

ВЫСШАЯ МАТЕМАТИКА

Часть ІІ

Учебное пособие

Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б. Н. Ельцина

ВЫСШАЯ МАТЕМАТИКА

Часть II

Рекомендовано методическим советом Уральского федерального университета в качестве **учебного пособия** для студентов инженерных направлений и специальностей

Екатеринбург Издательство Уральского университета 2017

УДК 51(075.8) ББК 22я73 В93

Авторы:

В. И. Белоусова, Г. М. Ермакова, М. М. Михалева, Н. В. Чуксина, И. А. Шестакова

Репензенты:

кафедра прикладной математики Уральского государственного экономического университета (завкафедрой канд. физ.-мат. наук, доцент Ю. Б. Мельников);

канд. физ.-мат. наук, ст. науч. сотр. И. Н. Белоусов (Институт математики и механики УрО РАН)

Научный редактор — канд. физ.-мат. наук, доцент Б. М. Веретенников

Высшая математика: учебное пособие / В. И. Белоусова, Г. М. Ермакова, М. М. Михалева, Н. В. Чуксина, И. А. Шестакова. — Екатеринбург: Изд-во Урал. ун-та, 2017. — Ч. II. — 300 с.

ISBN 978-5-7996-2028-8 (ч. 2) ISBN 978-5-7996-1778-3

Данное учебное пособие является продолжением учебного пособия «Высшая математика», часть I (авторы В. И. Белоусова, Г. М. Ермакова, М. М. Михалева, Ю. В. Шапарь, И. А. Шестакова), включает в себя следующие разделы высшей математики: неопределенный интеграл, определенный интеграл, кратные и криволинейные интегралы, линейная алгебра, дифференциальные уравнения, системы дифференциальных уравнении.

Библиогр.: 22 назв. Табл. 3. Рис. 48.

УДК 51(075.8) ББК 22я73

Учебное издание

Белоусова Вероника Игоревна, Ермакова Галина Михайловна, Михалева Марина Михайловна, Чуксина Наталия Владимировна, Шестакова Ирина Александровна

ВЫСШАЯ МАТЕМАТИКА

Редактор Н. П. Кубыщенко Верстка О. П. Игнатьевой

Подписано в печать 21.02.2017. Формат $60\times84/16$. Бумага писчая. Печать цифровая. Гарнитура Newton. Уч.-изд. л. 12,8. Усл. печ. л. 17,4. Тираж 50 экз. Заказ 47.

Издательство Уральского университета Редакционно-издательский отдел ИПЦ УрФУ 620049, Екатеринбург, ул. С. Ковалевской, 5. Тел.: 8(343)375-48-25, 375-46-85, 374-19-41. E-mail: rio@urfu.ru

Отпечатано в Издательско-полиграфическом центре УрФУ 620075, Екатеринбург, ул. Тургенева, 4. Тел.: 8(343) 350-56-64, 350-90-13. Факс: 8(343) 358-93-06 E-mail: press-urfu@mail.ru

ISBN 978-5-7996-2028-8 (ч. 2) ISBN 978-5-7996-1778-3 © Уральский федеральный университет, 2017

Оглавление

Глава I. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ	7
1. Основные понятия и определения	7
2. Методы вычисления неопределенных интегралов	8
2.1. Вычисление интегралов с помощью таблицы	
интегралов и правил интегрирования	8
2.2. Метод подведения под знак дифференциала	9
2.3. Метод интегрирования по частям	
2.4. Метод замены переменной (метод подстановки)	
2.5. Интегрирование функций, содержащих квадратный	
трехчлен	18
2.6. Интегрирование дробно-рациональных функций	21
2.7. Интегрирование тригонометрических функций	27
Глава 2. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ	33
1. Основные понятия и определения	
2. Правила вычисления определенного интеграла	
3. Геометрические приложения определенного интеграла	41
3.1. Площадь плоской фигуры	41
3.2. Объем тела вращения	43
3.3. Длина дуги плоской кривой	
3.4. Площадь поверхности вращения	45
Глава 3. НЕСОБСТВЕННЫЙ ИНТЕГРАЛ	55
1. Основные понятия и определения	55
2. Свойства несобственных интегралов	57
3. Сходимость несобственных интегралов	61
Глава 4. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ	67
1. Двойной интеграл	67
1.1. Понятие и свойства двойного интеграла	67
1.2. Вычисление двойного интеграла	
в прямоугольной системе координат	70
1.3. Замена переменных в двойном интеграле.	
Переход к полярным координатам	78
1.4. Приложения двойного интеграла	

2. Тройной интеграл	88
2.1. Понятие и свойства тройного интеграла	88
2.2. Вычисление тройного интеграла	
2.3. Замена переменных в тройном интеграле. Переход	
к цилиндрическим и сферическим координатам	94
2.4. Приложения тройного интеграла	
3. Криволинейные интегралы	
3.1. Криволинейный интеграл 1-го рода	102
3.2. Приложения криволинейного интеграла 1-го рода	
3.3. Криволинейный интеграл 2-го рода	
3.4. Формула Грина	
4. Поверхностные интегралы	120
4.1. Поверхностный интеграл 1-го рода	
4.2. Приложения поверхностного интеграла 1-го рода	124
4.3. Поверхностный интеграл 2-го рода	
4.4. Формула Стокса	
4.5. Формула Остроградского	
5. Элементы векторного анализа	136
5.1. Скалярное и векторное поле	136
5.2. Градиент	
5.3. Поток векторного поля через поверхность	141
5.4. Дивергенция, формула Остроградского	146
5.5. Циркуляция вектора, формула Стокса, вихрь	148
5.6. Потенциальное и соленоидальное поля	
Глава 5. ЛИНЕЙНАЯ АЛГЕБРА	154
1. Евклидовы и унитарные пространства	154
1.1. Скалярное произведение в действительном	
линейном пространстве	154
1.2. Скалярное произведение в комплексном	
линейном пространстве	156
1.3. Выражение скалярного произведения	
через координаты перемножаемых векторов	157
1.4. Ортогональная система элементов и ее свойства	159
2. Линейные операторы	163
2.1. Определение линейного оператора. Матрица	
линейного оператора	163
2.2. Связь координат образа и координат	
прообраза. Связь матриц оператора в разных базиса:	x 168

2.3. Образ и ядро, ранг и дефект линейного оператора	173
2.4. Алгебра линейных операторов	177
2.5. Собственные значения и собственные векторы	
линейного оператора	183
2.6. Структура линейного оператора	189
2.7. Сопряженные и самосопряженные операторы	202
3. Квадратичные формы в евклидовом пространстве	209
3.1. Определение квадратичной формы. Матрица	
квадратичной формы	209
3.2. Приложение квадратичных форм	
к задачам аналитической геометрии	215
Глава 6. ТЕОРИЯ ДИФФЕРЕНЦИАЛЬНЫХ	
УРАВНЕНИЙ	224
1. Основные понятия и определения	
2. Дифференциальные уравнения первого порядка	
2.1. Геометрическая интерпретация дифференциального	
уравнения первого порядка и его решений	226
2.2. Задача Коши	
3. Дифференциальные уравнения высших порядков	238
3.1. Задача Коши	
3.2. Интегрирование дифференциальных уравнений	
высших порядков	239
3.3. Теория линейных дифференциальных уравнений	
высшего порядка	245
3.4. Общая теория однородных линейных	
дифференциальных уравнений (ОЛДУ)	246
3.5. Восстановление однородного линейного	
дифференциального уравнения по его	
фундаментальной системе решений	249
4. Интегрирование однородных линейных	
дифференциальных уравнений	252
4.1. Метод Эйлера	252
4.2. Интегрирование однородных линейных	
дифференциальных уравнений с переменными	
коэффициентами, допускающих понижение	
порядка	255
4.3. Интегрирование однородных линейных	
дифференциальных уравнений с переменными	

коэффициентами, сводящихся к однородным	
линейным дифференциальным уравнениям	
с постоянными коэффициентами	. 256
5. Решение неоднородных линейных	
дифференциальных уравнений	. 258
5.1. Метод вариации произвольных постоянных	
(метод Лагранжа)	. 258
5.2. Метод подбора частного решения неоднородного	
линейного дифференциального уравнения	
с постоянными коэффициентами по виду правой	
части	. 262
Глава 7. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ	
УРАВНЕНИЙ (СДУ)	. 268
1. Общие понятия и определения	
2. Геометрическая интерпретация СДУ в нормальной форме	
3. Механическая интерпретация СДУ в нормальной форме	
4. Задача Коши для СДУ в нормальной форме	
5. Некоторые приемы аналитического решения СДУ	
5.1. Сведение к одному уравнению	
5.2. Метод интегрируемых комбинаций	
5.3. Симметричная форма записи СДУ	
6. Системы линейных дифференциальных уравнений	
6.1. Свойства решений СОЛДУ $\dot{\bar{x}} = A(t)\bar{x}, t \in (a,b)$	
6.2. Свойства матриц фундаментальной системы	
решений СОЛДУ	284
6.3. Системы неоднородных линейных	. 204
дифференциальных уравнений	
дифференциальных уравнении $\dot{\overline{x}} = A(t)\overline{x} + B(t), t \in (a,b)$	287
	. 207
6.4. Метод Эйлера нахождения решений СОЛДУ	• • •
с постоянными коэффициентами	. 290
	200
Список питературы	299

Глава 1. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

1. Основные понятия и определения

Определение. Функция F(x) называется *первообразной* для функции f(x), если F'(x) = f(x).

Определение. Неопределенным интегралом функции f(x) называется множество всех первообразных вида F(x)+C.

Обозначение:
$$\int f(x)dx = F(x) + C$$
.

Таблица основных интегралов:

$$\int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C, \ (\alpha \neq -1); \quad \int \frac{du}{u} = \ln|u| + C;$$

$$\int e^{u} du = e^{u} + C; \quad \int a^{u} du = \frac{a^{u}}{\ln a} + C;$$

$$\int \sin u du = -\cos u + C; \quad \int \cos u du = \sin u + C;$$

$$\int \sinh u du = \cosh u + C; \quad \int \cosh u du = \sinh u + C;$$

$$\int \frac{du}{\cos^{2} u} = \tan u + C; \quad \int \frac{du}{\sin^{2} u} = -\cot u + C;$$

$$\int \frac{du}{\sin u} = \ln \left| \tan \frac{u}{2} \right| + C; \quad \int \frac{du}{\cos u} = \ln \left| \tan \frac{u}{2} + \frac{\pi}{4} \right| + C;$$

$$\int \frac{du}{u^{2} + a^{2}} = \frac{1}{a} \arctan \frac{u}{a} + C;$$

$$\int \frac{du}{u^2 - a^2} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + C, (a \neq 0);$$

$$\int \frac{du}{\sqrt{u^2 \pm a^2}} = \ln \left| u + \sqrt{u^2 \pm a^2} \right| + C;$$

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C, (a \neq 0).$$

Основные правила интегрирования

- 1. $\int kf(x)dx = kF(x) + C$, где k постоянная величина.
- 2. $\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx.$
- 3. Если $\int f(x)dx = F(x) + C$ и $u = \varphi(x)$, то $\int f(u)du = F(u) + C$.
- 4. $d(\int f(x)dx) = f(x)dx$.
- $5. \int f'(x) dx = f(x) + C.$

2. Методы вычисления неопределенных интегралов

2.1. Вычисление интегралов с помощью таблицы интегралов и правил интегрирования

Пример 1. Найти интеграл $\int (1-x^2)^2 dx$.

Решение

Для вычисления интеграла воспользуемся формулами сокращенного умножения и свойствами интегралов.

$$\int (1-x^2)^2 dx = \int (1-2x^2+x^4) dx = x - \frac{2x^3}{3} + \frac{x^5}{5} + C.$$

Чтобы убедиться в правильности вычислений, найдем производную от полученного выражения:

$$\left(x - \frac{2x^3}{3} + \frac{x^5}{5} + C\right)' = 1 - 2x^2 + x^4.$$

Пример 2. Найти интеграл $\int \frac{x^2}{1-x^2} dx$.

Решение

Преобразуем подынтегральную функцию, выделив целую часть:

$$\int \frac{x^2}{1-x^2} dx = -\int \frac{x^2 - 1 + 1}{x^2 - 1} dx = -\int dx - \int \frac{1}{x^2 - 1} dx = -x - \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C.$$

Пример 3. Найти интеграл $\int \frac{dx}{\sqrt{2x^2+3}}$

Решение

$$\int \frac{dx}{\sqrt{2x^2+3}} = \frac{1}{\sqrt{2}} \int \frac{dx}{\sqrt{x^2+1.5}} = \frac{1}{\sqrt{2}} \ln \left| x + \sqrt{x^2+1.5} \right| + C.$$

Упражнения для самостоятельной подготовки

Найти неопределенные интегралы:

a)
$$\int (2^x + 7^x)^2 dx$$
, 6) $\int \frac{dx}{3x^2 + 1}$, B) $\int \frac{(\sqrt[3]{x} + x)^2 dx}{\sqrt{x}}$, r) $\int \frac{dx}{4 - x^2}$.

2.2. Метод подведения под знак дифференциала

Данный метод основывается на свойствах дифференциалов:

$$df\left(x\right) = f'\left(x\right)dx,$$

$$d\left(f\left(x\right) + C\right) = df\left(x\right),$$

$$d\left(C \cdot f\left(x\right)\right) = C \cdot df\left(x\right), \text{ или } df\left(x\right) = \frac{1}{C}d\left(C \cdot f\left(x\right)\right), \ (C \neq 0).$$

Пример 1. Найти интеграл $\int \frac{dx}{\sqrt{4x^2-1}}$.

Решение

Воспользуемся свойствами дифференциалов: $dx = \frac{1}{2}d(2x)$.

Тогда

$$\int \frac{dx}{\sqrt{4x^2 - 1}} = \frac{1}{2} \int \frac{d(2x)}{\sqrt{(2x)^2 - 1}} = \frac{1}{2} \ln \left| 2x + \sqrt{4x^2 - 1} \right| + C.$$

Пример 2. Найти интеграл $\int \frac{x \, dx}{\sqrt{1-4x^2}}$.

Решение

По свойствам дифференциалов:

$$xdx = \frac{1}{2}d(x^2) = -\frac{1}{8}d(-4x^2) = -\frac{1}{8}d(1-4x^2).$$

Поэтому

$$\int \frac{x \, dx}{\sqrt{1 - 4x^2}} = -\frac{1}{8} \int \frac{d(1 - 4x^2)}{\sqrt{1 - 4x^2}} = -\frac{1}{8} \int (1 - 4x^2)^{-\frac{1}{2}} \, d(1 - 4x^2) =$$

$$= -\frac{1}{8} \frac{(1 - 4x^2)^{\frac{1}{2}}}{\frac{1}{2}} + C = -\frac{1}{4} \sqrt{1 - 4x^2} + C.$$

Пример 3. Найти интеграл $\int \frac{(\operatorname{tg} x + 1)^3}{\cos^2 x} dx$.

Решение

По свойствам дифференциалов: $\frac{dx}{\cos^2 x} = d(\operatorname{tg} x + 1)$.

Поэтому
$$\int \frac{(\operatorname{tg} x + 1)^3}{\cos^2 x} dx = \int (\operatorname{tg} x + 1)^3 d(\operatorname{tg} x + 1) = \frac{1}{4} (\operatorname{tg} x + 1)^4 + C.$$

Пример 4. Найти интеграл $\int \frac{\sin x \cos x \, dx}{\sqrt{\sin^2 x + 1}}$.

Решение

$$\int \frac{\sin x \cos x \, dx}{\sqrt{\sin^2 x + 1}} = \frac{1}{2} \int \frac{d(\sin^2 x + 1)}{\sqrt{\sin^2 x + 1}} = \sqrt{\sin^2 x + 1} + C.$$

Пример 5. Найти интеграл $\int \frac{(2-\arcsin x)^3}{\sqrt{1-x^2}} dx$.

Решение

По свойствам дифференциалов:

$$\frac{dx}{\sqrt{1-x^2}} = d\left(\arcsin x\right) = -d\left(2 - \arcsin x\right),$$

тогда

$$\int \frac{(2 - \arcsin x)^3}{\sqrt{1 - x^2}} dx = -\int (2 - \arcsin x)^3 d(2 - \arcsin x) =$$

$$= -\frac{(2 - \arcsin x)^4}{4} + C.$$

Пример 6. Найти интеграл $\int \frac{3x+1}{\sqrt{1+x^2}} dx$.

Решение

$$\int \frac{3x+1}{\sqrt{1+x^2}} dx = \int \frac{3x}{\sqrt{1+x^2}} dx + \int \frac{dx}{\sqrt{1+x^2}} =$$

$$= \frac{3}{2} \int \frac{d(1+x^2)}{\sqrt{1+x^2}} + \ln\left|x + \sqrt{1+x^2}\right| = 3\sqrt{1+x^2} + \ln\left|x + \sqrt{1+x^2}\right| + C.$$

Упражнения для самостоятельной подготовки

Найти неопределенные интегралы:

a)
$$\int \sqrt[4]{7x-2} dx$$
; 6) $\int \frac{\sin x \cos x dx}{(\cos^2 x+5)^4}$; B) $\int \cos(4x-2) dx$;

г)
$$\int \frac{3x+x^3}{\sqrt{1+x^4}} dx$$
; д) $\int \sqrt[4]{7x-2} dx$; е) $\int \frac{dx}{\cos^2 x (1+tg^2x)}$.

2.3. Метод интегрирования по частям

Если u = u(x) и v = v(x) — дифференцируемые функции, то справедлива формула интегрирования по частям: $\int u \, dv = uv - \int v \, du.$

Данная формула применяется в случаях, когда подынтегральное выражение можно представить в виде произведения двух множителей u(x) и dv, причем по виду функции dv легко можно восстановить функцию v и вычисление интеграла $\int v \, du$ является более простой задачей, чем вычисление интеграла $\int u \, dv$.

Иногда, чтобы свести данный интеграл к табличному, формулу интегрирования по частям применяют несколько раз. В некоторых случаях с помощью интегрирования по частям получается уравнение, из которого выражается искомый интеграл (так называемый «возвратный» интеграл).

Для того чтобы применить эту формулу, нужно правильно подобрать множители u и dv. Как правило, в качестве u(x) выбирают либо многочлен, чтобы понизить его степень, либо функцию, от которой трудно найти первообразную.

Пример 1. Найти интеграл $\int (x+3)e^x dx$.

Решение

Воспользуемся формулой интегрирования по частям: u = (x+3) и $dv = e^x dx$. Тогда du = dx, $v = e^x$. Таким образом,

$$\int (x+3)e^x dx = (x+3)e^x - \int e^x dx = (x+3)e^x - e^x + C = (x+2)e^x + C.$$

Пример 2. Найти интеграл $\int arctg x dx$.

Решение

$$\int \operatorname{arctg} x \, dx = \begin{bmatrix} u = \operatorname{arctg} x, & dv = dx, \\ du = \frac{dx}{1+x^2}, & v = x \end{bmatrix} = x \cdot \operatorname{arctg} x - \int \frac{x dx}{1+x^2} = x \cdot \operatorname{arctg} x - \frac{1}{2} \int \frac{d(1+x^2)}{1+x^2} = x \cdot \operatorname{arctg} x - \frac{1}{2} \ln|1+x^2| + C.$$

Пример 3. Найти интеграл $\int (x^2 + 3) \ln x \, dx$.

Решение

В данном случае в качестве u(x) возьмем более сложную функцию $u = \ln x$. Тогда $dv = (x^2 + 3)dx$. Найдем недостающие элементы формулы: $du = \frac{dx}{x}$, $v = \frac{1}{3}x^3 + 3x$. Таким образом,

$$\int (x^2 + 3) \ln x \, dx = \ln x \cdot \left(\frac{1}{3}x^3 + 3x\right) - \int \left(\frac{1}{3}x^3 + 3x\right) \frac{dx}{x} =$$

$$= \ln x \cdot \left(\frac{1}{3}x^3 + 3x\right) - \int \left(\frac{1}{3}x^2 + 3\right) dx = \ln x \cdot \left(\frac{1}{3}x^3 + 3x\right) - \frac{1}{9}x^3 - 3x + C.$$

Пример 4. Найти интеграл $\int e^{2x} \cos x \, dx$.

Решение

Рассмотрим пример «возвратного» интеграла. Здесь обе функции достаточно просто интегрируются по отдельности.

Возьмем $u=e^{2x}$, $dv=\cos x\,dx$. Тогда $du=2e^{2x}dx$, $v=\sin x$. Та-ким образом,

 $\int e^{2x} \cos x \, dx = e^{2x} \sin x - 2 \int e^{2x} \sin x \, dx.$

Воспользуемся формулой интегрирования по частям еще раз: $u = e^{2x}$, $dv = \sin x \, dx$, откуда $du = 2e^{2x} \, dx$, $v = -\cos x$. Итак,

$$\int e^{2x} \cos x \, dx = e^{2x} \sin x - 2 \int e^{2x} \sin x \, dx =$$

$$= e^{2x} \sin x - 2 \left(-2e^{2x} \cos x + 2 \int e^{2x} \cos x \, dx \right) =$$

$$= e^{2x} \sin x + 4e^{2x} \cos x - 4 \int e^{2x} \cos x \, dx.$$

Обозначим $I = \int e^{2x} \cos x \, dx$.

Получили уравнение вида: $I = e^{2x} \sin x + 4e^{2x} \cos x - 4I$.

Откуда
$$5I = e^{2x} \sin x + 4e^{2x} \cos x$$
, $I = \frac{1}{5} (e^{2x} \sin x + 4e^{2x} \cos x)$.

Мы получили одну из первообразных. Чтобы записать множество первообразных, нужно добавить произвольное число C. Таким образом,

$$\int e^{2x} \cos x \, dx = \frac{1}{5} \Big(e^{2x} \sin x + 4e^{2x} \cos x \Big) + C.$$

Упражнения для самостоятельной подготовки

Найти неопределенные интегралы:

a)
$$\int x \cos 3x \, dx$$
; 6) $\int \arcsin x \, dx$; B) $\int \ln^2 x \, dx$; $\int \int x^2 \arctan 3x \, dx$;

д)
$$\int 3^{x} \sin x \, dx$$
; e) $\int \frac{\arcsin \sqrt{x}}{\sqrt{1-x}} \, dx$; ж) $\int \sqrt{4-x^{2}} \, dx$; 3) $\int \sin(\ln x) \, dx$.

2.4. Метод замены переменной (метод подстановки)

Пусть функция $x = \varphi(t)$ непрерывно дифференцируемая на некотором промежутке и имеет обратную функцию $t = \psi(x)$.

Тогда
$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt$$
.

Функцию $\phi(t)$ выбирают таким образом, чтобы правая часть формулы приняла вид, удобный для интегрирования.

После того как вычислен интеграл в правой части формулы, следует вернуться к первоначальной переменной с помощью замены $t = \psi(x)$.

Пример 1. Найти интеграл $\int x (2x+1)^5 dx$.

Решение

Введем замену
$$t = 2x + 1$$
, откуда $x = \frac{t - 1}{2}$, $dx = \frac{1}{2}dt$. Тогда
$$\int x (2x + 1)^5 dx = \int \frac{t - 1}{2} \cdot t^5 \cdot \frac{1}{2} dt = \frac{1}{4} \int (t^6 - t^5) dt =$$
$$= \frac{1}{4} \left(\frac{t^7}{7} - \frac{t^6}{6} \right) + C = \frac{1}{4} \left(\frac{(2x + 1)^7}{7} - \frac{(2x + 1)^6}{6} \right) + C.$$

Тригонометрические подстановки применяют в случаях, если интеграл содержит выражение вида $\sqrt{a^2+x^2}$, $\sqrt{a^2-x^2}$ или $\sqrt{x^2-a^2}$.

Тип интеграла	Подстановка
$\int R\left(x,\sqrt{a^2-x^2}\right)dx$	$x = a\sin t, dx = a\cos t dt, \sqrt{a^2 - x^2} = a\cos t$
$\int R\left(x,\sqrt{x^2-a^2}\right)dx$	$x = \frac{a}{\cos t}$, $dx = \frac{a\sin t}{\cos^2 t} dt$, $\sqrt{x^2 - a^2} = a \operatorname{tg} t$
$\int R(x,\sqrt{a^2+x^2})dx$	$x = a \operatorname{tg} t$, $dx = \frac{a}{\cos^2 t} dt$, $\sqrt{a^2 + x^2} = \frac{a}{\cos t}$

Пример 2. Найти интеграл $\int \sqrt{9-x^2} dx$.

Решение

Воспользуемся рекомендациями, представленными в таблице: $x = 3\sin t$, $dx = 3\cos t \, dt$, $\sqrt{9-x^2} = 3\cos t$. Тогда

$$\int \sqrt{9 - x^2} \, dx = \int 3 \cos t \cdot 3 \cos t \, dt = 9 \int \cos^2 t \, dt =$$

$$= \frac{9}{2} \int (1 + \cos 2x) \, dx = \frac{9}{2} \left(t + \frac{1}{2} \sin 2t \right) + C.$$

Вернемся к переменной x с помощью замены $t = \arcsin \frac{x}{3}$, учитывая, что $\sin(\arcsin \alpha) = \alpha$, $\cos(\arcsin \alpha) = \sqrt{1 - \alpha^2}$.

Тогда

$$\int \sqrt{9 - x^2} dx = \frac{9}{2} \left(t + \frac{1}{2} \sin 2t \right) + C = \frac{9}{2} \left(t + \sin t \cos t \right) + C =$$

$$= \frac{9}{2} \left(\arcsin \frac{x}{3} + \frac{x}{3} \sqrt{1 - \left(\frac{x}{3}\right)^2} \right) + C = \frac{9}{2} \arcsin \frac{x}{3} + \frac{1}{2} x \sqrt{9 - x^2} + C.$$

Пример 3. Найти интеграл $\int \frac{dx}{x^2 \sqrt{9 + x^2}}$.

Решение

Воспользуемся рекомендациями, представленными в таблице:

$$x = 3 \lg t, dx = \frac{3}{\cos^2 t} dt, \sqrt{9 + x^2} = \frac{3}{\cos t}, \quad t = \operatorname{arctg} \frac{x}{3}.$$

$$\int \frac{dx}{x^2 \sqrt{9 + x^2}} = \int \frac{3dt}{9 \lg^2 t \cdot \cos^2 t \cdot \frac{3}{\cos t}} =$$

$$= \frac{1}{9} \int \frac{\cos t dt}{\sin^2 t} = \frac{1}{9} \int \frac{d(\sin t)}{\sin^2 t} = -\frac{1}{9 \sin t} + C =$$

$$= -\frac{1}{9 \sin \left(\operatorname{arctg} \frac{x}{3}\right)} + C.$$

Интегрирование функций вида $R \left(x, \sqrt[m]{\frac{ax+b}{cx+d}}, \sqrt[k]{\frac{ax+b}{cx+d}} \right)$, где R —

рациональная функция, m, k — натуральные числа, производятся с помощью подстановки $\frac{ax+b}{cx+d} = t^n$, где n — наименьшее общее кратное чисел m, k.

Пример 4. Найти интеграл
$$\int \frac{dx}{\sqrt[4]{2x+1} + \sqrt{2x+1}}$$
.

Решение

Заменим переменную: $\sqrt[4]{2x+1} = t$, $2x+1=t^4$.

Тогда
$$x = \frac{t^4 - 1}{2}$$
, $dx = 2t^3 dt$.

$$\int \frac{dx}{\sqrt[4]{2x+1} + \sqrt{2x+1}} = \int \frac{2t^3 dt}{t+t^2} = 2\int \frac{t^2 dt}{1+t} = 2\int \left(t-1+\frac{1}{1+t}\right) dt =$$

$$= 2\left(\frac{t^2}{2} - t + \ln|1+t|\right) + C = \sqrt{2x+1} - 2\sqrt[4]{2x+1} + 2\ln|1+\sqrt[4]{2x+1}| + C.$$

Пример 5. Найти интеграл $\int e^{\sqrt{x}} dx$.

Решение

Заменим переменную: $\sqrt{x} = t$, $x = t^2$, dx = 2t dt. Тогда

$$\int e^{\sqrt{x}} dx = 2 \int e^{t} t dt = \begin{bmatrix} u = t, dv = e^{t} dt, \\ du = dt, v = e^{t} \end{bmatrix} =$$

$$= 2 \left(e^{t} t - \int e^{t} dt \right) = 2 \left(e^{t} t - e^{t} \right) + C = 2 e^{\sqrt{x}} \left(\sqrt{x} - 1 \right) + C.$$

Пример 6. Найти интеграл $\int \frac{dx}{(2-x)\sqrt{1-x}}$.

Решение

Заменим переменную: $\sqrt{1-x} = t$, $x = 1 - t^2$, dx = -2t dt. Тогда

$$\int \frac{dx}{(2-x)\sqrt{1-x}} = \int \frac{-2tdt}{(1+t^2)t} = -2\int \frac{dt}{1+t^2} =$$

$$= -2 \arctan t + C = -2 \arctan \sqrt{1-x} + C.$$

Упражнения для самостоятельной подготовки

Найти неопределенные интегралы:

a)
$$\int \frac{\sqrt{1+x^2} dx}{x}$$
; 6) $\int \frac{dx}{x^2 \sqrt{4-x^2}}$; в) $\int \frac{dx}{x \sqrt{x^2-1}}$; г) $\int \frac{\sqrt{x-1}}{x} dx$; д) $\int \frac{dx}{\sqrt{x} \left(1+\sqrt[3]{x}\right)}$; e) $\int \sin \sqrt{x-1} dx$; ж) $\int \frac{x+3}{x^2 \sqrt{2x+3}} dx$.

2.5. Интегрирование функций, содержащих квадратный трехчлен

Рассмотрим вычисление интегралов вида

$$\int \frac{ax+b}{cx^2+dx+e} dx, \int \frac{ax+b}{\sqrt{cx^2+dx+e}} dx.$$

При вычислении интегралов подобного типа применяется метод выделения полного квадрата в знаменателе выражения:

$$cx^{2} + dx + e = c\left(x^{2} + 2 \cdot \frac{d}{2c}x + \left(\frac{d}{2c}\right)^{2}\right) + e - c\left(\frac{d}{2c}\right)^{2} = c\left(x + \frac{d}{2c}\right)^{2} + e - \frac{d^{2}}{4c}.$$

Пример 1. Найти интеграл
$$\int \frac{dx}{x^2 + 4x + 5}$$
.

Решение

Выделим полный квадрат в знаменателе выражения:

$$x^{2} + 4x + 5 = (x^{2} + 4x + 4) + 1 = (x + 2)^{2} + 1$$
.

Тогда

$$\int \frac{dx}{x^2 + 4x + 5} = \int \frac{dx}{(x+2)^2 + 1} = \int \frac{d(x+2)}{(x+2)^2 + 1} = \arctan(x+2) + C.$$

Пример 2. Найти интеграл $\int \frac{(3x+1)dx}{\sqrt{2x^2+4x-1}}$.

Решение

Выделим полный квадрат в знаменателе выражения:

$$2x^{2}+4x-1=2(x^{2}+2x+1)-2-1=2(x+1)^{2}-3.$$

Вычисляем интеграл:

$$\int \frac{(3x+1)dx}{\sqrt{2x^2+4x-1}} = \int \frac{(3x+1)dx}{\sqrt{2(x+1)^2-3}} = \int \frac{(3(x+1)-2)dx}{\sqrt{2(x+1)^2-3}} =$$

$$= 3\int \frac{(x+1)dx}{\sqrt{2(x+1)^2-3}} - 2\int \frac{dx}{\sqrt{2(x+1)^2-3}} =$$

$$= \frac{3}{4}\int \frac{d(2(x+1)^2-3)}{\sqrt{2(x+1)^2-3}} - \frac{2}{\sqrt{2}}\int \frac{d(\sqrt{2}(x+1))}{\sqrt{2(x+1)^2-3}} =$$

$$= \frac{3}{2}\sqrt{2(x+1)^2-3} - \sqrt{2}\ln\left|\sqrt{2}(x+1) + \sqrt{2(x+1)^2-3}\right| + C.$$

Пример 3. Найти интеграл $\int \frac{(x+1)dx}{x^2+3x+2}$.

Решение

Выделим полный квадрат в знаменателе выражения:

$$x^{2} + 3x + 2 = \left(x^{2} + 3x + \frac{9}{4}\right) - \frac{9}{4} + 2 = \left(x + \frac{3}{2}\right)^{2} - \frac{1}{4}$$

Тогда

$$\int \frac{(x+1)dx}{x^2+3x+2} = \int \frac{(x+1)dx}{\left(x+\frac{3}{2}\right)^2 - \frac{1}{4}} = \int \frac{\left(\left(x+\frac{3}{2}\right) - \frac{1}{2}\right)dx}{\left(x+\frac{3}{2}\right)^2 - \frac{1}{4}} =$$

$$= \int \frac{\left(x+\frac{3}{2}\right)dx}{\left(x+\frac{3}{2}\right)^2 - \frac{1}{4}} - \frac{1}{2}\int \frac{dx}{\left(x+\frac{3}{2}\right)^2 - \frac{1}{4}} =$$

$$= \frac{1}{2}\int \frac{d\left(\left(x+\frac{3}{2}\right)^2 - \frac{1}{4}\right)}{\left(x+\frac{3}{2}\right)^2 - \frac{1}{4}} - \frac{1}{2}\int \frac{d\left(x+\frac{3}{2}\right)}{\left(x+\frac{3}{2}\right)^2 - \frac{1}{4}} =$$

$$= \frac{1}{2}\ln\left|\left(x+\frac{3}{2}\right)^2 - \frac{1}{4}\right| - \frac{1}{2}\ln\left|\frac{x+\frac{3}{2} - \frac{1}{2}}{x+\frac{3}{2} + \frac{1}{2}}\right| + C =$$

$$= \frac{1}{2}\ln\left|x^2 + 3x + 2\right| - \frac{1}{2}\ln\left|\frac{x+1}{x+2}\right| + C.$$

Рассмотрим вычисление интегралов вида $\int \frac{dx}{x\sqrt{cx^2+dx+e}}$.

Подобный интеграл может быть вычислен с помощью вынесения переменной x из-под корня.

Пример 4. Найти интеграл
$$\int \frac{dx}{x\sqrt{x^2+1}}$$
.

Решение

Вынесем х из-под корня:

$$\int \frac{dx}{x\sqrt{x^2+1}} = \int \frac{dx}{x^2\sqrt{\frac{1}{x^2}+1}} = -\int \frac{d\left(\frac{1}{x}\right)}{\sqrt{\frac{1}{x^2}+1}} = -\ln\left|\frac{1}{x} + \sqrt{\frac{1}{x^2}+1}\right| + C.$$

Упражнения для самостоятельной подготовки

Найти неопределенные интегралы:

a)
$$\int \frac{dx}{2x^2 - 2x + 3}$$
; 6) $\int \frac{dx}{\sqrt{x^2 + 6x + 25}}$;

в)
$$\int \frac{(2x+1)dx}{x^2-4x+8}$$
; г) $\int \frac{dx}{x\sqrt{x^2+x-1}}$.

2.6. Интегрирование дробно-рациональных функций

Рассмотрим интегрирование функций вида $\frac{P(x)}{Q(x)}$, где P(x) и Q(x) — многочлены, зависящие от x.

- 1) Если степень многочлена P(x) больше или равна степени многочлена Q(x), то делением многочлена P(x) на многочлен Q(x) выделим целую часть, т.е. представим дробь в виде $\frac{P(x)}{Q(x)} = G(x) + \frac{P_1(x)}{Q(x)},$ где степень многочлена $P_1(x)$ меньше степени многочлена Q(x).
- 2) Раскладываем знаменатель Q(x) дроби на линейные и квадратные множители: $Q(x) = (x-a)^k \dots (x^2 + px + q)^m$, где многочлен $x^2 + px + q$ не имеет действительных корней.
- 3) Множителю вида $(x-a)^k$ соответствует k простейших дробей вида $\frac{A_1}{x-a} + \frac{A_2}{\left(x-a\right)^2} + \ldots + \frac{A_k}{\left(x-a\right)^k}$, где $A_i = \text{const}, i = 1, \ldots, k$; множителю вида $\left(x^2 + px + q\right)^m$ соответствует m простейших дробей вида:

$$\frac{B_1x+C_1}{x^2+px+q}+\frac{B_2x+C_2}{\left(x^2+px+q\right)^2}+\ldots+\frac{B_mx+C_m}{\left(x^2+px+q\right)^m},$$

где B_i , C_i – произвольные постоянные, i = 1,...,m.

4) Находим коэффициенты A_i , B_i , C_i , i = 1, 2, ..., k, i = 1, 2, ..., m.

В результате интегрирование функции вида $\frac{P(x)}{O(x)}$ сведется

к нахождению интегралов от многочлена и от простейших рациональных дробей.

Пример 1. Найти интеграл
$$\int \frac{3x-1}{(x+2)(x+1)} dx$$
.

Решение

Разложим подынтегральную функцию на сумму простейших дробей, приведем дроби к общему знаменателю и затем приравняем числители полученных дробей:

$$\frac{3x-1}{(x+2)(x+1)} = \frac{A}{x+2} + \frac{B}{x+1} = \frac{A(x+1) + B(x+2)}{(x+2)(x+1)},$$

$$3x-1 = A(x+1) + B(x+2). \tag{1.1}$$

Найдем коэффициенты A и B.

Способ 1. В выражении (1.1) раскроем скобки и приравняем коэффициенты при одинаковых степенях х в правой и левой частях равенства.

$$3x-1 = x(A+B)+(A+2B).$$

3x-1=x(A+B)+(A+2B). Получим систему линейных уравнений: $\begin{cases} A+B=3,\\ A+2B=-1, \end{cases}$ откуда

$$B = -4$$
, $A = 7$.

Способ 2. Подберем значения переменной х таким образом, чтобы одна из скобок в правой части равенства (1.1) обращалась в ноль.

При
$$x = -2$$
: $-7 = -A$, откуда $A = 7$; при $x = -1$: $-4 = B$, откуда $B = -4$.

Данный способ нахождения коэффициентов более удобен в том случае, когда разложение знаменателя содержит линейные множители.

Итак,
$$\frac{3x-1}{(x+2)(x+1)} = \frac{7}{x+2} - \frac{4}{x+1}$$
.

Тогда

$$\int \frac{(3x-1)dx}{x^2+3x+2} = 7\int \frac{dx}{x+2} - 4\int \frac{dx}{x+1} =$$

$$= 7\ln|x+2| - 4\ln|x+1| + C = \ln\frac{|x+2|^7}{(x+1)^4} + C.$$

Пример 2. Найти интеграл $\int \frac{(2x+1)dx}{(x-2)(x+1)^2}$.

Решение

Разложим подынтегральную функцию в сумму простейших дробей:

$$\frac{(2x+1)}{(x-2)(x+1)^2} = \frac{A}{x-2} + \frac{B_1}{x+1} + \frac{B_2}{(x+1)^2} =$$

$$= \frac{A(x+1)^2 + B_1(x-2)(x+1) + B_2(x-2)}{(x-2)(x+1)^2},$$

$$2x+1 = A(x+1)^2 + B_1(x-2)(x+1) + B_2(x-2).$$

При
$$x = -1$$
: $-1 = -3B_2$, откуда $B_2 = \frac{1}{3}$; при $x = 2$: $5 = 9A$, откуда $A = \frac{5}{9}$.

Чтобы найти коэффициент B_1 , раскроем скобки и приравняем свободные члены в правой и левой частях равенства: $1 = A - 2B_1 - 2B_2$, $1 = \frac{5}{0} - 2B_1 - \frac{2}{3}$, откуда $B_1 = -\frac{5}{0}$.

Вычисляем интеграл:

$$\int \frac{(2x+1)dx}{(x-2)(x+1)^2} = \frac{5}{9} \int \frac{dx}{x-2} - \frac{5}{9} \int \frac{dx}{x+1} + \frac{1}{3} \int \frac{dx}{(x+1)^2} =$$

$$= \frac{5}{9} \ln|x-2| - \frac{5}{9} \ln|x+1| - \frac{1}{3(x+1)} + C = \frac{5}{9} \ln\left|\frac{x-2}{x+1}\right| - \frac{1}{3(x+1)} + C.$$

Пример 3. Найти интеграл $\int \frac{dx}{x^3+1}$.

Решение

Разложим подынтегральную функцию в сумму простейших дробей:

$$\frac{1}{x^{3}+1} = \frac{1}{(x+1)(x^{2}-x+1)} = \frac{A}{x+1} + \frac{Bx+D}{(x^{2}-x+1)} =$$

$$= \frac{A(x^{2}-x+1) + (Bx+D)(x+1)}{(x+1)(x^{2}-x+1)},$$

$$1 = A(x^{2}-x+1) + (Bx+D)(x+1),$$

$$1 = (A+B)x^{2} + (-A+B+D)x + A+D.$$

Приравняем коэффициенты при одинаковых степенях x в правой и левой частях равенства.

$$x^{2}$$
: $A + B = 0$,
 x : $-A + B + D = 0$,
 x^{0} : $A + D = 1$.

Получили систему из трех линейных уравнений с тремя неизвестными:

$$\begin{cases} A+B=0,\\ -A+B+D=0,\\ A+D=1, \end{cases}$$
 откуда $A=\frac{1}{3},\ B=-\frac{1}{3},\ D=\frac{2}{3}$ и $\frac{1}{x^3+1}=\frac{1}{3}\Big(\frac{1}{x+1}+\frac{-x+2}{x^2-x+1}\Big).$

Тогда
$$I = \int \frac{dx}{x^3 + 1} = \frac{1}{3} \left(\int \frac{dx}{x + 1} + \int \frac{(-x + 2)dx}{x^2 - x + 1} \right).$$

Для вычисления второго интеграла выделим полный квадрат в знаменателе:

$$\int \frac{(-x+2)dx}{x^2 - x + 1} = -\int \frac{(x-2)dx}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} = -\int \frac{\left(\left(x - \frac{1}{2}\right) - \frac{3}{2}\right)dx}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} =$$

$$= -\frac{1}{2} \int \frac{d\left(\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}\right)}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} + \frac{3}{2} \int \frac{dx}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} =$$

$$= -\frac{1}{2} \ln\left(\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}\right) + \frac{3}{2} \cdot \frac{2}{\sqrt{3}} \arctan \left(\frac{2\left(x - \frac{1}{2}\right)}{\sqrt{3}}\right) + C =$$

$$= -\ln\sqrt{x^2 - x + 1} + \sqrt{3} \arctan \left(\frac{2x - 1}{\sqrt{3}}\right) + C.$$

Итак,

$$I = \frac{1}{3} \left(\ln|x+1| - \ln\sqrt{x^2 - x + 1} + \sqrt{3} \operatorname{arctg} \frac{2x - 1}{\sqrt{3}} \right) + C =$$

$$= \frac{1}{3} \ln \frac{|x+1|}{\sqrt{x^2 - x + 1}} + \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{2x - 1}{\sqrt{3}} + C.$$

Пример 4. Найти интеграл $\int \frac{x^3 + 3x^2 + 5x + 7}{x^2 + 2} dx$.

Решение

Так как степень числителя подынтегральной функции больше степени знаменателя, выделим целую часть дроби, поделив числитель на знаменатель:

$$\frac{x^3 + 3x^2 + 5x + 7}{x^2 + 2} = x + 3 + \frac{3x + 1}{x^2 + 2}.$$

Тогда $\int \frac{x^3 + 3x^2 + 5x + 7}{x^2 + 2} dx = \int \left(x + 3 + \frac{3x + 1}{x^2 + 2}\right) dx =$ $= \int (x + 3) dx + \int \frac{3x}{x^2 + 2} dx + \int \frac{1}{x^2 + 2} dx =$ $= \int (x + 3) d(x + 3) + \frac{3}{2} \int \frac{d(x^2 + 2)}{x^2 + 2} + \frac{1}{\sqrt{2}} \operatorname{arctg} \frac{x}{\sqrt{2}} =$ $= \frac{(x + 3)^2}{2} + \frac{3}{2} \ln |x^2 + 2| + \frac{1}{\sqrt{2}} \operatorname{arctg} \frac{x}{\sqrt{2}} + C.$

Пример 5. Найти интеграл $\int \frac{x^2}{(x+2)^4} dx$.

Решение

При вычислении данного интеграла можно воспользоваться методом разложения подынтегральной функции в сумму простейших дробей: $\frac{x^2}{(x+2)^4} = \frac{A_1}{x+2} + \frac{A_2}{(x+2)^2} + \frac{A_3}{(x+2)^3} + \frac{A_4}{(x+2)^4}.$

Но нахождение интеграла можно значительно упростить, применив метод подстановки.

Введем замену: t = x + 2, dx = dt, x = t - 2. Тогда

$$\int \frac{x^2}{(x+2)^4} dx = \int \frac{(t-2)^2}{t^4} dt = \int \frac{t^2 - 4t + 4}{t^4} dt =$$

$$= \int \left(\frac{1}{t^2} - \frac{4}{t^3} + \frac{4}{t^4}\right) dt = -\frac{1}{t} + \frac{2}{t^2} - \frac{4}{3t^3} + C =$$

$$= -\frac{1}{x+2} + \frac{2}{(x+2)^2} - \frac{4}{3(x+2)^3} + C.$$

Упражнения для самостоятельной подготовки

Найти неопределенные интегралы:

a)
$$\int \frac{dx}{x(x+2)(x+3)}$$
; 6) $\int \frac{dx}{(x^2-4x)^2}$; B) $\int \frac{(x+3)dx}{(x+2)(x^2-4x+5)}$;
r) $\int \frac{5x^3+2}{x^3-5x^2+4x}dx$; II) $\int \frac{dx}{x(9x^5+2)}$; e) $\int \frac{x^4dx}{x^5-5}$.

2.7. Интегрирование тригонометрических функций

Рассмотрим интегралы вида $\int \sin ax \cos bx \, dx$, $\int \sin ax \sin bx \, dx$, $\int \cos ax \cos bx \, dx$.

При вычислении интегралов одного из указанных типов используются следующие тригонометрические формулы:

$$\sin a \cos b = \frac{1}{2} (\sin (a+b) + \sin (a-b)),$$

$$\cos a \cos b = \frac{1}{2} (\cos (a-b) + \cos (a+b)),$$

$$\sin a \sin b = \frac{1}{2} (\cos (a-b) - \cos (a+b)).$$

Пример 1. Найти интеграл $\int \sin 5x \cos 3x \, dx$.

Решение

Воспользуемся тригонометрическими формулами:

$$\sin 5x \cos 3x = \frac{1}{2} (\sin 8x + \sin 2x).$$
Тогда
$$\int \sin 5x \cos 3x \, dx = \frac{1}{2} \int (\sin 8x + \sin 2x) \, dx =$$

$$= \frac{1}{2} \left(-\frac{\cos 8x}{8} - \frac{\cos 2x}{2} \right) + C = -\frac{1}{4} \left(\frac{\cos 8x}{4} + \cos 2x \right) + C.$$

Вычисление интегралов вида $\int \sin^m x \cos^n x \, dx$ можно свести к одному из следующих случаев.

Случай 1. т или n — нечетное положительное число.

Отделяем от нечетной степени $\sin x$ (или $\cos x$) одну степень и заносим ее под знак дифференциала.

Пример 2. Найти интеграл $\int \sin^2 x \cos^3 x \, dx$.

Решение

$$\int \sin^2 x \cos^3 x \, dx = \int \sin^2 x \cos^2 x \, \cos x \, dx =$$
$$= \int \sin^2 x \left(1 - \sin^2 x\right) d\left(\sin x\right) =$$

$$= \int (\sin^2 x - \sin^4 x) d(\sin x) = \frac{\sin^3 x}{3} - \frac{\sin^5 x}{5} + C.$$

Пример 3. Найти интеграл $\int \frac{\sin^3 x}{\sqrt{\cos^3 x}} dx$.

Решение

$$\int \frac{\sin^3 x}{\sqrt{\cos^3 x}} dx = -\int \frac{\sin^2 x}{\sqrt{\cos^3 x}} d(\cos x) = -\int \frac{1 - \cos^2 x}{\sqrt{\cos^3 x}} d(\cos x) =$$

$$= -\int \left(\frac{1}{\sqrt{\cos^3 x}} - \sqrt{\cos x}\right) d(\cos x) = \frac{2}{\sqrt{\cos x}} + \frac{2\sqrt{\cos^3 x}}{3} + C.$$

Случай 2. т или n — четные неотрицательные числа.

В данном случае следует воспользоваться формулами понижения степени:

$$\sin x \cos x = \frac{1}{2} \sin 2x,$$

$$\cos^2 x = \frac{1}{2} (1 + \cos 2x),$$

$$\sin^2 x = \frac{1}{2} (1 - \cos 2x).$$

Пример 4. Найти интеграл $\int \sin^2 x \cos^2 x \, dx$.

Решение

$$\int \sin^2 x \cos^2 x \, dx = \frac{1}{4} \int \sin^2 2x \, dx = \frac{1}{8} \int (1 - \cos 4x) \, dx =$$
$$= \frac{1}{8} \left(x - \frac{\sin 4x}{4} \right) + C.$$

Случай 3. т или n — целые отрицательные числа одинаковой четности.

При вычислении подобных интегралов полагают $\lg x = t$ или $\operatorname{ctg} x = t$ и применяют формулы:

$$1 + tg^2 x = \frac{1}{\cos^2 x}, 1 + ctg^2 x = \frac{1}{\sin^2 x}.$$

К этому же типу сводятся интегралы вида

$$\int \frac{dx}{\cos^k x}, \int \frac{dx}{\sin^k x}, \ k > 0.$$

Пример 5. Найти интеграл $\int \frac{dx}{\sin^5 x \cos^3 x}$.

Решение

$$\int \frac{dx}{\sin^5 x \cos^3 x} = \int \frac{dx}{\frac{\cos^3 x}{\sin^3 x} \sin^8 x} = \int \frac{dx}{\frac{\cos^3 x}{\sin^3 x} \cdot \sin^6 x \cdot \sin^2 x} =$$

$$= \left| \frac{1}{\sin^6 x} = \left(1 + \cot g^2 x \right)^3 \right| = -\int \frac{\left(1 + 3\cot g^2 x + 3\cot g^4 x + \cot g^6 x \right) d(\cot g x)}{\cot g^3 x} =$$

$$= -\int \left(\frac{1}{\cot g^3 x} + \frac{3}{\cot g x} + 3\cot g x + \cot g^3 x \right) d(\cot g x) =$$

$$= \frac{1}{2\cot g^2 x} - 3\ln|\cot g x| - \frac{3}{2}\cot g^2 x - \frac{1}{4}\cot g^4 x + C.$$

Случай 4. т или n — целые числа, причем $mn \le 0$.

а) Если степень числителя четная и на единицу меньше степени знаменателя, то применяется метод интегрирования по частям.

Пример 6. Найти интеграл
$$\int \frac{\cos^2 x}{\sin^3 x} dx$$
.

Решение

$$\int \frac{\cos^2 x}{\sin^3 x} dx = \int \frac{\cos x \cdot \cos x \, dx}{\sin^3 x} =$$

$$= \begin{bmatrix} u = \cos x, & dv = \frac{\cos x \, dx}{\sin^3 x}, \\ du = -\sin x \, dx, & v = \int \frac{\cos x \, dx}{\sin^3 x} = -\frac{1}{2 \sin^2 x} \end{bmatrix} =$$

$$= -\frac{\cos x}{2\sin^2 x} - \frac{1}{2} \int \frac{dx}{\sin x} = -\frac{\cos x}{2\sin^2 x} - \frac{1}{2} \ln \left| \lg \frac{x}{2} \right| + C.$$

б) Если в подынтегральной функции степень числителя на две единицы меньше степени знаменателя, то данный интеграл сводится к случаю 3.

Пример 7. Найти интеграл
$$\int \frac{\sin^3 x}{\cos^5 x} dx$$
.

Решение

$$\int \frac{\sin^3 x}{\cos^5 x} dx = \int \frac{\tan^3 x}{\cos^2 x} dx = \int \tan^3 x d(\tan x) = \frac{1}{4} \tan^4 x + C.$$

в) Если в подынтегральной функции степень числителя больше либо равна степени знаменателя, то применяем основное тригонометрическое тождество $\cos^2 x + \sin^2 x = 1$.

Пример 8. Найти интеграл $\int \frac{\sin^2 x}{\cos^2 x} dx$

Решение

$$\int \frac{\sin^2 x}{\cos^2 x} dx = \int \frac{\left(1 - \cos^2 x\right) dx}{\cos^2 x} = \int \frac{dx}{\cos^2 x} - \int dx = \operatorname{tg} x - x + C.$$

Рассмотрим интегралы вида $\int R(\cos x, \sin x) dx$, где R — рациональная функция.

Интегралы такого вида могут быть приведены к интегралам от рациональных функций с помощью *универсальной тригонометрической подстановки* $tg\left(\frac{x}{2}\right) = t$. Учитывая тригонометрические формулы, получим следующие соотношения:

$$\sin x = \frac{2tg\left(\frac{x}{2}\right)}{1 + tg^2\left(\frac{x}{2}\right)} = \frac{2t}{1 + t^2}; \quad \cos x = \frac{1 - tg^2\left(\frac{x}{2}\right)}{1 + tg^2\left(\frac{x}{2}\right)} = \frac{1 - t^2}{1 + t^2};$$
$$dx = \frac{2dt}{1 + t^2}; \quad x = 2 \operatorname{arct} gt.$$

Замечание. В некоторых случаях универсальная тригонометрическая подстановка приводит к громоздким вычислениям, поэтому при вычислении интеграла вида $\int R(\cos x, \sin x) dx$ следует обращать внимание на свойства подынтегральной функции. В частности, если функция $R(\cos x, \sin x)$ является четной, то удобнее бывает подстановка $\operatorname{tg} x = t$ или $\operatorname{ctg} x = t$.

Пример 9. Найти интеграл
$$\int \frac{dx}{5+4\cos x+3\sin x}$$
.

Решение

Воспользуемся универсальной тригонометрической подстановкой $tg\left(\frac{x}{2}\right) = t$. Тогда, учитывая рекомендации, приведенные выше, имеем:

$$\int \frac{dx}{5+4\cos x + 3\sin x} = \int \frac{2dt}{\left(1+t^2\right)\left(5+4\left(\frac{1-t^2}{1+t^2}\right)+3\left(\frac{2t}{1+t^2}\right)\right)} =$$

$$= \int \frac{2dt}{5\left(1+t^2\right)+4\left(1-t^2\right)+3\left(2t\right)} = \int \frac{2dt}{t^2+6t+9} = 2\int \frac{d\left(t+3\right)}{\left(t+3\right)^2} = -\frac{2}{t+3} + C.$$

Вернемся в переменной x:

$$\int \frac{dx}{5+4\cos x + 3\sin x} = -\frac{2}{\operatorname{tg}\left(\frac{x}{2}\right) + 3} + C.$$

Упражнения для самостоятельной подготовки

Найти неопределенные интегралы:

a)
$$\int tg^4x dx$$
; 6) $\int \cos^2 3x dx$; B) $\int \frac{dx}{\cos^4 x}$; Γ) $\int \sin^5 x \cos^3 x dx$;

$$\pi$$
) $\int \frac{\cos^2 x \, dx}{\sin^2 x + 4 \sin x \cos x}$; e) $\int \frac{dx}{1 - \sin x}$;

$$\mathbb{K} \int \frac{dx}{\cos x + \sin x}; 3 \int \frac{\left(\sin^3 x + \sin x\right) dx}{\cos 2x}.$$

Глава 2. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

1. Основные понятия и определения

Пусть функция f(x) определена на отрезке [a,b]. Разобьем отрезок [a,b] на n частей точками $a=x_0 < x_1 < \ldots < x_n = b$.

Определение. Интегральной суммой функции f(x) на отрезке [a,b] называется сумма вида $S_n = \sum_{i=0}^{n-1} f(c_i) \triangle x_i$, где $x_i < c_i < x_{i+1}$; $\triangle x_i = x_{i+1} - x_i$; i = 0, 1, 2, ..., n-1.

Геометрически S_n представляет собой алгебраическую сумму площадей прямоугольников с длинами оснований, равными Δx_i , и высотами $f(c_i)$ (рис. 2.1).

Рис. 2.1

Определение. Определенным интегралом функции f(x) на отрезке [a,b] называется конечный предел интегральной суммы при условии, что число разбиений n стремится к бесконечности, а наибольшая из разностей Δx_i стремится к нулю, т. е.

$$\int_{a}^{b} f(x) dx = \lim_{\max \Delta x_i \to 0} S_n = \lim_{\max \Delta x_i \to 0} \sum_{i=0}^{n-1} f(c_i) \Delta x_i.$$

Если функция f(x) непрерывна на отрезке [a,b], то предел интегральной суммы существует и не зависит от способа разбиения отрезка [a,b] на частичные отрезки и от выбора точек c_i на этих отрезках.

Числа a и b называют нижним и верхним пределами интегрирования.

Если
$$f(x) > 0$$
 при $x \in [a,b]$, то определенный интеграл $\int_a^b f(x) dx$

геометрически представляет собой площадь криволинейной трапеции, ограниченной линиями y = f(x), y = 0, x = a, x = b (рис. 2.2).

Рис. 2.2

Некоторые свойства определенного интеграла:

$$1. \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx.$$

$$2. \int_{a}^{a} f(x) dx = 0.$$

$$3. \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

4.
$$\int_{a}^{b} \left(\lambda f(x) + \mu g(x)\right) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx.$$

- 5. Интегрирование неравенств:
 - а) если $f(x) \ge 0$ при $x \in [a,b]$, то $\int_{a}^{b} f(x) dx \ge 0$;
 - б) если $f(x) \le g(x)$ при $x \in [a,b]$, то $\int_a^b f(x) dx \le \int_a^b g(x) dx$.
- 6. Оценка определенного интеграла: если f(x) непрерывна на отрезке [a,b], m и M наименьшее и наибольшее значения функции f(x) на этом отрезке, то

$$m(b-a) \le \int_{a}^{b} f(x) dx \le M(b-a).$$

7. **Теорема о среднем.** Если функция f(x) непрерывна на отрезке [a,b], то $\exists c \in (a,b)$: $\int_{a}^{b} f(x) dx = f(c)(b-a)$.

Число $f(c) = \frac{1}{(b-a)} \int_{a}^{b} f(x) dx$ называют средним значением функции f(x) на отрезке [a,b].

8. Определенный интеграл с переменным верхним пределом. Если функция f(x) непрерывна на отрезке [a,b], то функция $F(x) = \int_a^x f(t) dt$ есть первообразная функции f(x), т. е. F'(x) = f(x) при $x \in [a,b]$.

2. Правила вычисления определенного интеграла

1. Формула Ньютона — Лейбница.

$$\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a),$$

где F(x) есть первообразная функции f(x), т. е. F'(x) = f(x).

2. Интегрирование по частям в определенном интеграле. Если u = u(x) и v = v(x) — дифференцируемые функции, то справедлива формула интегрирования по частям:

$$\int_{a}^{b} u \, dv = uv \Big|_{a}^{b} - \int_{a}^{b} v \, du.$$

3. Замена переменной в определенном интеграле.

Пусть функция $x = \varphi(t)$ непрерывно дифференцируема на отрезке $t \in [\alpha, \beta], \ a = \varphi(\alpha), \ b = \varphi(\beta), \ функция \ f(\varphi(t))$ непрерывна на отрезке $[\alpha, \beta]$. Тогда

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\varphi(t)) \varphi'(t) dt.$$

4. Интегрирование четных и нечетных функций.

Если f(x) — нечетная функция, т. е. f(-x) = -f(x), то $\int_{-a}^{a} f(x) dx = 0.$

Если f(x) — четная функция, т.е. f(-x) = f(x), то $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$

Пример 1. Вычислить определенный интеграл $\int_{\sqrt{e}}^{e} \frac{dx}{x \ln^2 x}$.

Решение

Воспользуемся свойствами дифференциалов: $\frac{dx}{x} = d(\ln x)$.

Тогда

$$\int_{\sqrt{e}}^{e} \frac{dx}{x \ln^2 x} = \int_{\sqrt{e}}^{e} \frac{d(\ln x)}{\ln^2 x} = -\frac{1}{\ln x} \Big|_{\sqrt{e}}^{e} = -\frac{1}{\ln e} + \frac{1}{\ln \sqrt{e}} = -1 + 2 = 1.$$

Пример 2. Вычислить определенный интеграл $\int_{0}^{\frac{\pi}{4}} \frac{x \sin x}{\cos^2 x} dx$.

Решение

Воспользуемся формулой интегрирования по частям:

$$u = x u dv = \frac{\sin x}{\cos^2 x} dx.$$

Тогда

$$du = dx$$
, $v = \int \frac{\sin x}{\cos^2 x} dx = -\int \frac{d(\cos x)}{\cos^2 x} = \frac{1}{\cos x}$.

Таким образом,

$$\int_{0}^{\frac{\pi}{4}} \frac{x \sin x}{\cos^{2} x} dx = \frac{x}{\cos x} \Big|_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x} dx =$$

$$= \left(\frac{x}{\cos x} - \ln \left| \lg \left(\frac{x}{2} + \frac{\pi}{4} \right) \right| \right) \Big|_{0}^{\frac{\pi}{4}} = \frac{\pi \sqrt{2}}{4} - \ln \lg \left(\frac{3\pi}{8} \right).$$

Пример 3. Вычислить определенный интеграл

a)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x}{\cos^2 x} dx$$
, 6)
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x^7 + 3x^3 + \sin x + \sin^2 x}{\cos^2 x} dx$$
.

Решение

Воспользуемся свойствами интегралов с симметричными пределами от четных и нечетных функций.

a)
$$\frac{x}{\cos^2 x}$$
 — нечетная функция, поэтому $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x}{\cos^2 x} dx = 0$.

б) Преобразуем подынтегральную функцию:

$$\frac{x^7 + 3x^3 + \sin x + \sin^2 x}{\cos^2 x} = \underbrace{\frac{x^7 + 3x^3 + \sin x}{\cos^2 x}}_{\text{Heyerman}} + \underbrace{\frac{\sin^2 x}{\cos^2 x}}_{\text{Четная}}.$$

Тогда

$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x^7 + 3x^3 + \sin x + \sin^2 x}{\cos^2 x} dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x^7 + 3x^3 + \sin x}{\cos^2 x} dx + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos^2 x} dx =$$

$$= 0 + 2 \int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos^2 x} dx = 2 \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos^2 x}{\cos^2 x} dx =$$

$$= 2 \int_{0}^{\frac{\pi}{4}} \left(\frac{1}{\cos^2 x} - 1 \right) dx = 2 \left(\operatorname{tg} x - x \right) \Big|_{0}^{\frac{\pi}{4}} = 2 - \frac{\pi}{2}.$$

Пример 4. Вычислить определенный интеграл $\int_{0}^{\ln 2} \sqrt{e^x - 1} \ dx$.

Решение

Для вычисления интеграла введем следующую замену переменной: $\sqrt{e^x - 1} = t$, тогда $e^x - 1 = t^2$, $x = \ln(t^2 + 1)$, $dx = \frac{2t \, dt}{t^2 + 1}$.

Заменим пределы интегрирования: $x = 0 \rightarrow t = 0$, $x = \ln 2 \rightarrow t = 1$. Таким образом,

$$\int_{0}^{\ln 2} \sqrt{e^{x} - 1} \, dx = \int_{0}^{1} \frac{2t^{2} \, dt}{t^{2} + 1} = 2 \int_{0}^{1} \frac{\left(t^{2} + 1 - 1\right) dt}{t^{2} + 1} =$$

$$= 2 \int_{0}^{1} \left(1 - \frac{1}{t^{2} + 1}\right) dt = 2\left(t - \operatorname{arctg} t\right) \Big|_{0}^{1} = 2 - \frac{\pi}{2}.$$

Пример 5. Вычислить определенный интеграл $\int_{0}^{1} \frac{t^2 dt}{\left(t^2+1\right)^2}$.

Решение

Для вычисления интеграла воспользуемся тригонометрической подстановкой: $t = \operatorname{tg} x$, тогда $t^2 + 1 = 1 + \operatorname{tg}^2 x = \frac{1}{\cos^2 x}$, $dt = \frac{dx}{\cos^2 x}$.

Заменим пределы интегрирования, учитывая, что $x = \arctan t$: x = 0 при t = 0; $x = \frac{\pi}{4}$ при t = 1. Итак, $\int_0^1 \frac{t^2 \, dt}{\left(t^2 + 1\right)^3} = \int_0^{\frac{\pi}{4}} \operatorname{tg}^2 x \cdot \cos^6 x \cdot \frac{dx}{\cos^2 x} = \int_0^{\frac{\pi}{4}} \sin^2 x \, \cos^2 x dx =$

$$= \frac{1}{4} \int_{0}^{\frac{\pi}{4}} \sin^2 2x \, dx = \frac{1}{8} \int_{0}^{\frac{\pi}{4}} (1 - \cos 2x) \, dx = \frac{1}{8} \left(x - \frac{\sin 2x}{2} \right) \Big|_{0}^{\frac{\pi}{4}} = \frac{\pi}{32} - \frac{1}{16}.$$

Пример 6. Сравнить интегралы $\int_{0}^{1} e^{x^{2}} dx$ и $\int_{0}^{1} e^{x^{3}} dx$.

Решение

Воспользуемся свойством 5 об интегрировании неравенств. Сравним подынтегральные функции на отрезке [0,1]: при $x \in [0,1]$ справедливо неравенство $x^2 \ge x^3$, поэтому на данном отрезке $e^{x^2} \ge e^{x^3}$, следовательно,

$$\int_{0}^{1} e^{x^{2}} dx \ge \int_{0}^{1} e^{x^{3}} dx.$$

Пример 7. Оценить интеграл $\int_{0}^{4} e^{x^{2}-x} dx$.

Решение

Воспользуемся свойством 6: $4m \le \int_{0}^{4} e^{x^2 - x} dx \le 4M$,

где m и M — наименьшее и наибольшее значения функции $f(x) = e^{x^2 - x}$ на отрезке[0,4].

Найдем стационарные точки функции $f(x) = e^{x^2 - x}$:

$$f'(x) = e^{x^2-x}(2x-1), f'(x) = 0$$
 при $x = 0,5$.

Вычислим значения функции $f(x) = e^{x^2 - x}$ на концах отрезка и в стационарной точке: f(0) = 1, $f(4) = e^{12}$, $f(0,5) = e^{-0.25}$.

Сравнивая полученные значения, имеем: $m = e^{-0.25}$, $M = e^{12}$.

Тогда
$$4e^{-0.25} \le \int_{0}^{4} e^{x^2 - x} dx \le 4e^{12}$$
.

Пример 8. Найти среднее значение функции $f(x) = \cos^4 x$ на отрезке $\left[0, \frac{\pi}{2}\right]$.

Решение

По теореме о среднем значении:

$$f_{cp} = \frac{1}{(b-a)} \int_{a}^{b} f(x) dx = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \cos^{4} x dx = \frac{1}{2\pi} \int_{0}^{\frac{\pi}{2}} (1 + \cos 2x)^{2} dx =$$

$$= \frac{1}{2\pi} \int_{0}^{\frac{\pi}{2}} (1 + 2\cos 2x + \cos^{2} 2x) dx =$$

$$= \frac{1}{2\pi} (x + \sin 2x) \Big|_{0}^{\frac{\pi}{2}} + \frac{1}{4\pi} \int_{0}^{\frac{\pi}{2}} (1 + \cos 4x) dx =$$

$$= \frac{1}{4} + \frac{1}{4\pi} \left(x + \frac{\sin 4x}{4} \right) \Big|_{0}^{\frac{\pi}{2}} = \frac{1}{4} + \frac{1}{8} = \frac{3}{8}.$$

Упражнения для самостоятельной подготовки

1. Вычислить интегралы:

a)
$$\int_{0}^{2} \ln(x^{2}+4) dx$$
; 6) $\int_{\sqrt{3}/3}^{\sqrt{3}} \frac{dx}{\sqrt{(1+x^{2})^{3}}}$; B) $\int_{-1}^{7} \frac{dx}{1+\sqrt[3]{x+1}}$.

