MAE 493R/593V- Renewable Energy Devices

Battery

Battery Definition

- Battery is an electrochemical cell that can convert chemical energy in electrical energy (redox reaction). It consists of 3 main parts:
 - Electrolyte
 - Anode
 - Cathode

Anode

- Oxidation reaction takes place
- Losing electrons
- "Negative" terminal of a battery

Cathode

- Reduction reaction takes place
- Gaining electrons
- "Positive" terminal of a battery

Cartoon: by courtesy of Dan Steingard

Outline

- · Battery definition
- Various types of batteries
 - ✓ Alkaline battery
 - ✓ Mercury battery
 - ✓ Ni-Cd battery
 - ✓ Ni-MH battery
 - ✓ Li-ion battery
- Rechargeable Lithium Battery
 - ✓ Principle
 - ✓ Materials used for anode, cathode and electrolyte
- · Performance and applications of batteries

Battery Definition

- **Capacity:** The theoretical capacity of a cell or half-cell (Q_T) is calculated as: $Q_T = x(nF)$, where x is the theoretical number of moles of reaction associated with the complete discharge of the cell.
 - The actual capacity Q_a is amount of capacity a battery can supply before it is fully discharged.
- **Energy:** Theoretical energy can be expressed as P_T = $x(nFE_{cell})$ The actual Energy P_a = Q_aV_{cell}
- **Power:** The power generated by a battery can be calculated as: P = VI, where V = cell voltage and I = cell current (or rate), since V = IR; $P = I^2R$ and $P = V^2/R$.
- Specific energy (or energy density or capacity) Energy per cell weight or volume
- Specific power (or power density): Power per cell mass.
- A Regone plot is a measure of specific power vs. specific energy.

Battery Definition

C rate

C rate is battery discharge rate in amperes A rate of (nC) will discharge a battery in 1/n hours

Examples:

a rate of C/5 will discharge a battery in 5 hours a rate of 5 C will discharge a battery in 0.2 hours for a 2 Ah battery, the C/5 rate is 400 mA

Battery Definition

Batteries are classified into two broad categories:

- Primary batteries: irreversibly (within limits of practicality) transform chemical energy to electrical energy.
- Secondary batteries: can be recharged. The chemical reactions can be reversed by supplying electrical energy to the cell, restoring their original composition

Alkaline Battery

Cathode (reduction) reaction: $2 \text{ MnO}_2 + \text{H}_2\text{O} + 2 \text{ e}^- \longrightarrow \text{Mn}_2\text{O}_3 + 2 \text{ OH}^-$ (cathode) MnO₂ paste KOH paste (electrolyte) Zinc can (anode) Anode (oxidation) reaction: Zn + 2 OH⁻ → Zn(OH)₂ + 2 e⁻

Alkaline Battery

Electrochemical reactions

Anode (-): Oxidation

$$Zn(s) + 2 OH^{-}(aq) \rightarrow Zn(OH)_{2}(s) + 2 e^{-}$$

Cathore (+): Reduction

$$2\,MnO_2(s) + H_2O(l) + 2\,e^- \rightarrow \,Mn_2O_3(s) + 2\,OH^-(aq)$$

$$Zn(s) + 2 MnO_2(s) + H_2O(l) \rightarrow Zn(OH)_2(s) + Mn_2O_3(s)$$

 $\mathrm{Mn_2O_3}$ is not sticky, and doesn't remain attached to the electrode. This battery is not rechargeable

Alkaline Battery

Alkaline Battery

- The electrochemical reaction will not take place without connecting an external circuit. Hence they can be stored in the shelf.
- Alkaline batteries are described by size and shape AAA to D.
- Larger batteries have more amount of mass, and thus can run longer
- But they all have the same voltage (1.5 V), because they're all based on the same electrochemical cell.
- Disposable batteries are intended to be used once and discarded.
- Alkaline batteries are not rechargeable. If you force it to be recharged, explosion may happen. The reason is that hydrogen can be built up due to the reversed electrochemical reaction.

Mercury Battery

Mercury Battery

- Mercury batteries are small due of the high density of Hg
 They are used in watches, hearing aids and calculators, etc.
- Gradually disappeared in the market in the 80s due to the toxicity of Hg

Nickel-Cadmium Battery

Nickel-Cadmium Battery

Electrochemical reactions

- The cell contains a paste of NaOH, which provides the OH ions needed for the reaction, while also providing a medium to pass charge (electrolyte)
- > On the anode, solid metal is transformed into cadmium hydroxide
- On the cathode, Ni³⁺ ions in a NiO(OH) paste are transformed into nickel hydroxide.
- If current is applied, the reaction is driven backwards, and be recharged.

Anode (-)

$$Cd + 2OH \rightarrow Cd(OH)_2 + 2e$$

Cathode (+)

$$NiO(OH) + H_2O + e \rightarrow Ni(OH)_2 + OH^2$$

Nickel-Cadmium Battery

Recharge Electrochemical reactions

A nickel-cadmium battery can be recharged the battery by applying an electrical current from another source

 $Cd(s) + 2NiO(OH)(s) + 2H_2O(l) \rightarrow Cd(OH)_2(s) + 2Ni(OH)_2(s)$

Nickel-Cadmium Battery

Ni-Cd Memory Effect in Recharging

Memory effect: Ni-Cd batteries gradually lose their maximum energy capacity if they are repeatedly recharged after being only partially discharged.

Nickel-Cadmium Battery

Ni-Cd Memory Effect in Recharging

True memory effect:

This long-term, repetitive cycle regime, with no provision for overcharge, resulted in a loss of capacity beyond the 25% discharge point. Hence the birth of a "memory" phenomenon, whereby nickel-cadmium batteries purportedly lose capacity if repeatedly discharged to a specific level of capacity.

