Subtrees with small branching number

Pedro Marun
Carnegie Mellon University

March 23, 2023

▶ A *tree* is a partially ordered set (T, \leq) such that for every $x \in T$, the set $\{y \in T : y < x\}$ is well-ordered.

- A *tree* is a partially ordered set (T, \leq) such that for every $x \in T$, the set $\{y \in T : y < x\}$ is well-ordered.
- ▶ The *height* of a point $x \in T$, denoted $ht_T(x)$, is the order type of $\{y \in T : y < x\}$.

- A *tree* is a partially ordered set (T, \leq) such that for every $x \in T$, the set $\{y \in T : y < x\}$ is well-ordered.
- ▶ The *height* of a point $x \in T$, denoted $ht_T(x)$, is the order type of $\{y \in T : y < x\}$.
- For an ordinal α , the αth level of T is the set $T_{\alpha} = \{x \in T : ht(x) = \alpha\}.$

- A *tree* is a partially ordered set (T, \leq) such that for every $x \in T$, the set $\{y \in T : y < x\}$ is well-ordered.
- ▶ The *height* of a point $x \in T$, denoted $ht_T(x)$, is the order type of $\{y \in T : y < x\}$.
- For an ordinal α , the α th level of T is the set $T_{\alpha} = \{x \in T : \text{ht}(x) = \alpha\}.$
- The height of the tree T is the ordinal $ht(T) = min\{\alpha : T_{\alpha} = \emptyset\}.$

- A *tree* is a partially ordered set (T, \leq) such that for every $x \in T$, the set $\{y \in T : y < x\}$ is well-ordered.
- ▶ The *height* of a point $x \in T$, denoted $ht_T(x)$, is the order type of $\{y \in T : y < x\}$.
- For an ordinal α , the α th level of T is the set $T_{\alpha} = \{x \in T : \text{ht}(x) = \alpha\}.$
- The height of the tree T is the ordinal $ht(T) = min\{\alpha : T_{\alpha} = \emptyset\}.$
- ▶ For $X \subseteq ht(T)$, define $T \upharpoonright X = \{x \in T : ht_T(x) \in X\}$.

Let T be a tree.

▶ Given a regular cardinal κ , T is a κ -tree iff ht(T) = κ and $|T_{\alpha}| < \kappa$ for all $\alpha < \kappa$.

Let T be a tree.

- ▶ Given a regular cardinal κ , T is a κ -tree iff $ht(T) = \kappa$ and $|T_{\alpha}| < \kappa$ for all $\alpha < \kappa$.
- ▶ A chain in T is a linearly ordered subset of T.

Let T be a tree.

- ▶ Given a regular cardinal κ , T is a κ -tree iff ht(T) = κ and $|T_{\alpha}| < \kappa$ for all $\alpha < \kappa$.
- A chain in T is a linearly ordered subset of T.
- A cofinal branch in T is a chain that meets every level.

Let T be a tree.

- ▶ Given a regular cardinal κ , T is a κ -tree iff $ht(T) = \kappa$ and $|T_{\alpha}| < \kappa$ for all $\alpha < \kappa$.
- A chain in T is a linearly ordered subset of T.
- A cofinal branch in T is a chain that meets every level.

Lemma (König [3])

Let T be an \aleph_0 -tree. Then T has a cofinal branch.

Let T be a tree.

- ▶ Given a regular cardinal κ , T is a κ -tree iff $ht(T) = \kappa$ and $|T_{\alpha}| < \kappa$ for all $\alpha < \kappa$.
- ▶ A chain in T is a linearly ordered subset of T.
- A cofinal branch in T is a chain that meets every level.

Lemma (König [3])

Let T be an \aleph_0 -tree. Then T has a cofinal branch.

Theorem (Aronszajn [6])

There exists an \aleph_1 -tree with no cofinal branches.

▶ Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.

- ▶ Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.
- Let λ be a cardinal. A tree T is λ -branching [respectively $<\lambda$ -branching] iff for every $x\in T$, $|I_T(x)|=\lambda$ [respectively $|I_T(x)|<\lambda$].

- ▶ Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.
- Let λ be a cardinal. A tree T is λ -branching [respectively $<\lambda$ -branching] iff for every $x\in T$, $|I_T(x)|=\lambda$ [respectively $|I_T(x)|<\lambda$].
- A subtree of a tree T is a subset S of T such that for every $s \in S$ and $t \in T$, if t < s, then $t \in S$.

- Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.
- Let λ be a cardinal. A tree T is λ -branching [respectively $<\lambda$ -branching] iff for every $x\in T$, $|I_T(x)|=\lambda$ [respectively $|I_T(x)|<\lambda$].
- A subtree of a tree T is a subset S of T such that for every $s \in S$ and $t \in T$, if t < s, then $t \in S$.

Lemma

Let T be an \aleph_1 -tree. If T has no uncountable 1-branching subtrees, then T is Aronszajn.

- ▶ Let T be a tree and $x \in T$. The set of *immediate successors* of T is denoted by $I_T(x)$.
- Let λ be a cardinal. A tree T is λ -branching [respectively $<\lambda$ -branching] iff for every $x\in T$, $|I_T(x)|=\lambda$ [respectively $|I_T(x)|<\lambda$].
- A subtree of a tree T is a subset S of T such that for every $s \in S$ and $t \in T$, if t < s, then $t \in S$.

Lemma

Let T be an \aleph_1 -tree. If T has no uncountable 1-branching subtrees, then T is Aronszajn.

Proof.

If b is a cofinal branch, then b is an uncountable 1-branching subtree.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

 $\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}$

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

```
\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}
```

We will show that the inclusion is proper.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

$$\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}$$

We will show that the inclusion is proper.

First, we explain the terminology:

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

```
\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}
```

We will show that the inclusion is proper.

First, we explain the terminology: Trees are Lindelöf if and only if they have they are Lindelöf spaces with respect to a natural topology.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

$$\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}$$

We will show that the inclusion is proper.

First, we explain the terminology: Trees are Lindelöf if and only if they have they are Lindelöf spaces with respect to a natural topology.

Definition (Nyikos)

Let T be a tree. The *fine wedge topology* on T is generated by all sets of the form $\uparrow x$ and their complements, where $\uparrow x = \{y \in T : x \le y\}$ and $x \in T$.

An infinitely branching \aleph_1 -tree T is Lindelöf iff every finitely branching subtree of T is countable.

The previous lemma shows that

$$\{\mathsf{Lindel\"{o}f}\} \subseteq \{\mathsf{Aronszajn}\}$$

We will show that the inclusion is proper.

First, we explain the terminology: Trees are Lindelöf if and only if they have they are Lindelöf spaces with respect to a natural topology.

Definition (Nyikos)

Let T be a tree. The *fine wedge topology* on T is generated by all sets of the form $\uparrow x$ and their complements, where

$$\uparrow x = \{ y \in T : x \le y \} \text{ and } x \in T.$$

If
$$X \subseteq T$$
, write $\uparrow X = \{y \in T : \exists x \in X(x \le y)\}.$

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Let
$$x \in W = (\uparrow x_0) \cap \cdots \cap (\uparrow x_{n-1}) \cap (\uparrow y_0)^c \cap \cdots \cap (\uparrow y_{m-1})^c$$
.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Let
$$x \in W = (\uparrow x_0) \cap \cdots \cap (\uparrow x_{n-1}) \cap (\uparrow y_0)^c \cap \cdots \cap (\uparrow y_{m-1})^c$$
.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Let $x \in W = (\uparrow x_0) \cap \cdots \cap (\uparrow x_{n-1}) \cap (\uparrow y_0)^c \cap \cdots \cap (\uparrow y_{m-1})^c$. Since T is a tree, $\{x_i : i < n\}$ is a chain, say with maximum x_0 .

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

Let
$$x \in W = (\uparrow x_0) \cap (\uparrow y_0)^c \cap \cdots \cap (\uparrow y_{m-1})^c$$
.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

If $x \in T$, the family $\{\uparrow x \setminus \uparrow F : F \in [I(x)]^{<\omega}\}$ is a local basis of open neighbourhoods of x. In particular, the topology is Hausdorff.

Proof.

It therefore suffices to study open covers of the form $\mathcal{U}_f = \{\uparrow x \setminus \uparrow f(x) : x \in T\}$, where $f \in \prod_{x \in T} [I(x)]^{<\omega}$.

