FACULTY OF ENGINEERING CHULALONGKORN UNIVERSITY 2110327 ALGORITHM DESIGN

Year II, Second Semester, Midterm Examination, March 8, 2019 13:00-16:00

ชื่อ-นามสกุล	เลขประจำตัว	ตอนเรียนที่	เลขที่ใน CR58
หมายเหตุ			
1.	ข้อสอบมีทั้งหมด 9 ข้อ ในกระดาษคำถาม 6 หน้า		
2.	ไม่อนุญาตให้นำตำราและเอกสารใดๆ เข้าในห้องสอบ		
3.	ไม่อนุญาตให้ใช้เครื่องคำนวณใดๆ		
4.	ห้ามการหยิบยืมสิ่งใดๆ ทั้งสิ้น จากผู้สอบอื่นๆ เว้นแต่เจ้าหน้าที่คา	วบคุมการสอบจะหยิบ	ยืมให้
5.	ห้ามนำส่วนใดส่วนหนึ่งของข้อสอบและสมุดคำตอบออกจากห้องล	สอบ	
6.	ผู้เข้าสอบสามารถออกจากห้องสอบได้ หลังจากผ่านการสอบไปแล	ล้ว 45 นาที	
7.	เมื่อหมดเวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใดๆ ทั้งสิ้น		
8.	นิสิตกระทำผิดเกี่ยวกับการสอบ ตามข้อบังคับจุฬาลงกรณ์มหาหรือ ได้รับ สัญลักษณ์ F ในรายวิชาที่กระทำผิด และอาจพิจาช์ไว้ในภาคการศึกษานี้		
นิสิตก	เสิตพกโทรศัพท์และอุปกรณ์สื่อสารไว้กับตัวระหว่า เระทำผิดเกี่ยวกับการสอบ อาจต้องพ้นสภาพการเง็ จารณาให้ถอนรายวิชาอื่นทั้งหมดที่ลงทะเบียนไว้ใน	ป็นนิสิต หรือ ให้ไ	
*	ร่วมรณรงค์การไม่กระทำผิดและไม่ทุจริตการสอบที่	์ คณะวิศวกรรมศ	าสตร์ *
หรือให้ความช่า	ข้าพเจ้ายอมรับในข้อกำหนดที่กล่าวมานี้ ข้าพเจ้าเป็นผู้ทำข้อสถ วยเหลือ ในการทำข้อสอบนี้	อบนี้ด้วยตนเองโดยมิ	ได้รับการช่วยเหลือ
	ลงชื่อนิสิต		

วันที่.....

1. (10 คะแนน) จงตอบคำถามต่อไปนี้สั้น ๆ ไม่ต้องอธิบาย

```
• \log 1 + \log 2 + \log 3 + ... + \log (n-1) + \log n
                                                                                    \Theta(\frac{n \log(n)}{n})
                                                                                    Θ( _______)
• 1+2+3+...+n
• การเรียงลำดับข้อมูลที่เรียงลำดับอยู่แล้ว n ตัวด้วย selection sort ใช้เวลา
                                                                                    \Theta(V^2)
• การเรียงลำดับข้อมูลที่เรียงลำดับอยู่แล้ว n ตัวด้วย insertion sort ใช้เวลา
                                                                                    \Theta( ^{\mathsf{N}} )
                                                                                    O( nlogeni)
• การเรียงลำดับข้อมูลที่เรียงลำดับอยู่แล้ว n ตัวด้วย merge sort ใช้เวลา
• ให้ T(n) = T(n-2) + \Theta(n), T(0) = \Theta(1) จะได้ว่า T(n)
                                                                                    \Theta(n^2)
                                                                                    \Theta(3^{"})
• ให้ T(n) = 3T(n-1) + \Theta(1), T(0) = \Theta(1) จะได้ว่า T(n)
• ให้ T(n) = 3T(n/3) + \Theta(1), T(0) = \Theta(1) จะได้ว่า T(n)
                                                                                    Θ( ______)
• การหา median of medians of fives ของข้อมล n ตัว ด้วยวิธีที่เรียนมา ใช้เวลา
                                                                                    \Theta( -
                                                                                    • การหา longest common subsequence ของสตริงที่ยาว n สองตัวในกรณีแย่สุด
   ด้วยวิธี dynamic programming ที่เรียนมา ใช้เวลา
```

