

iTOP-4412-驱动-电源管理芯片 S5M8767 修改输出例程

本文档介绍,如何修改和控制 S5M8767,以 camera 扩展端子的 VDD28_AF, VDD28 CAM 为例,来具体介绍驱动中如何实现电源修改和控制。

另外还有一个文档"iTOP-4412-驱动-电源管理芯片修改输出电压",用户可以在技术支持群中搜到,其中涉及到具体结构的分析,也很有参考价值。

本文档以具体的驱动小例程介绍在已经配置好的源码中做修改,用户可以将其集成到自己的驱动中,也提供了驱动测试例程压缩包 "power_s5m8767a.tar.gz"。

1 硬件分析

1.1 原理图分析

如下图所示,在底板原理图中找到 camera 扩展端子,这里以 VDD28_AF, VDD28_CAM 为例。camera 摄像头驱动中需要将其设置为 2.8v 的电压,后面我们将其修改为 3.3v 输出(需要去掉 camera 摄像头驱动)。

如下图所示,核心板原理图中搜索网络"VDD28_AF"和"VDD28_CAM"。可以看到"VDD28_AF"和"VDD28_CAM"分别对应电源芯片 S5M8767A的"VLDO20"和"VLDO21"。

1.2 电源芯片 S5M8767A 的 datasheet 分析

S5M8767A 的 datasheet 的 2.3.1 小节,如下图所示。

2.3.1 LDO (P) 4, 5, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 26, 27, 28 (150 mA, PMOS)

(VBAT = 3.7 V, T_A = 25 °C, unless otherwise specified)

Characteristics	Test Conditions		Min.	Тур.	Max.	Unit
Input voltage range (VINL) (1)			1.7	-	5.5	V
Under voltage Lockout	Rising, 100 mV Hysteresis			1.6	1.7	V
Battery Voltage Range	Equal or Higher than VINL		2.7	_	5.5	V
Output Voltage Range	IL = 150 mA Programmable in 50 mV steps		0.8		3.95	V
Default output voltage (VLDO)	LDO (P) 4, 5, 11, 13, 14, 16, 26, 27, 28	150 mA @VINL = VLDO +0.3V	-	1.8	1-1	V
	LDO (P) 17			2.8		
	LDO (P) 12, 19, 20, 21			3.0		
	LDO (P) 22			3.3		
Maximum Load Current	Normal Mode		150			A
	Low-Power Mode		5			mA
Output Current Limit	VOUT = 90 % of VLDO		180	225	270	mA
Minimum Output Bypass Capacitance			0.7	1		μF
Ground Current	Battery Supply Current, with No Load	Shutdown		< 0.1		μΑ
		Normal Regulation		8	10	
		Low-Power Mode		0.5	1	
	Input Supply Current, with No Load	Shutdown		0	1	
		Normal Regulation		12	20	
		Low-Power Mode		2	5	
	NI		1	20	20	1

如上图所示,注意红框中的内容。最上面的红框中,表示输出的电流是 150mA,最低输出电压是 0.8v,最大电压是 3.95v。下面红框中,介绍的是默认输出电压,可以看到 LDO20和 LDO21,默认输出的是 3.0v。

2 软件

如果要改变输出电压,可以通过修改平台文件实现;在驱动中,可以通过函数调用,控制电源输出。

通过前面的分析可知, Ido21 和 Ido20 输出电流范围是 0.8v 到 3.95v。

2.1 平台文件修改输出电压

在内核的 "arch/arm/mach-exynos/mach-itop4412.c" 文件中,如下图所示进行修改。

```
if defined(CONFIG VIDEO OV5640) | defined(CONFIG VIDEO TVP5150)
REGULATOR_INIT(ldo20, "VDD28 CAM", 1800000, 1800000, 0, REGULATOR_CHANGE_STATUS, 1);
/REGULATOR INIT(ldo20, "VDD28 CAM", 2800000, 2800000, 0,
               REGULATOR CHANGE STATUS, 1);
REGULATOR INIT(ldo20, "VDD28 CAM", 3950000, 3950000, 0,
               REGULATOR CHANGE STATUS, 1);
endif
* modify by cym 20141106 */
ifdef CONFIG VIDEO TVP5150
REGULATOR_CHANGE_STATUS, 1);
//REGULATOR INIT(ldo21, "VDD28 AF", 2800000, 2800000, 0,
                REGULATOR CHANGE STATUS, 1);
REGULATOR INIT(1do21, "VDD28 AF", 3950000, 3950000, 0,
               REGULATOR CHANGE STATUS, 1);
ondif
REGULATOR_INIT(ldo22, "VDDA28 2M", 2800000, 2800000, 0,
               REGULATOR CHANGE STATUS,
```

