Videofluoroscopic Swallowing Studies

A web-based continuing education course prepared by:

Anatomy & Physiology

LENGTH: 30 minutes

OVERVIEW:

The focus of this module is on the anatomy and physiology of swallowing, with the goal of equipping speech-language pathologists with the necessary knowledge to make appropriate referrals for videofluoroscopy.

Learning Objectives

At the end of this module, the clinician learner will:

- 1) Be able to identify the location and innervation of the sensory receptors that are critical to pharyngeal swallow initiation
- 2) Be able to identify normal and abnormal respiratory-swallow phasing patterns
- 3) Be able to describe the components of the brainstem central pattern generator for swallowing
- 4) Be able to describe the elements of the airway protection mechanism in swallowing
- 5) Be able to describe the biomechanics of upper esophageal sphincter opening

Overview

- Anatomy of the upper aerodigestive tract
- Review of the aerodigestive tract physiology for:
 - Swallowing
 - Airway protection
 - Swallow-Respiratory coordination

steeleswallowinglab.ca © 2018

What is different in pediatric anatomy? A Soft palate Hyoid Soft palate Larynx Source: Matsuo, K. & Palmer, J. B. (2008). Anatomy and physiology of feeding and swallowing – Normal and Abnormal. Physical Medicine and Rehabilitation Clinics North America, 19(4), 691-707. doi:10/1016/j.pmr.2008.06.001. steeleswallowingbab.ca @ 2018

Swallowing Physiology: A Review

Pre-oral factors

Visual appearance of the bolus Aroma and smell Hunger Motor skills to bring food to mouth Mealtime environment

steeleswallowinglab.ca © 2018

Swallowing Physiology: A Review

- I. Bolus brought into mouth
- MOTOR FUNCTION:
- V, XII bolus positioning for oral processing

steeleswallowinglab.ca © 2018

Swallowing Physiology: A Review

I. Bolus brought into mouth

- MOTOR FUNCTION:
 - V, XII bolus positioning for oral processing
- SENSORY FUNCTION:
 - Trigeminal (V) texture, shape, size, temperature, chemesthesis
 - Facial (VII Chorda Tympani) taste (anterior 2/3 of tongue)
 - Glossopharyngeal (IX) taste (posterior 1/3 of the tongue)
 - Olfactory (I) aroma

Swallowing Physiology: A Review

II. Oral Processing

- The salivary glands (VII. IX) contribute towards bolus lubrication
- SENSORY FUNCTION:
- Trigeminal (V) kinesthesia
- MOTOR FUNCTION:
 - Jaw muscles (V₃) for chewing or stabilization for liquids
 - Buccinator and lip muscles (VII) for bolus containment
 - Palatoglossus (X) for posterior oral cavity seal
 - Tongue muscles (XII)
 - Suprahyoid and laryngeal elevator muscles (V, VII, X, XII)

 steeleswallowinglab.ca © 203

Swallowing Physiology: A Review

III. Oropharyngeal Bolus Transfer

- SENSORY FUNCTION:
 - Trigeminal (V) kinesthesia
 - Glossopharyngeal (IX) taste (posterior 1/3 of tongue) and tactile in oropharynx
 - Vagus (X) tactile in oropharynx

Swallowing Physiology: A Review

III. Oropharyngeal Bolus Transfer

- MOTOR FUNCTION:
 - Jaw muscles (V₃) for stabilization
 - Palatal muscles (IX, X) for velar and nasopharyngeal function
 - Tongue muscles (XII)
 - Suprahyoid and laryngeal elevator muscles (V, VII, X, XII)

Swallowing Physiology: A Review

IV. Pharyngeal Swallow Initiation

- CENTRAL PATTERN GENERATOR
 - Nucleus Tractus Solitarius, Nucleus Ambiguus, Reticular Formation, related motor nuclei
 - Sensory information reaches threshold for swallowing motor command
 - Respiratory-swallow coordination

Swallowing Physiology: A Review

IV. Pharyngeal Swallow Initiation

- MOTOR FUNCTION:
 - Jaw muscles (V₃) for stabilization
 - Palatal muscles (IX, X) for velar and nasopharyngeal function
 - Tongue muscles (XII)
 - Suprahyoid, laryngeal muscles (V, VII, X, XII) for airway protection
 - Pharyngeal muscles (IX, X) to open UES, shorten pharynx, constrict behind bolus

Breathing Pattern

 Most common breathing pattern during swallowing:

• Helps prevent aspiration during/after swallow

steeleswallowinglab.ca © 2018

Swallowing Physiology: A Review

IV. Pharyngeal Swallow Initiation

- MOTOR FUNCTION:
 - Jaw muscles (V₃) for stabilization
 - Palatal muscles (IX, X) for velar and nasopharyngeal function
- Tongue muscles (XII)
- Suprahyoid, laryngeal muscles (V, VII, X, XII) for airway protection
- Pharyngeal muscles (IX, X) to open UES, shorten pharynx, constrict behind bolus

steeleswallowinglab.ca © 2018

Sequence of Muscle Contraction ***mylohyold generation of the sequence of Muscle Contraction ***mylohyold generation of the sequence constitute approximate approximate

Swallowing Physiology: A Review

- V. After the pharyngeal phase
- Descent of hyoid, larynx and pharynx
- Return of epiglottis to upright
- UES closure behind bolus
- Breathing resumes (typically continued expiration)

Sensory function important for awareness of penetration-aspiration and residue (and triggering appropriate responses)

eeleswallowinglab.ca © 2018

Key Messages

- Examination of the patient with dysphagia depends on an in-depth knowledge of normal and abnormal anatomy and physiology of swallowing.
- It is often difficult to tease apart bolus events from physiological or structural movement events.

