

Licence 3^e année (É.N.S. Cachan)

ALGÈBRE

A. CHAMBERT-LOIR

Examen du jeudi 17 novembre 2015 (3 heures)

L'examen se compose de trois exercices à résoudre sans document, ni téléphone, ni calculatrice, ni aide des voisins.

EXERCICE 1

Soit *n* un entier ≥ 1 .

- 1 Énoncer et démontrer le théorème qui décrit les classes de conjugaison du groupe symétrique \mathfrak{S}_n .
- **2** Quels sont les éléments d'ordre 2 de \mathfrak{S}_n ? Combien de classes de conjugaison forment-ils? Quels sont leurs cardinaux?
- 3 Soit *σ* un élément d'ordre 2 de \mathfrak{A}_n . Démontrer qu'il existe $\tau \in \mathfrak{S}_n$ tel que $\sigma = \tau^2$. Quel est son ordre?

EXERCICE 2

Soit p un nombre premier impair; on s'intéresse au groupe $G = (\mathbf{Z}/p^2\mathbf{Z})^{\times}$.

- 1 Calculer Card(G).
- **2** Quels sont les éléments d'ordre *p* de *G*?
- Soit $a \in \mathbb{Z}$ un élément dont la classe modulo p est un élément d'ordre p-1 dans $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Démontrer que la classe de a^p modulo p^2 est un élément d'ordre p-1 dans G.
- 4 Démontrer que le groupe *G* est cyclique.
- 5 On suppose que p = 5. Trouver un générateur de G.
- **6** Démontrer à l'aide du théorème de structure des groupes abéliens finis que le groupe *G* est cyclique.
- 7 Généraliser aux groupes $(\mathbf{Z}/p^n\mathbf{Z})^{\times}$, pour $n \ge 3$ (p étant toujours un nombre premier impair).

EXERCICE 3

Soit G un groupe fini, soit p un nombre premier. Soit Σ l'ensemble des p-sous groupes de Sylow de G et soit σ_p son cardinal.

- 1 Énoncer les théorèmes de Sylow concernant l'entier σ_p .
- **2** Vérifier rapidement que l'on définit une opération de *G* dans Σ en posant $g \cdot P = gPg^{-1}$ pour $g \in S$ et $P \in \Sigma$. Vérifier que le fixateur d'un élément P de Σ est son normalisateur $N_G(P)$.
- 3 Soit $P,Q \in \Sigma$. Démontrer que Q est l'unique p-sous-groupe de Sylow de $N_G(Q)$. En déduire que $P \cap N_G(Q) = P \cap Q$.
- 4 On suppose que $\sigma_p \neq 1 \pmod{p^2}$. Démontrer que pour tout $Q \in \Sigma$, il existe $P \in \Sigma$ tel que $(P : P \cap Q) = (Q : P \cap Q) = p$.
- Soit P et Q des éléments de Σ tels que $(P:P\cap Q)=(Q:P\cap Q)=p$. Prouver que $P\cap Q$ est distingué dans P et dans Q. Démontrer que $P\cap Q$ est un sous-groupe distingué de G.
- 6 Démontrer qu'un groupe de cardinal 1053 n'est pas simple.