Содержание

1	Последовательность. 1.1 Предел последовательности.	2 2
2	Возведение в вещественную степень.	5
3	Предел и непрерывность.	6
4	\overline{o} и O .	8

1 Последовательность.

$$f: \mathbb{N} \to \mathbb{R}$$
$$f(n) =: f_n$$

Определение 1.1. Последовательность называется ограниченной сверху, если $\exists M: |f_n| \leqslant M$. Снизу, если $\exists m: f_n \geqslant m$. f_n — ограниченная, если ограничена сверху и снизу.

Определение 1.2. $M_0 = \sup f_n$, если $M_0 - \sec px$ няя грань $u \ \forall \varepsilon > 0 \ \exists n_0 : f_{n_0} > M_0 - \varepsilon$. $m_0 = \inf f_n$, если $m_0 -$ нижняя грань $u \ \forall \varepsilon > 0 \ \exists n_0 : f_{n_0} < m_0 + \varepsilon$.

Аксиома 1.1 (Вещественных чисел). Если множество X ограничено сверху, то $\exists sup X$. Если f_n неограничено сверху, то $sup f_n = +\infty$. Если снизу, то $in f f_n = -\infty$.

Определение 1.3. f_n — бесконечно большая (бб), если $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : |f_n| > \frac{1}{\varepsilon} \ \forall n \geqslant N$. f_n — не бб, $\exists \varepsilon > 0 : \forall N \exists n > N : |f_n| \leqslant \frac{1}{\varepsilon}$.

Определение 1.4. f_n — бесконечно малая (бм), если $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : |f_n| < \varepsilon \ \forall n \geqslant N$.

Лемма 1.1. $f_n - \delta M \Rightarrow f_n - orpanuvena$.

Доказательство. Пусть $\varepsilon = 1$, тогда $\exists N : |f_n| \leqslant 1 \ \forall n \geqslant N$. $M := \max |f_1|, \ldots, |f_{N-1}|, 1$, тогда $|f_n| \leqslant M \ \forall n \in N$.

Лемма 1.2. a) $f_n - 66 \Rightarrow \frac{1}{f_n} - 6M$

b)
$$f_n - 6M (f_n \neq 0) \Rightarrow \frac{1}{f_n} - 66$$

Лемма 1.3. f_n — неограниченная последовательность, тогда существует бб подпоследовательность f_{nk} .

Доказательство. $\exists n_1 : |f_{n1} > 1|,$ $\exists n_2 > n_1 : |f_{n2} > 2|,$ $\exists n_3 > n_2 : |f_{n3}| > 3,$ $\vdots,$ $\exists n_1 < n_2 < \dots < n_k < \dots$ $|f_{nk}| > k \Rightarrow f_{nk} - 66.$

Лемма 1.4. a) 6M + 6M = 6M

- b) $\delta M \cdot C = \delta M$
- c) $\delta M \cdot \delta M = \delta M$
- d) $66 \cdot C = 66, C \neq 0$
- e) $66 \cdot 66 = 66$

1.1 Предел последовательности.

 a_n — последовательность.

Определение 1.5. $a = \lim a_n$, $ecnu \forall \varepsilon > 0 \exists N : |a_n - a| < \varepsilon \forall n \geqslant N$.

Определение 1.6. Эпсилон окрестность: $U_{\varepsilon}(a) := (a - \varepsilon; a + \varepsilon)$. Выколотая эпсилон окрестность: $\mathring{U}_{\varepsilon}(a) := U_{\varepsilon}(a) \setminus \{a\}$.

$$\varepsilon_1 < \varepsilon_2 \Rightarrow U_{\varepsilon_1}(a) \subset U_{\varepsilon_2}(a), a \in \overline{\mathbb{R}}.$$

Определение 1.7. $\mathbb{R} \cup \{\pm \infty\} = \overline{\mathbb{R}} - pасширенная числовая прямая.$

Определение 1.8. $\varepsilon > 0$ $U_{\varepsilon}(+\infty) = (\frac{1}{\varepsilon}; +\infty);$ $U_{\varepsilon}(-\infty) = (-\infty; -\frac{1}{\varepsilon}).$

 $\lim |a_n| = +\infty \Leftrightarrow \forall \varepsilon > 0 \ \exists N(\varepsilon) : |a_n| > \frac{1}{\varepsilon}.$

Если a_n — бб $\Leftrightarrow \lim |a_n| = +\infty$.

