FUNDAMENTALS ABOUT NEURAL NETWORK

Brain inspired computing

Neural Networks

A neural network consists of a set of nodes (neurons/units) connected by links

Each link has a numeric weight

Each unit has:

- a set of input links from other units,
- a set of output links to other units,
- a current activation level, and
- an activation function to compute the activation level in the next time step.

$$in_i = \sum_{j=0}^n W_{j,i}a_j$$
 $a_i = g(in_i) = g\left(\sum_{j=0}^n W_{j,i}a_j\right)$

Perceptron

$$in = \sum_{i=0}^{2} W_i x_i \qquad a = \begin{cases} 0 & if \ in \leq 0 \\ 1 & if \ in > 0 \end{cases}$$

Studying a perceptron helps us to understand the limitations in capacity and the corresponding inability to model certain types of functions.

Perceptron

Linear Function:

$$in = x_1W_1 + x_2W_2 - W_0$$

$$a = \begin{cases} 0 & if in \leq 0 \\ 1 & if in > 0 \end{cases}$$

AND:
$$W_1 = 1$$
, $W_2 = 1$, $W_0 = 1$

$$in = x_1 + x_2 - 1$$

OR:
$$W_1 = 2$$
, $W_2 = 2$, $W_0 = 1$

$$in = 2x_1 + 2x_2 - 1$$

What about XOR?

Multiple Layers Increase the Capacity

The black and white dots are not *linearly separable*, that is, no linear function of the following form separates them:

$$in = x_1W_1 + x_2W_2 - W_0$$

With two layers, it is possible to model the XOR function.