如何学习数学 数学方法浅论

whwh

South China University of Technology

英伦国际教育, 2024.7.30

目录

① 可视化

② 抽象

目录

① 可视化

2 抽象

初等数学大致可以分为以下几个部分:

- 代数
- 几何
- 数值计算
- 组合

可视化是我们理解数学最初级的方式,甚至可以说是不属于数学的数学,因为越高等的数学知识越无法与直观产生任何关系,这便是现代数学的主流观点——形式主义。但是,它是我们学习数学的最好的入口。

那初等数学中哪些能够可视化呢?

那初等数学中哪些能够可视化呢?

• 所有初等几何知识

那初等数学中哪些能够可视化呢?

- 所有初等几何知识
- 所有初等函数知识

那初等数学中哪些能够可视化呢?

- 所有初等几何知识
- 所有初等函数知识
- 一部分初等代数知识

whwh (SCUT) 如何学习数学 2024.7.30

那初等数学中哪些能够可视化呢?

- 所有初等几何知识
- 所有初等函数知识
- 一部分初等代数知识
- 一部分初等组合知识

目录

① 可视化

② 抽象

什么是抽象?

• 难以与图像产生关联

- 难以与图像产生关联
- 纯粹的符号系统

- 难以与图像产生关联
- 纯粹的符号系统
- 逻辑是各个定理之间唯一的关系

- 难以与图像产生关联
- 纯粹的符号系统
- 逻辑是各个定理之间唯一的关系
- 无法用自然语言描述

抽象的数学知识有哪些?

• 群论

- 群论
- 拓扑学

- 群论
- 拓扑学
- 集合论

- 群论
- 拓扑学
- 集合论
- 数学分析等

抽象数学一览之拓扑学中乌雷松引理

定理 (乌雷松引理)

引理: 设 X 是一个正规拓扑空间,且 A 和 B 是 X 中不相交的闭子集。 那么存在一个连续函数 $f: X \to [0,1]$,使得 f(A) = 0 且 f(B) = 1。

证明.

- 对每个 $r \in [0,1]$ 的有理数,定义开集 U_r 和 V_r 使得 $A \subseteq U_r$, $B \subseteq V_r$, 且 $U_r \cap V_r = \emptyset$ 。
- 设 $U_0 = X \setminus B$, $V_1 = X \setminus A$ 。
- 对 0 < r < 1, 逐步构造 U_r 和 V_r, 满足 A ⊆ U_r ⊆ \(\overline{U_r}\) ⊆ V^c, ⊆ V_r ⊆ B^c.
- 定义函数 $f(x) = \sup\{r \mid x \in U_r\}$, 由于每个 x 属于某个 U_r , 且 U_r 是开集,所以 f 是连续的。
- 验证: 对 $x \in A$, f(x) = 0; 对 $x \in B$, f(x) = 1.

whwh (SCUT) 如何学习数学 2024.7.30 9/22

抽象数学一览之集合学中康托尔定理

定理:对任何集合 X, 其幂集 $\mathcal{P}(X)$ 的势 (即基数) 严格大于 X 的势, 即 $|\mathcal{P}(X)| > |X|$ 。

证明:

- 设 $f: X \to \mathcal{P}(X)$ 是任意函数。我们需要证明 f 不是满射,即存在 $S \in \mathcal{P}(X)$ 使得 $S \notin \mathrm{Im}(f)$ 。
- 构造集合 $S = \{x \in X \mid x \notin f(x)\}$ 。
- 假设存在 $x \in X$ 使得 f(x) = S。则 $x \in S \iff x \notin f(x)$,矛盾。因此, $S \notin \text{Im}(f)$ 。
- 因此,不存在满射 $f: X \to \mathcal{P}(X)$,即 $|\mathcal{P}(X)| > |X|$ 。

结论: 康托尔定理表明,对于任何集合 X,其幂集 $\mathcal{P}(X)$ 的基数严格大于 X 的基数。这是集合论中的一个重要结果,对理解无限集合的大小和比较基数有着深远的影响。

