Data Assessment and Cleaning – Full Detailed Notes

What is Data Assessment?

Data Assessment is the process of examining a dataset to:

- Understand its structure and quality
- Identify any problems (like missing, inconsistent, or duplicate data)
- Decide how much cleaning or preparation is required before analysis

It is the **first key step** in the data cleaning pipeline.

Goals of Data Assessment

- Spot issues that may affect analysis or models
- Document data types, missing values, and unusual values
- Understand whether the dataset is ready for analysis

X Types of Unclean Data

Here are common types of "dirty" or problematic data:

Туре	Description	Examples
Missing Data	Blank or null values	NaN, empty cells
Duplicate Rows	Exact copies of rows	Repeated entries
Inconsistent Values	Different formats for same thing	"male", "Male", "M"
Outliers	Very large or very small unexpected values	s Age = 999
Wrong Data Types	Data stored in the wrong format	Date as string, price as text
Invalid Entries	Logically impossible values	Age = -5, Salary = "abc"
Misspelled Categories	s Typos in labels	"Femle", "femlae" instead of "Female"
Mixed Units or Scales	Units not standardized	km vs miles

👲 Loading the Data

We usually use Python (e.g., pandas) to load the dataset:

import pandas as pd

df = pd.read_csv("your_data.csv")

Then start exploring:

df.head() # Preview first few rows

df.shape # Rows and columns

df.columns # List of columns

df.dtypes # Data types

df.info() # Summary of nulls and types

Stats for numerical columns df.describe()

Writing a Summary of the Dataset

Create a table to summarize key points:

Data Type Missing Values Unique Values Min Max Mean **Feature**

Age Integer 55 0 90 36.4

Gender Object 0 2

Salary (USD) Float 10 1000+ 200k 55k

This helps to quickly see where problems lie.

Column Descriptions (Data Dictionary)

This is a human-readable explanation of what each column means. It's critical for future users and even for yourself later.

Column Description

CustomerID Unique ID for each customer

Customer age in years Age

Gender Male or Female

Column Description

Salary Estimated annual salary in USD

Purchase 1 if made a purchase, 0 otherwise

Include units, encoding, and any assumptions.

+ Additional Data Information

Sometimes extra metadata is needed to fully understand the data:

- Units (e.g., income in USD, height in cm)
- Encoding (e.g., 1=Yes, 0=No)
- Transformations applied (e.g., log-transformed)
- Data source (survey, API, sensor, etc.)
- Data collection date (relevant for timeliness)

Types of Data Assessment

There are **two kinds** of assessment methods:

Manual Assessment (Visual / Google Sheets)

This is when you inspect the data visually — often using Google Sheets or Excel.

Examples of manual methods:

- Open CSV in Google Sheets
- Scroll through rows to spot missing values or formatting issues
- Use built-in sorting, filters, and charts to find problems
- Insert bar charts, histograms, or pivot tables manually

When to use:

- Small datasets
- Early exploration
- · When working with non-programmers
- When visual understanding is more important

Automatic Assessment (Code-Based / Python)

This means using Python or libraries like pandas to programmatically inspect the data.

Common functions:

df.info() # Types and null counts

df.describe() # Summary stats for numeric

df.isnull().sum() # Missing values per column

df.duplicated().sum() # Total duplicate rows

df.nunique() # Unique values in each column

df['Gender'].value_counts() # Frequency of categories

When to use:

- Large datasets
- Reproducible workflows
- Automation/pipelines
- Part of EDA process

Data Quality Dimensions

These are standard criteria for evaluating whether your data is "clean" or not:

Dimension Meaning

Accuracy Are values correct (true, verified)?

Completeness Are values missing?

Consistency Are values uniform across the dataset?

Validity Do values follow the correct format or rules?

Uniqueness Are duplicate entries avoided?

Timeliness Is the data recent/up-to-date?

Use these to evaluate your dataset and guide your cleaning steps.

Once assessment is complete, data cleaning begins. It includes:

Task Example

Fill or drop missing values df.fillna(), df.dropna()

Remove duplicates df.drop duplicates()

Fix data types Convert string to datetime

Standardize values "Male", "male" → "Male"

Handle outliers Remove or treat extreme values

Encode categories Label Encoding, OneHot

⚠ Always clean data based on what you observed during assessment.