Anvendelser av inlegralet (8.6)

Omdreiningslegeme om x-aksen

Anta at f er kontinuerlig og ikke-negativ på [a, b]. Volumet av legemet vi får når området under grafen til f på [a, b] roteres om x-aksen, er

$$V = \int_{\alpha}^{b} \pi \left[f(x) \right]^{2} dx$$

Bevis

Når vi roterer, gir dette vektanglet en sylinderformet Skive med vadius $f(C_i)$ og tykkelse Δx

Volum av skiven :

$$\Delta V_{\lambda} = \operatorname{grunnflate} \cdot \Delta x$$
$$= \pi \cdot \left[f(c_{\lambda}) \right]^{2} \cdot \Delta x$$

Summen au volumet til alle skivene:

$$\sum_{i=1}^{n} \pi \cdot \left[f(c_i) \right]^2 \cdot \Delta x$$

Dette er en Riemannsum for $\pi \cdot [f(x)]^2$ på [a,b]. Så når $\Delta x \to 0$, nærmer den seg

$$\int_{a}^{b} \pi \cdot \left[f(x)\right]^{2} dx. \quad \Box$$

Finn volumet av omdreiningslegemet som fås når grafen fil f(x = x2 + 2 på [-1, 1] dreies om x-aksen.

Vi far:

$$V = \int_{-1}^{1} \pi \left[f(x) \right]^{2} dx$$

$$= \int_{-1}^{1} \pi \left(x^{2} + 2 \right)^{2} dx$$

$$= 0 \leq v. \square$$

Omdreiningslegeme om y-aksen

Anta at f er kontinuerlig og ikke-negativ på [a,b], der $a \ge 0$. Volumet av legemet vi får når området under grafen til f på [a,b] voteves om y-aksen, er b $V = 2\pi \int_{a}^{b} x \cdot f(x) dx$

$$V = 2\pi \int_{a}^{b} x \cdot f(x) dx$$

Illustrasjon og fysikerbevis

Når den roteres, gir den skraverte, grønne stripen et sylinderskall med vadius \times og høyde h = f(x)

Sylinderskallet har altså

areal = omkrets. høyde =
$$(2\pi \times) \cdot f(x)$$

"Summerer":
$$V = \int_{a}^{b} dV = \int_{a}^{b} 2\pi \times f(x) dx$$

eks. Finn volumet av omdreiningslegemet som fås når området under grafen til $f(x) = x^2$ på [0,1] roteres om y-aksen.

Løsn.

Formelen gir

y-aksen $V = 2\pi \int_{x} x \cdot f(x) dx$ $= 2\pi \int_{x} x \cdot x^{2} dx$ $= 2\pi \cdot \frac{1}{4} = \frac{\pi}{2}. \square$

Vi definerer <u>lengden av grafen</u> til f på [a, b] på følgende måte.

Vi lager en partisjon

$$\alpha = x_0 < x_1 < \dots < x_n = 6$$

måler lengden av linjestykket fra $(x_{i-1}, f(x_{i-1}))$ til punklet $(x_i, f(x_i))$ på grafen for hver i, og summerer:

Vi definerer lengden av grafen til f på [a,b] som minste øvre skranke (minste øvre begrensning) for mengden av lengdeanslag vi får på denne måten.

Teorem (graflengde)

Hvis f'(x) er kontinuerlig på [a,b], så er lengden s

av grafen til f på [a,b] gitt ved $S = \int \int [+f'(x)]^2 dx$

Bevis Se bok. D