Inferenza Statistica

Esame del 2 luglio 2014

Tempo a disposizione 2 ore.

Tra parentesi quadre i punteggi massimi attribuibili per ciascun quesito (Totale: 39).

- 1. Il numero di prelievi giornalieri da un bancomat è assimilabile a una variabile aleatoria di Poisson X di parametro λ . Per decidere se disporre la chiusura dello sportello si osserva per un campione casuale di n giornate solo se lo sportello è stato utilizzato o meno. In $n_1 \leq n$ giorni lo sportello non è stato utilizzato.
 - a. [3] Descrivere la funzione di probabilità di X e determinare la sua media e varianza.
 - **b.** [3] Determinare lo stimatore di massima verosimiglianza per il parametro λ .
 - c. [3] Deteminare lo stimatore di massima verosimiglianza per la probabilità che in una data giornata non vi siano clienti.
 - **d.** [2] Costruire l'intervallo di confidenza asintotico per la probabiltà definita al punto precedente.
- 2. Un'indagine su un campione casuale di 1000 elettori in Italia ha riscontrato che il 37% di essi non intende votare alle prossime elezioni.
 - a. [2] Costruire un intervallo di confidenza al livello del 96% per la proporzione di votanti.
 - b. [3] In un'indagine con analogo argomento in Francia su un campione casuale di elettori, l'intervallo di confidenza al livello 95% per la medesima proporzione era risultato (58–62). Qual era la dimensione del campione francese?
 - c. [3] Si può accettare a livello $\alpha = 0.05$ l'ipotesi che in Italia e in Francia la percentuale di votanti sia la stessa?
 - d. [2] Calcolare il p-value per la verifica di ipotesi di cui al punto precedente.
- 3. Un campione casuale di dimensione n viene tratto da una variabile X distribuita normalmente con media μ e varianza nota σ^2 . Si vuole verificare l'ipotesi che $H_0: \mu = \mu_1$ contro $H_1: \mu = \mu_2$ ove $\mu_1 < \mu_2$. Come è noto la regione critica ottima, fissato un determinato valore di α , si ottiene in corrispondenza della regione del tipo $\bar{x} \geq c$.
 - **a.** [3] Si verifichi se il valore c è funzione o meno della differenza $\mu_2 \mu_1$.
 - b. [3] La potenza del test è funzione monotona della differenza fra μ_2 e μ_1 ? Lo si dimostri.
 - c. [4] Se la varianza di X è pari a 1, $\alpha = 0.05$ e la differenza fra μ_2 e μ_1 è pari a 2, quanto grande deve essere n se si vuole che la potenza del test ottimo sia non inferiore a .99?
- **4.** Il numero di giorni di attesa X per di ricevere un pacco da una società di vendite on line è una variabile aleatoria geometrica di media 6.
 - a. [2] Si determini la probabilità che si debba attendere un pacco meno di 3 giorni.
 - **b.** [3] Un cliente ha acquistato dalla società in diversi momenti 50 prodotti. Assumendo che il tempo di arrivo di ciascun prodotto sia indipendente dai restanti, calcolare la probabilità che i giorni totali di attesa siano meno di 290.
 - c. [3] Si determini il momento terzo della variabile aleatoria X.