Handy Transformations -

$$\mathbb{E}\left[a+bX\right] = a+b\mathbb{E}\left[X\right]$$
$$\mathbb{E}\left[X^2\right] = \operatorname{Var}(X) + (\mathbb{E}\left[X\right])^2$$

 $Var(a+bX) = b^2 Var(X)$

SD(a+bX) = |b|SD(X)

(ditto but flipped) $Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

 $Cov(a + bX, c + dY) = b \cdot d \cdot Cov(X, Y)$

Uniform distribution facts from HW -

- 1. If $U \sim \text{Unif}[0,1]$, then for any fixed a > 0 and $b \in \mathbb{R}$, we have that $aU + b \sim \text{Unif}[b, a + b]$.
- 2. If $U \sim \text{Unif}[0,1]$, then $\mathbb{E}[U] = \frac{1}{2}$ and $Var(U) = \frac{1}{12}$.

When I am not protected from me being me

Set Algebra:

- Union A or B; $A \cup B$.
- Intersection A and B; $A \cap B$.
- Complement not A; A^C .
- **Difference** A but not B; $A \setminus B$
- Disjoint Events aka. mutually exclusive events A and B are disjoint if they don't share any outcomes in common (i.e., A and $B = \emptyset$).
- Subset $A \subseteq B$

Trial - a repetition of a random experiment/process. Trials're independent: none gives information about the others; are stable: reuslts could have appeared in any order.

Outcome - a possible result of a trial.

Sample space - the set of all possible outcomes. Often denoted as S.

Event - a set of outcomes of an experiment (i.e., a subset of the sample space).

Probability - is a long run proportion of an outcome in repeated trials.

- Probabilities act as "targets" of estimation
- Proportions based on data "estimate" probabilities. Would approach probabilities if observe infinite trials.

Formally, $A \mapsto \mathbb{P}(A), \mathbb{P}(A) \in [0,1]$ A probability

 $\mathbb{P}(\cdot)$ on a sample space S is a function that assigns a snumber between 0 and 1 to all events, A in the sample space (i.e., any possible subset of the sample space) and subject to three requirements (axioms):

- 1. $\mathbb{P}(S) = 1$: probability of something in the sample space happening is 1
- 2. $\mathbb{P}(A) \geq 0, \forall A$
- 3. A and $B = \emptyset$ (A, B disjoint) $\Rightarrow \mathbb{P}(A \cup B) =$ $\mathbb{P}(A) + \mathbb{P}(B)$

More takeaways

- $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$
- A, B, C are pairwise disjoint $\Rightarrow \mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \text{ and } B)$

Joint Probability - $\mathbb{P}(A \text{ and } B)$ is the joint probability that events A and B occur.

Conditional Probability -

 $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \text{ and } B)}{\mathbb{P}(B)}, \mathbb{P}(B) > 0 \text{ the probability of}$ observing event A if (given that) one has observed B. Bear in mind: $\mathbb{P}(A|B) \neq \mathbb{P}(B|A)$

Product Rule - $\mathbb{P}(A \text{ and } B) = \mathbb{P}(B) \cdot \mathbb{P}(A|B)$.

Independent Events - A and B are independent if $\mathbb{P}(A \text{ and } B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$; one event happening doesn't affect the probability of the other event happening. Can easily deduce that $\mathbb{P}(A|B) = \mathbb{P}(A)$ and $\mathbb{P}(B|A) = \mathbb{P}(B)$. Independence and Disjointness are **NOT**

synonyms.

- Independent $\Rightarrow \mathbb{P}(A \text{ and } B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$
- Disjoint $\Rightarrow \mathbb{P}(A \text{ and } B) = 0$. Disjoint events are extremely dependent: If one event occurs, the other cannot.

Random variable - a numerical function on a sample space with probabilities. (Think as a scoring mechanism.)

- Input: an outcome in the sample space
- Output: a number

Discrete RVs - only countably many values are

Continous RVs - can take on uncountably infinitely many values

Probability Distribution Function (PDF) -

 $\mathbf{p}_X(x) = \mathbb{P}(X = x)$ is the probability that the random variable X takes on the value x. I really hate $\mathbf{p}_X(x)$ this styling, so only $\mathbb{P}(X = x)$ moving forward.

