Data Structures and Algorithms

Lecture 8: Hard problems

Heikki Peura h.peura@imperial.ac.uk

Previously

Graphs recap:

- Weighted/unweighted graphs
- Dijkstra and BFS

Plan for today:

- Lecture: Greedy algorithms and the knapsack problem
- Workshop
- ▶ 11:10am: Prize ceremony, parting words

Designing algorithms is tricky!

No single recipe solves all our problems...

...but there are some useful principles

Designing algorithms is tricky!

No single recipe solves all our problems...

...but there are some useful principles

We've used the divide-and-conquer paradigm

- Divide into smaller subproblems
- Eg binary search

Designing algorithms is tricky!

No single recipe solves all our problems...

...but there are some useful principles

We've used the divide-and-conquer paradigm

- ► Divide into smaller subproblems
- Eg binary search

But there are others:

- Greedy algorithms (today)
- Dynamic programming (for you to discover...)

Greedy algorithms

Rough idea: make myopic decisions iteratively

- Make a choice for immediate benefit without worrying about future consequences
- Attractive but dangerous

Greedy algorithms

Rough idea: make myopic decisions iteratively

- Make a choice for immediate benefit without worrying about future consequences
- Attractive but dangerous

Greedy algorithms are:

- Easy to come up with
- Easy to analyse running time
- Difficult to show to be correct
- DANGER: a greedy choice is often not correct

Knapsack problem

Problem: fill a bag with the most valuable items available.

Input:

- \triangleright Set of *n* items, with values v_i and sizes w_i (integer)
- ► Capacity W

Knapsack problem

Problem: fill a bag with the most valuable items available.

Input:

- \triangleright Set of *n* items, with values v_i and sizes w_i (integer)
- ► Capacity W

Output: subset S of items that maximizes the sum of values subject to a capacity constraint:

- $ightharpoonup \max \sum_{i \in S} v_i$
- ▶ subject to $\sum_{i \in S} w_i \leq W$

Knapsack problem applications

Knapsack problem applications

Knapsack problem applications

Many problems with budget constraints are versions of knapsack

- Selecting portfolios (eg projects to invest in)
- Lots of "operational" problems...

Two-item example

Items to pack

► Shirt: value 5, weight 5

► Bottle: value 10, weight 5

Two-item example

Items to pack

► Shirt: value 5, weight 5

► Bottle: value 10, weight 5

Subsets:

► {},{Shirt},{Bottle},{Shirt,Bottle}

Two-item example

Items to pack

Shirt: value 5, weight 5

► Bottle: value 10, weight 5

Subsets:

► {},{Shirt},{Bottle},{Shirt,Bottle}

Knapsack size limits feasible solutions

 \triangleright W < 5: can pick neither

▶ $5 \le W < 10$: neither or just one

 \blacktriangleright $W \ge 10$: all subsets feasible

Go through all possibilities?

Input:

- \triangleright Set of *n* items, with values v_i and sizes w_i (integer)
- ► Capacity W

Output: subset S of items that maximizes the sum of values subject to capacity constraint:

- $ightharpoonup \max \sum_{i \in S} v_i$
- ▶ subject to $\sum_{i \in S} w_i \leq W$

Go through all possibilities?

Input:

- \triangleright Set of *n* items, with values v_i and sizes w_i (integer)
- ► Capacity W

Output: subset S of items that maximizes the sum of values subject to capacity constraint:

- ightharpoonup max $\sum_{i \in S} v_i$
- ▶ subject to $\sum_{i \in S} w_i \le W$

Exhaustive (brute-force) search?

- ► Go through all subsets of {1, 2, 3, ..., n}
- ► Suppose we have 50 items: $O(2^n)$ subsets...

Input:

- ▶ Set of *n* items, with values v_i and sizes w_i
- ► Capacity W

Output: subset *S* of items that maximizes the sum of values subject to capacity constraint:

- $ightharpoonup \max \sum_{i \in S} v_i$
- ▶ subject to $\sum_{i \in S} w_i \leq W$

Greedy approaches? — Pick myopically without worrying about future choices

Input:

- ▶ Set of *n* items, with values v_i and sizes w_i
- ► Capacity W

Output: subset *S* of items that maximizes the sum of values subject to capacity constraint:

- $ightharpoonup \max \sum_{i \in S} V_i$
- ▶ subject to $\sum_{i \in S} w_i \leq W$

Greedy approaches? — Pick myopically without worrying about future choices

► Highest-value item first?

