Antonio Falcó

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

 $X_t = f(W_t)$

Formule d'Itô pou $X_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d Itô pou $X_t = f(W_t)$ Formule d'Itô pou $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $Y_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Soit $(W_t, t \in \mathbb{R}_+)$ à m.b.s. Soit T > 0 fixée. Notre but est de construire l'intégrale stochastique

$$\left(\int_0^t H_s dW_s, t \in [0, T]\right)$$

pour un processus (H_t) vérifiant certaines propriétés.

Processus simple prévisible

Un processus simple prévisible (par rapport à une filtration (\mathcal{F}_t)) est un processus $(H_t, t \in [0, T])$ tel que

$$H_t = \sum_{i=1}^n X_i 1_{]t_{i-1},t_i]}(t), \quad t \in [0,T]$$

οù

$$0 = t_0 < t_1 < \cdots < t_n = T$$

une partition de [0, T] et X_i est une v.a. $\mathcal{F}_{t_{i-1}}$ -mesurable et bornée pour tout $1 \leq i \leq n$.

On voit donc que sur l'intervalle $]t_{i-1}, t_i]$ la valeur du processus (H_t) est determinée par l'information $\mathcal{F}_{t_{i-1}}$.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique Formules d'Itô pour le

m.b.s Formule d'Itô pour

 $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Intégral d'un processus simple prévisible

Soit (H_t) un processus simple prévisible on pose

$$(H \cdot W)_T \equiv \int_0^T H_s dW_s := \sum_{i=1}^n X_i (W_{t_i} - W_{t_{i-1}})$$

et l'intégrale est linéaire en H:

$$((aH+bK)\cdot W)_T=a(H\cdot W)_T+b(K\cdot W)_T.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour

Processus d'Itô

Formule d'intégration pa

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour

 $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Proposition (Isométrie d'Itô)

On a les égalités suivantes :

$$\mathbb{E}\left(\int_0^T H_s dW_s\right) = 0,$$

$$\mathbb{E}\left(\left(\int_0^T H_s dW_s\right)^2\right) = \mathbb{E}\left(\int_0^T H_s^2 ds\right)$$

Démostration :

$$\mathbb{E}\left(\int_0^T H_s dW_s\right) = \sum_{i=1}^n \mathbb{E}(X_i(W_{t_i} - W_{t_{i-1}}))$$

$$= \sum_{i=1}^n \mathbb{E}\left(\mathbb{E}(X_i(W_{t_i} - W_{t_{i-1}})|\mathcal{F}_{t_{i-1}})\right)$$

$$= \sum_{i=1}^n \mathbb{E}\left(X_i\mathbb{E}((W_{t_i} - W_{t_{i-1}})|\mathcal{F}_{t_{i-1}})\right) = 0$$

où on a utilisé le fait que $\mathbb{E}((W_{t_i} - W_{t_{i-1}}) | \mathcal{F}_{t_{i-1}}) = 0$.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Démostration :

Pour l'isométrie on calcule

$$\begin{split} \mathbb{E}\left(\left(\int_{0}^{T}H_{s}dW_{s}\right)^{2}\right) &= \sum_{i=1}^{n}\sum_{j=1}^{n}\mathbb{E}(X_{i}X_{j}(W_{t_{i}}-W_{t_{i,1}})(W_{t_{j}}-W_{t_{j-1}}))\\ &= 2\sum_{\substack{i,j=1\\i < j}}^{n}\mathbb{E}(X_{i}X_{j}(W_{t_{i}}-W_{t_{i-1}})(W_{t_{j}}-W_{t_{j-1}}))\\ &+ \sum_{i}^{n}\mathbb{E}(X_{i}^{2}(W_{t_{i}}-W_{t_{i-1}})^{2}) \end{split}$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $Y_t = f(t, W_t)$

Processus d'Itô

Démostration:

$$\begin{split} \mathbb{E}(X_i^2(W_{t_i} - W_{t_{i-1}})^2) &= \mathbb{E}(\mathbb{E}(X_i^2(W_{t_i} - W_{t_{i-1}})^2 | \mathcal{F}_{t_{i-1}})) \\ &= \mathbb{E}(X_i^2 \mathbb{E}((W_{t_i} - W_{t_{i-1}})^2 | \mathcal{F}_{t_{i-1}})) \\ &= \mathbb{E}(X_i^2)(t_i - t_{i-1}) \end{split}$$

où on a utilisé le fait que

$$\mathbb{E}((W_{t_i}-W_{t_{i-1}})^2|\mathcal{F}_{t_{i-1}})=t_i-t_{i-1}.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

 $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Démostration :

$$egin{aligned} \sum_{\substack{i,j=1\i< j}}^n \mathbb{E}(X_iX_j(W_{t_i}-W_{t_{i-1}})(W_{t_j}-W_{t_{j-1}})) \ &= \sum_{\substack{i,j=1\i< j}}^n \mathbb{E}(\mathbb{E}(X_iX_j(W_{t_i}-W_{t_{i-1}})(W_{t_j}-W_{t_{j-1}})|\mathcal{F}_{t_{j-1}})) = \ &= \sum_{\substack{i,j=1\i< j}}^n \mathbb{E}(X_iX_j(W_{t_i}-W_{t_{i-1}})\mathbb{E}((W_{t_j}-W_{t_{j-1}})|\mathcal{F}_{t_{j-1}})) = 0 \end{aligned}$$

où on a utilisé le fait que $\mathbb{E}((W_{t_i} - W_{t_{i-1}}) | \mathcal{F}_{t_{i-1}}) = 0$.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d ito pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t \mid W_t)$

Processus d'Itô

Démostration :

En conséquence,

$$\mathbb{E}\left(\left(\int_{0}^{T} H_{s}dW_{s}\right)^{2}\right) = \sum_{i=1}^{n} \mathbb{E}(X_{i}^{2})(t_{i} - t_{i-1})$$

$$= \mathbb{E}\left(\sum_{i=1}^{n} X_{i}^{2}(t_{i} - t_{i-1})\right)$$

$$= \mathbb{E}\left(\sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} H_{s}^{2}ds\right) = \mathbb{E}\left(\int_{0}^{T} H_{s}^{2}ds\right)$$

donc l'isométrie est vérifiée

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Remarque

L'isométrie d'Itô dit encore que si H et K sont deux processus simples prévisibles, alors

$$\mathbb{E}\left(\int_0^T H_s dW_s \int_0^T K_s dW_s\right) = \mathbb{E}\left(\int_0^T H_s K_s ds\right)$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s Formule d'Itô pour

