FIG. 1



FIG. 2

## there are not only the transfer and the transfer and the transfer are and the transfer and

Upon an arrival of a new flow f at a path p:

case 1: 
$$(op_p == 0 \text{ and } aqb_p \ge r_f) \sim 300$$

$$R_p \leftarrow R_p + r_f$$
; accept the flow; return. ~30

$$R_p \leftarrow R_p + r_f$$
; accept the flow; return. ~302 case 2:  $(op_p == 0 \text{ and } aqb_p < r_f) \sim 30\%$ 

request more quota on all the links 
$$l: l \in p$$
  
case 3:  $(m_n > 0) \sim 30$ %

case 3: 
$$(op_p > 0) \sim 30$$
%

request bandwidth 
$$r_f$$
 on all critical links:  $l \in cl_p$ 

for 
$$l \notin cl_p \sim \beta(\beta)$$

for 
$$l \notin cl_p \sim 3/2$$
  
if  $(aqb_p < r_f)$  request more quota  
if (all requests are granted)  $\sim 3/6$ 

if (all requests are granted) 
$$\mathcal{L}_{3}$$

update 
$$Q_p$$
 if more quotas are allocated; ~3/8

1. 
$$R_p \leftarrow R_p + r_f$$
; accept the flow; return. ~ 320

else reject the flow reservation set-up request. ~32 \

FIG. 3

Upon a path p requests  $r_p$  on a unk l:

 $\prime^* \, r_p$  can be a quota or a flow's request rate \*/

case 1:  $(op_l == 0 \text{ and } aq_l < r_p)$   $\sim 400$   $\sim 402$  collect residual bandwidth:  $rb_l \leftarrow C_l - \sum_{p:l \in p} R_p$ ; if  $(rb_l < r_p)$  reject the request; return.  $\sim 505$ 

case 2:  $(op_l == 1 \text{ and } rb_l < r_p)$  reject the request; return.

5. **case 2:**  $(op_l == 1 \text{ and } rb_l < r_p)$  reject the reque 6. /\* The request can be honored \*/
7. **if**  $(op_l == 0 \text{ and } aq_l < r_p) \sim \checkmark \circ \varnothing$ 8.  $\checkmark \sim op_l \leftarrow 1; /* \text{ transition: normal} \rightarrow \text{critical } */$ 9.  $\text{for } (p' : l \in p') \sim \checkmark / \simeq$ 10.  $cl_{p'} \leftarrow cl_{p'} \cup l; op_{p'} \leftarrow op_{p'} + 1; \sim \checkmark / \simeq$ 

 $cl_{p'} \leftarrow cl_{p'} \cup l; op_{p'} \leftarrow op_{p'} + 1; \sim 4/8$ 

case 1:  $(op_l == 0)$   $aq_l \leftarrow aq_l - 1$  ~4/6

case 2:  $(op_l == 1) rb_l \leftarrow rb_l - r_p \sim 4/8$ 

FIG. T

Upon an existing flow f departs on a path p:

$$R_p \leftarrow R_p - r_f; \sim 550$$
  
**if**  $(op_p > 0) \sim 502$ 

if 
$$(op_p > 0) \sim 502$$
.

for 
$$(l \in d_n) \wedge SOS$$

$$\frac{101 (l + Cap) \cdot l}{l} = \frac{101 (l + Cap)$$

$$\langle J_0 \rangle / J_1 \langle J_1 \rangle / J_2 \rangle / J_2 \langle J_2 \rangle / J_2 \langle J_1 \rangle / J_2 \langle J_2 \rangle / J_2 \langle J_2$$

for 
$$(p': l \in p')$$
  $\sim 5'/2$ 

Ior 
$$(p: l \in p)$$
  $\sim 1 < c$ 

$$op_{p'} \leftarrow op_{p'} - 1$$
; set  $Q_{p'}$ ;  $cl_{p'} \leftarrow cl_{p'} - l$ ;  $\sim 5$ 

1. for 
$$(l \in p) \sim 522$$

for 
$$(l \in p) \sim 5.32$$
  
 $aq_l \leftarrow aq_l + 1; \sim 5.2 \%$ 



FIG. 6

The first that the first was the first that will be first that with the first will be first that will be fir

