

Evolutionary Hypergraph Partitioning

Presentation · **December 11, 2017 Robin Andre**

Institute of Theoretical Informatics ·

Problem

Hypergraph Partitioning

Given a hypergraph H := (V, E, c, w) a partition is a distribution of the nodes in k disjoint blocks $V_1, ..., V_k$. A partition is balanced if $\forall \ 1 \le i \le k : c(V_i) \le (1 + \epsilon) \lceil \frac{c(V)}{k} \rceil$ for an imbalance parameter ϵ .

Problem

Hypergraph Partitioning

Given a hypergraph H := (V, E, c, w) a partition is a distribution of the nodes in k disjoint blocks $V_1, ..., V_k$. A partition is balanced if $\forall \ 1 \le i \le k : c(V_i) \le (1 + \epsilon) \lceil \frac{c(V)}{k} \rceil$ for an imbalance parameter ϵ .

$$k = 2$$
; $cut = 2$; $(\lambda - 1) = 2$

Problem

Hypergraph Partitioning

Given a hypergraph H := (V, E, c, w) a partition is a distribution of the nodes in k disjoint blocks $V_1, ..., V_k$. A partition is balanced if $\forall \ 1 \le i \le k : c(V_i) \le (1 + \epsilon) \lceil \frac{c(V)}{k} \rceil$ for an imbalance parameter ϵ .

$$k = 4$$
; $cut = 3$; $(\lambda - 1) = 5$

Motivation

- Hypergraph partitioning is NP-hard
- Evolutionary Algorithms are generating high quality solutions
- Many applications benefit from the best possible solution

VLSI Design

Scientific Computing

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix} \Rightarrow \bigcirc$$

- lacksquare H is reduced to a smaller problem H_C
- only one node is contracted per step
- \blacksquare until H_C is sufficiently small

- \blacksquare H is reduced to a smaller problem H_C
- only one node is contracted per step
- until H_C is sufficiently small

- \blacksquare H is reduced to a smaller problem H_C
- only one node is contracted per step
- \blacksquare until H_C is sufficiently small

Initial Partitioning:

• An algorithm generates an Initial Partitioning for H_C

Choose individuals for recombination

Choose individuals for recombination

- Choose individuals for recombination
- Generate offspring O

- Choose individuals for recombination
- Generate offspring O
- Perform mutations M

- Choose individuals for recombination
- Generate offspring O
- Perform mutations M
- Select survivors

Population P

KaHyPar generates multiple partitions dynamic allocation $\delta = 15\%$

Population P

3.1s
$$time = 100s$$

 \sim 5 iterations

KaHyPar generates multiple partitions dynamic allocation $\delta = 15\%$

 \sim 5 iterations

KaHyPar generates multiple partitions

time = 100s

dynamic allocation $\delta = 15\%$

3.1s

3.1s
$$time = 100s \longrightarrow \sim 5$$
 iterations

KaHyPar generates multiple partitions dynamic allocation $\delta = 15\%$

3.1s
$$time = 100s \longrightarrow \sim 5$$
 iterations

KaHyPar generates multiple partitions dynamic allocation $\delta = 15\%$

balances time/hypergraph size

3.1s
$$time = 100s \longrightarrow \sim 5$$
 iterations

KaHyPar generates multiple partitions dynamic allocation $\delta = 15\%$

high quality solutions

balances time/hypergraph size

select 2 random Individuals

select 2 random Individuals compare their fitness

select 2 random Individuals
compare their fitness
choose the better Individual

- \blacksquare contractions must respect $P_1 \& P_2$
- does not change solution quality

- contractions must respect $P_1 \& P_2$
- does not change solution quality

Invalid Contraction

- \blacksquare contractions must respect $P_1 \& P_2$
- does not change solution quality

- \blacksquare contractions must respect $P_1 \& P_2$
- does not change solution quality

Initial Partitioning:

- Use the better parent partition (P_1)
- Maintains solution quality

- We inspect the $\sqrt{|P|}$ best individuals of P
- Each hyperedge e is analyzed on its frequency in the selected elements

- Frequent edges are beneficial to the solution quality
- Contracting frequent edges may be detrimental to solution quality
- Additionally it may limit other contractions

- Frequent edges are beneficial to the solution quality
- Contracting frequent edges may be detrimental to solution quality
- Additionally it may limit other contractions

- Frequent edges are beneficial to the solution quality
- Contracting frequent edges may be detrimental to solution quality
- Additionally it may limit other contractions

- Frequent edges are beneficial to the solution quality
- Contracting frequent edges may be detrimental to solution quality
- Additionally it may limit other contractions

V-Cycle (+ New Initial Partitioning)

- Contractions must respect P
- Does not change solution quality

V-Cycle (+ New Initial Partitioning)

Initial Partitioning:

- V-Cycle can generate a new initial partitioning
- Or keep the current partition (maintains solution quality)

V-Cycle (+ New Initial Partitioning)

Experimental Setup

- $k = \{2, 4, 8, 16, 32, 64, 128\}; \epsilon = 0.03$
- 90 Hypergraph instances
- Comparison against repeated KaHyPar-CA

The run time is normalized $t_n = \frac{time}{t_1}$; $t_1 := duration of first iteration.$

- Allows comparing differently sized hypergraphs
- Algorithmic components can be analyzed on run time

Table of Improvements

	$K_E + C_1 + C_2$		$K_E + C_1 + M_1 + M_2$	
k	K _N -CA-V	K_N -CA	K _N -CA-V	K_N -CA
all <i>k</i>	1.7%	2.7%	2.2%	3.2%
2	-0.2%	0.4%	0.2%	0.8%
4	-0.2%	0.3%	0.9%	1.3%
8	0.7%	1.6%	1.9%	2.7%
16	1.9%	2.8%	2.6%	3.5%
32	2.9%	3.9%	3.2%	4.2%
64	3.2%	4.7%	3.4%	4.8%
128	3.3%	5.0%	3.3%	5.0%

Conclusion

Conclusion

- ($\lambda 1$) improvement of up to 5%
- High integration of evolutionary aspects in the multilevel approach

Future Work

- Added parallelization for faster partitioning
- Different approach for generating the initial population
- Time cost analysis for evolutionary operators