Institut für Praktische Informatik

Fachgebiet Datenbanken und Informationssysteme

Prof. Dr. Udo Lipeck/M.Sc. Oliver Pabst

Übung zur Vorlesung "Data Mining" im Sommersemester 2015

Übungsblatt 4

Aufgabe 1 (Apriori-Algorithmus mit mehrfachem Minimal-Support)

Gegeben sei wieder die aus vorigen Übungsblättern bekannte Transaktionsdatenbank:

Nr.	Transaktion
1	{ E, M, O, R, S }
2	{ E, N, O, S }
3	$\{A, B, D, E, N, O, R, S\}$
4	$\{A, D, N, R, S, T\}$
5	{ E, M, R }

Diesmal gilt jedoch der minimale Support von minsup = $\frac{3}{5}$ nicht für alle Items der Datenbank: Für das Item D soll minsup $(D) = \frac{2}{5}$ und für R minsup $(R) = \frac{4}{5}$ gelten.

Wenden Sie die in der Vorlesung vorgestellte Modifikation des Apriori-Algorithmus für mehrfachen Minimal-Support an, um alle Frequent Itemsets zu finden.

Lösung:

Sortierung der Items nach ihrem Minimal-Support (und zweitrangig alphabetisch):

Nr.	Transaktion				
1	{ E, M, O, S, R }				
2	$\{ E, N, O, S \}$				
3	{ D, A, B, E, N, O, S, R }				
4	{ D, A, N, S, T, R }				
5	{ E, M, R }				

Schritte des Algorithmus:

F_1	:
Set	σ
{D}	2
{E}	4
{N}	3
{O}	3
{S}	4
{R}	4

C_2 :				
Set	σ			
{D, E}	1			
{D, N}	2 ✓			
$\{D, O\}$	1			
{D, S}	2 <			
{D, R}	$2\checkmark$			
$\{E, N\}$	2			
{E, O}	3 ✓			
$\{E, S\}$	3 ✓			
$\{E, R\}$	3 ✓			
$\{N, O\}$	2			
{N, S}	3 ✓			
$\{N,R\}$	2			
$\{O, S\}$	3 ✓			
$\{O, R\}$	2			
$\{S, R\}$	3 ✓			

F_2 :				
set				
$\{D, N\}$				
$ \{D, S\} $				
$\{D, R\}$				
$\{E, O\}$				
$\{E, S\}$				
$\{E, R\}$				
$\{N, S\}$				
$\{O, S\}$				
$\{S, R\}$				

C_3 :		
Set	σ	F_3 :
$\{D, N, S\}$	2 ✓	set
$\{D, N, R\}$	2 ✓	{D, N, S}
$\{D, S, R\}$	2 ✓	{D, N, R}
$\{E, O, S\}$	3 ✓	$\{D, S, R\}$
$\{E, O, R\}$	2	$\{E, O, S\}$
$\{E, S, R\}$	2	

$C_4 = F_4:$	
Set	Anz
$\{D, N, S, R\}$	2 ✓

Im Vergleich zum unmodifizierten Apriori-Algorithmus mit minsup = $\frac{3}{5}$ (siehe Blatt 1) ist zusätzlich D ein Frequent Item (F_1) . Damit ergibt sich C_2 aus C_2 des unmodifizierten Algorithmus zusammen mit den 5 möglichen Kombinationen von D und allen anderen Frequent Items.

Man beachte, dass das modifizierte Pruning nicht in der Lage ist, das Itemset $\{E, O, R\}$ in C_3 auszuschließen. Dieses Pruning wirkt sich in diesem Beispiel gar nicht aus.

Aufgabe 2 (Apriori-Algorithmus für Sequenzen – GSP)

Die altbekannte Datenbank aus Aufgabe 1 sei hier in trivialer Weise als Sequenzdatenbank interpretiert: Jedes Itemset wird zu einer Sequenz der Länge 1. Außerdem sei wieder ein Minimal-Support (für alle Items) von minsup = 0.6 vorgegeben:

	Nr.	Sequenz
ſ	1	$<\{ \mathrm{E} \mathrm{M} \mathrm{O} \mathrm{R} \mathrm{S} \} >$
	2	$ $ $<$ $\{$ E N O S $\}$ $>$
	3	$<$ { A B D E N O R S } $>$
	4	$ $ $<$ $\{$ A D N R S T $\}$ $>$
	5	$ $ $<$ $\{$ E M R $\}$ $>$

a) Wieviele 2-Sequenzen würde der GSP-Algorithmus mit dieser Eingabe als Kandidaten erzeugen?

Lösung:

Der GSP-Algorithmus erzeugt alle Kandidaten, die der Apriori-Algorithmus (im Fall der Transaktionsdatenbank) ebenfalls erzeugen würde (vgl. Blatt 1): D.h. alle zehn 2-Sequenzen bestehend aus einem Element der Form $<\{ij\}>$ mit zwei Frequent Items i und j, wobei i< j gemäß der Item-Ordnung gilt.

Außerdem werden $5^2=25$ 2-Sequenzen mit zwei Elementen der Form $<\{i\}$ $\{j\}>$ erzeugt; hier kann auch $i\geq j$ gelten!

Insgesamt werden also 10+25=35 Kandidaten für 2-Sequenzen vom GSP-Algorithmus erzeugt.

