`This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-289586

(43)公開日 平成9年(1997)11月4日

(51) Int.Cl.*	酸別記号 庁内整理番号	FI	技術表示箇所
HO4N 1/40		H 0 4 N 1/40	1 0 3 B
G06T 5/00		1/41	C
H 0 4 N 1/409		G06F 15/68	3 1 0 J
1/41			3.50
		H 0 4 N 1/40	1 0 1 C
		審查請求 未請求	前求項の数46 OL (全 54 頁)
(21)出願番号	特額平9-27867	(71) 出顧人 000001007	
			ン株式会社
(22)山顧日	平成9年(1997)2月12日	東京都大田区下丸子3丁目30番2号	
		(72)発明者 前田	充
(31)優先権主張番号	特顧平8-27893	東京都大田区下丸子3丁目30番2号 キヤ	
(32)優先日	平 8 (1996) 2 月 15日	ノン株	式会社内
(33)優先権主張国	日本 (JP)	(74)代理人 并理士	大塚 康徳 (外1名)
(31)優先權主張番号	特顯平8-33625		
(32)優先日	平8 (1996) 2 月21日		
(33)優先權主張国	日本(JP)		

(54) 【発明の名称】 画像処理装置及びその方法

(57)【要約】

【課題】 画像データの下地に発生するノイズを好適に 除去し、画像データを量子化するための量子化数を好適 に判定する画像処理装置及びその方法を提供する。

【解決手段】 画像データの濃度の出力頻度の分布をヒ ストグラム生成部3において生成する。生成された分布 の最大出力頻度を含み、所定の閾値以上の出力頻度を有 する濃度領域を下地濃度輻検出部与において判定する。 判定された濃度領域以外の前記分布に含まれる極大値の 数に基づいて、量子化数を量子化数判定部6において決 定する。

【特許請求の範囲】

【請求項1】 画像処理装置であって、

画像を表す名領画像データを入力する入力手段と、

前記多値画像データより2値画像データを抽出する抽出 手段と、

前記2値画像データに基づいて、前記画像を複数のプロックに分割する分割手段と、

前記プロック内の前記多値画像データを量子化する量子 化手段を備え、

前記多値画像データの量子化数は前記ブロック単位で決定されることを特徴とする画像処理装置。

【請求項2】 前記2値画像データは、前記多値画像データの分布に基づいて抽出されることを特徴とする請求項1に記載の画像処理装置。

【請求項3】 前記分布は、前記多値画像データの頻度 ヒストグラムに基づき判定されることを特徴とする請求 項2に記載の画像処理装置。

【請求項4】 前記分割手段は、前記画像の属性に基づき該画像を前記ブロックに分割することを特徴とする請求項1 に記載の画像処理装置。

【請求項5】 前記属性は、少なくとも文字、写真を含むことを特徴とする請求項4に記載の画像処理装置。

【請求項6】 前記量子化手段は、更に、前記ブロック 単位で前記多値画像データの頻度ヒストグラムを生成す る生成手段からなり、

前記多値画像データの量子化数は、前記頻度ヒストグラムに基づき決定されることを特徴とする請求項1に記載の画像処理装置。

【請求項7】 前記多値画像データは、複数の色成分データからなることを特徴とする請求子1 に記載の画像処理装置。

【請求項8】 前記量子化された多値画像データに基づいて、複数の色文字を識別する識別手段を更に備えることを特徴とする請求項7に記載の画像処理装置。

【請求項9】 前記識別手段は、前記複数の色文字をキャラクタコードとして出力することを特徴とする請求項8に記載の画像処理装置。

【請求項10】 画像処理方法であって、

画像を表す多値画像データを入力する入力工程と、

前記多値画像データより2値画像データを抽出する抽出 工程と、

前記2値画像データに基づいて、前記画像を複数のブロックに分割する分割工程と、

前記ブロック内の前記多値画像データを量子化する量子 化工程を備え、

前記多値画像データの量子化数は前記ブロック単位で決定されることを特徴とする画像処理方法。

【請求項11】 画像処理のプログラムコードが格納されたコンピュータ可読メモリであって、

画像を表す多値画像データを入力する入力工程のプログ

ラムコードと、

前記多値画像データより2値画像データを抽出する抽出 工程のプログラムコードと、

前記2値画像データに基づいて、前記画像を複数のブロックに分割する分割工程のプログラムコードと、

前記プロック内の前記多値画像データを量子化する量子化工程のプログラムコードを備え、

前記多値画像データの量子化数は前記ブロック単位で決 定されることを特徴とするコンピュータ可読メモリ。

【請求項12】 カラー画像処理装置であって、

カラー画像を表すカラー画像データを入力する入力手段と

前記カラー画像データの頻度ヒストグラムを生成する生成手段と、

前記頻度ヒストグラムから複数の極値を検索する検索手 段と、

前記カラー画像データから色文字を抽出する抽出手段と

前記色文字の色数は、前記極値に基づいて決定されることを特徴とするカラー画像処理装置。

【請求項13】 前記頻度ヒストグラムはのノイズを除去する除去手段を更に備えること特徴とする請求項12 に記載のカラー画像処理装置。

【請求項14】 前記除去手段は、前記類度ヒストグラムの頻度値についての頻度ヒストグラムを生成することによってノイズを除去することを特徴とする請求項13に記載のカラー画像処理装置。

【請求項15】 前記生成手段は、前記カラー画像データの輝度成分の頻度ヒストグラムを生成することを特徴とする請求項12に記載のカラー画像処理装置。

【請求項16】 前記検索手段は、前記頻度ヒストグラムから下地の濃度を除去した後に、前記極値を検索することを特徴とする請求項12に記載のカラー画像処理装置。

【請求項17】 前記抽出手段は、前記極値に基づき複数のビットプレーンを生成し、各ビットプレーンについて色文字を抽出することを特徴とする請求項12に記載のカラー両像処理装置。

【請求項18】 前記色文字として抽出されていないカラー画像データを符号化する符号化手段を更に備えることを特徴とする請求項12に記載のカラー画像処理装置。

【請求項19】 前記符号化手段は、JPEG符号化方法を実行することを特徴とする請求項18に記載のカラー画像処理装置。

【請求項20】 前記符号化手段は、前記カラー画像データをベクトルデータに変換するごとを特徴とする請求項18に記載のカラー画像処理装置。

【請求項21】 カラー画像処理方法であって、

カラー画像を表すカラー画像データを入力する入力工程

بز

前記カラー両像データの頻度ヒストグラムを生成する生 成工程と、

前記頻度ヒストグラムから複数の極値を検索する検索工 程と

前記カラー両像データから色文字を抽出する抽出工程を 備え、

前記色文字の色数は、前記極大値に基づいて判定される。 ことを特徴とするカラー両像処理方法、

【請求項22】 ガラー画像処理のプログラムコードが 格納されたコンピュータ可読メモリであって、

カラー画像を表すカラー画像データを入力する入力工程のプログラムコードと、

前記カラー画像データの頻度ヒストグラムを生成する生成工程のプログラムコードと、

前記頻度ヒストグラムから複数の極値を検索する検索工 程のプログラムコードと、

前記カラー画像データから色文字を抽出する抽出工程の プログラムコードを備え、

前記色文字の色数は、前記極大値に基づいて判定される ことを特徴とするコンピュータ可読メモリ。

【請求項23】 画像データの濃度の頻度の分布を生成 する生成手段と、

前記生成手段によって生成された分布に基づいて、所定の関値を算出する算出手段と、

前記生成手段で生成された分布の最大頻度となる濃度を 抽出する抽出手段と、

前記最大頻度となる濃度を含み、前記所定の関値以上の 頻度を有する濃度領域を判定する判定手段と、

前記濃度領域内の濃度を持つ前記画像データの濃度を一 律に前記最大類度となる濃度で出力する出力手段とを備 えることを特徴とする画像処理装置。

【請求項24】 前記出力手段は、前記最大類度となる 濃度を、前記画像データの下地の濃度として出力することを特徴とする請求項23に記載の画像処理装置。

【請求項25】 前記算出手段は、前記最大頻度となる 濃度に基づいて、前記分布を量子化する量子化手段と、 前記量子化手段で量子化された分布の同頻度となる頻度 の回数を検知する検知手段とを備え、

前記検知手段で検知された出力頻度の回数の内、最大となる回数の頻度に基づいて、前記所定の関値を算出することを特徴とする請求項23に記載の両係処理装置。

【請求項26】 前記画像データの平坦濃度を持つ画像 データを獲得する獲得手段を更に備え、

前記生成手段は、前記獲得手段で獲得された画像データ の濃度の頻度の分布を生成することを特徴とする請求項 23に記載の画像処理装置。

【請求項27】 前記画像データを符号化する複数の符号化手段と.

画像データを属性毎に複数の領域に分割する分割手段

と、

前記領域に対応する画像データの濃度の出力分布に存在する極大値を計数する計数手段と、

前記計数手段の結果に基づいて、前記領域に対応する画 係データを符号化する符号化手段を選択する選択手段と を更に備えることを特徴とする請求項23に記載の画像 処理装置。

【請求項28】 前記符号化手段は、少なくとも、多値 両係符号化、2値両係符号化、形状符号化を含むことを 特徴とする請求項27に記載の画像処理装置。

【請求項29】 前記画像データは、カラー画像データであることを特徴とする請求項23に記載の画像処理装置

【請求項30】 前記生成手段は、前記カラー画像データから輝度画像データを生成し、該輝度画像データの頻度の分布を生成することを特徴する請求項29に記載の画像処理装置。

【請求項31】 画像データの濃度の頻度の分布を生成する生成工程と、

前記生成工程によって生成された分布に基づいて、所定の関値を算出する算出工程と、

前記生成工程で生成された分布の最大頻度となる濃度を 抽出する抽出工程と、

前記最大頻度となる濃度を含み、前記所定の関値以上の頻度を有する濃度領域を判定する判定工程と、

前記濃度領域内の濃度を持つ前記画像データの濃度を一 律に前記最大頻度となる濃度で出力する出力工程とを備えることを特徴とする画像処理方法。

【請求項32】 画像処理のプログラムコードが格納ざれたコンピュータ可読メモリであって、 手

画像データの濃度の頻度の分布を生成する生成工程のプログラムコードと、

前記生成工程によって生成された分布に基づいて、所定 の関値を算出する算出工程のプログラムコードと、

前記生成工程で生成された分布の最大頻度となる濃度を 抽出する抽出工程のプログラムコードと、

前記最大出力頻度となる濃度を含み、前記所定の関値以上の頻度を有する濃度領域を判定する判定工程のプログラムコードと、

前記濃度領域内の濃度を持つ前記画像データの濃度を一 律に前記最大頻度となる濃度で出力する出力工程のプログラムコードとを備えることを特徴とするコンピュータ 可読メモリ

【請求項33】 画像データの濃度の頻度の分布を生成する生成手段と、

前記生成手段によって生成された分布の最大頻度を含 み、所定の関値以上の頻度を有する濃度領域を判定する 判定手段と、

前記判定手段で判定された濃度領域以外の前記分布に含まれる極大値の数に基づいて、量子化数を決定する第1

決定手段とを備えることを特徴とする画像処理装置。

【請求項34】 前記極大値と該極大値の濃度を抽出する抽出手段と、

前記抽出手段で抽出された極大値の濃度に基づいて、前 記画像データを量子化するための量子化レベルを前記分 布より決定する第2決定手段とを更に備えることを特徴 とする請求項33に記載の画像処理装置。

【請求項35】 前記抽出手段は、前記抽出手段で抽出された極大値の内、所定濃度範囲で、かつ所定頻度範囲内に複数の極大値がある場合、該複数の極大値の中で最大となる極大値を抽出することを特徴とする請求項34に記載の画像処理装置。

【請求項36】 前記量子化レベルに基づいて、前記画 像データを量子化する量子化手段と、

前記量子化手段で量子化された量子化レベル上の画像データの濃度を、該量子化レベル上の極大値となる濃度で出力する第1出力手段を更に備えることを特徴とする請求項34に記載の画像処理装置。

【請求項37】 前記濃度領域内の濃度を持つ画像データの濃度を一律に前記最大頻度となる濃度で出力する第2出力手段を更に備えることを特徴とする請求項33に記載の画像処理装置。

【請求項38】 前記第2出力手段は、前記最大頻度となる濃度を、前記画像データの下地の濃度として出力することを特徴とする請求項37に記載の画像処理装置。

【請求項39】 前記画像データより濃度差が小さい領域を検出する検出手段を更に備え、

前記第2出力手段は、前記検出手段で検出された領域内の画像データの濃度の頻度の分布に基づいて、該画像データの下地とする濃度を出力することを特徴とする請求項38に記載の画像処理装置。

【請求項40】 前記画像データを属性毎に複数の領域 に分割する分割手段を更に備え、

前記生成手段は、前記領域に対応する画像データの濃度 の頻度の分布を生成することを特徴とする請求項3.3 に 記載の画像処理装置。

【請求項41】 前記画像データは、複数の信号で表される画像データであり、前記生成手段は、画像の各構成要素の頻度の分布を生成することを特徴する請求項33に記載の画像処理装置。

【請求項42】 前記画像データの信号が輝度と色度で表されることを特徴とする請求項41に記載の画像処理 装置。

【請求項43】 前記画像データの信号が原刺激の強度 で表されることを特徴とする請求項41に記載の画像処理装置。

【請求項44】 前記判定手段は、前記生成手段によって生成された各信号の濃度値の頻度の分布に対し、最大頻度を含み、所定の閾値以上の頻度を有する濃度領域をそれぞれ判定し、

前記判定手段で判定された各々の濃度領域以外の前記分布に含まれる極大値の数に基づいて、前記両係データを量子化するための量子化数と該画係データに含まれる色を判断する判断手段を更に備えることを特徴とする請求項42に記載の画像処理装置。

【請求項45】 画像データの濃度の頻度の分布を生成する生成工程と、

前記生成工程によって生成された分布の最大頻度を含み、所定の閾値以上の頻度を有する濃度領域を判定する 判定工程と

前記判定工程で判定された濃度領域以外の前記分布に含まれる極大値の数に基づいて、量子化数を決定する第1 決定工程とを備えることを特徴とする画像処理方法。

【請求項4.6】 画像処理のプログラムコードが格納されたコンピュータ可読メモリであって、

画像データの濃度の頻度の分布を生成する生成工程のプログラムコードと、

前記生成工程によって生成された分布の最大頻度を含み、所定の関値以上の頻度を有する濃度領域を判定する 判定工程のプログラムコードと、

前記判定工程で判定された濃度領域以外の前記分布に含まれる極大値の数に基づいて、量子化数を決定する第1 決定工程のプログラムコードとを備えることを特徴とするコンピュータ可読メモリ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、多値画像データの 特徴を判定する画像処理装置及びその方法並びに媒体に 関するものである。

[0002]

【従来の技術】近年、原稿画像を、その原稿画像内に構成される構成要素で表現する技術が高まりつつある。具体的には、原稿画像を構成する、「画像」、「図形」、「文字」、更に「章」、「節」、「段落」、「タイトル」、「キャアション」等の属性と書式を定義する。そして、定義される属性と書式の情報を出力し、出力される属性と書式の情報に基づいて、原稿画像の表示や検索を行う像域分離技術が実現している。また、これらは、世界的な通信網の整備とともに普及しつつあるインターネットに代表されるネットワークで交換されるデータや、アメリカで標準化されたSGMLという形で広がりつつある。

【0003】また、「複合カラー文書を対象とした構造 化カラーファクシミリ」(松本他:画像電子学会誌第2 4巻第1号 pp. 26-33)のように、属性毎に符 号化方式を切り替えることにより、画像を好適に符号化 して伝送したり、蓄積することが考えられている。更 に、例えば、特開平8-30725号には、2値の原稿 画像を入力して、上述の画像の属性や書式の情報を判定 する旨が記載されている。これは、入力される原稿画像 より得られる画像データ中の所定画素領域から低解像度の1 両素を抽出し、低解像度の両素の連続する広がりから、画像の属性や書式の情報を判定するものである。そして、判定された属性や書式の情報を原稿画像から抽出したり、所望の属性や書式の情報を持つ領域を抽出することができる。

【0004】一方、像域分離技術においては、原稿画像をスキャナ等で入力する際に、その原稿画像に濃度ムラや裏写り、ひいては原稿画像の下地の濃度が濃い場合等には、それらがノイズとして原稿画像より得られる画像データの下地に発生し、その発生したノイズが像域分離処理の精度を低下させていた。また、プリンタ等でそのようなノイズを含む下地を持つ画像データを出力すると、出力画像の画質が劣化して出力されてしまっていた。そのため、上述のように画像データの下地にノイズが発生するような場合は、そのノイズを除去する画像処理装置が存在する。

【0005】このような画像データの下地のノイズを除去する画像処理装置は、例えば、原稿画像の濃度の平均値から下地の濃度を判定し、その判定された濃度以下の画像を出力されないように制御することで、画像データの下地に発生するノイズを除去していた。あるいは、原稿画像の入出力濃度のガンマ補正等の補正を行うことで、結果的に画像データの下地に発生するノイズが除去されていた。

[0006]

【発明が解決しようとする課題】しかしながら、上記従来の画像処理装置において、原稿画像の濃度の平均値を用いて下地に発生するノイズを除去する方法では、低濃度の文字や連続附調を持つ画像が存在する原稿画像に対しては、それらの濃度が下地の濃度よりも低いために、低濃度の文字や連続の階調を持つ画像の低濃度の部分が出力されないように制御されてしまうので、出力画像の画質が劣化してしまうという問題点があった。

【0007】また、ガンマ補正等の補正を行うことで下地に発生するノイズを除去する方法では、原稿画像の下地の濃度が白に近い場合は画像データの下地の濃度の出力が抑えられるので結果的に下地に発生するノイズが除去されるが、下地の濃度が高い場合は画像データの下地の濃度の出力が強調されるため下地に発生するノイズが逆に強められて出力されてしまうという問題点があった。

【0008】そのため、これらの方法では、上述のような場合に、像域分離技術の構度の問題や、出力画像の画質の劣化の問題は改善されていなかった。一方、上記従来の画像処理装置で実行される像域分離処理では、原稿画像を読み取って得られる画像データを2値化し、その2値化して得られる2値画像データに対して像域分離処理を行うため、2値化しやすい「図形」と2値化しにくい「写真」を好適に分離することができないという問題

点があった、また、強調を意図して部分的に色文字等が含まれる原稿画像を認識する場合に、その色を認識せずに像域分離を行うため、分離された文字をOCF等で認識しても、その色の情報が認識されずにいるので、所望のOCR結果が得られないという問題点があった。

【0009】また、下地に発生するノイズを除去した両 像データであっても、その下地を構成する濃度に幅があ ると、画像データを伝送したり、蓄積するために行う符 号化処理の効率が悪いという問題点があった。本願は上 述の事情に鑑みてなされたものであり、対象画像の特徴 に応じて良好な量子化を行うことを第1の目的としてい る。

【0010】また、本願の第2の目的は、画像データの下地に発生するノイズを好適に除去し、画像データを量子化するための量子化数を好適に判定することにある。また、本願の第3の目的は、色文字を良好に抽出することにある。また、本願の第4の目的は、スキャナ等で読み取った原稿画像の画像データの下地に発生するノイズを好適に除去することができ、画像データによる出力画像の画質を向上することにある。

【0011】また、画像データの下地に発生するノイズを好適に除去することで、画像データを属性毎の領域に分離する係域分離処理の構度を向上すること、また、画像データの下地に発生するノイズを好適に除去し、ノイズを除去した画像データから好適な下地の濃度を判定し、その判定された濃度を下地の濃度として出力することで、画像データの符号化効率を向上することにある。【0012】

【課題を解決するための手段】上記の第1の目的を達成するための本発明による画像処理装置は以下の構成を備える。即ち、画像処理装置であって、画像を表す多値画像データを入力する入力手段と、前記多値画像データより2値画像データを抽出する抽出手段と、前記2値画像データに基づいて、前記画像を複数のプロックに分割する分割手段と、前記ブロック内の前記多値画像データを量子化する量子化手段を備え、前記多値画像データの量子化数は前記ブロック単位で決定される。

【0013】上記の第2の目的を達成するための本発明による画像処理装置は以下の構成を備える。即ち、画像データの濃度の頻度の分布を生成する生成手段と、前記生成手段によって生成された分布の最大頻度を含み、所定の閾値以上の頻度を有する濃度領域を判定する判定手段と、前記判定手段で判定された濃度領域以外の前記分布に含まれる極大値の数に基づいて、量子化数を決定する第1決定手段とを備える。

【0014】上記の第3の目的を達成するための本発明によるカラー画像処理装置は以下の構成を備える。即ち、カラー画像処理装置であって、カラー画像を表すカラー画像データを入力する入力手段と、前記カラー画像データの頻度ヒストグラムを生成する生成手段と、前記

類度ヒストグラムから複数の極値を検索する検索手段と、前記カラー画像データから色文字を抽出する抽出手段と、前記色文字の色数は、前記極大値に基づいて決定される。

【0015】上記の第4の目的を達成するための木発明による画像処理装置は以下の構成備える。即ち、画像データの濃度の頻度の分布を生成する生成手段と、前記生成手段によって生成された分布に基づいて、所定の関値を算出する第出手段と、前記生成手段で生成された分布の最大頻度となる濃度を抽出する抽出手段と、前記最大頻度となる濃度を含み、前記所定の関値以上の頻度を有する濃度領域を判定する判定手段と、前記濃度領域内の濃度を持つ前記画像データの濃度を一律に前記最大頻度となる濃度で出力する出力手段とを備える。

[0016]

【発明の実施の形態】以下、図面を参照して本発明の好 適な実施の形態を詳細に説明する。

〈第1の実施の形態〉図1は第1の実施の形態の画像処理装置の構成を示すブロック図である。図1において、1は原稿画像を入力する画像入力部であり、CCDセンサなどの光電変換手段を含むイメージスキャナ等で構成される。ここでは入力する原稿画像を白黒の多値画像(8ビット/画素)として説明を行う。2は画像入力部1より得られる原稿画像の画像データを記憶しておくフレームメモリである。

【0017】3はフレームメモリ2から読み出された画像データ(8ビット/画素の多値画像データ)の画素値のヒストグラムを作成するヒストグラム生成部である。尚、ヒストグラム生成部3は、256個のカウンタで構成され、各カウンタは読み出される画像データ(8ビット/画素の多値画像データ)の画素値に対応しており、多値画像データが読み出されるたびにその画素値に対応するカウンタに1が加えられる。

【0018】4はヒストグラムから、出力頻度の最大値とその最大値を持つ画素値を出力する最大頻度検出部である。5は最大頻度検出部4で検出された最大値から頻度分布(ヒストグラム)を量子化するための量子化ステップのを決定する量子化ステップ第出部である。6は量子化ステップ算出部5で算出された量子化ステップでヒストグラムを量子化する量子化部である。7は101個のカウンタで構成され、量子化部6の出力のヒストグラムを生成するヒストグラム生成部である。8はノイズ関値決定部であり、ヒストグラム生成部である。8はノイズ関値決定部であり、ヒストグラム生成部7の出力と量子化ステップ算出部5で算出された量子化ステップ可から頻度上のノイズを除去するための頻度ノイズ関値を決定する

【0019】9はノイズ閾値決定部8で決定された頻度 ノイズ閾値とヒストグラム生成部3で生成されたヒスト

 $r(i) = h(i) / / q \quad (i = 0 \sim 255) \quad \dots (2)$

尚、記号/『は割り算後に小数点以下を四緒五人するこ

グラムを比較する比較部である。10は最大頻度検出部4で検出された最大値と比較部9の出力から下地を構成する温度の幅を求める下地濃度幅検出部である。11は下地濃度幅検出部10で検出された下地を構成する濃度の幅を外部装置に出力する端子である。12は最大頻度検出部4で検出された下地の濃度を外部装置に出力する端子である。13はフレームメモリ2の内容を外部装置に出力する端子である。

【0020】尚、図1で示される画像処理装置の各構成 要素は、不図示のCPUで制御されるものとする。次 に、図1を用いて、画像処理装置において実行される処理について説明する。まず、処理に先立ち、不図示のC PUはフレームメモリ2と、ヒストグラム生成部3、ヒストグラム生成部7のカウンタの内容を0にクリアする。

【0021】続いて、CPUはユーザの指示に従って、画像入力部1から白黒多値画像(8ビット/画業)を表す画像データを入力し、その画像データをフレームメモリ2に格納する。1画像分の画像データがフレームメモリ2に格納された後、CPUは、フレームメモリ2から画像データを読み出し、ヒストグラム生成部3に入力する。ヒストグラム生成部3の25-6個のカウンタは、入力される画像データの画素値に対応しており、1画素の画像データが入力されるとその画素値に対応するカウンタの内容に1を加える。

【0022】入力された画像データの全ての画素によってヒストグラムが生成された後、CPUは最大頻度検出部4を動作させ、ヒストグラムの中で出力頻度が最大値を持つ画素値を検出する(つまり、カウンタの値が最大となる画素値)。そして、その検出される出力頻度の最大値mと、対応する画素値を出力する。また、この対応する画素値は下地の濃度を示すので、この濃度を下地代表濃度もと呼ぶ。この下地代表濃度もは端子12から出力される。

【0023】検出された出力頻度の最大値mは量子化ステップ算出部5に入力される。量子化ステップ算出部5では、ヒストグラムを正規化するための量子化ステップ gを(1)式に従って決定する。

q = m / 100 ... (1)

決定された量子化ステップ q は量子化部6 に入力される。量子化ステップ q が入力されたら、量子化部6 はビストグラム生成部3 で生成される出力頻度値 h (i) (i=0~255) (ヒストグラム)を画素値の低い方である h (0) から順に読み出し、(2) 式によって量子化し、その量子化結果 r (i) (i=0~255) を得る。

0 0551 (01

[0024]

とを表わす。ヒストグラム生成部7は量子化部6の出力

. .

