离散数学 2-往年试题参考解答

Yuwei Yin 阴昱为

School of Computer Science and Engineering, Beihang University Email: yuweiyin@buaa.edu.com

1 2007 级离散数学 (2) 期终考试试题 (A 卷)

- 一、判断题 (每题 2 分, 共 20 分)
- (\times) 1. 若 $A B = \emptyset$,则 A = B。
- $(\sqrt{\ })$ 2. 若 $A \subseteq B$, 则 $\mathscr{P}(A) \subseteq \mathscr{P}(B)$, 其中 $\mathscr{P}(A)$ 为 A 的幂集。
- (\times) 3. 若集合 A 上的二元关系 R 是反对称的,则 R^2 也是反对称的。
- (\times) 4. 若 R 是集合 A 上的二元关系,则 st(R) = ts(R)。
- (×) 5. 良序关系的逆关系必为良序关系。
- (\checkmark) 6. 有限集 A 上的满射 $f: A \to A$ 必为双射。
- (√) 7. 自然数的幂集 $\mathscr{P}(\mathbb{N})$ 的基数等于实数 \mathbb{R} 的基数。
- (√) 8. 任何图均有偶数个奇结点。
- (\times) 9. 无向图 G 有欧拉闭路,当且仅当 G 是欧拉图。
- (\checkmark) 10. 若 T 为阶大于 2 的树,则 T 至少有一个结点的度数大于等于 2。
- 9 题注解:每个结点都是偶结点的无向图称为欧拉图,每个结点的出度和人度都相等的有向图称为欧拉有向图。有定理:设 G 是**连通**无向图, G 是欧拉图当且仅当 G 有欧拉闭路。不连通的无向图就不适用于此定理了。

二、(16分)

设 $A = \{a, b, c, d\}$ 上的二元关系 R_1 和 R_2 定义如下:

$$R_1 = \{ \langle a, b \rangle, \langle b, c \rangle, \langle c, d \rangle, \langle d, a \rangle \}$$

$$R_2 = I_A \cup \{ \langle a, b \rangle, \langle b, a \rangle, \langle c, d \rangle, \langle d, c \rangle \}$$

- i) 试分别指出 R_1 和 R_2 所具有的性质(即是否具有自反性、反自反性、对称性、反对称性和传递性这五种性质)。
 - ii) 试求出 R_1^2 , $R_1 \circ R_2$ 和 R_2^+ 。

解答:

i) R_1 具有反自反性、反对称性。

 R_2 具有自反性、对称性、传递性。

ii) $R_1^2 = \{ \langle a, c \rangle, \langle b, d \rangle, \langle c, a \rangle, \langle d, b \rangle \}_{\circ}$

 $R_1 \circ R_2 = \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, c \rangle, \langle b, d \rangle, \langle c, c \rangle, \langle c, d \rangle, \langle d, a \rangle, \langle d, b \rangle \}_{\circ}$

$$R_2^+ = t(R_2) = R_2 = I_A \cup \{\langle a, b \rangle, \langle b, a \rangle, \langle c, d \rangle, \langle d, c \rangle\}.$$

三、(16分)

设 R 为集合 A 上的二元关系,证明:

- 1) 若 R 既是自反的,又是传递的,则 $R^2 = R$ 。
- 2) 若 R 是传递的,则 R^2 也是传递的。

解答:

1) 因为 R 是自反的,所以 $\forall x \in A$ 有 $< x, x > \in R$ 。因为 R 是传递的,所以若 $< x, y > \in R \land < y, z > \in R$ 有 $< x, z > \in R$ 。要证明集合相等 $R^2 = R$,即证明二者互相包含,即 $R^2 \subseteq R \land R \subseteq R^2$ 。

用元素分析法, \forall < x,z > \in R^2 (x 与 z 可以相等也可以不相等),则 $\exists y \in A$ 有 < x,y > \in $R \land$ < y,z > \in R,根据传递性,有 < x,z > \in R。故 $R^2 \subseteq R$ 。

