

"Express Mail" mailing label number EL599430320US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE
(DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371

ATTORNEY'S DOCKET NUMBER		
NAII118875		
U.S. APPLICATION NO (if known see 37 C.F.R. 1.5)		
10/088781		
INTERNATIONAL APPLICATION NO	INTERNATIONAL FILING DATE	EARLIEST PRIORITY DATE CLAIMED
PCT/JP00/06405	September 20, 2000	September 22, 1999
TITLE OF INVENTION		
PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS		
APPLICANT(S) FOR DO/EO/US		
Shohan Yanagi		

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information by **Express Mail**:

- 1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
- 2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 37 U.S.C. 371.
- 3. This is an express request to begin national examination procedures (35 U.S.C. 371(f)). The submission must include items (5), (6), (9) and (21) indicated below.
- 4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
- 5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is attached hereto (required only if not communicated by the International Bureau).
 - b. has been communicated by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US).
- 6. An English language translation of the International Application as filed (35 U.S.C. 371(c)(2)).

LAW OFFICES OF
CHRISTENSEN O'CONNOR JOHNSON KINDNESS PLLC
1420 Fifth Avenue
Suite 2800
Seattle, Washington 98101
206.682.8100

7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
____ a. are attached hereto (required only if not communicated by the International Bureau).
____ b. have been communicated by the International Bureau.
____ c. have not been made; however, the time limit for making such amendments has NOT expired.
 d. have not been made and will not be made.

____ 8. An English language translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).

____ 9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).

____ 10. An English language translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11. to 20. below concern document(s) or information included:

11. An Information Disclosure Statement under 37 C.F.R. 1.97 and 1.98.

____ 12. An assignment document for recording. A separate cover sheet in compliance with 37 C.F.R. 3.28 and 3.31 is included.

13. A FIRST preliminary amendment.

____ 14. A SECOND or SUBSEQUENT preliminary amendment.

____ 15. A substitute specification.

____ 16. A change of power of attorney and/or address letter.

____ 17. A computer-readable form of the sequence listing in accordance with 35 U.S.C. 1.821 – 1.825.

____ 18. A second copy of the published international application under 35 U.S.C. 154(d)(4).

____ 19. A second copy of the English language translation of the international application under 35 U.S.C. 154(d)(4).

20. Other items or information: International Search Report

<input checked="" type="checkbox"/> 21. The following fees are submitted:.				CALCULATIONS PTO USE ONLY	
BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5):					
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO\$1,040.00					
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO \$890.00					
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO\$740.00					
International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(1)-(4)\$710.00					
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(1)-(4)\$100.00					
ENTER APPROPRIATE BASIC FEE AMOUNT =				\$890	
Surcharge of \$130.00 for furnishing the oath or declaration later than ____ 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e))				\$130	
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE		
Total claims	17- 20 =	-0-	X \$18.00	\$	
Independent claims	2- 3 =	-0-	X \$84.00	\$	
MULTIPLE DEPENDENT CLAIMS(S) (if applicable)				+ \$280.00	\$
TOTAL OF ABOVE CALCULATIONS =				\$1,020	
<input checked="" type="checkbox"/> Applicant claims small entity status. See 37 CFR 1.27. The fees indicated above are reduced by 1/2.				\$ 510	
SUBTOTAL =				\$ 510	
Processing fee of \$130.00 for furnishing the English translation later than ____ 20 ____ 30 months from the earliest claimed priority date (37 CFR 1.492(f)).				\$	
TOTAL NATIONAL FEE =				\$ 510	
Fee for recording the enclosed assignment (37 CFR 1.21(h)) The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31) \$40.00 per property				\$	
TOTAL FEES ENCLOSED =				\$ 510	
				Amount to be: refunded	\$
				charged	\$

JC13 Rec'd PCT/PTC 22 MAR 2002

X a. Check No. 137092 in the amount of \$510.00 to cover the above fees is enclosed.

X b. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 03-1740. A duplicate copy of this sheet is enclosed.

SEND ALL CORRESPONDENCE TO:

Customer No. 26389

Jerald E. Nagae
 CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLLC}
 1420 Fifth Avenue
 Suite 2800
 Seattle, WA 98101

Respectfully submitted,

CHRISTENSEN O'CONNOR
 JOHNSON KINDNESS^{PLLC}

 Jerald E. Nagae
 Direct Dial No. 206.695.1705
 E-Mail Address: nagae@cojk.com

EXPRESS MAIL CERTIFICATE

"Express Mail" mailing label number EL599430320US

Date of Deposit March 22, 2002

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated above and is addressed to the Commissioner for Patents, Washington, D.C. 20231.

Dennis Hanson

(Typed or printed name of person mailing paper or fee)

 (Signature of person mailing paper or fee)

JEN:hjd

LAW OFFICES OF
 CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLLC}
 1420 Fifth Avenue
 Suite 2800
 Seattle, Washington 98101
 206.682.8100

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Shohan Yanagi Attorney Docket No.: NAI118875

International Application No. PCT/JP00/06405

International Filing: September 20, 2000

Title: PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS

PRELIMINARY AMENDMENT

Seattle, Washington 98101

March 22, 2002

TO THE COMMISSIONER FOR PATENTS:

In the Specification

Please amend the paragraph at page 14, line 6, to read:

(2) The container 2 and the vibrating medium 4 constitute different vibrating bodies (different types of vibrations) and their cooperative vibration operation causes composite energy to be created between the container 2 and the vibrating medium 4 due to microscopic collisions, etc. During this time, particulate matter 3 existing between the container 2 and the vibrating medium 4 gushes out in a fluidized manner together with gaseous molecules such as air, pushes upwards from the inside, or flies out, so that energy of acceleration is applied to provide upward movement (spouting) from the spaces and holes of the vibrating medium 4.

