

Lecture Seventeen Practice

Practice problems

mac2311keeran / Lecture Seventeen / Lecture Seventeen Practice

Abstract. Practice problems for Lecture Seventeen Content

Problem. 1: Let f(x) = |x|. Does f(x) satisfy the three hypotheses of Rolle's Theorem on the interval [-1, 1]?

no

yes

? Check work

Problem. 2: Let $f(x) = x^3$. Does f(x) satisfy the three hypotheses of Rolle's Theorem on the interval [-1,1]?

no

yes

? Check work

Problem. 3: Let $f(x) = \frac{1}{x}$. Does f(x) satisfy the three hypotheses of Rolle's Theorem on the interval [-1, 1]?

no

yes

? Check work

Problem. 4: Let $f(x) = \sin x \cos x$. Does f(x) satisfy the three hypotheses of Rolle's Theorem on the interval $[0, \pi]$?

no

yes

? Check work

Problem. 5: Find all values c that satisfy the conclusion of Rolle's Theorem if $f(x) = 2x^2 - 4x + 4$ on the interval [-1, 3].

$$c =$$
 ?

Problem. 6: Find all values c that satisfy the conclusion of Rolle's Theorem if $f(x) = x + \frac{1}{x}$ on the interval $[\frac{1}{2}, 2]$.

$$c =$$

Problem. 7: Find all values c that satisfy the conclusion of Rolle's Theorem if $f(x) = \tan^2(x)$ on the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$.

$$c =$$

Problem. 8: Let $f(x) = \cot(x)$ on the interval $[0, \pi]$. Does this function satisfy the two hypotheses of the Mean Value Theorem?

yes

no

? Check work

Problem. 9: Let $f(x) = \ln(x)$ on the interval [1, e]. Does this function satisfy the two hypotheses of the Mean Value Theorem?

yes

no

? Check work

Problem. 10: Let $f(x) = e^x + e^{-x}$ on the interval $[0, \ln(2)]$. Does this function satisfy the two hypotheses of the Mean Value Theorem?

yes

no

? Check work

Problem. 11: Find all numbers, c, that satisfy the conclusion of the mean value theorem for $f(x) = 2x^2 - 3x + 1$ on the interval [0, 2].

Problem. 12: Find all numbers, c, that satisfy the conclusion of the mean value theorem for $f(x) = \sqrt{x} + 2$ on the interval [4, 9].

$$c =$$

Problem. 13: If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$, how small can f(4) possibly be?

$$f(4) \geq$$