另一方面, $\forall < x,y > \in R$,若 x = y,则显然有 $< x,y > \in R^2$ 。若 $x \neq y$, $\forall < y,z > \in R$,根据传递性有 $< x,z > \in R$,根据关系的合成有 $< x,z > \in R^2$ 。由于 R 具有自反性,因此 $< y,y > \in R \land < z,z > \in R$,又 因为前述已有 $< x,y > \in R \land < y,z > \in R$,根据关系的合成有 $< x,y > \in R^2 \land < y,z > \in R^2$ 。故有 $R \subseteq R^2$ 。

综上,有 $R^2 \subseteq R \land R \subseteq R^2$,故 $R^2 = R$,证毕。

2) \forall < x,y > \in $R^2 \land$ < y,z > \in R^2 ,由关系的合成, $\exists p,q \in R$ 有 < x,p >, < p,y > < y,q > < q,z > \in R。又因为 R 具有传递性,则 <

 $x,y>\in R\land < y,z>\in R$ 。再根据关系的合成,有 $< x,z>\in R^2$,故 R^2 也 具有传递性,证毕。

四、(16分)

设 $\langle A, \leq \rangle$ 为偏序结构,函数 $f: A \to \mathcal{P}(A)$ 定义如下:

试证明:

- 1) f 为单射;
- 2) 对任意 $a,b \in A$, 若 $a \le b$, 则 $f(a) \le f(b)$ 。 其中 $\mathscr{P}(A)$ 为 A 的幂集。

证明:

1) 由 $< A, \le >$ 为偏序结构,则 $\forall a \in A$,有 $< a, a > \in \le$,根据函数 f 的定义,故有 $a \in f(a)$ 。

故 $\forall a_1, a_2 \in A$,有 $a_1 \in f(a_1)$ 且 $a_2 \in f(a_2)$,若 $a_1 \neq a_2$,则有 $a_1 \in f(a_1) \land a_1 \notin f(a_2)$ 且 $a_2 \in f(a_2) \land a_2 \notin f(a_1)$,故有 $f(a_1) \neq f(a_2)$,这意味着函数 f 为单射。

2) 由 $< A, \le >$ 为偏序结构, 故在集合 A 上的关系 \le 具有自反性、反对称性和传递性。 $\forall a, b \in A$,对 $\forall x \le a$,根据函数 f 的定义,有 $x \in f(a)$ 。若 $a \le b$,由传递性,根据 $x \le a \land a \le b$ 有 $x \le b$,故 $x \in f(b)$,故 $f(a) \subseteq f(b)$ 。

定义 $\mathcal{P}(A)$ 上的二元关系 \leq 为子集包含关系 \subseteq 。 $\forall f(a) \in \mathcal{P}(A)$ 有 $f(a) \leq f(a)$,故 \leq 具有自反性。 $\forall f(a_1), f(a_2) \in \mathcal{P}(A)$,若 $f(a_1) \leq f(a_2) \wedge f(a_2) \leq f(a_1)$ 则有 $f(a_1) = f(a_2)$,故 \leq 具有反对称性。 $\forall f(a_1), f(a_2), f(a_3) \in \mathcal{P}(A)$,若 $f(a_1) \leq f(a_2) \wedge f(a_2) \leq f(a_3)$,则有 $f(a_1) \leq f(a_3)$,故 \leq 具有传递性,故二元关系 \leq 时 $\mathcal{P}(A)$ 上的偏序关系。

综上,对任意 $a,b \in A$, 若 $a \le b$,则 $f(a) \preccurlyeq f(b)$ 。

五、(10 分) 求出下图 G 的一个最小生成树。

图 1: 2007 级离散数学 (2) 期终考试试题-第 5 题-图 G

解答:

如下图中的左图或右图均可。

图 2: 2007 级离散数学 (2) 期终考试试题-第 5 题-图 G 的最小生成树

六、(16 分) 试求叶的权分别为 2,3,5,8,13,21,34 的最优叶加权二叉 树及其叶加权路径长度。

解答:

最优叶加权二叉树如下图所示,叶加权路径长度为分支结点的权值之和,即为 5+10+18+30+51+85=199。

图 3: 2007 级离散数学(2) 期终考试试题-第 6 题-最优叶加权二叉树

七、任选一小题(6分)

- 1) 设 A 为有限集, $f:A\to A$ 为双射。证明: 存在自然数 $n\geq 1$ 使 $f^n=I_A$ 。
- 2) 设 n 阶简单无向图 G 的边数 $m > \frac{1}{2}(n-1)(n-2)$ 。证明: G 必为连通的。

