

Algebra di Boole

Cenni all'Algebra di Boole

Introduzione Rappresentazione di una funzione combinatoria Proprietà dell'algebra di commutazione Forme canoniche Teorema di espansione di Shannon

Algebra Booleana: operazioni e sistema algebrico

Operazione:

- una operazione α sull'insieme S={s1,s2,...} è una funzione che da SxS (S cartesiano S) porta in S.
- Quindi, ad ogni coppia ordinata appartenente ad SxS corrisponde un elemento di S, cioè

$$\alpha \colon SxS \to S.$$

- Alcune considerazioni:
 - L'operazione * (di moltiplicazione) sull'intervallo [0,1] consente di
 ottenere un valore incluso in [0,1] a partire da elementi inclusi in [0,1]
 - La sottrazione sull'insieme dei naturali non è una operazione.
 - Es: 5-10 non appartiene ai naturali.

Sistema Algebrico:

- Combinazione di un insieme di elementi e un insieme di operatori e un numero fissato di assiomi.
 - esempio: ([0,1], *) è un sistema algebrico.

- 2 -

Algebra Booleana: definizione

Algebra Booleana B:

è un sistema algebrico identificato dalla sestupla (B,+,*,',0,1) dove:

- B è l'insieme su cui vengono definite le operazioni (supporto)
- +,*,' sono le operazioni binarie OR e AND e l'operazione unaria NOT
- 0,1 sono elementi speciali di B.
 - 0 è l'elemento neutro rispetto a +
 - · 1 è l'elemento neutro rispetto a *
- Assiomi

Esempio:

- Algebra delle classi, l'algebra delle funzioni proposizionali, l'algebra booleana aritmetica e l'algebra a due valori.

Algebra Booleana a due valori: Algebra di Commutazione

- "Tra tutte le algebre booleane, l'algebra booleana a due valori......è la più utile. Essa è la base matematica della analisi e progetto di circuiti di commutazione che realizzano i sistemi digitali."
 - [Lee, S.C., *Digital Circuit And Logic Design*. Englewood Cliffs, NJ: Prentice-Hall, 1976]

- 3 -

Algebra Booleana a due valori: Algebra di Commutazione

- Le variabili dell'algebra booleana a due valori possono assumere solo i due valori 0 e 1
 - precisamente, se x indica una variabile, è
 - x = 0 se e solo se $x \neq 1$
 - x = 1 se e solo se $x \neq 0$
- Algebra Booleana a due valori: ({0,1},+,*,',0,1) dove + e * sono definiti come

+	0	1
0	0	1
1	1	1

 Mentre l'operazione a un solo elemento (unary operation) detta complementazione o negazione (NOT) è definita come

(1101)				
,				
0	1			
1	0			

Nota: il simbolo associato al NOT è spesso indicato come '(esempio x'), !(esempio !x) o sopra segnando la variabile.

- 5 -

Algebra Booleana a due valori: Assiomi

- Gli operatori descritti godono delle proprietà definite dai seguenti assiomi (postulati di Huntington):
 - Le operazioni di disgiunzione (+) e congiunzione (·) sono commutative, cioè per ogni elemento $a,b\in B$

$$a+b=b+a$$

$$a \cdot b = b \cdot a$$

 Esiste un elemento neutro (o identità) rispetto a + (indicato con 0) e un elemento neutro rispetto a · (indicato con 1), cioè:

a∙1=*a*

Le due operazioni sono distributive rispetto all'altra, cioè per ogni a,b,c
 ∈ B, risulta:

$$a+(b\cdot c)=(a+b)\cdot (a+c)$$

$$a \cdot (b+c)=(a \cdot b)+(a \cdot c)$$

 Per ogni a ∈ B esiste l'elemento a ∈ B, detto negazione logica o complemento di a, tale che:

a a' =0

- 6 -

Algebra di Commutazione: proprietà (1)

- 1: elemento complemento
 - a+1=1
- 2: idempotenza
 - a+a=a a*a=a
- 3: unicità elemento inverso:
 - il complemento di a, a', è unico
- 4: associativa
 - -a+(b+c)=(a+b)+c

$$a*(b*c)=(a*b)*c$$

- 5: assorbimento
 - a+(a*b)=a

$$a*(a+b)=a$$

a*0=0

Algebra di Commutazione: proprietà (2)

