### Drops of LTSpice



How to do AC Analysis?

## Let's imagine you've made a transistor amplifier.



### Of course it works great!



### But how does it behave at different frequencies?



It's hard to test all the possibilities.

### But there is a simpler way!



LTSpice analyzes the frequency response for you.

## First, let's open the advanced properties of your signal source.



Write 1 in the AC Amplitude. This value means 0dB, which will make our analysis simpler.

## Change the simulation command to AC Analysis. For this circuit, the 10Hz to 100KHz range looks good.

| ransient AC                                                                                                                                                                                               | Analysis     | DC sweep                 | Noise     | DC Transf                                                                               | er DC or  | pnt     |      |      |       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|-----------|-----------------------------------------------------------------------------------------|-----------|---------|------|------|-------|--|
| Compute th                                                                                                                                                                                                | ne small si  | gnal AC beh              |           | the circuit lin                                                                         | earized a | bout it | s DC | oper | ating |  |
|                                                                                                                                                                                                           |              | Тур                      | e of swe  | еер:                                                                                    | Decade    | ~       |      |      |       |  |
|                                                                                                                                                                                                           | Numb         | er of points             | oer deca  | ade:                                                                                    | 1k        |         |      |      |       |  |
|                                                                                                                                                                                                           |              | Sta                      | rt freque | ncy:                                                                                    | 10        |         | 1    |      |       |  |
|                                                                                                                                                                                                           |              | Stop                     | freque    | ncy:                                                                                    | 100k      |         |      |      |       |  |
| yntax: .ac <oc< td=""><td>t, dec, lin&gt;</td><td><npoints> &lt;</npoints></td><td>StartFre</td><td>q&gt; <endfre< td=""><td>q&gt;</td><td></td><td></td><td></td><td></td><td></td></endfre<></td></oc<> | t, dec, lin> | <npoints> &lt;</npoints> | StartFre  | q> <endfre< td=""><td>q&gt;</td><td></td><td></td><td></td><td></td><td></td></endfre<> | q>        |         |      |      |       |  |

## The X-axis is typically logarithmic, and 1K per decade is fine.

| ransient AC Analysis                    | DC sweep Noise                                                                                          | DC Transfer            | DC op pnt             |          |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------|-----------------------|----------|
| Compute the small s                     | ignal AC behavior of t<br>po                                                                            |                        | arized about its DC o | perating |
|                                         | Type of swe                                                                                             | ecade v                |                       |          |
| Numi                                    | per of points per deca                                                                                  | de:                    | 1k                    |          |
|                                         | Start frequer                                                                                           | ncy:                   | 10                    |          |
|                                         | Stop frequen                                                                                            | ncy:                   | 100k                  |          |
| /ntax: .ac <oct, dec,="" lin=""></oct,> | <npoints> <startfree< th=""><th>q&gt; <endfreq></endfreq></th><th></th><th></th></startfree<></npoints> | q> <endfreq></endfreq> |                       |          |

### And that's it. Your circuit now displays the frequency response!



# The solid line is the frequency response. The dotted line is the phase of the signal.



### Using the STEP directive, you can parse multiple component values.



Here I tested the capacitor between 1uF, 3uF and 5uF.

#### And the result is beautiful!



Francesco Sacco linkedin.com/in/saccofrancesco