# Hyperbolic PDEs and Finite-Volume Methods IV

Ammar H. Hakim (ammar@princeton.edu) 1

<sup>1</sup>Princeton Plasma Physics Laboratory, Princeton, NJ

Princeton University, Course AST560, Spring 2021



## Steps in constructing finite-volume method

$$\frac{\partial \mathbf{Q}_{j}}{\partial t} + \frac{\mathbf{G}(\mathbf{Q}_{j+1/2}^{+}, \mathbf{Q}_{j+1/2}^{-}) - \mathbf{G}(\mathbf{Q}_{j-1/2}^{+}, \mathbf{Q}_{j-1/2}^{-})}{\Delta x} = 0$$

To completely specify a finite-volume scheme we must design algorithms for each of the following three steps:

- Step 1: A recovery scheme (possibly with limiters) to compute the left/right
  interface values Q<sup>±</sup> at each interface using a set of cell-average values around that
  interface,
- Step 2: A numerical flux function that takes the left/right values and returns a
  consistent approximation to the physical flux, and
- **Step 3**: A **time-stepping scheme** to advance the solution in time and compute the cell-averages at the next time-step.



#### Essence of the finite-volume method

Instead of computing one edge value we will compute *two* values: one the left and one on right of cell-edge. We will next define a *numerical flux function* 

$$\mathbf{G} = \mathbf{G}(\mathbf{Q}_{j+1/2}^-, \mathbf{Q}_{j+1/2}^+)$$

with consistency condition

$$\lim_{\mathbf{Q}_L} \inf_{R \to Q} \mathbf{G}(\mathbf{Q}_L, \mathbf{Q}_R) = \mathbf{F}(\mathbf{Q})$$



In terms of the numerical flux function the FV update formula becomes

$$\frac{\partial \mathbf{Q}_j}{\partial t} + \frac{\mathbf{G}(\mathbf{Q}_{j+1/2}^+, \mathbf{Q}_{j+1/2}^-) - \mathbf{G}(\mathbf{Q}_{j-1/2}^+, \mathbf{Q}_{j-1/2}^-)}{\Delta x} = 0$$



#### Numerical Flux Function

The numerical flux function computes a consistent flux at the cell-edge from the cell averages.

$$\lim_{\mathbf{Q}_{L,R} \to \mathcal{Q}} \mathbf{G}(\mathbf{Q}_{L}, \mathbf{Q}_{R}) = \mathbf{F}(\mathbf{Q}).$$

#### Examples

• Central Flux in which we simply average the flux from the two states at the interface

$$\mathsf{G}(\mathsf{Q}_L,\mathsf{Q}_R) = rac{1}{2} \left(\mathsf{F}(\mathsf{Q}_L) + \mathsf{F}(\mathsf{Q}_R)
ight).$$

 Upwind Flux in which we choose the edge on the "upwind" side to account for direction of information flow:

$$G(Q_L, Q_R) = F(Q_L)$$

if information is flowing from left-to-right, and

$$G(Q_L,Q_R)=F(Q_R)$$

if information is flowing from right-to-left. Begs the question: how to determine which direction information is flowing in? Answer: the eigensystem of the hyperbolic equation contains this!

#### Numerical Flux Function: Lax flux

• A good choice of the numerical flux function is the *local Lax* flux:

$$\mathbf{G}(\mathbf{Q}_L,\mathbf{Q}_R) = rac{1}{2} \left( \mathbf{F}(\mathbf{Q}_L) + \mathbf{F}(\mathbf{Q}_R) 
ight) - rac{|\lambda|}{2} (\mathbf{Q}_R - \mathbf{Q}_L)$$

where  $|\lambda|$  is an estimate of the (absolute) maximum of all eigenvalues at the interface.

• For advection equation this becomes

$$G(f_L, f_R) = \frac{1}{2}a(f_L + f_R) - \frac{|a|}{2}(f_R - f_L)$$

This works for either sign of advection speed a, automatically giving upwinding.

• Note  $|\lambda|$  is only a local (to the interface) *estimate*. You can use a global estimate too: original formulation by Peter Lax ("Lax fluxes").

## Numerical Flux Function: Systems of equations

- Lax flux is a good "first" flux to use. However, notice it only takes into account a *single* piece of information: maximum eigenvalue.
- For a linear system of equations (Maxwell equation) or locally linearized nonlinear system we can instead do

$$G(Q_R, Q_L) = \frac{1}{2} (F(Q_R) + F(Q_L)) - \frac{1}{2} (A^+ \Delta Q_{R,L} - A^- \Delta Q_{R,L})$$

where the *fluctuations*  $A^{\pm}\Delta Q$  are defined as

$$A^{\pm}\Delta Q_{R,L} \equiv \sum_p r^p \lambda_p^{\pm} (w_R^p - w_L^p) = \sum_p r^p \lambda_p^{\pm} I^p (Q_R - Q_L).$$

where  $\lambda_p^+ = \max(\lambda_p, 0)$  and  $\lambda_p^- = \min(\lambda_p, 0)$ .

