MARKSCHEME

May 2006

CHEMISTRY

Standard Level

Paper 2

10 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

SECTION A

1. (Amount of energy required to break bonds of reactants) (a) $8 \times 412 + 2 \times 348 + 612 + 6 \times 496 / 7580 \text{ (kJ mol}^{-1)}$; (Amount of energy released during bond formation) $4 \times 2 \times 743 + 4 \times 2 \times 463/9648$ (kJ mol⁻¹); $\Delta H = -2068 \text{ (kJ or kJ mol}^{-1}\text{);}$ [3] ECF from above answers. Correct answer scores [3]. Award [2] for (+)2068. If any other units apply -I(U), but only once per paper. (b) exothermic and ΔH^{\ominus} is negative / energy is released; [1] Apply ECF to sign of answer in part (a). Do not mark if no answer to (a). (c) $-1 \times \Delta H_1 / 676$; $1 \times \Delta H_2 / -394$; $2 \times \Delta H_3 / -484$; $\Delta H_A = -202 \text{ (kJ mol}^{-1}\text{);}$ [4] Accept alternative methods. Correct answers score [4]. Award [3] for (+)202 or (+)40 $(kJ/kJ mol^{-1})$. -1(U) if units incorrect (ignore if absent). 2. (a) (i) number of protons in the nucleus/atom; [1] Do not accept protons and electrons. (ii) number of protons and neutrons in the nucleus/atom; [1] (b) $A_r(T1) = 203 \times 0.2952 + 205 \times 0.7048 / 204.41;$ $A_{c}(Br) = 79 \times 0.5069 + 81 \times 0.4931/79.99;$ $M_r(\text{T1Br}_3) = 204.41 + 3 \times 79.99 = 444.38/444.37;$ [3] Correct answer scores [3]. Ignore units of g or g mol^{-1} . Apply ECF to M_r from A_r values. Mg^{2+} ; (c) [1] Al^{3+} , O^{2-} , Ne, Na^+ , F^- , N^{3-} ; (d) [2] Do not accept Fl^- .

Award [2] for any three, [1] any two.

3. (a) $n(Cu_2O) = 10.0 \times 10^3 \div 143.1 = 69.9 \text{ mol};$ $n(Cu_2S) = 5.00 \times 10^3 \div 159.16 = 31.4 \text{ mol};$ Penalise failure to convert $kg \rightarrow g$ once only.

Cu₂S is the limiting reagent;

[3]

ECF from above answers.

(b) $n(Cu) = 6 \times n(Cu_2S) = 6 \times 31.4 = 188 \text{ mol};$ $m(Cu) = 188 \times 63.55 = 11900 - 12000 \text{ g} / 11.9 - 12.0 \text{ kg};$ [2]

If Cu_2O given in (a), allow $3 \times n(Cu_2O)$ and $3 \times n(Cu_2O) \times 63.55$. Allow ECF from (a).

4. (a) (i) loss of electrons;

[1]

[1]

- (ii) (a species that) gains electrons (from another species) / causes electron loss;
- (b) changes by 3;

reduced because its oxidation number decreased $/+6 \rightarrow +3/6+ \rightarrow 3+/$ it has gained electrons;

[2]

5. (a) same general formula;

successive members differ by CH₂;

Do not allow elements or just "they".

similar chemical properties;

Allow same/constant.

gradual change in physical properties;

Do not allow change periodically.

same functional group;

[2 max]

Award [1] each for any two.

(b) add bromine (water);

alkanes – no change / stays or turns brown;

Allow red-brown or any combination of brown, orange or yellow.

alkenes – bromine (water) decolorizes;

Do not allow clear or discoloured.

or

add (acidified) KMnO₄;

alkanes – no change;

alkenes - KMnO₄ decolorizes / brown / black;

[3]