2. Найти среднее значение функции $f(x) = \frac{1}{3 + 2\cos x}$ на отрезке $\left[0, \frac{\pi}{2}\right]$.

3. Доказать неравенство
$$\frac{11}{2} \ln \frac{7}{8} \le \int_{-\frac{1}{2}}^{5} \ln (x^3 + 1) dx \le \frac{11}{2} \ln 126$$
.

3. Геометрические приложения определенного интеграла

3.1. Площадь плоской фигуры

Пусть фигура в плоскости Oxy ограничена прямыми x = a, x = b и кривыми $y = y_1(x)$, $y = y_2(x)$, причем $y_1(x) \le y_2(x)$ на отрезке [a,b] (рис. 2.3).

Рис. 2.3

Площадь S такой фигуры может быть найдена по формуле

$$S = \int_{a}^{b} (y_2(x) - y_1(x)) dx.$$

Пусть фигура в плоскости Oxy ограничена прямыми y = c, y = d и кривыми $x = x_1(y)$, $x = x_2(y)$, причем $x_1(y) \le x_2(y)$ на отрезке [c,d] (рис. 2.4).

Рис. 2.4

Площадь S такой фигуры может быть найдена по формуле

$$S = \int_{a}^{d} (x_2(y) - x_1(y)) dy.$$

Если кривая в плоскости Oxy задана параметрическими уравнениями $x=x(t), y=y(t), t\in [t_1,t_2],$ то площадь криволинейной трапеции, ограниченной этой кривой и прямыми x=a, x=b, y=0 $(a=x(t_1), b=x(t_2)),$ может быть найдена по формуле

$$S = \int_{t_1}^{t_2} y(t) x'(t) dt.$$

Если кривая задана в полярной системе координат уравнением $\rho = \rho(\phi)$, то площадь криволинейного сектора, ограничен-

ного этой кривой и двумя полярными лучами $\phi = \alpha$, $\phi = \beta$, $\alpha < \beta$ (рис. 2.5), находится по формуле

$$S = \frac{1}{2} \int_{\alpha}^{\beta} \rho^2 (\varphi) d\varphi.$$

Рис. 2.5

3.2. Объем тела вращения

Если криволинейная трапеция, ограниченная кривой y = y(x) и прямыми x = a, x = b, y = 0 (рис. 2.6), вращается вокруг оси Ox, то объем тела вращения может быть вычислен по формуле

$$V_{Ox} = \pi \int_{a}^{b} y^2(x) dx.$$

Рис. 2.6

Аналогично, если криволинейная трапеция, ограниченная кривой x = x(y) и прямыми y = c, y = d, x = 0 (рис. 2.7), вращается вокруг оси Oy, то объем тела вращения может быть вычислен по формуле

$$V_{Oy} = \pi \int_{0}^{d} x^{2}(y) dy.$$

Рис. 2.7

Если криволинейная трапеция, ограниченная кривой y = y(x) и прямыми x = a, x = b, y = 0 (рис. 2.8), вращается вокруг оси Oy, то объем тела вращения может быть вычислен по формуле

$$V_{Oy} = 2\pi \int_{a}^{b} x \cdot y(x) dx.$$

Рис. 2.8

3.3. Длина дуги плоской кривой

Пусть кривая на плоскости задана уравнением y = y(x) $x \in [a, b]$, причем y(x) непрерывно дифференцируема на этом отрезке. Тогда длина соответствующей дуги этой кривой находится по формуле

$$l = \int_{a}^{b} \sqrt{1 + \left(y'\right)^2} \, dx.$$

Если кривая в плоскости Oxy задана параметрическими уравнениями $x = x(t), y = y(t), t \in [t_1, t_2]$, причем x(t) и y(t) — непрерывно дифференцируемые функции, то длина дуги этой кривой находится по формуле

$$l = \int_{t_1}^{t_2} \sqrt{\left(x_t'\right)^2 + \left(y_t'\right)^2} dt.$$

Если кривая задана в полярной системе координат уравнением $\rho = \rho(\phi)$, $\phi \in [\alpha, \beta]$, длина дуги этой кривой находится по формуле

$$l = \int_{\alpha}^{\beta} \sqrt{\rho^2 + (\rho')^2} d\varphi.$$

3.4. Площадь поверхности вращения

Пусть плоская кривая, заданная уравнением $y = y(x), x \in [a, b]$ (причем y(x) непрерывно дифференцируема на этом отрезке), вращается вокруг оси Ox. Тогда площадь поверхности вращения находится по формуле

$$S_{Ox} = \int_{a}^{b} y \sqrt{1 + \left(y'\right)^2} dx.$$

Если кривая в плоскости Oxy задана параметрическими уравнениями x = x(t), y = y(t), $t \in [t_1, t_2]$, причем x(t) и y(t) — непрерывно дифференцируемые функции, то площадь поверхности вращения находится по формуле

$$S_{Ox} = \int_{t_{t}}^{t_{2}} y(t) \sqrt{(x'_{t})^{2} + (y'_{t})^{2}} dt.$$

Пример 1. Вычислить площадь фигуры, ограниченной линиями $y = \frac{x^2}{3}$, $y = \frac{4}{x^2 + 4}$.

Решение

Найдем точки пересечения кривых:

$$\begin{cases} y = \frac{x^2}{3}, \\ y = \frac{4}{x^2 + 4}, \Rightarrow \frac{x^2}{3} = \frac{4}{x^2 + 4}, \Rightarrow x^4 + 4x^2 - 12 = 0, \end{cases}$$

откуда
$$x_1 = \sqrt{2}$$
, $x_2 = -\sqrt{2}$ и $y_1 = y_2 = \frac{2}{3}$.

Таким образом, данные кривые пересекаются в точках $A\left(\sqrt{2},\frac{2}{3}\right)$ и $B\left(-\sqrt{2},\frac{2}{3}\right)$.

Снизу фигура ограничена параболой $y = \frac{x^2}{3}$, сверху — кривой $y = \frac{4}{x^2 + 4}$ (см. рис. 2.9). Значения переменной x принадлежат отрезку $\left[-\sqrt{2}, \sqrt{2} \right]$.

Тогда

$$S = \int_{-\sqrt{2}}^{\sqrt{2}} \left(\frac{4}{x^2 + 4} - \frac{x^2}{3} \right) dx = \left(2 \arctan \frac{x}{2} - \frac{x^3}{9} \right) \Big|_{-\sqrt{2}}^{\sqrt{2}} = 4 \arctan \frac{\sqrt{2}}{2} - \frac{4\sqrt{2}}{9}.$$

Рис. 2.9

Пример 2. Вычислить площадь фигуры, ограниченной линиями $y^2 = 2x + 1$, x - y - 1 = 0.

Решение

Первое уравнение задает параболу с вершиной в точке (-0,5;0), для которой ось Ox является осью симметрии. Второе уравнение задает прямую в плоскости Oxy.

Найдем точки пересечения кривых:

$$\begin{cases} y^2 = 2x + 1, \\ x = y + 1, \end{cases} \Rightarrow y^2 - 2y - 3 = 0,$$

откуда $y_1 = -1$, $y_2 = 3$ и $x_1 = 0$, $x_2 = 4$.

Таким образом, данные кривые пересекаются в точках A(0,-1) и B(4,3) (рис. 2.10).

Рис. 2.10

Выразим переменную *у* из уравнений кривых: $y = \pm \sqrt{2x+1}$ и y = x-1.

Снизу фигура ограничена двумя линиями: частью параболы $y = -\sqrt{2}x + 1$ и прямой y = x - 1, сверху — параболой $y = \sqrt{2}x + 1$, поэтому при вычислении площади нужно фигуру разбить на две части. Тогда площадь S такой фигуры есть сумма площадей двух фигур: $S = S_1 + S_2$, где

$$S_{1} = \int_{-0.5}^{0} \left(\sqrt{2x+1} - \left(-\sqrt{2x+1} \right) \right) dx =$$

$$= \int_{-0.5}^{0} 2\sqrt{2x+1} dx = \int_{-0.5}^{0} \sqrt{2x+1} d \left(2x+1 \right) =$$

$$= \frac{2}{3} (2x+1)^{\frac{3}{2}} \Big|_{-0.5}^{0} = \frac{2}{3}.$$

$$\sqrt{2x+1} - (x-1) dx = \frac{1}{2} (2x+1)^{\frac{3}{2}} \Big|_{-0.5}^{4} - \frac{(x-1)^{2}}{2} \Big|_{-0.5}^{4}$$

$$S_2 = \int_0^4 \left(\sqrt{2x+1} - (x-1)\right) dx = \frac{1}{3} \left(2x+1\right)^{\frac{3}{2}} \Big|_0^4 - \frac{\left(x-1\right)^2}{2} \Big|_0^4 = 4\frac{2}{3}.$$
 Тогда $S = \frac{2}{3} + 4\frac{2}{3} = 5\frac{1}{3}.$

Однако при решении данной задачи удобнее воспользоваться формулой

$$S = \int_{c}^{d} (x_{2}(y) - x_{1}(y)) dy.$$

Выразим переменную x из уравнений кривых: $x = \frac{y^2 - 1}{2}$ и x = y + 1.

Тогда
$$S = \int_{-1}^{3} \left(y + 1 - \frac{y^2 - 1}{2} \right) dy = \left(\frac{\left(y + 1 \right)^2}{2} - \frac{y^3}{6} + \frac{y}{2} \right) \Big|_{-1}^{3} = 5\frac{1}{3}.$$

При решении вторым методом вычислений значительно меньше, чем при решении первым.

Пример 3. Вычислить площадь фигуры, ограниченной петлей линии:

$$\begin{cases} x = 3t^2, \\ y = 3t - t^3. \end{cases}$$

Решение

Для построения кривой проведем небольшое исследование. Найдем точки пересечения кривой с координатными осями:

$$x = 0$$
 при $t_1 = 0$,

$$y = 0$$
 при $t_2 = 0$, $t_3 = \sqrt{3}$, $t_4 = -\sqrt{3}$.

Получили координаты двух точек: A(0;0), B(9;0), причем точке B соответствуют два значения параметра, т.е. при движении по кривой точка B встречается дважды.

Заметим, что одному значению переменной x соответствуют два значения переменной y, отличающиеся знаком, т. е. данная кривая симметрична относительно оси Ox, причем $y \ge 0$ при $t \in \left(0, \sqrt{3}\right)$ и $y \le 0$ при $t \in \left(-\sqrt{3}, 0\right)$ (рис. 2.11).

Рис. 2.11

Вычислим площадь фигуры, ограниченной верхней половиной петли линии и осью Ox:

$$S_1 = \int_{t_1}^{t_2} y(t) x'(t) dt = \int_{0}^{\sqrt{3}} (3t - t^3) \cdot 6t dt = 6 \int_{0}^{\sqrt{3}} (3t^2 - t^4) dt = 6 \left(t^3 - \frac{t^5}{5} \right) \Big|_{0}^{\sqrt{3}} = \frac{36\sqrt{3}}{5}.$$

Тогда площадь всей фигуры равна: $S = 2S_1 = \frac{72\sqrt{3}}{5}$.

Пример 4. Вычислить площадь фигуры, ограниченной линиями $\rho = 2\cos 2\varphi$, $\rho = 1$ (вне окружности).

Решение

Построим фигуры, заданные в полярной системе координат: $\rho = 2\cos 2\phi$ — двухлепестковая роза, $\rho = 1$ — окружность (рис. 2.12). Найдем углы, под которыми пересекаются кривые:

$$2\cos 2\varphi = 1 \implies \cos 2\varphi = \frac{1}{2} \implies \varphi = \pm \frac{\pi}{6} + \pi k, \ k \in \mathbb{Z}.$$

Рис. 2.12

Для вычисления площади фигуры воспользуемся формулой

$$S = \frac{1}{2} \int_{\alpha}^{\beta} (\rho_2^2(\varphi) - \rho_1^2(\varphi)) d\varphi.$$

Так как фигура симметрична, вычислим площадь половины фигуры.

$$S_{1} = \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \left(4\cos^{2} 2\varphi - 1 \right) d\varphi = \frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \left(\left(1 + \cos 4\varphi \right) - 1 \right) d\varphi =$$
$$= \int_{0}^{\frac{\pi}{6}} \cos 4\varphi d\varphi = \frac{\sin 4\varphi}{4} \Big|_{0}^{\frac{\pi}{6}} = \frac{\sqrt{3}}{8}.$$

Тогда площадь всей фигуры равна: $S = 2S_1 = \frac{\sqrt{3}}{4}$.

Пример 5. Вычислить объемы тел, полученных при вращении вокруг осей Ox и Oy криволинейной трапеции, ограниченной линиями $y = 2x - x^2$, y = 0.

Решение

Построим криволинейную трапецию (рис. 2.13).

Рис. 2.13

Для вычисления объема тела вращения вокруг оси Ox воспользуемся формулой

$$V_{Ox} = \pi \int_{a}^{b} y^{2}(x) dx.$$

$$V_{Ox} = \pi \int_{0}^{2} (2x - x^{2})^{2} dx = \pi \int_{0}^{2} (4x^{2} - 4x^{3} + x^{4}) dx =$$

$$= \pi \left(\frac{4x^{3}}{3} - x^{4} + \frac{x^{5}}{5} \right) \Big|_{0}^{2} = \frac{16\pi}{5}.$$

Для вычисления объема тела вращения вокруг оси Oy выразим переменную x из уравнения кривой: $x = 1 \pm \sqrt{1-y}$ (девая и правая ветви параболы). Тогда объем тела вращения вокруг

оси Oy может быть найден как разность объемов тел, полученных вращением ветвей параболы вокруг оси Oy: $V_{Oy} = V_1 - V_2$.

$$\begin{split} V_1 &= \pi \int\limits_c^d x_1^2 \left(y\right) dy = \pi \int\limits_0^1 \left(1 + \sqrt{1 - y}\right)^2 dy = \pi \int\limits_0^1 \left(2 + 2\sqrt{1 - y} - y\right) dy = \\ &= \pi \left(2y - \frac{4\left(1 - y\right)^{\frac{3}{2}}}{3} - \frac{y^2}{2}\right) \bigg|_0^1 = \frac{17\pi}{6}, \\ V_2 &= \pi \int\limits_c^d x_2^2 \left(y\right) dy = \pi \int\limits_0^1 \left(1 - \sqrt{1 - y}\right)^2 dy = \pi \int\limits_0^1 \left(2 - 2\sqrt{1 - y} - y\right) dy = \\ &= \pi \left(2y + \frac{4\left(1 - y\right)^{\frac{3}{2}}}{3} - \frac{y^2}{2}\right) \bigg|_0^1 = \frac{\pi}{6}. \end{split}$$
 Тогда $V_{Oy} = V_1 - V_2 = \frac{17\pi}{6} - \frac{\pi}{6} = \frac{8\pi}{3}.$

Однако в данном примере объем тела вращения вокруг оси Оу удобнее находить по формуле

$$V_{Oy} = 2\pi \int_{a}^{b} x \cdot y(x) dx.$$

$$V_{Oy} = 2\pi \int_{0}^{2} x(2x - x^{2}) dx = 2\pi \int_{0}^{2} (2x^{2} - x^{3}) dx = 2\pi \left(\frac{2x^{3}}{3} - \frac{x^{4}}{4}\right)\Big|_{0}^{2} = \frac{8\pi}{3}.$$

Пример 6. Вычислить длину дуги полукубической параболы $y^2 = x^3$ от точки O(0,0) до точки A(4,8).

Решение

Воспользуемся формулой: $l = \int_{a}^{b} \sqrt{1 + (y')^2} dx$.

Для этого выразим переменную y через x : $y^2 = x^3 \Rightarrow y = \pm \sqrt{x^3}$. Нашему условию удовлетворяет функция $y = \sqrt{x^3}$, $x \in [0,4]$.

Тогда

$$y' = \frac{3}{2}\sqrt{x}, \sqrt{1 + (y')^2} = \sqrt{1 + \frac{9}{4}x},$$

$$l = \int_0^4 \sqrt{1 + \frac{9}{4}x} \, dx = \frac{8}{27} \left(1 + \frac{9}{4}x\right)^{3/2} \Big|_0^4 = \frac{8}{27} \left(10\sqrt{10} - 1\right).$$

Пример 7. Найти полную площадь поверхности тела, образованного вращением вокруг оси Ox области, ограниченной линиями $y^2 = 2x$ и 2x = 3.

Решение

Для вычисления объема тела вращения вокруг оси Oy выразим переменную y из уравнения кривой: $y=\pm\sqrt{2x}$. Так как кривая симметрична относительно оси Ox, то для получения соответствующей поверхности достаточно рассмотреть только верхнюю часть кривой: $y=\sqrt{2x}$.

Полная площадь поверхности тела может быть найдена как сумма площадей поверхностей, полученных вращением отрезка AB и дуги OA вокруг оси Ox, т. е. $S_{\text{полн}} = S_1 + S_2$.

При вращении отрезка вокруг оси Ox получим круг, поэтому $S_1 = S_{\text{круга}} = \pi R^2 = 3\pi.$

Площадь второй поверхности вращения найдем, воспользовавшись формулой

$$S_{Ox} = 2\pi \int\limits_{a}^{b} y \sqrt{1 + \left(y'\right)^2} \, dx.$$

$$S_2 = 2\pi \int\limits_{0}^{\frac{3}{2}} \sqrt{2x} \sqrt{1 + \left(\frac{1}{\sqrt{2x}}\right)^2} \, dx = 2\pi \int\limits_{0}^{\frac{3}{2}} \sqrt{2x + 1} \, dx = \frac{2\pi \left(2x + 1\right)^{\frac{3}{2}}}{3} \bigg|_{0}^{\frac{3}{2}} = \frac{14\pi}{3}.$$
 Таким образом, $S_{\text{полн}} = S_1 + S_2 = 3\pi + \frac{14\pi}{3} = \frac{23\pi}{3}.$

Упражнения для самостоятельной подготовки

- 1. Вычислить площадь фигуры, ограниченной линиями $x = \sqrt{4 y^2}$, x = 0, y = 0, y = 1.
- 2. Найти площадь фигуры, ограниченной кривой $\rho = 1 + \sqrt{2}\cos\phi$ и лежащей вне круга $\rho = 1$.
- 3. Найти объем тела, образованного вращением фигуры, ограниченной линиями $y = x^2 + 1$, y = x, x = 0, x = 1,
 - а) вокруг оси Ox,
 - б) вокруг оси Оу.
- 4. Найти длину дуги кривой $x = \frac{t^6}{6}$, $y = 4 \frac{t^4}{4}$ между точками пересечения с осью Ox.

Глава 3. НЕСОБСТВЕННЫЙ ИНТЕГРАЛ

1. Основные понятия и определения

Пусть функция f(x) непрерывна на интервале $[a,+\infty)$. Тогда она будет непрерывна на любом интервале [a,b], где b>a и существует интеграл $\int_{a}^{b} f(x) dx$.

Определение. *Несобственным интегралом 1-го рода* называется интеграл, определяемый равенством $\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$.

Если соответствующий предел существует и конечен, то говорят, что несобственный интеграл 1-го рода *сходится*, иначе несобственный интеграл называют *расходящимся*.

Аналогично, если функция f(x) непрерывна на промежутке интегрирования, то интегралы вида $\int\limits_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int\limits_{a}^{b} f(x) dx$,

$$\int\limits_{-\infty}^{+\infty}f(x)dx=\lim_{\substack{a\to-\infty\\b\to+\infty}}\int\limits_{a}^{b}f(x)dx$$
 также являются несобственными инте-

гралами 1-го рода.

Или
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx$$
, причем интеграл в левой

части равенства сходится, если одновременно сходятся оба интеграла в правой части равенства.

Если же на отрезке [a,b] функция f(x) имеет точку разрыва 2-го рода, то возникает понятие несобственного интеграла 2-го рода. Рассмотрим 3 случая.

а) Пусть функция f(x) непрерывна на интервале [a,b) и неограниченна вблизи точки x=b. Тогда функция будет непрерывна на любом отрезке $[a,b_1]$, где $a \le b_1 < b$, и существует определенный интеграл $\int_{a}^{b_1} f(x) dx$.

Определение. *Несобственным интегралом 2-го рода* называется интеграл, определяемый равенством $\int\limits_a^b f(x) dx = \lim\limits_{b_1 \to b-0} \int\limits_a^{b_1} f(x) dx$, точка b в этом случае называется особой точкой 2-го рода.

б) Пусть функция f(x) непрерывна на интервале (a,b] и неограниченна вблизи точки x=a. Тогда функция будет непрерывна на любом отрезке $[a_1,b]$, где $a < a_1 \le b$, и существует определенный интеграл $\int_a^b f(x) dx$.

Определение. *Несобственным интегралом 2-го рода* называется интеграл, определяемый равенством $\int\limits_{a_l}^{b} f(x) dx = \lim_{a_l \to a+0} \int\limits_{a_l}^{b} f(x) dx$, в этом случае точка a называется особой точкой 2-го рода.

Несобственные интегралы 2-го рода сходятся, если соответствующие пределы существуют и конечны.

в) Пусть функция f(x) непрерывна на интервале [a,b] всюду за исключением точки $c \in (a,b)$ и неограниченна вблизи точ-

ки
$$x = c$$
. Тогда $\int_a^b f(x) dx = \int_a^{\boxed{c}} f(x) dx + \int_{\boxed{c}}^b f(x) dx$ также является

несобственным интегралом 2-го рода, причем интеграл в левой части сходится, если сходятся оба интеграла в правой части.

2. Свойства несобственных интегралов

Сформулируем свойства для несобственных интегралов 1-го рода, аналогичные свойства будут справедливы и для несобственных интегралов 2-го рода.

1. Свойство линейности. Пусть сходятся (или являются определенными интегралами) любые два из трех интегралов $\int_{a}^{+\infty} f(x) dx$, $\int_{a}^{+\infty} g(x) dx$, $\int_{a}^{+\infty} (\lambda f(x) + \mu g(x)) dx$. Тогда сходится и третий из этих интегралов, причем справедливо равенство:

$$\int_{a}^{+\infty} \left(\lambda f(x) + \mu g(x) \right) dx = \lambda \int_{a}^{+\infty} f(x) dx + \mu \int_{a}^{+\infty} g(x) dx.$$

2. Критерий Коши. Несобственный интеграл $\int_{a}^{+\infty} f(x) dx$ сходится тогда и только тогда, когда $\forall \, \varepsilon > 0 \, \exists \, a_0 > a, \, \forall \, a', \, b' \colon a_0 < a' < b',$ справедливо неравенство $\left| \int_{a'}^{b'} f(x) dx \right| < \varepsilon$.

Теорема (обобщенная формула Ньютона — **Лейбница).** Пусть несобственный интеграл $\int_a^+ f(x) dx$ сходится и F(x) — некоторая первообразная функции f(x) на промежутке $[a,+\infty)$. Тогда справедлива следующая формула:

$$\int\limits_{a}^{+\infty}f\left(x\right)dx=\lim_{x\to+\infty}\left(F\left(x\right)-F\left(a\right)\right).$$
 Аналогично,
$$\int\limits_{a}^{[b]}f\left(x\right)dx=F\left(x\right)\Big|_{a}^{b}=\lim_{x\to b-0}F\left(x\right)-F\left(a\right).$$

Замечание. При вычислении несобственных интегралов используют те же методы, что и при вычислении определенных интегралов.

Пример 1. Вычислить несобственный интеграл или доказать его расходимость:

a)
$$\int_{\sqrt{e}}^{+\infty} \frac{dx}{x \ln^2 x}$$
; 6) $\int_{0}^{+\infty} (x+1)e^x dx$; B) $\int_{1}^{+\infty} \frac{x^2+1}{x^3} dx$; Γ) $\int_{-\infty}^{+\infty} \frac{dx}{x^2+1}$.

Решение

а) Функция $f(x) = \frac{1}{x \ln^2 x}$ непрерывна на интервале $\left[\sqrt{e}, +\infty\right)$,

т.е. имеем несобственный интеграл 1-го рода.

Для вычисления интеграла воспользуемся методом занесения под знак дифференциала:

$$\int_{\sqrt{e}}^{+\infty} \frac{dx}{x \ln^2 x} = \int_{\sqrt{e}}^{+\infty} \frac{d(\ln x)}{\ln^2 x} = -\frac{1}{\ln x} \Big|_{\sqrt{e}}^{+\infty} = -\lim_{x \to +\infty} \frac{1}{\ln x} + 2 = 2.$$

Интеграл равен конечному числу, т.е. несобственный интеграл сходится.

б) Подынтегральная функция непрерывна на всей числовой прямой. Для вычисления несобственного интеграла воспользуемся методом интегрирования по частям: u = x + 1, $dv = e^x dx \Rightarrow du = dx, v = e^x$.

$$\int_{0}^{+\infty} (x+1)e^{x} dx = (x+1)e^{x}\Big|_{0}^{+\infty} - \int_{0}^{+\infty} e^{x} dx = xe^{x}\Big|_{0}^{+\infty} = \lim_{x \to +\infty} xe^{x} - 0 = +\infty.$$

Несобственный интеграл расходится.

в) Функция $f(x) = \frac{x^2 + 1}{x^3}$ непрерывна на интервале $[1, +\infty)$.

$$\int_{1}^{+\infty} \frac{x^{2} + 1}{x^{3}} dx = \int_{1}^{+\infty} \left(\frac{1}{x} + \frac{1}{x^{3}} \right) dx =$$

$$= \left(\ln x - \frac{1}{2x^{2}} \right) \Big|_{1}^{+\infty} = \lim_{x \to +\infty} \left(\ln x - \frac{1}{2x^{2}} \right) + \frac{1}{2} = +\infty.$$

Несобственный интеграл расходится.

г) Подынтегральная функция непрерывна на всей числовой прямой. Так как функция $f(x) = \frac{1}{x^2 + 1}$ является четной, а пределы интегрирования симметричны, то воспользуемся следующим свойством интегралов: $\int_{a}^{a} f(x) dx = 2 \int_{a}^{a} f(x) dx$.

Тогда
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 1} = 2 \int_{0}^{+\infty} \frac{dx}{x^2 + 1} = 2 \arctan |x|_{0}^{+\infty} = 2 \lim_{x \to +\infty} \arctan |x| = \pi.$$

Таким образом, исходный интеграл сходится.

Пример 2. Вычислить несобственный интеграл или доказать его расходимость:

a)
$$\int_{0}^{1} \frac{dx}{x^{2} + x^{4}}$$
; б) $\int_{1}^{\sqrt{e}} \frac{dx}{x \ln^{2} x}$; в) $\int_{2}^{4} \frac{dx}{\sqrt{6x - x^{2} - 8}}$;
г) $\int_{0}^{\sqrt{\frac{2}{\pi}}} \frac{1}{x^{3}} \cos \frac{1}{x^{2}} dx$; д) $\int_{0}^{4} \frac{dx}{(x - 2)^{2}}$.

Решение

а) Функция $f(x) = \frac{1}{x^2 + x^4}$ имеет точку разрыва x = 0, причем функция f(x) неограниченна вблизи этой точки: $\lim_{x \to 0+0} \frac{1}{x^2 + x^4} = +\infty.$

Таким образом, имеем несобственный интеграл 2-го рода. Для вычисления интеграла представим подынтегральную функцию в виде суммы простейших дробей: $\frac{1}{r^2 + r^4} = \frac{1}{r^2} - \frac{1}{1 + r^2}.$

$$\int_{0}^{1} \frac{dx}{x^{2} + x^{4}} = \int_{0}^{1} \left(\frac{1}{x^{2}} - \frac{1}{1 + x^{2}} \right) dx = \left(-\frac{1}{x} - \arctan x \right) \Big|_{0}^{1} =$$

$$= -1 - \frac{\pi}{4} + \lim_{x \to 0+0} \left(\frac{1}{x} + \arctan x \right) = +\infty.$$

Несобственный интеграл расходится.

б) Подынтегральная функция непрерывна на промежутке $(1,\sqrt{e}]$ и неограниченна вблизи точки x=1.

$$\int_{|||}^{\sqrt{e}} \frac{dx}{x \ln^2 x} = \int_{|||}^{\sqrt{e}} \frac{d(\ln x)}{\ln^2 x} = -\frac{1}{\ln x} \Big|_{|||}^{\sqrt{e}} = 2 + \lim_{x \to 1+0} \frac{1}{\ln x} = +\infty.$$

Несобственный интеграл расходится. в) Функция $f(x) = \frac{1}{\sqrt{6x-x^2-8}}$ непрерывна на промежут-

ке (2, 4) и неограниченна вблизи точек x = 2 и x = 4.

$$\int_{2}^{4} \frac{dx}{\sqrt{6x - x^2 - 8}} = \int_{2}^{4} \frac{dx}{\sqrt{1 - (x - 3)^2}} = \arcsin(x - 3) \Big|_{2}^{4} = \pi.$$

г) Функция $f(x) = \frac{1}{x^3} \cos \frac{1}{x^2}$ непрерывна на промежутке

$$\left(0,\sqrt{\frac{2}{\pi}}\right]$$
 и неограниченна вблизи точки $x=0$.

$$\int_{\boxed{0}}^{\sqrt{\frac{2}{\pi}}} \frac{1}{x^3} \cos \frac{1}{x^2} dx = -\frac{1}{2} \int_{\boxed{0}}^{\sqrt{\frac{2}{\pi}}} \cos \frac{1}{x^2} d\left(\frac{1}{x^2}\right) = -\frac{1}{2} \sin \frac{1}{x^2} \Big|_{0}^{\sqrt{\frac{2}{\pi}}} =$$

$$= -\frac{1}{2} + \lim_{x \to 0+0} \left(\frac{1}{2} \sin \frac{1}{x^2}\right),$$

предел не существует, поэтому несобственный интеграл расходится.

д) Функция $f(x) = \frac{1}{(x-2)^2}$ на отрезке [0, 4] имеет точку раз-

рыва второго рода x = 2.

Поэтому

$$\int_{0}^{4} \frac{dx}{(x-2)^{2}} = \int_{0}^{\boxed{2}} \frac{dx}{(x-2)^{2}} + \int_{\boxed{2}}^{4} \frac{dx}{(x-2)^{2}},$$

$$\int_{0}^{2} \frac{dx}{(x-2)^{2}} = -\frac{1}{x-2} \Big|_{0}^{2} = -\lim_{x \to 2^{-0}} \frac{1}{x-2} - \frac{1}{2} = +\infty,$$

т.е. один из интегралов в правой части равенства расходится, а значит, исходный интеграл расходится.

Упражнения для самостоятельной подготовки

Вычислить несобственный интеграл или доказать его расходимость:

a)
$$\int_{0}^{+\infty} \frac{\arctan x \, dx}{x^2 + 1}$$
; 6) $\int_{0}^{1} x \ln^2 x \, dx$; B) $\int_{-\infty}^{+\infty} \frac{dx}{(x^2 + 1)(x^2 + 4)}$; Γ) $\int_{0}^{1} \frac{dx}{\sqrt{x(1 - x)}}$.

3. Сходимость несобственных интегралов

В некоторых случаях вычисление несобственных интегралов бывает довольно затруднительно, поэтому для исследования сходимости несобственных интегралов применяют различные признаки сходимости. Сформулируем соответствующие теоремы для несобственных интегралов 1-го рода.

Теорема (признак сравнения). Пусть функции f(x) и g(x) непрерывны на интервале $[a,+\infty)$ и $0 \le f(x) \le g(x)$ для всех $x \in [a,+\infty)$. Тогда справедливы следующие утверждения:

- 1) если интеграл $\int_a^{+\infty} g(x)dx$ сходится, то интеграл $\int_a^{+\infty} f(x)dx$ также сходится;
- 2) если интеграл $\int_a^{+\infty} f(x) dx$ расходится, то интеграл $\int_a^{+\infty} g(x) dx$ расходится.

Теорема (признак сравнения в предельной форме). Пусть функции f(x) и g(x) интегрируемы на любом отрезке из интервала $[a,+\infty)$ и для всех $x \in [a,+\infty)$ выполнены неравенства $f(x) \ge 0$ и $g(x) \ge 0$. Если существует предел $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = k$, то справедливы следующие утверждения:

- 1) если k = 0 и $\int_{a}^{+\infty} g(x) dx$ сходится, то $\int_{a}^{+\infty} f(x) dx$ сходится; 2) если $k = +\infty$ и $\int_{a}^{+\infty} g(x) dx$ расходится, то $\int_{a}^{+\infty} f(x) dx$ расходится;
- 3) если $k \in (0,+\infty)$, то $\int\limits_a^{+\infty} f(x) dx$ и $\int\limits_a^{+\infty} g(x) dx$ сходятся или расходятся одновременно.

Теорема (о сходимости интеграла от произведения функций). Пусть функция f(x) непрерывна на интервале $[a,+\infty)$, а g(x) монотонна и имеет непрерывную производную для всех $x \in [a, +\infty)$. Тогда справедливы следующие утверждения:

- 1) если функция $F(A) = \int_{a}^{b} f(x) dx$ ограничена на интервале $[a,+\infty)$ и $\lim_{x\to+\infty}g(x)=0$, то $\int_{-\infty}^{+\infty}f(x)g(x)dx$ сходится;
- 2) если сходится несобственный интеграл $\int_{0}^{\infty} f(x) dx$, а функция g(x) ограничена на интервале $[a,+\infty)$, то $\int_a^+ f(x)g(x)dx$ сходится.

Замечание 1. Аналогичные теоремы можно сформулировать для несобственных интегралов 2-го рода.

Замечание 2. Чтобы использовать указанные теоремы, необходимо иметь набор эталонных несобственных интегралов 1-го и 2-го рода. В качестве таких несобственных интегралов можно взять интегралы следующих видов:

$$\int_{a}^{+\infty} \frac{dx}{x^{p}} - \begin{cases} \text{сходится при } p > 1, \\ \text{расходится при } p \le 1. \end{cases}$$

$$\int_{a}^{b} \frac{dx}{(x-a)^{p}} - \begin{cases} \text{сходится при } p \le 1, \\ \text{расходится при } p > 1. \end{cases}$$

$$\int_{a}^{b} \frac{dx}{(b-x)^{p}} - \begin{cases} \text{сходится при } p \le 1, \\ \text{расходится при } p > 1. \end{cases}$$

Определение. Если функция f(x) интегрируема на любом отрезке из интервала $[a, +\infty)$ и несобственный интеграл $\int\limits_a^{+\infty} |f(x)| dx$ сходится, то $\int\limits_a^{+\infty} f(x) dx$ называют *абсолютно сходящимся*.

Теорема. Если $\int\limits_a^{+\infty} f(x)dx$ сходится абсолютно, то он сходится.

Замечание. Из сходимости несобственного интеграла не следует абсолютная сходимость.

Определение. Если $\int_{a}^{+\infty} f(x) dx$ сходится, а несобственный интеграл $\int_{a}^{+\infty} |f(x)| dx$ расходится, то $\int_{a}^{+\infty} f(x) dx$ называют *условно сходицимся*.

Пример 1. Исследовать сходимость несобственных интегралов:

a)
$$\int_{1}^{+\infty} \frac{dx}{4 + 2x^{2} + 7x^{5}}; 6) \int_{1}^{+\infty} \frac{\sqrt{x^{3}} + \sqrt{x + 1}}{4x^{3} + 2x + 1} dx; B) \int_{0}^{1} \frac{\cos\left(\frac{1}{x}\right)}{\sqrt[3]{x}} dx;$$
$$\Gamma) \int_{0}^{1} \frac{\ln\left(1 + \sqrt[3]{x^{2}}\right)}{e^{x} - 1} dx; \Pi) \int_{1}^{2} \frac{dx}{\ln x}.$$

Решение

- а) Воспользуемся признаком сравнения. Для этого оценим подынтегральную функцию сверху: $0 < \frac{1}{4 + 2x^2 + 7x^5} \le \frac{1}{7x^5} \le \frac{1}{x^5}$.
 - $\int_{1}^{+\infty} \frac{dx}{x^5}$ сходится (по замечанию 2), поэтому по признаку

сравнения сходится несобственный интеграл $\int\limits_{1}^{+\infty} \frac{dx}{4+2x^2+7x^5}$.

б) В данном примере воспользуемся признаком сравнения в предельной форме.

При $x \to +\infty$ больший вклад в значение функции в числителе и знаменателе вносят старшие степени переменной x, поэтому $f(x) = \frac{\sqrt{x^3} + \sqrt{x+1}}{4x^3 + 2x+1} \sim \frac{\sqrt{x^3}}{4x^3} = \frac{1}{4\sqrt{x^3}} = g(x)$ при $x \to +\infty$, т. е.

 $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = 1$, и несобственные интегралы от этих функций ве-

дут себя одинаково.

По замечанию 2: $\int_{1}^{+\infty} \frac{dx}{4\sqrt{x^3}}$ — сходится, поэтому и интеграл $\int_{1}^{+\infty} \frac{\sqrt{x^3} + \sqrt{x+1}}{4x^3 + 2x + 1} dx$ сходится.

в) Воспользуемся признаком сравнения. На отрезке [0,1]

справедливо неравенство: $0 < \frac{\cos\left(\frac{1}{x}\right)}{\sqrt[3]{x}} \le \frac{1}{\sqrt[3]{x}}$.

Несобственный интеграл $\int_0^1 \frac{dx}{\sqrt[3]{x}}$ сходится, поэтому $\int_0^1 \frac{\cos\left(\frac{1}{x}\right)}{\sqrt[3]{x}} dx$ также сходится.

г) Для функции $f(x) = \frac{\ln(1+\sqrt[3]{x^2})}{e^x-1}$ особой точкой второго рода является точка x=0. Воспользуемся признаком сравнения в предельной форме. По свойствам эквивалентных бесконечно малых функций имеем:

$$f(x) = \frac{\ln(1+\sqrt[3]{x^2})}{e^x - 1} \sim \frac{\sqrt[3]{x^2}}{x} = \frac{1}{\sqrt[3]{x}} = g(x)$$
при $x \to 0$.

Несобственный интеграл $\int_0^1 \frac{dx}{\sqrt[3]{x}}$ сходится по замечанию 2, по-

этому
$$\int_{0}^{1} \frac{\ln(1+\sqrt[3]{x^2})}{e^x-1} dx$$
 сходится.

д) Для функции $f(x) = \frac{1}{\ln x}$ особой точкой второго рода является точка x = 1.

По свойствам эквивалентных бесконечно малых функций:

$$\ln x = \ln (1 + (x-1)) \sim (x-1)$$
 при $x \to 1$,

поэтому
$$f(x) = \frac{1}{\ln x} \sim \frac{1}{(x-1)} = g(x)$$
 при $x \to 1$.

Воспользуемся признаком сравнения в предельной форме: $\lim_{x\to 1+0} \frac{f(x)}{g(x)} = 1$, поэтому несобственные интегралы ведут себя одинаково.

Несобственный интеграл $\int_{1}^{2} \frac{dx}{(x-1)}$ расходится по замечанию 2, поэтому $\int_{1}^{2} \frac{dx}{\ln x}$ расходится.

Пример 2. Исследовать на абсолютную сходимость несобственный интеграл:

$$\int_{2}^{+\infty} \frac{\sin 3x^{2} dx}{(x-1)^{10}}.$$

Решение

Функция $f(x) = \frac{\sin 3x^2 dx}{(x-1)^{10}}$ непрерывна при $x \ge 2$. Так как

подынтегральная функция может принимать как положительные, так и отрицательные значения, то признаки сравнения пока не применимы.

Исследуем на сходимость интеграл
$$\int\limits_{2}^{+\infty} \left| \frac{\sin 3x^2}{(x-1)^{10}} \right| dx$$
.

Воспользуемся признаком сравнения. Для этого оценим подынтегральную функцию сверху: $\left| \frac{\sin 3x^2}{(x-1)^{10}} \right| \le \frac{1}{(x-1)^{10}}$.

$$\int_{2}^{+\infty} \frac{dx}{(x-1)^{10}}$$
 сходится, поэтому по признаку сравнения
$$\sin 3x^{2} \Big|_{x}$$

$$\int\limits_{2}^{+\infty} \left| \frac{\sin 3x^{2}}{\left(x-1\right)^{10}} \right| dx$$
 сходится, а значит, $\int\limits_{2}^{+\infty} \frac{\sin 3x^{2} dx}{\left(x-1\right)^{10}}$ сходится абсолютно.

Упражнения для самостоятельной подготовки

Исследовать сходимость следующих несобственных интегралов:

a)
$$\int_{1}^{+\infty} \frac{dx}{\sqrt[3]{1+2x^2+x^6}}$$
; 6) $\int_{1}^{+\infty} \frac{\sqrt{x}+\sqrt{x^2+1}}{x^2+3x+1} dx$;
B) $\int_{1}^{+\infty} \left(1-\cos\left(\frac{2}{x^2}\right)\right) dx$; Γ) $\int_{1}^{1} \frac{dx}{x^2+3x+1}$.

B)
$$\int_{1}^{+\infty} \left(1 - \cos\left(\frac{2}{x}\right)\right) dx; \Gamma \int_{0}^{1} \frac{dx}{\operatorname{tg} x - x}.$$

Глава 4. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

1. Двойной интеграл

1.1. Понятие и свойства двойного интеграла

Понятие двойного интеграла является обобщением понятия определенного интеграла на случай функции двух переменных.

Рассмотрим задачу об определении объема цилиндрического бруса.

Задача. Найти объем тела (V), ограниченного сверху непрерывной поверхностью z = f(x,y) ($f(x,y) \ge 0$), с боков — цилиндрической поверхностью с образующими, параллельными оси Oz, снизу — замкнутой ограниченной областью (S) плоскости Oxy (рис. 4.1).

Рис. 4.1

Разобьем область (S) произвольной сетью кривых на n элементарных частей (ΔS_k) площадью ΔS_k ($k=\overline{1,n}$); в каждой элементарной части (ΔS_k) выберем произвольно точку P_k (ξ_k , η_k) и вычислим значение функции z=f(x,y) в этой точке: $f(\xi_k,\eta_k)$. Объем элементарного столбика с основанием (ΔS_k) и высотой $f(\xi_k,\eta_k)$ равен $f(\xi_k,\eta_k)\cdot\Delta S_k$. Тогда объем тела (V) приближенно равен $V\approx\sum_{k=1}^n f(\xi_k,\eta_k)\cdot\Delta S_k$. Чтобы повысить точность этой фор-

мулы, будем увеличивать количество элементарных частей (ΔS_k) так, чтобы диаметр максимальной из них стремился к нулю. Под диаметром будем понимать наименьший диаметр круга, в который можно вписать (ΔS_k).

Получим решение поставленной задачи:

$$V = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k) \cdot \Delta S_k, \quad \lambda = \max_{k} \operatorname{diam}(\Delta S_k) -$$

это двойной интеграл от функции f(x, y) по области (S).

Определение. Пусть функция f(x, y) определена и ограничена в замкнутой ограниченной области (S). Двойным интегралом от функции f(x, y) по области (S) называется предел интегральной суммы

$$\iint_{(S)} f(x,y) dS = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k) \cdot \Delta S_k, \quad \lambda = \max_{k} \operatorname{diam}(\Delta S_k),$$

если этот предел существует, конечен и не зависит от способа разбиения на элементарные части (ΔS_k) и способа выбора точек P_k (ξ_k , η_k); функция f(x,y) называется при этом интегрируемой в области (S).

Т. к. интеграл, если он существует, не зависит от разбиения на элементарные части, разобьем область (S) сетью прямых, параллельных оси Ox, и прямых, параллельных оси Oy, с расстояниями между ними Δy_k и Δx_k соответственно. В этом случае площадь элементарной части $\Delta S_k = \Delta x_k \cdot \Delta y_k$, тогда dS = dxdy и при обозначении двойного интеграла пишут

$$\iint\limits_{(S)} f(x,y) dx dy.$$

Теорема. Если функция f(x, y) непрерывна в замкнутой ограниченной области (S) с кусочно-гладкой границей, то двойной интеграл существует.

Пусть функции f(x, y) и g(x, y) интегрируемы в замкнутой ограниченной области (S). Тогда справедливы следующие **свойства интегрируемых функций и двойных интегралов:**

1.
$$\iint_{(S)} \alpha f(x,y) dxdy = \alpha \iint_{(S)} f(x,y) dxdy$$
, где α — константа.

$$2. \iint_{(S)} (f(x,y) \pm g(x,y)) dxdy = \iint_{(S)} f(x,y) dxdy \pm \iint_{(S)} g(x,y) dxdy.$$

3.
$$\iint_{(S)} f(x,y) dxdy = \iint_{(S_1)} f(x,y) dxdy + \iint_{(S_2)} f(x,y) dxdy,$$

где $(S) = (S_1) \cup (S_2)$, причем (S_1) и (S_2) не имеют общих внутренних точек.

4. Если в (*S*) справедливо неравенство $f(x, y) \ge g(x, y)$, то

$$\iint_{(S)} f(x,y) dx dy \ge \iint_{(S)} g(x,y) dx dy.$$

5.
$$\left| \iint_{(S)} f(x,y) dx dy \right| \leq \iint_{(S)} |f(x,y)| dx dy.$$

6. Если в (S) справедливо неравенство $m \le f(x, y) \le M$, то

$$mS \leq \iint_{(S)} f(x,y) dx dy \leq MS,$$

в частности,

$$m \le \frac{\iint\limits_{(S)} f(x,y) dx dy}{S} \le M.$$

Обозначим среднее значение через µ:

$$\mu = \frac{\iint\limits_{(S)} f(x,y) dx dy}{S},$$

тогда

$$\iint_{(S)} f(x,y) dx dy = \mu S, \quad m \le \mu \le M.$$

7. **Теорема о среднем**: если функция f(x, y) непрерывна на связном ограниченном замкнутом множестве (S), то $\exists (\xi, \eta) \in (S)$ такая, что

 $\iint_{(S)} f(x,y) dxdy = f(\xi,\eta) S.$

1.2. Вычисление двойного интеграла в прямоугольной системе координат

Двойной интеграл вычисляется сведением к повторному интегралу.

Будем называть область (S) правильной в направлении оси Oy, если любая прямая, проходящая через внутреннюю точку области параллельно оси Oy, пересекает границу области в двух точках (рис. 4.2, a); в противном случае — неправильная в направлении оси Oy (рис. 4.2, δ).

Рис. 4.2

Аналогично, область (S) называется *правильной в направлении оси Ох* (см. рис. 4.2, δ), если любая прямая, проходящая через внутреннюю точку области параллельно оси Ox, пересекает границу области в двух точках; в противном случае — *неправильная в направлении оси Ох* (см. рис. 4.2, a).

Область правильную и в направлении оси Ox, и в направлении оси Oy будем называть просто *правильной областью* (см. рис. 4.2, 6).

Сведение двойного интеграла к повторному рассмотрим на примере геометрической интерпретации двойного интеграла как объема цилиндрического бруса.

Предположим, что область интегрирования (S) — правильная в направлении оси Oy и ограничена линиями $y = y_1(x)$, $y = y_2(x)$, x = a и x = b (рис. 4.3, a).

Пусть площадь сечения тела плоскостью, отвечающей абсииссе x и перпендикулярной оси Ox, равна $\sigma(x)$ (рис. 4.3, δ).

Рис. 4.3

Тогда объем тела, если он существует, равен

$$V = \int_a^b \sigma(x) dx$$
, где $\sigma(x) = \int_{y_1(x)}^{y_2(x)} f(x, y) dy$.

С другой стороны, объем тела равен

$$V = \iint_{(S)} f(x, y) dx dy.$$

Следовательно, вычисление двойного интеграла сводится к последовательному вычислению двух определенных интегралов:

$$\iint\limits_{(S)} f(x,y) dx dy = \int\limits_{a}^{b} dx \int\limits_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy.$$

Указанная формула справедлива, если f(x, y) интегрируема на области (S), ограниченной линиями $y = y_1(x)$, $y = y_2(x)$, x = a, x = b, и $\forall x \in [a, b]$ существует внутренний интеграл

$$\int_{y_1(x)}^{y_2(x)} f(x,y) dy.$$

Аналогично, если f(x, y) интегрируема на области (S), правильной в направлении оси Ox и ограниченной линиями $x = x_1(y), x = x_2(y), y = \alpha, y = \beta$ (рис. 4.4), и $\forall y \in [\alpha, \beta]$ существует внутренний интеграл

$$\int_{x_1(y)}^{x_2(y)} f(x,y) dx,$$

TO

$$\iint\limits_{(S)} f(x,y) dx dy = \int\limits_{\alpha}^{\beta} dy \int\limits_{x_1(y)}^{x_2(y)} f(x,y) dx.$$

Рис. 4.4

Если область (S) правильная, то справедливы обе формулы и

$$\int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy = \int_{\alpha}^{\beta} dy \int_{x_{1}(y)}^{x_{2}(y)} f(x,y) dx.$$

Пример 1. Изменить порядок интегрирования в интеграле

$$I = \int_{0}^{1} dy \int_{1+\sqrt{1-y^{2}}}^{2+\sqrt{4-y^{2}}} f(x,y) dx + \int_{1}^{2} dy \int_{y}^{2+\sqrt{4-y^{2}}} f(x,y) dx.$$

Решение

Области интегрирования (D_1) и (D_2) для первого и второго повторного интеграла соответственно, определяются следующими неравенствами:

$$(D_1): 0 \le y \le 1, \quad 1 + \sqrt{1 - y^2} \le x \le 2 + \sqrt{4 - y^2};$$

 $(D_2): 1 \le y \le 2, \quad y \le x \le 2 + \sqrt{4 - y^2}.$

Найдем границы каждой из областей.

Границы области (D_1) — две прямые y=0 и y=1 и две кривые второго порядка $x=1+\sqrt{1-y^2}$ и $x=2+\sqrt{4-y^2}$. Приведем последние к каноническому виду:

$$x = 1 + \sqrt{1 - y^2} \Leftrightarrow x - 1 =$$

$$= \sqrt{1 - y^2} \Leftrightarrow \begin{cases} (x - 1)^2 = 1 - y^2, \\ x \ge 1 \end{cases} \Leftrightarrow \begin{cases} (x - 1)^2 + y^2 = 1 \\ x \ge 1 \end{cases}$$

— правая полуокружность с центром в точке (1,0) радиуса 1;

$$x = 2 + \sqrt{4 - y^2} \Leftrightarrow x - 2 =$$

$$= \sqrt{4 - y^2} \Leftrightarrow \begin{cases} (x - 2)^2 = 4 - y^2, \\ x \ge 2 \end{cases} \Leftrightarrow \begin{cases} (x - 2)^2 + y^2 = 4 \\ x \ge 2 \end{cases}$$

— правая полуокружность с центром в точке (2, 0) радиуса 2.

Границы области (D_2) — прямые y = 1, y = 2, y = x и $\begin{cases} (x-2)^2 + y^2 = 4, \\ x \ge 2 \end{cases}$ — правая полуокружность с центром в точке (2,0) радиуса 2.

Построим области интегрирования (D_1) и (D_2) на общей числовой плоскости (рис. 4.5).

Изменим порядок интегрирования — внешнее интегрирование по x. Тогда при $x \in [1, 2]$ переменная y будет меняться в пределах от $y = \sqrt{1 - \left(x - 1\right)^2}$ до y = x, а при $x \in [2, 4]$ переменная y будет меняться в пределах от y = 0 до $y = \sqrt{4 - \left(x - 2\right)^2}$.

Таким образом,

$$I = \int_{1}^{2} dx \int_{\sqrt{1-(x-1)^{2}}}^{x} f(x,y) dy + \int_{2}^{4} dx \int_{0}^{\sqrt{4-(x-2)^{2}}} f(x,y) dy.$$

Пример 2. Вычислить двойной интеграл

$$I = \iint_{(S)} (x^2 + y) dx dy,$$

где (S) — область, ограниченная параболами $y = x^2$ и $x = y^2$.

Решение

Построим область интегрирования (S): $y = x^2$ — это парабола с вершиной в точке (0, 0), осью симметрии, совпадающей с осью ординат Oy, ветви направлены вверх; $x = y^2$ — парабола с вершиной в точке (0, 0), осью симметрии, совпадающей с осью абсцисс Ox, ветви направлены вправо (рис. 4.6).

Найдем координаты точек пересечения кривых из системы уравнений: $\begin{cases} y=x^2,\\ x=y^2. \end{cases}$

Подставим в первое уравнение выражение для x из второго, получим $y = (y^2)^2$ или $y^4 - y = 0$. Отсюда $y_1 = 0$, $y_2 = 1$, тогда $x_1 = 0$, $x_2 = 1$.

Выберем следующий порядок интегрирования:

$$I = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) dy.$$

Определим пределы интегрирования: для внешнего интеграла переменная x меняется в пределах от 0 до 1; для внутреннего интеграла (при любом фиксированном $x \in [0, 1]$) переменная y меняется в пределах от $y = x^2$ до $y = \sqrt{x}$.

Получим

$$I = \iint_{(S)} (x^2 + y) dx dy = \int_{0}^{1} dx \int_{x^2}^{\sqrt{x}} (x^2 + y) dy.$$

Вычислим внутренний интеграл (при фиксированном x)

$$\int_{x^2}^{\sqrt{x}} \left(x^2 + y \right) dy = \left(x^2 y + \frac{y^2}{2} \right) \Big|_{x^2}^{\sqrt{x}} = x^{5/2} + \frac{x}{2} - \left(x^4 + \frac{x^4}{2} \right) = x^{5/2} + \frac{x}{2} - \frac{3x^4}{2}.$$

Затем вычислим внешний интеграл

$$I = \int_{0}^{1} \left(x^{5/2} + \frac{x}{2} - \frac{3x^{4}}{2} \right) dx = \left(\frac{2x^{7/2}}{7} + \frac{x^{2}}{4} - \frac{3x^{5}}{10} \right) \Big|_{0}^{1} = \frac{2}{7} + \frac{1}{4} - \frac{3}{10} = \frac{33}{140}.$$

Пример 3. Вычислить двойной интеграл

$$I = \iint_{(D)} xy^2 dx dy,$$

если область (*D*) ограничена линиями $y^2 = x$ и y = x - 2.

Решение

Построим область интегрирования (D): $y^2 = x$ — это парабола с вершиной в точке (0, 0), осью симметрии, совпадающей с осью абсцисс Ox, ветви направлены вправо; y = x - 2 — прямая, проходящая через точки (0, —2) и (2, 0).

Найдем координаты точек пересечения линий, решив систему уравнений:

$$\begin{cases} y^2 = x, \\ y = x - 2. \end{cases}$$

Выразим из второго уравнения системы x=y+2 и подставим в первое, получим $y^2=y+2$, или $y^2-y-2=0$. Отсюда $y_1=-1, y_2=2$, тогда $x_1=1, x_2=4$ (см. рис. 4.7).

Заметим, что если будем производить внешнее интегрирование по x, то при $x \in [0, 1]$ переменная y будет меняться в пределах от $y = -\sqrt{x}$ до $y = \sqrt{x}$, а при $x \in [1, 4]$ переменная y будет ме-

няться в пределах от y = x - 2 до $y = \sqrt{x}$. Таким образом, область интегрирования необходимо будет разбить на две части:

$$I = \iint_{(D)} xy^2 dx dy = \int_0^1 dx \int_{-\sqrt{x}}^{\sqrt{x}} xy^2 dy + \int_1^4 dx \int_{x-2}^{\sqrt{x}} xy^2 dy.$$

Рис. 4.7

Если же внешнее интегрирование производить по y, то $\forall y \in [-1, 2]$ переменная x будет меняться от $x = y^2$ до x = y + 2 и не возникнет необходимость разбивать область интегрирования на части. Поэтому выберем данный порядок интегрирования:

$$I = \iint_{(D)} xy^2 dx dy = \int_{-1}^{2} dy \int_{y^2}^{y+2} xy^2 dx.$$

Вычислим внутренний интеграл (при фиксированном у)

$$\int_{y^2}^{y+2} xy^2 dx = \frac{x^2}{2} \cdot y^2 \bigg|_{y^2}^{y+2} = \frac{(y+2)^2}{2} \cdot y^2 - \frac{(y^2)^2}{2} \cdot y^2 = \frac{y^4}{2} + 2y^3 + 2y^2 - \frac{y^6}{2}.$$

Затем вычислим внешний интеграл

$$I = \int_{-1}^{2} \left(\frac{y^4}{2} + 2y^3 + 2y^2 - \frac{y^6}{2} \right) dy = \left(\frac{y^5}{10} + \frac{y^4}{2} + \frac{2y^3}{3} - \frac{y^7}{14} \right) \Big|_{-1}^{2} = 7 \frac{41}{70}.$$

1.3. Замена переменных в двойном интеграле. Переход к полярным координатам

Пусть даны две замкнутые ограниченные области (S) в плоскости Oxy и (S') в плоскости Ouv, границы которых — простые кусочно-гладкие кривые (рис. 4.8).

Пусть в области (S') дана система непрерывных функций с непрерывными частными производными первого порядка

$$\begin{cases} x = x(u, v), \\ y = y(u, v), \end{cases}$$
 (4.1)

которая каждой точке $(u, v) \in (S')$ ставит в соответствие единственную точку $(x, y) \in (S)$, причем различным точкам (u, v) соответствуют различные точки (x, y). Тогда система (4.1) однозначно разрешима относительно u и v:

$$\begin{cases} u = u(x, y), \\ v = v(x, y), \end{cases}$$
(4.2)

т. е. установлено взаимно-однозначное соответствие между областями (S) и (S').

Если якобиан

$$J(u,v) = \frac{D(x,y)}{D(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

сохраняет постоянный знак в (S') за исключением, быть может, множества меры нуль, то справедлива формула

$$\iint_{(S)} f(x,y) dxdy = \iint_{(S')} f(x(u,v),y(u,v)) |J(u,v)| dudv.$$

Заметим, что при таком отображении внутренним точкам области (S') соответствуют внутренние точки области (S), а граничным — граничные.

Рассмотрим случай перехода к *полярным координатам* ρ и ϕ по формулам $x = \rho \cdot \cos \phi$, $y = \rho \cdot \sin \phi$, $\rho \ge 0$, $0 \le \phi < 2\pi$ (рис. 4.9).

Якобиан замены равен

$$J(\rho, \varphi) = \frac{D(x, y)}{D(\rho, \varphi)} = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \varphi} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi \\ \sin \varphi & \rho \cos \varphi \end{vmatrix} = \rho.$$

Таким образом, при переходе к полярным координатам получаем

$$\iint_{(S)} f(x,y) dx dy = \iint_{(S')} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho d\varphi.$$

Если область интегрирования (S') заключена между лучами OA с уравнением $\varphi = \alpha$ и OB с уравнением $\varphi = \beta$ и дугами A_1B_1 с уравнением $\rho = \rho_1(\varphi)$ и AB с уравнением $\rho = \rho_2(\varphi)$ (рис. 4.10), то справедлива формула

$$\iint_{(S')} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho d\varphi = \int_{\alpha}^{\beta} d\varphi \int_{\rho_1(\varphi)}^{\rho_2(\varphi)} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho.$$

Пример 4. Вычислить двойной интеграл

$$\iint\limits_{(D)} \frac{dxdy}{\sqrt{x^2 + y^2}},$$

где (D) — часть круга радиуса 1 с центром в точке (1,0), расположенного в первом квадранте.

Решение

Построим область интегрирования (см. рис. 4.11).

Т. к. область интегрирования — часть круга и, кроме того, подынтегральная функция содержит выражение $\sqrt{x^2+y^2}$, то будет рационально перейти к полярным координатам.

Уравнение границы круга — окружности — в декартовых координатах имеет вид $(x-1)^2 + y^2 = 1$. Запишем уравнение этой

окружности в полярных координатах, подставив $x = \rho \cdot \cos \varphi$ и $y = \rho \cdot \sin \varphi$, получим $(\rho \cdot \cos \varphi - 1)^2 + (\rho \cdot \sin \varphi)^2 = 1$, или $\rho^2 = 2\rho \cdot \cos \varphi$, или, окончательно, $\rho = 2\cos \varphi$.

Аналогично найдем выражение подынтегральной функции в полярных координатах

$$\frac{1}{\sqrt{x^2 + y^2}} \bigg|_{\substack{x = \rho \cos \varphi, \\ y = \rho \sin \varphi}} = \frac{1}{\rho}.$$

Область (D) ограничена лучами $\varphi=0$ и $\varphi=\pi/2$. Проведем произвольный луч в секторе $0 \le \varphi \le \pi/2$ (рис. 4.11). Для точек области (D), лежащих на этом луче, координата ρ меняется в пределах от $\rho=0$ (начало координат) до $\rho=2$ соѕ φ (окружность). С учетом того, что якобиан замены $J(\rho,\varphi)=\rho$, получим

$$\iint_{(D)} \frac{dxdy}{\sqrt{x^2 + y^2}} = \int_{0}^{\pi/2} d\varphi \int_{0}^{2\cos\varphi} \frac{1}{\rho} \rho d\rho.$$

Вычислим повторный интеграл, начиная с внутреннего,

$$\int_{0}^{\pi/2} d\varphi \int_{0}^{2\cos\varphi} d\rho = \int_{0}^{\pi/2} \left(\rho \Big|_{0}^{2\cos\varphi}\right) d\varphi = \int_{0}^{\pi/2} 2\cos\varphi d\varphi = 2\sin\varphi \Big|_{0}^{\pi/2} = 2.$$

1.4. Приложения двойного интеграла

1. Объем цилиндрического бруса

Как уже было показано ранее, объем цилиндрического бруса, ограниченного сверху непрерывной поверхностью $z = f(x,y) (f(x,y) \ge 0)$, с боков — цилиндрической поверхностью с образующими, параллельными оси Oz, снизу — замкнутой ограниченной областью (S) плоскости Oxy (см. рис. 4.1), равен двойному интегралу по области (S) от функции f(x,y):

$$V = \iint_{(S)} f(x, y) dx dy.$$

2. Площадь плоской фигуры

Заметим, что объем прямого цилиндра с основанием (D) в плоскости Oxy и ограниченного сверху плоскостью z=1 равен произведению площади основания на высоту, т. е. $V=S_D\cdot 1$, с другой стороны, объем равен двойному интегралу по области (D) от функции f(x,y)=1, таким образом площадь плоской фигуры (D) равна

 $S_D = \iint_{(D)} dx dy$.

3. Macca плоской фигуры (D) с плотностью γ (x , y)

Разобьем плоскую фигуру (*D*) произвольным образом на *n* элементарных частей с площадями ΔS_k ($k=\overline{1,n}$). В каждой из элементарных частей выберем произвольно точку P_k (x_k, y_k) и вы-

числим в ней значение поверхностной плотности γ (x_k , y_k) и вычислим в ней значение поверхностной плотности γ (x_k , y_k). Будем считать, что элементарные части настолько малы, что плотность каждой из них постоянна и равна γ (x_k , y_k). Тогда масса k-й элементарной части приближенно равна $\Delta m_k \approx \gamma(x_k, y_k) \cdot \Delta S_k$, а масса фигуры приближенно равна

$$m_D \approx \sum_{k=1}^n \gamma(x_k, y_k) \cdot \Delta S_k$$
.

Переходя к пределу при $\lambda = \max_k \operatorname{diam}(\Delta S_k) \to 0$, получим $m_D = \iint_{\Sigma} \gamma(x,y) dx dy.$

4. *Центр масс* плоской фигуры (D) с плотностью γ (x, y) Из курса физики известно, что радиус-вектор центра масс системы n материальных точек равен

$$\overline{r}_m = \frac{\sum_{k=1}^n m_k \overline{r}_k}{m},$$

где m_k — масса k-й точки системы; \overline{r} — радиус-вектор k-й точки системы.

Тогда координаты центра масс системы n материальных точек определяются по формулам:

$$x_m = \frac{\sum_{k=1}^n m_k x_k}{m}, \quad y_m = \frac{\sum_{k=1}^n m_k y_k}{m}, \quad z_m = \frac{\sum_{k=1}^n m_k z_k}{m}.$$

В случае плоской фигуры (*D*) массой m_D разобьем ее произвольным образом на n элементарных частей с площадями $\Delta S_k \left(k = \overline{1,n}\right)$ и массами $\Delta m_k \approx \gamma(x_k,y_k) \cdot \Delta S_k$, где точка $P_k(x_k,y_k) \in (\Delta S_k)$.

Таким образом, заменим плоскую фигуру системой из n материальных точек с массами Δm_k и координатами (x_k, y_k) . Тогда координаты центра масс плоской фигуры (D) приблизительно равны

$$X_{m} \approx \frac{\sum_{k=1}^{n} x_{k} \cdot \gamma(x_{k}, y_{k}) \cdot \Delta S_{k}}{m_{D}}, \quad Y_{m} = \frac{\sum_{k=1}^{n} y_{k} \cdot \gamma(x_{k}, y_{k}) \cdot \Delta S_{k}}{m_{D}}.$$

Переходя к пределу при $\lambda = \max_k \operatorname{diam}\left(\Delta S_k\right) \to 0$, получим

$$x_m = \frac{1}{m_D} \iint_{(D)} x \cdot \gamma(x, y) dxdy, \quad y_m = \frac{1}{m_D} \iint_{(D)} y \cdot \gamma(x, y) dxdy,$$

где

$$m_D = \iint\limits_{(D)} \gamma(x, y) dx dy.$$

5. Моменты инерции плоской фигуры

Из курса физики известно, что *момент инерции* системы материальных точек с массами m_k относительно центра, оси или плоскости равен сумме произведений масс точек на квадрат расстояний ρ_k от этих точек до центра, оси или плоскости соответственно:

$$J = \sum_{k=1}^{n} m_k \rho_k^2.$$

В случае плоской фигуры (*D*) массой m_D разобьем ее произвольным образом на n элементарных частей с площадями $\Delta S_k \left(k = \overline{1,n}\right)$ и массами $\Delta m_k \approx \gamma(x_k,y_k) \cdot \Delta S_k$, где точка $P_k(x_k,y_k) \in (\Delta S_k)$.

Таким образом, заменим плоскую фигуру системой из n материальных точек с массами Δm_k . Расстояние от k-й точки системы до оси Ox равно y_k , до оси $Oy - x_k$, до точки O (начала координат) — $\sqrt{x^2 + y^2}$.

Тогда осевые моменты инерции J_x , J_y — моменты инерции плоской фигуры (D) относительно оси Ox и оси Oy соответственно, а также *центральный* (полярный) момент J_O — момент плоской фигуры (D) относительно начала координат приблизительно равны

$$J_{x} \approx \sum_{k=1}^{n} y_{k}^{2} \cdot \gamma(x_{k}, y_{k}) \cdot \Delta S_{k}, \quad J_{y} \approx \sum_{k=1}^{n} x_{k}^{2} \cdot \gamma(x_{k}, y_{k}) \cdot \Delta S_{k},$$
$$J_{O} \approx \sum_{k=1}^{n} (x_{k}^{2} + y_{k}^{2}) \cdot \gamma(x_{k}, y_{k}) \cdot \Delta S_{k}.$$

Переходя к пределу при $\lambda = \max_{k} \operatorname{diam}(\Delta S_k) \rightarrow 0$, получим

$$J_x = \iint_{(D)} y^2 \cdot \gamma(x, y) dxdy, \quad J_y = \iint_{(D)} x^2 \cdot \gamma(x, y) dxdy,$$

$$J_O = \iint_{(D)} (x^2 + y^2) \cdot \gamma(x, y) dx dy.$$

Помимо центрального и осевых моментов инерции в прикладных задачах рассматривается также *центробежный момент инерции*

$$J_{xy} = \iint_{(D)} xy \cdot \gamma(x, y) dxdy.$$

Пример 5. Найти массу плоской фигуры, ограниченной кривыми y = 0, $y = \sqrt{x}$ и x + y = 2, если ее плотность y = y.

