Teil 2: FO Unentscheidbarkeit FO 7

Beispiele zu Logik&Informatik: ACM Turing Awards

Lamport (2013) concurrency, 'logical clocks'

Goldwasser/ complexity & cryptography,

Micali (2012) 'efficient verification of mathematical proofs'

Valiant (2010) theory of computation

Clarke/Emerson/ model checking, verification

Sifakis (2007)

Pnueli (1996) temporal logic

Milner (1991) semantics & process logics

'mechanisation of logic'

Karp (1985) NP-completeness

Cook (1982) complexity of theorem proving procedures

Rabin/ automata & their decision problems

Scott (1976)

FGdI II Sommer 2015 M Otto 121/165

Teil 3: Ausblicke

andere Logiken

Ausblick: andere Logiken (Beispiele) → Abschnitt 7.3

Ausdrucksstärke — gute algorithmische Eigenschaften

Modallogiken

Anwendungen in der Wissensrepräsentation, KI

Fragment(e) von FO: eingeschränkte Quantifizierung

längs Kanten in Transitionssystemen; Formeln mit einer freien Variablen

SAT entscheidbar

Temporallogiken LTL, CTL, μ -Kalkül

Anwendungen in Verfikation, model checking für

Transitionssysteme, (verzweigte) Prozesse, etc.

SAT entscheidbar, für viele Zwecke ausdrucksstärker als FO

FGdI II Sommer 2015 M Otto 122/165

Ausblick: andere Logiken

Beispiele

Monadische Logik zweiter Stufe, MSO

monadische zweite Stufe MSO:

Quantifizierung auch über Teilmengen der Trägermenge es existiert *kein* vollständiges Beweissystem Allgemeingültigkeit nicht einmal rekursiv aufzählbar

aber SAT(MSO) entscheidbar über interessanten Strukturklassen: z.B. Wortmodelle, lineare Ordnungen, Bäume

enger Zusammenhang mit Automatentheorie

Satz von Büchi:

reguläre Sprachen = MSO definierbare Wortmodellklassen

FGdI II Sommer 2015 M Otto 123/165

Teil 3: Ausblicke

Entscheidbarkeit

FO 7.3

Ausblick: entscheidbare Fragmente von FO

über relationalen Signaturen ist SAT z.B. entscheidbar für:

- pränexe ∃*∀*-Sätze
- pränexe gleichheitsfreie ∃*∀∀∃*-Sätze
- pränexe $\exists^* \forall \exists^*$ -Sätze
- FO-Sätze mit nur zwei Variablensymbolen

FGdI II Sommer 2015 M Otto 124/165

Teil 3: Ausblicke Entscheidbarkeit FO 7.3

Ausblick: entscheidbare Theorien

Beispiele

Teil 3: Ausblicke

entscheidbar	dagegen une	ntscheidbar
--------------	-------------	-------------

MSO-Theorie von Bäumen (Rabin) || Graphentheorie, FO

 $\mathrm{FO} ext{-}\mathrm{Th}(\mathbb{R},+,\cdot,0,1,<)$ (Tarski) $\parallel\mathrm{FO} ext{-}\mathrm{Th}(\mathbb{N},+,\cdot,0,1,<)$

 $\mathrm{FO} ext{-}\mathrm{Th}(\mathbb{N},+,0,1,<)$ (Presburger)

FO-Theorie abelscher Gruppen Gruppentheorie, FO

FGdLII Sommer 2015 M Otto 125/16

Ausdrucksstärke verschiedener Logiken → Abschnitt 8

FO 8

Fragen: Welche Struktureigenschaften können in gegebener Logik formalisiert werden?

Ausdrucksstärke

Welche Eigenschaften sind nicht ausdrückbar?

z.B. *nicht* in FO: Endlichkeit der Trägermenge Zusammenhang von (endlichen) Graphen gerade Länge endlicher linearer Ordnungen

. . .

