Protein significance analysis of mass spectrometry-based proteomics experiments with R and MSstats (v3.18.1) or later

Meena Choi & Tsung-Heng Tsai

February 26, 2020

Contents

1.	Statistical relative protein quantification: SRM, DDA and DIA experiments	2
	1.1 Applicability	
	1.2 Statistical functionalities	
	1.3 Interoperability with existing computational tools	
	1.4 Availability	Ş
	1.5 Overview of the functionalities	4
	1.6 Troubleshooting	
2.	Allowable data formats	Ę
	2.1 SRM with stable isotope labeled reference peptides	F
	2.2 Label-free DDA	
	2.2 Label-free DIA	
3.	Prerequisites and setting for MSstats analysis	10
4.	DDA analysis with MSstats	12
	4.1 General workflow for DDA	12
	4.2 Suggested workflow with Skyline output for DDA	
	4.3 Suggested workflow with MaxQuant output for DDA	
	4.4 Suggested workflow with Progenesis output for DDA	
	4.5 Suggested workflow with Proteome Discoverer output for DDA	44
	4.6 Suggested workflow with OpenMS output for DDA	49
5 .	DIA analysis with MSstats	5 1
	5.1 Suggested workflow with Skyline output for DIA	
	5.2 Suggested workflow with Spectronaut output for DIA	
	5.3 Suggested workflow with DIA-Umpire output for DIA	55
	5.4 Suggested workflow with OpenSWATH output for SWATH	59
6.	SRM analysis with MSstats	65
	6.1 Suggested workflow for SRM	65
Re	eference	68

1. Statistical relative protein quantification: SRM, DDA and DIA experiments

MSstats is an open-source R-based package for statistical relative quantification of peptides and proteins in mass spectrometry-based proteomic experiments. This document describes MSstats, the most recent version of the package, and its use through the command line.

1.1 Applicability

MSstats version 3.0 and above is applicable to multiple types of sample preparation, including label-free workflows, workflows that use stable isotope labeled reference proteins and peptides, and workflows that use fractionation. It is applicable to targeted Selected Reaction Monitoring (SRM), Data-Dependent Acquisition (DDA or shotgun), and Data-Independent Acquisition (DIA or SWATH-MS). It is applicable to experiments that make arbitrary complex comparisons of experimental conditions or times.

MSstats is not applicable to experiments that compare multiple metabolically labeled endogenous samples within a same run, such as experiments with iTRAQ labeling or TMT labeling. These experiments are supported by MSstatsTMT, which is a sibling package. Please check MSstatsTMT in Bioconductor.

1.2 Statistical functionalities

MSstats version 3.0 and above performs three analysis steps. The first step, data processing, visualization, and run-level summarization, transforms, normalizes and summarizes the intensities of the peaks per MS run and per protein, and generates workflow-specific and customizable numeric summaries for data visualization and quality control.

The second step, statistical modeling and inference, automatically detects the experimental design (e.g. group comparison, paired design or time course, presence of labeled reference peptides or proteins) from the data. It then reflects the experimental design and the type of spectral acquisition strategy, and fits an appropriate linear mixed model by means of 1m and 1mer functionalities in R. The model is used to detect differentially abundant proteins or peptides, or to summarize the protein or peptide abundance in a single biological replicate or condition (that can be used, e.g. as input to clustering or classification).

The third step, *statistical experimental design*, views the dataset being analyzed as a pilot study of a future experiment, utilizes the variance components of the current dataset, and calculates the minimal number of replicates necessary in the future experiment to achieve a pre-specified statistical power.

1.3 Interoperability with existing computational tools

MSstats takes as input data in a tabular .csv format, which can be generated by any spectral processing tool such as Skyline (MacLean et al. 2010), MaxQuant (Cox and Mann 2008), Progenesis QI (Nonlinear dynamics/Waters), Proteome Discoverer (Thermo Scientific), MultiQuant(Applied Biosystems), OpenMS (Sturm et al. 2008), SuperHirn (Mueller et al. 2007), OpenSWATH (Röst et al. 2014), Spectronaut (Biognosys), or DIA-Umpire (Tsou et al. 2015). The functions to convert the required format from several processing tools are available from MSstats v3.6. Details are in the section below.

For statistics experts, MSstats 3.0 and above satisfies the interoperability requirements of Bioconductor. The command line-based workflow is partitioned into a series of independent steps, that facilitate the development and testing of alternative statistical approaches. It complies with the maintenance and documentation requirements of Bioconductor.

MSstats 3.0 and above is available as an external tool within Skyline. The external tool support within Skyline manages MSstats installation, point-and-click execution, parameter collection in Windows forms and

output display. Skyline manages the annotations of the experimental design, and the processing of raw data. It outputs a custom report, that is fed as a single stream input into MSstats. This design buffers proteomics users from the details of the R implementation, while enabling rigorous statistical modeling. Also, MSstat can be combined with an OpenMS preprocessing pipeline (e.g. in KNIME). The OpenMS experimental design is used to present the data in an MSstats-conformant way for the analysis. Details are available in OpenMS tutorial.

1.4 Availability

MSstats is available under the Artistic-2.0 license at msstats.org. MSstats as an external tool for Skyline is available at http://proteome.gs.washington.edu/software/Skyline/tools.html. MSstats is now also available in Bioconductor. The most recent version of the package is available at msstats.org or MSstats GitHub. We suggest to use that if possible. The versioning of the main package is updated several times a year, to synchronise with the Bioconductor release.

1.5 Overview of the functionalities

1.6 Troubleshooting

To help troubleshoot potential problems with installation or functionalities of MSstats, a progress report is generated in a separate log file, msstats.log. The file includes information on the R session (R version, loaded software libraries), options selected by the user, checks of successful completion of intermediate analysis steps, and warning messages. If the analysis produces an error, the file contains suggestions for possible reasons for the errors. If a file with this name already exists in working directory, a suffix with a number will be appended to the file name. In this way a record of all the analyses is kept. Please see the file KnownIssues-Skyline-MSstatsV3.6.pdf on the "Installation" section of "MSstats" page in msstats.org for a list of known issues and possible solutions for installation problem of MSstats external tool in Skyline

2. Allowable data formats

2.1 SRM with stable isotope labeled reference peptides

2.1.1 10-column format

MSstats performs statistical analysis steps, that follow peak identification and quantitation. Therefore, input to MSstats is the output of other software tools (such as Skyline or MultiQuant) that read raw spectral files and identify and quantify spectral peaks. The preferred structure of data for use in MSstats is a .csv file in a "long" format with 10 columns representing the following variables: ProteinName, PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity. The variable names are fixed, but are case-insensitive.

- (a) ProteinName: This column needs information about Protein id. Statistical analysis will be done separately for each unique label in this column. For peptide-level modeling and analysis, use peptide id in this column.
- (b)-(e) PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge: The combination of these 4 columns defines a *feature* of a protein (in SRM experiments, it is a transition that is identified and quantified across runs). If the information for one or several of these columns is not available, please do not discard these columns but use a single fixed value across the entire dataset. For example, if the original raw data does not contain the information of ProductCharge, assign the value 0 to the entries in the column ProductCharge for the entire dataset. If the peptide sequences should be distinguished based on post-translational modifications, this column can be renamed to PeptideModifiedSequence. For example, this allows us to use the PeptideModifiedSequence column from the Skyline report.
 - (f) IsotopeLabelType: This column indicates whether this measurement is based on the endogenous peptides (use "L") or labeled reference peptides (use "H").
 - (g) Condition: For group comparison experiments, this column indicates groups of interest (such as "Disease" or "Control"). For time-course experiments, this column indicates time points (such as "T1", "T2", etc). If the experimental design contains both distinct groups of subjects and multiple time points per subject, this column should indicate a combination of these values (such as "Disease_T1", "Disease_T2", "Control_T1", "Control_T2", etc.).
 - (h) BioReplicate: This column should contain a unique identifier for each biological replicate in the experiment. For example, in a clinical proteomic investigation this should be a unique patient id. Patients from distinct groups should have distinct ids. MSstats does not require the presence of technical replicates in the experiment. If the technical replicates are present, all samples or runs from a same biological replicate should have a same id. MSstats automatically detects the presence of technical replicates and accounts for them in the model-based analysis.

- (i) Run: This column contains the identifier of a mass spectrometry run. Each mass spectrometry run should have a unique identifier, regardless of the origin of the biological sample. In SRM experiments, if all the transitions of a biological or a technical replicate are split into multiple "methods" due to the technical limitations, each method should have a separate identifier. When processed by Skyline, distinct values of runs correspond to distinct input file names. It is possible to use the actual input file names as values in the column Run.
- (j) Intensity: This column should contain the quantified signal of a feature in a run without any transformation (in particular, no logarithm transform). The signals can be quantified as the peak height or the peak of area under curve. Any other quantitative representation of abundance can also be used.

An example of an acceptable input dataset is shown below. This example dataset is from an SRM experiment with stable isotope labeled reference peptides. The dataset is stored in a .csv file in a "long" format. Each row corresponds to a single intensity. More details on assigning the values of Condition, BioReplicate and Run, depending on the structure of the experimental design, are given below.

0	A	В	C	D	E	F	G	Н		j
1	ProteinName	PeptideSequence	PrecursorCharge	FragmentIon	ProductCharge	IsotopeLabelType	Condition	BioReplicate	Run	Intensity
2	ACEA	EILGHEIFFDWELP	3	y3	0	Н	1	ReplA	1	66472.3847
3	ACEA	EILGHEIFFDWELP	3	у3	0	L	1	ReplA	1	5764.16228
4	ACEA	EILGHEIFFDWELP	3	y4	0	H	1	ReplA	1	101005.166
5	ACEA	EILGHEIFFDWELP	3	y4	0	L	1	ReplA	1	61.65238
6	ACEA	EILGHEIFFDWELP	3	y5	0	Н	1	ReplA	1	90055.4993
7	ACEA	EILGHEIFFDWELP	3	y5	0	L	1	ReplA	1	472.691803
8	ACEA	TDSEAATLISSTID'	2	y10	0	Н	1	ReplA	1	43506.5425
9	ACEA	TDSEAATLISSTID'	2	y10	0	L	1	ReplA	1	217.203553
10	ACEA	TDSEAATLISSTID'	2	y7	0	Н	1	ReplA	1	68023.0377
11	ACEA	TDSEAATLISSTID'	2	y7	0	L	1	ReplA	1	725.284308
12	ACEA	TDSEAATLISSTID'	2	y8	0	Н	1	ReplA	1	68276.0489
13	ACEA	TDSEAATLISSTID'	2	y8	0	L	1	ReplA	1	243.658527

2.1.2 Assigning the values of Condition, BioReplicate and Run

The values of Condition, BioReplicate, Run depend on the design of the specific experiment.

1) Group comparison In a group comparison design, the conditions (e.g., disease states) are profiled across non-overlapping sets of biological replicates (i.e., subjects). In this example there are 2 conditions, Disease and Control (in general the number of conditions can vary). There are 3 subjects (i.e., biological replicates) per condition (in general an equal number of replicates per condition is not required). Each subject has 2 technical replicate runs (in general technical replicates are not required, and their number per sample may vary). Overall, in this example there are $2 \times 3 \times 2 = 12$ mass spectrometry runs.

Table below shows the values of the columns Condition, BioReplicate and Run for this situation. It is important to note two things. First, the order of subjects and conditions in the experiment should be randomized, and run id does not need to represent the order of spectral acquisition. Second, the values of the columns are repeated for every quantified transition. For example, if in each run the experiment quantifies 50 endogenous transitions and 50 labeled reference counterparts, then the input file has $12 \times 50 \times 2 = 1200$ lines. When a feature intensity is missing in a run, the data structure should contain a separate row for each missing value. The rows should include all the information (from ProteinName to Run), and indicate missing intensities with NA.

Condition	BioReplicate	Run
Disease	Subject1	1
Disease	Subject1	2
Disease	Subject2	3
Disease	Subject2	4
Disease	Subject3	5
Disease	Subject3	6
Control	Subject4	7
Control	Subject4	8
Control	Subject5	9
Control	Subject5	10
Control	Subject6	11
Control	Subject6	12

2) Time course The important feature of a time course experimental design is that a same subject (i.e., biological replicate) is repetitively measured across multiple time points. In this example there are 2 time points, Time1 and Time2 (in general the number of times can vary). There are 4 subjects (i.e., biological replicates) measured across times (in general an equal number of times per replicate is not

required). There are no technical replicates (in general the number of technical replicates per sample may vary). Overall, in this example there are $2 \times 4 \times 1 = 8$ mass spectrometry runs.

Table below shows the values of the columns Condition, BioReplicate and Run for this situation. Comments on the order of the runs, on the number of lines in the input data structure, and on the handling of missing peak intensities are as in the group comparison design.

Condition	BioReplicate	Run
Time1	Subject1	1
Time2	Subject1	2
Time1	Subject2	3
Time2	Subject2	4
Time1	Subject3	5
Time2	Subject3	6
Time1	Subject4	7
Time2	Subject4	8

3) Paired design Another frequently used experimental design is a paired design, where measurements from multiple conditions (such as healthy biopsy and disease biopsy) are taken from a same subject. The statistical model for this experimental design is the same as in the time course experiment, however the values in the columns of the input data may have a different appearence. In this example there are 2 subjects, PatientA and PatientB (in general the number of patients can vary). There are two conditions per subject, BiopsyHealthy and BiopsyTumor (in general the number of conditions per subject can exceed two). In this example there are 3 technical replicates of each type (in this example, the technical replicates are biopsies; in general these can also be replicate sample preparations or replicate mass spectrometry runs). Overall, in this example there are $2 \times 2 \times 3 = 12$ mass spectrometry runs.

Table below shows the values of the columns Condition, BioReplicate and Run for this situation. Comments on the order of the runs, on the number of lines in the input data structure, and on the handling of missing peak intensities are as in the group comparison design.

Condition	BioReplicate	Run
BiopsyHealthy	PatientA	1
BiopsyHealthy	PatientA	2
BiopsyHealthy	PatientA	3
BiopsyTumor	PatientA	4
BiopsyTumor	PatientA	5
BiopsyTumor	PatientA	6
BiopsyHealthy	PatientB	7
BiopsyHealthy	PatientB	8
BiopsyHealthy	PatientB	9
BiopsyTumor	PatientB	10
BiopsyTumor	PatientB	11
BiopsyTumor	PatientB	12

2.2 Label-free DDA

For label-free DDA experiments the required input is the 10-column format, the same as described in section 2.1 for SRM experiments. In DDA experiments spectral features are defined as peptide ions, which are identified and quantified across runs. Since for label-free DDA experiments some of the columns PeptideSequence, PrecursorCharge, FragmentIon, and ProductCharge are not relevant, these columns will have a constant fixed value (such as NA) across the entire dataset. Furthermore, the column IsotopeLabelType will be set to "L" for the entire dataset.

ProteinName	PeptideSequence	PrecursorCharge	Fragmention	ProductCharge	IsotopeLabelType	Condition	BioReplicate	Run	Intensity
bovine	S.PVDIDTK	5	NA	NA	L	C1	1	1	2636791.5
bovine	S.PVDIDTK	5	NA	NA	L	C1	1	2	1992418.5
bovine	S.PVDIDTK	5	NA	NA	L	C1	1	3	1982146.38
bovine	S.PVDIDTK	5	NA	NA	L	C2	1	4	5019594
bovine	S.PVDIDTK	5	NA	NA	L	C2	1	5	4560467.5
bovine	S.PVDIDTK	5	NA	NA	L	C2	1	6	3627848.75
bovine	S.PVDIDTK	5	NA	NA	L	C5	1	13	145511.83
bovine	S.PVDIDTK	5	NA	NA	L	C5	1	14	291829.69
bovine	S.PVDIDTK	5	NA	NA	L	C6	1	16	786667.38
bovine	S.PVDIDTK	5	NA	NA	L	C6	1	17	705295.31
bovine	S.PVDIDTK	5	NA	NA	L	C6	1	18	453448.78
bovine	S.PVDIDTK	5	NA	NA	L	C3	1	7	NA

2.2 Label-free DIA

For label-free DIA experiments, the required input is the 10-column format, the same as described in section 2.1 for SRM experiments. The values of the required columns can be extracted from the output of signal processing software such as Skyline or OpenSWATH. By default, the combination of the values in the columns PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge uniquely identifies each spectral feature (i.e., a fragment ion identified and quantified across multiple runs). If the signal processing software does not provide the information on some of these columns but provides a unique feature identifier, it is possible to use this unique identifier instead of one of these columns. Furthermore, the column IsotopeLabelType is set to "L" for the entire dataset.

An example dataset is shown below. In this example, feature id generated by OpenSWATH is used instead of ProductCharge to uniquely characterize each feature.

ProteinName	PeptideSequence	PrecursorCharge	Fragmention	ProductCharge	IsotopeLabelType	Condition	BioReplicate	Run	Intensity
350748	TPPAAVLLK	2	y7	109401	L	2	1	3	257486
350748	TPPAAVLLK	2	y7	109401	L	2	2	4	141159
350748	TPPAAVLLK	2	y7	109401	L	1	1	1	452908
350748	TPPAAVLLK	2	y7	109401	L	1	2	2	348222
515084	NIC[160]VNAIAPGFIESDMTGVLPEK	3	у3	7717	L	2	1	3	12753
515084	NIC[160]VNAIAPGFIESDMTGVLPEK	3	у3	7717	L	2	2	4	12857
515084	NIC[160]VNAIAPGFIESDMTGVLPEK	3	у3	7717	L	1	1	1	89652
515084	NIC[160]VNAIAPGFIESDMTGVLPEK	3	у3	7717	L	1	2	2	76724
515084	MVNEAIESLGSIDVLVNNAGITNDK	3	y9	57971	L	2	1	3	2052
515084	MVNEAIESLGSIDVLVNNAGITNDK	3	y9	57971	L	2	2	4	1050
515084	MVNEAIESLGSIDVLVNNAGITNDK	3	y9	57971	L	1	1	1	10772
515084	MVNEAIESLGSIDVLVNNAGITNDK	3	y9	57971	L	1	2	2	10516

3. Prerequisites and setting for MSstats analysis

MSstats is an R-based package. It is assumed that you already have R installed. You can install MSstats from Bioconductor:

```
if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")

BiocManager::install("MSstats")
```

Once you have the package installed, load MSstats into an R session and verify that you have the correct version. Note that in order to use MSstats, the package needs to be loaded every time you restart R.

```
library('MSstats', warn.conflicts = F, quietly = T, verbose = F)
?MSstats
sessionInfo()
```

```
## R version 3.6.2 (2019-12-12)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Catalina 10.15.3
##
## Matrix products: default
          /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRblas.0.dylib
## BLAS:
## LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
                 graphics grDevices utils
## [1] stats
                                               datasets methods
                                                                    base
##
## other attached packages:
## [1] MSstats_3.19.5
##
## loaded via a namespace (and not attached):
## [1] gtools_3.8.1
                              statmod_1.4.34
                                                    minpack.lm_1.2-1
## [4] tidyselect 1.0.0
                              xfun 0.12
                                                    reshape2 1.4.3
## [7] purrr_0.3.3
                              splines_3.6.2
                                                    lattice_0.20-40
## [10] colorspace_1.4-1
                              vctrs_0.2.3
                                                    generics 0.0.2
## [13] doSNOW_1.0.18
                              htmltools_0.4.0
                                                    snow_0.4-3
## [16] yaml_2.2.1
                              marray_1.64.0
                                                    survival 3.1-8
## [19] rlang_0.4.4
                              pillar_1.4.3
                                                    nloptr_1.2.1
## [22] glue_1.3.1
                              plyr_1.8.5
                                                    foreach 1.4.8
## [25] lifecycle_0.1.0
                              stringr_1.4.0
                                                    munsell_0.5.0
## [28] gtable_0.3.0
                              caTools_1.18.0
                                                    codetools_0.2-16
## [31] evaluate_0.14
                              knitr_1.28
                                                    parallel_3.6.2
## [34] preprocessCore_1.48.0 broom_0.5.4
                                                    Rcpp_1.0.3
## [37] KernSmooth_2.23-16
                              scales_1.1.0
                                                    backports_1.1.5
## [40] gdata_2.18.0
                              limma_3.42.0
                                                    lme4_1.1-21
## [43] gplots_3.0.3
                              ggplot2_3.2.1
                                                    digest_0.6.25
## [46] stringi_1.4.6
                                                    dplyr_0.8.4
                              ggrepel_0.8.1
## [49] grid 3.6.2
                              bitops 1.0-6
                                                    tools 3.6.2
## [52] magrittr_1.5
                              lazyeval_0.2.2
                                                    tibble_2.1.3
## [55] crayon 1.3.4
                              tidyr 1.0.2
                                                    pkgconfig 2.0.3
## [58] MASS_7.3-51.5
                              Matrix_1.2-18
                                                    data.table_1.12.8
## [61] assertthat_0.2.1
                              minqa_1.2.4
                                                    rmarkdown_2.1
## [64] iterators_1.0.12
                              R6_2.4.1
                                                    boot_1.3-24
                              compiler_3.6.2
## [67] nlme 3.1-144
```

Finally, set the working directory to where you saved files. Note that you may have a different path on your computer from the example.

```
setwd('/Users/meenachoi/Dropbox/MSstats_GitHub_document/MSstats_v3.18.1')
```

You can check your working directory by:

```
getwd()
```

[1] "/Users/meenachoi/Dropbox/MSstats_GitHub_document/MSstats_v3.18.1"

4. DDA analysis with MSstats

4.1 General workflow for DDA

This section describes a typical workflow for DDA analysis with MSstats. Controlled mixture DDA data will be used for demonstration. This dataset is available as an example data (DDARawData) in MSstats. Also the csv file for the same dataset, RawData.DDA.csv, is available in MSstats material GitHub in the folder named 'example dataset/DDA controlledMixture2009'. It is processed by Superhirn. (original reference link)

4.1.1 Preparing the data for MSstats input

The first step in using the MSstats is to format the data as described in Section 2. DDARawData is already formatted for MSstats input.

```
# Check the first 6 rows in DDARawData
head(DDARawData)
##
     ProteinName PeptideSequence PrecursorCharge FragmentIon ProductCharge
## 1
          bovine
                      S.PVDIDTK_5
                                                   5
                                                               NA
                                                                              NA
## 2
          bovine
                      S.PVDIDTK 5
                                                   5
                                                               NA
                                                                              NA
## 3
          bovine
                      S.PVDIDTK 5
                                                   5
                                                               NA
                                                                              NA
## 4
                                                   5
                                                               NΑ
                                                                              NΑ
          bovine
                      S.PVDIDTK_5
                                                   5
## 5
          bovine
                      S.PVDIDTK 5
                                                               NA
                                                                              NA
## 6
          bovine
                                                   5
                                                                              NA
                      S.PVDIDTK_5
                                                               NA
##
     IsotopeLabelType Condition BioReplicate Run Intensity
## 1
                     L
                               C1
                                              1
                                                   1
                                                       2636792
## 2
                     L
                               C1
                                                   2
                                                       1992418
                                              1
## 3
                     L
                               C1
                                              1
                                                   3
                                                       1982146
                     L
                               C2
                                                   4
## 4
                                              1
                                                       5019594
                     L
                               C2
                                                   5
## 5
                                               1
                                                       4560468
## 6
                     L
                               C2
                                               1
                                                       3627849
```

4.1.2 Processing the data

Normalizing and summarizing data with dataProcess After reading the datasets, MSstats performs 1) logarithm transformation of Intensity column, 2) normalization, 3) feature selection, (all features vs subset of features), 4) imputation for censored missing value, which are below the cutoff and undetectable, 5) run-level summarization.