Решение

Масса плоской фигуры (D) вычисляется по формуле

$$m_D = \iint_{(D)} \gamma(x, y) dxdy = \iint_{(D)} y dxdy.$$

Построим область интегрирования (D) (рис. 4.12)

Найдем координаты точки пересечения прямой x+y=2 и ветви параболы $y=\sqrt{x}$:

$$\begin{cases} x+y=2, \\ y=\sqrt{x} \end{cases} \Leftrightarrow \begin{cases} x+y=2, \\ y^2=x, \\ y \geq 0 \end{cases} \Leftrightarrow \begin{cases} y^2+y-2=0, \\ x=y^2, \\ y \geq 0 \end{cases} \Leftrightarrow \begin{cases} x=1, \\ y=1. \end{cases}$$

Сведем вычисление двойного интеграла к вычислению повторного интеграла:

$$m_{D} = \iint_{D} y dx dy = \int_{0}^{1} dy \int_{y^{2}}^{2-y} y dx = \int_{0}^{1} y x \Big|_{y^{2}}^{2-y} dy =$$

$$= \int_{0}^{1} y (2 - y - y^{2}) dy = \int_{0}^{1} (2y - y^{2} - y^{3}) dy =$$

$$= \left(y^{2} - \frac{y^{3}}{3} - \frac{y^{4}}{4} \right) \Big|_{0}^{1} = 1 - \frac{1}{3} - \frac{1}{4} = \frac{5}{12}.$$

Пример 6. Найти площадь плоской фигуры, ограниченной линией

$$\left(x^2+y^2\right)^2=2xy.$$

Решение

Уравнение линии, ограничивающей плоскую фигуру (D), содержит выражение $x^2 + y^2$, поэтому перейдем к полярным координатам ρ и ϕ по формулам $x = \rho \cdot \cos \phi$ и $y = \rho \cdot \sin \phi$. Получим

$$((\rho\cos\phi)^2 + (\rho\sin\phi)^2)^2 = 2\rho\cos\phi \cdot \rho\sin\phi \Rightarrow \rho^2 = 2\cos\phi\sin\phi \Rightarrow$$
$$\Rightarrow \rho^2 = \sin 2\phi \Rightarrow \rho = \sqrt{\sin 2\phi}.$$

Построим эту линию в полярных координатах, при этом учтем, что

$$\sin 2\varphi \ge 0 \Rightarrow 0 \le 2\varphi \le \pi \Rightarrow 0 \le \varphi \le \pi/2$$
,

т.е. линия располагается в первом квадранте, а в силу периодичности функции $\sin 2\varphi$ с периодом π и в третьем квадранте, и симметрична относительно прямой $\varphi = \pi/4$, т.е. фигура (*D*) состоит из двух равновеликих частей (*D*') (см. рис. 4.13).

Площадь плоской фигуры (D) вычисляем по формуле

$$S_{D} = 2S_{D'} = 2\iint_{(D')} dx dy = 2\int_{0}^{\pi/2} d\varphi \int_{0}^{\sqrt{\sin 2\varphi}} \rho d\rho = 2\int_{0}^{\pi/2} \left(\frac{\rho^{2}}{2}\Big|_{0}^{\sqrt{\sin 2\varphi}}\right) d\varphi =$$
$$= \int_{0}^{\pi/2} \sin 2\varphi d\varphi = -\frac{1}{2}\cos 2\varphi\Big|_{0}^{\pi/2} = 1.$$

Рис. 4.13

Пример 7. Найти момент инерции однородного круга радиуса R относительно центра круга, если плотность $\gamma = 1$.

Решение

Начало отсчета декартовой системы координат совместим с центром круга. Требуется найти центральный (полярный) момент инерции

$$J_O = \iint_{(D)} \left(x^2 + y^2 \right) dx dy.$$

Т. к. область интегрирования — круг и, кроме того, подынтегральная функция содержит выражение $x^2 + y^2$, то будет рационально перейти к полярным координатам, получим

$$J_{O} = \int_{0}^{2\pi} d\varphi \int_{0}^{R} \rho^{2} \cdot \rho \, d\rho = \int_{0}^{2\pi} \left(\frac{\rho^{4}}{4} \Big|_{0}^{R} \right) d\varphi = \int_{0}^{2\pi} \frac{R^{4}}{4} \, d\varphi = \frac{R^{4}}{4} \, \varphi \Big|_{0}^{2\pi} = \frac{\pi R^{4}}{2}.$$

Упражнения для самостоятельной подготовки

1. Изменить порядок интегрирования в следующих интегралах:

a)
$$\int_{0}^{1} dy \int_{y^{3}}^{y^{2}} f(x,y) dx; 6) \int_{-1}^{1} dx \int_{-\sqrt{1-x^{2}}}^{1-x^{2}} f(x,y) dy;$$
B)
$$\int_{0}^{2} dy \int_{\sqrt{2y-y^{2}}}^{\sqrt{2y}} f(x,y) dx; \Gamma \int_{0}^{1} dx \int_{x}^{2x} f(x,y) dy + \int_{1}^{\sqrt{2}} dx \int_{x^{3}}^{2x} f(x,y) dy.$$

- 2. Найти координаты центра масс квадратной пластины (*D*): $0 \le x \le 2, \ 0 \le y \le 2,$ поверхностная плотность которой равна $\gamma = x + y$.
 - 3. Найти площадь фигуры, ограниченной линией $\rho = 1 + \cos \varphi$.
- 4. Найти момент инерции однородного ($\gamma = \text{const}$) круга (D): $x^2 + y^2 \le x$ относительно оси Ox.
- 5. Найти момент инерции однородного круга радиуса R относительно точки, лежащей на окружности.

2. Тройной интеграл

2.1. Понятие и свойства тройного интеграла

Рассмотрим задачу об определении массы тела.

Задача. Найти массу m_V тела (V), в каждой точке P(x, y, z) которого известна объемная плотность $\gamma = \gamma(P) = \gamma(x, y, z)$.

Разобьем тело (V) произвольной сетью поверхностей на n элементарных частей (ΔV_k) объемом ΔV_k ($k=\overline{1,n}$); в каждой эле-

ментарной части (ΔV_k) выберем произвольно точку $P_k(\xi_k, \eta_k, \zeta_k)$; будем считать, что в пределах (ΔV_k) плотность постоянна и равна $\gamma(\xi_k, \eta_k, \zeta_k)$. Тогда масса элементарной части (ΔV_k) приближенно равна $\gamma(\xi_k, \eta_k, \zeta_k) \cdot \Delta V_k$, а масса всего тела

$$m_V \approx \sum_{k=1}^n \gamma(\xi_k, \eta_k, \zeta_k) \cdot \Delta V_k$$
.

Для того чтобы повысить точность этой формулы, будем увеличивать количество элементарных частей (ΔV_k) так, чтобы диаметр максимальной из них стремился к нулю (под диаметром будем понимать наименьший диаметр сферы, в которую можно вписать (ΔV_k); получим решение поставленной задачи:

$$m_V = \lim_{\lambda \to 0} \sum_{k=1}^n \gamma(\xi_k, \eta_k, \zeta_k) \cdot \Delta V_k, \quad \lambda = \max_k \operatorname{diam}(\Delta V_k)$$

или, в принятых для тройных интегралов обозначениях,

$$m_V = \iiint_{(V)} \gamma(x, y, z) dV.$$

Определение. Пусть функция f(x, y, z) определена и ограничена в замкнутой ограниченной области (V). Тройным интегралом от функции f(x, y, z) по области (V) называется предел интегральной суммы

$$\iiint\limits_{(V)} f(x,y,z) = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \cdot \Delta V_k, \quad \lambda = \max_k \operatorname{diam}(\Delta V_k),$$

если этот предел существует, конечен и не зависит от способа разбиения на элементарные части (ΔV_k) и способа выбора точек P_k (ξ_k , η_k , ζ_k); при этом функция f(x,y,z) называется интегрируемой в области (V).

Теорема. Если функция f(x, y, z) непрерывна в замкнутой ограниченной области (V) с кусочно-гладкой границей, то тройной интеграл существует.

Если тройной интеграл вычисляют в прямоугольных координатах x, y, z, то полагают $\Delta V_k = \Delta x_k \cdot \Delta y_k \cdot \Delta z_k \Rightarrow dV = dxdydz$ и тройной интеграл записывают в виде

$$\iiint\limits_{(V)} f(x,y,z) dx dy dz.$$

Пусть функции f(x, y, z) и g(x, y, z) интегрируемы на замкнутой ограниченной области (У). Тогда справедливы следующие свойства интегрируемых функций и тройных интегралов:

1.
$$\iiint_{(V)} \alpha f(x, y, z) dx dy dz = \alpha \iiint_{(V)} f(x, y, z) dx dy dz,$$

где α — константа.

2.
$$\iiint_{(V)} (f(x,y,z) \pm g(x,y,z)) dxdydz =$$

$$= \iiint_{(V)} f(x,y,z) dxdydz \pm \iiint_{(V)} g(x,y,z) dxdydz.$$
3.
$$\iiint_{(V)} f(x,y,y) dxdydz =$$

3.
$$\iiint_{(V)} f(x, y, y) dx dy dz =$$

$$= \iiint_{(V_1)} f(x, y, z) dx dy dz + \iiint_{(V_2)} f(x, y, z) dx dy dz,$$

где $(V) = (V_1) \cup (V_2)$, причем (V_1) и (V_2) не имеют общих внутренних точек.

4. Если в (*V*) справедливо неравенство $f(x, y, z) \ge g(x, y, z)$, то

4. ЕСЛИ В (V) Справедливо неравенство
$$f(x, y)$$

$$\iiint_{(V)} f(x, y, z) dx dy dz \ge \iiint_{(V)} g(x, y, z) dx dy dz.$$

$$5. \left| \iiint_{(V)} f(x, y, z) dx dy dz \right| \le \iiint_{(V)} |f(x, y, z)| dx dy dz.$$

6. Если в (V) справедливо неравенство $m \le f(x, y, z) \le M$, то $mV \leq \iiint f(x, y, z) dx dy dz \leq MV$,

в частности.

$$m \le \frac{\iiint\limits_{(V)} f(x, y, z) dx dy dz}{V} \le M.$$

Обозначим среднее значение через и:

$$\mu = \frac{\iiint\limits_{(V)} f\left(x, y, z\right) dx dy dz}{V},$$

тогда

$$\iiint\limits_{(V)} f(x,y,z) dx dy dz = \mu V, \quad m \le \mu \le M.$$

7. **Теорема о среднем**: если функция f(x, y, z) непрерывна на связном замкнутом ограниченном множестве (V), то $\exists (\xi, \eta, \zeta) \in (V)$ такая, что

$$\iiint_{(V)} f(x, y, z) dx dy dz = f(\xi, \eta, \zeta) \cdot V.$$

2.2. Вычисление тройного интеграла

Вычисление тройного интеграла сводится к вычислению определенного и двойного интегралов.

Будем рассматривать область (V), правильную в направлении оси Oz, т. е. такую, что любая прямая, проходящая через внутреннюю точку области параллельно оси Oz, пересекает границу области в двух точках. Пусть область (V) ограничена сверху и снизу поверхностями $z = z_1(x, y)$ и $z = z_2(x, y)$ соответственно, а также цилиндрической поверхностью F(x, y) = 0 с образующими, параллельными оси Oz (рис. 4.14).

Рис. 4.14

 (D_{xy}) — проекция (V) на плоскость Oxy. Функция f(x, y, z) непрерывна в области (V). Тогда справедлива формула

$$\iiint\limits_{(V)} f(x,y,z) dxdydz = \iint\limits_{(D_{xy})} dxdy \int\limits_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz.$$

Если при этом область (D_{xy}) — правильная в направлении оси Oy и определяется следующими неравенствами: $a \le x \le b$, $y_1(x) \le y \le y_2(x)$, то тройной интеграл может быть вычислен по формуле

$$\iiint_{(V)} f(x,y,z) dx dy dz = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} dy \int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz.$$

Пример 1. Вычислить тройной интеграл

$$I = \iiint\limits_{(V)} xyz \, dx dy dz,$$

где область (V) ограничена поверхностями x+y+z=1, x=0, y=0, z=0.

Решение

Построим область интегрирования (см. рис. 4.15), ее границы: координатные плоскости Oyz (уравнение x=0), Oxz (уравнение y=0), Oxy (уравнение z=0) и плоскость x+y+z=1, проходящая через точки A(1,0,0), B(0,1,0), C(0,0,1).

Область (V) правильная в направлении оси Oz и ограничена снизу плоскостью z=0, а сверху плоскостью z=1-x-y. Проекция области (V) на плоскость Oxy — треугольник OAB, определяемый неравенствами: $0 \le x \le 1$, $0 \le y \le 1-x$.

Тогда тройной интеграл равен

$$I = \iiint_{(V)} xyz \, dxdydz = \int_{0}^{1} dx \int_{0}^{1-x} dy \int_{0}^{1-x-y} xyz \, dz.$$

Последовательно вычисляем интегралы, начиная с внутреннего, причем при интегрировании по z переменные x и y фиксированы, а при интегрировании по y фиксирована переменная x.

Рис. 4.15

Внутренний интеграл равен

$$\int_{0}^{1-x-y} xyz \, dz = xy \int_{0}^{1-x-y} z \, dz = xy \frac{z^{2}}{2} \Big|_{0}^{1-x-y} =$$

$$= \frac{xy (1-x-y)^{2}}{2} = \frac{xy}{2} \Big((1-x)^{2} - 2(1-x)y + y^{2} \Big),$$

затем следующий интеграл:

$$\int_{0}^{1-x} \frac{xy}{2} \left((1-x)^{2} - 2(1-x)y + y^{2} \right) dy =$$

$$= \frac{x(1-x)^{2}}{2} \int_{0}^{1-x} y \, dy - x(1-x) \int_{0}^{1-x} y^{2} \, dy + \frac{x}{2} \int_{0}^{1-x} y^{3} \, dy =$$

$$= \frac{x(1-x)^{2}}{2} \cdot \frac{y^{2}}{2} \Big|_{0}^{1-x} - x(1-x) \frac{y^{3}}{3} \Big|_{0}^{1-x} + \frac{x}{2} \cdot \frac{y^{4}}{4} \Big|_{0}^{1-x} =$$

$$= \frac{x(1-x)^{4}}{4} - \frac{x(1-x)^{4}}{3} + \frac{x(1-x)^{4}}{8} = \frac{x(1-x)^{4}}{24}$$

и, наконец, искомый интеграл

$$I = \int_{0}^{1} \frac{x(1-x)^{4}}{24} dx =$$

$$= \left[t = 1 - x \Rightarrow x = 1 - t \Rightarrow dx = -dt; \atop x = 0 \Rightarrow t = 1; \quad x = 1 \Rightarrow t = 0 \right] = -\frac{1}{24} \int_{1}^{0} (1-t)t^{4} dt =$$

$$= \frac{1}{24} \int_{0}^{1} (t^{4} - t^{5}) dt = \frac{1}{24} \left(\frac{t^{5}}{5} - \frac{t^{6}}{6} \right) \Big|_{0}^{1} = \frac{1}{24} \left(\frac{1}{5} - \frac{1}{6} \right) = \frac{1}{720}.$$

2.3. Замена переменных в тройном интеграле. Переход к цилиндрическим и сферическим координатам

Пусть даны две замкнутые ограниченные кубируемые области: (V) пространства Oxyz и (V') пространства O'uvw, границы которых — простые кусочно-гладкие поверхности. Пусть также между этими областями установлено взаимно-однозначное соответствие с помощью непрерывно дифференцируемых функций

$$\begin{cases} x = x(u, v, w), \\ y = y(u, v, w), \\ z = z(u, v, w), \end{cases}$$

причем якобиан

$$J(u,v,w) = \frac{D(x,y,z)}{D(u,v,w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

не равен нулю и сохраняет постоянный знак в (V') за исключением, быть может, множества меры нуль. Тогда

$$\iiint\limits_{(V)} f(x,y,z) dx dy dz =$$

$$= \iiint\limits_{(V)} f(x(u,v,w),y(u,v,w),z(u,v,w)) \big| J(u,v,w) \big| du dv dw.$$

Рассмотрим два частных случая:

1) переход к *цилиндрическим координатам* φ , ρ и z по формулам $x=\rho\cdot\cos\varphi$, $y=\rho\cdot\sin\varphi$, z=z, где $\rho\geq 0$, $0\leq \varphi\leq 2\pi$, $-\infty< z<\infty$ (рис. 4.16, a).

Рис. 4.16

Якобиан замены

$$J(\rho, \varphi, z) = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \varphi} & \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \varphi} & \frac{\partial y}{\partial z} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \varphi} & \frac{\partial z}{\partial z} \end{vmatrix} = \begin{vmatrix} \cos \varphi & -\rho \sin \varphi & 0 \\ \sin \varphi & \rho \cos \varphi & 0 \\ 0 & 0 & 1 \end{vmatrix} = \rho.$$

Таким образом, при переходе к цилиндрическим координатам получаем

$$\iiint_{(V)} f(x, y, z) dx dy dz = \iiint_{(V)} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho d\rho d\varphi dz;$$

2) переход к сферическим координатам ф, у и р по формулам $x = \rho \cdot \cos \varphi \cdot \sin \psi$, $y = \rho \cdot \sin \varphi \cdot \sin \psi$, $z = \rho \cdot \cos \psi$, $rge \rho \ge 0$, $0 \le \psi \le \pi$, $0 \le \varphi \le 2\pi$ (см. рис. 4.16, б).

Якобиан замены

$$J(\rho, \psi, \phi) = \begin{vmatrix} \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \psi} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \psi} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \psi} & \frac{\partial z}{\partial \phi} \end{vmatrix} =$$

$$= \begin{vmatrix} \cos\phi\sin\psi & \rho\cos\phi\cos\psi & -\rho\sin\phi\sin\psi \\ \sin\phi\sin\psi & \rho\sin\phi\cos\psi & \rho\cos\phi\sin\psi \\ \cos\psi & -\rho\sin\psi & 0 \end{vmatrix} = \rho^2\sin\psi.$$

Таким образом, при переходе к сферическим координатам получаем

$$\iiint\limits_{(V)} f(x,y,z) dx dy dz =$$

 $= \iiint_{(V')} f(\rho \cos \varphi \sin \psi, \rho \sin \varphi \sin \psi, \rho \cos \psi) \rho^2 \sin \psi d\rho d\psi d\varphi.$

Пример 2. Вычислить интеграл

$$\iiint\limits_{(V)} \left(x^2 + y^2\right) dx dy dz,$$

 $\iiint\limits_{(V)}\! \left(x^2+y^2\right)\! dx dy dz,$ где область (V) ограничена поверхностями $x^2+y^2=2z,\,z=2.$

Решение

Построим область (V), ограниченную сверху плоскостью z = 2, снизу — параболоидом вращения $z = (x^2 + y^2)/2$ (рис. 4.17).

Рис. 4.17

Найдем линию пересечения указанных поверхностей из системы уравнений

$$\begin{cases} x^2 + y^2 = 2z, \\ z = 2 \end{cases} \Rightarrow \begin{cases} x^2 + y^2 = 4, \\ z = 2. \end{cases}$$

Это уравнение окружности радиуса 2 с центром в точке (0, 0, 2). Тогда проекция (D_{xy}) области интегрирования (V) на плоскость Oxy — круг радиуса 2 с центром в точке (0, 0). Поэтому целесообразно перейти к цилиндрическим координатам.

С учетом того, что в цилиндрических координатах

$$x^{2} + y^{2} = \begin{bmatrix} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \\ z = z \end{bmatrix} = \rho^{2},$$

получаем, что уравнение параболоида имеет вид $z = \rho^2/2$, а подынтегральная функция равна ρ^2 . Тогда область интегрирования в цилиндрических координатах задается неравенствами $0 \le \phi \le 2\pi$, $0 \le \rho \le 2$, $\rho^2/2 \le z \le 2$ и интеграл равен

$$I = \iiint_{(V)} (x^2 + y^2) dx dy dz = \iiint_{(V')} \rho^2 \rho d\rho d\phi dz = \int_0^{2\pi} d\phi \int_0^2 d\rho \int_{\rho^2/2}^2 \rho^3 dz.$$

Последовательно вычисляем интегралы, начиная с внутреннего,

$$\int_{\rho^{2}/2}^{2} \rho^{3} dz = \rho^{3} \int_{\rho^{2}/2}^{2} dz = \rho^{3} \cdot z \Big|_{\rho^{2}/2}^{2} = \rho^{3} \left(2 - \frac{\rho^{2}}{2} \right) = 2\rho^{3} - \frac{\rho^{5}}{2},$$

$$\int_{0}^{2} \left(2\rho^{3} - \frac{\rho^{5}}{2} \right) d\rho = \left(\frac{\rho^{4}}{2} - \frac{\rho^{6}}{12} \right) \Big|_{0}^{2} = \frac{8}{3},$$

$$I = \int_{0}^{2\pi} \frac{8}{3} d\phi = \frac{8}{3} \phi \Big|_{0}^{2\pi} = \frac{16\pi}{3}.$$

Пример 3. Вычислить интеграл

$$\iiint\limits_{(V)} \sqrt{x^2 + y^2 + z^2} \, dx dy dz,$$

где область (V) ограничена поверхностью $x^2 + y^2 + z^2 = z$.

Решение

Приведем уравнение поверхности к каноническому виду, выделив полный квадрат при переменной z:

$$x^{2} + y^{2} + z^{2} = z \Rightarrow x^{2} + y^{2} + z^{2} - z = 0 \Rightarrow x^{2} + y^{2} + z^{2} - z + \left(\frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{2} \Rightarrow$$
$$\Rightarrow x^{2} + y^{2} + \left(z - \frac{1}{2}\right)^{2} = \frac{1}{4}.$$

Получили уравнение сферы с центром в точке (0, 0, 1/2) радиуса 1/2 (см. рис. 4.18)

Перейдем к сферическим координатам. Тогда подынтегральная функция равна

$$\sqrt{x^2 + y^2 + z^2} = \begin{bmatrix} x = \rho \cos \varphi \sin \psi, \\ y = \rho \sin \varphi \sin \psi, \\ z = \rho \cos \psi \end{bmatrix} = \rho,$$

а уравнение сферы принимает вид

$$\rho^2 = \rho \cdot \cos \psi \Rightarrow \rho = \cos \psi.$$

Рис. 4.18

Область интегрирования в сферических координатах задается неравенствами

$$0 \le \varphi \le 2\pi$$
, $0 \le \psi \le \pi/2$, $0 \le \rho \le \cos \psi$.

Тогда тройной интеграл равен

$$I = \iiint_{(V)} \sqrt{x^2 + y^2 + z^2} \, dx dy dz =$$

$$= \iiint_{(V)} \rho \cdot \rho^2 \sin \psi \, d\rho \, d\psi \, d\phi = \int_0^{2\pi} d\phi \int_0^{\pi/2} d\psi \int_0^{\cos \psi} \rho^3 \sin \psi \, d\rho.$$

Последовательно вычисляем интегралы, начиная с внутреннего,

$$\int_{0}^{\cos \psi} \rho^{3} \sin \psi \, d\rho = \sin \psi \int_{0}^{\cos \psi} \rho^{3} \, d\rho = \sin \psi \cdot \frac{\rho^{4}}{4} \Big|_{0}^{\cos \psi} = \frac{1}{4} \cos^{4} \psi \sin \psi,$$

$$\int_{0}^{\pi/2} \frac{1}{4} \cos^{4} \psi \sin \psi \, d\psi = -\frac{1}{4} \int_{0}^{\pi/2} \cos^{4} \psi \, d(\cos \psi) = -\frac{\cos^{5} \psi}{20} \Big|_{0}^{\pi/2} = \frac{1}{20},$$

$$I = \int_{0}^{2\pi} \frac{1}{20} d\phi = \frac{1}{20} \phi \Big|_{0}^{2\pi} = \frac{\pi}{10}.$$

2.4. Приложения тройного интеграла

1. *Macca* тела с плотностью $\gamma(x, y, z)$.

Как уже было показано ранее, масса тела с объемной плотностью $\gamma(x, y, z)$ равна

$$m_V = \iiint\limits_{(V)} \gamma(x, y, z) dx dy dz.$$

2. Объем тела.

Заметим, что масса однородного тела (V) с объемной плотностью $\gamma = 1$ численно равна объему этого тела. Таким образом, объем тела можно найти как тройной интеграл по (V) от 1:

$$V = \iiint_{(V)} dx dy dz.$$

3. *Центр масс* тела с плотностью $\gamma(x, y, z)$. Координаты центра масс тела

$$\begin{split} x_{m} &= \frac{1}{m_{V}} \iiint\limits_{(V)} x \cdot \gamma(x, y, z) dx dy dz, \quad y_{m} = \frac{1}{m_{V}} \iiint\limits_{(V)} y \cdot \gamma(x, y, z) dx dy dz, \\ z_{m} &= \frac{1}{m_{V}} \iiint\limits_{(V)} z \cdot \gamma(x, y, z) dx dy dz, \end{split}$$

где

$$m_V = \iiint\limits_{(V)} \gamma(x, y, z) dx dy dz.$$

4. Моменты инерции тела.

Моменты инерции относительно координатных плоскостей:

$$\begin{split} J_{xy} = & \iiint\limits_{(V)} z^2 \cdot \gamma \big(x, y, z \big) dx dy dz, \quad J_{yz} = \iiint\limits_{(V)} x^2 \cdot \gamma \big(x, y, z \big) dx dy dz, \\ J_{xz} = & \iiint\limits_{(V)} y^2 \cdot \gamma \big(x, y, z \big) dx dy dz. \end{split}$$

Осевые моменты инерции (моменты инерции относительно координатных осей):

$$\begin{split} \boldsymbol{J}_{x} &= \iiint\limits_{(V)} \left(y^{2} + z^{2} \right) \cdot \gamma \left(x, y, z \right) dx dy dz, \\ \boldsymbol{J}_{y} &= \iiint\limits_{(V)} \left(x^{2} + z^{2} \right) \cdot \gamma \left(x, y, z \right) dx dy dz, \\ \boldsymbol{J}_{z} &= \iiint\limits_{(V)} \left(x^{2} + y^{2} \right) \cdot \gamma \left(x, y, z \right) dx dy dz. \end{split}$$

Центральный или полярный момент инерции (момент инерции относительно начала координат)

$$J_O = \iiint_{(V)} (x^2 + y^2 + z^2) \cdot \gamma(x, y, z) dx dy dz.$$

Центробежные моменты инерции:

$$\begin{split} K_{xy} &= \iiint\limits_{(V)} xy \cdot \gamma \big(x,y,z\big) dx dy dz, \quad K_{xz} = \iiint\limits_{(V)} xz \cdot \gamma \big(x,y,z\big) dx dy dz, \\ K_{yz} &= \iiint\limits_{(V)} yz \cdot \gamma \big(x,y,z\big) dx dy dz. \end{split}$$

Упражнения для самостоятельной подготовки

- 1. Вычислить объемы тел, ограниченных следующими поверхностями:
 - a) z = x + y, z = xy, x + y = 1, x = 0, y = 0; 6) $z = 6 x^2 y^2$, $z = \sqrt{x^2 + y^2}$;

B)
$$x^2 + y^2 + z^2 = a^2$$
, $x^2 + y^2 + z^2 = b^2$, $x^2 + y^2 = z^2$, $(z \ge 0, 0 \le a \le b)$.

- 2. Вычислить массу тела с объемной плотностью у = $=\sqrt{\left(x^{2}+y^{2}+z^{2}\right)^{3}}$, ограниченного поверхностью $x^{2}+y^{2}+z^{2}=R^{2}$.
- 3. Найти координаты центра масс однородного тела, ограниченного поверхностями $x^2 + y^2 = 2z$, x + y = z.
- 4. Найти центральный, осевые, центробежные моменты инерции и моменты инерции относительно координатных плоскостей однородного тела, ограниченного поверхностями $z = x^2 + v^2$, z = 4.

3. Криволинейные интегралы

3.1. Криволинейный интеграл 1-го рода

Рассмотрим задачу об определении массы дуги кривой.

Задача. Пусть дана дуга непрерывной гладкой или кусочногладкой (т. е. производная допускает конечное число точек разрыва 1-го рода) кривой (l) с известной линейной плотностью $\gamma(x, y, z)$. Требуется определить массу дуги кривой. Для решения задачи воспользуемся уже неоднократно использованным ранее приемом: разобьем дугу кривой произвольным образом на n элементарных частей (Δl_k) длинами Δl_k ; выберем произвольно точки $P_k(x_k, y_k, z_k) \in (\Delta l_k)$, $k = \overline{1, n}$, и вычислим значение плотности в указанных точках $\gamma(x_k, y_k, z_k)$; масса элементарной части (Δl_k) приблизительно равна $\gamma(x_k, y_k, z_k) \cdot \Delta l_k$, а масса всей дуги (l) приблизительно равна

$$m_l \approx \sum_{k=1}^n \gamma(x_k, y_k, z_k) \cdot \Delta l_k$$
.

Перейдем к пределу при $\lambda = \max_{k} \Delta I_{k} \to 0$, получим решение поставленной задачи:

$$m_{l} = \lim_{\lambda \to 0} \sum_{k=1}^{n} \gamma(x_{k}, y_{k}, z_{k}) \cdot \Delta l_{k} = \int_{(l)} \gamma(x, y, z) dl.$$

Определение. Пусть функция f(x, y, z) задана вдоль дуги непрерывной простой спрямляемой кривой (*l*). Криволинейный интеграл 1-го рода от функции f(x, y, z) вдоль дуги кривой (*l*) равен

$$\int_{(l)} f(x, y, z) dl = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(x_k, y_k, z_k) \cdot \Delta l_k,$$

где $\lambda = \max_{k} \Delta l_{k}$, если этот предел существует, конечен и не зависит от способа разбиения на элементарные части (Δl_{k}) и способа выбора точек $P_{k}(x_{k}, y_{k}, z_{k}) \in (\Delta l_{k}), k = \overline{1, n}$.

Если функция f(x, y, z) непрерывна, то она интегрируема вдоль дуги (l), т.е. криволинейный интеграл 1-го рода существует.

Сформулируем свойства криволинейных интегралов 1-го рода.

1.
$$\int_{(l)}^{r} \alpha f(x,y,z) dl = \alpha \int_{(l)}^{r} f(x,y,z) dl$$
, где α — константа.

2.
$$\int_{(l)}^{(l)} (f(x,y,z) \pm g(x,y,z)) dl = \int_{(l)}^{(l)} f(x,y,z) dl \pm \int_{(l)}^{(l)} g(x,y,z) dl.$$
3.
$$\int_{(l)}^{(l)} f(x,y,z) dl = \int_{(l_1)}^{(l_1)} f(x,y,z) dl + \int_{(l_2)}^{(l_2)} f(x,y,z) dl,$$

3.
$$\int_{(l)} f(x,y,z) dl = \int_{(l_1)} f(x,y,z) dl + \int_{(l_2)} f(x,y,z) dl$$

где $(l) = (l_1) \cup (l_2)$, причем (l_1) и (l_2) имеют не более двух общих точек.

4. Если на (*l*) справедливо неравенство $f(x, y, z) \ge g(x, y, z)$, то

$$5. \left| \int_{(l)} f(x, y, z) dl \right| \leq \int_{(l)} \left| f(x, y, z) \right| dl.$$

6. Если на (*l*) справедливо неравенство $m \le f(x, y, z) \le M$, то

в частности.

$$m \le \frac{\int\limits_{(I)} f(x, y, z) dl}{I} \le M.$$

Обозначим среднее значение через µ:

$$\mu = \frac{\int\limits_{(l)} f(x, y, z) dl}{V},$$

тогда

$$\int_{(l)} f(x, y, z) dl = \mu l, \quad m \le \mu \le M.$$

7. **Теорема о среднем**: если функция f(x, y, z) непрерывна на связном замкнутом ограниченном множестве (l), то $\exists (\xi, \eta, \zeta) \in (l)$ такая, что

$$\int_{(l)} f(x, y, z) dl = f(\xi, \eta, \zeta) \cdot l.$$

8. Криволинейный интеграл 1-го рода не зависит от направления пути, т.е.

$$\int_{(AB)} f(x, y, z) dl = \int_{(BA)} f(x, y, z) dl.$$

Вычисление криволинейного интеграла 1-го рода сводится к вычислению определенного интеграла:

а) пусть дуга (*I*) задана параметрическими уравнениями x=x(t), y=y(t), z=z(t) ($\alpha \le t \le \beta$), где функции x(t), y(t), z(t) непрерывны вместе со своими производными. Тогда криволинейный интеграл равен

$$\int_{(l)} f(x,y,z) dl = \int_{\alpha}^{\beta} f(x(t),y(t),z(t)) \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2 + \left[z'(t)\right]^2} dt;$$

б) пусть плоская дуга (l) задана уравнением y = y(x), ($a \le x \le b$), где y(x) — непрерывная функция с непрерывной производной.

Тогда криволинейный интеграл равен

$$\int_{(l)} f(x,y) dl = \int_a^b f(x,y(x)) \sqrt{1 + \left[y'(x)\right]^2} dx.$$

Пример 1. Вычислить интеграл

$$\int_{(AB)} xz(1+4y)dl,$$

где дуга (AB) — часть параболы $y = x^2$, z = 2 между точками A(1, 1, 2) и B(0, 0, 2).

Решение

Составим параметрические уравнения кривой и найдем про-изводные первого порядка от компонент:

$$\begin{cases} x = t, \\ y = t^2, \Rightarrow \begin{cases} x' = 1, \\ y' = 2t, \Rightarrow \sqrt{[x']^2 + [y']^2 + [z']^2} = \sqrt{1 + 4t^2}. \\ z' = 0 \end{cases}$$

Точке A (1, 1, 2) соответствует значение параметра t_A = 1, точке B (0, 0, 2) соответствует значение параметра t_B = 1. Таким образом при движении по дуге (AB) параметр меняется в следующих пределах: $0 \le t \le 1$.

Криволинейный интеграл равен

$$\int_{(AB)} xz(1+4y)dl = \int_{0}^{1} t \cdot 2 \cdot (1+4t^{2}) \sqrt{1+4t^{2}} dt = \frac{1}{4} \int_{0}^{1} (1+4t^{2})^{3/2} d(1+4t^{2}) =$$

$$= \frac{1}{4} \cdot \frac{2}{5} (1+4t^{2})^{5/2} \Big|_{0}^{1} = \frac{1}{10} (5-1) = \frac{2}{5}.$$

3.2. Приложения криволинейного интеграла 1-го рода

1. Macca дуги кривой с линейной плотностью $\gamma(x, y, z)$

Как уже было показано ранее, масса дуги кривой (l) с линейной плотностью $\gamma(x, y, z)$ равна

$$m_l = \int_{(l)} \gamma(x, y, z) dl.$$

2. Длина дуги кривой

Заметим, что масса однородной дуги кривой (I) с линейной плотностью $\gamma=1$ численно равна длине этой дуги, таким образом длину дуги кривой можно найти как криволинейный интеграл 1-го рода по (I) от 1:

$$l = \int_{(l)} dl$$
.

3. *Центр масс* дуги кривой с плотностью $\gamma(x, y, z)$ Координаты центра масс дуги кривой (l):

$$x_{m} = \frac{1}{m_{l}} \int_{(l)} x \cdot \gamma(x, y, z) dl, \quad y_{m} = \frac{1}{m_{l}} \int_{(l)} y \cdot \gamma(x, y, z) dl,$$
$$z_{m} = \frac{1}{m_{l}} \int_{(l)} z \cdot \gamma(x, y, z) dl,$$

где

$$m_l = \int_{(l)} \gamma(x, y, z) dl.$$

4. Моменты инерции дуги кривой

Моменты инерции относительно координатных плоскостей:

$$J_{xy} = \int_{(l)} z^2 \cdot \gamma(x, y, z) dl, \quad J_{yz} = \int_{(l)} x^2 \cdot \gamma(x, y, z) dl,$$
$$J_{xz} = \int_{(l)} y^2 \cdot \gamma(x, y, z) dl.$$

Осевые моменты инерции (моменты инерции относительно координатных осей):

$$\begin{split} \boldsymbol{J}_{\boldsymbol{x}} &= \int\limits_{(l)} \left(\boldsymbol{y}^2 + \boldsymbol{z}^2 \right) \cdot \boldsymbol{\gamma} \left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \right) dl, \quad \boldsymbol{J}_{\boldsymbol{y}} &= \int\limits_{(l)} \left(\boldsymbol{x}^2 + \boldsymbol{z}^2 \right) \cdot \boldsymbol{\gamma} \left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \right) dl, \\ \boldsymbol{J}_{\boldsymbol{z}} &= \int\limits_{(l)} \left(\boldsymbol{x}^2 + \boldsymbol{y}^2 \right) \cdot \boldsymbol{\gamma} \left(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \right) dl. \end{split}$$

Центральный или полярный момент инерции (момент инерции относительно начала координат)

$$J_O = \int_{(l)} \left(x^2 + y^2 + z^2 \right) \cdot \gamma(x, y, z) dl.$$

Центробежные моменты инерции:

$$K_{xy} = \int_{(I)} xy \cdot \gamma(x, y, z) dl, \quad K_{yz} = \int_{(I)} yz \cdot \gamma(x, y, z) dl,$$
$$K_{xz} = \int_{(I)} xz \cdot \gamma(x, y, z) dl.$$

Пример 2. Вычислить длину одного витка винтовой линии $x = R \cdot \cos t$, $y = R \cdot \sin t$, z = ht.

Решение

Данные параметрические уравнения описывают первый виток винтовой линии при изменении параметра $0 \le t \le 2\pi$.

Выполним необходимые промежуточные вычисления:

$$\begin{cases} x = R\cos t, \\ y = R\sin t, \Rightarrow \\ z = ht \end{cases} x' = -R\sin t, \Rightarrow \sqrt{\left[x'\right]^2 + \left[y'\right]^2 + \left[z'\right]^2} = \sqrt{R^2 + h^2}.$$

Длина витка равна

$$l = \int_{(l)} dl = \int_{0}^{2\pi} \sqrt{R^2 + h^2} dt = \sqrt{R^2 + h^2} \cdot t \Big|_{0}^{2\pi} = 2\pi \sqrt{R^2 + h^2}.$$

Пример 3. Вычислить длину дуги плоской кривой, заданной на плоскости Oxy в полярных координатах.

Решение

Пусть на плоскости *Оху* дана плоская кривая. В полярных координатах она задается системой

$$\begin{cases} x = \rho(\varphi) \cdot \cos \varphi, \\ y = \rho(\varphi) \cdot \sin \varphi, \\ z = 0. \end{cases}$$

Будем рассматривать эти уравнения как параметрические с параметром φ , где $\alpha \le \varphi \le \beta$.

Выполним необходимые промежуточные вычисления:

$$\begin{cases} x' = \rho'(\varphi) \cdot \cos \varphi - \rho(\varphi) \cdot \sin \varphi, \\ y' = \rho'(\varphi) \cdot \sin \varphi + \rho(\varphi) \cdot \cos \varphi \Rightarrow \sqrt{[x']^2 + [y']^2 + [z']^2} = \\ z' = 0 \end{cases}$$
$$= \sqrt{(\rho'(\varphi))^2 + (\rho(\varphi))^2}.$$

Тогда длина линии в полярных координатах равна

$$l = \int_{\alpha}^{\beta} \sqrt{(\rho'(\varphi))^2 + (\rho(\varphi))^2} d\varphi.$$

Пример 4. Вычислить полярный момент инерции дуги кривой $x=2t, y=\ln t, z=t^2$ при $1 \le t \le 2$, если линейная плотность равна $\gamma=(x^2+y^2+z^2)^{-1}$.

Решение

Воспользуемся формулой

$$J_O = \int_{(l)} \left(x^2 + y^2 + z^2 \right) \cdot \gamma(x, y, z) dl.$$

Выполним необходимые промежуточные вычисления:

$$\begin{cases} x = 2t, \\ y = \ln t, \Rightarrow \begin{cases} x' = 2, \\ y' = \frac{1}{x}, \Rightarrow \sqrt{(x')^2 + (y')^2 + (z')^2} = 2t + \frac{1}{t} \\ z' = 2t \end{cases}$$

и подставим в интеграл, получим

$$J_O = \int_{1}^{2} \left(2t + \frac{1}{t} \right) dt = \left(t^2 + \ln|t| \right) \Big|_{1}^{2} = 3 + \ln 2.$$

3.3. Криволинейный интеграл 2-го рода

Важную роль в прикладных задачах физики и механики играет криволинейный интеграл 2-го рода. Рассмотрим задачу об определении работы силы вдоль кривой.

Задача. Найти работу силы \bar{F} вдоль кривой (*l*).

Будем считать, что сила стационарная, т.е. является функцией координат точки приложения силы и не зависит от времени:

$$\overline{F}(x,y,z) = F_x(x,y,z)\overline{i} + F_y(x,y,z)\overline{j} + F_z(x,y,z)\overline{k}$$

а кривая (l) — кусочно-гладкая.

Как известно из курса физики, работа постоянной силы \overline{F} вдоль прямой равна произведению проекции силы на направление движения на величину совершенного перемещения (путь) $s: A_F = Fs \cos(F, s)$ или скалярному произведению вектора силы \overline{F} на вектор перемещения $\overline{S}: A_F = \overline{F} \cdot \overline{s}$.

Для вычисления работы переменной силы вдоль кривой разобьем дугу кривой (l) произвольным образом на n элементарных частей (Δl_k); выберем произвольно точки $P_k(x_k,y_k,z_k)\in(\Delta l_k)$, $k=\overline{1,n}$, и вычислим в указанных точках компоненты вектора силы. Будем полагать, что элементарные части настолько малы, что сила \overline{F} постоянна на данном участке и равна $\overline{F}(x_k,y_k,z_k)$, а сами участки прямолинейны и характеризуются элементарным перемещением $d\overline{r}_k$.

Тогда элементарная работа силы $\bar{F}(x_k, y_k, z_k)$ на перемещении $d\bar{r}_k$ равна $\delta A = \bar{F}(x_k, y_k, z_k) \cdot d\bar{r}_k$, а работа силы вдоль всего пути приблизительно равна

$$A_F \approx \sum_{k=1}^n \delta A_k = \sum_{k=1}^n \overline{F}(x_k, y_k, z_k) \cdot d\overline{r_k}.$$

Перейдем к пределу при $\lambda = \max_k \left| d\overline{r_k} \right| \to 0$, получим решение поставленной задачи:

$$\begin{split} A_F = &\lim_{\lambda \to 0} \sum_{k=1}^n \overline{F}\left(x_k, y_k, z_k\right) \cdot d\overline{r}_k = \int\limits_{(l)} \overline{F}\left(x, y, z\right) d\overline{r} = \\ = &\int\limits_{(l)} F_x\left(x, y, z\right) dx + F_y\left(x, y, z\right) dy + F_z\left(x, y, z\right) dz, \end{split}$$
 гле $d\overline{r} = dx\overline{i} + dv\overline{i} + dz\overline{k}$.

Введем понятие криволинейного интеграла 2-го рода в общем случае.

Определение. Пусть вдоль дуги кусочно-гладкой незамкнутой кривой (AB) заданы функции $P(x,y,z),\,Q(x,y,z),\,$ и R(x,y,z). Разобьем произвольным образом дугу (AB) точками $A_k(x_k,y_k,z_k)$

на n элементарных частей A_k A_{k+1} , $k=\overline{1,n-1}$. Выберем произвольно на дугах A_k A_{k+1} точки M_k (ξ_k , η_k , ζ_k) и вычислим в них значения функций P (ξ_k , η_k , ζ_k), Q (ξ_k , η_k , ζ_k) и R (ξ_k , η_k , ζ_k). Найдем длины проекций элементарных дуг A_k A_{k+1} на оси Ox, Oy и Oz: $\Delta x_k = x_{k+1} - x_k$, $\Delta y_k = y_{k+1} - y_k$, $\Delta z_k = z_{k+1} - z_k$. Если существуют конечные пределы следующих интегральных сумм:

$$\sum_{k=1}^{n} P(\xi_k, \eta_k, \zeta_k) \cdot \Delta x_k, \quad \sum_{k=1}^{n} Q(\xi_k, \eta_k, \zeta_k) \cdot \Delta y_k, \quad \sum_{k=1}^{n} R(\xi_k, \eta_k, \zeta_k) \cdot \Delta z_k$$

при $\lambda = \max_k \overline{A_k A_{k+1}} \to 0$ и эти пределы не зависят от способа раз-

биения дуги (AB) на элементарные части и способа выбора точек M_k (ξ_k , η_k , ζ_k), то их сумма называется *криволинейным интегралом 2-го рода* и обозначается

$$\int_{(AB)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \int_{(AB)} P(x, y, z) dx + \int_{(AB)} Q(x, y, z) dy + \int_{(AB)} R(x, y, z) dz,$$

где

$$\int_{(AB)} P(x, y, z) dx = \lim_{\lambda \to 0} \sum_{k=1}^{n} P(\xi_k, \eta_k, \zeta_k) \cdot \Delta x_k,$$

$$\int_{(AB)} Q(x, y, z) dy = \lim_{\lambda \to 0} \sum_{k=1}^{n} Q(\xi_k, \eta_k, \zeta_k) \cdot \Delta y_k,$$

$$\int_{(AB)} R(x, y, z) dz = \lim_{\lambda \to 0} \sum_{k=1}^{n} R(\xi_k, \eta_k, \zeta_k) \cdot \Delta z_k.$$

Заметим, что криволинейный интеграл 2-го рода меняет знак при изменении направления движения вдоль дуги, т.е.

$$\int_{(AB)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= -\int_{(BA)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz.$$

Простейшие свойства определенного интеграла переносятся на криволинейный интеграл 2-го рода.

Пусть гладкая кривая (I)=(AB) задана параметрическими уравнениями $x=x(t),\ y=y(t),\ z=z(t),\ (t_A\le t\le t_B)$ и функции $P(x,y,z),\ Q(x,y,z)$ и R(x,y,z) непрерывны в точках этой кривой, пробегаемой в направлении возрастания параметра t, тогда

$$\int_{(AB)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \int_{t_A}^{t_B} \left[P(x(t), y(t), z(t)) \cdot x'(t) + Q(x(t), y(t), z(t)) \cdot y'(t) + R(x(t), y(t), z(t)) \cdot z'(t) \right] dt.$$

Указанная формула справедлива и в случае замкнутой кривой (контура). При этом, если направление обхода контура не указано, то подразумевается обход в положительном направлении, т.е. против часовой стрелки (в этом случае ближайшая часть области, ограниченной контуром, остается слева).

Пример 5. Вычислить криволинейный интеграл

$$\int_{(I)} y^2 dx + x^2 dy,$$

где (l) — верхняя половина эллипса $x = a \cos t$, $y = b \sin t$, пробегаемая по часовой стрелке.

Решение

Найдем производные по t от параметрических уравнений кривой:

$$\begin{cases} x = a \cos t, \\ y = b \sin t \end{cases} \Rightarrow \begin{cases} x' = -a \sin t, \\ y' = b \cos t. \end{cases}$$

При движении *по часовой стрелке* по верхней части эллипса параметр t (полярный угол) меняется от π до 0. Получаем

$$\int_{(I)} y^2 dx + x^2 dy = \int_{\pi}^{0} \left[\left(b \sin t \right)^2 \cdot \left(-a \sin t \right) + \left(a \cos t \right)^2 \cdot b \cos t \right] dt =$$

$$= \int_{\pi}^{0} \left[-ab^2 \sin^3 t + a^2 b \cos^3 t \right] dt = -ab^2 \int_{\pi}^{0} \sin^3 t \, dt + a^2 b \int_{\pi}^{0} \cos^3 t \, dt =$$

$$= ab^2 \int_{\pi}^{0} \left[1 - \cos^2 t \right] d \left(\cos t \right) + a^2 b \int_{\pi}^{0} \left[1 - \sin^2 t \right] d \left(\sin t \right) =$$

$$= ab^2 \left(\cos t - \frac{1}{3} \cos^3 t \right) \Big|_{\pi}^{0} + a^2 b \left(\sin t - \frac{1}{3} \sin^3 t \right) \Big|_{\pi}^{0} = \frac{4}{3} ab^2.$$

Пример 6. Вычислить криволинейный интеграл

$$\int_{(I)} y^2 dx + z^2 dy + x^2 dz,$$

где (*I*) — часть кривой Вивиани $x^2 + y^2 + z^2 = a^2$, $x^2 + y^2 = ax$ ($z \ge 0$, a > 0), пробегаемая против часовой стрелки, если смотреть с положительной части (x > a) оси Ox.

Решение

Заданная кривая — это линия пересечения сферы $x^2 + y^2 + z^2 = a^2$ радиуса a с центром в начале координат и кругового цилиндра $x^2 + y^2 = ax$ радиуса a/2, образующая которого проходит через центр сферы, а ось симметрии — через точку (a/2, 0, 0) параллельно оси Oz (рис. 4.19).

Рис. 4.19

Запишем параметрические уравнения кривой и найдем производные по t:

$$\begin{cases} x = \frac{a}{2}(1 + \cos t), & x' = -\frac{a}{2}\sin t, \\ y = \frac{a}{2}\sin t, & \Rightarrow \begin{cases} y' = \frac{a}{2}\cos t, \\ z = a\sin\frac{t}{2} \end{cases} \end{cases}$$

При движении *против часовой стрелки* параметр t меняется от 0 до 2π .

Получаем

$$\int_{(I)}^{2} y^{2} dx + z^{2} dy + x^{2} dz =$$

$$= \int_{0}^{2\pi} \left[\left(\frac{a}{2} \sin t \right)^{2} \cdot \left(-\frac{a}{2} \sin t \right) + \left(a \sin \frac{t}{2} \right)^{2} \cdot \frac{a}{2} \cos t + \left(\frac{a}{2} (1 + \cos t) \right)^{2} \cdot \frac{a}{2} \cos \frac{t}{2} \right] dt =$$

$$= -\frac{a^{3}}{8} \int_{0}^{2\pi} \sin^{2} t \cdot \sin t dt + \frac{a^{3}}{2} \int_{0}^{2\pi} \sin^{2} \frac{t}{2} \cdot \cos t dt + \frac{a^{3}}{8} \int_{0}^{2\pi} (1 + \cos t)^{2} \cdot \cos \frac{t}{2} dt =$$

$$= \frac{a^{3}}{8} \int_{0}^{2\pi} (1 - \cos^{2} t) d(\cos t) + \frac{a^{3}}{4} \int_{0}^{2\pi} (1 - \cos t) \cdot \cos t dt + \frac{a^{3}}{8} \int_{0}^{2\pi} (2 \cos^{2} \frac{t}{2})^{2} \cdot \cos \frac{t}{2} dt =$$

$$= \frac{a^{3}}{8} \left(\cos t - \frac{1}{3} \cos^{3} t \right) \Big|_{0}^{2\pi} + \frac{a^{3}}{4} \int_{0}^{2\pi} \cos t dt - \frac{a^{3}}{4} \int_{0}^{2\pi} \cos^{2} t dt + a^{3} \int_{0}^{2\pi} (1 - \sin^{2} \frac{t}{2})^{2} d\left(\sin \frac{t}{2} \right) =$$

$$= \frac{a^{3}}{4} \sin t \Big|_{0}^{2\pi} - \frac{a^{3}}{8} \int_{0}^{2\pi} (1 + \cos 2t) dt + a^{3} \int_{0}^{2\pi} (1 - 2 \sin^{2} \frac{t}{2} + \sin^{4} \frac{t}{2}) d\left(\sin \frac{t}{2} \right) =$$

$$= -\frac{a^{3}}{8} \left(t + \frac{1}{2} \sin 2t \right) \Big|_{0}^{2\pi} + a^{3} \left(\sin \frac{t}{2} - \frac{2}{3} \sin^{3} \frac{t}{2} + \frac{1}{5} \sin^{5} \frac{t}{2} \right) \Big|_{0}^{2\pi} = -\frac{\pi a^{3}}{4}.$$

Сформулируем условия независимости криволинейного интеграла от пути: если подынтегральное выражение P(x, y, z)dx + C(x, y, z)dx

+ Q(x, y, z)dy + R(x, y, z)dz представляет собой полный дифференциал некоторой однозначной функции U(x, y, z), т. е. dU(x, y, z) = P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz, то интеграл не зависит от пути интегрирования и справедлива формула

$$\int_{(AB)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = U(B) - U(A),$$

интеграл по замкнутому контуру в этом случае равен нулю:

$$\oint_{(I)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0.$$

Если дуга (AB) целиком содержится внутри некоторой односвязной области (D); функции P(x, y, z), Q(x, y, z) и R(x, y, z) непрерывны вместе со своими частными производными первого порядка в области (D), то **необходимым и достаточным условием существования функции** U(x, y, z) является тождественное выполнение в области (D) равенств:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \quad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}, \quad \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}.$$

В этом случае для нахождения функции U(x, y, z) достаточно вычислить криволинейный интеграл 2-го рода вдоль ломаной M_0M , где $M_0(x_0, y_0, z_0)$ — фиксированная точка, M(x, y, z) — переменная точка, а отрезки ломаной M_0M_1 , M_1M_2 , M_2M параллельны координатным осям Ox, Oy и Oz соответственно (см. рис. 4.20).

При интегрировании вдоль M_0M_1 имеем $y=y_0$, $z=z_0$, dy=0, dz=0; при интегрировании вдоль M_1M_2 будет $x=x({\rm const})$, $z=z_0$, dx=0, dz=0; и, наконец, вдоль M_2M получим $x=x({\rm const})$, $y=y({\rm const})$, dx=0, dy=0. Тогда функция U(x,y,z) может быть определена с точностью до константы по формуле

$$U(x, y, z) = \int_{x_0}^{x} P(x, y_0, z_0) dx + \int_{y_0}^{y} Q(x, y, z_0) dy + \int_{z_0}^{z} R(x, y, z) dz + C.$$

Пример 7. Найти первообразную функцию U(x, y, z), если

$$dU = \left(1 - \frac{1}{y} + \frac{y}{z}\right) dx + \left(\frac{x}{z} + \frac{x}{y^2}\right) dy - \frac{xy}{z^2} dz.$$

Решение

Убедимся, что выполняются необходимые и достаточные условия существования функции U(x, y, z).

В нашем случае

$$P(x, y, z) = 1 - \frac{1}{y} + \frac{y}{z}, \quad Q(x, y, z) = \frac{x}{z} + \frac{x}{y^2}, \quad R(x, y, z) = -\frac{xy}{z^2}.$$

Найдем частные производные

$$\begin{split} \frac{\partial P}{\partial y} &= \frac{\partial}{\partial y} \left(1 - \frac{1}{y} + \frac{y}{z} \right) = \frac{1}{y^2} + \frac{1}{z}, \quad \frac{\partial Q}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x}{z} + \frac{x}{y^2} \right) = \frac{1}{z} + \frac{1}{y^2} \quad \Rightarrow \quad \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}; \\ \frac{\partial Q}{\partial z} &= \frac{\partial}{\partial z} \left(\frac{x}{z} + \frac{x}{y^2} \right) = -\frac{x}{z^2}, \quad \frac{\partial R}{\partial y} = \frac{\partial}{\partial y} \left(-\frac{xy}{z^2} \right) = -\frac{x}{z^2} \quad \Rightarrow \quad \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}; \\ \frac{\partial R}{\partial x} &= \frac{\partial}{\partial x} \left(-\frac{xy}{z^2} \right) = -\frac{y}{z^2}, \quad \frac{\partial P}{\partial z} = \frac{\partial}{\partial z} \left(1 - \frac{1}{y} + \frac{y}{z} \right) = -\frac{y}{z^2} \quad \Rightarrow \quad \frac{\partial R}{\partial x} = \frac{\partial P}{\partial z}. \end{split}$$

Условия выполняются. Найдем первообразную функцию. В качестве начальной точки возьмем точку M_0 (0, 1, 1), тогда

$$U(x, y, z) = \int_{0}^{x} \left(1 - \frac{1}{y} + \frac{y}{z}\right) \Big|_{\substack{y=1, \\ z=1}} dx + \int_{1}^{y} \left(\frac{x}{z} + \frac{x}{y^{2}}\right) \Big|_{z=1} dy + \int_{1}^{z} \left(-\frac{xy}{z^{2}}\right) dz + C =$$

$$= \int_{0}^{x} 1 dx + \int_{1}^{y} \left(x + \frac{x}{y^{2}}\right) dy + \int_{1}^{z} \left(-\frac{xy}{z^{2}}\right) dz + C = x\Big|_{0}^{x} + \left(xy - \frac{x}{y}\right)\Big|_{1}^{y} + \frac{xy}{z}\Big|_{1}^{z} + C =$$

$$= x + \left(xy - \frac{x}{y}\right) - (x - x) + \frac{xy}{z} - xy + C = x - \frac{x}{y} + \frac{xy}{z} + C.$$

Выполним проверку — вычислим частные производные первого порядка от найденной функции U(x, y, z):

$$U'_{x} = 1 - \frac{1}{y} + \frac{y}{z} = P(x, y, z), \quad U'_{y} = \frac{x}{y^{2}} + \frac{x}{z} = Q(x, y, z),$$

$$U'_{z} = -\frac{xy}{z^{2}} = R(x, y, z).$$

3.4. Формула Грина

Пусть дана односвязная область (S), ограниченная замкнутым простым кусочно-гладким контуром (I). Если функции P(x, y) и Q(x, y) непрерывны вместе со своими частными производными первого порядка $P_y'(x, y)$ и $Q_x'(x, y)$ в области (S) и на ее границе (I), то справедлива формула Грина

$$\oint_{(I)} P(x, y) dx + Q(x, y) dy = \iint_{(S)} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy,$$

где обход контура (l) осуществляется таким образом, что область (S) остается слева.

Пример 8. Вычислить интеграл

$$\oint_{(l)} (x+y)dx - (x-y)dy,$$

$$+ \frac{y^2}{2} - 1$$

где (*l*) — эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Решение

Т. к.
$$P(x,y)=x+y$$
, $Q(x,y)=-(x-y)$, $P_y'(x,y)=1$ и $Q_x'(x,y)=-1$ — непрерывные функции, то воспользуемся формулой Грина, где (S) — область, ограниченная эллипсом; эллипс обходим против часовой стрелки. Получим

$$\oint_{(I)} (x+y)dx - (x-y)dy = \iint_{(S)} (-2)dxdy = \begin{bmatrix} x = a\rho\cos\varphi, y = b\rho\sin\varphi, \\ 0 \le \varphi \le 2\pi, & 0 \le \rho \le 1, \\ J = ab\rho \end{bmatrix} = -2ab\int_{0}^{2\pi} d\varphi \int_{0}^{1} \rho d\rho = -2ab\pi.$$

Если P(x, y) = -y, Q(x, y) = 0, то, согласно формуле Грина, получим

$$-\oint_{(I)} y dx = \iint_{(S)} dx dy = S.$$

Если P(x, y) = 0, Q(x, y) = x, то

$$\oint_{(I)} x dy = \iint_{(S)} dx dy = S.$$

И, наконец, если
$$P(x, y) = -\frac{1}{2}y$$
, $Q(x, y) = \frac{1}{2}x$, то
$$\oint_{(t)} -\frac{1}{2}ydx + \frac{1}{2}xdy = \iint_{(S)} dxdy = S.$$

Таким образом, с помощью криволинейного интеграла 2-го рода можно вычислить площадь плоской области (S), ограниченной простым кусочно-гладким контуром:

$$S = \oint_{(I)} x dy = -\oint_{(I)} y dx = \frac{1}{2} \oint_{(I)} x dy - y dx.$$

Пример 9. Вычислить площадь плоской фигуры, ограниченной эллипсом

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Решение

$$S = \oint_{(t)} x \, dy = \begin{bmatrix} (t) : x = a \cos t, \ y = b \sin t, \ 0 \le t \le 2\pi; \\ dy = b \cos t \, dt \end{bmatrix} = \int_{0}^{2\pi} a \cos t \cdot b \cos t \, dt = ab \int_{0}^{2\pi} \cos^2 t \, dt = ab \int_{0}^{2\pi} \cos^2 t \, dt = ab \int_{0}^{2\pi} a \cos^2 t \, dt = ab \int_{0}^{2\pi}$$

Упражнения для самостоятельной подготовки

- 1. Вычислить следующие криволинейные интегралы 1-го рода:
 - а) $\int_{l_{0}} \frac{dl}{\sqrt{x^{2}+v^{2}+4}}$, где (l) отрезок прямой, соединяющей точ-
- ки O(0,0) и A(1,2);
 - б) $\int_{l/2} (x^2 + y) dl$, где (l) контур треугольника с вершинами
- O(0,0), A(-2,0) и B(0,2);в) $\int_{\Omega} z dl$, где (l) дуга кривой $x^2 + y^2 = z^2$, $y^2 = ax$ от точки
- O(0, 0, 0) до точки $A(a, a, \sqrt{2}a)$
- 2. Найти массу дуги кривой x = 8t, $y = 4t^2$, $z = \frac{8t^3}{3}$ $(0 \le t \le 1)$, плотность которой равна $\gamma = \frac{\sqrt{y}}{2}$.

3. Вычислить координаты центра тяжести однородной дуги шиклоиды

$$x = a(t-\sin t), y = a(1-\cos t) \quad (0 \le t \le \pi).$$

- 4. Вычислить следующие криволинейные интегралы 2-го рода:
 - а) $\int_{(AB)} (x^2 2xy) dx + (2xy + y^2) dy$, где (AB) дуга параболы

 $y = x^2$ от точки A(2, 4) до точки B(1, 1);

б) $\int\limits_{(l)} ydx + zdy + xdz$, где (l) — виток винтовой линии $x = R \cdot \cos t$,

 $y = R \cdot \sin t$, z = ht ($0 \le t \le 2\pi$), пробегаемой в направлении убывания параметра;

в)
$$\oint_{(l)} (y-z)dx + (z-x)dy + (x-y)dz$$
, где (l) — окружность

 $x^2 + y^2 + z^2 = a^2$, $y = x \operatorname{tg}\alpha$ (0 < α < π), пробегаемая по ходу часовой стрелки, если смотреть с положительной части (x > 0) оси Ox.

5. Найти первообразную функцию U(x, y, z), если

$$dU = \left(\frac{z}{x^2} - \frac{1}{y}\right) dx + \left(\frac{x}{y^2} - \frac{1}{z}\right) dy + \left(\frac{y}{z^2} - \frac{1}{x}\right) dz.$$

6. Применяя формулу Грина, вычислить интеграл

$$\oint_{(I)} -x^2 y dx + xy^2 dy,$$

где (*I*) — окружность $x^2 + y^2 = R^2$, пробегаемая по ходу часовой стрелки.

7. С помощью криволинейного интеграла вычислить площадь плоской фигуры, ограниченной астроидой $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.

4. Поверхностные интегралы

4.1. Поверхностный интеграл 1-го рода

Поверхностные интегралы 1-го рода являются обобщением двойных интегралов на случай двусторонней кусочно-гладкой поверхности (S), ограниченной кусочно-гладким контуром.

Пусть функция f(x, y, z) определена в точках двусторонней кусочно-гладкой поверхности (S), ограниченной кусочно-гладким контуром. Разобьем поверхность (S) произвольной сетью кривых на n элементарных частей (ΔS_k) площадью ΔS_k $\left(k=\overline{1,n}\right)$; в каждой элементарной части (ΔS_k) выберем произвольно точку $P_k\left(\xi_k,\eta_k,\zeta_k\right)$ и вычислим значение функции в этой точке $f\left(\xi_k,\eta_k,\zeta_k\right)$. Составим интегральную сумму:

$$\sigma_n = \sum_{k=1}^n f(\xi_k, \eta_k, \zeta_k) \cdot \Delta S_k.$$

Определение. Поверхностным интегралом 1-го рода называется

$$\iint_{(S)} f(x, y, z) dS = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \cdot \Delta S_k, \quad \lambda = \max_k \operatorname{diam}(\Delta S_k),$$

если этот предел существует, конечен и не зависит от способа разбиения на элементарные части (ΔS_k) и способа выбора точек $P_k(\xi_k, \eta_k, \zeta_k)$.

Вычисляют поверхностный интеграл 1-го рода сведением к двойному интегралу: если функция f(x, y, z) определена и непрерывна в точках кусочно-гладкой двусторонней поверхности (S)

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v) \quad ((u, v) \in \Omega),$$

$$\iint_{(S)} f(x, y, z) dS = \iint_{\Omega} f(x(u, v), y(u, v), z(u, v)) \sqrt{EG - F^2} du dv,$$

где

$$E = \left(\frac{\partial x}{\partial u}\right)^{2} + \left(\frac{\partial y}{\partial u}\right)^{2} + \left(\frac{\partial z}{\partial u}\right)^{2},$$

$$G = \left(\frac{\partial x}{\partial v}\right)^{2} + \left(\frac{\partial y}{\partial v}\right)^{2} + \left(\frac{\partial z}{\partial v}\right)^{2},$$

$$F = \frac{\partial x}{\partial u} \cdot \frac{\partial x}{\partial v} + \frac{\partial y}{\partial u} \cdot \frac{\partial y}{\partial v} + \frac{\partial z}{\partial u} \cdot \frac{\partial z}{\partial v}.$$

В частности, если поверхность (*S*) однозначно проецируется на координатную плоскость *Оху* и ее уравнение имеет вид $z = z(x, y)((x, y) \in \sigma_{xy})$, где z(x, y) — однозначная непрерывно дифференцируемая функция, σ_{xy} — проекция поверхности (*S*) на плоскость *Оху*, то

$$\iint_{(S)} f(x, y, z) dS = \iint_{\sigma_{xy}} f(x, y, z(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy.$$

Поверхностный интеграл 1-го рода не зависит от выбора стороны поверхности.

Пример. 1. Вычислить поверхностный интеграл 1-го рода

$$\iint_{(S)} (x^2 + y^2) dS,$$

где (S) — сфера
$$x^2 + y^2 + z^2 = a^2$$
.

Решение

Для решения задачи разобьем сферу на верхнюю (S_1) и нижнюю (S_2) полусферы, которые задаются однозначными непрерывно дифференцируемыми функциями $z = \sqrt{a^2 - x^2 - y^2}$ и $z = -\sqrt{a^2 - x^2 - y^2}$ соответственно (см. рис. 4.21).

Рис. 4.21

Тогда

$$\iint_{(S)} (x^2 + y^2) dS = \underbrace{\iint_{(S_1)} (x^2 + y^2) dS}_{I_1} + \underbrace{\iint_{(S_2)} (x^2 + y^2) dS}_{I_2}.$$

Вычислим I_1 . Уравнение поверхности $z = \sqrt{a^2 - x^2 - y^2}$. Тогда

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{a^2 - x^2 - y^2}}, \quad \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{a^2 - x^2 - y^2}},$$

$$\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \frac{a}{\sqrt{a^2 - x^2 - y^2}}.$$

Получим

$$I_1 = \iint\limits_{(S_1)} \Bigl(x^2 + y^2\Bigr) dS = a \iint\limits_{\sigma_{xy}} \frac{\Bigl(x^2 + y^2\Bigr)}{\sqrt{a^2 - x^2 - y^2}} dx dy,$$
 где σ_{xy} — круг $x^2 + y^2 \le a^2$.

