RMP- Kalman Filter

Kalman Filter: Fusion of Uncertain Data

- assumptions until now:
 - o obstacles: absolute accurate knowledge
 - robot positions: absolute accurate knowledge
- real world:
 - obstacles: boundaries have uncertainty due to sensor measurement error
 - robot position: not absolute, uncertainty in true position (variance in elipse)
 - by sending the robot to a new position: might have completely different uncertainty in robot pose & obstacles

Kalman Filter:

- ▼ Idea & assumptions:
 - an estimate for parameter x and estimate for uncertainty of x (variance covariance matrix) —> (\vec{x}_t, \tilde{P}_t)
 - more trust on measurements with lower variance (more accurate)
 - motion model & measurement model: linear models
 - error characteristics: **zero-mean Gaussian noise** $N(0, \sigma^2)$

RMP- Kalman Filter 1

--> optimal: minimizes sum of squares error

▼ Prediction (Time Update)

- 1. prediction \hat{x}_{k+1}^- based on **linear** motion model
- 2. project the covariance P_k forward to P_{k+1}^-
- —> a priori estimate ($\hat{x}_{k+1}^-, P_{k+1}^-$)

▼ Correction (Measurement Update)

- 1. compute Kalman Gain K_{k+1}
- 2. update prediction \hat{x}_{k+1}^- with measurements z_{k+1} to \hat{x}_{k+1}
- 3. update error covariance to P_{k+1}

$$->$$
 a posteriori estimate (\hat{x}_{k+1}, P_{k+1})

• one-dimensional case:

▼ linear motion model and measurement model

- motion model:
 - o process noise variance Q
 - \circ state vector x_k : not readable, with uncertainty
 - \circ control vector u_k : **readable**, another source of measurement (odometry, IMU, wheels)

$$x_{k+1} = A \cdot x_k + B \cdot u_k + w_k$$

- measurement model:
 - sensor noise variance R

$$z_{k+1} = H \cdot x_{k+1} + v_{k+1}$$

▼ Kalman Gain K:

- K = 0 \Longrightarrow $P_{k+1}^-=0$, 100% trust on prediction \Longrightarrow $\hat{x}_{k+1}=\hat{x}_{k+1}^-$
- K = 1 (1D case) or K = $\frac{1}{H}$ —> R = 0, 100% trust on measurement —> $\hat{x}_{k+1} = z_{k+1}$

- ▼ state representation: selection of motion model
 - position p
 - position p + velocity v
 - position p + velocity v + acceleration a
 - —> all can be **estimated as state**, or some are **directly readable as control vector**
- ▼ measurement: what to measure? all? some? —> Observability Matrix

• observability of a system:

o a system with a **n-dimensional state vector** is **observable,** if the observability matrix O has ${\bf rank}({\bf O})={\bf n}$

$$O = egin{bmatrix} H \ H \cdot A \ H \cdot A^2 \ dots \ H \cdot A^{n-1} \end{bmatrix}$$

—> if system not observable, wrong measured parameters —>system diverges

Kalman Filter Applications:

Problem: a lag between true and estimation

- wrong model
- reliability of the motion model: Q

Solution:

- relax the model with larger process noise q
- a better model

increase q:

change model:

- if the initialization is bad, KF takes the first measurement as a good initialization
- if the model is non-linear —> it won't converge to true

RMP- Kalman Filter 5