# t Test vs Z Test







Sample Size > 30























A paired t-test is used when we are interested in the difference between two variables for the same subject.



A paired t-test is used when we are interested in the difference between two variables for the same subject.

Ex: Recovery of Covid Patients before and after hydroxychloroquine drugs





A paired t-test is used when we are interested in the difference between two variables for the same subject.





A paired t-test is used when we are interested in the difference between two variables for the same subject.

Ex: Improvement in Production after using advanced manufacturing machine.

H<sub>0</sub>: Production doesn't improve

H<sub>1</sub>: Production does improve





Ex: Improvement in Production after using advanced manufacturing machine.



| Day |
|-----|
| 1.0 |

2.0

3.0

- 0

6.0

7.0

3.0

9.0

10.0

\_\_\_\_

12.0

14.0

15.0

16.0

17.0

18.0

19.0

20.



| ay  | Before P | roduction |
|-----|----------|-----------|
| 1.0 |          | 1800      |
| 2.0 |          | 2100      |
| 3.0 |          | 1600      |
| 4.0 |          | 2200      |
| 5.0 |          | 1900      |
| 6.0 |          | 2400      |
| 7.0 |          | 1700      |
| 8.0 |          | 2100      |
| 9.0 |          | 2300      |
| 0.0 |          | 1800      |
| 1.0 |          | 1400      |
| 2.0 |          | 1600      |
| 3.0 |          | 1600      |
| 4.0 |          | 1900      |
| 5.0 |          | 1800      |
| 6.0 |          | 2000      |
| 7.0 |          | 1200      |
| 8.0 |          | 2200      |
| 9.0 |          | 1500      |
| 0.0 |          | 1700      |



| Day Before F  1.0  2.0  3.0  4.0  5.0  6.0  7.0  8.0  9.0  11.0  12.0  13.0  14.0 | Before Production | After Production |
|-----------------------------------------------------------------------------------|-------------------|------------------|
| 1.0                                                                               | 1800              | 2200             |
| 2.0                                                                               | 2100              | 2500             |
| 3.0                                                                               | 1600              | 1700             |
| 4.0                                                                               | 2200              | 2400             |
| 5.0                                                                               | 1900              | 1600             |
| 6.0                                                                               | 2400              | 2900             |
| 7.0                                                                               | 1700              | 2000             |
| 8.0                                                                               | 2100              | 2300             |
| 9.0                                                                               | 2300              | 1900             |
| 10.0                                                                              | 1800              | 2000             |
| 11.0                                                                              | 1400              | 1500             |
| 12.0                                                                              | 1600              | 1500             |
| 13.0                                                                              | 1600              | 1800             |
| 14.0                                                                              | 1900              | 2600             |
| 15.0                                                                              | 1800              | 1800             |
| 16.0                                                                              | 2000              | 2400             |
| 17.0                                                                              | 1200              | 1800             |
| 18.0                                                                              | 2200              | 2500             |
| 19.0                                                                              | 1500              | 1900             |
| 20.0                                                                              | 1700              | 1600             |



| Day  | Before Production | After Production | Difference |
|------|-------------------|------------------|------------|
| 1.0  | 1800              | 2200             | 400        |
| 2.0  | 2100              | 2500             | 400        |
| 3.0  | 1600              | 1700             | 100        |
| 4.0  | 2200              | 2400             | 200        |
| 5.0  | 1900              | 1600             | -300       |
| 6.0  | 2400              | 2900             | 500        |
| 7.0  | 1700              | 2000             | 300        |
| 8.0  | 2100              | 2300             | 200        |
| 9.0  | 2300              | 1900             | -400       |
| 10.0 | 1800              | 2000             | 200        |
| 11.0 | 1400              | 1500             | 100        |
| 12.0 | 1600              | 1500             | -100       |
| 13.0 | 1600              | 1800             | 200        |
| 14.0 | 1900              | 2600             | 700        |
| 15.0 | 1800              | 1800             | 0          |
| 16.0 | 2000              | 2400             | 400        |
| 17.0 | 1200              | 1800             | 600        |
| 18.0 | 2200              | 2500             | 300        |
| 19.0 | 1500              | 1900             | 400        |
| 20.0 | 1700              | 1600             | -100       |

