コンピュータネットワーク

1 コンピュータネットワーク概観

1.1 コンピュータネットワークの構成

1.1.1 インターネットの構成

- エンドシステム (end system)
 - ネットワークに接続しているコンピュータ
 - ホストともいう
 - クライアントとサーバに分類されることが多い
- クライアント サービス要求を出す
- サーバ サービス要求を待ち受ける
- 通信リンク光ファイバ、電波、同軸ケーブル、etc...
- ルータ パケットの中継装置
- ここまでがモノ

• プロトコル

二つ以上の通信エンティティ間でやりとりされるメッセージの形式と順序などを取り決める規約 ネットワークの機器間でのやり取りにおけるルール

1.1.2 通信サービス

エンドシステム間で情報をやり取りするための仕掛け

• コネクション指向型サービス

クライアントとサーバは、通信を始める前に相互に制御パケットを送信

通信前にハンドシェイク

- 高信頼データ転送 順序通り、誤りなく伝送

- フロー制御

受信側のバッファを溢れさせない

空きバイト数をフィードバック

- 輻輳制御

ネットワークの混雑を防ぐ

代表的なプロトコルは、TCP (Transmission Control Protocol)

• コネクションレス型サービス

事前の制御パケットのやり取りなしにいきなりデータを送る 代表的なプロトコルは

- UDP (User Datagram Protocol)
- リアルタイムアプリケーション向き
- 高い自由度をもつ

高信頼性が無駄なときや、トランスポート層をアプリケーションからいじることができる (TCP をいじりたければ OS アップデートが必要)

1.2 ネットワークコア

エンドシステム間の相互接続を担うルータ群

1.2.1 回線交換

エンドシステム間の通信のために経路に沿った通信資源 (バッファや帯域の一部) をセッション中常時常時 占有

予め通信経路を予約して占有

1.2.2 パケット交換

パケット (oacket)

- アプリケーションレベルのメッセージを分割したもの
- ネットワークコアでの伝送単位

蓄積交換伝送

- 各ルータで到着したパケットを一旦、バッファへ格納
- 予め定められた順序 (先着順など) に従い、順次パケットを伝送

1.2.3 回線交換 vs パケット交換

パケット交換の長所

- 伝送容量を効率的に利用可能
- 実装が容易 ルータに送るだけ

回線交換の長所

● 通信品質が安定、リアルタイムアプリケーション向き 通信を占有するため、安定性が求められるとき

表 1 回線交換とパケット交換の長所

	回線交換	パケット交換
長所	通信品質が安定	伝送容量を効率的に利用可能
	リアルタイムアプリケーション向き	実装が容易

1.2.4 遅延とパケット損

各ノード (ルータ) における遅延

 処理遅延: パケットのヘッダを読み、出力リンクを決定する時間 伝送誤りチェックも含む (通常 ns ~ μs のオーダ) パリティチェック等

• 待ち行列遅延: 送信待ちに要する時間

(通常 100ms 程度まで、バッファサイズに依存)

LAN 出力ポートに複数の出力が来た際の待ち時間、バッファサイズによってパケットを保持できる (より情報を保持できるが待ち時間も増える)

- 伝送遅延: パケットを通信リンクに送り出す時間 (リンクの容量を $R[\mathrm{bps}]$, パケットサイズを L bit とすると, $\frac{L}{R}$)
- 伝搬遅延: 送信された 1 ビット目の情報が次のノードに到達するまでの時間 (光速より少し遅め、 $2\times 10^8 m/s\sim 3\times 10^8 m/s$ 程度)
 - ex.) 衛星通信など。送信元と送信先の距離によって変化

パケット損

待ち行列 (バッファ) に入ることのできるパケットの数は有限

⇒ パケット損が生じる

一般に、「バッファサイズ大」 ⇔ 「待ち行列遅延大 かつ パケット損小」 というトレードオフが存在

パケットの損失は TCP の場合、輻輳制御によってサービスが低下する

1.2.5 ルーチング

送信ホストは終点ホストのアドレス (IP アドレス) をパケットのヘッダに書き込んで送信 ルータは、終点アドレスを出力リンクに対応付けた ルーチングテーブル を持ち、検索して転送 ネットワークグラフの情報を持っていて、適切な経路を返すイメージ?

ルータはコネクション情報を管理しない (ヘッダに書かれたアドレスを読むだけ) ルーチングテーブルの自動作成

⇒ ルーチングプロトコル

1.2.6 ネットワークのネットワーク

インターネット (the Internet) は、複数の ISP 同士が階層的に接続することで構成

ネットワークのネットワーク (Network of network)

イントラネット (企業内などの閉じたインターネット)、ARPANET から始まったインターネットが大きな塊になっていった

• アクセス ISP: DSL, FTTH, Wi-Fi, セルラ, ビジネス LAN などによるエンドシステムからのアクセス を提供

DSL: 日本では ADSL(asymmetric DSL)

- Tier1 ISP: 他の Tier1 ISP および下位 ISP と接続し、国際的エリアをカバー 日本では NTT コミュニケーションズとソフトバンクの 2 社
- Tier2 ISP(広域), Tier3 ISP(地域):

Tier2 ISP は、グローバル通信を行うとき、Tier1 ISP を介してトランジット通信 上位 ISP はサービスプロバイダ、下位 ISP はカスタマーという関係となり、トラヒック量に応じ て料金を課す (従量課金)

ISP: Internet survice provider, 通信の企業のことみたい。kddi → so-net → user みたいな感じ?

• ピアリング:

同層 ISP 間で接続すること。

上位 ISP へのトランジット料金の支払いを軽減

- 相互接続点 (PoP: Point of Presence): ISP 間が接続するときの接続点 (複数のルータから構成) 複数の事業者間で通信するには物理的にルータが繋がっている必要がある
- IXP(Internet Exchange Point): ピアリングする ISP がつなぎこむ箇所を提供する、独立した組織 PoP を提供する事業者
- コンテンツプロバイダ:
 - Google など、非常に大きなリソースを持つサードパーティ (Hypergiants などとも呼ばれる)
 - Tier2, Tier3 ISP と直接ピアリングを行う従量課金がなくなるため、下位 ISP としても Win-Win

