OFLEXOPTIX

Comprehensión y optimización de la eficiencia de transceptores ópticos

utilizando métricas internas para mejorar el ahorro de energía

Contenido

- Versatile Diagnostics Monitoring
- Laser: Discusión sobre el rendimiento de lasers (trc)
- **TEC**: El refrigerador termoeléctrico
- Power Budget: Como la FLEXBOX administra la energía de transceptores
- Eficiencia: Una definición
- Un Experimento: Con hielos

Devices under Test (DUT)

<u>Transceptor/Receptor -> Transceptor -> Trc:</u>

- 100G QSFP28 (500 m)
- 400G QSFP-DD Coherent ZR (120 km)
- 800G QSFP-DD (2 km)
- 800G QSFP-DD (500 m)

Switches:

- Cisco 93600CD-GX NX OS 10.5.3 (F)
- Cisco C9500 IOS XE 17.14.1
- Juniper **QFX5120** JunOS 23.4R2-S5.8

Versatile Diagnostic Monitoring

Type ID	Observable Type	Instance	Data	Unit Scale	Unit
	Niek I I and Condition II.	Type	Type		
0	Not Used indicator ¹	N/A	N/A		
1	Laser Age (0% at BOL, 100% EOL) (Media Lane)	Basic	U16	1	%
2	TEC Current (Module)	Basic	S16	100/32767	%
3	Laser Frequency Error (Media Lane)	Basic	S16	10	MHz
4	Laser Temperature (Media Lane)	Basic	S16	1/256	С
5	SNR (dB) Media Input (Media Lane) see section 7.1.4	Basic	U16	1/256	dB
6	SNR (dB) Host Input (Lane) — see section 7.1.4	Basic	U16	1/256	dB
7	PAM4 Level Transition Parameter Media Input (Media Lane)	Basic	U16	1/256	dB
8	PAM4 Level Transition Parameter Host Input (Lane)	Basic	U16	1/256	dB
9	Pre-FEC BER Minimum Sample Media Input (Data Path)	Statistic	F16	N/A	
10	Pre-FEC BER Minimum Sample Host Input (Data Path)	Statistic	F16	N/A	
11	Dua FEC DED Martineron Cannola Madia Tanut (Data Dath)	Chariatia	F16	NI/A	1

Comparison to: Digital Data Monitor (DDM)

	Byte	te Bit Name		Description			
	22	All	Temperature MSB	Internally measured temperature (MSB)			
	23	All	Temperature LSB	Internally measured temperature (LSB)			
Г	24-25	All	Reserved				
	26	All	Supply Voltage MSB	Internally measured supply voltage (MSB)			
Г	27	All	Supply Voltage LSB	Internally measured supply voltage (LSB)			

Versatile Diagnostic Monitoring

VDM - Tratamiento

	Cullent	Al	arms	Warn	ings
	Measurement				
	48.89 C				
Voltage	3.30 V	3.63 V	2.97 V	3.46 V	3.13 V
Current	N/A	N/A	N/A	N/A	N/A
Tx Power	N/A	N/A	N/A	N/A	N/A
Rx Power	N/A	N/A	N/A	N/A	N/A
Laser temperature	49.98 C	N/A	N/A	N/A	N/A
RX Signal Power	N/A	N/A	N/A	N/A	N/A
Pre-FEC BER	1.00e+00	N/A	N/A	N/A	N/A
Post-FEC BER	1.00e+00	N/A	N/A	N/A	N/A
CD (Short Link)	0.00 ps/nm	N/A	N/A	N/A	N/A
CD (Long Link)	0.00 ps/nm	N/A	N/A	N/A	N/A
Diff. group delay	0.00 ps	N/A	N/A	N/A	N/A
SOPMD	0.00 ps^2	N/A	N/A	N/A	N/A
PDL	0.00 dB	N/A	N/A	N/A	N/A
OSNR	0.00 dB	N/A	N/A	N/A	N/A
ESNR	0.00 dB	N/A	N/A	N/A	N/A
Carrier freq off	0.00 MHz	N/A	N/A	N/A	N/A
Err Vector Mag.	0.00 %	N/A	N/A	N/A	N/A
SOP Rate of Chg	0.00 krad/s	N/A	N/A	N/A	N/A
Laser bias	227.62 mA	N/A	N/A	N/A	N/A
SOPMD LO GR	0.00 ps^2	N/A	N/A	N/A	N/A
Modulation Err R	385.30 dB	N/A	N/A	N/A	N/A
Clock recovery	0.00 %	N/A	N/A	N/A	N/A
Fransmit Fault Cou					
	rm; + high-warning				

