Cursul 12

Valori și vectori proprii ai matricilor simetrice. Descompunerea SVD a unei matrici. Aplicații

12.1 Valori şi vectori proprii ale matricilor simetrice. Descompunerea unei matrici simetrice

O matrice pătratică $M \in \mathbb{R}^{n \times n}$ cu proprietatea că $M^T = M$ se numește matrice simetrică. În machine learning matricile simetrice studiate sunt cel mai adesea matrici obtinute dintr-o matrice de date $A \in \mathbb{R}^{m \times n}$, care stochează pe coloane datele pentru n entitați. Fiecare entitate are m caracteristici, numite atribute:

$$A = [X_1 | X_2 | \dots | X_n]$$

De exemplu, în diagnosticarea inteligentă sau in studiul eficacității unor medicamente în tratamentul unei boli, entitățile sunt n persoane. Pentru fiecare individ se înregistreaza valorile pentru un set de m analize medicale (atribute ale indivizilor).

Dacă dupa constituirea matricii de date se calculeaza versorul fiecărei coloane și se notează cu B matricea:

$$B = [X_1^0 | X_2^0 | \dots | X_n^0],$$

atunci matricea simetrica $M=B^TB$, are ca element generic $M_{ij}=< X_i^0, X_j^0>=\cos(X_i,X_j)$. Cu alte cuvinte un element M_{ij} indică similaritatea dintre individul i și j.

Pe de alta parte elementele N_{ij} ale matricii $N = BB^T$ indica similaritatea dintre atribute.

Informația importantă codificată de matricea de date A se extrage din valorile proprii şi vectorii proprii corespunzători ai matricii simetrice M respectiv N.

Să studiem particularitățile matricilor simetrice, comparativ cu matricile pătratice generale, nesimetrice.

În cele ce urmează interpretăm produsul Av, dintre o matrice pătratică, $A \in \mathbb{R}^{n \times n}$, și un vector, $v \in \mathbb{R}^n$, ca fiind vectorul w ce reprezintă efectul unui operator liniar $L : \mathbb{R}^n \to \mathbb{R}^n$ de matrice A în baza canonică, asupra vectorului v. Deci în loc de L(v), scriem Av.

Propoziția 12.1.1 Fie $A \in \mathbb{R}^{n \times n}$ o matrice pătratică și \mathbb{R}^n înzestrat cu produsul scalar standard. Atunci avem următoarea relație:

$$\langle Av, w \rangle = \langle v, A^T w \rangle, \forall v, w \in \mathbb{R}^n$$
 (12.1)

Demonstrație: Exprimăm produsul scalar $\langle x, y \rangle = x^T y$. Astfel membrul stâng al egalității ce dorim s-o demonstrăm este:

$$\langle Av, w \rangle = (Av)^T w = v^T A^T w$$

iar membrul drept:

$$\langle v, A^T w \rangle = v^T (A^T w) = v^T A^T w$$

și deci:

$$< Av, w> = < v, A^Tw >$$

Observația 12.1.1 Dacă A este o matrice simetrică atunci din $A^T = A$ și relația (12.1) rezultă că:

$$\langle Av, w \rangle = \langle v, Aw \rangle \tag{12.2}$$

Să enunțam (fără demontrație) particularitățile valorilor și vectorilor proprii ai unei matrici simetrice:

Propoziția 12.1.2 Polinomul caracteristic al unei matrici simetrice, $A \in \mathbb{R}^{n \times n}$, are toate n rădăcinile reale, adică o matrice simetrică are n valori proprii.

Dimensiunea fiecărui subspațiu propriu al unei matrici simetrice coincide cu ordinul de multiplicitate al valorii proprii corespunzătoare.

Propoziția 12.1.3 La valori proprii distincte ale unei matrici simetrice corespund vectori proprii ortogonali.

Demonstrație: Fie $\lambda_1 \neq \lambda_2$ două valori proprii distincte ale matricii simetrice, A, și $v_1 \in S_{\lambda_1}$, $v_2 \in S_{\lambda_2}$, vectori proprii corespunzători, adică $Av_1 = \lambda_1 v_1$, $Av_2 = \lambda_2 v_2$. Din proprietatea (12.2) a matricilor simetrice, avem că:

$$< Av_1, v_2 > = < v_1, Av_2 >$$

ceea ce este echivalent cu:

$$<\lambda_1 v_1, v_2> = < v_1, \lambda_2 v_2>$$

sau

$$\lambda_1 < v_1, v_2 >= \lambda_2 < v_1, v_2 > \iff (\lambda_1 - \lambda_2) < v_1, v_2 >= 0$$

Cum $\lambda_1 \neq \lambda_2$, rezultă că $\lambda_1 - \lambda_2 \neq 0$ și deci $\langle v_1, v_2 \rangle = 0$, adică $v_1 \perp v_2$

Să analizăm consecințele acestor particularități ale matricilor simetrice:

• Fie $A \in \mathbb{R}^{n \times n}$ o matrice simetrică. Polinomul caracteristic al lui A, $P_n(\lambda) = \det(A - \lambda I_n)$, având n valori proprii (simple sau multiple) admite descompunerea:

$$P_n(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_s)^{k_s}, \quad k_1 + k_2 + \cdots + k_s = n$$

unde λ_i este rădăcină multiplă de ordin k_i , $i = \overline{1, s}$.

- Pentru fiecare rădăcină λ_i , se determină subspațiul propriu $S_{\lambda_i} = \{v \in \mathbb{R}^n \mid Av = \lambda_i v \Leftrightarrow$ $(A - \lambda_i I_n)v = \theta\}.$
- Deoarece dimensiunea subspațiului propriu S_{λ_i} este egală cu ordinul de multipliciate, k_i , al lui λ_i , determinăm o bază arbitrară \mathcal{B}_i , în S_{λ_i} (care conține k_i vectori) și apoi o ortonormăm folosind procedeul Gramm–Schmidt şi obţinem baza ortonormată $\mathcal{B}_i', i = \overline{1,s}$.

