2025-1학기 데이터마이닝

추천 시스템 소개

이청용 교수

leecy@hansung.ac.kr

강의개요

• 추천 시스템 개요

- ✓ 추천 시스템 정의
- ✓ 추천 시스템 도입 배경
- ✓ 추천 시스템의 주요 사례

• 추천 시스템의 역사 및 발전

- ✓ 1990년대: 추천 시스템의 태동기
- ✓ 2000년대 초반: 협업 필터링과 콘텐츠 기반 필터링의 도입
- ✓ 2010년대: 빅데이터와 머신러닝의 도입
- ✓ 현대의 추천 시스템: 딥러닝과 강화 학습의 발전

• 추천 시스템의 주요 유형

- ✓ 콘텐츠 기반 필터링
- ✓ 협업 필터링
- ✔ 하이브리드 방법

• 추천 시스템의 핵심 요소

- ✔ 데이터 수집
- ✔ 사용자 프로파일링
- ✔ 아이템 프로파일링
- ✔ 유사성 측정

• 추천 시스템의 도전과제

- ✓ 데이터 희소성: 콜드 스타트 문제
- ✓ 확장성: 대규모 데이터 처리의 어려움
- ✓ 편향과 다양성 문제: 필터 버블 현상

추천 시스템 개요

추천 시스템 정의

• 추천 시스템이란?

- ✓ 추천 시스템(Recommender System)은 **사용자의 선호도나 과거 행동 데이터**를 기반으로 특정 상품, 콘텐츠, 서비스 등을 **개인 맞춤형으로 예 측하고 추천**하는 소프트웨어 시스템
- ✓ 정보가 넘쳐나는 현대 사회에서 사용자가 필요로 하는 정보를 효율적으로 제공함으로써 정보 과부하 문제를 해결하고 사용자 경험을 향상시키는 것이 추천 시스템의 주요 목표

• 정보 과부화 문제

- ✓ 1990년대 후반 인터넷과 전자 상거래의 급격한 발전으로 인해 사용자는 방대한 양의 정보에 직면
- ✓ 너무 많은 선택지로 인해 사용자는 원하는 상품이나 콘텐츠를 찾기 어려워졌고 이는 구매 또는 소비 과정에서 장애물로 작용
- ✓ 이 문제를 해결하기 위해 추천 시스템이 등장하였으며 사용자에게 의미 있는 정보만을 제공하여 시간과 노력을 절약하는 것을 목표로 설정

E-commerce Market Size and Forecast source: precedenceresearch.com

Asia Pacific E-commerce Market Size and Growth 2024 to 2033 source: precedenceresearch.com

- 개인화된 경험의 요구
 - ✓ 인터넷 사용자의 증가와 함께 **사용자 경험(UX)의 중요성**이 대두
 - ✓ 특히 디지털 서비스는 개인화된 맞춤형 경험을 제공해야 한다는 필요성 강조
 - ✓ 사용자의 선호와 행동을 반영한 개인화된 추천을 제공함으로써 사용자 만족도와 서비스의 충성도 제고

source: nngroup.com

source: nngroup.com

- 전자 상거래 및 디지털 마케팅의 발전
 - ✓ 전자 상거래의 성장과 함께 사용자에게 적합한 상품을 제시하는 것은 매출 증가와 직결
 - ✔ 아마존과 같은 대형 전자 상거래 업체들은 사용자 데이터(구매 이력, 장바구니 등)를 기반으로 한 추천 시스템을 활용하여 판매를 극대화
 - ✔ 기업은 추천 시스템을 통해 사용자 맞춤형 상품을 제시함으로써 전환율(Conversion Rate)을 높이고 구매 유도를 강화

insights

Amazon's recommendation algorithm drives 35% of its sales

July 3, 2020

source: evdelo.com/

Which of the following industries or companies do you feel confident your data is being used responsibly?

