EXHIBIT O

Case 6:20-cv-01214-ADA-DTG Document 1-15 Filed 12/31/20 Page 2 of 12

Analysis of Infringement of U.S. Patent No. 6,836,691 by Silicon Laboratories, Inc. (Based on Public Information Only)

Plaintiff Ocean Semiconductor LLC ("Ocean Semiconductor"), provides this preliminary and exemplary infringement analysis with respect to infringement of U.S. Patent No. 6,836,691, entitled "METHOD AND APPARATUS FOR FILTERING METROLOGY DATA BASED ON COLLECTION PURPOSE" (the "'691 patent) by Silicon Laboratories, Inc. ("SILABS"). The following chart illustrates an exemplary analysis regarding infringement by Defendant SILABS' semiconductor products, systems, devices, components, and integrated circuits, and products containing such circuits, fabricated or manufactured using PDF Solutions, Inc.'s ("PDF Solutions") platforms, and/or framework, including PDF Solutions' software and APC system, including the Exensio platform hardware and/or software (collectively, "Exensio") and/or other APC system and platform hardware and/or software. Such products include, without limitation, wireless products (e.g., EFR32XG2X family), internet of things products (e.g., EFM8BB10F8G-QFN20, EFM8BB10F2A-QFN20, EFM8BB10F2G-OFN20, EFM8BB10F2I-OFN20, EFM8BB10F4A-OFN20, EFM8BB10F4G-OFN20, EFM8BB10F4I-OFN20, EFM8BB10F8A-OFN20, EFM8BB10F8G-QSOP24, EFM8BB10F8G-SOIC16, EFM8BB10F8I-QFN20, EFM8BB10F8I-QSOP24, EFM8BB10F8I-SOIC16, EFM8BB21F16A-QFN20, EFM8BB21F16G-QFN20, EFM8BB21F16G-QSOP24, EFM8BB21F16I-QFN20, EFM8BB21F16I-QSOP24, EFM8BB22F16A-QFN28, EFM8BB22F16G-QFN28, EFM8BB22F16I-QFN28, EFM8BB31F16A-4QFN24, EFM8BB31F16A-5QFN32, EFM8BB31F16G-QFN24, EFM8BB31F16G-QFN32, EFM8BB31F16G-QFP32, EFM8BB31F16G-QSOP24, EFM8BB31F16I-4QFN24, EFM8BB31F16I-5QFN32, EFM8BB31F16I-QFN24, EFM8BB31F16I-QFN32, EFM8BB31F16I-QFP32, EFM8BB31F16I-QSOP24, EFM8BB31F32A-4QFN24, EFM8BB31F32A-5QFN32, EFM8BB31F32G-QFN24, EFM8BB31F32G-QFN32, EFM8BB31F32G-QFP32, EFM8BB31F32G-QSOP24, EFM8BB31F32I-4QFN24, EFM8BB31F32I-5QFN32, EFM8BB31F32I-QFN24, EFM8BB31F32I-QFN32, EFM8BB31F32I-QFP32, EFM8BB31F32I-QSOP24, EFM8BB31F64A-4QFN24, EFM8BB31F64A-5QFN32, EFM8BB31F64G-QFN24, EFM8BB31F64G-QFN32, EFM8BB31F64G-QFP32, EFM8BB31F64G-QSOP24, EFM8BB31F64I-4QFN24, EFM8BB31F64I-5QFN32, EFM8BB31F64I-QFN24, EFM8BB31F64I-QFN32, EFM8BB31F64I-QFP32, EFM8BB31F64I-QSOP24), infrastructure products (e.g., Si5332A-GM1, Si5332A-GM2, Si5332A-GM3, Si5332B-GM1, Si5332B-GM2, Si5332B-GM3, Si5332C-GM1, Si5332C-GM2, Si5332C-GM3, Si5332D-GM1, Si5332D-GM2, Si5332D-GM3, Si5332E-GM1, Si5332E-GM2, Si5332E-GM3, Si5332F-GM1, Si5332F-GM2, Si5332F-GM3, Si5332G-GM1, Si5332G-GM2, Si5332G-GM3, Si5332H-GM1, Si5332H-GM2, Si5332H-GM3, Si5332A-GM1, Si5332A-GM2, Si5332A-GM3, Si5332B-GM1, Si5332B-GM2, Si532B-GM2, Si5 GM3, Si5332C-GM1, Si5332C-GM2, Si5332C-GM3, Si5332D-GM1, Si5332D-GM2, Si5332D-GM3, Si5332E-GM1, Si5332E-GM2, Si5332E-GM3, Si5332F-GM1, Si5332F-GM2, Si5332F-GM3, Si5332G-GM1, Si5332G-GM2, Si5332G-GM3, Si5332H-GM1, Si5332H-GM2, Si5332H-GM3), broadcast products (e.g., Si2160, Si2162, Si2164, Si2180, Si2181, Si2182, Si2183), access products (e.g., Si3000, Si3402-GM, Si3404-GM, Si3406-GM, Si34062-GM, Si3462-GM, Si3471A-IM, microcontrollers (e.g., Tiny Gecko series, EFM8 Busy Bee), buffers (e.g., Si5330x), oscillators (e.g., Si54x), clock generators (e.g., Si534x), jitter attenuators (e.g., Si539x), synchronous ethernet (e.g., Si5383/48/88), isolation products (e.g., Si86xx, Si87xx, Si88xx, Si823x, Si827x, Si828x, Si823Hx, Si890x, Si892x, Si82Hx, Si838x, Si834x, and Si875x), interface products (e.g., ethernet controllers, LC controllers, bridges), timing products (e.g., buffers, clock generators, oscillators, and network synchronizers), sensors (e.g., humidity, magnetic, optical, temperature, and biometric), audio & radio products (e.g., automotive tuners, and radios), power products (e.g., power management ICs, powered drivers, and PSE controllers), TV & video products (e.g., digital demodulators and TV tuners), modem & DAA products (e.g., voice modems), voice products (e.g., codec, proSLICs, and DAA), power over ethernet

