ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

The ICC BPR0 EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field determines Group 0 interrupt preemption.

Configuration

AArch64 System register ICC_BPR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register ICC_BPR0[31:0].

This register is present only when FEAT_GICv3 is implemented. Otherwise, direct accesses to ICC BPR0 EL1 are undefined.

Virtual accesses to this register update <u>ICH VMCR EL2</u>.VBPR0.

Attributes

ICC BPR0 EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0

RES0

BinaryPpint
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, res0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. This is done as follows:

Binary point value	Group priority field	Subpriority field	Field with binary point
0	[7:1]	[0]	ggggggg.s
1	[7:2]	[1:0]	gggggg.ss
2	[7:3]	[2:0]	ggggg.sss
3	[7:4]	[3:0]	gggg.ssss
4	[7:5]	[4:0]	ggg.sssss
5	[7:6]	[5:0]	gg.ssssss
6	[7]	[6:0]	g.ssssss
7	No	[7:0]	.SSSSSSS
	preemption		

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing ICC_BPR0_EL1

The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits is implementation defined, and reported by:

- <u>ICC CTLR EL1</u>.PRIbits
- ICC_CTLR_EL3. PRIbits An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value.

On a reset, the binary point field is unknown.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ICC_BPR0_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1100	0b1000	0b011

```
AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && ICH HCR EL2.TALL0 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && HCR_EL2.FMO == '1' then
        X[t, 64] = ICV BPR0 EL1;
    elsif HaveEL(EL3) && SCR_EL3.FIQ == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = ICC BPR0 EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.FIQ == '1' then
        UNDEFINED;
    elsif ICC SRE EL2.SRE == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR EL3.FIQ == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = ICC_BPR0_EL1;
elsif PSTATE.EL == EL3 then
    if ICC_SRE_EL3.SRE == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = ICC_BPR0_EL1;
```

MSR ICC BPR0 EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1100	0b1000	0b011

```
if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
        else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         ICC BPR0 EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && SCR_EL3.FIQ == '1' then
        UNDEFINED:
    elsif ICC SRE EL2.SRE == '0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR_EL3.FIQ == '1' then
         if Halted() && EDSCR.SDD == '1' then
             UNDEFINED;
         else
             AArch64.SystemAccessTrap(EL3, 0x18);
    else
         ICC BPR0 EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    if ICC_SRE_EL3.SRE == '0' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
         ICC_BPR0_EL1 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.