True memory cannot exist if any one of the following conditions holds:

- Batteries achieve full overcharge.
- Discharge is not exactly the same each cycle, within plus or minus 3%
- Discharge is to less than 1.0 volt per cell

Nickel-Cadmium Battery

Ni-Cd Memory Effect in Recharging

Temporary memory effect: Voltage depression due to long-term over-charging

- A common process often ascribed to memory effect is voltage depression.. This is a common problem with high-load devices such as digital cameras.
- Voltage depression is caused by repeated over-charging of a battery, which causes the formation of small crystals of electrolyte on the plates. These can clog the plates, increasing resistance and lowering the voltage of some individual cells in the battery.
- The effect can be overcome by subjecting each cell of the battery to one or more deep charge/discharge cycles.

Permanent loss of capacity: Deep discharge

Some rechargeable batteries can be damaged by repeated deep discharge

Permanent loss of capacity: Age and use—normal end-of-life

All rechargeable batteries have a finite lifespan and will slowly lose storage

 All rechargeable batteries have a finite ilrespan and will slowly lose storage capacity as they age due to secondary chemical reactions within the battery whether it is used or not.

Source: Wikipedia Source: Wikipedia

Nickel-Cadmium Battery

Ni-Cd Battery Recharging Feature

- Over 1000 cycles (if properly maintained)
- Fast, simple charge (even after long storage) C/3 to 4C with temperature monitoring
- Self discharge 10% in first day, then 10%/mo Trickle charge (C/16) will maintain charge
- Memory effect Overcome by 60% discharges to 1.1V

By courtesy of Steve Garland & Kyle Jamieson

Nickel-Cadmium Battery

Features

- ✓ Good high discharge rate (for power tools)
- ✓ Rugged, long life, economical
- ✓ Relatively low energy density

By courtesy of Steve Garland & Kyle Jamieson

Lead-Acid Battery

Lead-Acid Battery

Electrochemical reactions

Lead-acid batteries are composed of two alternating groups of Pb plates:

pure lead (anode) Anode:

Cathode: PbO₂

Electrolyte: 40 % sulfuric acid

The lead sulfate product clings to the electrodes, so applied external voltage can reverse the reaction

During discharge

Anode: $Pb + SO_4^{2-} \rightarrow PbSO_4 + 2e^{-}$

Cathode: $PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$

Overall: $Pb + PbO_2 + 4H^+ + 2SO_4^{2-} \rightarrow 2PbSO_4 + 2H_2O$

 $E^{\circ}_{cell} = 2.041 \ V$

- Nominally ~2 V per cell, dropping to ~1.5 over useful discharge life
 In a vehicle, 6 batteries are series connected to generate 12 V

Lead-Acid Battery

Chemical reaction (discharge)

Electrochemical reactions

Lead-Acid Battery

- When discharging, sulfuric acid concentration decreases. Lead sulfate is deposited on the electrode plates.
- When Charging, a small amount of lead sulfate clings to the electrode plates.
- · More cycles results in the accumulation of Lead sulfate deposits on the electrode plates, reducing the reaction area and, hence, negatively affecting the battery performance.
- Electrode plates sulfatation is one of the primary effect on the battery life.
- To avoid accelerating the sulfatation process, batteries need to be fully charged after every discharge and they must be kept charged at a float voltage higher than the nominal voltage. For lead acid batteries and depending their technology the float voltage is between 2.08 V/Cell and 2.27 V/cell. For the same reasons, lead-acid batteries should not be discharged below 1.75 V/cell

by courtesy of Alexis Kwasinski by courtesy of Alexis Kwasinski

Lead-Acid Battery

Lead Acid Battery Discharging

lead-acid batteries are not suitable for load-following power buffer applications because their life is significantly shortened when they are discharged very rapidly or with frequent deep cycles

Cycle Service Life in Relation to Depth of Discharge (20°C)

tp://polarpowerinc.com/info/operation20/operation25.htm

Lead-Acid Battery

Lead-Acid Battery

Temperature Effect on Performance

Lead-Acid Battery

Lead Acid Battery Recharging

- Low self-discharge
 - √ 40% in one year (three months for NiCd)
- No memory
- Cannot be stored when discharged
- Limited number of full discharges
- · Danger of overheating during charging

Lead-Acid Battery

- Lead-acid batteries are also called "storage batteries", because the charge-discharge cycle is so reliable.
- Lead-acid batteries are extensively used in vehicles.
- The battery is discharged in order to start the engine. Once the engine is running and burning gasoline, it turns an alternator which recharges the battery.
- Lead-acid batteries typically lasts up to 5 years. After that time, lead sulfate product has been shaken off the plates that it can no longer recharge.
- Lead is an environmental concern 97% of spent batteries are recycled in the U.S.

Comparison of Various Types of Batteries

Discharge Rates

Туре	Voltage (V)	Peak Drain	Optimal Drain
Alkaline	1.5	0.5C	< 0.2C
NiCd	1.25	20C	1C
Nickel metal	1.25	5C	< 0.5C
Lead acid	2	5C	0.2C
Lithium ion	3.6	2C	< 1C

By courtesy of Steve Garland & Kyle Jamieson

Comparison of Various Types of Batteries

Recharge

g-						
Туре	Cycles (to 80%)	Charge time	Discharge per month	Cost per kWh		
Alkaline	50 (50%)	3-10h	0.3%	\$95.00		
NiCd	1500	1h	20%	\$7.50		
NiMH	300-500	2-4h	30%	\$18.50		
Li-ion	500-1000	2-4h	10%	\$24.00		
Polymer	300-500	2-4h	10%			
Lead acid	200-2000	8-16h	5%	\$8.50		