Если a_n — бм $\Leftrightarrow \lim |a_n| = 0$.

Утверждение 1.1. $\lim a_n = a \Leftrightarrow \exists$ бм последовательность d_n , такая что $a_n = a + d_n$.

Утверждение 1.2. Если предел последовательности существует, то он единственный.

 \mathcal{A} оказательство. $\exists a < b$ и $a = \lim a_n, b = \lim a_n$. Тогда $\varepsilon := \frac{b-a}{42}$:

 $\exists N_1 : a_n \in U_{\varepsilon}(a) \forall n \geqslant N_1$

 $\exists N_2 : a_n \in U_{\varepsilon}(b) \forall n \geqslant N_2$

 $\Rightarrow a_n \in (U_{\varepsilon}(a) \cap U_{\varepsilon}(b)) = \emptyset \ \forall n \geqslant \max\{N_1, N_2\}!?!.$

Лемма 1.5 (Предельный переход в неравенства). $a_n \leqslant b_n \ \forall n \geqslant N_0$. Пусть $\exists \lim a_n = a$; $\lim b_n = b$, $a, b \in \mathbb{R}$. Тогда $a \leqslant b$.

Доказательство. Пусть a > b. Тогда $\varepsilon := \frac{a-b}{42}$:

 $\exists N_1 : a_n \in U_{\varepsilon}(a) \forall n \geqslant N_1$

 $\exists N_2 : a_n \in U_{\varepsilon}(b) \forall n \geqslant N_2$

 $\Rightarrow a_n > b_n \ \forall n \geqslant \max\{N_1, N_2\}!?!.$

Лемма 1.6 (О сжатой последовательности). Пусть $a_n \leqslant b_n \leqslant c_n \ \forall n \geqslant N_0 \ u \ \exists \lim a_n = \lim c_n = a \in \overline{\mathbb{R}},$ тогда $\exists \lim b_n = a.$

Доказательство. $\varepsilon > 0$:

 $\exists \ a_n \in U_{\varepsilon}, \ n \geqslant N_1$

 $\exists c_n \in U_{\varepsilon}, n \geqslant N_2$

 $\Rightarrow b_n \in U_{\varepsilon}: \forall n \geqslant \{N_1, N_2, N_0\} =: N \Rightarrow a = \lim b_n$ по определению.

Лемма 1.7 (Об отделимости от нуля). Пусть $\exists \lim a_n = a > 0$. Тогда $\exists N : a_n > \frac{a}{2} > 0$, $\forall n \geqslant N$. Следствие. Если $\lim a_n \neq 0 \Rightarrow \frac{1}{a_n}$ ограничена $(a_n \neq 0)$.

Доказательство. $\lim a_n = a > 0$

$$\exists N_1 : a_n > \frac{a}{2} \Rightarrow 0 < \frac{1}{a_n} < \frac{2}{a} \ \forall n \geqslant N_1 \min\{a_1, \dots, a_{N-1}, \frac{a}{2}\} \leqslant \frac{1}{a_n} \leqslant \max\{a_1, \dots, a_{N-1}, \frac{2}{a}\}$$

Теорема 1.1 (Арифметические свойства предела). Пусть $\lim a_n = a$, $\lim b_n = b$; $a, b \in \overline{\mathbb{R}}$. Тогда:

- 1. $\lim(a_n+b_n)=a+b$, кроме случаев $+\infty+(-\infty)$, $-\infty+(+\infty)$
- 2. $\lim(ka_n) = ka$, кроме случая $0 \cdot (\pm \infty)$
- 3. $\lim(a_n \cdot b_n) = ab$, кроме случая $0(\pm \infty)$
- 4. $\lim \frac{a_n}{b_n} = \frac{a}{b}$, кроме случаев $\frac{0}{0}$, $\frac{\infty}{\infty}$

Доказательство. $a,b\in\mathbb{R}$. $a_n=a+\alpha_n,\ b_n=b+\beta_n;\ \alpha_n,\beta_n-$ бм.

- 1. $a_n + b_n = (a+b) + (\alpha_n + \beta_n) \Leftrightarrow \lim(a_n + b_n) = a+b$.
- 2. Аналогично.

