- 1. Ache a área do círculo $r= sen \, \theta,$ dada em coordenadas polares. Faça o mesmo para a região delimitada pela cardioide $r=1-sen \, \theta.$
- 2. Determinar a área no quarto quadrante, limitada pela parábola $x y = (x + y)^2 + 1$ e pela reta x y = 4. Sugestão: Faça u = x y e v = x + y.
- 3. Calcular $\iint_B (x-y)^2 \sin^2(x+y) dx dy$, onde B é o paralelogramo de vértices: $(\pi,0)$, $(2\pi,\pi)$, $(\pi,2\pi)$ e $(0,\pi)$. Sugestão: Usar a transformação: u=x-y e v=x+y.
- 4. Achar o volume do sólido S limitado pelo paraboloide $x^2 + y^2 = 4z$ e pelo cilindro $x^2 + y^2 = 8y$ e pelo plano z = 0.
- 5. Determinar o volume V do sólido constituído pelo cone $(z-3)^2 \ge x^2 + y^2$, $0 \le z \le 2$ e pelo cilindro $x^2 + y^2 \le 1$, $2 \le z \le 5$.
- 6. Considere a transformação $T(u,\nu)=(x(u,\nu),y(u,\nu))=(u^2-\nu^2,2u\nu)$. Sejam $B_{u\nu}=\{(u,\nu);1\leq u\leq 2,-1\leq \nu\leq 1\}$ e $B=T(B_{u\nu})$ a imagem de $B_{u\nu}$ pela transformação T. Faça um esboço de $B_{u\nu}$ e de B. Use o teorema de mudança de variáveis para calcular $\iint_B x dx dy$.
- 7. Considere a transformação $T(u,v)=(x(u,v),y(u,v))=(e^u\cos v,e^u\sin v)$. Sejam $B_{uv}=\{(u,v);0\leq u\leq 1,0\leq v\leq \pi/2\}$ e $B=T(B_{uv})$ a imagem de B_{uv} pela transformação T. Faça um esboço de B_{uv} e de B. Use o teorema de mudança de variáveis para calcular a área de B.
- 8. Encontre a integral dupla $\iint_B e^{-x^2-y^2} dxdy$, onde B é a região que está no primeiro quadrante e é limitada pela circunferência $x^2 + y^2 = a^2$ e pelos eixos coordenados

Respostas

- 1. Área do círculo é $\pi/4$ e a da cardioide $3\pi/2$.
- 2. $2\sqrt{3}$
- 3. $\pi^4/3$
- 4. 96π
- 5. $35\pi/3$
- 6. 48
- 7. $\pi(e^2-1)/4$
- 8. $\pi(1 e^{-a^2})/4$