# CHAPTERS 3, 4, 5, 7: REPETITION

DIT411/TIN175, Artificial Intelligence

Peter Ljunglöf

9 February, 2018

## TABLE OF CONTENTS

Search (R&N 3.1–3.6, 4.1, 4.3–4.4)

- Uninformed search
- Cost-based search
- Heuristics
- Non-classical search

## Adversarial search (R&N 5.1-5.5)

- Types of games
- Minimax search
- Imperfect decisions
- Stochastic games

#### Constraint satisfaction problems (R&N 4.1, 7.1–7.5)

- CSP as a search problem
- Improving backtracking efficiency
- Constraint progagation
- Problem structure
- Local search for CSP

SEARCH (R&N 3.1–3.6, 4.1, 4.3–4.4)

UNINFORMED SEARCH

COST-BASED SEARCH

HEURISTICS

NON-CLASSICAL SEARCH

#### **DIRECTED GRAPHS**

A *graph* consists of a set N of *nodes* and a set A of ordered pairs of nodes, called *arcs* or *edges*.

- Node  $n_2$  is a *neighbor* of  $n_1$  if there is an arc from  $n_1$  to  $n_2$ . That is, if  $(n_1, n_2) \in A$ .
- A path is a sequence of nodes  $(n_0, n_1, \dots, n_k)$  such that  $(n_{i-1}, n_i) \in A$ .
- The *length* of path  $(n_0, n_1, \dots, n_k)$  is k.
- A solution is a path from a start node to a goal node, given a set of start nodes and goal nodes.
- (Russel & Norvig sometimes call the graph nodes *states*).

#### **HOW DO WE SEARCH IN A GRAPH?**

#### A generic search algorithm:

- Given a graph, start nodes, and a goal description, incrementally explore paths from the start nodes.
- Maintain a frontier of nodes that are to be explored.
- As search proceeds, the frontier expands into the unexplored nodes until a goal node is encountered.
- The way in which the frontier is expanded defines the search strategy.

## **ILLUSTRATION OF SEARCHING IN A GRAPH**



#### THE GENERIC TREE SEARCH ALGORITHM

*Tree search*: Don't check if nodes are visited multiple times

```
function Search(graph, initialState, goalState):
initialise frontier using the initialState

while frontier is not empty:
select and remove node from frontier
if node.state is a goalState then return node

for each child in ExpandChildNodes(node, graph):
add child to frontier
return failure
```

## **USING TREE SEARCH ON A GRAPH**



- explored nodes might be revisitedfrontier nodes might be duplicated

#### TURNING TREE SEARCH INTO GRAPH SEARCH

*Graph search*: Keep track of visited nodes

```
function Search(graph, initialState, goalState):
    initialise frontier using the initialState
    initialise exploredSet to the empty set
    while frontier is not empty:
        select and remove node from frontier
        if node.state is a goalState then return node
        add node to exploredSet
        for each child in ExpandChildNodes(node, graph):
            add child to frontier if child is not in frontier or exploredSet
        return failure
```

## TREE SEARCH VS. GRAPH SEARCH

#### *Tree search*

- Pro: uses less memory
- Con: might visit the same node several times

## Graph search

- Pro: only visits nodes at most once
- Con: uses more memory

#### DEPTH-FIRST AND BREADTH-FIRST SEARCH

#### THESE ARE THE TWO BASIC SEARCH ALGORITHMS

#### Depth-first search (DFS)

- implement the frontier as a Stack
- space complexity: O(bm)
- incomplete: might fall into an infinite loop, doesn't return optimal solution

#### Breadth-first search (BFS)

- implement the frontier as a Queue
- space complexity:  $O(b^m)$
- complete: always finds a solution, if there is one
- (when edge costs are constant, BFS is also optimal)

#### ITERATIVE DEEPENING

#### Problems with BFS and DFS:

- BFS is guaranteed to halt but uses exponential space.
- DFS uses linear space, but is not guaranteed to halt.

