UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma B - 2024/2 Prova da área I

1	2	3	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas (dissertativas)

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado. Respostas corretas mas sem justificativa receberão apenas 33% da pontuação.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f = f(x, y, z) e g = g(x, y, z) são funções escalares; $\vec{F} = \vec{F}(x, y, z)$ e $\vec{G} = \vec{G}(x, y, z)$ são funções vetoriais.

	(11) 3) 11) 11 11 11 11 11 11 11 11 11 11 11 1
1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$ec{ abla} \cdot \left(ec{F} + ec{G} ight) = ec{ abla} \cdot ec{F} + ec{ abla} \cdot ec{G}$
3.	$ec{ abla} imes \left(ec{F} + ec{G} ight) = ec{ abla} imes ec{F} + ec{ abla} imes ec{G}$
4.	$\vec{\nabla}\left(fg\right) = f\vec{\nabla}g + g\vec{\nabla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} imes \left(f \vec{F} \right) = \vec{\nabla} f imes \vec{F} + f \vec{\nabla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	$\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o laplaciano
8.	$\vec{\nabla} \times \left(\vec{\nabla} f \right) = 0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes \left(ec{ abla} imes ec{F} ight) = ec{ abla} \left(ec{ abla} \cdot ec{F} ight) - ec{ abla}^2 ec{F}$
11.	$\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
12.	$\vec{\nabla} \times \left(\vec{F} \times \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} - \vec{G} \left(\vec{\nabla} \cdot \vec{F} \right) - \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \vec{F} \left(\vec{\nabla} \cdot \vec{G} \right)$
13.	$\vec{\nabla} \left(\vec{F} \cdot \vec{G} \right) = \left(\vec{G} \cdot \vec{\nabla} \right) \vec{F} + \left(\vec{F} \cdot \vec{\nabla} \right) \vec{G} + \\ + \vec{F} \times \left(\vec{\nabla} \times \vec{G} \right) + \vec{G} \times \left(\vec{\nabla} \times \vec{F} \right)$
14.	$\vec{\nabla}\varphi(r) = \varphi'(r)\hat{r}$

Curvatura, torção e aceleração

Curvatura, torção e aceleração:		
Nome	Fórmula	
Vetor normal	$\vec{N} = \frac{\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \times \frac{d\vec{r}}{dt}}{\left\ \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \times \frac{d\vec{r}}{dt} \right\ }$	
Vetor binormal	$\vec{B} = \frac{\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}}{\left\ \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\ }$	
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\left\ \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2} \right\ }{\left\ \frac{d\vec{r}}{dt} \right\ ^3}$	
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{\left(\frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\right) \cdot \frac{d^3\vec{r}}{dt^3}}{\ \frac{d\vec{r}}{dt} \times \frac{d^2\vec{r}}{dt^2}\ ^2}$	
Módulo da Torção	$ au = \left\ rac{dec{B}}{ds} ight\ = \left\ rac{dec{B}}{rac{ds}{dt}} ight\ $	
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$	
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$	

Equações de Frenet-Serret:

$$\frac{d\vec{T}}{ds} = \kappa \vec{N}$$

$$\frac{d\vec{N}}{ds} = -\kappa \vec{T} + \tau \vec{B}$$

$$\frac{d\vec{B}}{ds} = -\tau \vec{N}$$

$$\vec{r}(t) = \frac{t^2}{2}\vec{i} + \frac{2\sqrt{2}}{5}t^{\frac{5}{2}}\vec{j} + \frac{t^3}{3}\vec{k}, \quad t \ge 0,$$

está correto:

(A) tangente unitário \vec{T} em t=2:

- () $2\vec{i} + 4\vec{i} + 4\vec{k}$
- () $2\vec{i} + 3\sqrt{2} \ \vec{i} + 4\vec{k}$
- $(\)\ \frac{\vec{i}+2\vec{j}+2\vec{k}}{5}$
- $(\)\ \frac{2\vec{i}+3\sqrt{2}\ \vec{j}+4\vec{k}}{0}$
- $(\)\ \frac{2\vec{i}+3\sqrt{2}\ \vec{j}+4\vec{k}}{\sqrt{28}}$
- () nenhuma das anteriores

(C) vetor normal unitário $\vec{N}(t)$ em t=2:

- $(\)\ \frac{\vec{i}+3\vec{j}+4\vec{k}}{\sqrt{26}}$
- $(\)\ \frac{\vec{i}+2\vec{j}+2\vec{k}}{3}$
- $(\)\ \frac{-2\vec{i}-\vec{j}+2\vec{k}}{3}$
- $(\)\ \frac{\vec{i}+2\vec{j}+2\vec{k}}{3}$
- $() \frac{-\vec{i}+\vec{k}}{\sqrt{2}}$
- () nenhuma das anteriores

(E) curvatura em t=2:

- () 1
- $(\)\ \frac{1}{6}$
- $() \frac{1}{36}$
- $(\)\ \frac{\sqrt{2}}{8}$

() nenhuma das anteriores

(B) aceleração $\vec{a}(t)$ em t=2:

- () $\vec{i} + \frac{3\sqrt{2}}{2}\vec{j} + 2\vec{k}$ () nenhuma das anteriores

(D) vetor binormal $\vec{B}(t)$ em t=2:

- $() \frac{-\vec{i} + \vec{k}}{2}$ $() \frac{\vec{i} \sqrt{2}\vec{j} + \vec{k}}{2}$ $() \frac{\vec{i} \sqrt{2}\vec{j} + \vec{k}}{2 + \sqrt{2}}$
-) nenhuma das anteriores

(F) torção em t=2:

- $() \tau = \frac{9 6\sqrt{2}}{502 324\sqrt{2}}$

() nenhuma das anteriores

(C) agalaração tangonaial am $t=2$:	(H) aceleração normal em $t=2$:
(G) aceleração tangencial em $t=2$:	() 1
() 0	() 0
() 5	
() 3	$(\)\ \frac{5}{4}$
$(\)\ \frac{6}{2+\sqrt{2}}$	$(\)\ \frac{502 - 324\sqrt{2}}{6}$
() 1	$(\) \frac{3}{5}$
() nenhuma das anteriores	$\sqrt{6}$
	() nenhuma das anteriores
Questão 2 Considere a superfície parametr	rizada (guarda-chuva de Whitney) $\vec{r} = uv\vec{i} + u\vec{j} + v^2\vec{k}$.
No ponto em que $u = 8$, $v = 3$: (A) (0.7pt) obtenha o vetor normal unitário	$ec{N}$.
(B) (0.7pt) obtenha uma equação cartesiana	

Questão 3. Considere o campo vetorial radial dado por $\vec{F} = \exp(2-r)\vec{r}$, a superfície esférica $S_3 = \{(x,y,z): x^2 + y^2 + z^2 = 3^2\}$, e seu normal unitário de superfície \vec{N} orientado para fora. (A) (1.0pt) Determine se \vec{F} é um campo conservativo indicando, se existir, o respectivo potencial radial $g(r)$ nulo na origem. (B) (1.0pt) Determine o divergente de \vec{F} .		
(C) (1.0pt) Calcule o fluxo $\iint_{S_3} \vec{F} \cdot \vec{N} dS$.		
Bom Trabalho.		