MAT301 Practice Exam 1

QiLin Xue

1 Exercise One

Question 01:

- (a) **T**
- (b) **T**
- (c) **F**
- (d) **T**
- (e) **F**
- (f) ???
- (g) **T**
- (h) **F**

Question 02:

- (a) We have
 - (i) $rs^k = s^{-k}r$
 - (ii) $s^2 = e$
 - (iii) $r^n = e$
- (b) Note that

$$\mathbb{Z}_{18} \times \mathbb{Z}_{25} \times \mathbb{Z}_{14} \cong \mathbb{Z}_{30} \times \mathbb{Z}_{210}$$
.

We know that (0,1) and (1,0) generates this second product so we should find the isomorphism mapping. Let ϕ be the isomorphism from $\mathbb{Z}_{18} \times \mathbb{Z}_{25} \times \mathbb{Z}_{14} \to \mathbb{Z}_{30} \times \mathbb{Z}_{210}$. Then the generating elements are $\phi^{-1}(0,1)$ and $\phi^{-1}(1,0)$.

(c) (12) and $(1 \cdots n)$.

Question 03:

- 1. Note that both α and β is made of disjoint permutations so $|\alpha| = \text{lcm}(3,3) = 3$ and $\beta = \text{lcm}(4,3) = 12$.
- 2. We have

$$\alpha\beta = (19)(28365)$$

3. We have $\alpha^{-1} = (174)(386)$. Then using the result from the previous question, we have

$$(\alpha\beta)\alpha^{-1} = (1749)(285).$$

Question 04: Since $a \in G$, then $a^{-1} \in G$. Multiplying the left side of ab = ac by a^{-1} gives

$$a^{-1}ab = a^{-1}ac$$

Because the group operation is distributive, we know that this is equivalent to

$$(a^{-1}a)b = (a^{-1}a)c \implies eb = ec,$$

where e is the identity. We use the property that for any $x \in G$, ex = x to finally conclude that b = c.

Question 05: If G is a finite abelian group with order $|G| = 2^6 = 64$, then the classification theorem tells us that

$$G \cong \mathbb{Z}_{2^{k_1}} \times \cdots \times \mathbb{Z}_{2^{k_n}}$$

where

$$|G| = 2^6 = 2^{k_1} \cdots 2^{k_n}$$

which is true if and only if

$$k_1 + \cdots + k_n = 6$$

The tuples (k_1, \ldots, k_n) that satisfy this (and therefore encode an isomorphism class) are the partitions of 6:

- (6)
- (5,1)
- (4,2)
- (4,1,1)
- (3,3)
- (3,2,1)
- (2,2,2)
- (2,2,1,1)
- (2,1,1,1,1)
- (1,1,1,1,1,1)

Question 06:

1. Note that by definition, we must have $\phi(0) = \phi(30) = 0$. Therefore, we must have $\phi(5 \cdot 6) = 5\phi(6) = 0$ where we can take out the 5 as exponentiation respects the group operation. Therefore, $5\phi(6)$ is a multiple of 30, i.e. there exists an integer k such that $5\phi(6) = 30k \implies \phi(6) = 6k$. In other words $\phi(6)$ is a multiple of 6.

We also know that isomorphisms preserve order. The generating element of \mathbb{Z}_{30} is 1 and has order 30. We use the theorem that an element k has order 30 if and only if k and 30 are relatively prime.

Since $\phi(1)$ must also have order 30, we can conclude that $\phi(1)$ is relatively prime to 30, so the candidates are 1, 7, 11, 13, 17, 19, 23, 29. Using properties of isomorphisms, we can write: $\phi(7-6) = \phi(7) - \phi(6) = 23 - \phi(6)$, and therefore $\phi(6) = 23 - \phi(1)$. Using the candidates of $\phi(1)$, the candidates of $\phi(6)$ are then

$$\phi(6) \in \{22, 16, 12, 10, 6, 4, 0, 24\}.$$

The only possible candidates are thus $\phi(6) = 0, 6, 24$. We also know that the order of 6 is 5, so $|\phi(6) = 5|$ also. This eliminates 0 as a candidate. Note that if $\phi(6) = 6$, then $\phi(1) = 23$. But we are already told that $\phi(7) = 23$. Since ϕ is injective, we must have $\phi(1) \neq 23$ and therefore $\phi(6) = 24$.

