Na matemática, o limite de uma função é um conceito fundamental em cálculo, onde é feita uma análise sobre o comportamento desta função quando próxima de um valor particular de sua variável independente.

$$h(1) = -1$$

 $\lim_{x \to 1} h(x) = 1$
pois seus limites
laterais são distintos.

1º Exemplo: Qual é a tendência de resultados da função $f(x) = x^2$ quando x está muito próximo de 3?

X	у	X	У
3,1	9,61	2,9	8,41
3,01	9,0601	2,99	8,9401
3,001	9,006001	2,999	8,994001
3,0001	9,00060001	2,9999	8,99940001
3,00001	9,0000600001	2,99999	8,9999400001

$$\lim_{x\to 3} f(x) = 9$$

$$\lim_{x\to 3} f(x) = 3^2 = 9$$

2º Exemplo: Qual é a tendência de resultados da função $f(x) = \frac{2x-1}{x+3}$ quando x está muito próximo de - 3?

$$f(-3) = \frac{2 \cdot (-3) - 1}{-3 + 3} = -\frac{7}{0} = \frac{1}{7}$$

X	2x-1	x+3	f(x)	x	2x-1	x+3	f(x)
-2,9	-6,8	0,1	-68	-3,1	-7,2	-0,1	72
-2,99	-6,98	0,01	-698	-3,01	-7,02	-0,01	702
-2,999	-6,998	0,001	-6998	-3,001	-7,002	-0,001	7002
-2,9999	-6,9998	0,0001	-69998	-3,0001	-7,0002	-0,0001	70002
-2,99999	-6,99998	0,00001	-699998	-3,00001	-7,00002	-0,00001	700002

$$\lim_{x \to -3} \left(\frac{2x-1}{x+3} \right) = \# \text{ pois } \lim_{x \to -3^+} f(x) \neq \lim_{x \to -3^-} f(x)$$

2º Exemplo: Qual é a tendência de resultados da função $f(x) = \frac{2x-1}{x+3}$ quando x está muito próximo de - 3?

3º Exemplo: Dada a função $f(x) = \frac{x^2 + x - 6}{x - 2}$, calcule:

a)
$$f(2) = \frac{2^2+2-6}{2-2} = \frac{0}{0} = ??$$
 isso representa uma indeterminação!!!

b)
$$f(2,1) = \frac{(2,1)^2 + 2,1 - 6}{2,1 - 2} = \frac{4,41 + 2,1 - 6}{0,1} = \frac{0,51}{0,1} = 5,1$$

c)
$$f(2,01) = \frac{(2,01)^2 + 2,01 - 6}{2,01 - 2} = \frac{4,0401 + 2,01 - 6}{0,01} = \frac{0,0501}{0,01} = 5,01$$

d)
$$f(2,001) = \frac{(2,001)^2 + 2,001 - 6}{2,001 - 2} = \frac{4,004001 + 2,001 - 6}{0,001} = \frac{0,005001}{0,001} = 5,001$$
 $\lim_{x \to 2} \left(\frac{x^2 + x - 6}{x - 2} \right) = 5$

e) o valor de f(x) quando x se aproxima de 2. Resposta: É um valor próximo de 5.

$$\lim_{x\to 2} \left(\frac{x^2 + x - 6}{x - 2} \right) = 5$$

$$\lim_{x \to 2} \left(\frac{x^2 + x - 6}{x - 2} \right) = 5 \qquad \lim_{x \to 2} \left(\frac{x^2 + x - 6}{x - 2} \right) = \lim_{x \to 2} (x + 3) = 2 + 3 = 5$$

Reuxinvendo a função
$$f(x) = \frac{x^2 + x - 6}{x^2 + x}$$
:
 $x^2 + x - 6 = 0$ forma fatorada:
 $\Delta = 1 + 24 = 25$ forma fatorada:

$$x^{2}+x-6=0$$
 forma fatorada:
 $\Delta = 1+24=25$ $a.(x-x').(x-x'')$
 $x' = \frac{-1+5}{2} = \frac{4}{2} = 2$ $1.(x-2).(x+3)$

$$\chi^{\parallel} = \frac{-1-5}{2} = -\frac{6}{2} = -3$$

$$\frac{x^{2}+x-6}{x-2} = \frac{1 \cdot (x-2) \cdot (x+3)}{x-2} = x+3$$

$$\begin{cases} A 2^{2} + Bx + C \\ \Delta = B - 4A (\\ \Delta = 1 - 4 \cdot 1 \cdot (-6) \\ \Delta = 1 + 24 \\ \Delta = 25 \end{cases}$$

1 Definição Suponha que f(x) seja definido quando está próximo ao número a. (Isso significa que f é definido em algum intervalo aberto que contenha a, exceto possivelmente no próprio a.) Então escrevemos

$$\lim_{x \to a} f(x) = L$$

e dizemos "o limite de f(x), quando x tende a a, é igual a L"

se pudermos tornar os valores de f(x) arbitrariamente próximos de L (tão próximos de L quanto quisermos), tornando x suficientemente próximo de a (por ambos os lados de a), mas não igual a a.

1º Exemplo: Dada a função $f(x) = \frac{x+1}{x+2}$, calcule o $\lim_{x\to 0} \left(\frac{x+1}{x+2}\right)$.

Resposta:

2º Exemplo: Dada a função $f(x) = \frac{x-1}{x^2-1}$, calcule o $\lim_{x\to 1} \left(\frac{x-1}{x^2-1}\right)$.

Resposta:

3º Exemplo: Dada a função $f(x) = \frac{x^2 + x - 6}{x - 2}$, calcule o $\lim_{x \to 2} \left(\frac{x^2 + x - 6}{x - 2} \right)$.

Resposta:

EXERCÍCIO

Calcule os limites abaixo:

a)
$$\lim_{x \to 3} \left(\frac{x+1}{x-2} \right)$$

$$\lim_{x \to -2} \left(\frac{x^2 - 4}{x + 2} \right)$$

EXERCÍCIO

Calcule os limites abaixo:

$$\lim_{x \to 3} \left(\frac{x^2 - x - 6}{x - 3} \right)$$

EXERCÍCIO

Calcule os limites abaixo:

$$\lim_{x \to 1} \left(\frac{x^2 + 5x - 6}{x - 1} \right)$$

PROBLEMAS PROPOSTOS

Exercício 1 Calcule o limite, se existir.

11.
$$\lim_{x\to 2} \frac{x^2+x-6}{x-2}$$

13.
$$\lim_{x\to 2} \frac{x^2-x+6}{x-2}$$

15.
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

17.
$$\lim_{h\to 0} \frac{(-5+h)^2-25}{h}$$

19.
$$\lim_{x \to -2} \frac{x+2}{x^3+8}$$

21.
$$\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$$

23.
$$\lim_{x \to -4} \frac{\frac{1}{4} + \frac{1}{x}}{4 + x}$$

12.
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

14.
$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

16.
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x^2 - 2x - 3}$$

18.
$$\lim_{h\to 0} \frac{(2+h)^3-8}{h}$$

20.
$$\lim_{t\to 1} \frac{t^4-1}{t^3-1}$$

22.
$$\lim_{u \to 2} \frac{\sqrt{4u+1}-3}{u-2}$$

24.
$$\lim_{x \to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$$