> $X_t = f(W_t)$ Formule d'Itô pour $X_t - f(t, W_t)$

Processus d'Itô

Remarque

Si $t \in]t_{k-1}, t_k]$, alors

$$(H \cdot W)_t = \sum_{i=1}^{k-1} X_i (W_{t_i} - W_{t_{i-1}}) + X_k (W_t - W_{t_{k-1}}).$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

 $X_t = f(W_t)$

Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Anton

Soit H un processus simple prévisible, on pose

$$(H\cdot W)_t \equiv \int_0^t H_s dW_s = ((H\cdot 1_{[0,t]})\cdot W)_T = \sum_{i=1}^n X_i (W_{t_i \wedge t} - W_{t_{i-1} \wedge t}).$$

Alors, on a

$$\mathbb{E}\left(\int_0^t H_s dW_s\right) = 0,$$

$$\mathbb{E}\left(\left(\int_0^t H_s dW_s\right)^2\right) = \mathbb{E}\left(\int_0^t H_s^2 ds\right)$$

et

$$\mathbb{E}\left(\int_0^t H_u dW_u \int_0^s K_u dW_u\right) = \mathbb{E}\left(\int_0^{t \wedge s} H_u \, K_u \, du\right)$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

 $X_t = f(W_t)$ Formule d'Itô pour

 $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par

Proposition

Le processus $((H \cdot W)_t, t \in [0, T])$ est une martingale continue de carré intégrable. En consequence, $(H \cdot W)^2$ est une sous-martingale.

Démostration :

La isométrie d'Itô dit que le processus $((H \cdot W)_t, t \in [0, T])$ es de carré intégrable. L'inégalité de Cauchy-Schwarz

$$\mathbb{E}(|(H\cdot W)_t|) \leq \sqrt{\mathbb{E}((H\cdot W)_t^2)} < \infty.$$

De plus, si on suppose que $t \in]t_{k-1}, t_k]$, alors

$$\begin{split} \mathbb{E}\left((H\cdot W)_{\mathcal{T}}|\mathcal{F}_{t}\right) &= \sum_{i=1}^{k-1} \mathbb{E}(X_{i}(W_{t_{i}} - W_{t_{i-1}})|\mathcal{F}_{t}) \\ &+ \mathbb{E}(X_{k}(W_{t} - W_{t_{k-1}})|\mathcal{F}_{t}) \\ &+ \sum_{i=k+1}^{n} \mathbb{E}(X_{i}(W_{t_{i}} - W_{t_{i-1}})|\mathcal{F}_{t}) \\ &= \sum_{i=1}^{k-1} X_{i}(W_{t_{i}} - W_{t_{i-1}}) \\ &+ X_{k} \mathbb{E}((W_{t} - W_{t_{k-1}})|\mathcal{F}_{t}) \\ &+ \sum_{i=k+1}^{n} \mathbb{E}(X_{i} \mathbb{E}((W_{t_{i}} - W_{t_{i-1}})|\mathcal{F}_{t_{i}})|\mathcal{F}_{t}) \end{split}$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

parties

Démostration :

$$\mathbb{E}((H \cdot W)_T | \mathcal{F}_t) = \sum_{i=1}^{k-1} X_i (W_{t_i} - W_{t_{i-1}}) + X_k (W_t - W_{t_{k-1}})$$
$$= (H \cdot W)_t.$$

Alors le processus est une martingale, pour t > s

$$\begin{split} \mathbb{E}\left((H\cdot W)_t|\mathcal{F}_s\right) &= \mathbb{E}(\mathbb{E}\left((H\cdot W)_T|\mathcal{F}_t\right)|\mathcal{F}_s) \\ &= \mathbb{E}\left((H\cdot W)_T|\mathcal{F}_s\right) = (H\cdot W)_s. \end{split}$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Int

Proposition (Inégalité de Doob)

Si $X = (X_t)$ est une martingale continue,

$$\mathbb{E}\left(\sup_{s\leq T}X_s^2\right)\leq 4\mathbb{E}(X_T^2).$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

 $X_t = f(W_t)$ Formule d'Itô pour

Formule d'Itô pou $X_t = f(t, W_t)$

Processus d'Itô

On étend maintenant l'intégrale $(H \cdot W)$ par continuité à l'ensemble :

$$\mathcal{H} := \left\{ egin{aligned} &H ext{ est adapt\'e, continu \`a gauche,} \ &H := \left\{ (H_t, t \in [0, T]) : & limit\'e \`a ext{ droite et tel que} \ &\mathbb{E}\left(\int_0^T H_s^2 ds
ight) < \infty \end{aligned}
ight.
ight\}$$

Cet ensemble est un espace de Banach muni de la norme définie par

$$\|H\|_{T,1}^2 := \mathbb{E}\left(\int_0^T H_s^2 ds\right)$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration pa

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

 $X_t = f(W_t)$ Formule d'Itô pour

 $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Proposition

Pour tout $H \in \mathcal{H}$, il existe in suite $(H^{(n)})$ de processus simples prévisibles tels que

$$\lim_{n\to\infty}\mathbb{E}\left(\int_0^T(H_s^{(n)}-H_s)^2ds\right)=0=\lim_{n\to\infty}\|H^{(n)}-H\|_{T,1}^2$$

Lemma

Soit $Z \in \mathcal{H}$ bornée et $t \mapsto Z_t(\omega)$ est continue pour chaque $\omega \in \Omega$. Alors, il existe une suite $\{H_t^{(n)}\}_{n \in \mathbb{N}} \subset \mathcal{H}$ de processus élémentaires telle que

$$\lim_{n\to\infty} E\left[\int_0^T (Z_s-H_s^{(n)})^2 ds\right]=0.$$

 $D\acute{e}mostration$: Soit $t_0 = 0 < t_1 < \ldots < t_n = T$ et le processus élémentaire

$$H_t^{(n)}(\omega) := \sum_{i=1}^n Z_{t_i}(\omega) 1_{]t_{i-1},t_i]}(t).$$

Comme $t \mapsto Z_t(\omega)$ est continue, alors

$$\lim_{n\to\infty}\int_0^t (Z_s(\omega)-H_s^{(n)}(\omega))^2 ds=0,$$

pour chaque $\omega \in \Omega$. Le Le théorème de convergence dominée nous donne la preuve. \Box

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

 $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration pa parties

Remarque

La condition $t\mapsto Z_t(\omega)$ est continue pour chaque $\omega\in\Omega$ est très forte. C'est plus naturelle

$$\Pr(\{\omega: t \mapsto Z_t(\omega) \text{ est continue }\}) = 1,$$

c'est-à-dire $t \mapsto Z_t(\omega)$ est continue p.p.

