仓库容量有限条件下的随机存贮管理问题

摘要:本文讨论了仓库容量有限条件下的随机存贮管理问题。首先建立了一个理论模型,根据题目要求写出平均费用的函数,该函数是关于订货点 L 和缺货天数 X 的函数,因为缺货天数 X 是一随机变量,这里给出了 X 为离散型和连续型两种模型,分三种情况讨论了各自的损失费用,然后得出期望平均费用函数 E[f(L,X)],经过 Maple 软件的辅助,对 L 进行求导,令 $\frac{dE[f(L,X)]}{dL}=0$ 从而得出求解最优订货点 L^* 的方程。由于计算量太过庞大,所以在建立理论模型之后,本文还给出了一种比较实用的求解全局最优的遍历搜索算法,应用于问题 2 中求解出了三种商品各自的最佳订货点。经 SPSS 验证可知,问题 2 中给出的 3 种商品的缺货天数 X 不符合一些常见连续型的概率分布,故在求解时将 X 看做离散型的随机变量,采用频率替换的方法,计算出各自的 P(X) ,经遍历搜索找到最佳订货点。在问题 3 中,类似问题 1 的解法,求出计算最佳订货点 L_i^* 的理论模型,同时为便于问题 4 的求解,依然采用解决问题 2 的遍历算法,经 Matlab 编程求解得出问题 4 的最佳订货点 L^* 、 Q_{0i} 和 Q_{i} 。问题 5 中假定商品的销售量是离散变化的,采用马氏链模型,在问题 2 的基础上补充假设条件,给出了单品种商品随机存贮模型,这一模型结合实际可以加以推广。

本文分为三个部分:第一部分是问题重述;第二部分是给出随机存贮问题的数学模型和一个搜索算法,通过计算机编程,应用于问题 2 和 4 中,从而给出了实际问题的最优解。第三部分为模型的评价和推广。

关键字: 随机存贮, K-S 检验, 频率替换, 遍历搜索, 马氏链模型

一、问题重述

工厂生产需定期地定购各种原料,商家销售要成批地购进各种商品。无论是原料或商品,都有一个怎样存贮的问题。存得少了无法满足需求,影响利润;存得太多,存贮费用就高。因此说存贮管理是降低成本、提高经济效益的有效途径和方法。本问题主要考虑的是在销售速率固定,交货时间为一随机变量的情况下,商场如何确定最优的订货点 \boldsymbol{L}^* 来使的其总的损失费用达到最低。

二、数学建模和问题求解

(一) 问题 1:

1.1 模型假设:

- 1. 供货量充足
- 2. 每次订货的时候存贮量 q 刚好是 L。

1.2 符号说明:

- c_1 : 每次进货的订货费
- c_3 : 使用自己的仓库存贮商品时,单位商品每天的存贮费用
- c,: 使用租用的仓库存贮商品时,单位商品每天的存贮费用
- c_{4} : 缺货情况下,单位商品每天的损失费用
- X: 交货时间,是一个随机变量
- Q_0 : 自己的仓库用于存贮商品的最大容量
- Q: 到货时商品的存贮量
- q: 商品的存贮量
- L: 订货点,即订货时商品所剩下的存贮量
- L^* : 最优订货点,即使总损失费用达到最低的订货点

f(L,X): 一个订货周期内的平均总损失费用,是关于L和X的函数 p(X): 交货时间的概率密度函数

1.3 解题思路:

假设随机变量 X(交货时间)的密度函数已知为 p(x)。考虑某个周期内平均每天的损失费用设为 g(L),求其最小时 L 的取值 L^* 。因为 $L \leq Q_0$ 和 $L > Q_0$ 时 g(L) 的表达式是不同的,所以分三步来求 L^* 。

- (1) 当 $L \leq Q_0$ 时,求出 $L_1^* = L_1(p(x))$,使得 $g(L_1^*) = \min(g(L), \forall L \leq Q_0)$ 。
- (2) 当 $L > Q_0$ 时,求出 $L_2^* = L_2(p(x))$,使得 $g(L_2^*) = \min(g(L), \forall L > Q_0)$ 最小。

(3)
$$L^* = \begin{cases} L_1^* & g(L_1^*) \le g(L_2^*) \\ L_2^* & g(L_1^*) > g(L_2^*) \end{cases}$$

1.4 具体步骤

第一步: 考虑 $L \leq Q_0$ 时一个周期内平均每天的损失费用 f(L,X) 。

因为在一个周期内可能会发生 $0 \le X \le \frac{L}{r}$ (会发生缺货)或 $X > \frac{L}{r}$ (不会缺货)的情况。分别考虑得到费用函数为:

$$f(L,X) = \begin{cases} \frac{A - \frac{c_2 r}{2} (X - \frac{L}{r})^2}{X + \frac{Q - L}{r}} & 0 \le X \le \frac{L}{r} \\ \frac{A + c_4 r (X - \frac{L}{r})}{X + \frac{Q - L}{r}} & X > \frac{L}{r} \end{cases}$$

其中
$$A = c_1 + \frac{c_2 Q^2}{2r} + \frac{(c_3 - c_2)(Q - Q_0)^2}{2r}$$

现在来具体解释 f(L,X):