→ Modelltheorie

die Methode zur Analyse der Ausdrucksstärke:

Ehrenfeucht-Fraïssé Spiele

FGdI II Sommer 2015 M Otto 126/169

Teil 3: Ausblicke Ausdrucksstärke FO 8

Fragen der Ausdrucksstärke

Kernfrage: welche Logik wofür?

zB bei der Wahl einer Logik als Sprache für Spezifikation, Verifikation, Deduktion Wissensrepräsentation, Datenbankabfragen

Kriterien: algorithmische Eigenschaften beweistheoretische Eigenschaften Ausdrucksstärke

- wie kann man analysieren, was ausdrückbar ist?
- wie erkennt/beweist man, dass etwas nicht ausdrückbar ist?

FGdI II Sommer 2015 M Otto 127/165

Teil 3: Ausblicke Ausdrucksstärke FO 8

Ausdrucksstärke: Beispiele

Es gibt keine Satzmenge in $FO(\{E\})$, die den Zusammenhang von Graphen (V, E) formalisiert (analog für Erreichbarkeitsfragen).

Es gibt keinen Satz in $FO(\{E\})$, der den Zusammenhang von endlichen Graphen (V, E) formalisiert (analog für Erreichbarkeit).

Jeder Satz in $FO(\{<\})$, der formalisiert, dass < eine lineare Ordnung ist, benutzt mehr als zwei Variablen.

Es gibt keinen Satz in $FO(\{<\})$, der von einer endlichen linearen Ordnung (A,<) besagt, dass sie ungerade Länge hat.

Jeder Satz in $FO(\{<\})$, der von einer linearen Ordnung (A,<) besagt, dass sie mindestens die Länge 17 hat, hat mindestens Quantorenrang 5.

FGdI II Sommer 2015 M Otto 128/165

Teil 3: Ausblicke Ehrenfeucht-Fraissé FO 8.1

Ehrenfeucht-Fraïssé Spiele

→ Abschnitt 8.1

vgl. auch Semantikspiel zwischen Verifizierer und Falsifizierer

Idee: Spielprotokoll für zwei Spieler I und II zum Vergleich zweier Strukturen so, dass \mathcal{A} und \mathcal{B} ähnlich (ununterscheidbar in \mathcal{L}) wenn Spieler II Gewinnstrategie hat.

Spieler II muss in der jeweils anderen Struktur nachmachen, was I in einer der Strukturen vorgibt

Spieler I versucht das Spiel auf Unterschiede zu lenken, die das für II unmöglich machen

Verwendung

wenn A und B ununterscheidbar in L, aber verschieden hinsichtlich Eigenschaft E, dann lässt sich E nicht in L ausdrücken

FGdI II Sommer 2015 M Otto 129/165

Teil 3: Ausblicke Ehrenfeucht–Fraissé FO 8.1

das klassische Ehrenfeucht-Fraïssé Spiel für FO

fixiere feste endliche relationale Signatur ${\cal S}$

zB für Wortstrukturen zu Alphabet Σ : $S = \{<\} \cup \{P_a : a \in \Sigma\}$

Ununterscheidbarkeitsgrade $\mathcal{W}, \mathbf{m} \equiv_q \mathcal{W}', \mathbf{m}'$

f.a.
$$\varphi(\mathbf{x}) \in FO(S)$$
 mit $qr(\varphi) \leqslant q$: $\mathcal{W} \models \varphi[\mathbf{m}] \Leftrightarrow \mathcal{W}' \models \varphi[\mathbf{m}']$

insbesondere für q=0, $\mathbf{m}=(m_1,\ldots,m_k)$, $\mathbf{m}'=(m_1',\ldots,m_k')$:

$$\mathcal{W}, \mathbf{m} \equiv_0 \mathcal{W}', \mathbf{m}' \quad \mathsf{gdw}. \quad \rho : (\mathbf{m_i} \mapsto \mathbf{m_i'})_{1 \leqslant i \leqslant k}$$
 lokaler lsomorphismus

