

Курс «Параллельное программирование»

Лабораторная работа №1. Параллельное вычисление суммы числового ряда

Юлдашев Артур Владимирович art@ugatu.su
Спеле Владимир Владимирович spele.vv@ugatu.su

Кафедра высокопроизводительных вычислительных технологий и систем (ВВТиС)

Цель работы

На примере задачи сложения суммы ряда научиться использовать оптимизационные ключи компиляторов в операционных системах Windows (и Linux), а также инструмент для профилирования программ Intel Advisor.

Используемые компиляторы:

- Microsoft Visual C/C++,
- Intel Compiler Classic C/C++,
- Intel Clang/LLVM DPC++/C++,
- o GNU C/C++

В состав Visual Studio включен компилятор языка C/C++ позволяющий создавать все, от простых консольных приложений, до универсальных приложений Windows, приложений Maraзинa Windows и компонентов .NET.

Ключи оптимизации:

/Od – отключение оптимизаций (параметр по умолчанию)

/O1 – максимальная оптимизация с приоритетом к уменьшению размера кода программы

/O2 – максимальная оптимизация с приоритетом к увеличению скорости работы программы

/Ox — полная оптимизация,

/**Qpar** – автораспараллеливание на доступное число ядер и автовекторизация кода (происходит при выполнении определенных условий)

Классический оптимизирующий компилятор от Intel. Входит в состав Intel OneAPI HPC Toolkit. В среде Windows возможна интеграция в Visual Studio.

В Linux используется из консоли. Сборка осуществляется командой: icc/icpc -ключ_оптимизации имя_файла.c/cpp

Ключи оптимизации:

/Od(O0 в Linux) – отключение оптимизаций

/О1 – оптимизация по размеру

/02 - максимизация скорости

/O3 – задействует оптимизации из /O2 и дополнительно более агрессивные методы оптимизации циклов и доступа к памяти

/Ox - максимальные оптимизации

/QxHost - обеспечивает генерацию максимально современных векторных инструкций, поддерживаемых платформой

/Qparallel – автораспараллеливание кода на доступное число ядер (происходит при выполнении определенных условий)

Компилятор Intel Clang/LLVM C/C++

Компилятор нового поколения на базе LLVM от Intel.

Входит в состав Intel OneAPI HPC Toolkit. В среде Windows возможна интеграция в Visual Studio.

В Linux используется из консоли. Сборка осуществляется командой: icx/icpx -ключ_оптимизации имя_файла.c/cpp

Ключи оптимизации:
/Od(O0 в Linux) – отключение оптимизаций
/O1 – оптимизация по размеру
/O2 – максимизация скорости
/O3 – задействует оптимизации из /O2 и
дополнительно более агрессивные методы
оптимизации циклов и доступа к памяти
/Ox – максимальные оптимизации
/QxHost - обеспечивает генерацию максимально
современных векторных инструкций,
поддерживаемых платформой

Компилятор GNU C/C++

GNU компилятор, входящий в состав операционной системы Linux.

Сборка программ осуществляется командой: gcc/g++ -ключи_оптимизации имя_файла.c/cpp

Ключи оптимизации:

- -00 отключение оптимизаций
- -О1 оптимизация по размеру
- -02 максимизация скорости
- -03 максимальный уровень оптимизаций

- 1. Написать последовательную версию программы вычисления суммы ряда, выбранного в соответствии со своим вариантом из задания к лабораторной работе, на языке C/C++. Предусмотреть замер времени выполнения основного вычислительного цикла, вывод на экран времени выполнения (в секундах) и вычисленной суммы.
- 2. Протестировать работоспособность программы при различных размерностях (N), проверить корректность путем сравнения с каким-либо интернет-сервисом, позволяющим вычислить сумму ряда.
- 3. Подобрать N при которых программа будет работать ~ 30 сек. Провести анализ времени ее выполнения при использовании компиляторов различных производителей и различных ключей оптимизации под операционными системами Windows (и Linux).

Оценить быстродействие в режимах сборки (Debug/Release).

Название компилятора	Время работы
Debug	
Release	

Оценить быстродействие архитектур (х86/х64)

Название компилятора	Время работы
x86	
x64	

На лучшим варианте из (Debug/Release) и (x86/x64) оценить быстродействие ключей оптимизации компилятора Microsoft C/C++.

Название компилятора	Время работы
/Od	
/01	
/02	
/Ox	

На лучшим варианте из ключей оптимизации оценить быстродействие ключа оптимизации /Qpar компилятора Microsoft C/C++.

Название компилятора	Время работы
/Qpar	

На лучшим варианте из (Debug/Release) и (x86/x64) оценить быстродействие ключей оптимизации компилятора Intel Classic C/C++.

Название компилятора	Время работы
/Od	
/01	
/02	
/03	
/Ox	

На лучшим варианте из ключей оптимизации оценить быстродействие ключей оптимизации QxHost и Qparallel компилятора Intel Classic C/C++.