Cisco Nexus **93600CD-GX** NX OS 10.5.3 (F)

```
ObsCfg(thId=00, lane=Module, type=Laser Age (0% at BOL, 100% EOL) (Media Lane))= 0.0 %
ObsCfg(thId=01, lane=Module, type=TEC Current (Module))= 37.461470381786555 %
ObsCfg(thId=03, lane=Module, type=Laser Temperature (Media Lane))= 0.0 C
ObsCfq(thId=00, lane=0, type=Pre-FEC BER Minimum Sample Media Input (Data Path))= 1.0
ObsCfg(thId=00, lane=0, type=Pre-FEC BER Maximum Sample Media Input (Data Path))= 1.0
ObsCfq(thId=00, lane=0, type=Pre-FEC BER Sample Average Media Input (Data Path))= 1.0
ObsCfg(thId=00, lane=0, type=Pre-FEC BER Current Sample Media Input (Data Path))= 1.0
ObsCfg(thId=01, lane=0, type=Pre-FEC BER Minimum Sample Host Input (Data Path))= 0.000421
ObsCfq(thId=01, lane=0, type=Pre-FEC BER Maximum Sample Host Input (Data Path))= 0.001979
ObsCfg(thId=01, lane=0, type=Pre-FEC BER Sample Average Host Input (Data Path))= 0.001493999999999999
ObsCfg(thId=01, lane=0, type=Pre-FEC BER Current Sample Host Input (Data Path))= 20470000000
ObsCfg(thId=02, lane=0, type=FERC Minimum Sample Value Media Input (Data Path))= 1.0
ObsCfg(thId=02, lane=0, type=FERC Maximum Sample Value Media Input (Data Path))= 1.0
ObsCfg(thId=02, lane=0, type=FERC Sample Average Value Media Input (Data Path))= 1.0
ObsCfg(thId=02, lane=0, type=FERC Current Sample Value Media Input (Data Path))= 1.0
ObsCfg(thId=03, lane=0, type=FERC Minimum Sample Value Host Input (Data Path))= 3.0
ObsCfg(thId=03, lane=0, type=FERC Maximum Sample Value Host Input (Data Path))= 5.0
ObsCfq(thId=03, lane=0, type=FERC Sample Average Value Host Input (Data Path))= 438000
ObsCfg(thId=03, lane=0, type=FERC Current Sample Value Host Input (Data Path))= 0
```

Flexoptix Research Application

Excursión: Trc coherente (2023/2024)

Refri eléctrico (TEC)

Un elemento Peltier típico en grande ...

...pero el TEC es muy pequeño -> TOSA

Sources: [?]

Power Budget

Bit	Device Type				
	00: Power Class 1 (1.5 W max.)				
7-6	01: Power Class 2 (2.0 W max.)				
/-0	10: Power Class 3 (2.5 W max.)				
	11: Power Class 4 (3.5 W max.) and Power Classes 5, 6 or 7				
5	Power Class 8 implemented (Max power declared in byte 107)				
4	0: No CLEI code present in Page 02h				
7	1: CLEI code present in Page 02h				
3	0: No CDR in Tx, 1: CDR present in Tx				
2	0: No CDR in Rx, 1: CDR present in Rx				
	00: Power Classes 1 to 4				
1-0	01: Power Class 5 (4.0 W max.) See Byte 93 bit 2 to enable.				
1-0	10: Power Class 6 (4.5 W max.) See Byte 93 bit 2 to enable.				
	11: Power Class 7 (5.0 W max.) See Byte 93 bit 2 to enable.				

