MATEMATIKA

Vertinimo instrukcija

Bandomojo valstybinio brandos egzamino užduotis

I dalis

Maksimalus įvertinimas – 12 taškų. I dalies uždavinių teisingi atsakymai vertinami 1 tašku.

Užd. nr.	01.	02.	03.	04.	05.	06.	07.	08.	09.	10.	11.	12.
Ats.	C	C	D	D	В	C	D	A	В	D	C	В

II dalis

Maksimalus įvertinimas – 20 taškų. II dalies uždavinių teisingi atsakymai vertinami 2 taškais.

Užd. nr.	Atsakymas
13.	-10x - 6
14.	9,8
15.	1
16.	$\frac{1}{99}$
17.	10
18.	$A\left(\frac{1}{2}; -\frac{\sqrt{3}}{2}\right) \text{ arba } x = \frac{1}{2}; y = -\frac{\sqrt{3}}{2} \text{ arba } \left(\frac{1}{2}; -\frac{\sqrt{3}}{2}\right)$
19.	126
20.	13
21.	54° arba 54
22.	168

III dalis

Užd. nr.	Sprendimas ir atsakymas	Taškai	Vertinimas
23.		3	
23.1.		2	
	8 y 7 7 6 6 5 4 3 2 1 2 3 Ats.:	• 1	Už nubrėžtą tiesę per bent du teisingai pasirinktus taškus. Už nubrėžtą $y = a^x$ pavidalo grafiką per tašką (0; 1) ir dar bent vieną teisingai pasirinktą tašką.
23.2.		1	
	Ats.: 0; 2, arba Ats.: $x = 0$; $x = 2$.	• 1	Už teisingą atsakymą.
	Pastaba: Jeigu mokinys užrašo teisingus lygtie vieną neteisingai nubrėžtą grafiką, už užduotį 2		1 0

Užd. nr.	Sprendimas ir atsakymas	Taškai	Vertinimas
24.		3	
	$\frac{x+1}{2} = 4 \cdot \frac{2}{x+1} \left(arba \ \frac{x+1}{2} : \frac{2}{x+1} = 4. \right)$	• 1	Už teisingai sudarytą lygtį.
	$\begin{cases} (x+1)^2 = 16, \\ x+1 \neq 0 \end{cases} \left(arba \ \frac{(x+1)^2 - 16}{2(x+1)} = 0 \right)$		
	x+1=4 arba $x+1=-4$.		
	Ats.: $x = -5$; $x = 3$.		Po <i>1 tašką</i> už kiekvieną teisingą <i>x</i> reikšmę.
	<i>Pastaba</i> . Jeigu mokinys sudaro lygtį $4 \cdot \frac{x+1}{2} = \frac{1}{2}$	$\frac{2}{x+1}$ ir teis	singai ją išsprendžia (gauna
	sprendinius $x = 0$ ir $x = -2$), jam skiriami 2 taška	ii.	

Užd. nr.	Sprendimas ir atsakymas	Taškai	Vertinimas
25.		4	
25.1.		2	
	$P(HC) = \frac{1}{2} \cdot \frac{1}{3} =$ $= \frac{1}{6}.$ $Ats.: \frac{1}{6}.$	• 1	Už teisingo sprendimo būdo pasirinkimą. Už gautą teisingą atsakymą.
	Pastaba: Jeigu mokinys suklydo apsk		

25.2.		2			
	$P(A) = P(HA) + P(SA) = \frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{2} =$	• 1	Už teisingo sprendimo būdo pasirinkimą.		
	$=\frac{5}{12}$	• 1	Už gautą teisingą atsakymą.		
	Ats.: $\frac{5}{12}$.				
	<i>Pastaba:</i> Jeigu mokinys suklydo apskaičiuodamas $P(HA)$ arba $P(SA)$, bet teisingai pritaikė nesutaikomų įvykių tikimybės skaičiavimo formulę, jam skiriamas 1 taškas.				

