3장 평가

신림프로그래머 최범균

O

주요 내용

- 성능 지표
 - 정확도
 - 오차행렬
 - 정밀도
 - 재현율
 - F1 스코어
 - ROC AUC

정확도

- 정확도(Accuracy) = 예측 결과가 동일한 데이터 건수 / 전체 예측 데이터 건수
- 정확도는 데이터 구성에 따라 모델 성능에 왜곡 발생
 - 예: 타이타닉 생존 데이터에서 여성이면 무조건 생존으로 예측할 경우 정확도는 0.7877
- 레이블 값 분포가 불균형할 경우 평가 지표로 적합하지 않음

오차 행렬, 재현율, 정밀도

예측

Negative Positive

Negative TN FP

실제
Positive FN TP

지표	공식	비고
재현율	TP / (FN+TP)	실제 P인 데이터를 N으로 잘못 판단하면 큰 영향이 발생하는 경우에 사용 (FN을 감소)
		예: 암 판단 모델, 보험 사기
정밀도	TP / (FP+TP)	실제 N인 데이터를 P로 잘못 판단하면 큰 영향이 발생하는 경우에 사용 (FP를 감소)
		예: 스팸 메일

사이킷런 코드

예측 확률, 분류 결정 임곗값

예측 확률:

- 레이블 값 확률
- predict_proba() 함수로 구함

분류 결정 임곗값

- 예측 확률이 이 값을 넘는지 여부로 레이블 값 결정
- 기본값: 0.5

```
pred proba = lr clf.predict proba(X test)
print('pred proba() 결과 Shape: {0}'
        .format(pred proba.shape))
print('pred proba 샘플 : \n', pred_proba[:7])
pred_proba() 결과 Shape: (179, 2)
pred proba 샘플 :
 [[0.44935228 0.55064772]
  [0.86335513 0.13664487]
  [0.86429645 0.13570355]
  [0.84968519 0.15031481]
  [0.82343411 0.17656589]
  [0.84231224 0.15768776]
  [0.87095491 0.12904509]]
```

분류 결정 임곗값과 정밀도/재현율

▶ precision_recall_curve(): 이진 분류에 대해 임곗값에 따른 정밀도/재현율 계산

예제 코드

```
def precision_recall_curve_plot(y_test, pred_proba_c1):
    precisions, recalls, thresholds = precision_recall_curve(y_test, pred_proba_class1)
    plt.figure(figsize=(8, 6))
    threshold_boundary = thresholds.shape[0]
    plt.plot(thresholds, precisions[0:threshold_boundary], linestyle="--", label='precision')
    plt.plot(thresholds, recalls[0:threshold_boundary], label='recall')
                                                                             1.0
    plt.xlabel('Threshold value')
    plt.ylabel('Precision and Recall value')
    plt.legend()
    plt.grid()
    plt.show()
precision_recall_curve_plot(y_test, lr_clf.predict_proba(X_test)[:, 1])
                                                                                --- precision
```

0.2

0.6

Threshold value

0.8

F1 스코어

Negative Positive

Negative TN FP

Positive FN TP

예측

● 정밀도와 재현율의 한 쪽으로 치우치지 않는 수치

실제

• f1_score(실제, 예측) 함수 사용

ROC(Receiver Operation Characteristic) 곡선

ROC 곡선 : FPR이 변할 때 TPR의 변화 → FPR이 0부터 1로 변할 때 TPR 값

- FPR = FP / (FP + TN)1 TNR
- TPR = TP / (FN + TP)

FPR = 0:

모두 negative 예측, 즉 임곗값 1

FPR = 1:

모두 positive 예측, 즉 임곗값 0

AUC(Area Under Curve) : 곡선 아래 면적

• 이 값이 클수록 성능이 좋다고 볼 수 있음

		예측						
		Negative	Positive					
4 I 7 II	Negative	TN	FP					
실제	Positive	FN	TP					

ROC 샘플

```
def roc curve plot(y test, pred proba c1, pred):
    fprs, tprs, thresholds = roc_curve(y test, pred proba c1)
    roc score1 = roc_auc_score(y test, pred proba c1)
    roc score2 = roc auc score(y test, pred)
    plt.title('ROC : AUC1 = \{0:.4f\}, AUC2 = \{1:.4f\}'.format(roc score1, roc score2))
    plt.plot(fprs, tprs, label='ROC')
    plt.plot([0, 1], [0, 1], 'k--', label='Random')
    start, end = plt.xlim()
    plt.xticks(np.round(np.arange(start, end, 0.1), 2))
    plt.xlim(0, 1); plt.ylim(0, 1)
    plt.xlabel('FPR')
    plt.ylabel('TPR(Recall)')
    plt.legend()
pred proba class1 = lr clf.predict proba(X test)[:, 1]
roc curve plot(y test, pred proba class1, lr clf.predict(X test))
```

예제: 피마 인디언 당뇨병 예측

- 순서: 데이터 탐색 → 전처리 → 학습 → 평가
- 몇 가지 탐색
 - o Outcome 분포
 - 값확인
 - 정보(info): null 여부 등
 - o describe(): 값의 분포도

```
diabetes_data = pd.read_csv('diabetes.csv')
print(diabetes_data['Outcome'].value_counts())
0     500
```

