1 At Key

The operation atKey will return the Value v at some specified

• Top level Key k within KV

$$atKey(KV,k) \rightarrow v$$

• Nested location $K = \langle k_i..k_n..k_j \rangle$ within KV

$$atKey(KV,K) \rightarrow v$$

such that if KV is a collection of Key Value pair(s) $\langle k_0 v_{k_0}, k_1 v_{k_1} \rangle$ where

$$k_0 = abc \wedge v_{k_0} = 123$$

$$\Rightarrow$$

$$k_0 v_{k_0} = abc \mapsto 123$$

and

$$k_1 = def \land v_{k_1} = xyz \mapsto 456$$

$$\Rightarrow$$

$$k_1v_{k_1} = def \mapsto xyz \mapsto 456$$

such that

$$KV = \langle abc \mapsto 123, def \mapsto xyz \mapsto 456 \rangle$$

When k is a single Key

• $k \notin KV$, atKey will return the representation of nothingness

$$atKey(KV, cba) = nil$$

• $k \in KV$, atKey will return v_k

$$atKey(KV, k_0) \Rightarrow atKey(KV, abc) = 123$$

 $atKey(KV, k_1) \Rightarrow atKey(KV, def) = xyz \mapsto 456$

When K is a Collection of Key(s)

• $K \notin KV$, atKey will return the representation of nothingness

$$atKey(KV, \langle cba, 321 \rangle) = nil$$

• $k_i \in KV \land k_i \notin KV$, atKey will return the representation of nothingness

$$atKey(KV, < def, abc >) = nil$$

• $k_i \in KV \land k_j \in KV$, atKey will return the nested value

$$atKey(KV, \langle def, xyz \rangle) = 456$$