Regression for causal inference

PSCI 2301: Quantitative Political Science II

Prof. Brenton Kenkel

brenton.kenkel@gmail.com

Vanderbilt University

February 24, 2025

Recap

Last week — matching in theory and in practice

- How to make causal inferences with observational data?
 - → Measure and control for confounding variables
 - → Ideal: compare obs that are same in all ways except treatment
- Subclassification
 - → Divide observations into subgroups based on confounder values
 - → Weighted mean of differences within subgroups
 - → Runs into curse of dimensionality w/ many covariates
- Other matching estimators
 - → Mahalanobis distance
 - → Propensity scores

Today's agenda

Using controlled regression to estimate average treatment effects

- 1. Reasons to include controls in a regression
 - Reduce standard errors by better isolating treatment effect
 - Contend with selection bias, similar to matching
- 2. Interpreting regression output
 - How the treatment effect is calculated when controls are present
 - Special considerations for a logged outcome variable
 - How to interpret coefficients on controls (spoiler: don't try)

Regression with controls

Bivariate regression: What we already know

Linear regression with a single covariate:

$$\mathbb{E}[Y_i \mid X_i = x] = \underbrace{lpha}_{ ext{intercept}} + \underbrace{eta}_{ ext{slope}} \cdot x$$

Formula for slope estimate:

$$\hat{eta} = rac{ ext{cov}[X_i, Y_i]}{ ext{var}[X_i]}$$

If
$$X_i$$
 is binary, then $\hat{eta} = ext{avg}[Y_i \mid X_i = 1] - ext{avg}[Y_i \mid X_i = 0]$

Regression with multiple covariates

Say we have K covariates, $X_{i1}, X_{i2}, \ldots, X_{iK}$

Linear regression model with many covariates:

$$egin{aligned} \mathbb{E}[Y_i \mid X_{i1} = x_1, \dots, X_{iK} = x_K] &= lpha + eta_1 x_1 + \dots + eta_K x_K \ &= lpha + \sum_{k=1}^K eta_k x_k. \end{aligned}$$

 eta_k = change in predicted Y_i due to increasing X_{ik} by one unit, holding all other covariates fixed

→ Can only be interpreted as a causal effect under special circumstances — more on this to come

Why include more variables?

Assume your goal is to estimate the avg treatment effect of D_i :

$$\mathbb{E}[Y_i \mid D_i, X_i] = \underbrace{\alpha}_{ ext{intercept}} + \overbrace{\tau D_i}^{ ext{ATE}} + \underbrace{\sum_{k=1}^K eta_k X_{ik}}_{ ext{controls}}.$$

What is the point of including the controls?

- 1. Variance reduction
 - Isolate the effect of treatment more cleanly
 - Beneficial for both randomized experiments and observational data
- 2. Control selection bias akin to matching

Controls for variance reduction

Hypothetical example: news watching experiment

Outcome mainly dependent on age, but treatment has a small effect

Controls for variance reduction

True ATE in simulation is +5 points

```
# A tibble: 2 \times 5
fit_no_controls <- lm(y ~ treat, data = df_fox)</pre>
                                                term estimate std.error statistic p.value
tidy(fit_no_controls)
                                                        <dbl>
                                                                          <dbl>
                                                <chr>
                                                                 <dbl>
                                                                                  <dbl>
                                               1 (Int... 39.8 2.70 14.8 1.24e-26
                                               2 treat 3.93 3.81 1.03 3.05e- 1
                                               # A tibble: 3 \times 5
fit_controls <- lm(y ~ treat + age, data = df_fox)</pre>
                                                term estimate std.error statistic p.value
tidy(fit_controls)
                                                        <dbl>
                                                                 <dbl>
                                                                         <dbl> <dbl>
                                                <chr>
                                               1 (Int... -19.6 1.79 -10.9 1.34e-18
                                               2 treat 4.81 1.01 4.76 6.67e- 6
                                               3 age
                                                         1.49 0.0414
                                                                          36.1 5.05e-58
```

Controlled regression gets closer + has much smaller std error

Controls for variance reduction

Distribution of ATE estimates across 1000 simulated experiments

Imagine similar data, but where Pr(treat) increases with age

With selection bias, the raw difference of means vastly overstates ATE


```
fit_no_control <- lm(y ~ treat, data = df_fox_obs)
tidy(fit_no_control)</pre>
```

```
fit_control <- lm(y ~ treat + age, data = df_fox_ob
tidy(fit_control)</pre>
```

```
# A tibble: 3 × 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 (Int... -20.7 1.83 -11.3 2.03e-19
treat 6.02 1.20 5.03 2.24e-6
decomposed age 1.49 0.0486 30.7 9.78e-52
```

```
# A tibble: 1 × 1
ate
<dbl>
1 7.41
```

Distribution of ATE estimates across 1000 simulated experiments

Comparison of treatment effect estimators

Regression

- Biased unless all confounders are measured and included
- Always uses all the data
- Lower standard errors if linear approximation is good
- Biased if linear approx. is bad
- Easier to use (IMO)

