Math40002 Analysis 1

Problem Sheet 4

- 1. Consider the following properties of a sequence of real numbers $(a_n)_{n\geq 0}$:
 - (i) $a_n \to a$, or
 - (ii) " a_n eventually equals a" i.e. $\exists N \in \mathbb{N}$ such that $\forall n \geq N, \ a_n = a$, or
 - (iii) " (a_n) is bounded" i.e. $\exists R \in \mathbb{R}$ such that $|a_n| < R \ \forall n \in \mathbb{N}$.

For each statement (a-e) below, which of (i-iii) is it equivalent to? Proof?

- (a) $\exists N \in \mathbb{N}$ such that $\forall n \geq N, \ \forall \epsilon > 0, \ |a_n a| < \epsilon$.
- (b) $\forall \epsilon > 0$ there are only finitely many $n \in \mathbb{N}$ for which $|a_n a| \ge \epsilon$.
- (c) $\forall N \in \mathbb{N}, \ \exists \epsilon > 0 \text{ such that } n \geq N \ \Rightarrow \ |a_n a| < \epsilon.$
- (d) $\exists \epsilon > 0$ such that $\forall N \in \mathbb{N}, |a_n a| < \epsilon \ \forall n \ge N.$
- (e) $\forall R > 0 \; \exists N \in \mathbb{N} \text{ such that } n \geq N \; \Rightarrow \; a_n \in (a \frac{1}{R}, a + \frac{1}{R}).$
- (a) \iff (ii) because " $\forall \epsilon > 0$, $|a_n a| < \epsilon$ " is the same statement as " $a_n = a$ ".

(Proof: if $a_n \neq a$ then set $\epsilon := |a_n - a| > 0$ so that $|a_n - a| < \epsilon$ is not true.)

(b) \iff (i). Suppose (b) is true. Fix any $\epsilon > 0$ and let n_1, \dots, n_r be the finite number of n_i with $|a_{n_i} - a| \ge \epsilon$.

Set $N:=\max\{n_1,\ldots,n_r\}+1$. Then $\forall n\geq N$ we have $|a_n-a|<\epsilon$, so $a_n\to a$.

Suppose (i) is true. Fix any $\epsilon > 0$, then $\exists N \in \mathbb{N}$ such that $|a_n - a| < \epsilon \ \forall n \ge N$. In particular if $|a_n - a| \ge \epsilon$ then n < N so there are only finitely many such $n \in \mathbb{N}$.

(c) \iff (iii). Suppose (c) is true and take N=1. Then $\exists \, \epsilon > 0$ such that $|a_n-a| < \epsilon \, \forall n \geq 1$. So, by the triangle inequality, $|a_n| < |a| + \epsilon$. Putting $R := |a| + \epsilon$ gives (iii).

Suppose (iii) is true, i.e. $\exists R \in \mathbb{R}$ such that $|a_n| < R \quad \forall n \in N$. By the triangle inequality, $|a_n - a| < R + |a| \quad \forall n \ge N$. Putting $\epsilon := R + |a|$ proves (c).

(d) \iff (iii). Suppose (d) is true and take N=1. Then $|a_n-a|<\epsilon \ \forall n\geq 1$. So, by the triangle inequality, $|a_n|<|a|+\epsilon$. Putting $R:=|a|+\epsilon$ gives (iii).

Suppose (iii) is true, i.e. $\exists R \in \mathbb{R}$ such that $|a_n| < R \quad \forall n \in N$. By the triangle inequality, $|a_n - a| < R + |a| \ \forall n \ge N$. Putting $\epsilon := R + |a|$ proves (d).

