Exploratory analysis of parking violationProject Plan

Version 1.0

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021
	_

Revision History

Date	Version	Description	Author

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021

Table of Contents

1.

Intr	oduction	4	
	1.1 Purpose of this document	4	
	1.2 Intended Audience	4	
	1.3 Scope	4	
	1.4 Definitions and acronyms	4	
	1.4.1 Definitions		4
	1.4.2 Acronyms and abbreviations		5
	1.5 References	5	
2.	Background and Objectives	5	
3.	Organization	5	
	3.1 Project group	5	
	3.2 Customer	6	
4.	Development process	6	
5.	Deliverables	6	
6.	Project risks	6	
7.	Communication	7	
	7.1 Canvas	7	
	7.2 Git	7	
8.	Draiget plan	7	
ο.	Project plan		
	8.1 Time schedule	7	_
	8.1.1 Remarks	0	7
	8.2 Test plan	9	10
	8.2.1 Testing Remarks		10
9.	References	10	

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021

1. Introduction

1.1 Purpose of this document

The purpose of this document is to provide a detailed project description of the application. Big data is the result of technological advancements that have resulted in the advent of massive amounts of data. Big data refers to datasets that are not only large in size but also contain a lot of different types of data. When properly analyzed, these data can assist industries in making important decisions in a variety of ways. Parking violations are a daily problem in today's fast-paced environment. Parking a vehicle illegally may result in an offense, resulting in a large number of traffic citations being issued. 'Parking Violation' data is one such data set for our exploratory investigation. Every day, millions of automobiles are parked in cities, and New York, as a major metropolis, is no exception, with most residents having parking issues. New York City itself collected approx \$957 million in fine revenues In them more than 59% that is approx \$565 million of the \$957 million, come from parking tickets. The analytics and visualizations are performed using various AWS Services. We analyzed the dataset which consists of more than 50 million records from the years 2013-2018. We performed analytics using AWS services like S3 for data storage and Redshift for performing queries. The visualizations were performed using QuickSight.

1.2 Intended Audience

• Team members : Sonali, Sanjana, Shrivatson, Rishi

1.3 Scope

Our project aims to analyze the parking dataset for two different data sources, one with a span of 20 million data and second data source of 30 million parking records with various graphical representations to give an interpretation of these parking datasets.

1.4 Definitions and acronyms

1.4.1 Definitions

Keyword	Definitions
Project Name	Exploratory Analysis of Parking Violation
Project Supervisor	Sanjana Balagar
Project Leader	Sonali Gupta
Team Member	Sonali,Sanjana,Shrivatson,Rishi
Milestone	Aug 2021 - Dec 2021
Git	https://github.com/sanjanabalagar/Data228_Project
Scrum	An incremental and iterative agile software development method

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021

	for managing software projects and product or application development
Kunagi	Web-based tool for integrated agile project management and collaboration based on Scrum
Scrum sprint	Weekly
Scrum master	Shrivatson
Product owner	Rishi

1.4.2 Acronyms and abbreviations

Acronym or abbreviation	Definitions

1.5 References for data source

- 2. https://data.cityofnewyork.us/City-Government/Parking-Violations-Issued-Fiscal-Year-2022/p-vqr-7yc4
- 3. https://www.kaggle.com/new-york-city/nyc-parking-tickets

4. Background and Objectives

Abstract:

In this project we have used the parking violation dataset from the open nyc and kaggle which contained more than 50 million records and performed various analytics to generate meaningful insights. The NYC Department of Finance collects data on every parking ticket issued in NYC and is responsible for collecting and processing payments of all tickets. Because of the huge number of cars and the limited geography, there are a lot of parking tickets. This prompted us to conduct an exploratory analysis on such data in order to gain insights such as when and where tickets are more likely to be issued, if there is a specific season for it, what types of vehicles are receiving tickets, comparing state data to determine which state has the most tickets issued on a monthly basis, and which vehicle body type receives the most tickets. This analysis is carried out utilizing different AWS services like the S3 for data storage, Redshift for performing queries and analytics , and QuickSight to perform dynamic visualizations with the goal of developing a graphical solution for real-time analytics using the parking dataset.

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021

Objective

Our project aims to analyse the movies data for two different data sources , one with datalength of 20 million parking violation data and second data source of 20 million with various graphical representations to give an interpretation of these movie datasets.

5. Architecture & High Level Design

- Using the Talend ETL tool we have cleaned the datasets. We were having files of four fiscal years from 2013 to 2017, which were cleaned and transformed using ETL and then we combined all four transformed files and generated one CSV file containing around 50 million records and loaded it to S3 bucket to create tables in Redshift Clusters.
- 2. Created cluster on redshift service by providing access to users through an associated IAM role to perform analysis using its query editor.
- 3. We have created a ticket violation table including all required attributes with metadata in a database. Then, loaded data into it from a stored csv file in s3 bucket to perform queries and analysis.
- 4. For visualization we have connected S3 with QuickSight by creating and uploading manifest JSON to showcase dynamic visualization , we also performed visualization using matplotlib library in python.