のヒストグラムを生成する。101個のカウンタは、最 子化結果 r (i) の値に対応しており、対応するカウン タの内容に1を加える。

【0025】量子化結果r(i)の全てについてヒストグラムの生成が終えたら、ノイズ関値決定部8を動作させ、ヒストグラム生成部7のカウンタの内容からノイズ関値決定部8は、ヒストグラム生成部7のカウンタの内容から最大値をとる量子化結果mrの値を検出し、量子化ステップαを掛けた後、子め設定された値αを加算して得られる値をノイズ関値として算出する。つまり、(3)式によって得られる値をノイズ関値のisc_thとして算出する。

【0026】noise_th=mr × q+a ····(3) ノイズ関値決定部8で算出されたノイズ関値noise_th は、比較部9に入力される。続いて、ヒストグラム生成 部3の各カウンタの内容を順に読み出し、ノイズ関値no ise_thと比較し、出力頻度値h(i)がノイズ関値nois e_thより大きければその値を出力し、小さければ「0」 を出力する。その結果は下地濃度幅検出部10に入力さ れる

【0027】下地濃度幅検出部10は、最大頻度検出部4から下地代表濃度りと比較部9から入力された値から、下地を構成する画素の濃度の幅を算出する。この幅は、下地代表濃度りを中心として最近傍の画素値において、出力頻度が0になっている値を検出する。図2を用いて、その検出する過程を示す。尚、図2には、ある原稿画像の画像データが持つ画素値とその出力頻度の関係を示しており、横軸に画素値、縦軸に出力頻度で表している。

【0028】まず、下地代表濃度りから画素値の低い方へ出力頻度の検査を行い、頻度が0になった値も1.0を求める、この値が濃度幅の下限値となるので濃度幅下限値と呼ぶ。同様に、両素値の高い方へ出力頻度の検査を行い、濃度が0になった値も11を求める。この値が濃度幅の上限値となるので濃度幅上限値と呼ぶ。尚、この濃度幅下限値も10と濃度幅上限値し11は端子11から出力される。

【0029】次に第1の実施の形態で実行される処理について、図3のフローチャートを用いて説明する。図3は第1の実施の形態で実行される処理の処理フローを示すフローチャートである。まず、処理に先立ち、不図示のCPUはフレームメモリ2と、ヒストグラム生成部3、ヒストグラム生成部7のカウンタの内容を0にクリアする。

【0030】ステップS3010で、続いて、CPUはユーザの指示に従って、画像入力部1から白黒多値画像(8ビット/画業)である原稿画像を読み込み、その画像データをフレームメモリ2に格納する。ステップS3020で、原稿画像分の画像データがフレームメモリ2に格納された後、CPUは、フレームメモリ2から画像

データを読み出し、ヒストグラム生成部3に入力し、入力された画像データの全ての画素によってヒストグラムを生成する。

【0031】ステップS3030で、CPUは最大頻度 検出部4を動作させ、ヒストグラムの中で出力頻度が最 大値を持つ両素値を下地代表濃度 b として抽出する。ス テップS3040で、量子化ステップ算出部5で、ヒストグラムを正規化するための量子化ステップ q を決定 し、決定された量子化ステップ q を量子化部6に入力する。量子化部6は、決定された量子化ステップ q に基づいて、ヒストグラム生成部3で生成されたヒストグラムを量子化し、ヒストグラム生成部3で生成されたヒストグラムを量子化し、ヒストグラムを成する。

【0032】ステップS3050で、ノイズ関値決定部 8を動作させ、星子化されたヒストグラムからノイズ関値noise_thを算出する。ステップS3060では、各出力頻度値h(i)について、比較部9において、ヒストグラム生成部3で生成されたヒストグラムの出力頻度値h(i)がノイズ関値noise_thよりも大きいか否かを比較する。ノイズ関値noise_thが出力頻度値よりも小さい場合(ステップS3060でNO)、ステップS3060で、その値を出力する。一方、ノイズ関値noise_thが出力頻度値よりも大きい場合(ステップS3060でYES)、ステップS3080で、「0」を出力する。ステップS3080で、「0」を出力する。ステップS3080を観次ステップS3060の処理が終了したか否かを判定し、終了するまで順次ステップS3060~ステップS3080を繰り返す。

【0033】ステップS3090で、下地濃度幅検出部10は、最大頻度検出部4から下地代表濃度りと比較部9から入力された値から、下地を構成する画素の濃度の幅として濃度幅下限値りも0と濃度幅上限値りも1を抽出する。次に、第1の実施の形態で説明される両像処理装置の適用例を説明する。例えば、図4に示されるような両係通信装置に適用させた場合に、実行される動作とその構成を説明する。

【0034】図4は第1の実施の形態の画像処理装置を適用させた画像通信装置の構成を示すプロック図である。図4において、20は第1の実施の形態の図1に示される画像処理装置である。21は、画像処理装置20の端子11から出力された濃度幅下限値りも0と濃度幅上限値りも1と、端子13から出力されたフレームメモリ2の内容を比較する比較部である。22はラッチであり、タイミング調整を行う。23はセレクタであり、比較部21の出力によって、ラッチ22の出力と画像処理装置20の端子12から出力される下地代表濃度もを選択して出力する。

【0035】24は入力された画像データを、直交変換、量子化、ハフマン符号化を用いた多値画像データの符号化であるJPEG符号化を行うJPEG符号化部で

ある。25は通信プロトコルに合わせてJPEC符号化データを送信する通信インタフェースである。26は電話回線やLANで構成される通信回線である。次に図4で実行される処理の概要を説明する。

【0036】両係処理装置20のフレームメモリ2から画像データを両素順で読み込み、端子13を介してラッチ22に格納する。同時に比較部21は、端子13より入力された画素値と、端子11より入力された濃度幅下限値 b t 0と濃度幅上限値 b t 1を比較し、入力画素値が濃度幅下限値 b t 0と濃度幅上限値 b t 1の間にあれば「1」を、そうでなければ「0」を出力する。

【0037】セレクタ23は、比較部21の出力が「1」であれば、端子12から出力された下地代表濃度 もを選択して出力する。一方、「0」であれば、ラッチ 22でラッチされている値を出力する。JPEG符号化 部24は、セレクタ23より入力された画素値に対し、 JPEG符号化を施し、通信インタフェース25を介し て通信回線26に出力する。以上の処理を、フレームメ モリ2の全ての画像データについて行い、送信を終了し たら全ての動作を終了する。

【0038】以上のようなJPEG符号化の前処理を行 うことにより、入力画像の下地を整え、符号化効率を向 上させることができる。尚、上述の実施の形態では、よ PEG符号化を用いたが、符号化方法としては、他のブ ロック符号化、差分符号化などを用いても良い。以上説 明したように、第1の実施の形態によれば、画像データ の画素値のヒストグラムに基づいて、下地代表濃度もと 下地の濃度幅上限値しし1と濃度幅下限値しし0を抽出 し、濃度幅上限値bt1と濃度幅下限値bt0の範囲内に 合まれる画素値をすべて下地代表濃度もとして出力する ことで、一定した好適な下地の濃度を出力することがで きる。また、両素値のヒストグラムを量子化し、量子化 されたヒストグラムに基づいて、ノイズ関値noise_thを 算出し、その質出されたノイズ関値noise_thを用いるこ とで、下地の濃度として出力される出力頻度のノイズを 好適に除去することができる。

【0039】また、白黒画像に対して、従来より高速で 比較的小さい回路規模で好適な下地の濃度判定が可能に なり、その結果、下地のノイズを好適に除去できる。ま た、ノイズによる影響を取り除き、下地を一定濃度にす ることができるので、符号化効率を向上させることがで きる。

<第2の実施の形態>第1の実施の形態では、白黒多値画像の原稿画像の下地の濃度幅と好適な下地濃度を判定する画像処理装置について説明した。第2の実施の形態では、カラー多値画像の原稿画像の下地の濃度幅と好適な下地濃度の判定において、特に、カラー多値画像より得られる輝度画像データを用いて判定を行う下地濃度幅判定部109(図6参照)を備える画像処理装置について説明する。

【0040】図5は第2の実施の形態の画像処理装置の構成を示すブロック図である、図5において、101は原稿画像を入力する画像入力部であり、カラーイメージスキャナ等で構成される。ここでは入力する原稿画像をカラー多値画像とし、RGB各色ごとに1両素あたり8ビットの精度をつ画像データとして説明を行う。102は原稿画像をC1E1976L*a*b*画像データ(各成分8ビット)に変換する色変換部である。103は色変換部102より得られる原稿画像のL*a*b*画像データを記憶しておくフレームメモリである。

【0041】104はCIE1976L*a*b*画像データの網度を表わすし*画像データから入力画素が、平坦画素であるか否かを判定する平坦画素判定部である。105はラッチであり、制御信号によってその内容を出力するか否かを決定する。106~108は読み込まれたし*、a*、b*画像データの画素値のヒストグラムを作成するヒストグラム生成部である。

【0042】尚、ヒストグラム生成部106~108 は、それぞれ256個のカウンタで構成され、各カウン タは読み込まれる画像データの画素値に対応しており、 1画素の画像データの入力に対してその画素値に対応するカウンタに1が加えられる。ヒストグラム生成部10 6はし*画像データ、ヒストグラム生成部107はま*画像データ、ヒストグラム生成部108はり*画像データのヒストグラム生成する。

【0043】109はL・画像データのヒストグラムから下地を構成する画素のL・画像データの下地表示濃度 ちと濃度幅下限値も10と濃度幅上限値も11を決定する 下地濃度判定部である。110、111は各ヒストグラム生成部107、108より生成されるヒストグラムから、最大出力頻度を持つ画素値を検出する最大頻度検出 部である。

【0044】112は下地代表濃度bLを、113は下地を構成する濃度の幅(濃度幅下限値bt0と濃度幅上限値bt1)を外部装置に出力する端子である。114はa*画像データの最大出力頻度を持つa*画像データの画素値を外部に出力する端子である、115は画像データの最大頻度を持つb*画像データの値を外部装置に出力する端子である。116はフレームメモリ103の内容を外部装置に出力する端子である。

【0045】尚、図5で示される画像処理装置の各構成要素は、不図示のCPUで制御されるものとする。次に、図5を用いて、画像処理装置において実行される処理について説明する。まず、処理に先立ち、不図示のCPUはフレームメモリ103と、ヒストグラム生成部106~108のカウンダの内容を0にクリアする。

【0046】続いて、CPUはユーザの指示に従って、画像入力部101からRGBカラー多値画像である原稿画像を読み込み、色変換部102によってし*a*b*画像データに変換し、フレームメモリ103に格納する。

原稿画像分のし、a. b. 画像データがプレームメモリ1 03に格納された後、CPUは、フレームメモリ103 からし* a* b* 画像データを読み出し、平坦画案判定部 104とラッチ105に入りする。

【0047】平坦画素判定部104は入力画素とその周 囲の画素のL*a*b*画像データを入力する。フレーム

```
メモリ103上に格納されるし、a*、b*画像データ
のそれぞれの座標をL(x、y)、a(x、y)、b
(x, y)とした時、L*a*b*画像データの各エッジ
最もし、ea、ebを以下の(4)式によって算出す
3.
[0048]
```

```
eL=max((|L(x,y)|)-L(x-1,y-1)|)
        ((|L(x, y))-L(x, y-1)|)
        ((|L(x, y)) - L(x+1, y-1)|)
        ((|L(x, y)) - L(x-1, y))
        (()L(x, y))-L(x+1, y))
        ((|L(x,y))-L(x-1,y+1)|)
        (((1, (x, y)) - L(x + y+1)))
        ((1), (x, y)) - L(x+1, y+1) + 
ea = max((+a(x, y)) - a(x-1, y-1))
        ((|a(x, y))-a(x, y-1)|)
        ((|a(x, y))-a(x+1, y-1)|)
        ((|a(x,y))-a(x-1,y)|)
        \{((1a(\mathbf{x},\mathbf{y}))-a(\mathbf{x}+1,\mathbf{y})\}\}
        ((|\mathbf{a}(\mathbf{x},\mathbf{y})|-\mathbf{a}(\mathbf{x}-\mathbf{1},\mathbf{y}+\mathbf{1})|)
        (([a(x, y))-a(x, y+1)])
        ((|a(x,y))-a(x+1,y+1)|)
eb = max((|b(x, y)) - b(x-1, y-1)|)
        ((|b(x, y)) - b(x + y-1)|)
        ((b(x, y))-b(x+1, y-1))
        ((1b(x, y))-b(x-1, y))
        ((1b(x, y))-b(x+1, y))
        ((|b(x, y)) - b(x-1, y+1)|)
        ((ib(x, y))-b(x, y+1))
        ((|b(x,y)|)-b(x+1,y+1)|)
                                       ... (4)
```

これらのエッジ量eL、ea、ebと関値Th1を比較 し、全てが関値Th1以下であれば「1」を、そうでな ければ「O」を出力する。

【0049】ラッチ105は平坦画素判定部104から の出力が「O」の時は、格納されているL*、a*、b* 画像データを出力せず、ヒストグラム生成部106~1 08は処理を行わない、一方、平坦画素判定部104か らの出力が「1」の時は、格納されているし、、a®、b ・画像データを対応するヒストグラム生成部106~1 08に出力する。

【0050】そして、ヒストグラム生成部106ではし ・画像データのヒストグラムを作成する。同様に、ヒス トグラム生成部107では31画像データのヒストグラ ム、ヒストグラム生成部108ではり・画像データのヒ ストグラムを生成する。フレームメモリ103内の全て の画素の平坦画素検出、ヒストグラム処理を終了した 後、下地濃度判定部109、最大頻度検出部110、1 11を起動させる。

【0051】ここで、下地濃度判定部109の詳細な構

成について、図6を用いて説明する。図6は第2の実施 の形態の下地濃度判定部109の詳細な構成を示すプロ ック図である。図において、120は端子であり、ヒス トグラム生成部106から入力されるヒストグラムの各 出力頻度値を入力する。121は最大頻度検出部であ り。ヒストグラム生成部106のヒストグラムから、出 力頻度の最大値とその最大値を持つ画案値を出力する最 大知度検出部である。

【0052】122は最大頻度検出部121で検出され た最大値から頻度分布(ヒストグラム)を量子化するた めの量子化ステップロを決定する量子化ステップ算出部 である。123は量子化ステップ算出部122で算出さ れた量子化ステップaでヒストグラムを量子化する量子 化部である。124は101個のカウンタで構成され、 量子化部123の出力のヒストグラムを生成するヒスト グラム生成部である。125はノイズ関値決定部であ り、ヒストグラム生成部124の出力と型子化ステップ 算出部122で算出された量子化ステップ g から頻度上 のノイズを除去するための頻度ノイズ関値を決定する。

【0053】126はノイズ関値決定部125で決定された頻度ノイズ関値とヒストグラム生成部106で生成されたヒストグラムを比較する比較部である。127は最大頻度検出部121で検出された最大値と比較部126の出力から下地を構成する濃度の幅を求める下地濃度幅検出部127で検出された下地を構成する濃度の幅を外部装置に出力する端子である。128は最大頻度検出部121で検出された下地の濃度(最大値)を外部装置に出力する端子である。

【0054】次に、図6を用いて、下地濃度判定部109で実行される処理について説明する。入力された画像データの全ての画素についてヒストグラムを生成した後、CPUは最大頻度検出部121を動作させ、ヒストグラムの中で出力頻度が最大値を持つ画素値を検出する(つまり、カウンタの値が最大となる画素値)。そして、その検出される出力頻度の最大値mと、対応する画素値を出力する。また、この対応する画素値はしたの下地の濃度を示すので、この濃度を下地代表濃度bLと呼ぶ。この下地代表濃度bLは端子128から出力される。

【0055】検出された出力頻度の最大値面は量子化ステップ算出部122に入力される。量子化ステップ算出部122では、ヒストグラムを正規化するための量子化ステップ q を第1の実施の形態で説明される(1)式に従って決定する。決定された量子化ステップ q は量子化部123に入力された。量子化部123はヒストグラム生成部106で生成される出力頻度値由(i)(i=0~255)を画素値の低い方から順に読み出し、第1の実施の形態で説明される(2)式によって量子化し、その量子化結果エ

(i) (i=0~255)を得る。

【0056】ヒストグラム生成部124は量子化部123の出力のヒストグラムを生成する。101個のカウンタは、量子化結果r(i)の値に対応しており、対応するカウンタの内容に1を加える。このカウンタの内容を頻度値rh(k)(k=0~100)とする。量子化結果r(i)の全てについてヒストグラムの生成が終えた後、ノイズ関値決定部125を動作させ、ヒストグラム生成部124のカウンタの内容、頻度値rh(k)から最大値をとる量子化結果mrの値と、kがmr以上の頻度値rh(k)で最初の極小値をとるmtを検出する。そして、極小値mtに量子化ステップでを掛けた後、予め設定された値分を加算して得られる値を、ノイズ関値noise_thとして第出する。

【0057】ノイズ関値決定部125で算出されたノイズ関値noise_thは、比較部126に入力される。続いて、ヒストグラム生成部106の各カウンタの内容を順に読み出し、ノイズ関値noise_thと比較し、出力頻度値h(i)がノイズ関値noise_thより大きければその値を

出力し、小さければ「O」を出力する。その結果は下地 濃度輻検出部127に入力される。

【0058】下地濃度幅検出部127は、最大頻度検出部121から下地代表濃度りしと比較部126から入力された値から、下地を構成する画素の濃度の幅を算出する。この幅は、下地代表濃度りしを中心として最近傍の画素値において、出力頻度が0になっている値を検出する。この値は、上述の第1の実施の形態で説明される濃度幅下限値値りも0と濃度幅上限値りも1であり、同様の方法で検出する。この濃度幅下限値りも0と濃度幅上限値りも1は端子129から出力される。

【0059】再び、図5の画像処理装置で実行される処理について説明する。最大頻度検出部110は、ヒストグラム生成部107で生成されたヒストグラムの中で出力頻度が最大値を持つ画素値を検出する(つまり、カウンタの値が最大となる画素値)。そして、その検出される出力頻度の最大値mと、対応する画素値を出力する、また、この対応する画素値はa*の下地の濃度を示すので、この濃度を下地代表濃度baと呼ぶ。この下地代表濃度baは端子114から出力される。

【0060】最大頻度検出部111は、ヒストグラム生成部108で生成されたヒストグラムの中で出力頻度が最大値を持つ画素値を検出する(つまり、カウンタの値が最大となる画素値)。そして、その検出される出力頻度の最大値mと、対応する画素値を出力する。また、この対応する画素値はb*の下地の濃度を示すので、この濃度を下地代表濃度bbと呼ぶ。この下地代表濃度bbは端子115から出力される。

【0061】図7は第2の実施の形態で実行される処理の処理フローを示すフローチャートである。まず、処理に先立ち、不図示のCPUはフレームメモリ103と、セストグラム生成部106~108のカウンタの内容を0にクリアする。ステップS707で、続いて、CPUはユーザの指示に従って、EGBの色成分で表されるカラー多値画像である原稿画像を読み込み、色変換部102によってL・a・b・画像データに変換し、フレームメモリ103に格納する。

【0062】ステップS702で、原稿画像分のL*a* b*画像データがフレームメモリ103に格納された後、CPUは、フレームメモリ103からL*a*b*画像データを読み出し、平坦画素判定部104とラッチ105に入力する。平坦画素判定部104は入力画素とその周囲の画素のL*a*b*画像データを入力する。フレームメモリ103上に格納されるL*、a*、b*画像データの各画素のエッジ量eL、ea、ebを算出する。そして、これらのエッジ量eL、ea、ebを算出する。そして、これらのエッジ量eL、ea、ebを開値Th1を比較する。全てが関値Th1以下である場合、入力画素が平坦が画素であると判定し、そうでない場合は、エッジ画素であると判定する。平坦画素であった場合のみステップS703に進み、ヒストグラムを生成する。

