EE618 – Assignment3 – Solutions

Q-1 Hand Calculations

- · Nade Voc will be ac ground due to differential operation
- · Drain node of M7 will also be at ac-ground.

1) Half Circuit:

i) Taking Volsat, M6 = ZOOMV CSince Volsat, M5 = 150 mV

(Since Volsat, M5 = Volsat, M3, Louver Volsat, M5

mill result in higher value of gm3).

iii) Now

$$V_C = V_A + V_{T_N} + V_{d}sat M_6$$
 $V_B = V_{T_N} + V_{d}sat M_6$

Since $R_1 = \frac{V_C - V_B}{20uA}$, value of R_1 depends can V_A .

For M6 to remain in saturation, VA > Volsat M Taking Va = 0.45 V

V) Name using the equation:
$$(\frac{W}{L}) = \frac{L_b}{Vasat} \cdot \frac{2}{Rn}$$

$$= \frac{\int L_{d,M_{\overline{4}}} \cdot (\lambda_{n} + \lambda_{p})}{2\pi \cdot C_{L}} = \frac{1}{2\pi \cdot C_{L}}$$

$$W_{4} = 400 \mu A = 20 \Rightarrow W_{7} = 40 \mu M$$

$$= 2 \times Ids / V_{sats} = 2$$

$$= 2$$

$$= 37$$

$$= 31 dS > (30.15 v) [0.36 v^{-1}] = 37$$

The only specification to be satisfied are Vow, + DC voltage should lie b/W 0.9-1.1v & Vout Voltage Headroom > 0.4v

- → Vout, headraon is the max. author sung fassible while keeping all transistars in sat.
- => Vout, Headroom = Vaut, max Vaut, min > 0.4 v = (VDD - Vdsat, 1) - (Vdsat, 3 + Va source, M3) = 1.8 - Vdsat, 1 - (0.45 + 0.15) = 1.2 - Vdsat, 1 > 0.4 v => Vdsat, 1 < 0.6 v => Vdsat of M1 < 0.6 v.
- Now Vout, cm or DC value of Vout, f = Vx= $V_{DD} V_{SG}$, $M1 = V_{DD} V_{dSat} = V_{tp}$ = $1.3 V_{dSat} = V_{tp}$ Charling Vout, $M = V_{tp} = V_{tp}$ Now Vout, $M = V_{tp} = V_{tp}$ Now Vout, $M = V_{tp} = V_{tp}$ Charling Vout, $M = V_{tp} = V_{tp}$ Now Volut, $M = V_{tp} = V_{tp}$

Using Eqn $\left(\frac{W}{L}\right) = \frac{Id}{V_{\text{Sat}}^2} \times \frac{2}{kn}$, $W_{MZ} = \frac{8um}{V_{\text{Mag}}}$.

Now, $\frac{W_{MS}}{W_{MS}} = \frac{I_{MS}}{I_{MS}} = \frac{200uA}{20uA} = 10 = 0$ $W_{MZ} = 10 um$

Calculated Values

Parameter	Value	
W1	8 um	
W2	8 um	
W3	10 um	
W4	10 um	
W5	1 um	
W6	2 um	
W7	40 um	
R1	20 Κ Ω	

Simulation Based Questions:

To obtain Vout,p as 1 V, W1 and W2 were increased to 15 um

To get a Vdsat,M6 = 200 mV, W6 was reduced to 1.5 um. Accordingly, W7 was reduced to 30 um

1. Schematic with annotated Node Voltages:

2. Transistor Sizing:

Transistor Sizing:

	Vdsat (V)	W (um)	Multipliers	No of fingers
M1	0.224	15 um	1	30
M2	0.224	15 um	1	30
M3	0.142	1 um	10	2
M4	0.142	1 um	10	2
M5	0.154	1 um	1	2
M6	0.217	1.5 um	1	3
M7	0.217	1.5 um	20	3
R1 value:	20 ΚΩ			

3. DC Operating Points:

4. AC Plot:

DC Gain: 24.2 dB

3dB Bandwidth: 61.2 MHz

5. Transient Pot:

Vout pk-pk = 127.45 mV

Voutp and Vx:

This shows Vx is at ac ground.

Parameter	Value Obtained	Specification
DC Power Consumption	0.76 mW	< 1.2 mW
Vout+ DC voltage	1 V	0.9 – 1.1 V
Differential Gain	24.2 dB	>20 dB
Vout Bandwidth	61 MHz	>40 MHz