To get started with this function, visit the help section of dataProcess first:

?dataProcess

NOTE At the logarithm transformation step, zero value in Intensity is problematic. When Intensity=0, Inf is the output from logarithm transformed intensities. Also, logarithm transformed intensites, when Intensity < 1, are negative values and it can make overestimated between log fold change. Therefore, logarithm transformed intensities for original intensity between 0 and 1 will be replaced with zero value after normalization.

Default normalization and summarization options dataProcess provides a variety of options in consideration of different experimental protocols. Default values for all options are our suggestion for general cases. However, the default options may not be appropriate for all possible scenarios. It is important to understand their underlying assumption to avoid misuse. Below is the additional explanation for main options.

- logTrans: logarithm transformation with base 2 (default) of Intensity column.
- Normalization :
 - 'equalizeMedians': The default option for normalization is equalizeMedians, where all the intensities in a run are shifted by a constant, to equalize the median of intensities across runs for label-free experiment. This normalization method is appropriate when we can assume that the majority of proteins do not change across runs. Be cautious when using the equalizeMedians option for a label-free DDA dataset with only a small number of proteins. For label based experiment, equalizeMedians equalizes the median of reference intensities across runs and is generally proper even for a dataset with a small number of proteins.
 - 'globalStandards': Instead, if you have a spiked in standard, you may set this to globalStandards and define the standard with nameStandards option.
 - 'quantile': The distribution of all the intensities in each run will become the same across runs for label-free experiment. For label-based experiment, the distribution of all the reference intensities will be become the same across runs and all the endogenous intensities are shifted by a constant corresponding to reference intensities.
 - **FALSE**: No normalization is performed. If you had your own normalization before MSstats, you should use Normalization=FALSE.
 - NOTE : If there are multiple fractionations or injections for one sample, normalization is perform by each fractionation or different m/z range from multiple injections.
- nameStandards: Only for Normalization='globalStandards', global standard peptide or Protein names, which you can assume that they have the same abundance across MS runs, should be assigned in the vector for this option.

• featureSubset :

- 'all': Use all features in the dataset.
- 'top3': Use top 3 features which have highest average of log2(intensity) across runs.
- 'topN': Use top N features which have highest average of log2(intensity) across runs. It needs the input for n_top_feature option (ex. n_top_feature=5 for top 5 features).
- 'highQuality': Detect and flag uninformative features (as Uninformative in the feature_quality column) and outliers (as TRUE in the is_outlier column). These uninformative content may be excluded from run-level summarization by setting the remove_uninformative_feature_outlier option to TRUE.
- summaryMethod : Method for run-level summarization.
 - 'TMP': Default. Tukey's median polish (medpolish function in stats). Robust parameter estimation method with median across rows and columns.
 - 'linear': Linear model (1m function). Average-based summarization.
- MBimpute: whether model-based imputation will be performed or not. Only for summaryMethod='TMP'.
 - TRUE: Default. Censored missing values will be imputed by Accelerated Failure Time model. Censored missing values will be determined by other options, censoredInt and maxQuantileforCensored
 - **FALSE**: No model-based imputation.
- maxQuantileforCensored: Maximum quantile for deciding censored missing value. Default is 0.999. If you don't want to apply the threshold of noise intensity in your data, you can use maxQuantileforCensored=NULL.
- **censoredInt**: The processing tools report missing values differently. This option is for distinguish which value should be considered as missing, and further whether it is censored or at random.
 - 'NA': Default. It assumes that all NAs in Intensity column are censored.
 - '0': It assumes that all values between 0 and 1 in Intensity column are censored. If there are NAs in Intensity with this option, NAs will be considered as random missing.

- **NULL**: It assumes that all missing values are randomly missing.
- cutoffCensored: cutoff value for AFT model. It is only with censoredInt='NA' or censoredInt='0'. If you have censoredInt=NULL, it assumes that there is no censored missing and any imputation will not be performed.
 - 'minFeature': cutoff for AFT model will be the minimum value for each feature across runs.
 - 'minRun': cutoff for AFT model will be the minimum value for each run across features.
 - 'minFeatureNRun': cutoff for AFT model will be the smallest value between minimum value of corresponding feature and minimum value of corresponding run.

A typical label-free DDA dataset may have many missing values and noisy features with outliers. MSstats supports several ways to deal with this. The default option for summarization is TMP (robust parameter estimation method with median across rows and columns) after imputation by AFT (accelerated failure time model, MBimpute=TRUE) based on censored intensity for NA (censoredInt="NA") with a cutoff as the minimum value for a feature (cutoffCensored="minFeature").

This process handles missing values through imputation and reduces the influence of the outliers using the TMP estimation. Note, however, that those runs with no measurements at all will be removed and not be used for any calculation.

```
# default option
DDA2009.proposed <- dataProcess(raw = DDARawData,
                           normalization = 'equalizeMedians',
                           summaryMethod = 'TMP',
                           censoredInt = "NA",
                           cutoffCensored = "minFeature",
                           MBimpute = TRUE,
                           maxQuantileforCensored=0.999)
## ** Log2 intensities under cutoff = 13.456 were considered as censored missing values.
## ** Log2 intensities = NA were considered as censored missing values.
## ** Use all features that the dataset originally has.
##
##
     Summary of Features :
##
                            count
## # of Protein
                                6
## # of Peptides/Protein
                            11-32
## # of Transitions/Peptide
                              1-1
##
##
     Summary of Samples:
                              C1 C2 C3 C4 C5 C6
##
## # of MS runs
                               3 3 3 3
                                           3 3
## # of Biological Replicates 1 1 1 1
                                           1 1
## # of Technical Replicates
                               3 3 3 3
##
##
   Summary of Missingness:
##
     # transitions are completely missing in at least one of the conditions : 90
       -> D.GPLTGTYR_23_23_NA_NA, F.HFHWGSSDDQGSEHTVDR_402_402_NA_NA, G.PLTGTYR_8_8_NA_NA, H.SFNVEYDDSQ
##
##
     # run with 75% missing observations: 0
##
##
```

== Start the summarization per subplot...

```
##
##
##
    == the summarization per subplot is done.
```

Output of dataProcess Output of the dataProcess function contains the processed and run-level sum-

```
marized data as well as relevant information for the summarization step.
# output of dataProcess includes several data types.
names(DDA2009.proposed)
## [1] "ProcessedData"
                             "RunlevelData"
                                                   "SummaryMethod"
## [4] "ModelQC"
                             "PredictBySurvival"
# the data after reformatting and normalization
head(DDA2009.proposed$ProcessedData)
##
        PROTEIN
                                       PEPTIDE TRANSITION
## 55
         bovine
                              D.GPLTGTYR 23 23
                                                     NA NA
## 937
         bovine F.HFHWGSSDDQGSEHTVDR_402_402
                                                     NA NA
## 1628
         bovine
                   F.HWGSSDDQGSEHTVDR_229_229
                                                     NA_NA
## 19
         bovine
                                 G.PLTGTYR_8_8
                                                     NA_NA
  1081
         bovine
                       H.SFNVEYDDSQDK_465_465
                                                      NA_NA
##
   469
         bovine
                        K.AVVQDPALKPL_156_156
                                                     NA_NA
##
                                     FEATURE LABEL
                                                    GROUP_ORIGINAL SUBJECT_ORIGINAL
##
                                                  L
                                                                 C1
  55
                     D.GPLTGTYR_23_23_NA_NA
                                                                                     1
        F.HFHWGSSDDQGSEHTVDR_402_402_NA_NA
   937
                                                  L
                                                                  C1
                                                                                     1
  1628
                                                                  C1
          F.HWGSSDDQGSEHTVDR_229_229_NA_NA
                                                  L
                                                                                     1
                                                  L
                                                                  C1
## 19
                        G.PLTGTYR_8_8_NA_NA
                                                                                     1
## 1081
               H.SFNVEYDDSQDK_465_465_NA_NA
                                                  L
                                                                  C1
                                                                                     1
   469
                                                                  C1
##
                K.AVVQDPALKPL_156_156_NA_NA
                                                  L
##
        RUN GROUP SUBJECT INTENSITY SUBJECT NESTED
                                                      ABUNDANCE FRACTION originalRUN
##
  55
          1
                 1
                          1 757400.1
                                                        19.83052
                                                                         1
                                                                                      1
                                                  1.1
  937
                                                                         1
##
          1
                 1
                          1 2087125.8
                                                        21.29291
                                                                                      1
## 1628
          1
                 1
                          1 1485145.8
                                                  1.1
                                                        20.80200
                                                                         1
                                                                                      1
## 19
           1
                          1 4986404.0
                                                  1.1
                                                        22.54939
                                                                         1
                                                                                      1
## 1081
                          1 2488141.2
                                                       21.54646
                                                                         1
          1
                                                  1.1
                                                                                      1
                 1
## 469
          1
                          1 7519322.0
                                                  1.1 23.14200
                                                                                      1
##
        censored
## 55
           FALSE
## 937
           FALSE
## 1628
           FALSE
           FALSE
## 19
## 1081
           FALSE
```

DDA2009.TMP\$ProcessedData has the data after normalization and deciding the data-specific threshold for censored missing value. There are several new columns in the datasets. Also dataset is reformated. Intensity column includes original intensities values in the input of dataProcess. ABUNDANCE column contains the log2 transformed and normalized intensities and it will used for run-level summarization. censored column has the decision about censored missing or not, based on censoredInt and maxQuantileforCensored options. ABUNDANCE with TRUE value in censored column will be considered as censored missing and imputed with MBimpute=TRUE option. Censored missing will be distinguished in Profile plot from dataProcessPlots.

469

FALSE

```
# run-level summarized data
head(DDA2009.proposed$RunlevelData)
```

```
RUN Protein LogIntensities NumMeasuredFeature MissingPercentage more50missing
##
## 1
       1
           bovine
                         21.28437
                                                     14
                                                                0.0000000
                                                                                     FALSE
                                                                0.0000000
##
  2
       2
           bovine
                         20.85653
                                                     14
                                                                                     FALSE
## 3
       3
           bovine
                         20.67521
                                                     13
                                                                0.07142857
                                                                                     FALSE
##
   4
       4
           bovine
                         21.60443
                                                     13
                                                                0.07142857
                                                                                     FALSE
       5
                         21.82186
                                                     14
## 5
           bovine
                                                                0.0000000
                                                                                     FALSE
  6
                         21.20445
                                                                                     FALSE
##
       6
           bovine
                                                     13
                                                                0.07142857
     NumImputedFeature originalRUN GROUP GROUP ORIGINAL SUBJECT ORIGINAL
##
## 1
                       0
                                    1
                                           1
## 2
                       0
                                    2
                                                           C1
                                           1
                                                                               1
## 3
                       1
                                    3
                                           1
                                                           C1
                                                                               1
                                    4
                                           2
                                                           C2
## 4
                       1
                                                                               1
                                    5
                                           2
                                                           C2
## 5
                       0
                                                                               1
                                    6
                                           2
                                                           C2
## 6
                       1
                                                                               1
##
     SUBJECT_NESTED
                     SUBJECT
## 1
                 1.1
## 2
                 1.1
                             1
## 3
                 1.1
                             1
## 4
                             1
                 2.1
## 5
                 2.1
                             1
## 6
                 2.1
                             1
```

DDA2009.TMP\$RunlevelData includes run-level summarized data based on DDA2009.TMP\$ProcessedData. LogIntensities is run-level summarized data and will be used for groupComparison function in next step. It will also used for summarized profile plot (summaryPlot=TRUE for dataProcessPlots function with type='ProfilePlot'). NumMeasuredFeature shows how many features were used for summarization of the corresponding run and protein. MissingPercentage means the percentage of random and censored missing in the corresponding run and protein out of the total number of feature in the corresponding protein. more50missing means whether MissingPercentage is greater than 50% or not. NumImputedFeature show how many features were imputed in the corresponding run and protein.

```
# here 'TMP' : It shows which summaryMethod is used for run-level summarization.
head(DDA2009.proposed$SummaryMethod)
```

4.1.3 Visualization of processed data

[1] "TMP"

Quality control and normalization effects QC plot visualizes potential systematic biases between mass spectrometry runs. Also it can be used to assess the effects of the normalization step. After constant normalization, the median intensities of reference transitions across all proteins should be equal between runs. After quantile normalization, the distribution of reference intensities across all proteins should be equal between runs. This step generates two types of QC plots: one for all the proteins combined, and the other separately for each protein (produced in a separate pdf file). These plots can be generated for either all proteins at once or each protein individually if we have a large dataset. The example below shows both options.

All proteins

NOTE Don't worry about warning messages as below. It means NA values are not included in the plot, which is a proper way for this case.

Warning messages:

1: Removed 698 rows containing non-finite values (stat_boxplot).

. . .

Profile plot Profile plot helps identify potential sources of variation (both variation of interest and nuisance variation) for each protein. Such plots should be done after the normalization. Profile plots with summarization present the effects of the summarization step by showing all individual measurements of a protein and their summarized intensity. With type="profileplot", two pdfs will be generated. The first pdf includes plots (per protein) to show individual measurement for each peptide (peptide for DDA, transition for SRM or DIA) across runs, grouped per condition. Each peptide has a different color/type layout. Disconnected lines show that there are missing value (NA). To ignore these plots, please use the option originalPlot=FALSE. The second pdf, which is named with 'wSummarization' suffix, shows run-level summarized data per protein. The same peptides (or transition) in the first plot are presented in grey, with the summarized values (by TMP, in this example) overlaid in red. To ignore these plots with summarization, please use the option summaryPlot=FALSE.

Condition plot Condition plot visualizes potential systematic diffrences in protein inensities between conditions. Dots indicate the mean of log2 intensities for each condition. With the option interval='CI'(default), error bars indicate the confidence interval with 0.95 significant level for each condition. With the option interval='SD', error bars indicate the standard deviation among all feature intensities for each condition. The intervals are for descriptive purposes only, as more refined model-based estimation is obtained as discussed below. With the option scale=TRUE, the levels of conditions are scaled according to their labels. If scale=FALSE (default), the conditions on the x-axis are equally spaced.

dataProcessPlots has a number of layout options, including size and description of axes labels, output file name etc for three types of plots above. The option address specifies the name of the folder storing pdf files with the plots. With the option address=FALSE, plots will be shown in the graphical window, but not saved in a file. If a file with this name already exists in working directory, a suffix with a number will be appended to the file name. In this way a record of all the analyses is kept.

For more details, visit the help file using the following code.

?dataProcessPlots

4.1.4 Different imputation options

Here is the summary of combinations for imputation options with summary Method='TMP'.

- censoredInt=NULL: It assumes that all intensities are missing at random and there is no action for missing values with MBimpute=FALSE. If you have MBimpute=TRUE with censoredInt=NULL, there will be error message to fix either MBimpute or censoredInt options.
- censoredInt='NA' or '0' & MBimpute=TRUE: AFT model-based imputation using cutoffCensored value in the AFT model.
- censoredInt='NA' or '0' & MBimpute=FALSE: censored intensities (here NA's) will be replaced with the value specified in cutoffCensored.

NOTE1 The default option for cutoffCensored is minFeature, taking the minimum value for the corresponding feature. With this option, those runs with substantial missing measurements will be biased by the cutoff value. In such case, you may remove the runs that have more than 50% missing values from the analysis with the option remove50missing=TRUE.

NOTE2 In case that there are completely missing measurements in a run for a protein, any imputation will not be performed. In addition, the condition, which has no measurement at all in a protein, will be not imputed.

Here is the example of dataProcess option without imputation, assuming that all missing values are random.

```
summaryMethod = 'TMP',
                                 censoredInt = NULL, MBimpute=FALSE)
## ** Use all features that the dataset originally has.
##
##
     Summary of Features :
##
                             count
## # of Protein
                                 6
## # of Peptides/Protein
                             11-32
## # of Transitions/Peptide
                               1-1
##
##
     Summary of Samples :
##
                               C1 C2 C3 C4 C5 C6
## # of MS runs
                                3 3 3
                                         3
## # of Biological Replicates
                               1 1
                                     1
                                         1
                                            1 1
## # of Technical Replicates
                                3 3 3
##
##
    Summary of Missingness :
##
     # transitions are completely missing in at least one of the conditions : 90
       -> D.GPLTGTYR_23_23_NA_NA, F.HFHWGSSDDQGSEHTVDR_402_402_NA_NA, G.PLTGTYR_8_8_NA_NA, H.SFNVEYDDSQ
##
##
     # run with 75% missing observations: 0
##
##
    == Start the summarization per subplot...
##
##
                                                                                        1
##
    == the summarization per subplot is done.
These plots can be used compare and select among different options for imputation (e.g., TMP with or without
considering missing values for summarization in dataProcess).
dataProcessPlots(data = DDA2009.TMP, type="Profileplot", ylimUp=35,
```

featureName="NA", width=5, height=5, address="DDA2009_TMP_")

While original profile plots are the same, summarization plots reveal differences, especially for conditions 'C1' and 'C2' in 'yeast' protein, which have many missing values. Without imputation, summarized values in 'C1' group is higher than with imputation for missing values.

