Mathematical Probability Theorems and Formulas

Jason Lim

12/10/2020

${\bf Contents}$

1	\mathbf{Set}	Theory	3		
	1.1	De Morgan's Laws	3		
2	Pro	bability and Events	3		
	2.1	Probability Space	3		
	2.2	Inclusion-exclusion principle	4		
	2.3	Independent events	4		
3	Met	thods of Enumeration	4		
	3.1	The multiplication principle	4		
	3.2	The Binomial Theorem	5		
4	Mo	re Probability	5		
	4.1	Bayes' Theorem	6		
5	Random Variables				
	5.1	PMF and CDF	7		
	5.2	Expected Value	7		
	5.3	Moment, Variance, and Standard Deviation	8		
6	Typ	pes of Discrete Random Variables	8		
	6.1	Bernoulli	8		
	6.2	Uniform (Discrete)	9		
	6.3	Binomial	9		
	6.4	Geometric	9		
	6.5	Negative Binomial	10		
	6.6	Poisson	11		

7	Con	atinuous Random Variables	11
	7.1	Expectation	12
	7.2	Moment, Variance	12
8	Тур	pes of Continuous Random Variables	13
	8.1	Uniform	13
	8.2	Exponential	13
	8.3	Gamma	14
	8.4	Normal	14
9	Biva	ariate Probability	15
	9.1	Cauchy-Schwarz Inequality	15
	9.2	Covariance	15
	9.3	Correlation coefficient	16
	9.4	Conditional Distributions	16
	9.5	Bivariate Distributions of the Continuous Type	17
10	Seve	eral Random Variables	17
	10.1	i.i.d Variables	18
11	Tra	nsformation of Random Variables	18
	11.1	Single Variable	18
	11.2	Double Variable	18
12	The	e Law of Large Numbers and Convergence	19
	12.1	The MGF Technique	19

1 Set Theory

1.1 De Morgan's Laws

Suppose $\{A_j\}_{j=1}^k$ are a collection of sets in B, i.e. $A_j \subseteq B \ \forall j=1,\ldots,k$

$$(A \cup B)' = A' \cap B'$$
$$(A \cap B)' = A' \cup B'$$

General form:

$$\left(\bigcup_{j=1}^{k} A_j\right)' = \bigcap_{j=1}^{k} A_j'$$

$$\left(\bigcap_{j=1}^{k} A_j\right)' = \bigcup_{j=1}^{k} A_j'$$

2 Probability and Events

2.1 Probability Space

Definition 2.1 (Probability space). A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$ where:

- Ω is a nonempty set called the static space.
- \mathcal{F} is a collection of subsets of Ω (note: $\emptyset, \Omega, \in \mathcal{F}$)
 - An element $A \in \mathcal{F}$ is called an event and $A \subseteq \Omega$
 - (in this course, $\mathcal{F} = \{\text{all subsets of } \Omega\}$
- A function $\mathbb{P}: \mathcal{F} \longrightarrow [0,1]$ satisfying:
 - 1. $\mathbb{P}(A) \geq 0$ for any $A \in \mathcal{F}$
 - 2. $\mathbb{P}(\Omega) = 1$
 - 3. If $\{A_j\}_{j=1}^k$ are events such that $A_i \cap A_j = \emptyset$ for $i \neq j$ (mutually exclusive), then

$$\mathbb{P}\left(\bigcup_{j=1}^{k} A_j\right) = \sum_{j=1}^{k} \mathbb{P}(A_j)$$

and when $k = +\infty$,

$$\mathbb{P}\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mathbb{P}(A_j)$$

Proposition 2.1. $\mathbb{P}(\emptyset) = 0$. This lets us say if $A \cap B = \emptyset$, $\mathbb{P}(A \cap B = \mathbb{P}(\emptyset) = 0$

Proposition 2.2. If A is an event, then $A' = \Omega \setminus A$ is an event and $\mathbb{P}(A') = 1 - \mathbb{P}(A)$

Proposition 2.3. If $A \subseteq B$, then $\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$

Proposition 2.4. *If* $A \subseteq B$ *then* $\mathbb{P}(A) \leq \mathbb{P}(B)$

2.2 Inclusion-exclusion principle

Theorem 2.1 (Inclusion-exclusion principle). For any events $A, B \subseteq \Omega$,

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

2.3 Independent events

Definition 2.2. $A, B \subset \Omega$ are independent if $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$. Otherwise, we say that they are dependent.

Note: Don't confuse independent with disjoint $(A \cap B = \emptyset)$. If A, B are both independent and disjoint, then $\mathbb{P}(A) = 0$ or $\mathbb{P}(B) = 0$.

Proposition 2.5. If A, B are independent events, then so are:

- 1. A and B'
- 2. A' and B'

Definition 2.3. We say events $A_1, \ldots, A_n \subseteq \Omega$ are <u>mutually independent</u> if, given $1 \le k \le n$ and $1 \le j_1 < j_2 < \cdots < j_k \le n$, we have

$$\mathbb{P}\left(\bigcap_{l=1}^{k} A_{j_{l}}\right) = \prod_{l=1}^{k} \mathbb{P}\left(A_{j_{l}}\right)$$

3 Methods of Enumeration

3.1 The multiplication principle

Let $r \in \mathbb{N}_{>0}$. Suppose that we run r independent experiments and:

- The first experiment has n_1 possible outcomes.
- The second experiment has n_2 possible outcomes.

