Computer Hardware & Samuel Computer & Samuel & Samuel Computer & Samuel & S

### 1주차 - 오리엔테이션 + 전체 분해 실습

- 이론:
  - 하드웨어와 소프트웨어의 관계, 시스템 전체를 보는 눈의 필요성
  - 컴퓨터의 주요 부품(메인보드, CPU, GPU, RAM, SSD, 파워, 팬 등) 개괄
  - 본체 내부의 구조와 데이터 흐름 개요 (전원 → 연산 → 저장 → 출력)
- 실습:
  - 데스크탑 컴퓨터 본체를 실제로 열어 내부 구조 확인
  - 부품별 명칭과 역할 짚어가며 관찰: 메인보드, 전원부, 슬롯, 케이블 등
- 토론:
  - "컴퓨터를 이해한다는 건 무엇일까?"
  - 기술을 다루는 사람에게 기계의 실체란 어떤 의미인가?
  - 나에게 컴퓨터는 지금까지 어떤 존재였는가, 앞으로는 어떤 존재여야 할까?
- 1주차 선각 주제:
  - 조립 시장의 종말? 완제품 시장이 장악하는 이유
  - 모듈형 컴퓨터는 왜 실패하고, 왜 다시 시도될까?
  - Framework Laptop, Raspberry Pi 5 탈인텔 시대의 DIY 철학



## 시작하기에 앞서



# 2 이동아리에 오셨나요?



# 이동아리에서 무엇을 얻고 싶나요?



## 지금까지 컴퓨터를 '뜯어본' 적이 있나요?



# 언제 모일까? 얼마나 모일까?



# 



## 하드웨어와 소프트웨어의 관계, 그리고 시스템 전체를 보는 눈의 필요성



### 수학 이론 컴퓨터 보안 과학 최적화 전자공학 컴퓨터 과학 & 공학 <mark>소프트웨어</mark> 인지과학 하드웨어 암호학

### 도메인 넓히기

컴퓨터 과학 & 공학







### "TSMC는 왜 삼성보다 높은 점유율을 유지할까?"

"콘솔 vs PC, 칩 설계 철학은 어떻게 다른가?"

"하드디스크는 진짜로 완전히 사라질까?"

"오픈소스 하드웨어(RISC-V)는 성공할 수 있을까?"

"뉴로모픽 칩이 실제로 '뇌'와 닮았다는 말은 무슨 의미인가?"

"왜 애플은 M시리즈를 직접 설계하기 시작했는가?"



CHIP이 단순히 하드웨어 공부를 넘어서 기술 감각을 가진 개발자를 만드는 공간이 되도록



소프트웨어는 혼자서 존재할 수 없다. 실행되는 '어딘가'가 필요하다. 그게 바로 하드웨어다.

우리가 짜는 코드는 결국 전기 신호를 어떻게 흐르게 할지에 대한 지시문이다.

하드웨어는 전기, 회로, 트랜지스터라는 물리적인 실체이고 소프트웨어는 그 위에서 돌아가는 논리적 사고의 결정체다.

우리는 평소엔 이 둘을 분리해서 보지만, 시스템은 이 둘이 함께 작동할 때 완성된다.

전체를 본다는 건… "내 코드가 지금 어디쯤을 지나고 있을까?"를 상상할 수 있다는 것.



우리는 보통 "코드만" 본다 소프트웨어 개발자는 코드 → 결과의 흐름에 익숙

그런데 이 코드는 어디에서, 어떻게, 무엇 위에서 실행될까?

int x = 10; 이건 변수를 만든 게 아니라,

→ 레지스터나 메모리 어딘가에 전기를 흐르게 한 것

### 소프트웨어와 하드웨어는 어떻게 연결되어 있을까?

- 하드웨어: 물리적인 연산과 저장이 일어나는 땅
- 소프트웨어: 그 땅 위에서 살아가는 로직과 의미

둘 사이를 잇는 것이 운영체제, 어셈블리, 명령어 집합(IS)

코드는 "말 걸기 위한 언어"이고, 그 대상은 결국 하드웨어다.



#### 시스템 전체를 본다는 건 무슨 뜻일까?

- 단편적 시야:
  - "코드가 느리다." →
    - 변수 이름 바꿔볼까?
- 시스템적 시야:
  - "코드가 느리다." →
    - → 캐시 미스일 수도?
    - → CPU 점유율 높음?
    - → I/O 병목?
    - → 쓰레드 스케줄러가 컨텍스트 스위칭 너무 자주?