Название компилятора	Время работы
/QxHost	
/Qparallel	

На лучшим варианте из (Debug/Release) и (x86/x64) оценить быстродействие ключей оптимизации компилятора Intel Clang/LLVM C/C++.

Название компилятора	Время работы
/Od	
/01	
/O2	
/O3	
/Ox	

На лучшим варианте из ключей оптимизации оценить быстродействие ключа оптимизации QxHost компилятора Intel Clang/LLVM C/C++.

Название компилятора	Время работы
/QxHost	

Оценить быстродействие ключей оптимизации компилятора GNU C/C++.

Название компилятора	Время работы
-00	
-01	
-O2	
-03	

Intel OneAPI Advisor

Поддерживаемые языки: C, C++, Fortran

Поддерживаемые операционные системы: Windows, Linux

Инструмент Intel OneAPI Advisor является помощником разработчика многопоточных приложений. Он дает советы разработчику по использованию многопоточных технологий в приложении, автоматизируя анализ исходного кода, необходимый для быстрого и корректного внедрения многопоточных технологий в приложении.

Пользуясь инструментом Intel Advisor добиться успешной векторизации кода и вставить скриншот в отчет

Создание проекта

Создание проекта

Создание проекта

Последние шаблоны проектов

Консольное приложение	C++
🗔 Пустой проект	C++
CUDA 10.2 Runtime	

Пример программы

Пример

```
#include <iostream>
#define _USE_MATH_DEFINES
#include <math.h>
#include <time.h>
using namespace std;
int main()
{
    int N = 700000000;
    double start_time = clock();
    double sum = 0.0;
    for (int i = 1; i < N; i++)
    {
        sum += pow(-1, i) / (i - log10(i));
    }
    double end_time = clock();
    cout << "time = " << (end_time - start_time) / CLK_TCK << endl;
    cout << "SUM = " << sum << endl;
    return 0;
}</pre>
```

Результат работы программы

```
time = 17.981
SUM = -0.641846
```

Пример программы

В случае знакопеременного ряда лучше разделить вычислительный цикл на 2.

```
#include <iostream>
#define USE MATH DEFINES
#include <math.h>
#include <time.h>
using namespace std;
int main()
    int N = 7000000000;
    double start time = clock();
    double sum = 0.0;
    for (int i = 1; i < N; i += 2)
        sum -= 1 / (i - log10(i));
    for (int i = 2; i < N; i += 2)
        sum += 1 / (i - log10(i));
    double end time = clock();
    cout << "time = " << (end_time - start_time) / CLK_TCK << endl;</pre>
    cout << "SUM = " << sum << endl;</pre>
    return 0;
```

Результат работы программы

Выберите наиболее производительную конфигурацию:

- 1. Режима сборки (Debug, Release)
- 2. Архитектуры (х86/х64)

Запуск программы с отладкой (F5) и без отладки (CTRL+F5)

Запуск с **F5**

time = 22.202 SUM = -0.641846 Запуск с **CTRL + F5**

time = 8.45 SUM = -0.641846

Запуск программы без отладки (**CTRL + F5**) значительно быстрее запуска программы с отладкой (**F5**).

Ключи оптимизации:

/Od – отключение оптимизаций (параметр по умолчанию)

/O1 – максимальная оптимизация с приоритетом к уменьшению размера кода программы

/O2 – максимальная оптимизация с приоритетом к увеличению скорости работы программы

 $/\mathbf{Ox}$ – полная оптимизация,

Справка о ключах оптимизации /О

/Qpar – включает автоматическую параллелизацию циклов в коде и векторизацию операций (происходит при выполнении определенных условий),

Справка по /Qpar

/Qpar-report, Qvec-report – вывод информации об автораспараллеливании и автовекторизации кода (происходит при выполнении определенных условий)

Справка по /Qpar-report Справка по /Qvec-report

При компиляции с ключами /Qpar-report:2 и /Qvec-report:2 в вывод компилятора выводится информационные сообщения о результатах автопараллелизации и автовекторизации.

```
1>--- Анализ функции: main
1>C:\Users\Vova\source\repos\labwork1\labwork1.cpp(24) : info C5002: цикл не векторизирован по следующей причине: "1301"
1>C:\Users\Vova\source\repos\labwork1\labwork1.cpp(28) : info C5002: цикл не векторизирован по следующей причине: "1301"
1>C:\Users\Vova\source\repos\labwork1\labwork1.cpp(24) : info C5012: цикл не параллелизован по следующей причине: "1001"
1>C:\Users\Vova\source\repos\labwork1\labwork1.cpp(28) : info C5012: цикл не параллелизован по следующей причине: "1001"
1>All 12 functions were compiled because no usable IPDB/IOBJ from previous compilation was found.
1>Coздание кода завершено
1>labwork1.vcxproj -> C:\Users\Vova\source\repos\labwork1\x64\Release\labwork1.exe
```

Справка по кодам сообщений /Qpar-report и /Qvec-report

Мониторинг загрузки CPU

Переход на компилятор Intel.

