June, 8, 2022

Last name, First name

Exercise 1 (value 12)

Due to the **Energy Crisis** Europe is looking for a plan to gradually replace the supplies of gas from Russia with alternative sources. Today Europe buys, each month, Q billions of cubic meters from Russia. In the next T months this quantity must be reduced to q billions with a linear decrease. At the same time the quantity non bought from Russia must be bought from other suppliers. There are n possible suppliers. In month t = 1, ..., T each supplier i can sell v_{it} billions of cubic meters of gas at a price of c_{it} for billion. Moreover, if the overall gas bought in a month is more than the planned reduction, there is the possibility to store the exceeding cubic meters at cost of s_t for billion/month. The maximum storage for a month is S billions. At current month (0) no storage exists, but at the end of month T a storage of $\overline{S} \leq S$ billions must be guarantee.

Write a linear mathematical model to help Europe to define the cheaper way to buy gas in the next T months, while reducing the quantities bought from Russia.

Modify the above model by adding the following constraint: to avoid dependence from a single supplier, Europe decided to buy, in the T months, from at least 3 suppliers.

Answer

Variables

 x_{it} = billions of cubic meters of gas bought from supplier i in month t I_t = billions of cubic meters of gas stored at the end of month t y_i = 1 if supplier i is used

Constants

$$\Delta = \frac{1}{T}(Q-q)$$
 monthly reduction of gas from Russia M a big number

$$\min \sum_{i=1}^{n} \sum_{t=1}^{T} c_{it} x_{it} + \sum_{t=1}^{T} s_{t} I_{t}
I_{t-1} + \sum_{i=1}^{n} x_{it} = t\Delta + I_{t} t = 1, ..., T
I_{0} = 0
I_{T} \geq \overline{S}
$$\sum_{i=1}^{n} y_{i} \geq 3
y_{i} \leq M \sum_{t=1}^{T} x_{it} i = 1, ..., n
0 \leq I_{t} \leq S t = 1, ..., T
0 \leq x_{it} \leq v_{it} i = 1, ..., n, t = 1, ..., T$$$$

Exercise 2 (value 8)

Consider the following LP problem.

$$\min \quad 4x_1 + 5x_2 + 3x_3$$
$$2x_1 + 3x_2 + x_3 \ge 3$$
$$3x_1 + 5x_2 + 4x_3 \ge 1$$
$$x_1, x_2, x_3 \ge 0$$

- Write the corresponding tableau.
- Manipulate the tableau, if necessary, and solve the problem with the most convenient (for this case) simplex method, following the Bland's rule.

- Expose your motivations for the chosen method.
- Write the optimal solution and its cost.

Answer

x_1	x_2	x_3	y_1	y_2	-z	
4	5	3	0	0	0	
2	3	1	-1	0	3	$\exists y_1$
3	5	4	0	-1	1	y_2

Since all the reduced costs are positive, it is worth to multiply both constraints by -1 and apply the Dual simplex method.

x_1	x_2	x_3	y_1	y_2	-z	
4	5	3	0	0	0	
-2	-3	-1	1	0	-3	y_1
-3	-5	-4	0	1	-1	y_2
r_1	r_{\circ}	r_0	211	210	_ ~	

x_1	x_2	x_3	y_1	y_2	-z	
$\frac{2}{3}$	0	$\frac{4}{3}$	$\frac{5}{3}$	0	-5	
$\frac{2}{3}$	1	$\frac{1}{3}$	$-\frac{1}{3}$	0	1	x_2
$\frac{1}{3}$	0	$-\frac{7}{3}$	$-\frac{5}{3}$	1	4	y_2

The optimal solution is x = (0, 1, 0) with cost 5.

Exercise 3 (value 7)

Find the optimal solution of the following knapsack problem using a Dynamic Programming method, without reordering the items: $n = 4, c = 32, (p_j, w_j) = [(1, 18), (2, 25), (3, 14), (2, 3)]$

Answer

$$P = 1 + 2 + 3 + 2 = 8$$

		0	1	2	3	4	5	6	7	8
f_0		0	∞	∞	∞	∞	∞	∞	∞	∞
f_1		0	18	∞	∞	∞	∞	∞	∞	∞
f_2		0	18	25	43	∞	∞	∞	∞	∞
f_3		0	18	25	14	32	39	57	∞	∞
f_4		0	18	3	14	28	17	35	42	60
	0	1	2	3	4	5	6	7		8
$\overline{J_0}$	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø		Ø
J_1	Ø	{1}	Ø	Ø	Ø	Ø	Ø	Ø		Ø
J_2	Ø	{1}	$\{2\}$	$\{1, 2\}$	Ø	Ø	Ø	Ø		Ø
J_3	\emptyset	{1}	$\{2\}$	$\{3\}$	$\{1, 3\}$	$\{2, 3\}$	$\{1, 2, 3\}$	Ø		Ø
J_4	Ø	{1}	$\{4\}$	{3}	$\{2,4\}$	{3,4}	$\{1, 3, 4\}$	$\{2, 3, 4\}$	$\{1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$	$\{3, 4\}$

The optimal solution $x = \{3, 4\}$ has profit 5 and weight 17.