Thursday, January 24, 2019

11:19 PM

LAN REDUNDANCY P3

Config/Verify the BID: 2 Diff methods to config bridge priority value on Catalyst switch:

Way 1: To ensure switch has lowest bridge priority use:

S3(config)# spanning-tree vlan <vlan-id> root primary [global config]

- Priority for switch set to predefined value 24,576
- Or highest multiple of 4,096 less than lowest bridge priority detected on network If alternate RB desired:

S3(config)# spanning-tree vlan <vlan-id> root secondary [global config]

- Sets priority for the switch to predefined value of 28,672
- Ensures alternate switch becomes RB if primary RB fails
- Assumes rest of switches have default 32,768 priority value

Wav 2:

\$3(config)# spanning-tree vlan <vlan-id> priority value [global config]

- · Gives more granular control over bridge priority value
- Priority value is config in increments of 4,096 between 0-61,440.

Verify bridge priority of switch:

S3# show spanning-tree

PortFast/BPDU Guard

PortFast	Cisco feature for PVST+ envs When switch port is config w/PortFast • Port transitions from blocking to fwding immediately • Bypassing usual 802.1D STP transition states (listening/learning) • Can use on access ports to allow devices to connect to network immed Access ports: Ports connected to a single workstation/server PortFast: Useful for DHCP Without it: A PC can send a DHCP req before port is in fwding state • This would deny the host from getting a usable IP/info • PortFast immediately changes state to fwding: PC always gets usable IP
BPDU Guard	In valid config: BPDUs should never be received: • That would indicate another bridge/switch is connected to the port • Could cause a spanning tree loop BPDU Guard: Puts port in an error-disabled state on receipt of BPDU • Will effectively shut down port • Provides secure response to invalid configs

To config PortFast on port:

S3(config-if)# spanning-tree portfast [int config]: Each int to be enabled on

S3(config)# spanning-tree portfast default [global config]: Enables on all nontrunking ints To configure BPDU guard on L2 access port:

S3(config-if)# spanning-tree bpduguard enable [int config]

S3(config)# spanning-tree portfast bpduguard default [global config]

Enables on all PortFast-enabled ports

PVST+ Load Balancing

- 1. Select switches you want for primary/2dary RB's for each VLAN
- 2. Config switch to be primary bridge for VLAN:

spanning-tree vlan < number > root primary

1. Config switch to be 2ndary bridge for VLAN:

spanning-tree vlan < number > root secondary

show spanning-tree active Displays spanning tree config details for active ints only **show spanning-tree**

Spanning Tree Mode Rapid PVST+: Cisco implementation of RSTP

Supports RSTP on per-VLAN basis

Config Rapid PVST+ on Cisco switch

S1# conf t

\$1(config)# spanning-tree mode rapid-pvst Config Rapid PVST+ spanning tree-mode

S1(config)# int fa0/1

S1(config-if)# spanning-tree link-type point-to-point Specify link type

S1(config-if)# end

S1# clear spanning-tree detected-protocols

Analyzing the STP Topology

- 1. Discover L2 topology: Network docs if exist: show cdp neighbors
- 2. Use STP knowledge to determine expected L2 path: Know which switch is RB
- 3. show spanning-tree vlan To determine which switch is RB
- **4. show spanning-tree vlan** All switches to find which ports in blocking/fwding state /confirm expected L2 path

Expected vs Actual Topology

show spanning-tree

- Provides a quick overview of the status of STP for all VLANs defined on switch
- · Specify VLAN to limit scope of cmd

show spanning-tree vlan vlan id

- · Get STP info for a particular VLAN.
- Get info about role/status of each port on switch [FWD/BLK/etc..]
- Also gives info about BID of local switch/root ID: The BID of RB

Spanning Tree Failure Consequences

2 types of failure

- 1. Similar to OSPF issue; STP might block ports that should have gone into fwding state
- 2. STP erroneously moves 1/more ports into fwding state

Ethernet frame headers don't include TTL fields:

- · Any frame that enters a bridging loop continues to be fwded by switches indefinitely
- Only exceptions: Frames that have dest address recorded in MAC table of switches
- Frames are simply fwded to port associated w/MAC and don't enter loop
 - Any frame that is flooded by switch enters loop
 - o Includes: Broadcasts/multicasts/unicasts w/globally unknown dest MAC

Consequences/Symptoms of STP failure:

- · Load on all links in switched LAN quickly starts increasing as more and more frames enter loop
- Not limited to links from loop: Also affects any other links in switched domain b/c frames are flooded on all links
- · When spanning tree failure is limited to single VLAN only links in that VLAN affected
- Switches/trunks that don't carry that VLAN operate normally

If spanning tree failure created a bridging loop: Traffic increases exponentially

- Switches will flood the broadcasts out multiple ports
- Creates copies of frames every time switches fwd them

When control plane traffic starts entering loop (OSPF/EIGRP Hellos): Devices running protocols quickly get overloaded

CPUs approach 100% utilization while trying to process ever-increasing load of control plane traffic

Earliest indication: Routers or L3 switches reporting control plane failures/running at high CPU load

• Switches exp frequent MAC table changes

If loop exists:

- Switch may see frame w/certain source MAC coming on 1 port/another frame w/same source coming in on diff port sec later
- Will cause switch to update MAC address table twice for same MAC

Default Gateway Limitations

STP's enable physical redundancy in switched network

- · Host at access layer of hierarchical network also benefits from alternate default GW's
- If a router or router int (that serves as default GW) fails: Hosts config'd w/default GW are isolated from outside networks
- Mechanism needed to provide alt default GW's in switched networks where 2/more routers connected to same VLANs

End devices: Typically config w/single IP for default GW:

- This address doesn't change when topology does: If default GW IP can't be reached:
- Local device is unable to send packets off local network segment: Disconnecting it from the rest of

networ

Router Redundancy

Prevent single point of failure at GW: Implement virtual router

- Multiple routers are config'd to work together to present the illusion of a single router to hosts on LAN
- By sharing an IP/MAC 2/more routers can act as single virtual

IP of virtual router is config as default GW for workstations on specific IP segment

- . When frames are sent from host devices to GW: Hosts use ARP to resolve MAC that is associated w/IP of default GW
- ARP resolution returns MAC of virtual router
- Frames sent to MAC of virtual router can then be physically processed by currently active router w/in virtual router group
- Protocol is used to ID 2/more routers as devices responsible for processing frames sent to the MAC/IP of single virtual router
- · Host devices send traffic to address of virtual router
- Physical router fwds this traffic is transparent to host devices
- · Redundancy protocol provides mechanism for determining which router should take active role in fwding traffic
 - Also determines when fwding role must be taken over by standby router
 - Transition from 1 fwding router to another is transparent to end devices

First-hop redundancy: Ability of network to dynamically recover from failure of a device acting as a default GW

Steps for Router Failover

When the active router fails: Redundancy protocol transitions standby router to new active router

These steps take place when active router fails:

- 1. Standby router stops seeing Hello msgs from fwding router
- 2. Standby router assumes role of fwding router
- 3. B/C the new fwding router assumes both IP/MAC of virtual router; Hosts sees no disruption in service

First Hop Redundancy Protocols

FHRP: First	FHRP: First Hop Redundancy Protocols:		
HSRP	 Hot Standby Router Protocol: Cisco-proprietary FHRP designed to allow transparent failover of 1st-hop IPv4 device Provides high network availability by providing 1st-hop routing redundancy for IPv4 hosts On networks config w/IPv4 default GW Used in group of routers for selecting an active/standby device In group of device ints: Active device is one used for routing packets Standby is device that takes over when active fails/pre-set conditions met Function of HSRP standby: Monitor operational status of HSRP group/quickly assume packet-fwding responsibility if active router fails 		
HSRP for IPv6	Cisco: HSRP IPv6 group has virtual MAC address derived from: • HSRP group #/virtual IPv6 link-local address derived from HSRP virtual MAC address • Periodic router adverts (RAs) sent for HSRP virtual IPv6 link-local address when HSRP group active • When group becomes inactive these RAs stop after final RA is sent		
VRRPv2	Virtual Router Redundancy Protocol version 2: • Non-proprietary election protocol • Dynamically assigns responsibility for 1/more virtual routers to VRRP routers on IPv4 LAN • Allows 7 routers on multiaccess link to use same virtual IPv4 address • Config'd to run VRRP protocol in conjunction with 1/more other routers attached to LAN In a VRRP config: • 1 router elected as virtual router master • Other routers act as backups in case virtual router master fails		
VRRPv3	Supports IPv4/IPv6 addresses: • Works in multi-vendor envs/More scalable than VRRPv2		

GLBP	 Gateway Load Balancing Protocol: Cisco-proprietary FHRP that protects data traffic from failed router/circuit (like HSRP/VRRP) Also allows load balancing bet group of redundant routers
GLBP for IPv6	 Same functionality of GLBP for IPv6: Provides auto router backup for IPv6 hosts config'd w/single default GW on a LAN Multiple 1st-hop routers on LAN combine to offer single virtual 1st-hop IPv6 router While sharing IPv6 packet fwding load
IRDP	 ICMP Router Discovery Protocol: RFC 1256: Legacy FHRP solution Allows IPv4 hosts to locate routers that provide IPv4 connectivity to other (nonlocal) IP networks

HSRP

HSRP Verification:	 Responds to default GW's ARP requests w/virtual router's MAC Assumes active fwding of packets for virtual router Sends Hello msgs Knows virtual router IP
HSRP standby router	 Listens for periodic Hello msgs Assumes active fwding of packets if it doesn't hear from active router show standby to verify HSRP state

GLBP Verification

Only active router in HSRP/VRRP groups fwds traffic for virtual MAC's

• Resources associated w/standby router are not fully utilized

- Can accomplish some load balancing w/these protocols by creating multiple groups/assigning multiple default GW's
- Burden

GLBP	Cisco solution:
	 Allows auto selection/simultaneous use of multiple available GW's in addition to auto
	failover bet them
	 Multiple routers share load of frames that are sent to a single default GW address
	Has following:
	 Allows full use of resources on all devices w/out burden of creating multiple groups
	Provides single virtual IP/multiple virtual MAC's
	 Routes traffic to single GW distributed across routers
	Auto rerouting in event of failure
	show glbp To verify GLBP status