CHAPTER 2

Symmetric Encryption and Message Confidentiality

SOME BASIC TERMINOLOGY

- Plaintext original message
- Ciphertext coded message
- Cipher algorithm for transforming plaintext to ciphertext
- Key info used in cipher known only to sender/receiver
- Encipher (encrypt) converting plaintext to ciphertext
- Decipher (decrypt) recovering ciphertext from plaintext
- Cryptography study of encryption principles/methods
- Cryptanalysis (code breaking) study of principles/methods of deciphering ciphertext without knowing key
- Cryptology field of both cryptography and cryptanalysis

Figure 2.1 Simplified Model of Symmetric Encryption

REQUIREMENTS

- There are two requirements for secure use of symmetric encryption:
 - A strong encryption algorithm
 - Sender and receiver must have obtained copies of the secret key in a secure fashion and must keep the key secure
- The security of symmetric encryption depends on the secrecy of the key, not the secrecy of the algorithm
 - This makes it feasible for widespread use
 - Manufacturers can and have developed low-cost chip implementations of data encryption algorithms
 - These chips are widely available and incorporated into a number of products

CRYPTOGRAPHY

Cryptographic systems are generically classified along three independent dimensions:

The type of operations used for transforming plaintext to ciphertext

- Substitution
 - Each element in the plaintext is mapped into another element
- Transposition
 - Elements in the plaintext are rearranged
 - Fundamental requirement is that no information be lost
- Product systems
 - Involve multiple stages of substitutions and transpositions

• The number of keys used

- Referred to as symmetric, single-key, secret-key, or conventional encryption if both sender and receiver use the same key
- Referred to as asymmetric, two-key, or public-key encryption if the sender and receiver each use a different key
- The way in which the plaintext is processed
 - Block cipher processes the input one block of elements at a time, producing an output block for each input block
 - Stream cipher processes the input elements continuously, producing output one element at a time, as it goes along

Type of Attack	Known to Cryptanalyst		
Ciphertext only	Encryption algorithm Ciphertext to be decoded		
Known plaintext	*Encryption algorithm *Ciphertext to be decoded *One or more plaintext-ciphertext pairs formed with the secret key		
Chosen plaintext	*Encryption algorithm *Ciphertext to be decoded *Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key		
Chosen ciphertext	*Encryption algorithm *Ciphertext to be decoded *Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key		
Chosen text	*Encryption algorithm *Ciphertext to be decoded *Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key *Purported ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key		

Table 2.1
Types of Attacks on Encrypted Messages

CRYPTANALYSIS

- An encryption scheme is computationally secure if the ciphertext generated by the scheme meets one or both of the following criteria:
 - The cost of breaking the cipher exceeds the value of the encrypted information
 - The time required to break the cipher exceeds the useful lifetime of the information

BRUTE FORCE ATTACK

- Involves trying every possible key until an intelligible translation of the ciphertext into plaintext is obtained
- On average, half of all possible keys must be tried to achieve success
- Unless known plaintext is provided, the analyst must be able to recognize plaintext as plaintext
- To supplement the brute-force approach
 - Some degree of knowledge about the expected plaintext is needed
 - Some means of automatically distinguishing plaintext from garble is also needed

Figure 2.2 Feistel Encryption and Decryption (16 rounds)

FEISTEL CIPHER DESIGN ELEMENTS

• Larger block sizes mean greater security but reduced encryption/decry ption speed

Block size

Key size

- Larger key size means greater security but may decrease encryption/decrypti on speed
- The essence of a symmetric block cipher is that a single round offers inadequate security but that multiple rounds offer increasing security

Number of rounds

Subkey generation algorithm

 Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis

 Greater complexity generally means greater resistance to cryptanalysis

Round function

Fast software encryption/decryp tion

• In many cases, encryption is embedded in applications or utility functions in such a way as to preclude a hardware implementation; accordingly, the seed of execution of the algorithm becomes a concern

• If the algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength

Ease of analysis

SYMMETRIC BLOCK ENCRYPTION ALGORITHMS

- Block cipher
 - The most commonly used symmetric encryption algorithms
 - Processes the plaintext input in fixed-sized blocks and produces a block of ciphertext of equal size for each plaintext block

DATA ENCRYPTION STANDARD (DES)

- Most widely used encryption scheme
- Issued in 1977 as Federal Information Processing Standard 46 (FIPS 46) by the National Institute of Standards and Technology (NIST)
- The algorithm itself is referred to as the Data Encryption Algorithm (DEA)

