| 4   |  |
|-----|--|
| - 1 |  |
|     |  |

| dept      | age   | salary  | status | count |
|-----------|-------|---------|--------|-------|
| sales     | 31-35 | 46K-50K | senior | 30    |
| sales     | 26-30 | 26K-30K | junior | 40    |
| sales     | 31-35 | 31K-35K | junior | 40    |
| systems   | 21-25 | 46K-50K | junior | 20    |
| systems   | 31-35 | 66K-70K | senior | 5     |
| systems   | 26-30 | 46K-50K | junior | 3     |
| systems   | 41-45 | 66K-70K | senior | 3     |
| marketing | 36-40 | 46K-50K | senior | 10    |
| marketing | 31-35 | 41K-45K | junior | 4     |
| secretary | 46-50 | 36K-40K | senior | 4     |
| secretary | 26-30 | 26K-30K | junior | 6     |

165

Data to be classified:

X = (department = systems, age = 26-30, salary = 46K-50K)

P(Ci): P(junior) = 113/165 = 0.685P(senior) = 52/165 = 0.315

P(X/Ci) for each class:

P(dept = systems / junior) = 23/113 = 0.204

P(age = 26-30/junior) = 49/113 = 0.434

P(salary = 46K-50K/junior) = 23/113 = 0.204

P(dept = systems / senior) = 8/52 = 0.154

P(age = 26-30/senior) = 0/52 = 0

this cannot be 0 so use laplacian correction:

# possible cases for age = 6 (21-25, 26-30, 31-35, 36-40, 41-45, 46-50)

=C(age=26-30) + 1 / C(senior) + (1\*6) = (0+1) / (52+6) = 1/58 = 0.017

new P(age = 26-30/senior) = 0.017

P(salary = 46K-50K/senior) = 40/52 = 0.769

P(X/Ci): P(X/junior) = 0.204 \* 0.434 \* 0.204 = 0.018P(X/senior) = 0.154 \* 0.017 \* 0.769 = 0.002

P(X/Ci) \* P(Ci):

P(X/junior) \* P(junior) = 0.018 \* 0.685 = 0.0123P(X/senior) \* P(senior) = 0.002 \* 0.315 = 0.00063

Therefore, X belongs to class "junior"

## 2. See Python Notebook

3a. Initial centroid: c: (8, 4)

h: (4, 9)

|   |           |              | Distan | ce to c | Distar | ice to h |         |
|---|-----------|--------------|--------|---------|--------|----------|---------|
|   | Data obje | cts (x1, x2) |        |         |        |          | Cluster |
|   |           |              | 8      | 4       | 4      | 9        |         |
| а | 2         | 10           | 1      | 2       | ,      | 3        | h       |
| b | 2         | 5            | 7      |         | 7 6    |          | h       |
| С | 8         | 4            | C      | )       | !      | 9        | С       |
| d | 5         | 8            | 7      |         | 7 2    |          | h       |
| е | 7         | 5            | 2      |         | ,      | 7        | С       |
| f | 6         | 4            | 2      | 2       | ,      | 7        | С       |
| g | 1         | 2            | Ç      | )       | 1      | 10       | С       |
| h | 4         | 9            | Ç      | )       |        | 0        | h       |

c cluster = c, e, f, g h cluster = a, b, d, h

c cluster centroid: x1 = (8+7+6+1)/4 = 5.5

x2 = (4+5+4+2)/4 = 3.75

h cluster centroid: x1 = (2+2+5+4)/4 = 3.25

x2 = (10+5+8+9)/4 = 8

New centroid: c: (5.5, 3.75)

h: (3.25, 8)

3b.

|   | Data objects (x1, x2) |              | Distan | ce to c   | Distan | ice to h | Cluster |  |
|---|-----------------------|--------------|--------|-----------|--------|----------|---------|--|
|   | Data objet            | C(S (X1, X2) | 5.5    | 3.75      | 3.25   | 8        | Ciustei |  |
| а | 2                     | 10           | 9.     | 9.75 3.25 |        | 25       | h       |  |
| b | 2                     | 5            | 4.     | 4.75      |        | 25       | h       |  |
| С | 8                     | 4            | 2.     | 2.75      |        | 75       | С       |  |
| d | 5                     | 8            | 4.     | 4.75      |        | 75       | h       |  |
| е | 7                     | 5            | 2.     | 2.75      |        | 75       | С       |  |
| f | 6                     | 4            | 0.75   |           | 6.     | 75       | С       |  |
| g | 1                     | 2            | 6.2    | 25        | 8.     | 25       | С       |  |
| h | 4                     | 9            | 6.     | 75        | 1.     | 75       | h       |  |

Memberships: c cluster: c, e, f, g

h cluster: a, b, d, h

4a.

