Task and Motion Planning using Learning from Demonstration and Reinforcement Learning

Dominik Urbaniak

Master Thesis – Final Presentation Dr. Alejandro Agostini

Human-centered Assistive Robotics

Technische Universität München

Dirty Dishes

Washing dishes is one common task in our daily life

→ A dishwasher is helpful, but still requires to be loaded

Requirements:

Carefully picking and placing objects of various size and shape in a meaningful order.

→ Task and motion planning problem

https://home.howstuffworks.com/dishwasher.htm

Why Task and Motion Planning?

Task Planner

 Efficient planning with logic descriptions for long time horizons

Motion Planner

 Considers the detailed geometric specification of the environment

Challenge:

Transform symbolic actions into feasible motion in variable scenarios

Related Work

→ Improve state-of-the art methods in terms of efficiency

TAMP framework	Limitation	Proposed solution	Efficiency gain
Search-based [Dantam, 2018] [Bidot, 2017]	Deliberation before every execution	Learning-based approach	Faster at execution time
Learning-based using RL [Quack, 2015]	Only performed in low-dimensional spaces	Apply RL on LfD	Efficient motion generation with LfD
Learning-based using LfD [Agostini, 2020]	Many demonstrations required	Generalization with RL	Only one demonstration required

Contributions

- Our TAMP framework permits executing complex tasks comprising long action sequences with obstacle avoidance.
- Each symbolic action is grounded using DMPs that an action policy provides for variable object configurations.
- PI² efficiently generates divers sets of optimal collision-free trajectories serving as training samples to learn the action policy encoded in a NN.

The Proposed TAMP Framework

Online Execution

Online Observation

Offline Training

Training Methods

Why DMPs?

- Efficient motion encoding from one demo
- Translation, dilatation, rotation invariance

Why PI²?

- Tunes parameterized policies like DMPs
- Numerically stable based on SOC

Why NN?

Encode action policy for action selection

Offline Training – Encode a Demonstration

Network

Offline Training - PI² Optimization Step

The forcing term θ_i^j of the DMPs represents the current policy

1. Generate K random samples from the current policy θ_i^j

$$\theta_{i,k}^{j+1} = \theta_i^j + \epsilon_{i,k}^j$$

2. Weight each sample k using a cost function S

$$W_{\theta}(\theta_{i,k}^{j}) = exp\left(-\gamma \frac{S(\theta_{i,k}^{j}) - \min S(\boldsymbol{\theta}_{i}^{j})}{\max S(\boldsymbol{\theta}_{i}^{j}) - \min S(\boldsymbol{\theta}_{i}^{j})}\right)$$

3. Compute the new policy θ_i^{j+1} as weighted average of the samples

$$\theta_i^{j+1} = \frac{\sum_{k=1}^K W_{\theta}(\theta_{i,k}^j) \theta_{i,k}^j}{\sum_{k=1}^K W_{\theta}(\theta_{i,k}^j)}$$

Offline Training - Diversify the Demonstration

Defintion of the Trajectory Shape

Two variables specify the trajectory shape r_c , r_L

Degree of curvature

$$r_c = H/l$$

Trajectory steepness

$$r_L = (|\tilde{L}(2) - \tilde{L}(1)| + 1)/B$$

 $\rightarrow r_c$, r_L are dilatation invariant

Same set of forcing term parameters $heta_i$

Same trajectory shape

Same pair of $r_c = 1$, $r_L = 0.4$

Offline Training – Learning Action Selection

→ Learned optimal parameters to ground symbolic actions in varying scenarios

Task Planner

Decompose the task into a sequence of pickplace actions

The domain

constants

air

predicates

(on ?cell ?cube)

symbolic action

(pickplace ?from ?to ?c)

precondition

(and (on ?from ?c)
(on ?to air))

effect

(and (on ?from air)
(on ?to ?c)
(not (on ?from c))

(not (on ?to air))