见图 1.1: 设在 0 时刻,存贮量为Q;在a时刻存贮量降为L,开始订货(易知 $a=\frac{Q-L}{r}$)。在X+a时刻货到,在X+2a存贮量又降为L。以[a X+2a]为一个周期,求其费用。由图易知,[a X+2a]周期内的费用等于[0 a+X]的费用,所以只需求 [0 a+X]的费用,其值为 $c_1+c_3\times S(QQ_0\ c)+c_2\times S(0\ Q_0\ c\ a+X)$ (注: $S(QQ_0\ c)$ 表示($QQ_0\ c$) 围成的面积)。易证

$$\begin{split} &c_{1}+\times c_{3}\times S(Q\ Q_{0}\ c)+c_{2}\times S(0\quad Q_{0}\ c\quad a+X)=\\ &c_{1}+c_{2}\times S(0\quad Q\quad \frac{Q}{r})+(c_{3}-c_{2})\times S(Q\quad Q_{0}\ c)-c_{2}\times S(d\ a+X\quad \frac{Q}{r})\\ &=c_{1}+c_{2}\int_{0}^{\frac{Q}{r}}rtdt+(c_{3}-c_{2})\int_{0}^{\frac{Q-Q_{0}}{r}}rtdt-c_{2}\int_{0}^{\frac{L}{r}-X}rtdt\\ &=A-\frac{c_{2}r}{2}(X-\frac{L}{r})^{2} \end{split}$$

所以这个周期内的平均每天的费用为 $\frac{A - \frac{c_2 r}{2} (X - \frac{L}{r})^2}{X + \frac{Q - L}{r}}$ 。

(2) 当
$$X > \frac{L}{r}$$
时

见图 1.2, 考虑 $[0 \ a+X]$ 之间的费用,其值为

$$\begin{split} c_1 + c_3 \times S(Q \ Q_0 \ c) + c_2 \times S(0 \ Q_0 \ c \ \frac{Q}{r}) + c_4 r(X - \frac{L}{r}) \ . \ \ & \\ \mathcal{G}_1 + c_3 \times S(Q \ Q_0 \ c) + c_2 \times S(0 \ Q_0 \ c \ \frac{Q}{r}) + c_4 r(X - \frac{L}{r}) = \\ c_1 + c_2 \times S(0, Q \ \frac{Q}{r}) + (c_3 - c_2) \times S(Q \ Q_0 \ c) + c_4 r(X - \frac{L}{r}) = A + c_4 r(X - \frac{L}{r}) \\ \text{所以这个周期内的平均每天的费用为} \\ \frac{A + c_4 r(X - \frac{L}{r})}{X + \frac{Q - L}{r}} \end{split}$$

要求 L^* 使得平均每天费用的期望值最小,即满足:

$$E[f(L_1^*, X)] = \min E[f(L, X)] \quad (\forall L \le Q_0)$$

(1) 若 X 为离散型:

 $E[f(L,X)] = \sum_i f(L,x_i)P(x_i)$,这是一个关于L的函数,在 $P(x_i)$ 已知的情况下, 令 $\frac{dE[f(L,X)]}{dL}$ =0,可求得 L_1^* (2)若X为连续型则

$$E[f(L,X)] = \int_0^\infty f(L,x)p(x)dx = \int_0^{\frac{L}{r}} f(L,x)p(x)dx + \int_{\frac{L}{r}}^\infty f(L,x)p(x)dx$$

$$= \int_{0}^{L} \left[\frac{A - \frac{c_2 r}{2} (x - \frac{L}{r})^2}{x + \frac{Q - L}{r}} \right] p(x) dx + \int_{\frac{L}{r}}^{\infty} \left[\frac{A + c_4 r (x - \frac{L}{r})}{x + \frac{Q - L}{r}} \right] p(x) dx$$

这是一个关于L的函数,令 $\frac{dE[f(L,X)]}{dL}$ =0,即可求得 L_1^* 。

通过 Maple 求 $\frac{dE[f(L,X)]}{dL}$ 有

$$\frac{dE[f(L,X)]}{dL} = \int_0^L \frac{c_2(x - \frac{L}{r})p(x)}{x + \frac{Q - L}{r}} + \frac{\left[c_1 + \frac{c_2Q^2}{2r} + \frac{(c_3 - c_2)(Q - Q_0)^2}{2r} - \frac{1}{2}c_2r(x - \frac{L}{r})^2\right]p(x)}{\left[x + \frac{Q - L}{r}\right]^2 r} dx$$

$$+\int_{\frac{L}{r}}^{\infty} -\frac{c_4 p(x)}{x + \frac{Q - L}{r}} + \frac{\left[c_1 + \frac{c_2 Q^2}{2r} + \frac{(c_3 - c_2)(Q - Q_0)^2}{2r} + c_4 r(x - \frac{L}{r})\right] p(x)}{(x + \frac{Q - L}{r})^2 r} dx \quad (1.1)$$

则最优订货点 L_1^* 就是代入 (1.1) 中使之值为 0 的L值。

第二步: 考虑 $L > Q_0$ 时一个周期内平均每天的费用 f(L, X)。

$$f(L,X) = \begin{cases} A - \frac{c_2 r}{2} (X - \frac{L}{r})^2 - \frac{(c_3 - c_2)r}{2} (X - \frac{L - Q_0}{r})^2 \\ X + \frac{Q - L}{r} \end{cases}$$

$$(0 \le X \le \frac{L - Q_0}{r})$$

$$\frac{A - \frac{c_2 r}{2} (X - \frac{L}{r})^2}{X + \frac{Q - L}{r}} \qquad (\frac{L - Q_0}{r} < X \le \frac{L}{r})$$

$$\frac{A + r (X - \frac{L}{r})}{X + \frac{Q - L}{r}} \qquad (X > \frac{L}{r})$$

其中
$$A = c_1 + \frac{c_2 Q^2}{2r} + \frac{(c_3 - c_2)(Q - Q_0)^2}{2r}$$

现在来具体解释 f(L,X):