 Additional care is needed for nonlinear equations like Euler or ideal MHD equations. More on this on Thursday.



## Some notation for use in recovery stencils

Example: symmetric recovery across two cells can be written as

$$Q_{i+1/2} = rac{1}{2}(Q_{i+1} + Q_j) = rac{1}{2}(d_p + d_m)Q_{i+1/2}$$

Example: central difference scheme for second derivative:

$$\frac{\partial^2 Q_i}{\partial x^2} = \frac{1}{\Delta x^2} (Q_{i+1} - 2Q_j + Q_{i-1}) = \frac{1}{\Delta x^2} (\Delta_p - 2I + \Delta_m) Q_i$$



Figure: Basic indexing operators to move from cell to cell, face to cell and cell to face.



#### Recovery scheme: four-cell stencil, centered scheme



- To construct a four-cell symmetric stencil recovery across an interface we will use a four-cell stencil:  $\{d_{2m}, d_m, d_p, d_{2p}\}$
- Setup a local coordinate system with x = 0 at the interface and assume a polynomial recovery

$$p(x) = p_0 + p_1 x + p_2 x^2 + p_3 x^3$$

• Match the cell-averages of p(x) in each of the cells  $\{d_{2m}, d_m, d_p, d_{2p}\}$  to get a system of linear equations. Solve this system to determine  $p_0, p_1, p_2, p_3$ .



#### Recovery scheme: four-cell stencil, centered scheme

Solving the system of four equations for the four coefficients  $p_i$ , i = 0, ..., 3 yields:

$$egin{aligned} 
ho_0 &= rac{1}{12} (-d_{2m} + 7d_m + 7d_p - d_{2p}) Q \ 
ho_1 &= rac{1}{12\Delta x} (d_{2m} - 15d_m + 15d_p - d_{2p}) Q \ 
ho_2 &= rac{1}{4\Delta x^2} (d_{2m} - d_m - d_p + d_{2p}) Q \ 
ho_4 &= rac{1}{6\Delta x^3} (d_{2m} - 3d_m + 3d_p - d_{2p}) Q. \end{aligned}$$

- Notice: stencils of the even coefficients are *symmetric* and the odd coefficients are *anti-symmetric*.
- To compute the interface value we do not really need all of these coefficients but only need to evaluate the recovery polynomial at x = 0, i.e we only need  $p(0) = p_0$



#### Recovery scheme: four-cell stencil, centered scheme

To compute the interface value we do not really need all of these coefficients but only need to evaluate the recovery polynomial at x = 0, i.e we only need  $p(0) = p_0$ . Hence, the interface value can be computed from

$$Q^+ = Q^- = rac{1}{12}(-d_{2m} + 7d_m + 7d_p - d_{2p})Q.$$

Note that due the symmetric nature of the stencil we have only a *single* value at the interface. This means that the numerical flux function at an interface is simply

$$G(Q,Q) = F(Q)$$

from consistency requirements. This completes the spatial finite-volume discretization! The scheme one gets from this is very accurate (even "structure preserving" for Maxwell equations), though not very robust in presence of sharp gradients. (No Free Lunch)

## How accurate is any given scheme?

To fix ideas consider we wish to solve the advection equation

$$\frac{\partial f}{\partial t} + \frac{\partial f}{\partial x} = 0$$

Using the four-cell symmetric recovery scheme to compute interface values in the FV update formula we get the semi-discrete scheme *five-cell stencil* update formula:

$$\frac{\partial f_j}{\partial t} = -\frac{1}{\Delta x} \int_{x_{j-1/2}}^{x_{j+1/2}} \frac{\partial f}{\partial x} dx = -\frac{1}{12\Delta x} (f_{j-2} - 8f_{j-1} + 8f_{j+1} - f_{j+2})$$

How accurate is this scheme, or what is its order of convergence?



## How accurate is any given scheme? Use Taylor series

• Take a Taylor series polynomial around the cell center of cell  $I_i = [-\Delta x/2, \Delta x/2]$  locally at x = 0

$$T(x) = \sum_{n=0}^{\infty} \frac{T_n}{n!} x^n.$$

- Compute the cell average of this polynomial in each of the stencil cells  $\{\Delta_{2m}, \Delta_m, \Delta_p, \Delta_{2p}\}$
- Substitute these averages in the update formula to compute the mean value of the flux gradient in the cell  $I_j = [-\Delta x/2, \Delta x/2]$

$$\frac{1}{12\Delta x}(\Delta_{2m} - 8\Delta_m + 8\Delta_p - \Delta_{2p})T = T_1 + \frac{\Delta x^2}{24}T_3 - \frac{21\Delta x^4}{640}T_5 + \dots$$

• Subtract the exact cell average of the gradient of the Taylor polynomial in cell  $I_i = [-\Delta x/2, \Delta x/2]$ , i.e.

$$\frac{1}{\Delta x} \int_{-\Delta x/2}^{\Delta x/2} \frac{\partial T}{\partial x} dx = T_1 + \frac{\Delta x^2}{24} T_3 + \frac{\Delta x^4}{1920} T_5 + \dots$$

from the stencil computed value. The remainder term is the error of the scheme.



