

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

===== WPI =====

TI - Wear resistant material - consists of iron®, titanium carbide, nickel®, cobalt® and carbon®. and has increased resistance to abrasive wear

AB - RU2062813 Material contains iron, titanium carbide, nickel, carbon and additionally nickel. The components are taken at ratio (in wt.%): titanium carbide 10-60, nickel 4-15, carbon 0.2-1.5, cobalt 1-6 and balance iron.

- USE - In metallurgy, esp. in prodn. of materials of high resistance to abrasive wear.

- ADVANTAGE - Articles made of proposed material have increased wear resistance and are obtd. using simplified technology.

- (Dwg. 0/0)

PN - RU2062813 C1 19960627 DW199710 C22C29/10 004pp

PR - SU19925062392 19920916

PA - (PRPA-R) PERM PAPER RES INST

- (POWD-R) POWDER METALLURGY ENG TECHN CENTRE

IN - LAPYTOV M G; MASLENNIKOV N N; TIMOKHOVA A P

MC - M27-A M27-A00C M27-A00N

DC - M27

IC - C22C1/04 ;C22C29/10

AN - 1997-106769 [10]

(19) RU (11) 2062813 (15) C1
 (51) 6 C 22 C 29/10, 1/04

Комитет Российской Федерации
по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ
к патенту Российской Федерации

1

(21) 5062392/02 (22) 16.09.92
 (46) 27.06.96 Бюл. № 18
 (72) Масленников Н.Н., Тимохова А.П.,
 Латыпов М.Г., Замотаев А.В., Никифоров
 В.Н., Горелов В.В., Прибытковский Б.Н.
 (71) (73) Республиканский инженерно-тех-
 нический центр порошковой металлургии с
 Научно-исследовательским институтом про-
 блем порошковой технологии и покрытий и
 опытным производством, Пермский научно-
 исследовательский институт бумаги
 (56) Заявка Швейцарии № 432535, кл. B
 02 C 7/12, 1984. Патент ФРГ № 1257440,
 кл. C 22 C 29/00, 1968.

2

(54) ИЗНОСОСТОЙКИЙ МАТЕРИАЛ
 (57) Изобретение относится к металлургии,
 в частности к материалам с высокой стой-
 костью к абразивному износу. Издносостой-
 кий материал содержит карбид титана,
 никель, углерод, железо и кобальт при
 следующем соотношении компонентов,
 мас.%: карбид титана 10-60; никель 4-15;
 углерод 0,2-1,5; кобальт 1-6; железо ос-
 тальное. Описываемый материал характери-
 зуется высокой износостойкостью. 1 табл.

RU

2062813

C1

C1

International Patent Document Delivery, Translation and Alerting Specialists
 Telephone (44) 020 7412 7927/7981 Fax (44) 020 7412 7930

REMOVABLE LABEL

PATENT EXPRESS WISHES TO
 APOLOGISE FOR THE POOR
 COPY. THIS WAS CAUSED BY
 THE QUALITY OF THE ORIGINAL
 DOCUMENT.

RU

2062813

THE BRITISH LIBRARY

3

Предлагаемое изобретение относится к металлургии, в частности к материалам с высокой стойкостью к абразивному износу.

Изготавливается состав, изготовленный методом литья из коррозионно-стойких металлов и содержащий, мас. %: углерод 0,5-3,0, хром 13-30, молибден 0,7-6,0, марганец 0,1-2,0, никель 0,5-3,0, а также карбиды хрома и титана 20-30 в виде зерен размером 8-10 мкм, которые значительно повышают срок службы полусегментов из материала изделий (см., например, з. Швейцарии N 432535, кл. B 02 C 7/12, 1984; з. Японии N 60-56054, кл. D 21 D 1/30, 1985).

