# **Online Appendix**

### Appendix A1

Figure 1: Cross-Correlations between DIA ETF and its underlying Assets









### Appendix A2

Figure 2: Cross-Correlations between SMH ETF and its underlying Assets





# Appendix B1

### Dynamic Model Estimates for the Underlying Assets of DIA ETF

Table 1: Estimated informational trading parameters for CVX

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                      |                                  |                   |                   |                                  |                   |                                  |                   |                   |                                                          |                                                          |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|----------------------------------|-------------------|-------------------|----------------------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$    | $\phi_{ab}^{i10}$                | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$                | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$                                        | $\phi_{aa}^{i15}$                                        | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.084 \\ (0.09)$ | $0.080 \\ (0.07)$ | $0.587 \\ (0.21)$ | $0.174 \\ (0.03)$ | $0.096 \\ (0.05)$ | $0.078 \\ (0.09)$ | $0.127 \\ (0.10)$ | $0.119 \\ (0.06)$ | $0.118 \\ (0.06)$ | $0.094 \\ (0.08)$ | $0.084 \\ (0.03)$ | $0.067 \\ (0.06)$ | $0.078 \\ (0.08)$ | $0.097 \\ (0.08)$ | $0.168 \\ (0.07)$ | $0.078 \\ (0.04)$ | $0.066 \\ (0.09)$ | $0.086 \\ (0.06)$ | $0.112 \\ (0.05)$    | $0.107 \\ (0.03)$                | $0.092 \\ (0.04)$ | $0.143 \\ (0.04)$ | $0.086 \\ (0.04)$                | $0.128 \\ (0.07)$ | $0.045 \\ (0.09)$                | $0.098 \\ (0.05)$ | $0.095 \\ (0.08)$ | $0.120 \\ (0.00)$                                        | $0.120 \\ (0.03)$                                        | $0.084 \\ (0.04)$ |
|             | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi^{i18}_{ab}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$    | $\phi_{ab}^{i25}$                | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$                | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$                | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$                                        | $\phi_{aa}^{i30}$                                        | $\phi^{i30}_{ab}$ |
|             | $0.089 \\ (0.07)$ | $0.076 \\ (0.08)$ | $0.096 \\ (0.08)$ | $0.101 \\ (0.09)$ | 0.131 $(0.00)$    | $0.100 \\ (0.07)$ | 0.138 $(0.09)$    | $0.108 \\ (0.07)$ | 0.157 $(0.06)$    | $0.074 \\ (0.04)$ | $0.106 \\ (0.04)$ | 0.087 $(0.06)$    | 0.089 $(0.11)$    | $0.110 \\ (0.06)$ | 0.034 $(0.07)$    | $0.065 \\ (0.05)$ | 0.100<br>(0.03)   | $0.079 \\ (0.05)$ | $0.101 \\ (0.09)$    | $0.085 \\ (0.03)$                | 0.078 $(0.03)$    | $0.060 \\ (0.08)$ | $0.129 \\ (0.05)$                | $0.078 \\ (0.05)$ | 0.138 $(0.09)$                   | 0.100<br>(0.06)   | $0.082 \\ (0.08)$ | 0.078 $(0.13)$                                           | 0.079 $(0.09)$                                           | $0.101 \\ (0.05)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{(0.09)}$ | $\frac{(0.03)}{\phi_{bb}^{i10}}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\frac{(0.05)}{\phi_{ba}^{i12}}$ | $\phi_{bb}^{i12}$ | $\frac{(0.09)}{\phi_{ba}^{i13}}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\begin{array}{c} (0.13) \\ \phi_{bb}^{i14} \end{array}$ | $\begin{array}{c} (0.09) \\ \phi_{ba}^{i15} \end{array}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | $0.078 \\ (0.05)$ | $0.077 \\ (0.06)$ | $0.078 \\ (0.03)$ | $0.082 \\ (0.03)$ | $0.529 \\ (0.06)$ | $0.179 \\ (0.12)$ | $0.149 \\ (0.21)$ | $0.078 \\ (0.05)$ | $0.107 \\ (0.08)$ | $0.072 \\ (0.05)$ | $0.114 \\ (0.09)$ | $0.083 \\ (0.07)$ | $0.081 \\ (0.07)$ | $0.047 \\ (0.03)$ | $0.080 \\ (0.07)$ | $0.085 \\ (0.06)$ | $0.082 \\ (0.08)$ | $0.115 \\ (0.04)$ | $0.103 \\ (0.04)$    | $0.028 \\ (0.17)$                | $0.078 \\ (0.09)$ | $0.081 \\ (0.05)$ | $0.099 \\ (0.06)$                | $0.006 \\ (0.05)$ | $0.109 \\ (0.03)$                | $0.058 \\ (0.04)$ | $0.084 \\ (0.06)$ | $0.060 \\ (0.06)$                                        | $0.091 \\ (0.04)$                                        | $0.033 \\ (0.05)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$    | $\phi_{bb}^{i25}$                | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$                | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$                | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$                                        | $\phi_{ba}^{i30}$                                        | $\phi_{bb}^{i30}$ |
|             | $0.125 \\ (0.07)$ | $0.087 \\ (0.08)$ | $0.044 \\ (0.06)$ | $0.127 \\ (0.05)$ | $0.079 \\ (0.13)$ | 0.121 $(0.09)$    | $0.086 \\ (0.05)$ | $0.086 \\ (0.06)$ | $0.081 \\ (0.05)$ | $0.049 \\ (0.02)$ | $0.102 \\ (0.06)$ | $0.079 \\ (0.03)$ | $0.083 \\ (0.03)$ | $0.086 \\ (0.07)$ | $0.078 \\ (0.05)$ | $0.088 \\ (0.08)$ | $0.055 \\ (0.06)$ | $0.098 \\ (0.07)$ | $0.052 \\ (0.08)$    | $0.118 \\ (0.25$                 | $0.078 \\ (0.08)$ | 0.084 $(0.08)$    | $0.075 \\ (0.05)$                | $0.079 \\ (0.08)$ | $0.083 \\ (0.05)$                | $0.080 \\ (0.08)$ | $0.079 \\ (0.03)$ | $0.075 \\ (0.09$                                         | $0.099 \\ (0.07)$                                        | $0.098 \\ (0.07)$ |

Table 2: Estimated informational trading parameters for AXP

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi^{i9}_{ab}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.096 \\ (0.03)$ | -0.156 (0.23)     | $0.092 \\ (0.01)$ | $0.079 \\ (0.08)$ | $0.728 \\ (0.04)$ | $0.164 \\ (0.04)$ | $0.227 \\ (0.21)$ | $0.080 \\ (0.04)$ | $0.078 \\ (0.05)$ | $0.107 \\ (0.04)$ | $0.138 \\ (0.29)$ | $0.117 \\ (0.07)$ | $0.107 \\ (0.19)$ | $0.167 \\ (0.05)$ | $0.077 \\ (0.04)$ | $0.069 \\ (0.05)$ | $0.089 \\ (0.12)$ | $0.077 \\ (0.08)$ | $0.077 \\ (0.04)$ | $0.132 \\ (0.09)$ | $0.120 \\ (0.08)$ | $0.127 \\ (0.25)$ | $0.099 \\ (0.05)$ | $0.086 \\ (0.05)$ | $0.167 \\ (0.08)$ | $0.109 \\ (0.35)$ | $0.092 \\ (0.06)$ | $0.157 \\ (0.22)$ | $0.106 \\ (0.18)$ | $0.080 \\ (0.08)$ |
|             | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | $0.080 \\ (0.08)$ | 0.079 $(0.10)$    | $0.078 \\ (0.05)$ | $0.108 \\ (0.03)$ | 0.081 $(0.06)$    | 0.082 $(0.04)$    | 0.081 $(0.09)$    | 0.079 $(0.08)$    | 0.081 $(0.05)$    | 0.088 $(0.04)$    | 0.080 $(0.24)$    | $0.08 \\ (0.08)$  | 0.095 $(0.17)$    | 0.087 $(0.08)$    | 0.080 $(0.03)$    | 0.107 $(0.06)$    | $0.106 \\ (0.15)$ | $0.090 \\ (0.05)$ | 0.089 $(0.06)$    | 0.078 $(0.02)$    | 0.079 $(0.05)$    | 0.089 $(0.07)$    | 0.087 $(0.05)$    | $0.096 \\ (0.05)$ | 0.112 $(0.21)$    | 0.097 $(0.05)$    | 0.084 $(0.09)$    | 0.082 $(0.05)$    | 0.092 $(0.07)$    | $0.100 \\ (0.02)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | -0.031 (0.03)     | $0.100 \\ (0.04)$ | $0.026 \\ (0.01)$ | $0.297 \\ (0.17)$ | $0.150 \\ (0.35)$ | $0.808 \\ (0.03)$ | $0.075 \\ (0.08)$ | $0.085 \\ (0.14)$ | $0.127 \\ (0.21)$ | $0.095 \\ (0.06)$ | $0.139 \\ (0.21)$ | $0.167 \\ (0.35)$ | $0.107 \\ (0.05)$ | $0.078 \\ (0.04)$ | $0.057 \\ (0.09)$ | $0.083 \\ (0.07)$ | $0.077 \\ (0.07)$ | $0.077 \\ (0.05)$ | $0.081 \\ (0.03)$ | $0.083 \\ (0.25)$ | $0.107 \\ (0.03)$ | $0.102 \\ (0.11)$ | $0.096 \\ (0.10)$ | $0.147 \\ (0.23)$ | $0.149 \\ (0.08)$ | $0.122 \\ (0.12)$ | $0.087 \\ (0.07)$ | $0.069 \\ (0.09)$ | $0.093 \\ (0.06)$ | $0.086 \\ (0.05)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.080 \\ (0.04)$ | $0.081 \\ (0.08)$ | $0.080 \\ (0.04)$ | $0.078 \\ (0.07)$ | $0.102 \\ (0.05)$ | $0.090 \\ (0.07)$ | $0.079 \\ (0.08)$ | $0.082 \\ (0.21)$ | $0.077 \\ (0.06)$ | $0.083 \\ (0.05)$ | $0.086 \\ (0.05)$ | $0.080 \\ (0.05)$ | 0.117 $(0.07)$    | $0.083 \\ (0.07)$ | 0.087 $(0.06)$    | $0.086 \\ (0.05)$ | $0.100 \\ (0.05)$ | $0.082 \\ (0.03)$ | $0.098 \\ (0.05)$ | $0.080 \\ (0.04)$ | $0.096 \\ (0.04)$ | $0.077 \\ (0.06)$ | $0.088 \\ (0.25)$ | $0.085 \\ (0.04)$ | $0.082 \\ (0.09)$ | $0.079 \\ (0.07)$ | $0.078 \\ (0.08)$ | $0.082 \\ (0.06)$ | $0.084 \\ (0.04)$ | $0.099 \\ (0.04)$ |

 $\textit{For} \ \ \phi^{ij}_{\cdot\cdot\cdot}, \ \ i = AXP \ \textit{and} \ \ j = AAPL, CVX, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, ACCORDANCE SERVICE SERVIC$ 

Table 3: Estimated informational trading parameters for CSCO

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                                  |                   |                   |                   |                                  |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|----------------------------------|----------------------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi^{i5}_{ab}$  | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i6}$  | $\phi^{i6}_{ab}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$                | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$                | $\phi_{ab}^{i15}$                |
| $a_t - p_t$ | $0.077 \\ (0.12)$ | $0.083 \\ (0.08)$ | $0.080 \\ (0.03)$ | $0.078 \\ (0.05)$ | $0.078 \\ (0.07)$ | $0.077 \\ (0.05)$ | $0.076 \\ (0.11)$ | $0.085 \\ (0.21)$ | $0.712 \\ (0.04)$ | $0.138 \\ (0.01)$ | $0.077 \\ (0.26)$ | $0.079 \\ (0.03)$ | $0.077 \\ (0.11)$ | $0.077 \\ (0.07)$ | $0.077 \\ (0.06)$ | $0.078 \\ (0.15)$ | $0.073 \\ (0.09)$ | $0.077 \\ (0.09)$ | $0.078 \\ (0.07)$ | $0.082 \\ (0.09)$ | $0.127 \\ (0.05)$ | $0.078 \\ (0.09)$ | $0.081 \\ (0.35)$                | $0.078 \\ (0.06)$ | $0.077 \\ (0.03)$                | $0.078 \\ (0.06)$ | $0.078 \\ (0.26)$ | $0.078 \\ (0.21)$ | $0.076 \\ (0.06)$                | $0.077 \\ (0.08)$                |
|             | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$                | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$                | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$                | $\phi_{ab}^{i30}$                |
|             | 0.083 $(0.05)$    | 0.082 $(0.06)$    | $0.078 \\ (0.04)$ | 0.081 $(0.03)$    | 0.082 $(0.04)$    | 0.082 $(0.05)$    | 0.074 $(0.04)$    | $0.082 \\ (0.25)$ | 0.079 $(0.04)$    | 0.082 $(0.05)$    | 0.082 $(0.09)$    | 0.072 $(0.17)$    | 0.081 $(0.22)$    | 0.085 $(0.12)$    | 0.082 $(0.09)$    | 0.072 $(0.06)$    | 0.084 $(0.04)$    | $0.074 \\ (0.05)$ | $0.080 \\ (0.09)$ | 0.083 $(0.03)$    | 0.082 $(0.05)$    | $0.083 \\ (0.05)$ | 0.083 $(0.08)$                   | $0.080 \\ (0.09)$ | $0.080 \\ (0.06)$                | 0.073 $(0.22)$    | 0.086 $(0.09)$    | 0.083 $(0.27)$    | 0.077 $(0.24)$                   | 0.077 $(0.03)$                   |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\frac{(0.08)}{\phi_{ba}^{i12}}$ | $\phi_{bb}^{i12}$ | $\frac{(0.06)}{\phi_{ba}^{i13}}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\frac{(0.24)}{\phi_{ba}^{i15}}$ | $\frac{(0.03)}{\phi_{bb}^{i15}}$ |
| $p_t - b_t$ | $0.082 \\ (0.09)$ | $0.072 \\ (0.04)$ | $0.082 \\ (0.05)$ | $0.073 \\ (0.03)$ | $0.078 \\ (0.08)$ | $0.078 \\ (0.04)$ | $0.078 \\ (0.06)$ | $0.080 \\ (0.04)$ | $0.174 \\ (0.06)$ | $0.668 \\ (0.22)$ | $0.127 \\ (0.05)$ | $0.096 \\ (0.09)$ | $0.069 \\ (0.04)$ | $0.078 \\ (0.21)$ | $0.078 \\ (0.05)$ | $0.077 \\ (0.07)$ | $0.078 \\ (0.03)$ | $0.078 \\ (0.08)$ | $0.085 \\ (0.02)$ | $0.082 \\ (0.09)$ | $0.078 \\ (0.07)$ | $0.078 \\ (0.21)$ | $0.077 \\ (0.07)$                | $0.077 \\ (0.02)$ | $0.080 \\ (0.16)$                | $0.077 \\ (0.06)$ | $0.078 \\ (0.07)$ | $0.076 \\ (0.08)$ | $0.077 \\ (0.36)$                | $0.078 \\ (0.06)$                |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$                | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$                | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$                | $\phi_{bb}^{i30}$                |
|             | $0.079 \\ (0.06)$ | $0.080 \\ (0.08)$ | $0.074 \\ (0.09)$ | $0.089 \\ (0.07)$ | $0.078 \\ (0.06)$ | $0.080 \\ (0.08)$ | $0.078 \\ (0.09)$ | $0.080 \\ (0.09)$ | $0.072 \\ (0.05)$ | $0.085 \\ (0.16)$ | 0.082 $(0.08)$    | 0.083 $(0.06)$    | $0.080 \\ (0.03)$ | $0.074 \\ (0.18)$ | $0.086 \\ (0.09)$ | $0.052 \\ (0.04)$ | 0.081 $(0.02)$    | $0.085 \\ (0.04)$ | $0.086 \\ (0.05)$ | $0.077 \\ (0.05)$ | $0.080 \\ (0.09)$ | $0.082 \\ (0.23)$ | $0.081 \\ (0.03)$                | $0.085 \\ (0.04)$ | $0.083 \\ (0.13)$                | 0.084 $(0.09)$    | $0.085 \\ (0.08)$ | $0.080 \\ (0.03)$ | $0.087 \\ (0.14)$                | $0.077 \\ (0.04)$                |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = CSCO \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 4: Estimated informational trading parameters for CAT

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                                          |                   |                   |                                  |                   |                   |                                  |                   |                   |                                  |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$                                        | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$                | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$                | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$                | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.085 \\ (0.03)$ | $0.074 \\ (0.04)$ | $0.078 \\ (0.07)$ | $0.077 \\ (0.08)$ | $0.079 \\ (0.23)$ | $0.080 \\ (0.06)$ | $0.078 \\ (0.08)$ | $0.078 \\ (0.26)$ | $0.089 \\ (0.04)$ | $0.078 \\ (0.06)$ | $0.736 \\ (0.31)$ | $0.219 \\ (0.10)$ | $0.080 \\ (0.06)$ | $0.100 \\ (0.09)$ | $0.087 \\ (0.02)$ | $0.078 \\ (0.05)$ | $0.079 \\ (0.04)$ | $0.078 \\ (0.06)$ | $0.081 \\ (0.05)$ | $0.078 \\ (0.21)$                                        | $0.078 \\ (0.06)$ | $0.076 \\ (0.05)$ | $0.116 \\ (0.15)$                | $0.286 \\ (0.04)$ | $0.082 \\ (0.05)$ | $0.079 \\ (0.30)$                | $0.079 \\ (0.20)$ | $0.078 \\ (0.09)$ | $0.076 \\ (0.09)$                | $0.089 \\ (0.03)$ |
|             | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                                        | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$                | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi^{i28}_{ab}$                | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$                | $\phi^{i30}_{ab}$ |
|             | $0.091 \\ (0.03)$ | $0.079 \\ (0.06)$ | $0.079 \\ (0.09)$ | 0.088 $(0.21)$    | $0.080 \\ (0.22)$ | $0.080 \\ (0.08)$ | $0.079 \\ (0.07)$ | 0.084 $(0.13)$    | $0.077 \\ (0.04)$ | $0.106 \\ (0.08)$ | $0.077 \\ (0.20)$ | $0.077 \\ (0.20)$ | $0.087 \\ (0.08)$ | $0.081 \\ (0.09)$ | $0.082 \\ (0.05)$ | $0.116 \\ (0.06)$ | $0.078 \\ (0.07)$ | 0.077 $(0.02)$    | $0.155 \\ (0.14)$ | $0.077 \\ (0.33)$                                        | $0.070 \\ (0.05)$ | $0.078 \\ (0.09)$ | $0.077 \\ (0.07)$                | $0.077 \\ (0.04)$ | $0.076 \\ (0.08)$ | $0.078 \\ (0.10)$                | $0.120 \\ (0.06)$ | $0.110 \\ (0.06)$ | $0.004 \\ (0.09)$                | $0.085 \\ (0.04)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\begin{array}{c} (0.33) \\ \phi_{bb}^{i10} \end{array}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\frac{(0.07)}{\phi_{ba}^{i12}}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\frac{(0.10)}{\phi_{bb}^{i13}}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\frac{(0.09)}{\phi_{ba}^{i15}}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | $0.083 \\ (0.05)$ | $0.078 \\ (0.08)$ | $0.078 \\ (0.04)$ | $0.076 \\ (0.05)$ | $0.081 \\ (0.06)$ | $0.078 \\ (0.01)$ | $0.078 \\ (0.09)$ | $0.076 \\ (0.07)$ | $0.078 \\ (0.11)$ | $0.082 \\ (0.08)$ | $0.135 \\ (0.03)$ | $0.577 \\ (0.10)$ | $0.078 \\ (0.02)$ | $0.075 \\ (0.05)$ | $0.083 \\ (0.27)$ | $0.078 \\ (0.07)$ | $0.076 \\ (0.07)$ | $0.078 \\ (0.04)$ | $0.083 \\ (0.05)$ | $0.078 \\ (0.07)$                                        | $0.072 \\ (0.33)$ | $0.077 \\ (0.09)$ | $0.078 \\ (0.03)$                | $0.078 \\ (0.21)$ | $0.089 \\ (0.08)$ | $0.078 \\ (0.05)$                | $0.075 \\ (0.09)$ | $0.078 \\ (0.04)$ | $0.097 \\ (0.04)$                | $0.102 \\ (0.08)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                                        | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$                | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$                | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$                | $\phi_{bb}^{i30}$ |
|             | 0.089 $(0.09)$    | $0.080 \\ (0.09)$ | $0.167 \\ (0.09)$ | $0.078 \\ (0.08)$ | 0.077 $(0.09)$    | $0.079 \\ (0.05)$ | 0.082 $(0.04)$    | 0.095 $(0.21)$    | $0.079 \\ (0.17)$ | 0.084 $(0.09)$    | 0.077 $(0.06)$    | 0.081 $(0.08)$    | 0.138 $(0.06)$    | $0.080 \\ (0.02)$ | $0.077 \\ (0.08)$ | $0.096 \\ (0.04)$ | $0.169 \\ (0.08)$ | 0.079 $(0.08)$    | $0.095 \\ (0.08)$ | 0.077 $(0.09)$                                           | $0.086 \\ (0.07)$ | $0.077 \\ (0.06)$ | $0.078 \\ (0.15)$                | 0.077 $(0.08)$    | 0.078 $(0.03)$    | $0.077 \\ (0.07)$                | 0.077 $(0.02)$    | 0.082 $(0.03)$    | 0.085 $(0.02)$                   | 0.078 $(0.21)$    |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = CAT \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 5: Estimated informational trading parameters for DIS

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                                          |                   |                   |                                  |                   |                   |                      |                   |                   |                                                          |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$                                        | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$                | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$    | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$                                        | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.069 \\ (0.05)$ | $0.074 \\ (0.08)$ | $0.079 \\ (0.34)$ | $0.078 \\ (0.21)$ | $0.079 \\ (0.04)$ | $0.081 \\ (0.06)$ | $0.076 \\ (0.20)$ | $0.079 \\ (0.06)$ | $0.089 \\ (0.04)$ | $0.079 \\ (0.06)$ | $0.078 \\ (0.09)$ | $0.082 \\ (0.02)$ | $0.658 \\ (0.10)$ | -0.044 (0.03)     | $0.088 \\ (0.30)$ | $0.079 \\ (0.09)$ | $0.076 \\ (0.07)$ | $0.079 \\ (0.12)$ | $0.082 \\ (0.22)$ | $0.079 \\ (0.09)$                                        | $0.079 \\ (0.03)$ | $0.076 \\ (0.20)$ | $0.117 \\ (0.06)$                | $0.287 \\ (0.04)$ | $0.083 \\ (0.07)$ | $0.079 \\ (0.09)$    | $0.080 \\ (0.02)$ | $0.078 \\ (0.10)$ | $0.076 \\ (0.30)$                                        | $0.090 \\ (0.20)$ |
|             | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi^{i25}_{ab}$                                        | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$                | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$    | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$ | $\phi_{aa}^{i30}$                                        | $\phi^{i30}_{ab}$ |
|             | 0.092 $(0.06)$    | $0.075 \\ (0.07)$ | $0.080 \\ (0.08)$ | $0.089 \\ (0.19)$ | $0.080 \\ (0.08)$ | 0.081 $(0.05)$    | $0.080 \\ (0.22)$ | 0.084 $(0.08)$    | $0.078 \\ (0.04)$ | 0.107 $(0.06)$    | 0.077 $(0.09)$    | $0.078 \\ (0.11)$ | 0.079 $(0.10)$    | 0.082 $(0.03)$    | 0.073 $(0.10)$    | 0.117 $(0.08)$    | $0.078 \\ (0.07)$ | $0.078 \\ (0.05)$ | $0.156 \\ (0.08)$ | $0.078 \\ (0.06)$                                        | $0.071 \\ (0.05)$ | $0.078 \\ (0.05)$ | $0.078 \\ (0.06)$                | $0.078 \\ (0.04)$ | $0.076 \\ (0.06)$ | $0.078 \\ (0.08)$    | $0.121 \\ (0.10)$ | 0.044 $(0.01)$    | $0.078 \\ (0.20)$                                        | 0.078 $(0.09)$    |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\begin{array}{c} (0.06) \\ \phi_{bb}^{i10} \end{array}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\frac{(0.06)}{\phi_{ba}^{i12}}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{(0.08)}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\begin{array}{c} (0.20) \\ \phi_{ba}^{i15} \end{array}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | $0.077 \\ (0.06)$ | $0.082 \\ (0.09)$ | $0.054 \\ (0.04)$ | $0.089 \\ (0.02)$ | $0.078 \\ (0.21)$ | $0.078 \\ (0.17)$ | $0.079 \\ (0.15)$ | $0.080 \\ (0.08)$ | $0.080 \\ (0.05)$ | $0.079 \\ (0.10)$ | $0.061 \\ (0.07)$ | $0.079 \\ (0.09)$ | $0.222 \\ (0.04)$ | $0.817 \\ (0.10)$ | $0.015 \\ (0.06)$ | $0.086 \\ (0.03)$ | $0.110 \\ (0.09)$ | $0.091 \\ (0.04)$ | $0.087 \\ (0.08)$ | $0.068 \\ (0.21)$                                        | $0.089 \\ (0.10)$ | $0.078 \\ (0.06)$ | $0.080 \\ (0.09)$                | $0.079 \\ (0.09)$ | $0.088 \\ (0.10)$ | $0.078 \\ (0.07)$    | $0.079 \\ (0.03)$ | $0.076 \\ (0.04)$ | $0.100 \\ (0.20)$                                        | $0.088 \\ (0.07)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                                        | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$                | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$    | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$                                        | $\phi_{bb}^{i30}$ |
|             | $0.089 \\ (0.05)$ | $0.080 \\ (0.09)$ | $0.078 \\ (0.05)$ | $0.066 \\ (0.07)$ | 0.078 $(0.27)$    | $0.076 \\ (0.10)$ | 0.087 $(0.05)$    | 0.079 $(0.04)$    | 0.093 $(0.02)$    | 0.088 $(0.20)$    | 0.079 $(0.06)$    | $0.076 \\ (0.03)$ | 0.084 $(0.05)$    | 0.078 $(0.06)$    | 0.079 $(0.08)$    | $0.079 \\ (0.05)$ | $0.085 \\ (0.0)9$ | 0.082 $(0.06)$    | 0.079 $(0.06)$    | 0.083 $(0.19)$                                           | $0.068 \\ (0.06)$ | 0.083 $(0.08)$    | 0.081 $(0.07)$                   | 0.073 $(0.01)$    | $0.078 \\ (0.07)$ | 0.082 $(0.06)$       | 0.098 $(0.06)$    | $0.077 \\ (0.05)$ | $0.077 \\ (0.06)$                                        | $0.079 \\ (0.09)$ |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = DIS \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 6: Estimated informational trading parameters for IBM

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$                | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$                | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.072 \\ (0.22)$ | $0.073 \\ (0.07)$ | $0.078 \\ (0.07)$ | $0.077 \\ (0.10)$ | $0.083 \\ (0.09)$ | $0.079 \\ (0.06)$ | $0.074 \\ (0.30)$ | $0.077 \\ (0.10)$ | $0.128 \\ (0.08)$ | $0.083 \\ (0.07)$ | $0.077 \\ (0.04)$ | $0.072 \\ (0.07)$ | $0.077 \\ (0.30)$ | $0.059 \\ (0.09)$ | $0.857 \\ (0.04)$ | $0.084 \\ (0.04)$ | $0.073 \\ (0.06)$ | $0.081 \\ (0.07)$ | $0.078 \\ (0.11)$ | $0.085 \\ (0.03)$                | $0.083 \\ (0.06)$ | $0.083 \\ (0.02)$ | $0.079 \\ (0.10)$ | $0.086 \\ (0.08)$ | $0.080 \\ (0.07)$ | $0.084 \\ (0.03)$ | $0.086 \\ (0.09)$ | $0.082 \\ (0.20)$ | $0.076 \\ (0.09)$                | $0.089 \\ (0.06)$ |
|             | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$                | $\phi_{ab}^{i30}$ |
|             | $0.091 \\ (0.04)$ | $0.075 \\ (0.07)$ | 0.079 $(0.04)$    | $0.080 \\ (0.07)$ | $0.082 \\ (0.06)$ | $0.079 \\ (0.03)$ | $0.082 \\ (0.20)$ | 0.084 $(0.10)$    | $0.077 \\ (0.07)$ | $0.080 \\ (0.05)$ | $0.071 \\ (0.05)$ | $0.082 \\ (0.05)$ | $0.084 \\ (0.07)$ | $0.081 \\ (0.08)$ | $0.080 \\ (0.07)$ | $0.077 \\ (0.04)$ | 0.083 $(0.06)$    | $0.165 \\ (0.10)$ | $0.077 \\ (0.09)$ | $0.072 \\ (0.04)$                | $0.096 \\ (0.20)$ | $0.077 \\ (0.20)$ | 0.082 $(0.10)$    | $0.076 \\ (0.08)$ | $0.085 \\ (0.07)$ | $0.120 \\ (0.07)$ | $0.074 \\ (0.05)$ | $0.078 \\ (0.08)$ | $0.077 \\ (0.08)$                | $0.078 \\ (0.08)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\frac{(0.04)}{\phi_{bb}^{i10}}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\frac{(0.08)}{\phi_{ba}^{i15}}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | $0.083 \\ (0.06)$ | $0.074 \\ (0.09)$ | $0.054 \\ (0.20)$ | $0.089 \\ (0.10)$ | $0.086 \\ (0.23)$ | $0.081 \\ (0.10)$ | $0.083 \\ (0.09)$ | $0.077 \\ (0.20)$ | $0.148 \\ (0.06)$ | $0.085 \\ (0.05)$ | $0.068 \\ (0.04)$ | $0.082 \\ (0.05)$ | $0.077 \\ (0.08)$ | $0.096 \\ (0.20)$ | $0.080 \\ (0.20)$ | $0.711 \\ (0.06)$ | $0.083 \\ (0.08)$ | $0.081 \\ (0.22)$ | $0.085 \\ (0.10)$ | $0.058 \\ (0.25)$                | $0.085 \\ (0.20)$ | $0.076 \\ (0.09)$ | $0.082 \\ (0.05)$ | $0.081 \\ (0.06)$ | $0.082 \\ (0.05)$ | $0.082 \\ (0.05)$ | $0.081 \\ (0.07)$ | $0.071 \\ (0.06)$ | $0.077 \\ (0.30)$                | $0.088 \\ (0.10)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$                | $\phi_{bb}^{i30}$ |
|             | 0.089 $(0.04)$    | $0.080 \\ (0.08)$ | $0.078 \\ (0.02)$ | $0.076 \\ (0.10)$ | $0.079 \\ (0.26)$ | $0.072 \\ (0.20)$ | $0.082 \\ (0.09)$ | $0.079 \\ (0.05)$ | $0.079 \\ (0.08)$ | $0.081 \\ (0.04)$ | 0.081 $(0.07)$    | $0.076 \\ (0.05)$ | 0.084 $(0.06)$    | $0.085 \\ (0.20)$ | 0.082 $(0.07)$    | $0.079 \\ (0.06)$ | $0.085 \\ (0.04)$ | $0.086 \\ (0.0)2$ | $0.077 \\ (0.10)$ | $0.079 \\ (0.21)$                | 0.081 $(0.09)$    | $0.124 \\ (0.09)$ | $0.074 \\ (0.07)$ | $0.078 \\ (0.05)$ | $0.082 \\ (0.04)$ | $0.084 \\ (0.08)$ | $0.079 \\ (0.07)$ | $0.077 \\ (0.20)$ | $0.077 \\ (0.10)$                | $0.081 \\ (0.09)$ |

Table 7: Estimated informational trading parameters for DOW

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$                | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.079 \\ (0.02)$ | $0.074 \\ (0.05)$ | $0.078 \\ (0.20)$ | $0.079 \\ (0.10)$ | $0.080 \\ (0.09)$ | $0.078 \\ (0.03)$ | $0.066 \\ (0.32)$ | $0.078 \\ (0.06)$ | $0.077 \\ (0.06)$ | $0.081 \\ (0.04)$ | $0.077 \\ (0.08)$ | $0.080 \\ (0.06)$ | $0.100 \\ (0.03)$ | $0.087 \\ (0.10)$ | $0.078 \\ (0.20)$ | $0.112 \\ (0.01)$ | $0.756 \\ (0.07)$ | $0.081 \\ (0.02)$ | $0.076 \\ (0.10)$ | $0.080 \\ (0.09)$ | $0.080 \\ (0.05)$ | $0.078 \\ (0.25)$ | $0.077 \\ (0.06)$ | $0.078 \\ (0.07)$ | $0.078 \\ (0.04)$ | $0.116 \\ (0.08)$ | $0.286 \\ (0.05)$ | $0.082 \\ (0.06)$                | $0.075 \\ (0.10)$ | $0.079 \\ (0.10)$ |
|             | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi^{i18}_{ab}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$                | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | $0.078 \\ (0.01)$ | $0.078 \\ (0.07)$ | 0.089 $(0.20)$    | $0.091 \\ (0.01)$ | $0.079 \\ (0.09)$ | $0.079 \\ (0.05)$ | 0.088 $(0.27)$    | $0.074 \\ (0.08)$ | $0.080 \\ (0.06)$ | $0.079 \\ (0.06)$ | 0.084 $(0.09)$    | $0.077 \\ (0.08)$ | $0.106 \\ (0.05)$ | $0.077 \\ (0.10)$ | $0.077 \\ (0.09)$ | 0.081 $(0.04)$    | $0.082 \\ (0.07)$ | 0.037 $(0.02)$    | 0.077 $(0.10)$    | $0.155 \\ (0.09)$ | 0.077 $(0.04)$    | 0.084 $(0.06)$    | $0.078 \\ (0.08)$ | $0.077 \\ (0.07)$ | $0.077 \\ (0.05)$ | $0.078 \\ (0.04)$ | $0.077 \\ (0.03)$ | $0.108 \\ (0.08)$                | $0.103 \\ (0.10)$ | $0.067 \\ (0.07)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\frac{(0.08)}{\phi_{bb}^{i14}}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | $0.080 \\ (0.22)$ | $0.078 \\ (0.04)$ | $0.078 \\ (0.08)$ | $0.076 \\ (0.05)$ | $0.081 \\ (0.05)$ | $0.076 \\ (0.07)$ | $0.078 \\ (0.08)$ | $0.078 \\ (0.05)$ | $0.078 \\ (0.09)$ | $0.078 \\ (0.05)$ | $0.079 \\ (0.08)$ | $0.079 \\ (0.21)$ | $0.078 \\ (0.22)$ | $0.075 \\ (0.11)$ | $0.079 \\ (0.07)$ | $0.083 \\ (0.23)$ | $0.077 \\ (0.04)$ | $0.064 \\ (0.08)$ | $0.611 \\ (0.06)$ | $0.083 \\ (0.05)$ | $0.078 \\ (0.07)$ | $0.082 \\ (0.08)$ | $0.077 \\ (0.07)$ | $0.076 \\ (0.05)$ | $0.078 \\ (0.05)$ | $0.089 \\ (0.04)$ | $0.078 \\ (0.06)$ | $0.079 \\ (0.06)$                | $0.078 \\ (0.08)$ | $0.052 \\ (0.07)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$                | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | 0.089 $(0.20)$    | $0.080 \\ (0.06)$ | $0.167 \\ (0.06)$ | $0.078 \\ (0.05)$ | $0.077 \\ (0.05)$ | 0.079 $(0.04)$    | 0.082 $(0.04)$    | $0.059 \\ (0.08)$ | 0.079 $(0.08)$    | $0.070 \\ (0.06)$ | 0.077 $(0.06)$    | 0.081 $(0.07)$    | 0.138 $(0.09)$    | $0.080 \\ (0.08)$ | 0.077 $(0.07)$    | $0.058 \\ (0.04)$ | $0.169 \\ (0.06)$ | 0.079 $(0.07)$    | 0.095 $(0.04)$    | 0.077 $(0.07)$    | 0.086 $(0.04)$    | $0.077 \\ (0.03)$ | $0.078 \\ (0.09)$ | $0.077 \\ (0.09)$ | $0.078 \\ (0.06)$ | 0.077 $(0.03)$    | $0.076 \\ (0.03)$ | 0.077 $(0.03)$                   | 0.077 $(0.09)$    | $0.079 \\ (0.03)$ |

 $\overline{For \ \phi^{ij}_{..}, \ i = DOW \ and \ j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ}$ 

Table 8: Estimated informational trading parameters for GS

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.082 \\ (0.09)$ | $0.072 \\ (0.09)$ | $0.082 \\ (0.08)$ | $0.073 \\ (0.06)$ | $0.078 \\ (0.05)$ | $0.078 \\ (0.03)$ | $0.078 \\ (0.10)$ | $0.080 \\ (0.20)$ | $0.078 \\ (0.09)$ | $0.120 \\ (0.16)$ | $0.082 \\ (0.04)$ | $0.078 \\ (0.05)$ | $0.077 \\ (0.20)$ | $0.069 \\ (0.10)$ | $0.078 \\ (0.41)$ | $0.078 \\ (0.09)$ | $0.077 \\ (0.08)$ | $0.078 \\ (0.04)$ | $0.733 \\ (0.05)$ | $0.123 \\ (0.07)$ | $0.078 \\ (0.20)$ | $0.078 \\ (0.20)$ | $0.077 \\ (0.20)$ | $0.077 \\ (0.19)$ | $0.080 \\ (0.10)$ | $0.077 \\ (0.04)$ | $0.078 \\ (0.07)$ | $0.076 \\ (0.02)$ | $0.077 \\ (0.04)$ | $0.078 \\ (0.09)$ |
|             | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi^{i25}_{ab}$ | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | 0.079 $(0.09)$    | $0.080 \\ (0.08)$ | $0.074 \\ (0.04)$ | $0.089 \\ (0.06)$ | $0.078 \\ (0.06)$ | $0.080 \\ (0.20)$ | $0.078 \\ (0.04)$ | $0.080 \\ (0.07)$ | 0.072 $(0.19)$    | $0.085 \\ (0.09)$ | 0.082 $(0.04)$    | 0.083 $(0.09)$    | $0.080 \\ (0.20)$ | $0.074 \\ (0.06)$ | $0.086 \\ (0.08)$ | $0.052 \\ (0.09)$ | $0.081 \\ (0.08)$ | $0.069 \\ (0.04)$ | $0.086 \\ (0.05)$ | $0.077 \\ (0.08)$ | $0.080 \\ (0.10)$ | $0.082 \\ (0.06)$ | 0.081<br>(0.07)   | $0.085 \\ (0.08)$ | $0.083 \\ (0.10)$ | 0.084 $(0.04)$    | $0.085 \\ (0.09)$ | 0.073 $(0.02)$    | $0.067 \\ (0.07)$ | $0.077 \\ (0.06)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | $0.077 \\ (0.04)$ | $0.068 \\ (0.09)$ | $0.083 \\ (0.07)$ | $0.077 \\ (0.05)$ | $0.082 \\ (0.23)$ | $0.068 \\ (0.05)$ | $0.100 \\ (0.08)$ | $0.082 \\ (0.07)$ | $0.083 \\ (0.10)$ | $0.108 \\ (0.09)$ | $0.083 \\ (0.21)$ | $0.110 \\ (0.25)$ | $0.075 \\ (0.07)$ | $0.081 \\ (0.08)$ | $0.079 \\ (0.08)$ | $0.082 \\ (0.03)$ | $0.139 \\ (0.04)$ | $0.086 \\ (0.08)$ | $0.111 \\ (0.04)$ | $0.593 \\ (0.16)$ | $0.078 \\ (0.04)$ | $0.102 \\ (0.09)$ | $0.058 \\ (0.07)$ | $0.083 \\ (0.09)$ | $0.078 \\ (0.09)$ | $0.078 \\ (0.11)$ | $0.077 \\ (0.21)$ | $0.069 \\ (0.08)$ | $0.086 \\ (0.07)$ | $0.083 \\ (0.09)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | 0.082 $(0.06)$    | $0.086 \\ (0.06)$ | $0.080 \\ (0.08)$ | $0.058 \\ (0.04)$ | $0.078 \\ (0.26)$ | 0.078 $(0.06)$    | $0.085 \\ (0.08)$ | 0.079 $(0.07)$    | 0.079 $(0.06)$    | 0.061 $(0.09)$    | 0.086 $(0.23)$    | $0.080 \\ (0.06)$ | 0.081 $(0.03)$    | $0.080 \\ (0.05)$ | 0.078 $(0.03)$    | $0.109 \\ (0.09)$ | 0.138 $(0.08)$    | $0.075 \\ (0.09)$ | 0.072 $(0.06)$    | 0.077 $(0.28)$    | $0.071 \\ (0.07)$ | $0.068 \\ (0.09)$ | 0.071 $(0.07)$    | 0.083 $(0.06)$    | 0.074 $(0.09)$    | 0.095 $(0.11)$    | 0.073 $(0.06)$    | 0.082 $(0.02)$    | 0.077 $(0.08)$    | 0.076<br>(0.06)   |

 $For \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = GS \ \ and \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CAT, DIS, IBM, DOW, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CAT, DIS, IBM, DOW, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CAT, DIS, IBM, DOW, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CAT, DIS, IBM, DOW, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVA, CSCO, CS$ 

Table 9: Estimated informational trading parameters for HD

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$                |
| $a_t - p_t$ | $0.072 \\ (0.24)$ | $0.073 \\ (0.20)$ | $0.078 \\ (0.29)$ | $0.077 \\ (0.06)$ | $0.083 \\ (0.08)$ | $0.079 \\ (0.08)$ | $0.074 \\ (0.07)$ | $0.077 \\ (0.04)$ | $0.128 \\ (0.05)$ | $0.077 \\ (0.10)$ | $0.072 \\ (0.20)$ | $0.059 \\ (0.06)$ | $0.080 \\ (0.02)$ | $0.079 \\ (0.04)$ | $0.084 \\ (0.06)$ | $0.073 \\ (0.03)$ | $0.081 \\ (0.10)$ | $0.078 \\ (0.20)$ | $0.077 \\ (0.07)$ | $0.079 \\ (0.06)$ | $0.699 \\ (0.09)$ | $0.139 \\ (0.08)$ | $0.086 \\ (0.05)$ | $0.080 \\ (0.05)$ | $0.084 \\ (0.10)$ | $0.086 \\ (0.10)$ | $0.082 \\ (0.08)$ | $0.076 \\ (0.06)$ | $0.089 \\ (0.08)$ | $0.091 \\ (0.05)$                |
|             | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi^{i20}_{ab}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$                |
|             | $0.075 \\ (0.06)$ | $0.079 \\ (0.10)$ | $0.080 \\ (0.05)$ | $0.082 \\ (0.08)$ | $0.079 \\ (0.07)$ | 0.082 $(0.08)$    | 0.084 $(0.09)$    | $0.077 \\ (0.05)$ | $0.080 \\ (0.07)$ | $0.071 \\ (0.10)$ | 0.082 $(0.30)$    | 0.084 $(0.08)$    | $0.081 \\ (0.05)$ | $0.073 \\ (0.03)$ | $0.080 \\ (0.07)$ | $0.077 \\ (0.05)$ | 0.083 $(0.10)$    | $0.165 \\ (0.05)$ | 0.077 $(0.09)$    | 0.072 $(0.08)$    | $0.096 \\ (0.08)$ | $0.077 \\ (0.0)4$ | $0.077 \\ (0.06)$ | 0.073 $(0.08)$    | 0.082 $(0.10)$    | $0.076 \\ (0.20)$ | $0.085 \\ (0.09)$ | $0.120 \\ (0.07)$ | 0.074 $(0.09)$    | $0.078 \\ (0.0)8$                |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\frac{(0.0)8}{\phi_{bb}^{i15}}$ |
| $p_t - b_t$ | $0.064 \\ (0.07)$ | $0.092 \\ (0.06)$ | $0.078 \\ (0.04)$ | $0.107 \\ (0.08)$ | $0.084 \\ (0.07)$ | $0.092 \\ (0.04)$ | $0.057 \\ (0.08)$ | $0.087 \\ (0.04)$ | $0.179 \\ (0.09)$ | $0.157 \\ (0.0)$  | $0.104 \\ (0.20)$ | $0.092 \\ (0.03)$ | $0.077 \\ (0.06)$ | $0.127 \\ (0.20)$ | $0.077 \\ (0.03)$ | $0.138 \\ (0.08)$ | $0.117 \\ (0.06)$ | $0.047 \\ (0.07)$ | $0.077 \\ (0.08)$ | $0.022 \\ (0.05)$ | $0.027 \\ (0.06)$ | $0.820 \\ (0.07)$ | $0.149 \\ (0.05)$ | $0.167 \\ (0.09)$ | $0.167 \\ (0.0)$  | $0.109 \\ (0.01)$ | $0.122 \\ (0.08)$ | -0.002 $(0.20)$   | $0.055 \\ (0.06)$ | $0.106 \\ (0.08)$                |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$                |
|             | $0.090 \\ (0.09)$ | $0.089 \\ (0.06)$ | $0.118 \\ (0.06)$ | $0.056 \\ (0.09)$ | 0.097 $(0.08)$    | $0.117 \\ (0.07)$ | $0.167 \\ (0.09)$ | $0.042 \\ (0.06)$ | $0.098 \\ (0.09)$ | $0.145 \\ (0.0)$  | $0.109 \\ (0.01)$ | $0.106 \\ (0.06)$ | 0.057 $(0.20)$    | $0.128 \\ (0.06)$ | 0.087 $(0.08)$    | $0.120 \\ (0.05)$ | 0.127 $(0.06)$    | $0.116 \\ (0.08)$ | $0.097 \\ (0.07)$ | 0.037 $(0.05)$    | $0.155 \\ (0.05)$ | $0.110 \\ (0.08)$ | $0.007 \\ (0.04)$ | 0.157 $(0.09)$    | 0.087 $(0.0)$     | $0.108 \\ (0.10)$ | $0.107 \\ (0.09)$ | $0.026 \\ (0.10)$ | 0.112 $(0.08)$    | 0.077 $(0.09)$                   |