It therefore suffices to study open covers of the form $\mathcal{U}_f = \{\uparrow x \setminus \uparrow f(x) : x \in T\}$, where $f \in \prod_{x \in \mathcal{T}} [I(x)]^{<\omega}$.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Lemma

Let T be an infinitely branching \aleph_1 -tree and $f \in \prod_{x \in T} [I(x)]^{<\omega}$. The following are equivalent:

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Lemma

Let T be an infinitely branching \aleph_1 -tree and $f \in \prod_{x \in T} [I(x)]^{<\omega}$. The following are equivalent:

1. f has no countable subcover.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Lemma

Let T be an infinitely branching \aleph_1 -tree and $f \in \prod_{x \in T} [I(x)]^{<\omega}$. The following are equivalent:

- 1. f has no countable subcover.
- 2. Every level has a safe point.

Definition

Given $f \in \prod_{x \in T} [I(x)]^{<\omega}$, we will say that $x \in T$ is *safe* iff for every y < x, $x \in \uparrow f(y)$.

Note that the set of safe points is a finitely branching subtree of T.

Lemma

Let T be an infinitely branching \aleph_1 -tree and $f \in \prod_{x \in T} [I(x)]^{<\omega}$. The following are equivalent:

- 1. f has no countable subcover.
- 2. Every level has a safe point.
- 3. The set of $\{ht(x) : x \text{ is safe}\}\$ is uncountable.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Proof.

 \Rightarrow) Let f code a cover with no countable subcover. Let S be the set of safe points. By the previous lemma, S is uncountable.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Proof.

- \Rightarrow) Let f code a cover with no countable subcover. Let S be the set of safe points. By the previous lemma, S is uncountable.
- \Leftarrow) Let S be an uncountable finitely branching subtree of T.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Proof.

- \Rightarrow) Let f code a cover with no countable subcover. Let S be the set of safe points. By the previous lemma, S is uncountable.
- \Leftarrow) Let S be an uncountable finitely branching subtree of T.

Define
$$f(x) = \emptyset$$
 for $x \in T \setminus S$ and $f(x) = I_S(x)$ for $x \in S$.

Let T be an infinitely branching \aleph_1 -tree. Then T is a Lindelöf tree if and only if it has the Lindelöf property with respect to the fine wedge topology.

Proof.

 \Rightarrow) Let f code a cover with no countable subcover. Let S be the set of safe points. By the previous lemma, S is uncountable. \Leftarrow) Let S be an uncountable finitely branching subtree of T. Define $f(x) = \emptyset$ for $x \in T \setminus S$ and $f(x) = I_S(x)$ for $x \in S$. If $x \in S$ and y < x, then $x \in \uparrow f(y)$, so x is safe for S. So $S \subseteq \{x \in T : x \text{ is safe}\}$, hence the latter is uncountable.

Recall that if T is a tree, an *antichain* is a set of pairwise incomparable elements of T. A *Suslin tree* is a tree with no uncountable chains or antichains.

Recall that if T is a tree, an *antichain* is a set of pairwise incomparable elements of T. A *Suslin tree* is a tree with no uncountable chains or antichains. If T is a tree, \mathbb{P}_T is the dual order.

Recall that if T is a tree, an *antichain* is a set of pairwise incomparable elements of T. A *Suslin tree* is a tree with no uncountable chains or antichains.

If T is a tree, \mathbb{P}_T is the dual order.

Lemma (folklore [2])

Let T be a Suslin tree. The poset \mathbb{P}_T has the ccc and is countably distributive. Moreover, if $D \subseteq \mathbb{P}_T$ is dense and open, then there exists $\alpha < \omega_1$ such that $T \upharpoonright [\alpha, \omega_1) \subseteq D$.

Recall that if T is a tree, an *antichain* is a set of pairwise incomparable elements of T. A *Suslin tree* is a tree with no uncountable chains or antichains.

If T is a tree, \mathbb{P}_T is the dual order.

Lemma (folklore [2])

Let T be a Suslin tree. The poset \mathbb{P}_T has the ccc and is countably distributive. Moreover, if $D \subseteq \mathbb{P}_T$ is dense and open, then there exists $\alpha < \omega_1$ such that $T \upharpoonright [\alpha, \omega_1) \subseteq D$.

