

EdgeBoard-Lite FX3

硬件手册

芯驿电子科技(上海)有限公司 www.alinx.com

文档版本控制

文档版本	修改内容记录
REV1.0	创建文档

目 录

文档版	(本控制	2
_、	EdgeBoard-Lite 简介	4
_`	ZYNQ 芯片	5
三、	DDR4 DRAM	7
四、	QSPI Flash	10
五、	eMMC Flash	10
六、	EEPROM	11
七、	DP 显示接口	12
八、	USB 接口	13
九、	干兆以太网接口	14
+、	USB Uart 接口	16
+-、	SD 卡槽	16
十二、	PCIE 接口	17
十三、	44 针扩展口	18
十四、	MIPI 接口	19
十五、	BT1120 接口	. 21
十六、	JTAG 调试口	. 22
十七、	拨码开关配置	. 23
十八、	LED 灯	. 23
十九、	系统时钟	. 24
二十、	电源	. 25
_+ +	-、 结构尺寸图	26

一、 EdgeBoard-Lite 简介

EdgeBoard-Lite 的特点是体积小并扩展了丰富的外设。主芯片采用 Xilinx 公司的 Zynq UltraScale+ MPSoCs EG 系列的芯片,型号为 XAZU3EG-1SFVC784I。PS 端挂载了 2 片 DDR4 (2GB , 32bit), 1 片 8GB eMMC FLASH 存储芯片和 1 片 256Mb 的 QSPI FLASH。

外围接口包含 2 个 USB 接口 (1 个 USB3.0 , 1 个 USB2.0)、1 个 MINI DP 接口、1 路 干兆以太网接口、1 个 USB 串口、1 路 PCIE 接口、1 路 TF 卡接口、1 个 44 针扩展口、1 路 MIPI 接口 , 1 路 BT1120 接口和按键 LED。

下图为整个开发系统的结构示意图:

二、 ZYNQ 芯片

XAZU3EG-1SFVC784I 芯片的 PS 系统 PS 系统集成了 4 个 ARM Cortex™-A53 处理器,速度高达 1.2Ghz,支持 2 级 Cache; 另外还包含 2 个 Cortex-R5 处理器,速度高达 500Mhz。

XAZU3EG 支持 32 位或者 64 位的 DDR4 ,LPDDR4 ,DDR3,DDR3L, LPDDR3 存储芯片 ,在 PS 端带有丰富的高速接口如 PCIE Gen2, USB3.0, SATA 3.1, DisplayPort ;同时另外也支持 USB2.0 , 干兆以太网 , SD/SDIO , I2C , CAN , UART , GPIO 等接口。PL 端内部含有丰富的可编程逻辑单元 , DSP 和内部 RAM。XAZU3EG 芯片的总体框图下图所示

图 ZU3EG芯片的总体框图

其中 PS 系统部分的主要参数如下:

- ARM 四核 Cortex™-A53 处理器,速度高达 1.2GHz,每个 CPU 32KB 1 级指令和数据缓存,1MB 2 级缓存 2 个 CPU 共享。
- ARM 双核 Cortex-R5 处理器,速度高达 500MHz,每个 CPU 32KB 1 级指令和数据 缓存,及 128K 紧耦合内存。
- 外部存储接口,支持32/64bit DDR4/3/3L、LPDDR4/3接口。
- 静态存储接口,支持 NAND, 2xQuad-SPI FLASH。
- 高速连接接口,支持 PCIe Gen2 x4, 2xUSB3.0, Sata 3.1, DisplayPort, 4x Tri-mode Gigabit Ethernet。
- 普通连接接口: 2xUSB2.0, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO。
- 电源管理:支持 Full/Low/PL/Battery 四部分电源的划分。
- 加密算法:支持 RSA, AES 和 SHA。

- 系统监控:10 位 1Mbps 的 AD 采样,用于温度和电压的检测。

其中 PL 逻辑部分的主要参数如下:

- 逻辑单元 Logic Cells: 154K;

