1 Exercises

1.1

How many even primes are there? How many whose last digit is 5?

2 is the only even prime; any other even number is divisible by 2, and thus not prime. 5 is the only number whose last digit is 5; any other number in base 10 whose last digit is 5 is divisible by 5.

1.2

Prove by induction: $\forall n \in \mathbb{Z}^+$, n can be written as a product of primes.

We know this holds for n=1 and n=2, both of which are simple products of 1 and a prime. Assume now that the property holds for $n \le k$. If k+1 is prime, then it is clearly a product of 1 and a prime (like 1 and 2). Otherwise, k+1=ab, with $a,b \le k$. But, by the inductive assumption, a and b can be written as products of primes, so k+1 is itself a product of primes.

1.3

Write prime decompositions for 72 and 480.

```
72 = 2 * 2 * 2 * 3 * 3 = 2^3 * 3^2.
480 = 2 * 2 * 2 * 2 * 2 * 2 * 3 * 5 = 2^5 * 3 * 5.
```

1.4

Which members of the set less than 100 are not prome?

```
All members of the set less than 100 are as follows: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97 Eliminating prome members, have: 1, 5, 9, 13, 17, 21, 29, 33, 37, 41, 49, 53, 57, 61, 69, 73, 77, 89, 93, 97
```

1.5

What is the prime-power decomposition of 7950?

```
2*3*5^2*53
```

2 Problems

2.1

Find the prime-power decompositions of 1234, 34560, and 111111.

```
2 * 617
2^8 * 3^3 * 5
3 * 7 * 11 * 13 * 37
```

2.2

```
5*7*67
2*5*4567
3^3*7*11*13*37*101*9901
```

2.3

Tartaglia (1556) claimed that the sums

$$1+2+4$$
, $1+2+4+8$, $1+2+4+8+16$, ... (1)

are alternately prime and composite. Show that he was wrong.

The sums are of the form $f(n) = \sum_{k=0}^{n} 2^k$. This holds until f(7) = 255, which is composite. However f(8) = 511 is divisible by 7, so it is not prime.

2.4

- (a) DeBouvelles (1509) claimed that one or both of 6n + 1 and 6n 1 are primes for all $n \ge 1$. Show that he was wrong.
- (b) Show that there are infinitely many n such that both 6n-1 and 6n+1 are composite.
- (a) When n = 24, 6n + 1 = 145, which is divisible by 5, and 6n 1 = 143, which is divisible by 11.
- (b) Already know that this property holds for some n, namely n=24. Suppose $\exists n'\ni n'$ is the greatest n for which the property holds. Observe that 6(n'+k)-1=(6n'-1)+6k and 6(n'+k)+1=(6n'+1)+6k. We know that both (6n'-1) and (6n'+1) are composite, so can be written as $p_1*p_2*...*p_n$ and $q_1*q_2*...*q_n$. So, if we pick $k\ni k$ shares a divisor with both (6n'-1) and (6n'+1), we know that the property won't hold for n'+k. Even with no $p_i=q_j\forall i,j$, we can manufacture such a k by picking an arbitrary product of any combination of p_i s and p_q s. So, n' is not the greatest n for which the property holds.

2.5

Prove that if n is a square, then each exponent in its prime-power decomposition is even.

If n is a square, we know that $\exists k \ni k^2 = n$. Let $k = p_1^{e_1} * p_2^{e_2} * \dots * p_k^{e_k}$. Then $k^2 = p_1^{2e_1} * p_2^{2e_2} * \dots * p_k^{2e_k}$. By **Theorem 2**, this is the unique prime decomposition of n, and all e_i are even.

2.6

Prove that if each exponent in the prime-power decomposition of n is even, then n is a square.

We write $n=p_1^{2e_1}*p_2^{2e_2}*\dots*p_k^{2e_k}$. This can be rewritten as $p_1^{e_1}*p_1^{e_1}*p_2^{e_2}*p_2^{e_2}*\dots*p_k^{e_k}=(p_1^{e_1}*p_2^{e_2}*\dots*p_k^{e_k})^2$. So, $\exists k=p_1^{e_1}*p_2^{e_2}*\dots*p_k^{e_k}\ni k^2=n$.

