

Data Analysis and Visualization

IS465: Data Management and Governance

Outline

- Introduction to Data Analysis
- Data Analysis Techniques
- Data Analysis Tools
- Data Visualization Principles and Best Practices
- Business Intelligence and Data Dashboards

Introduction to Data Analysis

Unlocking Insights from Data

• Data analysis is a crucial step in extracting insights from data.

What is Data Analysis?

- Data analysis is the process of extracting insights and patterns from data to inform business decisions, solve problems, or answer questions.
- Examines data to identify trends, relationships, and correlations
- Uses various techniques and tools to extract insights
- Involves data cleaning, transformation, and modeling

Why is Data Analysis Important?

- Informs business decisions with data-driven insights
- Identifies areas for improvement and optimization
- Supports data quality and governance initiatives
- Enhances data security and privacy by detecting anomalies

What are the different types of analysis?

Descriptive Data Analysis

- Descriptive data analysis involves summarizing and describing the basic features of data to understand what happened.
- Examples:
 - Calculating means, medians, and modes
 - Creating reports and dashboards
 - Identifying trends and patterns

Inferential Data Analysis

- Inferential data analysis involves making conclusions or inferences about a larger population based on a sample of data.
- Examples:
 - Hypothesis testing
 - Confidence intervals
 - Regression analysis

Predictive and Prescriptive Data Analysis

- Predictive data analysis involves using data to forecast what may happen, while prescriptive data analysis involves recommending actions based on data insights.
- Examples:
 - Predictive: forecasting sales, customer churn, or credit risk
 - Prescriptive: recommending product offers, pricing, or inventory levels

Data Analysis Techniques

Descriptive Analytics

- Understanding Your Data
- Descriptive analytics involves summarizing and describing the basic features of data to understand what happened.

Measures of Central Tendency

- Mean: The mean is the average value of a dataset.
- Formula: $\mu = (\Sigma x) / n$
- Example: calculating the mean of exam scores

Measures of Central Tendency

- Median and Mode: The median is the middle value of a dataset, while the mode is the most frequent value.
- Formula:
 - median = middle value
 - mode = most frequent value
- Example: calculating the median and mode of a dataset

Measures of Variability

- Range and Variance: The range is the difference between the largest and smallest values, while variance measures the spread of a dataset.
- Formula: range = max min, variance = $\Sigma(x \mu)^2 / n$
- Example: calculating the range and variance of a dataset

Average phone use per day in minutes

Measures of Variability

- Standard Deviation: The standard deviation is the square root of the variance, measuring the spread of a dataset.
- Formula: $\sigma = \sqrt{(\Sigma(x \mu)^2 / n)}$
- Example: calculating the standard deviation of a dataset

Data Summarization

- Data summarization involves reducing data to its most important features.
- Examples:
 - Summarizing data with mean, median, and mode

Positively skewed distribution: Number of books read in the last year

Data Aggregation

- Data aggregation involves combining data to create new insights.
- Examples:
 - Aggregating data by group or category

Inferential Analytics

- Making Conclusions from Data
- Inferential analytics involves making conclusions or inferences about a larger population based on a sample of data.

Hypothesis Testing

- Hypothesis testing involves testing a hypothesis about a population based on a sample of data.
- Example: testing the mean of a population

Confidence Intervals

- A confidence interval is a range of values within which a population parameter is likely to lie.
- Formula: $CI = \bar{x} \pm (Z * \sigma / \sqrt{n})$
- Example: calculating a confidence interval for a population mean

Regression Analysis

- Regression analysis involves modeling the relationship between a dependent variable and one or more independent variables.
- Example: modeling the relationship between exam scores and hours studied

Predictive Analytics

- Forecasting the Future
- Predictive analytics involves using data to forecast what may happen in the future.

Regression Analysis

- Regression analysis can be used for predictive modeling, forecasting continuous outcomes.
- Example: predicting house prices based on features

Decision Trees

- Decision trees are a type of predictive model that use a tree-like structure to classify or predict outcomes.
- Example: predicting customer churn using a decision tree

Clustering

- Clustering involves grouping similar data points into clusters to identify patterns or relationships.
- Example: clustering customers based on demographics and behavior

Prescriptive Analytics

Recommending Actions

• Prescriptive analytics involves using data to recommend actions or

decisions.

Optimization Techniques

- Optimization techniques involve finding the best solution among a set of possible solutions.
- Example: optimizing inventory levels using linear programming

Simulation Modeling

- Simulation modeling involves using data to simulate different scenarios and predict outcomes.
- Example: simulating the impact of different marketing strategies

Data Analysis Tools

Selecting the Right Tool for the Job

• Data analysis tools are essential for extracting insights from data.

Spreadsheets - Microsoft Excel

 Microsoft Excel is a popular spreadsheet software for data analysis and visualization.

