Breast cancer wisconsin (diagnostic) dataset

Data Set Characteristics:

Number of Instances: 569

Number of Attributes: 30 numeric, predictive attributes and the class

Attribute Information:

- radius (mean of distances from center to points on the perimeter)
- texture (standard deviation of gray-scale values)
- perimeter
- area
- smoothness (local variation in radius lengths)
- compactness (perimeter^2 / area 1.0)
- concavity (severity of concave portions of the contour)
- concave points (number of concave portions of the contour)
- symmetry
- fractal dimension ("coastline approximation" 1)

The mean, standard error, and "worst" or largest (mean of the three worst/largest values) of these features were computed for each image, resulting in 30 features. For instance, field 0 is Mean Radius, field 10 is Radius SE, field 20 is Worst Radius.

- · class:
- WDBC-Malignant
- WDBC-Benign

Summary Statistics:

6.981	28.11
9.71	39.28
43.79	188.5
143.5	2501.0
0.053	0.163
0.019	0.345
0.0	0.427
0.0	0.201
0.106	0.304
0.05	0.097
0.112	2.873
0.36	4.885
0.757	21.98
6.802	542.2
0.002	0.031
0.002	0.135
0.0	0.396
0.0	0.053
0.008	0.079
0.001	0.03
7.93	36.04
12.02	49.54
50.41	251.2
185.2	4254.0
0.071	0.223
0.027	1.058
0.0	1.252
0.0	0.291
0.156	0.664
0.150	0.001
	9.71 43.79 143.5 0.053 0.019 0.0 0.106 0.05 0.112 0.36 0.757 6.802 0.002 0.002 0.00 0.008 0.001 7.93 12.02 50.41 185.2 0.071 0.027 0.0

Missing Attribute Values:

None

Class Distribution: 212 - Malignant, 357 - Benign

Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian

Donor: Nick Street

Date: November, 1995

This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes.

The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/

References

- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis.
 IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.
- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.
- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171.