1) 证明:

反证法,假设原命题为假,即 $\forall n \geq 1$,均有 $f^n \neq I_A$ 。这意味着对任何自然数 n 而言, $x \in A \land f^n(x) \neq x$ 。

因为 $f:A\to A$ 为双射,故 $\forall x\in A$, $\exists !y\in A$ 有 f(x)=y。由反证法假设, $f(x)=y\neq x$ 。继续考察 y 的函数值, $f(y)=z\neq y$,并且 $f(y)=f^2(x)=z\neq x$ 。以此类推, $\forall p\in A, n\in \mathbb{N}$,函数值 $f^n(p)$ 既不等于 p,也不等于集合 A 中除了 p 之外的任何数(A 为有限集),这意味着 $\exists q\notin A$,f(p)=q。这与 f 的值域为 A 相矛盾,故假设不成立,原命题为真,证毕。

2) 证明:

记该 n 阶简单无向图为 $G=< V, E, \Psi>$ 。由握手定理,有总度数 $\sum_{v\in V} d_G(v)=2|E|>(n-1)(n-2)$ 。设 V 中度数最大的结点为 v_0 ,因为 G 是 n 阶简单无向图,所以 $d_G(v_0)\leq n-1$ 。

若 $d_G(v_0) \le n-3$,则总度数至多为 $n(n-3) = n^2 - 3n$,这与总度数 $\sum_{v \in V} d_G(v) > (n-1)(n-2) = n^2 - 3n + 2$ 相矛盾,故 $d_G(v_0) \ge n-2$ 。

若 $d_G(v_0) = n-1$,则表示结点 v_0 与其它 n-1 个结点均关联,故 G 连通。

若 $d_G(v_0) = n-2$,则表示结点 v_0 与其它 n-2 个结点均关联,仅有 1 个结点未与 v_0 关联,记为 v_1 。考察 v_1 的度数,若 $d_G(v_1) = 0$,此时总度数为 (n-1)(n-2),与 $\sum_{v \in V} d_G(v) > (n-1)(n-2)$ 相矛盾,故 $d_G(v_1) \geq 1$,这表明 v_1 与除 v_0 之外的某个结点相关联,故图 G 连通。

综上, G 是连通图, 原命题成立, 证毕。

2 2008 级离散数学 (2) 期终考试试题 (A 卷)

- 一、判断题(每题2分,共20分)
- (\checkmark) 1. $\rightleftarrows A \oplus B = A \oplus C$, $\bowtie B = C$.
- (\checkmark) 2. $A \subseteq C \perp b \subseteq C$, $\bowtie A \cup B \subseteq C$.
- $(\sqrt{\ })$ 3. 设 A、B 为任意两个集合,则 $\mathscr{P}(A) \cap \mathscr{P}(B) = \mathscr{P}(A \cap B)$ 。
- $(\sqrt{\ })$ 4. 设 R 为集合 A 上的等价关系,则 R^2 也为 A 上的等价关系。
- (\times) 5. 若 R 是集合 A 上的二元关系,则 str(R) 是 A 上的等价关系。
- (\times) 6. 设 \mathbb{Q}_+ 为正有理数集合,则 $<\mathbb{Q}_+, \le >$ 是良序结构。
- (√) 7. 设 N 为自然数集合,则 N×N 与 N×N×N 等势。
- (\times) 8. 设 $f: X \to Y$ 和 $g: Y \to Z$,若 $g \circ f$ 是满射,则 f 是满射。
- $(\sqrt{\ })$ 9. 若简单图 G 中任意结点 v 的度数 $d_G(v) \geq 2$,则 G 中必存在回路。
 - (√) 10. n 阶二叉树有 (n-1)/2 个分支结点。

二、(20分)

设 $A = \{a, b, c, d\}$ 上的二元关系 R_1 和 R_2 定义如下:

$$R_1 = \{ \langle a, b \rangle, \langle a, d \rangle, \langle c, b \rangle, \langle c, d \rangle \}$$

$$R_2 = \{ \langle a, b \rangle, \langle b, a \rangle, \langle c, d \rangle, \langle d, a \rangle, \langle d, c \rangle \}$$

- i) 试分别指出 R_1 和 R_2 所具有的性质(即是否具有自反性、反自反性、对称性、反对称性和传递性这五种性质)。
 - ii) 试求出 R_1^2 , $R_1 \circ R_2$ 和 R_2^+ 。

解答:

- i) R₁ 具有反自反性、反对称性、传递性。
- R_2 具有反自反性。
- ii) $R_1^2 = \emptyset$.

