Continuity and One-Sided Limits

Definition of Continuity:

The function f(x) is continuous at c if:

- 1) f(c) is defined.
- $2) \lim_{x \to c} f(x) = f(c)$

Example 1: Polynomial Function

Let
$$f(x) = 0.1x^2 - 1$$

Show that function f(x) is continuous at x = 2.

- a) Show that f(x) is defined at x = 2: $f(2) = 0.1(2)^2 1 = -0.6$
- b) Show $\lim_{x \to 2} f(x) = f(2)$

Limit from the left: $\lim_{x\to 2^{-}} f(x) = -0.6$

Limit from the right: $\lim_{x\to 2^+} f(x) = -0.6$

Hence, $\lim_{x \to 2} f(x) = -0.6$.

Hence, $f(2) = \lim_{x \to 2} f(x) = -0.6$.

Therefore, the function $f(x) = 0.1x^2 - 1$ is continuous at x = 2.

Show that function $f(x) = 0.1x^2 - 1$ is continuous at x = 0.

- a) Show that f(x) is defined at x = 0: $f(0) = 0.1(0)^2 1 = -1$ Note: f(0) =finite number
- b) Show that $f(0) = \lim_{x \to 2} f(x)$

Limit from the left:
$$\lim_{x\to 0^-} f(x) = -1$$

Limit from the right:
$$\lim_{x\to 0^+} f(x) = -1$$

Hence,
$$\lim_{x\to 2} f(x) = -1$$

Hence,
$$f(0) = \lim_{x \to 2} f(x) = -1$$
.

Therefore, the function $f(x) = 0.1x^2 - 1$ is continuous at x = 1.

Show that function $f(x) = 0.1x^2 - 1$ is continuous at x = -3.

- a) Show that f(x) is defined at x = -3: $f(-3) = 0.1(-3)^2 1 = -0.1$ Note: f(-3) = finite number
- b) Show that $f(-3) = \lim_{x \to -3} f(x)$

Limit from the left:
$$\lim_{x \to -3^{-}} f(x) = -0.1$$

Limit from the right:
$$\lim_{x \to -3^+} f(x) = -0.1$$

Hence,
$$\lim_{x \to 2} f(x) = -0.1$$

Hence,
$$f(0) = \lim_{x \to 2} f(x) = -0.1$$
.

Therefore, the function $f(x) = 0.1x^2 - 1$ is continuous at x = -3.

Example 2:

Let
$$f(x) = \frac{x^2 + 3x + 2}{x + 2}$$

Note:
$$\frac{x^2 + 3x + 2}{x + 2} = \frac{(x+2)(x+1)}{(x+2)} = x + 1$$

Also, when
$$x = -2$$
, $f(x) = \frac{x^2 + 3x + 2}{x + 2} = \frac{(-2)^2 + 3(-2) + 2}{(-2) + 2} = \frac{0}{0} = \text{undefined}$

- f(x) is discontinuous at x = -2.
- f(x) has a removable discontinuity at x = -2.
- f(x) is continuous on $(-\infty, -2) \cup (-2, \infty)$

Show that the function $f(x) = \frac{x^2 + 3x + 2}{x + 2}$ is not continuous at x = -2.

a)
$$f(x)$$
 is undefined at $x = 2$: $f(2) = \frac{(-2)^2 + 3(-2) + 2}{(-2) + 2} = \frac{0}{0}$ = undefined

b) Limit from the left: $\lim_{x \to -2^{-}} f(x) = -1$

Limit from the right: $\lim_{x \to -2^+} f(x) = -1$

Hence,
$$\lim_{x \to -2} f(x) = -1$$

Hence, $f(2) \neq \lim_{x \to -2^{-}} f(x)$.

Therefore, the function $f(x) = \frac{x^2 + 3x + 2}{x + 2}$ is not continuous at x = -2.

Example 3: Let
$$f(x) = \frac{|x|}{x}$$

Note: When
$$x = 0$$
, $f(x) = \frac{|x|}{x} = \frac{0}{0} = undefined$

Show that $f(x) = \frac{|x|}{x}$ is not continuous at x = 0.

- a) $f(0) = \frac{|0|}{0} = \frac{0}{0} = undefined$; f(x) is undefined at x = 0.
- b) Limit from the left: $\lim_{x\to 0^-} f(x) = -1$

Limit from the right: $\lim_{x\to 0^+} f(x) = 1$

Hence, $\lim_{x\to 0} f(x) = 1$

Hence, $f(0) \neq \lim_{x \to 0} f(x)$

Therefore, $f(x) = \frac{|x|}{x}$ is not continuous at x = 0.

Also, $f(x) = \frac{|x|}{x}$ has nonremovable discontinuity at x = 0.

Example 4:

$$\operatorname{Let} f(x) = \begin{cases} 2 - x & \text{if } x \neq 1 \\ 4 & \text{if } x = 1 \end{cases}$$

f(x) is discontinuous at x = 1.

f(x) has a removable discontinuity at x = 1.

f(x) is continuous on $(-\infty,1) \cup (1,\infty)$

Show that
$$f(x) = \begin{cases} 2 - x & \text{if } x \neq 1 \\ 4 & \text{if } x = 1 \end{cases}$$
 is not continuous at $x = 1$.

