Boundary and Lens Rigidity of Lorentzian Surfaces

Lars Andersson *
Department of Mathematics
Royal Institute of Technology
S-100 44 Stockholm, Sweden

Mattias Dahl[†]
Department of Mathematics
Royal Institute of Technology
S-100 44 Stockholm, Sweden
dahl@math.kth.se

larsa@math.kth.se

Ralph Howard[‡]
Department of Mathematics
University of South Carolina
Columbia, S.C. 29208

howard@math.scarolina.edu

Abstract

Let g be a Lorentzian metric on the plane \mathbb{R}^2 that agrees with the standard metric $g_0 = -dx^2 + dy^2$ outside a compact set and so that there are no conjugate points along any time-like geodesic of (\mathbb{R}^2, g) . Then (\mathbb{R}^2, g) and (\mathbb{R}^2, g_0) are isometric. Further, if (M, g) and (M^*, g^*) are two dimensional compact time oriented Lorentzian manifolds with space-like boundaries and so that all time-like geodesics of (M, g) maximize the distances between their points and (M, g) and (M^*, g^*) are "boundary isometric" then there is a conformal diffeomorphism between (M, g) and (M^*, g^*) and they have the same areas. Similar results hold in higher dimensions under an extra assumption on the volumes of the manifolds.

^{*}Supported in part by the Swedish Natural Sciences Research Council (SNSRC), contract no. F-FU 4873-307.

[†]Supported in part by the Wallenberg foundation

[‡]Supported in part by the SNSRC, contract no. R-RA 4873-306, the Swedish Academy of Sciences and the Crafoord foundation.