□ 6: involuzione

$$-((a)')' = a$$

7: Leggi di De Morgan

$$- (a+b)' = a'*b'$$

$$(a*b)' = a'+b'$$

□ 8: consenso

$$- a*b+a'*c+b*c = a*b + a'*c$$

$$-(a+b)*(a'+c)*(b+c)=(a+b)*(a'+c)$$

9: Semplificazione

$$- a+a'b = a+b$$

$$a*(a'+b) = a*b$$

Algebra di Commutazione: proprietà (3)

- 10: principio di dualità
 - Ogni identità deducibile dai postulati dell'algebra di Boole è trasformata in un'altra identità se:
 - 1. Ogni operazione + viene sostituita da una operazione * e vice versa.
 - 2. Ogni elemento identità 0 viene sostituito da un elemento identità 1 e vice versa.
 - Esempio: (assorbimento)
 - a+(a*b)=a
 y
 a*(a+b)=a

- 9 -

Algebra di Commutazione: proprietà (4)

- Il modo più semplice per dimostrare le proprietà è quello esaustivo (si dimostra per tutti i possibili valori di tutte le variabili).
- Sono possibili altri tipi di dimostrazione:
- Ad esempio, si voglia dimostrare a+a'b = a+b
 - · Si sostituisce a con a*1
 - Dalla proprietà della negazione (b+b'=1) applicata da destra verso sinistra si sostituisce a1 + a'b con a(b+b')+a'b
 - · Applicando la proprietà distributiva si ottiene ab+ab'+a'b
 - Applicando la proprietà di idempotenza da destra verso sinistra al termine ab si ottiene ab + ab + ab' + a'b
 - Applicando la proprietà distributiva da destra verso sinistra si ottiene a(b+b') + b(a + a')
 - Applicando la proprietà dell'inverso si ha infine a*1 + b*1= a + b

- 10 -

Algebra di Commutazione: *rappresentazione di una funzione*

- Una funzione di commutazione a n variabili
 f: {0,1}ⁿ → {0,1} può essere rappresenta in modo comodo utilizzando una tabella della funzione o tabella della verità
 - Una tabella della verità specifica la relazione che esiste tra ogni elemento del dominio di f ({0,1}n) e la corrispondente immagine (elemento del codominio)
- Esempio:

а	b	С	f(a,b,c)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Algebra di Commutazione: definizioni (1)

Letterale:

- un letterale è una coppia (Variabile, Valore)
- (x,1) è indicato come x (variabile in forma naturale);
- (x,0) rappresenta la *variabile x* in forma *negata* (complementata) ed è indicato come x' (oppure !x).
- In modo equivalente, dato $a \in \{0,1\}$ un letterale è espresso come x^a dove, per a=1 $x^a=x$ e per a=0 $x^a=x$.
 - Ad esempio, il letterale z vale 1 ogni qual volta che la variabile z vale 1, mentre il letterale z ' vale 1 ogni volta che la variabile z vale 0.

- 11 -

Algebra di Commutazione: definizioni (2)

Termine prodotto:

- Un termine prodotto è il *prodotto logico* o *congiunzione* (AND) di più letterali.
- Un termine prodotto in cui compaiono letterali corrispondenti a tutte le variabili della funzione e tale per cui la configurazione di valori delle variabili definite dai letterali genera un valore 1 della funzione stessa nella tabella delle verità, costituisce un mintermine della funzione (spesso si sottintende il segno *)
 - Ad esempio, a'b'c e ab'c rappresentano due mintermini della funzione di cui si è prima data la tabella delle verità
- Un termine prodotto in cui compaiono solo alcuni dei letterali e che corrisponda a un *insieme* di 1 della funzione è denominato implicante.
 - · Ad esempio, a'c rappresenta un implicante della funzione data

...

