Probability Theory & Random Processes

Unit II
Random Variables
&
Probability Distribution

Lecture objectives

- Basic concepts of random variables (Discrete and continuous), and their mean & Standard Deviation, and probability distributions.
- Discrete probability distribution (Hypergeometric, binomial and Poisson distribution) and their mean & S.D.
- Continuous probability distribution (Normal distribution), its properties, mean and variance

Statistics: Group of methods to collect, analyze, present & interpret data to make decisions.

- •The collection of all elements of interest is called population,
- •The selection of few elements from population is called a sample.
- •Statistics that deals with making decision, inferences prediction and forecasts about populations based on results obtained from samples.

Data: Categorical & Numerical (Discrete, continuous)

- •Continuous: Weight, Height
- •Discrete: Number of students, Number of accidents
- •Nominal (No ranking, lowest level of measurement): Black, Green, Yellow, Marital status, Gender
- •Ordinal (ranking is implied): High, medium, low, student's grades Ranked: 1,2,3

Ratio (Highest level of measurement) differences between the measurement is a meaningful quantity, measurement have a true zero point: Age, Weight, Kelvin scale Interval scale, differences between the measurement is a meaningful quantity, measurement do not have true zero point: Year, Temp.

Discrete and Continuous Random Variable

A Random Variable taking only some fixed values is called **Discrete Random Variable**.

Example: All the random variables defined in the examples 1,2 and 3.

A Random Variable which can take any value between two extremes is called **Continuous Random Variable**.

Example: Duration of phone call.

Time of all runners in 100 m race.

Age

In most of the practical problems **discrete variables** represent countable data such as **number of defective units in a lot**.

The **continuous variables** represent the measurable data such as all possible **heights**, **ages**, **time intervals** etc.

Random Variable

The outcomes of an experiment may be numeric or non numeric.

Example:

Numeric: Rolling a die, Marks obtained in subject, CGPA

Non Numeric: Tossing a coin, Grade in a subject, Quality

To arrive at logical conclusion, we assign numerical values to non numeric outcomes.

Definition: Random variable (RV)

A function which associates a unique real number within an interval to each outcome of sample space of an experiment is known as random variable.

Definition: A random variable (abbreviatively RV) is a function that assigns a real number X(s) to every element $s \in S$, where S is the sample space corresponding to a random experiment E.)

Random variable

- A variable which contains the outcomes of a chance experiment
- "Quantifying the outcomes"
- Example X= (1 = Head, 0 = Tails)
- A variable that can take on different values in the population according to some "random" mechanism
- Discrete
 - Distinct values, countable
 - Year
- Continuous
 - Mass

Examples of Random Variable

Example 1. Toss of a coin

```
Sample space S = \{H, T\}
We define random variable as X(H) = 1, X(T) = 0
Range R = \{0, 1\}
```

Example 2. Three coins are tossed together.

```
S = \{HHH, HHT, HTH, THH, THT, HTT, TTH, TTT\}
```

We define the random variable X = "Number of heads"

$$X(HHH) = 3$$
, $X(HHT) = 2$, $X(HTH) = 2$, $X(THH) = 2$
 $X(HTT) = 1$, $X(THT) = 1$, $X(TTT) = 0$

Range
$$R = \{0, 1, 2, 3\}$$

Example 3. To compute CGPA grades are assigned numerical values.

What is a distribution?

- Describes the 'shape' of a batch of numbers
- The characteristics of a distribution can sometimes be defined using a small number of numeric descriptors called 'parameters'

Why distribution?

- Can serve as a basis for standardized comparison of empirical distributions
- Can help us estimate confidence intervals for inferential statistics
- Form a basis for more advanced statistical methods
 - 'fit' between observed distributions and certain theoretical distributions is an assumption of many statistical procedures

Probability Distributions

- The probability distribution function or probability density function (PDF)
 of a random variable X means the values taken by that random variable
 and their associated probabilities.
- PDF of a discrete r.v. (also known as PMF):

Example 1: Let the r.v. X be the number of heads obtained in two tosses of a coin.

Sample Space: {HH, HT, TH, TT}

Probabilities assigned to various outcomes in S in turn determine probabilities associated with the values of any particular RV *X. The probability distribution of X says* how the total probability of 1 is distributed among (allocated to) the various possible *X values*.

$$p(0) = the probability of the X value 0 = P(X = 0)$$

$$p(1) =$$
the probability of the X value $1 = P(X = 1)$

Probability Function

If X is a discrete RV which can take the values $x_1, x_2, x_3, ...$ such that $P(X = x_i) = p_i$, then p_i is called the *probability function or probability mass function or point probability function*, provided p_i (i = 1, 2, 3, ...) satisfy the following conditions:

(i) $p_i \ge 0$, for all i, and

(ii)
$$\sum_{i} p_{i} = 1$$

The collection of pairs $\{x_i, p_i\}$, i = 1, 2, 3, ..., is called the probability distribution of the RV X, which is sometimes displayed in the form of a table as given below:

$X = x_i$	$P(X=x_i)$
x_1	p_1
x_2	p_2
1	:
x_r	p_r
1	:

Example: Consider that a fair coin is tossed three times.

