Svend Ole Hansen ApS

SCT. JØRGENS ALLÉ 7 · DK-1615 KØBENHAVN V · DENMARK TEL: (+45) 33 25 38 38 · FAX: (+45) 33 25 38 39 · WWW.SOHANSEN.DK

CERTIFICATE FOR CALIBRATION OF CUP ANEMOMETER

Certificate number: 11.02.0739

Date of issue: February 2, 2011

Type: Thies 4.3351.00.000

Serial number: 1209527

Manufacturer: ADOLF THIES GmbH & Co.KG, Hauptstrasse 76, 37083 Göttingen, Germany

Client: Grupo Telsat, P. I Valdeconsejo, c/Pena Oroel 10C 3D, Naves 4 y 5, 50410 Cuarte de Huerva, Zar

Anemometer received: January 20, 2011

Anemometer calibrated: February 2, 2011

Calibrated by: mr

Calibration procedure: IEC 61400-12-1, MEASNET

Quenl Ole Haran

Certificate prepared by: jsa

Approved by: Calibration engineer, soh

Calibration equation obtained: $v \text{ [m/s]} = 0.04666 \cdot \text{f [Hz]} + 0.20037$

Standard uncertainty, slope: 0.00109

Standard uncertainty, offset: 0.05851

Covariance: -0.0000006 (m/s)2/Hz

Coefficient of correlation: $\rho = 0.999993$

Absolute maximum deviation: 0.027 m/s at 13.249 m/s

Barometric pressure: 1015.8 hPa

Relative humidity: 17.9%

Succession	Velocity pressure, q. [Pa]	Temperature in		Wind	Frequency,	Deviation,	Uncertainty
		wind tunnel [°C]	control room [°C]	velocity, v. [m/s]	f. [Hz]	d. [m/s]	$u_c (k=2)$ [m/s]
4	15.29	29.2	23.9	5.118	105.7422	-0.016	0.032
6	22.10	29.1	23.8	6.152	127.3503	0.010	0.038
8	30.15	29.0	23.8	7.185	149.6583	0.001	0.043
10	39.14	28.9	23.8	8.185	171.0724	0.002	0.049
12	49.26	28.8	23.8	9.181	192.2612	0.009	0.054
13-last	61.11	28.8	23.8	10.225	214.4512	0.018	0.060
11	73.22	28.9	23.8	11.194	235.4990	0.005	0.066
9	87.78	29.0	23.8	12.259	258.5140	-0.004	0.072
7	102.49	29.1	23.8	13.249	279.0651	0.027	0.078
5	118.83	29.2	23.9	14.268	301.9201	-0.020	0.084
3	137.18	29.3	23.9	15.334	324.3122	0.001	0.090
1-first	155.61	29.5	23.9	16.338	346.2478	-0.019	0.096

Page 1 of 2

EQUIPMENT USED

Serial number	Description		
- 11/2 · · · · · · · · · · · · · · · · · · ·	Boundary layer wind tunnel.		
1256	Control cup anemometer.		
Ę	Mounting tube, $D = 35 \text{ mm}$		
t1	PT100 temperature sensor, wind tunnel.		
t2	PT100 temperature sensor, control room.		
9904031	PPC500 Furness pressure manometer		
X4650038	HMW71U Humidity transmitter		
X4350042	PTB100AVaisala analogue barometer.		
P11	Pitot tube		
001551	Computer Board. 16 bit A/D data acquisition board.		
7.	PC dedicated to data acquisition.		

Traceable calibrations of the equipment are carried out by external accredited institutions: Furness (PPC500) and Saab Metech. A real-time analysis module within the data acquisition software detects pulse frequency.

Photo of a cup anemometer in the wind tunnel. The shown anemometer is of the same type as the calibrated one.

UNCERTAINTIES

The documented uncertainty is the total combined uncertainty at 95% confidence level (k=2) in accordance with EA-4/02. The uncertainty at 10 m/s comply with the requirements in the MEASNET procedure that prescribes an absolute uncertainty less than 0.1 m/s at a mean wind velocity of 10 m/s, that is 1%. See Document 97.00.004 "MEASNET - Test report on the calibration campaign" for further details.

Certificate number: 11.02.0739