INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPT./CENTRE:	Electronics and Computer Engineering
1. Subject Code: EC - 201	Course Title: Linear Circuits
2. Contact Hours:	L: 2 T: 1 P: 0
3. Examination Duration (Hrs.): The	eory 0 2 Practical 0 0
4. Relative Weight: CWS 25 PR	S 00 MTE 25 ETE 50 PRE 00
5. Credits: 0 3 6. Semester	√ Description Autumn Spring Both

7. Pre-requisite: MA-102

8. Subject Area: DCC

9. Objective: To acquaint the students with the fundamental concepts of network analysis and synthesis of two-port passive networks.

10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Review of Kirchoff's laws, nodal and loop analysis, and network theorems; Tellegen's theorem.	4
2.	Nodal and loop analysis using Laplace transform; Circuit applications: Switching in RLC circuits, switched capacitor circuits and conservation of charge; Frequency response, impulse and step response, initial and final value theorems.	5
3.	Time domain circuit response computations, convolution and Laplace transformation, time domain evaluation of the convolution integral for linear time invariant circuits, circuit response computations using convolution.	5
4.	Resonant and band pass circuits, magnetically coupled circuits, analysis of coupled circuits; Two-port networks: Admittance, impedance, hybrid, generalized and transmission parameters.	6
5.	Analysis of interconnected two-port, three-terminal networks, two-port network analysis.	3
6.	Driving point and transfer impedance/admittance functions, synthesis of two-port passive networks using ladder development.	5
	Total	28

11. Suggested Books:

Sl.	Name of Books/Authors	Year of
No.		Publication
1.	Van Valkenbarg, M.E., "Network Analysis", 3 rd Ed., Prentice-Hall.	2007
2.	Van Valkenbarg, M.E., "Network Synthesis", 3 rd Ed., Prentice-Hall.	2007
3.	Kuo, F.F., "Network Analysis and Synthesis", 2 nd Ed., Wiley India.	2008
4.	Murthy, K.V.V. and Kamath, M.S., "Basic Circuit Analysis", Tata	1989
	McGraw-Hill.	
5.	DeCarlo, R.A. and Lin, P.M., "Linear Circuit Analysis: Time Domain,	2003
	Phasor and Laplace Transform Approaches", Oxford University Press.	
6.	Ramakalyan, A., "Linear Circuit Analysis and Synthesis", Oxford	2005
	University Press.	