

1 źródła danych i postać bazy

przetwarzanie danych nie-mediowych

przetwarzanie danych mediowych

brainstorm – jakie czynniki wpływają na sprzedaż piwa butelkowanego

w skład bazy wchodzą dane z kilkunastu różnych źródeł

Obszar	Zmienne	Częstotliwość	Źródło	
Dane sprzedażowe	Wartość, wolumen, dystrybucja, cena, liczba sklepów	Dz./tyg.	Klient (retail), Nielsen (FMCG), IQVIA (pharma), GfK (FMCG)	
Aktywności mediowe	Telewizja, radio, social, search, display, VOD	Dz./tyg.	Nielsen, Google, Facebook, TikTok, Radio Track, inni dostawcy	
Aktywności tradeowe	Standy, faceing, płachty, katalogi, sampling, ulotki	Tyg./mies.	Klient, Nielsen, FOCUS	
Dane ekonomiczne	CPI, Konsumpcja, urodzenia, CCI	Mies./kw.	GUS, OECD, strony rządowe	
Święta i sezonowość	Święta, dni handlowe, cykl sezonowości	Dz./tyg.	Kalendarz, strony rządowe	
Pogoda	Opady, temperatura, nasłonecznienie	Dz./tyg.	IMGW, strony rządowe, Dark Sky	
Czynniki zewnętrzne	Trendy konsumenckie, COVID i inne czarne łabędzie	Dz./tyg.	Google Trends, Google Mobility, GfK, agencje badawcze, dane rządowe	

baza danych do modelowania składa się z kilkuset lub kilku tysięcy zmiennych

zmienne

bserwacje

case study: marka na rynku FMCG posiadająca 3 SKU

Oferowane przez markę produkty (SKU):

- Piwo puszka 0.5l
- Piwo butelka 0.5l
- Piwo butelka 0.33l

Opis case study:

- Marka zakupiła jeden model ekonometryczny
- Sprzedaż w jednym łańcuchu dyskontów (50 sklepów)
- Dane zagregowane pomiędzy sklepami (szereg czasowy)
- Okres modelowany: 2 lata (104 tygodnie)
- Model został zakupiony przez producenta/browar (a nie dyskont):
 - Browar sprzedaje dyskontowi piwo po stałej cenie, czyli operuje na stałej marży. Cena do konsumenta jest ustalana przez dyskont (może on ale nie musi kierować się rekomendacjami cenowymi browaru).

case study: co powinno być zmienną modelowaną by dostarczyć klientowi (browarowi) jak najbardziej wartościowe wnioski?

Możliwe kanały transakcyjne:

- Browar -> dyskont
- Dyskont -> konsument

Możliwe metryki:

- Liczba dokonanych transakcji
- Liczba sprzedanych butelek
- Litry sprzedanego piwa
- Wartość w PLN sprzedanego piwa

Odp: wolumen sprzedaży w sklepach ujęty w litrach

wartość i wolumen

wybór zmiennej modelowanej:

- metryka pozwalająca na wyciąganie wniosków wartościowych dla producenta piwa (a nie dla dyskontu)
- metryka na zmienność której bezpośredni wpływ mają zachowania konsumentów (pamiętajmy, że głównym celem projektu MMM jest zbadanie efektywności mediów. Media w zamyśle oddziałują na konsumentów końcowych a nie na właściciela dyskontu.)
- metryka pozwalająca zagregować wszystkie SKU do jednej zmiennej

przygotowanie zmiennych

- wartości i wolumeny (przy wybraniu uniwersalnej metryki takiej jak wolumen w litrach lub wartość metryki) mogą być agregowane (sumowane)
- zmienne przygotowujemy na różnych poziomach agregacji (SKU, podtyp składający się z sumy wolumenów SKU, cała marka składająca się z sumy wolumenu podtypów. SKU to np. piwo IPA 500 ml, piwo IPA 330ml, radler 500 ml, radler 330 ml. Podtyp to piwo IPA i radler. Marka to suma radlerów i IPA), natomiast dążymy do uwzględniania w modelu jak najbardziej szczegółowych zmiennych (by dostarczyć szczegółowe wnioski i uniknąć paradoksu agregacji, o którym będzie mowa w dalszej części prezentacji). Ograniczeniami w przypadku dużej szczegółowości zmiennych są:
 - współliniowość
 - liczba stopni swobody

zadanie 1 (1 pkt)