6. Organization

6.1 Project group

Name	Initials	Responsibility (roles)
Shrivatson Ramaratnam Giridharan	SRG	Analysis and Development
Sonali Gupta	SG	Data sourcing/modeling and Development
Rishi Bamb	RB	Analysis and visualization
Sanjana Balagar	SB	Development, documentation

6.2 Customer

The target customers are listed below:

- Customers
- Financial Department
- Ticket Issuing Agencies

7. Development process

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021

- 1. As we were having four fiscal years data from 2013 to 2017, we cleaned and normalized individual years files using Talend which provides feasible services to process and prepare data.
- 2. To have data in a single file makes an analysis and working on it easy hence we merged all four files into one using python code.
- 3. Created cluster on redshift service by providing access to users through an associated IAM role to perform analysis using its query editor.
- 4. Then we have created a ticket violation table including all required attributes with metadata in a database. Then, loaded data into it from a stored csv file in s3 bucket to perform queries and analysis.
- 5. Then we are showcasing visualizations on AWS Quicksight and python. Quicksight's analytic platform empowers any skill level target audience to work with data through actionable and insightful visualizations. Below are the screenshots of visual analysis done on Quicksight. We have done visualisations using quicksight where we loaded a JSON manifest file via S3 bucket into quicksight for performing visualisations.

8. Deliverables

То	Output	Planne	Promise	Late	Delivere	No
		d week	d week	+/-	d week	tes
Data Extraction	Data was downloaded from	Sept	Sept 3rd	no	Sept 3rd	
	Kaggle and NYC Open Data	3rd	week		week	
	and made it ready for	week				
	loading and cleaning					
Data	Data was cleaned and	Oct 1	Oct 1	no	Oct 1	
Normalization and	normalized using Talend	week	week		week	
cleaning						
Data Loading to S3	Data was uploaded to s3	Oct 2	Oct 2	no	Oct 2	
	bucket	week	week		week	
Creating Clusters	We created database, tables	Oct 3	Oct 3	no	Oct 3	
in Redshift	and uploaded the data from	week	week		week	
	s3 bucket					
Loading Data in	Loaded the data in	Oct 4	Oct 4	no	Oct 4	
Quicksight	QuickSight using JSON	Week	Week		Week	
	Manifest File					
Visualization and	Data was analysed using	Nov 4	Nov 4	no	Nov 4	
analytics	python and Quicksight	week	week		week	

9. Project risks

Possibility	Risk	Preventive action
The use of S3 and Redshift	If accessed	When we were not using it we had to

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021
	_

could have costed us a lot of money	continuously it would charge us more.	pause the service.Once the project was done we deleted the service.
Initializing the cluster while giving public access	If it is given public access then there is a chance of vulnerability as other people can get access to our data.	Hence we have made it private

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021

10. Communication

All the team members were connected through Zoom calls weekly and also met in person.

10.1 Collaboration

10.2 Git

All source code and finished documentation will be uploaded to Github repository. ..

Repository URL: https://github.com/sanjanabalagar/DATA228 Project

11. Project plan

11.1 Time schedule

Id	Milestone	Responsible	Finishe				Metr	Rem	
	Description	Dept./Initial	d week						
		s							
			Plan	Forecas		Actua			
				t		I			
				Week	+/				
					-				
1	Data Extraction	Rishi	Sept	Sept	N	Sep			
			3rd	3rd	0	3rd			
			week	week		week			
2	Data	Shrivatson	Oct 1	Oct 1	N	Oct 1			
	Normalization and		week	week	0	week			
	cleaning								
3	Data Loading to S3	Sonali	Oct 2	Oct 2	N	Oct 2			
			week	week	0	week			
4	Creating Clusters	Sanjana	Oct 3	Oct 3	N	Oct 3			
	in Redshift		week	week	0	week			
5	Loading Data in	,Sonali	Oct 4	Oct 4	no	Oct 4			
	Quicksight		Week	Week		Week			
6	Visualization and	Shrivatson	Nov 4	Nov 4	N	Novl			
	analytics		week	week	0	4			
						week			

11.1.1 Remarks

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021

Remark Id	Description

11.2 Test plan

Test No.	001	Phase:	1	Author:	Rishi	Date: Oct 2021	
Test Cate	egory:	Extract data and load into S3					
Software	Product:	Talend,AWS S3					
Test Title	: :	Similarity in the data count of source and destination					
Test Purp	oose:	The number o	freco	ords should r	natch at both ends		
Test Setu	ıp:	We queried in Redshift to find the number of records in destination and compared with the number of records in source which was extracted through talend.					
Prerequi	sites:	Queried in Redshift and source data in s3 bucket					
Procedu	re:	We queried in Redshift to find the number of records in destination and compared with the number of records in source which was extracted through talend.					
Checks:		The count of data					
Expected	d Results:	The count of data at the source and destination should be similar				be similar	
Result:		The count of data and the destination matched					
Reason for	Failure:	No failure					
Remarks:							

Test No.	002	Phase:	1	Author:	Sonali	Date: Oct 2021
Test Cate	egory:	accurate data is being display on graph				
Software	Product:	AWS Quicksight				
Test Title	: :	To check whether the data present on the graph is correct				
Test Purp	oose:	The data present in the graph must correlate with the actual dataset				

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021

Test Setup:	We rechecked the data in the graph to validate whether the data present in the graph is matching with the actual data
Prerequisites:	data must be loaded in the S3 Bucket and connected to quicksight using JSON Manifest file
Procedure:	We checked the graph data to see the accuracy of data present in the graph along with the dataset present.
Checks:	Checked the validity of data present in the graph
Expected Results:	The graph visualisation must match with the loaded data
Result:	The graph visualisation must match with the loaded data
Reason for Failure:	There was no failure
Remarks:	

11.2.1 Testing Remarks

Remark Id	Description

12. References

- https://www.kaggle.com/new-york-city/nyc-parking-tickets
- https://data.cityofnewyork.us/City-Government/Parking-Violations-Issued-Fiscal-Year-2022/pvqr-7yc4
- https://www.talend.com
- Images Google
- GitHub -https://github.com/sanjanabalagar/DATA228_Project/tree/main

Exploratory Analysis of Parking Violation	Version: 1.0
Project Plan	Date: 12/12/2021