StarGAN v2: Diverse Image Synthesis for Multiple Domains

CVPR 2020 Naver Clova

Bochan Kim 2020. 05. 18 Mon

GAN

Image to Image Traslation

What is good I2I Translation model?

Trends / History

GAN

Main Idea

Image to Image Translation

Source: https://deview.kr/2019/schedule/279

What is good GAN model?

Photo-realism

- Diversity
 - multi-modal is better than uni-modal
 - multi-domain is better than paired-domain

What is good GAN model?

- Photo-realism
- Diversity
 - multi-modal is better than uni-modal
 - multi-domain is better than uni-domain

Multi-modal(MUNIT)

What is good GAN model?

- Photo-realism
- Diversity
 - multi-modal is better than uni-modal
 - multi-domain is better than uni-domain

Multi-domain (starGAN v1)

Image to Image Translation

Source: https://deview.kr/2019/schedule/279

Trends of multi-modal and multi-domain (1)

- Image can be decomposed with content and style
 - content : domain invariant, e.g. pose
 - style: domain specific
- Encoder Decoder
 - if style can be sampled from prior
 - -> generate diverse style
 - -> multi-modal

Trends of multi-modal and multi-domain (2)

(Decoding style using Adain)

AdaIN
$$(z, \gamma, \beta) = \gamma \left(\frac{z - \mu(z)}{\sigma(z)} \right) + \beta$$

• (Reconstruction / Cycle Consistency Loss)

- Unified(Single) Model for various domain
 - -> multi-domain

Main Idea

- Both Multi-modal and Multi-domain
 - Diverse image of multiple domain within single framework

- How?
 - Multi-modal -> Encoder Decoder

Main Idea

- Both Multi-modal and Multi-domain
 - Diverse image of multiple domain within single framework

- How?
 - Multi-modal -> Encoder Decoder
 - Multi-domain -> Single Encoder and Decoder

- How?
 - Multi-modal -> Encoder Decoder
 - Multi-domain -> Single Encoder and Decoder

How to Generate Image?

- 1. Latent-guided synthesis
 - random noise -> mapping network -> style code $\ \widetilde{\mathbf{s}} = F_{\widetilde{y}}(\mathbf{z})$
 - translate image using style code

$$\widetilde{\mathbf{s}} = F_{\widetilde{y}}(\mathbf{z})$$

$$G(\mathbf{x}, \widetilde{\mathbf{s}})$$

- 2. Reference-guided synthesis
 - extract style code from reference image
 - translate image using style code

$$\tilde{s} = E_{\hat{y}}(\hat{x})$$

$$G(\mathbf{x}, \widetilde{\mathbf{s}})$$

Adversarial Loss

$$\mathcal{L}_{adv} = \mathbb{E}_{\mathbf{x},y} \left[\log D_y(\mathbf{x}) \right] + \\ \mathbb{E}_{\mathbf{x},\widetilde{y},\mathbf{z}} \left[\log \left(1 - D_{\widetilde{y}}(G(\mathbf{x},\widetilde{\mathbf{s}})) \right) \right],$$

- Style Reconstruction Loss

$$\mathcal{L}_{sty} = \mathbb{E}_{\mathbf{x},\widetilde{y},\mathbf{z}} \left[||\widetilde{\mathbf{s}} - E_{\widetilde{y}}(G(\mathbf{x},\widetilde{\mathbf{s}}))||_{1} \right]$$

$$\widetilde{\mathbf{s}} = F_{\widetilde{y}}(\mathbf{z})$$

$$\widetilde{s} = E_{\widehat{y}}(\widehat{x})$$

- Cycle Consistency Loss

$$\mathcal{L}_{cyc} = \mathbb{E}_{\mathbf{x},y,\widetilde{y},\mathbf{z}} \left[||\mathbf{x} - G(G(\mathbf{x},\widetilde{\mathbf{s}}),\hat{\mathbf{s}})||_1 \right] \qquad \tilde{\mathbf{s}} = F_{\widetilde{y}}(\mathbf{z})$$

$$\tilde{\mathbf{s}} = F_{\widetilde{y}}(\hat{\mathbf{z}})$$

- Style Diversification Loss

$$\widetilde{\mathbf{s}} = F_{\widetilde{y}}(\mathbf{z})$$

$$\mathcal{L}_{ds} = \mathbb{E}_{\mathbf{x},\widetilde{y},\mathbf{z}_1,\mathbf{z}_2} \left[\| G(\mathbf{x},\widetilde{\mathbf{s}}_1) - G(\mathbf{x},\widetilde{\mathbf{s}}_2) \|_1 \right]$$