- a) f(1) = 4; f(x) is defined at x = 1.
- b) Limit from the left: $\lim_{x\to 1^-} f(x) = 1$

Limit from the right: $\lim_{x \to 1^+} f(x) = 1$

Hence, $\lim_{x\to 1} f(x) = 1$

Hence,
$$f(1) \neq \lim_{x \to 1} f(x)$$

Therefore, $f(x) = \begin{cases} 2 - x & \text{if } x \neq 1 \\ 4 & \text{if } x = 1 \end{cases}$ is not continuous at x = 1.

Also,
$$f(x) = \begin{cases} 2 - x & \text{if } x \neq 1 \\ 4 & \text{if } x = 1 \end{cases}$$
 has a removable discontinuity at $x = 1$.

Example 5:

$$Let f(x) = \frac{4}{x^2 - 9}$$

Discuss continuity of the function.

f(x) is discontinuous at x = -3 and at x = 3.

f(x) has nonremovable discontinuities at x = -3 and at x = 3.

f(x) is continuous on $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$

- a) f(-3) = undefined. Therefore, f(x) is discontuous at x = -3. f(x) has a nonremovable disconuity at x = -3.
- b) f(3) = undefined. Therefore, f(x) is discontuous at x = 3. f(x) has a nonremovable disconuity at x = 3.
- c) f(x) is continuous everywhere except at x = -3 and at x = 3.

Summary:

f(x) is continuous on $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$

Example 6:

$$Let f(x) = \sqrt{9 - x^2}.$$

Show that f(x) is continuous on the interval [-3, 3].

We need to show:

a) f(x) is continuous on the open interval (-3, 3).

From graph, we can see that f(x) is continuous on (-3, 3).

b)
$$f(x) = \sqrt{9 - x^2}$$
.

Show $\lim_{x \to -3^+} f(x) = f(-3)$.

$$f(-3) = \sqrt{9 - (-3)^2} = 0$$

$$\lim_{x \to -3^{+}} f(x) = \lim_{x \to -3^{+}} \sqrt{9 - x^{2}} = \sqrt{\lim_{x \to -3^{+}} (9 - x^{2})} = \sqrt{0} = 0$$

Therefore, $\lim_{x \to -3^{+}} f(x) = f(-3)$.

c)
$$f(x) = \sqrt{9 - x^2}$$
.

Show $\lim_{x \to 3^{-}} f(x) = f(3)$.

$$f(3) = \sqrt{9 - (3)^2} = 0$$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} \sqrt{9 - x^{2}} = \sqrt{\lim_{x \to 3^{-}} (9 - x^{2})} = \sqrt{0} = 0$$

Therefore, $\lim_{x\to 3^{-}} f(x) = f(3)$.

Example 7:

$$\operatorname{Let} f(x) = \begin{cases} 2x + 4 & \text{if } x \le 1 \\ x^2 & \text{if } x > 1 \end{cases}$$

Show that f(x) is discontinuous at x = 1.

f(x) is discontinuous at x = 1.

f(x) has a nonremovable discontinuity at x = 1.

f(x) is continuous on $(-\infty,1) \cup (1,\infty)$

$$\operatorname{Let} f(x) = \begin{cases} 2x + 4 & \text{if } x \le 1 \\ x^2 & \text{if } x > 1 \end{cases}$$

a)
$$f(1) = 2x + 4 = 2(1) + 4 = 6$$

b)
$$\lim_{x \to 1^{-}} f(x) = 6$$

$$\lim_{x\to 1^+} f(x) = 1$$

Hence,
$$\lim_{x \to 1} f(x) = 1$$

Hence,
$$f(1) \neq \lim_{x \to 1} f(x)$$

Therefore, f(x) is discontinuous at x = 1.

Also, f(x) has a nonremovable discontinuity at x = 1.

Example 8:

$$\operatorname{Let} f(x) = \begin{cases} 3x + 4 & \text{if } x \neq 1 \\ 3 & \text{if } x = 1 \end{cases}$$

Show that f(x) is discontinuous at x = 1.

f(x) is discontinuous at x = 1.

f(x) has a removable discontinuity at x = 1.

f(x) is continuous on $(-\infty,1) \cup (1,\infty)$

$$\operatorname{Let} f(x) = \begin{cases} 3x + 4 & \text{if } x \neq 1 \\ 3 & \text{if } x = 1 \end{cases}$$

a)
$$f(1) = 3$$

b)
$$\lim_{x \to 1^{-}} f(x) = 7$$

$$\lim_{x \to 1^+} f(x) = 7$$

Hence,
$$\lim_{x\to 1} f(x) = 7$$

Hence,
$$f(1) \neq \lim_{x \to 1^+} f(x)$$

Therefore, f(x) is discontinuous at x = 1.

Also, f(x) has a removable discontinuity at x = 1.