|   | a | b | С | d | е | f | g | h |
|---|---|---|---|---|---|---|---|---|
| а |   |   |   |   |   |   |   |   |
| b | 5 |   |   |   |   |   |   |   |
| С | 8 | 6 |   |   |   |   |   |   |
| d | 4 | 4 | 5 |   |   |   |   |   |
| е | 7 | 5 | 1 | 4 |   |   |   |   |
| f | 7 | 4 | 2 | 4 | 1 |   |   |   |
| g | 8 | 3 | 7 | 7 | 7 | 5 |   |   |
| h | 2 | 4 | 6 | 1 | 5 | 5 | 8 |   |

cluster: c/e



|     | c/e | а | b | d | f | g | h |
|-----|-----|---|---|---|---|---|---|
| c/e | 0   | 7 | 5 | 4 | 1 | 7 | 5 |
| а   | 7   | 0 | 5 | 4 | 7 | 8 | 2 |
| b   | 5   | 5 | 0 | 4 | 4 | 3 | 4 |
| d   | 4   | 4 | 4 | 0 | 4 | 7 | 1 |
| f   | 1   | 7 | 4 | 4 | 0 | 5 | 5 |
| g   | 7   | 8 | 3 | 7 | 5 | 0 | 8 |
| h   | 5   | 2 | 4 | 1 | 5 | 8 | 0 |

cluster: c/e,f



|       | c/e/f | a | b | d | g | h |
|-------|-------|---|---|---|---|---|
| c/e/f | 0     | 7 | 4 | 4 | 5 | 5 |
| a     | 7     | 0 | 5 | 4 | 8 | 2 |
| b     | 4     | 5 | 0 | 4 | 3 | 4 |
| d     | 4     | 4 | 4 | 0 | 7 | 1 |
| g     | 5     | 8 | 3 | 7 | 0 | 8 |
| h     | 5     | 2 | 4 | 1 | 8 | 0 |

cluster: c/e/f; d/h



|       | c/e/f | а | b | d/h | g |
|-------|-------|---|---|-----|---|
| c/e/f | 0     | 7 | 4 | 4   | 5 |
| а     | 7     | 0 | 5 | 2   | 8 |
| b     | 4     | 5 | 0 | 4   | 3 |
| d/h   | 4     | 2 | 4 | 0   | 1 |
| g     | 5     | 8 | 3 | 7   | 0 |

cluster: c/e/f; d/h,g



|       | c/e/f | а | b | d/h/g |
|-------|-------|---|---|-------|
| c/e/f | 0     | 7 | 4 | 4     |
| а     | 7     | 0 | 5 | 2     |
| b     | 4     | 5 | 0 | 3     |
| d/h/g | 4     | 2 | 3 | 0     |

cluster: c/e/f; d/h/g,a



|         | c/e/f | b | d/h/g/a |
|---------|-------|---|---------|
| c/e/f   | 0     | 4 | 4       |
| b       | 4     | 0 | 3       |
| d/h/g/a | 4     | 3 | 0       |

cluster: c/e/f; d/h/g/a,b

## Final dendogram:



4b. Point aa distance: 0 < 6

Point ab distance: 5 < 6

Point ac distance: 8 > 6

Point ad distance: 4 < 6

Point ae distance: 7 > 6 Point af distance: 7 > 6

Point ag distance: 8 > 6

Point ah distance: 2 < 6

# of points within eps: 4 which is > minPts of 2 so a is a core point

Point ba distance: 5 < 6

Point bb distance: 0 < 6

Point bc distance: 6 = 6

Point bd distance: 4 < 6

Point be distance: 5 < 6

Point bf distance: 4 < 6

Point bg distance: 3 < 6

Point bh distance: 4 < 6

# of points within eps: 8 which is > minPts of 2 so be is a core point

Point ca distance: 8 > 6

Point cb distance: 6 = 6

Point cc distance: 0 < 6

Point cd distance: 5 < 6

Point ce distance: 1 < 6

Point cf distance: 2 < 6

Point cg distance: 7 > 6

Point ch distance: 6 = 6

# of points within eps: 6 which is > minPts of 2 so c is a core point

Point da distance: 4 < 6

Point db distance: 4 < 6

Point dc distance: 5 < 6

Point dd distance: 0 < 6

Point de distance: 4 < 6

Point df distance: 4 < 6

Point dg distance: 7 > 6

Point dh distance: 1 < 6

# of points within eps: 7 which is > minPts of 2 so d is a core point

Point ea distance: 7 > 6 Point eb distance: 5 < 6 Point ec distance: 1 < 6 Point ed distance: 4 < 6 Point ee distance: 0 < 6 Point ef distance: 1 < 6 Point eg distance: 7 > 6 Point eh distance: 5 < 6

# of points within eps: 6 which is > minPts of 2 so e is a core point

Point fa distance: 7 > 6 Point fb distance: 4 < 6 Point fc distance: 2 < 6 4 < 6 Point fd distance: Point fe distance: 1 < 6 Point ff distance: 0 < 6 Point fg distance: 5 < 6 5 < 6 Point fh distance:

# of points within eps: 7 which is > minPts of 2 so f is a core point

Point ga distance: 8 > 6 Point gb distance: 3 < 6 Point gc distance: 7 > 6 Point gd distance: 7 > 6 Point ge distance: 7 > 6 Point gf distance: 5 < 6 0 < 6 Point gg distance:

Point gh distance: 8 > 6

# of points within eps: 3 which is > minPts of 2 so g is a core point

2 < 6 Point ha distance: 4 < 6 Point hb distance: Point hc distance: 6 = 6 Point hd distance: 1 < 6 Point he distance: 5 < 6 Point hf distance: 5 < 6 Point hg distance: 8 > 6

Point hh distance: 0 < 6

# of points within eps: 7 which is > minPts of 2 so h is a core point

All points (a, b, c, d, e, f, g, h) are core points since they satisfy both parameters (eps=6 and minPts=2)