# 1.3 Properties of Regular Languages

- Pumping Lemma
- Closure properties
- Decision properties
- Minimization of DFAs



#### Limits on the Power of FA

- □ Is every language describable by a sufficiently complex regular expression?
- ☐ If someone asks you to design a FA for a language that seems hard, how do you know when to give up?
- An FA is limited on finite memory, i.e. finite set of states

#### Non-Regular Languages

- ☐ Is this language regular?
  - L =  $\{w \mid w \text{ has equal numbers of '01' and '10'}\}$ = 0(0+1)\*0+1(0+1)\*1
  - $L = \{w \mid w \text{ has equal numbers of '0' and '1'}\}$
- □ How to prove that there is no Finite Automaton recognizing a given language?
- Every regular language satisfies pumping lemma --- necessary condition

# Pumping Lemma

- ☐ If L is a regular language, then there exists a constant n (pumping length) such that every string w in L with |w| >= n, can be written as w = xyz, where:
  - |y| > 0
  - |xy| <= n
  - For all i >= 0,  $xy^iz$  is also in L

## Proof of Pumping Lemma

- ☐ L is regular, then
  - Let M be a FA that recognizes L.
  - $\blacksquare$  Set n = number of states of M.
  - Consider  $w \in L$ , say  $w = a_1 a_2 ... a_m$  (m > = n). Let  $q_i = \delta^*(q_0, a_1 ... a_i)$ ,  $q_0$  is the start state.
  - Since there are only n different states, two of  $q_0q_1...q_m$  (m>=n) must be the same (**pigeon hole principle**); say  $q_i=q_j$  where 0<=i< j<=n (among the first n+1 states).

# Proof of Pumping Lemma (cont'd)

- Let  $x=a_1...a_i$ ;  $y=a_{i+1}...a_j$ ;  $z=a_{j+1}...a_m$ .
- Then by repeating the loop from  $q_i$  to  $q_i$  with label  $a_{i+1}...a_j$  zero or more times, we can show that  $xy^iz$  is accepted by A.



### Use Pumping Lemma

- Use pumping lemma to prove that L is not regular
  - assume L is regular;
  - then there exists a pumping length n;
    - ☐ We may not know what *n* is, but we can work the rest of the "game" with *n* as a parameter.
  - select a string  $w \in L$  such that |w| > = n;
  - Applying the PL, we know w can be broken into xyz, satisfying the PL properties
  - We derive a contradiction by picking i > = 0 such that  $xy^iz$  is not in L (whatever x, y, z are)

#### Example 1.38:

- $\Box$  B = {0<sup>n</sup>1<sup>n</sup> | n>=0}
- Assume B is regular, let p be the pumping length
- $\square$  Choose  $w = 0^p1^p$  in B (|w| > p)
- □ Applying PL, w = xyz, where |y| > 0, such that  $xy^iz$  in B for all i > = 0
- ☐ Three possible cases for y:
  - $y = 0^k$ , (k>0), then xyyz =  $0^{p+k}1^p$ , not in B
  - $y = 1^k$ , (k>0), then xyyz =  $0^p1^{k+p}$ , not in B
  - $y = 0^{k}1^{l}$ , (k+l>0), then xyyz =  $0^{p}1^{l}0^{k}1^{p}$ , not in B
- Contradiction, B is not regular

### Example 1.39:

- $\Box$  C = {w | w has equal number of 0s and 1s}
- Assume C is regular, let p be the pumping length
- $\square$  Choose  $w = 0^p1^p$  in C(|w| > p)
  - We did not choose  $w = (01)^p$ , why?
- □ Applying PL, w = xyz, where |y| > 0, |xy| < = p, such that  $xy^iz$  in C for all i > = 0
- $\square$  Since |xy| <= p, then  $y = 0^k$ , (k>0)
- $\square$  Then xyyz =  $0^{p+k}1^p$ , not in C
- Contradiction, C is not regular

#### Example 1.40:

- $\Box$  F = {ww | w \in \{0, 1\}\*}
- Assume F is regular, let p be the pumping length
- $\square$  Choose  $w = 0^p10^p1$  in F(|w| > p)
  - We did not choose  $w = 0^p0^p$
- $\square$  Applying PL, w = xyz, where |y|>0, |xy|<=p, such that  $xy^iz$  in F for all i>=0
- $\square$  Since |xy| <= p, then  $y = 0^k$ , (k>0)
- $\square$  Then xyyz =  $0^{p+k}10^p1$ , not in F
- Contradiction, F is not regular

#### Example 1.41:

- $\Box$  D = {0<sup>n2</sup> | n >= 0}
- Assume D is regular, let p be the pumping length
- $\square$  Choose  $w = 0^{p^2}$  in D(|w| > p)
- □ Applying PL, w = xyz, where |y| > 0, |xy| < = p, such that  $xy^iz$  in D for all i > = 0
- $|xyz| = p^2$ , 0 < |y| <= p, then  $p^2 < |xyyz|$   $<= p^2+p < (p+1)^2$ , so xyyz is not in D
- □ Contradiction, D is not regular

## Example 1.42:

- $\Box$  E = {0<sup>i</sup>1<sup>j</sup> | i > j}
- Assume E is regular, let p be the pumping length
- $\square$  Choose  $w = 0^{p+1}1^p$  in E(|w| > p)
- □ Applying PL, w = xyz, where |y| > 0, |xy| < = p, such that  $xy^iz$  in D for all i > = 0
- $\square$  Since |xy| <= p, then  $y=0^k$ , (k>0)
- $\square$  Then xyyz =  $0^{p+1+k}1^p$ , in E...
- $\square$  However  $xy^0z = xz = 0^{p+1-k}1^p$ , not in E
- □ Contradiction, E is not regular