2. (10 คะแนน) จงวิเคราะห์ว่าอัลกอริทึมข้างล่างนี้ใช้เวลา<u>เป็น Θ อะไรของตัวแปร n</u> (ให้การดำเนินการพื้นฐานเช่น * / + - และอื่น ๆ ใช้ เวลา $\Theta(1)$ และการหาร / เป็นการหารแบบปัดเศษทิ้ง) <u>แสดงวิธีทำด้วยในช่องทางขวา</u>

```
EE(A[1..n][1..n], B[1..n][1..n]) {
  C = new array[1..n][1..n]
                                               for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
      C[i][j] = 0
      for (k=0; k< n; k++)
        C[i][j] += A[i][k]*B[k][j]
  }
  return C
RR(n) {
  if (n==2) return 2*n
                                             T(n) = 4T( 1 ) + (1)
  for (k=0; k< n; k++)
                                              By Muster Theorem: c= log24 = 2
    for (i=0; i<k; i++)
     s += 2*k - i*i + 4
                                                       : Tons = ( nº log n)
  for (k=0; k<4; k++)
    s += RR(n/2)
  return s
MM(d[1..n], t[1..n]) {
 i = 1; j = n; k = 1
  m = n/2
  while (i\leqm and j\leqn) {
                                                           (W) (w)
    if (d[i] < d[j]) t[k++] = d[i++]
                      t[k++] = d[j++]
  while (i \le m) t[k++] = d[i++]
  while (j \le n) t[k++] = d[j++]
  for (k = 1; k < n; k++) d[k] = t[k]
SS ( d[1..n] ) { # ทุกช่องใน d เก็บจำนวนเต็มบวก
  SS( d, n, new array of zeros[n] )
SS(d[1..n], m, A[1..n]) {
  if (m < 1) return 1
                                                          (B) cm)
  if (m < 4) return d[m]
  if (A[m] > 0) return A[m]
  x1 = d[m]*SS(d, m-1, A)
  x2 = d[m-1]*SS(d, m-2, A)
  x3 = d[m-2]*SS(d, m-3, A)
  A[m] = x1 + x2 + x3
  return A[m]
SO(d[1..n]) {
  for (k = 0; k < n; k++)
                                                          (m) (n2)
    insertion_sort( d )
```