Для вычисления двойного интеграла перейдем в полярную систему координат

$$I_{1} = a \iint_{\sigma_{xy}} \frac{\left(x^{2} + y^{2}\right)}{\sqrt{a^{2} - x^{2} - y^{2}}} dx dy = \begin{bmatrix} x = \rho \cos \varphi, & y = \rho \sin \varphi, \\ 0 \le \varphi \le 2\pi, & 0 \le \rho \le a, \\ J = \rho \end{bmatrix} = a \int_{0}^{2\pi} d\varphi \int_{0}^{a} \frac{\rho^{2}}{\sqrt{a^{2} - \rho^{2}}} \rho d\rho.$$

Вычислим внутренний интеграл:

$$\int_{0}^{a} \frac{\rho^{2}}{\sqrt{a^{2} - \rho^{2}}} \rho d\rho = \frac{1}{2} \int_{0}^{a} \frac{a^{2} - \rho^{2} - a^{2}}{\sqrt{a^{2} - \rho^{2}}} d\left(a^{2} - \rho^{2}\right) =$$

$$= \frac{1}{2} \int_{0}^{a} \left(\sqrt{a^{2} - \rho^{2}} - \frac{a^{2}}{\sqrt{a^{2} - \rho^{2}}}\right) d\left(a^{2} - \rho^{2}\right) =$$

$$= \frac{1}{2} \left(\frac{2}{3} \left(a^{2} - \rho^{2}\right)^{\frac{3}{2}} - 2a^{2} \sqrt{a^{2} - \rho^{2}}\right) \Big|_{0}^{a} = \frac{1}{2} \left(-\frac{2}{3} + 2\right) a^{3} = \frac{2}{3} a^{3}.$$

Тогда

$$I_1 = \frac{2}{3}a^4 \int_{0}^{2\pi} d\varphi = \frac{4\pi}{3}a^4.$$

Аналогично найдем интеграл I_2 по нижней полусфере $z = -\sqrt{a^2 - x^2 - y^2}$.

Получим

$$I_2 = \frac{2}{3}a^4 \int_0^{2\pi} d\varphi = \frac{4\pi}{3}a^4.$$

Тогда искомый интеграл равен

$$\iint_{(S)} (x^2 + y^2) dS = I_1 + I_2 = \frac{8\pi}{3} a^4.$$

4.2. Приложения поверхностного интеграла 1-го рода

1. *Масса* поверхности (S) с поверхностной плотностью $\gamma(x, y, z)$

$$M = \iint_{(S)} \gamma(x, y, z) dS.$$

2. Площадь поверхности (S)

$$S = \iint_{(S)} dS.$$

В частности, если поверхность (S) однозначно проецируется на координатную плоскость Oxy и ее уравнение имеет вид $z = z(x,y) \big((x,y) \in \sigma_{xy} \big)$, где z(x,y) — однозначная непрерывно дифференцируемая функция, σ_{xy} — проекция поверхности (S) на плоскость Oxy, то

$$S = \iint_{\sigma_{vv}} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy.$$

3. *Центр масс* поверхности (*S*) с поверхностной плотностью $\gamma(x, y, z)$

$$x_{m} = \frac{1}{M} \iint_{(S)} x \cdot \gamma(x, y, z) dS, \quad y_{m} = \frac{1}{M} \iint_{(S)} y \cdot \gamma(x, y, z) dS,$$
$$z_{m} = \frac{1}{M} \iint_{(S)} z \cdot \gamma(x, y, z) dS,$$

где

$$M = \iint_{(S)} \gamma(x, y, z) dS.$$

4. Моменты инерции поверхности (S)

Моменты инерции относительно координатных плоскостей:

$$J_{xy} = \iint_{(S)} z^2 \cdot \gamma(x, y, z) dS, J_{yz} = \iint_{(S)} x^2 \cdot \gamma(x, y, z) dS,$$
$$J_{xz} = \iint_{(S)} y^2 \cdot \gamma(x, y, z) dS.$$

Осевые моменты инерции (моменты инерции относительно координатных осей):

$$J_{x} = \iint_{(S)} (y^{2} + z^{2}) \cdot \gamma(x, y, z) dS, \quad J_{y} = \iint_{(S)} (x^{2} + z^{2}) \cdot \gamma(x, y, z) dS,$$
$$J_{z} = \iint_{(S)} (x^{2} + y^{2}) \cdot \gamma(x, y, z) dS.$$

Центральный или полярный момент инерции (момент инерции относительно начала координат)

$$J_O = \iint_{(S)} (x^2 + y^2 + z^2) \cdot \gamma(x, y, z) dS.$$

Центробежные моменты инерции:

$$\begin{split} K_{xy} &= \iint\limits_{(S)} xy \cdot \gamma \big(x,y,z\big) dS, \quad K_{xz} &= \iint\limits_{(S)} xz \cdot \gamma \big(x,y,z\big) dS, \\ K_{yz} &= \iint\limits_{(S)} yz \cdot \gamma \big(x,y,z\big) dS. \end{split}$$

Пример 2. Найти координаты центра тяжести однородной параболической оболочки $az = x^2 + y^2 \quad (0 \le z \le a)$.

Решение

Т. к. ось материальной симметрии оболочки совпадает с осью Oz, то центр тяжести располагается на оси Oz, следовательно, $x_m = 0$, $y_m = 0$ и требуется найти только одну координату — z_m .

Уравнение поверхности $z = \frac{x^2 + y^2}{a}$. Выполним промежуточ-

ные вычисления:

$$\frac{\partial z}{\partial x} = \frac{2x}{a}, \quad \frac{\partial z}{\partial y} = \frac{2y}{a}, \quad \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \frac{\sqrt{a^2 + 4\left(x^2 + y^2\right)}}{a}.$$

Вычислим массу поверхности. Запишем соответствующий двойной интеграл по проекции поверхности на плоскость Oxy и, т. к. эта проекция — круг $x^2 + y^2 \le a^2$, то перейдем к полярной системе координат:

$$M = \iint_{(S)} \gamma dS = \gamma \iint_{\sigma_{xy}} \frac{\sqrt{a^2 + 4(x^2 + y^2)}}{a} dx dy = \begin{bmatrix} x = \rho \cos \varphi, & y = \rho \sin \varphi, \\ 0 \le \varphi \le 2\pi, & 0 \le \rho \le a, \\ J = \rho \end{bmatrix} =$$

$$= \frac{\gamma}{a} \int_{0}^{2\pi} d\varphi \int_{0}^{a} \sqrt{a^2 + 4\rho^2} \cdot \rho d\rho = \frac{\pi \gamma}{4a} \int_{0}^{a} \sqrt{a^2 + 4\rho^2} d(a^2 + 4\rho^2) =$$

$$= \frac{\pi \gamma}{4a} \cdot \frac{2}{3} (a^2 + 4\rho^2)^{\frac{3}{2}} \Big|_{0}^{a} = \frac{\pi \gamma}{6} (5\sqrt{5} - 1)a^2.$$

Перейдем к вычислению координаты центра масс.

$$z_{m} = \frac{1}{M} \iint_{(S)} z \gamma dS = \frac{\gamma}{M} \iint_{\sigma_{xy}} \frac{x^{2} + y^{2}}{a} \cdot \frac{\sqrt{a^{2} + 4(x^{2} + y^{2})}}{a} dx dy =$$

$$= \begin{bmatrix} x = \rho \cos \varphi, & y = \rho \sin \varphi, \\ 0 \le \varphi \le 2\pi, & 0 \le \rho \le a, \\ J = \rho \end{bmatrix} = \frac{\gamma}{Ma^{2}} \int_{0}^{2\pi} d\varphi \int_{0}^{a} \rho^{2} \sqrt{a^{2} + 4\rho^{2}} \cdot \rho d\rho =$$

$$= \frac{\pi \gamma}{16Ma^{2}} \int_{0}^{a} (4\rho^{2} + a^{2} - a^{2}) \sqrt{a^{2} + 4\rho^{2}} d(a^{2} + 4\rho^{2}) =$$

$$= \frac{\pi \gamma}{16Ma^{2}} \int_{0}^{a} (4\rho^{2} + a^{2})^{\frac{3}{2}} d(a^{2} + 4\rho^{2}) + \frac{\pi \gamma}{16Ma^{2}} \int_{0}^{a} (-a^{2}) \sqrt{a^{2} + 4\rho^{2}} d(a^{2} + 4\rho^{2}) =$$

$$= \frac{\pi \gamma}{16Ma^{2}} \cdot \frac{2}{5} (4\rho^{2} + a^{2})^{\frac{5}{2}} \Big|_{0}^{a} - \frac{\pi \gamma}{16M} \cdot \frac{2}{3} (4\rho^{2} + a^{2})^{\frac{3}{2}} \Big|_{0}^{a} = \frac{\pi \gamma a^{3}}{4M} \cdot \frac{25\sqrt{5} + 1}{15}.$$

И, подставив найденную ранее величину массы, получим

$$z_m = \frac{25\sqrt{5} + 1}{10\left(5\sqrt{5} - 1\right)}a.$$

4.3. Поверхностный интеграл 2-го рода

Пусть дана кусочно-гладкая двусторонняя поверхность (S), ограниченная простым кусочно-гладким контуром (l). Зафиксируем сторону поверхности: сторона поверхности S^+ (верхняя сторона поверхности) характеризуется вектором нормали $\bar{n} = \{n_x, n_y, n_z\}$ (обход контура (l) осуществляется против часовой стрелки, если смотреть с конца вектора нормали).

Пусть в точках поверхности (S) заданы функции P(x, y, z), Q(x, y, z) и R(x, y, z). Разобьем произвольным образом поверхность (S) сетью кусочно-гладких кривых на n элементарных частей (S_k); в каждой элементарной части (S_k) выберем произвольно точку M_k (ξ_k , η_k , ζ_k). Вычислим значение функций в этой точке $P(\xi_k$, η_k , ζ_k), $Q(\xi_k$, η_k , ζ_k), $R(\xi_k$, η_k , ζ_k) и умножим их на площади σ_{yz_k} , σ_{zx_k} , σ_{xy_k} проекции элементарной части (S_k) на координатные плоскости Oyz, Oxz, Oxy соответственно (рис. 4.22). Заметим, что т. к. поверхность (S) ориентирована, то проекции имеют знак: положительный для верхней стороны поверхности и отрицательный для нижней.

Рис. 4.22

Если существуют конечные пределы следующих интегральных сумм:

$$\sum_{k=1}^{n} P\left(\xi_{k}, \eta_{k}, \zeta_{k}\right) \cdot \sigma_{yz_{k}}, \quad \sum_{k=1}^{n} Q\left(\xi_{k}, \eta_{k}, \zeta_{k}\right) \cdot \sigma_{zx_{k}}, \quad \sum_{k=1}^{n} R\left(\xi_{k}, \eta_{k}, \zeta_{k}\right) \cdot \sigma_{xy_{k}}$$
 при $\lambda = \max_{k} \operatorname{diam}\left(S_{k}\right) \to 0$ и эти пределы не зависят от способа разбиения поверхности (S) на элементарные части и способа выбора точек $M_{k}\left(\xi_{k}, \eta_{k}, \zeta_{k}\right)$, то их сумма называется *поверхностным интегралом 2-го рода* и обозначается

$$\iint\limits_{(S^+)} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy =$$

$$= \iint\limits_{(S^+)} P(x, y, z) dy dz + \iint\limits_{(S^+)} Q(x, y, z) dz dx + \iint\limits_{(S^+)} R(x, y, z) dx dy.$$

Заметим, что поверхностный интеграл 2-го рода меняет знак при выборе другой стороны поверхности, т. е.

$$\iint\limits_{(S^*)} P(x, y, z) dydz + Q(x, y, z) dzdx + R(x, y, z) dxdy =$$

$$= -\iint\limits_{(S^*)} P(x, y, z) dydz + Q(x, y, z) dzdx + R(x, y, z) dxdy.$$

Вычисление поверхностного интеграла 2-го рода сводится к вычислению поверхностного интеграла 1-го рода:

$$\iint_{(S^+)} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy =$$

$$= \iint_{(S)} (P(x, y, z) \cdot \cos \alpha + Q(x, y, z) \cdot \cos \beta + R(x, y, z) \cdot \cos \gamma) dS,$$

где $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — направляющие косинусы вектора нормали \overline{n} .

Если даны параметрические уравнения поверхности (S)

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v) \quad ((u, v) \in \Omega),$$

TO

$$\cos \alpha = \frac{A}{\pm \sqrt{A^2 + B^2 + C^2}}, \cos \beta = \frac{B}{\pm \sqrt{A^2 + B^2 + C^2}},$$
$$\cos \gamma = \frac{C}{\pm \sqrt{A^2 + B^2 + C^2}},$$

где

$$A = \frac{\partial(y,z)}{\partial(u,v)}, \quad B = \frac{\partial(z,x)}{\partial(u,v)}, \quad C = \frac{\partial(x,y)}{\partial(u,v)},$$

а знак согласуется со стороной поверхности.

Если поверхность (S) задана в неявном виде F(x, y, z) = 0, то

$$\cos \alpha = \frac{1}{D} \frac{\partial F}{\partial x}, \quad \cos \beta = \frac{1}{D} \frac{\partial F}{\partial y}, \quad \cos \gamma = \frac{1}{D} \frac{\partial F}{\partial z},$$

где

$$D = \pm \sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 + \left(\frac{\partial F}{\partial z}\right)^2},$$

а знак согласуется со стороной поверхности.

Пример 3. Вычислить поверхностный интеграл 2-го рода

$$\iint\limits_{(S)} x dy dz + y dz dx + z dx dy,$$

где (S) — внешняя сторона поверхности полусферы $x^2 + y^2 + z^2 = a^2 \quad (z \ge 0)$.

Решение

Найдем направляющие косинусы вектора нормали к поверхности. В нашем случае $F = x^2 + y^2 + z^2 - a^2$, тогда частные производные равны

$$\frac{\partial F}{\partial x} = 2x$$
, $\frac{\partial F}{\partial y} = 2y$, $\frac{\partial F}{\partial z} = 2z$.

Тогда

$$D = \pm 2\sqrt{x^2 + y^2 + z^2}$$

и направляющие косинусы

$$\cos \alpha = \frac{x}{\pm \sqrt{x^2 + y^2 + z^2}}, \quad \cos \beta = \frac{y}{\pm \sqrt{x^2 + y^2 + z^2}},$$
$$\cos \gamma = \frac{z}{\pm \sqrt{x^2 + y^2 + z^2}}.$$

Согласуем знак со стороной поверхности: выберем произвольную точку на поверхности, например, точку с координатами (0, 0, a), где a > 0; согласно условию задачи интегрируем по внешней стороне полусферы, т. е. вектор нормали в выбранной точке имеет координаты $\{0, 0, 1\}$, таким образом необходимо выбрать знак «+». Окончательно получаем

$$\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \quad \cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}},$$

$$\cos \gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}}.$$

Интеграл равен

$$I = \iint_{(S)} x dy dz + y dz dx + z dx dy =$$

$$= \iint_{(S)} \left(x \cdot \frac{x}{\sqrt{x^2 + y^2 + z^2}} + y \cdot \frac{y}{\sqrt{x^2 + y^2 + z^2}} + z \cdot \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right) dS.$$

Чтобы перейти к двойному интегралу, запишем уравнение поверхности в явном виде $z = \sqrt{a^2 - x^2 - y^2}$ и выполним промежуточные вычисления:

$$\frac{\partial z}{\partial x} = \frac{-x}{\sqrt{a^2 - x^2 - y^2}}, \quad \frac{\partial z}{\partial y} = \frac{-y}{\sqrt{a^2 - x^2 - y^2}},$$

$$\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \frac{a}{\sqrt{a^2 - x^2 - y^2}}.$$

Получим

$$I = \iint_{\sigma_{xy}} \frac{x^2 + y^2 + (a^2 - x^2 - y^2)}{a} \cdot \frac{a}{\sqrt{a^2 - x^2 - y^2}} dxdy =$$

$$= \iint_{\sigma_{xy}} \frac{a^2}{\sqrt{a^2 - x^2 - y^2}} dxdy,$$

где σ_{xy} — круг $x^2 + y^2 \le a^2$.

Для вычисления двойного интеграла перейдем в полярную систему координат

$$I = \iint_{\sigma_{xy}} \frac{a^2}{\sqrt{a^2 - x^2 - y^2}} dx dy =$$

$$= \begin{bmatrix} x = \rho \cos \varphi, & y = \rho \sin \varphi, \\ 0 \le \varphi \le 2\pi, & 0 \le \rho \le a, \\ J = \rho \end{bmatrix} = \int_0^{2\pi} d\varphi \int_0^a \frac{a^2}{\sqrt{a^2 - \rho^2}} \rho d\rho =$$

$$= -\pi a^2 \int_0^a \frac{d(a^2 - \rho^2)}{\sqrt{a^2 - \rho^2}} = -2\pi a^2 \cdot \sqrt{a^2 - \rho^2} \Big|_0^a = 2\pi a^3.$$

4.4. Формула Стокса

Пусть даны непрерывно дифференцируемые функции P(x, y, z), Q(x, y, z) и R(x, y, z) и (l) — простой кусочно-гладкий замкнутый контур. Если контур (l) ограничивает кусочногладкую двустороннюю поверхность (S), то справедлива формула Стокса:

$$\oint_{(I)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \iint_{(S)} \left[\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right] dS,$$

где $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — направляющие косинусы вектора нормали \bar{n} к поверхности (S).

Пример 4. Используя формулу Стокса, вычислить интеграл

$$\oint_{(I)} (y-z)dx + (z-x)dy + (x-y)dz,$$

где (*l*) — эллипс $x^2 + y^2 = 1$, x + z = 1.

Решение

В качестве поверхности (*S*), ограниченной контуром (*l*), выберем часть плоскости x+z=1, вырезанную круговым цилиндром $x^2+y^2=1$ (рис. 4.23).

Рис. 4.23

Вектор нормали к данной плоскости равен $\overline{n} = \{1, 0, 1\}$. Нормируем его, чтобы найти направляющие косинусы, получим

$$\cos \alpha = \frac{1}{\sqrt{2}}, \quad \cos \beta = 0, \quad \cos \gamma = \frac{1}{\sqrt{2}}.$$

Найдем частные производные от функций P = y - z, Q = z - x, R = x - y.

Получим

$$\frac{\partial R}{\partial y} = -1, \quad \frac{\partial Q}{\partial z} = 1 \quad \Rightarrow \quad \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = -2;$$

$$\frac{\partial P}{\partial z} = -1, \quad \frac{\partial R}{\partial x} = 1 \quad \Rightarrow \quad \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = -2;$$

$$\frac{\partial Q}{\partial x} = -1, \quad \frac{\partial P}{\partial y} = 1 \quad \Rightarrow \quad \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -2.$$

Тогда, согласно формуле Стокса, перейдем от криволинейного интеграла 2-го рода к поверхностному интегралу 1-го рода

$$\oint_{(I)} (y-z) dx + (z-x) dy + (x-y) dz = -2 \iint_{(S)} \left[\frac{1}{\sqrt{2}} + 0 + \frac{1}{\sqrt{2}} \right] dS = -2\sqrt{2} \iint_{(S)} dS.$$

Запишем уравнение плоскости в явном виде: z=1-x. Выполним промежуточные вычисления и, т. к. проекцией поверхности (S) на плоскость Oxy будет круг $x^2+y^2 \le 1$, то, переходя к двойному интегралу, воспользуемся полярной системой координат. Получим

$$-2\sqrt{2} \iint_{(S)} dS = \begin{bmatrix} z = 1 - x \Rightarrow z'_{x} = -1, z'_{y} = 0, \\ \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} = \sqrt{2} \end{bmatrix} = -2\sqrt{2} \iint_{(S)} \sqrt{2} dx dy =$$

$$= \begin{bmatrix} x = \rho \cos \varphi, & y = \rho \sin \varphi, \\ 0 \le \varphi \le 2\pi, & 0 \le \rho \le a, \\ J = \rho \end{bmatrix} = -4 \int_{0}^{2\pi} d\varphi \int_{0}^{1} \rho d\rho = -4\pi.$$

4.5. Формула Остроградского

Пусть (S) — кусочно-гладкая поверхность, ограничивающая объем (V). Если функции P(x, y, z), Q(x, y, z) и R(x, y, z) непрерывны вместе со своими частными производными первого по-

рядка в области (V) и на границе (S), то справедлива формула Остроградского

$$\iint_{(S)} (P\cos\alpha + Q\cos\beta + R\cos\gamma) dS = \iiint_{(V)} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx dy dz$$

или

$$\iint_{(S^*)} P dy dz + Q dz dx + R dx dy = \iiint_{(V)} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz,$$

где $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — направляющие косинусы *внешней норма*ли к поверхности.

Пример 5. С помощью формулы Остроградского вычислить поверхностный интеграл

$$\iint\limits_{(S)} x^2 dy dz + y^2 dz dx + z^2 dx dy,$$

где (S) — внешняя сторона поверхности куба $0 \le x \le a, \ 0 \le y \le a, \ 0 \le z \le a.$

Решение

Найдем соответствующие частные производные первого порядка

$$\frac{\partial P}{\partial x} = 2x$$
, $\frac{\partial Q}{\partial y} = 2y$, $\frac{\partial R}{\partial z} = 2z$ \Rightarrow $\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 2(x + y + z)$.

Тогда искомый интеграл равен

$$\iint_{(S)} x^{2} dy dz + y^{2} dz dx + z^{2} dx dy = 2 \iiint_{(V)} (x + y + z) dx dy dz =$$

$$= 2 \int_{0}^{a} dx \int_{0}^{a} dy \int_{0}^{a} (x + y + z) dz = 2 \int_{0}^{a} dx \int_{0}^{a} \left(ax + ay + \frac{a^{2}}{2} \right) dy =$$

$$= 2 \int_{0}^{a} \left(a^{2}x + a^{3} \right) dx = 3a^{4}.$$

Упражнения для самостоятельной подготовки

1. Вычислить поверхностный интеграл 1-го рода

$$\iint\limits_{(S)} \sqrt{x^2 + y^2} dS,$$

где (S) — боковая поверхность конуса $x^2 + y^2 - z^2 = 0$ ($0 \le z \le 1$).

2. Найти полярный момент инерции полной поверхности цилиндра

$$x^2 + y^2 \le R^2, \quad 0 \le z \le H.$$

- 3. Найти массу полусферы $x^2 + y^2 + z^2 = a^2$ $(z \ge 0)$ с поверхностной плотностью $\gamma = z/a$.
 - 4. Вычислить поверхностный интеграл 2-го рода

$$\iint\limits_{(S)} yzdydz + xzdzdx + xydxdy,$$

где (S) — внешняя сторона поверхности тетраэдра, ограниченного плоскостями

$$x = 0$$
, $y = 0$, $z = 0$, $x + y + z = a$.

5. Вычислить поверхностный интеграл 2-го рода

$$\iint\limits_{(S)} x^2 dy dz + y^2 dz dx + z^2 dx dy,$$

где (S) — внешняя сторона поверхности полусферы $x^2 + y^2 + z^2 = a^2 \quad (z \ge 0).$

6. Используя формулу Стокса, вычислить интеграл

$$\oint_{(I)} (y+z) dx + (z+x) dy + (x+y) dz,$$

где (*I*) — окружность $x^2 + y^2 + z^2 = 4$, x + y + z = 0.

7. С помощью формулы Остроградского вычислить поверхностный интеграл

$$\iint\limits_{(S)} y^2 dy dz + z dx dy,$$

где (S) — внешняя полная поверхность параболоида $z = x^2 + y^2$ $(z \le 2)$.

5. Элементы векторного анализа

5.1. Скалярное и векторное поле

Определение. Если каждой точке M заданной области D пространства \mathbb{R}^n поставлена в соответствие скалярная величина U, то говорят, что в этой области задано *скалярное поле*. Другими словами, скалярное поле — это функция, отображающая \mathbb{R}^n в \mathbb{R} , т.е. $U = U\left(M\right), M \in D \subset \mathbb{R}^n, U \in \mathbb{R}$. В случае трехмерного евклидова пространства (с введенной прямоугольной декартовой системой координат) имеем $U = U\left(x, y, z\right)$.

Примеры скалярных полей: поле температур; поле электрического потенциала; поле давления в жидкой среде.

Геометрической характеристикой скалярного поля являются в \mathbb{R}^2 линии уровня, в \mathbb{R}^n поверхности уровня — геометрическое место точек, в которых скалярная функция принимает одно и то же значение. Линии уровня на плоскости Oxy определяются уравнением U(x, y) = C, C = const. Поверхности уровня в \mathbb{R}^3 определяются уравнением U(x, y, z) = C, C = const.

Примеры линий уровня: изобата; изотерма. Пример поверхностей уровня: эквипотенциальные поверхности.

Пример 1. Найти поверхности уровня скалярного поля $U = x^2 + y^2 - z^2$.

Решение

Составим уравнения поверхностей уровня: $x^2 + y^2 - z^2 = C$, C = const.

Эти уравнения описывают при C=0 прямой круговой конус; при C>0 — однополостные гиперболоиды вращения; при C<0 — двуполостные гиперболоиды вращения — ось вращения во всех случаях совпадает с осью O_Z .

Определение. Если каждой точке M заданной области D пространства \mathbb{R}^n поставлена в соответствие векторная величина \overline{a} , то говорят, что в этой области задано *векторное поле*. Другими словами, векторное поле — это вектор-функция, отображающая пространство \mathbb{R}^n на себя, т. е. $\overline{a} = \overline{a} \, (M)$.

В
$$\mathbb{R}^3$$
 имеем $\overline{a}(M) = a_x(x, y, z)\overline{i} + a_y(x, y, z)\overline{j} + a_z(x, y, z)\overline{k}$.

Примеры векторных полей: поле скоростей; силовое поле; поле градиента.

Важную роль при изучении векторного поля играют векторные линии.

Определение. Векторная линия — кривая, в каждой точке которой вектор \bar{a} направлен по касательной к этой кривой.

Примеры векторных линий: силовые линии магнитного поля; линии тока жидкости.

 $B\mathbb{R}^3$ векторные линии характеризуются системой дифференциальных уравнений

$$\frac{dx}{a_x} = \frac{dy}{a_y} = \frac{dz}{a_z}.$$

Пример 2. Найти векторные линии векторного поля

$$\overline{a} = (2y+3z)\overline{i} + (-2x-5z)\overline{j} + (5y-3x)\overline{k}$$
.

Решение

Составим систему дифференциальных уравнений

$$\frac{dx}{2y+3z} = \frac{dy}{-2x-5z} = \frac{dz}{5y-3x}.$$

Воспользуемся методом интегрируемых комбинаций: если $\frac{\alpha_1}{\beta_1} = \frac{\alpha_2}{\beta_2} = \frac{\alpha_3}{\beta_3}, \text{ то } \frac{\alpha_1}{\beta_1} = \frac{\lambda_1\alpha_1 + \lambda_2\alpha_2 + \lambda_3\alpha_3}{\lambda_1\beta_1 + \lambda_2\beta_2 + \lambda_3\beta_3}, \text{ где } \lambda_1, \lambda_2, \lambda_3$ — числа или функции.

Умножим числитель и знаменатель первой дроби на x, второй — на y, третьей — на z; сложив почленно, получим

$$\frac{xdx + ydy + zdz}{x(2y+3z) + y(-2x-5z) + z(5y-3x)} = \frac{dx}{2y+3z} = \frac{dy}{-2x-5z} = \frac{dz}{5y-3x}$$
или
$$\frac{xdx + ydy + zdz}{0} = \frac{dx}{2y+3z} = \frac{dy}{-2x-5z} = \frac{dz}{5y-3x}.$$

Отсюда xdx + ydy + zdz = 0. Проинтегрировав последнее равенство, получаем первый интеграл системы: $x^2 + y^2 + z^2 = C_1$.

Для того чтобы найти еще один интеграл системы, умножим числитель и знаменатель первой дроби на 5, второй на 3, третьей на (-2) и сложим почленно. Получим

$$\frac{5dx + 3dy - 2dz}{5(2y+3z) + 3(-2x-5z) - 2(5y-3x)} = \frac{dx}{2y+3z} = \frac{dy}{-2x-5z} = \frac{dz}{5y-3x}$$
или

$$\frac{5dx + 3dy - 2dz}{0} = \frac{dx}{2y + 3z} = \frac{dy}{-2x - 5z} = \frac{dz}{5y - 3x}.$$

Отсюда 5dx + 3dy - 2dz = 0. Проинтегрировав, получим $5x + 3y - 2z = C_2$.

Векторные линии задаются системой уравнений

$$\begin{cases} x^2 + y^2 + z^2 = C_1, \\ 5x + 3y - 2z = C_2 \end{cases}$$

и получаются при пересечении сфер с центром в начале координат радиуса $\sqrt{C_1}$ с плоскостями, перпендикулярными вектору $\overline{n}=\{5,3,-2\}.$

5.2. Градиент

Ранее, в первой части пособия, были рассмотрены понятия производной по направлению и градиента функции нескольких переменных, которые могут быть использованы для характеристики скорости изменения скалярного поля и определения направления и величины наибольшего возрастания поля в данной точке.

Определение. *Градиентом скалярного поля* $U\left(M\right)$ называется вектор

$$\operatorname{grad} U = \frac{\partial U}{\partial x} \overline{i} + \frac{\partial U}{\partial y} \overline{j} + \frac{\partial U}{\partial z} \overline{k} \equiv \nabla U,$$

где
$$\nabla = \overline{i} \frac{\partial}{\partial x} + \overline{j} \frac{\partial}{\partial y} + \overline{k} \frac{\partial}{\partial z}$$
 — оператор Гамильтона.

Градиент направлен по нормали к поверхности уровня скалярного поля U(M) в сторону наибольшего возрастания поля. Длина вектора градиента $|\operatorname{grad} U|$ численно равна наибольшей скорости возрастания поля.

Говорят, что скалярное поле U порождает векторное поле градиента $\operatorname{grad} U$.

Пример 3. Найти векторные линии поля градиента функции $u = z^2 + xy + y - x$.

Решение

Градиент функции и равен

grad
$$u = \frac{\partial u}{\partial x}\bar{i} + \frac{\partial u}{\partial y}\bar{j} + \frac{\partial u}{\partial z}\bar{k}$$
,

где

$$\frac{\partial u}{\partial x} = \frac{\partial}{\partial x} (z^2 + xy + y - x) = y - 1,$$

$$\frac{\partial u}{\partial y} = \frac{\partial}{\partial y} (z^2 + xy + y - x) = x + 1,$$

$$\frac{\partial u}{\partial z} = \frac{\partial}{\partial z} \left(z^2 + xy + y - x \right) = 2z.$$

Получаем grad $u = (y-1)\overline{i} + (x+1)\overline{j} + 2z\overline{k}$.

Составим систему дифференциальных уравнений:

$$\frac{dx}{y-1} = \frac{dy}{x+1} = \frac{dz}{2z}.$$

Воспользуемся методом интегрируемых комбинаций. Получим следующую систему дифференциальных уравнений:

$$\begin{cases} \frac{dx}{y-1} = \frac{dy}{x+1}, \\ \frac{dx+dy}{(y-1)+(x+1)} = \frac{dz}{2z} \end{cases}$$

или

$$\begin{cases} \frac{dx}{y-1} = \frac{dy}{x+1}, \\ \frac{d(x+y)}{x+y} = \frac{dz}{2z}. \end{cases}$$

Проинтегрируем каждое из уравнений и запишем получившиеся первые интегралы системы:

$$\begin{cases} (x+1)^2 = (y-1)^2 + C_1, \\ 2\ln|x+y| = \ln|z| + \ln|C_2| \end{cases}$$

или

$$\begin{cases} (x+1)^2 - (y-1)^2 = C_1, \\ (x+y)^2 = C_2 z. \end{cases}$$

5.3. Поток векторного поля через поверхность

Рассмотрим задачу о вычислении *потока* несжимаемой жидкости единичной плотности — количества жидкости, протекающей через поверхность за единицу времени. Пусть дана некоторая поверхность (S) и известна скорость \overline{v} движения жидкости, являющаяся в общем случае функцией координат точки и времени. За бесконечно малый промежуток времени dt через элементарный участок поверхности dS (считаем его плоским) протечет объем жидкости, равный

$$S_{\text{och}} \cdot h = \underbrace{dS}_{S_{\text{och}}} \cdot \underbrace{v_n dt}_h$$

где V_n — проекция вектора скорости \overline{V} на нормаль \overline{n} к поверхности (S), причем нормаль характеризует выбранную сторону поверхности (рис. 4.24), а объем жидкости, протекшей через всю поверхность (S) за время dt, равен

$$dt \cdot \iint_{(S)} v_n dS$$
.

Рис. 4.24

Тогда объем жидкости, протекший через поверхность (S) за единицу времени, определяется интегралом

$$\Pi = \iint_{(S)} v_n dS = \iint_{(S)} \left(v_x \cos \alpha + v_y \cos \beta + v_z \cos \gamma \right) dS.$$

Определение. Пусть дано векторное поле

$$\overline{a}(M) = a_x(x, y, z)\overline{i} + a_y(x, y, z)\overline{j} + a_z(x, y, z)\overline{k},$$

кусочно-гладкая двусторонняя поверхность (S), сторона которой (S⁺) характеризуется вектором нормали $\bar{n} = \{\cos\alpha, \cos\beta, \cos\gamma\}$. Потоком вектора \bar{a} через поверхность (S) в сторону нормали \bar{n} называется поверхностный интеграл

$$\Pi = \iint_{(S)} a_n dS = \iint_{(S)} \overline{a} \cdot \overline{n} \, dS = \iint_{(S)} (a_x \cos \alpha + a_y \cos \beta + a_z \cos \gamma) dS.$$

Заметим, что подобный интеграл уже встречался при сведении вычисления поверхностного интеграла 2-го рода к вычислению поверхностного интеграла 1-го рода. Таким образом, физическим приложением поверхностного интеграла 2-го рода является вычисление потока вектора через поверхность:

$$\Pi = \iint_{(S^*)} a_x(x, y, z) dy dz + a_y(x, y, z) dz dx + a_z(x, y, z) dx dy =$$

$$= \iint_{(S)} (a_x \cos \alpha + a_y \cos \beta + a_z \cos \gamma) dS.$$

Пример 4. Вычислить поток вектора $\overline{a} = (x+2y)\overline{i} + z^2\overline{j} + y\overline{k}$ через часть поверхности $x^2 + y^2 = 4$, лежащую в I октанте и отсеченную плоскостями z = 0, z = 3 в направлении внешней нормали.

Решение

По определению поток вектора через поверхность равен

$$\Pi = \iint_{(S)} a_n dS = \iint_{(S)} (a_x \cos \alpha + a_y \cos \beta + a_z \cos \gamma) dS.$$

Поверхность представляет собой четверть цилиндра (такую, что $x \ge 0, y \ge 0$) радиуса 2 с осью симметрии, совпадающей с осью Oz, заключенную между плоскостями z = 0 и z = 3 (рис. 4.25).

Рис. 4.25

Направляющие косинусы вектора нормали к поверхности (S), заданной в неявном виде F(x, y, z) = 0, определяются по формулам:

$$\cos \alpha = \frac{1}{D} \frac{\partial F}{\partial x}, \quad \cos \beta = \frac{1}{D} \frac{\partial F}{\partial y}, \quad \cos \gamma = \frac{1}{D} \frac{\partial F}{\partial z},$$

где

$$D = \pm \sqrt{\left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 + \left(\frac{\partial F}{\partial z}\right)^2},$$

а знак согласуется со стороной поверхности.

В нашем случае $F(x, y, z) = x^2 + y^2 - 4$, тогда

$$\frac{\partial F}{\partial x} = 2x$$
, $\frac{\partial F}{\partial y} = 2y$, $\frac{\partial F}{\partial z} = 0$, $D = \pm 2\sqrt{x^2 + y^2}$,

$$\cos \alpha = \frac{x}{\pm \sqrt{x^2 + y^2}}, \quad \cos \beta = \frac{y}{\pm \sqrt{x^2 + y^2}}, \quad \cos \gamma = 0.$$

Согласуем знак со стороной поверхности: выберем произвольную точку на поверхности, например, точку с координатами $(\sqrt{2},\sqrt{2},2)$; согласно условию задачи вычисляем поток вектора в направлении *внешней* нормали, т. е. вектор нормали в выбранной точке имеет координаты $\left\{\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right\}$, таким образом, необходимо выбрать знак «+». Окончательно получаем

$$\cos \alpha = \frac{x}{\sqrt{x^2 + y^2}}, \quad \cos \beta = \frac{y}{\sqrt{x^2 + y^2}}, \quad \cos \gamma = 0.$$

Интеграл равен

$$\Pi = \iint_{(S)} \left((x+2y) \cdot \frac{x}{\sqrt{x^2 + y^2}} + z^2 \cdot \frac{y}{\sqrt{x^2 + y^2}} + y \cdot 0 \right) dS =$$

$$= \iint_{(S)} \frac{x^2 + 2xy + z^2 y}{\sqrt{x^2 + y^2}} dS.$$

Чтобы перейти к двойному интегралу, запишем уравнение поверхности в явном виде $y = \sqrt{4-x^2}$ и выполним промежуточные вычисления

$$\frac{\partial y}{\partial x} = \frac{-x}{\sqrt{4 - x^2}}, \quad \frac{\partial y}{\partial z} = 0, \quad \sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2} = \frac{2}{\sqrt{4 - x^2}}.$$

Получим

$$\Pi = \iint_{\sigma_{xz}} \frac{x^2 + 2x\sqrt{4 - x^2} + z^2\sqrt{4 - x^2}}{2} \cdot \frac{2}{\sqrt{4 - x^2}} dx dz =$$

$$= \iint_{\sigma_{xz}} \left(\frac{x^2}{\sqrt{4 - x^2}} + 2x + z^2 \right) dx dz,$$

где σ_{xz} — проекция заданной поверхности на координатную плоскость Oxz, представляет собой прямоугольник (рис. 4.26).

Перейдем к повторному интегралу

$$\iint_{\sigma_{xx}} \left(\frac{x^2}{\sqrt{4 - x^2}} + 2x + z^2 \right) dx dz = \int_0^2 dx \int_0^3 \left(\frac{x^2}{\sqrt{4 - x^2}} + 2x + z^2 \right) dz =$$

$$= \int_0^2 \left(\frac{3x^2}{\sqrt{4 - x^2}} + 6x + 9 \right) dx = \int_0^2 \frac{3x^2}{\sqrt{4 - x^2}} dx + \int_0^2 (6x + 9) dx.$$

Вычислим по отдельности каждый из получившихся интегралов:

$$I_{1} = \int_{0}^{2} \frac{3x^{2}}{\sqrt{4 - x^{2}}} dx =$$

$$= \begin{bmatrix} x = 2\sin t, & dx = 2\cos t dt, \\ x = 0 \Rightarrow t = 0, & x = 2 \Rightarrow t = \frac{\pi}{2}, \\ x^{2} = 4\sin^{2} t, & \sqrt{4 - x^{2}} = 2\cos t \end{bmatrix} = 3\int_{0}^{\frac{\pi}{2}} \frac{4\sin^{2} t}{2\cos t} \cdot 2\cos t dt =$$

$$= 12\int_{0}^{\frac{\pi}{2}} \sin^{2} t dt = 12\int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2t}{2} dt = 6\left(t - \frac{1}{2}\sin 2t\right)\Big|_{0}^{\frac{\pi}{2}} = 3\pi,$$

$$I_2 = \int_0^2 (6x+9) dx = (3x^2+9x)\Big|_0^2 = 30.$$

Тогда поток равен $\Pi = 30 + 3\pi$.

5.4. Дивергенция, формула Остроградского

Пусть дано непрерывно дифференцируемое векторное поле

$$\overline{a}(M) = a_x(x, y, z)\overline{i} + a_y(x, y, z)\overline{j} + a_z(x, y, z)\overline{k}.$$

Определение. Дивергенцией (расходимостью) векторного поля $\bar{a}(M)$ называется скалярная величина

$$\operatorname{div} \overline{a} = \frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} \equiv \nabla \overline{a}.$$

Говорят, что векторное поле \overline{a} порождает скалярное поле дивергенции $\operatorname{div} \overline{a}$.

Предположим, что кусочно-гладкая поверхность (S) ограничивает объем (V), тогда формулу Остроградского можно переписать в векторном виде:

$$\iint_{(S)} \left(a_x \cos \alpha + a_y \cos \beta + a_z \cos \gamma \right) dS = \iiint_{(V)} \left(\frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z} \right) dx dy dz$$

или

$$\bigoplus_{(S)} a_n dS = \iiint_{(V)} \operatorname{div} \overline{a} \, dx dy dz.$$

Пример 5. Найти поток вектора $\overline{a} = x\overline{i} + y\overline{j} + z\overline{k}$ через боковую поверхность конуса $x^2 + y^2 \le z^2$ $(0 \le z \le h)$ в направлении внешней нормали.

Решение

Найдем поток $\Pi_{\text{бок}}$ через боковую поверхность конуса как разность между потоком $\Pi_{\text{полн}}$ через полную поверхность и потоком $\Pi_{\text{осн}}$ через плоскость основания.

Рис. 4.27

Для вычисления $\Pi_{\text{полн}}$ воспользуемся формулой Остроградского, предварительно вычислив дивергенцию вектора; при нахождении тройного интеграла, т. к. область интегрирования ограничена снизу конусом, а сверху горизонтальной плоскостью, перейдем к цилиндрической системе координат. Получим

$$\overline{a} = x\overline{i} + y\overline{j} + z\overline{k} \Rightarrow \frac{\partial a_x}{\partial x} = 1, \frac{\partial a_y}{\partial y} = 1, \frac{\partial a_z}{\partial z} = 1 \Rightarrow \operatorname{div} \overline{a} = 3,$$

$$\Pi_{\text{полн}} = \iiint_{(V)} 3 \, dx \, dy \, dz = \begin{bmatrix} x = \rho \cos \varphi, \, y = \rho \sin \varphi, \, z = z, \, J = \rho \\ 0 \le \varphi \le 2\pi, \quad 0 \le \rho \le h, \quad \rho \le z \le h \end{bmatrix} = 3 \int_{0}^{2\pi} d\varphi \int_{\rho}^{h} \rho \, d\rho \int_{\rho}^{h} dz = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} \rho \, (h - \rho) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{h} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{2\pi} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{2\pi} d\varphi \int_{0}^{2\pi} (h\rho - \rho^{2}) \, d\rho = 3 \int_{0}^{$$

Поток $\Pi_{\text{осн}}$ вычислим по определению, где вектор внешней нормали равен $\overline{n} = \{0,0,1\}$. Получим

$$\Pi_{\text{\tiny OCH}} = \iint_{(S)} a_n dS = \iint_{(S)} \overline{a} \cdot \overline{n} \ dS = \iint_{(S)} z dS = \iint_{\sigma_{xy}} h dx dy = \pi h^3.$$

Тогда поток $II_{\text{бок}}$ через боковую поверхность конуса равен

$$\Pi_{\text{бок}} = \Pi_{\text{полн}} - \Pi_{\text{осн}} = 0.$$

5.5. Циркуляция вектора, формула Стокса, вихрь

Пусть дано непрерывно дифференцируемое векторное поле

$$\overline{a}(M) = a_x(x, y, z)\overline{i} + a_y(x, y, z)\overline{j} + a_z(x, y, z)\overline{k}.$$

Определение. Вихрем (ротором) векторного поля $\overline{a}(M)$ называется вектор

$$\operatorname{rot} \overline{a} = \left(\frac{\partial a_{z}}{\partial y} - \frac{\partial a_{y}}{\partial z}\right) \overline{i} + \left(\frac{\partial a_{x}}{\partial z} - \frac{\partial a_{z}}{\partial x}\right) \overline{j} + \left(\frac{\partial a_{y}}{\partial x} - \frac{\partial a_{x}}{\partial y}\right) \overline{k} \equiv \nabla \times \overline{a}.$$

Для удобства запоминания формулы можно использовать формальную запись векторного произведения оператора ∇ и вектора \bar{a} :

$$\operatorname{rot} \overline{a} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_{x} & a_{y} & a_{z} \end{vmatrix}.$$

Говорят, что векторное поле \overline{a} порождает векторное поле ротора rot \overline{a} .

Определение. *Линейным интегралом* от вектора \overline{a} вдоль кривой (l) называется криволинейный интеграл 2-го рода

$$\int_{(l)} a_x dx + a_y dy + a_z dz = \int_{(l)} a_l dl.$$

Если кривая (l) замкнутая (контур), то этот интеграл называется *циркуляцией* вектора \overline{a} вдоль кривой (l)

$$II = \oint_{(I)} a_x dx + a_y dy + a_z dz = \oint_{(I)} a_I dI.$$

В случае силового поля указанный интеграл определяет pa-*боту сил* поля \overline{a} при перемещении вдоль кривой (l).

Формула Стокса в векторной форме имеет следующий вид:

$$\oint_{(I)} a_I dI = \iint_{(S)} \operatorname{rot} \overline{a} \cdot \overline{n} \ dS = \iint_{(S)} \operatorname{rot}_n \overline{a} \ dS,$$

т.е. циркуляция вектора по замкнутому контуру равна потоку ротора через поверхность, ограниченную этим контуром.

Пример 6. Вычислить циркуляцию вектора $\overline{a} = -y^2\overline{i} + x^2\overline{j}$ вдоль кривой

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

в положительном направлении кривой.

Решение

$$H = \oint_{(I)} a_x dx + a_y dy + a_z dz = \oint_{(I)} -y^2 dx + x^2 dy =$$

$$= \begin{bmatrix} (I): & x = 2\cos t, y = 3\sin t, \\ & 0 \le t \le 2\pi, \\ & dx = -2\sin t \, dt, dy = 3\cos t \, dt \end{bmatrix} = \int_{0}^{2\pi} \left(18\sin^3 t + 12\cos^3 t\right) dt =$$

$$= -18 \int_{0}^{2\pi} \left(1 - \cos^2 t\right) d\left(\cos t\right) + 12 \int_{0}^{2\pi} \left(1 - \sin^2 t\right) d\left(\sin t\right) =$$

$$= -18 \left(\cos t - \frac{1}{3}\cos^3 t\right) \Big|_{0}^{2\pi} + 12 \left(\sin t - \frac{1}{3}\sin^3 t\right) \Big|_{0}^{2\pi} = 0.$$

5.6. Потенциальное и соленоидальное поля

Определение. Векторное поле \overline{a} называется *потенциальным*, если существует скалярная функция U (силовая функция, потенциал, потенциальная функция), для которой справедливо равенство $\overline{a} = \operatorname{grad} U$, т.е. в случае трехмерного евклидова пространства

$$\overline{a} = \frac{\partial U}{\partial x}\overline{i} + \frac{\partial U}{\partial y}\overline{j} + \frac{\partial U}{\partial z}\overline{k}.$$

Тогда полный дифференциал силовой функции равен $dU = a_x dx + a_y dy + a_z dz$.

Теорема. Поле \overline{a} потенциально \Leftrightarrow поле \overline{a} безвихревое, т.е. rot $\overline{a}=\overline{0}$.

Если поле \overline{a} потенциально, то криволинейный интеграл 2-го рода не зависит от формы кривой, а зависит только от значения потенциала в начальной и конечной точках траектории:

$$\int_{(AB)} a_x dx + a_y dy + a_z dz = \int_{(AB)} dU = U \Big|_A^B = U(B) - U(A),$$

а криволинейный интеграл по замкнутому контуру равен нулю:

$$\oint_C a_x dx + a_y dy + a_z dz = 0.$$

Пример. 7. Показать, что поле \overline{a} потенциально и найти потенциал U, если

$$\overline{a} = \left(\frac{z}{y} + x\right)\overline{i} - \frac{xz}{y^2}\overline{j} + \left(\frac{x}{y} + 1\right)\overline{k}.$$

Решение

Покажем, что rot $\overline{a} = \overline{0}$, т. е. поле безвихревое и, следовательно, потенциальное.

$$\operatorname{rot} \overline{a} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{z}{y} + x & -\frac{xz}{y^2} & \frac{x}{y} + 1 \end{vmatrix} = \left(\frac{\partial}{\partial y} \left(\frac{x}{y} + 1 \right) - \frac{\partial}{\partial z} \left(-\frac{xz}{y^2} \right) \right) \overline{i} - \left(\frac{\partial}{\partial x} \left(\frac{x}{y} + 1 \right) - \frac{\partial}{\partial z} \left(\frac{z}{y} + x \right) \right) \overline{j} + \left(\frac{\partial}{\partial x} \left(-\frac{xz}{y^2} \right) - \frac{\partial}{\partial y} \left(\frac{z}{y} + x \right) \right) \overline{k} = \\ = \left(-\frac{x}{y^2} - \left(-\frac{x}{y^2} \right) \right) \overline{i} - \left(\frac{1}{y} - \frac{1}{y} \right) \overline{j} + \left(-\frac{z}{y^2} - \left(-\frac{z}{y^2} \right) \right) \overline{k} = \\ = 0 \overline{i} + 0 \overline{j} + 0 \overline{k} = \overline{0}.$$

Найдем потенциал по формуле

$$U(x, y, z) = \int_{x_0}^{x} a_x(x, y_0, z_0) dx + \int_{y_0}^{y} a_y(x, y, z_0) dy + \int_{z_0}^{z} a_z(x, y, z) dz + C,$$

где в качестве начальной точки M_0 выберем точку с координатами (0, 1, 0).

Получим

$$\begin{split} U &= \int\limits_{(M_0 M)} a_x dx + a_y dy + a_z dz + C_0 = \\ &= \int\limits_0^x \left(\frac{z}{y} + x\right) \Bigg|_{\substack{y=1\\z=0}} dx + \int\limits_1^y \left(-\frac{xz}{y^2}\right) \Bigg|_{z=0} dy + \int\limits_0^z \left(\frac{x}{y} + 1\right) dz + C_0 = \\ &= \int\limits_0^x x dx + \int\limits_1^y 0 dy + \int\limits_0^z \left(\frac{x}{y} + 1\right) dz + C_0 = \frac{x^2}{2} \Bigg|_0^x + 0 + \left(\frac{xz}{y} + z\right) \Bigg|_0^z + C_0 = \\ &= \frac{x^2}{2} + \frac{xz}{y} + z + C_0. \end{split}$$

Определение. Векторное поле \bar{a} называется *соленоидальным* (*трубчатым*), если существует векторная величина \bar{b} , такая, что $\bar{a} = \operatorname{rot} \bar{b}$, т. е.

$$a_x = \frac{\partial b_z}{\partial y} - \frac{\partial b_y}{\partial z}, \quad a_y = \frac{\partial b_x}{\partial z} - \frac{\partial b_z}{\partial x}, \quad a_z = \frac{\partial b_y}{\partial x} - \frac{\partial b_x}{\partial y}.$$

Векторный потенциал \bar{b} определяется с точностью до про-извольного постоянного вектора.

Теорема. Поле \bar{a} соленоидальное \Leftrightarrow div $\bar{a} = 0$ в каждой точке поля, т.е. поток вектора \bar{a} через любую замкнутую поверхность (S), ограничивающую некоторый объем (V), равен нулю.

Если поле \bar{a} соленоидальное, то поток вектора \bar{a} через поперечные сечения векторной трубки — *интенсивность* векторной трубки — сохраняет постоянную величину.

Определение. Векторное поле \bar{a} называется *гармоническим*, если оно является одновременно потенциальным и соленоидальным, т. е. $\bar{a} = \operatorname{grad} U$ и $\bar{a} = \operatorname{rot} \bar{b}$.

Теорема. Поле \overline{a} гармоническое \Leftrightarrow rot $\overline{a} = \overline{0}$ и div $\overline{a} = 0$ в каждой точке поля.

Если поле \bar{a} гармоническое, то div \bar{a} = div (grad U) = 0, т. е. функция U удовлетворяет уравнению Лапласа

$$\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2} = 0 \ \text{ или } \Delta U = 0,$$
 где $\Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ — оператор Лапласа.

Произвольное векторное поле \overline{a} всегда может быть представлено в виде суммы потенциального \overline{a}_{Π} и соленоидального \overline{a}_{C} полей: $\overline{a}=\overline{a}_{\Pi}+\overline{a}_{C}$, где $\overline{a}_{\Pi}=\operatorname{grad}\Phi$, $\overline{a}_{C}=\overline{a}-\operatorname{grad}\Phi$, функция Φ является решением дифференциального уравнения в частных производных $\Delta\Phi=\operatorname{div}\overline{a}$.

Упражнения для самостоятельной подготовки

1. Найти поверхности уровня скалярного поля

$$u = \sqrt{x^2 + y^2 + (z+8)^2} + \sqrt{x^2 + y^2 + (z-8)^2}$$
.

- 2. Найти угол между градиентами поля $U = \frac{x}{x^2 + y^2 + z^2}$ в точ-ках A(1,2,2) и B(-3,1,0).
 - 3. Найти силовые линии векторного поля $\overline{a} = x\overline{i} + y\overline{j} + 2z\overline{k}$.
 - 4. Найти дивергенцию поля $\bar{a} = \frac{-x\bar{i} + y\bar{j} + z\bar{k}}{\sqrt{x^2 + y^2}}$ в точке M(3, 4, 5).
- 5. Найти поток вектора $\overline{a} = x^3 \overline{i} + y^3 \overline{j} + z^3 \overline{k}$ через сферу $x^2 + y^2 + z^2 = x$.
- 6. Вычислить поток вектора $\overline{a} = y\overline{i} + x\overline{j} + z\overline{k}$ через часть поверхности $(z-4)^2 + x^2 = 16$, лежащую во II октанте и отсеченную плоскостями y=0, y=2, в направлении внешней нормали.
- 7. Найти поток вектора $\overline{a} = 6xy\overline{i} + 3y^2\overline{j} + 5\overline{k}$ через полную поверхность пирамиды с вершинами в точках A(2,0,0), B(0,1,0), C(0,0,-1), D(0,0,0) в направлении внешней нормали.
- 8. Вычислить циркуляцию вектора $\overline{a} = x^2 y^2 \overline{i} + \overline{j} + z \overline{k}$ вдоль окружности $x^2 + y^2 = R^2$, z = 0. Воспользоваться теоремой Стокса, выбрав в качестве поверхности полусферу $z = \sqrt{R^2 x^2 y^2}$.
- 9. Вычислить работу силы $\overline{F} = zy\overline{i} + \frac{z^2}{x}\overline{j} + \frac{y^2}{x}\overline{k}$ при перемещении вдоль кривой (*l*): x = 4, $y^2 + z^2 = 16$ от точки A(4, 4, 0) до точки B(4, 0, 4).
- 10. Показать, что поле \bar{a} потенциально и найти потенциал U, если

$$\overline{a} = -\frac{4x^3}{z^3}\overline{i} + (z\cos y - 1)\overline{j} + \left(\sin y + \frac{3x^4}{z^4} + 2z\right)\overline{k}.$$

Глава 5. ЛИНЕЙНАЯ АЛГЕБРА

1. Евклидовы и унитарные пространства

1.1. Скалярное произведение в действительном линейном пространстве

В линейном пространстве L над полем R определено скалярное произведение, если любой упорядоченной паре $x, y \in L$ по некоторому правилу поставлено в соответствие *действительное число*, которое обозначается через (x, y) (иными словами, отображение $(\,,\,): L \times L \to R)$ и при этом выполняются следующие условия (аксиомы скалярного произведения):

- 1. $\forall x, y \in L \quad (x, y) = (y, x);$
- 2. $\forall x, y \in L, \forall \lambda \in R \quad (\lambda x, y) = \lambda (x, y);$
- 3. $\forall x, y, z \in L$ (x + y, z) = (x, z) + (y, z);
- 4. $\forall x \in L(x, x) \ge 0$, причем $(x, x) = 0 \Leftrightarrow x = 0$.

Действительное линейное пространство, в котором определено скалярное произведение, называется евклидовым пространством и обозначается E.

Например,
$$\langle V_3; (\,,\,) \rangle$$
, в котором $(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\widehat{\vec{a}, \vec{b}})$ — трехмерное евклидово пространство геометрических векторов.

Пример. Доказать следующие свойства скалярного произведения в евклидовом пространстве:

- a) $(x, \lambda y) = \lambda (x, y)$;
- б) (x y, z) = (x, z) (y, z);
- B) (x, y + z) = (x, y) + (x, z).

Решение

Для доказательства используем аксиомы скалярного произведения:

a)
$$(x, \lambda y) = (\lambda y, x) = \lambda(y, x) = \lambda(x, y);$$

6)
$$(x-y,z) = (x+(-y),z) = (x,z)+(-y,z) = (x,z)-(y,z);$$

B) $(x,y+z) = (y+z,x) = (y,x)+(z,x) = (x,y)+(x,z).$

B)
$$(x, y+z) = (y+z, x) = (y, x) + (z, x) = (x, y) + (x, z)$$

Некоторые метрические понятия в евклидовом пространстве:

1. Норма (длина) элемента: $||x|| = \sqrt{(x,x)}$.

Свойства нормы:

а)
$$\forall x \in E \ \|x\| \ge 0$$
, причем $\|x\| = 0 \iff x = 0$;

6)
$$\forall x \in E, \ \lambda \in R \quad ||\lambda x|| = |\lambda| \cdot ||x||$$
;

B)
$$\forall x, y \in E \quad ||x + y|| \le ||x|| + ||y||$$
.

2. Метрика (расстояние) элементов:

$$d(x, y) = \|x - y\| = \sqrt{(x - y, x - y)}$$
.

Свойства метрики:

a)
$$\forall x, y \in E$$
 $d(x, y) \ge 0$, причем $d(x, y) = 0 \Leftrightarrow x = y$;

6)
$$\forall x, y \in E \quad d(x, y) = d(y, x);$$

B)
$$\forall x, y, z \in E$$
 $d(x, y) \le d(x, z) + d(z, y)$.

3. Угол между элементами: $(\widehat{x,y}) = \varphi \in [0,\pi]$, который опреде-

ляется по формуле
$$\cos(\widehat{x,y}) = \cos \varphi = \frac{(x,y)}{\|x\| \cdot \|y\|} (x \neq \theta, y \neq \theta).$$

Это определение вполне корректно, так как
$$|\cos \varphi| = \frac{(x,y)}{\|x\| \cdot \|y\|} \le 1$$
,

что следует из неравенства Коши — Буняковского, о котором будет сказано позже.

В евклидовом пространстве можно определить ортогональность элементов: $(x \perp y) \Leftrightarrow ((x, y) = 0)$.

Замечание. Понятие ортогональности есть обобщение понятия перпендикулярности геометрических векторов, что следует из определения угла между векторами.

Некоторые метрические соотношения в E

- 1. Неравенство Коши Буняковского: $\forall x, y \in E \quad |(x, y)| \leq ||x|| \cdot ||y||.$
- 2. Неравенство Минковского: $\forall \, x, \, y \in E \quad \| \, x + y \, \| \le \| \, x \, \| + \| \, y \, \|.$ 3. Теорема Пифагора: $(\, x \perp y \,) \Rightarrow \left(\| \, x + y \, \|^2 = \| \, x \, \|^2 + \| \, y \, \|^2 \right).$

1.2. Скалярное произведение в комплексном линейном пространстве

Пусть L — линейное пространство над полем C.

Отображение (,): $L \times L \rightarrow C$ называется скалярным произведением в L, если $\forall x, y, z \in L$, $\lambda \in C$:

- 1. (x, y) = (y, x);
- $2.(\lambda x, y) = \lambda(x, y);$
- 3. (x+y,z)=(x,z)+(y,z);
- 4. $(x,x) \ge 0$, причем $(x,x) = 0 \Leftrightarrow x = 0$.

Комплексное линейное пространство со скалярным произведением называется унитарным пространством и обозначается U.

Пример. Пусть $x = (x_1, x_2), y = (y_1, y_2)$ произвольные векторы C^2 . Можно ли определить скалярное произведение в C^2 следующим образом:

- a) $(x, y) = x_1 \cdot y_1 + x_2 \cdot y_2$;
- 6) $(x, y) = x_1 \overline{y}_1 + x_2 \overline{y}_2$?

Решение

Проверим выполнение аксиом унитарного пространства.

a)
$$\underline{(x,y)} = \underline{x_1 \cdot y_1 + x_1 \cdot y_2} \Rightarrow (y,x) = y_1 \cdot x_1 + y_2 \cdot x_2.$$

 $\underline{(y,x)} = \underline{(y_1 x_1 + y_2 x_2)} = \overline{y_1} \overline{x_1} + \overline{y_2} \overline{x_2} \Rightarrow (x,y) \neq \overline{(y,x)}.$

Первая аксиома не выполняется, следовательно, данная формула не определяет скалярное произведение в C^2 .

6)
$$(x, y) = x_1 \overline{y}_1 + x_2 \overline{y}_2 \Rightarrow (y, x) = y_1 \overline{x}_1 + y_2 \overline{x}_2.$$

 $\overline{(y, x)} = \overline{(y_1 \overline{x}_1 + y_2 \overline{x}_2)} = \overline{y}_1 \overline{\overline{x}}_1 + \overline{y}_2 \overline{\overline{x}}_2 = \overline{y}_1 x_1 + \overline{y}_2 x_2 = x_1 \overline{y}_1 + x_2 \overline{y}_2 = (x, y).$

Первая аксиома выполнена.

$$\lambda x = (\lambda x_1, \lambda x_2) \Longrightarrow (\lambda x, y) = (\lambda x_1) \overline{y}_1 + (\lambda x_2) \overline{y}_2 = \lambda (x_1 \overline{y}_1 + x_2 \overline{y}_2) = \lambda (x, y).$$

Вторая аксиома выполнена.

$$x + y = (x_1 + y_1, x_2 + y_2), z = (z_1, z_2) \Rightarrow \Rightarrow (x + y, z) = (x_1 + y_1)\overline{z}_1 + (x_2 + y_2)\overline{z}_2 = = (x_1\overline{z}_1 + x_2\overline{z}_2) + (y_1\overline{z}_1 + y_2\overline{z}_2) = (x, z) + (y, z).$$

Третья аксиома выполнена.

$$(x, x) = x_1 \overline{x}_1 + x_2 \overline{x}_2 = |x_1|^2 + |x_2|^2 \ge 0,$$

причем
$$|x_1|^2 + |x_2|^2 = \theta \iff x = (0,0).$$

Четвертая аксиома выполнена.

Значит, данная формула определяет скалярное произведение в C^2 .

В унитарном пространстве вводится норма $\|x\| = \sqrt{(x,x)}$, метрика — $d(x,y) = \|x-y\|$, имеет место неравенство Коши — Буняковского. Угол между векторами в унитарном пространстве не вводится, однако ортогональность векторов определяется $x \perp y \Leftrightarrow (x,y) = 0$.

1.3. Выражение скалярного произведения через координаты перемножаемых векторов

Пусть в U_n задан произвольный фиксированный базис $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$ и пусть элементы $x = \sum_{i=1}^n \alpha_i \varepsilon_i, \ y = \sum_{j=1}^n \beta_j \varepsilon_j.$

Тогда
$$(x, y) = \left(\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i}, \sum_{j=1}^{n} \beta_{j} \varepsilon_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \overline{\beta}_{j} \left(\varepsilon_{i}, \varepsilon_{j}\right).$$

Обозначив $\forall i \in \{1,...,n\}, \ \forall \ j \in \{1,...,n\} \left(\varepsilon_i,\varepsilon_j\right) = g_{ij},$ будем иметь $(x,y) = \sum_{i=1}^n \sum_{j=1}^n \alpha_i \bar{\beta}_j g_{ij}.$

Матрица $\left(g_{ij}\right)_{n,n}$ называется матрицей Грама в базисе $(\epsilon_1,...,\epsilon_n)$ и обозначается G.

Итак, матрица Грама базисных элементов $G(\varepsilon_1,...,\varepsilon_n) = (g_{ij})_{n,n}$ задает скалярное произведение в этом базисе.

Скалярное произведение элементов x и y в базисе $(\varepsilon_1,...,\varepsilon_n)$ можно записать в матричной форме: $(x,y)=X^TG\overline{Y}$,

где
$$X = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}, Y = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}.$$

Замечание. В евклидовом пространстве E скалярное произведение элементов x и y в произвольном базисе $(\varepsilon_1, ..., \varepsilon_n)$ равно $(x,y) = X^T G Y$.

Теорема о необходимых и достаточных условиях линейной зависимости системы векторов в евклидовом пространстве: система элементов $A = \{a_1, \dots, a_k\} \subset E_n$ линейно зависима тогда и только тогда, когда $\det G(a_1, \dots, a_k) = 0$.

Следствие. Система элементов $A = \{a_1, ..., a_k\}$ – линейно независимая тогда и только тогда, когда $\det G(a_1, ..., a_k) \neq 0$.

Замечание. Теорема имеет место для унитарного пространства.

1.4. Ортогональная система элементов и ее свойства

Пусть $A = \{a_1, a_2, ..., a_k\}$ — система элементов унитарного (евклидова) пространства U(E).

A — ортогональная система элементов (ОС) тогда и только тогда, когда $\forall i, j \in \{1,...,k\}$ (a_i,a_j) = 0, $i \neq j$.

Теорема 1. $(A = \{a_1, ..., a_k\} - OC$ ненулевых элементов) $\Rightarrow (A - A)$ линейно независимая система).

Теорема 2. Пусть
$$A = \{a_1, ..., a_k\} \subset U$$
 и $b \in U$. $\forall i \in \{1, ..., k\}$ $a_i \perp b \Rightarrow \Rightarrow \Big(\forall \sum_{i=1}^k \alpha_i a_i \perp b \Big).$

Замечание. Если элемент b ортогонален каждому элементу из $L = \langle a_1, \dots, a_k \rangle$, то говорят, что b ортогонален подпространству L и записывают $b \perp L$.

Нормированность элемента

Элемент $a \in U$ называется *нормированным*, если его норма $\|a\| = 1$.

Утверждение. Любой ненулевой элемент *а* можно нормировать, умножив его на некоторое число $\lambda \neq 0$.

Действительно, по условию нормировки элемента:

$$\|\lambda \cdot a\| = |\lambda| \cdot \|a\| = 1 \Rightarrow |\lambda| = \frac{1}{\|a\|}.$$

 $\lambda = \pm \frac{1}{\sqrt{(a,a)}}$ — нормирующий коэффициент.

Система $A = \{a_1, a_2, ..., a_k\}$ называется *ортонормированной* (ОНС), если $\forall i, j \in \{1, 2, ..., k\}$: $(a_i, a_j) = \delta_{ij} = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$

Матрица Грама векторов ОНС равна единичной матрице.

Базис в унитарном (евклидовом) пространстве называется ортонормированным (ОНБ), если его элементы образуют ортонормированную систему.

В ОНБ $(e_1,...,e_n)$ пространства U_n скалярное произведение векторов x и y равно $(x,y)=\sum_{i=1}^n\alpha_i\overline{\beta}_i,\ x=\sum_{i=1}^n\alpha_ie_i=(e_1,...,e_n)X,$ $y=\sum_{i=1}^n\beta_je_j=(e_1,...,e_n)Y.$

В ОНБ евклидова пространства E_n скалярное произведение векторов x и y равно $(x, y) = \sum_{i=1}^{n} \alpha_i \beta_i = X^T Y$.

Теорема о существовании ОНБ. В унитарном (евклидовом) n-мерном пространстве существует ОНБ.

Для построения ортогонального базиса применяют процесс ортогонализации Грама — Шмидта.

Пусть $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$ — произвольный базис в U_n . Тогда $e_1 = \varepsilon_1$, $e_k = \varepsilon_k + \sum_{i=1}^{k-1} \lambda_{ki} e_i, \ k \in \{2, ..., n\}$, где $\lambda_{ki} = -\frac{\left(\varepsilon_k, e_i\right)}{\left(e_i, e_i\right)}$, образуют ортогональный базис U_n .

Пример 1. $\varepsilon_1 = (1,1,1)$, $\varepsilon_2 = (1,0,1)$, $\varepsilon_3 = (0,0,1) \in \mathbb{R}^3$ и образуют в \mathbb{R}^3 базис. Построить ОНБ, применяя процесс ортогонализации.

