CAPITOLUL 3. MODELUL DE REGRESIE LINIARĂ MULTIPLĂ

ESTIMAREA		INTERPRETARE			
punctuală a parametrilor β_0 și β_j	b_0	b_0 : <i>nivelul mediu estimat</i> al variabilei dependente (Y) atunci când variabilele independente $(X_1, X_2 \neq i X_3)$ iau simultan valoarea zero			
$(j=\overline{1,p})$	$b_{j} (j = \overline{1, p})$ $b_{j} = \frac{\Delta Y}{\Delta X_{j}}$	Exemplu: $p = 3 \Rightarrow$ sunt 3 variabile independente $(X_1, X_2 \leqslant i X_3)$ b_1 : la o creștere a variabilei independente X_1 cu 1 unitate, variabila dependentă (Y) variază (scade sau crește în funcție de semn), în medie, cu b_1 , în condițiile în care influența celorlalte variabile independente $(X_2 \leqslant i X_3)$ se menține constantă b_2 : la o creștere a variabilei independente X_2 cu 1 unitate, variabila dependentă (Y) variază (scade sau crește în funcție de semn), în medie, cu b_2 , în condițiile în care influența celorlalte variabile independente $(X_1 \leqslant i X_3)$ se menține constantă b_3 : la o creștere a variabilei independente X_3 cu 1 unitate, variabila dependentă (Y) variază (scade sau crește în funcție de semn), în medie, cu b_3 , în condițiile în care influența celorlalte variabile independente $(X_1 \leqslant i X_2)$ se menține constantă			
prin interval de încredere a parametrilor β_0 și β_j	$IC(\beta_0): \left[\boldsymbol{b}_0 \pm \boldsymbol{t}_{\alpha/2;n-k} \boldsymbol{s}_{\widehat{\boldsymbol{\beta}}_0} \right]$ $IC(\beta_j): \left[\boldsymbol{b}_j \pm \boldsymbol{t}_{\alpha/2;n-k} \boldsymbol{s}_{\widehat{\boldsymbol{\beta}}_j} \right]$ $(\boldsymbol{j} = \overline{\boldsymbol{1}, \boldsymbol{p}})$	Cu o probabilitate de $(1 - \alpha)$, se poate garanta că parametrul β_0 este acoperit_de intervalul $b_0 \pm t_{\alpha/2;n-k}s_{\widehat{\beta}_0}$ Cu o probabilitate de $(1 - \alpha)$, se poate garanta că parametrul β_j este acoperit_de intervalul $b_j \pm t_{\alpha/2;n-k}s_{\widehat{\beta}_j}$			
coeficientului de corelație bivariată	între Y şi X_1 : r_{y1} între Y şi X_2 : r_{y2} între Y şi X_3 : r_{y3}	r : indică sensul (după semn) și măsoară intensitatea (după valoarea în modul) legăturii dintre două variabile. $ r = 0 \qquad 0 \leftarrow r \qquad r \rightarrow 0, 5 \leftarrow r \qquad r \rightarrow 1 \qquad r = 1$ $ nu \text{ există o leg. liniară de intensitate slabă între } \qquad \text{ leg. liniară de intensitate } \qquad \text{ interesitate } \qquad inte$			

		$r_{y2} = -0,57$: între Y și X_2 există o legătură liniară inversă (după semn) și de intensitate moderată (după valoarea în modul $ r $) $r_{y3} = -0,87$: între Y și X_3 există o legătură liniară inversă (după semn) și de intensitate puternică (după valoarea în modul $ r $)				
coeficientului de corelație parțială	între Y și X_1 : $r_{y1.23}$ între Y și X_2 : $r_{y2.13}$ între Y și X_3 : $r_{y3.12}$	r: indică sensul (după semn) și măsoară intensitatea (după valoarea în modul) legăturii dintre două variabile				
		r = 0	$0 \leftarrow r $	$ r \rightarrow 0, 5 \leftarrow r $	r o 1	r = 1
	3. 1 y3.12	nu există o leg. liniară între Y și X	leg. liniară de intensitate slabă între Y și X	leg. liniară de intensitate <i>moderată</i> între <i>Y</i> și <i>X</i>	leg. liniară de intensitate <i>puternică</i> între <i>Y</i> și <i>X</i>	leg. liniară perfectă între Y și X
		Exemplu:				
		$r_{y1.23} = 0,25$: între Y și X_1 există o legătură liniară directă (după semn) și de intensitate slabă (după valoarea în modul $ r $), în condițiile în care influența celorlalte variabile independente (X_2 și X_3) se menține constantă $r_{y2.13} = -0,57$: între Y și X_2 există o legătură liniară inversă (după semn) și de intensitate moderată (după valoarea în modul $ r $), în condițiile în care influența celorlalte variabile independente (X_1 și X_3) se menține constantă $r_{y3.12} = -0,87$: între Y și X_3 există o legătură liniară inversă (după semn) și de intensitate puternică (după valoarea în modul $ r $), în condițiile în care influența celorlalte variabile independente (X_1 și X_2) se menține constantă				
raportului de determinație multiplă η ²	$R^2 = \frac{ESS}{TSS} = 1 - \frac{RSS}{TSS}$	 R²: măsoară cât din variația totală a variabilei dependente (Y) este explicată de modelul de regresie SAU de variația simultană a variabilelor independente Exemplu: R² = 0,311 (R²% = 31,1%) Variația variabilei dependente (Y) este explicată în proporție de 31,1% de variația simultană a variabilelor independente (X₁, X₂ și X₃). Restul de 68,9% reprezintă influența factori nespecificați în model (factorii reziduali). 				
