Design and Analysis of Data Structures for Dynamic Trees

Renato Werneck

Advisor: Robert Tarjan

Outline

- \Rightarrow The Dynamic Trees problem
 - Existing data structures
 - A new worst-case data structure
 - A new amortized data structure
 - Experimental results
 - Final remarks

The Dynamic Trees Problem

• Dynamic trees:

- Goal: maintain an n-vertex forest that changes over time.
 - * link(v, w): adds edge between v and w.
 - * $\operatorname{cut}(v,w)$: deletes edge (v,w).
- Application-specific data associated with vertices/edges:
 - * updates/queries can happen in bulk (entire paths or trees at once).

Concrete examples:

- Find minimum-weight edge on the path between v and w.
- Add a value to every edge on the path between v and w.
- Find total weight of all vertices in a tree.
- Goal: $O(\log n)$ time per operation.

Applications

- Subroutine of network flow algorithms
 - maximum flow
 - minimum cost flow
- Subroutine of dynamic graph algorithms
 - dynamic biconnected components
 - dynamic minimum spanning trees
 - dynamic minimum cut
- Subroutine of standard graph algorithms
 - multiple-source shortest paths in planar graphs
 - online minimum spanning trees

• • • •

Application: Online Minimum Spanning Trees

• Problem:

- Graph on n vertices, with new edges "arriving" one at a time.
- Goal: maintain the minimum spanning forest (MSF) of G.

• Algorithm:

- $\overline{\hspace{0.1cm} -\hspace{0.1cm} \mathsf{Edge}\hspace{0.1cm} e} = (v,w)$ with length $\overline{\ell}(e)$ arrives:
 - 1. If v and w in different components: insert e;
 - 2. Otherwise, find longest edge f on the path $v \cdots w$:
 - * $\ell(e) < \ell(f)$: remove f and insert e.
 - * $\ell(e) \ge \ell(f)$: discard e.

• Current minimum spanning forest.

• Edge between different components arrives.

- Edge between different components arrives:
 - add it to the forest.

• Edge within single component arrives.

- Edge within single component arrives:
 - determine path between its endpoints.

- Edge within single component arrives:
 - find longest edge on the path between its endpoints.

- Edge within single component arrives:
 - if longest edge on the path longer than new edge, swap them.

Online Minimum Spanning Trees

- Data structure must support the following operations:
 - add an edge;
 - remove an edge;
 - decide whether two vertices belong to the same component;
 - find the longest edge on a specific path.
- Each in $O(\log n)$ time:
 - basic strategy: map arbitrary tree onto balanced tree.

Data Structures for Dynamic Trees

- Different applications require different operations.
- Desirable features of a data structure for Dynamic Trees:
 - low overhead (fast);
 - simple to implement;
 - intuitive interface (easy to adapt, specialize, modify);
 - general:
 - * path and tree queries;
 - * no degree constraints;
 - * rooted and unrooted trees.

Outline

- The Dynamic Trees problem
- ⇒ Existing data structures
 - A new worst-case data structure
 - A new amortized data structure
 - Experimental results
 - Final remarks

Main Strategies

• Path decomposition:

- ST-trees [Sleator and Tarjan 83, 85];
 - * also known as link-cut trees or dynamic trees.

• Tree contraction:

- Topology trees [Frederickson 85];
- Top trees [Alstrup, Holm, de Lichtenberg, and Thorup 97];
- RC-trees [Acar, Blelloch, Harper, Vittes, and Woo 04].

• Linearization:

- ET-trees [Henzinger and King 95, Tarjan 97];
- Less general: cannot handle path queries.

Path Decomposition

- ST-trees [Sleator and Tarjan 83, 85]:
 - partition the tree into vertex-disjoint paths;
 - represent each path as a binary tree;
 - "glue" the binary trees appropriately.

Path Decomposition

- ST-trees [Sleator and Tarjan 83, 85]:
 - partition the tree into vertex-disjoint paths;
 - represent each path as a binary tree;
 - "glue" the binary trees appropriately.

Complexity:

- with ordinary balanced trees: $O(\log^2 n)$ worst-case;
- with globally biased trees: $O(\log n)$ worst-case;
- with splay trees: $O(\log n)$ amortized, but much simpler.