抽象数学一览之群论中拉格朗日定理

定理: 设 G 是一个有限群,而 H 是 G 的一个子群。那么 |H| 整除 |G|。 **证明:**

- 定义等价关系 $x \sim y$ 当且仅当 xH = yH。这是一个等价关系,因为它是自反的、对称的和传递的。
- 由于 *G* 是有限的,所以等价类 *xH* 的个数是有限的。这些等价类构成了 *G* 的一个划分。
- 由于每个等价类的大小都是 |H|, 所以 |G| 是 |H| 的倍数。

结论: 拉格朗日定理表明,对于有限群 G 和其子群 H, |H| 整除 |G|。这是群论中的一个重要结果,对于研究群的结构和性质有着深远的影响。

2024.7.30

备注

whwh (SCUT)

我们要庆幸初等数学尚且大部分是可视化的,因为抽象数学的学习是一件非常困难的事情。但是,抽象数学的学习是我们学习数学的必经之路,因为它是数学的精髓所在。我们要学会抽象数学,就要学会用符号系统思考,这是一种非常重要的思维方式。

• 从易到难,从简单的抽象数学开始学习

whwh (SCUT) 如何学习数学 2024.7.30 13/22

- 从易到难,从简单的抽象数学开始学习
- 多做题, 多思考

- 从易到难,从简单的抽象数学开始学习
- 多做题, 多思考
- 认真推导每一个定理, 理清它与其它定理的逻辑关系

- 从易到难,从简单的抽象数学开始学习
- 多做题, 多思考
- 认真推导每一个定理, 理清它与其它定理的逻辑关系
- 每一个例题都是一个重要的练习, 要认真对待

• 听课

- 听课
- 刷题

- 听课
- 刷题
- 总结

2024.7.30

- 听课
- 刷题
- 总结
- 刷题

2024.7.30

数学中的公理化思想

备注

数学的公理化思想是数学的一种重要思维方式,它是数学的基础。数学的公理化思想是指数学家在研究数学问题时,首先要建立一个公理系统,然后在这个公理系统的基础上推导出数学定理。这种思维方式是数学家们在研究数学问题时所遵循的一种基本原则。

例题

例

证明: $\sqrt{2}$ 是无理数。

例

证明: $\sqrt{2}$ 是无理数。

证明: 假设 $\sqrt{2}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{2}=\frac{a}{b}$,其中 a 和 b 互质且 $b\neq 0$ 。

• 对等式两边平方,得到 $2 = \frac{a^2}{b^2}$ 。

16 / 22

例

证明: $\sqrt{2}$ 是无理数。

证明: 假设 $\sqrt{2}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{2}=\frac{a}{b}$,其中 a 和 b 互质且 $b\neq 0$ 。

- 对等式两边平方,得到 $2 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 2b^2$ 。

例

证明: $\sqrt{2}$ 是无理数。

证明: 假设 $\sqrt{2}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{2}=\frac{a}{b}$,其中 a 和 b 互质且 $b\neq 0$ 。

- 对等式两边平方,得到 $2 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 2b^2$ 。
- 这意味着 a^2 是偶数,因此 a 也是偶数 (因为偶数的平方才是偶数)。

例

证明: $\sqrt{2}$ 是无理数。

证明: 假设 $\sqrt{2}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{2}=\frac{a}{b}$,其中 a 和 b 互质且 $b\neq 0$ 。

- 对等式两边平方,得到 $2 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 2b^2$ 。
- 这意味着 a^2 是偶数,因此 a 也是偶数 (因为偶数的平方才是偶数)。
- 设 a = 2k, 代入得到 $(2k)^2 = 2b^2$, 即 $4k^2 = 2b^2$, 进一步得出 $b^2 = 2k^2$ 。

2024.7.30

例

证明: $\sqrt{2}$ 是无理数。

证明:假设 $\sqrt{2}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{2} = \frac{2}{5}$, 其中 a 和 b 互质且 $b \neq 0$ 。

