## CS 4072 - Topics in CS Process Mining

Lecture # 18

April 26, 2022

Spring 2022

FAST - NUCES, CFD Campus

Dr. Rabia Maqsood

rabia.maqsood@nu.edu.pk

## Today's Topics

Inductive Mining Algorithm (continued)

#### Inductive Miner Algorithm

#### Basic idea:

- 1. Construct a directly-follows graph based on an event log
- 2. Detect patterns in the directly-followed graph
  - Identify an appropriate cut that represents one of the four possible operator nodes in the process tree
- 3. Divide the event log based on the operator identified in the Step 2
- 4. Repeat Steps 2 & 3 until a sub-event log cannot be divided further

The IM algorithm iteratively splits the initial event log into smaller sublogs.

#### Inductive Miner Algorithm





## Directly-follows Graph

**Definition 7.5** (Directly-follows graph) Let L be an event log, i.e.,  $L \in \mathbb{B}(\mathscr{A}^*)$ . The *directly-follows graph* of L is  $G(L) = (A_L, \mapsto_L, A_L^{start}, A_L^{end})$  with:

- $A_L = \{a \in \sigma \mid \sigma \in L\}$  is the set of activities in L,
- $\mapsto_L = \{(a, b) \in A \times A \mid a >_L b\}$  is the directly follows relation,<sup>3</sup>
- $A_L^{start} = \{a \in A \mid \exists_{\sigma \in L} a = first(\sigma)\}\$  is the set of start activities, and
- $A_L^{end} = \{a \in A \mid \exists_{\sigma \in L} a = last(\sigma)\}$  is the set of end activities.

 $\mapsto_L^+$  is the transitive closure of  $\mapsto_L$ .  $a \mapsto_L^+ b$  if there is a non-empty path from a to b in G(L), i.e., there exists a sequence of activities  $a_1, a_2, \ldots, a_k$  such that  $k \ge 2$ ,  $a_1 = a$  and  $a_k = b$  and  $a_i \mapsto_L a_{i+1}$  for  $i \in \{1, \ldots, k-1\}$ .  $a \not\mapsto_L^+ b$  if there is no path from a to b in the directly-follows graph.

 $<sup>{}^3</sup>a>_L b$  if and only if there is a trace  $\sigma=\langle t_1,t_2,t_3,\ldots,t_n\rangle$  and  $i\in\{1,\ldots,n-1\}$  such that  $\sigma\in L$  and  $t_i=a$  and  $t_{i+1}=b$  (see Definition 6.3).

## Four types of cuts



#### Exclusive-choice cut

If there are two disjoint subsets of activities, then there should be **no directly-follows relation** between their activities.



An exclusive-choice cut of G(L) is a cut  $(\times, A_1, A_2, \ldots, A_n)$  such that

$$- \forall_{i,j \in \{1,\dots,n\}} \forall_{a \in A_i} \forall_{b \in A_j} i \neq j \implies a \not\mapsto_L b.$$

## Sequence cut

Partitions the directly-follows graph into parts where arcs are going in one direction

#### sequence cut



A sequence cut of G(L) is a cut  $(\rightarrow, A_1, A_2, \dots, A_n)$  such that

$$- \forall_{i,j \in \{1,\ldots,n\}} \forall_{a \in A_i} \forall_{b \in A_j} i < j \implies (a \mapsto_L^+ b \land b \not\mapsto_L^+ a).$$

#### Parallel cut

Any activity in one subset should be followed by any activity in the second subset (and vice-versa), then we can split the two subsets.

Also, all the subsets should have **start** and **end** activities.

#### parallel cut



A parallel cut of G(L) is a cut  $(\land, A_1, A_2, \ldots, A_n)$  such that

$$- \forall_{i \in \{1,...,n\}} A_i \cap A_L^{start} \neq \emptyset \land A_i \cap A_L^{end} \neq \emptyset$$
 and

$$- \forall_{i,j \in \{1,\ldots,n\}} \forall_{a \in A_i} \forall_{b \in A_j} \ i \neq j \implies a \mapsto_L b.$$



#### Loop cut

#### We need do and redo parts:

- Everything should begin and end in do-part
- From all the end activities, we should be able to move to redo-part & we should be able to move to the start activities in do-part from the redo-part

#### redo-loop cut



A redo-loop cut of G(L) is a cut  $(\circlearrowleft, A_1, A_2, \ldots, A_n)$  such that

- $-n\geq 2$ ,
- $A_L^{start} \cup A_L^{end} \subseteq A_1,$
- $\{a \in A_1 \mid \exists_{i \in \{2, \dots, n\}} \exists_{b \in A_i} \ a \mapsto_L b\} \subseteq A_L^{end},$
- $\{a \in A_1 \mid \exists_{i \in \{2,\dots,n\}} \exists_{b \in A_i} \ b \mapsto_L a\} \subseteq A_L^{start},$
- $\forall_{i,j\in\{2,\ldots,n\}} \forall_{a\in A_i} \forall_{b\in A_j} i \neq j \Rightarrow a \not\mapsto_L b,$
- $\forall_{i \in \{2,...,n\}} \forall_{b \in A_i} \exists_{a \in A_I^{end}} \ a \mapsto_L b \Rightarrow \forall_{a' \in A_I^{end}} \ a' \mapsto_L b$ , and
- $\forall_{i \in \{2,...,n\}} \forall_{b \in A_i} \exists_{a \in A_r^{start}} b \mapsto_L a \Rightarrow \forall_{a' \in A_r^{start}} b \mapsto_L a'.$



#### Solution - 1

► Run the inductive miner algorithm on the following event log and construct the resultant process tree.

$$L_1 = [ \langle a, b, c, d \rangle^3, \langle a, c, b, d \rangle^2, \langle a, e, d \rangle ]$$



12

#### Solution - 1 (continued)

▶ Run the inductive miner algorithm on the following event log and construct the resultant process tree.



#### Solution - 3

▶ Run the inductive miner algorithm on the following event log and construct the resultant process tree.

$$L_2 = [\langle a,b,c,d \rangle^3, \langle a,c,b,d \rangle^4, \langle a,b,c,e,f,b,c,d \rangle^2, \langle a,c,b,e,f,b,c,d \rangle^2, \langle a,b,c,e,f,c,b,d \rangle, \langle a,c,b,e,f,b,c,e,f,c,b,d \rangle]$$



#### Solution - 3 (continued)

▶ Run the inductive miner algorithm on the following event log and construct the resultant process tree.

 $L_2 = [\langle a,b,c,d \rangle^3, \langle a,c,b,d \rangle^4, \langle a,b,c,e,f,b,c,d \rangle^2, \langle a,c,b,e,f,b,c,d \rangle^2, \\ \langle a,b,c,e,f,c,b,d \rangle, \langle a,c,b,e,f,b,c,e,f,c,b,d \rangle]$ 





## Further Readings

Practice more problems (solutions for event log  $L_3$  to  $L_{11}$  is available in the book, solve the problems yourself).

Read Section 7.5.2 yourself.

► For more variants of IM, read Section 7.5.3 (optional).

#### Homework

Convert this process tree into an equivalent WF-net.





# Real process(es) can be more complex





## Reading Material

- Chapter 7: Aalst
- Online resources:
  - Introduction to Process Mining with ProM (https://www.futurelearn.com/courses/process-mining)
  - Process Mining: Data science in Action (<a href="https://www.coursera.org/learn/process-mining">https://www.coursera.org/learn/process-mining</a>)