Lecture 4

Stationary processes and Linear Processes

Readings: Cryer & Chan Ch 4.1 - 4.3; Brockwell & Davis Ch 1.4, 1.6, 2.2; Shumway & Stoffer Ch 1.5-1.6

MATH 8090 Time Series Analysis September 7 & September 9, 2021 Stationary processes and Linear Processes

Autocovariance

Dependence

near Processes

MA(q) and AR(g

Whitney Huang Clemson University

Agenda

Processes

CLEMS IN I V E R S I T Y

Stationary processes

and Linear

- Estimation of Autocovariance
- Dependence
 - lileal Flucesses

 $\mathsf{MA}(q)$ and $\mathsf{AR}(p)$ Processes

- Estimation of Autocovariance Function
- Testing Temporal Dependence
- **3** Linear Processes

MA(q) and AR(p) Processes

An Estimate of $\gamma(\cdot)$

Goal: Want to estimate the ACVF of a stationary process $\{\eta_t\}$

$$\gamma(h) = \mathbb{Cov}(\eta_t, \eta_{t+h}) = \mathbb{E}\left[(\eta_t - \mu)(\eta_{t+h} - \mu)\right]$$

using data $\{\eta_t\}_{t=1}^T$

- For |h| < T, consider $\hat{\gamma}(h) = \frac{1}{T} \sum_{t=1}^{T-|h|} (\eta_t \bar{\eta}) (\eta_{t+|h|} \bar{\eta})$, where $\bar{\eta} = \frac{\sum_{t=1}^{T} \eta_t}{T}$. We call $\hat{\gamma}(h)$ the sample ACVF
- The sample ACVF is a biased estimator of $\gamma(h)$ (i.e., $\mathbb{E}(\hat{\gamma}(h)) \neq \gamma(h)$), but, it is used as the **standard** estimate of $\gamma(h)$
- $\hat{\gamma}(h)$ are even and non-negative definite

Stationary processes and Linear Processes

Autocovariance Function

inoar Processes

MA(q) and AR(p)
Processes

The Sample Autocorrelation Function

Stationary processes and Linear Processes

Estimation of Autocovariance

Dependence

MA(q) and AR(p)Processes

• The sample autocorrelation function (ACF) is defined for |h| < T by

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$

- Rule of thumb: Box and Jenkins (1976) recommend using $\hat{\rho}(h)$ and $\hat{\gamma}(h)$ only for $\frac{|h|}{T} \le \frac{1}{4}$ and $T \ge 50$
- This is because estimates $\hat{\rho}(h)$ and $\hat{\gamma}(h)$ are unstable for large |h| as there will be no enough data points going into the estimator

Calculating the Sample ACF in R

We use acf function to calculate the sample ACF

Lake Huron Example

Lag

Estimation of Autocovariance

Dependence

near Processes

MA(q) and AR(p)Processes

Asymptotic Distribution of the Sample ACF [Bartlett, 1946]

Let $\{\eta_t\}$ be a stationary process we suppose that the ACF

$$\boldsymbol{\rho} = (\rho(1), \rho(2), \dots, \rho(k))^T$$

is estimated by

$$\hat{\boldsymbol{\rho}} = (\hat{\rho}(1), \hat{\rho}(2), \dots, \hat{\rho}(k))^T$$

For large T

$$\hat{\boldsymbol{\rho}} \stackrel{\cdot}{\sim} \mathrm{N}_k(\boldsymbol{\rho}, \frac{1}{T}W),$$

where N_k is the K-variate normal distribution and W is an $k \times k$ covariance matrix with (i,j) element defined by

$$w_{ij} = \sum_{k=1}^{\infty} a_{ik} a_{jk},$$

where
$$a_{ik} = \rho(k+i) + \rho(k-i) - 2\rho(k)\rho(i)$$

Stationary processes and Linear Processes

Autocovariance Function

rependence

MA(q) and AR(p)

