Gossip-6 LAYER4 Secure Communication Protocol

- 1. Need secure communication:
 - Establish shared AES256 key: Diffie Hellman key exchange,
 - Need to trust the source (signature),
 - Since there will be no CA, we need Proof of Work for the identity,
 - We are already given an out-of-band public key sharing mechanism.
- 2. For Alice (client):
 - Let handshake message $m = DHE_{pub}^{Alice} \mid RSA_{pub}^{Alice} \mid nonce$ such that $scrypt_C(m) < k$ for some predetermined $k \in \mathbb{Z}^+$ and Scrypt hash function with configuration C,
 - Sign the digest ${
 m SHA3_256}(m)$ with ${
 m \it RSA}^{\it Alice}_{priv}$ as $s={
 m \it Sign}_{{
 m \it RSA}^{\it Alice}_{priv}}({
 m SHA3_256}(m))$,
 - Add the signature to the message as $m^{Alice} = m \mid s$ and send m^{Alice} to Bob (server).
- 3. For Bob (server):
 - Upon receiving m^{Alice} , get the fields of the message as $m \mid s$,
 - Check validity first as $scrypt_{\mathcal{C}}(m) < k$, if not valid then discard connection,
 - From m, get the fields $DHE_{pub}^{Alice} \mid RSA_{pub}^{Alice} \mid nonce$,
 - Make sure RSA^{Alice}_{pub} is a known and trusted public key*,
 - ullet Verify signature as $Verify_{RSA^{Alice}_{pub}}(m{m},m{s})$, if not valid then discard connection,
 - Let handshake message $m' = DHE^{Bob}_{pub} \mid RSA^{Bob}_{pub} \mid nonce'$ such that $scrypt_C(m') < k$ for some predetermined $k \in \mathbb{Z}^+$ and Scrypt hash function with configuration C,
 - ullet Sign the digest SHA3_256(m') with RSA^{Bob}_{priv} as $s'=Sign_{RSA^{Bob}_{priv}}(ext{SHA3}_256(m'))$,
 - Add the signature to the message as $m^{Bob} = m' \mid s'$ and send m^{Bob} to Alice (client).
- 4. For Alice again (client):
 - Upon receiving m^{Bob} , get the fields of the message as $m' \mid s'$,
 - Check validity first as $scrypt_{\mathcal{C}}(m') < k$, if not valid then discard connection,
 - From m', get the fields $DHE^{Bob}_{pub} \mid RSA^{Bob}_{pub} \mid nonce'$,
 - Make sure RSA_{pub}^{Bob} is a known and trusted public key*,
 - Verify signature as $Verify_{RSA_{mib}^{Bob}}(m',s')$, if not valid then discard connection.
- 5. Now that both Alice and Bob have DHE_{pub}^{Alice} and DHE_{pub}^{Bob} , they can both calculate the shared secret as $AES256_{key} = DHE(DHE_{priv}^{Alice}, DHE_{pub}^{Bob}) = DHE(DHE_{pub}^{Alice}, DHE_{priv}^{Bob})$. After 1 round trip, the secure communication has been established. Each message following the handshakes will be encrypted with the $AES256_{key}$.

*: We can check if a public key is known due to the out-of-band identity sharing mechanism. The identity of a peer is the sha256 hash value of its RSA public key, as defined in the specifications document.