

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

Parametrikus görbék és felületek pontos offsetelése

SZAKDOLGOZAT

Készítette Sandle Nátán Konzulens Salvi Péter

Tartalomjegyzék

1.	Bev	vezetés	1
	1.1.	CAD/CAM	1
	1.2.	Racionális görbék/felületek	1
	1.3.	Kontrollpont-alapú reprezentáció	1
	1.4.	Parametrikus sebesség	1
2.	\mathbf{PH}	Görbék	2
	2.1.	PH síkgörbék	2
		2.1.1. Alapok	
		2.1.2. Reprezentáció komplex számokkal	
		2.1.3. Interpoláció	
	2.2.	PH térgörbék	
		2.2.1. Alapok	
		2.2.2. Reprezentáció kvaterniókkal	2
		2.2.3. Interpoláció	
3.	\mathbf{PN}	felületek	3
4.	\mathbf{PN}	interpoláció C^1 folytonossággal	4
	4.1.	Feladat	4
		Duális reprezentáció	
	4.3.	Izotróp tér	5
		Coons-patch	
	4.5.	Folyamat	6
5 .	Imp	olementációs részletek	7
	_	Polinom osztály	7
		·	
	5.2.	Megjelenítés	7

HALLGATÓI NYILATKOZAT

Alulírott Sandle Nátán, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2025-04-29	
	Sandle Nátán
	hallgató

Bevezetés

- 1.1. CAD/CAM
- 1.2. Racionális görbék/felületek
- 1.3. Kontrollpont-alapú reprezentáció
- 1.4. Parametrikus sebesség

PH Görbék

- 2.1. PH síkgörbék
- 2.1.1. Alapok
- 2.1.2. Reprezentáció komplex számokkal
- 2.1.3. Interpoláció
- 2.2. PH térgörbék
- 2.2.1. Alapok
- 2.2.2. Reprezentáció kvaterniókkal
- 2.2.3. Interpoláció

PN felületek

PN interpoláció C^1 folytonosság-gal

4.1. Feladat

4.2. Duális reprezentáció

Egy olyan $\mathbf{x}(\mathbf{s})$ racionális felületet keresünk, melynek egységhosszúságú normálvektorait leíró $\mathbf{n}(\mathbf{s})$ függvény szintén racionális. Kézenfekfő lehet "fordítva gondolkozni": először konstruálni egy garantáltan racionális $\mathbf{n}(\mathbf{s})$ -t, majd ebből meghatározni $\mathbf{x}(\mathbf{s})$ -t. Felületünket a szokásos (x,y,z) koordináták helyett reprezentálhatjuk az úgynevezett "duális térben", (n_x,n_y,n_z,h) koordinátákkal. Ezek a koordináták a felület egy pontja helyett a felület egy érintősíkját írják le.

Ha \mathbf{x} a felület egy pontja, \mathbf{n} pedig a felület normálvektora ebben a pontban, az ennek megfelelő pont a duális térben (\mathbf{n}, h) , ahol:

$$\mathbf{x} \cdot \mathbf{n} = h$$

Ha feltételezzük, hogy \mathbf{n} egység hosszúságú, akkor h nem más, mint az érintősík távolsága az origótól. A $h(\mathbf{s})$ függvényt a felület support függvényének hívjuk.

Ezzel a képlettel már át tudjuk transzformálni az interpolálandó adatpontokat a duális térbe. Ahhoz, hogy a végeredményt leírhassuk a "primális" térben, szükségünk lesz az inverzre is, tehát \mathbf{n} -ből és h-ból ki szeretnénk számolni \mathbf{x} -et. Ehhez először fel kell írnunk néhány azonosságot.

 $\mathbf{x}(\mathbf{s})$ parciális deriváltjai párhuzamosak az érintősíkkal

$$\frac{d\mathbf{x}^T}{d\mathbf{s}}\mathbf{n} = \mathbf{0}$$

Így $h(\mathbf{s})$ deriváltja

$$\frac{dh}{ds} = \frac{d}{ds} \mathbf{x}^T \mathbf{n} = \mathbf{x}^T \frac{d\mathbf{n}}{ds}$$

Mivel $\mathbf{n}(\mathbf{s})$ egységhossúságú, egy gömbfelületet ír le. Parciális deriváltjai merőlegesek rá

$$\frac{d}{d\mathbf{s}}\mathbf{n} \cdot \mathbf{n} = 2 \mathbf{n}^T \frac{d\mathbf{n}}{d\mathbf{s}} = \frac{d}{d\mathbf{s}} \mathbf{1} = \mathbf{0}$$
$$\Rightarrow \frac{d\mathbf{n}}{d\mathbf{s}}^T \mathbf{n} = \mathbf{0}$$