(1) 当
$$0 \le X \le \frac{L - Q_0}{r}$$
时

见图 1.3, 同理考虑 $[0 \ a+X]$ 的费用,其值为

$$c_1 + c_3 \times S(Q Q_0 d e) + c_2 \times S(0 Q_0 d a + X)$$
。 易证:

$$c_1 + c_3 \times S(Q Q_0 d e) + c_2 \times S(0 Q_0 d a + X) =$$

$$c_1 + c_2 \times S(0, Q \mid \frac{Q}{r}) + (c_3 - c_2) \times S(Q \mid Q_0 \mid c) - c_2 \times S(e \mid a + x \mid \frac{Q}{r}) - (c_3 - c_2) \times S(e \mid d \mid c)$$

$$= A - c_2 \int_0^{L-X} rtdt - (c_3 - c_2) \int_0^{L-Q_0} rtdt$$

$$= A - \frac{c_2 r}{2} (X - \frac{L}{r})^2 - \frac{(c_3 - c_2) r}{2} (\frac{L - Q_0}{r} - X)^2$$

所以这个周期内的平均每天的费用为 $\frac{A-\frac{c_2r}{2}(X-\frac{L}{r})^2-\frac{(c_3-c_2)r}{2}(\frac{L-Q_0}{r}-X)^2}{X+\frac{Q-L}{r}}$

(2) 当
$$\frac{L-Q_0}{r} < X \le \frac{L}{r}$$
 和 $X > \frac{L}{r}$ 时候的情况,参看图 1.4 和 1.5,类似于第一步

里的情形,即可得到其平均每天的费用函数。

要求 L_2^* 使得平均每天费用的期望值最小,即要满足:

$$E[f(L_2^*, X)] = \min E[f(L, X)] \quad (\forall L > Q_0)$$

(1) 若 X 为离散型:

 $E[f(L,X)] = \sum_i f(L,x_i) P(x_i), \text{ 这是一个关于 L 的函数,在 $P(x_i)$ 已知的情况下, <math display="block"> \diamondsuit \frac{dE[f(L,X)]}{dL} = 0, \text{ 可求得 L_2}^*.$

(2) 若*X*为连续型:

$$E[f(L,X)] = \int_{0}^{\infty} f(L,x)p(x)dx$$

$$= \int_{0}^{\frac{L-Q_{0}}{r}} f(L,x)p(x)dx + \int_{\frac{L-Q_{0}}{r}}^{\frac{L}{r}} f(L,x)p(x)dx + \int_{\frac{L}{r}}^{\infty} f(L,x)p(x)dx$$

$$= \int_{0}^{\frac{L-Q_{0}}{r}} \frac{A - \frac{c_{2}r}{2}(x - \frac{L}{r})^{2} - \frac{(c_{3} - c_{2})r}{2}(\frac{L-Q_{0}}{r} - x)^{2}}{x + \frac{Q-L}{r}} p(x)dx$$

$$+ \int_{\frac{L}{r}-Q_{0}}^{\frac{L}{r}} \frac{A - \frac{c_{2}r}{2}(x - \frac{L}{r})^{2}}{x + \frac{Q-L}{r}} p(x)dx + \int_{\frac{L}{r}}^{\infty} \frac{A + c_{4}(x - \frac{L}{r})}{x + \frac{Q-L}{r}} p(x)dx$$

这是一个关于L的函数。

令
$$\frac{dE[f(L,X)]}{dL}$$
=0,即可求得 L_2^* 。

通过 Maple 求 $\frac{dE[f(L,X)]}{dL}$ 有

$$\frac{dE[f(L,X)]}{dL} = \int_{0}^{L-Q_{0}} \frac{[c_{2}(x-\frac{L}{r}) - (c_{3}-c_{2})(\frac{L-Q_{0}}{r}-x)]p(x)}{x + \frac{Q-L}{r}} + \frac{[c_{1} + \frac{c_{2}Q^{2}}{2r} + \frac{(c_{3}-c_{2})(Q-Q_{0})^{2}}{2r} - \frac{1}{2}c_{2}r(x-\frac{L}{r})^{2} - \frac{1}{2}(c_{3}-c_{2})r(\frac{L-Q_{0}}{r}-x)^{2}]p(x)}{[x + \frac{Q-L}{r}]^{2}r} dx$$

$$+\int_{\frac{L}{r}}^{\frac{L}{r}} \frac{c_{2}(x-\frac{L}{r})p(x)}{x+\frac{Q-L}{r}} + \frac{\left[c_{1} + \frac{c_{2}Q^{2}}{2r} + \frac{(c_{3}-c_{2})(Q-Q_{0})^{2}}{2r} - \frac{1}{2}c_{2}r(x-\frac{L}{r})^{2}\right]p(x)}{\left[x+\frac{Q-L}{r}\right]^{2}r} dx$$

$$+\int_{\frac{L}{r}}^{\infty} -\frac{c_{4}p(x)}{x+\frac{Q-L}{r}} + \frac{\left[c_{1} + \frac{c_{2}Q^{2}}{2r} + \frac{(c_{3}-c_{2})(Q-Q_{0})^{2}}{2r} + c_{4}r(x-\frac{L}{r})\right]p(x)}{(x+\frac{Q-L}{r})^{2}r} dx \quad (1.2)$$

则最优订货点 L_2^* 就是代入 (1.2) 中使之值为0的L值。

第三步:

$$L^* = \begin{cases} L_1^* & E[f(L_1^*, X)] \le E[f(L_2^*, X)] \\ L_2^* & E[f(L_1^*, X)] > E[f(L_2^*, X)] \end{cases}$$

(二)问题 2:

