

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатики и систем управления

КАФЕДРА Теоретической информатики и компьютерных технологий

Лабораторная работа № 2

«Сравнительный анализ методов численного интегрирования» по курсу «Численные методы»

Выполнил:

студент группы ИУ9-61Б

Локшин Вячеслав

Проверила:

Домрачева А. Б.

1. Цель

Целью данной работы является сравнение по быстродействию методов численного интегрирования:

- 1. Метод центральных прямоугольников
- 2. Метод трапеций
- 3. Метод Симпсона

2. Постановка задачи

Дано: Интеграл *I*

$$I = \int_{a}^{b} f(x) dx$$

где f(x) – подынтегральная функция, непрерывная на отрезке [a,b].

Найти: Значение интеграла

$$I^* \approx I$$

При заданной точности ε менее 0.01

Индивидуальный вариант: $f(x) = \frac{\ln(x)^2}{x}$, $a = \frac{1}{e}$, b = e

$$\int_{\frac{1}{e}}^{e} \frac{\ln(x)^2}{x} dx = \frac{2}{3} \approx 0.66667$$

3. Основные теоретические сведения

3.1 Метод центральных прямоугольников

Метод центральных прямоугольников заключается в вычислении площади под графиком интегрируемой функции путем суммирования площадей прямоугольников с высотой, равной значению функции в центре каждого отрезка разбиения и шириной, равной шагу разбиения.

Для нахождения значения интеграла функции f(x) на отрезке [a,b] нужно разбить отрезок на n равных отрезков длиной $h=\frac{b-a}{n}$. Получаем разбиение данного отрезка точками

$$x_{i-0.5} = a + (i - 0.5) \cdot h$$
 $i = \overline{1, n}$

Тогда приближенное значение интеграла на всем отрезке будет равно:

$$I^* = h \cdot \sum_{i=1}^{n} f(x_{i-0.5}) = h \cdot \sum_{i=1}^{n} f(a + (i - 0.5) \cdot h)$$

3.2 Метод трапеций

Суть метода состоит в вычислении площади под графиком интегрируемой функции путем суммирования площадей трапеций. Высота каждой трапеции определяется значением функции в узле интегрирования, а ширина - шагом разбиения.

Для нахождения значения интеграла функции f(x) на отрезке [a,b] нужно разбить отрезок на n равных отрезков длиной $h=\frac{b-a}{n}$. Получаем разбиение данного отрезка точками

$$x_i = a + i \cdot h$$
 $i = \overline{1, n}$

Тогда приближенное значение интеграла на всем отрезке будет равно:

$$I^* = h \cdot \left(\frac{f(a) + f(x_1)}{2} + \frac{f(x_1) + f(x_2)}{2} + \dots + \frac{f(x_{n-1}) + f(b)}{2} \right) =$$

$$= h \cdot \left(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i) \right)$$

3.3 Метод Симпсона

Метод заключается в приближении функции на отрезке [a,b] интерполяционным многочленом 2 степени функции $P_2(x)$

$$P_2(x) = f_{i-0.5} + \frac{f_i - f_{i-1}}{h}(x_i - x_{i-0.5}) + \frac{f_i - 2f_{i-0.5} + f_{i-1}}{\frac{h^2}{2}}(x_i - x_{i-0.5})^2$$

Тогда приближенное значение интеграла на всем отрезке будет равно:

$$I^* = \frac{h}{6} \cdot \left(f(a) + f(b) + 4 \cdot \sum_{i=1}^{n} f(x_{i-0.5}) + \sum_{i=1}^{n-1} f(x_i) \right)$$

3.4 Уточнение значения интеграла по Ричардсону

 $I \approx I_h^* + O(h^k)$, где k — порядок точности метода, I_h^* — приближенное значение интеграла, вычисленного с помощью метода с шагом h. $O(h^k) \approx c \cdot h^k$, где c — некоторая константа, h — шаг.

Считаем, что вычисления проводятся без вычислительной погрешности, тогда можно записать строгое равенство $I=I_h^*+c\cdot h^k$ для шага $h.\ I=I_{\frac{h}{2}}^*+c\cdot \left(\frac{h}{2}\right)^k$ для шага $\frac{h}{2}.$

Из равенств получаем уточненное значение интеграла:

$$I = I_{\frac{h}{2}}^* + \frac{I_{h}^* - I_{h}^*}{2^k - 1}$$

Где значение R — уточнение по Ричардсону:

$$R = \frac{I_h^* - I_h^*}{\frac{2}{2^k} - 1}$$

Данная величина используется для компенсации методологической погрешности численных методов интегрирования.

