Math 1210: Review by Dawit yohannes. * lines and planes

>> line is defined by a point on the line, Po, and a vector, \vec{v} , parallel to the line. $P_o(x_o, y_o, z_o)$, $\vec{v} = \langle a, b, c \rangle$, t = parameter $P_o(x_o, y_o, z_o)$, $\vec{V} = \langle a, b, c \rangle$, t = parameter

 $\begin{array}{l} \begin{array}{l} x = x_0 + at \\ y = y_0 + bt \\ \frac{1}{2} = \frac{1}{2} + ct \end{array} \end{array}$ parametric equation

 $\begin{cases} \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{x-x_0}{c} \end{cases}$ Symmetric equation

 $\ell: \left\{ \langle x, y, \pm \rangle = \langle x_0, y_0, \pm_0 \rangle + t \langle a, b, c \rangle \right.$ Vector equation

plane is defended by a point on the plane and a Normal Vector to the plane $P_0(x_0, y_0, t_0)$, $\vec{N} = \langle A, B, C \rangle$

 $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$ or Ax + By + Cz + D = 0

> Two lines are parallel: $\vec{V}_1 = \vec{k} \vec{V}_2$ = 0'

> Two planes are parallel: $\vec{N}_1 = k\vec{N}_2$ > perpendicular: $\vec{N}_1 \cdot \vec{N}_2 = 0$

 \rightarrow line and plane $\langle \vec{V} = K \vec{N} \rightarrow \text{perpendicular} \rangle$

line and plane: $\theta = Cos^{-1} \left[\frac{|\vec{N} \cdot \vec{V}|}{||\vec{N}|| ||\vec{V}||} \right]$ line and line: $\theta = Cos^{-1} \left[\frac{|\vec{V}_1 \cdot \vec{V}_2|}{||\vec{V}_1|| ||\vec{V}_2||} \right]$ * Acute angles.

* Eigen Values and Eigen Vectors of a matrix A. Square matrix

: The product of the EVL's of A is equal to the det (A) sum of the principal

: The Sum of the EVL's of A is equal to the Trace of A. diagonal elements.

: If one of the EVL's is zero, then $\det(A) = 0$: If λ is an EVL of A then λ^n is EVL of A^n λ^n is EVL of λ^n λ^n is EVL of λ^n

 \Rightarrow Determinants: let A_{nxn} , B_{nxn} \Rightarrow : $\det A^{\top} = \det A$, $\det A^{-1} = \frac{1}{\det A}$, $\det (KA) = \frac{1}{K}^{n} \det A$ \Rightarrow $\det (AB) = (\det A)(\det B)$

Systems of equations: Ax = b (with n unknowns)

let the rank of A be V_1 , and the rank of the augmented Matrix be V_2 $V_1 \neq V_2 \implies SE$ is unconsistent (no solution) $V_1 = V_2 \implies SE$ is Consistent $V_1 = V_2 = N \implies \text{unique Solution}$ (has solution) $V_1 = V_2 < N \implies \text{unique Solutions}$

* Linear dependence and independence.

let m = number of vectors n = number of components

Emplex numbers: let z = a + bi, $r = \sqrt{a^2 + b^2}$, $\theta = \overline{7an'}(\frac{b}{a})$

 $\Rightarrow : 2^{k} \Rightarrow 2_{k} = \gamma^{k} e^{i\left(\frac{\theta+2k\bar{\lambda}}{R}\right)}, \quad k=0,1,2,...,(n-1)$ $= \gamma^{k} \left(\cos\left[\frac{\theta+2k\bar{\lambda}}{R}\right] + i \sin\left[\frac{\theta+2k\bar{\lambda}}{R}\right] \right)$

>> : 2" = r" (Cosno + i Sinno)

* Summation Notation $\Rightarrow \sum_{i=1}^{n} () = \sum_{i=1}^{n} () - \sum_{i=1}^{k-1} () \cdot ; \begin{cases} \sum_{i=5}^{10} (i+i) = \sum_{i=1}^{10} (i+i) - \sum_{i=1}^{4} (i+i) \end{cases}$