Натуральная дедукция (естественный вывод) для логики предикатов

Математическая логика и теория алгоритмов

Алексей Романов 31 октября 2024 г.

ТЕИМ

Правила для логики высказываний

• Для ∧:

 $\frac{A \quad B}{A \wedge B} \quad \wedge I \qquad \qquad \frac{A \wedge B}{A} \quad \wedge E \qquad \frac{A \wedge B}{B} \quad \wedge E$

• Для →:

 $\begin{array}{c} \vdots \\ \frac{B}{A \to B} \to I & \frac{A \to B \quad A}{B} \to E \end{array}$

• Для ¬ и ⊥:

• Для ∨:

• Остальные:

 $RAA \frac{A}{\Delta}$

2/12

Правила натуральной дедукции для кванторов

- Снова сохраняются правила из логики высказываний (на предыдущем слайде).
- Добавляются правила введения и исключения для кванторов.

Правила натуральной дедукции для кванторов

- Снова сохраняются правила из логики высказываний (на предыдущем слайде).
- Добавляются правила введения и исключения для кванторов.
- Начнём с простых: $\frac{\forall x \ A(x)}{A(t)} \ \forall E \$ и $\frac{A(t)}{\exists x \ A(x)} \$ $\exists I.$ Здесь t любой терм (обычно просто параметр).
- Эти правила аналоги типа γ в деревьях.

Правила натуральной дедукции для кванторов

- Снова сохраняются правила из логики высказываний (на предыдущем слайде).
- Добавляются правила введения и исключения для кванторов.
- Начнём с простых: $\frac{\forall x \ A(x)}{A(t)} \ \forall E \$ и $\frac{A(t)}{\exists x \ A(x)} \$ $\exists I.$ Здесь t любой терм (обычно просто параметр).
- Эти правила аналоги типа γ в деревьях.

Здесь a — новый параметр, как в δ .

Пояснения к правилам

• Смысл правила $\forall I$: чтобы доказать $\forall x \ A(x)$, нужно доказать A(a) для *произвольного а*. Произвольность как раз обеспечивается тем, что это новый параметр и о нём ничего неизвестно.

Пояснения к правилам

- Смысл правила $\forall I$: чтобы доказать $\forall x \ A(x)$, нужно доказать A(a) для *произвольного а*. Произвольность как раз обеспечивается тем, что это новый параметр и о нём ничего неизвестно.
- Смысл правила $\exists E$: мы временно даём название a тому объекту, существование которого утверждается. Правило немного аналогично $\vee E$.
- Удобно помечать подвывод, вводящий параметр, этим параметром.
- Есть упрощённый вариант ∃Е, не вводящий подвывод, но он усложняет определение контрмоделей для недоказумых секвенций и мы его не используем.

$$orall x(P(x) o Q(x)) dash \exists x P(x) o \exists x Q(x)$$

$$\begin{array}{c|c} 1 & \forall x(P(x) o Q(x)) & \text{Дано} \\ \vdots & \vdots & \\ n & \exists x P(x) o \exists x Q(x) \end{array}$$

$$orall x(P(x) o Q(x)) \vdash \exists x P(x) o \exists x Q(x)$$

1 $| \forall x(P(x) o Q(x)) |$ Дано

2 $| \exists x P(x) |$ Дано

 \vdots \vdots $n-1$ $| \exists x Q(x) |$ \rightarrow I, 2 - $(n-1)$

$$\forall x(P(x) \rightarrow Q(x)) \vdash \exists x P(x) \rightarrow \exists x Q(x)$$

1 $\forall x(P(x) \rightarrow Q(x))$ Дано

2 $\exists x P(x)$ Дано

3 $\Rightarrow P(a)$ Дано

 \vdots $\Rightarrow P(a)$ Дано

 \vdots $\Rightarrow P(a)$ Дано

 $\exists x Q(x)$ $\Rightarrow P(a)$ Дано

 $\exists x Q(x)$ $\Rightarrow P(a)$ $\Rightarrow P(a)$

$$\forall x (P(x) \to Q(x)) \vdash \exists x P(x) \to \exists x Q(x)$$

5/12

$$\forall y \neg P(y) \vdash \neg \exists x P(x)$$

1 $\forall y \neg P(y)$ Дано

2 $\exists x P(x)$ Дано

4 $P(a)$ Дано

4 $\neg P(a)$ $\forall E, 1$
 $n-2$ \bot $\neg E, 3, 4$
 $n-1$ \bot $\exists E, 2, 3-(n-2)$
 n $\neg \exists x P(x)$ $\neg I, 2-(n-1)$

• Докажем $\forall x \ P(x) \land Q(x) \vdash (\forall x \ P(x)) \land (\forall x \ Q(x))$:

• Можно ли оба раза использовать a₁?