Фирма Дефлобратор (Швеция) выпускает сталь ТД, превосходящую по износостойкости другие известные материалы, которая содержит, мас. %: углерод 1,7; хром 16,5; никель 2,2; молибден 0,7; титан 1,7. При этом в готовом изделии в результате термической обработки хром и титан содержатся в виде первичных и вторичных карбидов $(FeCr)_3C$ и TiC в количестве 20% (см. доклад ВЕЙНО Лампе "Сорта стали для сегментов размалывающих дисков").

Недостатком известных решений является сложность регулирования физико-механических характеристик материалов. Одним из методов повышения физико-механических характеристик в сталях является введение карбидов тугопластичных металлов в процессе разливки, в результате чего получается механическая смесь двух компонентов, в которой карбиды являются составной частью. Однако распределение карбидов по массе металла неравномерно и является трудноуправляемым процессом, поэтому структура полученного металла неоднородна и не обеспечивает стабильности полученных свойств, что ведет к снижению срока службы изделий, ухудшает качество массы.

Наиболее близким по совокупности признаков к заявляемому является износостойкий материал, содержащий карбид титана, железо, никель, кремний и углерод в следующем соотношении, мас. %:

Железо	13,26-44,11
Никель	2-15
Кремний	0,32-1,5
Углерод	0,09-0,35
Карбид титана	остальное.

Недостатком данного материала является сложность его изготовления, в частности длительный размол шихты с твердосплавными шарами (до 72 ч), которое может изменить химический состав стали и, следовательно, структуру связки после спекания, что затрудняет выбор режимов термической обработки. Презентентинге-

2062813

4

спекание в водороде при температуре 650-700°C в течение 30 мин не придает прессовкам достаточно прочности. Высокое с содержанием углерода затрудняет выбор оптимальной температуры спекания.

Заявляемый износостойкий материал, содержащий железо, карбид титана, никель и углерод отличается тем, что он дополнительно содержит кобальт при следующем соотношении компонентов, мас. %:

Карбид титана	10-60
Никель	4-5
Углерод	0,2-1,5
Кобальт	1-6
Железо	остальное

Предлагаемый состав, содержащий карбид титана в качестве наполнителя в остальные компоненты в качестве связующего, позволяет повысить износостойкость материала и упростить технологию получения из него изделий.

Введение в состав материала кобальта, взятого в количестве 1-6 мас.% усиливает пластичность связующей, облегчает протекание пластической деформации, обеспечивает равномерность распределения атомов углерода, способствует уменьшению остаточного аустенита, настолько и в таких пределах, которые обеспечивают значительное повышение уровня износостойкости. При снижении содержания кобальта в порошковой стали ниже 1,0 мас.% увеличивается содержание остаточного аустенита после спекания композиции (30-40%), что ухудшает износостойкость. В случае содержания кобальта более 6,0 мас.% сталь приобретает хрупкость, что также приводит к снижению износостойкости средства, яо из-за выкрашивания связующей и зерен карбида титана.

При содержании в материале никеля более 15 мас.% понижается точка начала мартенситового превращения, повышается процент остаточного аустенита, что приводит к ухудшению износостойкости, быстрой выработке связующего. При содержании никеля менее 4,0 мас.% у связующей снижается вязкость, повышается хрупкость, что способствует снижению износостойкости и ухудшению качества получаемой массы при измельчении.

Наличие в материале графита в количестве 0,2-1,5 мас.% придает твердость связующей.

Предлагаемое техническое решение характеризуется следующими примерами конкретного выполнения.

Для приготовления шихты использовали кальциево-графитовый препарат марки

5

2062813

С-1 ОСТ 6-09-431-75, порошок никеля карбонильного марки ПНК-ОТ4 ГОСТ 9722-79, порошок кобальта ПК-1 ГОСТ 9721-79, порошок железа марки ПЖРВ 2.200.26 ТУ 14-1-38-82-85, порошок карбида титана ТУ 48 А3 СССР 14-81 крупностью 10-60 мкм. При уменьшении размеров зерен карбида титана ниже 10 мкм увеличивается расход электроэнергии на размол, становится трудно получать требуемую степень помола, масса начинает "приторять" в зоне размола. При увеличении размера зерен наполнителя более 60 мкм он начинает выкрашиваться, ухудшается износостойкость.