เลขประจำตัว								<i>ห้</i> อง	หลอบ.	 		.เลขที่ใ	นใบเซ็น	เชื่อเข้า			หน้	าที่ 3
3. (10 คะแนน) จง	ตอบคํ	ำถาม	ต่อไปเ	ไในช่อ	งว่าง	ที่กำห	นดให้	้ ไม่ต้	, อุงแสต	างวิธีร	ทำ	s						
• 7 ⁴⁷ mod 11	มีค่าเข	า่ากับ		<u>,</u>			•••	7	2³ →	7" →	7 - 7	mod 11						
• median-of-r] คือ	·····
• การ merge ขึ้	ข้อมูล	[1, 3,	8, 9]	กับ [2	2, 4,	6, 7] 3	จะเกิด	าการเ	ปรียบเ	ทียบ	ข้อมูลจา	ก 2 อาเ	รย์นี้	6		ครั้ง		
• ให้ X = "AB	CAB	C", ค่	าของ	Y	ำให้ก	ารหา	longe	est co	mmo	n sub	sequen	ce ของ	X กับ Y	Y แบบ 1	top-dov	vn (ไม่มี	memo	ization)
ทำงานได้เร็วส	สุด ๆ	คือ																
ทำงานได้เร็วผ • ให้ v = [1 ³ 5, 2	20, 20), 24,	40] แ	ละ w	= [5	, 4, 2,	4, 8]	เเทน	เมูลค่าเ	เละเ	์ เาหนักขอ	องของ :	5 ชิ้น แล	าะให้มีถุ	งที่รับน้ำ	าหนักไม่	เกิน 10	ต้องเลือก
ชิ้นไหน เท่าไ																		
• ให้ v = [15, 1	20, 20), 24,	40] แ	.ละ w	= [5,	, 4, 2,	4, 8]	แทน	มูลค่าเ	เละนั่	, าหนักขอ	องของ :	รี ชิ้น แล	เะให้มีถุ	งที่รับน้ำ	เหนักไม่	เกิน 10	ต้องเลือก
ชิ้นไหน แบบ	0/1 है	โงได้มู	ลค่ารว	มสูงสุ	ด		i	Šu 2,	3 , 4		••••							
• ให้ A = [(0,3	3), (5,	8), (2	,4), (4	4,5), (5,7),	(7,9)	, (3,6)] แท	เนรายก	าารขา	องเวลาเรื	วิ่มและเ	วลาสิ้นสุ	ุเดของกิ	จกรรมต	า่างๆ เ	ราต้องเล็	เื้อก
กิจกรรมใดบ้ำ				v														
• ให้ F = [('a',	1), ('b	',2), ('c',4),	('d',8), ('e'	,16),	('f',32	2), ('g	;',64)]	แทน	รายการฯ	ของตัวอื่	์กษรและ	ะความถึ	์ เของข้อ	มูลขุดหา๋	นึ่ง ถ้าเร	าเข้า
รหัสตัวอักษร															01.01			
 มีข้อมูลอยู่ 1, 	,000 8	ขัวที่เรี	ยงลำต	กับจาก	ามากเ	มาน้อย	ยแล้ว	(ซ้ายไ	ไปขวา)	าในอ	าเรย์หนึ่	ง การค้	นข้อมูลใ	็นอาเรย์	์นี้ด้วย เ	oinary s	search s	เะพิจารณา
ข้อมูลในอาเร	ย์ไม่เกิ	เน				ตั	ัว											
• ให้ A ₁ , A ₂ , A	\3 และ	ե A₄ թ	ว ือเม <i>ง</i>	เริกซ์ข	นาด :	5×100	0, 100	0×2, 2	2×100	และ	100×5	ตามลำ	าดับ ถ้าเ	์ ท้องการ	หาผลคู	ณของ ภ	$A_1 \times A_2 \times$	$A_3 \times A_4$
ควรจัดลำดับ																		
	Ü				ŭ													v
4. (6 คะแนน) จากต	ทารางเ	ค่าขอ	งคำตอ	บของ	เปัญห	าที่ใช้เ	กำหน	ดการ	พลวัตเ	ก่อไป	นี จงสร้า	างตาราง			o			
• Longest C	omm	on Su	ıbseq	uence	:								(เติ	•	รื่อ 🗲 เ	หรือ 🤼)		
	0	A 0	A 0	В 0	C 0	A 0	C 0	A 0			A I	A	В	c I	A	C	A	
А	0	1	1	1	1	1	1	1	Α		r	← ∇	←	←	←	←	←	
В	0	1	1	2	2	2	2	2	В		↑	← ↑	K	-	←	←	←	
C A	0	1	2	2	3	3	3 4	3	C A		↑	← ↑	↑ ← ↑	下	←	← K	← K	
С	0	1	2	2	3	4	5	5	С		<u></u>	1	← ↑	下个	1		←	
С	0	1	2	2	3	4	5	5	С		1	1	1	下个	1	▶↑	$\leftarrow \uparrow$	
А	0	1	2	2	3	4	5	6	Α		1	下个	$\leftarrow \uparrow$	↑	下个	↑	K	
• 0/1 Knaps	ack											(เติม	✓ หรือ	ว 🗴 แท	นการเลื	i อกไม่เลื	อก)	
	•		_		acity		_	_	•					capac				
empty	0	0	0	3 0	4 0	5 0	6	7	8	-	empty	0	1 2	3 4	5	6 7	8	
value=12	0	0	0	0	12	12	12	12	12		value=1	2						
weight=4 value=10	0	0	0	0	12	12	12	12	12		weight=4 value=10	9						
weight=6 value=8	0	0	0	0	12	12	12	12	12		weight=0							
weight=5 value=14 weight=3	0	0	0	14	14	14	14	26	26		weight=!	4						
value=7 weight=1	0	7	7	14	21	21	21	26	33		weight=3 value=7 weight=3							
value=9 weight=6	0	7	7	14	21	21	21	26	33		value=9 weight=							
value=9 weight=2	0	7	9	16	21	23	30	30	33		value=9 weight=2							