Užd. nr.	Sprendimas ir atsakymas	Taškai	Vertinimas
26.		5	
26.1.		2	
	<u>I būdas</u>		
	Kai $x = 1$, tada $f_1(1) = 1^3 + 1 = 2$ ir	• 1	Už teisingai apskaičiuotas
	$f_2(1) = \sqrt[3]{1} + 1 = 2.$		$f_1(1)$ ir $f_2(1)$ skaitines
	$f_2(1) = \sqrt{1+1} = 2.$		reikšmes.
	$f_1(1) = f_2(1)$, todėl abiejų grafikų susikirtimo	• 1	Už teisingą argumentavimą.
	taško koordinatės yra (1; 2).		
	II būdas		
	$x^3 + 1 = \sqrt[3]{x} + 1$;	• 1	Už teisingai sudarytą lygtį.
	$x^9 = x$; $x(x^8 - 1) = 0$.		
	$x_1 = -1, \ x_2 = 0, \ x_3 = 1.$		
	Taško A abscisė yra lygi 1, tada ordinatė lygi	• 1	Už teisingą argumentavimą.
	2.	1	
	Įrodyta.		
26.2.		3	
	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	• 1	Už teisingai sudarytą
	$S = \int_{0}^{1} (\sqrt[3]{x} + 1) dx - \int_{0}^{1} (x^{3} + 1) dx$ $\left(arba S = \int_{0}^{1} (\sqrt[3]{x} + 1 - (x^{3} + 1)) dx \right).$		reiškinį figūros plotui apskaičiuoti.
			арѕкатегион.
	$\left arba \ S = \int_{0}^{1} (\sqrt[3]{x} + 1 - (x^{3} + 1)) dx \right .$		
	(4)1		
	$S = \left(\frac{x^{\frac{4}{3}}}{\frac{4}{3}} + x\right)^{1} - \left(\frac{x^{4}}{4} + x\right)^{1}$		
	$S = \left \frac{1}{4} + x \right \left \frac{1}{4} + x \right $	• 1	Už gautą teisingą pirmykštę
	$\left(\frac{3}{3} \right)_0$		funkciją.
	$\left(\begin{array}{ccc} \frac{4}{3} & 14 \end{array}\right)^{1}$		
	$\left \begin{array}{c} arba & S = \left \begin{array}{c} x^3 \\ 4 \end{array} - \begin{array}{c} x \end{array} \right \right ;$		
	$\begin{vmatrix} \frac{1}{3} & \frac{1}{0} \\ arba & S = \left(\frac{\frac{4}{3}}{\frac{4}{3}} - \frac{x^4}{4}\right) \end{vmatrix}_{0}^{1};$		
	[() / 0/		

	$S = \frac{3}{4} + 1 - \frac{1}{4} - 1 = \frac{1}{2} \left(arba \ S = \frac{3}{4} - \frac{1}{4} = \frac{1}{2} \right).$ $Ats.: \frac{1}{2}.$	• 1	Už gautą teisingą atsakymą
26.3.		2	
	$f_2'(x) = \left(x^{\frac{1}{3}} + 1\right)' = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{x^2}};$	• 1	Už teisingai apskaičiuotą išvestinę.
	$tg\alpha = f_2'(1) = \frac{1}{3}$	• 1	Už gautą teisingą atsakymą.
	$Ats.: \frac{1}{3}$.		

Užd. nr.	Sprendimas ir atsakymas	Taškai	Vertinimas
27.	-	4	
27.1.		1	
	$EC = \sqrt{BC^2 - BE^2} = \sqrt{900 - 324} = 24$	• 1	Už gautą teisingą atsakymą.
27.2.	T.1 = 1	2	
	<u>I būdas</u> Pažymėkime $AE = x$, $AB = 18 + x$. $S_{ABC} = \frac{1}{2} \cdot AB \cdot EC = \frac{1}{2} \cdot BC \cdot AD$	• 1	Už teisingo sprendimo būdo pasirinkimą.
	$\frac{1}{2} \cdot (18 + x) \cdot 24 = \frac{1}{2} \cdot 30 \cdot 20,$ $x = 7.$ Ats.: 7 cm.	• 1	Už gautą teisingą atsakymą.
	<u>II būdas</u> Pažymėkime $AE = x$, $AB = 18 + x$. $\triangle ABD \sim \triangle EBC$, nes abu trikampiai statieji ir kampas ABC yra bendras.	• 1	Už teisingo sprendimo būdo pasirinkimą.
	$\frac{AB}{RC} = \frac{AD}{FC};$ $\frac{18+x}{30} = \frac{20}{24}.$ $x = 7.$ $Ats.: 7 \text{ cm.}$	• 1	Už gautą teisingą atsakymą.