source: smartinsights.com

- 콘텐츠 소비의 변화
 - ✓ 미디어 소비 방식이 변화하면서 유튜브 등 플랫폼에서는 방대한 콘텐츠 중 사용자가 선호하는 영상을 개인화하여 추천하는 것이 필수적
 - ✓ 사용자가 직접 콘텐츠를 찾기보다는 추천 시스템을 통해 흥미로운 콘텐츠를 탐색
 - ✔ 엔터테인먼트와 **미디어 스트리밍 산업의 경쟁이 심화**되면서 사용자 맞춤형 추천은 **사용자의 지속적인 이용과 충성도를 이끄는 핵심 요소**로 부상

source: protectdemocracy.org

source: buffer.com

- 데이터의 축적 및 분석 기술의 발전
 - ✓ 추천 시스템이 발전할 수 있었던 또 다른 배경은 대규모 데이터를 처리하고 분석할 수 있는 기술 발전
 - ✓ 초기의 단순한 필터링 방식에서 벗어나 머신러닝과 딥러닝과 같은 고도화된 기술을 활용하여 더욱 정교한 추천이 가능
 - ✓ 행동 패턴을 보다 깊이 분석하여 과거에는 파악하기 어려웠던 사용자의 잠재적인 선호까지도 반영하는 추천이 가능

source: alleo.tech source: redbubble.com

- 넷플릭스 (Netflix)
 - ✓ 추천 알고리즘: 넷플릭스는 다양한 알고리즘을 결합하여 사용자의 시청 이력, 좋아요/싫어요 반응, 평점 평가, 검색 기록, 시청 시간 등을 분석하여 사용자가 좋아할 만한 콘텐츠를 예측
 - **협업 필터링: 비슷한 취향**을 가진 **다른 사용자들이 시청한 콘텐츠**를 기반으로 추천
 - **콘텐츠 기반 필터링:** 사용자가 시청한 **콘텐츠의 장르, 감독, 배우, 줄거리** 등의 속성을 분석하여 유사한 다른 콘텐츠를 추천
 - Top-N 추천: 사용자의 시청 기록 중에서 가장 자주 시청한 장르나 주제에 맞는 콘텐츠를 N개의 순위로 추천 목록에 제공

Everything is a Recommendation Title Ranking Recommendations are driven by machine learning algorithms Over 80% of what members watch comes Personalized Personalized Personalized from our Rating Ranking Page recommendations Prediction Generation

source: mikescogs20.medium.com

source: mikescogs20.medium.com

• 아마존 (Amazon)

- ✓ 추천 알고리즘: 아마존은 구매 이력, 장바구니에 담은 상품, 검색한 상품, 리뷰와 평점 등의 데이터를 종합하여 개인 맞춤형 상품을 추천하며 주로 아이템 기반 협업 필터링을 사용
 - 아이템 기반 협업 필터링: 비슷한 상품을 구매한 다른 고객의 행동을 기반으로 추천. 예를 들어, 사용자가 스마트폰을 구매한 후 비슷한 스마트폰 액세서리(케이스, 충전기 등)를 추천 받는 방식
 - 연관 상품 추천: 특정 상품을 구매한 사용자들이 함께 구매한 상품을 추천. 예를 들어, "이 상품을 구매한 고객들은 다음 상품도 구매했습니다."
 라는 문구와 함께 관련 상품을 제안
 - **타임리밋 추천: 장바구니**에 오랫동안 담아두거나 **자주 검색하는 상품**에 대해 시간 한정 할인이나 프로모션 상품을 추천하여 구매를 유도

source: rejoiner.com source: rejoiner.com

- 유튜브 (YouTube)
 - ✓ 추천 알고리즘: 유튜브는 사용자의 시청 이력, 동영상 시청 시간, 좋아요/싫어요 반응, 댓글 참여도, 구독 채널 등의 다양한 데이터를 활용하여 맞춤형 동영상을 추천
 - **협업 필터링: 유사한 취향을 가진 사용자가 시청한 동영상**을 추천하여 비슷한 콘텐츠를 발견
 - **콘텐츠 기반 필터링:** 사용자가 시청한 **동영상의 주제, 키워드, 제목, 태그** 등을 분석하여 관련된 주제의 동영상을 추천
 - Top-N 추천: 사용자가 가장 많이 본 콘텐츠 유형(예: 음악 비디오, 게임, 뉴스)에 따라 최적화된 동영상을 추천 목록에 노출
 - 실시간 추천: 사용자의 시청 패턴을 실시간으로 분석하여 시청 도중에 흥미를 잃을 경우 다른 관련 동영상을 빠르게 추천

