Linear model

Examples:

- Logistic Regression
- Support Vector Machines

Linear model

Tree-based: Decision Tree, Random Forest, GBDT

Tree-based: Decision Tree, Random Forest, GBDT

Tree-based methods

Microsoft / LightGBM

Conclusion

- There is no "silver bullet" algorithm
- Linear models split space into 2 subspaces
- Tree-based methods splits space into boxes
- k-NN methods heavy rely on how to measure points "closeness"
- Feed-forward NNs produce smooth non-linear decision boundary

The most powerful methods are **Gradient Boosted Decision Trees** and **Neural Networks**. But you shouldn't underestimate the others

Numeric

- Preprocessing
 - a) Tree-based models
 - b) Non-tree-based models
- Feature generation

1. To [0,1]

sklearn.preprocessing.MinMaxScaler

$$X = (X - X.min())/(X.max() - X.min())$$

$$X = (X - X.min())/(X.max() - X.min())$$

1. To [0,1]

sklearn.preprocessing.MinMaxScaler

$$X = (X - X.min())/(X.max() - X.min())$$

2. To mean=0, std=1

sklearn.preprocessing.StandardScaler

$$X = (X - X.mean())/X.std()$$

Preprocessing: rank

```
rank([-100, 0, 1e5]) ==
[0,1,2]
rank([1000,1,10]) = [2,0,1]
scipy.stats.rankdata
```

Feature generation

Combined = (horizontal ** 2 + vectical ** 2) ** 0.5

Conclusion

- 1. Scaling and Rank for numeric features:
 - a. Tree-based models doesn't depend on them
 - b. Non-tree-based models hugely depend on them
- 2. Most often used preprocessings are:
 - a. MinMaxScaler to [0,1]
 - b. StandardScaler to mean==0, std==1
 - c. Rank sets spaces between sorted values to be equal
 - d. np.log(1+x) and np.sqrt(1+x)
- 3. Feature generation is powered by:
 - a. Prior knowledge
 - b. Exploratory data analysis

Categorical and ordinal features

Categorical

Titanic dataset

	Passen	gerld	Surv	vived	Pclass				Name
0		1		0	3	Braund, Mr. Owen Harris			
1		2		1	1	Cumings, Mrs. John Bradley (Florence Briggs Th			
2		3		1	3	Heikkinen, Miss. Laina			
3		4		1	1	Futrelle, Mrs. J	lacques He	eath (Lil	y May Peel)
4		5		0	3		Aller	n, Mr. W	illiam Henry
5		6		0	3	Moran, Mr. James			
6		7		0	1	McCarthy, Mr. Timothy J			
7		8		0	3	Palsson, Master. Gosta Leonard			
	Sex	Å	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	male	22.000	000	1	0	A/5 21171	7.2500	NaN	S
1	female	38.000	000	1	0	PC 17599	71.2833	C85	С
2	female	26.000	000	0	0	STON/O2. 3101282	7.9250	NaN	s
3	female	35.000	000	1	0	113803	53.1000	C123	S
4	male	35.000	000	0	0	373450	8.0500	NaN	S
5	male	29.699	118	0	0	330877	8.4583	NaN	Q
6	male	54.000	000	0	0	17463	51.8625	E46	S
7	male	2.000	000	3	1	349909	21.0750	NaN	S

Ordinal features

Ticket class: 1,2,3

Driver's license: A, B, C, D

Education: kindergarden, school, undergraduate,

bachelor, master, doctoral

Label encoding

pclass	1	2	3
target	1	0	1

Label encoding

	K
	embarked
	S
	С
1	S
	S
1	S
	Q
	S
	S
1	S
Ī	С
	S
	S

Alphabetical (sorted)
 [S,C,Q] -> [2, 1, 3]

sklearn.preprocessing.LabelEncoder

2. Order of appearance [S,C,Q] -> [1, 2, 3]

Pandas.factorize

Frequency encoding

K
embarked
S
С
S
S
S
Q
S
S
S
С
S
S

```
[S,C,Q] -> [0.5, 0.3, 0.2]
encoding = titanic.groupby('Embarked').size()
encoding = encoding/len(titanic)
```

titanic['enc'] = titanic.Embarked.map(encoding)

from scipy.stats import rankdata

Categorical features

One-hot encoding

pclass	pclass==1	pclass==2	pclass==3
1	1		
2		1	
1	1		
3			1

pandas.get_dummies, sklearn.preprocessing.OneHotEncoder

Categorical features

pclass	sex	pclass_sex
3	male	3male
1	female	1female
3	female	3female
1	female	1female

