BS ISO 22068:2012

BSI Standards Publication

Sintered-metal injectionmoulded materials — Specifications

NO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAW

BS ISO 22068:2012 BRITISH STANDARD

National foreword

This British Standard is the UK implementation of ISO 22068:2012.

The UK participation in its preparation was entrusted to Technical Committee ISE/65, Sintered metal components.

A list of organizations represented on this committee can be obtained on request to its secretary.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

© The British Standards Institution 2012. Published by BSI Standards Limited 2012

ISBN 978 0 580 66489 2

ICS 77.160

Compliance with a British Standard cannot confer immunity from legal obligations.

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 30 June 2012.

Amendments issued since publication

Date Text affected

INTERNATIONAL STANDARD

ISO 22068:2012 ISO 22068

First edition 2012-07-01

Sintered-metal injection-moulded materials — Specifications

Matériaux métalliques frittés pour moulage par injection — Spécifications

COPYRIGHT PROTECTED DOCUMENT

© ISO 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Cont	ents Page)
Forewo	ordiv	/
1	Scope	1
2	Normative references	1
3	Terms and definitions	2
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7	Test methods for normative properties General Chemical composition Density Tensile strength Tensile yield strength Elongation Magnetic properties	2 2 3 3
5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4	Other test methods	3 3 3 3 3
6 6.1 6.2 6.3 6.4 6.5 6.6	Information and explanatory notes Minimum value concept Minimum mechanical property values Proof testing Chemical composition Density and residual porosity Heat treatment	4 4 4 4
7 7.1 7.2 7.3 7.4	Designation of materials Designation system Description block Identity block Individual item block	5 5 5 5
8	Material specifications	3
Bibliog	raphy1 ²	1

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 22068 was prepared by Technical Committee ISO/TC 119, *Powder metallurgy*, Subcommittee SC 5, *Specifications for powder metallurgical materials (excluding hardmetals)*.

Sintered-metal injection-moulded materials — Specifications

1 Scope

This International Standard specifies the requirements for the chemical composition and the mechanical and physical properties of sintered-metal injection-moulded materials.

It is intended to provide design and materials engineers with necessary information for specifying materials in components manufactured by means of the Metal Injection Moulding (MIM) process only.

It does not apply to structural parts manufactured by other powder metallurgy routes, such as press-and-sinter or powder-forging technologies.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 2740, Sintered materials, excluding hardmetals — Tensile test pieces

ISO 3369, Impermeable sintered metal materials and hardmetals — Determination of density

ISO 4498, Sintered metal materials, excluding hardmetals — Determination of apparent hardness and microhardness

ISO 6507-1, Metallic materials — Vickers hardness test — Part 1: Test method

ISO 6508-1, Metallic materials — Rockwell hardness test — Part 1: Test method (scales, A, B, C, E, F, G, H, K, N, T)

ISO 6892-1, Metallic materials — Tensile testing — Part 1: Method of test at room temperature

ISO 9227, Corrosion tests in artificial atmospheres — Salt spray tests

IEC 60404-4, Magnetic materials — Part 4: Methods of measurement of d.c. magnetic properties of magnetically soft materials

ASTM D2638, Standard Test Method for Real Density of Calcined Petroleum Coke by Helium Pycnometer

ASTM D4892, Standard Test Method for Density of Solid Pitch (Helium Pycnometer Method)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

tensile strength

 R_{m}

ability of a test specimen to resist fracture when a pulling force is applied in a direction parallel to its longitudinal axis, expressed in MPa

3.2

tensile yield strength

 $R_{p0,2}$

load at which the material exhibits a 0,2 % offset from proportionality on a stress-strain curve in tension, divided by the original cross-sectional area, expressed in MPa

3.3

elongation

 A_{25}

plastic elongation, expressed as a percentage of the original gauge length of the specimen

NOTE The elastic strain at the 0,2 % yield strength must be subtracted from the total elongation to give the plastic elongation.

3.4

density

mass per unit volume of the material, expressed in g/cm³

3.5

hardness

resistance of a PM material to indentation, tested under specified conditions

4 Test methods for normative properties

4.1 General

The following test methods shall be used to determine the normative properties given in Tables 1 to 6.

4.2 Chemical composition

Whenever possible, and always in cases of dispute, the methods of chemical analysis shall be those specified in the relevant International Standards. If no International Standard is available, the method may be agreed upon and specified at the time of enquiry and order.

