#### Papers Review



vehicle-to-grid services

Contents lists available at ScienceDirect

#### Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour



Quantifying electric vehicle battery degradation from driving vs.



Dai Wang, Jonathan Coignard, Teng Zeng, Cong Zhang, Samveg Saxena\*

Lawrence Berkeley, National Laboratory, 1 Cyclotron Rd. MS90R1121B. Berkeley, CA 94720. Unlind States

# Optimal V2G Scheduling of an EV with Calendar and Cycle Aging of Battery: An MILP Approach

Rahmat Khezri, Senior Member, IEEE, David Steen, Evelina Wikner, Member, IEEE, and Le Anh Tuan, Member, IEEE

김상훈

shkim@ds.seoultech.ac.kr



#### 전기차 충전 요금 체계

| 전기차 충전 전력 요금(2023년 5월) |             |      |    |       |  |  |
|------------------------|-------------|------|----|-------|--|--|
| 공용 충전기(원/kWh) – 전년과 동일 |             |      |    |       |  |  |
| 구분 한국전력 환경부            |             |      |    |       |  |  |
| 100kW미만                | 324.4 324.4 |      |    | 324.4 |  |  |
| 100kW이상                | 347.2       |      |    | 347.2 |  |  |
| 아파트용 충전기(원/kWh)        |             |      |    |       |  |  |
| 구분                     | 여름          | 봄/가을 |    | 겨울    |  |  |
| 경부하시간대                 | 289.9       | 269  | .7 | 306.1 |  |  |
| 중간부하시간대                | 332,0       | 280  | .8 | 332.0 |  |  |

- 공용 충전기는 충전 속도에 따라 차등 요금 부여
- 아파트용 충전기는 계절과 시간대에 따라 차등 요금 부여

#### 요금 체계 문제점

정책 >

# 150원에 사온 전기 500원(비회원)에 파는 전기차 충전 플랫폼… 전문가도 알기 어려운 요금 체계



- 충전요금 체계 개선 필요함
  - 1. 완속, 중속, 급속의 요금이 모두 같음
  - 2. 업체별 충전 요금 상이

## Abstract\_First Paper

Journal of Power Sources 332 (2016) 193-203



Contents lists available at ScienceDirect

#### Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour



Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services



Dai Wang, Jonathan Coignard, Teng Zeng, Cong Zhang, Samveg Saxena\* Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., MS90R1121B, Berkeley, CA 94720, United States

- EV battery degradation is quantified from driving and vehicle-grid services
- Frequency regulation and peak load shaving do not cause significant degradation
  - There is room for different interpretations of the results

# Degradation model

- The battery degradation model is divided into cyclic aging and calendar aging, designed based on experimental results [Wang (2014), Keil (2016)]
  - Cyclic aging is affected by temperature, C-rate, and energy (Ah) throughput
  - Calendar aging is influenced by SoC, battery age, and temperature
- The detailed expressions of the model are reviewed in the second paper

#### V2G-Sim with NHTS dataset

| Start time | End time | Event type | Distance/charger level | Location   |
|------------|----------|------------|------------------------|------------|
| 0:00       | 8:45     | Plugged in | L1                     | Home       |
| 8:45       | 9:45     | Driving    | 39.6 mi                | N/A        |
| 9:45       | 16:30    | Parked     | L2                     | Work       |
| 16:30      | 17:00    | Driving    | 5.0 mi                 | N/A        |
| 17:00      | 17:30    | Parked     | N/A                    | Restaurant |
| 17:30      | 18:00    | Driving    | 5.0 mi                 | N/A        |
| 18:00      | 21:00    | Parked     | L2                     | Work       |
| 21:00      | 22:00    | Driving    | 39.6 mi                | N/A        |
| 22:00      | 0:00     | Plugged in | L1                     | Home       |

- The study utilizes a previously developed simulation tool named V2G-Sim, with travel itinerary input data sourced from the National Household Travel Survey (NHTS)
- Comparing driving, peak shaving, frequency regulation, and net load shaping
  - net load shaping focuses on managing the variability of renewable energy

#### Results



- compares the outcomes of using V2G services at consistent daily times versus using them only 20 days per year
- study asserts that employing V2G services daily represents an extreme case,
   V2G only 20 times per year avoids significant degradation, indicating that V2G does not inherently degrade performance

#### Limitations

- 1. 연 20일만 V2G를 이용하는 것이 더 극단적인 결과일 수 있음. V2G가 활성화된다면, 비용 절감을 위해 매일 V2G를 이용하는 것이 합리적임
- 2. 매일 같은 시간에 V2G 를 운용하는 단순한 전략을 취함
- 3. L1 charger (1.4 kW)와 L2 charger (7.2 kW) 의 충전 속도가 느려 degradation이 현실적이지 않음. L2 charger가 현재 사용되는 아파트용 충전기의 속도와 비슷함