- (e) \iff (i): just replace ϵ by 1/R in the definition of convergence.
- 2. Given a sequence $(a_n)_{n\geq 1}$ of *complex* numbers, define what $a_n \to a$ means. For $x,y \in \mathbb{R}$ and $z := x + iy \in \mathbb{C}$ show $\max(|x|,|y|) \leq |z| \leq \sqrt{2} \max(|x|,|y|)$, and

$$a_n \to a + ib \in \mathbb{C} \iff \operatorname{Re}(a_n) \to a \text{ and } \operatorname{Im}(a_n) \to b.$$

The inequalties

$$\max(x^2, y^2) \le x^2 + y^2 \le \max(x^2, y^2) + \max(x^2, y^2)$$

give

$$\max(|x|, |y|)^2 \le |z|^2 \le 2\max(|x|, |y|)^2.$$

Suppose $a_n \to a + ib$ and fix any $\epsilon > 0$. Then $\exists N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow |a_n - (a+ib)| < \epsilon \Rightarrow \max(|\operatorname{Re}(a_n) - a|, |\operatorname{Im}(a_n) - b|) < \epsilon,$$

using the first stated inequality. Therefore $|\operatorname{Re}(a_n) - a| < \epsilon$ and $|\operatorname{Im}(a_n) - b| < \epsilon$ as required.

Conversely, suppose $\operatorname{Re}(a_n) \to a$ and $\operatorname{Im}(a_n) \to b$ and fix any $\epsilon > 0$. Then $\exists N \in \mathbb{N}$ such that $n \geq N \Rightarrow |\operatorname{Re}(a_n) - a| < \epsilon/\sqrt{2}$ and $|\operatorname{Im}(a_n) - b| < \epsilon/\sqrt{2}$. Thus

$$|a_n - (a+ib)| < \sqrt{2} \max(|\text{Re}(a_n) - a|, |\text{Im}(a_n) - b|) < \sqrt{2}\epsilon/\sqrt{2} = \epsilon,$$

3. Suppose that $a_n \leq b_n \leq c_n \ \forall n$ and that $a_n \to a$ and $c_n \to a$. Prove that $b_n \to a$.

 $\exists N_1 \in \mathbb{N} \text{ such that } n \geq N_1 \Rightarrow |a_n - a| < \epsilon \Rightarrow a_n > a - \epsilon.$

 $\exists N_2 \in \mathbb{N} \text{ such that } n \geq N_2 \implies |c_n - a| < \epsilon \implies c_n < a + \epsilon.$

 $\mathbf{Set}\ N := \max(N_1, N_2).\ \mathbf{Then}\ n \geq N\ \Rightarrow\ a - \epsilon < a_n \leq b_n \leq c_n < a + \epsilon.\ \mathbf{Therefore}\ |b_n - a| < \epsilon.$

4. Suppose that $a_n \to 0$ and (b_n) is bounded. Prove that $a_n b_n \to 0$.

 $\exists B > 0 \text{ such that } |b_n| \leq B \ \forall n.$

Given $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $n \geq N \Rightarrow |a_n| < \epsilon/B$.

Therefore $|a_n b_n| = |a_n| |b_n| \le (\epsilon/B) B = \epsilon$, as required.

5.* Suppose that (a_n) and (b_n) are sequences of real numbers such that $a_n \to a$ and $b_n \to b \neq 0$. Prove that the set $\{a_n : n \in \mathbb{N}\}$ is bounded and that

$$\exists N \in \mathbb{N}$$
 such that $n \geq N \Rightarrow |b_n| > |b|/2$.

Set $\epsilon = |b|/2 > 0$. Then $\exists N \in \mathbb{N}$ such that

$$n \ge N \Rightarrow |b_n - b| < \epsilon \Rightarrow |b| < |b_n| + \epsilon \Rightarrow |b_n| > |b| - \epsilon = |b|/2.$$

Therefore $(a_n/b_n)_{n>N}$ is a sequence of real numbers; prove it tends to a/b.

$$\left|\frac{a_n}{b_n} - \frac{a}{b}\right| \ = \ \left|\frac{a_nb - ab_n}{bb_n}\right| \ = \ \left|\frac{(a_n-a)b + a(b-b_n)}{bb_n}\right| \ \le \ \left|\frac{(a_n-a)}{b_n}\right| + \left|\frac{a(b-b_n)}{bb_n}\right|.$$