Table 10: Estimated informational trading parameters for KO

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                      |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$    | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$                | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.086 \\ (0.07)$ | $0.081 \\ (0.07)$ | $0.073 \\ (0.08)$ | $0.085 \\ (0.07)$ | $0.085 \\ (0.09)$ | $0.080 \\ (0.04)$ | $0.078 \\ (0.04)$ | $0.085 \\ (0.03)$ | $0.080 \\ (0.04)$ | $0.080 \\ (0.08)$ | $0.085 \\ (0.10)$ | $0.114 \\ (0.09)$ | $0.077 \\ (0.07)$ | $0.077 \\ (0.07)$ | $0.085 \\ (0.04)$ | $0.083 \\ (0.08)$ | $0.081 \\ (0.05)$ | $0.084 \\ (0.07)$ | $0.078 \\ (0.08)$ | $0.078 \\ (0.09)$    | $0.085 \\ (0.04)$ | $0.077 \\ (0.05)$ | $0.947 \\ (0.07)$ | $0.082 \\ (0.05)$ | $0.081 \\ (0.08)$ | $0.082 \\ (0.01)$ | $0.076 \\ (0.09)$ | $0.089 \\ (0.08)$                | $0.091 \\ (0.04)$ | $0.075 \\ (0.08)$ |
|             | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$    | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi^{i28}_{ab}$ | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$                | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | $0.079 \\ (0.07)$ | $0.080 \\ (0.05)$ | $0.082 \\ (0.07)$ | $0.079 \\ (0.09)$ | 0.082 $(0.09)$    | 0.084 $(0.09)$    | 0.077 $(0.04)$    | $0.080 \\ (0.08)$ | $0.071 \\ (0.06)$ | $0.082 \\ (0.09)$ | 0.084 $(0.10)$    | $0.081 \\ (0.05)$ | 0.073 $(0.03)$    | $0.080 \\ (0.04)$ | $0.077 \\ (0.05)$ | 0.083 $(0.04)$    | $0.165 \\ (0.08)$ | $0.077 \\ (0.09)$ | $0.072 \\ (0.07)$ | $0.096 \\ (0.09)$    | 0.077 $(0.10)$    | $0.082 \\ (0.09)$ | 0.081 $(0.08)$    | $0.077 \\ (0.08)$ | $0.076 \\ (0.10)$ | $0.085 \\ (0.01)$ | $0.120 \\ (0.07)$ | $0.074 \\ (0.06)$                | $0.078 \\ (0.09)$ | 0.077 $(0.08)$    |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{(0.09)}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\frac{(0.06)}{\phi_{bb}^{i14}}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | $0.071 \\ (0.21)$ | $0.085 \\ (0.08)$ | $0.074 \\ (0.20)$ | $0.077 \\ (0.08)$ | $0.083 \\ (0.08)$ | $0.081 \\ (0.02)$ | $0.080 \\ (0.06)$ | $0.071 \\ (0.04)$ | $0.081 \\ (0.10)$ | $0.077 \\ (0.06)$ | $0.080 \\ (0.04)$ | $0.071 \\ (0.06)$ | $0.082 \\ (0.03)$ | $0.076 \\ (0.07)$ | $0.086 \\ (0.09)$ | $0.107 \\ (0.20)$ | $0.111 \\ (0.06)$ | $0.109 \\ (0.08)$ | $0.079 \\ (0.09)$ | $0.105 \\ (0.05)$    | $0.082 \\ (0.03)$ | $0.077 \\ (0.08)$ | $0.061 \\ (0.05)$ | $0.776 \\ (0.04)$ | $0.040 \\ (0.07)$ | $0.121 \\ (0.04)$ | $0.080 \\ (0.06)$ | $0.072 \\ (0.08)$                | $0.100 \\ (0.06)$ | $0.089 \\ (0.03)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$    | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$                | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.078 \\ (0.30)$ | $0.077 \\ (0.04)$ | $0.040 \\ (0.09)$ | $0.078 \\ (0.05)$ | 0.079 $(0.04)$    | $0.080 \\ (0.06)$ | 0.074 $(0.04)$    | 0.079 $(0.07)$    | $0.080 \\ (0.03)$ | 0.073 $(0.30)$    | 0.085 $(0.03)$    | $0.071 \\ (0.08)$ | 0.084 $(0.06)$    | 0.085 $(0.08)$    | $0.082 \\ (0.06$  | 0.082 $(0.10)$    | $0.079 \\ (0.03)$ | $0.085 \\ (0.05)$ | 0.086 $(0.07)$    | 0.077 $(0.03)$       | 0.079 $(0.05)$    | 0.081 $(0.02)$    | 0.124 $(0.08)$    | 0.074 $(0.20)$    | 0.078 $(0.10)$    | 0.082 $(0.02)$    | 0.084 $(0.04)$    | 0.079 $(0.03)$                   | $0.077 \\ (0.06)$ | 0.077 $(0.03)$    |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = KO \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 11: Estimated informational trading parameters for JPM

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.079 \\ (0.03)$ | $0.076 \\ (0.06)$ | $0.077 \\ (0.10)$ | $0.071 \\ (0.30)$ | $0.080 \\ (0.08)$ | $0.073 \\ (0.03)$ | $0.074 \\ (0.21)$ | $0.081 \\ (0.09)$ | $0.077 \\ (0.09)$ | $0.084 \\ (0.15)$ | $0.077 \\ (0.08)$ | $0.084 \\ (0.09)$ | $0.081 \\ (0.03)$ | $0.082 \\ (0.02)$ | $0.073 \\ (0.06)$ | $0.070 \\ (0.07)$ | $0.080 \\ (0.10)$ | $0.099 \\ (0.20)$ | $0.089 \\ (0.09)$ | $0.082 \\ (0.05)$ | $0.077 \\ (0.23)$ | $0.080 \\ (0.09)$ | -0.002 (0.09)     | $0.767 \\ (0.18)$ | $0.080 \\ (0.09)$ | $0.076 \\ (0.05)$ | $0.080 \\ (0.20)$ | $0.086 \\ (0.02)$ |                   |                   |
|             | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi^{i18}_{ab}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi^{i28}_{ab}$ | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | $0.057 \\ (0.05)$ | $0.082 \\ (0.03)$ | $0.065 \\ (0.10)$ | $0.081 \\ (0.05)$ | $0.073 \\ (0.06)$ | 0.083 $(0.04)$    | 0.079 $(0.27)$    | $0.080 \\ (0.06)$ | $0.078 \\ (0.09)$ | 0.073 $(0.27)$    | 0.083 $(0.08)$    | $0.058 \\ (0.03)$ | 0.081 $(0.20)$    | $0.100 \\ (0.04)$ | $0.081 \\ (0.05)$ | $0.082 \\ (0.07)$ | $0.072 \\ (0.10)$ | $0.080 \\ (0.05)$ | $0.076 \\ (0.07)$ | 0.083 $(0.03)$    | 0.083 $(0.31)$    | $0.076 \\ (0.05)$ | $0.082 \\ (0.09)$ | 0.072 $(0.32)$    | 0.083 $(0.06)$    | $0.085 \\ (0.03)$ | $0.085 \\ (0.05)$ | $0.073 \\ (0.03)$ |                   |                   |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | $0.080 \\ (0.06)$ | $0.072 \\ (0.03)$ | $0.073 \\ (0.08)$ | $0.078 \\ (0.05)$ | $0.077 \\ (0.08)$ | $0.083 \\ (0.01)$ | $0.079 \\ (0.07)$ | $0.074 \\ (0.08)$ | $0.077 \\ (0.05)$ | $0.128 \\ (0.10)$ | $0.078 \\ (0.08)$ | $0.077 \\ (0.05)$ | $0.075 \\ (0.05)$ | $0.080 \\ (0.09)$ | $0.078 \\ (0.06)$ | $0.089 \\ (0.06)$ | $0.078 \\ (0.06)$ | $0.077 \\ (0.08)$ | $0.077 \\ (0.05)$ | $0.077 \\ (0.09)$ | $0.074 \\ (0.20)$ | $0.077 \\ (0.06)$ | $0.091 \\ (0.07)$ | $0.078 \\ (0.03)$ | $0.079 \\ (0.30)$ | 0.827 $(0.09)$    | $0.073 \\ (0.04)$ | $0.083 \\ (0.06)$ | $0.073 \\ (0.09)$ | $0.082 \\ (0.06)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | 0.107 $(0.08)$    | $0.079 \\ (0.07)$ | $0.090 \\ (0.08)$ | $0.059 \\ (0.07)$ | 0.077 $(0.07)$    | 0.083 $(0.30)$    | 0.084 $(0.06)$    | 0.073 $(0.07)$    | 0.081 $(0.06)$    | 0.073 $(0.07)$    | $0.078 \\ (0.05)$ | $0.078 \\ (0.03)$ | $0.078 \\ (0.07)$ | 0.085 $(0.09)$    | 0.083 $(0.03)$    | 0.083 $(0.05)$    | 0.079 $(0.08)$    | 0.086 $(0.08)$    | $0.072 \\ (0.07)$ | $0.080 \\ (0.09)$ | $0.078 \\ (0.16)$ | $0.071 \\ (0.09)$ | $0.071 \\ (0.09)$ | 0.078 $(0.08)$    | 0.082 $(0.08)$    | 0.082 $(0.08)$    | $0.071 \\ (0.06)$ | $0.085 \\ (0.07)$ | $0.085 \\ (0.09)$ | $0.081 \\ (0.02)$ |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = \textit{JPM} \ \textit{and} \quad j = \textit{AAPL}, \textit{CVX}, \textit{AXP}, \textit{BA}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{IBM}, \textit{DOW}, \textit{GS}, \textit{HD}, \textit{KO}, \textit{INTC}, \textit{JNJ}, \textit{MMM}, \textit{MCD}, \textit{NKE}, \textit{MRK}, \textit{MSFT}, \textit{WBA}, \textit{UTX}, \textit{PG}, \textit{PFE}, \textit{TRV}, \textit{XOM}, \textit{WMT}, \textit{UNH}, \textit{V}, \textit{VZ}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{IBM}, \textit{DOW}, \textit{GS}, \textit{HD}, \textit{KO}, \textit{INTC}, \textit{JNJ}, \textit{MMM}, \textit{MCD}, \textit{NKE}, \textit{MRK}, \textit{MSFT}, \textit{WBA}, \textit{UTX}, \textit{PG}, \textit{PFE}, \textit{TRV}, \textit{XOM}, \textit{WMT}, \textit{UNH}, \textit{V}, \textit{VZ}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{CSCO}, \textit{CAT}, \textit{CSCO}, \textit{CAT}, \textit{DIS}, \textit{CSCO}, \textit{CAT}, \textit{CSCO},$ 

Table 12: Estimated informational trading parameters for INTC

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ |
| $a_t - p_t$ | $0.083 \\ (0.05)$ | $0.077 \\ (0.08)$ | $0.072 \\ (0.04)$ | $0.077 \\ (0.20)$ | $0.059 \\ (0.10)$ | $0.080 \\ (0.07)$ | $0.070 \\ (0.05)$ | $0.073 \\ (0.08)$ | $0.078 \\ (0.05)$ | $0.077 \\ (0.08)$ | $0.083 \\ (0.03)$ | $0.079 \\ (0.08)$ | $0.074 \\ (0.09)$ | $0.077 \\ (0.08)$ | $0.128 \\ (0.09)$ | $0.084 \\ (0.05)$ | $0.073 \\ (0.08)$ | $0.081 \\ (0.04)$ | $0.078 \\ (0.03)$ | $0.085 \\ (0.10)$ | $0.071 \\ (0.06)$ | $0.083 \\ (0.07)$ | $0.079 \\ (0.08)$ | $0.086 \\ (0.07)$ | $0.080 \\ (0.04)$ | $0.078 \\ (0.05)$ | $0.779 \\ (0.07)$ | $0.082 \\ (0.08)$ | $0.076 \\ (0.05)$ | $0.089 \\ (0.09)$ |
|             | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi^{i20}_{ab}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi^{i28}_{ab}$ | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | 0.091 $(0.05)$    | $0.075 \\ (0.08)$ | 0.079 $(0.04)$    | $0.080 \\ (0.03)$ | 0.082 $(0.10)$    | $0.079 \\ (0.08)$ | 0.082 $(0.08)$    | 0.084 $(0.08)$    | $0.077 \\ (0.07)$ | $0.080 \\ (0.09)$ | $0.071 \\ (0.05)$ | 0.082 $(0.08)$    | 0.084 $(0.03)$    | 0.081 $(0.09)$    | 0.073 $(0.02)$    | $0.080 \\ (0.05)$ | 0.077 $(0.08)$    | 0.083 $(0.04)$    | $0.165 \\ (02.0)$ | 0.077 $(0.10)$    | $0.072 \\ (0.05)$ | $0.096 \\ (0.04)$ | 0.077 $(0.08)$    | 0.082 $(0.05)$    | $0.076 \\ (0.03)$ | $0.085 \\ (0.04)$ | $0.120 \\ (0.09)$ | 0.074 $(0.02)$    | $0.078 \\ (0.09)$ | 0.077 $(0.10)$    |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ |
| $p_t - b_t$ | $0.080 \\ (0.08)$ | $0.083 \\ (0.04)$ | $0.054 \\ (0.09)$ | $0.077 \\ (0.06)$ | $0.086 \\ (0.04)$ | $0.073 \\ (0.10)$ | $0.083 \\ (0.21)$ | $0.084 \\ (0.09)$ | $0.079 \\ (0.07)$ | $0.071 \\ (0.09)$ | $0.081 \\ (0.10)$ | $0.085 \\ (0.04)$ | $0.075 \\ (0.09)$ | $0.085 \\ (0.14)$ | $0.076 \\ (0.22)$ | $0.082 \\ (0.08)$ | $0.081 \\ (0.06)$ | $0.085 \\ (0.09)$ | $0.068 \\ (0.06)$ | $0.082 \\ (0.07)$ | $0.077 \\ (0.10)$ | $0.075 \\ (0.17)$ | $0.078 \\ (0.09)$ | $0.080 \\ (0.09)$ | $0.082 \\ (0.03)$ | $0.082 \\ (0.06)$ | $0.081 \\ (0.05)$ | $0.667 \\ (0.09)$ | $0.077 \\ (0.24)$ | $0.078 \\ (0.15)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.078 \\ (0.08)$ | $0.080 \\ (0.08)$ | $0.078 \\ (0.06)$ | $0.082 \\ (0.07)$ | $0.082 \\ (0.09)$ | $0.079 \\ (0.05)$ | $0.068 \\ (0.18)$ | $0.086 \\ (0.06)$ | $0.077 \\ (0.09)$ | $0.079 \\ (0.20)$ | 0.081 $(0.06)$    | $0.082 \\ (0.07)$ | $0.074 \\ (0.08)$ | $0.078 \\ (0.26)$ | $0.082 \\ (0.17)$ | $0.069 \\ (0.08)$ | $0.079 \\ (0.09)$ | $0.076 \\ (0.20)$ | $0.079 \\ (0.08)$ | $0.072 \\ (0.08)$ | $0.082 \\ (0.23)$ | $0.079 \\ (0.06)$ | $0.079 \\ (0.05)$ | 0.081 $(0.09)$    | $0.081 \\ (0.10)$ | $0.076 \\ (0.33)$ | $0.084 \\ (0.07)$ | $0.085 \\ (0.03)$ | $0.077 \\ (0.21)$ | $0.078 \\ (0.09)$ |

Table 13: Estimated informational trading parameters for JNJ

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     |
| $a_t - p_t$ | $0.081 \\ (0.26)$ | $0.075 \\ (0.05)$ | $0.074 \\ (0.08)$ | $0.082 \\ (0.08)$ | $0.085 \\ (0.04)$ | $0.083 \\ (0.07)$ | $0.080 \\ (0.08)$ | $0.086 \\ (0.05)$ | $0.079 \\ (0.08)$ | $0.076 \\ (0.06)$ | $0.079 \\ (0.20)$ | $0.077 \\ (0.06)$ | $0.077 \\ (0.09)$ | $0.084 \\ (0.09)$ | $0.077 \\ (0.06)$ | $0.074 \\ (0.20)$ | $0.077 \\ (0.05)$ | $0.077 \\ (0.07)$ | $0.076 \\ (0.08)$ | $0.077 \\ (0.04)$ | $0.074 \\ (0.09)$ | $0.079 \\ (0.08)$ | $0.082 \\ (0.05)$ | $0.083 \\ (0.08)$ | $0.084 \\ (0.08)$ | $0.069 \\ (0.08)$ | $0.077 \\ (0.07)$ | $0.083 \\ (0.09)$ | $0.780 \\ (0.09)$ | $0.161 \\ (0.06)$ |
|             | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | $0.177 \\ (0.05)$ | $0.082 \\ (0.05)$ | $0.077 \\ (0.06)$ | $0.081 \\ (0.08)$ | $0.072 \\ (0.04)$ | $0.085 \\ (0.03)$ | $0.055 \\ (0.08)$ | $0.078 \\ (0.05)$ | $0.080 \\ (0.09)$ | $0.082 \\ (0.07)$ | 0.085 $(0.11)$    | $0.082 \\ (0.06)$ | $0.086 \\ (0.08)$ | 0.084 $(0.08)$    | $0.070 \\ (0.07)$ | $0.078 \\ (0.08)$ | $0.080 \\ (0.05)$ | $0.075 \\ (0.05)$ | $0.079 \\ (0.08)$ | 0.082 $(0.04)$    | $0.080 \\ (0.09)$ | $0.073 \\ (0.08)$ | $0.077 \\ (0.05)$ | $0.065 \\ (0.04)$ | $0.085 \\ (0.04)$ | $0.079 \\ (0.21)$ | $0.068 \\ (0.06)$ | $0.077 \\ (0.07)$ | $0.082 \\ (0.03)$ | $0.077 \\ (0.07)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     |
| $p_t - b_t$ | $0.077 \\ (0.26)$ | $0.079 \\ (0.08)$ | $0.071 \\ (0.06)$ | $0.064 \\ (0.05)$ | $0.107 \\ (0.04)$ | $0.042 \\ (0.04)$ | $0.109 \\ (0.08)$ | $0.076 \\ (0.08)$ | $0.078 \\ (0.05)$ | $0.088 \\ (0.30)$ | $0.074 \\ (0.02)$ | $0.077 \\ (0.06)$ | $0.080 \\ (0.10)$ | $0.075 \\ (0.09)$ | $0.081 \\ (0.04)$ | $0.078 \\ (0.16)$ | $0.094 \\ (0.08)$ | $0.096 \\ (0.06)$ | $0.067 \\ (0.05)$ | $0.079 \\ (0.04)$ | $0.077 \\ (0.08)$ | $0.074 \\ (0.08)$ | $0.083 \\ (0.03)$ | $0.078 \\ (0.06)$ | $0.075 \\ (0.20)$ | $0.095 \\ (0.02)$ | $0.078 \\ (0.07)$ | $0.077 \\ (0.10)$ | $0.187 \\ (0.09)$ | $0.395 \\ (0.03)$ |
|             | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.105 \\ (0.32)$ | 0.113 $(0.08)$    | $0.032 \\ (0.07)$ | $0.103 \\ (0.05)$ | $0.076 \\ (0.04)$ | $0.079 \\ (0.06)$ | $0.075 \\ (0.08)$ | $0.077 \\ (0.07)$ | 0.094 $(0.07)$    | $0.055 \\ (0.05)$ | $0.098 \\ (0.05)$ | $0.095 \\ (0.03)$ | 0.087 $(0.10)$    | $0.076 \\ (0.07)$ | 0.077 $(0.04)$    | 0.087 $(0.20)$    | 0.077 $(0.08)$    | $0.095 \\ (0.08)$ | $0.078 \\ (0.05)$ | 0.085 $(0.04)$    | 0.078 $(0.08)$    | 0.077 $(0.03)$    | 0.079 $(0.04)$    | 0.078 $(0.03)$    | 0.077 $(0.02)$    | 0.082 $(0.05)$    | 0.081 $(0.07)$    | $0.078 \\ (0.10)$ | $0.076 \\ (0.09)$ | $0.076 \\ (0.06)$ |

 $For \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = JNJ \ and \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVD, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVD, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ, AVD, CSCO, CS$ 

Table 14: Estimated informational trading parameters for MMM

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.082 \\ (0.11)$ | $0.074 \\ (0.09)$ | $0.069 \\ (0.10)$ | $0.078 \\ (0.03)$ | $0.078 \\ (0.05)$ | $0.089 \\ (0.03)$ | $0.077 \\ (0.08)$ | $0.081 \\ (0.08)$ | $0.066 \\ (0.03)$ | $0.092 \\ (0.08)$ | $0.077 \\ (0.04)$ | $0.077 \\ (0.07)$ | $0.078 \\ (0.08)$ | $0.076 \\ (0.09)$ | $0.070 \\ (0.07)$ | $0.078 \\ (0.10)$ | $0.117 \\ (0.05)$ | $0.078 \\ (0.10)$ | $0.077 \\ (0.06)$ | $0.081 \\ (0.05)$ | $0.078 \\ (0.06)$ | $0.065 \\ (0.08)$ | $0.079 \\ (0.07)$ | $0.080 \\ (0.05)$ | $0.074 \\ (0.06)$ | $0.056 \\ (0.07)$ | $0.077 \\ (0.09)$ | $0.082 \\ (0.07)$ | $0.082 \\ (0.08)$ | $0.162 \\ (0.06)$ |
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi^{i20}_{ab}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | $0.993 \\ (0.06)$ | $0.076 \\ (0.05)$ | $0.081 \\ (0.07)$ | $0.078 \\ (0.07)$ | $0.080 \\ (0.05)$ | $0.076 \\ (0.08)$ | $0.083 \\ (0.08)$ | $0.086 \\ (0.09)$ | $0.080 \\ (0.07)$ | $0.075 \\ (0.08)$ | $0.079 \\ (0.05)$ | $0.083 \\ (0.08)$ | $0.072 \\ (0.07)$ | $0.022 \\ (0.03)$ | $0.081 \\ (0.07)$ | 0.127 $(0.08)$    | $0.078 \\ (0.20)$ | 0.083 $(0.21)$    | $0.073 \\ (0.08)$ | $0.080 \\ (0.05)$ | $0.074 \\ (0.09)$ | $0.080 \\ (0.08)$ | -0.005 $(0.05)$   | $0.077 \\ (0.07)$ | $0.099 \\ (0.04)$ | $0.106 \\ (0.06)$ | $0.078 \\ (0.04)$ | $0.086 \\ (0.07)$ | $0.077 \\ (0.04)$ | $0.077 \\ (0.06)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.076 \\ (0.09)$ | $0.074 \\ (0.07)$ | $0.086 \\ (0.07)$ | $0.077 \\ (0.04)$ | $0.085 \\ (0.04)$ | $0.097 \\ (0.05)$ | $0.079 \\ (0.08)$ | $0.077 \\ (0.01)$ | $0.089 \\ (0.06)$ | $0.077 \\ (0.20)$ | $0.097 \\ (0.06)$ | $0.076 \\ (0.07)$ | $0.077 \\ (0.01)$ | $0.075 \\ (0.06)$ | $0.084 \\ (0.08)$ | $0.078 \\ (0.09)$ | $0.045 \\ (0.05)$ | $0.080 \\ (0.03)$ | $0.085 \\ (0.04)$ | $0.079 \\ (0.06)$ | $0.071 \\ (0.05)$ | $0.081 \\ (0.08)$ | $0.081 \\ (0.06)$ | $0.077 \\ (0.04)$ | $0.078 \\ (0.10)$ | $0.077 \\ (0.05)$ | $0.074 \\ (0.08)$ | $0.077 \\ (0.03)$ | $0.079 \\ (0.07)$ | $0.108 \\ (0.07)$ |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.147 \\ (0.04)$ | 0.844 $(0.09)$    | $0.086 \\ (0.08)$ | $0.071 \\ (0.04)$ | $0.107 \\ (0.03)$ | $0.079 \\ (0.05)$ | $0.075 \\ (0.08)$ | $0.098 \\ (0.20)$ | $0.099 \\ (0.04)$ | $0.056 \\ (0.10)$ | $0.078 \\ (0.07)$ | $0.080 \\ (0.08)$ | $0.075 \\ (0.06)$ | 0.138 $(0.08)$    | $0.047 \\ (0.16)$ | $0.102 \\ (0.06)$ | $0.096 \\ (0.04)$ | $0.085 \\ (0.04)$ | $0.082 \\ (0.04)$ | $0.080 \\ (0.08)$ | $0.078 \\ (0.05)$ | $0.076 \\ (0.08)$ | $0.081 \\ (0.05)$ | $0.074 \\ (0.04)$ | $0.082 \\ (0.04)$ | $0.077 \\ (0.07)$ | $0.077 \\ (0.09)$ | $0.077 \\ (0.04)$ | $0.076 \\ (0.09)$ | $0.080 \\ (0.28)$ |

Table 15: Estimated informational trading parameters for MCD

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^{i2}_{aa}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.084 \\ (0.04)$ | $0.081 \\ (0.05)$ | $0.075 \\ (0.07)$ | $0.074 \\ (0.09)$ | $0.082 \\ (0.28)$ | $0.085 \\ (0.07)$ | $0.071 \\ (0.05)$ | $0.080 \\ (0.08)$ | $0.068 \\ (0.05)$ | $0.079 \\ (0.06)$ | $0.076 \\ (0.08)$ | $0.079 \\ (0.20)$ | $0.083 \\ (0.06)$ | $0.069 \\ (0.09)$ | $0.071 \\ (0.05)$ | $0.082 \\ (0.04)$ | $0.085 \\ (0.05)$ | $0.067 \\ (0.09)$ | $0.073 \\ (0.07)$ | $0.077 \\ (0.08)$ | $0.074 \\ (0.07)$ | $0.077 \\ (0.05)$ | $0.077 \\ (0.08)$ | $0.076 \\ (0.05)$ | $0.077 \\ (0.07)$ | $0.074 \\ (0.09)$ | $0.079 \\ (0.23)$ | $0.082 \\ (0.06)$ | $0.083 \\ (0.08)$ | $0.084 \\ (0.05)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$ | $\phi_{ab}^{i30}$ |
|             | 0.082 $(0.04)$    | $0.077 \\ (0.05)$ | $0.158 \\ (0.08)$ | $0.072 \\ (0.03)$ | $0.805 \\ (0.10)$ | $0.055 \\ (0.04)$ | $0.078 \\ (0.05)$ | $0.080 \\ (0.08)$ | $0.082 \\ (0.05)$ | $0.085 \\ (0.07)$ | $0.082 \\ (0.09)$ | $0.086 \\ (0.27)$ | 0.084 $(0.07)$    | 0.083 $(0.09)$    | $0.068 \\ (0.04)$ | $0.077 \\ (0.04)$ | $0.082 \\ (0.05)$ | $0.073 \\ (0.06)$ | $0.070 \\ (0.20)$ | $0.078 \\ (0.07)$ | $0.080 \\ (0.07)$ | $0.075 \\ (0.05)$ | $0.079 \\ (0.08)$ | $0.082 \\ (0.05)$ | $0.080 \\ (0.08)$ | $0.073 \\ (0.09)$ | $0.110 \\ (0.29)$ | $0.065 \\ (0.08)$ | $0.085 \\ (0.05)$ | $0.079 \\ (0.04)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.064 \\ (0.06)$ | $0.107 \\ (0.08)$ | $0.042 \\ (0.01)$ | $0.109 \\ (0.09)$ | $0.076 \\ (0.04)$ | $0.078 \\ (0.07)$ | $0.087 \\ (0.20)$ | $0.076 \\ (0.08)$ | $0.137 \\ (0.04)$ | $0.076 \\ (0.40)$ | $0.087 \\ (0.07)$ | $0.076 \\ (0.03)$ | $0.095 \\ (0.07)$ | $0.078 \\ (0.09)$ | $0.068 \\ (0.04)$ | $0.079 \\ (0.07)$ | $0.078 \\ (0.09)$ | $0.088 \\ (0.10)$ | $0.074 \\ (0.09)$ | $0.078 \\ (0.04)$ | $0.773 \\ (0.06)$ | $0.079 \\ (0.05)$ | $0.071 \\ (0.08)$ | $0.074 \\ (0.04)$ | $0.083 \\ (0.06)$ | $0.078 \\ (0.07)$ | $0.075 \\ (0.05)$ | $0.095 \\ (0.06)$ | $0.078 \\ (0.01)$ | $0.075 \\ (0.03)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.080 \\ (0.07)$ | $0.095 \\ (0.08)$ | $0.150 \\ (0.01)$ | $0.082 \\ (0.09)$ | $0.081 \\ (0.06)$ | $0.078 \\ (0.08)$ | $0.074 \\ (0.05)$ | $0.075 \\ (0.08)$ | $0.104 \\ (0.04)$ | 0.081 $(0.06)$    | $0.078 \\ (0.07)$ | $0.094 \\ (0.05)$ | $0.096 \\ (0.09)$ | $0.067 \\ (0.01)$ | $0.079 \\ (0.06)$ | $0.077 \\ (0.08)$ | -0.034 (0.03)     | $0.702 \\ (0.10)$ | $0.105 \\ (0.09)$ | 0.113 $(0.06)$    | $0.032 \\ (0.08)$ | $0.103 \\ (0.10)$ | $0.076 \\ (0.08)$ | $0.079 \\ (0.04)$ | $0.075 \\ (0.07)$ | $0.077 \\ (0.03)$ | $0.094 \\ (0.06)$ | $0.055 \\ (0.08)$ | 0.098 $(0.10)$    | $0.071 \\ (0.05)$ |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = MCD \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 16: Estimated informational trading parameters for NKE

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.085 \\ (0.09)$ | $0.065 \\ (0.06)$ | $0.067 \\ (0.05)$ | $0.073 \\ (0.08)$ | $0.077 \\ (0.07)$ | $0.074 \\ (0.06)$ | $0.077 \\ (0.08)$ | $0.077 \\ (0.01)$ | $0.076 \\ (0.33)$ | $0.084 \\ (0.20)$ | $0.081 \\ (0.07)$ | $0.075 \\ (0.06)$ | $0.074 \\ (0.08)$ | $0.082 \\ (0.03)$ | $0.085 \\ (0.08)$ | $0.080 \\ (0.08)$ | $0.068 \\ (0.06)$ | $0.079 \\ (0.03)$ | $0.076 \\ (0.08)$ | $0.076 \\ (0.08)$ | $0.080 \\ (0.05)$ | $0.075 \\ (0.08)$ | $0.798 \\ (0.01)$ | $0.072 \\ (0.25)$ | $0.080 \\ (0.06)$ | $0.079 \\ (0.07)$ | $0.083 \\ (0.07)$ | $0.069 \\ (0.09)$ | $0.086 \\ (0.05)$ | $0.084 \\ (0.07)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi^{i20}_{ab}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | 0.083 $(0.09)$    | $0.068 \\ (0.08)$ | $0.077 \\ (0.05)$ | 0.082 $(0.08)$    | $0.081 \\ (0.09)$ | $0.150 \\ (0.07)$ | $0.042 \\ (0.09)$ | $0.110 \\ (0.01)$ | $0.065 \\ (0.21)$ | $0.085 \\ (0.06)$ | $0.079 \\ (0.03)$ | $0.077 \\ (0.06)$ | $0.071 \\ (0.08)$ | $0.082 \\ (0.06)$ | $0.077 \\ (0.03)$ | $0.074 \\ (0.08)$ | 0.079 $(0.04)$    | $0.082 \\ (0.07)$ | 0.083 $(0.08)$    | 0.084 $(0.03)$    | 0.082 $(0.06)$    | $0.077 \\ (0.08)$ | 0.081 $(0.10)$    | $0.072 \\ (0.22)$ | $0.085 \\ (0.07)$ | $0.055 \\ (0.06)$ | $0.078 \\ (0.08)$ | $0.080 \\ (0.03)$ | $0.082 \\ (0.07)$ | $0.085 \\ (0.08)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.065 \\ (0.04)$ | $0.087 \\ (0.06)$ | $0.077 \\ (0.03)$ | $0.077 \\ (0.06)$ | $0.076 \\ (0.08)$ | $0.078 \\ (0.03)$ | $0.085 \\ (0.09)$ | $0.120 \\ (0.08)$ | $0.044 \\ (0.06)$ | $0.076 \\ (0.30)$ | $0.077 \\ (0.10)$ | $0.078 \\ (0.07)$ | $0.075 \\ (0.06)$ | $0.078 \\ (0.09)$ | $0.073 \\ (0.08)$ | $0.076 \\ (0.06)$ | $0.078 \\ (0.07)$ | $0.076 \\ (0.06)$ | $0.116 \\ (0.08)$ | $0.068 \\ (0.08)$ | $0.082 \\ (0.03)$ | $0.079 \\ (0.09)$ | $0.075 \\ (0.08)$ | $0.857 \\ (0.08)$ | $0.074 \\ (0.05)$ | $0.078 \\ (0.10)$ | $0.077 \\ (0.08)$ | $0.079 \\ (0.07)$ | $0.080 \\ (0.09)$ | $0.075 \\ (0.09)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.078 \\ (0.08)$ | $0.089 \\ (0.02)$ | $0.078 \\ (0.08)$ | -0.012 (0.06)     | $0.082 \\ (0.09)$ | $0.119 \\ (0.05)$ | $0.146 \\ (0.03)$ | $0.079 \\ (0.08)$ | $0.156 \\ (0.09)$ | $0.077 \\ (0.06)$ | $0.070 \\ (0.10)$ | $0.078 \\ (0.08)$ | $0.070 \\ (0.08)$ | $0.078 \\ (0.05)$ | $0.076 \\ (0.08)$ | $0.089 \\ (0.05)$ | 0.091 $(0.06)$    | $0.075 \\ (0.06)$ | 0.079 $(0.06)$    | $0.066 \\ (0.09)$ | $0.080 \\ (0.06)$ | $0.080 \\ (0.05)$ | $0.075 \\ (0.08)$ | 0.084 $(0.03)$    | $0.077 \\ (0.70)$ | $0.106 \\ (0.10)$ | $0.077 \\ (0.09)$ | $0.077 \\ (0.05)$ | $0.078 \\ (0.05)$ | 0.081<br>(0.09)   |

Table 17: Estimated informational trading parameters for MRK

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi^{i6}_{ab}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$                                        | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.054 \\ (0.08)$ | $0.076 \\ (0.08)$ | $0.087 \\ (0.11)$ | $0.079 \\ (0.20)$ | $0.093 \\ (0.05)$ | $0.077 \\ (0.10)$ | $0.088 \\ (0.02)$ | $0.089 \\ (0.05)$ | $0.080 \\ (0.11)$ | $0.083 \\ (0.10)$ | $0.078 \\ (0.06)$ | $0.015 \\ (0.0)$  | $0.086 \\ (0.08)$ | $0.110 \\ (0.06)$ | $0.063 \\ (0.32)$ | $0.087 \\ (0.06)$ | $0.073 \\ (0.08)$ | $0.078 \\ (0.11)$ | $0.082 \\ (0.20)$                                        | $0.056 \\ (0.05)$ | $0.078 \\ (0.08)$ | $0.080 \\ (0.02)$ | $0.080 \\ (0.05)$ | $0.084 \\ (0.15)$ | $0.075 \\ (0.30)$ | $0.079 \\ (0.06)$ | $0.061 \\ (0.0)$  | $0.088 \\ (0.08)$ | $0.079 \\ (0.06)$ | $0.079 \\ (0.21)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$                                        | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | 0.082 $(0.08)$    | $0.054 \\ (0.08)$ | 0.089 $(0.13)$    | 0.084 $(0.02)$    | $0.080 \\ (0.08)$ | $0.079 \\ (0.08)$ | $0.136 \\ (0.04)$ | -0.005 $(0.06)$   | $0.076 \\ (0.15)$ | $0.087 \\ (0.05)$ | $0.079 \\ (0.07)$ | 0.093 $(0.0)$     | 0.089 $(0.09)$    | $0.080 \\ (0.08)$ | 0.078 $(0.22)$    | $0.066 \\ (0.04)$ | $0.202 \\ (0.08)$ | $0.079 \\ (0.21)$ | $0.085 \\ (0.30)$                                        | 0.072 $(0.08)$    | $0.079 \\ (0.02)$ | $0.071 \\ (0.06)$ | 0.068<br>(0.07)   | 0.089 $(0.18)$    | 0.087 $(0.06)$    | $0.079 \\ (0.08)$ | 0.073 $(0.0)$     | $0.078 \\ (0.09)$ | 0.082<br>(0.08)   | $0.079 \\ (0.06)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\begin{array}{c} (0.30) \\ \phi_{ba}^{i11} \end{array}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.161 \\ (0.08)$ | $0.078 \\ (0.10)$ | $0.075 \\ (0.06)$ | $0.081 \\ (0.08)$ | $0.081 \\ (0.05)$ | $0.078 \\ (0.08)$ | $0.078 \\ (0.05)$ | $0.076 \\ (0.08)$ | $0.116 \\ (0.04)$ | $0.286 \\ (0.04)$ | $0.082 \\ (0.08)$ | $0.079 \\ (0.07)$ | -0.045 (0.08)     | $0.087 \\ (0.19)$ | $0.077 \\ (0.07)$ | $0.076 \\ (0.05)$ | $0.078 \\ (0.10)$ | $0.120 \\ (0.06)$ | $0.044 \\ (0.08)$                                        | $0.078 \\ (0.07)$ | $0.080 \\ (0.07)$ | $0.075 \\ (0.09)$ | $0.084 \\ (0.08)$ | $0.077 \\ (0.05)$ | $0.106 \\ (0.08)$ | $0.077 \\ (0.03)$ | $0.077 \\ (0.07)$ | $0.078 \\ (0.08)$ | $0.081 \\ (0.23)$ | $0.072 \\ (0.06)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i24}$                                        | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | 0.167 $(0.08)$    | $0.079 \\ (0.10)$ | $0.085 \\ (0.07)$ | $0.074 \\ (0.09)$ | $0.078 \\ (0.08)$ | $0.080 \\ (0.07)$ | 0.167 $(0.09)$    | $0.150 \\ (0.08)$ | $0.070 \\ (0.07)$ | $0.078 \\ (0.03)$ | $0.076 \\ (0.08)$ | $0.089 \\ (0.07)$ | $0.091 \\ (0.04)$ | $0.075 \\ (0.15)$ | $0.079 \\ (0.08)$ | $0.088 \\ (0.05)$ | $0.075 \\ (0.10)$ | $0.078 \\ (0.07)$ | $0.089 \\ (0.06)$                                        | $0.078 \\ (0.04)$ | 0.167 $(0.08)$    | $0.082 \\ (0.03)$ | 0.077 $(0.08)$    | 0.079 $(0.08)$    | $0.079 \\ (0.03)$ | $0.156 \\ (0.0)3$ | $0.077 \\ (0.05)$ | $0.070 \\ (0.03)$ | $0.078 \\ (0.23)$ | $0.080 \\ (0.09)$ |

Table 18: Estimated informational trading parameters for MSFT

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                                          |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                   |                                                          |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$                                        | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$                | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$                                        | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.084 \\ (0.09)$ | $0.081 \\ (0.08)$ | $0.075 \\ (0.04)$ | $0.074 \\ (0.20)$ | $0.082 \\ (0.08)$ | $0.085 \\ (0.08)$ | $0.071 \\ (0.05)$ | $0.080 \\ (0.06)$ | $0.068 \\ (0.10)$ | $0.079 \\ (0.20)$ | $0.076 \\ (0.07)$ | $0.079 \\ (0.09)$ | $0.083 \\ (0.06)$ | $0.069 \\ (0.08)$ | $0.071 \\ (0.06)$ | $0.082 \\ (0.06)$ | $0.085 \\ (0.08)$                                        | $0.067 \\ (0.07)$ | $0.073 \\ (0.05)$ | $0.077 \\ (0.08)$ | $0.074 \\ (0.09)$ | $0.077 \\ (0.07)$ | $0.077 \\ (0.09)$ | $0.076 \\ (0.03)$ | $0.077 \\ (0.04)$ | $0.074 \\ (0.07)$                | $0.079 \\ (0.09)$ | $0.072 \\ (0.07)$ | $0.083 \\ (0.09)$                                        | $0.084 \\ (0.04)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$                                        | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$ | $\phi^{i27}_{ab}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$                | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$                                        | $\phi^{i30}_{ab}$ |
|             | 0.840 $(0.04)$    | $0.162 \\ (0.08)$ | $0.082 \\ (0.08)$ | $0.077 \\ (0.06)$ | 0.081 $(0.08)$    | $0.072 \\ (0.11)$ | $0.085 \\ (0.08)$ | $0.055 \\ (0.06)$ | $0.078 \\ (0.03)$ | $0.080 \\ (0.04)$ | $0.082 \\ (0.08)$ | $0.086 \\ (0.08)$ | $0.840 \\ (0.03)$ | $0.162 \\ (0.05)$ | 0.084 $(0.05)$    | 0.083 $(0.07)$    | $0.068 \\ (0.08)$                                        | $0.077 \\ (0.08)$ | $0.082 \\ (0.07)$ | 0.073 $(0.08)$    | $0.070 \\ (0.23)$ | $0.078 \\ (0.08)$ | $0.080 \\ (0.06)$ | $0.075 \\ (0.20)$ | $0.079 \\ (0.04)$ | 0.082 $(0.09)$                   | $0.080 \\ (0.05)$ | $0.073 \\ (0.07)$ | $0.110 \\ (0.04)$                                        | $0.065 \\ (0.05)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\begin{array}{c} (0.08) \\ \phi_{ba}^{i10} \end{array}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\frac{(0.09)}{\phi_{bb}^{i14}}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\begin{array}{c} (0.04) \\ \phi_{ba}^{i16} \end{array}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.086 \\ (0.09)$ | $0.079 \\ (0.06)$ | $0.076 \\ (0.10)$ | $0.079 \\ (0.07)$ | 0.084 $(0.09)$    | -0.012 (0.06)     | $0.078 \\ (0.05)$ | $0.096 \\ (0.09)$ | $0.079 \\ (0.03)$ | $0.066 \\ (0.10)$ | $0.099 \\ (0.06)$ | $0.098 \\ (0.20)$ | $0.058 \\ (0.03)$ | $0.087 \\ (0.04)$ | $0.117 \\ (0.07)$ | 0.138 $(0.09)$    | $0.047 \\ (0.06)$                                        | $0.102 \\ (0.01)$ | $0.058 \\ (0.04)$ | $0.082 \\ (0.09)$ | $0.070 \\ (0.06)$ | $0.077 \\ (0.05)$ | $0.078 \\ (0.09)$ | $0.066 \\ (0.03)$ | $0.077 \\ (0.10)$ | $0.078 \\ (0.06)$                | $0.073 \\ (0.04)$ | $0.085 \\ (0.03)$ | $0.082 \\ (0.03)$                                        | $0.080 \\ (0.05)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$                                        | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$                | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$                                        | $\phi_{bb}^{i30}$ |
|             | $0.106 \\ (0.09)$ | $0.078 \\ (0.06)$ | $0.085 \\ (0.10)$ | $0.089 \\ (0.08)$ | $0.075 \\ (0.09)$ | $0.092 \\ (0.04)$ | $0.086 \\ (0.05)$ | $0.079 \\ (0.09)$ | $0.078 \\ (0.03)$ | $0.097 \\ (0.10)$ | $0.087 \\ (0.06)$ | $0.096 \\ (0.05)$ | -0.043 (0.02)     | $0.758 \\ (0.30)$ | 0.157 $(0.08)$    | $0.077 \\ (0.09)$ | $0.077 \\ (0.06)$                                        | $0.083 \\ (0.10)$ | $0.068 \\ (0.08)$ | 0.084 $(0.09)$    | $0.081 \\ (0.04)$ | $0.083 \\ (0.05)$ | $0.107 \\ (0.10)$ | $0.079 \\ (0.03)$ | $0.079 \\ (0.10)$ | $0.078 \\ (0.06)$                | $0.094 \\ (0.10)$ | $0.078 \\ (0.20)$ | $0.095 \\ (0.06)$                                        | 0.097 $(0.02)$    |

