Anno accademico 2020-2021 Corso di Laurea in Informatica - Corso Integrato di Fisica

Esame del 23 Febbraio 2021

Si è ammessi allo svolgimento della prova solo se in possesso del libretto universitario o di un valido documento che attesti l'identità. Gli studenti sono tenuti a non usare telefonini o altri apparati elettronici. Apporre nome, cognome e matricola in testa a tutti i fogli consegnati dalla Commissione. Non utilizzare matite.

_		·	
Cognome:	Nome:	Matr:	
oogo		1-144-11	

- 1) Due blocchi sono a contatto su di una superficie orizzontale priva di attrito. Al blocco 1 viene applicata una forza orizzontale verso destra come mostrato in figura. Assumendo che m_1 =2,30 kg, m_2 =1,20 kg e F=3,20 N determinare
- a) la forza F_{12} esercitata dal blocco 1 sul blocco 2.
- Si assuma successivamente che la forza F orizzontale venga invece applicata al blocco 2 verso sinistra. In questo secondo caso, determinare
- b) la forza esercitata dal blocco 2 sul blocco 1
- c) le forze osservate nei casi a) e b) sono uguali o diverse? Spiegare il risultato ottenuto.

- Due automobili, A e B, di massa rispettivamente 1100 kg e 1400 kg, nel tentativo di fermarsi ad un semaforo, slittano su una strada ghiacciata. Il coefficiente di attrito dinamico fra le ruote bloccate delle auto ed il terreno è μ_d =0,130 . L'auto A riesce a fermarsi al semaforo mentre l'auto B non ci riesce per cui B tampona A (vedi figura). Dopo l'urto l'auto A si ferma a 8,20 m dal punto di impatto mentre B si ferma a 6,10 m dallo stesso punto. Determinare
- a) la velocità immediatamente dopo l'urto delle auto A e B;
- b) la velocità minima posseduta dalla macchina B un istante prima dell'urto;
- c) la quantità di moto delle auto si conserva durante l'urto? Spiegare.

- Una macchina termica che utilizza n=1,00 mole di gas ideale monoatomico effettua il ciclo termodinamico rappresentato in figura. La trasformazione 1-->2 si svolge a volume costante, la trasformazione 2-->3 è una trasformazione adiabatica mentre la trasformazione 3-->1 si svolge a pressione costante. Considerati i dati riportati in figura e assumendo la pressione $P_1=100300$ Pa determinare (R=8,314 J/(mol K))
 - a) il calore assorbito in un ciclo;
 - b) il rendimento della macchina termica;
 - c) la variazione di entropia della trasformazione isobara.

- **4)** All'interno di un guscio cilindrico indefinito di raggi R_1 =5.00 cm ed R_2 =10.0 cm è distribuita una carica elettrica con densità costante ρ =5.00 · 10⁻¹⁰ C/m³. Calcolare il campo elettrico
 - a) nel punto P_1 distante dall'asse del cilindro d_1 =7.00 cm.
 - b) nel punto P₂ distante dall'asse del cilindro d₂=15.0 cm.
 - c) nel punto P_3 distante dall'asse del cilindro d_3 =3.00 cm.

- 5) Due condensatori di capacità C=6.00 μ F, due resistenze R=2.20 $k\Omega$ ed una batteria da 12.0 V sono collegati in serie come in figura. I condensatori sono inizialmente scarichi. Calcolare:
 - 1. la corrente iniziale nel circuito, cioè non appena il circuito viene chiuso.
 - 2. il tempo necessario perché la corrente scenda al valore I=1.20 mA.

6) Un'ambulanza si avvicina a degli edifici alti a una velocità di 80 km/h. La sirena ha una frequenza f=400 Hz. Il suono si riflette dagli edifici verso la macchina. Qual è la frequenza dell'onda riflessa che sente l'autista dell'ambulanza?