Definition 1.1 (Dynamic weakly verifiable puzzle (non interactive version))

A dynamic weakly verifiable puzzle (DWVP) is defined by a probabilistic algorithm $P(\pi)$, called a problem poser, that takes as input chosen uniformly at random bitstring $\pi \in \{0,1\}^l$. The algorithm $P(\pi)$ produces circuits Γ_V , Γ_H and a puzzle $x \in \{0,1\}^*$. The circuit Γ_V takes as its input $q \in Q$ and an answer y. If $\Gamma_V(q,y) = 1$ then y is a correct solution of puzzle x for q. The circuit Γ_H on input q provides a hint such that $\Gamma_V(q,\Gamma_H(q)) = 1$. The algorithm S, called a solver, has oracle access to Γ_V and Γ_H . The calls of S to Γ_V are called verification queries and the calls to Γ_H are hint queries. The solver S can ask at most h hint queries, v verification queries, and successfully solves a DWVP if and only if it makes a verification query (q,r) such that $\Gamma_V(q,r) = 1$, when it has not previously asked for a hint query on this q.

Experiment $B^{P^{(1)},D}(\pi)$

Solving a dynamic weakly verifiable puzzle

Oracle: Problem poser for a single instance of DWVP $P^{(g)}$, a solver circuit D. **Input:** Bitstring $\pi \in \{0,1\}^l$.

```
\begin{array}{l} (x,\Gamma_V,\Gamma_H):=P^{(1)}(\pi)\\ \text{Run }D^{(.)(.)}(x) \text{ with oracle access to }\Gamma_V \text{ and }\Gamma_H\\ \text{Let }(\widetilde{q},y) \text{ be the first verification query of }D^{\Gamma_H,\Gamma_V}(x) \text{ such that }\Gamma_V(\widetilde{q},y)=1\\ \text{Define }Q_{Hint}:=\{q:D^{\Gamma_H,\Gamma_V}(x) \text{ asked a hint query on q}\}\\ \text{If }q\notin Q_{Hint}\\ \text{return }1\\ \text{else}\\ \text{return }0 \end{array}
```

Definition 1.2 (k-wise direct product of dynamic weakly verifiable puzzles)

Let $g: \{0,1\}^k \to \{0,1\}$ denote a monotone function, and $P^{(1)}$ an algorithm used to generate an instance of DWVP. A k-wise direct product of dynamic weakly verifiable puzzles is defined by an algorithm $P^{(g)}(\pi_1, \ldots, \pi_k)$, where $(\pi_1, \ldots, \pi_k) \in \{0,1\}^{kl}$ are chosen uniformly at random. The algorithm $P^{(g)}(\pi_1, \ldots, \pi_k)$ sequentially generates k independent instances of dynamic weakly verifiable puzzles, where in the i-th round $P^{(g)}$ runs $P^{(1)}(\pi_i)$ and obtains $(x_i, \Gamma_V^{(i)}, \Gamma_H^{(i)})$. Finally, $P^{(g)}$ outputs a verification circuit

$$\Gamma_V^{(g)}(q, r_1, \dots, r_k) := g(\Gamma_V^{(1)}(q, r_1), \dots, \Gamma_V^{(k)}(q, r_k)),$$

a hint circuit

$$\Gamma_H^{(g)}(q) := (\Gamma_H^{(1)}(q), \dots, \Gamma_H^{(k)}(q)),$$

and a puzzle $x^{(k)} := (x_1, \dots, x_k)$.

Experiment $A^{P^{(g)},C^{(.)(.)}}(\pi^{(k)})$

Solving k-wise direct product of dynamic weakly verifiable puzzles.

Oracle: Problem poser for k-wise direct product $P^{(g)}$, a solver circuit $C^{(.)(.)}$ with oracle access to hint and verification circuits.

Input: Random bitstring $\pi^{(k)} \in \{0,1\}^{lk}$.

```
(x^{(k)}, \Gamma_V^{(g)}, \Gamma_H^{(g)}) := P^{(g)}(\pi^{(k)})
Run C^{(\cdot)(\cdot)}(x) with oracle access to \Gamma_V and \Gamma_H

Let (\widetilde{q}, y) be the first verification query of C^{\Gamma_V^{(g)}, \Gamma_H^{(g)}}(x) such that \Gamma_V^{(g)}(\widetilde{q}, y_1, \dots, y_k) = 1

Define Q_{Hint} := \{q : D^{\Gamma_V^{(g)}, \Gamma_H^{(g)}}(x^{(k)}) \text{ asked a hint query on q} \}

If q \notin Q_{Hint}

return 1

else

return 0
```

Theorem 1.3 Security amplification of a dynamic weakly verifiable puzzle.

Fix a problem poser $P^{(1)}$. There exists an algorithm $Gen(C, g, \varepsilon, \delta, n, v, h)$ which takes as input a circuit C, a monotone function g, parameters ε, δ , a security parameter n, number of verification v, and hint h queries asked by C, and outputs a circuit D such that following holds: If C is such that

$$\Pr_{(\pi_1, \dots, \pi_k) \in \{0, 1\}^{lk}} [A^{P^{(g)}, C}(\pi_1, \dots, \pi_k) = 1] \ge \Pr_{\mu \leftarrow \mu_{\delta}^k} [g(\mu) = 1] + \varepsilon$$

then D satisfies almost surely

$$\Pr_{\pi \in \{0,1\}^l} [B^{P^{(1)},D}(\pi) = 1] \ge (\delta + \frac{\varepsilon}{6k})$$