4.1.5 Feature selection

A feature selection module is integrated in the dataProcess function, and is performed with the option featureSubset="highQuality". In the ProcessedData element of the output returned by dataProcess, the option adds two columns feature_quality and is_outlier, to highlight uninformative features that are inconsistent with the consensus profile ("Uninformative" in feature_quality) and outliers (TRUE in is_outlier). The uninformative features and outliers can be separately investigated, curated, or removed. The option remove_uninformative_feature_outlier=TRUE removes the detected uninformative features and outliers.

```
# Feature selection
DDA2009.inf <- dataProcess(raw = DDARawData,
                            normalization = 'equalizeMedians',
                            summaryMethod = 'TMP',
                            featureSubset = "highQuality",
                            remove uninformative feature outlier = TRUE)
##
##
     Summary of Features :
##
                             count
## # of Protein
                                 6
  # of Peptides/Protein
                             11-32
##
   # of Transitions/Peptide
##
     Summary of Samples :
##
##
                               C1 C2 C3 C4 C5 C6
## # of MS runs
                                3
                                   3
                                      3
                                         3
                                             3
                                                3
  # of Biological Replicates
                                1
                                   1
                                      1
                                          1
                                             1
                                                1
```

3 3

of Technical Replicates

##

```
processed.inf <- DDA2009.inf$ProcessedData</pre>
table(processed.inf$feature_quality)
##
##
     Informative Uninformative
##
            2052
head(processed.inf[processed.inf$feature_quality == "Uninformative", ])
##
        PROTEIN
                                PEPTIDE TRANSITION
                                                                           FEATURE
## 87 cyc horse A.PGFTYTDANKNK 367 367
                                              NA NA A.PGFTYTDANKNK 367 367 NA NA
## 88 cyc horse A.PGFTYTDANKNK 367 367
                                              NA_NA A.PGFTYTDANKNK_367_367_NA_NA
## 89 cyc_horse A.PGFTYTDANKNK_367_367
                                              NA_NA A.PGFTYTDANKNK_367_367_NA_NA
## 90 cyc_horse A.PGFTYTDANKNK_367_367
                                              NA_NA A.PGFTYTDANKNK_367_367_NA_NA
## 91 cyc_horse A.PGFTYTDANKNK_367_367
                                              NA_NA A.PGFTYTDANKNK_367_367_NA_NA
  92 cyc_horse A.PGFTYTDANKNK_367_367
                                              NA_NA A.PGFTYTDANKNK_367_367_NA_NA
##
      LABEL GROUP_ORIGINAL SUBJECT_ORIGINAL RUN GROUP SUBJECT INTENSITY
## 87
                         C1
                                                               1 187598.06
                                            1
                                                1
                                                       1
                                                2
## 88
          L
                         C1
                                            1
                                                       1
                                                               1
## 89
          L
                         C1
                                            1
                                                3
                                                       1
                                                                  54184.12
                                                               1
## 90
                         C2
                                            1
                                                       2
                                                               1 435188.97
                         C2
                                                       2
                                                                 235653.19
## 91
          L
                                            1
                                                               1
## 92
                         C2
                                            1
                                                6
                                                       2
      SUBJECT_NESTED ABUNDANCE FRACTION original RUN censored feature_quality
##
## 87
                       17.81711
                                        1
                                                    1
                                                          FALSE
                                                                  Uninformative
                                                    2
                                                           TRUE
                                                                  Uninformative
## 88
                  1.1
                             NA
                                        1
                      16.22112
                                                    3
                                                          FALSE
                                                                  Uninformative
## 89
                  1.1
                                        1
## 90
                 2.1 18.32737
                                        1
                                                    4
                                                          FALSE
                                                                  Uninformative
                 2.1 17.62688
                                                    5
## 91
                                        1
                                                          FALSE
                                                                  Uninformative
                  2.1
                                                    6
                                                           TRUE
                                                                  Uninformative
## 92
                             NΑ
                                        1
##
      is_outlier
## 87
           FALSE
## 88
           FALSE
## 89
           FALSE
## 90
           FALSE
## 91
           FALSE
## 92
           FALSE
```

4.1.6 Different summarization options

Besides summarizing observations with the median polish method, MSstats also offers a summarization option using linear model with option summaryMethod="linear" with censoredInt=NULL assumes that all NA's are missing at random and uses 1m for parameter estimation.

Profile plots below can be used compare among different options for summarization (e.g., TMP with or without imputation vs linear for summarization in dataProcess).

While original profile plots are the same, summarization plots reveal differences, especially for conditions 'C1', 'C2', and 'C6' in 'yeast' protein, which have many missing values. Summarized values with linear model in these groups are much higher than those with TMP considering missing values or not.

MS runs

4.1.7 Finding differentially abundant proteins across conditions

MS runs

Comparing conditions with groupComparison With the normalized data and run-level summarized data obtained by applying one of the dataProcess summarization methods, it is of general interest to find proteins changing between groups of conditions. Within MSstats this can be done by using the groupComparison function, which takes the output of the dataProcess function as input.

```
?groupComparison
```

In addition to the processed data, the groupComparison function requires a contrast matrix to define the comparison to be made. The contrast matrix is created with each condition in column and each comparison in row. Note that the conditions are arranged in alphabetical order. The order of condition that MSstats recognizes can be shown by using levels:

```
levels(DDA2009.TMP$ProcessedData$GROUP_ORIGINAL)
```

```
## [1] "C1" "C2" "C3" "C4" "C5" "C6"
```

Entries in each row of the contrast matrix are filled in with 0, 1, or -1 to specify the comparison, where 0 is for conditions we would like to ignore, 1 is for conditions we would like to put in the numerator of the ratio or fold-change, and -1 is for conditions we would like to put in the denumerator of the ratio or fold-change.

For example, if you want to compare C2-C1, which means $\log(C2)-\log(C1)$ and the same as $\log(C2/C1)$, set '1' for C2 and '-1' for C1 in the row. Combining multiple groups for comparison is also possible. For example, if you want to compare between average of C2 and C3 and average of C1, (C3+C2)/2-C1 as formula, set '-1' for C1, '0.5' for C2 and '0.5' for C3, and '0' for rest of groups.

```
comparison1 <- matrix(c(-1,1,0,0,0,0),nrow=1)
comparison2 <- matrix(c(0,-1,1,0,0,0),nrow=1)
comparison3 <- matrix(c(0,0,-1,1,0,0),nrow=1)</pre>
```

```
comparison4 <- matrix(c(0,0,0,-1,1,0),nrow=1)
comparison5 <- matrix(c(0,0,0,0,-1,1),nrow=1)
comparison6 <- matrix(c(1,0,0,0,0,-1),nrow=1)

comparison<-rbind(comparison1,comparison2,comparison3,comparison4,comparison5,comparison6)
row.names(comparison) <- c("C2-C1","C3-C2","C4-C3","C5-C4","C6-C5","C1-C6")</pre>
```

With the contrast matrix specified, group comparison can be performed as follows.

```
DDA2009.comparisons <- groupComparison(contrast.matrix = comparison, data = DDA2009.proposed)
```

```
## |
```

Output of the groupComparison function contains three data frames:

```
# output from groupComparison function has three data frames
names(DDA2009.comparisons)
```

Results of the statistical comparison are stored in the data frame named ComparisonResult:

```
# name of columns in result data.frame
head(DDA2009.comparisons$ComparisonResult)
```

```
##
       Protein Label
                         log2FC
                                        SE
                                               Tvalue DF
                                                               pvalue
                                                                         adj.pvalue
## 1
        bovine C2-C1
                      0.6048799 0.4245943
                                             1.424607 11 1.820186e-01 1.820186e-01
## 2
       chicken C2-C1
                      0.7876884 0.2205455
                                             3.571545 12 3.841470e-03 4.609764e-03
## 3 cyc horse C2-C1 1.1294964 0.1955787
                                             5.775149 12 8.809149e-05 1.761830e-04
## 4 myg horse C2-C1 -7.9717333 0.2807086 -28.398612 12 2.254641e-12 1.352785e-11
        rabbit C2-C1 1.0617105 0.2209612
## 5
                                             4.804963 12 4.298913e-04 6.448369e-04
## 6
         yeast C2-C1 1.9575344 0.3134408
                                             6.245309 12 4.284464e-05 1.285339e-04
     issue MissingPercentage ImputationPercentage
##
## 1
                  0.03571429
                                        0.03571429
       NΑ
## 2
        NA
                  0.25757576
                                        0.25757576
## 3
        NA
                  0.15104167
                                        0.15104167
## 4
        NA
                  0.45833333
                                        0.45833333
## 5
        NA
                                        0.72043011
                  0.72043011
## 6
        NA
                  0.56666667
                                        0.56666667
```

The result of the test for diffrential abundance is a table with columns Protein, Label (of the comparison), log2 fold change (log2FC), standard error of the log2 fold change (SE), test statistic of the Student test (Tvalue), degree of freedom of the Student test (DF), raw p-values (pvalue), p-values adjusted among all the proteins in the specific comparison using the approach by Benjamini and Hochberg (adj.pvalue). The cutoff of the adjusted p-value corresponds to the cutoff of the False Discovery Rate (Benjamini and Hochberg 1955). The positive values of log2FC for Label=C2-C1 indicate evidence in favor of C2 > C1 (i.e. proteins upregulated in C2), while the negative values indicate evidence in favor of C2 < C1 (i.e. proteins downregulated in C2), as compared to C1. The same model can be used to perform several comparisons of conditions simultaneously in the same protein.

NOTE issue column shows if there is any issue for inference in corresponding protein and comparison, for example, OneConditionMissing or CompleteMissing. If one of condition for comparison is completely missing, it would flag with OneConditionMissiong with adj.pvalue=0 and log2FC=Inf or -Inf even though pvalue=NA. For example, if you want to compare 'Condition A - Condition B', but condition B has complete missing, log2FC=Inf and adj.pvalue=0. SE, Tvalue, and pvalue will be NA. if you want to compare 'Condition A - Condition B', but condition A has complete missing, then log2FC=-Inf and adj.pvalue=0. But, please be careful for using this log2FC and adj.pvalue.

Based on the comparison results and desired significance level, a short list of the differentially abundant proteins can be obtained for further investigation:

[1] 34

4.1.8 Verifying the assumption of the model

Results based on the statistical models are accurate as long as the assumptions of the models hold. Here we focus on the assumption of the Normal distribution of the measurement errors, and also on the assumption of constant variance of the measurement errors (if this option is specified in the model above). The assumptions can be checked by examining the residuals of the model fit (i.e., the deviations of the observed intensities of the transition from their model-based predictions).

modelBasedQCPlots function generates residual plots and Normal quantile-quantile plots for each protein, taking as input the results of model fitting and testing in <code>groupComparison</code>. Normal quantile-quantile plot with the option <code>type='QQPlots'</code> illustrates that such deviations from constant variance can be mistaken for deviations from Normality. Only large deviations of transition intensities from the straight line are problematic.

Residual plot with the option type='ResidualPlots' shows variance of the residuals that is associated with the mean feature intensity. Any specific pattern, such as increasing or decreasing by predicted abundance, is problematic.

4.1.9 Visualization of differentially abundant proteins

Volcano plots Volcano plots visualize the outcome of one comparison between conditions for all the proteins, and combine the information on statistical and practical significance. The y-axis displays the FDR-adjusted p-values on the negative log10 scale, representing statistical significance. The horizontal dashed line shows the FDR cutoff. The points above the FDR cutoff line are statistically significant proteins that are differentially abundant across conditions. These points are colored in red and blue for upregulated and downregulated proteins, respectively. The x-axis is the model-based estimate of fold change on log scale (the base of logarithm transform is the same as specified in the logTrans option of the dataProcess function), and represents practical significance. It is possible to specify a practical significance cutoff based on the estimate of fold change in addition to the statistical significance cutoff. If the fold change cutoff is specified, the points above the horizontal cutoff line but within the vertical cutoff line will be considered as not differentially abundant (and will be colored in black). The practical significance cutoff should only be applied in addition to the statistical significance cutoff (i.e., the fold change alone does not present enough evidence for differential abundance).

'VolcanoPlot.pdf' will be saved under the folder you assigned. It has the plots per comparison defined in contrast.matrix. Please check ?groupComparisonPlots for detail, such as labelling protein names, size of dots, font sizes, etc. Below is one of volcano plots, for comparison 'C1-C6' including protein name labelling. Protein name will be shown for significant proteins, without overlapping protein names each other.

Heatmap Heatmaps illustrate the patterns of up- and down-regulation of proteins in several comparisons. Columns in the heatmaps are comparison of conditions assigned in contrast.matrix, and rows are proteins. The heatmaps display signed FDR-adjusted p-values of the tests, colored in red/blue for significantly up-/down-regulated proteins, while taking into account the specified FDR cutoff and the additional optional fold change cutoff. Brighter colors indicate stronger evidence in favor of differential abundance. Black color represents proteins that are not significantly differentially abundant.

NOTE To draw heatmap, at least two comparisons are needed.

The rows and columns of the heatmaps can be ordered with the option clustering, which performs hierarchical clustering with the Ward method (minimum variance). The option clustering='protein' (default) clusters the rows (proteins) in the space of comparisons, based on the values of (sign of comparison) · (-log2(adjusted p-values)). The option clustering='comparison' clusters the columns in the space of proteins, based on the values of (sign of comparison) · (-log2(adjusted p-value)). The option clustering='both reorders both columns and rows.

```
groupComparisonPlots(data = DDA2009.comparisons$ComparisonResult, type = 'Heatmap')
```

'Heatmap.pdf' will be saved under the folder you assigned. Below is one example, showing the results for several comparisons simultaneously.

Comparison plots Comparison plots illustrate model-based estimates of log-fold changes, and the associated uncertainty, in several comparisons of conditions for one protein. X-axis is the comparison of interest. Y-axis is the log fold change. The dots are the model-based estimates of log-fold change, and the error bars are the model-based 95% confidence intervals (the option sig can be used to change the significance level of significance). For simplicity, the confidence intervals are adjusted for multiple comparisons within protein only, using the Bonferroni approach. For proteins with N comparisons, the individual confidence intervals are at the level of 1-sig/N.

For further details, such as labelling protein names, size of dots, font sizes, etc., visit the help file using the following code.

?groupComparisonPlots

4.1.10 Sample size calculation for a future experiment

This last analysis step views the dataset as a pilot study of a future experiment, utilizes its variance components, and calculates the minimal number of replicates required in a future experiment to achieve the desired statistical power. The calculation is performed by the function designSampleSize, which takes as input the fitted model in groupComparison. Sample size calculation assumes same experimental design (i.e. group comparison, time course or paired design) as in the current dataset, and uses the model fit to estimate the median variance components across all the proteins. Finally, sample size calculation assumes that a large proportion of proteins (specifically, 99%) will not change in abundance in the future experiment. This assumption also provides conservative results. Using the estimated variance components, the function relates the number of biological replicates per condition (numSample, rounded to 0 decimal), average statistical power across all the proteins (power), minimal fold change that we would like to detect (can be specified as a range, e.g. desiredFC=c(1.1, 2)), and the False Discovery Rate (FDR). The user should specify all these quantities but one, and the function will solve for the remainder. The quantity to solve for should be set to = TRUE.

```
##
      desiredFC numSample FDR power
                                            CV
## 1
           1.250
                         35 0.05
                                    0.8 0.004
## 2
           1.275
                         30 0.05
                                    0.8 0.005
## 3
           1.300
                         25 0.05
                                    0.8 0.006
## 4
                         22 0.05
                                    0.8 0.007
           1.325
## 5
           1.350
                         19 0.05
                                    0.8 0.007
                                    0.8 0.008
## 6
           1.375
                         17 0.05
```

##	7	1.400	16 0.05	0.8 0.009
##	8	1.425	14 0.05	0.8 0.010
##	9	1.450	13 0.05	0.8 0.010
##	10	1.475	12 0.05	0.8 0.011
##	11	1.500	11 0.05	0.8 0.012
##	12	1.525	10 0.05	0.8 0.013
##	13	1.550	9 0.05	0.8 0.014
##	14	1.575	9 0.05	0.8 0.014
##	15	1.600	8 0.05	0.8 0.015
##	16	1.625	7 0.05	0.8 0.017
##	17	1.650	7 0.05	0.8 0.017
##	18	1.675	7 0.05	0.8 0.016
##	19	1.700	6 0.05	0.8 0.019
##	20	1.725	6 0.05	0.8 0.018
##	21	1.750	6 0.05	0.8 0.018
##	22	1.775	5 0.05	0.8 0.022
##	23	1.800	5 0.05	0.8 0.021
##	24	1.825	5 0.05	0.8 0.021
##	25	1.850	5 0.05	0.8 0.021
##	26	1.875	4 0.05	0.8 0.026
##	27	1.900	4 0.05	0.8 0.025
##	28	1.925	4 0.05	0.8 0.025
##	29	1.950	4 0.05	0.8 0.025
##	30	1.975	4 0.05	0.8 0.024
##	31	2.000	4 0.05	0.8 0.024
##	32	2.025	4 0.05	0.8 0.024
##	33	2.050	3 0.05	0.8 0.031
##	34	2.075	3 0.05	0.8 0.031
##	35	2.100	3 0.05	0.8 0.030
##	36	2.125	3 0.05	0.8 0.030
##	37	2.150	3 0.05	0.8 0.030
##	38	2.175	3 0.05	0.8 0.029
##	39	2.200	3 0.05	0.8 0.029
##	40	2.225	3 0.05	0.8 0.029
##	41	2.250	3 0.05	0.8 0.028
##	42	2.275	3 0.05	0.8 0.028
##	43	2.300	3 0.05	0.8 0.028
##	44	2.325	2 0.05	0.8 0.041
##	45	2.350	2 0.05	0.8 0.041
##	46	2.375	2 0.05	0.8 0.040
##	47	2.400	2 0.05	0.8 0.040
##	48	2.425	2 0.05	0.8 0.039
##	49	2.450	2 0.05	0.8 0.039
##	50	2.475	2 0.05	0.8 0.039
##	51	2.500	2 0.05	0.8 0.038
##	52	2.525	2 0.05	0.8 0.038
##	53	2.550	2 0.05	0.8 0.038
##	54	2.575	2 0.05	0.8 0.037
##	55	2.600	2 0.05	0.8 0.037
##	56	2.625	2 0.05	0.8 0.036
##	57	2.650	2 0.05	0.8 0.036
##	58	2.675	2 0.05	0.8 0.036
##	59	2.700	2 0.05	0.8 0.035
##	60	2.725	2 0.05	0.8 0.035
ırπ	50	2.120	2 0.00	3.0 0.000

```
## 61
          2.750
                         2 0.05
                                   0.8 0.035
## 62
                         2 0.05
                                   0.8 0.034
          2.775
## 63
          2.800
                         2 0.05
                                   0.8 0.034
## 64
          2.825
                         2 0.05
                                   0.8 0.034
## 65
          2.850
                         2 0.05
                                   0.8 0.034
## 66
                         2 0.05
          2.875
                                   0.8 0.033
## 67
                         2 0.05
                                   0.8 0.033
          2.900
## 68
          2.925
                         2 0.05
                                   0.8 0.033
## 69
          2.950
                         1 0.05
                                   0.8 0.065
## 70
          2.975
                         1 0.05
                                   0.8 0.064
## 71
          3.000
                         1 0.05
                                   0.8 0.064
# Power calculation
result.power <- designSampleSize(data=DDA2009.comparisons$fittedmodel, numSample=3,
                  desiredFC=c(1.25, 3), FDR=0.05, power=TRUE)
result.power
##
      desiredFC numSample FDR power
                                          CV
```

```
## 1
          1.250
                         3 0.05 0.01 0.051
## 2
          1.275
                         3 0.05 0.01 0.050
## 3
          1.300
                         3 0.05 0.01 0.049
## 4
                         3 0.05
                                  0.01 0.048
          1.325
## 5
          1.350
                         3 0.05
                                  0.01 0.047
## 6
          1.375
                         3 0.05
                                  0.01 0.046
## 7
          1.400
                         3 0.05
                                  0.01 0.046
                         3 0.05
## 8
          1.425
                                 0.01 0.045
## 9
          1.450
                         3 0.05
                                  0.01 0.044
## 10
                         3 0.05
          1.475
                                 0.01 0.043
## 11
          1.500
                         3 0.05
                                  0.02 0.043
## 12
                         3 0.05
                                  0.03 0.042
          1.525
## 13
          1.550
                         3 0.05
                                  0.04 0.041
                         3 0.05
## 14
          1.575
                                  0.06 0.041
                         3 0.05
## 15
          1.600
                                  0.08 0.040
          1.625
## 16
                         3 0.05
                                  0.10 0.039
## 17
          1.650
                         3 0.05
                                  0.13 0.039
## 18
          1.675
                         3 0.05
                                 0.16 0.038
## 19
          1.700
                         3 0.05
                                  0.20 0.038
## 20
                         3 0.05
                                  0.23 0.037
          1.725
## 21
                         3 0.05
                                  0.27 0.036
          1.750
## 22
          1.775
                         3 0.05
                                  0.31 0.036
## 23
          1.800
                         3 0.05
                                 0.35 0.035
## 24
          1.825
                         3 0.05
                                  0.39 0.035
                         3 0.05
## 25
          1.850
                                  0.43 0.034
## 26
          1.875
                         3 0.05
                                  0.47 0.034
## 27
                         3 0.05
                                  0.51 0.034
          1.900
## 28
          1.925
                         3 0.05
                                  0.55 0.033
## 29
          1.950
                         3 0.05
                                  0.58 0.033
## 30
          1.975
                         3 0.05
                                  0.61 0.032
                         3 0.05
## 31
          2.000
                                  0.65 0.032
                         3 0.05
## 32
          2.025
                                  0.68 0.032
## 33
          2.050
                         3 0.05
                                  0.71 0.031
## 34
                         3 0.05
          2.075
                                  0.73 0.031
## 35
          2.100
                         3 0.05
                                  0.76 0.030
## 36
          2.125
                         3 0.05
                                  0.78 0.030
## 37
                         3 0.05 0.80 0.030
          2.150
```

```
## 38
          2.175
                          3 0.05
                                  0.82 0.029
##
  39
          2.200
                          3 0.05
                                  0.84 0.029
                                  0.86 0.029
##
  40
          2.225
                          3 0.05
          2.250
##
  41
                          3 0.05
                                  0.87 0.028
##
  42
          2.275
                          3 0.05
                                  0.88 0.028
  43
          2.300
                          3 0.05
                                  0.90 0.028
##
## 44
          2.325
                          3 0.05
                                  0.91 0.027
## 45
          2.350
                          3 0.05
                                  0.92 0.027
                                  0.93 0.027
##
  46
          2.375
                          3 0.05
          2.400
                          3 0.05
##
  47
                                  0.93 0.027
##
  48
          2.425
                          3 0.05
                                  0.94 0.026
   49
          2.450
                          3 0.05
                                  0.95 0.026
##
##
   50
          2.475
                          3 0.05
                                  0.95 0.026
                                  0.96 0.026
## 51
                          3 0.05
          2.500
## 52
          2.525
                          3 0.05
                                  0.96 0.025
## 53
          2.550
                          3 0.05
                                  0.97 0.025
##
  54
          2.575
                          3 0.05
                                  0.97 0.025
##
  55
          2.600
                          3 0.05
                                  0.98 0.025
##
  56
          2.625
                          3 0.05
                                  0.98 0.024
##
  57
          2.650
                          3 0.05
                                  0.98 0.024
                          3 0.05
##
  58
          2.675
                                  0.98 0.024
## 59
          2.700
                          3 0.05
                                  0.99 0.024
## 60
          2.725
                          3 0.05
                                  0.99 0.023
## 61
          2.750
                          3 0.05
                                  0.99 0.023
                          3 0.05
                                  0.99 0.023
## 62
          2.775
##
  63
          2.800
                          3 0.05
                                  0.99 0.023
##
   64
          2.825
                          3 0.05
                                  0.99 0.023
   65
          2.850
                          3 0.05
                                  0.99 0.022
##
                          3 0.05
##
  66
          2.875
                                  0.99 0.022
## 67
          2.900
                          3 0.05
                                  0.99 0.022
## 68
          2.925
                          3 0.05
                                  0.99 0.022
##
  69
          2.950
                          3 0.05
                                  0.99 0.022
## 70
                                  0.99 0.021
          2.975
                          3 0.05
## 71
          3.000
                          3 0.05
                                  0.99 0.021
```

For further details, visit the help file using the following code.