Input:

- ▶ Set of *n* items, with values v_i and sizes w_i
- ► Capacity W

Output: subset *S* of items that maximizes the sum of values subject to capacity constraint:

- $ightharpoonup \max \sum_{i \in S} V_i$
- ▶ subject to $\sum_{i \in S} w_i \leq W$

Greedy approaches? — Pick myopically without worrying about future choices

- ► Highest-value item first?
- ► Lowest-size item first?

Input:

- Set of n items, with values v_i and sizes w_i
- ► Capacity W

Output: subset *S* of items that maximizes the sum of values subject to capacity constraint:

- $ightharpoonup \max \sum_{i \in S} V_i$
- ▶ subject to $\sum_{i \in S} w_i \leq W$

Greedy approaches? — Pick myopically without worrying about future choices

- ► Highest-value item first?
- ► Lowest-size item first?
- Some easy way of combining value and size?

Greedy approaches?

► Highest-value item first?

Greedy approaches?

► Highest-value item first?

Example: capacity W = 20, three items with values v = [10, 10, 11], weights w = [10, 10, 11].

Picking highest value first is bad...

Greedy approaches?

- ► Highest-value item first?
- ► Lowest-size item first?

Example: capacity W = 20, three items with values v = [10, 10, 11], weights w = [10, 10, 11].

► Picking highest value first is bad...

Greedy approaches?

- ► Highest-value item first?
- ► Lowest-size item first?

Example: capacity W = 20, three items with values v = [10, 10, 11], weights w = [10, 10, 11].

Picking highest value first is bad...

Example: capacity W = 20, three items with values v = [10, 10, 50], weights w = [10, 10, 11].

► Picking lowest weight first is bad...

Greedy approaches?

- ► Highest-value item first?
- ► Lowest-size item first?

Example: capacity W = 20, three items with values v = [10, 10, 11], weights w = [10, 10, 11].

Picking highest value first is bad...

Example: capacity W = 20, three items with values v = [10, 10, 50], weights w = [10, 10, 11].

Picking lowest weight first is bad...

Some easy way of combining value and size?

 \blacktriangleright Eg sort items by unit weight v_i/w_i and pick them in this order

Greedy algorithm:

- ▶ Sort items in decreasing bang-for-buck v_i/w_i
- Pick items until capacity full

Greedy algorithm:

- ▶ Sort items in decreasing bang-for-buck v_i/w_i
- Pick items until capacity full

Running time?

- ► Sorting?
- ► Loop?

Greedy algorithm:

- ▶ Sort items in decreasing bang-for-buck v_i/w_i
- Pick items until capacity full

Running time?

- ► Sorting?
- ► Loop?
- ▶ Total $O(n \log n)$

Is the algorithm correct?

Example: capacity W=510, three items with values v = [10, 10, 500], weights w = [10, 10, 501].

► Greedy picking is bad...

Is the algorithm correct?

Example: capacity W=510, three items with values v = [10, 10, 500], weights w = [10, 10, 501].

► Greedy picking is bad...

It would be optimal if we could divide items into fractions

Is the algorithm correct?

Example: capacity W=510, three items with values v = [10, 10, 500], weights w = [10, 10, 501].

► Greedy picking is bad...

It would be optimal if we could divide items into fractions

Here we would need a different approach to find correct solution — dynamic programming

- Exploit problem structure to loop through all items and possible capacities
- ► Correct solution, *O*(*nW*) time ("pseudo-polynomial")

Tractable problem = Solvable in polynomial time $O(n^k)$ for some k

Tractable problem = Solvable in polynomial time $O(n^k)$ for some k

Finding the **shortest route to a Pikachu nest** (Dijkstra's algorithm) vs. finding the **shortest tour of all Pokemon nests**

Tractable problem = Solvable in polynomial time $O(n^k)$ for some k

Finding the **shortest route to a Pikachu nest** (Dijkstra's algorithm) vs. finding the **shortest tour of all Pokemon nests**

Example of intractability: traveling salesperson problem (TSP)

Tractable problem = Solvable in polynomial time $O(n^k)$ for some k

Finding the **shortest route to a Pikachu nest** (Dijkstra's algorithm) vs. finding the **shortest tour of all Pokemon nests**

Example of intractability: traveling salesperson problem (TSP)

