Homework 5

Jules Merigot (8488256)

November 10, 2022

PSTAT 131/231 Statistical Machine Learning - Fall 2022

Elastic Net Tuning

Before we get started, let's load the Pokemon data in into our workspace.

```
pokemon_data <- read.csv(file = "C:/Users/jules/OneDrive/Desktop/homework-5/data/Pokemon.csv")
head(pokemon_data)</pre>
```

##		Х.			Name	Type.1	Type.2	Total	HP	Attack	Defense	SpAtk
##	1	1			Bulbasaur	Grass	Poison	318	45	49	49	65
##	2	2	Ivysaur			Grass	${\tt Poison}$	405	60	62	63	80
##	3	3			Venusaur	Grass	${\tt Poison}$	525	80	82	83	100
##	4	3	Venus	saurMeg	ga Venusaur	Grass	${\tt Poison}$	625	80	100	123	122
##	5	4			${\tt Charmander}$	Fire		309	39	52	43	60
##	6	5			${\tt Charmeleon}$	Fire		405	58	64	58	80
##		Sp.	.Def	Speed	${\tt Generation}$	Legenda	ary					
##	1		65	45	1	Fa.	lse					
##	2		80	60	1	Fal	lse					
##	3		100	80	1	Fal	lse					
##	4		120	80	1	Fal	lse					
##	5		50	65	1	Fal	lse					
##	6		65	80	1	Fal	lse					

Exercise 1

Let's load the janitor package, and use its clean_names() function on the Pokémon data. We'll save the results to work with for the rest of the assignment.

```
library(janitor)

Pokemon_data <- clean_names(pokemon_data)
head(Pokemon_data)</pre>
```

```
name type_1 type_2 total hp attack defense sp_atk sp_def
## 1 1
                                            318 45
                                                       49
                                                               49
                                                                      65
                                                                             65
                  Bulbasaur Grass Poison
## 2 2
                    Ivysaur Grass Poison
                                            405 60
                                                       62
                                                               63
                                                                      80
                                                                             80
## 3 3
                   Venusaur Grass Poison
                                            525 80
                                                       82
                                                               83
                                                                     100
                                                                            100
```

## 4	3 Ven	usaurMega V	enusaur	Grass	Poison	625	80	100	123	122	120
## 5	4	4 Charmander Fire					39	52	43	60	50
## 6	5	Charmeleon Fire					58	64	58	80	65
##	speed generation legendary										
## 1	45	1	Fal	se							
## 2	60	1	Fal	se							
## 3	80	1	Fal	se							
## 4	80	1	Fal	se							
## 5	65	1	Fal	se							
## 6	80	1	Fal	se							

As we can see in the data above, the names of each column have been changed to simpler, more efficient, and unique names using strictly the "_" character, numbers, and letters. This shows how useful clean_names() is, because it allows for a rapid change in the variable and predictor names, thus allowing them to be referenced and used more efficiently in the rest of project or assignment being completed.

Exercise 2

Using the entire data set, let's create a bar chart of the outcome variable, type_1.

```
Pokemon_data %>%
  ggplot(aes(x=type_1)) +
  geom_bar()
```


There are 18 classes of the outcome type_1, which means there are 18 different types of Pokemon. While

there are many Pokemon of the "Water" type, there are very few Pokemon of the "Flying" type. For this assignment, we'll handle the rarer classes by simply filtering them out. Let's filter the entire data set to contain only Pokemon whose type_1 is Bug, Fire, Grass, Normal, Water, or Psychic.

```
filt_types <- c("Bug", "Fire", "Grass", "Normal", "Water", "Pyschic")

Pokemon_data %>%
  filter(type_1 == filt_types) %>%
  head()
```

```
##
                              name type_1 type_2 total hp attack defense sp_atk
      x
      3
                          Venusaur Grass Poison
## 1
                                                     525 80
                                                                82
                                                                         83
                                                                               100
                                                               130
                                                                               130
## 2 6 CharizardMega Charizard X
                                      Fire Dragon
                                                     634 78
                                                                        111
## 3 8
                         Wartortle
                                                     405 59
                                                                63
                                                                         80
                                                                                65
                                    Water
## 4 15
                                                                         40
                          Beedrill
                                       Bug Poison
                                                     395 65
                                                                90
                                                                                45
## 5 17
                         Pidgeotto Normal Flying
                                                     349 63
                                                                60
                                                                         55
                                                                                50
                            Fearow Normal Flying
## 6 22
                                                     442 65
                                                                90
                                                                         65
                                                                                61
     sp_def speed generation legendary
##
## 1
        100
               80
                            1
                                   False
## 2
         85
              100
                                   False
                            1
## 3
         80
               58
                            1
                                  False
## 4
         80
               75
                            1
                                  False
## 5
         50
               71
                                  False
                            1
## 6
         61
              100
                            1
                                  False
```

Now that we're done filtering, let's convert type_1 and legendary to factors.

```
Pokemon_data$type_1 <- factor(Pokemon_data$type_1)
Pokemon_data$legendary <- factor(Pokemon_data$legendary)
```