Решение

$$\begin{split} e_1 &= \varepsilon_1 = \left(1,1,1\right). \\ e_2 &= \varepsilon_2 + \lambda_{21} e_1; \quad \lambda_{21} = -\frac{\left(\varepsilon_2,e_1\right)}{\left(e_1,e_1\right)} = -\frac{\left(1,0,1\right) \cdot \left(1,1,1\right)}{\left(1,1,1\right) \cdot \left(1,1,1\right)} = -\frac{2}{3}; \\ e_2 &= \left(1,0,1\right) - \frac{2}{3} \left(1,1,1\right) = \left(\frac{1}{3},-\frac{2}{3},\frac{1}{3}\right). \\ e_3 &= \varepsilon_3 + \lambda_{31} e_1 + \lambda_{32} e_2; \quad \lambda_{31} = -\frac{\left(\varepsilon_3,e_1\right)}{\left(e_1,e_1\right)} = -\frac{\left(0,0,1\right) \cdot \left(1,1,1\right)}{\left(1,1,1\right) \cdot \left(1,1,1\right)} = -\frac{1}{3}; \end{split}$$

$$\lambda_{32} = -\frac{\left(\varepsilon_3, e_2\right)}{\left(e_2, e_2\right)} = -\frac{\left(0, 0, 1\right) \cdot \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right)}{\left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right) \cdot \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right)} = -\frac{1}{2};$$

$$e_3 = \left(0, 0, 1\right) - \frac{1}{3}\left(1, 1, 1\right) - \frac{1}{2}\left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right) = \left(-\frac{1}{2}, 0, \frac{1}{2}\right).$$

$$\left\{e_1 = \left(1, 1, 1\right), \\ e_2 = \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right), \text{ образует ортогональный базис в } R^3.$$

$$\left\{e_3 = \left(-\frac{1}{2}, 0, \frac{1}{2}\right)\right\}$$

Нормируем векторы ОС:

$$\|e_1\| = \sqrt{3}, \|e_2\| = \sqrt{\frac{1}{9} + \frac{1}{9} + \frac{4}{9}} = \frac{\sqrt{6}}{3}, \|e_3\| = \sqrt{\frac{1}{4} + \frac{1}{4}} = \frac{\sqrt{2}}{2}.$$

Тогда векторы

$$\frac{e_1}{\|e_1\|} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \frac{e_2}{\|e_2\|} = \left(\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right), \frac{e_3}{\|e_3\|} = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$
 задают ОНБ в R^3 .

Пример 2. Проверить ортогональность системы векторов $e_1 = (1, -2, 1, 3), e_2 = (2, 1, -3, 1)$ в евклидовом пространстве R^4 и дополнить ее до ортогонального базиса.

Решение

Находим скалярное произведение данных векторов:

$$(e_1, e_2) = (1, -2, 1, 3) \cdot (2, 1, -3, 1) = 0 \implies e_1 \perp e_2.$$

Пусть $e_3=(x_1,\,x_2,\,x_3,\,x_4)$. Находим координаты этого вектора из условий: $e_3\perp e_1,\,e_3\perp e_2 \Rightarrow \begin{cases} (e_1,e_3)=0,\\ (e_2,e_3)=0. \end{cases}$

Решим ОСЛУ
$$\begin{cases} x_1 - 2x_2 + x_3 + 3x_4 = 0, \\ 2x_1 + x_2 - 3x_3 + x_4 = 0 \end{cases}$$
 методом Гаусса.

$$\begin{pmatrix} 1 & -2 & 1 & 3 \\ 2 & 1 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & 5 & -5 & -5 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & 1 & -1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & -1 \end{pmatrix}.$$

Общее решение системы:
$$\begin{cases} x_1 = x_3 - x_4, \\ x_2 = x_3 + x_4. \end{cases}$$

Векторы $e_3 = (1, 1, 1, 0), e_4 = (-1, 1, 0, 1),$ определяющие ФСР ОСЛУ, ортогональны исходной системе векторов (e_1, e_2) . Причем

$$(e_3, e_4) = (1, 1, 1, 0) \cdot (-1, 1, 0, 1) = 0 \implies e_3 \perp e_4.$$

Следовательно, (e_1, e_2, e_3, e_4) — ортогональный базис в R^4 .

Упражнения для самостоятельной подготовки

- 1. Пусть $x = (x_1, x_2)$, $y = (y_1, y_2)$ произвольные векторы R^2 . Можно ли определить скалярное произведение в R^2 следующим образом:
 - a) $(x, y) = 2x_1 \cdot y_1 + 5x_2 \cdot y_2$;
 - 6) $(x, y) = x_1 \cdot y_1 + x_1 \cdot y_2 + x_2 \cdot y_1 + x_2 \cdot y_2$?
- 2. Доказать следующие свойства скалярного произведения в унитарном пространстве:
 - a) $(x, \lambda y) = \overline{\lambda}(x, y)$;
 - 6) (x-y,z)=(x,z)-(y,z);
 - B) $(x,\theta)=0$.
- 3. Доказать, что в пространстве P_n многочленов степени $\leq n$ скалярное произведение многочленов $p(x) = a_0 + a_1x + ... + a_nx^n$ и $q(x) = b_0 + b_1x + ... + b_nx^n$ можно определить следующим способом:

$$(p, q) = a_0b_0 + a_1b_1 + ... + a_nb_n.$$

4. Доказать, что в пространстве $C_{[a,b]}$ соотношение $(f,g) = \int_{a}^{b} f(t)g(t)dt$ задает скалярное произведение.

Написать неравенство Коши — Буняковского для этого пространства.

5. Построить ОНБ, применяя процесс ортогонализации к следующим системам векторов:

a)
$$\varepsilon_1 = (1, -2, 2), \quad \varepsilon_2 = (1, 0, 1), \quad \varepsilon_3 = (5, -3, 7) \in \mathbb{R}^3;$$

6) $\varepsilon_1 = (2, 1, 3, -1), \quad \varepsilon_2 = (7, 4, 3, -3), \quad \varepsilon_3 = (5, 7, 7, 8),$
 $\varepsilon_4 = (1, 1, -6, 1) \in \mathbb{R}^4.$

2. Линейные операторы

2.1. Определение линейного оператора. Матрица линейного оператора

Отображение линейного пространства в линейное пространство называется *оператором*.

Например, $f: R \to R$ — оператор (f — числовая функция).

Рассмотрим два произвольных линейных пространства L и L' над одним и тем же числовым полем P. Пусть $\hat{\mathbf{A}}$ — оператор, действующий из L в L', т.е. $\forall x \in L$ поставлен в соответствие $y = \hat{\mathbf{A}}(x) \in L'$, где x — прообраз оператора $\hat{\mathbf{A}}$, $y = \hat{\mathbf{A}}(x)$ — образ оператора.

Оператор $\hat{\mathbf{A}}$ называется *линейным* над полем P, если выполнены два условия:

1⁰.
$$\forall x_1, x_2 \in L$$
 $\hat{A}(x_1 + x_2) = \hat{A}(x_1) + \hat{A}(x_2);$
2⁰. $\forall x \in L, \forall \lambda \in P$ $\hat{A}(\lambda \cdot x) = \lambda \cdot \hat{A}(x).$

 2^{0} . $\forall x \in L$, $\forall \lambda \in P$ $A(\lambda : x) = \lambda : A(x)$. Условия $1^{0}-2^{0}$ в определении называются условиями линейности.

Мы, в основном, будем рассматривать случай $\hat{A}: L \to L$, т.е. оператор \hat{A} переводит элементы линейного пространства L

в элементы этого же пространства. Такой оператор еще называется линейным преобразованием пространства L.

Примеры линейных операторов

- 1. Пусть \hat{A} : $L \to L'$, $\hat{A}(x) = \Theta$ для любого $x \in L(\Theta)$ нейтральный элемент L'). Тогда $\forall x_1, x_2 \in L \hat{A} (x_1 + x_2) = \Theta = \Theta + \Theta =$ $= \hat{A}(x_1) + \hat{A}(x_2); \ \forall x \in L \ \text{if} \ \forall \lambda \in P \ \hat{A}(\lambda \cdot x) = \Theta = \lambda \cdot \Theta = \lambda \cdot \hat{A}(x).$
- Т. е. это отображение является линейным оператором. Этот оператор называют *нулевым оператором*, будем обозначать его Ô.
- 2. Пусть Â: $L \rightarrow L$, Â (x) = x. Это отображение так же является линейным оператором (проверить самостоятельно!) и называется тождественным оператором, будем обозначать его Ê
- 3. Пусть $L = C^1_{[a,b]}$ линейное пространство функций, непрерывно дифференцируемых на отрезке [a,b], тогда оператор дифференцирования $\widehat{\mathbf{D}}$ отображает L в $L' = C_{[a,b]}$.
- 4. Пусть $C_{[a,b]}$ линейное пространство непрерывных функций на отрезке [a,b], тогда оператор интегрирования $\hat{\mathbf{J}}$ отображает $C_{[a,b]}$ в R — линейное пространство вещественных чисел. 5. \hat{A} : $R^2 \to R^2$ — оператор поворота плоскости вокруг непод-
- вижной точки O (начало координат) на угол ϕ .

6.
$$\hat{A}: R^3 \rightarrow R^3$$
.

Пусть плоскость π проходит через начало координат перпендикулярно вектору n. Тогда:

$$\hat{A}(x) = x - \frac{(n,x)}{|n|^2} n$$
 — оператор проектирования на плоскость π ;

$$\hat{A}(x) = x - \frac{(n,x)}{|n|^2} n$$
 — оператор проектирования на плоскость π ; $\hat{A}(x) = x - 2\frac{(n,x)}{|n|^2} n$ — оператор зеркального отражения от-

носительно π.

Пусть Â: $L_n \to L'_m$; $(e_1, e_2, ..., e_n)$ — некоторый базис в L_n , $(e'_1, e'_2, ..., e'_m)$ — базис в L'_m .

Из определения оператора следует, что $\forall x \in L_n \exists ! \ y \in L'_m$: $y = \hat{A}(x)$.

Пусть
$$x = \sum_{j=1}^{n} \alpha_{j} e_{j}$$
, $y = \sum_{i=1}^{m} \beta_{i} e'_{i}$.

Тогда $y = \widehat{A}(x) = \widehat{A}\left(\sum_{j=1}^{n} \alpha_{j} e_{j}\right) = \sum_{j=1}^{n} \alpha_{j} \widehat{A}(e_{j})$ (в силу линейности оператора).

Следовательно, для задания оператора \hat{A} достаточно задать только образы базисных элементов пространства L, т.е.

- 1) Â определяется заданием образов базисных элементов;
- 2) координаты образа любого элемента определяются координатами образов базисных элементов.

Пусть образы базисных элементов e_1 , e_2 ,..., e_n , которые являются элементами пространства L'_m , разложены по базису $(e'_1, e'_2, ..., e'_m)$:

$$\widehat{\mathbf{A}}(e_{1}) = a_{11}e'_{1} + a_{21}e'_{2} + \dots + a_{m1}e'_{m} = (e'_{1}, e'_{2}, \dots, e'_{m}) \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix},$$

$$\widehat{\mathbf{A}}(e_{2}) = a_{12}e'_{1} + a_{22}e'_{2} + \dots + a_{m2}e'_{m} = (e'_{1}, e'_{2}, \dots, e'_{m}) \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix},$$

•••

$$\widehat{\mathbf{A}}e_{n} = a_{1n}e'_{1} + a_{2n}e'_{2} + \ldots + a_{mn}e'_{m} = (e'_{1}, e'_{2}, \ldots, e'_{m}) \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix}.$$

Если
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
, то эту систему равенств можно

записать в виде одного матричного равенства

$$(\hat{A}(e_1), \hat{A}(e_2), ..., \hat{A}(e_n)) = (e'_1, e'_2, ..., e'_m) A.$$

В силу единственности разложения элемента по базису каждому оператору $\hat{\mathbf{A}}$: $L_n \to L'_m$ при фиксированных базисах будет таким образом поставлена в соответствие матрица $A = (a_{ij})_{m,n}$. Матрица A называется матрицей линейного оператора $\hat{\mathbf{A}}$.

Пример 1. Проверить линейность оператора \hat{A} : $R^3 \rightarrow R^3$. В случае линейности найти матрицу оператора в естественном базисе:

- а) $\hat{A}(x) = \alpha \cdot x + a$, где $a \in R^3$, $\alpha \in R$ (a и α имеют фиксированное значение):
 - б) $\hat{A}(x) = (1, x_2 x_1, x_3)$, если $x = (x_1, x_2, x_3)$.

Решение

а) Пусть x, y — произвольные векторы пространства R^3 ; λ — некоторое действительное число. Проверяем условия линейности:

1.
$$\hat{A}(x+y) = \alpha \cdot (x+y) + a = \alpha \cdot x + \alpha \cdot y + a$$
.
 $\hat{A}(x) + \hat{A}(y) = (\alpha \cdot x + a) + (\alpha \cdot y + a) = \alpha \cdot x + \alpha \cdot y + 2a$.

Равенство $\hat{A}(x + y) = \hat{A}(x) + \hat{A}(y)$ возможно в том случае, если a = 0.

Если $a \neq 0$, то оператор не является линейным.

2.
$$\hat{A}(\lambda \cdot x) = \alpha \cdot (\lambda \cdot x) = (\alpha \cdot \lambda) \cdot x$$
.

$$\lambda \cdot \hat{A}(x) = \lambda \cdot (\alpha \cdot x) = (\lambda \cdot \alpha) \cdot x.$$

Равенство $\hat{A}(\lambda \cdot x) = \lambda \cdot \hat{A}(x)$ выполняется.

Значит, $\hat{\mathbf{A}}(x) = \alpha \cdot x$ — линейный оператор (учитываем, что a=0).

Найдем его матрицу в базисе $e_1=(1,\,0,\,0),\,e_2=(0,\,1,\,0),\,e_3=(0,\,0,\,1)$:

 $\hat{A}(e_1)=(\alpha,0,0),\,\hat{A}(e_2)=(0,\alpha,0),\,\hat{A}(e_3)=(0,0,\alpha)$ и, следовательно,

$$A = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \alpha \end{pmatrix} = \alpha \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \alpha E.$$

б) Пусть $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3)$ — произвольные векторы пространства R^3 . Тогда $x + y = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$.

Проверяем условия линейности:

1.
$$\hat{A}(x + y) = (1, [x_2 + y_2] - [x_1 + y_1], x_3 + y_3) =$$

= $(1, x_2 - x_1 + y_2 - y_1, x_3 + y_3).$
 $\hat{A}(x) + \hat{A}(y) = (1, x_2 - x_1, x_3) + (1, y_2 - y_1, y_3) =$
= $(2, x_2 - x_1 + y_2 - y_1, x_3 + y_3).$

Очевидно, что $\hat{A}(x+y) \neq \hat{A}(x) + \hat{A}(y)$. Следовательно, данный оператор не является линейным.

Пример 2. $\hat{A}(x) = (x, e) \cdot e$, где $x \in V_3$, e — некоторый единичный вектор в V_3 . Доказать, что оператор \hat{A} линейный и выяснить его геометрический смысл.

Решение

Пусть x_1, x_2 — произвольные векторы V_3 ; λ — некоторое действительное число. Проверяем условия линейности:

- 1. $\hat{A}(x_1+x_2)=(x_1+x_2,e)\cdot e=[(x_1,e)+(x_2,e)]\cdot e=(x_1,e)\cdot e+(x_2,e)\cdot e=$ = $\hat{A}(x_1)+\hat{A}(x_2)$. В ходе преобразований использовали свойство скалярного произведения: $(x_1+x_2,e)=(x_1,e)+(x_2,e)$.
- 2. $\hat{A}(\lambda \cdot x) = (\lambda \cdot x, e) \cdot e = [\lambda \cdot (x, e)] \cdot e = \lambda \cdot [(x, e) \cdot e] = \lambda \cdot \hat{A}(x)$. Использовали свойство скалярного произведения: $(\lambda \cdot x, e) = \lambda \cdot (x, e)$.

Оба условия линейности выполнены, следовательно, $\hat{\mathbf{A}}$ — линейный оператор.

Для определения геометрического смысла оператора \hat{A} найдем образы базисных векторов (i,j,k). Так как e — некоторый единичный вектор, то его координаты запишем через направляющие косинусы $e = (\cos \alpha, \cos \beta, \cos \gamma)$.

$$\hat{A}(i) = (i, e) \cdot e = \cos \alpha \cdot e = np_e i \cdot e;$$

$$\hat{A}(j) = (j, e) \cdot e = \cos \beta \cdot e = np_e j \cdot e;$$

$$\hat{A}(k) = (k, e) \cdot e = \cos \gamma \cdot e = np_e k \cdot e.$$

Таким образом, $\hat{A}(x)$ проецирует произвольный вектор xна прямую с направляющим вектором е (прямая проходит через начало координат).

2.2. Связь координат образа и координат прообраза. Связь матриц оператора в разных базисах

Теорема 1. Пусть Â: $L_n \to L'_m$ — линейный оператор; $(e_1, e_2, ..., e_m)$ e_n) — фиксированный базис в L_n ; $(e'_1, e'_2, ..., e'_m)$ — фиксированный базис в L'_m ; X— координатный столбец произвольного эле-

мента
$$x \in L_n$$
 в базисе $(e_1, e_2, ..., e_n)$, т. е. $x = (e_1, ..., e_n) \cdot \begin{pmatrix} \alpha_1 \\ ... \\ \alpha_n \end{pmatrix}$; Y — ко-

ординатный столбец $y = \hat{A}(x)$ в базисе $(e'_1, e'_2, ..., e'_m)$, т.е.

$$y = \left(e_1', \dots, e_m'\right) \cdot \begin{pmatrix} \beta_1 \\ \dots \\ \beta_n \end{pmatrix}.$$

Тогда Y = AX, где A — матрица линейного оператора \hat{A} .

Теорема 2. Пусть оператор \hat{A} : $L_n \to L_n$ имеет в базисе $(e_1, e_2, ..., e_n)$ матрицу A, а в базисе $(e'_1, e'_2, ..., e'_n)$ — матрицу A'; T — матрица перехода от базиса $(e_1, e_2, ..., e_n)$ к базису $(e'_1, e'_2, ..., e'_n)$. Тогда $A' = T^{-1}AT$.

Пример 1. Линейный оператор Â: $R^3 \to R^3$ в базисе (e_1, e_2, e_3)

имеет матрицу $A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}$. Найти матрицу этого же операто-

ра в базисе: $e'_1 = e_1$; $e'_2 = e_1 + e_2$; $e'_3 = e_1 + e_2 + e_3$.

Решение

Обозначим матрицу оператора \hat{A} в базисе (e'_1, e'_2, e'_3) через A'. Тогда $A' = T^{-1}AT$, где T — матрица перехода от первого базиса

$$(e_1, e_2, e_3)$$
 ко второму базису (e'_1, e'_2, e'_3) имеет вид $T = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Матрицу обратного перехода T^{-1} находим методом Гаусса:

$$(T \mid E) = \begin{pmatrix} 1 & 1 & 1 \mid 1 & 0 & 0 \\ 0 & 1 & 1 \mid 0 & 1 & 0 \\ 0 & 0 & 1 \mid 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \mid 1 & -1 & 0 \\ 0 & 1 & 0 \mid 0 & 1 & -1 \\ 0 & 0 & 1 \mid 0 & 0 & 1 \end{pmatrix} \Rightarrow$$

$$T^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Тогда

$$A' = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} -1 & 1 & 1 \\ -1 & -1 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 1 \\ -1 & -2 & -1 \\ 2 & 3 & 1 \end{pmatrix}.$$

Пример 2. Дан линейный оператор Â: $R^3 \rightarrow R^3$. Найти образ a = (1, 1, 1) и прообраз b' = (1, 2, 3), если Â $(x) = (x_1 + 2x_2 + x_3, x_1 + 2x_2 + 2x_3, x_1 + x_3)$.

Решение. Находим образ первого вектора $\hat{A}(a) = (1+2+1, 1+2+2, 1+1) = (4, 5, 2).$

Для определения b (прообраза b') используем формулу $b'^T = Ab^T$, где A — матрица линейного оператора \hat{A} , откуда $b^T = A^{-1}b'^T$.

Находим матрицу оператора в естественном базисе $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$: $\hat{A}(e_1) = (1, 1, 1),$

$$\hat{\mathbf{A}}(e_2)=(2,2,0),\,\hat{\mathbf{A}}(e_3)=(1,2,1)$$
 и, следовательно, $A=egin{pmatrix}1&2&1\\1&2&2\\1&0&1\end{pmatrix}.$

Обратную матрицу найдем методом Гаусса:

$$(A \mid E) = \begin{pmatrix} 1 & 2 & 1 \mid 1 & 0 & 0 \\ 1 & 2 & 2 \mid 0 & 1 & 0 \\ 1 & 0 & 1 \mid 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 \mid 1 & 0 & 0 \\ 0 & 0 & 1 \mid -1 & 1 & 0 \\ 1 & 0 & 1 \mid 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \mid 1 & -1 & 1 \\ 1 & 2 & 1 \mid 1 & 0 & 0 \\ 0 & 0 & 1 \mid -1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \mid 1 & -1 & 1 \\ 0 & 2 & 0 \mid 1 & 0 & -1 \\ 0 & 0 & 1 \mid -1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \mid 1 & -1 & 1 \\ 0 & 2 & 0 \mid 1 & 0 & -1 \\ 0 & 0 & 1 \mid -1 & 1 & 0 \end{pmatrix} \simeq A^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 1/2 & 0 & -1/2 \\ -1 & 1 & 0 \end{pmatrix}.$$
 Тогда,
$$b^T = \begin{pmatrix} 1 & -1 & 1 \\ 1/2 & 0 & -1/2 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \implies b = (2, -1, 1).$$

Пример 3. Линейный оператор \hat{A} : $R^2 \rightarrow R^2$ переводит a = (1, 1) в a' = (-3, 2) и b = (-1, 3) в b' = (-7, 1). Найти матрицу оператора \hat{A} в естественном базисе, указать явный вид оператора.

Решение

Пусть A — матрица оператора в базисе $e_1 = (1, 0), e_2 = (0, 1)$. Тогда $(a')^T = A \cdot a^T$; $(b')^T = A \cdot b^T$ или в матричной форме

$$\begin{pmatrix} -3 & -7 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}.$$

Матрица в правой части невырожденная, поэтому

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} -3 & -7 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -3 & -7 \\ 2 & 1 \end{pmatrix} \cdot \frac{1}{4} \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} -2 & -10 \\ 5 & 3 \end{pmatrix}.$$

Значит,
$$A = \frac{1}{4} \begin{pmatrix} -2 & -10 \\ 5 & 3 \end{pmatrix} = \begin{pmatrix} -1/2 & -5/2 \\ 5/4 & 3/4 \end{pmatrix}$$
.

Найдем явный вид оператора \hat{A} . По определению матрицы линейного оператора $\hat{A}(e_1)=(-1/2,\,5/4),\,\hat{A}(e_2)=(-5/2,\,3/4).$ Тогла

$$\hat{A}(x) = \hat{A}(x_1 e_1 + x_2 e_2) = x_1 \hat{A}(e_1) + x_2 \hat{A}(e_2) =$$

$$= (-1/2x_1 - 5/2x_2, 5/4x_1 + 3/4x_2).$$

Подобные матрицы

Две квадратные матрицы A и B одного и того же порядка называются подобными, если существует такая невырожденная матрица T, что $B = T^{-1}A$ T.

Теорема об условиях подобия матриц. Две матрицы подобны тогда и только тогда, когда они в разных базисах соответствуют одному и тому же линейному оператору, действующему в одном пространстве.

Свойства подобных матриц А и В:

- 1. $\det(A) = \det(B)$;
- 2. r(A) = r(B).

Упражнения для самостоятельной подготовки

- 1. Выяснить, какие из заданных операторов $\hat{\mathbf{A}}$: $\mathbb{R}^3 \to \mathbb{R}^3$ являются линейными:
 - a) $\hat{A}(x) = (2x_1 2x_2 + x_3, x_1 + x_3, x_2);$
 - 6) $\hat{A}(x) = (x_1 + 2x_2 + 3x_3, x_1^2, x_3 2).$

В случае линейности найти матрицу оператора в естественном базисе.

2. Доказать, что оператор $\hat{\mathbf{A}}(x) = x \times a$, где $a = (1, 2, -1), x \in V_3$, является линейным. Найти его матрицу в базисе (i, j, k) и в базисе (i + j, j, i + j + k).

- 3. В пространстве $P_n[x]$ (пространство многочленов, степень которых не превосходит n) задан оператор дифференцирования $\widehat{D} = \frac{d}{dx}$. Доказать линейность оператора и найти его матрицу в базисе $(1, x, x^2, ..., x^n)$.
- 4. В пространстве R^4 задан линейный оператор с матрицей A в базисе (e_1, e_2, e_3, e_4) . Найти матрицу оператора в базисе

$$(e_1, e_3, e_2, e_4)$$
, если $A = egin{pmatrix} 1 & 2 & 0 & 1 \ 3 & 0 & -1 & 2 \ 2 & 5 & 3 & 1 \ 1 & 2 & 1 & 3 \end{pmatrix}.$

5. В пространстве $M_{2\times 2}$ задан линейный оператор $\widehat{\mathbf{A}}(X) = \begin{pmatrix} x_{22} & 0 \\ 0 & x_{11} \end{pmatrix}$, где $X = \begin{pmatrix} x_{11} & x_{12} \\ x_{11} & x_{22} \end{pmatrix}$. Найти матрицу этого опе-

ратора в естественном базисе
$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

- 6. Линейный оператор \hat{A} задан в базисе (1, x) линейного пространства $P_1[x]$ матрицей $A = \begin{pmatrix} 2 & 4 \\ 3 & 1 \end{pmatrix}$. Найти $\hat{A}(p(x))$, если p(x) = x 3.
- 7. Линейный оператор $\hat{\mathbf{A}}$ задан в естественном базисе (см. задание 5) линейного пространства $M_{2\times 2}$ матрицей

$$A = \begin{pmatrix} -2 & -1 & 0 & 3 \\ 0 & -1 & 3 & 4 \\ 2 & 5 & 1 & -1 \\ -1 & 0 & 0 & 3 \end{pmatrix}.$$
 Найти X , если $\widehat{\mathbf{A}}(X) = \begin{pmatrix} 0 & 5 \\ -2 & 1 \end{pmatrix}$.

8. Векторы a_1 , a_2 , a_3 , b_1 , b_2 , b_3 пространства R^3 заданы своими координатами в некотором базисе e_1 , e_2 , e_3 . Найти матрицу и явный вид линейного оператора \widehat{A} , переводящего векторы $a_1=(0,0,1)$, $a_2=(0,1,1)$, $a_3=(1,1,1)$ в векторы $b_1=(2,3,5)$, $b_2=(1,0,0)$, $b_3=(0,1,-1)$.

2.3. Образ и ядро, ранг и дефект линейного оператора

Пусть оператор $\hat{\mathbf{A}}$: $L_n \to L'_m$.

Определение. Множество элементов $y \in L'_m$ вида $y = \hat{A}(x)$, где x пробегает все значения из L_n , называется *образом* пространства оператора \hat{A} и обозначается $\hat{A}(L)$ или Im \hat{A} .

Образ линейного оператора является подпространством пространства L'_m (Im $\hat{\mathbf{A}} \subseteq L'_m$).

Определение. Размерность образа называется *рангом* оператора \hat{A} и обозначается dim (Im \hat{A}) = $r_{\hat{A}}$.

Теорема. Ранг оператора \hat{A} равен рангу его матрицы в любом базисе.

Несмотря на то, что матрица A оператора зависит от выбора базисов в L_n и L'_m , ранг матрицы оператора не зависит от выбора базисов, т.е. r(A) = r(A'), где $A' = T^{-1}A$ T. В этом случае говорят, что ранг матрицы оператора является его инвариантом.

Следствие. Подобные матрицы имеют одинаковые ранги.

Пусть $(e_1, e_2,..., e_n)$ — базис в L_n , $(e'_1, e'_2,..., e'_m)$ — базис в L'_m , оператор Â: $L_n \to L'_m$ задан матрицей $A = (a_{ij})_{m,n}$.

Определение. $\mathcal{A}\partial pom$ оператора \hat{A} называется множество всех элементов x из L_n , для которых \hat{A} (x) = $\Theta_L{'}$, $\Theta_L \in L'_m$. Обозначается ядро оператора $\ker \hat{A}$. Таким образом, по определению $\ker \hat{A} = \{x \in L_n : \hat{A}(x) = \Theta_L{'}, \Theta_L \in L'_m\}$.

Ядро линейного оператора является подпространством пространства L_n (Ker $\hat{\mathbf{A}} \subset L_n$).

Определение. Размерность ядра называется $\partial e \phi \epsilon mom$ оператора \hat{A} и обозначается dim (Ker \hat{A}) = $d_{\hat{a}}$.

Теорема о сумме ранга и дефекта линейного оператора. Сумма ранга и дефекта линейного оператора $\hat{\mathbf{A}}$: $L_n \to L'_m$ равна размерности пространства L_n : $r_{\hat{\mathbf{A}}} + d_{\hat{\mathbf{A}}} = n$.

Пример 1. Пусть задан стандартный базис (i, j, k) в V_3 и $\hat{\mathbf{A}}$ — оператор ортогонального проектирования V_3 на плоскость $\langle i, j \rangle$. Определить ранг и дефект линейного оператора, найти образ и ядро.

Решение

Найдем матрицу оператора в базисе (i,j,k). $\hat{\mathbf{A}}(i) = \operatorname{пр}_{\langle i,j\rangle} i = i = (1,0,0); \, \hat{\mathbf{A}}(i) = \operatorname{пр}_{\langle i,j\rangle} j = j = (0,1,0); \, \hat{\mathbf{A}}(k) = \operatorname{пр}_{\langle i,j\rangle} k = 0 = (0,0,0).$ Тогда $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \, \dim (\operatorname{Im} \hat{\mathbf{A}}) = r(A) = 2; \dim (\operatorname{Ker} \hat{\mathbf{A}}) = n - r_{\hat{\mathbf{A}}} = 1.$ Очевидно, что $\operatorname{Im} \hat{\mathbf{A}} = \langle i,j \rangle; \, \operatorname{Ker} \hat{\mathbf{A}} = \langle k \rangle.$ Более того, $V_3 = \operatorname{Im} \hat{\mathbf{A}} \oplus \operatorname{Ker} \hat{\mathbf{A}}.$

Пример 2. Описать образ и ядро оператора $\hat{A}(x) = (x, e) \cdot e$, где $x \in V_3$, e — некоторый единичный вектор в V_3 . Определить ранг и дефект этого оператора.

Решение

Ранее было показано, что \hat{A} проецирует произвольный вектор x на прямую с направляющим вектором e и проходящую через начало координат. Следовательно, эта прямая является образом линейного оператора, при этом dim (Im \hat{A}) = 1.

Ядро состоит из тех векторов, проекция которых на указанную прямую равна нулевому вектору. Все эти векторы лежат в плоскости, которая проходит через начало координат и перпендикулярна прямой с направляющим вектором e. Следовательно, dim (Ker $\hat{\mathbf{A}}$) = 2.

Пример 3. Найти ранг, дефект, образ и ядро линейного оператора, действующего в пространстве R^3 и заданного матрицей

$$A = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 1 & 2 & 3 \end{pmatrix}.$$

Решение

Найдем ранг матрицы:

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix} \Rightarrow r(A) = 3.$$

Тогда dim (Im Â) = r(A) = 3; dim (Ker Â) = $n - r_{\hat{A}}$ = 0. Следовательно, Im = L_3 (образ совпадает с исходным линейным пространством L), Ker = $\{\theta_L\}$ (ядро содержит только нейтральный элемент линейного пространства L).

Пример 4. Найти ранг и дефект линейного оператора, действующего в пространстве R^3 и заданного матрицей

$$A = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix}.$$

Описать уравнениями образ и ядро этого оператора в том базисе, в котором задана матрица оператора.

Решение

Пусть Â:
$$R^3 \to R^3$$
 задан матрицей $A = \begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix}$ в базисе

 $(e_1, e_2, e_3).$

Найдем ранг матрицы:

$$\begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \implies r(A) = 2.$$

Тогда $r_{\hat{A}} = 2$; $d_{\hat{A}} = 1$.

Образ Іт \hat{A} совпадает с линейной оболочкой системы векторов $\hat{A}(e_1)$, $\hat{A}(e_2)$, $\hat{A}(e_3)$, ранг которой равен двум. В качестве базиса Іт $\hat{A} = L$ ($\hat{A}(e_1)$, $\hat{A}(e_2)$, $\hat{A}(e_3)$) возьмем два линейно независимых вектора из Іт \hat{A} , например, $\hat{A}(e_1) = (-1, 0, -1)$

и $\hat{A}(e_2) = (1, 1, 2)$. Следовательно, $\operatorname{Im} \hat{A} = \langle \hat{A}(e_1), \hat{A}(e_2) \rangle$. $\operatorname{Im} \hat{A}$ можно интерпретировать как множество точек плоскости, проходящей через начало координат системы $\{0, e_1, e_2, e_3\}$ с направляющими векторами $\hat{A}(e_1)$ и $\hat{A}(e_2)$. Уравнение этой плоскости имеет вид:

$$\begin{vmatrix} x & y & z \\ -1 & 0 & -1 \\ 1 & 1 & 2 \end{vmatrix} = 0$$
 или $x + y - z = 0$.

 $\operatorname{Ker} \hat{\mathbf{A}}$ — одномерное подпространство пространства R^3 , причем $x \in \operatorname{Ker} \hat{\mathbf{A}}$ тогда и только тогда, когда $\hat{\mathbf{A}}(x) = \theta$, или в матричной записи

$$AX = 0$$
, T. e. $\begin{pmatrix} -1 & 1 & 2 \\ 0 & 1 & -1 \\ -1 & 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Отсюда следует, что Ker $\hat{\mathbf{A}}$ совпадет с подпространством решений однородной системы $AX=\mathbf{0}$.

В качестве базиса ядра $\operatorname{Ker} \widehat{A}$ оператора \widehat{A} может быть выбрана фундаментальная система решений указанной системы. Ре-

шая эту систему, найдем ее общее решение:
$$\begin{cases} \alpha_1 = 3\alpha_3, \\ a_2 = \alpha_3. \end{cases}$$

Положим $\alpha_3 = 1$, тогда $\alpha_1 = 3$, $\alpha_2 = 1$. Итак, фундаментальная система решений $AX = \theta$ состоит из одного вектора, например, l = (3, 1, 1).

Этот вектор примем за базис Ker Â. Тогда Ker = $\langle l \rangle$. С геометрической точки зрения Ker можно интерпретировать как множество точек прямой, проходящей через начало координат системы $\{0, e_1, e_2, e_3\}$, с направляющим вектором l = (3, 1, 1). Канонические уравнения этой прямой имеют вид: $\frac{x}{3} = \frac{y}{1} = \frac{z}{1}$.

Упражнения для самостоятельной подготовки

- 1. Описать образ и ядро оператора дифференцирования \widehat{D} , действующего в пространстве $P_n[x]$.
- 2. Описать образ и ядро оператора $\hat{A}(x) = x \times a$, где $a, x \in V_3$, $a \neq 0$. Определить ранг и дефект этого оператора.
- 3. Определить ранг и дефект, а также описать уравнениями образ и ядро данных операторов в естественном базисе пространства \mathbb{R}^3 :
 - a) $\hat{A}(x) = (-x_1 + x_2 + 2x_3, x_2 x_3, -x_1 + 2x_2 + x_3);$
 - 6) $\hat{A}(x) = (-x_1 + x_2 + 2x_3, -2x_1 + 2x_2 + 4x_3, 3x_1 3x_2 6x_3).$
- 4. Привести пример оператора, действующего в пространстве R^3 , для которого dim (Im \hat{A}) = 0, dim (Ker \hat{A}) = 3, или доказать, что его не существует.

2.4. Алгебра линейных операторов

Пусть \hat{A}_1 : $L \rightarrow L$, \hat{A}_2 : $L \rightarrow L$.

Определение. Операторы \hat{A}_1 и \hat{A}_2 *равны* тогда и только тогда, когда $\forall x \in L \, \hat{A}_1(x) = \hat{A}_2(x)$.

Если известны матрицы операторов \hat{A}_1 и \hat{A}_2 в некотором фиксированном базисе $(e_1, e_2, ..., e_n)$ пространства L_n и они равны соответственно A_1 и A_2 , то $\hat{A}_1(x) = \hat{A}_2(x) \Leftrightarrow A_1 = A_2$ (равным операторам соответствуют равные матрицы).

Определение. *Суммой операторов* \hat{A}_1 и \hat{A}_2 называется такой оператор, обозначаемый $\hat{A}_1 + \hat{A}_2$, что $\forall x \in L (\hat{A}_1 + \hat{A}_2) (x) = = \hat{A}_1(x) + \hat{A}_2(x)$.

 $\hat{A}_1 + \hat{A}_2$ — линейный оператор. В конечномерном пространстве L при фиксированном базисе операторной записи $\hat{A}_1(x) + \hat{A}_2(x)$ соответствует матричная запись $A_1X + A_2X = (A_1 + A_2) X$. Отсюда следует, что при сложении операторов складываются их соответствующие матрицы относительно фиксированного базиса.

Свойства сложения операторов

1.
$$\hat{A}_1 + \hat{A}_2 = \hat{A}_2 + \hat{A}_1$$
;

2.
$$(\hat{A}_1 + \hat{A}_2) + \hat{A}_3 = \hat{A}_1 + (\hat{A}_2 + \hat{A}_3);$$

$$3. \hat{A} + \hat{O} = \hat{A};$$

4.
$$\forall \hat{A}: L \rightarrow L \exists ! (-\hat{A}): L \rightarrow L: \hat{A} + (-\hat{A}) = \hat{O}.$$

Пример 1. Пусть оператор \hat{A}_1 : $R^2 \to R^2$ в базисе $e_1 = (1, 2)$, $e_2 = (2, 3)$ имеет матрицу $\begin{pmatrix} 3 & 5 \\ 4 & 3 \end{pmatrix}$. Оператор \hat{A}_2 : $R^2 \to R^2$ в базисе $e'_1 = (3, 1), e'_2 = (4, 2)$ имеет матрицу $\begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}$. Найти матрицу оператора $\hat{A}_1 + \hat{A}_2$ в базисе (e'_1, e'_2) .

Решение

Пусть $\widehat{\mathbf{A}}_1 \xleftarrow{(e_1, e_2)} A_1$ (A_1 — матрица оператора $\widehat{\mathbf{A}}_1$ в базисе (e_1, e_2)), $\widehat{\mathbf{A}}_2 \xleftarrow{(e_1, e_2)} A_2$, $\widehat{\mathbf{A}}_{11} \xleftarrow{(e_1', e_2')} A_1'$, $\widehat{\mathbf{A}}_2 \xleftarrow{(e_1', e_2')} A_2'$.

Тогда
$$\widehat{\mathbf{A}}_1 + \widehat{\mathbf{A}}_2 \xleftarrow{(e_1', e_2')} A_1' + A_2'$$
.

Согласно введенным обозначениям $A_1 = \begin{pmatrix} 3 & 5 \\ 4 & 3 \end{pmatrix}, A_2' = \begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}.$

Найдем матрицу A_1' из равенства $A_1' = T^{-1}A_1T$, где T матрица перехода от базиса (e_1, e_2) к базису (e'_1, e'_2) .

$$T: \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & -5 & -6 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -7 & -8 \\ 0 & 1 & 5 & 6 \end{pmatrix} \Rightarrow$$
$$\Rightarrow T = \begin{pmatrix} -7 & -8 \\ 5 & 6 \end{pmatrix}.$$

Находим матрицу, обратную матрице $T: T^{-1} = -\frac{1}{2} \begin{pmatrix} 6 & 8 \\ -5 & -7 \end{pmatrix}$.

Тогда
$$A_1' = -\frac{1}{2} \begin{pmatrix} 6 & 8 \\ -5 & -7 \end{pmatrix} \cdot \begin{pmatrix} 3 & 5 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} -7 & -8 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 40 & 38 \\ -35, 5 & -34 \end{pmatrix},$$

$$A_1' + A_2' = \begin{pmatrix} 40 & 38 \\ -35, 5 & -34 \end{pmatrix} + \begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix} = \begin{pmatrix} 44 & 44 \\ -29, 5 & -25 \end{pmatrix}.$$

Определение. Произведением оператора \hat{A} на число $\lambda \in P$ называется такой оператор, обозначаемый $\lambda \hat{A}$, что $\forall x \in L$ $(\lambda \hat{A})(x) = \lambda \cdot \hat{A}(x)$.

 $\lambda \hat{\mathbf{A}}$ — линейный оператор. В конечномерном пространстве L при фиксированном базисе оператору $\lambda \hat{\mathbf{A}}$ соответствует матрица $\lambda \cdot A$.

Для операций сложения операторов и умножения операторов на число выполняются все те свойства, которые определяют линейное пространство.

Таким образом, множество всех линейных операторов, действующих в L, относительно операций сложения операторов и умножения оператора на число образует линейное пространство.

Определение. Произведением операторов \hat{A}_1 и \hat{A}_2 называется такой оператор, обозначаемый $\hat{A}_1 \cdot \hat{A}_2$, что $\forall x \in L$ ($\hat{A}_1 \cdot \hat{A}_2$)(x) = = (\hat{A}_1 (\hat{A}_2 (x)), т. е. применение к x произведения операторов $\hat{A}_1 \cdot \hat{A}_2$ означает последовательное применение операторов: сначала x преобразуется в $y = \hat{A}_2$ (x), а затем y преобразуется в $z = \hat{A}_1$ (y).

 $\hat{\mathbf{A}}_1 \cdot \hat{\mathbf{A}}_2$ — линейный оператор. В конечномерном пространстве L при фиксированном базисе оператору $\hat{\mathbf{A}}_1 \cdot \hat{\mathbf{A}}_2$ соответствует матрица $A_1 \cdot A_2$.

Пример 2. Оператор \hat{A} ортогонально проецирует все геометрические векторы плоскости Oxy на ось Ox, а оператор \hat{B} зеркально отражает их относительно прямой y = -x. Как действуют на произвольный фиксированный вектор \vec{x} операторы $\hat{C} = 2\hat{A} - \hat{B}, \hat{D} = \hat{A} \cdot \hat{B}$?

Решение

На рис. 5.1 и рис. 5.2 показано, как по данному вектору построить векторы $\widehat{C}(\vec{x}) = (2\widehat{A} - \widehat{B})(\vec{x})$ и $\widehat{D}(\vec{x}) = (\widehat{A} \cdot \widehat{B})(\vec{x})$. При этом использованы определения суммы операторов, произведения оператора на число, произведения операторов.

Чтобы решить задачу аналитически, найдем матрицы операторов $\widehat{\mathbf{A}}$ и $\widehat{\mathbf{B}}$ в базисе (i,j): $A=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $B=\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.

Тогда
$$C = A - B = 2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix},$$

$$D = A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}.$$

Чтобы найти координаты векторов $\widehat{C}(\vec{x})$ и $\widehat{D}(\vec{x})$, необходимо умножить матрицы C и D на координатный столбец $\begin{pmatrix} x \\ y \end{pmatrix}$ вектора \vec{x} :

$$\widehat{\mathbf{C}}(\vec{x}) = (2\widehat{\mathbf{A}} - \widehat{\mathbf{B}})(\vec{x}) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ x \end{pmatrix};$$

$$\widehat{\mathbf{D}}(\vec{x}) = (\widehat{\mathbf{A}} \cdot \widehat{\mathbf{B}})(\vec{x}) = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ 0 \end{pmatrix}.$$

Определение. Оператор \hat{A} называется *обратимым*, если $\exists \hat{A}^{-1}$: $\hat{A} \hat{A}^{-1} = \hat{A}^{-1} \hat{A} = \hat{E}$. Оператор \hat{A}^{-1} называется *обратным* к \hat{A} .

Если обратимый оператор \hat{A} : $L_n \to L_n$ в некотором фиксированном базисе $(e_1, e_2, ..., e_n)$ определяется матрицей A, то обратный оператор в этом же базисе определяется матрицей A^{-1} .

Определение. Оператор \hat{A} называется *вырожеденным* тогда и только тогда, когда $\exists \ x \neq \theta \in L : \hat{A}(x) = \Theta$.

Определение. Оператор \hat{A} называется *невырожденным* тогда и только тогда, когда $Ker \hat{A} = \{\theta\}$.

Теорема об эквивалентных условиях невырожденности оператора.

```
Следующие условия для оператора \hat{\mathbf{A}}: L_n \to L_n эквивалентны: \hat{\mathbf{A}} — невырожденный; d_{\hat{\mathbf{A}}}=0; r_{\hat{\mathbf{A}}}=n; \operatorname{Im}\hat{\mathbf{A}}=L_n; \det A\neq 0; \hat{\mathbf{A}} — обратимый.
```

Пример 3. Установить, какие из заданных линейных операторов в V_3 являются невырожденными, и найти явный вид обратных операторов:

- а) $\hat{A}(x) = \lambda x$, λ фиксированное число;
- б) $\hat{\mathbf{A}}(x) = (x,e) \cdot e$, где e некоторый единичный вектор в V_3 . Решение
- а) Если $\lambda \neq 0$, то \hat{A} оператор растяжения, матрица оператора $A = \lambda E$. Следовательно, $\exists A^{-1} = (1/\lambda) E$. Значит, \hat{A} невырожденный оператор и $\hat{A}^{-1}(x) = (1/\lambda)x$.

В случае, когда $\lambda = 0$, $\hat{A} = \hat{O}$ — нулевой оператор, который является вырожденным.

б) $\hat{A}(x)$ — оператор проектирования на прямую с направляющим вектором e и проходящую через начало координат. Ранее было показано, что Ker $\hat{A} \neq \{\theta\}$. Следовательно, \hat{A} — вырожденный оператор и не имеет обратного.

Упражнения для самостоятельной подготовки

- 1. В пространстве R^3 заданы два линейных оператора \hat{A} и \hat{B} . Найти матрицу линейного оператора $\hat{C} = \hat{A}\hat{B} \hat{B}\hat{A}$ и его явный вид в естественном базисе R^3 , если \hat{A} (x) = $(7x_1 + 4x_3, 4x_2 9x_3, 3x_1 + x_2)$; $\hat{B}(x) = (x_2 6x_3, 3x_1 + 7x_3, x_1 + x_2 x_3)$.
- 2. Оператор \hat{A} в трехмерном пространстве геометрических векторов есть последовательное выполнение поворота \hat{P}_1 всех векторов вокруг оси Oz на угол $\pi/4$, растяжения \hat{B} их в два раза и поворота \hat{P}_2 вокруг оси Ox на угол $\pi/2$. Найти матрицу оператора \hat{A} .
- 3. Оператор \hat{A}_1 : $R^2 \to R^2$ зеркально отражает все геометрические векторы плоскости Oxy относительно прямой $y = \frac{x}{\sqrt{3}}$, а оператор \hat{A}_2 : $R^2 \to R^2$ ортогонально проектирует их на прямую $y = -\sqrt{3}x$. Как действуют на произвольный фиксированный вектор x операторы: $4\hat{A}_2 + 2\hat{A}_1$; $\hat{A}_2\hat{A}_1$? (Задачу решить геометрически и аналитически.)
- 4. Установить, какие из заданных линейных операторов в V_3 являются невырожденными, и найти явный вид обратных операторов:
- а) оператор проектирования на плоскость, проходящую через начало координат;
- б) оператор зеркального отражения относительно плоскости, проходящей через начало координат;
 - в) оператор поворота вокруг координатной оси Ox(Oy,Oz).
- 5. Установить, какие из заданных линейных операторов в \mathbb{R}^3 являются невырожденными, и найти явный вид обратных операторов:
 - a) $\hat{A}(x) = (x_1 x_2 + x_3, x_3, x_2);$
 - 6) $\hat{A}(x) = (x_2 + 2x_3, -x_2, 2x_2 x_3);$
 - B) $\hat{A}(x) = (x_1 + 2x_2 + 2x_3, 2x_1 + x_2 2x_3, 2x_1 2x_2 + x_3).$

2.5. Собственные значения и собственные векторы линейного оператора

Инвариантом линейного оператора \hat{A} : $L_n \to L_n$ называется такое свойство матрицы A оператора, которое не изменяется при изменении базиса в L_n .

Примерами инвариантов линейного оператора являются:

- 1. Ранг матрицы оператора.
- 2. Определитель матрицы оператора.

Определитель матрицы оператора называется определителем оператора.

3. Характеристический многочлен оператора Â. Пусть $\widehat{\mathbf{A}} \xleftarrow{(e_1,\dots,e_n)} A$, $\lambda \in P$. Тогда $(\widehat{\mathbf{A}} - \lambda \widehat{\mathbf{E}}) \leftrightarrow (A - \lambda E)$. Определитель матрицы $A - \lambda E$, равный

$$|A-\lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = d_0 + d_1 \lambda + d_2 \lambda^2 + \dots + d_n \lambda^n,$$

называется характеристическим многочленом $\phi_{\scriptscriptstyle A}(\lambda)$ матрипы A.

Характеристический многочлен матрицы A называется характеристическим многочленом оператора Â и обозначается $\phi_{\hat{a}}(\lambda)$. Из инвариантности многочлена $\phi_{\hat{a}}(\lambda)$ следует, что его корни являются инвариантами оператора Â.

Определение. Пусть Â: $L_n \to L_n$. Ненулевой вектор $x \in L_n$ называется собственным вектором линейного оператора Â, если существует такое $\lambda \in P$, что $\hat{A}(x) = \lambda x$. При этом λ называют собственным значением этого оператора и говорят, что собственный вектор x соответствует собственному значению λ . Из определения следует, что собственный вектор x коллинеарен своему образу.

Теорема о собственных значениях оператора

 λ — собственное значение оператора \hat{A} тогда и только тогда, когда λ — корень характеристического многочлена $\phi_{\hat{A}}\left(\lambda\right)$ оператора \hat{A} .

Следствие. В комплексном пространстве C_n любой линейный оператор имеет хотя бы один собственный вектор.

Свойства собственных векторов оператора:

- 1. Каждому собственному вектору оператора Â соответствует одно собственное значение.
- 2. Если x собственный вектор оператора $\hat{\mathbf{A}}$ с собственным значением λ , то $\forall c \neq 0$ cx собственный вектор оператора $\hat{\mathbf{A}}$ с собственным значением λ .
- 3. Если x_1 и x_2 линейно независимые собственные векторы оператора $\hat{\mathbf{A}}$ с собственным значением λ , то $\forall c_1, c_2 (|c_1| + |c_2| \neq 0)$ $c_1 x_1 + c_2 x_2$ собственный вектор оператора $\hat{\mathbf{A}}$ с собственным значением λ .

Определение. Подпространство $L_{\lambda} \subset L_n$, натянутое на собственные векторы, соответствующие одному и тому же собственному значению λ , называется *корневым подпространством*, отвечающим λ .

Теорема 1. $L_{\lambda} = \text{Ker } (\hat{A} - \lambda \hat{E}).$

Теорема 2. Если $\lambda_1, \lambda_2, ..., \lambda_k$ — попарно различные собственные значения оператора $\hat{\mathbf{A}}$ и $x_1, x_2, ..., x_k$ — соответствующие им собственные векторы: $\hat{\mathbf{A}}$ (x_1) = λx_1 , $\hat{\mathbf{A}}$ (x_2) = $\lambda x_2, ..., \hat{\mathbf{A}}$ (x_k) = λx_k , то система векторов { $x_1, x_1, ..., x_k$ } линейно независима.

Теорема 3. Собственному значению оператора кратности k соответствует не более k линейно независимых собственных векторов.

Определение. Множество всех собственных значений оператора \hat{A} (матрицы A) с учетом их кратностей называется *спектром оператора* \hat{A} (матрицы A) и обозначается через $Sp\ \hat{A}$ ($Sp\ A$).

Определение. Если все корни характеристического уравнения простые, то *спектр* называется *простым*.

Замечание. Под кратностью собственного значения оператора понимается алгебраическая кратность корня характеристического многочлена.

Алгоритм поиска собственных значений и собственных векторов линейного оператора

- 1. Составить характеристический многочлен $|A \lambda E|$ матрицы A оператора \hat{A} в некотором базисе и найти все его корни $\lambda_1, ..., \lambda_k$, лежащие в основном поле P. Это и будут собственные значения оператора \hat{A} : $Sp\hat{A} = \{\lambda_1, ..., \lambda_k\}$.
- 2. Решить линейную систему $(A \lambda_i E) X = \Theta$ для каждого λ_i $(1 \le i \le k)$. Найти Φ CP в L_{λ} .

Пример 1. Найти собственные значения и собственные векторы оператора, заданного матрицей $A = \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}$.

Решение

$$\begin{split} & |A - \lambda E| = \begin{vmatrix} 1 - \lambda & 5 \\ 0 & 1 - \lambda \end{vmatrix} = \left(1 - \lambda\right)^2, \ \lambda = 1 \ - \text{ корень кратности 2}. \\ & A - E = \begin{pmatrix} 1 - 1 & 5 \\ 0 & 1 - 1 \end{pmatrix} = \begin{pmatrix} 0 & 5 \\ 0 & 0 \end{pmatrix}. \\ & \begin{pmatrix} 0 & 5 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff x_2 = 0 \cdot x_1 \ - \text{ общее решение ОСЛУ}. \end{split}$$

Пусть $x_1 = 1$. Тогда $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ — собственный вектор $\hat{\mathbf{A}}$, отвечаю-

щий собственному значению $\lambda=1$. $L_{\lambda}=\left\langle \begin{pmatrix} 1\\0 \end{pmatrix} \right\rangle = \left\{ \begin{pmatrix} c\\0 \end{pmatrix}, \quad c\in R \right\}.$

Пример 2. Оператор $\hat{\mathbf{A}}$: $\mathbb{R}^3 \to \mathbb{R}^3$ задан матрицей

$$A = \begin{pmatrix} -2 & 2 & 0 \\ 0 & -2 & 0 \\ 0 & -4 & -2 \end{pmatrix}.$$

Найти его собственные значения и собственные векторы.

Решение

Составляем характеристический многочлен оператора \hat{A} и находим его корни:

$$|A-\lambda E| = \begin{vmatrix} -2-\lambda & 2 & 0\\ 0 & -2-\lambda & 0\\ 0 & -4 & -2-\lambda \end{vmatrix} = (-2-\lambda)^{3};$$

$$\{\lambda\} = \{-2, -2, -2\}$$
 — спектр оператора.

Собственные векторы, соответствующие собственному значению $\lambda = -2$, найдем из матричного уравнения (A + 2E)X = 0 или

$$\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & -4 & 0 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}; r(A + 2E) = 1.$$

Отсюда следует, что собственному значению $\lambda = -2$ (кратности 3) соответствует линейно независимая система из (n-r=3-1=2) двух собственных векторов, координаты которых находятся из системы

$$\begin{cases} 0 \cdot \alpha_1 + 2 \cdot \alpha_2 + 0 \cdot \alpha_3 = 0, \\ 0 \cdot \alpha_1 + 0 \cdot \alpha_2 + 0 \cdot \alpha_3 = 0, \\ 0 \cdot \alpha_1 - 4 \cdot \alpha_2 + 0 \cdot \alpha_3 = 0. \end{cases}$$

Общее решение системы имеет вид: $\alpha_2 = 0 \cdot \alpha_1 + 0 \cdot \alpha_3$ или

$$\begin{cases} \alpha_1 = c_1, \\ \alpha_2 = 0, & c_1, c_2 \in R \ (|c_1| + |c_2| \neq 0). \\ \alpha_3 = c_2, \end{cases}$$

Фундаментальная система решений: $x_1 = (1,0,0), x_2 = (0,0,1)$ — два линейно независимых собственных вектора, отвечающие собственному значению $\lambda = -2$.

Таким образом, собственные векторы, отвечающие собственному значению $\lambda = -2$ оператора \hat{A} , имеют вид:

$$x = c_1 x_1 + c_2 x_2 = c_1 (1, 0, 0) + c_2 (0, 0, 1) = (c_1, 0, c_2),$$

где $c_1, c_2 \in R$, $(|c_1| + |c_1| \neq 0)$.

$$L_{\lambda} = \left\langle \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\rangle.$$

Инвариантные подпространства

Подпространство $P \subset L_n$ называется инвариантным относительно оператора $\hat{A}: L_n \to L_n$ (A — инвариантным), если $\forall x \in P$ $\hat{A}(x) \in P$. A — инвариантное подпространство, обозначается P_A .

Пример 1. Подпространства $\{\theta\}$, ImÂ, KerÂ, L_{λ}, L_n всегда A — инвариантны.

Пример 2. Пусть в трехмерном пространстве геометрических векторов $V_3 = \langle i, j, k \rangle$ действует оператор поворота плоскости $\langle i, j \rangle$ вокруг прямой $\langle k \rangle$ на угол $\phi \neq \pi k$. В V_3 образуются следующие A — инвариантные подпространства:

1. Одномерное подпространство $P_1 = \langle k \rangle$ — корневое подпространство, соответствующее собственному значению $\lambda = 1$ оператора, т. к. $\hat{\mathbf{A}}(k) = 1 \cdot k$.

Рис. 5.3

2. Двумерное подпространство $P_2 = \langle i,j \rangle$ — плоскость. В этой плоскости нет ни одного собственного вектора оператора \hat{A} , т.е. P_2A — инвариантное подпространство, но оно не является корневым подпространством.

Заметим, что $V_3 = \langle i, j \rangle \oplus \langle k \rangle$, т.е. $V_3 = P_A \oplus L_\lambda$. И это неслучайно. Запишем матрицу оператора поворота в базисе (i, j, k)

$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix},$$
 где $A_1 = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}_{2 \times 2}, A_2 = \begin{pmatrix} 1 \end{pmatrix}_{1 \times 1}.$

Такой вид матрицы называется клеточно-диагональный.

Первая клетка
$$A_1 = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$
 соответствует двумерному

подпространству $P_A = \langle i,j \rangle$; в этом подпространстве под действием оператора $\hat{\mathbf{A}}$ происходит поворот векторов на угол ϕ вокруг неподвижной точки O, иными словами, поворот плоскости $\langle i,j \rangle$ вокруг неподвижной точки O на угол ϕ , т. к. матрица A_1 — матрица оператора поворота.

Вторая клетка $A_2 = (1)_{1\times 1}$ в матрице A соответствует одномерному подпространству L_{λ} , в котором $\forall x \in L_{\lambda} (x \neq \theta) \hat{A} (x) = 1 \cdot x$, т. е. прямая $\langle k \rangle$ под действием оператора \hat{A} будет оставаться неподвижной.

Найдем собственные значения и собственные векторы оператора поворота.

$$\begin{aligned} |A - \lambda E| &= \begin{vmatrix} \cos \varphi - \lambda & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = \\ &= (1 - \lambda) \Big((\cos \varphi - \lambda)^2 + \sin^2 \varphi \Big) \implies 1 - \lambda = 0 \implies \lambda_1 = 1. \end{aligned}$$

 $(\cos \varphi - \lambda)^2 + \sin^2 \varphi = 0 \iff \lambda^2 - 2\lambda \cos \varphi + 1 = 0$ не имеет вещественных корней (дискриминант меньше нуля).

Итак, оператор поворота \hat{A} в V_3 имеет только одно собственное значение, которому отвечает собственный вектор k.

Упражнения для самостоятельной подготовки

- 1. Найти собственные значения и собственные векторы операторов в V_3 . Решить задачи геометрически (см. пример 2) и аналитически.
 - а) $\hat{A}(x) = \lambda x$, λ фиксированное число;
 - б) $\hat{A}(x) = (x, i) i$ оператор проектирования на ось Ox;
- в) $\hat{A}(x) = x 2 (x, k) k$ оператор зеркального отражения относительно плоскости *Oxy*.
- 2. Найти собственные значения и собственные векторы линейных операторов, заданных своими матрицами:

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}; B = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 1 & 3 \\ 0 & 0 & 2 \end{pmatrix}; C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

2.6. Структура линейного оператора

Структура линейного оператора Â: $L_n \to L_n$ определяется структурой его матрицы.

Наиболее простой вид матрицы — это клеточно-диагональный вид:

$$A = \begin{pmatrix} A_1 & & & 0 \\ & A_2 & & \\ & & \ddots & \\ 0 & & & A_k \end{pmatrix}, \tag{5.1}$$

где клетки A_i (i=1,...,k) матрицы A есть квадратные матрицы некоторого порядка n_i , причем $\sum_{i=1}^k n_i = n, n$ — порядок матрицы.

Теорема 1 (о достаточном условии приведения матрицы оператора Â к клеточно-диагональному виду). Если P_1 и P_2-A- инвариантные подпространства пространства L_n и $L_n=P_1\oplus P_2$, то существует базис в L_n такой, в котором матрица этого оператора имеет клеточно-диагональный вид.

Теорема 2. Если в некотором базисе матрица оператора \hat{A} : $L_n \to L_n$ имеет клеточно-диагональный вид, то пространство L_n разлагается в прямую сумму своих инвариантных относительно этого оператора подпространств.

Понятие жордановой нормальной формы матрицы оператора

Назовем жордановой клеткой порядка n_k с собственным значением λ_k матрицу A_k вида

$$A_{k} = \begin{pmatrix} \lambda_{k} & 1 & 0 & \dots & 0 \\ 0 & \lambda_{k} & 1 & \dots & 0 \\ \dots & \dots & \ddots & \ddots & \dots \\ 0 & 0 & 0 & \ddots & 1 \\ 0 & 0 & 0 & \dots & \lambda_{k} \end{pmatrix}_{n_{k}, n_{k}}$$
(5.2)

Матрица A имеет жорданову нормальную форму (ж.н.ф.) или является жордановой, если $A = [A_1, ..., A_s]$ — клеточно-диагональная матрица, все клетки $A_1, ..., A_s$ которой — жордановы.

Теорема Жордана

Для любого линейного оператора в комплексном пространстве C_n существует базис, в котором матрица оператора имеет жорданову нормальную форму

$$G = \begin{pmatrix} A_1 & & & 0 \\ & A_2 & & \\ & & \ddots & \\ 0 & & & A_s \end{pmatrix}, \tag{5.3}$$

где $A_1,...,A_s$ — жордановы клетки и $n_1+...+n_s=n$.

Базис, в котором матрица оператора \hat{A} имеет жорданову нормальную форму, называется каноническим.

Из выражения (5.3) следует, что канонический базис разбивается на s групп, каждая из которых порождает A — инвариантное подпространство. Кроме того, если $e_1, e_2, \ldots, e_{n_k}$ — векторы k-й группы этого базиса (так что координатами их образов являются столбцы матрицы (5.2), пересекающие клетку A_k), то, как следует из выражения (5.2), $\hat{A}(e_1) = \lambda_k e_1$, $\hat{A}(e_2) = e_1 + \lambda_k e_1$,..., $\hat{A}\left(e_{n_k}\right) = e_{n_{k-1}} + \lambda_k e_{n_k}$, т.е. в этой группе только один вектор e_1 — собственный с собственным значением λ_k , остальные называются присоединенными, соответствующими значению λ_k .

Из сказанного следует, что в ж.н.ф. матрицы оператора \hat{A} , имеющего кратные корни характеристического многочлена, столько клеток, сколько у оператора линейно независимых векторов.

Пример 1. Привести к жордановой нормальной форме матрицу $A = \begin{pmatrix} 0 & -4 & -2 \\ 1 & 4 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Найти канонический базис.

Решение

Составим характеристический многочлен оператора \hat{A} и найдем его корни:

$$|A-\lambda E| = \begin{vmatrix} -\lambda & -4 & -2 \\ 1 & 4-\lambda & 1 \\ 0 & 0 & 2-\lambda \end{vmatrix} = -(\lambda-2)^3.$$

Корни его $\lambda_{1,2,3}=2$, иначе $\lambda=2$ — корень кратности 3. Выясним, сколько клеток в ж.н.ф. данной матрицы. Рассмотрим систему $(A-2E)X=\Theta$ и найдем ее ранг.

Имеем:
$$r(A-2E) = rang \begin{pmatrix} -2 & -4 & -2 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} = 1 \implies d_{A-2E} = 2$$
, т. е.

фундаментальная система решений системы $(A-2E)X = \Theta$ состоит из двух решений, значит, у оператора $\hat{\mathbf{A}}$ — два линейно независимых собственных вектора и ж.н.ф. матрицы должна состоять из двух клеток, причем сумма порядков этих клеток совпадает с кратностью собственного значения $\lambda = 2$, т.е. с k = 3.

Тогда по теореме о приведении матрицы оператора к ж.н.ф. существует канонический базис, в котором ж.н.ф. матрицы оператора \hat{A} определена однозначно с точностью до перестановки входящих в нее жордановых клеток.

В силу сказанного матрица оператора \hat{A} может иметь следующую ж.н.ф.:

$$G = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Найдем теперь канонический базис (e_1, e_2, e_3) , разбив его на две группы: e_1 и (e_2, e_3) . В каждой группе по одному собственному вектору оператора \hat{A} .

За e_1 и e_2 возьмем фундаментальную систему решений $(A-2E)X=\Theta$:

$$\begin{pmatrix} -2 & -4 & -2 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff x_1 + 2x_2 + x_3 = 0 \iff x_3 = -x_1 - 2x_2 - x_3 = 0$$

общее решение системы. За свободные неизвестные возьмем следующие наборы чисел $\{1,0\}$ и $\{-2,1\}$. Тогда $e_1=(1,0,-1)$, $e_2=(-2,1,0)$ составляют ФСР системы. А это значит, что

 e_1 и e_2 — собственные векторы оператора \hat{A} , соответствующие собственному значению $\lambda = 2$.

Третий вектор канонического базиса e_3 — присоединенный вектор, соответствующий этому же собственному значению, найдем из условия $(A-2E)e_3 = e_2$, т. е. из системы

$$\begin{pmatrix} -2 & -4 & -2 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}.$$

Откуда можно получить, что $e_3 = (0, 0, 1)$.

Матрица перехода от базиса, в котором задана матрица A, к каноническому базису (e_1, e_2, e_3) имеет вид:

$$T = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}.$$

Можно проверить, что имеет место равенство $G = T^{-1}AT$.

Замечание. Каждая группа канонического базиса (e_1, e_2, e_3) порождает A — инвариантное подпространство: $\mathbf{L}_1 = \langle e_1 \rangle$ и $\mathbf{L}_2 = \langle e_2, e_3 \rangle$, причем $R_3 = \mathbf{L}_1 \oplus \mathbf{L}_2$.

Пример 2. Привести к жордановой нормальной форме матрицу $A = \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$. Найти канонический базис.

Решение

Составим характеристический многочлен оператора \hat{A} и найдем его корни:

$$\begin{vmatrix} A - \lambda E \end{vmatrix} = \begin{vmatrix} 4 - \lambda & -5 & 2 \\ 5 & -7 - \lambda & 3 \\ 6 & -9 & 4 - \lambda \end{vmatrix} = \begin{vmatrix} 10 - \lambda & -14 & 6 - \lambda \\ 5 & -7 - \lambda & 3 \\ 6 & -9 & 4 - \lambda \end{vmatrix} = \begin{vmatrix} -\lambda & 2\lambda & -\lambda \\ 5 & -7 - \lambda & 3 \\ 6 & -9 & 4 - \lambda \end{vmatrix} = \begin{vmatrix} 1 & -2 & 1 \\ 5 & -7 - \lambda & 3 \\ 6 & -9 & 4 - \lambda \end{vmatrix} = -\lambda \begin{vmatrix} 1 & -2 & 1 \\ 5 & -7 - \lambda & 3 \\ 6 & -9 & 4 - \lambda \end{vmatrix} = -\lambda \begin{vmatrix} 1 & -2 & 1 \\ 0 & 3 - \lambda & -2 \\ 0 & 3 & -2 - \lambda \end{vmatrix} = -\lambda ((3 - \lambda)(-2 - \lambda) + 6) = -\lambda (\lambda^2 - \lambda) = -\lambda^2 (\lambda - 1).$$

Корни характеристического многочлена: $\lambda_{1,2} = 0$, $\lambda_3 = 1$. Выясним, сколько клеток в ж.н.ф. данной матрицы.

