Química 2n Batx

Rodrigo Alcaraz de la Osa. Traducció: Òscar Colomar (🛩 @ocolomar)

Teories acid-base

Teoria d'Arrhenius

Proposada pel suec Svante Arrhenius el 1884, constitueix la primera definició moderna d'àcids i bases en termes moleculars:

Àcid Substància que es dissocia en aigua formant cations hidrogen (H⁺).

Base Substància que es dissocia en aigua formant anions hidròxid (OH⁻).

Teoria de Brønsted-Lowry

Proposada el 1923 independentement pel danès Johannes Nicolaus Brønsted i l'anglès Martin Lowry, es basa en la idea de parells d'àcid-base conjugats. Quan un àcid, HA, reacciona amb una base, B, l'àcid forma la seva base conjugada, A⁻, i la base forma el seu àcid conjugat, HB⁺, mitjançant l'intercanvi d'un protó (catió H⁺):

$$HA + B \longrightarrow A^- + HB^+$$

Àcid Substància capaç de cedir protons (H⁺) a una base: HA + H₂O \Longrightarrow A⁻ + H₃O⁺. Base Substància capaç d'acceptar protons (H⁺) d'un àcid: B + H₂O \Longrightarrow HB⁺ + OH⁻.

Aquesta teoria es considera una GENERALITZACIÓ de la teoria d'ARRHENIUS.

Força relativa dels àcids i bases

En funció de com d'ionitzat/ada o dissociat/ada se trobi un àcid o una base, distingim entre àcids/bases fortes i febles, termes que descriuen la facilitat per conduir l'electricitat (gràcies a la major o menor presència d'ions en la dissolució).

Grau d'ionització

També anomenat GRAU DE DISSOCIACIÓ, α , es defineix com el quocient entre la quantitat d'àcid/base ionitzat/ada i la quantitat d'àcid/base inicial:

$$\alpha = \frac{\text{quantitat d'àcid/base ionitzat/ada}}{\text{quantitat d'àcid/base inicial}}$$

Sol expressar-se en tant per cent (%).

Àcids i bases fortes Totalment ionitzats/des ($\alpha \approx 1$). Condueixen bé l'electricitat.

- Àcids: HClO₄, HI(ac), HBr(ac), HCl(ac), H₂SO₄ (1^a ionització) i HNO₃.
- Bases: Hidròxids de metalls alcalins i alcalinoterris.

Àcids i bases febles Parcialment ionitzats/des: $\alpha < 1$. Condueixen malament l'electricitat.

- Àcids: HF(ac), H₂S(ac), H₂CO₃, H₂SO₃, H₃PO₄, HNO₂ i àcids orgànics, com el CH₃COOH.
- Bases: NH₃ (o NH₄OH) i bases orgàniques nitrogenades, com amines.

Constant de dissociació

És una mesura de la FORTALESA d'un àCID/BASE en dissolució:

	ÀCID	BASE
EQUILIBRI	$HA + H_2O \longrightarrow A^- + H_3O^+$	$B + H_2O \longrightarrow HB^+ + OH^-$
CONSTANT	$K_{\rm a} = \frac{[{\rm A}^{-}][{\rm H}_{\rm 3}{\rm O}^{+}]}{[{\rm HA}]}$	$K_{\rm b} = \frac{[{\rm HB}^+][{\rm OH}^-]}{[{\rm B}]}$
COLOGARITME	$pK_a = -\log K_a$	$pK_b = -\log K_b$

Equilibri ionic de l'aigua

L'aigua és una substància anfipròtica (pot tant donar com acceptar un protó H^+), el que la permet actuar com a àcid o com a base (anfoterisme). L'equilibri iònic de l'aigua fa referència a la reacció química en la qual dues molècules d'aigua reaccionen per a produir un ió oxoni (H_3O^+) i un ió hidròxid (OH^-):

$$H_2O + H_2O \Longrightarrow H_3O^+ + OH^-$$

La constant d'equilibri, anomenada **producte iònic de l'aigua**, i denotada per $K_{\rm w}$, es pot aproximar pel producte:

$$K_{\rm w} = [{\rm H_3O^+}][{\rm OH^-}]$$

A 25 °C:

$$[H_3O^+] = [OH^-] = 10^{-7} \text{ M} \implies K_w = 10^{-14}$$

Relació entre K_a i K_b

Donat un àcid, HA, i la seva base conjugada, A⁻, podem multiplicar K_a i K_b :

