What is claimed is:

1	1. A fuel cell system comprising:			
2	a fuel cell subsystem comprising a fuel cell stack adapted to furnish power to a			
3	load;			
4	a battery;			
5	a first circuit adapted to connect the battery to the load when the fuel cell			
6	subsystem substantially delays in responding to a change in the power;			
7	a current sensor to indicate a current through the fuel cell stack; and			
8	a second circuit coupled to the current sensor to monitor cell voltages of the fuel			
9	cell stack, determine the minimum of the cell voltages and prevent the current from			
10	exceeding a maximum threshold current based on the minimum cell voltage.			
1	2. The fuel cell system of claim 1, wherein the first circuit is further adapted			
2	to disconnect the battery from the load when the fuel cell subsystem responds to the			
3	change.			

- 3. The fuel cell system of claim 1, wherein the fuel cell subsystem comprises: a fuel cell stack adapted to receive a hydrogen flow; and a fuel processor to produce the hydrogen flow.
- 4. The fuel cell system of claim 3, wherein the fuel cell subsystem further comprises:
- a controller adapted to monitor the power and regulate a rate at which the fuel processor produces the hydrogen flow based on the monitored power.
- 5. The fuel cell system of claim 1, wherein the first circuit is further adapted to connect the battery to the load based on a fuel cell stack voltage of the fuel cell subsystem.

1	6. The fuel cell system of claim 1, wherein the first circuit comprises:				
2	a first diode to couple the battery to the fuel cell subsystem when a stack voltage				
3	of the fuel cell subsystem is near a predefined threshold voltage.				
1	7. The fuel cell system of claim 1, wherein the second circuit comprises:				
2	a voltage regulator adapted to regulate a stack voltage of the fuel cell stack and				
3	limit the current through the stack.				
1	8. A method comprising:				
2	using a fuel cell stack to furnish power to a load;				
3	connecting a battery to the load in response to the fuel cell stack substantially				
4	delaying when responding to a change in the power;				
5	monitoring a current through the fuel cell stack;				
6	monitoring cell voltages of the fuel cell stack;				
7	determining the minimum of the cell voltages; and				
8	preventing the current from exceeding a maximum threshold current based on the				
9	minimum cell voltage.				
1	9. The method of claim 8, further comprising:				
2	disconnecting the battery from the load when the fuel cell subsystem responds to				
3	the change.				
1	10. The method of claim 8, further comprising:				
2	monitoring the power;				
3	producing hydrogen;				
4	regulating a rate of the production in response to the monitoring; and				
5	providing the hydrogen to a fuel cell stack of the system.				
1	11. The method of claim 8, further comprising:				
2	connecting the battery to the load based on a fuel cell stack voltage of the fuel cel				
3	subsystem.				

1	12.	The method of claim 8, further comprising:			
2	connecting the battery to the load when a stack voltage of the fuel cell subsystem				
3	is near a predefined threshold voltage.				
1	13.	The method of claim 8, further comprising:			
2	using a voltage regulator to regulate a stack voltage of the fuel cell stack and lim				
3	the current through the stack				
1	14.	A fuel cell system comprising:			
2		a fuel cell subsystem adapted to measure a lowest cell voltage and further			
3	adapted to furnish power to a load, wherein the fuel cell subsystem is connected to the				
4	load through a diode;				
5		a fuel processor subsystem adapted to furnish reformate to the fuel cell			
6	subsystem; a	and			
7		a supplemental power subsystem adapted to furnish power to the load			
8	when the lowest cell voltage drops below a predefined threshold voltage, wherein the				
9	supplemental power subsystem is connected to the load through a diode.				
1	15.	A fuel cell system comprising:			
2		a fuel cell subsystem adapted to measure a lowest cell voltage and further			
3	adapted to furnish power to a load, wherein the fuel cell subsystem is connected to the				
4	load through a diode;				
5		a fuel processor subsystem adapted to furnish reformate to the fuel cell			
6	subsystem;				
7		a supplemental power subsystem adapted to furnish power to the load			
8	when the lowest cell voltage drops below a predefined threshold voltage, wherein the				
9	supplemental power subsystem is connected to the load through a diode; and				
10		a controller adapted to monitor the power and regulate a rate at which the			
11	fuel processor produces the hydrogen flow based on the monitored power.				

1	16.	The fuel cell system of claim 15, further comprising:
2		a predefined threshold voltage of -0.35 volts.
1	18.	The fuel cell system of claim 15, further comprising:
2		a predefined threshold voltage of more than -0.4 volts
1	19.	The fuel cell system of claim 15, further comprising:
2	a pre	defined threshold voltage of more than -0.5 volts.