【0063】ステップS703で、し、a*、b*画像 データを対応するヒストグラム生成部106~108に 出力し、各ヒストグラム生成部106~108におい て、画像データの全ての画案によってヒストグラムを生 成する。ステップS704で、CPUは最大頻度検出部 121を動作させ、し・画像データのヒストグラムの中 で出力頻度が最大値を持つ画素値を下地代表濃度ししと して抽出する。ステップS705で、量子化ステップ算 出部122で、ヒストグラムを正規化するための量子化 ステップgを決定し、決定された量子化ステップgを量 子化部123に入力する。量子化部123は、決定され た量子化ステップqに基づいて、ヒストグラム生成部1 **06で生成されたヒストグラムを量子化し、ヒストグラ** ム生成部124で量子化部123の出力のヒストグラム を生成する。 ステップS705で、ノイズ関値決定部 125を動作させ、量子化されたヒストグラムからノイ ズ閾値noise_thを算出する。ステップS706で、比較 部126において、ノイズ関値noise_thがヒストグラム 生成部10万で生成されたヒストグラムの出力頻度値よ りも大きいか否かを比較する。ノイズ関値noise_thが出 力頻度値よりも大きい場合(ステップS706でYE S)、ステップS708に進む。一方、ノイズ閾値iois e_thが出力頻度値よりも小さい場合(ステップSFO6 でNO)、ステップS707に進む。ステップS707 で、比較部126は、比較した画衆値を下地濃度幅検出 部129に出力する。ステップS708で、比較部12 6は、「0」を下地濃度輻検出部129に出力する。ス テップS708aで、全ての出力頻度値について、ステ ップS706の処理が終了したか否かを判定し、終了す るまで順次ステップS706~ステップS708を繰り 返す。

【0064】ステップS709で、下地濃度幅検出部127は、最大頻度検出部121から下地代表濃度りしと比較部126から入力された値から、下地を構成する画素の濃度の幅として濃度幅下限値りも0と濃度幅上限値りも1を抽出する。ステップS710で、最大頻度検出部110は、ヒストグラム生成部107で生成されたヒストグラムの中で出力頻度が最大値を持つ画素値をa*の下地代表濃度りaとして抽出する。ステップS711で、最大頻度検出部111は、ヒストグラム生成部108で生成されたヒストグラムの中で出力頻度が最大値を持つ画素値をり、の下地代表濃度りりとして抽出する。

 $e = \sqrt{((255-bL)^2+ba^2+bb^2)}$

色態を表関値Th2と比較し、関値Th2以下であれば下地代表濃度bL、ba、bbの値を255、0、0として出力する。一方、関値Th2以上であれば入力された値をそのまま出力する。

【0071】そして、セレクタ144は比較部142の 出力が「1」であれば、下地代表濃度わし、ba、bb を選択して出力し、「0」であれば、ラッチ143の値 【0065】次に、第2の実施の形態で説明される画像処理装置の適用例を説明する。例えば、図8に示されるようなブリンタ装置に適用させた場合に、実行される動作とその構成を説明する。図8は第2の実施の形態の画像処理装置を適用させたプリンタ装置の構成を示すプロック図である。

【0066】図8において、140は第2の実施の形態の図5に示される画像処理装置である。141は白色下地判定部であり、画像処理装置140の端子112からし、画像データの下地代表濃度りしを、画像処理装置140の端子112からは、画像処理装置140の端子115からは、画像処理装置140の端子115からは、画像が一夕の下地代表濃度りは多入力し下地が実質的に白色が否かを判定する。

【0067】142は画像処理装置140の端子113 から出力された濃度幅下限値bt0と濃度幅上限値bt1 と、画像処理装置140の端子116から出力されたフ レームメモリ103のL*a*b*画像データを比較する 比較部である。143はラッチであり、タイミング調整 を行う。144はセレクタであり、比較部142の出力 によって、ラッチ143の出力または、画像処理装置1 40の端子112から出力される下地代表流度もし、端 子114から出力される下地代表濃度しは、端子115 から出力される下地代表濃度りりを選択して出力する。 【0068】145は入力されたし*a*b*画像データ をプリンタのYMC Kイングに最適な値に変換する色変 換部である。146はYMCK画像データを誤差拡散方 式で2値化する2値化部である。147はYMCKのイ ンクで2値記録を行う2値プリンタである。次に、図8 で実行される処理について説明する。

【0069】画像処理装置140のフレームメモリ103から画像データを画素順で読み込み、端子116を介してラッチ143に格納する。同時に比較部142は、端子116より入力された画素値と、端子113より入力された濃度幅下限値bt0と濃度幅上限値bt1を比較し、入力画素値が濃度幅下限値bt0と濃度幅上限値b110間にあれば「1」を、そうでなければ「0」を出力する。

【0070】また、白色下地判定部141はL*、a*、b*画像データの下地代表濃度であるbL、ba、bbをそれぞれ端子112、114、115より入力し、(5)式に従って色差eを算出する。

+bb²) ... (5)

を出力する。色変換部145は、セレクタ144より入力されるし。a。b。画像データを、YMCK画像データに変換して出力する。変換された画像データは2値化部146に入力され、誤差拡散方式によって2値化される。そして、2値化部146で2値化された画像データは、2値プリンタ147で、記録媒体に記録される。【0072】以上の処理を、フレームメモリ103の全

ての画素について、終了したら全ての動作を終了する。以上説明したように、第2の実施の形態によれば、画像データの画素値のヒストグラムに基づいて、しき画像データの下地代表濃度もしと下地の濃度幅上限値もも1と濃度幅下限値もも0の範囲内に含まれる画素値をすべて下地代表濃度もし、もa. bbとして出力することで、一定した好適な下地の色を出力することができる。また、しき画像データの画素値のヒストグラムを量子化し、量子化されたヒストグラムに基づいて、ノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出し、算出されたノイズ関値noise_thを算出して出力される出力頻度のノイズを好適に除去することができる。

【0073】また、カラー画像に対して、従来より高速で比較的小さい回路規模で好適な下地の濃度判定が可能になり、その結果、下地のノイズを好適に除去できる。また、し、a、b*画像データの平坦画素を抽出することにより、下地の濃度判定の特度を向上することができる。更に、ノイズによる影響を取り除さ、下地を一定濃度にすることができるので、2値画像の記録品質を向上できる。更に、また、下地代表濃度ししと比較することで、下地領域への記録を抑制できるので、さらに好印象の記録を得られる。

【0074】〈第3の実施の形態〉第3の実施の形態では、領域内に複数色が含まれている場合、輝度画像から異なる色が含まれていることを検知する処理を行うプログラムを、例えば、EOM等の記憶媒体に記憶させ、そのプログラムを実行することで、本発明で説明される処理を行う。

【0075】図9は第3の実施の形態の画像処理装置の構成を示すブロック図である。図9おいて、201は後述する第3の実施の形態で説明される処理(図10~21のフローチャート参照)を実行する実行プログラムによって動作し、装置を構成する各構成要素の制御を行うCPUである。202はその実行プログラムを格納し、実行プログラムを実行するのに必要な記憶容量を確保するプログラムメモリである。203はユーザが実行プログラムの実行等の各種指示を入力する端末である。204は磁気ディスク等で構成される記憶装置である。205は原稿画像の読み込みを行うカラーイメージスキャナである。ここではカラー多値画像データ(RGB各8ビット)の原稿画像を読み込むこととする。206はカラー多値画像データをRGBの形態で原稿画像分格納する多面フレームメモリである。

【0076】207はカラー多値画像データを2値化して得られる2値画像データを、原稿画像分格納する2値フレームメモリである。208は通信プロトコルに合わせて符号化データを送信する通信インタフェース(通信1/F)である。209は電話回線やLANで構成される通信回線である。210は装置を構成する各構成要素

を接続し、画像データ等の各種データや制御信号を授受するバスである。

【0077】以下、第3の実施の形態で実行される処理について、図10~図21のフローチャートを用いて説明する。尚、第3の実施の形態では、例えば、ユーザの指示によって、原稿画像をスキャナ205より読み込む。そして、読み込んで得られる画像データを2値化し、2値化して得られる2値画像データの領域分割を行う。分割された各領域の属性を像域分離処理によって判定し、判定された属性に基づいて2値画像デーダに含まれる各領域を量子化するための量子化数を決定する。更に、決定された量子化数に基づいて、各領域の構造化デーータを生成し、生成された構造化データを記憶装置204に格納するまでの処理を、例に挙げて説明する。

【0.078】尚、構造化データとは、各領域の属性に基づいて、領域に対応する2値画像データを好適に符号化した符号化データのことである。まず、図10~図12のフローチャートを用いて、スキャナ205にセットされた原稿画像を、端末203から装置を起動することで、原稿画像の画像データを読み込み、読み込まれた画像データに基づいて、画像データの下地代表濃度ba_valueと濃度幅下限値b t 0と濃度幅上限値 b t 1を算出するまでの処理について説明する。

【0079】図10~図12は第3の実施の形態によっ て実行される画像データの下地代表濃度bg_valueと濃度 幅下限値b L0と濃度幅上限値b + 1を算出する処理の処 理フローを示すフローチャートである。図10におい て、ステップS001で、CPU201はスキャナ20 5から画像データを読み込み、多値フレームメモリ20 6に格納する。続いて、ステップS029、で多値フレ ーム206に格納されたカラー画像から、YCbCr画 像データの輝度を表すY画像データp (x,y)を生成 し、プログラムメモリ202上に格納する、次に、ステ ップS002で、プログラムメモリ202上に展開され る輝度画像データの各画素データp(x、y)の画素値 をカウントするカウンタをOにリセットする。尚、カウ ンタは256個の頻度hist_pixel [1] (i=0~25) 5) からなり、例えば、画素値が i の画素データは、頻 度hist_pixel [i] にカウントされる。また、各カウン タでカウントされる値ば各画素値の出力頻度を示す。

02上より輝度画像データの画素データp(x, y)の画素値を順次読み込み、すべての画素データp(x, y)の画素値が読み込まれたが否がを判定する。そして、すべての画素データp(x, y)の画素値が読み込まれるまでは、ステップSOO4で、順次読み込まれる画素データp(x, y)の画素値に対応する頻度hisl_pixel [p(x, y)]の内容を1インクリメントする。

【0080】ステップ8003で、プログラムメモリ2

【0081】そして、各画素データp(x,y)の画素値の読み込みが終了したら、ステップS006に進む。

尚、各画素データャ(×、y)の画素値の読み込みが終 丁すると、頻度hist_pixel [i] に示される各画素値の 出力頻度によって、画像データの画素値の出力頻度のヒ ストグラムが生成される、ステップ8006で、生成さ れたヒストグラムの各画素値の出力頻度と比較するため の変数max_hist、比較の結果に基づいて決定される下地 代表濃度lg_value、比較した画紫値の数をカウントする ループカウンタiの内容をOにリセットする。

【0082】ステップS007で、生成されたヒストグ ラムから各画案値の頻度hist_pixel[i]を読み込み、 すべての頻度hist_pixel [i] が読み込まれたか否かを 判定する。そして、すべての頻度hist_pixel [i] が読 み込まれるまでは、ステップS008で、順次読み込ま れるhist_pixel[i]と変数max_histを比較する。頻度h ist_pixel [i] が変数max_histより大きい場合(ステッ

尚、記号!!は割り算後に小数点以下を四捨五入するこ とを表す。次に、ステップSO12で、各量子化頻度hi-|sl_q [i] の値をカウントするカウンタhist_hist [i] の内容を0にリセットする。ステップ8013で、読み 込まれる型子化頻度hist_q[i]の数をカウントするル ープカウンタiの内容をOにリセットする。

【0085】ステップS014で、読み込まれる量子化 類度hist_g[i]を順次読み込み、すべての量子化類度h ist_q [i] が読み込まれたか否かを判定する。そして、 すべての量子化頻度hist_q[i]が読み込まれるまで は、ステップS015で、順次読み込まれる量子化頻度 hist_q [i] の出力値をカウンタhist_hist [hist_q [1]]でカウントする。ステップS016で、ループ カウンタ主の内容を1インクリメントする。

【OOS6】そして、全ての量子化頻度hist_q[i]の 読み込みが終了したら、ステップS017に進む。尚、 全ての量子化頻度hist_q[i]の読み込みが終了する と、各カウンタhist_hist[i]に示される値によって、 量子化頻度hist_q[i]のヒストグラムが生成される。 ステップS017で、生成されたヒストグラムの各量子 化頻度hist_hist[i]と比較するための変数max_hist_ q、比較の結果に基づいて決定されるノイズ関値noise_t h、比較した量子化頻度hist_hist [i] の数をカウント

noise_th= $(\text{moise_th}+\gamma) \times (\text{max_hist_q}/100) \cdots (7)$

ステップS023で、下地濃度下限値りも0として下地 代表濃度bg_valueから1を引いたものを算出する。ステ ップS O 24で、順次、頻度hist_pixel [bt0] と新た なノイズ間面noise_thを比較する。そして、頻度hist_p ixel [i] がノイズ関値noise_thよりも小さくなるま で、ステップS025で、下地濃度下限値りし0から1 デクリメントする。

【0090】そして、頻度hist_pixel [bt0] がノイズ 関値noise_thよりも小さくなったら、ステップS026 で、下地温度上限値bも1として下地代表濃度bg_value

ブS008でYES)、ステップS009に進む。ステ ップSOO9で、変数mx_histに頻度hist_pixel [i] を代入し、下地代表温度bg_valueにループカウンタiの 内容を代入する。一方、頻度hist_pixel【i】が変数max _histより小さい場合(ステップS008でNO)、ス テップS010に進む。

【0083】ステップ8010で、ルーブカウンタ1の 内容を1インクリメントする。そして、すべての頻度hi st_pixel「i]の比較が終了したら、つまり、ループカ ウンタ 1の内容が255になったら、ステップS011 に進む。図11において、ステップS011で、ヒスト グラムを正規化するための量子化ステップmax_hist/1 0.0を算出した後に、(6)式に従って、量子化頻度同 st_q[i]を算出する。

[0084]

 $hist_q[i] = hist_pixel[i] // (max_hist_/100) \cdots (6)$

するループカウンターの内容をひにリセットする。 【0087】ステップS018で、生成されたヒストグ ラムから各量子化頻度hist_hist_[i]を読み込み、すべ ての量子化頻度hist_hist[j]が読み込まれたか否かを 判定する。そして、すべての量子化頻度hist_hist [i] が読み込まれるまでは、ステップS019で、順次読み 込まれる量子化頻度hist_hist[i]と変数max_hist_qを 比較する。量子化頻度hist_hist [i] が変数max_hist_d より大きい場合(ステップSO19でYES)、ステッ プS020に進む。ステップS020で、変数max_hist _qに頻度hist_hist[i]を代入し、ノイズ閾値noise_th にループカウンタ)の内容を代入する。一方、量子化頻 度hist_hist [i] が変数max_hist_gより小さい場合 (ス テップS019でNO)、ステップS021に進む。 【0088】ステップ8021で、ループカウンタトの 内容を1インクリメントする。そして、すべての量子化 頻度hist_hist [i] の比較が終了したら、つまり、ルー プカウンタ 1の内容が255になったら、ステップSO 22に進む。図12において、ステップ5022で、 (7)式に従って、新たなノイズ閾値noise_thを算出す。 &.

[0089]

から1を足したものを算出する。尚、頻度hist_pixel **[bt0]がノイズ関値noise_thよりも小さくなった時の** 下地濃度下限値し10が、下地濃度下限値し10となる。 ステップS027で、順次、頻度hist_pixel [bt1] と 新たなノイズ関値noise_thを比較する。そして、頻度hi st_pixel [bl1] がノイズ関値noise_Uよりも小さくな るまで、ステップS028で、下地濃度下限値り11に 1インクリメントする。そして、頻度hist_pixel [bt 1」がノイズ閾値noise_thよりも小さくなったら、処理 を終了する。尚、頻度hist_pixel [bt1] がノイズ関値n oise_thよりも小さくなった時の下地濃度上限値b t.1 が、下地濃度上限値b t.1となる。

【0091】以上、図10~図12のフローチャートで説明された処理によって、画像データの下地代表濃度bg_value、下地濃度下限値b t 0、下地濃度上限値b t 1が算出される。続いて、図13のフローチャートを用いて、画像データを像域分離処理を行うために画像データを2値化する処理について説明する。

【0092】図13は第3の実施の形態で実行される画像データを2値化する処理の処理フローを示すフローチャートである。ステップS101で、プログラムメモリ202上に展開される輝度画像データの各画素データp(x,y)を順次読み込む。そして、ステップS102で、すべての画素データp(x,y)に対し、後述のステップS103で実行される処理が終了したか否かを判定する。そして、ステップS103で、すべての画素データp(x,y)に対し、2値画像データb(x,y)に変換する2値化を行う。2値化の方法は、順次読み込まれる画素データp(x,y)の画素値が下地濃度下限値bt0以上でかつ下地濃度上限値bt1以下であるかを判定する。

【0093】そして、画素データp(x,y)が下地濃度下限値もも0以上でかつ下地濃度上限値もも1以下であれば、ステップS10ラで、その画素データp(x,y)の2値画像データb(x,y)を「0」として、2値フレームメモリ207の対応する領域に書き込む。一方、画素データp(x,y)が下地濃度下限値もも0以上でないかまたは下地濃度上限値もも1以下でなければ、ステップS104で、その画素データp(x,y)の2値画像データb(x,y)を「1」として、2値フレームメモリ207の対応する領域に書き込む。

【0094】プログラムメモリ202に上の全ての画素データp(x,y)について、2値化されたら、処理を終了する。以上、図13のフローチャードで説明された処理によって、2値フレームメモリ207に、多値フレームメモリ206上に格納される画像データの各画素データp(x,y)が格納される。

【0095】続いて、図14~図17のフローチャートを用いて、2値フレームメモリ207上に格納された2値画像データを領域分割し、分割された領域の属性を像域分離処理によって判定する。そして、判定された属性に基づいて2値画像データに含まれる各領域を量子化するための量子化数を決定する処理について説明する。図14~図17は第3の実施の形態で実行されるの2値画像データに含まれる各領域を量子化するための量子化数を決定する処理の処理フローを示すフローチャートである

【0096】図14において、ステップS201で、2 値フレームメモリ207から2値画像データを読み込 む。ステップS202で、読み込まれた2値画像データに対し、類似する属性を持つ領域毎に分割する。そして、分離された領域数をカウンタarea_countでカウントする。また、各領域の位置座標と大きさを求める。ステップS203で、カウントされた各領域に対して、各領域に含まれる「1」である2値画像データの塊の密度や形状、並びから「画像(写真)」、「図形」、「文字」等の領域の属性を判定する係域分離処理を行う。ここでは、例えば、特開平8-30725号に記載されている係域分離処理の方法を用いて、係域分離を行う。

【0097】具体的に以下のように行う。まず、2値データについて、所定周期で「1」の塊が連続する場合には、文字列である可能性が高いので、「文字」領域と判定する。次に「文字」領域以外の領域については、

「1」の密度が比較的高い塊は写真である可能性が高い ので「画像(写真)」と判定する。

【0098】残りの領域のうち「1」の密度が比較的低 く、かつ所定の形状を有するものを「図形」と判定す る。次に、カウントされた領域に対し、画像表現に必要 な量子化数を決定する量子化数決定処理を、ステップS 204以降で行う。ステップS204で、ループカウン タkの値を1にセットする。また、ループカウンタ k は、各領域に対して量子化数決定処理が終了する毎に、 1インクリメントされ、そのカウント値とカウンタarea _countでカウントされた領域の値が対応している。ステ ップS205で、ループカウンタkの値がカウンタarea _countの値よりも大きいか否かを判定する。ループカウ ンタkの値がカウンタarea_countの値よりも小さい場合 (ステップS205でNO)、ステップS206に進 む。一方、ループカウンタドの値がカウンタarea_count の値よりも大きい場合(ステップS205でYES)、 すべてのカウントされた領域に対して、量子化数決定処 理がなされたことになるので、処理を終了する。

【0099】ステップS206で、プログラムメモリ202からループカウンタ水の値に対応する領域の画素データp(x,y)の画素値をカウントするカウンタを0にリセットする。尚、カウンタは256個の頻度hist_pixel [i] (i=0~255) からなり、例えば、画素値が1の画素データは、頻度hist_pixel [i] にカウントされる。また、各カウンタでカウントされる値は各画素値の出力頻度を示す。

【0100】ステップS207で、プログラムメモリ202からループカウンタkの値に対応する領域の画素データp(x,y)の画素値を順次読み込み、すべての画素データp(x,y)の画素値が読み込まれたか否かを判定する。そして、すべての画素データp(x,y)の画素値が読み込まれるまでは、ステップS208で、順次読み込まれる画素データp(x,y)の内容を14ンクリメントする。そして、全ての画素値の読み込みが終了した

ら、ステップS209に進む。尚、全ての画案値の読み込みが終了すると、頻度hist_pixel [i] に示される各画案値の出力頻度によって、画像データの画案値の出力頻度のヒストグラムが生成される。

【0101】図15においてステップ8209で、生成 されたヒストグラムの各画素値の出力頻度と比較するた めの変数wax_hist、比較の結果に基づいて決定される下 地代表濃度bg_value、比較した画素値の数をカウントす るループカウンタ主の内容をOにリセットする。ステッ プS210で、生成されたヒストグラムから各画業値の 類度hist_pixel[i]を読み込み、すべての頻度hist_pi xel [i]が読み込まれたか否かを判定する。そして、す べての頻度hist_pixel [1] が読み込まれるまでは、ス テップS211で、順次読み込まれる頻度hist_pixel [i]と変数max_histを比較する、頻度hist_pixel[i] が変数max_histより大きい場合(ステップS211でY ES)、ステップS212に進む。ステップS212 で、変数max_histに頻度hist_pixel[i]を代入し、下 地代表濃度bg_valueにループカウンタ i の内容を代入す る。一方、類度hist_pixel [i] が変数max_histより小 さい場合 (ステップS211でNO)、ステップS21 3に進む。

【0102】ステップS213で、ループカウンタiの内容を1インクリメントする。そして、すべての頻度hist_pixel [i] の比較が終了したら、つまり、ループカウンタiの内容が255になったら、ステップS214に進む。ステップS214で、ヒストグラムを正規化するための量子化ステップmax_hist/100を算出した後に、(6)式に従って、量子化頻度hist_q[i]を算出する。

【0103】次に、ステップS215で、各量子化頻度 hist_q [i] の値をカウントするカウンタhist_hist [i] の内容を0にリセットする。ステップS216で、読み込まれる量子化頻度hist_q [i] の数をカウントするループカウンタiの内容を0にリセットする。ステップS217で、読み込まれる量子化頻度hist_q [i] を順次読み込み、すべての量子化頻度hist_q [i] が読み込まれたか否かを判定する。そして、すべての量子化頻度hist_q [i] が読み込まれる量子化頻度hist_q [i] の出力値をカウンタhist_hist [hist_q [i]] でカウントする。ステップS219で、ループカウンタiの内容を1インクリメントする。

【0104】そして、全ての量子化頻度hist_q[i]の 読み込みが終了したら、ステップS220に進む。尚、 全ての量子化頻度hist_q[i]の読み込みが終了する と、カウンタhist_hist [i] (i=0~100)に示さ れる値によって、量子化頻度hist_q[i]のヒストグラ ムが生成される。図16において、ステップS220 で、生成されたヒストグラムの量子化頻度hist_hist [i]と比較するための変数max_hist_q、比較の結果に基づいて決定されるノイズ関値noise_th、比較した量子 化頻度hist_q[i]の数をカウントするループカウンタ iの内容をOにリセットする。

