Семинар 3.

Модель множественной регрессии.

Матрицы: начало.

- 1. (еще немного о парной регрессии) Покажите, что для модели парной регрессии с константой $R^2 = \widehat{\mathrm{Corr}}^2(y,\hat{y}).$
- 2. (Математическое ожидание квадратичной формы) Пусть y случайный векторстолбец размерности $n \times 1$, A детерминированная матрица размерности $n \times n$. Покажите, что справедливо следующее:

$$\mathbb{E}(y'Ay) = \operatorname{tr}(A\operatorname{Var}(y)) + \mathbb{E}(y')A\mathbb{E}(y).$$

- 3. Используя матрицы $\mathbf{P} = X(X'X)^{-1}X'$ и $\pi = \vec{i}(\vec{i'}\vec{i})^{-1}\vec{i'}$
 - (a) запишите TSS, RSS и ESS в матричной форме;
 - (b) вычислите $\mathbb{E}(TSS)$, $\mathbb{E}(ESS)$.

Примечание: \vec{i} — вектор размерности $n \times 1$, состоящий из единиц.

4. Рассмотрим классическую линейную модель регрессии

$$y = X\beta + \varepsilon$$
.

Найдите:

- (a) $Cov(\hat{\beta}, y)$;
- (b) $Cov(\hat{\beta}, \hat{y});$
- (c) Cov(e, y);
- (d) $Cov(e, \hat{y})$.
- 5. Что происходит с TSS, RSS, ESS, R^2 при добавлении нового наблюдения? Если величина может изменяться только в одну сторону, то докажите это. Если возможны и рост, и падение, то приведите пример.