

Lecture 13: Graph ADT and Theory

01204212 Abstract Data Types and Problem Solving

Department of Computer Engineering Faculty of Engineering, Kasetsart University Bangkok, Thailand.

Outline

- Graph ADT and Representations
- Graph Traversals
- Connectivity
- Bipartite Graphs
- Topological Sort

What is a Graph?

- Yes, this is a graph
- But we are interested in a different kind of graph
- Consider graphs representing the following problems ...

CPE Course Prerequisites

Maze Representation

node = room
edge = door or passage

Electrical Circuit

node = battery, switch, resistor, etc.
edge = connection

Precedence

```
a = 0;  // s1
b = 1;  // s2
c = a+1;  // s3
d = b+a;  // s4
e = d+1;  // s5
e = c+d;  // s6
```


Which statements must execute before s6?

node = statement
edge = precedence requirement

Information Transmission in a Computer Network

node = computer

edge = connection

weight = transmission rate

Bangkok BTS and MRT Map

node = station edge = linkage

Molecules

node = atom

edge = bond

Graph Definition

- A graph is a collection of nodes and edges
- Formally,
 - A graph G = (V, E) where
 - V is a set of vertices or nodes
 - $E \subseteq V \times V$ is a set of edges that connect vertices

Graph ADT

- Graph ADT describes a container storing an adjacency relation
- Operations include:
 - Inserting or removing a vertex (and all edges connecting that vertex)
 - Inserting or removing an edge
 - Querying
 - The number of vertices
 - The number of edges
 - The vertices adjacent to a given vertex
 - The question that "are two vertices adjacent?"
 - The question that "are two vertices connected?"
- The running time of these operations will depend on the representation

Graph Example

- Consider a collection of vertices $V = \{v_1, v_2, ..., v_9\}$ where |V| = 9
- Associated with these vertices are |E| = 5 edges $E = \{(v_1, v_2), (v_3, v_5), (v_4, v_8), (v_4, v_9), (v_6, v_9)\}$
 - The pair (v_i, v_j) indicates that two vertices v_i and v_j are adjacent

Undirected and Directed Graphs

• If the order of edge pairs (v_i, v_j) does not matter, the graph is an undirected graph: $(v_i, v_j) = (v_j, v_i)$

 If the order of edge pairs (v_i, v_j) matters, the graph is a directed graph (or called a digraph): (v_i, v_j) ≠ (v_j, v_i)

Maximum Number of Edges

For an undirected graph, the maximum number of edges is

$$|E| \le {|V| \choose 2} = \frac{|V|(|V|-1)}{2} = O(|V|^2)$$

For a directed graph, the maximum number of edges is

$$|E| \le 2\binom{|V|}{2} = 2\frac{|V|(|V|-1)}{2} = O(|V|^2)$$

Graph Example

Given G = (V, E) where $V = \{A, B, C, D, E, F, G\}$ and $E = \{(A, B), (A, D), (A, E), (B, C), (B, D), (B, E), (C, E), (C, F), (D, E)\}$

- If G is an undirected graph
- If G is a directed graph

Degrees

• If G is an undirected graph

Degree: # of edges incident with

$$\deg(A) = \deg(C) = \deg(D) = 3$$

$$\deg(B) = \deg(E) = 4$$

$$deg(F) = 1$$

$$deg(G) = 0$$

• If G is a directed graph

In-degree: # of edges with the

terminal vertex

Out-degree: # of edges with the

initial vertex

$$in_{deg}(A) = 0$$
 out_ $deg(A) = 3$

$$in_{deg}(B) = 1$$
 out_ $deg(B) = 3$

$$in_{deg}(C) = 1$$
 out_ $deg(C) = 2$

$$in_{deg}(D) = 2$$
 out_ $deg(D) = 1$

Sources and Sinks

- For a directed graph,
 - Vertices with an in-degree of zero are described as sources
 - Vertices with an out-degree of zero are described as sinks