steeleswallowinglab.ca © 2018

Key Messages

- Key events in swallowing include:
 - bolus is brought into mouth
 - oral processing
 - oropharyngeal bolus transfer
 - pharyngeal swallow initiation
 - airway protection
 - upper esophageal sphincter opening
 - pharyngeal constriction
 - bolus transfer into the esophagus
 - the esophageal phase

steeleswallowinglab.ca © 201

Key Messages

- Airway protection is achieved by way of the following:
 - respiratory pause
 - contraction of the suprahyoid muscles elevating the larynx
 - the arytenoids contact the base of the epiglottis to close the laryngeal vestibule
 - the epiglottis deflects, covering the entrance to the airway

steeleswallowinglab.ca © 2018

Key Messages

- Infant anatomy differs from adults:
 - key structures are located higher in the pharynx
 - the tongue takes up a larger portion of the oral cavity
 - the epiglottis sits in an intranarial position
- Infant physiology differs from adults:
 - the velum sits in the vallecular space when lowered and the epiglottis remains upright

steeleswallowinglab.ca © 201

Key Messages

- Clinical palpation of the hyoid and larynx should not be used to judge the adequacy or distance of movement, but rather simply to confirm that it has occurred.
- It is not possible to evaluate the adequacy of hyolaryngeal excursion and is difficult to confirm the timing or adequacy of UES opening on FEES.

steeleswallowinglab.ca © 2018

Key Messages

- There is a significantly higher risk of penetration and aspiration associated with:
 - slow closing of the laryngeal vestibule
 - a swallow followed by an inspiratory breath
- Residue may occur due to:
 - inadequate driving forces,
 - poor pharyngeal constriction,
 - inadequate pharyngeal shortening, or
 - incomplete or short UES opening.
- Sensory function is critical to inform the patient of the need for subsequent clearing swallows.

steeleswallowinglab.ca © 2018

KNOWLEDGE CHECK

1.	1. The laryngeal surface of the epiglottis houses a dense population of sensory receptors which nerve, which is critical for pharyngeal swallow initiation?	
	Α	Recurrent laryngeal nerve
	В	Glossopharyngeal nerve
	С	Internal branch, Superior laryngeal nerve
	D	External branch, Superior laryngeal nerve
2.	True or false? In infants, the soft palate sits in the vallecular space, creating a midline barrier to bolus flow into the pharynx.	
	Α	True
	В	False
3.	True or false? With solids foods that require chewing, it is normal for particles of chewed foo to collect in the vallecular space prior to initiation of the pharyngeal swallow.	
	Α	True
	В	False
4.	Which of the following brainstem nuclei is the primary location where sensory signals are processed prior to initiation of a pharyngeal swallow?	
	Α	Nucleus Ambiguus
	В	Nucleus Tractus Solitarius
	С	Reticular Formation
	D	Hypoglossal nucleus
5.	Which	of the following respiratory-swallow coordination patterns is considered normal?
	Α	Exhalation – swallow - inhalation
	В	Inhalation – swallow - inhalation
	С	Inhalation – swallow - exhalation
	D	Exhalation – swallow – exhalation

Answer key found on the following page.

KNOWLEDGE CHECK ANSWER KEY

- 1. C Internal branch, Superior laryngeal nerve
- 2. A True
- 3. A True
- 4. B Nucleus Tractus Solitarius
- 5. D Exhalation swallow exhalation

DIAGRAM LABELLING

Label the following diagram below:

Structure:	, functions as the superior boundary of the
Structure:	, functions as the anterior boundary of the
	base of tongue intersects with
	ynx, or
The anterior wall of the	<u> </u>
	
	
	
Cervical vertebra numb	
Cervical vertebra numb	

Answer key found on the following page.

DIAGRAM LABELLING ANSWER KEY

- 1. hard palate / superior boundary of oral cavity
- 2. soft palate / anterior boundary of nasopharynx
- 3. posterior pharyngeal wall
- 4. cervical vertebrae
- 5. base of tongue
- 6. base of tongue intersects with ramus of mandible
- 7. epiglottis
- 8. entrance to the larynx / laryngeal aditus
- 9. anterior wall of trachea
- 10. laryngeal vestibule
- 11. vocal folds (false, true, laryngeal ventricle)
- 12. arytenoid process
- 13. pyriform sinus(es)
- 14. UES (upper esophageal sphincter) /PES (pharyngo-esophageal segment)
- 15. hyoid bone
- 16. valleculae
- 17. C2
- 18. C4

EXPAND YOUR KNOWLEDGE

Arvedson, J. (2006) Swallowing and feeding in infants and young children. *GI Motility online*. doi: 10.1038/gimo17

Jean, A. (2001). Brain stem control of swallowing: Neuronal network and cellular mechanisms. *Physiological Reviews*, *81*(2), 929-969.

Humbert, I. The Swallowing Pocket Guide. Available at www.northernspeech.com

Lang, I. M. (2009). Brain stem control of the phases of swallowing. *Dysphagia*, 24(3), 333-328.

Leonard, R. & Kendall, K. (2018). Dysphagia assessment and treatment planning: A team approach (4th ed.). San Diego, CA: Plural Publishing.

Martin, R. E. (2009). Neuroplasticity and swallowing. *Dysphagia*, 24(2), 218-229.

Matsuo, K. & Palmer, J. B. (2008). Anatomy and physiology of feeding and swallowing – Normal and Abnormal. *Physical Medicine and Rehabilitation Clinics North America*, *19*(4), 691-707. doi:10/1016/j.pmr.2008.06.001

Shaker, R. (2013). Manual of diagnostic and therapeutic techniques for disorders of deglutition. New York, NY: Springer.

Steele, C. M. & Miller, A. J. (2010). Sensory input pathways and mechanisms in swallowing: A review. *Dysphagia*, *25*(4), 323-333.