Рассмотрим систему, соответствующую $\lambda_{1,2}$: $(A-0\cdot E)X=\Theta$, и найдем ее ранг. Имеем:

$$r(A-E) = rang \begin{pmatrix} 3 & -5 & 2 \\ 5 & -8 & 3 \\ 6 & -9 & 3 \end{pmatrix} = 2 \Rightarrow d_{A-E} = 1.$$

Аналогично определяем ранг системы для λ_3 . Имеем

$$r(A-0\cdot E) = rang \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix} = 2 \implies d_{A-0E} = 1.$$

Значит, у оператора \hat{A} — два линейно независимых собственных вектора и ж. н.ф. матрицы должна состоять из двух клеток.

Тогда матрица оператора Â может иметь следующую ж. н.ф.:

$$G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Найдем теперь канонический базис (e_1, e_2, e_3) , разбив его на две группы: e_1 и (e_2, e_3) . В каждой группе по одному собственному вектору оператора \hat{A} .

За e_1 возьмем фундаментальную систему решений:

$$(A-E)X = \Theta : \begin{pmatrix} 3 & -5 & 2 \\ 5 & -8 & 3 \\ 6 & -9 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} .$$

$$(A-E) = \begin{pmatrix} 3 & -5 & 2 \\ 5 & -8 & 3 \\ 6 & -9 & 3 \end{pmatrix} \sim \begin{pmatrix} 3 & -5 & 2 \\ 5 & -8 & 3 \\ 2 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 \\ 5 & -8 & 3 \\ 2 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 1 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix} \implies \begin{cases} x_1 = x_3, \\ x_2 = x_3 \end{cases}$$

общее решение системы. Пусть свободная неизвестная $x_3 = 1$. Тогда $e_1 = (1, 1, 1)$.

За e_2 возьмем фундаментальную систему решений

$$(A - 0 \cdot E) X = \Theta : \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} .$$

$$(A - 0 \cdot E) = \begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 \\ 0 & 3 & -2 \\ 0 & 3 & -2 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 \\ 0 & 3 & -2 \end{pmatrix}$$

общее решение системы. Пусть свободная неизвестная $x_2 = 2$. Тогда $e_2 = (1, 2, 3)$.

Третий вектор канонического базиса e_3 — присоединенный вектор, соответствующий кратному собственному значению $\lambda=0$, найдем из условия $(A-0\cdot E)e_3=e_2$, т. е. из системы

$$\begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

Решаем систему методом Гаусса:

$$\begin{pmatrix} 4 & -5 & 2 & 1 \\ 5 & -7 & 3 & 2 \\ 6 & -9 & 4 & 3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 5 & -7 & 3 & | 2 \\ 6 & -9 & 4 & | 3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & -1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 & 3 & -2 & | -3 \end{pmatrix} \sim \begin{pmatrix} -1 & 2 & 1 & | -1 \\ 0 &$$

Пусть свободная неизвестная $x_2 = 1$. Тогда $e_3 = (0, 1, 3)$.

Матрица перехода от базиса, в котором задана матрица A, к каноническому базису (e_1, e_2, e_3) имеет вид

$$T = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & 3 & 3 \end{pmatrix}.$$

Из всех жордановых матриц наиболее простой вид имеет диагональная матрица (у нее все клетки имеют первый порядок).

Теорема 3 (о приведении матрицы оператора к диагональному виду). Для того чтобы матрица оператора была приводима к диагональному виду, необходимо и достаточно, чтобы в L_n существовал базис из собственных векторов этого оператора, т.е. $A = [\lambda_1, ..., \lambda_n] \Leftrightarrow (\exists (e_1, ..., e_n) - \text{базис в } L_n : \overrightarrow{A}(e_i) = \lambda_i e_i, \ i = \overline{1, n}).$

Пример. Привести, если возможно, матрицу $A = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$ к ди-

агональному виду.

Решение

Найдем собственные значения А.

$$|A-\lambda E| = \begin{vmatrix} 1-\lambda & 1\\ 3 & -1-\lambda \end{vmatrix} = \lambda^2 - 4.$$

 $Sp\hat{\mathbf{A}} = \{2, -2\}$ — простой спектр оператора $\hat{\mathbf{A}}$.

Простому спектру оператора \hat{A} соответствует линейно независимая система из n=2 собственных векторов этого оператора, которую можно принять за базис линейного пространства,

причем в этом базисе матрица оператора имеет диагональный вид: $\Lambda = \begin{bmatrix} 2, -2 \end{bmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$. Найдем базис линейного пространства из собственных векторов \hat{A} .

$$\lambda_{1} = 2 \quad (A - \lambda_{1} E) X = \Theta.$$

$$\begin{pmatrix} -1 & 1 \\ 3 & -3 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow -\alpha_{1} + \alpha_{2} = 0 \Leftrightarrow \alpha_{1} = \alpha_{2} \Rightarrow e_{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

$$\lambda_{2} = -2 \quad (A - \lambda_{2} E) X = \Theta.$$

$$\begin{pmatrix} 3 & 1 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow 3\alpha_{1} + \alpha_{2} = 0 \Leftrightarrow \alpha_{2} = -3\alpha_{1} \Rightarrow e_{2} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}.$$

Таким образом, оператору $\hat{\mathbf{A}}$ в базисе (e_1, e_2) соответствует матрица $\Lambda = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$.

Оператор простой структуры

Среди операторов простейшим в известном смысле является оператор простой структуры (ОПС).

Определение. Оператор \hat{A} : $L_n \to L_n$ называется *оператором простой структуры*, если существует n линейно независимых собственных векторов этого оператора.

Свойства оператора простой структуры:

1. Матрицу ОПС можно привести к диагональному виду в базисе из его собственных векторов. И наоборот, матрица диагонального вида соответствует ОПС.

Из этого свойства видно, что ОПС имеет наиболее простое координатное представление, которое может быть определено с помощью одних лишь его собственных значений.

2. Геометрическое действие ОПС в R^n можно описать следующим образом: существует n «направлений», которые не изменяются при действии на R^n оператора и вдоль которых

пространство испытывает «условное» растяжение с коэффициентами $\lambda_1, \ldots, \lambda_n$, которые являются собственными значениями оператора.

3. Если Â — оператор простой структуры в L_n и $\{\lambda_1,...,\lambda_n\}$ — множество всех его различных собственных значений, то

$$L_n = L_{\lambda_1} \oplus L_{\lambda_2} \oplus \ldots \oplus L_{\lambda_n}$$
.

4. Если оператор \hat{A} : $L_n \to L_n$ имеет простой спектр, состоящий из n собственных значений, то \hat{A} — оператор простой структуры. (Обратное утверждение, вообще говоря, неверно).

В этом случае $L_n = \langle e_1 \rangle \oplus \langle e_2 \rangle \oplus \ldots \oplus \langle e_n \rangle$, где e_1, \ldots, e_n — собственные векторы оператора $\hat{\mathbf{A}}$.

Пример 1. Определить, какие из следующих операторов, заданных своими матрицами в некотором базисе, являются операторами простой структуры:

$$\begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}; \quad \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}; \quad \begin{pmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{pmatrix}.$$

Решение

1. Составляем характеристический многочлен матрицы и находим его корни:

$$\begin{vmatrix} 1-\lambda & -3 & 4 \\ 4 & -7-\lambda & 8 \\ 6 & -7 & 7-\lambda \end{vmatrix} = \begin{vmatrix} 1-\lambda & -3 & 4 \\ 4 & -7-\lambda & 8 \\ 3-\lambda & -3+\lambda & 3-\lambda \end{vmatrix} = \begin{vmatrix} -3-\lambda & 1 & 4 \\ -4 & 1-\lambda & 8 \\ 0 & 0 & 3-\lambda \end{vmatrix} =$$
$$= (3-\lambda)(\lambda^2 + 2\lambda + 1) \Rightarrow \{\lambda\} = \{3,1,1\}.$$

Найдем дефект матрицы $A - 3 \cdot E$.

$$\begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \sim \begin{pmatrix} -2 & -3 & 4 \\ 0 & -16 & 16 \\ 0 & -16 & 16 \end{pmatrix} \Rightarrow r_{A-3E} = 2, d_{A-3E} = 1.$$

Найдем дефект матрицы $A - 1 \cdot E$.

$$\begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \sim \begin{pmatrix} 2 & -3 & 4 \\ 0 & 0 & 0 \\ 0 & 2 & 4 \end{pmatrix} r_{A-E} = 2 \Rightarrow d_{A-E} = 1.$$

$$d_{A-3:E} + d_{A-1:E} = 1 + 1 = 2.$$

Итак, оператор имеет только два линейно независимых собственных вектора. Отсюда следует, что оператор не является оператором простой структуры.

2. Составляем характеристический многочлен матрицы и находим его корни:

$$\begin{vmatrix} 1-\lambda & 2\\ 0 & 3-\lambda \end{vmatrix} = (1-\lambda)(3-\lambda); \{\lambda\} = \{1;3\}.$$

Известно, что попарно различным собственным значениям соответствуют линейно независимые собственные векторы оператора. Из этого факта можно сделать вывод, что данный оператор в \mathbb{R}^2 имеет два линейно независимых собственных вектора, а значит, является оператором простой структуры.

3. Составляем характеристический многочлен матрицы и находим его корни:

$$\begin{vmatrix} -1 - \lambda & 3 & -1 \\ -3 & 5 - \lambda & -1 \\ -3 & 3 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 3 & -1 \\ 1 - \lambda & 5 - \lambda & -1 \\ 1 - \lambda & 3 & 1 - \lambda \end{vmatrix} = \begin{vmatrix} 1 - \lambda & 3 & -1 \\ 0 & 2 - \lambda & 0 \\ 0 & 0 & 2 - \lambda \end{vmatrix} =$$

$$= (1 - \lambda)(2 - \lambda)^{2}; \; \{\lambda\} = \{1, 2, 2\};$$

$$r(A - 1 \cdot E) = 2 \Leftrightarrow d(A - 1 \cdot E) = 1.$$

$$r(A-2E) = 1 \Rightarrow d(A-2E) = 3-1 = 2.$$

Так как $d_{A-1\cdot E}+d_{A-2\cdot E}=1+2=3$, то оператор $\hat{\mathbf{A}}$ есть оператор простой структуры.

Пример 2. Даны собственные значения $\{\lambda\} = \{1, -1, 4\}$ и собственные векторы $e_1 = (4, 1, 2), e_2 = (1, 1, 0), e_3 = (2, 0, 1)$ линей-

ного оператора в некотором базисе. Найти матрицу оператора в этом базисе.

Решение

Из условия задачи следует, что данный оператор является ОПС. В базисе (e_1, e_2, e_3) этому оператору соответствует диаго- $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$

нальная матрица
$$\Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$
. Найдем матрицу оператора

в исходном базисе из уравнения: $\Lambda = TAT^{-1}$, откуда $A = T^{-1}\Lambda T$ (T—матрица перехода от исходного базиса к базису, составлен-

ному из собственных векторов). Тогда
$$T = \begin{pmatrix} 4 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
.

Находим обратную матрицу T^{-1} методом Гаусса:

$$\begin{pmatrix} 4 & 1 & 2 & | 1 & 0 & 0 \\ 1 & 1 & 0 & | 0 & 1 & 0 \\ 2 & 0 & 1 & | 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & | 0 & 1 & 0 \\ 4 & 1 & 2 & | 1 & 0 & 0 \\ 2 & 0 & 1 & | 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & | 0 & 1 & 0 \\ 0 & -3 & 2 & | 1 & -4 & 0 \\ 0 & -2 & 1 & | 0 & -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & | 0 & 1 & 0 \\ 0 & -1 & 1 & | 1 & -2 & -1 \\ 0 & -2 & 1 & | 0 & -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & | 0 & 1 & 0 \\ 0 & -1 & 1 & | 1 & -2 & -1 \\ 0 & 0 & -1 & | -2 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & | 0 & 1 & 0 \\ 0 & -1 & 1 & | 1 & -2 & -1 \\ 0 & 0 & -1 & | -2 & 2 & 3 \end{pmatrix} \Rightarrow$$

$$\Rightarrow T^{-1} = \begin{pmatrix} -1 & 1 & 2 \\ 1 & 0 & -2 \\ 2 & -2 & -3 \end{pmatrix}.$$

Находим матрицу оператора в исходном базисе

$$A = \begin{pmatrix} -1 & 1 & 2 \\ 1 & 0 & -2 \\ 2 & -2 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} -1 & -1 & 8 \\ 1 & 0 & -8 \\ 2 & 2 & -12 \end{pmatrix} \begin{pmatrix} 4 & 1 & 2 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 11 & -2 & 6 \\ -12 & 1 & -6 \\ -14 & 4 & -8 \end{pmatrix}.$$

Упражнения для самостоятельной подготовки

1. Линейные операторы заданы матрицей в некотором базисе:

$$\begin{pmatrix} 0 & -1 \\ 4 & 0 \end{pmatrix}, \begin{pmatrix} 2 & 9 \\ -1 & 8 \end{pmatrix}, \begin{pmatrix} 9 & 0 & 0 \\ 2 & 9 & 0 \\ 5 & 0 & 9 \end{pmatrix}, \begin{pmatrix} 0 & -4 & 0 \\ 0 & 2 & 0 \\ 2 & 8 & 1 \end{pmatrix};$$

- а) найти собственные значения линейного оператора;
- б) выяснить, является ли оператор оператором простой структуры;
 - в) найти собственные векторы линейного оператора;
- г) привести матрицу линейного оператора к диагональному (клеточно-диагональному) виду и найти соответствующий базис.
- 2. Даны собственные значения $\{\lambda\} = \{-2, -1, 2\}$ и собственные векторы $e_1 = (2, 3, 3), e_2 = (1, 1, 1), e_3 = (4, 1, 7)$ линейного оператора в некотором базисе. Найти матрицу оператора в этом базисе.

2.7. Сопряженные и самосопряженные операторы

Линейные операторы в унитарном пространстве

Пусть U_n — унитарное пространство над произвольным числовым полем P. Рассмотрим основные классы линейных операторов, таких, собственные векторы и собственные значения которых обладают специальными свойствами:

- сопряженный оператор;
- самосопряженный или эрмитов оператор;
- унитарный оператор;
- нормальный оператор.

Пусть Â:
$$U_n \to U_n$$
.

 $(\hat{\mathbf{A}}^* - conряженный onepamop к <math>\hat{\mathbf{A}}$ в $U_n) \Leftrightarrow (\forall x, y \in U_n (\hat{\mathbf{A}} x, y) = (x, \hat{\mathbf{A}}^* y)).$

 $(\hat{\mathbf{A}} - caмосопряженный оператор в <math>U_n) \stackrel{\wedge}{\Leftrightarrow} (\forall x, y \in U_n (\hat{\mathbf{A}} x, y) = (x, \hat{\mathbf{A}} y))$. По определению $\hat{\mathbf{A}} = \hat{\mathbf{A}}^*$.

 $(\hat{\mathbf{A}} - y$ нитарный оператор в $U_n) \stackrel{\vartriangle}{\Leftrightarrow} (\hat{\mathbf{A}}^* \hat{\mathbf{A}} = \hat{\mathbf{A}} \hat{\mathbf{A}}^* = \hat{\mathbf{E}}).$

 $(\hat{\mathbf{A}} - нормальный оператор в U_n)) \stackrel{^{\Delta}}{\Leftrightarrow} (\hat{\mathbf{A}}^* \hat{\mathbf{A}} = \hat{\mathbf{A}} \hat{\mathbf{A}}^*).$

Нетрудно убедиться, что как самосопряженные $(\hat{A}^*\hat{A}=\hat{A}\hat{A}^*=\hat{A}^2)$, так и унитарные $(\hat{A}^*\hat{A}=\hat{A}\hat{A}^*=\hat{E})$ операторы являются частными случаями нормальных операторов и поэтому самосопряженные и унитарные операторы обладают свойствами нормального оператора.

Теорема 1. Оператор \hat{A}^* , сопряженный к линейному оператору \hat{A} , линеен.

Теорема 2. Пусть $(e_1, e_2, ..., e_n)$ — ОНБ в U_n . $(\hat{A} \leftrightarrow A, \hat{A}^* \leftrightarrow A^*)$ $\Rightarrow (A^* = \overline{A}^T)$.

Матрица $\overline{A} = (\overline{a}_{ij})$ называется комплексно-сопряженной к матрице $A = (a_{ij})$. Матрица $A^* = \overline{A}^T$ называется сопряженной к A.

В евклидовом пространстве $A^* = A^T$.

Пусть $(e_1,...,e_n)$ произвольный базис в U_n . Тогда $A^* = \overline{G^{-1}A^TG}$, где G — матрица Грама в базисе $(e_1,...,e_n)$. В евклидовом пространстве $A^* = G^{-1}A^TG$.

Пример 1. A — матрица линейного оператора в ОНБ, найти A^* . **Решение**

1.
$$A = \begin{pmatrix} 1+j & 2 \\ -2 & 2-j \end{pmatrix}$$
; $A^* = \overline{A}^T = \begin{pmatrix} 1-j & 1 \\ -2 & 2+j \end{pmatrix}^T = \begin{pmatrix} 1-j & -2 \\ 1 & 2+j \end{pmatrix}$.
2. $A = \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$; $A^* = A^T = \begin{pmatrix} 1 & -3 \\ 2 & 4 \end{pmatrix}$.

Пример 2. В линейном пространстве R^2 задан базис (e_1,e_2) : $|e_1|=1,\ |e_2|=2,\ \widehat{(e_1,e_2)}=5\pi/6$. В этом базисе оператор \hat{A} имеет матрицу $A=\begin{pmatrix} 1 & -\sqrt{3} \\ 0 & 0 \end{pmatrix}$. Найти матрицу сопряженного оператора \hat{A}^* в базисе (e_1,e_2) .

Решение

Найдем матрицу Грама в базисе (e_1, e_2) . Для этого вычислим скалярные произведения базисных векторов:

$$e_1 \cdot e_1 = 1, \ e_1 \cdot e_2 = 1 \cdot 2 \cdot \left(-\frac{\sqrt{3}}{2} \right) = -\sqrt{3}, \ e_2 \cdot e_2 = 4.$$
 Тогда $G = \begin{pmatrix} 1 & -\sqrt{3} \\ -\sqrt{3} & 4 \end{pmatrix}, |G| = 1$ и $G^{-1} = \begin{pmatrix} 4 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}.$

Теперь найдем матрицу оператора \hat{A}^* :

$$A^* = G^{-1}A^TG = \begin{pmatrix} 4 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\sqrt{3} & 0 \end{pmatrix} \begin{pmatrix} 1 & -\sqrt{3} \\ -\sqrt{3} & 4 \end{pmatrix} = \begin{pmatrix} 1 & -\sqrt{3} \\ 0 & 0 \end{pmatrix}.$$

Теорема 3. Для любого линейного оператора \hat{A} : $U_n \to U_n$ существует единственный сопряженный к нему оператор.

Теорема 4. Операция перехода от оператора \hat{A} к оператору \hat{A}^* связана с операциями над линейными операторами следующими соотношениями:

$$1.\left(AB\right)^{*}=B^{*}A^{*}.$$

$$2.(A^*)^* = A.$$

3.
$$(A+B)^* = A^* + B^*$$
.

$$4. \left(\lambda \cdot A\right)^* = \overline{\lambda} \cdot A^*.$$

$$5.(A^{-1})^* = (A^*)^{-1}.$$

Теорема 5. Ранги операторов \hat{A} и \hat{A}^* равны.

Теорема 6. Im \perp KerÂ*; Ker \perp ImÂ*.

Теорема 7. $U_n = \operatorname{Im} \hat{A} \oplus \operatorname{Ker} \hat{A}^*$; $U_n = \operatorname{Im} \hat{A}^* \oplus \operatorname{Ker} \hat{A}$.

Самосопряженный оператор и его свойства

Самосопряженный оператор $\hat{\mathbf{A}}$: $U_n \to U_n$ совпадает со своим сопряженным $\hat{\mathbf{A}}^*$: $U_n \to U_n$, т. е. $\forall \, x, \, y \in U_n \quad (\hat{\mathbf{A}} \, x, \, y) = (x, \hat{\mathbf{A}} \, y)$.

В комплексном пространстве \hat{A} называется эрмитовым, в вещественном — симметрическим. Матрица эрмитова оператора в ОНБ удовлетворяет условию $\bar{A} = A^T$.

ра в ОНБ удовлетворяет условию
$$\overline{A} = A^T$$
. Например, $A = \begin{pmatrix} 1 & 1-j \\ 1+j & 2 \end{pmatrix}$ — эрмитова матрица.

Матрица симметрического оператора $A = A^T$.

Например,
$$A = \begin{pmatrix} 1 & 5 \\ 5 & -3 \end{pmatrix}$$
 — симметрическая матрица.

Теорема о собственных значениях эрмитова оператора. Все корни характеристического многочлена эрмитова оператора вещественны, иными словами, эрмитов оператор имеет n собственных значений (с учетом их кратностей).

Замечание. Можно доказать, что самосопряженный оператор в евклидовом пространстве E_n имеет n собственных значений (с учетом их кратностей).

Теорема о собственных векторах самосопряженного оператора. Собственные векторы, соответствующие попарно различным собственным значениям самосопряженного оператора, взаимно ортогональны.

Теорема о структуре самосопряженного оператора. Самосопряженный оператор в n-мерном пространстве есть оператор простой структуры, причем в пространстве существует ОНБ из собственных векторов оператора, в котором его матрица имеет диагональный вид.

Теорема. k-кратному собственному значению самосопряженного оператора соответствует ровно k линейно независимых собственных векторов.

Унитарные и ортогональные операторы

Оператор $\hat{\mathbb{U}}$ унитарного (евклидова) пространства называется унитарным (ортогональным), если $\hat{\mathbb{U}} \cdot \hat{\mathbb{U}}^* = \hat{\mathbb{U}}^* \cdot \hat{\mathbb{U}} = \hat{\mathbb{E}}$ или на матричном языке $U \cdot \bar{U}^T = \bar{U}^T \cdot U = E \left(U U^T = U^T U = E \right)$ для матрицы U оператора $\hat{\mathbb{U}}$ в ОНБ пространства.

Комплексная матрица U называется унитарной, если $U^{-1} = \overline{U}^T$. Вещественная матрица U называется ортогональной, если $U^{-1} = U^T$.

Критерий унитарности (ортогональности) оператора

Пусть $\hat{\mathbf{U}}$ — линейный оператор в унитарном (евклидовом) пространстве L_n . Тогда следующие условия эквивалентны между собой:

- $-\hat{\mathbf{U}}$ унитарен (ортогонален);
- матрица оператора U в любом ОНБ в L унитарна (ортогональна);
 - Û переводит ОНБ в ОНБ;
 - $-\forall x, y \in L: (\hat{\mathbf{U}}x, \hat{\mathbf{U}}y) = (x, y);$
 - $\ \forall x \in L : (\hat{\mathbf{U}}x, \, \hat{\mathbf{U}}x) = (x, \, x).$

Из этой теоремы виден геометрический смысл унитарного (ортогонального) оператора: он сохраняет длины векторов и углы между ними.

Пример. Линейный оператор $\hat{A}: R^3 \to R^3$ в базисе векторов (a_1,a_2,a_3) имеет матрицу $A=\begin{pmatrix} 2/3 & 1 & 0 \\ -1 & 0 & 0 \\ 2/3 & 0 & 1 \end{pmatrix}$. Выяснить, является ли

оператор $\hat{\mathbf{A}}$ ортогональным, если разложение векторов (a_1,a_2,a_3) в ортонормированном базисе имеет вид $a_1=e_2+e_3; a_2=e_1+e_3;$ $a_3=e_1+e_2.$

Решение

Найдем матрицу Грама в базисе (a_1, a_2, a_3) . Для этого вычислим скалярные произведения базисных векторов:

$$a_1 \cdot a_1 = 2, \ a_1 \cdot a_2 = 1, \ a_1 \cdot a_3 = 1, \ a_2 \cdot a_2 = 2, \ a_2 \cdot a_3 = 1, \ a_3 \cdot a_3 = 2.$$
 Тогда $G = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$.

Обратную матрицу находим методом Гаусса:

$$\begin{pmatrix} 2 & 1 & 1 & | 1 & 0 & 0 \\ 1 & 2 & 1 & | 0 & 1 & 0 \\ 1 & 1 & 2 & | 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & | 0 & 0 & 1 \\ 1 & 2 & 1 & | 0 & 1 & 0 \\ 2 & 1 & 1 & | 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & | 0 & 0 & 1 \\ 0 & 1 & -1 & | 0 & 1 & -1 \\ 0 & -1 & -3 & | 1 & 0 & -2 \end{pmatrix} \sim \\ \sim \begin{pmatrix} 1 & 1 & 2 & | 0 & 0 & 1 \\ 0 & 1 & -1 & | 0 & 1 & -1 \\ 0 & 0 & -4 & | 1 & 1 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & | 0 & 0 & 1 \\ 0 & 1 & -1 & | 0 & 1 & -1 \\ 0 & 0 & 1 & | -1/4 & 3/4 \end{pmatrix} \sim \\ \sim \begin{pmatrix} 1 & 1 & 0 & | 1/2 & 1/2 & -1/2 \\ 0 & 1 & 0 & | -1/4 & 3/4 & -1/4 \\ 0 & 0 & 1 & | -1/4 & 3/4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | 3/4 & -1/4 & -1/4 \\ 0 & 1 & 0 & | -1/4 & 3/4 & -1/4 \\ 0 & 0 & 1 & | -1/4 & 3/4 \end{pmatrix}.$$

$$G^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}.$$

Теперь найдем матрицу оператора \hat{A}^* :

$$A^* = G^{-1}A^TG = G^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} 2/3 & -1 & 2/3 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & -3 & 1 \\ 7/3 & 1 & -5/3 \\ -5/3 & 1 & 7/3 \end{pmatrix} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 0 & -4 & 0 \\ 4 & 8/3 & 0 \\ 0 & 8/3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 2/3 & 0 \\ 0 & 2/3 & 1 \end{pmatrix}.$$

Проверяем условие ортогональности оператора:

$$AA^* = \begin{pmatrix} 2/3 & 1 & 0 \\ -1 & 0 & 0 \\ 2/3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 2/3 & 0 \\ 0 & 2/3 & 1 \end{pmatrix} = E.$$

Значит, оператор Â является ортогональным.

Свойства унитарных матриц

1. $U\bar{U}^T = E$, т. е. $\sum_{k=1}^n u_{ik}\bar{u}_{kj} = \delta_{ij}$ (строки матрицы U являются попарно ортогональными векторами единичной длины).

$$2. \ \overline{U}^T U = E, \text{ т. e. } \sum_{k=1}^n \overline{u}_{ki} u_{kj} = \delta_{ij}$$
 (столбцы матрицы U являются

попарно ортогональными векторами единичной длины).

- $3. \hat{m{U}}^T$ и $\hat{m{U}}^{-1}$ унитарные матрицы.
- 4. $|\det U| = 1$.

Следствие 1. Унитарный (ортогональный) оператор невырожден.

Следствие 2. Обратный к унитарному оператору унитарный (ортогональный).

Теорема о спектре унитарного оператора

Если $\hat{\mathbf{U}}$ — унитарный (ортогональный) оператор и $\lambda \in SpU$, то $|\lambda| = 1$.

Теорема о структуре унитарного оператора в комплексном пространстве

Унитарный оператор в унитарном пространстве U_n есть оператор простой структуры и существует в U_n ОНБ из собственных векторов оператора $\hat{\mathbf{U}}$, в котором его матрица имеет диагональный вид.

Теорема. Любой ортогональный оператор $\hat{P} \neq \hat{E}$ в двумерном евклидовом пространстве (в плоскости) R^2 есть либо поворот, либо осевая симметрия (зеркальное отражение).

Упражнения для самостоятельной подготовки

1. Линейный оператор $\hat{\mathbf{A}}$: $R^3 \to R^3$ в базисе векторов (a_1,a_2,a_3)

имеет матрицу
$$A = \begin{pmatrix} 1 & 1 & 3 \\ 0 & 5 & -1 \\ 2 & 7 & -3 \end{pmatrix}$$
. Найти матрицу сопряженного

оператора \hat{A}^* в том же базисе, если разложение векторов (a_1, a_2, a_3) в ортонормированном базисе имеет вид $a_1 = e_1 + 2e_2 + e_3$; $a_2 = e_1 + e_2 + 2e_3$; $a_3 = e_1 + e_2$.

- 2. В пространстве многочленов P_2 задано скалярное произведение $(p, q) = a_0b_0 + a_1b_1 + a_2b_2$, где $p(x) = a_0 + a_1x + a_2x^2$, $q(x) = b_0 + b_1x + b_2x^2$. Найти матрицы оператора дифференцирования $\widehat{\mathbf{D}}$ и сопряженного оператора $\widehat{\mathbf{D}}^*$ в базисе $\left(x^2/2 x/2, x^2 1, x^2/2 + x/2\right)$.
- 3. В евклидовом пространстве R^3 линейный оператор Â переводит систему векторов (a_1, a_2, a_3) в систему векторов (b_1, b_2, b_3) . Является ли этот оператор самосопряжённым, если: $a_1 = (0, 1, 1)$; $a_2 = (1, 0, 1)$; $a_3 = (1, 1, 0)$; $b_1 = (2, 3, 1)$; $b_2 = (-1, 0, 3)$; $b_3 = (-5, 1, 4)$?

- 4. Выяснить, являются ли следующие операторы пространства V_3 самосопряженными:
 - а) оператор проектирования на прямую;
 - б) оператор проектирования на плоскость;
 - в) оператор зеркального отражения относительно плоскости;
 - г) оператор поворота на угол ф вокруг координатной оси;
 - д) оператор растяжения.
 - 5. Даны $G = \begin{pmatrix} 2 & j \\ -j & 0 \end{pmatrix}$ матрица Грама некоторого базиса

и
$$A = \begin{pmatrix} 0 & j \\ -2j & 0 \end{pmatrix}$$
 — матрица линейного оператора в этом базисе.

Выяснить, является ли оператор эрмитовым? унитарным?

3. Квадратичные формы в евклидовом пространстве

3.1. Определение квадратичной формы. Матрица квадратичной формы

Квадратичной формой от n вещественных переменных $x_1, x_2, ..., x_n$ называется числовая функция вида $F(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$, где $a_{ij} \in R$ $(a_{ij} = a_{ji})$ называются коэффициентами

квадратичной формы.

Симметричная матрица $A = \left(a_{ij}\right)_{n,n}$ из коэффициентов квадратичной формы называется матрицей квадратичной формы. Например, матрица квадратичной формы

$$F\left(x_1,x_2,x_3\right)=3x_1^2+2x_2^2-x_3^2-2x_1x_2+6x_2x_3$$
 имеет вид $A=\begin{pmatrix}3&-1&0\\-1&2&3\\0&3&-1\end{pmatrix}$.

Пусть в некотором ОНБ вектор х имеет координатный стол-

бец
$$X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$$
. Тогда квадратичную форму $F(x,x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$

можно записать в матричном виде $F(x,x) = X^T A X$ или в операторном виде F(x,x) = (x,Ax) = (Ax,x), где A — самосопряженный оператор в R_n , соответствующий матрице A.

Пример 1. Найти (по определению) матрицу квадратичной формы $F(x_1, x_2) = 3x_1^2 - x_1x_2 + 6x_2^2$ в базисе $e_1 = -i + 2j, e_2 = i - j$. Записать квадратичную форму в этом базисе.

Решение

При переходе от одного базиса к другому в пространстве R^2 формулы преобразования координат имеют вид:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = T \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}$$
, где $T-$ матрица перехода;

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 — координатный столбец произвольного вектора (точ-

ки) в том базисе, в котором задана квадратичная форма;

$$egin{pmatrix} x_1' \ x_2' \end{pmatrix}$$
— координатный столбец этого же вектора (точки) в ба-

зисе (e_1, e_2) .

В нашем случае имеем:
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \end{pmatrix}$$
 или $\begin{cases} x_1 = -x_1' + x_2', \\ x_2 = 2x_1' - x_2'. \end{cases}$

Подставим эти формулы преобразования в квадратичную форму. Получим

$$F(x'_1, x'_2) = 3(-x'_1 + x'_2)^2 - (-x'_1 + x'_2)(2x'_1 - x'_2) + 6(2x'_1 - x'_2)^2 =$$

$$= 29x'_1^2 - 33x'_1x'_2 + 10x'_2^2.$$

Т. о.
$$F(x'_1, x'_2) = 29x'_1{}^2 - 33x'_1x'_2 - 4x'_2{}^2$$
, $A = \begin{pmatrix} 29 & -\frac{33}{2} \\ -\frac{33}{2} & 10 \end{pmatrix}$ — матри-

ца квадратичной формы в базисе (e_1, e_2) .

Определение. Квадратичная форма F(x, x), заданная в линейном пространстве L_n , называется *положительно* (*отрицательно*) *определенной*, если $\forall x \in L_n \ (x \neq 0) \ F(x, x) > 0 \ (F(x, x) < 0)$.

Пусть A — матрица квадратичной формы F(x, x) и

$$D_{1} = a_{11}, D_{2} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \dots, D_{n} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

- последовательность главных миноров матрицы A.

Критерий Сильвестра:

- для того чтобы квадратичная форма была положительно определенной, необходимо и достаточно, чтобы все главные миноры ее матрицы были положительны, т. е. $D_i > 0$, i = 1, 2, ..., n;
- для того чтобы квадратичная форма была отрицательно определенной, необходимо и достаточно, чтобы имели место неравенства $(-1)^i \cdot D_i > 0$, i = 1,...,n (знаки главных миноров чередуются, причем $D_1 < 0$).

Пример 2. Найти, если возможно, все значения параметра λ, при которых квадратичная форма

$$F(x_1, x_2, x_3, x_4) = x_1^2 + 2x_2^2 + 3x_3^2 + 4x_4^2 - 2\lambda x_1 x_2 - 4\lambda x_1 x_3 + x_2 x_4$$

является положительно (отрицательно) определенной.

Решение

Найдем главные миноры матрицы квадратичной формы.

$$A = \begin{pmatrix} 1 & -\lambda & -2\lambda & 0 \\ -\lambda & 2 & 0 & 1 \\ -2\lambda & 0 & 3 & 0 \\ 0 & 1 & 0 & 4 \end{pmatrix}, D_1 = 1; D_2 = \begin{vmatrix} 1 & -\lambda \\ -\lambda & 2 \end{vmatrix} = 2 - \lambda^2;$$

$$D_3 = \begin{vmatrix} 1 & -\lambda & -2\lambda \\ -\lambda & 2 & 0 \\ -2\lambda & 0 & 3 \end{vmatrix} = \begin{vmatrix} 1 & -\lambda & -2\lambda \\ 0 & 2 - \lambda^2 & -2\lambda^2 \\ 0 & -2\lambda^2 & 3 - 4\lambda^2 \end{vmatrix} = \begin{vmatrix} 2 - \lambda^2 & -2\lambda^2 \\ -2\lambda^2 & 3 - 4\lambda^2 \end{vmatrix} =$$

$$= (2 - \lambda^2)(3 - 4\lambda^2) - (-2\lambda^2)^2 = 6 - 11\lambda^2;$$

$$D_4 = \begin{vmatrix} 1 & -\lambda & -2\lambda & 0 \\ -\lambda & 2 & 0 & 1 \\ -2\lambda & 0 & 3 & 0 \\ 0 & 1 & 0 & 4 \end{vmatrix} = \begin{vmatrix} 1 & -\lambda & -2\lambda & 4\lambda \\ -\lambda & 2 & 0 & -7 \\ -2\lambda & 0 & 3 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -2\lambda & 4\lambda \\ -\lambda & 0 & -7 \\ -2\lambda & 3 & 0 \end{vmatrix} =$$

$$= (-28\lambda^2 - 12\lambda^2) - (-21) = -40\lambda^2 + 21.$$

Применяя критерий Сильвестра для положительно определенной квадратичной формы, составляем систему неравенств:

$$\begin{cases} 1 > 0, \\ 2 - \lambda^2 > 0, \\ 6 - 11\lambda^2 > 0, \\ 21 - 40\lambda^2 > 0. \end{cases}$$

Решая систему, получим, что при $|\lambda| < \sqrt{21/40}\,$ квадратичная форма будет положительно определенной.

Для отрицательно определенной квадратичной формы система неравенств имеет вид:

$$\begin{cases} 1 < 0, \\ 2 - \lambda^2 > 0, \\ 6 - 11\lambda^2 < 0, \\ 21 - 40\lambda^2 > 0. \end{cases}$$

Очевидно, что данная система решений не имеет, следовательно, ни при каких значениях λ квадратичная форма не будет отрицательно определенной.

Основная задача, связанная с квадратичными формами, следующая: с помощью линейного преобразования переменных квадратичной формы привести квадратичную форму к наиболее простому (каноническому) виду.

Каноническим видом квадратичной формы называется квадратичная форма, в которой содержатся только лишь квадраты переменных, т.е. отсутствуют в ней слагаемые, содержащие произведения попарно различных переменных $x_i x_i$, $i \neq j$.

Теорема. В *n*-мерном евклидовом пространстве R^n задана квадратичная форма $F(x,x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$. Тогда в R^n существу-

ет ортонормированный базис из собственных векторов матрицы $A = \left(a_{ij}\right)_{n,n}$ данной квадратичной формы, в котором квадратичная форма принимает канонический вид $F\left(x,x\right) = \sum_{i=1}^{n} \lambda_i \left(x_i'\right)^2$

, где x_i' — координаты векторов x в данном базисе; λ_i — собственные значения матрицы квадратичной формы.

Пример. Привести к каноническому виду квадратичную форму $F(x_1,x_2) = 9x_1^2 - 4x_1x_2 + 6x_2^2$, указать соответствующий базис.

Решение

Составим матрицу квадратичной формы: $A = \begin{pmatrix} 9 & -2 \\ -2 & 6 \end{pmatrix}$. Най-

дем собственные векторы и собственные значения матрицы A, так как матрица квадратичной формы имеет диагональный вид в ОНБ из собственных векторов.

Составляем характеристический многочлен матрицы и находим его корни:

$$|A - \lambda E| = \begin{vmatrix} 9 - \lambda & -2 \\ -2 & 6 - \lambda \end{vmatrix} = 0, (9 - \lambda)(6 - \lambda) - 4 = 0, \quad \lambda^2 - 15\lambda + 50 = 0.$$

Корни этого уравнения: $\lambda_1 = 5$, $\lambda_2 = 10$.

Собственные векторы, соответствующие собственному значению $\lambda = 5$, найдем из матричного уравнения $(A - 5E) X = \theta$.

$$A-5E = \begin{pmatrix} 4 & -2 \ -2 & 1 \end{pmatrix}$$
. $\begin{pmatrix} 4 & -2 \ -2 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \ \alpha_2 \end{pmatrix} = \begin{pmatrix} 0 \ 0 \end{pmatrix} \iff \alpha_2 = 2\alpha_1$ — общее решение ОСЛУ.

Пусть $\alpha_1 = 1$. Тогда $a_1 = \binom{1}{2}$ — собственный вектор, отвечающий собственному значению $\lambda = 5$.

Аналогично для
$$\lambda = 10$$
: $(A - 10E) X = \theta$. $A - 10E = \begin{pmatrix} -1 & -2 \\ -2 & -4 \end{pmatrix}$.

$$\begin{pmatrix} -1 & -2 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \alpha_1 = -2\alpha_2 - \text{общее решение ОСЛУ}.$$

Пусть $\alpha_2 = 1$. Тогда $a_2 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ — собственный вектор, отвечающий собственному значению $\lambda = 10$.

Найдем ОНБ из собственных векторов. Так как векторы a_1 и a_2 ортогональны, то нам нужно только нормировать эти векторы: $\|a_1\| = \|a_1\| = \sqrt{5}$, откуда $e_1 = \frac{a_1}{\|a_1\|} = \frac{1}{\sqrt{5}} \binom{1}{2}$, $e_2 = \frac{a_2}{\|a_2\|} = \frac{1}{\sqrt{5}} \binom{-2}{1}$.

Итак, получили ОНБ (e_1, e_2) , в котором матрица квадратичной формы имеет вид: $A' = \begin{pmatrix} 5 & 0 \\ 0 & 10 \end{pmatrix}$, т. е. нашли канонический вид квадратичной формы:

$$F(x_1', x_2') = 5x_1'^2 + 10x_2'^2$$
.

3.2. Приложение квадратичных форм к задачам аналитической геометрии

Рассмотрим общее уравнение кривой второго порядка

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + a_1x + a_2y + a = 0.$$
 (*)

$$F(x, y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2$$
 — квадратичная форма.

Эту квадратичную форму с помощью ортогонального оператора (оператора поворота) можно привести к сумме квадратов. В ОНБ из собственных векторов матрицы квадратичной формы уравнение (*) будет иметь вид:

$$\lambda_1 x'^2 + \lambda_2 y'^2 + a_1' x' + a_2' y' + a = 0$$

которое можно путем выделения полных квадратов привести к каноническому виду.

Точно также можно привести общее уравнение поверхности второго порядка

$$a_{11}x^2 + 2a_{12}xy + 2a_{13}xz + a_{22}y^2 + 2a_{23}yz + a_{33}z^2 + a_1x + a_2y + a_3z + a = 0$$

к каноническому виду.

Пример 1. Привести уравнение кривой второго порядка к каноническому виду, определить ее тип и построить соответствующую линию: $x_1^2 - 2x_1x_2 + x_2^2 - 10x_1 - 6x_2 + 25 = 0$.

Решение

Квадратичная форма, соответствующая данному уравнению: $F(x_1,x_2) = x_1^2 - 2x_1x_2 + x_2^2$. Приведем ее к каноническому виду и найдем соответствующий ОНБ.

Матрица квадратичной формы имеет вид:
$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
.

Находим собственные значения и собственные векторы А.

$$\begin{vmatrix} 1-\lambda & -1 \\ -1 & 1-\lambda \end{vmatrix} = (1-\lambda)^2 - 1 = \lambda^2 - 2\lambda \implies \{\lambda\} = \{0; 2\}.$$

Найдем собственные векторы, соответствующие $\lambda_1 = 0$.

$$(A-\lambda_{_1}E)X=0\Rightarrow\begin{pmatrix}1&-1\\-1&1\end{pmatrix}\begin{pmatrix}\alpha_{_1}\\\alpha_{_2}\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}\Rightarrow\alpha_{_1}-\alpha_{_2}=0\Rightarrow\ \alpha_{_1}=\alpha_{_2}.$$

$$a_{_1}=\begin{pmatrix}1\\1\end{pmatrix}-\text{ собственный вектор, отвечающий собственному}$$
 значению $\lambda=0$.

Аналогично найдем собственные векторы, соответствующие собственному значению $\lambda_2 = 2$.

$$(A-\lambda_2 E)X=\theta \Rightarrow \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}\begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \alpha_1+\alpha_2=0 \Rightarrow \ \alpha_1=-\alpha_2.$$

$$a_2=\begin{pmatrix} -1 \\ 1 \end{pmatrix} -\text{ собственный вектор, отвечающий собственному}$$
 значению $\lambda=2$.

Нормируем векторы a_1 и a_2 : $||a_1|| = \sqrt{2}$, $||a_2|| = \sqrt{2}$.

Векторы
$$e_1 = \binom{1/\sqrt{2}}{1/\sqrt{2}}, e_2 = \binom{-1/\sqrt{2}}{1/\sqrt{2}}$$
 образуют правый ОНБ, что

означает равенство единице определителя матрицы перехода $\begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$.

Замечание. Требование равенства единице определителя матрицы перехода от ОНБ к ОНБ соответствует повороту системы координат.

Квадратичная форма в базисе (e_1, e_2) имеет вид: $F(x_1', x_2') = 2(x_2')^2$.

Преобразуем линейную форму $f(x_1,x_2) = -10x_1 - 6x_2$ по формулам:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \end{pmatrix} \Rightarrow \begin{cases} x_1 = \frac{1}{\sqrt{2}} x_1' - \frac{1}{\sqrt{2}} x_2', \\ x_2 = \frac{1}{\sqrt{2}} x_1' + \frac{1}{\sqrt{2}} x_2'. \end{cases}$$

$$f(x_1', x_2') = -10\left(\frac{1}{\sqrt{2}}x_1' - \frac{1}{\sqrt{2}}x_2'\right) - 6\left(\frac{1}{\sqrt{2}}x_1' + \frac{1}{\sqrt{2}}x_2'\right) =$$

$$= -\frac{16}{\sqrt{2}}x_1' + \frac{4}{\sqrt{2}}x_2' = -8\sqrt{2}x_1' + 2\sqrt{2}x_2'.$$

В новой системе координат ($Ox_1'x_2'$) уравнение данной кривой примет вид:

$$2x_2'^2 - 8\sqrt{2}x_1' + 2\sqrt{2}x_2' + 25 = 0;$$

выделяем полный квадрат для x_2' и получаем $\left(x_2' - \frac{1}{\sqrt{2}}\right)^2 =$ $= -4\left(x_1' + \frac{3}{\sqrt{2}}\right)$ — каноническое уравнение параболы с вершиной $C\left(\frac{-3}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ и осью симметрии, параллельной оси Ox_1' .

Выполним построение:

Рис. 5.4

Пример 2. Привести уравнения поверхностей второго порядка к каноническому виду; определить тип поверхности и выполнить построение:

a)
$$2x_1^2 + x_2^2 + 3x_3^2 - 4\sqrt{2}x_2x_3 + \sqrt{2}x_2 + x_3 = \frac{43}{4}$$
;

6)
$$6x_1x_2 + 8x_2^2 - x_3^2 = 9$$
.

Решение

а) Приведем квадратичную форму к каноническому виду и найдем ОНБ из собственных векторов матрицы квадратичной формы:

$$F(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + 3x_3^2 - 4\sqrt{2}x_2x_3;$$

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & -2\sqrt{2} \\ 0 & -2\sqrt{2} & 3 \end{pmatrix}.$$

Для этого составим характеристический многочлен матрицы A и найдем его корни.

$$\begin{vmatrix} 2-\lambda & 0 & 0 \\ 0 & 1-\lambda & -2\sqrt{2} \\ 0 & -2\sqrt{2} & 3-\lambda \end{vmatrix} = (2-\lambda)[(1-\lambda)(3-\lambda)-8] = (2-\lambda)(\lambda^2-4\lambda-5),$$
$$\{\lambda\} = \{2;5;-1\}.$$

Найдем собственные векторы матрицы A.

$$\lambda_1 = 2: \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & -2\sqrt{2} \\ 0 & -2\sqrt{2} & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow$$

$$\begin{cases} \alpha_2 + 2\sqrt{2}\alpha_3 = 0, \\ 2\sqrt{2}\alpha_2 + \alpha_3 = 0, \end{cases} \Rightarrow \begin{cases} x_2 = 0 \cdot \alpha_1, \\ x_3 = 0 \cdot \alpha_1, \end{cases} \Rightarrow a_1 = (1, 0, 0)^T.$$

$$\lambda_{2} = 5: \begin{pmatrix} -3 & 0 & 0 \\ 0 & -4 & -2\sqrt{2} \\ 0 & -2\sqrt{2} & -2 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} \alpha_{1} = 0, \\ \sqrt{2}\alpha_{2} + \alpha_{3} = 0, \end{cases} \Rightarrow$$
$$\Rightarrow \begin{cases} \alpha_{1} = 0 \cdot \alpha_{2}, \\ \alpha_{3} = -\sqrt{2}\alpha_{2}, \end{cases} \Rightarrow a_{2} = (0, \sqrt{2}, -2)^{T}.$$

$$\lambda_{3} = -1: \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & -2\sqrt{2} \\ 0 & -2\sqrt{2} & 4 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} \alpha_{1} = 0, \\ \alpha_{2} - \sqrt{2}\alpha_{3} = 0, \end{cases} \Rightarrow$$
$$\Rightarrow a_{3} = (0, 2, \sqrt{2}).$$

Пронормируем ортогональную систему векторов a_1, a_2, a_3 :

$$||a_1|| = 1; ||a_2|| = \sqrt{6}; ||a_3|| = \sqrt{6}.$$

Получим ОНБ:
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 0 \\ 1/\sqrt{3} \\ -\sqrt{2/3} \end{pmatrix}$, $e_3 = \begin{pmatrix} 0 \\ \sqrt{2/3} \\ 1/\sqrt{3} \end{pmatrix}$. (Просле-

дим за тем, чтобы определитель матрицы перехода был равен 1). Квадратичная форма в базисе (e_1, e_2, e_3) имеет вид:

$$F(x_1', x_2', x_3') = 2x_1'^2 + 5x_2'^2 - x_3'^2.$$

Преобразуем линейную форму $f(x_1,x_2,x_3) = \sqrt{2}x_2 + x_3$ по формулам:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{3} & \sqrt{2/3} \\ 0 & -\sqrt{2/3} & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} \Rightarrow \begin{cases} x_1 = x_1', \\ x_2 = \frac{1}{\sqrt{3}} x_2' + \frac{\sqrt{2}}{\sqrt{3}} x_3', \\ x_3 = -\frac{\sqrt{2}}{\sqrt{3}} x_2' + \frac{1}{\sqrt{3}} x_3' \end{cases}$$

$$f(x'_1, x'_2, x'_3) = \sqrt{2} \left(\frac{1}{\sqrt{3}} x'_2 + \frac{\sqrt{2}}{\sqrt{3}} x'_3 \right) + \left(-\frac{\sqrt{2}}{\sqrt{3}} x'_2 + \frac{1}{\sqrt{3}} x'_3 \right) =$$

$$= \frac{\sqrt{2}}{\sqrt{3}} x'_2 + \frac{2}{\sqrt{3}} x'_3 - \frac{\sqrt{2}}{\sqrt{3}} x'_2 + \frac{1}{\sqrt{3}} x'_3 = \frac{3}{\sqrt{3}} x'_3 = \sqrt{3} x'_3.$$

В новой системе координат ($Ox'_1x'_2x'_3$) данное уравнение поверхности примет вид:

$$2x_{1}^{\prime 2} + 5x_{2}^{\prime 2} - x_{3}^{\prime 2} + \sqrt{3}x_{3}^{\prime} = \frac{43}{4} \Rightarrow 2x_{1}^{\prime 2} + 5x_{2}^{\prime 2} - \left(x_{3}^{\prime 2} - \sqrt{3}x_{3}^{\prime} + \frac{3}{4}\right) = \frac{43}{4} - \frac{3}{4};$$

$$2x_{1}^{\prime 2} + 5x_{2}^{\prime 2} - \left(x_{3}^{\prime} - \frac{\sqrt{3}}{2}\right)^{2} = 10; \frac{x_{1}^{\prime 2}}{5} + \frac{x_{2}^{\prime 2}}{2} - \frac{\left(x_{3}^{\prime} - \sqrt{3}/2\right)^{2}}{10} = 1$$

— уравнение однополостного гиперболоида.

Для упрощения построения поверхности найдем матрицу перехода от новой системы координат $(Ox'_1x'_2x'_3)$ к старой системе $(Ox_1x_2x_3)$:

$$\begin{pmatrix} 1 & 0 & 0 & | 1 & 0 & 0 \\ 0 & 1/\sqrt{3} & \sqrt{2/3} & | 0 & 1 & 0 \\ 0 & -\sqrt{2/3} & 1/\sqrt{3} & | 0 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | 1 & 0 & 0 \\ 0 & 1 & \sqrt{2} & | 0 & \sqrt{3} & 0 \\ 0 & -\sqrt{2} & 1 & | 0 & 0 & \sqrt{3} \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & | 1 & 0 & 0 \\ 0 & 1 & \sqrt{2} & | 0 & \sqrt{3} & 0 \\ 0 & 0 & 3 & | 0 & \sqrt{6} & \sqrt{3} \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | 1 & 0 & 0 \\ 0 & 1 & \sqrt{2} & | 0 & \sqrt{3} & 0 \\ 0 & 0 & 1 & | 0 & \sqrt{2/3} & \sqrt{1/3} \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & | 1 & 0 & 0 \\ 0 & 1 & 0 & | 0 & \sqrt{1/3} & -\sqrt{2/3} \\ 0 & 0 & 1 & | 0 & \sqrt{2/3} & \sqrt{1/3} \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & \sqrt{1/3} & -\sqrt{2/3} \\ 0 & \sqrt{2/3} & \sqrt{1/3} \end{pmatrix}$$

— искомая матрица определяет поворот системы координат вокруг оси Ox'_1 .

Выполним построение:

Рис. 5.5

б) Решаем задачу по аналогии с предыдущей:

$$A = \begin{pmatrix} 0 & 3 & 0 \\ 3 & 8 & 0 \\ 0 & 0 & -1 \end{pmatrix}. \begin{vmatrix} -\lambda & 3 & 0 \\ 3 & 8 - \lambda & 0 \\ 0 & 0 & -1 - \lambda \end{vmatrix} = (-1 - \lambda)(\lambda^{2} - 8\lambda - 9),$$

$$\{\lambda\} = \{9; -1; -1\}.$$

$$\lambda_{1} = 9. \begin{pmatrix} -9 & 3 & 0 \\ 3 & -1 & 0 \\ 0 & 0 & -10 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} 3\alpha_{1} - \alpha_{2} = 0 \\ \alpha_{3} = 0 \end{cases} \Rightarrow a_{1} = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}.$$

$$\lambda_{2,3} = -1. \begin{pmatrix} 1 & 3 & 0 \\ 3 & 9 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \alpha_{1} = -3\alpha_{2} + 0 \cdot \alpha_{3} \Rightarrow$$

$$\Rightarrow X = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \alpha_{2} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \alpha_{3}. \quad X_{2} = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}, X_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

В данном примере получили, что собственный вектор a_3 , соответствующий собственному значению $\lambda=-1$, ортогонален векторам a_1 и a_2 . В общем случае вектор a_3 можно найти как векторное произведение векторов a_1 и a_2 , т. е.

$$a_1 \times a_2 = \begin{vmatrix} i & j & k \\ 1 & 3 & 0 \\ -3 & 1 & 0 \end{vmatrix} = 10k \Rightarrow a_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$
 Итак,
$$\left\{ a_1 = \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}; a_2 = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}; a_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} - \text{ ортогональная система}$$

собственных векторов матрицы A.

$$\|a_1\| = \sqrt{10}; \ \|a_2\| = \sqrt{10}; \ \|a_3\| = 1.$$

$$\begin{cases} e_1 = \begin{pmatrix} 1/\sqrt{10} \\ 3/\sqrt{10} \\ 0 \end{pmatrix}; \ e_2 = \begin{pmatrix} -3/\sqrt{10} \\ 1/\sqrt{10} \\ 0 \end{pmatrix}; \ e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{cases}$$

— ОНБ пространства R^3 .

В этом ОНБ данное уравнение примет вид: $9x_1'^2 - x_2'^2 - x_3'^2 = 9$ или $\frac{{x_1'}^2}{1} - \frac{{x_2'}^2}{9} - \frac{{x_3'}^2}{9} = 1$ — каноническое уравнение двуполостного гиперболоида.

Матрица перехода от системы $(Ox'_1x'_2x'_3)$ к $(Ox_1x_2x_3)$ имеет вид:

$$\begin{pmatrix} 1/\sqrt{10} & 3/\sqrt{10} & 0 \\ -3/\sqrt{10} & 1/\sqrt{10} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Выполним построение:

Рис. 5.6

Упражнения для самостоятельной подготовки

- 1. Определить, какие квадратичные формы являются положительно либо отрицательно определенными, а какие нет:
 - a) $x_1^2 15x_2^2 + 4x_1x_2 2x_1x_3 + 6x_2x_3$;
 - 6) $12x_1x_2 12x_1x_3 + 6x_2x_3 11x_1^2 6x_2^2 6x_3^2$;
 - B) $x_1^2 + 4x_2^2 + 4x_2^2 + 8x_4^2 + 8x_2x_4$.
- 2. Привести уравнения кривых второго порядка к каноническому виду, определить тип и построить соответствующую линию:
 - a) $2x_1^2 + 4x_1x_2 + 5x_2^2 6x_1 8x_2 1 = 0$;
 - 6) $5x_1^2 + 12x_1x_2 22x_1 12x_2 19 = 0$.
- 3. Привести уравнения поверхностей второго порядка к каноническому виду; определить тип поверхности и выполнить построение:
 - a) $7x_1^2 + 6x_2^2 + 5x_3^2 4x_1x_2 4x_2x_3 6x_1 24x_2 + 18x_3 + 30 = 0$;
 - 6) $2x_1^2 + 2x_2^2 + 3x_2^2 + 4x_1x_2 + 2x_1x_2 + 2x_2x_2 4x_1 + 6x_2 2x_2 + 3 = 0$;
 - B) $x_1^2 2x_2^2 + x_2^2 + 4x_1x_2 10x_1x_2 + 4x_2x_2 + 2x_1 + 4x_2 10x_2 1 = 0$.

Глава 6. ТЕОРИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

1. Основные понятия и определения

Решение различных задач математики, физики, химии и других наук часто приводит к уравнениям, связывающим независимую переменную, искомую функцию и ее производные или дифференциалы. Такие уравнения называются дифференциальными.

Например,

 $1. \frac{dx}{dt} = -kx$ — уравнение радиоактивного распада (k — постоянная распада, x — количество неразложившегося вещества в момент времени t, скорость распада $\frac{dx}{dt}$ пропорциональна количеству распадающегося вещества);

2. $m \frac{d^2 \vec{r}}{dt^2} = \vec{F} \left(t, \vec{r}, \frac{d\vec{r}}{dt} \right)$ — уравнение движения точки массой m под влиянием силы \vec{F} , зависящей от времени, положения точки, определяемого радиус-вектором \vec{r} , и ее скорости $\frac{d\vec{r}}{dt}$. Сила равна произведению массы на ускорение;

3.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 4\pi\rho(x,y,z)$$
 — уравнение Пуассона, которому, в частности, удовлетворяет потенциал $u(x,y,z)$ электростатического поля, $\rho(x,y,z)$ — плотность зарядов.

Если искомая функция является функцией одного аргумента, то дифференциальное уравнение называется обыкновенным.

Порядок дифференциального уравнения — порядок старшей производной, входящей в дифференциальное уравнение.

Определение. Функция $y = \varphi(x)$, $x \in (a,b)$, непрерывная и n раз дифференцируемая на (a,b), называется решением дифференциального уравнения n-го порядка на (a,b), если при подстановке её в уравнение получается тождество на указанном интервале.

Любое дифференциальное уравнение имеет, как правило, бесконечное множество решений.

График решения дифференциального уравнения называют *интегральной кривой*.

Процедура отыскания решений дифференциального уравнения (чаще всего связанная с интегрированием) называется интегрированием дифференциального уравнения.

Универсального метода решения дифференциальных уравнений не существует.

2. Дифференциальные уравнения первого порядка

Общий вид дифференциального уравнения первого порядка F(x,y,y')=0. Обычно это уравнение представляют в форме, разрешенной относительно производной: y'=f(x,y), или в форме, содержащей дифференциалы:

$$M(x, y)dx + N(x, y)dy = 0.$$

Рассмотрим дифференциальное уравнение

$$y' = f(x, y).$$
 (6.1)

Область $D = \{(x,y) \in \mathbb{R}^2 : \exists f(x,y)\} \cup \{(x,y) \in \mathbb{R}^2 : \exists 1/f(x,y)\}$ называется областью определения дифференциального уравнения (6.1).

Пример. $y' = \sqrt{y}$.

Область определения дифференциального уравнения

$$D = \{(x, y) \in \mathbb{R}^2 : -\infty < x < +\infty, 0 < y < +\infty\}.$$

2.1. Геометрическая интерпретация дифференциального уравнения первого порядка и его решений

$$y' = f(x, y), (x, y) \in D.$$

Пусть функция $y = \varphi(x)$ есть решение уравнения. Сопоставим каждой точке (x_0, y_0) , соответствующей интегральной кривой, направленный отрезок, угловой коэффициент которого равен $f(x_0, y_0)$. Получим так называемое *поле направлений* данного уравнения.

Итак, с геометрической точки зрения уравнение y' = f(x, y) определяет на плоскости Oxy поле направлений, а решение этого уравнения есть интегральная кривая, направление касательной к которой в каждой точке совпадает с направлением поля в этой точке.

Пример. Построить приближенно интегральные кривые уравнения $y' = \sqrt{x^2 + y^2}$.

Решение. Построим поле направлений заданного уравнения. Найдем геометрическое место точек плоскости, в которых касательные к искомым интегральным кривым сохраняют постоянное направление. Такие линии называются *изоклинами*. Уравнения изоклин получим, считая $\frac{dy}{dx} = k$, $k \ge 0$, где k — постоянная; $\sqrt{x^2 + y^2} = k$ или $x^2 + y^2 = k^2$.

В данном случае изоклинами являются окружности с центром в начале координат, причем угловой коэффициент каса-

тельных к искомым интегральным кривым равен радиусу этих окружностей. Придавая постоянной k некоторые определенные значения, построим поле направлений (рис. 6.1).

Рис. 6.1

Строим приближенно искомые интегральные кривые (рис. 6.2).

Рис. 6.2

2.2. Задача Коши

Пусть уравнение y' = f(x, y) (6.1) определено в области D, начальные условия дифференциального уравнения: $(x_0, y_0) \in D$, причём $y(x_0) = y_0$. Требуется найти дифференцируемую функцию, удовлетворяющую двум условиям:

- 1. Функция является решением дифференциального уравнения (6.1) на (a,b), т. е. $\forall x \in (a,b) \varphi'(x) = f(x,\varphi(x))$;
- 2. $\varphi(x)$ удовлетворяет заданным начальным условиям, т.е. $\varphi(x_0) = y_0$.

Иными словами, из множества всех решений дифференциального уравнения требуется выделить то решение, которое удовлетворяет заданным начальным условиям. С геометрической точки зрения, из всего семейства интегральных кривых дифференциального уравнения надо выделить ту интегральную кривую, которая проходит через данную точку (x_0, y_0) .

Решение задачи Коши рассмотрим на примере дифференциального уравнения $y' = \sqrt{y}$.

Нетрудно убедиться в том, что y = 0 есть решение данного уравнения (посредством подстановки y = 0 в уравнение).

Пусть $y(x) \neq 0$ — решение дифференциального уравнения.

Тогда
$$\frac{dy(x)}{dx} = \sqrt{y(x)} \Rightarrow \frac{dy(x)}{\sqrt{y(x)}} = dx$$
. Проинтегрируем послед-

нее равенство

$$\int \frac{dy(x)}{\sqrt{y(x)}} = \int dx \Rightarrow \underbrace{2 \cdot \sqrt{y} = x + C}_{\text{общий интеграл}} \Rightarrow y = \frac{(x + C)^2}{4}$$

— общее решение ДУ.

Пусть $y(x_0) = y_0$ — начальные условия дифференциального уравнения.

Для решения задачи Коши необходимо найти значение C (произвольной постоянной), подставляя в общий интеграл вместо x и y начальные условия: $2 \cdot \sqrt{y_0} = x_0 + C \Rightarrow C_0 = 2 \cdot \sqrt{y_0} - x_0$.

Получим
$$y = \frac{\left(x + C_0\right)^2}{4}$$
 или $y = \frac{\left(x + 2 \cdot \sqrt{y_0} - x_0\right)^2}{4}$ — решение за-

дачи Коши, удовлетворяющее заданным начальным условиям. Итак, имеем:

- 1. $y = \frac{(x+C)^2}{4}$; $\forall C \in \mathbb{R}$ бесконечное множество решений дифференциального уравнения.
- 2. Пусть начальные условия: $y(2) = -1 \Rightarrow y = \frac{(x+2\cdot\sqrt{-1}-2)^2}{4}$. Отсюда следует, что задача Коши не имеет решения.
- 3. Пусть начальные условия: $y(2) = 1 \Rightarrow y = \frac{(x + 2 \cdot \sqrt{1 2})^2}{4} \Rightarrow C = 0$. Задача Коши имеет единственное решение $y = \frac{x^2}{4}$.
- 4. Пусть начальные условия: y(2) = 0, тогда задача Коши имеет неединственное решение. А именно, $y = \frac{(x-2)^2}{4}$ и y = 0. Оба решения удовлетворяют заданным начальным условиям.

Таким образом, задача Коши может не иметь решения, иметь единственное решение, иметь неединственное решение.

Сформулируем достаточные условия существования и единственности решения задачи Коши.

Теорема. Если:

- 1. f(x,y) непрерывна (по совокупности своих аргументов x и y) в некоторой области $D^* \subseteq D \subseteq \mathbb{R}^2$;
- 2. $\frac{\partial f(x,y)}{\partial y} = f_y'(x,y)$ непрерывна (по совокупности переменных x и y) в D^* , то для любых начальных условий $y|_{x=x_0} = y_0$,

 $(x_0,y_0) \in D^*$ в некоторой окрестности точки (x_0,y_0) найдётся решение задачи Коши для уравнения y'=f(x,y), удовлетворяющее заданным начальным условиям.

 D^* называется областью единственности.

Определение. Однопараметрическая функция вида $y = \varphi(x, C)$, $x \in (a,b)$, где C — вещественная произвольная постоянная, называется общим решением дифференциального уравнения (6.1) на (a,b), если

- 1) для любого допустимого значения C функция $y = \varphi(x, C)$ является решением дифференциального уравнения, т.е. $\varphi'(x,C) \equiv f(x,\varphi(x,C))$;
- 2) для любых начальных условий $(x_0, y_0) \in D^* \exists ! C = C_0$: $y = \varphi(x, C_0)$ решение задачи Коши для дифференциального уравнения, удовлетворяющее заданным начальным условиям.

Замечание. $\varphi(x, y, C) = 0$, где y = y(x) — решение дифференциального уравнения (6.1) на (a,b) называется *общим интегралом* дифференциального уравнения (6.1).

Определение. Всякое решение, полученное из общего решения (общего интеграла) дифференциального уравнения (6.1) при каком-либо конкретном значении C, называется *частным* решением (частным интегралом) дифференциального уравнения (6.1) на (a,b).

Решение задачи Коши есть частное решение дифференциального уравнения.

Определение. Решение дифференциального уравнения (6.1) называется *особым*, если в каждой его точке нарушается единственность решения задачи Коши.

Замечание. Особое решение дифференциального уравнения нельзя получить из общего решения дифференциального уравнения ни при каком значении C (даже при $C = \infty$).

Тогда в примере п. 2.1 $y = \frac{(x+c)^2}{4}$ — общее решение; $y = \frac{x^2}{4}$ — частное решение; $y \equiv 0$ — особое решение дифференциального уравнения.

Правило решения задачи Коши для дифференциального уравнения первого порядка:

- 1. Находим общее решение дифференциального уравнения (6.1) (общий интеграл).
- 2. Реализуя начальные условия, находим конкретное значение $C = C_0$.
- 3. Подставляя в общее решение значение C_0 , получаем частное решение (частный интеграл) решение задачи Коши, удовлетворяющее заданным начальным условиям.

Некоторые типы дифференциальных уравнений первого порядка, решаемые аналитически, приведены в табл. 6.1.

