May 29, 2025

Homework 8

Spring 2025 COSC 31: Algorithms

1. Kosaraju's algorithm

Let G = (V, E) be a directed graph with $V = \{1, 2, ..., n\}$, and k be the number of SCCs of G. One way to represent the SCCs of G is with an array S of length n such that, for all $i, j \in \{1, 2, ..., n\}$, $S[i] \in \{1, 2, ..., k\}$ and S[i] = S[j] if and only if vertices i and j are in the same strongly connected component of G.

Write an algorithm of O(n+m) time and space complexity that, given the adjacency list representation of a directed graph G = (V, E) with $V = \{1, 2, ..., n\}$, returns (k, S) where k is the number of SCCs of G and S is an array representing the SCCs of G.

2. **Simpler SCC** Dr. Murkha claims that the algorithm for strongly connected components would be simpler if it used the original (instead of the transpose) graph in the second depth-first search and scanned the vertices in order of increasing finishing times. Does this simpler algorithm always produce correct answers? Justify your answer.

Answer

No, the simpler algorithm will not always produce correct answers. Consider the graph below:

The edges are $A \to B$, $B \to A$, and $A \to C$. So $\{A, B\}$ is one strongly connected component (SCC), and $\{C\}$ is another.

Suppose we run the first DFS starting at A. It visits B and C from A. The finish times will be: B.f = 3, C.f = 5, and A.f = 6. Now, the simpler algorithm proposes to run a second DFS on the original graph, using the order of increasing finishing times: B, C, A. Starting from B, the DFS explores A then C, and returns the SCC $\{A, B, C\}$. This incorrectly groups all three vertices into one SCC: $\{A, B, C\}$ because there is no path from C to A or B.

The correct algorithm uses the transpose graph and scans vertices in decreasing finish time, which correctly identifies SCCs: $\{A, B\}$ and $\{C\}$.

3. Component Graph

Write an algorithm of $\Theta(n+m)$ time and space complexity that, given

- the adjacency list A of a directed graph G = (V, E) with $V = \{1, 2, \dots, n\}$, and
- the array S that represents the SCCs of G,

Algorithm 1 Kosaraju's Algorithm

```
Function Kosaraju(G = (V, E)):
   for
each u \in V do
       u.visited \leftarrow false
   A \leftarrow \text{empty stack}
   for
each u \in V do
       if u.visited = false then
         DFSOne(u, A)
   G^T \leftarrow \texttt{Transpose}(G)
   for
each u \in V in G^T do
     S \leftarrow \text{empty array}
   k \leftarrow 0
   while A \neq \perp do
       u \leftarrow \text{pop from stack } A
       if u.visited = false then
           k \leftarrow k + 1
           DFS2(u, k, S)
   return (k, S)
Function DFSOne (u, A):
   u.visited \leftarrow true
   foreach v \in Adj[u] do
        if v.visited = false then
         \square DFSOne(v, A)
 push u onto stack A
Function Transpose (G = (V, E)):
   G^T \leftarrow \text{new graph with vertices } V
   foreach u \in V do
        foreach v \in Adj[u] do
           add edge (v \to u) to G^T
 oxedsymbol{oxed} return G^T
Function DFS2(u, k, S):
   u.visited \leftarrow true
   S[u] \leftarrow k
   append u to newSCC
   for
each v \in Adj[u] do
       if v.visited = false then
         \mid DFS2(v, S)
```

Time Complexity: The algorithm runs in O(n+m) time, where n is the number of vertices and m is the number of edges. The first DFS traversal takes O(n+m) time, the transposition of the graph also takes O(n+m) time, and the second DFS traversal also takes O(n+m) time. Thus, the overall time complexity is linear in terms of the size of the graph.

Space Complexity: The space complexity is O(n+m) due to the storage of the adjacency list for the transposed graph and the stack used in the DFS traversals.

returns the adjacency list of the graph GSCC , which I define below exactly as in class: $G^{SCC} = (V^{SCC}, E^{SCC})$, where $V^{SCC} = \{C|C \text{ is an SCC of } G\}$ and $E^{SCC} = \{(C,C')|C \neq C', \text{ and } \exists u \in C, u' \in C', (u,u') \in E\}$

Answer

Algorithm 2 Component Graph Construction

```
Function ComponentGraph (A, S):

Let n \leftarrow \text{length of } A

Let k \leftarrow 1 + \max(S)

Initialize A^{SCC}[1 \dots k] as empty sets for u \leftarrow 1 to n do

foreach v \in A[u] do

if S[u] \neq S[v] then

Add S[v] to A^{SCC}[S[u]]

for i \leftarrow 1 to k do

Convert A^{SCC}[i] from set to list return A^{SCC}
```

Time Complexity: The algorithm iterates through each vertex u and its adjacency list A[u]. Since each edge is processed exactly once, the total time complexity is $\Theta(n+m)$, where n is the number of vertices and m is the number of edges. The space complexity is also $\Theta(n+m)$ due to the torage of the adjacency list for the component graph.