$$t_{calc} = \frac{\overline{d}}{S_d / \sqrt{n}}$$

| Day  | Before Production | After Production | Difference |
|------|-------------------|------------------|------------|
| 1.0  | 1800              | 2200             | 400        |
| 2.0  | 2100              | 2500             | 400        |
| 3.0  | 1600              | 1700             | 100        |
| 4.0  | 2200              | 2400             | 200        |
| 5.0  | 1900              | 1600             | -300       |
| 6.0  | 2400              | 2900             | 500        |
| 7.0  | 1700              | 2000             | 300        |
| 8.0  | 2100              | 2300             | 200        |
| 9.0  | 2300              | 1900             | -400       |
| 10.0 | 1800              | 2000             | 200        |
| 11.0 | 1400              | 1500             | 100        |
| 12.0 | 1600              | 1500             | -100       |
| 13.0 | 1600              | 1800             | 200        |
| 14.0 | 1900              | 2600             | 700        |
| 15.0 | 1800              | 1800             | 0          |
| 16.0 | 2000              | 2400             | 400        |
| 17.0 | 1200              | 1800             | 600        |
| 18.0 | 2200              | 2500             | 300        |
| 19.0 | 1500              | 1900             | 400        |
| 20.0 | 1700              | 1600             | -100       |

Ex: Improvement in Production after using advanced manufacturing machine.

$$t_{calc} = \frac{\overline{d}}{s_d / \sqrt{n}}$$

 → Mean of difference observed

 ⇒ Standard deviation of difference observed

 ⇒ Sample Size

| Day  | Before Production | After Production | Difference |
|------|-------------------|------------------|------------|
| 1.0  | 1800              | 2200             | 400        |
| 2.0  | 2100              | 2500             | 400        |
| 3.0  | 1600              | 1700             | 100        |
| 4.0  | 2200              | 2400             | 200        |
| 5.0  | 1900              | 1600             | -300       |
| 6.0  | 2400              | 2900             | 500        |
| 7.0  | 1700              | 2000             | 300        |
| 8.0  | 2100              | 2300             | 200        |
| 9.0  | 2300              | 1900             | -400       |
| 10.0 | 1800              | 2000             | 200        |
| 11.0 | 1400              | 1500             | 100        |
| 12.0 | 1600              | 1500             | -100       |
| 13.0 | 1600              | 1800             | 200        |
| 14.0 | 1900              | 2600             | 700        |
| 15.0 | 1800              | 1800             | 0          |
| 16.0 | 2000              | 2400             | 400        |
| 17.0 | 1200              | 1800             | 600        |
| 18.0 | 2200              | 2500             | 300        |
| 19.0 | 1500              | 1900             | 400        |
| 20.0 | 1700              | 1600             | -100       |

$$t_{calc} = \frac{\overline{d}}{\frac{S_d}{\sqrt{n}}}$$

| $\overline{d}$ | $\rightarrow$ 205    |
|----------------|----------------------|
| $S_d$          | $\rightarrow$ 283.72 |
| n              | $\rightarrow$ 20     |

| Day  | Before Production | After Production | Difference |
|------|-------------------|------------------|------------|
| 1.0  | 1800              | 2200             | 400        |
| 2.0  | 2100              | 2500             | 400        |
| 3.0  | 1600              | 1700             | 100        |
| 4.0  | 2200              | 2400             | 200        |
| 5.0  | 1900              | 1600             | -300       |
| 6.0  | 2400              | 2900             | 500        |
| 7.0  | 1700              | 2000             | 300        |
| 8.0  | 2100              | 2300             | 200        |
| 9.0  | 2300              | 1900             | -400       |
| 0.0  | 1800              | 2000             | 200        |
| 1.0  | 1400              | 1500             | 100        |
| 2.0  | 1600              | 1500             | -100       |
| 3.0  | 1600              | 1800             | 200        |
| 4.0  | 1900              | 2600             | 700        |
| 5.0  | 1800              | 1800             | 0          |
| 6.0  | 2000              | 2400             | 400        |
| 7.0  | 1200              | 1800             | 600        |
| 8.0  | 2200              | 2500             | 300        |
| 19.0 | 1500              | 1900             | 400        |
| 0.0  | 1700              | 1600             | -100       |

$$t_{cole} = 3.231$$

Ex: Improvement in Production after using advanced manufacturing machine.

