ELEMENTARY CALCULUS MANUAL

Alfredo Sánchez Alberca (asalber@ceu.es)

Feb 2016

Department of Applied Math and Statistics CEU San Pablo

This work is licensed under an Attribution-NonCommercial-ShareAlike 4.0 International Creative Commons License. http://creativecommons.org/licenses/by-nc-sa/4.0/

You are free to:

- · Share copy and redistribute the material in any medium or format
- · Adapt remix, transform, and build upon the material

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonComercial. You may not use the material for commercial purposes.

ShareAlike. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

CONTENTS

1. Differential calculus with one variable

DIFFERENTIAL CALCULUS WITH ONE VARIABLE

DIFFERENTIAL CALCULUS WITH ONE VARIABLE

- 1. Differential calculus with one variable
- 1.1 Concept of derivative

INCREMENT

Definition (Increment of a variable)

An increment of a variable x is a change in the value of the variable and is denoted Δx . The increment of a variable x along an interval [a,b] is

$$\Delta x = b - a$$
.

Definition (Increment of a function)

The increment of a function y = f(x) along an interval $[a, b] \subseteq Dom(f)$ is

$$\Delta y = f(b) - f(a).$$

Example The increment of x along the interval [2,5] is $\Delta x = 5 - 2 = 3$ and the increment of the function $y = x^2$ along the same interval is $\Delta y = 5^2 - 2^2 = 21$.

AVERAGE RATE OF CHANGE

The study of a function y = f(x) requires to anderstand how the function changes, that is, how changes the dependent variable y when we change the independent variable x.

Definition (Average rate of change)

The average rate of change of a function f in an interval $[a, a + \Delta x] \subseteq Dom(f)$, is the quotient between the increment of y = f(x) and the increment of x in that interval, and is denoted

$$ARC f[a, a + \Delta x] = \frac{\Delta y}{\Delta x} = \frac{f(a + \Delta x) - f(a)}{\Delta x}.$$