3.
$$a_n b_n = (a + \alpha_n)(b + \beta_n) = ab + \alpha_n b + \beta_n a + \alpha_n + \beta_n$$

4. Если
$$b \neq 0$$
 $\frac{1}{b_n}$ — ограниченна

$$\frac{a_n}{b_n} - \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{\alpha_n b - \beta_n a}{b_n b} = \frac{1}{b} \cdot \frac{1}{b_n} \cdot (\alpha_n b - \beta_n a)$$

4. Если
$$b \neq 0$$
 $\frac{1}{b_n}$ — ограниченна $\frac{a_n}{b_n} - \frac{a}{b} = \frac{a + \alpha_n}{b + \beta_n} - \frac{a}{b} = \frac{\alpha_n b - \beta_n a}{b_n b} = \frac{1}{b} \cdot \frac{1}{b_n} \cdot (\alpha_n b - \beta_n a)$ Если $b = 0 \Rightarrow b_n$ бм $\Rightarrow \frac{1}{b_n}$ — бб $\Rightarrow a_n \cdot \frac{1}{b_n}$ = ограниченная бб

Определение 1.9. Линейное пространство — множество, сумма двух элементов которого лежит в этом множестве и элемент с коэффициентом лежит в этом множестве.

Определение 1.10. Последовательность называется возвратной, если $a_n = \beta_{n-1}a_{n-1} + \beta_{n-2}a_{n-2} + \beta_{n-2}a_{n-2}$ $\cdots + \beta_{n-k}a_{n-k}; \beta i - \phi uксированные коэффициенты.$

$$a_n^{(1)}, a_n^{(2)} \Rightarrow \forall \lambda, \mu \in \mathbb{R} \ \lambda a_n^{(1)} + \mu a_n^{(2)}$$
 тоже удовлетворяет (x) .

$$a_n := t^n$$

$$t^k = \beta_{n-1}t^{k-1} + \dots + \beta_{n-k}$$

$$t_0$$
 — простой корень, то t_0^n

$$t_0$$
 — корень $(m) \Rightarrow t_0^n; nt_0^n; n^2t_0^n; \dots; n^{m-1}t_0^n$

1. Пусть a_n возрастает и ограничена сверху. Тогда $\exists \lim a_n = \sup a_n$ Теорема 1.2.

2. Пусть a_n убывает и ограничена снизу. Тогда $\exists \lim a_n = \inf a_n$

Доказательство. fix $\varepsilon > 0$. Так как a_n — ограничена, то $\exists M \sup a_n \in \mathbb{R}$; $\exists N : a_N > M - \varepsilon$.

Доказательство. fix
$$\varepsilon > 0$$
. Так как a_n — ограничена, то $\exists M \sup a_n \in \mathbb{R}$; $M \exists N : a_N > M - \varepsilon$. Тогда $\begin{cases} a_n \geqslant M - \varepsilon & \forall n \geqslant N, \text{ так как } a_n \uparrow \\ a_n \leqslant M < M + \varepsilon \end{cases} \Rightarrow \exists N : |a_n - M| < \varepsilon \forall n \geqslant N \Rightarrow \lim_{n \to \infty} a_n = M$ по определению.

Определение 1.11. Найти предел последовательности $a_n = (1 + \frac{1}{n})^n$.

$$b_n = (1 + \frac{1}{n})^{n+1}; b_1 = 4, b_2 = 3, \dots b_n \downarrow$$

$$b_n \geqslant 1$$

Докажем, что b_n убывает.

$$\frac{b_n}{b_{n+1}} = \frac{(\frac{n+1}{n})^{n+1}}{(\frac{n+2}{n+2})^{n+2}} = \frac{n+1}{n})^{n+1} \cdot \frac{n+1}{n+2})^{n+2} = \frac{n+1}{n+2} \cdot (\frac{n^2+2n+1}{n^2+2n})^{n+1} = \frac{n+1}{n+2} \cdot (1 + \frac{1}{n^2+2n})^{n+1}$$

$$(1 + \frac{n+1}{n^2+2n}) = \frac{(n+1)(n^2+3n+1)}{(n+2)(n^2+2n)} = \frac{n^3+4n^2+4n+1}{n^3+4n^2+4n} > 1.$$

