Inertialnavigation bei autonomen Flugkörpern

Fabian Ulbricht Paul Walger

9. März 2012

Inhaltsverzeichnis

- Einleitung
- Trägheitsnavigation
- Sensoren
 - Acceloremeter
 - Gyroskop
- 4 Bewegeungsgleichungen
- 6 Kalman-Filter
- 6 Kalman-Filter für UAV
- Literatur

Einleitung

Dies ist eine Einleitung.

Trägheitsnavigation

In sich abgeschlossen Navigationtechnik, welche die Position und Orentierung eines Objektes relativ zu einem Start-punkt, orientierung und geschwindigkeit bestimmt. Besteht aus:

- Computer
- Accelerometer
- Gryoscope
- 2 Hauptgruppen von Konfigurationen [2]
 - Stable Platform Systems
 - Strapdown Systems

4 / 20

Stable Platform Systems

Gimbal angular → Orientation

Strapdown Systems

Sensoren

Acceloremeter (Beschleunigungssensoren)

Anwendung:

- Messung von (linearen) Beschleunigungen
- Sensorik in digitalen Kameras
- Positionsbestimmung

MEMS Acceloremeter

Definition (MEMS)

Microelectromechanical systems
 Very small mechanical devices driven by electricity.

2 Typen von Acceloremtern:

- Piezoelectric accelerometer
- Surface micromachined capacitive

Piezoelectric accelerometer

Wirkungsweise: Die bei Beschleunigung Änderung der einwirkenden Kraft wird mittels des Piezoelektrischen Effekts gemessen. Konstante Beschleunigungen können nicht gemessen werden.

Definition (Piezoelektrizität)

Beschreibt das Auftreten einer elektrischen Spannung an Festkörpern, wenn sie elastisch verformt werden.

9 / 20

Capacitive acceloremters

Funktionsweise

Messung von Kapazitätsänderungen.

Vorteile

- Herstellung mit herkömmlicher MEMS Technologie möglich
- Hervorragende Sensibilität
- Unabhängig von Außentemperatur

Kapazität

Die Kapazität von 2 parallen Platten ist [1]

$$C_0 = \epsilon_0 \epsilon_r \frac{A}{d} = \epsilon_A \frac{1}{d} \tag{1}$$

wobei $\epsilon_A = \epsilon_0 \epsilon_r A$ und A die Fläche der Elektroden, d die Distanz zwischen ihnen und die ϵ_r die Perimitivität von dem Matrial dass die beiden trennt.

Kapazität 3

Die Kapazitäten

 C_1 und C_2 zwischen der beweglichen Platte und den äußeren Stationären Platten sind abhängig von den Verschiebung x_1 und x_2 .

$$C_1 = \epsilon_A \frac{1}{x_1} = \epsilon_A \frac{1}{d+x} = C_0 - \Delta C \qquad (2)$$

$$C_2 = \epsilon_A \frac{1}{x_2} = \epsilon_A \frac{1}{d-x} = C_0 + \Delta C \qquad (3)$$

Kapazität 4

Wenn die Beschleunigung null ist, dann sind die Kapaziäten C_1 und C_2 gleich. Wenn aber $x_1 \neq x_2$ also $x \neq 0$ dann gilt:

$$C_1 - C_2 = 2\Delta C = 2\epsilon_A \frac{x}{d^2 - x^2}$$
 (4)

Wenn wir nun ΔC messen, dann könne wir die Verschiebung x messen indem wir die nichtlineare algebraische Gleichung lösen.

$$\Delta Cx^2 + \epsilon_A x + \Delta Cd^2 = 0 (5)$$

Für kleine Verschiebungen ist der Term ΔCx^2 verschwindend klein. Es gilt also

$$x \approx \frac{d^2}{\epsilon_A} \Delta C = d \frac{\Delta C}{C_0} \tag{6}$$

Wir können also sagen, dass die Verschiebung annähernd proportional ist zur Kapazitätsdifferenz ΔC

Gyroskop (Rotationssensoren)

Was ist ein Gyroskop

Ein Gerät zur Messung oder Erhaltung der Orientierung, basierend auf dem Prinzip des Drehimpulses.

Typen von Gyrokopen

- Mechanisch
- Optisch
- MEMS

Mechanische Gyroskope

Bestehen

aus einem spinning wheel und zwei Gimbals, welche es eine Rotation in 3-Achsen erlaubt. Ein

Mechanische Gyroscope misst die Orienation direkt, während die meisten moderen Gryoskope die Winkelgschwindigkeit messen. Nachteile:

- Bewegliche Teile
- Reibung
- Sein paar Minuten Aufwärmzeit benötigt

Optische Gyroskope

Insbesondere
Faserkreisel (Fibro Optic Gyroscope = FOG).
Besteht aus
einer langen Spule von Glasfasern. Es werden
zwei Lichtimpluse in entgegengesetze Richtung
abgefeuert. Wenn das System rotiert, erfährt
der eine Lichtimplus eine längere Laufzeit.
Gemessen wird über
die Interferenz von den beiden Lichimplusen.

Bewegeungsgleichungen

Kalman-Filter

Kalman-Filter für UAV

Literatur

- [1] Matej Andrejaši. *MEMS ACCELEROMETERS*. Department of physics, März 2008.
- [2] Oliver J. Woodman. *An introduction to inertial navigation*. Techn. Ber. Computer Laboratory: University of Cambride, Aug. 2007.