Underinvestment in a Profitable Technology: The Case of Seasonal Migration in Bangladesh

Research by

Gharad Bryan, Shyamal Chowdhury, and Ahmed Mushfiq Mubarak (2014)

Presentation by
Sajid Al Sanai
University of Washington

Outline

- Context
- Research Question
- Experiment Design
- Estimation and Results
- Model
- Findings

Bangladesh

- Bangladesh is subdivided (in order of precedence) into:
 - Divisions, districts, sub-districts, and villages
- Rangpur is a division lying in northwest of country
- Accounts for 7% (9.6 million) of national population
- 5.3 million (57%) of people live below the poverty line
- Experiences higher rates of poverty compared to rest of country
- Must regularly cope with pre-harvest seasonal famine known as monga

- Monga occurs during post-planting and pre-harvest between September-November
- Amman rice (staple crop) harvest occurs in December
- Employment opportunities scarce during *monga* in largely agrarian areas
- Similar lean seasons experienced widely throughout South Asia and Sub-Saharan Africa
- During monga, households exhibit seasonal patterns of income and spending
 - Seasonality most pronounced in Rangpur out of all divisions in Bangladesh
 - Total household incomes p.c. decrease by 50-60%
 - Total household expenditures p.c. decrease by 15-20%
- Source: HIES (2005)

- Rice prices highly linked to food expenditure p.c. (staple)
- Rice prices rise, with diminishing incomes
- Households while facing higher food expenditure p.c., also reduce rice consumption by 22% in famine
- Erosion of purchasing power drives households below subsistence during monga
- Expected detrimental effects
- Source: HIES (2005)

- Question-driven research agenda
- Try to understand how a famine can occur annually despite existence of potential mitigation strategies, through the lens of migration
- Seasonal migration a primary mechanism households use to diversify income sources in India (Bannerjee and Duflo, 2007)
- Puzzle:
 - Seasonal out-migration from *monga*-prone districts in Rangpur low despite absence of local non-farm employment opportunities
 - Inter-regional variation in income and poverty between Rangpur and the rest of Bangladesh are much larger than inter-seasonal within variation
 - Suggests that potential inter-regional arbitrage opportunity for smoothing incomes exists through migration for employment

- Posit that out-migration to urban areas for employment is an underutilised technology
- Technology is developed through migration episodes with the underlying impact of developing networks and local knowledge et cetera
- Offers returns to investment from migratory employment through remittance to origin
- Migration outcomes are uncertain and households are risk-averse
- Fear high cost of failure which may be unlikely
- Posit that alternative technology adoption slow due to:
 - Individual-specific risk
 - Poverty vulnerability
- Leads to low levels of experimentation and diffusion of technologies
- Randomised intervention allowed researchers to generate first experimental estimates of the effects of migration (which they use to build a baseline model)

Experiment Design

- In 2008, two most *monga*-prone districts in Rangpur chosen
 - Kurigram & Lalmonirhat
- From each district, randomly selected 100 villages
- Randomly selected 19 households in each village satisfying the following criteria:
 - Own <50 decimals of land
 - ≥1 household member forced to miss meals in 2007 *monga* season
- 1900 households obtained
- Each of 100 villages are randomly assigned to control and treatment groups
- (19 households in each village all assigned to same group)

- Control 16 villages
- Treatment
 - Incentivised
 - Cash 37 villages
 - Credit 31 villages
 - \$8.50 for ticket + \$3 on arrival claimed within x days of arrival
 - Non-incentivised
 - Information 16 villages

Timeline

- Baseline survey July 2008
- Experiment August 2008
- Consumption survey:
 - Dec 2008
 - May, Dec 2009
- Migration survey:
 - Dec 2008
 - May, Dec 2009
 - Jul 2011

