Inner Product, Length, and Orthogonality

We will first start with a definition.

Definition: Let $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \cdot \\ \cdot \\ u_n \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \cdot \\ \cdot \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The **inner product** of \vec{u} and

 \vec{v} , denoted $\vec{u} \cdot \vec{v}$, is the number $\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$. That is

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n.$$

Example 1. Let $u = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix}$. Then the inner product of \vec{u} and \vec{v} is

$$\vec{u} \cdot \vec{v} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix} = 2 + 0 + 3 + 12 = 17$$

Theorem: Let \vec{u} , \vec{v} and \vec{w} be vectors in \mathbb{R}^n , and let c be a scalar. Then

- (a) $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- (b) $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$
- (c) $(c\vec{u}) \cdot \vec{w} = c(\vec{u} \cdot \vec{v}) = \vec{u} \cdot (c\vec{v})$
- (d) $\vec{u} \cdot \vec{u} \ge 0$
- (e) $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = \vec{0}$.

Definition: The **length** (or **norm**) of a vector \vec{v} in \mathbb{R}^n , denoted $||\vec{v}||$, is

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{v_1^2 + v_2^2 + \dots v_n^2}$$

Example 2. Let
$$\vec{v} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$$
. Compute $||\vec{v}||$.

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{2^2 + (-5)^2 + (-1)^2} = \sqrt{4 + 25 + 1} = \sqrt{30}.$$

Example 3. Let
$$\vec{v} = \begin{bmatrix} 3 \\ 2 \\ -5 \\ 0 \end{bmatrix}$$
. Compute $||\vec{v}||$.

$$||\vec{v}|| = \sqrt{\vec{v} \cdot \vec{v}} = \sqrt{3^2 + 2^2 + (-5)^2 + 0^2} = \sqrt{9 + 4 + 25} = \sqrt{38}.$$

Remark:

1.
$$||\vec{v}||^2 = \left(\sqrt{\vec{v}\cdot\vec{v}}\right)^2 = \vec{v}\cdot\vec{v}$$

- 2. If c is a scalar, then $||c\vec{v}|| = |c|||\vec{v}||$
- 3. If \vec{v} is in \mathbb{R}^2 and \mathbb{R}^3 , this length is the length of the line segment between the origin and the point \vec{v} .

Definition: A unit vector is a vector of length 1. The process of dividing a nonzero vector \vec{v} by its length-that is multiplying by $1/||\vec{v}||$ - we form a unit vector is called **normalizing** \vec{v} . We say that the unit vector is in the same direction as \vec{v} .

Example 4. From the previous Example 2, for $\vec{v} = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$ we have $||\vec{v}|| = \sqrt{30}$. Find a unit vector \vec{u} in the same direction as \vec{v} .

$$\vec{u} = \frac{1}{||\vec{v}||} \vec{v} = \frac{1}{\sqrt{30}} \vec{v} = \begin{bmatrix} \frac{2}{\sqrt{30}} \\ \frac{-5}{\sqrt{30}} \\ \frac{-1}{\sqrt{30}} \end{bmatrix}.$$

Definition: For \vec{u} and \vec{v} in \mathbb{R}^n , the **distance between** \vec{u} and \vec{v} , written as $\operatorname{dist}(\vec{u}, \vec{v})$, is the length of the vector $\vec{u} - \vec{v}$, that is

$$\operatorname{dist}(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||.$$

Example 5. Let
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix}$, find dist (\vec{u}, \vec{v}) .

$$\operatorname{dist}(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}|| = ||\begin{bmatrix} -1\\2\\2\\1 \end{bmatrix}|| = \sqrt{(-1)^2 + 2^2 + 2^2 + 1^1} = \sqrt{1 + 4 + 4 + 1} = \sqrt{10}$$

Remark: In \mathbb{R}^2 and \mathbb{R}^3 , this is the usual distance between points \vec{u} and \vec{v} .

Definition: Two vectors \vec{u} and \vec{v} in \mathbb{R}^n are **orthogonal** if $\vec{u} \cdot \vec{v} = \vec{0}$.

Example 6. Let
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 3 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 2 \\ -7 \\ 8 \\ -3 \end{bmatrix}$.
$$\vec{u} \cdot \vec{v} = 1(2) + 2(0) + 3(1) + 4(3) = 2 + 3 + 12 = 17 \neq 0$$

$$\vec{u} \cdot \vec{w} = 1(2) + 2(-7) + 3(8) + 4(-3) = 2 - 14 + 24 - 12 = 26 - 26 = 0$$

So \vec{u} and \vec{v} are NOT orthogonal, but \vec{u} and \vec{w} ARE orthogonal.

Remark:

- 1. In \mathbb{R}^2 and \mathbb{R}^3 , \vec{u} and \vec{v} being orthogonal means that the lines through the origin and \vec{v} and \vec{v} , respectively are perpendicular.
- 2. In any \mathbb{R}^n , $\vec{0}$ is orthogonal to every vector since $\vec{0} \cdot \vec{v} = \vec{0}$ for all \vec{v} .

Theorem 2 (The Pythagorean Theorem): Vectors \vec{u} and \vec{v} are orthogonal if and only if

$$||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2.$$

Definition: Let W be a subspace of \mathbb{R}^n . If \vec{x} in \mathbb{R}^n is orthogonal to every vector in W, then \vec{x} is **orthogonal** to W. The set of all vectors orthogonal to W is the **orthogonal** complement of W, denoted W^{\perp} , and read "W perp".

Remark:

- 1. \vec{x} is in W^{\perp} if and only if \vec{x} is orthogonal to every vector in a spanning set of W.
- 2. W^{\perp} is a subspace of \mathbb{R}^n .

Example 7. Let $W = \text{Span}\left\{\begin{bmatrix}1\\1\end{bmatrix}\right\}$ in \mathbb{R}^2 . Geometrically, this is the line through the origin passing through the point (1,1).

 $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is in W^{\perp} if and only if \vec{x} is orthogonal to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, that is if and only if

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1(x_1) + 1(x_2) = 0 \implies x_1 = -x_2.$$

So $\vec{x} = \begin{bmatrix} -x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Therefore we have $W^{\perp} = \operatorname{Span} \left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$.

Example 8. Let $W = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right\}$ in \mathbb{R}^4 . Find W^{\perp} .

 $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ is in W^{\perp} if and only if \vec{x} is orthogonal to $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$.

That is, if and only if, $\vec{x} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \vec{0}$ and $\vec{x} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \vec{0}$.

That is, if and only if, $x_1 + x_2 + x_3 + x_4 = 0$ and $x_1 + x_3 = 0$. We therefore set up an augmented matrix for this linear system and row reduce it,

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\vec{x} = \begin{bmatrix} -x_3 \\ -x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \implies W^{\perp} = \operatorname{Span} \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\}.$$

Theorem 3: Let A be an $m \times n$ matrix. Then

$$(\operatorname{Row}(A))^{\perp} = \operatorname{Nul}(A)$$
 and $(\operatorname{Col}(A))^{\perp} = \operatorname{Nul}(A^T)$.

Textbook Practice Problems: Section 6.1 (page 338-339) # 1, 2, 3, 4, 5, 6, 7, 9, 10, 16, 17, 19, 20, 26.

END OF SECTION 6.1