EXERCISE SOLVED NUMERICAL

Q.1 A solution contains 50 g of sugar dissolved in 450 g of water. What is concentration of this solution?

=50g

Given Data:

Mass of sugar solute

Mass of water solvent = 450g

Required:

Concentration of solution (% m/m) = ?

Solution:

% m/m= $\frac{\text{Mass of solute(g)}}{\text{Mass of solute(g)} + \text{Mass of solvent(g)}} \times 100$

Solution:

$$\% \text{ m/m} = \frac{50g}{50g + 45g} \times 100$$
$$= \frac{50g}{500g} \times 100$$

Thus,

$$\frac{\%}{m} = 10\% \frac{m}{m}$$

- Q.2 If 60 cm³ of alcohol is dissolved in 940 cm³ of water, what is concentration of this solution?
- Given Data:

Volume of alcohol solute $= v = 60 \text{ cm}^3$

Volume of water solvent $= v = 940 \text{ cm}^3$

Required Data:

Concentration of solution (% v/v) = ?

Formula:

$$\sqrt[6]{\text{volume of solute(cm}^3)} \times 100$$

$$\sqrt[6]{\text{volume of solute(cm}^3) + \text{volume of solvent(cm}^3)} \times 100$$

Solution:

$$\% \text{ V/V} = \frac{60 \text{cm}^3}{60 \text{ cm}^3 + 940 \text{cm}^3} \times 100$$
$$= \frac{60 \text{ cm}^3}{1000 \text{cm}^3} \times 100$$

Thus

$$% v/v = 6 % v/v$$

- Q.3 How much salt will be required to prepare following solutions (atomic mass: K=39; Na=23; S=32; O=16 and H=I)
- (a) 250 cm³ of KOH solution of 0.5 M
- (b) 600 cm³ of NaNO₃ solution of 0.25 M
- (c) 800 cm³ of Na₂SO₄ solution of 1.0 M

Ans:

(a) 250cm³ of KOH solution of 0.5M

Given Data:

Molarity of solution = (M) = 0.5 M

Volume of solution =
$$250 \text{ cm}^3 = \frac{250}{1000} \text{dm}^3 = 0.25 \text{dm}^3$$

Molar mass of KOH =
$$39+16+1=56$$
gmol⁻¹

Required Data:

Solution:

Molarity=
$$\frac{\text{Mass of solute(g)}}{\text{Molar mass of solute (gmol}^{-1}) \times \text{volume of solution (dm}^{3})}$$

$$0.5M = \frac{\text{Mass of solute(g)}}{56\text{g mol}^{-1} \times 0.25\text{dm}^3}$$

Mass of solute =
$$0.5 \times 56 \times 0.25$$

(b) 600cm³ of NaNO₃ solution of 0.25M

Given Data:

Molarity of NaNO₃ solutoin
$$= (M) = 0.25M$$

Volume of solution =
$$600 \text{ cm}^3 = \frac{600}{1000} = 0.6 \text{dm}^3$$

Molar mass of NaNO₃ =
$$23 + 14 + 3(16)$$

= 85gmol^{-1}

Required:

Amount of
$$NaNO_3 = m = ?$$

Solution:

Using the formula:

Mass of solute(g)
$$\frac{\text{Mass of solute(g)}}{\text{Molarmass of solute(gmol}^{-1})} \times \text{Volume of solution(dm}^{3})$$

Molarity=
$$\frac{\text{Mass of solute}(g)}{85\text{gmol}^{-1} \times 0.6\text{dm}^3}$$

Mass of solute =
$$0.25 \times 85 \times 0.6$$

Mass of solute = $12.75g$

(c) 800cm³ of Na₂ SO₄ solution of 1.0M

Given Data:

Molarity of
$$Na_2SO_4$$
 solution $= M = 1 M$

Volume of solution
$$= V = 800 \text{ cm}^3 = \frac{800}{1000} = 0.8 \text{dm}^3$$

Molecular mass of
$$Na_2SO_4$$
 = 2(23) + 32 +4(16)
= 46 + 32 + 64
= 142gmol⁻¹

Required:

Mass of
$$Na_2SO_4 = ?$$

Solution:

Using the formula

Molarity=
$$\frac{\text{Mass of solute(g)}}{\text{Molar mass of solute(gmol}^{-1}) \times \text{Volume of solution(dm}^{3})}$$

$$1.0M = \frac{\text{Mass of solute}}{142 \text{gmol}^{-1} \times 0.8 \text{dm}^{3}}$$

$$\text{Mass of solute} = 1.0 \times 142 \times 0.8$$

$$= 113.6 \text{g}$$

Q.4 When we dissolve 20 g of NaCl in 400 cm³ of solution, what will be its molarity? Given Data:

Mass of NaCl = 20g
Molar mass of NaCl = 23 + 35.5 = 58.5gmol⁻¹
Volume of Solution =
$$400 \text{ cm}^3 = \frac{400}{1000} 0.4 \text{dm}^3$$

Required:

Molarity of solution =?

Solution:

Using the formula:

Mass of solute(g)

Molar mass of solute(gmol⁻¹)×Volume of solution(dm³)

$$= \frac{25g}{58.5 \text{mol} \times 0.4 \text{(dm}^3)}$$

$$= \frac{20}{23.4} = 0.85 \text{M}$$

Q.5 We desire to prepare 100 cm³ 0.4 M solution of Mg Cl₂, how much Mg Cl₂ is needed? Given Data:

Molarity of solution
$$= 0.4 \text{ M}$$

Volume of Solution $= 100 \text{cm}^3 = \frac{100}{1000} \text{dm}^3 = 0.1 \text{dm}^3$
Mass of MgCl₂ $= 24 + 2(35.5) = 95 \text{g}$
 $= 24 + 71 = 95 \text{gmol}^{-1}$

Required:

Mass of
$$MgCl_2 = ?$$

Solution:

Using the formula:

Molarity=
$$\frac{Mass \text{ of solute}}{Molar \text{ mass of solute} \left(gmol^{-1}\right) \times Volume \text{ of solutoin} \left(dm^{3}\right)}$$

$$0.4M = \frac{Mass \text{ of solute} \left(g\right)}{95g \text{ mol}^{-1} \times 0.1 \text{ dm}^{3}}$$

$$Mass \text{ of solute} = 0.4 \times 95 \times 0.1$$

$$= 3.8g$$

Q.6 12M H₂SO₄ solutions is available in the laboratory. We need only 500cm³ of 0.1 M solution, how it will be prepared?

Given Data:

Molarity of concentrated H ₂ SO ₄ solution	$= M_1 = 12 M$
Molarity of dilute H ₂ SO ₄ solution	$= M_2 = 0.1 M$
Volume of dilute H ₂ SO ₄ solution	$= V_2 = 500 \text{cm}^3$

Required:

Volume of concentrated H_2SO_4 solution $= V_1 = ?$

Solution:

i. Determination of volume of concentrated solution:

Concentrated solution = Dilute solution

$$\mathbf{M}_1 \mathbf{V}_1 = \mathbf{M}_2 \mathbf{V}_2$$

$$\begin{aligned} &12\times V_1 = 0.1\times 500 \\ &V_1 = \frac{0.1M\times 500 \text{ cm}^3}{12M} \end{aligned}$$

Thus,

 4.16 cm^3

ii. Preparation of solution

We take 4.16cm^3 of concentrated $12 \text{M H}_2 \text{SO}_4$ solution with the help of graduated pipette and put in a measuring flask of 500cm^3 . Add water upto the mark, present at the neck o flask. Now it is $0.1 \text{ molar solution of H}_2 \text{SO}_4$.

Free Ilm .Com