OSI модел, мрежови протоколи и сървъри — 12а, Интернет и електронна търговия

Увод

OSI моделът е фундаментална рамка за разбиране на мрежовата комуникация. Той разделя процеса на пренос на данни на седем логически слоя, като всеки слой има специфични функции и протоколи. Разбирането на този модел е ключово за работа с мрежови технологии и протоколи.

Фигура 1: OSI модел и мрежови протоколи

3.1 OSI модел

OSI (Open Systems Interconnection) моделът е концептуална рамка, която описва как данните се предават от едно устройство до друго в мрежата. Моделът се състои от седем слоя, всеки с конкретни функции.

Фигура 2: OSI седемслойния модел

Седемте слоя на OSI модела:

7. Приложен слой (Application Layer)

- Функция: Интерфейс между потребителя и мрежата
- Протоколи: HTTP, HTTPS, FTP, SMTP, DNS

• Примери: Уеб браузъри, имейл клиенти

6. Представителен слой (Presentation Layer)

• Функция: Кодиране, компресиране, криптиране

• Протоколи: SSL/TLS, JPEG, MPEG

• Примери: Конвертиране на формати

5. Сесиен слой (Session Layer)

• Функция: Управление на сесиите

• Протоколи: NetBIOS, RPC

• Примери: Установяване на връзки

4. Транспортен слой (Transport Layer)

• Функция: Надежден пренос на данни

Протоколи: TCP, UDP

• Примери: Контрол на потока

3. Мрежов слой (Network Layer)

• Функция: Маршрутизация и адресиране

• **Протоколи**: IP, ICMP, ARP

• Примери: ІР адреси, рутери

2. Канален слой (Data Link Layer)

• Функция: Физическо адресиране

• **Протоколи**: Ethernet, WiFi

• Примери: МАС адреси, суичове

1. Физически слой (Physical Layer)

• Функция: Пренос на битове

• Протоколи: Кабели, сигнали

• **Примери**: UTP, оптика, радиовълни

Принцип на работа - детайлно обяснение:

Представете си, че изпращате писмо по пощата. OSI моделът работи като система от кутии, които се поставят една в друга:

Пример: Изпращане на уеб страница

```
1. ПРИЛОЖЕН СЛОЙ (7):
   Данни: "GET /index.html HTTP/1.1"
  Функция: Уеб браузърът иска страница
2. ПРЕДСТАВИТЕЛЕН СЛОЙ (6):
   + Заглавка: "Content-Type: text/html"
  Данни: "GET /index.html HTTP/1.1"
  Функция: Определя формата на данните
3. СЕСИЕН СЛОЙ (5):
   + Заглавка: "Session ID: 12345"
   Данни: "Content-Type: text/html" + "GET /index.html HTTP/1.1"
  Функция: Управлява връзката

 ТРАНСПОРТЕН СЛОЙ (4):

  + Заглавка: "TCP: Port 80, Sequence: 1001"
  Данни: "Session ID: 12345" + "Content-Type: text/html" + "GET
/index.html HTTP/1.1"
   Функция: Гарантира доставката
5. МРЕЖОВ СЛОЙ (3):
   + Заглавка: "IP: From 192.168.1.100 To 8.8.8.8"
   Данни: "TCP: Port 80, Sequence: 1001" + "Session ID: 12345" + ...
   Функция: Маршрутизира до правилния адрес
```

При получаване (на сървъра):

```
Сървърът "развива" кутиите в обратен ред:

1. Физически слой → премахва електрически сигнали

2. Канален слой → премахва МАС адреси

3. Мрежов слой → премахва IP адреси

4. Транспортен слой → премахва TCP заглавки

5. Сесиен слой → премахва Session ID

6. Представителен слой → премахва Content-Type

7. Приложен слой → получава чистите данни "GET /index.html HTTP/1.1"
```

Аналогия с пощата:

- Писмото = вашите данни
- Кутия 1 = конверт (физически слой)
- Кутия 2 = пощенска кутия (канален слой)
- Kутия 3 = адрес (мрежов слой)
- Кутия 4 = регистрирана поща (транспортен слой)
- Кутия 5 = номер на пощенска служба (сесиен слой)
- Кутия 6 = език на писмото (представителен слой)
- Кутия 7 = тип документ (приложен слой)

Фигура 2.1: OSI модел - принцип на работа с кутии

Практически пример - изпращане на имейл:

КЛИЕНТ (изпращач): 7. Приложен: "От: ivan@example.com" ← Вашето съобщение 6. Представителен: "UTF-8 encoding" ← Как да се кодира 5. Сесиен: "SMTP session 001" ← Номер на сесията 4. Транспортен: "TCP port 25" | ← Как да се достави 3. Мрежов: "ІР: 192.168.1.100 → 10.0.0.1" | ← Къде да отиде 2. Канален: "MAC: AA:BB:CC:DD:EE:FF" | ← Физически адрес 1. Физически: "Електрически сигнали" ← Пренос по кабела СЪРВЪР (получател): 1. Физически: "Получава сигнали" ← Чете от кабела 2. Канален: "МАС адрес ОК" ← Проверява адреса 3. Мрежов: "ІР адрес ОК" ← Проверява ІР 4. Транспортен: "ТСР порт 25 ОК" ← Проверява порта 5. Сесиен: "SMTP сесия 001 ОК" ← Проверява сесията

```
6. Представителен: "UTF-8 декодиране" | ← Декодира данните
```

3.2 Мрежови протоколи

Мрежовите протоколи са правила и стандарти, които определят как устройствата комуникират в мрежата. Те осигуряват надежден и ефективен пренос на данни между различни системи.