Lemma

Soit $Z \in \mathcal{H}$ bornée. Alors, il existe une suite $\{H_t^{(n)}\}_{n \in \mathbb{N}} \subset \mathcal{H}$ telle que $t \mapsto H_t^{(n)}(\omega)$ est continue pour chaque $\omega \in \Omega$ et $n \in \mathbb{N}$, avec

$$\lim_{n\to\infty} E\left[\int_0^T (Z_s-H_s^{(n)})^2ds\right]=0.$$

Démostration : Si $|Z_t(\omega)| \leq M$ pour tout t et ω . Pour chaque n soit $\psi_n : \mathbb{R} \to [0, \infty[$ continue telle que

- 1. $\psi_n(x) = 0 \text{ pour } x \le -\frac{1}{n} \text{ et } x \ge 0,$
- $2. \int_{-\infty}^{\infty} \psi_n(x) dx = 1.$

Soit

$$H_t^{(n)}(\omega) := \int_0^t \psi_n(s-t) Z_s(\omega) ds.$$

Alors, $t \mapsto H_t^{(n)}(\omega)$ est continue pour chaque $\omega \in \Omega$, $n \in \mathbb{N}$ et $|H_t^{(n)}(\omega)| \leq M$. (Oksendal p.27-28)

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par

Lemma

Soit $Z \in \mathcal{H}$. Alors, il existe une suite $\{H_t^{(n)}\}_{n \in \mathbb{N}} \subset \mathcal{H}$ telle que $H_t^{(n)}$ est bornée pour chaque n et

$$\lim_{n\to\infty} E\left[\int_0^T (Z_s-H_s^{(n)})^2 ds\right]=0.$$

Démostration : Soit

$$H_t^{(n)}(\omega) := \left\{ \begin{array}{ccc} -n & \text{si} & Z_t(\omega) < -n \\ Z_t(\omega) & \text{si} & -n \leq Z_t(\omega) \leq n \\ n & \text{si} & Z_t(\omega) > n \end{array} \right.$$

(Oksendal p.28)

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique Formules d'Itô pour le

m.b.s

Formule d'Itô pour

 $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Démonstration (Proposition) :

Du fait la suite $(H^{(n)})$ converge, c'est également une suite de Cauchy :

$$\lim_{n,m\to\infty}\mathbb{E}\left(\int_0^T (H_s^{(n)}-H_s^{(m)})^2 ds\right)=0$$

Et donc, on a

$$\begin{split} \mathbb{E}\left(\sup_{t\in[0,T]}((H^{(n)}\cdot W)_t-(H^{(m)}\cdot W)_t))^2\right)\\ &=\mathbb{E}\left(\sup_{t\in[0,T]}((H^{(n)}-H^{(m)})\cdot W)_t^2\right)\\ &\leq 4\mathbb{E}\left(\int_0^T(H_s^{(n)}-H_s^{(m)})^2ds\right)\to 0. \end{split}$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $Y_t = f(X_t, W_t)$

Processus d'Itô

La suite de processus $(H^{(n)} \cdot W)$ est donc une suite de Cauchy dans l'espace de Banach \mathcal{M} défini par

$$\mathcal{M} := egin{cases} (M_t, t \in [0,\, T]): & \text{martingale continue de carré integrable} \\ & \text{telle que } M_0 = 0 \end{cases}$$

et muni de la norme

$$\|M\|_{T,2}^2 := \mathbb{E}\left(\sup_{t\in[0,T]}M_t^2\right).$$

Alors, $(H^{(n)} \cdot B)$ converge dans \mathcal{M} , il existe un élément $(H \cdot W) \in \mathcal{M}$ tel que

$$\lim_{n\to\infty}\mathbb{E}\left(\sup_{t\in[0,T]}((H^{(n)}\cdot W)_t)-(H\cdot W)_t)^2\right)=0.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Formules d'Itô pour le

Formule d'Itô pour $X_t = f(W_t)$

Processus d'Itô

1. Nous avons ainsi défini l'application linéaire et bornée

$$\mathcal{H} \longrightarrow \mathcal{M}, \quad H \mapsto (H \cdot W)$$

2. L'égalité

$$\lim_{n\to\infty}\mathbb{E}\left(\sup_{t\in[0,T]}((H^{(n)}\cdot W)_t)-(H\cdot W)_t)^2\right)=0$$

implique en particulier que pour tout $\varepsilon > 0$

$$\lim_{n\to\infty}\mathbb{P}\left(\sup_{t\in[0,T]}|(H^{(n)}\cdot W)_t)-(H\cdot W)_t|>\varepsilon\right)=0$$

donc la suite $(H^{(n)} \cdot W)$ converge uniformément sur [0, T] en probabilité vers $(H \cdot W)$.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour

Processus d'Itô

Formule d'intégration par

Attention

- 1. La construction de l'intégrale stochastique implique qu'elle n'est définie qu'à un ensemble négligeable près.
- 2. Plus important : L'intégrale stochastique n'est pas définie trajectoire par trajectoire i.e. " ω par ω " pour un $\omega \in \Omega$ donné, il est impossible de dire ce que vaut $(H \cdot W)_T(\omega)$ si on ne connaît que les trajectoires $t \mapsto H_t(\omega)$ et $t \mapsto W_t(\omega)$; aussi étrage que cela puisse paraître, il faut connaître les processus (H_t) et W_t en entier!

