Algebra 2R, lista 8.

Wszystkie odzorowania są R-liniowe (R-homomorfizmy), M, N, P, Q to R-moduły. R to pierścień pzremienny z jednością. Zadania domowe: jak zwykle.

- 1. (a)
– Załóżmy, że $f:M\to N$ jest epimorfizmem. Udowodnić, że f się rozszczepia
 $\iff \exists g:N\to M,\ fg=id_N.$
 - (b) Załóżmy, że $g:M\to N$ jest monomorfizmem. Udowodnić, że g(M) jest składnikiem prostym modułu $N\iff \exists f:N\to M,\ fg=id_M.$
- 2. Udowodnić, że następujące warunki są równoważne:
 - (a) dla każdego epimorfizmu $f: M \to N$ dowolnych modułów M, N i każdego $g: P \to N$ istnieje $h: P \to M$ taki, że fh = g,
 - (b) moduł P jest projektywny,
 - (c) istnieje moduł L taki, że $P \oplus L$ jest wolny.

(wsk: dla dowodu (c) \Rightarrow (a) rozważyć rzutowanie $p: P \oplus L \to P$)

- 3. Udowodnić, że następujące warunki są równoważne:
 - (a) moduł Q jest injektywny.
 - (b) Dla każdego monomorfizmu $f: M \to N$ dowolnych modułów M, N i homomorfizmu $g: M \to Q$ istnieje $h: N \to Q$ taki, że hf = g.

(wsk: w dowodzie (a) \Rightarrow (b) rozważyć moduł $M = Q \oplus N/L$, gdzie L jest podmodułem $Q \oplus N$ generowanym przez $\{(g(m), -f(m)) : m \in M\}$).

- 4. (a) Udowodnić, że moduł $M = \bigoplus_{i \in I} M_i$ jest projektywny \iff każdy M_i jest projektywny.
 - (b) Udowodnić, że moduł $M = \prod_{i \in I} M_i$ jest injektywny \iff każdy M_i jest injektywny.
- 5. Załóżmy, że $\{m_1, \ldots, m_n\}$ jest bazą R-modułu wolnego M oraz

$$m_j' = \sum_i r_{ij} m_i,$$

gdzie $r_{ij} \in R$ dla i, j = 1, ..., n. Udowodnić, że układ $\{m'_1, ..., m'_n\}$ jest bazą $M \iff \det[r_{ij}]_{n \times n}$ jest elementem odwracalnym pierścienia R.

- 6. Niech K_1, K_2 będą ciałami, zaś $R = K_1 \times K_2$ (produkt pierścieni).
 - (a) Udowodnić, że każdy R-moduł jest postaci $V_1 \times V_2$, gdzie V_i jest przestrzenią liniową nad K_i oraz dla $(k_1, k_2) \in R$, $(k_1, k_2) \cdot (v_1, v_2) = (k_1 v_1, k_2 v_2)$.
 - (b) Udowodnić, że każdy R-moduł jest projektywny. Które R-moduły są wolne ?
- 7. (a)— Załóżmy, że M jest podmodułem modułu N oraz $n \in N$. Udowodnić, że zbiór $I = \{r \in R : rn \in M\}$ jest ideałem w R.
 - (b) Udowodnić, że moduł Q jest injektywny \iff dla każdego ideału $I \subset R$ oraz R-homomorfizmu $f: I \to Q$, f rozszerza sie do R-homomorfizmu $R \to Q$.

(wsk: do dowodu \Leftarrow wykorzystać (a))

(c) Wywnioskować z (b), że gdy R jest dziedziną ideałów głównych, moduł Q jest injektywny

$$\iff \forall r \in R \setminus \{0\} \forall m \in Q \exists m' \in Q, \ rm' = m.$$

(w szczególności grupa abelowa jest injektywnym \mathbb{Z} -modułem \iff jest podzielna)

8. *Udowodnić, że każdy moduł M można zanurzyć w R-module injektywnym. (najpierw zrobic to dla R: dziedziny ideałów głównych, wykorzystać poprzednie zadanie)

(wsk: dla ideału $I \subset R$ oraz $f: I \to M$ rozważyć moduł $M \oplus R/L$, gdzie L jest generowany przez (f(i), -i) dla $i \in I$).

Można udowodnić, że istnieje najmniejszy R-moduł injektywny zawierający M, jest on też jedyny z dokładnością do izomorfizmu. Nazywa się go injektywnym domknięciem M. Można też udowodnić, że moduł M jest injektywny \iff jest egzystencjalnie domknięty w klasie R-modułów.