STAT 242b/542b THEORY OF STATISTICS: COURSE SYLLABUS

GRADING: Weekly homework 40%, First test 30%, Second test 30% **DISCUSSION** SESSION: Monday 8:00pm-9:00pm, 24 Hillhouse Ave.

OFFICE HOURS: MWF: In Classroom 10:15 to 10:25am (after class), then Stat Dept, Dana

House (10:30am to 11am)

TFs: Xinyuan Chen, Xin Xu, Mingrui Zhang. Basement of Dana House.

WEEK 1: January 18,20. PROBABILITY REVIEW

- * Probability models and the situations in which they arise (Ch. 1,2,3).
- * Expected values and variances of sample means. Use of the Central Limit Theorem. Normal approximation. Delta method. (Ch. 4,5).

WEEK 2: Jan 23,25,27. DISTRIBUTIONS BASED ON NORMAL

* SOME MORE PROBABILITY FOR STATISTICS

Normal, Chi-square, t, and F distributions for statistics based on the normal. (Ch. 6).

* METHOD OF MOMENTS and the Delta method (Ch. 8.3, 8.4)

WEEK 3: Jan 30. Feb 1,3. ESTIMATION (Ch. 8)

* METHOD OF MAXIMUM LIKELIHOOD (Sections 8.3, 8.4, 8.5)

WEEK 4: February 6, 8,10. SAMPLING DISTRIBUTIONS, LARGE SAMPLE APPROXIMATIONS, RELATIVE EFFICIENCY (Sections 8.3, 8.4, 8.5).

- * Comparison of sampling distributions of MLE and other estimators. Relative efficiency.
- * Notions of consistency, asymptotic normality, asymptotic variance and standard error.
- * Consistency of the MLE.
- * Asymptotic Normality of the MLE.

WEEK 5: February 13,15,17,20. SUFFICIENCY, RISK, AND BAYES PROCEDURES (Sec. 8.6-8.8).

- * Sufficiency and Likelihood factorization
- * Mean Squared error. Bias and variance tradeoff.
- * Unbiased estimators. Cramer-Rao inequality.
- * Bayes estimators.

WEEK 6: February 22,24. TESTING STATISTICAL HYPOTHESES (Ch.9).

- * Bayes' Formulation, Significance and Power, Neyman-Pearson Formulation.
- * Notions of simple and composite hypotheses concerning distributions and their parameters.
- * Neyman-Pearson Lemma for optimal tests in simple versus simple cases.
- * Generalized likelihood ratios for composite cases (not necessarily optimal). Simplifying the form of generalized likelihood ratios.
- * Choosing the threshold of a test statistic according to the desired significance level.

WEEK 7: February 27, March 1,3. MORE ON TESTING HYPOTHESES AND REVIEW

- * Tests for a specific value of a parameter.
- -- one-sided alternatives. Uniformly most powerful tests made easy.
- -- two-sided alternatives. Relationship with confidence intervals.
- -- examples.
- * Tests for goodness of fit of an estimated model.
- -- Chi-square test statistic
- -- Generalized likelihood ratio test statistic (both approximately Chi-square distributed under the null hypothesis.)
- -- Accounting for degrees of freedom.
- -- Example.
- * Review of Inference
- -- Selecting probability models.
- -- Estimating parameters in the model.
- -- Testing statistical hypotheses.

WEEK 8: March 6,8,10. FIRST EXAM AND SUMMARIZING DATA

* March 6. FIRST TEST

Covering chapters 8, 9 and any additional material presented.

* March 8,10. SUMMARIZING DATA (a sampling of ch. 10).

Plotting and interpreting empirical distributions,

quantile-quantile plots, histograms, densities, stem & leaf, and box-plots.

March 11-26. SPRING BREAK

WEEK 9: March 27,29,31. HYPOTHESIS TESTS: LOCATIONS IN 2 SAMPLES (Ch. 11).

- * Tests for location in independent samples
- -- various tests do about the same thing.
- -- specifics for tests of location depend on assumptions about the variances.
- * Tests for paired samples
- -- Reduces to a one-sample test regarding differences.
- -- Easier and more accurate than with independent samples.
- * Issues in the design of experiments.

WEEK 10: April 3,5,7. HYPOTHESIS TESTS: LOCATIONS IN MANY SAMPLES (Ch. 12).

- * One-way layout
- -- plots of means or medians (with box-plots).
- -- multiple comparisons.
- -- analysis of variance.
- * Two-way layout
- -- superimposed plots of mean response for each value of a second factor.
- -- the additive model and its graphical interpretation.
- -- tests for additive and interaction models.
- -- analysis of variance.

WEEK 11: April 10,12,14. LEAST SQUARES FITS OF LINES/CURVES (Ch. 14.1,14.2).

- * Solving and interpreting the least squares problem in linear regression.
- -- Graphical interpretation (best fitting line)
- -- Solution in terms of standardized variables (slope = correlation coefficient r)
- -- Solution in terms of original variables
- -- Pythagorean identity for sum of squared errors and its geometrical interpretation.
- -- least squares projection yields residual vector which is orthogonal to the vector of the explanatory variable.
- -- residual plots.
- * Statistical Properties of the estimated parameters.
- -- standard linear model with homoscedastic errors.
- -- means, variances, and distribution of estimated parameters.
- -- estimated variances, standard errors, confidence intervals.
- -- heteroscedastic errors and non-linearities revealed through residual plots.
- -- uses of transformations. Transforming inputs to correct for non-linearities. Transforming outputs to correct for heteroscedasticity.
- * Galton and the ``regression" interpretation of least squares.

WEEK 12: April 17,19,21. LINEAR LEAST SQUARES WITH MANY VARIABLES.

- * Iterative Projection Interpretation
- * Matrix Interpretation
- * Statistical Properties
- -- Standard statistical model
- -- Mean and covariance matrix of least squares estimates.
- -- Estimation of sigma^2.
- -- Standard errors of coefficients.
- -- Confidence intervals for coefficients.
- -- Hypothesis tests concerning values of coefficients.
- -- t-values and interpreting regression output (testing whether a coefficient is zero, when the others are not).
- -- standard errors and confidence intervals for regression fits.
- * Practice with multiple regression, tests and confidence intervals.

WEEK 13: April 24,26. MODEL SELECTION.

- * Step-size selection by examination of largest magnitude t-value (merits and difficulties).
- * Prediction error criterion (merits and difficulties).
- * Practice with model selection by either method.
- * April 28: SECOND TEST