Online Optimization, Learning, and Games (O2LG) Lesson 3: Game dynamics

Vinh Thanh Ho*, Panayotis Mertikopoulos

*Faculté des Sciences et Techniques Université de Limoges vinh-thanh.ho@unilim.fr

Table of Contents

1 Exponential Weights Dynamics and Replicator Dynamics

Asymptotic Analysis and Rationality

Motivation

- Recall, in a congestion game:
 - each driver chooses a route to minimize its own travel time,
 - lead to congestion on the whole network,
 - increase everyone's travel time.
- Finding the Nash equilibria of a game: rather complicated.
 - require a great deal of global calculations,
 - even in the case of potential games.
- Interest to see whether there are simple and distributed learning schemes
 - allow players to arrive at a reasonably stable solution.

How?

By adapting their behavior in response to the behavior of other players.

Learning scheme

Input: a finite game $\Gamma \equiv \Gamma(\mathcal{N}, \mathcal{A}, u)$.

Repeat for each epoch t = 0, 1, 2, ..., for all players $i \in \mathcal{N}$,

- Choose mixed strategy $x_i(t) \in \mathcal{X}_i$.
- Receive payoff vector $v_i(x(t))$.
- Observe mixed payoff vector $u_i(x(t)) = \langle v_i(x(t)), x_i(t) \rangle$.

Until end

Exponential weights

How to choose mixed strategy $x_i(t) \in \mathcal{X}_i$?

• Score each action based on its cumulative payoff over time:

$$y_{i,a_i}(t)=\int_0^t v_{i,a_i}(x(s))ds.$$

• Choose an action with probability exponentially proportional to its score

$$x_{i,a_i}(t) \propto \exp(y_{i,a_i}(t)).$$

Exponential weights dynamics

Exponential Weights Dynamics (EWD)

$$\dot{y}_{i,a_i}(t) = v_{i,a_i}(t).$$
 $x_{i,a_i}(t) = \frac{\exp(y_{i,a_i}(t))}{\sum_{a_i' \in \mathcal{A}_i} \exp(y_{i,a_i'}(t))}.$

How do mixed strategies x_i evolve under (EWD)? In other words, how to evaluate \dot{x}_{i,a_i} in terms of x_{i,a_i} and u_i ?

Replicator dynamics

Replicator dynamics (RD) (Taylor et al. 1978)

$$\dot{x}_{i,a_i} = x_{i,a_i} \left[v_{i,a_i}(x) - \sum_{a'_i \in \mathcal{A}_i} x_{i,a'_i} v_{i,a'_i}(x) \right] \\
= x_{i,a_i} \left[u_i(a_i, x_{-i}) - u_i(x) \right].$$

Proposition 1

Solution orbits of (EWD) \iff Interior orbits of (RD).

Example 1: Return to The Prisoner's Dilemma

Player 1 = Thomas; Player 2 = Julian. Action 1 = C(ooperate); Action 2 = D(efect).

See Figure 1

$$C$$
 D
 C
 C

From Lesson 1, (D, D) is a Nash equilibrium of this game.

Task

Find replicator dynamics for this game.

What do the mixed strategies look like? Suppose that $x_1(0) = (0.9, 0.1)^{\top}$ and $x_2(0) = (0.3, 0.7)^{\top}$.

Probability distribution of strategies over time for Player 1

Probability distribution of strategies over time for Player 2

What do the dynamics look like?

Example 2: Congestion Game

Task

- Show that [[0, 1], [0, 1]], [[1, 0], [1, 0]], [[0.75, 0.25], [0.25, 0.75]] are Nash equilibria.
- Find replicator dynamics for this game.

What do the mixed strategies look like? Suppose that $x_1(0) = (0.8, 0.2)^{\top}$ and $x_2(0) = (0.4, 0.6)^{\top}$.

Probability distribution of strategies over time for Player 2

What do the dynamics look like?

Example 3: Matching pennies game

Task

- Show that [[0.5, 0.5], [0.5, 0.5]] is a Nash equilibrium.
- Find replicator dynamics for this game.

What do the mixed strategies look like? Suppose that $x_1(0) = (0.8, 0.2)^{\top}$ and $x_2(0) = (0.4, 0.6)^{\top}$.

Probability distribution of strategies over time for Player 1

What do the dynamics look like?

Properties

Basic properties of (EWD)/(RD):

- **Well-posedness**: every initial condition $x \in \mathcal{X}$ admits a **unique** solution trajectory x(t) that exists for all time.
- **2** Consistent: $x(t) \in \mathcal{X}$ for all $t \geq 0$.
- **3** Faces are forward invariant ("strategies breed true"):

$$x_{i,a_i}(0)>0 \Longleftrightarrow x_{i,a_i}(t)>0 \text{ for all } t\geq 0.$$

$$x_{i,a_i}(0)=0 \Longleftrightarrow x_{i,a_i}(t)=0 \text{ for all } t\geq 0.$$

Return to the example: The Prisoner's Dilemma

Player 1 = Thomas; Player 2 = Julian. Action 1 = C(ooperate); Action 2 = D(efect).