$$a_n = \frac{b_n}{(1 + \frac{1}{n})}$$

$$\lim_{n\to\infty} \lim_{n\to\infty} \frac{b_n}{1+\frac{1}{n}} = \lim_{\lim(1+\frac{1}{n})} \lim_{n\to\infty} b_n - cymecmeyem.$$

$$e := \lim_{n\to\infty} (1+\frac{1}{n})^n \approx 2.718281828459045...$$

$$e := \lim_{n \to \infty} (1 + \frac{1}{n})^n \approx 2.718281828459045...$$

Теорема 1.3 (Вейерштрасса). Пусть последовательность a_n ограничена. Тогда существует сходящаяся подпоследовательность.

Доказательство. $|a_n| \leq M$

$$[-M=lpha_1; M=eta_1]$$
. $lpha_2$ — середина. $a_1=x_1\in [lpha_1;lpha_2]$.

$$[\alpha_2; \beta_2]$$
. β_3 — середина. $x_2 = a_{\min n} \in [\alpha_2; \beta_3]$.

 α_k неубывающая и ограниченная сверху. $\exists \lim \alpha_k = \alpha$. β_k неубывающая и ограниченная сверху. $\exists \lim \beta_k = \beta.$

$$\beta - \alpha = \lim_{k \to \infty} (\beta_k - \alpha_k) = \lim_{k \to \infty} \frac{2M}{2^{k-1}} = 0$$

 $eta-lpha=\lim_{k o\infty}(eta_k-lpha_k)=\lim_{k o\infty}rac{2M}{2^{k-1}}=0.$ По построению x_k — подпоследовательность и $lpha_k\leqslant x_k\leqslanteta_k\Rightarrow\exists\lim x_k.$

Определение 1.12. Последовательность называется фундаментальной (или последовательностью Коши), если $\forall \varepsilon > 0 \ \exists N(\varepsilon) : |a_n - a_k| < \varepsilon \ \forall n, k \geqslant N.$

Утверждение 1.3. Пусть $\exists \lim a_n = a \in \mathbb{R}$. Тогда $\{a_n\}$ фундаментальная.

Доказательство. fix
$$\varepsilon > 0 \exists N : |a_n - a| < \frac{\varepsilon}{2} \forall n \geqslant N$$
. Тогда $\forall n, k \geqslant N \ |a_n - a_k| = |(a_n - a) + (a - a_k)| \leqslant |a_n - a| + |a_k - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Теорема 1.4 (Коши). Пусть $\{a_n\}$ фундаментальная последовательность. Тогда $\exists \lim a_n$.

Доказательство. 1) (!) $\{a_n\}$ ограничена. $\varepsilon = 1$: $\exists N : |a_n - a_k| \leqslant \varepsilon \ \forall n, k \geqslant N \Rightarrow a_k \in [a_{N-1}; a_{N+1}] \forall k \geqslant N$ $M = max\{|a_1|, |a_2|, \dots, |a_N+1|\} \Rightarrow |a_n| \leqslant M \forall n$.

- 2) Тогда по теореме Вейерштрасса $\exists a_{n_k}$ подпоследовательность; $\lim_{n\to\infty} a_{n_k} = a$.
- 3) fix $\varepsilon > 0$. $\exists N_1 : |a_{n_k} a| < \frac{\varepsilon}{2} \ \forall n_k \geqslant N_1$ $\exists N_2 : |a_m - a_n| < \frac{\varepsilon}{2} \ \forall m, n \geqslant N_2$ Пусть $n \geqslant \max\{N_1, N_2\} \ \exists n_k \geqslant m$. $|a_m - a| = |(a_m - a_{n_k}) + (a_{n_k} - a)| \leqslant |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \Rightarrow a = \lim_{m \to \infty} a_m$.

2 Возведение в вещественную степень.

 $n \in \mathbb{N}; \ x^n = x \cdot x \cdot \ldots \cdot x, \ n$ раз. $x^{-n} = \frac{1}{x^n}, \ x \neq 0$ $x^0 := 1$ $\sqrt[n]{x} = x^{\frac{1}{n}}$ $x^p, \ p \in \mathbb{Q}, \ x \geqslant 0 \ (p > 0)$ или $x > 0 \ (p \geqslant 0)$ $\frac{\ln x}{a > 0, \ x \in \mathbb{R}}$ $a^x := \lim_{n \to \infty} a^{x_n}, \ \text{где} \ \{x_n\}$ последовательность, такая что $x_n \in \mathbb{Q}, \ \lim_{n \to \infty} x_n := x$. Корректность определения.