Case 6:20-cv-01214-ADA-DTG Document 1-15 Filed 12/31/20 Page 3 of 12

devices (e.g., power source equipment and powered device ICs)), and similar systems, products, devices, and integrated circuits (collectively, the "'691 Infringing Instrumentalities").

The analysis set forth below is based only upon information from publicly available resources regarding the '691 Infringing Instrumentalities, as SILABS has not yet provided any non-public information.

Unless otherwise noted, Ocean Semiconductor contends that SILABS directly infringes the '691 patent in violation of 35 U.S.C. § 271(g) by using, selling, and/or offering to sell in the United States, and/or importing into the United States, the '691 Infringing Instrumentalities. The following exemplary analysis demonstrates that infringement. Unless otherwise noted, Ocean Semiconductor further contends that the evidence below supports a finding of indirect infringement under 35 U.S.C. § 271(b) in conjunction with other evidence of liability.

Unless otherwise noted, Ocean Semiconductor believes and contends that each element of each claim asserted herein is literally met through SILABS' provision or importation of the '691 Infringing Instrumentalities. However, to the extent that SILABS attempts to allege that any asserted claim element is not literally met, Ocean Semiconductor believes and contends that such elements are met under the doctrine of equivalents. More specifically, in its investigation and analysis of the '691 Infringing Instrumentalities, Ocean Semiconductor did not identify any substantial differences between the elements of the patent claims and the corresponding features of the Infringing Instrumentalities, as set forth herein. In each instance, the identified feature of the '691 Infringing Instrumentalities performs at least substantially the same function in substantially the same way to achieve substantially the same result as the corresponding claim element.

Ocean Semiconductor notes that the present claim chart and analysis are necessarily preliminary in that Ocean Semiconductor has not obtained substantial discovery from SILABS nor has SILABS disclosed any detailed analysis for its non-infringement position, if any. Further, Ocean Semiconductor does not have the benefit of claim construction or expert discovery. Ocean Semiconductor reserves the right to supplement and/or amend the positions taken in this preliminary and exemplary infringement analysis, including with respect to literal infringement and infringement under the doctrine of equivalents, if and when warranted by further information obtained by Ocean Semiconductor, including but not limited to information adduced through information exchanges between the parties, fact discovery, claim construction, expert discovery, and/or further analysis.

