II. Fonction carré

1) Définition

<u>Définition</u>: La <u>fonction carré</u> f est définie sur \mathbb{R} par $f(x) = x^2$.

2) Variations

Propriété:

La fonction carré f est décroissante sur l'intervalle $]-\infty;0]$ et croissante sur l'intervalle $[0;+\infty[$.

Démonstration:

Soient a et b deux nombres réels quelconques positifs tels que a < b.

$$f(b) - f(a) = b^2 - a^2 = (b - a)(b + a).$$

Or b-a>0, $a\geq 0$ et $b\geq 0$ donc $f(b)-f(a)\geq 0$ ce qui prouve que f est croissante sur l'intervalle $\left[0;+\infty\right[$.

La décroissance sur l'intervalle $]-\infty;0]$ est prouvée de manière analogue en choisissant a et b deux nombres réels quelconques négatifs tels que a < b.

3) Représentation graphique

x	-2	-1	0	1	2
f(x)	4	1	0	1	4

Remarques:

 Le tableau de valeurs n'est pas un tableau de proportionnalité. La fonction carrée n'est donc pas une fonction linéaire.

- 2) Dans un repère (O, I, J), la courbe de fonction carré est appelée une <u>parabole</u> de sommet O.
- 3) Dans un repère orthogonal, la courbe de la fonction carré est symétrique par rapport à l'axe des ordonnées. $\mathbf{f}(\mathbf{x}) = \mathbf{f}(-\mathbf{x})$: la fonction est dite paire.

la