# A clique graph based merging strategy for decomposable SDPs

 $\label{eq:michael Garstka} \underline{\text{Michael Garstka}}^1 \cdot \text{Mark Cannon}^1 \cdot \text{Paul Goulart}^1$   ${}^1\text{University of Oxford, UK}$ 

(virtual) Journal Club, Control Group 4th December 2020

#### Semidefinite programming

• Given matrices  $C, A_1, \ldots, A_m \in \mathbb{S}^n$  and  $b \in \mathbb{R}^m$ , find X:

$$\begin{array}{ll} \text{minimize} & \langle C, X \rangle \\ \text{subject to} & \langle A_i, X \rangle = b_i, \ i = 1, \dots, m \\ & X \in \mathbb{S}^n_+ \end{array}$$

$$\label{eq:bounds} \begin{array}{ll} \text{maximize} & b^\top \nu \\ \text{subject to} & A^\top \nu + Y = C \\ & Y \in \mathbb{S}^n_+. \end{array}$$

#### Semidefinite programming

• Given matrices  $C, A_1, \ldots, A_m \in \mathbb{S}^n$  and  $b \in \mathbb{R}^m$ , find X:

minimize 
$$\langle C, X \rangle$$
 number  $\langle C, X \rangle$  subject to  $\langle A_i, X \rangle = b_i, \ i = 1, \dots, m$  subject to  $X \in \mathbb{S}^n_+$   $\mathcal{O}(n^3)$ 

 $n=10^4 \rightarrow \mathcal{O}(10^{12})$  operations at each step

# Semidefinite programming

Where do we find positive semidefinite matrices?

- Lyapunov functions
- Linear Matrix Inequalities / S-procedure [Martin S Andersen et al. 2014]
- Kernel matrices [Lanckriet et al. 2004]
- Covariance matrices [Bertsimas and Nino-Mora 1999]
- Graph Laplacian
- Sum-of-Squares [Lasserre 2009]
- Semidefinite relaxation of
  - cardinality constraints (sparse PCA) [d'Aspremont et al. 2004]
  - QCQPs
  - mixed-integer constraints [Goemans and Williamson 1995]





#### The MAXCUT problem

• Weighted graph G(V,E) with weights  $w_{ij} \geq 0$ , find  $S \subset V$  such that the edge weights between S and  $\bar{S} = V \setminus S$  are maximized



#### The MAXCUT problem

• Weighted graph G(V,E) with weights  $w_{ij} \geq 0$ , find  $S \subset V$  such that the edge weights between S and  $\bar{S} = V \setminus S$  are maximized



#### The MAXCUT problem

• Weighted graph G(V,E) with weights  $w_{ij} \geq 0$ , find  $S \subset V$  such that the edge weights between S and  $\bar{S} = V \setminus S$  are maximized



$$\begin{array}{ll} \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^n w_{ij}(1-y_iy_j) \\ \text{subject to} & y_i \in \{-1,1\}, \ \forall i \in V \end{array}$$

- NP-hard, part of Karp's 21 NP-complete problems [Karp 1972]
- best approximation until 1995:  $0.5p^*$

$$\begin{array}{ll} \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^n w_{ij}(1-y_iy_j) \\ \text{subject to} & y_i \in \{-1,1\}, \ \forall i \in V \end{array}$$

$$\begin{array}{lll} \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^nw_{ij}(1-y_iy_j) & \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^nw_{ij}(1-X_{ij}) \\ \text{subject to} & y_i \in \{-1,1\}, \ \forall i \in V & \text{subject to} & X_{ii} = 1, \ i = 1, \dots, n \\ & & \underbrace{X = yy}^\top X \succeq 0 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

• SDP relaxation that guarantees  $0.87856 p^*$  [Goemans and Williamson 1995]

$$\begin{array}{lll} \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^n w_{ij}(1-y_iy_j) & \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^n w_{ij}(1-X_{ij}) \\ \text{subject to} & y_i \in \{-1,1\}, \ \forall i \in V & \text{subject to} & X_{ii} = 1, \ i = 1, \dots, n \\ & & \underbrace{X = yy^\top X \succeq 0} \end{array}$$

#### **Primal SDP**

$$\begin{array}{ll} \text{maximize} & \frac{1}{4}\langle L,X\rangle \\ \text{subject to} & X_{ii}=1,\ i=1,\ldots,n \\ & X \succ 0 \end{array}$$