1 268

Name: Outcome, dtype: int64

7 diabetes_data.head(3)

1

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedigree Function	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1

8 diabetes_data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
Pregnancies
                            768 non-null int64
Glucose
                            768 non-null int64
                            768 non-null int64
BloodPressure
SkinThickness
                            768 non-null int64
Insulin
                            768 non-null int64
BMI
                            768 non-null float64
                            768 non-null float64
DiabetesPedigreeFunction
                            768 non-null int64
Age
                            768 non-null int64
Outcome
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000

127.250000

846.000000

인슐린

체질량지수

36.600000

67.100000

0.626250

2.420000

41.000000

81.000000

1.000000

1.000000

당뇨 내력 가중치

피하지방

32.000000

99.000000

diabetes_data.describe()

임신횟수

6.000000

17.000000

75%

max

포도당 부하

검사 수치

140.250000

199.000000

혈압

80.000000

122.000000

전처리 없이 학습, 평가

```
X = diabetes_data.iloc[:, :-1]
y = diabetes_data.iloc[:, -1]

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=156, stratify=y)

lr_clf = LogisticRegression()
lr_clf.fit(X_train, y_train)
pred = lr_clf.predict(X_test)
pred_proba_c1 = lr_clf.predict_proba(X_test)[:, 1]
precisions, recalls, thresholds = precision_recall_curve(
    y_test, pred_proba_c1)
```

오차 행렬y_test 값 분포:[[87 13]0 100[22 32]]1 54

정확도: 0.7727,

정밀도: 0.7111, **재현율:0.5926**,

F1:0.6465, AUC:0.7313

값 전처리

- 0 값 데이터 분포
 - Glucose 0 건수는 5, 퍼센트는 0.65 %
 - BloodPressure 0 건수는 35, 퍼센트는 4.56 %
 - SkinThickness 0 건수는 227, 퍼센트는 29.56 %
 - Insulin 0 건수는 374, 퍼센트는 48.70 %
 - BMI 0 건수는 11, 퍼센트는 1.43 %
- 데이터가 768개로 많지 않아 374개 데이터를 삭제할 수 없음
 - 0 값을 평균으로 대체

```
mean_zero_features = diabetes_data[zero_features].mean()
# mean_zero_features : Series: (5, )
diabetes_data[zero_features] = diabetes_data[zero_features].replace(0, mean_zero_features)
```

값 전처리

- - StandardScaler

```
X = diabetes_data.iloc[:, :-1]
• 로지스틱 회귀 \rightarrow 피처 스케일링 \begin{array}{c} \wedge = \text{diabetes\_data.lioc[:, -1]} \\ y = \text{diabetes\_data.iloc[:, -1]} \end{array}
```

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes Pedigree Function	Age
count	7.680000e+02	7.680000e+02						
mean	2.544261e-17	-1.481743e-16	-8.655547e-17	2.385968e-16	-1.176721e-16	6.253678e-16	2.398978e-16	1.857600e-16
std	1.000652e+00	1.000652e+00						
min	-1.141852e+00	-2.553955e+00	-3.985352e+00	-2.037044e+00	-1.125139e+00	-2.074083e+00	-1.189553e+00	-1.041549e+00

예측 평가

• 간단 평가지표 생성 함수

```
def metric table(y test, pred proba c1):
    precisions, recalls, thresholds = precision_recall_curve(y_test, pred_proba_c1)
    accuracies = np.zeros(thresholds.shape[0])
   f1s = np.zeros(thresholds.shape[0])
    aucs = np.zeros(thresholds.shape[0])
    for i in range(thresholds.shape[0]):
        binarizer = Binarizer(threshold = thresholds[i])
        pred = binarizer.fit_transform(pred_proba_c1.reshape(-1, 1))
        accuracy = accuracy score(y test, pred)
        f1 = f1_score(y_test, pred)
        auc = roc auc score(y test, pred)
        accuracies[i] = accuracy
        f1s[i] = f1
        aucs[i] = auc
   mt df = pd.DataFrame()
   mt_df['Thresholds'] = thresholds
   mt df['Accuracy'] = accuracies
   mt_df['Precision'] = precisions[0:-1]
   mt_df['Recalls'] = recalls[0:-1]
   mt_df['F1'] = f1s
   mt_df['AUC'] = aucs
    return mt df
```

학습/평가

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=156, stratify=y)

```
Ir_clf = LogisticRegression()
Ir_clf.fit(X_train, y_train)
pred_proba = Ir_clf.predict_proba(X_test)
```

mt_df = metric_table(y_test, pred_proba[:, 1])

auc_idxmax = mt_df['AUC'].idxmax()
mt_df.iloc[auc_idxmax - 2:auc_idxmax + 3, :]

	Thresholds	Accuracy	Precision	Recalls	F1	AUC
74	0.458946	0.785714	0.700000	0.648148	0.679612	0.754074
75	0.464070	0.792208	0.714286	0.648148	0.686275	0.759074
76	0.466450	0.798701	0.729167	0.648148	0.693069	0.764074
77	0.484825	0.792208	0.744681	0.648148	0.680000	0.754815
78	0.488567	0.785714	0.739130	0.629630	0.666667	0.745556