• Dacă
$$\mathcal{B}_1' = (u_1, u_2, \dots, u_{k_1}), \mathcal{B}_2' = \underbrace{(u_{k_1+1}, \dots, u_{k_1+k_2})}_{k_2 \text{ vectori}}$$
, și în final $\mathcal{B}_s' = \underbrace{(u_{n-k_s+1}, \dots, u_n)}_{k_s \text{ vectori}}$, sunt baze ortonormate din subspațiile proprii $S_{\lambda_1}, S_{\lambda_2}, \dots, S_{\lambda_s}$, atunci concatenând cele s baze

ortonormate formate din vectori proprii ai matricii A, obținem o bază ortonormată în \mathbb{R}^n :

$$\mathcal{B}' = (u_1, u_2, \dots, u_{k_1}, u_{k_1+1}, \dots, u_{k_1+k_2}, \dots, u_n)$$

deoarece vectorii din bazele \mathcal{B}'_i sunt ortonormate și pentru că la valori proprii distincte corespund vectori proprii ortogonali, rezultă că orice vector dintr-o bază \mathcal{B}'_i este ortogonal pe orice vector dintr-o bază \mathcal{B}'_i , $i = \neq j$.

- Notăm cu $T_{\mathcal{BB}'}$ matricea de trecere de la baza canonică din \mathbb{R}^n la baza ortonormată \mathcal{B}' formată din vectori proprii ai matricii A. Aceasta este o matrice ortogonală, fiind matricea de trecere dintre două baze ortonormate.
 - Notând cu D matricea diagonală a valorilor proprii,

$$D = \operatorname{diag}(\underbrace{\lambda_1, \dots, \lambda_1}_{k_1}, \underbrace{\lambda_2, \dots, \lambda_2}_{k_2}, \dots, \underbrace{\lambda_s, \dots, \lambda_s}_{k_s})$$

, rezultă că matricea simetrică A este similară cu această matrice diagonală și în plus matricea T din relația de similaritate este matricea ortogonală $T_{BB'}$:

$$A = T_{\mathcal{B}\mathcal{B}'}DT_{\mathcal{B}\mathcal{B}'}^{-1} = T_{\mathcal{B}\mathcal{B}'}DT_{\mathcal{B}\mathcal{B}'}^{T}$$

Astfel suntem conduşi la unul din cele mai importante rezultate aplicative din algebra liniară și anume:

Propoziția 12.1.4 Dacă $A \in \mathbb{R}^{n \times n}$ este o matrice simetrică, ce are valorile proprii λ_i cu ordinele de multipliciate k_i , $i = \overline{1,s}$, $k_1 + k_2 + \cdots + k_s = n$, atunci există o bază ortonormată \mathcal{B}' , în \mathbb{R}^n , formată din vectori proprii ai lui A și notând cu Q matricea de trecere de la baza canonică la baza \mathcal{B}' , matricea A este similară cu matricea

$$D = diag(\underbrace{\lambda_1, \dots \lambda_1}_{k_1 \ ori}, \dots, \underbrace{\lambda_s, \dots \lambda_s}_{k_s \ ori})$$
(12.3)

și relația de similaritate este:

$$A = QDQ^T$$

Definiția 12.1.1 Descompunerea unei matrici simetrice în forma

$$A = QDQ^T$$

unde D este matricea diagonală a valorilor proprii și $Q = T_{\mathcal{BB}'}$ este o matrice ortogonală se numește descompunere ortogonală.

Să ilustrăm această proprietate printr-un exemplu:

Exemplul 1. Să se determine valorile proprii şi subspaţiile proprii corespunzătoare, pentru matricea simetrică:

$$A = \left[\begin{array}{rrr} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{array} \right]$$

Să se determine apoi câte o bază ortonormată în fiecare subspațiu propriu al lui A și o bază ortonormată în \mathbb{R}^3 , formată din vectori proprii ai lui A.

Să se scrie descompunerea simetrică ortogonală a matricii A.

- Valorile proprii ale lui A sunt $\lambda_{1,2} = 1, \lambda_3 = 7$;
- Subspațiile proprii corespunzătoare, $S_{\lambda=1}$:

$$S_{\lambda=1} = \{ v = (x, y, z) \mid Av = 1v \Leftrightarrow (A - 1I_3)v = 0 \}$$

$$\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$S_{\lambda=1} = \{ v = \alpha(-1, 1, 0)^T + \beta(-1, 0, 1)^T, \alpha, \beta \in \mathbb{R} \}$$

Baza în acest subspațiu este $\mathcal{B}_1 = (v_1, v_2)$. Evident că baza \mathcal{B}_1 nu este ortonormată. Aplicând procedeul Gramm-Schmidt obținem baza

$$\mathcal{B}'_1 = (q_1 = \frac{1}{\sqrt{2}}(-1, 1, 0)^T, q_2 = \frac{1}{\sqrt{6}}(-1, -1, 2)^T)$$

Pentru a determina subspațiul propriu $S_{\lambda=7}$ determinăm soluțiile sistemului $(A-7I_3)v=0$:

$$\begin{bmatrix} -4 & 2 & 2 \\ -2 & -4 & 2 \\ 2 & 2 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Alegem drept determinant principal determinantul constituit din elementele de intersecție ale liniilor 1,2 cu coloanele 1,2. Astfel $z := \gamma$, este necunoscută secundară și obținem:

$$S_{\lambda=7} = \{v = \gamma(1, 1, 1)^T, \gamma \in \mathbb{R}\}$$

Baza ortonormată în $S_{\lambda=7}$ este:

$$\mathcal{B}_2' = (q_3 = \frac{1}{\sqrt{3}}(1, 1, 1)^T)$$

iar $\mathcal{B}' = \mathcal{B}'_1 \cup \mathcal{B}'_2 = (q_1, q_2, q_3)$ este o bază ortonormată în \mathbb{R}^3 formată din vectori proprii ai matricii A. Notând: $Q = [q_1|q_2|q_3]$ avem descompunerea:

$$A = [q_1|q_2|q_3] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 7 \end{bmatrix} [q_1|q_2|q_3]^T$$

12.2 Forme pătratice

În Inteligența artificială deseori într-o etapă a unui algoritm trebuie determinate punctele în care o funcție, $f:D\subset\mathbb{R}^n\to\mathbb{R}$, de clasă C^2 , ia valoarea minimă sau maximă. Problema aflării punctelor de minim sau maxim se numește problemă de optimizare și se notează astfel:

$$\operatorname{argmin} f(x), x \in D, \quad \operatorname{argmax} f(x), x \in D$$

și se citește să se determine argumentul $x \in D$ care minimizează funcția f sau să se determine argumentul $x \in D$ care maximizează funcția f.

Exemple de probleme de optimizare: minimizarea erorii în clasificare, sau să se determine drumul de lungime minimă pe care trebuie sa-l parcurgă un agent inteligent pentru a deservi n noduri/puncte de lucru, etc.