- Baseline survey
 - Household roster, characteristics, assets, economic activity, production, credit and savings use, consumption, expenditure, previous migration, migration expectations
- Migration survey:
 - Migration episodes, employment, remittance
- Consumption survey:
 - Assets, credit and savings use, economic activity, production, consumption, expenditure

PROGRAM TAKE-UP RATES^a

	Incentivized	Cash	Credit	Not Incentivized	Info	Control	Diff. $(I - NI)$
Migration rate in 2008	58.0%	59.0%	56.8%	36.0%	35.9%	36.0%	22.0***
	(1.4)	(1.9)	(2.1)	(2.0)	(2.8)	(2.8)	(2.4)
Migration rate in 2009	46.7%	44.6%	49.1%	37.5%	34.4%	40.5%	9.2***
	(1.4)	(1.9)	(2.1)	(2.0)	(2.8)	(2.9)	(2.5)
Migration rate in 2011b	39%			32%			7.0**
	(2.1)			(2.5)			(3.3)

Estimation

$$Y_{ivj} = \alpha + \beta_1 Cash_{ivj} + \beta_2 Credit_{ivj} + \beta_3 Information_{ivj} + \varphi_j + v_{ivj},$$

EFFECTS OF MIGRATION BEFORE DECEMBER 2008 ON CONSUMPTION AMONGST REMAINING HOUSEHOLD MEMBERS^a

	ITT							
	Cash	Credit	Info	ITT	ITT	IV	IV	OLS
			Panel.	A: 2008 Consu	ımption			
Consumption of food	61.876**	50.044*	15.644	48.642**	44.183*	280.792**	260.139**	102.714***
	(29.048)	(28.099)	(40.177)	(24.139)	(23.926)	(131.954)	(128.053)	(17.147)
Consumption of non-food	34.885***	27.817**	22.843	20.367**	16.726*	115.003**	99.924*	59.085***
	(13.111)	(12.425)	(17.551)	(9.662)	(9.098)	(56.692)	(51.688)	(8.960)
Total consumption	96.566***	76.743**	38.521	68.359**	60.139**	391.193**	355.115**	160.696***
	(34.610)	(33.646)	(50.975)	(30.593)	(29.683)	(169.431)	(158.835)	(22.061)
Total calories	106.819*	93.429	-85.977	142.629***	129.901***	842.673***	757.602***	317.495***
(per person per day)	(62.974)	(59.597)	(76.337)	(47.196)	(48.057)	(248.510)	(250.317)	(41.110)

			Panel B:	2009 Consum	ıption			
Consumption of food	34.273	22.645	-30.736	43.983**	34.042*	230.811**	186.279*	1.687
	(23.076)	(23.013)	(29.087)	(17.589)	(18.110)	(100.536)	(96.993)	(14.687)
Consumption of non-food	3.792 (16.186)	31.328* (18.135)	-8.644 (20.024)	21.009* (11.954)	14.877 (12.031)	110.324* (65.333)	74.216 (63.792)	6.133 (10.312)
Total consumption	38.065	53.973	-39.380	64.992***	48.919*	341.135**	260.495**	7.820

ITT

(23.958)

95.621**

(39.187)

No

ITT

(24.713)

78.564*

(40.600)

Yes

IV

(137.029)

510.327**

(221.010)

No

Info

(39.781)

-81.487

(60.141)

No

OLS

(21.044)

20.361

(28.392)

No

IV

(131.851)

434.602**

(216.670)

Yes

ITT

Credit

(34.057)

23.995

(62.207)

No

Cash

(30.728)

83.242

(52.766)

No

Total calories

Controls?