Propriétés de l'intégrale stochastique

- 1. Linearité : $((\alpha H + \beta K) \cdot W)_t = \alpha (H \cdot W)_t + \beta (K \cdot W)_t$.
- 2. Espérance nulle et isométrie :
 - 2.1 $\mathbb{E}((H \cdot W)_t) = 0$,
 - 2.2 $\operatorname{Cov}((H \cdot W)_t, (K \cdot W)_s) = \mathbb{E}\left(\int_0^{t \wedge s} H_u K_u du\right)$
- 3. $(H \cdot W)$ est une martingale continue de carré intégrable telle que

$$\mathbb{E}\left(\sup_{t\in[0,1]}(H\cdot W)_t^2\right)\leq 4\mathbb{E}\left(\int_0^T H_s^2ds\right)$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $Y_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(X_t)$

Processus d'Itô

Formule d'intégration par parties

Proposition

Soit $(W_t)_{t\geq 0}$ un m.b.s. Pour t>0 on définit

$$\langle W
angle_t^{(n)} := \sum_{i=1}^{2^n} \left(W_{rac{it}{2^n}} - W_{rac{(i-1)t}{2^n}}
ight)^2$$

Alors.

$$\lim_{n\to\infty} \langle W \rangle_t^{(n)} = t \ \textit{p.s.} \ ,$$

c'est-à-dir

$$\Pr\left(\{\omega: \lim_{n\to\infty} \langle W \rangle_t^{(n)}(\omega) = t\}\right) = 1.$$

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

 $X_t = f(W_t)$

Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Variation quadratique du m.b.s.

On dit que que la variation quadratique du m.b.s. noté $\langle W \rangle_t = t.$ Alors on connaît que

$$W_t^2 - \langle W \rangle_t = W_t^2 - t$$

est une martingale.

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Theorem (Théorème de décomposition de Doob)

Soit $(X_t, t \in \mathbb{R}_+)$ une sous-martingale continue (par rapport à une filtration $(\mathcal{F}_t, t \in \mathbb{R}_+)$). Alors il existe un unique processus $(A_t, t \in \mathbb{R}_+)$ croissant, continu et adapté à $(\mathcal{F}_t, t \in \mathbb{R}_+)$) tel que $A_0 = 0$ et $(X_t - A_t, t \in \mathbb{R}_+)$ est une martingale.

Définition

Soit (M_t) une martingale continue de carré intégrable. Alors M_t^2 es une sous-martingale et donc aprés le théorème ci-dessus is existe un processus $\langle M \rangle_t$ croissant, continu et adapté à $(\mathcal{F}_t, t \in \mathbb{R}_+)$ tel que $\langle M \rangle_0 = 0$ et $M_t^2 - \langle M \rangle_t$ est une martingale. On appelle $(\langle M \rangle_t)$ processus de variation quadratique de (M_t)

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Soit $M_t = W_t$ un m.b.s (est une martingale). Alors, pour $t > s \ge 0$ on a

$$\begin{split} \mathbb{E}[W_t^2 | \mathcal{F}_s^W] &= \mathbb{E}[(W_t - W_s)^2 + 2W_t W_s - W_s^2 | \mathcal{F}_s^B] \\ &= (t - s) + 2W_s \mathbb{E}[W_t | \mathcal{F}_s^B] - \mathbb{E}[W_s^2 | \mathcal{F}_s^W] \\ &= (t - s) + W_s^2 \ge W_s^2, \end{split}$$

et (W_t^2) est une sous-martingale par rapport \mathcal{F}_t^W . On peut deduit aussi que

$$\mathbb{E}[W_t^2 - t | \mathcal{F}_s^W] = W_s^2 - s,$$

c'est-à-dire $W_t^2 - t = W_t^2 - A_t$ est une martingale et pour la décomposition de Doob on a

$$A_t = t = \langle W \rangle_t.$$

Soit M_t est une martingale par rapport \mathcal{F}_t . Alors, pour $t>s\geq 0$ on a

$$\begin{split} \mathbb{E}\left[M_t^2|\mathcal{F}_s\right] &= \mathbb{E}\left[\left(M_t - M_s\right)^2 + 2M_tM_s - M_s^2|\mathcal{F}_s^B\right] \\ &= \mathbb{E}\left[\left(M_t - M_s\right)^2|\mathcal{F}_s\right] + M_s^2 \\ &\geq M_s^2 \end{split}$$

c'est-à-dire M_s^2 est une sous–martingale. Avec la décomposition de Doob il existe $A_t=\langle M\rangle_t$ telle que

$$M_t^2 - \langle M \rangle_t$$
 est une martingale.

Observe q'on a montré que pour une martingale M_t on a

$$\mathbb{E}\left[M_t^2 - M_s^2 | \mathcal{F}_s\right] = \mathbb{E}\left[\left(M_t - M_s\right)^2 | \mathcal{F}_s\right]$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par

Soit
$$M_t = \int_0^t H_s dW_s$$
 alors pour $t > u \ge 0$,

$$\begin{split} \mathbb{E}\left[M_t^2|\mathcal{F}_u\right] &= \mathbb{E}\left[\left(M_t - M_u\right)^2|\mathcal{F}_u\right] + M_u^2 = \mathbb{E}\left[\left(M_t - M_u\right)^2|\mathcal{F}_u\right] + M_u^2 \\ &= \mathbb{E}\left[\left(\int_u^t H_s dW_s\right)^2|\mathcal{F}_u\right] + M_u^2. \end{split}$$

Alors, pour tout $A \in \mathcal{F}_{\mu}$ on a

$$\begin{split} \mathbb{E}\left[\mathbf{1}_{A}\left(\int_{u}^{t}H_{s}dW_{s}\right)^{2}\right] &= \mathbb{E}\left[\left(\int_{u}^{t}\mathbf{1}_{A}H_{s}dW_{s}\right)^{2}\right] = \mathbb{E}\left[\int_{u}^{t}\mathbf{1}_{A}H_{s}^{2}ds\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[\int_{u}^{t}\mathbf{1}_{A}H_{s}^{2}ds|\mathcal{F}_{u}\right]\right] \\ &= \mathbb{E}\left[\mathbf{1}_{A}\mathbb{E}\left[\int_{u}^{t}H_{s}^{2}ds|\mathcal{F}_{u}\right]\right] \end{split}$$

c'est-à-dire
$$\mathbb{E}\left[\left(\int_{u}^{t} H_{s} dW_{s}\right)^{2} | \mathcal{F}_{u}\right] = \mathbb{E}\left[\int_{u}^{t} H_{s}^{2} ds | \mathcal{F}_{u}\right] = \mathbb{E}\left[\int_{0}^{t} H_{s}^{2} ds - \int_{0}^{u} H_{s}^{2} ds | \mathcal{F}_{u}\right]$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$

