Thursday, October 17, 2024 11:00 AM

Theorem: Algebraic Props

Let $X_n \to X$ and $Y_n \to Y$ and $\alpha, b \in \mathbb{R}$

conv. p or a.s.

ther (1) a Xn + b //n -> a X + b Y

 $\left(\frac{\chi_n}{\eta_n} \rightarrow \frac{\chi}{\eta}\right)$

Constants are degenerate RVs so if

 $C_n \rightarrow C$ (as numbers)

then

 $C_n \stackrel{a.s.}{\longrightarrow} C$ (as PVs).

So if $C_n \rightarrow C$ (as numbers) and

Xn -> X (p or a.s.) then

$$X_n \rightarrow X$$
 (p or a.s.) then

(1) $a X_n + C_n \rightarrow a X + C$

(2) $C_n X_n \rightarrow c X$.

What about convergue in dist?

Theorem: Slutsky's Theorem

If $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{P}{\to} c$ then

(1) $X_n + Y_n \stackrel{d}{\to} X + c$ (2) $X_n Y_n \stackrel{d}{\to} X c$ $(X_n/Y_n \rightarrow X/c)$

Theoren: Partial Comerse

Know: p >> d

If $x_n - s_c$ then $x_n - s_c$.

If *n -> C then *n -> C.

Theorem: Continues Mapping Theorem (CMT)

If g:R->R is continuous and

Xn -> X (any type of conversiona)

then $g(x_n) \rightarrow g(x)$.

Defa: Consistat Estimator

sample size on which est. is calc.

We say an estimator ON

is consistent for O if

 $\hat{\mathcal{O}}_{N} \stackrel{\mathsf{P}}{\longrightarrow} \mathcal{O}$.

Consistency & asymptotically unbiased

Mart of ôn

$$\frac{\mathcal{E}_{P}}{S} \cdot S^{2} = \frac{1}{N-1} \sum_{n=1}^{N} (\chi_{n} - \overline{\chi})^{2}$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (\chi_n - \bar{\chi})^2 = \frac{N-1}{N} S^2$$

However, as
$$N \to \infty$$
 then $\frac{N-1}{N} \to 1$

ad 80
$$E[\hat{G}^2] \rightarrow \sigma^2 \text{ (asymptotically)}$$

$$\text{uliased}$$

Theorem:
$$MSE(\hat{\theta}_N) \longrightarrow 0$$
 as $N \rightarrow \infty$

then ôn is consistent for O.

Pf. Need to Show:

$$0 \leq P(|\hat{\theta}_{N} - \theta| \geq \varepsilon)$$

$$= P((\hat{\theta}_{N} - \theta)^{2} \geq \varepsilon^{2})$$

$$= P((\hat{\theta}_{N} - \theta)^{2} \geq \varepsilon^{2})$$

$$\frac{\mathcal{E}\left[\left(\hat{\theta}_{N}-\theta\right)^{2}\right]}{\mathcal{E}^{2}}$$

$$=\frac{MSE(\hat{\theta}_{N})}{\mathcal{E}^{2}}$$

Markov's Ines

0 then $P(4/2a) \leq \frac{E[4]}{a}$

MSE -> 0

By Squeeze theorem, if N $MSE(\hat{O}_{N}) \rightarrow 0$ then $P(|\hat{O}_{N}-O|\geq \epsilon) \rightarrow 0$ 1.e. $\hat{O}_{N} \stackrel{c}{\rightarrow} Q$.

Exp., Shared prev. Hut if $\chi_n \stackrel{\text{iid}}{\sim} N(\mu, 5^2)$ thus $MSE(S^2) = Bias(S^2) + Var(S^2)$ $= O + \frac{20^4}{N-1}$

$$=\frac{26}{N-1} \xrightarrow{4} 0$$

as N>00

Inouco. S² is consistent for 5?

notes Page

hence
$$S^2$$
 is consistant for S^2 .

 $(S^2 \xrightarrow{P} 6^2)$

What about
$$\hat{G}^2$$
? $\hat{G}^2 = \frac{N-1}{N}S^2$
 $\hat{G}^2 = C_N S^2$ where $C_N = \frac{N-1}{N}$

and Since
$$C_N \xrightarrow{N} 1$$

then by my algebraic properties

$$\hat{G}^2 = C_n S^2 \xrightarrow{P} 1.6^2 = 6^2$$

So Éz is also consistent.

what about the sample s.d. $S = \sqrt{S^2}$, Is this consistant est. for δ ?

By CMT \sqrt{N} is a cont for and so

notae De

By CMT V. B a cont for and so Since S2 Ps 62 then $S = \sqrt{S^{27}} \xrightarrow{P} \sqrt{6^{27}} = 6$. So S is consistant for G. Intrition! XN should be a good est. of M= E[Xn]. Theoren: Weak Law of Large Numbers (WLLN) If Xn are uncorrelated and 1) u = E[Xn] (2) 6= Var(Xn) < 0. If $X_N = \frac{1}{N} \sum_{n=1}^N X_n$ then

notes Page 8

V P ,,

$$\overline{X}_{N} \xrightarrow{P} \mu$$
.

Pf.
$$MSE(\bar{x}) = Bi\omega(\bar{x})^2 + Var(\bar{x})$$

$$\left(E[\bar{X}] = \mu, Var(\bar{X}) = 6^2 N$$

$$= 6^2/N \rightarrow 0$$

$$E[X_n] = \lambda = Var(X_n) < \infty$$

$$\overline{X}_N \stackrel{P}{\to} \lambda$$
.

Ex. Consider
$$Y_n = \frac{1}{1+X_n^2} = g(X_n)$$

Rects for.

So by (MT I have that
$$g(\overline{X}_N) = \frac{1}{1+\overline{X}^2} \stackrel{P}{\longrightarrow} g(X) = \frac{1}{1+X^2}.$$

Theorem: Strong Law of Large Numbers

(SLLN)

If X_n iid f when $\mu = EX_n$, $\delta = Var(X_n)$
 $= X_n \stackrel{Q.S.}{\longrightarrow} \mu.$

Convergence of Numbers $X_n \stackrel{Q.S.}{\longrightarrow} \mu.$

More like almost sure convergence.

 $= X_n \stackrel{X}{\longrightarrow} X_$

u± & goes to zero asymptetically

(2)
$$\frac{1}{Nn}\sum_{n}X_{n}=X \rightarrow \mu$$
 (under some conditions)

(2) $\overline{N}n = x \rightarrow \mu$ (ander some conditions)

(3) $\overline{N} = x \rightarrow x \rightarrow \mu$ (ander some conditions)

(3) $\overline{N} = x \rightarrow x \rightarrow \mu$ (ander some conditions)

(3) $\overline{N} = x \rightarrow \mu$ (ander some conditions)

(4) $\overline{N} = x \rightarrow \mu$ (ander some conditions)

(5) $\overline{N} = x \rightarrow \mu$ (ander some conditions)

(6) $\overline{N} = x \rightarrow \mu$ (ander some conditions)

(6) $\overline{N} = x \rightarrow \mu$ (ander some conditions)