Table 19: Estimated informational trading parameters for WBA

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$                | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.077 \\ (0.26)$ | $0.078 \\ (0.20)$ | $0.089 \\ (0.09)$ | $0.075 \\ (0.05)$ | $0.081 \\ (0.06)$ | $0.094 \\ (0.20)$ | $0.100 \\ (0.20)$ | $0.072 \\ (0.07)$ | $0.089 \\ (0.10)$ | $0.047 \\ (0.10)$ | $0.111 \\ (0.08)$ | $0.045 \\ (0.03)$ | $0.075 \\ (0.30)$ | $0.082 \\ (0.06)$ | $0.095 \\ (0.06)$ | $0.061 \\ (0.27)$ | $0.106 \\ (0.20)$ | $0.114 \\ (0.09)$ | $0.033 \\ (0.05)$ | $0.103 \\ (0.06)$                | $0.077 \\ (0.20)$ | $0.079 \\ (0.05)$ | $0.075 \\ (0.07)$ | $0.078 \\ (0.01)$ | $0.060 \\ (0.20)$ | $0.078 \\ (0.08)$ | $0.095 \\ (0.03)$ | $0.097 \\ (0.10)$ | $0.086 \\ (0.08)$ | $0.079 \\ (0.04)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi^{i28}_{ab}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | $0.078 \\ (0.21)$ | $0.075 \\ (0.20)$ | $0.084 \\ (0.09)$ | $0.167 \\ (0.05)$ | $0.078 \\ (0.06)$ | $0.096 \\ (0.20)$ | $0.079 \\ (0.06)$ | $0.066 \\ (0.07)$ | $0.099 \\ (0.10)$ | $0.098 \\ (0.02)$ | $0.058 \\ (0.08)$ | 0.087 $(0.03)$    | $0.077 \\ (0.20)$ | $0.138 \\ (0.07)$ | $0.770 \\ (0.07)$ | $0.077 \\ (0.20)$ | $0.096 \\ (0.20)$ | $0.079 \\ (0.09)$ | $0.085 \\ (0.05)$ | $0.075 \\ (0.06)$                | $0.077 \\ (0.20)$ | $0.079 \\ (0.08)$ | $0.078 \\ (0.07)$ | $0.077 \\ (0.10)$ | $0.082 \\ (0.20)$ | $0.073 \\ (0.08)$ | $0.075 \\ (0.03)$ | $0.077 \\ (0.05)$ | $0.076 \\ (0.09)$ | 0.083 $(0.04)$    |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\frac{(0.06)}{\phi_{bb}^{i11}}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.074 \\ (0.20)$ | $0.078 \\ (0.04)$ | $0.069 \\ (0.09)$ | $0.078 \\ (0.06)$ | $0.075 \\ (0.08)$ | $0.089 \\ (0.09)$ | $0.074 \\ (0.06)$ | $0.112 \\ (0.10)$ | $0.075 \\ (0.07)$ | $0.078 \\ (0.09)$ | $0.070 \\ (0.06)$ | $0.078 \\ (0.06)$ | $0.081 \\ (0.05)$ | $0.080 \\ (0.09)$ | $0.138 \\ (0.03)$ | $0.053 \\ (0.20)$ | $0.093 \\ (0.03)$ | $0.071 \\ (0.09)$ | $0.092 \\ (0.06)$ | $0.063 \\ (0.09)$                | 0.127 $(0.09)$    | $0.075 \\ (0.06)$ | $0.086 \\ (0.10)$ | $0.073 \\ (0.09)$ | $0.090 \\ (0.04)$ | $0.081 \\ (0.07)$ | $0.080 \\ (0.07)$ | $0.099 \\ (0.05)$ | $0.048 \\ (0.08)$ | $0.078 \\ (0.04)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.078 \\ (0.20)$ | 0.117 $(0.05)$    | $0.078 \\ (0.09)$ | $0.057 \\ (0.07)$ | 0.081 $(0.08)$    | $0.078 \\ (0.09)$ | $0.065 \\ (0.06)$ | 0.079 $(0.10)$    | $0.080 \\ (0.08)$ | 0.074 $(0.08)$    | 0.098 $(0.08)$    | $0.055 \\ (0.07)$ | 0.110 $(0.05)$    | 0.077 $(0.08)$    | $0.120 \\ (0.05)$ | 0.577 $(0.20)$    | 0.116 $(0.03)$    | 0.082 $(0.09)$    | $0.075 \\ (0.08)$ | 0.073 $(0.09)$                   | $0.080 \\ (0.09)$ | 0.081 $(0.06)$    | 0.079 $(0.10)$    | 0.083 $(0.07)$    | 0.073 $(0.03)$    | 0.084 $(0.09)$    | $0.075 \\ (0.08)$ | $0.080 \\ (0.05)$ | $0.075 \\ (0.09)$ | $0.086 \\ (0.06)$ |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = WBA \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, UTX, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 20: Estimated informational trading parameters for UTX

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                   |                                  |                   |                   |                   |                   |                   |                   |                   |                   |                                 |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------------------|----------------------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$                | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$                | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$               | $\phi_{ab}^{i16}$                |
| $a_t - p_t$ | $0.100 \\ (0.02)$ | $0.072 \\ (0.10)$ | $0.089 \\ (0.05)$ | $0.047 \\ (0.05)$ | $0.111 \\ (0.09)$ | $0.045 \\ (0.03)$ | $0.075 \\ (0.09)$ | $0.105 \\ (0.04)$ | $0.082 \\ (0.07)$ | $0.095 \\ (0.06)$ | $0.061 \\ (0.03)$ | $0.106 \\ (0.30)$ | $0.114 \\ (0.05)$ | $0.033 \\ (0.0)$  | $0.077 \\ (0.08)$ | $0.079 \\ (0.02)$ | $0.077 \\ (0.01)$                | $0.078 \\ (0.08)$ | $0.089 \\ (0.07)$ | $0.075 \\ (0.09)$                | $0.081 \\ (0.03)$ | $0.094 \\ (0.09)$ | $0.075 \\ (0.05)$ | $0.078 \\ (0.06)$ | $0.060 \\ (0.09)$ | $0.078 \\ (0.03)$ | $0.095 \\ (0.30)$ | $0.097 \\ (0.06)$ | $0.086 \\ (0.0)$                | $0.079 \\ (0.09)$                |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi^{i18}_{ab}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$                | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$ | $\phi_{aa}^{i30}$               | $\phi^{i30}_{ab}$                |
|             | $0.078 \\ (0.02)$ | $0.075 \\ (0.10)$ | 0.084 $(0.06)$    | $0.167 \\ (0.05)$ | $0.078 \\ (0.09)$ | $0.096 \\ (0.03)$ | $0.079 \\ (0.09)$ | $0.066 \\ (0.03)$ | $0.099 \\ (0.07)$ | $0.098 \\ (0.08)$ | $0.058 \\ (0.03)$ | $0.078 \\ (0.30)$ | $0.153 \\ (0.07)$ | -0.046 (0.0)      | 0.087 $(0.04)$    | $0.077 \\ (0.02)$ | $0.602 \\ (0.10)$                | $0.079 \\ (0.08)$ | $0.085 \\ (0.08)$ | $0.075 \\ (0.09)$                | $0.077 \\ (0.03)$ | $0.079 \\ (0.09)$ | $0.078 \\ (0.06)$ | $0.077 \\ (0.07)$ | $0.082 \\ (0.03)$ | $0.073 \\ (0.03)$ | $0.075 \\ (0.03)$ | $0.077 \\ (0.05)$ | $0.076 \\ (0.0)$                | $0.083 \\ (0.05)$                |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\frac{(0.10)}{\phi_{ba}^{i10}}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\frac{(0.09)}{\phi_{bb}^{i11}}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\frac{(0.0)}{\phi_{ba}^{i16}}$ | $\frac{(0.05)}{\phi_{bb}^{i16}}$ |
| $p_t - b_t$ | $0.053 \\ (0.04)$ | $0.093 \\ (0.09)$ | $0.071 \\ (0.30)$ | $0.092 \\ (0.18)$ | $0.063 \\ (0.11)$ | $0.127 \\ (0.09)$ | $0.075 \\ (0.06)$ | $0.086 \\ (0.09)$ | $0.073 \\ (0.30)$ | $0.090 \\ (0.20)$ | $0.081 \\ (0.22)$ | $0.080 \\ (0.26)$ | $0.099 \\ (0.04)$ | $0.048 \\ (0.04)$ | $0.078 \\ (0.03)$ | $0.117 \\ (0.06)$ | $0.078 \\ (0.09)$                | $0.057 \\ (0.04)$ | $0.081 \\ (0.26)$ | $0.078 \\ (0.16)$                | $0.065 \\ (0.09)$ | $0.079 \\ (0.06)$ | $0.074 \\ (0.09)$ | $0.078 \\ (0.04)$ | $0.069 \\ (0.01)$ | $0.078 \\ (0.28)$ | $0.075 \\ (0.27)$ | $0.089 \\ (0.06)$ | $0.074 \\ (0.05)$               | $0.042 \\ (0.03)$                |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$                | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$               | $\phi_{bb}^{i30}$                |
|             | $0.075 \\ (0.06)$ | $0.078 \\ (0.09)$ | $0.070 \\ (0.03)$ | $0.078 \\ (0.22)$ | $0.081 \\ (0.14)$ | $0.042 \\ (0.09)$ | $0.080 \\ (0.07)$ | 0.138 $(0.09)$    | $0.080 \\ (0.04)$ | $0.074 \\ (0.10)$ | 0.098 $(0.22)$    | $0.055 \\ (0.32$  | $0.080 \\ (0.07)$ | $0.120 \\ (0.06)$ | $0.775 \\ (0.03)$ | $0.077 \\ (0.05)$ | 0.116 $(0.09)$                   | 0.812 $(0.03)$    | $0.075 \\ (0.27)$ | 0.073 $(0.18)$                   | $0.080 \\ (0.09)$ | $0.081 \\ (0.10)$ | $0.079 \\ (0.09)$ | $0.083 \\ (0.06)$ | $0.073 \\ (0.20)$ | 0.084 $(0.20)$    | $0.075 \\ (0.21)$ | $0.080 \\ (0.08)$ | $0.075 \\ (0.0)7$               | $0.086 \\ (0.03)$                |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = UTX \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, PG, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 21: Estimated informational trading parameters for PG

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                   |                                  |                   |                   |                                  |                   |                   |                   |                   |                   |                                  |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|----------------------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi^{i4}_{aa}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$                | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$                | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$                | $\phi_{ab}^{i16}$                |
| $a_t - p_t$ | $0.085 \\ (0.02)$ | $0.079 \\ (0.05)$ | $0.068 \\ (0.10)$ | $0.077 \\ (0.20)$ | $0.072 \\ (0.09)$ | $0.083 \\ (0.05)$ | $0.074 \\ (0.04)$ | $0.086 \\ (0.09)$ | $0.079 \\ (0.20)$ | $0.070 \\ (0.04)$ | $0.082 \\ (0.30)$ | $0.083 \\ (0.07)$ | $0.084 \\ (0.07)$ | $0.079 \\ (0.04)$ | $0.083 \\ (0.03)$ | $0.072 \\ (0.02)$ | $0.084 \\ (0.05)$                | $0.081 \\ (0.01)$ | $0.075 \\ (0.02)$ | $0.080 \\ (0.09)$                | $0.082 \\ (0.07)$ | $0.085 \\ (0.06)$ | $0.076 \\ (0.09)$                | $0.079 \\ (0.04)$ | $0.083 \\ (0.06)$ | $0.080 \\ (0.03)$ | $0.084 \\ (0.07)$ | $0.078 \\ (0.08)$ | $0.074 \\ (0.05)$                | $0.081 \\ (0.03)$                |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i24}$                | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$                | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$                | $\phi^{i30}_{ab}$                |
|             | $0.075 \\ (0.02)$ | $0.082 \\ (0.05)$ | $0.079 \\ (0.10)$ | $0.080 \\ (0.10)$ | $0.079 \\ (0.09)$ | $0.082 \\ (0.08)$ | $0.082 \\ (0.04)$ | $0.078 \\ (0.09)$ | $0.081 \\ (0.05)$ | $0.072 \\ (0.08)$ | $0.085 \\ (0.30)$ | $0.055 \\ (0.08)$ | $0.086 \\ (0.05)$ | 0.083 $(0.06)$    | $0.142 \\ (0.03)$ | $0.095 \\ (0.02)$ | $0.082 \\ (0.05)$                | $0.086 \\ (0.10)$ | 0.884 $(0.09)$    | 0.083 $(0.09)$                   | $0.070 \\ (0.04)$ | $0.077 \\ (0.07)$ | 0.083 $(0.09)$                   | $0.075 \\ (0.06)$ | $0.079 \\ (0.06)$ | 0.082 $(0.30)$    | $0.080 \\ (0.06)$ | $0.073 \\ (0.09)$ | $0.079 \\ (0.07)$                | $0.073 \\ (0.03)$                |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\frac{(0.05)}{\phi_{ba}^{i10}}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\frac{(0.09)}{\phi_{bb}^{i11}}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.09)}{\phi_{ba}^{i13}}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\frac{(0.07)}{\phi_{ba}^{i16}}$ | $\frac{(0.03)}{\phi_{bb}^{i16}}$ |
| $p_t - b_t$ | $0.074 \\ (0.10)$ | $0.071 \\ (0.09)$ | $0.079 \\ (0.09)$ | $0.081 \\ (0.05)$ | $0.077 \\ (0.20)$ | $0.080 \\ (0.06)$ | $0.070 \\ (0.07)$ | $0.094 \\ (0.09)$ | $0.078 \\ (0.30)$ | $0.085 \\ (0.03)$ | $0.045 \\ (0.09)$ | $0.079 \\ (0.03)$ | $0.072 \\ (0.05)$ | $0.078 \\ (0.04)$ | $0.086 \\ (0.06)$ | $0.084 \\ (0.04)$ | $0.070 \\ (0.04)$                | $0.081 \\ (0.09)$ | $0.080 \\ (0.05)$ | $0.075 \\ (0.20)$                | $0.083 \\ (0.07)$ | $0.076 \\ (0.05)$ | $0.081 \\ (0.09)$                | $0.070 \\ (0.30)$ | $0.081 \\ (0.05)$ | $0.080 \\ (0.08)$ | $0.076 \\ (0.03)$ | $0.138 \\ (0.05)$ | $0.076 \\ (0.06)$                | $0.104 \\ (0.06)$                |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i24}$                | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$                | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$                | $\phi_{bb}^{i30}$                |
|             | $0.081 \\ (0.31)$ | $0.080 \\ (0.06)$ | $0.068 \\ (0.09)$ | $0.078 \\ (0.05)$ | $0.079 \\ (0.20)$ | $0.082 \\ (0.08)$ | $0.074 \\ (0.04)$ | $0.085 \\ (0.09)$ | $0.070 \\ (0.30)$ | $0.080 \\ (0.06)$ | $0.073 \\ (0.07)$ | 0.084 $(0.03)$    | $0.071 \\ (0.07)$ | $0.072 \\ (0.07)$ | $0.015 \\ (0.06)$ | $0.162 \\ (0.20)$ | $0.085 \\ (0.08)$                | $0.075 \\ (0.09)$ | $0.079 \\ (0.05)$ | 0.473 $(0.20)$                   | $0.085 \\ (0.04)$ | 0.081 $(0.06)$    | 0.084 $(0.09)$                   | $0.077 \\ (0.03)$ | $0.068 \\ (0.04)$ | $0.079 \\ (0.06)$ | $0.073 \\ (0.03)$ | $0.082 \\ (0.08)$ | $0.076 \\ (0.08)$                | $0.074 \\ (0.06)$                |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = PG \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PFE, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 22: Estimated informational trading parameters for PFE

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                   |                                                          |                   |                   |                                  |                   |                                  |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|----------------------------------|-------------------|----------------------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$                | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                                        | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$                | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$                | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.084 \\ (0.10)$ | $0.081 \\ (0.05)$ | $0.075 \\ (0.08)$ | $0.077 \\ (0.07)$ | $0.076 \\ (0.04)$ | $0.074 \\ (0.07)$ | $0.079 \\ (0.10)$ | $0.082 \\ (0.08)$ | $0.083 \\ (0.01)$ | $0.084 \\ (0.03)$ | $0.082 \\ (0.07)$ | $0.077 \\ (0.04)$ | $0.081 \\ (0.06)$ | $0.085 \\ (0.03)$ | $0.055 \\ (0.09)$ | $0.078 \\ (0.10)$ | $0.080 \\ (0.05)$ | $0.082 \\ (0.08)$ | $0.085 \\ (0.07)$ | $0.082 \\ (0.04)$                | $0.086 \\ (0.07)$ | $0.084 \\ (0.10)$ | $0.083 \\ (0.08)$                                        | $0.068 \\ (0.01)$ | $0.077 \\ (0.03)$ | $0.082 \\ (0.07)$                | $0.073 \\ (0.04)$ | $0.070 \\ (0.06)$                | $0.078 \\ (0.03)$ | $0.074 \\ (0.09)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi^{i18}_{ab}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$                                        | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$                | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$                | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | 0.082 $(0.10)$    | $0.085 \\ (0.05)$ | 0.071 $(0.08)$    | $0.080 \\ (0.07)$ | $0.068 \\ (0.04)$ | $0.079 \\ (0.07)$ | $0.076 \\ (0.10)$ | $0.079 \\ (0.08)$ | 0.083 $(0.01)$    | $0.069 \\ (0.03)$ | $0.097 \\ (0.07)$ | $0.071 \\ (0.04)$ | 0.082 $(0.06)$    | $0.085 \\ (0.30)$ | $0.067 \\ (0.05)$ | 0.073 $(0.10)$    | 0.114 $(0.05)$    | 0.083 $(0.08)$    | $0.080 \\ (0.07)$ | $0.166 \\ (0.04)$                | $0.309 \\ (0.07)$ | $0.075 \\ (0.10)$ | $0.079 \\ (0.08)$                                        | $0.082 \\ (0.01)$ | $0.080 \\ (0.03)$ | $0.073 \\ (0.07)$                | $0.110 \\ (0.04)$ | $0.065 \\ (0.06)$                | 0.162<br>(0.30)   | $0.061 \\ (0.05)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\frac{(0.04)}{\phi_{bb}^{i11}}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\begin{array}{c} (0.08) \\ \phi_{ba}^{i13} \end{array}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\frac{(0.07)}{\phi_{bb}^{i14}}$ | $\phi_{ba}^{i15}$ | $\frac{(0.06)}{\phi_{bb}^{i15}}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | -0.041 (0.0)      | $0.079 \\ (0.08)$ | $0.078 \\ (0.10)$ | $0.075 \\ (0.05)$ | $0.079 \\ (0.07)$ | $0.072 \\ (0.03)$ | $0.075 \\ (0.04)$ | $0.084 \\ (0.09)$ | $0.079 \\ (0.07)$ | $0.076 \\ (0.04)$ | $0.096 \\ (0.30)$ | $0.079 \\ (0.05)$ | $0.076 \\ (0.15)$ | $0.096 \\ (0.03)$ | $0.077 \\ (0.03)$ | $0.082 \\ (0.0)$  | $0.089 \\ (0.08)$ | $0.079 \\ (0.10)$ | $0.079 \\ (0.05)$ | $0.075 \\ (0.07)$                | $0.105 \\ (0.30)$ | $0.082 \\ (0.04)$ | $0.078 \\ (0.09)$                                        | $0.095 \\ (0.07)$ | $0.097 \\ (0.04)$ | $0.068 \\ (0.30)$                | $0.079 \\ (0.05)$ | $0.078 \\ (0.16)$                | $0.076 \\ (0.07)$ | $0.080 \\ (0.03)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$                                        | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$                | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$                | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.106 \\ (0.0)$  | $0.069 \\ (0.08)$ | 0.107 $(0.10)$    | $0.046 \\ (0.05)$ | $0.109 \\ (0.07)$ | 0.077 $(0.30)$    | 0.078 $(0.04)$    | 0.087 $(0.09)$    | $0.077 \\ (0.07)$ | 0.138 $(0.04)$    | $0.072 \\ (0.03)$ | 0.087 $(0.05)$    | $0.052 \\ (0.17)$ | $0.096 \\ (0.09)$ | 0.079 $(0.03)$    | $0.068 \\ (0.0)$  | 0.079 $(0.08)$    | 0.086 $(0.10)$    | $0.093 \\ (0.05)$ | $0.145 \\ (0.07)$                | 0.033 $(0.03)$    | $0.603 \\ (0.04)$ | 0.077 $(0.09)$                                           | 0.079 $(0.07)$    | $0.075 \\ (0.04)$ | $0.078 \\ (0.03)$                | 0.094 $(0.05)$    | $0.055 \\ (0.26)$                | $0.098 \\ (0.04)$ | 0.071 $(0.03)$    |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = PFE \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, TRV, XOM, WMT, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 23: Estimated informational trading parameters for TRV

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                                          |                   |                   |                   |                   |                   |                                  |                   |                   |                   |                   |                   |                                                          |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$                                        | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$                                        | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.080 \\ (0.08)$ | $0.068 \\ (0.07)$ | $0.079 \\ (0.05)$ | $0.076 \\ (0.04)$ | $0.079 \\ (0.08)$ | $0.083 \\ (0.10)$ | $0.069 \\ (0.09)$ | $0.077 \\ (0.07)$ | $0.071 \\ (0.06)$ | $0.082 \\ (0.02)$ | $0.085 \\ (0.03)$ | $0.067 \\ (0.04)$ | $0.073 \\ (0.07)$ | $0.074 \\ (0.30)$ | $0.084 \\ (0.06)$ | $0.081 \\ (0.08)$ | $0.075 \\ (0.07)$                                        | $0.074 \\ (0.05)$ | $0.082 \\ (0.04)$ | $0.085 \\ (0.08)$ | $0.071 \\ (0.10)$ | $0.081 \\ (0.09)$ | $0.075 \\ (0.07)$                | $0.083 \\ (0.06)$ | $0.068 \\ (0.02)$ | $0.077 \\ (0.03)$ | $0.082 \\ (0.04)$ | $0.073 \\ (0.07)$ | $0.070 \\ (0.03)$                                        | $0.078 \\ (0.06)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi^{i18}_{ab}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$                                        | $\phi^{i25}_{ab}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i26}$ | $\phi^{i26}_{ab}$ | $\phi_{aa}^{i27}$                | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$ | $\phi_{aa}^{i30}$                                        | $\phi^{i30}_{ab}$ |
|             | $0.080 \\ (0.08)$ | $0.075 \\ (0.07)$ | $0.079 \\ (0.05)$ | $0.082 \\ (0.04)$ | $0.080 \\ (0.08)$ | 0.073 $(0.10)$    | 0.110 $(0.09)$    | $0.065 \\ (0.07)$ | $0.085 \\ (0.06)$ | 0.079 $(0.02)$    | $0.072 \\ (0.03)$ | $0.077 \\ (0.04)$ | $0.074 \\ (0.07)$ | $0.079 \\ (0.30)$ | 0.082 $(0.06)$    | 0.083 $(0.08)$    | $0.078 \\ (0.07)$                                        | $0.082 \\ (0.05)$ | $0.165 \\ (0.04)$ | 0.105<br>(0.08)   | $0.072 \\ (0.10)$ | $0.086 \\ (0.09)$ | $0.554 \\ (0.07)$                | $0.078 \\ (0.06)$ | $0.080 \\ (0.02)$ | 0.082 $(0.03)$    | 0.085 $(0.04)$    | $0.082 \\ (0.07)$ | $0.086 \\ (0.03)$                                        | $0.084 \\ (0.06)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\begin{array}{c} (0.07) \\ \phi_{ba}^{i10} \end{array}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.07)}{\phi_{ba}^{i13}}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\begin{array}{c} (0.03) \\ \phi_{ba}^{i16} \end{array}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.109 \\ (0.05)$ | $0.077 \\ (0.07)$ | $0.078 \\ (0.0)$  | $0.087 \\ (0.10)$ | $0.077 \\ (0.05)$ | $0.138 \\ (0.07)$ | $0.077 \\ (0.08)$ | $0.087 \\ (0.10)$ | $0.078 \\ (0.20)$ | $0.078 \\ (0.07)$ | $0.075 \\ (0.04)$ | $0.084 \\ (0.05)$ | $0.065 \\ (0.06)$ | $0.043 \\ (0.07)$ | $0.114 \\ (0.10)$ | $0.079 \\ (0.05)$ | $0.072 \\ (0.07)$                                        | $0.075 \\ (0.0)$  | $0.084 \\ (0.21)$ | $0.079 \\ (0.05)$ | $0.076 \\ (0.07)$ | $0.079 \\ (0.08)$ | $0.079 \\ (0.10)$                | $0.076 \\ (0.20)$ | $0.080 \\ (0.07)$ | $0.096 \\ (0.04)$ | $0.077 \\ (0.05)$ | $0.072 \\ (0.06)$ | $0.081 \\ (0.07)$                                        | $0.077 \\ (0.10)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$                                        | $\phi_{bb}^{i25}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$                | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$                                        | $\phi_{bb}^{i30}$ |
|             | $0.096 \\ (0.05)$ | $0.079 \\ (0.07)$ | $0.068 \\ (0.0)$  | $0.079 \\ (0.18)$ | $0.077 \\ (0.05)$ | $0.079 \\ (0.07)$ | 0.077 $(0.08)$    | 0.079 $(0.10)$    | $0.075 \\ (0.20)$ | $0.078 \\ (0.07)$ | 0.094 $(0.04)$    | $0.055 \\ (0.05)$ | 0.098 $(0.06)$    | $0.075 \\ (0.07)$ | 0.074 $(0.10)$    | $0.075 \\ (0.05)$ | $0.080 \\ (0.07)$                                        | 0.077 $(0.0)$     | $0.062 \\ (0.26)$ | $0.158 \\ (0.05)$ | 0.097 $(0.07)$    | $0.068 \\ (0.08)$ | 0.079 $(0.10)$                   | 0.728 $(0.20)$    | 0.088 $(0.07)$    | 0.083 $(0.04)$    | $0.048 \\ (0.05)$ | 0.114 $(0.06)$    | $0.033 \\ (0.07)$                                        | 0.103<br>(0.10)   |

Table 24: Estimated informational trading parameters for XOM

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                                          |                   |                   |                                                          |                   |                   |                                                          |                   |                   |                                  |                   |                   |                                  |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$                                        | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$                                        | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                                        | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$                | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$                | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.119 \\ (0.04)$ | $0.118 \\ (0.12)$ | $0.060 \\ (0.08)$ | $0.084 \\ (0.10)$ | $0.067 \\ (0.09)$ | $0.078 \\ (0.04)$ | $0.097 \\ (0.03)$ | $0.168 \\ (0.10)$ | $0.078 \\ (0.06)$ | $0.066 \\ (0.40)$ | $0.086 \\ (0.07)$ | $0.042 \\ (0.02)$ | $0.107 \\ (0.03)$ | $0.092 \\ (0.07)$ | $0.143 \\ (0.05)$ | $0.086 \\ (0.04)$ | $0.128 \\ (0.23)$                                        | $0.045 \\ (0.08)$ | $0.098 \\ (0.10)$ | $0.090 \\ (0.09)$                                        | $0.082 \\ (0.04)$ | $0.120 \\ (0.05)$ | $0.089 \\ (0.01)$                                        | $0.076 \\ (0.06)$ | $0.096 \\ (0.04)$ | $0.101 \\ (0.07)$                | $0.131 \\ (0.02)$ | $0.100 \\ (0.03)$ | $0.138 \\ (0.07)$                | $0.108 \\ (0.05)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$                                        | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$                                        | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i27}$                                        | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$                | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$                | $\phi^{i30}_{ab}$ |
|             | $0.085 \\ (0.04)$ | $0.074 \\ (0.35)$ | $0.106 \\ (0.08)$ | $0.077 \\ (0.10)$ | $0.089 \\ (0.09)$ | $0.110 \\ (0.04)$ | $0.073 \\ (0.07)$ | $0.065 \\ (0.01)$ | $0.100 \\ (0.06)$ | $0.079 \\ (0.04)$ | $0.101 \\ (0.07)$ | $0.085 \\ (0.02)$ | $0.076 \\ (0.03)$ | $0.060 \\ (0.07)$ | $0.129 \\ (0.05)$ | $0.078 \\ (0.04)$ | 0.138 $(0.28)$                                           | $0.054 \\ (0.08)$ | $0.082 \\ (0.10)$ | $0.078 \\ (0.09)$                                        | $0.143 \\ (0.04)$ | $0.100 \\ (0.08)$ | $0.077 \\ (0.10)$                                        | $0.075 \\ (0.06)$ | $0.811 \\ (0.41)$ | $0.080 \\ (0.07)$                | $0.075 \\ (0.02)$ | $0.070 \\ (0.03)$ | $0.068 \\ (0.07)$                | $0.074 \\ (0.05)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\begin{array}{c} (0.28) \\ \phi_{ba}^{i10} \end{array}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\begin{array}{c} (0.09) \\ \phi_{bb}^{i11} \end{array}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\begin{array}{c} (0.10) \\ \phi_{ba}^{i13} \end{array}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\frac{(0.07)}{\phi_{bb}^{i14}}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\frac{(0.07)}{\phi_{ba}^{i16}}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.080 \\ (0.05)$ | $0.074 \\ (0.08)$ | $0.068 \\ (0.07)$ | $0.078 \\ (0.10)$ | $0.075 \\ (0.04)$ | $0.082 \\ (0.08)$ | $0.080 \\ (0.05)$ | $0.069 \\ (0.09)$ | $0.080 \\ (0.03)$ | $0.080 \\ (0.10)$ | $0.077 \\ (0.04)$ | $0.005 \\ (0.20)$ | $0.076 \\ (0.11)$ | $0.083 \\ (0.06)$ | $0.073 \\ (0.07)$ | $0.080 \\ (0.05)$ | $0.071 \\ (0.08)$                                        | $0.079 \\ (0.07)$ | $0.081 \\ (0.10)$ | $0.080 \\ (0.04)$                                        | $0.109 \\ (0.08)$ | $0.072 \\ (0.05)$ | $0.077 \\ (0.09)$                                        | $0.078 \\ (0.03)$ | $0.085 \\ (0.10)$ | $0.045 \\ (0.04)$                | $0.077 \\ (0.20)$ | $0.072 \\ (0.22)$ | $0.100 \\ (0.06)$                | $0.167 \\ (0.08)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$                                        | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$                                        | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i27}$                                        | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$                | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$                | $\phi_{bb}^{i30}$ |
|             | $0.079 \\ (0.05)$ | $0.070 \\ (0.08)$ | $0.081 \\ (0.07)$ | $0.080 \\ (0.05)$ | $0.075 \\ (0.04)$ | 0.083 $(0.08)$    | $0.076 \\ (0.05)$ | $0.073 \\ (0.09)$ | 0.084 $(0.03)$    | 0.073 $(0.10)$    | $0.080 \\ (0.04)$ | $0.076 \\ (0.20)$ | 0.138 $(0.33)$    | 0.083 $(0.06)$    | $0.076 \\ (0.09)$ | $0.082 \\ (0.05)$ | $0.085 \\ (0.08)$                                        | $0.079 \\ (0.07)$ | $0.074 \\ (0.05)$ | 0.081 $(0.04)$                                           | $0.036 \\ (0.08)$ | $0.154 \\ (0.05)$ | $0.070 \\ (0.09)$                                        | $0.077 \\ (0.03)$ | $0.648 \\ (0.10)$ | $0.079 \\ (0.04)$                | $0.073 \\ (0.20)$ | 0.082 $(0.10)$    | $0.076 \\ (0.06)$                | 0.106<br>(0.09)   |

Table 25: Estimated informational trading parameters for WMT

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.076 \\ (0.09)$ | $0.086 \\ (0.10)$ | $0.110 \\ (0.08)$ | $0.063 \\ (0.07)$ | $0.087 \\ (0.05)$ | $0.073 \\ (0.04)$ | $0.078 \\ (0.07)$ | $0.072 \\ (0.10)$ | $0.056 \\ (0.07)$ | $0.078 \\ (0.20)$ | $0.084 \\ (0.07)$ | $0.075 \\ (0.05)$ | $0.075 \\ (0.08)$ | $0.061 \\ (0.01)$ | $0.079 \\ (0.06)$ | $0.080 \\ (0.09)$ | $0.080 \\ (0.10)$ | $0.076 \\ (0.08)$ | $0.081 \\ (0.07)$ | $0.016 \\ (0.05)$ | $0.068 \\ (0.04)$ | $0.083 \\ (0.07)$ | $0.076 \\ (0.10)$ | $0.015 \\ (0.07)$ | $0.079 \\ (0.20)$ | $0.088 \\ (0.07)$ | $0.079 \\ (0.05)$ | $0.079 \\ (0.08)$ | $0.082 \\ (0.01)$ | $0.054 \\ (0.06)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi^{i29}_{ab}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | $0.089 \\ (0.09)$ | $0.084 \\ (0.10)$ | $0.748 \\ (0.08)$ | -0.047 $(0.07)$   | $0.079 \\ (0.05)$ | $0.085 \\ (0.04)$ | $0.072 \\ (0.07)$ | $0.079 \\ (0.10)$ | $0.071 \\ (0.07)$ | $0.068 \\ (0.20)$ | $0.089 \\ (0.07)$ | $0.075 \\ (0.05)$ | $0.075 \\ (0.08)$ | $0.088 \\ (0.01)$ | $0.078 \\ (0.06)$ | $0.079 \\ (0.09)$ | $0.076 \\ (0.10)$ | $0.054 \\ (0.08)$ | $0.076 \\ (0.07)$ | 0.087 $(0.05)$    | $0.079 \\ (0.04)$ | $0.444 \\ (0.07)$ | $0.094 \\ (0.10)$ | $0.088 \\ (0.07)$ | 0.089 $(0.20)$    | $0.080 \\ (0.07)$ | $0.078 \\ (0.05)$ | $0.066 \\ (0.08)$ | $0.064 \\ (0.01)$ | 0.057 $(0.06)$    |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.120 \\ (0.06)$ | $0.044 \\ (0.10)$ | $0.150 \\ (0.05)$ | $0.161 \\ (0.07)$ | $0.078 \\ (0.20)$ | $0.075 \\ (0.04)$ | $0.075 \\ (0.08)$ | $0.081 \\ (0.08)$ | $0.078 \\ (0.06)$ | $0.078 \\ (0.10)$ | $0.076 \\ (0.08)$ | $0.116 \\ (0.08)$ | $0.072 \\ (0.05)$ | $0.079 \\ (0.07)$ | $0.097 \\ (0.04)$ | $0.069 \\ (0.06)$ | $0.074 \\ (0.10)$ | $0.078 \\ (0.05)$ | $0.077 \\ (0.07)$ | $0.075 \\ (0.20)$ | $0.080 \\ (0.04)$ | $0.075 \\ (0.08)$ | $0.076 \\ (0.08)$ | $0.089 \\ (0.06)$ | -0.045 (0.10)     | $0.087 \\ (0.07)$ | $0.077 \\ (0.07)$ | $0.080 \\ (0.04)$ | $0.076 \\ (0.08)$ | $0.078 \\ (0.03)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.076 \\ (0.06)$ | $0.167 \\ (0.10)$ | $0.099 \\ (0.05)$ | $0.073 \\ (0.07)$ | 0.079 $(0.20)$    | $0.079 \\ (0.04)$ | -0.001 (0.08)     | $0.077 \\ (0.08)$ | $0.070 \\ (0.06)$ | $0.078 \\ (0.01)$ | $0.070 \\ (0.06)$ | $0.086 \\ (0.09)$ | $0.076 \\ (0.06)$ | $0.089 \\ (0.09)$ | 0.091 $(0.06)$    | $0.075 \\ (0.06)$ | $0.079 \\ (0.10)$ | $0.088 \\ (0.05)$ | $0.074 \\ (0.07)$ | $0.080 \\ (0.20)$ | $0.075 \\ (0.04)$ | $0.084 \\ (0.08)$ | $0.080 \\ (0.08)$ | 0.234 $(0.06)$    | $0.075 \\ (0.01)$ | $0.128 \\ (0.06)$ | $0.108 \\ (0.07)$ | $0.081 \\ (0.07)$ | $0.072 \\ (0.09)$ | -0.012 (0.08)     |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = WMT \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, UNH, V, VZ \\ \textit{Total Control of the C$ 

Table 26: Estimated informational trading parameters for UNH

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.074 \\ (0.04)$ | $0.079 \\ (0.05)$ | $0.076 \\ (0.06)$ | $0.079 \\ (0.08)$ | $0.083 \\ (0.30)$ | $0.069 \\ (0.08)$ | $0.077 \\ (0.04)$ | $0.071 \\ (0.20)$ | $0.082 \\ (0.06)$ | $0.085 \\ (0.11)$ | $0.076 \\ (0.07)$ | $0.073 \\ (0.05)$ | $0.083 \\ (0.06)$ | $0.077 \\ (0.04)$ | $0.077 \\ (0.10)$ | $0.024 \\ (0.04)$ | $0.077 \\ (0.05)$ | $0.084 \\ (0.06)$ | $0.081 \\ (0.08)$ | $0.075 \\ (0.30)$ | $0.074 \\ (0.08)$ | $0.082 \\ (0.04)$ | $0.085 \\ (0.20)$ | $0.071 \\ (0.06)$ | $0.080 \\ (0.22)$ | $0.074 \\ (0.08)$ | $0.079 \\ (0.05)$ | $0.082 \\ (0.06)$ | $0.083 \\ (0.04)$ | $0.084 \\ (0.10)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$ | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$ | $\phi^{i30}_{ab}$ |
|             | $0.082 \\ (0.04)$ | $0.077 \\ (0.05)$ | 0.081 $(0.06)$    | $0.072 \\ (0.08)$ | $0.085 \\ (0.03)$ | $0.055 \\ (0.08)$ | $0.078 \\ (0.04)$ | $0.080 \\ (0.20)$ | 0.082 $(0.06)$    | $0.085 \\ (0.22)$ | 0.082 $(0.08)$    | $0.086 \\ (0.05)$ | 0.084 $(0.06)$    | $0.083 \\ (0.04)$ | $0.068 \\ (0.10)$ | $0.077 \\ (0.04)$ | $0.082 \\ (0.05)$ | 0.073 $(0.06)$    | $0.070 \\ (0.0)8$ | $0.078 \\ (0.03)$ | $0.080 \\ (0.08)$ | $0.075 \\ (0.04)$ | 0.079 $(0.20)$    | 0.827 $(0.06)$    | $0.156 \\ (0.33)$ | $0.042 \\ (0.09)$ | $0.110 \\ (0.05)$ | $0.065 \\ (0.06)$ | $0.085 \\ (0.04)$ | $0.079 \\ (0.10)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.065 \\ (0.10)$ | $0.076 \\ (0.07)$ | $0.080 \\ (0.08)$ | $0.096 \\ (0.03)$ | $0.077 \\ (0.05)$ | $0.082 \\ (0.06)$ | $0.081 \\ (0.20)$ | $0.079 \\ (0.08)$ | $0.074 \\ (0.10)$ | $0.075 \\ (0.30)$ | $0.105 \\ (0.06)$ | $0.082 \\ (0.04)$ | $0.078 \\ (0.07)$ | $0.068 \\ (0.02)$ | $0.079 \\ (0.08)$ | $0.078 \\ (0.10)$ | $0.073 \\ (0.07)$ | $0.083 \\ (0.08)$ | $0.107 \\ (0.30)$ | $0.043 \\ (0.05)$ | $0.109 \\ (0.06)$ | $0.077 \\ (0.20)$ | $0.078 \\ (0.08)$ | $0.087 \\ (0.10)$ | $0.077 \\ (0.03)$ | $0.138 \\ (0.06)$ | $0.076 \\ (0.04)$ | $0.087 \\ (0.07)$ | $0.077 \\ (0.03)$ | $0.096 \\ (0.03)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$ | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ |
|             | $0.079 \\ (0.10)$ | $0.068 \\ (0.07)$ | $0.079 \\ (0.08)$ | $0.077 \\ (0.03)$ | $0.079 \\ (0.05)$ | $0.078 \\ (0.06)$ | 0.089 $(0.20)$    | $0.075 \\ (0.08)$ | $0.078 \\ (0.10)$ | $0.077 \\ (0.30)$ | $0.079 \\ (0.06)$ | $0.072 \\ (0.04)$ | $0.075 \\ (0.07)$ | 0.084 $(0.02)$    | $0.079 \\ (0.06)$ | $0.076 \\ (0.10)$ | $0.096 \\ (0.07)$ | $0.079 \\ (0.08)$ | $0.106 \\ (0.30)$ | $0.114 \\ (0.05)$ | 0.033 $(0.06)$    | $0.103 \\ (0.20)$ | $0.077 \\ (0.08)$ | $0.079 \\ (0.10)$ | $0.578 \\ (0.30)$ | $0.150 \\ (0.06)$ | $0.094 \\ (0.04)$ | $0.055 \\ (0.07)$ | $0.098 \\ (0.05)$ | $0.071 \\ (0.04)$ |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = UNH \ \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, V, VZ \\ \textit{Total Control of the C$ 

Table 27: Estimated informational trading parameters for  ${\bf V}$ 

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                                          |                                                          |                                                          |                                  |                                  |                   |                                                          |                   |                   |                                  |                   |                   |                                  |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------|----------------------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|----------------------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$                                        | $\phi_{ab}^{i10}$                                        | $\phi_{aa}^{i11}$                                        | $\phi_{ab}^{i11}$                | $\phi_{aa}^{i12}$                | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                                        | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$                | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$                | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.079 \\ (0.08)$ | $0.072 \\ (0.20)$ | $0.083 \\ (0.05)$ | $0.077 \\ (0.10)$ | $0.082 \\ (0.07)$ | $0.073 \\ (0.08)$ | $0.079 \\ (0.07)$ | $0.076 \\ (0.06)$ | $0.082 \\ (0.06)$ | $0.127 \\ (0.06)$ | $0.083 \\ (0.10)$ | $0.081 \\ (0.09)$ | $0.146 \\ (0.03)$ | $0.078 \\ (0.07)$ | $0.083 \\ (0.01)$ | $0.075 \\ (0.08)$ | 0.083 $(0.20)$                                           | $0.080 \\ (0.05)$                                        | $0.078 \\ (0.10)$                                        | $0.076 \\ (0.07)$                | $0.079 \\ (0.08)$                | $0.076 \\ (0.07)$ | $0.085 \\ (0.06)$                                        | $0.080 \\ (0.06)$ | $0.083 \\ (0.20)$ | $0.134 \\ (0.10)$                | $0.077 \\ (0.09)$ | $0.085 \\ (0.05)$ | $0.070 \\ (0.07)$                | $0.080 \\ (0.01)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$                                        | $\phi_{ab}^{i25}$                                        | $\phi_{aa}^{i26}$                                        | $\phi_{ab}^{i26}$                | $\phi_{aa}^{i27}$                | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$                                        | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$                | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i30}$                | $\phi_{ab}^{i30}$ |
|             | 0.083 $(0.08)$    | $0.082 \\ (0.20)$ | $0.078 \\ (0.05)$ | $0.081 \\ (0.10)$ | $0.072 \\ (0.07)$ | 0.082 $(0.08)$    | $0.074 \\ (0.07)$ | 0.082<br>(0.06)   | $0.079 \\ (0.06)$ | 0.082 $(0.20)$    | 0.082 $(0.10)$    | $0.072 \\ (0.09)$ | $0.081 \\ (0.02)$ | $0.069 \\ (0.07)$ | 0.082 $(0.01)$    | $0.072 \\ (0.08)$ | 0.084 $(0.20)$                                           | $0.074 \\ (0.05)$                                        | $0.080 \\ (0.10)$                                        | $0.083 \\ (0.07)$                | 0.082 $(0.08)$                   | $0.083 \\ (0.07)$ | $0.071 \\ (0.06)$                                        | 0.080<br>(0.06)   | $0.074 \\ (0.05)$ | $0.081 \\ (0.10)$                | $0.553 \\ (0.09)$ | $0.015 \\ (0.06)$ | 0.112 $(0.07)$                   | $0.101 \\ (0.10)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\begin{array}{c} (0.20) \\ \phi_{ba}^{i10} \end{array}$ | $\begin{array}{c} (0.05) \\ \phi_{bb}^{i10} \end{array}$ | $\begin{array}{c} (0.10) \\ \phi_{ba}^{i11} \end{array}$ | $\frac{(0.07)}{\phi_{bb}^{i11}}$ | $\frac{(0.08)}{\phi_{ba}^{i12}}$ | $\phi_{bb}^{i12}$ | $\begin{array}{c} (0.06) \\ \phi_{ba}^{i13} \end{array}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\frac{(0.10)}{\phi_{bb}^{i14}}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\frac{(0.07)}{\phi_{ba}^{i16}}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.082 \\ (0.20)$ | $0.078 \\ (0.08)$ | $0.072 \\ (0.04)$ | $0.085 \\ (0.08)$ | $0.130 \\ (0.07)$ | $0.069 \\ (0.06)$ | $0.082 \\ (0.10)$ | $0.083 \\ (0.05)$ | $0.084 \\ (0.10)$ | $0.079 \\ (0.20)$ | $0.077 \\ (0.06)$ | $0.080 \\ (0.08)$ | $0.074 \\ (0.06)$ | $0.076 \\ (0.04)$ | $0.072 \\ (0.07)$ | $0.082 \\ (0.20)$ | $0.073 \\ (0.08)$                                        | $0.078 \\ (0.04)$                                        | $0.069 \\ (0.08)$                                        | $0.149 \\ (0.07)$                | $0.080 \\ (0.06)$                | $0.071 \\ (0.10)$ | $0.120 \\ (0.05)$                                        | $0.102 \\ (0.10)$ | $0.078 \\ (0.04)$ | $0.082 \\ (0.06)$                | $0.069 \\ (0.08)$ | $0.142 \\ (0.07)$ | $0.083 \\ (0.06)$                | $0.078 \\ (0.08)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$                                        | $\phi_{bb}^{i25}$                                        | $\phi_{ba}^{i26}$                                        | $\phi_{bb}^{i26}$                | $\phi_{ba}^{i27}$                | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$                                        | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$                | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i30}$                | $\phi_{bb}^{i30}$ |
|             | 0.074 $(0.20)$    | $0.080 \\ (0.08)$ | 0.074 $(0.04)$    | 0.089 $(0.08)$    | $0.085 \\ (0.07)$ | $0.080 \\ (0.06)$ | $0.078 \\ (0.10)$ | $0.080 \\ (0.05)$ | 0.072 $(0.10)$    | $0.085 \\ (0.30)$ | 0.082 $(0.06)$    | 0.083 $(0.08)$    | $0.080 \\ (0.05)$ | $0.074 \\ (0.07)$ | $0.086 \\ (0.09)$ | $0.052 \\ (0.20)$ | 0.081 $(0.08)$                                           | $0.069 \\ (0.04)$                                        | $0.086 \\ (0.08)$                                        | $0.077 \\ (0.07)$                | $0.080 \\ (0.06)$                | 0.082 $(0.10)$    | 0.073 $(0.05)$                                           | 0.085 $(0.10)$    | 0.083 $(0.10)$    | 0.084 $(0.06)$                   | 0.152 $(0.08)$    | $0.466 \\ (0.04)$ | 0.067 $(0.09)$                   | 0.081 $(0.08)$    |

