МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Кафедра методов оптимального управления

ПОСТРОЕНИЕ НЕЙРОРЕГУЛЯТОРА ДЛЯ ЗАДАЧИ УПРАВЛЕНИЯ КВАДРОКОПТЕРОМ

Курсовая работа

Синицына Игоря Олеговича студента 3 курса, специальность «прикладная математика»

Научный руководитель: канд. физ.-мат. наук доцент Н.М. Дмитрук

ОГЛАВЛЕНИЕ

	C
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ	و
введение	4
ГЛАВА 1 ОСНОВНЫЕ ПОНЯТИЯ И ОБЗОР ЛИТЕРАТУ-	
РЫ	
1.1 Теория управления по прогнозирующей модели	٦
1.2 Задачи оптимального управления	
1.3 Численные методы решения задач оптимального управления	
1.4 Выводы	
ГЛАВА 2 МЕТОДЫ ПОСТРОЕНИЯ МРС-РЕГУЛЯТОРОВ	
на основе методов машинного обучения	13
2.1 Обучение с подкреплением	
2.2 Методы построения МРС-регуляторов на основе методов машин-	
ного обучения	14
2.3 Выводы	
ГЛАВА З ПОСТРОЕНИЕ МРС-РЕГУЛЯТОРА В ЗАДАЧЕ	
УПРАВЛЕНИЯ КВАДРОКОПТЕРОМ	17
3.1 Математическая модель квадрокоптера	
3.2 Построение линейного МРС	
3.3 Выводы	
ЗАКЛЮЧЕНИЕ	23
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	24

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Курсовая работа, 24 с., 4 рис., 11 источников

КЛЮЧЕВЫЕ СЛОВА ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ, УПРАВЛЕНИЕ С ПРОГНОЗИРУЮЩЕЙ МОДЕЛЬЮ, МРС-РЕГУЛЯТОР, КВАДРОКО-ПТЕР

Объектом исследования курсовой работы являются задачи стабилизации нелинейных динамических систем, на управляющие воздействия и траектории которых наложены ограничения, управление по прогнозирующей модели.

Целью работы является построение MPC-регулятора и симуляция его работы в задаче управления квадрокоптером.

Работа состоит из трех глав. В первой главе определяются основные понятия и результаты в области управления с прогнозирующей моделью. Во второй главе рассматриваются методы построение МРС-регулятора, связанные с методами машинного обучения. В третьей главе проиллюстрированы результаты построение МРС-регулятора в задаче управления квадрокоптером.

Областями применения MPC-регуляторов могут быть, как в данной курсовой работе, системы управления беспилотных летательных средств, транспортные системы, робототехника, химическая промышленность и др.

ВВЕДЕНИЕ

Model Predictive Control (MPC) — удобный механизм решения задач оптимального управления в режиме реального времени, позволяющий эффективно решать задачи с ограничениями на траекторию или управление, что позволяет сократить потенциально потраченные на управление линейной или нелинейной системой ресурсы. Однако в задачах, которые требует активного реагирования на быструю смену состояния, МРС может не успевать решать поставленную ему задачу оптимизации в отведенные сроки, до следующего изменения состояния системы.

В главе 1 будут рассмотрены основные принципы управления по прогнозирующей модели, базовый алгоритм МРС, задачи оптимального управления и описаны численные методы, позволяющие решить или сократить решение задач оптимального управления. В главе 2 ознакомимся с одним из способов машинного обучения — обучением с подкреплением, рассмотрим методы построения МРС-регулятора, где может быть использовано обучение с подкреплением. В третьей главе будет рассмотрена математическая модель квадрокоптера, его нелинейная динамика, будут показаны этапы построения МРС-регулятора, проведена симуляция полученной системы, и проиллюстрированы результаты.

ГЛАВА 1

ОСНОВНЫЕ ПОНЯТИЯ И ОБЗОР ЛИТЕРАТУРЫ

Управление по прогнозирующей модели (Model Predictive Control) — способ управления линейными и нелинейными системами, основанный на решении задач оптимального управления с конечным горизонтом в режиме реального времени.

В этой главе описываются основные принципы МРС, базовый алгоритм, рассматриваются задачи оптимального управления и описываются некоторые численные методы решения ЗОУ.

1.1 Теория управления по прогнозирующей модели

В данном разделе поясним основные принципы теории управления по прогнозирующей модели на примере задачи регулирования для дискретной нелинейной системы.