From above we can find $N_1 \in \mathbb{N}$ such that $n > N_1 \implies |b_n| > |b|/2$, which in turn implies that

$$\left| \frac{a_n}{b_n} - \frac{a}{b} \right| \leq \frac{|a_n - a|}{|b|/2} + |a| \frac{|b - b_n|}{|b|.|b|/2} = \frac{2}{|b|} |a_n - a| + \frac{2|a|}{b^2} |b - b_n|.$$

Now fix any $\epsilon>0$. There exists $N_2\in\mathbb{N}$ such that $n\geq N_2\Rightarrow |a_n-a|<|b|\epsilon/4$. And there exists $N_3\in\mathbb{N}$ such that $n\geq N_3\Rightarrow |b_n-b|<|b|^2\epsilon/4(1+|a|)$.

Therefore if we set $N := \max\{N_1, N_2, N_3\}$ then

$$n \geq N \quad \Rightarrow \quad \left|\frac{a_n}{b_n} - \frac{a}{b}\right| \; < \; \frac{2|b|\epsilon/4}{|b|} + \frac{2|a|}{b^2} \frac{b^2\epsilon}{4(1+|a|)} \; < \; \epsilon/2 + \epsilon/2 \; = \; \epsilon.$$

6. Given functions $f_n:(0,1)\to\mathbb{R}$ and $f:(0,1)\to\mathbb{R}$, suppose we make the following

Definition: f_n converges to f (or $f_n \to f$) if and only if $\forall x \in (0,1), f_n(x) \to f(x)$.

Consider the examples $f_n(x) = \begin{cases} n, & x \leq 1/n \\ 0, & x > 1/n \end{cases}$ for all $n \in \mathbb{N}$. Draw them! Do they converge to some function $f: (0,1) \to \mathbb{R}$?

Prove your answer. Compare with the sequence of real numbers $a_n := \int_0^1 f_n$.

Proof that $f_n \to 0$: Fix any $x \in (0,1)$. Then for N > 1/x we have

$$n \ge N \implies x > 1/N \ge 1/n \implies f_n(x) = 0 \implies |f_n(x) - 0| = 0.$$

However $a_n:=\int_0^1 f_n=\int_0^{\frac{1}{n}} n=\frac{1}{n}.n=1$ converges to 1!

7. We call a sequence Buzzard if it satisfies the condition

$$\forall \epsilon > 0 \; \exists N \in \mathbb{N} \; n \ge N \; \Rightarrow \; |a_n - a_{n+1}| < \epsilon.$$

Give an example of a Buzzard sequence which diverges to $+\infty$. Conclude that Buzzard is not as strong as Cauchy.

Any a_n that increases so slowly to infinity that $a_{n+1}-a_n$ converges to zero. Eg $a_n=\sqrt{n}$ or $a_n=\log n$ or $a_n=\sum_{i=1}^n\frac{1}{i}$.

8. Give an example of a Cauchy sequence in \mathbb{Q} which does not converge in \mathbb{Q} .

In lectures we show that in \mathbb{R} , a sequence is Cauchy if and only if it is convergent. Show that it is impossible to prove this using only the arithmetic and order axioms of \mathbb{R} (i.e. all the axioms except the completeness axioms – the one about the existence of least upper bounds).

Let a_n be $\sqrt{2}$ to n decimal places (so $a_1 = 1.4$, $a_2 = 1.41$, $a_3 = 1.414$, etc). Or let $a_n = 0.101001000100001....1$ where there are n 1s.

I.e. any sequence of rational numbers which converges to an irrational number. By the uniqueness of limits it cannot converge to any other limit, so it cannot converge to a rational number.

If the proof of "Cauchy \Rightarrow convergent" didn't use the completeness axiom, then the same proof would work in \mathbb{Q} (where all the same axioms hold) to show that this sequence converged in \mathbb{Q} , which is a contradiction.

You should prepare starred questions * to discuss with your personal tutor.