ダイオードの基礎

3I14 公文健太

実験日状態

• 日時:2024/11/22 5-8 限

気温: 21.3℃湿度: 33%天候: 晴れ

• 共同実験者: 21 席 高士陽生

• デスク番号: 18、19

目的

• 電気回路、電子回路を構成する基本素子のひとつであるダイオードの基本的な働きについて理解する。

実験 ①:ダイオードの順方向特性

3 種類のダイオード(Si, Ge, GaAsP)の順方向特性を求めよ

• n値計算 基準点pと任意のもう一つの点gで求めることにした

$$n=rac{V_p-V_q[V]}{0.026*ln(rac{I_q}{I_p})}$$

• I_s 計算 q点のn値 n_q 、電圧 V_q 、電流 I_q

$$I_s = rac{I_q}{exp(rac{V_q[V]}{0.026*n_q})}$$

以下、n値は一つ下のセルの値と自身で計算している

Si

E [V]	V [mV]	Α [μΑ]	V [V]	A [A]	n	ls [μA]
1	568.0	402.0	0.568	0.000402	1.97271	399.00
1.1	577.5	483.8	0.578	0.000484	1.86490	479.92
1.21	586.0	576.5	0.586	0.000577	1.87349	571.83
1.331	594.0	679.4	0.594	0.000679	1.91858	673.95
1.464	601.7	792.8	0.602	0.000793	1.87726	786.22
1.611	609.0	920.7	0.609	0.000921	1.91390	913.11
1.772	616.1	1061.9	0.616	0.001062	1.94442	1053.19
					4.10	

E [V]	V [mV]	Α [μΑ]	V [V]	A [A]	n	ls [μA]
1.949	623.1	1219.6	0.623	0.001220	1.89260	1209.20
2.144	629.5	1389.0	0.630	0.001389	1.89665	1377.07
2.358	636.0	1584.7	0.636	0.001585	1.91712	1571.09
2.594	642.1	1791.0	0.642	0.001791	1.94109	1775.66
2.853	648.2	2021.1	0.648	0.002021	1.97838	2003.96
3.138	654.4	2280.0	0.654	0.002280	エラー:502	エラー:502

Si の順方向特性: 電流 μA/ 電圧 mV

Ge

E [V]	V [mV]	Α [μΑ]	V [V]	A [A]	n	ls [μA]
1	257.8	680.4	0.2578	0.00068	3.0547	678.908668376133
1.1	266.9	763.0	0.2669	0.00076	3.5009	761.489104720922
1.2	276.3	846.1	0.2763	0.00085	3.5758	844.401803441457
1.3	285.1	929.5	0.2851	0.00093	3.6033	927.590150390595
1.4	293.1	1012.9	0.2931	0.00101	4.1287	1011.03216805309
1.5	301.8	1098.0	0.3018	0.00110	3.9042	1095.79568983036
1.6	309.2	1181.5	0.3092	0.00118	4.3089	1179.29770710345
1.7	316.9	1265.9	0.3169	0.00127	4.2472	1263.44636781452
1.8	324.2	1351.8	0.3242	0.00135	4.4855	1349.26224313462

E [V]	V [mV]	Α [μΑ]	V [V]	A [A]	n	Is [μA]
1.9	331.3	1436.9	0.3313	0.00144	4.6941	1434.26565459868
2	338.3	1521.1	0.3383	0.00152	4.6838	1518.24661598191
2.1	344.9	1607.0	0.3449	0.00161	4.8137	1604.0087810382
2.2	351.5	1692.8	0.3515	0.00169	4.9171	1689.6570993788
2.3	357.9	1779.7	0.3579	0.00178	5.1600	0.001776493892056
2.4	364.2	1866.1	0.3642	0.00187	5.2440	0.001862733310794
2.5	370.4	1952.2	0.3704	0.00195	5.3605	0.001948696309871
2.6	376.3	2037.2	0.3763	0.00204	エラー:502	エラー:502

LED

E [V]	V [mV]	Α [μΑ]	v [v]	A [A]	n	ls [μA]
1	998.7	0.09	0.999	9E-08	36.5412030869651	0.089936068665577
1.1	1098.8	0.10	1.099	1E-07	14.6302757589807	0.099804918750576
1.2	1198.6	0.13	1.199	1.3E-07	8.00391368165502	0.129494823221583
1.3	1298.4	0.21	1.298	2.1E-07	3.32175255169436	0.207876614188204
1.4	1397.3	0.66	1.397	6.6E-07	2.22262254467491	0.649299681883073
1.5	1494.2	3.53	1.494	3.53E-06	1.86216145173749	3.45711853202598
1.6	1576.7	19.40	1.577	1.94E-05	1.64014399957572	18.9211207337211
1.7	1627.6	64.00	1.628	6.4E-05	1.62412497816896	62.3539768677337
1.8	1657.1	128.70	1.657	0.0001287	1.74860821113614	125.56766131677
1.9	1677.7	202.47	1.678	0.00020247	1.79285763949158	197.60335069552
2	1693.0	281.13	1.693	0.00028113	2.07139632299405	275.218904123069
2.1	1706.3	359.88	1.706	0.00035988	2.07368028800216	352.262589866268
2.2	1717.3	441.33	1.717	0.00044133	1.67235759753588	429.702959988502
2.3	1727.1	552.9	1.727	0.0005529	3.61291271087195	546.070579671447
2.4	1735.9	607.2	1.736	0.0006072	2.33979245817355	595.59966446852
2.5	1743.8	691.4	1.744	0.0006914	2.42770303304176	678.607518638643
2.6	1751.2	777.4	1.751	0.0007774	2.5490095734892	763.637124271355
2.7	1758.0	861.4	1.758	0.0008614	2.44125572723865	845.421924319653

