拓扑学,期末考试,6.28

- 1 (10分) 设 X,Y 为拓扑空间。
 - 1) (2分)给出 X 是连通的定义;
 - 2) (4分)设连续映射 $f: X \to Y$ 为满射, 若 X 为连通的, 证明 Y 是连通的;
 - 3) (2分)若 f 不是满射, 阐述你上面证明中的问题;
 - 4) (2分)给出反例:存在连续映射 $f: X \to Y$ 不是满射, X 是连通的, 但 Y 不是连通的。

2. (10分)

- 1) (2分) 给出 X 是 Hausdorff 空间的定义;
- 2) (6分)证明 Hausdorff空间的紧子集为闭子集;
- 3) (2分) 在 X 不是Hausdorff空间的时候,给出2)的反例。

3. (10分)

- 1) (2分)设 X 为拓扑空间, $A \subset X$, 给出闭包 \bar{A} 的定义;
- 2) (2分)证明 $x \in \overline{A}$ 当且仅当对 x 的任意邻域 $U, U \cap A \neq \emptyset$;
- 3) (6分) 若 X为第一可数拓扑空间,证明 $x \in \overline{A}$ 当且仅当存在序列 $x_n \in A$ 使得 $\lim_{n \to \infty} x_n = x$.

4 (15分)

- 1) (5分) 设 X,Y 为拓扑空间,利用拓扑基定义乘积拓扑空间 $X \times Y$,验证你给出的集合簇是一组拓扑基;
- 2) (10分) 设 $\Delta = \{(x,y): x=y\} \subset X \times X$, 证明 X 为Hausdorff当且 仅当 Δ 为 $X \times X$ 的闭子集。
- 5 (10分) 设 $f: X \to Y$ 为连续单射,X 为紧,Y 为Hausdorff,证明 f 为嵌入映射。
- 6 (15分) 利用基本群的方法,证明 F_n 可以嵌入到 F_2 ,其中 F_n 为 n 个整数群 Z的自由积。
- 7 (15分) 计算投影空间 RP²的基本群。
- 8 (15分) 设 $p: E \to B$ 为覆叠映射, E, B 均为道路连通的Hausdorff空间,如果 B 是单连通的,证明: p 为同胚映射。