Revised: 3/21/2021

Descriptive Statistics

Michael C. Hackett
Assistant Professor, Computer Science

Community
College
of Philadelphia

- ggplot2 is a data visualization package in R's tidyverse
- Allows for declaratively creating graphics
 - Based on the text <u>The Grammar of Graphics</u>
- "You provide the data, tell ggplot2 how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details."
 - Project homepage: https://ggplot2.tidyverse.org/

• ggplot2 is installed along with the tidyverse: install.packages("tidyverse")

 Can be installed as a stand-alone package: install.packages("ggplot2")

• Extensions:

https://exts.ggplot2.tidyverse.org/gallery/

- ggplot2 is loaded along with the rest of the tidyverse: library(tidyverse)
- Can be loaded by itself: library(ggplot2)

- ggplot2 has a sample data frame for demonstration purposes
 - The mpg dataset contains observations collected by the US Environmental Protection Agency on 38 models of cars

• If tidyverse was loaded:

library(tidyverse)

ggplot2::mpg

 If ggplot2 was loaded by itself: library(ggplot2) mpg

 We'll assume ggplot2 was loaded by itself for the remainder of the lecture

- We begin creating a plot with the ggplot() function
 - This creates a coordinate system that layers can be added on to

- The first argument to the ggplot function is the data we wish to plot ggplot(data = mpg)
- Now that the plot has its data, layers are added that specify how to data is to be displayed.
 - Layers of data are referred to as geometries or geoms

- Histograms are used to visualize the distribution of a numerical variable by grouping data into "bins"
 - Histograms show data density; Higher bars = fuller bins

Add borders for better visibility

Hackett - Community College of Philadelphia - CSCI 218

- This histogram has binwidths of 200
 - Provides greater detail about how data is distributed, but sometimes, less is more

Hackett - Community College of Philadelphia - CSCI 218

• This histogram has binwidths of 1000

- Both are essentially telling the same story, but one histogram tells it with greater detail than the other.
 - Sometimes, less detail makes it easier to "digest" what the visualization is saying.

Hackett - Community College of Philadelphia - CSCI 218

- The modality of a distribution is one way to describe its shape
 - *Unimodal*: One prominent peak
 - Bimodal: Two prominent peaks
 - Multimodal: More than two prominent peaks
 - *Uniform*: No prominent peaks

- The **skew** of a distribution is another way to describe its shape
 - Right Skewed: The data trails off to the right
 - Left Skewed: The data trails off to the left
 - Symmetric: The data trails off in both directions (roughly) equally

Mean

- The mean (or average) is one method to find the center of a distribution.
 - The sum of the observed values divided by the total number of observed values.
- The mean is denoted by \bar{x}
 - More specifically, the *sample mean* is denoted by \bar{x}
 - The *population mean* is denoted by μ

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Mean

 R's mean function mean(diamonds\$price) ~3932.80

A histogram with a vertical line geometry at the x-intercept of the

mean:

Hackett - Community College of Philadelphia - CSCI 218

• The distance of an observation from the mean is called **deviation**.

$$deviation = x_n - \bar{x}$$

- The average of the squared deviations from the mean is called the variance (s^2) .
 - Variance describes how spread out the data in a distribution is around the mean

$$s^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n - 1}$$

- R's (variance) <u>var function</u>
 var(diamonds\$price)
 ~15915629.42 (A very high variance)
- The square root of the variance is called the **standard deviation (s)**.
 - The standard deviation is the typical deviation of any data from the mean.

$$s = \sqrt{s^2}$$

 R's (standard deviation) sd function sd(diamonds\$price)
 ~3989.43 (A very high variance)

- A general rule of thumb is that 70% of the data in a distribution will be within one standard deviation of the mean; 95% will be within two standard deviations.
 - We'll revisit this in more detail when we get into probability

 ~70% of the data is between the dashed lines (one standard deviation away from the mean)

• Symbols:

- Sample variance: s^2
- Sample standard deviation: s
- Population variance: σ^2
- Population standard deviation: σ

Scatterplots

- Scatterplots visualize the association between two numerical variables.
 - This scatterplot shows the relationship between engine displacement and city milage
 - City milage improves in cars with smaller engine displacement

Scatterplots

- Plotting both city (blue) and highway (red) milage
 - What associations does this scatterplot show?

Scatterplots

What associations does this scatterplot show?

• The box plot summarizes a data set with five statistics.

Hackett - Community College of Philadelphia - CSCI 218

- 1. The **median** is the observation in the middle of all observations
 - If there are an even number of observations, the average of the two middle observations is used.
 - 50% of data fall above the median; the other 50% falls below it

- 2. The **third quartile** (Q_3 or "75th percentile") indicates where 75% of values in the data set fall under
 - 75% of observations fall below that line

- 3. The **first quartile** (Q_1 or "25th percentile") indicates where 25% of values in the data set fall under
 - 25% of observations fall below that line

- Together, they mark the boundaries of the interquartile range or IQR.
 - 75% of observations fall below to top line
 - 25% of observations fall below the bottom line
 - Thus, 50% of all observations will fall between them (in the box)

$$IQR = Q_3 - Q_1$$

4 and 5. The **whiskers** try to capture the data outside of the IQR

- At most, they can extend 1.5 \times IQR
- Max upper whisker = $Q_3 + 1.5 \times IQR$
- Max lower whisker = $Q_1 1.5 \times IQR$

