CS F364 Design & Analysis of Algorithms

ALGORITHM DESIGN TECHNIQUES

Divide & Conquer:

Memoization

- Example: 0,1 Knapsack

MEMOIZATION

- Memo (store) the results of the sub-problems
 - with the hope that they will be re-used
- Space-Time tradeoff:
 - If the results are reused time is saved
 - If the results are not reused space is wasted
- When do we know that results will be reused?
 - Structure of the problem
 - o If the problem can be specified in terms of the subproblems
 - othen we can identify whether sub-problems overlap.

PROBLEM - 0/1 KNAPSACK

o Given:

- A sack with max. capacity by weight: W kg.
- Set S of items j (in store) labeled with
 - o Weight : w_i (< W)</pre>
 - o Price: p_i

• Assumption:

- An item is either taken (in full) or not
- All values (w_i, p_i, and W) are positive.

o Goal:

- Fill the sack with maximum value (by price)
 - oi.e. Find T subset of S, such that
 - $o \Sigma_{i \text{ in T}} p_i$ is maximum and $\Sigma_{i \text{ in T}} w_i \le W$

KNAPSACK - DIVIDE-AND-CONQUER

- Algorithm KnapSack(S, W) // S Set of items; W-capacity
 - 1. Find all the subsets of S say T1, T2, ...,Tk
 - Let the cumulative weights be w(T1), w(T2), ..., w(Tk) and prices be p(T1), p(T2),...,p(Tk)
 - return (Tm,v) such that
 v = max { p(Ti) | w(Ti) <= W and 1<i<=k }
 and Tm such that w(Tm) = v</pre>

What is the time complexity of this algorithm?

MEMOIZED KNAPSACK

- 1. Let |S| be n; Denote items in S as j1, j2, ... jn
- 2. Let the subsets of $\{j_1, j_2, ..., j_{n-1}\}$ be T1, T2, ...,Tk
 - Let the cumulative weights be w(T1), w(T2), ..., w(Tk) and prices be p(T1), p(T2),...,p(Tk)
 - 2. Let $Sol_{n-1} = (Tm,v)$ such that $v = max \{ p(Ti) \mid w(Ti) \le W \text{ and } 1 \le i \le k \} = p(Tm)$
- 3. Compute $P_n = \{ p(Ti) + p_n \mid w(Ti) + w_n \le W \text{ and } 1 \le i \le k \}$
 - o Compute (Tm',v') s.t. $v' = max(Pn) = p(Tm')+p_n$
- 4. return the pair with maximum value among (Tm,v) and (Tm',v')

What is the time complexity of this algorithm?