• SDP relaxation that guarantees  $0.87856 p^*$  [Goemans and Williamson 1995]

$$\begin{array}{lll} \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^n w_{ij}(1-y_iy_j) & \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^n w_{ij}(1-X_{ij}) \\ \text{subject to} & y_i \in \{-1,1\}, \ \forall i \in V & \text{subject to} & X_{ii} = 1, \ i = 1, \dots, n \\ & & \underbrace{X = yy}^\top X \succeq 0 \end{array}$$

#### **Primal SDP**

$$\begin{array}{ll} \text{maximize} & \frac{1}{4}\langle L,X\rangle \\ \text{subject to} & X_{ii}=1,\ i=1,\ldots,n \\ & X \succ 0 \end{array}$$

#### **Dual SDP**

$$\begin{array}{ll} \text{minimize} & \sum_i \nu_i \\ \text{subject to} & Y = \operatorname{diag}(\nu) - \frac{1}{4}L \\ & Y \succeq 0 \end{array}$$

• SDP relaxation that guarantees  $0.87856 p^*$  [Goemans and Williamson 1995]

$$\begin{array}{lll} \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^n w_{ij}(1-y_iy_j) & \text{maximize} & \frac{1}{4}\sum_{i=1}^n\sum_{j=1}^n w_{ij}(1-X_{ij}) \\ \text{subject to} & y_i \in \{-1,1\}, \ \forall i \in V & \text{subject to} & X_{ii} = 1, \ i = 1, \dots, n \\ & & \underbrace{X = yy}^\top X \succeq 0 \end{array}$$

#### **Primal SDP**

$$\begin{array}{ll} \text{maximize} & \frac{1}{4}\langle L,X\rangle \\ \text{subject to} & X_{ii}=1,\,i=1,\ldots,n \\ & X\succeq 0 \end{array}$$

#### **Dual SDP**

minimize 
$$\sum_i \nu_i$$
 subject to  $Y = \operatorname{diag}(\nu) - \frac{1}{4}L$   $Y \succeq 0$ 

#### Overview

Matrix Sparsity and Graphs

Chordal decomposition

#### Clique merging

- Clique tree-based merging strategies
- Clique graph-based merging strategy

**Benchmarks** 

Conclusion









Complete subgraph





Clique 1











Clique 3





Chordal graph





Chordal graph





Chordal graph



#### Chordal decomposition

#### **Dual SDP\***

$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}^n_+ \end{array}$$

#### Sparse matrix cones

$$\mathbb{S}^{n}(E,0) := \{ S \in \mathbb{S}^{n} \mid S_{ij} = S_{ji} = 0, \text{ if } i \neq j, (i,j) \notin E \}$$
  
 $\mathbb{S}^{n}_{+}(E,0) := \{ S \in \mathbb{S}^{n}(E,0) \mid S \succeq 0 \}$ 

#### Chordal decomposition

#### **Dual SDP\***

maximize 
$$b^{\top}y$$
 subject to  $\sum_{i=1}^{m}A_{i}y_{i}+S=C$  
$$S\in\mathbb{S}^{n}_{+}(E,0)$$

#### Sparse matrix cones

$$\mathbb{S}^{n}(E,0) := \{ S \in \mathbb{S}^{n} \mid S_{ij} = S_{ji} = 0, \text{ if } i \neq j, (i,j) \notin E \}$$

$$\mathbb{S}^{n}_{+}(E,0) := \{ S \in \mathbb{S}^{n}(E,0) \mid S \succeq 0 \}$$

#### Agler's theorem

#### Agler's theorem\*

Let G(V,E) be a chordal graph with a set of maximal cliques  $\{\mathcal{C}_1,\ldots,\mathcal{C}_p\}$ . Then  $S\in\mathbb{S}^n_+(E,0)$  if and only if there exist matrices  $S_\ell\in\mathbb{S}^{|\mathcal{C}_\ell|}_+$  for  $\ell=1,\ldots,p$  such that

$$S = \sum_{\ell=1}^{p} T_{\ell}^{\top} S_{\ell} T_{\ell}.$$

\*[Agler et al. 1988], Grone's theorem for primal form SDPs [Grone et al. 1984]

maximize 
$$b^{\top}y$$
 subject to  $\sum_{i=1}^{m}A_{i}y_{i}+S=C$   $S\in\mathbb{S}_{+}^{n}(E,0)$ 