?designSampleSize

Visualization of sample size calculations The calculated relationship between the number of biological replicates per condition (numSample), average statistical power across all the proteins (power), minimal fold change that we would like to detect (desiredFC), and the False Discovery Rate (FDR) can be visualized using the function designSampleSizePlots. The function takes as input the output of designSampleSize.

For further details, visit the help file using the following code.

?designSampleSizePlots

4.1.11 Quantification of protein abundance in individual samples or conditions

Many downstream analysis steps (such as clustering or classification of individual samples in the space of their protein profiles) require summary values of protein abundance in each biological replicate or in each condition, on a relative scale that is comparable between runs.

dataProcess function performs model-based run-level summarization. quantification function enables subject-level summarization or group-level summarization with the run-level summarization from dataProcess.

The option, type='sample'(default), performs sample quantification, i.e. it outputs the estimates of relative protein abundance in each biological replicate. If there are technical replicates for biological replicates, sample quantification will be the median among technical replicates. If there is no technical replicate for biological replicate (sample), sample quantification will be the same as run-level summarization. In presence of completely missing values in biological replicate, the estimates will be zero.

The option type='group' performs group quantification, i.e. it outputs the estimates of relative protein abundance in each condition, summarized over the biological replicates (median among sample quantification). In presence of completely missing values in a condition, the estimates will be zero.

MSstats supports two output formats. The option format='matrix' (default) outputs an array where rows are proteins, and columns are conditions (for group quantification), or combinations of biological replicate and condition ids (for sample quantification). The option format='long' produces an array where each row corresponding to relative protein abundances, and columns are Protein, Condition, LogIntensities (and BioReplicate in the case of sample quantification).

```
subQuant <- quantification(DDA2009.proposed)
head(subQuant)</pre>
```

```
## Protein C1_1 C2_1 C3_1 C4_1 C5_1 C6_1
## 1 bovine 20.85653 21.60443 14.32690 16.10441 17.63141 19.27802
## 2 chicken 18.48792 19.43204 20.41274 22.42284 15.92462 17.09803
## 3 cyc_horse 20.25927 21.33967 22.22028 15.85252 17.62720 18.45536
## 4 myg horse 22.66495 14.73701 14.99667 18.61740 20.26392 21.52022
```

```
## 5
        rabbit 14.89507 15.88492 17.43767 20.19014 21.27964 22.07550
## 6
         yeast 17.26792 19.19987 20.71073 22.73666 24.06156 16.38660
groupQuant <- quantification(DDA2009.proposed, type='group')</pre>
head(groupQuant)
##
       Protein
                      C1
                               C2
                                         C3
                                                  C4
                                                            C5
                                                                     C6
## 1
        bovine 20.85653 21.60443 14.32690 16.10441 17.63141 19.27802
       chicken 18.48792 19.43204 20.41274 22.42284 15.92462 17.09803
## 2
## 3 cyc horse 20.25927 21.33967 22.22028 15.85252 17.62720 18.45536
## 4 myg horse 22.66495 14.73701 14.99667 18.61740 20.26392 21.52022
## 5
        rabbit 14.89507 15.88492 17.43767 20.19014 21.27964 22.07550
## 6
         yeast 17.26792 19.19987 20.71073 22.73666 24.06156 16.38660
For further details, visit the help file using the following code.
?quantification
```

4.2 Suggested workflow with Skyline output for DDA

This section describes steps and considerations to properly format data processed by Skyline, prior to the MSstats analysis. In the following example, the raw files for the benchmark dataset (Choi, M. and Eren-Dogu, Z. F. and Colangelo, C. and Cottrell, J. and Hoopmann, M. R. and Kapp, E. A. and Kim, S. and Lam, H. and Neubert, T. A. and Palmblad, M. and Phinney, B. S. and Weintraub, S. T. and MacLean, B. and Vitek, O. 2017) are used. Dataset was processed and quantified with Skyline (3.5.0.9319). Details for data processing are described in Choi, et al., 2017 and Panorama Web https://panoramaweb.org/iPRG-2015.url for iProphet cut-off 0.15. The datasets and details for data processing are available in MassIVE.quant, MSV000079843, Reanalysis: RMSV000000249.1

4.2.1 Load Skyline output

This required input data is generated automatically when using MSstats report format in Skyline. We first load and access the dataset processed by Skyline. The name of saved file from Skyline using MSstats report format is 'Choi2017_DDA_Skyline_input.csv' under the folder named dda_skyline.

```
# Read output from skyline
raw <- read.csv("dda_skyline/Choi2017_DDA_Skyline_input.csv")</pre>
```

We can read csv file. Here we will load R data file which is the exactly same data in Choi2017_DDA_Skyline_input.csv file.

```
# Load R data, which is convered from csv file, output from skyline
load("dda_skyline/iprg.skyline.rda")
raw <- iprg.skyline
head(raw)</pre>
```

```
ProteinName PeptideSequence PeptideModifiedSequence
## 1 DECOY_sp|POCF18|YM085_YEAST
                                      KDMYGNPFQK
                                                          KDM[+16]YGNPFQK
## 2 DECOY sp|POCF18|YM085 YEAST
                                                          KDM[+16]YGNPFQK
                                      KDMYGNPFQK
## 3 DECOY sp|POCF18|YM085 YEAST
                                      KDMYGNPFQK
                                                          KDM[+16]YGNPFQK
## 4 DECOY_sp|POCF18|YM085_YEAST
                                      KDMYGNPFQK
                                                          KDM[+16]YGNPFQK
## 5 DECOY_sp|POCF18|YM085_YEAST
                                      KDMYGNPFQK
                                                          KDM[+16]YGNPFQK
## 6 DECOY_sp|POCF18|YMO85_YEAST
                                      KDMYGNPFQK
                                                          KDM[+16]YGNPFQK
    PrecursorCharge PrecursorMz FragmentIon ProductCharge ProductMz
```

```
## 1
                    3
                         415.1974
                                                               415.1974
                                     precursor
## 2
                    3
                                                            3
                                                                415.1974
                         415.1974
                                     precursor
## 3
                    3
                         415.1974
                                     precursor
                                                            3
                                                                415.1974
## 4
                    3
                                                            3
                                                                415.1974
                         415.1974
                                     precursor
## 5
                    3
                         415.1974
                                     precursor
                                                            3
                                                                415.1974
## 6
                    3
                                                                415.1974
                         415.1974
                                     precursor
##
     IsotopeLabelType
                        Condition BioReplicate
                                                                   FileName
## 1
                 light Condition1
                                               1 JD 06232014 sample1-A.raw
## 2
                 light Condition1
                                               2 JD_06232014_sample1_B.raw
## 3
                 light Condition1
                                               3 JD_06232014_sample1_C.raw
## 4
                 light Condition2
                                               4 JD_06232014_sample2_A.raw
                                               5 JD_06232014_sample2_B.raw
## 5
                 light Condition2
##
                 light Condition2
                                               6 JD_06232014_sample2_C.raw
##
               Area StandardType Truncated DetectionQValue
                              NA
## 1
      71765.046875
                                      False
                                                        #N/A
  2
     147327.265625
                               NA
                                      False
                                                        #N/A
##
         1373396.5
## 3
                              NA
                                      False
                                                        #N/A
## 4 66387.4453125
                              NA
                                      False
                                                        #N/A
## 5 107736.453125
                              NΑ
                                      False
                                                        #N/A
## 6
       380812.0625
                              NA
                                      False
                                                        #N/A
```

Annotation information is required to fill in Condition and BioReplicate for corresponding Run information. Users have to prepare as csv or txt file like 'Choi2017_DDA_Skyline_annotation.csv', which includes Run, Condition, and BioReplicate information, and load it in R.

```
annot <- read.csv("dda_skyline/Choi2017_DDA_Skyline_annotation.csv", header=TRUE)
annot</pre>
```

```
##
                             Run Condition BioReplicate
## 1
      JD 06232014 sample1-A.raw Condition1
## 2
      JD_06232014_sample1_B.raw Condition1
                                                        1
##
  3
      JD 06232014 sample1 C.raw Condition1
                                                        1
                                                        2
##
  4
      JD_06232014_sample2_A.raw Condition2
                                                        2
## 5
      JD_06232014_sample2_B.raw Condition2
## 6
      JD_06232014_sample2_C.raw Condition2
                                                        2
      JD_06232014_sample3_A.raw Condition3
                                                        3
##
## 8
                                                        3
      JD_06232014_sample3_B.raw Condition3
      JD_06232014_sample3_C.raw Condition3
                                                        3
                                                        4
## 10 JD_06232014_sample4-A.raw Condition4
## 11 JD_06232014_sample4_B.raw Condition4
                                                        4
## 12 JD_06232014_sample4_C.raw Condition4
```

4.2.2 Preprocessing with DDA experiment from Skyline output

The input data for MSstats is required to contain variables of ProteinName, PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity. These variable names should be fixed. MSstats input from Skyline adapts the column scheme of the dataset so that it fits MSstats input format. However there are several extra column names and also some of them need to be changed. SkylinetoMSstatsFormat function helps pre-processing for making right format of MSstats input from Skyline output. For example, it renames some column name, and replace truncated peak intensities with NA. Another important step is to handle isotopic peaks before using dataProcess. The output from Skyline for DDA experiment has several measurements of peak area from the monoisotopic, M+1 and M+2 peaks. To get a robust measure of peptide intensity, we can sum over isotopic peaks per peptide or use the highest peak. Here we take a summation per peptide ion.

Here is the summary of pre-processing steps in SkylinetoMSstatsFormat function.

SkylinetoMSstatsFormat

- Rename column names
- Remove decoy proteins and iRT peptides
- Remove shared peptides
- Replace NA for truncated intensities
- DDA: Sum of isotopic peaks per peptide and charge
- DIA: filter by q-value
- Remove features with all missing values or with less than 3 measurements across MS runs
- Remove protein with only one feature
- Add annotation for experimental design : Group, biological replicate, fraction information per MS run

Options for SkylinetoMSstatsFormat

- annotation: name of 'annotation.txt' or 'annotation.csv' data which includes Condition, BioReplicate, and Run. If annotation is already complete in Skyline, use annotation=NULL (default). It will use the annotation information from input.
- removeiRT : TRUE (default) will remove the proteins or peptides which are labeld 'iRT' in 'StandardType' column. FALSE will keep them.
- filter_with_Qvalue: TRUE (default) will filter out the intensities that have greater than qvalue_cutoff in DetectionQValue column. Those intensities will be replaced with zero and will be considered as censored missing values for imputation purpose.
- qvalue_cutoff : Cutoff for DetectionQValue. Default is 0.01.
- useUniquePeptide: TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- \bullet $\ \mathbf{fewMeasurement}$: remove or keep the feature w with few measurements.
 - 'remove': (default) remove the features that have 1 or 2 measurements across runs.
 - 'keep': keep all the features. However, it could generate the error in the step for fitting the statistical model.
- removeOxidationMpeptides: TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default.
- **removeProtein_with1Feature** : TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.

For further details, visit the help file using the following code.

?SkylinetoMSstatsFormat

Now, we use SkylinetoMSstatsFormat function for this example dataset. We chose to remove the proteins with only 1 peptide ion.

** Proteins, which names include DECOY, are removed.

```
## ** Peptides, that are used in more than one proteins, are removed.
## Warning in SkylinetoMSstatsFormat(raw, annotation = annot,
## removeProtein_with1Feature = TRUE): NAs introduced by coercion
## ** Truncated peaks are replaced with NA.
## ** For DDA datasets, three isotopic peaks per feature and run are summed.
## ** 4 features have all NAs or zero intensity values and are removed.
## ** 13 features have 1 or 2 intensities across runs and are removed.
## ** All proteins have at least two features.
```

This function shows the progress. The output of SkylinetoMSstatsFormat, called quant, is ready for next step.

head(quant)

```
ProteinName
                                       PeptideSequence PrecursorCharge FragmentIon
## 1 sp|D6VTK4|STE2_YEAST EGEVEPVDM[+16]YTPDTAADEEARK
                                                                      3
## 2 sp|D6VTK4|STE2_YEAST EGEVEPVDM[+16]YTPDTAADEEARK
                                                                                 sum
## 3 sp|D6VTK4|STE2_YEAST EGEVEPVDM[+16]YTPDTAADEEARK
                                                                      3
                                                                                 sum
                                                                      3
## 4 sp|D6VTK4|STE2_YEAST EGEVEPVDM[+16]YTPDTAADEEARK
                                                                                 sum
## 5 sp|D6VTK4|STE2_YEAST EGEVEPVDM[+16]YTPDTAADEEARK
                                                                      3
                                                                                 sum
                                                                      3
## 6 sp|D6VTK4|STE2_YEAST EGEVEPVDM[+16]YTPDTAADEEARK
                                                                                 SIIM
     ProductCharge IsotopeLabelType Condition BioReplicate
## 1
                NΑ
                                   L Condition1
                                                            1
                                   L Condition2
                                                            2
## 2
                NA
                                                            4
## 3
                NA
                                   L Condition4
                                                            2
                NA
                                   L Condition2
                                   L Condition4
                                                            4
## 5
                NA
## 6
                NA
                                   L Condition3
                                                            3
##
                            Run Intensity StandardType
## 1 JD_06232014_sample1_C.raw 7863713.2
                                                     NA
## 2 JD_06232014_sample2_A.raw 977615.1
                                                     NA
                                                     NA
## 3 JD_06232014_sample4_B.raw 4102785.2
## 4 JD_06232014_sample2_C.raw 6547298.9
                                                     NA
## 5 JD_06232014_sample4_C.raw 3972463.8
                                                     NA
## 6 JD_06232014_sample3_B.raw 8896050.8
                                                     NA
```

4.2.3 Different options for Skyline in dataProcess

The difference between output from Skyline and other spectral processing tool is that Skyline distinguishes random missing (NA) by technical issues and low noisy intensity due to less than limit of etection. The output from Skyline can have both NA (expect small number of NAs or none of them) and very small intensity close to zero (less than 1 in intensity) and those should be treated different types of missing. In dataProcess, users need to use censoredInt='0' for Skyline output, which means to distinguish between NA as random missing and 0 as censored missing.

Further steps is the same as in general workflow (section 4.1).

4.3 Suggested workflow with MaxQuant output for DDA

The following R code chunks show steps to format a MaxQuant output for analysis by MSstats. In the following example, the raw files for the benchmark dataset (Choi, M. and Eren-Dogu, Z. F. and Colangelo, C. and Cottrell, J. and Hoopmann, M. R. and Kapp, E. A. and Kim, S. and Lam, H. and Neubert, T. A. and Palmblad, M. and Phinney, B. S. and Weintraub, S. T. and MacLean, B. and Vitek, O. 2017) are used. MS/MS spectra were searched using MaxQuant (v1.5.1.2) and Andromeda as search engine. The datasets and details for data processing are available in MassIVE.quant, MSV000079843, Reanalysis: RMSV000000249.2

4.3.1 Load MaxQuant outputs

Three files should be prepared before MSstats. Two files, 'proteinGroups.txt' and 'evidence.txt' are outputs from MaxQuant.

```
## First, get protein ID information
proteinGroups <- read.table("dda_maxquant/Choi2017_DDA_MaxQuant_proteinGroups.txt", sep = "\t", header
## Read in MaxQuant file: evidence.txt
infile <- read.table("dda_maxquant/Choi2017_DDA_MaxQuant_evidence.txt", sep = "\t", header = TRUE)</pre>
```

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding Run information. Users have to prepare as csv or txt file like 'Choi2017_DDA_MaxQuant_annotation.csv', which includes Run, Condition, and BioReplicate information, and load it in R.

```
## Read in annotation including condition and biological replicates: annotation.csv
annot <- read.csv("dda_maxquant/Choi2017_DDA_MaxQuant_annotation.csv", header = TRUE)
annot</pre>
```

```
##
                   Raw.file Condition BioReplicate Experiment IsotopeLabelType
## 1
     JD_06232014_sample1-A Condition1
                                                  1
                                                     sample1_A
                                                                               L
     JD_06232014_sample2_A Condition2
                                                  2 sample2_A
                                                                               L
     JD_06232014_sample4_B Condition4
                                                  4 sample4_B
                                                                               L
## 3
     JD_06232014_sample1_B Condition1
## 4
                                                  1
                                                     sample1 B
                                                                               L
     JD_06232014_sample1_C Condition1
## 5
                                                  1 sample1 C
                                                                              L
     JD_06232014_sample2_B Condition2
                                                  2
                                                     sample2 B
                                                                              L
## 7
     JD_06232014_sample2_C Condition2
                                                  2
                                                     sample2_C
                                                                              L
     JD_06232014_sample3_A Condition3
                                                  3
                                                     sample3_A
                                                                              L
     JD_06232014_sample3_B Condition3
                                                  3
                                                     sample3_B
                                                                              L
## 10 JD_06232014_sample3_C Condition3
                                                  3 sample3 C
                                                                              L
## 11 JD 06232014 sample4-A Condition4
                                                  4
                                                     sample4 A
                                                                              L
## 12 JD_06232014_sample4_C Condition4
                                                     sample4 C
                                                                              L
```

4.3.2 Preprocessing with DDA experiment from MaxQuant output

MaxQtoMSstatsFormat function helps pre-processing for making right format of MSstats input from MaxQuant output. Basically, this function gets peptide ion intensity from 'evidence.txt' file. In addition, there are several steps to filter out or to modify the data in order to get required information.

Here is the summary of pre-processing steps in MaxQtoMSstatsFormat function.

MaxQtoMSstatsFormat

- Remove `+` contaminant, reverse, Only.identified.by.site proteins
- Use 'protein.IDs' in proteinGroups.txt
- Extract essential information(columns)
- Remove shared peptides
- Aggregate multiple measurement per feature and run
- Remove features with all missing values or with less than 3 measurements across MS runs
- Remove protein with only one feature
- Add annotation for experimental design : Group, biological replicate, fraction information per MS run

Options for MaxQtoMSstatsFormat

- evidence: name of 'evidence.txt' data, which includes feature-level data
- proteinGroups: name of 'proteinGroups.txt' data. It needs to matching protein group ID. If proteinGroups=NULL, use 'Proteins' column in 'evidence.txt'.
- annotation :name of 'annotation.txt' or 'annotation.csv' data which includes Raw.file, Condition, BioReplicate, Run, and IsotopeLabelType information.
- proteinID: which column in evidence.txt will be used for ProteinName in MSstats.
 - 'Proteins': (default) Proteins column will be used.
 - 'Leading.razor.protein': Leading.razor.protein column will be used.
- useUniquePeptide: TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- summaryforMultipleRows: max(default), sum, or mean. MSstats assumes that there is only one measurement (peak intensity) for one feature and one run. When there are multiple measurements for certain feature and certain run, MSstats need to know which measurements need to be used for further analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and one run.
- \bullet $\ \mathbf{fewMeasurement}$: remove or keep the feature w with few measurements.
 - 'remove': (default) remove the features that have 1 or 2 measurements across runs.
 - 'keep': keep all the features. However, it could generate the error in the step for fitting the statistical model.
- removeMpeptides: TRUE will remove the peptides including 'M' sequence. FALSE is default.
- removeOxidationMpeptides: TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default.
- removeProtein_with1Peptide: TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.