• The r^{th} experiment has n_r possible outcomes.

Unordered without replacement: When ignoring order, each chosen set of size r is considered equivalent to all its r! permutations, so the number of distinct possibilities is simply divided by r!.

Unordered with replacement: If we take unordered samples of size r from a set of n objects with replacement, then the number of samples is

$$_{n+r-1}C_r = \binom{n+r-1}{r}$$

3.2 The Binomial Theorem

Theorem 3.1 (The Binomial Theorem). If $n \geq 0$, then

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$$

 $\binom{n}{r}$ shows up in this formula because:

- When $(x+y)^n$ is expanded, each part of the resulting sum will have exactly n factors.
- Since multiplication is commutative, two addends are considered equivalent if they contain the same number of x's and y's. For example, xxxyx = xxyxx.
- Each possible combination of r x's and r-n y's appears once.

Thus the coefficient of x^ry^{n-r} is the number of ways of choosing r x's out of n x's and y's, or $\binom{n}{r}$

Theorem 3.2 (The Multinomial Coefficient). For $1 \le r \le n$ and $n_1 = \cdots + n_r = n$. Then, there are

$$\binom{n}{n_1, n_2, \dots, n_r} := \frac{n!}{n_1! n_2! \cdots n_r!}$$

distinguishable permutations.

4 More Probability

Definition 4.1 (Conditional Probability). Let $B \subseteq \Omega$ be an event so that $\mathbb{P}(B) \neq 0$. The probability of an event $A \subseteq \Omega$ conditioned on the event B is given by

$$\mathbb{P}\left(A|B\right) = \frac{\mathbb{P}\left(A \cap B\right)}{\mathbb{P}\left(B\right)}$$

"probability that A occurs given B has occurred"

Theorem 4.1 (Properties of the conditional probability). If $B \subseteq \Omega$ is an event such that $\mathbb{P}(B) = 0$, then $\mathbb{P}(\cdot|B)$ is a probability measure, i.e. $\mathbb{P}(\cdot|B) : \mathcal{F} \to [0,1]$ satisfies:

- 1. $\mathbb{P}(\Omega|B) = 1$
- 2. (Countable additivity) If $\{A_j\}_{j=1}^k$ are mutually exclusive events, then

$$\mathbb{P}\left(\bigcup_{j=1}^{k} A_j \middle| B\right) = \sum_{j=1}^{k} \mathbb{P}\left(A_j \middle| B\right)$$

And when $k = +\infty$,

$$\mathbb{P}\left(\bigcup_{j=1}^{\infty} A_j \middle| B\right) = \sum_{j=1}^{\infty} \mathbb{P}\left(A_j \middle| B\right)$$

Proposition 4.1. If $A, B \subseteq \Omega$ are independent and $\mathbb{P}(B) \neq 0$, then

$$\mathbb{P}\left(A|B\right) = \mathbb{P}\left(A\right)$$

Theorem 4.2 (The Law of Total Probability). Let $A \subseteq \Omega$ be an event and $\{B_j\}_{j=1}^k \subseteq \Omega$ be mutually exclusive, satisfying $\mathbb{P}(B_j) \neq 0$ for every j = 1, ..., k, and

$$A \subseteq \bigcap_{j=1}^{k} B_j$$

Then

$$\mathbb{P}(A) = \mathbb{P}(A|B_1) \mathbb{P}(B_1) + \dots + \mathbb{P}(A|B_k) \mathbb{P}(B_k)$$
$$= \sum_{j=1}^{k} \mathbb{P}(A|B_j) \mathbb{P}(B_j)$$

4.1 Bayes' Theorem

Theorem 4.3 (Bayes' Theorem). If $A, B \subseteq \Omega$ are events such that $\mathbb{P}(A), \mathbb{P}(B) \neq 0$, then

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

Theorem 4.4 (Bayes' Theorem v2). If $A \subseteq \Omega$ is an event, $\{B_j\}_{j=1}^k \subseteq \Omega$ are mutually exclusive events so that $\mathbb{P}(A)$, $\mathbb{P}(B_j) \neq 0$, and

$$A \subseteq \bigcap_{j=1}^{k} B_j$$

Then for any $1 \le \ell \le k$, we have

$$\mathbb{P}(B_{\ell}|A) = \frac{\mathbb{P}(A|B_{\ell})\mathbb{P}(B_{\ell})}{\sum_{j=1}^{k} \mathbb{P}(A|B_{j})\mathbb{P}(B_{j})}$$

This follows trivially from Bayes' Theorem and the law of total probability.

