

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General Degree) Examination

Third Year – Semester I Examination, February 2013 MAT 3208 – TIME SERIES

Answer ALL questions.

Time allowed: TWO HOURS

Scientific calculators will be provided.

1.

- a) State the conditions for a given time series $\{Y_t\}$ to be stationary.
- b) Let $\{X_t\}$ be a stationary process with zero mean and auto covariance $\gamma_X(h)$. Show that the time series $\{Y_t\}$, defined by the following relationship, for all t > 0, $Y_t = \frac{1}{3} (X_t + 2X_{t+1})$ is also stationary.
- c) Let $\{X_t\}$ be a MA(I) process with $cov(X_{t+1}, X_t) = 0.7 \sigma_w^2$ where σ_w^2 is the variance of the associated white noise process.
 - (i) Derive the auto covariance function of MA(1) process.
 - (ii) Find the auto correlation function for $\{X_t\}$.
 - (iii) Show that the auto covariance function of $\{Y_i\}$ defined in part b) is

$$\gamma_{Y}(h) = \begin{cases} 1.1389 \, \sigma_{w}^{2} \; ; \quad h = 0 \\ 0.7200 \, \sigma_{w}^{2} \; ; \; |h| = 1 \\ 0.1556 \, \sigma_{w}^{2} \; ; \; |h| = 2 \\ 0 \; ; \; |h| \geq 3 \end{cases}$$

2.

- a) Define the following terms:
 - (i) Moving average process of order q, denoted by MA(q),
 - (ii) Auto regressive process of order p, denoted by AR(p),
 - (iii) Auto regressive moving average process, denoted by ARMA(p,q).
- b) Define the two terms **Stationary** and **Invertible**, in relation to an ARMA(p,q) process.
- c) Express each of the following models in B notation, and determine whether the models are stationary and / or invertible:

(i)
$$X_t = 0.5 X_{t-1} - 0.1 X_{t-2} + Z_t$$
,

(ii)
$$X_t = Z_t - 0.5 Z_{t-1}$$
,

(iii)
$$X_t - 0.5 X_{t-1} + 1.2 X_{t-2} = Z_t + 0.7 Z_{t-1}$$

3.

- a) State four methods which can be used to measure the trend.
- b) Discuss the determination of trend line by the method of Least Squares.

 State the required conditions and equations with notations.
- c) The following table gives the data related to tourist arrivals in Sri Lanka, from the year 2003 to 2011, except for the year 2004.

Year	2003	2005	2006	2007	2008	2009	2010	2011
Tourist Arrivals	500,640	549,310	559,600	494,010	438,470	447,890	654,477	855,975

Using the above data, do the following calculations, giving the answers to the nearest fourth decimal place.

- (i) Using the method of least squares, fit the above data to a straight line trend.
- (ii) Estimate the trend values for each of the given years.
- (iii) Find the trend value for the missing year 2004.
- (iv) Calculate the expected tourist arrivals for next two years.

4.

- a) Briefly explain the exponential smoothing method.
- b) Consider the following set of data consisting of 12 observations taken over one month intervals, in the year 2012.

Month	Observation Y_t			
January	10			
February	15			
March	11			
April	10			
May	12			
June	11			
July	12			
August	10			
September	13			
October	14			
November	10			
December	15			

- (i) By taking the smoothing factor as 0.1, perform the simple exponential smoothing procedure to find the estimated smoothed statistics, separately for the above periods of time.
- (ii) Find the forecast values for first three months of next year.