Sources: *A* and *G*

Sinks: *E* , *F* , and *G*

Subgraphs

A subgraph is a graph consisting of a subset of vertices and a subset of edges that connected those vertices in the original graph

the original graph

a subgraph

Subgraphs

A subgraph is a graph consisting of a subset of vertices and a subset of edges that connected those vertices in the original graph

the original graph

a subgraph

Vertex-Induced Subgraphs

A vertex-induced subgraph is a graph consisting of a subset of vertices where the edges are all edges in the original graph

the original graph

a vertex-induced subgraph

Vertex-Induced Subgraphs

A vertex-induced subgraph is a graph consisting of a subset of vertices where the edges are all edges in the original graph

the original graph

a vertex-induced subgraph

Paths

A path is an ordered sequence of vertices $\langle v_i, v_{i+1}, ..., v_k \rangle$ where (v_i, v_{i+1}) is an edge for j = i, ..., k-1

If G is an undirected graph
 If G is a directed graph

 $\langle A, B, E, C, F \rangle$ is a path of length 4 $\langle A, B, E, C, B, D \rangle$ is a path of length 5 $\langle A \rangle$ is a path of length 0

 $\langle A, B, D, E \rangle$ is a path of length 3

Connectivity

Two vertices v_i and v_j are said to be **connected** if there exists a path between them

A graph is **connected** if there exists a path between any two vertices

Strongly and Weakly Connectivity

- A graph is strongly connected if every pair of vertices (v_i and v_i) contains a path between each other
- A graph is weakly connected if there does not exist any path between any two pairs of vertices

Strongly connected subgraph:

 $\{C, D, E, H\}$

Weakly connected subgraph:

 $\{A, B, C, D, E, H\}$

Weighted Graphs

A weighted graph is a graph G = (V, E, W) in which a weight $w_{ij} \in W$ is associated with each edge $(v_i, v_j) \in E$

• If G is an undirected graph

 $\langle A, D, G \rangle$ is a path of length 8.8

If G is a directed graph

 $\langle A, D, B \rangle$ is a path of length 14.2

Trees

- Trees are special cases of a graph
 - Each is connected, and
 - There is a unique path between any two vertices

the original graph

example of trees t_1 and t_2

Consequences

- The number of edges is |E| = |V| 1
- The graph (tree) is acyclic
- Adding one edge creates a cycle
- Removing any one edge creates two disjoint non-empty subgraphs

Forests

- A forest is any graph that has no cycles
 - The number of edges is |E| < |V|
 - The number of trees is |V| |E|
 - Removing any one edge adds one more tree to the forest

example of a forest with 4 trees

Directed Acyclic Graphs

A directed acyclic graph (DAG) is a directed graph which has no cycles

 Graphical representation of partial order on a finite number of elements

example of two DAGs

Note that adding the edge (C, A) will make them not DAG

Graph Representations

- Space and time are analyzed in terms of
 - Number of vertices (|V|) and
 - Number of edges (|E|)
- There are two ways of representing graphs:
 - The adjacency matrix representation
 - The adjacency list representation

Adjacency Matrix

Require more memory but faster

• If G is an undirected graph

$$m_{ij} = \begin{cases} 1 & if \ (v_i, v_j) \in E \\ 0 & otherwise \end{cases}$$

$$M = \begin{matrix} A & B & C & D & E & F \\ A & 0 & 1 & 0 & 1 & 0 & 0 \\ B & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ D & 1 & 0 & 1 & 1 & 0 \\ D & 0 & 0 & 1 & 1 & 0 & 0 \\ F & 0 & 0 & 0 & 0 & 0 & 0 \end{matrix}$$

- Memory requirement is $\Theta(|V|^2)$
- Determining if v_i is adjacent to v_i is $\Theta(1)$
- Finding all neighbors of v_i is $\Theta(|V|)$

Adjacency Matrix

Require more memory but faster

If G is a directed graph

$$m_{ij} = \begin{cases} 1 & if \ (v_i, v_j) \in E \\ 0 & otherwise \end{cases}$$

$$M = \begin{pmatrix} A & B & C & D & E & F \\ A & 0 & 1 & 0 & 1 & 0 & 0 \\ B & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ D & 0 & 0 & 0 & 1 & 1 \\ E & 0 & 0 & 0 & 0 & 0 & 0 \\ F & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- Memory requirement is $\Theta(|V|^2)$
- Determining if v_i is adjacent to v_j is $\Theta(1)$
- Finding all neighbors of v_i is $\Theta(|V|)$