Lemma (folklore [2])

Let T be a Suslin tree in the universe V. If W is an outer model and $b \in W$ is a cofinal branch through T, then b is \mathbb{P}_T -generic over V.

Let T be an infinitely branching Suslin tree. Then T is Lindelöf.

Let T be an infinitely branching Suslin tree. Then T is Lindelöf.

Proof.

Suppose not. Let $S \subseteq T$ be a finitely branching uncountable subtree. Then S is also Suslin. Force with \mathbb{P}_S to add a branch b. By the previous lemma, b is \mathbb{P}_T -generic over V. But S is finitely branching and T is infinitely branching, so b is disjoint from S above some node of T, by a density argument.

Let T be an infinitely branching Suslin tree. Then T is Lindelöf.

Proof.

Suppose not. Let $S \subseteq T$ be a finitely branching uncountable subtree. Then S is also Suslin. Force with \mathbb{P}_S to add a branch b. By the previous lemma, b is \mathbb{P}_T -generic over V. But S is finitely branching and T is infinitely branching, so b is disjoint from S above some node of T, by a density argument.

 $\{Suslin\} \subseteq \{Lindel\"{o}f\} \subseteq \{Aronszajn\}$

Let $\vec{e} = \langle e_{\alpha} : \alpha < \omega_1 \rangle$ be a coherent sequence of injections, so $e_{\alpha} : \alpha \to \omega$ is injective and $\alpha < \beta$ implies $e_{\alpha} =^* e_{\beta}$, that is $\{\xi < \alpha : e_{\alpha}(\xi) = e_{\beta}(\xi)\}$ is finite.

Let $\vec{e} = \langle e_{\alpha} : \alpha < \omega_1 \rangle$ be a coherent sequence of injections, so $e_{\alpha} : \alpha \to \omega$ is injective and $\alpha < \beta$ implies $e_{\alpha} =^* e_{\beta}$, that is $\{\xi < \alpha : e_{\alpha}(\xi) = e_{\beta}(\xi)\}$ is finite. It is well-known that the set

$$\mathcal{T}^{ec{e}} = igcup_{lpha < \omega_1} \{ t \in {}^lpha \omega : t ext{ is injective } \wedge t =^* e_lpha \}$$

is an infinitely branching Aronszajn tree.

Let $\vec{e} = \langle e_{\alpha} : \alpha < \omega_1 \rangle$ be a coherent sequence of injections, so $e_{\alpha}: \alpha \to \omega$ is injective and $\alpha < \beta$ implies $e_{\alpha} = e_{\beta}$, that is $\{\xi < \alpha : e_{\alpha}(\xi) = e_{\beta}(\xi)\}\$ is finite.

It is well-known that the set

$$\mathcal{T}^{ec{e}} = igcup_{lpha < \omega_1} \{ t \in {}^lpha \omega : t ext{ is injective } \wedge t =^* e_lpha \}$$

is an infinitely branching Aronszajn tree.

Let \mathbb{C} be Cohen forcing, instantiated as the set of finite partial functions from ω to ω .

Let $\vec{e} = \langle e_{\alpha} : \alpha < \omega_1 \rangle$ be a coherent sequence of injections, so $e_{\alpha} : \alpha \to \omega$ is injective and $\alpha < \beta$ implies $e_{\alpha} =^* e_{\beta}$, that is $\{\xi < \alpha : e_{\alpha}(\xi) = e_{\beta}(\xi)\}$ is finite. It is well-known that the set

$$\mathcal{T}^{ec{e}} = igcup_{lpha < \omega_1} \{ t \in {}^lpha \omega : t ext{ is injective } \wedge t =^* e_lpha \}$$

is an infinitely branching Aronszajn tree.

Let $\mathbb C$ be Cohen forcing, instantiated as the set of finite partial functions from ω to ω .

Theorem (Todorčević)

If \vec{e} is a coherent sequence of injections and $r:\omega\to\omega$ is Cohen generic over V , then

$$\{r \circ t : t \in T^{\vec{e}}\}$$

is an infinitely branching Suslin tree in V[r].

Theorem (M.)

Let \vec{e} be a coherent sequence of injections. Then $T^{\vec{e}}$ is a Lindelöf tree.

Theorem (M.)

Let \vec{e} be a coherent sequence of injections. Then $T^{\vec{e}}$ is a Lindelöf tree.