- Features:
 - Data manipulation and calculation
 - Charting and graphing
 - Pivot tables and data analysis

Spreadsheets - Google Sheets

- Google Sheets is a cloud-based spreadsheet software for data analysis and collaboration.
- Features:
 - Real-time collaboration
 - Automatic saving and versioning
 - Integration with Google Drive and other Google tools

Google Sheets

Statistical Software - R

- R is a popular programming language and environment for statistical computing and graphics.
- Features:
 - Statistical modeling and analysis
 - Data visualization and graphing
 - Large community of users and developers

Statistical Software - Python

- Python is a popular programming language with extensive libraries for statistical analysis and machine learning.
- Features:
- NumPy and Pandas for data manipulation
- Scikit-learn for machine learning
- Matplotlib and Seaborn for data visualization

Statistical Software - SAS

- SAS is a software suite for data management, predictive analytics, and business intelligence.
- Features:
 - Data manipulation and analysis
 - Statistical modeling and machine learning
 - Reporting and visualization

Statistical Software - SPSS

- SPSS is a software package for statistical analysis and data management.
- Features:
 - Data manipulation and analysis
 - Statistical modeling and machine learning
 - Reporting and visualization

Data Mining Tools - Apache Mahout

- Apache Mahout is a project of the Apache Software Foundation for building scalable machine learning algorithms.
- Features:
 - Classification and clustering
 - Recommendation systems
 - Integration with Hadoop and other big data tools

Data Mining Tools - Weka

- Weka is a collection of machine learning algorithms for data mining tasks.
- Features:
 - Classification and clustering
 - Regression and association rule mining
 - Integration with Java and other programming languages

Business Intelligence Tools - Tableau

- Tableau is a data visualization and business intelligence software for data analysis and reporting.
- Features:
 - Data connection and blending
 - Drag-and-drop interface for visualization
 - Integration with various data sources

Business Intelligence Tools - Power Bl

- Power BI is a business analytics service by Microsoft for data visualization and business intelligence."
- Features:
 - Data connection and modeling
 - Interactive dashboards and reports
 - Integration with Microsoft Office and Azure

Business Intelligence Tools - QlikView

- QlikView is a business intelligence software for data analysis and reporting.
- Features:
 - Data association and modeling
 - Interactive dashboards and reports
 - Integration with various data sources

Communicating Data Insights Effectively

• Data visualization is the process of using visual representations to communicate data insights and trends.

Data Visualization Definition

- Using visual representations to communicate data insights and trends.
- Example: a simple bar chart or line graph

Importance of Data Visualization

- Effective communication of data insights
- Faster insights and decision-making
- Better understanding of complex data

- Choose the right chart type
- Use color effectively
- Avoid 3D charts and unnecessary embellishments
- Use interactive visualizations

- Choose the right chart type
 - Bar chart for categorical data
 - Line graph for time series data
 - Scatter plot for correlation analysis

- Use color effectively
 - Use a limited color palette
 - Avoid 3D effects and gradients
 - Use color to highlight important insights

- Avoid 3D charts and unnecessary embellishments
 - Avoid 3D pie charts and bar charts
 - Avoid unnecessary animations and transitions
 - Focus on simplicity and clarity

- Use interactive visualizations
 - Interactive dashboards and reports
 - Drill-down capabilities
 - Filtering and sorting options

Business Intelligence and Data Dashboards

Business Intelligence

- Using Data to Support Business Decisions
- Business intelligence refers to the process of using data to support business decisions and drive organizational success.

Business Intelligence

- Using data to support business decisions and drive organizational success.
- Examples:
 - Analyzing customer behavior to inform marketing strategies
 - Identifying trends to optimize operations
 - Developing predictive models to forecast sales

Analytics

Data Dashboard

- A visual representation of key performance indicators (KPIs) that provide insights into business performance.
- Examples:
 - Sales dashboard to track revenue and customer acquisition
 - Operations dashboard to monitor production and supply chain performance
 - Marketing dashboard to track campaign performance and customer engagement

Types of Data Dashboards

- Operational dashboards: monitor and control daily operations
- Tactical dashboards: support tactical decision-making and planning
- Strategic dashboards: inform strategic decision-making and goal-setting

Operational Dashboards

- Monitor and control daily operations to ensure efficiency and effectiveness.
- Examples:
 - Production monitoring dashboard
 - Inventory management dashboard
 - Customer service dashboard

Tactical Dashboards

- Support tactical decision-making and planning to achieve short-term goals.
- Examples:
 - Sales performance dashboard
 - Marketing campaign dashboard
 - Financial performance dashboard

Strategic Dashboards

- Inform strategic decision-making and goal-setting to achieve long-term objectives.
- Examples:
 - Executive dashboard to track overall business performance
 - Product development dashboard to track innovation and R&D
 - Market analysis dashboard to track industry trends and competitors

Designing Effective Data Dashboards

- Identify key performance indicators (KPIs)
- Choose the right visualization tools
- Ensure data quality and integrity
- Keep it simple and intuitive

Identify Key Performance Indicators (KPIs)

- Metrics that measure business performance and progress towards goals.
- Examples:
 - Revenue growth rate
 - Customer satisfaction rate
 - Production efficiency rate

Ensure Data Quality and Integrity

- Data that is accurate, complete, and consistent."
- Examples:
 - Data validation and cleaning
 - Data normalization and transformation
 - Data backup and recovery