Recurrent Neural Network (RNN)

Example Application

Slot Filling

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Taipei 🔳

1-of-N encoding

How to represent each word as a vector?

```
1-of-N Encodinglexicon = {apple, bag, cat, dog, elephant}The vector is lexicon size.apple = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}Each dimension correspondsbag = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix}to a word in the lexiconcat = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}The dimension for the worddog = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}is 1, and others are 0elephant = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix}
```

Beyond 1-of-N encoding

w = "Sauron"

Dimension for "Other"

apple 0 0 0 cat 0 0 dog 0 0 elephant 0 i 1

w = "Gandalf"

Word hashing

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

Example Application time of dest departure \mathcal{Y}_1 \mathcal{Y}_2 arrive 2nd Taipei November on other dest other time time Problem? 2nd **November** leave Taipei on place of departure Neural network Taipei X_2

needs memory!

Recurrent Neural Network (RNN)

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots$$

Example output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots \dots$$

Example

output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix}$

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots$$

Example

output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix} \begin{bmatrix} 32 \\ 32 \end{bmatrix}$

RNN

The same network is used again and again.

The values stored in the memory is different.

Of course it can be deep ...

Bidirectional RNN

Long Short-term Memory (LSTM)

LSTM - Example

When $x_2 = 1$, add the numbers of x_1 into the memory When $x_2 = -1$, reset the memory When $x_3 = 1$, output the number in the memory.

Original Network:

➤ Simply replace the neurons with LSTM

LSTM

LSTM

LSTM

Extension: "peephole"

https://img.komicolle.org/2015-09-20/src/14426967627131.gif

Learning Target

Learning

Unfortunately

RNN-based network is not always easy to learn
 Real experiments on Language modeling

The error surface is rough.

Why?

$$w=1$$
 \Rightarrow $y^{1000}=1$ Large $\partial L/\partial w$ Learning rate?

 $w=0.99$ \Rightarrow $y^{1000}\approx 0$ small $\partial L/\partial w$ Large Learning rate?

 $w=0.01$ \Rightarrow $y^{1000}\approx 0$ \Rightarrow $\partial L/\partial w$ Learning rate?

Helpful Techniques

Long Short-term Memory (LSTM)

Can deal with gradient vanishing (not gradient explode)

Memory and input are added

➤ The influence never disappears unless forget gate is closed

No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM

Helpful Techniques

Clockwise RNN

[Jan Koutnik, JMLR'14]

Structurally Constrained Recurrent Network (SCRN)

[Tomas Mikolov, ICLR'15]

Vanilla RNN Initialized with Identity matrix + ReLU activation function [Quoc V. Le, arXiv'15]

Outperform or be comparable with LSTM in 4 different tasks