<u>Matching</u>

- Biased unless all confounders are measured and included
- May throw away some data
- Higher standard errors
- Unbiased, no linearity needed
- Harder to use lots of choices

My bottom line: Best to use both, see if conclusions change much

... but even better not to have to rely on measuring all confounders

Interpreting regression output

Recap: Gilligan & Sergenti data

- Unit of observation: Conflict event
- Outcome: Length of peace, ln_peace_duration
- Treatment variable: UN intervention, intervention
- Various country/conflict-level confounders

df_gs

```
# A tibble: 87 \times 11
                         intervention ln_peace_duration ln_deaths ln_wardur ln_population
        ethfrac country
  id
  <chr> <dbl> <chr>
                                <dbl>
                                                  <dbl>
                                                            <dbl>
                                                                      <dbl>
                                                                                    <dbl>
1 41 2 1.36 Haiti
                                                                                     8.78
                                                   2.40
2 41 3 1.36 Haiti
                                                   4.96
                                                             5.52
                                                                         12
                                                                                     8.81
3 52 2
         55.8 Trinidad...
                                                    5.07
                                                              3.40
                                                                                     7.10
         30.5 Mexico
4 70 2
                                                   3.40
                                                             4.98
                                                                                    11.4
                                                   4.42
                                                                                    11.4
5 70_3
          30.5 Mexico
# i 82 more rows
# i 3 more variables: ln_military <dbl>, ln_gdppc <dbl>, polity <dbl>
```

Regression estimate of the intervention effect

```
fit_gs <- lm(
    ln_peace_duration ~ intervention + ln_deaths + ln_wardur + ln_population +
    ln_military + ln_gdppc + polity,
    data = df_gs
)
tidy(fit_gs)</pre>
```

```
# A tibble: 8 \times 5
 term
             estimate std.error statistic p.value
               <dbl>
                               <dbl> <dbl>
 <chr>
                       <dbl>
                     1.57
                               2.30 0.0244
1 (Intercept)
            3.60
2 intervention 0.821 0.323 2.54
                                     0.0129
                               -0.563 0.575
3 ln_deaths
             -0.0298 0.0530
4 ln wardur
            0.00169
                     0.00193
                               0.877 0.383
                     0.154
                               -1.08
                                     0.285
5 ln_population -0.166
6 ln_military
             0.0415 0.143 0.290 0.773
7 ln_gdppc
          0.199 0.142 1.40
                                     0.165
8 polity
             0.0204
                     0.0247
                               0.824 0.412
```

Calculating the controlled ATE

$$\hat{ au} = rac{ ext{cov}[Y_i, D_i \mid X_{i1}, \dots, X_{iK}]}{ ext{var}[D_i \mid X_{i1}, \dots, X_{iK}]}$$

```
# Variation in treatment assignment not explained by confounders:
resid_treat <- residuals(
    lm(intervention ~ ln_deaths + ln_wardur + ln_population + ln_military + ln_gdppc + polity,
        data = df_gs))

# Variation in outcome not explained by confounders:
resid_y <- residuals(
    lm(ln_peace_duration ~ ln_deaths + ln_wardur + ln_population + ln_military + ln_gdppc + polity,
        data = df_gs))

# Bivariate relationship between residuals
cov(resid_y, resid_treat) / var(resid_treat)</pre>
```

[1] 0.8207033

Interpreting regression with a logged outcome

Remember: $\ln z = a$ equivalent to $z = e^a$, where e pprox 2.718

Important property of exponents: $e^{a+b}=e^a\cdot e^b$

Rewriting the regression model with a logged outcome

$$\ln Y_i pprox lpha + au D_i + eta_1 X_{i1} + \cdots \ Y_i pprox e^{lpha + au D_i + eta_1 X_{i1} + \cdots}$$

$$Y_ipproxegin{cases} e^{lpha+eta_1X_{i1}+\cdots} & ext{if }D_i=0,\ e^{ au}\cdot e^{lpha+eta_1X_{i1}+\cdots} & ext{if }D_i=1. \end{cases}$$

→ Interpret as a proportional difference in the outcome due to treatment

Interpreting regression with a logged outcome

[1] 2.272771

```
exp(0.821 + c(-2, 2) * 0.323)
```

[1] 1.191246 4.336207

∼→ Confidence interval: effect of 1.19x to 4.34x

Coefficients on control variables

1m() spits out coefficients/p-values for the treatment and each confounder

Best practice: **ignore** these for everything besides treatment variable

- Can't interpret their coefficients causally
 - → Coefficients give "all else equal" comparisons
 - → ... but all else is not equal when the variable affects treatment!
- High p-value does not mean the variable isn't a confounder

Wrapping up

What we did today

- 1. Worked through reasons to include controls
 - Variance reduction isolate the treatment effect
 - Bias reduction kill selection bias induced by confounders
- 2. Compared matching and regression
 - Regression is more precise *if* relationships are close to linear
 - Otherwise, matching is better at eliminating bias
- 3. Dealt with practical issues in regression
 - Proportional change interpretation w/ logged outcome
 - Ignore the control coefficients!

Next time: Estimating heterogeneous effects with regression