Proof.

It is clear that $T^{\vec{e}}$ is infinitely branching. Suppose now that $S \subseteq T$ is an uncountable finitely branching subtree. Force to add a Cohen real $r:\omega\to\omega$. In V[r], $T^*=\{r\circ t:t\in T\}$ is infinitely branching by genericity and $S^*=\{r\circ s:s\in S\}$ is a finitely branching uncountable subtree of T^* . But T^* is a Suslin tree in V[r], which is a contradiction.

Theorem (M.)

Let \vec{e} be a coherent sequence of injections. Then $T^{\vec{e}}$ is a Lindelöf tree.

Proof.

It is clear that $T^{\vec{e}}$ is infinitely branching. Suppose now that $S \subseteq T$ is an uncountable finitely branching subtree. Force to add a Cohen real $r:\omega\to\omega$. In V[r], $T^*=\{r\circ t:t\in T\}$ is infinitely branching by genericity and $S^*=\{r\circ s:s\in S\}$ is a finitely branching uncountable subtree of T^* . But T^* is a Suslin tree in V[r], which is a contradiction.

Since $T^{\vec{e}}$ is never Suslin,

 $\{Suslin\} \subseteq \{Lindel\"{o}f\} \subseteq \{Aronszajn\}$

There exists an Aronszajn non-Lindelöf tree.

There exists an Aronszajn non-Lindelöf tree.

Proof sketch.

Fix a coherent sequence of injection \vec{e} and use a bijection $f:\omega_1\times\omega\to\omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]:\alpha<\omega_1\rangle$, which is then used to build a binary Aronszajn tree T.

There exists an Aronszajn non-Lindelöf tree.

Proof sketch.

Fix a coherent sequence of injection \vec{e} and use a bijection $f:\omega_1\times\omega\to\omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]:\alpha<\omega_1\rangle$, which is then used to build a binary Aronszajn tree T.

Now recursively build, level by level, an infinitely branching tree U which has T as a subtree.

There exists an Aronszajn non-Lindelöf tree.

Proof sketch.

Fix a coherent sequence of injection \vec{e} and use a bijection $f:\omega_1\times\omega\to\omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]:\alpha<\omega_1\rangle$, which is then used to build a binary Aronszajn tree T.

Now recursively build, level by level, an infinitely branching tree U which has T as a subtree.

There exists an Aronszajn non-Lindelöf tree.

Proof sketch.

Fix a coherent sequence of injection \vec{e} and use a bijection $f:\omega_1\times\omega\to\omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]:\alpha<\omega_1\rangle$, which is then used to build a binary Aronszajn tree T.

Now recursively build, level by level, an infinitely branching tree *U* which has *T* as a subtree.

There exists an Aronszajn non-Lindelöf tree.

Proof sketch.

Fix a coherent sequence of injections \vec{e} and use a bijection $f:\omega_1\times\omega\to\omega_1$ to transfer \vec{e} to a coherent sequence $\langle f[e_{\alpha}]:\alpha<\omega_1\rangle$, which is then used to build a binary Aronszajn tree T.

Now recursively build, level by level, an infinitely branching tree U which has T as a subtree.

 $\{Suslin\} \subsetneq \{Lindel\"{o}f\} \subsetneq \{Aronszajn\}$

Thank you:)

References

- [1] Tomek Bartoszyński and Haim Judah. *Set Theory*. A K Peters, Ltd., Wellesley, MA, 1995. xii+546.
- [2] Keith J. Devlin and Håvard Johnsbråten. *The Souslin Problem*. Lecture Notes in Mathematics 405. Springer, 1974. 132 pp.
- [3] Dénes Kőnig. "Über Eine Schlussweise Aus Dem Endlichen Ins Unendliche". In: *Acta Scientiarum Mathematicarum (Szeged)* 3 (1927).
- [4] Pedro E. Marun. "Square Compactness and Lindelöf Trees". In: Submitted for publication (2023).
- [5] Peter J. Nyikos. "Various Topologies on Trees". In: Proceedings of the Tennessee Topology Conference (Nashville, TN, 1996). 1997.
- [6] Ernst Specker. "Sur Un Problème de Sikorski". In: Colloquium Mathematicae 2 (1949).