Group No: 43

Group Member Names:

- 1. LAKSHMISRINIVAS PERAKAM
- 2. SHAILESH KUMAR SINGH
- 3. SUBHRANSU MISHRA
- 4. JAWAHARLAL RAJAN S

1.Problem statement:

• Develop a reinforcement learning agent using dynamic programming to solve the Treasure Hunt problem in a FrozenLake environment.

The agent must learn the optimal policy for navigating the lake while avoiding holes and maximizing its treasure collection.

2 Scenario:

A treasure hunter is navigating a slippery 5x5 FrozenLake grid. The objective is to navigate through the lake collecting treasures while
avoiding holes and ultimately reaching the exit (goal). Grid positions on a 5x5 map with tiles labeled as S, F, H, G, T. The state includes the
current position of the agent and whether treasures have been collected.

Objective

The agent must learn the optimal policy π* using dynamic programming to maximize its cumulative reward while navigating the lake.

About the environment

The environment consists of several types of tiles:

- · Start (S): The initial position of the agent, safe to step.
- Frozen Tiles (F): Frozen surface, safe to step.
- Hole (H): Falling into a hole ends the game immediately (die, end).
- · Goal (G): Exit point; reaching here ends the game successfully (safe, end).
- Treasure Tiles (T): Added to the environment. Stepping on these tiles awards +5 reward but does not end the game.

After stepping on a treasure tile, it becomes a frozen tile (F). The agent earns rewards as follows:

- Reaching the goal (G): +10 reward.
- Falling into a hole (H): -10 reward.
- Collecting a treasure (T): +5 reward.
- Stepping on a frozen tile (F): 0 reward.

States

- Current position of the agent (row, column).
- A boolean flag (or equivalent) for whether each treasure has been collected.

Actions

• Four possible moves: up, down, left, right

Rewards

- Goal (G): +10.
- Treasure (T): +5 per treasure.
- Hole (H): -10.
- Frozen tiles (F): 0.

Environment

Modify the FrozenLake environment in OpenAl Gym to include treasures (T) at certain positions. Inherit the original FrozenLakeEnv and modify the reset and step methods accordingly. Example grid:

Double-click (or enter) to edit

Expected Outcomes:

- 1. Create the custom environment by modifying the existing "FrozenLakeNotSlippery-v0" in OpenAI Gym and Implement the dynamic programming using value iteration and policy improvement to learn the optimal policy for the Treasure Hunt problem.
- 2. Calculate the state-value function (V*) for each state on the map after learning the optimal policy.

- 3. Compare the agent's performance with and without treasures, discussing the trade-offs in reward maximization.
- 4. Visualize the agent's direction on the map using the learned policy.
- 5. Calculate expected total reward over multiple episodes to evaluate performance.
- Import required libraries and Define the custom environment 2 Marks

```
1 # Import necessary libraries
2 import numpy as np
3 import gym
4 from gym.envs.toy_text.frozen_lake import FrozenLakeEnv
5 import matplotlib.pyplot as plt
6
7 import warnings
8 warnings.filterwarnings("ignore", category=DeprecationWarning)
```

Custom environment to create the given grid and respective functions that are required for the problem

Include functions to take an action, get reward, to check if episode is over

```
1 class FrozenLakeTreasureEnv(FrozenLakeEnv):
2
3
      Custom FrozenLake environment with treasures (T).
 4
      Inherits from OpenAI Gym's FrozenLakeEnv
 5
 6
      def __init__(self, desc=None, is_slippery=False):
 7
 8
          Initializes the environment with a custom grid.
9
10
11
          - desc: Custom description of the grid (list of strings).
12
           - is_slippery: If True, makes the environment slippery.
13
          if desc is None:
14
15
              raise ValueError("A custom grid (desc) must be provided for the environment.")
16
           super().__init__(desc=desc, map_name=None, is_slippery=is_slippery)
17
           self.treasure_positions = [(0, 4), (2, 3), (3, 0)] # Example treasure locations
18
           self.collected_treasures = set() # To track collected treasures
      def reset(self):
19
20
           Resets the environment to its initial state.
21
22
          Clears the list of collected treasures.
23
24
          Returns:
25
           - The initial state.
26
           self.collected_treasures = set() # Reset collected treasures
27
28
           return super().reset()
29
30
       def step(self, action):
31
           Executes an action in the environment and returns the result.
32
33
           Adds +5 reward for collecting treasures.
34
35
           # Call the parent class's step method
36
           result = super().step(action)
37
38
           # Unpack the returned values appropriately
39
           if len(result) == 5:
              next_state, reward, done, info, extra = result
40
41
               # If there's an extra value, you can ignore it or process it based on your needs
42
          elif len(result) == 4:
43
               next_state, reward, done, info = result
44
           elif len(result) == 3:
45
              next_state, reward, done = result
46
               info = {} # Default to an empty dictionary if `info` is not returned
47
48
               raise ValueError(f"Unexpected number of return values from step: {len(result)}")
49
50
           # Calculate the current position of the agent
51
           row, col = self.s // self.ncol, self.s % self.ncol # Convert state index to grid coordinates
52
53
           # Check if the agent has stepped on a treasure
```

```
54
           if (row, col) in self.treasure_positions and (row, col) not in self.collected_treasures:
55
               reward += 5  # Add reward for collecting a treasure
56
               self.collected_treasures.add((row, col)) # Mark treasure as collected
57
58
           # Check if the episode ends (goal or hole)
59
           if self.desc[row, col] in [b'G', b'H']:
60
               done = True
61
62
           return next_state, reward, done, info
63
64
65
       def is_episode_over(self):
66
67
           Checks if the episode has ended.
68
69
           Returns:
70
           - True if the episode has ended, False otherwise.
71
           row, col = self.s // self.ncol, self.s % self.ncol # Current position
72
73
           return self.desc[row][col] in [b'G', b'H'] # End if at Goal or Hole
74
75
       def render_custom(self):
76
77
           Renders the environment with additional info about collected treasures.
78
79
           print("Environment Grid:")
80
           self.render()
           print(f"Collected Treasures: {len(self.collected_treasures)} / {len(self.treasure_positions)}")
81
82
```