In the Claims

Please cancel Claims 1-13 and add new Claims 14-30, as follows:

14. (new) A particulate matter vibro-fluidizing apparatus having vibrating means and means for treating the particulate matter, said means for treating the particulate matter comprising a set of different types of vibrating bodies operating in cooperation with said vibrating means, wherein said particulate matter is fluidization-treated by a cooperative vibrating action occurring between said different types of vibrating bodies.

LAW OFFICES OF
CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLC}
1420 Fifth Avenue
Suite 2800
Seattle, Washington 98101
206.682.8100

15. (new) The particulate matter vibro-fluidizing apparatus of claim 14, wherein the vibrating bodies are constituted by a container filled with the particulate matter and a vibrating medium installed within the container.

16. (new) The particulate matter vibro-fluidizing apparatus of claim 15, wherein the cooperation of the different vibrating bodies of the vibrating means comprises cooperation where the vibrating means is coupled with one of the vibrating bodies, and cooperation where the other vibrating body receives vibrations from the one vibrating body.

17. (new) The particulate matter vibro-fluidizing apparatus of claim 15, wherein the cooperation of the different types of vibrating bodies of the vibrating means is cooperation coupling with the vibrating means in such a manner that each vibrating body is controlled by an individual vibration.

18. (new) The particulate matter vibro-fluidizing apparatus of claim 15, wherein the vibrating medium is a porous plate.

19. (new) The particulate matter vibro-fluidizing apparatus of claim 15, wherein the vibrating medium is an aggregate comprising a plurality of spherical bodies.

20. (new) The particulate matter vibro-fluidizing apparatus of claim 14, wherein the cooperation of the different vibrating bodies of the vibrating means comprises cooperation where the vibrating means is coupled with one of the vibrating bodies, and cooperation where the other vibrating body receives vibrations from the one vibrating body.

21. (new) The particulate matter vibro-fluidizing apparatus of claim 14, wherein the cooperation of the different types of vibrating bodies of the vibrating means is cooperation coupling with the vibrating means in such a manner that each vibrating body is controlled by an individual vibration.

22. (new) A particulate matter vibration treatment apparatus having vibrating means and means for treating the particulate matter, said means for treating the particulate matter comprising:

container operating in cooperation with said vibrating means; and
amplifying means for amplifying vibrations of the container;

LAW OFFICES OF
CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLLC}
1420 Fifth Avenue
Suite 2800
Seattle, Washington 98101
206.682.8100

wherein said particulate matter within the container is to be vibration-treated by a vibrating action caused by said amplifying means.

23. (new) The particulate matter vibration treatment apparatus of claim 22, wherein the vibrating means cooperates in such a manner as to apply vertical vibrations to the bottom part of the container.

24. (new) The particulate matter vibration treatment apparatus of claim 9, wherein the vibration action comprises a cooperative vibration action of vibration due to the amplifying means and vibration of the container.

25. (new) The particulate matter vibration treatment apparatus of claim 22, said amplifying means comprising:

a plate being provided inside said container spaced away from the bottom of the container; and

floating bodies being provided between said plate and the container so as to collide with said plate.

26. (new) The particulate matter vibration treatment apparatus of claim 25, wherein the vibrating means cooperates in such a manner as to apply vertical vibrations to the bottom part of the container.

27. (new) The particulate matter vibration treatment apparatus of claim 25, wherein the vibration action comprises a cooperative vibration action of vibration due to the amplifying means and vibration of the container.

28. (new) The particulate matter vibration treatment apparatus of claim 25, wherein the plate is comprised of a rubber sheet, a metal material or a resin material.

29. (new) The particulate matter vibration treatment apparatus of claim 25, wherein the floating bodies are constituted by a plurality of spherical bodies made of metal, resin or rubber.

30. (new) The particulate matter vibration treatment apparatus of claim 22, wherein the particulate matter treatment means is used within a vacuum.

REMARKS

A typographic correction has been made to the Specification. Also, new claims 14-30 replace original claims 1-13. The original claims included multiple dependency; the new claims do not.

Respectfully submitted,

CHRISTENSEN O'CONNOR
JOHNSON KINDNESS^{PLLC}

Jerald E. Nagae
Registration No. 29,418
Direct Dial No. 206.695.1705

EXPRESS MAIL CERTIFICATE

"Express Mail" mailing label number EL599430320US

Date of Deposit March 22, 2002

I hereby certify that this paper or fee is being deposited, concurrently with the application, with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. § 1.10 on the date indicated above and is addressed to Box PCT, U.S. Patent and Trademark Office, Commissioner for Patents, P.O. Box 2327, Arlington VA 22202.

Dennis Hanson

(Typed or printed name of person mailing paper or fee)

(Signature of person mailing paper or fee)

JEN:hjd

LAW OFFICES OF
CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLLC}
1420 Fifth Avenue
Suite 2800
Seattle, Washington 98101
206.682.8100

VERSION WITH MARKINGS TO SHOW CHANGES MADE MARCH 22, 2002

In the Specification:

The paragraph on page 14 beginning on line 6 has been amended as follows:

(2) The container 2 and the vibrating medium 4 constitute different vibrating bodies (different types of vibrations) and their cooperative vibration operation causes composite energy to be created between the container 2 and the vibrating medium 4 due to microscopic collisions, etc. During this time, particulate matter 3 existing between the container 2 and the vibrating medium 4 gushes out in a fluidized manner together with gaseous molecules such as air, pushes upwards from the inside, or [flys] flies out, so that energy of acceleration is applied to provide upward movement (spouting) from the spaces and holes of the vibrating medium 4.

In the Claims:

Claims 1-13 have been cancelled.

Claims 14-30 have been added.

7/ptd

SPECIFICATION

PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS

5

TECHNOLOGICAL FIELD

The present invention relates to a particulate matter vibro-fluidizing device used in crushing of an agglomerate powder, dispersion, mixing and drying of particulate matter and reactions with an atomized gas, etc., or in coating or deposition etc. of a particulate surface.