*Idea*: take the best from BFS and DFS — recompute elements of the frontier rather than saving them.

- Look for paths of depth 0, then 1, then 2, then 3, etc.
- Depth-bounded DFS can do this in linear space.

Iterative deepening search calls depth-bounded DFS with increasing bounds:

- If a path cannot be found at *depth-bound*, look for a path at *depth-bound* + 1.
- Increase *depth-bound* when the search fails unnaturally (i.e., if *depth-bound* was reached).

#### ITERATIVE DEEPENING COMPLEXITY

Complexity with solution at depth k and branching factor b:

| level | # nodes | BFS node visits | ID node visits                          |
|-------|---------|-----------------|-----------------------------------------|
| 1     | b       | $1 \cdot b^1$   | $k \cdot b^1$                           |
| 2     | $b^2$   | $1 \cdot b^2$   | $(k-1)\cdot b^2$                        |
| 3     | $b^3$   | $1 \cdot b^3$   | $(k-2) \cdot b^3$                       |
| •     | •       | :               | :                                       |
| k     | $b^k$   | $1 \cdot b^k$   | $1 \cdot b^k$                           |
| total |         | $\geq b^k$      | $\leq b^k \left(\frac{b}{b-1}\right)^2$ |

Numerical comparison for k = 5 and b = 10:

BFS = 
$$10 + 100 + 1,000 + 10,000 + 100,000 = 111,110$$
  
IDS =  $50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$ 

*Note*: IDS recalculates shallow nodes several times, but this doesn't have a big effect compared to BFS!

#### **BIDIRECTIONAL SEARCH**

(will not be in the written examination, but could be used in Shrdlite)

*Idea:* search backward from the goal and forward from the start simultaneously.

- This can result in an exponential saving, because  $2b^{k/2} \ll b^k$ .
- The main problem is making sure the frontiers meet.

#### One possible implementation:

- Use BFS to gradually search backwards from the goal, building a set of locations that will lead to the goal.
  - this can be done using dynamic programming
- Interleave this with forward heuristic search (e.g., A\*) that tries to find a path to these interesting locations.

## **COST-BASED SEARCH**

## THE FRONTIER IS A PRIORITY QUEUE, ORDERED BY f(n)

Uniform-cost search (this is not a heuristic algorithm)

- expand the node with the lowest path cost
- f(n) = g(n)
- complete and optimal

#### Greedy best-first search

- expand the node which is closest to the goal (according to some heuristics)
- f(n) = h(n)
- incomplete: might fall into an infinite loop, doesn't return optimal solution

#### A\* search

- expand the node which has the lowest estimated cost from start to goal
- f(n) = g(n) + h(n) = estimated cost of the cheapest solution through n
- complete and optimal (if h(n) is admissible/consistent)

## A\* TREE SEARCH IS OPTIMAL!

A\* always finds an optimal solution first, provided that:

- the branching factor is finite,
- arc costs are bounded above zero (i.e., there is some  $\epsilon > 0$  such that all of the arc costs are greater than  $\epsilon$ ), and
- h(n) is admissible
  - i.e., h(n) is nonnegative and an underestimate of the cost of the shortest path from n to a goal node.

These requirements ensure that f keeps increasing.

#### TURNING TREE SEARCH INTO GRAPH SEARCH

Tree search: Don't check if nodes are visited multiple times Graph search: Keep track of visited nodes

```
function Search(graph, initialState, goalState):
    initialise frontier using the initialState
    initialise exploredSet to the empty set
    while frontier is not empty:
        select and remove node from frontier
        if node.state is a goalState then return node
        add node to exploredSet
        for each child in ExpandChildNodes(node, graph):
            add child to frontier if child is not in frontier or exploredSet
        return failure
```

## **GRAPH-SEARCH = MULTIPLE-PATH PRUNING**



Graph search keeps track of visited nodes, so we don't visit the same node twice.