SFF8636 (QSFP+, QSFP28) -> Aquí ya está el max. power establecido (con excepción de clase 8)

Example: D.CO164HG.2.yTP (480km @ 400G ZR+)

Nuestra tienda lo sabe...

Byte	Bits	Field Name	Field Description	Type
200	7-5	ModulePowerClass ¹	000: Power class 1	RO
			001: Power class 2	Rqd.
			010: Power class 3	
			011: Power class 4	
			100: Power class 5	
			101: Power class 6	
			110: Power class 7	
			111: Power class 8	
	4-0	-	Reserved	RO
201	7-0	MaxPower	Maximum power consumption in multiples of 0.25 W	RO
			rounded up to the next whole multiple of 0.25 W	Rqd.

Note 1: See relevant hardware specification for maximum power allowed in each Power class

CMIS (QSFP-DD, OSFP) ->

Vendor puede poner la clase que quiera, poner el max. power que pide

Source: [1,2]

Eficiencia: Como un ventilador transfiere calor

$$P_{Fan} = \frac{\lambda \times Nu}{L} A(T_{\infty} - T_{W})$$

$$Nu = 0.664 \sqrt{Re} \sqrt[3]{Pr}$$

$$Re = \frac{w_{\infty}L}{v}$$

Sources: [13]

Experimento con un transceptor congelado

28.10.2025 **1**0

Estrenando la version completa en

Con resultados y más: Nos vemos en la

ESNOG 35

Source: [14]

Muchas gracias

Source: [14]

References

- 1. SFF-8024, SFF Module Management Reference Code Tables, Rev. 4.10, November 24th of 2022
- 2. OIF-CMIS-05.3, Common Management Interface Specification (CMIS), September 4th of 2024
- 3. Diode Lasers and Photonic Integrated Circuits, L. A. Coldren, Scott W. Corzine, Milan L. Mashanovitch, year 2012
- 4. Semiconductor Optoelectronic Devices, Bhattacharya, Pallab, year 1996
- 5. https://en.wikipedia.org/wiki/Thermoelectric heat pump, July 21st of 2025
- 6. https://de.wikipedia.org/wiki/Peltier-Element, July 21st of 2025
- 7. https://en.wikipedia.org/wiki/Air conditioning, July 21st of 2025
- 8. https://www.naddod.com/blog/silicon-photonics-vs-eml-technology-optimizing-1-6t-osfp224-transceivers?srsltid=AfmBOoq2IkqYYKV p4FkvkYFM9pdjuBZhvcCwkAigtTqRh UJEA1xWUQ, July 21st of 2025
- 9. Fiber Optic Communications, Gerd Keiser, 2021
- 10. Mitsubishi Electric Corporation. (2018). Low power-consumption and compact optical transmitter module for 100G Ethernet. Mitsubishi Electric ADVANCE, 161, 8–11. Retrieved from https://www.advance.mitsubishielectric.com/advance/pdf/2018/161 complete.pdf
- 11. Vertical Cavity Surface Emitting Lasers (VCSELs) and their Applications (March 2024), https://www.dentonvacuum.com/blog/vertical-cavity-surface-emitting-lasers-vcsels-and-their-applications
- 12. Lowering the threshold current of photonic crystal vertical-cavity surface-emitting lasers, Yi-Yang Xie at al., 2013
- 13. VDI-Wärmeatlas, Fachlicher Träger VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, Peter Stephan et al., 12. Auflage, 2019
- 14. Orange Peace with Googles Gemini: Generate a Picture of a japanese statue bowing (communicating thankfulness) in orange clothing