1.1.1 Прогнозирующая модель

Рассмотрим нелинейную дискретную прогнозирующую модель вида:

$$x^+ = f(x, u), \tag{1.1}$$

где функция $f: X \times U \longrightarrow X$ ставит в соответствие паре $x \in \mathbb{X}$ и $u \in \mathbb{U}$ некоторое состояние $x^+ \in \mathbb{X}$, которое является состоянием системы в последующий момент времени.

Траектория системы (1.1) может быть получена следующим образом: с заранее заданным значением $x_0 \in \mathbb{X}$, а также с управлением $u(\cdot) \in \mathbb{U}^k$, $k \in \mathbb{N}_{\infty}$, можно определить значение траектории $x_u(k)$ итерационно

$$x(0) = x_0, \quad x_u(k+1) = f(x_u(k), u(k)),$$
 (1.2)

для всех $k \in \mathbb{N}_0$, где $\mathbb{N}_0 = \{0, 1, 2, \ldots\}$.

1.1.2 Ограничения

Ограничения могут быть как на управление, так и на состояние системы. Введем непустое множество $X \subseteq \mathbb{X}$ и для каждого $x \in \mathbb{X}$ введем непустое множество ограничений $\mathbb{U}(x) \subseteq U$. Множество ограничений $\mathbb{U}(x)$ может и не зависеть от x. За введением ограничений стоит желание указать, что траектория лежит во множестве \mathbb{X} , а соответствующее траектории управление лежит во множестве $\mathbb{U}(x)$.

1.1.3 Критерий качества

Пусть $x_* \in X$ — точное решение системы (1.2). Тогда функция стоимости, которая используется в нашем процессе оптимизации, в критерии качества, должна возвращать значение, основанное на растоянии от любого $x \in \mathbb{X}$ до x_* . В дополнение к уже сказанному, желательно, чтобы функция стоимости также включала в себя оценку расстояний и по управлению $u \in \mathbb{U}$. По вычислительным причинам намного удобнее, чтобы управление также оценивалось функцией стоимости. Также оценка управления может быть полезна с точки зрения моделирования, т.к. мы не хотим использовать управление, затратное по ресурсам или энергии. За счет чего функция стоимости имеет вид $l: X \times U \longrightarrow \mathbb{R}_0^+$.

Из вышесказанного, можно сделать вывод, что функция стоимости обладает следующими свойствами:

$$l(x_*, u_*) = 0,$$

 $l(x, u) > 0, \quad x \in \mathbb{X}, \ u \in \mathbb{U}, \ x \neq x_*.$

1.1.4 Базовая формулировка задачи оптимального управления с конечным горизонтом

Базовая формулировка задачи оптимального управления с конечным горизонтом имеет вид:

$$J_N(x_0, u(\cdot)) = \sum_{k=0}^{N-1} l(x_u(k, x_0), u(k)) \longrightarrow \min,$$

$$x_u(k+1, x_0) = f(x_u(k, x_0), u(k)), \quad x_u(0, x_0) = x_0,$$

$$u(\cdot) \in \mathbb{U}^N(x_0), \quad k = 0, 1, \dots, N-1.$$
(1.3)

Здесь необходимо минимизировать критерий качества на траектории нелинейной дискретной системы с ограничениями на управление. Результатом

решения задачи (1.3) является последовательность оптимальных управлений $u^* \in \mathbb{U}^N(x_0)$.

1.1.5 Базовый алгоритм МРС

Идея схемы MPC выглядит так: в каждый момент квантования t_n оптимизируем предсказанное поведение системы и используем первый элемент результирующей последовательности управлений в качестве значения оценки в следующий момент квантования. Таким образом, базовый алгоритм MPC будет иметь следующий вид:

в каждый момент квантования $t_n, n = 0, 1, 2, ...$

- 1. находим состояние $x(n) \in \mathbb{X}$ системы (1.2),
- 2. принимаем $x_0 = x(n)$ и решаем задачу оптимального управления (1.3),
- 3. определим значение обратной связи $\mu_N(x(n)) = u^*(0) \in U$ и используем это значение управления в следующем периоде квантования: подставляя значение обратной связи в систему (1.2), получим следующее значение траектории и повторяем алгоритм.

1.1.6 Выводы

Идея MPC: оптимизация будущего поведения системы в каждый момент времени, нахождение оптимального управления и его использования в качестве значения обратной связи для следующего момента времени. Из-за простоты идеи и реализации, MPC получил большое распространение в различного рода промышленных приложениях.

1.2 Задачи оптимального управления

В данном разделе приведем основные сведения, касающиеся задач оптимального управления. Рассматриваемая здесь задача — непрерывная, однако основные элементы в формулировках легко переносятся и на дискретные задачи.

