영상 정합을 위한 Line 검출 알고리즘

유 용길

목차

목적 알고리즘 구조 기존 방법의 문제 개선 알고리즘 Conclusion

목적

- 모바일 로봇의 위치추정.
- 제한된 환경에서의 천장 영상을 이용.
 - 일정 범위(1m) 이하의 오차를 가진 위치 추정 시스템의 존재
 일정 각도 이하의 오차를 가진 자세 추정 시스템의 존재

 - ▶ 천장 영상의 DB와 각 영상의 전역좌표의 존재

알고리즘 구조

기존 방법의 문제

• 원하지 않는 Line 선정

불필요한 Line 후보

기존 방법의 문제

- Canny Edge.
 - ▶ Edge 추출 단계에서의 Threshold로 명암비가 강한 Line만 후보로 지목.

기존 방법의 문제

- 원하는 Line과 원하지 않는 Line.
 - ightharpoonup 원하는 Line ightharpoonup 명암비가 비교적 적고 넓은 면적.
 - ▶ 원하지 않는 Line → 명암비가 비교적 크고 적은 면적.

- Hough 변환의 특징.
 - ▶ 면에 대한 Hough 변환.

▶ 사각형의 구성 선 중 긴 선에 해당하는 직선이 동일 각도를 가진 다수 직선으로 검출.

- Sobel Edge.
 - Rough한 Edge 검출로 면적에 의존한 Line 추출.

-1	0	I	-
-2	0	2	(
-1	0	I	

-1	-2	-1
0	0	0
1	2	1

- Sobel Edge.
 - Threshold.

• Hough Domain에서 분석.

• Hough Domain에서 분석.

Conclusion

- 결과
 - ▶ 주 직선과 그에 수직되는 직선이 고루 검출.

Conclusion

- 문제점.
 - ▶ 동일한 직선형 구조물에서 너무 많은 직선이 검출.

주요 Line과 수직인 직선 후보 검출 통일성 확보 실패.

- ▶ 너무 많은 환경변수
 - 주요 직선용 Hough Accumulate Value.
 - 수직 직선용 Hough Accumulate Value.
 - ◆ 수직 직선 결정용 Angle Boundary
 - Threshold Value.

Q&A