USP No. 6,836,691	Infringement by the '691 Accused Instrumentalities
, ,	PDF Solutions Inc.'s Exensio platform (the "Exensio platform") collects metrology data related to the processing of workpieces in a
collecting metrology data related to the processing of	plurality of tools.
workpieces in a plurality of tools;	For example, the Exensio platform enables links across fab, test floor, and other enterprise data types including "inline and end-of-line metrology, yield, parametric, performance, manufacturing consumables, tool-level sensor data, test floor data, logistical data, as well as custom data types. By providing a common environment for all these different data types from many different points in the manufacturing and test process," the Exensio platform is "designed to enable customers to rapidly perform root cause diagnosis of yield, performance, and quality issues that impact manufacturing and test operations," and "enable[s] predictive and proactive optimization decisions for process control, process adjustments, PM scheduling, tool corrective actions, wafer dispatching, and wafer level and final test."
	See PDF Solutions Inc.'s Form 10-K (filed Mar. 10, 2020) at 6, available at http://ir.pdf.com/static-files/fb23407a-dfbc-489f-adb1-ac54e83102ad (last visited Apr. 30, 2020) ("2020 Form 10-K").
	The Exensio platform also collects metrology data to determine reliability risk and early life failure:
	Early Life Failure Detection (ELF)
	Machine Learning based solution to decide reliability risk – likelihood of Early Life failure in the field Collaborative Learning "Expert"
	PCM/WAT Final Test Sort Sort Assy FDC BurnIn Defectivity Metrology Spatial Outlier Ensemble STL SPL SPL Manual Review A Grade Die/Pkg Reliability Grade Scrap Manual Review A Grade Die/Pkg Reliability Grade Scrap
	Multiple data types, Multiple algorithms, Machine Learning, Potentially large data sets, Collaborative Learning,
	PDF/SOLUTIONS PDF Solutions, All Rights Reserved 6
	See S1.2—Exensio Platform, 16 th Annual PDF Solutions Users Conference (Oct. 15, 2019) at 6, available at
	http://www.pdf.com/upload/File/Investors/PUG2019/S1.2%20PUG2019_ExensioPlatform_SaidAkar.pdf ("S1.2—Exensio Platform
	Presentation") (last visited Apr. 30, 2020) (annotated).

The metrology data is collected, analyzed, and controlled across the entire manufacture pipeline, including integrated circuit design, fabrication, sort, assembly, test, and system:

>100 Fab Tools Types supported, >20 Tester Types supported, >160
Assembly Tool Types supported, > 50 Data types supported

PDF/SOLUTIONS" PDF Solutions, All Rights Reserved

See S1.2—Exensio Platform Presentation at 11 (annotated).

The Exensio Platform collects the metrology data through a number of its platform modules, including the control module (to detect and identify process or tool problems in fab and assembly in real time), the test module (to prevent test issues and offer higher yield and reliability), the yield module (to drive higher manufacturing yields and integrate all frontend and backend data), the char module (to provide big data analytics on processing tools), and the ALPS module (to trace wafers, dies, and multichip modules):

See S1.2—Exensio Platform Presentation at 3; see also id. at 4 (annotated):

The collection purpose data, for example, includes:

- Material descriptions (e.g., lot #, wafer #, die);
- Meta data (e.g., recipe data/time, process flow, stages, and steps);
- Fault detection and control (e.g., trace charts, model prediction, real time data collection on defects);
- Defect & metrology (e.g., lot/wafer summaries, defect summary, kill ratio, and defect images); and
- Assembly system (e.g., location of reel/tube, die traceability, and equipment parameters):

Data Quality - End-to-End

>100 Fab Tools Types supported, >20 Tester Types supported, >160
Assembly Tool Types supported, > 50 Data types supported

PDF/SOLUTIONS"

PDF Solutions, All Rights Reserved

See S1.2—Exensio Platform Presentation at 11 (annotated).

filtering the metrology data based on the collection purpose data; and

filtering the metrology data PDF's Exensio platform filters the metrology data based on the collection purpose data.