Using the ACF as a Test for i.i.d. Noise

When $\{\eta_t\}$ is an i.i.d. process with finite variance, Bartlett's result simplifies for each $h \neq 0$

$$\hat{\rho}(h) \stackrel{\cdot}{\sim} \mathrm{N}(0, \frac{1}{T}).$$

This suggests a diagnostic for i.i.d. noise:

- 1. Plot the lag h versus the sample ACF $\hat{\rho}(h)$
- 2. Draw two horizontal lines at $\pm \frac{1.96}{\sqrt{T}}$ (blue dashed lines in R)
- 3. About 95% of the $\{\hat{\rho}(h): h=1,2,3,\cdots\}$ should be within the lines if we have i.i.d. noise

Stationary processes and Linear Processes

Autocovariance Function

Testing Temporal Dependence

Linear Processes

 $\mathsf{MA}(q)$ and $\mathsf{AR}(p)$ Processes

Suppose we wish to test:

 $H_0:\{\eta_1,\eta_2,\cdots,\eta_T\}$ is an i.i.d. noise sequence $H_1:H_0$ is false

• Under H_0 ,

$$\hat{\rho}(h) \stackrel{\cdot}{\sim} N(0, \frac{1}{T}) \stackrel{d}{=} \frac{1}{\sqrt{T}} N(0, 1)$$

Hence

$$Q = T \sum_{i=1}^{k} \hat{\rho}^2(h) \stackrel{.}{\sim} \chi^2_{df=k}$$

• We reject H_0 if $Q > \chi_k^2(1-\alpha)$, the $1-\alpha$ quatile of the chi-squared distribution with k degrees of freedom

Ljung-Box Test [Ljung and Box, 1978]

Stationary processes and Linear Processes

CLEMS#N

Function

Linear Processes

MA(q) and AR(p)

Ljung and Box [1978] showed that

 $Q_{LB} = T(T-2) \sum_{h=1}^{k} \frac{\hat{\rho}^2(h)}{T-h} \stackrel{.}{\sim} \chi_k^2.$

The Ljung-Box test can be more powerful than the Portmanteau test

Both the Portmanteau Test (aka Box-Pierce test) and Ljung-Box test can be carried out in $\mathbb R$ using the function $\mathtt{Box.text}$

Examples in R

> Box.test(rnorm(100), 20)

Box-Pierce test

data: rnorm(100)

X-squared = 12.197, df = 20, p-value = 0.9091

> Box.test(LakeHuron, 20)

Box-Pierce test

data: LakeHuron

X-squared = 182.43, df = 20, p-value < 2.2e-16

> Box.test(LakeHuron, 20, type = "Ljung")

Box-Ljung test

data: LakeHuron
X-squared = 192.6, df = 20, p-value < 2.2e-16</pre>

Stationary processes and Linear Processes

CLEMS N

Autocovariance Function

. . .

 $\mathsf{MA}(q)$ and $\mathsf{AR}(p)$

Linear Processes

Stationary processes and Linear Processes

Estimation of Autocovariance Function

ingar Processes

MA(q) and AR(p)
Processes

• A time series $\{\eta_t\}$ is a linear process with mean μ if we can write it as

$$\eta_t = \mu + \sum_{j=-\infty}^{\infty} \psi_j Z_j, \quad \forall t,$$

where μ is a real-valued constant, $\{Z_t\}$ is a WN(0, σ^2) process and $\{\psi_j\}$ is a set of absolutely summable constants¹

Absolute summability of the constants guarantees that the infinite sum converges

 $^{^1\}mathrm{A}$ set of real-valued constants $\{\psi_j:j\in\mathbb{Z}\}$ is absolutely summable if $\sum_{j=-\infty}^\infty |\psi_j|<\infty$

Example: Moving Average Process of Order q, MA(q)