For further details, visit the help file using the following code.

```
\hbox{\it \#\# check options for converting format}\\ \hbox{\it ?MaxQtoMSstatsFormat}
```

Now, we use MaxQtoMSstatsFormat function for this example dataset. We chose to remove the proteins with only 1 peptide ion.

```
## ** + Contaminant, + Reverse, + Only.identified.by.site, proteins are removed.
```

** Peptide and charge, that have 1 or 2 measurements across runs, are removed.

** 282 proteins, which have only peptide and charge in a protein, are removed among 3157 proteins.

This function shows the progress. The output of MaxQtoMSstatsFormat, called quant, is ready for next step.

```
## now 'quant' is ready for MSstats
head(quant)
```

##		ProteinName		PeptideSe	equence	Precui	rsor	Charge	Fragment	Ion	ProductCha	rge
##	1	D6VTK4	EGEVEP	VDMYTPDTA#	ADEEARK			3		NA		NA
##	2	D6VTK4	FYP	GTLSSFQTDS	SINNDAK			2		NA		NA
##	3	D6VTK4		IGPI	FADASYK			2		NA		NA
##	4	D6VTK4		NQFYQLI	PTPTSSK			2		NA		NA
##	5	D6VTK4		TFVSET	CADDIEK			2		NA		NA
##	6	D6VTK4		TNTITSDE	TTSTDR			2		NA		NA
##		<pre>IsotopeLabel</pre>	LType	${\tt Condition}$	BioRepl	icate				\mathtt{Run}	Intensity	
##	1		L C	Condition1		1	JD_	062320	14_sample	e1_B	87141000	
##	2		L C	Condition1		1	JD_	062320	14_sample	e1_B	46167000	
##	3		L C	Condition1		1	JD_	062320	14_sample	e1_B	45425000	
##	4		L C	Condition1		1	JD_	062320	14_sample	e1_B	47094000	
##	5		L C	Condition1		1	JD_	062320	14_sample	e1_B	NA	
##	6		L C	Condition1		1	JD_	062320	14_sample	e1_B	62786000	

4.3.3 Different options for MaxQuant in dataProcess

MaxQuant has certain or fixed threshold for intensity value internally as an parameter. Intensities less than the threshold are reported as NA. All missing values are NA in output from MaxQuant. In dataProcess, users need to use censoredInt='NA'. Users can used the same choice for other options.

Further steps is the same as in general workflow (section 4.1).

4.4 Suggested workflow with Progenesis output for DDA

This section describes steps and considerations to properly format data processed by Progenesis, prior to the MSstats analysis. In the following example, the raw files for the benchmark dataset (Choi, M. and Eren-Dogu, Z. F. and Colangelo, C. and Cottrell, J. and Hoopmann, M. R. and Kapp, E. A. and Kim, S. and Lam, H. and Neubert, T. A. and Palmblad, M. and Phinney, B. S. and Weintraub, S. T. and MacLean, B. and Vitek, O. 2017) are used. Peptide features were identified with the Progenesis algorithm (v4.0.6403), aligned across all files, and annotated with the peptide identification resulting from the database search result

from Comet. The datasets and details for data processing are available in MassIVE.quant, MSV000079843, Reanalysis: RMSV000000249.3

4.4.1 Load Progenesis output

Here is the expected input for MSstats, which is output of Progenesis.

```
## First, read output of Progenesis
raw <- read.csv("dda_progenesis/Choi2017_DDA_Progenesis_input.csv")</pre>
head(raw)
##
         X
                            X.1
                                    X.2
                                                     X.3
                                                                       X.4
## 1
## 2
         # Retention time (min) Charge
                                                     m/z
                                                            Measured mass
## 3
               52.5563333333333
                                      2 501.781277638303 1001.54800234285
        16
## 4
        32
                       38.15255
                                      2 474.251481407549 946.488409881339
## 5 11167
               36.22243333333333
                                      2 474.25154745893 946.488541984099
                                      2 371.731536419815 741.448519905869
## 6
        41
                        45.5598
##
                      X.5
                                         X.6
                                                X.7
                                                          X.8
                                                                         X.9
## 1
## 2
           Mass error (u) Mass error (ppm)
                                              Score Sequence Modifications
## 3 -0.00255665715405939 -2.55269904358308
                                                  1 TANDVLTIR
## 4 -0.00219111866147159 -2.31499251990099
                                                  1 VTDGVMVAR
## 5 -0.0020590159006133 -2.17542139186367
                                                  1 VTDGVMVAR
## 6 -0.00120309413080122 -1.62262402086192 0.9996
                                                      AGLNIVR
##
                      X.10
## 1
## 2
                 Accession
## 3 sp|P00549|KPYK1_YEAST
## 4 sp|P00549|KPYK1_YEAST
## 5 sp|P00549|KPYK1_YEAST
## 6 sp|P00549|KPYK1 YEAST
##
                                                                                                  X.11
## 1
## 2
                                                                                           Description
## 3 Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 \\ S288c) GN=CDC19 PE=1 SV=2
## 4 Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 \\ S288c) GN=CDC19 PE=1 SV=2
## 5 Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 \\ S288c) GN=CDC19 PE=1 SV=2
## 6 Pyruvate kinase 1 OS=Saccharomyces cerevisiae (strain ATCC 204508 \\ S288c) GN=CDC19 PE=1 SV=2
##
                    X.12
                                      X.13
                                                              X.14
## 1
## 2 Use in quantitation Max fold change Highest mean condition
                   False 1.23101575731737
                   False 1.35108253622201
## 4
                                                                 В
## 5
                   False 1.25419527606242
                                                                 В
## 6
                   False 1.04868912680216
                                                                 Α
##
                      X.15
                                          X.16
                                                           X.17
## 1
## 2 Lowest mean condition
                                         Anova
                                                     Maximum CV
## 3
                         C 0.0522715538027003 12.0175133289667
## 4
                         A 0.0393818452091522 26.8776079679151
## 5
                            0.253277920596793 27.2310093101224
## 6
                            0.993981434364646 27.0631636013386
##
      Normalized.abundance
                                             X.18
                                                                    X.19
```

```
## 1
                          Α
     JD_06232014_sample1-A JD_06232014_sample2_A JD_06232014_sample3_A
  2
                                 246323351.490501
                                                         306102714.66799
          234646642.659118
                                                        136741892.392964
##
  4
          179120293.733639
                                 104309665.701784
## 5
          2233197.90782367
                                  1134566.5998162
                                                        1574437.81004362
                                                        116107425.243685
##
  6
          123797188.716029
                                  122761256.64621
##
                      X.20
                                             X.21
                                                                     X.22
## 1
  2
     JD_06232014_sample4-A JD_06232014_sample1_B JD_06232014_sample2_B
## 3
          257629531.217182
                                 235779468.539422
                                                        236753257.546934
          105011188.469111
                                 182469696.644175
                                                        183285243.781685
## 5
                                 2336796.51015815
          1701362.72342001
                                                        1788630.29256942
##
           63610598.879437
                                 108255803.660911
                                                        108785457.069653
##
                      X.23
                                             X.24
                                                                     X.25
## 1
                                                                        C
     JD_06232014_sample3_B JD_06232014_sample4_B JD_06232014_sample1_C
  3
##
          186699807.218591
                                 242959514.796972
                                                        223435557.783206
## 4
          162853464.030243
                                 180957229.609825
                                                        186073547.948691
## 5
          1932732.32106691
                                 2274168.76697097
                                                         2182403.4051037
##
   6
          92469286.5619254
                                 96974519.2450418
                                                        115737794.475905
##
                      X.26
                                             X.27
                                                                     X.28
     JD_06232014_sample2_C JD_06232014_sample3_C JD_06232014_sample4_C
## 2
          220456628.684641
                                 197285091.954229
                                                        207473304.500931
## 4
          163946644.909844
                                 150247529.397207
                                                        176820166.306319
## 5
           2040841.8048229
                                 1497501.50492545
                                                        2156318.09540588
##
  6
          100428622.768589
                                 109442962.863466
                                                        83998024.0208531
##
             Raw.abundance
                                              X.29
                                                                     X.30
##
  1
## 2
     JD_06232014_sample1-A JD_06232014_sample2_A JD_06232014_sample3_A
## 3
          244531299.931508
                                 221199440.186087
                                                        277078923.760572
## 4
          186665863.932395
                                 93670533.1411598
                                                        123776414.130536
## 5
          2327272.96336292
                                 1018845.73758267
                                                         1425154.0840074
##
  6
          129012233.635811
                                 110240142.001841
                                                        105098448.610706
##
                      X.31
                                              X.32
                                                                     X.33
## 1
                                                 В
## 2
     JD 06232014 sample4-A JD 06232014 sample1 B
                                                   JD 06232014 sample2 B
## 3
          213112377.670857
                                                        265610928.042007
                                  265826760.55748
## 4
          86865756.2312952
                                 205723291.596601
                                                         205625739.64841
## 5
          1407375.36397932
                                 2634593.46237989
                                                        2006645.04833363
          52618990.9526949
                                 122051719.672593
                                                         122045231.85501
##
                      X.34
                                                                     X.36
                                              X.35
##
  1
                                                                        C
  2
     JD_06232014_sample3_B JD_06232014_sample4_B JD_06232014_sample1_C
## 3
          219812880.452275
                                 242959514.796972
                                                        210648874.118526
## 4
          191737150.420336
                                 180957229.609825
                                                        175425002.929311
## 5
          2275521.67817463
                                 2274168.76697097
                                                        2057509.66730008
##
          108869636.960823
                                 96974519.2450418
                                                        109114396.746851
##
                      X.37
                                             X.38
                                                                     X.39
##
  2
     JD_06232014_sample2_C JD_06232014_sample3_C JD_06232014_sample4_C
## 3
          207260386.701525
                                 217212520.118758
                                                        194785326.277837
## 4
          154133015.755399
                                 165423774.187439
                                                        166006773.109084
## 5
          1918679.71576989
                                  1648761.5589421
                                                        2024448.99975338
```

```
## 6
          94417098.3431607
                                  120497608.498225
                                                           78861145.7987456
           Spectral.counts
##
                                               X.40
                                                                        X.41
## 1
## 2 JD_06232014_sample1-A JD_06232014_sample2_A JD_06232014_sample3_A
## 3
                           2
## 4
                           1
                                                   1
                                                                           1
## 5
                                                   0
                           1
                                                                           1
                                                   2
                                                                           2
## 6
                           2
##
                       X.42
                                                X.43
                                                                        X.44
## 1
                                                   В
## 2 JD_06232014_sample4-A JD_06232014_sample1_B JD_06232014_sample2_B
## 3
                           3
                                                                           3
## 4
                           1
                                                   1
                                                                           1
## 5
                                                   0
                                                                           0
                           1
## 6
                           2
                                                   2
                                                                           2
##
                       X.45
                                                X.46
                                                                        X.47
## 1
                                                                           C
## 2 JD_06232014_sample3_B JD_06232014_sample4_B JD_06232014_sample1_C
## 3
                           2
                                                   2
## 4
                           1
                                                   1
                                                                           1
## 5
                           0
                                                   1
                                                                           1
## 6
                           2
                                                   2
                                                                           2
##
                       X.48
                                                X.49
                                                                        X.50
## 1
## 2 JD_06232014_sample2_C JD_06232014_sample3_C JD_06232014_sample4_C
                           3
                                                   1
                                                                           2
## 4
                           1
                                                   1
                                                                           1
## 5
                           0
                                                   1
                                                                           0
                           2
                                                   2
                                                                           2
## 6
```

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding Run information. Users have to prepare as csv or txt file like 'Choi2017_DDA_Progenesis_annotation.csv', which includes Run, Condition, and BioReplicate information, and load it in R.

Read in annotation including condition and biological replicates
annot <- read.csv("dda_progenesis/Choi2017_DDA_Progenesis_annotation.csv", header = TRUE)
annot</pre>

```
##
                        Run Condition BioReplicate
## 1
      JD_06232014_sample1-A Condition1
                                                   1
                                                   2
## 2
      JD_06232014_sample2_A Condition2
                                                   4
      JD 06232014 sample4 B Condition4
## 4
      JD_06232014_sample1_B Condition1
                                                   1
## 5
      JD 06232014 sample1 C Condition1
                                                   1
## 6
      JD_06232014_sample2_B Condition2
                                                   2
                                                   2
      JD_06232014_sample2_C Condition2
## 8
      JD_06232014_sample3_A Condition3
                                                   3
                                                   3
      JD_06232014_sample3_B Condition3
## 10 JD_06232014_sample3_C Condition3
                                                   3
## 11 JD_06232014_sample4-A Condition4
## 12 JD_06232014_sample4_C Condition4
```

4.4.2 Preprocessing with DDA experiment from progenesis output

The output from Progenesis includes peptide ion-level quantification for each MS runs. ProgenesistomstatsFormat function helps pre-processing for making right format of MSstats input from Progenesis output. Basically, this function reformats wide format to long format. It provide 'Raw.abundance', 'Normalized.abundance' and 'Spectral count' columns. This converter uses 'Raw.abundance' columns for Intensity values. In addition, there are several steps to filter out or to modify the data in order to get required information.

Here is the summary of pre-processing steps in ProgenesistoMSstatsFormat function.

ProgenesistoMSstatsFormat

- Extract essential information(columns)
- Subset the rows with `use in quantitation = true`
- Rename column names
- Remove empty protein and peptide sequence
- Remove duplicated measurements
- Remove shared peptides
- Aggregate multiple measurements per feature and run
- Remove features with all missing values or with less than 3 measurements across MS runs
- Remove protein with only one feature
- Add annotation for experimental design : Group, biological replicate, fraction information per MS run

Options for ProgenesistoMSstatsFormat

- input: name of Progenesis output, which is wide-format. 'Accession', 'Sequence', 'Modification', 'Charge' and one column for each run are required. 'Accession' column is used for ProteinName. 'Raw.abundance' is used for Intensity.
- annotation :name of 'annotation.txt' or 'annotation.csv' data which includes Condition, BioReplicate, and Run information. It will be matched with the column name of input for MS runs.
- useUniquePeptide: TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- summaryforMultipleRows: max(default), sum, or mean. MSstats assumes that there is only one measurement (peak intensity) for one feature and one run. When there are multiple measurements for certain feature and certain run, MSstats need to know which measurements need to be used for further analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and one run.
- **fewMeasurement**: remove or keep the featurew with few measurements.
 - 'remove': (default) remove the features that have 1 or 2 measurements across runs.
 - 'keep': keep all the features. However, it could generate the error in the step for fitting the statistical model.
- removeOxidationMpeptides: TRUE will remove the peptides including 'oxidation (M)' in modification. FALSE is default.
- removeProtein_with1Peptide: TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.

For further details, visit the help file using the following code.

```
## check options for converting format
?ProgenesistoMSstatsFormat
```

Now, we use ProgenesistoMSstatsFormat function for this example dataset. We chose to remove the proteins only 1 peptide ion.

This function shows the progress. The output of ProgenesistoMSstatsFormat, called quant, is ready for next step.

```
## now 'quant' is ready for MSstats
head(quant)
```

##		ProteinName	PeptideSeq	quence Precur	sorCharge	FragmentIon	ProductCha	rge
##	1	D6VTK4	EGEVEPVDMYTPDTAAD	DEEARK	3	NA		NA
##	2	D6VTK4	FYPGTLSSFQTDSI	INNDAK	2	NA		NA
##	3	D6VTK4	IGPFA	ADASYK	2	NA		NA
##	4	D6VTK4	NQFYQLPT	TPTSSK	2	NA		NA
##	5	D6VTK4	TFVSETA	ADDIEK	2	NA		NA
##	6	D6VTK4	TNTITSDFT	TSTDR	2	NA		NA
##		<pre>IsotopeLabel</pre>	lType Condition B	BioReplicate		Run	Intensity	
##	1		L Condition1	1	JD_0623201	14_sample1_B	87141000	
##	2		L Condition1	1	JD_0623201	14_sample1_B	46167000	
##	3		L Condition1	1	JD_0623201	14_sample1_B	45425000	
##	4		L Condition1	1	JD_0623201	14_sample1_B	47094000	
##	5		L Condition1	1	JD_0623201	14_sample1_B	NA	
##	6		L Condition1	1	JD_0623201	14_sample1_B	62786000	

4.4.3 Different options for Progenesis in dataProcess

Progenesis reports 0(zero) for missing values and does not have NA. Therefore,in dataProcess, users need to use censoredInt='0'. Users can used the same choice for other options.

Further steps is the same as in general workflow (section 4.1).

4.5 Suggested workflow with Proteome Discoverer output for DDA

This section describes steps and considerations to properly format data processed by Proteome Discoverer, prior to the MSstats analysis. In the following example, another spike-in dataset processed by Proteome Discoverer is used to demonstrate. The datasets and details for data processing are available in MassIVE.quant, MSV000084181, Reanalysis: RMSV00000261.4

4.5.1 Load Proteome Discoverer output

3

13

The output from Proteome Discoverer includes several level of datasets. PSM sheet should be saved as csv as below. Here is the expected input for MSstats.

```
## Read PSM-level data
raw <- read.csv("dda_PD/ControlMixture_DDA_ProteomeDiscoverer_input.csv")</pre>
head(raw)
##
     Confidence.Level Search.ID Processing.Node.No Sequence Unique.Sequence.ID
## 1
                                                    4
                                                       AALGVLR
                                                                                   2
                  High
                                Α
                                                                                   4
## 2
                  High
                                Α
                                                         NLLLVK
                                                     4
## 3
                  High
                                Α
                                                    4
                                                         LIVVEK
                                                                                   5
## 4
                  High
                                Α
                                                    4
                                                         LLVDLK
                                                                                   6
## 5
                  High
                                Α
                                                    4
                                                         IITLLK
                                                                                  9
                                                         HEFLR
## 6
                  High
                                Α
                                                                                 10
##
     PSM. Ambiguity
## 1
       Unambiguous
## 2
       Unambiguous
## 3
       Unambiguous
## 4
       Unambiguous
## 5
       Unambiguous
## 6
       Unambiguous
                                                                                              Protein.Descrip
##
         Glycine--tRNA ligase beta subunit OS=Escherichia coli (strain K12) GN=glyS PE=1 SV=4 - [SYGB_E
## 1
## 2
                    50S ribosomal protein L3 OS=Escherichia coli (strain K12) GN=rplC PE=1 SV=1 - [RL3_E
                    50S ribosomal protein L4 OS=Escherichia coli (strain K12) GN=rplD PE=1 SV=1 - [RL4_E
## 3
## 4 Peptidyl-prolyl cis-trans isomerase D OS=Escherichia coli (strain K12) GN=ppiD PE=1 SV=1 - [PPID_E
## 5
                  3-dehydroquinate synthase OS=Escherichia coli (strain K12) GN=aroB PE=1 SV=1 - [AROB_E
## 6
                       GTP cyclohydrolase 1 OS=Escherichia coli (strain K12) GN=folE PE=1 SV=2 - [GCH1_E
     X...Proteins X...Protein.Groups Protein.Group.Accessions Modifications
## 1
                1
                                   1
                                                         P00961
## 2
                1
                                   1
                                                         P60438
## 3
                1
                                   1
                                                         P60723
## 4
                1
                                   1
                                                         POADY1
## 5
                1
                                   1
                                                         P07639
## 6
                1
                                   1
                                                         POA6T5
     Activation. Type DeltaScore DeltaCn Rank Search. Engine. Rank Precursor. Area
## 1
                  CID
                          1.0000
                                        0
                                              1
                                                                           3.77e+07
## 2
                  CID
                          0.5455
                                              1
                                        0
                                                                  1
                                                                           6.59e+08
## 3
                  CID
                          0.0000
                                        0
                                              1
                                                                  1
                                                                           3.83e+08
## 4
                  CID
                          0.4062
                                        0
                                              1
                                                                  1
                                                                           1.42e+07
## 5
                  CID
                           1.0000
                                              1
                                                                  1
                                                                           3.93e+07
                  CID
                          1.0000
## 6
                                        0
                                              1
                                                                  1
                                                                           2.80e+07
     QuanResultID Decoy.Peptides.Matched Exp.Value Homology.Threshold
## 1
                NA
                                         11
                                              0.00033
                                                                        13
## 2
                NA
                                         6
                                              0.00940
                                                                        13
                                                                        13
## 3
                NA
                                         17
                                              0.20000
## 4
                NA
                                              0.01300
                                                                        13
                                              0.00860
                                                                        13
## 5
                NA
                                        NA
## 6
                NA
                                          7
                                              0.27000
                                                                        13
##
     Identity. High Identity. Middle IonScore Peptides. Matched X.. Missed. Cleavages
## 1
                 13
                                                               5
                                  13
                                            48
                                                                                     0
## 2
                 13
                                  13
                                            33
                                                              11
                                                                                     0
                                                              19
```

0

20

13

```
## 4
                 13
                                  13
                                            32
                                                               6
                                                                                     0
## 5
                 13
                                  13
                                            34
                                                               5
                                                                                     0
## 6
                 13
                                  13
                                            19
                                                               4
                                                                                     0
                                  Ion.Inject.Time..ms. Intensity Charge m.z..Da.
##
     Isolation.Interference....
## 1
                               53
                                                      4
                                                           1700000
                                                                         2 350.2295
## 2
                                8
                                                      2
                                                           2520000
                                                                         2 350.2417
## 3
                               38
                                                      5
                                                                         2 350.7340
                                                            739000
                                                      3
                                                                         2 350.7342
## 4
                               34
                                                           1520000
## 5
                               13
                                                      2
                                                           2480000
                                                                         2 350.7520
                               41
                                                     70
## 6
                                                             53500
                                                                         2 351.1900
     MH...Da. Delta.Mass..Da. Delta.Mass..PPM. RT..min. First.Scan Last.Scan
## 1 699.4517
                              0
                                             0.68
                                                     32.17
                                                                  8180
                                                                             8180
## 2 699.4761
                              0
                                            -0.44
                                                     38.77
                                                                 10907
                                                                            10907
## 3 700.4607
                              0
                                             0.41
                                                     27.49
                                                                  6221
                                                                             6221
## 4 700.4611
                              0
                                             0.93
                                                     43.27
                                                                 12766
                                                                            12766
## 5 700.4968
                              0
                                            -0.03
                                                     42.75
                                                                 12552
                                                                            12552
## 6 701.3728
                              0
                                            -0.25
                                                     17.39
                                                                  2693
                                                                             2693
     MS.Order Ions.Matched Matched.Ions Total.Ions
## 1
          MS2
                     Jun-50
                                                   50
                                        6
## 2
          MS2
                     May-52
                                        5
                                                   52
## 3
          MS2
                     May-40
                                        5
                                                   40
## 4
          MS2
                     May-40
                                        5
                                                   40
## 5
          MS2
                                         4
                                                   40
                     Apr-40
## 6
          MS2
                                                   32
                     Apr-32
##
                                          Spectrum.File Annotation
## 1 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw
## 2 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw
                                                                 NA
## 3 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw
                                                                 NA
## 4 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw
                                                                 NA
## 5 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw
                                                                 NA
## 6 121219_S_CCES_01_01_LysC_Try_1to10_Mixt_1_1.raw
                                                                 NA
```

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding Run information. Users have to prepare as csv or txt file like 'ControlMixture_DDA_ProteomeDiscoverer_annotation.csv', which includes Run, Condition, and BioReplicate information, and load it in R.