ลขประจำตัว	องสอบเลขที่ในใบเซ็นชื่อเข้า	หน้าที่ 4
. (10 คะแนน) ให้ D เป็นอาเรย์ขนาด <i>n</i> ช่อง ภายในเก็บจำน	แต็ม 0 ถึง n แต่มีค่าหนึ่งหายไป (ที่ไม่ใช่ n) ข้อมลใน	ı D เรียงจากน้อยไปมาก
แล้ว เช่น D = [0,1,2,4,5,6,7] มี 3 หายไป, D = [1,2,3,4,5,	•	
จงเขียนรหัสเทียมของอัลกอริทึมที่ใช้เวลา $\mathrm{O}(\sqrt{n})$ เพื่อหาข้อ		,2,5, 1,5]/
missing(D[0n-1]) {		
1331 g(D[0 -1]) (ยกตัวอย่างประกอบ	
1		
$race{10}{10}$ คะแนน) ให้ $f D$ คืออาเรย์ขนาด $m n$ ช่องที่เก็บจำนวนเต็ม $m q$	เขียนรหัสเทียมของอัลกอริทึมที่ใช้เวลา O(log n) เร่	พื่อหาค่า "peak" (ขอค่า
} . (10 คะแนน) ให้ D คืออาเรย์ขนาด n ช่องที่เก็บจำนวนเต็ม peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว
peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามาก (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็	ว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและ อ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99,	ะตัวถัดไปทางขวาหนึ่งตัว

$$F(i,j) = \begin{cases} 0 & \text{if } i == 0 \text{ or } j == n \\ \max(F(i-1,j), F(i,j+p[i]) + q[i]) & \text{if } j+p[i] \le n \\ F(i-1,j) & \text{otherwise} \end{cases}$$

1. (10 คะแนน) จงตอบคำถามต่อไปนี้สั้น ๆ ไม่ต้องอธิบาย

เลขประจำตัว

```
\Theta(\underline{n \log n}) หรือ \Theta(n!)
• \log 1 + \log 2 + \log 3 + ... + \log (n-1) + \log n
• 1+2+3+...+n
• การเรียงลำดับข้อมูลที่เรียงลำดับอยู่แล้ว n ตัวด้วย selection sort ใช้เวลา
• การเรียงลำดับข้อมูลที่เรียงลำดับอยู่แล้ว n ตัวด้วย insertion sort ใช้เวลา
                                                                                          \Theta(n \log n)
ullet การเรียงลำดับข้อมูลที่เรียงลำดับอยู่แล้ว n ตัวด้วย merge sort ใช้เวลา
• ให้ T(n) = T(n-2) + \Theta(n), T(0) = \Theta(1) จะได้ว่า T(n)
• ให้ T(n) = 3T(n-1) + \Theta(1), T(0) = \Theta(1) จะได้ว่า T(n)

    ให้ T(n) = 3T(n/3) + \O(1), T(0) = \O(1) จะได้ว่า T(n)

                                                                                          \Theta(
                                                                                          \Theta( n
• การหา median of medians of fives ของข้อมล n ตัว ด้วยวิธีที่เรียนมา ใช้เวลา
• การหา longest common subsequence ของสตริงที่ยาว n สองตัวในกรณีแย่สุด
                                                                                          \Theta(
   ด้วยวิธี dynamic programming ที่เรียนมา ใช้เวลา
```