2.1 缺货天数的数据分析

这里首先要找出缺货天数X服从何种分布,下面根据题目给出的到货天数的记录判断X服从的分布。

我们采用单样本的 **K-S** 检验,它是一种拟合优度的非参数检验方法,利用样本的数据推断总体是否服从某一理论分布,它适用于探索连续型随机变量的分布形态。它可以将一个变量的实际频数分布与正态分布、均匀分布和指数分布进行比较。

这里以商品三的缺货天数为例来检验 X 是否服从上述三种连续型分布。

One-Sample Kolmogorov-Smirnov Test

		VAR00002
N		61
Normal Parameters a,b	Mean	1.9508
	Std. Deviation	1.16084
Most Extreme	Absolute	.254
Differences	Positive	.254
	Negative	206
Kolmogorov-Smirnov Z		1.981
Asymp. Sig. (2-tailed)		.001

- a. Test distribution is Normal.
- b. Calculated from data.

One-Sample Kolmogorov-Smirnov Test 2

		VAR00002
N		61
Uniform Parameters a,b	Minimum	1.00
	Maximum	6.00
Most Extreme	Absolute	.570
Differences	Positive	.570
	Negative	016
Kolmogorov-Smirnov Z		4.456
Asymp. Sig. (2-tailed)		.000

- a. Test distribution is Uniform.
- b. Calculated from data.

One-Sample Kolmogorov-Smirnov Test 3

		VAR00002
N		61
Exponential parameter.	^{a,b} Mean	1.9508
Most Extreme	Absolute	.401
Differences	Positive	.129
	Negative	401
Kolmogorov-Smirnov Z		3.132
Asymp. Sig. (2-tailed)		.000

- a. Test Distribution is Exponential.
- b. Calculated from data.

上面三张表分别体现的是检验缺货天数 X 是否服从正态分布、均匀分布和指数分布,上述三表中的相伴概率值分别为 0.001, 0.000 和 0.000,均小于 0.05,说明 X 不服从上述三种连续型分布。

因此在这里我们就假定X不是连续型的随机变量,另一方面,当我们假定X是一离散型的随机变量时,可以大大简化实际问题的求解难度。

2.2 程序实现

考虑到问题 2 中 L 是正整数,当 $0 < L \le Q_0$,则 L 可能的取值最多为 Q_0 个,则对每个 L 的可能取值求其 E[f(L,X)], 计算 Q_0 次就可得到 L_1^* 。这比 $\frac{dE[f(L,X)]}{dL} = 0$,来求得 L_1^* 更方便。

具体流程如下图:

其中 Lmin1 用来存储 L_1^* 的值,Emin1 用来存储 $E[f(L_1^*,X)]$ 的值;Lmin2 用来存储 L_2^* 的值,Emin2 用来存储 $E[f(L_2^*,X)]$ 的值。

对于商品一,我们通过连续的36次订货到达时间天数的数据得到:

到达天数 X	0	1	2	3	4	5	6	7
出现频率 P(X)	$\frac{2}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{15}{36}$	$\frac{5}{36}$	$\frac{3}{36}$	$\frac{1}{36}$	$\frac{1}{36}$

通过上述算法我们得出 $\min E[f(L,X)] = 3.3878$, $L^* = 36$ 。

对于商品二,我们通过连续的43次订货到达时间天数的数据得到:

到达天数 X	1	2	3	4	5
出现频率 P(X)	$\frac{2}{43}$	$\frac{23}{43}$	$\frac{12}{43}$	$\frac{5}{43}$	$\frac{1}{43}$

通过上述算法我们得出 $\min E[f(L,X)] = 4.7353$, $L^* = 45$ 。

对于商品三,我们通过连续的61次订货到达时间天数的数据得到:

到达天数 X	1	2	3	4	5	6
出现频率 P(X)	27	20	8	3	2	1
	61	61	61	61	61	61

通过上述算法我们得出 $\min E[f(L,X)] = 10.55$, $L^* = 34$ 。

(三)问题3

3.1 模型假设:

- 1. 各种商品的订货时间是相同的,而且到货时间也是相同的;
- 2. 供货量充足,保证到货后商品存贮体积能够补充到固定值Q,同时各种商品的存贮体积都能补充到各自的固定值Q;
 - 3. 商品的每天的销售是一个连续的状态,而不考虑成离散的状态。

3.2 符号说明:

m: 商品的种类数

r.: 第*i* 种商品的销售速率

 c_1 : 每次进货的订货费,与商品的数量和品种无关

 c_{i} : 第i种商品在使用自己的仓库存贮商品时,单位体积商品每天的存贮费用

 c_{3i} : 第i种商品在使用租用的仓库存贮商品时,单位体积商品每天的存贮费用

 c_{4i} : 第i种商品在缺货情况下,单位体积的商品每天的损失费用

X: 到货时间, 是一个随机变量, m种商品的交货时间都相同

 Q_{0i} : 第i种商品自己的仓库的体积容量

Q: 第i种商品到货时存贮量补充到的固定体积

 Q_0 : 自己的仓库用于存贮m种商品的总体积容量

O: m 种商品到货时存贮量补充到的总固定体积

q: m 种商品的存贮量总体积

L: 订货点,即m种商品订货时商品所剩下的存贮量总体积

 L^* : 最优订货点,即使总损失费用达到最低的订货点

 L_i^* : 总损失费用达到最低时第*i*种商品的订货点,且有 $L^* = \sum_{i=1}^m L_i^*$

 $f_i(L_i,X)$: 第i种商品在一个订货周期内的平均总损失费用,是关于 L_i 和X的函数

f(L,X): m种商品在一个订货周期内的平均总损失费用,有 $f(L,X) = \sum_{i=1}^{m} f_i(L,X)$

p(x): 到货时间X的概率密度函数

E[f(L,X)]: m种商品在一个订货周期内的平均总损失费用的期望

3.4 模型建立:

问题 3 是讨论多种商品需要订货的问题。但由于所有商品每次订货都是在同一时间从同一供应站订货,所以可以以问题 1 中的单一商品存贮模型为基础,建立多种商品的随机存贮模型。但必须注意,问题 1 模型的考虑是以商品的数量为基准的,而问题 3 的模型是以商品的体积为基准考虑。

先说明当L固定, Q_i 固定时候,任意次当存贮量q降到L时即任意次开始订货的时候,此时每种商品的存贮量 L_i 是固定不变的。

解释如下:

见图 3.1:设t=0时所有商品的存贮量为 Q_i ,经过k时间,总商品存贮量首次降到 L,此时各商品的存储量为 $L_i=\max(-r_ik+Q_i,0)$,开始订货。过了x时间,货到,各商品的存贮量又为 Q_i ,则以x时刻为起点,经过k时间总商品的存贮量将首次到达L,此时各商品的存储量为 L_i ,由图易知对于同一商品 L_i 不变。

因为各种商品的订货时间是相同则可得到:

$$\begin{cases} \frac{Q_1 - L_1}{v_1 r_1} = \frac{Q_2 - L_2}{v_2 r_2} = \dots = \frac{Q_i - L_i}{v_i r_i} = k & (\stackrel{\text{\tiny Δ}}{=} L_i > 0 \text{ by }) \\ \frac{Q_i - L_i}{v_i r_i} \leq k & (\stackrel{\text{\tiny Δ}}{=} L_i = 0 \text{ by }) \end{cases}$$

所以
$$k = \max\left(\frac{Q_i - L_i}{r_i}\right)$$
 $1 \le i \le m$

针对 L_i 的不同取值范围,分三情况进行讨论。

情况 1: 当 $L_i = 0$ 时, 其费用 $f_i(L_i, X)$ 函数如下:

$$f_i(L_i,X) = \frac{\frac{c_{2i}Q_i^2}{2v_ir_i} + \frac{(c_{3i} - c_{2i})(Q_i - Q_{0i})^2}{2v_ir_i} + c_4v_ir_iX}{k + X}$$

情况 2: 当 $L_i \leq Q_{0i}$ 时,参照第一个问题,其费用 $f_i(L_i, X)$ 函数如下,

$$f_{i}(L_{i},X) = \begin{cases} \frac{A_{i} + c_{4i}v_{i}r_{i}(X - \frac{L_{i}}{v_{i}r_{i}})}{X + \frac{Q_{i} - L_{i}}{v_{i}r_{i}}} & X > \frac{L_{i}}{v_{i}r_{i}} \\ \frac{A_{i} - \frac{1}{2}c_{2i}v_{i}r_{i}(X - \frac{L_{i}}{v_{i}r_{i}})^{2}}{X + \frac{Q_{i} - L_{i}}{v_{i}r_{i}}} & X \leq \frac{L_{i}}{v_{i}r_{i}} \end{cases}$$

$$(3.1)$$

其中
$$A_i = c_1 + \frac{c_{2i}Q_i^2}{2v_ir_i} + \frac{(c_{3i} - c_{2i})(Q_i - Q_{0i})^2}{2v_ir_i}$$

情况 2: 当 $L_i > Q_{0i}$ 时:

$$f_{i}(L_{i},X) = \begin{cases} \frac{A_{i} - \frac{c_{2i}v_{i}r_{i}}{2}(X - \frac{L_{i}}{v_{i}r_{i}})^{2} - \frac{(c_{3i} - c_{2i})v_{i}r_{i}}{2}(\frac{L_{i} - Q_{0i}}{v_{i}r_{i}} - X)^{2}}{X + \frac{Q_{i} - L_{i}}{v_{i}r_{i}}} & 0 \le X \le \frac{L_{i} - Q_{0i}}{v_{i}r_{i}} \\ \frac{A_{i} - \frac{c_{2i}v_{i}r_{i}}{2}(X - \frac{L_{i}}{v_{i}r_{i}})^{2}}{X + \frac{Q_{i} - L_{i}}{v_{i}r_{i}}} & \frac{L_{i} - Q_{0i}}{v_{i}r_{i}} < X \le \frac{L_{i}}{v_{i}r_{i}} \\ \frac{A_{i} + c_{4i}v_{i}r_{i}(X - \frac{L_{i}}{v_{i}r_{i}})}{X + \frac{Q_{i} - L_{i}}{v_{i}r_{i}}} & X > \frac{L_{i}}{v_{i}r_{i}} \end{cases}$$

$$f(L,X) = \sum_{i=1}^{m} f_i(L_i,X)$$

则原题化为求 L^* 满足:

$$E[f(L^*, X)] = \min E[f(L, X)] = \int_0^\infty \sum_{i=1}^m f_i(L_i, x) p(x) dx$$

且这个多种商品的随机存贮模型同时满足下列几个约束条件:

$$\begin{split} \sum_{i=1}^{m} Q_{0i} &= Q_{0} \\ \sum_{i=1}^{m} Q_{i} &= Q \\ \text{s.t.} \begin{cases} \sum_{i=1}^{m} L_{i} &= L \\ \frac{Q_{1} - L_{1}}{v_{1}r_{1}} &= \frac{Q_{2} - L_{2}}{v_{2}r_{2}} &= \dots = \frac{Q_{i} - L_{i}}{v_{i}r_{i}} = k \quad (\stackrel{\text{\tiny \pm}}{=} L_{i} > 0 \stackrel{\text{\tiny \pm}}{=} 1) \\ \frac{Q_{i} - L_{i}}{v_{i}r_{i}} &\leq k \quad (\stackrel{\text{\tiny \pm}}{=} L_{i} = 0 \stackrel{\text{\tiny \pm}}{=} 1) \end{cases} \end{split}$$

