CONCORDIA UNIVERSITY

Department of Mathematics & Statistics

Course	Number	Section(s)
Mathematics	203	All
Examination	Date	Pages
Final	April 2008	3
Instructors		Course Examiner
A. Djerrahian, C. Grabowski, H. Greenspan, J. Li, H. Proppe		H. Proppe

Special Instructions

Only Sharp EL 531 or Casio FX 300 MS calculators are allowed.

MARKS

- [9] 1. (a) Sketch the graph of the function $f(x) = |(x+2)^2 4|$ starting from the graph of the standard parabola and using appropriate transformations.
 - (b) Suppose $f(x) = \sqrt[3]{1 + e^x}$, and $g(x) = \ln(x^3 1)$. Find $f \circ g$ and $g \circ f$. Determine the domain and range of $f \circ g$ and $g \circ f$.
 - (c) Evaluate $\cos(\sin^{-1}(t))$.
- **2.** Evaluate the limits: [8]

(a)
$$\lim_{x \to 4} \frac{\sqrt{2x+1}-3}{x^3-64}$$

(a)
$$\lim_{x \to 4} \frac{\sqrt{2x+1}-3}{x^3-64}$$
 (b) $\lim_{x \to -\infty} \frac{(x^4+1)(3-2x)^3}{(x+1)^5(2-x^2)}$

Do not use l'Hopital's rule.

[10] **3.** (a) Consider the function $f(x) = \frac{|x+1|}{x^2-1}$.

Calculate both one-sided limits at the point(s) where the function is undefined.

(b) Find parameters a and b such that the function

$$f(x) = \begin{cases} x+5 & \text{if } x < 0\\ (x-a)^2 + b, & \text{if } 0 \le x < 2\\ 1, & \text{if } x \ge 2 \end{cases}$$

will be continuous at every point. Sketch the graph of this function.

[15] 4. Find derivatives of the functions (do not simplify the answer):

(a)
$$f(x) = \frac{\sqrt[3]{x} - 2\sqrt[5]{x^3} + x^4}{\sqrt{x}};$$

(b)
$$f(x) = e^{-2x^3} (\sin x + \tan x)^2$$
;

(c)
$$f(x) = \sec(\arcsin 2x)$$
;

(d)
$$f(x) = \frac{\ln^2(\sqrt{x})}{1 + \sqrt{e^{2x}}};$$

- (e) $f(x) = (\arctan x)^{1+x^2}$ (use logarithmic differentiation).
- [6] **5.** Given the function $f(x) = x^2 + \frac{1}{x}$,
 - (a) Use the definition of derivative to find the derivative of the function.
 - (b) Use the appropriate differentiation rule(s) to verify (a).
- [6] **6.** (a) Find the differential of the function $f(x) = \tan x$ at $a = \pi/4$.
 - (b) Use the differential above to estimate $\tan 0.8$ (to calculate dx, you may use 0.785 as an approximation of $\pi/4$) .
- [10] **7.** (a) A curve called a "devil's curve" is defined implicitly by the equation $y^2(y^2-4)=x^2(x^2-5)$. Verify that the point (0,-2) belongs to the curve. Find an equation of the tangent line to the curve at this point.
 - (b) Use l'Hopital's rule to evaluate $\lim_{x\to 0} \frac{\sin x x}{x\cos x x}$.
- [10] **8.** (a) Let $f(x) = e^{\ln(\arctan(2x))}$. Find f''(x).
 - (b) Let $f(x) = x^3 + x 1$. Find a number c that satisfies the conclusion of the Mean Value Theorem for the function f(x) on [0,2].

- [10] **9.** (a) At what rate is the area of an equilateral triangle increasing if its base is 10 cm long and increasing at 0.5 cm/s?
 - (b) If 1200 cm² of material is available to make a box with a square base and no top, find the largest possible volume of the box.
- [16] **10.** Given the function $f(x) = \frac{2x^2}{x^2 1}$,
 - (a) Find the domain and check for symmetry. Find all asymptotes.
 - (b) Calculate f'(x) and use it to determine interval(s) where the function is increasing, interval(s) where the function is decreasing, and local extrema (if any).
 - (c) Calculate f''(x) and use it to determine interval(s) where the function is concave upward, interval(s) where the function is concave downward and inflection point(s) (if any).
 - (d) Sketch the graph of the function, and label the local extrema and inflection point(s) you have found (if any) in parts (b) and (c).

[5] Bonus Question

Two runners start a race at the same time and finish in a tie. Show that at some time during the race they have exactly the same speed. [Hint: Let g(t) be the distance the first runner covers in time t and let h(t) be the distance the second runner covers in time t. Now put f(t) = g(t) - h(t) and explain how to apply Rolle's Theorem to this situation].