PRIMITIVES - CORRECTION

Exercice n°1

- 1) f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = 3 \times 3x^2 9 \times 1 = 9x^2 9$.
- 2) Si on note g la fonction définie par $g(x) = 9x^2 9$, alors grâce à la question 1), on dispose d'une primitive de g en la personne de la fonction f. Un autre primitive de g serait la fonction h définie sur \mathbb{R} par h(x) = f(x) + k, où k est une constante réelle quelconque. Ainsi $f(x) = 3x^3 9x + 1 + 50 = 3x^3 9x + 51$ est une autre primitive de g
- 3) Puisque $g(x) = 9x^2 9 = 9(x^2 1) = 9(x 1)(x + 1)$, on peut établir le signe de g(x), donc le sens de variation de f: Pour $x \in]-\infty; -1[\cup]1; +\infty[$, g(x) > 0 et pour $x \in]-1; 1[$, g(x) < 0, donc f est strictement croissante sur $]-\infty; -1[$, strictement décroissante sur]-1; 1[, et strictement croissante sur $]1; +\infty[$.

Exercice n°2

- 1) La fonction f définie par f(x) = 2x + 1 est continue sur \mathbb{R} en tant que fonction affine, donc il existe une primitive définie sur \mathbb{R} par $F(x) = 2 \times \frac{x^2}{2} + 1 \times x = x^2 + x$
- 2) La fonction f définie par $f(x) = 10x^4 + 6x^3 1$ est continue sur \mathbb{R} en tant que fonction polynôme, donc il existe une primitive définie sur \mathbb{R} par $F(x) = 10 \times \frac{x^5}{5} + 6 \times \frac{x^4}{4} 1 \times x = 2x^5 + \frac{3x^4}{2} x$ 3) La fonction f définie par $f(x) = (x-1)(x+3) = x^2 + 3x x 3 = x^2 + 2x 3$ est continue sur \mathbb{R} en tant que
- 3) La fonction f définie par $f(x) = (x-1)(x+3) = x^2 + 3x x 3 = x^2 + 2x 3$ est continue sur \mathbb{R} en tant fonction polynôme, donc il existe une primitive définie sur \mathbb{R} par $F(x) = \frac{x^3}{3} + 2 \times \frac{x^2}{2} 3 \times x = \frac{x^3}{3} + x^2 3x$
- 4) La fonction f définie par $f(x) = \frac{1}{x^2} x^2$ est continue sur $]0; +\infty[$ en tant que somme de fonctions qui le sont, donc il existe une primitive définie sur $]0; +\infty[$ par $F(x) = -\frac{1}{x} \frac{x^3}{3}]$
- 5) La fonction f définie par $f(x) = \frac{-4}{3x^5} = -\frac{4}{3}x^{-5}$ est continue sur $]0; +\infty[$ en tant que somme de fonctions qui le sont, donc il existe une primitive définie sur $]0; +\infty[$ par $F(x) = -\frac{4}{3} \times \frac{x^{-5+1}}{-5+1} = -\frac{4}{3} \times \frac{x^{-5+1}}{-4} = \frac{x^{-4}}{3} = \frac{1}{3x^4}$
- 6) La fonction f définie par $f(x) = x + \frac{1}{\sqrt{x}}$ est continue sur $]0; +\infty[$ en tant que somme de fonctions qui le sont, donc il existe une primitive définie sur $]0; +\infty[$ par $F(x) = \frac{x^2}{2} + 2\sqrt{x}$
- 7) La fonction f définie par $f(x) = \sin x 2\cos x$ est continue sur \mathbb{R} en tant que somme de fonctions qui le sont, donc il existe une primitive définie sur \mathbb{R} par $F(x) = -\cos x 2\sin x$

Exercice n°3

Fest continue sur]0;+ ∞ [en tant que somme de fonctions qui le sont, donc admet des primitives sur]0;+ ∞ [définies par $F(x) = \frac{3x^2}{2} - x - \frac{2}{x} + k, k \in \mathbb{R}$.

On cherche
$$k$$
 pour que $F(1) = 0 \Leftrightarrow \frac{3}{2} - 1 - \frac{2}{1} + k = 0 \Leftrightarrow k = \frac{3}{2}$

La primitive F de f sur $]0; +\infty[$ qui s'annule pour x=1 est donc $F(x) = \frac{3x^2}{2} - x - \frac{2}{x} + \frac{3}{2}$

1) f est continue sur \mathbb{R} en tant que fonction polynôme donc admet des primitives définies sur $\mathbb R$ $F(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + k, k \in \mathbb{R} \text{ On cherche } k \text{ pour que } F(1) = 0 \Leftrightarrow 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + k = 0 \Leftrightarrow \frac{7}{12} + k = 0$ $\Leftrightarrow k = -\frac{7}{12} \text{ La primitive } F \text{ de } f \text{ sur } \mathbb{R} \text{ qui vérifie } F(1) = 0 \text{ est donc } F(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} - \frac{7}{12}$