【0105】ステップS221で、生成されたヒストグラムからカウンタhist_hist [i] を読み込み、すべてのカウンタhist_hist [i] が読み込まれたか否かを判定する。そして、すべてのカウンタhist_hist [i] が読み込まれる。まれるまでは、ステップS222で、順次読み込まれる、カウンタhist_hist [i] が変数max_hist_qを比較する。カウンタhist_hist [i] が変数max_hist_qより大きい場合(ステップS222でYES)、ステップS223に進む。ステップS223で、変数max_hist_qに頻度hist_hist [i] を代入し、ノイズ関値noise_thにループカウンタiの内容を代入する。一方、量子化頻度hist_hist [i] が変数max_hist_qより小さい場合(ステップS222NO)、ステップS224に進む。

【0106】ステップS224で、ループカウンタ主の内容を1インクリメントする。そして、すべての量子化頻度hist_hist [i] の比較が終了したら、つまり、ループカウンタ主の内容が100になったら、ステップS225に進む。ステップS225で、ノイズ関値noise_thを算出する。

【0107】図17において、ステップS226で、生 成されたヒストグラムの量子化頻度hist_q[i]と新た なノイズ閾値moise_thを比較し、その比較した数をカウ ントをカウントするループカウント主、ヒストグラムに 存在する量子化頻度hist_q [i] の極大値の数を示す変 数ex_countの内容をOにリセットする。ステップS22 7で、生成されたヒストグラムから量子化頻度hist_q [i]を読み込み、すべての量子化頻度hist_q [i] が読 み込まれたか否かを判定する。そして、すべての量子化 頻度hist_q [i] が読み込まれるまでは、ステップS2 28で、順次説み込まれる量子化頻度hist_q[i]と新 たなノイズ閾値noise_thを比較する。量子化頻度hist_q [i]が新たなノイズ関値noise_thより大きい場合(ス テップS228でYES)、ステップS229に進む。 ステップS229で、量子化頻度hist_q [i] が極大値 であるか否かを判定し、極大値である場合(ステップS 229でYES)、ステップS230に進み、模大値で ない場合 (ステップS229でNO)、ステップS23 1に進む。ステップS230で、変数ex_countを1イン クリメントし、ステップS231進む。一方、量子化顕 度hist_q[i]が新たなノイズ閾値noise_thより小さい 場合 (ステップS228でNO)、ステップS231に 進む。

【0108】ステップS231で、ループカウンタiの 内容を1インクリメントする。そして、すべての量子化 頻度hist_g[i]の比較が終了したら、つまり、ループ カウンタ1の内容が255になったら、ステップS232に進む。ステップS232で、変数ex_countが2以上であるか否かを判定する、変数ex_countが2以上でない場合(ステップS232でYES)、ステップS234に進み、ステップS234で、領域の両係の属性を示すフラグbi_mul_flagの内容を「1」にセットした後、ステップS238に進む。尚、変数ex_countが2以上でない場合は、領域の画像が単色の文字画像であると判断し、変数ex_countが2以上である場合は、領域の画像が複数色の文字画像と判断する。

【0109】一方、変数ex_countが2以上である場合(ステップS232でNO)、ステップS233に進む。ステップS233で、変数max_hist_qが関値Th3以上であるか否かを判定する、変数max_hist_qが関値Th3以上である場合(ステップS233でYES)、ステップS235で、画像内には変数ex_countの濃度が存在するとして、領域の画像の属性を示すフラグbi_mul_flagに変数ex_countの内容を代入し、ステップS236に進む。尚、変数max_hist_qがTh3以上でない場合は、領域の画像が連続階調の画像であると判断し、変数max_hist_qがTh3以上でない場合は、領域の画像が連続階調の画像であると判断し、変数max_hist_qがTh3以上である場合は、領域の画像が複数色の多値画像と判断する。【0110】ステップS236で、フラグbi_mul_flag

【0110】ステップS236で、フラグbi_mul_flagの内容に示される値に基づいて、領域を構成する色の輝度値を抽出する。領域内にはフラグbi_mul_flagの内容に示される値だけ色が存在する。量子化頻度hist_q [i] からフラグbi_mul_flagの内容の個数の極大値を持つ輝度pm [g] (g=1~bi_mul_flag) (これを代表輝度値と呼ぶ)。これによって、領域内の画像表現に必要な量子化数と、表現に必要な色の輝度値が抽出され、その領域に対する量子化数決定処理を終了する。この後、

【0111】一方、変数max_hist_gが関値Th3以上でない場合(ステップS233でNO)、領域の画像の属性を示すフラグbi_mul_flagの内容を「0」にセットした後、ステップS238に進む。ステップS238で、ループカウンタトの内容を1インクリメントする。そして、すべての領域に対し画像表現に必要な量子化数を決定する量子化数決定処理が行われたら、つまり、ループカウンタトの内容がカウンタarea_countの値になったら、すべての処理を終了する。

ステップS238に進む。

【0112】以上、図14~図17のフローチャートで説明される処理によって、2値フレームメモリ207上に格納された2値画像データを領域分割し、分割された領域の属性が像域分離処理によって判定される。そして、判定された属性に基づいて2値画像データに含まれる各領域を量子化するための量子化数が決定される。続いて、図18~図21のフローチャートを用いて、2値画像データに含まれる各領域の属性と対応する量子化数に基づいて、2値画像データに含まれる各領域の構造化

データを生成する処理について説明する。

【0113】図18~図21は第3の実施の形態で実行 される2値画像データに含まれる各領域の構造化データ を生成する処理の処理フローを示すフローチャートであ る。図18において、ステップ8301で、ループカウ ンタkの値を1にセットする。また、ループカウンタk は、各領域に対して構造化データを生成する処理が終了 する毎に、1インクリメントされ、そのカウント値とカ ウンタarea_countでカウントされた領域の値が対応して いる。ステップ5302で、ループカウンタトの値がカ ウンタarea_countの値よりも大きいか否かを判定する。 ループカウンタkの値がカウンタarea countの値よりも 小さい場合 (ステップ S302でNO)、ステップS3 03に進む。一方、ループカウンタkの値がカウンタar ea_countの値よりも大きい場合(ステップS302でY ES)、すべてのカウントされた領域に対して、構造化 データを生成する処理がなされたことになるので、処理 を終了する。

【0114】ステップS303で、ループカウンタkの 値に対応する領域の係域分離処理による属性が「文字」 であるか否かを判定する、領域の属性が「文字」である 場合(ステップS303でYES)、以下、後述するス テップS307~ステップS312で説明される処理を 行う。一方、領域の属性が「文字」でない場合(ステッ プS303でNO)、ステップS304に進む。

【0115】以下、領域の属性が「文字」である場合に 実行される処理について、図19のフローチャートを用 いて説明する。図19は第3の実施の形態の領域の属性 が「文字」である場合に実行される処理の処理フローを 示すフローチャートである。ステップS307で、領域 の属性が「文字」である領域のフラグbi_mil_flagが 「1」であるか否かを判定する。領域のフラグbi_mil_f lagが「1」である場合(ステップS307でYE

S)、単色の「文字」領域であるので、ステップS30 9に進み、領域の属性が「文字」である領域のOCRを 行った後、ステップS306に進む。一方、領域のフラ グbi_mul_flagが「1」でない場合(ステップS307 でNO)、ステップS308に進む。

【0116】尚、領域のフラグbi_mul_flagが「1」である場合は、その領域は単色の「文字」から構成されると判断され、領域のフラグbi_mul_flagが「0」である場合は、その領域は連続階調の画像から構成されると判断され、領域のフラグbi_mul_flagが「1」でも「0」でもない場合は、その領域は複数色の「文字」から構成されると判断される。また、OCRの結果から得られた文字列は、その対応する文字コード、座標、領域サイズとともに構造化データから構成される構造化文書の書式にしたがって記憶装置204の所定の領域に格納される。

【0117】ステップS308で、領域の属性が「文

字」である領域のフラグbi_mul_flagが「0」であるか否かを判定する。領域のフラグbi_mul_flagが「0」でない場合(ステップS308でNO)、ステップS310に進む。ステップS310で、ステップS236で得られた領域の量子化数と各代表輝度値pm [g] より、各代表輝度値毎のビットプレーン画像をプログラムメモリ202の輝度画像から生成する。

【0118】ここで、代表色の抽出は以下のように行 う。まず、3個のバッファを用意し、各バッファをそれ ぞれRGB値に対応させる。更に、画紫数カウンタロを 0にリセットしておく。ビットプレーン画像の画素値と 同じ位置のカラー画像データを多値フレームメモリ20 6から読み出し、画素値p (x, y)が処理するビット ブレーン画像の画素値が1であれば、バッファに格納し たRGBの値に読みだしたカラー画像データのRGB各 色の値をそれぞれ加算して、再度パッファに格納する。 更に、画素数カウンタcpの内容を1インクリメントす る。領域内の全ての画素について処理が終わったら、各 バッファの内容を画素カウンタので割ってRGB毎の平 均値を求め、これらを抽出された色とする。これを各代 表輝度値について行い、全ての代表輝度値について、色 の抽出が終了したら、その領域に対する量子化決定処理 を終了する。この後、ステップS311に進む。

【0119】ステップS311で、領域の属性が「文字」である領域のOCRを各代表輝度値毎に行った後、ステップS306に進む。一方、領域のフラグbi_mul_flagが「0」である場合(ステップS308でYES)、ステップS312に進む。尚、ステップS311のOCRの結果から得られた文字列は、各文字列の色、対応する文字コード、座標、領域サイズとともに構造化データから構成される構造化文書の書式にしたがって記憶装置204の所定の領域に格納される。

【0120】ステップS312で、領域の属性が「文字」である領域のよPEG符号化を行い、符号化データとその座標と領域サイズを構造化データを構成する構造化文書の書式にしたがって記憶装置204の所定の領域に格納される。そして、領域のよPEG符号化が終了したら、ステップS306に進む。図18のフローチャートに戻る。

【0121】ステップS304で、ループカウンタkの値に対応する領域の像域分離処理による属性が「図形」であるか否かを判定する。領域の属性が「図形」である場合(ステップS304でYES)、以下、後述するステップS313~ステップS318で説明される処理を行う。一方、領域の属性が「図形」でない場合(ステップS304でNO)、ステップS305に進む。

【0122】以下、領域の属性が「図形」である場合に 実行される処理について、図20のフローチャートを用いて説明する。図20は第3の実施の形態の領域の属性 が「図形」である場合に実行される処理の処理フローを 示すフローチャートである。ステップS313で、領域の属性が「図形」である領域のフラグbi_mul_flagが「1」であるが否かを判定する。領域のフラグbi_mul_flagが「1」である場合(ステップS313でYES)、ステップS315に進み、領域の属性が「図形」である領域のアウトライン抽出によるベクトル化を行った後、ステップS306に進む。一方、領域のフラグbi_mul_flagが「1」でない場合(ステップS313でNO)、ステップS314に進む。

【0123】尚、領域のフラグbi_mul_flagが「1」である場合は、その領域は単色の「図形」から構成されると判断され、領域のフラグbi_mul_flagが「0」である場合は、その領域は連続階調画像の「図形」から構成されると判断され、領域のフラグbi_mul_flagが「1」でも「0」でもない場合は、その領域は複数色の「図形」から構成されると判断される。また、ベクトル化の結果から得られたベクトルは、その座標、領域サイズとともに構造化データから構成される構造化文書の書式にしたがって記憶装置204の所定の領域に格納される。

【0124】ステップS314で、領域の属性が「図。 形」である領域のフラグbi_mul_flagが「0」であるが 否かを判定する。領域のフラグbi_mul_flagが「O」で ない場合 (ステップS314でNO)、ステップS31 6に進む。ステップS316で、ステップS236で得 られた領域の量子化数と各代表輝度値より、各代表輝度 値毎のビットプレーン画像を生成する。ステップS31 7で、領域の属性が「図形」である領域のアウトライン 抽出によるベクトル化を各代表輝度値毎に行った後、ス テップS306に進む。一方、領域のフラグbi_mul_fla gが「0」である場合(ステップS314でYES) ふ ステップS318に進む。尚、ステップS317のベク トル化の結果から得られたベクトルは、各色の座標、領 域サイズとともに構造化データから構成される構造化文 書の書式にしたがって記憶装置204の所定の領域に格 納される。

【0125】ステップS318で、領域の属性が「図形」である領域のJPEG符号化を行い、符号化データとその座標と領域サイズを構造化データを構成する構造化文書の書式にしたがって記憶装置204の所定の領域に書き込む。そして、領域のJPEG符号化が終了したら、ステップS306に進む、図18のフローチャートに戻る。

【0126】ステップS305で、ループカウンタドの 値に対応する領域の像域分離処理による属性が「写真」 であるか否かを判定する。領域の属性が「写真」である 場合(ステップS305でYES)、以下、後述するス テップS319~ステップS324で説明される処理を 行う。一方、領域の属性が「写真」でない場合(ステッ プS305でNO)、ステップS306に進む。

【0127】以下、領域の属性が「写真」である場合に

実行される処理について、図21のフローチャートを用いて説明する。図21は第3の実施の形態の領域の属性が「写真」である場合に実行される処理の処理フローを示すフローチャートである。ステップS319で、領域の属性が「写真」である領域のフラグbi_mul_flagが「1」である場合(ステップS319でYES)、ステップS320に進み、領域の属性が「写真」である領域のJBIG符号化を行った後、ステップS306に進む。一方、領域のフラグbi_mul_flagが「1」でない場合(ステップS319でNO)。ステップS320に進む。

【0128】尚、領域のフラグbi_mul_flagが「1」である場合は、その領域は単色の「写真」から構成されると判断され、領域のフラグbi_mul_flagが「0」である場合は、その領域は単色の連続階調画像の「写真」から構成されると判断され、領域のフラグbi_mul_flagが「1」でも「0」でもない場合は、その領域は複数色の「写真」から構成されると判断される。尚、JBIG符号化の結果から得られた符号化データは、その座標、領域サイズとともに構造化データから構成される構造化文書の書式にしたがって記憶装置204の所定の領域に格納される。

【0129】ステップS320で、領域の属性が「写 真」である領域のフラグbi_mul_flagが「O」であるか。 否かを判定する。領域のフラグbi_ml_flagが「O」で ない場合(ステップS320でNO)、ステップS32 1に進む。ステップS321で、ステップS236で得 られた領域を構成する色と各色の量子化類度hist_q [i] の極大値より、各色毎のビットプレーン画像を生 成する。ステップS323で、領域の属性が「写真」で ある領域のJBIG符号化を各色毎に行った後、ステッ プS306に進む。一方、領域のフラグbi_mil_flagが 「0」である場合(ステップS320でYES)、ステ ップS324に進む。尚、ステップS323のJBIG 符号化の結果から得られた符号化データは、各色の座 **標、領域サイズとともに構造化データから構成される構** 造化文書の書式にしたがって記憶装置204の所定の領 域に搭納される。

【0130】ステップS324で、領域の属性が「写真」である領域のJPEG符号化を行い、符号化データの色、得られたベクトル、その座標と領域サイズを構造化データから構成される構造化文書の書式にしたがって記憶装置204の所定の領域に格納される。そして、領域のJPEG符号化が終了したら、ステップS306に進む。

【0131】再び、図18のフローチャートに戻る。ステップS306で、ループカウンタkの内容を1インクリメントする。そして、すべての領域に対し構造化データを生成する処理が行われたら、つまり、ループカウン

タkの内容がカウンタarea_countの値になったら、すべての処理を終了する。

【0132】以上、図18~図21のフローチャートで説明される処理によって、2値画像データに含まれる各領域の属性と対応する量子化数に基づいて、2値画像データに含まれる各領域の構造化データが生成される。尚、第3の実施の形態では、構造化データを記憶装置204に格納したが、通信インタフェース208を介して通信回線209に送信することもできる。

【0133】以上説明したように、第3の実施の形態によれば、両像データの画素値のヒストグラムに基づいて、下地代表濃度bg_valueと下地の濃度幅上限値 b t 1 と濃度幅下限値 b t 0を抽出し、濃度幅上限値 b t 1と濃度幅下限値 b t 0の範囲内に含まれる画素値をすべて下地代表濃度bg_valueとして出力することで、一定した好適な下地の濃度を出力することができる。

【0134】また、画素値のビストグラムを量子化し、 量子化されたビストグラムに基づいて、ノイズ関値noise e_thを算出し、その算出されたノイズ関値noise_thを用いることで、下地の濃度として出力される出力頻度のノイズを好適に除去することができる。また、カラー画像に対して、高速で比較的小さい回路規模で好適な領域判定が可能になる。画像データの存在するノイズによる影響を取り除くことで、図形/写真を正確に判定することができる。更に、下地と文字との輝度に差がない場合でも確実に文字を検出することができる。加えて、スキャナに持有なノイズを考慮した処理を行うようなプログラムを作成することで、最適な像域分離処理が行える効果もある。

【0135】また、領域毎の画像を再現するのに必要な 量子化を行うための好適な量子化数を決定することができる。更に、単色の図形や多値画像のほかに限定色の文 字や図形を好適に判定できるので、構造化データを生成 する特度を向上することができる。尚、第1の実施の形態〜第3の実施の形態で説明された画像処理装置の構成 はハードウェアで実現するものに限定されず、全部又は 一部分をソフトウェア等のプログラムで実現してももち るん構わない。

【0136】また、カラー多値画像データとして、均等 色空間であるCIE1976L*a*b*空間を利用し て、本発明で説明される処理を実行したが、もちろんこ れに限定されず、RGB表色系でもよいし、YCbCr 表色系やYIQ表色系を利用してもよい。更に入力ビッ ト数、それに伴うヒストグラムの生成はこれに限定され ず、量子化した結果の頻度分布であっても構わない。

【0137】更に、像域分離処理や量子化の方法は本発明で説明される方法に限定されず、他の方法でも構わない。また、領域の形状を矩形として説明したが、これに限定されず、輪郭線等のあらゆる自由形状であってももちろん構わない。また、更に、メモリ構成をフレームメ

モリとしたが、これに限定されず、ラインバッファ等で 構成してももちろん構わない

【O138】また、多値の符号化としてJPRG符号化を例にとって説明を行ったが、もちろん、これに限定されず、DPCM符号化や、ベクトル量子化符号化等の他の多値の符号化を用いても構わない、更に、2値の符号化としてJB1G符号化を例にとって説明を行ったが、もちろん、これに限定されず、MMR符号化やLZW符号化等の他の2値の符号化を用いても構わない。更に、形状を表すのにベクトルを用いたが、チェイン符号化等の他の形状を表す符号化を用いても構わない。

【0139】尚、本発明は、複数の機器(例えばホストコンピュータ、インタフェース機器、リーダ、プリンタ等)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、被写機、ファクシミリ装置等)に適用してもよい。また、本発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、達成されることは言うまでもない。

【0140】この場合、記憶媒体から読出されたプログラムコード自体が上述した実施の形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。プログラムコードを供給するための記憶媒体としては、例えば、フロッピディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。

【O141】また、コンピュータが読出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。

【0142】更に、記憶媒体から説出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに普込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

【0143】本発明を上記記憶媒体に適用する場合、その記憶媒体には、先に説明したフローチャートに対応するプログラムコードを格納することになる。簡単に説明すると、例えば、図22のメモリマップ例に示す各モジュールを記憶媒体に格納する。すなわち、少なくとも

「生成モジュール」、「算出モジュール」。「抽出モジュール」、「判定モジュール」、および「出力モジュール」の各モジュールのプログラムコードを記憶媒体に格納すればよい。

【0144】尚、「生成モジュール」は、画像データの 濃度の出力頻度の分布を生成する。「算出モジュール」 は、生成された分布に基づいて、関値を算出する。「抽 出モジュール」は、生成された分布の最大出力頻度とな る濃度を抽出する。「判定モジュール」は、最大出力頻 度となる濃度を含み、関値以上の出力頻度を有する濃度 領域を判定する。「出力モジュール」は、濃度領域内の 濃度を持つ画像データの濃度を一律に前記最大出力頻度 となる濃度で出力する。

【0145】以上説明したように、本発明の第1の実施の形態〜第3の実施の形態によれば、スキャナ等で読み取った原稿画像の画像データの下地に発生するノイズを好適に除去することができ、画像データによる出力画像の画質を向上する画像処理装置及びその方法を提供できる。また、画像データの下地に発生するノイズを好適に除去することで、画像データを属性毎の領域に分離する像成分離処理の特度を向上する画像処理装置及びその方法を提供できる。

【0146】また、画像データの下地に発生するノイズを好適に除去し、ノイズを除去した画像データから好適な下地の濃度を判定し、その判定された濃度を下地の濃度として出力することで、画像データの符号化効率を向上することができる画像処理装置及びその方法を提供できる。

<第4の実施の形態>図23は第4の実施の形態の画像 処理装置の構成を示すブロック図である。

【0147】図1において、401は原稿画像を入力する画像入力部であり、イメージスキャナ等で構成される。ここでは入力する原稿画像を白黒の多値画像(8ビット/画索)として説明を行う。402は画像入力部401より得られる原稿画像の画像データを記憶しておくフレームメモリである。403は読み込まれた画像データ(8ビット/画業の多値画像データ)の画案値のヒストグラムを作成するヒストグラム生成部である。

【①148】尚、ヒストグラム生成部403は、256個のカウンタで構成され、各カウンタは読み込まれる画像データ(8ビット/画業の多値画像データ)の画紫値に対応しており、1両素の画像データの入力に対しその画紫値に対応するカウンタに1が加えられる。404はヒストグラムから、出現頻度の最大値とその最大値を持つ画素値を出力する最大頻度検出部である。

【0149】405はヒストグラム生成部403で生成されたヒストグラムの頻度上のノイズを除去するための所定の関値Th1と最大頻度検出部404で検出された最大値に基づいて、下地を構成する温度の幅を求める下地濃度幅検出部である。406は下地濃度幅検出部40

5から出力される下地を構成する濃度の幅基づいてフレームメモリ402の画像データを好適に量子化するのに必要な量子化数と接述する前景色代表濃度を判定する量子化数判定部である。

【0150】407は最大頻度検出部404で検出された下地の濃度(最大値)を外部装置に出力する端子である。408は原稿画像を表現するのに必要な量子化数と後述する前景色代表濃度を外部装置に出力する端子である。409はフレームメモリ402の内容を外部装置に出力する端子である。413はヒストグラム生成部403の内容を外部装置に出力する端子である。

【0151】410はCPUであり、各装置構成要素を制御する。411はROMであり、装置の制御に必要なプログラムを格納する。412はRAMであり、プログラムを動作させるのに必要なメモリ領域を確保する。次に、図23を用いて、画像処理装置において実行される処理について説明する。

【0152】まず、処理に先立ち、CPU410はフレームメモリ402と、ヒストグラム生成部403のカウンタの内容を0にクリアする。続いて、CPU410はユーザの指示に従って、画像入力部401から白黒多値画像(8ビット、画素)である原稿画像を読み込み、その画像データをフレームメモリ402に格納する。原稿画像分の画像データがフレームメモリ402に格納された後、CPU410は、フレームメモリ402から画像データを読み出し、ヒストグラム生成部403に入力する。ヒストグラム生成部403の256個のカウンタは、入力される画像データの画素値に対応しており、1画素の画像データの入力に対してその画素値に対応するカウンタの内容に1を加える。