将

```
REGULATOR_INIT(Ido20, "VDD28_CAM", 2800000, 2800000, 0,

REGULATOR_CHANGE_STATUS, 1);
```

注释掉,修改为 2800000,为 3950000(函数 REGULATOR_INIT 中的第一个参数表示 8767 电源芯片的第 20 路,第三个参数表示输出最低电压,第四个参数表示输出最高电压)。这里设置为最低和最高全部为 3.95v。同理,我们将第 21 路也修改为 3950000,如上图所示。

接着在 menuconfig 中,将 ov5640 摄像头的驱动去掉,因为在摄像头中会初始化和配置。ov5640 摄像头摄像头的配置路径如下图所示。下面截图是已经去掉的截图,默认缺省文件是配置上的。

```
Symbol: VIDEO_OV5640 [=n]
Type : tristate
Prompt: OmniVision OV5640 sensor support
  Defined at drivers/media/video/Kconfig:1016
  Depends on: MEDIA_SUPPORT [=y] && VIDEO_CAPTURE_DRIVERS [=y] && I2C [=y] && VIDEO_V4L2 [=y]
  Location:
    -> Device Drivers
    -> Multimedia support (MEDIA_SUPPORT [=y])
    -> Video capture adapters (VIDEO_CAPTURE_DRIVERS [=y])
```

2.2 驱动例程

驱动例程 "power_s5m8767a.tar.gz" 和文档在同一压缩包中。

编写一个简单的驱动测试程序,源码如下所示。

```
#include linux/init.h>
#include linux/module.h>
#include linux/i2c.h>
#include linux/platform_device.h>
#include linux/delay.h>
#include linux/regulator/consumer.h>
#include <mach/gpio.h>
#include <plat/gpio-cfg.h>
#include <mach/regs-gpio.h>
#include <mach/regs-clock.h>
#include ux/fs.h>
#include ux/err.h>
struct regulator *ov_vddaf_cam_regulator = NULL;
struct regulator *ov vdd5m cam regulator = NULL;
struct regulator *ov_vdd18_cam_regulator = NULL;
struct regulator *ov_vdd28_cam_regulator = NULL;
MODULE LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("iTOPEET_dz");
static int power(int flag)
```



```
if(1 == flag){}
        regulator_enable(ov_vdd18_cam_regulator);
        udelay(10);
        regulator_enable(ov_vdd28_cam_regulator);
        udelay(10);
        regulator_enable(ov_vdd5m_cam_regulator); //DOVDD DVDD 1.8v
        udelay(10);
        regulator_enable(ov_vddaf_cam_regulator);
                                                      //AVDD 2.8v
        udelay(10);
   }
    else if(0 == flag){
        regulator_disable(ov_vdd18_cam_regulator);
        udelay(10);
        regulator_disable(ov_vdd28_cam_regulator);
        udelay(10);
        regulator_disable(ov_vdd5m_cam_regulator);
        udelay(10);
        regulator_disable(ov_vddaf_cam_regulator);
        udelay(10);
   }
    return 0;
static void power_init(void)
    int ret;
    ov_vdd18_cam_regulator = regulator_get(NULL, "vdd18_cam");
    if (IS_ERR(ov_vdd18_cam_regulator)) {
        printk("%s: failed to get %s\n", __func__, "vdd18_cam");
        ret = -ENODEV;
        goto err_regulator;
   }
    ov_vdd28_cam_regulator = regulator_get(NULL, "vdda28_2m");
    if (IS_ERR(ov_vdd28_cam_regulator)) {
        printk("%s: failed to get %s\n", __func__, "vdda28_2m");
        ret = -ENODEV;
        goto err_regulator;
```



```
}
    ov_vddaf_cam_regulator = regulator_get(NULL, "vdd28_af");
    if (IS_ERR(ov_vddaf_cam_regulator)) {
        printk("%s: failed to get %s\n", __func__, "vdd28_af");
        ret = -ENODEV;
        goto err_regulator;
    }
    ov_vdd5m_cam_regulator = regulator_get(NULL, "vdd28_cam");
    if (IS_ERR(ov_vdd5m_cam_regulator)) {
        printk("%s: failed to get %s\n", __func__, "vdd28_cam");
        ret = -ENODEV;
        goto err_regulator;
    }
err_regulator:
    regulator_put(ov_vddaf_cam_regulator);
    regulator_put(ov_vdd5m_cam_regulator);
    regulator_put(ov_vdd18_cam_regulator);
    regulator_put(ov_vdd28_cam_regulator);
static int hello_init(void)
    power_init();
    power(1);
    printk(KERN_EMERG "Hello World enter!\n");
    return 0;
static void hello_exit(void)
    power(0);
    printk(KERN_EMERG "Hello world exit!\n");
module_init(hello_init);
module_exit(hello_exit);
```