1.2.1 Классификация задач оптимального управления

Задачи оптимального управления классифицируются по следующим составляющим:

• Промежуток времени и управления.

Промежуток времени в задачах оптимального управления может быть как непрерывным, т.е. $t \in \mathbb{R}$, так и дискретным, а именно $k \in \mathbb{N}_0$. В то же время, промежуток управления может быть конечным, что значит $t \in [t_0, t_f], t_0 < t_f$, и бесконечным, где $t \in [t_0, +\infty)$. Время окончания процесса в свою очередь также может быть подразделено на фиксированное, т.е t_f заданно, и не фиксированное, где t_f уже заданно не будет.

• Математическая модель объекта управления.

Будем рассматривать объекты управления, которые можно описать обыкновенными дифференциальными уравнениями:

$$\dot{x} = f(x, u, t),$$

где $x=x(t)\in\mathbb{R}^n$ — состояние системы, $u=u(t)\in\mathbb{R}^r$ — управление.

• Классы управлений и ограничение на управление.

Классы управлений могут подразделяться на кусочно-непрерывные, измеримые, дискретные, релейные, инерционные и др. функции. Ограничение на управление:

$$u(t) \in U(t), \quad t \in [t_0, t_f],$$

где $U(t) \subseteq \mathbb{R}^n$.

• Ограничения на траекторию.

В общем виде ограничения на траекторию имеют вид:

$$x \in \mathbb{X}(t), \ t \in [t_0, t_f].$$

Ограничения на траекторию могут накладываться:

- на правом конце траектории (терминальные ограничения), т.е. $x(t_f) \in \mathbb{X}_f$, откуда могут вытекать задачи с закрепленным, свободным и подвижным правым концом траектории;
- на левом конце траектории, т.е. $x(t_0) \in \mathbb{X}_0$, откуда также могут вытекать задачи с закрепленным, свободным и подвижным концом траектории;

— в промежуточные моменты времени, т.е. $x(t_i) \in \mathbb{X}_i, \ t_i \in [t_0, t_f], \ i = 1, ..., l$, при этом $t_0 < t_1 < ... < t_l < t_f$.

Существуют и смешанные ограничения на траекторию.

- Критерий качества.
 - Терминальный критерий (критерий качества типа Майера)

$$J(u) = \varphi(x(t_f)), \quad \varphi : \mathbb{R}^n \longrightarrow \mathbb{R};$$

– Интегральный критерий (критерий качества типа Лагранжа)

$$J(u) = \int_{t_0}^{t_f} f_0(x(t), u(t), t) dt, \quad f_0 : \mathbb{R}^n \times \mathbb{R}^r \times \mathbb{R} \longrightarrow \mathbb{R};$$

– Критерий качества типа Больца

$$J(u) = \varphi(x(t_f)) + \int_{t_0}^{t_f} f_0(x(t), u(t), t) dt;$$

– Критерий быстродействия

$$J(u) = t_f - t_0 \longrightarrow \min$$
.

1.2.2 Принцип максимума для простейшей задачи оптимального управления

Рассмотрим простейшую задачу оптимального управления на промежутке времени $[t_0,t_f]$ в классе кусочно-непрерывных управлений:

$$J(u) = \varphi(x(t_f)) \longrightarrow min, \tag{1.4}$$

$$\dot{x} = f(x, u, t), \quad x(t_0) = x_0,$$
 (1.5)

$$u(t) \in \mathbb{U}, \quad t \in [t_0, t_f].$$
 (1.6)

В задаче (1.4)–(1.6) необходимо минимизировать критерий типа Майера (1.4) на траектории нелинейной системы (1.5) с ограничениями на управление (1.6).

Принцип максимума.

Пусть $u^0(t)$, $t \in [t_0, t_f]$ — оптимальное управление, $x^0(t)$, $t \in [t_0, t_f]$ — оптимальная траектория, $\psi^0(t)$, $t \in [t_0, t_f]$ — сопряженная траектория —

решение сопряженного уравнения

$$\psi' = -\frac{\partial H(x^0(t), \psi, u^0(t), t)}{\partial x},$$

$$\psi = -\frac{\partial \varphi(x^0(t_f))}{\partial x}.$$

Тогда необходимо выполняется условие максимума гамильтониана:

$$H(x^{0}(t), \psi^{0}(t), u^{0}(t), t) = \max_{u \in \mathbb{U}} H(x^{0}(t), \psi^{0}(t), u, t), \ t \in [t_{0}, t_{f}].$$

1.2.3 Алгоритм решения задач оптимального управления с помощью принципа максимума

