Pravděpodobnost a statistika - zkoušková písemka 11.6.2014

Jméno a příjmení	1	2	3	4	celkem	známka

Úloha 1. Reklamní agentura obdrží během pracovního týdne (= 5 pracovních dní) průměrně 15 zakázek, přičemž průměrně každá třetí zakázka je od mezinárodní společnosti a zbytek jsou tuzemští zákazníci. Předpokládejme, že doby příchodů zakázek jsou nezávislé a jsou během týdne rozloženy rovnoměrně. Určete pravděpodobnost, že

- a) do úterka včetně přijdou minimálně tři zakázky od mezinárodní společnosti,
- b) ve čtvrtek přijdou maximálně dvě zakázky a přitom obě budou od tuzemského zákazníka,
- c) doba čekání na první zakázku bude delší než půl dne,
- d) v daný týden bude nejpozději pátá zakázka od mezinárodní společnosti,
- e) v deseti po sobě jdoucích zakázkách budou maximálně dvě od mezinárodní společnosti.

Úloha 2. Sdružené pravděpodobnosti dvou diskrétních náhodných veličin X a Y jsou dány následující tabulkou:

	X = 0	X = 1	X=2	X = 3
Y = 0	1/6	0	1/6	0
Y=1	1/12	1/8	1/3	1/8

- a) Určete marginální rozdělení X a Y.
- b) Spočtěte kovarianci cov(X, Y).
- c) Jaká je souvislost této kovariance s (ne)závislostí X a Y?
- d) Určete sdružené rozdělení náhodného vektoru (U,V), v němž náhodné veličiny U, resp. V, mají stejná marginální rozdělení jako X, resp. Y, ale přitom jsou U a V nezávislé.
- e) Určete $P(X \ge 1|Y = 0)$.

Úloha 3. Měsíční zisky firmy (ve statisících) byly v prvních třech čtvrtletích roku 2013 následující:

94.2 97.4 103.1 104.0 107.3 102.1 101.4 96.3 112.2
--

- a) Nakreslete histogram těchto dat.
- b) Odhadněte z histogramu, jaké rozdělení má zisk firmy.
- c) Odhadněte střední hodnotu a rozptyl tohoto rozdělení z dat ($\sum x_i = 918$, $\sum (x_i \bar{x})^2 \doteq 252$).
- d) Otestujte na hladině 5%, zda je možné říct, že střední hodnota zisku je 10 mil. Kč měsíčně.
- e) Co se stane (ohledně počtu zamítnutých hypotéz), když u libovolného testu snížíme testovací hladinu z 5% na 1%?

Úloha 4. Během jednoho měsíce byla v jistém baru pozorována obliba nabízených značek whisky u mužů a u žen. Pozorování jsou uvedena v následující tabulce:

$pohlavi \setminus whisky$	Jameson	Tullamore Dew	Johnnie Walker	ChivasRegal
muz	47	18	32	13
zena	33	42	8	7

- a) Statisticky otestujte na hladině 1%, zda je počet mužů a žen popíjejících whisky přibližně stejný.
- b) Statisticky otestujte na hladině 5%, zda jsou všechny značky whisky přibližně stejně oblíbené (tj. zda je počet prodaných kusů jednotlivých značek přibližně stejný).
- c) Uvažujte pouze značky Jameson a Chivas Regal. Statisticky otestujte (na libovolné hladině), zda je prodej těchto dvou značek závislý na pohlaví.
- d) Sestrojte náhodnou veličinu X popisující značku whisky, kterou si objedná nově příchozí zákazník, a určete její pravděpodobnostní rozdělení (pozn.: rozdělení té náhodné veličiny, nikoliv té whisky ;-)).
- e) Definujte nezávislost spojitých náhodných veličin Y a Z.