Computer Networking: Concepts <u>Lab Experiment 3</u>

Procedure:

Perform the tasks below; capture screenshots and record observations. Consider the following IP addresses: PCO: 192.168.1.10 /24, PC1: 192.168.1.11 /24, PC2: 192.168.1.12 /24, PC3: 192.168.1.13 /24, PC4: 192.168.1.14 /24.

- 1. Star topology (core switch)
 - Place one switch (Switch0) and connect each of the 5 PCs to Switch0 using copper straight-through cables.
 - Connect PC0 → Switch0 (FastEthernet0/1)
 - Connect PC1 → Switch0 (FastEthernet0/2)
 - Repeat for all PCs.
 - Configure IPs (if not done).
 - Tasks:
 - Test connectivity: ping between all PC pairs; record success/failure and average RTTs.
 - o Scalability test: add 3 more PCs and repeat ping tests; note any issues.
 - Fault tolerance test: disconnect the cable to PC2 (simulate single-host link failure) and record which communications fail and which remain unaffected.
 - Measurements/Observations:
 - Which communications break when a single PC link fails? (expected: only that PC loses connectivity)
 - Does the star show single point of failure at the central switch? Simulate switch failure by deleting Switch0 and observe results.
- 2. Bus topology (emulated)
 - Packet Tracer has no "single coax bus" device; emulate bus by connecting all PCs to a single hub (or chain switches/hubs) using straight cables.
 - Tasks:
 - Test connectivity: ping across PCs.
 - Observe collisions (use Simulation mode and low-level frames): generate simultaneous traffic (Advanced PDU or multiple simple PDUs) and inspect frame propagation and collisions.
 - Fault tolerance: disconnect one segment/cable and observe effect.
 - Measurements/Observations:
 - o How does an intermediate cable failure affect communication?
 - Note advantages/disadvantages (e.g., simple wiring vs. collisions and poor scalability).
- 3. Ring topology
 - Connect PCs in a logical ring: PCO → SwitchA → PC1 → SwitchB → PC2 → ... →
 back to PCO. Alternatively, use switches connected in a ring with PCs on each
 switch.
 - Tasks:
 - o Test end-to-end communication (ping all pairs).
 - Simulation: trace frame path in Simulation mode and observe how a frame traverses the ring.

- Fault tolerance: remove one link and observe if alternative path exists (in simple ring without redundancy, ring should break).
- Measurements/Observations:
 - Does ring provide resilience? (without extra protocols, a single break partitions the ring).

4. Mesh topology

- For 5 devices, create full-mesh: connect every PC to every other PC (calculate and use correct number of links).
- Tasks:
 - o *Test connectivity* between all pairs.
 - Fault tolerance: remove one or two links and test if all nodes still communicate.
 - Scalability: estimate cable/port requirements for adding Nth node; discuss practicality.
- Measurements/Observations:
 - Note redundancy and fault tolerance vs cabling complexity.

Observation Table

Topology	Devices Used	No. of Links	Successful Communication (Y/N)	Collision Observed (Y/N)	Fault Tolerance (High/Low)	Remarks
Star						
Bus						
Ring						
Mesh						