

UNISONIC TECHNOLOGIES CO., LTD

U74HC4053 *cmos ic*

TRIPLE 2-CHANNEL ANALOG MULTIPLEXER/ DEMULTIPLEXER

DESCRIPTION

The UTC **U74HC4053** is a high-performance, triple 2-channel analog multiplexer/de-multiplexer.

■ FEATURES

- * Wide analog input voltage range from -5V to +5V
- * Low ON-state resistance
- * Logic level translation: to enable 5V logic to communicate with \pm 5V analog signals
- * Typical "break before make" built in

ORDERING INFORMATION

Ordering	Number	Dookogo	Dooking
Lead Free	Halogen Free	Package	Packing
U74HC4053L-D16-T	U74HC4053G-D16-T	DIP-16	Tube
-	U74HC4053G-S16-R	SOP-16	Tape Reel
-	U74HC4053G-P16-R	TSSOP-16	Tape Reel

MARKING

www.unisonic.com.tw 1 of 9

■ PIN CONFIGURATION

■ FUNCTION TABLE

INPUT(E)	INPUT(Sn)	CHANNEL ON
L	L	nY0 to nZ
L	Н	nY1 to nZ
Н	X	none

Note: H=High voltage level; L=Low voltage level; X=don't care

■ SCHEMATIC DIAGRAM(one switch)

■ FUNCTION DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V_{CC}	-0.5 ~ +11.0	V
Input Clamping Current (V _{IN} <-0.5V or V _{IN} >V _{CC} +0.5	5V)	I _{IK}	±20	mA
Switch Clamping Current (Vs<-0.5V or Vs>Vcc+0.5		I _{SK}	±20	mA
Switch Current (V _S =-0.5V	Switch Current (V _S =-0.5V to V _{CC} +0.5V)		±25	mA
Negative Supply Current		I _{EE}	-20	mA
Ground Supply Current		I_{GND}	-50	mA
Quiescent Supply Current	t _.	I _{CC}	50	mA
Dower Dissinction	DIP-16		750	mW
Power Dissipation	SOP-16/TSSOP-16	D	500	mW
Devote above Tex 70°C	DIP-16	P_D	12	mW/K
Derate above Ta>70°C	SOP-16/TSSOP-16		8	mW/K
Operating Temperature		T_OPR	-40~+125	°C
Storage Temperature	·	T_{STG}	-65 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage Difference	۸۱/	V _{CC} -GND	2.0	5.0	10.0	V
Supply Voltage Difference	ΔV _{CC}	V _{CC} -V _{EE}	2.0	5.0	10.0	٧
Input Voltage	V_{IN}		GND		V_{CC}	V
Switch Voltage	V_{SW}		V_{EE}		V_{CC}	V
	t _R , t _F	V _{CC} =2.0V		6.0	1000	ns
Innut Dies and Fall Times		V _{CC} =4.5V		6.0	500	ns
Input Rise and Fall Times		V _{CC} =6.0V		6.0	400	ns
		V _{CC} =10.0V		6.0	250	ns

■ STATIC CHARACTERISTICS (Ta=25°C)

PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
		V _{CC} =2.0V	V _{CC} =2.0V		1.2		V
High Loyal Input Valtage	\ \ <u>\</u>	V _{CC} =4.5V		3.15	2.4		V
High-Level Input Voltage	V _{IH}	V _{CC} =6.0V		4.2	3.2		V
		V _{CC} =9.0V		6.3	4.7		V
		V _{CC} =2.0V			0.8	0.5	V
Low Lovel Input Voltage	\ \/	V _{CC} =4.5V			2.1	1.35	V
Low-Level Input Voltage	V _{IL}	V _{CC} =6.0V			2.8	1.8	V
		V _{CC} =9.0V			4.3	2.7	V
Analog Switch OFF-state Current	0(0)	V _{CC} =10V, V _{EE} =0V, V _I =V _{IH} or V _{IL} V _S =V _{CC} - V _{EE}	Per Channel			±0.1	μΑ
			All Channels			±0.1	μΑ
Analog Switch ON-state Current	I _{S(ON)}	V _{CC} =10V, V _{EE} =0V, V _I =V _{IH} or V _{IL} V _S =V _{CC} - V _{EE}				±0.1	μΑ
Innut Lookage Current		V _{EE} =0V	V _{CC} =6V			±0.1	μΑ
Input Leakage Current	I _{I(LEAK)}	V _I =V _{CC} or GND	V _{CC} =10V			±0.2	μΑ
0.:	IQ	V _I =V _{CC} or GND V _{IS} =V _{EE} or V _{CC}	V _{CC} =6V, V _{EE} =0V			8	μΑ
Quiescent Supply Current		V _{IS} =V _{EE} Of V _{CC} V _{OS} =V _{CC} or V _{EE}	V _{CC} =10V,V _{EE} =0V			16	μΑ

■ STATIC CHARACTERISTICS(Cont.)