E [V]	V [mV]	Α [μΑ]	V [V]	A [A]	n	ls [μA]
2.8	1764.0	946.8	1.764	0.0009468	2.66322030916871	930.634508918127
2.9	1770.0	1032.5	1.770	0.0010325	3.21375213239118	1017.82025465416
3	1776.7	1118.7	1.777	0.0011187	2.7128196284265	1099.81192022209
3.1	1782.0	1206.0	1.782	0.001206	2.79497069583242	1186.17302599512
3.2	1787.0	1291.9	1.787	0.0012919	2.95405551038821	1271.73968627373
3.3	1792.0	1378.8	1.792	0.0013788	2.94122788167586	1357.13051127923
3.4	1796.7	1466.2	1.797	0.0014662	3.05223114755231	1443.93075336009
3.5	1801.3	1553.7	1.8013	0.0015537	1.98936985797404	1517.54994419929
3.6	1804.2	1643.3	1.8042	0.0016433	4.32416923274594	1625.56959381883
3.7	1810.0	1730.3	1.81	0.0017303	3.20010938275408	1705.04082810932
3.8	1814.1	1817.7	1.8141	0.0018177	3.51377441402476	1793.46342089045
3.9	1818.4	1905.3	1.8184	0.0019053	3.31474048661169	1878.31744327891
4	1822.3	1993.5	1.8223	0.0019935	エラー:502	エラー:502

GaAsP の順方向特性: 電流 μA/ 電圧 mV

実験 ②: Zenner ダイオードの逆方向特性

Si

電流は流れなかった

Zenner

E [V]	-V [V]	-Α [μΑ]
2.5	2.5026	0.84
2.6	2.6020	1.29
2.7	2.7012	1.96
2.8	2.8009	2.90
2.9	2.8984	4.23
3	2.9976	6.09
3.1	3.0947	8.65
3.2	3.1902	12.01
3.3	3.2850	16.47
3.4	3.3809	22.34
3.5	3.4733	30.02
3.6	3.5636	39.67
3.7	3.6517	51.69
3.8	3.7367	66.42
3.9	3.8190	84.26
4	3.8981	105.68

ダイオードに多くの電流を流すと、内部抵抗 r の影響が無視できなくなることを、図と文章を用いて説明しなさい。

ダイオードの等価回路は、理想的なダイオード素子と直列に接続された内部抵抗rで表すことができる。 ダイオードに電圧が加わると、内部抵抗rによる電圧降下 $V_r=I*r$ が発生する。

これは電流に比例するので、電流が小さい場合は無視できるが、電流が大きくなると無視できなくなる

この時の電流と電圧の関係を表すグラフの概要を説明しなさい。

ダイオード素子にかかる実効的な電圧 $V_d = V - I * r$

低電流領域では、内部抵抗による電圧降下I*rが小さいため、ダイオードの理想的な指数特性があらわれ、グラフは指数関数的に上昇する。

高電流領域では、I * rが無視できなくなり、電圧の上昇が緩やかに。

5 V の電源を用いて、発光ダイオード(LED)に約 2 mA の電流を流したい。何オームの抵抗を用いればよいか計算しその回路図を描きなさい。但し、抵抗は E12 系列であるとする。

実験結果より、2[mA]の電流を流した時の LED の電圧降下は 1.9 \sim 2[V]程度と考えられる。 抵抗にかかる電圧 $V_R=5[V]-2[V]=3[V]$ よって抵抗

$$R=rac{3[V]}{2[mA]}=1.5[k\Omega]$$

E12 系列には 1.5[kΩ]の抵抗があるので、それを用いればよい。

実験で測定した以外のダイオードについて、その種類と利用例を調べて説明しなさい。

1. フォトダイオード

フォトダイオードは、光を電気信号に変換する半導体素子です。

特徴

- 光を受けると電流を発生
- 高速応答性
- 広い波長範囲での感度

主な用途

- 光センサー
- 光通信受信機
- 太陽電池

2. トンネルダイオード

トンネルダイオードは、量子力学的なトンネル効果を利用した特殊なダイオードです。

特徴

- 負性抵抗特性
- 高速スイッチング
- 低電圧動作

主な用途

- マイクロ波発振回路
- 高周波スイッチング
- 増幅回路

3. バラクターダイオード

バラクターダイオードは、逆バイアス電圧によって容量が変化する特性を持つダイオードです。

特徴

- 電圧制御による容量変化
- 高Q値
- 低ノイズ

主な用途

- 電圧制御発振器 (VCO)
- 周波数変調回路
- 自動同調回路