 $\textit{For} \quad \phi^{ij}_{\cdot\cdot\cdot}, \quad i = V \; \textit{and} \quad j = AAPL, CVX, AXP, BA, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, VZ, CSCO, CAT, DIS, IBM, DOW, GS, HD, KO, JPM, INTC, JNJ, MMM, MCD, NKE, MRK, MSFT, WBA, UTX, PG, PFE, TRV, XOM, WMT, UNH, VZ, CSCO, CSCO$ 

Table 28: Estimated informational trading parameters for VZ

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                                  |                   |                   |                                  |                   |                   |                   |                   |                   |                   |                   |                                  |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|----------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|
|             | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$                | $\phi_{ab}^{i10}$                | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$                | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$                | $\phi_{ab}^{i16}$ |
| $a_t - p_t$ | $0.078 \\ (0.10)$ | $0.069 \\ (0.04)$ | $0.089 \\ (0.08)$ | $0.079 \\ (0.20)$ | $0.079 \\ (0.06)$ | $0.078 \\ (0.08)$ | $0.060 \\ (0.05)$ | $0.075 \\ (0.05)$ | $0.095 \\ (0.20)$ | $0.097 \\ (0.06)$ | $0.086 \\ (0.20)$ | $0.079 \\ (0.30)$ | $0.078 \\ (0.08)$ | $0.084 \\ (0.05)$ | -0.012 (0.06)     | $0.078 \\ (0.10)$ | $0.096 \\ (0.04)$                | $0.079 \\ (0.08)$                | $0.087 \\ (0.20)$ | $0.099 \\ (0.06)$ | $0.056 \\ (0.08)$                | $0.096 \\ (0.05)$ | $0.087 \\ (0.07)$ | $0.117 \\ (0.20)$ | $0.138 \\ (0.05)$ | $0.047 \\ (0.20)$ | $0.102 \\ (0.03)$ | $0.096 \\ (0.08)$ | $0.062 \\ (0.05)$                | $0.086 \\ (0.06)$ |
|             | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$                | $\phi_{ab}^{i25}$                | $\phi_{aa}^{i26}$ | $\phi_{ab}^{i26}$ | $\phi_{aa}^{i27}$                | $\phi_{ab}^{i27}$ | $\phi_{aa}^{i28}$ | $\phi_{ab}^{i28}$ | $\phi_{aa}^{i29}$ | $\phi_{ab}^{i29}$ | $\phi_{aa}^{i30}$ | $\phi_{ab}^{i30}$ | $\phi^i_{aa}$                    | $\phi^i_{ab}$     |
|             | $0.079 \\ (0.10)$ | $0.078 \\ (0.04)$ | $0.089 \\ (0.08)$ | $0.108 \\ (0.20)$ | $0.097 \\ (0.06)$ | $0.067 \\ (0.08)$ | $0.058 \\ (0.05)$ | 0.157 $(0.09)$    | 0.077 $(0.20)$    | 0.077 $(0.04)$    | $0.071 \\ (0.02)$ | $0.068 \\ (0.30)$ | $0.070 \\ (0.08)$ | 0.081 $(0.07)$    | 0.083<br>(0.06)   | $0.107 \\ (0.10)$ | $0.074 \\ (0.04)$                | $0.085 \\ (0.08)$                | 0.082 $(0.20)$    | $0.070 \\ (0.06)$ | $0.077 \\ (0.08)$                | $0.078 \\ (0.05)$ | $0.088 \\ (0.09)$ | $0.074 \\ (0.20)$ | $0.078 \\ (0.03)$ | 0.081 $(0.20)$    | $0.069 \\ (0.03)$ | 0.082 $(0.08)$    | $0.408 \\ (0.07)$                | $0.155 \\ (0.06)$ |
|             | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\frac{(0.04)}{\phi_{ba}^{i10}}$ | $\frac{(0.08)}{\phi_{bb}^{i10}}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\frac{(0.08)}{\phi_{ba}^{i12}}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\frac{(0.07)}{\phi_{ba}^{i16}}$ | $\phi_{bb}^{i16}$ |
| $p_t - b_t$ | $0.077 \\ (0.08)$ | $0.093 \\ (0.05)$ | $0.085 \\ (0.07)$ | $0.077 \\ (0.06)$ | $0.108 \\ (0.10)$ | $0.089 \\ (0.08)$ | $0.076 \\ (0.20)$ | $0.080 \\ (0.08)$ | $0.088 \\ (0.20)$ | $0.051 \\ (0.06)$ | $0.093 \\ (0.10)$ | $0.117 \\ (0.03)$ | $0.078 \\ (0.08)$ | $0.078 \\ (0.04)$ | $0.082 \\ (0.09)$ | $0.084 \\ (0.08)$ | $0.083 \\ (0.05)$                | $0.089 \\ (0.07)$                | $0.080 \\ (0.06)$ | $0.075 \\ (0.10)$ | $0.081 \\ (0.08)$                | $0.098 \\ (0.20)$ | $0.100 \\ (0.08)$ | $0.088 \\ (0.20)$ | $0.099 \\ (0.06)$ | $0.035 \\ (0.01)$ | $0.028 \\ (0.03)$ | $0.039 \\ (0.09)$ | $0.079 \\ (0.04)$                | $0.082 \\ (0.04)$ |
|             | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$                | $\phi_{bb}^{i25}$                | $\phi_{ba}^{i26}$ | $\phi_{bb}^{i26}$ | $\phi_{ba}^{i27}$                | $\phi_{bb}^{i27}$ | $\phi_{ba}^{i28}$ | $\phi_{bb}^{i28}$ | $\phi_{ba}^{i29}$ | $\phi_{bb}^{i29}$ | $\phi_{ba}^{i30}$ | $\phi_{bb}^{i30}$ | $\phi^i_{ba}$                    | $\phi^i_{bb}$     |
|             | $0.079 \\ (0.08)$ | $0.081 \\ (0.05)$ | $0.078 \\ (0.07)$ | $0.056 \\ (0.06)$ | $0.068 \\ (0.10)$ | $0.074 \\ (0.09)$ | 0.133 $(0.20)$    | $0.082 \\ (0.08)$ | 0.028 $(0.02)$    | $0.080 \\ (0.06)$ | $0.069 \\ (0.10)$ | $0.082 \\ (0.03)$ | $0.091 \\ (0.07)$ | $0.073 \\ (0.05)$ | 0.081 $(0.06)$    | $0.100 \\ (0.08)$ | $0.049 \\ (0.05)$                | $0.079 \\ (0.07)$                | $0.079 \\ (0.06)$ | 0.118 $(0.10)$    | 0.077 $(0.09)$                   | $0.058 \\ (0.20)$ | $0.082 \\ (0.08)$ | 0.079 $(0.20)$    | $0.075 \\ (0.06)$ | 0.083 $(0.01)$    | 0.074 $(0.03)$    | -0.004 (0.07)     | $0.160 \\ (0.05)$                | 0.209<br>(0.06)   |

 $For \ \phi^{ij}_{..}, \ i=VZ \ and \ j=AAPL,CVX,AXP,BA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,TRV,XOM,WMT,UNH,VA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,TRV,XOM,WMT,UNH,VA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,TRV,XOM,WMT,UNH,VA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,TRV,XOM,WMT,UNH,VA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,TRV,XOM,WMT,UNH,VA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,JPM,INTC,JNJ,MMM,MCD,NKE,MRK,MSFT,WBA,UTX,PG,PFE,TRV,XOM,WMT,UNH,VA,CSCO,CAT,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,KO,DIS,IBM,DOW,GS,HD,GS,HD,GS,HD,GS,HD,GS,HD,GS,HD,GS,HD,GS,HD,GS,HD,GS,HD,GS,HD,GS,HD,GS,HD,GS,$ 

Appendix B2
Estimated GARCH Parameters for DIA and its Underlying Assets

| ETF                | $\kappa_{pf}^0$  | $\kappa_{p^f}$     | $\kappa^0_{ap^f}$  | $\kappa_{ap^f}$    | $\kappa^0_{pb^f}$ | $\kappa_{pb^f}$    | $	au_0^f$          | $	au_1^f$          | $	au_2^f$          | $	au_3^f$          |
|--------------------|------------------|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| DIA                | -0.611 (0.184)   | $0.601 \\ (0.001)$ | -0.553 $(0.010)$   | 0.781 $(0.09)$     | -0.772 $(0.001)$  | $0.784 \\ (0.005)$ | -0.220 (0.003)     | $0.939 \\ (0.012)$ | -0.229 (0.038)     | $0.601 \\ (0.007)$ |
| STOCK $\kappa_p^0$ | $\kappa_p$       | $\kappa^0_{ap}$    | $\kappa_{ap}$      | $\kappa_{pb}^0$    | $\kappa_{pb}$     | $	au_0$            | $	au_1$            | $	au_2$            | $	au_3$            | 0.601              |
| AAPL               | -0.761 $(0.001)$ | $0.600 \\ (0.004)$ | -0.663 $(0.134)$   | $0.783 \\ (0.005)$ | -0.453 (0.014)    | $0.785 \\ (0.003)$ | -0.671 $(0.002)$   | 0.879 $(0.004)$    | -0.071 (0.189)     | 0.601<br>(0.039)   |
| CVX                | -0.651 $(0.001)$ | $0.601 \\ (0.010)$ | -0.343 $(0.034)$   | $0.844 \\ (0.066)$ | -0.427 $(0.062)$  | $0.870 \\ (0.027)$ | -0.421 $(0.023)$   | $0.929 \\ (0.009)$ | -0.521 (0.067)     | $0.601 \\ (0.035)$ |
| AXP                | -0.260 $(0.077)$ | $0.611 \\ (0.033)$ | -0.473 $(0.035)$   | $0.785 \\ (0.056)$ | -0.333 $(0.076)$  | $0.785 \\ (0.025)$ | -0.240 $(0.090)$   | $0.779 \\ (0.044)$ | -0.370 $(0.064)$   | 0.606<br>(0.043)   |
| BA                 | -0.761 $(0.048)$ | $0.601 \\ (0.067)$ | -0.413 $(0.005)$   | $0.786 \\ (0.011)$ | -0.273 (0.091)    | $0.788 \\ (0.024)$ | -0.671 $(0.045)$   | $0.879 \\ (0.089)$ | -0.071 $(0.029)$   | 0.601<br>(0.046)   |
| CSCO               | -0.321 $(0.074)$ | $0.601 \\ (0.053)$ | -0.393 $(0.045)$   | $0.789 \\ (0.009)$ | -0.623 (0.010)    | $0.785 \\ (0.022)$ | -0.291 (0.034)     | $0.649 \\ (0.038)$ | -0.371 (0.059)     | 0.606<br>(0.037)   |
| CAT                | -0.321 $(0.027)$ | $0.674 \\ (0.045)$ | -0.553 $(0.089)$   | $0.792 \\ (0.048)$ | -0.773 $(0.042)$  | $0.805 \\ (0.049)$ | -0.203 $(0.032)$   | $0.881 \\ (0.043)$ | -0.721 (0.077)     | 0.696<br>(0.029)   |
| DIS                | -0.221 $(0.057)$ | 0.027 $(0.034)$    | -0.707 $(0.045)$   | $0.790 \\ (0.009)$ | -0.447 (0.033)    | $0.786 \\ (0.030)$ | $0.123 \\ (0.011)$ | $0.639 \\ (0.019)$ | -0.371 (0.039)     | 0.604<br>(0.065)   |
| IBM                | -0.484 $(0.048)$ | $0.652 \\ (0.021)$ | -0.351 (0.006)     | $0.794 \\ (0.002)$ | -0.593 $(0.094)$  | $0.789 \\ (0.085)$ | $0.119 \\ (0.032)$ | $0.870 \\ (0.037)$ | -0.276 $(0.076)$   | 0.604<br>(0.008)   |
| DOW                | -0.405 $(0.008)$ | $0.652 \\ (0.045)$ | -0.553 $(0.055)$   | $0.785 \\ (0.067)$ | -0.773 $(0.027)$  | $0.785 \\ (0.039)$ | -0.851 $(0.028)$   | $0.560 \\ (0.088)$ | -0.221 (0.008)     | 0.642<br>(0.035)   |
| GS                 | -0.484 $(0.054)$ | $0.604 \\ (0.065)$ | -0.623 (0.039)     | $0.785 \\ (0.066)$ | -0.573 $(0.056)$  | $0.785 \\ (0.043)$ | -0.451 (0.037)     | $0.637 \\ (0.074)$ | -0.486 (0.038)     | 0.601<br>(0.007)   |
| HD                 | -0.342 $(0.058)$ | $0.639 \\ (0.055)$ | -0.553 (0.121)     | $0.803 \\ (0.012)$ | -0.573 $(0.043)$  | $0.802 \\ (0.032)$ | $0.039 \\ (0.045)$ | $0.789 \\ (0.066)$ | -0.371 (0.021)     | $0.613 \\ (0.073)$ |
| КО                 | -0.284 $(0.058)$ | $0.631 \\ (0.035)$ | -0.553 $(0.037)$   | $0.876 \\ (0.021)$ | -0.593 $(0.028)$  | $0.871 \\ (0.113)$ | $0.031 \\ (0.044)$ | $0.570 \\ (0.009)$ | -0.576 $(0.032)$   | 0.611<br>(0.048)   |
| JPM                | -0.201 $(0.062)$ | $0.666 \\ (0.027)$ | -0.543 (0.037)     | $0.862 \\ (0.056)$ | -0.693 $(0.047)$  | $0.872 \\ (0.078)$ | -0.051 $(0.055)$   | $0.684 \\ (0.003)$ | -0.771 (0.001)     | 0.657 $(0.037)$    |
| INTC               | -0.604 $(0.118)$ | $0.688 \\ (0.041)$ | -0.453 $(0.053)$   | $0.833 \\ (0.065)$ | -0.588 $(0.096)$  | $0.809 \\ (0.086)$ | -0.261 (0.033)     | $0.739 \\ (0.211)$ | -0.471 (0.053)     | 0.631<br>(0.099)   |
| JNJ                | -0.426 $(0.032)$ | $0.665 \\ (0.098)$ | -0.413 (0.067)     | $0.787 \\ (0.045)$ | -0.473 (0.012)    | $0.835 \\ (0.021)$ | -0.292 $(0.022)$   | $0.686 \\ (0.067)$ | -0.336 $(0.045)$   | $0.656 \\ (0.053)$ |
| MMM                | -0.521 $(0.065)$ | $0.622 \\ (0.063)$ | -0.573 (0.007)     | $0.788 \\ (0.067)$ | -0.720 (0.087)    | $0.789 \\ (0.054)$ | -0.401 $(0.015)$   | $0.699 \\ (0.141)$ | -0.301 (0.111)     | $0.615 \\ (0.056)$ |
| MCD                | -0.426 $(0.032)$ | $0.621 \\ (0.035)$ | -0.613 (0.093)     | $0.877 \\ (0.078)$ | -0.773 (0.068)    | $0.884 \\ (0.067)$ | -0.071 $(0.056)$   | $0.599 \\ (0.078)$ | -0.551 $(0.053)$   | $0.626 \\ (0.052)$ |
| NKE                | -0.303 $(0.011)$ | $0.636 \\ (0.021)$ | -0.513 $(0.035)$   | $0.877 \\ (0.076)$ | -0.512 (0.037)    | $0.802 \\ (0.043)$ | -0.159 $(0.038)$   | $0.699 \\ (0.029)$ | -0.401 $(0.053)$   | $0.645 \\ (0.054)$ |
| MRK                | -0.321 (0.013)   | $0.685 \\ (0.054)$ | -0.6931 $(0.021)$  | $0.822 \\ (0.043)$ | -0.453 $(0.051)$  | $0.802 \\ (0.015)$ | -0.251 (0.006)     | $0.659 \\ (0.032)$ | -0.321 (0.067)     | $0.696 \\ (0.009)$ |
| MSFT               | -0.426 (0.023)   | $0.617 \\ (0.121)$ | -0.813 (0.023)     | $0.877 \\ (0.034)$ | -0.823 (0.053)    | $0.885 \\ (0.034)$ | -0.071 $(0.032)$   | $0.599 \\ (0.031)$ | -0.551 (0.011)     | $0.626 \\ (0.043)$ |
| WBA                | -0.393 $(0.022)$ | $0.682 \\ (0.118)$ | -0.683 (0.038)     | $0.836 \\ (0.051)$ | -0.573 (0.037)    | $0.854 \\ (0.037)$ | -0.096 $(0.035)$   | $0.848 \\ (0.026)$ | -0.531 (0.009)     | $0.655 \\ (0.101)$ |
| UTX                | -0.514 $(0.042)$ | $0.652 \\ (0.023)$ | -0.837 (0.023)     | $0.836 \\ (0.008)$ | -0.727 $(0.100)$  | $0.854 \\ (0.052)$ | -0.396 $(0.053)$   | $0.748 \\ (0.045)$ | -0.231 (0.039)     | 0.665<br>(0.088)   |
| PG                 | -0.192 $(0.054)$ | $0.666 \\ (0.031)$ | -0.413 (0.032)     | $0.811 \\ (0.052)$ | -0.543 $(0.053)$  | $0.797 \\ (0.053)$ | -0.331 (0.031)     | $0.569 \\ (0.030)$ | $0.130 \\ (0.008)$ | $0.666 \\ (0.008)$ |
| PFE                | -0.621 $(0.025)$ | 0.697 $(0.024)$    | $0.177 \\ (0.073)$ | $0.813 \\ (0.053)$ | -0.708 $(0.009)$  | $0.804 \\ (0.053)$ | -0.241 (0.034)     | $0.499 \\ (0.064)$ | -0.482 $(0.045)$   | 0.660<br>(0.007)   |
| TRV                | 0.006<br>(0.046) | $0.635 \\ (0.038)$ | -0.313 (0.074)     | 0.877 $10063$      | -0.373 (0.063)    | $0.885 \\ (0.037)$ | -0.411 (0.087)     | $0.793 \\ (0.054)$ | -0.193 $(0.032)$   | $0.646 \\ (0.021)$ |
| XOM                | -0.431 ()0.034   | $0.613 \\ (0.032)$ | -0.648 (0.021)     | $0.881 \\ (0.007)$ | -0.608 $(0.053)$  | $0.852 \\ (0.042)$ | -0.671 $(0.032)$   | $0.761 \\ (0.012)$ | -0.031 (0.031)     | $0.645 \\ (0.032)$ |
| WMT                | -0.471 (0.023)   | $0.675 \\ (0.045)$ | -0.720 (0.034)     | $0.822 \\ (0.044)$ | -0.636 (0.011)    | $0.842 \\ (0.045)$ | -0.351 (0.023)     | $0.959 \\ (0.012)$ | -0.392 $(0.022)$   | 0.6867<br>(0.031)  |
| UNH                | -0.426 (0.043)   | $0.617 \\ (0.032)$ | -0.813 (0.032)     | $0.847 \\ (0.034)$ | -0.673 (0.009)    | $0.836 \\ 0.074)$  | -0.071 $(0.053)$   | $0.599 \\ (0.042)$ | -0.551 $(0.019)$   | $0.626 \\ (0.042)$ |
| V                  | -0.321 $(0.035)$ | $0.601 \\ (0.015)$ | -0.499 (0.076)     | $0.849 \\ (0.023)$ | -0.402 $(0.056)$  | $0.874 \\ (0.073)$ | -0.291 $(0.046)$   | $0.649 \\ (0.042)$ | -0.371 $(0.042)$   | $0.606 \\ (0.055)$ |
| VZ                 | -0.121 $(0.025)$ | $0.692 \\ (0.024)$ | -0.722 $(0.057)$   | $0.846 \\ (0.053)$ | -0.737 $(0.052)$  | $0.854 \\ (0.043)$ | -0.381 (0.032)     | $0.969 \\ (0.053)$ | -0.181 $(0.042)$   | $0.751 \\ (0.053)$ |

# Appendix C1

### Dynamic Model Estimates for the Underlying Assets of SMH ETF

Table 29: Estimated informational trading parameters for SMH ETF

| var             |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |                    |                     |                    |                     |                    |                     |
|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|
|                 | $\psi^1_{a^f a}$   | $\psi^1_{a^fb}$    | $\psi_{a^f a}^2$   | $\psi_{a^f b}^2$   | $\psi^3_{a^f a}$   | $\psi^3_{a^fb}$    | $\psi^4_{a^f a}$   | $\psi^4_{a^fb}$    | $\psi_{a^f a}^5$   | $\psi^5_{a^fb}$    | $\psi_{a^f a}^6$   | $\psi^6_{a^fb}$    | $\psi_{a^f a}^7$   | $\psi^7_{a^fb}$    | $\psi_{a^f a}^8$   | $\psi^8_{a^fb}$    | $\psi^9_{a^f a}$   | $\psi^9_{a^fb}$    | $\psi^{10}_{a^f a}$ | $\psi^{10}_{a^fb}$ | $\psi^{11}_{a^f a}$ | $\psi^{11}_{a^fb}$ | $\psi^{12}_{a^f a}$ | $\psi^{12}_{a^fb}$ | $\psi_{a^f a}^{13}$ |
| $a_t^f - p_t^f$ | $0.085 \\ (0.06)$  | $0.080 \\ (0.21)$  | $0.084 \\ (0.09)$  | $0.083 \\ (0.11)$  | $0.085 \\ (0.04)$  | $0.086 \\ (0.05)$  | $0.084 \\ (0.06)$  | $0.082 \\ (0.23)$  | $0.095 \\ (0.15)$  | $0.084 \\ (0.21)$  | $0.083 \\ (0.09)$  | $0.079 \\ (0.07)$  | $0.083 \\ (0.06)$  | $0.086 \\ (0.04)$  | $0.106 \\ (0.08)$  | $0.093 \\ (0.21)$  | $0.084 \\ (0.04)$  | $0.085 \\ (0.11)$  | $0.084 \\ (0.16)$   | $0.087 \\ (0.13)$  | $0.084 \\ (0.22)$   | $0.084 \\ (0.05)$  | $0.084 \\ (0.90)$   | $0.122 \\ (0.06)$  | $0.292 \\ (0.01)$   |
|                 | $\psi^{13}_{a^fb}$ | $\psi^{14}_{a^fa}$ | $\psi^{14}_{a^fb}$ | $\psi^{15}_{a^fa}$ | $\psi^{15}_{a^fb}$ | $\psi^{16}_{a^fa}$ | $\psi^{16}_{a^fb}$ | $\psi^{17}_{a^fa}$ | $\psi^{17}_{a^fb}$ | $\psi^{18}_{a^fa}$ | $\psi^{18}_{a^fb}$ | $\psi^{19}_{a^fa}$ | $\psi^{19}_{a^fb}$ | $\psi^{20}_{a^fa}$ | $\psi_{a^fb}^{20}$ | $\psi^{21}_{a^fa}$ | $\psi^{21}_{a^fb}$ | $\psi^{22}_{a^fa}$ | $\psi_{a^fb}^{22}$  | $\psi^{23}_{a^fa}$ | $\psi_{a^fb}^{23}$  | $\psi^{24}_{a^fa}$ | $\psi_{a^fb}^{24}$  | $\psi^{25}_{a^fa}$ | $\psi_{a^fb}^{25}$  |
|                 | $0.088 \\ (0.09)$  | $0.085 \\ (0.22)$  | $0.085 \\ (0.01)$  | 0.084 $(0.09)$     | 0.084 $(0.23)$     | $0.095 \\ (0.60)$  | 0.097 $(0.05)$     | $0.085 \\ (0.60)$  | $0.085 \\ (0.06)$  | $0.094 \\ (0.17)$  | $0.086 \\ (0.11)$  | $0.086 \\ (0.07)$  | $0.085 \\ (0.21)$  | $0.090 \\ (0.09)$  | 0.083 $(0.01)$     | $0.112 \\ (0.04)$  | 0.083 $(0.06)$     | 0.083 $(0.11)$     | $0.093 \\ (0.05)$   | 0.087 $(0.04)$     | 0.088 $(0.01)$      | $0.122 \\ (0.22)$  | $0.084 \\ (0.09)$   | 0.083 $(0.21)$     | $0.161 \\ (0.06)$   |
|                 | $\psi^1_{b^f a}$   | $\psi^1_{b^fb}$    | $\psi_{b^f a}^2$   | $\psi^2_{b^fb}$    | $\psi^3_{b^fa}$    | $\psi^3_{b^fb}$    | $\psi_{b^f a}^4$   | $\psi^4_{b^fb}$    | $\psi_{b^fa}^5$    | $\psi_{b^fb}^5$    | $\psi^6_{b^fa}$    | $\psi^6_{b^fb}$    | $\psi^7_{b^fa}$    | $\psi^7_{b^fb}$    | $\psi_{b^f a}^8$   | $\psi^8_{b^fb}$    | $\psi^9_{b^fa}$    | $\psi^9_{b^fb}$    | $\psi_{b^fa}^{10}$  | $\psi^{10}_{b^fb}$ | $\psi_{b^fa}^{11}$  | $\psi^{11}_{b^fb}$ | $\psi_{b^fa}^{12}$  | $\psi_{b^fb}^{12}$ | $\psi_{b^fa}^{13}$  |
| $p_t^f - b_t^f$ | $0.086 \\ (0.11)$  | $0.084 \\ (0.17)$  | $0.084 \\ (0.04)$  | $0.082 \\ (0.01)$  | $0.087 \\ (0.07)$  | $0.084 \\ (0.05)$  | $0.084 \\ (0.21)$  | $0.084 \\ (0.04)$  | $0.084 \\ (0.07)$  | $0.084 \\ (0.04)$  | $0.084 \\ (0.06)$  | $0.085 \\ (0.23)$  | $0.084 \\ (0.09)$  | $0.084 \\ (0.11)$  | $0.085 \\ (0.06)$  | $0.089 \\ (0.26)$  | $0.084 \\ (0.01)$  | $0.084 \\ (0.03)$  | $0.084 \\ (0.05)$   | $0.089 \\ (0.09)$  | $0.084 \\ (0.11)$   | $0.088 \\ (0.06)$  | $0.083 \\ (0.22)$   | $0.084 \\ (0.06)$  | $0.084 \\ (0.04)$   |
|                 | $\psi_{b^fb}^{13}$ | $\psi_{b^fa}^{14}$ | $\psi_{b^fb}^{14}$ | $\psi_{b^fa}^{15}$ | $\psi_{b^fb}^{15}$ | $\psi_{b^fa}^{16}$ | $\psi_{b^fb}^{16}$ | $\psi_{b^fa}^{17}$ | $\psi_{b^fb}^{17}$ | $\psi_{b^fa}^{18}$ | $\psi_{b^fb}^{18}$ | $\psi_{b^fa}^{19}$ | $\psi_{b^fb}^{19}$ | $\psi_{b^fa}^{20}$ | $\psi_{b^fb}^{20}$ | $\psi_{b^fa}^{21}$ | $\psi_{b^fb}^{21}$ | $\psi_{b^fa}^{22}$ | $\psi_{b^fb}^{22}$  | $\psi_{b^fa}^{23}$ | $\psi_{b^fb}^{23}$  | $\psi_{b^fa}^{24}$ | $\psi_{b^fb}^{24}$  | $\psi_{b^fa}^{25}$ | $\psi_{b^fb}^{25}$  |
|                 | $0.095 \\ (0.11)$  | 0.084 $(0.06)$     | 0.085 $(0.12)$     | 0.084 $(0.13)$     | 0.103 $(0.90)$     | $0.108 \\ (0.05)$  | 0.095 $(0.09)$     | 0.086 $(0.16)$     | 0.173 $(0.08)$     | 0.084 $(0.11)$     | 0.083 $(0.17)$     | 0.085 $(0.21)$     | 0.088 $(0.07)$     | $0.101 \\ (0.03)$  | 0.084 $(0.08)$     | $0.090 \\ (0.11)$  | 0.083 $(0.01)$     | 0.087 $(0.11)$     | 0.144 $(0.22)$      | 0.086 $(0.04)$     | 0.083 $(0.06)$      | 0.102 $(0.08)$     | $0.175 \\ (0.05)$   | 0.085 $(0.21)$     | $0.101 \\ (0.09)$   |

Table 30: Estimated informational trading parameters for TSM

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                                  |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|----------------------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$                | $\phi_{ab}^{i12}$                | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.154 \\ (0.05)$ | $0.089 \\ (0.07)$ | $0.087 \\ (0.11)$ | $0.116 \\ (0.08)$ | $0.096 \\ (0.22)$ | $0.117 \\ (0.15)$ | $0.092 \\ (0.22)$ | $0.097 \\ (0.05)$ | $0.087 \\ (0.08)$ | $0.084 \\ (0.04)$ | $0.092 \\ (0.16)$ | $0.080 \\ (0.18)$ | $0.078 \\ (0.07)$ | $0.107 \\ (0.03)$ | $0.138 \\ (0.05)$ | $0.117 \\ (0.11)$ | $0.107 \\ (0.07)$ | $0.167 \\ (0.26)$ | $0.132 \\ (0.04)$ | $0.120 \\ (0.07)$ | $0.127 \\ (0.08)$ | $0.099 \\ (0.05)$ | $0.086 \\ (0.11)$                | $0.167 \\ (0.22)$                | $0.109 \\ (0.15)$ |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$                | $\phi_{aa}^{i25}$                | $\phi_{ab}^{i25}$ |
|             | $0.092 \\ (0.07)$ | 0.157 $(0.11)$    | $0.106 \\ (0.05)$ | $0.106 \\ (0.07)$ | $0.090 \\ (0.15)$ | $0.089 \\ (0.03)$ | $0.078 \\ (0.08)$ | $0.079 \\ (0.07)$ | $0.089 \\ (0.05)$ | 0.087 $(0.11)$    | $0.096 \\ (0.15)$ | $0.112 \\ (0.04)$ | 0.097 $(0.22)$    | 0.084 $(0.08)$    | $0.080 \\ (0.05)$ | $0.080 \\ (0.07)$ | $0.079 \\ (0.08)$ | $0.078 \\ (0.07)$ | $0.108 \\ (0.15)$ | $0.081 \\ (0.11)$ | $0.789 \\ (0.05)$ | 0.081 $(0.22)$    | $0.079 \\ (0.08)$                | $0.081 \\ (0.07)$                | $0.088 \\ (0.04)$ |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\frac{(0.08)}{\phi_{ba}^{i12}}$ | $\frac{(0.07)}{\phi_{bb}^{i12}}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.057 \\ (0.11)$ | $0.142 \\ (0.15)$ | $0.127 \\ (0.07)$ | $0.092 \\ (0.08)$ | $0.086 \\ (0.22)$ | $0.100 \\ (0.04)$ | $0.026 \\ (0.11)$ | $0.098 \\ (0.15)$ | $0.108 \\ (0.07)$ | $0.097 \\ (0.05)$ | $0.111 \\ (0.08)$ | $0.079 \\ (0.04)$ | $0.085 \\ (0.07)$ | $0.127 \\ (0.11)$ | $0.095 \\ (0.15)$ | $0.139 \\ (0.22)$ | $0.167 \\ (0.07)$ | $0.107 \\ (0.08)$ | $0.081 \\ (0.05)$ | $0.083 \\ (0.11)$ | $0.107 \\ (0.07)$ | $0.102 \\ (0.07)$ | $0.096 \\ (0.05)$                | $0.147 \\ (0.08)$                | $0.149 \\ (0.05)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$                | $\phi_{ba}^{i25}$                | $\phi_{bb}^{i25}$ |
|             | $0.122 \\ (0.07)$ | 0.087 $(0.08)$    | $0.069 \\ (0.05)$ | 0.086 $(0.07)$    | $0.100 \\ (0.24)$ | 0.082 $(0.11)$    | $0.098 \\ (0.07)$ | $0.080 \\ (0.04)$ | 0.096 $(0.22)$    | 0.077 $(0.15)$    | $0.088 \\ (0.05)$ | 0.085 $(0.08)$    | 0.082 $(0.04)$    | 0.079 $(0.05)$    | 0.093 $(0.11)$    | 0.086 $(0.22)$    | $0.080 \\ (0.15)$ | 0.081 $(0.11)$    | $0.080 \\ (0.07)$ | 0.078 $(0.22)$    | 0.809 $(0.08)$    | $0.090 \\ (0.05)$ | 0.079 $(0.11)$                   | 0.082 $(0.07)$                   | 0.077 $(0.05)$    |

 $For \ \phi^{ij}_{..}, \ i = TSM \ and \ j = INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$ 

Table 31: Estimated informational trading parameters for INTC

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi^{i6}_{ab}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.085 \\ (0.13)$ | $0.071 \\ (0.22)$ | $0.903 \\ (0.06)$ | $0.122 \\ (0.09)$ | $0.064 \\ (0.11)$ | 0.123 $(0.08)$    | $0.068 \\ (0.13)$ | $0.085 \\ (0.22)$ | $0.093 \\ (0.06)$ | $0.076 \\ (0.05)$ | $0.098 \\ (0.25)$ | $0.086 \\ (0.08)$ | $0.084 \\ (0.09)$ | $0.053 \\ (0.22)$ | $0.144 \\ (0.12)$ | $0.123 \\ (0.06)$ | 0.113 $(0.09)$    | $0.173 \\ (0.13)$ | $0.138 \\ (0.05)$ | $0.040 \\ (0.15)$ | $0.133 \\ (0.24)$ | $0.105 \\ (0.09)$ | $0.074 \\ (0.06)$ | $0.173 \\ (0.22)$ | $0.051 \\ (0.11)$                |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                |
|             | 0.098 $(0.06)$    | $0.163 \\ (0.09)$ | $0.054 \\ (0.08)$ | $0.112 \\ (0.12)$ | $0.096 \\ (0.22)$ | $0.095 \\ (0.11)$ | 0.084 $(0.06)$    | $0.085 \\ (0.13)$ | $0.095 \\ (0.15)$ | $0.093 \\ (0.08)$ | $0.102 \\ (0.05)$ | 0.118 $(0.22)$    | $0.103 \\ (0.09)$ | $0.090 \\ (0.06)$ | $0.086 \\ (0.17)$ | $0.086 \\ (0.09)$ | $0.085 \\ (0.21)$ | 0.084 $(0.22)$    | 0.114 $(0.13)$    | 0.087 $(0.22)$    | 0.088 $(0.12)$    | 0.087 $(0.09)$    | $0.085 \\ (0.13)$ | 0.087 $(0.08)$    | 0.094 $(0.05)$                   |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.05)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.090 \\ (0.09)$ | $0.063 \\ (0.11)$ | $0.098 \\ (0.05)$ | -0.588 (0.06)     | $0.074 \\ (0.22)$ | $0.106 \\ (0.13)$ | $0.032 \\ (0.22)$ | $0.104 \\ (0.09)$ | $0.114 \\ (0.08)$ | $0.103 \\ (0.23)$ | $0.117 \\ (0.08)$ | $0.085 \\ (0.06)$ | $0.091 \\ (0.12)$ | $0.133 \\ (0.05)$ | $0.065 \\ (0.14)$ | $0.145 \\ (0.07)$ | $0.173 \\ (0.06)$ | $0.113 \\ (0.13)$ | $0.087 \\ (0.22)$ | $0.089 \\ (0.09)$ | $0.053 \\ (0.06)$ | $0.108 \\ (0.22)$ | $0.102 \\ (0.08)$ | $0.153 \\ (0.12)$ | $0.155 \\ (0.13)$                |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                |
|             | $0.128 \\ (0.08)$ | $0.093 \\ (0.09)$ | $0.075 \\ (0.06)$ | $0.074 \\ (0.12)$ | $0.106 \\ (0.13)$ | 0.088 $(0.11)$    | $0.104 \\ (0.22)$ | $0.086 \\ (0.05)$ | $0.102 \\ (0.09)$ | 0.083 $(0.22)$    | 0.094 $(0.13)$    | $0.091 \\ (0.06)$ | 0.088 $(0.13)$    | $0.085 \\ (0.09)$ | $0.099 \\ (0.08)$ | $0.092 \\ (0.13)$ | $0.086 \\ (0.08)$ | 0.087 $(0.11)$    | $0.086 \\ (0.06)$ | 0.084 $(0.05)$    | 0.815 $(0.22)$    | $0.096 \\ (0.13)$ | $0.085 \\ (0.06)$ | 0.088 $(0.22)$    | 0.083 $(0.09)$                   |

 $For \ \phi_{..}^{ij}, \ i = INTC \ and \ j = TSM, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$ 

Table 32: Estimated informational trading parameters for NVDA

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.032 \\ (0.03)$ | $0.086 \\ (0.06)$ | $0.081 \\ (0.24)$ | $0.089 \\ (0.06)$ | $0.973 \\ (0.24)$ | $0.038 \\ (0.08)$ | $0.081 \\ (0.03)$ | $0.086 \\ (0.06)$ | $0.086 \\ (0.11)$ | $0.080 \\ (0.09)$ | $0.068 \\ (0.23)$ | $0.087 \\ (0.24)$ | $0.087 \\ (0.08)$ | $0.071 \\ (0.21)$ | $0.081 \\ (0.11)$ | $0.083 \\ (0.24)$ | $0.084 \\ (0.09)$ | $0.083 \\ (0.03)$ | $0.082 \\ (0.06)$ | $0.093 \\ (0.09)$ | $0.033 \\ (0.08)$ | $0.083 \\ (0.24)$ | $0.086 \\ (0.17)$ | $0.072 \\ (0.14)$ | $0.090 \\ (0.16)$ |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | $0.103 \\ (0.06)$ | 0.083 $(0.15)$    | $0.082 \\ (0.03)$ | 0.087 $(0.24)$    | 0.083 $(0.09)$    | $0.092 \\ (0.24)$ | $0.092 \\ (0.06)$ | $0.091 \\ (0.15)$ | 0.083 $(0.02)$    | 0.084 $(0.11)$    | 0.081 $(0.08)$    | 0.086 $(0.24)$    | $0.088 \\ (0.09)$ | 0.085 $(0.24)$    | $0.085 \\ (0.06)$ | $0.091 \\ (0.11)$ | 0.081 $(0.07)$    | $0.093 \\ (0.03)$ | $0.086 \\ (0.08)$ | 0.087 $(0.14)$    | 0.081 $(0.03)$    | $0.088 \\ (0.06)$ | 0.091 $(0.24)$    | $0.081 \\ (0.11)$ | $0.085 \\ (0.09)$ |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.079 \\ (0.11)$ | $0.073 \\ (0.08)$ | $0.086 \\ (0.09)$ | $0.022 \\ (0.24)$ | $0.054 \\ (0.08)$ | $0.903 \\ (0.03)$ | $0.032 \\ (0.06)$ | $0.085 \\ (0.08)$ | $0.096 \\ (0.01)$ | $0.078 \\ (0.09)$ | $0.089 \\ (0.24)$ | $0.086 \\ (0.11)$ | $0.089 \\ (0.24)$ | $0.033 \\ (0.03)$ | $0.079 \\ (0.11)$ | $0.085 \\ (0.09)$ | -0.006 (0.21)     | $0.083 \\ (0.05)$ | $0.079 \\ (0.06)$ | $0.084 \\ (0.24)$ | $0.113 \\ (0.06)$ | $0.058 \\ (0.09)$ | $0.083 \\ (0.08)$ | $0.083 \\ (0.05)$ | $0.095 \\ (0.03)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | 0.083 $(0.24)$    | 0.089 $(0.11)$    | $0.082 \\ (0.09)$ | $0.082 \\ (0.08)$ | 0.089 $(0.12)$    | 0.083 $(0.06)$    | 0.087 $(0.12)$    | 0.089 $(0.11)$    | 0.083 $(0.03)$    | 0.083 $(0.09)$    | $0.088 \\ (0.08)$ | 0.087 $(0.03)$    | 0.073 $(0.06)$    | 0.088 $(0.15)$    | $0.081 \\ (0.24)$ | 0.087 $(0.03)$    | 0.089 $(0.24)$    | $0.085 \\ (0.18)$ | $0.088 \\ (0.03)$ | 0.086 $(0.11)$    | $0.085 \\ (0.09)$ | $0.085 \\ (0.08)$ | $0.090 \\ (0.03)$ | $0.079 \\ (0.06)$ | 0.083 $(0.09)$    |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AND \ AN$ 

Table 33: Estimated informational trading parameters for AMD

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.078 \\ (0.05)$ | $0.087 \\ (0.09)$ | $0.083 \\ (0.21)$ | $0.082 \\ (0.11)$ | $0.086 \\ (0.07)$ | $0.087 \\ (0.04)$ | $0.912 \\ (0.05)$ | $0.041 \\ (0.09)$ | $0.087 \\ (0.08)$ | $0.085 \\ (0.04)$ | $0.076 \\ (0.11)$ | $0.067 \\ (0.23)$ | $0.088 \\ (0.08)$ | $0.076 \\ (0.02)$ | $0.090 \\ (0.07)$ | $0.108 \\ (0.04)$ | $0.082 \\ (0.21)$ | $0.083 \\ (0.09)$ | $0.172 \\ (0.05)$ | $0.027 \\ (0.08)$ | $0.084 \\ (0.07)$ | $0.086 \\ (0.09)$ | $0.081 \\ (0.05)$ | $0.087 \\ (0.11)$ | $0.073 \\ (0.21)$                |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                |
|             | 0.087 $(0.21)$    | 0.084 $(0.07)$    | $0.090 \\ (0.04)$ | 0.079 $(0.09)$    | 0.085 $(0.11)$    | 0.084 $(0.04)$    | 0.079 $(0.05)$    | 0.086 $(0.09)$    | 0.086 $(0.21)$    | $0.051 \\ (0.06)$ | 0.083 $(0.11)$    | $0.080 \\ (0.08)$ | $0.094 \\ (0.05)$ | $0.062 \\ (0.09)$ | $0.086 \\ (0.05)$ | 0.079 $(0.04)$    | 0.085<br>(0.02)   | 0.091 $(0.04)$    | 0.077 $(0.07)$    | $0.085 \\ (0.08)$ | $0.785 \\ (0.11)$ | 0.086 $(0.21)$    | 0.092 $(0.05)$    | 0.089 $(0.09)$    | $0.078 \\ (0.07)$                |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.07)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.083 \\ (0.02)$ | $0.074 \\ (0.05)$ | $0.089 \\ (0.04)$ | 0.084 $(0.11)$    | $0.088 \\ (0.07)$ | $0.106 \\ (0.21)$ | 0.114 $(0.09)$    | $0.863 \\ (0.05)$ | $0.145 \\ (0.04)$ | $0.089 \\ (0.06)$ | $0.116 \\ (0.08)$ | $0.081 \\ (0.11)$ | $0.091 \\ (0.09)$ | $0.086 \\ (0.02)$ | $0.088 \\ (0.07)$ | $0.021 \\ (0.21)$ | $0.173 \\ (0.11)$ | $0.085 \\ (0.06)$ | $0.086 \\ (0.05)$ | $0.077 \\ (0.03)$ | $0.084 \\ (0.21)$ | $0.108 \\ (0.08)$ | $0.064 \\ (0.05)$ | $0.077 \\ (0.09)$ | $0.090 \\ (0.04)$                |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                |
|             | 0.084 $(0.09)$    | 0.087 $(0.11)$    | 0.075 $(0.08)$    | 0.092 $(0.21)$    | 0.077 $(0.04)$    | 0.088 $(0.05)$    | 0.092 $(0.07)$    | 0.086 $(0.09)$    | 0.064 $(0.11)$    | 0.084 $(0.08)$    | 0.084 $(0.07)$    | 0.077 $(0.05)$    | 0.085 $(0.21)$    | 0.085 $(0.09)$    | 0.067 $(0.25)$    | 0.092 $(0.11)$    | 0.080 $(0.23)$    | 0.087 $(0.07)$    | 0.086 $(0.05)$    | 0.082 $(0.09)$    | 0.822 $(0.21)$    | 0.144 $(0.08)$    | 0.081 $(0.04)$    | 0.078 $(0.23)$    | 0.083 $(0.05)$                   |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$ 