- za pomocą biblioteki **readxl** wczytaj bazę **data_processing.xlsx**
- zapoznaj się z bazą **data.df**
- stwórz finalną zmienną objaśnianą, nazwij ją **ZM_MOD**
 - Zmienna **ZM_MOD** jest sumą wolumenów wszystkich SKU piwa **(VO_)**
 - Zlogarytmuj zmienną **ZM_MOD** (logarytm naturalny)
- wynikiem zadania 1 powinna być niezależna ramka danych

cena długo- i krótko-okresowa

cenę półkową należy rozbić na cenę długookresową oraz obniżki cenowe:

- dla każdego SKU dzielimy wartość przez wolumen
- otrzymana cena to cena półkowa (PR) zawiera ona w sobie jednocześnie cenę długookresową (PL - względnie stały poziom) oraz obniżki cenowe (PS - okresowe promocje)
- identyfikujemy cenę długookresową
- od ceny długookresowej odejmujemy cenę półkową. wynik odejmowania dzielimy przez cenę długookresową
- wynikiem tego dzielenia jest "głębokość promocji" czyli okresowe obniżki cenowe

imputacja braków danych:

- braki danych dla ceny powstają gdy wolumen sprzedaży (mianownik) jest zerowy
- cenę długookresową najlepiej imputować medianą/wartością maksymalną z pozostałych dni, a cenę krótkookresową – zerem (slajd 16 doskonale obrazuje dlaczego).

zadanie 2

(1 pkt za rozwiązanie manualne lub 3 pkt za uniwersalne)

- stwórz zmienne zawierające cenę półkową wszystkich SKU piwa
- przykładowa nazwa zmiennej zawierającej cenę: PR_BEER_SKU1
- UWAGA: Wykorzystaj bibliotekę tidyverse, by napisany kod był uniwersalny tzn. by mógł w niezmienionej
 formie posłużyć do stworzenia nie 3, lecz dowolnej liczby zmiennych PR_
 - o TIP1: Wykorzystaj funkcję pivot_longer() by móc operować na wszystkich SKU jednocześnie
 - o **TIP2:** Wykorzystaj funkcję substr() by wyodrębnić z nazwy zmiennej jej metrykę (VA i VO) i SKU
- wynikiem zadania 2 powinna być niezależna ramka danych

Cena długo- i krótko-okresowa

zadanie 3 (2 pkt)

- obejrzyj zmienne PR stworzone w poprzednim zadaniu na wykresie.
- na podstawie PR i PL stwórz zmienne zawierające cenę krótkookresową (PS).
 - TIP1: Zmienne PS, jako głębokość promocji powinny być wyrażone w procentach (wartość 30% mówi, że w
 danym tygodniu cena PR spadła o 30% w stosunku do ceny PL).
- obejrzyj gotowe zmienne na wykresach.
- wynikiem zadania 3 powinna być niezależna ramka danych

Fzadanie dodatkowe

- Stwórz uniwersalny algorytm tworzący zmienne PL i PS na podstawie zmiennych PR
- Uniwersalny algorytm powinien działać dla dowolnej liczby inputowych zmiennych PR
- Output funkcji może bazować na założeniach i przybliżeniach, nie musi być w 100% tak dokładny jak zmienne powstałe w przypadku ręcznego przetwarzania na podstawie oglądania zmiennych na wykresie.
- **UWAGA:** Napisanie uniwersalnej i poprawnie działającej funkcji/algorytmu zostanie nagrodzone podniesieniem oceny końcowej przedmiotu o 0.5.

paradoks agregacji cen

uwzględnianie cen na poziomie całej marki może prowadzić do tzw. "price aggregation paradox":

- czyli sytuacji, w której cena za litr każdego SKU rośnie, natomiast cena za litr całej marki spada
- dzieje się tak, ze względu na zmiany nawyków konsumentów, którzy w przypadku nieproporcjonalnych zmian cen zaczynają kupować inne produkty tej samej marki
- przykład:

SKU	Cena za litr		Cena za litr na całej marce			Cena za litr na całej marce
But 0.5l	4.0 PLN	1000 l	•	4.4 PLN	200	2.92 PLN
Puszka – 0.51	3.0 PLN	200 l	3.83 PLN	3.3 PLN	1000 l	

dystrybucja numeryczna i ważona na przykładzie pojedynczego SKU

numeryczna

- odsetek sklepów w których dany SKU był dostępny (przykład: jeżeli dla SKU-1 dystrybucja w pierwszym tygodniu 2022 roku wynosi 68%, znaczy to, że ten produkt był dostępny w 68% sklepów).
- zawiera się w przedziale od 0 do 1
- traktuje każdy sklep jednakowo

ważona

- średnia dostępność SKU ważona sprzedażą danego SKU w każdym z rozważanych sklepach (przykład: jeżeli mamy 3 sklepy o rocznym obrocie 1mln PLN i czwarty sklep o rocznym obrocie 2mln, a produkt był w danym tygodniu dostępny tylko w tych trzech mniejszych sklepach, to dystrybucja numeryczna wyniesie 75% ale ważona tylko 60%).
- zawiera się w przedziale od 0 do 1
- lepiej odzwierciedla rzeczywistość, ponieważ uwzględnia różnice w wielkości sklepu i klienteli
- wymaga dostępności danych z podziałem na sklep

dystrybucja SKU versus całej marki

zadanie 4 (1 pkt)

- na podstawie zmiennych dotyczących dystrybucji SKU stwórz zmienną mówiącą o przybliżonej dystrybucji całej marki DW_BEER
 - TIP1: wykorzystaj funkcję pmax()
- wynikiem zadania 5 powinna być niezależna ramka danych

Finflacja

jak przygotować zmienną?

- potrzebujemy współczynnika inflacji month-on-month
- jako punkt odniesienia możemy wybrać miesiąc przed rozpoczęciem okresu modelowanego
- konieczna będzie transformacja danych miesięcznych (GUS) na tygodniowe
- na końcu wskazane jest wygładzenie przetransformowanej zmiennej średnią ruchomą

jak używać inflacji w modelach?

- gdy modelujemy wartość sprzedaży:
 - podzielenie zmiennej objaśnianej przez inflację
 - uwzględnienie inflacji jako jednej ze zmiennych objaśniających
- gdy modelujemy wolumen sprzedaży:
 - pominięcie inflacji (np. w przypadku dóbr pierwszej potrzeby)
 - dzielenie wszystkich uwzględnianych w modelu cen przez współczynnik inflacji

zadanie 5 (2 pkt)

- na podstawie zmiennej INFLACJA_WOW (współczynnik inflacji tydzień do tygodnia, czyli np. 1.002 w tygodniu T6 znaczy, że poziom cen w T6 wzrósł o 0.2% w porównaniu do T5) przygotuj zmienne:
 - INFLACJA_BASE, która będzie zawierała skumulowany współczynnik inflacji w odniesieniu do pierwszego tygodnia przed okresem modelowanym.
 - INFLACJA_SMOOTH, która będzie scentrowaną średnią ruchomą z 5 tygodni policzoną na podstawie zmiennej INFLACJA BASE.
- Wynikiem zadania 5 powinna być niezależna ramka danych

Jak zaadresować zmieniającą się liczbę sklepów gdy każdy sklep jest innej "wielkości"?

Preferowanym podejściem jest przeważenie liczby sklepów przez ich przeciętny tygodniowy obrót w okresie modelowanym. Dzięki temu odzwierciedlimy fakt, że zamknięcia/otwarcie "dużych" sklepów silniej oddziałują na zmiany wartości sprzedaży piwa w całej Polsce niż zamknięcia/otwarcia "małych sklepów". Przykładowo, na wykresie powyżej w 2017 jeden sklep został zamknięty tymczasowo – widzimy, że był to ponadprzeciętnie "duży" sklep. Relatywny spadek w poziomie zmiennej ważonej (czerwonej) jest głębszy niż spadek w przypadku surowej numerycznej liczby sklepów.