# Abstract\_Second Paper

# Optimal V2G Scheduling of an EV with Calendar and Cycle Aging of Battery: An MILP Approach

Rahmat Khezri, Senior Member, IEEE, David Steen, Evelina Wikner, Member, IEEE, and Le Anh Tuan, Member. IEEE

- presents a Mixed-integer Linear Programming (MILP) to optimize V2G, considering battery degradation
- demonstrates potential cost savings by comparing different scenarios

#### Motivation

- 1. The main concern in V2G services is battery degradation, yet it is often overlooked in most existing studies
- 2. Previous research typically underestimates degradation caused by V2G
- 3. Most models in previous research employ non-linear approaches, complicating the optimization of V2G scheduling

# **Objective Function**

#### Operation cost

$$f = \min_\Xi \mathsf{Cost}_{\mathsf{EV}}$$

Cost<sub>EV</sub>: Total operation cost

$$\mathsf{Cost}_{\mathsf{EV}} = \mathsf{Cost}_{\mathsf{ch}} - \mathsf{Rev}_{\mathsf{ds}} + \mathsf{Cost}_{\mathsf{deg}}$$

- Cost<sub>ch</sub>: charging cost
- Rev<sub>ds</sub>: discharging revenue
- Cost<sub>deg</sub>: degradation cost

# **Objective Function**

In the equation, LHS showing home charging costs and the RHS workplace charging costs

#### Charging cost

$$\mathrm{Cost}_{\mathrm{ch}} = \sum_{h \in H_H} ((\pi_h^{\mathrm{sp}} + \pi^{\mathrm{gu}}) P_h^{\mathrm{ch}} \Delta h) + \sum_{h \in H_W} ((\pi_h^{\mathrm{sp}} + \pi^{\mathrm{gu}} + \pi^{\mathrm{W}}) P_h^{\mathrm{ch}} \Delta h)$$

- $P_h^{\text{ch}}$ : charging power at time h
- $\pi_h^{\rm sp}$ : spot price of electricity
- $\pi^{gu}$ : grid utilization charge
- $\pi^{W}$ : additional charging cost at workplace

# **Objective Function**

#### Discharging revenue

$$\mathrm{Rev}_{\mathrm{ds}} = \sum_{h \in H_H} (\pi_h^{\mathrm{sp}} P_h^{\mathrm{ds}} \Delta h) + \sum_{h \in H_W} ((\pi_h^{\mathrm{sp}} - \pi^{\mathrm{W}}) P_h^{\mathrm{ds}} \Delta h)$$

- ullet  $P_h^{\mathrm{ds}}$ : discharging power at time h
- $\pi^{W}$ : additional discharging cost at workplace

#### Degradation cost

$$\mathsf{Cost}_{\mathsf{deg}} = \sum_{h \in H} \pi_h^{\mathsf{deg}} \Delta h$$

•  $\pi_h^{\text{deg}}$ : degradation cost at time h

# **Battery Degradation Cost**



Fig. 1. General trend of degradation for LIBs based on time or cycle.

The degradation cost expressed as:

$$\pi_h^{\rm deg} = \pi_{\rm bes} \frac{D_h^{\rm tot}}{100\% - \mu}$$

- $\bullet$   $\pi_{\mathrm{bes}}$ : Present value of the battery
- $D_h^{\text{tot}}$ : Total degradation
- ullet  $\mu$ : capacity at EOL

if  $D^{\mathrm{tot}}$  = 100% -  $\mu$  then  $\mathrm{Cost}_{\mathrm{deg}} = \pi_{\mathrm{bes}}$ , battery should be replaced

## present value of the battery

The present value of the battery is calculated using engineering economic principles:

$$\pi_{\rm bes} = \pi_{\rm rep} + \pi_{\rm om} - \pi_{\rm sv}$$

- $\pi_{\text{rep}}$ : Present replacement cost
- $\bullet$   $\pi_{\rm om}$ : Present operation and maintenance cost
- $\pi_{sv}$ : Present salvation value

# present value of the battery

$$\begin{split} \pi_{\rm rep} &= \frac{C_{\rm rep}}{(1+i)^\phi} \\ \pi_{\rm om} &= C_{\rm om} \frac{(1+i)^\phi - 1}{i(1+i)^\phi} \\ \pi_{\rm sv} &= \frac{C_{\rm sv}}{(1+i)^\phi} \end{split}$$

- $\bullet$   $C_{\rm rep},$   $C_{\rm om},$   $C_{\rm sv}:$  Costs associated with replacement, operation and maintenance, and salvation
- *i*: Discount rate
- $\phi$ : Nominal battery life in years.