2) f est continue sur $]0;+\infty[$ en tant que somme de fonctions qui le sont, donc admet des primitives définies sur $]0;+\infty[$

par
$$F(x) = \frac{x^2}{2} - \frac{1}{x} - 2\sqrt{x} + k, k \in \mathbb{R}$$
. On cherche k pour que $F(1) = 1 \Leftrightarrow \frac{1}{2} - \frac{1}{1} - 2\sqrt{1} + k = 0 \Leftrightarrow -\frac{5}{2} + k = 0$

$$\Leftrightarrow k = \frac{5}{2}$$
. La primitive F de f sur $]0; +\infty[$ qui vérifie $F(1)=1$ est donc
$$F(x) = \frac{x^2}{2} - \frac{1}{x} - 2\sqrt{x} + \frac{5}{2}$$

Exercice n°5

- 1) $f(x) = 3(3x+1)^4$. f est définie et continue sur \mathbb{R} en tant que produit de fonctions qui le sont, et $f(x) = u'(x)(u(x))^4$
- où $u(x) = 3x + 1 \Rightarrow u'(x) = 3$. Ainsi une primitive sur \mathbb{R} de f est définie par $\left| F(x) = \frac{\left(u(x) \right)^5}{5} = \frac{\left(3x + 1 \right)^5}{5} \right|$
- 2) $f(x) = 16(4x-1)^3$. f est définie sur \mathbb{R} en tant que produit de fonctions qui le sont, et pour tout $x \in \mathbb{R}$, $f(x) = 4 \times 4(4x-1)^3$, donc de la forme $f(x) = 4u'(x)(u(x))^3$, où $u(x) = 4x-1 \Rightarrow u'(x) = 4$. Ainsi une primitive sur
- \mathbb{R} de f est définie par $F(x) = A \times \frac{(u(x))^4}{A} = (4x-1)^4$
- 3) $f(x) = (2x+7)^6$. f est définie et continue sur \mathbb{R} en tant que puissance d'une fonction qui l'est, et pour tout $x \in \mathbb{R}$, $f(x) = \frac{1}{2} \times 2 \times (2x+7)^6$, donc de la forme $f(x) = \frac{1}{2}u'(x)(u(x))^6$, où $u(x) = 2x+7 \Rightarrow u'(x) = 2$. Ainsi une primitive sur \mathbb{R} de f est définie par $F(x) = \frac{1}{2} \times \frac{(u(x))^7}{7} = \frac{(2x+7)^7}{14}$
- 4) $f(x) = (6x-2)(3x^2-2x+3)^5$. f est définie et continue sur \mathbb{R} en tant que produit de fonctions qui le sont, et de la forme $f(x) = u'(x) (u(x))^5$, où $u(x) = 3x^2 - 2x + 3 \Rightarrow u'(x) = 6x - 2$. Ainsi une primitive sur \mathbb{R} de f est définie par

$$F(x) = \frac{(u(x))^6}{6} = \frac{(3x^2 - 2x + 3)^6}{6}$$

5) $f(x) = \frac{1}{x^2} \left(1 + \frac{1}{x} \right)^4$. f est définie sur $]-\infty; 0[\cup]0; +\infty[$ et continue sur chacun des intervalles $]-\infty; 0[$ et $]0; +\infty[$ en

tant que produit et puissance de fonctions qui le sont, et pour tout $x \in \left]0; +\infty\right[$, $f(x) = -\left(-\frac{1}{x^2}\right) \times \left(1 + \frac{1}{x}\right)^4$, donc de la

forme
$$f(x) = -u'(x) \times (u(x))^4$$
, donc $F(x) = -\frac{(u(x))^5}{5} = -\frac{1}{5} (1 + \frac{1}{x})^5$

6) $f(x) = \sin x \cos x$. f est définie et continue sur \mathbb{R} en tant que produit de fonctions qui le sont, et pour tout $x \in \mathbb{R}$, $f(x) = \cos x \sin x$, donc de la forme f(x) = u'(x)u(x), où $u(x) = \sin x \Rightarrow u'(x) = \cos x$. Ainsi une primitive sur \mathbb{R}

de
$$f$$
 est définie par
$$F(x) = \frac{(u(x))^2}{2} = \frac{(\sin x)^2}{2}$$

1) $f(x) = \frac{4}{(1+4x)^2}$ f est définie et continue sur $\left] -\frac{1}{4}; +\infty \right[$ en tant que quotient de fonctions qui le sont, le

dénominateur ne s'annulant pas, et pour tout $x \in \left] -\frac{1}{4}; +\infty \right[$, f est de la forme $f(x) = \frac{u'(x)}{\left(u(x)\right)^2}$, donc f admet une

primitive sur
$$\left] -\frac{1}{4}; +\infty \right[\text{ définie par } F(x) = -\frac{1}{u(x)} = -\frac{1}{1+4x} \right]$$

