Integer Functions

By Hasan Murad

Lecturer

CSE, UAP

FLOORS AND CEILINGS

- Floor Function
- |x| = the greatest integer less than or equal to x
- Ceiling Function
- [x] = the least integer greater than or equal to x.
- Kenneth E. Iverson introduced this notation.
- His notation has become sufficiently popular that floor and ceiling brackets can now be used in a technical paper without an explanation of what they mean.

FLOORS AND CEILINGS GRAPH

$$\lfloor x \rfloor \leqslant x$$

$$[x] = x \iff x \text{ is an integer} \iff [x] = x$$

$$[x] - [x] = [x \text{ is not an integer}]$$

$$x-1 < \lfloor x \rfloor \leqslant x \leqslant \lceil x \rceil < x+1$$

$$\lfloor -x \rfloor = -\lceil x \rceil; \qquad \lceil -x \rceil = -\lfloor x \rfloor.$$

Rules for FLOOR AND CEILING Function

$$[x] = n \iff n \le x < n + 1$$

$$[x] = n \iff x - 1 < n \le x$$

$$[x] = n \iff n - 1 < x \le n$$

$$[x] = n \iff x \le n < x + 1$$

Rules for FLOOR AND CEILING Function

$$[x+n] = [x]+n$$
, integer n.
 $[nx] \neq n[x]$

Redundant Use of FLOOR AND CEILING Function

$$x < n \iff [x] < n$$
 $n < x \iff n < [x]$
 $x \le n \iff [x] \le n$
 $n \le x \iff n \le [x]$

Fractional Part

The difference between x and [x] is called the fractional part of x,

$$\{x\} = x - \lfloor x \rfloor$$

$$x = \lfloor x \rfloor + \{x\}.$$

$$x = n + \theta$$

$$n = \lfloor x \rfloor$$
 and $\theta = \{x\}$.

$$0 \le \theta < 1$$

Fractional Part

```
[x + y]
\mathbf{x} = |\mathbf{x}| + \{\mathbf{x}\}
 y = |y| + \{y\}
|x + y| = |x| + |y| + |\{x\} + \{y\}|
 0 \leqslant \{x\} + \{y\} < 2
we find that sometimes [x + y] is [x] + [y],
otherwise it's |x| + |y| + 1.
```

- How many bits are needed to represent a number n in binary representation?
- Let the number n has m bits in its binary representation.
- Question?
- Range of Number that can be representation in binary by using m bit?

$$2^{m-1} \le n < 2^{m}$$

$$\begin{bmatrix} x \end{bmatrix} = n \iff n \le x < n+1 \\ [x] = n \iff x-1 < n \le x \\ [x] = n \iff n-1 < x \le n \\ [x] = n \iff x \le n < x+1 \end{bmatrix}$$

$$m = \lfloor \lg n \rfloor + 1$$

```
m = \lfloor \lg n \rfloor + 1.
\lceil \lg (n+1) \rceil; \text{ this formula holds for } n = 0
```

$$\lceil \sqrt{\lceil x \rceil} \rceil = \lceil \sqrt{x} \rceil, \quad \text{real } x \geqslant 0$$

• Let f(x) be any continuous, monotonically increasing function with the property that

$$f(x) = integer \implies x = integer$$

$$\lfloor f(x) \rfloor = \lfloor f(\lfloor x \rfloor) \rfloor \quad and \quad \lceil f(x) \rceil = \lceil f(\lceil x \rceil) \rceil$$

$$\lceil f(x) \rceil = \lceil f(\lceil x \rceil) \rceil$$

if m and n are integers and the denominator n is positive.

$$||[x/10]/10|/10| = [x/1000]$$

- Close Interval
- Open Interval
- Half Open Interval

$$[\alpha ...\beta]$$

$$(\alpha ... \beta)$$

$$[\alpha ... \beta)$$

$$(\alpha ... \beta]$$

$$\alpha \leqslant x \leqslant \beta$$

 $\alpha < x < \beta$

How many integers are contained in such intervals?

How many integers are contained in such intervals?

