Math 554

Homework

You should know the statements of the **Heine-Borel Theorem** (Page 25 of the text) and the (Bolzano-Weierstrass Theorem) (Page 27).

Theorem 1 (Bolzano-Weierstrass). Every bounded infinite set of real numbers has a limit point.

Problem 1. Prove this along the following lines. Let S be a bounded infinite subset of \mathbb{R} . As S is bounded we can assume that $S \subseteq [a,b]$ for some closed interval [a,b]. Let

$$F := \{x : (x, \infty) \cap S \text{ is finite}\}.$$

- (a) Show that if $x \in F$ and $y \ge x$, then $y \in F$.
- (b) Show $F \neq \emptyset$ (because $b \in F$) and that a is a lower bound for F. Thus $\beta = \inf F$ exists.
- (c) Show β is a limit point of S. Hint: Towards a contradiction assume that β is not a limit point of H. Then β has a neighborhood $(\beta \varepsilon, \beta + \varepsilon)$ that does not contain any point of S other than possibly β . Let $\beta_1 \in (\beta, \beta + \varepsilon)$, then $S \cap (\beta_1, \infty)$ is finite (as β is a lower bound for F.) Explain why $S \cap (\beta \varepsilon, \infty)$ is finite, and why this gives a contradiction.

Problem 2. In the text to problems 18, 20 a, b, c, d on page 28.