 $R_1 \circ R_2 = \{ \langle a, a \rangle, \langle a, c \rangle, \langle c, a \rangle, \langle c, c \rangle \}_{\circ}$

 $R_2^+ = t(R_2) = I_A \cup \{< a,b>, < b,a>, < c,a>, < c,b>, < c,d>, < d,a>, < d,b>, < d,c>\}_\circ$

三、 $(10 \ \mathcal{O})$ 设集合 A 上的二元关系 R 是自反的。证明:R 为等价关系的充要条件是: 若 $< a,b>,< a,c> \in R$,则 $< b,c> \in R$ 。

证明:

<u>必要性</u>。R 为等价关系,满足自反性、对称性和传递性。若 < a, b>, $< a, c> \in R$,根据对称性, $< b, a> \in R$ 。又根据传递性,< b, a>, $< a, c> \in R \rightarrow < b, c> \in R$ 。故必要性得证。

<u>充分性</u>。若 < a,b >, < a,c >∈ R, 则 < b,c >∈ R。已知二元关系 R 是自反的,故有 < a,a >, < b,b >, < c,c >∈ R。根据充分条件,有 < a,b >, < a,a >∈ R →< b,a >∈ R,同理有 < a,c >, < a,a >∈ R →< c,a >∈ R 和 < c,a >∈ c,a >∈

四、(12 分) 任给 52 个整数,证明其中必有 <u>两数之和</u> 或 <u>两数之差</u> 能被 100 整除。

证明:

设 r 为任意整数 n 被 100 除的余数,则 r 满足 $0 \le r \le 99$ 。这些余数可以构成 51 个 "抽屉"如下:(0,0),(1,99),(2,98),(3,97),...,(49,51),(50,50)。根据抽屉原理,任给 52 个整数,则必存在两个整数 a 和 b 的余数 r_a 和 r_b 落在同一个抽屉中。

若 r_a 和 r_b 落在 (0,0) 或 (50,50) 中,则 a 和 b 之和、之差均能被 100 整除。

若 r_a 和 r_b 落在 (i, 100 - i) 抽屉中,其中 $1 \le i \le 49$ 。则当 $r_a = r_b$ 时、二者之差能被 100 整除;当 $r_a \ne r_b$ 时、二者之和能被 100 整除。

综上,原命题成立,证毕。

五、(12 分) 试求叶的权分别为 1,4,9,16,25,36,49 的最优叶加权二叉 树及其叶加权路径长度。

解答:

最优叶加权二叉树如下图所示,叶加权路径长度为分支结点的权值之和,即为 5+14+30+55+85+140=329。

图 4: 2008 级离散数学(2) 期终考试试题-第 5 题-最优叶加权二叉树

六、 $(10 \ \Delta)$ 设 n 阶连通无向图 G 为非循环的,直接用归纳法证明: G 有 n-1 条边。

证明:

第二类归纳法。施归纳于连通无向图 G 的阶数 n。(本题默认 G 为简单无向图,即不含自圈和平行边。)

<u>基础项</u>。当 n=1 时,G 为平凡图,有 1-1=0 条边,成立。当 n=2 时,G 有且仅有 2 个结点,记为 v_1 和 v_2 ,为使 G 连通,必有一条边 (v_1,v_2) ,故此时总共有 2-1=1 条边,成立。

<u>归纳假设</u>。假设当非循环的连通无向图 G 的阶数 $n \le k$ 时,均满足 G 有 n-1=k-1 条边。

<u>归纳项</u>。当非循环的连通无向图 $G = \langle V, E, \Psi \rangle$ 的阶数 n = k + 1 时。由于图 G 是非循环的,即 G 中不存在回路,故 G 中每个子图也都不存在回路,即也为非循环图。

