CQFR: Réaction d'Addition Nucléophile

Réaction d'addition nucléophile :

- A_N = réaction d'un nucléophile sur un électrophile dans laquelle le produit contient tout les atomes du substrat ajoutés de ceux du réactif.
- Les substrats subissant des réactions d' A_N sont les **cétones** et les **aldéhydes** : ce sont des électrophiles insaturés
- Les molécules pouvant réaliser une A_N sont des nucléophiles (alcools, organomagnésiens en général).
- Lors d'une A_N , c'est une liaison π qui est rompue pour former une liaison σ . Contrairement à la S_N où l'on rompt une liaison σ pour en former une autre.
- VSEPR : on passe d'une géométrie AX_3 (substrat) à une géométrie AX_4 (produit).

Réactivité des carbonyles :

- Savoir expliquer l'électrophilie du carbone d'une carbonyle grâce aux effets inductifs et mésomères:
 - Effet inductif attracteur de l'oxygène : diminue la charge sur le carbone
 - Effet mésomère attracteur de l'oxygène dans la liaison C=O: diminue la charge sur le carbone Conclusion: les effets inductifs et mésomère (effet mésomère prépondérant) agissent en synergie pour faire du carbone de la carbonyle un électrophile.
- Connaitre l'allure de la BV de la carbonyle :
 - Une orbitale π_{CO}^* anti-liante majoritairement développée sur le carbone.
- Faire le lien avec la réactivité observée.
 - La réaction d'un nucléophile avec la carbonyle (électrophile, orbitale BV décrite ci dessus) se fait donc sur le carbone et entraine la rupture de la liaison π_{CO} .

Réactions classiques à connaître sur le bout des doigts (mécanisme + bilan) : (faire le test avec $R = CH_2CH_3$)

- A_N de R-MgX sur l'acétone.
- A_N de R-MgX sur un époxyde.
- A_N de 1,2 ethane—diol sur l'acétone en présence d'APTS.

Principe de l'activation électrophile :

- Expliquer pourquoi la présence d'un catalyseur acide est nécéssaire pour la réaction d'acétalisation. Lorsque le nucléophile est trop faible pour réagir avec une liaison C = O on a deux options :
 - Activer la nucléophilie du nucléophile.
 - Activer l'électrophilie de la carbonyle. La carbonyle peut être rendue plus électrophile lorsqu'elle réagit avec un proton H^+ , en effet dans $R_2C = O^+ H$, l'oxygène « tire » beaucoup plus vers lui la densité électronique du carbone que dans $R_2C = O$, l'électrophile fort $R_2C = O^+ H$ peut donc réagir avec un nucléophile faible (par ex. un alcool R' OH).

Dans le cas de l'acétalisation on réalise toujours une activation électrophile.

Acétalisation:

- L'acétalisation est une réaction équilibrée sous contrôle thermodynamique.
- Le montage de **Dean-Stark** permet de déplacer l'équilibre en retirant un produit (H_2O) du milieu réactionnel au fur et à mesure de sa formation, ce qui permet d'obtenir un rendement supérieur à celui prévu par la thermodynamique (stiley!).
- L'acétalisation se fait en présence d'un catalyseur acide.
- Toutes les étapes du mécanisme sont équilibrées la réaction peut donc se faire dans le sens
 - de la **protection**: Dean Stark pour déplacer l'équilibre dans le sens de la formation de l'acétal.
 - de la **déprotection** : Hydrolyse acide pour déplacer l'équilibre dans le sens de la formation de la carbonyle.