FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

La función exponencial general con base b, está dada por la ecuación:

$$f(x) = ab^x$$
, con $b > 0$ y $b \ne 1$, $\forall x \in R$, $\forall a \in R$

La base debe ser distinta de uno pues de lo contrario la función se transformaría en la función constante: y=1. También la base debe ser mayor que cero, ya que si b=0, la función tendría por ecuación y=0, en el caso que $x\neq 0$; o no estaría definida en el caso que x=0, ya que sería $y=0^0$.

Tampoco b puede ser menor que 0 ya que, por ejemplo para b=-4 y $x=\frac{1}{2}$, la función no estaría definida en R. Grafiquemos la función $y=2^x$, (a=1)

Grafiquemos la función:

$$y = \left(\frac{1}{2}\right)^x = 2^{-x} \quad (a = 1) \quad (0 < b < 1)$$

х	$y = \left(\frac{1}{2}\right)^x$
-3	8
-2	4
-1	2
0	1
1	1/2
2	1/4
3	1/8
<u>-2</u>	8 4 2 1 1/2 1/4

1

La gráfica de una función exponencial puede tener dos formas, dependiendo si b > 1 o 0 < b < 1, como se puede observar en los ejemplos anteriores.

Propiedades de la función exponencial:

La función exponencial $f(x) = b^x$, tiene las siguientes propiedades:

- ✓ El dominio es el conjunto de los números reales.
- ✓ La imagen es $(0, \infty)$.
- ✓ La gráfica intersecta al eje y en el punto (0,1).
- ✓ El eje x es una asíntota horizontal para la gráfica de f(x).
- ✓ f(x) es creciente cuando b > 1 y decreciente cuando 0 < b < 1
- \checkmark $f(x): R \to (0,\infty)$ es biyectiva.

FUNCION LOGARITMICA

La función logarítmica con base $\it b$, se define como:

$$y = \log_b x$$
 con $b > 0$, $b \ne 1$, $x > 0$

Es la inversa de la función exponencial con base b.

La función logarítmica es la inversa de la función exponencial, ya que si:

$$y = \log_b x \Rightarrow b^y = x = f^{-1}(y) \Rightarrow f^{-1}(x) = b^x$$

Grafiquemos las funciones:

х	$y = \log_2 x$
1/8	-3
1/4	-2
1/2	-1
1	0
2	1
4	2
8	3

х	$y = \log_{1/2} x$
1/8	3
1/4	2
1/2	1
1	0
2	-1
2 4 8	-2
8	-3

Propiedades de la función logarítmica:

La función $y = \log_b x$, tiene las siguientes propiedades:

- \checkmark El dominio es $(0,\infty)$.
- ✓ La imagen es el conjunto de los números reales.
- ✓ La gráfica intersecta al eje x en el punto (1,0). La gráfica no intersecta al eje y.
- ✓ El eje y es una asíntota vertical para la gráfica de f(x).
- ✓ f(x) es creciente cuando b > 1 y decreciente cuando 0 < b < 1
- \checkmark $f(x): (0,\infty) \to R$ es biyectiva.

FUNCIONES HIPERBÓLICAS

Veremos ahora combinaciones de las funciones exponenciales con base e, que se llaman funciones hiperbólicas. Combinaremos: $y = e^x con y = e^{-x}$:

Def: Se llaman funciones hiperbólicas a las siguientes funciones reales:

Seno hiperbólico:
$$Sh(x) = Senh(x) = \frac{e^x - e^{-x}}{2} \quad \forall x \in \square$$

Coseno hiperbólico:
$$Ch(x) = Cosh(x) = \frac{e^x + e^{-x}}{2} \quad \forall x \in \Box$$

Tangente hiperbólica:
$$Th(x) = Tgh(x) = \frac{Sh(x)}{Ch(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} \quad \forall x \in \Box$$

Cotangente hiperbólica:
$$Coth(x) = \frac{Ch(x)}{Sh(x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \quad \forall x \neq 0$$

Secante hiperbólica:
$$Sch(x) = \frac{1}{Ch(x)} = \frac{2}{e^x + e^{-x}} \quad \forall x \in \Box$$

Cosecante hiperbólica:
$$Co \sec h(x) = \frac{1}{Sh(x)} = \frac{2}{e^x - e^{-x}} \quad \forall x \neq 0$$

Las funciones hiperbólicas tienen las siguientes propiedades:

1) El seno hiperbólico es una función impar y estrictamente creciente en $\ \square$, que satisface:

3

$$Sh(0) = 0$$
; $Sh(x) > 0, \forall x \in \Box^+$; $Im(Sh) = \Box$

Demostremos que Sh(x) es una función impar:

$$Sh(-x) = \frac{e^{-x} - e^x}{2} \Rightarrow -Sh(-x) = -\frac{e^{-x} - e^x}{2} = \frac{e^x - e^{-x}}{2} = Sh(x)$$

2) El coseno hiperbólico es una función par y estrictamente creciente en \Box $^+ \, \cup \{0\}$, que satisface:

$$Ch(0) = 1$$
; $Ch(x) > 1, \forall x \in \square^+$; $Im(Ch) = [1, +\infty)$

Demostremos que Ch(x) es una función par:

$$Ch(-x) = \frac{e^{-x} + e^{-(-x)}}{2} = \frac{e^{-x} + e^{x}}{2} = Ch(x)$$

3) La tangente hiperbólica es una función impar y estrictamente creciente en \square , que satisface:

$$Th(0) = 0$$
; $0 < Th(x) < 1, \forall x \in \square^+$; $Im(Th) = (-1,1)$

Demostremos que Th(x) es una función impar:

$$Th(-x) = \frac{e^{-x} - e^{x}}{e^{-x} + e^{x}} \Rightarrow -Th(-x) = -\frac{e^{-x} - e^{x}}{e^{-x} + e^{x}} = \frac{e^{x} - e^{-x}}{e^{-x} + e^{x}} = Th(x)$$

Funciones exponenciales y logarítmicas Lic. en Sistemas- UNTDF-