2.7

Find the smallest integer divisible by 2 and 3 which is simultaneously a square and a fifth power.

We can show analogously to the previous exercise that if each exponent in the prime-power decomposition of n is divisible by d, then $\exists k \ni k^d = n$. The smallest d' for which this holds for both $d_1 = 2$ and $d_2 = 5$ is 10. So $2^{10} * 3^{10} = 60466176$ is the smallest integer with such a property.

2.8

If d|ab, does it follow that d|a or d|b?

No, for example if d = ab and a, b > 1, then d|ab, but $d \nmid a, d \nmid b$.

2.9

Is it possible for a prime p to divide both n and n+1 $(n \ge 1)$?

 $p|n \Rightarrow \exists k \ni n = pk$. Then n+1 = pk+1. If p|pk+1, then p|pk and p|1. But there is no prime that divides 1.

2.10

Prove that n(n+1) is never a square for n > 0.

 $n(n+1)=n^2+n$. The number n^2 is certainly a square. Since $n^2+n>n^2$, if n^2+n is a square, it must be of some k>n. The smallest such $k\in\mathbb{Z}$ is n+1. However, $(n+1)^2=n^2+2n+1>n^2+n$. The inequality will hold for any other k>n+1 as well, so there is no such k.

2.11

- (a) Verify that $2^5 * 9^2 = 2592$.
- (b) Is $2^5 * a^b = [25ab]$ possible for other a, b? (Here, [25ab] denotes the digits of $2^5 * a^b$ and not a product.)
- (a) Sure.
- (b) $2^5 = 32$. Let's examine the range in which a^b must fall to produce a 4 digit [25ab]. The ceiling of 2510/32 is 79 (never will a = 0 have the desired property, since $32 * 0^b = 0$, or at best, and debatedly so, 32 when b = 0; this hardly makes a difference for what follows). The floor of 2599/32 is 81, a number we're familiar with as 9^2 . So $a^b \in \{79, 80, 81\}$. Let's write the prime-power decompositions of each:

$$79 = 79^1 \tag{2}$$

$$80 = 2^4 * 5 \tag{3}$$

$$81 = 3^4$$
 (4)

79 can be written as 79^1 , but then $[25ab] \ge 25000 > 2599$.

80 can be written as 80^{1} , but then [25ab] > 25000 > 2599.

81 can be written as 3^4 as well as 9^2 , but since 32 * 81 = 2592, this alternative representation of 81 does not have the desired property. 81^1 , like the previous b = 1 cases, will also not fulfill the property.

2.12

Let p be the least prime factor of n, where n is composite. Prove that if $p > n^{1/3}$, then n/p is prime.

n/p can only be prime if n=p*z for some prime z. We have $p>n^{1/3}\Rightarrow p^3=p*p^2>p*z$. So we know that $z< p^2$. Suppose z is composite. Then, by **Lemma 3**, it must have a divisor $d\ni 1< d\le z^{1/2}< p$. But, if there were such a d, then p would not be the least prime factor of n.

2.13

True or false? If p and q divide n, and each is greater than $n^{1/4}$, then n/pq is prime.

TODO, author gives example to show this is false, but I wish there was a more elegant way than guessing.

2.14

Prove that if n is composite, then $2^n - 1$ is composite.

Observe that $2^n - 1 = (2 - 1)(2^{n-1} + 2^{n-2} + ... + 1)$. If n is composite, than it can be written as ab for some $a, b \in \mathbb{Z}$. So, $(2^a)^b - 1 = (2^a - 1)(2^{a(b-1)} + 2^{a(b-2)} + ... + 1)$. This is composite by definition.

2.15

Is it true that if $2^n - 1$ is composite, then n is composite?

 $2^{11}-1=2047=23*89$ is apparently the famous counterexample... Dunno if there is a good (feasible for me) "analytic" way to show this.