Assignment -2

Python Programming

Assignment Date	23 september 2022
Student Name	KARTHICK.S
Student Roll Number	311419205013
Maximum Marks	2 Marks

Data Visualization and Pre-processing

Question-1:

1. Load the dataset

Solution:

```
import pandas as pd import
seaborn as sns import
matplotlib.pyplot as plt import
numpy as np
sns.set_style('darkgrid')
sns.set(font_scale=1.3)

In [2]:
df=pd.read excel("/content/Churn Modelling.xlsx")
```

```
In [1]:
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np
    sns.set_style('darkgrid')
    sns.set(font_scale=1.3)
In [2]:

df=pd.read_excel("/content/Churn_Modelling.xlsx")
```

Question-2:

- 2. Perform Below Visualizations.
- Univariate Analysis
- Bi Variate Analysis
 Multi Variate Analysis

Solution:

#Perform Univariate Analysis
plt.figure(figsize=(8,8))
sns.kdeplot(x=df['Balance'])

```
In [7]: #Perform Univariate Analysis
   plt.figure(figsize=(8,8))
   sns.kdeplot(x=df['Balance'])
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7fc3f3579c50>

#Perform Bivariate Analysis
plt.scatter(df.Age,df.Balance)

#Perform Bivariate Analysis df.corr()

[9]:		CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	CreditScore	1.000000	-0.003965	0.000842	0.006268	0.012238	-0.005458	0.025651	-0.001384	-0.027094
	Age	-0.003965	1.000000	-0.009997	0.028308	-0.030680	-0.011721	0.085472	-0.007201	0.285323
	Tenure	0.000842	-0.009997	1.000000	-0.012254	0.013444	0.022583	-0.028362	0.007784	-0.014001
	Balance	0.006268	0.028308	-0.012254	1.000000	-0.304180	-0.014858	-0.010084	0.012797	0.118533
	NumOfProducts	0.012238	-0.030680	0.013444	-0.304180	1.000000	0.003183	0.009612	0.014204	-0.047820
	HasCrCard	-0.005458	-0.011721	0.022583	-0.014858	0.003183	1.000000	-0.011866	-0.009933	-0.007138
	IsActiveMember	0.025651	0.085472	-0.028362	-0.010084	0.009612	-0.011866	1.000000	-0.011421	-0.156128
	EstimatedSalary	-0.001384	-0.007201	0.007784	0.012797	0.014204	-0.009933	-0.011421	1.000000	0.012097
	Exited	-0.027094	0.285323	-0.014001	0.118533	-0.047820	-0.007138	-0.156128	0.012097	1.000000

#Perform Bivariate Analysis

import statsmodels.api as sm

```
#define response variable y
= df['CreditScore']

#define explanatory variable x
= df[['EstimatedSalary']]
```

#add constant to predictor variables x
= sm.add_constant(x)

#fit linear regression model model
= sm.OLS(y, x).fit()

#view model summary print(model.summary())

OCS MERGLESSION MESUICS

Dep. Variable:	C	reditScore	R-squared:			0.000		
Model:		OLS	Adj. R-squa	ared:	-0.000			
Method:	Leas	st Squares	F-statistic	:	0.	01916		
Date:	Thu, 29	9 Sep 2022	Prob (F-sta	tistic):	0.890			
Time:		14:58:55	Log-Likelih	nood:	-5	9900.		
No. Observations:		10000	AIC:		1.19	8e+05		
Df Residuals:		9998	BIC:		1.198e+05			
Df Model:		1						
Covariance Type:		nonrobust						
			t					
			335.407					
EstimatedSalary -2	2.326e-06	1.68e-05	-0.138	0.890	-3.53e-05	3.06e-05		
Omnibus:		132.939	Durbin-Wats	on:		2.014		
Prob(Omnibus):		0.000			8	4.242		
Skew:		-0.072			5.10e-19			
Kurtosis:		2.574	Cond. No.		2.32e+05			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.32e+05. This might indicate that there are strong multicollinearity or other numerical problems.

#Perform Multivariate Analysis plt.figure(figsize=(4,4))
sns.pairplot(data=df[["Balance","CreditScore","EstimatedSalary","NumOfProdu
cts","Tenure","Exited"]],hue="Exited")

Question-3:

3. Perform descriptive statistics on the dataset.

Solution:

#Perform Descriptive Statistics
df=pd.DataFrame(df) print(df.sum())