Then sample space is

$$S = \{HHH, HHT, HTH, THH, THT, HTT, TTH, TTT\}$$

We define X = Number of heads in each sample point

The range is $\{0, 1, 2, 3\}$

We find that
$$P[X=0] = \frac{1}{8}$$
, $P[X=1] = \frac{3}{8}$, $P[X=2] = \frac{3}{8}$, $P[X=3] = \frac{1}{8}$

Therefore the **probability distribution** is $\{0, \frac{1}{8}\}, \{1, \frac{3}{8}\}, \{2, \frac{3}{8}\}, \{3, \frac{1}{8}\}$

The probability distribution can also be given an tabular form as

Х	P[X=x}]
0	1/8
1	3/8
2	3/8
3	1/8

Discrete Distribution -- Example

Distribution of Daily Crises				
Number of Crises	Probability			
0	0.37			
1	0.31			
2	0.18			
3	0.09			
4	0.04			
5	0.01			

Requirements for a Discrete Probability Function

- Probabilities are between 0 and 1, inclusively
- Total of all probabilities equals 1

$$0 \le P(X) \le 1$$
 for all X

$$\sum_{\text{over all x}} P(X) = 1$$

PDF of Discrete r.v.

The Cal Poly Department of Statistics has a lab with six computers reserved for statistics majors. Let X denote the number of these computers that are in use at a particular time of day. Suppose that the probability distribution of X is as given in the following table; the first row of the table lists the possible X values and the second row gives the probability of each such value.

X	0) 1 2		3	4	5	6	
p(x)	.05	.10	.15	.25	.20	.15	.10	

Probability that at most 2 computers are in use is

$$P(X \le 2) = P(X = 0 \text{ or } 1 \text{ or } 2) = p(0) + p(1) + p(2) = .05 + .10 + .15 = .30$$

Since the event at least 3 computers are in use is complementary to at most 2 computers are in use, $P(X \ge 3) = 1 - P(X \le 2) = 1 - .30 = .70$

The probability that between 2 and 5 computers inclusive are in use is

$$P(2 \le X \le 5) = P(X = 2, 3, 4, \text{ or } 5) = .15 + .25 + .20 + .15 = .75$$

Probability that the number of computers in use is *strictly between 2* and 5 is

$$P(2 < X < 5) = P(X = 3 \text{ or } 4) = .25 + .20 = .45$$

Six lots of components are ready to be shipped by a certain supplier. The number of defective components in each lot is as follows:

Lot	1	2	3	4	5	6
Number of defectives	0	2	0	1	2	0

One of these lots is to be randomly selected for shipment to a particular customer. Let X be the number of defectives in the selected lot. The three possible X values are 0, 1, and 2. Of the six equally likely simple events, three result in X = 0, one in X = 1, and the other two in X = 2. Then

$$p(0) = P(X = 0) = P(\text{lot 1 or 3 or 6 is sent}) = \frac{3}{6} = .500$$

 $p(1) = P(X = 1) = P(\text{lot 4 is sent}) = \frac{1}{6} = .167$
 $p(2) = P(X = 2) = P(\text{lot 2 or 5 is sent}) = \frac{2}{6} = .333$

Probability Distribution for the Random Variable X

A probability distribution for a discrete random variable X:

x	-8	– 3	_1_	0	_ 1	4	6
P(X=x)	0.13	0.15	0.17	0.20	0.15	0.11	0.09
		1		1			
Find							
a. <i>P</i>	$(X \leq$	0)).65				
b. <i>P</i>	$(-3 \le$	$X \le 1$	0.	67			

Cumulative Distribution Function

- The CDF of a random variable X (defined as F(X)) is a graph associating all possible values, or the range of possible values with $P(X \le x)$.
- CDFs always lie between 0 and 1 i.e., $0 \le F(X_i) \le 1$, Where $F(X_i)$ is the CDF.

Discrete Distribution Function

Definition: The distribution function of a discrete random variable X with probability (mass) function $p(x_i) = p_i$, i = 1, 2, 3, ... is defined as

$$F(x) = P[X \le x] = \sum_{i: x_i \le x} p_i$$

Note that $p_i = p(x_i) = P[X = x_i] = F(x_i) - F(x_{i-1})$

Example 1: If X is a discrete random variable with probability function

$$X = x$$
 0 1 2 3 $P[X=x]$ 1/8 3/8 3/8 1/8 Find $P[X \le 2]$

Answer:

$$F(x) = P[X \le x] = \sum_{i: x_i \le 2} p_i$$
$$= \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$$

Example 1: If X is a discrete random variable with probability function

$$X = X$$

$$P[X=x]$$
 0.4 k 0.2

0.3

Find k, P[X<0], $P[0 \le X]$ and distribution function of X.