5 Random Variables

Definition 5.1 (Random variable). Given a set S and a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a <u>random variable</u> is a function

$$X:\Omega\to S$$

Notation: If $x \in s$, and $A \subseteq S$, we write

$$\mathbb{P}(X = x) := \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\})$$

$$\mathbb{P}(X \in A) := \mathbb{P}(\{\omega \in \Omega : X(\omega) \in A\})$$

Definition 5.2 (Discrete random variable). A random variable $X : \Omega \to S$ is <u>discrete</u> if $S \subseteq \mathbb{R}$ is finite or countable (i.e. in one-to-one correspondence with \mathbb{N})

We can think of discrete random variables as random numbers.

5.1 PMF and CDF

Given a discrete random variable X taking values in $S \subseteq \mathbb{R}$, we define:

• the probability mass function (PMF) of X as the function $p_X: S \to [0,1]$ defined by

$$p_X(x) = \mathbb{P}(X = x)$$

• the <u>cumulative distribution function</u> (CDF) of X as the function $F_X: S \to [0,1]$ defined by

$$F_X(x) = \mathbb{P}(X \le x)$$

• We say that two random variables X and Y are identically distributed if they have the same CDF and we write $X \sim Y$

Proposition 5.1. If X is a discrete random variable and $A \subseteq \mathbb{R}$ is any set, then

$$\mathbb{P}(X \in A) = \sum_{x \in A \cap S} p_X(x)$$

Proposition 5.2. if X is a discrete random variable and $A \subseteq \mathbb{R}$ is any set, then

$$F_X(x) = \sum_{\substack{y \in S \\ y < x}} p_X(y)$$

Proposition 5.3. If X is a discrete random variable and a < b, then

$$\mathbb{P}\left(a < x \le b\right) = F_X(b) - F_X(a)$$

5.2 Expected Value

Definition 5.3. If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$, its expected value is defined to be

$$\mathbb{E}[X] = \sum_{x \in s} x p_X(x)$$

provided the sum converges.

Notation: we also write $\mu_X = \mathbb{E}[X]$

Proposition 5.4. If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$, and $g: S \to \mathbb{R}$ is a function, then the expected value of g(X) is

$$\mathbb{E}[g(X)] = \sum_{x \in S} g(x) p_X(x)$$

provided the sum converges.

Proposition 5.5 (Linearity of Expectation). *If* X *is a discrete random variable taking values in a countable set* $S \subseteq \mathbb{R}$. *If* $a, b \in \mathbb{R}$ *and* $g, h : S \to \mathbb{R}$, *then*

$$\mathbb{E}[ag(X) + bh(X)] = a\mathbb{E}[g(X)] + b\mathbb{E}[h(X)]$$

Proposition 5.6. If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ and $g, h : S \to \mathbb{R}$ such that $g(x) \leq h(x)$ for all $x \in S$, then

$$\mathbb{E}[g(X)] \le \mathbb{E}[h(X)]$$

5.3 Moment, Variance, and Standard Deviation

Definition 5.4. If X is a discrete random variable taking values in a countable set $S \subseteq \mathbb{R}$ and $b \in \mathbb{R}$, we define the r^{th} moment of X about b to be

$$\mathbb{E}[(X-b)^r]$$

Definition 5.5. Let X be a discrete random variable. We define the variance of X to be

$$\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Whenever is converges, we use the notation $\sigma^2 = \text{var}(X)$

The standard deviation of X is $\sigma_X = \sqrt{\operatorname{var}(X)}$

Proposition 5.7. If X is a discrete random variable and $a, b \in \mathbb{R}$, then:

$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$
$$\operatorname{var}(aX + b) = a^{2}\operatorname{var}(X)$$

Proposition 5.8 (Alternate Formula for Variance). If X is a discrete random variable, then

$$\operatorname{var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Definition 5.6 (Moment Generating Function). If X is a discrete random variable, we define the moment generating function (MGF) of X to be the function

$$M_X(t) = \mathbb{E}[e^{tX}], \quad t \in \mathbb{R}$$

whenever it exists.

Proposition 5.9. Let X be a discrete random variable with MGF $M_X(t)$ which is well-defined and smooth for $t \in (-\delta, \delta)$ for some $\delta > 0$. Then

$$\frac{d^r}{dt^r} M_X \big|_{t=0} = \mathbb{E}[X^r] \quad r \in \{1, 2, 3, \dots\}$$

Proposition 5.10 (Expectation and Variance from MGF). Let X be a discrete random variable with MGF $M_X(t)$ which is well-defined and smooth for $t \in (-\delta, \delta)$ for some $\delta > 0$. Then

$$\frac{d}{dt} \log M_X \big|_{t=0} = \mathbb{E}[X]$$

$$\frac{d^2}{dt^2} \log M_X \big|_{t=0} = \text{var}(X)$$

6 Types of Discrete Random Variables

6.1 Bernoulli

Definition 6.1. Let $p \in (0,1)$. We say that a discrete random variable X is a <u>Bernoulli random variable</u> and write $X \sim \text{Bernoulli}(p)$ if it has PMF

$$p_X(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

6.2 Uniform (Discrete)

Definition 6.2. Let $m \ge 1$. A discrete random variable X is uniformly distributed on $\{1, 2, ..., m\}$ and we write

$$X \sim \text{Uniform}(\{1, 2, \dots, m\})$$

if it has PMF

$$p_X(x) = \frac{1}{m} \text{ for } x \in \{1, 2, \dots, m\}$$

If $X \sim \text{Uniform}(\{1, 2, \dots, m\})$, then it has CDF

$$F_X(x) = \begin{cases} 0 & \text{if } x < 1\\ \frac{k}{m} & \text{if } k \le x < k+1, \ k \in \{1, \dots, m-1\}\\ 1 & \text{if } x \ge m \end{cases}$$

