数值分析方法

作业1

Problem 1

解: a. : $f \in C[a,b]$,且 $x_1, x_2 \in [a,b]$,不妨令 $x_1 < x_2, f(x_1) \le f(x_2)$,则: $f \in C[x_1, x_2]$

$$f \in C[x_1, x_2], f(x_1) \le f(x_2)$$

$$f(x_1) + f(x_2) \le [f(x_1), f(x_2)]$$

由介值定理可知, $\exists \xi \in [x_1, x_2]$,使得

$$f(\xi) = \frac{f(x_1) + f(x_2)}{2} = \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2)$$

成立;

证毕.

b. 同理,不妨令 $x_1 < x_2, f(x_1) \le f(x_2), \bar{q} \in C[x_1, x_2]$

$$\therefore \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} - f(x_1) = \frac{c_2}{c_1 + c_2} (f(x_2) - f(x_1)) \ge 0$$

$$\therefore \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} \ge f(x_1)$$

同理,

$$\therefore \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} - f(x_2) = \frac{c_1}{c_1 + c_2} (f(x_1) - f(x_2)) \le 0$$

$$\therefore \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} \le f(x_2)$$

所以有:

$$f(x_1) \le \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} \le f(x_2)$$

由介值定理可得, $\exists \xi \in [x_1, x_2]$,使得

$$f(\xi) = \frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2}$$

成立;

证毕.

c. $\diamondsuit c_1 = 2, c_2 = -1, 则b中$:

$$\frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} - f(x_1) = \frac{c_2}{c_1 + c_2} (f(x_2) - f(x_1)) = f(x_1) - f(x_2) \le 0$$

$$\frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} - f(x_2) = \frac{c_1}{c_1 + c_2} (f(x_1) - f(x_2)) = 2(f(x_1) - f(x_2)) \le 0$$

不满足介值定理条件.

若进一步,令
$$f(x) = x^2, x_1 = 0, x_2 = 1$$
,则
$$\frac{c_1 f(x_1) + c_2 f(x_2)}{c_1 + c_2} = 2f(x_1) - f(x_2) = -1$$

显然,由于 $f(x) = x^2$ 在[0,1]恒为正,即不存在 ξ ,使得 $f(\xi) = -1$,所以 当 c_1, c_2 异号且 $c_1 + c_2 \neq 0$ 时,b中结论不一定成立.

Problem 2

解: a. 由题意: $\widetilde{f}(x_0) = f(x_0 + \epsilon)$

不妨设 $\epsilon > 0$,则:

$$\therefore f \in C[x_0, x_0 + \epsilon], f \in D(x_0, x_0 + \epsilon)$$

·.由中值定理:

$$f(x_0) - \widetilde{f}(x_0) = f(x_0) - f(x_0 + \epsilon) = f'(\xi)(x_0 - (x_0 + \epsilon)) = -f'(\xi)\epsilon$$

其中 ξ 介于 x_0 与 $x_0 + \epsilon$ 之间.

:. 绝对误差

$$|f(x_0) - \widetilde{f}(x_0)| = |f'(\xi)\epsilon| = \epsilon |f'(\xi)| \le \epsilon \max_{x_0 \le x \le x_0 + \epsilon} |f'(x)|$$

:. 相对误差

$$\frac{|f(x_0) - \widetilde{f}(x_0)|}{|f(x_0)|} = \frac{|f'(\xi)\epsilon|}{|f(x_0)|} \le \frac{\epsilon \max_{x_0 < x < x_0 + \epsilon} |f'(x)|}{|f(x_0)|}$$

b. $:: \epsilon = 5 \times 10^{-6}, x_0 = 1,$ 由a可得:

i. 若
$$f(x) = e^x$$
,则 $f'(x) = e^x > 0$

$$\therefore \max_{x_0 < x < x_0 + \epsilon} |f'(x)| = f'(x_0 + \epsilon) = e^{1 + 5 \times 10^{-6}}$$

· 绝对误差:

$$|f(x_0) - \widetilde{f}(x_0)| \le 5 \times 10^{-6} \times e^{1+5 \times 10^{-6}} = 1.36 \times 10^{-5}$$