• Докажем $\forall x \ P(x) \land Q(x) \vdash (\forall x \ P(x)) \land (\forall x \ Q(x))$:

• Можно ли оба раза использовать a_1 ? Да, так как подвыводы независимы. Но незачем.

Пример 3 в линейной записи

1	$\forall x P(x) \wedge Q(x)$		Дано	
2	a ₁	$P(a_1) \wedge Q(a_1)$	∀E, 1	
k-1		$P(a_1)$	∧E, 2	
k	a ₂	$P(a_2) \wedge Q(a_2)$	∀E, 1	
n – 3		$Q(a_2)$	$\wedge E$, k	
n – 2	$\forall x P(x)$		\forall I, 2-($k-1$)	
n-1	$\forall x \ Q(x)$		∀I, <i>k</i> -(<i>n</i> − 3)	
n	$\begin{vmatrix} A_1 & P(a_1) \land Q(a_1) \\ P(a_1) & A_2 & P(a_2) \land Q(a_2) \\ Q(a_2) & A_3 & A_4 & A_4 & A_4 \\ & & & & & & & & & & & & & & & & & & $		\wedge I, $n-2$, $n-1$	

или

Пример 3 в линейной записи

			1	$\forall x P(x) \wedge Q(x)$	Дано	
			7	$P(a_1) \wedge Q(a_1)$	∀E, 1	
1 ∀	$(x P(x) \wedge Q(x))$	Дано	5	$\begin{vmatrix} a_1 \end{vmatrix} P(a_1)$	∧E, 7	
		∀E, 1	6	$ a_1 Q(a_1)$	$\wedge E$, k	
	$P(a_1)$	∧E, 2	3	$\forall x P(x)$	∀I, 5-5	
k a ₂	$P(a_2) \wedge Q(a_2)$	∀E, 1	4	$\forall x \ Q(x)$	∀I, 6-6	
n – 3	$P(a_2) \wedge Q(a_2)$ $Q(a_2)$	∧E, <i>k</i>	2	$(\forall x \ P(x)) \land (\forall x \ Q(x))$	∧I, 3, 4	
n-2	(x P(x))	\forall I, 2-($k-1$)	Зде	Здесь важно, что строка 7		
n-1	(x Q(x))	∀I, <i>k</i> -(<i>n</i> − 3)	ПОЯ	появилась после 5 и 6,		
n ($\forall x \ Q(x)$ $\forall x \ P(x)) \land (\forall x \ Q(x))$	\wedge I, $n-2$, $n-1$	ИСГ	иначе в них нельзя использовать <i>а</i> 1. Если		

или

Здесь важно, что строка 7 появилась после 5 и 6, иначе в них нельзя использовать a_1 . Если использовать параметры только внутри подвыводов, которые их вводят, эта проблема не возникает.

• Доказываем $\exists x \forall y \ P(x,y) \vdash \forall y \exists x \ P(x,y)$:

• Доказываем $\exists x \forall y \ P(x,y) \vdash \forall y \exists x \ P(x,y)$:

$$\frac{\exists x \forall y \ P(x,y)}{\exists x \ P(x,a_1)} \xrightarrow{\exists E \ P(x,a_1)} \xrightarrow{\exists E \ P(x,a_1)} \exists E \ P(x,x) \vdash \exists E \$$

Пример 4 в линейной записи

• Доказываем $\exists x \forall y \; P(x,y) \vdash \forall y \exists x \; P(x,y)$ в линейной записи:

1	$\exists x \forall y \ P(x,y)$			Дано
2	a_1	a ₂	$\forall y \ P(a_2, y)$	Дано
3			$P(a_2, a_1)$ $\exists x \ P(x, a_1)$	∀E, 2
n – 2			$\exists x \ P(x, a_1)$	∃I, 3
n-1	$\exists x \ P(x, a_1)$		$P(x,a_1)$	∃E, 1, 2-(<i>n</i> − 2)
n	$\forall y \exists x \ P(x,y)$			\forall I, 2−(n − 1)

Построение контрмодели

- Если формулу или секвенцию доказать не получается, можно предположить, что она неверна и попробовать построить контрмодель.
- Для дерева с вынесенными посылками выбираем вершину, а для линейной записи — строку, на которых застряли.
- Все видимые посылки должны быть истинны, а сама выбранная формула ложна.
- Значения предикатов должны быть заданы на всех параметрах этих формул (если они все без параметров, то на одном параметре a_1).
- Может понадобиться добавить ещё параметры.

Дополнительное чтение

- Непейвода, 11.2.5 и 11.4.
- Гладкий, глава 10 (менее удобная система записи).