By courtesy of Steve Garland & Kyle Jamieson

Comparison of Various Types of Batteries

Type	Voltage	Rechargeable?	Examples of Uses
Alkaline	1.54	No	Flashlights, small appliances
Lithium-iodine	2.8	No	Camera batteries, pacemakers
Lithium ion	3.7	Yes	Laptop computers, cell phones digital music players
Lead-acid (storage battery)	2.0	Yes	Automobiles
Nickel-cadmium (NiCd)	1.25	Yes	Consumer electronics
Nickel-metal hydride (NiMH)	1.25	Yes	Replacing NiCad for many uses; hybrid vehicles
Mercury	1.3	No	Formerly widely used in cameras, other appliances

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Battery History

1800	Voltaic pile: silver zinc
1836	Daniell cell: copper zinc
1859	Planté: rechargeable lead-acid cell
1868	Leclanché: carbon zinc wet cell
1888	Gassner: carbon zinc dry cell
1898	Commercial flashlight, D cell
1899	Junger: nickel cadmium cell
1946	Neumann: sealed Ni-Cd
1960s	Alkaline, rechargeable Ni-Cd
1970s	Sealed lead acid
1990	Nickel metal hydride (Ni-MH)
1991	Lithium ion
1999	Lithium ion polymer

Source: Steve Garland & Kyle Jamieson

Ni-MH Battery

- Positive electrode: Ni(OH)₂ + OH^{*} ↔ NiOOH + H₂O + e^{*}
 E^o = 0.4V vs SHE
- Negative electrode : $M + H_2O + e \leftrightarrow MH + OH^2$ $E^o = -0.83 \ V \ vs. \ SHE$
- Total reaction : $Ni(OH)_2 + M \leftrightarrow NiOOH + MH$ $E_{cell} = 1.23 \ V$
- ➤ In charging, a hydrogen atom deposits on the surface of the hydrogen storage alloy by electrolysis of water. The hydrogen atom diffuses into the metal and is stored there, i.e. the metal is reduced to a metal hydride. On the positive electrode, Ni(OH)₂ is oxidized to an NiOOH.
- Ni-MH cells also employ nickel positive plates with NiOOH as the active material and an aqueous KOH electrolyte. The main difference is that the active material in the negative plate is hydrogen absorbed in a metal alloy.

Ni-MH Battery

The mechanisms of MH electrode reactions OH NOONS MH electrode Mi electrode Mi H_C)+a → MH+CH NICOII++OH NICOII++OH NICOII++OH NICOII+H-OHC NICOII++OHC NICOII+H-OHC NICOIIH-H-OHC NICOII+H-OHC NICOII+H-OHC NICOIIH-H-OHC NICOIIH-H-

Ni-MH Battery

Ni-MH Battery

Metal-hydride for Ni/MH Battery

The distinct alloy families that have been largely researched as negative electrodes of Ni/MH batteries

AB₅ (A=La, B=Ni, Co, Mn); AB₂ (A=Zr, Ti and B = V, Cr, Mn); and AB (A=Ti, B=Ni). A represents a metallic element with strong affinity for hydrogen (an early transition or rare-earth metal), whereas B is a metallic element with weak hydrogen affinity (a last transition metal).

Intermetallic compounds formed with these two elements are able to reversibly absorb hydrogen

Ni-MH Battery

Thermodynamic Properties of Hydrides

- · Hydrogen absorption in intermetallic compounds is characterized by a hydrogen capacity of about one hydrogen atom per metal atom (H/M).
- · The stability of the formed hydride is determined by its hydrogen equilibrium pressure at a given temperature.
- · Thus, thermodynamic properties of hydrides are usually described in pressure-composition isothermal (PCI) curves.
- A typical PCI curve for an intermetallic compound able to reversibly absorb hydrogen up to 1 H/M is represented in the figure in the next slide.

Taken from C. S. Wang

Ni-MH Battery

Typical PCI curve for an intermetallic compound

Ni-MH Battery

Thermodynamic Properties of Hydrides

Three domains can be observed. At low H content (x < 0.1H/M), a solid-solution single phase domain occurs, the so-called α -phase, where hydrogen absorption/desorption can be described by the reaction

$$MH_x + \frac{dx}{2}H_2 \Leftrightarrow MH_{x+dx}$$
 (1)

For 0.1 < x < 0.8H/M, there is a two-phase domain, where the saturated α -phase, with composition $x = \alpha_{\text{max}}$ transforms into the β -phase, with composition $x = \beta_{\text{min}}$ It corresponds to a plateau pressure that extends in the composition as long as the following equilibrium reaction takes place:

$$MH_x(\alpha_{max}) + (y-x)/2 H_2 \leftrightarrow MH_y(\beta_{min})$$
 (2)

Taken from C. S. Wang

Ni-MH Battery

Thermodynamic Properties of Hydrides Capacity [mAh/g]

Electrochemical behavior of LaNi5-xSnx Metal Hydride Alloys
Taken from C. S. Wang

Ni-MH Battery

Theoretical capacity calculation of metal-hydride electrode

1) LaNi₅H₆ F=96485 C (As)= 96485×1000/3600 =26800 mAh

 $LaNi_5+6H_2O+6e \rightarrow LaNi_5H_6+6OH^{-1}$

$$Q = \frac{26800 \times 6}{\omega_{\text{LaWis}}} = \frac{160800}{139 + 58.7 \times 5} = 371 \text{mAh/g}$$

Weight capacity of LaNi₅H₆

$$Q_{W} = \frac{W_{H}}{W_{LaNi_{5}}} = \frac{6}{139 + 58.7 \times 5} = 1.4\%$$

LaNi₅H₆

2) NaAlH₄ weight capacity

$$Q_{*} = \frac{4W_{H}}{W_{Na} + W_{Al} + W_{H}} = \frac{4}{23 + 27 + 4} = 7.4\% \qquad Na_{s}AlH_{*} \leftrightarrow 3NaH + Al + 3/2H_{2} \qquad 1.85 \text{ wt}\% \text{ H}_{2}$$