Task

Verify Properties 2 and 3 for the example of The Prisoner's Dilemma.

Table of Contents

1 Exponential Weights Dynamics and Replicator Dynamics

Asymptotic Analysis and Rationality

Dominated strategies

Suppose that $a_i \in A_i$ is dominated by $a_i' \in A_i$.

Consistent payoff gap:

$$v_{i,a_i}(x) \leq v_{i,a_i'}(x) - \varepsilon$$
 for some $\varepsilon > 0$.

2 Consistent difference in scores:

$$y_{i,a_i}(t) = \int_0^t v_{i,a_i}(x(s)) ds \leq \int_0^t [v_{i,a_i'}(x(s)) - \varepsilon] ds = y_{i,a_i'}(t) - \varepsilon t \ \text{ for some } \ \varepsilon > 0.$$

3 Consistent difference in choice probabilities:

$$\frac{x_{i,a_i}(t)}{x_{i,a_i'}(t)} = \frac{\exp(y_{i,a_i}(t))}{\exp(y_{i,a_i'}(t))} \le \exp(-\varepsilon t) \text{ for some } \varepsilon > 0.$$

Task

Verify Property 1 in the example of The Prisoner's Dilemma.

Dominated strategies

Theorem 1 (Samuelson et al. 1992)

Let x(t) be a solution orbit of (EWD)/(RD). If $a_i \in A_i$ is dominated, then $\lim_{t \to \infty} x_{i,a_i}(t) = 0$. In other words, under (EWD)/(RD), dominated strategies become extinct.

Stationarity of equilibria

Nash equilibrium x^* : $v_{i,a_i}(x^*) \ge v_{i,a_i'}(x^*)$ for all $a_i' \in A_i$ and $a_i \in \text{supp}(x_i^*)$.

Supported strategies have equal payoffs:

$$v_{i,a_i}(x^*) = v_{i,a_i'}(x^*)$$
 for all $a_i, a_i' \in \text{supp}(x_i^*)$.

Mean payoff equal to equilibrium payoff:

$$u_i(x^*) = v_{i,a_i}(x^*)$$
 for all $a_i \in \text{supp}(x_i^*)$.

Replicator field vanishes at Nash equilibria:

$$x_{i,a_i}^*[v_{i,a_i}(x^*)-u_i(x^*)]=0$$
 for all $a_i\in \mathcal{A}_i$.

Task

Verify these properties in the example of The Prisoner's Dilemma.

Stationarity of equilibria

Proposition 2 (Stationarity of Nash equilibria)

Let x(t) be a solution orbit of (RD). Then

x(0) is a Nash equilibrium $\Longrightarrow x$ is stationary, i.e. x(t) = x(0) for all $t \ge 0$.

The converse does not hold!

Stability and equilibrium

Definition 1 (Lyapunov stability)

 x^* is (Lyapunov) stable if for every neighborhood of \mathcal{U} of x^* in \mathcal{X} , there exists a neighborhood \mathcal{U}' of x^* such that

$$x(0) \in \mathcal{U}' \Longrightarrow x(t) \in \mathcal{U} \text{ for all } t \geq 0.$$

Proposition 3

Suppose that x^* is Lyapunov stable under (EWD)/(RD). Then x^* is a Nash equilibrium.

Asymptotic stability

Definition 2

- x^* is **attracting** if $\lim_{t\to\infty} x(t) = x^*$ whenever x(0) is close enough to x^* .
- *x** is **asymptotically stable** if it is stable and attracting.

Proposition 4

Strict Nash equilibria are asymptotically stable under (RD).

"Folk theorem" of the replicator dynamics

Theorem 2 (Hofbauer et al. 2003)

Let Γ be a finite game. Then, under (RD), we have:

- **1** x^* is a Nash equilibrium $\implies x^*$ is stationary.
- 2 x^* is the limit of an interior trajectory $\implies x^*$ is a Nash equilibrium.
- **3** x^* is stable $\implies x^*$ is a Nash equilibrium.
- **4** x^* is asymptotically stable $\iff x^*$ is a strict Nash equilibrium.

Summary

This lesson

- Game dynamics
- Exponential weights and the replicator dynamics
- Rationality analysis

Next lesson

- Discrete-time models of learning
- Different types of feedback
- Rationality analysis

References

- [1] Josef Hofbauer and Karl Sigmund. Evolutionary game dynamics. In: *Bulletin of the American Mathematical Society* 40.4 (2003), pp. 479–519 (cited at slide -1).
- [2] Larry Samuelson and Jianbo Zhang. Evolutionary stability in asymmetric games. In: *Journal of Economic Theory* 57.2 (1992), pp. 363–391 (cited at slide -6).
- [3] Peter D. Taylor and Leo B. Jonker. Evolutionary stable strategies and game dynamics. In: *Mathematical Biosciences* 40.1 (1978), pp. 145–156 (cited at slide -20).