LA FONCTION CARRÉ M02

EXERCICE N°1

Comparer les nombres suivants sans utiliser la calculatrice.

1)
$$(-12,2)^2$$
 et $(-15,3)^2$

3)
$$(5-10\pi)^2$$
 et $(\pi+10)^2$

2)
$$(\pi + 1)^2$$
 et 16

4)
$$(-3)^2$$
 et 10

EXERCICE N°2

Sans utiliser de calculatrice, comparer :

1)
$$\sqrt{32}$$
 et $\sqrt{33}$

3)
$$7\sqrt{2} \text{ et } \sqrt{99}$$

2)
$$3\sqrt{5}$$
 et $5\sqrt{3}$

4)
$$-\sqrt{32}$$
 et $-\sqrt{33}$

LA FONCTION CARRÉ M02C

EXERCICE N°1 (Le corrigé) RETOUR À L'EXERCICE 1

Comparer les nombres suivants sans utiliser la calculatrice.

1)
$$(-12,2)^2$$
 et $(-15,3)^2$ $(-12,2)^2 < (-15,3)^2$

3)
$$(5-10\pi)^2$$
 et $(\pi+10)^2$
 $(5-10\pi)^2 > (\pi+10)^2$

2)
$$(\pi + 1)^2$$
 et 16
 $(\pi + 1)^2 > 16$
 $16 = 4^2$ et $\pi + 1 > 4$

4)
$$(-3)^2$$
 et 10 $(-3)^2 < 10$

EXERCICE N°2 (Le corrigé) RETOUR À L'EXERCICE 2

Sans utiliser de calculatrice, comparer :

1)
$$\sqrt{32}$$
 et $\sqrt{33}$

 $\sqrt{32}$ et $\sqrt{33}$ appartiennent tous les deux à l'intervalle $[0; +\infty]$ sur lequel la fonction Carré est strictement croissante.

De plus

$$(\sqrt{32})^2 = 32$$
 et $(\sqrt{33})^2 = 33$

Comme 32 < 33 on en déduit que :

$$\sqrt{32} < \sqrt{33}$$

3)
$$7\sqrt{2} \text{ et } \sqrt{99}$$

 $7\sqrt{2}$ et $\sqrt{99}$ appartiennent tous les deux à l'intervalle $[0; +\infty]$ sur lequel la fonction Carré est strictement croissante.

De plus

$$(7\sqrt{2})^2 = 98$$
 et $\sqrt{99}^2 = 99$

Comme 98 < 99 on en déduit que :

$$7\sqrt{2} < \sqrt{99}$$

2)
$$3\sqrt{5}$$
 et $5\sqrt{3}$

 $3\sqrt{5}$ et $5\sqrt{3}$ appartiennent tous les deux à l'intervalle $[0; +\infty[$ sur lequel la fonction Carré est strictement croissante.

De plus

$$(3\sqrt{5})^2 = 45$$
 et $(5\sqrt{3})^2 = 75$

$$(3\sqrt{5})^2 = 3^2 \times \sqrt{5}^2 = 9 \times 5 = 45$$

$$(5\sqrt{3})^2 = 5^2 \times \sqrt{3}^2 = 25 \times 3 = 75$$

Comme 45 < 75 on en déduit que : $3\sqrt{5} < 5\sqrt{3}$

4)
$$-\sqrt{32}$$
 et $-\sqrt{33}$

 $-\sqrt{32}$ et $-\sqrt{33}$ appartiennent tous deux à l'intervalle $-\infty$; 0 sur lequel la fonction Carré est strictement décroissante.

$$(-\sqrt{32})^2 = 32$$
 et $(-\sqrt{33})^2 = 33$

Comme 32 < 33 on en déduit que :

$$-\sqrt{32} > -\sqrt{33}$$

On doit avoir en tête qu'une fonction décroissante « inverse l'ordre »

Si les abscisses sont dans un ordre alors les images sont dans l'ordre contraire et bien sûr ça marche aussi dans l'autre sens (celui qu'on utilise ici).