**Shusen Wang** 

# Path in Undirected Graphs



#### **Definition: Path**

A sequence of vertices

$$(v_4, v_2, v_1, v_3, v_6, v_7)$$

Or a sequence of edges

$$(e_{4,2}, e_{2,1}, e_{1,3}, e_{3,6}, e_{6,7}).$$



### Definition: Length of path

- Length of a path is the number of edges on the path.
- In this example, the length is 5.



**Definition: Path** 

A sequence of vertices

$$(v_4, v_5, v_7)$$

Or a sequence of edges

$$(e_{4,5}, e_{5,7}).$$



### Definition: Length of path

- Length of a path is the number of edges on the path.
- In this example, the length is 2.

# Simple Path



### **Definition: Path**

A sequence of vertices

$$(v_4, v_1, v_2, v_4, v_1, v_3, v_6, v_7)$$
.

# Simple Path

#### Not a simple path!



### **Definition: Path**

A sequence of vertices

$$(v_4, v_1, v_2, v_4, v_1, v_3, v_6, v_7)$$
.

### Definition: simple path

• A path that does not repeat vertices is called a simple path.

# Path may not always exist



- There is no path between  $v_1$  and  $v_5$ .
- The path between  $v_1$  and  $v_5$  has a length of  $\infty$ .



#### **Definition: Path**

A sequence of vertices

$$(v_3, v_1, v_4, v_5)$$

• Or a sequence of edges

$$(e_{3,1}, e_{1,4}, e_{4,5}).$$



Definition: Length of path

- Length of a path is the number of edges on the path.
- In this example, the length is 3.

# Path in Directed Graphs



### Definition: Length of path

- Length of a path is the sum of weights.
- In this example, the length is

$$4+1+2=7$$
.

# Path may not always exist



- There is no path from  $v_1$  to  $v_7$ .
- The path from  $v_1$  to  $v_7$  has a length of  $\infty$ .



### **Definition**

• Inputs: graph  $G = (V, \mathcal{E})$ , the source vertex, s, and the destination, d.



#### **Definition**

- Inputs: graph  $G = (V, \mathcal{E})$ , the source vertex, s, and the destination, d.
- There can be multiple paths from s to d.



#### **Definition**

- Inputs: graph  $G = (V, \mathcal{E})$ , the source vertex, s, and the destination, d.
- There can be multiple paths from s to d.
- Among all the paths, the one with the smallest length is called the shortest path.



#### **Definition**

- Inputs: graph  $\mathcal{G} = (\mathcal{V}, \mathcal{E})$  and the source vertex, s.
- **Goal:** find the shortest path from *s* to every other vertex in *G*.



### **Example**

- Source:  $s = v_3$ .
- Find the shortest path from  $v_3$  to all the other vertices.



| vertex | dist | path  |
|--------|------|-------|
| $v_1$  | 4    | $v_3$ |
| $v_2$  | 6    | $v_1$ |
| $v_3$  | 0    | 0     |
| $v_4$  | 5    | $v_1$ |
| $v_5$  | 7    | $v_4$ |
| $v_6$  | 5    | $v_3$ |
| $v_7$  | 7    | $v_6$ |



| vertex | dist | path  |
|--------|------|-------|
| $v_1$  | 4    | $v_3$ |
| $v_2$  | 6    | $v_1$ |
| $v_3$  | 0    | 0     |
| $v_4$  | 5    | $v_1$ |
| $v_5$  | 7    | $v_4$ |
| $v_6$  | 5    | $v_3$ |
| $v_7$  | 7    | $v_6$ |



| vertex | dist | path  |
|--------|------|-------|
| $v_1$  | 4    | $v_3$ |
| $v_2$  | 6    | $v_1$ |
| $v_3$  | 0    | 0     |
| $v_4$  | 5    | $v_1$ |
| $v_5$  | 7    | $v_4$ |
| $v_6$  | 5    | $v_3$ |
| $v_7$  | 7    | $v_6$ |



| vertex | dist | path  |
|--------|------|-------|
| $v_1$  | 4    | $v_3$ |
| $v_2$  | 6    | $v_1$ |
| $v_3$  | 0    | 0     |
| $v_4$  | 5    | $v_1$ |
| $v_5$  | 7    | $v_4$ |
| $v_6$  | 5    | $v_3$ |
| $v_7$  | 7    | $v_6$ |

## Lengths of the shortest paths.



| vertex | dist | path  |
|--------|------|-------|
| $v_1$  | 4    | $v_3$ |
| $v_2$  | 6    | $v_1$ |
| $v_3$  | 0    | 0     |
| $v_4$  | 5    | $v_1$ |
| $v_5$  | 7    | $v_4$ |
| $v_6$  | 5    | $v_3$ |
| $v_7$  | 7    | $v_6$ |

## Recover the shortest paths



### The previous vertex along the path.

| vertex | dist | path  |
|--------|------|-------|
| $v_1$  | 4    | $v_3$ |
| $v_2$  | 6    | $v_1$ |
| $v_3$  | 0    | 0     |
| $v_4$  | 5    | $v_1$ |
| $v_5$  | 7    | $v_4$ |
| $v_6$  | 5    | $v_3$ |
| $v_7$  | 7    | $v_6$ |

What is the shortest path from  $v_3$  to  $v_2$ ?

• The 2<sup>nd</sup> row in the table:  $v_1 \rightarrow v_2$ .

| vertex | dist | path  |
|--------|------|-------|
| $v_1$  | 4    | $v_3$ |
| $v_2$  | 6    | $v_1$ |
| $v_3$  | 0    | 0     |
| $v_4$  | 5    | $v_1$ |
| $v_5$  | 7    | $v_4$ |
| $v_6$  | 5    | $v_3$ |
| $v_7$  | 7    | $v_6$ |

## What is the shortest path from $v_3$ to $v_2$ ?

- The 2<sup>nd</sup> row in the table:  $v_1 \rightarrow v_2$ .
- The 1<sup>st</sup> row in the table:  $v_3 \rightarrow v_1$ .
- Thus, the shortest path is

$$v_3 \rightarrow v_1 \rightarrow v_2$$
.

| vertex | dist | path  |
|--------|------|-------|
| $v_1$  | 4    | $v_3$ |
| $v_2$  | 6    | $v_1$ |
| $v_3$  | 0    | 0     |
| $v_4$  | 5    | $v_1$ |
| $v_5$  | 7    | $v_4$ |
| $v_6$  | 5    | $v_3$ |
| $v_7$  | 7    | $v_6$ |

# Questions

# **Question 1**



- Q: What is the shortest paths?
  - From  $v_1$  to  $v_1$ .
  - From  $v_1$  to  $v_3$ .
  - From  $v_1$  to  $v_7$ .
- Q: What are the lengths of these shortest paths?

## **Question 2**

- The graph is directed and weighted.
- Let  $v_3$  be the source vertex.
- The table reflects the single-source shortest paths.
- Q: What is the shortest path from  $v_3$  to  $v_7$ ?
- Q: What is the length of this shortest path?

| vertex | dist | path  |
|--------|------|-------|
| $v_1$  | 4    | $v_3$ |
| $v_2$  | 6    | $v_1$ |
| $v_3$  | 0    | 0     |
| $v_4$  | 5    | $v_1$ |
| $v_5$  | 7    | $v_4$ |
| $v_6$  | 5    | $v_3$ |
| $v_7$  | 7    | $v_6$ |

# Thank You!