4.3 Density

The density shall be determined in accordance with ISO 3369 or by gas pycnometer measurement in accordance with ASTM D2638 or ASTM D4892 as stipulated at the time of enquiry and order.

4.4 Tensile strength

The ultimate tensile strength shall be determined in accordance with ISO 2740 and ISO 6892-1.

4.5 Tensile yield strength

The tensile yield strength shall be determined in accordance with ISO 2740 and ISO 6892-1.

4.6 Elongation

The elongation shall be determined in accordance with ISO 2740 and ISO 6892-1.

4.7 Magnetic properties

The maximum permeability and magnetic induction at an applied field of 1 990 A/m (25 Oe) shall be determined in accordance with IEC 60404-4.

5 Other test methods

5.1 Hardness

The hardness shall be determined in accordance with ISO 4498, ISO 6507-1 and ISO 6508-1.

5.2 Corrosion resistance

Four corrosive media and test methods (see 5.2.1 to 5.2.4) are used to rate the corrosion resistance of MIM stainless-steel alloys.

5.2.1 Sulfuric acid test

The standard un-notched Charpy test specimens (10 mm \times 5 mm \times 55 mm) are immersed in a 2 % by mass sulfuric acid solution at room temperature for 1 000 h. Three replicates are tested. The loss in mass for each is determined in accordance with MPIF Standard 62, and then converted into mass loss per surface area per day in units of gram per square decimetre day $[q/(dm^2)(day)]$.

5.2.2 Copper sulfate test

The test specimens or test parts are immersed in a copper sulfate solution (dissolve 1 g of cupric sulfate crystals in a mixture of 22,5 ml of distilled water and 2,5 g of sulfuric acid) for 6 min (\pm 30 s) at a temperature of 17 to 20 °C. Specimens that show no sign of copper plating are classified as passing this test (see ASTM F1089).

5.2.3 Boiling water test

The test specimen or test parts are immersed in distilled water, then brought to a boil and held for (30 ± 1) min. After the 30 min exposure remove from the heat source and let the specimens remain in the water for $3 \text{ h} \pm 15$ min. The specimens are then removed and left to dry in still air for $2 \text{ h} \pm 10$ min. Specimens that show no visible corrosion are classified as passing this test (see ASTM F1089).

5.2.4 Salt spray test

Criteria for the salt spray test in accordance with ISO 9227 shall be determined between the manufacturer and the customer.

6 Information and explanatory notes

6.1 Minimum value concept

This International Standard has adopted the concept of minimum mechanical and magnetic property values. These values may be used for determining the material most suited for a particular application if the part is manufactured by means of the MIM process.

6.2 Minimum mechanical property values

The minimum values for the MIM materials are expressed in terms of ultimate tensile strength, yield strength (0,2 % offset), and percent elongation to fracture. Values are reported for structural materials in both the assintered and heat-treated condition (where applicable).

The tensile properties used for establishing this International Standard were obtained from tensile specimens prepared according to ISO 2740. Tensile properties obtained from test specimens prepared by machining of non-standard specimens, or from non-standard specimens directly, may differ from those prepared according to ISO 2740. Evidence of mechanical properties for a particular component shall therefore be based on the tensile properties measured using specimens prepared according to ISO 2740. These specimens shall be manufactured from the same batch of material as the components, have the same density and be sintered and heat treated (if required) along with the components.

Defects introduced during the MIM processing of particular components may limit the tensile properties. Non-destructive evaluation of the parts can be necessary to ensure that the minimum property specifications according to this International Standard are met, if proof testing is not used.

6.3 Proof testing

The practical method for demonstrating the strength of a component is through static or dynamic testing stipulated by the supplier and/or user of the MIM part. This proof test should be as closely related to the actual function of the part as possible, as provided by break load, bend test, pull test, etc. For example, it may be agreed that the break load should be greater than a given value. If that load is exceeded in proof tests, the minimum strength is demonstrated. In an alternative method, the first batch of parts can also be tested in service and demonstrated to be acceptable. The static or dynamic load to fracture is determined separately and these data are statistically analysed to determine a minimum break load for future production batches. Exceeding that minimum load on future lots of these parts is proof that the specified strength requirement has been met.

6.4 Chemical composition

The chemical composition of each material lists the principal alloying elements by minimum and maximum percentage. Other elements include the total other elements by difference and are listed as a maximum value in mass percent.