设 G 的任意 k 阶子图为 $G_k = \langle V_k, E_k, \Psi_k \rangle$, 结点 v 为 $V - V_k$ 内

的唯一结点。若 G_k 有 t 个连通分支,显然 $1 \le t \le k$,记这些连通分支为 $G_k^i = \langle V_k^i, E_k^i, \Psi_k^i \rangle$,其中 $1 \le i \le t$ 。

对每个连通分支而言,阶数均不大于 k,而且是非循环图。由归纳假设,所有这些连通分支的边数之和为 $\sum_{i=1}^t |E_k^i| = \sum_{i=1}^t (|V_k^i|-1) = k-t$ 。因为此时 G 是连通图,故结点 v 要将这 t 个连通分支连接起来,故每个分支均至少有一个结点与 v 关联。

若某连通分支 $G_k^i = \langle V_k^i, E_k^i, \Psi_k^i \rangle$ 有超过 1 个结点与 v 关联,设有 v_p 和 v_q 与 v 关联,有边 (v,v_p) 和 (v,v_q) 。又因为分支 G_k^i 是连通的,故存在从结点 v_p 到 v_q 的路径,因此存在从 v 出发回到 v 的回路,这与母图 G 是非循环图相矛盾,所以任意连通分支 G_k^i 有且仅有一个结点与 v 关联。

所以母图 G 总共有 (k-t)+(t)=k 条边,归纳项成立。

综上,根据归纳法,原命题成立,证毕。

七、(8 分) 设 R 为集合 A 上的二元关系,证明 $t(R) = R^+$ 。其中 t(R) 为 R 的传递闭包, $R^+ = \bigcup_{i=1}^{\infty} R^i$ 。

证明:

为证明集合相等 $t(R)=R^+$,即证明二者互相包含,即 $t(R)\subseteq R^+ \wedge R^+\subseteq t(R)$ 。

若 < x, y >, < y, z > $\in R^+$,根据关系的合成,必 $\exists m, n \in I_+$ 使 < x, y > $\in R^m$ 且 < y, z > $\in R^n$,故 < x, z > $\in R^{m+n} \subseteq R^+$,即 R^+ 是传递的,因此有 $t(R) \subseteq R^+$ 。

采用归纳法证明 $R^+ \subseteq t(R)$, 施归纳于关系合成的幂次 n。

基础项。当 n=1 时, $R^1=R\subseteq t(R)$,成立。

归纳假设。假设当 n = k 时有 $R^k \subseteq t(R)$ 。

<u>归纳项</u>。 $\forall < x, z > \in R^{k+1}$,因为 $R^{k+1} = R \circ R^k$,根据关系的合成, $\exists y \in A$ 使 $< x, y > \in R$ 且 $< y, z > \in R^k$ 。根据基础项以及归纳假设,有 $R \subseteq t(R)$ 且 $R^k \subseteq t(R)$ 。又因为 t(R) 是传递的,所以 $< x, z > \in t(R)$,故 $R^{k+1} \subseteq t(R)$,归纳项成立。

综上,根据归纳法,有 $R^+ \subseteq t(R)$ 。又已证 $t(R) \subseteq R^+$,故 $t(R) = R^+$,证毕。

八、 (8 分) 设函数 $f: X \to Y$ 且 $g: Y \to X$,若令 $A = \{a \in X | g(f(a)) = a\}$ 且 $B = \{b \in Y | f(g(b)) = b\}$,则 f[A] = B。证明:

证明集合相等 f[A]=B,即需证明二者互相包含,即 $f[A]\subseteq B\wedge B\subseteq f[A]$ 。

用元素分析法, $\forall x \in f[A]$,若 f(a) = x,即 x 关于 f 的原像是 a,则 由集合 A 的定义,有 g(x) = a。故 f(g(x)) = f(a),而前面已设 f(a) = x,因此有 f(g(x)) = x 且 $x \in f[A] \subseteq Y$,故 x 满足集合 B 的元素定义,故 $x \in B$ 。因此有 $f[A] \subseteq B$ 。

另一方面, $\forall y \in B$,由 $g: Y \to X$ 是定义在 Y 上的全函数,故 $\exists a \in X$ 有 g(y) = a。由集合 B 的定义,f(g(y)) = y,故 f(a) = y。又前面已设 g(y) = a,故 g(f(a)) = a,故 a 满足集合 A 的元素定义,故 $a \in A$ 。而 f(a) = y,故 $y \in f[A]$ 。因此有 $B \subseteq f[A]$ 。