 $3NaH \rightarrow 3Na + \frac{3}{2}H$ 1.85 wt% H₂

 $3NaAlH_4 \leftrightarrow Na_3AlH_6 + 2Al + 3H_2$ 3.7 wt% H₂

7

Ni-MH Battery

Operating principle of a sealed rechargeable Ni-MH cell

- To ensure proper functioning of a sealed Ni-MH cell under a variety of conditions, it is designed in such a way that the capacity of the cell is limited by the positive electrode.
- Over-charge O₂ evolution occurs at the positive electrode during and this diffuses to the metal-hydride electrode where it combines to form water. The negative to positive capacity ratio varies between 1.5 and 2. typically, the discharge reserve is in the range of 20% of the positive capacity.
- · Reactions during cell over-charge are:

Ni electrode

4OH-→2H₂O + O₂ + 4e⁻ M electrode:

overall \Rightarrow $2H_2O + O_2 + 4e^- \rightarrow 4OH^-$

 $M + H_2O + e^- \rightarrow MH + OH^-$

 $4\text{MH} + \text{O}_2 \rightarrow 4\text{M} + 2\text{H}_2\text{O}$

Ni-MH Battery

Operating principle of a sealed rechargeable Ni-MH cell

- Over-discharge conditions:
- H₂ evolution occurs at the positive electrode which is oxidized to water at the $\overline{\text{MH}}$ electrode. Thus, there are recombination mechanisms for both H_2 and O₂ gases evolved during over-discharge and over-charge, respectively, permitting sealed operation of the Ni-MH cells.
- Reactions during cell over-discharge are $H_2O + e^- \rightarrow 1/2H_2 + OH^-$ H₂ + 2OH⁻ → 2H₂O + 2e
- Since the cell reaction causes no net change in the electrolyte concentration or quantity, maintenance of electrolyte concentration results in good gas recombination, good high and low temperature operations, and good resistance to cycle life limitations caused by corrosion and swelling.

Ni-MH Battery

Features (Compared with Ni-Cd battery)

- > Higher energy density (40%) than NiCd
- Nontoxic
- > Reduced life, discharge rate (0.2-0.5C)
- > More expensive (20%) than NiCd

By courtesy of Steve Garland & Kyle Jamieson

Ni-MH Battery

Recharge Characteristics (Compared with Ni-Cd battery)

- · Less prone to memory than NiCd
- · Shallow discharge better than deep Degrades after 200-300 deep cycles Need regular full discharge to avoid crystals
- · Self discharge 1.5-2.0 more than NiCd
- · Longer charge time than for NiCd To avoid overheating

By courtesy of Steve Garland & Kyle Jamieson

Spotlight of research on

Lithium Ion Battery

Rechargeable Li-ion Battery

Comparison of the volumetric and gravimetric energy density

Rechargeable Li-ion Battery

Operating Principle of Li-ion Battery

Anode: Carbon

Lithium reacts with graphite to form LiC₆

Cathode: Oxide

Three type of materials: a layered oxide (such as lithium cobalt oxide), a polyanion (such as lithium iron phosphate), or a spinel (such as lithium manganese oxide)

Electrolyte: A mixture of organic carbonates such as ethylene carbonate or diethyl carbonate containing complexes of lithium ions. lithium hexafluorophosphate (LiPF₆),

lithium hexafluoroarsenate monohydrate (LiAsF₆), lithium perchlorate (LiClO₄), lithium tetrafluoroborate (LiBF₄),

lithium triflate (LiCF₃SO₃).

Rechargeable Li-ion Battery

Operating Principle of Li-ion Battery

Discharging: Lithium ions (yellow) spontaneously shuttle from the negative insertion electrode (black) into the electrolyte (blue) and from the electrolyte into the positive insertion electrode (red). The electrolyte allows the difusion of ions but prevents electrons flow. At the same time electrons spontaneously flow through the only way we let them free from the negative to the positive electrode: through the load. Charging: Lithium ions are forced out of the positive into the electrolyte and into the negative electrode. Electrons are injected into the negative and taken from the positive electrode

Rechargeable Li-ion Battery

Operating Principle of Li-ion Battery

Li-ion batteries are conventionally called 'rocking-chair' batteries because they operate primarily due to the movement of Li ions into and out of host lattices, alternatively, during charge-discharge cycles.

Rechargeable Li-ion Battery

Operating Principle of Li-ion Battery

Positive electrode (Cathode): $\text{LiCoO}_2 \leftrightarrows \text{Li}_{1-x}\text{CoO}_2 + x\text{Li}^+ + x\text{e}^-$

Negative electrode (Anode): $xLi^+ + xe^- + 6C \leftrightarrows Li_xC_6$

 $\mathrm{Li}^+ + \mathrm{LiCoO}_2 \rightarrow \mathrm{Li}_2\mathrm{O} + \mathrm{CoO}$ Overdischarge:

 $\rm LiCoO_2 \rightarrow \rm Li^+ + \rm CoO_2$ Overcharge up to 5.2 V:

In a lithium-ion battery, the lithium ions are transported to and from the cathode or anode. Co in Li_3CoO_2 is oxidized from Co^{3+} to Co^{4+} during charging, and reduced from Co^{4+} to Co^{3+} during discharge.

Anode of Rechargeable Li-ion Battery

Requirements of Materials for Li-ion Battery

Anode

- > High capacity
- > Low irreversible capacity
- ➤ Low Li insertion potential (>70 -100 mv)
- > Long cycle life
- > High rate capability
- Electrochemical stability
- > High mixed conductivity

Anode of Rechargeable Li-ion Battery

- Natural graphite materials and synthetic graphite materials
- · Alternate host lattices. Typically, a variety of carbon materials with different levels of graphitization can be obtained from any starting material depending essentially on the processing parameters, especially on the HTT.