6.5 Density and residual porosity

MIM materials are normally processed to near full density. If not otherwise specified, MIM materials contain less than 5 % residual porosity. The pores are finely dispersed, mainly within the grains, well rounded and have no access to the surface of the component, which means that MIM materials are impermeable to gases or liquids.

6.6 Heat treatment

Many MIM materials may be heat treated to increase strength, hardness and wear resistance. Ferrous MIM parts which contain at least 0,3 % carbon can be quench-hardened and tempered. Tempering is required after quenching for stress relief and optimization of strength and toughness. These two properties can be varied over a wide range using different tempering temperatures. The hardness level obtained after heat treatment

shall be stated for quenched and tempered steels. Case hardening (carburizing or carbo-nitriding) can also be applied to ferrous MIM materials with less than 0,3 % carbon to obtain high surface hardness.

The mechanical properties listed in this International Standard for the heat-treated condition are minimum values obtained at the practical lowest and highest apparent hardness levels attained with different tempering temperatures.

Martensitic stainless steels (MIM-420) and precipitation-hardened stainless steels (MIM-174PH) can also be heat treated for increased strength and hardness.

MIM materials respond well to conventional heat-treating practices and procedures in gas atmosphere or in a vacuum.

7 Designation of materials

7.1 Designation system

The designation system to be used for metal injection-moulded materials specified in this International Standard is in accordance with the ISO/IEC Directives, Part 2:2004.

7.2 Description block

The description block shall contain the letters MIM, denoting powder metallurgy materials made using the metal injection-moulding process.

7.3 Identity block

The identity block shall contain the number of this International Standard, ISO 22068, followed by the individual item block.

7.4 Individual item block

The coding system utilizes two different methods: for unique MIM alloys that do not exist as wrought compositions the material designation is an abbreviated code for the alloy composition where the major element is listed first, followed by the minor alloying elements, preceded by the numerical mass percentage value. If the material is a low-alloy steel containing carbon, the C designation is the last element listed with no numerical value given. The range of carbon required for the alloy is listed in the data table. For example, the alloy Fe-2 %Ni has the designation Fe2Ni; if this alloy has carbon added, the material designation code is Fe2NiC. For alloys that have recognized wrought composition codes, these material designations codes are used to identify the equivalent MIM alloy. For example, the stainless steels use a corresponding wrought steel grade wherever possible, e.g. 316L stainless steel or 420 stainless steel. Following the material designation code is a hyphen and then the numeric value of the yield strength in MPa units, e.g., MIM-Fe2NiC-205.

Heat-treated steels and stainless steels include in the material designation an "H" following the material code to signify a heat-treated material. The complete code has three or four numerals preceding the "H" where these numbers are the normative tensile yield strength value, in MPa units. For example, MIM-4340- 750H designates a heat-treated, low-alloy steel with nominally 0,4 % carbon, 2 % nickel, 1 % chromium and a minimum tensile yield strength of 750 MPa.

In the case of the soft-magnetic alloys, the two or three digit number following the material code is the normative maximum permeability value multiplied by 0,01, not the minimum tensile strength as in structural steels or stainless steels. For example, the MIM-Fe3Si-55 designation indicates a steel alloy with no carbon and 3 % silicon with a normative maximum permeability value of 5 500.

The identity block is not used in the tables of materials specifications in this International Standard. It should be used on purchase and for technical documentation where any possibility of ambiguity exists. Hence MIM-ISO22068-Fe2NiC-205 is an example of a purchase order entry showing the identity block in conjunction with the individual item block.

8 Material specifications

MIM materials are specified in the Tables 1 to 6. The list represents the current status of standardization. Normative values of tensile strength (UTS), yield strength (YS) and percent elongation to fracture are minimum values for the as-sintered and heat-treated structural alloys. The normative values for the soft-magnetic alloys are the minimum values for density, maximum permeability and maximum induction at 1990 A/m (25 Oe). The steel alloys are listed as low-alloy steels in Tables 1 and 2, the stainless-steel alloys in Table 3 and 4, the soft-magnetic alloys in Table 5 and the titanium alloys in Table 6. The materials in each table are arranged in order of increasing content of alloying elements.

