Stronger generalization bounds for deep nets via a compression approach

Speaker: Yi-Shan Wu

Institute of Information Science

Academia Sinica

Taiwan

Aug 23, 2018

Generalization

Learning Model

Goal of generalization:

$$\Pr[|L_S(A_S) - L_D(A_S)| \le \epsilon] \ge 1 - \delta$$

Measurement-VC bound(X)

It is possible to obtain zero training error on random labels using the same architecture for which training with real labels leads to good generalization.[5]

Measurement-parameter counting(X)

Increasing the number of parameters, can lead to a decrease in generalization error even when the training error does not decrease.[6]

Measurements: ex. norms and margins [4]

For linear predictors, the capacity can be controlled independent of the number of parameters, e.g. by regularization of ℓ_2 norm.

- ℓ_2 norm with capacity proportional to $\frac{1}{\gamma_{\mathrm{argin}}^2} \prod_{i=1}^d 4 \left\|W_i\right\|_F^2$ [18].
- ℓ_1 -path norm with capacity proportional to $\frac{1}{\gamma_{\text{margin}}^2} \left(\sum_{j \in \prod_{k=0}^d [h_k]} \left| \prod_{i=1}^d 2W_i[j_i, j_{i-1}] \right| \right)^2 \mathbb{A}$
- ℓ_2 -path norm with capacity proportional to $\frac{1}{\gamma_{\text{margin}}^2} \sum_{j \in \prod_{k=0}^d [h_k]} \prod_{i=1}^d 4h_i W_i^2[j_i, j_{i-1}].$
- spectral norm with capacity proportional to $\frac{1}{\gamma_{\mathrm{margin}}^2} \prod_{i=1}^d h_i \left\|W_i\right\|_2^2$.

Compression approach [3]

Motivation: The analysis for previous works are too pessimistic. If the large trained network can be compressed to a smaller network without reducing performance, then it is able to obtain better generalization bound by previous approaches.

compressible

Let f be a classifier and $G_A = \{g_A | A \in \mathcal{A}\}$ be a class of classifiers and fixed strings s. We say f is (γ, S) -compressible via $G_{A,s}$ using helper string s if there exists $A \in \mathcal{A}$ such that for any $x \in S$, we have for all y

$$|f(x)[y] - g_{A,s}(x)[y]| < \gamma$$

Compression approach [3]

- A multi-class classifier $f: \mathcal{X} \to \mathbb{R}^K$.
- classfication loss $\mathbb{P}_{x,y} \sim D\{f(x)[y] < \max_{j \neq y} f(x)[j]\}$
- \bullet If $\gamma>0$ is some desired margin, then the expected margin loss is

$$L_{\gamma}(f) = \mathbb{P}_{x,y} \sim D\left\{f(x)[y] \le \gamma + \max_{j \ne y} f(x)[j]\right\}$$

• Let $\hat{L}_{\gamma}(f)$ denotes empirical margin loss

Compression approach [3]

generalization bound for g_A

Suppose $G_A = \{g_A | A \in \mathcal{A}\}$ where A is a set of q parameters each of which can have at most r discrete values and s is a helper string. Let S be a training set with m samples. If the trained classifier f is (γ, S) -compressible via $G_{A,s}$ with helper string s, then there exists $A \in \mathcal{A}$ with high probability over the training set,

$$L_0(g_A) \leq \hat{L}_{\gamma}(f) + O(\sqrt{rac{q \ln r}{m}})$$

Observation: noise stability

The new "noise stability" approach roughly amount to saying that noise injected at a layer has very little effect on the higher layers.

Observation: noise stability

Goal:

- We compress each layer i by an appropriate randomized compression algorithm, such that the noise/error in its output is "gaussian-like".
- ullet If layers i+1 and higher have low sensitivity to this new noise, then the compression can be more extreme and produce much higher noise.

Algorithm for compression

- The layers are compressed from lower layer to higher layer.
- \bullet ϵ, η are determined by the stability of that layer. That is, how many non-zero entries are left after compression is determined by the stability of the layer.

Algorithm 1 Matrix-Project (A, ε, η)

Require: Layer matrix $A \in \mathbb{R}^{h_1 \times h_2}$, error parameter ε , η .