2) $f(x) = \frac{6}{(2x+1)^2}$ f est définie et continue sur $-\frac{1}{2}$; + ∞ en tant que quotient de fonctions qui le sont, le

dénominateur ne s'annulant pas, et pour tout $x \in \left] -\frac{1}{2}; +\infty \right[$, $f(x) = \frac{3 \times 2}{\left(2x+1\right)^2}$ est de la forme $f(x) = \frac{3 \times u'(x)}{\left(u(x)\right)^2}$, donc

f admet une primitive sur $\left] -\frac{1}{2}; +\infty \right[$ définie par $F(x) = -\frac{3}{u(x)} = -\frac{3}{2x+1}$

3) $f(x) = \frac{1}{(4x+3)^2}$ f est définie et continue sur $-\frac{3}{4}$; + ∞ en tant que quotient de fonctions qui le sont, le

dénominateur ne s'annulant pas, et pour tout $x \in \left] -\frac{3}{4}; +\infty \right[$, $f(x) = \frac{\frac{1}{4} \times 4}{\left(4x+3\right)^2}$ est de la forme $f(x) = \frac{1}{4} \frac{u'(x)}{\left(u(x)\right)^2}$,

donc f admet une primitive sur $\left] -\frac{3}{4}; +\infty \right[$ définie par $F(x) = -\frac{1}{4} \frac{1}{u(x)} = -\frac{1}{4(4x+3)}$

4) $f(x) = \frac{-1}{(2-x)^2}$ f est définie et continue sur]2; + ∞ [en tant que quotient de fonctions qui le sont, le dénominateur ne

s'annulant pas, et pour tout $x \in]2; +\infty[$, $f(x) = \frac{u'(x)}{(u(x))^2}$ ou $u(x) = 2 - x \Rightarrow u'(x) = -1$ donc f admet une primitive

sur]2; +
$$\infty$$
[définie par $F(x) = -\frac{1}{u(x)} = -\frac{1}{2-x}$

5) $f(x) = \frac{2}{(4-3x)^2} f$ est définie et continue sur $\frac{1}{3}$; + ∞ en tant que quotient de fonctions qui le sont, le dénominateur

ne s'annulant pas, et pour tout $x \in \left[\frac{4}{3}; +\infty \right]$, $f(x) = \frac{\left(-\frac{2}{3}\right) \times \left(-3\right)}{\left(4-3x\right)^2}$ est de la forme $f(x) = -\frac{2}{3} \frac{u'(x)}{\left(u(x)\right)^2}$, donc f admet

une primitive sur $\left[\frac{4}{3}; +\infty \right]$ définie par $F(x) = \frac{2}{3} \frac{1}{u(x)} = \frac{2}{3(4-3x)}$

6) $f(x) = \frac{2x+1}{(x^2+x+1)^2}$ f est définie et continue sur \mathbb{R} en tant que quotient de fonctions qui le sont, le dénominateur ne

s'annulant pas (le discriminant du trinôme $x^2 + x + 1$ est strictement négatif), et pour tout $x \in \mathbb{R}$, f est de la forme $f(x) = \frac{u'(x)}{\left(u(x)\right)^2}$, où $u(x) = x^2 + x + 1 \Rightarrow u'(x) = 2x + 1$ donc f admet une primitive sur \mathbb{R} définie par

$$F(x) = -\frac{1}{u(x)} = -\frac{1}{x^2 + x + 1}$$

7) $f(x) = \frac{4x-10}{\left(x^2-5x+6\right)^2}$ f est définie et continue sur $\mathbb{R}\setminus\{2,3\}$ en tant que quotient de fonctions qui le sont, le

dénominateur ne s'annulant pas, et pour tout $x \in \mathbb{R} \setminus \{2;3\} =]-\infty; 2[\cup]2; 3[\cup]3; +\infty[, f(x) = \frac{2(2x-5)}{(x^2-5x+6)^2}$ donc de

la forme $f(x) = \frac{2u'(x)}{(u(x))^2}$, où $u(x) = x^2 - 5x + 6 \Rightarrow u'(x) = 2x - 5$ donc f admet une primitive sur $]3; +\infty[$ (ou

n'importe lequel des trois intervalles de son ensemble de définition), définie par $F(x) = -\frac{2}{u(x)} = -\frac{2}{x^2 - 5x + 6}$