2. (10 คะแนน) จงวิเคราะห์ว่าอัลกอริทึมข้างล่างนี้ใช้เวลา<u>เป็น Θ อะไรของตัวแปร n</u> (ให้การดำเนินการพื้นฐานเช่น * / + - และอื่น ๆ ใช้ เวลา $\Theta(1)$ และการหาร / เป็นการหารแบบปัดเศษทิ้ง) <u>แสดงวิธีทำด้วยในช่องทางขวา</u>

```
EE (A[1..n][1..n], B[1..n][1..n]) {
  C = new array[1..n][1..n]
                                                              \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} \Theta(1) = \Theta(n^3)
  for (i=0; i<n; i++) {
     for (j=0; j<n; j++) {
       C[i][j] = 0
       for (k=0; k< n; k++)
          C[i][j] += A[i][k]*B[k][j]
  }
  return C
RR(n) {
                                                             T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n^2)
  if (n==2) return 2*n
  for (k=0; k< n; k++)
                                                     ใช้ master method: n^{log_2 4} = n^2
    for (i=0; i<k; i++)
      s += 2*k - i*i + 4
                                                            \therefore T(n) = \Theta(n^2 \log n)
  for (k=0; k<4; k++)
     s += RR(n/2)
  return s
MM( d[1..n], t[1..n])
                                                    ข้อนี้โจทย์ผิด ไปเขียน j = n ตอนเริ่มต้น
 i = 1; j = n; k = 1
  m = n/2
                                                    (ควรเขียน j = m+1) แต่ไม่เป็นไร ยึดตามที่เขียนผิด จะได้ว่า
  while (i\leqm and j\leqn) {
                                                    while แรก เข้าวงวน 1 รอบ ใช้เวลา \Theta(1)
     if (d[i] < d[j]) t[k++] = d[i++]
                          t[k++] = d[j++]
                                                    while ที่สอง i = 1, 2, ... n/2 ใช้เวลา \Theta(n)
  while (i \le m) t[k++] = d[i++]
                                                    while ที่สาม เข้าวงวน 0 หรือ 1 รอบ ใช้เวลา \Theta(1)
  while (j \le n) t[k++] = d[j++]
  for (k = 1; k < n; k++) d[k] = t[k]
                                                    for ล่างสด \Theta(n) รวมทั้งหมดเป็น \Theta(n)
SS ( d[1..n] ) { # ทุกช่องใน d เก็บจำนวนเต็มบวก
                                                    เนื่องจากใช้ memoization จะเสมือนการเติมค่าในอาเรย์ A ขนาด n
  SS( d, n, new array_of_zeros[n] )
                                                    ช่อง จากช่องซ้าย ๆ ก่อน แล้วก็เติมช่องทางขวา ไปเรือย ๆ จนได้ A[n]
SS(d[1..n], m, A[1..n]) {
                                                    ตามที่ต้องการ ใช้เวลาทั้งสิ้น \Theta(n)
  if (m < 1) return 1
  if (m < 4) return d[m]
  if (A[m] > 0) return A[m]
  x1 = d[m]*SS(d, m-1, A)
  x2 = d[m-1]*SS(d, m-2, A)
  x3 = d[m-2]*SS(d, m-3, A)
  A[m] = x1 + x2 + x3
  return A[m]
SO(d[1..n]) {
                                                    while รอบแรก insertion_sort ใช้เวลา \mathrm{O}(n^2) รอบต่อ ๆ มา ใช้ \Theta(n)
  for (k = 0; k < n; k++)
                                                    เพราะข้อมูลเรียงแล้ว รวมเป็น O(n^2) + \sum_{k=1}^n \Theta(n) = \Theta(n^2)
     insertion_sort( d )
```

 3. (10 คะแบน) จงตอบคำถามต่อไปนี้ในช่องว่างที่กำหนดให้ ไม่ต้องแสดงวิธีทำ 7*7 mod 11 มีค่าเท่ากับ 6 (ร" - น น น น น น น น น น น น น น น น น น
 การ merge ข้อมูล [1, 3, 8, 9] กับ [2, 4, 6, 7] จะเกิดการเปรียบเทียบข้อมูลจาก 2 อาเรย์นี้
 ทำงานได้เร็วสุด ๆ คือ
 ชิ้นไหน เท่าไร แบบ fractional จึงได้มูลค่ารวมสูงสุด
 ชิ้นใหน แบบ 0/1 จึงได้มูลค่ารวมสูงสุด
 ให้ F = [('a',1), ('b',2), ('c',4), ('d',8), ('e',16), ('f',32), ('g',64)] แทนรายการของตัวอักษรและความถี่ของข้อมูลขุดหนึ่ง ถ้าเราเข้า รหัสตัวอักษรชุดนี้ด้วยรหัสแบบ Huffman จะใช้ข้อมูลจำนวน
 มีข้อมูลอยู่ 1,000 ตัวที่เรียงลำดับจากมากมาน้อยแล้ว (ซ้ายไปขวา) ในอาเรย์หนึ่ง การค้นข้อมูลในอาเรย์นี้ด้วย binary search จะพิจารกข้อมูลในอาเรย์ไม่เกิน
ควรจัดลำดับการคูณอย่างไรจึงจะหาผลคูณได้เร็วสุด
A A B C A C A A B C A C A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
A 0 1 2 2 3 4 5 6 A
capacity capacity 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
empty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
value=12
weight=4 value=10 0 0 0 12 </td
value=8
value=14 0 0 0 14 14 14 14 26 26 value=14 weight=3
value=7
value=9 0 7 7 14 21 21 21 26 33 value=9 weight=6 value=9 weight=2 0 7 9 16 21 23 30 30 33 value=9 weight=6 value=9 weight=2 weight=2 weight=2