문제를 추적하는 눈, 전체 흐름을 연결짓는 시야, 그게 바로 "시스템 전체를 보는 눈"



### 왜 이게 우리에게 필요할까?

- 우리는 코드만 쓰는 사람이 아니라,
  - → 시스템을 이해하는 사람이 되기 위해 여기에 왔다.

### 이해의 깊이 = 선택의 폭

- → 어떤 구조를 고를지
- → 어떤 최적화를 택할지
- → 어떤 직무로 진출할지

### 컴퓨터의 주요 부품 개괄

- 메인보드: 모든 부품이 연결되는 중앙 통로
- CPU: 모든 계산과 판단을 내리는 두뇌
- GPU: 병렬 작업 특화된 연산 보조장치, AI·그래픽·게임에 강함
- RAM: 작업 중인 데이터를 잠시 담는 작업 책상
- SSD: 오래 보관하는 서랍
- 파워: 부품에 전기를 공급하는 심장과 혈관
- 팬: 열을 식히는 냉각 시스템

#### 관찰 팁:

"이 부품이 없으면 어떤 문제가 생길까?"를 상상하며 각 부품을 뜯어보자



### 본체 내부의 구조와 데이터 흐름 개요 (전원 $\rightarrow$ 연산 $\rightarrow$ 저장 $\rightarrow$ 출력)

- 파워가 전기를 공급함 (24핀 메인보드, 8핀 CPU 전원 등)
- CPU가 명령어를 받고 연산을 시작함
- 필요한 데이터는 RAM에서 가져오고, 결과를 SSD에 저장함
- 결과는 화면(GPU → 모니터)이나 소리(사운드카드 → 스피커) 등으로 출력됨
- 이걸 왜 알아야 할까?
  - → 오류가 났을 때 어디부터 점검해야 하는지, 이 흐름을 모르면 막막하다.
  - → 성능 병목이 생겼을 때 어디서 생기는지도 모르면 그냥 "느리다"고만 느껴진다.



# 



## 1단계 외부 관찰 - 전체 구조 파악

"이 선은 어디서 어디로 가고 있을까?"

"이건 데이터를 전송하는 선일까, 전력을 공급하는 선일까?"



## 2단계 저장장치가 없다면 어떻게 될까

"왜 저장장치에는 전기와 데이터가 따로 들어갈까?" "이 장치가 데이터를 '기억'하는 방식은 뭐가 있을까?"



## 3단계 RAM이 없다면 어떻게 될까

"이걸 통해 CPU와 어떤 데이터를 얼마나 빨리 주고받을까?" "RAM이 빠지면 컴퓨터는 어떤 오류를 낼까?"



## 4단계 GPU가 없다면 어떻게 될까

"왜 GPU는 CPU보다 전기도 더 많이 먹고, 덩치도 클까?" "이 안에 뭐가 들어 있길래 그렇게 복잡할까?"



## 5단계 쿨러가 없다면 어떻게 될까

"열은 어디서 나오고, 어디로 사라지는 걸까?" "써멀그리스는 어떤 역할을 할까?"



## 6단계 파워서플라이가 없다면 어떻게 될까

"전기는 어떤 경로로 흐르는가?" "12V, 5V, 3.3V 선들이 왜 구분되어 있는가?"



# 



### 단순히 사용법을 안다는 거랑 구조를 안다는 건 뭐가 다를까요?



### 기계의 속을 몰라도 괜찮을까요?



## 나는 이 기계를 통해 어떤 능력을 얻고, 또 잃고 있나요?



# 오늘, 우리는 컴퓨터를 '사용'하지 않고 처음으로 직접 마주했습니다.



### [과제 안내] 1주차 선각 리포트

이번 주 우리가 처음 컴퓨터의 속을 직접 들여다봤다면, 이제는 산업의 흐름 속에서 그 바깥을 바라보는 시간입니다.

다음 주 모임 전까지 아래 중 관심 있는 주제 하나를 선택해 '선각 리포트'를 A4에 작성해 주세요.

### 1주차 선각 주제 (택1)

- 1. "조립 시장의 종말? 완제품 시장이 장악하는 이유"
- 2. "모듈형 컴퓨터는 왜 실패하고, 왜 다시 시도될까?"
- 3. "Framework Laptop, Raspberry Pi 5 탈인텔 시대의 DIY 철학"



### 다음 시간엔?

"정보는 어디에, 어떻게 저장되어야 하는가?" 우리가 데이터를 다루는 방식을, 기계의 입장에서 바라봅니다.

- 메모리와 저장장치의 세계로 -

