Assignment: The Lorenz system, Poincaré maps and unstable periodic orbits

- **Q1** The bifurcated branches of equilibria that appear at r=1 become linearly unstable at some critical value $r=r_c>1$.
 - **Q1a** Find the critical value r_c with at least 6 correct digits
 - Q1b What kind of bifurcation do you observe? Justify your answer including numbers
- **Q2** Explore the unstable periodic orbits within the interval 14 < r < 24.
 - **Q2a** For the values of r given in the table below, provide a point (x, y, z) of the unstable periodic orbit as well as the period T of the orbit. Include as many digits as possible in your answer:

r	x	y	z	T
15.0				
18.0				
21.0				

- **Q2b** Plot the period T(r) of the unstable orbits as a function of r within the range that you have explored
- **Q3** Can you find unstable periodic orbits below r = 14? If yes, provide one, including the value of r, the coordinates of the point (x, y, z) and the period T.
- **Q4** According to your computations, what is the minimum value of r for the existence of unstable periodic orbits?