Read in annotation including condition and biological replicates
annot <- read.csv("dda_PD/ControlMixture_DDA_ProteomeDiscoverer_annotation.csv", header = TRUE)
annot</pre>

```
##
                                                  Run Condition BioReplicate
     121219 S CCES 01 01 LysC Try 1to10 Mixt 1 1.raw Condition1
                                                                             1
     121219_S_CCES_01_02_LysC_Try_1to10_Mixt_1_2.raw Condition1
                                                                             1
     121219_S_CCES_01_03_LysC_Try_1to10_Mixt_1_3.raw Condition1
                                                                             1
     121219_S_CCES_01_04_LysC_Try_1to10_Mixt_2_1.raw Condition2
                                                                             2
                                                                             2
     121219_S_CCES_01_05_LysC_Try_1to10_Mixt_2_2.raw Condition2
     121219_S_CCES_01_06_LysC_Try_1to10_Mixt_2_3.raw Condition2
                                                                             2
                                                                             3
     121219_S_CCES_01_07_LysC_Try_1to10_Mixt_3_1.raw Condition3
     121219_S_CCES_01_08_LysC_Try_1to10_Mixt_3_2.raw Condition3
                                                                             3
     121219_S_CCES_01_09_LysC_Try_1to10_Mixt_3_3.raw Condition3
                                                                             3
## 10 121219_S_CCES_01_10_LysC_Try_1to10_Mixt_4_1.raw Condition4
                                                                             4
## 11 121219_S_CCES_01_11_LysC_Try_1to10_Mixt_4_2.raw Condition4
                                                                             4
                                                                             4
## 12 121219_S_CCES_01_12_LysC_Try_1to10_Mixt_4_3.raw Condition4
                                                                             5
## 13 121219_S_CCES_01_13_LysC_Try_1to10_Mixt_5_1.raw Condition5
## 14 121219_S_CCES_01_14_LysC_Try_1to10_Mixt_5_2.raw Condition5
                                                                             5
```

4.5.2 Preprocessing with DDA experiment from Proteome Discoverer output

PDtoMSstatsFormat function helps pre-processing for making right format of MSstats input from Proteome Discoverer output. Protein.Group.Accessions is used for ProteinName. The combination of Sequence and Modifications is used for PeptideSequence. Charge is used for PrecursorCharge. Precursor.Area is used for Intensity. In addition, there are several steps to filter out or to modify the data in order to get required information.

Here is the summary of pre-processing steps in PDtoMSstatsFormat function.

PDtoMSstatsFormat

- Extract essential information(columns)
- Rename column names
- Remove shared peptides
- Aggregate multiple measurements per feature and run : max or mean
- Remove features with all missing values or with less than 3 measurements across MS runs
- Remove protein with only one feature(Peptide ion)
- Add annotation for experimental design : Group, biological replicate, fraction information per MS run

Options for PDtoMSstatsFormat

- input: name of Proteome discover PSM output, which is long-format. "Protein.Group.Accessions", "#Proteins", "Sequence", "Modifications", "Charge", "Intensity", "Spectrum.File" are required.
- annotation: name of 'annotation.txt' or 'annotation.csv' data which includes Condition, BioReplicate, and Run information. 'Run' will be matched with 'Spectrum.File'.
- useNumProteinsColumn : TRUE removes peptides which have more than 1 in # Proteins column of PD output.
- useUniquePeptide: TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- summaryforMultipleRows: max(default), sum, or mean. MSstats assumes that there is only one measurement (peak intensity) for one feature and one run. When there are multiple measurements for certain feature and certain run, MSstats need to know which measurements need to be used for further analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and one run.
- **fewMeasurement** : remove or keep the featurew with few measurements.
 - 'remove': (default) remove the features that have 1 or 2 measurements across runs.
 - 'keep': keep all the features. However, it could generate the error in the step for fitting the statistical model.
- removeOxidationMpeptides: TRUE will remove the modified peptides including 'Oxidation (M)' in 'Modifications' column. FALSE is default.
- removeProtein_with1Peptide: TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.

- which quantification: Use 'Precursor.Area' (default) column for quantified intensities. 'Intensity' or 'Area' can be used instead.
- which.proteinid: Use 'Protein.Accessions' (default) column for protein name. 'Master.Protein.Accessions' can be used instead.
- which.sequence: Use 'Sequence' (default) column for peptide sequence. 'Annotated.Sequence' can be used instead.

For further details, visit the help file using the following code.

```
## check options for converting format
?PDtoMSstatsFormat
```

Now, we use PDtoMSstatsFormat function for this example dataset. We chose to remove the proteins with only 1 peptide ion.

- ## ** Multiple measurements in a feature and a run are summarized by summaryforMultipleRows.
- ## ** 633 features have all NAs or zero intensity values and are removed.
- ## ** 241 proteins, which have only one feature in a protein, are removed among 1512 proteins.

This function shows the progress. The output of PDtoMSstatsFormat, called quant, is ready for next step.

head(quant)

##		ProteinName I	Pepti	deModifiedS	Sequence	Precursor	Charge	${\tt FragmentIon}$	ProductCharge
##	1	P00961		I	AALGVLR_		2	NA	NA
##	2	P60438			NLLLVK_		2	NA	NA
##	3	P60723			LIVVEK_		2	NA	NA
##	4	POADY1			LLVDLK_		2	NA	NA
##	5	P07639			IITLLK_		2	NA	NA
##	6	POA6T5			HEFLR_		2	NA	NA
##		<pre>IsotopeLabel?</pre>	Туре	Condition	BioRepli	icate			
##	1		L	Condition1		1			
##	2		L	Condition1		1			
##	3		L	Condition1		1			
##	4		L	Condition1		1			
##	5		L	Condition1		1			
##	6		L	Condition1		1			
##						Rı	ın Inte	ensity	
##	1	121219_S_CCE	S_01 ₋	_01_LysC_Try	_1to10_N	Mixt_1_1.ra	aw 3.7	77e+07	
##	2	121219_S_CCES	S_01	01_LysC_Try	_1to10_N	Mixt_1_1.ra	aw 6.5	59e+08	
##	3	121219_S_CCES	S_01	01_LysC_Try	_1to10_N	Mixt_1_1.ra	3.8 w	33e+08	
##	4	121219_S_CCES	S_01	01_LysC_Try	_1to10_N	Mixt_1_1.ra	aw 1.4	12e+07	
##	5	121219_S_CCE	S_01	01_LysC_Try	_1to10_N	Mixt_1_1.ra	aw 3.9	93e+07	
##	6	121219_S_CCE	S_01_	01_LysC_Try	_1to10_N	Mixt_1_1.ra	aw 2.8	30e+07	

4.5.3 Different options for Proteome Discoverer in dataProcess

Progenesis reports NA for missing values. Therefore,in dataProcess, users need to use censoredInt='NA'. Users can used the same choice for other options.

Further steps is the same as in general workflow (section 4.1).

4.6 Suggested workflow with OpenMS output for DDA

This section describes steps and considerations to properly format data processed by OpenMS, prior to the MSstats analysis. In the following example, the raw files for the benchmark dataset (Choi, M. and Eren-Dogu, Z. F. and Colangelo, C. and Cottrell, J. and Hoopmann, M. R. and Kapp, E. A. and Kim, S. and Lam, H. and Neubert, T. A. and Palmblad, M. and Phinney, B. S. and Weintraub, S. T. and MacLean, B. and Vitek, O. 2017) are used. The datasets and details for data processing are available in OpenMS webpage, iPRG 2015 example dataset

4.6.1 Load OpenMS output

Here is the expected input for MSstats, which is output of OpenMS.

```
## Read PSM-level data
raw <- read.csv("dda_openms/iPRG_lfq_input_MSstats.csv")
head(raw)</pre>
```

##		ProteinName	PeptideSequence	Pred	cursorCharge	Fragn	mentIon
##	1	sp P09938 RIR2_YEAST	AAADALSDLEIK		2		NA
##	2	sp P09938 RIR2_YEAST	AAADALSDLEIK		2		NA
##	3	sp P09938 RIR2_YEAST	AAADALSDLEIK		2		NA
##	4	sp P09938 RIR2_YEAST	AAADALSDLEIK		2		NA
##	5	sp P09938 RIR2_YEAST	AAADALSDLEIK		2		NA
##	6	sp P09938 RIR2_YEAST	AAADALSDLEIK		2		NA
##		ProductCharge Isotope	eLabelType Condi	tion	BioReplicate	Run	Intensity
##	1	0	L	1	1	. 1	391797000
##	2	0	L	4	10	10	103656000
##	3	0	L	4	11	11	361107000
##	4	0	L	1	2	2	456756000
##	5	0	L	1	3	3	389268000
##	6	0	L	2	4	. 4	433488000

If you follow the workflow in OpenMS KNIME, annotation information should be already filled in.

4.6.2 Preprocessing with DDA experiment from OpenMS output

OpenMStoMSstatsFormat function helps pre-processing for making right format of MSstats input from OpenMS output.

Here is the summary of pre-processing steps in OpenMStoMSstatsFormat function.

OpenMStoMSstatsFormat

- Extract essential information(columns)
- Rename column names
- Remove shared peptides
- Aggregate multiple measurements per feature and run
- Remove features with all missing values or with less than 3 measurements across MS runs
- Remove protein with only one feature
- Add annotation for experimental design : Group, biological replicate, fraction information per MS run

Options for OpenMStoMSstatsFormat

- input: name of MSstats input report from OpenMS, which includes feature(peptide ion)-level data.
- annotation: name of 'annotation.txt' data which includes Raw.file, Condition, BioReplicate, and Run information. If annotation is already complete in OpenMS, use annotation=NULL (default). It will use the annotation information from input.
- useUniquePeptide: TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- summaryforMultipleRows: max(default), sum, or mean. MSstats assumes that there is only one measurement (peak intensity) for one feature and one run. When there are multiple measurements for certain feature and certain run, MSstats need to know which measurements need to be used for further analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and one run.
- **fewMeasurement**: remove or keep the featurew with few measurements.
 - 'remove': (default) remove the features that have 1 or 2 measurements across runs.
 - 'keep': keep all the features. However, it could generate the error in the step for fitting the statistical model.
- removeProtein_with1Feature : TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.

For further details, visit the help file using the following code.

```
## check options for converting format
?OpenMStoMSstatsFormat
```

Now, we use OpenMStoMSstatsFormat function for this example dataset. We chose to remove the proteins with shared peptides or only 1 peptide ion.

- ## ** O features have all NAs or zero intensity values and are removed.
- ## ** All peptides are unique peptides in proteins.
- ## ** 909 features have 1 or 2 intensities across runs and are removed.
- ## ** 698 proteins, which have only one feature in a protein, are removed among 2538 proteins.
- ## ** No multiple measurements in a feature and a run.

```
## Warning in OpenMStoMSstatsFormat(raw, removeProtein_with1Feature = TRUE): NAs
## introduced by coercion
```

This function shows the progress. The output of OpenMStoMSstatsFormat, called quant, is ready for next step.

```
## now 'quant' is ready for MSstats
head(quant)
```

##		ProteinName	Pept	tideSequer	ce Precursor	Charg	ge Fragment	Ion
##	1	sp D6VTK4 STE2_YEAST	EGEVEPVDMY	TPDTAADEEA	ARK .		3	NA
##	2	sp D6VTK4 STE2_YEAST	FYPGTLS	SFQTDSINNE)AK		2	NA
##	3	sp D6VTK4 STE2_YEAST		IGPFADAS	SYK		2	NA
##	4	sp D6VTK4 STE2_YEAST	NO	QFYQLPTPTS	SSK		2	NA
##	5	sp D6VTK4 STE2_YEAST	-	TFVSETADDI	EK		2	NA
##	6	sp D6VTK4 STE2_YEAST	TN	TITSDFTTST	CDR		2	NA
##		ProductCharge Isotope	LabelType (Condition	${\tt BioReplicate}$	Run	Intensity	
##	1	0	L	1	1	1	64757900	
##	2	0	L	1	1	1	38852700	
##	3	0	L	1	1	1	73225800	
##	4	0	L	1	1	1	63139900	
##	5	0	L	1	1	1	NA	
##	6	0	L	1	1	1	58905300	

4.6.3 Different options for OpenMS in dataProcess

Progenesis reports NA for missing values. Therefore,in dataProcess, users need to use censoredInt='NA'. Users can used the same choice for other options.

Further steps is the same as in general workflow (section 4.1).

5. DIA analysis with MSstats

5.1 Suggested workflow with Skyline output for DIA

The analysis for DIA with Skyline output is the same as the workflow with Skyline output for DDA. Please check section 4.2 and options form SkylinetoMSstatsFormat.

5.2 Suggested workflow with Spectronaut output for DIA

This section describes steps and considerations to properly format data processed by Spectronaut for SWATH/DIA experiments, prior to the MSstats analysis. In the following example, the raw files for the

benchmark dataset (Bruderer et al. 2015) are quantified by Spectronaut. The datasets and details for data processing are available in MassIVE.quant, MSV000081828, Reanalysis: RMSV000000252.2

5.2.1 Load Spectronaut output

We first load and access the dataset processed by Spectronaut.

```
# Read output from Spectronaut
raw <- read.csv("dia_spectronaut/Bruderer2015_DIA_Spectronaut_input.xls", sep="\t")</pre>
```

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding Run information. Users have to prepare as csv or txt file like 'Bruderer2015_DIA_Spectronaut_annotation.csv', which includes Run, Condition, and BioReplicate information, and load it in R.

```
## Read in annotation including condition and biological replicates
annot <- read.csv("dia_spectronaut/Bruderer2015_DIA_Spectronaut_annotation.csv", header = TRUE)
annot</pre>
```

```
##
                                   Run Condition BioReplicate
     B_D140314_SGSDSsample1_R01_MHRM
                                              S1
## 2 B_D140314_SGSDSsample1_R02_MHRM
                                                            S1
                                              S1
## 3 B D140314 SGSDSsample1 R03 MHRM
                                              S1
                                                            S<sub>1</sub>
## 4 B_D140314_SGSDSsample2_R01_MHRM
                                              S2
                                                            S2
## 5 B D140314 SGSDSsample2 R02 MHRM
                                              S2
                                                            S2
## 6 B_D140314_SGSDSsample2_R03_MHRM
                                              S2
                                                            S2
## 7 B D140314 SGSDSsample3 R01 MHRM
                                              S3
                                                            S3
## 8 B D140314 SGSDSsample3 RO2 MHRM
                                              S3
                                                            S3
## 9 B D140314 SGSDSsample3 R03 MHRM
                                              S3
                                                            S3
## 10 B_D140314_SGSDSsample4_R01_MHRM
                                              S4
                                                            S4
## 11 B_D140314_SGSDSsample4_R02_MHRM
                                              S4
                                                            S4
## 12 B_D140314_SGSDSsample4_R03_MHRM
                                              S4
                                                            S4
## 13 B_D140314_SGSDSsample5_R01_MHRM
                                              S5
                                                            S5
## 14 B_D140314_SGSDSsample5_R02_MHRM
                                                            S5
                                              S5
## 15 B_D140314_SGSDSsample5_R03_MHRM
                                              S5
                                                            S5
## 16 B_D140314_SGSDSsample6_R01_MHRM
                                              S6
                                                            S6
## 17 B_D140314_SGSDSsample6_R02_MHRM
                                              S6
                                                            S6
## 18 B_D140314_SGSDSsample6_R03_MHRM
                                              S6
                                                            S6
## 19 B_D140314_SGSDSsample7_R01_MHRM
                                              S7
                                                            S7
## 20 B D140314 SGSDSsample7 R02 MHRM
                                              S7
                                                            S7
## 21 B_D140314_SGSDSsample7_R03_MHRM
                                              S7
                                                            S7
## 22 B D140314 SGSDSsample8 R01 MHRM
                                              S8
                                                            S8
## 23 B_D140314_SGSDSsample8_R02_MHRM
                                                            S8
                                              S8
## 24 B D140314 SGSDSsample8 R03 MHRM
                                              S8
                                                            S8
```

5.2.2 Preprocessing with DIA experiment from Spectronaut output

The output from Spectronaut should look like below.

head(raw)

```
## R.Condition R.FileName R.Replicate PG.ProteinAccessions ## 1 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2 ## 2 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2 ## 3 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2 ## 4 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM 1 A0A0B4J2A2
```

```
## 5 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM
                                                                          AOAOB4J2A2
                                                              1
## 6 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM
                                                              1
                                                                          AOAOB4J2A2
     PG.ProteinGroups PG.Qvalue PG.Quantity PEP.GroupingKey PEP.StrippedSequence
                                     4662586 IIPGFMCQGGDFTR
## 1
           AOAOB4J2A2
                               0
                                                                    IIPGFMCQGGDFTR
## 2
           AOAOB4J2A2
                               0
                                     4662586
                                             IIPGFMCQGGDFTR
                                                                    IIPGFMCQGGDFTR
## 3
                               0
                                     4662586 IIPGFMCQGGDFTR
           AOAOB4J2A2
                                                                    IIPGFMCQGGDFTR
           AOAOB4J2A2
                               0
                                     4662586
                                             IIPGFMCQGGDFTR
                                                                    IIPGFMCQGGDFTR
           AOAOB4J2A2
## 5
                               0
                                     4662586
                                             IIPGFMCQGGDFTR
                                                                    IIPGFMCQGGDFTR
## 6
           AOAOB4J2A2
                               0
                                     4662586
                                              IIPGFMCQGGDFTR
                                                                    IIPGFMCQGGDFTR
##
     PEP.Quantity EG.iRTPredicted
                                                      EG.Library
## 1
          3303864
                         59.83870 S072_GSDS_DpD_Pulsar_Full.xls
                         59.83870 S072_GSDS_DpD_Pulsar_Full.xls
## 2
          3303864
## 3
          3303864
                         59.83870 S072_GSDS_DpD_Pulsar_Full.xls
                         59.83870 S072_GSDS_DpD_Pulsar_Full.xls
## 4
          3303864
                         59.83870 S072_GSDS_DpD_Pulsar_Full.xls
## 5
          3303864
## 6
          3303864
                          45.20149 S072_GSDS_DpD_Pulsar_Full.xls
##
                  EG.ModifiedSequence
                                                            EG.PrecursorId
         IIPGFMC[+C2+H3+N+O]QGGDFTR
                                           IIPGFMC[+C2+H3+N+O]QGGDFTR .2
## 2
         _IIPGFMC[+C2+H3+N+O]QGGDFTR_
                                           _IIPGFMC[+C2+H3+N+O]QGGDFTR_.2
         _IIPGFMC[+C2+H3+N+O]QGGDFTR_
                                           _IIPGFMC[+C2+H3+N+O]QGGDFTR_.2
## 3
## 4
         _IIPGFMC[+C2+H3+N+O]QGGDFTR_
                                           _IIPGFMC[+C2+H3+N+O]QGGDFTR_.2
         IIPGFMC[+C2+H3+N+O]QGGDFTR
                                           IIPGFMC[+C2+H3+N+O]QGGDFTR .2
## 6 _IIPGFM[+0]C[+C2+H3+N+0]QGDFTR_ _IIPGFM[+0]C[+C2+H3+N+0]QGDFTR_.2
        EG.Qvalue FG.Charge
                           2
## 1 3.355320e-12
## 2 3.355320e-12
                           2
## 3 3.355320e-12
                           2
                           2
## 4 3.355320e-12
                           2
## 5 3.355320e-12
## 6 4.455933e-14
##
## 1
          _IIPGFMC[+C2+H3+N+0]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full.:
## 2
          _IIPGFMC[+C2+H3+N+0]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full..
          _IIPGFMC[+C2+H3+N+0]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full..
## 3
          _IIPGFMC[+C2+H3+N+0]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full.:
## 4
          _IIPGFMC[+C2+H3+N+0]QGGDFTR_;A0A0B4J2A2.2;59.8387F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full..
## 5
    __IIPGFM[+0]C[+C2+H3+N+0]QGGDFTR_;AOAOB4J2A2.2;45.20149F:\\Data\\HRM_GS\\S072_GSDS_DpD_Pulsar_Full.
     FG.PrecMz FG.Quantity F.Charge F.FrgIon F.FrgLossType F.FrgMz F.FrgNum
     799.8763
                 3027798.8
                                   2
                                          y12
                                                     noloss 686.7923
## 1
     799.8763
                                   1
                                                     noloss 940.3942
                                                                             8
## 2
                 3027798.8
                                           y8
                                   1
                                                     noloss 652.3049
                                                                             6
## 3
     799.8763
                 3027798.8
                                           y6
     799.8763
                 3027798.8
                                   1
                                                     noloss 423.2350
                                                                             3
## 4
                                           уЗ
                                                                             7
## 5
      799.8763
                 3027798.8
                                   1
                                           у7
                                                     noloss 780.3635
                                   2
                                                                            12
     807.8738
                  257682.8
                                          y12
                                                     noloss 694.7897
     F.FrgType F.ExcludedFromQuantification F.NormalizedPeakArea
## 1
             У
                                       False
                                                         1880069.5
## 2
                                       False
                                                          382481.4
             У
## 3
             У
                                       False
                                                          331427.1
## 4
                                       False
                                                          244019.3
             У
## 5
                                       False
                                                          189801.4
             У
## 6
                                                          197765.4
                                       False
     F.NormalizedPeakHeight F.PeakArea F.PeakHeight
## 1
                  6854814.4 1687479.6
                                           6152623.5
## 2
                  1320585.1
                               343300.9
                                           1185307.5
```

```
## 3
                  1221639.0
                               297476.5
                                            1096497.2
## 4
                    891761.8
                               219022.5
                                            800411.9
                               170358.6
## 5
                    673177.2
                                            604218.5
## 6
                               174551.3
                    431701.5
                                             381027.4
```