Decizia dacă un punct din D este punct de minim sau maxim pentru o funcție f se ia analizând o formă pătratică asociată funcției f.

Considerăm spațiul spațiul vectorial \mathbb{R}^n înzestrat cu produsul scalar standard și notat $< v, w >= v^T w$.

Definiția 12.2.1 Fie \mathbb{R}^n raportat la o bază ortonormată \mathcal{B} (de obicei baza canonică) și $A=(a_{ij}),\ i,j=\overline{1,n}$ o matrice simetrică. Aplicația $q:\mathbb{R}^n\to\mathbb{R}$, definită prin $q(v_{\mathcal{B}})=< v_{\mathcal{B}}, Av_{\mathcal{B}}>=v_{\mathcal{B}}^TAv_{\mathcal{B}}$, se numește formă pătratică.

Dacă un vector arbitrar $v \in \mathbb{R}^n$ are relativ la baza \mathcal{B} , coordonatele $v_{\mathcal{B}} = (x_1, x_2, \dots, x_n)^T$, atunci expresia analitică a formei pătratice în această bază este:

$$q(v_{\mathcal{B}}) = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
(12.4)

Efectuând produsele, obținem

$$q(v_{\mathcal{B}}) = a_{11}x_1^2 + a_{22}x_2^2 + \dots + a_{nn}x_n^2 + 2a_{12}x_1x_2 + \dots + 2a_{1n}x_1x_n + \dots + 2a_{n-1}x_nx_{n-1}x_n$$

Această expresie ilustrează de ce funcția se numește pătratică: expresia ei este o sumă de termeni de grad 2 în $x_1, x_2, \dots x_n$, adică ceea ce se numește polinom omogen de grad 2.

Exemplul 2. Formă pătratică definită pe \mathbb{R}^2 :

$$q(v) = Q(x_1, x_2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -2x_1^2 + 2x_1x_2 + 3x_2^2$$

Dacă cunoaștem expresia analitică a unei forme pătratice $q: \mathbb{R}^n \to \mathbb{R}$, adică un polinom omogen de grad 2 în x_1, x_2, \ldots, x_n , matricea simetrică ce o definește conform relației $q(v) = v^T A v$ se determină astfel:

- coeficienții pătratelor $x_1^2, x_2^2, \dots, x_n^2$ sunt respectiv elementele $a_{11}, a_{22}, \dots, a_{nn}$ din matricea simetrică A;
- coeficienții produselor $x_i x_j$ împărțiti la 2 sunt elementele a_{ij} și a_{ji} din matricea A, $i, j = \overline{1, n}$.

Exemplul 3. Se dă forma pătratică $q: \mathbb{R}^3 \to \mathbb{R}$ definită prin $q(x_1, x_2, x_3) = 2x_1^2 + 3x_1x_2 + 6x_1x_3 - 5x_2^2 - 8x_2x_3 + x_3^2$. Matricea simetrică asociată este:

$$A = \begin{bmatrix} 2 & \frac{3}{2} & 3 \\ \frac{3}{2} & -5 & -4 \\ 3 & -4 & 1 \end{bmatrix}$$

O formă pătratică ia valori reale care pot fi pozitive, negative sau zero. $q(\theta) = <\theta, A\theta> = 0$. Deci o formă pătratică aplică pe $(0,0,\ldots,0)$ în 0.

- Forma pătratică $q: \mathbb{R}^n \to \mathbb{R}$ care ia valori strict pozitive, q(v) > 0, oricare ar fi vectorul $v \in \mathbb{R}^n \setminus \{\theta\}$, se numește formă pătratică pozitiv definită.
- Dacă $q(v) \ge 0$, pentru orice $v \in \mathbb{R}^n$, atunci q se numește formă semipozitiv definită (mai precis în acest caz q ia valoarea zero și pentru vectori nenuli).
- Dacă q(v) < 0, oricare ar fi $v \in \mathbb{R}^n \setminus \{\theta\}$ atunci q se numește formă negativ definită, iar dacă q(v) < 0, $\forall v \in \mathbb{R}^n$, forma q se numește seminegativ definită.
- ullet Dacă pe anumiți vectori q ia valori pozitive, iar pe alții negative, atunci q se numește formă pătratică nedefinită.

Analizând expresia analitică a formei pătratice din Exemplul 3 este greu să ne pronunţam dacă ea este pozitiv definită, negativ definită sau nedefinită. Este însă foarte simplu să indicăm tipul formei pătratice dacă ea conține doar termeni în x_i^2 , $i = \overline{1, n}$.

Exemplul 4. Forma pătratică $Q(x_1, x_2, x_3) = -3x_1^2 - x_2^2 - 4x_3^2$ este evident negativ definită, forma $Q(x_1, x_2, x_3) = 2x_1^2 - x_2^2 + 6x_3^2$ este nedefinită, deoarece Q(1, 0, 1) = 2 + 6 = 8 > 0, iar Q(0, 1, 0) = -1 < 0.

Observăm că putem deduce rapid tipul unei forme pătratice dacă ea este definită de o matrice diagonală, care evident este simetrică:

$$q(x_1, x_2, \dots, x_n) = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= d_1 x_1^2 + d_2 x_2^2 + \dots + d_n x_n^2, \quad d_i \in \mathbb{R}$$

O formă pătratică a cărei matrice de definiție este diagonală se zice că este în forma canonică.

Să exploatăm faptul că orice matrice simetrică, A, este similară cu o matrice diagonală, adică există $\lambda_1, \lambda_2, \ldots \lambda_n \in \mathbb{R}$, ce sunt valorile proprii ale lui A, și matricea inversabilă $T := T_{\mathcal{BB}'}$, ce este matricea de trecere de la baza canonică \mathcal{B} la baza ortonormată, \mathcal{B}' , formată din vectori proprii ai lui A, astfel încât $A = TDT^{-1} = T_{\mathcal{BB}'}DT^T_{\mathcal{BB}'}$, cu