Table 34: Estimated informational trading parameters for TXN  $\,$ 

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |                   |                   |                   |                                  |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$                | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$                | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.091 \\ (0.11)$ | $0.080 \\ (0.09)$ | $0.082 \\ (0.07)$ | $0.083 \\ (0.12)$ | $0.085 \\ (0.25)$ | $0.086 \\ (0.13)$ | $0.084 \\ (0.11)$ | $0.084 \\ (0.09)$ | $0.071 \\ (0.03)$ | $0.084 \\ (0.08)$ | $0.152 \\ (0.12)$ | $0.087 \\ (0.07)$ | $0.080 \\ (0.04)$ | $0.106 \\ (0.08)$ | $0.072 \\ (0.13)$ | $0.084 \\ (0.25)$ | $0.085 \\ (0.07)$ | $0.081 \\ (0.02)$ | $0.087 \\ (0.12)$ | $0.084 \\ (0.09)$                | $0.084 \\ (0.11)$ | $0.082 \\ (0.08)$ | $0.122 \\ (0.13)$ | -0.125 (0.11)                    | $0.088 \\ (0.07)$ |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$                | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$                | $\phi_{ab}^{i25}$ |
|             | 0.085 $(0.04)$    | 0.081 $(0.11)$    | 0.082 $(0.07)$    | 0.082 $(0.13)$    | $0.095 \\ (0.05)$ | $0.069 \\ (0.07)$ | 0.085 $(0.09)$    | 0.085 $(0.25)$    | 0.094 $(0.08)$    | 0.080 $(0.12)$    | 0.086 $(0.13)$    | 0.085 $(0.07)$    | $0.090 \\ (0.08)$ | 0.083 $(0.25)$    | 0.112 $(0.11)$    | 0.083 $(0.90)$    | 0.083 $(0.05)$    | 0.093 $(0.12)$    | 0.087 $(0.04)$    | 0.078 $(0.03)$                   | 0.829 $(0.07)$    | 0.084 $(0.11)$    | 0.082 $(0.12)$    | $0.161 \\ (0.11)$                | 0.083<br>(0.09)   |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\frac{(0.03)}{\phi_{bb}^{i10}}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\frac{(0.11)}{\phi_{bb}^{i12}}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.077 \\ (0.25)$ | $0.084 \\ (0.11)$ | $0.079 \\ (0.07)$ | $0.082 \\ (0.13)$ | $0.087 \\ (0.08)$ | $0.084 \\ (0.12)$ | $0.082 \\ (0.09)$ | $0.082 \\ (0.05)$ | $0.082 \\ (0.04)$ | $0.088 \\ (0.09)$ | $0.090 \\ (0.11)$ | $0.161 \\ (0.07)$ | $0.084 \\ (0.25)$ | $0.081 \\ (0.12)$ | $0.089 \\ (0.11)$ | $0.084 \\ (0.09)$ | $0.082 \\ (0.05)$ | $0.081 \\ (0.13)$ | $0.089 \\ (0.08)$ | $0.084 \\ (0.07)$                | $0.078 \\ (0.09)$ | $0.083 \\ (0.11)$ | $0.084 \\ (0.12)$ | $0.084 \\ (0.11)$                | $0.071 \\ (0.13)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$                | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$                | $\phi_{bb}^{i25}$ |
|             | 0.084 $(0.09)$    | $0.081 \\ (0.07)$ | $0.084 \\ (0.25)$ | $0.103 \\ (0.11)$ | $0.108 \\ (0.12)$ | $0.071 \\ (0.05)$ | $0.086 \\ (0.08)$ | 0.173 $(0.09)$    | 0.084 $(0.13)$    | 0.083 $(0.11)$    | $0.081 \\ (0.07)$ | $0.088 \\ (0.13)$ | $0.101 \\ (0.11)$ | 0.084 $(0.08)$    | $0.090 \\ (0.25)$ | 0.083 $(0.11)$    | 0.087 $(0.07)$    | $0.144 \\ (0.08)$ | $0.086 \\ (0.12)$ | $0.083 \\ (0.09)$                | $0.102 \\ (0.13)$ | $0.175 \\ (0.09)$ | $0.081 \\ (0.11)$ | $0.101 \\ (0.07)$                | 0.083<br>(0.12)   |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$ 

Table 35: Estimated informational trading parameters for QCOM

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.091 \\ (0.09)$ | $0.080 \\ (0.11)$ | $0.084 \\ (0.24)$ | $0.083 \\ (0.06)$ | $0.085 \\ (0.22)$ | $0.086 \\ (0.24)$ | $0.081 \\ (0.09)$ | $0.084 \\ (0.11)$ | $0.071 \\ (0.06)$ | $0.084 \\ (0.22)$ | $0.082 \\ (0.06)$ | $0.088 \\ (0.03)$ | $0.171 \\ (0.03)$ | -0.039 $(0.24)$   | $0.093 \\ (0.03)$ | $0.084 \\ (0.11)$ | $0.081 \\ (0.14)$ | $0.084 \\ (0.06)$ | $0.087 \\ (0.12)$ | $0.084 \\ (0.22)$ | $0.084 \\ (0.24)$ | $0.082 \\ (0.09)$ | $0.122 \\ (0.24)$ | $0.292 \\ (0.11)$ | $0.088 \\ (0.09)$ |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | $0.085 \\ (0.06)$ | $0.081 \\ (0.90)$ | 0.084 $(0.24)$    | $0.082 \\ (0.22)$ | $0.095 \\ (0.11)$ | $0.097 \\ (0.06)$ | $0.081 \\ (0.11)$ | $0.085 \\ (0.22)$ | $0.094 \\ (0.06)$ | $0.086 \\ (0.22)$ | $0.086 \\ (0.09)$ | $0.085 \\ (0.24)$ | $0.090 \\ (0.19)$ | $0.083 \\ (0.14)$ | $0.112 \\ (0.11)$ | 0.083 $(0.16)$    | $0.083 \\ (0.09)$ | 0.084 $(0.17)$    | 0.087 $(0.11)$    | $0.078 \\ (0.24)$ | 0.829 $(0.09)$    | 0.084 $(0.13)$    | 0.083 $(0.22)$    | $0.161 \\ (0.24)$ | 0.083 $(0.09)$    |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.060 \\ (0.11)$ | $0.088 \\ (0.06)$ | $0.060 \\ (0.09)$ | $0.095 \\ (0.22)$ | $0.084 \\ (0.13)$ | $0.082 \\ (0.06)$ | $0.085 \\ (0.24)$ | $0.080 \\ (0.17)$ | $0.086 \\ (0.11)$ | $0.085 \\ (0.24)$ | $0.067 \\ (0.09)$ | $0.085 \\ (0.22)$ | $0.097 \\ (0.13)$ | $0.167 \\ (0.06)$ | $0.021 \\ (0.24)$ | $0.092 \\ (0.11)$ | $0.116 \\ (0.09)$ | $0.097 \\ (0.26)$ | $0.093 \\ (0.22)$ | $0.074 \\ (0.09)$ | $0.095 \\ (0.18)$ | $0.084 \\ (0.06)$ | $0.080 \\ (0.24)$ | $0.085 \\ (0.11)$ | $0.094 \\ (0.09)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | 0.084 $(0.11)$    | 0.085 $(0.14)$    | 0.082 $(0.16)$    | $0.106 \\ (0.06)$ | 0.094 $(0.11)$    | $0.095 \\ (0.24)$ | 0.086 $(0.22)$    | 0.084 $(0.11)$    | 0.072 $(0.24)$    | 0.084 $(0.09)$    | 0.081 $(0.11)$    | 0.093 $(0.16)$    | 0.085 $(0.13)$    | 0.099 $(0.14)$    | 0.094 $(0.06)$    | 0.085 $(0.09)$    | 0.082 $(0.24)$    | $0.090 \\ (0.11)$ | 0.084 $(0.22)$    | $0.085 \\ (0.09)$ | $0.788 \\ (0.06)$ | $0.091 \\ (0.14)$ | $0.078 \\ (0.06)$ | 0.085 $(0.24)$    | 0.089 $(0.09)$    |

 $\textit{For} \ \ \phi^{ij}_{\cdot\cdot\cdot}, \ \ i = INTC \ \textit{and} \ \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ \ AMAT, \ ADI, \ KLAC, \ AMAT, \ ADI, \ AMAT$ 

Table 36: Estimated informational trading parameters for  $\mathrm{MU}$ 

| var         |                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |
|-------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|             | $\phi^i_{aa}$        | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.079 \\ (0.08)$    | $0.080 \\ (0.05)$ | $0.085 \\ (0.11)$ | $0.085 \\ (0.22)$ | $0.090 \\ (0.23)$ | $0.087 \\ (0.33)$ | $0.081 \\ (0.08)$ | $0.085 \\ (0.05)$ | $0.135 \\ (0.21)$ | $0.090 \\ (0.21)$ | $0.080 \\ (0.23)$ | $0.067 \\ (0.07)$ | $0.085 \\ (0.11)$ | $0.162 \\ (0.22)$ | $0.091 \\ (0.05)$ | $0.088 \\ (0.08)$ | $0.086 \\ (0.21)$ | $0.093 \\ (0.22)$ | $0.090 \\ (0.11)$ | $0.090 \\ (0.33)$ | $0.087 \\ (0.23)$ | $0.093 \\ (0.33)$ | $0.088 \\ (0.05)$ | $0.091 \\ (0.21)$ | $0.093 \\ (0.08)$                |
|             | $\phi^{i13}_{ab}$    | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                |
|             | 0.089 $(0.05)$       | 0.083 $(0.11)$    | 0.096 $(0.08)$    | 0.098 $(0.23)$    | 0.082 $(0.07)$    | 0.086 $(0.23)$    | 0.087 $(0.05)$    | 0.089 $(0.33)$    | 0.087 $(0.07)$    | 0.089 $(0.08)$    | 0.091 $(0.21)$    | $0.085 \\ (0.05)$ | 0.087 $(0.23)$    | 0.078 $(0.11)$    | 0.089 $(0.33)$    | 0.091 $(0.04)$    | 0.088 $(0.08)$    | 0.081 $(0.21)$    | 0.088 $(0.08)$    | 0.084 $(0.05)$    | 0.798<br>(0.11)   | 0.172 $(0.04)$    | 0.081 $(0.33)$    | 0.085 $(0.23)$    | $0.074 \\ (0.05)$                |
|             | $\phi^{\imath}_{ba}$ | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.05)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.076 \\ (0.04)$    | $0.080 \\ (0.04)$ | $0.060 \\ (0.33)$ | $0.095 \\ (0.11)$ | $0.092 \\ (0.08)$ | 0.087 $(0.50)$    | 0.089 $(0.33)$    | 0.084 $(0.23)$    | $0.154 \\ (0.21)$ | $0.091 \\ (0.23)$ | $0.074 \\ (0.11)$ | $0.088 \\ (0.05)$ | $0.083 \\ (0.11)$ | $0.102 \\ (0.11)$ | $0.083 \\ (0.07)$ | $0.146 \\ (0.08)$ | $0.089 \\ (0.04)$ | 0.087 $(0.21)$    | $0.091 \\ (0.33)$ | $0.064 \\ (0.23)$ | $0.091 \\ (0.04)$ | $0.082 \\ (0.07)$ | $0.088 \\ (0.05)$ | 0.087 $(0.08)$    | $0.088 \\ (0.11)$                |
|             | $\phi_{bb}^{i13}$    | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                |
|             | 0.088 $(0.23)$       | 0.087 $(0.05)$    | 0.077 $(0.21)$    | 0.083 $(0.11)$    | 0.094 $(0.04)$    | $0.095 \\ (0.23)$ | $0.086 \\ (0.33)$ | 0.084 $(0.04)$    | $0.075 \\ (0.21)$ | $0.085 \\ (0.08)$ | $0.078 \\ (0.31)$ | 0.088 $(0.44)$    | $0.085 \\ (0.05)$ | 0.084 $(0.08)$    | 0.087 $(0.11)$    | 0.087 $(0.31)$    | 0.082 $(0.11)$    | $0.090 \\ (0.06)$ | $0.091 \\ (0.05)$ | 0.088 $(0.08)$    | $0.785 \\ (0.05)$ | $0.085 \\ (0.33)$ | 0.074 $(0.08)$    | 0.092 $(0.11)$    | 0.079 $(0.07)$                   |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i=INTC \ and \ j=TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$ 

Table 37: Estimated informational trading parameters for AVGO

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi^{i6}_{ab}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.079 \\ (0.01)$ | $0.091 \\ (0.03)$ | $0.084 \\ (0.11)$ | $0.078 \\ (0.07)$ | $0.087 \\ (0.12)$ | $0.064 \\ (0.03)$ | $0.097 \\ (0.07)$ | $0.068 \\ (0.04)$ | $0.086 \\ (0.12)$ | $0.086 \\ (0.03)$ | $0.036 \\ (0.01)$ | $0.114 \\ (0.03)$ | $0.085 \\ (0.11)$ | $0.085 \\ (0.03)$ | $0.060 \\ (0.03)$ | $0.144 \\ (0.07)$ | $0.128 \\ (0.01)$ | $0.212 \\ (0.04)$ | $0.138 \\ (0.09)$ | $0.040 \\ (0.11)$ | $0.108 \\ (0.03)$ | $0.105 \\ (0.01)$ | $0.074 \\ (0.03)$ | $0.173 \\ (0.07)$ | $0.051 \\ (0.11)$                |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                |
|             | 0.098 $(0.22)$    | 0.163 $(0.07)$    | 0.054 $(0.01)$    | 0.112 $(0.03)$    | 0.096 $(0.04)$    | 0.124 $(0.03)$    | 0.084 $(0.11)$    | 0.085 $(0.22)$    | 0.095 $(0.04)$    | 0.093 $(0.11)$    | $0.102 \\ (0.01)$ | 0.048 $(0.03)$    | 0.103 $(0.22)$    | $0.090 \\ (0.07)$ | $0.080 \\ (0.03)$ | 0.086 $(0.04)$    | 0.089 $(0.03)$    | 0.084 $(0.11)$    | 0.114 $(0.07)$    | 0.087 $(0.04)$    | 0.078 $(0.22)$    | 0.087 $(0.01)$    | $0.081 \\ (0.07)$ | 0.087 $(0.04)$    | $0.094 \\ (0.11)$                |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.11)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.081 \\ (0.06)$ | $0.071 \\ (0.08)$ | 0.114 $(0.09)$    | $0.081 \\ (0.07)$ | $0.084 \\ (0.08)$ | $0.086 \\ (0.03)$ | $0.060 \\ (0.11)$ | $0.078 \\ (0.04)$ | $0.071 \\ (0.04)$ | $0.113 \\ (0.11)$ | $0.117 \\ (0.01)$ | $0.115 \\ (0.03)$ | $0.082 \\ (0.11)$ | $0.055 \\ (0.06)$ | $0.098 \\ (0.07)$ | $0.101 \\ (0.01)$ | $0.099 \\ (0.03)$ | $0.087 \\ (0.06)$ | 0.087 $(0.11)$    | $0.057 \\ (0.01)$ | $0.086 \\ (0.07)$ | $0.085 \\ (0.01)$ | $0.064 \\ (0.03)$ | $0.082 \\ (0.11)$ | $0.066 \\ (0.01)$                |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                |
|             | 0.084 $(0.01)$    | $0.101 \\ (0.03)$ | $0.145 \\ (0.06)$ | $0.074 \\ (0.11)$ | $0.085 \\ (0.11)$ | $0.082 \\ (0.07)$ | $0.085 \\ (0.01)$ | $0.076 \\ (0.06)$ | 0.112 $(0.09)$    | $0.086 \\ (0.11)$ | $0.064 \\ (0.03)$ | $0.085 \\ (0.03)$ | $0.072 \\ (0.01)$ | $0.105 \\ (0.03)$ | $0.062 \\ (0.11)$ | $0.102 \\ (0.07)$ | $0.073 \\ (0.01)$ | $0.082 \\ (0.09)$ | $0.144 \\ (0.09)$ | $0.073 \\ (0.06)$ | $0.083 \\ (0.11)$ | $0.102 \\ (0.07)$ | $0.081 \\ (0.03)$ | $0.091 \\ (0.01)$ | $0.085 \\ (0.09)$                |

 $\textit{For} \ \ \phi^{ij}_{\cdot\cdot\cdot}, \ \ i = INTC \ \textit{and} \ \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ \ AMAT, \ ADI, \ KLAC, \ AMAT, \ ADI, \ AMAT, \ ADI$ 

Table 38: Estimated informational trading parameters for NXPI

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.093 \\ (0.22)$ | $0.077 \\ (0.13)$ | $0.087 \\ (0.11)$ | $0.083 \\ (0.09)$ | $0.087 \\ (0.09)$ | $0.089 \\ (0.05)$ | $0.077 \\ (0.13)$ | $0.083 \\ (0.09)$ | $0.093 \\ (0.11)$ | $0.084 \\ (0.09)$ | $0.090 \\ (0.22)$ | $0.146 \\ (0.13)$ | $0.090 \\ (0.11)$ | $0.083 \\ (0.05)$ | $0.111 \\ (0.08)$ | $0.083 \\ (0.22)$ | $0.091 \\ (0.09)$ | $0.092 \\ (0.13)$ | $0.899 \\ (0.02)$ | $0.082 \\ (0.08)$ | $0.084 \\ (0.05)$ | $0.074 \\ (0.09)$ | $0.086 \\ (0.22)$ | $0.076 \\ (0.08)$ | $0.070 \\ (0.09)$                |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                |
|             | $0.085 \\ (0.13)$ | 0.083 $(0.11)$    | 0.087 $(0.22)$    | 0.087 $(0.09)$    | $0.085 \\ (0.08)$ | $0.080 \\ (0.05)$ | $0.083 \\ (0.05)$ | 0.089 $(0.11)$    | $0.086 \\ (0.05)$ | 0.087 $(0.90)$    | 0.083 $(0.22)$    | $0.091 \\ (0.13)$ | $0.084 \\ (0.08)$ | $0.085 \\ (0.11)$ | $0.082 \\ (0.90)$ | $0.085 \\ (0.13)$ | $0.091 \\ (0.05)$ | 0.083 $(0.11)$    | 0.089 $(0.22)$    | $0.082 \\ (0.08)$ | $0.088 \\ (0.90)$ | $0.085 \\ (0.05)$ | $0.076 \\ (0.05)$ | 0.087 $(0.22)$    | $0.085 \\ (0.13)$                |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.13)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.056 \\ (0.09)$ | $0.087 \\ (0.11)$ | $0.086 \\ (0.05)$ | $0.074 \\ (0.08)$ | $0.084 \\ (0.11)$ | $0.085 \\ (0.13)$ | $0.078 \\ (0.05)$ | $0.080 \\ (0.09)$ | $0.091 \\ (0.13)$ | $0.091 \\ (0.08)$ | $0.086 \\ (0.09)$ | $0.042 \\ (0.22)$ | $0.084 \\ (0.05)$ | $0.083 \\ (0.09)$ | $0.082 \\ (0.11)$ | $0.082 \\ (0.13)$ | $0.086 \\ (0.11)$ | $0.086 \\ (0.05)$ | $0.085 \\ (0.08)$ | $0.764 \\ (0.22)$ | $0.083 \\ (0.05)$ | $0.086 \\ (0.09)$ | $0.076 \\ (0.22)$ | $0.083 \\ (0.13)$ | $0.084 \\ (0.22)$                |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                |
|             | $0.091 \\ (0.09)$ | 0.083 $(0.22)$    | 0.083 $(0.13)$    | 0.088 $(0.11)$    | $0.082 \\ (0.05)$ | $0.092 \\ (0.09)$ | 0.091 $(0.22)$    | $0.076 \\ (0.13)$ | 0.087 $(0.11)$    | $0.086 \\ (0.05)$ | $0.085 \\ (0.09)$ | 0.089 $(0.22)$    | 0.083 $(0.13)$    | 0.087 $(0.08)$    | $0.090 \\ (0.09)$ | $0.079 \\ (0.08)$ | 0.086 $(0.13)$    | 0.081 $(0.03)$    | $0.144 \\ (0.24)$ | $0.083 \\ (0.05)$ | $0.078 \\ (0.05)$ | 0.091 $(0.22)$    | 0.085 $(0.13)$    | 0.085 $(0.11)$    | $0.079 \\ (0.09)$                |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$ 

Table 39: Estimated informational trading parameters for LRCX

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.083 \\ (0.22)$ | $0.099 \\ (0.14)$ | $0.076 \\ (0.07)$ | $0.085 \\ (0.24)$ | $0.114 \\ (0.11)$ | $0.095 \\ (0.07)$ | $0.097 \\ (0.22)$ | $0.099 \\ (0.14)$ | $0.086 \\ (0.20)$ | $0.074 \\ (0.10)$ | $0.111 \\ (0.11)$ | $0.099 \\ (0.20)$ | $0.123 \\ (0.10)$ | $0.134 \\ (0.20)$ | $0.083 \\ (0.07)$ | $0.084 \\ (0.14)$ | $0.088 \\ (0.22)$ | $0.090 \\ (0.11)$ | $0.089 \\ (0.07)$ | $0.139 \\ (0.20)$ | $0.084 \\ (0.11)$ | $0.149 \\ (0.07)$ | $0.930 \\ (0.24)$ | $0.088 \\ (0.14)$ | $0.097 \\ (0.22)$ |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi^{i14}_{ab}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi^{i20}_{ab}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | 0.088 $(0.24)$    | $0.087 \\ (0.07)$ | $0.106 \\ (0.10)$ | $0.055 \\ (0.22)$ | $0.085 \\ (0.24)$ | $0.082 \\ (0.22)$ | $0.124 \\ (0.11)$ | $0.085 \\ (0.07)$ | $0.064 \\ (0.05)$ | $0.088 \\ (0.14)$ | $0.085 \\ (0.10)$ | $0.095 \\ (0.24)$ | $0.086 \\ (0.11)$ | $0.081 \\ (0.14)$ | 0.087 $(0.24)$    | $0.063 \\ (0.07)$ | $0.106 \\ (0.22)$ | $0.094 \\ (0.24)$ | $0.063 \\ (0.11)$ | $0.127 \\ (0.07)$ | $0.134 \\ (0.14)$ | 0.123 $(0.24)$    | $0.085 \\ (0.07)$ | $0.082 \\ (0.22)$ | $0.084 \\ (0.14)$ |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.091 \\ (0.14)$ | $0.080 \\ (0.22)$ | $0.084 \\ (0.05)$ | 0.083 $(0.11)$    | $0.081 \\ (0.07)$ | $0.086 \\ (0.22)$ | $0.081 \\ (0.07)$ | 0.084 $(0.20)$    | $0.071 \\ (0.11)$ | $0.084 \\ (0.24)$ | $0.082 \\ (0.14)$ | $0.088 \\ (0.10)$ | $0.083 \\ (0.07)$ | $0.092 \\ (0.24)$ | -0.039 (0.20)     | $0.093 \\ (0.22)$ | $0.084 \\ (0.14)$ | $0.081 \\ (0.10)$ | $0.084 \\ (0.24)$ | $0.083 \\ (0.14)$ | $0.082 \\ (0.24)$ | $0.165 \\ (0.11)$ | $0.122 \\ (0.20)$ | $0.741 \\ (0.07)$ | $0.088 \ (0.22)$  |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | 0.085 $(0.11)$    | 0.081 $(0.22)$    | 0.084 $(0.07)$    | 0.082 $(0.24)$    | 0.095 $(0.11)$    | $0.069 \\ (0.07)$ | 0.081 $(0.14)$    | 0.085 $(0.24)$    | 0.094 $(0.20)$    | $0.080 \\ (0.21)$ | 0.086 $(0.11)$    | 0.085 $(0.22)$    | $0.076 \\ (0.07)$ | 0.083 $(0.11)$    | 0.112 $(0.14)$    | 0.083 $(0.12)$    | 0.083 $(0.24)$    | 0.084 $(0.22)$    | 0.087 $(0.10)$    | $0.078 \\ (0.07)$ | 0.829 $(0.14)$    | 0.084 $(0.21)$    | 0.083 $(0.30)$    | $0.161 \\ (0.22)$ | 0.083 $(0.14)$    |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$ 

Table 40: Estimated informational trading parameters for AMAT  $\,$ 

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.083 \\ (0.10)$ | $0.088 \\ (0.11)$ | $0.060 \\ (0.22)$ | $0.095 \\ (0.09)$ | $0.082 \\ (0.23)$ | $0.082 \\ (0.09)$ | $0.085 \\ (0.10)$ | $0.080 \\ (0.08)$ | $0.086 \\ (0.12)$ | $0.085 \\ (0.22)$ | $0.067 \\ (0.22)$ | $0.085 \\ (0.11)$ | $0.083 \\ (0.08)$ | $0.097 \\ (0.21)$ | $0.097 \\ (0.09)$ | $0.021 \\ (0.23)$ | $0.092 \\ (0.11)$ | $0.116 \\ (0.10)$ | $0.097 \\ (0.08)$ | $0.093 \\ (0.08)$ | $0.074 \\ (0.23)$ | $0.095 \\ (0.22)$ | $0.803 \\ (0.09)$ | -0.286 (0.07)     | $0.094 \\ (0.10)$ |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | 0.084 $(0.22)$    | 0.085 $(0.23)$    | 0.082 $(0.08)$    | $0.106 \\ (0.23)$ | 0.094 $(0.22)$    | $0.095 \\ (0.09)$ | 0.086 $(0.10)$    | 0.084 $(0.09)$    | 0.072 $(0.12)$    | 0.084 $(0.08)$    | 0.081 $(0.09)$    | 0.093 $(0.11)$    | 0.085 $(0.10)$    | 0.099 $(0.08)$    | 0.094 $(0.11)$    | 0.085 $(0.10)$    | 0.082 $(0.22)$    | 0.090 $(0.22)$    | 0.084 $(0.11)$    | 0.085 $(0.23)$    | 0.788 $(0.10)$    | 0.091 $(0.23)$    | 0.078 $(0.11)$    | 0.085 $(0.09)$    | 0.099<br>(0.22)   |
|             | $\phi_{ba}^{i}$   | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.085 \\ (0.23)$ | $0.048 \\ (0.09)$ | $0.095 \\ (0.22)$ | $0.083 \\ (0.08)$ | $0.122 \\ (0.11)$ | $0.064 \\ (0.09)$ | $0.123 \\ (0.10)$ | $0.068 \\ (0.22)$ | $0.085 \\ (0.08)$ | $0.093 \\ (0.23)$ | $0.076 \\ (0.09)$ | $0.098 \\ (0.10)$ | $0.086 \\ (0.11)$ | $0.084 \\ (0.22)$ | $0.053 \\ (0.08)$ | $0.144 \\ (0.22)$ | $0.123 \\ (0.10)$ | $0.113 \\ (0.11)$ | $0.173 \\ (0.23)$ | $0.138 \\ (0.08)$ | $0.040 \\ (0.11)$ | $0.083 \\ (0.10)$ | $0.973 \\ (0.09)$ | $0.173 \\ (0.23)$ | $0.051 \\ (0.22)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | $0.098 \\ (0.22)$ | $0.163 \\ (0.11)$ | 0.054 $(0.09)$    | 0.112 $(0.22)$    | $0.096 \\ (0.10)$ | $0.095 \\ (0.09)$ | 0.084 $(0.30)$    | $0.085 \\ (0.08)$ | $0.095 \\ (0.10)$ | 0.093 $(0.10)$    | $0.102 \\ (0.23)$ | 0.118 $(0.22)$    | $0.103 \\ (0.22)$ | $0.090 \\ (0.23)$ | $0.086 \\ (0.10)$ | $0.086 \\ (0.09)$ | $0.085 \\ (0.08)$ | 0.084 $(0.11)$    | 0.114 $(0.20)$    | 0.087 $(0.10)$    | $0.088 \\ (0.22)$ | 0.087 $(0.09)$    | $0.085 \\ (0.22)$ | 0.087 $(0.11)$    | 0.094<br>(0.10)   |

Table 41: Estimated informational trading parameters for ADI

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.091 \\ (0.07)$ | $0.080 \\ (0.04)$ | $0.082 \\ (0.23)$ | $0.083 \\ (0.06)$ | $0.085 \\ (0.11)$ | $0.086 \\ (0.07)$ | $0.084 \\ (0.04)$ | $0.084 \\ (0.14)$ | $0.071 \\ (0.06)$ | $0.084 \\ (0.11)$ | $0.082 \\ (0.07)$ | $0.102 \\ (0.04)$ | $0.087 \\ (0.14)$ | $0.080 \\ (0.06)$ | $0.106 \\ (0.23)$ | $0.072 \\ (0.07)$ | $0.084 \\ (0.04)$ | $0.085 \\ (0.11)$ | $0.081 \\ (0.06)$ | $0.087 \\ (0.23)$ | $0.084 \\ (0.07)$ | $0.084 \\ (0.04)$ | $0.082 \\ (0.11)$ | $0.122 \\ (0.06)$ | $0.143 \\ (0.23)$ |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi^{i15}_{ab}$ | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | $0.105 \\ (0.09)$ | $0.081 \\ (0.11)$ | $0.082 \\ (0.07)$ | $0.082 \\ (0.09)$ | $0.095 \\ (0.23)$ | $0.069 \\ (0.04)$ | $0.085 \\ (0.09)$ | $0.085 \\ (0.07)$ | 0.094 $(0.11)$    | $0.080 \\ (0.14)$ | $0.086 \\ (0.06)$ | $0.085 \\ (0.04)$ | $0.090 \\ (0.07)$ | $0.083 \\ (0.09)$ | $0.112 \\ (0.11)$ | 0.083 $(0.09)$    | $0.083 \\ (0.06)$ | $0.093 \\ (0.07)$ | 0.087 $(0.11)$    | $0.078 \\ (0.04)$ | 0.829 $(0.06)$    | $0.084 \\ (0.06)$ | $0.082 \\ (0.07)$ | $0.161 \\ (0.09)$ | 0.083 $(0.09)$    |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.056 \\ (0.09)$ | $0.092 \\ (0.11)$ | $0.087 \\ (0.06)$ | $0.079 \\ (0.14)$ | $0.091 \\ (0.07)$ | $0.091 \\ (0.09)$ | $0.085 \\ (0.23)$ | $0.082 \\ (0.06)$ | $0.091 \\ (0.11)$ | $0.080 \\ (0.07)$ | $0.086 \\ (0.09)$ | $0.091 \\ (0.23)$ | $0.046 \\ (0.06)$ | $0.082 \\ (0.14)$ | $0.087 \\ (0.07)$ | $0.082 \\ (0.09)$ | $0.091 \\ (0.11)$ | $0.077 \\ (0.06)$ | $0.086 \\ (0.14)$ | $0.090 \\ (0.07)$ | $0.081 \\ (0.09)$ | $0.083 \\ (0.23)$ | $0.075 \\ (0.06)$ | $0.083 \\ (0.11)$ | $0.153 \\ (0.07)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | $0.079 \\ (0.07)$ | $0.082 \\ (0.11)$ | $0.084 \\ (0.14)$ | 0.084 $(0.09)$    | 0.088 $(0.06)$    | $0.086 \\ (0.09)$ | 0.087 $(0.07)$    | 0.087 $(0.06)$    | 0.088 $(0.11)$    | $0.090 \\ (0.23)$ | 0.087 $(0.09)$    | $0.086 \\ (0.14)$ | $0.089 \\ (0.07)$ | 0.089 $(0.11)$    | $0.078 \\ (0.09)$ | $0.088 \\ (0.09)$ | $0.089 \\ (0.06)$ | 0.074 $(0.23)$    | $0.091 \\ (0.07)$ | 0.083 $(0.09)$    | $0.796 \\ (0.09)$ | 0.087 $(0.11)$    | $0.080 \\ (0.23)$ | $0.089 \\ (0.06)$ | $0.092 \\ (0.07)$ |

 $\textit{For} \ \ \phi^{ij}_{\cdot\cdot\cdot}, \ \ i = INTC \ \textit{and} \ \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ \ AMAT, \ AMAT,$ 

Table 42: Estimated informational trading parameters for KLAC

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.077 \\ (0.14)$ | $0.084 \\ (0.05)$ | $0.079 \\ (0.07)$ | $0.082 \\ (0.20)$ | $0.087 \\ (0.10)$ | $0.084 \\ (0.14)$ | $0.082 \\ (0.05)$ | $0.082 \\ (0.07)$ | $0.082 \\ (0.20)$ | $0.088 \\ (0.10)$ | $0.078 \\ (0.14)$ | $0.090 \\ (0.05)$ | $0.091 \\ (0.07)$ | $0.084 \\ (0.20)$ | $0.081 \\ (0.10)$ | $0.089 \\ (0.14)$ | $0.084 \\ (0.05)$ | $0.082 \\ (0.07)$ | $0.081 \\ (0.20)$ | $0.089 \\ (0.10)$ | $0.084 \\ (0.14)$ | $0.078 \\ (0.05)$ | $0.083 \\ (0.07)$ | $0.084 \\ (0.10)$ | $0.084 \\ (0.10)$ |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi^{i14}_{ab}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi^{i19}_{aa}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi^{i25}_{ab}$ |
|             | $0.071 \\ (0.20)$ | $0.922 \\ (0.20)$ | -0.025 $(0.14)$   | $0.103 \\ (0.05)$ | $0.108 \\ (0.07)$ | $0.071 \\ (0.10)$ | $0.086 \\ (0.10)$ | -0.006 $(0.14)$   | $0.084 \\ (0.05)$ | $0.083 \\ (0.07)$ | $0.081 \\ (0.20)$ | $0.088 \\ (0.10)$ | $0.065 \\ (0.14)$ | $0.084 \\ (0.05)$ | $0.076 \\ (0.07)$ | 0.083 $(0.20)$    | 0.087 $(0.10)$    | $0.022 \\ (0.14)$ | $0.086 \\ (0.05)$ | $0.083 \\ (0.07)$ | $0.771 \\ (0.10)$ | $0.175 \\ (0.20)$ | $0.081 \\ (0.14)$ | $0.101 \\ (0.05)$ | $0.083 \\ (0.07)$ |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.093 \\ (0.05)$ | $0.077 \\ (0.09)$ | $0.080 \\ (0.14)$ | $0.082 \\ (0.07)$ | $0.087 \\ (0.20)$ | $0.078 \\ (0.05)$ | $0.077 \\ (0.20)$ | $0.074 \\ (0.14)$ | $0.092 \\ (0.07)$ | $0.079 \\ (0.10)$ | $0.089 \\ (0.05)$ | $0.021 \\ (0.20)$ | $0.090 \\ (0.14)$ | $0.080 \\ (0.07)$ | $0.110 \\ (0.10)$ | $0.075 \\ (0.05)$ | $0.090 \\ (0.20)$ | $0.075 \\ (0.14)$ | $0.076 \\ (0.07)$ | $0.091 \\ (0.10)$ | $0.081 \\ (0.05)$ | $0.075 \\ (0.20)$ | $0.073 \\ (0.14)$ | $0.085 \\ (0.07)$ | $0.076 \\ (0.05)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | 0.083 $(0.07)$    | $0.670 \\ (0.14)$ | 0.086 $(0.10)$    | $0.079 \\ (0.05)$ | 0.085 $(0.20)$    | $0.079 \\ (0.07)$ | 0.085 $(0.14)$    | 0.077 $(0.10)$    | $0.085 \\ (0.05)$ | 0.079 $(0.20)$    | 0.083 $(0.07)$    | $0.090 \\ (0.14)$ | 0.084 $(0.10)$    | 0.084 $(0.05)$    | 0.081 $(0.20)$    | $0.085 \\ (0.07)$ | $0.090 \\ (0.14)$ | $0.082 \\ (0.05)$ | 0.088 $(0.20)$    | 0.081 $(0.10)$    | $0.795 \\ (0.10)$ | $0.081 \\ (0.14)$ | $0.075 \\ (0.05)$ | 0.087 $(0.20)$    | $0.080 \\ (0.10)$ |

 $For \ \phi_{..}^{ij}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED$ 

Table 43: Estimated informational trading parameters for XLNX

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.079 \\ (0.06)$ | $0.087 \\ (0.10)$ | $0.078 \\ (0.20)$ | $0.082 \\ (0.08)$ | $0.079 \\ (0.11)$ | $0.075 \\ (0.06)$ | $0.080 \\ (0.10)$ | $0.090 \\ (0.20)$ | $0.079 \\ (0.08)$ | $0.090 \\ (0.11)$ | $0.083 \\ (0.06)$ | $0.085 \\ (0.10)$ | $0.081 \\ (0.20)$ | $0.077 \\ (0.08)$ | $0.089 \\ (0.11)$ | $0.089 \\ (0.06)$ | $0.070 \\ (0.10)$ | $0.091 \\ (0.20)$ | $0.077 \\ (0.08)$ | $0.084 \\ (0.11)$ | $0.078 \\ (0.06)$ | $0.084 \\ (0.10)$ | $0.083 \\ (0.08)$ | $0.084 \\ (0.20)$ | 0.087 $(0.11)$    |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | $0.077 \\ (0.11)$ | $0.092 \\ (0.22)$ | $0.077 \\ (0.08)$ | 0.084 $(0.20)$    | 0.088 $(0.10)$    | $0.160 \\ (0.06)$ | $0.060 \\ (0.11)$ | -0.006 (0.08)     | 0.084 $(0.20)$    | 0.087 $(0.10)$    | 0.089 $(0.11)$    | $0.078 \\ (0.06)$ | $0.086 \\ (0.08)$ | 0.077 (0.)        | 0.087 $(0.10)$    | 0.083 $(0.06)$    | 0.086 $(0.11)$    | $0.077 \\ (0.08)$ | 0.088 $(0.20)$    | $0.076 \\ (0.10)$ | 0.789 $(0.11)$    | 0.092 $(0.06)$    | 0.087 $(0.08)$    | $0.088 \\ (0.06)$ | 0.083 $(0.10)$    |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.078 \\ (0.20)$ | $0.079 \\ (0.06)$ | $0.085 \\ (0.10)$ | $0.084 \\ (0.11)$ | $0.077 \\ (0.20)$ | $0.086 \\ (0.06)$ | $0.080 \\ (0.10)$ | $0.085 \\ (0.08)$ | $0.135 \\ (0.11)$ | $0.077 \\ (0.20)$ | $0.079 \\ (0.10)$ | $0.085 \\ (0.06)$ | $0.065 \\ (0.08)$ | $0.084 \\ (0.11)$ | $0.076 \\ (0.20)$ | $0.091 \\ (0.10)$ | $0.079 \\ (0.06)$ | $0.088 \\ (0.08)$ | $0.085 \\ (0.11)$ | $0.092 \\ (0.05)$ | $0.077 \\ (0.08)$ | $0.090 \\ (0.10)$ | $0.086 \\ (0.08)$ | $0.075 \\ (0.11)$ | 0.087 $(0.06)$    |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | $0.077 \\ (0.10)$ | $0.093 \\ (0.20)$ | $0.088 \\ (0.08)$ | $0.096 \\ (0.11)$ | $0.158 \\ (0.06)$ | $0.081 \\ (0.11)$ | $0.086 \\ (0.10)$ | $0.080 \\ (0.10)$ | $0.078 \\ (0.11)$ | $0.086 \\ (0.08)$ | $0.078 \\ (0.11)$ | $0.090 \\ (0.08)$ | $0.084 \\ (0.06)$ | 0.081 $(0.10)$    | $0.077 \\ (0.06)$ | 0.089 $(0.11)$    | $0.077 \\ (0.08)$ | $0.088 \\ (0.20)$ | $0.080 \\ (0.06)$ | 0.087 $(0.10)$    | $0.790 \\ (0.11)$ | $0.090 \\ (0.08)$ | $0.171 \\ (0.10)$ | $0.080 \\ (0.20)$ | $0.090 \\ (0.06)$ |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AMAT, \ AMAT$ 

Table 44: Estimated informational trading parameters for STM

| var         |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$    | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.079 \\ (0.08)$ | $0.087 \\ (0.20)$ | $0.078 \\ (0.11)$ | $0.082 \\ (0.21)$ | $0.079 \\ (0.23)$ | $0.075 \\ (0.08)$   | $0.080 \\ (0.20)$ | $0.090 \\ (0.11)$ | $0.079 \\ (0.23)$ | $0.090 \\ (0.21)$ | $0.083 \\ (0.08)$ | $0.085 \\ (0.20)$ | $0.081 \\ (0.11)$ | $0.077 \\ (0.23)$ | $0.089 \\ (0.21)$ | $0.089 \\ (0.08)$ | $0.070 \\ (0.20)$ | $0.091 \\ (0.11)$ | $0.077 \\ (0.23)$ | $0.084 \\ (0.21)$ | $0.078 \\ (0.08)$ | $0.084 \\ (0.20)$ | $0.083 \\ (0.11)$ | $0.084 \\ (0.23)$ | $0.087 \\ (0.08)$ |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$   | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | $0.077 \\ (0.21)$ | $0.092 \\ (0.08)$ | 0.077 $(0.23)$    | 0.087 $(0.20)$    | 0.088 $(0.21)$    | $0.160 \\ (0.21)$   | $0.060 \\ (0.)$   | -0.006 $(0.20)$   | 0.084 $(0.23)$    | 0.087 $(0.11)$    | $0.089 \\ (0.08)$ | $0.078 \\ (0.23)$ | $0.086 \\ (0.20)$ | 0.077 $(0.23)$    | 0.087 $(0.21)$    | 0.083 $(0.11)$    | $0.086 \\ (0.08)$ | $0.077 \\ (0.20)$ | 0.088 $(0.11)$    | $0.076 \\ (0.23)$ | 0.789 $(0.11)$    | $0.092 \\ (0.08)$ | 0.087 $(0.20)$    | 0.088 $(0.23)$    | 0.083 $(0.21)$    |
|             | $\phi_{ba}^{i}$   | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$    | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.078 \\ (0.11)$ | $0.079 \\ (0.08)$ | $0.085 \\ (0.31)$ | $0.084 \\ (0.31)$ | $0.077 \\ (0.20)$ | $^{0.08}_{(0.08)}6$ | $0.080 \\ (0.08)$ | $0.085 \\ (0.31)$ | $0.135 \\ (0.11)$ | $0.077 \\ (0.20)$ | $0.079 \\ (0.08)$ | $0.085 \\ (0.08)$ | $0.065 \\ (0.23)$ | $0.084 \\ (0.11)$ | $0.076 \\ (0.20)$ | $0.091 \\ (0.08)$ | $0.079 \\ (0.08)$ | $0.088 \\ (0.11)$ | $0.085 \\ (0.31)$ | $0.092 \\ (0.20)$ | $0.077 \\ (0.08)$ | $0.090 \\ (0.08)$ | $0.086 \\ (0.11)$ | $0.075 \\ (0.08)$ | $0.087 \\ (0.20)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$   | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | $0.077 \\ (0.20)$ | 0.093 $(0.11)$    | 0.088 $(0.31)$    | 0.084 $(0.10)$    | $0.158 \\ (0.21)$ | 0.081 $(0.08)$      | $0.086 \\ (0.31)$ | $0.080 \\ (0.31)$ | $0.078 \\ (0.11)$ | 0.086 $(0.31)$    | $0.078 \\ (0.20)$ | $0.090 \\ (0.21)$ | 0.084 $(0.31)$    | 0.081 $(0.08)$    | 0.077 $(0.31)$    | 0.089 $(0.11)$    | $0.077 \\ (0.20)$ | 0.088 $(0.31)$    | $0.080 \\ (0.11)$ | 0.087 $(0.08)$    | $0.790 \\ (0.11)$ | $0.090 \\ (0.31)$ | $0.171 \\ (0.20)$ | $0.080 \\ (0.31)$ | 0.087 $(0.08)$    |

 $For \ \phi_{..}^{ij}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AMAT, \ AMAT$ 