 $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Nous avons l'egalité

$$\mathbb{E}\left[M_t^2 - \int_0^t H_s^2 ds | \mathcal{F}_u\right] = M_u^2 - \int_0^u H_s^2 ds.$$

En consequence,

$$\left\langle \int H_s dW_s \right\rangle_t = \int_0^t H_s^2 ds.$$

et

$$d\left\langle \int H_s dW_s \right\rangle_t = H_t^2 dt$$

Remarque

1. Noter qu'on a toujours par définition :

$$\mathbb{E}(\langle M \rangle_t) = \mathbb{E}(M_t^2) - \mathbb{E}(M_0^2).$$

- 2. Du fait que le processus $(\langle M \rangle_t)$ est croissant, c'est un processus à variation bornée.
- 3. Si (M_t) est une martingale continue a variation bornée, alors $M_t = M_0$ pour tout t > 0

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $Y_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration pa

Proposition

 $Si\left(M_{t}\right)$ est une martingale continue de carré intégrable, alors on a :

$$\mathbb{P} - \lim_{n \to \infty} \langle M \rangle_t^{(n)} = \sum_{i=1}^{2^n} \left(M_{\frac{it}{2^n}} - M_{\frac{(i-1)t}{2^n}} \right)^2 = \langle M \rangle_t$$

pour tout $t \geq 0$.

Remarque

- 1. A priori la convergence n'a lieu qu'en probabilité (alors qu'elle a lieu presque sûrement dans le cas où (M_t) est un m.b.s)
- 2. Bien que la variation quadratique soit une quantité aléatoire, la proposition ce-dessus illustre le fait qu'elle est une généralisation de la notion de variance pour des processus aléatoires.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Observe que si M_t et N_t sont des martingales par rapport \mathcal{F}_t alors, $M_t + N_t$ et $M_t - N_t$ sont aussi des martingales comme

$$\frac{1}{4} \left((M_t + N_t)^2 - (M_t - N_t)^2 \right) = M_t N_t$$

on a

$$\begin{split} \mathbb{E}[M_t N_t | \mathcal{F}_s] &= \frac{1}{4} \left(\mathbb{E}[(M_t + N_t)^2 | \mathcal{F}_s] - \mathbb{E}[(M_t - N_t)^2 | \mathcal{F}_s] \right) \\ &= \frac{1}{4} \left((M_s + N_s)^2 - \langle M + N \rangle_s + \mathbb{E}[\langle M + N \rangle_t | \mathcal{F}_s] \right) \\ &- (M_s - N_s)^2 + \langle M - N \rangle_s - \mathbb{E}[\langle M - N \rangle_t | \mathcal{F}_s] \right). \end{split}$$

on a fait servir

$$\mathbb{E}[(M_t \pm N_t)^2 - \langle M \pm N \rangle_t | \mathcal{F}_s] = (M_s \pm N_s)^2 - \langle M \pm N \rangle_s.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour

Alors on a montré :

$$\mathbb{E}\left[\overline{\frac{1}{4}\left((M_t+N_t)^2-(M_t-N_t)^2\right)}-\frac{1}{4}\left(\langle M+N\rangle_t-\langle M-N\rangle_t\right)|\mathcal{F}_s\right]=$$

$$\underbrace{\frac{M_sN_s}{\frac{1}{4}\left((M_s+N_s)^2-(M_s-N_s)^2\right)}}_{M_sN_s}-\frac{1}{4}\left(\langle M+N\rangle_s-\langle M-N\rangle_s\right)$$

Definition

Soient (M_t) et (N_t) deux martingales continues de carré intégrable. On définit la **covariation quadratique** de (M_t) et (N_t) par

$$\langle M, N \rangle_t := \frac{1}{4} (\langle M + N \rangle_t - \langle M - N \rangle_t)$$

Proposition

Le processus $(M_tN_t - \langle M, N \rangle_t)$ est une martingale.

Proposition

Soient (M_t) et (N_t) deux martingales continues de carré intégrable alors on a :

$$\mathbb{P}-\lim_{n\to\infty}\langle M,N\rangle_t^{(n)}=\sum_{i=1}^{2^n}\left(M_{\frac{it}{2^n}}-M_{\frac{(i-1)t}{2^n}}\right)\left(N_{\frac{it}{2^n}}-N_{\frac{(i-1)t}{2^n}}\right)=\langle M,N\rangle_t.$$

pour tout t > 0.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Proposition

Soit (H_t) et (G_t) deux processus adaptées a \mathcal{F}_t^B telles que

$$\mathbb{E}\left[\int_0^t H_s^2 ds\right] < \infty \ \text{et} \ \mathbb{E}\left[\int_0^t G_s^2 ds\right] < \infty.$$

Si $M_t = \int_0^t H_s dW_s$ et $N_t = \int_0^t G_s dW_s$ alors,

$$\langle M, N \rangle_t = \int_0^t H_s G_s ds,$$

en particulier on a

$$\left\langle \int H_s dW_s \right\rangle_t = \int_0^t H_s^2 ds.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

> Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour

Processus d'Itô

Formule d'intégration pa

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Exercise

Montrer que $X_t^x = x + bt + \sigma W_t$ avec b > 0 est une sous-martingale continue adapté à \mathcal{F}_t^B .

On va montrer que $\mathbb{E}[X_t|\mathcal{F}_s^B] \geq X_s$ pour $t>s\geq 0$. Pour voir ça

$$\mathbb{E}[X_t^x | \mathcal{F}_s^B] = \mathbb{E}[x + bt + \sigma W_t | \mathcal{F}_s^B]$$

$$= x + bt + \sigma \mathbb{E}[W_t | \mathcal{F}_s^B]$$

$$= x + bt + \sigma W_s = x + bs + \sigma W_s + b(t - s)$$

$$\geq x + bt + \sigma W_s = X_s.$$

Alors, $X_t^{\times} - bt = x + \sigma W_t$ est une martingale adapté à \mathcal{F}_t^B . Ici $A_t = bt$ est une fonction croissant, continue (et adapté de manière trivial a \mathcal{F}_t^B) et $A_0 = 0$.