$$S_{11}$$
 $S_{12}$ 
 0
 0
 0
  $S_{16}$ 
 $S_{21}$ 
 $S_{22}$ 
 $S_{23}$ 
 $S_{24}$ 
 0
  $S_{26}$ 

 0
  $S_{32}$ 
 $S_{33}$ 
 $S_{34}$ 
 0
 0

 0
  $S_{42}$ 
 $S_{43}$ 
 $S_{44}$ 
 $S_{45}$ 
 $S_{46}$ 

 0
 0
 0
  $S_{54}$ 
 $S_{55}$ 
 $S_{56}$ 
 $S_{61}$ 
 $S_{62}$ 
 0
  $S_{64}$ 
 $S_{65}$ 
 $S_{66}$ 

$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}_+^n(E,0) \end{array}$$

$$S_{11}$$
 $S_{12}$ 
 0
 0
  $S_{16}$ 
 $S_{21}$ 
 $S_{22}$ 
 $S_{23}$ 
 $S_{24}$ 
 0
  $S_{26}$ 

 0
  $S_{32}$ 
 $S_{33}$ 
 $S_{34}$ 
 0
 0

 0
  $S_{42}$ 
 $S_{43}$ 
 $S_{44}$ 
 $S_{45}$ 
 $S_{46}$ 

 0
 0
  $S_{64}$ 
 $S_{54}$ 
 $S_{55}$ 
 $S_{56}$ 
 $S_{61}$ 
 $S_{62}$ 
 0
  $S_{64}$ 
 $S_{65}$ 
 $S_{66}$ 



maximize 
$$b^{\top}y$$
 subject to  $\sum_{i=1}^{m}A_{i}y_{i}+S=C$   $S\in\mathbb{S}_{+}^{n}(E,0)$ 





$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}_+^n(E,0) \end{array}$$

| $S_{11}$ | $S_{12}$ | 0        | 0        | 0        | $S_{16}$ |
|----------|----------|----------|----------|----------|----------|
| $S_{21}$ | $S_{22}$ | $S_{23}$ | $S_{24}$ | 0        | $S_{26}$ |
| 0        | $S_{32}$ | $S_{33}$ | $S_{34}$ | 0        | 0        |
| 0        | $S_{42}$ | $S_{43}$ | $S_{44}$ | $S_{45}$ | $S_{46}$ |
| 0        | 0        | 0        | $S_{54}$ | $S_{55}$ | $S_{56}$ |
| $S_{61}$ | $S_{62}$ | 0        | $S_{64}$ | $S_{65}$ | $S_{66}$ |



$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}_+^n(E,0) \end{array}$$

$$S_{11}$$
 $S_{12}$ 
 0
 0
 0
  $S_{16}$ 
 $S_{21}$ 
 $S_{22}$ 
 $S_{23}$ 
 $S_{24}$ 
 0
  $S_{26}$ 

 0
  $S_{32}$ 
 $S_{33}$ 
 $S_{34}$ 
 0
 0

 0
  $S_{42}$ 
 $S_{43}$ 
 $S_{44}$ 
 $S_{45}$ 
 $S_{46}$ 

 0
 0
  $S_{54}$ 
 $S_{55}$ 
 $S_{56}$ 
 $S_{61}$ 
 $S_{62}$ 
 0
  $S_{64}$ 
 $S_{65}$ 
 $S_{66}$ 



$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}^n_+(E,0) \end{array}$$

maximize

$$b^{\top}y$$

subject to 
$$\sum_{i=1}^m A_i y_i + \sum_{\ell=1}^3 T_\ell^{\top} S_\ell T_\ell = C$$

$$S_1 \in \mathbb{S}_+^{|\mathcal{C}_1|}, S_2 \in \mathbb{S}_+^{|\mathcal{C}_2|}, S_3 \in \mathbb{S}_+^{|\mathcal{C}_3|}$$





$$\begin{array}{ll} \text{maximize} & b^\top y \\ \text{subject to} & \sum_{i=1}^m A_i y_i + S = C \\ & S \in \mathbb{S}^n_+(E,0) \end{array}$$

maximize

$$b^{\top}y$$

subject to 
$$\sum_{i=1}^m A_i y_i + \sum_{\ell=1}^3 T_\ell^\top S_\ell T_\ell = C$$

$$S_1 \in \mathbb{S}_+^{|\mathcal{C}_1|},$$







- Interior point method [Fukuda et al. 2001]
- First-order method [Sun, M. S. Andersen, and L. Vandenberghe 2014]
- ADMM-HSDE [Zheng et al. 20191

#### Clique merging

- Combine cliques by introducing new edges in the graph
- One merge operation:
  - o replaces two PSD constraints by one larger PSD constraint
  - removes equality constraints
  - $\rightarrow$  trade-off depends on the employed solver algorithm
- Obvious cases:





#### **Algorithm:** First-order solver

Factor constraint matrix; while not converged:

L...