# Degradation model

The total degradation,  $D_h^{\mathrm{tot}}$  , is defined as the sum of calendar and cycle aging:

$$D_h^{ ext{tot}} = D_h^{ ext{cal}} + D_h^{ ext{cyc}}$$
  $D_h^{ ext{cal}} = f(S_h, heta_h, d)$ 

$$D_{h}^{\text{cyc}} = f(\theta_{h}, I_{h}^{c}, A_{h})$$

• This study utilizes an empirical aging model developed by [Wang (2014)] for cycle aging and [Keil (2016)] for calendar aging

# Calendar aging

The calendar aging of the battery, expressed as:

$$D_h^{\rm cal} = G(S_h) e^{-\frac{E_a}{R\theta_h}} d^{0.5}$$

- ullet  $G(S_h)$ : function of SOC  $(S_h)$
- $\theta_h$ : Temperature (Kelvin)
- *d*: Time duration

# linearize Calendar aging



 $G(S_h)$  is a piecewise quadratic function of SOC (solid line) :

$$G(S_h) = \begin{cases} a_1 S_h^2 + a_2 S_h + a_3 & \text{if } 0 \leq S_h \leq 50 \\ b_1 S_h^2 + b_2 S_h + b_3 & \text{elif } 50 < S_h \leq 70 \\ c_1 S_h^2 + c_2 S_h + c_3 & \text{elif } 70 < S_h \leq 100 \end{cases}$$

# linearize Calendar aging



piecewise linear approximation (dotted line) is used for optimization purposes:

$$G(S_h) = \begin{cases} k_1 S_h + k_2 & \text{if } 0 \leq S_h \leq 50 \\ m_1 S_h + m_2 & \text{if } 50 < S_h \leq 70 \\ n_1 S_h + n_2 & \text{if } 70 < S_h \leq 100 \end{cases}$$

Applied Probability Lab

# Cyclic aging

The cycle aging model is:

$$D_h^{\rm cyc} = Z(\theta_h) e^{q_4 I_h^c A_h}$$

- ullet  $Z(\theta_h)$ : piecewise quadratic function of Temperature
- ullet  $I_h^c$ : C-rate
- $A_h$ : Ah-throughput

where temperature function  $Z(\theta_h)$  is:

$$Z(\theta_h) = q_1\theta_h^2 + q_2\theta_h + q_3$$

By using piecewise linear approximation and binary variables, aging functions are linearized

# Case study

Analyze the performance of five distinct models:

• V2G (Main Model): minimize operational costs while using V2G

$$f_1 = \min_\Xi(\mathsf{Cost}_\mathsf{ch} - \mathsf{Rev}_\mathsf{ds} + \mathsf{Cost}_\mathsf{deg})$$

• Immediate Charging (Uncontrolled Model): EV is charged immediately after each journey until the battery is fully charged

$$f_2 = \max_\Xi(S_h)$$

• Smart Charging (Controlled Model): minimize costs, without V2G

$$f_3 = \min_{\Xi}(\mathsf{Cost}_\mathsf{ch} + \mathsf{Cost}_\mathsf{deg})$$

Applied Probability Lab. 22 / 30 semina

# Case study

 V2G without Battery Degradation Cost: ignores the battery degradation cost, focusing on the economic viability of V2G

$$f_4 = \min_\Xi(\mathrm{Cost}_{\mathrm{ch}} - \mathrm{Rev}_{\mathrm{ds}})$$

 V2G by Battery Degradation Cost as the Objective Function: minimize the battery degradation cost only

$$f_5 = \min_\Xi(\mathsf{Cost}_{\mathsf{deg}})$$

# Results\_Total cost

|                       |      |                         |                    |                    |             | -           |
|-----------------------|------|-------------------------|--------------------|--------------------|-------------|-------------|
| Model                 | Year | Tot. cost<br>[€] in (2) | Charg.<br>cost [€] | Disch.<br>rev. [€] | CYAC<br>[€] | CAAC<br>[€] |
| V2G                   | 2022 | 171                     | 1,449              | -1,527             | 47.7        | 201         |
| (Main Model)          | 2021 | 567                     | 662                | -263               | 24.4        | 143         |
| Uncontrolled<br>Model | 2022 | 1,421                   | 945                | 0                  | 18.1        | 458         |
|                       | 2021 | 1,086                   | 632                | 0                  | 18.2        | 436         |
| Smart<br>Charging     | 2022 | 647                     | 450                | 0                  | 18.1        | 179         |
|                       | 2021 | 632                     | 473                | 0                  | 18.3        | 143         |
| V2G without           | 2022 | 235                     | 1,437              | -1,548             | 48.9        | 346         |
| Deg. Cost             | 2021 | 699                     | 643                | -286               | 25.7        | 317         |
| V2G with              | 2022 | 1,078                   | 955                | 0                  | 17.5        | 106         |
| Deg. as Obj.          | 2021 | 741                     | 622                | 0                  | 17.9        | 101         |