Чтобы построить процедуру приближенного вычисления интеграла с заданной точностью ε , используется правило Рунге:

$$|R| < \varepsilon$$

4. Реализация

Листинг 1. Численное интегрирование

```
package main
import (
    "fmt"
    "math"
const (
                              = 0.0001
    epsilon
                              = 1.0 / math.E
    lowBorder
   upBorder
                               = math.E
    accuracyStepForRichardson = 4
)
// INFO: для смены варианта нужно изменить эту функцию
func f(x float64) float64 {
    return math.Pow(math.Log(x), 2) / x
func rectangle(a float64, b float64, n int) float64 {
    h := (b - a) / float64(n)
    var s float64
    for i := 1; i <= n; i++ {
       s += f(a + (float64(i) - 0.5)*h)
    return h * s
}
func trapezoid(a float64, b float64, n int) float64 {
    h := (b - a) / float64(n)
    var s float64
    for i := 1; i < n; i++ {</pre>
       s += f(a + float64(i)*h)
    return h * ((f(a)+f(b))/2 + s)
}
func simpson(a float64, b float64, n int) float64 {
    h := (b - a) / float64(n)
    var s1, s2, s3 float64
    for i := 1; i <= n; i++ {
       s1 += f(a + float64(i)*h)
    for i := 1; i <= n; i++ {
       s2 += f(a + (float64(i) -0.5)*h)
```

```
for i := 1; i <= n; i++ {
      s3 += f(a + (float64(i)-1)*h)
    s := s1 + 4*s2 + s3
   return h / 6 * s
func getIntegralValue(
    calculate func(float64, float64, int) float64,
    a float64, b float64) ([]int, []float64, []float64) {
    richardson := epsilon * 1000
    result := 0.0
    i := 0
    returnN := make([]int, 0)
    returnResult := make([]float64, 0)
    returnRichardson := make([]float64, 0)
    for math.Abs(richardson) >= epsilon {
      n *= 2
       prevResult := result
       result = calculate(a, b, n)
       richardson = (result - prevResult) / (math.Pow(2,
accuracyStepForRichardson) - 1)
       i++
       returnResult = append(returnResult, result)
       returnRichardson = append(returnRichardson, richardson)
      returnN = append(returnN, n)
    fmt.Printf("n is %d | ", n)
    fmt.Printf("result: %.16f\n", result+richardson)
    return returnN, returnResult, returnRichardson
}
func printMethod(n []int, res, rich []float64, method string) {
    fmt.Println(method)
    fmt.Println("Все n для", method)
    fmt.Println(n)
    fmt.Println("Все res для", method)
    fmt.Println(res)
    fmt.Println("Bce rich для", method)
    fmt.Println(rich)
}
func printAll(
    nRec, nTra, nSim []int,
    resRec, resTra, resSim []float64,
    richRec, richTra, richSim []float64) {
    printMethod(nRec, resRec, richRec, "rectangle")
    printMethod(nTra, resTra, richTra, "trapezoid")
printMethod(nSim, resSim, richSim, "simpson")
func main() {
    fmt.Println("epsilon:", epsilon)
    fmt.Println("
```

```
fmt.Println("Central rectangles method:")
    nRec, resRec, richRec := getIntegralValue(rectangle, lowBorder,
upBorder)
    fmt.Println("________")
    fmt.Println("Trapezoids method:")
    nTra, resTra, richTra := getIntegralValue(trapezoid, lowBorder,
upBorder)
    fmt.Println("_______")
    fmt.Println("Simpsons method:")
    nSim, resSim, richSim := getIntegralValue(simpson, lowBorder, upBorder)
    fmt.Println("______")
    printAll(nRec, nTra, nSim, resRec, resSim, resTra, richRec, richTra, richSim)
}
```

5. Результаты

Для тестирования выбран интеграл из условия и было проверено несколько ε :

$$\varepsilon = 0.001$$
, $\varepsilon = 0.0001$, $\varepsilon = 0.00001$

Рисунок 1 – Пример вывода программы

Приведем их в таблицу

Таблица 2 – Результаты программы

Метод	Число	Значение интеграла с уточнением по	
	отрезков	Ричардсону	
	равной		
	длины		
arepsilon=0.001			

Метод центральных	32	0.6626618168283366
прямоугольников		
Метод трапеций	64	0.6686718910890977
Метод Симпсона	16	0.6667423970883434
		$\varepsilon = 0.0001$
Метод центральных	128	0.6664160015841885
прямоугольников		
Метод трапеций	256	0.6667920000514594
Метод Симпсона	32	0.6666685330021774
		$\varepsilon = 0.00001$
Метод центральных	512	0.6666509999904405
прямоугольников		
Метод трапеций	512	0.6666980000195374
Метод Симпсона	64	0.6666667009952734

6. Вывод

В ходе выполнения лабораторной работы были рассмотрены 3 метода численного интегрирования: метод центральных прямоугольников, метод трапеций и метод Симпсона. Данные методы были реализованы на языке программирования Golang.

Самым точным среди рассмотренных трех методов оказался метод Симпсона, далее идет метод центральных прямоугольников, а в конце метод трапеций.