- Suppose that the first time we visit a node is not via the most optimal path
  - ⇒ then graph search will return a suboptimal path
- Under which circumstances can we guarantee that A\* graph search is optimal?

#### WHEN IS A\* GRAPH SEARCH OPTIMAL?

If  $|h(n') - h(n)| \le cost(n', n)$  for every arc (n', n), then A\* graph search is optimal:

- Lemma: the f values along any path [..., n', n, ...] are nondecreasing:
  - **Proof**: g(n) = g(n') + cost(n', n), therefore:
  - $\circ f(n) = g(n) + h(n) = g(n') + cost(n', n) + h(n) \ge g(n') + h(n')$
  - therefore:  $f(n) \ge f(n')$ , i.e., f is nondecreasing
- **Theorem**: whenever A\* expands a node *n*, the optimal path to *n* has been found
  - Proof: Assume this is not true;
  - then there must be some n' still on the frontier, which is on the optimal path to n;
  - $\circ$  but  $f(n') \leq f(n)$ ;
  - and then n' must already have been expanded  $\Longrightarrow$  contradiction!



## **STATE-SPACE CONTOURS**

The f values in A\* are nondecreasing, therefore:

```
first A* expands all nodes with f(n) < C
```

then A\* expands all nodes with 
$$f(n) = C$$

**finally** A\* expands all nodes with 
$$f(n) > C$$

A\* will not expand any nodes with f(n) > C\*, where C\* is the cost of an optimal solution.

#### **SUMMARY OF OPTIMALITY OF A\***

#### A\* *tree search* is optimal if:

- the heuristic function h(n) is admissible
- i.e., h(n) is nonnegative and an underestimate of the actual cost
- i.e.,  $h(n) \leq cost(n, goal)$ , for all nodes n

## A\* *graph search* is optimal if:

- the heuristic function h(n) is **consistent** (or monotone)
- i.e.,  $|h(m) h(n)| \le cost(m, n)$ , for all arcs (m, n)

#### **SUMMARY OF TREE SEARCH STRATEGIES**

| Search<br>strategy | Frontier selection | Halts if solution? | Halts if no solution? | Space usage |
|--------------------|--------------------|--------------------|-----------------------|-------------|
| Depth first        | Last node added    | No                 | No                    | Linear      |
| Breadth first      | First node added   | Yes                | No                    | Ехр         |
| Greedy best first  | Minimal $h(n)$     | No                 | No                    | Ехр         |
| Uniform cost       | Minimal $g(n)$     | Optimal            | No                    | Ехр         |
| A*                 | f(n) = g(n) + h(n) | Optimal*           | No                    | Ехр         |

## \*Provided that h(n) is admissible.

Halts if: If there is a path to a goal, it can find one, even on infinite graphs.

Halts if no: Even if there is no solution, it will halt on a finite graph (with cycles).

**Space**: Space complexity as a function of the length of the current path.

## SUMMARY OF **GRAPH SEARCH** STRATEGIES

| Search<br>strategy | Frontier selection | Halts if solution? | Halts if no solution? | Space<br>usage |
|--------------------|--------------------|--------------------|-----------------------|----------------|
| Depth first        | Last node added    | (Yes)**            | <u>Yes</u>            | Exp            |
| Breadth first      | First node added   | Yes                | <u>Yes</u>            | Ехр            |
| Greedy best first  | Minimal $h(n)$     | <u>(Yes)**</u>     | <u>Yes</u>            | Ехр            |
| Uniform cost       | Minimal $g(n)$     | Optimal            | <u>Yes</u>            | Ехр            |
| A*                 | f(n) = g(n) + h(n) | Optimal*           | <mark>Yes</mark>      | Ехр            |

\*\*On finite graphs with cycles, not infinite graphs.

\*Provided that h(n) is consistent.

Halts if: If there is a path to a goal, it can find one, even on infinite graphs.

