Examen de Análisis Matemático II - 2021 - 2/7/2021

Parte teórica

- 1. (11 puntos) Enunciar con precisión el segundo criterio de comparación para integrales impropias y demostrarlo.
- 2. (3 puntos, 9 puntos) a) Definir con precisión que la serie $\sum_{n=1}^{\infty} a_n$ sea absolutamente convergente.
 - b) Enunciar y demostrar el teorema que relaciona la convergencia con la convergencia absoluta de una serie numérica.
- 3. (7 puntos) Sea $a>0,\ a\neq 1$. Definir con precisión la función $\log_a:(0,\infty)\to\mathbb{R}$ y mostrar que

$$\log_a x = \frac{1}{\log a} \log x.$$

Parte práctica

4. (6 puntos) Mostrar que para todo $x \in \mathbb{R}$ se cumple que

$$\operatorname{senh}'(x) = \cosh x$$
 y $\left(\operatorname{senh}^{-1}\right)'(x) = 1/\sqrt{x^2 + 1}$.

5. (8 puntos, 8 puntos) Calcular las siguentes integrales.

a)
$$\int \frac{x^2 - 3x + 4}{x^3 + 4x} dx$$
, b) $\int \frac{1}{1 + \sqrt[3]{x}} dx$.

6. (8 puntos, 8 puntos) Calcular el valor del límite y el valor de la integral impropia.

a)
$$\lim_{x \to 1} \frac{4^{\log x} - x^2}{\log x}$$
, b) $\int_1^\infty \frac{e^{\frac{1}{x}}}{x^2} dx$.

- 7. (6 puntos) Sea $f: \mathbb{R} \to \mathbb{R}$ una función cuyo polinomio de Taylor de orden 5 alrededor de a=0 es $q(x)=3x-7x^5$ y sea $g: \mathbb{R} \to \mathbb{R}$ definida por $g(x)=(f(x))^2$. Hallar el polinomio de Taylor de g de orden 5 alrededor de a=0 y calcular g''(0).
- 8. (4 puntos, 11 puntos) Probar que el radio de convergencia de la siguiente serie de potencias es igual a 1 y hallar el intervalo de convergencia .

$$\sum_{n=2}^{\infty} \frac{1}{n \log n} \ x^n.$$

9. (7 puntos) Sea g continua y positiva. Sea

$$H(x) = \int_0^{x^2} \left(\log(g(t)) - \frac{1}{3 + t^4} \right) dt.$$

Hallar el valor g(1) sabiendo que $H'(1) = \frac{3}{2}$.

10. (4 puntos) Sea $f:[0,2] \to \mathbb{R}$, $f(x)=x^2$. Encontrar particiones $P \neq Q$ de [0,2], con tres y cuatro puntos, respectivamente, tales que s(f,P) > s(f,Q).

1