The upper whisker extends as far as it can go

$$(Q_3 + 1.5 \times IQR)$$

- There are data points still outside of its reach.
 - These two data points (distant from the rest of the data) are called outliers

- Looking for outliers is useful for:
 - Identifying strong skew
 - Identifying data collection or data entry errors
 - Offering insight into interesting properties of the data


```
summary(mpg$cty)
Min. 1st Qu. Median
                       Mean 3rd Qu.
                                       Max.
9.00
      14.00
               17.00
                      16.86 19.00
                                      35.00
summary(subset(mpg, class=="suv")$cty)
Min. 1st Qu. Median
                       Mean 3rd Qu.
                                       Max.
9.00
       12.00
               13.00
                      13.50 14.75
                                      20.00
```

• R's summary function

- Median and IQR are robust statistics in that extreme outliers have little effect on their values.
- This example shows an observation being changed three times.
 - What effect will this have on the sample statistics?

- No impact on median and IQR measurements
- Did impact the mean and standard deviation measurements

	robust		not robust	
scenario	median	IQR	\bar{x}	s
original interest_rate data	9.93%	5.76%	11.57%	5.05%
move $26.3\% \rightarrow 15\%$	9.93%	5.76%	11.34%	4.61%
move $26.3\% \rightarrow 35\%$	9.93%	5.76%	11.74%	5.68%

- In symmetric distributions, the mean is typically used to describe the center
 - mean ~ median

Hackett - Community College of Philadelphia - CSCI 218

- In skewed distributions or where extreme outliers are present, the median is typically used to describe the center
 - Right skewed: mean > median
 - Left skewed: mean < median

• For symmetric distributions, use \bar{x} and s to describe the center and spread

• For skewed distributions: use median and IQR to describe the center and spread

- A contingency table is a table that summarizes data for two categorical variables.
- Contingency tables show the frequency of combinations between the two variables.
 - For example, the table below shows there were 3496 observations in the data set that had an application type of "individual" and homeownership type of "rent"
 - Another example, there were 183 observations in the data set that had an application type of "joint" and homeownership type of "own"

		homeownership			
		rent	mortgage	own	Total
ann tune	individual	3496	3839	1170	8505
app_type	joint	362	950	183	1495
,	Total	3858	4789	1353	10000

```
> library(readr)
> loans <- read_csv("loans.csv")</pre>
Parsed with column specification:
cols(
 .default = col_double(),
  emp_title = col_character(),
 state = col_character(),
 homeownership = col_character(),
 verified_income = col_character(),
 verification_income_joint = col_character(),
 loan_purpose = col_character(),
 application_type = col_character(),
 grade = col_character(),
 sub_grade = col_character(),
 issue_month = col_character(),
 loan_status = col_character(),
  initial_listing_status = col_character(),
 disbursement_method = col_character()
See spec(...) for full column specifications.
> table(loans$application_type, loans$homeownership)
            MORTGAGE OWN RENT
 individual
                3839 1170 3496
                  950 183 362
> addmargins(table(loans$application_type, loans$homeownership))
            MORTGAGE
                       OWN RENT
                                  Sum
  individual
                 3839 1170 3496 8505
  ioint
                 950 183 362 1495
                4789 1353 3858 10000
  Sum
```

		nomeownership			
		rent	mortgage	own	Total
ann tune	individual	3496	3839	1170	8505
app_type	joint	362	950	183	1495
	Total	3858	4789	1353	10000

table function addmargins function

 A contingency table can also be used to summarize one categorical variable.

> table(loa	ıns\$homeov	vnership)		
MORTGAGE	OWN	RENT		
4789	1353	3858		
> addmargir	s(table(1	loans\$hom	eownership))
MORTGAGE	OWN	RENT	Sum	
4789	1353	3858	10000	

homeownership	Count
rent	3858
mortgage	4789
own	1353
Total	10000

• Sometimes, it is useful for contingency tables display proportions instead of frequencies.

```
> t<-table(loans$application_type, loans$homeownership)
> t

MORTGAGE OWN RENT
individual 3839 1170 3496
joint 950 183 362
> prop.table(t)

MORTGAGE OWN RENT
individual 0.3839 0.1170 0.3496
joint 0.3839 0.1170 0.3496
joint 0.0950 0.0183 0.0362
Proportions

prop.table function
```

Row Proportions:

- 63.5% of observations with an application type of "joint" have a homeownership type of "mortgage".
- 12.2% of observations with an application type of "joint" have a homeownership type of "own".
- 24.2% of observations with an application type of "joint" have a homeownership type of "rent".

- Column Proportions:
 - 86.5% of observations with a homeownership type of "own" have an application type of "individual".
 - 13.5% of observations with a homeownership type of "own" have an application type of "joint".

• Bar plots are used to visualize the quantities of categorical variables.

- A stacked bar plot allows for plotting two categorial variables at once
 - Still emphasizes the totals of the x-axis variables

• A grouped bar plot also allows for plotting two categorial variables at once.

• Stacked bar plots can also be used to visualize proportions

- Seen previously, grouped bar plots also show proportionality
 - In this case, the right plot is better for comparing the proportions of colors in each cut type