8) $f(x) = \frac{\cos x}{\sin^2 x}$ f est définie et continue sur $\mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$ en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas, et pour x appartenant à l'un des intervalles $]k\pi;(k+1)\pi[$, f étant de la forme $f(x) = \frac{u'(x)}{(u(x))^2}$, où $u(x) = \sin x \Rightarrow u'(x) = \cos x$, elle admet une primitive sur chaque intervalle $]k\pi;(k+1)\pi[$

définie par $F(x) = -\frac{1}{u(x)} = -\frac{1}{\sin x}$

9) $f(x) = \frac{\sin x}{\cos^2 x}$ f est définie et continue sur $\mathbb{R} \setminus \left\{ k \frac{\pi}{2}, k \in \mathbb{Z} \right\}$ en tant que quotient de fonctions qui le sont, le

dénominateur ne s'annulant pas, et pour x appartenant à l'un des intervalles $\left[k \frac{\pi}{2}; (k+1) \frac{\pi}{2}\right]$, f étant de la forme

 $f(x) = \frac{-u'(x)}{\left(u(x)\right)^2}, \text{ où } u(x) = \cos x \Rightarrow u'(x) = -\sin x, \text{ elle admet une primitive sur chaque intervalle } \left[k\frac{\pi}{2}; (k+1)\frac{\pi}{2}\right]$

définie par $F(x) = \frac{1}{u(x)} = \frac{1}{\cos x}$

Exercice n°7

1) Pour tout $x \ne -1$, $\frac{a}{(x+1)^2} + \frac{b}{(x+1)^3} = \frac{a(x+1) + b}{(x+1)^3} = \frac{ax + a + b}{(x+1)^3}$. Ainsi $\frac{a}{(x+1)^2} + \frac{b}{(x+1)^3} = f(x)$ si et seulement

si pour tout
$$x \ne -1$$
, $ax + a + b = 3x + 4 \Leftrightarrow \begin{cases} a = 3 \\ a + b = 4 \Leftrightarrow b = 1 \end{cases}$ Ainsi, pour tout $x \ne -1$,
$$\boxed{f(x) = \frac{3}{(x+1)^2} + \frac{1}{(x+1)^3}}$$

2) f est continue sur l'intervalle $]-1;+\infty[$ en tant que somme de deux fonctions qui le sont, donc elle admet des primitives

$$F \text{ sur }]-1;+\infty[$$
. Puisque la fonction $x \to \frac{3}{(x+1)^2}$ est de la forme $x \to \frac{3u'(x)}{\left(u(x)\right)^2}$, où $u(x) = x+1 \Rightarrow u'(x) = 1$, une de

ses primitives sur $]-1;+\infty[$ est la fonction $x \to -\frac{3}{u(x)} = -\frac{3}{x+1}$. Puisque la fonction $x \to \frac{1}{(x+1)^3} = (x+1)^{-3}$ est de la

forme $x \to u'(x)(u(x))^{-3}$, où $u(x) = x + 1 \Rightarrow u'(x) = 1$, une de ses primitives sur $]-1;+\infty[$ est la fonction

$$x \to \frac{u(x)^{-3+1}}{-3+1} = -\frac{1}{2}u(x)^{-2} = -\frac{1}{2u(x)^2} = -\frac{1}{2(x+1)^2}$$
. On déduit donc qu'une primitive de f sur $]-1;+\infty[$ est la

fonction F définie sur]-1; +\infty[par $F(x) = -\frac{3}{x+1} - \frac{1}{2(x+1)^2}$

1) $f(x) = \frac{3}{\sqrt{3x+2}} f$ est définie et continue sur $\left] -\frac{2}{3}; +\infty \right[$ en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas, et pour $x \in \left] -\frac{2}{3}; +\infty \right[$, f étant de la forme $f(x) = \frac{u'(x)}{\sqrt{u(x)}}$, où $u(x) = 3x+2 \Rightarrow u'(x) = 3$, elle admet une primitive sur $\left[-\frac{2}{3}; +\infty \right]$ définie par $\left[F(x) = 2\sqrt{u(x)} = 2\sqrt{3x+2} \right]$

2) $f(x) = \frac{1}{\sqrt{2-5x}} f$ est définie et continue sur $\left] -\infty; \frac{2}{5} \right[$ en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas, et pour $x \in \left] -\infty; \frac{2}{5} \right[$, $f(x) = -\frac{1}{5} \times \frac{-5}{\sqrt{2-5x}}$. f étant de la forme $f(x) = -\frac{1}{5} \frac{u'(x)}{\sqrt{u(x)}}$, où

 $u(x) = 2 - 5x \Rightarrow u'(x) = -5$, elle admet une primitive sur $\left] -\infty; \frac{2}{5} \right[$ définie par $\left[F(x) = -\frac{1}{5} \times 2\sqrt{u(x)} = -\frac{2}{5}\sqrt{2 - 5x} \right]$

