Ferienkurs Lineare Algebra 1

$TUM-WS\ 2012/13$

Übungsblatt 1 – Grundlagen: Abbildungen und Mengen

Robert Lang (rl@ph.tum.de)

Montag, 18. März 2013

Aufgabe 1

Vereinfachen Sie folgende Ausdrücke:

(a) $(A \cup B) \cup (A \setminus B)$

(d) $(A \backslash B) \cap (A \cap B)$

(b) $(A \cup B) \setminus (B \setminus A)$

(e) $(A \cap B) \cup (A \setminus B)$

(c) $(A \cup B) \cap (A \setminus B)$

(f) $(A \backslash B) \backslash (B \backslash A)$

Aufgabe 2

Welches Kriterium (d.h. eine notwendige sowie hinreichende Bedingung) muss gelten für $f: X \to Y, x \mapsto f(x)$, damit Graph $f = X \times f(X)$ erfüllt ist? Beweisen Sie Ihre Vermutung!

Aufgabe 3

Wie groß ist die Menge Y^X , wenn X n Elemente und Y m Elemente besitzt? Geben Sie alle Abbildungen im Falle von n=2, m=3 und n=3, m=2 an.

Aufgabe 4

Warum wird die Potenzmenge $\mathcal{P}(M)$ oft auch als 2^M geschrieben? Überlegen Sie zunächst, wie groß die Potenzmenge einer n-elementigen Menge ist.

Aufgabe 5

Beweisen Sie die Treue von Abbildungen f bzgl. " \subseteq " und " \cup ", d.h.

- (1) $A \subseteq B \Rightarrow f(A) \subseteq f(B)$
- (2) $f(A \cup B) = f(A) \cup f(B)$

Aufgabe 6

Führen Sie den Beweis zu Lemma 1.4, d.h. beweisen Sie die Treue von f^{-1} .

Aufgabe 7

Zeigen Sie, dass für $f \in Y^X$ die Abbildung $F: X \to \operatorname{Graph} f, x \mapsto F(x) = (x, f(x))$ bijektiv ist.

Aufgabe 8

Untersuchen Sie die beiden folgenden Abbildungen auf Injektivität und Surjektivität:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto f(x,y) = xy$$

(b)
$$g: \mathbb{R} \to \mathbb{R}^2$$
, $x \mapsto g(x) = (x^2 + 1, (x+1)^2)$

Aufgabe 9

Was geschieht mit den Aussagen in Lemma 1.5, wenn

- (a) f surjektiv ist,
- (b) f injektiv ist?

Aufgabe 10

Beweisen Sie die Aussagen in Lemma 1.7.

Aufgabe 11

Seien $f, g, h : \mathbb{N} \to \mathbb{N}$ Abbildungen, definiert durch $n \mapsto f(n) = n + 1$, $n \mapsto g(n) = n^2$, und $n \mapsto h(n) = n^3$. Gilt $f \circ g = g \circ f$, $f \circ h = h \circ f$ oder $g \circ h = h \circ g$?

Aufgabe 12

Begründen Sie, dass die folgenden Mengen gleich mächtig zu \mathbb{N} sind: \mathbb{Z} , \mathbb{N}^2 , \mathbb{Q}

Aufgabe 13

Auf $\mathbb{R} \times \mathbb{R}$ werden zwei Relationen R_1 , R_2 definiert:

$$(x_1, x_2)R_1(y_1, y_2) :\Leftrightarrow x_1 = y_1$$

$$(x_1, x_2)R_2(y_1, y_2) :\Leftrightarrow x_1 < y_1$$

Untersuchen Sie diese auf Reflexivität, Symmetrie und Transitivität.