综上,有 $f[A] \subseteq B \land B \subseteq f[A]$,故 f[A] = B。

3 2009 级离散数学 (2) 期终考试试题 (A 卷)

- 一、判断题(每题2分,共20分)
- $(\sqrt{\ })$ 1. 若 $C \subseteq A$ 且 $C \subseteq B$,则 $C \subseteq A \cap B$ 。
- $(\sqrt{\ })$ 2. 若 $A \cap B = A \cap C$ 且 $\sim A \cap B = \sim A \cap C$,则 B = C。
- (\times) 3. 设 $A \times B$ 为任意两个集合,则 $\mathscr{P}(A) \cup \mathscr{P}(B) = \mathscr{P}(A \cup B)$ 。
- $(\sqrt{\ })$ 4. 设集合 A 上的二元关系 R 是传递的,则 $R \circ R$ 也是传递的。
- (\times) 5. 若 R 是集合 A 上的二元关系,则 st(R) = ts(R)。
- (\times) 6. 设 $\Sigma=\{a,b\}, \leq$ 是 Σ^+ 上的**字典序**,则 $<\Sigma^+,\leq>$ 是良序结构。
 - $(\sqrt{\ })$ 7. 集合 A 上的单射 $f:A\to A$ 必为满射。
 - $(\sqrt{)}$ 8. 设 R 为实数集合,则 R × R 与 R 等势。
 - $(\sqrt{})$ 9. 任何阶大于 1 的简单无向图必有两个结点的度相等。
 - (?) 10. n 阶树至少有两个端点。

二、(10分)

设 $A = \{a, b, c, d\}$ 上的二元关系 R 定义如下:

$$R = \{ \langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle c, b \rangle, \langle c, d \rangle \}$$

试指出 R 所具有的性质(即是否具有自反性、反自反性、对称性、反对称性和传递性这五种性质)。

解答:

R具有反自反性、反对称性、传递性。

- 三、(10 分) 构造从集合 A 到集合 B 的双射:
- a) $A = \mathbb{R}, B = (0, +\infty);$
- b) A = [-1, 1), B = (5, 100].

解答:

- a) 构造函数 $f(x) = 2^x$ 。 $\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)$,故 f 为单射; ran(f) = f[A] = B,故 f 为满射。
 - b) 构造分段函数如下:

$$f(x) = \begin{cases} -100x, & x \in [-1, 0] \\ 5x, & x \in (0, 1) \end{cases}$$
 (1)

四、 $(10 \ \mathcal{A})$ 设 R 为集合 A 上的二元关系,证明: R 是传递的当且仅 当 $R \circ R \subset R$ 。

证明:

必要性。集合 A 上的二元关系 R 是传递的,即若 $x,y,z\in A\land < x,y>$,< $y,z>\in R$,则有 $< x,z>\in R$ 。 $\forall < a,c>\in R$ 。由关系的合成, $\exists b\in A$ 有 < a,b>,< $< b,c>\in R$,根据 R 的传递性,有 $< a,c>\in R$,故 $R\circ R\subseteq R$,必要性得证。

<u>充分性</u>。 $R \circ R \subseteq R$,即 $\forall < a,c > \in R \circ R$,有 $< a,c > \in R$ 。根据关系的合成, $\exists b \in A$ 有 $< a,b >,< b,c > \in R$,而又已知 $< a,c > \in R$,故 R 满足传递性,充分性得证。

综上,原命题成立,证毕。

五、(12 分) 若 \leq 为集合 P 上的偏序关系,则 \leq 为 P 上的良序关系,当且仅当:

- 1) < 为 P 上的全序关系;
- 2) P 的每个非空子集都有极小元。

证明:

良序的定义为: 若集合 A 上的二元关系 R 是偏序, 且对于 A 的每个非空子集都有最小元。

必要性。 \le 为 P 上的良序关系,根据良序的定义, $\forall x,y \in P$,子集 $\{x,y\}$ 中有最小元。若 $x=min\{x,y\}$,则有 $x \le y$;若 $y=min\{x,y\}$,则 有 $y \le x$,故 \le 为 P 上的全序关系,满足 1)。对于 P 的任意非空子集 S,由良序的定义,S 有最小元,则该最小元自然也是 S 中的极小元,满足 2)。必要性得证。

