p6.md 8/16/2022

1. Introduction

In this project, I used a convolutional neural network to classify english character images.

The dataset I used come from http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/.

And I used EnglishFnt.tgz data set specifically for this project.

I was trying to develop a OCR system for the characters in the English language, and this convolutional neural network can help classify the characters in the image.

2. Algorithm

The algorithm I use is traditional convolutional neural network.

The input image is a 32x32 pixel image.

The first layer is a 3x3 convolutional layer with 32 filters. This produce 32 30x30 images since I'm not using any padding.

And then I shrink the image to 15x15 pixels by using a 2x2 max pooling layer.

The second layer is another 3x3 convolutional layer with 64 filters. This produce 64 13x13 images.

This layer followed by a 2x2 max pooling layer.

And the last convolutional layer is a 3x3 convolutional layer with 64 filters.

Now, there are 64 4x4 images. Which is 1024 features after flattening.

For the fully connected layer, I used a traditional neural network with 1024 inputs and 62 outputs.

Between the input and output, I added a hidden layer with 64 units.

3.Dataset

During the preprocess state, I first construct the class names and labels for the dataset.

Then, I shuffle and split the dataset into training and testing dataset. In this project, I used 80% of the dataset for training and 20% for testing.

I tried to use data augmentation to improve the training dataset. But since the original dataset is alread very large (with 62992 images). The data augmentation I used crashes the program. I added 10GB of swap memory, tring to run the prohram, but the data augmentation still takes too long. Finally I decided to use only the original dataset for training.

4. Result

p6.md 8/16/2022

The training result is shown below:

It is clear that the overfitting problem occured after around 9 epochs.

However, the overall accuracy on the testing set is around 85%, which is not bad.

An interesting result is that I think the convolutional neural network understand part of the character structure.

Take this character w as an example:

p6.md 8/16/2022

The character W is very similar to the character lower-case w. And the neural network predicted the w as the character W.

This is a mistake that human can also make. Even the neural network failed to recognize this character, it still recognized the similarity between the two characters.

References and attributions

This project is based on CNN tutorial from https://www.tensorflow.org/tutorials/images/cnn