3) $f(x) = \frac{1}{\sqrt{2x-3}} f$ est définie et continue sur $\frac{3}{2}$; + ∞ en tant que quotient de fonctions qui le sont, le dénominateur

ne s'annulant pas, et pour $x \in \left] \frac{3}{2}; +\infty \right[$, $f(x) = \frac{1}{2} \frac{2}{\sqrt{2x-3}}$. f étant de la forme $f(x) = \frac{1}{2} \frac{u'(x)}{\sqrt{u(x)}}$, où

 $u(x) = 2x - 3 \Rightarrow u'(x) = 2$, elle admet une primitive sur $\frac{3}{2}$; $+\infty$ définie par $F(x) = \frac{1}{2} \times 2\sqrt{u(x)} = \sqrt{2x - 3}$

4) $f(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$ f est définie et continue sur \mathbb{R} en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas (le discriminant du trinôme x^2+x+1 est strictement négatif), et pour $x \in \mathbb{R}$, f étant de la forme $f(x) = \frac{u'(x)}{\sqrt{u(x)}}$, où $u(x) = x^2+x+1 \Rightarrow u'(x) = 2x+1$, elle admet une primitive sur \mathbb{R} définie par

$$F(x) = 2\sqrt{u(x)} = 2\sqrt{x^2 + x + 1}$$

5) $f(x) = \frac{x}{\sqrt{x^2 - 1}}$ f est définie et continue sur chacune des intervalles $]-\infty;-1[$ et $]1;+\infty[$ en tant que quotient de

fonctions qui le sont, le dénominateur ne s'annulant pas, et pour $x \in]-\infty; -1[\cup]1; +\infty[$, $f(x) = \frac{1}{2} \frac{2x}{\sqrt{x^2 - 1}}$. f étant de la

forme $f(x) = \frac{1}{2} \frac{u'(x)}{\sqrt{u(x)}}$, où $u(x) = x^2 - 1 \Rightarrow u'(x) = 2x$, elle admet une primitive sur chacun des intervalles $]-\infty;-1[$

et]1;+
$$\infty$$
[définie par $F(x) = \frac{1}{2} \times 2\sqrt{u(x)} = \sqrt{x^2 - 1}$

6) $f(x) = \frac{\cos x}{\sqrt{2 + \sin x}}$ f est définie et continue sur \mathbb{R} en tant que quotient de fonctions qui le sont, le dénominateur ne

s'annulant pas, et pour $x \in \mathbb{R}$, f étant de la forme $f(x) = \frac{u'(x)}{\sqrt{u(x)}}$, où $u(x) = 2 + \sin x \Rightarrow u'(x) = \cos x$, elle admet une

primitive sur \mathbb{R} définie par $F(x) = 2\sqrt{u(x)} = 2\sqrt{2 + \sin x}$

- 1) g est dérivable sur $]0;+\infty[$ en tant que produit de fonctions qui le sont, et pour tout $x \in]0;+\infty[$, $g'(x) = 1 \times \sqrt{x} + x \times \frac{1}{2\sqrt{x}} = \sqrt{x} + \frac{x}{2\sqrt{x}} = \sqrt{x} + \frac{1}{2}\sqrt{x} = \frac{3}{2}\sqrt{x}$
- 2) Puisque $g'(x) = \frac{3}{2}f(x)$, on déduit que $f(x) = \frac{2}{3}g'(x)$. Une primitive sur $]0; +\infty[$ de f est donc la fonction définie par $F(x) = \frac{2}{3}g(x) = \frac{2}{3}x\sqrt{x}$

Exercice n°10

- 1) a) FAUX. f(0,5) = 0, mais cela n'influe par sur le signe de ses primitives
- b) VRAI. Puisque f est négative sur [0;0,5] et positive sur $[0,5;+\infty[$, toute primitive de f est décroissante sur [0;0,5] et croissante sur $[0,5;+\infty[$
- 2) C'est la <u>courbe 2</u> qui correspond à la représentation graphique de toute primitive de f.