<u>充分性</u>。 \leq 满足条件 1) 和 2)。对于 P 的任意非空子集 S,由条件 2) 知 S 有极小元,记为 m。由条件 1), \leq 为 P 上的全序关系,故 $\forall x \in S$ 有 $m \leq x$ 或 $x \leq m$ 。若 $x \leq m$,则子集 S 中的极小元 m = x,由偏序关系的自反性,此时仍有 $m \leq x$ 。故总有 $m \leq x$,这意味着 m 为子集 S 的最小元,因此 \leq 满足良序的定义,故 \leq 为 P 上的良序关系。充分性得证。

综上, 原命题成立, 证毕。

六、(10 分) 设 $f: X \to Y$ 和 $g: Y \to Z$

- 1) 若 f 和 g 都是满射,则 $g \circ f$ 也是满射;
- 2) 若 f 和 g 都是单射,则 $g \circ f$ 也是单射;证明:
- 1) 因为 f 是满射, 故 ran(f) = Y。又因为 g 是满射, 故 g[Y] = ran(g) = Z。因此 $ran(g \circ f) = g[ran(f)] = g[Y] = Z$,故 $g \circ f$ 是满射。
- 2) $\forall a,b \in X \land a \neq b$, 因为 f 是单射, 故 $f(x_1) \neq f(x_2)$, 又因为 g 为单射, 故 $g(f(x_1)) \neq g(f(x_2))$, 也即 $(g \circ f)(x_1) \neq (g \circ f)(x_2)$, 故 $g \circ f$ 是单射。

七、 $(12\ eta)$ 试求叶的权分别为 1,3,4,7,11,18,29 的最优叶加权二叉 树及其叶加权路径长度。

解答:

最优叶加权二叉树如下图所示,叶加权路径长度为分支结点的权值之和,即为4+8+15+26+44+73=240。

图 5: 2009 级离散数学(2) 期终考试试题-第7题-最优叶加权二叉树

八、 $(10 \ \mathcal{G})$ 设 n 阶连通无向图 G 恰有 n-1 条边,直接用归纳法证明: G 是非循环的。

采用第二类归纳法证明,施归纳于连通无向图 G 的阶数 n。(本题默认 G 为简单无向图,即不含自圈和平行边。)

基础项。当 n=1 时,G 为平凡图,恰有 1-1=0 条边,没有回路,成立。

<u>归纳假设</u>。假设当 $n \le k$ 时命题均为真,即 k 阶连通无向图 G 恰有 k-1 条边,且 G 是非循环的。

<u>归纳项</u>。当 n=k+1 时,且 k+1 阶连通无向图 $G=< V, E, \Psi>$ 恰有 k+1-1=k 条边。由于 G 是连通图,不存在孤立点,故 $\forall v\in V$ 有 $d_G(v)\geq 1$ 。设 $v_0\in V$ 为 G 中度数最小的结点,若 $d_G(v_0)\geq 2$,则总度数 $\sum_{v\in V}d_G(v)\geq 2(k+1)$,由握手定理,总边数 $|E|\geq (k+1)$,这与已知条件 |E|=k 相矛盾,故 $d_G(v_0)=1$ 。

记 G 关于结点集 $V-\{v_0\}$ 的生成子图为 $G'=< V', E', \Psi'>$,由于 $d_G(v_0)=1$,所以 |E'|=|E|-1=k-1。由归纳假设知 G' 是非循环的,G' 中没有回路,在 G' 的基础上增加一条边即可得到 G,故 G 中也没有回路,故 G 为非循环图。归纳项成立。

综上,根据归纳法,原命题成立,证毕。

九、(10 分) 设 n 阶简单有向图 $G=< V, E, \Psi>$ 的基础图为简单完全 无向图,证明: $\sum_{v\in V} (d_G^+(v))^2 = \sum_{v\in V} (d_G^-(v))^2$ 。

证明:

由于 $G = \langle V, E, \Psi \rangle$ 为 n 阶简单有向图,故其出度之和等于入度之和,即 $\sum_{v \in V} d_G^+(v) = \sum_{v \in V} d_G^-(v)$,故 $\sum_{v \in V} (d_G^+(v) - d_G^-(v)) = 0$ 。