Pclass_sex==							
1male	1female	2male	2female	3male	3female		
				1			
	1						
					1		
	1						

Categorical features

- Values in ordinal features are sorted in some meaningful order
- 2. Label encoding maps categories to numbers
- 3. Frequency encoding maps categories to their frequencies
- 4. Label and Frequency encodings are often used for treebased models
- 5. One-hot encoding is often used for non-tree-based models
- 6. Interactions of categorical features can help linear models and KNN

Datetime and coordinates

- 1. Periodicity
- 2. Time since
- 3. Difference between dates

1. Periodicity

Day number in week, month, season, year second, minute, hour.

- 2. Time since
- 3. Difference between dates

1. Periodicity

Day number in week, month, season, year second, minute, hour.

2. Time since

- a. Row-independent moment For example: since 00:00:00 UTC, 1 January 1970;
- Row-dependent important moment
 Number of days left until next holidays/ time passed after last holiday.

3. Difference between dates

datetime_feature_1 - datetime_feature_2

R@SSMANN

Seasonal plot: SalesTS

Rossmann Store Sales, https://www.kaggle.com/thie1e/exploratory-analysis-rossmann

Periodicity. «Time since»

Date	weekday	daynumber_since_ year_2014	is_holiday	days_till_h olidays	sales
01.01.2014	5	0	True	0	1213
02.01.2014	6	1	False	3	938
03.01.2014	0	2	False	2	2448
04.01.2014	1	3	False	1	1744
05.01.2014	2	4	True	0	1732
06.01.2014	3	5	False	9	1022

Difference between dates

Churn prediction

user_id	registration_date	last_purchase_date	last_call_date	date_diff	churn
14	10.02.2016	21.04.2016	26.04.2016	5	0
15	10.02.2016	03.06.2016	01.06.2016	-2	1
16	11.02.2016	11.01.2017	11.01.2017	1	1
20	12.02.2016	06.11.2016	08.02.2017	94	0

Difference between dates

For a particular user:

Coordinates

Conclusion

1. Datetime

- a. Periodicity
- b. Time since row-independent/dependent event
- c. Difference between dates

2. Coordinates

- a. Interesting places from train/test data or additional data
- b. Centers of clusters
- c. Aggregated statistics

Missing values

Hidden NaNs

Fillna approaches

- 1. -999, -1, etc
- 2. mean, median
- 3. Reconstruct value

"Isnull" feature

feature	isnull
0.1	False
0.95	False
NaN	True
-3	False
NaN	True

Missing values reconstruction

categorical_ feature	numeric _feature
А	1
Α	4
Α	2
Α	-1
В	9
В	NaN

categorical_ feature		numeric_ feature_filled
Α	1	1
Α	4	4
Α	2	2
Α	-1	-1
В	9	9
В	NaN	-999

categorical_ feature		numeric_ feature_filled	categorical _encoded
Α	1	1	1.5
Α	4	4	1.5
A	2	2	1.5
А	-1	-1	1.5
В	9	9	-495
В	NaN	-999	-495

Treating values which do not present in train data

Train:

categorical _feature	target
Α	0
Α	1
Α	1
Α	1
В	0
В	0
D	1

Test:

categorical _feature	target
Α	?
Α	?
В	?
C	?

Treating values which do not present in train data

Train:

Test:

	categorical _encoded	target
Α	6	0
Α	6	1
Α	6	1
Α	6	1
В	3	0
В	3	0
D	1	1

categorical _feature	categorical _encoded	target
Α	6	?
Α	6	?
В	3	?
C	1	?

Treating values which do not present in train data

- 1. The choice of method to fill NaN depends on the situation
- 2. Usual way to deal with missing values is to replace them with -999, mean or median
- 3. Missing values already can be replaced with something by organizers
- 4. Binary feature "isnull" can be beneficial
- 5. In general, avoid filling nans before feature generation
- 6. Xgboost can handle NaN

Feature extraction from texts and images

Common features + text

Titanic dataset

	A1	▼ (<i>f</i> _{sc} survived			
	Α	В	С	D	Е	F
1	survived	pclass	name	sex	age	sibsp
2	0	3	Braund, Mr. Owen Harris	male	22	1
3	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1
4	1	3	Heikkinen, Miss. Laina	female	26	0
5	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1
6	0	3	Allen, Mr. William Henry	male	35	0
7	0	3	Moran, Mr. James	male		0
8	0	1	McCarthy, Mr. Timothy J	male	54	0
9	0	3	Palsson, Master. Gosta Leonard	male	2	3
10	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	0
11	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14	1
12	1	3	Sandstrom, Miss. Marguerite Rut	female	4	1
13	_1	_1	Bonnell, Miss. Elizabeth	female	58	0

Text -> vector

1. Bag of words:

The dog is on the table

2. Embeddings (~word2vec):

Bag of words

(excited) Hi everyone! I'm so excited about this course!

