Consider the following 2-class binary problem. We will run Adaboost for two iterations.

Class 0
$$(y = -1)$$
: $\mathbf{x_1} = [-3, -1]$, $\mathbf{x_2} = [-3, 1]$, $\mathbf{x_3} = [3, -1]$, $\mathbf{x_4} = [3, 1]$
Class 1 $(y = 1)$: $\mathbf{x_5} = [-1, -1]$, $\mathbf{x_6} = [-1, 1]$, $\mathbf{x_7} = [1, -1]$, $\mathbf{x_8} = [1, 1]$

(a) Assuming that the first classifier is $h_1(\mathbf{x}) = \begin{cases} -1 & \text{if } \mathbf{x} < -2 \\ +1 & \text{if } \mathbf{x} > -2 \end{cases}$, compute the classification error ϵ_1 and new weights $w_2(n)$ for every sample $n = 1, \ldots, 8$ that result from the first iteration (t = 1) of Adaboost.

(b)	Based	on	the e	rror t	that y	ou c	comput	ed in	n (a)	, v	what	would	be	a 1	reasonable	class	ification
bou	ndary i	$h_2(\mathbf{x})$	for	the s	econd	iter	ation o	f Ad	laboo	st	?						

(c) Compute the classification error ϵ_2 and new weights $w_3(n)$ for every sample $n=1,\ldots,8$ that result from the second iteration (t=2) of Adaboost.

(d) What would be the final decision rule based on the first two iterations of Adaboost and the computed variables h_1 , h_2 , β_1 , and β_2 ? Would this result in all samples being correctly classified? What would you do if not?