NAME:

Problem 1. Use the properties of definite integrals to solve the integrals.

a) Given
$$\int_1^0 \ln(x) dx = \int_1^e \ln(x) dx$$
, find $\int_0^e \ln(x) dx$.

b) Given
$$\int_{0}^{a} x^{3} dx = \frac{a^{4}}{4}$$
 find $\int_{1}^{2} 2x^{3} dx$.

c) Given
$$\int_0^a x^4 dx = \frac{a^5}{5}$$
, find $\int_{-1}^1 \frac{x^4}{2} dx$.

d) Given
$$\int_0^a \sin(x)dx = 1 - \cos(a)$$
 and that $f(x) = \sin(x)$ is an odd function (this means that $\sin(-x) = -\sin(x)$), find $\int_1^\pi \sin(-x)dx$.

Problem 2. Use Leibniz's rule to solve the following integrals.

a)
$$\frac{d}{dx} \left[\int_{1}^{x} (1+t)dt \right]$$

b)
$$\frac{d}{dx} \left[\int_{x}^{3} (1+t)dt \right]$$

c)
$$\frac{d}{dx} \left[\int_{2-x^2}^{x+x^3} (t^2 - 1) dt \right]$$

d)
$$\frac{d}{dx} \left[\int_{x^3 - 2x}^{1 + x^2} (t+1) dt \right]$$