Properties of PDFs - any function that satisfies the following conditions is a probability distribution function of a Discrete random variable:

- 1. $\mathbb{P}(X = x) \geq 0, \forall x \in \mathbb{R} \text{ (for any real number)}$
- 2. $\mathbb{P}(X = x) > 0$ for values that the random variable X can actually take on
- 3. $\mathbb{P}(X = x) = 0$ for values that aren't possible for the random variable X
- 4. $\sum_{x} \mathbb{P}(X=x) = 1$

Expected Value - $\mathbb{E}[X] = \sum_{x} x \cdot \mathbb{P}(X = x)$

Variance - a probability weighted mean of the possible squared deviations.

$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^{2}]$$
$$= \sum_{x} (x - \mathbb{E}[X])^{2} \cdot \mathbb{P}(X = x)$$
$$= \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2}$$

Standard Deviation - $|SD(X)| = \sqrt{Var(X)}$

Given Y = g(X) and X's PDF -

$$\mathbb{E}[Y] = \sum_{x} g(x) \cdot \mathbb{P}(X = x)$$
$$\operatorname{Var}(Y) = \sum_{x} (g(x) - \mathbb{E}[g(X)])^{2} \cdot \mathbb{P}(X = x)$$

RVs with only 2 outcomes - (not necessarily Bernoullis yet) Suppose RV X's PDF is: $\mathbb{P}(X=a)$ = p

$$\mathbb{P}(X = b) = 1 - p, \text{ then:}$$

 $\mathbb{P}(X = \text{all other values}) = 0$

$$\mathbb{E}[X] = ap + b(1-p)$$

$$\operatorname{Var}(X) = (a-b)^2 p(1-p)$$

$$\operatorname{SD}(X) = |a-b|\sqrt{p(1-p)}$$

Bernoulli Random Variable - aforementioned when $\begin{cases} a = 1 \\ b = 0 \end{cases}$. If $X \sim \text{Bern}(p)$, then:

$$\mathbb{E}[X] = p$$

$$Var(X) = p(1-p)$$

$$SD(X) = \sqrt{p(1-p)}$$

- Variance maximized when p = 0.5
- Variance minimized when p = 0 or 1

Useful for tracking how many successes happen in n independent trials.

Binomial Random Variable - If $X \sim \operatorname{Binom}(n, p)$, then:

$$\mathbb{E}[X] = n \cdot p$$

$$Var(X) = n \cdot p(1-p)$$

$$SD(X) = \sqrt{n \cdot p(1-p)}$$

Binomial Problems - following must hold:

- 1. Constant success probability p and failure probability (1-p).
- 2. Fixed total number of trials: n
- 3. trials are independent
- 4. Only two outcomes of interest (success or failure) on each trial
- 5. Want to find the probability of observing k successes among the total number of n trials. (Order doesn't matter.)

$$\mathbb{P}(k \text{ successes in } n \text{ trials}) = \binom{n}{k} p^k (1-p)^{n-k}$$

Combination - how many ways to choose k out of n: $\binom{n}{k} = \frac{n!}{k!(n-k!)}$

Binomial Distribution - $X \sim Binom(n, p)$ where X is an RV tracking the number of successes in n independent trials with success probability p. X's PDF:

$$\forall k \in \{0,\ldots,n\}, \mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Attn: X here is not for one single trial!.

- A Bernoulli RV: useful for one trial's success/failure.
- A Binomial RV: useful for total number of successes.

Binomial as the Sum of Bernoullis - n independent Bernoulli RVs each with the same success probability $p: \forall i \in 1, ..., n, X_i \sim \text{Bern}(p)$. Define $S_n = \sum_{i=1}^n X_i$, then denote

$$S_n \sim \operatorname{Binom}(n,p)$$
. $\operatorname{Binom}(1,p) = \operatorname{Bern}(p)$

Joint Distribution of 2 RVs - the probability that 2 RVs simultaneously take on 2 values. $\forall x \in X, \forall y \in Y \mid \mathbb{P}(X = x, Y = y)$

