LIFAP1 – TD 7: Tableaux à deux dimensions

Objectifs: Apprendre à manipuler les tableaux à deux dimensions et approfondir les notions algorithmiques vues jusqu'à présent (condition, boucles, ...).

- 1. Soit T un tableau 2D carré de taille 5*5 contenant des entiers. Écrire la déclaration et l'initialisation à 0 d'une telle structure de données.
- 2. Écrire un sous-programme RemplirTab qui propose à l'utilisateur de remplir un tableau T de taille 5*5.

5	1	8	6	0
6	9	7	4	2
1	1	0	9	7
4	5	7	3	0
0	2	5	0	9

- 3. Écrire deux procédures d'affichage d'un tableau 2D de taille 5*5
 - a. Affichage_2D_ligne: qui affichera le tableau ligne par ligne.
 - b. Affichage_2D_colonne: qui affichera le tableau colonne par colonne.
- 4. Écrire trois fonctions permettant sur un tableau 2D de taille 5*5 :
 - a. de calculer la somme des éléments d'une ligne (le numéro de la ligne étant passé en paramètre).
 - b. de calculer la somme des éléments d'une colonne (le numéro de la colonne étant passé en paramètre).
 - c. de calculer les sommes des éléments de chaque diagonale (dans la mesure où le tableau est bien carré).
- 5. Écrire un sous-programme RecherchePlusGrand permettant de rechercher le plus grand élément de ce tableau et de retourner l'indice de ligne et l'indice de colonne correspondant à cet élément ainsi que l'élément lui-même.
- 6. Soit T un tableau à 2 dimensions de taille M * N contenant des entiers. Ce tableau est partiellement rempli avec des nombres sur les L premières lignes et les C premières colonnes. Écrire en langage algorithmique un sous-programme permettant de remplir un tableau 1D avec la somme des colonnes de T. Attention à ne bien parcourir que les colonnes et les lignes remplies.

1	5	6	4	
8	9	0	6	
3	2	7	1	
12	16	13	11	

7. Écrire un sous-programme TrianglePascal permettant de remplir les cases d'un tableau 2D avec les coefficients du triangle de Pascal.

Remarque : La hauteur du triangle sera passée en paramètre et on supposera la fonction combinaison écrite.

1					
1	1				
1	2	1			
1	3	3	1		
1	4	6	4	1	
1	5	10	10	5	1

Pour s'entraîner

1. Écrire une procédure en C qui prend comme paramètre un tableau n*n et qui met dans chaque case située **sous** la diagonale le produit du numéro de la ligne par le numéro de la colonne comme dans l'exemple suivant (les autres cases n'étant pas modifiées) : La taille du tableau sera passée en paramètre.

