Richard Bäck 8. Mai 2015

Zusammenschrift zu Potenzreihen

8. Mai 2015

1 Taylorreihe

1.1 Definition

Die Taylorreihe wird aufgestellt um eine beliebige Funktion mit einer unendlichen Potenzreihe anzunähern. Es ist praktisch nicht möglich eine unendliche Reihe anzulegen. Deshalb gilt: je größer n ist, desto genauer ist die Annäherung.

1.2 Verwendungszweck

Eine Taylorreihe wird aufgestellt, um das Integral von einer nicht integrierbaren Funktion zu bilden. Z.B. sind alle Funktionen, die auf der Eulerschen Zahl aufbauen, nicht integrierbar.

1.3 Ablauf

1. Es wird eine beliebige Funktion definiert:

$$f(x) := e^{-x^2} \tag{1}$$

2. Es wird eine Funktion definiert, die n-te Ableitung der gegebenen Funktion ermittelt:

$$fi(x,i) := \frac{d^i}{dx^i} \cdot f(x) \tag{2}$$

3. Es können nun mit fi() beliebig viele Ableitungen erstellt werden. Mit dieser können nun regelmäßigkeiten erkannt werden.

1.4 Ablauf mit Mathcad

1. Es wird eine beliebige Funktion definiert:

$$f(x) := e^{-x^2} \tag{3}$$

2. Mathcad hat eine eigene Funktion integriert, die eine Taylorreihe mit einer Annäherung von n Summanden:

$$g(x,n) := f(x)Reihen, n \tag{4}$$

2 Fourierreihe

2.1 Ablauf

Gegeben soll folgende Funktion sein:

Richard Bäck 8. Mai 2015

1. Nachmodellieren der gegebenen Funktion mit Hilfe von Entscheidungen:

$$f(t) := |2if0 \le t \le 2$$

$$|(-2 \cdot t + 6)if2 < t \le 3$$

$$|0otherwise|$$
(5)

2. Festlegung der Periodenlänge:

$$T := 3\omega_0 = \frac{2 \cdot \pi}{T} \tag{6}$$

3. Berechnung der Koeffizienten:

$$a(n) := \frac{T}{2} \cdot \int_0^T f(t) \cdot \cos(n \cdot \omega_0 \cdot t) dt \\ b(n) := \frac{T}{2} \cdot \int_0^T f(t) \cdot \sin(n \cdot \omega_0 \cdot t) dt$$
 (7)

4. Modellierung der Annäherungsreihenfunktion:

$$fn(t,n) := \frac{a(0)}{2} + \sum_{i=1}^{n} (a(i) \cdot \cos(i \cdot \omega_0 \cdot t) + b(i) \cdot \sin(i \cdot \omega_0 \cdot t))$$
(8)

5.

$$A(i) := \sqrt{a(i)^2 + b(i)^2} \tag{9}$$