Spielidee: I markiert sukzessive Elemente in \mathcal{W} oder \mathcal{W}' ,

II antwortet in der jeweils anderen Struktur,

II muss stets \equiv_0 (lokale Isomorphie) gewährleisten

FGdI II Sommer 2015 M Otto 130/165

die Spiele $G^q(\mathcal{W}, \mathcal{W}')$ und $G^q(\mathcal{W}, \mathbf{m}; \mathcal{W}', \mathbf{m}')$

Konfigurationen:

 $(\mathcal{W}, \mathbf{m}; \mathcal{W}', \mathbf{m}')$ mit $\mathbf{m} = (m_1, \dots, m_k)$ und $\mathbf{m}' = (m'_1, \dots, m'_k)$ wenn in \mathcal{W} und \mathcal{W}' jeweils k Elemente markiert sind

Zugabtausch in einer Runde:

I markiert in $\mathcal W$ oder in $\mathcal W'$ ein weiteres Element, II ein Element in der jeweils anderen Struktur

von
$$(\mathcal{W}, \mathbf{m}; \mathcal{W}', \mathbf{m}')$$

zu Nachfolgekonfiguration $(\mathcal{W}, \mathbf{m}, m_{k+1}; \mathcal{W}', \mathbf{m}', m'_{k+1})$

Gewinnbedingung:

II verliert wenn $\mathcal{W}, \mathbf{m} \not\equiv_0 \mathcal{W}', \mathbf{m}'$ (kein lokaler Isomorphismus)

 $G^{q}(\mathcal{W}, m; \mathcal{W}', m')$:

Spiel über q Runden mit Startkonfiguration $(\mathcal{W}, \mathbf{m}; \mathcal{W}', \mathbf{m}')$

FGdI II Sommer 2015 M Otto 131/169

Teil 3: Ausblicke Ehrenfeucht–Fraïssé FO 8.1

Ehrenfeucht-Fraïssé Satz

(Satz 8.7)

für alle $q \in \mathbb{N}$, S-Strukturen \mathcal{W} und \mathcal{W}' mit Parametern $\mathbf{m} = (m_1, \dots, m_k)$ in \mathcal{W} und $\mathbf{m}' = (m'_1, \dots, m'_k)$ in \mathcal{W}' sind äquivalent:

- (i) II hat Gewinnstrategie in $G^q(\mathcal{W}, \mathbf{m}; \mathcal{W}', \mathbf{m}')$
- (ii) $\mathcal{W}, \mathbf{m} \equiv_{a} \mathcal{W}', \mathbf{m}'$

Beweis per Induktion über q. Strategieanalyse!

$$q = 0$$
: trivial.

Gewinnstrategie für eine Runde verlangt gerade Übereinstimmung hinsichtlich Existenzbeispielen für z in allen Formeln $\exists z \varphi(\mathbf{x}, z)$ mit quantorenfreiem φ (warum?)

Gewinnstrategie für q+1 Runden verlangt analog, in der ersten Runde, Übereinstimmung hinsichtlich aller Formeln $\exists z \varphi(\mathbf{x}, z)$ mit $\operatorname{qr}(\varphi) \leqslant q$

FGdI II Sommer 2015 M Otto 132/165

Spiele über Wortstrukturen und linearen Ordnungen

Kompatibilität mit Konkatenation

(Beobachtung 8.11)

Gewinnstrategien für II sind verträglich mit Konkatenation

$$\left\{ egin{aligned} \mathcal{V}, \mathbf{m} &\equiv_q \mathcal{V}', \mathbf{m}' \ \mathcal{W}, \mathbf{n} &\equiv_q \mathcal{W}', \mathbf{n}' \end{aligned}
ight\} \quad \Rightarrow \quad \mathcal{V} \oplus \mathcal{W}, \mathbf{m}, \mathbf{n} \ \equiv_q \ \mathcal{V}' \oplus \mathcal{W}', \mathbf{m}', \mathbf{n}' \end{aligned}$$

FO 8.1

Modularität von Strategien:

 \equiv_q ist Kongruenz relation bzgl. Konkatenation

FGdI II Sommer 2015 M Otto 133/169

Teil 3: Ausblicke

Teil 3: Ausblicke

Ehrenfeucht-Fraïssé

FO 8.1

für nackte endliche Ordnungen $\mathcal{O}_n = (\{1, \dots, n\}, <)$

es gibt Sätze $\varphi_q \in FO(\{<\})$, $q \geqslant 1$: (vgl. Beobachtung 8.12)

- $qr(\varphi_q) = q$
- $\mathcal{O}_n \models \varphi_q$ gdw. $n \geqslant 2^q 1$

insbesondere: $\mathcal{O}_n \not\equiv_q \mathcal{O}_m$ für $n < 2^q - 1 \leqslant m$

(noch einfacher: $\psi_q(x, y)$ für "x < y und $|(x, y)| \ge 2^q - 1$ ")

E-F Spiel-Analyse:

$$\mathcal{O}_{\mathbf{n}} \equiv_{\mathbf{q}} \mathcal{O}_{\mathbf{m}}$$
 für $n, m \geqslant 2^q - 1$

genauer: in nackten linearen Ordnungen sind Distanzen ab 2^q mit Quantorenrang q nicht unterscheidbar

FGdI II Sommer 2015 M Otto 134/16

Strategien über nackten endlichen Ordnungen

vergleiche aufsteigende Tupel

$$\mathbf{m}=(m_1,\ldots,m_k)$$
 in $\mathcal{O}_n=(\{1,\ldots,n\},<)$ und

$$\mathbf{m}' = (m'_1, \dots, m'_k)$$
 in $\mathcal{O}_{n'} = (\{1, \dots, n'\}, <)$

Intervallgrößen:

i-ter Abschnitt: $m_i < x < m_{i+1}$ hat $d_i := m_{i+1} - m_i - 1$ Elemente kritische Intervallgröße (für q weitere Runden): $2^q - 1$

$$d \stackrel{q}{=} d' : \Leftrightarrow d = d' \text{ oder } d, d' \geqslant 2^q - 1$$

"Gleichheit bis zur kritischen Intervalgröße"

dann gilt:

$$\mathcal{O}_n, \mathbf{m} \equiv_q \mathcal{O}_{n'}, \mathbf{m}'$$
 gdw. $d_i \stackrel{q}{=} d_i'$ für $i = 0, \dots, k$

FGdl II Sommer 2015 M Otto 135/165

Teil 3: Ausblicke Ehrenfeucht–Fraïssé FO 8.1

Strategiefindung: Auszug

wie **II** auf Herausforderungszug von **I** auf $m \in (m_i, m_{i+1})$ antworten kann (3 Fälle)

(a)
$$m_i$$
 m_{i+1} m_{i+1} m_{i+1}

$$(b) \qquad \stackrel{m_i}{\underbrace{\qquad \qquad m_{i+1} \qquad \qquad }}_{\geqslant 2^q-1}$$

(c)
$$m_i$$
 m_{i+1} m_{i+1} m_{i+1}

FGdI II Sommer 2015 M Otto 136/165

Folgerungen

(1) (un)gerade Länge endlicher linearer Ordnungen nicht in FO definierbar

vergleiche Ordnungen der Längen $2^q - 1$ und 2^q : Quantorenrang q reicht nicht aus

(2) Zusammenhang endlicher Graphen nicht in FO definierbar

logische Übersetzung (Interpretation) liefert Reduktion auf (1)

FGdl II Sommer 2015 M Otto 137/16

Teil 3: Ausblicke Variationen FO 8.2

andere Logiken — andere Spiele

→ Abschnitt 8.2

am Beispiel zweier wichtiger (Familien von) Logiken in der Informatik

MSO, monadische Logik zweiter Stufe

Erweiterung von FO: Quantoren über Teilmengen

 \rightarrow formale Sprachen, concurrency

ML, Modallogik

Fragment von FO: beschränkte Quantoren über Elemente

 $\rightarrow \ \ temporale \ Spezifikation, \ Wissensrepr\"{a}sentation$

hier: zugehörige Spiele und Beispiele für ihren Nutzen

FGdI II Sommer 2015 M Otto 138/165

MSO: monadische zweite Stufe

hier über Σ -Wortstrukturen, zu $S = \{<\} \cup \{P_a \colon a \in \Sigma\}$

Elementvariable: x_1, x_2, \ldots

Mengenvariable: X_1, X_2, \dots für Teilmengen der Trägermenge

zu Syntax und Semantik von MSO(S)