raportului de corelație multiplă η	$R = \sqrt{R^2}$	R: măsoară intensitatea legăturii liniare dintre variabile				

		R = 0	0 ← R	$R \rightarrow 0, 5 \leftarrow R$	$R \rightarrow 1$	R = 1
		nu există o leg. liniară între variabile	leg. liniară de intensitate <i>slabă</i> între variabile	leg. liniară de intensitate <i>moderată</i> între variabile	leg. liniară de intensitate puternică între variabile	leg. liniară perfectă între variabile între variabile
		Exemplu:				
		R = 0,558 Între variabila d legătură liniară		și variabilelor ind moderată.	dependente (X_1 , X_2)	X_2 ș i X_3) există o
raportului de determinație multiplă ajustat $\overline{\eta}^2$	$\overline{R}^2 = 1 - (1 - R^2) \frac{n - 1}{n - k}$ SAU	\overline{R}^2 : măsoară mai precis cât din variația totală a variabilei dependente este explicat de modelul de regresie SAU de <u>variația simultană</u> a variabilelor independente. Exemplu: $\overline{R}^2 = 0,276$ ($\overline{R}^2\% = 27,6\%$): Se interpretează la fel ca R^2 , dar oferă un rezultat mai precis având în vedere că ține cont de numărul de variabile independente incluse în model. Așadar, variația variabilei dependente (Y) este explicată în proporție de $27,6\%$ de <u>variația simultană</u> a variabilelor independente (X_1, X_2 și X_3). Restul de $62,4\%$ reprezintă influența altor factori neincluși în model (factorii aleatori sau reziduali).				
	$\overline{R}^2 = 1 - \frac{RSS}{TSS} \frac{n-1}{n-k}$					
coeficienților standardizați	$\widetilde{b}_{j} \ (j = \overline{1,p})$	Exemplu: $p = 3 \Rightarrow$ sunt 3 variabile independente $(X_1, X_2 \le i X_3)$ $\tilde{\boldsymbol{b}}_1$: la o creștere a variabilei independente X_1 cu 1 <u>abatere standard</u> , variabila dependentă (Y) variază (scade sau crește în funcție de semn), în medie, cu \boldsymbol{b}_1 <u>abateri standard</u> , în condițiile în care influența celorlalte variabile independente $(X_2 \le i X_3)$ se menține constantă				
		$\widetilde{\boldsymbol{b}}_2$: la o creștere a variabilei independente X_2 cu 1 <u>abatere standard</u> , variabila dependentă (Y) variază (scade sau crește în funcție de semn), în medie, cu \boldsymbol{b}_2 <u>abateri standard</u> , în condițiile în care influența celorlalte variabile independente $(X_1 \circ i X_3)$ se menține constantă $\widetilde{\boldsymbol{b}}_3$: la o creștere a variabilei independente X_3 cu 1 <u>abatere standard</u> , variabila dependentă (Y) variază (scade sau crește în funcție de semn), în medie, cu \boldsymbol{b}_3 <u>abateri standard</u> , în condițiile în care influența celorlalte variabile independente $(X_1 \circ i X_2)$ se menține constantă			medie, cu b 2	
					medie, cu b 3	

TESTAREA						
Testarea constantei β_0 și a coeficienților de regresie parțiali β_j ($j=\overline{1,p}$) Ipoteze: $H_0: \beta_0=0$ (parametr semnificativă de 0 SA nu este semnificativă $H_1: \beta_0 \neq 0$ (parametr de 0 SAU constanta nu constanta		$H_0: \beta_0 = 0$ (parametrul β_0 nu diferă semnificativ de 0 SAU constanta modelului nu este semnificativă statistic) $H_1: \beta_0 \neq 0$ (parametrul β_0 diferă semnificativ de 0 SAU constanta modelului este semnificativă statistic)	H_0 : $β_j = 0$ (coeficientul de regresie parțial $β_j$ nu diferă semnificativ de 0, ceea ce înseamnă că variabila independentă X_j nu are o influență parțială semnificativă asupra variabilei dependente Y SAU X_j nu explică semnificativ variația lui Y , în condițiile în care celelalte variabile independente se mențin constante) H_1 : $β_j \neq 0$ (coeficientul de regresie parțial $β_j$ diferă semnificativ de 0, ceea ce înseamnă că variabila independentă X_j are o influență parțială semnificativă asupra variabilei dependente Y SAU X_j explică semnificativ variația lui Y , în condițiile în care celelalte variabile independente se mențin constante)			
