The Hong Kong University of Science & Technology

MATH243 - Statistical Inference

Midterm Examination - Fall 01/02

Answer <u>ALL</u> questions

All Equal Marks

Date: 29 October 2001 (Mon)

Time allowed: 2 Hours

1. Let $X_1,...,X_m$ and $Y_1,...,Y_n$ be two independent random samples with the same mean θ and known variances σ_1^2 and σ_2^2 , respectively. Then show that for every $c \in [0, 1]$, $U = c\overline{X} + (1 - c)$ \overline{Y} is an unbiased estimator of θ . Also find the value of c for which the variance of C is minimum.

- 2. Let $X_1, ..., X_n$ be i.i.d. r.v.'s from Uniform (α, β) . Find
 - (i) the maximum likelihood estimators of α and β , $\hat{\alpha}$ and $\hat{\beta}$.
 - (ii) the distributions of $\hat{\alpha}$ and $\hat{\beta}$ and their joint distribution.
- 3. Let $X_1, ..., X_n$ be independent r.v.'s distributed as Uniform $(\theta a, \theta + b)$, where a, b > 0 are known and $\theta \in R$. Find the moment estimator for θ and calculate its variance.
- 4. (i) Let X_j , Y_j , j = 1, ..., n, be independent r.v.'s such that the X's are identically distributed with $E(X_j) = \mu_1$, $Var(X_j) = \sigma^2$, both finite, and the Y's are identically distributed with $E(Y_j) = \mu_2$, $Var(Y_j) = \sigma^2$, both finite. Write down the asymptotic distribution of $\overline{X}_n \overline{Y}_n$. No proof is needed.
 - (ii) From a large collection of bolts which is known to contain 3% defective bolts, 1000 bolts are chosen at random. If X is the number of the defective bolts among those chosen, what is the approximated probability that this number does not exceed 5% of 1000?
- 5. Let X_1 , X_2 , X_3 be independent r.v.'s distributed as N(0, 1) and set

$$Y_1 = -\frac{1}{\sqrt{2}} X_1 + \frac{1}{\sqrt{2}} X_2 ,$$

$$Y_2 = -\frac{1}{\sqrt{3}} X_1 - \frac{1}{\sqrt{3}} X_2 + \frac{1}{\sqrt{3}} X_3 ,$$

$$Y_3 = \frac{1}{\sqrt{6}} X_1 + \frac{1}{\sqrt{6}} X_2 + \frac{2}{\sqrt{6}} X_3$$
.

Then show that the r.v.'s Y_1 , Y_2 , Y_3 are independent and as a consequence of it write down the mean vector and the variance and covariance matrix of $Y = (Y_1, Y_2, Y_3)$. What is the distribution of Y?

***** END *****