Halts if no: Even if there is no solution, it will halt on a finite graph (with cycles).

Space: Space complexity as a function of the length of the current path.

## **HEURISTICS**

## **RECAPITULATION: THE 8 PUZZLE**

 $h_1(n)$  = number of misplaced tiles  $h_2(n)$  = total Manhattan distance (i.e., no. of squares from desired location of each tile)



$$h_1(StartState) = 8$$
  
 $h_2(StartState) = 3+1+2+2+3+3+2=18$ 

#### DOMINATING HEURISTICS

If (admissible)  $h_2(n) \ge h_1(n)$  for all n, then  $h_2$  dominates  $h_1$  and is better for search.

Typical search costs (for 8-puzzle):

depth = 14 DFS 
$$\approx 3,000,000 \text{ nodes}$$
 $A^*(h_1) = 539 \text{ nodes}$ 
 $A^*(h_2) = 113 \text{ nodes}$ 

depth = 24 DFS  $\approx 54,000,000,000 \text{ nodes}$ 
 $A^*(h_1) = 39,135 \text{ nodes}$ 
 $A^*(h_2) = 1,641 \text{ nodes}$ 

Given any admissible heuristics  $h_a$ ,  $h_b$ , the **maximum** heuristics h(n) is also admissible and dominates both:

$$h(n) = \max(h_a(n), h_b(n))$$



#### **HEURISTICS FROM A RELAXED PROBLEM**

Admissible heuristics can be derived from the exact solution cost of a relaxed problem:

- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then  $h_1(n)$  gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then  $h_2(n)$  gives the shortest solution

**Key point**: the optimal solution cost of a relaxed problem is never greater than the optimal solution cost of the real problem

## NON-ADMISSIBLE (NON-CONSISTENT) A\* SEARCH

A\* search with admissible (consistent) heuristics is optimal

But what happens if the heuristics is non-admissible?

- i.e., what if h(n) > c(n, goal), for some n?
- the solution is not guaranteed to be optimal...
- ...but it will find *some* solution!

Why would we want to use a non-admissible heuristics?

- sometimes it's easier to come up with a heuristics that is almost admissible
- and, often, the search terminates faster!

<sup>\*</sup> for graph search, |h(m) - h(n)| > cost(m, n), for some (m, n)

## NON-CLASSICAL SEARCH

A problem is *nondeterministic* if there are several possible outcomes of an action

deterministic — nondeterministic (chance)

It is *partially observable* if the agent cannot tell exactly which state it is in

• fully observable (perfect info.) — partially observable (imperfect info.)

A problem can be either nondeterministic, or partially observable, or both:

perfect information

imperfect information

| deterministic    | chance                  |  |  |
|------------------|-------------------------|--|--|
| chess, checkers, | backgammon              |  |  |
| go, othello      | monopoly                |  |  |
| battleships,     | bridge, poker, scrabble |  |  |
| blind tictactoe  | nuclear war             |  |  |

#### NONDETERMINISTIC SEARCH

We need a more general *result* function:

- instead of returning a single state, it returns a set of possible outcome states
- e.g., Results(Suck, 1) =  $\{5, 7\}$  and Results(Suck, 5) =  $\{1, 5\}$

We also need to generalise the notion of a *solution*:

- instead of a single sequence (path) from the start to the goal, we need a *strategy* (or a *contingency plan*)
- i.e., we need **if-then-else** constructs
- this is a possible solution from state 1:
  - [Suck, if State=5 then [Right, Suck] else []]

#### **HOW TO FIND CONTINGENCY PLANS**

(will not be in the written examination)

We need a new kind of nodes in the search tree:

- and nodes: these are used whenever an action is nondeterministic
- normal nodes are called or nodes:
   they are used when we have several possible actions in a state

A solution for an *and-or* search problem is a subtree that:

- has a goal node at every leaf
- specifies exactly one action at each of its or node
- includes every branch at each of its and node

