Внедрение МПС в контрольно-измерительную аппаратуру позволяет повысить точность измерений, надежность, расширить функциональные возможности приборов и обеспечивает выполнение следующих функций: калибровка, коррекция и температурная компенсация, контроль и управление измерительным комплексом, принятие решений и обработка данных, диагностика неисправностей, индикация, испытание и проверка приборов.

Внедрение МПС в системы связи обусловлено все большим вытеснением аналоговых методов цифровыми и привело к их широкому использованию в мультиплексорах, преобразователях кодов, устройствах контроля ошибок, блоках управления передающей и приемной аппаратуры.

Все шире используются МПС в таких устройствах, как контрольно-расчетные терминалы торговых центров, автоматизированные электронные весы, терминалы и кассовые аппараты для банков и т.п. Применение МП и МПС в бытовой технике открывает также широкие возможности последней с точки зрения повышения надежности, эффективности и разнообразия применений.

Доля применения МПС в различных областях военной техники растет с каждым годом - от навигационных систем летательных аппаратов до управления движением транспортных роботов.

Диапазон реализаций встраиваемых систем, действительно, очень велик. В него попадают и простейшие устройства уровня домашнего таймера, и сложнейшие распределенные иерархические системы, управляющие критически важными объектами на огромных территориях.

- Телекоммуникационные системы, сетевое оборудование (коммутаторы, маршрутизаторы, ADSL модемы и т.п.);
- Бытовая электроника (сотовые телефоны, КПК, игровые консоли, цифровые фотоаппараты, электрочайники, микроволновые печи, посудомоечные машины и пр.);
 - Современное медицинское и спортивное оборудование;
- Транспортная автоматика (от автомобильных до авиационных систем), авионика, системы управления городским дорожным движением;
- Системы телемеханики (системы управления наружным освещением, контроля и учета электроэнергии и других энергоресурсов, управления и мониторинга энергообъектов);
- Системы мониторинга, навигации, слежения, бортовые системы для военных и космических применений;
 - «Умный дом» («интеллектуальное здание») на основе технологий сенсорных сетей.

Важно, что, проектируя встраиваемую систему, разработчик всегда создает специализированную вычислительную систему независимо от степени соотношения готовых и заново создаваемых решений

Проектная платформа, как решение архитектурного уровня, в традиционных технологиях создания встраиваемых систем определяет практически весь маршрут проектирования и разработки. Наиболее широко используемыми сегодня в индустрии являются следующие платформы:

- 1. промышленные ПК;
- 2. программируемые логические контроллеры (ПЛК, PLC) и программируемые контроллеры автоматизации (ПАК, PAC);
- 3. мобильные и интернет-устройства (смартфоны и планшеты);
- 4. контроллерные (Fieldbus) и сенсорные сети;
- 5. микроконтроллеры;
- 6. сигнальные процессоры (DSP);
- 7. программируемая логика ПЛИС (PLD, FPGA);
- 8. заказные СБИС (ASIC, ASIP, SoC, Network on Chip NoC).

Платформы промышленных ПК и ПЛК/ПАК позволяют относительно просто и быстро создать прикладную систему, однако эта эффективность проявляется только в рамках типовых технических заданий. Проектные платформы микроконтроллеров и сигнальных процессоров предоставляют больше свободы разработчику. Они имеют свою специфику, в первую очередь в организации системного ПО и в степени открытости архитектуры. В качестве платформ с успехом используются ПЛИС, сочетающие гибкость программных и аппаратных средств. Существуют проекты, включающие создание специальной компонентной базы, в первую очередь SoC, ASIP, ASIC. Особое положение занимают платформы мобильных и интернет- устройств, которые начинают активно использоваться в качестве мобильных терминалов встраиваемых систем, в том

числе со SCADA «на борту», и сетевые контроллерные платформы, которые выступают системообразующими решениями встраиваемых систем с распределенной организацией. При движении по списку проектных платформ/шаблонов вниз в целом растет достижимая оптимальность проектных решений и суммарная сложность проектирования. В таблице приведены примеры фирм-производителей, сравнительные данные по областям применения, типовые характеристики и требуемые компетенции проектирования встраиваемых систем для каждой из перечисленных выше проектных платформ.

ТАБЛИЦА. ОСНОВНЫЕ ПРОЕКТНЫЕ ПЛАТФОРМЫ ВСТРАИВАЕМЫХ СИСТЕМ

ТАБЛИЦА. ОСНОВНЫЕ ПРОЕКТНЫЕ ПЛАТФОРМЫ ВСТРАИВАЕМЫХ СИСТЕМ				
Тип платформы	Производители		Примеры	Область применения
	Отечественные	Иностранные	продуктов	Область применения
Промышленные ПК	Fastwel, «ГРАНИТ-ВТ», «МЦСТ»	Advantech, Panasonic, AMP, Siemens	SIMATIC Box PC, IS-1U-SYS6, FRONT Station 432.87	Промышленность (SCADA, управление ПЛК), пользовательские терминалы, связь
ПЛК, ПАК	Fastwel, OBEH, ЛМТ, Segnetics	Siemens, Mitsubishi Electric, Mean Well, VIPA	System 300S, ADAM-5000, Simatic S7-300, APAX-5520CE	Автоматизация технологических процессов (промышленность, энергетика, транспорт, ЖКХ)
Мобильные и интернет-устройства	teXet, «Код безопасности»	Nokia, Samsung, Apple, HTC, Getac, Panasonic, Advantech	PWS-8033M, iPad, Континент Т-10, Nokia Lumia 900, Advantech P37B	Пользовательские интерфейсы: промышленность, военные, транспорт, спасательные службы, экология
Контроллерные и сенсорные сети	«ЭЛКУС», «Альтоника»	Freescale Semiconductor, Texas Instruments, Digi International, Moxa	MicaZ, TelosB, Intel Mote 2, STMicroelectronics, CAN-200PC104	Промышленность, автомобильная электроника, авиакосмическая и военная техника, ЖКХ, дом и офис, экология
Микроконтроллеры	«Мета», «Мультиклет», «МЦСТ», «ЭЛВИС»	NXP Semiconductors, Atmel, Microchip, Freescale, STMicroelectronics	LPC2000, Atmel AVR PIC-32, Coldfire, STM32	Любые электронные изделия малой и средней серийности
Сигнальные процессоры	«ЭЛВИС», НТЦ «Модуль»	Analog Devices, Freescale, Texas Instruments	SigmaDSP, ADSP-21xx, Blackfin, StarCore, DSP56K, TMS320, KeyStone, DaVinci, J1879BM1 (NM6403), 1892BM2R	Обработка звука, видео, связь, радиолокация, сонары
плис	-	Altera, Xilinx, Actel, Lattice	Stratix V, Cyclone V, Virtex-6, Zynq-7000, Spartan-6, RTAX-S, Axcelerator, IGLOO, LatticeECP3	Мелкосерийные изделия, приборы, прототипирование
Заказные СБИС	«ЭЛВИС», «МЦСТ», НТЦ «Модуль», «Ангстрем», НИИМЭ, «Микрон»	Broadcom, Qualcomm, Realtek, Rockchip, Allwinner, Lucent, Freescale	-	Любые крупносерийные электронные изделия: контроллер ввода/вывода, процессор, RAM, SoC