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Echivalent, putem scrie că

$$D = T_{\mathcal{B}\mathcal{B}'}^T A T_{\mathcal{B}\mathcal{B}'} \tag{12.5}$$

Relația dintre coordonatele unui vector $v \in \mathbb{R}^n$ relativ la cele două baze este: $v_{\mathcal{B}} = T_{\mathcal{BB}'}v'_{\mathcal{B}}$ Să deducem expresia analitică a formei pătratice de matrice A, relativ la baza \mathcal{B}' formată din vectori proprii ai lui A. Pentru aceasta notăm cu X_1, X_2, \ldots, X_n , coordonatele vectorului arbitrar v relativ la baza \mathcal{B}' :

$$q(v_{\mathcal{B}}) = \langle v_{\mathcal{B}}, Av_{\mathcal{B}} \rangle = \langle T_{\mathcal{B}\mathcal{B}'}v'_{\mathcal{B}}, AT_{\mathcal{B}\mathcal{B}'}v'_{\mathcal{B}} \rangle \stackrel{(12.1)}{=} \langle v_{\mathcal{B}'}, T^{T}_{\mathcal{B}\mathcal{B}'}AT_{\mathcal{B}\mathcal{B}'}v_{\mathcal{B}'} \rangle \stackrel{(12.5)}{=} \langle v_{\mathcal{B}'}, Dv_{\mathcal{B}'} \rangle$$

$$= \begin{bmatrix} X_{1} & X_{2} & \dots & X_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_{n} \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \\ \vdots \\ X_{n} \end{bmatrix} = \lambda_{1}X_{1}^{2} + \lambda_{2}X_{2}^{2} + \dots + \lambda_{n}X_{n}^{2}$$

Astfel am arătat ca o formă patratică q definită de matricea simetrică A asociază unui vector exprimat în baza \mathcal{B} , aceeaşi valoare ca valoarea asociată de forma pătratică Q (definită de matricea diagonala a valorilor proprii ale lui A) aceluiași vector, dar exprimat în baza \mathcal{B}' .

În concluzie pentru a decide tipul formei pătratice care relativ la baza ortonormată inițială, \mathcal{B} din \mathbb{R}^n , are matricea simetrică, A, se determină valorile proprii ale matricii A.

• Dacă toate valorile proprii sunt strict pozitive, forma pătratică este pozitiv definită;

Dacă toate valorile proprii sunt mai mari sau egale cu 0, forma pătratică este semipozitiv definită;

- Dacă $\lambda_i < 0$, $\forall i = \overline{1, n}$, forma este negativ definită, respectiv seminegativ definită dacă $\lambda_i < 0$, $\forall i = \overline{1, n}$.
- Dacă o parte dintre valorile proprii sunt pozitive şi restul negative, forma pătratică este nedefinită.

Exemplul 5. Se dă forma pătratică $q: \mathbb{R}^2 \to \mathbb{R}$, $q(x_1, x_2) = 4x_1^2 - 4x_1x_2 + x_2^2$. Să se determine matricea formei pătratice, valorile ei proprii și să se precizeze tipul formei: pozitiv, negativ definită sau nedefinită.

Matricea formei pătratice este

$$A = \left[\begin{array}{cc} 4 & -2 \\ -2 & 1 \end{array} \right]$$

Valorile proprii ale lui A sunt $\lambda_1 = 0, \lambda_2 = 5$. Astfel dacă

$$\mathcal{B}' = (u_1, u_2)$$

este o bază ortonormată în \mathbb{R}^2 formată din vectori proprii ai matricii A și a $v=X_1u_1+X_2u_2$ este un vector din \mathbb{R}^2 exprimat în baza \mathcal{B}' atunci forma pătratică are relativ la baza \mathcal{B}' expresia: $q(v)=\lambda_1X_1^2+\lambda_2X_2^2=0X_1^2+5X_2^2$, deci este semipozitiv definită. În analiza matematică unei funcții $f:D\subset\mathbb{R}^n\to\mathbb{R}$, de clasă C^2 , i se asociază matricea

În analiza matematică unei funcții $f:D\subset\mathbb{R}^n\to\mathbb{R}$, de clasă C^2 , i se asociază matricea simetrică $\operatorname{Hess}(f)(x_0)$ a derivatelor de ordin 2 într-un punct (x_0) , numită Hessiana funcției în acest punct. Elementele a_{ij} ale acestei matrici sunt:

$$a_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0), i, j = \overline{1, n}$$

Dacă x_0 este un punct critic al funcției f, adică

$$\frac{\partial f}{\partial x_i}(x_0) = 0, \forall \ i = \overline{1, n},$$

atunci tipul formei pătratice având ca matrice, matricea Hessiană în x_0 indică dacă punctul x_0 este punct de maxim, minim, sau punct şa.

În Fig.12.1 este ilustrat graficul unei forme pătratice $q:\mathbb{R}^2 \to \mathbb{R}, q(x_1,x_2) = \lambda_1 x_1^2 + \lambda_2 x_2^2$, pentru cazul q – pozitiv definită $(\lambda_1,\lambda_2>0)$, negativ definită, $\lambda_1,\lambda_2<0$ și respectiv nedefinită, $\lambda_1>0,\lambda_2<0$. Observăm că în primul caz (0,0) este punct de minim, pentru că $q(x_1,x_2)>0$, $\forall \ v=(x_1,x_2)^T\neq 0$, în al doilea este punct de maxim și în al treielea este punct șa. La analiză aflați că o funcție $f:D\subset\mathbb{R}^2\to\mathbb{R}$, de clasă C^r pe $D,\ r\geq 2$, este aproximată în vecinătatea unui punct critic (x_{01},x_{02}) de o astfel de formă pătratică și deci tipul extremal al punctului critic depinde de tipul punctului (0,0) pentru forma pătratică asociată.

12.3 Descompunerea singulară a unei matrici

Necesitatea de a minimiza volumul de informație digitală ce trebuie să fie stocată sau transmisă printr-un canal de comunicație a condus la dezvoltarea a numeroase metode de reducere a dimensiunii acestora (comprimarea datelor). Una din metodele de comprimare a datelor, oferite de algebra liniară se bazează pe descompunerea singulară a unei matrici $A \in \mathbb{R}^{m \times n}$.

12.3.1 Noțiuni și rezultate preliminare

Definiția 12.3.1 O matrice simetrică $A \in \mathbb{R}^{n \times n}$ pentru care forma pătratică asociată, q este pozitiv definită, adică:

$$q(v) = \langle v, Av \rangle > 0, \forall v \in \mathbb{R}^n \setminus \{\theta\}$$
(12.6)

se numește matrice pozitiv definită, iar dacă verifică:

$$q(v) = \langle v, Av \rangle \ge 0, \forall \ v \in \mathbb{R}^n$$
(12.7)

se numește matrice simetrică semi-pozitiv definită.

Fig.12.1: Graficele a 3 forme pătratice aduse la forma canonică, $q(x_1, x_2) = \lambda_1 x_1^2 + \lambda_2 x_2^2$: stânga, forma este pozitiv definită, centru, negativ definită și cea din dreapta, nedefinită.