 $\label{eq:size} and \; Size(D) \leq Size(C) \frac{6k}{\varepsilon} \; \; and \; Time(Gen) = poly(k, \tfrac{1}{\varepsilon}, n, v, h).$

Experiment $E^{P^{(g)},C^{(\cdot)(\cdot)},Hash}(\pi_1,\ldots,\pi_k)$

Solving k-wise direct product with respect to the set P_{hash}

Oracle: Problem poser for k-wise direct product $P^{(g)}$

Solver circuit $C^{(.)(.)}$ with oracle access to hint and verification circuits

Function $Hash: Q \leftarrow \{0, \dots, 2(h+v) - 1\}$

Input: Random bitstring $(\pi_1, \ldots, \pi_k) \in \{0, 1\}^{lk}$

$$\pi^{(k)} := (\pi_1, \dots, \pi_k) (x^k, \Gamma_V^{(g)}, \Gamma_H^{(g)}) := P^{(g)}(\pi^k) \operatorname{Run} C^{\Gamma_V^{(g)}, \Gamma_H^{(g)}}(x^{(k)})$$

Let $(q_j, y_j^{(k)})$ be the first successful verification query if $C^{\Gamma_V^{(g)}, \Gamma_H^{(g)}}$ succeeds or an arbitrary verification query when it fails.

If
$$(\forall i < j : Hash(q_i) \neq 0)$$
 and $(Hash(q_j) = 1 \wedge \Gamma_V^{(g)}(q_j, y_j^{(k)}) = 1)$ return 1

else

return 0

Lemma 1.4 Success probability with respect to hash function.

Fix $P^{(1)}$ and let C be a circuit that succeeds in solving the k-wise direct product of DWVP produced by $P^{(1)}$ with probability ε making h hint and v verification queries. Then there exists a

probabilistic algorithm, with oracle access to C, that runs in time $O((h+v)^4/\varepsilon^4)$ and with high probability outputs a function $Hash: Q \to \{0, \dots, 2(h+v)-1\}$ such that success probability of C in random experiment E with respect to set P_{Hash} is at least $\frac{\varepsilon}{8(h+v)}$.

Lemma 1.5 Security amplification of a dynamic weakly verifiable puzzle with respect to set P_{hash} .

For a fixed dynamic weakly verifiable puzzle $P^{(1)}$ there exists an algorithm $Gen(C,g,\varepsilon,\delta,n,v,h,Hash)$, which takes as input a circuit C, a monotone function g, a function $Hash:Q\to\{0,\ldots,2(h+v)-1\}$, parameters ε,δ,n , number of verification v, and hint h queries asked by C, and outputs a circuit D such that following holds: If C is such that

$$\Pr_{(\pi_1,\ldots,\pi_k)}[E^{P^{(g)},C,Hash}(\pi_1,\ldots,\pi_k)] \ge \Pr_{\mu \leftarrow \mu_\delta^k}[g(\mu) = 1] + \varepsilon$$

then D satisfies almost surely

$$\Pr_{\pi}[F^{P^{(1)},D,Hash}(\pi) = 1] \ge (\delta + \frac{\varepsilon}{6k})$$

 $and \; Size(D) \leq Size(C) \tfrac{6k}{\varepsilon} \; and \; Time(Gen) = poly(k, \tfrac{1}{\varepsilon}, n, v, h).$

Random experiment $F^{P^{(1)},D,Hash}(\pi)$

Solving a single DWVP with respect to the set P_{hash}

Oracle: A circuit D, a function Hash, a dynamic weakly verifiable puzzle $P^{(1)}$

Input: Random bitstring π

 $(x, \Gamma_v, \Gamma_H) := P^{(1)}(\pi)$ Run $D^{\Gamma_V, \Gamma_H}(x)$

Let $(\widetilde{q}_j, \widetilde{r}_j)$ be the first successful verification query if $D^{\Gamma_V, \Gamma_H}(x)$ succeeds or an arbitrary verification query when it fails.

If $(\forall i < j : Hash(q_i) \neq 0)$ and $Hash(q_i) = 1$

return 1

else

return 0

Circuit $\widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(g)},Hash}(x_1,\ldots,x_k)$

Circuit \widetilde{C} has good canonical success probability.

Oracle: $\Gamma_V^{(g)}, \Gamma_H^{(g)}, Hash$

Input: k-wise direct product of puzzles (x_1, \ldots, x_k)

 $\operatorname{Run} C^{(.),(.)}(x_1,\ldots,x_k)$

If C asks hint query q then

If Hash(q) = 0 then

 $\mathbf{return} \perp$

else

answer with $\Gamma_H^{(g)}(q)$

If
$$C$$
 asks verification query (q, y_1, \ldots, y_k) then

If $hash(q) = 0$ then

return (q, y_1, \ldots, y_k)
else

answer verification query with 0 return \bot

Lemma 1.6

$$\Pr_{(\pi_1, \dots, \pi_k)}[E^{P^{(g)}, C, Hash}(\pi_1, \dots, \pi_k) = 1] \leq \Pr_{(\pi_1, \dots, \pi_k)}[\Gamma_V^{(g)}(\widetilde{C}^{\Gamma_V^{(g)}, \Gamma_H^{(g)}, Hash}(\pi_1, \dots, \pi_k)) = 1]$$

Proof If
$$E^{P^{(g)},C,Hash}(\pi_1,\ldots,\pi_k)=1$$
 then circuit $\Gamma_V^{(g)}(\widetilde{C}^{\Gamma_V^{(g)},\Gamma_H^{(g)},Hash}(\pi_1,\ldots,\pi_k))=1.$