因为已知 G 的基础图为简单完全无向图,故 $\forall v \in V$ 有 $d_G^+(v) + d_G^-(v) = n-1$ 。因此 $\sum_{v \in V} (d_G^+(v) + d_G^-(v)) \times (d_G^+(v) - d_G^-(v)) = (n-1) \times \sum_{v \in V} (d_G^+(v) - d_G^-(v)) = (n-1) \times 0 = 0$,根据平方差公式有 $\sum_{v \in V} (d_G^+(v))^2 - (d_G^-(v))^2 = 0$,故 $\sum_{v \in V} (d_G^+(v))^2 = \sum_{v \in V} (d_G^-(v))^2$,证毕。

4 2014 年离散数学 (2) 期终考试试题 (A 卷)

- 一、判断题 (每题 2 分, 共 20 分)
- $(\sqrt{\ })$ 1. $\stackrel{.}{=}$ $(A \oplus B) \cup C = \emptyset$, M = B.
- (\checkmark) 2. 若 $A \subseteq C$ 且 $B \subseteq C$,则 $A \cup B \subseteq C$ 。
- (\times) 3. 若集合 $A,\ B,\ C$ 和 D满足 $A\times B\subseteq C\times D,\ 则\ A\subseteq C$ 且 $B\subset D_{\circ}$
- (\times) 4. 设集合 A 上的二元关系 R_1 和 R_2 为传递的,则 $R_1 \circ R_2$ 也是传递的。
 - (\times) 5. 若 R 是集合 A 上的二元关系,则 rst(R) 是 A 上的等价关系。
- (×) 6. 设 \leq 为 $\{a,b\}^*$ 中字符串的**字典序**,则 < $\{a,b\}^*, \leq>$ 是良序结构。注:所谓的 **字典序**是指: $a \leq b$, $a \leq aa$, $abb \leq baa$ 。
 - $(\sqrt{\ })$ 7. 设 \mathbb{R} 为实数集,则 $\mathbb{R} \times \mathbb{R}$ 与 \mathbb{R} 等势。
 - $(\sqrt{)}$ 8. 设 f 是从 A 到 A 的满射且 $f \circ f = f$,则 $f = I_A$ 。
- (\surd) 9. 若无向图 G 中任意结点 v 的度数 $d_G(v) \geq 2,\ \mathbbm{Q}$ 中必存在回路。
 - ($\sqrt{\ }$) 10. n 阶二叉树有 (n+1)/2 个叶结点。

二、(20分)

设 $A = \{a, b, c, d\}$ 上的二元关系 R_1 和 R_2 定义如下:

$$R_1 = \{ \langle a, b \rangle, \langle b, a \rangle, \langle a, c \rangle, \langle c, a \rangle \}$$

 $R_2 = \{ \langle a, b \rangle, \langle b, c \rangle, \langle c, a \rangle \}$

- i) 试分别指出 R_1 和 R_2 所具有的性质(即是否具有自反性、反自反性、对称性、反对称性和传递性这五种性质)。
 - ii) 试求出 R_1^2 , $R_1 \circ R_2$ 和 R_2^+ 。

解答:

- i) R_1 具有反自反性、对称性。
- R_2 具有反自反性、反对称性。
- ii) $R_1^2 = \{ \langle a, a \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle c, b \rangle, \langle c, c \rangle \}$.

 $R_1 \circ R_2 = \{ \langle a, a \rangle, \langle a, c \rangle, \langle b, b \rangle, \langle c, b \rangle \}.$

 $R_2^+ = t(R_2) = \{ < a, a>, < a, b>, < a, c>, < b, a>, < b, b>, < b, c>, < c, a>, < c, b>, < c, c> \}_\circ$

四、(12 分) 试求叶的权分别为 2,5,10,17,26,37,50,65 的最优叶加权 二叉树及其叶加权路径长度。

解答:

最优叶加权二叉树如下图所示,叶加权路径长度为分支结点的权值之和,即为7+17+34+60+87+125+212=542。

图 6: 2014 年离散数学 (2) 期终考试试题-第 4 题-最优叶加权二叉树