Exercice n°11

- 1) $f(x) = x^2 5x + \frac{1}{x}$. f est continue sur $]0; +\infty[$ en tant que somme de fonctions qui le sont, donc admet des
- primitives sur $]0; +\infty[$, et pour tout $x \in]0; +\infty[$, $F(x) = \frac{x^3}{3} 5\frac{x^2}{2} + \ln(|x|) = \frac{x^3}{3} \frac{5x^2}{2} + \ln(x)|$ puisque $x \in]0; +\infty[$
- 2) $f(x) = \frac{x^2 + x + 1}{x}$. f est continue sur $]0; +\infty[$ en tant que quotient de fonctions qui le sont, le dénominateur ne
- s'annulant pas, donc admet des primitives sur $]0;+\infty[$, et pour tout $x \in]0;+\infty[$, puisque $f(x)=\frac{x^2+x+1}{x}=x+1+\frac{1}{x}$,

$$F(x) = \frac{x^2}{2} + x + \ln(|x|) = \frac{x^2}{2} + x + \ln(x)$$
 puisque $x \in (0, +\infty)$

- 3) $f(x) = \frac{7}{x} + \frac{5}{\sqrt{x}} + \frac{1}{x^2}$. f est continue sur $]0; +\infty[$ en tant que quotient de fonctions qui le sont, donc admet des
- primitives sur $]0;+\infty[$, et pour tout $x \in]0;+\infty[$, $F(x) = 7\ln(|x|) + 5 \times 2\sqrt{x} \frac{1}{x} = 7\ln(x) + 10\sqrt{x} \frac{1}{x}]$, car $x \in]0;+\infty[$ 4) $f(x) = \frac{3}{3x-4}$. f est continue sur $]\frac{4}{3};+\infty[$ en tant que quotient de fonctions qui le sont, le dénominateur ne
- s'annulant pas, donc admet des primitives sur $\left[\frac{4}{3}; +\infty\right]$, et puisque $f(x) = \frac{3}{3x-4} = \frac{u'(x)}{u(x)}$

$$u(x) = 3x - 4 \Rightarrow u'(x) = 3$$
, $F(x) = \ln(|u(x)|) = \ln(|3x - 4|) = \ln(3x - 4)$ car $x \in \left[\frac{4}{3}; +\infty\right[$

- 5) $f(x) = \frac{1}{x+1}$. f est continue sur $]-1;+\infty[$ en tant que quotient de fonctions qui le sont, le dénominateur ne
- s'annulant pas, donc admet des primitives sur $]-1;+\infty[$, et puisque $f(x)=\frac{1}{x+1}=\frac{u'(x)}{u(x)}$ où $u(x)=x+1 \Rightarrow u'(x)=1$,

$$F(x) = \ln(|u(x)|) = \ln(|x+1|) = \ln(x+1) \quad \text{car } x \in]-1; +\infty[$$
6) Si $x \in]-\infty; -1[$,
$$F(x) = \ln(|x+1|) = \ln(-(x+1)) = \ln(-x-1)$$

6) Si
$$x \in]-\infty; -1[, |F(x)| = \ln(|x+1|) = \ln(-(x+1)) = \ln(-x-1)$$

7) $f(x) = \frac{2x}{x^2 - 4}$. f est continue sur]2; + ∞ [en tant que quotient de fonctions qui le sont, le dénominateur ne

s'annulant pas, donc admet des primitives sur]2;+ ∞ [, et puisque $f(x) = \frac{2x}{x^2 - 4} = \frac{u(x)}{u(x)}$

où
$$u(x) = x^2 - 4 \Rightarrow u'(x) = 2x$$
, $F(x) = \ln(|u(x)|) = \ln(|x^2 - 4|) = \ln(x^2 - 4)$ car $x \in]2; +\infty[$

où $u(x) = x^2 - 4 \Rightarrow u'(x) = 2x$, $F(x) = \ln(|u(x)|) = \ln(|x^2 - 4|) = \ln(x^2 - 4)$ car $x \in]2; +\infty[$ 8) $f(x) = \frac{1}{3x - 5}$ sur $[2; +\infty[$. f est continue sur $[2; +\infty[$ en tant que quotient de fonctions qui le sont, le dénominateur s'annulant pas, donc admet des primitives sur $[2;+\infty[$, et pour tout $x \in [2;+\infty[$, puisque

$$f(x) = \frac{1}{3} \times \frac{3}{3x - 5} = \frac{1}{3} \times \frac{u'(x)}{u(x)}, \text{ ou } u(x) = 3x - 5 \Rightarrow u'(x) = 3, \quad \boxed{F(x) = \frac{1}{3} \ln(|3x - 5|) = \frac{1}{3} \ln(3x - 5)} \text{ car } x \in [2; +\infty[$$

9) $f(x) = \frac{x+1}{x^2+2x+2}$ sur \mathbb{R} . f est continue sur \mathbb{R} en tant que quotient de fonctions qui le sont, le dénominateur ne

s'annulant pas, (le discriminant du trinôme $x^2 + 2x + 2$ est strictement négatif) donc admet des primitives sur $\mathbb R$, et pour $x \in \mathbb{R}$, puisque $f(x) = \frac{x+1}{x^2+2x+2} = \frac{1}{2} \times \frac{u'(x)}{u(x)}$, ou $u(x) = x^2+2x+2 \Rightarrow u'(x) = 2x+2$,

$$F(x) = \frac{1}{2} \ln \left(|u(x)| \right) = \frac{1}{2} \ln \left(|x^2 + 2x + 2| \right) = \frac{1}{2} \ln \left(x^2 + 2x + 2 \right), \text{ puisque } x \in \mathbb{R} \Rightarrow x^2 + 2x + 2 > 0$$