- 触发器(flip-flops): 141K;

- 查找表 LUTs: 71K;

Block RAM: 9.4Mb;

- 时钟管理单元 (CMTs): 3

- 乘法器 18x25MACCs: 360

XAZU3EG-1SFVC784I芯片的速度等级为-1,工业级,封装为SFVC784。

三、 DDR4 DRAM

EdgeBoard-Lite板上PS端配有2片Micron(美光)的1GB的DDR4芯片,型号为MT40A512M16LY-062EIT,组成32位数据总线带宽和2GB的容量。PS端的DDR4 SDRAM的最高运行速度可达1200MHz(数据速率2400Mbps)。DDR4 SDRAM的具体配置如下所示。

位号		芯片型号	容量	厂家
U3,U5	MT4	0A512M16LY-062EIT	512M x 16bit	Micron

表 3-1 DDR4 SDRAM 配置

PS 端的 DDR4 的硬件连接方式如下图所示:

图3-1 PS端DDR4 DRAM原理图部分

PS 端 DDR4 SDRAM 引脚分配:

信号名称	引脚名	引脚号
PS_DDR4_DQS0_P	PS_DDR_DQS_P0_504	AF21
PS_DDR4_DQS0_N	PS_DDR_DQS_N0_504	AG21
PS_DDR4_DQS1_P	PS_DDR_DQS_P1_504	AF23
PS_DDR4_DQS1_N	PS_DDR_DQS_N1_504	AG23
PS_DDR4_DQS2_P	PS_DDR_DQS_P2_504	AF25
PS_DDR4_DQS2_N	PS_DDR_DQS_N2_504	AF26
PS_DDR4_DQS3_P	PS_DDR_DQS_P3_504	AE27
PS_DDR4_DQS3_N	PS_DDR_DQS_N3_504	AF27
PS_DDR4_DQ0	PS_DDR_DQ0_504	AD21
PS_DDR4_DQ1	PS_DDR_DQ1_504	AE20
PS_DDR4_DQ2	PS_DDR_DQ2_504	AD20
PS_DDR4_DQ3	PS_DDR_DQ3_504	AF20
PS_DDR4_DQ4	PS_DDR_DQ4_504	AH21
PS_DDR4_DQ5	PS_DDR_DQ5_504	AH20
PS_DDR4_DQ6	PS_DDR_DQ6_504	AH19
PS_DDR4_DQ7	PS_DDR_DQ7_504	AG19
PS_DDR4_DQ8	PS_DDR_DQ8_504	AF22
PS_DDR4_DQ9	PS_DDR_DQ9_504	AH22
PS_DDR4_DQ10	PS_DDR_DQ10_504	AE22
PS_DDR4_DQ11	PS_DDR_DQ11_504	AD22
PS_DDR4_DQ12	PS_DDR_DQ12_504	AH23
PS_DDR4_DQ13	PS_DDR_DQ13_504	AH24
PS_DDR4_DQ14	PS_DDR_DQ14_504	AE24
PS_DDR4_DQ15	PS_DDR_DQ15_504	AG24
PS_DDR4_DQ16	PS_DDR_DQ16_504	AC26
PS_DDR4_DQ17	PS_DDR_DQ17_504	AD26
PS_DDR4_DQ18	PS_DDR_DQ18_504	AD25
PS_DDR4_DQ19	PS_DDR_DQ19_504	AD24
PS_DDR4_DQ20	PS_DDR_DQ20_504	AG26
PS_DDR4_DQ21	PS_DDR_DQ21_504	AH25
PS_DDR4_DQ22	PS_DDR_DQ22_504	AH26
PS_DDR4_DQ23	PS_DDR_DQ23_504	AG25

