

Tarea #1 curso Bigdata Expert Richard Douglas G.



## Songs dataset

- Un dataset compuesto por un listado de canciones según algunas características propias de las canciones, como lo son acousticness, artists, danceability, duration\_ms, energy, name, liveness, loudness, popularity, entre otros
- Entre los años 1920 a 2021

```
# Importacion de bibliotecas
import argparse # Biblioteca para crear enlaces entre interfaces y mantener estructuras de datos
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler # Normalizador de datos
from sklearn.preprocessing import MinMaxScaler # Normalizador de minimos
from sklearn.decomposition import PCA # Biblioteca de componentes principales
from sklearn.cluster import KMeans # K-medias
import seaborn as sns
from kneed import KneeLocator # Biblioteca que permite pintar puntos de inflexion en funciones (Elbow Method)
import plotly graph objects as go
from plotly.subplots import make subplots
sns.set()
```



<class 'pandas.core.frame.DataFrame'> RangeIndex: 174389 entries, 0 to 174388 Data columns (total 19 columns): Column Non-Null Count Dtype 174389 non-null float64 acousticness artists 174389 non-null object danceability 174389 non-null float64 duration ms 174389 non-null int64 174389 non-null float64 energy explicit 174389 non-null int64 id 174389 non-null object float64 instrumentalness 174389 non-null 174389 non-null int64 8 kev 9 liveness 174389 non-null float64 loudness 174389 non-null float64 mode 174389 non-null 11 int64 12 name 174389 non-null object popularity 174389 non-null int64 13 release date 174389 non-null object speechiness 174389 non-null float64 tempo 174389 non-null float64 16 valence 174389 non-null float64 18 year 174389 non-null int64 dtypes: float64(9), int64(6), object(4) memory usage: 25.3+ MB

- Un dataset compuesto por un total de
- 174389 rows (observaciones) × 19 columns (características)







Songs dataset

### Analisis Exploratorio (EDA) de las Caracteristicas

### 1. Analisis Exploratorio de la Caracteristica **acousticness**

```
[23] datos ['acousticness'].plot(kind='box') # la mediana es de alrededor de 0.5, el primer quartil (25%) corresponde a 0.0877 plt.show() # no se observan valores atipicos.
```





[39] datos ['danceability'].plot(kind='box')
 plt.show()

# se realiza un gráfico de boxplot la mediana ronda los 0.54 # el valor mínimo sobre cero y el tercer quartil a 0.66



[40] datos['danceability'].quantile(0.25) # primer quartil indica que un 25% de los datos es menor o igual a 0.414 en la caracteristica danceability

0.414

[41] datos['danceability'].quantile(0.5) # el segundo quartil indica que el 50% de las canciones presenta un valor de danceability menor o igual a 0.5479

0.5479999999999999



# Se realizan los histogramas de las características para observar el comportamiento de las distribuciones

## Característica con distribución con comportamiento positivo

Histograma de la caracteristica liveness



Característica con distribución con comportamiento negativo



### Histograma de la caracteristica liveness

[102] datos['liveness'].plot.hist(); # presenta una distribución con comportamiento positivo (agrupamiento hacia la izquierda)



Medidas de tendencia central y otros valores de relevancia en el análisis

```
[103] datos['liveness'].min() # el valor más bajo que aparece es de cero 0
0.0
```

[104] datos['liveness'].max() # el valor más alto es de 1





Songs dataset

### Grafica de tipo Scatter Matrix





- Aquellos que presentan disperción en los puntos indica que no existe correlación.
- Aquellos que presentan un grupo definido presentan correlación negativa o positiva



- Correlación positivafuerte entre loudness y energy
- Correlación positiva fuerte entre popularity y year
- Correlación Negativa fuerte entre acousticness y energy.



- Existe una relación negativa fuerte entre acousticnes y energy para un valor de -0.76 lo que indica que si aumenta una disminuye la otra
- Existe una relación negativa fuerte entre **acousticness** y \*\*Loudness\*\* para un valor de 0.59 lo que indica que si aumenta una disminuye la otra
- Existe una relación negativa fuerte entre acousticness y year para un valor de 0.63 lo que indica que si aumenta una disminuye la otra



- La caracteristica \*\*explicit\*\* presenta una leve relación co n la caracteristica \*\*speechiness\*\* con un valor de 0.3, si incrementa una puede presentar un incremento en la otra
- La caracteristica presenta \*\*explicit\*\* una relación negativ a leve con las caracteristicas \*\*acousticness\*\* y \*\*instrumentalness\*\* con un valor de 0.2 con ambas caracteristicas.
- la caracteristica \*\*liveness\*\* presenta poca o casi nula en las correlaciones con las demás caracteristicas. con la qu e presenta el valor mayor sería con \*\*danceability\*\* con u n valor negativo de -0.13
- La caracteristica loudness presenta una correlación positiva alta con la caracteristica energy con un valor de 0.81 si aumenta una la otra tambien aumenta
- popularity presenta una correlación positiva alta con la caracteristica year por lo que si aumenta una la otra también aumentará. Además la carcteristica popularity presenta una correlación negativa con la caractistica acousticness con un valor de -0.4 si aumenta una la otra va a disminuir.