The answer is easy if α and β are integers

 $[\alpha..\beta]$ contains the $\beta-\alpha$ integers α , $\alpha+1$, ..., $\beta-1$, assuming that $\alpha \leq \beta$ $(\alpha..\beta]$

But our problem is harder, because α and β are arbitrary reals

$$[\alpha..\beta)$$

$$\alpha \leq n < \beta \qquad \Longleftrightarrow \qquad [\alpha] \leq n < [\beta]$$

$$x < n \qquad \Longleftrightarrow \qquad [x] < n$$

$$n < x \qquad \Longleftrightarrow \qquad n < [x]$$

$$x \leq n \qquad \Longleftrightarrow \qquad [x] \leq n$$

$$n \leq x \qquad \Longleftrightarrow \qquad n \leq [x]$$

$$[\alpha..\beta) \qquad [\beta] - [\alpha]$$

$$[\alpha ... \beta] \qquad [\beta] - [\alpha]$$
$$(\alpha ... \beta] \qquad [\beta] - [\alpha]$$

interval	integers contained	restrictions
[αβ]	$\lfloor \beta \rfloor - \lceil \alpha \rceil + 1$	$\alpha \leqslant \beta$,
$[\alpha\beta)$	$\lceil \beta \rceil - \lceil \alpha \rceil$	$\alpha \leqslant \beta$,
(αβ]	$\lfloor \beta \rfloor - \lfloor \alpha \rfloor$	$\alpha \leqslant \beta$,
$(\alpha \beta)$	$\lceil \beta \rceil - \lfloor \alpha \rfloor - 1$	$\alpha < \beta$.

• There's a roulette wheel with one thousand slots, numbered 1 to 1000.

$$\lfloor \sqrt[3]{n} \rfloor \setminus n$$

The notation a\b, read "a divides b,"

• How many integers n, where 1 <= n <= 1000, satisfy the relation

$$\lfloor \sqrt[3]{n} \rfloor \setminus n$$
?

- Then it's a winner and the house pays us \$5; otherwise it's a loser and we must pay \$1.
- Let the number of winners W, then the number L = 1000 W of losers.

$$\frac{5W - L}{1000} = \frac{5W - (1000 - W)}{1000} = \frac{6W - 1000}{1000}$$

- How can we count the number of winners among 1 through 1000?
- It's not hard to spot a pattern.
- The numbers from 1 through $2^3 1 = 7$ are all winners because $\sqrt[3]{n} = 1$ for each.
- Among the numbers 2^3 = 8 through 3^3 1 = 26, only the even numbers are winners.
- And among 3³ = 27 through 4³ 1 = 63, only those divisible by 3 are. And so on.

$$W = \sum_{n=1}^{1000} [n \text{ is a winner}]$$

$$= \sum_{1 \le n \le 1000} [\lfloor \sqrt[3]{n} \rfloor \setminus n]$$

$$= \sum_{k,n} [k = \lfloor \sqrt[3]{n} \rfloor] [k \setminus n] [1 \le n \le 1000]$$

$$= \sum_{k,m,n} [k^3 \le n < (k+1)^3] [n = km] [1 \le n \le 1000]$$

$$= 1 + \sum_{k,m} [k^3 \le km < (k+1)^3] [1 \le k < 10]$$

$$= 1 + \sum_{k,m} [m \in [k^2 ... (k+1)^3/k)] [1 \le k < 10]$$

$$= 1 + \sum_{1 \le k < 10} (\lceil k^2 + 3k + 3 + 1/k \rceil - \lceil k^2 \rceil)$$

$$= 1 + \sum_{1 \le k < 10} (3k + 4)$$

$$= 1 + \frac{7 + 31}{2} \cdot 9$$

= 172

• (6*172 - 1000)/1000 dollars, which is 3.2 cents

The General Solution of Roulette Wheel Problem

$$\begin{split} K &= \left\lfloor \sqrt[3]{N} \right\rfloor \\ W &= \sum_{1 \leqslant k < K} (3k+4) + \sum_{m} \left[K^3 \leqslant Km \leqslant N \right] \\ &= \frac{1}{2} (7 + 3K + 1)(K - 1) + \sum_{m} \left[m \in [K^2 ... N/K] \right] \\ &= \frac{3}{2} K^2 + \frac{5}{2} K - 4 + \sum_{m} \left[m \in [K^2 ... N/K] \right] \\ &= \left\lfloor N/K \right\rfloor - \left\lceil K^2 \right\rceil + 1 = \left\lfloor N/K \right\rfloor - K^2 + 1 \end{split}$$

