Efficient Bounds and Estimates for Canonical Angles in Randomized Subspace Approximations

Yijun Dong*, Per-Gunnar Martinsson*, Yuji Nakatsukasa[†]

*Oden Institute, University of Texas at Austin

†Mathematical Institute, University of Oxford

Aug 24, 2023, ICIAM 2023, Tokyo, Japan

This presentation is based on the following arXiv paper: Dong, Yijun, Per-Gunnar Martinsson, and Yuji Nakatsukasa. "Efficient Bounds and Estimates for Canonical Angles in Randomized Subspace Approximations." arXiv preprint arXiv:2211.04676 (2022).

Outline

- Problem setup: randomized subspace approximations & canonical angles
- Prior probabilistic bounds/estimates & posterior residual-based guarantees
- Numerical comparisons: effectiveness of canonical angle bounds & estimates in practice

Leading Singular Subspaces

Singular value decomposition (SVD)

Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, $1 \le k \le r = \operatorname{rank}(\mathbf{A})$, rank-k truncated SVD:

$$\mathbf{A}_{k} = \mathbf{U}_{k} \quad \mathbf{\Sigma}_{k} \quad \mathbf{V}_{k}^{*}$$

$$m \times k \quad k \times k \quad k \times n$$

- Maximum-k singular values: $\Sigma_k = \operatorname{diag}(\sigma_1, ..., \sigma_k)$
- Leading-k singular subspaces: $\mathbf{U}_k^*\mathbf{U}_k = \mathbf{V}_k^*\mathbf{V}_k = \mathbf{I}_k$
- Eckart-Young-Mirsky theorem

$$\mathbf{A}_{k} = \min_{\substack{\text{rank}(\widehat{\mathbf{A}}) \le k}} \|\mathbf{A} - \widehat{\mathbf{A}}\|_{F}$$

- Truncated SVD provides the optimal rank-k approximation
- Broad Applications
 - Low-rank approximations, PCA, CCA, spectral clustering, leverage score sampling, etc.

Spectral clustering on the dimension-6 leading singular subspace of a mini-MNIST dataset (8 × 8 images of digits 0-5)

Sketching: Approximate leading singular subspaces efficiently for large matrices

Questions: How accurate are these approximations? Tight & efficiently computable error bounds & estimates?

Randomized Subspace Approximations with Sketching

- Inputs: $\mathbf{A} \in \mathbb{C}^{m \times n}$, sample size l with $k < l \le r = \operatorname{rank}(\mathbf{A})$ (e.g., $l = 2k \ll r$), number of power iterations $q \in \{0,1,2,\cdots\} \ (q \le 2 \text{ usually})$
- <u>Outputs</u>: $\operatorname{RSVD}(\mathbf{A}, l, q) = (\widehat{\mathbf{U}}_l \in \mathbb{C}^{m \times l}, \widehat{\boldsymbol{\Sigma}}_l \in \mathbb{C}^{l \times l}, \widehat{\mathbf{V}}_l \in \mathbb{C}^{n \times l})$ such that $\widehat{\mathbf{A}}_l = \widehat{\mathbf{U}}_l \widehat{\boldsymbol{\Sigma}}_l \widehat{\mathbf{V}}_l^* \approx \mathbf{A}_l$
- Randomized linear embedding (Johnson-Lindenstrauss transforms, etc.)
 - Draw $\Omega \sim P(\mathbb{C}^{n \times l})$ with i.i.d. entries $\Omega_{ii} \sim \mathcal{N}(0, l^{-1})$ such that $\mathbb{E}[\Omega \Omega^*] = \mathbf{I}_n$
- 2. **Sketching** with power iterations

Isotropic embedding

- Randomized **power** iterations (unstable): $\mathbf{X}^{(q)} = (\mathbf{A}\mathbf{A}^*)^q \mathbf{A}\Omega$
- Randomized subspace iterations (stable): $\mathbf{X}^{(0)} = \operatorname{ortho}(\mathbf{A}\Omega), \ \mathbf{X}^{(i)} = \operatorname{ortho}(\mathbf{A} \text{ ortho}(\mathbf{A} * \mathbf{X}^{(i-1)})) \ \forall \ i \in [q]$
- 3. $\mathbf{Q}_X = \operatorname{ortho}(\mathbf{X}^{(q)})$

Key observations: with Σ being the spectrum of A

- 4. $[\widetilde{\mathbf{U}}_l, \widehat{\boldsymbol{\Sigma}}_l, \widehat{\mathbf{V}}_l] = \operatorname{svd}(\mathbf{A}^*\mathbf{Q}_X)$ For any $q \in \mathbb{N}$, q power iterations correspond to $\mathbf{\Sigma}^{2q+1}$
- 5. $\widehat{\mathbf{U}}_{1} = \mathbf{Q}_{X}\widetilde{\mathbf{U}}_{1}$

