Chapter 4 Review

Brandon J. DeHart

Manager, Waterloo RoboHub

Adjunct Assistant Professor, ECE

Sessional Instructor, SYDE/MME

CHAPTER 4 REVIEW

What is this chapter all about?

Product of Exponentials (PoE) in Fixed Frame

$$T(\theta) = e^{[S_1]\theta_1} \cdots e^{[S_{n-1}]\theta_{n-1}} e^{[S_n]\theta_n} M$$

$$e^{[S_n]\theta_n} M$$

$$e^{[S_{n-1}]\theta_{n-1}} e^{[S_n]\theta_n} M$$

Figure 4.2: Illustration of the PoE formula for an *n*-link spatial open chain.

Chapter 4 Review PAGE 3

PoE in the End Effector (Body) Frame

Uses Proposition 3.10, summarized as

$$e^{M^{-1}PM} = M^{-1}e^{P}M \rightarrow Me^{M^{-1}PM} = e^{P}M$$

to convert from the fixed frame formulation to a body frame formulation:

$$T(\theta) = e^{[\mathcal{S}_{1}]\theta_{1}} \cdots e^{[\mathcal{S}_{n}]\theta_{n}} M$$

$$= e^{[\mathcal{S}_{1}]\theta_{1}} \cdots M e^{M^{-1}[\mathcal{S}_{n}]M\theta_{n}}$$

$$= e^{[\mathcal{S}_{1}]\theta_{1}} \cdots M e^{M^{-1}[\mathcal{S}_{n-1}]M\theta_{n-1}} e^{M^{-1}[\mathcal{S}_{n}]M\theta_{n}}$$

$$= M e^{M^{-1}[\mathcal{S}_{1}]M\theta_{1}} \cdots e^{M^{-1}[\mathcal{S}_{n-1}]M\theta_{n-1}} e^{M^{-1}[\mathcal{S}_{n}]M\theta_{n}}$$

$$= M e^{[\mathcal{B}_{1}]\theta_{1}} \cdots e^{[\mathcal{B}_{n-1}]\theta_{n-1}} e^{[\mathcal{B}_{n}]\theta_{n}},$$

Denavit-Hartenberg Parameters

- Forward Kinematics using DH Parameters
 - 1. Locate and label the joint axes as z_0 , ..., z_{n-1} such that q_i acts along/about z_{i-1} .
 - 2. Choose your base frame's x_0 and y_0 axes using the right hand rule. The origin O_0 where these two axes intersect with z_0 may be placed anywhere along the z_0 axis.
 - 3. For every link other than the end effector $(i \in 1: n-1)$:
 - 1. Place the origin O_i of frame i where the common normal of z_{i-1} and z_i intersects z_i . If z_i intersects z_{i-1} , place the origin at the intersection. If z_{i-1} and z_i are parallel, place the origin at joint i+1.
 - 2. Choose x_i extending from O_i along the common normal of z_{i-1} and z_i . If z_i intersects z_{i-1} , choose x_i normal to the plane formed by both z_{i-1} and z_i . Add y_i to complete a right hand frame.
 - 4. Establish the end-effector frame O_n . If the n^{th} joint is revolute, set z_n parallel to z_{n-1} .
 - 5. Create a table of DH parameters using these local frames.
 - 6. For each joint, formulate the transformation matrix $A_i(q_i)$ using the DH parameters.
 - 7. Compute the forward kinematic transformation matrix: ${}^{0}H_{n}(\boldsymbol{q}) = A_{1}(q_{1})A_{2}(q_{2})\cdots A_{n}(q_{n})$.

RECOMMENDED EXERCISES

Recommended Exercises

- 4.1 Product of Exponentials (PoE)
 - Exercises: 4.7, 4.8, 4.9
- 4.1 PoE with Angled Joints
 - Exercises: 4.11, 4.12, 4.13
- 4.1 PoE with a Mid-Formula Matrix
 - Exercises: 4.17, 4.20
- 4.5 (Appendix C) DH Parameters
 - Exercises: 4.21

THANK YOU

https://start-stop-continue.com/survey/30bdcdbb329dcb613b08

https://piazza.com/uwaterloo.ca/spring2022/ece486

https://learn.uwaterloo.ca/d2l/home/803436

brandon.dehart@uwaterloo.ca