Hands on with FPGA's: Module 6

Venkat Rangan

Questions on Module 5

Alarm clock

Topics

- Pre-class: Open floor for questions
 - Module 5
- Putting blocks together
 - Busses
 - NoC
 - Protocols
- FPGA Specifics
- Open discussion

Typical HW Design

- Code up small blocks, target reuse
- Interconnect blocks
- Data path vs Control path

Busses

- Common interface specification
 - Fast design with fewer errors
- Unidirectional data flow
- Clearly defined accesses
 - Single transactions
 - Burst transactions
 - More efficient than single xactions
 - Well matched to external memories
- E.g. Wishbone Specification, AXI, Avalon...

The A in AXI, AHB, APB...

 AMBA: ARM specification for on-chip interconnect

Lets build a bus!

- Use wb_intercon script
- Actual blocks not implemented
- CSR: Config, Status Registers
- 32 bits wide, good enough for most configuration type access

NoC vs. Busses

- Busses breakdown when there are many blocks
- Hierarchy added to alleviate but adds delay
- <u>Network-on-Chip</u> used for higher bandwidths
 - Highly scalable and easily reconfigurable
 - <u>FLIT</u>, PHIT
- https://www.design-reuse.com/articles/10496/acomparison-of-network-on-chip-and-busses.html
- Open Source NoC using AXI

https://ignitarium.com/network-on-chip-an-overview/

https://ignitarium.com/network-on-chip-an-overview/

Data Path Interconnects

- Data only
 - Assumes data is valid at every clock cycle
- Data + Valid
 - Data bus is used only when valid is active
- Data + valid + ready
 - Can flow control back to source
 - Most flexible and easily extensible
- Can also use NoC
 - Higher overhead but good for large chips

Valid-Ready Protocol

Adapted from https://inst.eecs.berkeley.edu/~cs150/Documents/Interfaces.pdf

- Rule1: Data transfer happens when both Valid and Ready are active
- Rule 2: No valid teasing: Once valid, cannot take away valid till ready is high
- Rule 3: Ready can tease

No Data Transfer

FPGA Process

- 1. Select FPGA Part: Make sure of the right part number!
- 2. Allocate pins
- 3. Specify clock(s)
- 4. Specify detailed Input/Output constraints
- 5. Map
- 6. Route
- 7. Bitgen

Open

<u>Module 6:</u>

• Challenge

Open Discussion