Computational motor control and learning: a game theoretic approach

Motivation: Multi-agent Dynamics

Dynamical system $\dot{x}=f(x,u_1,u_2)$

Mathematical Model

State: $x \in \mathcal{X} = \mathbb{R}^n$

Actions: $u_i \in \mathcal{U}_i = \mathbb{R}^{m_i}$

Observations: $y_i \in \mathbb{R}^d$

Costs: $J_i: \mathcal{X} imes \mathcal{U}_i
ightarrow \mathbb{R}$

Mechanical Human/Agent Example

Reed, Peshkin (2008)

Prior work

Adaptive Control (Slotine, 1980s ...)

Learns unknown system parameters

Inverse optimal control (*Levine, Abbeel, Ng, etc, 2000s ...*)

Learns control law from trajectory

Dynamic noncooperative games (*Başar*, *Olser*, 1999 ...)

Theoretical framework for analyzing dynamic games

Motor games (*Wolpert, 2009 ...*)

Cooperation vs nash equilibrium in motor games

Lavretsky et. al (2003)

Our contribution

Dynamical system

$$\dot{x}=f(x,u_1,u_2,\cdots)$$

Non-cooperative agents

$$\min J_1, \min J_2, \cdots$$

- Online adaptive controllers
 - Learns unknown parameters/control law of other agents
- Game theoretic insights
 - Nash equilibria, stackelberg equilibria, information patterns...
- Experimental validation of theory

Experimental setup

Questions?

References

Basar, Tamer, and Geert Jan Olsder. Dynamic noncooperative game theory. Vol. 23. Siam, 1999.

Braun, Daniel A., Pedro A. Ortega, and Daniel M. Wolpert. "Nash equilibria in multi-agent motor interactions." *PLoS computational biology* 5, no. 8 (2009): e1000468.

Lavretsky, E., Hovakimyan, N., Calise, A., Stepanyan, V. "Adaptive Vortex Seeking Formation Flight Neurocontrol", *AIAA-2002-4757, AIAA GN&C Conference, St.* Antonio, TX, 2003.

Levine, Sergey, and Vladlen Koltun. "Continuous inverse optimal control with locally optimal examples." *arXiv preprint arXiv:1206.4617* (2012).

Reed, Kyle B., and Michael A. Peshkin. "Physical collaboration of human-human and human-robot teams." *IEEE Transactions on Haptics* 1, no. 2 (2008): 108-120.

Slotine, Jean-Jacques E., and Weiping Li. Applied nonlinear control. Vol. 199, no. 1. Englewood Cliffs, NJ: Prentice hall, 1991.

Project Timeline

Summer deliverables

Theory

- LQR games via gradient play
 - Convergence guarantees
 - Prelim simulations
- MDP minimax games
 - Problem formulation with constraints
 - Prelim simulations
- Adaptive control with multi-agent SI
 - Novel multi-agent approach
 - Inverse optimal control
 - Shift nash of cost minimizing agents
 - Prelim. simulations

Experimental

- Modular testbench: series-elastic haptic paddle
 - Design first prototype
 - Source parts
 - Print and assemble
 - Simple PID controller
- Validation experiments:
 - Adaptive controller detects sys. params.
 - Reproduce Wolpert motor games
- (Stretch goal) **Novel experiments**
 - Characterize nash of two-player dynamic games
 - Inverse reinforcement learning via adaptive control
- (Stretch goal) Extend modular hardware setup
 - Hopper games
 - Balance games