Rank-74105 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)

The point rank of the equation over GF(8) is 1244209813

General information

Number of lines	3
Number of points	57
Number of singular points	0
Number of Eckardt points	1
Number of double points	0
Number of single points	24
Number of points off lines	32
Number of Hesse planes	0
Number of axes	0
Type of points on lines	93
Type of lines on points	$3, 1^{24}, 0^{32}$

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & \gamma^6 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4734} = \begin{bmatrix} 0 & 1 & 6 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4734} = \mathbf{Pl}(0, 6, 0, 1, 0, 0)_{30}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & \gamma^5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4707} = \begin{bmatrix} 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4707} = \mathbf{Pl}(0, 3, 0, 1, 0, 0)_{27}$$

$$\ell_2 = \begin{bmatrix} 0 & 1 & \gamma^3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4725} = \begin{bmatrix} 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4725} = \mathbf{Pl}(0, 5, 0, 1, 0, 0)_{29}$$

Rank of lines: (4734, 4707, 4725)

Rank of points on Klein quadric: (30, 27, 29)

Eckardt Points

The surface has 1 Eckardt points: $0: P_3 = \mathbf{P}(0, 0, 0, 1) = \mathbf{P}(0, 0, 0, 1).$

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 24 single points: The single points on the surface are:

$0: P_{27} = (0, 2, 1, 0)$ lies on line ℓ_0	13: $P_{377} = (0, 6, 4, 1)$ lies on line ℓ_2
1: $P_{43} = (0, 4, 1, 0)$ lies on line ℓ_1	14: $P_{385} = (0, 7, 4, 1)$ lies on line ℓ_1
2: $P_{67} = (0, 7, 1, 0)$ lies on line ℓ_2	15: $P_{401} = (0, 1, 5, 1)$ lies on line ℓ_2
$3: P_{153} = (0, 2, 1, 1)$ lies on line ℓ_0	16: $P_{417} = (0, 3, 5, 1)$ lies on line ℓ_1
4: $P_{169} = (0, 4, 1, 1)$ lies on line ℓ_1	17: $P_{449} = (0,7,5,1)$ lies on line ℓ_0
5: $P_{193} = (0, 7, 1, 1)$ lies on line ℓ_2	18: $P_{465} = (0, 1, 6, 1)$ lies on line ℓ_0
6: $P_{225} = (0, 3, 2, 1)$ lies on line ℓ_2	19: $P_{473} = (0, 2, 6, 1)$ lies on line ℓ_1
7: $P_{233} = (0, 4, 2, 1)$ lies on line ℓ_0	20: $P_{497} = (0, 5, 6, 1)$ lies on line ℓ_2
8: $P_{241} = (0, 5, 2, 1)$ lies on line ℓ_1	21: $P_{537} = (0, 2, 7, 1)$ lies on line ℓ_2
9: $P_{273} = (0, 1, 3, 1)$ lies on line ℓ_1	22: $P_{545} = (0, 3, 7, 1)$ lies on line ℓ_0
10: $P_{297} = (0, 4, 3, 1)$ lies on line ℓ_2	23: $P_{569} = (0, 6, 7, 1)$ lies on line ℓ_1
11: $P_{313} = (0, 6, 3, 1)$ lies on line ℓ_0	
12: $P_{369} = (0, 5, 4, 1)$ lies on line ℓ_0	

The single points on the surface are:

Points on surface but on no line

The surface has 32 points not on any line: The points on the surface but not on lines are:

$0: P_0 = (1,0,0,0)$	$6: P_{49} = (6, 4, 1, 0)$
$1: P_4 = (1, 1, 1, 1)$	$7: P_{70} = (3, 7, 1, 0)$
$2: P_5 = (1, 1, 0, 0)$	$8: P_{75} = (1,0,0,1)$
$3: P_{12} = (1,0,1,0)$	9: $P_{83} = (1, 1, 0, 1)$
$4: P_{20} = (1, 1, 1, 0)$	$10: P_{139} = (1,0,1,1)$
$5: P_{32} = (5, 2, 1, 0)$	$11: P_{160} = (7, 2, 1, 1)$

```
12: P_{171} = (2, 4, 1, 1)
                                                                   23 : P_{407} = (6, 1, 5, 1)
13: P_{197} = (4, 7, 1, 1)
                                                                   24: P_{419} = (2, 3, 5, 1)
14: P_{236} = (3, 4, 2, 1)
                                                                   25: P_{432} = (7, 4, 5, 1)
15: P_{242} = (1, 5, 2, 1)
                                                                   26: P_{468} = (3, 1, 6, 1)
16: P_{254} = (5, 6, 2, 1)
                                                                   27: P_{501} = (4, 5, 6, 1)
17: P_{278} = (5, 1, 3, 1)
                                                                   28: P_{515} = (2, 7, 6, 1)
18: P_{285} = (4, 2, 3, 1)
                                                                   29: P_{543} = (6, 2, 7, 1)
                                                                   30: P_{546} = (1, 3, 7, 1)
19: P_{320} = (7, 6, 3, 1)
20: P_{359} = (6, 3, 4, 1)
                                                                   31: P_{564} = (3, 5, 7, 1)
21: P_{378} = (1, 6, 4, 1)
22: P_{390} = (5,7,4,1)
```

Line Intersection Graph

 $\begin{array}{c|c}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_3	P_3

The surface has 57 points:

The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$20: P_{197} = (4,7,1,1)$	$40: P_{407} = (6, 1, 5, 1)$
$1: P_3 = (0,0,0,1)$	$21: P_{225} = (0, 3, 2, 1)$	$41: P_{417} = (0, 3, 5, 1)$
$2: P_4 = (1, 1, 1, 1)$	$22: P_{233} = (0, 4, 2, 1)$	$42: P_{419} = (2, 3, 5, 1)$
$3: P_5 = (1, 1, 0, 0)$	$23: P_{236} = (3,4,2,1)$	$43: P_{432} = (7,4,5,1)$
$4: P_{12} = (1,0,1,0)$	$24: P_{241} = (0, 5, 2, 1)$	$44: P_{449} = (0,7,5,1)$
$5: P_{20} = (1, 1, 1, 0)$	$25: P_{242} = (1, 5, 2, 1)$	$45: P_{465} = (0, 1, 6, 1)$
$6: P_{27} = (0, 2, 1, 0)$	$26: P_{254} = (5, 6, 2, 1)$	$46: P_{468} = (3, 1, 6, 1)$
$7: P_{32} = (5, 2, 1, 0)$	$27: P_{273} = (0, 1, 3, 1)$	$47: P_{473} = (0, 2, 6, 1)$
$8: P_{43} = (0, 4, 1, 0)$	$28: P_{278} = (5, 1, 3, 1)$	$48: P_{497} = (0, 5, 6, 1)$
$9: P_{49} = (6, 4, 1, 0)$	$29: P_{285} = (4, 2, 3, 1)$	$49: P_{501} = (4, 5, 6, 1)$
$10: P_{67} = (0, 7, 1, 0)$	$30: P_{297} = (0,4,3,1)$	$50: P_{515} = (2,7,6,1)$
$11: P_{70} = (3, 7, 1, 0)$	$31: P_{313} = (0,6,3,1)$	$51: P_{537} = (0, 2, 7, 1)$
$12: P_{75} = (1, 0, 0, 1)$	$32: P_{320} = (7, 6, 3, 1)$	$52: P_{543} = (6, 2, 7, 1)$
$13: P_{83} = (1, 1, 0, 1)$	$33: P_{359} = (6, 3, 4, 1)$	$53: P_{545} = (0, 3, 7, 1)$
$14: P_{139} = (1, 0, 1, 1)$	$34: P_{369} = (0, 5, 4, 1)$	$54: P_{546} = (1, 3, 7, 1)$
$15: P_{153} = (0, 2, 1, 1)$	$35: P_{377} = (0, 6, 4, 1)$	$55: P_{564} = (3, 5, 7, 1)$
$16: P_{160} = (7, 2, 1, 1)$	$36: P_{378} = (1, 6, 4, 1)$	$56: P_{569} = (0, 6, 7, 1)$
$17: P_{169} = (0, 4, 1, 1)$	$37: P_{385} = (0,7,4,1)$	
$18: P_{171} = (2, 4, 1, 1)$	$38: P_{390} = (5,7,4,1)$	
$19: P_{193} = (0, 7, 1, 1)$	$39: P_{401} = (0, 1, 5, 1)$	