The Ideal Continual Learner: An Agent That Never Forgets

Liangzu Peng¹

Paris V. Giampouras¹

René Vidal^{2,3}

¹JHU

²UPenn

³NORCE Norwegian Research Centre

Continual Learning: Problem Setup

• Learning Tasks: Given T tasks, t = 1, ..., T

- Goal: learn a model \widehat{w}_T that solves all tasks when presented sequentially to the learner.
- Catastrophic Forgetting Challenge: model \widehat{w}_T may perform poorly on previous tasks

Methods to Prevent Forgetting

- Regularization-based, e.g., $\min_{\mathbf{w} \in \mathbb{R}^n} L_t(\mathbf{w}; D_t) + \delta \cdot \big| \big| \mathbf{w} \widehat{w}_{t-1} \big| \big|_2$
- *Memory-based*, e.g., train with current data and part of previous data (rehearsal)
- Expansion-based: add new parameters for new tasks and learn only new parameters
- ✓ These methods greatly improve empirical performance in the deep learning context.
- X However, there is limited theory explaining their empirical success.

The Ideal Continual Learner (ICL)

With $\mathcal{K}_0 \coloneqq \mathbb{R}^n$, **ICL** is a method that solves

$$\mathcal{K}_t \coloneqq \underset{w \in \mathcal{K}_{t-1}}{\operatorname{argmin}} L_t(w; D_t)$$

sequentially, for t = 1, 2, ..., T.

Assumption 1 (Shared Multitask Model):

$$\cap_{t=1}^T \mathcal{G}_t \neq \emptyset$$

ICL Never Forgets by Design

Under Assumption 1, $\mathcal{K}_t = \bigcap_{i=1}^t \mathcal{G}_i$ for every t = 1, ..., T, thus **ICL** never forgets.

ICL Example: Continual Regression

$$L_t(w; (X_t, y_t)) := ||X_t w - y_t||_2^2$$

• G_t is an affine subspace:

$$\mathcal{G}_t = \{ w \in \mathbb{R}^n : X_t^\top X_t w = X_t^\top y_t \}$$

• Under Assumption 1, \mathcal{K}_t is the intersection of the first t subspaces ($\mathcal{K}_t = \bigcap_{i=1}^t \mathcal{G}_i$):

Representing \mathcal{K}_t . We need extra notations:

- $\widehat{w}_t \in \mathcal{K}_t$: shared solution to tasks 1, ..., t
- B_t : orthonormal basis of $\bigcap_{i=1}^t$ nullspace (X_i)

Then $w \in \mathcal{K}_t \Leftrightarrow w = \widehat{w}_t + B_t a$ for some a.

Implementing ICL. It suffices to maintain and update (\widehat{w}_t, B_t) for every t = 1, 2, ..., T:

- (t = 1) Compute (\widehat{w}_1, B_1) from (X_1, y_1) by using an SVD on X_1 and solving task 1
- (t > 1) Compute (\widehat{w}_t, B_t) from (X_t, y_t) and $(\widehat{w}_{t-1}, B_{t-1})$ by solving:

$$\min_{w \in \mathcal{K}_{t-1}} ||X_t w - y_t||_2^2$$

$$\Leftrightarrow \min_{a} \left| \left| X_t(\widehat{\boldsymbol{w}}_{t-1} + \boldsymbol{B}_{t-1}\boldsymbol{a}) - y_t \right| \right|_2^2$$

Our Paper Furthermore Discusses:

- generalization & optimization of ICL
- wider networks ⇒ less forgetting
- how ICL unifies many existing methods
- ICL connections to many other topics

Conclusion & Limitation:

- ICL is a general framework that never forgets
- Implementing ICL exactly is in general difficult, but approximating ICL is possible.