【0153】入力された画像データの全ての画素によってヒストグラムが生成されたら、CPU410は最大頻度検出部404を動作させ、ヒストグラムの中で出現頻度が最大値を持つ画素値を検出する(つまり、カウンタの値が最大となる画素値)。そして、その検出される出現頻度の最大値mと、対応する画素値を出力する。また、この対応する画素値は下地の濃度を示すので、この濃度を下地代表濃度りと呼ぶ。この下地代表濃度りは端子407から出力される。

【0154】下地濃度輻検出部405は、最大頻度検出部404から下地代表濃度もと所定の関値Th1とヒストグラム生成部403で生成されたヒストグラムから、下地を構成する画素の濃度の幅を算出する。この幅は、下地代表濃度もを中心として最近傍の画素値において、出現頻度が所定の関値Th1になっている画素値を検出する。図24を用いて、その検出する過程を示す。尚、図24には、ある原稿画像の画像データが持つ画素値とその出現頻度の関係を示しており、横軸に画素値、縦軸に出現頻度で表している。

【0155】まず、下地代表濃度しから画素値の低い方

へ出現頻度の検査を行い、出現頻度が所定の関値Th1になった時の画素値bt0を求める。この画素値が譲度幅の下限値となるので濃度幅下限値と呼ぶ。同様に、画素値の高い方へ出現頻度の検査を行い、出現頻度が所定の関値Th1になった時の画素値bt1を求める。この画素値が濃度幅の上限値となるので濃度幅上限値と呼ぶ、

【0156】ここで、下地濃度輻検出部405の詳細な構成について、図25を用いて説明する。図25は第4の実施の形態の下地濃度検出部405の詳細な構成を示すブロック図である。図25において、426は端子であり、最大頻度検出部404から下地代表濃度bを保持する。420はラッチであり、下地代表濃度bを保持する。421はカウンタであり、CPU410の指示に従ってカウンタ421の内容をカウントアップするカウントグウンするカウントグウンモードのいずれかが選択され、選択されたモードに応じてその内容を増減する。428は端子であり、カウンタ421の内容をヒストグラム生成部403に出力し、出力された値に対応するヒストグラム生成部403で生成されたヒストグラムの画素値の出現頻度値を読み出す。

【0157】427は端子であり、カウンタ421より出力された値に対応するヒストグラム生成部403で生成されたヒストグラムの画素値の出現頻度値を読み込む。422は比較部であり、端子427から読み込まれた出現頻度値と所定の閾値Th1より大きい場合は「0」を出力し、所定の閾値Th1より大きい場合は「0」を出力し、所定の閾値Th1より小さい場合は「1」を出力する。423はセレクタであり、比較部422から「1」が出力された場合に、CPU410がカウンタ421に指示しているモードに応じて、カウンタ421の内容をラッチ424、ラッチ425のいずれかに保持する。424、425はラッチであり、セレクタ423からの出力を保持する。429、430は端子であり、それぞれがラッチ424、425の出力を外部に出力する。

【0158】尚、所定の関値Th1はセストグラムに発生する頻度上のノイズを除去するための関値である。次に図25を用いて、下地濃度幅検出部405で実行される処理について説明する。CPU410は、端子426を介して下地代表濃度bを読み込み、ラッチ420に保持する。そして、比較部422を0にリセットし、カウンタ421にラッチ420の下地代表濃度bから1を引いた画素値に対応する値をセットし、カウントダウンモードにセットする。

【0159】カウントダウンモードをセットすると、カウンタ421より、その内容を端子428からヒストグラム生成部403に入力し、入力した値に対応するヒストグラムの画素値の出現頻度値をヒストグラム生成部4

03より読み出す。そして、読み出した出現類度値を端子427から比較部422に入力する。比較部422は入力された出現類度値と関値Th1を比較し、関値Th1よりも出現頻度値が大きい場合は「0」を出力し、関値Th1よりも出現頻度値が小さい場合は「1」を出力する。

【0160】尚、カウンタ421は、比較部422より「0」が出力される毎に、その内容を1 デクリメントし、デクリメントされた値に対応するヒストグラムの両素値の出現頻度値をヒストグラム生成部403より読み出す。そして、出現頻度値を読み出す毎に、比較部422は読み出した出現頻度値と関値Th1を比較する。セレクタ423は、比較部422から「1」が出力された時点で、カウンタ421の内容をラッチ425に格納すると同時に、カウンタ421のカウントダウンモードによるカウントダウンを終了する。

【0161】カウンタ421のカウントダウンが終了すると、CPU410は、比較部422を0にリセットし、カウンタ421にラッチ420の下地代表濃度しから1を足した画素値に対応する値をセットし、カウントアップモードにセットする。カウントアップモードをセットすると、カウンタ421より、その内容を端子428からヒストグラム生成部403に入力し、入力した値に対応するヒストグラムの画素値の出現頻度値をヒストグラム生成部403より読み出す。そして、読み出した出現頻度値を端子427から比較部422に入力する。比較部422は入力された出現頻度値が大きい場合は「0」を出力し、関値Th1よりも出現頻度値が大きい場合は「0」を出力し、関値Th1よりも出現頻度値が小さい

【0162】尚、カウンタ421は、比較部422より「0」が出力される毎に、その内容を1インクリメントし、インクリメントされた値に対応するヒストグラムの画素値の出現頻度値をヒストグラム生成部403より読み出す。そして、出現頻度値を読み出す毎に、比較部422は読み出した出現頻度値と閾値Th1を比較する。【0163】セレクタ423は、比較部422から

場合は「1」を出力する。

「1」が出力された時点で、カウンタ421の内容をラッチ424に格納すると同時に、カウンタ421のカウントアップモードによるカウントアップを終了する。以上のようにして、ラッチ424とラッチ425に保持される値が、それぞれ濃度幅上限値も12濃度幅下限値も10である。そして、濃度幅上限値も11と濃度幅下限値も10をそれぞれ端子429、430を介して量子化数判定部406へ出力する。

【0164】再び、図23の説明に戻る。下地濃度幅検出部405で、濃度幅上限値b±1と濃度幅下限値b±0が検出されると、量子化數判定部406は、下地濃度幅検出部405で検出された濃度幅下限値b±0と濃度幅上限値b±1と、フレームメモリ402に格納される画

像データの画景値を入力し、画像データを好適に量子化するための量子化数と前景色代表濃度を判定する。

【0165】ここで、量子化数判定部406の詳細な精 成について、図26を用いて説明する。図26は第4の 実施の形態の量子化数判定部406の詳細な構成を示す ブロック図である。441は比較部であり、端子449 から入力される濃度幅上限値しも1と端子451から人。 力される両素値を比較する、そして、画素値が濃度幅上 限値5 t1よりも大きい場合は「0」を、小さい場合は 「1」を出力する。442は比較部であり、端子450 から入力される濃度幅下限値もも0と端子451から入 力される画素値を比較する、そして、画素値が濃度幅下 限値b LOよりも大きい場合は「1」を、小さい場合は 「0」を出力する。443は比較部441と比較部44 2から出力される他の非論理種を算出するNAND回路 である。444はラッチであり、端子451から入力さ れる画素値をラッチする。また、NAND回路443が 「1」を出力したときのみ、ラッチしている画素値を出 力する。

【0166】445は256個のカウンタで構成され、ラッチ444から出力される画素値の出現頻度のヒストグラムを生成するヒストグラム生成部である。446はヒストグラム生成部445で生成されたヒストグラムから、出現頻度の極大値とその極大値を持つ画素値を検出する極大値検出部446で検出された模大値の数を計数するカウンタである。448は極大値を持つ画素値を格納するメモリである。449は端子であり、図25の端子429を介して濃度幅上限値bt1を読み込む。450は端子であり、図25の端子430を介して濃度幅下限値b10を読み込む。451は端子であり、フレームメモリ402に格納される画像データの画素値を読み込む。452はカウンタ447の内容を、453はメモリ448の内容を出力する端子である。

【0167】次に図26を用いて、量子化数判定部406で実行される処理について説明する。CPU410は、端子449から濃度幅上限値511を、端子450から濃度幅下限値510を読み込む。続いてフレームメモリ402から格納順に画像データの画素値を読み込み、比較部441、比較部442、ラッチ444に入力する。

【0168】比較部441は、入力画素値と濃度幅上限値b t1、比較部442は入力画素値と濃度幅下限値b t0とを比較する。比較部441、比較部442のそれぞれの比較結果はNAND回路443に入力し、非論理積を算出する。上述の説明により、入力画素値が濃度幅上限値b t 1と濃度幅下限値b t 0の間にある場合は、NAND回路443は「0」を出力し、そうでなければ「1」を出力する。ラッチ444はNAND回路443の出力が「1」の場合、入力された画素値をヒストグラ

本生成部445に出力し、「0」の場合は出力しない。 【0169】ラッチ444の出力がヒストグラム生成部445に入力されると、ヒストグラム生成部445の256個のカウンタは、入力される画素値に対応しており、その画素値に対応するカウンタの内容に1を加える。フレームメモリ402に格納される画像データの全ての画素値に基づいて、ヒストグラム生成部445でヒストグラムが生成された後、CPU410は極大値検出部446を起動するとともにカウンタ447の内容を0にリセットする。続いて、ヒストグラム生成部445の256個のカウンタにおいて、各画素値の出現頻度を示すカウンタの内容を画素値の低い方から順に読み出し、出現頻度が極大値を持つ画素値を検出する

【0170】例えば、ヒストグラムイイラで生成される ヒストグラムが図27に示すようなものであるとする と、出現頻度が極大値を持つ画素値は。図において、矢 印が示す位置の画素値が出現頻度の極大値を持つ画素値 となる。そして、出現頻度の極大値が検出されたら、カ ウンタ447の内容を1インクリメントし、その極大値 を持つ画素値をメモリ448に順に格納する。この場 合、極大値の数は4つであり、カウンタ447の内容は 4が格納されることになる。

【0171】メモリ448に、格納された極大値を持つ 画素値は、原稿画像を構成する背景(下地)以外の画像 の濃度の代表を表わすものであり、これらを前景色代表 濃度と呼ぶ。また、カウンタ447の内容に1を加えた ものが画像を表現するのに必要な量子化数n(nは正の 整数)であり、前景色代表濃度とともに端子452、端 子453を介して端子408から外部装置に出力され る。

【0172】以上のようにして、原稿画像の下地代表濃度りと画像データを好適に量子化する量子化数 n と前景色代表濃度が出力される。次に第4の実施の形態で実行される処理について、図28のプローチャートを用いて説明する。図28は第4の実施の形態で実行される処理の処理フローを示すフローチャートである。

【0173】まず、処理に先立ち、CPU410はフレームメモリ402と、ヒストグラム生成部403のカウンタの内容を0にクリアする。ステップS601で、続いて、CPU410はユーザの指示に従って、画像入力部401から白黒多値画像(8ビット/画素)である原稿画像を読み込み、その画像データをフレームメモリ402に格納する。ステップS602で、原稿画像分の画像データがフレームメモリ402に格納された後、CPU410は、フレームメモリ402から画像データを読み出し、ヒストグラム生成部403に入力し、入力された画像データの全ての画素によってヒストグラムを生成する。ステップS603で、CPU410は最大頻度放出る。ステップS603で、CPU410は最大頻度放出が104を持つ画素値を下地代表濃度りとして抽出する。

更に、下地濃度幅検出部405で、最大頻度検出部40 4から下地代表濃度bと所定の関値Th1とヒストグラム生成部403で生成されたヒストグラムから、下地を 構成する画素の濃度の幅として濃度幅下限値bt0と濃 度幅上限値bt1を抽出する。

【0174】ステップS604で、量子化数判定部40 6は、下地代表濃度以外の出現頻度の極大値を持つ画素 値を前景色代表濃度としてヒストグラムより抽出する。 ステップS605で、抽出された前景色代表濃度に基づいて、画像データを量子化するための量子化数を判定する。次に第4の実施の形態で説明される画像処理装置の 適用例を説明する。例えば、図29に示されるような画像送信装置に適用させた場合に、実行される動作とその 構成を説明する。

【0175】図29は第4の実施の形態の画像処理装置を適用させた画像送信装置の構成を示すプロック図である。図29において、460は第4の実施の形態の図23に示される画像処理装置である。461は図23の端子407から出力された下地代表濃度もと端子408から出力された量子化数πと各前景色代表濃度とヒストグラムを入力し、画像データを量子化するための関値を決定する関値決定部である。462は関値決定部461から出力される関値にしたがって、端子409から出力された画像データを量子化する量子化部である。

【0176】463はフレームメモリであり、量子化部462で量子化された画像データを格納する。例えば、量子化数がnであるとすると、n値化された画像データをn枚のビットフレーンで格納する。464はフレームメモリ463に格納された量子化された画像データを2値の符号化であるJB1G符号化を行うJB1G符号化部である。465は通信プロトコルに合わせて、JB1G符号化部464で生成されたJBIG符号化データを送信する通信インタフェースである。466は電話回線やLANで構成される通信回線である。

【0177】次に図29で実行される処理の概要を説明する。関値決定部461は、画像処理装置460のカウンタ447とメモリ448から量子化数πと各前景色代表濃度を端子408を介して読み込み、とストグラムを端子413を介して読み込み、各前景色代表濃度に基づいて、量子化するための関値を決定する。図30を用いて、その関値を決定する過程を示す。まず、図24のヒストグラムに対し、図30に示すような前景色代表濃度「1~「4が決定されたとする。そして、各前景色代表濃度で1~「4が決定されたとする。そして、各前景色代表濃度を中心として形成される出現頻度の山の両側に存在する出現頻度の曲線の傾きが0となる出現頻度を持つ画素値を関値として決定する。この場合、図の1~14

【0178】続いて、量子化部462は、閾値決定部4 61で決定された閾値を用いて、フレームメモリ402 に格納される画像データの画素値を量子化する。例え

in Ki

ば、図30に示した関値に1~r4場合、関値に1未満の両素値を持つ両像データは「0」に、関値に1以上関値に2未満の画素値を持つ画像データは「1」に、関値に2以上関値に3未満の画素値を持つ画像データは

「2」に、関値 r 3以上関値 r 4未満の画素値を持つ画像データは「3」に、関値 r 4以上の画素値を持つ画像データは「4」に量子化する。そして、量子化部462によって得られる量子化結果はフレームメモリ463に格納される。

【0179】フレームメモリ402内に格納される画像データについて量子化が終了したら、端子408から出力される量子化数 n を通信インタフェース465を介して通信回線466に出力する。続いて、画素値の小さい方から下地代表濃度りと前景色代表濃度(この場合はイ1~4)を通信インタフェース465を介して通信回線466に出力する。更に、JBIG符号化部464によって、フレームメモリ463に格納されている量子化された画像データの画素値に対し、ビットプレーン毎にJBIG符号化を施し、通信インタフェース465を介して通信回線466に出力する。フレームメモリ402の全ての画像データを符号化し、送信を終えたら全ての動作を終了する。

【0180】以上説明したように、第4の実施の形態によれば、画像データの画素値の出現頻度のヒストグラムに基づいて、下地代表濃度もと下地の濃度幅上限値もt1と濃度幅下限値もt0の範囲内に含まれる画素値をすべて下地代表濃度もとして出力することで、一定した好適な下地の濃度を出力することができる。

【0181】また、下地代表濃度bを示す極大値以外に ヒストグラムに存在する出現頻度の極大値を持つ画素値 を含む関値Th1以上の出現頻度を持つ画素値群を、下 地以外に原稿画像に存在する画像として判定する。そし て、その判定された画像を表現する所定範囲の画素値群 を一律にその所定範囲内の出現頻度の極大値を持つ画素 値(前景色代表濃度)で出力することで、一定した好適 な画素値で画像を出力することができる。

【0182】更に、その判定された画像を表現する前景色代表濃度を含む所定範囲の両素値群の範囲とその個数に基づいて、原稿画像を量子化するための量子化数と関値を判定するため、原稿画像を好適に量子化する量子化数を決定することができる。また、白黒画像に対して、高速で比較的小さい回路規模で好適な量子化数の判定が可能になり、下地のノイズに影響されることなく、文字等の前景色を効率良く抽出できる。また、符号化に適用した場合、下地のノイズによる影響を取り除き、下地を一定濃度にすることができるので、符号化効率を向上させると同時に、必要最低限に量子化して送るので少ないプレーン数で符号化でき、効率的である。

【0183】〈第5の実施の形態〉第4の実施の形態で

は、白風多値画像の原稿画像の下地の濃度幅と好適な下地濃度を判定し、かつ原稿画像を量子化するための好適な量子化数を判定する画像処理装置について説明した。 第5の実施の形態では、カラー多値画像の原稿画像の下地の濃度幅と好適な下地濃度を判定し、かつ原稿画像を基子化するための好適な量子化数を判定する画像処理装置について説明する。

【0184】図31は第5の実施の形態の画像処理装置の構成を示すプロック図である。図31において、501は原稿画像を入力する画像入力部であり、カラーイメージスキャナ等で構成される。ここでは入力する原稿画像をカラー多値画像とし、RGB各色ごとに1画素あたり8ビットの精度を持つ画像データとして説明を行う。502は原稿画像をC1E1976L*a*b*画像データ(各成文8ビット)に変換する色変換部である。503は色変換部502より得られる原稿画像のL*a*b*画像データを記憶しておくフレームメモリである。

【0185】504はCIE1976L*a*b*画像データの輝度を表わすし*画像データから入力画素が、平坦画素であるか否かを判定する平坦画素判定部である。505はラッチであり、制御信号によってその内容の出力するか否かを決定する。506~508は読み込まれたし*、a*、b*画像データの画素値のヒストグラムを作成するヒストグラム生成部である。

【0186】尚、各ヒストグラム生成部506~508は、256個のカウンタで構成され、各カウンタは読み込まれる画像データの画素値に対応しており、1画素の画像データの入力に対してその画素値に対応するカウンタに1が加えられる。ヒストグラム生成部506はL*画像データ、ヒストグラム生成部508はb*画像データのヒストグラムを生成する。

【0187】509はし、画像データのヒストグラムから下地を構成する画紫のし、画像データの下地表示濃度 b L と濃度幅下限値 b t L 0と濃度幅上限値 b t L 1を決定する下地濃度判定部である。510はa * 画像データのヒストグラムから下地を構成する画紫のa * 画像データの下地代表濃度 b a と濃度幅下限値 b t a 0と濃度幅上限値 b t a 1を決定する下地流度判定部である。511はb * 画像データのヒストグラムから下地を構成する画紫のb * 画像データの下地代表濃度 b b と濃度幅下限値 b t b 0と濃度幅上限値 b t b 0と濃度幅上限値 b t b 0と濃度幅上限値 b t b 1を決定する下地濃度判定部である。

【0188】尚、下地濃度判定部509~511は、第4の実施の形態の図23に示される最大頻度検出部404と下地濃度幅検出部405より構成されており、その詳細については、第4の実施の形態で説明しているので、ここでは省略する。512は比較部であり、フレームメモリ503に格納されるし。a・b・画像データの画素値を入力し、各し、a・b・画像データに対応する

濃度幅下限値り LL0と濃度幅上限値り tLL1、濃度幅下限値り ta0と濃度幅上限値り ta1、濃度幅下限値り tb0と濃度幅上限値り Lb1とを比較し、その比較結果に基づいて、L*a*b*画像データを2値化する。513は比較部512で2値化されたL*a*b*画像データを格納する2値フレームメモリである。514は像域分離部であり、第3の実施の形態と同様の像域分離処理の方法を用いて、像域分離処理を行う。

【0189】515は2値フレームメモリ513に格納される2値化されたし*a*b*画像データから、フレームメモリ503の画像データを量子化するための量子化数を判定する量子化数判定部である。516は像域分離部514と量子化数判定部515で検出された領域に関する情報を格納する領域情報メモリである。517~519は各し*、a*、b*画像データの下地代表濃度bし、ba、bbを外部装置に出りする端子である。520は領域情報メモリ516の内容を外部装置に出力する端子である。521はフレームメモリ503の内容を外部装置に出力する端子である。

【0190】570はCPUであり、各装置構成要素を制御する。571はROMであり、装置の制御に必要なプログラムを格納する。572はRAMであり、プログラムを動作させるのに必要なメモリ領域を確保する。次に、図31を用いて、画像処理装置において実行される処理について説明する。

【0191】まず、処理に先立ち、CPU570はフレームメモリ503と、ヒストグラム生成部506~508のカウンクの内容を0にクリアする。続いて、CPU570はユーザの指示に従って、画像入力部501からRGBカラー多値画像である原稿画像を読み込み、色変換部502によってしまかき画像データに変換し、フレームメモリ503に格納する。

【0192】原稿画像分のし、a*b*画像データがフレームメモリ503に格納された後、CPU570は、フレームメモリ503からし、a*b*画像データを読み出し、平坦画素判定部504とラッチ505に入力する。平坦画素判定部504は入力画素とその周囲の画素のし、a*b*画像データを入力する。フレームメモリ503上に格納されるし、a*、b*画像データのそれぞれの座標をし(x,y)、a(x,y)、b(x,y)とした時、L*a*b*画像データの各エッジ量eし、ea、cbを前述の(4)式によって算出する。

【0193】これらのエッジ量e L、e a、e b と関値 Th 2 を比較し、全てが関値下h 2 以下であれば「1」を、そうでなければ「0」を出力する。

【0194】ラッチ505は平坦画素判定部504からの出力が「0」の時、即ち、いずれかの色成分にエッジが存在する特は、格納されているし、a、b・両係データを出力せず、ヒストグラム生成部506~508は処理を行わない。一方、平坦画素判定部504からの出

力が「1」の時、即ち、平坦画素については、格納されているL°、a°、b°画像データを対応するヒストグラム生成部506~508に出力する。

【0195】そして、ヒストグラム生成部506ではし ・画像データのヒストグラムを作成する。同様に、ヒス トグラム生成部50万では a・画像データのヒストグラ ム、ヒストグラム生成部508ではb*画像データのヒ ストグラムを生成する。フレームメモリラ03内の全て の画素の平坦画素検出、ヒストグラム処理を終了した ら、下地濃度判定部509~511を起動させる。 【0196】下地濃度判定部509は、L*画像データ のヒストグラムからし*画像データの下地代表濃度もし---と濃度幅下限値b t L Oと濃度幅上限値b t L 1を判定す る。同様にして、下地濃度判定部510は、a+画像デ ータのヒストグラムから a* 面像データの下地代表濃度 baと濃度幅下限値bla0と濃度幅上限値bta1を判 定する。下地濃度判定部511は、b*画像データのヒ ストグラムからり 画像データの下地代表濃度りりと濃 度幅下限値もし60と濃度幅上限値もし61を判定する。 判定された名し*、a*、b*画像データの下地代表濃度 bL、下地代表派度ba、下地代表濃度bbを端子51 7~519を介して外部装置に出力する。更に、判定さ れた各し*、a*、b*画像データの濃度幅下限値b t L0 と濃度幅上限値btL1、濃度幅下限値bta0と濃度幅 上限値bta1、濃度幅下限値btb0と濃度幅上限値b 1.61を比較部512に出力する。