Let $\{Z_t\}$ be a WN $(0, \sigma^2)$ process. For an integer q > 0 and constants $\theta_1, \dots, \theta_q$ with $\theta_q \neq 0$, define

$$\begin{split} \eta_t &= Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q} \\ &= \theta_0 Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q} \\ &= \sum_{j=0}^q \theta_j Z_{t-j}, \end{split}$$

where we let θ_0 = 1

 $\{\eta_t\}$ is known as the moving average process of order q, or the MA(q) process, and, by definition, is a linear process

Stationary processes and Linear Processes

Autocovariance Function

Linear Processes

 $\mathsf{MA}(q)$ and $\mathsf{AR}(p)$ Processes

Defining Linear Processes with Backward Shifts

- Recall the backward shift operator, B, is defined by $B\eta_t = \eta_{t-1}$
- We can represent a linear process using the backward shift operator as $\eta_t = \mu + \psi(B)Z_t$, where we let $\psi(B) = \sum_{j=-\infty}^{\infty} \psi_j B^j$
- Example: we can write a mean zero MA(1) process as

$$\eta_t = \mu + \psi(B)Z_t,$$

where $\mu = 0$ and $\psi(B) = 1 + \theta B$

Stationary processes and Linear Processes

Estimation of Autocovariance Function

Dependence

MA(a) and AP(a)

Linear Filtering Preserves Stationarity

- Let $\{Y_t\}$ be a time series and $\{\psi_j\}$ be a set of absolutely summable constants that does not depend on time
- **Definition**: A linear time invariant filtering of $\{Y_t\}$ with coefficients $\{\psi_j\}$ that do not depend on time is defined by

$$X_t = \psi(B)Y_t$$

• **Theorem**: Suppose $\{Y_t\}$ is a zero mean stationary series with ACVF $\gamma_Y(\cdot)$. Then $\{X_t\}$ is a zero mean stationary process with ACVF

$$\gamma_X(h) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_j \psi_k \gamma_Y(j-k+h)$$

Stationary processes and Linear Processes

Autocovariance

Dependence

linear Processes

Example: The MA(q) Process is Stationary

By the filtering preserves stationarity result, the $\mathsf{MA}(q)$ process is a stationary process with mean zero and ACVF

$$\gamma(h) = \sigma^2 \sum_{j=0}^{q} \theta_j \theta_{j+h}$$

Stationary processes and Linear Processes

Autocovariance Function

Dopondonoo

MA(q) and AR(p)

Example: The MA(*q***) Process is Stationary**

By the filtering preserves stationarity result, the $\mathsf{MA}(q)$ process is a stationary process with mean zero and ACVF

$$\gamma(h) = \sigma^2 \sum_{j=0}^q \theta_j \theta_{j+h}$$

$$\gamma(h) = \sum_{j=0}^{q} \sum_{k=0}^{q} \theta_j \theta_k \gamma_Z (j - k + h)$$
$$= \sigma^2 \sum_{j=0}^{q} \sum_{k=0}^{q} \theta_j \theta_k \mathbb{1}(k = j + h)$$
$$= \sigma^2 \sum_{j=0}^{q} \theta_j \theta_{j+h}$$

Stationary processes and Linear Processes

Autocovariance Function

Dopondonoo

MA(q) and AR(p)

Processes with a Correlation that Cuts Off

Stationary processes and Linear Processes

CLEMS#N NIVERSITY

Estimation of Autocovariance Function

Linna Danasana

MA(q) and AR(p)

• A time series η_t is *q*-correlated if

 η_t and η_s are uncorrelated $\forall |t-s| > q$,

i.e.,
$$\mathbb{Cov}(\eta_t, \eta_s) = 0, \forall |t - s| > q$$

• A time series $\{\eta_t\}$ is q-dependent if

 η_t and η_s are independent $\forall |t-s| > q$.