$$K_{\rm a} \cdot K_{\rm b} = \frac{[{\rm A}^-][{\rm H}_3{\rm O}^+]}{[{\rm H}{\rm A}]} \cdot \frac{[{\rm H}{\rm A}][{\rm O}{\rm H}^-]}{[{\rm A}^-]} = [{\rm H}_3{\rm O}^+][{\rm O}{\rm H}^-] = K_{\rm w},$$

pel que (suposant T = 25 °C):

$$K_{a} \cdot K_{b} = K_{w} = 10^{-14}$$

 $pK_{a} + pK_{b} = pK_{w} = 14$

Concepte de pH

Es defineix el pH com el cologaritme de la concentració d'ions oxoni, H₃O⁺:

$$pH = -\log [H_3O^+]$$

Anàlogament es defineix el pOH en funció de la concentració d'ions hidròxid, OH-:

$$pOH = -\log[OH^{-}]$$

A partir de l'expressió del producte iònic de l'aigua, $K_{\rm w}$, prenent logaritmes:

$$[H_3O^+][OH^-] = K_w$$

 $log[H_3O^+] + log[OH^-] = log K_w$
 $-pH - pOH = -14$
 $pH + pOH = 14$

Traduïda i adaptada de https://www.coursehero.com/sg/cell-biology/ph-and-the-ph-scale/.

Volumetries de neutralització àcid-base

Una **valoració/titulació** és un mètode d'anàlisi química quantitativa per a determinar la concentració d'un àcid o base identificat (*analit*), neutralitzant-ho exactament amb una dissolució estàndard de base o àcid de concentració coneguda (**valorant**).

14 TEXCÉS DE BASE

10 PUNT
D'EQUIVALÈNCIA

11 PUNT
D'EQUIVALÈNCIA

12 PUNT
D'EQUIVALÈNCIA

13 PUNT
D'EQUIVALÈNCIA

14 PUNT
D'EQUIVALÈNCIA

15 PUNT
D'EQUIVALÈNCIA

16 PUNT
D'EQUIVALÈNCIA

17 PUNT
D'EQUIVALÈNCIA

18 PUNT
D'EQUIVALÈNCIA

19 PUNT
D'EQUIVALÈNCIA

10 PUNT
D'E

//www.coursehero.com/sg/general-chemistry/
quantitative-analysis-of-acids-and-bases/.

Corba de valoració/titulació de 25 mL d'àcid acètic 0.1 м amb hidròxid de sodi 0.1 м.

NEUTRALITZACIÓ: ÀCID + BASE — IRREVERSIBLE → SAL + AIGUA					
ANALIT	FORT	ÀCID FEBLE	BASE FEBLE		
PH (EQUIVALÈNCIA)	7	> 7	< 7		
INDICADOR (vira en medi)	NEUTRE	BÀSIC	ÀCID		

Indicadors acid-base

Un **indicador** de pH és un compost químic *halocròmic* (canvia de color —*vira*— davant canvis de pH) que s'afegeix en petites quantitats a una dissolució per a poder determinar visualment el seu pH (acidesa o basicitat). El canvi de color es denomina **viratge**.

Tornasol

Mescla soluble en aigua de diferents colorants extrets de LíQUENS. Absorbit en paper de filtre constitueix un dels indicadors de pH més antics utilitzats (~ 1300).

Taronja de metil (C₁₄H₁₄N₃NaO₃S)

Colorant azoderivat que vira de vermell a taronja-groc en MEDI ÀCID:

$$pH < 3.1 \implies pH > 4.4$$

Fenolftaleïna (C₂₀H₁₄O₄)

Indicador de pH incolor en medi àcid que vira a rosa en MEDI BÀSIC:

$$pH < 8.3 \implies 8.3 < pH < 10$$

Indicador universal

MESCLA D'INDICADORS (blau de timol, vermell de metil, blau de bromotimol i fenolftaleïna) que presenta canvis suaus de color en una àmplia gama de valors de pH.