6.3 Binomial

Definition 6.3 (Bernoulli trial). An experiment that has probability $p \in (1,0)$ of success and probability (1-p) of failure

Definition 6.4. If X Binomial(n, p) then it has PMF

$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}$$

for $x \in \{0, 1, ..., n\}$

Proposition 6.1. If $X \ Binomial(n, p)$, then its MGF is

$$M_X(t) = (1 - p + pe^t)^n$$

Proposition 6.2. If $X \ Binomial(n, p)$, then

$$\mathbb{E}[X] = np$$

Proposition 6.3. If $X \ Binomial(n, p)$, then

$$var(X) = np(1-p)$$

6.4 Geometric

Definition 6.5. Suppose we run independent, identical Bernoulli trials with probability $p \in (0,1)$ of success.

- Let X be the trial on which we first achieve success.
- Then X is a discrete rv taking values in $S = \{1, 2, 3, \dots\}$
- We say that X is a Geometric random variable with parameter p and write $X \sim \text{Geometric}(p)$

Proposition 6.4. If $X \sim Geometric(p)$, then its PMF is

$$p_X(x) = (1-p)^{x-1}p \text{ for } x \in \{1, 2, 3, \dots\}$$

Proposition 6.5. If $X \sim Geometric(p)$ and k an integer, then

$$\mathbb{P}\left(X \le k\right) = 1 - \left(1 - p\right)^k$$

Proposition 6.6. If $X \sim Geometric(p)$, then its MGF is

$$M_X(t) = \frac{pe^t}{1 - (1 - p)e^t}$$

for $t < -\log(1-p)$

Proposition 6.7. If $X \sim Geometric(p)$, then its mean is

$$\mathbb{E}[X] = \frac{1}{p}$$

Proposition 6.8. If $X \sim Geometric(p)$, then its variance is

$$var(X) = \frac{1-p}{p^2}$$

6.5 Negative Binomial

Definition 6.6. • Suppose we run independent, identical Bernoulli trials with probability $p \in (0,1)$ of success.

- Let $r \geq 1$ and X be the trial on which we first achieve the rth success.
- Then X takes values in $S = \{r, r+1, r+2, \dots\}$
- We say that X is a <u>negative binomial random variable</u> with parameter r, p and write $X \sim \text{Negative Binomial}(r, p)$
- If r = 1, then $X \sim \text{Negative Binomial}(1, p) \sim \text{Geometric}(p)$

Proposition 6.9. If $X \sim Negative\ Binomial(r, p)$, then its PMF is

$$p_X(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}$$
 if $x \in \{r, r+1, \dots\}$

Lemma 6.1. If $r \ge 1$ is an integer 0 < s < 1, then

$$\left(\frac{1}{1-s}\right)^r = \sum_{x=r}^{\infty} {x-1 \choose r-1} s^{x-r}$$

Proposition 6.10. If $X \sim Negative\ Binomial(r, p)$, then its MGF is

$$M_X(t) = \left(\frac{pe^t}{1 - (1 - p)e^t}\right)^r$$
 if $t < \log(1 - p)$

Proposition 6.11. If $X \sim Negative Binomial(r, p)$, then

$$\mathbb{E}[X] = \frac{r}{p}$$
$$\operatorname{var}(X) = \frac{r(1-p)}{p^2}$$

6.6 Poisson

Assumptions:

- We make the following assumptions about the arrivals:
 - 1. If the time intervals $(t_1, t_2], (t_3, t_3], \dots, (t_n, t_{n+1}]$ are disjoint, then the number of arrivals in each time intervals are independent
 - 2. if $h = t_2 t_1 > 0$ is sufficiently small, then the probability of exactly one arrival in the time interval $(t_1, t_2]$ is λh
 - 3. if $h = t_2 t_1 > 0$ is sufficiently small, then the probability of two or more arrivals in the time interval $(t_1, t_2]$ converges rapidly to zero as $h \to 0$
- An arrival process satisfying these assumptions is called an approximate Poisson process.
- The random variable X is called a Poisson random variable and we write $X \sim \text{Poisson}(\lambda)$

Proposition 6.12. If $X \sim Poisson(\lambda)$, then its PMF is

$$p_X(x) = e^{-\lambda} \frac{\lambda^x}{x!}$$
 if $x \in \{0, 1, 2, \dots\}$

Proposition 6.13. Consider an approximate Poisson process with rate $\lambda > 0$ per unit time. Let X be the number of arrivals in a time of length T > 0 units. Then $X \sim Poisson(\lambda T)$

Proposition 6.14. If $\lambda > 0$ and $X \sim Poisson(\lambda T)$, then its MGF is

$$M_X(t) = e^{\lambda(e^t - 1)}$$

Proposition 6.15. If $\lambda > 0$ and $X \sim Poisson(\lambda T)$, then

$$\mathbb{E}[X] = \lambda$$
$$\operatorname{var}(X) = \lambda$$

7 Continuous Random Variables

Definition 7.1. Let $S \subseteq \mathbb{R}$, and let $X : \Omega \to S$ be a random variable.