Some allotropes of carbon: a) diamond; b)graphite; c) lonsdaleite; d-f)fulerences; (Con C₅₄₀, C₇₀); g) amorphous; h) carbon nanotubes.

Graphite Anode

From a crystallographic point of view the term "graphite" is only applicable to carbons having a layered lattice structure with a perfect stacking order of graphene layers, either the prevalent AB (hexagonal graphite) or the less common ABC rhombohedral graphite).

Taken from C. S. Wans

Anode of Rechargeable Li-ion Battery

Graphite Anode

During intercalation intographite the stacking order of the carbon layers (named graphene layers) shifts to AA. Thus, two neighboring graphene layers in LiC₆ directly face each other (Fig. a). Owing to lithium intercalation the interlayer distance between the graphene layers increases moderately (10.3% has been calculated for LiC₆). The stacking order of the lithium interlayers is as (a Li-C6-Li-C6-Li chain exists along the c-axis). In LiC₆ the lithium is distributed in-plane in such a manner that it avoids the occupation of the nearest neighbor sites (Fig. b).

Taken from C. S. Wang

Anode of Rechargeable Li-ion Battery

Graphite Anode

Fig. 1. Charge-discharge profile of a MAG-10 electrode at ox (225 rate shown vs. composition along with the upper- and lower-potential limits (shown as symbols) for the three different cycling protocols: 10 and 0.11 vs. Li₂Ur. (•), 0.099 and 0.23 V vs. Li₂Ur. (○) and 0.15 V vs. Li₂Ur. (■). Schematic representation of the staging observable in the many above the characteristic endergrade of the staging observable in the stag

Taken from C. S. Wang

Anode of Rechargeable Li-ion Battery

Graphite Anode

Apart from the stage s = I, four other binary phases, corresponding to the stages s = IV, III, III L, and II (which can also be obtained by chemical synthesis), were identified from electrochemical curves and confirmed by X-ray diffraction and Raman spectroscopy. The splitting of the second stage into two, s = II (x = 0.5 in LixC6) and s = IIL (x = 0.33 in LixC6), is due to different lithium packing densities.

Anode of Rechargeable Li-ion Battery

Graphite Anode

Anode of Rechargeable Li-ion Battery

5 600 Most Into 2000 3000 100 Next tendence (*C)

Fig. 2. (a) Port of reversible capacity for lithium vs. heat-transmit temperature (IPT) for a visitory of carbon sumples (sopen symbols, h. carbons, solid symbols, soft carbons), (b) Voltage vs. capacity for (reg. A) synthetic carbon (region B) pervolvem pixth heat-transact and order of the carbon service (IPT). These data are for succession (I) residents near our IPT.

Graphite Anode

$$\operatorname{Li}_{x}\operatorname{C}_{n} \xrightarrow{\operatorname{discharge}} x \operatorname{Li}^{+} + x \operatorname{e}^{-} + \operatorname{C}_{n}$$

Graphite materials obtained with heat-treatment at 2800° C generally have a reversible capacity of 372 mAh gt (LIC6 composition). The charge-discharge process does not exhibit significant hysterisis as shown by plot A in Fig. 2(b).

Soft carbon materials are generally heat-treated beyond 700 °C. These carbonaceous materials contain considerable hydrogen as C-H bonding and can take large quantities of Li ions and, hence, possess very high capacity (plot B, Fig. 2(b)). During discharge, however, the materials exhibit considerable overvoltage or voltage loss and, hence, are not suitable for battery applications.

Hard carbon materials obtained in the HTT range 800– 1200 °C generally contain much less hydrogen. They essentially consist of non-graphitized carbon platelets. These materials generally possess high irreversible capacity during the first cycle and also higher reversible capacity in subsequent cycles (plot C, Fig. 2(b)). Taken from C. S. Wang

Solid Electrolyte Interface (SE I) Film

Fig. 9. Schematic drawing of binary (LiC_n) and ternary [Li(solv)₂C, lithium-graphite intercalation compounds. Modified and redrawn from [63] Intercalation of Li $^{+}$ and other alkali metal ions from organic donor solvent electrolytes into fairly crystalline graphitic carbons quite often leads to solvated (ternary) graphite intercalation compounds, $\operatorname{Li}_{\rm Icoloty} VC_{\rm r}$.

The so-called "solvated intercalation" is associated with extreme expansion of the graphite matrix (typically ~150 %), frequently leading to deterioration (exfoliation) of the graphite and as a result to a drastically decreased charge storage capability.

Taken from C. S. Wang

Anode of Rechargeable Li-ion Battery

Solid Electrolyte Interface (SE I) Film

The solvated intercalation compounds are thermodynamically favored over the corresponding binary compounds, that is, the potentials of their electrochemical formation are more positive than those for the formation of the corresponding binary graphite intercalation compounds (GICs).

The solvated GICs are thermodynamically unstable with respect to the reduction of the co-intercalated solvent molecules. This kinetically controlled reduction contributes considerably to the self-discharge of ${\rm LixC_6}$ electrodes.

Taken from C. S. Wang

Electrode of Rechargeable Li-ion Battery

Alternative Anode Materials

Thermodynamic Considerations

The overall Li uptake and Li extraction from a binary metal compound MX_n under investigation (X =F, O, S, N) can be written as

$$nLi + MX_m \rightleftharpoons M + nLiX_{m/n}$$

$$(m = n \text{ for } X = F, N; m = n/2 \text{ for } X = O, S)$$
[1]

For such a reaction, the values of the cell voltage [electromotive force (emf)] can be calculated using the Nernst equation

$$\Delta G = n\Delta G_f^{\circ}(LiX_{m/n}) - \Delta G_f^{\circ}(MX_m) = -nEF$$
 [2]

Taken from C. S. Wang

Electrode of Rechargeable Li-ion Battery

Voltage versus capacity for positive- and negative-electrode materials

Figure 5. Voltage versus capacity of several electrode materials relative to the window of the electrolyte 1 M LiPF₆ in EC/DEC (1:1).