Propoziția 12.3.1 O matrice simetrică este semi-pozitiv definită dacă și numai dacă are toate valorile proprii mai mari sau egale cu zero.

Demonstrație: Fie $A \in \mathbb{R}^{n \times n}$ o matrice simetrică și semi-pozitiv definită. Fiind simetrică are n valori proprii distincte sau nu. Fie $\lambda \in \mathbb{R}$ o valoare proprie și v un vector propriu corespunzător, $Av = \lambda v$. Condiția de semipozitiv definită este echivalentă cu

$$< v, Av > \ge 0 \quad \Leftrightarrow \quad < v, \lambda v > \ge 0 \quad \lambda < v, v > \ge 0$$

v fiind vector propriu este nenul și deci < v, v >> 0. Astfel $\lambda < v, v >\geq 0$ dacă și numai dacă $\lambda \geq 0$.

Considerăm o matrice arbitrară de m linii şi n coloane, $A \in \mathbb{R}^{m \times n}$. Matricile asociate $A^T A$, AA^T sunt matrici pătratice de tip $n \times n$, respectiv $m \times m$ şi simetrice deoarece coincid cu transpusele lor. De exemplu, $(A^T A)^T = A^T (A^T)^T = A^T A$.

Propoziția 12.3.2 Dacă $A \in \mathbb{R}^{m \times n}$ este o matrice de tip $m \times n$, atunci matricile simetrice asociate, $A^T A$, AA^T , sunt semipozitiv definite.

Demonstrație: Deoarece produsul scalar al unui vector cu el însuşi este mai mare sau egal cu zero, avem că pentru orice vector $v \in \mathbb{R}^n$: $\langle Av, Av \rangle \geq 0$. Dar

$$< Av, Av > \stackrel{\text{cf (12.1)}}{=} < v, A^T Av >,$$

ceea ce implică $< v, A^T A v > \ge 0$, $\forall \ v \in \mathbb{R}^n$, adică matricea $A^T A$ este semipozitiv definită.

Analog, $\langle A^T v, A^T v \rangle \geq 0$ și din

$$\langle A^T v, A^T v \rangle \stackrel{\text{cf (12.1)}}{=} \langle v, AA^T v \rangle, \forall v \in \mathbb{R}^m$$

rezultă că și matricea AA^T este semipozitiv definită.

Propoziția 12.3.3 Rangul matricii $A^T A$ coincide cu rangul matricii $A \in \mathbb{R}^{m \times n}$.

Demonstrație: Vezi Cursul 7, partea relativ la soluția celor mai mici pătrate a unui sistem Ax = b.

12.4 Calculul descompunerii singulare

Propoziția 12.4.1 (Descompunerea singulară a unei matrici) Pentru orice matrice $A \in \mathbb{R}^{m \times n}$ de rang $r \leq \min(m,n)$ există două matrici ortogonale $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ și numerele reale pozitive $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$ astfel încât A se descompune în produsul $A = U \Sigma V^T$, adică:

$$\underbrace{A}_{m \times n} = \underbrace{U}_{m \times m} \begin{bmatrix}
\sigma_{1} & 0 & \dots & 0 & 0 & \dots & 0 \\
0 & \sigma_{2} & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \dots & \vdots & \vdots & \dots & \vdots \\
0 & 0 & \dots & \sigma_{r} & 0 & \dots & 0 \\
0 & 0 & \dots & 0 & 0 & \dots & 0 \\
\vdots & \vdots & \dots & \vdots & \vdots & \dots & \vdots \\
0 & 0 & \dots & 0 & 0 & \dots & 0
\end{bmatrix} \underbrace{V^{T}}_{n \times n} \tag{12.8}$$

Definiția 12.4.1 Descompunerea $A=U\Sigma V^T$ se numește descompunerea singulară a matricii A (singular value decomposition, SVD). Valorile pozitive $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$ din matricea Σ se numesc valorile singulare ale matricii A, vectorii u_i , vectori singulari stângi, iar vectorii v_i , vectori singulari drepți , $i=\overline{1,r}$.

Pentru a interpreta descompunerea SVD și pentru a prezenta aplicații ale ei, definim câteva notiuni si rezultate de calcul matricial:

ullet Produsul exterior a doi vectori $u\in\mathbb{R}^m,\,v\in\mathbb{R}^n$ este o matrice de tip $m\times n$, obținută ca produsul uv^T .

A nu se confunda produsul exterior (outer product în l. engleză) uv^T , cu produsul scalar $\langle u, v \rangle = u^T v$ (inner sau dot product în engleză).

Dacă $u=(x_1,x_2,\ldots,x_m)^T$ și $v=(y_1,y_2,\ldots,y_n)^T$ atunci produsul lor exterior este:

$$uv^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \dots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \dots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \dots & x_{2}y_{n} \\ \vdots & \vdots & \dots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \dots & x_{m}y_{n} \end{bmatrix}$$

Prin urmare matricea produs exterior, $B=uv^T$, are elementele $b_{ij}=x_iy_j,\ i=\overline{1,m},$ $j=\overline{1,n}.$

Dacă vectorii u, v sunt nenuli, atunci coloanele matricii uv^T sunt proporționale și prin urmare rangul matricii B este 1.

Propoziția 12.4.2 Produsul $U\Sigma V^T$ din descompunerea SVD a unei matrici $A\in\mathbb{R}^{m\times n}$, de rang r, este egal cu:

$$U\Sigma V^T = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_1^T + \dots + \sigma_r u_1 v_r^T$$

Demonstrație: • Calculăm mai întâi produsul dintre matricea $U = [u_1|u_2|\dots|u_m] \in \mathbb{R}^{m \times m}$ și matricea pseudodiagonală $\Sigma \in \mathbb{R}^{m \times n}$, $\Sigma = [\Sigma_1|\Sigma_2|\dots|\Sigma_r|\dots|\Sigma_n]$, care are 0 în toate pozițiile de indici diferiți este:

$$U\Sigma \stackrel{Curs}{=} {}^{1}\left[U\Sigma_{1}|U\Sigma_{2}|\dots|U\Sigma_{r}|\dots|U\Sigma_{n}\right]$$

Dar coloana $j, j = \overline{1, r}$, a produsului $U\Sigma$ este:

$$U\begin{bmatrix} 0\\0\\\vdots\\\Sigma_{jj}\\\vdots\\0\end{bmatrix} = U\begin{bmatrix} 0\\0\\\vdots\\\sigma_{j}\\\vdots\\0\end{bmatrix} = \sigma_{j}U\begin{bmatrix} 0\\0\\\vdots\\1\\\vdots\\0\end{bmatrix} = \sigma_{j}Ue_{j} = \sigma_{j}u_{j}$$

Ultima egalitate exprimă faptul că coloana j a unei matrici este produsul dintre acea matrice si vectorul bazei canonice e_j . Astfel rezultă că produsul $U\Sigma = [\sigma_1 u_1 | \sigma_2 u_2 | \dots | \sigma_r u_r | 0 u_{r+1} | \dots 0 u_m]$.