同理,相对误差:

$$\frac{|f(x_0) - \widetilde{f}(x_0)|}{|f(x_0)|} \le \frac{5 \times 10^{-6} \times e^{1 + 5 \times 10^{-6}}}{e} = 5.00 \times 10^{-6}$$

ii. 若 $f(x) = \sin x$,则 $f'(x) = \cos x$ 又 $|\cos x|$ 在 $(0, \frac{\pi}{2})$ 上单减

$$\therefore \max_{x_0 < x < x_0 + \epsilon} |f'(x)| = |f'(x_0)| = \cos 1$$

:: 绝对误差:

$$|f(x_0) - \widetilde{f}(x_0)| \le 5 \times 10^{-6} \times \cos 1 = 2.70 \times 10^{-6}$$

同理,相对误差:

$$\frac{|f(x_0) - \widetilde{f}(x_0)|}{|f(x_0)|} \le \frac{5 \times 10^{-6} \times \cos 1}{\sin 1} = 3.21 \times 10^{-6}$$

c. 当 $\epsilon = (5 \times 10^{-6})x_0, x_0 = 10$ 时,有 $\epsilon = 5 \times 10^{-5}$,由b得:

i. 若
$$f(x) = e^x$$
,则 $f'(x) = e^x > 0$

$$\lim_{x_0 < x < x_0 + \epsilon} |f'(x)| = f'(x_0 + \epsilon) = e^{10 + 5 \times 10^{-5}}$$

: 绝对误差:

$$|f(x_0) - \widetilde{f}(x_0)| \le 5 \times 10^{-5} \times e^{10 + 5 \times 10^{-5}} = 1.10$$

同理,相对误差:

$$\frac{|f(x_0) - \widetilde{f}(x_0)|}{|f(x_0)|} \le \frac{5 \times 10^{-5} \times e^{10 + 5 \times 10^{-5}}}{e^{10}} = 5.00 \times 10^{-5}$$

ii. 若 $f(x) = \sin x$,则 $f'(x) = \cos x$ 又 $|\cos x|$ 在 $(3\pi, \frac{7\pi}{2})$ 上单减

$$\lim_{x_0 < x < x_0 + \epsilon} |f'(x)| = |f'(x_0)| = -\cos 10$$

:. 绝对误差:

$$|f(x_0) - \widetilde{f}(x_0)| \le 5 \times 10^{-5} \times (-\cos 10) = 4.20 \times 10^{-5}$$

同理,相对误差:

$$\frac{|f(x_0) - \widetilde{f}(x_0)|}{|f(x_0)|} \le \frac{5 \times 10^{-5} \times (-\cos 10)}{-\sin 10} = 7.71 \times 10^{-5}$$

Problem 3

解: a. (i)

$$\frac{4}{5} + \frac{1}{3} = \frac{17}{15}$$

(ii) : $\frac{4}{5} = 0.8, \frac{1}{3} = 0.3$

:. 当考虑three-digit chopping时,有:

$$fl(\frac{4}{5}) = 0.800 \times 10^0 = 0.800$$

$$fl(\frac{1}{3}) = 0.333 \times 10^0 = 0.333$$

于是

$$fl(\frac{4}{5} + \frac{1}{3}) = 1.13$$

(iii) 由(ii)可得, $\frac{4}{5}$ 与 $\frac{1}{3}$ 展开的第四位均小于5,故直接截断

:. 当考虑three-digit rounding时,有:

$$fl\left(\frac{4}{5} + \frac{1}{3}\right) = 1.13$$

(iv) ::
$$\frac{17}{15} = 1.1\dot{3}$$

... 使用three-digit chopping和rounding时的相对误差均为

$$\frac{|1.1\dot{3} - 1.13|}{|1.1\dot{3}|} = 3 \times 10^{-3}$$

b. (i)

$$(\frac{1}{3} + \frac{3}{11}) - \frac{3}{20} = \frac{301}{660}$$

(ii) : $\frac{1}{3} = 0.3\dot{3}, \frac{3}{11} = 0.\dot{2}\dot{7}, \frac{3}{20} = 0.15$

:: 当考虑three-digit chopping时,有:

$$fl(\frac{1}{3}) = 0.333$$
$$fl(\frac{3}{11}) = 0.272$$
$$fl(\frac{3}{20}) = 0.150$$

于是

$$fl\Big[\big(\frac{1}{3}+\frac{3}{11}\big)-\frac{3}{20}\Big]=0.455$$

(iii) 由(ii)可得, $\frac{1}{3}$ 与 $\frac{3}{20}$ 展开的第四位均小于5,故不进位; $\frac{3}{11}$ 展开的第四位大于5,故进位,即

$$fl(\frac{3}{11}) = (0.272 + 0.001) \times 10^0 = 0.273$$

∴ 当考虑three-digit rounding时,有:

$$fl\left[\left(\frac{1}{3} + \frac{3}{11}\right) - \frac{3}{20}\right] = 0.456$$