- 1. $x \in \mathbb{Q}$. Докажем, что a^x совпадает со старым определением. $x \in \mathbb{Q}$, берем $x_n = x \Rightarrow a^x = a^x$
- 2. Берем произвольную последовательность $\{x_n\}, x_n \to x \Rightarrow x_n$ фундаментальная последовательность.

fix $\varepsilon > 0$ $|a^{x_n} - a^{x_k}| = a^{x_n} |1 - a^{x_k - x_n}|$. Сходится. Значит ограничена. Тогда a^{x_n} ограничена. Тогда $a^{x_n} |1 - a^{x_k - x_n}| \le M \cdot |1 - a^{x_k - x_n}|$.

 $\exists N: |a^{\frac{1}{m}}-1| < \frac{M}{\varepsilon} \ \forall m \geqslant N \Rightarrow |a^{\frac{1}{n}}-1| < \frac{M}{\varepsilon} \Rightarrow \exists N_0: |x_n-x_k| < \frac{1}{N} \ \forall n,k \geqslant N$ $M\cdot |1-a^{x_k-x_n}| < M\cdot \frac{2}{M} \ \forall n,k \geqslant N_0 \Rightarrow a^{x_n} \ \text{образует фундаментальную последовательность} \Rightarrow$ (по теореме Коши) $\exists \lim_{n\to\infty} a^{x_n}$

3.
$$x_n \to x, y_m \to x, x_n, y_m \in \mathbb{Q}$$

 $\exists a = \lim a^{x_n}; \alpha = \lim a^{y_m}$
 $(a - \alpha) = \lim_{n \to \infty} (a^{x_n} - a^{y_m}) = \lim_{n \to \infty} a^{x_n} (1 - a^{x_n - y_m}) = 0$
 $\lim (y_n - x_n) = x - x = 0$

Свойства:

1.
$$a^{x} \cdot a^{y} = a^{x+y}$$

Пусть $x_n \to x, y_n \to y; x_n, y_n \in \mathbb{Q}$
 $a^{x_n} \cdot a^{y_n} = a^{x_n+y_n}$
 $a^{x} \cdot a^{y} = \lim a^{x_n} \cdot \lim a^{y_n} = \lim a^{x_n} \cdot a^{y_n} = \lim a^{x_n+y_n} = a^{x+y}$

2.
$$(a^{x})^{y} = a^{xy}$$
 Пусть $x_{n} \to x$, $y_{m} \to y$; $x_{n}, y_{m} \in \mathbb{Q}$
 $x_{n}y_{n} \to xy$
 $\lim_{m \to \infty} (\lim_{n \to \infty} a^{x_{n}})^{y_{m}}$? $\lim_{n \to \infty} a^{x_{n}y_{n}}$
 $\lim_{n \to \infty} (a^{x})^{y_{n}} = \lim_{n \to \infty} a^{x_{n}y_{n}}$
 $\lim_{n \to \infty} |b^{y_{n}} - a^{x_{n}y_{n}}| = 0$, где $b = a^{x}$
 $\exists N : |a^{x_{n}} - b| < \varepsilon \ \forall n \geqslant N$
 $b - \varepsilon < a^{x_{n}} < b + \varepsilon$
 $1 - \frac{\varepsilon}{b} < \frac{a^{x_{n}}}{b} < 1 + \frac{\varepsilon}{b} \uparrow^{y_{n}}, y_{n} > 0$, для < 0 аналогично $(1 - \frac{\varepsilon}{b})^{y_{n}} < (\frac{a^{x_{n}}}{b})^{y_{n}} < (1 + \frac{\varepsilon}{b})^{y_{n}}$
 $1 - \frac{y_{n}\varepsilon}{b} < \frac{a^{x_{n}y_{n}}}{b^{y_{n}}} < 1 + \frac{y_{n}\varepsilon}{b}$
 $\Rightarrow |\frac{a^{x_{n}y_{n}}}{b^{y_{n}}} - 1| \leqslant \frac{|y_{n}|}{b} \varepsilon$
 $|a^{x_{n}y_{n}} - b^{y_{n}}| < \frac{|y_{n}|}{b} \cdot b^{y_{n}}\varepsilon \leqslant M\varepsilon \ \forall n \geqslant N$
 $\Rightarrow \lim |b^{y_{n}} - a^{x_{n}y_{n}}| = 0$

fix
$$a > 0$$
, $a \neq 1$
 $y = a^x$, $x \in \mathbb{R}$

Определение 2.1. f(x) - возрастающая на <math>X, если $\forall x_1, x_2 \in X$ $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$. f(x) неубывающая, если \leq .