- 对等式两边平方,得到 $2 = \frac{a^2}{10}$ 。
- 讲一步得出 $a^2 = 2b^2$ 。
- 文意味着 a² 是偶数,因此 a 也是偶数(因为偶数的平方才是偶数)。
- 设 a = 2k, 代入得到 $(2k)^2 = 2b^2$, 即 $4k^2 = 2b^2$, 讲一步得出 $b^2 = 2k^2$
- 这意味着 b² 也是偶数,因此 b 也是偶数。

whwh (SCUT) 如何学习数学 2024.7.30 16 / 22

证明: $\sqrt{2}$ 是无理数。

证明: 假设 $\sqrt{2}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{2}=\frac{a}{b}$,其中 a 和 b 互质且 $b\neq 0$ 。

- 对等式两边平方,得到 $2 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 2b^2$ 。
- 这意味着 a² 是偶数,因此 a 也是偶数 (因为偶数的平方才是偶数)。
- 设 a = 2k, 代入得到 $(2k)^2 = 2b^2$, 即 $4k^2 = 2b^2$, 进一步得出 $b^2 = 2k^2$ 。
- 这意味着 b² 也是偶数, 因此 b 也是偶数。
- 由于 a 和 b 都是偶数,这与它们互质的假设矛盾。

whwh (SCUT) 如何学习数学 2024.7.30 16/22

证明: $\sqrt{2}$ 是无理数。

证明: 假设 $\sqrt{2}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{2}=\frac{a}{b}$,其中 a 和 b 互质且 $b\neq 0$ 。

- 对等式两边平方,得到 $2 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 2b^2$ 。
- 这意味着 a² 是偶数,因此 a 也是偶数 (因为偶数的平方才是偶数)。
- 设 a = 2k, 代入得到 $(2k)^2 = 2b^2$, 即 $4k^2 = 2b^2$, 进一步得出 $b^2 = 2k^2$ 。
- 这意味着 b² 也是偶数, 因此 b 也是偶数。
- 由于 a 和 b 都是偶数,这与它们互质的假设矛盾。
- 因此,假设不成立, $\sqrt{2}$ 是无理数。

whwh (SCUT) 如何学习数学 2024.7.30 16 / 22

例

证明: $\sqrt{3}$ 是无理数。

例

证明: $\sqrt{3}$ 是无理数。

证明: 假设 $\sqrt{3}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{3} = \frac{a}{b}$,其中 a 和 b 互质且 $b \neq 0$ 。

• 对等式两边平方,得到 $3 = \frac{a^2}{b^2}$ 。

例

证明: √3 是无理数。

证明: 假设 $\sqrt{3}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{3} = \frac{a}{b}$,其中 a 和 b 互质且 $b \neq 0$ 。

- 对等式两边平方,得到 $3 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 3b^2$ 。

例

证明: $\sqrt{3}$ 是无理数。

证明: 假设 $\sqrt{3}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{3} = \frac{a}{b}$,其中 a 和 b 互质且 $b \neq 0$ 。

- 对等式两边平方,得到 $3 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 3b^2$ 。
- 这意味着 a^2 是 3 的倍数,因此 a 也是 3 的倍数(因为如果一个数的平方是 3 的倍数,那么这个数本身也必须是 3 的倍数)。

例

证明: $\sqrt{3}$ 是无理数。

证明:假设 $\sqrt{3}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{3} = \frac{a}{b}$, 其中 a 和 b 互质且 $b \neq 0$ 。

- 对等式两边平方,得到 $3 = \frac{a^2}{12}$ 。
- 讲一步得出 $a^2 = 3b^2$.
- 这意味着 a² 是 3 的倍数,因此 a 也是 3 的倍数(因为如果一个数 的平方是 3 的倍数,那么这个数本身也必须是 3 的倍数)。
- 设 a = 3k, 代入得到 $(3k)^2 = 3b^2$, 即 $9k^2 = 3b^2$, 进一步得出 $b^2 = 3k^2$

2024.7.30

例

证明: $\sqrt{3}$ 是无理数。

证明: 假设 $\sqrt{3}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{3}=\frac{a}{b}$,其中 a 和 b 互质且 $b\neq 0$ 。