Answer:

We know that $\Sigma p(x) = 1$, therefore

$$0.4 + k + 0.2 + 0.3 = 1$$

$$k = 0.1$$

$$P[X<0] = p(-2)+p(-1) = 0.4 + 0.1 = 0.5$$

$$P[0 \le X] = p(0) + p(1) = 0.2 + 0.3 = 0.5$$

The distribution function of X

$$F(x) = 0, x < -2$$

$$= 0.4 -2 \le x < -1$$

$$= 0.5 -1 \le x < 0$$

$$= 0.7 0 \le x < 1$$

 $= 1.0 1 \le x$

A store carries flash drives with either 1 GB, 2 GB, 4 GB, 8 GB, or 16 GB of memory. The accompanying table gives the distribution of Y = the amount of memory in a purchased drive:

Let's first determine F(y) for each of the five possible values of Y:

$$F(1) = P(Y \le 1) = P(Y = 1) = p(1) = .05$$

$$F(2) = P(Y \le 2) = P(Y = 1 \text{ or } 2) = p(1) + p(2) = .15$$

$$F(4) = P(Y \le 4) = P(Y = 1 \text{ or } 2 \text{ or } 4) = p(1) + p(2) + p(4) = .50$$

$$F(8) = P(Y \le 8) = p(1) + p(2) + p(4) + p(8) = .90$$

$$F(16) = P(Y \le 16) = 1$$

Now for any other number y, F(y) will equal the value of F at the closest possible value of Y to the left of y. For example,

$$F(2.7) = P(Y \le 2.7) = P(Y \le 2) = F(2) = .15$$

 $F(7.999) = P(Y \le 7.999) = P(Y \le 4) = F(4) = .50$

Hence, a graph of cdf is:

$$F(y) = \begin{cases} 0 & y < 1 \\ .05 & 1 \le y < 2 \\ .15 & 2 \le y < 4 \\ .50 & 4 \le y < 8 \\ .90 & 8 \le y < 16 \\ 1 & 16 \le y \end{cases}$$

For X a discrete rv, the graph of F(x) will have a jump at every possible value of X and will be flat between possible values. Such a graph is called a **step** function.

Probability Density function & Cumulative Distribution Function

Definition: Consider a continuous function f(x), $f(x) \ge 0$

$$P[X \le X] = F(X) = \int_{-\infty}^{X} f(X) dX$$

The f(x) is known as **Probability Density Function (PDF)** of continuous RV X.

F(x) is the **Cumulative Distribution Function** of the RV.

$$\frac{d}{dx}F(x) = f(x) \qquad \qquad \int_{-\infty}^{\infty} f(x) dx = 1$$

Hence,

$$P[a < X < b] = \int_{a}^{b} f(x) dx$$

$$P[X = x] = 0$$

Probability of continuous random variable at a point is zero.

Example 1 : Verify if whether $f(x) = \begin{cases} |x|, -1 \le x \le 1 \\ 0, \text{ otherwise} \end{cases}$

can be a PDF of a

Answer: For f(x) to be a PDF it must satisfy

$$f(x) \ge 0, \forall x$$

$$\int_{0}^{\infty} f(x) dx = 1$$

First condition is satisfied $\sin^{-\infty} |x| \ge 0$

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-1}^{1} |x| dx = 2 \int_{0}^{1} |x| dx = 2 \int_{0}^{1} x dx = 2 \left| \frac{x^{2}}{2} \right|_{0}^{1} = 1$$

Hence, second condition is also satisfied.

Therefore, f(x) can be a PDF for a random variable

Example 2: Probability density function of a random variable is given by

$$f(x) = \begin{cases} cxe^{-x}, x > 0 \\ 0, x \le 0 \end{cases}$$

Find the value of c and Cumulative distribution function (CDF) of x.

Answer:

If
$$f(x)$$
 is a PDF, Then:
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$\int_{0}^{\infty} cx e^{-x} dx = 1 \qquad c \left[x \frac{e^{-x}}{-1} - \int 1 \frac{e^{-x}}{-1} dx \right]_{0}^{\infty} = 1 \qquad c \left[x \frac{e^{-x}}{-1} + \frac{e^{-x}}{-1} \right]_{0}^{\infty} = 1$$

$$c\left[x\frac{e^{-x}}{-1} + \frac{e^{-x}}{-1}\right]_0^{\infty} = 1 \qquad c = 1$$

The CDF of
$$x = F(x) = P[X \le x] = \int_{-\infty}^{x} f(x) dx = \int_{0}^{x} x e^{-x} dx = \left[x \frac{e^{-x}}{-1} + \frac{e^{-x}}{-1} \right]_{0}^{x}$$

$$F(x) = \begin{cases} 1 - (1+x)e^{-x}, x > 0 \\ 0, \text{ otherwise} \end{cases}$$

Continuous Random Variable

PDF:
$$f(x) = \begin{cases} xe^{-x}, x > 0 \\ 0, x \le 0 \end{cases}$$
 CDF: $F(x) = P[X \le x] = \begin{cases} 1 - (1 + x)e^{-x}, x > 0 \\ 0, \text{ otherwise} \end{cases}$

Graph for PDF and CDF

PDF:
$$f(x) = \begin{cases} xe^{-x}, x > 0 \\ 0, x \le 0 \end{cases}$$
 CDF: $F(x) = P[X \le x] = \begin{cases} 1 - (1 + x)e^{-x}, x > 0 \\ 0, \text{ otherwise} \end{cases}$

