ML04 — Neural Networks

Romain Gautron

CIAT

March 5, 2019

Platform for Big Data in Agriculture

- The perceptron
- 2 Multilayer perceptron
- 3 Deep Neural Networks
- 4 Transfer Learning
- 5 NN in practice

Rosenblatt perceptron

inputs weights

$$z = W^{T} X_{i} = \sum_{i=0}^{n} x_{i} w_{i}$$

$$A(z) = \begin{cases} 1 \text{ if } z \geq 0 \\ 0 \text{ else} \end{cases}$$

$$Y = A(W^{T} X_{i})$$

Some common activation functions

Perceptron example

x_1	<i>x</i> ₂	ŷ
1	1	1
-1	1	0
0	0	0

$$z = W^T X_i = \sum_{i=0}^n x_i w_i$$

$$A(z) = \begin{cases} 1 \text{ if } z \ge 0 \\ 0 \text{ else} \end{cases}$$

$$Y = A(W^T X_i)$$

- 1 The perceptron
- Multilayer perceptron
- 3 Deep Neural Networks
- Transfer Learning
- 5 NN in practice

The XOR problem

	<i>X</i> ₁	<i>X</i> ₂	l y
_	0	0	0
	0	1	1
	1	0	1
	1	1	0

One XOR solution (Heaviside activation)

MLP

Universal approximation theorem (Haykin, 99)

"A single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units"

Input layer	Hidden layer	Output layer
$ \begin{array}{c} I_1 \\ I_2 \\ I_3 \end{array} $	H ₁	$ \begin{array}{c} O_1 \\ \vdots \\ \vdots \\ \vdots \end{array} $
<i>I</i> _n	H_n	O_n

Stacking

Back-propagation

Vocabulary

Batch

Blocks of training set sliced in a given size (ex:64) feeding each FP + BP [parameter impacting gradient descent]

Epoch

FP + BP of **all** training set (all batches)

Iteration

Number of batches with FP + BP

Classification VS Regression Output Layer

CI :C: .:	/ I \
Classification ((m classes)

Regression

m == 2: **1 neuron** with **sigmoid** activation

m > 2: **m** neurons with softmax activation

1 neuron with linear activation

Softmax activation

Softmax

$$softmax(z_j) = rac{\exp z_j}{\sum_{i=1}^m \exp z_i}, \mathbb{R} o]0,1]$$

Multi-Class Classification with NN and SoftMax Function

- \rightarrow Extension of the logistic regression to a multiclass (>2) problem
 - \hookrightarrow Outputs interpreted as the probability of each class
 - $\hookrightarrow \hat{y}$ is the maximum probability

Neural Network regularization (1)

- A MLP has a very high complexity: prone to overfitting
 - \hookrightarrow Avoiding co-adaptation in MLP hidden layers \Rightarrow leds to overfitting

Dropout

At each step of the training, we randomly set the output of hidden layer neurons to 0 with a probability p

Figure: Dropout illustration, courtesy Wenhao Zhang

In general, improves well generalization performances

Neural Network regularization (2)

Same idea than with linear regression

$\ell 1$ and $\ell 2$ norms

$$\mathbf{L}_{\ell 2} = \mathbf{L} + rac{\lambda}{2} ||\mathbf{W}||_2^2$$

$$\begin{split} \mathbf{L}_{\ell 2} &= \mathbf{L} + \frac{\lambda}{2}||\mathbf{W}||_2^2 \\ \mathbf{L}_{\ell 1} &= \mathbf{L} + \frac{\lambda}{2}||\mathbf{W}||_1 \end{split}$$

Batch Normalization

- \rightarrow whereas they can deal with, NN prefer scaled inputs
- ightarrow batch normalization: exponential moving average scaling the output of layer feeding another one
- \rightarrow helps to converge
- → typically used after dense or convolution layers

How do I choose the architecture?

Choices to do

- \rightarrow activation functions
- ightarrow weight initialization
- → number of hidden layers
- → number of neurons in hidden layers
- \rightarrow regularization
- \rightarrow ...

No known heuristics to help, rules of thumb:

- ightarrow as much input neurons as features in ${f X}$
- ightarrow start with one hidden layer of the mean between the number of input and output neurons
- ightarrow choose the output layer according to your problem

- The perceptron
- 2 Multilayer perceptron
- 3 Deep Neural Networks
- 4 Transfer Learning
- 5 NN in practice

Convolutional NN: Translation invariance

Figure: CNN architecture — from NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification

Convolution

 $\label{eq:Figure: Convolution illustration — courtesy Vincent Dumoulin, Francesco Visin} \\$

Pooling

Figure: Pooling illustration — courtesy Justin Francis

Recurrent NN: Time invariance (1)

Figure: RNN — courtesy Christopher Olah

Recurrent NN: Time invariance (2)

Figure: LSTM — courtesy Christopher Olah

- The perceptron
- 2 Multilayer perceptron
- 3 Deep Neural Networks
- Transfer Learning
- 5 NN in practice

Hierarchy in CNN

Figure: Hiearchy in DL — courtesy Yalie Nie

Principle

Figure: Transfer Learning principle — courtesy Hvass-Labs

Advantages of TL

- \rightarrow low cost to train (possible on a laptop)
- \rightarrow works with a few thousands training images

- The perceptron
- 2 Multilayer perceptron
- 3 Deep Neural Networks
- 4 Transfer Learning
- **5** NN in practice

Keras

Use of GPU

What did we learn?

- \rightarrow NN unit is based on Rosenblatt perceptron
- \rightarrow the MLP can approximate any function
- ightarrow NN training is are iterative suit of forward pass and backpropagation
- → NN can perfom either classification or regression
- \rightarrow Widely used DNN architectures are convolutional (space invariance) and recurrent NN (time invariance)
- ightarrow transfer learning is an handy way to use DNN with minimal efforts

