MA414 STOCHASTIC ANALYSIS: EXAMINATION, 2011

- Q1. (i) State [1] and prove [4] the first Borel-Cantelli lemma, for events A_n .
- (ii) State [1] and prove [7] the second Borel-Cantelli lemma, where the A_n are independent.
- (ii) Prove the second Borel-Cantelli lemma when the A_n are pairwise independent [12].
- Q2. By dyadic expansion, or otherwise, show how to pass from either of the following two random experiments to the other:
- (a) sampling a random number uniformly from [0, 1];
- (b) tossing a fair coin infinitely often independently. [9] Show how to simulate the following from a single realization of a random variable U uniformly distributed on [0,1]:
- (i) infinitely many independent uniform random variables; [4]
- (ii) infinitely many independent standard normal random variables; [4]
- (iii) Brownian motion; [4]
- (iv) infinitely many independent Brownian motions. [4]
- Q3. Define infinite divisibility, and state without proof the Lévy-Khintchine formula. [2, 3]

The Cauchy density is defined by $f(x) := 1/(\pi(1+x^2))$.

- (i) Show that it has characteristic function $\phi(t) = e^{-|t|}$. [6]
- (ii) Deduce that it is infinitely divisible. [3]
- (iii) If $X = (X_t)$ is the corresponding Lévy process (the Cauchy process), show that the Lévy measure μ of X has density $1/(\pi|x|^2)$ (you may assume that $\int_0^\infty ((\sin x)/x) dx = \pi/2)$. [8]
- (iv) If $X_1, X_2, ...$ are independent with the Cauchy distribution, show that $(X_1 + ... + X_n)/n$ and X_1 have the same distribution. Why does this not contradict the Strong Law of Large Numbers?
- Q4. (i) For $B = (B_t) = (B(t))$ standard Brownian motion, define

$$X_t := tB(1/t) \qquad (t \neq 0).$$

Show that $X = (X_t)$ is again standard Brownian motion. [8]

(ii) Hence or otherwise, show that

$$B_t/t \to 0$$
 a.s. $(t \to \infty)$. [8]

- (iii) Define the Brownian bridge B_0 by $B_0(t) := B(t) tB_1$. Find the expansion of B_0 in terms of the Schauder functions $\Delta_n(t)$. [9]
- Q5. Define a *convex function*. State without proof Jensen's inequality, and its conditional form. [1, 2, 2]
- (i) If $M = (M_t)$ is a martingale, and ϕ is a convex function such that each $\phi(M_t)$ is integrable, show that $\phi(M)$ is a submartingale. [5]
- (ii) If M is a submartingale, and ϕ is non-decreasing on the range of M and convex with each $\phi(M_t)$ integrable, show that again $\phi(M)$ is a submartingale.
- (iii) Deduce that for $B = (B_t)$ Brownian motion, $B^2 = (B_t^2)$ is a submartingale. [5]
- (iv) Find the increasing process in its Doob-Meyer decomposition. Deduce that Brownian motion has quadratic variation t. [5]
- Q6. (i) Define the space $H^2 := H^2(0,T)$, and state without proof the Itô isometry for Itô integrals with integrands in H^2 . [2]
- (ii) Prove the conditional Itô isometry: for $0 \le s \le t \le T$, $f \in H^2$,

$$E[(\int_{s}^{t} f^{2}(\omega, u)dB_{u})^{2} | \mathcal{F}_{s}] = E[\int_{s}^{t} f^{2}(\omega, t)dt | \mathcal{F}_{s}].$$
 [6]

(iii) Show that for $f \in H^2$

$$M_t := \left(\int_s^t f(\omega, u) dB_u\right)^2 - \int_0^t f^2(\omega, u) du$$

is a martingale. [13]

(iv) Deduce that $B^2(t,\omega) - t$ is a martingale. [4]

N. H. Bingham