Algebra di Commutazione: definizioni (3)

Termine somma (duale):

- Un termine somma è la *somma logica* o *disgiunzione* (OR) di più letterali.
- Un termine somma in cui compaiono letterali corrispondenti a tutte le variabili della funzione e tale per cui la configurazione di valori delle variabili definite dai letterali genera un valore 0 della funzione stessa nella tabella delle verità, costituisce un maxtermine della funzione
 - Ad esempio, a+b+c e a+b'+c rappresentano due maxtermini della funzione data
- Un termine somma in cui compaiono solo alcuni dei letterali e che corrisponda a un *insieme* di 0 della funzione è denominato implicato.
 - · Ad esempio, a+c rappresenta un implicato della funzione data

- 13 -

- 14 -

Algebra di Commutazione: funzioni

- una funzione booleana di n variabili può essere espressa attraverso una espressione booleana di n variabili costituita da letterali, costanti, operatori AND, OR e NOT.
 - Esempio di espressione booleana: f(a,b,c)=ab+a'c'
- Le proprietà dell'algebra di commutazione possono essere utilizzate per manipolare una espressione booleana ed ottenerne una equivalente.
 - Due *espressioni booleane* sono *equivalenti* se e solo se sono riconducibili alla stessa *funzione booleana*.
- Esempio:

Algebra di commutazione: espressioni e funzioni (1)

- Il numero di espressioni booleane di n variabili definite su una algebra booleana B è infinito.
 - La relazione tra *espressioni booleane* e *funzioni booleane* non è 1 a 1.
- Esempio:

- 16 -

- 15 -

Algebra di commutazione: espressioni e funzioni (2)

- Data una funzione booleana ad esempio, mediante la tabella delle verità - il problema è identificare almeno una espressione booleana ad essa corrispondente
 - In molte applicazioni dell'algebra booleana uno scopo fondamentale è determinare una buona rappresentazione della funzione booleana, avendo preventivamente definito il concetto di buono ed un modo per valutarlo: obiettivo e cifra di merito
 - Ad esempio: l'obiettivo è minimizzare il costo del circuito corrispondente a un'espressione, la cifra di merito usata è il numero di letterali presenti nell'espressione.
 - Solitamente la *buona* rappresentazione algebrica viene ricavata manipolando una soluzione iniziale.

MILANO

Algebra di commutazione: espressioni e funzioni (3)

- Data una funzione booleana, la soluzione iniziale al problema di determinare una sua espressione consiste nel ricorso alle forme canoniche.
- Le forme canoniche sono, rispettivamente, la forma somma di prodotti (SoP) e quella prodotto di somme (PoS).
- Data una funzione boolena esistono una ed una sola forma canonica SoP ed una e una sola forma PoS che la rappresentano.

- 17 -

- 18 -

Algebra Booleana: Forme canoniche

Si consideri il seguente esempio:

a	b	f(a,b)
0	0	0
0	1	1
1	0	0
1	1	1

È intuitivo osservare che la funzione possa essere ottenuta dal OR delle seguenti funzioni:

a	b	f(a,b)
0	0	0
0	1	1
1	0	0
1	1	1

Algebra Booleana: Forme canoniche

Per cui, intuitivamente, si ottiene:

•			•				
a b	f(a,b)		a b	f ₁ (a,b)		a b	f ₂ (a,b)
0 0	0		0 0	0		0 0	0
0 1	1	=	0 1	1	+	0 1	0
1 0	0		1 0	0		1 0	0
1 1	1		1 1	0		1 1	1
		f	E ₁ (a,	b)=a'b		$f_2(a$,b)=ab

 Poiché, ad esempio, quando a=0 e b=1 il prodotto a'b assume valore 1 mentre vale 0 in tutti gli altri casi.

- 19 -

Algebra Booleana: Forme canoniche

Ne consegue:

a b	f(a,b)		a b	f ₁ (a,b)		a b	f ₂ (a,b)
0 0	0		0 0	0	Ī	0 0	0
0 1	1	=	0 1	1	+	0 1	0
1 0	0		1 0	0		1 0	0
1 1	1		1 1	0		1 1	1
L							
f	(a,b)	=	á	a′b	+		ab

- Mettendo in OR i mintermini della funzione si ottiene l'espressione booleana della funzione stessa espressa come somma di prodotti. Questa espressione booleana è denominata prima forma canonica.
 - Si ricorda che nel *mintermine* una variabile compare nella forma naturale x se nella corrispondente configurazione di ingresso ha valore 1, nella forma complementata x' se ha valore 0

- 21 -

Algebra Booleana: Forme canoniche

Esempio:

- 22 -

Algebra Booleana: Forme canoniche

Si consideri nuovamente lo stesso esempio:

a	b	f(a,b)
0	0	0
0	1	1
1	0	0
1	1	1
	0	0 1

□ È intuitivo osservare che la funzione possa essere ottenuta dall'AND delle seguenti funzioni:

а	b	f(a,b)
0	0	0
0	1	1
1	0	0
1	1	1

$$\begin{array}{c|cccc} a & b & & f_1(a,b) \\ \hline 0 & 0 & & 0 \\ 0 & 1 & & 1 \\ 1 & 0 & & 1 \\ 1 & 1 & & 1 \\ \end{array}$$

Algebra Booleana: Forme canoniche

Per cui, intuitivamente, si ottiene:

a b	f(a,b)	
0 0	0	
0 1	1	=
1 0	0	
1 1	1	

$$f_1(a,b) = a+b$$
 $f_2(a,b) = a'+b$

Algebra Booleana: Forme canoniche

E quindi

$$f(a,b) = (a+b)*(a'+b)$$

- Mettendo in AND i maxtermini della funzione si ottiene l'espressione booleana della funzione stessa espressa come prodotto di somme. Questa espressione booleana è denominata seconda forma canonica.
 - Si ricorda che nel maxtermine una variabile compare nella forma naturale $\mathbf x$ se nella corrispondente configurazione di ingresso ha valore 0, nella forma complementata $\mathbf x'$ se ha valore 1

Algebra Booleana: Forme canoniche

Esempio:

a b c	f(a,b,c)
0 0 0	/0
0 0 1	/ 1
0 1 0	/ 1
0 1 1	/ 1
1 0 0	/ 1
1 0 1	/0
1 1 0	0
1 1 1) (1
	↓ ↓
f(a,b,c)=(a+b+c)	*(a'+b+c')*(a'+b'+c)
Seconda Fo	orma Canonica

- 25 -

- 26 -

Algebra Booleana: Espansione di Shannon

- Formalmente, quanto esposto dal punto di vista intuitivo produce le forme canoniche come seque:
 - prima forma canonica:

$$f = (x_1' ... x_n')^* f(0,...,0) + (x_1' ... x_n)^* f(0,...,1) + ... + (x_1... x_n)^* f(1,...,1)$$
 dove

- (x_1, \dots, x_n) , (x_1, \dots, x_n) , ..., (x_1, \dots, x_n) sono i *mintermini* della funzione f,
- f(0,...,0), ..., f (1,...,1) sono i valori che la funzione assume quando la configurazione delle variabili sia, rispettivamente, (0,...,0),...,(1,...,1)
- seconda forma canonica:

$$f = ((x_1' + ... + x_n') + f(1,...,1))^*((x_1' + ... + x_n) + f(1,...,0))^*...^*((x_1 + ... + x_n) + f(0,...,0))$$
dove

$$-(x_1'+...+x_n'), (x_1'+...+x_n), ..., (x_1+...+x_n)$$
 sono i maxtermini di f.

Nota:

- f(0,0,...,0), f(0,0,...,1) . . . f(1,1,...,1) sono noti con il nome di discriminante della funzione f e il loro valore appartiene a B
- La rete combinatoria che realizza una forma canonica si dice rete a due livelli

Algebra Booleana: Espansione di Shannon

- La descrizione formale introdotta in precedenza deriva direttamente dall'applicazione iterativa del *Teorema di* espansione di Shannon
 - se f: $B^n \to B$ è una funzione booleana si ha $f(x_1,x_2,\ldots,x_n) = x_1{'*f_{x1}} + x_1{*f_{x1}}$ per ogni (x_1,x_2,\ldots,x_n) in B^n . Ad esempio, $f(a,b,c)=a{'*f(0,b,c)}+a{*f(1,b,c)}$
 - Dualmente, se f: $B^n \to B$ è una funzione booleana si ha $f(x_1,x_2,\ldots,x_n) = (x_1'+f_{x1})*(x_1+f_{x1}')$ per ogni (x_1,x_2,\ldots,x_n) in B^n . Ad esempio, f(a,b,c) = (a'+f(1,b,c))*(a+f(0,b,c))