$$t_{calc} = 3.231$$

#### t Table cum. prob t.50 t.75 t .80 t .85 t .975 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 one-tail 1.00 0.50 0.40 0.30 0.20 0.10 0.05 0.02 0.01 0.002 0.001 two-tails 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12,924 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610 0.920 1.476 0.000 0.727 1.156 2.015 2.571 3.365 4.032 5.893 6.869 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959 5.408 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3,499 4.785 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041 0.703 0.883 1.383 2.262 2.821 3.250 4.297 4.781 0.000 1.100 1.833 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587 4.437 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 0.873 1.356 2.179 2.681 4.318 0.000 0.695 1.083 1.782 3.055 3.930 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140 0.866 2.131 0.000 0.691 1.074 1.341 1.753 2.602 2.947 3.733 4.073 0.865 1.337 2.120 2,583 2.921 3.686 4.015 0.000 0.690 1.071 1.746 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965 0.000 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850 0.000 0.687 0.860

Ex: Improvement in Production after using advanced manufacturing machine.

$$t_{calc} = 3.231$$

#### t Table cum. prob t.50 t.75 t .80 t .85 t .975 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 one-tail 1.00 0.50 0.40 0,30 0.20 0.10 0.05 0.02 0.01 0.002 0.001 two-tails 636.62 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924 4.604 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 7.173 8.610 0.920 1.476 2.571 3,365 4.032 6.869 0.000 0.727 1.156 2.015 5.893 3.707 5.959 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 5.208 2.998 3.499 5.408 0.000 0.711 0.896 1.119 1.415 1.895 2.365 4.785 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041 0.883 1.383 2.262 2.821 3.250 4.297 4.781 0.000 0.703 1.100 1.833 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587 3.106 4.025 4.437 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 0.873 1.356 2.179 2.681 3.055 3.930 4.318 0.000 0.695 1.083 1.782 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221 2.977 4.140 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 3.787 2.131 2.602 2.947 3.733 0.000 0.691 0.866 1.074 1.341 1.753 4.073 0.865 1.337 2.120 2,583 2.921 3.686 4.015 0.000 0.690 1.071 1.746 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922 2.002 2 5 20 3.883 1.064 1.725 2.528 2.845 3.552 3.850 0.000 0.687 0.860 1.325 2.086

Ex: Improvement in Production after using advanced manufacturing machine.

$$t_{calc} = 3.231$$

P value would be between 0.001 and 0.005.

#### t Table cum. prob t.50 t.75 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005 one-tail 1.00 0.50 0.40 0,30 0.20 0.10 0.05 0.02 0.01 0.002 0.001 two-tails 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12,924 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610 0.920 1.476 4.032 0.000 0.727 1.156 2.015 2.571 3.365 5.893 6.869 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959 3.499 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 4.785 5.408 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041 0.883 1.383 2.262 2.821 3.250 4.297 4.781 0.000 0.703 1.100 1.833 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587 3.106 4.025 4.437 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 0.873 2.179 2.681 3.055 3.930 4.318 0.000 0.695 1.083 1.356 1.782 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221 2.977 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 3.787 4.140 2.947 3.733 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 4.073 0.865 1.337 2.120 2,583 2.921 3.686 4.015 0.000 0.690 1.071 1.746 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922 3.883 1.064 1.725 2.845 3.850 0.000 0.687 0.860 1.325 2.086 2.528

+ Table

Ex: Improvement in Production after using advanced manufacturing machine.

$$t_{calc} = 3.231$$

P value would be between 0.001 and 0.005.