Die letzten (25) Kandidaten haben allerdings keinen Support, da die Datenbank nur Sequenzen der Länge 1 enthält, die wiederum keine Teilsequenzen, die länger als 1 Element sind, enthalten können. Somit kann es höchstens häufige Teilsequenzen der Länge 1 geben.

b) Wie lauten die häufigen Teilsequenzen für diese Datenbank? Lösung:

Alle häufigen Teilsequenzen ergeben sich auf triviale Weise (wie oben) aus dem Ergebnis des Apriori-Algorithmus für die Transaktionsdatenbank (siehe Blatt 1).

Aufgabe 3 (Zeitliche Constraints für Sequenzen)

Gegeben sei die Sequenz < {A} {B} {C} {A B} {A C} {B C} >. Nehmen Sie an, dass die Elemente der Sequenz an fortlaufenden Zeitpunkten auftreten.

Welche der folgenden Sequenzen sind Teilsequenzen der obigen Sequenz und erfüllen die zeitlichen Constraints max-gap = 2 bzw. max-span = 4 (mit windowsize=0)?

Was "andert" sich "mit" windowsize = 1?

Lösung:

Mit windowsize = 0 (und min-gap = 0):

Sequenz Nr. 1:

ist Teilsequenz der Ausgangssequenz — Zuordnung:

$$\{A\} \rightarrow \{A\} \text{ (Position 1), } \{C\} \rightarrow \{C\} \text{ (Position 3),}$$

$$\{AC\} \rightarrow \{AC\}$$
 (Position 5) und $\{BC\} \rightarrow \{BC\}$ (Position 6).

$$gaps(Seq. 1) = \{(3-1), (5-3), (6-5)\} = \{1, 2\} \le 2 : max-gap erfüllt$$

$$\operatorname{span}(\operatorname{Seq}, 1) = 6 - 1 = 5 > 4 : \operatorname{max-span} \operatorname{nicht} \operatorname{erfüllt}$$

Sequenz Nr. 2:

ist Teilsequenz der Ausgangssequenz – eine mögliche Zuordnung:

$$\{B\} \rightarrow \{AB\}$$
 (Position 4), $\{AC\} \rightarrow \{AC\}$ (Position 5).

Und damit gaps(Seq. 2) = $\{1\} \le 2$ sowie span(Seq. 2) = $1 \le 4$; Constraints erfüllt.

(Bei Nichterfüllung müssten alle möglichen Zuordnungen überprüft werden.)

Sequenz Nr. 3:

Keine Teilsequenz der Ausgangssequenz, da keine Zuordnung möglich.

Mit windowsize = 1 (und min-gap = 0):

Sequenzen Nr. 1 uns 2: wie vorher

Sequenz Nr. 3: neue Zuordnung möglich:

$$\{AB\} \rightarrow \{A\} \cup \{B\} \text{ (Position 1 & 2), } \{ABC\} \rightarrow \{C\} \cup \{AB\} \text{ (Position 3 & 4)}$$
 $\{ABC\} \rightarrow \{AC\} \cup \{BC\} \text{ (Position 5 & 6).}$

Und damit gaps(Seq. 2) = $\{1\}$ = $1 \le 2$, aber maxspan = 6 - 1 = 5 > 4.

Insgesamt (links windowsize=0, rechts windowsize=1):

Nr.	Teilseq.	\max -gap ≤ 2	\max -span ≤ 4	ws-Teilseq.	\max -gap ≤ 2	\max -span ≤ 4
1	ja	ja	nein	ja	ja	nein
2	ja	ja	ja	ja	ja	ja
3	nein			ja	ja	nein

Aufgabe 4 (Generalized Sequential Pattern (GSP) Algorithmus)

Gegeben sei nun eine (interessantere) Sequenzdatenbank und ein Minimal-Support von minsup = 0.25:

Nr.	Sequenz
1	$< \{1\} \{2\} \{3\} >$
2	$ <\{1\}\ \{2\ 5\}>$
3	$< \{1\} \{5\} \{3\} >$
4	$< \{1\} \{2\ 5\} \{3\ 4\} >$
5	$< \{2\} \{3\} \{4\} >$
6	$<\{2\ 5\}\ \{3\}>$
7	$< \{3\} \{4\} \{5\} >$
8	$< \{5\} \{3 \ 4\} >$

Führen Sie den GSP-Algorithmus gemäß Vorlesung durch, um alle häufigen Teilsequenzen zu finden. Geben Sie für jeden Iterationsschritt k die Menge der Frequent k-Subsequences F_k sowie die Menge der Kandidaten C_k an. (Sie dürfen C_2 weglassen.)

Hinweis: Die angegebene Datenbank ist sehr ähnlich zum GSP-Beispiel aus der Vorlesung.

Lösung:

F_3 :			
Seq	C_4 :		
$< \{1\} \{2\} \{3\} >$	Set	Anz	
$ $ < {1} {2 5} >	$< \{1\} \{2\ 5\} \{3\} >$	1	$F_4 = \emptyset$
$ $ < {1} {5} {3} > $ $	$< \{1\} \{5\} \{3 \ 4\} >$		
$ $ < $\{2\ 5\}\ \{3\}$ >	$< \{25\} \{34\} >$		
$< \{5\} \{3 \ 4\} >$			

Durchgestrichene Sequenzen enthalten Teilsequenzen, die nicht häufig sind, und fallen somit durch das Pruning weg.