Table 1 — Low-alloy steels – As-sintered

						Norm	Normative values					Informat	Informative (typical) properties	roperties
				Chemica	Chemical compositio	ition			Ultimate	Yield	Elongation	Density	Macro-appar	Macro-apparent hardness
Grade	Fe	O	i <u>s</u>	Mn	Ż	Ċ	Мо	Others	tensile strength min.	strength (0,2 %) min.	min.			
	%	%	%	%	%	%	%	%	R _m MPa	_{Рр0,2} МРа	⁴ 25 %	$_{\rm g/cm^3}$	Rockwell HRB	Vickers HV10
MIM-Fe2Ni-110	Bal.	<0,1	<1,0	ı	1,5-2,5	I	<1,0	<1,0	255	110	20	9,7	45	87
MIM-Fe2NiC-205	Bal.	0,4-0,8	<1,0	I	1,5-2,5	1	<0,5	<1,0	380	205	7	9'2	80	150
MIM-Fe8Ni-210	Bal.	<0,1	<1,0	I	6,5-8,5	-	<0,5	<1,0	380	210	20	9,7	69	123
MIM-Fe8NiC-300 ^a	Bal.	0,4-0,8	<1,0	ı	6,5-8,5	I	<0,5	<1,0	250	300	9	9,7	06	180
MIM-Fe8NiC-500 ^a	Bal.	0,4-0,8	<1,0	ı	6,5-8,5	1	<0,5	<1,0	750	200	2	9,7	100	250
MIM-4140-400	Bal.	0,35-0,50	<0,4	6,0>	ı	0,9-1,2	0,15-0,30	<1,0	700	400	3	7,4	95	210
MIM-4340-500	Bal.	0,35-0,50	<0,4	<0,8	1,4-2,0	0,7-1,4	0,2-0,3	<1,0	200	200	4	7,4	100	240
MIM-4605-170	Bal.	0,4-0,6	<1,0	Ι	1,5-2,5	-	0,2-0,5	<1,0	380	170	1	7,5	80	150
MIM-52100-450 ^a	Bal.	0,8-1,05	<0,4	<0,8	I	1,35-1,65	I	<1,0	750	450	က	7,4	96	200
MIM-52100-630 ^a	Bal.	0,8-1,05	<0,4	<0,8	I	1,35-1,65	1	<1,0	950	630	5	7,4	100	250
a The mechanical properties depend on the sintering conditions. Faster cooling results in higher strength.	al propertie	no puedens se	the sint	ering cor	nditions. Fa	aster cooling	results in hi	aher strenc	ath.					

Table 2 — Low-alloy steels – Heat treated

						Norm	Normative values					Informat	Informative (typical) properties	roperties
				Chemica	Chemical composition	sition			Ultimate	, Vield	Elongation	Density	Macro-appar	Macro-apparent hardness
Grade	ъ	O	Si	M	Ë	Ċ	Мо	Others	tensile strength	strength (0,2 %)	i <u>.</u>			
	%	%	%	%	%	%	%	%	R _m MPa	^R p0,2 MPa	⁴ 25 %	g/cm ³	Rockwell HRC	Vickers HV10
MIM-Fe2NiC-700H	Bal.	0,4-0,8	<1,0	I	1,5-2,5	1	<0,5	<1,0	800	200	2	7,6	30	300
MIM-Fe2NiC-1000H	Bal.	0,4-0,8	<1,0	-	1,5-2,5	I	5,0>	<1,0	1 200	1 000	2	2,6	90	510
MIM-Fe8NiC-700H	Bal.	0,4-0,8	<1,0	-	6,5-8,5	I	5,0>	<1,0	800	002	2	2,6	35	345
MIM-Fe8NiC-1100H	Bal.	0,4-0,8	<1,0	-	6,5-8,5	I	5,0>	<1,0	1 300	1 100	2	2,6	90	510
MIM-4140-600H	Bal.	0,35-0,50	4'0>	6'0>	I	0,9-1,2	0,15-0,30	<1,0	750	009	3	7,4	25	265
MIM-4140-1200H	Bal.	0,35-0,50	4'0>	6'0>	I	0,9-1,2	0,15-0,30	<1,0	1 300	1 200	2	7,4	90	510
MIM-4340-750H	Bal.	0,35-0,50	4'0>	8'0>	1,4-2,0	0,7-1,4	0,2-0,3	<1,0	006	092	3	7,4	25	265
MIM-4340-1300H	Bal.	0,35-0,50	4'0>	8'0>	1,4-2,0	0,7-1,4	0,2-0,3	<1,0	1 600	1 300	2	7,4	48	485
MIM-4605-1310H	Bal.	0,4-0,6	<1,0	8'0>	1,5-2,5	I	0,2-0,5	<1,0	1 480	1 310	>	7,5	48	485
MIM-52100-1250H	Bal.	0,8-1,05	4,0>	8,0>	I	1,35-1,65	I	<1,0	1 500	1 250	-	7,4	20	510