10

BACKGROUND ART

Typically, a layer of particulate matter is fluidized within a container by vertically vibrating the container filled with the particulate matter. It is well known that the state of fluidization is subject to a wide variety of changes depending on the number of vibrations performed (frequency) and the amplitude of the vibrations. Regarding vibro-fluidizational behavior caused by relative movement between the particulate matter layer and the container, as shown in the well-known fluidization patterns in FIG. 7, according to the magnitude of the centrifugal effects due to vibrations, there is first, as shown by pattern B, movement of the particulate matter that causes the surface of the particulate matter layer to become inclined, while in pattern C1, there is circulation (convective) from the center of the particulate matter layer towards the walls of the container. At this time, if the speed of circulation is slow, the surface of the vibrating particulate matter is flat, but if the circulation is more brisk, the surface of the particulate matter swells slightly. As the centrifugal effect is increased, the direction of circulation reverses as shown in pattern C2. Localized circulation as shown in pattern D then occurs within the particulate matter layer, and characteristic waves appear at the surface of the particulate matter.

However, by only vibrating the container, vibro-fluidizational behavior occurring in the

particulate matter layer is restricted to the extent of the criteria described above whereby circulatory flows occur while slight swelling occurs. There is also instability in the causes of the fluidity where different phenomena appear depending on the location within the container.

5 On the other hand, the response of particulate matter layers with respect to oscillation amplitude and frequency has not yet been sufficiently analyzed and vibro-fluidizing is a very difficult phenomena to predict. Dispersing particulate matter for the whole of the container in a homogenous manner using circulation while guaranteeing that this phenomena will repeatedly appear at the surface of the particulate matter layer is not possible. This kind of circulation can therefore not be said to be circulation that can rapidly be applied to each of the

10 types of particulate matter treatment such as mixing, reacting, and surface treatment, etc. The only applications of treatment devices that directly utilize vibro-fluidizing of particulate matter are in exhaust systems, sieving devices, and conveying equipment etc., which means that in reality the range of utilization is limited. There is recently therefore a demand for high-speed particulate matter treatment technology with the desired degree of treatment

15 homogeneity, and the appearance of particulate matter vibro-fluidizing devices that can perform treatment such as crushing of an agglomerate powder, dispersion and mixing of particulate matter and reactions with an atomized gas, etc. and forming a thin film on the surface of particulate matter, that can carry out such treatment in a short period of time, and where the vibro-fluidizing can be utilized in a vacuum.

20 Vibrating mills where particulate matter is ground using characteristic circular vibrations are well known. With such mills, a circular trajectory of vibration is applied to, for example, spherical-shaped media within a cylindrical container. The spherical-shaped media (impact balls) are then made to collide with the inner walls of the container and the particulate matter is ground between the inner walls of the container and the impact balls. Looked at

25 from this viewpoint, this does not utilize circulation of the particulate matter itself and can therefore not be adopted.

In order to resolve the above problems, in the present invention, the present invention is capable of producing circulatory behavior due to vibro-fluidizing of particulate matter in such a manner that the whole of the particulate matter circulates so as to be dispersed in an even manner over all of the surface of a particulate matter layer so that the particulate matter 5 momentarily repeatedly appears even when different circulation occurs depending on the location within the container, and without the use of a fluidizing medium such as air or gas etc., or the use of a solid medium such as impact balls, etc. Complex processes such as crushing of an agglomerate powder, dispersion, mixing and drying of particulate matter and reactions with an atomized gas, or the forming of a thin film on a particulate matter surface, 10 etc. can therefore be performed in a short period of time.

This circulator behavior enables control of changes from circulation of slight swelling, to dispersion spouting or columnar spouting so that treatment such as the aforementioned reactions and processing etc. can be carried out using circulation that corresponds to the desired purpose. This also enables superior circulatory behavior in special environments such 15 as in a vacuum etc., and enables a particulate matter vibro-fluidizing device that can easily be made small without requiring an especially complex overall mechanical structure.

SUMMARY OF THE INVENTION

In the technological means adopted by the present invention in order to resolve the 20 aforementioned problems, there is provided means for treating the particulate matter comprising vibrating means constituted by different types of vibrating body operating in cooperation, wherein the particulate matter is fluidization-treated by a cooperative vibrating action occurring between the different types of vibrating bodies.

Further, in the technological means adopted by the present invention in order to resolve 25 the aforementioned problems, there is provided means for treating the particulate matter comprising a container operating in cooperation with the vibrating means and amplifying

means for amplifying vibrations of the container, wherein the particulate matter within the container is vibration-treated by a vibrating action generated by the amplifying means.

BRIEF DESCRIPTION OF THE DRAWINGS

5 FIG. 1 is a view of the overall structure of a particulate matter vibro-fluidizing device of a first embodiment;

FIG. 2 is a photograph (A) and an illustration (B) showing an example of a behavioral state of an experimental example 1 of the first embodiment;

10 FIG. 3 is a photograph (A) and an illustration (B) showing an example of a behavioral state of an experimental example 2 of the first embodiment;

FIG. 4 is a view of the overall structure of a particulate matter vibro-fluidizing device of a second embodiment;

FIG. 5 is a photograph (A) and an illustration (B) showing an example of a behavioral state of an experimental example 1 of the second embodiment;

15 FIG. 6 is a photograph (A) and an illustration (B) showing an example of a behavioral state of an experimental example 2 of the second embodiment; and

FIG. 7 is a view illustrating patterns of typical particulate matter vibro-fluidizing behavior.

20 PREFERRED EMBODIMENTS OF THE INVENTION

The following is a detailed description based on a particulate matter vibro-fluidizing device exemplified by the preferred embodiments of the present invention.