source: buffer.com

- 스포티파이 (Spotify)
 - ✓ 추천 알고리즘: 스포티파이는 사용자의 음악 청취 이력, 좋아요/싫어요 클릭, 반복 재생한 곡, 저장한 플레이리스트 등을 분석하여 개인화된 음악을 추천
 - **콘텐츠 기반 필터링:** 사용자가 **자주 듣는 노래의 장르, 아티스트, 곡의 분위기** 등을 분석하여 유사한 음악을 추천
 - **협업 필터링:** 다른 사용자들의 **청취 패턴**을 기반으로 유사한 음악 취향을 가진 사용자가 자주 듣는 곡을 추천
 - **Discover Weekly & Release Radar:** 매주 스포티파이는 사용자가 자주 듣는 아티스트와 **유사한 새로운 음악을 제공**하는 Discover Weekly 와 사용자의 **선호에 맞춘 최신 릴리스 곡**을 추천하는 Release Radar 기능을 제공
 - Daily Mix: 사용자의 청취 이력에 따라 매일 새로운 플레이리스트를 생성하여 개인화된 음악 추천을 제공

source: rejoiner.com source: rejoiner.com

13

추천 시스템의 역사 및 발전

1990년대: 추천 시스템의 태동기

- 추천 시스템의 개념은 1990년대 중반에 등장했으며 주로 사용자가 제공하는 명시적 피드백(예: 평점, 리뷰)을 활용하여 간단한 규칙에 따라 추천을 제공
 - ✔ 명시적 피드백 기반: 사용자가 직접 제공한 평점이나 리뷰와 같은 피드백을 기반으로 추천 제공. 이때의 추천 시스템은 사용자의 과거 행동을 분석하거나 명시적인 선호 데이터를 바탕으로 추천을 생성
 - ✓ 규칙 기반 추천: 간단한 규칙을 기반으로 추천이 이루어졌으며, 특정 상품이나 콘텐츠에 대해 일정한 점수 이상의 평점을 부여한 사용자에게 비슷한 아이템을 추천하는 방식을 주로 사용
 - ✔ 사례: 넷스케이프(Netscape) 같은 초창기 인터넷 브라우저에서도 기본적인 추천 기능이 도입되었으나 사용자 데이터를 심층적으로 활용하는 데 한계가 존재

2000년대 초반: 협업 필터링과 콘텐츠 기반 필터링의 도입

- 2000년대에 들어서면서 추천 시스템은 협업 필터링과 콘텐츠 기반 필터링이라는 두 가지 주요 방식으로 발전. 사용자 데이터를 보다 복잡하게 분석하여 더 정확하고 개인화된 추천 제공의 가능성을 마련
 - ✓ 협업 필터링: 여러 사용자의 행동 데이터를 바탕으로 유사한 사용자가 선호하는 아이템을 추천. 이는 사용자가 제공하는 명시적 피드백뿐만 아니라 다른 사용자와의 상관관계를 통해 추천 제공
 - 사례: 아마존은 협업 필터링을 통해 "이 상품을 구매한 고객은 이러한 상품도 구매했습니다."와 같은 방식으로 맞춤형 상품을 추천하기 시작
 - ✓ **콘텐츠 기반 필터링:** 사용자가 과거에 선호한 아이템의 특성을 분석하고, 이와 유사한 특성을 가진 새로운 아이템을 추천. 주로 **아이템의 메타데이터**(예: 영화의 장르, 감독, 배우, 책의 저자 등)를 분석하여 유사한 콘텐츠를 추천
 - 사례: 영화 추천 서비스에서는 사용자가 선호한 영화의 장르, 감독, 배우 등의 정보를 기반으로 유사한 영화를 추천하기 시작

