1

Assignment 6

Matish Singh Tanwar

Abstract—This document solves question based on affine transformation.

Download all python codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment_6/Codes

and latex-tikz codes from

https://github.com/Matish007/Matrix-Theory-EE5609-/tree/master/Assignment 6

1 Problem

Show that, by rotating axes, the equation

$$\mathbf{x}^T \begin{pmatrix} 41 & 12 \\ 12 & 34 \end{pmatrix} \mathbf{x} = 75 \tag{1.0.1}$$

can be reduced to

$$\mathbf{x}^T \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} = 3 \tag{1.0.2}$$

2 EXPLANATION

The given equation is of the form

$$\mathbf{x}^T \mathbf{V} \mathbf{x} + f = 0 \tag{2.0.1}$$

$$f = -75 (2.0.2)$$

The matrix V can be decomposed as

$$\mathbf{V} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{2.0.3}$$

where
$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
 (2.0.4)

 λ_1 and λ_2 are eigen values of **V** and **P** contains the eigen vectors corresponding to the eigen values λ_1 and λ_2

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c} \tag{2.0.5}$$

indicates the linear transformation where \mathbf{P} indicates the rotation of axes and \mathbf{c} gives the shift of origin.

$$\mathbf{V} = \begin{pmatrix} 41 & 12 \\ 12 & 34 \end{pmatrix} \tag{2.0.6}$$

$$det(\mathbf{V}) = \begin{vmatrix} 41 & 12 \\ 12 & 34 \end{vmatrix} > 0 \tag{2.0.7}$$

So, the given equation represents an ellipse To find the Eigen values of ${\bf V}$

$$\left| \lambda \mathbf{I} - \mathbf{v} \right| = 0 \tag{2.0.8}$$

$$\implies \begin{vmatrix} \lambda - 41 & -12 \\ -12 & \lambda - 34 \end{vmatrix} = 0 \tag{2.0.9}$$

$$\implies \lambda^2 - 75\lambda + 1250 = 0 \tag{2.0.10}$$

$$\implies \lambda_1 = 50, \lambda_2 = 25 \tag{2.0.11}$$

$$\mathbf{D} = \begin{pmatrix} 50 & 0\\ 0 & 25 \end{pmatrix} \tag{2.0.12}$$

Finding Eigen vector \mathbf{p}_1 ,

$$\lambda_1 \mathbf{I} - \mathbf{V} = \begin{pmatrix} 9 & -12 \\ -12 & 16 \end{pmatrix} \stackrel{R_1 \leftarrow R_1/3}{\underset{R_2 \leftarrow R_2/4}{\longleftarrow}} \begin{pmatrix} 3 & -4 \\ -3 & 4 \end{pmatrix} (2.0.13)$$

$$\stackrel{R_2 \leftarrow R_1 + R_2}{\longleftrightarrow} \begin{pmatrix} 3 & -4 \\ 0 & 0 \end{pmatrix} (2.0.14)$$

$$\implies$$
 $\mathbf{p_1} = \frac{1}{\sqrt{4^2 + 3^2}} \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{4}{5} \\ \frac{5}{5} \end{pmatrix}$ (2.0.15)

Similarly,

$$\lambda_2 \mathbf{I} - \mathbf{V} = \begin{pmatrix} -16 & -12 \\ -12 & -9 \end{pmatrix} \xrightarrow{R_1 \leftarrow R_1/-4} \begin{pmatrix} 4 & 3 \\ 4 & 3 \end{pmatrix} \quad (2.0.16)$$

$$\stackrel{R_2 \leftarrow R_1 - R_2}{\longleftrightarrow} \begin{pmatrix} 4 & 3 \\ 0 & 0 \end{pmatrix} \quad (2.0.17)$$

$$\implies$$
 $\mathbf{p_2} = \frac{1}{\sqrt{4^2 + 3^2}} \begin{pmatrix} -3\\4 \end{pmatrix} = \begin{pmatrix} \frac{-3}{5}\\\frac{3}{5} \end{pmatrix}$ (2.0.18)

Therefore,
$$\mathbf{P} = \begin{pmatrix} \mathbf{p_1} & \mathbf{p_2} \end{pmatrix} = \begin{pmatrix} \frac{4}{5} & \frac{-3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix}$$
 (2.0.19)

From (2.0.3) V can be rewritten as

$$\mathbf{V} = \begin{pmatrix} \frac{4}{5} & \frac{-3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix} \begin{pmatrix} 50 & 0 \\ 0 & 25 \end{pmatrix} \begin{pmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{-3}{5} & \frac{4}{5} \end{pmatrix}$$
 (2.0.20)

(1.0.1) can be now rewritten as

$$25 \left[\mathbf{x}^{T} \begin{pmatrix} \frac{4}{5} & \frac{-3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{-3}{5} & \frac{4}{5} \end{pmatrix} \mathbf{x} \right] = 75 \qquad (2.0.21)$$

$$\left[\begin{pmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{-3}{5} & \frac{4}{5} \end{pmatrix} \mathbf{x} \right]^T \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \left[\begin{pmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{-3}{5} & \frac{4}{5} \end{pmatrix} \mathbf{x} \right] = 3 \qquad (2.0.22)$$

Consider the rotation transformation

$$\mathbf{x} = \mathbf{P}\mathbf{y} \tag{2.0.23}$$

$$\implies \mathbf{x} = \begin{pmatrix} \frac{4}{5} & \frac{-3}{5} \\ \frac{3}{5} & \frac{4}{5} \end{pmatrix} \mathbf{y} \tag{2.0.24}$$

$$\mathbf{P}^{-1}\mathbf{x} = \mathbf{P}^{-1}\mathbf{P}\mathbf{y} \tag{2.0.25}$$

$$\implies \mathbf{y} = \mathbf{P}^{-1}\mathbf{x} \tag{2.0.26}$$

$$\Rightarrow \mathbf{y} = \mathbf{P}^{-1}\mathbf{x} \qquad (2.0.26)$$
But, $\mathbf{P}^{-1} = \mathbf{P}^{T} \qquad (2.0.27)$

$$\implies \mathbf{y} = \begin{pmatrix} \frac{4}{5} & \frac{3}{5} \\ \frac{-3}{5} & \frac{4}{5} \end{pmatrix} \mathbf{x} \tag{2.0.28}$$

Using (2.0.24) in (2.0.22), the ellipse equation can be rewritten as

$$\mathbf{y}^T \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{y} = 3 \tag{2.0.29}$$

Fig. 0: plot showing the original and rotated ellipse