In a first embodiment shown in FIG. 1 to FIG. 3, FIG. 1 is a partially cut-away overall view of a vibro-fluidizing device. Numeral 1 indicates a vibrating device constituting a 25 vibrating means. The vibrating device 1 is an electrically driven vibrating device of the kind disclosed in Japanese publication of unexamined application No. H08-193911 and is provided

with a fixed magnet mechanism furnished with a columnar central magnetic pole provided integrally at a lower surface of a vibrating table 101 and an annular magnetic pole facing the central magnetic pole at an outer peripheral surface of the central magnetic pole and having a drive coil, with one magnetic pole being an N pole and the other being an S pole. The drive

5 coil is then vibrated up and down within the magnetic field provided mutually between the magnetic poles of the fixed magnet using a supply of alternating current to the drive coil and excitation force is applied to the vibrating table 101. Increases and decreases in the excitation force are actuated by increases and decreases in the frequency of the alternating current and the configuration is such that vibrations in the high frequency region are obtained.

10 The method (theory) of generating vibration is by no means limited to the above magnetic vibration and the use of ultrasonic vibration, magnetostrictive vibration, vibration due to imbalancing of electric motors or an appropriate combination of the vibration generating methods is also possible, and the vibration may be vertical, horizontal, or a combination of vertical and horizontal vibration.

15 Numeral 2 indicates a container into which the vibrating table 101 is fitted. The container 2 is filled with particulate matter 3, with a plurality of spherical bodies 401 constituting vibrating media 4 being introduced at the bottom of the container to construct an aggregate.

20 Vibrations of the vibrating table 101 generated in cooperation with the operation of the vibrating device 1 are directly transmitted to the container 2 and are indirectly transmitted to the spherical bodies 401 via the container 2. The container 2 and spherical bodies 401 constitute the group of different vibrating bodies 2 and 4 applying different vibrations to the particulate matter 3 to be treated. The particulate matter 3 is therefore subjected to fluidization treatment by the action of both bodies due to the cooperative relationship of the vibrations 25 from the container 2 constituting one of the different types of vibrating body with the spherical bodies 401 constituting the other type of vibrating body.

A porous plate 402, rod, cylinder, or netlike body such as a mesh etc. may also be used as the vibrating media 4 in place of the spherical bodies 401, with the shape and material being arbitrary. Vibrations of the vibrating device are then directly transmitted to the porous plate 402 etc. and indirectly transmitted to the container 2 or other structural parts. A structure 5 where the vibrating device 2 operates in direct cooperation with the container 2 and the vibrating medium 41 so that vibrations of different amplitudes and frequencies are directly transmitted is also possible providing that the configuration is capable of treating particulate matter 3 using the dual action of the vibrating bodies grouped together as different types of vibrating bodies.

10 Next, a description is given of an experimental example for vibro-fluidizational behavior of particulate matter when a vibro-fluidizing device of the above structure is employed. An electric micro-vibration exciter (MES451) made by Akashi Corporation was employed as the vibrating device 1.

[1] Experimental example employing spherical bodies as the vibrating medium.

15 When the particulate matter 3 is treated using spherical bodies 401, glass beads of an average particle diameter of 5mm are used as the spherical bodies 401, the container 2 is filled to a height of approximately 1cm with polyethylene particles (white) of an average diameter of 5 μ m as the particulate matter 3 to form the particulate matter layer, and oscillations of a frequency of 1 to 10kHz and amplitude of 0.1 to 10mm are applied. The 20 behavioral state of the vibro-fluidizing is shown in the form of a photograph in FIG. 2(A), and an illustration thereof is shown in FIG. 2(B). FIG. 2(B) is that shown in FIG. 2(A) with a jet flow 301 of the particulate matter and the spherical bodies 401 color-processed with respect to contrast and intensity in order to highlight the flow conditions.

First, when excitation force due to vertical vibration of the vibrating device is applied 25 to the particulate matter 3 within the container 2, particulate matter present at the surface of the particulate matter layer momentarily moves to the bottom of the container 2 before

reappearing at the surface after two or three seconds. In this behavioral state, flow behavior is observed with respect to mixing and dispersion from a state where a small amount of colored particles (red) of an average particle diameter of approximately 100 μm are put on a central portion of the surface of the particulate matter layer, but this flow behavior, even in the initial

5 stage of vibration where excitation force is relatively slight, superior circulation occurs whereby the colored particles are momentarily and homogeneously dispersed over the entire area of the container 2 before reappearing again over the whole of the surface.

It can therefore be understood that mixing and dispersion of particulate matter of different physical properties (particle diameter, density, etc.) can be achieved in a short time.

10 Next, when excitation force is gradually increased to the high frequency region and behavior is observed, as shown in the photograph in FIG. 2(A), flow behavior can be confirmed where the particulate matter 3 spouts up in an atomized state from between the spherical bodies 401.

Describing this state based on FIG. 2(B), an intermittent jet flow 301 can be confirmed 15 for the particulate matter 3 in a region where the spherical bodies 401 are laid in an initial spouting state that has the appearance of water boiling. When the excitation force is further increased, this becomes a continuous jet flow 301 in the central region of the container 2, with an intermittent jet flow 301 being confirmed at the outer peripheral region. During this time, the spherical bodies 401 rotate randomly so that spouting of the particulate matter 3 from a 20 gap enclosed by neighboring spherical bodies 401 and movement towards the bottom of the container 2 is repeated, with particulate matter 3 dispersed at the side walls of the container 2 moving from the edge of the region where the spherical bodies 401 are laid towards the bottom part of the container 2.

Similarly, comparing with results observed for related vibro-fluidizing not employing 25 the spherical bodies 401, the particulate matter 3 at the periphery is gradually covered until eventually all of the colored particles are covered so as not to be visible from the surface,

which takes around one minute. The colored particles do not reappear even when applying vibration at high frequency regions where the excitation force is increased and circulation that is superior for dispersion and mixing can therefore not be confirmed.

[2] Experimental example employing a porous plate as the vibrating medium.

5 Under the conditions in the aforementioned experimental example 1, vibrations were applied to a particulate matter layer using a stainless steel porous plate 402 with hole diameters of 2mm and a plate thickness of 0.5mm in place of the spherical bodies 401. The behavioral state of the vibro-fluidizing is shown in the form of a photograph in FIG. 3(A), and an illustration thereof is shown in FIG. 3(B). FIG. 3(B) is that shown in FIG. 3(A) with a jet 10 flow 302 of the particulate matter and the porous plate 402 color-processed with respect to contrast and intensity in order to highlight the flow conditions.