Table 45: Estimated informational trading parameters for MCHP

| var         |                    |                   |                   |                   |                   |                    |                   |                   |                   |                    |                   |                   |                   |                    |                    |                   |                   |                    |                      |                   |                   |                                  |                   |                    |                                  |
|-------------|--------------------|-------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|--------------------|--------------------|-------------------|-------------------|--------------------|----------------------|-------------------|-------------------|----------------------------------|-------------------|--------------------|----------------------------------|
|             | $\phi^i_{aa}$      | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$   | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$   | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$   | $\phi_{aa}^{i8}$   | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$   | $\phi_{aa}^{i10}$    | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$                | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$  | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.084 \\ (0.23)$  | $0.083 \\ (0.10)$ | $0.083 \\ (0.20)$ | $0.085 \\ (0.09)$ | $0.011 \\ (0.10)$ | 0.084 $(0.23)$     | $0.106 \\ (0.23)$ | $0.078 \\ (0.20)$ | $0.120 \\ (0.04)$ | $0.089 \\ (0.09)$  | $0.087 \\ (0.23)$ | $0.053 \\ (0.10)$ | $0.086 \\ (0.20)$ | $0.091 \\ (0.04))$ | $0.078 \\ (0.09)$  | $0.121 \\ (0.23)$ | $0.109 \\ (0.10)$ | $0.034 \\ (0.20)$  | $0.084 \\ (0.07)$    | $0.163 \\ (0.07)$ | $0.105 \\ (0.23)$ | $0.012 \\ (0.10)$                | $0.115 \\ (0.20)$ | $0.064 \\ (0.07)$  | $0.090 \\ (0.09)$                |
|             | $\phi_{ab}^{i13}$  | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$  | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$  | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$  | $\phi^{i20}_{ab}$  | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$  | $\phi_{ab}^{i22}$    | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$                | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$  | $\phi_{ab}^{i25}$                |
|             | $0.066 \\ (0.04))$ | 0.097 $(0.23)$    | $0.039 \\ (0.10)$ | 0.131 $(0.09)$    | 0.093 $(0.12)$    | $0.133 \\ (0.04))$ | $0.085 \\ (0.23)$ | 0.147 $(0.20)$    | 0.373 $(0.10)$    | $0.092 \\ (0.04))$ | 0.087 $(0.20)$    | $0.055 \\ (0.23)$ | $0.058 \\ (0.20)$ | $0.085 \\ (0.10)$  | $0.089 \\ (0.09)$  | $0.092 \\ (0.20)$ | 0.084 $(0.23)$    | $0.071 \\ (0.20)$  | $0.061 \\ (0.09)$    | $0.104 \\ (0.10)$ | $0.765 \\ (0.20)$ | 0.124 $(0.23)$                   | 0.084 $(0.20)$    | $0.090 \\ (0.04))$ | $0.081 \\ (0.10)$                |
|             | $\phi^i_{ba}$      | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$   | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$   | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$   | $\phi_{ba}^{i8}$   | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$   | $\phi_{ba}^{(0.09)}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\frac{(0.23)}{\phi_{bb}^{i11}}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$  | $\frac{(0.10)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.081 \\ (0.09)$  | $0.091 \\ (0.20)$ | $0.095 \\ (0.10)$ | $0.083 \\ (0.23)$ | $0.122 \\ (0.07)$ | $0.064 \\ (0.09)$  | $0.123 \\ (0.07)$ | $0.068 \\ (0.10)$ | $0.085 \\ (0.23)$ | $0.093 \\ (0.07)$  | $0.076 \\ (0.20)$ | $0.098 \\ (0.07)$ | $0.086 \\ (0.10)$ | $0.084 \\ (0.23)$  | $0.053 \\ (0.09)$  | $0.144 \\ (0.20)$ | $0.043 \\ (0.07)$ | $0.113 \\ (0.10)$  | -0.006 $(0.23)$      | $0.138 \\ (0.09)$ | $0.040 \\ (0.20)$ | $0.133 \\ (0.10)$                | $0.105 \\ (0.07)$ | $0.074 \\ (0.23)$  | $0.173 \\ (0.07)$                |
|             | $\phi_{bb}^{i13}$  | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$  | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$  | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$  | $\phi_{bb}^{i20}$  | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$  | $\phi_{bb}^{i22}$    | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$                | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$  | $\phi_{bb}^{i25}$                |
|             | $0.051 \\ (0.23)$  | $0.098 \\ (0.10)$ | $0.163 \\ (0.09)$ | $0.054 \\ (0.07)$ | $0.112 \\ (0.20)$ | $0.071 \\ (0.23)$  | 0.084 $(0.09)$    | $0.304 \\ (0.10)$ | $0.012 \\ (0.07)$ | $0.093 \\ (0.07)$  | $0.064 \\ (0.23)$ | 0.118 $(0.20)$    | $0.063 \\ (0.09)$ | $0.090 \\ (0.10)$  | $0.086 \\ (0.04))$ | 0.086 $(0.23)$    | $0.085 \\ (0.20)$ | $0.082 \\ (0.04))$ | 0.114 $(0.10)$       | $0.087 \\ (0.07)$ | $0.795 \\ (0.23)$ | $0.079 \\ (0.09)$                | $0.085 \\ (0.20)$ | 0.087 $(0.07)$     | 0.094<br>(0.10)                  |

 $\textit{For} \ \ \phi^{ij}_{\cdot\cdot\cdot}, \ \ i = INTC \ \textit{and} \ \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ \ AMAT, \ AMAT,$ 

Table 46: Estimated informational trading parameters for SWKS

| var         |                    |                   |                    |                   |                   |                    |                   |                    |                   |                    |                    |                   |                    |                   |                    |                    |                   |                    |                   |                    |                    |                   |                    |                   |                                  |
|-------------|--------------------|-------------------|--------------------|-------------------|-------------------|--------------------|-------------------|--------------------|-------------------|--------------------|--------------------|-------------------|--------------------|-------------------|--------------------|--------------------|-------------------|--------------------|-------------------|--------------------|--------------------|-------------------|--------------------|-------------------|----------------------------------|
|             | $\phi^i_{aa}$      | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$   | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$   | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$   | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$   | $\phi_{aa}^{i6}$   | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$   | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$   | $\phi_{ab}^{i8}$   | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$   | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$  | $\phi_{aa}^{i11}$  | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$  | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.082 \\ (0.04))$ | $0.086 \\ (0.05)$ | $0.080 \\ (0.08)$  | $0.083 \\ (0.10)$ | $0.083 \\ (0.25)$ | $0.004 \\ (0.04))$ | $0.038 \\ (0.10)$ | $0.084 \\ (0.08)$  | $0.086 \\ (0.25)$ | $0.086 \\ (0.05)$  | $0.080 \\ (0.04))$ | $0.068 \\ (0.10)$ | $0.087 \\ (0.08)$  | $0.087 \\ (0.25)$ | $0.071 \\ (0.05)$  | $0.081 \\ (0.04))$ | $0.083 \\ (0.10)$ | $0.084 \\ (0.08)$  | $0.083 \\ (0.25)$ | $0.082 \\ (0.05)$  | $0.093 \\ (0.04))$ | $0.033 \\ (0.10)$ | $0.083 \\ (0.08)$  | $0.086 \\ (0.05)$ | $0.072 \\ (0.04))$               |
|             | $\phi_{ab}^{i13}$  | $\phi_{aa}^{i14}$ | $\phi^{i14}_{ab}$  | $\phi_{aa}^{i15}$ | $\phi^{i15}_{ab}$ | $\phi_{aa}^{i16}$  | $\phi^{i16}_{ab}$ | $\phi_{aa}^{i17}$  | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$  | $\phi_{ab}^{i18}$  | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$  | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$  | $\phi_{aa}^{i21}$  | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$  | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$  | $\phi_{ab}^{i23}$  | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$  | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                |
|             | $0.090 \\ (0.05)$  | $0.103 \\ (0.10)$ | $0.083 \\ (0.04))$ | $0.082 \\ (0.08)$ | 0.087 $(0.25)$    | 0.083 $(0.08)$     | 0.085 $(0.10)$    | $0.084 \\ (0.04))$ | 0.094 $(0.22)$    | $0.154 \\ (0.25)$  | $0.081 \\ (0.05)$  | $0.086 \\ (0.08)$ | $0.088 \\ (0.04))$ | $0.085 \\ (0.25)$ | $0.085 \\ (0.25)$  | $0.091 \\ (0.05)$  | $0.081 \\ (0.08)$ | $0.090 \\ (0.04))$ | $0.086 \\ (0.10)$ | 0.087 $(0.04)$     | $0.785 \\ (0.05)$  | $0.088 \\ (0.08)$ | $0.091 \\ (0.04))$ | 0.081 $(0.10)$    | $0.085 \\ (0.05)$                |
|             | $\phi^i_{ba}$      | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$   | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$   | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$   | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$   | $\phi_{ba}^{i6}$   | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$   | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$   | $\phi_{bb}^{i8}$   | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$   | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$  | $\phi_{ba}^{i11}$  | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$  | $\phi_{bb}^{i12}$ | $\frac{(0.05)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.092 \\ (0.25)$  | $0.073 \\ (0.08)$ | $0.086 \\ (0.04))$ | $0.082 \\ (0.08)$ | $0.083 \\ (0.05)$ | $0.054 \\ (0.15)$  | $0.001 \\ (0.08)$ | $0.032 \\ (0.04))$ | $0.085 \\ (0.05)$ | $0.096 \\ (0.10)$  | $0.078 \\ (0.25)$  | $0.089 \\ (0.10)$ | $0.086 \\ (0.04))$ | $0.089 \\ (0.11)$ | $0.033 \\ (0.10)$  | $0.079 \\ (0.05)$  | $0.085 \\ (0.08)$ | -0.006 $(0.04))$   | $0.083 \\ (0.08)$ | $0.079 \\ (0.25)$  | $0.084 \\ (0.05)$  | $0.113 \\ (0.05)$ | $0.058 \\ (0.04))$ | $0.083 \\ (0.08)$ | $0.083 \\ (0.10)$                |
|             | $\phi_{bb}^{i13}$  | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$  | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$  | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$  | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$  | $\phi_{bb}^{i18}$  | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$  | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$  | $\phi_{ba}^{i21}$  | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$  | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$  | $\phi_{bb}^{i23}$  | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$  | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                |
|             | $0.095 \\ (0.08)$  | 0.083 $(0.05)$    | 0.089 $(0.10)$     | 0.082 $(0.25)$    | 0.082 $(0.04))$   | 0.089 $(0.08)$     | 0.083 $(0.10)$    | 0.089 $(0.25)$     | 0.083 $(0.05)$    | $0.171 \\ (0.04))$ | 0.098 $(0.08)$     | 0.087 $(0.25)$    | $0.075 \\ (0.07)$  | 0.088 $(0.02)$    | $0.081 \\ (0.04))$ | 0.087 $(0.08)$     | 0.089 $(0.25)$    | $0.085 \\ (0.05)$  | 0.089 $(0.16)$    | $0.086 \\ (0.04))$ | $0.085 \\ (0.08)$  | 0.092 $(0.19)$    | $0.090 \\ (0.05)$  | 0.079 $(0.10)$    | 0.083<br>(0.04))                 |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AMAT, \ AMAT$ 

Table 47: Estimated informational trading parameters for CDNS

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.056 \\ (0.25)$ | $0.079 \\ (0.11)$ | $0.086 \\ (0.16)$ | $0.074 \\ (0.19)$ | $0.084 \\ (0.14)$ | $0.085 \\ (0.11)$ | $0.078 \\ (0.25)$ | $0.080 \\ (0.05)$ | $0.075 \\ (0.16)$ | $0.091 \\ (0.19)$ | $0.086 \\ (0.16)$ | $0.042 \\ (0.25)$ | $0.011 \\ (0.11)$ | $0.083 \\ (0.05)$ | $0.082 \\ (0.19)$ | $0.082 \\ (0.19)$ | $0.086 \\ (0.25)$ | $0.086 \\ (0.16)$ | $0.077 \\ (0.11)$ | $0.085 \\ (0.05)$ | $0.079 \\ (0.05)$ | $0.083 \\ (0.25)$ | $0.086 \\ (0.16)$ | $0.076 \\ (0.05)$ | $0.083 \\ (0.11)$ |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | $0.082 \\ (0.16)$ | $0.091 \\ (0.05)$ | $0.083 \\ (0.25)$ | 0.083 $(0.11)$    | 0.088 $(0.11)$    | $0.082 \\ (0.05)$ | $0.092 \\ (0.16)$ | $0.091 \\ (0.25)$ | $0.076 \\ (0.19)$ | $0.080 \\ (0.19)$ | $0.085 \\ (0.11)$ | $0.089 \\ (0.05)$ | $0.082 \\ (0.25)$ | 0.087 $(0.16)$    | $0.170 \\ (0.19)$ | $0.069 \\ (0.05)$ | $0.086 \\ (0.23)$ | $0.081 \\ (0.25)$ | $0.144 \\ (0.11)$ | $0.082 \\ (0.16)$ | 0.785 $(0.11)$    | $0.091 \\ (0.05)$ | $0.085 \\ (0.25)$ | $0.085 \\ (0.19)$ | $0.079 \\ (0.16)$ |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.087 \\ (0.25)$ | $0.081 \\ (0.16)$ | $0.080 \\ (0.19)$ | $0.088 \\ (0.09)$ | $0.091 \\ (0.05)$ | $0.071 \\ (0.11)$ | $0.085 \\ (0.25)$ | $0.145 \\ (0.19)$ | $0.083 \\ (0.25)$ | $0.090 \\ (0.05)$ | $0.086 \\ (0.16)$ | $0.080 \\ (0.11)$ | $0.087 \\ (0.25)$ | $0.083 \\ (0.19)$ | $0.082 \\ (0.05)$ | $0.083 \\ (0.16)$ | $0.080 \\ (0.11)$ | $0.084 \\ (0.19)$ | $0.091 \\ (0.25)$ | $0.084 \\ (0.05)$ | $0.073 \\ (0.16)$ | $0.083 \\ (0.11)$ | $0.088 \\ (0.19)$ | $0.089 \\ (0.19)$ | $0.079 \\ (0.25)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | $0.092 \\ (0.05)$ | $0.085 \\ (0.19)$ | 0.082 $(0.11)$    | $0.078 \\ (0.16)$ | 0.089 $(0.25)$    | 0.089 $(0.16)$    | $0.075 \\ (0.05)$ | 0.083 $(0.11)$    | 0.089 $(0.25)$    | $0.090 \\ (0.05)$ | 0.082 $(0.04)$    | $0.078 \\ (0.05)$ | 0.083 $(0.25)$    | 0.087 $(0.16)$    | $0.070 \\ (0.19)$ | $0.164 \\ (0.11)$ | $0.061 \\ (0.25)$ | 0.082 $(0.05)$    | $0.086 \\ (0.16)$ | 0.077 $(0.19)$    | $0.781 \\ (0.25)$ | 0.088 $(0.11)$    | $0.074 \\ (0.19)$ | $0.090 \\ (0.05)$ | $0.089 \\ (0.16)$ |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AMAT, \ AMAT$ 

Table 48: Estimated informational trading parameters for MXIM

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.078 \\ (0.19)$ | $0.086 \\ (0.04)$ | $0.075 \\ (0.09)$ | $0.084 \\ (0.15)$ | $0.082 \\ (0.09)$ | $0.095 \\ (0.04)$ | $0.084 \\ (0.19)$ | $0.092 \\ (0.21)$ | $0.075 \\ (0.09)$ | $0.078 \\ (0.15)$ | $0.094 \\ (0.04)$ | $0.098 \\ (0.21)$ | $0.082 \\ (0.19)$ | $0.082 \\ (0.21)$ | $0.082 \\ (0.09)$ | $0.082 \\ (0.04)$ | $0.090 \\ (0.21)$ | $0.089 \\ (0.15)$ | $0.078 \\ (0.19)$ | $0.028 \\ (0.09)$ | $0.079 \\ (0.04)$ | $0.133 \\ (0.21)$ | $0.084 \\ (0.05)$ | $0.089 \\ (0.15)$ | $0.079 \\ (0.19)$ |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi^{i14}_{ab}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi^{i20}_{ab}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | $0.086 \\ (0.09)$ | $0.079 \\ (0.21)$ | $0.086 \\ (0.04)$ | $0.061 \\ (0.15)$ | 0.112 $(0.19)$    | $0.084 \\ (0.19)$ | $0.082 \\ (0.21)$ | 0.123 $(0.04)$    | $0.082 \\ (0.09)$ | $0.083 \\ (0.15)$ | $0.079 \\ (0.19)$ | $0.094 \\ (0.21)$ | $0.083 \\ (0.04)$ | $0.146 \\ (0.15)$ | $0.050 \\ (0.09)$ | $0.062 \\ (0.19)$ | 0.083 $(0.21)$    | 0.083 $(0.04)$    | $0.078 \\ (0.15)$ | $0.085 \\ (0.09)$ | $0.840 \\ (0.19)$ | $0.122 \\ (0.21)$ | 0.082 $(0.04)$    | $0.079 \\ (0.15)$ | 0.081 $(0.09)$    |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.078 \\ (0.21)$ | $0.087 \\ (0.09)$ | $0.081 \\ (0.19)$ | $0.082 \\ (0.09)$ | $0.086 \\ (0.04)$ | $0.080 \\ (0.21)$ | $0.077 \\ (0.09)$ | $0.091 \\ (0.19)$ | $0.041 \\ (0.15)$ | $0.087 \\ (0.04)$ | $0.085 \\ (0.21)$ | $0.076 \\ (0.09)$ | $0.067 \\ (0.19)$ | $0.088 \\ (0.04)$ | $0.076 \\ (0.15)$ | $0.090 \\ (0.21)$ | $0.056 \\ (0.09)$ | $0.082 \\ (0.19)$ | $0.082 \\ (0.04)$ | $0.172 \\ (0.09)$ | $0.027 \\ (0.21)$ | $0.084 \\ (0.04)$ | $0.086 \\ (0.19)$ | $0.081 \\ (0.09)$ | $0.087 \\ (0.15)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | $0.073 \\ (0.19)$ | 0.087 $(0.04)$    | 0.084 $(0.09)$    | $0.090 \\ (0.04)$ | $0.079 \\ (0.19)$ | 0.087 $(0.19)$    | 0.084 $(0.21)$    | $0.079 \\ (0.09)$ | $0.086 \\ (0.15)$ | $0.086 \\ (0.19)$ | $0.051 \\ (0.19)$ | $0.080 \\ (0.04)$ | $0.082 \\ (0.21)$ | $0.102 \\ (0.09)$ | 0.139 $(0.19)$    | $0.079 \\ (0.19)$ | $0.085 \\ (0.04)$ | $0.091 \\ (0.21)$ | $0.077 \\ (0.15)$ | $0.085 \\ (0.19)$ | $0.785 \\ (0.19)$ | $0.086 \\ (0.04)$ | $0.092 \\ (0.09)$ | 0.089 $(0.21)$    | $0.078 \\ (0.19)$ |

 $\textit{For} \ \ \phi^{ij}_{\cdot\cdot\cdot}, \ \ i = INTC \ \textit{and} \ \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ SWKS, \ CDNS, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ \ AMAT, \ AMAT,$ 

Table 49: Estimated informational trading parameters for TER

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.075 \\ (0.04)$ | $0.081 \\ (0.06)$ | $0.087 \\ (0.13)$ | $0.066 \\ (0.13)$ | $0.095 \\ (0.15)$ | $0.079 \\ (0.04)$ | $0.085 \\ (0.15)$ | $0.094 \\ (0.13)$ | $0.086 \\ (0.18)$ | $0.086 \\ (0.15)$ | $0.085 \\ (0.06)$ | $0.093 \\ (0.15)$ | $0.084 \\ (0.18)$ | $0.081 \\ (0.13)$ | $0.090 \\ (0.06)$ | $0.087 \\ (0.04)$ | $0.085 \\ (0.06)$ | $0.081 \\ (0.15)$ | $0.084 \\ (0.18)$ | $0.082 \\ (0.13)$ | $0.095 \\ (0.04)$ | $0.097 \\ (0.06)$ | $0.081 \\ (0.15)$ | $0.090 \\ (0.06)$ | $0.083 \\ (0.04)$                |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi_{ab}^{i24}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                |
|             | 0.112 $(0.18)$    | 0.083 $(0.04)$    | 0.083 $(0.06)$    | 0.084 $(0.13)$    | 0.087 $(0.18)$    | $0.078 \\ (0.15)$ | $0.122 \\ (0.04)$ | 0.092 $(0.06)$    | 0.087 $(0.13)$    | $0.161 \\ (0.15)$ | $0.050 \\ (0.15)$ | 0.098 $(0.04)$    | $0.125 \\ (0.06)$ | 0.084 $(0.13)$    | 0.083 $(0.15)$    | $0.145 \\ (0.15)$ | 0.097 $(0.04)$    | $0.102 \\ (0.06)$ | 0.084 $(0.13)$    | 0.084 $(0.15)$    | 0.789 $(0.16)$    | 0.122 $(0.04)$    | 0.092 $(0.06)$    | 0.088 $(0.13)$    | 0.083 $(0.18)$                   |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.18)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.082 \\ (0.06)$ | $0.082 \\ (0.13)$ | $0.082 \\ (0.15)$ | $0.088 \\ (0.04)$ | $0.082 \\ (0.15)$ | $0.090 \\ (0.06)$ | $0.091 \\ (0.13)$ | $0.084 \\ (0.04)$ | $0.081 \\ (0.06)$ | $0.089 \\ (0.18)$ | $0.084 \\ (0.06)$ | $0.082 \\ (0.15)$ | $0.081 \\ (0.13)$ | $0.077 \\ (0.18)$ | $0.084 \\ (0.13)$ | $0.082 \\ (0.06)$ | $0.082 \\ (0.04)$ | 0.087 $(0.13)$    | $0.084 \\ (0.18)$ | $0.108 \\ (0.04)$ | $0.071 \\ (0.06)$ | $0.086 \\ (0.15)$ | $0.173 \\ (0.12)$ | $0.084 \\ (0.18)$ | $0.083 \\ (0.15)$                |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                |
|             | 0.081 $(0.15)$    | 0.088 $(0.04)$    | $0.101 \\ (0.13)$ | 0.084 $(0.06)$    | $0.090 \\ (0.15)$ | 0.083 $(0.13)$    | 0.087 $(0.15)$    | 0.144 $(0.04)$    | 0.086 $(0.06)$    | 0.089 $(0.18)$    | 0.084 $(0.06)$    | 0.078 $(0.13)$    | 0.083 $(0.18)$    | 0.084 $(0.04)$    | 0.095 $(0.15)$    | 0.073 $(0.06)$    | 0.164 $(0.13)$    | 0.084 $(0.04)$    | 0.103 $(0.15)$    | 0.083 $(0.19)$    | 0.809 $(0.06)$    | 0.175 $(0.04)$    | 0.081 $(0.15)$    | $0.101 \\ (0.13)$ | 0.083 $(0.06)$                   |

For  $\phi_{ij}^{ij}$ , i = INTC and j = TSM, INTC, NVDA, AMD, ASML, TXN, QCOM, MU, AVGO, NXPI, LRCX, ADI, AMAT, KLAC, XLNX, STM, MCHP, SWKS, CDNS, MXIM, MRVL, QRVO, ON, OLED

Table 50: Estimated informational trading parameters for MRVL

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.085 \\ (0.06)$ | $0.206 \\ (0.18)$ | $0.093 \\ (0.26)$ | $0.088 \\ (0.07)$ | $0.085 \\ (0.09)$ | $0.081 \\ (0.06)$ | $0.084 \\ (0.18)$ | $0.082 \\ (0.26)$ | $0.095 \\ (0.07)$ | $0.097 \\ (0.09)$ | $0.081 \\ (0.06)$ | $0.085 \\ (0.18)$ | $0.071 \\ (0.07)$ | $0.086 \\ (0.26)$ | $0.080 \\ (0.09)$ | $0.085 \\ (0.06)$ | $0.084 \\ (0.18)$ | $0.081 \\ (0.07)$ | $0.084 \\ (0.26)$ | $0.079 \\ (0.09)$ | $0.084 \\ (0.06)$ | $0.084 \\ (0.18)$ | $0.082 \\ (0.07)$ | $0.122 \\ (0.04)$ | -0.025 (0.26)                    |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi_{ab}^{i21}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi^{i25}_{ab}$                |
|             | $0.090 \\ (0.07)$ | $0.083 \\ (0.09)$ | $0.112 \\ (0.26)$ | $0.083 \\ (0.18)$ | 0.083 $(0.06)$    | $0.084 \\ (0.07)$ | 0.087 $(0.09)$    | $0.078 \\ (0.26)$ | $0.122 \\ (0.18)$ | 0.084 $(0.06)$    | 0.083 $(0.07)$    | $0.161 \\ (0.06)$ | 0.083 $(0.26)$    | $0.086 \\ (0.18)$ | 0.081 $(0.09)$    | $0.071 \\ (0.07)$ | 0.083 $(0.06)$    | $0.162 \\ (0.26)$ | $0.098 \\ (0.18)$ | $0.082 \\ (0.09)$ | $0.799 \\ (0.07)$ | 0.091 $(0.09)$    | $0.080 \\ (0.26)$ | 0.084 $(0.18)$    | $0.083 \\ (0.06)$                |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.06)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.067 \\ (0.26)$ | $0.085 \\ (0.06)$ | $0.083 \\ (0.07)$ | $0.097 \\ (0.09)$ | 0.923 $(0.18)$    | $0.021 \\ (0.26)$ | $0.092 \\ (0.06)$ | $0.116 \\ (0.07)$ | $0.097 \\ (0.09)$ | $0.081 \\ (0.18)$ | $0.088 \\ (0.26)$ | $0.060 \\ (0.07)$ | $0.095 \\ (0.06)$ | $0.084 \\ (0.09)$ | $0.082 \\ (0.18)$ | $0.085 \\ (0.26)$ | $0.080 \\ (0.07)$ | $0.086 \\ (0.06)$ | $0.085 \\ (0.09)$ | $0.093 \\ (0.18)$ | $0.074 \\ (0.26)$ | $0.094 \\ (0.06)$ | $0.095 \\ (0.09)$ | $0.086 \\ (0.07)$ | $0.084 \\ (0.18)$                |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                |
|             | $0.072 \\ (0.18)$ | 0.084 $(0.26)$    | 0.081 $(0.06)$    | $0.093 \\ (0.07)$ | 0.081 $(0.26)$    | $0.099 \\ (0.26)$ | 0.094 $(0.18)$    | $0.085 \\ (0.06)$ | 0.082 $(0.09)$    | $0.090 \\ (0.07)$ | 0.084 $(0.09)$    | $0.080 \\ (0.26)$ | $0.081 \\ (0.18)$ | 0.091 $(0.09)$    | $0.078 \\ (0.07)$ | 0.084 $(0.09)$    | 0.083 $(0.26)$    | $0.125 \\ (0.06)$ | $0.164 \\ (0.18)$ | $0.084 \\ (0.07)$ | $0.788 \\ (0.09)$ | 0.082 $(0.26)$    | $0.106 \\ (0.06)$ | $0.085 \\ (0.06)$ | 0.089<br>(0.18)                  |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ SWKS, \ CDNS, \ MXIM, \ TER, \ QRVO, \ ON, \ OLED \ AMAT, \ AMAT$ 

Table 51: Estimated informational trading parameters for QRVO

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                                          |                   |                   |                                  |                      |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------|-------------------|-------------------|----------------------------------|----------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$                                        | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$                | $\phi_{aa}^{i13}$    |
| $a_t - p_t$ | $0.067 \\ (0.11)$ | $0.085 \\ (0.10)$ | $0.083 \\ (0.20)$ | $0.097 \\ (0.09)$ | $0.923 \\ (0.04)$ | $0.021 \\ (0.11)$ | $0.092 \\ (0.20)$ | $0.116 \\ (0.10)$ | $0.097 \\ (0.09)$ | $0.081 \\ (0.20)$ | $0.088 \\ (0.11)$ | $0.060 \\ (0.03)$ | $0.095 \\ (0.10)$ | $0.084 \\ (0.09)$ | $0.082 \\ (0.20)$ | $0.085 \\ (0.11)$ | $0.080 \\ (0.32)$ | $0.086 \\ (0.10)$ | $0.085 \\ (0.09)$ | $0.093 \\ (0.20)$ | $0.074 \\ (0.11)$                                        | $0.094 \\ (0.20)$ | $0.095 \\ (0.10)$ | $0.086 \\ (0.09)$                | $0.084 \\ (0.11)$    |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi^{i14}_{ab}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi^{i23}_{ab}$                                        | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$                | $\phi_{ab}^{i25}$    |
|             | $0.072 \\ (0.20)$ | 0.084 $(0.09)$    | 0.081 $(0.11)$    | 0.093 $(0.10)$    | 0.081 $(0.25)$    | 0.099 $(0.10)$    | 0.094 $(0.09)$    | 0.085 $(0.11)$    | 0.082<br>(0.08)   | $0.090 \\ (0.21)$ | 0.084 $(0.10)$    | 0.080 $(0.09)$    | 0.081 $(0.11)$    | $0.091 \\ (0.05)$ | 0.078 $(0.20)$    | $0.095 \\ (0.20)$ | 0.084 $(0.09)$    | 0.125 $(0.11)$    | 0.164 $(0.20)$    | 0.084 $(0.06)$    | 0.788 $(0.10)$                                           | 0.082 $(0.09)$    | $0.106 \\ (0.11)$ | $0.085 \\ (0.20)$                | 0.089 $(0.20)$       |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\begin{array}{c} (0.10) \\ \phi_{ba}^{i11} \end{array}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\frac{(0.20)}{\phi_{bb}^{i12}}$ | $\phi_{ba}^{(0.20)}$ |
| $p_t - b_t$ | $0.085 \\ (0.10)$ | $0.206 \\ (0.11)$ | $0.093 \\ (0.20)$ | $0.088 \\ (0.09)$ | $0.085 \\ (0.07)$ | $0.081 \\ (0.10)$ | 0.084 $(0.11)$    | $0.082 \\ (0.07)$ | $0.095 \\ (0.09)$ | $0.097 \\ (0.20)$ | $0.081 \\ (0.10)$ | $0.085 \\ (0.11)$ | $0.071 \\ (0.07)$ | $0.086 \\ (0.09)$ | $0.080 \\ (0.20)$ | $0.085 \\ (0.10)$ | $0.084 \\ (0.11)$ | $0.081 \\ (0.08)$ | $0.084 \\ (0.09)$ | $0.079 \\ (0.20)$ | $0.084 \\ (0.10)$                                        | $0.084 \\ (0.11)$ | $0.082 \\ (0.08)$ | $0.122 \\ (0.09)$                | -0.025 $(0.20)$      |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$                                        | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$                | $\phi_{bb}^{i25}$    |
|             | $0.090 \\ (0.11)$ | 0.083 $(0.09)$    | 0.112 $(0.10)$    | 0.083 $(0.10)$    | 0.083 $(0.11)$    | 0.084 (0.)        | 0.087 $(0.09)$    | 0.078<br>(010.)   | 0.122 $(0.01)$    | 0.084 $(0.11)$    | 0.083 $(0.11)$    | $0.161 \\ (0.09)$ | 0.083 $(0.10)$    | 0.086 $(0.20)$    | 0.081 $(0.20)$    | 0.084 $(0.11)$    | 0.071 $(0.09)$    | 0.162 $(0.10)$    | 0.098 $(0.20)$    | 0.082 $(0.24)$    | 0.799 $(0.10)$                                           | 0.091 $(0.09)$    | $0.080 \\ (0.11)$ | 0.084 $(0.11)$                   | 0.083 $(0.10)$       |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ SWKS, \ CDNS, \ MXIM, \ TER, \ MRVL, \ ON, \ OLED \ AMAT, \ AMAT$ 

Table 52: Estimated informational trading parameters for ON

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi^{i3}_{ab}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi^{i8}_{ab}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.083 \\ (0.20)$ | $0.083 \\ (0.14)$ | $0.095 \\ (0.12)$ | $0.083 \\ (0.14)$ | $0.089 \\ (0.05)$ | $0.082 \\ (0.20)$ | $0.082 \\ (0.12)$ | $0.089 \\ (0.05)$ | $0.086 \\ (0.14)$ | $0.087 \\ (0.26)$ | $0.081 \\ (0.20)$ | 0.087 $(0.26)$    | $0.089 \\ (0.14)$ | $0.085 \\ (0.05)$ | $0.089 \\ (0.12)$ | $0.086 \\ (0.20)$ | 0.085 (0.)        | $0.092 \\ (0.26)$ | $0.090 \\ (0.05)$ | $0.084 \\ (0.12)$ | $0.073 \\ (0.20)$ | $0.086 \\ (0.14)$ | $0.082 \\ (0.26)$ | $0.083 \\ (0.05)$ | $0.054 \\ (0.12)$ |
|             | $\phi_{ab}^{i13}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi^{i18}_{ab}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | $0.165 \\ (0.05)$ | 0.032 $(0.14)$    | 0.085 $(0.12)$    | $0.096 \\ (0.26)$ | 0.078 $(0.24)$    | 0.089 $(0.14)$    | 0.086 $(0.12)$    | 0.089 $(0.20)$    | 0.033 $(0.26)$    | 0.079 $(0.05)$    | 0.085 $(0.14)$    | -0.006 $(0.12)$   | 0.089 $(0.20)$    | 0.083 $(0.26)$    | 0.083 $(0.05)$    | 0.088 $(0.06)$    | 0.087 $(0.14)$    | $0.075 \\ (0.20)$ | 0.088 $(0.12)$    | $0.079 \\ (0.05)$ | 0.083 $(0.14)$    | $0.165 \\ (0.12)$ | $0.060 \\ (0.20)$ | 0.079 $(0.05)$    | $0.125 \\ (0.12)$ |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.033 \\ (0.12)$ | $0.083 \\ (0.26)$ | $0.086 \\ (0.14)$ | $0.072 \\ (0.05)$ | $0.090 \\ (0.04)$ | $0.103 \\ (0.12)$ | $0.083 \\ (0.20)$ | $0.082 \\ (0.14)$ | $0.087 \\ (0.05)$ | $0.083 \\ (0.26)$ | $0.088 \\ (0.12)$ | $0.085 \\ (0.20)$ | $0.085 \\ (0.14)$ | $0.091 \\ (0.09)$ | $0.081 \\ (0.05)$ | $0.090 \\ (0.12)$ | $0.086 \\ (0.20)$ | $0.087 \\ (0.14)$ | $0.078 \\ (0.26)$ | $0.088 \\ (0.05)$ | $0.082 \\ (0.12)$ | $0.086 \\ (0.20)$ | $0.080 \\ (0.14)$ | $0.083 \\ (0.26)$ | $0.083 \\ (0.05)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | $0.004 \\ (0.14)$ | 0.038 $(0.26)$    | 0.084 $(0.05)$    | $0.086 \\ (0.05)$ | 0.086 $(0.20)$    | $0.080 \\ (0.12)$ | $0.068 \\ (0.14)$ | 0.087 $(0.26)$    | 0.087 $(0.05)$    | $0.071 \\ (0.20)$ | 0.081 $(0.12)$    | 0.083 $(0.26)$    | 0.085 $(0.12)$    | 0.092 $(0.04)$    | 0.091 $(0.20)$    | 0.083 $(0.12)$    | 0.084 $(0.26)$    | 0.081 $(0.14)$    | $0.086 \\ (0.05)$ | 0.083 $(0.20)$    | $0.791 \\ (0.05)$ | 0.093 $(0.20)$    | $0.165 \\ (0.14)$ | 0.081 $(0.12)$    | $0.085 \\ (0.05)$ |

 $\textit{For} \ \ \phi^{ij}_{\cdot\cdot\cdot}, \ \ i = INTC \ \textit{and} \ \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ SWKS, \ CDNS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ OLED$ 

Table 53: Estimated informational trading parameters for OLED

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi_{ab}^{i2}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi_{ab}^{i4}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$ |
| $a_t - p_t$ | $0.083 \\ (0.26)$ | $0.074 \\ (0.07)$ | $0.089 \\ (0.10)$ | $0.083 \\ (0.28)$ | $0.088 \\ (0.05)$ | $0.074 \\ (0.26)$ | $0.106 \\ (0.10)$ | $0.091 \\ (0.07)$ | $0.089 \\ (0.05)$ | $0.114 \\ (0.28)$ | $0.089 \\ (0.26)$ | $0.116 \\ (0.10)$ | $0.081 \\ (0.05)$ | $0.091 \\ (0.07)$ | $0.085 \\ (0.10)$ | $0.088 \\ (0.26)$ | $0.021 \\ (0.28)$ | $0.173 \\ (0.07)$ | $0.085 \\ (0.05)$ | $0.086 \\ (0.28)$ | $0.077 \\ (0.26)$ | $0.084 \\ (0.07)$ | $0.108 \\ (0.05)$ | $0.064 \\ (0.28)$ | $0.077 \\ (0.10)$ |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi^{i15}_{ab}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi^{i19}_{ab}$ | $\phi_{aa}^{i20}$ | $\phi^{i20}_{ab}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi^{i22}_{ab}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$ |
|             | $0.084 \\ (0.05)$ | $0.084 \\ (0.26)$ | $0.083 \\ (0.28)$ | $0.075 \\ (0.07)$ | $0.092 \\ (0.05)$ | $0.077 \\ (0.10)$ | $0.088 \\ (0.26)$ | $0.092 \\ (0.28)$ | $0.086 \\ (0.07)$ | $0.064 \\ (0.05)$ | 0.084 $(0.10)$    | 0.084 $(0.26)$    | $0.075 \\ (0.28)$ | $0.085 \\ (0.07)$ | $0.085 \\ (0.05)$ | $0.067 \\ (0.10)$ | $0.092 \\ (0.26)$ | $0.080 \\ (0.28)$ | $0.087 \\ (0.07)$ | $0.086 \\ (0.05)$ | 0.082 $(0.10)$    | $0.115 \\ (0.26)$ | $0.788 \\ (0.05)$ | $0.078 \\ (0.07)$ | $0.083 \\ (0.28)$ |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\phi_{ba}^{i13}$ |
| $p_t - b_t$ | $0.082 \\ (0.10)$ | $0.088 \\ (0.28)$ | $0.084 \\ (0.26)$ | $0.083 \\ (0.07)$ | $0.087 \\ (0.05)$ | $0.081 \\ (0.07)$ | $0.091 \\ (0.07)$ | $0.041 \\ (0.26)$ | $0.088 \\ (0.10)$ | $0.086 \\ (0.05)$ | $0.090 \\ (0.28)$ | $0.068 \\ (0.10)$ | $0.088 \\ (0.26)$ | $0.077 \\ (0.07)$ | $0.083 \\ (0.05)$ | $0.109 \\ (0.28)$ | $0.083 \\ (0.10)$ | $0.083 \\ (0.26)$ | $0.173 \\ (0.07)$ | $0.028 \\ (0.28)$ | $0.084 \\ (0.10)$ | $0.087 \\ (0.07)$ | $0.082 \\ (0.26)$ | $0.092 \\ (0.28)$ | $0.074 \\ (0.05)$ |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$ |
|             | $0.087 \\ (0.07)$ | 0.084 $(0.08)$    | $0.091 \\ (0.10)$ | $0.080 \\ (0.05)$ | $0.086 \\ (0.26)$ | 0.084 $(0.07)$    | $0.080 \\ (0.08)$ | $0.086 \\ (0.10)$ | 0.087 $(0.05)$    | $0.052 \\ (0.26)$ | 0.084 $(0.07)$    | 0.081 $(0.10)$    | 0.094 $(0.08)$    | $0.063 \\ (0.05)$ | $0.090 \\ (0.26)$ | $0.080 \\ (0.07)$ | $0.086 \\ (0.10)$ | 0.092 $(0.08)$    | $0.078 \\ (0.05)$ | $0.086 \\ (0.26)$ | $0.079 \\ (0.07)$ | 0.092 $(0.10)$    | 0.797 $(0.08)$    | $0.079 \\ (0.05)$ | $0.083 \\ (0.26)$ |

 $For \ \phi^{ij}_{\cdot\cdot\cdot}, \ i = INTC \ and \ j = TSM, \ INTC, \ NVDA, \ AMD, \ ASML, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ ADI, \ AMAT, \ KLAC, \ XLNX, \ STM, \ MCHP, \ SWKS, \ CDNS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ONROW \ AND \ AND$ 

Table 54: Estimated informational trading parameters for ASML

| var         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                                  |
|-------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|             | $\phi^i_{aa}$     | $\phi^i_{ab}$     | $\phi_{aa}^{i2}$  | $\phi^{i2}_{ab}$  | $\phi_{aa}^{i3}$  | $\phi_{ab}^{i3}$  | $\phi_{aa}^{i4}$  | $\phi^{i4}_{ab}$  | $\phi_{aa}^{i5}$  | $\phi_{ab}^{i5}$  | $\phi_{aa}^{i6}$  | $\phi_{ab}^{i6}$  | $\phi_{aa}^{i7}$  | $\phi_{ab}^{i7}$  | $\phi_{aa}^{i8}$  | $\phi_{ab}^{i8}$  | $\phi_{aa}^{i9}$  | $\phi_{ab}^{i9}$  | $\phi_{aa}^{i10}$ | $\phi_{ab}^{i10}$ | $\phi_{aa}^{i11}$ | $\phi_{ab}^{i11}$ | $\phi_{aa}^{i12}$ | $\phi_{ab}^{i12}$ | $\phi_{aa}^{i13}$                |
| $a_t - p_t$ | $0.080 \\ (0.05)$ | $0.089 \\ (0.11)$ | $0.086 \\ (0.09)$ | $0.082 \\ (0.15)$ | $0.083 \\ (0.09)$ | $0.083 \\ (0.22)$ | $0.082 \\ (0.05)$ | $0.091 \\ (0.11)$ | $0.923 \\ (0.07)$ | $0.140 \\ (0.09)$ | $0.079 \\ (0.22)$ | $0.085 \\ (0.05)$ | $0.134 \\ (0.11)$ | $0.089 \\ (0.08)$ | $0.082 \\ (0.09)$ | $0.083 \\ (0.22)$ | $0.079 \\ (0.09)$ | $0.081 \\ (0.05)$ | $0.084 \\ (0.13)$ | $0.088 \\ (0.09)$ | $0.133 \\ (0.22)$ | $0.145 \\ (0.09)$ | $0.087 \\ (0.11)$ | $0.084 \\ (0.05)$ | $0.083 \\ (0.09)$                |
|             | $\phi^{i13}_{ab}$ | $\phi_{aa}^{i14}$ | $\phi_{ab}^{i14}$ | $\phi_{aa}^{i15}$ | $\phi_{ab}^{i15}$ | $\phi_{aa}^{i16}$ | $\phi_{ab}^{i16}$ | $\phi_{aa}^{i17}$ | $\phi_{ab}^{i17}$ | $\phi_{aa}^{i18}$ | $\phi_{ab}^{i18}$ | $\phi_{aa}^{i19}$ | $\phi_{ab}^{i19}$ | $\phi_{aa}^{i20}$ | $\phi_{ab}^{i20}$ | $\phi_{aa}^{i21}$ | $\phi^{i21}_{ab}$ | $\phi_{aa}^{i22}$ | $\phi_{ab}^{i22}$ | $\phi_{aa}^{i23}$ | $\phi_{ab}^{i23}$ | $\phi_{aa}^{i24}$ | $\phi^{i24}_{ab}$ | $\phi_{aa}^{i25}$ | $\phi_{ab}^{i25}$                |
|             | $0.154 \\ (0.10)$ | $0.083 \\ (0.08)$ | $0.084 \\ (0.05)$ | $0.082 \\ (0.22)$ | 0.083 $(0.06)$    | $0.088 \\ (0.05)$ | $0.088 \\ (0.08)$ | $0.082 \\ (0.06)$ | 0.087 $(0.10)$    | $0.078 \\ (0.22)$ | $0.088 \\ (0.22)$ | $0.080 \\ (0.08)$ | $0.088 \\ (0.05)$ | $0.081 \\ (0.06)$ | $0.078 \\ (0.10)$ | $0.088 \\ (0.06)$ | $0.078 \\ (0.08)$ | $0.086 \\ (0.10)$ | $0.075 \\ (0.05)$ | $0.088 \\ (0.06)$ | $0.785 \\ (0.06)$ | $0.090 \\ (0.08)$ | $0.080 \\ (0.10)$ | $0.086 \\ (0.22)$ | $0.077 \\ (0.05)$                |
|             | $\phi^i_{ba}$     | $\phi^i_{bb}$     | $\phi_{ba}^{i2}$  | $\phi_{bb}^{i2}$  | $\phi_{ba}^{i3}$  | $\phi_{bb}^{i3}$  | $\phi_{ba}^{i4}$  | $\phi_{bb}^{i4}$  | $\phi_{ba}^{i5}$  | $\phi_{bb}^{i5}$  | $\phi_{ba}^{i6}$  | $\phi_{bb}^{i6}$  | $\phi_{ba}^{i7}$  | $\phi_{bb}^{i7}$  | $\phi_{ba}^{i8}$  | $\phi_{bb}^{i8}$  | $\phi_{ba}^{i9}$  | $\phi_{bb}^{i9}$  | $\phi_{ba}^{i10}$ | $\phi_{bb}^{i10}$ | $\phi_{ba}^{i11}$ | $\phi_{bb}^{i11}$ | $\phi_{ba}^{i12}$ | $\phi_{bb}^{i12}$ | $\frac{(0.05)}{\phi_{ba}^{i13}}$ |
| $p_t - b_t$ | $0.078 \\ (0.06)$ | $0.078 \\ (0.05)$ | $0.088 \\ (0.10)$ | $0.079 \\ (0.08)$ | $0.084 \\ (0.10)$ | $0.082 \\ (0.06)$ | $0.082 \\ (0.05)$ | $0.086 \\ (0.10)$ | $0.040 \\ (0.08)$ | $0.863 \\ (0.06)$ | $0.090 \\ (0.10)$ | $0.088 \\ (0.05)$ | $0.075 \\ (0.22)$ | $0.084 \\ (0.08)$ | $0.082 \\ (0.22)$ | $0.082 \\ (0.10)$ | $0.084 \\ (0.05)$ | $0.083 \\ (0.06)$ | $0.074 \\ (0.08)$ | 0.087 $(0.06)$    | 0.089 $(0.22)$    | $0.084 \\ (0.05)$ | 0.083 $(0.06)$    | $0.082 \\ (0.08)$ | $0.086 \\ (0.10)$                |
|             | $\phi_{bb}^{i13}$ | $\phi_{ba}^{i14}$ | $\phi_{bb}^{i14}$ | $\phi_{ba}^{i15}$ | $\phi_{bb}^{i15}$ | $\phi_{ba}^{i16}$ | $\phi_{bb}^{i16}$ | $\phi_{ba}^{i17}$ | $\phi_{bb}^{i17}$ | $\phi_{ba}^{i18}$ | $\phi_{bb}^{i18}$ | $\phi_{ba}^{i19}$ | $\phi_{bb}^{i19}$ | $\phi_{ba}^{i20}$ | $\phi_{bb}^{i20}$ | $\phi_{ba}^{i21}$ | $\phi_{bb}^{i21}$ | $\phi_{ba}^{i22}$ | $\phi_{bb}^{i22}$ | $\phi_{ba}^{i23}$ | $\phi_{bb}^{i23}$ | $\phi_{ba}^{i24}$ | $\phi_{bb}^{i24}$ | $\phi_{ba}^{i25}$ | $\phi_{bb}^{i25}$                |
|             | $0.083 \\ (0.06)$ | 0.083 $(0.22)$    | $0.082 \\ (0.08)$ | 0.083 $(0.10)$    | $0.083 \\ (0.05)$ | $0.085 \\ (0.08)$ | $0.086 \\ (0.06)$ | $0.080 \\ (0.10)$ | $0.095 \\ (0.22)$ | $0.084 \\ (0.05)$ | $0.086 \\ (0.05)$ | 0.084 $(0.08)$    | $0.079 \\ (0.06)$ | $0.078 \\ (0.10)$ | $0.091 \\ (0.05)$ | $0.078 \\ (0.10)$ | $0.089 \\ (0.05)$ | $0.080 \\ (0.08)$ | $0.080 \\ (0.06)$ | $0.092 \\ (0.22)$ | $0.058 \\ (0.10)$ | 0.087 $(0.22)$    | $0.075 \\ (0.05)$ | $0.073 \\ (0.08)$ | $0.083 \\ (0.06)$                |