RANG DE PH	< 3	3–6	7	8–11	> 11
MEDI	àcid fort	àcid feble	neutre	base feble	base fort
COLOR	vermell	taronja/groc	verd	blau	violeta

Química 2n Batx

Rodrigo Alcaraz de la Osa. Traducció: Óscar Colomar (🗡 @ocolomar)

Hiorolisi de sals

Quan una sal es dissol en aigua, es dissocia en els seus ions. Si aquests ions són capaços de reaccionar amb les molècules d'aigua i formar àcids o bases conjugats, diem que es produeix una reacció d'hidròlisi.

Traduïda i adaptada de

https://www.coursehero.com/sg/general-chemistry/solutions-are-in-equilibrium/.

Sals d'àcid fort i base forta

Quan els ions en els quals es dissocia una sal provenen d'àcids/bases fortes, no reaccionen amb aigua (hidrolitzen), perquè tendeixen a estar completament ionitzats:

$$KNO_3(s) \xrightarrow{H_2O} K^+(ac) + NO_3^-(ac)$$

 $K^+ + 2 H_2O \xrightarrow{\#} KOH + H_3O^+ NO_3^- + H_2O \xrightarrow{\#} HNO_3 + OH^-$

La dissolució resultant és neutra (pH = 7).

Sals d'àcid feble i base forta

En aquest cas l'ió provinent de l'àcid feble sí que s'hidrolitza:

$$CH_3COONa(s) \xrightarrow{H_2O} Na^+(ac) + CH_3COO^-(ac)$$
 $Na^+ + 2H_2O \xrightarrow{W} NaOH + H_3O^+ CH_3COO^- + H_2O \xrightarrow{K_b} CH_3COOH + OH^-$

La dissolució resultant és Bàsica (pH > 7).

Sals d'àcid fort i base feble

En aquest cas l'ió provinent de la base feble sí que s'hidrolitza:

$$NH_4Cl(s) \xrightarrow{H_2O} NH_4^+(ac) + Cl^-(ac)$$

$$NH_4^+ + H_2O \xrightarrow{K_a} NH_3 + H_3O^+ Cl^- + H_2O \xrightarrow{\#} HCl + OH^-$$

La dissolució resultant és àcida (pH < 7).

Sals d'àcid feble i base feble

En aquest cas tots dos ions s'hidrolitzen:

$$NH_4CN(s) \xrightarrow{H_2O} NH_4^+(ac) + CN^-(ac)$$

$$NH_4^+ + H_2O \xrightarrow{K_a} NH_3 + H_3O^+ CN^- + H_2O \xrightarrow{K_b} HCN + OH^-$$

 $K_a > K_b \Rightarrow \text{Ladissolució resultant és à cida (pH < 7)}.$

 $K_a = K_b \Rightarrow \text{Ladissolució resultant és neutre (pH = 7)}.$

 $K_{\rm b} > K_{\rm a} \Rightarrow {\rm Ladissoluci\acute{o}}$ resultant és Bàsica (pH > 7).

Dissolucions reguladores

També anomenades dissolucions amortidores o tampó, són dissolucions aquosas que consisteixen en una mescla d'un àcid o base feble i el seu conjugat corresponent. Mantenen el pH d'una dissolució pràcticament invariable enfront de petites addicions d'àcid o base a la mateixa gràcies a la neutralització de l'excés d'ions H₃O⁺ o OH⁻.

Tampó àcid feble + sal de la seva base conjugada

$$HA + H_2O \longrightarrow A^- + H_3O^+$$

Suposant que les concentracions en l'equilibri són aproximadament iguals a les concentracions inicials, a partir de l'expressió de la constant d'acidesa K_a :

$$K_{\rm a} = \frac{[{\rm A}^-][{\rm H}_3{\rm O}^+]}{[{\rm HA}]},$$

podem aïllar la concentració d'ions oxoni, H₃O⁺:

$$[H_3O^+] = K_a \cdot \frac{[HA]}{[A^-]}$$

Prenent logaritmes i canviant de signe:

$$-\log [H_3O^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$$

$$pH = pK_a - \log \frac{[HA]}{[A^-]}$$

$$pH = pK_a + \log \frac{[base\ conjugada]}{[àcid]}$$

expressió que es coneix com equació de Henderson-Hasselbalch.