• Compared to $\widehat{\mathbf{U}}_{l}$, $\widehat{\mathbf{V}}_{l}$ enjoys half more power iterations (i.e., Σ^{2q+2})

Canonical Angles: Alignment between Subspaces

- Canonical angles $\angle(\mathcal{U},\mathcal{V})=(\theta_1,\cdots,\theta_k)$ measure the alignment between two subspaces $\mathcal{U},\mathcal{V}\subseteq\mathbb{C}^d$ with dimensions $k,l\leq d$ respectively (k< l w.l.o.g), e.g.,
 - True leading singular subspace: $\mathcal{U} = \text{range}(\mathbf{U}_k)$
 - Approximated leading singular subspace: $\mathcal{V} = \text{range}(\widehat{\mathbf{U}}_l)$
- Left & right canonical angles of $RSVD(\mathbf{A}, l, q) = (\widehat{\mathbf{U}}_l, \widehat{\boldsymbol{\Sigma}}_l, \widehat{\mathbf{V}}_l): \forall i \in [k],$

$$\sin \angle_{i}(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) = \sigma_{k-i+1}((\mathbf{I}_{m} - \widehat{\mathbf{U}}_{l}\widehat{\mathbf{U}}_{l}^{*})\mathbf{U}_{k}), \quad \cos \angle_{i}(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) = \sigma_{i}(\widehat{\mathbf{U}}_{l}^{*}\mathbf{U}_{k})$$

$$\sin \angle_{i}(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) = \sigma_{k-i+1}((\mathbf{I}_{m} - \widehat{\mathbf{V}}_{l} \widehat{\mathbf{V}}_{l}^{*}) \mathbf{V}_{k}), \quad \cos \angle_{i}(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) = \sigma_{i}(\widehat{\mathbf{V}}_{l}^{*} \mathbf{V}_{k})$$

Prior v.s. posterior guarantees: computed without v.s. with the outputs $(\widehat{\mathbf{U}}_l, \widehat{\mathbf{\Sigma}}_l, \widehat{\mathbf{V}}_l)$

- Prior guarantees are probabilistic, with randomness from $\Omega \sim P(\mathbb{C}^{n imes l})$
- Posterior guarantees are deterministic with given ($\widehat{\mathbf{U}}_{l}, \widehat{\mathbf{\Sigma}}_{l}, \widehat{\mathbf{V}}_{l}$)

Outline

- Problem setup: randomized subspace approximations & canonical angles
- Prior probabilistic bounds/estimates & posterior residual-based guarantees
- Numerical comparisons: effectiveness of canonical angle bounds & estimates in practice

Space-agnostic Prior Probabilistic Bounds

Theorem 1. (Space-agnostic bounds under multiplicative oversampling. (D., Martinsson, Nakatsukasa, 2022))

- With Gaussian embedding; small $q \in \mathbb{N}$ such that $\eta \triangleq \left(\sum_{j=k+1}' \sigma_j^{4q+4}\right)^2 / \sum_{j=k+1}' \sigma_j^{2(4q+4)} = \Omega(l)$; oversampling $l = \Omega(k)$
 - Notice that $1 < \eta \le r k$ and usually $r k \gg l$. $\eta = \Omega(l)$ refers to a realistic case with non-negligible approximation error: when the tail of the spectrum $\{\sigma_j\}_{j=k+1}^r$ remains non-trivial after q power iterations
- With high probability (at least $1 e^{-\Theta(k)} e^{-\Theta(l)}$), there exist $\epsilon_1 = \Theta(\sqrt{k/l}), \epsilon_2 = \Theta(\sqrt{l/\eta}), \epsilon_1, \epsilon_2 \in (0,1)$ such that, $\forall \ i \in [k]$

$$\left(1 + O_{\epsilon_{1},\epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4q+2}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) \leq \left(1 + \frac{1 - \epsilon_{1}}{1 + \epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4q+2}}\right)^{-\frac{1}{2}} \\
\left(1 + O_{\epsilon_{1},\epsilon_{2}}\left(\frac{l \cdot \sigma_{i}^{4q+4}}{\sum_{j=k+1}^{r} \sigma_{j}^{4q+4}}\right)\right)^{-\frac{1}{2}} \leq \sin \angle_{i}(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) \leq \left(1 + \frac{1 - \epsilon_{1}}{1 + \epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4q+4}}{\sum_{j=k+1}^{r} \sigma_{i}^{4q+4}}\right)^{-\frac{1}{2}}$$