Таблица 6.1

№	Название	Вид дифференциаль-	Схема решения дифферен-
	дифферен-	ного уравнения	циального уравнения
	циального		
	уравнения		
1	Уравнение	$y' = f(x) \cdot g(y)$	Разделяем переменные
	с разделя- ющимися	или $M_1(x) \cdot N_1(y) dy +$	$\int \frac{dy}{g(y)} = \int f(x)dx$
	перемен- ными	$+M_2(x)\cdot N_2(y)dx = 0$	и интегрируем обе части
			уравнения.
2	Однород- ное	$y' = f\left(\frac{y}{x}\right)$	Подстановка $\frac{y}{x} = p(x)$ приво-
		или	дит уравнение к уравнению
		$y' = f\left(\frac{x}{y}\right)$	с разделяющимися переменными.

Окончание табл. 6.1

№	Название дифферен- циального	Вид дифференциаль- ного уравнения	Схема решения дифферен- циального уравнения
_	уравнения		
3	Линейное	$y' + p(x) \cdot y = g(x)$	Подстановка Бернулли $y(x) = u(x) \cdot v(x)$ приводит
			исходное уравнение к виду: $v\frac{du}{dx} + u\left(\frac{dv}{dx} + p(x)v\right) = g(x).$
			Из условия $\frac{dv}{dx} + p(x)v = 0$
			находим $v(x)$, подставляем
			в уравнение $v \frac{du}{dx} = g(x)$,
			получаем $u(x)$.
4	Уравнение	$y' + p(x) \cdot y = g(x) \cdot y^{\alpha};$	Подстановка Бернулли
	Бернулли	$\alpha \neq 0, \alpha \neq 1$	$y(x) = u(x) \cdot v(x).$
5	Уравнение в полных дифферен-	$M(x,y)dx + N(x,y)dy = 0,$ причем $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	Тогда существует функция $u(x,y): du(x,y) = M(x,y)dx + +N(x,y)dy \Rightarrow$
	циалах		u(x,y) = C — общий интеграл
			дифференциального уравнения.

Пример 1. Решить уравнения

a)
$$(x \cdot y - y)dx + (x \cdot y + x)dy = 0$$
; 6) $x \cdot y \cdot y' = x^2 + y^2$;

B)
$$y' + 2 \cdot x \cdot y = e^{-x^2}$$
; Γ) $2xydx + (x^2 + 3y^2)dy = 0$.

Решение

а) — это уравнение с разделяющимися переменными.

$$y \cdot (x-1)dx = -x \cdot (y+1)dy$$
;

$$\frac{(x-1)}{x}dx = -\frac{(y+1)}{y}dy, \quad y \neq 0, \quad x \neq 0;$$

$$\int (1 - \frac{1}{x}) dx = -\int \left(1 + \frac{1}{y} \right) dy;$$

$$x - \ln|x| = -y - \ln|y| + \ln|C| \Rightarrow \ln|y| - \ln|x| = -(x + y) + \ln|C| \Rightarrow$$

$$\Rightarrow \frac{y}{x} = C \cdot e^{-(x + y)} \Rightarrow$$

$$\Rightarrow y = C \cdot x \cdot e^{-(x + y)}$$

- общее решение уравнения. Решение y=0 входит в общее решение, следовательно, является частным решением уравнения, x=0 особое решение.
 - б) это однородное уравнение, преобразуем к виду

$$\frac{y}{x} \cdot y' = 1 + (\frac{y}{x})^2, x \neq 0.$$

Воспользуемся подстановкой $\frac{y}{x} = p(x) \Rightarrow y = x \cdot p \Rightarrow y' = p + x \cdot p'$.

Подставляем в уравнение, получаем

$$p(p+x \cdot p') = 1 + p^2 \Rightarrow p^2 + x \cdot p \cdot p' = 1 + p^2 \Rightarrow$$

$$\Rightarrow x \cdot p \cdot \frac{dp}{dx} = 1 \Rightarrow pdp = \frac{dx}{x} \Rightarrow \frac{p^2}{2} = \ln|x| + \ln|C| \Rightarrow$$

$$\Rightarrow p^2 = 2 \cdot \ln|x| + 2 \cdot \ln C \Rightarrow \frac{y^2}{x^2} = \ln|C \cdot x^2| \Rightarrow$$

$$\Rightarrow y^2 = x^2 \cdot \ln|C \cdot x^2|$$

- общий интеграл дифференциального уравнения.
 - в) это уравнение линейное.

Решаем его с помощью подстановки Бернулли

$$v(x) = u(x) \cdot v(x) \Rightarrow v' = u' \cdot v + u \cdot v'$$

Подставляем в уравнение, получаем

$$u' \cdot v + u \cdot (v' + 2 \cdot x \cdot v) = e^{-x^2}.$$

 $v'+2\cdot x\cdot v=0$ \Rightarrow $\frac{dv}{v}=-2\cdot xdx$ \Rightarrow $v=e^{-x^2}$ — частное решение уравнения $v'+2\cdot x\cdot v=0$.

Тогда

$$\frac{du}{dx} \cdot e^{-x^2} = e^{-x^2} \Rightarrow du = dx \Rightarrow u(x) = x + C.$$

Окончательно, $y(x) = (x+C) \cdot e^{-x^2}$ — общее решение уравнения.

г) —
$$\underbrace{2 \cdot x \cdot y}_{M(x,y)} dx + \underbrace{(x^2 + 3 \cdot y^2)}_{N(x,y)} dy = 0$$
. Найдём частные производ-

ные функций M(x,y) и N(x,y):

$$\frac{\partial M}{\partial v} = 2x, \frac{\partial N}{\partial x} = 2x.$$

Равенство этих частных производных говорит о том, что данное уравнение есть дифференциальное уравнение в полных дифференциалах, т.е.

$$\exists u(x,y): du(x,y) = 2 \cdot x \cdot y dx + (x^2 + 3 \cdot y^2) dy.$$

Найдём функцию

$$u(x,y) = \int 2 \cdot x \cdot y dx + C(y) \Rightarrow u(x,y) = x^2 \cdot y + C(y).$$

Определим частную производную $\frac{\partial u}{\partial y} = x^2 + C'(y)$ из диффе-

ренциального уравнения $\frac{\partial u}{\partial y} = x^2 + 3 \cdot y^2$.

Из двух последних равенств имеем:

$$x^2 + C'(y) = x^2 + 3 \cdot y^2 \Rightarrow C'(y) = 3 \cdot y^2 \Rightarrow C(y) = \int 3 \cdot y^2 dy.$$

Одна из первообразных $C(y) = y^3$.

Итак, $u(x, y) = x^2 \cdot y + y^3$.

Общий интеграл дифференциального уравнения имеет вид: $x^2 \cdot y + y^3 = C$.

Пример 2. Решить задачу Коши для $(x^2 + y) \cdot y' = x$ при начальных условиях: y(1) = 0.

Решение

Это уравнение Бернулли относительно x = x(y).

$$(x^2 + y) \cdot \frac{dy}{dx} = x \Rightarrow x \frac{dx}{dy} = x^2 + y \Rightarrow \frac{dx}{dy} - x = \frac{y}{x}.$$

Подстановка Бернулли: $x(y) = u(y) \cdot v(x)$ приводит к уравнению:

$$\frac{du}{dy} \cdot v + u \cdot \left(\frac{dv}{dy} - v\right) = \frac{y}{u \cdot v}.$$

$$1. \frac{dv}{dy} - v = 0 \Rightarrow \frac{dv}{v} = dy \Rightarrow \ln|v| = y \Rightarrow v = e^{y};$$

$$2. e^{y} \cdot \frac{du}{dy} = \frac{y}{u \cdot e^{y}} \Rightarrow udu = y \cdot e^{-2y} dy \Rightarrow \frac{u^{2}}{2} = -\frac{y}{2} \cdot e^{-2y} - \frac{1}{4} \cdot e^{-2y} + \frac{C}{2} \Rightarrow$$

$$\Rightarrow u^{2} = -\left(y + \frac{1}{2}\right) \cdot e^{-2y} + C;$$

$$x^{2} = u^{2} \cdot v^{2} = \left(\left(-y - \frac{1}{2}\right) \cdot e^{-2y} + C\right) \cdot e^{2y} \Rightarrow$$

$$\Rightarrow x^{2} = C \cdot e^{2y} - y - \frac{1}{2}.$$

Подставляем начальные условия, получаем $1 = C - \frac{1}{2} \Rightarrow C = \frac{3}{2}$, тогда $x^2 = \frac{3}{2} \cdot e^{2y} - y - \frac{1}{2}$ — общий интеграл дифференциального уравнения.

Пример 3. Разность потенциалов на зажимах катушки равномерно падает от $E_0 = 2$ В до $E_1 = 1$ В в течение 10 с. Какова будет сила тока в конце десятой секунды, если в начале опыта она

была $16\frac{2}{3}A$? Сопротивление катушки 0,12 Ом, коэффициент самоиндукции 0,1 Гн.

Решение

Если переменный электрический ток I=I(t) течёт по проводнику с коэффициентом самоиндукции L и сопротивлением R, то напряжение вдоль проводника будет складываться из напряжения, вызываемого самоиндукцией и равного $L \cdot \frac{dI}{dt}$, и напряжения, обусловленного сопротивлением цепи и равного $R \cdot I$. Таким образом, $L \cdot \frac{dI}{dt} + R \cdot I = U$. Зная U(t), R, L и начальную величину тока $I(0) = I_0$, можно найти из этого уравнения силу тока как функцию времени.

В данной задаче в момент времени t падение напряжения равно $\left(2-\frac{2-1}{10}\cdot t\right)=U(t).$

Получим

$$0,1 \cdot \frac{dI}{dt} + 0,12 \cdot I = 2 - \frac{t}{10}$$
 или $\frac{dI}{dt} + 1,2 \cdot I = 20 - t$.

Это линейное уравнение. Делая подстановку Бернулли $I=u\cdot v,\ u'\cdot v+u\cdot v'+1, 2\cdot u\cdot v=20-t,$ тогда $v'+1, 2\cdot v=0, u'\cdot v=20-t.$

Решаем данные уравнения, получим $v = e^{-1,2t}$, а $u = \int (20-t)e^{1,2t}dt = \frac{20}{1.2}e^{1,2t} - \frac{t}{1.2}e^{1,2t} + \frac{1}{1.2^2}e^{1,2t} + C$.

Затем получим
$$I=u\cdot v$$
 : $I=e^{-1,2t}(\frac{20}{1,2}e^{1,2t}-\frac{t}{1,2}e^{1,2t}+\frac{1}{1,2^2}e^{1,2t}+C)$ или $I=\frac{125}{7,2}-\frac{5}{6}t+Ce^{-1,2t}$.

Из начального условия $I(0) = \frac{50}{3}$ находим $C = -\frac{5}{7,2}$; зависи-

мость силы тока от времени имеет вид: $I = \frac{125}{7,2} - \frac{5}{6}t - \frac{5}{7,2}e^{-1,2t}$.

Сила тока в конце десятой секунды будет равна

$$I = \frac{125}{7,2} - \frac{50}{6} - \frac{5}{7,2}e^{-12} \approx 9{,}03 \text{ A}.$$

Упражнения для самостоятельной подготовки

1. Решить дифференциальные уравнения:

a)
$$t^2 \frac{ds}{dt} = 2ts - 3$$
;

$$6) 3y^2y' + y^3 + x = 0;$$

B)
$$y' - 2xy = 2x^3y^2$$
;

$$\Gamma) y' - y \cdot \operatorname{tg} x = \frac{1}{\cos x};$$

д)
$$y' = 2y(x^2 + 4);$$

e)
$$(3x^2y + y^3)dx + (x^3 + 3xy^2)dy = 0$$
;

ж)
$$(4x-3y)dx+(2y-3x)dy=0$$
;

$$3) x dy + \left(2\sqrt{xy} - y\right) dx = 0;$$

$$\mathbf{H}) y'\left(x+\sqrt{x}\right)=\sqrt{1-y};$$

$$K) xy' = y + x \cos^2 \frac{y}{x}.$$

2. Найти частный интеграл (частное решение) дифференциального уравнения:

a)
$$v^2 + x^2 v' = xvv'$$
, $v(1) = 1$;

6)
$$\left(\frac{5}{1+x^2} + 2y\right) dx + 2x dy = 0$$
, $y\left(\frac{\pi}{4}\right) = 0$;

B)
$$y' = e^{x+y} + e^{x-y}$$
, $y(0) = 0$;

$$\Gamma$$
) $y \ln^3 y + y' \sqrt{x+1} = 0$, $y(-15/16) = e$;

e)
$$y' + \cos(x + 2y) = \cos(x - 2y)$$
, $y(0) = \pi/4$;

$$\times y' \cdot 3^{x^2} - x \cdot 9^{-y} = 0, y(0) = 1;$$

3)
$$y' - \frac{y}{1-x^2} - 1 - x = 0$$
, $y(0) = 0$;

и)
$$y' \operatorname{ctg} x + y = 2$$
, $y(0) = 2$;

K)
$$y dx - (4 + x^2) \cdot \ln y dy = 0$$
, $y(0) = 2$.

3. Дифференциальные уравнения высших порядков

Уравнение вида

$$y^{(n)} = f(x, y, y', ..., y^{(n-1)}), (6.2)$$

где n > 1, называется $\partial u \phi \phi$ еренциальным уравнением n-го порядка. Область определения дифференциального уравнения n-го порядка есть область $D = \{(x, y, y', ..., y^{(n-1)})\} \subseteq \mathbb{R}^{n+1}$.

3.1. Задача Коши

Пусть дано дифференциальное уравнение $y^{(n)}=f(x,y,y',...,y^{(n-1)}), (x,y,y',...,y^{(n-1)})\in D$ и начальные условия: $y(x_0)=y_0,y'(x_0)=y_0',...,y^{(n-1)}(x_0)=y_0^{(n-1)}; (x_0,y_0,y_0',...,y^{(n-1)}_0)\in D.$

Требуется найти непрерывную n раз дифференцируемую функцию $y = \varphi(x), x \in (a,b)$, удовлетворяющую условиям:

- 1) $y = \varphi(x)$ является решением данного дифференциального уравнения на (a,b), т. е. $\varphi^{(n)}(x) = f(x,\varphi(x),\varphi'(x),...,\varphi^{(n-1)}(x))$;
- 2) $y = \varphi(x)$ удовлетворяет заданным начальным условиям: $\varphi(x_0) = y_0, \varphi'(x_0) = y_0', ..., \varphi^{(n-1)}(x_0) = y_0^{(n-1)}$.

Теорема существования и единственности решения задачи Коши для дифференциального уравнения *n***-го порядка.** Если

1. $f(x, y, y', ..., y^{(n-1)})$ непрерывна (по совокупности (n+1) аргументов) в области $D^* \subseteq D$;

$$2.\frac{\partial f}{\partial y}, \frac{\partial f}{\partial y'}, ..., \frac{\partial f}{\partial y^{(n-1)}}$$
 непрерывны (по совокупности аргумен-

тов $x, y, y', ..., y^{(n-1)}$) в $D^* \subseteq D$, то существует единственное решение задачи Коши дифференциального уравнения $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$, удовлетворяющее заданным начальным условиям:

$$y(x_0) = y_0, y'(x_0) = y'_0, ..., y^{(n-1)}(x_0) = y_0^{(n-1)},$$

 $(x_0, y_0, y'_0, ..., y^{(n-1)}_0) \in D^*.$

Область D^* называется *областью единственности*.

Определение. *Общее решение* дифференциального уравнения (6.2) есть n-параметрическая функция $\varphi(x_1, C_1, C_2, ..., C_n) = \varphi(x, \overline{C}), x \in (a,b)$, где $C_1, C_2, ..., C_n$ — произвольные постоянные, удовлетворяющая следующим требованиям:

- 1. $\forall \bar{C} = (C_1, C_2, ...C_n)$ функция $\varphi(x, \overline{C})$ решение дифференциального уравнения (6.2) на (a,b).
- 2. Для любых начальных условий из области единственности найдется единственный набор $\overline{C} = \overline{C_0} = (C_1^0, C_2^0, ..., C_n^0)$, такой, что $\varphi(x, \overline{C_0})$ удовлетворяет заданным начальным условиям.

Определение. Соотношение вида $F(x, y, C_1, ..., C_n) = 0$, неявно определяющее общее решение дифференциального уравнения (6.2) на (a,b), называется *общим интегралом* дифференциального уравнения.

Частное решение дифференциального уравнения (6.2) получается из его общего решения при конкретном значении \overline{C} .

3.2. Интегрирование дифференциальных уравнений высших порядков

Дифференциальные уравнения высших порядков, как правило, не решаются точными аналитическими методами.

Виды дифференциальных уравнений высших порядков, допускающих понижение порядка, приведены в табл. 6.2.

Таблица 6.2

№	Вид ДУ	Способ понижения порядка
1	$y^{(n)} = f(x)$ неполное дифференциальное уравнение (отсутствуют $y, y',, y^{(n-1)}$)	После <i>n</i> -кратного интегрирования получится общее решение дифференциального уравнения.
2	$y^{(n)} = f(x, y^{(k)}, y^{(k+1)},, y^{(n-1)})$ неполное дифференциальное уравнение (отсутствуют искомая функция $y(x)$ и её $(k-1)$ первые производные)	Подстановка $y^{(k)}(x) = p(x)$ понижает порядок уравнения на k единиц.
3	$y^{(n)} = f(y, y',, y^{(n-1)})$ неполное дифференциальное уравнение (явно не содержится аргумент x искомой функции $y(x)$)	Подстановка $y'(x) = p(y)$ понижает порядок уравнения на единицу
4	Уравнение в точных производных (может быть полным и неполным). Такое уравнение можно преобразовать к виду $(*)' = (**)'$, где правая и левая части уравнения есть точные производные некоторых функций.	Интегрирование правой и левой частей уравнения по аргументу понижает порядок уравнения на единицу
5	Дифференциальное уравнение, содержащее однородность, т. е. уравнение вида $y^{(n)} = f(x, y, y',, y^{(n-1)})$, где $f(x, y, y',, y^{(n-1)})$ — однородная функция относительно $y, y',, y^{(n-1)}$	Подстановка $\frac{y'}{y} = p(x)$ понижает порядок уравнения на единицу.

Определение. Функция F(t,x,y,z,...) называется однородной по переменным x,y,z,..., если $\forall \lambda > 0$ $F(t,\lambda x,\lambda y,\lambda z,...) = = \lambda^k F(t,x,y,z,...)$ в любой точке области определения функции F; k — порядок однородности.

Например, $f(x, y, z) = y^2 + x \cdot y \cdot z - 3z^2$ — однородная функция второго порядка относительно y, z, т.е. $\forall \lambda > 0$ $f(x, \lambda y, \lambda z, ...) = = (\lambda y)^2 + x(\lambda y)(\lambda z) - 3(\lambda z)^2 = \lambda^2(y^2 + x \cdot y \cdot z - 3z^2)$.

Пример 1. Найти общее решение дифференциального уравнения $y''' = \sin x$.

Решение

Данное уравнение не содержит явно y, y', y''. Последовательно интегрируем его три раза.

$$y'' = -\cos x + C_1,$$

 $y' = -\sin x + C_1 \cdot x + C_2,$
 $y = \cos x + C_1 \cdot \frac{x^2}{2} + C_2 \cdot x + C_3$ — общее решение.

Пример 2. Решить задачу Коши для дифференциального уравнения $x \cdot y'' + y' = x \cdot y'^2$ при y(1) = 0, y'(1) = 1.

Решение

Подстановка y'(x) = p(x) понизит порядок дифференциального уравнения на единицу.

$$x \cdot p' + p = x \cdot p^2 \Rightarrow p' + \frac{p}{x} = p^2$$
.

Получили уравнение Бернулли. Применим подстановку Бернулли: $p(x) = u(x) \cdot v(x)$, $p'(x) = u' \cdot v + u \cdot v'$ и подставим в уравнение.

Получим

$$u' \cdot v + u \cdot (v' + \frac{v}{x}) = u^2 \cdot v^2, \quad v' + \frac{v}{x} = 0 \Rightarrow \frac{dv}{v} = -\frac{dx}{x} \Rightarrow v = \frac{1}{x},$$

$$u' = \frac{u^2}{x} \Rightarrow \frac{du}{u^2} = \frac{dx}{x} \Rightarrow \frac{1}{u} = -\ln|x| + C_1 \Rightarrow u = \frac{1}{C_1 - \ln|x|},$$

$$y' = p = \frac{1}{x \cdot (C_1 - \ln|x|)}.$$

На этом этапе решим задачу Коши:

$$1 = \frac{1}{1 \cdot (C_1 - \ln 1)} \Rightarrow C_1 = 1 \Rightarrow y' = \frac{1}{x \cdot (1 - \ln |x|)}$$
 — уравнение перво-

го порядка с разделяющимися переменными; его решение: $y = -\ln |1 - \ln |x| + C_2$.

Подставляем начальные условия: $0 = -\ln(1-\ln 1) + C_2 \Rightarrow C_2 = 0$. $y = -\ln |1 - \ln |x||$ — решение задачи Коши.

Пример 3. Найти решение дифференциального уравнения $y \cdot y'' + y'^2 = 0$.

Решение

Воспользуемся подстановкой $y'=p(y),\ y''=p'(y)\cdot y'(x)$ или $y''=p(y)\cdot p'(y),$ получим $y\cdot p\cdot p'+p^2=0 \Rightarrow p(yp'+y)=0.$ Следовательно, p=0 или $y\cdot p'+p=0.$

 $y \cdot p' + p = 0$ — дифференциальное уравнение первого порядка с разделяющими переменными.

$$\frac{dp}{p} = -\frac{dy}{y} \Rightarrow \ln|p| = -\ln|y| + \ln c_1 \Rightarrow p = \frac{C_1}{y}.$$

Подставляя в уравнение y' = p(y), получаем

$$y' = \frac{C_1}{v} \Rightarrow ydy = C_1dx \Rightarrow \frac{y^2}{2} = C_1 \cdot x + C_2$$

— общий интеграл дифференциального уравнения.

Рассмотрим случай p=0. Тогда $y'=0 \Rightarrow y=C$. Это решение входит в общий интеграл дифференциального уравнения. Значит, y=C — частное решение. Следовательно, $\frac{y^2}{2}=C_1\cdot x+C_2$ — общий интеграл дифференциального уравнения.

Пример 4. Решить дифференциальное уравнение $y \cdot y'' + y'^2 = 0$.

Решение

Это уравнение в точных производных. Действительно,

$$y \cdot y'' = -y'^2 \Rightarrow \frac{y''}{y'} = -\frac{y'}{y}.$$

Проинтегрируем левую и правую части по x, т. е.

$$\int \frac{y''}{v'} dx = -\int \frac{y'}{v} dx$$

или

$$\int \frac{d(y')}{y'} = -\int \frac{dy}{y} \Rightarrow \ln|y'| = -\ln|y| + \ln|C_1| \Rightarrow y' = \frac{C_1}{y}.$$

Получим дифференциальное уравнение первого порядка с разделяющимися переменными $ydy = C_1 dx$.

Тогда
$$\frac{y^2}{2} = C_1 \cdot x + C_2$$
 — общий интеграл уравнения.

Пример 5. Решить задачу Коши для $y' \cdot y^{(1V)} = y'' \cdot y'''$ при y(1) = 3, y'(1) = 2, y''(1) = 1, y'''(1) = 0.

Решение

Это уравнение в точных производных.

$$\frac{y^{(1V)}}{y'''} = \frac{y''}{y'} \text{ или } \int \frac{d(y''')}{y'''} = \int \frac{dy'}{y'} \Rightarrow \ln |y'''| = \ln y' + \ln |C_1|, \ y''' = C_1 \cdot y'.$$

Реализуем начальные условия: $0 = C_1 \cdot 2 \Rightarrow C_1 = 0$. Получим дифференциальное уравнение третьего порядка y''' = 0. Проинтегрируем его три раза и после каждого интегрирования будем подставлять начальные условия:

$$y'' = C_2$$
, $1 = C_2$, $y'' = 1$.
 $y' = x + C_3$, $2 = 1 + C_3 \Rightarrow C_3 = 1$, $y' = x + 1$.
 $y = \frac{(x+1)^2}{2} + C_4$, $3 = \frac{4}{2} + C_4 \Rightarrow C_4 = 1$.

Получили $y = \frac{(x+1)^2}{2} + 1$ — решение задачи Коши исходного дифференциального уравнения.

Пример 6. Решить уравнение
$$y \cdot y'' - \frac{1}{x} \cdot y' \cdot y - y'^2 = 0$$
.

Решение

Приведем уравнение к виду $\frac{y''}{y} - \frac{1}{x} \cdot \frac{y'}{y} - (\frac{y'}{y})^2 = 0$, разделив обе части исходного уравнения на y^2 и воспользуемся подстановкой

$$\frac{y'}{y} = p(x) \Rightarrow p'(x) = \frac{y \cdot y'' - (y')^2}{y^2} = \frac{y''}{y} - \left(\frac{y'}{y}\right)^2.$$

Подставим p(x) и p'(x) в дифференциальное уравнение; получим $p' - \frac{p}{x} = 0$. Это уравнение первого порядка с разделяющи-

мися переменными
$$\frac{dp}{p} = \frac{dx}{x} \Rightarrow \ln|p| = \ln|x| + \ln|C_1| \Rightarrow p = C_1 \cdot x.$$

Учитывая, что
$$p = \frac{y'}{y}$$
, получим: $\frac{y'}{y} = C_1 \cdot x$. Тогда

$$\int \frac{y'}{y} dx = \int C_1 \cdot x dx \Rightarrow \ln|y| = C_1 \cdot \frac{x^2}{2} + \ln C_2 \text{ или } y = C_2 \cdot e^{C_1 \cdot \frac{x^2}{2}}$$

— общее решение исходного дифференциального уравнения.

Упражнения для самостоятельной подготовки

Решить дифференциальные уравнения высших порядков:

a)
$$yy'' + (y')^2 = 1;$$

б)
$$y'' = 2yy'$$
;

B)
$$y'' = x \sin x + \frac{1}{x} + 2;$$

$$\Gamma$$
) $yy''' - y'y'' = 0$;

$$\pi$$
) $y'' \sin x = (1+y')\cos x$;

e)
$$(1+x^2)y'' - 2xy' = 0$$
;

$$x$$
) $y'' = e^{x/2} + \frac{1}{x+1}$;

3)
$$yy'' - y^2y' - y'^2 = 0$$
;

$$y(y''+1)+y'=0;$$

K)
$$2yy'' = 1 + (y')^2$$
.

3.3. Теория линейных дифференциальных уравнений высшего порядка

$$y^{(n)} + a_1(x) \cdot y^{(n-1)} + \dots + a_{n-1}(x) \cdot y' + a_n(x) \cdot y = f(x)$$
 (6.3)

— неоднородное линейное дифференциальное уравнение n-го порядка, где $a_1(x), ..., a_{n-1}(x), a_n(x), f(x)$ — непрерывные на некотором промежутке (a,b) функции.

Интервал (a,b) называется *интервалом непрерывности* дифференциального уравнения (6.3).

Введем (условный) дифференциальный оператор n-го порядка

$$L_n[\cdot] = \frac{d^n}{dx^n} + a_1(x) \frac{d^{n-1}}{dx^{n-1}} + \dots + a_{n-1}(x) \frac{d}{dx} + a_n(x).$$

При действии его на функцию y(x) получим

$$L_n[y] = \frac{d^n y}{dx^n} + a_1(x) \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_{n-1}(x) \frac{dy}{dx} + a_n(x)y,$$

т. е. левую часть линейного дифференциального уравнения n-го порядка.

Вследствие этого уравнение можно записать в виде $L_n[y] = f(x)$, где $L_n[\cdot]$ — линейный оператор.

Рассмотрим вопрос существования и единственности решения задачи Коши для линейного дифференциального уравнения $L_n[y] = f(x)$.

Разрешим дифференциальное уравнение относительно $y^{(n)}$:

$$y^{(n)} = f(x) - a_n(x) \cdot y - a_{n-1}(x) \cdot y' - \dots - a_1(x) \cdot y^{(n-1)}, \quad x \in (a,b), \quad (a,b)$$

— интервал непрерывности дифференциального уравнения.

Т.к. функция

$$F(x, y, y', ..., y^{(n-1)}) = f(x) - a_n(x) \cdot y - a_{n-1}(x) \cdot y' - ... - a_1(x) \cdot y^{(n-1)}$$

непрерывная в области

$$D^* = \{(x, y, y', ..., y^{(n-1)}) \in R^{n+1} : x \in (a,b), y \in (-\infty, \infty), y' \in (-\infty, \infty), ..., y^{(n-1)} \in (-\infty, \infty)\}$$

и производные

$$\frac{\partial F}{\partial y} = -a_n(x), \quad \frac{\partial F}{\partial y'} = -a_{n-1}(x), \quad \dots, \quad \frac{\partial F}{\partial y^{(n-1)}} = -a_1(x)$$

непрерывны в области D^* , то область единственности D^* , в которой задача Коши дифференциального уравнения (6.3) имеет единственное решение, зависит только от выбора точки $x_0 \in (a,b)$; все остальные значения аргументов $y,y',...,y^{(n-1)}$ функции $F(x,y,y',...,y^{(n-1)})$ можно брать произвольными.

3.4. Общая теория однородных линейных дифференциальных уравнений (ОЛДУ)

Рассмотрим однородное линейное дифференциальное уравнение вида

$$L_n[y] = y^{(n)} + a_1(x) \cdot y^{(n-1)} + \dots + a_{n-1}(x) \cdot y' + a_n(x) \cdot y = 0, \quad (6.4)$$

где (a,b) — интервал непрерывности ОЛДУ.

Основные свойства решений ОЛДУ

1. Свойство аддитивности.

Если $(y_1(x), y_2(x)$ — решения ОЛДУ (6.4) на (a,b)), то $y_1(x) + y_2(x)$ — решение ОЛДУ (6.4) на (a,b)).

2. Свойство однородности.

Если (y(x) — решение ОЛДУ (6.4) на (a,b)), то $(\forall \alpha \in P \ (P -$ числовое поле) $\alpha \cdot y(x)$ — решение ОЛДУ (6.4) на (a,b)).

Свойства аддитивности и однородности называются линейными свойствами решений однородного линейного дифференциального уравнения (6.4).

Следствие. Если $(y_1(x), y_2(x), ..., y_k(x))$ — решения ОЛДУ (6.4) на (a,b)), то $\forall \alpha_1, ..., \alpha_k \in P$ $\sum_{i=1}^k a_i \cdot y_i(x)$ — решение ОЛДУ (6.4) на (a,b).

3. Если $y(x) = u(x) + j \cdot v(x)$ — комплексно-значное решение ОЛДУ (6.4) на (a,b), то (u(x),v(x)) — действительно-значные решения ОЛДУ (6.4) на (a,b).

Последующие свойства решений однородного линейного дифференциального уравнения связаны с понятием «линейная зависимость».

Определение. Система функций $\{\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)\}$, $x \in (a,b)$ называется *линейно зависимой* на (a,b), если найдётся нетривиальный набор чисел $\{\alpha_i\}_{i=1}^n$, такой, что линейная комбинация $\sum_{i=1}^n \alpha_i \cdot \varphi_i(x)$ функций $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ с этими чис-

лами тождественно равна нулю на
$$(a,b)$$
, т. е. $\sum_{i=1}^{n} \alpha_i \cdot \varphi_i(x) \equiv 0$.

В противном случае система функций называется линейно независимой.

Пример. Исследовать систему функций на линейную зависимость:

a)
$$\{e^{2x}, 2 \cdot e^{2x}\}\ x \in (\infty, -\infty); 6\} \{e^{2x}, x \cdot e^{2x}\}, x \in (\infty, -\infty).$$

Решение

- а) Составим линейную комбинацию и приравняем к 0: $\alpha_1 e^{2x} + 2\alpha_2 e^{2x} = 0$. Отсюда $e^{2x} (\alpha_1 + 2\alpha_2) = 0 \Rightarrow \alpha_1 = -2\alpha_2$. Например, $\alpha_1 = 2$; $\alpha_2 = -1$. Тогда система функций линейно зависима на $(\infty, -\infty)$, т. к. существует нетривиальный набор $\alpha_1 = 2$; $\alpha_2 = -1$, такой, что $2 \cdot e^{2x} 1 \cdot (2 \cdot e^{2x}) = 0$.
- б) Система $\{e^{2x}, x \cdot e^{2x}\}$, $x \in (\infty, -\infty)$ линейно независима, т. к. существует только тривиальный набор $\alpha_1 = 0$; $\alpha_2 = 0$, такой, что $0 \cdot e^{2x} + 0 \cdot (x \cdot e^{2x}) \underset{(\infty, -\infty)}{\equiv} 0$.

Теорема о необходимом условии линейной зависимости конечной системы функций

Если система функций $\{\phi_i(x)\}_{i=1}^n$ — линейно зависима на (a,b); $\forall i \in \{1,...,n\}$ $\phi_i(x)$ n-1 раз дифференцируемая на (a,b) функция, то $\forall x \in (a,b)$ определитель Вронского равен нулю

$$W[\varphi_{1}(x),\varphi_{2}(x),...,\varphi_{n}(x)] = \begin{vmatrix} \varphi_{1}(x) & \varphi_{2}(x) & ... & \varphi_{n}(x) \\ \varphi'_{1}(x) & \varphi'_{2}(x) & ... & \varphi'_{n}(x) \\ ... & ... & ... & ... \\ \varphi_{1}^{(n-1)}(x) & \varphi_{2}^{(n-1)}(x) & ... & \varphi_{n}^{(n-1)}(x) \end{vmatrix} = 0.$$

Следствие. Если $\exists x_0 \in (a,b)$: $W[\phi_1(x_0),...,\phi_n(x_0)] \neq 0$, то система $\{\phi_i(x)\}_{i=1}^n$ линейно независима.

Теорема не обратима, т.е. необходимые условия линейной зависимости системы функций не являются достаточными.

Продолжим изучение свойств решений однородного линейного дифференциального уравнения.

Теорема о необходимом и достаточном условии линейной независимости решений однородного линейного дифференциального уравнения. Пусть $\{y_i(x)\}_{i=1}^n$ — решения ОЛДУ (6.4) на (a,b), где (a,b) — интервал непрерывности ОЛДУ. Система $\{y_i(x)\}_{i=1}^n$ — линейно независима на (a,b)) тогда и только тогда, когда ($\forall x \in (a,b)$ определитель Вронского

$$W[y_1(x),...,y_n(x)] = \begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y_1'(x) & y_2'(x) & \dots & y_n'(x) \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix} = 0.$$

Определение. Всякая линейно независимая на (a,b) система из n решений однородного линейного дифференциального уравнения $L_n[y] = 0$, $x \in (a,b)$ называется ϕ ундаментальной системой решений (ФСР) однородного линейного дифференциального уравнения на (a,b).

Теорема о фундаментальной системе решений ОЛДУ

Для любого однородного линейного дифференциального уравнения $L_n[y] = 0$, $x \in (a,b)$ существует ФСР.

Замечания

- 1. Для любого однородного линейного дифференциального уравнения $L_n[y] = 0$ на интервале (a,b) непрерывности дифференциального уравнения существует бесконечное множество фундаментальных систем решений.
- 2. Зная фундаментальную систему решений ОЛДУ, всегда можно восстановить однородное линейное дифференциальное уравнение и найти его общее решение.

3.5. Восстановление однородного линейного дифференциального уравнения по его фундаментальной системе решений

Пусть $\{y_1(x), y_2(x), ..., y_n(x)\}$ — линейно независимая система функций на (a,b).

Примем её за фундаментальную систему решений однородного линейного дифференциального уравнения n-го порядка на (a,b). По свойствам линейности решений однородного линейного дифференциального уравнения любая линейная комбинация решений однородного линейного дифференциального уравнения есть решение этого уравнения. Тогда $y(x) = \sum_{i=1}^{n} \alpha_i \cdot y_i(x)$ — решение однородного линейного дифференциального уравнения на (a,b) и система решений ОЛДУ $\{y(x), y_1(x), y_2(x), ..., y_n(x)\}, x \in (a,b)$ линейно зависима.

Определитель Вронского линейно зависимой системы равен нулю, т. е.

$$W[y(x), y_1(x), ..., y_n(x)] = \begin{vmatrix} y_1(x) & y_2(x) & \dots & y_n(x) \\ y'_1(x) & y'_2(x) & \dots & y'_n(x) \\ \dots & \dots & \dots & \dots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \dots & y_n^{(n-1)}(x) \end{vmatrix} \equiv 0.$$

Раскрывая определитель по элементам первого столбца, получим однородное линейное дифференциальное уравнение n-го порядка с переменными коэффициентами.

Пример. Составить однородное линейное дифференциальное уравнение (возможно меньшего порядка), имеющее частные решения $y_1(x) = e^x$, $y_2(x) = e^{-x}$.

Решение

Система $\{e^x, e^{-x}\}$ линейно независима на $(-\infty, \infty)$, т. к.

$$W[e^{x}, e^{-x}] = \begin{vmatrix} e^{x} & e^{-x} \\ e^{x} & e^{-x} \end{vmatrix} = -2 \neq 0.$$

Примем ее за фундаментальную систему решений однородного линейного дифференциального уравнения второго порядка. Тогда система решений $\{y(x), e^x, e^{-x}\}$ однородного линейного дифференциального уравнения будет линейно зависимой на $(-\infty, \infty)$ и определитель Вронского этих решений равен нулю, т. е.

$$\forall x \in (-\infty, \infty) \begin{vmatrix} y(x) & e^x & e^{-x} \\ y'(x) & e^x & -e^{-x} \\ y''(x) & e^x & e^{-x} \end{vmatrix} \equiv 0.$$

Раскрывая определитель по элементам первого столбца, получим

$$y \cdot \begin{vmatrix} e^{x} & -e^{-x} \\ e^{x} & e^{-x} \end{vmatrix} - y' \cdot \begin{vmatrix} e^{x} & e^{-x} \\ e^{x} & e^{-x} \end{vmatrix} + y'' \cdot \begin{vmatrix} e^{x} & e^{-x} \\ e^{x} & -e^{-x} \end{vmatrix} = 0 \Rightarrow$$
$$\Rightarrow 2 \cdot y - 2 \cdot y'' = 0 \Rightarrow y'' - y = 0$$

— однородное линейное дифференциальное уравнение второго порядка с постоянными коэффициентами, для которого система функций $\{e^x, e^{-x}\}$ является фундаментальной системой решений на $(-\infty, \infty)$.

Теорема о структуре общего решения однородного линейного дифференциального уравнения. Пусть $L_n[y]$ — однородное линейное дифференциальное уравнение n-го порядка с интервалом непрерывности (a,b); $\{y_i(x)\}_{i=1}^n$ — фундаментальная система решений этого уравнения на (a,b). Тогда общим решением однородного линейного дифференциального уравнения $L_n[y]$ на (a,b) является линейная комбинация решений фундаментальной системы однородного линейного дифференциального уравнения с произвольными коэффициентами, т. е.

$$y(x) = \sum_{i=1}^{n} C_i \cdot y_i(x)$$
, где $\forall i \in \{1...n\}, C_i \in \mathbb{R}$.

Сформулируем алгоритм решения однородного линейного дифференциального уравнения

- 1. Найти фундаментальную систему решений ОЛДУ (6.4) $L_n[y] = 0$ на интервале (a,b).
- 2. Найти общее решение ОЛДУ (6.4), используя теорему о структуре общего решения.
- 3. Для решения задачи Коши по начальным условиям $y(x_0) = y_0, y'(x_0) = y_0', ..., y^{(n-1)}(x_0) = y_0^{(n-1)}$ найти значения $C_1 = C_1^0, C_2 = C_2^0, ..., C_n = C_n^0$ и подставить их в общее решение вместо произвольных постоянных.

Пример. Решить задачу Коши y'' - y = 0 при y(0) = 1 y'(0) = -1.

Решение

Как было отмечено ранее, в качестве фундаментальной системы решений возьмем линейно независимую систему функций, например, $\{e^x, e^{-x}\}$. Тогда общее решение данного уравнения будет $y_{\text{общее ОЛЛУ}}(x) = C_1 \cdot e^x + C_2 \cdot e^{-x}$.

Реализуя данные начальные условия, найдём значения C_1 и C_2 :

$$\begin{cases} y(x) = C_1 \cdot e^x + C_2 \cdot e^{-x}, \\ y'(x) = C_1 \cdot e^x - C_2 \cdot e^{-x} \end{cases} \Rightarrow \begin{cases} C_1 + C_2 = 1, \\ C_1 - C_2 = -1 \end{cases} \Rightarrow C_1 = 0; C_2 = 1.$$

Тогда $y(x) = e^{-x}$ — решение задачи Коши.

4. Интегрирование однородных линейных дифференциальных уравнений

Рассмотрим основные методы интегрирования уравнения

$$L_n[y] = 0.$$
 (6.4)

4.1. Метод Эйлера

Решение уравнения будем искать в виде $y = e^{\lambda \cdot x}$. Подставим эту функцию в уравнение, получим

$$(\lambda^n + a_1 \cdot \lambda^{n-1} + \dots + a_{n-1} \cdot \lambda + a_n) \cdot e^{\lambda \cdot x} \equiv 0$$

или

$$\lambda^{n} + a_{1} \cdot \lambda^{n-1} + \dots + a_{n-1} \cdot \lambda + a_{n} = 0$$
 (6.5)

— характеристическое уравнение однородного линейного дифференциального уравнения, которое как алгебраическое уравнение по теореме Гаусса имеет хотя бы одно решение. Тогда уравнение $L_n[y] = 0$ будет иметь решение вида

$$y = e^{\lambda \cdot x}$$
.

Итак, для того чтобы подстановка Эйлера $y(x) = e^{\lambda \cdot x}$ являлась решением однородного линейного дифференциального уравнения с постоянными коэффициентами, необходимо и достаточно, чтобы число λ в ней было решением характеристического уравнения (6.5).

Так как характеристическое уравнение (6.5) — алгебраическое уравнение n-й степени, то возможны следующие варианты его решения:

1. Все корни характеристического уравнения вещественные и попарно различные, т. е. $\lambda_1, \lambda_2, \dots \lambda_n \in \mathbb{R}, \ \forall i \neq j \ \lambda_i \neq \lambda_j$. Тогда функции $y_1(x) = e^{\lambda_1 \cdot x}, \ y_2(x) = e^{\lambda_2 \cdot x}, \dots, \ y_n(x) = e^{\lambda_n \cdot x}$ образуют фундаментальную систему решений однородного линейного дифференциального уравнения и его общее решение имеет вид

$$y_{\text{общее ОЛДУ}} = \sum_{i=1}^{n} C_i \cdot y_i(x).$$

Пример 1. Решить уравнение y''' - y' = 0.

Решение. Это однородное линейное дифференциальное уравнение. Составим характеристическое уравнение и найдём его корни.

$$\lambda^3 - \lambda^1 = 0 \Longrightarrow \{\lambda\} = \{0, 1, -1\}.$$

Все корни вещественные, простые.

Поэтому фундаментальную систему решений образуют функции $\{1,e^x,e^{-x}\}$ и общее решение имеет вид

$$y_{\text{общее ОЛЛУ}}(x) = c_1 + c_2 \cdot e^x + c_3 \cdot e^{-x}.$$

2. Среди n корней характеристического уравнения есть кратные вещественные корни. Пусть корень λ имеет кратность k > 1. Тогда этому корню соответствует ровно k линейно независимых решений однородного линейного дифференциального уравнения вида: $e^{\lambda \cdot x}, x \cdot e^{\lambda \cdot x}, \dots, x^{k-1} \cdot e^{\lambda \cdot x}$.

Пример 2. Решить уравнение $y^{IV} - y''' = 0$.

Решение

Найдём корни характеристического уравнения

$$\lambda^4 - \lambda^3 = 0 \Rightarrow \{\lambda\} = \{0, 0, 0, 1\}.$$

Фундаментальную систему решений образуют функции $\{e^{\lambda \cdot x}, 1, x, x^2\}$, и общее уравнение имеет вид:

$$y_{\text{обшее ОЛЛУ}}(x) = c_1 \cdot e^x + c_2 + c_3 \cdot x + c_4 \cdot x^2.$$

3. Среди n корней характеристического уравнения есть простые комплексно-сопряжённые числа, например, $\lambda_{1,2} = \alpha \pm \beta \cdot j$. Тогда этим корням будет соответствовать комплексно-значное решение $y_{1,2}(x) = e^{(\alpha \pm \beta \cdot j) \cdot x}$. Решение $y(x) = e^{(\alpha + \beta \cdot j) \cdot x} = e^{\alpha \cdot x} \cdot e^{\beta \cdot j \cdot x}$ представим в тригонометрическом виде (по формуле Эйлера) $y(x) = e^{\alpha \cdot x} \cdot (\cos \beta x + j \cdot \sin \beta x)$.

Тогда по теореме о комплексно-значном решении линейного однородного дифференциального уравнения $y_1(x) = e^{\alpha \cdot x} \cdot \cos \beta x$ и $y_2(x) = e^{\alpha \cdot x} \cdot \sin \beta x$ — два линейно независимых действительно-значных решения.

Пример 3. Найти фундаментальную систему решений уравнения

$$y'' - 2 \cdot y' + 5 \cdot y = 0.$$

Решение

Составим характеристическое уравнение

$$\lambda^2 - 2 \cdot \lambda + 5 = 0$$

и найдём его корни: $\{\lambda\} = \{1 \pm 2 \cdot j\}$. Тогда фундаментальную систему решений образуют функции $\{e^x \cdot \cos 2x, e^x \cdot \sin 2x\}$ или $\{e^x \cdot \cos 2x, -e^x \cdot \sin 2x\}$.

4. Среди n корней характеристического уравнения есть комплексно-сопряжённые кратные корни, например, $\lambda_{1,2} = \alpha \pm \beta \cdot j$ — корни кратности k > 1. Тогда этим корням соответствует 2k линейно независимых решений вида

$$e^{\alpha \cdot x} \cdot \cos \beta x, \ e^{\alpha \cdot x} \cdot \sin \beta x, \ x \cdot e^{\alpha \cdot x} \cdot \cos \beta x, \ x \cdot e^{\alpha \cdot x} \cdot \sin \beta x, ...,$$
$$x^{k-1} \cdot e^{\alpha \cdot x} \cdot \cos \beta x, \ x^{k-1} \cdot e^{\alpha \cdot x} \cdot \sin \beta x.$$

Пример 4. Даны корни $\{\lambda\} = \{0, 2, 2, 2, \pm j, \pm j\}$ характеристического уравнения однородного линейного дифференциально-

го уравнения с постоянными коэффициентами восьмого порядка. Найти фундаментальную систему решений этого дифференциального уравнения.

Решение

Среди корней характеристического уравнения есть простой корень $\lambda_1 = 0$, трёхкратный вещественный корень $\lambda_2 = 2$ и двукратные комплексно-сопряжённые корни $\lambda_{3,4} = \pm j$. Тогда фундаментальная система решений состоит из 8 линейно независимых решений, а именно: $\{1, e^{2\cdot x}, x \cdot e^{2\cdot x}, x^2 \cdot e^{2\cdot x}, \cos x, \sin x, x \cdot \cos x, x \cdot \sin x\}$.

4.2. Интегрирование однородных линейных дифференциальных уравнений с переменными коэффициентами, допускающих понижение порядка

Рассмотрим уравнение

$$L_n[y] = 0 \tag{6.4}$$

(a,b) — интервал непрерывности дифференциального уравнения.

Теорема. Если известно одно из решений однородного линейного дифференциального уравнения $y_1(x), x \in (a,b)$, то подстановка

$$y(x) = y_1(x) \cdot \int Z(x) dx,$$

где Z(x) — новая неизвестная функция на (a,b), понижает порядок дифференциального уравнения (не нарушая его линейности) на единицу.

Пример. Найти общее решение ОЛДУ $y'' - 2 \cdot x \cdot y' + 2 \cdot y = 0$.

Решение

Одно из решений этого уравнения легко подобрать, а именно $y_1(x) = x$, а другое решение найдём в виде $y_2(x) = y_1(x) \times y_2(x)$

 $\times \int Z(x)dx = x \cdot \int Z(x)dx$. Функцию Z(x) найдём из уравнения $x \cdot Z' + (2 - 2 \cdot x^2) \cdot Z = 0$.

$$\int \frac{dZ}{Z} = \int \frac{2 \cdot x^2 - 2}{x} dx, \ln|Z| = x^2 - \ln|x| \Rightarrow Z(x) = \int \frac{e^{x^2}}{x},$$
$$y_2(x)c_2 \cdot x \cdot \int \frac{e^{x^2}}{x} dx.$$

Тогда фундаментальную систему решений образуют функции $\left\{x; x\cdot \int \frac{e^{-x^2}}{x} dx\right\}$. Общее решение дифференциального урав-

нения имеет вид

$$y_{\text{общее ОЛДУ}}(x) = c_1 \cdot x + c_2 \cdot x \cdot \int \frac{e^{-x^2}}{x} dx.$$

4.3. Интегрирование однородных линейных дифференциальных уравнений с переменными коэффициентами, сводящихся к однородным линейным дифференциальным уравнениям с постоянными коэффициентами

Теорема. Если однородное линейное дифференциальное уравнение с переменными коэффициентами приводится к однородному линейному дифференциальному уравнению с постоянными коэффициентами, то только лишь с помощью подстановки $t(x) = c \cdot \int_{-\pi}^{\pi} \sqrt{a_n(x)} dx$, где c — некоторая константа.

Например, уравнение Эйлера $x^n \cdot y^{(n)} + a_1 \cdot x^{n-1} \cdot y^{(n-1)} + ... + a_{n-1} \cdot x \cdot y' + a_n \cdot y = 0, a_1, a_2, ..., a_n \in R$ можно привести к однородному линейному дифференциальному уравнению с постоянными коэффициентами с помощью подстановки

$$t = c \cdot \int \sqrt[n]{\frac{a_n}{x^n}} dx.$$

Для удобства возьмём
$$c=\frac{1}{\sqrt[n]{a_n}}$$
, получим $t=\int \frac{dx}{x} \Rightarrow t=\ln |x| \Rightarrow$

 $x = e^t$. С помощью этой подстановки уравнение Эйлера приводится к однородному линейному дифференциальному уравнению с постоянными коэффициентами.

Пример. Найти общее решение ОЛДУ $x^2 \cdot y'' + 3 \cdot x \cdot y' + y = 0$.

Решение

Воспользуемся подстановкой $y(x(t)) = y(e^t)$. Тогда

$$y'(x(t)) = y'(x) \cdot x'(t) = y'(x)(e^t)_t' = y'(x)e^t = y'(x) \cdot x;$$

$$y''(x(t)) = \frac{d}{dt}y'(x(t)) \cdot x + y'(x) \cdot x' = y'' \cdot x^2 + y' \cdot x;$$

$$y'(x) = \frac{y'(x(t))}{x}, \quad y''(x) = \frac{y'' - y' \cdot x}{x^2} = \frac{y'' - \frac{y'}{x} \cdot x}{x^2} = \frac{y'' - y'}{x^2}.$$

Подставим значения y'(x) и y''(x) в уравнение Эйлера.

Получим
$$\frac{(y''-y')\cdot x^2}{x^2} + 3 \cdot \frac{y'}{x} \cdot x + y = 0 \text{ или } y'' + (3-1) \cdot y' + y = 0.$$

$$y'' + 2 \cdot y' + y = 0, \ \lambda^2 + 2 \cdot \lambda + 1 = 0, \qquad \{\lambda\} = \{-1, -1\};$$

$$y_{\text{общее ОЛДУ с п/к}}(x) = (C_1 + C_2 \cdot t) \cdot e^{-t},$$

$$t = \ln x \Rightarrow e^{-t} = \frac{1}{x}.$$

Общее решение исходного однородного линейного дифференциального уравнения с переменными коэффициентами имеет вид

$$y_{\text{общее ОЛДУ}}(x) = (C_1 + C_2 \cdot \ln x) \cdot \frac{1}{x}.$$

5. Решение неоднородных линейных дифференциальных уравнений

Рассмотрим неоднородное линейное дифференциальное уравнение

$$y^{(n)} + a_1(x) \cdot y^{(n-1)} + \dots + a_{n-1}(x) \cdot y' + a_n(x) \cdot y = f(x).$$
 (6.6)

В операторной форме уравнение (6.6) записывается так: $L_n[y] = f(x)$, где (a, b) — интервал непрерывности дифференциального уравнения.

Теорема о структуре общего решения неоднородного линейно- го дифференциального уравнения. Пусть $y(x) = \sum_{i=1}^{n} C_i \cdot y_i(x)$ — общее решение ОЛДУ $L_n[y] = 0$ (6.4), соответствующего неоднородному линейному дифференциальному уравнению (6.6) на (a,b); $\tilde{y}(x)$ — некоторое решение неоднородного линейного дифференциального уравнения (6.6) на (a,b).

Тогда общее решение неоднородного линейного дифференциального уравнения имеет вид:

$$y_{\text{obuse HIJIV}}(x) = y_{\text{obuse OIJIV}}(x) + \tilde{y}(x), \quad x \in (a,b).$$

5.1. Метод вариации произвольных постоянных (метод Лагранжа)

Рассмотрим неоднородное линейное дифференциальное уравнение (6.6).

Решение этого уравнения можно получить, если известно общее решение соответствующего однородного линейного дифференциального уравнения

$$y(x) = \sum_{i=1}^{n} C_i \cdot y_i(x).$$

Будем искать решение неоднородного линейного дифференциального уравнения (6.6) в виде

$$\tilde{y}(x) = \sum_{i=1}^{n} C_i \cdot y_i(x)$$
, где $C_1(x), C_2(x), ..., C_n(x)$

— некоторые непрерывно дифференцируемые на (a,b) функции, которые надо найти. Производные функции найдём из системы

$$\begin{cases} \sum_{i=1}^{n} C'_{i}(x) \cdot y_{i}(x) = 0, \\ \sum_{i=1}^{n} C'_{i} \cdot y'_{i}(x) = 0, \\ \dots \\ \sum_{i=1}^{n} C'_{i} \cdot y_{i}^{(n-1)}(x) = f(x). \end{cases}$$

Эта система имеет единственное решение, т. к. её определитель (определитель Вронского линейно независимой системы решений ОЛДУ $y_1(x), y_2(x), ..., y_n(x), x \in (a,b)$) отличен от нуля.

Пример 1. Найти решение неоднородного линейного уравнения второго порядка с переменными коэффициентами $x^2 \cdot y'' + 3 \cdot x \cdot y' + y = x$.

Решение

Решение НЛДУ ищем в следующем виде:

$$y_{\text{общее НЛДУ}} = y_{\text{общее ОЛДУ}} + \tilde{y}.$$

Общее решение уравнения Эйлера $x^2 \cdot y'' + 3 \cdot x \cdot y' + y = 0$ было найдено в предыдущем примере

$$y_{\text{общее ОЛДУ}} = C_1 \cdot \frac{1}{x} + C_2 \cdot \frac{\ln x}{x}.$$

Составим систему в вариациях:

$$\begin{cases} C_1' \cdot \frac{1}{x} + C_2' \cdot \frac{\ln x}{x} = 0, \\ C_1' \cdot (-\frac{1}{x^2}) + C_2' \cdot \frac{1 - \ln x}{x^2} = \frac{1}{x} \end{cases} \text{ или} \begin{cases} C_1' \cdot \frac{1}{x} + C_2' \cdot \frac{\ln x}{x} = 0, \\ -C_1' \cdot \frac{1}{x} + C_2' \cdot \frac{1 - \ln x}{x} = \frac{1}{x}. \end{cases}$$

Путём сложения уравнений системы получим

$$C_2' \cdot (\frac{\ln x}{x} + \frac{1 - \ln x}{x}) = 1 \Rightarrow C_2' \cdot \frac{1}{x} = 1 \Rightarrow C_2'(x) = x.$$

Подставив значение $C_2'(x)$ в первое уравнение системы, получим

$$C_1' \cdot \frac{1}{x} + \ln x = 0 \Rightarrow C_1'(x) = -x \cdot \ln x.$$

Найдём неопределённый интеграл от функции $-x \cdot \ln x$, т. е.

$$-\int x \cdot \ln x dx = \begin{vmatrix} u = \ln x \Rightarrow du = \frac{dx}{x} \\ dv = x dx \Rightarrow v = \frac{x^2}{2} \end{vmatrix} = -\frac{x^2}{2} \cdot \ln x + \int \frac{x}{2} dx = -\frac{x^2}{2} \cdot \ln x + \frac{x^2}{4} + C_1.$$

 $3a\,C_1(x)$ возьмём первообразную при $C_1=0$, т. е.

$$C_1(x) = \frac{x^2}{2} \cdot \left(\frac{1}{2} - \ln x\right).$$

Найдём $C_2(x)$ из $\int x dx = \frac{x^2}{2} + C_2$, приняв $C_2 = 0$, т. е. $C_2(x) = \frac{x^2}{2}$.

Следовательно, частное решение данного уравнения имеет вид

$$\tilde{y}(x) = \frac{x^2}{2} \cdot \left(\frac{1}{2} - \ln x\right) \cdot \frac{1}{x} + \frac{x^2}{2} \cdot \frac{\ln x}{x} = \frac{x}{2} \cdot \left(\frac{1}{2} - \ln x + \ln x\right) = \frac{x}{4},$$

а общее решение

$$y_{\text{общее HЛДV}} = c_1 \cdot \frac{1}{x} + c_2 \cdot \frac{\ln x}{x} + \frac{x}{4}.$$

Пример 2. Найти решение задачи Коши для уравнения $y''' - y'' = e^x$ при начальных условиях: y(0) = 1, y'(0) = 0, y''(0) = 0.

Решение

Составим характеристическое уравнение однородного линейного дифференциального уравнения и найдём его корни: $\lambda^3 - \lambda^2 = 0 \Rightarrow \{\lambda\} = \{0,0,1\}.$

$$y_{\text{общее ОЛДУ}} = C_1 + C_2 \cdot x + C_3 \cdot e^x$$
.

Найдём частное решение неоднородного линейного дифференциального уравнения методом Лагранжа:

$$\tilde{y}(x) = C_1(x) \cdot 1 + C_2(x) \cdot x + C_3(x) \cdot e^x$$
.

Составим и решим систему относительно неизвестных C'_1, C'_2, C'_3 :

$$\begin{cases} C_{1}^{'} \cdot 1 + C_{2}^{'} \cdot x + C_{3}^{'} \cdot e^{x} = 0, & C_{3}^{'}(x) = 1, \\ C_{2}^{'} \cdot 1 + C_{3}^{'} \cdot e^{x} = 0, & C_{2}^{'}(x) = -e^{x}, \\ C_{3}^{'} \cdot e^{x} = e^{x} & C_{1}^{'}(x) = (x-1) \cdot e^{x}. \end{cases}$$

Тогда

$$C_1(x) = (x-2) \cdot e^x$$
, $C_2(x) = -e^x$, $C_3(x) = x$.
 $\tilde{y}(x) = (x-2) \cdot e^x - e^x \cdot x + x \cdot e^x = (x-2) \cdot e^x$.
 $y_{\text{общее HЛДУ}} = y_{\text{общее ОЛДУ}} + \tilde{y}$.
 $y_{\text{общее HЛДУ}} = C_1 + C_2 \cdot x + C_3 \cdot e^x + (x-2) \cdot e^x$.

Решим задачу Коши для данного уравнения.

Реализуя данные начальные условия, найдём C_1, C_2, C_3 из системы следующим образом: подставим начальные условия в искомую функцию и её производные

$$y(x) = C_1 + C_2 \cdot x + C_3 \cdot e^x + (x - 2) \cdot e^x, \ y'(x) = C_2 + C_3 \cdot e^x + (x - 1) \cdot e^x,$$
$$y''(x) = C_3 \cdot e^x + x \cdot e^x.$$

Получим систему из трёх уравнений относительно неизвестных C_1, C_2, C_3 :

$$\begin{cases} C_1 + C_3 - 2 = 1, \\ C_2 + C_3 - 1 = 0, \\ C_3 = 0. \end{cases}$$

Отсюда $C_3 = 0$, $C_2 = 1$, $C_1 = 3$.

Решение задачи Коши имеет вид: $y(x) = 3 + x + (x - 2) \cdot e^x$.

5.2. Метод подбора частного решения неоднородного линейного дифференциального уравнения с постоянными коэффициентами по виду правой части

Пусть

$$L_n[y] = f(x) \tag{6.7}$$

— неоднородное линейное дифференциальное уравнение с постоянными коэффициентами, где $f(x) = e^{\alpha \cdot x} [P_n(x) \cdot \cos \beta x +$

$$+Q_m(x)\cdot\sin\beta x$$
] — квазиполином, причём $\alpha,\beta\in\mathbb{R},P_n(x)=\sum_{k=0}^n a_k\cdot x^k$,

$$Q_m(x) = \sum_{k=0}^m b_k \cdot x^k - \text{полиномы.}$$

Тогда частное решение уравнения (6.7) ищется в виде

$$\tilde{y}(x) = e^{\alpha \cdot x} [\tilde{P}_t(x) \cdot \cos \beta x + \tilde{Q}_t(x) \cdot \sin \beta x] \cdot x^k],$$

где α , β — известные числа, $\tilde{P}_l(x)$ и $\tilde{Q}_l(x)$ — многочлены степени $l=\max\{m,n\}$ с неопределёнными коэффициентами, которые находятся из данного уравнения; k — кратность корня $\mu=\alpha\pm\beta\cdot j$ характеристического уравнения ОЛДУ с постоянными коэффициентами, соответствующего данному НЛДУ с постоянными коэффициентами.

Некоторые рекомендации к подбору частного решения сведены в табл. 6.3.

Таблица 6.3

Ž	f(x)	$\mu = \alpha \pm \beta \cdot j$	Свойство числа µ	\mathbf{B} ид $\widetilde{y}(x)$
			$0 \notin \{\lambda\}$	$\tilde{y}(x) = \tilde{P}_n(x)$
	$P_n(x) = \sum_{k=0}^n a_k \cdot x^k$	0	$0 \in \{\lambda\}$ и является k -кратным корнем	$\tilde{y}(x) = \tilde{P}_n(x) \cdot x^k$
			$\alpha \notin \{\lambda\}$	$\tilde{y}(x) = \tilde{P}_n(x) \cdot e^{\alpha \cdot x}$
7	$P_n(x) \cdot e^{a \cdot x}$	$\alpha \in \mathbb{R}$	$\alpha \in \{\lambda\} \alpha$ — k -кратный корень	$ ilde{p}(x) = ilde{P}_n(x) \cdot e^{a \cdot x} \cdot x^k$
			$\beta \cdot j \notin \{\lambda\}$	$\tilde{y}(x) = \tilde{P}_n(x) \cdot \cos \beta x + \tilde{Q}_n(x) \cdot \sin \beta x$
ю	$P_n(x) \cdot \cos \beta x$ или $P_n(x) \cdot \sin \beta x$	$\beta \cdot j$	$eta \cdot j \in \{\lambda\} \ eta \cdot j - k$ -кратный корень	$\tilde{y}(x) = (\tilde{P}_n(x) \cdot \cos \beta x + \tilde{Q}_n(x) \cdot \sin \beta x) \cdot x^k$
	D(x) 300 X-30		$\alpha + \beta \cdot j \notin \{\lambda\}$	$\tilde{y}(x) = e^{\alpha \cdot x} \cdot (\tilde{P}_n(x) \cdot \cos \beta x + \tilde{Q}_n(x) \cdot \sin \beta x)$
4	$P_n(x) \cdot e^{-x\cos\beta x} \text{ with }$ $P_n(x) \cdot e^{\alpha x} \cdot \sin\beta x$	$\alpha + \beta \cdot j$	$\alpha + \beta \cdot j \in \{\lambda\}$ и является k -кратным корнем	$\tilde{y}(x) = e^{a \cdot x} \cdot (\tilde{P}_n(x) \cdot \cos \beta x + \tilde{Q}_n(x) \cdot \sin \beta x) \cdot x^k$
Ŋ	$e^{ax}P_n(x)\cdot\coseta x$ или $e^{ax}Q_n(x)\cdot\sineta x$	$\alpha + \beta \cdot j$	$\alpha + \beta \cdot j \notin \{\lambda\}$	$\tilde{p}(x) = e^{a \cdot x} [\tilde{P}_n(x) \cdot \cos \beta x + \tilde{Q}_n(x) \cdot \sin \beta x], \text{где}$ $\tilde{P}_n(x) = \sum_{k=0}^n \tilde{a}_k \cdot x^k, \ \tilde{Q}_n(x) = \sum_{k=0}^n \tilde{b}_k \cdot x^k, \ \forall k \ \tilde{a}_k, \tilde{b}_k - $ неопределённые коэффициенты
			$\alpha + \beta \cdot j \in \{\lambda\}$ и является k -кратным корнем	$\tilde{y}(x) = e^{a \cdot x} [\tilde{P}_n(x) \cdot \cos \beta x + \tilde{Q}_n(x) \cdot \sin \beta x] \cdot x^k$

Пример 1. Решить уравнение $y''' - y'' = e^x$.

Решение

$$\begin{aligned} y_{\text{общее НЛДУ}} &= y_{\text{общее ОЛДУ}} + \tilde{y}. \\ \lambda^3 - \lambda^2 &= 0 \Rightarrow & \{\lambda\} = \{0, 0, 1\}. \\ y_{\text{общее ОЛЛУ}} &= C_1 + C_2 \cdot x + C_3 \cdot e^x. \end{aligned}$$

Найдем $\tilde{y}(x)$. Заметим, что $\mu = 1$.

Найдём A, подставляя $\tilde{y}(x)$ в исходное уравнение

$$0 \mid \tilde{y}(x) = A \cdot e^{x} \cdot x$$

$$0 \mid \tilde{y}'(x) = (A \cdot x + A) \cdot e^{x}$$

$$-1 \mid \tilde{y}''(x) = (A \cdot x + 2 \cdot A) \cdot e^{x}$$

$$1 \mid \tilde{y}'''(x) = (A \cdot x + 3 \cdot A) \cdot e^{x}$$

$$-A \cdot x - 2 \cdot A + A \cdot x + 3 \cdot A = 1 \Rightarrow A = 1.$$

$$\tilde{y}(x) = x \cdot e^{x}.$$

Общее решение неоднородного линейного дифференциального уравнения имеет вид: $y_{\text{обшее HЛЛУ}} = c_1 + c_2 \cdot x + c_3 \cdot e^x + x \cdot e^x$.

Теорема о суперпозиции решений. Пусть $L_n[y] = f_1(x) + f_2(x)$. Функция $y_1(x)$ — решение неоднородного линейного дифференциального уравнения $L_n[y] = f_1(x)$; $y_2(x)$ — решение неоднородного линейного дифференциального уравнения $L_n[y] = f_2(x)$. Тогда $y_1(x) + y_2(x)$ — решение неоднородного линейного дифференциального уравнения $L_n[y] = f_1(x) + f_2(x)$.

Пример 2. Найти частное решение уравнения $y'' - y' = x^2 + 2 \cdot \cos x$, удовлетворяющее начальным условиям y(0) = 0, y'(0) = 1.

Решение

$$y_{\text{общее НЛЛУ}} = y_{\text{общее ОЛЛУ}} + \tilde{y}.$$

Найдём $y_{\text{общее ОЛДУ}}$ методом Эйлера. Для этого составим характеристическое уравнение соответствующего однородного уравнения.

$$\lambda^2 - \lambda = 0 \Rightarrow \{\lambda\} = \{0,1\}.$$
 $y_{\text{общее ОЛДУ}} = C_1 + C_2 \cdot e^x.$

Частное решение уравнения $\tilde{y}(x) = \tilde{y}_1(x) + \tilde{y}_2(x)$.

Подберем $\tilde{y}_1(x)$ по виду правой части $f_1(x) = x^2$, $\mu_1 = 0 \in \{0,1\}$.