Утверждение 2.1. При a > 1 $f(x) = a^x - возрастает$ на \mathbb{R} ; При 0 < a, < 1 $f(x) = a^x - y$ бывает на \mathbb{R} .

Пусть
$$x < \xi, x_n \to x, \xi_n \to \xi$$
 $x < x_0 < \xi_0 < \xi$ и x_0 не в окрестности x и аналогично ξ . $\forall n \geqslant N$ $x_n < x_0 < \xi_0 < \xi_0$ Тогда $a^{x_n} < a^{x_0} < a^{\xi_0} < a^{\xi_n}$ $a^x \leqslant a^{x_0} < a^{\xi_0} \leqslant a^\xi \Rightarrow a^x < a^\xi$ $0 < a < 1$ $a^x = (\frac{1}{a})^{-x}; \ a^\xi = (\frac{1}{a})^{-\xi}$ $x < \xi \Rightarrow -x > -\xi \ (\frac{1}{a})^{-x} > (\frac{1}{a})^{-\xi} \Rightarrow a^x > a^\xi$

3 Предел и непрерывность.

Определение 3.1. Передельная точка x_0 области D — такая точка, что $\forall \varepsilon > 0$ $\mathring{U}_{\varepsilon}(x_0) \cap D \neq \emptyset$. Множество предельных точек множества D — называется замыкание D, обозначается \overline{D} .

 $f: D \to \mathbb{R}; D \subset \mathbb{R}$. Пусть x_0 — предельная точка D.

Определение 3.2 (По Гейне). Если \forall последовательности $x_n \to x_0; x_n \neq x_0 \exists \lim_{n \to \infty} f(x_n) = a, mo$ говорят, что $\exists \lim_{x \to x_0} f(x) = a.$

Определение 3.3. f непрерывна в точке $x_0 \in D$, если $\exists \lim_{x \to x_0} f(x) = f(x_0)$.

Определение 3.4 (ПО Коши). $\lim_{x\to x_0} f(x) = a$, если $\forall \varepsilon > 0 \ \exists \delta > 0$: $f(x) \subset U_{\varepsilon}(a) \ \forall x \in \mathring{U}_{\delta}(x_0) \cap D(f)$.

Утверждение 3.1. Определения по Коши и по Гейне равносильны.

Доказательство Коши ⇒ Гейне.

Известно, что $\forall \varepsilon > 0 \; \exists \delta > 0$: $f(x) \in U_{\varepsilon}(a) \forall x \in \mathring{U}_{\delta}(x_{0})$. Берем произвольную $x_{n} \to x_{0}$: fix $\varepsilon > 0 \Rightarrow \exists \delta$, такое что выполнено $f(x) \in U_{\varepsilon}(a) \forall x \in \mathring{U}_{\delta}(x_{0})$ и $\exists N \colon x_{n} \in U_{\delta}(x_{0}) \forall n \geqslant N \Rightarrow \exists N \colon \forall n \geqslant N \; x_{n} \in \mathring{U}_{\delta}(x_{0}) \Rightarrow f(x_{n}) \in U_{\varepsilon}(a)$. Те $\forall \varepsilon > 0 \; \exists N \colon \forall n \geqslant N \; f(x_{n}) \in U_{\varepsilon}(a)$, те $a = \lim_{n \to \infty} f(x_{n})$

Доказательство не Коши ⇒ не Гейне.

Нет предела по Коши. fix $a: \exists \varepsilon: \forall \delta > 0$. $\exists \tilde{x} \in \mathring{U}_{\delta}(x_0): f(\tilde{x}) \notin U_{\varepsilon}(a) \Rightarrow a$ не является пределом по Гейне?