	Valoarea teoretică a statisticii test <i>Student</i> :	$t_{teoreti}$	$c = t_{\alpha/2;n-k}$			
	Valoarea calculată a statisticii test <i>Student</i> :	$(\beta_0): \boldsymbol{t_{calc}} = \frac{\boldsymbol{b_0}}{s_{\widehat{\boldsymbol{\beta}_0}}}$	(β_j) : $t_{calc} = \frac{b_j}{s_{\widehat{\beta}_j}}$			
	Decizia:	Dacă se ține cont de valoarea calculată a testului, regula de decizie este următoarea: - dacă $ t_{calc} \leq t_{\alpha/2;n-k}$, nu se respinge ipoteza nulă (H_0) - dacă $ t_{calc} > t_{\alpha/2;n-k}$, se respinge ipoteza nulă (H_0) , în condițiile unui risc α Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $Sigt \geq \alpha$, nu se respinge ipoteza nulă (H_0) - dacă $Sigt < \alpha$, se respinge H_0 , în condițiile unui risc α				
Testarea coeficienților de corelație bivariați (de ex. ρ_{y1}) și a coeficienților de corelație parțiali (de ex. $\rho_{y1.23}$)	Ipoteze:	$H_0: \rho_{y1} = 0$ (coeficientul de corelație bivariată ρ_{y1} nu diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile $(Y \text{ și } X_1)$ nu există o legătură liniară semnificativă SAU cele două variabile $(Y \text{ și } X_1)$ nu sunt corelate semnificativ) $H_1: \rho_{y1} \neq 0$ (coeficientul de corelație bivariată ρ_{y1} diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile $(Y \text{ și } X_1)$	$H_0: \rho_{y1.2} = 0$ (coeficientul de corelație parțială $\rho_{y1.23}$ nu diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_1) nu există o legătură liniară semnificativă, <u>în</u> condițiile în care celelalte variabile independente (X_2 și X_3) se menține constant SAU cele două variabile (Y și X_1) nu sunt corelate semnificativ, <u>în condițiile în care celelalte variabile independente</u> (X_2 și X_3) se menține constant)			

		X_1) există o legătură liniară semnificativă SAU cele două variabile (Y și X_1) sunt corelate semnificativ)	$H_1: \rho_{y1.2} \neq 0$ (coeficientul de corelație <u>parțială</u> $\rho_{y1.23}$ diferă semnificativ de 0, ceea ce înseamnă că între cele două variabile (Y și X_1) există o legătură liniară semnificativă, <u>în condițiile în care celelalte variabile independente (X_2 și X_3) se menține constant SAU cele două variabile (Y și X_1) sunt corelate semnificativ, <u>în condițiile în care celelalte variabile independente (X_2 și X_3) se menține constant)</u></u>		
	Valoarea teoretică a statisticii test <i>Student</i> :	$t_{teoretic} = t_{lpha/2; n-2}$	$t_{teoretic} = t_{lpha/2; n-k}$		
	Valoarea calculată a statisticii test <i>Student</i> :	$t_{calc} = rac{r_{y1}}{\sqrt{rac{1 - r_{y1}^2}{n - 2}}}$	$t_{calc} = \frac{r_{y1.23}}{\sqrt{\frac{1 - r_{y1.23}^2}{n - k}}}$		
	Decizia:	Dacă se ține cont de valoarea calculată a testulu - dacă $ t_{calc} \le t_{\alpha/2;n-k}$, nu se respinge - dacă $ t_{calc} > t_{\alpha/2;n-k}$, se respinge ip Dacă se ține cont de semnificația testului, regu - dacă $Sigt \ge \alpha$, nu se respinge ipoteza - dacă $Sigt < \alpha$, se respinge H_0 , în contra	e ipoteza nulă (H_0) oteza nulă (H_0) , în condițiile unui risc α a de decizie este următoarea: nulă (H_0)		