【0197】比較部512は、比較部512より入力された各し*、a*、b*画像データの濃度福下限値、濃度幅上限値に対し、フレームメモリ503に格納される各し*、a*、b*画像データであるpし、pa、pbとを比較する。そして、濃度幅下限値btL0<pL<濃度幅上限値btL1、かつ濃度幅下限値bta0<pa</p>
震幅上限値bta1、かつ濃度幅下限値btb0<pb</p>
濃度幅上限値btb1を満たす場合は「0」を出力し。そうでなければ「1」を出力する。この比較によって、し*a*b*画像データが2値化される。2値化されたしa*b*画像データは2値フレームメモリ513に格納される。

【0198】フレームメモリ503のすべてのし*a*b*画像データについて、比較部512による比較処理が終了し、2値化されたし*a*b*画像データが2値フレームメモリ513に格納された後、CPU570は像域分離部514を起動する。像域分離部514は2値フレームメモリ513から読み込んだ2値化されたし*a*b*画像データを領域分割し、分割された領域の属性を像域分離処理によって判定する。判定された領域の属性や各領域の位置等を示す情報は領域情報メモリ516に格納する。

【0199】像域分離処理が終了し、領域情報メモリ5 16にL*a*b*画像データに含まれる全ての領域の属 性と情報が格納されたら、CPU570は量子化数判定部515を起動する。そして、領域情報メモリ516に格納されている各領域の属性と情報に基づいて、各領域に対応するし、a*b*画像データをフレームメモリ503から順に、量子化数判定部515に入力し、各領域を量子化するための量子化数を判定する。

【0200】ここで、量子化数判定部515の詳細な構 成について、図32を用いて説明する。図32は第5の 実施の形態の量子化数判定部515の詳細な構成を示す プロック図である。556は端子であり、領域情報メモ リ516に格納されている各領域の属性と情報に基づい て、各領域に対応するL*a*b*画像データをフレーム メモリラロ3から順に読み込む。555は端子であり、 フレームメモリ503から読み込まれるL*a*b*画像 データに同期して、2値フレームメモリラ13から対応 するする2値化されたし* a* b*画像データを読み込 む。541~543はラッチであり、端子555から入 力される2値化されたL・a・b・画像データを制御信号 として、制御信号が「1」の場合は保持されている内容 を出力し、「0」である場合は何も出力しない。尚、ラ ッチ541はL*面像データ、ラッチ542はa*画像デ ータ、ラッチ543はb*画像データを保持する。

【0201】544~546は読み込まれたし、a*、b*画像データの画素値のヒストグラムを作成するヒストグラム生成部である。尚、各ラッチラ44~546は、256個のカウンタで構成され、各カウンタは読み込まれる画像データの画素値に対応しており、1画素の画像データの入力に対してその画素値に対応するカウンタに1が加えられる。

【0202】ラッチ544はし、画像データ、ラッチ545はまで画像データ、ラッチ546はむで画像データのヒストグラムを生成する。547~549は各ラッチ544~546で生成されたヒストグラムを平滑化するヒストグラム平滑化部である。550~552はヒストグラム平滑化部547~549で平滑化されたヒストグラムで極大値をとる出現頻度の画素値を検出する極大値検出部。

【0203】553は各極大値検出部550~552で 検出された極大値をとる出現頻度の画素値から、領域内 を構成する可能性のある色の組み合せを抽出する代表色 抽出部である。554は代表色抽出部553で抽出され た色の組み合わせに基づいて、実際に領域内に存在する 色を判定する代表色判定部である。また、色を判定する ために、代表色抽出部553で抽出された色の組み合わ せから得られる色差が最小となる色の出現頻度をカウン トするカウンタが設けられている。557は領域内に存 在する色の数と色のデータを外部装置に出力する端子で ある。

【0204】次に図32を用いて、量子化数判定部51 5で実行される処理について説明する。CPU570 は、領域情報メモリ516に格納される各領域の属性と情報にしたがって、端子556よりフレームメモリ503から領域に対応するし、a、b、画像データ、端子555より2値フレームメモリ513から領域に対応する2値されたし。a、b、画像データは、それぞれラッチ541~543に保持される。

【0205】端子555より読み込まれた2値化されたした。からではデータが「1」の場合、ラッチ541~543はその内容を後段のラッチ544~546にそれぞれ出力する。一方、「0」の場合、何も出力されず、ラッチ544~546では、そのしてaでもで値像データに対応するしてaでもでは、各して。は、もで画像データから各画像データのヒストグラムを生成する。256個のカウンタは、入力される画像データの画素値に対応しており、その画素値に対応するカウンタの内容に1を加える。

【0206】入力された画像データの全ての画業によってヒストグラムが生成されたら、CPU570はヒストグラム平滑部547~549を起動させる。ヒストグラム平滑部547~549では、各ラッチ544~546で生成された各し*、a*、b*画像データのヒストグラムの各両素値の出現頻度値hist[i](i=0~255)と、あらかじめ設定された平滑化幅swから、

(8) 式を用いて出現頻度値hist [i] を平滑化し、平滑化された出現頻度値hist_sm [i] (i=0~255) らなる各し*、a*、b*画像データヒストグラムを生成する。

[0207]

【数1】…(8)

極大値検出部550~552はそれぞれ、ヒストグラム 平滑部547~549で、平滑化された出現頻度値hist _sm [i] からなる各し*、a*、b*画像データのヒスト グラムから、第4の実施の形態の図26の極大値算出部 446と同様の方法で、各し*、a*、b*画像データの 出現頻度の極大値を持つ画素値を検出する。そして、検 出された各し*、a*、b*画像データの出現頻度の極大 値を持つ画素値は代表色抽出部553に入力される。

【0208】代表色抽出部553では、各し*、 a'、 b*画像データから各し*、 a*、 b*画像データの出現頻度の極大値の数、極大値を持つ画素値をそれぞれ格納する。 し*画像データの極大値の数を加し、各極大値を「1 [i] (i=1~ma)、 a*画像データの極大値の数をma、各極大値をfa [i] (i=1~ma)、 b*画像データの極大値の数をmb、各極大値をfb [i]

(i=1~mb)とした場合に、領域内に存在する可能性があると考えられる色のデータ数mcは、

 $mc = mL \times ma \times mb$... (9)

で表わされる。この(9)式によって表される全ての色

の組み合わせを抽出し、データ数mcとともに、代表色 判定部554へ出力する。

【0209】色の組み合わせが抽出されたら、CPU570は、代表色判定部554の色の組み合わせの出現頻度をカウントするカウンタを0にリセットする。そして、再度、領域情報メモリ516に格納される領域の属性と情報にしたがって、フレームメモリ503から領域に対応するL*a*b*画像データを代表色判定部554に読み込む。読み込まれたL*a*b*画像データは、代表色抽出部553で抽出された色の組み合わせの色差を判定し、色達が最小となる色に対応するカウンタの内容を1インクリメントする。

【0210】フレームメモリ503に格納されるした。かで画像データのすべての画素値について、代表色抽出部553で抽出された色の組み合わせの色差の判定と、色差が最小となる色のカウントが終了したら、各色のカウンタの内容と関値Th3以上となる色に関しては、その色が領域内の画像を表現するのに不可欠な色であるため、これらの色の数をカウントし、そのカウントされた数を画像を量子化するための量子化数nとする。また、関値Th3以上となる色を前景色代表色とし、量子化数nともに端子557から外部に出力する。これらの量子化数nと前景色代表色は、対応する領域の属性と情報ともに領域情報メモリ516に格納される。

【0211】以上のようにして、各し*、a*、b*画像データの下地代表濃度bし、下地代表濃度ba、下地代表濃度bbとし*a*b*画像データを好適に量子化する量子化数nと前景色代表色が出力される。次に第5の実施の形態で実行される処理について、図33のフローチャートを用いて説明する。

【0212】図33は第5の実施の形態で実行される処理の処理フローを示すフローチャートである。まず、処理に先立ち、CPU570はフレームメモリ503と、ヒストグラム生成部506~508のカウンタの内容を0にクリアする。ステップS1101で、続いて、CPU570はユーザの指示に従って、画像入力部501からカラー多値画像である原稿画像を読み込み。そのしゃa*b*画像データをフレームメモリ503に格納する。ステップS1102で、原稿画像分のし*a*b*画像データがフレームメモリ503に格納された後、CPU570は、フレームメモリ503からし*a*b*画像データを読み出し、各し*、a*、b*画像データをそれぞれヒストグラム生成部506~508に入力し、入力された各し*、a*、b*画像データの全ての画素によってヒストグラムを生成する。

【0213】ステップS1103で、CPU570は各下地濃度判定部509~511を動作させ、各し、、 a*、 b*画像データのヒストグラムの中で出現頻度が最大値を持つ画素値を下地代表濃度bし、下地代表濃度b

a、下地代表濃度りりとして抽出する。更に、各下地代表濃度りし、下地代表濃度りa、下地代表濃度りしと所定の関値Th1と各ヒストグラム生成部506~508で生成されたヒストグラムから、各し*、a*、b*画像データの下地を構成する画素の濃度の幅として濃度幅下限値りtL0と濃度幅上限値りta1、濃度幅下限値りtb0と濃度幅上限値りtb1を抽出する。

【0214】ステップS1104で、フレームメモリ503のすべでのL*a*b*画像データについて、2値化し、2値化されたL*a*b*画像データが2値フレームメモリ513に格納された後、CPU570は像域分離部514を起動する。像域分離部514は、2値フレームメモリ513から読み込んだ2値化されたL*a*b*画像データを領域分割し、分割された領域の属性を像域分離処理によって判定する。判定された領域の属性や各領域の位置等を示す情報は領域情報メモリ516に格納する。

【0215】ステップS1105で、量子化数判定部5 15は、各し*、a*、b*画像データのヒストグラムに おいて、下地代表濃度以外の出現頻度の極大値を持つ画 素値に基づいて、前景色代表色を抽出する。ステップS 1106で、抽出された前景色代表色に基づいて、画像 データを量子化するための量子化数を判定する。尚、第 5の実施の形態では、図32の代表色判定部554の領 域内に存在する前景代表色の抽出において、色の頻度 (L*a*b*画像データ)の比較に基づいて前景代表色 の抽出を行ったが、これに限定されない。例えば、代表 色抽出部553で抽出された色の組み合わせを初期ベク トルとし、フレームメモリ503からL*a*b*画像デ ータを読み込む。そして、ベクトル量子化のベクトルを 決定するのに一般的な手法であるLBG法を用いて最適 なベクトルを算出する。更に、各ベクトルが表わすした。 a*b*画像データ間で色差を判定し、視覚的に差が目立 たない色差のものを統合することで前景代表色を抽出し てももちろん構わない。

【0216】更に、第5の実施の形態では、図32の色変換部502でしょか。 は、2000を変換して代表色濃度、量子化数 n、前景色代表色を得たが、他に輝度色度を表すYCbCrなどの画像データに変換しても構わない。また、処理を簡略化するために、色変換部502を省略して、RGBカラー画像データのまま行っても構わない。このときのブロック図を図34に示す。尚、図31と同じ番号を付したものはまったく同じ動作を行う。フレームメモリ503はRGB画像データを格納し、ヒストグラム生成部506と下地濃度判定部5108はR画像データを、ヒストグラム生成部508と下地濃度判定部511はB画像データの処理を行う。

【0217】また、処理を簡略化するために、し、画像

データのみを像域分離に用いても構わない。このときのブロック図を図35に示す。尚、図31と同じ番号を付したものはまったく同じ動作を行う。530は平坦画素判定部であり、フレームメモリ503からし、画像データを読み込み、(4)式のエッジ量でLを求め、関値Th2と比較を行い、0または1を出力する。531と532は最大頻度検出部であり、図23の最大頻度検出部404と同じ構成で同様に動作する。533は比較部であり、下地判定部509から濃度幅下限値btL0と濃度幅上限値btL1を、フレームメモリ503からした画像データを入力する。

【0218】 L・a・b・画像データが入力順にフレームメモリ503から読み出され、ラッチ505に入力されると同時に、し・画像データが平坦画素判定部530に入力され、エッジ量をしにしたがって0または1を出力する。ヒストグラム生成部506~508でヒストグラムの生成が終了したら、下地濃度判定部509と最大頻度検出部530、531を起動させ、下地濃度判定部509ではし・画像データの下地代表濃度りし、濃度幅下限値りもし0、濃度幅上限値りもし1を算出し、最大頻度検出部531、132はa・、b・画像データの下地代表濃度りa、bbをそれぞれ算出する。

【0219】比較部532は濃度幅下限値btL0、濃度幅上限値btL1を入力し、更に、フレームメモリラ03からL*画像データを読み込み、入力されたし*画像データが濃度幅下限値btL0と濃度幅上限値btL1の間の値であれば「0」をそうでなければ「1」を出力する。この2値結果を2値フレームメモリ513に格納し、像域分離処理を行い、領域情報を領域情報メモリ516に入力する。更に、フレームメモリ503からし*a*b*画像データを読み込み、量子化数判定部515で量子化数n、前景色代表色を算出する。

【0220】次に第5の実施の形態で説明される画像処理装置の適用例を説明する。例えば、図36に示されるような光学的文字認識装置に適用させた場合に、実行される動作とその構成を説明する。図36は第5の実施の形態の画像処理装置を適用させた光学的文字認識装置の構成を示すプロック図である。

【0221】図36において、560は第5の実施の形態の図31に示される画像処理装置である。561は図31の端子517~519から出力された各し*、a'、b*画像データの下地代表濃度bL、ba、bbと端子520から出力された領域情報と量子化数πと各前景色代表色を入力し、端子521から出力されたフレームメモリ503から出力されたし*a*b*画像データを量子化する量子化部である。

【0222】562はフレームメモリであり、量子化部 561で量子化されたし*a*b*画像データを格納す る。例えば、量子化数がnであるとすると、n 値化され たし*a*b*画像データをn枚のビットプレーンで格納 する。563はフレームメモリ562に格納される各ピットプレーン画像を読み込み、読み込んだ画像に含まれる文字を認識し、対応する文字情報を文字のコードとして出力するOCR部である。

【0223】564はOCR部563が出力した文字コードを格納すると同時に、L・a・b・画像データに存在する領域の属性と情報から文字の並びを調整し、色文字である文字については、文字コードのほかに色コードも付加する文字情報合成部である。565はL・a・b・画像データに存在する領域毎に文字コードと色コードを記憶装置である。

【0224】次に図36で实行される処理の概要を説明 する。画像処理装置160で、L* a* b* 画像データに 存在する領域の属性と情報の抽出、各領域の量子化数= と前景色代表色の抽出が終了したら、CPU570は抽 出された領域でその属性が「文字」である領域につい て、対応するL*a*b*画像データの画案値を端子5.2 1から、領域の情報を端子520から、各L*a*b*画 像データの下地代表流度もし、 ba、 b bを端子517 ~519から読み出し、量子化部561に入力する。 【0225】尚、ここで、フレームメモリ562に格納 されるn枚のビットプレーン画像の内容を「O」にクリ アしておく。また、量子化部561は、下地代表濃度b し、ba、bbで表わされる色を0番。領域情報の前景 色代表色を 1 番から n 智まで割り振っておく。そして、 この1番からn番は、フレームメモリ562に格納され、 るn枚のビットプレーン画像に1対1で対応している。 【0226】続いて、領域に対応するしta*b*画像デ ータの画素値より、L*a*b*画像データと下地の色。 前景色代表色との間で色差を抽出し、最も色差の小さか った色を検出し、検出された色に対応する割り振られた 番号を判定する、判定された番号がO以外であれば、そ の番号が表わずフレームメモリ562のビットプレーン 画像に対応する画案を「1」とする。この作業を領域内 の全ての画器について行った後に、CPU570はOC R部563を起動させる。

【0227】OCR部563は、ビットプレーン画像を1番から順に入力し、入力されたビットプレーン画像に存在する文字をOCR処理によって文字コードを生成し、その生成された文字の位置を検出していく。1つのビットプレーン画像が終了したら、その文字コード、位置、ビットプレーン画像の番号を文字情報合成部564に領域毎に格納する。

【0228】領域情報メモリ516に格納されているすべての領域について、上述の処理が実行され、その処理結果が文字情報合成部564に格納されたら、CPU570は文字情報合成部564に格納される各領域の位置を示す情報から各領域を読み出す順番を推定する。そして、その推定された順番に従って、各領域に含まれる文字の情報を読み出し、文字の位置を示す情報から文字順

を算出する。更に、対応する文字コードと文字の色のコードを正しく並び変えて、記憶装置565の所定の記憶領域に格納する、全ての領域に含まれる文字の情報が記憶装置565の格納されたら、全ての動作を終了する。【0229】以上説明したように、第5の実施の形態によれば、各し*、a*、b*画像データの画素値のヒストグラムに基づいて、各し*、a*、b*画像データの下地代表濃度b上、下地代表濃度ba、下地代表濃度bbbと、下地の濃度幅上限値btL1と濃度幅下限値btL0、下地の濃度幅上限値bta1、更には濃度幅下限値bta0、下地の濃度幅上限値bta1、更には濃度幅下限値bta0、下地の濃度幅上限値btb1と濃度幅下限値bta0、下地の濃度幅上限値btb1と濃度幅下限値の範围内に含まれる画素値をすべて下地代表濃度として出力することで、一定した好適な下地の濃度を出力することができる。

【0230】また、各し*、a*、b*画像データの下地代表濃度bL、下地代表濃度bA、下地代表濃度bbを示す極大値以外にヒストグラムに存在する出現頻度の極大値の数に基づいて、下地以外に原稿画像に存在する画像の色の組み合わせを判定する。そして、その判定された画像の色の組み合わせを表現する各色群とし*a*b*画像データとの色差を算出し、算出された色差が最小となる色の出現頻度を各画素値毎に計数する。更に、色差が最小となる色の出現頻度の分布に対し、閾値Th3以上となる色(前景色代表色)で出力することで、一定した好適な色の画素値で画像を出力することができる。

【0231】更に、閥値Th3以上となる色の個数に基づいて、原稿画像を量子化するための量子化数を判定するため、原稿画像を好適に量子化する量子化数を決定することができる。また、カラー多値画像に対して、高速で比較的小さい回路規模で好適な量子化数の判定が可能になり、下地のノイズに影響されることなく、文字等の前景色を効率良く抽出できる。また、OCRに適用した場合、文字の色を抽出することができるため。色の情報を欠落させることがない。更に、文字情報を検索する際に色で検索したり、色文字を重要な情報とするキーワードとすることで効率的な検索を行うことも可能となる。

【0232】ぐ第6の実施の形態>第6の実施の形態では、第4の実施の形態と第5の実施の形態で説明された装置構成によって実行される処理のプログラムを、例えば、ROM等の配憶媒体に配憶させ、そのプログラムを実行することで、本発明で説明される処理を行う。図37は第6の実施の形態の画像処理装置の構成を示すプロック図である。

【0233】図37において、1201は後述する第6の実施の形態で説明される処理(図40~53のフローチャート参照)を実行する実行プログラムによって動作し、装置を構成する各構成要素の制御を行うCPUである。1202はその実行プログラムを格納し、実行プログラムを実行するのに必要な記憶容量を確保するプログ

ラムメモリである。1203はユーザが実行プログラム の実行等の各種指示を入力する端末である。

【0234】1204は磁気ディスク等で構成される記憶装置である。1205は原稿画像の読み込みを行う白黒スキャナである。ここではカラー多値画像データの原稿画像を読み込むこととする。1206はカラー多値画像データを、原稿画像分格納する多値フレームメモリである。1207はカラー多値画像データを2値化して得られる2値画像データを、原稿画像分格納する2値フレームメモリである。1208は通信プロトコルに合わせて符号化データを送信する通信インタフェース(通信1/下)である。1209は電話回線やLANで構成される通信回線である。210は装置を構成する各構成要素を接続し、画像データ等の各種データや制卸信号を授受するパスである。

【0235】以下、第6の実施の形態で実行される処理について、図40~図53のフローチャートを用いて説明する。尚、第6の実施の形態では、例えば、ユーザの指示によって、原稿画像をズキャナ205より読み込む。そして、読み込んで得られる画像データを2値化し、2値化して得られる2値画像データの領域分割を行う。分割された各領域の属性を像域分離処理によって判定し、判定された属性に基づいて2値画像データに含まれる各領域を量子化するための量子化数を決定する。更に、決定された量子化数に基づいて、各領域の構造化データを生成し、生成された構造化データを記憶装置1204に格納するまでの処理を、例に挙げて説明する。

【0236】また、構造化データは、各領域の属性に基づいて、領域に対応する2値画像データを好適に符号化した符号化データのことである。また、第6の実施の形態で説明される処理を実行する原稿画像は、例えば、図38の(a)に示されるような原稿画像を用いるものとする。原稿画像に存在する文字は、太字の「灰色」という文字が灰色であり、容字の「赤文字」という文字が赤色であり、それ以外は黒色の文字から構成されている。

【0237】まず、図40〜図42のフローチャートを用いて、白黒スキャナ1205にセットされた原稿画像を、端末1203から装置を起動することで、原稿画像の画像データを読み込み、読み込まれた画像データに基づいて、画像データの下地代表濃度bg_valueと濃度幅下限値b t0と濃度幅上限値b t1を算出するまでの処理について説明する。

【0238】図40~図42は第6の実施の形態によって実行される画像データの下地代表濃度bg_valueと濃度幅下限値 b t0と濃度幅上限値 b t1を算出する処理の処理フローを示すフローチャートである。図40において、ステップS1001で、CPU1201は白黒スキャナ1205から画像データを読み込み、多値フレームメモリ1206に格納する。次に、ステップS1002で、多値フレームメモリ1206上に展開される画像デ

ータの各画素データp(x, y)の画素値をカウントするカウンタを0にリセットする。尚、カウンタは頻度hi $st_pixel[i](i=0-255)$ からなり、例えば、画素値がiの画素データは、頻度hist_pixel[i]にカウントされる。また、各カウンタでカウントされる値は各画素値の出現頻度を示す。

【0239】ステップS1003で、多値フレームメモリ1206上より画素データp(x,y)の画素値を順次読み込み、すべての画素データp(x,y)の画素値が読み込まれたか否かを判定する。そして、すべての画素データp(x,y)の画素値が読み込まれるまでは、ステップS1004で、順次読み込まれる画素データp(x,y)の画素値に対応する頻度hist_pixel [p(x,y)]の内容を1インクリメントする。

【0240】そして、各画素データp(x,y)の画素 値の読み込みが終了したら、ステップS1006に進 む。尚、各画条データp(x,y)の画素値の読み込み が終了すると、頻度hist_pixel [i] に示される各画素 値の出現頻度によって、画像データの画素値の出現頻度 のヒストグラムが生成される。ステップS1006で、 生成されたヒストグラムの各画素値の出現頻度と比較す るための変数max_hist。比較の結果に基づいて決定され る下地代表濃度bg_value、比較した画素値の数をカウン トするループカウンタ主の内容をOにリセットする。 【0241】ステップS1007で、生成されたヒスト グラムから各画素値の頻度hist_pixel [i]を読み込 み、すべての頻度hist_pixel [i] が読み込まれたか哲 かを判定する。そして、すべての頻度hist_pixel [i] が読み込まれるまでは、ステップS1008で、順次読 み込まれるhist_pixel [i] と変数max_histを比較す る。頻度hist_pixel [i] が変数max_histより大きい場 合 (ステップS1008でYES)、ステップS100 9に進む。ステップ S 1 0 0 9 で、変数 mx_histに 類度 hist_pixel [i] を代入し、下地代表濃度bg_valueにル ープカウンタiの内容を代入する、一方、頻度hist_pix el [i] が変数max_histより小さい場合(ステップS1 008でNO)、ステップS1010に進む。