• We define the <u>cumulative distribution function</u> of X,

$$F_X: \mathbb{R} \to [0,1]$$
 by

$$F_X(x) = \mathbb{P}(X \le x)$$

We have

$$\lim_{x \to -\infty} F_X(x) = 0 \text{ and } \lim_{x \to \infty} F_X(x) = 1$$

• We say that X is a <u>continuous random variable</u> if there exists a non-negative integrable function $f_X : \mathbb{R} \to [0, \infty)$ such that

$$\mathbb{P}(X \le x) = F_X(x) = \int_{-\infty}^x f_X(t)dt$$

• We call f_X a probability density function for X.

Proposition 7.1. If X is a continuous random variable with PDF $f_X : \mathbb{R} \to [0, \infty)$, then

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

Proposition 7.2. Proposition: If X is a continuous random variable with PDF $f_X: \mathbb{R} \to [0, \infty)$ and a < b, then

$$\mathbb{P}\left(a < X \le B\right) = \int_{a}^{b} f_X(x) dx$$

as a consequence of the statement $\mathbb{P}(a < X \leq B) = F_X(b) - F_X(a)$

Proposition 7.3. If X is a continuous random variable with PDF $f_X: \mathbb{R} \to [0, \infty)$, then for any $x \in \mathbb{R}$

$$\mathbb{P}\left(X=x\right)=0$$

In particular, if a < b, then

$$\mathbb{P}\left(a < X < b\right) = \mathbb{P}\left(a < X < b\right) = \mathbb{P}\left(a < X < b\right) = \mathbb{P}\left(a < X < b\right)$$

7.1 Expectation

Definition 7.2. If X is a continuous random variable with PDF $f_X(x)$, we define its expected value to be

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

More generally, if $g: \mathbb{R} \to \mathbb{R}$ is any function, then

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Proposition 7.4. Let X be a continuous random variable.

• if $a \in \mathbb{R}$ is a constant, then

$$\mathbb{E}[a] = a$$

• if $a, b \in \mathbb{R}$ are constants and $g, h : \mathbb{R} \to \mathbb{R}$ are functions, then

$$\mathbb{E}[ag(X) = bh(X)] = a\mathbb{E}[g(X)] + b\mathbb{E}[h(X)]$$

• If $g(x) \le h(x)$ for all $x \in \mathbb{R}$, then

$$\mathbb{E}[g(X)] \le \mathbb{E}[h(X)]$$

7.2Moment, Variance

Definition 7.3. If X is a continuous random variable, then we define its variance to be

$$\operatorname{var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

We will use the notation $\sigma_X^2 = \text{var}(X)$ and define the <u>standard deviation</u> to be $\sigma_X = \sqrt{\text{var}(X)}$. We also

$$var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

Definition 7.4. If X is a continuous random variable we define its moment generating function to be

$$M_X(t) = \mathbb{E}[e^{tX}]$$

for all $t \in \mathbb{R}$ for which this makes sense.

Proposition 7.5. If $M_X(t)$ is smooth on some interval $(-\delta, \delta)$ where $\delta > 0$, then for all $n \geq 0$,

$$\frac{d^n}{dt^n} M_X \big|_{t=0} = \mathbb{E}[X^n]$$

$$\frac{d}{dt} \log M_X \big|_{t=0} = \mathbb{E}[X]$$

$$dt \int_{0}^{108} dt dt$$

8 Types of Continuous Random Variables

8.1 Uniform

Definition 8.1 (Uniform random variable). • Let a < b

- Pick a point X at random from the interval [a, b]
- If we have an equal probability of picking every point in [a,b], we say X is uniformly distributed on the interval [a,b]
- We say $X \sim \text{Uniform}([a, b])$

Proposition 8.1. If a < b and $X \sim Uniform([a, b])$, then it has PDF

$$f_X(x) = \begin{cases} \frac{1}{b-a} & if \ x \in (a,b) \\ 0 & otherwise \end{cases}$$

Proposition 8.2. The CDF of $X \sim Uniform([a,b])$ is $F_X(x) = \mathbb{P}(X \leq x)$, where

$$F_X(x) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a < x < b \\ 1 & \text{if } x \ge 0 \end{cases}$$

Proposition 8.3 (Variance for Uniform). Let a < b and $X \sim Uniform([a, b])$. Then,

$$var(X) = \frac{b-a}{12}$$

8.2 Exponential

Definition 8.2. The exponential distribution

- Consider an approximate Poisson process with rate $\lambda > 0$ per unit time
- Let X be the time of the first arrival
- We say that X is exponentially distributed with mean waiting time $\theta = \frac{1}{\lambda}$ and write $X \sim \text{Exponential}(\theta)$