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour Formule d'Itô pour

Processus d'Itô

Theorem (Formule d'Itô pour $X_t = f(W_t)$)

Soit $(W_t, t \in \mathbb{R}_+)$ un m.b.s. par rapport $(\mathcal{F}_t, t \in \mathbb{R}_+)$ et $f \in \mathcal{C}^2(\mathbb{R})$. On suppose que

$$\mathbb{E}\left(\int_0^t f'(W_s)ds\right)<\infty \ \text{pour tout} \ t>0.$$

Alors pour tout t > 0.

$$f(W_t) - f(W_0) = \int_0^t f'(W_s) dW_s + \frac{1}{2} \int_0^t f''(W_s) ds \ p.s.$$

qu'on peut écrire

$$f(W_t) - f(W_0) = \int_0^t f'(W_s) dW_s + \frac{1}{2} \int_0^t f''(W_s) d\langle W \rangle_s \ p.s.$$

Formules d'Itô pour le

Formule d'Itô pour

Processus d'Itô

Antonio Falcó

Example

Soit $(W_t)_{t>0}$ un m.b.s. Montrer que

$$\int_{0}^{t} W_{s}dW_{s} = \frac{1}{2}W_{t}^{2} - \frac{1}{2}t.$$

Soit $f(x) = \frac{1}{2}x^2$ alors f'(x) = x et f''(x) = 1. Avec le formule d'Itô on a

$$\frac{1}{2}W_t^2 - \frac{1}{2}\underbrace{W_0^2}_{-0} = \int_0^t W_s dW_s + \frac{1}{2}\int_0^t 1 ds = \int_0^t W_s dW_s - \frac{1}{2}t.$$

$$e^{W_t} - 1 = \int_0^t e^{W_s} dW_s + \frac{1}{2} \int_0^t e^{W_s} ds.$$

Note $Z_t := e^{W_t}$ alors, on peut écrire

$$Z_t = 1 + \int_0^t \frac{1}{2} Z_s ds + \int_0^t Z_s dW_s$$

c'est-a-dir le processus Z_t "est la solution de l'EDS"

$$dZ_t = \frac{1}{2}Z_t dt + Z_t dW_t$$
$$Z_0 = 1.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$

$$\lambda_t = I(t, W_t)$$
Processus d'Itô

Formule d'intégration

Démonstration

$$f(W_t) - f(W_0) = \sum_{i=1}^{2^n} \left(f(W_{t_i^{(n)}}) - f(W_{t_{i-1}^{(n)}}) \right)$$

où $0 = t_0^{(n)} < t_1^{(n)} < \ldots < t_n^{(n)} = t$ est une suite de partitions de [0, t] telle que

$$\lim_{n\to\infty}\max_{1\leq i\leq n}|t_i^{(n)}-t_{i-1}^{(n)}|=0.$$

Par un développement de Taylor classique

$$f(y) - f(x) = f'(x)(y - x) + \frac{1}{2}f''(x)(y - x)^{2} + r(y - x),$$

où $\lim_{h\to 0} \frac{r(h)}{h} = 0$. Donc

$$\begin{split} f(W_t) - f(W_0) &= \sum_{i=1}^{2^n} \left(f'(W_{t_{i-1}^{(n)}}) \left(W_{t_i^{(n)}} - W_{t_{i-1}^{(n)}} \right) \right. \\ &+ \left. \frac{1}{2} f''(W_{t_{i-1}^{(n)}}) \left(W_{t_i^{(n)}} - W_{t_{i-1}^{(n)}} \right)^2 + r_i^{(n)} \right) \end{split}$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration pa parties

Theorem (Formule d'Itô pour $X_t = f(t, W_t)$)

Soit $(W_t, t \in \mathbb{R}_+)$ un m.b.s. par rapport $(\mathcal{F}_t, t \in \mathbb{R}_+)$ et $f \in \mathcal{C}^{1,2}(\mathbb{R}_+ \times \mathbb{R})$. On suppose que

$$\mathbb{E}\left(\int_0^t \left(\frac{\partial f}{\partial x}(s,W_s)\right)^2 ds\right) < \infty \text{ pour tout } t > 0.$$

Alors pour tout t > 0,

$$f(t, W_t) - f(0, W_0) = \int_0^t \frac{\partial f}{\partial t}(s, W_s) ds + \int_0^t \frac{\partial f}{\partial x}(s, W_s) dW_s$$
$$+ \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, W_s) ds \ p.s.$$

Example

Soit
$$f(t,x) = S_0 \exp\left((\mu - \frac{1}{2}\sigma^2)t + \sigma x\right)$$
, alors
$$\frac{\partial f}{\partial t} = (\mu - \frac{1}{2}\sigma^2)f(t,x)$$
$$\frac{\partial f}{\partial x} = \sigma f(t,x)$$
$$\frac{\partial f}{\partial t} = -\sigma^2 f(x,t)$$

et la condition de la formule d'Itô est

$$\mathbb{E}\left[\int_0^t \left(\sigma f(s,W_s)\right)^2 ds\right] = \mathbb{E}\left[\int_0^t \sigma^2 S_s^2 ds\right] < \infty$$

avec
$$S_t = S_0 \exp((\mu - \frac{1}{2}\sigma^2)t + \sigma W_t) = f(t, S_t).$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Après le Théorème 2.5.7 on a

$$S_{t} - S_{0} = \int_{0}^{t} (\mu - \frac{1}{2}\sigma^{2}) S_{s} ds + \int_{0}^{t} \sigma S_{s} dW_{s} + \frac{1}{2} \int_{0}^{t} \sigma^{2} S_{s} ds$$

$$= \int_{0}^{t} \left((\mu - \frac{1}{2}\sigma^{2}) S_{s} + \frac{1}{2}\sigma^{2} S_{s} \right) ds + \int_{0}^{t} \sigma S_{s} dW_{s}$$

$$= \int_{0}^{t} \mu S_{s} ds + \int_{0}^{t} \sigma S_{s} dW_{s}$$

c'est-à-dire S_t est la solution de l'EDS :