Value Iteration Algorithm - 1 Mark

```
1 def value_iteration(env, gamma=0.9, theta=1e-4):
2
3
      Performs value iteration to compute the optimal value function (V*) and policy (\pi*).
 4
 5
 6

    env: The environment (FrozenLakeTreasureEnv)

       - gamma: Discount factor
 8
      - theta: Convergence threshold
9
10
      Returns:
11
      - V: Optimal value function for all states
12
       - policy: Optimal policy (actions for each state)
13
14
      V = np.zeros(env.observation_space.n) # Initialize value function
15
      policy = np.zeros(env.observation_space.n, dtype=int) # Initialize policy
16
17
       while True:
           delta = 0 # Tracks the maximum change in the value function
18
19
           for s in range(env.observation_space.n):
20
               # Determine if the state is terminal
               row, col = s // env.ncol, s % env.ncol
21
22
               if env.desc[row, col] in [b'H', b'G']: # Hole or Goal
23
                   continue
24
25
               # Compute Q-values for all actions
26
               q_values = [
                   sum(p * (r + gamma * V[s_]) for p, s_, r, done in env.P[s][a])
27
28
                   for a in range(env.action_space.n)
29
30
               # Update the value function for state s
31
               new_value = max(q_values)
32
               delta = max(delta, abs(new_value - V[s]))
33
               V[s] = new_value
34
               # Update the policy to the action with the highest Q-value
35
               policy[s] = np.argmax(q_values)
36
37
           # Break if the value function has converged
38
           if delta < theta:</pre>
39
               break
40
41
       return V, policy
42
```

Policy Improvement Function - 1 Mark

```
1 def policy_improvement(env, V, gamma=0.9):
 2
3
      Derives an improved policy based on the given value function (V).
 4
 5
      Parameters:
      - env: The environment (FrozenLakeTreasureEnv)
 6
 7
      - V: Current value function
 8
      - gamma: Discount factor
q
10
      Returns:
      - policy: Improved policy
11
12
13
       policy = np.zeros(env.observation space.n, dtype=int)
14
       for s in range(env.observation_space.n):
15
          if s in env.terminal_states: # Skip terminal states
16
               continue
17
          # Compute Q values for all actions
          q_values = [
18
19
               sum(p * (r + gamma * V[s_]) for p, s_, r, done in env.P[s][a])
20
               for a in range(env.action_space.n)
21
22
           policy[s] = np.argmax(q_values) # Choose the best action
23
       return policy
24
```

Print the Optimal Value Function

```
1 def print_value_function(V, env):
 2
3
      Displays the optimal value function in grid form.
 4
 5
      grid = np.array(V).reshape(env.nrow, env.ncol)
      print("Optimal Value Function:")
 6
 7
      print(grid)
8
9 custom_desc = [
      "SFFHT",
10
      "FHFFF",
11
12
      "FFFTF"
      "TFHFF".
13
      "FFFFG"
14
15]
16
17 # Assuming env is your environment and V is the optimal value function computed earlier
18 env = FrozenLakeTreasureEnv(desc=custom_desc, is_slippery=False)
19
20 # Compute the optimal value function and policy using value iteration
21 V, policy = value_iteration(env)
22
23 # Print the optimal value function
24 print_value_function(V, env)
25
    Optimal Value Function:
    [[0.4782969 0.531441 0.59049
                                               0.729
                                     0.
                           0.6561
                                     0.729
     [0.531441 0.
                                               0.81
                                                        1
     [0.59049
                0.6561
                           0.729
                                     0.81
                                               0.9
     [0.6561
                0.729
                           0.
                                     0.9
                                               1.
     [0.729
                0.81
                           0.9
                                     1.
                                               0.
                                                        11
```