Алгоритм решения задачи оптимального управления (1.4)–(1.6) из предыдущего пункта состоит из:

• составления гамильтониана

$$H(x, u, \psi, t) = \psi' f(x, u, t),$$

где
$$\psi = \psi(t) \in \mathbb{R}^n$$
;

• записи сопряженной системы и условия трансверсальности

$$\dot{\psi} = -\frac{\partial H(x, u, \psi, t)}{\partial x},$$

$$\psi(t_f) = -\frac{\partial \varphi(x(t_f))}{\partial x};$$

• условия максимума гамильтониана

$$H(x^{0}(t), \psi^{0}(t), u^{0}(t), t) = \max_{u \in \mathbb{U}} H(x^{0}(t), \psi^{0}(t), u(t), t), \ t \in [t_{0}, t_{f}];$$

• рассмотрения задачи максимума гамильтониана

$$H(x, \psi, u, t) \longrightarrow max,$$

где x, ψ, t предполагаются фиксированными.

• результата решения предыдущего пункта

$$u(x, \psi, t) = \arg \max_{u \in \mathbb{U}} H(x, \psi, u, t); \tag{1.7}$$

• подстановки результата в прямую и сопряженную систему

$$\dot{x} = f(x, u(x, \psi, t), t),
\dot{\psi} = -\frac{\partial H(x, \psi, u(x, \psi, t), t)}{\partial x},
x(t_0) = x_0, \quad \psi(t_f) = -\frac{\partial \varphi(x(t_f))}{\partial x};$$
(1.8)

• решения краевой задачи принципа максимума (1.8)

$$x(t), \psi(t), t \in [t_0, t_f],$$

 $u(t) = u(x(t), \psi(t), t), t \in [t_0, t_f].$

Описанная схема решения чаще применяется при аналитическом решении задач оптимального управления, поскольку сложно численно установить формулу для управления (1.7). На практике используются численные методы.

1.3 Численные методы решения задач оптимального управления

Рассмотрим некоторые численные методы решения задач оптимального управления:

• Численное решение задач оптимального управления с переключением методом пристрелки.

Система дифференциальных уравнений состояния объекта вместе с сопряженной системой, краевыми условиями и принципом максимума Понтрягина составляют П-систему. Интегрирование П-системы осуществляется методом Рунге-Кутта четвертого порядка. Для решения уравнений невязок и подбора уточненных значений параметров пристрелки используется метод Ньютона.

• Редукция к задаче нелинейного программирования.

Для использования этого метода необходимо перейти от непрерывной системы к дискретной. Отрезок [0,T] разбивается на (k-1) участок, где система $\dot{x}=f(x,u,t)$, будучи уже дискретной и имеющей вид $x(t_i)=\eta(x(t_i),\Delta u(t_i),t_i)$, интегрируется по схеме, относящейся к семейству методов Рунге-Кутта. Ограничения заменяются их дискретными

аналогами. В результате задача оптимального управления сводится к задаче нелинейного программирования.

• Метод последовательных приближений.

В качестве начального приближения $u_0(t)$ выбирается некоторое допустимое управление. Обычно при его выборе используются физические соображения. Метод состоит из последовательных итераций. На i-ой итерации находится решение задачи Коши $x_i(t)$. Затем интегрированием в обратном времени находится решение $p_i(t)$ сопряженной системы. После чего, управление $u_{i+1}(t)$ определяется из условия максимума, и осуществляется переход к следующей итерации. Процесс продолжается до тех пор, пока на двух последующих итерациях не будет достигнута требуемая точность.

1.4 Выводы

В первой главе были рассмотрены основные принципы управления с прогнозирующей моделью, базовый алгоритм МРС, основные положения задач оптимального управления, принцип максимума, алгоритм решения задач оптимального управления с помощью принципа максимума, а также приведены некоторые численные методы решения задач оптимального управления.

ГЛАВА 2

МЕТОДЫ ПОСТРОЕНИЯ МРС-РЕГУЛЯТОРОВ НА ОСНОВЕ МЕТОДОВ МАШИННОГО ОБУЧЕНИЯ

В настоящей главе будет рассмотрен метод машинного обучения — обучением с подкреплением, опишем базовые принципы его работы. Рассмотрим методы построения MPC-регуляторов на основе методов машинного обучения.

2.1 Обучение с подкреплением

Рассмотрим один из способов машинного обучения — обучение с подкреплением (reinforcement learning). Суть этого метода обучения заключается в том, что система (агент) взаимодействует с некоторой средой, которая, в свою очередь, реагирует на действия агента, посылая сигналы подкрепления. Обучение с подкреплением является частным случаем обучения с учителем, однако главной особенностью RL является то, что учитель — это среда или ее модель.