The input data for MSstats is required to contain variables of ProteinName, PeptideSequence, PrecursorCharge, FragmentIon, ProductCharge, IsotopeLabelType, Condition, BioReplicate, Run, Intensity. These variable names should be fixed. Therefore, we need to get subset of useful columns and to rename them. Also several filtering steps are required. SpectronauttoMSstatsFormat function helps pre-processing for making right format of MSstats input from Spectronaut output. First, it uses only noloss from F.FrgLossType. If not, multiple measurements for each feature and run can be happend. Spectronaut provides the column named F.ExcludedFromQuantification based on XIC quality such as interference between chromatographies. Only features with F.ExcludedFromQuantification == 'False' should be used. PG.ProteinGroups is used for ProteinName. EG.ModifiedSequence is used for PeptideSequence. FG.Charge is used for PrecursorCharge. F.FrgIon is used for FragmentIon. F.Charge is used for ProductCharge. F.PeakArea with default option is used for Intensity. Then several filtering steps will be performed.

Here is the summary of pre-processing steps for SWATH/DIA experiment in SpectronauttoMSstatsFormat function.

SpectronauttoMSstatsFormat

- Extract essential information(columns)
- Use only 'noloss' in F.FrgLossType
- Filter by PG.Qvalue
- Remove shared peptides
- Aggregate multiple measurements per feature and run
- Remove features with all missing values or with less than 3 measurements across MS runs
- Remove protein with only one feature
- Add annotation for experimental design : Group, biological replicate, fraction information per MS run

This function shows the progress. The output of SpectronauttoMSstatsFormat, called quant, is ready for next step.

```
## now 'quant' is ready for MSstats
head(quant)
     ProteinName
##
                                   PeptideSequence PrecursorCharge FragmentIon
## 1
      AOAOB4J2A2
                      _IIPGFMC[+C2+H3+N+O]QGGDFTR_
                                                                             y12
      AOAOB4J2A2
                      _IIPGFMC[+C2+H3+N+O]QGGDFTR_
                                                                   2
## 2
                                                                              у8
                                                                              у6
      AOAOB4J2A2
                     _IIPGFMC[+C2+H3+N+O]QGGDFTR_
                                                                   2
## 3
                                                                   2
## 4
      AOAOB4J2A2
                      IIPGFMC[+C2+H3+N+O]QGGDFTR
                                                                              уЗ
                      _IIPGFMC[+C2+H3+N+O]QGGDFTR_
      AOAOB4J2A2
                                                                   2
## 5
                                                                              у7
     AOAOB4J2A2 _IIPGFM[+0]C[+C2+H3+N+0]QGGDFTR_
                                                                   2
                                                                             y12
     ProductCharge IsotopeLabelType Condition BioReplicate
                 2
## 1
                                   L
                                             S1
## 2
                 1
                                   L
                                             S1
                                                          S1
                 1
                                   L
                                             S1
                                                          S1
## 3
## 4
                 1
                                   L
                                             S1
                                                          S1
## 5
                 1
                                   L
                                             S1
                                                          S1
## 6
                 2
                                             S1
                                                          S1
                                   T.
##
                                  Run Intensity
## 1 B_D140314_SGSDSsample1_R01_MHRM 1687479.6
## 2 B D140314 SGSDSsample1 R01 MHRM
                                       343300.9
## 3 B_D140314_SGSDSsample1_R01_MHRM
                                       297476.5
## 4 B D140314 SGSDSsample1 R01 MHRM
                                       219022.5
## 5 B_D140314_SGSDSsample1_R01_MHRM
                                       170358.6
```

5.2.3 Different options for Spectronaut output of DIA experiment in dataProcess

174551.3

In dataProcess, users need to use censoredInt='0' for Spectronaut output. Spectronaut output generates very few number of NA. After applying Qvalue, zero intensities will be generated and those should be imputed.

Further steps is the same as in general workflow (section 4.1).

6 B_D140314_SGSDSsample1_R01_MHRM

5.3 Suggested workflow with DIA-Umpire output for DIA

This section describes steps and considerations to properly format data processed by DIA-Umpire for SWATH/DIA experiments, prior to the MSstats analysis. In the following example, the raw files for the benchmark dataset (Bruderer et al. 2015) are quantified by DIA-Umpire. The datasets and details for data processing are available in MassIVE.quant, MSV000081828, Reanalysis: RMSV000000252.3

5.3.1 Load DIA-Umpire output

We first load and access the dataset processed by DIA-Umpire.

```
# Read output from DIA_Umpire : three output from different levels.
raw.frag <- read.csv('dia_diaumpire/Bruderer2015_DIA_DIAumpire_input_FragSummary.xls', sep="\t")
raw.pep <- read.csv('dia_diaumpire/Bruderer2015_DIA_DIAumpire_input_PeptideSummary.xls', sep="\t")
raw.pro <- read.csv('dia_diaumpire/Bruderer2015_DIA_DIAumpire_input_ProtSummary.xls', sep="\t")
One file is for annotation information, required to fill in Condition and BioReplicate for corresponding Run
information. Users have to prepare as csv or txt file like 'Bruderer2015 DIA DIAumpire annotation.csv',
which includes Run, Condition, and BioReplicate information, and load it in R.
## Read in annotation including condition and biological replicates
annot <- read.csv("dia_diaumpire/Bruderer2015_DIA_DIAumpire_annotation.csv", header = TRUE)
annot
##
         Condition BioReplicate
                                                                Run
## 1
     SGSDSsample1 SGSDSsample1 B_D140314_SGSDSsample1_R01_MHRM_T0
      SGSDSsample1 SGSDSsample1 B_D140314_SGSDSsample1_R02_MHRM_T0
     SGSDSsample1 SGSDSsample1 B_D140314_SGSDSsample1_R03_MHRM_T0
## 3
      SGSDSsample2 SGSDSsample2 B_D140314_SGSDSsample2_R01_MHRM_T0
## 5
     SGSDSsample2 SGSDSsample2 B_D140314_SGSDSsample2_R02_MHRM_T0
     SGSDSsample2 SGSDSsample2 B_D140314_SGSDSsample2_R03_MHRM_T0
     SGSDSsample3 SGSDSsample3 B_D140314_SGSDSsample3_R01_MHRM_T0
## 7
     SGSDSsample3 SGSDSsample3 B_D140314_SGSDSsample3_R02_MHRM_T0
## 9 SGSDSsample3 SGSDSsample3 B_D140314_SGSDSsample3_R03_MHRM_T0
## 10 SGSDSsample4 SGSDSsample4 B D140314 SGSDSsample4 R01 MHRM T0
## 11 SGSDSsample4 SGSDSsample4 B_D140314_SGSDSsample4_R02_MHRM_T0
## 12 SGSDSsample4 SGSDSsample4 B_D140314_SGSDSsample4_R03_MHRM_T0
## 13 SGSDSsample5 SGSDSsample5 B_D140314_SGSDSsample5_R01_MHRM_T0
## 14 SGSDSsample5 SGSDSsample5 B D140314 SGSDSsample5 R02 MHRM T0
## 15 SGSDSsample5 SGSDSsample5 B D140314 SGSDSsample5 R03 MHRM T0
## 16 SGSDSsample6 SGSDSsample6 B_D140314_SGSDSsample6_R01_MHRM_T0
## 17 SGSDSsample6 SGSDSsample6 B D140314 SGSDSsample6 R02 MHRM T0
## 18 SGSDSsample6 SGSDSsample6 B_D140314_SGSDSsample6_R03_MHRM_T0
## 19 SGSDSsample7 SGSDSsample7 B_D140314_SGSDSsample7_R01_MHRM_T0
## 20 SGSDSsample7 SGSDSsample7 B_D140314_SGSDSsample7_R02_MHRM_T0
## 21 SGSDSsample7 SGSDSsample7 B D140314 SGSDSsample7 R03 MHRM T0
## 22 SGSDSsample8 SGSDSsample8 B_D140314_SGSDSsample8_R01_MHRM_T0
## 23 SGSDSsample8 SGSDSsample8 B_D140314_SGSDSsample8_R02_MHRM_T0
## 24 SGSDSsample8 SGSDSsample8 B_D140314_SGSDSsample8_R03_MHRM_T0
```

5.3.2 Preprocessing with DIA experiment from DIA-Umpire output

Here is the summary of pre-processing steps for DIA experiment in DIAUmpiretoMSstatsFormat function.

DIAUmpiretoMSstatsFormat

- Get selected fragments from DIA-Umpire
- Get selected peptides from DIA-Umpire
- Subtract the peak intensities for selected peptides and fragments
- Change the data format
- Remove shared peptides
- Aggregate multiple measurements per feature and run
- Remove features with all missing values or with less than 3 measurements across MS runs
- Remove protein with only one feature
- Add annotation for experimental design : Group, biological replicate, fraction information per MS run

${\bf Options} \ {\bf for} \ {\tt DIAUmpiretoMSstatsFormat}$

- raw.frag: name of FragSummary_date.xls data, which includes feature-level data.
- raw.pep: name of PeptideSummary_date.xls data, which includes selected fragments information.
- raw.pro: name of ProteinSummary_date.xls data, which includes selected peptides information.
- annotation: name of 'annotation.txt' data which includes Raw.file, Condition, BioReplicate, and Run information.
- useSelectedFrag : TRUE (default) will use the selected fragment for each peptide. 'Selected_fragments' column is required.
- useSelectedPep: TRUE (default) will use the selected peptide for each protein. 'Selected_peptides' column is required.
- summaryforMultipleRows: max(default), sum, or mean. MSstats assumes that there is only one measurement (peak intensity) for one feature and one run. When there are multiple measurements for certain feature and certain run, MSstats need to know which measurements need to be used for further analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and one run
- **fewMeasurement**: remove or keep the featurew with few measurements.
 - 'remove': (default) remove the features that have 1 or 2 measurements across runs.
 - 'keep': keep all the features. However, it could generate the error in the step for fitting the statistical model.
- removeProtein_with1Feature : TRUE will remove the proteins which have only 1 feature, which is the combination of peptide, precursor charge, fragment and charge. FALSE is default.

For further details, visit the help file using the following code.

** Got the selected fragments.

```
## ** Extract the data from selected fragments and/or peptides.
## ** 0 features have all NAs or zero intensity values and are removed.
## ** 10824 features have 1 or 2 intensities across runs and are removed.
## ** 26 proteins, which have only one feature in a protein, are removed among 3645 proteins.
```

This function shows the progress. The output of DIAUmpiretoMSstatsFormat, called quant, is ready for next step.

** No multiple measurements in a feature and a run.

```
## now 'quant' is ready for MSstats
head(quant)
```

```
##
                                    Run
                                                       ProteinName
## 1 B_D140314_SGSDSsample1_R01_MHRM_T0 sp|A0A0B4J2A2|PAL4C_HUMAN
## 2 B_D140314_SGSDSsample1_R01_MHRM_T0 sp|A0A0B4J2A2|PAL4C_HUMAN
## 3 B_D140314_SGSDSsample1_R01_MHRM_T0 sp|A0A0B4J2A2|PAL4C_HUMAN
## 4 B_D140314_SGSDSsample1_R01_MHRM_T0 sp|A0A0B4J2A2|PAL4C_HUMAN
## 5 B_D140314_SGSDSsample1_R01_MHRM_T0 sp|A0A0B4J2A2|PAL4C_HUMAN
## 6 B_D140314_SGSDSsample1_R01_MHRM_T0 sp|A0A0B4J2A2|PAL4C_HUMAN
                              PeptideSequence FragmentIon Intensity
## 1 HTGSGILSMANAGPNTNGSQFFI[57.021(C)]CTAK_3
                                                     y10_1
## 2 HTGSGILSMANAGPNTNGSQFFI[57.021(C)]CTAK_3
                                                     y11_1
## 3 HTGSGILSMANAGPNTNGSQFFI[57.021(C)]CTAK_3
                                                      y4_1
                                                                  NA
## 4 HTGSGILSMANAGPNTNGSQFFI[57.021(C)]CTAK_3
                                                                  NA
                                                      y5_1
## 5 HTGSGILSMANAGPNTNGSQFFI[57.021(C)]CTAK_3
                                                      y6_1
                                                                  NA
## 6 HTGSGILSMANAGPNTNGSQFFI[57.021(C)]CTAK_3
                                                      y7_1
                                                                  NA
    PrecursorCharge ProductCharge IsotopeLabelType
                                                        Condition BioReplicate
                  NΑ
                                                   L SGSDSsample1 SGSDSsample1
## 1
                                NA
## 2
                  NA
                                NA
                                                   L SGSDSsample1 SGSDSsample1
## 3
                                                   L SGSDSsample1 SGSDSsample1
                  NΑ
                                NA
## 4
                  NA
                                NA
                                                   L SGSDSsample1 SGSDSsample1
## 5
                  NΑ
                                NA
                                                   L SGSDSsample1 SGSDSsample1
## 6
                                NA
                                                   L SGSDSsample1 SGSDSsample1
                  NA
```

5.3.3 Different options for DIA-Umpire output of DIA experiment in dataProcess

In dataProcess, users need to use censoredInt='NA' for DIA-Umpire output.

Further steps is the same as in general workflow (section 4.1).

5.4 Suggested workflow with OpenSWATH output for SWATH

This section describes steps and considerations to properly format data processed by OpenSWATH for SWATH experiments, prior to the MSstats analysis. In the following example, the dataset processed and quantified by OpenSWATH and available as supplementary in (Röst et al. 2014) is used. The datasets and details for data processing are available in MassIVE.quant, MSV000081829, Reanalysis: RMSV000000253.2

5.4.1 Load OpenSWATH output

```
## Read fragment-level data
raw <- read.csv("dia_openswath/Rost2014_DIA_OpenSWATH_input.txt", sep="\t")</pre>
head(raw)
##
                                                                                          transition_group
## 1
            AQUA4SWATH_YeastB_GSMADVPK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.feature
## 2 AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.feature
       AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:267)/2_run0_split_napedro_L120417_001_SW_combined.feature
       AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.feature
## 5 AQUA4SWATH HMLangeB GDSSLLLAVTEVK(UniMod:259)/2 run0 split napedro L120417 001 SW combined.feature
  6 AQUA4SWATH_HMLangeB_ITVDDSDQGANAK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.feature
     decoy main_var_xx_swath_prelim_score var_bseries_score
## 1 FALSE
                                 1.2878970
## 2 FALSE
                                 0.1706103
                                                            5
## 3 FALSE
                                                            2
                                 1.1339196
                                                            2
## 4 FALSE
                                 1.7598289
                                                            2
## 5 FALSE
                                -0.4115174
                                 1.0441584
## 6 FALSE
                                                            1
##
     var_elution_model_fit_score var_intensity_score var_isotope_correlation_score
## 1
                       0.9342550
                                          0.453363758
                                                                           0.9621812
## 2
                        0.8913419
                                          0.049083725
                                                                           0.6132449
## 3
                                                                           0.3554128
                        0.999998
                                          0.009851618
## 4
                                          0.095405653
                                                                           0.9065832
                        0.9159949
## 5
                       0.9574775
                                          0.021453197
                                                                           0.9215580
## 6
                       0.9746000
                                          0.022167918
                                                                           0.4878706
##
     var_isotope_overlap_score var_library_corr var_library_rmsd var_log_sn_score
                    0.00000000
## 1
                                      -0.1055161
                                                        0.27253090
                                                                          2.6731795
                                                                          0.4186867
## 2
                    0.06965649
                                      -0.5652690
                                                        0.30030363
## 3
                    0.22701794
                                      -0.6904735
                                                        0.07683261
                                                                          0.7115797
## 4
                    0.10497624
                                       0.9654186
                                                        0.21724993
                                                                          2.2435553
## 5
                    0.02678354
                                      -0.2470041
                                                        0.30010703
                                                                          0.3742150
## 6
                    0.84251969
                                       0.8373865
                                                        0.08390017
                                                                          1.5353173
##
     var_massdev_score var_massdev_score_weighted var_norm_rt_score
## 1
             10.605493
                                          8.722201
                                                          0.037829778
## 2
              3.506636
                                          1.525251
                                                          0.053104479
## 3
              1.922673
                                          1.770099
                                                          0.059778618
## 4
              6.326571
                                          7.671188
                                                          0.037207495
## 5
             10.654442
                                         13.899227
                                                          0.027236154
## 6
                                          3.023133
                                                          0.007901597
              5.657834
     var_xcorr_coelution var_xcorr_coelution_weighted var_xcorr_shape
## 1
               3.3763883
                                                              0.8278485
                                             1.9254634
## 2
               2.9055453
                                             0.9019211
                                                              0.7211294
## 3
                                                              0.8000000
               0.9163978
                                             0.4743998
## 4
               2.6757296
                                             1.1959883
                                                              0.8199334
```

```
## 5
               1.8944289
                                            0.7742008
                                                            0.8040568
## 6
               1.8595018
                                            0.2477762
                                                            0.8121000
     var_xcorr_shape_weighted var_yseries_score
                    0.7850388
## 1
## 2
                    0.7406344
                                              3
                                              3
## 3
                    0.7628001
                                              2
## 4
                    0.7884498
## 5
                    0.8094922
                                              0
## 6
                    0.8723227
                                              0
##
                                                                                        transition_group
## 1
            AQUA4SWATH_YeastB_GSMADVPK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.feature
  2 AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.feature
##
       AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:267)/2_run0_split_napedro_L120417_001_SW_combined.feature
       AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.feature
## 5 AQUA4SWATH_HMLangeB_GDSSLLLAVTEVK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.feature
  6 AQUA4SWATH_HMLangeB_ITVDDSDQGANAK(UniMod:259)/2_run0_split_napedro_L120417_001_SW_combined.feature
##
                                                    filename
                                                                   RT
## 1
          0 split napedro L120417 001 SW combined.featureXML 1024.232
## 2
          0 split_napedro_L120417_001_SW_combined.featureXML 2525.123
## 3
          0 split_napedro_L120417_001_SW_combined.featureXML 4923.724
## 4
          0 split_napedro_L120417_001_SW_combined.featureXML 2396.661
          0 split_napedro_L120417_001_SW_combined.featureXML 4217.872
## 5
          0 split_napedro_L120417_001_SW_combined.featureXML 1058.414
## 6
##
                         id
                                 Sequence
                                                    FullPeptideName Charge
                                                                               m.z
## 1 f_1353009549277083696
                                 GSMADVPK
                                               GSMADVPK (UniMod: 259)
                                                                         2 406.707
## 2 f 17169785622655779335 APIPTALDTDSSK APIPTALDTDSSK(UniMod:259)
                                                                         2 662.348
## 3 f_14843615568932246264
                              DITAFDETLFR
                                            DITAFDETLFR(UniMod: 267)
                                                                         2 669.334
     f_2705275134670444755
                              LNTIYQNDLTK
                                            LNTIYQNDLTK(UniMod:259)
                                                                         2 665.858
     f_9381457823485960609 GDSSLLLAVTEVK GDSSLLLAVTEVK(UniMod:259)
                                                                         2 670.382
     2 671.322
##
                       ProteinName assay_rt
                                              delta_rt leftWidth
                                                                   norm_RT
## 1
        228484
                 AQUA4SWATH_YeastB 1160.081 -135.84854
                                                         1003.92 -19.18298
## 2
         11528 AQUA4SWATH_HMLangeA 2343.868
                                            181.25584
                                                         2513.89
                                                                  24.41045
## 3
          1784 AQUA4SWATH_HMLangeA 4711.441
                                            212.28267
                                                         4920.69
                                                                  94.07786
## 4
         41457 AQUA4SWATH HMLangeA 2525.725 -129.06375
                                                         2384.16
                                                                  20.67925
          4107 AQUA4SWATH_HMLangeB 4306.552 -88.67945
## 5
                                                         4214.01 73.57638
## 6
           762 AQUA4SWATH HMLangeB 1091.456 -33.04119
                                                         1045.90 -18.19016
     nr_peaks peak_apices_sum rightWidth rt_score sn_ratio total_xic
##
            4
                        23302
                                 1061.95 3.7829778 14.485954
## 1
                                                                503975
            4
## 2
                         1673
                                 2537.79 5.3104479 1.519964
                                                                234864
            4
## 3
                          902
                                 4924.10 5.9778618 2.037207
                                                                181087
            4
                         8532
                                 2411.47 3.7207495 9.426787
## 4
                                                                434534
## 5
            4
                         1065
                                 4227.67 2.7236154
                                                   1.453850
                                                                191440
## 6
                          291
                                 1062.97 0.7901597 4.642799
                                                                 34374
##
     dotprod_score library_dotprod library_manhattan manhatt_score
## 1
         0.7223189
                         0.7550611
                                           0.6275367
                                                         0.7230707
## 2
         0.6545768
                         0.7396598
                                           0.6218496
                                                         0.8495160
## 3
         0.7349210
                         0.9816014
                                           0.1471980
                                                         0.7705343
                                                         0.7852044
## 4
         0.7527736
                         0.8719077
                                           0.5787663
## 5
         0.6493268
                         0.7414075
                                           0.6934909
                                                         0.8909054
## 6
         0.4477453
                                           0.2175255
                         0.9752496
                                                         1.0719205
##
     xx_lda_prelim_score xx_swath_prelim_score
## 1
                3.488009
                                             0
## 2
                1.007469
                                             0
```

```
## 3
                2.232398
                                              0
## 4
                                              0
                3.770504
                1.713495
## 5
                                              0
                                              0
## 6
                3.736117
##
                                          aggr_Peak_Area aggr_Peak_Apex
## 1 153339.000000;67621.000000;5210.000000;2314.000000
                                                             NA; NA; NA; NA
         803.000000;6614.000000;2073.000000;2038.000000
## 2
                                                             NA; NA; NA; NA
            520.000000;403.000000;405.000000;456.000000
## 3
                                                             NA; NA; NA; NA
## 4
        1849.000000;37105.000000;410.000000;2093.000000
                                                             NA; NA; NA; NA
            904.000000;110.000000;3073.000000;20.000000
## 5
                                                             NA; NA; NA; NA
## 6
            120.000000;180.000000;140.000000;322.000000
                                                             NA; NA; NA; NA
##
## 1
                                    AQUA4SWATH_YeastB_GSMADVPK(UniMod: 259)/2_y4; AQUA4SWATH_YeastB_GSMADV
      AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)/2_y10;AQUA4SWATH_HMLangeA_APIPTALDTDSSK(UniMod:259)
## 2
## 3
               AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:267)/2_y6; AQUA4SWATH_HMLangeA_DITAFDETLFR(UniMod:
               AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:259)/2_y8; AQUA4SWATH_HMLangeA_LNTIYQNDLTK(UniMod:
## 4
       AQUA4SWATH_HMLangeB_GDSSLLLAVTEVK(UniMod:259)/2_y7;AQUA4SWATH_HMLangeB_GDSSLLLAVTEVK(UniMod:259)
## 5
  6 AQUA4SWATH HMLangeB ITVDDSDQGANAK(UniMod:259)/2 y9;AQUA4SWATH HMLangeB ITVDDSDQGANAK(UniMod:259)/2
     log10_total_xic
                             LD1 peak_group_rank
                                                     d score
##
                                                               m_score
## 1
            5.702409 -1.9493868
                                                1 -0.6243745 0.4629052
## 2
            5.370816 -2.4461163
                                                1 -1.1333458 0.5062006
## 3
            5.257887 -1.0880511
                                                1 0.2581884 0.3345616
            5.638024 -0.9814508
                                                1 0.3674158 0.3138670
## 4
## 5
            5.282033 -2.4287808
                                                1 -1.1155831 0.5038482
## 6
            4.536230 -1.7118092
                                                1 -0.3809420 0.4358001
```