Шихту получали механическим смешиванием компонентов в двухконусном смесителе. Прессование образцов в форме цилиндров диаметром 15 мм и высотой 20 мм проводили при давлении 400 МПа. Полученные образцы склаивали вначале в атмосфере осущенного водорода с точкой росы - 30°C при температуре 800°C в течение 1 ч, а затем в вакууме при температуре 1380-1470°C в течение 30 мин.

Для экспериментальной проверки заявленного состава были подготовлены 32 типа

6

образцов с различным соотношением компонентов (см. таблицу). Составы сплавов и результаты их испытаний на абразивный износ представлены в таблице (примеры 1-24 - предлагаемый состав; 25-30 - сплавы с запредельным содержанием компонентов связки; 31-32 - сплавы с запредельным содержанием карбида титана).

Износостойкость (абразивный износ) определяли по методике фирмы "Сундс Дефибратор".

Испытания проводились при следующих условиях:

частота вращения диска 250 об/мин; шлифовальная бумага с абразивной поверхностью из карбида кремния со средней зернистостью 79 мкм;

держатель образца вращается с частотой 52 об/мин в направлении, противоположном направлению вращения шлифовального диска;

усиление на образец составляет 9,1 г/мм²; общее время испытаний 2 мин, регистрация уменьшения массы образца через каждые 30 с.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Износостойкий материал, содержащий железо, карбид титана, никель, кобальт и углерод, отличающийся тем, что он содержит компоненты в следующем соотношении, мас. %:

Карбид титана	10-60
Никель	4-15
Углерод	0,2-1,5
Кобальт	1-5
Железо	Остальное

Таблица I

п/п	Химический состав сплава, мас.%					Износ, 10^{-3}мг/с
	Карбид титана	Никель	Углерод	Кобальт	Железо	
I	2	3	4	5	6	7
I	10	4,0	0,2	1,0	84,8	1,5
2	10	15	1,5	6,0	67,5	0,9
3	10	4,0	1,0	1,0	84,0	1,0

7

2062813

8

Продолжение табл. I

I	2	3	4	5	6	7
4	10	15	1,0	6	68,0	1,1
5	10	10	0,2	1	78,8	1,2
6	10	10	1,5	6	72,5	1,0
7	10	4	0,2	4	81,8	1,3
8	10	15	1,5	4	69,5	0,8
9	30	4	0,2	1	64,8	1,0
10	30	15	1,5	6	47,5	0,5
11	30	4	1,0	1	64,0	0,8
12	30	15	1,0	6	48,0	0,7
13	30	10	0,2	1	58,8	0,9
14	30	10	1,5	6	52,5	0,6
15	30	4	0,2	4	61,8	1,0
16	30	15	1,5	4	49,5	0,7
17	60	4	0,2	1	34,6	0,6
18	60	15	1,5	6	17,5	0,3
19	60	4	1,0	1	34,0	0,4
20	60	15	1,0	6	18,0	0,3
21	60	10	0,2	1	28,8	0,5
22	60	10	1,5	6	22,5	0,2
23	60	4	0,2	4	31,8	0,5
24	60	15	1,5	4	19,5	0,3
25	10	4	0,1	1	84,9	2,0
26	60	1,5	2,0	6	30,5	1,7
27	10	2	0,2	1	65,8	1,9
28	60	20	1,5	6	12,5	1,5
29	10	4	0,2	0,5	65,3	2,1
30	60	15	1,5	8	15,5	1,5
31	5	4	0,2	1	83,8	3,0
32	70	15	1,5	6	2,5	1,4

Заказ №п

ВНИИПИ, Рег. ЛР № 040720
113834, ГСП, Москва, Раушская наб., 4/5

Подписьное

121873, Москва, Бережковская наб., 24 стр. 2.
Производственное здание