Algebra Booleana: Espansione di Shannon e Forme canoniche

Ad esempio:

$$\begin{split} f(a,b,c) = & a'b'c'*f(0,0,0) + a'b'c*f(0,0,1) + a'bc'*f(0,1,0) \\ & + a'bc*f(0,1,1) + ab'c'*f(1,0,0) + ab'c*f(1,0,1) + \\ & + abc'*f(1,1,0) + abc*f(1,1,1) \end{split}$$

a b c	f(a,b,c)	Prima Forma Canonica
0 0 0	0	a'b'c+a'bc+ab'c'+ab'c+abc
0 0 1	1	
0 1 0	0	
0 1 1	1	
1 0 0	1	
1 0 1	1	
1 1 0	0	
1 1 1	1	
	+	(a+b+c)*(a+b'+c)*(a'+b'+c)
		Seconda forma Canonica

- 29 -

Algebra Booleana: Espansione di Shannon

- Osservazione: il teorema di espansione di Shannon può essere utilizzato anche su espressioni Booleane. Esempio:
 - Espandendo rispetto ad a l'espressione booleana f(a,b,c)=ab+b'+a'bc', si ha la forma equivalente f(a,b,c)=a'*(b'+bc')+a*(b+b')=a'b'+a'bc'+ab+ab'=a'b'+a'bc'+a
 - Espandendo rispetto ad a b e c la espressione booleana f(a,b,c)=ab+b'+a'bc', si ha la forma equivalente
 - $\begin{array}{ll} \cdot & f(a,b,c) = a'*(b'+bc') + \ a*(b+b') \\ & = a'*(b'*(1)+b*(c')) + \ a*(b'*(1)+b*(1)) \\ & = a'*(b'*(c'+c)+b*(c')) + a*(b'(c'+c)+b*(c'+c)) \end{array}$

=a'b'c'+a'b'c+a'bc'+ab'c'+ab'c+abc'+abc

» è la prima forma canonica della funzione associata alla espressione booleana di partenza.

- 30 -

Algebra Booleana: Manipolazione delle espressioni (1)

- Data un'espressione di una funzione booleana, le proprietà dell'algebra di commutazione permettono di manipolarla in modo da ottenere un'espressione equivalente, ma di forma diversa
 - eventualmente con caratteristiche meglio rispondenti a particolari requisiti.

Esempio:

- sia data la forma canonica
 - f(x,y,z) = x'yz' + xyz' + xyz
- e sia data la funzione di costo costituita dal *numero di letterali presenti* che in questo caso vale 9.
- Obiettivo: ridurre il costo.

Algebra Booleana: Manipolazione delle espressioni (2)

- Una prima manipolazione mediante le regole dell'algebra dà:
 - f(x,y,z) = x'yz' + xyz' + xyz
 - applicando la proprietà distributiva e quella della complementazione:
 - f(x,y,z) = (x'+x)yz'+xyz = 1yz'+xyz = yz'+xyz.
 - 2. poi, applicando di nuovo la proprietà distributiva
 - f = y(z'+xz)
 - 3. E ricordando che a + a'b = a + b, si ottiene infine
 - f = y(z'+x) = yz'+xy

- 31 -

Algebra Booleana: Manipolazione delle espressioni (3)

- Allo stesso risultato si sarebbe giunti anche:
 - f(x,y,z) = x'yz' + xyz' + xyz
 - 1. applicando dapprima la proprietà dell'idempotenza:

•
$$f(x,y,z) = x'yz' + xyz' + xyz' + xyz$$

2. poi applicando la proprietà distributiva

•
$$f = yz'(x'+x) + xy(z' + z)$$

- 3. Da cui infine
 - f = yz'1 + xy1 = yz' + xy
- Si osservi che, rispetto alla forma canonica di partenza, l'espressione logica ottenuta è di costo inferiore (4 letterali).

Algebra Booleana: Manipolazione delle espressioni (5)

- Si osservi che l'applicazione delle trasformazioni algebriche non permette di identificare una procedura sistematica
- Come conseguenza:
 - Non è possibile identificare un algoritmo
 - non possono essere realizzati strumenti CAD che consentano di produrre una soluzione ottima a due livelli utilizzando le proprietà dell'algebra
 - Non è possibile sapere se l'espressione ottenuta è quella minima
 - L'immediatezza della bontà del risultato dipende molto dalla scelta delle proprietà da applicare e dall'ordine in cui sono applicate.
- In pratica, non è questa la via che si sceglie!

- 33 -