Marginal probability distribution - can be found given with the joint PDF:

$$\mathbb{P}(X=x) = \sum_{y} \mathbb{P}(X=x, Y=y)$$

Z-Score of a Random Variable X - $Z(X) = \frac{X - \mathbb{E}[X]}{SD(X)}$

$$\mathbb{E}[Z(X)] = 0$$
 and $SD(Z(X)) = 1$

Correlation and Covariance

Correlation Between RVs X and Y -"average of the product of z-scores"

$$Corr(X,Y) = \mathbb{E}[Z(X) \cdot Z(Y)]$$
$$= \frac{Cov(X, Y)}{SD(X) \cdot SD(Y)}$$

- Corr(X, Y) is unit-free.
- Corr(X,Y) doesn't exist if either SD(X) = 0 or SD(Y) = 0 (can't divide by 0!).
- Correlation is guaranteed to lie between +1 (perfect positive correlation) and -1 (perfect negative correlation). Hence Corr is more commonly used than Covariance.

Correlation Examples

Covariance Between RVs X and Y - "average of the product of the centered variables". Necessary for assessing variability of sums of RVs (e.g. portfolios).

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= Corr(X,Y) \cdot SD(X) \cdot SD(Y)$$

- Cov(X,Y) has funny units: product of the X
- Cov(X,Y) always exists. If SDs are 0, Cov(X,Y) = 0
- Cov(X,X) = V(X)

and Y units.

• If SD(X) > 0 and SD(Y) > 0, then Corr(X, Y)and Cov(X,Y) have the same sign.

Expected Value of RVs summed - is regardless of RVs' joint distribution:

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\mathbb{E}[X+Y+W] = \mathbb{E}[X] + \mathbb{E}[Y] + \mathbb{E}[W]$$

$$\mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \mathbb{E}[X_i] + \dots + \mathbb{E}[X_n]$$

Variance of of RVs summed -

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

$$Var(X + Y + W) = Var(X) + Var(Y) + Var(W)$$

$$+ 2Cov(X, Y) + 2Cov(X, W) + 2Cov(Y, W)$$

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$

Have to consider the covariance of all possible pairs: X_i and X_j .

- If Corr(X, Y) increases, then Var(X + Y) increases
- If V(X) = V(Y), then Var(X + Y) is maximized when Cov(X, Y) is maximized.

$$Var(X + Y) = Var(X) + Var(Y)$$
$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i)$$

No change in expected value's formula. Independent RVs -

$$\forall x, y, \mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x)\mathbb{P}(Y = y)$$

Independence implies uncorrelatedness: if two RVs X and Y are independent, then they are uncorrelated.

Independence $\Rightarrow \operatorname{Corr}(X, Y) = 0 = \operatorname{Cov}(X, Y)$

But uncorrelated RVs can be dependent! (iid) Independent and Identically Distributed RVs - for a collection of iid RVs $\{X_1, \ldots, X_n\}$: $\forall i \in \{1, \ldots, n\}$

$$\mathbb{E}[X_i] = \mu$$

$$\operatorname{Var}(X_i) = \sigma^2$$

$$\operatorname{SD}(X_i) = \sigma$$

Sum of *iid* RVs - $S_n = X_1 + \cdots + X_n$:

$$\mathbb{E}[S_n] = n \cdot \mu$$

$$\operatorname{Var}(S_n) = n \cdot \sigma^2$$

$$\operatorname{SD}(X_i) = \sqrt{n} \cdot \sigma$$

Central Limit Theorem (CLT)

If $\{X_1, \ldots, X_n\}$ are *iid* with expected value $\mathbb{E}[X_i] = \mu$ and variance $\text{Var}(X_i) = \sigma^2 < \infty$, then as $n \to \infty$:

- $S_n \sim \mathcal{N}(n \cdot \mu, \sqrt{n} \cdot \sigma)$
- Mean_n ~ $\mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$

If n is large enough (heuristic: n > 30), we can calculate probabilities for the sum and mean of RVs by using the normal distribution.

Emperical Rules under CLT -

- 50% of the time,
 - S_n will fall within $n\mu \pm \frac{2}{3}\sqrt{n}\sigma$
- M_n will fall within $\mu \pm \frac{2}{3} \frac{\sigma}{\sqrt{n}}$
- 68% of the time,
 - S_n will fall within $n\mu \pm \sqrt{n}\sigma$
 - M_n will fall within $\mu \pm \frac{\sigma}{\sqrt{n}}$
- 95% of the time,
 - S_n will fall within $n\mu \pm 2\sqrt{n}\sigma$
- M_n will fall within $\mu \pm 2\frac{\sigma}{\sqrt{n}}$
- 99.7% of the time,
- $-~S_n$ will fall within $n\mu\pm3\sqrt{n}\sigma$
- M_n will fall within $\mu \pm 3 \frac{\sigma}{\sqrt{n}}$

Sampling and Confidence Intervals

Confidence Interval - contains an unknown (population) quantity at some specified sampling frequency.