 $h\mathbf{n}$ egy pont az érintősíkon, $\frac{d\mathbf{n}}{du}$ és $\frac{d\mathbf{n}}{dv}$ pedig az érintősíkkal párhuzamos vektorok. Így **x**-et ki tudjuk fejezni az alábbi módon

$$\mathbf{x} = h\mathbf{n} + \frac{d\mathbf{n}}{d\mathbf{s}} \cdot \mathbf{r}$$

Szorozva $\frac{d\mathbf{n}}{d\mathbf{s}}^T$ -al

$$\frac{dh}{d\mathbf{s}}^{T} = \frac{d\mathbf{n}}{d\mathbf{s}}^{T} \frac{d\mathbf{n}}{d\mathbf{s}} \cdot \mathbf{r}$$
$$\mathbf{r} = \left(\frac{d\mathbf{n}}{d\mathbf{s}}^{T} \frac{d\mathbf{n}}{d\mathbf{s}}\right)^{-1} \frac{dh}{d\mathbf{s}}^{T}$$

Tehát

$$\mathbf{x} = h\mathbf{n} + \frac{d\mathbf{n}}{d\mathbf{s}} \left(\frac{d\mathbf{n}}{d\mathbf{s}}^T \frac{d\mathbf{n}}{d\mathbf{s}} \right)^{-1} \frac{dh}{d\mathbf{s}}^T$$

4.3. Izotróp tér

Az egységhosszúságú normálvektor előírásával \mathbb{R}^4 -et leszűkítettük \mathcal{B} -re, az úgynevezett Blaschke hengerre. Az interpoláció közben szeretnénk biztosítani, hogy a hengeren maradunk. Ennek érdekében bevezetünk egy új reprezentációt, az izotróp térben. Ezt a reprezentációt úgy állítjuk elő, hogy a $\mathbf{w}=(0,0,1,0)$ pontból az $n_z=0$ hipersíkba vetítünk

$$\mathbf{y}(\mathbf{b}) = \frac{1}{1 - n_z} \begin{pmatrix} n_x \\ n_y \\ h \end{pmatrix}$$

Ennek az inverze

$$\mathbf{b}(\mathbf{y}) = \frac{1}{1 + y_x^2 + y_y^2} \begin{pmatrix} 2y_x \\ 2y_y \\ -1 + y_x^2 + y_y^2 \\ 2y_z \end{pmatrix}$$

Az izotróp térben szabadon interpolálhatunk a transzformált adatpontok között, majd a felületet visszavetítjük a Blaschke hengerre.

Bárhogy is interpoláljuk az adatpontjainkat az izotróp térben, a visszatranszformált felület érintősíkjai meg fognak egyezni az előírtakkal. Ahhoz viszont, hogy

a konkrét térbeli pozíció is megegyezzen, korlátoznunk kell a felület lehetséges deriváltjait az interpolációs pontokban

$$\mathbf{x}^{T} \frac{d\mathbf{n}}{d\mathbf{s}} = \frac{dh}{d\mathbf{s}}$$

$$\mathbf{x}^{T} \frac{d\mathbf{n}}{d\mathbf{y}} \frac{d\mathbf{y}}{d\mathbf{s}} = \frac{dh}{d\mathbf{y}} \frac{d\mathbf{y}}{d\mathbf{s}}$$

$$\underbrace{\left(\mathbf{x}^{T} \frac{d\mathbf{n}}{d\mathbf{y}} - \frac{dh}{d\mathbf{y}}\right)}_{\mathbf{y}} \frac{d\mathbf{y}}{d\mathbf{s}} = \mathbf{0}$$

Ahol

$$\begin{pmatrix} \frac{d\mathbf{n}}{d\mathbf{y}} \\ \frac{dh}{d\mathbf{y}} \end{pmatrix} = \frac{d\mathbf{b}}{d\mathbf{y}} = \frac{2}{\left(1 + y_x^2 + y_y^2\right)^2} \begin{pmatrix} 1 - y_x^2 + y_y^2 & -2y_x y_y & 0 \\ -2y_x y_y & 1 + y_x^2 - y_y^2 & 0 \\ 2y_x & 2y_y & 0 \\ -2y_x y_z & -2y_y y_z & 1 \end{pmatrix}$$

Tehát az izotróp térben kiválasztott kezdeti/végponti irányvektoroknak illeszkedniük kell a **v** normálvektorú, origót tartalmazó síkra.

4.4. Coons-patch

Ha az adatpontjainkat áttranszformáltuk az izotróp térbe, és rendeltünk hozzájuk megfelelő irányvektorokat (erre a következő pontban adunk egy heurisztikát), akkor végre konstruálhatunk egy felületet.

4.5. Folyamat

Implementációs részletek

- 5.1. Polinom osztály
- 5.2. Megjelenítés

Eredmények