CAAC: Calendar aging cost, CYAC: Cycle aging cost

- The main V2G model significantly reduces costs compared to other models
  - one-fourth of the controlled model
  - only one-eighth compared to the uncontrolled model

# Results\_Degradation

| Model        | Year | Cal<br>age. [%] | Cyc.<br>age. [%] | Tot.<br>ch. [kWh] | Tot.<br>dis. [kWh] |
|--------------|------|-----------------|------------------|-------------------|--------------------|
| V2G          | 2022 | 0.99            | 0.24             | 10,137            | 5,508              |
| (Main Model) | 2021 | 0.71            | 0.12             | 4,924             | 980                |
| Uncontrolled | 2022 | 2.26            | 0.09             | 3,823             | 0                  |
| Model        | 2021 | 2.16            | 0.09             | 3,823             | 0                  |
| Smart        | 2022 | 0.93            | 0.04             | 3,796             | 0                  |
| Charging     | 2021 | 0.71            | 0.05             | 3,796             | 0                  |
| V2G without  | 2022 | 1.48            | 0.24             | 10,359            | 5,677              |
| Deg. Cost    | 2021 | 1.56            | 0.13             | 5,097             | 1,125              |
| V2G with     | 2022 | 0.52            | 0.08             | 3,796             | 0                  |
| Deg. as Obj. | 2021 | 0.50            | 0.08             | 3,796             | 0                  |

 The V2G model exhibits significantly lower performance degradation compared to the uncontrolled model

# Disccusions\_price volatility and V2G

| Model                                             | Year | Tot. cost<br>[€] in (2) | Charg.<br>cost [€] |        | CYAC<br>[€] | CAAC<br>[€] |
|---------------------------------------------------|------|-------------------------|--------------------|--------|-------------|-------------|
| V2G                                               | 2022 | 171                     | 1,449              | -1,527 | 47.7        | 201         |
| (Main Model)                                      | 2021 | 567                     | 662                | -263   | 24.4        | 143         |
| Uncontrolled                                      | 2022 | 1,421                   | 945                | 0      | 18.1        | 458         |
| Model                                             | 2021 | 1,086                   | 632                | 0      | 18.2        | 436         |
| Smart                                             | 2022 | 647                     | 450                | 0      | 18.1        | 179         |
| Charging                                          | 2021 | 632                     | 473                | 0      | 18.3        | 143         |
| V2G without                                       | 2022 | 235                     | 1,437              | -1,548 | 48.9        | 346         |
| Deg. Cost                                         | 2021 | 699                     | 643                | -286   | 25.7        | 317         |
| V2G with                                          | 2022 | 1,078                   | 955                | 0      | 17.5        | 106         |
| Deg. as Obj.                                      | 2021 | 741                     | 622                | 0      | 17.9        | 101         |
| CAAC: Calendar aging cost, CYAC: Cycle aging cost |      |                         |                    |        |             |             |



- In 2021, when the average electricity price was lower, models excluding V2G showed lower total costs
- The V2G model significantly reduces costs in 2022, a year characterized by high electricity price volatility

# Disccusions\_Calendar aging



- cycle aging is constant for different battery ages
- calendar aging is two times higher when the EV is new compared to when it
  has been used for three years
  - vigorous chemical reaction

# Disccusions\_Total cost and Charger power



- As the charger's power increases, the total scheduling cost decreases
- higher charger power gives a better opportunity to EV owners to make more profits, however, it increases the battery degradation

Applied Probability Lab. 28 / 30 semin

# Limitation\_Linearized Aging function





- 논문의 저자는 linear model과 non-linear model의 average of differences가 calendar and cycle aging 에서 각각 0.3 ppm, 0.2 ppm 으로, 추정 오차가 매우 적다고 주장함
- 그럼에도 선형화 과정에서 각 구간 내 local optima point가 무시되므로, degradation 을 포함한 최적화 결과에 많은 영향을 미칠 수 있음

"Thank you for listening"