Main features:

- relatively low overhead (one node per vertex/edge);
- adapting to different applications requires knowledge of inner workings;
- tree-related queries require bounded degrees (or ternarization).

Contractions: Rake and Compress

• Proposed by Miller and Reif [1985] (parallel setting).

• Rake:

- eliminates a degree-one vertex;
- edge combined with successor:
 - * assumes circular order.

• Compress:

- eliminates a degree-two vertex;
- combines two edges into one.

- Original and resulting edges are clusters:
 - cluster represents both a path and a subtree;
 - user defines what to store in the new cluster.

Contractions

- Contraction:
 - series of rakes and compresses;
 - reduces tree to a single cluster (edge).
- Any order of rakes and compresses is "right":
 - final cluster will have the correct information;
 - data structure decides which moves to make:
 - * just "asks" the user how to update values after each move.
- Example:
 - work in rounds;
 - perform a maximal set of independent moves in each round.

 \boldsymbol{n}

en

Top Trees: Example

Contractions: Updating Values

• To find the minimum-cost edge on the tree:

- rake: $C \leftarrow \min\{A, B\}$

- compress: $C \leftarrow \min\{A, B\}$

• To find the maximum edge on a path:

- rake: $C \leftarrow B$.

- compress: $C \leftarrow \max\{A, B\}$

• To find the length of a path:

- rake: $C \leftarrow B$

- compress: $C \leftarrow A + B$

Contractions: Example with Values

Top Trees: Path Lengths

Top Trees

- Top tree embodies a contraction:
 - top tree root represents the entire original tree;
 - $-\exp(v,w)$ ensures that path $v\cdots w$ is represented at the root;
 - interface only allows direct access to the root.
- Other operations:
 - link: joins two top trees;
 - cut: splits a top tree in two;
 - Goal: make link, cut, and expose run in $O(\log n)$ time.
- Known implementation [Alstrup et al. 97]:
 - interface to topology trees:
 - * variant where clusters are vertices;
 - * degree must be bounded.

Outline

- The Dynamic Trees problem
- Existing data structures
- ⇒ A new worst-case data structure
 - A new amortized data structure
 - Experimental results
 - Final remarks

Tree Contraction

- Contraction scheme:
 - Work in rounds, each with a maximal set of independent moves.
- Lemma: there will be at most $O(\log n)$ levels.
 - At least half the vertices have degree 1 or 2.
 - At least one third of those will disappear:
 - * a move blocks at most 2 others.
 - No more than 5/6 of the original vertices will remain.

Online MSF on Augmented Stars

- Corollary: $\exp(v, w)$ can be implemented in $O(\log n)$ time.
 - Temporarily eliminate all clusters with v or w as internal vertices:
 - * at most two per level: $O(\log n)$.

Online MSF on Augmented Stars

- Corollary: expose(v, w) can be implemented in $O(\log n)$ time.
 - Temporarily eliminate all clusters with \overline{v} or w as internal vertices:
 - * at most two per level: $O(\log n)$.
 - Build a temporary top tree on the remaining root clusters.
 - Restore original tree.

Tree Contraction

- Update scheme:
 - Goal: minimize "damage" to original contraction after link or cut.
 - For each level (bottom-up), execute two steps:
 - 1. replicate as many original moves as possible;
 - 2. perform new moves until maximality is achieved.
 - Step 1 is implicit.

these moves cannot be replicated

new move

Running Time

- Theorem: each level can be updated in O(1) time.
- Only need to worry about the core:
 - connected subgraph induced by the new (active) clusters;
 - remaining clusters: inactive subgraph.

Running Time

- Theorem: each level can be updated in O(1) time.
- Only need to worry about the core:
 - connected subgraph induced by the new (active) clusters;
 - remaining clusters: inactive subgraph.

Running Time

- Theorem: each level can be updated in O(1) time.
- Only need to worry about the core:
 - connected subgraph induced by the new (active) clusters;
 - remaining clusters: inactive subgraph.
- Suffices to prove that core size s is bounded by a constant.
 - If core were a free tree, would shrink by 1/6 between rounds.
 - Each point of contact will add O(1) clusters to the core.
 - Claim: there are at most four points of contact.
 - Constant initial size + multiplicative decrease + additive increase:
 - \Rightarrow constant size.