SECTION B

6.	(a)		$K_c = [SO_3]^2 \div [SO_2]^2 [O_2];$ pt correct K_p expression.	[1]
	(b)	(i)	vanadium(V) oxide / (di)vanadium pentaoxide / V_2O_5 ; Allow just vanadium oxide but not correct formula.	[1]
		(ii)	catalyst does not affect the value of $K_{\rm c}$; forward and reverse rates increase <u>equally/by the same factor</u> ; catalyst increases the rate of the reaction; (by providing an alternative path for the reaction with) lower activation energy;	[4]
	(c)	more energetic collisions / more molecules have energy greater than activation energy; more frequent collisions; Do not accept more collisions without reference to time.		[2]
	(d)	(i)	shifts equilibrium position to the products/right; to the side with fewer gas molecules or moles / lower volume of gas;	[2]
		(ii)	shifts equilibrium position to the products/right; to compensate for loss of SO ₃ / produce more SO ₃ ;	[2]
		(iii)	no effect; forward and backward rates increased equally / by the same factor;	[2]
	(e)	exothermic; K_c decreases with increasing temperature / back reaction favoured / heat used up / $OWTTE$;		[2]
	(f)	(i)	standard free energy change (of a reaction);	[1]
		(ii)	(reaction is) spontaneous / spontaneity of the reaction;	[1]
		(iii)	spontaneity would decrease; $-T\Delta S^{\ominus}$ becomes more positive and ΔG^{\ominus} becomes less negative/more positive / $OWTTE$;	[2]

[2]

[4]

[4]

7. (a) (i) electron removed from higher energy level / further from nucleus / greater atomic radius:

increased repulsion by extra inner shell electrons / increased shielding effect;

- (ii) Mg has twice as many / more delocalized electrons (compared to Na); the ionic charge is twice as big / greater in Mg (than Na); (electrostatic) attraction between ions and electrons is much greater;
- (electrostatic) attraction between ions and electrons is much greater; [3]
- (b) oxides of Na, Mg are basic

Al is amphoteric

Si, P, S and Cl are acidic

Award 7 correct [3], 6/5 correct [2] and 4/3 correct [1].

$$SO_2 + H_2O \rightarrow H_2SO_3/SO_3 + H_2O \rightarrow H_2SO_4/$$

$$P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4/P_4O_6 + 6H_2O \rightarrow 4H_3PO_3;$$

$$Na_2O + H_2O \rightarrow 2NaOH/MgO + H_2O \rightarrow Mg(OH)_2;$$

$$Accept equation using P_2O_3 or P_2O_5.$$
[5]

Allow a combination of dots, crosses or lines.

bent / V shaped / angular

 104.5° ;

Accept answers in range 104° to 106°.

repulsion of the two non-bonding pairs of electrons forces bond angle to be smaller / non-bonding pairs repel more than bonding pairs;

- (ii) ethanol is polar and ethane is non-polar;ethanol forms hydrogen bonds / dipole—dipole attractions with water and ethane does not;[2]
- (d) butane < propanone < propanol;
 butane has van der Waals' forces;
 Accept vdW, dispersion or London forces or attractions between temporary dipoles.
 propanone has dipole-dipole attractions;
 propanol has (the stronger) H-bonding;

8. (a) HCl/H₂SO₄/HNO₃ / any strong acid;

CH₃COOH/H₂CO₃/ any weak acid;

Measure pH – the strong acid has the lower pH;

Accept universal indicator and two correct colours.

Measure (electrical) conductivity – this is greater for the stronger acid;

Add magnesium/carbonate – more gas bubbles with the stronger acid / Mg or carbonate would disappear faster with stronger acid;

(b) amphoteric/amphiprotic;

as an acid:
$$HCO_3^- + H_2O \rightarrow H_3O^+ + CO_3^{2-}/HCO_3^- \rightarrow H^+ + CO_3^{2-};$$

as a base:
$$HCO_3^- + H_2O \rightarrow OH^- + H_2CO_3/HCO_3^- + H^+ \rightarrow H_2CO_3$$
; accept $H_2O + CO_2$.

- (c) vinegar and factor of 10⁵;
- [1]
- (d) weak acid + salt of weak acid / weak acid + conjugate base.

Accept equivalent descriptions of a basic buffer.

the solution resists pH change;

Do not accept pH does not change.

when small amounts of acid or base are added;

Only award if previous answer correct.

[1] (e) (i) $CH_{2}CH_{3};$

(ii) HOOCCHNH₂

Allow appropriate acyl chloride.

(iii) $H_2N(CH_2)_6NH_2$;

Allow correct alternative.

Accept correct names as alternatives.

If correct structure and incorrect name given, award the mark.

Penalise COOH - C once only.

(f) (addition polymers) contain $C = C/C \equiv C$;

(condensation polymers) contain two reactive/functional groups;

[2]

[5]

[3]

[3]

[1]

[2]

methyl methanoate; (g)

[2]

Accept other correct alternative.