JPS

Mateusz Bochenek Tomasz Wiaderek

Dane testowe 1:

start_A_star([pos(0,1/2), pos(1,1/3), pos(2,2/3), pos(3,3/3), pos(4,3/1), pos(5,2/2), pos(6,3/2), pos(7,1/1), pos(8,2/1)], PathCost, 1, 100).

Rozwiązanie:

1	2	3
Ō	5	6
7	8	4

1	2	3
7	5	6
8	0	4

1	2	3
7	5	6
8	4	0

1	2	3
7	0	5
8	4	6

1	2	3
7	4	5
8	- 0	6

1	2	3
0 -	4	5
7	8	6

1	2	3
4	0 -	5
7	8	6

1	2	3
4	5	0
7	8	6

1	2	3
4	5	6
7	8	0

Wyniki:

Heurystyka "pesymistyczna": 61 iteracji Heurystyka "optymistyczna": 99 iteracji

Dane testowe 2:

start_A_star([pos(0,1/3), pos(1,2/3), pos(2,3/3), pos(3,3/2), pos(4,1/2), pos(5,2/2), pos(6,3/1), pos(7,1/1), pos(8,2/1)], PathCost, 1, 100).

Wyniki:

Heurystyka "pesymistyczna": 5 iteracji Heurystyka "optymistyczna": 5 iteracji

WNIOSKI:

Dla nietrywialnych problemów heurystyka "optymistyczna" nie jest optymalnym narzędziem, ponieważ liczba płytek, która nie jest na swoim miejscu, nie jest dobrym kryterium do oszacowania kosztów dojścia do rozwiązania. W pierwszym przykładzie jedynie dwie płytki są położone na niewłaściwych miejscach, jednak należy wykonać aż jedenaście przesunięć, aby rozwiązać łamigłówkę. Wartość tej funkcji heurystycznej jest taka sama w sytuacji, gdy do rozwiązania zagadki pozostaje jeden ruch. Wobec tego istnieje ryzyko, że pewne stany będą rozwijane niepotrzebnie. Ponadto funkcja obliczająca koszt rozwiązania łamigłówki (korzystająca z "optymistycznej" heurystyki) nie jest niemalejąca.