Rayonnement d'équilibre thermique. Corps noir

Niveau: L3

Prérequis :

- Modes de transferts thermiques : rayonnement
- Notion d'onde électromagnétique
- Notion de flux
- Physique statistique : densité d'états, gaz de photons, nombre d'occupation, statistique de Bose-Einstein

Introduction

<u>Flux</u>: puissance électromagnétique transmise au corps, noté φ, exprimé en Watts.

On a:
$$\phi_i = \phi_r + \phi_a + \phi_t$$

On a :
$$\phi_p = \phi_e + \phi_r + \phi_t$$

On définit le flux radiatif :

$$\phi_R = \phi_e - \phi_a = \phi_p - \phi_i$$

On définit le flux radiatif :

$$\phi_R = \phi_e - \phi_a = \phi_p - \phi_i$$

Cas limites:

• Si : $\phi_a = \phi_r = 0$ alors $\phi_i = \phi_t$: parfaitement transparent

On définit le flux radiatif :

$$\phi_R = \phi_e - \phi_a = \phi_p - \phi_i$$

Cas limites:

• Si : $\phi_a = \phi_r = 0$ alors $\phi_i = \phi_t$: parfaitement transparent

• Si : $\phi_a = \phi_t = 0$ alors $\phi_i = \phi_r$: parfaitement réfléchissant

On définit le flux radiatif :

$$\phi_R = \phi_e - \phi_a = \phi_p - \phi_i$$

Cas limites:

- Si : $\phi_a = \phi_r = 0$ alors $\phi_i = \phi_t$: parfaitement transparent
- Si : $\phi_a = \phi_t = 0$ alors $\phi_i = \phi_r$: parfaitement réfléchissant
- Si : $\phi_t = \phi_r = 0$ alors $\phi_i = \phi_a$: parfaitement absorbant

Pour un corps opaque : $\phi_t = 0$

I.3) Loi de Planck

Densité spectrale d'énergie

• U : énergie totale

• u : énergie par unité de volume

 du : densité volumique d'énergie dans une bande de fréquence entre v et v+dv

$$du = u_{\nu}(\nu, T)d\nu$$

I.3) Loi de Planck

I.4) Spectre du Soleil

II.1) Loi de déplacement de Wien

II.2) Loi de Stefan-Boltzmann

$$R_S = 7.10^5 km$$
 $T_S = 5800 K$
 $R_T = 6400 km$
Soleil $d = 1, 5.10^8 km$
Terre

Le schéma n'est pas à l'échelle

Opacité de l'atmosphère

Source: semanticscholar.org