

AMENDED SPECIFICATION

Please replace paragraph [0037] with the following amended paragraph:

[0037] A constant carrier gas stream is established within the process chamber as indicated in step 204. Carrier gases may be selected to also act as a purge gas for the removal of volatile reactants and/or by-products from the process chamber. Carrier gases such as, for example, helium (He), argon (Ar), nitrogen (N₂), hydrogen (H₂), among others, and combinations thereof may be used. In one aspect, argon is continuously provided at a rate between about 250 sccm and about 1000 sccm, such as between about 500 sccm and about 750 sccm.

Please replace paragraph [0048] with the following amended paragraph:

[0048] Exemplary nitrogen-containing compounds may include nitrogen gas (N₂), ammonia (NH₃), hydrazine (N₂H₄), monomethyl hydrazine (CH₃N₂H₃), dimethyl hydrazine (C₂H₆N₂H₂), t-butyl hydrazine (C₄H₉N₂H₃), phenyl hydrazine (C₆H₅N₂H₃), 2,2'-azoisobutane ((CH₃)₂C₂N₂), ethylazide (C₂H₅N₃), among others, as well as combinations thereof.

Please replace paragraph [0058] with the following amended paragraph:

[0058] A tungsten layer 522 is then deposited on the tungsten nitride layer 515. Although any metal deposition process, such as conventional chemical vapor deposition or physical vapor deposition for example, may be used, the tungsten layer 522 may be deposited by alternately adsorbing a tungsten-containing compound and a reducing gas, using a cyclical deposition technique similar to one described above with reference to Figures 2-4. Suitable tungsten-containing compounds include, for example, tungsten hexafluoride (WF₆) and tungsten carbonyl (W(CO)₆), among others. Suitable reducing gases include, for example, silane (SiH₄), disilane (Si₂H₆), dichlorosilane (SiCl₂H₂), borane (BH₃), diborane (B₂H₆), triborane (B₃H₈), tetraborane (B₄H₁₂), pentaborane

PATENT
Atty. Dkt. AMAT/5799 USA/CPI/ALD/PJS

(B₅H₁₅), hexaborane (B₆H₁₈), heptaborane (B₇H₂₁), octaborane (B₈H₂₄), nonaborane nanoborane (B₉H₂₇), decaborane (B₁₀H₃₀), and combinations thereof.

Please replace paragraph [0061] with the following amended paragraph:

[0061] A more detailed description of tungsten deposition using a cyclical deposition technique may be found in commonly assigned U.S. Patent Application Serial No. 10/016,300, entitled "Lid Assembly For A Processing System To Facilitate Sequential Deposition Techniques", filed on December 12, 2001; and in commonly assigned U.S. Patent Application No. 10/082,048 (unknown), entitled "Deposition Of Tungsten Films For Dynamic Random Access Memory (DRAM) Application", filed on February 20, 2002, which are both incorporated herein by reference.