Базовое обучение с подкреплением моделируется как процесс принятия решения Маркова:

- набор состояний среды и агента S,
- набор действий агента А,
- $P_a(s,s') = Pr(s_{t+1} = s' | s_t = s, a_t = a)$ вероятность перехода из состояния s в состояние s' под действием агента a.
- $R_a(s,s')$ награда за переход из состояния s в состояние s' под действием агента a.

Агент в каждый дискретный момент времени взаимодействует со средой. У агента имеется либо полный, либо частичный доступ к просмотру множества состояний. После действия, которое может быть произведено случайным образом, агент получает награду за выбранное им действие. Цель обучения с подкреплением связана с получением наибольшего количества наград. Выбор действия агентом может основываться не только на награде в данный момент

времени, но и на награде, которую он получит после выбора этого действия. Это говорит о том, что обучение с подкреплением хорошо вписывается в задачи с долгосрочной перспективой.

2.2 Методы построения MPC-регуляторов на основе методов машинного обучения

Существует некоторое количество принципов использования методов машинного обучения в МРС:

- Явный МРС
- Аппроксимация закона управления
- Использование обучаемой модели для аппроксимации динамики прогнозирующей модели
- Итерационный подход для построения терминального региона и функции из предыдущих итераций.

Рассмотрим явный МРС. Для линейных систем задача оптимизации может быть решена до начала процедуры управления. В результате решения получаем явный закон управления u(x). Необходимо найти x(t) в момент времени t в задаче вида

$$V(x) = \min_{u(\cdot|t)} \sum_{k=t}^{t+N-1} L(x(k|t), u(k|t)) + F(x(t+N|t)),$$

$$x(k+1|t) = Ax(k|t) + Bu(k|t), \quad t \le k \le t+N-1,$$

$$x(t|t) = x(t), \quad t \le k \le t+N-1,$$

$$C_{x}x(k|t) \le d_{x}, \quad t \le k \le t+N-1,$$

$$C_{u}u(k|t) \le d_{u}, \quad t \le k \le t+N-1,$$

$$C^{f}x(t+N|t) \le d_{f},$$

$$(2.1)$$

где L(x(k|t), u(k|t)) и F(x(k+N|t)) квадратичные функция стоимости и терминальная функция соответственно, имеющие вид

$$L(x(k|t), u(k|t)) = x(t)^{T}Qx(t) + u(t)^{T}Ru(t), \quad Q, R > 0,$$

$$F(x(k+N|t)) = x(t)^{T}Px(t).$$

Перепишем задачу (2.1) в матричном виде:

$$\min_{U} \frac{1}{2} U^T H U + x^T F U + \frac{1}{2} x^T Y x,$$

$$GU \le W + E x(t)$$
(2.2)

$$Y = 2(Q + \Omega^T \tilde{Q}\Omega), \quad H = 2(\Gamma^T \tilde{Q}\Gamma + \tilde{R}), \quad F = 2\Omega^T \tilde{Q}\Gamma,$$

$$G = diag(C_x, \dots, C_x)\Gamma, \quad W = [d_x, \dots, d_x]^T, \quad E = diag(C_x, \dots, C_x)\Omega,$$

$$\tilde{Q} = diag(Q, \dots, Q, P) \in \mathbb{R}^{n \times (N+1)}, \quad \tilde{R} = diag(R, \dots, R) \in \mathbb{R}^{m \times N},$$

$$\Omega = \begin{bmatrix} A \\ A^2 \\ \vdots \\ A^N \end{bmatrix}, \quad \Gamma = \begin{bmatrix} B & 0 & 0 & \dots & 0 \\ AB & B & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ A^{N-1}B & A^{N-2}B & A^{N-3}B & \dots & 0 \end{bmatrix}.$$

Сделав замену переменных вида

$$z = U + H^{-1}F^Tx,$$

уравнения (2.2) примут вид

$$\min_{z} \frac{1}{2} z^{T} H z + \frac{1}{2} x^{T} \tilde{Y} x,$$

$$Gz \leq W + Sx,$$

$$\tilde{Y} = Y - F H^{-1} F^{T},$$

$$S = E + G H^{-1} F^{T}.$$
(2.3)

Далее задача (2.3) решается с помощью теории выпуклой оптимизации через условия Каруша-Куна-Такера.

Явный MPC решает задачу для всех состояний, разбивая все пространство состояний на области, в каждой из которых находится своя явная функция управления.