2. It corresponds to $\phi(k) = 30 - k$.

Question 07: Let $G = \langle a \rangle$ such that |G| = n. Then we claim we can construct an isomorphism ϕ :

$$\phi: G \to \mathbb{Z}_n$$
$$a^k \mapsto k$$

We show this is well defined by showing that if $a^k = a^j$ (which is true if and only if $k \equiv j \pmod n$), then k = j. Since the codomain is in \mathbb{Z}_n where each element is taken to be modulo n, then we have $k \equiv j \pmod n \iff k = j$. These steps are all reversible, so reversing these show that ϕ is injective as well. To show that ϕ is surjective, note that $k \in \mathbb{Z}_n$ is mapped to by a^k .

We then show this is a homomorphism. Note that

$$\phi(a^k a^j) = \phi(a^{k+j})$$

$$= k + j$$

$$= \phi(a^k) + \phi(a^j)$$

and we're done: ϕ is an isomorphism.

Question 08: Since \mathbb{Z}_{77} is abelian, the image of ϕ must be abelian. The group D_{32} (symmetries of a 32-gon) only has three subgroup classes that are cyclic:

- Case 1: $\{0, s\}$, where s is an arbitrary reflection. Note that s has order 2, but there are no elements of order 2 in \mathbb{Z}_{77} , so it can't be homomorphic to this.
- Case 2: $\langle r^i \rangle$ where r is the smallest nonzero rotation and 0 < i < 32. where $i|2^5$. Therefore, the order of r^i is equal to 32/i, which will always be even. However, there are no elements of even order in \mathbb{Z}_{77} , so it can't be homomorphic to this.
- Case 3: $\{e\}$. The trivial homomorphism will always exist, and since this is the only other case (there are only reflections and rotations so cyclic groups can only be generated by a reflection or rotation), ϕ must be the trivial homomorphism.

Question 09:

(a) Pick $H = \{e, s\}$, where s is an arbitrary reflection and pick a = r where r is the smallest nonzero rotation. Then:

$$aH = rH = \{r, rs\}$$

and

$$Ha = Hr = \{r, sr\}$$

We know that $rs = sr^5 \neq sr$, and we are done.

- (b) All the left cosets are
 - $rH = \{r, rs\}$
 - $r^2H = \{r^2, r^2s\}$
 - $r^3H = \{r^3, r^3s\}$ $r^4H = \{r^4, r^4s\}$

 - $r^5H = \{r^5, r^5s\}$
 - $eH = \{e, s\}$

Note that the coset $r^k s H$, where $r^k s$ is a reflection, is already contained above since sH = H so $r^k s H = r^k H$. The index is 6 as we should expect, since

$$\frac{|D_6|}{|H|} = \frac{6 \cdot 2}{2} = 6.$$

Question 10:

(a) The action is $G \times X \to X$. Then $orb(1) = \{\rho(g)(1) : g \in G\}$. Note that

- $\rho(a) = (146)(27)$
- $\rho(a^2) = (164)$ $\rho(a^3) = (27)$
- $\rho(a^4) = (146)$
- $\rho(a^5) = (164)(27)$
- $\rho(a^6) = e$.

Therefore,

$$orb(1) = \{1, 4, 6\}.$$

(b) We have

$$stab(1) = \{e, a^6\}.$$

(c) For all $g \in G$, we know that 3,5 are fixed. We can count the total number of other fixed points to be 0+2+3+2+0+5=12 (corresponding to a, a^2, \ldots, a^6 respectively) giving a total of 12+6(2)=24 fixed points. Therefore, on average there are 24/6 = 4 fixed points so there are 4 distinct orbits.

Question 11:

(a) Let the distance between the black dots be ℓ . One tile is consisted of one leaf and its corresponding black dot. The entire figure can be generated by applying a translation of ℓ horizontally (represented by H), a translation of ℓ vertically (represented by V), and a 90° rotation (represented by R), with respect to the black dot.

For example, we can create a coordinate system such that (0,0) corresponds to the center of a black dot. To generate the flower pattern centered at $(i\ell, j\ell)$, we can perform the four operations:

$$(jV)(iH), R(jV)(iH), R^{2}(jV)(iH), R^{3}(jV)(iH).$$

Therefore, the symmetry group is

$$\langle R, H, V \rangle$$
.

(b) Let ρ be a bijective mapping that maps one leaf+dot to another leaf+dot. Then we can write

$$\langle R \rangle \times \langle H, V \rangle = \langle R \rangle \rtimes \langle H, V \rangle$$

with the binary operation:

$$(R^a, H^b V^c)(R^\alpha, H^\beta V^\gamma) = (R^a \rho(H^b)(R^\alpha), H^{b+\beta} V^{c+\gamma}) \tag{1}$$