• In practice, taking $\epsilon_1=\sqrt{k/l},\epsilon_2=\sqrt{l/(r-k)}$ is sufficient for upper bounds when $l\geq 1.6k$ and $q\leq 10$

Comparison with Existing Prior Probabilistic Guarantees

• Given $\Omega \sim P(\mathbb{C}^{n \times l})$, let $\Omega_1 \triangleq \mathbf{V}_k^* \Omega$ and $\Omega_2 \triangleq \mathbf{V}_{r \setminus k}^* \Omega$. Then, $\Omega_1 \sim P(\mathbb{C}^{k \times l})$ and $\Omega_2 \sim P(\mathbb{C}^{(r-k) \times l})$

Isotropic embedding: Ω_1 , Ω_2 are agnostic of $\mathbf{V}_k, \mathbf{V}_{r \setminus k}$

• **Prior work (Saibaba, 2018)**¹:

$$\sin \angle_{i}(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) \leq \left(1 + \frac{\sigma_{i}^{4q+2}}{\sigma_{k+1}^{4q+2} \|\mathbf{\Omega}_{2}\mathbf{\Omega}_{1}^{\dagger}\|_{2}^{2}}\right)^{-\frac{1}{2}}, \quad \sin \angle_{i}(\mathbf{V}_{k}, \widehat{\mathbf{V}}_{l}) \leq \left(1 + \frac{\sigma_{i}^{4q+4}}{\sigma_{k+1}^{4q+4} \|\mathbf{\Omega}_{2}\mathbf{\Omega}_{1}^{\dagger}\|_{2}^{2}}\right)^{-\frac{1}{2}}$$

where for $l \ge k+2$, given any $\delta \in (0,1)$, with probability at least $1-\delta$,

$$\|\boldsymbol{\Omega}_{2}\boldsymbol{\Omega}_{1}^{\dagger}\|_{2} \leq \frac{e\sqrt{l}}{l-k+1} \left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}} \left(\sqrt{n-k} + \sqrt{l} + \sqrt{2\log\frac{2}{\delta}}\right) = \Omega\left(\sqrt{\frac{n-k}{l}}\right)$$

$$\|\boldsymbol{\Omega}_{2}\boldsymbol{\Omega}_{1}^{\dagger}\|_{2} \leq \frac{e\sqrt{l}}{l-k+1} \left(\frac{2}{\delta}\right)^{\frac{1}{l-k+1}} \left(\sqrt{n-k} + \sqrt{l} + \sqrt{2\log\frac{2}{\delta}}\right) = \Omega\left(\sqrt{\frac{n-k}{l}}\right)$$
where the smaller values lead

Recall the correspondence in Theorem 1:

$$\frac{1}{l} \sum_{i=k+1}^{r} \sigma_j^{4q+2} \le \frac{n-k}{l} \sigma_{k+1}^{4q+2}$$

to the tighter upper bounds

- Theorem 1 is **space-agnostic** since the randomized linear embedding $\Omega \sim P(\mathbb{C}^{n \times l})$ is **isotropic**
 - Only depends on the spectrum $\{\sigma_j\}_{j=1}^r$, but not on the singular subspaces $(\mathbf{U}_k,\mathbf{U}_{r\setminus k})$ or $(\mathbf{V}_k,\mathbf{V}_{r\setminus k})$
 - ullet In proof, we took an integrated view on the concentration of $oldsymbol{\Sigma}_{r\backslash k}^{2q+1}oldsymbol{\Omega}_2$
- Saibaba, Arvind K. "Randomized subspace iteration: Analysis of canonical angles and unitarily invariant norms." SIAM Journal on Matrix Analysis and Applications 40.1 (2019): 23-48.

Unbiased Space-agnostic Estimates

- Draw independent Gaussian random matrices $\left\{ \mathbf{\Omega}_1^{(j)} \sim P(\mathbb{C}^{k \times l}) \middle| j \in [N] \right\}$ and $\left\{ \mathbf{\Omega}_2^{(j)} \sim P(\mathbb{C}^{(r-k) \times l}) \middle| j \in [N] \right\}$
- Unbiased canonical angle estimates $\alpha_i = \mathbb{E}\left[\sin \angle_i(\mathbf{U}_k, \widehat{\mathbf{U}}_l)\right], \ \beta_i = \mathbb{E}\left[\sin \angle_i(\mathbf{V}_k, \widehat{\mathbf{V}}_l)\right] \ \forall \ i \in [k]$ such that

