Architecture avancée: TD7

Exercice 1: Alignement

Sujet

On considère un cache à correspondance directe (direct mapped), à 2^p lignes stockant chacune 2^m octets. Le système qui l'utilise adresse la mémoire sur 32 bits. On appellera mot de la mémoire un ensemble de 4 octets.

- 1. Détailler la translation (adresse en mémoire centrale) \rightarrow (ligne de la mémoire cache) en fonction de m et p, i.e., le découpage en offset, index et tag.
- 2. Supposons m=7 : chaque ligne contient 128 octets de la mémoire centrale. Quelle est, dans ce cas, la longueur (en nombre de bits), de l'offset d'une adresse ?
- 3. Donner l'adresse en mémoire centrale des premiers mots contenus dans les lignes contenant les mots d'adresses :
 - o 0xA23847EC
 - o 0x7245E824
 - o 0xEEFABCD8
- 4. On suppose maintenant m=7, que p=9 et que le cache est toujours à correspondance directe. Quelle est, dans ce cas, la longueur (en nombre de bits), de l'index d'une adresse ?

Résolution

Question 1

- 2^p lignes \Rightarrow Index sur p bits
- 2^m octets \Rightarrow Offset sur m bits
- \Rightarrow Tag sur 32 p m bits

Question 2

• Longueur de l'offset : 128

Question 3

0xA23847EC

- EC -> 1110 1100 Offset sur 7 bits donc on met à 0 ces 7 bits, premier mot sur 1000
 0000 -> 80
- o 0xA2384780
- 0x7245E824
 - o 0x7245E800
- 0xEEFABCD8
 - o 0xEEFABC80

Question 4

• 7 bits

Exercice 2 : Accès mémoire

Sujet

Un processeur utilise des adresses sur 16 bits et dispose d'une mémoire cache direct mapped, de capacité totale de 16 mots, avec des blocs de 4 mots. Un mot mémoire est représenté sur 32 bits.

- Détailler la translation (adresse en mémoire centrale) → (mémoire cache), i.e., le découpage en offset, index et tag. Un programme utilise des variables stockées aux adresses suivantes : 0x74, 0xA0, 0x78, 0x38C, 0xAC, 0x84, 0x88.
- 2. Calculez le nombre de défauts dans la mémoire cache.

Question 1

• 0x74

o tag:0000 0000 00

o index: 11

o offset: 0100