DES ALGORITHM

- Description of the algorithm:
 - Plaintext is 64 bits in length
 - Key is 56 bits in length
 - Structure is a minor variation of the Feistel network
 - There are 16 rounds of processing
 - Process of decryption is essentially the same as the encryption process
- The strength of DES:
 - Concerns fall into two categories
 - The algorithm itself
 - Refers to the possibility that cryptanalysis is possible by exploiting the characteristics of the algorithm
 - The use of a 56-bit key
 - Speed of commercial, off-the-shelf processors threatens the security

TABLE 2.2

AVERAGE TIME REQUIRED FOR EXHAUSTIVE KEY SEARCH

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 109 decryptions/s	Time Required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	255 ns = 1.125 years	1 hour
128	AES	$2^{128}\approx 3.4\times 10^{38}$	$2^{127} \text{ ns} = 5.3 \times 10^{21}$ years	5.3×10^{17} years
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	$2^{167} \text{ ns} = 5.8 \times 10^{33}$ years	5.8×10^{29} years
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	$2^{191} \text{ ns} = 9.8 \times 10^{40}$ years	9.8 × 10 ³⁶ years
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	2^{255} ns = 1.8×10^{60} years	1.8 × 10 ⁵⁶ years

Figure 2.3 Triple DES

3DES GUIDELINES

- FIPS 46-3 includes the following guidelines for 3DES:
 - 3DES is the FIPS-approved symmetric encryption algorithm of choice
 - The original DES, which uses a single 56-bit key, is permitted under the standard for legacy systems only; new procurements should support 3DES
 - Government organizations with legacy DES systems are encouraged to transition to 3DES
 - It is anticipated that 3DES and the Advanced Encryption Standard (AES) will coexist as FIPS-approved algorithms, allowing for a gradual transition to AES

ADVANCED ENCRYPTION STANDARD (AES)

- In 1997 NIST issued a call for proposals for a new AES:
 - Should have a security strength equal to or better than 3DES and significantly improved efficiency
 - Must be a symmetric block cipher with a block length of 128 bits and support for key lengths of 128, 192, and 256 bits
 - Evaluation criteria included security, computational efficiency, memory requirements, hardware and software suitability, and flexibility
- NIST selected Rijndael as the proposed AES algorithm
 - FIPS PUB 197
 - Developers were two cryptographers from Belgium: Dr. Joan Daemen and Dr. Vincent Rijmen

Figure 2.4 AES Encryption and Decryption

RANDOM AND PSEUDORANDOM NUMBERS

- A number of network security algorithms based on cryptography make use of random numbers
 - Examples:
 - Generation of keys for the RSA public-key encryption algorithm and other public-key algorithms
 - Generation of a symmetric key for use as a temporary session key; used in a number of networking applications such as Transport Layer Security, Wi-Fi, e-mail security, and IP security
 - In a number of key distribution scenarios, such as Kerberos, random numbers are used for handshaking to prevent replay attacks
- Two distinct and not necessarily compatible requirements for a sequence of random numbers are:
 - Randomness
 - Unpredictability

RANDOMNESS

• The following criteria are used to validate that a sequence of numbers is random:

Uniform distribution

- The distribution of bits in the sequence should be uniform
- Frequency of occurrence of ones and zeros should be approximately the same

Independence

- No one subsequence in the sequence can be inferred from the others
- There is no test to "prove" independence
- The general strategy is to apply a number of tests until the confidence that independence exists is sufficiently strong

UNPREDICTABILITY

- In applications such as reciprocal authentication and session key generation, the requirement is not so much that the sequence of numbers be statistically random but that the successive members of the sequence are unpredictable
- With "true" random sequences, each number is statistically independent of other numbers in the sequence and therefore unpredictable
- Care must be taken that an opponent not be able to predict future elements of the sequence on the basis of earlier elements

Figure 2.6 Random and Pseudorandom Number Generators

ALGORITHM DESIGN

Purpose-built algorithms

 Designed specifically and solely for the purpose of generating pseudorandom bit streams

Algorithms based on existing cryptographic algorithms

- Cryptographic algorithms have the effect of randomizing input
- Can serve as the core of PRNGs

Three broad categories of cryptographic algorithms are commonly used to create PRNGs:

- Symmetric block ciphers
- Asymmetric ciphers
- Hash functions and message authentication codes