【0242】ステップS1010で、ループカウンタiの内容を1インクリメントする。そして、すべての頻度 hist_pixel [i] の比較が終了したら、つまり、ループカウンタiの内容が255になったら、ステップS1011で、11に進む。図39において、ステップS1011で、ヒストグラムを正規化するための量子化ステップmax_hist /100を算出した後に、前述の(6)式に従って、量子化頻度hist_q[i]を算出する。

【0243】次に、ステップS1012で、読み込まれる量子化頻度hist_q[i]の数をカウントするループカウンタiの内容を0にリセットする。ステップS1013で、読み込まれる量子化頻度hist_q[i]を順次読み込み、すべての量子化頻度hist_q[i]が読み込まれた

か否かを判定する。そして、すべての量子化頻度hist_q [i]が読み込まれるまでは、ステップS1014で、順次読み込まれる量子化頻度hist_q [i] とノイズ関価noise_thを比較する。量子化頻度hist_q [i] がノイズ関値noise_thより小さい場合(ステップS1014でN O)、ステップS1015に進む。ステップS1015で、量子化頻度hist_q [i] の内容を0にする。一方、量子化頻度hist_q [i] がノイズ関値noise_thより大きい場合(ステップS1014でYES)、ステップS1016に進む。尚、ノイズ関値noise_thは第4の実施の形態で説明される関値Th1と同様の目的に使うための関値である。

【0244】ステップS1016で、ループカウンタiの内容を1インクリメントする。そして、すべての量子化頻度hist_q [i] の比較が終了したら、つまり、ループカウンタiの内容が256になったら、ステップS1017で、下地濃度下限値 b t0として下地代表濃度bg_valueから1を引いたものを算出する。ステップS1018で、順次、頻度hist_q [bt0]が0であるか否かを判定する。そして、頻度hist_q [bt0]が0になるまで、ステップS1019で、下地濃度下限値 b t0から1デクリメントする。

【0245】そして、頻度hist_q [bt0] が0になったら、ステップS 1 0 2 0で、下地濃度上限値 bt1として下地代表濃度bg_valueから 1 を足したものを算出する。尚、頻度hist_q [bt0] が0になった時の下地濃度下限値 b t 0が、下地濃度下限値 b t 10となる。ステップS 1 0 2 1 で、順次、下地濃度上限値 b t 10頻度hist_q [bt1] が0になるまで、ステップS 1 0 2 2 で、下地濃度上限値 b t 1 から 1 インクリメントする。そして、頻度hist_q [bt1] が0になったら、処理を終了する。尚、頻度hist_q [bt1] が0になったら、処理を終了する。尚、頻度hist_q [bt1] が0になったらの下地濃度上限値 b t 1が、下地濃度上限値 b t 1となる。

【0246】以上、図40~図42のフローチャートで説明された処理によって、画像データの下地代表濃度bg_value、下地濃度下限値b t0、下地濃度上限値b t1が算出される。また、図38の(a)の原稿画像に上述の処理を適用した場合、図39のようなヒストグラムが得られる。図39において、点線はノイズ関値noise_thを表わす。ヒストグラムで右端の最も大きな出現頻度を持つ画素値が下地代表濃度bg_valueであり、その山の両端に下地濃度下限値b t0、下地濃度上限値b t1が存在する。

【0247】続いて、図43のフローチャートを用いて、画像データの像域分離処理を行うために画像データを2値化する処理について説明する。図43は第6の実施の形態で実行される画像データを2値化する処理の処理フローを示すフローチャートである。ステップS1101で、多値フレームメモリ1206上に展開される画

像データの各画素データp(x、y)を順次読み込む。 そして、ステップS1102で、すべての画素データp (x,y)に対し、後述のステップS1103で実行される処理が終了したが否かを判定する。そして、ステップS1103で、すべての画素データp(x,y)に対し、2値画像データb(x,y)に変換する2値化を行う。2値化の方法は、順次読み込まれる画素データp(x,y)の画素値が下地濃度下限値りも0以上でかつ下地濃度上限値りも1未満であるがを判定する。

【0248】そして、画素データp(x,y)が下地濃度下限値bt0以上でかつ下地濃度上限値bt1未満であれば、ステップS1105で、その画素データp(x,y)の2値画像データb(x,y)を「0」として、2値プレームメモリ1207の対応する領域に書き込む。一方、画素データp(x,y)が下地濃度下限値bt0未満または下地濃度上限値bt1以上であれば、ステップS1104で、その画素データp(x,y)の2値画像データb(x,y)を「1」として、2値フレームメモリ1207の対応する領域に書き込む。

【0249】多値フレームメモリ1206に上の全ての画素データp(x,y)について、2値化されたら、処理を終了する。以上、図43のフローチャートで説明された処理によって、2値フレームメモリ1207に、多値フレームメモリ1206上に格納される画像データの各画素データp(x,y)の2値化された2値画像データb(x,y)が格納される。

【0250】続いて、図44~図47のフローチャートを用いて、2値フレームメモリ1207上に格納された2値画像データを領域分割し、分割された領域の属性を像域分離処理によって判定する。そして、判定された属性に基づいて多値画像データに含まれる各領域の前景色代表濃度を抽出し、抽出された前景色代表色、前景色代表濃度に基づいて、各領域を量子化するための量子化数を決定する処理について説明する。

【0251】図44~図47は第6の実施の形態で実行 されるの多値画像データに含まれる各領域を量子化する ための量子化数、前景色代表濃度を決定する処理の処理 フローを示すフローチャートである。図44において、 ステップS1201で、2値フレームメモリ1207か ら2値画像データを読み込む。ステップS1202で、 読み込まれた2値画像データに対し、類似する属性を持 つ領域毎に分割する。そして、分離された領域数をカウ ンタarea_countでカウントする。また、各領域の位置座 標と大きさを求める。ステップS1203で、カウント された各領域に対して、各領域に含まれる「1」である 2値画像データの塊の密度や形状、並びから「画像」、 「図形」、「文字」等の領域の属性を判定する像域分離 処理を行う。ここでは、上述の第3の実施形態と同様の **億域分離処理の方法を用いて、像域分離を行う。尚、図** 38の(a)の原稿画像に対し、像域分離を行うと、図 38の(b)のような領域1221~1223に分割され、各領域は「文字」の属性を持つ領域として判定される。

【0252】次に、カウントされた各領域に対し、画像表現に必要な量子化数を決定する量子化数決定処理を、ステップS1204以降で行う。ステップS1204で、ループカウンタkの値を1にセットする。また、ループカウンタkは、各領域に対して量子化数決定処理が終了する毎に、1インクリメントされ、そのカウント値と領域の番号が対応している。ステップS1205で、ループカウンタkの値がカウンタarea_countの値よりも大きいか否かを判定する。ループカウンタkの値がカウンタarea_countの値よりも小さい場合(ステップS1205でNO)、ステップS1206に進む。一方、ループカウンタkの値がカウンタarea_countの値よりも大きい場合(ステップS1205でYES)、すべてのカウントされた領域に対して、量子化数決定処理がなされたことになるので、処理を終了する。

【0253】ステップS1206で、多値フレームメモリ1206からループカウンタkの値に対応する領域の画素データp(x,y)の画素値をカウントするカウンタを0にリセットする。尚、カウンタは頻度hist_area [i] (i=0~255)からなり、例えば、画素値がiの画素データは、頻度hist_area [i] にカウントされる。また、各カウンタでカウントされる値は各画素値の出現頻度を示す。

【0254】ステップS1207で、多値フレームメモ リ1206からループカウンタトの値に対応する領域の 両素データp(x,y)の両素値と2値フレームメモリ 1207から画業データャ(x, y)に対応する画業デ ータb (x, y)の画素値を順次読み込み、すべての画 素データp(x,y)と画素データb(x,y)の画素 値が読み込まれたか否かを判定する。そして、すべての 画素データp(x、y)と画素データb(x、y)の画 素値が読み込まれるまでは、ステップS1208で、順 次読み込まれる画素データb(x,y)の画素値を判定 する。画素データb(x, y)の画素値が1の場合(ス テップS1208でYES)、ステップS1209に進 む。ステップS1209で、画素データp(x.y)の 画業値に対応する頻度hist_area [p(x,y)]の内容を1 インクリメントする。一方、画素データb(x.y)の 画素値が1でない場合(ステップS1208でNO)。 つまり、画素値が0である場合、ステップS1207に

ラムを平滑化する処理を行う

【0256】図43において、ステップS1210で、 生成されたヒストグラムの各画素値の出現頻度hist_are a[i]を平滑化した画素値の数をカウントするループカウンタiの内容を0にリセットする。ステップS121 1で、生成されたヒストグラムから各画素値の頻度hist_area[i]を読み込み、すべての頻度hist_area[i]が読み込まれたか否かを判定する。そして、すべての頻度hist_area[i]が読み込まれるまでは、ステップS1212で、上述の(8)式に従って、順次読み込まれるhist_area[i]を算出する。

【0257】ステップS1213で、ルーフカウンタ主の内容を1インクリメントする。そして、すべての頻度 hist_area [i] の平滑化が終了したら、つまり、ループカウンタ主の内容が256になったら、ステップS1214に進む。次に、ステップS1214〜ステップS1228で、平滑化頻度hist_sm [i] からなるヒストグラムより、ヒストグラムに存在する極大値と極小値を検出し、検出された極大値と極小値に基づいて、領域の前景色代表濃度を判定する処理を行う。

【0258】ステップS1214で、極大値テーブルドst_1[i]の内容と、平滑化されたヒストグラムに存在する極大値の数をカウントするカウンタex_count_1の内容と、平滑化頻度hist_sm[i]の数をカウントするループカウンタiの内容をOにリセットする。尚、極大値テーブルlist_1[i]は、カウンタex_count_1のカウント数(list_1[ex_count_1])とそのカウント数に対応する極大値を持つ平滑化頻度hist_sm[i]の画素値の関係を示すテーブルである。

【0259】ステップS1215で、極小値テーブルに st_2[1]の内容を0にセットし、平滑化されたヒストグラムに存在する極小値の数をカウントするカウンタex_count_2の内容を1にセットする。尚、極小値テーブル list_2[i]は、カウンタex_count_2のカウント数(list_2[ex_count_2])とそのカウント数に対応する極小値を持つ平滑化頻度に st_sm[i]の画素値の関係を示すテーブルである。但し、一般的に、平滑化されたヒストグラムには、画素値が小さい所で、出現頻度が0の極小値を持つ画器値を持っているので、1番目にカウントされる極小値を持つ画器値は0となり、極小値テーブルに st_2[1]には0がセットされる。

【0260】ステップS1216で、平滑化されたヒストグラムから各画素値の平滑化頻度hist_sm [i] を読み込み、すべての平滑化頻度hist_sm [i] が読み込まれたか否かを判定する。そして、すべての平滑化頻度hist_sm [i] が読み込まれるまでは、ステップS1217で、順次読み込まれる平滑化頻度hist_sm [i] が極大値であるか否かを判定する。平滑化頻度hist_sm [i] が極大値である場合(ステップS1217でYES)、ステップ

S1218に進む、ステップS1218で、カウンタex_count_1の内容を1インクリメントし、極大値テーブルlist_1[i]のカウント数list_1[ex_count_1]に平滑 化頻度hist_sm[i]の画案値を対応付ける。一方、平滑 化頻度hist_sm[i]が極大値でない場合(ステップS1217でNO)、ステップS1219に進む。

【0261】ステップS1219で、順次読み込まれる平滑化頻度hist_sm [i] が極小値であるか否かを判定する。平滑化頻度hist_sm [i] が極小値である場合(ステップS1219でYES)、ステップS1220に進む。ステップS1220で、カウンタex_count_2の内容を1インクリメントし、極小値テーブルlist_2[i]のカウント数list_2 [ex_count_2] に平滑化頻度hist_sm [i] の画業値を対応付ける。一方、平滑化頻度hist_sm [i] が極小値でない場合(ステップS1219でN O)、ステップS1221に進む。

【0262】ステップS1221で、ループカウンタ主 の内容を1インクリメントする。そして、すべての平滑 化頻度hist_sm [i] の比較が終了したら、つまり、ルー プカウンターの内容が256になったら、ステップ81 222に進む。図24において、ステップS1222 で、極大値テーブルlist_3 [i] の内容をOにリセット する。また、極大値テーブルlist_1[i]の中で極大値 の値が近い極大値は、それらを1つの極大値として統合 し、その統合後に得られる極大値とそれ以外の極大値の 数をカウントするカウンタex_count_3の内容をりにリセ ットする。更に、統合する極大値の有無の判定がなされ た平滑化頻度hist_sm [i] の数をカウントするループカ ウンタ1の内容を0にリセットする。尚、極大値テープ ルlist_3[i]は、カウンタex_count_3のカウント数(1 ist_3 [ex_count_3]) とそのカウント数に対応する極 大値を持つ平滑化類度hist_sm [i] の画素値の関係を示 **すテーブルである。**

【0263】ステップS1223で、極小値テーブルIist_2[1]の内容を極小値テーブルIist_4[1]にセットする。また、極大値が統合されることによって、なくなる極小値とそれ以外の極小値の数をカウントするカウンタex_count_4の内容を1にセットする。尚、極小値テーブルIist_4[i]は、カウンタex_count_4のカウント数(list_4[ex_count_4])とそのカウント数に対応する極小値を持つ平滑化頻度hist_sm[i]の画素値の関係を示すテーブルである。

【0264】ステップS1224で、極大値テーブル1ist_1[i]から各極大値を読み込み、読み込まれた極大値の数がカウンタex_count_1よりも大きい否かを判定する。そして、読み込まれた極大値の数がカウンタex_count_1よりも大きくなるまでは、ステップS1225で、極大値デーブルlist_1[i]のi+1番目の極大値と、i番目の極大値に対応する画素値の差を算出し、算出された差が所定の関値Th5よりも大きいか否かを判定する。

【0265】算出された差が所定の閾値Th5よりも大きい場合(ステップS1225でYES)、ステップS1226で、カウンタex_count_3の内容を1インクリメントし、極大値テーブル1ist_3 [i] のカウント数1ist_3 [ex_count_3] に、極大値テーブル1ist_1 [i] のカウント数1ist_1 [i] に対応する平滑化類度hist_sm [i] の画素値を対応付ける。ステップS1227で、極小値テーブル1ist_4 [i] のカウント数1ist_4 [ex_count_4] に、極小値テーブル1ist_2 [i] のカウント数1ist_2 [i] に対応する平滑化類度hist_sm [i] の画素値を対応付ける。一方、算出された差が所定の関値Th5よりも小さい場合(ステップS1225でNO)、ステップS1228に進む。

【0266】ステップS1228で、ループカウンタiの内容を1インクリメントする。そして、極大値テーブルlist_1[i]から各極大値を読み込み、読み込まれた極大値の数、つまり、ループカウンタiの内容がカウンタex_count_1の内容よりも大きくなったら、ステップS1229に進む。尚、極大値テーブルlist_3[i]に格納されている極大値に対応する画紫値が、前景色代表濃度となる。

【0267】次に、ステップS1229〜ステップS1 237で、平滑化頻度hist_sm [i] からなるヒストグラ ムより検出された極大値と極小値に基づいて、領域の前 景色代表濃度を判定する。更に、判定された前景色代表

))

温度に基づいて、領域を量子化するための量子化数、量子化するための関値である前景色代表関値を判定する処理を行う。

【0268】図47において、ステップS1229で、前景色代表濃度テーブルlist_color [i] の内容と、前景色代表濃度テーブルlist_v [i] の内容と、前景色代表濃度の数をカウントするカウンタcolor_numberの内容と、前景色代表濃度の判定がなされた極大値(前景色代表濃度)の数をカウントするルーブカウンタiの内容を0にリセットする。尚、前景色代表濃度テーブルlist_color [i] は、カウンタcolor_numberのカウント数(list_color [color_number])とそのカウント数に対応する極大値を持つ平滑化頻度hist_sm [i] の画素値の関係を示すテーブルである。また、前景色代表閾値テーブルlist_v [i] は、カウンタcolor_numberのカウント数(list_v [color_number])とそのカウント数に対応する極小値を持つ平滑化頻度hist_sm [i] の画素値の関係を示すテーブルである。

【0269】ステップS1230で、極大値テーブルに st_3 [i] から各極大値を読み込み、読み込まれた極大 値の数がカウンタex_count_3よりも大きい否かを判定す る。そして、読み込まれた極大値の数がカウンタex_cou nt_3よりも大きくなるまでは、ステップS1231で、 変数subを(9)式に従って算出する。

sub=m i n ((hist_pixel [list_3(i)] -hist_pixel [list_4(i)]) .

(hist_pixel [list_3(i)] -hist_pixel [list_4(i+1)]

... (9)

ステップS1232で、算出された変数subが所定の関 値Th6よりも大きいか否かを判定する。算出された差 が所定の閾値工ト6よりも大きい場合(ステップS12 32でYES)、ステップS1233に進む。ステップ S1233で、カウンタcolor_numberの内容を1インク リメントし、前景色代表濃度テーブルlist_color [i] のカウント数list_color [color_number] に、極大値テ ーブルlist_3 [i] のカウント数list_3 [i] に対応する 平滑化類度hist_sm [1] の画素値を対応付ける。ステッ プS1234で、前景色代表関値デーブルlist_v [i] のカウント数list_v [i] [color_number] に、極小値 テーブルlist_4[i] のカウント数list_4[i] に対応す る平滑化頻度hist_sw[i]の画素値を対応付ける。一 方、算出された差が所定の関値Th6よりも小さい場合 (ステップS1232でNO)、ステップS1235に 進む。

【0270】ステップS1235で、ループカウンタiの内容を1インクリメントする。そして、極大値デーブルlist_3[i]から各極大値を読み込み、読み込まれた極大値の数、つまり、ループカウンタiの内容がカウンタex_count_3の内容よりも大きくなったら、ステップS1236で、前景色代表濃

度テーブルlist_color [i] に格納されている極大値に対応する画素値を前景色代表濃度とし、前景色代表関値テーブルlist_v [i] に格納されている極小値に対応する画素値を前景色代表関値とする。また、カウンタcolor_mumberは前景色代表濃度の存在する数を表しており、その領域を量子化するための量子化数とする。これらは、領域の情報として各領域毎にプログラムメモリ202の所定の領域に格納される。

【0271】ステップS1237で、ループカウンタkの内容を1インクリメントする。そして、すべての領域に対し画像表現に必要な量子化数を決定する量子化数決定処理が行われたら、つまり、ループカウンタkの内容がカウンタarea_countの値になったら、すべての処理を終了する。以上、図44~図47のフローチャートで説明される処理によって、2値フレームメモリ1207上に格納された2値画像データを領域分割し、分割された領域の属性が像域分離処理によって判定される。そして、判定された属性に基づいて2値画像データに含まれる各領域を量子化するための量子化数と、量子化するための前景色代表閾値、更には前景色代表濃度が決定される。

【0272】続いて、図48のフローチャートを用い

て、各領域の前最色代表閾値、前最色代表濃度領域に基づいて、各領域を更に分割する処理について説明する。 尚、図38の(a)のようなカラー多値画像の場合、図44のステップS1202の領域分割では、色の区別がなされないため色毎に領域が分割されない。そのため、色毎に領域を分割するために図48のフローチャートで説明される処理を行う。

【0273】図48は第6の実施の形態で実行される領 域分割された各領域を「前景色代表閾値、前景色代表源 度領域に基づいて、更に分割する処理の処理フローを示 すフローチャートである。ステップS1301で、ルー プカウンタドの値を1にセットする。また、ループカウ ンタドは、各領域の前景色代表関値、前景色代表濃度領 域に基づいて、各領域を更に分割する処理が終了する毎 に、1インクリメントされ、そのカウント値と量子化数 color_numberでカウントされた領域の値が対応してい る。ステップS1302で、ループカウンタトの値が量 子化数color_numberの値よりも大きいか否かを判定す る。ループカウンタkの値がカウンタ量子化数color_mi ulerの値よりも小さい場合(ステップS1302でN O)、ステップS1303に進む。一方、ループカウン タkの値が量子化数color_numberの値よりも大きい場合 (ステップS1302でYES)、すべてのカウントさ れた領域に対して、各領域の前景色代表関値、前景色代 表濃度領域に基づいて、各領域を更に分割する処理がな されたことになるので、処理を終了する。

【0274】ステップS1303で、多値フレームメモリ1206から対応する領域の画素データp(x、y)の画素値を順次読み込み、すべての画素データp(x.y)が読み込まれたか否かを判定する。そして、すべての画素データp(x.y)の画素値が読み込まれる意では、ステップS1304で、順次読み込まれる画素データp(x.y)の画素値が、前景色代表関値list_v [k-1]以上でかつ前景色代表関値list_v [k-1]以上でかつ前景色代表関値list_v [k-1]以上でかつ前景色代表関値list_v [k-1]以上でかつ前景色代表関値list_v [k-1]以上でかつ前景色代表関値list_v [k-1]以上でかつ前景色代表関値list_v [k-1]以上でかつ前景色代表関値list_v [k-1]以上でかつ前景色代表関値list_v [k-1]以上でかつ前景色代表関値list_v [k-1]、表演であるかを判定する。

【0275】そして、画素データp(x, y)が前衆色代表関値List_v [k-1]以上でかつ前景色代表関値List_v [k] 来満であれば、ステップS1305で、その画素データp(x, y)の2値画像データb(x, y)を「1」として、2値フレームメモリ1207の対応する領域に書き込む。一方、画素データp(x, y)が前景色代表関値List_v [k-1] 来満または前景色代表関値List_v [k]以上であれば、ステップS1306で、その画素データp(x, y)の2値画像データp(x, y)を「0」として、2値フレームメモリ1207の対応する領域に書き込む。

【0276】多値フレームメモリ1206に上の全ての 画素データp(x,y)について、前景色代表関値との 比較が終了したら、ステップS1307に進む。ステッ プS1307で、2値フレームメモリ1207に書き込 まれた2値画像データに含まれる領域に対し、類似する 属性を持つ領域毎に更に分割する。そして、各領域が更 に分離された領域数をカウンタarea_count_areaでカウ ントする。また、更に分離された各領域の位置座標と大 きさを求める。ステップS1308で、カウントされた 更に分離された各領域に対して、更に分離された各領域 に含まれる「1」である2値画像データの塊の密度や形 状、並びから「画像」、「図形」、「文字」等の領域の 属性を判定する像域分離処理を行う。ここでは、上述の 第3の実施形態と同様の像域分離処理の方法を用いて、 像域分離を行う。

