Round Robin Example 1

- time slice = 25, overhead is ignored
- all threads already exist in queue
- 4 threads with service times are P0=60, P1=30, P2=80, P3=50
- we want to:
 - draw a gantt chart showing cpu usage
 - calculate average wait time
 - calculate average turn-around time

Start // time job lirst changes to RUMANTER

Arrival = 0 // time job was avail to execute

(put in READY), Page 53

Comp 4735

tradi = finish - arrival.

0 190 -0: 190

1 130 -0: 130

2 220 -0: 220

3 190 -0: 180

$$720/4 = 180$$

aug Temp.

Round Robin Example 2

- same time slice and processes as example 1
- add variable arrival times, as follows:

i
$$t(p_{ij})$$
 Arrival
0 60 0 $RQ: 0$ 9 7 7 7 7 2 2 1 30 10 2 80 60

TS=25

50

AUG

Multi-level Example 1

 assume you have a multi-level queu 	e Alo 6	0 0	3
with [†] is levels	B 1 3	0 10	2 -
 the BSD scheduling model is used 	C 2 4	0 60	1 ·
 assume the time quantum is 10, and 	D 3 3	0 75	4
ignore overhead	€ 4 2	0 85	3 ·
	€ 5 1	0 90	1
AHA HE A			

A H 20 30 40	-1. 110 120 130 cd0 150 160
B + + + + + + + + + + + + + + + + + + +	60 20 90 90 100 110 H
D E	10 100 130 140 150 150 150 C90 C90

RQ:

t(p_{ij}) Arrival Priority

ABCDE O 10 10 = 0 60 - 60 =0 160 - 75 = 4 85 120 - 85 = 35 F 90 90 = 0