- dnes hlavně číslicový pracuje s digitální informací
- počítače řídí činnosti nejrůznějších zařízení např.:
 - automobil, mobilní telefon, automatická pračka, mikrovlnná trouba, průmyslových robotech, letadlech, digitálních fotoaparátech, CD a DVD přehrávačích ...
- vložené procesory uvnitř chipu, který může zpracovávat i analogovou informaci, nebo na desce elektroniky
- zpracovává data pomocí předem vytvořeného programu

kvantový počítač

- využívá při svojí činnosti vlastnosti hmoty popsané kvantovou mechanikou
- umožní např. kvantové provázání dat
- data v kvantovém počítači jsou představovány qubity (kvantové bity)
- qubit představuje několik stavů zároveň (počítáme tedy paralelně mnoho větví stavů zároveň)

architektura číslicového počítače

- jak jsou uvnitř počítače reprezentována data, operace
- specifikaci funkčních bloků počítače
- propojení funkčních bloků
- formát strojových instrukcí

častá architektura číslicového počítače

- Von Neumannova architektura
- Harvardská architektura
- Složené vícejaderné struktury

- . skládá se z
 - hardware fyzické části počítače (procesor, klávesnice ...)
 - software kód dle kterého počítač pracuje (operační systém a programy)


```
soustava sběrnic = skupina signálových cest
procesor = výkonný prvek počítač = provádí činnost
```

pamět' dat = část paměti, kde uloženy data
pamět' programů = část paměti, kde uložen strojový kód (program)

I/O (input/output) = paměťová místa, přes které komunikuje procesor s okolím

soustava sběrnic

má za úkol dopravit data z adresy zdroje do adresy cíle dat není jen soustava vodičů, ale i podpůrných obvodů

sběrnice dělíme na:

- adresová=zadám adresu odkud/kam
- datová=zadám / čtu data
- <u>řídicí</u>=zadám povel zapiš/čti/vymaž+platnost data+přečteno?

Komunikace po sběrnici

procesor vloží na:

- datovou sběrnici data
- adresovou sběrnici adresu buňky, s jejímž obsahem se bude pracovat
- řídicí sběrnici zda zapsat/vymazat/načíst buňku danou adresovou sběrnicí

Instrukce:

 binární kód daný konstrukcí procesoru (seznam instrukcí najdeme v technickém popisu od výrobce)

Instrukční soubor:

 seznam dostupných mechanismů pro programování (instrukcí, datových typů, registrů...)

Procesor provádí instrukci jednu po druhé, jak jsou uloženy v paměti programů.

Procesor pracuje v instrukčním cyklu:

- čtení instrukce
- dekódování instrukce
- provedení instrukce
- příprava na provedení další instrukce

RISC = rychlé - často specializované na jednu činnost CISC = pomalé

dvě základní koncepce procesoru dle instrukční sítě:

RISC - procesory s redukovanou, vysoce optimalizovanou sadou strojových instrukcí

- instrukce provádí číslicové obvody
- velice rychlé
- málo instrukcí (složité opperace jsou na programátorovi)

CISC - široký okruh funkcí, které by šly naprogramovat pomocí jednodušších strojových instrukcí

- procesor instrukce vykonává na základě tzv. mikroinstrukcí tj. programu uvnitř procesoru
- pomalejší řešení
- k dispozici mnoho různých a složitých instrukcí

Strojová instrukce

- je binární kód příkazu pro provedení operace procesoru může mít tvar: 01101101

Jazyk symbolických adres (assembler)

- strojové instrukce jsou vyjádřeny zkratkami jejich názvů
- Př. MOV adresa1 adresa2

Počítač - procesor - telekomunikace

Příklad názvů instrukcí strojového kódu

```
add r0, r2; – sčítání - přičte do registru r0 hodnotu uloženou v registru r2 addc r1, r3; – sčítání s přenosem - přičte do registru r0 hodnotu registru r1 a příznaku přenosu C mov 1234h, r0; – přesun - uloží do paměti na adresu 1234h hodnotu z registru r0 mov 1236h, r1; – přesun - uloží do paměti na adresu 1236h hodnotu z registru r1 mov [r7], r0; – přesun - uloží na adresu určenou registrem r7 hodnotu z registru r0 cmp r4, r5; – porovnání - porovná hodnoty registrů r4 a r5 jmpr cc_UGT, 8100h; – podmíněný skok - pokud byla hodnota registru r4 vyšší, pokračuje program na adrese 8100h
```

Příklad strojového kódu

strojový kód

popis co provádí

příklad programu v Assembleru

```
div int64int32:
 enter 0,0
 mov edx, 0
                          ; left 0
 mov eax, [ebp + 12]
                          ; a h
 div dword [ ebp + 16 ]
                          ; eax - edx /= b
 mov ecx, eax; save c h
 mov eax, [ebp + 8]
                          ; a 1
 div dword [ ebp + 16 ]
                          = eax - edx = b
                          ; remainder?
 ; edx remainder
 mov edx, ecx
                          ; restore c h
 leave
                          ; return eax - edx
 ret
```