source: geekycodesin.wordpress.com

2010년대: 빅데이터와 머신러닝의 도입

- 2010년대에 들어서면서 추천 시스템은 **빅데이터와 머신러닝 기술**을 적극 활용. 사용자의 행동 데이터를 실시간으로 수집, 처리, 분석할 수 있는 기술이 발전하면서 추천 시스템의 정확도 크게 향상
 - ✔ 대규모 데이터 처리: 사용자의 행동 데이터가 폭발적으로 증가하면서 추천 시스템은 더 많은 데이터를 실시간으로 처리하기 위해 분산 컴퓨팅 기술(예: 아파치 하둡, 아파치 스파크)이 도입되었으며 대규모 데이터를 처리하는 데 적합한 시스템이 구축
 - ✓ 머신러닝 기반 추천: 머신러닝 알고리즘을 활용하여 사용자 행동 패턴을 더욱 정교하게 분석 및 예측 가능. 이는 단순한 협업 필터링과 콘텐츠 기반 필터링을 넘어 복잡한 데이터 패턴을 찾아내는 데 도움을 제공
 - **행렬 분해**(Matrix Factorization), **잠재 요인 모델링**(Latent Factor Modeling)과 같은 기법이 도입되어 사용자의 잠재적 선호도를 정확하게 예측 가능
 - 사례: 넷플릭스는 2006년부터 시작된 Netflix Prize 대회를 통해 행렬 분해 알고리즘을 활용하여 추천 시스템의 성능을 크게 개선

source:

현대의 추천 시스템: 딥러닝과 강화 학습의 발전

- 2020년대에 접어들면서 추천 시스템은 딥러닝 및 강화학습과 같은 첨단 기술을 활용하여 더 높은 수준으로 발전
 - ✓ **딥러닝을 활용한 추천 시스템:** 딥러닝 모델은 방대한 양의 데이터를 처리하고 사용자와 아이템 간의 **복잡한 상호작용**을 더 정밀하게 학습 가능. 특히 신경망 기반 추천 시스템(Neural Collaborative Filtering, NCF)이 등장하여 사용자와 아이템 간의 **비선형 관계를 학습**하고 추천 정확도를 향상
 - 사례: 유튜브는 딥러닝을 활용하여 사용자의 시청 이력을 기반으로 가장 관련성 높은 동영상을 추천하며 콘텐츠의 썸네일을 개인 맞춤형으로 제공하여 더 높은 클릭률을 유도
 - ✓ 강화 학습을 활용한 실시간 추천: 강화 학습은 사용자가 추천된 아이템에 어떻게 반응하는지 실시간으로 피드백을 받아 시스템이 스스로 학습하고 최적의 추천을 제공하는 방법. 이를 통해 시스템은 사용자의 변화하는 선호도를 반영하여 실시간으로 추천을 개선 가능
 - 사례: 전자 상거래와 미디어 플랫폼에서 강화 학습을 활용하여 사용자의 실시간 행동을 기반으로 즉각적으로 반응하는 맞춤형 추천을 제공. 예를 들어, 스포티파이는 사용자의 청취 패턴을 실시간으로 분석하여 즉각적으로 맞춤형 곡이나 플레이리스트를 추천

추천 시스템의 주요 유형

콘텐츠 기반 필터링

- 아이템의 콘텐츠에 집중하여 사용자가 선호하는 **아이템의 특성을 분석**한 후 유사한 특성을 가진 다른 아이템을 추천하는 방식 ✓ 작동 원리
 - 사용자가 선호한 **아이템의 속성**(예: 영화의 장르, 배우, 감독, 출판물의 주제 등)을 분석
 - 사용자의 이전 행동이나 명시적 평가를 통해 선호도를 파악한 후 그와 **유사한 속성을 가진 다른 아이템을 추천**

✓ 장점

- 사용자에 대한 데이터가 충분하지 않아도 아이템의 속성만으로 신규 아이템에 대한 추천이 가능하므로 **콜드 스타트 문제**에서 **상대적으로 유리**
- 사용자의 명시적 선호도(좋아하는 장르, 스타일 등)를 기반으로 직관적인 추천이 가능

✓ 단점

- 사용자가 선호하는 아이템의 범위에 갇혀 **새로운 경험**을 제공하는 데 **한계**가 존재
- 아이템 속성을 수집하고 처리할 때 **시간이 많이 소요**될 수 있으며 아이템의 특성을 정의하기 어렵거나 복잡하면 **성능이 저하**될 가능성이 존재

협업 필터링

• 사용자 기반 협업 필터링 (User-based Collaborative Filtering)