One file is for annotation information, required to fill in Condition and BioReplicate for corresponding Run information. Users have to prepare as csv or txt file like 'Rost2014_DIA_OpenSWATH_annotation.csv', which includes Run, Condition, and BioReplicate information, and load it in R.

Read in annotation including condition and biological replicates: ControlMixture_DDA_ProteomeDiscove
annot <- read.csv("dia_openswath/Rost2014_DIA_OpenSWATH_annotation.csv", header = TRUE)
annot</pre>

##		Filename	Condition	BioReplicate
##	1	<pre>split_napedro_L120417_001_SW_combined.featureXML</pre>	512	512
##	2	split_napedro_L120417_002_SW_combined.featureXML	256	256
##	3	<pre>split_napedro_L120417_003_SW_combined.featureXML</pre>	128	128
##	4	<pre>split_napedro_L120417_004_SW_combined.featureXML</pre>	64	64
##	5	<pre>split_napedro_L120417_005_SW_combined.featureXML</pre>	32	32
##	6	<pre>split_napedro_L120417_006_SW_combined.featureXML</pre>	16	16
##	7	${\tt split_napedro_L120417_007_SW_combined.featureXML}$	8	8
##	8	${\tt split_napedro_L120417_008_SW_combined.featureXML}$	4	4
##	9	${\tt split_napedro_L120417_009_SW_combined.featureXML}$	2	2
##	10	${\tt split_napedro_L120417_010_SW_combined.featureXML}$	1	1
##	11	${\tt split_napedro_L120419_001_SW_combined.featureXML}$	512	512
##	12	${\tt split_napedro_L120419_002_SW_combined.featureXML}$	256	256
##	13	${\tt split_napedro_L120419_003_SW_combined.featureXML}$	128	128
##	14	${\tt split_napedro_L120419_004_SW_combined.featureXML}$	64	64
##	15	${\tt split_napedro_L120419_005_SW_combined.featureXML}$	32	32
##	16	${\tt split_napedro_L120419_006_SW_combined.featureXML}$	16	16
##	17	${\tt split_napedro_L120419_007_SW_combined.featureXML}$	8	8
##	18	${\tt split_napedro_L120419_008_SW_combined.featureXML}$	4	4
##	19	${\tt split_napedro_L120419_009_SW_combined.featureXML}$	2	2
##	20	<pre>split_napedro_L120419_010_SW_combined.featureXML</pre>	1	1

```
## 21 split_napedro_L120420_001_SW_combined.featureXML
                                                              512
                                                                           512
## 22 split_napedro_L120420_002_SW_combined.featureXML
                                                              256
                                                                           256
## 23 split napedro L120420 003 SW combined.featureXML
                                                              128
                                                                           128
## 24 split_napedro_L120420_004_SW_combined.featureXML
                                                               64
                                                                            64
## 25 split_napedro_L120420_005_SW_combined.featureXML
                                                               32
                                                                            32
## 26 split napedro L120420 006 SW combined.featureXML
                                                                            16
                                                               16
## 27 split napedro L120420 007 SW combined.featureXML
                                                                             8
                                                                8
## 28 split_napedro_L120420_008_SW_combined.featureXML
                                                                4
                                                                             4
## 29 split_napedro_L120420_009_SW_combined.featureXML
                                                                2
                                                                             2
## 30 split_napedro_L120420_010_SW_combined.featureXML
                                                                             1
##
##
      split_napedro_L120417_001_SW_combined.featureXML
   1
      split_napedro_L120417_002_SW_combined.featureXML
## 3
      split_napedro_L120417_003_SW_combined.featureXML
## 4
      split_napedro_L120417_004_SW_combined.featureXML
## 5
      split_napedro_L120417_005_SW_combined.featureXML
      split_napedro_L120417_006_SW_combined.featureXML
      split napedro L120417 007 SW combined.featureXML
## 8
      split_napedro_L120417_008_SW_combined.featureXML
      split_napedro_L120417_009_SW_combined.featureXML
## 10 split_napedro_L120417_010_SW_combined.featureXML
## 11 split_napedro_L120419_001_SW_combined.featureXML
## 12 split_napedro_L120419_002_SW_combined.featureXML
## 13 split napedro L120419 003 SW combined.featureXML
## 14 split_napedro_L120419_004_SW_combined.featureXML
## 15 split_napedro_L120419_005_SW_combined.featureXML
## 16 split_napedro_L120419_006_SW_combined.featureXML
## 17 split_napedro_L120419_007_SW_combined.featureXML
## 18 split_napedro_L120419_008_SW_combined.featureXML
## 19 split_napedro_L120419_009_SW_combined.featureXML
## 20 split_napedro_L120419_010_SW_combined.featureXML
## 21 split_napedro_L120420_001_SW_combined.featureXML
## 22 split_napedro_L120420_002_SW_combined.featureXML
## 23 split_napedro_L120420_003_SW_combined.featureXML
## 24 split_napedro_L120420_004_SW_combined.featureXML
## 25 split_napedro_L120420_005_SW_combined.featureXML
## 26 split napedro L120420 006 SW combined.featureXML
## 27 split_napedro_L120420_007_SW_combined.featureXML
## 28 split_napedro_L120420_008_SW_combined.featureXML
## 29 split_napedro_L120420_009_SW_combined.featureXML
## 30 split napedro L120420 010 SW combined.featureXML
```

5.4.2 Preprocessing with DIA experiment from OpenSWATH output

The output from OpenSWATH should look like below.

head(raw)

Here is the summary of pre-processing steps for SWATH/DIA experiment in OpenSWATHtoMSstatsFormat function.

OpenSWATHtoMSstatsFormat

- Remove the decoys
- Filter by m_score
- Change data format
- Remove shared peptides
- Aggregate multiple measurements per feature and run : max or mean
- Remove features with all missing values or with less than 3 measurements across MS runs
- Remove protein with only one feature
- Add annotation for experimental design : Group, biological replicate, fraction information per MS run

Options for OpenSWATHtoMSstatsFormat

- input: name of MSstats input report from OpenSWATH, which includes feature-level data.
- annotation :name of 'annotation.txt' data which includes Raw.file, Condition, BioReplicate, and Run information. Run should be the same as 'filename'.
- filter_with_mscore: TRUE (default) will filter out the features that have greater than mscore_cutoff in m score column. Those features will be removed.
- mscore_cutoff: Cutoff for m_score. default is 0.01.
- useUniquePeptide: TRUE (default) removes peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
- summaryforMultipleRows: max(default), sum, or mean. MSstats assumes that there is only one measurement (peak intensity) for one feature and one run. When there are multiple measurements for certain feature and certain run, MSstats need to know which measurements need to be used for further analysis. Users can use highest(max), sum or mean among multiple measurements for one feature and one run.
- **fewMeasurement**: remove or keep the featurew with few measurements.
 - 'remove': (default) remove the features that have 1 or 2 measurements across runs.
 - 'keep': keep all the features. However, it could generate the error in the step for fitting the statistical model.
- removeProtein_with1Feature : TRUE will remove the proteins which have only 1 peptide and charge. FALSE is default.

For further details, visit the help file using the following code.

```
## check options for converting format
?OpenSWATHtoMSstatsFormat
```

Now, we use OpenSWATHtoMSstatsFormat function for this example dataset. We chose to remove the proteins with only 1 feature.

** Features with great than 0.01 in m_score are removed.

```
## ** 0 features have all NAs or zero intensity values and are removed.
## ** All peptides are unique peptides in proteins.
## ** 31 features have 1 or 2 intensities across runs and are removed.
## ** All proteins have at least two features.
```

** No multiple measurements in a feature and a run.

This function shows the progress. The output of OpenMStoMSstatsFormat, called quant, is ready for next step.

```
## now 'quant' is ready for MSstats
head(quant)
```

```
##
             ProteinName
                                    PeptideSequence PrecursorCharge
## 1 AQUA4SWATH_HMLangeA ADSTGTLVITDPTR(UniMod_267)
## 2 AQUA4SWATH_HMLangeA ADSTGTLVITDPTR(UniMod_267)
                                                                   2
## 3 AQUA4SWATH_HMLangeA ADSTGTLVITDPTR(UniMod_267)
                                                                   2
## 4 AQUA4SWATH_HMLangeA ADSTGTLVITDPTR(UniMod_267)
                                                                   2
## 5 AQUA4SWATH_HMLangeA ALGYEDATQALGR(UniMod_267)
## 6 AQUA4SWATH_HMLangeA ALGYEDATQALGR(UniMod_267)
                                               FragmentIon ProductCharge
## 1 AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod_267)/2_y10
## 2 AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod_267)/2_y7
## 3 AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod_267)/2_y8
                                                                      NA
## 4 AQUA4SWATH_HMLangeA_ADSTGTLVITDPTR(UniMod_267)/2_y9
                                                                      NA
## 5
       AQUA4SWATH_HMLangeA_ALGYEDATQALGR(UniMod_267)/2_y7
                                                                      NΑ
## 6
       AQUA4SWATH_HMLangeA_ALGYEDATQALGR(UniMod_267)/2_y8
                                                                      NA
     IsotopeLabelType Condition BioReplicate
## 1
                    L
                            512
## 2
                    L
                            512
                                         512
## 3
                                         512
                    L
                            512
## 4
                    L
                            512
                                         512
## 5
                    L
                            512
                                         512
## 6
                            512
                                         512
##
                                                   Run Intensity
## 1 split_napedro_L120417_001_SW_combined.featureXML
## 2 split_napedro_L120417_001_SW_combined.featureXML
                                                               0
## 3 split_napedro_L120417_001_SW_combined.featureXML
                                                               0
## 4 split_napedro_L120417_001_SW_combined.featureXML
                                                               0
## 5 split napedro L120417 001 SW combined.featureXML
                                                               0
## 6 split_napedro_L120417_001_SW_combined.featureXML
                                                               0
```

5.4.3 Different options for OpenSWATH output of DIA experiment in dataProcess

In dataProcess, users need to use censoredInt='0' for OpenSWATH output.

Further steps is the same as in general workflow (section 4.1).

6. SRM analysis with MSstats

6.1 Suggested workflow for SRM

This section describes a typical workflow for SRM experiments with heavy labeled-isotope peptides. The example dataset, SRMRawData in MSstats is used for demonstration.

6.1.1 Preparing the data for MSstats input

The first step in using the MSstats is to format the data as described in Section 2. SRMRawData is already formatted for MSstats input.

```
# Check the first 6 rows in SRMRawData head(SRMRawData)
```

##		${\tt ProteinName}$	Pepti	deSequence	PrecursorCha	arge	${\tt FragmentIon}$	ProductCharge
##	243	IDHC	ATD	VIVPEEGELR		2	у7	NA
##	244	IDHC	ATD	VIVPEEGELR		2	у7	NA
##	245	IDHC	ATD	VIVPEEGELR		2	у8	NA
##	246	IDHC	ATD	VIVPEEGELR		2	у8	NA
##	247	IDHC	ATD	VIVPEEGELR		2	у9	NA
##	248	IDHC	ATD	VIVPEEGELR		2	у9	NA
##		<pre>IsotopeLabel</pre>	LType	Condition 1	BioReplicate	Run	Intensity	
##	243		Н	1	ReplA	1	84361.08350	
##	244		L	1	ReplA	1	215.13526	
##	245		Н	1	ReplA	1	29778.10188	
##	246		L	1	ReplA	1	98.02134	
##	247		H	1	ReplA	1	17921.29255	
##	248		L	1	ReplA	1	60.47029	

6.1.2 Processing the data

It is the same workflow as described in section 4.1.2. Only difference is the normalization with heavy labeled isotope peptides.

Different normalization option Let's see the different normalization effect with SRM dataset including two proteins.

```
unique(SRMRawData$ProteinName)
```

```
## [1] IDHC PMG2
## 45 Levels: ACEA ACH1 ACON ADH1 ADH2 ADH4 ALDH6 ALF CISY1 CISY2 DHSA ... SUCB
```

No normalization No normalization is performed. If you had your own normalization before MSstats, you should use like below.

```
srm.nonorm <- dataProcess(SRMRawData, normalization=FALSE)
dataProcessPlots(srm.nonorm, type='QCplot', address='srm_noNorm_')</pre>
```


Equalize medians normalization The default option for normalization is 'equalizeMedians', where all the intensities in a run are shifted by a constant, to equalize the median of intensities across runs for label-free experiment. This normalization method is appropriate when we can assume that the majority of proteins do not change across runs. Be cautious when using the equalizeMedians option for a label-free dataset with only a small number of proteins. For label based experiment, equalizeMedians equalizes the median of reference intensities across runs and is generally proper even for a dataset with a small number of proteins.

```
srm.equalmed <- dataProcess(SRMRawData, normalization = 'equalizeMedians')
dataProcessPlots(srm.equalmed, type='QCplot', address='srm_equalM_')</pre>
```


Quantile normalization The distribution of all the intensities in each run will become the same across runs for label-free experiment. For label-based experiment, the distribution of all the reference intensities will be become the same across runs and all the endogenous intensities are shifted by a constant corresponding to reference intensities.

```
srm.quantile <- dataProcess(SRMRawData, normalization='quantile')
dataProcessPlots(srm.quantile, type='QCplot', address='srm_quantile_')</pre>
```


Global standards normalization: example 1 If you have a spiked in standard across all MS runs, you may set this to globalStandards and define the standard with nameStandards option. Global standard peptide or Protein names, which you can assume that they have the same abundance across MS runs, should be assigned in the vector for this option.

First, let's assume that PMG2 proteins is the spike-in protein and shoule be equal amount across MS runs.

Second, let's assume that IDHC proteins is the spike-in protein and shoule be equal amount across MS runs.

Global standards normalization: example 2

Further steps is the same as in general workflow (section 4.1).

Reference

Benjamini, Y., and Y. Hochberg. 1955. "Controlling the false discovery rate: a practical and powerful approach to multiple testing." *J.R. Statist. Soc. B* 57 (1): 289–300.

Bruderer, R., O. M. Bernhardt, T. Gandhi, S. M Miladinović, L.-Y. Cheng, S. Messner, T. Ehrenberger, et al. 2015. "Extending the limits of quantitative proteome profiling with Data-Independent Acquisition and application to acetaminophen-treated three-dimensional liver microtissues." *Mol. Cell. Proteomics* 14 (5): 1400–1410.

Choi, M. and Eren-Dogu, Z. F. and Colangelo, C. and Cottrell, J. and Hoopmann, M. R. and Kapp, E. A. and Kim, S. and Lam, H. and Neubert, T. A. and Palmblad, M. and Phinney, B. S. and Weintraub, S. T. and MacLean, B. and Vitek, O. 2017. "ABRF Proteome Informatics Research Group (iPRG) 2015 Study: Detection of differentially abundant proteins in label-free quantitative LC-MS/MS experiments." *J. Proteome Res.* https://doi.org/10.1021/acs.jproteome.6b00881.

Cox, Jürgen, and Matthias Mann. 2008. "MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification." *Nature Biotechnology* 26 (12): 1367–72.

MacLean, B., D. M. Tomazela, N. Shulman, M. Chambers, G. Finney, B. Frewen, R. Kern, D. L Tabb, D. C. Liebler, and M. J. MacCoss. 2010. "Skyline: An open source document editor for creating and analyzing targeted proteomics experiments." *Bioinformatics* 26–27: 966.

Mueller, L. N., O. Rinner, A. Schmidt, S. Letarte, B. Bodenmiller, M.-Y. Brusniak, O. Vitek, R. Aebersold, and M. Müller. 2007. "SuperHirn - a novel tool for high resolution LC-MS-based peptide/protein profiling." *Proteomics* 7: 3470–80.

Röst, H. L., G. Rosenberger, P. Navarro, L. Gillet, S. M. Miladinović, O. T. Schubert, W. Wolski, et al. 2014. "OpenSWATH enables automated, targeted analysis of data- independent acquisition MS data." *Nat. Biotechnol.* 32 (3): 219–23.

Sturm, Marc, Andreas Bertsch, Clemens Gröpl, Andreas Hildebrandt, Rene Hussong, Eva Lange, Nico Pfeifer, et al. 2008. "OpenMS – An open-source software framework for mass spectrometry." *BMC Bioinformatics* 9 (1): 163.

Tsou, C.-C., D. Avtonomov, B. Larsen, M. Tucholska, H. Choi, A.-C. Gingras, and A. I. Nesvizhskii. 2015. "DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics." *Nat. Methods* 12 (3): 258–64.