От противного. $a = \lim_{x \to x_0} f(x)$ по Гейне.

 $\delta_n = \frac{1}{n} \exists \tilde{x_n} \in \mathring{U}_{\frac{1}{n}}(x_0)$ и $f(\tilde{x_n}) \not\in U_{\varepsilon}(a) \Rightarrow \tilde{x_n} \to x_0, \tilde{x_n} \neq x_0$, но $\lim_{n \to \infty} f(\tilde{x_n}) \neq a$

Утверждение 3.2. f(x) бесконечно малая в точке x_0 , если $\lim_{x\to x_0} f(x) = 0$.

Утверждение 3.3. f(x) бесконечно большая в точке x_0 , если $\lim_{x\to x_0} |f(x)| = +\infty$.

Лемма 3.1 (О двух милиционерах). Пусть $f(x) \leqslant g(x) \leqslant h(x)$ в некоторой окрестности точки x_0 (передельная точка D(f), D(g), D(h)). Если $\exists \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = a$, то $\exists \lim_{x \to x_0} g(x) = a$.

Лемма 3.2 (Предельный переход в неравенства). Пусть $f(x) \leq g(x)$ в некоторой окрестности точки x_0 (передельная точка D(f), D(g)). Если $\exists \lim_{x \to x_0} f(x) = a; \exists \lim_{x \to x_0} g(x) = b, \text{ то } a \leq b.$

Лемма 3.3 (Об ограниченности). Если $\exists \lim_{x \to x_0} f(x) = a \in \mathbb{R}$. Тогда f ограничена в некотром $\mathring{U}(x_0)$.

Доказательство. $\varepsilon = 1$: $\exists \delta > 0$: $|f(x) - a| < 1 \ \forall x \in \mathring{U}_{\delta}(x_0) \Rightarrow |f(x)| \leqslant |a| + 1 \ \forall x \in \mathring{U}_{\delta}(x_0)$

Лемма 3.4 (Об отделимости от нуля). *Если* $\exists \lim_{x \to x_0} f(x) = a > 0$. *Тогда* $\inf f(x) > 0$ в некоторой $\mathring{U}(x_0)$ (f отделима от нуля).

Доказательство. $\varepsilon = \frac{a}{42}$: $\exists \delta < \frac{a}{42} \ \forall x \in \mathring{U}_{\delta}(x_0) \Rightarrow f(x) \geqslant \frac{41}{42}a > 0 \ \forall x \in \mathring{U}_{\delta}(x_0) \Rightarrow \inf f(x) \geqslant \frac{41}{42}a > 0$.

Следствие 3.1. Если $\lim_{x\to x_0} f(x) \neq 0$, то $\frac{1}{f(x)}$ ограничена в некоторой $\mathring{U}(x_0)$.

Определение 3.5. f непрерывна в точке $x_0 \in D(f)$, если $\lim_{x \to x_0} f(x) = f(x_0)$.

Определение 3.7. Функция называется элементарной, если она получается арифметическими операциями или композицией конечного числа основных элементарных функций.

Утверждение 3.4. Любая элементарная функция непрерывна.

Теорема 3.1 (Теорема о пределе композиций). $f: X \to Y; g: Y \to Z, x_0 - npedeльная точка множества <math>X, y_0 - npedeльная$ точка множества $Y. \exists \lim_{x \to x_0} f(x) = y_0, \exists \lim_{y \to y_0} g(y) = g(y_0) = a$. Тогда $\exists \lim_{x \to x_0} g(f(x)) = a$.

Доказательство.
$$\forall x \in \mathring{U}_{\delta}(x_0) \Rightarrow g(f(x)) \in U_{\varepsilon}(a)$$

$$a = \lim_{y \to y_0} g(y) \Rightarrow \exists \varepsilon_1 > 0 \colon y \in U_{\varepsilon_1}(y_0) \Rightarrow g(y) \in U_{\varepsilon}(g(y_0))$$

$$\exists \delta > 0 \colon x \in \mathring{U}_{\delta}(x_0) \Rightarrow f(x) \in U_{\varepsilon_1}(y_0) \Rightarrow g(f(x)) \subset U_{\varepsilon}(g(y_0))$$

Теорема 3.2 (Непрерывности обратной функции). Пусть f непрерывная биекция на $\langle a; b \rangle$. Тогда f^{-1} тоже непрерывная биекция $Y \to \langle a; b \rangle$.