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

$$S_{t=0} = S_0.$$

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

On a besoin de calculer

$$\mathbb{E}\left[\int_0^t \sigma^2 S_s^2 ds\right] = \sigma^2 \mathbb{E}\left[\int_0^t S_s^2 ds\right] = \sigma^2 \int_0^t \mathbb{E}\left[S_s^2\right] ds.$$

Comme In $S_t \sim N(\mu(t), \sigma(t))$ on connait les moments

$$\mathbb{E}[S_t^k] = \exp\left(k(\mu - \frac{1}{2}\sigma^2)t + k\frac{\sigma^2}{2}t\right),\,$$

et

$$\int_0^t \mathbb{E}\left[S_s^2\right] ds = \int_0^t \exp\left(k(\mu - \frac{1}{2}\sigma^2)s + k\frac{\sigma^2}{2}s\right) ds.$$

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par parties

Exercise

Soit $X_t = v_0 - \mu \int_0^t X_s \, ds + \sigma \, W_t$ le processus d'Orstein-Uhlenbeck. Calculez $\mu_2(t) := \mathbb{E}[X_t^2]$.

On connait que X_t est solution de l'EDS :

$$dX_t = -\mu X_t dt + \sigma dW_t$$
$$X_0 = v_0$$

parce que

$$X_t = v_0 - \int_0^t \mu \, X_s \, ds + \int_0^t \sigma \, dW_s.$$

L'objectif est calculer $\mathbb{E}[X_t^2]$. Si la formule d'Itô est aussi vrai dans ce cas, on a

$$X_t^2 - X_0^2 = \int_0^t 2X_s dX_s + \int_0^t \frac{1}{2} 2 ds = \int_0^t 2X_s (-\mu X_s ds + \sigma dW_s) + t$$

c'est-à-dire

$$X_t^2 - X_0^2 = t - \mu \int_0^t 2X_s^2 ds + \sigma \int_0^t X_s dW_s.$$

Alors.

$$\mathbb{E}[X_t^2] - X_0^2 = t - \mu \int_0^t 2\mathbb{E}[X_s^2] ds$$

et $\mathbb{E}[X_t^2]$ est la solution de l'EDO :

$$\frac{d}{dt}\mathbb{E}[X_t^2] = 1 - \mu 2\mathbb{E}[X_t^2], \quad E[X_0^2] = X_0^2.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par

$$X_t = v_0 - \mu \int_0^t X_s ds + \sigma W_t.$$

Alors, on a

$$X_{t}^{2} - v_{0}^{2} = \int_{0}^{t} 2X_{s} dX_{s} + \frac{1}{2} \int_{0}^{t} 2d\langle X \rangle_{s}$$

$$= \int_{0}^{t} 2X_{s} \left(-\mu X_{s} ds + \sigma dW_{s} \right) + \frac{1}{2} \int_{0}^{t} 2\sigma^{2} ds$$

$$= -\mu \int_{0}^{t} 2X_{s}^{2} ds + \int_{0}^{t} 2\sigma X_{s} dW_{s} + \sigma^{2} t,$$

et

$$\mathbb{E}[X_t^2] - v_0^2 = -\mu \int_0^t 2\mathbb{E}[X_s^2] ds + \sigma^2 t.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

En consequence, $x(t) = \mathbb{E}[X_t^2]$ est la solution de l'EDO :

$$\dot{x}(t) = -2\mu x(t) + \sigma^2$$
$$x(0) = v_0^2.$$

On a

$$x(t) = e^{-2\mu t}v_0^2 + e^{-2\mu t}\int_0^t e^{2\mu s}\sigma^2 ds,$$

c'est-à-dire

$$x(t) = e^{-2\mu t}v_0^2 + \frac{\sigma^2}{2\mu}(1 - e^{-2\mu t}).$$

Comme $\mathbb{E}[X_t] = e^{-\mu t} v_0$, on a

$$\operatorname{Var}(X_t) = \mathbb{E}[X_t^2] - (\mathbb{E}[X_t])^2 = \frac{\sigma^2}{2\mu} (1 - e^{-2\mu t}).$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Formule d'intégration par

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

ormule d'intégration par arties

Le processus d'Ornstein-Ulhenbeck

$$\label{eq:Xt} X_t = \upsilon_0 - \mu \int_0^t X_s ds + \sigma W_t \sim N \left(e^{-\mu t} \upsilon_0, \frac{\sigma^2}{2\mu} \left(1 - e^{-2\mu t} \right) \right).$$

Observe que

$$\lim_{t\to\infty} \operatorname{Var}(X_t) = \frac{\sigma^2}{2\mu}.$$

Processus d'Itô (ou semi-martingale continue)

Definition

Un processus d'Itô est un processus (X_t) pouvant se décomposer comme

$$X_t = M_t + V_t$$

où:

- ▶ (M_t) est une martingale continue de carré intégrable (p.r. a une filtration (\mathcal{F}_t)),
- ▶ (V_t) est un processus continu à variation bornée, adapté à (\mathcal{F}_t) et tel que $V_0 = 0$.

Example

D'après le théorème de decomposition de Doob, toute sous-martingale (resp. sur-martingale) continue de carré intégrable est un processus d'Itô (car un processus croissant (resp. décroissant) est de variation bornée).

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Processus d'Ito

Example

Soit (X_t) un processus défini par

$$X_t = X_0 + \int_0^t H_s dW_s + \int_0^t K_s ds$$

où (H_t) est continu, adapté et tel que $\mathbb{E}\left(\int_0^t H_s^2 ds\right) < \infty$ pour tout $t \geq 0$ et (K_t) est continue et adapté. (X_t) est un processus d'Itô.