✓ 작동 원리

- 사용자의 선호도를 다른 사용자와 비교하여 나와 비슷한 취향을 가진 사용자를 탐색.
- 비슷한 취향을 가진 다른 사용자가 좋아한 아이템을 나에게 추천. 즉, '비슷한 사람들'이 선호한 아이템이 나에게 적합할 가능성이 높다는 가정에 기반

√ 장점

- **다양한 추천**을 제공할 수 있어 사용자가 좋아할 가능성이 높은 **새로운 아이템을 발견**하여 제공
- 아이템의 특성을 직접 분석할 필요가 없이 사용자 행동만으로 추천이 가능

√ 단점

- **콜드 스타트 문제**: 신규 사용자나 아이템에 대한 데이터가 부족할 경우 유사성을 기반으로 한 추천이 어려움 존재
- 확장성 문제: 많은 사용자와 아이템이 있는 경우 계산 복잡도가 증가하여 실시간 추천에 어려움이 존재

협업 필터링

• 아이템 기반 협업 필터링 (Item-based Collaborative Filtering)

✓ 작동 원리

- 사용자가 선호한 아이템의 특성을 분석하고 그 아이템과 유사한 다른 아이템 추천
- **아이템 간의 유사성**을 측정한 후 사용자가 선호하는 아이템과 비슷한 속성을 가진 **아이템 추천**

√ 장점

- 사용자 행동에 따라 직관적인 추천이 가능하며 사용자 간의 데이터가 부족해도 **아이템의 유사성만으로 추천**이 가능
- 상대적으로 계산 복잡도가 낮아 **대규모 데이터**에서도 **성능이 유지**

√ 단점

- 아이템 간의 유사성이 명확하지 않을 때 추천 품질이 저하될 가능성 존재
- **새로운 사용자**에게는 적절한 **추천 어려움** 존재

하이브리드 방법

• 각 알고리즘의 **단점을 상호 보완**하여 추천 시스템의 성능을 높이는 방식이며, 일반적으로 두 가지 이상의 알고리즘을 결합하거나 각각의 알고리즘이 제안한 추천 결과를 통합하여 최적의 추천을 생성

✓ 작동 원리

- **혼합형 방식:** 콘텐츠 기반 필터링과 협업 필터링을 동시에 사용하여 두 결과를 결합한 후 사용자에게 최종 추천을 제공
- **단계적 방식:** 먼저 협업 필터링을 사용해 추천을 생성하고 이후 콘텐츠 기반 필터링으로 해당 추천을 필터링하는 방식으로 사용

√ 장점

- **정확성 향상: 각 알고리즘**이 가진 한계를 **상호 보완**할 수 있어 더 정확하고 다각적인 추천이 가능
- 다양성 증대: 협업 필터링의 추천에 콘텐츠 기반 필터링을 추가함으로써 추천 목록의 다양성 증가

✓ 단점

- 두 알고리즘을 결합함에 따라 **계산 복잡도가 증가**하고 시스템 구현과 **유지보수 어려움** 존재
- **데이터**가 충분히 **확보되지 않은 경우** 각 알고리즘의 결합이 오히려 **추천 성능 저해**

추천 시스템의 핵심 요소

데이터 수집

• 명시적 피드백(Explicit Feedback)

- ✓ 사용자가 의도적으로 남긴 명확한 반응 데이터를 의미. 명시적 피드백은 사용자가 선호를 직접적으로 표현하는 방식으로 수집되며 사용자 선호 도를 명확하게 반영하는 중요한 정보
 - 평점: 사용자가 콘텐츠나 상품에 대해 부여하는 점수(예: 1∼5점 평점). 넷플릭스에서는 시청자가 영화나 드라마에 대해 별점 평가를 남기면 추천 알고리즘에 반영
 - **리뷰:** 상품이나 콘텐츠에 대해 사용자가 작성한 텍스트 리뷰. 아마존은 상품에 대한 리뷰를 바탕으로 추천 품질을 향상
 - 좋아요/싫어요: 유튜브나 소셜 미디어에서 사용자들이 영상이나 게시물에 대해 남기는 좋아요나 싫어요의 클릭 기록

데이터 수집

• 암시적 피드백(Implicit Feedback)