Contraction-based Data Structure

- Positive aspects:
 - general (top tree interface);
 - conceptually simple algorithm;
 - direct implementation (does not use topology trees);
 - $-O(\log n)$ worst case.
- Potential overheads:
 - pointers within and among levels:
 - * need Euler tour of each level;
 - unmatched clusters are repeated (dummy nodes).
- Joint work with J. Holm, R. Tarjan, and M. Thorup.

Outline

- The Dynamic Trees problem
- Existing data structures
- A new worst-case data structure
- ⇒ A new amortized data structure
 - Experimental results
 - Final remarks

Representation

• Consider some unrooted tree:

- Make it a unit tree:
 - directed tree with degree-one root.

- Pick a root path:
 - starts at a leaf;
 - ends at the root.

- Represent the root path as a binary tree:
 - leaves: base clusters (original edges);
 - internal nodes: compress clusters.

- What if a vertex has degree greater than two?
 - Recursively represent each subtree rooted at the vertex (at most two, because of circular order).

- What if a vertex has degree greater than two?
 - Recursively represent each subtree rooted at the vertex.
 - Before vertex is compressed, rake subtrees onto adjacent cluster.

- Up to four children per node (two proper ones, two foster ones)
- Meaning: up to two rakes followed by a compress.
- Example: $N_y = \text{compress}(\text{rake}(D, N_x), \text{rake}(E, yz)) = wz$.

- How does the recursive representation work?
 - Must represent subtrees rooted at the root path.

- How does the recursive representation work?
 - Must represent subtrees rooted at the root path.

- How does the recursive representation work?
 - Must represent subtrees rooted at the root path.
 - Each subtree is a sequence of unit trees with a common root.

- How does the recursive representation work?
 - Must represent subtrees rooted at the root path.
 - Each subtree is a sequence of unit trees with a common root.
 - Represent each recursively.

- How does the recursive representation work?
 - Must represent subtrees rooted at the root path.
 - Each subtree is a sequence of unit trees with a common root.
 - Represent each recursively.
 - Build a binary tree of rakes.

- Two different views:
 - User interface: tree contraction.
 - * sequence of rakes and compresses;
 - * a single tree (a top tree).
 - Implementation: path decomposition.
 - * maximal edge-disjoint paths;
 - * hierarchy of binary trees (rake trees/compress trees);
 - * similar to ST-trees.

• Full example:

Self-Adjusting Top Trees

- Topmost compress tree represents the root path:
 - determined by expose(v, w);
 - implementation similar to ST-trees;
 - basic operations:
 - * splay: rebalances each binary tree;
 - * splice: changes the partition into paths.
- Main result: expose takes $O(\log n)$ amortized time.
- Operations link and cut use expose as the main subroutine.
- Joint work with R. Tarjan [SODA'05].

Outline

- The Dynamic Trees problem
- Existing data structures
- A new worst-case data structure
- A new amortized data structure
- \Rightarrow Experimental results
 - Final remarks

Experimental Results

- Data structures implemented (in C++):
 - TOP-W: worst-case top trees;
 - TOP-S: self-adjusting top trees;
 - ET-S: self-adjusting ET-trees;
 - ST-V/ST-E: self-adjusting ST-trees;
 - LIN-V/LIN-E: "obvious" linear-time data structure.
- Machine: 2.0 GHz Pentium IV with 1 GB of RAM.
- Applications:
 - random operations;
 - maximum flows;
 - online minimum spanning trees;
 - shortest paths.

Experimental Results: Executive Summary

- ST-V: fastest $O(\log n)$ algorithm;
 - ST-E and ET-S: up to twice as slow.
- TOP-S is 2–4 times as slow as ST-V.
- TOP-W vs. TOP-S:
 - TOP-S faster for links and cuts;
 - TOP-W faster for expose;
 - TOP-S benefits from correlated operations (splaying).
- LIN-V/LIN-E: fastest for paths with up to \sim 1000 vertices.

Experiment: Random Operations

• Setup:

- Start with empty graph on n vertices;
- use n-1 links to create a random spanning tree;
- alternate cuts and links until #ops = 10n.

Experiment: Maximum Flow

Maximum flow:

- Given: directed graph with n vertices and m edges, source s, sink t;
- Goal: find maximum flow from s to t.

