Введение в Численные Методы Аналитический отчёт по практическому заданию

Выполнила студентка 208 группы ВМК МГУ Мазур Анастасия Вадимовна

Математическая постановка задачи

Функция f(x) задана таблично на отрезке [0, a] в точках $x_i, x_i = ih,$ i = 0, 1, ..., n, h = a/n

- Построить интерполяционный многочлен по точкам x.
- Приблизить функцию по методу наименьших квадратов полиномом заданной степени n, n < 9. Оценить погрешность.
- Результаты сравнить.

Отрезок [0, 2]

Таблица значений функции в точках:

i	x	f(x)
0	0	0
1	0.2	0.006732
2	0.4	0.058195
3	0.6	0.030482
4	0.8	0.387483
5	1	0.958924
6	1.2	0.48283
7	1.4	1.802771
8	1.6	4.052411
9	1.8	2.403475
10	2	4.352169

Используемые алгоритмы, формулы и условия применимости

Построение интерполяционного многочлена в форме Лагранжа

Чтобы интерполировать функцию построим полином в форме Лагранжа. Искомый полином $P_n(x)$ будет иметь следующий вид:

$$P_n(x) = \sum_{i=0}^{n} f(x_i) Q_{n,i}(x),$$

где $Q_{n,i}(x)$ - полиномы степени n, "ориентированные"на точки x_i в том смысле, что

$$Q_{n,i}(x) = \begin{cases} 0, x = x_j, & \forall j \neq i \\ 1, x = x_i \end{cases}$$

Полиномы имееют вид:

$$Q_{n,i}(x) = \prod_{\substack{j=0\\j \neq i}}^{j=n} \frac{(x - x_j)}{(x_i - x_j)}$$

или в нашем случае, когда $x_i = ih$, то есть известны значения в точках, расстояние между которыми фиксировано, то выражение можно упростить до следующей записи:

$$Q_{n,i}(x) = h^{-n} \cdot \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(x-jh)}{(i-j)}$$

Учитывая, что полином в форме Лагранжа $P_n(x)$ представляет собой линейную комбинацию алгебраических уравнений $f(x_i)Q_{n,i}(x), Q_{n,i}(x)$ - полиному степени n, можно утверждать, что $P_n(x)$ будет иметь степень не более n.

Данные формулы будут далее использоваться в программной реализации.

Приближение функции методом наименьших квадратов

В методе наименьших квадратов аппроксимирующая функция y(x) ищется в виде следующей суммы:

$$F(x) = \sum_{k=0}^{m} a_k \varphi_k(x), \quad m < n$$

В каждой точке сетки x_i можно подсчитать погрешность:

$$\delta_i = y_i - F(x_i) = y_i - \sum_{k=0}^m a_k \varphi_k(x_i), \quad i = 0, 1, 2, \dots, n$$

Сумма квадратов этих величин называется суммарной квадратичной погрешностью

$$J = \sum_{i=0}^{n} \delta_{i}^{n} = \sum_{i=0}^{n} \left(y_{i} - \sum_{k=0}^{m} a_{k} \varphi_{k} (x_{i}) \right)^{2}$$

Главной задачей является подобрать такие коэффициенты a_k , чтобы суммарная квадратичная погрешность была минимальной.

Таким образом, построение наилучшего приближения сводится к классической задаче математического анализа об экстремуме функции нескольких переменных. Необходимым условием экстремума является равенство нулю в экстремальной точке всех первых частных производных функции.

$$\frac{\partial J}{\partial a_e} = -2\sum_{i=0}^n \left(y_i \sum_{k=0}^m a_k \varphi_k \left(x_i \right) \right) \varphi_L \left(y_i \right) = 0, \quad l = 0, 1, \dots, m.$$

Оставим члены, содержащие a_k , слева и поменяем в них порядок суммирования по индексам i и k. Члены, содержащие y_i , перенесем направо. В результате уравнения примут вид:

$$\sum_{k=0}^{m} \gamma_{lk} a_k = b_l, \quad l = 0, 1, \dots, m,$$

где

$$\gamma_{lk} = \sum_{i=0}^{n} \varphi_l(x_i) \varphi_k(x_i)$$
$$b_l = \sum_{i=0}^{n} \varphi_l(x_i) y_i$$

Мы получили систему линейных алгебраических уравнений, в которой роль неизвестных играют искомые коэффициенты разложения a_0, a_1, \ldots, a_m . Используя найденные коэффициенты разложения, мы сможем построить наилучшее приближении сеточной функции по методу наименьших квадратов.

Данные формулы будут далее использоваться в программной реализации.

Цифровое представление результатов

Графическое представление результатов

Синие точки - точки, известные из условия

Оранжевая кривая - кривая интерполирующего многочлена в форме Лагранжа

Зелёная кривая - кривая, построенная по методу наименьших квадратов

Анализ результатов

Источники и ресурсы

Вводные лекции по численным методам (Д.П. Костомаров, А.П. Фаворский) Для построения графиков использовался ресурс www.geogebra.com