So excited. SO EXCITED. EXCITED, I AM!

CountVectorizer

hi	every one	ľm	SO	excited	about	this	course
1	1			1			
		1	1	1	1	1	1
		1	2	3			

sklearn.feature_extraction.text.CountVectorizer

Bag of words: TFiDF

```
Term frequency
```

```
tf = 1 / x.sum(axis=1) [:,None]

x = x * tf

Inverse Document Frequency

idf = np.log(x.shape[0] / (x > 0).sum(0))

x = x * idf
```

sklearn.feature_extraction.text.TfidfVectorizer

Bag of words: TF+iDF

(excited) Hi everyone! I'm so excited about this course!

So excited. SO EXCITED. EXCITED, I AM!

hi	every one	ľm	SO	excited	about	this	course
0.36	0.36			0			
		0.06	0.06	0	0.18	0.18	0.18
		0.06	0.13	0			

N-grams

sklearn.feature_extraction.text.CountVectorizer:
Ngram_range, analyzer

Texts preprocessing

- 1. Lowercase
- 2. Lemmatization
- 3. Stemming
- 4. Stopwords

Texts preprocessing: lowercase

Very, very sunny.

Sunny... Sunny!

Very	very	Sunny	sunny
1	1	0	1
0	0	2	0

Texts preprocessing: lemmatization and stemming

I had a car

We have cars

We have car

Texts preprocessing: lemmatization and stemming

Stemming:

democracy, democratic, and democratization -> democr Saw -> s

Lemmatization:

democracy, democratic, and democratization -> democracy Saw -> see or saw (depending on context)

Texts preprocessing: stopwords

Examples:

- 1. Articles or prepositions
- 2. Very common words

NLTK, Natural Language Toolkit library for python

```
sklearn.feature_extraction.text.CountVectorizer:
    max_df
```

Conclusion

Pipeline of applying BOW

1. Preprocessing:

Lowercase, stemming, lemmatization, stopwords

2. Bag of words:

Ngrams can help to use local context

3. Postprocessing: TFiDF

Text -> vector

1. Bag of words:

The dog is on the table

2. Embeddings (~word2vec):

Word2vec

Word2vec

Words: Word2vec, Glove, FastText, etc

Sentences: Doc2vec, etc

There are pretrained models

BOW and w2v comparison

- 1. Bag of words
 - a. Very large vectors
 - b. Meaning of each value in vector is known
- 2. Word2vec
 - a. Relatively small vectors
 - b. Values in vector can be interpreted only in some cases
 - c. The words with similar meaning often have similar embeddings

Image -> vector

- 1. Descriptors
- 2. Train network from scratch
- 3. Finetuning

Finetuning example

Category 1: North-South orientation

Category 2: East-West orientation

Category 3: Flat roof

Category 4: Other

Finetuning example

Category 1:
North-South orientation

Category 2: East-West orientation

Category 3: Flat roof

Category 4: Other

Category 1:
North-South orientation

Category 2: East-West orientation

Category 3: Flat roof

Category 4: Other

Category 1:
North-South orientation

Category 3: Flat roof

Category 2: East-West orientation

Category 4: Other

Category 1:
North-South orientation

Category 3: Flat roof

Category 2: East-West orientation

Category 4: Other

Feature extraction from text and images

1. Texts

- a. Preprocessing
- i. Lowercase, stemming, lemmarization, stopwordsb.Bag of words
 - i. Huge vectors
 - ii. Ngrams can help to use local context
 - iii. TFiDF can be of use as postprocessing

c.Word2vec

- i. Relatively small vectors
- ii. Pretrained models

2. Images

- a. Features can be extracted from different layers
- b. Careful choosing of pretrained network can help
- c. Finetuning allows to refine pretrained models
- d. Data augmentation can improve the model