$$\sin \angle_{i}(\mathbf{U}_{k}, \widehat{\mathbf{U}}_{l}) \approx \alpha_{i} = \frac{1}{N} \sum_{j=1}^{N} \left(1 + \sigma_{i}^{2} \left(\mathbf{\Sigma}_{k}^{2q+1} \mathbf{\Omega}_{1}^{(j)} \left(\mathbf{\Sigma}_{r \setminus k}^{2q+1} \mathbf{\Omega}_{2}^{(j)} \right)^{\dagger} \right) \right)^{-\frac{1}{2}}$$
Corresponds to
$$\frac{1 \mp \epsilon_{1}}{1 \pm \epsilon_{2}} \cdot \frac{l \cdot \sigma_{i}^{4q+2}}{\sum_{j=k+1}^{r} \sigma_{j}^{4q+2}} \text{ in the upper/lower bounds of Theorem 1}$$

$$\sin \angle_i(\mathbf{V}_k, \widehat{\mathbf{V}}_l) \approx \beta_i = \frac{1}{N} \sum_{j=1}^N \left(1 + \sigma_i^2 \left(\mathbf{\Sigma}_k^{2q+2} \mathbf{\Omega}_1^{(j)} \left(\mathbf{\Sigma}_{r \setminus k}^{2q+2} \mathbf{\Omega}_2^{(j)} \right)^{\dagger} \right) \right)^{-\frac{1}{2}}$$

- Low variance in practice (i.e., negligible when $N \ge 3$)
- Can be computed efficiently with $O(Nrl^2)$ operations (for a given spectrum Σ)
- For any $k \leq l \leq r$, without further assumptions on the sample size (e.g., $\eta = \Omega(l), l = \Omega(k)$)

Posterior Residual-based Guarantees

1. Posterior bounds based on full residuals: Theorem 2. (D., Martinsson, Nakatsukasa, 2022)

- Deterministic and algorithm-independent (e.g., holds for any $k \le l \le r$, and any embedding Ω)
- Can be approximated with O(mnl) operations
- 2. Posterior bounds based on sub-residuals: Theorem 3.

• Let
$$\mathbf{E}_{31} \triangleq \widehat{\mathbf{U}}_{m \backslash l}^* \mathbf{A} \widehat{\mathbf{V}}_k$$
, $\mathbf{E}_{32} \triangleq \widehat{\mathbf{U}}_{m \backslash l}^* \mathbf{A} \widehat{\mathbf{V}}_{l \backslash k}$, $\mathbf{E}_{33} \triangleq \widehat{\mathbf{U}}_{m \backslash l}^* \mathbf{A} \widehat{\mathbf{V}}_{n \backslash l}$, $\Gamma_1 \triangleq \frac{\sigma_k^2 - \|\mathbf{E}_{33}\|_2^2}{\sigma_k}$, $\Gamma_2 \triangleq \frac{\sigma_k^2 - \|\mathbf{E}_{33}\|_2^2}{\|\mathbf{E}_{33}\|_2}$. Assume $\sigma_k > \|\mathbf{E}_{33}\|_2$. Then, for any unitary invariant norm $\|\cdot\|$, $\|\sin\angle(\mathbf{U}_k, \widehat{\mathbf{U}}_l)\| \leq \|[\mathbf{E}_{31}, \mathbf{E}_{32}]\|/\Gamma_1$

- Deterministic and holds for any $k \leq l \leq r$, and any embedding Ω
- Can be approximated with O(mnl) operations

Outline

- Problem setup: randomized subspace approximations & canonical angles
- Prior probabilistic bounds/estimates & posterior residual-based guarantees
- Numerical comparisons: effectiveness of canonical angle bounds & estimates in practice

Space-agnostic bounds & estimates win on MNIST: Polynomial spectral decay

Blue lines/dashes (with shade): unbiased space-agnostic estimates computed with true/approximated singular values Red lines/dashes: space-agnostic upper bounds with true/approximated singular values, $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$ Meganta lines/dashes: (Saibaba, 2018) bounds with true/approximated singular values and the true singular subspaces Cyan & green lines/dashes: Posterior residual-based bounds in Theorem 2 & 3 with true/approximated singular values

shade = min/max in N = 3 samples \Rightarrow negligible variance!

How about space-agnostic lower bounds in practice: MNIST

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 & 3 (with true) approximated singular values), and true canonical angles

Space-agnostic upper bounds and lower bounds with true singular values and $\epsilon_1 = \sqrt{k/l}$, $\epsilon_2 = \sqrt{l/(r-k)}$

When are posterior bounds more effective: Exponential spectral decay + low-error regimes

Unbiased space-agnostic estimates, space-agnostic upper bounds, (Saibaba, 2018) bounds, Posterior residual-based bounds in Theorem 2 & 3 (with true approximated singular values), and true canonical angles

Thank You! Happy to take any questions

arXiv: https://arxiv.org/abs/2211.04676

GitHub: https://github.com/dyjdongyijun/ Randomized Subspace Approximation