5. (10 คะแนน) ให้ D เป็นอาเรย์ขนาด n ช่อง ภายในเก็บจำนวนเต็ม 0 ถึง n <u>แต่มีค่าหนึ่งหายไป</u> (ที่ไม่ใช่ n) ข้อมูลใน D เรียงจากน้อยไปมาก แล้ว เช่น D = [0,1,2,4,5,6,7] มี D = [0,1,2,3,4,5] จงเขียนรหัสเทียมของอัลกอริทึมที่ใช้เวลา D = [0,1,2,3,4,5]

```
missing( D[0..n-1] ) {

b = 0
e = n - 1
while b < e:
    m = (b+e)//2
    # assert D[m] >= m
    if D[m] == m:
        b = m + 1
else:
    e = m

return b
```

6. (10 คะแนน) ให้ D คืออาเรย์ขนาด *n* ช่องที่เก็บจำนวนเต็ม จงเขียนรหัสเทียมของอัลกอริทึมที่ใช้เวลา O(log *n*) เพื่อหาค่า "peak" (ขอค่า peak สักหนึ่งค่า) ใน D โดย peak คือค่าในอาเรย์ที่มีค่ามากกว่าหรือเท่ากับ ค่าของตัวก่อนหน้าทางซ้ายหนึ่งตัวและตัวถัดไปทางขวาหนึ่งตัว (ถ้าไม่มีตัวก่อนหน้าหรือตัวถัดไป ก็พิจารณาอีกข้างหนึ่งที่มีก็พอ) เช่น D = [9, 7, 7, 99, 4, 5, 6, 6, 5, 8] มี 9, 99, 6 และ 8 เป็น peak

```
peak( D[0..n-1] ) {
    return peak(D, 0, n-1)
}

peak( D[0..n-1], b, e) {

    if b==e: return D[b]
    if b+1==e: return max(D[b],D[e])

#    if b+2==e and D[b-1]<=D[b]>=D[b+1]: return D[b]
    m = (b+e)//2
    if D[m] <= D[m+1]:
        return peak(D, m, e)
    else:
        return peak(D, b, m)
```

7. (10 คะแนน) จากความสัมพันธ์เวียนบังเกิดข้างล่างนี้ จงเขียนรหัสเทียมเพื่อแก้ปัญหานี้ด้วย bottom up dynamic programming

$$F(i,j) = \begin{cases} 0 & \text{if } i == 0 \text{ or } j == n \\ \max(F(i-1,j), F(i,j+p[i]) + q[i]) & \text{if } j+p[i] \leq n \\ F(i-1,j) & \text{otherwise} \end{cases}$$

รับประกันว่า p[i] > 0 และ $0 \le i, j \le n$

```
F(p[0..n], q[0..n]) {

int table [in+1][in+1]; initial with zero

for civit i= 1; i <= n , i+ n) }

for civit j= n : j >= 0; j--) }

table [i][j]; table [i-:] Cj];

if (j+p[i] <= n) table [i] Cj]; table [i] (j], table [i] (j], table [i] (j]);

}
```

8. (10 คะแนน) นัทที่ต้องการขับรถจากกิโลเมตรที่ 1 ไปกิโลเมตรที่ n ($n \ge 2$) รถยนต์คันนี้มีถังน้ำมันซึ่งจุได้ v ลิตร ($v \ge 1$) แต่กินน้ำมันมาก คือ ต้องใช้น้ำมัน 1 ลิตรในการเดินทาง 1 กิโลเมตร ตอนเริ่มเดินทางไม่มีน้ำมันเลย โชคดีที่มีปั้มน้ำมันทุก ๆ หลักกิโลเมตร โดยปั้มน้ำมันที่หลัก กิโลเมตรที่ k ขายน้ำมันในราคา P_k บาทต่อลิตร คำถามคือ นัทที่ต้องจ่ายค่าน้ำมันน้อยสุดกี่บาท เพื่อที่จะเดินทางถึงจุดหมายที่กิโลเมตรที่ n ได้ <u>และน้ำมันหมดถังพอดี</u> โดยนัทที่สามารถเติมน้ำมันที่หลักกิโลเมตรใดก็ได้

