

Redes Neurais Artificiais

Aula 2 - RNs e RNAs

Data

Nossa Inspiração - O Sistema Nervoso Central

- O sistema nervoso animal é responsável pelas mais diversas atividades, dentre elas:
- Percepção
- Controle motor
- Excitação
- Homeostase
- Motivação

https://www.austinlim.com/open-neuroscience-initiative

Aprendizado e Memória

- Quase todos os animais são capazes de modificar seu comportamento como resultado da experiência;
- Como o comportamento é impulsionado pela atividade cerebral, mudanças no comportamento devem, de alguma forma, corresponder a mudanças dentro do cérebro.
- No final do século XIX, teóricos como Santiago Ramón y Cajal argumentaram que a explicação mais plausível é que o aprendizado e a memória são expressos como mudanças nas conexões sinápticas entre os neurônios.

Domínio público, https://commons.wikimedia.org/w/index.php?curid=612581

O Neurônio

ZEISS Microscopy - Cultured Rat Hippocampal Neuron (CC)

O Neurônio

Por Mariana Ruiz LadyofHats (original English version), Domínio público,

Microanatomia Funcional do Neurônio

Potenciais de Ação

Mecanismos Moleculares do Potencial de Ação

Voltage-gated Na⁺ Channels

Closed At the resting potential, the channel is closed.

Open In response to a nerve impulse, the gate opens and Na⁺ enters the cell.

Inactivated For a brief period following activation, the channel does not open in response to a new signal.

https://upload.wikimedia.org/wikipedia/commons/6/6d/Figure 35 02 01.jpg

Propagação do Potencial de Ação

Potencial de Ação

Sinapse e a Plasticidade Neural

Sinapse e a Plasticidade Neural

https://www.austinlim.com/open-neuroscience-initiative

RNAs

Modelagem de um Neurônio Artificial

https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel_english.png

Redes Neurais de Multiplas Camadas

Tsung-Nan Tsai, Taho Yang, (2005) "A neuro-computing approach to the thermal profile control of the second-side reflow process in surface mount assembly", Journal of Manufacturing Technology Management, Vol. 16 Iss: 3, pp.343 - 359 [Link da Figura CC]

Neurônio Biológico vs RNAs

Tentativas recentes de entender a complexidade do neurônio vs seu modelo simplificado foram feitas por Beniaguev et al no artigo entitulado "Single Cortical Neurons as Deep Artificial Neural Networks"

Para simular o sinal de um único neurônio piramidal foi necessária uma DNN com 7 camadas e 128 neurônios em cada camada!

Referências

https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Aplicações de Redes Neurais: https://medium.com/@datamonsters/artificial-neural-networks-in-natural-language-processing-bcf62aa9151a

Aplicação completo Tensorflow + Séries Temporais: https://www.tensorflow.org/tutorials/structured_data/time_series

https://www.biorxiv.org/content/10.1101/613141v1.full.pdf

