Analysis: Cookie Clicker Alpha

In this problem, we need to decide on the number of cookie farms to buy and also need to decide on when to buy the farms.

The strategy is perhaps surprisingly simple: first, collect enough cookies to buy a farm. Then figure out whether it's faster to buy one farm and *then* collect **X** cookies, or simply to collect **X** cookies now. If it's faster to collect **X** cookies now, you should do that. If it's faster to buy a farm first, buy that farm and then repeat this process (collect enough cookies to buy another farm...).

It's very easy to *say* that, but it's not as easy to prove it works. How many farms might you end up buying? If it's in the billions, your program might be too slow, and we never proved it wouldn't be. We also didn't prove that it's best to buy a farm *right away* as soon as you have enough cookies. The rest of this editorial will go into those questions in detail.

We build the intuition for the solution by using geometry. We represent the problem in the 2d plane. Let the x-axis represent time (in seconds) and the y-axis represent the number of cookies. Initially, we gain cookies at the rate of 2 cookies per second which is shown by line L_0 in Figure 1. Letâ \in TMs say the target number of cookies (X) is 16. We can represent it with line y=16 (L_X). This means that if we do not buy any cookie farm then the time it takes to get 16 cookies is given by the intersection between L_X and L_0 . See Figure 1.

Figure 1

Now, letâ \in TMs delve into what happens (geometrically speaking) when we buy a cookie farm. Letâ \in TMs say the cost for buying a cookie farm (C) is 6, and the extra cookies per second (F) is 2. In Figure 2, we buy a farm as soon as we have 6 cookies. This means at time = 3, we go from having 6 cookies to 0 cookies (to pay for the cookie farm), and our cookies per second increases to 4. This information is represented by L₁ in Figure 2. Note that the dashed lines represent the drop of current cookies when we buy a cookie farm. Notice that L₀ and L₁ intersect at the 6 second mark (and correspondingly, X=12 cookies). It means that, if our target number of cookies X is anywhere between 0 and 12 then it is not advantageous to buy a cookie farm! Why? Letâ \in TMs look at an example line L_Xa which is in that range. In Figure 2, we see that L₀ intersects L_Xa earlier (at 4 second mark) than L₁ intersects L_Xa (at 5 second mark). At X = 12 (represented by L_Xb), it does not matter if we buy a cookie farm or not. But if X is higher than 12, for example X = 16 (represented by L_X), we should buy a cookie farm since L₁ intersect L_X earlier (at 7 second mark) than L₀ (at 8 second mark). Jumping ahead briefly, we notice a similar behavior for the intersection between L₁, L₂ and L_X in Figure 4 (we'll describe how we compute L₂ in subsequent paragraphs). If we choose X = 18, it doesn't matter if we choose L₁

or L_2 , but if X is below 18 then L_1 intersection is better than L_2 intersection, but if X is above 18 then L_2 intersection is better than L_1 intersection.

Figure 2

Now we discuss the strategy for how early we should buy a cookie farm i.e. should we buy a cookie farm as soon as we have C cookies, or should we wait a little longer before buying a cookie farm? We claim that we should buy a farm as soon as we have C cookies (and not wait any second longer).

Figure 3

In Figure 3 as before, L_1 represents buying a cookie farm as soon as we have 6 cookies (at 3 second), while L_1 a represents delaying buying a cookie farm by a second (at 4 second). Note that L_1 and L_1 a are going to be parallel to each other (i.e. they have the same rate: 4 cookies for second) but L_1 is located to the left of L_1 a. What does this mean? It means that the intersection between any line L_X and L_1 will always be at an earlier time than the intersection between L_X and L_1 a. Therefore we should not wait to buy cookie farms any more than needed. This means that if buying a cookie farm contributes to your winning strategy, then we should buy a cookie farm as soon as possible, i.e. as soon as we have C cookies.

In Figure 4, we can observe that the earliest time to buy the first cookie farm is on the intersection of line L_0 with line L_C (y=C). Then, the earliest time to buy the second cookie farm is on the intersection of line L_1 with L_C .

Figure 4

Now, we are ready to describe our solution strategy. We first determine the time t_0 it takes to get X cookies without buying a cookie farm (i.e. intersection between L_0 and L_X). Then we try to buy 1 cookie farm and figure out the time t_1 it takes to get X cookies (i.e. intersection between L_1 and L_X). Then compute t_2 for buying another cookie farm (i.e. intersection between L_2 and L_X), and so on. We stop when t_{n+1} is greater than t_n (i.e. we do worse, in terms of time, by buying an additional cookie farm). For example, in Figure 4, we do worse with L_2 than with L_1 (intersections with L_X). We finally report t_n as our winning time.

A note on doing the actual line intersection computation follows. We want to compute the line intersections between lines L_0 , L_1 , L_2 , etc and y = C or y = X. Let our current line be L_n starting at $(S_n, 0)$ and have a slope of m (i.e. cookies per second after buying n cookie farms). Note that s_0 is 0, and m = 2 + n * F. Then the time required to get A cookies is given as: $S_n + A / m$.

Our solution strategy mentioned above iterates until a winning condition is achieved. But you might be wondering about total iterations needed before we are done. We want to point out that the number of iterations is bounded. In the solution strategy, we noted that the stopping condition for iteration is when we do worse (in terms of time) when buying an additional farm. Letâ \in TMs formulate that as an equation. Letâ \in TMs say our current iteration is i with line L_i with the next line being L_{i+1}. The intersection between line y = X and L_i is given as t_i = s_i + X / (2 + i * F), and similarly intersection between line y = X and L_{i+1} is given as t_{i+1} = s_{i+1} + X / (2 + (i + 1) * F). We stop when t_{i+1} > t_i. Note that s_{i+1} - s_i = C / (2 + i * F). After going through some math, we get i > (X / C) - 1 - (2 / F), which is the iteration when t_{i+1} becomes bigger than t_i. Therefore the iteration should terminate around X / C.