Eigenvalue decomposition of PSD decision variables;

# Clique tree-based merging strategies



Algorithm: Clique tree-based merging

<sup>\*</sup>Available packages: SparseCoLO [Fujisawa et al. 2009], Chompack [M. Andersen and Lieven Vandenberghe

#### Clique tree-based merging strategies







Algorithm: Clique tree-based merging

Compute clique tree;

\*Available packages: SparseCoLO [Fujisawa et al. 2009], Chompack [M. Andersen and Lieven Vandenberghe





### Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first:  $C_i$ :







## Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first:  $C_i$ :

Find child node:  $C_j$ ;

**if** heuristic condition  $f(\mathcal{C}_i, \mathcal{C}_j) \geq \gamma$  holds:





### Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first:  $C_i$ :

Find child node:  $C_j$ ;

**if** heuristic condition  $f(\mathcal{C}_i, \mathcal{C}_j) \geq \gamma$  holds:





### Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first:  $C_i$ :

Find child node:  $C_j$ ;

if heuristic condition  $f(C_i, C_j) \ge \gamma$  holds:

$$C_m \leftarrow C_i \cup C_j$$





### Algorithm: Clique tree-based merging

Compute clique tree;

Traverse tree depth-first:  $C_i$ :

Find child node:  $C_j$ ;

**if** heuristic condition  $f(C_i, C_j) \ge \gamma$  holds:

$$C_m \leftarrow C_i \cup C_j$$







- Designed for interior-point solvers
- + Clique tree cheap to compute and evaluate
- Disregards distant merge candidates
- Relies on heuristic parameters



Algorithm: Clique graph-based merging



Algorithm: Clique graph-based merging

Compute reduced clique graph;





in this example:  $e(\mathcal{C}_i, \mathcal{C}_j) = \left|\mathcal{C}_i\right|^3 + \left|\mathcal{C}_j\right|^3 - \left|\mathcal{C}_i \cup \mathcal{C}_j\right|^3$ 

## Algorithm: Clique graph-based merging

Compute reduced clique graph; Compute edge weights  $w_{ij} = e(\mathcal{C}_i, \mathcal{C}_j)$ ;





in this example:  $e(\mathcal{C}_i, \mathcal{C}_j) = \left|\mathcal{C}_i\right|^3 + \left|\mathcal{C}_j\right|^3 - \left|\mathcal{C}_i \cup \mathcal{C}_j\right|^3$ 

## Algorithm: Clique graph-based merging

Compute reduced clique graph; Compute edge weights  $w_{ij} = e(C_i, C_j)$ ; while  $w_{ij} > 0$  exists:





in this example:  $e(\mathcal{C}_i, \mathcal{C}_j) = \left|\mathcal{C}_i\right|^3 + \left|\mathcal{C}_j\right|^3 - \left|\mathcal{C}_i \cup \mathcal{C}_j\right|^3$ 

### Algorithm: Clique graph-based merging

Compute reduced clique graph;

Compute edge weights  $w_{ij} = e(C_i, C_j)$ ;

while  $w_{ij} > 0$  exists:

Merge permissible  $(\mathcal{C}_i,\mathcal{C}_j)$  with max weight o  $\mathcal{C}_m$ ;





in this example:  $e(\mathcal{C}_i, \mathcal{C}_i) = |\mathcal{C}_i|^3 + |\mathcal{C}_i|^3 - |\mathcal{C}_i \cup \mathcal{C}_i|^3$ 

## Algorithm: Clique graph-based merging

Compute reduced clique graph;

Compute edge weights  $w_{ij} = e(C_i, C_j)$ ;

while  $w_{ij} > 0$  exists:

Merge permissible  $(C_i, C_j)$  with max weight  $\to C_m$ ;

Update edge weights connected to  $C_m$ ;

### **Benchmarks**

- Goal: Reduce the projection time of our first-order ADMM solver COSMO
- Problem set: Large sparse SDPs from the SDPLib collection and SuiteSparse Matrix Library
- Setup: Compare different merge strategies with our solver
  - a) No decomposition

b) No merging

c) SparseCoLO merging

- d) Parent-child merging
- e) Clique graph merging (nominal)
- f) Clique graph merging (estimated)