First, when excitation force due to vertical vibration of the vibrating device is applied to the particulate matter 3 within the container 2, particulate matter present at the surface of the particulate matter layer momentarily moves to the bottom of the container 2 before 15 reappearing at the surface after two or three seconds, substantially the same as in the above experimental example 1.

Next, when excitation force is gradually increased to the high frequency region and behavior is observed, as shown in the photograph in FIG. 3(A), flow behavior can be confirmed where the particulate matter 3 spouts up in a columnar state from the holes in the 20 porous plate 402.

Describing this state based on FIG. 3(B), an intermittent jet flow 302 can be confirmed for the particulate matter 3 in a region where the porous plate 402 is installed in an initial spouting state. When the excitation force is further increased, behavior can be confirmed where an intermittent jet flow 302 spouts in a state where the whole region of the porous plate 25 has become one. During this time, when particulate matter 3 in the lower surface region of the porous plate spouts out in one go from each of the holes, there is repeated movement towards

the bottom part of the container 2 and particulate matter 3 dispersed at the side walls of the container 2 is shown to move towards the bottom part of the container 2 from the peripheral edge of the porous plate 402.

Gushing was confirmed from the circumferential region of each hole when confirming 5 the gushing state when employing a porous plate of a hole diameter of 1cm. The porous plate 402 may also be a netlike item.

In the above experimental example, when pressure on the fluidizing environment is reduced, reduction in the gushing fluidization was confirmed, and it was understood that the device configuration of the present invention can also be applied under reduced pressure 10 (reducing pressure within the container).

Next, a description is given of a second embodiment shown in FIG. 4 to FIG. 6. FIG. 4 is a partially cut-away overall view of a vibro-fluidizing device. A transparent resin cylindrical case 2a is fitted at the outer periphery of the container 2 on the vibrating table 101 so that particulate matter 3 with which the container 2 is filled is not dispersed to outside. The 15 container 2 is filled with particulate matter 3, and a flat plate 4 constituting a vibrating medium comprising rubber sheeting material is provided at the bottom part of the container as means of vibrating the particulate matter 3. A plurality of a metal, spherical floating bodies 4a are interposed between the flat plate 4 and the container 2 so as to construct an aggregate, and amplifying means are provided for amplifying vibrations of the container 2.

20 By directly transmitting vibrations of the vibrating table 101 generated as a result of cooperative operation with the vibrating device 1, the container 2 comprises a group of different vibrating bodies by acting in unison with the floating bodies 4a and differing vibrations can therefore be applied to the flat plate 4.

Namely, as a result of the cooperative relationship the floating bodies 4a constituting 25 the other different vibrating body are endowed with, vibrations from the container 2 constituting one of the different vibrating bodies are such that when the container 2 is

subjected to vibrations directly from the vibrating device 1, this excitation force is also indirectly applied to the floating bodies 4a via the container 2 and the floating bodies 4a vibrate up and down and collide with the flat plate 4. During this time, different vibrating actions are applied at the flat plate 4 as a result of vibration of the container 2 and vibrations 5 due to the collisions of the floating bodies 4a. Vibration of the container 2 is therefore amplified, and the particulate matter 3 is fluidized as a result of this vibration amplifying action.

In the second embodiment, with the cooperation relationship of the vibrating device 1 and the container 2, a configuration is adopted where the whole of the container is made to 10 vibrate. This configuration may be arbitrarily selected, however, providing that the vibrations applied to whichever surface of the container are amplified and are applied to the particulate matter 3 within the container 2 even if just the bottom part of the container is made to vibrate. Further, the floating bodies 4a may be bar-shaped, cylindrical or plate-shaped etc. rather than 15 being spherical, and may be made of metal, rubber or resin etc., or a combination thereof. Further, the material of the flat plate 4 is by no means limited to rubber material, and may be metal or resin, etc., and the shape is also by no means limited to being flat. It is also possible to construct the floating bodies 4a on the upper surface of the flat plate 4 and then treat the particulate matter 3.

Next, a description is given of an experimental example for vibro-fluidizational 20 behavior of particulate matter when a vibro-fluidizing device of the above structure is employed. A hardened rubber sheet approximately 2mm thick is used as the flat plate 4 and iron balls of an average diameter of 5mm are used as the floating bodies 4a. Polyethylene particles (white) of an average diameter of 5 μ m are used as the particulate matter 3 to be treated, the container 2 is filled with a particulate matter layer to a height of approximately 25 1cm, and vibrations of a frequency of 1 to 10kHz and amplitude of 0.1 to 10mm are applied. The behavioral state of the vibro-fluidizing is shown in the form of a photograph in FIG. 5(A)

and FIG. 6(A), and illustrations thereof are shown in FIG. 5(B) and FIG. 6(B). FIG. 5(B) and FIG. 6(B) show that shown in FIG. 5(A) and FIG. 6(A) color-processed with respect to contrast and intensity and with edges highlighted in order to highlight the flow conditions.

First, when a small excitation force due to vertical vibration of the vibrating device 1 is applied to the particulate matter 3 within the container 2, as shown in FIG. 5, slight swelling occurs in the even particulate matter layer and there is movement towards the outer periphery and the center of the container 2, with particulate matter 3 present at the surface of the particulate matter layer momentarily moving to the bottom of the container 2 before reappearing again at the surface after two or three seconds. In this behavioral state, flow behavior is observed with respect to mixing and dispersion from a state where a small amount of colored particles (red) of an average particle diameter of approximately $100\mu\text{m}$ are put on a central portion of the surface of the particulate matter layer, but this flow behavior, even in the initial stage of vibration where excitation force is relatively slight, is such that the occurrence of superior circulation whereby the colored particles are momentarily and homogeneously dispersed over the entire area of the container 2 before reappearing again over the whole of the surface of the particulate matter layer.