Makefile 如下所示。

```
#!/bin/bash
obj-m += power_s5m8767a_test.o

KDIR := /home/topeet/android4.0/iTop4412_Kernel_3.0

PWD ?= $(shell pwd)

all:
    make -C $(KDIR) M=$(PWD) modules

clean:
    rm -rf *.o modules.order *.ko *mod.c Module.symvers
```

使用 make 命令编译驱动模块,如下图所示。

```
root@ubuntu:/home/topeet/android4.0/power_s5m8767a# ls
Makefile power_s5m8767a_test.c
root@ubuntu:/home/topeet/android4.0/power_s5m8767a# make
make -C /home/topeet/android4.0/power_s5m8767a# make
make -C /home/topeet/android4.0/iTop4412_Kernel_3.0 M=/home/topeet/android4.0/power_s5m8767a_test.o
make[1]: Entering directory `/home/topeet/android4.0/iTop4412_Kernel_3.0'
CC [M] /home/topeet/android4.0/power_s5m8767a/power_s5m8767a_test.o
Building modules, stage 2.
MODPOST 1 modules
CC /home/topeet/android4.0/power_s5m8767a/power_s5m8767a_test.mod.o
LD [M] /home/topeet/android4.0/power_s5m8767a/power_s5m8767a_test.ko
make[1]: Leaving directory `/home/topeet/android4.0/iTop4412_Kernel_3.0'
root@ubuntu:/home/topeet/android4.0/power_s5m8767a# ls
Makefile Module.symvers power_s5m8767a test.ko power_s5m8767a_test.o
root@ubuntu:/home/topeet/android4.0/power_s5m8767a test.mod.c power_s5m8767a_test.o
root@ubuntu:/home/topeet/android4.0/power_s5m8767a test.mod.c power_s5m8767a_test.o
```

3 测试

如下图所示,加载驱动之后,测量电压大约为 2.85 左右(有压降),卸载驱动之后,电压为 0。说明驱动运行成功,用户在自己的项目中,假如需要用到电源控制,可以参考本例程来实现。

```
[root@iTOP-4412]# ls
power_s5m8767a_test.ko
[root@iTOP-4412]# insmod power_s5m8767a_test.ko

[ 18.267564] Hello World enter!
[root@iTOP-4412]# rmmod power_s5m8767a_test
[ 23.426302] Hello world exit!
```


联系方式

北京迅为电子有限公司致力于嵌入式软硬件设计,是高端开发平台以及移动设备方案提供商;基于多年的技术积累,在工控、仪表、教育、医疗、车载等领域通过 OEM/ODM 方式为客户创造价值。

iTOP-4412 开发板是迅为电子基于三星最新四核处理器 Exynos4412 研制的一款实验开发平台,可以通过该产品评估 Exynos 4412 处理器相关性能,并以此为基础开发出用户需要的特定产品。

本手册主要介绍 iTOP-4412 开发板的使用方法,旨在帮助用户快速掌握该产品的应用特点,通过对开发板进行后续软硬件开发,衍生出符合特定需求的应用系统。

如需平板电脑案支持,请访问迅为平板方案网"http://www.topeet.com",我司将有能力为您提供全方位的技术服务,保证您产品设计无忧!

本手册将持续更新,并通过多种方式发布给新老用户,希望迅为电子的努力能给您的学习和开发带来帮助。

迅为电子 2017 年 12 月