Space Complexity: The space complexity is $\Theta(n+m)$, as we store the adjacency list for the component graph, which contains at most n vertices and m edges.

4. Semiconnectivity

Answer

A directed graph G = (V, E) is semiconnected if, for all pairs of vertices $u, v \in V$, there is a path from u to v or there is a path from v to u(or both). Give an efficient algorithm that, given a directed graph G = (V, E), outputs whether or not it is semiconnected. Argue the correctness of your algorithm and analyze its time complexity to be $\Theta(V + E)$

return true

```
Algorithm 3 Semiconnectivity Check
```

Correctness: The algorithm first identifies SCCs because semiconnectivity is preserved within SCCs. To check for semiconnectivity of the SCCs, we construct the component graph G^{SCC} and perform a topological sort. We then verify that each SCC can reach the next one in the topological order. If any SCC cannot reach the next, the graph is not semiconnected.

Time Complexity: The algorithm runs in $\Theta(V+E)$ time. The Kosaraju's algorithm for finding SCCs runs in $\Theta(V+E)$, and constructing the component graph also takes $\Theta(V+E)$. The topological sort of the component graph takes $\Theta(V+E)$ as well. Thus, the overall time complexity is $\Theta(V+E)$.

Space Complexity: The space complexity is also $\Theta(V+E)$ due to the storage of the adjacency list for the component graph and the SCC ID array.

5. All Pairs Shortest Paths

Let Gbe a digraph, with edge weights given by $w: E(G) \to \mathbb{R}$. Assume that $V(G) = \{1, 2, \dots, n\}$. In class we study the Bellman-Ford algorithm that computes shortest paths to all vertices from a given source vertex $s \in V(G)$. Suppose instead that we wish to compute the shortest paths from every vertex to every vertex, i.e., we want to compute $\delta(i,j)$ for all $i,j \in V(G)$, where $\delta(i,j)$ is the weight of a shortest path from i to j. One solution would be to run Bellman-Ford n times, once for each $s \in V(G)$, but this solution would take $V \times O(nm) = O(n2m)$ time. Since m can be as high as n2, the solution can be as expensive as O(n4). Can we do better? The answer is yes: we can design a O(n3)-time algorithm. How? Well, read on.

If i_1, i_2, \ldots, i_k is a path p in a graph G, we call $i_2, i_3, \ldots, i_k - 1$, which are all but the start and end vertices on path p, the intermediate vertices on p. For example, if p is 3, 6, 2, 1, 4, the intermediate vertices are 6, 2, 1. For another example, if p is 3, 6, 2, 4, 1, 4, then the intermediate vertices are 6, 2, 4, 1 (notice that even though 4 is the end vertex, it is counted as an intermediate vertex since it also occurs as a non-start and a non-end vertex).

(a) Write a recurrence for $d_{i,j}^k$, including base cases(s).

Answer
$$d_{i,j}^k = \begin{cases} 0 & \text{if } k = 0 \text{ and } i = j \\ w(i,j) & \text{if } k = 0 \text{ and } i \neq j \\ \infty & \text{if } P_{i,j}^k = \emptyset \\ -\infty & \text{if path in } P_{i,j}^k \text{ has a negative weight cycle} \\ \min(d_{i,j}^{k-1}, d_{i,k}^{k-1} + d_{k,j}^{k-1}) & \text{otherwise} \end{cases}$$

- (b) Use this recurrence to write an algorithm that, given an adjacency matrix Afor a weighted digraph G, returns the following two quantities, for all $i, j \in V(G)$:
 - $\delta(i,j)$
 - $\pi(i,j)$, where $\pi(i,j)$ is the last vertex before j on a shortest path from i to j if $i \neq j$ and $\delta(i,j) \notin \{-\infty,\infty\}$; and $\pi(i,j) = nil$ otherwise.