• Notând cu $P = U\Sigma$ să evaluăm produsul $A = PV^T$, unde $P = [p_1 | p_2 | \dots | p_n] \in \mathbb{R}^{m \times n}$ și

• Notând cu $P = U\Sigma$ să evaluăm produsul $A = PV^T$, unde $P = [p_1|p_2|\dots|p_n] \in \mathbb{R}^{m \times n}$ şi $V = [v_1|v_2|\dots|v_n] \in \mathbb{R}^{n \times n}$:

Din primul curs (şi notebook-ul relativ la programarea functională în Python) avem că produsul PV^T este suma produselor exterioare dintre coloanele matricii P şi liniile de acelaşi indice ale matricii V^T . Dar o linie j în matricea $V^T = [v_1|v_2|\dots|v_n]^T$ este reprezentată de vectorul v_i^T . Atfel rezultă că

$$PV^{T} = U\Sigma V^{T} = p_{1}v_{1}^{T} + p_{2}v_{2}^{T} + \dots + p_{n}v_{n}^{T} = \sigma_{1}u_{1}v_{1}^{T} + \sigma_{2}u_{2}v_{2}^{T} + \dots + \sigma_{r}u_{r}v_{r}^{T}$$

Prin urmare ideea de bază a descompunerii SVD a unei matrici $A \in \mathbb{R}m \times n$, de rang r este că matricea A se poate descompune ca o combinație liniară cu coeficienți pozitivi, descrescatori a r matrici de rangul 1, $M_j = u_j v_j^T$, $j = \overline{1,r}$:

$$A = U\Sigma V^T = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \dots + \sigma_r u_r v_r^T$$

Aproximarea de rang k a matricii A: Observăm că exprimarea matricii A ca o combinație liniară de r matrici are coeficienții σ_i descrescători, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. Dacă ultimele valori singulare sunt mici (apropiate de zero), atunci renunțând la termenii ce le conțin obținem o aproximare a matricii A:

$$A_k = \sigma_1(u_1v_1^T) + \dots + \sigma_k(u_kv_k^T)$$

Matricea aproximare A_k se factorizează astfel:

$$A_k = \underbrace{[u_1|u_2|\dots|u_k]}_{m \times k} \underbrace{\begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \sigma_k \end{bmatrix}}_{k \times k} \underbrace{\begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_k^T \end{bmatrix}}_{k \times n} = U_k \Sigma_k V_k^T$$

și are rangul k (pentru a arăta că are rangul k se demonstrează că subspațiul Null al produsului din membrul drept are dimensiunea egală cu dimensiunea subspațiului Null al matricii Σ_k , adică n-k).

Ori de câte ori se aproximează un element al unei mulțimi înzestrate cu o distanță (metrică), cu alt element al aceleași mulțimi ne interesează "cât de bună este acea aproximare", evaluând distanța dintre element și aproximantul său. În multimea matricilor din $\mathbb{R}^{m\times n}$ se definesc diferite norme și atunci dist $(A,B)=\|A-B\|$.

O normă este cea definită de produsul scalar a două matrici:

$$\langle A, B \rangle = \operatorname{trace}(A^T B)$$

și anume

$$||A|| = \sqrt{\langle A, A \rangle} = \sqrt{\operatorname{trace}(A^T A)}$$

Această normă se numește **norma Frobenius a unei matrici** și pentru a o distinge de alte norme se notează $||A||_F$.

Teorema 12.4.1 (Teorema Eckart) Fie matricea $A \in \mathbb{R}^{m \times n}$ şi $A_k \in \mathbb{R}^{m \times n}$ aproximarea sa de rang k. Dintre toate matricile $B \in \mathbb{R}^{m \times n}$ de rang k, distanța de la A la B este minimă pentru $B = A_k$, adică:

$$\min_{B \mid rang(B) = k} \{ ||A - B||_F \} = ||A - A_k||_F = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}$$

Cu alte cuvinte A_k este cea mai bună aproximare de rang k a matricii A Această proprietate se exploatează în numeroase domenii din Computer Science, printre care: comprimarea datelor în general şi a imaginilor în particular, information retrieval, machine learning.

Dacă A este o matrice imagine ai cărei pixeli au diverse nivele de gri, între negru și alb, un element a_{ij} al matricii fiind codul nivelului de gri $c \in \{0,1,2,\ldots,255\}$ sau normalizat $c \in [0,1]$ (depinde de tipul de imagine și limbajul de programare care o citește; de exemplu în Python/numpy imaginile în nivele de gri din mulțimea $\{0,1,2,\ldots,255\}$ sunt convertite la citire

în imagini cu nivelul de gri in [0,1], adică dacă codul pt gri este c=135, el este convertit la $135.0/255 \in [0,1]$), atunci determinând descompunerea SVD a matricii $A = \sum_{i=1}^r \sigma_i u_i v_i^T$, și renunțând la termenii ce au coeficienții $\sigma_{k+1}, \ldots, \sigma_r$ suficient de mici în comparație cu $\sigma_1, \sigma_2, \ldots, \sigma_k$ obținem o aproximare A_k a imaginii a imaginii A. Aceasta este o modalitate de comprimare a imaginii în scopul stocării sau transmiterii ei pe un canal de comunicație. Adică în locul transmiterii vectorilor $u_1, u_2, \ldots, u_r, v_1, v_2, \ldots, v_r$ și respectiv a valorilor singulare $\sigma_1, \sigma_2, \ldots, \sigma_r$ se transmit doar vectorii $u_1, \ldots, u_k, v_1, \ldots, v_k$ și valorile singulare $\sigma_1, \sigma_2, \ldots, \sigma_k$, k << r.

Descompunerea trunchiată, A_k , a unei imagini filtrează o parte din zgomotul conținut în imagine fără a pierde o informație semnificativă din A.

