1. [5 pt] Using the Jacobi iteration method, we want to solve a linear system $A\mathbf{x} = \mathbf{b}$:

$$A = \begin{bmatrix} 5 & 1 & 2 \\ -1 & -3 & 1 \\ 2 & -2 & -6 \end{bmatrix}. \tag{1}$$

- (a) Calculate the iteration matrix $B_{\rm J}$.
- (b) By calculating $||B_J||_{\infty}$, show that the Jacobi method converges for any vector **b**.
- 2. [5 pt] Suppose you are solving a linear system $A\mathbf{x} = \mathbf{b}$ using an iterative method $\mathbf{x}^{(k)} = B\mathbf{x}^{(k-1)} + \mathbf{c}$ and the spectral radius of B is found to be $\frac{1}{2}$. If the relative residual error was estimated to be 0.01 after 5 iterations, how many additional iterations will be needed for the relative residual error to be smaller than 10^{-8} ? (Use $2^{10} \approx 10^3$)
- 3. [10 pt] We want to solve the following 2×2 system using the Jacobi and Gauss-Seidel iterations:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix}. \tag{2}$$

Here we assume that a, b, c, d, u, and v are real numbers and $a \neq 0, d \neq 0$.

- (a) Compute the iteration matrices $B_{\rm I}$ and $B_{\rm GS}$.
- (b) Compute the spectral radii of $B_{\rm J}$ and $B_{\rm GS}$.
- (c) Show that the Jacobi and Gauss-Seidel both converge or both diverge.
- 4. [10 pt] Consider the successive overrelaxation (SOR) method to solve $A\mathbf{x} = \mathbf{b}$. Whenever needed, use notations $A = (a_{ij})$, $\mathbf{b} = (b_i)$, and A = L + D + U.
 - (a) Write down the equation that shows how each $x_i^{(k)}$ is updated.
 - (b) Write down a pseudo code (or MATLAB code) for the method.
 - (c) Derive the matrix representation $\mathbf{x}^{(k)} = B_{SOR,\omega}\mathbf{x}^{(k-1)} + \mathbf{c}_{SOR,\omega}$.
 - (d) For the SOR method, state either a necessary condition (about ω) or a sufficient condition (about special matrices) for convergence.
- 5. [5 pt] For a nonsingular matrix A and a nonzero vector **b**, let **x** be the solution to A**x** = **b**. Let $\mathbf{x} + \delta \mathbf{x}$ be the solution to the perturbed system $A(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$. Show the following inequality:

$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \le \|A\| \|A^{-1}\| \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}.$$
 (3)

- 6. [5 pt] Choose one of the following statements and prove it.
 - For an induce norm $\|\cdot\|$, $\|AB\| \le \|A\| \|B\|$.

- If $\rho(B) < 1$, I B is invertible.
- For ||B|| < 1,

$$\|(I-B)^{-1}\| \le \frac{1}{1-\|B\|}.$$
 (4)