

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

1863.] 561

of the esophagus and the pylorus ligatured, without including the vessels, so that the circulation through the organ was left free. In one hour and forty minutes death took place, and on the parts being examined immediately, perforation, with extensive digestion of the interior of the stomach throughout, was found. The author considered that the question of result was clearly shown to resolve itself into one dependent on degree of power possessed by the acid contents of the stomach on the one hand, as against the alkaline circulation on the other. With a certain amount of acid only in the stomach, the circulation can afford the required protection; whilst with a larger amount the influence of the acid prevails, and digestive solution of the organ is the result. Allow, now, the contents of the stomach to remain the same, and vary the degree of vascularity in the parts submitted to the digestive influence. We have simply here a converse arrangement of the circumstances; and the position is represented by the situation of the stomach as compared with that of the frog's legs and rabbit's ear.

III. "On a Question of Compound Arrangement." By J. J. SYLVESTER, M.A., F.R.S., Professor of Mathematics in the Royal Military Academy, Woolwich. Received April 27, 1863.

My successful but as yet unpublished researches into the Theory of Double Determinants have involved the consideration of the following curious case of arrangements.

There are given m+n-1 counters of n distinct colours just capable of being packed into m urns. The question refers to the distribution of the counters among the urns, subject to the condition that it shall not be possible to form a closed circuit of double colours between any number of the urns chosen arbitrarily, ex. gr. we must allow no distribution of counters in which one urn contains blue and yellow, a second yellow and red, a third red and green, and a fourth green and blue, because here blue, yellow, red, and green would form a closed circuit. This condition, it is evident, excludes the same combination of colours from existing in any two of the urns, and also the repetition of any one colour in the same urn. Any distribution of counters obeying this condition may be called an excyclic distribution.

I annex two propositions, one qualitative, the other quantitative, referring to such distributions.

Qualitative Theorem.

In any excyclic distribution between m urns of m+n-1 counters of n different colours, any set of counters selected at will must be fewer in number than the number of distinct colours which they contain added to the number of urns from which they are drawn.

Before going on to enunciate the second proposition I must premise one or two simple definitions.

The capacity of an urn means the number of counters it will contain, the frequency of a colour the number of counters of that colour, so that the sum of all the capacities and the sum of all the frequencies must be each equal to the number of the counters.

Again, by the *diminished* capacity of any urn or *diminished* frequency of any colour, I mean such capacity or frequency respectively diminished by *unity*.

Finally, by the *polynomial function* of any set of numbers $a, b, \ldots l$, I mean the coefficient of $x^a cdot y^b cdot z^i$ in the expansion of

$$(x+y+\ldots+z)^{a+b+\ldots+l}$$
.

I can now enunciate the following

Quantitative Theorem.

The number of modes of excyclic distribution between m urns of m+n-1 counters of n different colours is equal to the product of the polynomial function of the diminished frequencies of all the several colours multiplied by the polynomial function of the diminished capacities of all the several urns.

Observation.

A double determinant means the resultant of a system of (m+n-1) homogeneous equations each containing mn terms, and linear in respect to each of two systems of m and n variables taken separately, but of the second order in respect to the variables of these two systems taken collectively. Any such resultant is of the degree $\frac{\pi(m+n-1)}{\pi(m-1)\pi(n-1)}$ in respect of the given coefficients, and may be represented by an ordinary determinant of the (m+n-1)th order, every one of whose terms corresponds to a particular system of capacities of the m urns and of repetitions of the n colours in the question above treated.

1863.] 563

The total number of such systems or terms will be

$$\left\{\frac{\pi(m+n-2)}{\pi(m-1)\pi(n-1)}\right\}^2.$$

Every term in this determinant will itself be a sum of simple determinants of the (m+n-1)th order, corresponding (each to each) with the totality of the excylcic distributions of (m+n-1) counters in respect of the particular systems of m capacities and n frequencies appertaining to that term; so that the number of simple determinants whose sum constitutes a term in the grand total determinant is always the product of two polynomial coefficients. In the particular case, where one of the systems contains only two variables, one of these polynomial coefficients becomes unity, and the other sinks down to a binomial coefficient. The only instance of a double determinant which is believed to have been considered up to the present moment is that given by Mr. Cayley in the 'Cambridge and Dublin Mathematical Journal,' vol. ix. 1854, for the case of m=2, n=2.

IV. "On a Theorem relating to Polar Umbræ." By J. J. Sylvester, M.A., F.R.S. Received April 27, 1863.

By polar umbræ I mean such as obey in the strictest manner the polar law of sign, so that not only any two appositions or products of such umbræ derivable from one another by an interchange of two of their elements are to be considered each as the negative of the other, but also any such apposition or product becomes zero if the same element is found in it more than once.

Thus Sir W. Hamilton's i, j, k are not polar umbræ, because although ijk = -jik = kij, &c., ii, jj, kk, instead of being nulls, are in the Calculus of Quaternions taken as unities*.

Let us now define any set arranged either in line or column of such *umbral* quantities to be multiplied by a corresponding set of *actual* quantities when each term of the one set is multiplied by the corresponding one of the other, and the sum taken of the products so

^{*} If we use Vandermonde's condensed notation for a determinant $\begin{bmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{bmatrix}$ to represent a "determinant gauche," then, since on this supposition rs = sr and $rr = 0, 1, 2, 3, \dots n$ will be polar umbræ by definition.