Table 3 — Stainless steels – As-sintered

			1			_
typical) istance es	ater	w gnilioa		Pass	Pass	Pass
Informative (typical) corrosion resistance properties		C ⁿ SO [†]		Pass	Pass	Pass
Inforr corros		ð∖qw ₅ ∖qsλ		<0,005	0,125	<0,005
ical) erties		hardness	Vickers HV10	120	115	280
Informative (typical) mechanical properties	parent	Macro ap	Rockwell	67 HRB	65 HRB	27 HRC
Infor		Density	$^{ ho}$ g/cm 3	7,7	7,5	2,2
	u	Elongatio min.	⁴ 25 %	40	20	3
	կ յճս	Yield stre (0,2 %) min.	_{Рр0,2} МРа	140	210	650
	əlisnə	Ultimate t strength min.	$R_{\rm m}$ MPa	450	350	800
		Others	%	<1,0	<1,0	<1,0
		Nb+Ta	%	-	I	3,0-5,0 0,15-0,45
values		no	%		I	3,0-5,0
Normative values	sition	Mo	%	2,0-3,0	I	
Ż	Chemical composition	່ວ	%	16,0-18,5	16,0-18,0	15,0-17,5
	Chemie	ïZ	%	<2,0 10,0-14,0 16,0-18,5	1	<0,07
		Ā	%	<2,0	<1,5	<1,0
		Si	%	<1,0	<1,0	<1,0
		O	%	<0,03 <1,0	<0,08 <1,0	<0,0>
		e e	%	Bal.	Bal.	Bal.
Grade				MIM-316L-140	MIM-430-210	MIM-174PH-650 Bal.

Table 4 — Stainless steels – Heat treated

							Norm	Normative values	sən					Informat	Informative (typical) mechanical properties	mechanical
					Chemic	Chemical composition	tion				Ultimate	Yield	Elongation	Density	Macro-a	Macro-apparent
Grade	Fe	ပ	S	Mn	Ż	ö	Мо	Cu	Nb+Ta	Others	tensile strength min.	strength (0,2 %) min	min.		hard	hardness
	%	%	%	%	%	%	%	%	%	%	R _m MPa	^R p0,2 МРа	⁴ 25 %	ρ g/cm ³	Rockwell HRC	Vickers HV10
MIM-420-850H	Bal.	0,15-0,4	<1,0	<1,0	I	12,0-14,0	1	_	1	<1,0	1000	850	2	7,4	44	445
MIM-174PH-700H	Bal.	20,0>	<1,0		<1,0 3,0-5,0	15,0-17,5		3,0-5,0	3,0-5,0 0,15-0,45	<1,0	850	200	2	2,7	30	300
MIM-174PH-970H	Bal.	<0,0>	<1,0		<1,0 3,0-5,0 15,0-17,	15,0-17,5		3,0-5,0	3,0-5,0 0,15-0,45	<1,0	1070	970	4	2,7	33	325
MIM-174PH-1000H Bal.	Bal.	<0,0>	<1,0	<1,0	<1,0 <1,0 3,0-5,0 15,0-17,	15,0-17,5		3,0-5,0	3,0-5,0 0,15-0,45	<1,0	1200	1000	2	7,5	40	390