(iv) : $\frac{301}{660} = 0.456\dot{0}\dot{6}$

由上述可知,使用three-digit chopping时,相对误差为

$$\frac{|0.456\dot{0}\dot{6} - 0.455|}{0.456\dot{0}\dot{6}} = 2.33 \times 10^{-3}$$

使用three-digit chopping时,相对误差为

$$\frac{|0.456\dot{0}\dot{6} - 0.456|}{0.456\dot{0}\dot{6}} = 1.33 \times 10^{-4}$$

Problem 4

解: a. : 当
$$x \to 0$$
时, $F_1(x) = L_1 + O(x^{\alpha})$, $F_2(x) = L_2 + O(x^{\beta})$
 $\therefore \lim_{x \to 0} F_1(x) = L_1$, 且当 x 充分小时, 有 $|F_1(x) - L_1| \le k_1 |x^{\alpha}|$
 $\lim_{x \to 0} F_2(x) = L_2$, 且当 x 充分小时, 有 $|F_2(x) - L_2| \le k_2 |x^{\beta}|$
其中 k_1 , k_2 均为常数.
又 $F(x) = c_1F_1(x) + c_2F_2(x)$
 $\therefore \lim_{x \to 0} F(x) = c_1L_1 + c_2L_2$
 $\because |F(x) - c_1L_1 - c_2L_2| = |c_1F_1(x) + c_2F_2(x) - c_1L_1 - c_2L_2|$

$$\leq |c_1(F_1(x) - L_1)| + |c_2(F_2(x) - L_2)|$$

$$= c_1|F_1(x) - L_1| + c_2|F_2(x) - L_2|$$

$$\leq c_1k_1|x^{\alpha}| + c_2k_2|x^{\beta}|$$

*x*充分小.

 $\nabla \gamma = \min\{\alpha, \beta\}$

- \therefore 当x充分小时,有 $|x^{\alpha}| \le |x^{\gamma}|, |x^{\beta}| \le |x^{\gamma}|$
- $\therefore |F(x) c_1 L_1 c_2 L_2| \le c_1 k_1 |x^{\alpha}| + c_2 k_2 |x^{\beta}| \le (c_1 k_1 + c_2 k_2) |x^{\gamma}|$ 由定义可知,当 $x \to 0$ 时,有

$$F(x) = c_1 L_1 + c_2 L_2 + O(x^{\gamma})$$

证毕.

b.由a得:

$$\lim_{x\to 0} F_1(x) = L_1, 且当x充分小时, 有|F_1(x) - L_1| \le k_1|x^{\alpha}|$$

$$\lim_{x\to 0} F_2(x) = L_2, 且当x充分小时, 有|F_2(x) - L_2| \le k_2|x^{\beta}|$$

其中 k_1, k_2 均为常数.

:. 当x充分小时,有

$$|F_1(c_1x) - L_1| \le k_1 |(c_1x)^{\alpha}| = k_1 c_1^{\alpha} |x^{\alpha}|$$
$$|F_2(c_2x) - L_2| \le k_2 |(c_2x)^{\beta}| = k_2 c_2^{\beta} |x^{\beta}|$$

$$\therefore G(x) = F_1(c_1x) + F_2(c_2x)$$

$$\therefore \lim_{x \to 0} G(x) = L_1 + L_2$$

*x*充分小.

 $\nabla \gamma = \min\{\alpha, \beta\}$

- \therefore 当x充分小时,有 $|x^{\alpha}| \le |x^{\gamma}|, |x^{\beta}| \le |x^{\gamma}|$
- $\therefore |G(x) L_1 L_2| \le k_1 c_1^{\alpha} |x^{\alpha}| + k_2 c_2^{\beta} |x^{\beta}| \le (k_1 c_1^{\alpha} + k_2 c_2^{\beta}) |x^{\gamma}|$ 由定义可知,当 $x \to 0$ 时,有

$$G(x) = L_1 + L_2 + O(x^{\gamma})$$

证毕.