Initial State

Task Plan

#1: pickplace cell1 cell5 cube4

#2: pickplace cell3 cell1 cube8

#3: pickplace cell9 cell3 cube7

#4: pickplace cell1 cell9 cube8

#5: pickplace cell8 cell1 cube2

#6: pickplace cell6 cell8 cube6

#7: pickplace cell7 cell6 cube1

#8: pickplace cell5 cell7 cube4

#9: pickplace cell4 cell5 cube3

The task

objects

cube1 cube2 ...
cube8
cell1 cell2 ...
cell9

init

(on cell5 air)
(on cell1 cube4)

goal

(on cell4 air)
(on cell2 cube5)

Online Loop – Select Symbolic Action

Online Loop – Encode Current Configuration

Online Loop – Execute Action Policy

Online Loop – Observe Changes to the Environment

Complete Execution of a Task Example

Experimental Evaluation

20 consecutive task executions with random initial and goal state

→ All 159 performed *pickplace* actions successful

Training Times	9 min
Generating the demonstration	0.02 s
PI ² optimizations	241 s
Training of the NN	279 s

Evaluation – Compared to [Dantam, 2018]

Generalization Ability

Varying block dimensions Varying cell positions

- → Learned action policy finds collision-free trajectories for all scenarios
- More trajectory shapes required

22

Complete Execution of a Task Example

Limitation & Future Work

Limitations

- 1. Restricted to intial and goal positions in the same plane
- 2. Constant gripper orientation
- Obstacle avoidance in one dimension only
- Heuristics required for obstacle definition and optimization costs

Future Work

- → Train NN on independent data to improve generalization
- → Let RL agent learn to select appropriate input parameters and goal poses

Conclusion

- TAMP framework that utilizes LfD to efficiently generate motion and RL to generalize this motion
- PI² permits learning DMP parameters from a single demonstration to avoid obstacles of varying size and in varying situations
- After a few minutes of training, the action policy reliably selects collision-free trajectories to ground symbolic actions of a complex task

References

J. Bidot, L. Karlsson, F. Lagriffoul, A. Saffiotti **Geometric backtracking for combined task and motion planning in robotic systems.** In: *Artificial Intelligence*, 2017, pp. 229–265.

N. T. Dantam, Z. K. Kingston, S. Chaudhuri, L. E. Kavraki

An incremental constraint-based framework for task and motion planning.

In: The International Journal of Robotics Research, 2018, pp. 1134–1151

B. Quack, F. Wörgötter, A. Agostini Simultaneous learning at different levels of abstraction.

In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 4600–4607.

A. Agostini, M. Saveriano, D. Lee, J. Piater

Manipulation planning using object-centered predicates and hierarchical decomposition of contextual actions.

In: IEEE Robotics and Automation Letters, 2020, pp. 5629–5636.

Appendix

Cost Function

$$S = -H + c_1 \cdot S_{prec} + c_2 \cdot S_{scope}$$

$$H = \min(h_{p1}, h_{p2})$$

$$S_{prec} = \|g - y_{end}\|$$

$$S_{scope} = -\sum_{t=1}^{T} \min(0, m + y_{X,t} - y_{0,X}) - \sum_{t=1}^{T} \min(0, m + g_X - y_{X,t})$$

NN Input

Determine trajectory height: $r_c = 0.24$

Determine trajectory steepness: r₁ = 1

NN Output

Trajectory Precision

Goal deviation: $d_g = 0.78\%$

Height deviation: $d_H = -6.29\%$

Task Plan

#1: pickplace cell1 cell5 cube4

#2: pickplace cell3 cell1 cube8

#3: pickplace cell9 cell3 cube7

#4: pickplace cell1 cell9 cube8

#5: pickplace cell8 cell1 cube2

#6: pickplace cell6 cell8 cube6

#7: pickplace cell7 cell6 cube1

#8: pickplace cell5 cell7 cube4

#9: pickplace cell4 cell5 cube3

Pick

Place

Starting the Task...

Current Configuration

DMP: Roto-Dilatation Invariance [Ginesi, 2019]

One demonstration encoded in three DMPs

New goal position (rotated around z: α =90°)

Same forcing term parameters

- → Unexpected trajectory shape
- → Goal position is not reached precisely

Rotate the forcing term parameters

$$f_x^{new} = \cos \alpha * f_x^{demo}$$

$$f_y^{new} = \sin \alpha * f_y^{demo}$$

$$\tilde{L} = (7,14)$$
 $\tilde{L} = (7,14)$