atomare Formeln: $x_i = x_i$, $x_i < x_i$, $P_a x_i$, $X_i x_i$

AL Junktoren \land, \lor, \neg wie üblich

Quantifizierung über Elemente: $\forall x_i \varphi$, $\exists x_i \varphi$ wie in FO

Quantifizierung über Teilmengen: $\forall X_i \varphi$, $\exists X_i \varphi$

Beispiele für Ausdrucksmöglichkeiten:

Ordnungen/Wörter ungerader Länge

allgemeiner: reguläre Sprachen

MSO-Kodierung von DFA/NFA

FGdI II Sommer 2015 M Otto 139/165

Teil 3: Ausblicke MSO

MSO-Kodierung von DFA/NFA-Läufen

für Lauf von $\mathcal{A} = (\Sigma, Q, q_0, \Delta, A)$ auf Wort $w = a_1 \dots a_n \in \Sigma^n$: expandiere Wortmodell \mathcal{W}_w durch Färbung mit Zuständen

Farben
$$(P_a)_{a \in \Sigma}$$
 (für Buchstabenfolge von w)
+ Farben $(X_q)_{q \in Q}$ (für Zustandsfolge von w)

- finde $\varphi \in FO(\{<\} \cup \{P_a : a \in \Sigma\} \cup \{X_q : q \in Q\})$: "die X_q beschreiben Zustandsfolge einer akzeptierenden Berechnung von \mathcal{A} auf \mathcal{W} "
- dann ist $\exists \mathbf{X} \varphi \in \mathrm{MSO}(\{<\} \cup \{P_a : a \in \Sigma\})$ wie gewünscht

FGdI II Sommer 2015 M Otto 140/165

MSO-Spiel

Konfigurationen $(W, \mathbf{Q}, \mathbf{m}; W', \mathbf{Q}', \mathbf{m}')$ mit markierten Elementen \mathbf{m}/\mathbf{m}' und Teilmengen \mathbf{Q}/\mathbf{Q}'

zwei Zugvarianten $\left\{ egin{array}{ll} \mbox{weiteres Element markieren} \\ \mbox{weitere Teilmenge markieren} \end{array} \right.$

Ehrenfeucht-Fraïssé Satz für MSO:

II hat Gewinnstrategie in
$$G_{MSO}^q(\mathcal{W}, \mathbf{Q}, \mathbf{m}; \mathcal{W}', \mathbf{Q}', \mathbf{m}')$$
 gdw. $\mathcal{W}, \mathbf{Q}, \mathbf{m} \equiv_q^{MSO} \mathcal{W}', \mathbf{Q}', \mathbf{m}'$

auch im MSO-Spiel sind Gewinnstrategien verträglich mit Konkatenation, und man gewinnt daraus:

Satz von Büchi

MSO-definierbare Eigenschaften von Σ -Wortstrukturen entsprechen genau den regulären Σ -Sprachen

FGdI II Sommer 2015 M Otto 141/165

Teil 3: Ausblicke MSO

Beweisskizze zum Satz von Büchi

Annahme: $\{W_w : w \in L\} = \{W_w : W_w \models \varphi\}$

für einen Satz $\varphi \in \mathrm{MSO}$

zu zeigen: L regulär, oder, nach Myhill-Nerode,

 \sim_L hat endlichen Index: Σ^*/\sim_L endlich

sei dazu $\operatorname{qr}(\varphi) = q$, dann verfeinert \equiv_q die Relation \sim_L (warum?) \equiv_q hat endlichen Index (warum?) es folgt dass auch \sim_L endlichen Index hat!

→ Automaten für MSO-model-checking

FGdI II Sommer 2015 M Otto 142/169