## A SOLUTION TO THE ERRATIC VACUUM CLEANER

(will not be in the written examination)



The solution subtree is shown in bold, and corresponds to the plan: [Suck, if State=5 then [Right, Suck] else []]

#### PARTIAL OBSERVATIONS: BELIEF STATES

Instead of searching in a graph of states, we use *belief states* 

• A belief state is a *set of states* 

In a sensor-less (or conformant) problem, the agent has no information at all

- The initial belief state is the set of all problem states
  - e.g., for the vacuum world the initial state is {1,2,3,4,5,6,7,8}

The goal test has to check that *all* members in the belief state is a goal

• e.g., for the vacuum world, the following are goal states: {7}, {8}, and {7,8}

The result of performing an action is the *union* of all possible results

- i.e.,  $Predict(b, a) = \{Result(s, a) \text{ for each } s \in b\}$
- if the problem is also nondeterministic:
  - ∘ Predict(b, a) =  $\bigcup$  {Results(s, a) for each  $s \in b$ }

#### PREDICTING BELIEF STATES IN THE VACUUM WORLD



- (a) Predicting the next belief state for the sensorless vacuum world with a deterministic action, *Right*.
- (b) Prediction for the same belief state and action in the nondeterministic slippery version of the sensorless vacuum world.

# ADVERSARIAL SEARCH (R&N 5.1-5.5)

**TYPES OF GAMES** 

MINIMAX SEARCH

**IMPERFECT DECISIONS** 

STOCHASTIC GAMES

#### **GAMES AS SEARCH PROBLEMS**

The main difference to chapters 3–4: now we have more than one agent that have different goals.

- All possible game sequences are represented in a game tree.
- The nodes are states of the game, e.g. board positions in chess.
- Initial state (root) and terminal nodes (leaves).
- States are connected if there is a legal move/ply.
   (a ply is a move by one player, i.e., one layer in the game tree)
- Utility function (payoff function). Terminal nodes have utility values +x (player 1 wins), -x (player 2 wins) and 0 (draw).

#### PERFECT INFORMATION GAMES: ZERO-SUM GAMES

Perfect information games are solvable in a manner similar to fully observable single-agent systems, e.g., using forward search.

If two agents compete, so that a positive reward for one is a negative reward for the other agent, we have a two-agent *zero-sum game*.

The value of a game zero-sum game can be characterized by a single number that one agent is trying to maximize and the other agent is trying to minimize.

This leads to a *minimax strategy*:

- A node is either a MAX node (if it is controlled by the maximising agent),
- or is a MIN node (if it is controlled by the minimising agent).

# **MINIMAX SEARCH**

The Minimax algorithm gives perfect play for deterministic, perfect-information games.



# $\alpha$ - $\beta$ PRUNING



Minimax(
$$root$$
) = max(min(3, 12, 8), min(2,  $x$ ,  $y$ ), min(14, 5, 2))  
= max(3, min(2,  $x$ ,  $y$ ), 2)  
= max(3,  $z$ , 2) where  $z = min(2, x, y) \le 2$   
= 3

I.e., we don't need to know the values of x and y!

# MINIMAX EXAMPLE, WITH $\alpha-\beta$ PRUNING



# HOW EFFICIENT IS $\alpha - \beta$ PRUNING?

The amount of pruning provided by the  $\alpha$ - $\beta$  algorithm depends on the ordering of the children of each node.

- It works best if a highest-valued child of a MAX node is selected first and if a lowest-valued child of a MIN node is returned first.
- In real games, much of the effort is made to optimise the search order.
- With a "perfect ordering", the time complexity becomes  $O(b^{m/2})$ 
  - this doubles the solvable search depth
  - however,  $35^{80/2}$  (for chess) or  $250^{160/2}$  (for go) is still quite large...

#### MINIMAX AND REAL GAMES

Most real games are too big to carry out minimax search, even with  $\alpha$ - $\beta$  pruning.