```
CreditScore
                                                           6505288.0
                   FranceSpainFranceFranceSpainSpainFranceGermany...
Geography
Gender
                   FemaleFemaleFemaleFemaleMaleMaleFemaleMa...
Age
                                                            389218.0
Tenure
                                                             50128.0
                                                        764858892.88
Balance
NumOfProducts
                                                             15302.0
HasCrCard
                                                              7055.0
IsActiveMember
                                                              5151.0
EstimatedSalary
                                                       1000902398.81
Exited
                                                              2037.0
dtype: object
```

```
#Perform Descriptive Statistics print("---
Sum Value----") print(df.sum(1)) print("---
```

```
----") print("---
--Product Value----") print(df.prod())
print("-----")
```

```
----Sum Value-----
       102015.88
       197002.44
      274149.37
       94567.63
      205492.92
9995
       97088.64
9996 159633.38
9997
       42840.58
9998 168784.83
9999
      169159.57
Length: 10000, dtype: float64
-----Product Value-----
               inf
CreditScore
Age
                inf
Tenure
                0.0
Balance
NumOfProducts
                inf
HasCrCard
IsActiveMember
EstimatedSalary
                inf
Exited
dtype: float64
```

```
------Mean Value-----
CreditScore
                 650.528800
                 38.921800
Age
                   5.012800
Tenure
Tenure 5.012800
Balance 76485.889288
NumOfProducts 1.530200
                  1.530200
HasCrCard
               0.515100
IsActiveMember
EstimatedSalary 100090.239881
                  0.203700
dtype: float64
-----
------Median Value-----
CreditScore
                652.000
                 37.000
Age
Balance
                   5.000
               97198.540
NumOfProducts
                  1.000
HasCrCard
                  1.000
IsActiveMember
                   1.000
EstimatedSalary 100193.915
Exited
                  0.000
dtype: float64
-----Mode Value-----
 CreditScore Geography Gender Age Tenure Balance NumOfProducts
      850.0 France Male 37.0
                               2.0 0.0
 HasCrCard IsActiveMember EstimatedSalary Exited
0
  1.0 1.0
                             24924.92
                                       0.0
```

Question-4:

4. Handle the Missing values

Solution:

```
#Handling with missing Values df.isnull().values;
#Checking values are null
```

#Handling with missing Values
df.notnull()#Checking values are not null

[16]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	True	True	True	True	True	True	True	True	True	True	True
	1	True	True	True	True	True	True	True	True	True	True	True
	2	True	True	True	True	True	True	True	True	True	True	True
	3	True	True	True	True	True	True	True	True	True	True	True
	4	True	True	True	True	True	True	True	True	True	True	True
		***	***	***			***	***		***	***	
	9995	True	True	True	True	True	True	True	True	True	True	True
	9996	True	True	True	True	True	True	True	True	True	True	True
	9997	True	True	True	True	True	True	True	True	True	True	True
	9998	True	True	True	True	True	True	True	True	True	True	True
	9999	True	True	True	True	True	True	True	True	True	True	True

10000 rows × 11 columns

Question-5:

5. Find the outliers and replace the outliers

Solution:

#Find outliers & replace the outliers
sns.boxplot(df['Balance'])


```
#Find outliers & replace the outliers
print(np.where(df['Balance']>100000))
(array([ 2, 4, 5, ..., 9987, 9993, 9999]),)