(per person per day)

Estimation

$$Y_{ivj} = \alpha + \beta Migrant_{ivj} + \theta X_{ivj} + \varphi_j + v_{ivj},$$

$$Migrant_{ivj} = \lambda + \rho Z_v + \gamma X_{ivj} + \varphi_j + \varepsilon_{ivj},$$

EFFECTS OF MIGRATION BEFORE DECEMBER 2008 ON CONSUMPTION AMONGST REMAINING HOUSEHOLD MEMBERS^a

	ITT							
	Cash	Credit	Info	ITT	ITT	IV	IV	OLS
			Panel.	A: 2008 Consu	ımption			
Consumption of food	61.876**	50.044*	15.644	48.642**	44.183*	280.792**	260.139**	102.714***
	(29.048)	(28.099)	(40.177)	(24.139)	(23.926)	(131.954)	(128.053)	(17.147)
Consumption of non-food	34.885***	27.817**	22.843	20.367**	16.726*	115.003**	99.924*	59.085***
	(13.111)	(12.425)	(17.551)	(9.662)	(9.098)	(56.692)	(51.688)	(8.960)
Total consumption	96.566***	76.743**	38.521	68.359**	60.139**	391.193**	355.115**	160.696***
	(34.610)	(33.646)	(50.975)	(30.593)	(29.683)	(169.431)	(158.835)	(22.061)
Total calories	106.819*	93.429	-85.977	142.629***	129.901***	842.673***	757.602***	317.495***
(per person per day)	(62.974)	(59.597)	(76.337)	(47.196)	(48.057)	(248.510)	(250.317)	(41.110)

			Panel B:	2009 Consum	ıption			
Consumption of food	34.273	22.645	-30.736	43.983**	34.042*	230.811**	186.279*	1.687
	(23.076)	(23.013)	(29.087)	(17.589)	(18.110)	(100.536)	(96.993)	(14.687)
Consumption of non-food	3.792 (16.186)	31.328* (18.135)	-8.644 (20.024)	21.009* (11.954)	14.877 (12.031)	110.324* (65.333)	74.216 (63.792)	6.133 (10.312)
Total consumption	38.065	53.973	-39.380	64.992***	48.919*	341.135**	260.495**	7.820

ITT

(23.958)

95.621**

(39.187)

No

ITT

(24.713)

78.564*

(40.600)

Yes

IV

(137.029)

510.327**

(221.010)

No

Info

(39.781)

-81.487

(60.141)

No

OLS

(21.044)

20.361

(28.392)

No

IV

(131.851)

434.602**

(216.670)

Yes

ITT

Credit

(34.057)

23.995

(62.207)

No

Cash

(30.728)

83.242

(52.766)

No

Total calories

Controls?

(per person per day)

- Data of migrant's earnings (nonexperimental) and savings collected at the destination
- Incentivised households earned BDT 7451 (~USD 100) on average during monga and saved half of it
- Non-incentivised groups earned higher, suggesting they are more experienced and have engaged in this activity prior to the newly induced

MIGRANT EARNINGS AND SAVINGS AT DESTINATION (DATA FOR MIGRANTS ONLY; NON-EXPERIMENTAL)^a

	All Migrants	Incentivized	Not Incentivized	Diff.
Total savings by household	3490.47	3506.59	3434.94	71.65
	(97.22)	(110.83)	(202.80)	(232.91)
Total earnings by household	7777.19	7451.27	8894.40	-1443.129**
	(244.77)	(264.99)	(586.14)	(583.83)
Savings per day	56.76 (1.15)	56.46 (1.29)	57.79 (2.56)	-1.33 (2.77)
Earnings per day	99.39	96.09	111.15	-15.06**
	(1.75)	(1.92)	(4.0)	(4.2)
Remittances per day	18.34	16.94	23.33	-6.39**
	(1.06)	(1.19)	(2.28)	(2.55)
One-way travel cost per episode	264.55 (3.41)	264.12 (3.80)	266.00 (7.62)	-1.88 (8.16)

Model

$$B(x) = \max_{c \le x} \left[u(c) + \delta \int_{S} B(y_{S} + R(x - c)) d\mu(s) \right],$$

$$G(x) = \max_{c \le x+m} \left[u(c) + \delta \int_{S} G(y_{S} + R(x+m-c)) d\mu(s) \right].$$

$$V(x) = \max \left\{ \max_{c \le x} \left[u(c) + \delta \int_{S} V(y_s + R(x - c)) d\mu(s) \right], \right.$$

$$V(x) = \max \left\{ \max_{c \le x} \left[u(c) + \delta \int_{S} V(y_s + R(x - c)) d\mu(s) \right] \right\}$$

 $\pi_G G(x) + (1 - \pi_G)B(x - F)$.