Taken from C. S. Wang

Rechargeable Li-ion Battery

Voltage versus capacity for positive- and negative-electrode materials

Taken from C. S. Wang

Anode of Rechargeable Li-ion Battery

Theoretical capacities of anodes for Li-ion battery

F=96485 C (A·s)=26800 mAh

LiC₆
$$6C + Li^{+} + e \rightarrow LiC_{6}$$

$$Q = \frac{1F}{Wc} = \frac{26800 \times 1}{6\omega_{c}} = \frac{26800}{12 \times 6} = 372 \text{mAh/g}$$

$$Q = \frac{1F}{W_{UC}} = \frac{26800}{12 \times 6 + 7} = 339 \text{mAh/g}$$

SnLi_{4.}

$$Q_{(mAh/g)} = \frac{4.4F}{W_{Sn}} = \frac{4.4 \times 26800}{118.7} = 993 \text{ mAh/g}$$

$$Q_{(mAh/g)} = \frac{4.4F}{W_{SnL_{4.4}}} = \frac{4.4 \times 26800}{118.7 + 4.4 \times 7} = 788.7 \text{ mAh/g}$$
Taken from C. S. Wang

Theoretical capacities of anodes for Li-ion battery

SiLi_{4,4}

$$\begin{split} Q_{(mAh/g)} &= \frac{4.4F}{W_{si}} = \frac{4.4 \times 26800}{28} = 4211 \text{mAh/g} \\ Q_{(mAh/g)} &= \frac{4.4F}{W_{Si\,Li_{44}}} = \frac{4.4 \times 26800}{28 + 4.4 \times 7} = 2005.4 \text{mAh/g} \end{split}$$

Li metal

$$Q_{LI} = \frac{1F}{W_{LI}} = \frac{26800}{6.94} = 3861 \text{mAh/g}$$

Taken from C. S. Wang

Anode of Rechargeable Li-ion Battery

Alternative Anode Materials

Electrode material	Average potential difference	Specific capacity	Specific energy
Graphite (LiC ₆)	0.1-0.2 V	372 mA·h/g	0.0372-0.0744 kW·h/kg
Hard Carbon (LiC ₆)	? V	? mA·h/g	? kW·h/kg
Titanate (Li ₄ Ti ₅ O ₁₂)	1-2 V	160 mA·h/g	0.16-0.32 kW·h/kg
Si (Li _{4.4} Si)	0.5-1 V	4212 mA·h/g	2.106-4.212 kW·h/kg
Ge (Li _{4.4} Ge)	0.7-1.2 V	1624 mA·h/g	1.137-1.949 kW·h/kg

Anode of Rechargeable Li-ion Battery

Alternative Anode Materials

- 1. Alloys, Li_{4.4}Sn, Li_{4.4}Si
- AllOys, Li_{4,4}o11, Li_{4,4}o1.
 Displacement Reactions (such as Cu₈Sn₅, InSb, and Cu₂Sb)
 The concept of displacing one metal A from a binary intermetallic AB by lithium reduction, with the end result being the formation of a composite containing the displaced metal A together with the alloy Li_xB

The voltage composition curve for Li/Cu₂Sb, with the structural evolution upon cycling so as to emphasize both the copper extrusion/rienjection upon cycling together with the maintenance of the antimony array.

- 3. Conversion Reactions (MO+2Li+2e⁻ ↔ Li₂O+M)
- 4. Mixed reaction (SnO)

Taken from C. S. Wang

Anode of Rechargeable Li-ion Battery

Alternative Anode Materials

Anode of Rechargeable Li-ion Battery

Alternative Anode Materials Porous C-Si electrodes

Nano-porous Si-C Controversy in cycling stability Pristinely rigid silicon framework cannot sustain the volume of

J. Cho et al, Angew. Chem. Int. Ed. 47(2008)10151

Anode of Rechargeable Li-ion Battery

Glasses and crystalline tin oxides: SnO and SnO₂

Tin dioxide, SnO_2 , was found to react with lithium to generate nanodomains of metallic Sn dispersed in a lithia matrix, Li₂O (Eq. 1). The nanodomains of Sn subsequently alloy with lithium (Eq. 2), thereby providing the reversible capacity of the electrode. $\mathrm{Li_2O}$ remains inert, providing mechanical stability to the composite electrode, which in turn results in good capacity retention

$$M_xO_y + 2yLi^+ + 2ye^- \rightarrow xM + yLi_2O$$
 [1]

$$M + zLi^{+} + ze^{-} \hookrightarrow Li_{z}M$$
 [2]

Taken from C. S. Wang

The Titanate System

Li₄Ti₅O₁₂ Anode-based System

- High anode voltage (1.5V vs. 0.1V for graphite)
- enhances life and safety However, low cell voltage (2.4V) results in significantly lower energy
- Anode capable of fast-charging

Chemistry could have difficulty meeting energy requirements for PHEV-40

- Couple with high-voltage cathodes to improve
 - Requ ire development of high-voltage electrolytes

Rechargeable Li-ion Battery

Requirements of Materials for Cathode

- (1) Contain a readily reducible/oxidizable ion, for example a transition metal.
- (2) React with lithium in a reversible manner.
- (3) React with lithium with a high free energy of reaction, leading to a high-energy storage. High capacity, preferably at least one lithium per transition metal High voltage, preferably around 4 V (as limited by stability of electrolyte)
- (4) React with lithium very rapidly both on insertion and removal, leading to high power density,
- which is needed to replace the Ni/Cd battery or for batteries that can be recharged using HEV regenerative braking.
- (5) The material be a good electronic conductor, preferably a metal.
 - allows for the easy addition or removal of electrons during the electrochemical reaction.
 - allows for reaction at all contact points between the cathode active material and the electrolyte rather than at ternary contact points between the cathode active material, the electrolyte, and the electronic conductor (such as carbon black).
 - minimizes the need for inactive conductive diluents, which take away from the overall energy density.
- (6) stable, i.e., not change structure to overdischarge and overcharge
- (7) Low cost.
- (8) Environmentally benign.