Алгоритм нахождения явных функций управления:

- 1. Взять любой $x_0 \in \mathbb{X}$
- 2. Решить задачу (2.3) с начальным условием $x=x_0$
- 3. Определить активные ограничения для оптимизационной задачи (2.3)
- 4. Вычислить критическую область по активным ограничеям и вычислить функцию управления для этой области

5. Перейти к новому x_0

2.3 Выводы

Каждый из методов имеет свое собственное применение в определенной ситуации. Рассмотренный метод имеет одним большим недостатком — потенциально большим количеством областей, что может плохо сказаться на производительности метода. Однако для линейных задач с небольшим количеством областей явный МРС будет подходить.

ГЛАВА 3

ПОСТРОЕНИЕ МРС-РЕГУЛЯТОРА В ЗАДАЧЕ УПРАВЛЕНИЯ КВАДРОКОПТЕРОМ

В этой главе рассмотрим задачу управления квадрокоптером, приведем используемую математическую модель, рассмотрим этапы, необходимые для формулирования решаемой MPC-регулятором задачи оптимизации, построение MPC-регулятора с помощью Model Predictive Control Toolbox, рассмотрим структуру системы, ее настройку, и проведем симуляцию полученной модели в Simulink.

3.1 Математическая модель квадрокоптера

Рассматриваемый беспилотный летательный аппарат будет иметь четыре мотора с каждой стороны, расположенных на равном расстоянии от центра масс квадрокоптера. Определим правую систему координат I в пространстве.

Рис. 3.1: Модель квадрокоптера

Квадрокоптер может свободно двигаться во всех трех направлениях во время своего полета. Это значит, что необходимо ввести шесть степеней свободы, чтобы полностью описать динамику квадрокоптера.

Обозначим с помощью x, y, z позицию квадрокоптера в пространстве, где x и y отвечают за горизонтальную плоскость, а z — за вертикальную.

С помощью φ , θ , ψ обозначим углы вращения квадрокоптера относительно своих осей: ψ отвечает за угол поворота (вращение относительно оси z), φ

отвечает за крен (вращение относительно оси y), θ отвечает за угол наклона квадрокоптера (вращение относительно оси x).

Каждый из моторов M_1, M_2, M_3, M_4 генерирует силы тяги f_1, f_2, f_3, f_4 и крутящие моменты $\tau_1, \tau_2, \tau_3, \tau_4$ соответственно. Силы и крутящие моменты могут быть изменены путем повышения или понижения напряжения на моторы. В итоге, создаются три крутящих момента $\tau_{\varphi}, \tau_{\theta}, \tau_{\psi}$:

$$\tau_{\theta} = (f_2 - f_4)l,$$

$$\tau_{\varphi} = (f_1 - f_3)l,$$

$$\tau_{\psi} = \sum_{i=1}^{4} \tau_i,$$

где l — это расстояние от каждого из моторов до центра квадрокоптера. А результирующая сила $u = f_1 + f_2 + f_3 + f_4$ позволяет свободно изменять позицию и ориентацию квадрокоптера в пространстве.

Пусть $\tau = [\tau_{\theta} \ \tau_{\varphi} \ \tau_{\psi}]'$ — общий вектор крутящих моментов, $\eta = [\theta \ \varphi \ \psi]'$ — вектор углового смещения, а J — матрица инерции. Тогда вращательная динамика квадрокоптера может быть описана следующим образом:

$$\tau = J\ddot{\eta} + J\dot{\eta} - \frac{1}{2}\frac{\partial}{\partial\eta}(\dot{\eta}'J\dot{\eta}),$$

что может быть переписано как

$$\ddot{\eta} = \tilde{\tau},$$

где $\tilde{\tau} = [\tilde{\tau}_{\theta} \ \tilde{\tau}_{\varphi} \ \tilde{\tau}_{\psi}]'$ — новые входные данные. С помощью вращательных преобразований между системой I (см. Рис.3.1) и центром масс квадрокоптера, получим систему уравнений, описывающих его динамику:

$$m\ddot{x} = -u\sin\theta - \beta\dot{x},$$

$$m\ddot{y} = u\cos\theta\sin\varphi - \beta\dot{y},$$

$$m\ddot{z} = u\cos\theta\cos\varphi - \beta\dot{z},$$

$$\ddot{\theta} = \tilde{\tau}_{\theta},$$

$$\ddot{\varphi} = \tilde{\tau}_{\varphi},$$

$$\ddot{\psi} = \tilde{\tau}_{\psi},$$
(3.1)

где β является фактором демпфирования, принимая во внимание эффекты трения. Нелинейная динамическая модель имеет двеннадцать состояний

системы (шесть позиций и шесть скоростей) и четыре управляющие компоненты (результирующая сила и три крутящих момента), связанных соотношениями (3.1).

