{Fokkinga (52)} \}$$

$$\langle avg, length \rangle = \{ \langle [id, \widehat{(/)} \cdot \langle \widehat{(+)} \cdot ((\widehat{(*)} \times \widehat{(*)})), \widehat{(+)} \cdot (\pi_2 \times \pi_2) \rangle], [\underline{1}, \widehat{(+)} \cdot (\pi_2 \times \pi_2)] \rangle \}$$

$$\equiv \qquad \{ \text{Lei da troca (28)} \}$$

$$\langle avg, length \rangle = \{ \langle [\langle id, \underline{1} \rangle, \langle \widehat{(/)} \cdot \langle \widehat{(+)} \cdot ((\widehat{(*)} \times \widehat{(*)})), \widehat{(+)} \cdot (\pi_2 \times \pi_2) \rangle, \widehat{(+)} \cdot (\pi_2 \times \pi_2) \rangle \} \}$$

Problema 5

 $Inserir\ em\ baixo\ o\ c\'odigo\ F\#\ desenvolvido,\ entre\ \verb|\begin{verbatim}\}\ e\ \verb|\emplowerbatim|}$

Índice

```
\text{ET}_{E}X, 1
    bibtex, 2
    lhs2TeX, 1
    makeindex, 2
Combinador "pointfree"
    cata, 8, 9
    either, 3, 8
Curvas de Bézier, 6, 7
Cálculo de Programas, 1, 2, 5
    Material Pedagógico, 1
       BTree.hs, 8
       Cp.hs, 8
       LTree.hs, 8, 14
       Nat.hs, 8
Deep Learning), 3
DSL (linguaguem específica para domínio), 3
F#, 8, 14
Functor, 5, 11
Função
    \pi_1, 6, 9, 14
    \pi_2, 9, 13
    for, 6, 9, 13
    length, 8
    map, 11, 12
    uncurry, 3
Haskell, 1, 2, 8
    Gloss, 2, 11
    interpretador
       GĤCi, 2
    Literate Haskell, 1
    QuickCheck, 2
    Stack, 2
Números de Catalan, 6, 10
Números naturais (IN), 5, 6, 9
Programação
    dinâmica, 5
    literária, 1
Racionais, 7, 8, 10–12
U.Minho
    Departamento de Informática, 1
```

Referências

- [1] D.E. Knuth. *Literate Programming*. CSLI Lecture Notes Number 27. Stanford University Center for the Study of Language and Information, Stanford, CA, USA, 1992.
- [2] J.N. Oliveira. *Program Design by Calculation*, 2018. Draft of textbook in preparation. viii+297 pages. Informatics Department, University of Minho.