Adjacency List

Each vertex is associated with a list of its neighbors

• If G is an undirected graph

- Memory requirement is $\Theta(|V| + 2|E|) = \Theta(|V| + |E|)$
- On average, determining if v_i is adjacent to v_i is $\Theta(|E|/|V|)$
- On average, finding all neighbors of v_i is $\Theta(|E|/|V|)$

Adjacency List

Each vertex is associated with a list of its neighbors

If G is a directed graph

- Memory requirement is $\Theta(|V| + |E|)$
- On average, determining if v_i is adjacent to v_i is $\Theta(|E|/|V|)$
- On average, finding all neighbors of v_i is $\Theta(|E|/|V|)$

Outline

- Graph ADT and Representations
- Graph Traversals
- Connectivity
- Bipartite Graphs
- Topological Sort

Strategies

- Traversals of graphs are also called searches
- We can use either
 - Breadth-first traversal requiring a queue, or
 - Depth-first traversal requiring a stack
- We will have to track which vertices have been visited, requiring $\Theta(|V|)$ memory

Breadth-First Traversal

Procedures:

- Choose a vertex, mark it as visited and insert into queue
- While the queue is not empty
 - Remove the front vertex v from the queue
 - For each vertex adjacent to v that has not been visited
 - · Mark it visited, and
 - Insert it into the queue

Note that if the queue is empty and there are no unvisited vertices, the graph is connected

The size of the queue is O(|V|)

Example: Breadth-First Traversal

Consider this graph:

Start with the vertex A

Output: A B C E D F G H I

Time complexity: $\Theta(|V| + |E|)$

Example: Depth-First Traversal

Consider this graph:

Start with the vertex A

Output: A B C D E G I H F

Time complexity: $\Theta(|V| + |E|)$

Applications

- Determining connectivity and finding connected subgraphs
- Determining the path length from one vertex to all others
- Testing if a graph is bipartite
- Determining maximum flow

• ...

Outline

- Graph ADT and Representations
- Graph Traversals
- Connectivity
- Bipartite Graphs
- Topological Sort

Connectivity

- Determine whether one vertex is connected to another
 - $-v_i$ is connected to v_i if there is a path from v_i to v_i

Strategy:

- Perform a breadth-first traversal starting at v_i
- During the traversal,
 - If the vertex v_j ever found to be adjacent to any vertex in front of the queue, return true
 - Otherwise, if the queue is empty, return false

Determining Connectivity

Consider these graphs:

• Is A connected to D?

Connected Components

- Previously, if we continued the traversal, we would find all vertices that are connected to A
- Suppose we want to partition the vertices into connected subgraphs
 - While there are unvisited vertices in the graph
 - Select an unvisited vertex and perform a traversal on that vertex
 - Each vertex that is visited in that traversal is added to the set initially containing the initial unvisited vertex
 - Continue until all vertices are visited

Connected Components

Consider this graph:

\boldsymbol{A}	B	C	D	E	F	G	Н	I	J	K
1	2	6	8	9	11	5	3	4	7	10

There are three connected subgraphs:

 ${A,B,G,H,I}, {C,J}, and {D,E,F,K}$

Strongly Connected Components

- A directed graph is strongly connected if there is a path between all pairs of vertices
- A strongly connected component (SCC) of a directed graph is a maximal strongly connected subgraph

Strongly Connected Components

Algorithm:

- 1. Call DFS(G) to compute exiting times for each vertex
- 2. Compute G^T
- 3. Call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing times as computed in (1)
- 4. Output the vertices of each tree in the depth-first forest of (3) as a separate strongly connected components

The algorithm takes O(|V| + |E|) time

Strongly Connected Components

Steps 2-4:

Outline

- Graph ADT and Representations
- Graph Traversals
- Connectivity
- Bipartite Graphs
- Topological Sort

Definition

A bipartite graph is a graph where the vertices V can be divided into two disjoint sets V_1 and V_2 such that