Cathode of Rechargeable Li-ion Battery

Voltage versus capacity for positive- and negative-electrode materials

Figure 5. Voltage versus capacity of several electrode materials relative to the window of the electrolyte 1 M LiPF₆ in EC/DEC (1:1).

Cathode of Rechargeable Li-ion Battery

Equilibrium Potentials for Commercially Available Cathodes

Dr. Tien Duong, Energy Storage R&D for Vehicles: Status and Research Directions, invited talk at UMD

Cathode of Rechargeable Li-ion Battery

LiCoO₂

The Open Circuit Potential (OCP) of a commercial LiCoO2 electrode recorded against metallic lithium as a function of the degree of lithium intercalation (25°C) The reported LiCoO₂ phase structures are indicated (H: hexagonal, M:monoclinic).

Cathode of Rechargeable Li-ion Battery

- LiCoO₂ cathode materials are typically cycled between the fully lithiated discharge state LiCoO₂ (3.0 V vs Li/Li*) and a roughly half-delithiated charge state LixCoO₂ (x=0.5-0.6, 4.2 V vs Li/Li⁺) to yield a useable specific capacity below 150mA h/g.
- ➤ When the Li/LiCoO₂ cell is cycled within a limited composition range of 0 < x < 0.5, it shows excellent cycling performance. However, its capacity fades rapidly when more Li is deintercalated from the lattice due to cathode degradation and electrolyte decomposition at high voltage.
- ➤ A high concentration of Co⁴+ will damage the cathode crystallinity and result in a significant decrease of the c-axis dimension caused by a phase transition
- ➤ The performance degradation of LiCoO₂ is related to the dissolution of its Co³+ ions in the electrolyte solution

Solution: coating the LiCoO2 surface with inert oxides such as SnO2, Al2O3, and MgO, ZrO₂

Figure 13. a) TEM image of Al_2O_3 -coated nano-LiCoO $_2$ heat-treated at 300 °C for 2 h. The fringe spacing is 0.472 nm, close to the d-value of 0.468 nm of the (003) plane [JCPDS 77-1370], b) Plots of discharge capacities of A0 bare commercial LiCoO $_2$, B1 Al_2O_3 coated on LiCoO $_2$, heated at 300 °C for 2 h, and C) Al_2O_3 coated on LiCoO $_2$, heated at 600 °C for 2 h as a function of the cycle number for the first 20 cycles. The cut-off voltage is from 3.0 to 4.5 V. Reproduced with permission from [105]. Copyright 2002, Elsevier.

Cathode of Rechargeable Li-ion Battery

Cathode of Rechargeable Li-ion Battery

One-, Two-, and Three-Dimensional Transition-Metal oxides

Schematic representation of void spaces in one-, two-, and three-dimensional transition-metal oxides.

Taken from C. S. Wang

Cathode of Rechargeable Li-ion Battery

Alternative Cathode Materials

Electrode material	Average potential difference	Specific capacity	Specific energy
${\rm LiCoO_2}$	3.7 V	$140~mA{\cdot}h/g$	$0.518~kW \cdot h/kg$
${\rm LiMn_2O_4}$	4.0 V	$100~\text{mA}{\cdot}\text{h/g}$	$0.400~kW{\cdot}h/kg$
LiNiO ₂	3.5 V	$180~mA{\cdot}h/g$	$0.630~\mathrm{kW}\cdot\mathrm{h/kg}$
${\rm LiFePO_4}$	3.3 V	$150 \text{ mA} \cdot \text{h/g}$	0.495 kW·h/kg
$\text{Li}_2\text{FePO}_4\text{F}$	3.6 V	115 mA·h/g	$0.414~\mathrm{kW}\cdot\mathrm{h/kg}$
${\rm LiCo_{1/3}Ni_{1/3}Mn_{1/3}O_{2}}$	3.6 V	$160~\text{mA}{\cdot}\text{h/g}$	$0.576~\mathrm{kW}\cdot\mathrm{h/kg}$
$\mathrm{Li}(\mathrm{Li}_a\mathrm{Ni}_x\mathrm{Mn}_y\mathrm{Co}_z)\mathrm{O}_2$	4.2 V	220 mA·h/g	0.920 kW·h/kg

Source: Wikipedia

Rechargeable Li-ion Battery

Requirements of Materials for Electrolyte

- 1. A large electrolyte window Eg,
- 2. Retention of the electrode/electrolyte interface during cycling when the electrode particles are changing their volume.
- 3. A Li*-ion conductivity $\sigma_{Li}{>}10\,^{4}$ S/cm over the temperature range of battery operation.
- 4. An electronic conductivity $\sigma_e{<}10^{\text{-}10}$ S/cm.
- 5. A transference number $\sigma_{\text{L}}/\sigma_{\text{total}} \approx$ 1, where σ_{total} includes conductivities by other ions in the electrolyte as well as $\sigma_{\text{L},^{+}} + \sigma_{\text{e}}$.
- 6. Chemical stability over ambient temperature ranges and temperatures in the battery under high power.
- Chemical stability with respect to the electrodes, including the ability to form
 rapidly a passivating solid/electrolyte-interface (SEI) layer where kinetic stability is
 required because the electrode potential lies outside the electrolyte window.
- 8. Safe materials, i.e., preferably nonflammable and nonexplosive if short-circuited.
- 9. Low toxicity and low cost.