- For these games, instead of stopping at leaf nodes, we have to use a cutoff test to decide when to stop.
- The value returned at the node where the algorithm stops is an estimate of the value for this node.
- The function used to estimate the value is an evaluation function.
- Much work goes into finding good evaluation functions.
- There is a trade-off between the amount of computation required to compute the evaluation function and the size of the search space that can be explored in any given time.

## IMPERFECT DECISIONS

#### MINIMAX VS H-MINIMAX

```
function Minimax(state):

if TerminalTest(state) then return Utility(state)

A := Actions(state)

if state is a MAX node then return max_{a \in A} Minimax(Result(state, a))

if state is a MIN node then return min_{a \in A} Minimax(Result(state, a))
```

The *Heuristic* Minimax algorithm is similar to normal Minimax

it replaces TerminalTest and Utility with CutoffTest and Eval

```
function H-Minimax(state, depth):

if CutoffTest(state, depth) then return Eval(state)

A := Actions(state)

if state is a MAX node then return max_{a \in A} H-Minimax(Result(state, a), depth+1)

if state is a MIN node then return min_{a \in A} H-Minimax(Result(state, a), depth+1)
```

#### **EVALUATION FUNCTIONS**



A naive evaluation function will not see the difference between these two states.

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s) = \sum_{i=1}^n w_i f_i(s)$$

#### PROBLEMS WITH CUTOFF TESTS

Too simplistic cutoff tests and evaluation functions can be problematic:

- e.g., if the cutoff is only based on the current depth
- then it might cut off the search in unfortunate positions (such as (b) on the previous slide)

We want more sophisticated cutoff tests:

- only cut off search in *quiescent* positions
- i.e., in positions that are "stable", unlikely to exhibit wild swings in value
- non-quiescent positions should be expanded further

## **STOCHASTIC GAMES**

**EXAMPLE: BACKGAMMON** 



#### STOCHASTIC GAMES IN GENERAL

In stochastic games, chance is introduced by dice, card-shuffling, etc.

- We introduce *chance nodes* to the game tree.
- We can't calculate a definite minimax value, instead we calculate the *expected value* of a position.
- The expected value is the average of all possible outcomes.

A very simple example with coin-flipping and arbitrary values:



### **ALGORITHM FOR STOCHASTIC GAMES**

The ExpectiMinimax algorithm gives perfect play; it's just like Minimax, except we must also handle chance nodes:

```
function ExpectiMinimax(state):

if TerminalTest(state) then return Utility(state)

A := Actions(state)

if state is a MAX node then return max_{a \in A} ExpectiMinimax(Result(state, a))

if state is a MAX node then return min_{a \in A} ExpectiMinimax(Result(state, a))

if state is a chance node then return \sum_{a \in A} P(a) \cdot \text{ExpectiMinimax}(\text{Result}(state, a))
```

where P(a) is the probability that action a occurs.

# CONSTRAINT SATISFACTION PROBLEMS (R&N 4.1, 7.1–7.5)

CSP AS A SEARCH PROBLEM
IMPROVING BACKTRACKING EFFICIENCY
CONSTRAINT PROGAGATION
PROBLEM STRUCTURE
LOCAL SEARCH FOR CSP

#### **CSP: CONSTRAINT SATISFACTION PROBLEMS**

#### CSP is a specific kind of search problem:

- ullet the state is defined by variables  $X_i$ , each taking values from the domain  $D_i$
- the *goal test* is a set of *constraints*:
  - each constraint specifies allowed values for a subset of variables
  - all constraints must be satisfied

#### Differences to general search problems:

- the path to a goal isn't important, only the solution is.
- there are no predefined starting state
- often these problems are huge, with thousands of variables, so systematically searching the space is infeasible

## **EXAMPLE: MAP COLOURING (BINARY CSP)**



Variables:WA, NT, Q, NSW, V, SA, TDomains: $D_i = \{\text{red, green, blue}\}$ Constraints: $SA \neq WA, SA \neq NT, SA \neq Q, SA \neq NSW, SA \neq V, WA \neq NT, NT \neq Q, Q \neq NSW, NSW \neq V$ 

Constraint graph: Every variable is a node, every binary constraint is an arc.