$$W = [N/K] + \frac{1}{2}K^2 + \frac{5}{2}K - 3, \qquad K = [\sqrt[3]{N}]$$

The Approximate Solution of Roulette Wheel Problem

$$W = \lfloor N/K \rfloor + \frac{1}{2}K^2 + \frac{5}{2}K - 3, \qquad K = \lfloor \sqrt[3]{N} \rfloor$$

$$W = \frac{3}{2}N^{2/3} + O(N^{1/3})$$

N	$\frac{3}{2}N^{2/3}$	W	% error
1,000	150.0	172	12.791
10,000	696.2	746	6.670
100,000	3231.7	3343	3.331
1,000,000	15000.0	15247	1.620
10,000,000	69623.8	70158	0.761
100,000,000	323165.2	324322	0.357
1,000,000,000	1500000.0	1502496	0.166

The General Solution of Josephus problem

$$J(1) = 1;$$

$$J(2n) = 2J(n) - 1, \quad \text{for } n \ge 1$$

$$J(2n+1) = 2J(n) + 1, \quad \text{for } n \ge 1$$

$$J(1) = 1;$$

$$J(n) = 2J(|n/2|) - (-1)^n, \quad \text{for } n > 1$$

Josephus problem in which every third person is eliminated, instead of every second.

$$J_3(n) = \left\lceil \frac{3}{2} J_3\left(\lfloor \frac{2}{3} n \rfloor\right) + a_n \right\rceil \mod n + 1$$

$$a_n = -2, +1, \text{ or } -\frac{1}{2} \text{ according as } n \mod 3 = 0, 1, \text{ or } 2$$

The General Solution of Josephus problem

- There's another approach to the Josephus problem that gives a much better setup.
- Whenever a person is passed over, we can assign a new number.
- Thus, 1 and 2 become n + 1 and n + 2
- then 3 is executed
- 4 and 5 become n + 3 and n + 4
- then 6 is executed
- 3k + 1 and 3k + 2 become n + 2k + 1 and n + 2k + 2
- then 3k + 3 is executed
- then 3n is executed (or left to survive)

The General Solution of Josephus problem

For example, when n = 10 the numbers are

29

30

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17
$$N := 3n$$
;
18 19 20 21 22 while $N > n$ do $N := \left\lfloor \frac{N - n - 1}{2} \right\rfloor + N - n$
23 24 25 $J_3(n) := N$.

• The kth person eliminated ends up with number 3k. So we can figure out who the survivor is if we can figure out the original number of person number 3n.

$$\begin{aligned} N &:= 3n; \\ \text{while } N > n \text{ do } N := \left\lfloor \frac{N-n-1}{2} \right\rfloor + N-n \\ J_3(n) &:= N. \end{aligned}$$

$$D = 3n + 1 - N$$
 in place of N

$$D := 3n + 1 - \left(\left\lfloor \frac{(3n+1-D)-n-1}{2} \right\rfloor + (3n+1-D)-n \right)$$
$$= n + D - \left\lfloor \frac{2n-D}{2} \right\rfloor = D - \left\lfloor \frac{-D}{2} \right\rfloor = D + \left\lceil \frac{D}{2} \right\rceil = \left\lceil \frac{3}{2}D \right\rceil$$

D := 1;
while D
$$\leq$$
 2n do D := $\left\lceil \frac{3}{2}D \right\rceil$
 $J_3(n) := 3n + 1 - D$.

$$\begin{array}{ll} D := 1; \\ \mathbf{while} \ D \leqslant (q-1)n \ \mathbf{do} \ D := \left\lceil \frac{q}{q-1} D \right\rceil \\ J_q(n) := qn+1-D. \end{array}$$

In the case q=2 that we know so well, this makes D grow to 2^{m+1} when $n=2^m+1$; hence $J_2(n)=2(2^m+1)+1-2^{m+1}=2l+1$. Good.

$$\begin{aligned} D_0^{(q)} &= 1; \\ D_n^{(q)} &= \left\lceil \frac{q}{q-1} D_{n-1}^{(q)} \right\rceil & \text{for } n > 0. \end{aligned}$$