▶ Input: undirected graph with non-negative edge costs

Many important problems are intractable

Tractable problem = Solvable in polynomial time $O(n^k)$ for some k

Finding the shortest route to a Pikachu nest (Dijkstra's algorithm) vs. finding the shortest tour of all Pokemon nests

Example of intractability: traveling salesperson problem (TSP)

- Input: undirected graph with non-negative edge costs
- ► Goal: find minimum cost tour visiting every node

Many important problems are intractable

Tractable problem = Solvable in polynomial time $O(n^k)$ for some k

Finding the shortest route to a Pikachu nest (Dijkstra's algorithm) vs. finding the shortest tour of all Pokemon nests

Example of intractability: traveling salesperson problem (TSP)

- Input: undirected graph with non-negative edge costs
- ► Goal: find minimum cost tour visiting every node
- Conjecture: no polynomial-time algorithm

Many important problems are intractable

Tractable problem = Solvable in polynomial time $O(n^k)$ for some k

Finding the **shortest route to a Pikachu nest** (Dijkstra's algorithm) vs. finding the **shortest tour of all Pokemon nests**

Example of intractability: traveling salesperson problem (TSP)

- Input: undirected graph with non-negative edge costs
- ► Goal: find minimum cost tour visiting every node
- ► Conjecture: no polynomial-time algorithm
- Many other important problems too...

My problem is intractable!

What can you do?

 There may be tractable special cases (small knapsack DP)

My problem is intractable!

What can you do?

- There may be tractable special cases (small knapsack DP)
- 2. Get an approximate solution using heuristics fast but not "correct" (next slide)

My problem is intractable!

What can you do?

- There may be tractable special cases (small knapsack DP)
- 2. Get an approximate solution using heuristics fast but not "correct" (next slide)
- Solve in exponential time but try to improve on brute force (large knapsack DP)

Greedy knapsack heuristic

Greedy knapsack was incorrect but very fast: $O(n \log n)$

Greedy algorithm:

- ▶ Sort items in decreasing bang-for-buck v_i/w_i
- For each item, pick the item until reach total W

Greedy knapsack heuristic

Greedy knapsack was incorrect but very fast: $O(n \log n)$

Greedy algorithm:

- ▶ Sort items in decreasing bang-for-buck v_i/w_i
- For each item, pick the item until reach total W

How bad is it?

Example: capacity W=510, three items with values v = [10, 10, 500], weights w = [10, 10, 501].

Greedy knapsack heuristic

Greedy knapsack was incorrect but very fast: $O(n \log n)$

Greedy algorithm:

- ▶ Sort items in decreasing bang-for-buck v_i/w_i
- For each item, pick the item until reach total W

How bad is it?

- **Example:** capacity W=510, three items with values v = [10, 10, 500], weights w = [10, 10, 501].
- "Worst-case scenario": leave out (a single) extremely valuable object that would fit into knapsack

Modified algorithm: pick either the greedy solution or the most valuable item

Modified algorithm: pick either the greedy solution or the most valuable item

- ▶ Sort items in decreasing v_i/w_i
- For each item, pick the item until reach total W
- Return either greedy solution or the most valuable item, whichever is better

Modified algorithm: pick either the greedy solution or the most valuable item

- ▶ Sort items in decreasing v_i/w_i
- For each item, pick the item until reach total W
- Return either greedy solution or the most valuable item, whichever is better

Claim: This gets at least 50% of maximum possible value.

Modified algorithm: pick either the greedy solution or the most valuable item

- ▶ Sort items in decreasing v_i/w_i
- For each item, pick the item until reach total W
- Return either greedy solution or the most valuable item, whichever is better

Claim: This gets at least 50% of maximum possible value.

- "Worst-case scenario": greedy leaves out two extremely valuable objects that would both fit into knapsack
- ► Still pick the better of them: at least 50%
- ▶ Often items are small → the greedy choice cannot leave out many of them

Review

Some problems are inherently intractable

- Knapsack, traveling salesperson
- Greedy algorithms, approximations and heuristics can help

Workshop after the break

Knapsack and fantasy football

11am: Parting words

- Hacker Challenge
- What next?

Workshop

Workshop zip file on the Hub

- HTML instructions
- At some point, you'll need the .py-file with skeleton code (open in Spyder)

11am: Parting words

- Hacker Challenge
- What next?