Page 1 of 47

Report No.: HK1809271160E

FCC TEST REPORT

Test report
On Behalf of
MOVEON TECHNOLOGY LIMITED

For

Smart Phone

Model No.: LitePro

FCC ID: 2AFD9LITEPRO

Prepared for: MOVEON TECHNOLOGY LIMITED

World Trade Plaza-A block #3201-3202 Fuhong Road, Futian, Shenzhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an

District, Shenzhen City, China

Date of Test: Sep. 26, 2018~Oct. 17, 2018

Date of Report: Oct. 17, 2018

Report Number: HK1809271160E

(Jason Zhou)

Report No.: HK1809271160E

TEST RESULT CERTIFICATION

Applicant's name:	MOVEON TE	CHNOLOGY LIMITED		
Address:	World Trade Plaza-A block #3201-3202 Fuhong Road, Futian, Shenzhen, China			
Manufacture's Name:	MOVEON TECHNOLOGY LIMITED			
Address:	World Trade F China	Plaza-A block #3201-3202 Fuhong Road,	Futian, Shenzhen,	
Product description	Smart Phone			
Brand Name	ZOOM			
Mode Name	LitePro			
Standards:	FCC Rules ar	nd Regulations Part 15 Subpart C Section: 2013:	on 15.247	
Shenzhen HUAK Testing Technol material. Shenzhen HUAK Testing liability for damages resulting from placement and context.	ogy Co., Ltd. g Technology om the reader	or in part for non-commercial purpos is acknowledged as copyright owner Co., Ltd. takes no responsibility for arr's interpretation of the reproduced n	and source of the nd will not assume	
Date of Test				
Date (s) of performance of tests		ep. 26, 2018~Oct. 17, 2018		
Date of Issue	: 00	ct. 17, 2018		
Test Result	: Pa	ass		
Testing Engir	neer :	Gogs Dian		
		(Gary Qian)		
Technical Ma	nager :	Edan Hu		
		(Eden Hu)		

Authorized Signatory:

RevisionIssue DateRevisionsRevised ByV1.0Oct. 17, 2018Initial IssueJason Zhou

TABLE OF CONTENTS

1.	VERIFICATION OF CONFORMITY	6
	1.1. PRODUCT DESCRIPTION	6
	1.2. TABLE OF CARRIER FREQUENCYS	7
	1.3. RECEIVER INPUT BANDWIDTH	8
	1.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	8
	1.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	
	1.6. RELATED SUBMITTAL(S) / GRANT (S)	9
	1.7. TEST METHODOLOGY	9
	1.8. SPECIAL ACCESSORIES	9
	1.9. EQUIPMENT MODIFICATIONS	9
	MEASUREMENT UNCERTAINTY	
	DESCRIPTION OF TEST MODES	
4.	SYSTEM TEST CONFIGURATION	
	4.1. CONFIGURATION OF EUT SYSTEM	
	4.2. EQUIPMENT USED IN EUT SYSTEM	
	4.3. SUMMARY OF TEST RESULTS	
	TEST FACILITY	
6.	PEAK OUTPUT POWER	
	6.1. MEASUREMENT PROCEDURE	
	6.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	6.3. LIMITS AND MEASUREMENT RESULT	
7.	20DB BANDWIDTH	
	8.1. MEASUREMENT PROCEDURE	
	7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	7.3. LIMITS AND MEASUREMENT RESULTS	
8.	CONDUCTED SPURIOUS EMISSION	
	8.1. MEASUREMENT PROCEDURE	
	8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
	8.3. MEASUREMENT EQUIPMENT USED	
	8.4. LIMITS AND MEASUREMENT RESULT	
9.	RADIATED EMISSION	
	9.1. MEASUREMENT PROCEDURE	
	9.2. TEST SETUP	
	9.3. LIMITS AND MEASUREMENT RESULT	
	9.4. TEST RESULT	. 31

10. BAND EDGE EMISSION	34
10.1. MEASUREMENT PROCEDURE	34
10.2. TEST SET-UP	34
10.3. RADIATED TEST RESULT	35
10.4 CONDUCTED TEST RESULT	36
11. NUMBER OF HOPPING FREQUENCY	38
11.1. MEASUREMENT PROCEDURE	38
11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	38
11.3. MEASUREMENT EQUIPMENT USED	38
11.4. LIMITS AND MEASUREMENT RESULT	38
12. TIME OF OCCUPANCY (DWELL TIME)	39
12.1. MEASUREMENT PROCEDURE	39
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	39
12.3. MEASUREMENT EQUIPMENT USED	39
12.4. LIMITS AND MEASUREMENT RESULT	40
13. FREQUENCY SEPARATION	41
13.1. MEASUREMENT PROCEDURE	41
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	41
13.3. MEASUREMENT EQUIPMENT USED	41
13.4. LIMITS AND MEASUREMENT RESULT	41
14. FCC LINE CONDUCTED EMISSION TEST	42
15.1. LIMITS OF LINE CONDUCTED EMISSION TEST	42
14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	42
14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	43
14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	43
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	44
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	ΔF

1. VERIFICATION OF CONFORMITY

1.1. PRODUCT DESCRIPTION

1.1. PRODUCT DESCRIPTION		
Equipment	Smart Phone	
Model Name	LitePro	
Hardware Version	7130D-MMI-V10	
Software Version	Zoom_LitePro_001_20180903	
FCC ID	2AFD9LITEPRO	
Antenna Type	PIFA Antenna	
Antenna Gain	1.0dBi	
BT Operation frequency	2.402 GHz to 2.480GHz	
Number of Channels	79(For BR/EDR)	
Modulation Type	GFSK, π /4-DQPSK, 8DPSK	
Power Supply	DC3.7V by Battery	

1.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
	0	2402MHZ
	1	2403MHZ
	:	:
	38	2440 MHZ
2400~2483.5MHZ	39	2441 MHZ
	40	2442 MHZ
	:	:
	77	2479 MHZ
	78	2480 MHZ

Page 8 of 47 Report No.: HK1809271160E

1.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ,In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

1.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

1.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection.
- 2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits), 4LSB's (4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

Page 9 of 47 Report No.: HK1809271160E

1.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AFD9LITEPRO** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

1.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

1.8. SPECIAL ACCESSORIES

Refer to section 5.2.