Ca exemplu aveți Notebook-ul in care se aplică descompunerea SVD imaginii lui Cristian Avramescu. Un alt Notebook cu explicații detailate este inclus in arhivă cu acest curs.

12.5 Contrucția matricilor U, V, Σ din descompunerea SVD

• Constructia matricii V:

Matricea A^TA fiind o matrice de tip $n \times n$, simetrică şi semipozitiv definită, are n valori proprii $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. Construind câte o bază ortonormată în fiecare subspaţiu propriu şi reunind aceste baze obţinem baza ortonormată din \mathbb{R}^n formată din vectori proprii ai matricii A^TA , $\mathcal{B}'_n = (v_1, v_2, \dots, v_n)$. Notăm cu $V = [v_1|v_2|\dots|v_n]$ matricea de trecere de la baza canonică la baza \mathcal{B}'_n , care evident este matrice ortogonală. Astfel matricea A^TA este similară cu matricea diagonală a valorilor proprii:

$$A^T A = V \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) V^T$$

Dar cum două matrici similare au aceelaşi rang, rezulta că rang $(\operatorname{diag}(\lambda_1,\ldots,\lambda_n)=\operatorname{rang}(A^TA)$. Însă rang $(A^TA)=\operatorname{rang}(A)=r$. Prin urmare matricea diagonală diag $(\lambda_1,\lambda_2,\ldots,\lambda_n)$ are rangul r și deci doar primele r valori proprii în ordinea descrescătoare sunt nenule:

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0$$
, și $\lambda_{r+1} = \cdots = \lambda_n = 0$

• Constructia matricii U:

Vectorii proprii ortonormați, v_1, v_2, \ldots, v_r , corespund la valori proprii nenule: $A^T A(v_i) = \lambda_i v_i$, $i = \overline{1, n}$. Considerăm vectorii din \mathbb{R}^m , $w_i = A v_i$, $i = \overline{1, r}$. Să arătăm că sistemul w_1, w_2, \ldots, w_r este un sistem ortogonal de vectori:

$$< w_i, w_j > = < Av_i, Av_j > = < v_i, (A^T A)v_j > = < v_i, \lambda_j v_j > = \lambda_j < v_i, v_j > = \lambda_j \delta_{ij}$$

Astfel pentru $i \neq j$, $< w_i, w_j >= \lambda_j \cdot 0 = 0$ (deci vectorii sunt ortogonali), iar pentru i = j avem: $< w_i, w_i >= \lambda_i$ ceea ce este echivalent cu $||w_i||^2 = \lambda_i$ sau echivalent:

$$\|w_i\| = \sqrt{\lambda_i} \stackrel{\text{notație}}{=} \sigma_i, i = \overline{1,r}$$

Normând vectorii (w_1, w_2, \dots, w_r) obţinem sistemul ortonormat de r vectori din \mathbb{R}^m , (u_1, u_2, \dots, u_r) unde

$$u_i = \frac{w_i}{\|w_i\|} = \frac{w_i}{\sigma_i} = \frac{Av_i}{\sigma_i}, i = \overline{1, r}$$

Prin urmare avem următoarea relație între vectorii ortonormați v_1, v_2, \ldots, v_r din \mathbb{R}^n și vectorii ortonormați u_1, u_2, \ldots, u_r din \mathbb{R}^m :

$$Av_i = \sigma_i u_i, \quad i = \overline{1, r}$$

Vectorii ortonormați $(u_1, u_2, \dots u_r)$ îi completăm la o bază ortonormată $(u_1, u_2, \dots, u_r, u_{r+1}, \dots, u_m)$ în \mathbb{R}^m .

Şi anume determinăm o bază arbitrară în subspaţiul $Null(A^T)$. Deoarece A^T are rangul lui A, adică r, rezultă că dimensiunea lui este m-r. Baza arbitrară $t_1,t_2,\ldots t_{m-r}$ se ortonormează cu metoda Gramm-Schmidt şi obţinem din ea baza ortonormată $u_{r+1},u_{r+2},\ldots u_m$ în $Null(A^T)$.

Bază ortonormată u_{r+1}, \ldots, u_m , din subspațiul $\text{Null}(A^T)$ completează sistemul ortonormat (u_1, u_2, \ldots, u_r) la o bază ortonormată în \mathbb{R}^m , $(u_1, \ldots, u_r, u_{r+1}, \ldots, u_m)$.

Notăm cu U matricea de trecere dela baza canonică din \mathbb{R}^m la baza ortonormată (u_1, u_2, \dots, u_m) . Matricea $U = [u_1 | u_2 | \dots | u_m]$ este matricea ortogonală din descompunerea SVD a matricii A.

Opțional: De ce baza ortonormată u_{r+1}, \ldots, u_m concatenată la sistemul ortogonal de vectori (u_1, \ldots, u_r) conduce la o bază ortonormată în \mathbb{R}^m ?

Având construit sistemul ortonormat de vectori u_1, u_2, \ldots, u_r , din \mathbb{R}^m determinăm o bază arbitrară în complementul ortogonal, S^{\perp} , al subspaţiului $S=\text{span}(u_1, u_2, \ldots, u_r)$, pe care apoi o ortonormăm cu ajutorul procedeului lui Gramm-Schmidt.

Complementul ortogonal S^{\perp} este format din mulțimea vectorilor di \mathbb{R}^m ce sunt simultan ortogonali pe u_1, u_2, \ldots, u_r :

$$S^{\perp} = \{ w = (y_1, y_2, \dots, y_m)^T \in \mathbb{R}^m \mid \langle w, u_i \rangle = 0, i = \overline{1, r} \}$$

Dar $\langle u_i, w \rangle = 0$ este echivalent cu $u_i^T w = 0$, $\forall i = \overline{1, r}$, ceea ce înseamnă că coordonatele vectorilor w sunt soluții ale sistemului omogen:

$$[u_1|u_2|\dots|u_r]^Tw=0$$

sau echivalent:

$$\left[\frac{1}{\sigma_1}Av_1|\frac{1}{\sigma_2}Av_2|\dots|\frac{1}{\sigma_r}Av_r\right]^Tw = 0 \iff \left(A\left[\frac{1}{\sigma_1}v_1|\frac{1}{\sigma_2}v_2|\dots|\frac{1}{\sigma_r}v_r\right]\right)^Tw = 0$$

Aplicând relația $(PQ)^T = Q^T P^T$ avem:

$$\left[\frac{1}{\sigma_1}v_1|\frac{1}{\sigma_2}v_2|\dots|\frac{1}{\sigma_r}v_r\right]^T A^T w = 0$$

Notăm cu C matricea $\left[\frac{1}{\sigma_1}v_1|\frac{1}{\sigma_2}v_2|\dots|\frac{1}{\sigma_r}v_r\right]^T$ Înmultind la stanga ultima relație cu C^T obținem:

$$(C^T C)A^T w = 0$$

Matricea C are rangul r şi conform Propoziției 12.3.3 rezultă că şi C^TC are rangul r, prin urmare matricea C^TC de tip $r \times r$ este nesingulară şi deci sistemul omogen de matrice C^TC are doar soluția banală, adică din $(C^TC)A^Tw = 0$ rezultă că $A^Tw = 0$.