Доказательство. НУО f строго возрастает на $\langle a;b \rangle$ fix $\varepsilon > 0$, тогда $y_1 := f(x_0 - \varepsilon); \ y_2 := f(x_0 + \varepsilon)$ $\delta = \min\{y_2 - y_0; y_0 - y_1\}$ Тогда $\forall y \in U_\delta(y) \Rightarrow f^{-1}(y) \in U_\epsilon(f^{-1}(y_0))$ тк $y_1 < y < y_2 \Rightarrow f^{-1}(y_1) < f^{-1}(y) < f^{-1}(y_2)$

Утверждение 3.5. Полезные пределы.

1.
$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x = e$$

$$2. \lim_{x \to -\infty} (1 + \frac{1}{x})^x = e$$

3.
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

4.
$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

5.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
; $\lim_{x \to 0} \frac{a^x - 1}{x}$

6.
$$\lim_{x\to 0} \frac{(1+x)^m - 1}{x} = m; m \in \mathbb{R}$$

7.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

8.
$$\lim_{x \to +\infty} \frac{n}{2^n} = 0$$

Утверждение 3.6. $(1+x)^p \simeq 1 + px, x \to 0.$

$4 \overline{o}$ и O.

Определение 4.1. $\mathit{Cumbon}\ \mathit{Лanday} - \overline{o}.$

1.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$
, $\operatorname{morda} f(x) := \overline{o}(g(x))$, $x \to x_0$.

2.
$$f(x) = \overline{o}(g(x))$$
, $ecnu \ \forall \varepsilon > 0 \ \exists \delta > 0$: $|f(x)| \leqslant \varepsilon |g(x)|$, $\forall x \in \mathring{U}_{\delta}(x_0)$.

Свойство 4.1. 1. f(x) называется бесконечно малой в точке x_0 , если $f(x) = \overline{o}(1)$, $x \to x_0$.

2.
$$\overline{o}(f(x)) + \overline{o}(f(x)) = \overline{o}(f(x)), x \to x_0.$$

3. $C \cdot \overline{o}(f(x)) = \overline{o}(f(x)), x \to x_0.$

4.
$$\overline{o}(\overline{o}(f(x))) = \overline{o}(f(x)), x \to x_0.$$

Определение 4.2. 1. Пусть f, g обе бесконечно большие или бесконечно малые. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, $mor \partial a \ f(x) \sim g(x), \ x \to x_0$.

2.
$$f(x) \sim g(x) \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ (1 - \varepsilon)|g(x)| \leqslant |f(x)| \leqslant (1 + \varepsilon)|g(x)|, \ \forall x \in \mathring{U}_{\delta}(x_0).$$

Утверждение 4.1. $f(x) \sim g(x), x \to x_0 \Leftrightarrow f(x) = g(x) + \overline{o}(g(x)), x \to x_0.$

Определение 4.3. $f(x) = \underline{O}(g(x)), \ x \to x_0, \ ecnu \ \exists \ C > 0 \colon |f(x)| \leqslant C|g(x)| \ в$ некоторой выколотой окрестности точки x_0 .

Определение 4.4. $f(x) \approx g(x), \ x \to x_0, \ ecnu \ \exists \ c_1, c_2 > 0 \colon c_1|g(x)| \leqslant |f(x)| \leqslant c_2|g(x)| \ в$ некоторой выколотой окрестности точки x_0 .

Теорема 4.1. Пусть $f(x) \sim f_1(x)$, $x \to x_0$ и функции не обращаются в 0 в некоторой $\mathring{U}(x_0)$. Тогда $\lim_{x \to x_0} f(x)g(x)$ и $\lim_{x \to x_0} f_1(x)g(x) \exists$ или \nexists одновременно, и если \exists , то они равны. Словами: в произведение пределов сомножители можно заменять на эквивалентные; слагаемые нельзя!

Доказательство.
$$\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} \frac{f(x)}{f_1(x)} \cdot f_1(x)g(x).$$

Утверждение 4.2. $(1+t)^{\alpha} = 1 + \alpha t + \overline{o}(t), t \to 0.$

Утверждение 4.3. $e^t = 1 + t + \overline{o}(t), t \to 0.$