Proposition 8.4. If $\theta > 0$ and $X \sim Exponential(\theta)$, then it has PDF

$$f_X(x) = \frac{1}{\theta} e^{-\frac{x}{\theta}}$$

Proposition 8.5. If $\theta > 0$ and $X \sim Exponential(\theta)$, then its MGF is

$$M_X(t) = \frac{1}{1 - \theta t}$$
 if $t < \frac{1}{\theta}$

Proposition 8.6. If $\theta > 0$ and $X \sim Exponential(\theta)$, then it has mean and variance

$$\mathbb{E}[X] = \theta$$
$$\operatorname{var}(X) = \theta^2$$

8.3 Gamma

- Consider an approximate Poisson process with rate $\lambda > 0$ per unit time
- Let $\alpha \geq 1$ be an integer, and let X be the time of the α th arrival
- We say that X is gamma distributed with mean parameters α and $\theta = \frac{1}{\lambda}$ and write $X \sim \text{Gamma}(\alpha, \theta)$
- If $X \sim \text{Gamma}(1, \theta)$, then $X \sim \text{Exponential}(\theta)$

If $\alpha \geq 1$ is an integer, $\theta > 0$ and $X \sim \text{Gamma}(\alpha, \theta)$, X has PDF

$$f_X(x) = \frac{1}{\theta^{\alpha}(\alpha - 1)!} x^{\alpha - 1} e^{-\frac{x}{\theta}}$$

Its MGF, mean, and variance are

$$M_X(t) = \frac{1}{(1 - \theta t)^{\alpha}}$$
 if $t < \frac{1}{\theta}$
$$\mathbb{E}[X] = \alpha \theta$$

$$\text{var}(X) = \alpha \theta^2$$

8.4 Normal

Definition 8.3. We say a continuous random variable X is normally distributed with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 > 0$ if it has PDF:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

for $x \in \mathbb{R}$

Proposition 8.7 (MGF for Normal). If $X \sim \mathcal{N}(\mu, \sigma^2)$, then it has MGF:

$$M_X(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$
 for any $t \in \mathbb{R}$

Proposition 8.8. If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$\mathbb{E}[X] = \mu$$
$$\operatorname{var}(X) = \sigma^2$$

Definition 8.4. We define the function

$$F_X(x) = \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dx$$

Proposition 8.9. If $x \ge 0$, then

$$\Phi(-x) = 1 - \Phi(x)$$

9 Bivariate Probability

Let X, Y be a pair of discrete random variables taking values in sets $S_X, S_Y \subset \mathbb{R}$. We define their joint PMF by

$$p_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$$

We define the joint PMFs of X and Y to be

$$p_X(x) = \mathbb{P}(X = x) = \sum_{y \in S_Y} p_{X,Y}(x,y)$$

$$p_Y(y) = \mathbb{P}(Y = y) = \sum_{x \in S_X} p_{X,Y}(x,y)$$

We say that X, Y are independent if

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

Let $S = S_X \times S_Y$. If $g: S \to \mathbb{R}$, the expected value of g(X,Y) is

$$\mathbb{E}[g(X,Y)] = \sum_{(x,y)\in S} g(x,y)p_{X,Y}(x,y)$$

This is linear as well:

$$\mathbb{E}[ag(X,Y) + bh(X,Y)] = a\mathbb{E}[g(X,Y)] + b\mathbb{E}[h(X,Y)]$$

We also have that

$$\mathbb{E}[g(X)] = \sum_{x \in S_X} g(x) p_X(x)$$

$$\mathbb{E}[h(Y)] = \sum_{y \in S_Y} h(y) p_Y(y)$$

If X and Y are independent discrete random variables, we have

$$\mathbb{E}[g(X)h(Y)] = \mathbb{E}[g(X)]\mathbb{E}[h(Y)]$$

9.1 Cauchy-Schwarz Inequality

Let X, Y be discrete random variables. Then,

$$|\mathbb{E}[XY]| \leq \sqrt{\mathbb{E}[X^2]\mathbb{E}[Y^2]}$$

9.2 Covariance

Let X, Y be a pair of discrete random variables taking values. We define the covariance of X, Y to be

$$cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \sum_{(x,y)\in S} (x - \mathbb{E}[X])(y - \mathbb{E}[Y])p_{X,Y}(x,y)$$

This reduces to:

$$cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

If X is a random variable, then

$$cov(X, X) = var(X)$$

If X, Y are independent, then cov(X, Y) = 0

If $a, b \in \mathbb{R}$,

$$cov(aX, bY) = ab cov(X, Y)$$

9.3 Correlation coefficient

For discrete random variables X, Y, we define the <u>correlation coefficient</u> of X, Y to be

$$\rho(X,Y) = \frac{\text{cov}(X,Y)}{\sqrt{\text{var}(X)\text{var}(Y)}}$$
$$= \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$$

If X, Y are discrete random variables, then

$$-1 \le \rho(X, Y) \le 1$$

9.4 Conditional Distributions

Definition 9.1. Let X, Y be a pair of discrete random variables taking values in $S_X, S_Y \subseteq \mathbb{R}$, respectively.