## **EXAMPLE: CRYPTARITHMETIC PUZZLE (HIGHER-ORDER CSP)**





**Domains:**  $D_i = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 

Constraints: Alldiff(F,T,U,W,R,O),  $O+O=R+10\cdot X_1$ , etc.

**Constraint graph**: This is not a binary CSP!

The graph is a constraint hypergraph.



#### ALGORITHM FOR BACKTRACKING SEARCH

At each depth level, decide on one single variable to assign:

• this gives branching factor b = d, so there are  $d^n$  leaves Depth-first search with single-variable assignments is called *backtracking search*:

```
function BacktrackingSearch(csp):
    return Backtrack(csp, assignment):
    if assignment is complete then return assignment
    var := SelectUnassignedVariable(csp, assignment)
    for each value in OrderDomainValues(csp, var, assignment):
        if value is consistent with assignment:
            inferences := Inference(csp, var, value)
            if inferences ≠ failure:
                result := Backtrack(csp, assignment ∪ {var=value} ∪ inferences)
            if result ≠ failure then return result
    return failure
```

## IMPROVING BACKTRACKING EFFICIENCY

The general-purpose algorithm gives rise to several questions:

- Which variable should be assigned next?
   SelectUnassignedVariable(csp, assignment)
- In what order should its values be tried?
  - OrderDomainValues(csp, var, assignment)
- What inferences should be performed at each step?
  - Inference(csp, var, value)

#### SELECTING UNASSIGNED VARIABLES

Heuristics for selecting the next unassigned variable:

- Minimum remaining values (MRV):
  - ⇒ choose the variable with the fewest legal values



- Degree heuristic (if there are several MRV variables):
  - ⇒ choose the variable with most constraints on remaining variables



#### **ORDERING DOMAIN VALUES**

Heuristics for ordering the values of a selected variable:

- Least constraining value:
  - ⇒ prefer the value that rules out the fewest choices for the neighboring variables in the constraint graph



Allows 1 value for SA

Allows 0 values for SA

## **CONSTRAINT PROGAGATION**

## INFERENCE: ARC CONSISTENCY, AC-3

Keep a set of arcs to be considered: pick one arc (X, Y) at the time and make it consistent (i.e., make X arc consistent to Y).

• Start with the set of all arcs  $\{(X,Y),(Y,X),(X,Z),(Z,X),\dots\}$ .

When an arc has been made arc consistent, does it ever need to be checked again?

• An arc (X, Y) needs to be revisited if the domain of Y is revised.

```
function AC-3(inout csp):
    initialise queue to all arcs in csp
    while queue is not empty:
        (X, Y) := \text{RemoveOne}(queue)
        if Revise(csp, X, Y):
        if D_X = \emptyset then return failure
        for each Z in X.neighbors–\{Y\} do add (Z, X) to queue

function Revise(inout \, csp, \, X, \, Y):
        delete every x from D_X such that there is no value y in D_Y satisfying the constraint C_{XY} return true if D_X was revised
```



#### COMBINING BACKTRACKING WITH AC-3

What if some domains have more than one element after AC?

We can resort to backtracking search:

- Select a variable and a value using some heuristics
   (e.g., minimum-remaining-values, degree-heuristic, least-constraining-value)
- Make the graph arc-consistent again
- Backtrack and try new values/variables, if AC fails
- Select a new variable/value, perform arc-consistency, etc.

Do we need to restart AC from scratch?