Ключи оптимизации:

/Od(O0 в Linux) – отключение оптимизаций

/О1 – оптимизация по размеру

/О2 – максимизация скорости

/O3 – задействует оптимизации из /O2 и дополнительно более агрессивные методы оптимизации циклов и доступа к памяти

Справка по ключам оптимизации /О

/QxHost - обеспечивает генерацию максимально современных векторных инструкций, поддерживаемых платформой

Справка по /QxHost

/Qparallel – автораспараллеливание кода на доступное число ядер (происходит при выполнении определенных условий)

Справка по /Qparallel

/Qopt-report – включает генерацию отчета об оптимизации,

Справка по /Qopt-report

/Qopt-report-phase – указывает одну или несколько стадий для генерации отчета об оптимизации

Справка по /Qopt-report-phase

/Qopt-report-file – указывает поток вывода отчета об оптимизации (файл, stdout, stderr) Справка по /Qopt-report-file

Компилятор Intel Clang/LLVM C++

Способ 1.

Компилятор Intel Clang/LLVM C++

Способ 2.

Запуск Intel Advisor

Справка по Intel Advisor

Intel Advisor

Справка по Vectorization Advisor

Индивидуальное задание

$N\!$	Ряд	№	Ряд	№	Ряд
1.	$\sum_{n=1}^{N} \frac{(-1)^n}{(3n-1)^2}$	10.	$\sum_{n=1}^{N} \frac{(-1)^n}{(3n-2)(3n+1)}$	19.	$\sum_{n=1}^{N} \frac{\left(-1\right)^{n-1}}{\sqrt{n}}$
2.	$\sum_{n=1}^{N} \frac{\sqrt[3]{n}}{(n+1)\sqrt{n}}$	11.	$\sum_{n=1}^{N} (-1)^{n-1} \frac{2n+1}{n(n+1)}$	20.	$\sum_{n=1}^{N} \frac{(-1)^n}{(2n+1)^3 - 1}$
3.	$\sum_{n=1}^{N} \frac{(-1)^n}{(n+1)^2 - 1}$	12.	$\sum_{n=1}^{N} (-1)^n \frac{n+1}{(n+1)\sqrt{n+1}-1}$	21.	$\sum_{n=1}^{N} \frac{(-1)^{n+1}}{2n - \sqrt{n}}$
4.	$\sum_{n=1}^{N} \frac{(-1)^{n-1}}{n^2}$	13.	$\sum_{n=1}^{N} \frac{\sin(2n+1)}{(n+1)^{2}(n+2)^{2}}$	22.	$\sum_{n=1}^{N} \frac{(-1)^{n-1}}{\ln(n+1)}$
5.	$\sum_{n=1}^{N} (-1)^n \frac{\ln n}{n}$	14.	$\sum_{n=1}^{N} \left(-1\right)^{n-1} \operatorname{tg}\left(\frac{1}{n\sqrt{n}}\right)$		$\sum_{n=2}^{N} \frac{\left(-1\right)^n}{n\sqrt[3]{n} - \sqrt{n}}$
6.	$\sum_{n=1}^{N} \frac{\sin(1/n^2)}{(5n-1)^2}$	15.	$\sum_{n=1}^{N} \frac{\sin(5n+1)}{(6n+4)^2 (7n-1)^3}$	24.	$\sum_{n=1}^{N} \frac{\sin(2n-1)}{(2n-1)^2}$
7.	$\sum_{n=1}^{N} \frac{(-1)^{n-1}}{(2n-1)^2}$	16.	$\sum_{n=1}^{N} (-1)^n \ln \left(\frac{n^2 + 1}{n^2} \right)$	25.	$\sum_{n=1}^{N} \frac{\left(-1\right)^n}{n - \ln n}$
8.	$\sum_{n=2}^{N} \frac{1}{n \ln^2 n}$	17.	$\sum_{n=1}^{N} \frac{(-1)^n}{n(n+1)(n+2)}$		
9.	$\sum_{n=2}^{N} \frac{(-1)^{n-1}}{n^2 - n}$	18.	$\sum_{n=1}^{N} \left(1 - \cos\left(\frac{\pi}{n}\right) \right)$		

Требования к оформлению отчета

- В отчет по проделанной работе включить:
 - 1) ОПИСАНИЕ ИСПОЛЬЗУЕМЫХ КОМПИЛЯТОРОВ;
 - 2) скриншоты проверки корректности вычислений при различных размерностях;
 - заполненные таблицы;
 - 4) скриншот успешной векторизации кода в Advisor,
 - 5) ВЫВОД.