- 对等式两边平方,得到 $3 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 3b^2$ 。
- 这意味着 a² 是 3 的倍数,因此 a 也是 3 的倍数(因为如果一个数的平方是 3 的倍数,那么这个数本身也必须是 3 的倍数)。
- 设 a = 3k, 代入得到 $(3k)^2 = 3b^2$, 即 $9k^2 = 3b^2$, 进一步得出 $b^2 = 3k^2$ 。
- 这意味着 b^2 也是 3 的倍数,因此 b 也是 3 的倍数。

whwh (SCUT) 如何学习数学 2024.7.30 17/22

证明: $\sqrt{3}$ 是无理数。

证明:假设 $\sqrt{3}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{3} = \frac{a}{b}$, 其中 a 和 b 互质且 $b \neq 0$ 。

- 对等式两边平方,得到 $3 = \frac{a^2}{12}$ 。
- 讲一步得出 $a^2 = 3b^2$.
- 这意味着 a² 是 3 的倍数,因此 a 也是 3 的倍数(因为如果一个数 的平方是 3 的倍数,那么这个数本身也必须是 3 的倍数)。
- 设 a = 3k, 代入得到 $(3k)^2 = 3b^2$, 即 $9k^2 = 3b^2$, 进一步得出 $b^2 = 3k^2$
- 文意味着 b² 也是 3 的倍数,因此 b 也是 3 的倍数。
- 由于 a 和 b 都是 3 的倍数,这与它们互质的假设矛盾。

whwh (SCUT) 如何学习数学 2024.7.30

证明: $\sqrt{3}$ 是无理数。

证明: 假设 $\sqrt{3}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{3} = \frac{a}{b}$,其中 a 和 b 互质且 $b \neq 0$ 。

- 对等式两边平方,得到 $3 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 3b^2$ 。
- 这意味着 a² 是 3 的倍数,因此 a 也是 3 的倍数(因为如果一个数的平方是 3 的倍数,那么这个数本身也必须是 3 的倍数)。
- 设 a = 3k, 代入得到 $(3k)^2 = 3b^2$, 即 $9k^2 = 3b^2$, 进一步得出 $b^2 = 3k^2$ 。
- 这意味着 b^2 也是 3 的倍数,因此 b 也是 3 的倍数。
- 由于 a 和 b 都是 3 的倍数,这与它们互质的假设矛盾。
- 因此,假设不成立,√3 是无理数。

例

证明: $\sqrt{5}$ 是无理数。

证明: $\sqrt{5}$ 是无理数。

证明: 假设 $\sqrt{5}$ 是有理数,则可以表示为两个互质整数 a 和 b 的比,即 $\sqrt{5}=\frac{a}{b}$,其中 a 和 b 互质且 $b\neq 0$ 。

- 对等式两边平方,得到 $5 = \frac{a^2}{b^2}$ 。
- 进一步得出 $a^2 = 5b^2$ 。
- 这意味着 a² 是 5 的倍数,因此 a 也是 5 的倍数(因为如果一个数的平方是 5 的倍数,那么这个数本身也必须是 5 的倍数)。
- 设 a = 5k, 代入得到 $(5k)^2 = 5b^2$, 即 $25k^2 = 5b^2$, 进一步得出 $b^2 = 5k^2$ 。
- 这意味着 b^2 也是 5 的倍数,因此 b 也是 5 的倍数。
- 由于 a 和 b 都是 5 的倍数,这与它们互质的假设矛盾。
- 因此,假设不成立,√5 是无理数。

例

将平面上的 $z=x^2$ 绕 z 轴旋转一周,求形成的曲面方程。

解

1. 原方程:

$$z = x^2$$

2. 旋转变换:

$$r = \sqrt{x^2 + y^2}$$

3. 替换变量:

$$z = (\sqrt{x^2 + y^2})^2$$

4. 简化方程:

$$z = x^2 + y^2$$

因此,旋转后的曲面方程为:

$$z = x^2 + y^2$$

作业

如何证明某个根号下的正整数是无理数呢?

作业

如何证明某个根号下的正整数是无理数呢?

课外扩展知识:为什么 π 是无理数 呢