เช่น ถ้า n=4, v=2 และ P=[1,2,3,4] คำตอบคือ 4 เพราะ ค่าน้ำมันน้อยสุดคือ เติมน้ำมัน 2 ลิตรที่ กม. 1 (2 ลิตร \times 1 บาท/ลิตร = 2 บาท) ขับถึง กม. 2 เหลือ 1 ลิตร เติมอีก 1 ลิตร (1 ลิตร \times 2 บาท/ลิตร = 2 บาท) ขับถึง กม. 4 ถึงจุดหมายและน้ำมันหมดพอดี จงเขียนรหัสเทียมของอัลกอริทึมสำหรับแก้ปัญหาข้างบนนี้ด้วยกำหนดการพลวัต (dynamic programming) โดยต้องระบุความสัมพันธ์เวียน บังเกิด (recurrence), ขนาดของตารางที่ต้องใช้ และคำอธิบายย่อ ๆ

ความสัมพันธ์เวียนบังเกิด:

ขนาดของตาราง:

คำอธิบายย่อ ๆ (ยกตัวอย่างประกอบ):

7	77.	7	7	7	7	Z	//	7	7		2	7	7	7	7	7	2	7	7	7	7	7	7	7	7	7	7	7	77	11	77	77	77	11	11	7	7	7	2	7	7	7	7	77	7	7/	7	7/	7	7	7	77	7	7	7	7/	7/	7/	7/	7	77	7/	7	7	77	77	7/	7	7	77	7	7	11	11	11	11	11	7	7	7	7	90	00	77	77	77	77.	77	77	4
	Žį	ถ	ข	1	۶	ĭå	١	ů^	۱ę	เว	I						I			I			I			I					I									g		ห	r le) (เถ	ୀପ	1	J.									J.	ล	ขา	ที่	ใเ	اً إ	lı	JĮ	ಕ್ಷ	น	ชื่	; 10) [e	ر الا	1										9		٩	าเ	เ	ที่	6	6	ı	1
0	90	11	7	0	Ź	Ø	7	Ø		1	Ż,	7	11	11	1	9	'n	7		11	7		1	0	0	//	11	11		11	1		11	11	11	1	7		Û		1	Ø	11	9	Ø,		1	0	Ø.		10	7	9	Ø,	Ø.	10		11	11		11	0	Ø.	11	11	7	Ø,	0	7	0	0		11	7/	11	7/	11	U	0	9	2	//	//	11	77	77	2	111	-/	4

- 9. ให้ $D = [d_1, d_2, d_3, ..., d_n]$ เป็นรายการที่แต่ละช่องเก็บเลขโดด 0 ถึง 9 เช่น [5,1,8,7,1,1] นิยามให้ $D_{i,j}$ คือจำนวนที่ได้จากการนำเลขโดดใน D มาต่อกันตั้งแต่ตัวที่ i ถึง j เช่น $D_{2,2} = 1$, $D_{2,3} = 18$, $D_{2,4} = 187$ เป็นต้น
 - (5 คะแนน) จงเขียนรหัสเทียมของอัลกอริทึม $\max_2(D)$ ที่ใช้เวลา O(n) เพื่อหา $D_{i,j}$ ที่มีจำนวนหลักมากสุดที่มีค่าที่หารด้วย 2 ลงตัว ถ้า ไม่มี ให้คืน 0 (วิเคราะห์ประสิทธิภาพการทำงานเชิงเวลาด้วย) เช่น $\max_2([5,1,8,7,1,1])$ ได้ผลคือ 518

วิเคราะห์เวลาการทำงาน:

คำอธิบายหลักการทำงาน (ยกตัวอย่างประกอบ):

• (10 คะแนน) จงเขียนรหัสเทียมของอัลกอริทึม $\max_3(D)$ ที่ใช้เวลา O(n) เพื่อหา $D_{i,j}$ ที่มีจำนวนหลักมากสุดที่มีค่าที่หารด้วย 3 ลงตัว ถ้าไม่มี ให้คืน 0 (วิเคราะห์ประสิทธิภาพการทำงานเชิงเวลาด้วย) เช่น $\max_3([5,1,8,7,1,1])$ ได้ผลคือ 18711 (ข้อแนะนำ: จำนวนเต็ม N หารด้วย 3 ลงตัว เมื่อผลบวกของเลขโดดทุกตัวใน N หารด้วย 3 ลงตัว เข็น 1+8+7+1+1=18 หารด้วย 3 ลงตัว ดังนั้น 18711 หารด้วย 3 ลงตัว)

วิเคราะห์เวลาการทำงาน:

คำอธิบายหลักการทำงาน (ยกตัวอย่างประกอบ):