It was therefore be understood that mixing and dispersion of particulate matter of different physical properties (particle diameter, density, etc.) can be achieved in a short time.

Next, when excitation force is gradually increased and fluidizing behavior is observed, as shown in FIG. 6, flow behavior was confirmed where the particulate matter 3 spouts up in an atomized state so as to be dispersed.

Describing this state based on FIG. 6(B), in the initial state where the excitation force is increased, the particulate matter 3 exhibits behavior whereby the particulate matter 3 swells upwards due to the vibrations of the flat plate 4 so as to be dispersed in columnar shapes. At this time, gathering of the particulate matter 3 was confirmed at the top part of the columnar dispersion flow but when the excitation force is further increased, this gathering gradually

disappears and flow behavior is exhibited as shown in FIG. 6(A) whereby the whole of the particulate matter 3 is dispersed in atomized form.

In this dispersing fluidized state, the particulate matter can be treated in the same manner as related methods employing fluidizing media such as air and gas, etc., but has a 5 feature that a fluidizing medium is not necessary every time particulate matter is processed, which means that compressors, air filters and solid/gas separators etc. are no longer required. This reduces both the cost of the device itself, and the running costs. There is also the advantage that the container 2 itself is small.

In the above experimental example, when the pressure of the fluidizing environment is 10 gradually reduced, vibro-fluidizing behavior is confirmed in a ultra-high vacuum state of 1×10^{-8} Torr (1.33 μ Pa), and excitation force is required from a normal pressure every time fluidizing for dispersion of the particulate matter 3 takes place, and in the vibro-fluidizing of the present invention this behavior is also confirmed under special low pressure environments (in a container at reduced pressure).

15 This therefore has the benefit that, with physical vapor deposition methods (PVD methods) typified by vacuum deposition, sputtering deposition and laser ablation, i.e. in cases where technology where atoms or molecules are clustered together by subjecting a solid target including atoms of a thin film structure that is to be subjected to a physical action, and transported to a substrate surface so as to form a thin film, a superior circulation can be 20 achieved even for particulate matter located within a vacuum chamber and a thin film can therefore be formed (coated) evenly in a continuous or discontinuous manner on a surface of individual particles constituting particulate matter.

Further, comparing with results observed for related vibro-fluidizing when vibration is only applied to the container 2 when the same colored particles are used, the particulate 25 matter 3 at the periphery is gradually covered until eventually all of the colored particles are covered so as not to be visible from the surface, which takes around one minute. The colored

particles do not reappear at the surface of the particulate matter layer even when applying vibration where the excitation force is increased, circulation that is superior for dispersion and mixing does not occur, and it can be confirmed that there is almost no fluidizing in this related method.

5 In the embodiment of the present invention of the above configuration, by providing means for treating the particulate matter comprising vibrating means constituted by different types of vibrating body operating in cooperation, where the particulate matter is fluidization-treated by a cooperative vibrating action occurring between the different types of vibrating bodies, superior circulation where almost all particulate matter is momentarily
10 homogeneously dispersed so as to reliably appear over the whole surface of the particulate matter layer can be obtained without applying excitation force to the particulate layer so that particulate matter gushes from a vibrating medium in order to obtain vibro-fluidization necessary in treatment of material particles in the crushing of an agglomerate powder and dispersion, mixing and drying of particulate matter. Treatment directly using just circulation
15 due to vibro-fluidization can therefore be achieved without the use of a fluidizing medium such as air or gas etc., or the use of a solid medium such as impact balls, etc.

This means that circulation control capable of substantial change where the circulation behavior is such that the surface of the particulate matter layer is smooth while dispersion or columnar spouting is made to take place. It is also therefore possible to perform composite
20 treatment such as reaction with an atomized gas, etc., coating and deposition etc. on just the spouting particulate matter. Miniaturization can therefore easily be achieved without necessitating an especially complex overall mechanical structure.

Regarding the aforementioned mechanism for vibro-fluidizing behavior, this is not sufficiently analyzed or elucidated using dynamics, but can be considered to have the
25 following action, although this is an extremely difficult phenomena to predict.

(1) The vibrating body (container 2) cooperating directly with the vibrating device 1

transmits vertical energy of vibration to the particulate matter 3 and to the vibrating body (the vibrating medium 4) cooperating indirectly with the vibrating device 1. The vibrating medium 4 provides vertical motion due to physical properties of the vibrating medium 4 such as mass, size and shape, or in the case of an independent aggregate such as spherical bodies of 5 columnar shapes etc., rotational movement, and induces characteristic vibrational energy.

(2) The container 2 and the vibrating medium 4 constitute different vibrating bodies (different types of vibrations) and their cooperative vibration operation causes composite energy to be created between the container 2 and the vibrating medium 4 due to microscopic collisions, etc. During this time, particulate matter 3 existing between the container 2 and the 10 vibrating medium 4 gushes out in a fluidized manner together with gaseous molecules such as air, pushes upwards from the inside, or flies out, so that energy of acceleration is applied to provide upward movement (spouting) from the spaces and holes of the vibrating medium 4.

(3) Particulate matter 3 moving above the vibrating medium 4 is dispersed by the vibrations before again moving downwards from locations at the lower surface of the 15 vibrating medium 4 where there is little particulate matter 3, i.e. at locations where there is little spouting. This repetition ensures that the circulation forms the fluidized bed, and almost all of the particulate matter 3 is evenly dispersed at high speed and then reliably appears over the whole of the surface of the particulate matter layer.

It is therefore confirmed that the vibro-fluidizing behavior is improved by the 20 cooperative vibrating action of the different vibrations.