• Algorithm:

- Find shortest path from s to t with positive residual capacity;
- send as much flow as possible, update residual capacities, repeat;
- running time: $O(mn^2)$.

• With dynamic trees:

- Keep "partial paths" between iterations as a forest;
- allows augmentations in $O(\log n)$ time;
- running time: $O(mn \log n)$.

Maximum Flow on Layered Networks

- Layered networks:
 - 4 rows, $\lfloor n/4 \rfloor$ columns between s and t;
 - each vertex connected to 3 random vertices in the next column;
 - augmenting paths have $\Omega(n)$ arcs.

Maximum Flow on Square Meshes

- Square meshes:
 - full $\lfloor \sqrt{n} \rfloor \times \lfloor \sqrt{n} \rfloor$ grid between s and t;
 - each grid vertex connected to all 4 neighbors;
 - augmenting paths have $\Omega(\sqrt{n})$ arcs.

Experiment: Online Minimum Spanning Forest

- Online minimum spanning forest:
 - Edges processed one at a time;
 - Edge (v, w) inserted if
 - $*\ v$ and w in different components; or
 - * (v, w) is shorter than longest edge on path from v to w:
 - · longest edge is removed.
 - $\overline{-O(\log n)}$ time per edge.
- Kruskal as reference algorithm:
 - 1. Quicksort all m edges (offline);
 - 2. Insert edge iff its endpoints are in different components:
 - use union-find data structure.

Online MSF on Random Graphs

- Random multigraphs:
 - -n=4096, edges with random endpoints and weights;
 - expected diameter: $O(\log n)$;
 - more edges \Rightarrow greater percentage of exposes.

Online MSF on Augmented Stars

• Augmented stars:

- -n = 65537, varying number (and length) of spokes;
- diameter: O(65537/#spokes);
- spoke edges, with length 1, processed first;
- other edges (random), with length 2, processed later;
- -10n edges in total.

Online MSF on Augmented Stars

- Augmented stars:
 - -n = 65537, varying number (and length) of spokes;
 - diameter: O(65537/#spokes).

Online MSF and Cache Effects

• Procedure:

- Partition vertices at random into n/32 components of size 32;
- Random edges: pick random component, then random pair within it.
- Total number of edges: 4n.

Experiment: Shortest Paths

- Bellman's single source shortest path algorithm:
 - Assign distance label to each vertex.
 - * initially, $d(s) \leftarrow 0$ (source) and $d(v) \leftarrow \infty$ (remaining vertices).
 - In each iteration, process all arcs (v, w) in fixed order:
 - * if $d(w) < d(v) + \ell(v, w)$, relax (v, w):
 - * decrement d(w) by $\Delta = d(v) + \ell(v, w) d(w)$.
 - Stop when an iteration does not relax any arc.
 - Running time: O(mn).

• Dynamic trees:

- Maintain the current shortest path tree and current $d(\cdot)$;
- When relaxing (v, w), decrement $d(\cdot)$ for all descendants of w;
- $-O(mn\log n)$, but may require fewer iterations.

Experiment: Shortest Paths

- Random graph with Hamiltonian cycle:
 - -n arcs on Hamiltonian cycle with weight in [1;10].
 - -3n random arcs with weight [1;1000].
 - Edges processed in random order.

Experiment: Shortest Paths

- Random graph with Hamiltonian cycle:
 - Dynamic trees reduce #iterations by 60% to 75%...
 - ...but increases running times by a factor of at least 50.

Outline

- The Dynamic Trees problem
- Existing data structures
- A new worst-case data structure
- A new amortized data structure
- Experimental results
- ⇒ Final remarks

Summary

- Main contributions:
 - new worst-case data structure;
 - new self-adjusting data structure:
 - * uses contraction and path decomposition.
 - experimental analysis.
- Future work and open problems:
 - Worst-case data structure: do we really need Euler tours?
 - Self-adjusting data structure: can we make it worst-case?
 - Hybrid data structure?
 - Extend top trees?
 - Generalize top trees (grids, planar graphs, …)?

Thank You

Main Approaches

	Top Trees	ST-trees
principle	tree contraction	path decomposition
general interface	YES	NO
unrestricted trees	YES	NO
representation	level-based	recursive
overhead	HIGH	LOW er