

Increasing and Decreasing Functions Ex 17.2 Q6

We have,

$$f(x) = \log_a x, \ 0 < a < 1$$

$$\Rightarrow f'(x) = \frac{1}{x \log a}$$

Now,

$$\Rightarrow \frac{1}{x} > 0$$

$$\Rightarrow \frac{1}{x \log a} < 0$$

$$\Rightarrow f'(x) < 0$$

Thus, f(x) is a decreasing function for x > 0.

Increasing and Decreasing Functions Ex 17.2 Q7 The given function is $f(x) = \sin x$.

$$\therefore f'(x) = \cos x$$

(a) Since for each
$$x \in \left(0, \frac{\pi}{2}\right)$$
, $\cos x > 0$, we have $f'(x) > 0$

Hence, f is strictly increasing $\inf \left(0, \frac{\pi}{2}\right)$.

(b) Since for each
$$x \in \left(\frac{\pi}{2}, \pi\right)$$
, $\cos x < 0$, we have $f'(x) < 0$.

Hence, f is strictly decreasing $in\left(\frac{\pi}{2},\pi\right)$

(c) From the results obtained in (a) and (b), it is clear that f is neither increasing nor decreasing in $(0, \pi)$.

Increasing and Decreasing Functions Ex 17.2 Q8

We have,

$$f(x) = \log \sin x$$

$$\therefore f'(x) = \frac{1}{\sin x} \cos x = \cot x$$

In interval
$$\left(0, \frac{\pi}{2}\right), f'(x) = \cot x > 0.$$

$$f$$
 is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.

In interval
$$\left(\frac{\pi}{2}, \pi\right), f'(x) = \cot x < 0.$$

:. f is strictly decreasing in
$$\left(\frac{\pi}{2}, \pi\right)$$
.

Increasing and Decreasing Functions Ex 17.2 Q9 We have,

$$f(x) = x - \sin x$$

$$f'(x) = 1 - \cos x$$

Now,

$$x \in R$$

$$\Rightarrow -1 < \cos x < 1$$

$$\Rightarrow -1 > \cos x > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, f(x) is increasing for all $x \in R$.

********* END *******