Table 5 — Soft-magnetic materials – As-sintered

					Normative values	valites							Informa	ative (typi	Informative (typical properties	
l						values							Ť	Tensiles properties	operties	
			Chemi	Chemical composition	osition					ίτy	je.	əlisu	կյճւ	ι	N C	, and a second
	O	Ö	Mn	Ë	ပ်	°°	>	Others	Density	Maximum permeabili	Magnetic induction m/A 090 f	Ultimate te strength	Yield strer (% 2,0)	Elongatior	hardness	ess
	%	%	%	%	%	%	%	%	ho		Τ	R _m MPa	^R _{p0,2} МРа	$^{A_{25}}$ %	Rockwell HRC	Vickers HV10
•	<0,1	<1,0	Ι	1,5-2,5	ı	Ι	Ι	<1,0	7,60	2 000	1,40	290	125	40	45	87
Bal.	<0,05	2,5-3,5	1	I	I	I	I	<1,0	7,45	2 500	1,40	530	390	24	80	150
Bal.	<0,05	2,5-3,5	ı	I	ı	I	I	<1,0	7,60	8 000	1,40	530	390	24	80	150
Bal.	<0,05	<1,0	1	49-51	I	I	I	<1,0	7,70	20 000	1,30	455	160	30	20	66
Bal.	<0,05	4,0>	I	49-51	I	I	I	<1,0	7,70	40 000	1,30	455	160	30	20	66
Bal.	<0,05	<1,0	-			48-50	<2,5	<1,0	7,70	4 800	1,90	205	140	<1	80	150
Bal.	<0,05	<1,0	<1,0	-	16,0-18,0	I	1	<1,0	7,50	1 000	1,10	415	240	25	92	115

Table 6 — Titanium – As-sintered

						Normat	Normative values				Informati	ve (typical) me	Informative (typical) mechanical properties
Grade			Chei	nical co	Chemical composition			Ultimate tensile strength	Yield strength (0,2 %)	Elongation min.	Density	Macro-ap	Macro-apparent hardness
	F	ပ	0	z	₹	>	Others						
	%	%	%	%	%	%	%	$R_{\rm m}$ MPa	^R p0,2 МРа	^A 25 %	ρ g/cm ³	Rockwell	Vickers HV10
MIM-Ti-400	Bal.	<0,2	4,0>	<0,1	1	-	<1,0	200	400	2	4,2	88 HRB	175
MIM-Ti6Al4V-600	Bal.	<0,2	<0,2 <0,4 <0,1 5,0-7,0	<0,1	5,0-7,0	3,0-5,0	<1,0	800	009	3	4,2	30 HRC	300

Bibliography

- [1] ISO 5755, Sintered metal materials Specifications
- [2] ASTM F1089, Standard Test Method for Corrosion of Surgical Instruments
- [3] MPIF Standard Test Method 62, Determination of the Corrosion Resistance of MIM Grades of Stainless Steel Immersed in 2 % Sulfuric Acid Solution

Price based on 11 pages

British Standards Institution (BSI)

BSI is the independent national body responsible for preparing British Standards and other standards-related publications, information and services. It presents the UK view on standards in Europe and at the international level.

BSI is incorporated by Royal Charter. British Standards and other standardisation products are published by BSI Standards Limited.

Revisions

British Standards and PASs are periodically updated by amendment or revision. Users of British Standards and PASs should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using British Standards would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Similary for PASs, please notify BSI Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001

BSI offers BSI Subscribing Members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of British Standards and PASs.

Tel: +44 (0)20 8996 7669 Fax: +44 (0)20 8996 7001 Email: plus@bsigroup.com

Buying standards

You may buy PDF and hard copy versions of standards directly using a credit card from the BSI Shop on the website **www.bsigroup.com/shop.** In addition all orders for BSI, international and foreign standards publications can be addressed to BSI Customer Services.

Tel: +44 (0)20 8996 9001 Fax: +44 (0)20 8996 7001 Email: orders@bsigroup.com

In response to orders for international standards, BSI will supply the British Standard implementation of the relevant international standard, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Knowledge Centre.

Tel: +44 (0)20 8996 7004 Fax: +44 (0)20 8996 7005 Email: knowledgecentre@bsigroup.com

BSI Subscribing Members are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.

Tel: +44 (0)20 8996 7002 Fax: +44 (0)20 8996 7001 Email: membership@bsigroup.com

Information regarding online access to British Standards and PASs via British Standards Online can be found at

www.bsigroup.com/BSOL

Further information about British Standards is available on the BSI website at **www.bsi-group.com/standards**

Copyright

All the data, software and documentation set out in all British Standards and other BSI publications are the property of and copyrighted by BSI, or some person or entity that own copyright in the information used (such as the international standardisation bodies) has formally licensed such information to BSI for commerical publication and use. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI. This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained. Details and advice can be obtained from the Copyright & Licensing Department.

Tel: +44 (0)20 8996 7070 Email: copyright@bsigroup.com

BSI

Tel +44 (0)20 8996 9001 Fax +44 (0)20 8996 7001 www.bsigroup.com/standards

389 Chiswick High Road London W4 4AL UK

