Recommending Relevant Products to a User

Swetha Kolalapudi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Understand the role of Personalized Recommendations

Predict user-product ratings using Collaborative Filtering

Find hidden factors that influence userproduct ratings

Implement Movie Recommendations in Python

Personalized Recommendations

Product recommendations on Amazon

Movie recommendations on Netflix

Gmail auto-tagging important e-mails

The new trend across all online services

Inbox organization

Facebook Newsfeed

New York Times homepage

Webpages and online services used to be static ...just like an offline store

Offline stores are designed to appeal to the majority of users

What if, the store could change, so that each user sees the design that most appeals to them?

What if, the store could change, so that each user sees the design that most appeals to them?

The store is personalized based on

- 1. The user's preferences
- 2. The user's needs
- 3. What the user is currently looking for

Engagement

Discovery

Unlike offline stores, online stores have huge catalogs

Millions of Books

Thousands of Songs

Hundreds of News articles

Thousands of Videos

Discovery

Users need help finding what they are looking for

...sometimes things they didn't know they were looking for

Engagement

The more time users spend at a website

..the more likely they are to open their wallets

Example 1: Find Top 10 Movie Picks for a User

- 1. Compute the ratings for all movies for all users
- 2. Sort movies for each user in descending order based on their ratings
- 3. Pick the top 10 movies this user hasn't watched

Example 2: Recommendations Based on Browsing History

- 1. Use # views of a product as an implicit rating
- 2. Compute the ratings for all products for all users
- 3. Pick the top 10 products for this user

Example 3: Users Who Bought This Also Liked....

- 1. Compute the ratings for all products for all users
- 2. Subset the computed ratings to users who have bought this product
- 3. Pick the 10 products with highest ratings for this subset

The Common Problem to Solve

Compute the ratings for all products for all users

Collaborative Filtering Algorithms

Predict user ratings for products based on a user's past behavior

User purchases

User Browsing history

User clicks

User Ratings, Reviews

Top picks for you!!

If you like this, you'll love that!!

If you've bought this, you'll need that!

A general term for any algorithm that only uses past user behavior for identifying recommendations

The basic premise is that

If 2 users have the same opinion about a bunch of products

They are likely to have the same opinion about other products too!

The training data should be of the form

User Id

Product Id

Rating

User Id

Product Id

Rating

Books, Videos, Movies, Artists, News Articles, e-mail keywords

User Id

Product Id

Rating

A measure of a user's preference for a particular product

Explicit Ratings

Collected at the store or through e-mail surveys

Implicit Ratings

#Clicks, #Purchases, #Shares, #Likes, # Times watched

User Id

Product Id

Rating

The algorithm will compute a rating for all products for every user

Latent Factor Analysis

A subset of Collaborative Filtering algorithms

Identify hidden factors that influence user behavior

Genre Cast Popularity

Commercial Appeal Recency of release

Genre

Commercial Appeal

1. Rate every User on their preference for these factors

Cast Popularity

Recency of release

2. Rate every Movie on a scale of 1 to 5 for these factors

Genre

Commercial Appeal

Cast Popularity

Recency of release

Every user and every movie is represented using 4 numbers

Points in 4-D Space

Points in 4-D Space

Points in 4-D Space

Genre

Commercial Appeal

Cast Popularity

Recency of release

The key step in this approach

Representing users and movies in terms of influencing factors

Assumptions

1. We know which factors influence user's preferences

2. We can quantify those factors for each user

3. We can quantify those factors for each movie

Latent Factor Analysis Techniques

Attempt to do all of this, using just

User Id

Product Id

Rating

User Id

Product Id

Rating

Users quantified in terms of some factors

Products quantified in terms of some factors

The factors are not known beforehand

Users quantified in terms of some factors

Products quantified in terms of some factors

Rating

Once they are identified, they might turn out to be

Factors with meaning like genre, cast popularity

Abstract factors with no real life meaning

Users quantified in terms of some factors

Products quantified in terms of some factors

To identify factors, represent the training data as a matrix

User Id

Product Id

Rating

Prod 1 Prod 2 Prod 3 Prod 4 Prod D

User 1

User 2

User 3

User 4

• •

User N

4	-	4	-	-	-
-	3	4	ı	1	1
5	3	2	1	-	5
2	-	2	•	-	4
-	1	1	4	1	1
-	1	-	-	-	-
4	3	4	-	-	5

Latent Factor analysis breaks this down

User-Factor Matrix

Product-Factor Matrix

Each row is a user represented in terms of the hidden factors

Each column is a product represented in terms of the hidden factors

A Rating by User 4 for Product 3

The set of equations that represent the matrix decomposition

Solve this set of equations to have all users, products quantified in terms of factors

Latent Factor Analysis

The problem is expressed as

Find that set of factor vectors

p_u (For each user u)

q_i (For each item i)

Such that the total error is minimized

$$\min_{q\cdot,p\cdot} \sum_{(u,i)\in\kappa} (r_{ui} - q_i^T p_u)^2$$

$$\min_{q\cdot,p\cdot} \sum_{(u,i)\in\kappa} (r_{ui} - q_i^T p_u)^2$$

Alternating Least Squares is a technique to minimize this error

Concentrate on one rating rui

The equation to solve

$$(r_{ui} - (q_i^T p_u)^2 = 0$$

There are 2 variables i.e. pu and qi

$$(\mathbf{r}_{ui} - \mathbf{q}_i^T \mathbf{p}_u)^2 = 0$$

We are left with a quadratic equation for the value of q_i

What if we fixed the value of q_i to the solved value?

We are left with a quadratic equation for the value of pu

Repeat until the values pu and qi converge

The choice of the number of hidden factors is left to the user

Regularization

In general in Machine Learning, we want to find simpler models

If a simpler model can explain the same relationship, then we would like to choose that

$$\min_{q \cdot p \cdot \sum_{(u,i) \in \kappa} (r_{ui} - q_i^T p_u)^2 + \lambda (||q_i||^2 + ||p_u||^2)$$

Adding a regularization term

Penalizes models with higher number of factors

When you implement ALS

Number of factors, Lambda

are parameters to experiment with

Demo

Implement Alternating Least Squares in Python

Find Movie Recommendations for users using the MovieLens data set

Summary

Understand the role of Personalized Recommendations

Predict ratings using Collaborative Filtering

Find hidden factors that influence ratings

Implement Movie Recommendations in Python