- Confidence intervals do not depend on population size, but only on sample size.
- For a given sample size, can be very precise with low confidence or very imprecise with high confidence.
- 2x the precision requires 4x sample size; 3x the precision requires 9x sample size.

Wording matters...

- OK: "I am 95% confident the interval [a,b] contains the true population proportion"
- OK: "There is a 95% probability the interval [a,b] contains the true population proportion"
- Not OK: "There is a 95% probability the true population proportion lies in the interval [a,b]"

Confidence Level (L) to c -

$$c = \operatorname{qnorm}(p = \frac{(1+L)}{2}, \mu = 0, \sigma = 1)$$
 (find the value c such that the area under $\mathcal{N}(\mu, \sigma)$ is p)

confidence level	L	c
90%	0.9	1.65
95%	0.95	1.96
99%	0.99	2.58

For a population <u>mean</u> - Given sample size n, sample average \bar{x} , and sample standard deviation s, we are X% confident the true population mean lies in the interval: $\bar{x} \pm \left(c\frac{s}{\sqrt{n}}\right)$ "MOE": $\left(c\frac{s}{\sqrt{n}}\right)$

For a population proportion - Given sample size n, sample proportion \bar{p} , and standard

deviation in the population to be 0.5, we are X%

confident the true population mean lies in the interval: $\bar{p} \pm \left(c \frac{0.5}{\sqrt{n}}\right)$ "MOE": $\left(c \frac{0.5}{\sqrt{n}}\right)$

Important assumptions:

- Sample is random
- Sample is large enough (n > 30) for CLT
- The worst possible standard deviation in the population to be 0.5

Sampling Distribution - is well approximated by $\mathcal{N}(\mu = \text{true population parameter}, \sigma = \frac{\text{population SD}}{\sqrt{n}})$, based on CLT.

Using the Sampling Distribution to Construct a

Confidence Interval also called the 'standard error'
(It is the standard deviation of the sample statistic)

The fact that 95% of the sample means lie within 1.96 standard errors of the true (unknown) population mean

The confidence intervals constructed using the given formula will 'capture the true mean' 95% of the time!

Take away: assuming a conservative confidence interval based on 0.5 is <u>not</u> the only way! Can estimate standard error using the surveyed proportion too.

Similar Analysis for Proportions

- When outcomes are binary, the standard deviation of observations in the population equals $\sqrt{p(1-p)}$.
- We get the standard error by dividing by \sqrt{n} . The exact interval is $\tilde{p} \pm 1.96$
- But since we don't know p (if we did we won't be sampling would we?!):
- We can take a conservative approach and assume p = 0.5, $\bar{p} \pm 1.96 \frac{0.5}{\sqrt{p}}$
- o Or, an approximate approach by assuming $p=\bar{p}$ to get the practical alternative, $\bar{p}\pm$

Sampling Errors - the sample-to-sample variations due to pure chance. MOE and confidence intervals quantify this uncertainty well.

Non-Sampling Errors - (some examples)

- Selection Bias: happens when each member of the population does not have the same chance of being selected.
- Response/Non-response Bias: happens when some fraction of the individuals surveyed don't respond for reasons related to what's being asked in the survey

R Distribution Functions

- p ("probability"): cumulative distribution function ("what is the probability above or below a cutoff?")
- q ("quantile"): inverse CDF ("what value do we find at, say, 80% of the way to the maximal value?")
- d ("density"): density function (gives us the "height" or y-value of distribution for a particular z-score mainly useful in plotting)

Exactly k successes in n trials
 given success probability p
dbinom(k, size=n, p=p)

 $\# \ k \ or \ more \ successes \ in \ n \ trials \ given \ success \ probability \ p \ \mathbf{sum}(\mathbf{dbinom}(k:n, \ size=n, \ p=p))$

pnorm(value, mean, sd, lower.tail= FALSE)

Probability of this value or less

Highest value associated with a given percentile

qnorm(percentile, mean, sd)