- ✓ 사용자가 직접적으로 선호를 표현하지는 않았지만 행동을 통해 간접적으로 나타나는 데이터. 암시적 피드백은 사용자의 행동 패턴을 통해 선호 도를 추론할 수 있으며 더 많은 양의 데이터를 수집할 수 있다는 장점이 존재
 - **클릭:** 사용자가 웹사이트에서 클릭한 모든 항목의 기록. 예를 들어, 사용자가 특정 상품 페이지를 여러 번 방문했지만 구매하지 않았다면 이는 사용자가 관심을 가지고 있음을 의미
 - 조회 시간: 사용자가 콘텐츠를 얼마나 오래 시청하거나 읽었는지를 기록. 유튜브에서는 동영상을 시청한 시간에 따라 추천 알고리즘이 조정되며 짧은 시간 동안 여러 개의 영상을 본 사용자에게는 빠른 템포의 콘텐츠를 추천
 - **구매 기록:** 전자 상거래에서 사용자가 구매한 상품의 기록. 아마존은 구매 이력을 분석하여 비슷한 상품을 추천
 - 검색 기록(Search History): 사용자가 검색창에 입력한 키워드와 그에 따른 검색 결과를 클릭한 이력. 사용자가 검색한 상품 카테고리나 키워
 드가 추천 시스템에서 중요한 데이터로 활용

사용자 프로파일링

- 개별 사용자의 선호와 행동 패턴을 분석하여 사용자의 관심사와 취향을 반영한 프로파일을 만드는 과정. 이를 통해 추천 시스템은 사용자에게 더 정확한 맞춤형 추천을 제공
 - ✓ **행동 기반 프로파일링:** 사용자의 클릭, 시청, 구매 이력 등의 **행동 데이터**를 기반으로 그들의 관심사를 추정. 예를 들어, 스포티파이는 사용자의 음악 청취 패턴을 분석하여 특정 장르나 아티스트에 대한 선호도를 파악
 - ✔ 명시적 선호 프로파일링: 사용자가 직접 입력한 선호 정보나 평가 데이터를 기반으로 프로파일을 생성. 예를 들어, 사용자가 특정 영화에 대해 높은 평점을 남겼다면 비슷한 장르나 감독의 다른 작품도 추천에 반영
 - ✓ **잠재 요인 모델링(Latent Factor Modeling)**: 사용자의 명시적인 평가 데이터나 행동 패턴을 바탕으로 개별적인 선호도와 관련된 잠재적 요소들을 추정. 이는 행렬 분해(Matrix Factorization) 기법 등을 통해 사용자의 숨겨진 선호를 발견하여 추천 품질을 높이는 데 활용

아이템 프로파일링

- 아이템 프로파일링은 상품이나 콘텐츠 자체의 속성을 분석하여 추천에 활용하는 과정. 이는 콘텐츠 기반 필터링에서 중요한 역할을 수행
 - ✓ **메타데이터 분석:** 영화, 책, 상품 등의 **메타데이터**(장르, 주제, 출판사, 감독, 배우, 카테고리 등)를 활용하여 아이템의 특성을 파악. 예를 들어, 넷 플릭스는 영화의 장르, 감독, 주연 배우 등의 정보를 분석하여 유사한 영화들을 추천.
 - ✓ 텍스트 마이닝(Text Mining): 리뷰, 아이템 설명 등 텍스트 데이터를 분석하여 아이템에 대한 더 구체적인 정보를 추출. 이 과정을 통해 콘텐츠의 주제나 분위기를 파악할 수 있으며 이를 바탕으로 관련 있는 다른 콘텐츠를 추천
 - ✔ 음악 및 이미지 분석: 스포티파이와 같은 음악 스트리밍 서비스는 음원 파일을 분석하여 곡의 리듬, 템포, 악기 구성 등을 기반으로 유사한 음악을 추천, 이미지 기반의 분석도 쇼핑 플랫폼에서 활용되며 유사한 디자인이나 색상의 제품을 추천하는 데 활용

유사성 측정

• 피어슨 상관계수(Pearson Correlation Coefficient)

- ✓ 피어슨 상관계수는 두 변수 간의 선형 관계를 측정하는 방법으로 사용자나 아이템 간의 상관관계를 계산하는 데 자주 사용
 - 작동 원리: 두 변수의 공분산을 각 변수의 표준편차로 나누어 상관관계를 구하며 -1에서 1 사이의 값으로 표현. 1에 가까울수록 양의 상관관계가 크다는 의미이며 -1에 가까울수록 반대의 경향을 의미
 - **적용:** 사용자 간의 평점 패턴을 분석하거나 아이템의 선호도 간의 상관관계를 측정하는 데 활용

