Given points S(5, -1) and T(-3, 3), find the slope of every line Example (a) parallel to \overrightarrow{ST} and (b) perpendicular to \overrightarrow{ST} .

Slope of $\overrightarrow{ST} = \frac{3 - (-1)}{-3 - 5} = \frac{4}{-8} = -\frac{1}{2}$ Solution

a. Any line parallel to \overrightarrow{ST} has slope $-\frac{1}{2}$. (Theorem 13-3)

b. Any line perpendicular to \overrightarrow{ST} has slope $-\frac{1}{-\frac{1}{2}} = -1 \cdot (-2) = 2$. (Theorem 13-4)

Classroom Exercises

1. Given: $l \perp n$. Find the slope of line n if the slope of line l is:

b.
$$\frac{4}{5}$$

$$c. -4$$

e. 0

The slopes of two lines are given. Are the lines parallel, perpendicular, or neither?

2.
$$\frac{3}{4}$$
; $\frac{12}{16}$

5.
$$-\frac{3}{4}$$
; $\frac{4}{3}$

6. 3;
$$\frac{-1}{3}$$

7.
$$\frac{-2}{3}$$
; $\frac{2}{-3}$ 8. 0; -1

9.
$$\frac{5}{6}$$
; $\frac{6}{5}$

10. State two conditionals that are combined in the biconditional of Theorem 13-3.

11. The purpose of this exercise is to prove the statement: If two nonvertical lines are perpendicular, then the product of their slopes is -1. Supply the reason for each step.

Given: l_1 has slope m_1 ; l_2 has slope m_2 ; $l_1 \perp l_2$

Prove: $m_1 \cdot m_2 = -1$

1. Draw the vertical segment shown.

$$2. \ \frac{u}{v} = \frac{v}{w}$$

$$3. m_1 = \frac{v}{u}$$

4.
$$m_2 = -\frac{v}{w}$$

5.
$$m_1 \cdot m_2 = \left(\frac{v}{u}\right) \cdot \left(-\frac{v}{w}\right)$$

6.
$$m_1 \cdot m_2 = \left(\frac{v}{u}\right) \cdot \left(-\frac{u}{v}\right) = -1$$