Подставим $\tilde{y}_1(x)$ в уравнение с правой частью $f_1(x) = x^2$:

$$0 \mid \tilde{y}_{1}(x) = (A \cdot x^{2} + B \cdot x + C) \cdot x$$

$$-1 \mid \tilde{y}'_{1}(x) = 3 \cdot A \cdot x^{2} + 2 \cdot B \cdot x + C$$

$$1 \mid \tilde{y}''_{1}(x) = 6 \cdot A \cdot x + 2 \cdot B$$

$$-3 \cdot A \cdot x^{2} - 2 \cdot B \cdot x - C + 6 \cdot A \cdot x + 2 \cdot B \equiv x^{2}.$$

Приравняем коэффициенты левой и правой части при одинаковых степенях.

$$\begin{vmatrix} x^2 \\ x \\ -2 \cdot B + 6 \cdot A = 0 \Rightarrow B = -1 \\ x^0 \end{vmatrix} -C + 2 \cdot B = 0 \Rightarrow C = -2$$

Итак,
$$\tilde{y}_1(x) = -\frac{1}{3} \cdot x^3 - x^2 - 2 \cdot x$$
.

Аналогично найдём $\tilde{y}_2(x)$ по виду правой части $f_2(x) = 2 \cdot \cos x$, $\mu_2 = j \notin \{\lambda\}$.

$$0 \mid \tilde{y}_{2}(x) = M \cdot \cos x + N \cdot \sin x$$

$$-1 \mid \tilde{y}'_{2}(x) = -M \cdot \sin x + N \cdot \cos x$$

$$1 \mid \tilde{y}''_{2}(x) = -M \cdot \cos x - N \cdot \sin x$$

Приравняем коэффициенты при $\cos x$ и $\sin x$ в левой и правой частях уравнения $y'' - y' = 2 \cdot \cos x$.

Частное решение исходного уравнения имеет вид:

$$\tilde{y}(x) = \tilde{y}_1 + \tilde{y}_2 = -\frac{1}{3} \cdot x^3 - x^2 - 2 \cdot x - \cos x - \sin x.$$

Тогда
$$y_{\text{общее HЛДУ}} = C_1 + C_2 \cdot e^x - \frac{1}{3} \cdot x^3 - x^2 - 2 \cdot x - \cos x - \sin x.$$

Решим задачу Коши:

$$y(x) = C_1 + C_2 \cdot e^x - \frac{1}{3} \cdot x^3 - x^2 - 2 \cdot x - \cos x - \sin x,$$

$$y'(x) = C_2 \cdot e^x - x^2 - 2 \cdot x - 2 + \sin x - \cos x.$$

В два последних равенства подставим начальные условия:

$$\begin{cases} 0 = C_1 + C_2 - 1, \\ 1 = C_2 - 2 - 1 \end{cases}$$

Решим систему относительно C_1 и C_2 . Получим $C_2 = 4$, $C_1 = -3$.

Решение задачи Коши исходного дифференциального уравнения с заданными начальными условиями имеет вид:

$$y(x) = -3 + 4 \cdot e^x - \frac{1}{3} \cdot x^3 - x^2 - 2 \cdot x - \cos x - \sin x.$$

Упражнения для самостоятельной подготовки

- 1. Решить дифференциальные уравнения:
- a) $v''' 8v'' + 16v'' = 32x + 8e^{4x}$;

6)
$$y'' - 4y' + 4y = 2e^{2x} + x/2$$
, $y(1) = 0$, $y'(1) = 3$;

B)
$$y'' + y = \sin x - 2e^{-x}$$
, $y(0) = 1$, $y'(0) = 1$;

$$\Gamma$$
) $y''' + 9y'' = 9x + (16x + 2)e^{-x}$;

$$_{\rm I}$$
Д) $y''' + y' = 2\cos x - 2x + 1;$

e)
$$y'' + y = (x-1)\cos x + 2\sin x$$
, $y(0) = 1$, $y'(0) = -1$;

$$x$$
) $y''' - 2y'' + y' = 2\cos x + 2x$;

3)
$$y''' + y'' + y' + y = 2(\cos x + 1)$$
;

M)
$$y'' - 3y' + 2y = 3x + 5\sin 2x$$
, $y(0) = 1$, $y'(0) = 2$;

K)
$$v''' + v'' = x^2 + 3\sin x$$
.

2. Решить уравнения методом вариации постоянных:

a)
$$y'' - 2y' + y = \frac{e^x}{x}$$
;

6)
$$y'' + 3y' + 2y = \frac{1}{e^x + 1}$$
;

B)
$$y'' + y = \frac{1}{\sin x}$$
;

$$\Gamma$$
) $y'' + 4y = 2 \operatorname{tg} x$;

д)
$$y'' + 2y' + y = 3e^{-x} \cdot \sqrt{x+1}$$
.

3. Решить уравнения Эйлера:

a)
$$x^2y'' - xy' + y = 8x^3$$
;

6)
$$x^3y'' - 2xy = 6 \ln x$$
;

B)
$$x^2y'' - 2y = \sin(\ln x)$$
;

$$\Gamma$$
) $(x-2)^2 y'' - 3(x-2)y' + 4y = x$.

Глава 7. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ)

1. Общие понятия и определения

Для представления некоторых процессов или явлений часто требуется описать несколько функций. Отыскание этих функций может привести к нескольким дифференциальным уравнениям, образующим систему.

Например, вещество A разлагается на два вещества B и C. Скорость образования каждого из них пропорциональна количеству неразложившегося вещества A. Первоначальное количество вещества A равно a. Тогда система

$$\begin{cases} \frac{dx}{dt} = k_1 (a - x - y), \\ \frac{dy}{dt} = k_2 (a - x - y) \end{cases}$$

описывает законы изменения количеств x и y двух веществ B и C в зависимости от времени t.

Определение. Система уравнений вида

$$F_{i}(t, x_{1}(t), x'_{1}(t), \dots, x_{1}^{(m_{1})}(t), \dots, x_{k}(t), x'_{k}(t), \dots, x_{k}^{(m_{k})}(t)) = 0,$$

$$i = \overline{1, s}, t \in (a, b),$$
(7.1)

связывающих независимую переменную t, неизвестные функции $x_1(t), \ldots, x_k(t)$ и их производные до порядков m_1, \ldots, m_k со-

ответственно, называется системой обыкновенных дифференциальных уравнений в общей форме. Сумма порядков старших производных неизвестных функций, входящих в СДУ (7.1), $m_1 + ... + m_k = n$, называется порядком СДУ.

Определение. Совокупность непрерывно дифференцируемых на (a,b) функций $(\phi_1(t),\phi_2(t),...,\phi_k(t)) = \overline{\phi}(t)$, $t \in (a,b)$ называется *решением* СДУ (7.1), если она обращает на (a,b) каждое уравнение этой системы в тождество.

Определение. Система, которая может быть разрешена относительно старших производных неизвестных функций, называется *канонической*:

$$x_{j}^{(m_{j})}(t) = f_{j}(t; x_{1}(t), \dots, x_{1}^{(m_{1}-1)}, \dots, x_{k}(t), \dots, x_{k}^{(m_{k}-1)}).$$
 (7.2)

Определение. Система уравнений первого порядка, разрешенных относительно производных первого порядка всех искомых функций, называется *нормальной*:

$$x'_{i}(t) = f_{i}(t, x_{1}(t), ..., x_{n}(t)). i = \overline{1, n}.$$
 (7.3)

Если СДУ задана в канонической форме, то ее можно записать в нормальной форме, обозначив производные искомых функций через дополнительные неизвестные функции.

Определение. Интегралом нормальной системы дифференциальных уравнений называется функция $\psi(t,x_1,x_2,...,x_n)$, определенная и непрерывная вместе с частными производными $\frac{\partial \psi}{\partial t}, \frac{\partial \psi}{\partial x_1},..., \frac{\partial \psi}{\partial x_n}$ в некоторой области D изменения переменных

и принимающая при любых $x \in (a,b)$ постоянное значение при подстановке в нее произвольного решения системы.

Равенство $\psi(t, x_1, x_2, ..., x_n) = C$, где $\psi(t, x_1, x_2, ..., x_n)$ — интеграл нормальной системы, C — произвольная постоянная, называется *первым интегралом системы* (7.3).

Всякую СДУ в нормальной форме удобно представлять векторно-дифференциальным уравнением

$$\dot{\overline{x}} = \overline{f}(t, \overline{x}(t)), \tag{7.4}$$

где $\bar{x}(t) = (x_1(t), x_2(t), ..., x_n(t))^T$, $t \in (a, b)$ — вектор из неизвестных функций; $\dot{\bar{x}}(t)$ — вектор производных неизвестных функций, $\bar{f}(t, \bar{x}(t)) = (f_1(t, \bar{x}(t)), ..., f_n(t, \bar{x}(t)))^T$ — вектор-функция правых частей СДУ (7.3).

Заметим, что независимую переменную t можно рассматривать как время и обозначать дифференцирование по времени через $\bar{x}'(t) = \dot{\bar{x}}(t)$.

Для нормальных систем справедлива следующая теорема.

Теорема. Любое дифференциальное уравнение *n*-го порядка, разрешенное относительно старшей производной, эквивалентно СДУ в нормальной форме, состоящей из *n* дифференциальных уравнений, причем порядок СДУ в нормальной форме совпадает с количеством дифференциальных уравнений в ней.

Справедлива и обратная теорема.

Теорема. Любая нормальная система дифференциальных уравнений n-го порядка эквивалентна дифференциальному уравнению порядка n.

Для системы дифференциальных уравнений нельзя получить эквивалентное ей уравнение порядка n только тогда, когда система распадается на отдельные уравнения, т.е. является не системой, а совокупностью уравнений.

2. Геометрическая интерпретация СДУ в нормальной форме

Рассмотрим для определенности нормальную систему из двух дифференциальных уравнений с двумя неизвестными функциями y(x) и z(x):

$$\begin{cases} \frac{dy}{dx} = f_1(x, y, z), \\ \frac{dz}{dx} = f_2(x, y, z). \end{cases}$$

Общее решение этой системы имеет вид:

$$\begin{cases} y = y(x, C_1, C_2), \\ z = z(x, C_1, C_2). \end{cases}$$

Каждая из функций в общем решении системы представляет собой уравнение цилиндрической поверхности в трехмерном пространстве Oxyz, а их совокупность — кривую в этом пространстве, которая является интегральной кривой исходной системы. В свою очередь исходная система определяет в каждой точке (x, y, z) некоторой области пространства значе-

ния
$$\frac{dy}{dx}$$
 и $\frac{dz}{dx}$, задающие направление, которого касается инте-

гральная кривая. Таким образом, исходная нормальная система дифференциальных уравнений задает поле направлений в пространстве, а нахождение общего решения этой системы геометрически означает нахождение двухпараметрического семейства кривых, в каждой своей точке касающихся направления, задаваемого полем.

3. Механическая интерпретация СДУ в нормальной форме

Определение. Пространство переменных $(x_1, x_2, ..., x_n)$ системы дифференциальных уравнений в нормальной форме называется *фазовым пространством системы*.

Уравнения системы задают значения скоростей изменения координат изображающей точки $M(t) = (x_1(t), \dots, x_n(t)), a < t < b$. Решение СДУ в этой интерпретации эквивалентно восстановлению координат движущейся в пространстве \mathbb{R}^n точки по известным

скоростям их изменения. Ориентированная кривая, описываемая при этом изображающей точкой $M(t), a \rightarrow t \rightarrow b$, называется ϕa -зовой траекторией системы в фазовом пространстве.

Определение. Система дифференциальных уравнений

$$\dot{\bar{x}} = \bar{f}(\bar{x}) \tag{7.5}$$

называется автономной, если правые части уравнений системы не зависят явно от t.

Для автономной СДУ фазовую траекторию можно представить как ориентированную проекцию годографа решения СДУ в \mathbb{R}^{n+1} на фазовое пространство \mathbb{R}^n .

4. Задача Коши для СДУ в нормальной форме

Задача Коши. Найти решение системы дифференциальных уравнений $\dot{\bar{x}} = \bar{f}(t,x)$, удовлетворяющее заданным начальным условиям $\bar{x}(t_0) = \bar{x}_0$, $t_0 \in (a,b)$.

Теорема существования и единственности решения задачи Коши СДУ.

Если

1) вектор-функция $\overline{f}\left(t,\overline{x}\left(t\right)\right)$ непрерывна в некоторой области D;

2)
$$\forall i, j = \overline{1, n} \frac{\partial f_i(t, x_1, x_2, ..., x_n)}{\partial x_i}$$
 — непрерывная в D функ-

ция, то $\forall t_0 \in (a,b)$ и $\forall \overline{\xi} \in G$ можно указать окрестность $O(t_0)$, в которой существует единственное решение задачи Коши $\begin{bmatrix} \dot{\overline{x}} = \overline{f} \left(t, \overline{x}(t)\right), \\ \overline{x}(t_0) = \overline{\xi}, \end{bmatrix}$, т. е. через каждую точку $\left(\overline{\xi}, t_0\right)$ проходит един-

ственная интегральная кривая СДУ при $t \in O(t_0)$.

Определение. Вектор-функцию $\bar{x} = \bar{\phi}(t, \bar{c}), t \in (a, b)$, называют *общим* решением СДУ $\dot{\bar{x}} = \bar{f}(t, \bar{x}(t))$ в области D, если:

1)
$$\forall \, \overline{c} \quad \overline{\varphi}(t, \overline{c})$$
 — решение СДУ, т. е. $\forall \, c \quad \dot{\overline{\varphi}}(t, \overline{c}) \underset{(a,b)}{\equiv} \overline{f}(t, \overline{\varphi}(t, \overline{c}));$

2) при любых начальных условиях $\overline{x}(t_0) = \overline{\xi}$, $t_0 \in (a,b)$, $\overline{\xi} \in G$ существует единственное $\overline{c} = \overline{c}_0$ такое, что $\overline{x} = \overline{\phi}(t,\overline{c}_0)$ — решение СДУ, удовлетворяющее начальным условиям, т. е. $\overline{\phi}(t,\overline{c}_0)\big|_{t=t_0} = \overline{\xi}$.

Всякое решение СДУ, получающееся из общего решения этой системы при конкретном значении вектора \bar{c} , является частным решением СДУ.

5. Некоторые приемы аналитического решения СДУ

5.1. Сведение к одному уравнению

Запишем СДУ $\dot{\bar{x}} = \bar{f}(t,\bar{x})$ в координатной форме

$$\dot{x}_i(t) = f_i(t, x_1, ..., x_n); i = 1, 2, ..., n, t \in (a, b).$$

Предположим, что все функции $f_i(t, x_1, ..., x_n)$ имеют непрерывные производные по всем аргументам в некоторой области D.

Рассмотрим схему исключения неизвестных функций и сведение СДУ к одному дифференциальному уравнению относительно, например, неизвестной функции $x_1(t)$. Предположим, что СДУ имеет решение $\overline{x} = \overline{x}(t)$, следовательно, при его подстановке в уравнения системы справедливо тождественное равенство

$$\dot{\overline{x}}(t)\equiv\overline{f}\left(t,\overline{x}(t)\right).$$
 Обозначим $f_1\left(t,x_1\left(t\right),\ldots,x_n\left(t\right)\right)=F_1\left(t,x_1\left(t\right),\ldots,x_n\left(t\right)\right).$

Продифференцируем по t первое уравнение системы $\dot{x}_1(t) = f_1(t, x_1(t), ..., x_n(t))$:

$$\frac{d^2x_1}{dt^2} = \frac{\partial f_1}{\partial t} + \sum_{n=1}^n \frac{\partial f_1}{\partial x_k} \cdot \underbrace{\frac{dx_k}{dt}}_{=f_k \text{ BCUILY}} = \frac{\partial f_1}{\partial t} + \sum_{n=1}^n \frac{\partial f_1}{\partial x_k} \cdot f_k(t, x_1, ... x_n).$$

Обозначим правую часть полученного равенства через $F_2(t, x_1(t), ..., x_n(t))$. Тогда

$$\frac{d^2x_1}{dt^2} = F_2(t, x_1(t), \dots, x_n(t)).$$

Это выражение снова продифференцируем по t, в силу уравнений системы получим

$$\frac{d^3x_1}{dt^3} = \frac{\partial F_2}{\partial t} + \sum_{n=1}^n \frac{\partial F_2}{\partial x_k} \cdot f_k(t, x_1, \dots, x_n) = F_3(t, x_1(t), \dots, x_n(t)).$$

Продолжая дифференцирование, в итоге придем к выражению

$$\frac{d^n x_1}{dt^n} = \frac{\partial F_{n-1}}{\partial t} + \sum_{n=1}^n \frac{\partial F_{n-1}}{\partial x_k} \cdot f_k(t, x_1, \dots, x_n) = F_n(t, x_1(t), \dots, x_n(t)).$$

Дифференцируя по t тождество $\dot{x}_1(t) = f_1(t, x_1(t), ..., x_n(t))$ в силу уравнений СДУ, т. е. используя другие равенства СДУ, получим

$$\frac{d^2x_1}{dt^2} = \frac{df_1}{dt} + \sum_{j=1}^n \frac{\partial f_1}{\partial x_j} \cdot \frac{dx_j}{dt} = \frac{\partial f_1}{\partial t} + \sum_{j=1}^n \frac{\partial f_1}{\partial x_j} \cdot f_j(t, x_1, x_2, \dots, x_n).$$

В результате получим систему:

$$\begin{cases} \frac{dx_1}{dt} = F_1(t, x_1(t), \dots, x_n(t)), \\ \frac{d^2x_1}{dt^2} = F_2(t, x_1(t), \dots, x_n(t)), \\ \vdots \\ \frac{d^nx_1}{dt^n} = F_n(t, x_1(t), \dots, x_n(t)). \end{cases}$$

Если из первых (n-1) уравнений этой системы можно выразить функции $x_2(t)$, $x_3(t)$,..., $x_n(t)$ через t, x_1 , x_1' ,..., $x_1^{(n-1)}$, то, подставив их выражения в последнее уравнение, получим дифференциальное уравнение n-го порядка относительно одной неизвестной функции $x_1(t)$.

Данная система совместна, если отличен от нуля якобиан

$$\frac{\partial(F_1, F_2, \dots, F_{n-1})}{\partial(x_2, x_3, \dots, x_n)} = \begin{vmatrix} \frac{\partial F_1}{\partial x_2} & \frac{\partial F_1}{\partial x_3} & \dots & \frac{\partial F_1}{\partial x_n} \\ \frac{\partial F_2}{\partial x_2} & \frac{\partial F_2}{\partial x_3} & \dots & \frac{\partial F_2}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial F_{n-1}}{\partial x_2} & \frac{\partial F_{n-1}}{\partial x_3} & \dots & \frac{\partial F_{n-1}}{\partial x_n} \end{vmatrix}.$$

Пример. Решить систему сведением к одному дифференциальному уравнению

$$\begin{cases} \frac{dx}{dt} = 5x + 2y - 3z, \\ \frac{dy}{dt} = 4x + 5y - 4z, \\ \frac{dz}{dt} = 6x + 4y - 4z. \end{cases}$$

Решение

Продифференцируем по t первое уравнение системы:

$$\frac{d^2x}{dt^2} = 5\frac{dx}{dt} + 2\frac{dy}{dt} - 3\frac{dz}{dt}.$$

В силу уравнений системы получим

$$\frac{d^2x}{dt^2} = 5(5x+2y-3z)+2(4x+5y-4z)-3(6x+4y-4z)$$

или

$$\frac{d^2x}{dt^2} = 15x + 8y - 11z.$$

Продифференцируем по t полученное выражение:

$$\frac{d^3x}{dt^3} = 15\frac{dx}{dt} + 8\frac{dy}{dt} - 11\frac{dz}{dt}$$
или $\frac{d^3x}{dt^3} = 41x + 26y - 33z$.

В результате получим:

$$\begin{cases} \frac{dx}{dt} = 5x + 2y - 3z, \\ \frac{d^2x}{dt^2} = 15x + 8y - 11z, \\ \frac{d^3x}{dt^3} = 41x + 26y - 33z. \end{cases}$$

Из первых двух уравнений выразим

$$y = \frac{1}{2} \left(10x - 11 \frac{dx}{dt} + 3 \frac{d^2x}{dt^2} \right) \text{ M } z = 5x - 4 \frac{dx}{dt} + \frac{d^2x}{dt^2}.$$

Подставим их в третье уравнение:

$$\frac{d^3x}{dt^3} - 6\frac{d^2x}{dt^2} + 11\frac{dx}{dt} - 6x = 0.$$

Получили однородное линейное дифференциальное уравнение третьего порядка с постоянными коэффициентами. Его характеристическое уравнение

$$\lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0$$

имеет корни $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$. Общее решение уравнения равно $x(t) = C_1 \cdot e^t + C_2 \cdot e^{2t} + C_3 \cdot e^{3t}$.

Найдем первую и вторую производные функции x(t) и подставим их в выражения для y(t) и z(t). Получим:

 $y(t) = C_1 \cdot e^t + 2C_3 \cdot e^{3t}, \ z(t) = 2C_1 \cdot e^t + C_2 \cdot e^{2t} + 2C_3 \cdot e^{3t}.$ Общее решение системы имеет вид:

$$\begin{cases} x(t) = C_1 \cdot e^t + C_2 \cdot e^{2t} + C_3 \cdot e^{3t}, \\ y(t) = C_1 \cdot e^t + 2C_3 \cdot e^{3t}, \\ z(t) = 2C_1 \cdot e^t + C_2 \cdot e^{2t} + 2C_3 \cdot e^{3t}. \end{cases}$$

5.2. Метод интегрируемых комбинаций

Иногда при решении систем дифференциальных уравнений $\dot{\bar{x}} = \overline{f}(t,\bar{x})$ удается преобразовать уравнения системы к легко интегрируемому дифференциальному уравнению относительно некоторой комбинации искомых функций.

Определение. *Интегрируемой комбинацией* СДУ называется дифференциальное уравнение — следствие исходной системы, которое легко интегрируется.

Пусть решение системы $\dot{x}_i(t) = f_i(t,x_1,...,x_n); i = \overline{1,n}; t \in (a,b)$ имеет вид: $x_i(t) = \psi_i(t,C_1,...,C_n); i = \overline{1,n}$. Тогда в области D, в которой выполняются условия теоремы существования и единственности, система $x_i(t) = \psi_i(t,C_1,...,C_n)$ имеет единственное решение относительно $C_1,...,C_n$. Следовательно, справедливы равенства

$$\begin{cases} \psi_1(t, x_1, ..., x_n) = C_1, \\ \psi_2(t, x_1, ..., x_n) = C_2, \\ \psi_n(t, x_1, ..., x_n) = C_n. \end{cases}$$

Каждое из равенств является первым интегралом.

Определение. Общим интегралом системы $\dot{x}_i(t) = f_i(t, x_1, ..., x_n)$; $i = \overline{1, n}; \ t \in (a, b)$, называется совокупность n линейно независимых первых интегралов.

Замечание. Первые интегралы $\psi_1(t, x_1, ..., x_n), \ \psi_2(t, x_1, ..., x_n), ..., \ \psi_n(t, x_1, ..., x_n)$ линейно независимы, если якобиан

$$\frac{\partial(\psi_1, \ \psi_2, \dots, \psi_n)}{\partial(x_1, \ x_2, \dots, x_n)} \neq 0.$$

Признак первого интеграла. Соотношение $\psi(t, x_1, ..., x_n) = C$ является первым интегралом системы дифференциальных уравнений $\dot{\bar{x}} = \bar{f}(t, \bar{x})$ тогда и только тогда, когда производная по t функции $\psi(t, x_1, ..., x_n)$ в силу уравнений системы тождественно равна нулю.

Пример 1. Показать, что $\psi_1 = \sin x - \sin y$ и $\psi_2 = \sin x - z$ линей-

но независимые первые интегралы системы $\begin{cases} \frac{dz}{dx} = \cos x, \\ \frac{dy}{dt} = \frac{\cos x}{\cos y}. \end{cases}$

Решение

Покажем, что $\psi_1 = \sin x - \sin y$ и $\psi_2 = \sin x - z$ линейно независимы:

$$\frac{\partial(\psi_1, \ \psi_2)}{\partial(y, \ z)} = \begin{vmatrix} \frac{\partial \psi_1}{\partial y} & \frac{\partial \psi_1}{\partial z} \\ \frac{\partial \psi_2}{\partial y} & \frac{\partial \psi_2}{\partial z} \end{vmatrix} = \begin{vmatrix} -\cos y & 0 \\ 0 & -1 \end{vmatrix} = \cos y \neq 0$$

по условию задачи.

Проверим, используя признак первого интеграла, что ψ_1 и ψ_2 являются первыми интегралами системы:

$$\begin{cases} \frac{\partial \psi_1}{\partial x} + \frac{dz}{dx} \cdot \frac{\partial \psi_1}{\partial z} + \frac{dy}{dx} \cdot \frac{\partial \psi_1}{\partial y} = 0, \\ \frac{\partial \psi_2}{\partial x} + \frac{dz}{dx} \cdot \frac{\partial \psi_2}{\partial z} + \frac{dy}{dx} \cdot \frac{\partial \psi_2}{\partial y} = 0 \end{cases}$$

ИЛИ

$$\begin{cases} \cos x + \cos x \cdot 0 + \frac{\cos x}{\cos y} \cdot (-\cos y) \equiv 0, \\ \cos x + \cos x \cdot (-1) + \frac{\cos x}{\cos y} \cdot 0 \equiv 0. \end{cases}$$

Что и требовалось доказать.

Пример 2. Решить систему
$$\begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = x. \end{cases}$$

Решение

Складываем почленно уравнения и находим первую интегрируемую комбинацию

$$\frac{d(x+y)}{dt} = x + y$$
или
$$\frac{d(x+y)}{x+y} = dt,$$

откуда $e^{-t} \cdot (x+y) = C_1$.

Почленно вычтем из первого уравнения системы второе, получим

$$\frac{d(x-y)}{dt} = x - y, e^t \cdot (x-y) = C_2.$$

Таким образом, нашли два первых интеграла исходной системы

$$e^{-t} \cdot (x+y) = C_1, e^t \cdot (x-y) = C_2.$$

Проверим их на линейную зависимость. Для этого обозначим $e^{-t} \cdot (x+y) = \psi_1, e^t \cdot (x-y) = \psi_2$ и вычислим якобиан

$$\frac{\partial(\psi_1, \ \psi_2)}{\partial(x, \ y)} = \begin{vmatrix} \frac{\partial \psi_1}{\partial x} & \frac{\partial \psi_1}{\partial y} \\ \frac{\partial \psi_2}{\partial x} & \frac{\partial \psi_2}{\partial y} \end{vmatrix} = \begin{vmatrix} e^{-t} & e^{-t} \\ e^{t} & -e^{t} \end{vmatrix} = -2 \neq 0.$$

Следовательно, первые интегралы линейно независимы.

Общий интеграл системы имеет вид
$$\begin{cases} e^{-t} \cdot (x+y) = C_1, \\ e^t \cdot (x-y) = C_2. \end{cases}$$

В данном примере можно выразить x(t) и y(t) из общего интеграла и получить общее решение системы

$$\begin{cases} x = \overline{C}_1 \cdot e^t + \overline{C}_2 e^{-t}, \\ y = \overline{C}_1 \cdot e^t - \overline{C}_2 e^{-t}. \end{cases}$$

5.3. Симметричная форма записи СДУ

СДУ в нормальной форме $\dot{\bar{x}}=\bar{f}(t,\bar{x})$ может быть представлена в виде

$$\frac{dx_1}{f_1(t,\overline{x})} = \frac{dx_2}{f_2(t,\overline{x})} = \dots = \frac{dx_n}{f_n(t,\overline{x})} = dt,$$

симметричном относительно переменных. Так, например, симметричная форма записи СДУ

$$\frac{dx}{X(x,y,z)} = \frac{dy}{Y(x,y,z)} = \frac{dz}{Z(x,y,z)}$$

используется для описания векторных линий $\overline{r} = \overline{r}(t)$ векторного поля $\overline{F}(X,Y,Z)$ — вектор-функции точки пространства переменных x, y, z.

Решение СДУ в симметричной форме иногда может быть проведено методом интегрируемых комбинаций на основе свойств равных отношений: если $\frac{a}{b} = \frac{c}{d} = \frac{m}{n}$, то для любых чисел

(не равных нулю одновременно) α , β , γ имеет место соотношеa c m $\alpha a + \beta c + \gamma m$

ние
$$\frac{a}{b} = \frac{c}{d} = \frac{m}{n} = \frac{\alpha a + \beta c + \gamma m}{\alpha b + \beta d + \gamma n}$$
.

Пример 1. Решить систему
$$\frac{dx}{cy-bz} = \frac{dy}{az-cx} = \frac{dz}{bx-ay}$$
.

Решение

Воспользуемся свойством равных отношений

$$\frac{a \cdot dx}{a \cdot (cy - bz)} = \frac{b \cdot dy}{b \cdot (az - cx)} = \frac{c \cdot dz}{c \cdot (bx - ay)} = \frac{d(ax + by + cz)}{0}.$$

Получим первый интеграл системы $ax + by + cz = C_1$.

Еще раз воспользуемся свойством равных отношений

$$\frac{x \cdot dx}{x \cdot (cy - bz)} = \frac{y \cdot dy}{y \cdot (az - cx)} = \frac{z \cdot dz}{z \cdot (bx - ay)} = \frac{d(x^2 + y^2 + z^2)}{0}.$$

Получим еще один первый интеграл системы $x^2 + y^2 + z^2 = C_2$.

Нетрудно показать, что полученные первые интегралы линейно независимы.

Общий интеграл системы имеет вид:

$$\begin{cases} ax + by + cz = C_1, \\ x^2 + y^2 + z^2 = C_2. \end{cases}$$

Пример 2. Решить систему $\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2xz}$.

Решение

Интегрируя уравнение
$$\frac{dy}{2xy} = \frac{dz}{2xz}$$
, получим $\frac{y}{z} = C_1$.

Умножим числитель и знаменатель первого из отношений на x, второго на y, третьего на z и, используя свойство равных отношений, получим

$$\frac{xdx + ydy + zdz}{x \cdot \left(x^2 - y^2 - z^2\right)} = \frac{dy}{2xy},$$

откуда

$$\ln(x^2+y^2+z^2) = \ln|y| + \ln|C_2|$$
, или $\frac{x^2+y^2+z^2}{y} = C_2$.

Найденные первые интегралы линейно независимы и определяют общий интеграл системы.

6. Системы линейных дифференциальных уравнений

Определение. Нормальная система дифференциальных уравнений называется *линейной*, если функции $x_i'(t) = f_i(t, x_1(t), ..., x_n(t))$; $i = \overline{1,n}$, линейны относительно неизвестных функций, т. е. если она имеет вид

$$\frac{dx_i}{dt} = \sum_{j=1}^n a_{ij} x_j + b_i(x), \quad i = \overline{1, n}.$$

Вводя матрицу из коэффициентов при искомых функциях

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

и столбец неоднородностей

$$B(t) = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix},$$

запишем систему неоднородных линейных дифференциальных уравнений (СНЛДУ) в векторном виде

$$\dot{\overline{x}} = A(t)\overline{x} + B(t)$$
, где $\overline{x} = (x_1(t), \dots, x_n(t))^T$,

где $A(t) = \left[a_{ij}(t)\right]_{i,i=1}^n$ — функциональная матрица;

$$B(t) = (b_1(t), \dots, b_n(t))^T$$
 — функциональный вектор, $t \in (a, b)$.

При $B(t) \equiv 0$ СНЛДУ получим систему однородных линейных дифференциальных уравнений (СОЛДУ) вида $\dot{\bar{x}} = A(t)\bar{x}, t \in (a,b)$.

6.1. Свойства решений СОЛДУ $\dot{\overline{x}} = A(t) \, \overline{x}, t \in (a,b)$

Обозначим через Y множество всех решений СОЛДУ

$$\dot{\overline{x}} = A(t)\overline{x}, t \in (a,b), Y = \left\{ \overline{\varphi}(t), t \in (a,b) : \dot{\overline{\varphi}}(t) \underset{(a,b)}{=} A(t)\overline{\varphi}(t) \right\}.$$

Заметим, что Y — линейное пространство над \mathbb{R} .

Напомним, что произвольные вектор-функции $\{\overline{\varphi}_k(t)\}_{k=1}^m$, $t \in (a,b)$, называются линейно зависимыми на (a,b), если существует ненулевой набор постоянных $\{\alpha_k\}_{k=1}^m$, такой, что при всех $t \in (a,b)$ $\alpha_1\overline{\varphi}_1(t) + \alpha_2\overline{\varphi}_2(t) + \ldots + \alpha_m\overline{\varphi}_m(t) = 0$. Очевидно, что если $\{\overline{\varphi}_k(t)\}_{k=1}^m$ линейно зависимы на $\forall k = \overline{1,n}$, то при каждом $t_0 \in (a,b)$ векторы $\dot{\overline{x}} = A(t)\overline{x}$ также линейно зависимы.

Теорема о достаточном условии линейной зависимости системы решений СОЛДУ. Если

- 1) при любом значении $k = \overline{1, n}$ вектор-функции $\overline{\varphi}_k(t)$, $t \in (a, b)$, являются решениями системы $\dot{\overline{x}} = A(t)\overline{x}$;
- 2) при некотором $t_0 \in (a,b)$ векторы $\{\overline{\varphi}_k(t_0)\}_{k=1}^m$ линейно зависимы с коэффициентами зависимости $\{\alpha_k\}_{k=1}^m$, то система решений СОЛДУ $\{\overline{\varphi}_k(t_0)\}_{k=1}^m$ линейно зависима с теми же коэффициентами зависимости $\{\alpha_k\}_{k=1}^m$.

Теорема. Любые *n* линейно независимых решений СОЛДУ $\dot{\bar{x}} = A(t)\bar{x}$ образуют базис пространства *Y* .

Определение. Базис пространства всех решений СОЛДУ $\dot{\bar{x}} = A(t)\bar{x}$ называется фундаментальной системой решений (ФСР) СОЛДУ. Матрица, столбцы которой являются ФСР, называется фундаментальной матрицей СОЛДУ $\dot{\bar{x}} = A(t)\bar{x}$.

Теорема о структуре общего решения СОЛДУ

Если $\left\{ \overline{x}_{k}\left(t\right)\right\} _{k=1}^{n}$ — фундаментальная система решений СОЛДУ $\dot{\overline{x}}=A(t)\overline{x}$ на(a,b), то ее общее решение имеет вид: $\overline{x}\left(t\right)=\sum_{k=1}^{n}c_{k}\overline{x}_{k}\left(t\right)$, где $c_{k}\in\mathbb{R}$.

Пример. Показать, что

$$\overline{x}_{1}(t) = \begin{pmatrix} \cos x \\ -\sin x \end{pmatrix} \mathbf{H} \ \overline{x}_{2}(t) = \begin{pmatrix} \sin x \\ \cos x \end{pmatrix}$$

образуют фундаментальную систему решений системы $\dot{\bar{x}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \bar{x}$. Записать общее решение этой системы.

Решение. Очевидно, что

$$\left(\alpha \cdot \begin{pmatrix} \cos x \\ -\sin x \end{pmatrix} + \beta \cdot \begin{pmatrix} \sin x \\ \cos x \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}\right) \Leftrightarrow (\alpha = 0, \beta = 0),$$

следовательно, $\bar{x}_1(t)$ и $\bar{x}_2(t)$ — линейно независимы и образуют фундаментальную систему решений.

Поэтому общее решение можно записать в виде

$$\overline{x}(t) = C_1 \cdot \begin{pmatrix} \cos x \\ -\sin x \end{pmatrix} + C_2 \cdot \begin{pmatrix} \sin x \\ \cos x \end{pmatrix} = \begin{pmatrix} C_1 \cdot \cos x + C_2 \cdot \sin x \\ -C_1 \cdot \sin x + C_2 \cos x \end{pmatrix}.$$

6.2. Свойства матриц фундаментальной системы решений СОЛДУ

Определение. Определитель матрицы P(t), составленной из произвольных решений СОЛДУ $\dot{\bar{x}} = A(t)x$ *n*-го порядка, называется определителем Вронского и обозначается

$$W(t) = \det P(t) = \begin{vmatrix} x_{11}(t) & x_{12}(t) & \cdots & x_{1n}(t) \\ \cdots & \cdots & \cdots & \cdots \\ x_{j1}(t) & x_{j2}(t) & \cdots & x_{jn}(t) \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1}(t) & x_{n2}(t) & \cdots & x_{nn}(t) \end{vmatrix}, t \in (a, b).$$

Если решения $\{\overline{x}_k(t)\}_{k=1}^n$, из которых составлен определитель Вронского W(t), линейно зависимы, то W(t) = 0 на (a,b).

Запишем свойства фундаментальных матриц СОЛДУ $\dot{\overline{x}} = A(t)\overline{x}$.

1. Определитель Вронского любой фундаментальной матрицы не обращается в ноль на (a,b), т. е. $W(t) = \det \Phi(t) \neq 0$.

Поэтому всякая фундаментальная матрица обратима, т. е. на (a,b) $\exists \Phi^{-1}(t)$: $\Phi(t) \cdot \Phi^{-1}(t) = \Phi^{-1}(t) \cdot \Phi(t) = E$.

- 2. Общее решение СОЛДУ $\bar{x}=A(t)\bar{x}$ запишется $\bar{x}_{\text{обш.}}=\Phi(t)\cdot\bar{c}$, где \bar{c} произвольный вектор, $\bar{c}\in R^n$. При этом задача Коши $\begin{bmatrix} \bar{x}=A(t)\bar{x},\\ \bar{x}(t_0)=\bar{\xi} \end{bmatrix}$ имеет единственное решение $x_{\text{част}}(t)=\Phi(t)\Phi^{-1}(t_0)\bar{\xi}$, поскольку из соотношения $\bar{x}(t_0)=\bar{\xi}$ имеем $\bar{\xi}=\Phi(t_0)\cdot\bar{c}\Rightarrow \bar{c}=\Phi^{-1}(t_0)\bar{\xi}$.
- 3. Дифференцируя $\Phi(t)$ в силу уравнений СОЛДУ, получаем матрично-дифференциальное уравнение $\dot{\Phi} = A(t)\Phi$, которому удовлетворяет фундаментальная матрица.

С помощью этого свойства можем решать задачу о восстановлении матрицы исходной СОЛДУ по любой известной ее фундаментальной матрице: очевидно, $A(t) = \dot{\Phi}(t) \cdot \Phi^{-1}(t)$.

4. Фундаментальная матрица $\Phi(t)$ называется *нормированной* в точке t_0 , если $\Phi(t_0) = E$; в противном случае — ненормированной. Если $\Phi(t)$ нормированная, то $\overline{x}_{\text{част}}(t) = \Phi(t)\overline{\xi}$, здесь $\overline{\xi}$ — на-

чальный вектор в точке $t=t_0$. Если $\Phi(t)$ ненормированная в точке $t=t_0$, то ее можно пронормировать, перейдя к матрице $\Phi(t)\cdot\Phi^{-1}(t_0)$, t, $t_0\in(a,b)$.

5. Матрица $\Phi(t) \cdot \Phi^{-1}(t_0)$ удовлетворяет уравнению $\Phi = A\Phi$, поэтому является фундаментальной для СОЛДУ $\dot{\bar{x}} = A\bar{x}$, причем при $t = t_0$ она нормирована.

Обычно обозначают $\Phi(t)\cdot\Phi^{-1}(t_0)=\Phi(t,t_0)$ и называют эту матрицу *матрицей Коши* для СОЛДУ.

Пример. Показать, что вектор-функции

$$\begin{pmatrix} e^t \\ e^t \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ e^{-t} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ e^{2t} \end{pmatrix}$$

линейно независимы на $(-\infty, +\infty)$. Построить систему дифференциальных уравнений, для которой они образуют фундаментальную систему решений.

Решение

Исследуем систему вектор-функций на линейную зависимость:

$$\alpha_{1} \cdot \begin{pmatrix} e^{t} \\ e^{t} \\ 0 \end{pmatrix} + \alpha_{2} \cdot \begin{pmatrix} 0 \\ e^{-t} \\ 0 \end{pmatrix} + \alpha_{3} \cdot \begin{pmatrix} 0 \\ 0 \\ e^{2t} \end{pmatrix} = \begin{pmatrix} \alpha_{1} \cdot e^{t} \\ \alpha_{1} \cdot e^{t} + \alpha_{2} \cdot e^{-t} \\ \alpha_{3} \cdot e^{2t} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Очевидно, что $\alpha_1 = 0$, $\alpha_2 = 0$, $\alpha_3 = 0$, т. е. система функций линейно независима и ее можно принять за ФСР. Составим фун-

даментальную матрицу системы
$$\Phi(t) = \begin{pmatrix} e^t & 0 & 0 \\ e^t & e^{-t} & 0 \\ 0 & 0 & e^{2t} \end{pmatrix}$$
. Тогда, ис-

пользую свойство 3 фундаментальных матриц, получим

$$A(t) = \dot{\Phi}(t) \cdot \Phi^{-1}(t) = \begin{pmatrix} e^{t} & 0 & 0 \\ e^{t} & -e^{-t} & 0 \\ 0 & 0 & 2e^{2t} \end{pmatrix} \cdot \begin{pmatrix} e^{-t} & 0 & 0 \\ -e^{-t} & e^{t} & 0 \\ 0 & 0 & e^{-2t} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Таким образом, искомая система имеет вид

$$\dot{\overline{x}}(t) = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \cdot \overline{x}(t).$$

6.3. Системы неоднородных линейных дифференциальных уравнений $\dot{\overline{x}} = A(t)\overline{x} + B(t), t \in (a,b)$

Теорема о структуре общего решения СНЛДУ.

Если

1)
$$\left\{ \overline{x}_{k}\left(t\right) \right\}_{k=1}^{n}$$
 — ФСР СОЛДУ $\dot{\overline{x}} = A(t)\overline{x}$;

2) $\bar{\phi}(t)$ — некоторое решение СНЛДУ, $\dot{\bar{x}} = A(t)\bar{x} + B(t)$, то общее решение СНЛДУ находится по формулам:

$$\overline{X}_{\text{общ. CHЛДУ}}\left(t\right) = \overline{X}_{\text{общ. COЛДУ}}\left(t\right) + \overline{\varphi}\left(t\right) = \sum_{k=1}^{n} c_{k} \overline{X}_{k}\left(t\right) + \overline{\varphi}\left(t\right)$$

или

$$\overline{x}_{\text{обш. СНЛДУ}}(t) = \Phi(t)\overline{c} + \overline{\varphi}(t), \ t \in (a, b).$$
 (7.6)

Для нахождения $\overline{\phi}(t)$ можно пользоваться методом вариации произвольных постоянных: ищем $\overline{\phi}(t)$ в виде $\overline{\phi}(t) = \Phi(t)\overline{c}(t)$ из СНЛДУ.

Тогда
$$\dot{\overline{\varphi}}(t) = \dot{\Phi}(t)\overline{c}(t) + \Phi(t)\dot{\overline{c}}(t)$$
, т. е.

 $\dot{\Phi}(t)\bar{c}(t)+\Phi(t)\dot{\bar{c}}(t)=A\Phi(t)\bar{c}(t)+B(t)$ или $\Phi(t)\dot{\bar{c}}(t)=B(t)$, поскольку $\dot{\Phi}(t)=A\Phi(t)$. Отсюда $\dot{\bar{c}}(t)=\Phi^{-1}(t)B(t)$. После интегрирования получим

$$\overline{c}\left(t
ight) = \int\limits_{t_0}^t \Phi^{-1}\left(au
ight)B\left(au
ight)d au,\,t_0$$
 — любое число $\left(a,b
ight).$

Итак,

$$\overline{\varphi}(t) = \Phi(t) \int_{t_0}^{t} \Phi^{-1}(\tau) B(\tau) d\tau. \tag{7.7}$$

Подставим значение $\bar{\varphi}(t)$ из выражения (7.7) в (7.6), получим формулу Коши для выражения общего решения СНЛДУ $\bar{x} = A(t)\bar{x} + B(t)$

$$\overline{x}_{\text{общ CHJIJY}}(t) = \Phi(t)\overline{c} + \Phi(t)\int_{t_0}^{t} \Phi^{-1}(\tau)B(\tau)d\tau.$$
 (7.8)

Если $t=t_0$ — значение аргумента для начальных условий $\overline{x}\left(t_0\right)=\overline{\xi}$, то $\overline{\xi}=\Phi\left(t_0\right)\overline{c}+\Phi\left(t_0\right)\int\limits_{t_0}^{t_0}\Phi^{-1}\left(\tau\right)B\left(\tau\right)d\tau$ и отсюда $\overline{c}=\Phi^{-1}\left(t_0\right)\overline{\xi}$.

Получаем выражение частного решения СНЛДУ

$$\overline{X}_{\text{vact. CHJIJY}}(t) = \Phi(t)\Phi^{-1}(t_0)\overline{\xi} + \Phi(t)\int_{t_0}^{t}\Phi^{-1}(\tau)B(\tau)d\tau \qquad (7.9)$$

или

$$\overline{x}_{\text{част. СНЛДУ}}\left(t\right) = \Phi\left(t, t_{0}\right) \overline{c} + \int_{t_{0}}^{t} \Phi^{-1}\left(t, \tau\right) B\left(\tau\right) d\tau.$$

Пример. Решить систему дифференциальных уравнений

$$\begin{cases} \frac{dx}{dt} = y + tg^2 t - 1, \\ \frac{dy}{dt} = -x + tg t. \end{cases}$$

Решение

Общее решение этой системы будем искать в виде $\overline{x}_{\text{общСНЛДУ}}\left(t\right) = \Phi\left(t\right)\overline{c} + \Phi\left(t\right)\int\limits_{t_0}^{t}\Phi^{-1}\left(\tau\right)B\left(\tau\right)d\tau.$ Решение соответствующей СОЛДУ

$$\begin{cases} \frac{dx}{dt} = y, \\ \frac{dy}{dt} = -x \end{cases}$$

найдем сведением к одному уравнению.

Подставим выражение для *у* из первого уравнения во второе, получим дифференциальное уравнение

$$\frac{d^2x}{dt^2} = -x,$$

корни характеристического уравнения: $\lambda_{1,2} = \pm j$. Тогда общее решение этого уравнения имеет вид: $x(t) = C_1 \cos t + C_2 \sin t$, а общий интеграл однородной системы $\begin{cases} x(t) = C_1 \cos t + C_2 \sin t, \\ y(t) = -C_1 \sin t + C_2 \cos t. \end{cases}$

Тогда фундаментальная матрица системы $\Phi(t) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$.

Далее последовательно вычисляем

$$\Phi^{-1}(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix};$$

$$\Phi^{-1}(t) \cdot B(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \cdot \begin{pmatrix} \operatorname{tg}^{2} t - 1 \\ \operatorname{tg} t \end{pmatrix} = \begin{pmatrix} -\cos t \\ \frac{\sin^{3} t}{\cos t} \end{pmatrix};$$

$$\int_{t_{0}}^{t} \Phi^{-1}(\tau) \cdot B(\tau) d\tau = \int_{t_{0}}^{t} \begin{pmatrix} -\cos \tau \\ \frac{\sin^{3} \tau}{\cos \tau} \end{pmatrix} d\tau = \begin{pmatrix} -\sin \tau \\ \cos \tau + \frac{1}{\cos \tau} \end{pmatrix} \Big|_{t_{0}}^{t} =$$

$$= \begin{pmatrix} -\sin t + \sin t_{0} \\ \cos t + \frac{1}{\cos t} - \cos t_{0} - \frac{1}{\cos t_{0}} \end{pmatrix};$$

$$\Phi(t)\int_{t_0}^t \Phi^{-1}(\tau) \cdot B(\tau) d\tau = \begin{pmatrix} \operatorname{tg} t - \sin t \cdot \cos t_0 + \cos t \cdot \sin t_0 - \frac{\sin t}{\cos t_0} \\ 2 - \cos t \cdot \cos t_0 - \sin t \cdot \sin t_0 + \frac{\cos t}{\cos t_0} \end{pmatrix} = \overline{\varphi}(t).$$

Итак, общее решение рассматриваемой СНЛДУ есть

$$\begin{pmatrix} x \\ y \end{pmatrix}_{\text{обш.СНЛДУ}} = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} c_1 + \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} c_2 +$$

$$+ \begin{pmatrix} \operatorname{tg} t - \sin t \cdot \cos t_0 + \cos t \cdot \sin t_0 - \frac{\sin t}{\cos t_0} \\ 2 - \cos t \cdot \cos t_0 - \sin t \cdot \sin t_0 + \frac{\cos t}{\cos t_0} \end{pmatrix}.$$

Но замечаем, что $\overline{\phi}(t)$ содержит слагаемые, которые «поглощаются» общим решением СНЛДУ, а именно,

$$\overline{\varphi}(t) = \begin{pmatrix} \operatorname{tg} t \\ 2 \end{pmatrix} + \sin t_0 \cdot \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + \left(-\cos t_0 - \frac{1}{\cos t_0} \right) \cdot \begin{pmatrix} \sin t \\ \cos t \end{pmatrix};$$

поэтому окончательно имеем

$$\begin{pmatrix} x \\ y \end{pmatrix}_{\text{OFFIL CHITITY}} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \overline{c} + \begin{pmatrix} \operatorname{tg} t \\ 2 \end{pmatrix}.$$

6.4. Метод Эйлера нахождения решений СОЛДУ с постоянными коэффициентами

Решение системы $\dot{\overline{x}}=A\overline{x}$ будем искать в виде $\overline{x}(t)=\overline{\xi}\,e^{\lambda x}$, где $\overline{\xi}$ — постоянный вектор, λ — постоянное число. Подставляя эту вектор-функцию в СОЛДУ, получаем $\overline{\xi}\,\lambda e^{\lambda x}=A\overline{\xi}e^{\lambda x}$ или $(A-\lambda E)\overline{\xi}=0$, т. е. λ должно быть собственным значением, а $\overline{\xi}$ — соответствующим ему собственным вектором матрицы A.

Для получения Φ CP СОЛДУ n-го порядка нужно знать точно n линейно независимых решений; количество решений СОЛДУ с постоянными коэффициентами определяется количеством и структурой корней характеристического уравнения

$$|A - \lambda E| = 0. \tag{7.10}$$

Нахождение фундаментальной системы решений с использованием собственных векторов матрицы называется *мето-дом Эйлера*.

Для любой матрицы существует базис, в котором она имеет жорданову нормальную форму. Каждой клетке порядка $p \ge 1$ жордановой формы соответствует серия $\overline{\xi}_1, \overline{\xi}_2, ..., \overline{\xi}_p$ векторов базиса, удовлетворяющих уравнениям:

$$A\overline{\xi}_{1} = \lambda \overline{\xi}, \ \overline{\xi} \neq \overline{0},$$

$$A\overline{\xi}_{2} = \lambda \overline{\xi}_{2} + \overline{\xi}_{1},$$

$$A\overline{\xi}_{3} = \lambda \overline{\xi}_{3} + \overline{\xi}_{2},$$

$$A\overline{\xi}_{n} = \lambda \overline{\xi}_{n} + \overline{\xi}_{n-1}.$$

Вектор $\overline{\xi}_1$ — собственный, а $\overline{\xi}_2$,..., $\overline{\xi}_p$ — присоединенные. Каждой серии $\overline{\xi}_1$, $\overline{\xi}_2$,..., $\overline{\xi}_p$ соответствует p линейно независимых решений \overline{x}^1 , \overline{x}^2 ,..., \overline{x}^p системы $\dot{\overline{x}} = A\overline{x}$:

$$\overline{x}^{1} = e^{\lambda t} \cdot \overline{\xi}_{1},
\overline{x}^{2} = e^{\lambda t} \cdot \left(\frac{t}{1!} \cdot \overline{\xi}_{1} + \overline{\xi}_{2}\right),
\overline{x}^{3} = e^{\lambda t} \cdot \left(\frac{t^{2}}{2!} \cdot \overline{\xi}_{1} + \frac{t}{1!} \cdot \overline{\xi}_{2} + \overline{\xi}_{3}\right),$$

$$\overline{x}^{p} = e^{\lambda t} \cdot \left(\frac{t^{p-1}}{(p-1)!} \overline{\xi}_{1} + \frac{t^{p-2}}{(p-2)!} \overline{\xi}_{2} + \dots + \frac{t}{1!} \cdot \overline{\xi}_{p-1} + \overline{\xi}_{p} \right).$$

Общее число всех таких решений равно сумме порядков всех клеток жордановой формы, т.е. порядку матрицы. Они и составляют фундаментальную систему решений системы $\bar{x}=A\bar{x}$.

Пример 1. Решить систему
$$\dot{\bar{x}} = \begin{pmatrix} -2 & -4 \\ -1 & 1 \end{pmatrix} \cdot \bar{x}$$
.

Решение

Для матрицы $A = \begin{pmatrix} -2 & -4 \\ -1 & 1 \end{pmatrix}$ собственные значения — корни

характеристического уравнения

$$|A - \lambda E| = 0 \Leftrightarrow \begin{vmatrix} -2 - \lambda & -4 \\ -1 & 1 - \lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 + \lambda - 6 = 0 \Leftrightarrow \{\lambda\} = \{-3, 2\}.$$

Для $\lambda_1 = -3$ собственный вектор $\overline{\xi}$ найдем как частное решение системы линейных алгебраических уравнений

$$(A - \lambda_1 E)\overline{\xi} = 0 \Leftrightarrow \begin{pmatrix} -2 - \lambda & -4 \\ -1 & 1 - \lambda \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = 0 \Leftrightarrow \begin{pmatrix} 1 & -4 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \xi_1 - 4\xi_2 = 0 \Leftrightarrow \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = c \begin{pmatrix} 4 \\ 1 \end{pmatrix},$$

где $c \neq 0$.

Пусть c=1, тогда $\overline{\xi}=\begin{pmatrix} 4\\1 \end{pmatrix}$ — собственный вектор матрицы, $\overline{x}_1\left(t\right)=\begin{pmatrix} 4\\1 \end{pmatrix}e^{-3t}$ — решение рассматриваемой СОЛДУ.

Для $\lambda_2 = 2$ аналогично получаем $\overline{\xi} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, соответственно $\overline{x}_2(t) = \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{2t}$ — решение СОЛДУ.

Тогда общее решение СОЛДУ имеет вид: $\overline{x}_{\text{общ}} = \begin{pmatrix} 4e^{-3t} & -e^{2t} \\ e^{-3t} & e^{2t} \end{pmatrix} \overline{c}$.

Пример 2. Решить систему $\dot{\overline{x}} = \begin{pmatrix} 5 & 1 \\ -1 & 3 \end{pmatrix} \cdot \overline{x}$.

Решение

Для матрицы $A = \begin{pmatrix} 5 & 1 \\ -1 & 3 \end{pmatrix}$ собственные значения — корни характеристического уравнения

$$|A - \lambda E| = 0 \Leftrightarrow \begin{vmatrix} 5 - \lambda & 1 \\ -1 & 3 - \lambda \end{vmatrix} = 0 \Leftrightarrow \lambda^2 - 8\lambda + 16 = 0 \Leftrightarrow \{\lambda\} = \{4, 4\}.$$

Найдем собственный вектор $\overline{\xi}$, отвечающий собственному значению $\lambda = 4$:

$$(A - \lambda E)\overline{\xi} = 0 \Leftrightarrow \begin{pmatrix} 5 - \lambda & 1 \\ -1 & 3 - \lambda \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \xi_1 - \xi_2 = 0 \Leftrightarrow \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = c \begin{pmatrix} 1 \\ -1 \end{pmatrix}, c \neq 0 \Rightarrow \overline{\xi} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Найдем вектор, присоединенный к вектору $\overline{\xi} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Для этого решаем систему уравнений

$$\begin{split} \left(A - \lambda E\right) \overline{\xi}_{\text{присоед}} &= \overline{\xi} \Leftrightarrow \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \Leftrightarrow \\ \xi_1 + \xi_2 &= 1 \Leftrightarrow \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = c \begin{pmatrix} 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \end{split}$$

Пусть c=1, тогда $\overline{\xi}_{\text{присоед}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ — вектор, присоединенный – $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

к вектору $\overline{\xi} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Общее решение СОЛДУ имеет вид:

$$\overline{x}_{\text{общ}} = C_1 e^{4t} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} + C_2 e^{4t} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot t + \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Пример 3. Решить систему
$$\dot{\overline{x}} = \begin{pmatrix} 4 & -1 & 0 \\ 3 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \cdot \overline{x}$$
.

Решение

 $\{\lambda\} = \{2,2,2\}$ — собственные значения матрицы системы. Ранг матрицы (A-2E) равен двум. Поэтому в данном случае можно

найти только один собственный вектор, например,
$$\overline{\xi}_l = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
.

Найдем вектор $\overline{\xi}_2$, присоединенный к вектору $\overline{\xi}_1$. Для этого решим систему уравнений

$$(A - \lambda E) \overline{\xi}_2 = \overline{\xi}_1 \Leftrightarrow \begin{pmatrix} 2 & -1 & 0 \\ 3 & -1 & -1 \\ 1 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \Leftrightarrow \begin{cases} \xi_1 - \xi_3 = 1, \\ \xi_2 - 2\xi_3 = 1. \end{cases}$$

$$\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = c \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$
 При $c = 0$ получим $\overline{\xi}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$

Далее, решая систему

$$(A-\lambda E)\overline{\xi}_3 = \overline{\xi}_2 \Leftrightarrow \begin{pmatrix} 2 & -1 & 0 \\ 3 & -1 & -1 \\ 1 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix},$$

найдем вектор $\overline{\xi}_3 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$, присоединенный к вектору $\overline{\xi}_2$.

Тогда общее решение СОЛДУ имеет вид:

$$\begin{split} \overline{x}_{\text{общ}} &= C_1 e^{2t} \cdot \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + C_2 e^{2t} \cdot \begin{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \cdot \frac{t}{1!} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix} + \\ &+ C_3 e^{2t} \cdot \begin{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \cdot \frac{t^2}{2!} + \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \cdot \frac{t}{1!} + \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix} \end{pmatrix}. \end{split}$$

Пример 4. Решить систему $\dot{\bar{x}} = \begin{pmatrix} 1 & -5 \\ 1/4 & 2 \end{pmatrix} \cdot \bar{x}$.

Решение

 $\{\lambda\} = \left\{\frac{3}{2} + j, \frac{3}{2} - j\right\}$ — собственные значения матрицы системы. Так как действительная и мнимая части решения, соответствующего корню $\lambda = \frac{3}{2} \pm j$, являются линейно независимыми, то достаточно найти один собственный вектор, например, для $\lambda = \frac{3}{2} - j$. Для этого решаем систему уравнений

$$(A - \lambda E)\overline{\xi} = 0 \Leftrightarrow \begin{pmatrix} 1 - \lambda & -5 \\ \frac{1}{4} & 2 - \lambda \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = 0 \Leftrightarrow \begin{pmatrix} j - \frac{1}{2} & -5 \\ \frac{1}{4} & j + \frac{1}{2} \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{pmatrix} j - \frac{1}{2} \end{pmatrix} \xi_1 - 5\xi_2 = 0.$$

Тогда $\overline{\xi} = \begin{pmatrix} 10 \\ 2j-1 \end{pmatrix}$ — собственный вектор матрицы. Итак, $\overline{x}(t) = \begin{pmatrix} 10 \\ 2j-1 \end{pmatrix} e^{(\frac{3}{2}-j)t}$ — решение рассматриваемой СОЛДУ.

Выделим действительную и мнимую части

$$\binom{10}{2j-1} e^{(\frac{3}{2}-j)t} = e^{\frac{3}{2}t} \cdot (\cos t - j\sin t) \cdot \binom{10}{2j-1} =$$

$$= e^{\frac{3}{2}t} \cdot \binom{10\cos t - 10j\sin t}{2j\cos t + 2\sin t - \cos t + j\sin t} =$$

$$= e^{\frac{3}{2}t} \cdot \binom{10\cos t}{2\sin t - \cos t} + j \cdot e^{\frac{3}{2}t} \cdot \binom{-10\sin t}{2\cos t + \sin t}.$$

Общее решение СОЛДУ имеет вид

$$\overline{x}_{\text{обш.}} = C_1 \cdot e^{\frac{3}{2}t} \cdot \begin{pmatrix} 10\cos t \\ 2\sin t - \cos t \end{pmatrix} + C_2 \cdot e^{\frac{3}{2}t} \cdot \begin{pmatrix} -10\sin t \\ 2\cos t + \sin t \end{pmatrix}.$$

Упражнения для самостоятельной подготовки

1. Найти общий интеграл системы дифференциальных уравнений:

a)
$$\frac{dx}{x^3 + 3xy^2} = \frac{dy}{2y^3} = \frac{dz}{2y^2z};$$

6) $\frac{dx}{y - 1} = \frac{dy}{x + 1} = \frac{dz}{z - 2};$
B) $\frac{dx}{y} = \frac{dy}{x} = \frac{dz}{(x - y)^2};$
 $r) \frac{dx}{z^2 - y^2} = \frac{dy}{z} = \frac{dz}{-y};$
 $r) \frac{dx}{x + y^2 + z^2} = \frac{dy}{y} = \frac{dz}{z}.$

2. Решить системы дифференциальных уравнений методом Эйлера:

илера.
a)
$$\dot{\bar{x}} = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \bar{x};$$

b) $\dot{\bar{x}} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \bar{x};$
b) $\dot{\bar{x}} = \begin{pmatrix} 4 & -1 & -1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} \bar{x};$
c) $\dot{\bar{x}} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix} \bar{x};$
d) $\dot{\bar{x}} = \begin{pmatrix} -1 & 1 & -2 \\ 4 & 1 & 0 \\ 2 & 1 & -1 \end{pmatrix} \bar{x}.$

3. Решить системы дифференциальных уравнений:

a)
$$\begin{cases} \frac{dx}{dt} = 2y - 3x, \\ \frac{dy}{dt} = 4y - 3x + \frac{e^{3t}}{e^{2t} + 1}; \end{cases}$$
6)
$$\begin{cases} \frac{dx}{dt} = -4x - 2y + \frac{2}{e^t - 1}, \\ \frac{dy}{dt} = 6y + 3y - \frac{3}{e^t - 1}; \end{cases}$$
B)
$$\begin{cases} \frac{dx}{dt} = 2x - y + \frac{1}{\cos t}, \\ \frac{dy}{dt} = 2x - y; \end{cases}$$

$$(T) \begin{cases} \frac{dx}{dt} = 4x - 3y + \sin t, \\ \frac{dy}{dt} = 2x - y - 2\cos t; \end{cases}$$

$$(T) \begin{cases} \frac{dx}{dt} = x + 2y + 16te^t, \\ \frac{dy}{dt} = 2x - 2y; \end{cases}$$

$$(T) \begin{cases} \frac{dx}{dt} = 2x - 2y; \\ \frac{dx}{dt} = 2x - y, \\ \frac{dy}{dt} = 2y - x - 5e^t \sin t. \end{cases}$$

4. Решить СНЛДУ по формуле Коши:

a)
$$\begin{cases} \dot{\bar{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \bar{x} + \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \\ \bar{x}(0) = (1, 0)^T; \end{cases}$$
6)
$$\begin{cases} \dot{\bar{x}} = \begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix} \bar{x} + \begin{pmatrix} t \\ 2 \end{pmatrix}, \\ \bar{x}(0) = (1, 1)^T; \end{cases}$$

$$r) \begin{cases} \dot{\bar{x}} = \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix} \bar{x} + \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \\ \bar{x}(0) = (0, 1)^T; \end{cases}$$

$$r) \begin{cases} \dot{\bar{x}} = \begin{pmatrix} 4 & -5 \\ 0 & -1 \end{pmatrix} \bar{x} + \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \\ \bar{x}(0) = (-1, 0)^T. \end{cases}$$

Список литературы

- 1. Берман Г. Н. Сборник задач по курсу математического анализа / Г. Н. Берман. М.: Наука, 2005. 443 с.
- 2. Бермант А. Ф. Курс математического анализа / А. Ф. Бермант, И. Г. Араманович. СПб. : Изд-во «Лань», 2005. 736 с.
- 3. Бугров Я.С. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного: учеб. пособие / Я.С. Бугров. М.: Наука, 1989. 46 с.
- 4. Демидович Б. П. Сборник задач и упражнений по математическому анализу: учеб. пособие для вузов / Б. П. Демидович. М.: ACT: Астрель, 2009. 558, [2] с.: ил.
- 5. Лекции по дифференциальным уравнениям : учеб. пособие / О. Н. Имас, Е. Г. Пахомова, С. В. Рожкова, И. Г. Устинова; Национальный исследовательский Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2012. 193 с.
- 6. Камке Э. Справочник по обыкновенным дифференциальным уравнениям / Э. Камке. СПб. : Лань, 2003. 576 с.
- 7. Краснов М. Л. Вся высшая математика / М. Л. Краснов, А. И. Киселев, Г. И. Макаренко. М.: Эдиториал УРСС, 2012. Т. 4. 352 с.
- 8. Краснов М.Л. Обыкновенные дифференциальные уравнения : учеб. пособие / М.Л. Краснов. М. : Высшая школа, 1983. 128 с.
- 9. Краснов М.Л. Сборник задач по обыкновенным дифференциальным уравнениям: учеб. пособие / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. 3-е изд., перераб. и доп. М.: Высшая школа, 1978. 287 с.
- 10. Матвеев Н. М. Методы интегрирования обыкновенных дифференциальных уравнений: учебник / Н. М. Матвеев. 3-е изд., испр. и доп. М.: Высшая школа, 1967. 564 с.
- 11. Письменный Д. Т. Конспект лекций по высшей математи- $\mbox{ке} / \mbox{Д. Т. Письменный.} \mbox{М.}$: Айрис-пресс, 2009. 608 с.

- 12. Понтрягин Л. С. Обыкновенные дифференциальные уравнения / Л. С. Понтрягин. М.: ГИФМЛ, 1961. 311 с.
- 13. Проскуряков И.В. Сборник задач по линейной алгебре / И.В. Проскуряков. М.: Юнимедиастайл, 2002. 384 с.
- 14. Степанов В. В. Курс дифференциальных уравнений: учебник для вузов / В. В. Степанов. 9-е изд., стер. М.: Едиториал УРСС, 2004. 472 с.
- 15. Табуева В.А. Математика. Математический анализ. Специальные разделы: учеб. пособие / В.А. Табуева. 2-е изд. (стереотип). Екатеринбург: УГТУ-УПИ, 2004. 495 с.
- 16. Тихонов А. Н. Дифференциальные уравнения / А. Н. Тихонов, А. Б. Васильева, А. Г. Свешников. М.: Наука, 1980. 232 с.
- 17. Черненко В. Д. Высшая математика в примерах и задачах / В. Д. Черненко. СПб. : Изд-во «Политехника», 2003. 703 с.
- 18. Федорюк М. В. Обыкновенные дифференциальные уравнения / М. В. Федорюк. М.: Наука, 1985. 448 с.
- 19. Филиппов А.Ф. Сборник задач по дифференциальным уравнениям : учеб. пособие / А.Ф. Филиппов. 2-е изд. М. : Изд-во ЛКИ, 2008. 240 с.
- 20. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: В 3 т. Т. 3 / Г. М. Фихтенгольц. Пред. и прим. А. А. Флоринского. 8-е изд. М.: ФИЗМАТЛИТ, 2002. 728 с.: ил.
- 21. Сборник задач по математике для втузов : учеб. пособие для втузов. В 4 ч. Ч. 1 / под общ. ред. А. В. Ефимова и А. С. Поспелова. 4-е изд. перераб. и доп. М. : Изд-во Физико-математической литературы, 2003. 288 с.
- 22. Математика. Математический анализ. Специальные разделы. Индивидуальные домашние задания / под ред. В. А. Табуевой. Екатеринбург: OAO «Полиграфист», 2001.