As an example, the Exensio platform uses semantic modeling to filter the metrology data (e.g., by cleaning, aligning, and interpreting the data) to address, for example, a particular process control activity (e.g., aligning events in fabrication with wafer data to answer process-related questions such as "which wafers were processed with the new batch of resist"):

Semantic Models - A Key Element for Advanced Analytics and Control

- · Semantic models allow for automatically cleaning, aligning, and interpreting data
- Examples:
 - Aligning events in a fab with wafer data to answer question like "which wafers were processed with the new batch of resist"?
 - Mapping equipment signals across a fleet of tools to account for configuration differences
 - Meaningful merging of chip data as the chips flow through wafer sort, assembly, and final test
- Digital Twins require models and harmonized data collection to enable machine learning

Semantic models allow our customers to deploy advanced analytics and control to production

PDF Solutions, All Rights Reserved

PDF/SOLUTIONS

See S1.2—Exensio Platform Presentation at 10 (annotated).

As another example, the Exensio platform uses machine learning and multiple algorithms to filter the metrology data based on the collection purpose data:

Early Life Failure Detection (ELF)

See S1.2—Exensio Platform Presentation at 6 (annotated). conducting a process PDF's Exensio platform conducts a process control activity related to one of the tools based on the filtered metrology data. control activity related to one of the tools based on For example, based on the filtered metrology data, the Exensio platform is able to detect early life failure of a particular die or chipset the filtered metrology data. package and determine whether to downgrade or scrap the die or chipset package: Early Life Failure Detection (ELF) Machine Learning based solution to decide reliability risk - likelihood of Collaborative Signature "Expert" Library Learning Early Life failure in the field SYL SBL PCM/WAT Spatial Outlier STL Final Test Manual Review Ensemble SPL Test Outlier Fauipment A Grade ML Assy FDC Ensemble Variance Die/Pkg Reliability Grade Process Reliability Defectivity Scrap Multiple data types, Multiple algorithms, Machine Learning, Potentially large data sets, Collaborative Learning, ... PDF/SOLUTIONS" PDF Solutions, All Rights Reserved See S1.2—Exensio Platform Presentation at 6 (annotated). As another example, based on the filtered metrology data, the Exensio platform identifies losses due to problems in fabrication, test and design, which in turn, allow quick actions to be taken to improve key performance metrics, including achieving and more stable yields, reducing scraps, allowing more consistent and optimized test, and increasing engineering productivity:

Case 6:20-cv-01214-ADA-DTG Document 1-15 Filed 12/31/20 Page 11 of 12

See Exensio-Yield, Rich Semiconductor Capabilities Delivered on an Easy-to-Use Analytics Platform, available at http://www.pdf.com/Exensio-Yield (last visited Apr. 30, 2020).

As another example, the Exensio platform identifies invisible defects, traces components during assembly and packaging, and optimizes system performance across supply chain based on the filtered metrology data:

Customer Technology Requirements Drive Demand

3D Processes Invisible defects

2.5D-3D Packaging

Analytics and
traceability in
assembly

on Mature Nodes

More electrical
characterization
requirements

Electrical Scaling

System
Performance
Optimization
Alignment of data
across supply chain

5 / PDF Solutions EXTERNAL USE

See Kibarian et al., PDF Solutions, Inc. Needham Growth Conference (Jan. 16, 2019) at 5, available at https://www.pdf.com/upload/File/Investors/INVPres2019/PDFS%20investor%20presentation%2016-Jan-2019%20(final).pdf (last visited Apr. 30, 2020) ("PDF Needham Conference Presentation").

As yet another example, based on the filtered metrology data, the Exensio platform controls activities in fault-detection and classification, testing, assembly and packaging, and data characterization:

Data Quality - Completeness/Consistency - Data Collection/DEX

See S1.2—Exensio Platform Presentation at 12 (annotated).

As yet another example, based on the filtered metrology data, the Exensio platform monitors, triggers alarms, and controls manufacturing tool sets:

"• Exensio Control – This software provides failure detection and classification (or FDC) capabilities for monitoring, alarming and control of manufacturing tool sets. These capabilities include proprietary data collection and analysis of tool sensor trace data and summary indicators designed to rapidly identify sources of process variations and manufacturing excursions. When used together with Exensio Yield and related modules, the accretive data mining and correlation capabilities are designed to enable identification of tool level sources of yield loss and process variation that impact end of line product yield, performance and reliability."

See 2020 Form 10-K at 7.