10) $f(x) = \frac{x}{x^2 - 1}$ sur]-1;1[. f est continue sur]-1;1[en tant que quotient de fonctions qui le sont, le dénominateur s'annulant pas, donc admet des primitives sur]-1;1[, et pour tout $x \in]-1;1[$, puisque $f(x) = \frac{x}{x^2 - 1} = \frac{1}{2} \frac{2x}{x^2 - 1} = \frac{1}{2} \frac{u'(x)}{u(x)}, \text{ où } u(x) = x^2 - 1 \Rightarrow u'(x) = 2x, \quad \left| F(x) = \frac{1}{2} \ln\left(\left|u(x)\right|\right) = \frac{1}{2} \ln\left(\left|x^2 - 1\right|\right) = \frac{1}{2} \ln\left(1 - x^2\right) = \frac{1}{2} \ln\left(\left|x^2 - 1\right|\right) = \frac{1} \ln\left(\left|x^2 - 1\right|\right) = \frac{1}{2} \ln\left(\left|x^2 - 1\right|\right) = \frac{1}{2} \ln\left(\left|x^2$ puisque $x \in]-1;1[\Rightarrow 1-x^2 < 0]$

Exercice n°12

1) Pour tout $x \in [4; +\infty[$, $ax + b + \frac{c}{x-2} = \frac{(ax+b)(x-2)+c}{x-2} = \frac{ax^2 + (b-2a)x - 2b + c}{x-2}$

Ainsi
$$ax + b + \frac{c}{x - 2} = f(x) \Leftrightarrow \begin{cases} a = 2 \\ b - 2a = -3 \\ -2b + c = -4 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = -3 + 4 = 1 \\ c = -4 + 2 = -2 \end{cases}$$
. Pour tout $x \in [4; +\infty[$, $f(x) = 2x + 1 + \frac{-2}{x - 2}]$

2) f est définie et continue sur $[4;+\infty[$ en tant que somme et quotient de fonctions qui le sont, le dénominateur ne s'annulant pas, donc admet des primitives sur $[4; +\infty[$ A partir de l'écriture $f(x) = 2x + 1 + \frac{-2}{x-2}$, on déduit l'expression d'une primitive F de f sur $\left[4; +\infty\right[: \left[F(x) = x^2 + x - 2\ln\left(|x-2|\right) = x^2 + x - 2\ln\left(x-2\right)\right]$ $x \in [4; +\infty] \Rightarrow x-2 > 0$

Exercice n°13

1) $f(x) = \frac{\cos x}{\sin x}$. f est définie et continue sur $\left[0; \frac{\pi}{2}\right]$ en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas, donc admet des primitives sur $\left[0; \frac{\pi}{2}\right]$, et pour tout $x \in \left[0; \frac{\pi}{2}\right]$, puisque $f(x) = \frac{\cos x}{\sin x} = \frac{u'(x)}{u(x)}$, ou $u(x) = \sin x \Rightarrow u'(x) = \cos x$, $F(x) = \ln(|u(x)|) = \ln(|\sin x|) = \ln(\sin x)$, puisque $x \in \left[0, \frac{\pi}{2}\right] \Rightarrow \sin x > 0$.

2) $f(x) = \frac{\ln x}{x}$. f est définie et continue sur $[1; +\infty[$ en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas, donc admet des primitives sur $[1; +\infty[$, et pour tout $x \in [1; +\infty[$, puisque $f(x) = \frac{1}{x} \times \ln x = u'(x) \times u(x)$, ou $u(x) = \ln x \Rightarrow u'(x) = \frac{1}{x}$, $F(x) = \frac{(u(x))^2}{2} = \frac{(\ln (x))^2}{2}$

3) $f(x) = \frac{1}{x \ln x}$. f définie est continue sur $]1; +\infty[$ en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas, donc admet des primitives sur $]1; +\infty[$, et pour tout $x \in]1; +\infty[$, puisque $f(x) = \frac{1/x}{\ln x} = \frac{u'(x)}{u(x)}$, ou $u(x) = \ln x \Rightarrow u'(x) = \frac{1}{x}$, $F(x) = \ln(|u(x)|) = \ln(|\ln(x)|) = \ln(|\ln(x)|)$ car $x \in]1; +\infty[\Rightarrow \ln x > 0$

4) $f(x) = \tan x$. f définie est continue sur $\left[\frac{\pi}{2}; \pi\right]$ en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas, donc admet des primitives sur $\left[\frac{\pi}{2}; \pi\right]$, et pour tout $x \in \left[\frac{\pi}{2}; \pi\right]$, puisque $f(x) = \frac{\sin x}{\cos x} = \frac{-u'(x)}{u(x)}$, ou $u(x) = \cos x \Rightarrow u'(x) = -\sin x$, $\left[F(x) = -\ln\left(\left|u(x)\right|\right) = -\ln\left(\left|\cos x\right|\right) = -\ln\left(-\cos x\right)\right]$, puisque $x \in \left[\frac{\pi}{2}; \pi\right] \Rightarrow \cos x < 0$.