- Calibration yields results that do not match data
 - Simulate for cutoff points for cash and credit
 - Overlay interval on distribution of consumption in control group
 - Region within interval is proportion of control group predicted as induced to migrate
- For risk aversion (1.5), estimates matched data
- However, only the case without forward-looking households and without savings
- (When households are assumed forward-looking and can save, risk aversion needed to be implausibly high to match data)

- Qualitative evaluation of model shows that
 - Risk
 - Subsistence
 - Learning / experience
- ... are important explanations of experimental findings

- Income variability found empirically is realised through draws of state-dependent y
 - Absolute deviations of s.d. of consumption between surveys greatly differ
- Background risk motivates buffer stock savings
 - Given households are prudent and impatient, risk of income variability motivates households to engage in buffer stock savings
- Household perception is that migration is risky and behave as if risk averse
 - Experiment repeated in 2011 at time of survey with 33 additional villages
 - Control, Conditional Credit, Unconditional Credit, and Conditional Credit with Bogra Rainfall Insurance

- Excessive rainfall limits employment at destination in rickshaw transport and construction
- The higher the rainfall, the less this treatment group would repay
- If little to no rainfall, the treatment group pays an additional premium
- Basis risk: Probability that income is low at destination while full loan + premium remains payable due to little rainfall
- Treatment group induced to migrate with insurance is decreasing in basis risk
 - Households assigned to Bogra in 2008 30% likelier to migrate with insurance
 - Others are 8.4% more likely to migrate with insurance
 - Those with less asset developed bear greater basis risk
 - Basis risk factors into decision-making

- Learnings from migration are individual-specific
 - Data on social relationships within village collected in baseline survey
 - Upon regressing remigration in 2009 on
 - past migration in 2008
 - no. of friends who migrated
 - no. of family who migrated
 - ... latter variables had no significant impact on likelihood of remigration compared to own past migration.
 - People learn from their own experiences but not from those of others

- 60% of 2011 migrants say they returned to same employer at same destination
- Employers have incomplete information on workers
- Asymmetry is cleared in time suggesting migrants build an asset which yields returns
- Difficult for migrants to resolve this uncertainty through learning from others

- Subsistence
 - Daily caloric intake 800-1300 p.c.
 - According to model, households may not migrate when close to subsistence
 - Compared distribution of expenditure against cost of minimum calorie requirement
 - Verifies that high proportion of households in control are close to subsistence
- If households are risk averse to falling below subsistence
 - Those at margin should not be migrating in control group
 - Treatment should have largest effect on households at subsistence

Panel A: Migration Rates and Baseline Subsistence Level (by Treatment Status)

Subsistence is defined as percentage of food expenditures on total expenditures

- Proportion of individuals within calorie intake interval defined as subsistence by treatment group
- Those not incentivised saw a greater proportion of non-migrants
- Those incentivised saw a higher proportion of migrants

Findings

- Small incentive lead to large seasonal migration
- On average, migration was successful
- Households given incentive likelier to remigrate
- Model captured poverty trap where households at margins faced risk of falling below subsistence from migration
- Hesitant to draw policy implications due to limitations of quantitative model
- Unable to explain fully why households choose not to save to migrate

- Migration support programs are helpful to alleviate effects of monga
- More cost-effective than on-going food subsidies (current anti-famine tool)
- Microcredit currently focused on entrepreneurial development
- Can be augmented to facilitate spatial and seasonal labour market matching with urban employment opportunities