Harwardská struktura

Počítač

- . důvod zrychlené práce počítače
- program a data mají dvě oddělené sběrnice
- zároveň = čte data + čte programy

- ALU aritmeticko logická jednotka = kalkulačka v procesoru
- <u>řadič</u> = sekvenční obvod = řídí činnosti bloků počítače
- dekodér instrukcí = dekóduje binární kód právě prováděné instrukce (předá informaci řadiči co program požaduje provést)
- sada registrů = registr je malé úložiště dat, umístěné v mikroprocesoru, jeho obsah lze načíst rychleji než data uložená jinde = některé registry mají speciální funkce
- sběrnice = přenos dat uvnitř procesoru mezi jeho bloky

registry a práce procesoru

model procesoru

- PC (program counter) registr uchovávající paměťovou adresu, na které se nachází příští instrukce, která se bude vykonávat
- IR (instruction register) registr, který obsahuje kód aktuálně prováděné instrukce

Práce procesoru

obsahem PC je adresa, kde je umístěn strojový kód následující instrukce programu

přerušení práce procesoru

model procesoru

IRQ (Interrupt ReQuest)

- procesor obsluhuje celou řadu zařízení
- procesor vykonává instrukce hlavního programu
- v případě <u>potřeby</u> obsloužit nějakou <u>periferii</u> periferie se přihlásí signálem po řídicí sběrnici (obdoba zvednuté ruky ve třídě s žáky)
- poté <u>procesor přeruší svojí práci</u> (uloží si adresu kde skončil s hlavním programem) a <u>spustí</u> zpracování programu, kterému se říká <u>ovladač</u>
- po ukončení práce ovladače se vrátí do hlavního programu

Multiprocessing

Systém s více procesory schopnému zpracovávat více úloh současně říkáme víceprocesorový systém.

- -běžící procesy přiděleny ke zpracování jednotlivým procesorům
- -ty obvykle vykonávají různé části kódu a vyměňují si s ostatními procesory např. data a výsledky své činnosti

Multitasking

Současné provádění více programových aplikací.

- -výpočetní čas procesoru je rozdělen mezi současně spuštěné aplikace
- -vzniká dojem současného zpracovávání více úloh

Multitasking je vlastností operačního systému.

Pipelining

- = zřetězené zpracování instrukci
- procesor je složen z více funkčních bloků, které jsou vzájemně propojeny (pipeline, datovod)
- rozpracování více instrukcí najednou

(obdoba pásové výroby v továrně)

HyperThreadingThread (Vlákno-programové)

- -jádra (procesory) sdílí svoje prostředky
- -nevyužité části každého jádra (procesoru) mohou být využity pro běh dalšího programu
- -vznikne tak logický (virtuální) procesor

Počítačový cluster

Seskupení počítačů, které se navenek tváří jako jeden počítač.

- -propojení tvoří počítačová síť
- -úlohy, určené pro clustery jsou speciálně navrženy
- -každý počítač zapojený v clusteru disponuje vlastní pamětí

Výkon počítače

jednotka FLOPS:

- -počet operací v pohyblivé řádové čárce za sekundu (FLoating-point Operations Per Second)
- -výkon dnešních špičkových superpočítačů se pohybuje v řádu milionů miliard FLOPS

Výkon počítače

- (benchmark) se měří během programu, který zatěžuje procesor
- (Programy pro testování: Linpack, Cinebench R15", PassMark Performance Test 9.0 (CPU Mark), wPrime 2.10)
- -hardware není ničím uměle brzděn
- -vždy měříme ve stejném prostředí (u notebooků na stejné podložce)
- -při shodné pokojové teplotě-na počítači nikdy neprovádíme další činnosti

vlastnosti

Vnitřní frekvence

 mikroprocesor pracuje dle taktu odvozeného ze sběrnice

Vnější frekvence

generuje základní deska

Počet pinů patice

PGA patice

piny zapadají do direk

LGA patice

proti ploškám pružinky

vlastnosti

Mikroprocesor PC vlastnosti

PGA patice

vlastnosti

Vnitřní šířka

- schopnost zpracovat m bitů současně Instrukční sady
 - přesun dat
 - aritmetické-logické operace
 - řízení programu (rozhodovací instrukce...)
 - systémové instrukce
 - instrukce pro spolupráci procesorů
 - multimediální instrukce

• • • •

vlastnosti

Systém přerušení

obsluha zařízení

Správa paměti

- jednotka mezi adresami generovaným programem a OP
- Ochrana proti využití stejného místa OP dvěma programi

Paměti cache

vyrovnání rychlostí jednotlivých bloků

vlastnosti

Typ tepelné ochrany

 vkládání prázdných instrukcí, zpomalení hodin ...

Technologie výroby

velikost součástky v mikrometrech