#### **Benchmarks**

- Goal: Reduce the projection time of our first-order ADMM solver COSMO
- Problem set: Large sparse SDPs from the SDPLib collection and SuiteSparse Matrix Library
- Setup: Compare different merge strategies with our solver
  - a) No decomposition

b) No merging

c) SparseCoLO merging

- d) Parent-child merging
- e) Clique graph merging (nominal)
- f) Clique graph merging (estimated)



# Benchmark sparsity patterns

• 500 - 21M nonzeros



## Benchmark results - projection time



### Benchmark results - solve time





### Benchmark results

Hardware: Oxford ARC-HTC 16 logical Intel Xeon E5-2560 cores, 64GB RAM

Table: Solve times for different SDP solvers.

| problem  | COSMO | Mosek | SCS    | problem  | COSMO  | Mosek   | SCS             |
|----------|-------|-------|--------|----------|--------|---------|-----------------|
| maxG11   | 1.47  | 4.45  | 131.8  | rs1184   | 224.86 | ****    | * * * *         |
| maxG32   | 6.25  | 50.84 | 840.79 | rs1555   | 66.6   | * * * * | $***^m$         |
| maxG51   | 8.09  | 9.92  | 36.56  | rs1907   | 104.61 | * * * * | $***^m$         |
| mcp500-1 | 0.24  | 1.7   | 29.28  | rs200    | 12.47  | 752.27  | * * * *         |
| mcp500-2 | 1.68  | 1.75  | 17.36  | rs228    | 12.86  | 395.24  | 982.5           |
| mcp500-3 | 4.41  | 1.68  | 8.36   | rs35     | 54.88  | 919.19  | $***^{\dagger}$ |
| mcp500-4 | 8.2   | 1.76  | 7.4    | rs365    | 62.65  | * * * * | $***^{\dagger}$ |
| qpG11    | 2.36  | 26.23 | 734.7  | rs828    | 10.84  | 825.03  | $***^{\dagger}$ |
| qpG51    | 121.6 | 96.42 | 527.55 | thetaG51 | 71.21  | 50.08   | 967.43          |
| thetaG11 | 2.32  | 8.53  | 142.53 |          |        |         |                 |

 $^{m}$  out-of-memory error,  $^{\dagger}$  30min timelimit

# Code example

What is the maximum cut through this Christmas tree?



# Code example

What is the maximum cut through this Christmas tree?



- Novel clique graph based merging strategy
- Considers many pair-wise merge candidates
- Customisable to solver algorithm and hardware used
- Reduced per-iteration time of our solver

- Novel clique graph based merging strategy
- Considers many pair-wise merge candidates
- Customisable to solver algorithm and hardware used
- Reduced per-iteration time of our solver

### Future work:

- Test with interior-point solver
- Tailor strategy for multithreading

- Novel clique graph based merging strategy
- Considers many pair-wise merge candidates
- Customisable to solver algorithm and hardware used
- Reduced per-iteration time of our solver

#### Future work:

- Test with interior-point solver
- Tailor strategy for multithreading

## Solver package available:

https://github.com/oxfordcontrol/COSMO.jl

- Novel clique graph based merging strategy
- Considers many pair-wise merge candidates
- Customisable to solver algorithm and hardware used
- Reduced per-iteration time of our solver

#### Future work:

- Test with interior-point solver
- Tailor strategy for multithreading

## Solver package available:

https://github.com/oxfordcontrol/COSMO.jl

- Michael Garstka, Mark Cannon, and Paul Goulart (2020a). "A clique graph based merging strategy for decomposable SDPs". In: 21st IFAC World Congress. Berlin, Germany
- Michael Garstka, Mark Cannon, and Paul Goulart (2020b). "COSMO: A conic operator splitting method for convex conic problems". In: arXiv. arXiv: 1901.10887 [math.OC]. URL: https://arxiv.org/abs/1901.10887

- Novel clique graph based merging strategy
- Considers many pair-wise merge candidates
- Customisable to solver algorithm and hardware used
- Reduced per-iteration time of our solver

#### Future work:

- Test with interior-point solver
- Tailor strategy for multithreading

## Solver package available:

https://github.com/oxfordcontrol/COSMO.jl

#### **Questions?**

- Michael Garstka, Mark Cannon, and Paul Goulart (2020a). "A clique graph based merging strategy for decomposable SDPs". In: 21st IFAC World Congress. Berlin, Germany
- Michael Garstka, Mark Cannon, and Paul Goulart (2020b). "COSMO: A conic operator splitting method for convex conic problems". In: arXiv. arXiv: 1901.10887 [math.0C]. URL: https://arxiv.org/abs/1901.10887