27.3.		1	
	Apie statųjį trikampį apibrėžto apskritimo centras yra įžambinės vidurio taškas. Taškai <i>A</i> , <i>E</i> , <i>D</i> ir <i>C</i> priklauso vienam apskritimui, kurio skersmuo yra <i>AC</i> .	• 1	Už teisingą pagrindimą.

Užd. nr.	Sprendimas ir atsakymas	Taškai	Vertinimas
28.		5	
	$f'(x) = \left(\frac{1}{2}\cos 2x + \sin x\right)' =$	• 1	Už teisingai apskaičiuotą funkcijos išvestinę.
	$= \frac{1}{2} \cdot 2 \cdot (-\sin 2x) + \cos x = \cos x - \sin 2x;$		
	$\cos x - \sin 2x = 0;$	• 1	Už teisingai pertvarkytą lygtį
	$\cos x \cdot (1 - 2\sin x) = 0;$		į pavidalą
		_	$\cos x \cdot (1 - 2\sin x) = 0;$
	$\cos x = 0$, arba $\sin x = \frac{1}{2}$;	• 2	Po <i>1 tašką</i> už teisingai surastus sprendinius iš
	$x = \frac{\pi}{2}$, kai $x \in \left[0; \frac{\pi}{2}\right]$; $x = \frac{\pi}{6}$, kai $x \in \left[0; \frac{\pi}{2}\right]$.		intervalo $\left[0; \frac{\pi}{2}\right]$.
	$f(0) = \frac{1}{2};$ $f\left(\frac{\pi}{2}\right) = \frac{1}{2};$ $f\left(\frac{\pi}{6}\right) = \frac{3}{4}.$	• 1	Už trijų funkcijos reikšmių apskaičiavimą (intervalo
	Ats.: didžiausia reikšmė $\frac{3}{4}$.		galuose ir intervalui
	4		priklausančiame kritiniame
			taške) ir gautą teisingą
			atsakymą.

Užd. nr.	Sprendimas ir atsakymas	Taškai	Vertinimas
29.		4	
	<u>I būdas</u> Pažymėkime vieno kambario butų skaičių x , dviejų kambarių − $3x$, trijų kambarių − $3x \cdot k$, kai $x, k \in N$. $3xk \cdot 2 - 3x = 18$;	• 1	Už teisingo sprendimo būdo pasirinkimą.
	x(2k-1)=6; x ir 2k-1 gali įgyti reikšmes 1, 2, 3 arba 6.	• 1	Už teisingai pritaikytą perrinkimo strategiją, t. y. supratimą, kad <i>x</i> ir 2 <i>k</i> – 1 gali būti skaičiaus 6 dalikliai.
	Lygtį $x(2k-1) = 6$ tenkina skaičių x ir k poros $(6; 1)$ ir $(2; 2)$.	• 1	Už skaičių <i>x</i> ir <i>k</i> porų atrinkimą.
	Kadangi trijų kambarių butų skaičius nėra lygus dviejų kambarių butų skaičiui, tai $x = 6$ netinka. Tada vieno kambario butų yra 2, dviejų kambarių butų -6 , trijų kambarių butų -12 . <i>Ats.:</i> 20.	• 1	Už gautą teisingą atsakymą.
	gauna teisingą atsakymą, bet jam skiriami tik 2 taškai.		