PS_DDR4_DQ24	PS_DDR_DQ24_504	AH27
PS_DDR4_DQ25	PS_DDR_DQ25_504	AH28
PS_DDR4_DQ26	PS_DDR_DQ26_504	AF28
PS_DDR4_DQ27	PS_DDR_DQ27_504	AG28
PS_DDR4_DQ28	PS_DDR_DQ28_504	AC27
PS_DDR4_DQ29	PS_DDR_DQ29_504	AD27
PS_DDR4_DQ30	PS_DDR_DQ30_504	AD28
PS_DDR4_DQ31	PS_DDR_DQ31_504	AC28
PS_DDR4_DM0	PS_DDR_DM0_504	AG20
PS_DDR4_DM1	PS_DDR_DM1_504	AE23
PS_DDR4_DM2	PS_DDR_DM2_504	AE25
PS_DDR4_DM3	PS_DDR_DM3_504	AE28
PS_DDR4_A0	PS_DDR_A0_504	W28
PS_DDR4_A1	PS_DDR_A1_504	Y28
PS_DDR4_A2	PS_DDR_A2_504	AB28
PS_DDR4_A3	PS_DDR_A3_504	AA28
PS_DDR4_A4	PS_DDR_A4_504	Y27
PS_DDR4_A5	PS_DDR_A5_504	AA27
PS_DDR4_A6	PS_DDR_A6_504	Y22
PS_DDR4_A7	PS_DDR_A7_504	AA23
PS_DDR4_A8	PS_DDR_A8_504	AA22
PS_DDR4_A9	PS_DDR_A9_504	AB23
PS_DDR4_A10	PS_DDR_A10_504	AA25
PS_DDR4_A11	PS_DDR_A11_504	AA26
PS_DDR4_A12	PS_DDR_A12_504	AB25
PS_DDR4_A13	PS_DDR_A13_504	AB26
PS_DDR4_WE_B	PS_DDR_A14_504	AB24
PS_DDR4_CAS_B	PS_DDR_A15_504	AC24
PS_DDR4_RAS_B	PS_DDR_A16_504	AC23
PS_DDR4_ACT_B	PS_DDR_ACT_N_504	Y23
PS_DDR4_ALERT_B	PS_DDR_ALERT_N_504	U25
PS_DDR4_BA0	PS_DDR_BA0_504	V23
PS_DDR4_BA1	PS_DDR_BA1_504	W22
PS_DDR4_BG0	PS_DDR_BG0_504	W24
PS_DDR4_CS0_B	PS_DDR_CS_N0_504	W27

PS_DDR4_ODT0	PS_DDR_ODT0_504	U28
PS_DDR4_PARITY	PS_DDR_PARITY_504	V24
PS_DDR4_RESET_B	PS_DDR_RST_N_504	U23
PS_DDR4_CLK0_P	PS_DDR_CK0_P_504	W25
PS_DDR4_CLK0_N	PS_DDR_CK0_N_504	W26
PS_DDR4_CKE0	PS_DDR_CKE0_504	V28

四、 QSPI Flash

EdgeBoard-Lite 配有 1 片 256MBit 大小的 Quad-SPI FLASH 芯片,型号为 MT25QU256ABA1EW9-0SIT。QSPI FLASH连接到ZYNQ芯片的PS部分BANK500的GPIO 口上,图 4-1为QSPI Flash在原理图中的部分。

图 4-1 QSPI Flash 连接示意图

配置芯片引脚分配:

信号名称	引脚名	引脚号
MIO0_QSPI0_SCLK	PS_MIO0_500	AG15
MIO1_QSPI0_IO1	PS_MIO1_500	AG16
MIO2_QSPI0_IO2	PS_MIO2_500	AF15
MIO3_QSPI0_IO3	PS_MIO3_500	AH15
MIO4_QSPI0_IO0	PS_MIO4_500	AH16
MIO5_QSPI0_SS_B	PS_MIO5_500	AD16

五、 eMMC Flash

EdgeBoard-Lite 配有一片容量为 8GB 的 eMMC FLASH 芯片。eMMC FLASH 连接到

ZYNQ UltraScale+的 PS 部分 BANK500 的 GPIO 口上,图 5-1 为 eMMC Flash 在原理图中的部分。

图 5-1 eMMC Flash 连接示意图

配置芯片引脚分配:

信号名称	引脚名	引脚号
MMC_DAT0	PS_MIO13_500	AH18
MMC_DAT1	PS_MIO14_500	AG18
MMC_DAT2	PS_MIO15_500	AE18
MMC_DAT3	PS_MIO16_500	AF18
MMC_DAT4	PS_MIO17_500	AC18
MMC_DAT5	PS_MIO18_500	AC19
MMC_DAT6	PS_MIO19_500	AE19
MMC_DAT7	PS_MIO20_500	AD19
MMC_CMD	PS_MIO21_500	AC21
MMC_CCLK	PS_MIO22_500	AB20
MMC_RSTN	PS_MIO23_500	AB18

六、 EEPROM

EdgeBoard-Lite 开发板板载了一片 EEPROM,型号为 24LC04。EEPROM的 I2C 信号连接的 ZYNQ PS端的 MIO 口上。图 6-1 为 EEPROM 的原理图

图 7-5 EEPROM 原理图部分

EEPROM 引脚分配:

信号名称	引脚名	引脚号
PS_IIC1_SCL	PS_MIO32_501	J16
PS_IIC1_SDA	PS_MIO33_501	L16

七、 DP 显示接口

EdgeBoard-Lite 带有 1 路 MINI 型的 DisplayPort 输出显示接口,用于视频图像的显示, 最高支持 4K x 2K@30Fps 输出。ZU3EG PS MGT 的 LANE0 和 LANE1 的 TX 信号以差分信 号方式连接到 DP 连接器。DisplayPort 辅助通道连接到 PS 的 MIO 管脚上。DP 输出接口的 示意图如图 7-1 所示:

7-1 DP 接口设计示意图

DisplayPort 接口 ZYNQ 引脚分配如下:

信号名称	ZYNQ 引脚名	引脚号	备注
GT0_DP_TX_P	PS_MGTTXP3_505	B23	DP 数据低位发送正
GT0_DP_TX_N	PS_MGTTXN3_505	B24	DP 数据低位发送负
GT1_DP_TX_P	PS_MGTTXP2_505	C25	DP 数据高位发送正
GT1_DP_TX_N	PS_MGTTXN2_505	C26	DP 数据高位发送负
505_DP_CLKP	PS_MGTREFCLK2P_505	C21	DP 参考时钟正
505_DP_CLKP	PS_MGTREFCLK2N_505	C22	DP 参考时钟负
DP_AUX_OUT	PS_MIO27	J15	DP 辅助数据输出
DP_AUX_IN	PS_MIO30	F16	DP 辅助数据输入
DP_OE	PS_MIO29	G16	DP 辅助数据输出使能
DP_HPD	PS_MIO28	K15	DP 插入信号检测

八、 USB接口

EdgeBoard-Lite 板上有 2 个 USB 接口(包含一个 USB2.0 和一个 USB3.0) 接口为 HOST 工作模式(Type A) 数据传输速度高达 5.0Gb/s。 USB2.0 通过 ULPI 接口连接外部的 USB PHY 芯片和 USB2.0 HUB 芯片,实现高速的 USB3.0 和 USB2.0 的数据通信。

USB 连接的示意图如 8-1 所示:

图 8-1 USB 接口示意图

USB 引脚分配:

信号名称	引脚名	引脚号	备注
USB_SSTXP	PS_MGTTXP2_505	D23	USB3.0 数据发送正
USB_SSTXN	PS_MGTTXN2_505	D24	USB3.0 数据发送负
USB_SSRXP	PS_MGTRXP2_505	D27	USB3.0 数据接收正
USB_SSRXN	PS_MGTRXN2_505	D28	USB3.0 数据接收负
505_USB_CLKP	PS_MGTREFCLK2P_505	E21	USB3.0参考时钟正
505_USB_CLKN	PS_MGTREFCLK2N_505	E22	USB3.0参考时钟负
USB_DATA0	PS_MIO56	C16	USB2.0 数据 Bit0
USB_DATA1	PS_MIO57	A16	USB2.0 数据 Bit1
USB_DATA2	PS_MIO54	F17	USB2.0 数据 Bit2
USB_DATA3	PS_MIO59	E17	USB2.0 数据 Bit3
USB_DATA4	PS_MIO60	C17	USB2.0 数据 Bit4
USB_DATA5	PS_MIO61	D17	USB2.0 数据 Bit5
USB_DATA6	PS_MIO62	A17	USB2.0 数据 Bit6
USB_DATA7	PS_MIO63	E18	USB2.0 数据 Bit7
USB_STP	PS_MIO58	F18	USB2.0 停止信号
USB_DIR	PS_MIO53	D16	USB2.0 数据方向信号
USB_CLK	PS_MIO52	G18	USB2.0 时钟信号
USB_NXT	PS_MIO55	B16	USB2.0 下一数据信号

九、 干兆以太网接口

EdgeBoard-Lite 上有 1 路千兆以太网接口,以太网接口是通过 GPHY 芯片连接的 PS 的 BANK502 上。GPHY 芯片采用 Micrel 公司的 KSZ9031RNXIC 以太网 PHY 芯片, PHY Address 为 001。图 9-1 为 ZYNQ PS 端以太网 PHY 芯片连接示意图:

图 9-1 ZYNQ PS 系统与 GPHY 连接示意图

千兆以太网引脚分配如下:

信号名称	引脚名	引脚号	备注
PHY1_TXCK	PS_MIO64	E19	RGMII 发送时钟
PHY1_TXD0	PS_MIO65	A18	发送数据 bit 0
PHY1_TXD1	PS_MIO66	G19	发送数据 bit1
PHY1_TXD2	PS_MIO67	B18	发送数据 bit2
PHY1_TXD3	PS_MIO68	C18	发送数据 bit3
PHY1_TXCTL	PS_MIO69	D19	发送使能信号
PHY1_RXCK	PS_MIO70	C19	RGMII 接收时钟
PHY1_RXD0	PS_MIO71	B19	接收数据 BitO
PHY1_RXD1	PS_MIO72	G20	接收数据 Bit1
PHY1_RXD2	PS_MIO73	G21	接收数据 Bit2
PHY1_RXD3	PS_MIO74	D20	接收数据 Bit3
PHY1_RXCTL	PS_MIO75	A19	接收数据有效信号
PHY1_MDC	PS_MIO76	B20	MDIO 管理时钟
PHY1_MDIO	PS_MIO77	F20	MDIO 管理数据

十、 USB Uart 接口

EdgeBoard-Lite 板上配备了一个 Uart 转 USB 接口,用于系统调试。转换芯片采用 Silicon Labs CP2102 的 USB-UAR 芯片,USB 接口采用 MINI USB 接口,可以用一根 USB 线将它连接到上 PC 的 USB 口进行核心板的单独供电和串口数据通信。USB Uart 电路设计的示意图如下图所示:

图 10-1 USB 转串口示意图

USB 转串口的 ZYNQ 引脚分配:

信号名称	引脚名	引脚号	备注
PS_UART1_TX	PS_MIO24	AB19	Uart 数据输出
PS_UART1_RX	PS_MIO25	AB21	Uart 数据输入

十一、SD 卡槽

EdgeBoard-Lite板包含了一个Micro SD卡接口, SDIO信号与ZU3EG的PS BANK501的IO信号相连, SD卡连接器的原理图如图11-1所示。

图 11-1 SD 卡连接示意图

SD	卡槽引	脚分配
	rie Ji	111111 DU

信号名称	引脚名	引脚 号	备注
SD_CLK	PS_MIO51	l21	SD 时钟信号
SD_CMD	PS_MIO50	M19	SD 命令信号
SD_D0	PS_MIO46	L20	SD 数据 Data0
SD_D1	PS_MIO47	H21	SD 数据 Data1
SD_D2	PS_MIO48	J21	SD 数据 Data2
SD_D3	PS_MIO49	M18	SD 数据 Data3
SD_CD	PS_MIO45	K20	SD 卡检测信号

