Analysis 3, 11. Übung, 13.01.2020

Richard Weiss Florian Schager Christian Sallinger Fabian Zehetgruber Paul Winkler Christian Göth

January 8, 2020

Hier zitiere ich [?]

89.

Bis zu welcher Ordnung sind die Funktionen $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = |x|, \quad f(x) = \begin{cases} 0 & x \le 0, \\ x^2 & 0 < x < 1, \\ ax - 1 & x \ge 1, \end{cases}$$

 $a \in \mathbb{R}$ schwach differenzierbar? Berechnen Sie die schwachen Ableitungen. Zeigen Sie: Für $u(\mathbf{x}) = \log |\mathbf{x}|$ und $\nu_i(\mathbf{x}) = \frac{x_i}{|\mathbf{x}|^2}$ ist ν_i die schwache Ableitung $D^i u$ in \mathbb{R}^n .

90.

Sind $u, v \in W^{1,2}(\Omega)$, so ist $uv \in W^{1,1}(\Omega)$ mit $D_i(uv) = D_iuv + uD_iv$

91.

Verschwindet für eine Funktion $f: \mathbb{R} \mapsto \mathbb{R}$ die schwache Ableitung der Ordnung n, so ist f ein Polynom der Ordnung n-1 fast überall.

Hinweis: Zeigen Sie, dass jede Testfunktion als Summe der n-ten Ableitung einer Testfunktion und einer Linearkombination der Funktionen $\Psi_0^{(l)}, l < n, \Psi_0$ wie im Beweis von 6.1.4. dargestellt werden kann und berechnen Sie $\int x^k \xi^{(l)}(x) dx$ für Testfunktionen ξ und $k \leq l$.

92.

Zeigen Sie, dass aus der Existenz der schwachen Ableitung der Ordnung 2 im Allgemeinen für $n \geq 2$ nicht die Existenz der schwachen Ableitungen der Ordnung 1 folgt.

Hinweis: Betrachten Sie eine Funktion $f(x, y) = f_1(x) + f_2(y)$.

Zeigen Sie, dass für n=1 aus der Existenz einer schwachen k-ten Ableitung die Existenz der schwachen Ableitungen l-ter Ordnung für l < k folgt.

93.

Zeigen Sie, dass $f \in L^p(\Omega), 1 genau dann in <math>W^{m,p}(\Omega)$ liegt, wenn die Abbildungen $\varphi \mapsto \int_{\Omega} f D^{\alpha} \varphi d\lambda^n$ fpr $|\alpha| \leq m$ stetig vom Raum der Testfunktionen versehen mit der L^q -Norm nach $\mathbb R$ ist.

Hinweis: Verwenden Sie, dass der Dualraum von L^p der L^q ist, das heißt jede

beschränkte lineare Abbildung von einem dichten Teilraum des L^p nach \mathbb{C} ist von der Form $\varphi \mapsto \int \varphi g$ mit $g \in L^q$.

94.

Ein Punkt $x \in \mathbb{R}^n$ heißt Dichtepunkt einer messbaren Teilmenge E von \mathbb{R}^n , wenn x Lebesguepunkt der Funktion $\mathbbm{1}_{E \cup \{x\}}$ ist.

Zeigen Sie: Ist jeder Punkt $x \in [0,1]^n$ ein Dichtepunkt einer messbaren Teilmenge E von \mathbb{R}^n , so gilt $\lambda^n(E) \geq 1$.

Gibt es eine messbare Teilmenge E von \mathbb{R} , für die $\mathbb{R}\setminus\{0\}$ die Menge der Dichtepunkte von E ist?

95.

Ist X ein Fixpunktraum und Y ein Retrakt von X, so ist Y ein Fixpunktraum.

96.

Zeigen Sie (Satz von Perron-Frobenius): Jede $n \times n$ Matrix $A = (a_{i,j})$ mit $a_{i,j} \geq 0$ für $1 \leq i,j \leq n$ hat einen Eigenwert $\lambda \geq 0$ mit zugehörigem Eigenvektor $x = (x_1, \ldots, x_n)$ mit $x_i \geq 0, 1 \leq i \leq n$.

97.

Zeigen Sie, dass das Gleichungssystem

$$\frac{1}{2}x_1^3 - \frac{1}{8}x_2^3 = x_1$$
$$\frac{1}{2}x_1^5 + \frac{1}{4}x_1^2x_2^4 + \frac{1}{4} = x_2$$

eine Lösung besitzt.

98.

Zeigen Sie, dass es eine eindeutige Lösung u der Gleichung

$$u(x) = x + \frac{1}{2}\sin(u(x) + x)$$

in C[-1,1] gibt.