- For each fixed $y \in S_Y$, we define the random variable X|y with PMF $p_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y)$ for $x \in S_X$
- For each fixed $x \in S_X$, we define the random variable Y|x with PMF $p_{Y|X}(y|x) = \mathbb{P}(Y = y|X = x)$ for $y \in S_Y$

Proposition 9.1. Let X, Y be a pair of discrete random variables taking values in $S_X, S_Y \subseteq \mathbb{R}$, respectively.

• For each fixed $y \in S_Y$, we have

$$\sum_{x \in S_X} p_{X|Y}(x|y) = 1$$

• For each fixed $x \in S_X$, we have,

$$\sum_{y \in S_Y} p_{Y|X}(y|x) = 1$$

Definition 9.2. Let X, Y be a pair of discrete random variables taking values in $S_X, S_Y \subseteq \mathbb{R}$, respectively.

Define the function $g: S_X \to \mathbb{R}$ by

$$q(x) = \mathbb{E}[Y|x]$$

We define the conditional expectation of Y conditioned on X to be the random variable

$$\mathbb{E}[Y|X] = q(X)$$

Theorem 9.1 (The Law of Iterated Expectation). Let X, Y be discrete random variables. Then

$$\mathbb{E}[\mathbb{E}[Y|X]] = \mathbb{E}[Y]$$

Definition 9.3. Let X, Y be a pair of discrete random variables taking values in $S_X, S_Y \subseteq \mathbb{R}$, respectively.

• Define the function $h: S_X \to \mathbb{R}$ by

$$h(x) = \operatorname{var}(Y|x)$$

• We define the conditional variance of Y conditioned on X to be the random variable

$$\operatorname{var}(Y|X) = h(X)$$

Theorem 9.2 (The Law of Total Variance). Let X, Y be discrete random variables. Then

$$\mathbb{E}[\operatorname{var}(Y|X)] + \operatorname{var}(\mathbb{E}[Y|X]) = \operatorname{var}(Y)$$

9.5 Bivariate Distributions of the Continuous Type

Proposition 9.2. If X, Y are continuous random variables with joint PDF $f_{X,Y}(x,y)$, then

$$\iint_{\mathbb{R}^2} f_{X,Y}(x,y) \, dx \, dy = 1$$

Definition 9.4. If X, Y are continuous random variables with joint PDF $f_{X,Y}(x,y)$, then

• the marginal PDF of X to be

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dx$$

• the marginal PDF of Y to be

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

Definition 9.5 (Independence). Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$ and marginal PDFs $f_{X,Y}(x)$, $f_{Y}(y)$.

We say that X, Y are independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

for all $(x,y) \in \mathbb{R}^2$.

10 Several Random Variables

Definition 10.1. Let X_1, X_2, \dots, X_n be discrete random variables taking values in sets $S_1, S_2, \dots, S_n \in \mathbb{R}$ and let $S = S_1 \times S_2 \times \dots \times S_n \subseteq \mathbb{R}^n$. Then X_1, X_2, \dots, X_n have the joint PMF:

$$p_{X_1,X_2,\dots,X_n}(x_1,x_2,\dots,x_n) = \mathbb{P}(X_1 = x_1,X_2 = x_2,\dots,X_n = x_n)$$

These variables are independent if $p_{X_1,X_2,\cdots,X_n}(x_1,x_2,\cdots,x_n)=p_{X_1}(x_1)p_{X_2}(x_2)\cdots p_{X_n}(x_n)$ for all $(x_1,x_2,\cdots,x_n)\in S$.

Proposition 10.1 (Linearity of Expectation). Let X_1, X_2, \dots, X_n be discrete or continuous random variables. Let $a_1, a_2, \dots, a_n \in \mathbb{R}$ and let $Y = a_1X_1 + a_2X_2 + \dots + a_nX_n$. Then

$$\mathbb{E}[Y] = a_1 \mathbb{E}[X_1] + a_2 \mathbb{E}[X_2] + \dots + a_n \mathbb{E}[X_n]$$

Definition 10.2 (Variance). Let X_1, X_2, \dots, X_n be discrete or continuous random variables. Let $a_1, a_2, \dots, a_n \in \mathbb{R}$ and let $Y = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$. Then

$$var(Y) = \sum_{j=1}^{n} \sum_{k=1}^{n} a_j a_k cov(X_j, X_k)$$

10.1 i.i.d Variables

Definition 10.3. Let X_1, X_2, \dots, X_n be independent and identically distributed. Then we define the sample sum

$$S_n = \sum_{j=1}^n X_j = X_1 + X_2 + \dots + X_n$$

And sample average

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{n} X_j = \frac{1}{n} S_n$$

Example 10.1. Let X_1, X_2, \dots, X_n be independent and identically distributed with mean μ and variance σ^2 .

$$\mathbb{E}[S_n] = n\mu$$

$$\mathbb{E}[\bar{x}] = \mu$$

$$\operatorname{var}(S_n) = n\sigma^2$$

$$\operatorname{var}(\bar{x}) = \frac{\sigma^2}{n}$$

11 Transformation of Random Variables

11.1 Single Variable

Proposition 11.1. Let X be a continuous random variable with PDF $f_X(x)$

- Let $X \subseteq \mathbb{R}$ so that $f_X(x) = 0$ for all $x \in \mathbb{R} \backslash S$
- Let $u : \mathbb{R} \to \mathbb{R}$ be smooth and satisfy u'(x) > 0 or u'(x) < 0 for all $x \in S$.
- Then Y = u(Y) has PDF

$$f_Y(y) = \left| \frac{d}{dx} u^{-1}(y) \right| \cdot f_X(u^{-1}(y))$$

Theorem 11.1 (Change of Variable). • Let $S \subseteq \mathbb{R}^2$ and $f: S \to \mathbb{R}$ be continuous.