Exact P value = 0.004

| cum. prob | t.50           | t.75       | t .80                                         | t .85     | t.90           | t .95       | t ,975     | t .99     | t.995         | t,999               | t .9995         |
|-----------|----------------|------------|-----------------------------------------------|-----------|----------------|-------------|------------|-----------|---------------|---------------------|-----------------|
| one-tail  | 0.50           | 0.25       | 0.20                                          | 0.15      | 0.10           | 0.05        | 0.025      | 0.01      | 0.005         | 0.001               | 0.0005          |
| two-tails | 1.00           | 0.50       | 0.40                                          | 0.30      | 0.20           | 0.10        | 0.05       | 0.02      | 0.01          | 0.002               | 0.001           |
| df        | 823 B/2 / 10 F | 1000000000 | 0.5 10 20 20 20 20 20 20 20 20 20 20 20 20 20 | 104037500 | VENE A1901 NO. | ACCESSION N | ROMODANO I | 100000000 | 1172174174188 | No tenero de tenero | Contract of the |
| 1         | 0.000          | 1.000      | 1.376                                         | 1.963     | 3.078          | 6.314       | 12.71      | 31.82     | 63.66         | 318.31              | 636.62          |
| 2         | 0.000          | 0.816      | 1.061                                         | 1.386     | 1.886          | 2.920       | 4.303      | 6.965     | 9.925         | 22.327              | 31.599          |
| 3         | 0.000          | 0.765      | 0.978                                         | 1.250     | 1.638          | 2.353       | 3.182      | 4.541     | 5.841         | 10.215              | 12.924          |
| 4         | 0.000          | 0.741      | 0.941                                         | 1.190     | 1.533          | 2.132       | 2.776      | 3.747     | 4.604         | 7.173               | 8.610           |
| 5         | 0.000          | 0.727      | 0.920                                         | 1.156     | 1.476          | 2.015       | 2.571      | 3.365     | 4.032         | 5.893               | 6.869           |
| 6         | 0.000          | 0.718      | 0.906                                         | 1.134     | 1.440          | 1.943       | 2.447      | 3.143     | 3.707         | 5.208               | 5.959           |
| 7         | 0.000          | 0.711      | 0.896                                         | 1.119     | 1.415          | 1.895       | 2.365      | 2.998     | 3.499         | 4.785               | 5.408           |
| 8         | 0.000          | 0.706      | 0.889                                         | 1.108     | 1.397          | 1.860       | 2.306      | 2.896     | 3.355         | 4.501               | 5.041           |
| 9         | 0.000          | 0.703      | 0.883                                         | 1.100     | 1.383          | 1.833       | 2.262      | 2.821     | 3.250         | 4.297               | 4.781           |
| 10        | 0.000          | 0.700      | 0.879                                         | 1.093     | 1.372          | 1.812       | 2.228      | 2.764     | 3.169         | 4.144               | 4.587           |
| 11        | 0.000          | 0.697      | 0.876                                         | 1.088     | 1.363          | 1.796       | 2.201      | 2.718     | 3.106         | 4.025               | 4.437           |
| 12        | 0.000          | 0.695      | 0.873                                         | 1.083     | 1.356          | 1.782       | 2.179      | 2.681     | 3.055         | 3.930               | 4.318           |
| 13        | 0.000          | 0.694      | 0.870                                         | 1.079     | 1.350          | 1.771       | 2.160      | 2.650     | 3.012         | 3.852               | 4.221           |
| 14        | 0.000          | 0.692      | 0.868                                         | 1.076     | 1.345          | 1.761       | 2.145      | 2.624     | 2.977         | 3.787               | 4.140           |
| 15        | 0.000          | 0.691      | 0.866                                         | 1.074     | 1.341          | 1.753       | 2.131      | 2.602     | 2.947         | 3.733               | 4.073           |
| 16        | 0.000          | 0.690      | 0.865                                         | 1.071     | 1.337          | 1.746       | 2.120      | 2.583     | 2.921         | 3.686               | 4.015           |
| 17        | 0.000          | 0.689      | 0.863                                         | 1.069     | 1.333          | 1.740       | 2.110      | 2.567     | 2.898         | 3.646               | 3.965           |
| 18        | 0.000          | 0.688      | 0.862                                         | 1.067     | 1.330          | 1.734       | 2.101      | 2.552     | 2.878         | 3.610               | 3.922           |
| 19        | 0.000          | 0.600      | 0.061                                         | 1.066     | 1,320          | 1.720       | 2.003      | 2,530     | 2.861         | 3.579               | 3.883           |
| 20        | 0.000          | 0.687      | 0.860                                         | 1.064     | 1.325          | 1.725       | 2.086      | 2.528     | 2.845         | 3.552               | 3.850           |

Ex: Improvement in Production after using advanced manufacturing machine.

$$t_{calc} = 3.231$$

P value would be between 0.001 and 0.005.