3.2 Построение линейного МРС

3.2.1 Формулирование и построение МРС-регулятора

Для того, чтобы построить линейный MPC-регулятор для квадрокоптера, необходимо линеаризовать нелинейную динамическую систему (3.1) в окрестности положения равновесия. Результирующее линейное непрерывное пространство состояний нужно перевести в дискретное с периодом квантования T_s

$$\xi(k+1) = A\xi(k) + Bu(k),$$

$$y(k) = C\xi(k) + Du(k),$$

где $\xi(k) = [x \ \dot{x} \ y \ \dot{y} \ z \ \dot{z} \ \varphi \ \dot{\varphi} \ \theta \ \dot{\theta} \ \psi \ \dot{\psi}]' \in \mathbb{R}^{12}$ — вектор состояния системы, $y(k) \in \mathbb{R}^{12}$ — вектор выходных данных, матрицы A, B, C, D — это матрицы подходящих размеров, полученных в процессе линеаризации системы (3.1).

Для формулирования линейного MPC используется Model Predictive Control Toolbox для Matlab, где управление получено с помощью решения оптимизационной задачи

$$\min_{\Delta u} \sum_{i=0}^{N_L - 1} \left(\sum_{j=1}^{n_y} \left| \omega_j^y \left[y_j(k+i+1|k) - r_j(k+i+1) \right] \right|^2 + \sum_{j=1}^{n_u} \left| \omega_j^{\Delta u} \Delta u_j(k+i|k) \right|^2 + \rho_{\varepsilon} \varepsilon^2 \right), \quad (3.2)$$

$$u_{j}^{\min} \leq u_{j}(k+i|k) \leq u_{j}^{\max}, \quad j=1,\ldots,n_{u},$$

$$y_{j}^{\min} - \varepsilon V_{j}^{y,\min} \leq y_{j}(k+i+1|k) \leq y_{j}^{\max} + \varepsilon V_{j}^{y,\max}, \quad j=1,\ldots,n_{y},$$

$$\Delta u(k+h|k) = 0, \quad h = N_{Lu},\ldots,N_{L}, \quad \varepsilon \geqslant 0,$$

$$(3.3)$$

для всех $i=0,...,N_L-1$ в отношении последовательности входных приращений $\{\Delta u(k|k),...,\Delta u(N_{Lu}-1+k|k)\}$ и slack-переменной ϵ . Индекс " $(\cdot)_j$ " обозначает j-ую компоненту вектора, "(k+i|k)" обозначает предсказанное значение в момент времени k+i, основываясь на текущем моменте времени k,

r(k) — значение эталонных выходных данных (output reference), $V^{y,\min}$, $V^{y,\max}$ — неотрицательные векторы-константы, необходимые для релаксации выходных ограничений, $n_y=12$ количество выходных значений, $n_u=4$ количество входных значений. Линейный MPC-регулятор устанавливает значение $u(k)=u(k-1)+\Delta u^*(k|k)$, где $\Delta u^*(k|k)$ является первым элементом последовательности.

3.2.2 Настройка МРС и проверка результатов

Построенную схему можно увидеть на рис.3.2. В нее включены: mpcрегулятор, система квадрокоптера, эталонные (reference) данные и устройства вывода информации.

Рис. 3.2: Структура системы

Линейный МРС-регулятор настроен следующим образом.

$$u_j^{\min} = -6N_m, \ u_j^{\max} = 6N_m, \quad j = 1, 2, 3,$$

 $u_4^{\min} = -6N, \ u_4^{\max} = 6N,$
 $\omega_{i,j}^{\Delta u} = 0.1 \quad \forall j = 1, \dots, 4, \ i = 0, \dots, N_L - 1.$

Для выходных переменных устанавливаем нижнюю границу $y_5^{min}=0$ для переменной z, верхнюю и нижнюю границу $y_{7,9}^{max}=-y_{7,9}^{min}=\frac{\pi}{12}$ для крена и угла наклона.

Веса на выходные переменные равны $\omega_j^y = 1, \ j \in \{1, 2, 3, 4\}$ для x, \dot{x}, y, \dot{y} соответственно, и $\omega_j^y = 10$ для всех оставшихся.

Горизонт прогноза $N_L=20$, горизонт управления $N_{Lu}=3$. Период квантования $T_s=0.05s$. Оставшиеся параметры $V^{y,\min},\ V^{y,\max},\ \rho_\varepsilon$ устанавливаются по умолчанию с помощью Model Predictive Control Toolbox.