Фигура 3: Мрежови протоколи и комуникация

Основни мрежови протоколи:

^{7.} Приложен: "Получава: ivan@example.com" \mid \leftarrow Чисто съобщение

HTTP (HyperText Transfer Protocol)

Слой: Приложен (7)

Порт: 80

• Функция: Пренос на уеб страници

• Характеристики: Без състояние, текстови съобщения

HTTPS (HTTP Secure)

Слой: Приложен (7)

• **Порт**: 443

• Функция: Криптиран уеб трафик

• Характеристики: SSL/TLS шифроване

FTP (File Transfer Protocol)

• Слой: Приложен (7)

• **Порт**: 20, 21

• Функция: Пренос на файлове

• Характеристики: Два канала (данни и контрол)

SMTP (Simple Mail Transfer Protocol)

• **Слой**: Приложен (7)

• **Порт**: 25

• Функция: Изпращане на имейли

• Характеристики: Текстови команди

DNS (Domain Name System)

• Слой: Приложен (7)

• **Порт**: 53

• Функция: Преобразуване на домейн имена

• Характеристики: Иерархична структура

TCP (Transmission Control Protocol)

• Слой: Транспортен (4)

• Функция: Надежден пренос на данни

• Характеристики: С установяване на връзка

• Приложения: Уеб, имейл, файлове

UDP (User Datagram Protocol)

• Слой: Транспортен (4)

• Функция: Бърз пренос на данни

• Характеристики: Без установяване на връзка

• Приложения: Видео, игри, DNS

IP (Internet Protocol)

• Слой: Мрежов (3)

• Функция: Адресиране и маршрутизация

• Характеристики: Без състояние, без гаранции

• **Версии**: IPv4, IPv6

Сравнение TCP vs UDP:

Характеристика	TCP	UDP

Надеждност	Гарантирана	Негарантирана
Скорост	По-бавна	По-бърза
Връзка	С установяване	Без установяване
Контрол на потока	Да	Не
Приложения	Уеб, имейл	Видео, игри

3.3 Сървъри. Видове

Сървърът е компютърна система или софтуер, който предоставя услуги на други устройства (клиенти) в мрежата. Сървърите са основният компонент на мрежовата инфраструктура.

Видове сървъри по функционалност:

Уеб сървър (Web Server)

• Функция: Обслужва уеб страници

• **Протоко**ли: HTTP, HTTPS

• Cootyep: Apache, Nginx, IIS

• Примери: Уеб сайтове, приложения

Файлов сървър (File Server)

• Функция: Съхранява и споделя файлове

• **Протоко**ли: FTP, SFTP, SMB

• Cootyep: Windows Server, Linux Samba

• Примери: Централно съхранение

Имейл сървър (Mail Server)

• Функция: Изпраща и получава имейли

• **Протоколи**: SMTP, POP3, IMAP

• **Cootyep**: Exchange, Postfix, Sendmail

• Примери: Корпоративна поща

DNS сървър (Domain Name Server)

• Функция: Преобразува домейн имена в IP

• **Протоколи**: DNS (UDP/TCP 53)

• **Cootyep**: BIND, Windows DNS

• Примери: Интернет адресиране

База данни сървър (Database Server)

• Функция: Съхранява и управлява данни

• Протоколи: SQL, NoSQL

• Cootyep: MySQL, PostgreSQL, Oracle

• Примери: Приложни данни

DHCP сървър (Dynamic Host Configuration)

• Функция: Разпределя ІР адреси

• **Протоколи**: DHCP (UDP 67, 68)

• Coфtyep: Windows Server, ISC DHCP

• Примери: Автоматично конфигуриране

Прокси сървър (Proxy Server)

• Функция: Посредник между клиент и сървър

• Протоколи: HTTP, HTTPS, SOCKS

• Coфtyep: Squid, Nginx

• Примери: Кеширане, филтриране

Игров сървър (Game Server)

• Функция: Обслужва многопотребителски игри

• **Протоко**ли: UDP, TCP

• Софтуер: Специализиран

• Примери: Онлайн игри

Класификация по архитектура:

- Физически сървъри отделни машини
- Виртуални сървъри виртуализирани върху физически
- Облачни сървъри в облачни платформи
- Микросървъри специализирани за конкретни задачи

3.4 SSL (Secure Socket Layer)

SSL (Secure Socket Layer) и неговият наследник TLS (Transport Layer Security) са криптографски протоколи, които осигуряват сигурна комуникация в мрежата. Те се използват за шифроване на данните между клиент и сървър.