Ensure: Returns \hat{A} s.t. \forall fixed vectors u, v,

$$\Pr[|u^{\top} \hat{A} v - u^{\top} A v|| \ge \varepsilon ||A||_F ||u|| ||v||] \le \eta.$$

Sample $k = \log(1/\eta)/\varepsilon^2$ random matrices M_1, \dots, M_k with entries i.i.d. ± 1 ("helper string") for k' = 1 to k do

Let
$$Z_{k'} = \langle A, M_{k'} \rangle M_{k'}$$
.

end for

Let
$$\hat{A} = \frac{1}{k} \sum_{k'=1}^{k} Z_{k'}$$

Theorem

For any fully-connected network f_A with $\rho_\delta \geq 3d$, any $0 < \delta < 1$, and any margin $\gamma > 0$, f_A can be compressed into another fully connected network f_A such that $\hat{L}_0(f_A) \leq \hat{L}_\gamma(f_A)$ and the number of parameters in f_A is at most:

$$\tilde{O}\left(\frac{c^2 d^2 \max_{x \in S} \|f_A(x)\|_2^2}{\gamma^2} \sum_{i=1}^d \frac{1}{\mu_i^2 \mu_{i \to}^2}\right)$$
(11)

 $\begin{array}{l} \ell_{1,\infty}: \frac{1}{\gamma^2} \prod_{i=1}^d ||A^i||_{1,\infty} \text{ Bartlett and Mendelson [2002]} \\ \text{Frobenius: } \frac{1}{\gamma^2} \prod_{i=1}^d ||A^i||_F^2 \text{ Neyshabur et al. [2015b]}, \\ \text{spec } \ell_{1,2}\colon \frac{1}{\gamma^2} \prod_{i=1}^d ||A_i||_2^2 \sum_{i=1}^d \frac{||A^i||_{1,2}^2}{||A^i||_2^2} \text{ Bartlett et al. [2017]} \\ \text{spec-fro: } \frac{1}{\gamma^2} \prod_{i=1}^d ||A^i||_2^2 \sum_{i=1}^d h_i \frac{||A^i||_F^2}{||A^i||_2^2} \text{ Neyshabur et al. [2017a]} \\ \text{ours: } \frac{1}{\gamma^2} \max_{x \in S} ||f(x)||_2^2 \sum_{i=1}^d \frac{\beta^2 c_i^2 |\kappa/s|^2}{\mu_i^2 \mu_{i\rightarrow}^2} \end{array}$

layer	$\frac{c_i^2 \beta_i^2 \lceil \kappa_i / s_i \rceil^2}{\mu_i^2 \mu_{i \to}^2}$	actual # param	compression (%)
1	1644.87	1728	95.18
4	644654.14	147456	437.18
6	3457882.42	589824	586.25
9	36920.60	1179648	3.129
12	22735.09	2359296	0.963
15	26583.81	2359296	1.126
18	5052.15	262144	1.927

 $\label{eq:Figure} Figure - \text{Effective number of parameters identified by our bound.} \\ \text{Compression rates can be as low as } 1\% \text{ in later layers (from 9 to 19)} \\ \text{whereas earlier layers are not so compressible.} \\$

Reference

- Spectrally-normalized margin bounds for neural networks,
 Bartlett et al., 2017
- A pac-bayesian approach to spectrally-normalized margin bounds for neural networks, Neyshabur et al., 2018(ICLR)
- Stronger generalization bounds for deep nets via a compression approach, Arora et al.2018
- Exploring Generalization in Deep Learning, Neyshabur et al.,2017
- Understanding deep learning requires rethinking generalization.
 C.Zhang 2017(ICLR)
- In search of the real inductive bias : On the role of implicit regularization in deep learning. Neyshabur 2017(ICLR)

Reference

- On large-batch training for deep learning: Generalization gap and sharp minima. Kesker 2016
- Train faster, generalize better: Stability of stochastic gradient descent. Hardt 2016
- Nearly-tight vc-dimension bounds for piecewise linear neural networks. Harvey 2017
- Rademacher and gaussian complexities: Risk bounds and structural results. Bartlett 2002
- Norm-based capacity control in neural networks. Neyshabur 2015(COLT)
- Computing nonvacuous generalization bounds for deep neural networks with many more parameters than training data. Dziugaite and Roy 2017