Statistika, deo 1 (Bodovi: $1\rightarrow 10, 2\rightarrow 10, 3\rightarrow 10$)

- 1. Bela homogena kocka je bačena četiri puta i posle svakog bacanja gornja strana je obojena u crno. Slučajna promenljiva *X* predstavlja broj crnih strana na kocki. Naći zakon raspodele i očekivanje slučajne promenljive *X*.
- 2. Baca se kockica za igru i x predstavlja dobijeni broj. Potom se Y bira na slučajan način iz skupa $\mathcal{R}_x = \{y | x \le y \le 6\}$. Naći raspodelu i očekivanje slučajne promenljive Y.
- 3. Istovremeno se baca više kockica. Koliko kockica treba baciti pa da zbir palih brojeva bude veći od 100 sa verovatnoćom 0.9?

Statistika, deo 2 (Bodovi: $1\rightarrow 10, 2\rightarrow 10$)

- 1. Posmatrano obeležje ima uniformnu raspodelu $X: \mathcal{U}(0,a)$. Za uzorak (X_1,X_2,\ldots,X_n) data je ocena nepoznatog parametra $a: \bar{a}=2\bar{X}_n$. Ispitati centriranost i postojanost date ocene i naći njenu disperziju.
- 2. Dečak sa istog mesta pokušava nekoliko puta da ubaci kamen u rupu. Zabeleženo je koliko daleko u metrima je pao kamen: 4.24, 6.02, 7.00, 4.79, 5.97, 5.38, 5.22, 5.95, 7.34, 4.82.
 - Pod pretpostavkom da udaljenost pada kamena ima Normalnu raspodelu, naći 90% interval poverenja za udaljenost rupe od mesta sa kog dečak baca kamen.

Kvantili Studentove raspodele t_n , $F = \int_{-\infty}^{t} \frac{\Gamma((n+1)/2)}{\sqrt{n\pi} \Gamma(n/2) \left(1 + x^2/n\right)^{(n+1)/2}} dx$							
n^F	0.7500	0.9000	0.9500	0.9750	0.9900	0.9950	0.9995
÷							
8	0.706	1.397	1.860	2.306	2.896	3.355	5.041
9	0.703	1.383	1.833	2.262	2.821	3.250	4.781
10	0.700	1.372	1.812	2.228	2.764	3.169	4.587
11	0.697	1.363	1.796	2.201	2.718	3.106	4.437
12	0.695	1.356	1.782	2.179	2.681	3.055	4.318
÷							
∞	0.674	1.282	1.645	1.960	2.326	2.576	3.291