 $\overline{\textit{For } \phi^{ij}_{..}, \ i = INTC \ \textit{and} \ j = TSM, \ INTC, \ NVDA, \ AMD, \ TXN, \ QCOM, \ MU, \ AVGO, \ NXPI, \ LRCX, \ AMAT, \ ADI, \ KLAC, \ XLNX, \ STM, \ MCHP, \ CDNS, \ SWKS, \ MXIM, \ TER, \ MRVL, \ QRVO, \ ON, \ OLED \ AMAT, \ ADI, \ KLAC, \ AMAT, \ ADI, \ AMAT, \ ADI$ 

# Appendix C2 Estimated GARCH Parameters for SMH and its Underlying Assets

### $\kappa_{pf}^0$ -0.471 $\kappa^0_{pb^f}$ -0.833ETF $\kappa^0_{apf}$ $\tau_1^J$ $au_2^f$ $\tau_0^J$ $\tau_3^J$ $\kappa_{p^f}$ $\kappa_{apf}$ $\kappa_{pbf}$ $0.136 \\ (0.008)$ 0.925 (0.060)0.801 $0.760 \\ (0.022)$ $\frac{0.767}{(0.036)}$ SMH (0.025)(0.048)(0.022)(0.008)(0.098)(0.025) $\frac{\overline{\kappa_{pb}^0}}{\kappa_{pb}^{-0.447}}$ $\kappa^0_{ap}$ $\kappa_p^0$ -0.441STOCK $\kappa_p$ $\kappa_{ap}$ $\tau_1$ $\tau_2$ $\kappa_{pb}$ $\tau_0$ $\tau_3$ $0.930 \\ (0.059)$ 0.901 0.629 (0.041)0.121 0.612-0.5410.701 TSM(0.045)(0.003)(0.026)(0.057)(0.027)(0.014)(0.039)(0.15)-0.514-0.657-0.439-0.033 $0.694 \\ (0.022)$ $0.800 \\ (0.011)$ -0.447 $0.819 \\ (0.055)$ $0.306 \\ (0.047)$ 0.784INTC (0.044)(0.021)(0.056)(0.028)(0.003)(0.039)-0.427-0.587-0.152-0.4040.672 0.709 -0.2290.119 0.838 0.216 **NVDA** (0.005)(0.002)(0.051)(0.013)(0.021)(0.015)(0.047)(0.037)(0.027)(0.017)-0.501-0.507-0.567-0.337-0.3050.896 0.694 0.1720.156 0.266AMD (0.036)(0.016)(0.015)(0.045)(0.023)(0.026)(0.026)(0.0025)(0.035)(0.044)-0.387-0.3210.635 0.854-0.4370.879 -0.0100.931 -0.3410.300 ASML (0.039)(0.057)(0.038)(0.019)(0.010)(0.029)(0.030)(0.020)(0.013)(0.024)-0.301-0.547-0.467-0.776-0.5900.695 0.130 0.1350.829 0.590 TXN(0.016)(0.038)(0.049)(0.056)(0.18)(0.013)(0.015)(0.026)(0.011)(0.033)-0.3210.637 -0.5470.129-0.4870.135 0.139 0.519 -0.3720.524QCOM (0.037)(0.045)(0.058)(0.005)(0.011)(0.028)(0.026)(0.034)(0.032)(0.003)-0.4840.632-0.345 $0.091 \\ (0.037)$ -0.5870.088 (0.019)0.119 (0.028) $0.870 \\ (0.008)$ -0.2760.486 (0.022)MU(0.030)(0.059)(0.043)(0.028)(0.002)-0.757-0.7730.853 (0.023)-0.6510.633 (0.018) -0.241-0.8410.557 (0.019)-0.2210.629 AVGO (0.032)(0.045)(0.020)(0.028)(0.038)(0.036)(0.026)-0.273-0.341-0.506-0.5770.654 $0.043 \\ (0.017)$ 0.1800.846 0.898 0.023NXPI (0.018)(0.043)(0.045)(0.022)(0.006)(0.004)(0.008)(0.028)(0.001)-0.398-0.593-0.504-0.467-0.597 $0.413 \\ (0.035)$ 0.6220.859 0.836 0.173LRCX (0.023)(0.004)(0.009)(0.006)(0.003)(0.031)(0.034)(0.021)(0.027)-0.560.672 -0.487-0.657-0.711-0.162 $0.153 \\ (0.001)$ 0.841 0.7830.627 AMAT (0.056)(0.003)(0.021)(0.036)(0,023)(0.034)(0.005)(0.007)(0.027)-0.160-0.677-0.876-0.5210.675 -0.2350.654 -0.4100.606 0.441 (0.030)ADI (0.059)(0.029)(0.016)(0.002)(0.033)(0.022)(0.017)(0.023)-0.4510.676 -0.5020.862 -0.5660.179-0.238 0.746-0.5210.275**KLAC** (0.051)(0.031)(0.057)(0.039)(0.032)(0.005)(0.001)(0.033)(0.044)(0.047)-0.218-0.356-0.637-0.565-0.697-0.5870.858 0.068 0.815 0.151XLNX (0.021)(0.011)(0.002)(0.005)(0.009)(0.007)(0.004)(0.002)(0.023)(0.057) $0.665 \\ (0.003)$ $0.798 \\ (0.031)$ $0.569 \\ (0.002)$ -0.134-0.084-0.384-0.346-0.134-0.439 $0.184 \\ (0.002)$ STM(0.034)(0.009)(0.038)(0.039)(0.013)(0.057)-0.308-0.2670.664-0.657-0.4880.864 (0.009) -0.396MCHP (0.034)(0.002)(0.023)(0.002)(0.003)(0.13)(0.039)(0.045)(0.004)-0.5780.128 -0.304 -0.823-0.264-0.5920.3940.6520.877 0.497CDNS (0.039)(0.057)(0.020)(0.030)(0.010)(0.003)(0.043)(0.056)(0.012)(0.009)-0.577-0.5070.706 --0.240-0.174-0.350 $0.658 \\ (0.011)$ $0.149 \\ (0.032)$ 0.145 $0.304 \\ (0.004)$ SWKS (0.001)(0.023)(0.002)(0.008)(0.050)(0.005)(0.040)-0.2160.639 -0.4670.150 -0.5070.166 0.083 0.921 -0.0150.926 MXIM (0.017)(0.047)(0.005)(0.002)(0.001)(0.043)(0.034)(0.056)(0.050)(0.019)-0.576-0.450-0.767-0.451-0.5450.675 0.129 0.129 0.977 0.550 TER (0.003)(0.056)(0.30)(0.029)(0.031)(0.004)(0.027)(0.040)(0.009)(0.001)-0.3460.631 -0.6050.109 -0.374-0.222-0.1860.115.963 0.340 MRVL (0.006)(0.002)(0.004)(0.58)(0.029)(0.049)(0.057)(0.021)(0.029)(0.030)-0.684-0.587-0.345-0.269-0.5760.669 0.088 0.593 0.970 0.664 ON (0.021)(0.023)(0.010)(0.034)(0.043)(0.045)(0.019)(0.023)(0.011)(0.033)-0.304-0.588-0.804-0.094-0.0890.629 0.879 0.183 0.819 0.180 OLED (0.019)(0.045)(0.032)(0.049)(0.030)(0.029)(0.015)(0.035)(0.040)(0.056)

# Appendix D1

Table 1: Estimated Correlation Coefficients for DIA and its Underlying Assets

|                                                              | $\epsilon_m^1$ | $\epsilon_p^1$ | $\epsilon_a^1$ | $\epsilon_b^1$ | $\epsilon_m^2$ | $\epsilon_p^2$ | $\epsilon_a^2$ | $\epsilon_b^2$ | $\epsilon_m^3$ | $\epsilon_p^3$ | $\epsilon_a^3$ | $\epsilon_b^3$ | $\epsilon_m^4$ | $\epsilon_p^4$ | $\epsilon_a^4$ | $\epsilon_b^4$ | $\epsilon_m^5$ | $\epsilon_p^5$ | $\epsilon_a^5$ | $\epsilon_b^5$ | $\epsilon_m^6$ | $\epsilon_p^6$ | $\epsilon_a^6$ | $\epsilon_b^6$ | $\epsilon_m^7$ | $\epsilon_p^7$ | $\epsilon_a^7$ | $\epsilon_b^7$ | $\epsilon_m^8$ | $\epsilon_p^8$ | $\epsilon_a^8$ | $\epsilon_b^8$ |
|--------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $\epsilon_m^1$                                               | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p^1$                                               | -0.49          | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a^1$                                               | -0.43          | 0.23           | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_{b}^{1}$                                           | -0.34          | 0.26           |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m^2$                                               | 0.87           |                |                |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p^2$                                               | -0.34          |                |                |                | -0.33          | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a^2$                                               |                |                |                |                | -0.45          | 0.22           | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_{b}^{2}$                                           |                |                |                |                | -0.41          | -0.39          | 0.24           | 1              | _              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m^{\circ}$                                         | 0.48           |                |                |                | 0.45           |                |                |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p^3$                                               | -0.47          |                |                |                | -0.15          |                |                |                | -0.23          | 1              | _              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a^3$                                               |                |                |                |                |                |                |                |                | -0.46          | 0.28           | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_{b}^{s}$                                           | 0.05           |                |                |                | 0.50           |                |                |                | -0.43          | 0.22           |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m^4$                                               | 0.65           |                |                |                | 0.56           |                |                |                | 0.40           |                |                |                | 1              | ,              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p$                                                 | -0.47          |                |                |                | -0.36          |                |                |                | -0.21          |                |                |                | -0.30          | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a$                                                 |                |                |                |                |                |                |                |                |                |                |                |                | -0.44          | 0.23           | 1              | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_b$                                                 | 0.26           |                |                |                | 0.53           |                |                |                | 0.31           |                |                |                | -0.48          | 0.25           |                | 1              | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m$                                                 | 0.36           |                |                |                | -0.26          |                |                |                | -0.42          |                |                |                | 0.42<br>-0.32  |                |                |                | 1<br>-0.43     | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| ε <sub>p</sub>                                               | -0.55          |                |                |                | -0.20          |                |                |                | -0.42          |                |                |                | -0.32          |                |                |                | -0.45          | 1<br>0.21      | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a$                                                 |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.36          | 0.21           | 1              | 1              |                |                |                |                |                |                |                |                |                |                |                |                |
| $c_{6}^{\epsilon}$                                           | 0.56           |                |                |                | 0.49           |                |                |                | 0.38           |                |                |                | 0.21           |                |                |                | 0.30           | 0.17           |                | 1              | 1              |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m$                                                 | -0.52          |                |                |                | -0.37          |                |                |                | -0.43          |                |                |                | -0.32          |                |                |                | -0.50          |                |                |                | -0.43          | 1              |                |                |                |                |                |                |                |                |                |                |
| 6<br>6                                                       | 0.32           |                |                |                | 0.57           |                |                |                | 0.43           |                |                |                | 0.52           |                |                |                | 0.50           |                |                |                | -0.45          | 0.32           | 1              |                |                |                |                |                |                |                |                |                |
| $\epsilon_6^6$                                               |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.50          | 0.32           |                | 1              |                |                |                |                |                |                |                |                |
| $\epsilon^7$                                                 | 0.23           |                |                |                | 0.46           |                |                |                | 0.54           |                |                |                | 0.45           |                |                |                | 0.38           |                |                |                | 0.42           | 0.21           |                | 1              | 1              |                |                |                |                |                |                |                |
| $\epsilon^7$                                                 | -0.43          |                |                |                | -0.32          |                |                |                | -0.43          |                |                |                | -0.36          |                |                |                | -0.51          |                |                |                | -0.29          |                |                |                | -0.37          | 1              |                |                |                |                |                |                |
| $\epsilon^7$                                                 | 0.10           |                |                |                | 0.02           |                |                |                | 0.10           |                |                |                | 0.00           |                |                |                | 0.01           |                |                |                | 0.20           |                |                |                | -0.49          | 0.19           | 1              |                |                |                |                |                |
| $\epsilon^7$                                                 |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.308         | 0.13           |                | 1              |                |                |                |                |
| $\epsilon^8$                                                 | 0.39           |                |                |                | 0.55           |                |                |                | 0.27           |                |                |                | 0.43           |                |                |                | 0.45           |                |                |                | 0.11           |                |                |                | 0.28           | 0.11           |                | 1              | 1              |                |                |                |
| $\epsilon_{m}^{8}$                                           | -0.32          |                |                |                | -0.22          |                |                |                | -0.35          |                |                |                | -0.43          |                |                |                | -0.39          |                |                |                | -0.43          |                |                |                | -0.54          |                |                |                | -0.46          | 1              |                |                |
| $\epsilon_{8}^{p}$                                           |                |                |                |                | <b></b>        |                |                |                | 2.00           |                |                |                |                |                |                |                | 00             |                |                |                | 2,10           |                |                |                | 01             |                |                |                | -0.41          | 0.23           | 1              |                |
| $\begin{smallmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $ |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.57          | 0.21           | -              | 1              |

Table 2: Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\epsilon_m^9$ | $\epsilon_p^9$ | $\epsilon_a^9$ | $\epsilon_{h}^{9}$ | $\epsilon_m^{10}$ | $\epsilon_p^{10}$ | $\epsilon_a^{10}$ | $\epsilon_h^{10}$ | $\epsilon_m^{11}$ | $\epsilon_p^{11}$ | $\epsilon_a^{11}$ | $\epsilon_{b}^{11}$ | $\epsilon_m^{12}$ | $\epsilon_p^{12}$ | $\epsilon_a^{12}$ | $\epsilon_b^{12}$ | $\epsilon_m^{13}$ | $\epsilon_p^{13}$ | $\epsilon_a^{13}$ | $\epsilon_h^{13}$ | $\epsilon_m^{14}$ | $\epsilon_p^{14}$ | $\epsilon_a^{14}$ | $\epsilon_h^{14}$ | $\epsilon_m^{15}$ | $\epsilon_p^{15}$ | $\epsilon_a^{15}$ | $\epsilon_h^{15}$ | $\epsilon_m^{16}$ | $\epsilon_p^{16}$ | $\epsilon_a^{16}$ | $\epsilon_b^{16}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| €9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1              | р              | u              | В                  | m                 | p                 | и                 | ь                 | m                 | p                 | и                 | В                   | m                 | р                 | и                 | В                 | m                 | P                 | · u               | В                 | m                 | р                 | · u               | В                 | m                 | р                 | и                 | В                 | m                 | - Р               | u                 | В                 |
| $\epsilon_{p}^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.25          | 1              |                |                    |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.46          | 0.321          | 1              |                    |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{i}^{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.47          | 0.11           | -              | 1                  |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{m}^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50           |                |                | _                  | 1                 |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_n^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.27          |                |                |                    | -0.43             | 1                 |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{a}^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                |                |                    | -0.32             | 0.11              | 1                 |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{L}^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                |                |                    | -0.46             | 0.28              |                   | 1                 |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.25           |                |                |                    | 0.34              |                   |                   |                   | 1                 |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.32          |                |                |                    | -0.21             |                   |                   |                   | -0.26             | 1                 |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                |                |                    |                   |                   |                   |                   | -0.48             | 0.18              | 1                 |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_h^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                |                |                    |                   |                   |                   |                   | -0.54             | 0.27              |                   | 1                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.45           |                |                |                    | 0.52              |                   |                   |                   | 0.38              |                   |                   |                     | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_p^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.32          |                |                |                    | -0.33             |                   |                   |                   | -0.21             |                   |                   |                     | -0.35             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                |                |                    |                   |                   |                   |                   |                   |                   |                   |                     | -0.435            | 0.215             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b_0}^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                    |                   |                   |                   |                   |                   |                   |                   |                     | -0.354            | 0.178             |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.57           |                |                |                    | 0.65              |                   |                   |                   | 0.55              |                   |                   |                     | 0.65              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{p}^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.35          |                |                |                    | -0.42             |                   |                   |                   | -0.21             |                   |                   |                     | -0.34             |                   |                   |                   | -0.35             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                |                |                    |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   | -0.476            | 0.321             | 1                 | _                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b_A}^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00           |                |                |                    | 0.45              |                   |                   |                   | 0.00              |                   |                   |                     | 0.41              |                   |                   |                   | -0.547            | 0.301             |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.36<br>-0.32  |                |                |                    | 0.47<br>-0.34     |                   |                   |                   | 0.29<br>-0.45     |                   |                   |                     | 0.41              |                   |                   |                   | 0.38<br>-0.43     |                   |                   |                   | -0.32             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\begin{array}{c c} \epsilon_p \\ c^{14} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.52          |                |                |                    | -0.34             |                   |                   |                   | -0.43             |                   |                   |                     | -0.33             |                   |                   |                   | -0.43             |                   |                   |                   |                   | 1<br>0.12         | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\frac{\epsilon_a}{c^{14}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |                |                    |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   | -0.43<br>-0.45    | 0.12              | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |
| 6 b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.43           |                |                |                    | 0.49              |                   |                   |                   | 0.30              |                   |                   |                     | 0.42              |                   |                   |                   | 0.46              |                   |                   |                   | 0.36              | 0.20              |                   | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.27          |                |                |                    | -0.45             |                   |                   |                   | -0.38             |                   |                   |                     | -0.27             |                   |                   |                   | -0,29             |                   |                   |                   | -0.12             |                   |                   |                   | -0.22             | 1                 |                   |                   |                   |                   |                   |                   |
| $\epsilon^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.21           |                |                |                    | 0.10              |                   |                   |                   | 0.00              |                   |                   |                     | 0.21              |                   |                   |                   | 0,20              |                   |                   |                   | 0.12              |                   |                   |                   | -0.453            | 0.101             | 1                 |                   |                   |                   |                   |                   |
| $\epsilon_{i}^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                |                |                    |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -4.76             | 0.332             | -                 | 1                 |                   |                   |                   |                   |
| $\left  \begin{array}{c} \epsilon_m^{16} \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.45           |                |                |                    | 0.31              |                   |                   |                   | 0.23              |                   |                   |                     | 0.49              |                   |                   |                   | 0.34              |                   |                   |                   | 0.45              |                   |                   |                   | 0.39              |                   |                   |                   | 1                 |                   |                   |                   |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.26          |                |                |                    | -0.31             |                   |                   |                   | -0.22             |                   |                   |                     | -0.43             |                   |                   |                   | -0.36             |                   |                   |                   | -0.19             |                   |                   |                   | -0.43             |                   |                   |                   | -0.27             | 1                 |                   |                   |
| $\epsilon_a^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                |                |                    |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.543            | 0.275             | 1                 |                   |
| $\begin{array}{c} \varepsilon^9_{m} \\ \varepsilon^9_{p} \\ \varepsilon^9_{p} \\ \varepsilon^9_{a} \\ \varepsilon^9_{b} \\ \varepsilon^{10}_{m} \\ \varepsilon^{10}_{p} \\ \varepsilon^{10}_{a} \\ \varepsilon^{10}_{b} \\ \varepsilon^{11}_{a} \\ \varepsilon^{11}_{b} \\ $ |                |                |                |                    |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.412            | 0.212             |                   | 1                 |

)

Table 3: Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\epsilon_m^{17}$ | $\epsilon_p^{17}$ | $\epsilon_a^{17}$ | $\epsilon_h^{17}$ | $\epsilon_m^{18}$ | $\epsilon_p^{18}$ | $\epsilon_a^{18}$ | $\epsilon_h^{18}$ | $\epsilon_m^{19}$ | $\epsilon_p^{19}$ | $\epsilon_a^{19}$ | $\epsilon_h^{19}$ | $\epsilon_m^{20}$ | $\epsilon_p^{20}$ | $\epsilon_a^{20}$ | $\epsilon_h^{20}$ | $\epsilon_m^{21}$ | $\epsilon_p^{21}$ | $\epsilon_a^{21}$ | $\epsilon_h^{21}$ | $\epsilon_m^{22}$ | $\epsilon_p^{22}$ | $\epsilon_a^{22}$ | $\epsilon_h^{22}$ | $\epsilon_m^{23}$ | $\epsilon_p^{23}$ | $\epsilon_a^{23}$ | $\epsilon_h^{23}$ | $\epsilon_m^{24}$ | $\epsilon_p^{24}$ | $\epsilon_a^{24}$ | $\epsilon_b^{24}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| $\epsilon_m^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                 | ,                 |                   |                   |                   | ,                 |                   |                   |                   | ,                 |                   |                   |                   | ,                 |                   |                   |                   | ,                 |                   |                   |                   | ,                 |                   |                   |                   | ,                 |                   |                   |                   |                   |                   |                   |
| $\epsilon_{p_{-}}^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.206            | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{a}^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.396            | 0.210             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b_0}^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.333            | 0.198             |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.703             |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_p^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.366            |                   |                   |                   | -0.482            | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                   |                   |                   | -0.343            | 0.246             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b}^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050             |                   |                   |                   | -0.289            | 0.186             |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.659             |                   |                   |                   | 0.743<br>-0.422   |                   |                   |                   | -0.229            | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.217            |                   |                   |                   | -0.422            |                   |                   |                   | -0.229            | 0.206             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| 6 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                   |                   |                   |                   |                   |                   |                   | -0.210            |                   | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.802             |                   |                   |                   | 0.653             |                   |                   |                   | 0.587             | 0.133             |                   | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_n^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.209            |                   |                   |                   | -0.212            |                   |                   |                   | -0.187            |                   |                   |                   | -0.149            | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{a}^{p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.345            | 0.249             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b}^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.401            | 0.222             |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.701             |                   |                   |                   | 0.811             |                   |                   |                   | 0.532             |                   |                   |                   | 0.598             |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_p^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.290            |                   |                   |                   | -0.318            |                   |                   |                   | -0.235            |                   |                   |                   | -0.189            |                   |                   |                   | -0.208            | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.254            | 0.107             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b_0}^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.432            | 0.226             |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.765             |                   |                   |                   | 0.465             |                   |                   |                   | 0.632             |                   |                   |                   | 0.611             |                   |                   |                   | 0.540             |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{p}^{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.220            |                   |                   |                   | -0.298            |                   |                   |                   | -0.309            |                   |                   |                   | -0.216            |                   |                   |                   | -0.327            |                   |                   |                   | -0.375            | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.342            | 0.188             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_b^{-23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.765             |                   |                   |                   | 0.496             |                   |                   |                   | 0.456             |                   |                   |                   | 0.666             |                   |                   |                   | 0.253             |                   |                   |                   | -0.410<br>0.453   | 0.201             |                   | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.236            |                   |                   |                   | -0.284            |                   |                   |                   | -0.243            |                   |                   |                   | -0.342            |                   |                   |                   | -0.207            |                   |                   |                   | -0.217            |                   |                   |                   | -0.198            | 1                 |                   |                   |                   |                   |                   |                   |
| $\epsilon^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.230            |                   |                   |                   | -0.204            |                   |                   |                   | -0.243            |                   |                   |                   | -0.342            |                   |                   |                   | -0.201            |                   |                   |                   | -0.217            |                   |                   |                   | -0.401            | 0.231             | 1                 |                   |                   |                   |                   |                   |
| $\epsilon_{i}^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.348            |                   | -                 | 1                 |                   |                   |                   |                   |
| $\epsilon_m^{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.543             |                   |                   |                   | 0.627             |                   |                   |                   | 0.499             |                   |                   |                   | 0.437             |                   |                   |                   | 0.654             |                   |                   |                   | 0.498             |                   |                   |                   | 0.675             | 0.100             |                   | -                 | 1                 |                   |                   |                   |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.178            |                   |                   |                   | -0.186            |                   |                   |                   | -0.342            |                   |                   |                   | -0.208            |                   |                   |                   | -0.243            |                   |                   |                   | -0.165            |                   |                   |                   | -0.284            |                   |                   |                   | -0.253            | 1                 |                   |                   |
| $\epsilon_a^{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.364            | 0.211             | 1                 |                   |
| $\begin{array}{c} \epsilon^{17}_{n17} \\ \epsilon^{18}_{n17} \\ \epsilon^{18}_{n17} \\ \epsilon^{18}_{n17} \\ \epsilon^{18}_{n18} \\ \epsilon^{18}_{n19} \\ \epsilon^{19}_{n19} \\ \epsilon^{19}_{n29} \\ \epsilon^{20}_{n20} \\$ |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.386            | 0.189             |                   | 1                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |

Table 4: Continued

| 25                                                                                     | $\epsilon_m^{25}$ | $\epsilon_p^{25}$ | $\epsilon_a^{25}$ | $\epsilon_b^{25}$ | $\epsilon_m^{26}$ | $\epsilon_p^{26}$ | $\epsilon_a^{26}$ | $\epsilon_b^{26}$ | $\epsilon_m^{27}$ | $\epsilon_p^{27}$ | $\epsilon_a^{27}$ | $\epsilon_b^{27}$ | $\epsilon_m^{28}$ | $\epsilon_p^{28}$ | $\epsilon_a^{28}$ | $\epsilon_b^{28}$ | $\epsilon_m^{29}$ | $\epsilon_p^{29}$ | $\epsilon_a^{29}$ | $\epsilon_b^{29}$ | $\epsilon_m^{30}$ | $\epsilon_p^{30}$ | $\epsilon_a^{30}$ | $\epsilon_b^{30}$ | $\epsilon_v$ | $\epsilon_p^f$ | $\epsilon_a^f$ | $\epsilon_b^f$ |
|----------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|----------------|----------------|----------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                   | 1<br>-0.38        | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_a^{25}$                                                                      | -0.49             | 0.27              | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_{b}^{25}$                                                                    | -0.33             | 0.38              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_m^{26}$                                                                      | 0.23              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_n^{26}$                                                                      | -0.36             |                   |                   |                   | -0.18             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon^{26}$                                                                        |                   |                   |                   |                   | -0.44             | 0.14              | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_{1}^{26}$                                                                    |                   |                   |                   |                   | -0.39             | 0.28              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_{m}^{27}$                                                                    | 0.39              |                   |                   |                   | 0.43              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_n^{n}$                                                                       | -0.24             |                   |                   |                   | -0.32             |                   |                   |                   | -0.39             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_{a}^{27}$                                                                    |                   |                   |                   |                   |                   |                   |                   |                   | -0.26             | 0.23              | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_{1}^{27}$                                                                    |                   |                   |                   |                   |                   |                   |                   |                   | -0.35             | 0.25              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_{28}^{28}$                                                                   | 0.54              |                   |                   |                   | 0.44              |                   |                   |                   | 0.42              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_{n}^{28}$                                                                    | -0.23             |                   |                   |                   | -0.25             |                   |                   |                   | -0.32             |                   |                   |                   | -0.23             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon_{28}^{p}$                                                                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.42             | 0.24              | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon^{28}$                                                                        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.29             | 0.21              | -                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon^{29}$                                                                        | 0.45              |                   |                   |                   | 0.43              |                   |                   |                   | 0.54              |                   |                   |                   | 0.50              | <b>0.2</b> 1      |                   | -                 | 1                 |                   |                   |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon^{29}$                                                                        | -0.25             |                   |                   |                   | -0.34             |                   |                   |                   | -0.35             |                   |                   |                   | -0.18             |                   |                   |                   | -0.30             | 1                 |                   |                   |                   |                   |                   |                   |              |                |                |                |
| 629                                                                                    | 0.20              |                   |                   |                   | 0.01              |                   |                   |                   | 0.00              |                   |                   |                   | 0.10              |                   |                   |                   | -0.43             | 0.23              | 1                 |                   |                   |                   |                   |                   |              |                |                |                |
| $\epsilon^{29}$                                                                        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.34             | 0.12              | 1                 | 1                 |                   |                   |                   |                   |              |                |                |                |
| $\frac{b}{\epsilon^{30}}$                                                              | 0.39              |                   |                   |                   | 0.46              |                   |                   |                   | 0.56              |                   |                   |                   | 0.34              |                   |                   |                   | 0.53              | 0.12              |                   | 1                 | 1                 |                   |                   |                   |              |                |                |                |
| 630                                                                                    | -0.24             |                   |                   |                   | -0.30             |                   |                   |                   | -0.28             |                   |                   |                   | -0.27             |                   |                   |                   | -0.24             |                   |                   |                   | -0.22             | 1                 |                   |                   |              |                |                |                |
| 630                                                                                    | 0.24              |                   |                   |                   | 0.50              |                   |                   |                   | 0.20              |                   |                   |                   | 0.27              |                   |                   |                   | 0.24              |                   |                   |                   | -0.45             | 0.28              | 1                 |                   |              |                |                |                |
| $\begin{vmatrix} c_a \\ c^{30} \end{vmatrix}$                                          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.30             | 0.16              | 1                 | 1                 |              |                |                |                |
| c                                                                                      | 0.36              |                   |                   |                   | 0.48              |                   |                   |                   | 0.23              |                   |                   |                   | 0.47              |                   |                   |                   | 0.25              |                   |                   |                   | 0.39              | 0.10              |                   | 1                 | 1            |                |                |                |
| $\int_{0}^{\infty} f$                                                                  | 0.30              |                   |                   |                   | 0.40              |                   |                   |                   | 0.23              |                   |                   |                   | 0.47              |                   |                   |                   | 0.23              |                   |                   |                   | 0.33              |                   |                   |                   |              |                |                |                |
| $\epsilon_p$                                                                           |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.45        | 1              |                |                |
| $egin{array}{c} \epsilon_v \ \epsilon_p^f \ \epsilon_a^f \ \epsilon_h^f \ \end{array}$ |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.32        | 0.32           | 1              |                |
| $\mid \epsilon_b^J \mid$                                                               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.38        | 0.21           |                | 1              |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\epsilon_m^1$ | $\epsilon_m^2$ | $\epsilon_m^3$ | $\epsilon_m^4$ | $\epsilon_m^5$ | $\epsilon_m^6$ | $\epsilon_m^7$ | $\epsilon_m^8$ | $\epsilon_m^9$ | $\epsilon_m^{10}$ | $\epsilon_m^{11}$ | $\epsilon_m^{12}$ | $\epsilon_m^{13}$ | $\epsilon_m^{14}$ | $\epsilon_m^{15}$ | $\epsilon_m^{16}$ | $\epsilon_m^{17}$ | $\epsilon_m^{18}$ | $\epsilon_m^{19}$ | $\epsilon_m^{20}$ | $\epsilon_m^{21}$ | $\epsilon_m^{22}$ | $\epsilon_m^{23}$ | $\epsilon_m^{24}$ | $\epsilon_m^{25}$ | $\epsilon_m^{26}$ | $\epsilon_m^{27}$ | $\epsilon_m^{28}$ | $\epsilon_m^{29}$ | $\epsilon_m^{30}$ | $\epsilon_v$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|
| $\epsilon_m^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.46           | 0.34           | 0.46           | 0.26           | 0.54           | 0.28           | 0.38           | 0.30           | 0.34           | 0.42              | 0.37              | 0.19              | 0.58              | 0.24              | 0.19              | 0.29              | 0.49              | 0.46              | 0.37              | 0.46              | 0.40              | 0.35              | 0.29              | 0.36              | 0.42              | 0.37              | 0.33              | 0.56              | 0.45              | 0.40              | 0.87         |
| $\epsilon_n^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.20          | -0.45          | -0.29          | -0.26          | -0.18          | -0.12          | -0.11          | -0.23          | -0.23          | -0.29             | -0.34             | 0.35              | -0.22             | 0.25              | -0.23             | -0.46             | -0.19             | -0.37             | -0.37             | -0.30             | -0.23             | -0.22             | -0.19             | -0.32             | -0.25             | -0.32             | -0.22             | -0.38             | -0.32             | -0.23             | -0.34        |
| $\epsilon_m^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.36           | 0.43           | 0.22           | 0.35           | 0.44           | 0.37           | 0.21           | 0.33           | 0.46           | 0.39              | 0.29              | 0.31              | 0.60              | 0.25              | 0.28              | 0.34              | 0.53              | 0.33              | 0.27              | 0.39              | 0.42              | 0.42              | 0.47              | 0.26              | 0.42              | 0.44              | 0.18              | 0.12              | 0.55              | 0.11              | 0.15         |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.31          | -0.48          | -0.22          | -0.33          | -0.28          | -0.32          | -0.43          | -0.21          | -0.24          | -0.27             | -0.12             | -0.38             | -0.19             | -0.39             | -0.27             | -0.36             | -0.23             | -0.41             | -0.11             | -0.31             | -0.34             | -0.49             | -0.35             | -0.29             | -0.21             | -0.19             | -0.14             | -0.22             | -0.23             | -0.27             | -0.30        |
| $\epsilon_m^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.51           | 0.24           | 0.39           | 0.19           | 0.54           | 0.22           | 0.15           | 0.29           | 0.62           | 0.36              | 0.33              | 0.15              | 0.54              | 0.23              | 0.31              | 0.22              | 0.36              | 0.37              | 0.12              | 0.32              | 0.25              | 0.11              | 0.28              | 0.34              | 0.52              | 0.43              | 0.26              | 0.24              | 0.42              | 0.29              | 0.38         |
| $\epsilon_n^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.35          | -0.11          | -0.38          | -0.24          | -0.31          | -0.29          | -0.19          | -0.27          | -0.25          | -0.22             | -0.12             | -0.18             | -0.21             | -0.39             | -0.27             | 0-0.15            | -0.35             | -0.36             | -0.28             | -0.19             | -0.26             | -0.28             | -0.39             | -0.37             | -0.28             | -0.23             | -0.17             | -0.22             | -0.26             | -0.13             | -0.33        |
| $\epsilon_m^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.46           | 0.18           | 0.32           | 0.23           | 0.40           | 0.11           | 0.45           | 0.37           | 0.42           | 0.28              | 0.41              | 0.37              | 0.18              | 0.38              | 0.20              | 0.15              | 0.36              | 0.43              | 0.49              | 0.35              | 0.65              | 0.29              | 0.21              | 0.24              | 0.43              | 0.28              | 0.39              | 0.33              | 0.46              | 0.13              | 0.22         |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.25          | -0.43          | -042           | -0.38          | -0.21          | -0.49          | -0.15          | -0.38          | -0.27          | -0.27             | -0.12             | -0.38             | -0.26             | -0.35             | -0.47             | -0.33             | -0.27             | -0.23             | -0.32             | -0.44             | -0.36             | -0.18             | -0.28             | -0.37             | -0.27             | -0.11             | -0.47             | -0.42             | -0.29             | -0.49             | -0.32        |
| $\epsilon_m^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.55           | 0.42           | 0.44           | 0.25           | 0.49           | 0.33           | 0.21           | 0.18           | 0.36           | 0.27              | 0.29              | 0.42              | 0.33              | 0.23              | 0.35              | 0.25              | 0.43              | 0.19              | 0.39              | 0.26              | 0.50              | 0.11              | 0.43              | 0.48              | 0.43              | 0.24              | 0.14              | 0.16              | 0.42              | 0.17              | 0.38         |
| $\epsilon_n^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.25          | -0.22          | -0.38          | -0.17          | -0.21          | -0.39          | -0.42          | -0.28          | -0.24          | -0.32             | -0.42             | -0.18             | -0.29             | -0.46             | -0.47             | -0.26             | -0.24             | -0.21             | -0.32             | -0.38             | -0.27             | 0.31              | -0.11             | -0.29             | -0.26             | -0.47             | -0.13             | -0.38             | -0.25             | -0.33             | -0.23        |
| $\epsilon_m^{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.66           | 0.34           | 0.52           | 0.28           | 0.43           | 0.45           | 0.53           | 0.41           | 0.54           | 0.33              | 0.52              | 0.43              | 0.42              | 0.36              | 0.58              | 0.60              | 0.35              | 0.43              | 0.42              | 0.45              | 0.49              | 0.49              | 0.36              | 0.46              | 0.38              | 0.47              | 0.52              | 0.34              | 0.28              | 0.38              | 0.35         |
| $\epsilon_n^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.11          | -0.23          | -0.32          | -0.29          | -0.37          | -0.25          | -0.23          | -0.35          | -0.22          | -0.23             | -0.08             | -0.24             | -0.21             | -0.09             | -0.12             | -0.23             | -0.39             | -0.29             | -0.23             | -0.27             | -0.19             | -0.23             | -0.34             | -0.30             | -0.16             | -0.26             | -0.21             | -0.26             | -0.25             | -0.27             | -0.21        |
| $\epsilon_m^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.54           | 0.36           | 0.33           | 0.19           | 0.47           | 0.28           | 0.27           | 0.46           | 0.42           | 0.36              | 0.29              | 0.39              | 0.52              | 0.24              | 0.23              | 0.27              | 0.31              | 0.21              | 0.30              | 0.20              | 0.40              | 0.33              | 0.35              | 0.41              | 0.52              | 0.45              | 0.28              | 0.32              | 0.45              | 0.25              | 0.22         |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.25          | -0.46          | -0.36          | -0.21          | -0.38          | -0.35          | -0.41          | -0.46          | -0.24          | -0.34             | -0.39             | -0.29             | -0.31             | -0.36             | -0.28             | -0.22             | -0.28             | -0.20             | -0.23             | -0.33             | -0.24             | -0.27             | -0.25             | -0.37             | -0.46             | -0.23             | -0.21             | -0.35             | -0.34             | -0.28             | -0.19        |
| $\epsilon_{\rm m}^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.42           | 0.44           | 0.27           | 0.24           | 0.33           | 0.35           | 0.41           | 0.26           | 0.43           | 0.36              | 0.29              | 0.22              | 0.47              | 0.31              | 0.47              | 0.27              | 0.46              | 0.37              | 0.32              | 0.24              | 0.35              | 0.21              | 0.39              | 0.32              | 0.45              | 0.38              | 0.28              | 0.25              | 0.35              | 0.33              | 0.29         |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.35          | -0.12          | -0.18          | -0.43          | -0.31          | -0.47          | -0.19          | -0.13          | -0.32          | -0.35             | -0.46             | -0.41             | -0.21             | -0.45             | -0.28             | -0.25             | -0.23             | -0.27             | -0.29             | -0.22             | -0.24             | -0.34             | -0.39             | -0.38             | -0.26             | -0.33             | -0.36             | -0.22             | -0.21             | -0.28             | -0.21        |
| $\epsilon_m^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.45           | 0.26           | 0.36           | 0.35           | 0.37           | 0.25           | 0.45           | 0.34           | 0.48           | 0.33              | 0.39              | 0.31              | 42                | 0.24              | 0.47              | 0.43              | 0.46              | 0.21              | 0.39              | 0.28              | 0.45              | 0.26              | 0.29              | 0.27              | 0.23              | 0.33              | 0.32              | 0.37              | 0.36              | 0.22              | 0.37         |
| $\epsilon_n^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.15          | -0.41          | -0.22          | -0.44          | -0.38          | -0.49          | -0.45          | -0.28          | -0.24          | -0.32             | -0.17             | -0.25             | -0.35             | -0.38             | -0.36             | -0.26             | -0.13             | -0.22             | -0.31             | -0.27             | -0.23             | -0.29             | -0.21             | -0.34             | -0.25             | -0.31             | -0.21             | -0.33             | -0.24             | -0.26             | -0.23        |
| $\epsilon_m^{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.45           | 0.47           | 0.18           | 0.29           | 0.43           | 0.39           | 0.33           | 0.22           | 0.46           | 0.26              | 0.36              | 0.34              | 0.32              | 0.23              | 0.42              | 0.47              | 0.46              | 0.35              | 0.34              | 0.31              | 0.40              | 0.29              | 0.27              | 0.41              | 0.38              | 0.34              | 0.33              | 0.21              | 0.28              | 0.23              | 0.35         |
| $\epsilon_n^{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.25          | -0.45          | -0.35          | -0.48          | -0.21          | -0.17          | -0.39          | -0.47          | -0.26          | -0.22             | -0.17             | -0.37             | -0.23             | -0.25             | -0.44             | -0.42             | -0.14             | -0.28             | -0.31             | -0.37             | -0.22             | -0.33             | -0.28             | -0.26             | -0.16             | -0.24             | -0.42             | -0.34             | -0.19             | -0.24             | -0.29        |
| $\epsilon_m^{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.35           | 0.48           | 0.12           | 0.25           | 0.43           | 0.37           | 0.16           | 0.21           | 0.32           | 0.41              | 0.11              | 0.17              | 0.36              | 0.47              | 0.22              | 0.17              | 0.46              | 0.23              | 0.34              | 0.28              | 0.45              | 0.21              | 0.47              | 0.44              | 0.52              | 0.28              | 0.22              | 0.27              | 0.35              | 0.33              | 0.39         |
| $\epsilon_n^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.32          | -0.48          | -0.42          | -0.46          | -0.24          | -0.23          | -0.19          | -0.33          | -0.27          | -0.15             | -0.17             | -0.26             | -0.28             | -0.39             | -0.21             | -0.48             | -0.23             | -0.47             | -0.22             | -0.33             | -0.27             | -0.35             | -0.28             | -0.24             | -0.26             | -0.35             | -0.21             | -0.38             | -0.22             | -0.19             | -0.26        |
| $\begin{array}{c} \varepsilon^{9}_{p} \\ \varepsilon^{10}_{m} \\ \varepsilon^{10}_{m} \\ \varepsilon^{10}_{p} \\ \varepsilon^{11}_{m} \\ \varepsilon^{12}_{p} \\ \varepsilon^{12}_{m} \\ \varepsilon^{12}_{p} \\ \varepsilon^{13}_{m} \\ \varepsilon^{14}_{p} \\ \varepsilon^{15}_{p} \\ \varepsilon^{16}_{m} \\ \varepsilon^{17}_{p} \\$ | 0.42           | 0.12           | 0.47           | 0.16           | 0.45           | 0.13           | 0.43           | 0.24           | 0.41           | 0.23              | 0.15              | 0.49              | 0.42              | 0.26              | 0.41              | 0.41              | 0.25              | 0.21              | 0.36              | 0.29              | 0.37              | 0.46              | 0.22              | 0.15              | 0.43              | 0.38              | 0.23              | 0.17              | 0.13              | 0.45              | 0.43         |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.26          | 0.16           | -0.28          | -0.13          | -0.24          | -0.45          | -0.41          | -0.11          | -0.29          | -0.21             | -0.32             | -0.25             | -0.27             | -0.44             | -0.49             | -0.19             | -0.22             | -0.24             | -0.17             | -0.13             | -0.26             | -0.27             | -0.33             | -0.37             | -0.23             | -0.28             | -0.41             | -0.43             | -0.28             | -0.28             | -0.15        |
| $\epsilon_m^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.55           | 0.12           | 0.33           | 0.22           | 0.34           | 0.25           | 0.39           | 0.43           | 0.52           | 0.49              | 0.15              | 0.26              | 0.44              | 0.34              | 0.12              | 0.14              | 0.36              | 0.46              | 0.34              | 0.25              | 0.42              | 0.27              | 0.43              | 0.31              | 0.43              | 0.38              | 0.21              | 0.33              | 0.47              | 0.45              | 0.33         |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.35          | -0.46          | -0.33          | -0.44          | -0.11          | -0.43          | -0.17          | -0.26          | -0.13          | -0.48             | -0.21             | -0.28             | -0.13             | -0.22             | -0.45             | -0.17             | -0.15             | -0.24             | -0.31             | -0.37             | -0.23             | -0.47             | -0.43             | -0.35             | -0.12             | -0.26             | -0.14             | -0.32             | -0.19             | -0.26             | -0.21        |
| $\epsilon_m^{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.41           | 0.46           | 0.18           | 0.36           | 0.42           | 0.22           | 0.44           | 0.21           | 0.40           | 0.25              | 0.37              | 0.34              | 56                | 0.41              | 0.21              | 0.49              | 0.46              | 0.42              | 0.13              | 0.36              | 0.51              | 0.29              | 0.17              | 0.35              | 0.42              | 0.26              | 0.17              | 0.35              | 0.40              | 0.47              | 0.39         |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.26          | -0.47          | -0.19          | -0.14          | -0.28          | -0.46          | -0.44          | -0.48          | -0.29          | -0.23             | -0.29             | -0.15             | -0.25             | -0.11             | -0.48             | -0.27             | -0.23             | -0.28             | -0.17             | -0.31             | -0.32             | -0.22             | -0.46             | -0.23             | -0.28             | -0.13             | -0.34             | -0.28             | -0.20             | -0.17             | -0.19        |
| $\epsilon_m^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.36           | 0.33           | 0.21           | 0.37           | 0.63           | 0.26           | 0.15           | 0.43           | 0.46           | 0.49              | 0.35              | 0.33              | 0.48              | 0.31              | 0.41              | 0.11              | 0.43              | 0.22              | 0.44              | 0.47              | 0.42              | 0.28              | 0.37              | 0.21              | 0.38              | 0.15              | 0.26              | 0.33              | 0.42              | 0.45              | 0.29         |
| $\epsilon_n^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.22          | -0.43          | 13             | -0.37          | -0.21          | -0.26          | -0.39          | -0.29          | -0.20          | -0.34             | -0.22             | -0.11             | -0.19             | -0.46             | -0.42             | -0.38             | -0.14             | -0.37             | -0.26             | -0.35             | -0.31             | -0.16             | -0.27             | -0.48             | -0.24             | -0.13             | -0.44             | -0.43             | -0.15             | -0.32             | -0.21        |
| $\epsilon_m^{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.44           | 0.48           | 0.47           | 0.15           | 0.37           | 0.33           | 0.36           | 0.18           | 0.38           | 0.16              | 0.31              | 0.42              | 0.22              | 0.49              | 0.34              | 0.24              | 0.63              | 0.22              | 0.41              | 0.29              | 0.32              | 0.21              | 0.49              | 0.47              | 0.28              | 0.27              | 0.35              | 0.11              | 0.31              | 0.24              | 0.41         |
| $\epsilon_n^{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.19          | -0.31          | -0.39          | -0.14          | -0.29          | -0.23          | -0.11          | -0.46          | -0.27          | -0.17             | -0.22             | -0.45             | -0.39             | -0.21             | -0.14             | -0.33             | -0.24             | -0.26             | -0.31             | -0.44             | -0.35             | -0.41             | -0.47             | -0.13             | -0.24             | -0.32             | -0.45             | -0.19             | -0.33             | -0.21             | -0.22        |
| $\epsilon_m^{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.44           | 0.17           | 0.41           | 0.38           | 0.37           | 0.25           | 0.19           | 0.21           | 0.38           | 0.33              | 0.24              | 0.49              | 0.22              | 0.32              | 0.18              | 0.27              | 0.63              | 0.32              | 0.21              | 0.41              | 0.32              | 0.45              | 0.35              | 0.38              | 0.28              | 0.29              | 0.22              | 0.31              | 0.31              | 0.28              | 0.47         |
| $\epsilon_n^{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.19          | -0.22          | -0.43          | -0.23          | -0.29          | -0.21          | -0.41          | -0.17          | -0.27          | -0.31             | -0.45             | -0.35             | -0.39             | -0.32             | -0.34             | -0.29             | -0.24             | -0.19             | -0.31             | -0.33             | -0.35             | -0.11             | -0.47             | -0.22             | -0.24             | 0.17              | 0.22              | 0.17              | -0.33             | -0.21             | -0.32        |
| $\epsilon_m^{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.44           | 0.26           | 0.27           | 0.29           | 0.37           | 0.39           | 0.23           | 0.22           | 0.38           | 0.16              | 0.18              | 0.38              | 0.22              | 0.35              | 0.36              | 0.47              | 0.63              | 0.43              | 0.27              | 0.22              | 0.32              | 0.47              | 0.16              | 0.11              | 0.28              | 0.42              | 0.34              | 0.28              | 0.31              | 0.31              | 0.44         |
| $\epsilon_n^{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1              | -0.18          |                |                | -0.29          |                | -0.26          |                |                | -0.31             |                   |                   |                   |                   | -0.35             | -0.46             |                   | -0.12             |                   |                   | -0.35             |                   |                   | -0.44             |                   |                   |                   | -0.17             |                   | -0.32             | I            |
| $\epsilon_m^{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.44           | 0.29           | 0.39           | 0.35           | 0.37           | 0.47           | 0.44           | 0.47           | 0.38           | 0.24              | 0.13              | 0.41              |                   | 0.39              | 0.43              | 0.38              | 0.63              | 0.37              | 0.32              | 0.18              | 0.32              |                   | 0.38              | 0.19              | 0.28              | 0.14              | 0.31              | 0.41              | 0.31              | 0.32              | 0.29         |
| $\epsilon_{p}^{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.19          | -0.21          | -0.14          |                | -0.29          |                | -0.23          |                | -0.27          | -0.39             |                   | -0.44             |                   | -0.15             | -0.27             | -0.11             |                   | -0.29             | -0.37             |                   | -0.35             | -0.21             |                   | -0.36             | -0.24             | -0.26             | -0.17             |                   | -0.33             | -0.31             |              |
| $\epsilon_m^{58}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.44           | 0.16           | 0.11           | 0.39           | 0.37           | 0.32           | 0.47           | 0.46           | 0.38           | 0.28              | 0.33              | 0.26              | 0.22              | 0.26              | 0.49              | 0.29              | 0.63              | 0.34              | 0.14              | 0.45              | 0.32              | 0.21              | 0.37              | 0.35              | 0.28              | 0.46              | 0.31              | 0.42              | 0.31              | 0.22              | 0.33         |
| $\epsilon_n^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1              | -0.27          |                | -0.31          |                | -0.23          | -0.48          |                | -0.27          | -0.28             |                   | -0.33             |                   | -0.21             | -0.13             | -0.27             |                   | -0.29             | -0.11             |                   | -0.35             | -0.23             | -0.33             |                   | -0.24             | -0.42             | -0.26             |                   | -0.33             | -0.41             | I .          |
| $\begin{array}{c} \varepsilon_{p}^{26} \\ \varepsilon_{p}^{27} \\ \varepsilon_{m}^{27} \\ \varepsilon_{p}^{28} \\ \varepsilon_{m}^{28} \\ \varepsilon_{p}^{29} \\ \varepsilon_{m}^{29} \\ \varepsilon_{m}^{30} \\ \varepsilon_{p}^{30} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.44           | 0.47           | 0.49           | 0.22           | 0.37           | 0.18           | 0.14           | 0.33           | 0.38           | 0.34              | 0.29              | 0.42              | 0.22              | 0.29              | 0.38              | 0.15              | 0.63              | 0.35              | 0.27              | 0.39              | 0.32              | 0.45              | 0.35              | 0.42              | 0.28              | 0.41              | 0.31              | 0.21              | 0.31              | 0.46              | 0.47         |
| $\epsilon_n^{29}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.19          | -0.28          |                | -0.36          |                | -0.32          | -0.42          |                | -0.27          | -0.31             |                   | -0.45             |                   | -0.15             | -0.37             | -0.44             |                   |                   | -0.24             |                   | -0.35             |                   | -0.31             | -0.46             |                   | -0.28             | -0.23             |                   | -0.33             | -0.37             |              |
| $\epsilon_m^{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.44           | 0.35           |                | 0.48           | 0.37           | 0.39           | 0.19           | 0.33           | 0.38           | 0.16              | 0.46              | 0.26              | 0.22              | 0.37              | 0.48              | 0.41              | 0.63              | 0.11              | 0.25              | 0.45              | 0.32              | 0.23              | 0.12              | 0.29              | 0.28              | 0.17              | 0.38              | 0.47              | 0.31              | 0.35              |              |
| $\epsilon_n^{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.19          | -0.17          |                | -0.35          |                | -0.18          | -0.46          |                | -0.27          | -0.23             |                   | -0.27             |                   | -0.38             | -0.42             | -0.36             |                   | -0.22             | -0.49             |                   | -0.35             |                   | -0.47             | -0.16             | -0.24             | -0.27             |                   | -0.37             | -0.33             | -0.19             |              |
| $\epsilon_v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.44           | 0.39           | 0.35           | 0.14           | 0.37           | 0.45           | 0.23           | 0.18           | 0.38           | 0.28              | 0.43              | 0.39              |                   | 0.49              | 0.12              | 0.32              | 0.63              | 0.27              | 0.18              | 0.48              | 0.32              | 0.47              | 0.11              | 0.31              | 0.28              | 0.22              | 0.23              | 0.13              | 0.31              | 0.47              |              |
| $\epsilon_{p^f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.19          |                |                |                |                |                |                |                |                |                   |                   |                   |                   |                   |                   | -0.49             |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.37             |                   | -0.23             |              |
| <i>P</i> °_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1              |                |                |                |                |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |

# Appendix D2

Table 1: Estimated Correlation Coefficients for SMH ETF and its underlying assets

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\epsilon_m^1$ | $\epsilon_p^1$ | $\epsilon_a^1$ | $\epsilon_b^1$ | $\epsilon_m^2$ | $\epsilon_p^2$ | $\epsilon_a^2$ | $\epsilon_b^2$ | $\epsilon_m^3$ | $\epsilon_p^3$ | $\epsilon_a^3$ | $\epsilon_b^3$ | $\epsilon_m^4$ | $\epsilon_p^4$ | $\epsilon_a^4$ | $\epsilon_b^4$ | $\epsilon_m^5$ | $\epsilon_p^5$ | $\epsilon_a^5$ | $\epsilon_b^5$ | $\epsilon_m^6$ | $\epsilon_p^6$ | $\epsilon_a^6$ | $\epsilon_b^6$ | $\epsilon_m^7$ | $\epsilon_p^7$ | $\epsilon_a^7$ | $\epsilon_b^7$ | $\epsilon_m^8$ | $\epsilon_p^8$ | $\epsilon_a^8$ | $\epsilon_b^8$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| $\epsilon_m^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | ,              |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.32          | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.37          | 0.21           | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_h^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.34          | 0.34           |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.33           |                |                |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.45          |                |                |                | -0.33          | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                | -0.13          | 0.42           | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_h^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                | -0.37          | -0.29          | 0.24           | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48           |                |                |                | 0.27           |                |                |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.29          |                |                |                | -0.39          |                |                |                | -0.37          | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                |                |                |                |                | -0.25          | 0.39           | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_h^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                |                |                |                |                | -0.34          | 0.32           |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.39           |                |                |                | 0.27           |                |                |                | 0.43           |                |                |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.16          |                |                |                | -0.38          |                |                |                | -0.21          |                |                |                | -0.34          | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                |                |                |                |                |                |                |                |                | -0.44          | 0.23           | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_h^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                |                |                |                |                |                |                |                |                | -0.48          | 0.25           |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.29           |                |                |                | 0.53           |                |                |                | 0.31           |                |                |                | 0.42           |                |                |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.27          |                |                |                | -0.26          |                |                |                | -0.42          |                |                |                | -0.32          |                |                |                | -0.43          | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.38          | 0.21           | 1              |                |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_h^5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.42          | 0.17           |                | 1              |                |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_m^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.45           |                |                |                | 0.49           |                |                |                | 0.38           |                |                |                | 0.21           |                |                |                | 0.30           |                |                |                | 1              |                |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_p^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.27          |                |                |                | -0.37          |                |                |                | -0.43          |                |                |                | -0.32          |                |                |                | -0.50          |                |                |                | -0.43          | 1              |                |                |                |                |                |                |                |                |                |                |
| $\epsilon_a^6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.45          | 0.32           | 1              |                |                |                |                |                |                |                |                |                |
| $\epsilon_{h}^{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.50          | 0.27           |                | 1              |                |                |                |                |                |                |                |                |
| $ \epsilon_m^7 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.49           |                |                |                | 0.46           |                |                |                | 0.44           |                |                |                | 0.45           |                |                |                | 0.38           |                |                |                | 0.42           |                |                |                | 1              |                |                |                |                |                |                |                |
| $\epsilon_n^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.21          |                |                |                | -0.32          |                |                |                | -0.43          |                |                |                | -0.36          |                |                |                | -0.51          |                |                |                | -0.29          |                |                |                | -0.37          | 1              |                |                |                |                |                |                |
| $\epsilon_a^7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.49          | 0.19           | 1              |                |                |                |                |                |
| $ \epsilon_h^7 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.38          | 0.12           |                | 1              |                |                |                |                |
| $\mid \epsilon_m^8 \mid$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.33           |                |                |                | 0.55           |                |                |                | 0.27           |                |                |                | 0.43           |                |                |                | 0.45           |                |                |                | 0.11           |                |                |                | 0.28           |                |                |                | 1              |                |                |                |
| $ \epsilon_p^8 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.26          |                |                |                | -0.42          |                |                |                | -0.45          |                |                |                | -0.13          |                |                |                | -0.44          |                |                |                | -0.23          |                |                |                | -0.24          |                |                |                | -0.36          | 1              |                |                |
| $ \epsilon_a^8 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.41          | 0.23           | 1              |                |
| $\begin{array}{c} \epsilon^1_m \epsilon^1_p \epsilon^1_a \epsilon^1_b \epsilon^2_a \epsilon^2_b \epsilon^3_a \epsilon^3_b \epsilon^4_a \epsilon^4_b \epsilon^4_a \epsilon^4_b \epsilon^5_a \epsilon^5_b \epsilon^6_a \epsilon^6_b \epsilon^6_a \epsilon^6_b \epsilon^7_a \epsilon^7_a \epsilon^8_b \epsilon^8_a \epsilon^8_a$ |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                | -0.57          | 0.21           |                | 1              |

Table 2: Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\epsilon_m^9$ | $\epsilon_p^9$ | $\epsilon_a^9$ | $\epsilon_b^9$ | $\epsilon_m^{10}$ | $\epsilon_p^{10}$ | $\epsilon_a^{10}$ | $\epsilon_b^{10}$ | $\epsilon_m^{11}$ | $\epsilon_p^{11}$ | $\epsilon_a^{11}$ | $\epsilon_b^{11}$ | $\epsilon_m^{12}$ | $\epsilon_p^{12}$ | $\epsilon_a^{12}$ | $\epsilon_b^{12}$ | $\epsilon_m^{13}$ | $\epsilon_p^{13}$ | $\epsilon_a^{13}$ | $\epsilon_b^{13}$ | $\epsilon_m^{14}$ | $\epsilon_p^{14}$ | $\epsilon_a^{14}$ | $\epsilon_b^{14}$ | $\epsilon_m^{15}$ | $\epsilon_p^{15}$ | $\epsilon_a^{15}$ | $\epsilon_b^{15}$ | $\epsilon_m^{16}$ | $\epsilon_p^{16}$ | $\epsilon_a^{16}$ | $\epsilon_b^{16}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| $\begin{array}{c} \varepsilon^9_{m9} \\ \varepsilon^9_{p9} \\ \varepsilon^9_{a9} \\ \varepsilon^{10}_{b0} \\ \varepsilon^{10}_{b0} \\ \varepsilon^{10}_{b0} \\ \varepsilon^{11}_{b1} \\ \varepsilon^{11}_{b1} \\ \varepsilon^{11}_{b2} \\ \varepsilon^{1$ | 1              |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_p^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.22          | 1              |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.13          | 0.21           | 1              |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b}^{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.34          | 0.43           |                | 1              |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25           |                |                |                | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_p^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.36          |                |                |                | -0.23             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |                |                | -0.33             | 0.21              | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b}^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |                |                | -0.43             | 0.16              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.34           |                |                |                | 0.38              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{p}^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.313         |                |                |                | -0.41             |                   |                   |                   | -0.25             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |                |                |                   |                   |                   |                   | -0.27             | 0.43              | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b_0}^{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |                |                |                   |                   |                   |                   | -0.43             | 0.29              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.15           |                |                |                | 0.36              |                   |                   |                   | 0.48              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_p^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.33          |                |                |                | -0.44             |                   |                   |                   | -0.26             |                   |                   |                   | -0.34             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   | -0.28             | 0.35              | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b_{\alpha}}^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   | -0.24             | 0.48              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.26           |                |                |                | 0.31              |                   |                   |                   | 0.44              |                   |                   |                   | 0.15              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{p}^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.27          |                |                |                | -0.42             |                   |                   |                   | -0.21             |                   |                   |                   | -0.42             |                   |                   |                   | -0.27             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.36             | 0.17              | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b_{\perp}}^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.28             | 0.45              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.39           |                |                |                | 0.48              |                   |                   |                   | 0.25              |                   |                   |                   | 0.34              |                   |                   |                   | 0.31              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{p}^{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32          |                |                |                | -0.34             |                   |                   |                   | -0.44             |                   |                   |                   | -0.23             |                   |                   |                   | -0.38             |                   |                   |                   | -0.31             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_a^{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.36             | 0.22              | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_{b_{r}}^{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.24             | 0.45              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_m^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.43           |                |                |                | 0.35              |                   |                   |                   | 0.23              |                   |                   |                   | 0.17              |                   |                   |                   | 0.33              |                   |                   |                   | 0.27              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |
| $\epsilon_p^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.27          |                |                |                | -0.42             |                   |                   |                   | -0.27             |                   |                   |                   | -0.46             |                   |                   |                   | -0.49             |                   |                   |                   | -0.19             |                   |                   |                   | -0.47             | 1                 |                   |                   |                   |                   |                   |                   |
| $\epsilon_{a}^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.53             | 0.11              | 1                 |                   |                   |                   |                   |                   |
| $\epsilon_{b_c}^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.21             | 0.32              |                   | 1                 |                   |                   |                   |                   |
| $\epsilon_m^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25           |                |                |                | 0.41              |                   |                   |                   | 0.23              |                   |                   |                   | 0.28              |                   |                   |                   | 0.34              |                   |                   |                   | 0.16              |                   |                   |                   | 0.39              |                   |                   |                   | 1                 |                   |                   |                   |
| $\epsilon_p^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.26          |                |                |                | -0.33             |                   |                   |                   | -0.19             |                   |                   |                   | -0.28             |                   |                   |                   | -0.47             |                   |                   |                   | -0.13             |                   |                   |                   | -0.41             |                   |                   |                   | -0.26             | 1                 |                   |                   |
| $\epsilon_a^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.33             | 0.44              | 1                 |                   |
| $\epsilon_b^{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.12             | 0.21              |                   | 1                 |

)

Table 3: Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | Jiiiiiue          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|--------------|----------------|-------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\epsilon_m^{17}$ | $\epsilon_p^{17}$ | $\epsilon_a^{17}$ | $\epsilon_h^{17}$ | $\epsilon_m^{18}$ | $\epsilon_p^{18}$ | $\epsilon_a^{18}$ | $\epsilon_h^{18}$ | $\epsilon_m^{19}$ | $\epsilon_p^{19}$ | $\epsilon_a^{19}$ | $\epsilon_b^{19}$ | $\epsilon_m^{20}$ | $\epsilon_p^{20}$ | $\epsilon_a^{20}$ | $\epsilon_h^{20}$ | $\epsilon_m^{21}$ | $\epsilon_p^{21}$ | $\epsilon_a^{21}$ | $\epsilon_b^{21}$ | $\epsilon_m^{22}$ | $\epsilon_p^{22}$ | $\epsilon_a^{22}$ | $\epsilon_b^{22}$ | $\epsilon_m^{23}$ | $\epsilon_p^{23}$ | $\epsilon_a^{23}$ | $\epsilon_b^{23}$ | $\epsilon_m^{24}$ | $\epsilon_p^{24}$ | $\epsilon_a^{24}$ | $\epsilon_{b}^{24}$ | $\epsilon_m^{25}$ | $\epsilon_p^{25}$ | $\epsilon_a^{25}$ | $\epsilon_b^{25}$ | $\epsilon_v$ | $\epsilon_p^f$ | $\epsilon_a^f$ $\epsilon_b^f$ |
| $\epsilon_m^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                 | Р                 | - ti              | <u> </u>          | 111               | P                 | и                 | U                 | 111               | Р                 | и                 | U                 | 111               |                   | ti                | U                 | · · · ·           |                   | u                 | U                 |                   | P                 | u                 | U                 | · · · ·           | P                 | и                 | U                 | m                 | Ρ                 | u                 | <u> </u>            |                   | P                 | и                 | <u> </u>          |              | Р              | и р                           |
| $\epsilon_p^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.46             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_a^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.35             |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_{b_0}^{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.17             | 0.18              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_m^{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.43              |                   |                   |                   | l                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.36             |                   |                   |                   | -0.42<br>-0.31    | 1<br>0.26         | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_a^{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |                   |                   | -0.28             | 0.26              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_m^{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.39              |                   |                   |                   | 0.23              | 0.10              |                   | -                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_n^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.27             |                   |                   |                   | -0.22             |                   |                   |                   | -0.39             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_a^{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |                   |                   |                   |                   |                   |                   | -0.21             | 0.26              |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_{k_0}^{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   |                   |                   |                   |                   |                   |                   | -0.33             | 0.49              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_m^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.21              |                   |                   |                   | 0.39              |                   |                   |                   | 0.27              |                   |                   |                   | 1                 | ,                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_p^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.29             |                   |                   |                   | -0.32             |                   |                   |                   | -0.27             |                   |                   |                   | -0.14             | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_a^{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.32<br>-0.41    | 0.27<br>0.25      | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_{m}^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.27              |                   |                   |                   | 0.11              |                   |                   |                   | 0.32              |                   |                   |                   | 0.27              | 0.23              |                   | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_n^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.29             |                   |                   |                   | -0.31             |                   |                   |                   | -0.27             |                   |                   |                   | -0.49             |                   |                   |                   | -0.16             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_a^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.25             |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_{b_a}^{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.32             | 0.23              |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_m^{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13              |                   |                   |                   | 0.49              |                   |                   |                   | 0.32              |                   |                   |                   | 0.41              |                   |                   |                   | 0.22              |                   |                   |                   | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_p^{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.22             |                   |                   |                   | -0.23             |                   |                   |                   | -0.39             |                   |                   |                   | -0.21             |                   |                   |                   | -0.35             |                   |                   |                   | -0.16             | 1                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_a^{22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 0.18<br>0.21      | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_{23}^{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.39              |                   |                   |                   | 0.39              |                   |                   |                   | 0.16              |                   |                   |                   | 0.21              |                   |                   |                   | 0.24              |                   |                   |                   | 0.33              | 0.21              |                   | 1                 | 1                 |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_n^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.26             |                   |                   |                   | -0.14             |                   |                   |                   | -0.43             |                   |                   |                   | -0.38             |                   |                   |                   | -0.27             |                   |                   |                   | -0.17             |                   |                   |                   | -0.38             | 1                 |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_a^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 0.21              | 1                 |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_b^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 0.15              |                   | 1                 |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_m^{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.28              |                   |                   |                   | 0.27              |                   |                   |                   | 0.17              |                   |                   |                   | 0.23              |                   |                   |                   | 0.33              |                   |                   |                   | 0.36              |                   |                   |                   | 0.45              |                   |                   |                   | 1                 |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_p^{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.48             |                   |                   |                   | -0.21             |                   |                   |                   | -0.36             |                   |                   |                   | -0.25             |                   |                   |                   | -0.23             |                   |                   |                   | -0.16             |                   |                   |                   | -0.21             |                   |                   |                   | -0.29             |                   |                   |                     |                   |                   |                   |                   |              |                |                               |
| $\epsilon_a^{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | -0.46             | 0.29<br>0.49      | 1                 | 1                   |                   |                   |                   |                   |              |                |                               |
| 6 b<br>625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.28              |                   |                   |                   | 0.39              |                   |                   |                   | 0.31              |                   |                   |                   | 0.29              |                   |                   |                   | 0.45              |                   |                   |                   | 0.37              |                   |                   |                   | 0.48              |                   |                   |                   | 0.43              | 0.49              |                   | 1                   | 1                 |                   |                   |                   |              |                |                               |
| $\epsilon_n^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.21             |                   |                   |                   | -0.27             |                   |                   |                   | -0.23             |                   |                   |                   | -0.19             |                   |                   |                   | -0.18             |                   |                   |                   | -0.28             |                   |                   |                   | -0.34             |                   |                   |                   | -0.21             |                   |                   |                     | -0.38             | 1                 |                   |                   |              |                |                               |
| $\epsilon_a^{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   | 0.27              | 1                 |                   |              |                |                               |
| $\epsilon_{h}^{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     | -0.53             | 0.39              |                   | 1                 |              |                |                               |
| $\epsilon_v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.28              |                   |                   |                   | 0.39              |                   |                   |                   | 0.47              |                   |                   |                   | 0.44              |                   |                   |                   | 0.39              |                   |                   |                   | 0.33              |                   |                   |                   | 0.41              |                   |                   |                   | 0.29              |                   |                   |                     | 0.89              |                   |                   |                   | 1            |                |                               |
| $\epsilon_p^f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.19             |                   |                   |                   | -0.16             |                   |                   |                   | -0.21             |                   |                   |                   | -0.29             |                   |                   |                   | -0.28             |                   |                   |                   | -0.22             |                   |                   |                   | -0.18             |                   |                   |                   | -0.25             |                   |                   |                     | -0.22             |                   |                   |                   | -0.46        | 1              |                               |
| $\begin{array}{c} \epsilon^{17} \\ \epsilon^{17} \\ \epsilon^{17} \\ \epsilon^{18} \\ \epsilon^{19} \\ \epsilon^{19$ |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   | -0.37        | 0.32           | 1                             |
| $\epsilon_b^f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   | -0.42        | 0.38           | 1                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                     |                   |                   |                   |                   |              |                |                               |

ن ا

Table 4: Continued

|                                                                                                                                                   | $\epsilon_m^1$ | $\epsilon_m^2$ | $\epsilon_m^3$ | $\epsilon_m^4$ | $\epsilon_m^5$ | $\epsilon_m^6$ | $\epsilon_m^7$ | $\epsilon_m^8$ | $\epsilon_m^9$ | $\epsilon_m^{10}$ | $\epsilon_m^{11}$ | $\epsilon_m^{12}$ | $\epsilon_m^{13}$ | $\epsilon_m^{14}$ | $\epsilon_m^{15}$ | $\epsilon_m^{16}$ | $\epsilon_m^{17}$ | $\epsilon_m^{18}$ | $\epsilon_m^{19}$ | $\epsilon_m^{20}$ | $\epsilon_m^{21}$ | $\epsilon_m^{22}$ | $\epsilon_m^{23}$ | $\epsilon_m^{24}$ | $\epsilon_m^{25}$ | $\epsilon_m^{26}$ | $\epsilon_m^{27}$ | $\epsilon_m^{28}$ | $\epsilon_m^{29}$ | $\epsilon_m^{30}$ | $\epsilon_v$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------|
| $\epsilon_{\cdots}^9$                                                                                                                             | 0.46           | 0.34           | 0.46           | 0.26           | 0.54           | 0.28           | 0.38           | 0.30           | 0.34           | 0.42              | 0.37              | 0.19              | 0.58              | 0.24              | 0.19              | 0.29              | 0.49              | 0.46              | 0.37              | 0.46              | 0.40              | 0.35              | 0.29              | 0.36              | 0.42              | 0.37              | 0.33              | 0.56              | 0.45              | 0.40              | 0.87         |
| $\epsilon_p^m$                                                                                                                                    | -0.20          | -0.45          | -0.29          | -0.26          | -0.18          | -0.12          | -0.11          | -0.23          | -0.23          | -0.29             | -0.34             | 0.35              | -0.22             | 0.25              | -0.23             | -0.46             | -0.19             | -0.37             | -0.37             | -0.30             | -0.23             | -0.22             | -0.19             | -0.32             | -0.25             | -0.32             | -0.22             | -0.38             | -0.32             | -0.23             | -0.34        |
| $\epsilon_m^{f_0}$                                                                                                                                | 0.39           | 0.26           | 0.21           | 0.32           | 0.34           | 0.49           | 0.19           | 0.37           | 0.57           | 0.52              | 0.54              | 0.44              | 0.60              | 0.47              | 0.12              | 0.33              | 0.23              | 0.59              | 0.19              | 0.37              | 0.25              | 0.51              | 0.22              | 0.29              | 0.42              | 0.15              | 0.31              | 0.56              | 0.35              | 0.11              | 0.33         |
| $\epsilon_p^{m}$                                                                                                                                  | -0.31          | -0.49          | -0.37          | -0.55          | -0.28          | -0.48          | -0.51          | -0.44          | -0.38          | -0.53             | -0.45             | -0.27             | -0.12             | -0.33             | -0.51             | -0.17             | -0.23             | -0.29             | -0.39             | -0.47             | -0.19             | -0.51             | -0.26             | -0.11             | -0.57             | -0.45             | -0.29             | -0.43             | -0.23             | -0.21             | -0.23        |
| $\epsilon_m^{11}$                                                                                                                                 | 0.51           | 0.38           | 0.26           | 0.22           | 0.54           | 0.31           | 0.16           | 0.44           | 0.62           | 0.59              | 0.17              | 0.41              | 0.39              | 0.27              | 0.11              | 0.23              | 0.58              | 0.36              | 0.28              | 0.52              | 0.45              | 0.22              | 0.37              | 0.21              | 0.29              | 0.46              | 0.29              | 0.53              | 0.42              | 0.31              | 0.37         |
| $\epsilon_n^{11}$                                                                                                                                 | -0.35          | -0.54          | -0.33          | -0.48          | -0.17          | -0.29          | -0.32          | -0.58          | -0.18          | -0.41             | -0.28             | -0.49             | -0.51             | -0.47             | -0.36             | -0.43             | -0.55             | 0.11              | -0.23             | -0.29             | -0.56             | -0.27             | -0.58             | -0.16             | -0.37             | -0.44             | -0.21             | -0.48             | -0.26             | -0.34             | -0.23        |
| $\epsilon_m^{12}$                                                                                                                                 | 0.46           | 0.26           | 0.49           | 0.22           | 0.29           | 0.47           | 0.19           | 0.31           | 0.42           | 0.56              | 0.29              | 0.51              | 32                | 0.25              | 0.47              | 0.21              | 0.36              | 0.16              | 0.48              | 0.22              | 0.65              | 0.41              | 0.27              | 0.11              | 0.43              | 0.33              | 0.52              | 0.37              | 0.21              | 0.45              | 0.38         |
| $\epsilon_m^{12}$ $\epsilon_p^{12}$ $\epsilon_m^{13}$                                                                                             | -0.17          | -029           | -0.59          | -0.33          | -0.57          | -0.39          | -0.15          | -0.45          | -0.16          | -0.32             | -0.39             | -0.47             | -0.57             | -0.31             | -0.26             | -0.19             | -0.56             | -0.26             | -0.11             | -0.59             | -0.36             | -0.47             | -0.22             | -0.52             | -0.51             | -0.31             | -0.12             | -0.32             | -0.27             | -0.21             | -0.19        |
| $\epsilon_m^{13}$                                                                                                                                 | 0.43           | 0.45           | 0.29           | 0.55           | 0.49           | 0.44           | 0.47           | 0.51           | 0.36           | 0.19              | 0.21              | 0.38              | 0.58              | 0.18              | 0.49              | 0.37              | 0.33              | 0.26              | 0.44              | 0.32              | 0.50              | 0.47              | 0.11              | 0.27              | 0.59              | 0.38              | 0.29              | 0.26              | 0.51              | 0.46              | 0.13         |
| $\epsilon_p^{13}$ $\epsilon_m^{14}$                                                                                                               | -0.33          | -0.38          | -0.21          | -0.51          | -0.13          | -0.14          | -0.22          | -0.28          | -0.34          | -0.24             | -0.39             | -0.35             | -0.19             | -0.58             | -0.15             | -0.46             | -0.31             | -0.59             | -0.56             | -0.11             | -0.48             | -0.49             | -0.51             | -0.32             | -0.41             | -0.33             | -0.12             | -0.34             | -0.55             | -0.22             | -18          |
| $\epsilon_m^{14}$                                                                                                                                 | 0.66           | 0.34           | 0.61           | 0.28           | 0.47           | 0.45           | 0.53           | 0.43           | 0.54           | 0.33              | 0.41              | 0.43              | 0.42              | 0.36              | 0.58              | 0.60              | 0.35              | 0.43              | 0.42              | 0.45              | 0.49              | 0.52              | 0.36              | 0.46              | 0.38              | 0.47              | 0.62              | 0.34              | 0.28              | 0.38              | 0.39         |
| $\epsilon_p^{14}$                                                                                                                                 | -0.11          | -0.23          | -0.32          | -0.29          | -0.37          | -0.25          | -0.23          | -0.35          | -0.22          | -0.13             | -0.31             | -0.24             | -0.21             | -0.22             | -0.12             | -0.23             | -0.39             | -0.29             | -0.23             | -0.27             | -0.19             | -0.23             | -0.34             | -0.30             | -0.16             | -0.26             | -0.44             | -0.56             | -0.25             | -0.39             | -0.23        |
| $\epsilon_m^{15}$ $\epsilon_p^{15}$ $\epsilon_m^{16}$ $\epsilon_p^{16}$ $\epsilon_p^{17}$                                                         | 0.54           | 0.41           | 0.43           | 0.21           | 0.46           | 0.48           | 0.17           | 0.51           | 0.12           | 0.44              | 0.37              | 0.27              | 0.24              | 0.19              | 0.14              | 0.25              | 0.39              | 0.29              | 0.11              | 0.33              | 0.26              | 0.35              | 0.32              | 0.22              | 0.34              | 0.23              | 0.15              | 0.28              | 0.17              | 0.26              | 0.34         |
| $\epsilon_p^{15}$                                                                                                                                 | -0.25          | -0.18          | -0.46          | -0.28          | -0.52          | -0.15          | -0.51          | -0.27          | -0.33          | -0.11             | -0.19             | -0.16             | -0.43             | -0.41             | -0.21             | -0.35             | -0.25             | -0.12             | -0.46             | -0.39             | -0.24             | -0.37             | -0.22             | -0.13             | -0.21             | -0.36             | -0.26             | -0.23             | -0.45             | -0.11             | -0.24        |
| $\epsilon_m^{16}$                                                                                                                                 | 0.48           | 0.37           | 0.16           | 0.36           | 0.38           | 0.18           | 0.42           | 0.22           | 0.17           | 0.12              | 0.15              | 0.47              | 0.33              | 0.41              | 0.26              | 0.33              | 0.29              | 0.25              | 0.43              | 0.23              | 0.39              | 0.44              | 0.37              | 0.21              | 0.24              | 0.28              | 0.17              | 0.11              | 0.29              | 0.41              | 0.38         |
| $\epsilon_{p}^{16}$                                                                                                                               | -0.42          | -0.47          | -0.15          | -0.35          | -0.44          | -0.43          | -0.16          | -0.49          | -0.29          | -0.39             | -0.15             | -0.41             | -0.14             | -0.35             | -0.36             | -0.27             | -0.13             | -0.38             | -0.46             | -0.22             | -0.38             | -0.26             | -0.48             | -0.33             | -0.23             | -0.11             | -0.37             | -0.21             | -0.34             | -0.23             | -0.23        |
| $\epsilon_m^{17}$                                                                                                                                 | 0.43           | 0.47           | 0.17           | 0.11           | 0.31           | 0.18           | 0.16           | 0.42           | 0.13           | 0.34              | 0.22              | 0.44              | 0.46              | 0.17              | 0.29              | 0.19              | 0.35              | 0.25              | 0.31              | 0.27              | 0.15              | 0.34              | 0.21              | 0.12              | 0.39              | 0.38              | 0.36              | 0.14              | 0.23              | 0.36              | 0.40         |
| $\epsilon_p^{17}$                                                                                                                                 | -0.45          | -0.41          | -0.19          | -0.11          | -0.18          | -0.36          | -0.49          | -0.42          | -0.24          | -0.38             | -0.29             | -0.31             | -0.27             | -0.46             | -0.21             | -0.13             | -0.44             | -0.37             | -0.35             | -0.25             | -0.24             | -0.17             | -0.37             | -0.33             | -0.38             | -0.16             | -0.27             | -0.45             | -0.22             | -0.27             | -0.23        |
| $\epsilon_m^{18}$                                                                                                                                 | 0.25           | 0.48           | 0.28           | 0.35           | 0.13           | 0.22           | 0.26           | 0.29           | 0.49           | 0.39              | 0.31              | 0.48              | 0.32              | 0.14              | 0.41              | 0.28              | 0.23              | 0.44              | 0.17              | 0.35              | 0.12              | 0.31              | 0.36              | 0.22              | 0.27              | 0.26              | 0.43              | 0.11              | 0.29              | 0.45              | 0.37         |
| $\epsilon_p^{18}$ $\epsilon_m^{19}$                                                                                                               | -0.29          | -0.13          | -0.17          | -0.48          | -0.27          | -0.38          | -0.28          | -0.35          | -0.26          | -0.24             | -0.43             | -0.39             | -0.15             | -0.26             | -0.47             | -0.21             | -0.45             | -0.24             | -0.11             | -0.28             | -0.29             | -0.37             | -0.46             | -0.32             | -0.23             | -0.46             | -0.33             | -0.27             | -0.21             | -0.25             | -0.17        |
| $\epsilon_m^{13}$                                                                                                                                 | 0.42           | 0.13           | 0.44           | 0.33           | 0.17           | 0.23           | 0.14           | 0.27           | 0.38           | 0.29              | 0.12              | 0.41              | 0.37              | 0.45              | 0.22              | 0.11              | 0.34              | 0.21              | 0.13              | 0.17              | 0.47              | 0.37              | 0.38              | 0.24              | 0.25              | 0.28              | 0.21              | 0.27              | 0.39              | 0.43              | 0.47         |
| $\epsilon_p^{13}$                                                                                                                                 | -0.39          | -0.49          | -0.29          | -0.19          | -0.38          | -0.24          | -0.13          | -0.33          | -0.27          | -0.15             | -0.48             | -0.18             | -0.14             | -0.47             | -0.25             | -0.46             | -0.43             | -0.13             | -0.31             | -0.22             | -0.37             | -0.48             | -0.16             | -0.42             | -0.24             | -0.38             | -0.12             | -0.46             | -0.23             | -0.23             | -0.23        |
| $\epsilon_m^{20}$                                                                                                                                 | 0.44           | 0.16           | 0.33           | 0.11           | 0.38           | 0.32           | 0.27           | 0.48           | 0.29           | 0.41              | 0.16              | 0.43              | 0.24              | 0.25              | 0.11              | 0.32              | 0.27              | 0.36              | 0.47              | 0.22              | 0.39              | 0.15              | 0.35              | 0.27              | 0.37              | 0.45              | 0.31              | 0.22              | 0.24              | 0.31              | 0.46         |
| $egin{array}{c} \epsilon_p^{19} \ \epsilon_m^{20} \ \epsilon_p^{20} \ \epsilon_m^{21} \ \end{array}$                                              | -0.31          | -0.18          | -0.48          | -0.15          | -0.28          | -0.44<br>0.12  | -0.19<br>0.39  | -0.46          | -0.32          | -0.38             | -0.31             | -0.36             | -0.49<br>0.36     | -0.14<br>0.33     | -0.47             | -0.29             | -0.48             | -0.16             | -0.45             | -0.22             | -0.27             | -0.35             | -0.23<br>0.22     | -0.11             | -0.27             | -0.13<br>0.24     | -0.21<br>0.28     | -0.34             | -0.25             | -0.21<br>0.33     | -0.29        |
| $\epsilon_m$                                                                                                                                      | 0.54           | 0.18<br>-0.12  | 0.41<br>-0.45  | 0.49<br>-0.43  | 0.34<br>-0.13  | -0.46          | -0.39          | 0.15<br>-0.27  | 0.21<br>-0.32  | 0.19<br>-0.17     | 0.28<br>-0.46     | 0.16<br>-0.16     | -0.42             | -0.41             | 0.26<br>-0.19     | 0.49<br>-0.36     | 0.37<br>-0.47     | 0.28<br>-0.21     | 0.11<br>-0.11     | 0.47<br>-0.45     | 0.24<br>-0.39     | 0.14<br>-0.14     | -0.31             | 0.25<br>-0.44     | 0.44<br>-0.42     | -0.22             | -0.16             | 0.13<br>-0.13     | 0.46<br>-0.32     | -0.22             | 0.43         |
| $egin{array}{c} \epsilon_p^{21} \ \epsilon_{22}^{22} \ \epsilon_p^{22} \ \epsilon_{23}^{23} \ \epsilon_p^{23} \ \epsilon_{24}^{24} \ \end{array}$ | 0.35           | 0.29           | 0.36           | 0.15           | 0.39           | 0.22           | 0.31           | 0.27           | 0.46           | 0.18              | 0.21              | 0.41              | 0.35              | 0.16              | 0.29              | 0.38              | 0.47              | 0.25              | 0.33              | 0.48              | 0.19              | 0.21              | 0.19              | 0.16              | 0.45              | 0.35              | 0.23              | 0.11              | 0.23              | 0.31              | 0.47         |
| e <sup>22</sup>                                                                                                                                   | -0.43          | -0.28          | -0.11          | -0.46          | -0.26          | -0.49          | -0.44          | -0.18          | -0.14          | -0.22             | -0.33             | -0.34             | -0.21             | -0.32             | -0.13             | -0.45             | -0.24             | -0.19             | -0.35             | -0.15             | -0.26             | -0.13             | -0.47             | -0.37             | -0.22             | -0.17             | -0.32             | -0.37             | -0.25             | -0.20             | -0.24        |
| $\epsilon^{23}$                                                                                                                                   | 0.19           | 0.44           | 0.11           | 0.36           | 0.42           | 0.45           | 0.41           | 0.10           | 0.14           | 0.22              | 0.12              | 0.14              | 0.38              | 0.26              | 0.39              | 0.25              | 0.43              | 0.32              | 0.17              | 0.16              | 0.42              | 0.48              | 0.44              | 0.37              | 0.48              | 0.17              | 0.19              | 0.25              | 0.23              | 0.45              | 0.50         |
| $\epsilon^{23}$                                                                                                                                   | -0.42          | -0.23          | -0.18          | -0.15          | -0.13          | -0.34          | -0.48          | -0.43          | -0.24          | -0.21             | -0.35             | -0.22             | -0.49             | -0.38             | -0.27             | -0.19             | -0.36             | -0.11             | -0.26             | -0.31             | -0.49             | -0.28             | -0.14             | -0.23             | -0.31             | -0.46             | -0.11             | -0.45             | -0.31             | 0.27              | -0.19        |
| $\epsilon^{24}$                                                                                                                                   | 0.25           | 0.38           | 0.11           | 0.26           | 0.13           | 0.29           | 0.17           | 0.22           | 0.35           | 0.21              | 0.16              | 0.43              | 0.36              | 0.18              | 0.41              | 0.13              | 0.31              | 0.45              | 0.36              | 0.49              | 0.33              | 0.17              | 0.26              | 0.33              | 0.15              | 0.27              | 0.26              | 0.43              | 0.12              | 0.47              | 0.35         |
| $\epsilon_n^{24}$                                                                                                                                 | -0.35          | -0.14          | -0.42          | -0.27          | -0.39          | -0.22          | -0.15          | -0.38          | -0.17          | -0.45             | -0.29             | -0.36             | -0.19             | -0.34             | -0.43             | -0.24             | -0.21             | -0.44             | -0.25             | -0.13             | -0.41             | -0.26             | -0.16             | -0.43             | -0.22             | -0.45             | -0.24             | -0.11             | -0.35             | -0.17             | -0.27        |
| $\epsilon_m^{25}$                                                                                                                                 | 0.49           | 0.16           | 0.32           | 0.44           | 0.48           | 0.25           | 0.39           | 0.11           | 0.24           | 0.22              | 0.42              | 0.31              | 0.13              | 0.35              | 0.28              | 0.19              | 0.36              | 0.27              | 0.37              | 0.45              | 0.23              | 0.26              | 0.35              | 0.11              | 0.35              | 0.33              | 0.24              | 0.15              | 0.39              | 0.34              | 0.39         |
| $\epsilon_p^{24}$ $\epsilon_m^{25}$ $\epsilon_p^{25}$                                                                                             | -0.15          | -0.14          | -0.28          | -0.38          | -0.43          | -0.36          | -0.19          | -0.33          | -0.36          | -0.41             | -0.13             | -0.22             | -0.24             | -0.23             | -0.44             | -0.29             | -0.47             | -0.45             | -0.14             | -0.27             | -0.36             | -0.31             | -0.15             | -0.11             | -0.33             | -0.26             | -0.45             | -0.32             | -0.32             | -0.22             | -0.25        |
| $\epsilon_{\nu}$                                                                                                                                  | 0.16           | 0.12           | 0.46           | 0.34           | 0.26           | 0.31           | 0.17           | 0.47           | 0.28           | 0.41              | 0.26              | 0.24              | 0.42              | 0.35              | 0.29              | 0.47              | 0.36              | 0.17              | 0.46              | 0.21              | 0.45              | 0.42              | 0.44              | 0.39              | 0.22              | 0.38              | 0.19              | 0.14              | 0.21              | 0.45              | 0.29         |
| $\epsilon_{nf}$                                                                                                                                   | -0.38          | 0.49           | -0.27          | -0.25          | -0.35          | -0.38          | -0.29          | -0.18          | -0.14          | -0.38             | -0.15             | -0.17             | -0.46             | -0.24             | -0.42             | -0.37             | -0.22             | -0.38             | -0.11             | -0.28             | -0.21             | -0.37             | -0.33             | -0.48             | -0.23             | -0.46             | -0.34             | -0.14             | -0.34             | -0.24             | -0.29        |
| $p_j$                                                                                                                                             | 1              |                |                |                |                |                |                |                |                |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |              |

### Appendix E1

### Price Impulse Responses for Selected Underlying Assets of DIA











# Appendix E2

### Price Impulse Responses for Selected Underlying Assets of SMH