1.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2. MEASUREMENT UNCERTAINTY

Test	Measurement Uncertainty	Notes
Transmitter power conducted	±0.57 dB	(1)
Transmitter power Radiated	±2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	±2.20 dB	(1)
Occupied Bandwidth	±0.01ppm	(1)
Radiated Emission 30~1000MHz	±4.10dB	(1)
Radiated Emission Above 1GHz	±4.32dB	(1)
Conducted Disturbance0.15~30MHz	±3.20dB	(1)

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3. DESCRIPTION OF TEST MODES

	1-0102-20			
NO.	TEST MODE DESCRIPTION			
1	Low channel GFSK			
2	Middle channel GFSK			
3	High channel GFSK			
4	Low channel π /4-DQPSK			
5	Middle channel π /4-DQPSK			
6	High channel π /4-DQPSK			
7	Low channel 8DPSK			
8	Middle channel 8DPSK			
9	High channel 8DPSK			
10	Normal Hopping			

Note:

^{1.} All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report, if no other cases.

^{2.} For Radiated Emission, 3axis were chosen for testing for each applicable mode.

Page 12 of 47 Report No.: HK1809271160E

4. SYSTEM TEST CONFIGURATION

4.1. CONFIGURATION OF EUT SYSTEM

Configuration:

4.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	Smart Phone	LitePro	2AFD9LITEPRO	EUT
2	Adapter	LitePro	DC 5.0V 1A	Accessory
3	Battery	LitePro	DC 3.7V/2500mAh	Accessory
4	Earphone	N/A	N/A	Accessory
5	USB	N/A	N/A	Accessory

4.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Peak Output Power	Compliant
§15.247	20 dB Bandwidth	Compliant
§15.247	Spurious Emission	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Power Line Conduction Emission	Compliant
§15.247	Number of Hopping Frequency	Compliant
§15.247	Time of Occupancy	Compliant
§15.247	Frequency Separation	Compliant

5. TEST FACILITY

Site	Shenzhen HUAK Testing Technology Co., Ltd.	
Location 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, B District, Shenzhen City, China		
Designation Number CN1229		
Test Firm Registration Number : 616276		

ALL TEST EQUIPMENT LIST

RF Test Room				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Sensor	Agilent	E9327A	HKE-113	Dec. 28, 2018
RF cable	Times	1-40G	HKE-034	Dec. 28, 2018
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Dec. 28, 2018
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Dec. 28, 2018
Signal generator	Agilent	N5183A	HKE-071	Dec. 28, 2018
Receiver	R&S	ESCI-7	HKE-010	Dec. 28, 2018
Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2018
Preamplifier	EMCI	EMC051845SE	HKE-015	Dec. 28, 2018
Preamplifier	Agilent	83051A	HKE-016	Dec. 28, 2018
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2018
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Dec. 28, 2018
Horn antenna	Schwarzbeck	9120D	HKE-013	Dec. 28, 2018
Antenna Mast	Keleto	CC-A-4M	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Dec. 28, 2018
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A
RF cable	Times	1-40G	HKE-034	Dec. 28, 2018

Page 14 of 47 Report No.: HK1809271160E

6. PEAK OUTPUT POWER

6.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. Use the following spectrum analyzer settings:
 - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
 - 2) RBW > 20 dB bandwidth of the emission being measured.
 - 3) VBW \geq RBW.
 - 4) Sweep: Auto.
 - 5) Detector function: Peak.
 - 6) Trace: Max hold.
- 4. Record the maximum power from the Spectrum Analyzer.

Note: The EUT was tested according for compliance ANSI C63.10 (2013) requirements.

6.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

PEAK POWER TEST SETUP

6.3. LIMITS AND MEASUREMENT RESULT

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	1.015	30	Pass
GFSK	2.441	0.388	30	Pass
	2.480	-0.931	30	Pass

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
π /4-DQPSK	2.402	0.409	30	Pass
	2.441	-0.301	30	Pass
	2.480	-1.909	30	Pass

Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
8DPSK	2.402	-0.131	30	Pass
	2.441	-0.854	30	Pass
	2.480	-1.866	30	Pass

Test Graph

Page 18 of 47 Report No.: HK1809271160E

7. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

7.3. LIMITS AND MEASUREMENT RESULTS

Mode	Channel.	20dB Bandwidth [KHz]	Verdict
GFSK	LCH	828.4	PASS
GFSK	MCH	829.6	PASS
GFSK	HCH	829.0	PASS
π/4DQPSK	LCH	1.125	PASS
π/4DQPSK	MCH	1.124	PASS
π/4DQPSK	HCH	1.125	PASS
8DPSK	LCH	1.138	PASS
8DPSK	MCH	1.139	PASS
8DPSK	HCH	1.136	PASS

Test Graph