Electrolyte of Rechargeable Li-ion Battery

Physical constants of organic solvents

Solvent	Dielectric Constant	Density [g·cm ⁻³]	MP	BP	Viscosity
12.775 - 64 - 124 - 125 - 17.000 (17.17	224-244-244-244-244-244-244-244-244-244	[g-cm]	[°C]	[°C]	[cP]
Ethylene Carbonate (EC)	89.6 (40°C)	1.3218 (39°C)	39-40	248	1.85 (40°C)
Propylene Carbonate (PC)	64.4	1.19	18.55	241	2.53
Diethyl Carbonate (DEC)	2.82	0.9693	-43	127	0.748
Dimethyl Carbonate (DMC)	3.12	-	3	90	0.585

from C. S. Wang

Electrolyte of Rechargeable Li-ion Battery

Electrolyte conductivity of carbonate-based solutions (1M at 25°C)

Electrolyte salt	Solvent (1:1 by volume)			
(1.0 M)	conductivity ×10 ⁻³ [S.cm ⁻¹]			
	EC + DMC	EC + DEC	PC + DMC	
LiPF ₆	11.2	7.8	10.0	
LiClO ₄	10.1	6.4	6.8	
LiCF ₃ SO ₃	3.1	2.1	2.2	

Taken from C. S. Wang

Electrolyte of Rechargeable Li-ion Battery

Challenges of carbonate based electrolyte

- Carbonate- based solvents are highly flammable with flash points below 30 °C.
- LiPF₆, can undergo an autocatalytic decomposition into LiF and PF5; the PF₅ reacts irreversibly with any water present (PF₅+ H₂O=PF₃O + 2HF) and, above 60 °C, with a carbonate electrolyte.
- 3. These reactions degrade the battery and lead to safety hazards

Taken from C. S. Wang

Electrolyte of Rechargeable Li-ion Battery

Ionic Liquid electrolyte

Advantages over carbonate-based electrolytes

- High oxidation potential (~5.3 V vs Li⁺/Li^o)
- · Non-flammability,
- · low vapor pressure,
- · Better thermal stability
- · low toxicity, high boiling points,
- · high Li-salt solubility.
- · higher viscosity
- · Low Li+ -ion conductivity.

Electrolyte of Rechargeable Li-ion Battery

Polymer Electrolytes

- (i) Dry solid polymer electrolyte
 - a) Polymer host itself is used as a solid solvent along with lithium salt and does not contain any organic liquids
 - b) these dry polymer electrolyte systems (PEOeLiX) offer very low ionic conductivity of the order of 10-6 S/cm at ambient temperature
- (ii) Gel polymer electrolytes

Poly(vinylidene fluoride-hexa fluoropropylene) (PVdF-HFP) (88:12) This copolymer comprising an amorphous phase of HFP which helps to entrap large amount of liquid electrolytes and the PVdF crystalline phase acts as a mechanical support for the polymer matrix

(iii) Composite polymer electrolytes

Electrolyte of Rechargeable Li-ion Battery

Dry polymer electrolyte

- 1.Poly(ethylene oxide (PEO); Ionic conductivity is too low (10^{-6} S/cm)
- 2.Poly(acrylonitrile) (PAN); ionic conductivity of the order of 10^{-3} S/cm, severe passivation upon contact with lithium metal anode
- $3. Poly (methyl \ methacrylate) \ (PMMA); \ mechanical \ strength \ of \ plasticzed \ PMMA \ is \ poor; \ adding \ PVC \ can \ enhance \ the \ mechanical \ property.$

Electrolyte of Rechargeable Li-ion Battery

Fast Ceramic Li-ion electrolytes

Ceramics with Ionic conductivity of order of 10 $^{\text{-}3}$ S cm $^{\text{-}1}$ Li₃N, Li_{1+x}Al_xTi_{2-x}(PO₄)₃, Li_{1-5-3x}La_{0-5+x}TiO₃ and Li_{4-x}Ge(or Si)_{1-x}P_xS₄,

Advantage: A single Li ionic conductor (lithium ionic transference number near to 1). PEO-Li salt: lithium ionic transference number is only around of 0.3

Low activation energy (0.2-0.3 eV)

 $\label{eq:Disadvantage:Poor mechanical properties (too brittle)} \\ \text{Low chemical stability to reduction (some ceramics)} \\ \text{unstable at potential below 1.5V for Li}_{1+x}Al_xTl_{2-x}(PO_4)_3$

and $Li_{0.5-3x}La_{0.5+x}TiO_3$

Taken from C. S. Wang

Taken from C. S. Wang

Rechargeable Li-ion Battery

Advantages of Li-ion Battery as Compared to Other Counterparts

- ➤ best energy density
- > no memory effect
- > slow loss of charge when not in use

Comparison of Various Types of Batteries

	Lead-Acid	Ni-Cd	Ni-MH	Li-ion
Cell voltage (V)	2	1.2	1.2	3.6
Specific energy (Wh/kg)	1-60	20-55	1-80	3-100
Specific power (W/kg)	< 300	150 - 300	< 200	100 - 1000
Energy density (kWh/m³)	25-60	25	70-100	80-200
Power density (MW/m ³)	< 0.6	0.125	1.5 – 4	0.4 - 2
Maximum cycles	200-700	500-1000	600-1000	3000
Discharge time range	> 1 min	1 min-8 hr	> 1 min	10 s-1 h
Cost (\$/kWh)	125	600	540	600
Cost (\$/kW)	200	600	1000	1100
Efficiency (%)	75 - 90	75	81	99