十二、PCIE 接口

EdgeBoard-Lite 配备了一个 PCIE x1 的插槽,用于连接 PCIE 外设,PCIE 通信速度高达 5Gbps。PCIE 信号直接跟 ZU3EG 的 BANK505 PS MGT 收发器的 LANEO 相连接。PCIE x 1 设计的示意图如下图 12-1 所示:

图 12-1 PCIE 接口设计示意图

PCIE 接口 ZYNQ 引脚分配如下:

信号名称	引脚名	引脚号	备注
PCIE_TXP	PS_MGTTXP0_505	E25	PCIE 数据发送正
PCIE_TXN	PS_MGTTXN0_505	E26	PCIE 数据发送负
PCIE_RXP	PS_MGTRXP0_505	F27	PCIE 数据接收正

PCIE_RXN	PS_MGTRXN0_505	F28	PCIE 数据接收负
PCIE_REFCLK_P	PS_MGTREFCLK0P_505	F23	PCIE 参考时钟正
PCIE_REFCLK_N	PS_MGTREFCLK0N_505	F24	PCIE 参考时钟负

十三、44 针扩展口

EdgeBoard-Lite 预留了 1 个 2.0mm 间距的 44 针的扩展口 其中包含 3.3V 电源 ,RS485 总线 , CAN 总线及 36 个 IO 口。CAN 接口通过芯片连接到 PS 的 MIO 上 , 36 个 IO 连接连接到 ZYNQ 芯片 BANK44,26 的 IO 上 , 电平标准为 3.3V。扩展口设计的示意图如下图 13-1 所示:

图 13-1 扩展口设计示意图

J12 扩展口 ZYNQ 的引脚分配如下:

-,					
J12管脚	信号名称	引脚 号	J12管脚	信 号 名称	引脚号
1	+3.3V	-	2	+3.3V	-
3	GND	-	4	GND	-
5	485_A	-	6	485_A	-
7	CANH	-	8	CANL	-
9	IO_B14_1P	B14	10	IO_A14_1N	A14
11	IO_B15_2P	B15	12	IO_A15_2N	A15
13	IO_C14_3P	C14	14	IO_C13_3N	C13

15	IO_G13_4P	G13	16	IO_F13_4N	F13
17	IO_H14_5P	H14	18	IO_H13_5N	H13
19	IO_L14_6P	L14	20	IO_L13_6N	L13
21	IO_B13_7P	B13	22	IO_A13_7N	A13
23	IO_D15_8P	D15	24	IO_D14_8N	D14
25	IO_E14_9P	E14	26	IO_E13_9N	E13
27	IO_F15_10P	F15	28	IO_E15_10N	E15
29	IO_K14_11P	K14	30	IO_J14_11N	J14
31	IO_W10_12P	W10	32	IO_Y10_12N	Y10
33	IO_Y9_13P	Y9	34	IO_AA8_13N	AA8
35	IO_AB11_14P	AB11	36	IO_AC11_14N	AC11
37	IO_AD11_15P	AD11	38	IO_AD10_15N	AD10
39	IO_AE10_16P	AE10	40	IO_AF10_16N	AF10
41	IO_AF11_17P	AF11	42	IO_AG11_17N	AG11
43	IO_AH12_18P	AH12	44	IO_AH11_18N	AH11

RS485 对应的 ZYNQ 的引脚分配如下:

信号名称	引脚名	引脚号	备注
PL_485_TXD	IO_L6P_25	F12	RS485 数据发送
PL_485_RXD	IO_L9N_25	B10	RS485 数据接收
PL_485_DE	IO_L10N_25	A12	RS485 接收方向选择

CAN 对应的 ZYNQ 的引脚分配如下:

信号名称	引脚名	引脚号	备注
CAN_TX	PS_MIO8	AF17	CAN 数据发送
CAN_RX	PS_MIO9	AC16	CAN 数据接收

十四、MIPI接口

EdgeBoard-Lite 上有 1 路 MIPI 接口,用于连接 MIPI 摄像头。MIPI 的差分信号连接 到 BANK64 的 HP IO 上,电平标准为+1.2V;MIPI 的控制信号连接到 BANK65 上,电平标准为+1.8V;I2C 控制信号连接到 BANK501 上,电平标准为+1.8V。MIPI 口设计的示意图如

下图 14-1 所示:

图 14-1 MIPI 接口连接示意图

MIPI 通信引脚分配如下:

	あばり シャップ 日のとれ しょ・			
PIN	信 号 名称	ZYNQ 引脚名	ZYNQ 引脚	备注
			号	
1	MIPI_CSI_DATA3P	IO_L18P_64	AB1	MIPI数据3信号P
2	MIPI_CSI_DATA3N	IO_L18N_64	AC1	MIPI数据3信号N
3	GND	-	-	地
4	MIPI_CSI_DATA2P	IO_L17P_64	AB2	MIPI数据2信号P
5	MIPI_CSI_DATA2N	IO_L17N_64	AC2	MIPI数据2信号N
6	GND	-	-	地
7	MIPI_CSI_DATA1P	IO_L15P_64	AB4	MIPI数据1信号P
8	MIPI_CSI_DATA1N	IO_L15N_64	AB3	MIPI数据1信号N
9	GND	-	-	地
10	MIPI_CSI_DATA0P	IO_L14P_64	AC4	MIPI数据0信号P
11	MIPI_CSI_DATA0N	IO_L14N_64	AC3	MIPI数据0信号N
12	GND	-	-	地
13	MIPI_CSI_CLKP	IO_L13P_64	AD5	MIPI时钟信号P
14	MIPI_CSI_CLKN	IO_L13N_64	AD4	MIPI时钟信号N
15	GND	-	-	地
16	CAM_MCLK	IO_L13P_65	L7	时钟信 号
17	GND	-	-	地

18	MIPI_IOVDD_1V8	-	-	+1.8V电源
19	MIPI_IOVDD_1V3	-	-	+1.3V电源
20	PS_IIC0_SCL	PS_MIO34	L17	I2C控制时钟
21	PS_IIC0_SDA	PS_MIO35	H17	I2C控制数据
22	CAM_PWDN#	IO_L1N_65	Y8	Power Down信号
23	CAM_RST#	IO_L2P_65	U9	RESET信号
24	MIPI_AVDD_3V3_2V8	-	-	+2.8V电源
25	MIPI_AVDD_3V3_2V8	-	-	+2.8V电源

十五、BT1120接口

EdgeBoard-Lite 上有 1 个 32PIN 的 BT1120 连接器,用于视频传输和通信。BT1120 信号连接到 BANK24 的 IO 上,电平标准为+3.3V,用户可以当做普通 IO 使用。另外接口上留有 SPI 接口和 UART 接口(电平标准为+3.3V),通过电平转换连接到 ZU3EG 的 MIO。BT1120 接口设计的示意图如下图 15-1 所示:

图 15-1 BT1120 接口连接示意图

BT1120 通信引脚分配如下:

PIN	信号名称	ZYNQ 引脚名	ZYNQ 引脚 号	备注
1	BT1120_DATA0	IO_L9N_24	W13	BT1120数据0
2	BT1120_DATA1	IO_L9P_24	W14	BT1120数据1