Further, by providing means for treating the particulate matter comprising a container operating in cooperation with the vibrating means and amplifying means for amplifying vibrations of the container, wherein the particulate matter within the container is vibration-treated by a vibrating action generated by the amplifying means, circulatory 25 behavior due to vibro-fluidizing of particulate matter is provided in such a manner that the whole of the particulate matter circulates so as to be dispersed in an even manner over all of

the surface of a particulate matter layer so that the particulate matter momentarily repeatedly appears even when different circulation occurs depending on the location within the container, and without the use of a fluidizing medium such as air or gas etc., or the use of a solid medium such as impact balls, etc. Complex processes such as crushing of an agglomerate 5 powder, dispersion, mixing and drying of particulate matter and reactions with an atomized gas, or the forming of a thin film on a particulate matter surface, etc. can therefore be performed in a short period of time.

This circulatory behavior enables control of changes from circulation of slight swelling, to dispersing spouting so that treatment such as the aforementioned reactions and processing 10 etc. can be carried out using circulation that corresponds to the desired purpose. This also enables superior circulatory behavior in special environments such as in a high vacuum etc., and enables miniaturization without requiring an especially complex overall mechanical structure.

Regarding the aforementioned mechanism for vibro-fluidizing behavior, this is not 15 sufficiently analyzed or elucidated using dynamics, but can be considered to have the following action, although this is an extremely difficult phenomena to predict.

(1) The vertical vibrational energy of the vibrating device 1 is indirectly transmitted to the particulate matter 3, the flat plate 4, and the floating bodies 4a via the container 2 directly 20 cooperating with the vibrating device 1. The flat plate 4 and the floating bodies 4a provide vertical motion due to physical properties of the vibrating medium 4 such as mass, size, shape, or material, or in the case of an independent aggregate where the floating bodies are spherical bodies of columnar shapes etc., rotational movement, and induce characteristic vibrational energy.

(2) The container 2, flat plate 4 and floating bodies 4a constitute different vibrating 25 bodies (different types of vibrations) and their cooperative vibration operation causes composite energy to be transmitted to the particulate matter 3. During this time, if the

excitation force is small, the influence of the amplified vibrational action due to impact vibrations due to the floating bodies 4a is small. However, a composition of different kinds of vibration actions due to vibrations of each of the container 2, the flat plate 4 and the floating bodies 4a is applied to the particulate matter 3. There is therefore a smooth fluidized bed and

5 a vibro-fluidized layer (circulating flow) that is superior compared to the case of the vibration action of just the container 2 is formed.

If the excitation force is large, the influence of the amplified vibration action due to vibrations caused by collisions of the floating bodies 4a is large and a composition of different types of vibration actions is applied to the particulate matter 3 centered about the collision

10 vibration energy so that a desirable columnar or atomized fluidized bed is formed.

(3) In the process where the excitation energy is made large, columnar dispersing fluidization can be seen where vertical vibration of the flat plate 4 is in synchronism with the vertical movement of the particulate matter 3. However, when excitation force exceeding a predetermined value is applied, vertical motion of the particulate matter 3 becomes disjointed

15 in units of particles and circulation that changes to atomized dispersion can be seen. A superior fluidized bed dispersed in this manner is formed, and the particulate matter 3 is homogeneously dispersed at high speed and is shown so as to behave so as to repeatedly and reliably appear at the surface of the particulate matter layer.

It can therefore be confirmed that the vibro-fluidizing behavior is improved by the

20 amplified vibrating action of the different vibrations.

INDUSTRIAL APPLICABILITY

By providing means for treating the particulate matter comprising vibrating means constituted by different types of vibrating body operating in cooperation, where the particulate

25 matter is fluidization-treated by a cooperative vibrating action occurring between the different types of vibrating bodies, and providing means for treating the particulate matter comprising a

container operating in cooperation with the vibrating means and amplifying means for amplifying vibrations of the container, where the particulate matter within the container is vibration-treated by a vibrating action generated by the amplifying means, circulatory behavior due to vibro-fluidizing of particulate matter is produced in such a manner that the 5 whole of the particulate matter circulates so as to be dispersed in an even manner over all of the surface of a particulate matter layer so that the particulate matter momentarily repeatedly appears even when different circulation occurs depending on the location within the container, and without the use of a fluidizing medium such as air or gas etc., or the use of a solid medium such as impact balls, etc. Composite processes such as crushing of an agglomerate 10 powder, dispersion, mixing and drying of particulate matter and reactions with an atomized gas, or the forming of a thin film on a particulate matter surface, etc. can therefore be performed in a short period of time.

This circulator behavior enables control of changes from circulation of slight swelling, to dispersion spouting or columnar spouting so that treatment such as the aforementioned 15 reactions and processing etc. can be carried out using circulation that corresponds to the desired purpose. This also enables superior circulatory behavior in special environments such as in a vacuum etc., and enables miniaturization without requiring an especially complex overall mechanical structure.

What is claimed is:

1. A particulate matter vibro-fluidizing apparatus having vibrating means and means for treating the particulate matter, said means for treating the particulate matter comprising a set of different types of vibrating bodies operating in cooperation with said vibrating means, wherein said particulate matter is fluidization-treated by a cooperative vibrating action occurring between said different types of vibrating bodies.
2. The particulate matter vibro-fluidizing apparatus of claim 1, wherein the vibrating bodies are constituted by a container filled with the particulate matter and a vibrating medium installed within the container.
3. The particulate matter vibro-fluidizing apparatus of claim 1 or 2, wherein the cooperation of the different vibrating bodies of the vibrating means comprises cooperation where the vibrating means is coupled with one of the vibrating bodies, and cooperation where the other vibrating body receives vibrations from the one vibrating body.
4. The particulate matter vibro-fluidizing apparatus of claim 1 or 2, wherein the cooperation of the different types of vibrating bodies of the vibrating means is cooperation coupling with the vibrating means in such a manner that each vibrating body is controlled by an individual vibration.
5. The particulate matter vibro-fluidizing apparatus of any one of claims 2 to 4, wherein the vibrating medium is a porous plate.
6. The particulate matter vibro-fluidizing apparatus of any one of claims 2 to 4, wherein the vibrating medium is an aggregate comprising a plurality of spherical bodies.
7. A particulate matter vibration treatment apparatus having vibrating means and means for treating the particulate matter, said means for treating the particulate matter comprising:
 - 25 a container operating in cooperation with said vibrating means; and amplifying means for amplifying vibrations of the container;

wherein said particulate matter within the container is to be vibration-treated by a vibrating action caused by said amplifying means.