• 코사인 유사도(Cosine Similarity)

- ✓ 코사인 유사도는 두 벡터 사이의 각도를 기반으로 유사성을 측정하는 방법. 주로 사용자와 아이템 간의 벡터화된 데이터를 비교하는 데 사용
 - 작동 원리: 두 벡터의 내적을 각 벡터의 크기로 나누어 계산하며 값이 1에 가까울수록 두 벡터(사용자 또는 아이템)가 유사하다고 판단. 예를 들어, 두 사용자가 비슷한 영화를 시청하고 유사한 평점을 남겼다면 이들의 벡터 간 각도는 작고 코사인 유사도는 높게 도출
 - **적용:** 협업 필터링에서 사용자 혹은 아이템 간의 유사성을 계산하는 데 자주 사용

추천 시스템의 도전과제

데이터 희소성: 콜드 스타트 문제

• 데이터 희소성은 추천 시스템이 충분한 사용자나 아이템 데이터를 확보하지 못했을 때 발생하는 문제로, 특히 **콜드 스타트**(Cold Start) 문제와 밀접한 관련성 존재

✓ 신규 사용자 문제

- 신규 사용자가 플랫폼에 처음 가입하면 해당 사용자의 과거 행동 데이터가 부족하기 때문에 개인화된 추천을 제공하는데 현실적 어려움 존재
- 추천 시스템은 사용자의 취향을 파악할 만한 정보가 거의 없기 때문에 기본적인 추천을 제공하거나 모든 사용자에게 동일한 아이템을 추천하는 방식으로 동작

✓ 신규 아이템 문제

새로운 상품이나 콘텐츠가 추가될 때 아이템에 대한 사용자 피드백이나 상호작용 데이터가 없기 때문에 추천 시스템이 해당 아이템을 추천하는 데 어려움이 존재하며, 이는 콘텐츠 기반 필터링보다 협업 필터링에서 더 두드러지게 강조

확장성: 대규모 데이터 처리의 어려움

• 추천 시스템은 많은 사용자와 아이템을 처리해야 하므로 데이터의 양이 커질수록 확장성 문제가 발생. 특히, 실시간으로 대규모 데이터를 처리하고 적시에 맞춤형 추천을 제공하는 것은 기술적인 도전과제

✓ 데이터 처리의 복잡성

- 사용자와 아이템의 수가 기하급수적으로 늘어날수록 추천을 생성하는 데 필요한 계산 복잡도 증가
- 이를 처리하기 위해서는 대규모 데이터에 대한 실시간 분석과 계산이 필요하며 이는 서버 자원과 알고리즘의 효율성에 부담을 초래

✓ 실시간 추천의 어려움

- 사용자 행동이 실시간으로 변화하는 환경에서는 빠른 속도로 데이터를 처리하고 즉각적인 추천을 생성하는 것이 매우 중요.
- 대규모 데이터를 실시간으로 분석하는 것은 많은 연산 자원을 필요로 하며 이는 성능 저하의 원인으로 작동

편향과 다양성 문제: 필터 버블 현상

• 추천 시스템이 특정 콘텐츠나 상품을 지나치게 반복해서 추천할 경우 사용자에게 제한된 경험만을 제공하는 편향(Bias)과 다양성 부족 문제가 발생

✓ 편향 문제

- 추천 시스템은 사용자 행동 데이터를 기반으로 작동하기 때문에 사용자가 이전에 선호했던 콘텐츠나 상품에만 집중하는 경향이 존재
- 사용자는 새로운 콘텐츠를 발견할 기회를 잃고 추천 시스템은 특정 유형의 아이템만을 추천하는 편향 발생

✓ 다양성 부족과 필터 버블

- 필터 버블은 사용자가 특정 취향에 맞는 콘텐츠만 추천 받고, 그 외의 정보에 접근할 기회를 제한 받는 현상
- 이로 인해 사용자는 자신의 세계관과 선호에 맞는 정보만 접하게 되어 정보의 편중이 발생

감사합니다