Exact P value = 0.004

| cum. prob | t.50             | t.75       | t .80                                         | t .85     | t.90           | t.95        | t ,975      | t .99     | t.995       | t,999             | t ,9995 |
|-----------|------------------|------------|-----------------------------------------------|-----------|----------------|-------------|-------------|-----------|-------------|-------------------|---------|
| one-tail  | 0.50             | 0.25       | 0.20                                          | 0.15      | 0.10           | 0.05        | 0.025       | 0.01      | 0.005       | 0.001             | 0.0005  |
| two-tails | 1.00             | 0.50       | 0.40                                          | 0.30      | 0.20           | 0.10        | 0.05        | 0.02      | 0.01        | 0.002             | 0.001   |
| df        | H2 - 48/07/01/19 | 1000000000 | 0.5 10 20 20 20 20 20 20 20 20 20 20 20 20 20 | 104037500 | VENE A1901 NO. | 7-000-00-00 | ROMOUNTAL F | 100000000 | 17217419586 | Notes and Section |         |
| 1         | 0.000            | 1.000      | 1.376                                         | 1.963     | 3.078          | 6.314       | 12.71       | 31.82     | 63.66       | 318.31            | 636.62  |
| 2         | 0.000            | 0.816      | 1.061                                         | 1.386     | 1.886          | 2.920       | 4.303       | 6.965     | 9.925       | 22.327            | 31.599  |
| 3         | 0.000            | 0.765      | 0.978                                         | 1.250     | 1.638          | 2.353       | 3.182       | 4.541     | 5.841       | 10.215            | 12.924  |
| 4         | 0.000            | 0.741      | 0.941                                         | 1.190     | 1.533          | 2.132       | 2.776       | 3.747     | 4.604       | 7.173             | 8.610   |
| 5         | 0.000            | 0.727      | 0.920                                         | 1.156     | 1.476          | 2.015       | 2.571       | 3.365     | 4.032       | 5.893             | 6.869   |
| 6         | 0.000            | 0.718      | 0.906                                         | 1.134     | 1.440          | 1.943       | 2.447       | 3.143     | 3.707       | 5.208             | 5.959   |
| 7         | 0.000            | 0.711      | 0.896                                         | 1.119     | 1.415          | 1.895       | 2.365       | 2.998     | 3.499       | 4.785             | 5.408   |
| 8         | 0.000            | 0.706      | 0.889                                         | 1.108     | 1.397          | 1.860       | 2.306       | 2.896     | 3.355       | 4.501             | 5.041   |
| 9         | 0.000            | 0.703      | 0.883                                         | 1.100     | 1.383          | 1.833       | 2.262       | 2.821     | 3.250       | 4.297             | 4.781   |
| 10        | 0.000            | 0.700      | 0.879                                         | 1.093     | 1.372          | 1.812       | 2.228       | 2.764     | 3.169       | 4.144             | 4.587   |
| 11        | 0.000            | 0.697      | 0.876                                         | 1.088     | 1.363          | 1.796       | 2.201       | 2.718     | 3.106       | 4.025             | 4.437   |
| 12        | 0.000            | 0.695      | 0.873                                         | 1.083     | 1.356          | 1.782       | 2.179       | 2.681     | 3.055       | 3.930             | 4.318   |
| 13        | 0.000            | 0.694      | 0.870                                         | 1.079     | 1.350          | 1.771       | 2.160       | 2.650     | 3.012       | 3.852             | 4.221   |
| 14        | 0.000            | 0.692      | 0.868                                         | 1.076     | 1.345          | 1.761       | 2.145       | 2.624     | 2.977       | 3.787             | 4.140   |
| 15        | 0.000            | 0.691      | 0.866                                         | 1.074     | 1.341          | 1.753       | 2.131       | 2.602     | 2.947       | 3.733             | 4.073   |
| 16        | 0.000            | 0.690      | 0.865                                         | 1.071     | 1.337          | 1.746       | 2.120       | 2.583     | 2.921       | 3.686             | 4.015   |
| 17        | 0.000            | 0.689      | 0.863                                         | 1.069     | 1.333          | 1.740       | 2.110       | 2.567     | 2.898       | 3.646             | 3.965   |
| 18        | 0.000            | 0.688      | 0.862                                         | 1.067     | 1.330          | 1.734       | 2.101       | 2.552     | 2.878       | 3.610             | 3.922   |
| 19        | 0.000            | 0.600      | 0.061                                         | 1.066     | 1,320          | 1.720       | 2.003       | 2,530     | 2.961       | 3.579             | 3.883   |
| 20        | 0.000            | 0.687      | 0.860                                         | 1.064     | 1.325          | 1.725       | 2.086       | 2.528     | 2.845       | 3.552             | 3.850   |

P value < 0.05

A paired t-test is used when we are interested in the difference between two variables for the same subject.

Ex: Improvement in Production after using advanced manufacturing machine.

H<sub>0</sub>: Production doesn't improve

H<sub>1</sub>: Production does improve



# Thank You!