## Symmetric four-cell recovery scheme is fourth-order accurate

The above procedure (needs use of a compute algebra system to simplify the computations) shows that the symmetric four-cell recovery scheme has error that goes like

$$\frac{\Delta x^4}{30}T_5 + O(\Delta x^6)$$

showing the scheme converges with *fourth-order* accuracy  $O(\Delta x^4)$  for linear advection equation. (Reducing  $\Delta x$  by 2 reduces error by a factor of 16).



## Accuracy is not everything: dispersion and diffusion

- High-order symmetric schemes like the one we derived are very accurate (even "structure preserving" for some problems) but not robust.
- Two other properties of the scheme are important to understand: dispersion and diffusion. For this we wil derive a numerical dispersion relation analogous to dispersion relation we derived for linearized systems.
- Consider a single mode  $f(x) = e^{ikx}$  where k is the wavenumber. Compute the cell-average of the mode on each of the cells in the stencil, plug into the stencil formula to derive the *numerical dispersion relation*

$$i\overline{k}\Delta x = \sum_{m=-N}^{M} c_m e^{imk\Delta x}$$

where we have written the stencil in the generic form

$$\frac{1}{\Delta x} \sum_{m=-N}^{M} c_m f_{j+m}$$



## Symmetric four-cell recovery scheme has no diffusion!

- Note that the numerical dispersion relation will in general give a *complex* effective wavenumber  $\overline{k}$ .
- The dispersion relation for a hyperbolic equation is  $\omega = \lambda k$ . Hence, the *real part* of  $\overline{k}$  represents dispersion and *imaginary part* of  $\overline{k}$  represents diffusion/growth. Obviously, we want imaginary part to be *negative* to avoid solution blow-up!
- The four-cell symmetric stencil has no imaginary part of k. This related to the fact that it is symmetric (anti-symmetric stencil coefficients). This is not necessarily a good thing!



Figure: Real-part of numerical dispersion relation for four-cell recovery scheme. Notice the strong dispersion for higher-k modes



#### Closer look at numerical dispersion relation

The numerical dispersion relation determines the wave-vector that the *time-propagator* of the scheme sees. Consider:

$$i\overline{k} = i\overline{k}(k) = \sum_{m=-N}^{M} c_m e^{ikm\Delta x}$$

If we are solving a linear advection equation with a single mode solution like  $e^{-i\omega_k t}e^{ikx}$ , where  $\omega_k = \lambda k$  then the effective mode in the discrete scheme will be

$$\overline{\omega}_k = \lambda \overline{k}(k).$$

Hence, the numerical scheme adds *numerical dispersion* to propagating waves as now the phase- and group-velocity are no longer constant.

#### Godunov's Theorem

- A very important theorem proved by Godunov is that there is no linear scheme that is "monotonicity preserving" (no new maxima/minima created) and higher than first-order accurate!
- Consider a general scheme for advection equation

$$f_j^{n+1} = \sum_k c_k f_{j+k}^n.$$

The discrete slope then is

$$f_{j+1}^{n+1} - f_j^{n+1} = \sum_k c_k \left( f_{j+k+1}^n - f_{j+k}^n \right).$$

Assume that all  $f_{j+1}^n - f_j^n > 0$ . To maintain monotonicity at next time-step hence one must have all  $c_k > 0$ .

#### Godunov's Theorem

• First order upwind scheme:

$$f_j^{n+1} = f_j^n - \frac{\Delta t}{\Delta x} (f_j^n - f_{j-1}^n)$$

this satisfies monotonicity as long as  $\Delta t/\Delta x \leq 1$ .

Second order symmetric scheme

$$f_j^{n+1} = f_j^n - \frac{\Delta t}{2\Delta x} (f_{j+1}^n - f_{j-1}^n)$$

clearly this does not satisfy the condition of monotonicity.

• In general condition on Taylor series to ensure atleast second-order accuracy shows that at least *one* of the  $c_k$ s must be negative. Hence, by contradiction, *no such scheme exists*!



#### Godunov's Theorem: Unfortunate Consequences and Workarounds

- Godunov's Theorem is highly distressing: accurate discretization seems to preclude a scheme free from monotonicity violations
- One way around is to start with a linear scheme that is very accurate and then add some local diffusion to it to control the monotonicity.
- However, Godunov's theorem shows that this "diffusion" must be dependent on the local solution itself and can't be fixed a priori. This means a monotonicity preserving scheme must be nonlinear, even for linear hyperbolic equations.
- Leads to the concept of *nonlinear limiters* that control the monotonicity violations (adding diffusion to high-k modes). No free lunch: limiters must diffuse high-k modes but this will inevitably lead to issues like inability to capture, for example, high-k turbulence spectra correctly without huge grids.
- Major research project: interaction of shocks, boundary layers and turbulence in high-Reynolds number flows.