• **Theorem**: if $\{\eta_t\}$ is a stationary q-correlated time series with zero mean, then it can be always be represented as an MA(q) process

The autoregressive process of order p, AR(p)

- This process is attributed to George Udny Yule. The AR(1) process has also been called the Markov process
- Let $\{Z_t\}$ be a WN $(0, \sigma^2)$ process and let $\{\phi_1, \dots, \phi_p\}$ be a set of constants for some integer p > 0 with $\phi_p \neq 0$
- The AR(p) process is defined to be the solution to the equation

$$\eta_t = \sum_{j=1}^p \phi_j \eta_{t-j} + Z_t \Rightarrow \underbrace{\eta_t - \sum_{j=1}^p \eta_{t-j}}_{\phi(B)\eta_t} = Z_t,$$

where we let $\phi(B)$ = $1 - \sum_{j=1}^{p} \phi^{j} B^{j}$

Stationary processes and Linear Processes

Estimation of Autocovariano

Dependence

MA(q) and AR(

- We want the solution to the AR equation to yield a stationary process. Let's first consider AR(1). We will demonstrate that a stationary solution exists for $|\phi_1| < 1$.
- We first write

$$\eta_{t} = \phi_{1}\eta_{t-1} + Z_{t} = \phi_{1}(\phi_{1}\eta_{t-2} + Z_{t-1}) + Z_{t}$$

$$= \phi_{1}^{2}\eta_{t-2} + \phi_{1}Z_{t-1} + Z_{t}$$

$$\vdots$$

$$= \phi^{k}\eta_{t-k} + \sum_{j=0}^{k-1} \phi^{j}Z_{t-j}$$

$$\vdots$$

$$= \sum_{j=0}^{\infty} \phi_{1}^{j}Z_{t-j}$$

Stationary processes and Linear

Estimation of Autocovarianc

Dependence

Linear Processes

MA(q) and AR(p)

$$\eta_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}.$$

Using the fact that, for |a|<0, $\sum_{j=0}^\infty a^j=\frac{1}{1-a}$, the sequence $\{\psi_j\}$ is absolutely summable

• Thus, since $\{\eta_t\}$ is a linear process, it follows by the filtering preserves stationarity result that $\{\eta_t\}$ is a zero mean stationary process with ACVF

$$\gamma(h) = \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}$$
$$= \sigma^2 \sum_{j=0}^{\infty} \phi_1^j \phi_1^{j+h}$$
$$= \sigma^2 \phi^h \sum_{j=0}^{\infty} (\phi_1^2)^j$$

Autocovariance Function

inear Processes

MA(q) and AR(p)
Processes

Now $|\phi_1| < 1$ implies that $|\phi_1^2| < 1$ and therefore we have

$$\gamma(h) = \frac{\sigma^2 \phi_1^h}{1 - \phi_1^2}$$

When $|\phi_1| \ge 1$

- No stationary solutions exist for $|\phi_1|$ = 1
- When $|\phi_1| > 1$, dividing by ϕ_1 for both sides we get

$$\phi_1^{-1} \eta_t = \eta_{t-1} + \phi_1^{-1} Z_t$$

$$\Rightarrow \eta_{t-1} = \phi_1^{-1} \eta_t - \phi_1^{-1} Z_t$$

A linear combination of **future** Z_t 's \Rightarrow we have a stationary solution, but, η_t depends on future $\{Z_t\}$'s-This process is said to be not causal

• If we assume that η_s and Z_t are uncorrelated for each t>s, $|\phi_1|<1$ is the only stationary solution to the AR equation

A(q) and AR(p)

AR(1) process

$$\eta_t = \phi_1 \eta_{t-1} + Z_t \Rightarrow (1 - \phi_1 B) \eta_t = Z_t \Rightarrow \eta_t = (1 - \phi_1 B)^{-1} Z_t$$

• Recall $\sum_{j=0}^{\infty} a^j = \frac{1}{1-a} = (1-a)^{-1}$. We have

$$\eta_t = \sum_{j=0}^{\infty} (\phi_1 B)^j Z_t = \sum_{j=0}^{\infty} \phi_1^j B^j Z_t = \sum_{j=0}^{\infty} \phi^j Z_{t-j}$$

• Here $1 - \phi_1 B$ is the AR characteristic polynomial

The Second-Order Autoregressive Process

Stationary processes and Linear Processes

CLEMS#N

Estimation of Autocovariance

Linnar Processos

MA(q) and AR(p)