- Let $u: \mathbb{R}^2 \to \mathbb{R}^2$ be smooth and invertible and take (z, w) = u(x, y)
- If $v = u^{-1}$, so that (x, y) = v(z, w), then

$$\iint_{S} f(x,y) \, dx \, dy = \iint_{u(S)} f(v(z,w)) \left| \frac{\partial(x,y)}{\partial(z,w)} \right| \, dz \, dw$$

11.2 Double Variable

Proposition 11.2. • Let X, Y be continuous random variables with joint PDF $f_{X,Y}(x,y)$

- Let $u: \mathbb{R}^2 \to \mathbb{R}^2$ be smooth and invertible, with inverse v(z, w)
- Then, the random variables (Z,W) = u(X,Y) are continuous and have joint PDF

$$f_{Z,W}(z,w) = f_{X,Y}(z(z,w)) \left| \frac{\partial(x,y)}{\partial(z,w)} \right|$$

12 The Law of Large Numbers and Convergence

Proposition 12.1 (Markov's inequality). Let X be a non-negative random variable. Then, given $\lambda > 0$, we have

 $\mathbb{P}\left(X \ge \lambda\right) \le \frac{\mathbb{E}[X]}{\lambda}$

Proposition 12.2 (Generalized Markov's inequality). Let X be a non-negative random variable. Then, given $\lambda > 0$ and integer $k \geq 1$, we have

 $\mathbb{P}(X \ge \lambda) \le \frac{\mathbb{E}[X^k]}{\lambda^k}$

Proposition 12.3 (Chebyshev's inequality). Let X be a random variable with mean μ and variance σ^2 . Then, given $\lambda > 0$, we have

 $\mathbb{P}\left(|X - \mu| \ge \lambda\right) \le \frac{\sigma^2}{\lambda^2}$

Proposition 12.4 (Chernoff bound). Let X be a random variable. Then, given $\lambda > 0$, we have

$$\mathbb{P}\left(X \geq \lambda\right) \leq \inf_{t > 0} \left(e^{-t\lambda} M_X(t)\right)$$

Theorem 12.1 (The Weak Law of Large Numbers). Let X_1, X_2, \cdots be an i.i.d. sequence of random variables with finite mean μ . Then,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \to \mu \text{ as } n \to \infty$$

12.1 The MGF Technique

Proposition 12.5. Let X_1, X_2, \dots, X_n be a sequence of independent random variables and let $a_1, a_2, \dots, a_n \in \mathbb{R}$. Then the random

$$Y = \sum_{j=1}^{n} a_j X_j$$

has MGF

$$M_Y(t) = \prod_{j=1}^n M_{X_j}(a_j t)$$

whenever it is well-defined.

Proposition 12.6. Let X, Y be continuous random variables with MGFs $M_X(t)$ and $M_Y(t)$. Suppose that for some h > 0 and all $t \in (-h, h)$, we have

$$M_X(t) = M_Y(t)$$

Then, X and Y are identically distributed.

Proposition 12.7. Let X_1, X_2, \dots, X_n be an i.i.d. sequence of random variables with common MGF M(t). Then

$$M_{S_n}(t) = \left[M(t)\right]^n$$

$$M_{\bar{X}}(t) = \left[M(\frac{t}{n})\right]^n$$

Proposition 12.8 (Limiting MGF determines the distribution). Let X_1, X_2, \dots, X_n and X be random variables. Suppose that for some h > 0 and all $t \in (-h, h)$, we have

$$M_{X_n}(t) \to M_X(t)$$
 as $n \to \infty$

Then, $X_n \to X$ in distribution as $n \to \infty$.

Theorem 12.2 (The Central Limit Theorem). Let X_1, X_2, \dots, X_n be an i.i.d. sequence of random variables with finite mean μ and variance σ^2 . Then,

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \rightarrow \sim \mathcal{N}(0, 1)$$
 in distribution as $n \rightarrow \infty$

Proposition 12.9 (DeMoivre-Laplace Correction). Let $X \sim Binomial(n, p)$. Then, we have

$$\mathbb{P}\left(X \leq \ell\right) \approx \Phi\left(\frac{\ell + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right)$$

$$\mathbb{P}\left(X \geq k\right) \approx 1 - \Phi\left(\frac{k - \frac{1}{2} - np}{\sqrt{np(1-p)}}\right)$$

$$\mathbb{P}\left(k \leq X \leq \ell\right) \approx \Phi\left(\frac{\ell + \frac{1}{2} - np}{\sqrt{np(1-p)}}\right) - \Phi\left(\frac{k - \frac{1}{2} - np}{\sqrt{np(1-p)}}\right)$$