Симуляция системы квадрокоптера (3.1) проводилась под эффектом

MPC-регулятора (3.2)–(3.3) с помощью Simulink и Model Predictive Control Toolbox.

Рис. 3.3: Графики значений координат квадрокоптера

Рис. 3.4: Графики значений управляющей последовательности

На рис.3.3 показаны результаты симуляции, полученные за счет отслеживания выходных данных. Начальным значением состояния системы являлся нулевой вектор, а ограничениями на положения x,y,z были значения, равные эталонным. К концу симуляции необходимо было достичь эталонных значений положения квадрокоптера: $x=15,\ y=10,\ z=5,\$ что можно увидеть на рис.3.3.

На рис.3.4 показаны значения результирующей силы и трех крутящих моментов. Необходимо отметить, что u в начальный момент времени не равняется нулю, что связано с задачей удержания квадрокоптера в состоянии полета.

3.3 Выводы

В данной курсовой работе происходило ознакомление с базовыми принципами и алгоритмами управления по прогнозирующей модели, задачами оптимального управления и некоторыми численными методами их решения, обучением с подкреплением, методами построения МРС-регулятора на основе методов машинного обучения. Был построен МРС-регулятор для задачи управления квадрокоптером, была проведена его настройка и были освещены результаты проведения симуляции.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе рассмотрена задача построения МРС-регулятора, необходимого для управления квадрокоптером. Для выполнения этой задачи была построена замкнутая модель, состоящая из дискретной линейной системы уравнений, полученной после линеаризации нелинейной динамики квадрокоптера, МРС-регулятора и устройств вывода информации о результатах вычисления управляющей последовательности и вектора состояний системы. Модель была построена с помощью Simulink и Matlab. Была проведена симуляция полученой системы, результаты которой проиллюстрированы на графиках. Задача, поставленная перед МРС-регулятором и квадрокоптером, была выполнена с достаточно большой точностью. Результат можно уточнить за счет сужения ограничений для терминального состояния системы.

Дальнейшие исследования в этой области могут включать в себя: ускорение реакции MPC-регулятора, построение более детальной модели (построение точной модели квадрокоптера), использование улучшенных алгоритмов, например, на основе сочетания MPC с искусственными нейронными сетями с целью замены трудоемкого этапа решения задачи оптимального управления на ИНС.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- $1\,$ Grune, L. Nonlinear model predictive control / L. Grune, J. Pannek // Springer London. $2011\,$
- 2 Rawlings, J.B. Model Predictive Control: Theory and Design / J.B. Rawlings, D.Q. Mayne // Madison: Nob Hill Publishing. 2009
- 3 Islam, M. Dynamics and control of quadcopter using linear model predictive control approach / M. Islam, M. Okasha, M.M. Idres // AEROS Conference: Materials Science and Engineering. -2017
- 4 Rodriguez, J.V. Implementation and comparison of linearization-based and backstepping controllers for quadcopters / J.V. Rodriguez // Eindhoven. 2017
- 5 Bangura, M. Real-time Model Predictive Control for Quadrotors / M. Bangura, R. Mahony // 19th IFAC World Congress, Cape Town, South Africa. 2014
- 6 Kurak, S. Control and Estimation of a Quadcopter Dynamical Model / S. Kurak, M. Hodzic // Periodicals of Engineering and Natural Sciences, Vol.6, No.1, March 2018. pp. 63-75
- 7 Sebatino, F. Quadrotor control: modeling, nonlinear control design and simulation / F. Sebatino // KTH Electrical Engineering. 2015
- 8 Neff, A. Linear and Non-Linear Control of a Quadrotor UAV / A. Neff // Clemson University. $-\,2007$
- 9 Павловец, М.Е. Применение методов машинного обучения в системах управления по прогнозирующей модели / М.Е. Павловец, Н.М. Дмитрук // XIX Международная научная конференция по дифференциальным уравнениям "Еругинские чтения 2019": материалы международной научной конференции. Могилев, 14-17 мая 2019 г. С. 127-129
- 10 Тятюшкин, А.И. Методы оптимизации и программная система для решения прикладных задач оптимального управления / А.И. Тятюшкин, О.В. Моржин // Иркутский государственный университет путей сообщения.
- 11 Орлов, Ю.В. Численные методы задач оптимального обобщенного управления / Ю.В. Орлов, Д.Д. Разумовский // Автомат. и телемех., 1993, выпуск 5, 44-51.