Visualization of the learned optimal policy - 1 Mark

```
1 def visualize_policy(env, policy):
 2
3
       Visualizes the optimal policy as arrows on the grid.
 4
 5
       action_symbols = ['\uparrow', '\downarrow', '\leftarrow', '\rightarrow'] # Corresponding to actions 0, 1, 2, 3
 6
       grid = np.array(env.desc, dtype=str)
       policy_grid = grid.copy()
 8
9
       for s in range(env.observation_space.n):
           row, col = s // env.ncol, s % env.ncol
10
           if grid[row, col] in ['H', 'G']:
11
12
                continue
           policy_grid[row, col] = action_symbols[policy[s]]
13
14
15
       print("Learned Optimal Policy:")
16
       for row in policy_grid:
```

```
print(' '.join(row))
17
18
19 custom desc = [
         "SFFHT",
20
         "FHFFF",
21
         "FFFTF",
22
23
         "TFHFF"
         "FFFFG"
24
25 1
26
27 # Updated environment initialization
28 env = FrozenLakeTreasureEnv(desc=custom_desc, is_slippery=False)
29
30 # Compute the optimal value function and policy using value iteration
31 V, policy = value_iteration(env)
32
33 # Visualize the learned optimal policy
34 visualize_policy(env, policy)
→ Learned Optimal Policy:
      \uparrow \leftarrow \uparrow H \uparrow
      \uparrow \ \mathsf{H} \ \downarrow \ \downarrow \ \downarrow
      1 1 ← 1 1
      \downarrow \;\; \downarrow \;\; \mathsf{H} \;\; \downarrow \;\; \downarrow
      \leftarrow \ \leftarrow \ \leftarrow \ \mathsf{G}
```

✓ Evaluate the policy - 1 Mark

```
1 def evaluate_policy(env, policy, num_episodes=100):
2
3
      Evaluates the given policy by running it over multiple episodes.
 4
5
      Parameters:
      - env: The environment
 6
 7
      - policy: The policy to evaluate
8
      - num_episodes: Number of episodes to run
 9
10
      Returns:
11
      - mean_reward: Average total reward over all episodes
12
       - rewards: List of rewards for each episode
13
14
       rewards = []
15
      for _ in range(num_episodes):
16
           state = env.reset()
17
          done = False
18
          total\_reward = 0
19
20
           while not done:
21
               action = policy[state]
22
               state, reward, done, _ = env.step(action)
23
               total_reward += reward
24
           rewards.append(total_reward)
25
26
      mean_reward = np.mean(rewards)
27
       return mean_reward, rewards
```

Main Execution

```
1 if __name__ == "__main__":
      # Define a custom 5x5 grid
2
3
      custom_desc = [
          "SFFHT",
4
5
          "FHFFF",
          "FFFTF",
 6
          "TFHFF"
7
          "FFFFG"
8
9
      ]
10
11
      # Initialize the custom environment with the custom grid
12
      env = FrozenLakeTreasureEnv(desc=custom_desc, is_slippery=False)
13
      # Perform value iteration
14
15
      V, policy = value_iteration(env)
16
      # Print the optimal value function
17
18
      print_value_function(V, env)
19
20
      # Visualize the learned policy
21
       visualize policy(env, policy)
```

```
22
23
      # Evaluate the policy
24
       mean_reward, rewards = evaluate_policy(env, policy)
25
       print(f"Mean Reward over {len(rewards)} episodes: {mean_reward}")
26
→ Optimal Value Function:
                                     0.
    [[0.4782969 0.531441 0.59049
                                                 0.729
     [0.531441 0.
                                                           j
]
                                      0.729
                            0.6561
                                                 0.81
                0.6561
     [0.59049
                            0.729
                                      0.81
                                                 0.9
                         0.
0.9
                 0.729
      [0.6561
                                       0.9
                                                 1.
     [0.729
                0.81
                                      1.
                                                 0.
                                                           ]]
    Learned Optimal Policy:
    ↑ H ↑ ↑ ↑
    1 1 ← 1 1
    \uparrow \ \uparrow \ \mathsf{H} \ \downarrow \ \downarrow
    ← ← ← ← G
    Mean Reward over 100 episodes: 6.0
```