【0277】ステップS1309で、更に分離された各

領域の位置座標と大きさ、属性、前景色代表濃度を対応 する領域毎に、プログラムメモリ1202の所定の領域 に格納される。ステップS1310で、ループカウンタ kの内容を1インクリメントする。そして、すべての領 域に対し、各領域の前景色代表閾値、前景色代表濃度領 域に基づいて、各領域を更に分割する処理が行われた ら、つまり、ループカウンタkの内容が量子化数color_ numberの値になったら、すべての処理を終了する。。 【0278】以上、図48のフローチャートで説明され る処理によって、図42のステップS1202の領域分 割された各領域が色毎の領域に更に分割される。また、 分割された領域の属性が像域分離処理によって判定され る。尚、図3.8の(a)の原稿画像の場合、図4.4のス テップS1202で説明される領域分割によって得られ る図3.8の(b)の領域に対し、図4.8のフローチャー トで説明される処理によって、図38の(c)に示され るように、領域222内には灰色文字を示す領域1:2.2 4、領域1223には赤色文字を示す領域225が更に 領域をして分割される。また、第6の実施の形態のよう に、カラー多値画像データを白黒スキャナで読み込む場 合は、カラー多値画像データに含まれる色の情報は読み 込まれない。しかし、色によってカラー多値画像データ の濃度が異なるので、その濃度の違いによって色を判定 あるいは推定できるので、図48のフローチャートで説 明される処理のように、領域を更に色毎の領域に分割す ることが可能となる。

【0279】また、従来は下地の濃度を含んだまま、原稿画像の前景色代表濃度を、その原稿画像の画素値の出現頻度に基づいて判定していた。例えば、図38の

(b)の領域1222の画素値の出現頻度のヒストグラムは図49の(a)、領域1223の画紫値の出現頻度のヒストグラムは図49の(b)のように生成されていた。そのため、これらのヒストグラムより、前景色代表濃度を極大値から判定しようとすると背景の裏写り等のノイズによって極大値のカウントを誤ってしまう。また、本来、文字等の抽出したい濃度の頻度が全体に比べて小さいため、ノイズとの分離が困難であった。

【0280】そこで、第6の実施の形態では、原稿画像

の下地の濃度を除去することで、原稿画像の前景色代表 濃度の判定の精度を向上させている。例えば、図38の (b)の領域1222の下地濃度を除去した画素値の出 現類度のヒストグラムは図19の(c)となり、図38 の(b)の領域1223の下地濃度を除去した画素値の 出現類度のヒストグラムは図49の(d)となる。これ によって、文字等の必要な濃度が強調されたヒストグラ ムが得られるので、黒文字の代表濃度、灰色文字の代表 濃度、赤文字を自黒スキャナ1205で読み込んだ場合 でも、代表濃度を明確にできるわけである。

【0281】続いて、図50〜図53のプローチャートを用いて、2値画像データに含まれる各領域の属性と対応する量子化数に基づいて、2値画像データに含まれる各領域の構造化データを生成する処理について説明する。図50〜図53は第6の実施の形態で実行される2値画像データに含まれる各領域の構造化データを生成する処理の処理フローを示すフローチャートである。

【0282】図50において、ステップS1401で、 CPU570は、メモリ1202に格納されている全て の領域について領域の並び変えを行う。並び変えは、原 稍画像に含まれる領域の構造化データを生成する処理の 処理順を決定するために行う。ここでは、まず最初に力 ウンタarea_countでカウントされた数の領域の内、「文 字」の属性を持つ領域が、図48のフローチャートで説 明される処理によって更に領域が分割される場合は、更 に分割される前の「文字」の属性を持つ領域を削除す る。そして、その「文字」の属性を持つ領域について は、更に領域が分割された複数の領域として判定する。 それ以外の更に分割されない領域は、1つの領域として 判定する。このようにして、原稿画像に含まれる領域を 判定し、メモリ1202に格納される領域において、ま ず、更に分割されない領域をラスタ方向で検索し、検索 された順に更に分割されない領域を並べる。続いて、更 に分割されるをラスタ方向で検索し、検索された順に更 に分割される領域を並べる。

【0283】ステップS1402で、並び変えられる領域の総数をカウンタarea_count_allでカウントする。ステップS1403で、ループカウンタkの値を1にセットする。また、ループカウンタkは、各領域に対して構造化データを生成する処理が終了する毎に、1インクリメントされ、そのカウント値とカウンタarea_count_allでカウントされた領域の値が対応している。ステップS1404で、ループカウンタkの値がカウンタarea_count_allの値よりも大きいか否かを判定する。ループカウンタkの値がカウンタarea_count_allの値よりも小さい場合(ステップS1404でNO)、ステップS1404でNES)、すべてのカウントされた領域に対して、構造化データを生成する処理がなされたことになるので、

処理を終了する。

【0284】ステップS1405で、ループカウンタkの値に対応する領域の像域分離処理による属性が「文字」であるが否かを判定する。領域の属性が「文字」である場合(ステップS1405でYES)、以下、後述するステップS1409~ステップS1414で説明される処理を行う。一方、領域の属性が「文字」でない場合(ステップS1405でNO)、ステップS1406に進む。

【0285】以下、領域の属性が「文字」である場合に 実行される処理について、図51のフローチャートを用 いて説明する。図51は第6の実施の形態の領域の属性 が「文字」である場合に実行される処理の処理フローを 示すフローチャートである。ステップS1409で、領 域の属性が「文字」である領域に対応する画像データを 多値フレームメモリ1206から読み込む。そして、読 み込んだ画像データに対し、前景色代表濃度を持つ画案 は「1」、それ以外は「0」にして、画像データを2値 化する。

【0286】ステップS1410で、領域の属性が「文字」である領域のOCRを行い、ステップS1411で、色文字であるか否かを判定する。色文字である場合(ステップS1411でYES)、ステップS1412に進む。ステップS1412で、色を抽出し、その抽出した色とその文字列をキーワードとする。一方、色文字でない場合(ステップS1411でNO)、ステップS1413に進む。

【0287】ステップS1413で、領域の属性が「文字」である領域のJBIG符号化を行い、ステップS1410、ステップS1412によって、OCRの結果から得られた文字列、各文字列の濃度(前景色代表濃度)、対応する文字コード、キーワードとともにJBIG符号化データを構造化データから構成される構造化文書の書式にしたがって記憶装置1204の所定の領域に格納する。そして、領域のJBIG符号化と格納が終了したら、ステップS1408に進む。

【0288】図50のプローチャートに戻る。ステップ S1406で、ループカウンタよの値に対応する領域の 像域分離処理による属性が「図形」であるか否かを判定 する。領域の属性が「図形」である場合(ステップS1 406でYES)、以下、後述するステップS1415 へステップS1417で説明される処理を行う。一方、 領域の属性が「図形」でない場合(ステップS1406 でNO)、ステップS1407に進む。

【0289】以下、領域の属性が「図形」である場合に 実行される処理について、図52のフローチャートを用 いて説明する、図52は第6の実施の形態の領域の属性 が「図形」である場合に実行される処理の処理フローを 示すフローチャートである。ステップS1415で、領 域の属性が「図形」である領域に対応する画像データを 多値フレームメモリ1206から読み込む。そして、読み込んだ画像データに対し、前景色代表濃度を持つ画素は「1」、それ以外は「0」にして、画像データを2値化する、ステップS1416で、領域の属性が「図形」である領域のアウトライン抽出によるベクトル化を行う。

【0290】ステップS1417で、ベクトル化の結果から得られたベクトルは、前景色代表濃度、その座標、領域サイズとともに構造化データから構成される構造化文書の書式にしたがって記憶装置1204の所定の領域に格納される。そして、領域のベクトル化と格納が終了したら、ステップS1408に進む、図50のプローチャートに戻る。

【0291】ステップS1407で、ループカウンタトの値に対応する領域の像域分能処理による属性が「写真」であるか否かを判定する、領域の属性が「写真」である場合(ステップS1407でYES)、以下、後述するステップS1418、ステップS1419で説明される処理を行う、一方、領域の属性が「写真」でない場合(ステップS1407でNO)、ステップS1408に進む。

【0292】以下、領域の属性が「写真」である場合に 実行される処理について、図53のフローチャートを用 いて説明する。図53は第6の実施の形態の領域の属性 が「写真」である場合に実行される処理の処理プローを 示すフローチャートである。ステップS1418で、領 域の属性が「写真」である領域に対応する画像データを 多値フレームメモリ1206から読み込む。そして、読 み込んだ画像データに対し、JPEG符号化を行う。

【0293】ステップS1419で、JPEG符号化の結果から得られた符号化データは、その座標、領域サイズとともに構造化データから構成される構造化文書の書式にしたがって記憶装置1204の所定の領域に格納される。そして、領域のJPEG符号化と格納が終了したら、ステップS1408に進む。再び、図50のプローチャートに突る。

【0294】ステップS1408で、ルーブカウンタkの内容を1インクリメントする。そして、すべての領域に対し構造化データを生成する処理が行われたら、つまり、ルーブカウンタkの内容がカウンタarea_count_allの値になったら、すべての処理を終了する。以上、図50~図53のフローチャートで説明される処理によって、2値画像データに含まれる各領域の属性と対応する量子化数に基づいて、2値画像データに含まれる各領域の構造化データが生成される。

【0295】尚、第6の実施の形態では、構造化データを記憶装置1204に格納したが、通信インタフェース208を介して通信回線1209に送信することもできる。以上説明したように、第6の実施の形態によれば、画像データの画素値のヒストグラムに基づいて、下地代

表濃度bg_valueと下地の濃度幅上限値b t 1と濃度幅下限値b t 0を抽出し、濃度幅上限値b t 1と濃度幅下限値b t 0の範囲内に含まれる画素値をすべて下地代表濃度bg_valueとして出力することで、一定した好適な下地の濃度を出力することができる。

【0296】また、下地代聚濃度bg_valueを示す極大値 以外にヒストグラムに存在する出現頻度の極大値を持つ 画素値を含む関値noith_th以上の出現頻度を持つ画素値 群を、下地以外に原稿画像に存在する画像として判定す る。そして、その判定された画像を表現する所定範囲の 画素値群を一律にその所定範囲内の出現頻度の極大値を 持つ画素値(前景色代聚濃度)で出力することで、一定一 した好適な画素値で画像を出力することができる。

【0297】また、その判定された画像を表現する前景色代表濃度を含む所定範囲の画素値群の範囲とその個数に基づいて、原稿画像を量子化するための量子化数と関値を判定するため、原稿画像を好適に量子化する量子化数を決定することができる。また、カラー画像に対して、高速で比較的小さい回路規模で好適な領域判定が可能になる。領域毎に画像を再現するのに必要な量子化を正しく行い、限定色の文字や図形を好適に判定し、画像の構造化をより高いレベルにすることができる。

【0298】尚、第4の実施の形態、第6の実施の形態で説明された画像処理装置の構成はこれに限定されず、一部分をソフトウェア等のプログラムで実現してももちろん構わない。また、第4の実施の形態、第6の実施の形態では白黒画像データを例にとって説明したが、しょったが画像を白黒画像と同じように扱うことによってカラー画像への拡張が可能であることは言うまでもない。更に入力ビット数、それに伴うヒストグラムの生成はこれに限定されず、量子化した結果の頻度分布であっても構わない。

【0299】また、ヒストグラムは、入力されたすべての画案ではなく、間引くなどして一部の画案を用いて形成しても良い。これにより、処理を高速に行うことができる。更に、係域分離処理や量子化の方法は本発明で説明される方法に限定されず、他の方法でも構わない。また、領域の形状を矩形として説明したが、これに限定されず、輪郭線等のあらゆる自由形状であってももちろん構わない。

【0300】また、更に、メモリ構成をフレームメモリとしたが、これに限定されず、ラインバッファ等で構成してももちろん構わない。尚、本発明は、複数の機器(例えばホストコンピュータ、インタフェース機器、リーダ、プリンタ等)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機、ファクシミリ装置等)に適用してもよい。

【①301】また、木発明の目的は、前述した実施形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システムあるいは装置に供給し、そ

のシステムあるいは装置のコンピュータ(またはCPU やMPU)が記憶媒体に格納されたプログラムコードを 読出し実行することによっても、達成されることは言う までもない。

【OSO2】この場合、記憶媒体から読出されたプログラムコード自体が上述した実施の形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明を構成することになる。プログラムコードを供給するための記憶媒体としては、例えば、フロッピディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどを用いることができる。

【0303】また、コンピュータが読出したプログラムコードを実行することにより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS (オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。

【0304】更に、記憶媒体がら読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれることは言うまでもない。

【0305】本発明を上記記憶媒体に適用する場合、その記憶媒体には、先に説明したフローチャートの処理を実現するためのコンピュータのプログラムコードを格納することになる。簡単に説明すると、例えば、図54のメモリマップ例に示す各モジュールを記憶媒体に格納する。すなわち、少なくとも「生成モジュール」、「判定モジュール」、および「決定モジュール」の各モジュールのプログラムコードを記憶媒体に格納すればよい。

【0306】尚、「生成モジュール」は、画像データの 濃度の出現頻度の分布を生成する。「判定モジュール」 は、生成された分布の最大出現頻度を含み、所定の関値 以上の出現頻度を有する濃度領域以外の分布に含まれ る極大値の数に基づいて、量子化数を決定する。以上説 明したように、本発明の第4の実施形態一第6の実施の 形態によれば、スキャナ等で読み取った原稿画像の画像 データの下地に発生するノイズを好適に除去することが でき、画像データによる出力画像の画質を向上する画像 処理装置及びその方法を提供できる。

【0307】また、画像データの下地に発生するノイズ を好適に除去し、画像データを量子化するための量子化 数を好適に判定する画像処理装置及びその方法を提供で きる。また、画像に対して、高速で比較的小さい回路規 模で好適な領域判定が可能になる。ノイズによる影響を 取り除き、図形。写真を正確に判定できる。更に、下地 と文字の輝度に差がない場合でも確実に検出できる。

【0308】また、領域毎に画像を再現するのに必要な量子化を正しく行い、限定色の文字や図形を好適に判定し、画像の出力、符号化、構造化をより高いレベルにすることができる効果がある。尚、本発明は、上述の実施の形態に限らず、クレームの記載の範囲内で様々な変形、応用が可能である。

[0309]

【発明の効果】以上説明したように、木発明の第1の発明によれば、対象画像の特徴に応じて良好な量子化を行うことができる。また、第2の発明によれば、画像データの下地に発生するノイズを好適に除去し、画像データを量子化するための量子化数を好適に判定することができる。

【0310】また、第3の発明によれば、色文字を良好に抽出することができる。また、第4の発明によれば、スキャナ等で読み取った原稿画像の画像データの下地に発生するノイズを好適に除去することができ、画像データによる出力画像の画質を向上することができ、画像データの下地に発生するノイズを好適に除去することで、画像データを属性毎の領域に分離する像域分離処理の精度を向上すること、また、画像データの下地に発生するノイズを除去した画像データから好適な下地の濃度を判定し、その判定された濃度を下地の濃度として出力することで、画像データの符号化効率を向上することができる。

【図面の簡単な説明】

【図1】第1の実施の形態の画像処理装置の構成を示す ブロック図である。

【図2】第1の実施の形態の下地の濃度幅抽出の様子を 説明するための図である。

【図3】第1の実施の形態で実行される処理の処理フローを示すフローチャートである。

【図4】第1の実施の形態の画像処理装置を適用させた画像送信装置の構成を示すブロック図である。

【図5】第2の実施の形態の画像処理装置の構成を示す ブロック図である。

【図6】第2の実施の形態の下地濃度判定部109の詳細な構成を示すブロック図である。

【図7】第2の実施の形態で実行される処理の処理フローを示すフローチャートである。

【図8】第2の実施の形態の画像処理装置を適用させた プリンタ装置の構成を示すプロック図である。

【図9】第3の実施の形態の画像処理装置の構成を示す ブロック図である。

【図10】第3の実施の形態によって実行される画像データの下地代表濃度bg_valueと濃度幅下限値もも0と濃度幅上限値もも1を算出する処理の処理フローを示すフ

ローチャートである。

【図11】第3の実施の形態によって実行される画像データの下地代表濃度bg_valueと濃度幅下限値も t.0と濃度幅上限値も t.1を算出する処理の処理フローを示すフローチャートである。

【図12】第3の実施の形態によって実行される画像データの下地代表濃度ls_valueと濃度福下限値も10と濃度幅上限値も11を算出する処理の処理フローを示すフローチャートである。

【図13】第3の実施の形態で実行される画像データを 2値化する処理の処理フローを示すフローチャートである。

【図14】第3の実施の形態で実行されるの2値画像データに含まれる各領域を量子化するための量子化数を決定する処理の処理フローを示すフローチャートである。

【図15】第3の実施の形態で実行されるの2値画像データに含まれる各領域を量子化するための量子化数を決定する処理の処理フローを示すフローチャートである。

【図16】第3の実施の形態で実行されるの2値画像データに含まれる各領域を量子化するための量子化数を決定する処理の処理フローを示すフローチャートである。

【図17】第3の実施の形態で実行されるの2値画像データに含まれる各領域を量子化するための量子化数を決定する処理の処理フローを示すフローチャートである。

【図18】第3の実施の形態で実行される2値画像データに含まれる各領域の構造化データを生成する処理の処理フローを示すフローチャートである。

【図19】第3の実施の形態の領域の属性が「文字」である場合に実行される処理の処理フローを示すフローチャートである。

【図20】第3の実施の形態の領域の属性が「図形」である場合に実行される処理の処理フローを示すフローチャートである。

【図21】第3の実施の形態の領域の属性が「写真」である場合に実行される処理の処理フローを示すフローチャートである。

【図22】本発明で実行される処理フローのプログラムを記憶させた記憶媒体のメモリマップの構造を示す図である。

【図23】第4の実施の形態の画像処理装置の構成を示すプロック図である。

【図24】第4の実施の形態の下地の濃度幅抽出の様子 を説明するための図である。

【図25】第4の実施の形態の下地濃度幅検出部405の詳細な構成を示すブロック図である。

【図26】第4の実施の形態の量子化数判定部406の 詳細な構成を示すブロック図である。

【図27】第4の実施の形態の前景色代表濃度の抽出の 様子を説明するための図である。

【図28】第4の実施の形態で実行される処理の処理フ

ローを示すフローチャートである。

【図29】第4の実施の形態の画像処理装置を適用させた画像送信装置の構成を示すプロック図である。

【図30】第4の実施の形態の量子化数を決定する様子を説明するための図である。

【図31】第5の実施の形態の両係処理装置の構成を示すプロック図である。

【図32】第5の実施の形態の量子化数判定部515の 詳細な構成を示すブロック図である。

【図33】第5の実施の形態で実行される処理の処理フローを示すフローチャートである。

【図34】第5の実施の形態の他の構成による画像処理 装置の構成を示すプロック図である。

【図35】第5の実施の形態の更に他の構成による画像 処理装置の構成を示すブロック図である。

【図36】第5の実施の形態の画像処理装置を適用させた光学的文字認識装置の構成を示すブロック図である。 【図37】第6の実施の形態の画像処理装置の構成を示

【図38】(a)は原稿画像の例を示す図であり、

すブロック図である。

(b) は原稿画像を領域分割して得られる領域の構成を示す図であり、(c) は領域分割された各領域を更に分割して得られる領域の構成を示す図である。

【図39】第6の実施の形態の下地の濃度幅抽出の様子を説明するための図である。

【図40】第6の実施の形態によって実行される画像データの下地代表濃度bg_valueと濃度幅下限値b t0と濃度幅上限値b t1を算出する処理の処理フローを示すフローチャートである。

【図41】第6の実施の形態によって実行される画像データの下地代表濃度bg_valueと濃度幅下限値 b t 0と濃度幅上限値 b t 1を算出する処理の処理フローを示すフローチャートである。

【図42】第6の実施の形態によって実行される画像データの下地代決議度bg_valueと議度幅下限値もも0と議度幅上限値もも1を算出する処理の処理フローを示すフローチャートである。

【図43】第6の実施の形態で実行される画像データを 2値化する処理の処理フローを示すフローチャートである

【図44】第6の実施の形態で実行されるの2値画像データに含まれる各領域を量子化するための量子化数、前量色代表色、前量色代表濃度を決定する処理の処理フローを示すフローチャートである。

【図45】第6の実施の形態で実行されるの2値両像データに含まれる各領域を量子化するための量子化数、前景色代表色、前景色代表濃度を決定する処理の処理フローを示すフローチャートである。

【図46】第6の実施の形態で実行されるの2面画像データに含まれる各領域を量子化するための量子化数、前

景色代表色、前景色代表濃度を決定する処理の処理プローを示すプローチャートである。

【図す7】第6の実施の形態で実行されるの2値画像データに含まれる各領域を量子化するための量子化数、前景色代表色、前景色代表濃度を決定する処理の処理フローを示すフローチャートである。

【図48】第6の実施の形態で実行される領域分割された各領域を、前景色代表閾値、前景色代表閾値、前景色代表憑度領域に基づいて、更に分割する処理の処理フローを示すフローチャートである。

【図49】(a)、(b)は従来の方法によって抽出される下地の漁度幅抽出、下地代表濃度、前景色代表濃度の抽出の様子を説明するための図であり、(c)、

(d)は第6の実施の形態によって抽出される下地の濃度期抽出、下地代表濃度、前景色代表濃度の抽出の様子を説明するための図である。

【図50】第6の実施の形態で実行される2値画像データに含まれる各領域の構造化データを生成する処理の処理フローを示すフローチャートである。

【図51】第6の実施の形態の領域の属性が「文字」である場合に実行される処理の処理プローを示すフローチャートである。

【図52】第6の実施の形態の領域の属性が「図形」である場合に実行される処理の処理フローを示すフローチャートである。

【図53】第6の実施の形態の領域の属性が「写真」である場合に実行される処理の処理フローを示すフローチャートである。

【図54】本発明で実行される処理フローのプログラム を記憶させた記憶媒体のメモリマップの構造を示す図で ある。

【符号の説明】

- 1 画像入力装置
- 2 フレームメモリ
- 3、7 ヒストグラム生成部
- 4 最大頻度検出部

- 5 量子化ステップ算出部
- 6 量子化部
- 8 ノイズ関値決定部
- 9 比較部
- 10 下地濃度幅検出部
- 11、12、13 端子
- 20 画像処理装置
- 22 ラッチ
- 23 セレクタ
- 24 JPEG符号化部
- 25 通信インターフェイス
- 101 画像入力部
- 102 色変換部
- 103 フレームメモリ
- 104 平坦画素判定部
- 105 ラッチ
- 106~108 ヒストグラム生成部
- 109 下地濃度判定部
- 110、111 最大頻度換出部
- 140 画像処理装置
- 141 白色下地判定部
- 142 比較部
- 143 ラッチ
- 144 セレクタ
- 145 色変換部
- 146 2値化部
- 147 2値ブリンタ
- 201 CPU
- 202 プログラムメモリ
- 203 端末
- 204 記憶装置
- 205 スキャナ
- 206 多値フレームメモリ
- 207 2値フレームメモリ
- 210 バス

[图2]

【図22】

ディレクトリ	
生成モジュール	
算出モジュール	
抽出モジュール	
利定モジュール	
出力モジュール	

【図1】

【図4】

【図5】

【図6】

【図8】

【図9】

【図13】

[図19]

【図23】

【図25】

【図29】

€.•

【図31】

【図32】

【図39】

【図36】

【図34】

【図35】

【图46】