Tampó base feble + sal del seu àcid conjugat

$$B + H_2O \implies HB^+ + OH^-$$

Assumint de nou que les concentracions en l'equilibri són aproximadament iguals a les concentracions inicials, a partir de l'expressió de la constant de basicitat $K_{\rm b}$:

$$K_{\rm b} = \frac{[{\rm HB}^+][{\rm OH}^-]}{[{\rm B}]},$$

podem aïllar la concentració d'ions hidròxid, OH-:

$$[OH^{-}] = K_{b} \cdot \frac{[B]}{[HB^{+}]}$$

Prenent logaritmes i canviant de signe arribem a una altra forma de l'EQUACIÓ DE HENDERSON-HASSELBALCH:

$$pOH = pK_b + log \frac{[àcid conjugat]}{[base]}$$

Importància biològica del pH

 $Tampó H_2CO_3/HCO_3^-$ Regula el pH de la SANG \rightarrow pH = 7.40 ± 0.05:

$$CO_2 + H_2O \Longrightarrow H_2CO_3 \Longrightarrow HCO_3^- + H^+$$

 $Tampó H_2PO_4^-/HPO_4^{2-}$ Regula el pH a l'interior de les cèl·lules \rightarrow pH ≈ 6.86 :

 $H_2PO_4^- \longrightarrow HPO_4^{2-} + H^+$

Acids i bases relevants

A nivell industrial

Acido sulfúric (H_2SO_4) El compost químic més produït del món, obtingut a força d'hidratar SO₃ concentrat prèviament del SO₂. El seu principal ús és per a crear àcid fosfòric que al seu torn s'empra en FERTILITZANTS.

$$H_2SO_4 + H_2O \longrightarrow HSO_4^- + H_3O^+$$
 (àcid fort)
 $HSO_4^- + H_2O \Longrightarrow SO_4^{2-} + H_3O^+$ (àcid feble)

Àcid nítric (HNO3) Emprat en la producció d'adobs, explosius i colorants: $HNO_3 + H_2O \longrightarrow NO_3^- + H_3O^+$ (àcid fort)

A nivell de consum

Àcid acètic (CH3COOH) Present en el vinagre, encara que principalment usat en la fabricació de FIBRES TÈXTILS.

$$CH_3COOH + H_2O \Longrightarrow CH_3COO^- + H_3O^+$$
 (àcid feble)

Amoníac (NH_3) Emprat principalment en la producció de FERTILITZANTS.

$$NH_3 + H_2O \implies NH_4^+ + OH^-$$
 (base feble)

Hidròxid de sodi (NaOH) Emprat sobretot en la fabricació de paper, teixits i productes de neteja.

$$NaOH \longrightarrow Na^+ + OH^-$$
 (base forta)

Problemes mediambientals

Pluja àcida Causada per l'emissió d'òxids de sofre i nitrogen, que, en contacte amb l'aigua, formen à CID SULFÚRIC i à CID NÍTRIC, entre d'altres:

Òxids de sofre (SOx)	Òxids de nitrogen (NOx)		
$SO_2 + H_2O \longrightarrow H_2SO_3$ $SO_3 + H_2O \longrightarrow H_2SO_4$	$3 \text{ NO}_2 + \text{H}_2\text{O} \longrightarrow 2 \text{ HNO}_3 + \text{NO}$		

Es considera pluja àcida si pH < 5.5. Els seus principals EFECTES són:

- Acidificació d'aigües de (rius/llacs) i sòls.
- Deteriorament del patrimoni històric (ataca roques calcàries, a base de CaCO3). Algunes solucions serien:
- Substituir combustibles fòssils per energies renovables.
- Ús de catalitzadors en vehicles.
- Addició d'un compost alcalí en rius i/o llacs per neutralitzar la seva acidesa.
- Tractament de monuments amb recobriments adequats, com el Ba(OH)₂, que reaccionen amb l'àcid sulfúric formant BaSO₄, evitant l'erosió.

Esmog Provinent de la contracció de SMOKE i FOG, fa referència a una contaminació atmosfèrica deguda sobretot a òxids de nitrogen (NOx), sofre (SOx), ozó (O₃), fum i altres partícules. Es considerat un problema derivat de la industrialització moderna, tot i que és més comú en ciutats amb climes càlids, secs i amb molt de trànsit.

EFECTES:

• La presència d'ozó i òxids de nitrogen i sofre causa problemes respiratoris, especialment en ancians i nens/as.

Algunes de las solucions proposades són:

- Reduir les emissions d'òxids de nitrogen i de compostos orgànics volàtils.
- Reduir la contaminació.