#Find outliers & replace the outliers
from scipy import stats import numpy
as np

z = np.abs(stats.zscore(df["EstimatedSalary"]))
print(z)
```

In [19]:

```
0
       0.021886
1
      0.216534
      0.240687
2
3
       0.108918
4
       0.365276
         . . .
     0.066419
9995
9996 0.027988
9997 1.008643
9998
     0.125231
9999
       1.076370
Name: EstimatedSalary, Length: 10000, dtype: float64
```

Question-6:

6. Check for Categorical columns and perform encoding

Solution:

```
#Check for categorical columns & performs encoding from
sklearn.preprocessing import LabelEncoder

df['Gender'].unique()
df['Gender'].value_counts()
encoding=LabelEncoder()
df["Gender"]=encoding.fit_transform(df.iloc[:,1].values)
df
```

```
#Check for categorical columns & performs encoding from sklearn.preprocessing import LabelEncoder df['Gender'].unique()

array(['Female', 'Male'], dtype=object)

#Check for categorical columns & performs encoding df['Gender'].value_counts()

Male 5457
Female 4543
Name: Gender, dtype: int64
```

Out[22]:		CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
	0	619.0	France	0	42.0	2.0	0.00	1.0	1.0	1.0	101348,88	1.0
	1	608.0	Spain	2	41.0	1.0	83807.86	1.0	0.0	1.0	112542.58	0.0
	2	502.0	France	0	42.0	8.0	159660.80	3.0	1.0	0.0	113931.57	1.0
	3	699.0	France	0	39.0	1.0	0.00	2.0	0.0	0.0	93826.63	0.0
	4	850.0	Spain	2	43.0	2.0	125510.82	1.0	1.0	1.0	79084.10	0.0
		146		***		***		***			***	
	9995	771.0	France	0	39.0	5.0	0.00	2.0	1.0	0.0	96270.64	0.0
	9996	516.0	France	0	35.0	10.0	57369.61	1.0	1.0	1.0	101699.77	0.0
	9997	709.0	France	0	36.0	7.0	0.00	1.0	0.0	1.0	42085.58	1.0
	9998	772.0	Germany	1	42.0	3.0	75075.31	2.0	1.0	0.0	92888.52	1.0
	9999	792.0	France	0	28.0	4.0	130142.79	1.0	1.0	0.0	38190.78	0.0

10000 rows × 11 columns

Question-7:

7.Split the data into dependent and independent variables.

Solution:

```
#Split the data into Dependent & Independent Variables
print("------Dependent Variables-----")
X=df.iloc[:,1:4] print(X) print("-----Independent
Variables-----") y=df.iloc[:,4] print(Y)
print("-----")
```

Question-8:

8. Scale the independent variables

Solution:

```
#Split the data into Dependent & Independent Variables
print("-----Dependent Variables-----")
X=df.iloc[:,1:4] print(X) print("-----
Independent Variables-----") y=df.iloc[:,4]
print(Y)
print("-----")
```

Question-9:

9. Split the data into training and testing

Solution:

In [34]:

		130
1603	1.0	23305.85
8713	1.0	41248.80
4561	1.0	143317.42
6600	1.0	174123.16

In [32]:	#Spli y_tra	it the data into training & testing ain
Out[32]:	2558	727.0
000[22]+	7642	811.0
	8912	623.0
	3319	430.0
	6852	600.0
	456	733.0
	6017	487.0
	709	686.0
	8366	637.0
	1146	614.0
	Name:	CreditScore, Length: 9996, dtype: float64

Out[34]:		const	EstimatedSalary
	2558	1.0	137903.54
	7642	1.0	121765.00
	8912	1.0	109470.34
	3319	1.0	2923.61
	6852	1.0	7312.25
		2117	
	456	1.0	7666.73
	6017	1.0	9085.00
	709	1.0	147794.63
	8366	1.0	102515.42

9996 rows × 2 columns

1146 1.0 54776.64