Prin urmare.

$$\left[\frac{1}{\sigma_1}v_1|\frac{1}{\sigma_2}v_2|\dots|\frac{1}{\sigma_r}v_r\right]^T A^T w = 0 \iff A^T w = 0$$

adică ecuațiile complementului ortogonal S^{\perp} , unde S=span (u_1, u_2, \dots, u_r) sunt:

$$A^T w = 0$$

și deci o bază ortonormată u_{r+1}, \ldots, u_m , în subspațiul $\operatorname{Null}(A^T)$ completează sistemul (u_1, u_2, \ldots, u_r) la o bază $(u_1, \ldots, u_r, u_{r+1}, \ldots, u_m)$ ortonormată în \mathbb{R}^m .

Notăm cu U matricea de trecere dela baza canonică din \mathbb{R}^m la baza ortonormată (u_1, u_2, \dots, u_m) . $U = [u_1|u_2|\dots|u_m]$ este matrice ortogonală.

End Opțional

Etapizarea calculelor pentru determinarea descompuneii singulare a unei matrici $A \in \mathbb{R}^{m \times n}$

- se calculează produsul $M = A^T A$;
- se determină polinomul caracteristic al matricii simetrice semipozitiv definite $M = A^T A$, $P_n(\lambda) = \det(M \lambda I_n)$ și i se determină rădăcinile $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \ge 0$;
- se determină câte o bază în fiecare subspațiu propriu al matricii $M = A^T A$, care apoi se ortonormează folosind procedeul Gramm-Schmidt, și reuniunea acestor baze conduce la o baza ortonormată în \mathbb{R}^n , formată din vectori proprii (v_1, v_2, \dots, v_n) ;
 - se constituie matricea $V = [v_1|v_2|\dots|v_n];$
- se separă vectorii v_1, v_2, \ldots, v_r ce corespund respectiv valorilor proprii nenule $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r$, se calculează valorile singulare $\sigma_i = \sqrt{\lambda_i}$, $i = \overline{1, r}$.
 - se determină vectorii ortonormați (u_1, u_2, \dots, u_r) din \mathbb{R}^m , prin $u_i = \frac{1}{\sigma_i} A v_i$, $i = \overline{1, r}$.
- se determină o bază arbitrară în subspațiul Null al matricii A^T , rezolvând sistemul liniar și omogen $A^Tx=0$. Aplicând procedeul Gramm-Schmidt se ortonormează baza determinată obținând astfel m-r vectori ortonormați, u_{r+1}, \ldots, u_m (deoarece dimensiunea lui Null (A^T) este egală m-r adică cu numărul m de coloane ale matricii minus $\operatorname{rang}(A^T)=\operatorname{rang}(A)=r$);
 - se constituie matricea $U = [u_1|u_2|\dots|u_m];$
- Se scrie descompunerea SVD: $A = U\Sigma V^T$, ţinând seama că matricea Σ are aceleaşi dimensiuni ca şi A, adică este de tip $m \times n$.

Exemplul 6. Să se determine descompunearea singulară a matricii:

$$A = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{array} \right]$$

• Calculăm

$$M = A^T A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

- $P_2(\lambda)=(2-\lambda)^2-1$ și $\lambda_1=3,\lambda_2=1$ (le-am ordonat descrescător).
- Determinăm câte o bază în fiecare subspațiu propriu:

$$S_{\lambda=3} = \{v = \alpha(1,1)^T, \alpha \in \mathbb{R}\}, \mathcal{B}_1 = ((1,1)^T)$$

$$S_{\lambda=1} = \{v = \beta(1, -1)^T, \beta \in \mathbb{R}\}, \mathcal{B}_2 = ((1, -1)^T)$$

Vectorii celor două baze sunt ortogonali pentru că corespund la valori proprii distincte ale unei matrici simetrice ($A^T A$). Îi normăm şi obținem baza ortonormată în \mathbb{R}^2 :

$$\mathcal{B}' = (v_1 = (\sqrt{2}/2, \sqrt{2}/2)^T, v_2 = (\sqrt{2}/2, -\sqrt{2}/2)^T))$$

și matricea

$$V = [v_1 | v_2] = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

- Calculăm valorile singulare: $\sigma_1 = \sqrt{3}, \sigma_2 = \sqrt{1} = 1$.
- Determinăm coordonatele vectorilor $u_i = \frac{1}{\sigma_i} A v_i$, i = 1, 2, unde 2 este rangul matricii $A^T A$:

$$u_1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1\\ 0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2\\ \sqrt{2}/2 \end{bmatrix} = \begin{bmatrix} \sqrt{6}/3\\ \sqrt{6}/6\\ \sqrt{6}/6 \end{bmatrix}$$

$$u_2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2}/2 \\ -\sqrt{2}/2 \end{bmatrix} = \begin{bmatrix} 0 \\ -\sqrt{2}/2 \\ \sqrt{2}/2 \end{bmatrix}$$

• Completăm sistemul ortonormat (u_1, u_2) la o bază ortonormată în \mathbb{R}^3 . Teoretic ar trebui să determinăm o bază în subspațiul soluțiilor sistemului $A^Tx = 0$, adică:

$$\left[\begin{array}{cc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

Notând $x_2 = \gamma$ avem:

$$Null(A^T) = \{v = \gamma(-1, 1, 1)^T, \gamma \in \mathbb{R}\}\$$

şi deci $u_3 = (-1, 1, 1)^T / \sqrt{3}$.

În acest caz special am fi putut determina pe $u_3 = u_1 \times u_2$.

• matricea U este:

$$U = [u_1|u_2|u_3] = \begin{bmatrix} \frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \end{bmatrix}$$

• Descompunerea SVD a matricii A este:

$$A = \begin{bmatrix} \frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$