Algorithm 4 Floyd-Warshall using $O(n^3)$ space Function AllPairsShortestPaths(A): // Input: A[i][j] is the weight of edge (i,j) or ∞ if no edge // Step 1: Initialize $d[0\dots n,1\dots n,1\dots n]$ and $\pi[1\dots n,1\dots n]$

```
for i \leftarrow 1 to n do
 1
              for j \leftarrow 1 to n do
                  if i = j then
 3
                    d[0, i, j] \leftarrow 0, \quad \pi[i, j] \leftarrow \text{nil}
                   else if A[i,j] \neq \infty then
                     | \quad d[0,i,j] \leftarrow A[i,j], \quad \pi[i,j] \leftarrow i 
 6
                   else
 7
                    \label{eq:definition} \left| \quad d[0,i,j] \leftarrow \infty, \quad \pi[i,j] \leftarrow \text{nil} \right.
        // Step 2: Apply recurrence for k = 1 to n
        for k \leftarrow 1 to n do
9
              for i \leftarrow 1 to n do
10
                   for j \leftarrow 1 to n do
11
                        if d[k-1,i,k] + d[k-1,k,j] < d[k-1,i,j] then
12
13
                            d[k, i, j] \leftarrow d[k - 1, i, k] + d[k - 1, k, j]
                         \pi[i,j] \leftarrow \pi[k,j]
                        else
14
                         d[k,i,j] \leftarrow d[k-1,i,j]
15
        return d[n], \pi
```

(c) State how to modify the above algorithm so that it still runs in $O(n^3)$ time, but takes only $O(n^2)$ space. Your algorithm should of course remain correct, run in $O(n^3)$ time and take $O(n^2)$ space,

Answer

Answer

To reduce the space complexity to $O(n^2)$ while preserving the $O(n^3)$ time complexity, we modify the algorithm as follows:

Algorithm 5 Floyd-Warshall with $O(n^2)$ space Function AllPairsShortestPathsSpaceOptimized(A): Initialize $d[1 \dots n, 1 \dots n]$ and $\pi[1 \dots n, 1 \dots n]$ for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do if i = j then $\lfloor d[i,j] \leftarrow 0, \quad \pi[i,j] \leftarrow \text{nil}$ else if $A[i][j] \neq \infty$ then $d[i,j] \leftarrow A[i,j], \quad \pi[i,j] \leftarrow i$ else $|d[i,j] \leftarrow \infty, \quad \pi[i,j] \leftarrow \text{nil}$ for $k \leftarrow 1$ to n do for $i \leftarrow 1$ to n do for $j \leftarrow 1$ to n do **if** d[i, k] + d[k, j] < d[i, j] **then** $d[i,j] \leftarrow d[i,k] + d[k,j]$ $\pi[i][j] \leftarrow \pi[k,j]$ return d, π

(d) Write the invariant for only the outermost loop in your algorithm for Part (c). You don't need to prove your invariant correct.

Answer

- $1 \le k \le n+1$
- $\forall i, j \in V, i \neq jd[i, j]$ contains the minimum weight of a path from i to j whose intermediate vertices are in the set $\{1, 2, \dots, k-1\}$
- (e) Write a method that, given $i, j \in V(G)$, uses the information computed by your algorithm to output a shortest path from i to j if $\delta(i, j) \notin \{-\infty, \infty\}$.

Answer

To achieve, we can the $\pi(i,j)$ returned from part c rescontruct the path from i to j.

Algorithm 6 GetShortestPath (i, j, π)

(f) Write a method that outputs whether G has a negative weight simple cycle and, if it does, it outputs a simple cycle in G. Your method is not required to do anything more than what I asked for (for instance, it can stop and return as soon as it is able to answer the question asked).

Answer **Algorithm 7** DetectNegativeCycle (d, π) Function DetectNegativeCycle(d, π): for $v \leftarrow 1$ to n do if d[v][v] < 0 then visited \leftarrow empty set $cycle \leftarrow empty \ list$ $\text{current} \leftarrow v$ while $current \notin visited$ do add current to visited current $\leftarrow \pi[v][current]$ if current = nil then return "No path traceable to form a cycle" $\mathsf{start} \leftarrow current$ $cycle \leftarrow list with start$ current $\leftarrow \pi[v][start]$ while $current \neq start$ do insert *current* at the beginning of *cycle* current $\leftarrow \pi[v][current]$ insert start at the beginning of cycle return "Negative-weight cycle found: ", cycle

Explanation: The algorithm checks each vertex v for a negative weight cycle by examining the diagonal of the distance matrix d[v,v] and uses the predecessor matrix π to trace back the cycle. If a negative cycle is found, it constructs the cycle by following the predecessors until it loops back to the starting vertex.

return "No negative-weight cycle found."