- no, only some arcs risk becoming inconsistent after a new assignment
- restart AC with the queue  $\{(Y_i, X) | X \to Y_i\}$ , i.e., only the arcs  $(Y_i, X)$  where  $Y_i$  are the neighbors of X
- this algorithm is called Maintaining Arc Consistency (MAC)

#### **CONSISTENCY PROPERTIES**

There are several kinds of consistency properties and algorithms:

- *Node consistency*: single variable, unary constraints (straightforward)
- Arc consistency: pairs of variables, binary constraints (AC-3 algorithm)
- Path consistency: triples of variables, binary constraints (PC-2 algorithm)
- k-consistency: k variables, k-ary constraints (algorithms exponential in k)
- Consistency for global constraints:
   Special-purpose algorithms for different constraints, e.g.:
  - $\circ$  Alldiff( $X_1, \ldots, X_m$ ) is inconsistent if  $m > |D_1 \cup \cdots \cup D_m|$
  - Atmost( $n, X_1, ..., X_m$ ) is inconsistent if  $n < \sum_i \min(D_i)$

## PROBLEM STRUCTURE

#### TREE-STRUCTURED CSP

(will not be in the written examination)

A constraint graph is a tree when any two variables are connected by only one path.

- then any variable can act as root in the tree
- tree-structured CSP can be solved in *linear time*, in the number of variables!

#### To solve a tree-structured CSP:

- first pick a variable to be the root of the tree
- then find a *topological sort* of the variables (with the root first)
- finally, make each arc consistent, in reverse topological order





#### CONVERTING TO TREE-STRUCTURED CSP

(will not be in the written examination)

Most CSPs are *not* tree-structured, but sometimes we can reduce them to a tree

• one approach is to assign values to some variables, so that the remaining variables form a tree



If we assign a colour to South Australia, then the remaining variables form a tree

• An alternative is to assign values to {NT,Q,V}: But this is worse than assigning South Australia, because then we have to try 3×3×3 different assignments, and for each of them solve the remaining tree-CSP

## LOCAL SEARCH FOR CSP

Given an assignment of a value to each variable:

- A conflict is an unsatisfied constraint.
- The goal is an assignment with zero conflicts.
- Heuristic function to be minimized: the number of conflicts.
  - this is the *min-conflicts* heuristics

```
function MinConflicts(csp, max_steps)
    current := an initial complete assignment for csp
    repeat max_steps times:
        if current is a solution for csp then return current
        var := a randomly chosen conflicted variable from csp
        value := the value v for var that minimises Conflicts(var, v, current, csp)
        current[var] = value
    return failure
```

## **EXAMPLE: n**-QUEENS (REVISITED)

Put n queens on an  $n \times n$  board, in separate columns Conflicts = unsatisfied constraints = n:o of threatened queens Move a queen to reduce the number of conflicts

- repeat until we cannot move any queen anymore
- then we are at a local maximum—hopefully it is global too



#### **EXAMPLE: TRAVELLING SALESPERSON**

Start with any complete tour, and perform pairwise exchanges



Variants of this approach get within 1% of optimal very quickly with thousands of cities

#### **LOCAL SEARCH**

Hill climbing search is also called gradient/steepest ascent/descent, or greedy local search.

```
function HillClimbing(graph, initialState):
    current := initialState
    loop:
        neighbor := a highest-valued successor of current
        if neighbor.value ≤ current.value then return current
        current := neighbor
```

## PROBLEMS WITH HILL CLIMBING

Local maxima — Ridges — Plateaux







#### RANDOMIZED HILL CLIMBING

As well as upward steps we can allow for:

- Random steps: (sometimes) move to a random neighbor.
- Random restart: (sometimes) reassign random values to all variables.

Both variants can be combined!

#### 1-DIMENSIONAL ILLUSTRATIVE EXAMPLE

Two 1-dimensional search spaces; you can step right or left:



Which method would most easily find the global maximum?

• random steps or random restarts?

What if we have hundreds or thousands of dimensions?

• ...where different dimensions have different structure?