Problem 5

解: a. 代码如下:

```
#include < stdio.h>
#include < math.h>
```

```
#define e 2.718281828459
 5
6
   int main()
7
   {
8
             int i = 0;
9
             double a,b,p;
             double TOL;
10
             scanf("%lf,%lf,%lf",&a,&b,&TOL);
11
             double fa, fp;
12
             fa = pow(e, a) - a*a+3*a-2;
13
14
             while (b-a>TOL) {
                      p=a+(b-a)/2;
15
                      fp = pow(e, p) - p*p+3*p-2;
16
17
                      if (fp == 0) {
18
                printf("n = \%2d, The zero of the \
   function is \%.81f ",++i,p);
19
20
                      }
21
22
                      if (fp*fa>0){
23
                               a=p;
24
                      }
25
                      else {
26
                               b=p;
27
28
                      printf("n = \%2d, the midpoint = \)
   \%.81f, a-b = \%.81f, f(p) = \%12.81f \setminus n",++i,p,a-b,fp);
29
30
31
     }
```

所得中点为:

n	$midpoint(p_n)$	$a_n - b_n$	$f(p_n)$
1	0.50000000	-0.50000000	0.89872127
2	0.25000000	-0.25000000	-0.02847458
3	0.37500000	-0.12500000	0.43936641
4	0.31250000	-0.06250000	0.20668169
5	0.28125000	-0.03125000	0.08943320
6	0.26562500	-0.01562500	0.03056423
7	0.25781250	-0.00781250	0.00106637
8	0.25390625	-0.00390625	-0.01369868
9	0.25585938	-0.00195313	-0.00631481
10	0.25683594	-0.00097656	-0.00262388
11	0.25732422	-0.00048828	-0.00077867
12	0.25756836	-0.00024414	0.00014387
13	0.25744629	-0.00012207	-0.00031740
14	0.25750732	-0.00006104	-0.00008676
15	0.25753784	-0.00003052	0.00002855
16	0.25752258	-0.00001526	-0.00002910
17	0.25753021	-0.00000763	-0.00000028

∴ 近似解为 $p_{17} = 0.25753021$.

b. 同理,代码如下:

```
#include < stdio.h>
 2
   #include < math.h>
4
   int main()
5
   {
 6
             int i = 0;
 7
             double a,b,p;
 8
             double TOL;
             scanf("%lf,%lf,%lf",&a,&b,&TOL);
9
10
             double fa, fp;
             fa = a * cos(a) - 2 * a * a + 3 * a - 1;
11
             while(b-a>TOL){
12
13
                       p=a+(b-a)/2;
                       fp=p*cos(p)-2*p*p+3*p-1;
14
                       if (fp == 0) {
15
                 \mathbf{printf}("n = \%2d, The zero of the \setminus
16
   function is \%.81f ",++i,p);
17
18
                                 break;
```

```
19
                        if (fp*fa>0){
20
21
                                  a=p;
22
                        }
                        else {
23
                                  b=p;
24
25
                        \mathbf{printf}("n = \%2d, the midpoint = \
26
    \%.81f, a-b = \%.81f, f(p) = \%12.81f \setminus n",++i,p,a-b,fp);
27
28
              }
29
     }
```

当 $x \in [0.2, 0.3]$ 时,所得中点为:

n	$midpoint(p_n)$	$a_n - b_n$	$f(p_n)$
1	0.25000000	-0.05000000	-0.13277189
2	0.27500000	-0.02500000	-0.06158307
3	0.28750000	-0.01250000	-0.02711272
4	0.29375000	-0.00625000	-0.01016096
5	0.29687500	-0.00312500	-0.00175623
6	0.29843750	-0.00156250	0.00242831
7	0.29765625	-0.00078125	0.00033752
8	0.29726562	-0.00039063	-0.00070898
9	0.29746094	-0.00019531	-0.00018564
10	0.29755859	-0.00009766	0.00007597
11	0.29750977	-0.00004883	-0.00005483
12	0.29753418	-0.00002441	0.00001057
13	0.29752197	-0.00001221	-0.00002213
14	0.29752808	-0.00000610	-0.00000578

:. 近似解为 $p_{14} = 0.29752808$.

当x ∈ [1.2, 1.3]时,所得中点为:

n	$midpoint(p_n)$	$a_n - b_n$	$f(p_n)$
1	1.25000000	-0.05000000	0.01915295
2	1.27500000	-0.02500000	-0.05458535
3	1.26250000	-0.01250000	-0.01722489
4	1.25625000	-0.00625000	0.00108689
5	1.25937500	-0.00312500	-0.00803829
6	1.25781250	-0.00156250	-0.00346802
7	1.25703125	-0.00078125	-0.00118864
8	1.25664063	-0.00039063	-0.00005040
9	1.25644531	-0.00019531	0.00051837
10	1.25654297	-0.00009766	0.00023402
11	1.25659180	-0.00004883	0.00009182
12	1.25661621	-0.00002441	0.00002071
13	1.25662842	-0.00001221	-0.00001484
14	1.25662231	-0.00000610	0.00000294

∴ 近似解为 $p_{14} = 1.25662231$.

