15.7. PROBLEMS 585

where $2 \le k \le n$.

- (1) Prove the following properties:
- (i) $P_k(x)$ is the characteristic polynomial of A_k , where $1 \le k \le n$.
- (ii) $\lim_{x\to-\infty} P_k(x) = +\infty$, where $1 \le k \le n$.
- (iii) If $P_k(x) = 0$, then $P_{k-1}(x)P_{k+1}(x) < 0$, where $1 \le k \le n-1$.
- (iv) $P_k(x)$ has k distinct real roots that separate the k+1 roots of $P_{k+1}(x)$, where $1 \le k \le n-1$.
- (2) Given any real number $\mu > 0$, for every $k, 1 \le k \le n$, define the function $sg_k(\mu)$ as follows:

$$sg_k(\mu) = \begin{cases} sign \text{ of } P_k(\mu) & \text{if } P_k(\mu) \neq 0, \\ sign \text{ of } P_{k-1}(\mu) & \text{if } P_k(\mu) = 0. \end{cases}$$

We encode the sign of a positive number as +, and the sign of a negative number as -. Then let $E(k,\mu)$ be the ordered list

$$E(k,\mu) = \langle +, sg_1(\mu), sg_2(\mu), \dots, sg_k(\mu) \rangle,$$

and let $N(k,\mu)$ be the number changes of sign between consecutive signs in $E(k,\mu)$.

Prove that $sg_k(\mu)$ is well defined and that $N(k,\mu)$ is the number of roots λ of $P_k(x)$ such that $\lambda < \mu$.

Remark: The above can be used to compute the eigenvalues of a (tridiagonal) symmetric matrix (the method of Givens-Householder).