Основни характеристики на SSL/TLS:

Функции на SSL/TLS:

- Шифроване данните се криптират при предаване
- Аутентификация проверка на самоличността на сървъра
- Цялостност гаранция, че данните не са променени
- Неотричане потвърждение за изпращане на данни

SSL/TLS версии:

Версия	Година	Статус	Характеристики
SSL 1.0	1994	Неизползвана	Никога не е публикувана
SSL 2.0	1995	Неактивна	Сериозни уязвимости
SSL 3.0	1996	Неактивна	POODLE атака
TLS 1.0	1999	Неактивна	BEAST атака
TLS 1.1	2006	Неактивна	Подобрена сигурност
TLS 1.2	2008	Активна	Съвременна сигурност
TLS 1.3	2018	Активна	Най-нова версия

Процес на SSL/TLS handshake:

- 1. Client Hello клиентът изпраща поддържани версии и cipher suites
- 2. Server Hello сървърът избира версия и cipher suite
- 3. Certificate сървърът изпраща сертификат
- 4. Client Key Exchange клиентът генерира pre-master secret
- 5. **Finished** двете страни потвърждават успешна връзка

3.5 ІР протокол. Основни понятия

IP (Internet Protocol) е основният протокол за адресиране и маршрутизация в мрежата. Той работи на мрежовия слой (3) от OSI модела и осигурява логическо адресиране на устройствата.

Фигура 6: IP адресиране и маршрутизация

IPv4 адресиране:

Структура на IPv4 адреса:

• Формат: 32 бита, разделени на 4 октета (ххх.ххх.ххх.ххх)

• Диапазон: 0.0.0.0 до 255.255.255.255

• Общо адреси: 4,294,967,296 (2^32)

• Примери: 192.168.1.1, 8.8.8.8, 127.0.0.1

Класове IPv4 адреси:

Клас	Диапазон	Мрежови битове	Хостови битове	Примери
A	1.0.0.0 - 126.255.255.255	8	24	10.0.0.1
В	128.0.0.0 - 191.255.255.255	16	16	172.16.0.1
С	192.0.0.0 - 223.255.255.255	24	8	192.168.1.1
D	224.0.0.0 - 239.255.255.255	-	-	Multicast
Е	240.0.0.0 - 255.255.255.255	-	-	Експериментални

IPv6 адресиране:

Характеристики на IPv6:

• Формат: 128 бита, 8 групи от 4 hex цифри

• Примери: 2001:0db8:85a3:0000:0000:8a2e:0370:7334

• **Съкращаване**: 2001:db8:85a3::8a2e:370:7334

• Общо адреси: 340,282,366,920,938,463,463,374,607,431,768,211,456

Специални IPv4 адреси:

- **127.0.0.1** Loopback (localhost)
- **0.0.0.0** Неопределен адрес
- **255.255.255.255** Broadcast адрес
- **192.168.х.х** Частни адреси (Class C)
- **10.х.х.х** Частни адреси (Class A)
- 172.16.x.x 172.31.x.x Частни адреси (Class B)

3.6 Софтуерни портове

Софтуерните портове са логически адреси, които идентифицират конкретни услуги или приложения в мрежата. Те работят на транспортния слой (4) и позволяват на множество услуги да работят на един IP адрес.

Фигура 7: Софтуерни портове и услуги

Класификация на портовете:

Типове портове:

- Well-known портове (0-1023) системни услуги
- Registered портове (1024-49151) регистрирани услуги
- Dynamic/Private портове (49152-65535) временни портове

Често използвани портове:

Порт	Протокол	Услуга	Описание
20, 21	FTP	File Transfer	Пренос на файлове

22	SSH	Secure Shell	Сигурен терминален достъп
23	Telnet	Telnet	Терминален достъп
25	SMTP	Mail	Изпращане на имейли
53	DNS	Domain Name System	Преобразуване на имена
80	HTTP	Web	Уеб страници
110	POP3	Mail	Получаване на имейли
143	IMAP	Mail	Управление на имейли
443	HTTPS	Secure Web	Криптиран уеб
993	IMAPS	Secure Mail	Криптиран IMAP
995	POP3S	Secure Mail	Криптиран РОРЗ

Безопасност на портовете:

- Отворени портове достъпни за външни връзки
- Затворени портове блокирани от firewall
- Скрити портове не отговарят на ping
- Порт сканиране проверка за отворени портове

Заключение

OSI моделът, мрежовите протоколи, сървърите, SSL/TLS, IP протоколът и софтуерните портове са основите на мрежовата комуникация. Разбирането

на тези концепции е критично за работа с модерни мрежови технологии.

Ключови принципи:

- Слоеста архитектура разделяне на функциите по слоеве
- Стандартизация общи протоколи за съвместимост
- Сигурност защита на данните при предаване
- Масштабируемост възможност за разширяване
- Надеждност гарантиран доставка на данни