PARAME [*]	TER	SYMBOL		TEST CONDITIONS		MIN	TYP	MAX	UNIT
				V _{EE} =0V , I _S =0.1mA (Note)	V _{CC} =2.0V				Ω
	PEAK	В	V _{IS} =V _{CC} to V _{EE}	V _{EE} =0V, I _S =1mA	V _{CC} =4.5V		100	180	Ω
	PEAR	MON(PEAK)	V_{IN} = V_{IH} or V_{IL}	V _{EE} =0V, I _S =1mA	V _{CC} =6.0V		90	160	Ω
					V _{CC} =4.5V		70	130	Ω
				V _{EE} =0V , I _S =0.1mA (Note)	V _{CC} =2.0V		150		Ω
ON-state	state		V _{IS} = V _{EE}	V _{EE} =0V, I _S =1mA	V _{CC} =4.5V		80	140	Ω
Resistance			V _{EE} =0V, I _S =1mA	V _{CC} =6.0V		70	120	Ω	
			V_{EE} =-4.5V, I_{S} =1mA	V _{CC} =4.5V		60	105	Ω	
	RAIL	R _{ON(RAIL)}		V _{EE} =0V , I _S =0.1mA (Note)	V _{CC} =2.0V		150		Ω
				V _{EE} =0V, I _S =1mA	V _{CC} =4.5V		90	160	Ω
				V _{EE} =0V, I _S =1mA	V _{CC} =6.0V		80	140	Ω
				V_{EE} =-4.5V, I_{S} =1mA	V _{CC} =4.5V		65	120	Ω
Maximum ON-st	tate			V _{EE} =0V , I _S =0.1mA (Note)	V _{CC} =2.0V				Ω
Resistance Variation Between Any Two		,	V_{IS} = V_{CC} to V_{EE} V_{IN} = V_{IH} or V_{IL}	V _{EE} =0V, I _S =1mA	V _{CC} =4.5V		9		Ω
		△KON(MAX)		V _{EE} =0V, I _S =1mA	V _{CC} =6.0V		8		Ω
Channels					V _{CC} =4.5V		6		Ω

Note: At supply voltages (V_{CC} - V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

■ DYNAMIC CHARACTERISTICS (Ta=25°C, GND=0V, t_R=t_F=6ns, unless otherwise specified)

PARAME [*]	ΓER	SYMBOL	TE	ST CONDITION	ONS	MIN	TYP	MAX	UNIT
			D 0 . 50 5		V _{CC} =2.0V		15	60	ns
Propagation Delay Form		V _{EE} =0V		V _{CC} =4.5V		5	2	ns	
V_{IS} to V_{OS}		IPHL/IPLH	R _L =∞ C _L =50pF		V _{CC} =6.0V		4	10	ns
				V _{EE} =-4.5V	V _{CC} =4.5V		4	8	ns
					V _{CC} =2.0V		60	220	ns
			$R_L=1k\Omega$, $C_L=50pF$	V _{EE} =0V	V _{CC} =4.5V		20	44	ns
	E to Vos		RL-1K12, CL-5UPF		V _{CC} =6.0V		16	37	ns
				V _{EE} =-4.5V	V _{CC} =4.5V		15	31	ns
Turn-ON Time		± /±	$R_L=1k\Omega$, $C_L=15pF$	V _{EE} =0V	V _{CC} =5.0V		17		ns
Turn-ON Time		t _{PZH} /t _{PZL}	R _L =1kΩ, C _L =50pF		V _{CC} =2.0V		75	220	ns
				V _{EE} =0V	V _{CC} =4.5V		25	44	ns
	Sn to Vos				V _{CC} =6.0V		20	37	ns
				V _{EE} =-4.5V	V _{CC} =4.5V		15	31	ns
			$R_L=1k\Omega$, $C_L=15pF$	V _{EE} =0V	V _{CC} =5.0V		21		ns
			$R_L=1k\Omega$, $C_L=50pF$	V _{EE} =0V	V _{CC} =2.0V		63	210	ns
					V _{CC} =4.5V		21	42	ns
	E to Vos		KL-1K12, CL-50PF		V _{CC} =6.0V		17	36	ns
				V _{EE} =-4.5V	V _{CC} =4.5V		15	29	ns
Turn-OFF Time		+ /+	$R_L=1k\Omega$, $C_L=15pF$	V _{EE} =0V	V _{CC} =5.0V		18		ns
Turn-OFF Time		t _{PHZ} /t _{PLZ}			V _{CC} =2.0V		60	210	ns
			$R_L=1k\Omega$, $C_L=50pF$	V _{EE} =0V	V _{CC} =4.5V		20	42	ns
	Sn to Vos		KL-1K12, CL=50PF		V _{CC} =6.0V		16	36	ns
			<u> </u>	V _{EE} =-4.5V	V _{CC} =4.5V		15	29	ns
			$R_L=1k\Omega$, $C_L=15pF$	V _{EE} =0V	V _{CC} =5.0V		17		ns

Note: V_{IS} is the input voltage at a nYn or nZ terminal, whichever is assigned as an input.

Vos is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

TEST CIRCUITS AND WAVEFORMS

For OFF-state current

For ON-state current

For R_{ON}

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

For AC performance

TECT	CWITCH	INPUT			
TEST	SWITCH	V _{IS}	t_R, t_F		
t _{PZH}	V _{EE}	V _{CC}	6ns		
t _{PZL}	V _{CC}	V _{EE}	6ns		
t _{PHZ}	V _{EE}	V _{CC}	6ns		
t _{PLZ}	V _{CC}	V _{EE}	6ns		
t _{PLH}	open	pulse	6ns		
t _{PHL}	open	pulse	6ns		

Note: Definitions for test circuit:

R_L = load resistance

 C_L = load capacitance including jig and probe capacitance.

 R_T = termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 t_R = t_F =6 ns; when measuring f_{MAX} , there is no constraint to tr and tf with 50% duty factor(<2ns).

■ TEST CIRCUITS AND WAVEFORMS(Cont.)

The Input (V_{IS}) to Output (V_{OS}) propagation delays Waveform

The turn-on and turn-off times Waveform

Input pulse definition

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

