

x, - xn - random sample Ex; = \mu Var(xi) = o2

Bias of the estimator

$$E \bar{X}^2 = (E\bar{X})^2 + Var\bar{X} = \mu^2 + \frac{\sigma^2}{m}$$

$$E[\bar{c}^2]$$
 $= (z_1 e_{X_K} - ne_{\bar{X}})$

Bies tells you if the estimate is contred orsers d the True value on anarge

(Bias(ô)= E[ô]-0

$$= \frac{1}{m} \left(\frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right) - \frac{1}{m} \right)$$

$$= \frac{m-1}{m} \sigma^{2}$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right) - \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right) - \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right) - \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right) - \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right) - \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right) - \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right) - \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1}{m} + \frac{1}{m} \right)$$

$$= \frac{1}{m} \left(\frac{1}{m} + \frac{1$$

Signatures you uses a blased estimator with lower variance.

on 8 - antionsed extimate of or

$$B^{2} = \frac{1}{m-1} \leq (XK-X)^{2} = \frac{1}{m-1} \left(\leq XK^{2} - mX^{2} \right)$$

Connele Variance

Bios =0 Estimator is unbiased. If I repeat a million times and amongs I would get the correct answer

How exerced out estimators values are across different sounples. MGE (Ô) = E[(Ô-0)]

- Bras + Valiance.

C Sample Std is a biased estimate of Std

S is a biased extinator for o

Desirable Brô]=0 Erô]=0

. . . 0

$$(x_1, x_2, \dots, x_n - xondow)$$
 complete

unbiased
$$= \frac{X_1 + ... + X_n}{n}$$
extimates $= \frac{X_1 + ... + X_n}{n}$
 $= \frac{X_1 + ... + X_n}{n}$

$$B(\hat{\theta}) = E(\hat{\theta}) - 0 = E(X) - EX' = EX' - EX' = 0$$

$$MSE = E\left(x_1 - Ex_1\right)^2$$

$$= E\left(x_1 - Ex_1\right)^2$$

$$\hat{\Theta} = \overline{x}$$

$$mSE = E(\overline{x} - 0)^{2}$$

$$Van(\overline{x} - 0) + (E(\overline{x} - 0))^{2}$$

of amstant of Oand Oa

Ot $\widehat{O}_1, \dots, \widehat{O}_n$ point extinations of 0 \widehat{O}_n is consistant if \widehat{C}_{in} $\widehat{\rho}(\widehat{O}_n - 0 \mid \gamma, \xi) = 0$ $\forall \xi > 0$ \widehat{C}_{in} $\widehat{O}_n = 0$