但由于X的分布未知,同时 Q_i 和 Q_{0i} 都是未知量;而且在问题 1 的单品种存贮模型中我们知道 L^* 的求解是十分困难的。所以对于多品种商品的存贮问题,直接解上面的模型是十分困难的。同时 L_i = 0 情况的存在,增加了其求解难度。因此在实际问题的解决中,我们可以用上面的模型作为基础,并假设 L_i > 0 对任意的 i 都成立,即排除 L_i = 0 的情况,通过计算机编程,建立类似于问题 2 中的合适算法求解上述模型。在问题 4 的解决中我们可以看到这样的解题思路。

(四)问题 4:

4.1 问题分析

由于货物到达商场的时间 X 是整数,所以可以认为 X 服从 1 天到 3 天之间的均匀分布实际上是一种离散分布,等价于 $P(X=1)=P(X=2)=P(X=3)=\frac{1}{3}$ 。问题 2 中原来的商品单价是以商品的个数为单位考虑的;而要利用问题 3 中的多品种商品存贮模型,则必须以商品的体积为单位进行考虑,所以我们对问题 2 中损失费用的单价进行转化处理,将它除以每单位商品的体积得到模型所需要的单价,如下表:

	c_{2i}	c_{3i}	C_{4i}
商品一(i=1)	0.2	0.4	19
商品二(i = 2)	0.75	1	37.5
商品三(i=3)	0.6	0.8	12.5

由于每种商品的个数是有限的,所以我们可以参照问题 2 中的求解办法,采用遍历搜索算法。但是由于 Q_i 和 Q_{0i} 都是未知量,这对于我们利用(3.1)以及(3.2)进行遍历搜索的求解增加了很大难度。所以我们可以对 Q_i 和 Q_{0i} 也进行遍历搜索,对于搜索的每一个 Q_i 和 Q_{0i} ,作为已知参数,然后利用问题 2 的模型求解 L^* 。

4.2 优化的 Q_i 和 Q_{0i} 的遍历搜索算法:

在这个问题中, Q_i 和 Q_{0i} (i=1,2,3)总共有六个参数,那么在算法中就起码有六次嵌套的循环。 $Q_i < Q=10$,所以如果以 0.01 为循环的步长,那么光一个 Q_i 的搜索就有 1000次循环, Q_i 和 Q_{0i} 总共的循环次数大约 10 的 36 次方,运算的次数和时间是非常惊人的,也让计算机无法承受。因此,我们对遍历搜索算法进行改进。先使步长为 1,则总循环次数不超过 10 的 6 次方,通过对 Q_i 和 Q_{0i} 进行遍历,然后再遍历 L_i^* ,求得较优的 E[f(L,X)]以及确定对应的 Q_i 和 Q_{0i} 。由于是以步长 1 进行遍历搜索,所以 Q_i 和 Q_{0i} 的误差半径不超过 1。然后我们再取步长为 0.1,对 Q_i 和 Q_{0i} 在 1 的误差半径的范围内进行遍历搜索,则每一重的循环次数不超过 20,求得更优的E[f(L,X)]以及确定对应的 Q_i 和 Q_{0i} 。由于第二次是以步长 0.1 进行遍历搜索,所以 Q_i 和 Q_{0i} 的误差半径不超过 0.1。最后又以步长 0.01 对 Q_i 和 Q_{0i} 在 0.1 的误差半径的范围内进行遍历搜索,同样每次循环次数不超过 20,这样我们最后求得了 $\min E[f(L,X)]$ 以及确定对应的 Q_i , Q_{0i} 以及 L^* 。

4.3 L^* 的遍历搜索求解:

在进行 Q_i 和 Q_{0i} 的每一次遍历取值以后,我们可以对每一个 L_i 进行遍历求解。因为我们有等式 $\frac{Q_i-L_i}{v_ir_i}=k$ i=1,2,..m,所以我们实际上只需要对 L_1 进行遍历,而 L_2 和 L_3 都可以通过这个等式确定。通过循环比较可以求得最优解 $\min E[f(L,X)]$ 以及 L^* 。大致的算法流程如下图:

通过 matlab 编程求解,最后解得 $E[f(L^*,X)]=\min E[f(L,X)]=17.494$, $L^*=7.3333$, $L_1^*=1.55$, $L_2^*=1.8$, $L_3^*=3.9833$, $Q_1=2.05$, $Q_2=2.30$, $Q_3=5.65$, $Q_{01}=1.27$, $Q_{02}=1.68$, $Q_{03}=3.05$ 。

(五) 问题 5:

5.1 问题假设:

为了方便讨论,我们只考虑一种商品的随机存贮模型。并在问题 1 的基础上补充了以下假定:

- 1. 订货情况 $c_1 = c(t)$,即 c_1 是一个与 t 有关的函数,而且具有周期性,周期为 T 。
- 2. 一般来说,商品的销售速率 $\{R_i\}$ 是一个随机的马氏链过程,并且同样具有周期性,周期也为T;因为 $\{R_i\}$ 具有马氏性,所以是一个在周期T内时间、状态均为离散的随机转移过程。
- 3. X的概率分布 $P_{X}(x)$ 是离散的。

5.2 模型建立:

因为 $\{R_t\}$ 是马氏过程,所以 $P(R_{t+1}=r_{t+1}\mid R_1=r_1,...R_t=r_t)=P(R_{t+1}=r_{t+1}\mid R_t=r_t)$,

即 R, 的分布只与上一时刻的 R, 取值有关。

因为 R_t 的取值状态是离散的,所以 R_t 的分布是离散型的,并且取值的集合有限,设为R。则对于每一个t, R_t 的分布为 $P_R(r)$ 。

由于总损失费用与 c_1 有关,而 $c_1 = c(t)$ 是跟时间t有关的;同时总损失费用也和 R_t 有关,所以可以设总损失费用函数为 $f_t(L,R_t,X)$ 。

当然,这一模型只是建立了一个基本的理论框架基础,具体模型的建立必须结合实际的问题,同时在模型成功建立的例子上能否求解出 L^* 还必须结合问题的复杂性以及有关参数的分布和取值。

三、模型的评价和推广

本文建立了一个关于随机存贮的理论模型,为便于实际问题的求解,还另外给出了一个遍历搜索算法。前者具有一定的理论基础,后者采用前者的思想,全局寻优,给出了实际问题的最优解。在求解问题 2 时,由于遍历搜索的可行性,获得的是全局最优解。而在采用该算法在解决问题 4 时,由于商品品种较多,采取全局遍历搜索的算法会十分耗时而且难以实现,所以采用了修正步长的优化的遍历搜索算法,所以最终求得的结果是一接近全局最优的近似解,其结果的误差小于 0.01。这一方法可以推广到少量品种的随机存贮管理的情况。但是这一算法在随机存贮的商品品种较多的情况下运算量将非常大,要根据实际情况进行修改。

参考文献:

- 【1】陈有禄 罗秋兰. 仓库容量有限条件下的一类存贮管理模型. 数学的实践与认识, 2004. 6
- 【2】周宏. 订货点决策模拟研究. 系统仿真学报, 2004. 1
- 【3】杜世田. 多品种随机存贮模型的存贮策略. 山东工业大学学报 2001. 2
- 【4】陈同英. 原木随机存贮策略的最优化问题. 运筹与管理, 2002. 1
- 【5】姜启源著. 数学模型 (第二版). 北京: 高等教育出版社, 2002. 6
- 【6】钱敏平 龚光鲁著. 随机过程论. 北京: 北京大学出版社, 1992. 10

附录:

程序代码:

```
%求解问题 2 商品一
prob=[2/36 4/36 5/36 15/36 5/36 3/36 1/36 1/36];
r=12;
c1=10;
c2=0.01;
c3=0.02;
c4=0.95;
Q0=40;
Q=60;
A=c1+c2*Q^2/(2*r)+(c3-c2)*(Q-Q0)^2/(2*r);
Emin1=1000000;
Lmin1=0;
for L=1:Q0
    sum=0;
    for X=0:length(prob)-1
         if (X>L/r)
             temp=(A+c4*r*(X-L/r))/(X+(Q-L)/r)*prob(X+1);
        else
             temp=(A-c2*r/2*(X-L/r)^2)/(X+(Q-L)/r)*prob(X+1);
        end;
         sum=sum+temp;
    end;
    if (sum<Emin1)</pre>
        Lmin1=L;
        Emin1=sum;
    end;
end;
Emin2=1000000;
Lmin2=0;
for L=Q0+1:Q
    sum=0;
    for X=0:length(prob)-1
        if (X>L/r)
             temp=(A+c4*r*(X-L/r))/(X+(Q-L)/r)*prob(X+1);
        else
             temp=(A-c2*r/2*(X-L/r)^2)/(X+(Q-L)/r)*prob(X+1);
         end;
         sum=sum+temp;
    end;
```

```
if (sum<Emin2)
    Lmin2=L;
    Emin2=sum;
end;
end;

if (Emin1<Emin2)
    Emin=Emin1;
    Lmin=Lmin1;
else
    Emin=Emin2;
    Lmin=Lmin2;
end;</pre>
```

```
%求解问题 2 商品二
prob=[2/43 23/43 12/43 5/43 1/43];
r=15;
c1=10;
c2=0.03;
c3=0.04;
c4=1.5;
Q0=40;
Q = 60;
A=c1+c2*Q^2/(2*r)+(c3-c2)*(Q-Q0)^2/(2*r);
Emin1=1000000;
Lmin1=0;
for L=1:Q0
    sum=0;
    for X=1:length(prob)
         if (X>L/r)
             temp=(A+c4*r*(X-L/r))/(X+(Q-L)/r)*prob(X);
         else
             temp=(A-c2*r/2*(X-L/r)^2)/(X+(Q-L)/r)*prob(X);
         end;
         sum=sum+temp;
    end;
    if (sum<Emin1)
         Lmin1=L;
         Emin1=sum;
    end;
end;
Emin2=1000000;
Lmin2=0;
for L=Q0+1:Q
    sum=0;
    for X=1:5
         if (X>L/r)
             temp=(A+c4*r*(X-L/r))/(X+(Q-L)/r)*prob(X);
         else if (X \le L/r \& X \ge (L-Q0)/r)
             temp=(A-c2*r/2*(X-L/r)^2)/(X+(Q-L)/r)*prob(X);
              else
             temp=(A-c2*r/2*(X-L/r)^2-(c3-c2)*r/2*((L-Q0)/r-X)^2)/(X+(Q-L)/r)*prob(X);
              end;
         end;
         sum=sum+temp;
    end;
    if (sum<Emin2)
```

```
Lmin2=L;
Emin2=sum;
end;
end;

if (Emin1<Emin2)
Emin=Emin1;
Lmin=Lmin1;
else
Emin=Emin2;
Lmin=Lmin2;
end;
```

```
%求解问题 2 商品三
prob=[27/61 20/61 8/61 3/61 2/61 1/61];
r=20;
c1=10;
c2=0.06;
c3=0.08;
c4=1.25;
Q0=20;
Q = 40;
A=c1+c2*Q^2/(2*r)+(c3-c2)*(Q-Q0)^2/(2*r);
Emin1=1000000;
Lmin1=0;
for L=1:Q0
    sum=0;
    for X=1:length(prob)
         if (X>L/r)
             temp=(A+c4*r*(X-L/r))/(X+(Q-L)/r)*prob(X);
         else
             temp=(A-c2*r/2*(X-L/r)^2)/(X+(Q-L)/r)*prob(X);
         end;
         sum=sum+temp;
    end;
    if (sum<Emin1)</pre>
         Lmin1=L;
         Emin1=sum;
    end;
end;
Emin2=1000000;
Lmin2=0;
for L=Q0+1:Q
    sum=0;
    for X=1:6
         if (X>L/r)
             temp=(A+c4*r*(X-L/r))/(X+(Q-L)/r)*prob(X);
         else if (X \le L/r \& X \ge (L-Q0)/r)
             temp=(A-c2*r/2*(X-L/r)^2)/(X+(Q-L)/r)*prob(X);
              else
             temp=(A-c2*r/2*(X-L/r)^2-(c3-c2)*r/2*((L-Q0)/r-X)^2)/(X+(Q-L)/r)*prob(X);
         end;
         sum=sum+temp;
    end;
```

```
if (sum<Emin2)
    Lmin2=L;
    Emin2=sum;
end;
end;

if (Emin1<Emin2)
    Emin=Emin1;
    Lmin=Lmin1;
else
    Emin=Emin2;
    Lmin=Lmin2;
end;</pre>
```

```
%求解问题 4
%参数初始化
r=[12\ 15\ 20];
%c 矩阵 行: c1,c2,c3,c4; 列: 商品 1, 2, 3
c=[10\ 10\ 10;
   0.01 0.03 0.06;
   0.02 0.04 0.08;
   0.95 1.50 1.25];
v=[0.05 0.04 0.1];
Q=zeros(1,3);
Q0=zeros(1,3);
L=zeros(1,3);
EL=zeros(1,3);
EQ=zeros(1,3);
EQ0=zeros(1,3);
EK=zeros(1,3);
LL=0;
TQ0=6;
TQ=10;
%X 的分布列
prob=[1/3 1/3 1/3];
%程序开始
Emin=100000000;
Lmin=0;
for Q1=1:1:10
                                                %遍历 Q1
    Q(1)=Q1;
    for Q2=1:1:TQ-Q(1)
                                                  %遍历 Q2
        Q(2)=Q2;
        for Q3=1:1:TQ-Q(1)-Q(2)
                                                      %遍历 Q3
            Q(3)=Q3;
            for Q01=1:1:min(6,Q(1))
                                                       %遍历 Q0_1
                Q0(1)=Q01;
                for Q02=1:1:min([6,Q(2),TQ0-Q0(1)])
                                                          %遍历 Q0 2
                    Q0(2)=Q02;
                    for Q03=1:1:min([6,Q(3),TQ0-Q0(1)-Q0(2)])
                                                              %遍历 Q0 3
                         Q0(3)=Q03;
                                                            %遍历商品一的数目
                        for K1=1:10:min(200,fix(Q(1)/v(1)))
                           L(1)=K1*v(1);
                   for K2=1:10:min(fix((Q-L(1))/v(2)),fix(Q(2)/v(2))) %遍历商品二的数目
                                 L(2)=K2*v(2);
                   for K3=1:10:min(fix((Q-L(1)-L(2))/v(3)),fix(Q(3)/v(3))) %遍历商品三的数目
                                     L(3)=K3*v(3);
```

```
LL=L(1)+L(2)+L(3);
                                                                                                        %初始化期望
                                                          total=0;
                                                          for i=1:3
                                                                 sum=0;
                 A = c(1,i) + c(2,i) * Q(i)^2 / (2*v(i)^2 * r(i)) + (c(3,i) - c(2,i)) * (Q(i) - Q0(i))^2 / (2*v(i)^2 * r(i));
                                                     for X=1:3
                                                       if(X>L(i)/(v(i)*r(i)))
                 temp = (A + c(4,i) * r(i) * (X - L(i) / (v(i) * r(i)))) / (X + (Q(i) - L(i)) / (v(i) * r(i))) * prob(X);
                                                            else
                           temp \!\!=\!\! (A \!\!-\!\! c(2,\!i) \!\!*\!\! r(i) \!/\! 2 \!\!*\!\! (X \!\!-\!\! L(i) \!/\! (v(i) \!\!*\!\! r(i))) \!\!\!\! ^{\wedge} \! 2) \!/\!\! (X \!\!+\!\! (Q(i) \!\!-\!\! L(i)) \!/\! (v(i) \!\!*\!\! r(i))) \!\!*\!\! prob(X);
                                                          end;
                                                                       sum=sum+temp;
                                                         end;
                                                                 total=total+sum;
                                                          end;
                                                          if total<Emin
                                                                 EQ0=Q0;
                                                                 EQ=Q;
                                                                 EL=L;
                                                                 Emin=total;
                                                                 EK(1)=K1;
                                                                 EK(2)=K2;
                                                                 EK(3)=K3;
                                                                 Lmin=LL;
                                                          end;
                                                    end;
                                             end;
                                       end;
                                end;
                         end;
                   end;
             end;
      end;
end;
```