Problem 6

解: a. 代码如下:

```
#include < stdio.h>
   #include < math.h>
3
  #define pi 3.1415926535898
4
6
  int main()
7
   {
8
           int i=0;
9
           double p,p0,delta=1;
10
           double TOL;
           scanf("%lf,%lf",&p0,&TOL);
11
           while(delta>TOL){
12
13
                   p=(2*sin(pi*p0)+4*p0)/3;
                   delta=fabs(p-p0);
14
                   15
   |p-p0| = \%.81f \setminus n",++i,p,delta);
16
17
                   p0=p;
18
           }
19
    }
```

:: $p_0 = 1$,可得:

n	p_n	$ p_n - p_{n-1} $
1	1.33333333	0.33333333
2	1.20042751	0.13290582
3	1.20798916	0.00756165

- ∴ 近似解为 $p_3 = 1.20798916$.
- b. 易知该函数在(0,1)上存在一零点,令

$$g(x) = \sqrt{\frac{e^x}{3}}$$

则当 $x \in (0,1)$ 时,其将自身映射到(0,1),且

$$|g'(x)| = \left|\frac{\sqrt{3e^x}}{6}\right| < 1$$

满足收敛条件.

代码如下:

```
#include < stdio.h>
   #include < math.h>
3
   #define e 2.718281828459
4
5
6
   int main()
7
   {
8
            int i=0;
9
            double p,p0,delta=1;
            double TOL;
10
            scanf("%lf,%lf",&p0,&TOL);
11
12
            while(delta>TOL){
                     p = sqrt(pow(e, p0)/3);
13
                     delta=fabs(p-p0);
14
                     printf("n = \%2d, p = \%.81f, |p-p0|
15
    = \%.81 f n, ++i, p, delta);
16
17
                     p0=p;
18
            }
19
    }
```

n	p_n	$ p_n - p_{n-1} $
1	0.95188967	0.04811033
2	0.92926502	0.02262465
3	0.91881210	0.01045291
4	0.91402250	0.00478960

∴ 近似解为 $p_4 = 0.91402250$.

同理,在(3,4)上,令

$$g(x) = x - \frac{3x^2 - e^x}{6x - e^x}$$

则代码:

```
#include < stdio.h>
   #include < math.h>
 3
   #define e 2.718281828459
 5
6
   int main()
 7
 8
            int i=0;
9
            double p,p0,delta=1;
            double TOL;
10
            scanf("%lf,%lf",&p0,&TOL);
11
            while (delta >TOL) {
12
                     p=p0-(3*p0*p0-pow(e,p0))/(6*p0-)
13
14
                       pow(e, p0));
                     delta=fabs(p-p0);
15
                     printf("n = \%2d, p = \%.81f, |p-p0|
16
17
    = \%.81 f n, ++i, p, delta);
18
                     p0=p;
19
            }
20
    }
```

n	p_n	$ p_n - p_{n-1} $
1	3.78436115	0.21563885
2	3.73537938	0.04898177
3	3.73308390	0.00229548

:. 近似解为 $p_3 = 3.73308390$.

综上,该方程的两近似解分别为0.91402250、3.73308390.

Problem 7

解: $: g \in C^1[a,b],$ 则: $g' \in C^1[a,b]$

- $\therefore g'$ 在x = p点连续
- |g'(p)| > 1

设 p_0 是迭代的初始点, $p_0 \neq p$,且 $0 < |p_0 - p| < \delta, p_1 = g(p_0)$

:.由中值定理:

$$|p_1 - p| = |g(p_0) - g(p)| = |g'(\xi)||p_0 - p|$$

其中 ξ 介于 p_0 与p之间,即 $0 < |\xi - p| < \delta$.

- $|g'(\xi)| > 1$
- $\therefore |p_1 p| = |g'(\xi)||p_0 p| > |p_0 p|$

由此可见, $\exists p_0 \neq p$ 时,后续迭代得到的 p_1 会远离p点,不动点迭代将不会收敛.