PRŮVODCE HODINOU II

Tentokrát studenti budou pracovat s kompletně zapojeným maticovým displejem. Toto zapojení budou používat pro řešení několika příkladů. Naučí se zejména pracovat s vícerozměrným polem, jak jím procházet a přistupovat k hodnotám.

PŘÍPRAVA

Co bude v této hodině potřeba?

- Součásti obvodu deska Arduino s USB kabelem, kontaktní pole, maticový LED displej 8x8, vodiče.
- (5) Osobní počítač pro studenty s nainstalovaným Arduino IDE.
- 6 Pokud je k dispozici, tak dataprojektor.
- 7 Prezentace k lekci 7.
- 8 Pracovní listy pro studenty.

1. KROK 🚯 5 minut

Na úvod rozdejte studentům sady Arduino. Řekněte, že náplní hodiny bude si ukázat další možnosti ve využití maticového LED displeje.

RYCHLÝ TIP

Pro připomenutí ukažte studentům tabulku zapojení pinů a zeptejte se, zda by byli schopní maticový displej zapojit sami.

2. KROK (10 minut

Ať studenti zapojí displej pro plnou funkcionalitu displeje podle přiloženého schématu v pracovním listu nebo promítaném prostřednictvím dataprojektoru.

POZOR NA ZAPOJENÍ DISPLEJE

Při zapojování displeje s větším množstvím vodičů upozorněte studenty, aby zapojení prováděli obzvláště pečlivě.

3. KROK (10 minut

Po zapojení obvodu mohou studenti začít psát programový kód. Uvedený kód postupně rozsvěcí v každém sloupci diody. Tím dojde ke kompletnímu otestování displeje.

```
const int row[8] = \{2, 7, 19, 5, 13, 18, 12, 16\};
 1
 2
     const int col[8] = {6, 11, 10, 3, 17, 4, 8, 9};
 3
 4
     void setup(){
 5
         for(int i = 0; i < 8; i++){
              pinMode(col[i], OUTPUT);
 6
 7
              pinMode(row[i], OUTPUT);
 8
              digitalWrite(col[i], HIGH);
9
              digitalWrite(row[i], LOW);
10
         }
11
     }
12
13
     void loop(){
14
         for(int j = 0; j < 8; j++) {
           digitalWrite(col[j],LOW);
15
16
           for(int k = 0; k<8; k++){
17
              digitalWrite(row[k],HIGH);
18
             delay(200);
19
           }
           for(int i = 0; i < 8; i++){}
20
             digitalWrite(row[i],LOW);
21
22
             digitalWrite(col[i],HIGH);
23
           }
24
         }
25
     }
```


- → Ať studenti po nahrátí programu do desky, jak se chovají diody na displeji.
- → Zeptejte se, při jaké kombinaci hodnot ve funkci digitalWrite() dioda na displeji svítí nebo je zhasnutá?

4. KROK 10 minut

Následující příklady upevňují znalosti týkající se principu programování maticového displeje.

ÚKOL PRO STUDENTY

→ A) Upravte (optimalizujte) programový kód tak, aby se aktualizace a mazání displeje prováděla ve dvou vámi deklarovaných funkcích.

5. KROK (10 minut

V návaznosti na předchozí úkol, kdy by studenti měli vytvořit dvě funkce a tím tak optimalizovat kód i pro pozdější použití, stačí v následujícím úkolu provést změny v pořadí zapínání diod displeje.

ÚKOL PRO STUDENTY

→ B) Upravte programový kód tak, aby se v celém, rozsvíceném displeji postupně posouval vypnutý sloupec a při tomto vypnutém sloupci projížděl vypnutý řádek.