Now consider the series satisfying

$$\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + Z_t,$$

where, again, we assume that Z_t is independent of $\eta_{t-1}, \eta_{t-2}, \cdots$

The AR characteristic polynomial is

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2$$

The corresponding AR characteristic equation is

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 = 0$$

- A stationary solution exists if and only if the roots of the AR characteristic equation exceed 1 in absolute value
- For the AR(2) the roots of the quadratic characteristic equation are

$$\frac{\phi_1 \pm \sqrt{\phi_1^2 - 4\phi_2}}{-2\phi_2}$$

These roots exceed 1 in absolute value if

$$\phi_1 + \phi_2 < 1$$
, $\phi_2 - \phi_1 < 1$, and $|\phi_2| < 1$

 We say that the roots should lie outside the unit circle in the complex plane. This statement will generalize to the AR(p) case

The Autocorrelation Function for the AR(2) Process

Yule-Walker equations:

$$\eta_{t} = \phi_{1}\eta_{t-1} + \phi_{2}\eta_{2} + Z_{t}
\Rightarrow \eta_{t}\eta_{t-h} = \phi_{1}\eta_{t-1}\eta_{t-h} + \phi_{2}\eta_{t-2}\eta_{t-h} + Z_{t}\eta_{t-h}
\Rightarrow \gamma(h) = \phi_{1}\gamma(h-1) + \phi_{2}\gamma(h-2)
\Rightarrow \rho(h) = \phi_{1}\rho(h-1) + \phi_{2}\rho(h-2),$$

$$h = 1, 2, \cdots$$

• Setting h = 1, we have $\rho(1) = \phi_1 \ \rho(1) + \phi_2 \ \rho(-1) \Rightarrow \rho(1) = \frac{\phi_1}{1 - \phi_2}$

•
$$\rho(2) = \phi_1 \rho(1) + \phi_2 \rho(0) = \frac{\phi_2(1-\phi_2)+\phi_1^2}{1-\phi_2}$$

Stationary processes

The Variance for the AR(2) Model

Taking the variance of both sides of AR(2) equations:

$$\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + Z_t,$$

yields

$$\gamma(0) = (\phi_1^2 + \phi_2^2)\gamma(0) + 2\phi_1\phi_2\gamma(1) + \sigma^2$$

$$= \frac{(1 - \phi_2)\sigma^2}{(1 - \phi_2)(1 - \phi_1^2 - \phi_2^2) - 2\phi_2\phi^2}$$

$$= \left(\frac{1 - \phi_2}{1 + \phi_2}\right) \frac{\sigma^2}{(1 - \phi_2)^2 - \phi_1^2}$$

Stationary processes and Linear Processes

Estimation of Autocovariano

Dependence

Linear Processes

MA(q) and AR(p)

$$\eta_t = \phi_1 \eta_{t-1} + \phi_2 \eta_{t-2} + \dots + \phi_p \eta_{t-p} + Z_t$$

AR characteristic polynomial:

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p.$$

AR characteristic equation: $1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p = 0$

Yule-Walker equations:

$$\rho(1) = \phi_1 + \phi_2 \rho(1) + \dots + \phi_p \rho(p-1)$$

$$\rho(2) = \phi_1 \rho(1) + \phi_2 + \dots + \phi_p \rho(p-2)$$

$$\vdots$$

$$\rho(p) = \phi_1 \rho(p-1) + \phi_2 \rho(p-2) + \dots + \phi_p$$

Variance:

$$\gamma(0) = \phi_1 \gamma(1) + \phi_2 \gamma(2) + \dots + \phi_p \gamma(p) + \sigma^2$$
$$= \frac{\sigma^2}{1 - \phi_1 \rho(1) - \dots - \phi_p \rho(p)}$$

Autocovariance Function

ependence

 $\mathsf{MA}(q)$ and $\mathsf{AR}(p)$ Processes