initiation simulation analogique

liste des personnes

Killian SAVARY TSTI2D2 Arthur GLO-FILLAULT TSTI2D2 le 2023-09-11 (cf. les dates des commit)

EXOS

II.1

II - Application 1 : constatation de la loi d'addition des tensions dans un circuit série

II - 1 - Saisissez dans Proteus le montage indiqué sur le *schéma 3*, où les 4 résistances sont branchées en série, et sur lequel on a nommé 7 tensions de la manière suivante :

U1 est la tension aux bornes de R1

U4 est la tension aux bornes de R4

U2 est la tension aux bornes de R2

U5 est la tension présente aux bornes des deux résistances R1 et R2 U6 est la tension présente aux bornes des deux résistances R3 et R4

U3 est la tension aux bornes de R3 U6 est la tension présente aux bornes des deux résistances let U7 est la tension totale du circuit, présente aux bornes des quatre résistances R1 R2 R3 et R4.

Schéma 3

question II.2

U1	U2	U3	U4	U5	U6	U7
500mV	1V	1.5V	2V	1.5V	3.5V	5V

question II.3

U1+U2	U3+U4	U5+U6	U1+U2+U3+U4
1.5V	3.5V	5V	5V

II.4

U1+U2 = U5

II.5

U3+U4 = U6 U5+U6 = U7 U1+U2+U3+U4 = U7

II.6

dans une circuit électronique utilisant plusieurs résistances branchées en série, la somme de toutes les tensions présentes aux bornes de chaques résistance est égale à la tension totale du circuit

III.1

III - Application 2 : constatation de la loi d'addition des courants dans un circuit en dérivation

III - 1 - Saisissez dans Proteus le montage indiqué sur le *schéma 4*, où les 4 résistances (qui ont les mêmes valeurs que pour le montage précédent) sont branchées en dérivation, et sur lequel on a nommé 7 courants :

III.2

l1	12	13	14	15	16	17
50mA	25mA	16.7mA	12.5mA	75mA	29.2mA	104mA

III.3

I1+I2	13+14	15+16	11+12+13+14
75mA	29.2mA	104mA	104mA

III.4

11+12 = 15

13+14 = 16

15+16 = 17

17 = 11+12+13+14

III.5

Dans un circuit electronique utilisant plusieures résistances branchées en dérivation, la somme de toutes les intensitées circulant dans chacunes des résistances est égale à l'intensitée totale du circuit

IV.1

Vous allez dans cette troisième application constater la relation mathématique liant la tension **u**, la résistance **R** et le courant **i** dans un circuit électrique.

IV - 1 - Réalisez dans le logiciel Proteus le Schéma 5 ci-contre, dans lequel Ugéné représente la tension aux bornes du générateur de tension, u représente la tension aux bornes de la résistance, et i représente le courant circulant dans le circuit. Ajoutez les appareils de mesure convenables pour mesurer u et i.

IV - 2 - Complétez le *Tableau 5* ci-dessous en utilisant les 3 valeurs de **R** pour chacune des 3 valeurs de $\mathbf{U}_{g\acute{e}n\acute{e}}$, et en mesurant les valeurs de \mathbf{u} et de \mathbf{i} grâce au logiciel Proteus.

Tension du générateur Ugéné	Valeur de la résistance R	Valeur de la tension u	Valeur du courant i	Valeur du produit R*i
5V	100Ω	5v	50mA	5
5V	2.2kΩ	5V	2.27mA	5
5V	470kΩ	5V	10.7nanoA	5
9V	100Ω	9V	90mA	9
9V	2.2kΩ	9V	4.09mA	9
9V	470kΩ	9V	19.2nanoA	9
17V	100Ω	17V	170mA	17
17V	2.2kΩ	17V	7.73mA	17
17V	470kΩ	17V	36.3nanoA	17

IV.3

U = R*i

V.1

la valeur de i est de 20mA

V.2

V - 2 - On désire maintenant réaliser le *Schéma 6*, qui utilise 2 résistances différente R₁ et R₂ branchées en **série**, de telle sorte qu'il soit équivalent au *Schéma 5*, **c'est-à-dire que le courant i soit le même dans les deux circuits**. On donne R₁ = 400Ω pour le *Schéma 6*. Réalisez le *Schéma 6* dans le logiciel Proteus, en configurant $U_{géné} = 12V$ et R₁ = 400Ω .

V - 3 - Recherchez expérimentalement la valeur à donner à R_2 dans le *Schéma 6*, afin que le courant **i** soit le même que celui trouvé à la question **V - 1** :

R₂ =

V - 4 - En déduire une relation liant R, R1 et R2 :

V.3

R2= 200Ω

V.4

R = R1 + R2

V.5

La resistance equivalente d'un circuit en série est égale à la somme de toute les résistances du circuit

COMPTE RENDU

intro

la simulation analogique sur ordinateur avec proteus et tinkercad

notre objectif etait un apprentissage sur différents logiciels de simulation de circuits analogiques tel que proteus (la version 8 sur mon ordinateur) et tinkercad (version web pour Arthur)

durant ce cours nous avons résolu différents exercices d'application simples permettant un apprentissage rapide et une prise en main basique des logiciels.

taches réalisées

- loi d'addition des tensions
 - <u>initiation simulation analogique > **II.1**</u>
- loi d'addition des courants
 - initiation simulation analogique > **III.1**
- loi d'Ohm dans un circuit en série
 - initiation simulation analogique > **IV.1**
- loi d'Ohm dans un circuit en dérivation (parallèle)
 - <u>initiation simulation analogique > **V.1**</u>

conclusion général

cette tache nous a permis un rappel des connaissances acquises l'année dernière, et nous a permis une prise en main rapide des logiciels cités précedemment.

comme souvent, la théorie est assez porche de la réalitée, cependant

la théorie ne nous ammenera qu'aussi loin.