Exercise for Week 6

① This is a preview of the published version of the quiz

Started: 16 Sep at 2:24

Quiz instructions

Quiz time is from 09:15am to 10:30am of September 13.

Question 1 1 pts

The joint probability function for random vector (X,Y) is given below.

20	y				Row
X	0	1	2	3	Total
0	0	3/84	6/84	1/84	10/84
1	4/84	24/84	12/84	0	40/84
2	12/84	18/84	0	0	30/84
3	4/84	0	0	0	4/84
Column Total	20/84	45/84	18/84	1/84	1

What is E(X+Y)?

\bigcirc	1	0/	3

O Not enough information to compute.

Question 2 1 pts

Which of the following f(x,y) can **NOT** be the joint probability function for independent random variables X and Y?

Note: they are all legitimate joint probability functions.

$$f(x,y) = \left\{egin{aligned} e^{-x-y}, & x>0, y>0 \ 0, & ext{elsewhere} \end{aligned}
ight.$$

$$f(x,y) = egin{cases} rac{4}{3}(x+1)(y+1), & 0 \leq x \leq 1; -1 \leq y \leq 0 \ 0, & ext{elsewhere} \end{cases}$$

$$f(x,y) = egin{cases} rac{1}{90}(x+1)(y+1), & x=1,2,3; y=-1,0,1,2,3 \ 0, & ext{elsewhere} \end{cases}$$

All are probability function of independent random variables

Question 3 1 pts

Let $f_{X,Y}(x,y)$ be the joint probability function for the continuous random vector (X,Y). Let $f_X(x)$ and $f_Y(y)$ be the marginal probability function for X and Y, and let $f_{X|Y}(x|y)$ and $f_{Y|X}(y|x)$ be the conditional probability functions. Which of the following statements is **WRONG**?

- \bigcirc If $f_X(1) = 0$, then for any real numbers a < b, we must have $\int_a^b f_{X,Y}(1,y) dy = 0$.
- \bigcirc If $f_{Y|X}(y|x)=f_{Y}(y)$ for any x such that $f_{X}(x)>0$, then X and Y are independent.
- \bigcirc If X and Y are independent, then $f_{Y|X}(y|x)=f_Y(y)$ for any x such that $f_X(x)>0$.
- igotimes We must have $\int_{-\infty}^{\infty} f_{X|Y}(x|y)dy=1$ for any real number x; likewise, $\int_{-\infty}^{\infty} f_{Y|X}(y|x)dx=1$ for any real number y.