CONTINUACION PROBLEMAS DE AREAS

Ejemplo: Encontrar el área de la región limitada por la curva $y = x^2 + x - 2$, ej eje x y las líneas x = -1 y x = 2.

Intersecciones con eje X: $x^2 + x - 2 = 0$ $\rightarrow x = -2$ y x = 1

$$A = -\int_{-1}^{1} (x^2 + x - 2) dx + \int_{1}^{2} (x^2 + x - 2) dx$$
$$A = -\left(-\frac{10}{3}\right) + \frac{11}{6} = \frac{31}{6} u^2$$

Ejemplo: Encuentre el área total de la región entre $f(x) = 4x - x^3$ y el eje x.

Intersectiones con eje X:
$$x(4-x^2) = 0$$

 $x(2-x)(2+x) = 0$
 $x = 0; x = 2; x = -2$

$$A = -\int_{-2}^{0} (4x - x^3) dx + \int_{0}^{2} (4x - x^3) dx$$
$$A = -(-4) + 4 = 8 u^2$$

Área entre dos curvas

Si dos funciones f(x) y g(x) se intersecan en x = a y x = b y $f(x) \ge g(x)$, entonces el área de la región entre ellas está dada por:

$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

Ejemplo: Determine el área de la región encerrada por las gráficas de $y=\sqrt{x}$ y $y=x^2$.

Puntos de interseccion:
$$\sqrt{x} = x^2$$

$$x = x^{4}$$

$$x - x^{4} = 0$$

$$x(1 - x^{3}) = 0$$

$$x = 0; x = 1$$
Puntos: (0,0) y (1,1)

$$A = \int_0^1 \left(\sqrt{x} - x^2\right) dx = \left(\frac{2}{3}x^{\frac{3}{2}} - \frac{x^3}{3}\right) \Big|_0^1 = \left(\frac{2}{3} - \frac{1}{3}\right) = \frac{1}{3}u^2$$

Ejemplo: Determine el área de la región encerrada por las gráficas de $y=2-x^2\,$ y y=x.

Puntos de interseccion:
$$\overbrace{2-x^2}^{parabola} = \stackrel{linea}{\widehat{x}}$$

$$x^2 + x - 2 = 0$$

$$x = -2; \quad x = 1$$
Puntos $(-2, -2)$ y $(1,1)$

$$A = \int_{-2}^{1} [(2 - x^2) - x] dx = \frac{9}{2} u^2$$

Ejemplo: Determine el área de la región encerrada por las gráficas de $y=x+2\,$ y $y=x^2+x-2.$

Ejemplo: Encontrar el área de la región limitada por las curvas $y=-x^2$ y $y=x^2-8$.

- 1. Determine el área de la región limitada por $y = x^2 + 2x + 2$, y = x + 4 y la línea vertical x = -3. (5p)
- 1. Buscar intersecciones entre la parábola y la línea
- 2. Se completan las coordenadas de los puntos buscando el y de cada x
- 3. Marcar los puntos y dibujar la línea y la parábola usando esos puntos
- 4. Marcar la línea vertical
- 5. Identificar la zona encerrada y poner la integral

2. Encuentre el área de la región limitada por las curvas $y = 2 + x - x^2$ and $y = 2 - 3x + x^2$. (Determine las intersecciones entre las curvas y grafique). (7p)

Intersectiones:
$$2 + x - x^2 = 2 - 3x + x^2$$

 $2x^2 - 4x = 0$
 $2x(x - 2) = 0$
 $x = 0 \ y \ x = 2$
Puntos (0,2) y (2,0)

$$A = \int_0^2 [(2 + x - x^2) - (2 - 3x + x^2)] dx$$
$$A = \int_0^2 [4x - 2x^2] dx = \frac{8}{3} u^2$$

