Identification of Human Lymphocytes Using Optical Diffraction Tomography and Machine Learning

FAJAR WIMAR RAMADHAN

Outline

- 1. Introduction: Why lymphocytes and their classification are important
- 2. Method: 3D QPI & Machine Learning
- 3. Result and Discussion
- 4. Summary

Introduction

Introduction:

Understanding the role and Identify Lymphocytes are Important!

- The lymphocyte population are tightly regulated to defend the host.
- Disturbances in lymphocyte are related to various diseases such as cancers, autoimmune diseases and virus infections.
- If we can know the composition of the spesific lymphocytes cells in our body, we can diagnose some disease.

Fig. Blood cell type.

Fig. Lymphocytes cell type.

Alizadeh, A. A. et al. Nature 403, 503 (2000). Granular, T. L., Leukemia, L. & Disorders, R. ncologist. 247–258 (2004). de Visser, K. E., Eichten, A. & Coussens, L. M. Nat. Rev. Cancer 6, 24 (2006). Ueda, H. et al. Nature 423, 506 (2003). von Boehmer, H. & Melchers, F. Nat. Immunol. 11, 14 (2009).

Saez-Cirion, A. et al. Proc. Natl. Acad. Sci. 104, 6776-6781 (2007).

Method

Method : Our Approach

Fig. Concept of our research goal.

Method: What I actually do? Label-free Lymphocyte Identification

Fig. Label-free lymphocyte identification.

J. Yoon* & Y.J. Jo* et al. *Scientific Reports* (2017)

Fig. Sequential forward selection example algorithm.

Method: Sequential Forward Selection (SFS)

For example we have n = 4features.

n: number of total features Max acc. ?? $\rightarrow \{X_2, X_3\}$

k: number of selected features

Tab. Comparison number of all combination vs SFS combination.

n	Number of all combination	Number of SFS Combination	
4	16	11	
100	1.2676506 × 10^30 (times = ??)	$5,501$ (times \sim 3 hours)	
n	2^n	$1 + \frac{n(n+1)}{2}$	

A. Müller and S. Guido, Introduction to Machine Learning with Python. 2016.

Step 5

Tab. Cross sectional cells.

Cell type	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5
CD4					
CD8					
Memory CD8		0			
Naïve CD8					

Method: The Example of Extracted Features

Morphological and Biochemical Parameters of the individual CD4, CD8, Memory and Naive Cells for RI = 1.340

Fig. Extracted features of individual CD4, CD8, Memory and Naïve CD8 cells for RI = 1.340.

Method: K-Nearest Neighbors (k-NN) Algorithm

Fig. The example of knn method.

A. Müller and S. Guido, Introduction to Machine Learning with Python. 2016.

Method: Random Forest Algorithm

Fig. Random forest algorithm.

J. Brownlee, Master machine learning algorithms. 2016.

Method : Naïve Bayes Algorithm

Fig. Naïve bayes algotirhm.

J. Brownlee, Master machine learning algorithms. 2016.

Method : Support Vector Machine

Radial Kernel

- The larger **gamma** parameters, the smaller data radius of influence.
- The larger the **C** value, the more sensitive the algorithm to the data.

Fig. Support vector machine algorithm.

A. Müller and S. Guido, Introduction to Machine Learning with Python. 2016.

Result and Discussion: Data Distribution

Result and Discussion: Data Distribution of CD4 and CD8

Fig. CD4 dataset

Fig. CD8 dataset

Fig. Memory CD8 dataset

Fig. Naïve CD8 dataset

Result and Discussion: KNN Classifier

Fig. Accuracy vs. number of neighbors.

Result and Discussion (KNN): Selecting k Value

Selected k = 3

Case A: CD4 vs CD8

Accuracy = 76.00%.

Case B: Memory CD8 vs Naïve CD8

Accuracy = 90.08%

Case C : CD4 vs Memory CD8 vs Naive CD8

Accuracy = 76.13%

Result and Discussion (KNN): Selected Features

Case A : CD4 vs CD8

Training Acc. = **83.60%**, best combination : ('**SA** 1.340', 'SA 1.342', 'SA 1.344', 'SA 1.346', '**SI** 1.342', 'SI 1.344', 'SI 1.370', 'SI 1.372', 'SI 1.374', '**PD** 1.346', 'PD 1.354', 'PD 1.360', 'PD 1.362', 'PD 1.364', 'PD 1.378')

Case B: Memory CD8 vs Naïve CD8

Training Acc. = **95.87**%, best combination: ('**SA** 1.340', 'SA 1.342', 'SA 1.344', 'SA 1.346', 'SA 1.348', '**CV** 1.342', '**SI** 1.340', 'SI 1.342', 'SI 1.344', 'SI 1.362', 'SI 1.364', 'SI 1.374', 'SI 1.376', '**PD** 1.340', 'PD 1.364', 'PD 1.372', 'PD 1.374', 'PD 1.376')

Case C: CD4 vs Memory CD8 vs Naive CD8
 Training Acc. = 85.05%, best combination:
 ('CV 1.376', 'SI 1.340', 'SI 1.374', 'PD 1.340', 'PD 1.376', 'PD 1.378', 'DM 1.368')

Keyword

SA : Surface Area (μm^2) SI : Sphericity DM : Dry Mass (pg) CV : Cellular Volume (fL) PD : Protein Density (g/dL) X.XXX : RI value

Note:

This selected features will be used for another Machine Learning

Result and Discussion (KNN): Training and Testing for CD4 vs Memory CD8 vs Naïve CD8

Result and Discussion: Parameter tunning another machine learning

Fig. Selecting Number of Tree.

Result and Discussion: Random Forest, Selecting Number of Tree

Selected Number of Tree

Case A : CD4 vs CD8

Number of Tree = 400

Accuracy = 78.82%.

Case B: Memory CD8 vs Naïve CD8

Number of Tree = 600

Accuracy = 91.74%

Case C : CD4 vs Memory CD8 vs Naive CD8

Number of Tree = 800

Accuracy = 80.93%

Result and Discussion: Naïve Bayes Classifier

Note:

Have no hyper-parameters

Result and Discussion : Support Vector Machine, Selecting C and γ

Fig. Hyper parameter in SVM.

Result and Discussion: Comparison of all classifier methods

Result and Discussion: Comparison of all classifier methods

[1] Ma, Z., Zhou, Y., Collins, D. J. & Ai, Y. Lab Chip 17, 3176–3185 (2017).
[2] Draga, R. O. P. et al. Anal. Chem. 82, 5993–5999 (2010).

Summary

Summary

Summary

- White blood cells are important because these cells defending the our body against harmful invaders in our immune system and here we want to classify three lymphocyte cell types (CD4, Naïve and Memory CD8).
- We can diagnose some disease if we can identify lymphocyte cells.
- ODT with machine learning enable identification of lymphocyte cell with testing accuracy up to 95.04% and comparable even more than conventional methods (depend on the testing cell).

Acknowledgements

KAIST

_

Biomedical Optics Laboratory

Prof. YongKeun Park

TA: Donghun Ryu

ITB

_

Department of Physics, Bandung Institute of Technology

Thank you