Исследование несобственных интегралов на сходимость

1.Интеграл

$$\int_0^\infty \frac{1}{x^2} \left| \frac{x}{e^x - e^{-x}} - 2 \right| dx$$

Анализ:

Подынтегральная функция $f(x) = \frac{1}{x^2} \left| \frac{x}{e^x - e^{-x}} - 2 \right|$ неотрицательна. Исследуем поведение на бесконечности и в окрестности нуля.

- При $x\to\infty$: $e^x-e^{-x}\approx e^x$, следовательно $\frac{x}{e^x-e^{-x}}\approx xe^{-x}\to 0$. Тогда $f(x)\approx \frac{2}{x^2}$. Интеграл $\int_1^\infty \frac{2}{x^2}dx$ сходится.
- При $x \to 0$: Разложим в ряд: $e^x - e^{-x} \approx 2x + \frac{x^3}{3}$, $\frac{x}{e^x - e^{-x}} \approx \frac{1}{2} - \frac{x^2}{12}$, $f(x) \approx \frac{1}{x^2} \left| \frac{1}{2} - 2 \right| = \frac{3}{2x^2}$. Интеграл $\int_0^1 \frac{3}{2x^2} dx$ расходится.

Вывод:

Интеграл расходится.

2. Интеграл

$$\int_0^\infty \frac{x}{1 + x^2 \sin^2 x} dx$$

1. В точках $x_n = n\pi$ (где $\sin x_n = 0$):

$$f(x_n) = \frac{n\pi}{1+0} = n\pi \to \infty$$
 при $n \to \infty$

2. Для $x \in [n\pi - \pi/2, n\pi + \pi/2]$:

$$\int_{n\pi-\pi/2}^{n\pi+\pi/2} f(x)dx \ge \text{const} > 0$$

3. Сумма таких интегралов:

$$\sum_{n=1}^{\infty} const = +\infty$$

Вывод: Интеграл расходится, так как функция не стремится к нулю и имеет бесконечную серию "пиков"

3. Интеграл:

$$\int_0^{\pi/2} \frac{\ln \sin x}{\sqrt{x(\pi - 2x)^5}} dx$$

Анализ:

Подынтегральная функция имеет особенности в точках x = 0 и $x = \pi/2$.

• При $x \to 0^+$: $\ln \sin x \approx \ln x$, $(\pi - 2x)^5 \approx \pi^5$, $f(x) \approx \frac{\ln x}{\sqrt{x\pi^5}}$. Интеграл $\int_0^1 \frac{\ln x}{\sqrt{x}} dx$ сходится.

• При
$$x \to \pi/2^-$$
:
Пусть $t = \pi/2 - x$:
 $\ln \sin x \approx \ln \cos t \approx -\frac{t^2}{2}$,
 $(\pi - 2x)^5 = (2t)^5$,
 $f(x) \approx \frac{-t^2/2}{\sqrt{(\pi/2)(2t)^5}} \approx -\frac{1}{8\sqrt{\pi}} t^{-1/2}$.
Интеграл $\int_0^1 t^{-1/2} dt$ сходится.

Вывод:

Интеграл сходится.

4. Интеграл:

$$\int_0^1 \frac{\arctan x^2}{x^3} \sin \frac{1}{x} dx$$

- 4.1. Замена переменной Сделаем замену $t=\frac{1}{x}$, тогда $x=\frac{1}{t},\,dx=-\frac{1}{t^2}dt.$ Пределы интегрирования:
 - При $x \to 0^+ \Rightarrow t \to +\infty$
 - При $x = 1 \Rightarrow t = 1$

Преобразуем интеграл:

$$I = \int_{+\infty}^{1} \frac{\arctan\left(\frac{1}{t^2}\right)}{\left(\frac{1}{t}\right)^3} \sin t \left(-\frac{1}{t^2}\right) dt = \int_{1}^{+\infty} \frac{\arctan\left(\frac{1}{t^2}\right)}{t} \sin t dt$$

4.2. Применение признака Дирихле Рассмотрим:

$$f(t) = \frac{\arctan\left(\frac{1}{t^2}\right)}{t}, \quad g(t) = \sin t$$

Условия признака Дирихле:

- 1. Функция f(t) монотонно убывает к 0 при $t \to +\infty$:
 - $\arctan\left(\frac{1}{t^2}\right)$ убывает (так как $\frac{1}{t^2}$ убывает)
 - $\frac{1}{t}$ убывает
 - Произведение убывающих функций убывает
 - Предел: $\lim_{t\to +\infty} f(t) = 0$
- 2. Первообразная q(t) ограничена:

$$\left| \int_{1}^{T} \sin t \, dt \right| = |\cos 1 - \cos T| \le 2$$

Следовательно, по признаку Дирихле интеграл I сходится.

4.3. Исследование на абсолютную сходимость Рассмотрим интеграл от модуля:

$$\int_{1}^{+\infty} \left| \frac{\arctan\left(\frac{1}{t^2}\right)}{t} \sin t \right| dt = \int_{1}^{+\infty} \frac{\arctan\left(\frac{1}{t^2}\right)}{t} |\sin t| dt$$

Оценим подынтегральную функцию:

- При $t \to +\infty$: $\arctan\left(\frac{1}{t^2}\right) \approx \frac{1}{t^2}$
- ullet Следовательно: $rac{\arctan\left(rac{1}{t^2}
 ight)}{t}pproxrac{1}{t^3}$

•
$$|\sin t| \le 1$$

Получаем оценку:

$$\frac{\arctan\left(\frac{1}{t^2}\right)}{t}|\sin t| \leq \frac{1}{t^3}$$

Интеграл $\int\limits_{1}^{+\infty} \frac{1}{t^3} dt$ сходится (поскольку 3>1), следовательно исходный интеграл сходится абсолютно.

Вывод

Интеграл
$$\int_{0}^{1} \frac{\arctan x^{2}}{x^{3}} \sin \left(\frac{1}{x}\right) dx$$
 сходится абсолютно