3	BT1120_DATA2	IO_L8N_24	AB14	BT1120数据2
4	BT1120_DATA3	IO_L8P_24	AB15	BT1120数据3
5	BT1120_DATA4	IO_L7N_24	AB13	BT1120数据4
6	BT1120_DATA5	IO_L7P_24	AA13	BT1120数据5
7	BT1120_DATA6	IO_L6N_24	AC13	BT1120数据6
8	BT1120_DATA7	IO_L6P_24	AC14	BT1120数据7
9	BT1120_DATA8	IO_L5N_24	AD14	BT1120数据8
10	BT1120_DATA9	IO_L4N_24	AF13	BT1120数据9
11	BT1120_DATA10	IO_L4P_24	AE13	BT1120数据10
12	BT1120_DATA11	IO_L3N_24	AH13	BT1120数据11
13	BT1120_DATA12	IO_L3P_24	AG13	BT1120数据12
14	BT1120_DATA13	IO_L2N_24	AH14	BT1120数据13
15	BT1120_DATA14	IO_L2P_24	AG14	BT1120数据14
16	BT1120_DATA15	IO_L1N_24	AE14	BT1120数据15
17	GND	-	-	地
18	BT1120_CLK	IO_L5P_24	AD15	BT1120时钟
19	GND	-	-	地
20	GPIO_Z	IO_L1P_24	AE15	预留GPIO
21	BT_UART0_RX	PS_MIO10_500	AD17	UART接收
22	BT_UARTO_TX	PS_MIO11_500	AE17	UART发送
23	GND	-	-	地
24	SPI1_SCLK_HS	PS_MIO38_501	H18	SPI时钟
25	SPI1_MOSI_HS	PS_MIO43_501	K19	SPI输出
26	SPI1_MISO_HS	PS_MIO42_501	L18	SPI输入
27	SPI1_CS_HS	PS_MIO41_501	J19	SPI片选
28	GND	-	-	地
29	+12V	-	-	+12V电源
30	+12V	-	-	+12V电源
31	+12V	-	-	+12V电源
32	+12V	-	-	+12V电源

十六、JTAG 调试口

在 EdgeBoard-Lite 板上预留了一个 6 针的 JTAG 接口,用于下载 ZYNQ UltraScale+程序或者固化程序到 FLASH。JTAG 的管脚定义如下图所示

图16-1 JTAG接口管脚定义

十七、拨码开关配置

板上有一个 4 位的拨码开关用来配置 ZYNQ 系统的启动模式。EdgeBoard-Lite 系统支持 4 种启动模式。这 4 种启动模式分别是 JTAG 调试模式,QSPI FLASH,EMMC 和 SD2.0 卡启动模式。ZU3EG 芯片上电后会检测(PS_MODE0~3)的电平来决定那种启动模式。用户可以通过扩展板上的拨码开关来选择不同的启动模式。SW1 启动模式配置如下表 17-1 所示。

SW1	拨码位置(1,2,3,4)	MODE[3:0]	启动模式
	ON , ON , ON , ON	0000	PS JTAG
ON KE	ON , ON , OFF ,ON	0010	QSPI FLASH
1 2 3 4	ON , OFF , ON , OFF	0101	SD卡
	ON ,OFF , OFF , ON	0110	EMMC

表17-1 SW1启动模式配置

十八、LED 灯

EdgeBoard-Lite 的板边有 1 个双色 LED 指示灯(D5),其中红色的是电源指示灯,绿色的为用户指示灯。用户指示灯连接到 BANK25 的 IO 上。LED 灯硬件连接的示意图如图 18-1 所示:

图 18-1 LED 灯硬件连接示意图

EEPROM 引脚分配:

信号名称	引脚名	引脚号
PL_LED	IO_L10N_25	A10

十九、系统时钟

板上分别为 RTC 电路 ,PS 系统, PL 逻辑部分提供了参考时钟 其中 RTC 的时钟为 32.768 , PS 的系统时钟为 33.3333Mhz, PL 端的时钟是 25Mhz。时钟电路设计的示意图如下图 19-1 所示:

图 19-1 时钟源

时钟引脚分配:

信号名称	引脚名	引脚号
PL_REF_CLK	IO_L11P_66	D4

PL REF CLK 的电平为+1.8V。

二十、电源

EdgeBoard-Lite 的电源输入电压为 DC12V, 电流 2A 的适配器。电源接口的方向如下图 所示,使用中正负极不要插反,尽量使用我们提供的电源适配器。

图 20-1 电源正负指示

二十一、结构尺寸图

图 21-1 正面图 (Top View)