Exercice n°14

1) $f(x) = \frac{1}{4}e^x$. f est définie et continue sur \mathbb{R} en tant que produit de fonctions qui le sont, donc admet des primitives sur \mathbb{R} , et pour tout $F(x) = \frac{1}{4}e^x$.

2) $f(x) = e^{-x}$. f est définie et continue sur \mathbb{R} en tant que produit de fonctions qui le sont, donc admet des primitives sur \mathbb{R} , et puisque pour tout $x \in \mathbb{R}$, $f(x) = -(-e^{-x}) = -u'(x)e^{u(x)}$ ou $u(x) = -x \Rightarrow u'(x) = -1$, $F(x) = e^{u(x)} = e^{-x}$.

3) $f(x) = e^{2x+3}$. f est définie et continue sur \mathbb{R} en tant que produit de fonctions qui le sont, donc admet des primitives sur \mathbb{R} , et puisque pour tout $x \in \mathbb{R}$, $f(x) = \frac{1}{2} \times 2e^{2x+3} = \frac{1}{2}u'(x)e^{u(x)}$ ou $u(x) = 2x+3 \Rightarrow u'(x) = 2$,

$$F(x) = \frac{1}{2}e^{u(x)} = \frac{1}{2}e^{2x+3}.$$

4) $f(x) = xe^{x^2}$. f est définie et continue sur \mathbb{R} en tant que produit de fonctions qui le sont, donc admet des primitives sur \mathbb{R} , et puisque pour tout $x \in \mathbb{R}$, $f(x) = \frac{1}{2} \times 2xe^{x^2} = \frac{1}{2}u'(x)e^{u(x)}$ ou $u(x) = x^2 \Rightarrow u'(x) = 2x$,

$$F(x) = \frac{1}{2}e^{u(x)} = e^{x^2}.$$

5) $f(x) = \frac{e^x}{e^x + 1}$. f est définie et continue sur \mathbb{R} en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas (car $x \in \mathbb{R} \Rightarrow e^x + 1 > 0$ donc $\neq 0$) donc admet des primitives sur \mathbb{R} , et puisque pour tout $x \in \mathbb{R}$, $f(x) = \frac{u'(x)}{u(x)}$ ou $u(x) = e^x \Rightarrow u'(x) = e^x$, $F(x) = \ln(|u(x)|) = \ln(|e^x + 1|) = \ln(e^x + 1)$ car $x \in \mathbb{R} \Rightarrow e^x + 1 > 0$

La fonction F, définie sur \mathbb{R} , par $F(x) = (ax+b)e^x$ est dérivable sur \mathbb{R} en tant que produit de fonction qui le sont, et pour tout $x \in \mathbb{R}$, $F'(x) = ae^x + (ax+b)e^x = (ax+a+b)e^x$

F sera une primitive de f si et seulement si pour tout $x \in \mathbb{R}$, $F'(x) = f(x) \Leftrightarrow \begin{cases} a = 1 \\ a + b = 2 \end{cases}$ Une primitive de f sur \mathbb{R} est donc $\overline{F(x) = (x+1)e^x}$

Exercice n°16

1) Pour tout
$$x \in \mathbb{R}$$
, $f(x) = \frac{3}{e^{-x} + 1} = \frac{3 \times e^x}{\left(e^{-x} + 1\right) \times e^x} = \frac{3e^x}{e^{-x} \times e^x + 1 \times e^x} = \frac{3e^x}{1 + e^x}$

2). f est définie et continue sur \mathbb{R} en tant que quotient de fonctions qui le sont, le dénominateur ne s'annulant pas (car $x \in \mathbb{R} \Rightarrow 1 + e^x > 0$ donc $\neq 0$) donc admet des primitives sur \mathbb{R} , et en utilisant l'écriture $f(x) = \frac{3e^x}{e^x + 1} = 3\frac{u'(x)}{u(x)}$ ou $u(x) = e^x + 1$, on obtient $F(x) = 3\ln\left(|u(x)|\right) + k = 3\ln\left(|e^x + 1|\right) + k = 3\ln\left(e^x + 1\right) + k$ car $e^x + 1 > 0$ sur \mathbb{R}