柔軟な/屈曲可能な胴体を有する魚型ロボットの開発

Development of Fish-Type Robot with Flexible/Bendable Torso

研究者 渡部 翔太 指導教員 中西 大輔 Keywords: Fish-Type Robot, Flexible/Bendable Torso

1. はじめに

水中・水上の推進システムには船舶によく見られる スクリュープロペラを用いた推進方法や, 魚を模したロ ボットによる尾びれ推進などがあげられる. スクリュー プロペラは推進性能が高く, 広く船舶などに用いられて きた. その一方で、スクリューは周辺環境への影響が大き く, 水棲生物の生態系の調査や災害への支援に用いられ る推進システムとして適していない. それに対して、尾 びれ推進は周辺環境へ影響を与えず、加速性・旋回性に 優れている. こういった点から尾びれ推進を用いた魚型 ロボットの開発は生態系調査や災害への支援といった面 において注目されている.

これに対して先行研究では、飛び移り座屈を用いた魚 型ロボットやワイヤ駆動式の魚型ロボットが開発されて きた.

2. デッドコピーの作成

2.1 コピー元の選定

今回, 研究を進めるにあたってまずは昨年度の研究で 開発された魚口ボットのデッドコピーを作成することに した. デッドコピーとは既存の工業製品や商品などの構 造・使用を完全に、もしくはほとんどの部分で踏襲して 複製した模造品のことである. 今回は魚らしい動きの実 現のためにワイヤ駆動型魚型ロボットをコピー元とした. シミュレーション実験を行う際には、Cyberbotics 社の ロボットシミュレータソフトウェア Webots を使用する. 犬型ロボットのシミュレーションモデルには実機ロボッ トを参考に構築されたモデルを使用する.

3. まとめと今後の予定

卒業研究では, 犬型ロボットに強化学習を適用し, 特 定の初期状態から起き上がり動作を獲得することを実現 した. 現在, 任意の初期状態での起き上がり動作の獲得 の方法について検討を行っている. まず、犬型ロボット の歩行時の転倒パターンのデータを収集した. それらを

図 1: 図面の例

もとに、主成分分析を用いて、ロボットの転倒パターン の分布を調べ、大まかに3つのパターンに分けられるこ とを確認した. また、パターン A の犬型ロボットが横 転している状態から起き上がる動作を人間がプログラミ ングすることにより、実際にロボットが起き上がること ができることを確認した.

今後の予定として、横転した状態 (パターン A) から パターン C に至る動作の獲得を強化学習により実現す る. パターン C から起き上がる動作は卒業研究で獲得 済みであるため、最終的に横転した状態からの起き上が りが可能となる.

参考文献

- 1) 堀内 匡, NGnet を用いた強化学習によるロボットの行動獲得, 電
- 短り 医, NGhet を用いた短に子音によるロボットの川動場時, 電気学会技術報告「機械学習技術の基礎と応用」, pp.23-27, 2013 石倉裕貴, 岸本良一, 堀内 医、CPG と強化学習を用いた多脚ロボットの行動獲得に関する検討, 電気学会研究会資料, システム研究会 ST-13-120, pp.25-28, 2013 永海 昂, 堀内 医, 強化学習を用いた四脚ロボットの起き上がり
- 動作の獲得に関する検討,平成 26 年電気学会電子・情報・シス テム部門大会講演論文集, pp.1763-1764, 2014