$$\widetilde{s} = E_{\widehat{y}} \left(\widehat{x} \right)$$

Objective

- Adversarial Loss

$$\mathcal{L}_{adv} = \mathbb{E}_{\mathbf{x},y} \left[\log D_y(\mathbf{x}) \right] + \\ \mathbb{E}_{\mathbf{x},\widetilde{y},\mathbf{z}} \left[\log \left(1 - D_{\widetilde{y}}(G(\mathbf{x},\widetilde{\mathbf{s}})) \right) \right],$$

- Style Reconstruction Loss

$$\mathcal{L}_{sty} = \mathbb{E}_{\mathbf{x},\widetilde{y},\mathbf{z}} \left[||\widetilde{\mathbf{s}} - E_{\widetilde{y}}(G(\mathbf{x},\widetilde{\mathbf{s}}))||_{1} \right]$$

- Cycle Consistency Loss

$$\mathcal{L}_{cyc} = \mathbb{E}_{\mathbf{x},y,\widetilde{y},\mathbf{z}} \left[\left| \left| \mathbf{x} - G(G(\mathbf{x},\widetilde{\mathbf{s}}), \hat{\mathbf{s}}) \right| \right|_{1} \right]$$

- Style Diversification Loss

$$\mathcal{L}_{ds} = \mathbb{E}_{\mathbf{x}, \widetilde{\mathbf{y}}, \mathbf{z}_1, \mathbf{z}_2} \left[\left\| G(\mathbf{x}, \widetilde{\mathbf{s}}_1) - G(\mathbf{x}, \widetilde{\mathbf{s}}_2) \right\|_1 \right]$$

Objective

- Full Objective

$$\min_{G,F,E} \max_{D} \quad \mathcal{L}_{adv} + \lambda_{sty} \mathcal{L}_{sty}$$
$$- \lambda_{ds} \mathcal{L}_{ds} + \lambda_{cyc} \mathcal{L}_{cyc},$$

- Latent-guided Systhesis

	CelebA-HQ		AFHQ	
Method	FID	LPIPS	FID	LPIPS
MUNIT [16]	31.4	0.363	41.5	0.511
DRIT [28]	52.1	0.178	95.6	0.326
MSGAN [34]	33.1	0.389	61.4	0.517
StarGAN v2	13.7	0.452	16.2	0.450
Real images	14.8	-	12.9	-

(b) Latent-guided synthesis on AFHQ

- Reference-guided Systhesis

	CelebA-HQ		AFHQ	
Method	FID	LPIPS	FID	LPIPS
MUNIT [16]	107.1	0.176	223.9	0.199
DRIT [28]	53.3	0.311	114.8	0.156
MSGAN [34]	39.6	0.312	69.8	0.375
StarGAN v2	23.8	0.388	19.8	0.432
Real images	14.8	-	12.9	-

(b) Reference-guided synthesis on AFHQ

- Diverse image of multiple domain within single framework
 - multi-modal + multi-domain model

Visual Quality

- AFHQ Dataset
 - new high quality dataset of animal faces
 - with large inter-intra domain variation

- Diverse image of multiple domain within single framework
 - well benchmarking other papers
 - (I think..) not perfect single encoder

Visual Quality

- (I guess..) that is not because of new proposed architecture but of highly optimized training methods (styleGAN?)

AFHQ Dataset

- thank you so much, I love you. sincerely

LAYER	ACTVATION	Norm	OUTPUT SHAPE
Latent z	-	-	16
Linear	ReLU	-	512
Linear	ReLU	-	512
Linear	ReLU	-	512
Linear	ReLU	-	512
Linear	ReLU	-	512
Linear	ReLU	-	512
Linear * N	-	-	64 * N

Table 6. Mapping network architecture.

Түре	Layer	ACTVATION	OUTPUT SHAPE
Shared	Latent z	-	16
Shared	Linear	ReLU	512
Shared	Linear	ReLU	512
Shared	Linear	ReLU	512
Shared	Linear	ReLU	512
Unshared	Linear	ReLU	512
Unshared	Linear	ReLU	512
Unshared	Linear	ReLU	512
Unshared	Linear	-	64

Table 6. Mapping network architecture.

Init paper(2019.12)

Current

Fig. 6. Example results of animal image translation.

From MUNIT

Q & A

감사합니다.