- Every edge has one vertex in V₁ and the other in V₂
- In other words, no edges connects two vertices in the same set

- Is it a bipartite graph?
 - → YES, with a little work to decompose the vertices

- Is it a bipartite graph?
 - → YES, with a little work to decompose the vertices

- Is it a bipartite graph?
 - \rightarrow NO, we cannot divide $\{A,B,F\}$, for instance

Algorithm: using a breadth-first traversal

- Choose a vertex, mark it belonging to V₁ and insert in into a queue
- While the queue is not empty
 - Dequeue the front vertex v, and
 - Any adjacent vertices that are already marked must belong to the set not containing v, otherwise, the graph is not bipartite (we are done); while
 - Any unmarked adjacent vertices are marked as belonging to the other set and they are inserted into the queue
- If the queue is empty, the graph is bipartite

Consider the previous graph:

We will use colors to distinguish the two sets

BFS: A B F G H E C I D

OK, this graph is bipartite

Consider the previous graph:

We will use colors to distinguish the two sets

BFS: A B F H E G C

This graph is NOT bipartite

Complete Bipartite Graphs $K_{m,n}$

- Vertex set partitioned into two subsets of size m and n
- All vertices in one subset are connected to all vertices in the other subset

Outline

- Graph ADT and Representations
- Graph Traversals
- Connectivity
- Bipartite Graphs
- Topological Sort

Motivation

- Given a set of tasks with dependencies
 - Is there an order in which we can complete the tasks?
- Dependencies form a partial ordering
 - A partial ordering on a finite number of objects can be represented as a directed acyclic graph (DAG)

Example: CPE Course Prerequisites

Definition

Restriction of paths in DAGs

• Given two different vertices v_i and v_j , there cannot both be a path from v_i to v_j and a path from v_i to v_i

Topological sort

A topological sort of the vertices in a DAG is an ordering

$$v_1, v_2, v_3, \dots, v_n$$

such that if there is a path from v_i to v_j then v_i appears before v_i

Consider this DAG:

A topological sort is

Note that

- There are paths from C, D, H, I, and J to F, so all these must come before F in a topological sort
- Clearly, this sorting need not be unique

Applications

Suppose you want to dress up to dinner

- You must wear the following:
 - jacket, shirt, briefs, pants, socks, tie, etc.
- There are certain constraints:
 - The pants should go on after the briefs
 - Socks are put on before shoes
- One topological sort is

briefs, pants, wallet, belt, keys, socks, shoes, shirt, tie, jacket, phone, watch

 A more reasonable topological sort is briefs, socks, pants, shirt, belt, keys, tie, jacket, wallet, phone, watch, shoes

Topological Sort

Algorithm:

Given a graph, iterate the followings |V| times

- Choose a vertex v that has in-degree zero
- Let v be the next vertex in our topological sort
- Remove v and all edges connected to it

Consider the previous DAG:

- First, create a table of in-degrees of each vertex
- Then, create a queue

	A	В	C	D	E	F	G	Н	I	J	K	L
in-degree	1	1	0	2	4	2	1	0	1	1	1	2
queue	С	Н										

topological sort is

topological sort is *C H*

topological sort is **C H D**

topological sort is

topological sort is

topological sort is C H D I A I

topological sort is C H D I A J B

topological sort is C H D I A J B F

topological sort is C H D I A J B F G

topological sort is

C H D I A J B F G K

topological sort is

C H D I A J B F G K E

topological sort is

C H D I A J B F G K E L

Complexity Analysis

- Initialize in-degree array
 - $\rightarrow \Theta(|E|)$
- Initialize queue with zero in-degree vertices
 - $\rightarrow \Theta(|V|)$
- Dequeue and output vertex
 - All vertices will be enqueued and dequeued once, each take $\Theta(1)$
 - \rightarrow $\Theta(|V|)$
- Reduce in-degree of all vertices adjacent to a vertex and enqueue any zero in-degree vertices
 - All edges will decrease in-degree of adjacent once, each take $\Theta(1)$
 - $\rightarrow \Theta(|E|)$

Finally, the topological sort takes $\Theta(|V| + |E|)$ time

Any Question?