Example

Soit $f \in \mathcal{C}^2(\mathbb{R})$ vérifiant la condition de la formule d'Itô. Alors $f(W_t)$ est un processus d'Itô :

$$f(W_t) = f(W_0) + \int_0^t f(W_s) dW_s + \frac{1}{2} \int_0^t f''(W_s) ds$$

où $M_t = f(W_0) + \int_0^t f(W_s) dW_s$ est une martingale continue de carré intégrable et $V_t = \frac{1}{2} \int_0^t f''(W_s) ds$ est un processus continu à variation bornée.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour

Processus d'Itô

Definition

Pour tout $t \geq 0$, la variation quadratique de processus d'Itô $X_t = M_t + V_t$ es définie par

$$\langle X \rangle_t = \langle M \rangle_t$$

et pour deux processus d'Itô $X_t = M_t + V_t$ et $Y_t = N_t + U_t$ on pose

$$\langle X, Y \rangle_t = \langle M, N \rangle_t$$

- 1. Si X_t est à variation bornée alors $X_t = M_0 + V_t$ et donc $\langle X \rangle_t = 0$.
- 2. De même $\langle X,Y\rangle_t=0$ quelque soit Y (ceci vient de l'inégalité de Cauchy-Schwartz : $\langle X,Y\rangle_t\leq \sqrt{\langle X\rangle_t\langle Y\rangle_t}$).
- 3. Si (X_t) et (Y_t) sont indépendants (mais pas forcement à variation bornée) $(X, Y)_t = 0$.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour

Processus d'Itô

Formule d'intégration par

Intégral stochastique par rapport une semi-martingale

Definition

Soit $X_t = M_t + V_t$ un processus d'Itô et (H_t) un processus continu, adapté à (\mathcal{F}_t) et tel que

$$\mathbb{E}\left(\int_0^t H_s^2 d\langle X\rangle_s\right) \equiv \mathbb{E}\left(\int_0^t H_s^2 d\langle M\rangle_s\right) < \infty.$$

On pose

$$(H\cdot X)_t\equiv \int_0^t H_s dX_s = \int_0^t H_s dM_s + \int_0^t H_s dV_s$$

La intégrale stochastique par rapport un processus d'Itô est la somme d'une intégrale stochastique "pure" et une intégrale de Riemman-Stieljes.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Theorem (Théorème d'Itô)

Soient (M_t) martingale continue de carré intégrable et (V_t) processus continu à variation bornée et $f \in \mathcal{C}^{1,2}(\mathbb{R}_+ \times \mathbb{R})$ telle que

$$\mathbb{E}\left(\int_0^t \left(\frac{\partial f}{\partial x}(V_s,M_s)d\langle M\rangle_s\right)\right)<\infty \text{ pour tout } t>0.$$

Alors pour tout t > 0,

$$f(V_t, M_t) - f(V_0, M_0) = \int_0^t \frac{\partial f}{\partial t}(V_s, M_s) dV_s + \int_0^t \frac{\partial f}{\partial x}(V_s, M_s) dM_s + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(V_s, M_s) d\langle M \rangle_s \ p.s.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(X_t)$

Processus d'Itô

Formule d'intégration par

Remarque

Dans le cas particulier où f(t,x) = g(t+x) la formule se récrit :

$$g(V_{t} + M_{t}) - g(V_{0} + M_{0}) = \int_{0}^{t} g'(V_{s} + M_{s})dV_{s}$$

$$+ \int_{0}^{t} g'(V_{s} + M_{s})dM_{s}$$

$$+ \frac{1}{2} \int_{0}^{t} g''(V_{s} + M_{s})d\langle M \rangle_{s} \text{ p.s.}$$

En posant $X_t = M_t + V_t$:

$$g(X_t) - g(X_0) = \int_0^t g'(X_s) dX_s + \frac{1}{2} \int_0^t g''(X_s) d\langle X \rangle_s \text{ p.s.}$$

ici
$$dX_s = dM_s + dV_s$$
.

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(t, W_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour

Processus d'Itô

Formule d'intégration par parties

Proposition (Formule d'intégration par parties)

Soient (X_t) et (Y_t) deux processus d'Itô. Alors pour tout $t \ge 0$, on a

$$X_tY_t - X_0Y_0 = \int_0^t X_s dY_s + \int_0^t Y_s dX_s + \langle X, Y \rangle_t$$

qui écrit sous forme différentielle :

$$d(X_tY_t) = X_tdY_t + Y_tdX_t + d\langle X, Y \rangle_t.$$

Démonstration

En utilisant la formule d'Itô :

$$(X_t + Y_t)^2 - (X_0 + Y_0)^2 = 2 \int_0^t (X_s + Y_s) d(X_s + Y_s) + \langle X + Y \rangle_t$$

et

$$(X_t - Y_t)^2 - (X_0 - Y_0)^2 = 2 \int_0^t (X_s - Y_s) d(X_s - Y_s) + \langle X - Y \rangle_t$$

En soustrayant les deux égalités ci-dessus, on obtient

$$4(X_tY_t-X_0Y_0)=4\left(\int_0^tX_sdY_s+\int_0^tY_sdX_s\right)+\langle X+Y\rangle_t-\langle X-Y\rangle_t.$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(X_t)$

Processus d'Itô

Example

Soit $X_t = e^{\sigma W_t}$ et $Y_t = e^{(\mu - \frac{1}{2}\sigma^2)t}$. Comme Y_t est de variation bornée, on a $\langle X, Y \rangle_t = 0$. Alors,

$$\begin{split} X_t Y_t - X_0 Y_0 &= \int_0^t X_s dY_s + \int_0^t Y_s dX_s \\ &= (\mu - \frac{1}{2}\sigma^2) \int_0^t e^{((\mu - \frac{1}{2}\sigma^2)s + \sigma W_s} ds \\ &+ \int_0^t e^{((\mu - \frac{1}{2}\sigma^2)s} \left(\underbrace{\sigma e^{W_s} dW_s + \frac{1}{2}\sigma^2 e^{W_s} ds}_{\text{formule d'Itô}}\right) \end{split}$$

Intégrale stochastique et calcul d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour $X_t = f(W_t)$ Formule d'Itô pour $X_t = f(X_t)$

Processus d'Itô

Antonio Falcó

Integral de Itô

Variation quadratique

Formules d'Itô pour le m.b.s

Formule d'Itô pour

Processus d'Itô

Formule d'intégration par parties

Example

Soient $X_t = \int_0^t H_s dW_s$ et $Y_t = \int_0^t K_s dW_s$. On a

$$X_tY_t = \int_0^t (K_sX_s + H_sY_s)dW_s + \int_0^t H_sK_sds.$$