8. The particulate matter vibration treatment apparatus of claim 7, wherein the vibrating means cooperates in such a manner as to apply vertical vibrations to the bottom part of the 5 container.

9. The particulate matter vibration treatment apparatus of claim 7 or 8, wherein the vibration action comprises a cooperative vibration action of vibration due to the amplifying means and vibration of the container.

10. The particulate matter vibration treatment apparatus of any one of claims 7 to 9, said 10 amplifying means comprising:

 a plate being provided inside said container spaced away from the bottom of the container; and

 floating bodies being provided between said plate and the container so as to collide with said plate.

15 11. The particulate matter vibration treatment apparatus of claim 10, wherein the plate is comprised of a rubber sheet, a metal material or a resin material.

12. The particulate matter vibration treatment apparatus of claim 8 or 9, wherein the floating bodies are constituted by a plurality of spherical bodies made of metal, resin or rubber.

13. The particulate matter vibration treatment apparatus of any one of claims 7 to 12, wherein 20 the particulate matter treatment means is used within a vacuum.

ABSTRACT

An object is to provide a particulate matter vibro-fluidizing device capable of circulating particulate matter by vibro-fluidizing the particulate matter in such a manner that 5 granules are homogeneously dispersed over an entire surface as a result of circulating most of particulate matter 3 so that the particulate matter appears at high speed without the necessity of using a fluid such as air or gas, or a medium such as impact balls etc., so that composite processes such as crushing of an agglomerate powder and dispersion, mixing and drying of particulate matter can be carried out directly with respect to the circulating particulate matter 10 without the necessity of a complex mechanical structure. Treatment means for particulate matter 3 comprises different vibrating bodies 2 and 4 linking with vibrating means 1 being grouped together, and is configured in such a manner as to subject the particulate matter 3 to fluidization treatment due to the cooperative oscillating action caused between the different oscillators.

Title: PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS

10/088781

Inventor: Shohan Yanagi
Docket No.: NAI118875

1 / 7

Title: PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS

10/088781

Inventor: Shohan Yanagi
Docket No.: NAI118875

2 / 7

(A)

(B)

Title: PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS

10/088781

Inventor: Shohan Yanagi
Docket No.: NAI118875

3 / 7

(A)

(B)

Title: PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS

10 / 088781

Inventor: Shohan Yanagi
Docket No.: NAI118875

4 / 7

Title: PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS

10/088781

Inventor: Shohan Yanagi
Docket No.: NAI118875

5 / 7

(A)

(B)

Title: PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS 10/088781
Inventor: Shohan Yanagi
Docket No.: NAI118875

6 / 7

(A)

(B)

7 / 7

VIBRO-FLUIDIZING PATTERNS
(COLORED BEADS, PARTICLE DIAMETER 1mm)

Attorney Docket No.

COMBINED DECLARATION AND POWER OF ATTORNEY
IN PATENT APPLICATION

As the below-named inventor, I hereby declare that:

my residence, post office address, and citizenship are as stated below next to my name;

I believe that I am the original, first, and sole inventor of the subject matter that is claimed and for which patent is sought on the invention entitled PARTICULATE MATTER VIBRO-FLUIDIZING APPARATUS, the specification of which was filed on September 20, 2000, as PCT International Application No. PCT/JP00/06405.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with 37 C.F.R. 1.56.

I hereby claim foreign priority benefits under 35 U.S.C. 119(a)-(d) or (f), or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT international application which designated at least one country other than the United States of America, listed below, and I have also identified below any foreign application for patent or inventor's certificate, or any PCT international application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application No.	Country	Foreign Filing Date Month/Day/Year	Priority Claimed Yes/No
11-268333	Japan	September 22, 1999	Yes
2000-109878	Japan	April 11, 2000	Yes

I hereby appoint the following attorneys and/or agents to prosecute this application and to transact all business in the United States Patent and Trademark Office connected therewith: Bruce E. O'Connor, Reg. No. 24,849; Lee E. Johnson, Reg. No. 22,946; Gary S. Kindness, Reg. No. 22,178; James W. Anable, Reg. No. 26,827; James R. Uhlir, Reg. No. 25,096; Jerald E. Nagae, Reg. No. 29,418; Dennis K. Shelton, Reg. No. 26,997; Jeffrey M. Sakoi, Reg. No. 32,059; Ward Brown, Reg. No. 28,400; Robert J. Carlson, Reg. No. 35,472; Rodney C. Tullett, Reg. No. 34,034; Daiva K. Tautvydas, Reg. No. 36,077; Mary L. Culic, Reg. No. 40,574; Julie C. VanDerZanden, Reg. No. 38,105; George E. Renzoni, Ph.D., Reg. No. 37,919; Philip P. Mann, Reg. No. 30,960; George S. Farber, Reg. No. 41,497; Kevan L. Morgan, Reg. No. 42,015; and John D. Denkenberger, Reg. No. 44,060; and the firm of Christensen O'Connor Johnson Kindness^{PLC}. Address all telephone calls to Jerald E. Nagae at telephone No. 206.695.1705.

Address all correspondence to:

Customer No. 26389

CHRISTENSEN O'CONNOR JOHNSON KINDNESS^{PLLC}
1420 Fifth Avenue, Suite 2800
Seattle, WA 98101

I hereby further declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

/ -00

Full Name of Inventor <u>Shohan Yanagi</u>	Citizenship Japan
Residence <u>Tokyo, Japan</u>	<u>JPX</u>
Post Office Address <u>c/o Nara Machinery Co. Ltd. 5-7, Jonan-jima, 2-chome, Ohta-ku, Tokyo 143-0002 Japan</u>	
Inventor's Signature <u>Shohan Yanagi</u>	Date <u>29 JUN, 2002</u>

JEN:hjd