Testarea modelului de regresie și a raportului de determinație η^2 (sau raportului de corelație η)	Ipoteze:	H_0 : $β_0 = 0$ şi $β_1 = 0$ şi $β_2 = 0$ (toţi coeficienții de regresie sunt simultan 0, ceea ce înseamnă că modelul de regresie nu explică semnificativ dependența liniară dintre variabile SAU modelul de regresie construit nu este corect specificat) H_1 : $β_1 ≠ 0$ sau $β_2 ≠ 0$ (există cel puțin un coeficient de regresie semnificativ statistic, ceea ce înseamnă că există cel puțin un model de regresie semnificativ statistic SAU modelul de regresie explică semnificativ dependența liniară dintre variabile)	H_0 : $η = 0$ (raportul de determinație $η^2$ sau raportul de corelația $η$ nu diferă semnificativ de 0, ceea ce înseamnă că între variabile nu există c legătură liniară semnificativă) $H_1: η > 0$ (raportul de determinație $η^2$ sau raportul de corelația $η$ este semnificativ mai mare decât 0, ceea ce înseamnă că între variabile există o legătură liniară semnificativă)		
	Valoarea teoretică a statisticii test <i>Fisher</i> :	$F_{teoretic} = F_{\alpha;k-1;n-k}$			

	Valoarea calculată a statisticii test <i>Fisher</i> :	$F_{calc} = \frac{ESS}{RSS} \frac{n-k}{k-1}$	$F_{calc} = \frac{R^2}{1 - R^2} \frac{n - k}{k - 1}$	
	Decizia:	Dacă se ține cont de valoarea calculată a testului, regula de decizie este următoarea: - dacă $F_{calc} \le F_{\alpha; k-1; n-k}$, nu se respinge ipoteza nulă (H_0) - dacă $F_{calc} > F_{\alpha; k-1; n-k}$, se respinge ipoteza nulă (H_0) , cu în condițiile unui risc α Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $SigF \ge \alpha$, nu se respinge ipoteza nulă (H_0)		
		- dacă $SigF \ge \alpha$, nu se respinge ipoteza i - dacă $SigF < \alpha$, se respinge H_0 , în cond	1 02	
Testarea influenței marginale a unei variabile incluse în model și a influenței marginele a unei variabile excluse din model	Ipoteze:	H ₀ : variabila introdusă în model nu are o influență marginală semnificativă asupra variației variabilei dependente SAU includerea variabilei nu produce o modificare semnificativă asupra raportului de determinație SAU includerea variabilei nu are un efect semnificativ asupra capacității explicative a modelului SAU modelul nou (în care este inclusă noua variabilă) nu este mai bun decât modelul vechi (modelul inițial), ceea ce înseamnă că se ia decizia de a nu include această variabilă independentă în model	H ₀ : variabila exclusă din model nu are o influență marginală semnificativă asupra variației variabilei dependente SAU excluderea variabilei nu produce o modificare semnificativă asupra raportului de determinație SAU excluderea variabilei nu are un efect semnificativ asupra capacității explicative a modelului SAU modelul nou (din care este exclusă variabila) este mai bun decât modelul vechi (modelul inițial), ceea ce înseamnă că se ia decizia de a exclude această variabilă independentă din model inițial	
		H ₁ : variabila introdusă în model are o influență marginală semnificativă asupra variației variabilei dependente SAU includerea variabilei produce o modificare semnificativă asupra raportului de determinație SAU includerea variabilei are un efect semnificativ asupra capacității explicative a modelului SAU modelul nou (în care este inclusă noua variabilă) este mai bun decât modelul vechi (modelul inițial), ceea ce înseamnă că se ia decizia de a include această variabilă independentă în model	H ₁ : variabila exclusă din model are o influență marginală semnificativă asupra variației variabilei dependente SAU excluderea variabilei produce o modificare semnificativă asupra raportului de determinație SAU excluderea variabilei are un efect semnificativ asupra capacității explicative a modelului SAU modelul nou (din care este exclusă variabila) nu este mai bun decât modelul vechi (modelul inițial), ceea ce înseamnă că se ia decizia de a nu exclude această variabilă independentă din modelul inițial	
	Decizia: Dacă se ține cont de semnificația testului, regula de decizie este următoarea: - dacă $SigFChange \ge \alpha$, nu se respinge ipoteza nulă (H_0) - dacă $SigFChange < \alpha$, se respinge H_0 , în condițiile unui risc α unde $SigFChange$ aparține modelului nou			