#### popularidad.head(20)

|       | artists                      | name                                   | popularity | year |
|-------|------------------------------|----------------------------------------|------------|------|
| 20062 | Olivia Rodrigo               | drivers license                        | 100        | 2021 |
| 19862 | 24kGoldn, iann dior          | Mood (feat. iann dior)                 | 96         | 2020 |
| 19866 | Ariana Grande                | positions                              | 96         | 2020 |
| 19886 | Bad Bunny, Jhay Cortez       | DÁKITI                                 | 95         | 2020 |
| 19976 | KAROL G                      | BICHOTA                                | 95         | 2020 |
| 19868 | Ariana Grande                | 34+35                                  | 94         | 2020 |
| 19870 | CJ                           | Whoopty                                | 94         | 2020 |
| 19872 | The Kid LAROI                | WITHOUT YOU                            | 94         | 2020 |
| 19876 | Billie Eilish                | Therefore I Am                         | 94         | 2020 |
| 19928 | Bad Bunny, ROSALÍA           | LA NOCHE DE ANOCHE                     | 94         | 2020 |
| 19900 | Tate McRae                   | you broke me first                     | 93         | 2020 |
| 19878 | Pop Smoke                    | What You Know Bout Love                | 93         | 2020 |
| 39252 | Tiësto                       | The Business                           | 92         | 2020 |
| 76406 | Boza                         | Hecha Pa' Mi                           | 92         | 2020 |
| 19884 | Lil Nas X                    | HOLIDAY                                | 92         | 2020 |
| 19880 | Cardi B, Megan Thee Stallion | WAP (feat. Megan Thee Stallion)        | 92         | 2020 |
| 19908 | Justin Bieber, benny blanco  | Lonely (with benny blanco)             | 92         | 2020 |
| 20068 | Justin Bieber                | Anyone                                 | 92         | 2021 |
| 19924 | Shawn Mendes, Justin Bieber  | Monster (Shawn Mendes & Justin Bieber) | 91         | 2020 |
| 19864 | SZA                          | Good Days                              | 91         | 2020 |

### Top 20 de las canciones más populares y sus Interpretes

```
[ ] artistas_canciones = datos2.iloc[:,[1,12,13,18]]
[ ] popularidad = artistas_canciones.sort_values('popularity',ascending=False)
[ ] popularidad.head(20)
```

```
text4 = popularidad.name.head(20).values
wordcloud = WordCloud().generate(str(text4))
plt.figure( figsize=(10,10), facecolor='k')
plt.imshow(wordcloud)
plt.axis("off")
plt.show()
```



### [224] acoustic.head(20)

|        | artists                                     | name                                           | acousticness | year |
|--------|---------------------------------------------|------------------------------------------------|--------------|------|
| 40396  | Ignacio Corsini                             | Mentiras - Remasterizado                       | 0.996        | 1930 |
| 23546  | Frédéric Chopin, Claudio Arrau              | 24 Préludes, Op. 28: Prélude No. 12 in G-Sharp | 0.996        | 1941 |
| 78593  | Ashok Kumar                                 | Na Jane Kidhar Aaj Meri Nao                    | 0.996        | 1941 |
| 78591  | Khursheed                                   | Toot Gayi Dali                                 | 0.996        | 1941 |
| 106466 | Jacques Ibert, Hae Won Chang                | Petite suite en 15 images: Berceuse aux etoile | 0.996        | 2000 |
| 143879 | Robert Schumann, Sergei Rachmaninoff        | Carnaval, Op. 9: 6. Florestan                  | 0.996        | 1942 |
| 23609  | Francisco Tárrega, Julio Martinez Oyanguren | Prelude No. 12                                 | 0.996        | 1941 |
| 143875 | Robert Schumann, Sergei Rachmaninoff        | Carnaval, Op. 9: 15. Pantalon et colombine     | 0.996        | 1942 |
| 1289   | Bix Beiderbecke, The Wolverines             | Tia Juana                                      | 0.996        | 1927 |
| 1288   | Bix Beiderbecke, The Wolverines             | Big Boy                                        | 0.996        | 1927 |
| 78540  | Johann Sebastian Bach, Claudio Arrau        | Goldberg Variations, BWV 988: Variation XXX    | 0.996        | 1941 |
| 78516  | Frédéric Chopin, Claudio Arrau              | 24 Préludes, Op. 28: Prélude No. 6 in B Minor  | 0.996        | 1941 |
| 78414  | Rabindranath Tagore                         | Amare Ke Nibi Bhai                             | 0.996        | 1940 |
| 1265   | Bix Beiderbecke                             | In a Mist                                      | 0.996        | 1927 |
| 23514  | Giorgos Papasideris, No. 6                  | Mixanikos                                      | 0.996        | 1940 |
| 143789 | Elî Merdan                                  | Mame                                           | 0.996        | 1940 |
| 78458  | Markos Vamvakaris, Apostolos Xatzixristos   | Mia omorfi melaxrini                           | 0.996        | 1940 |
| 143749 | Leyteris Melemenlis                         | Gianniotiko (paradosiako)                      | 0.996        | 1940 |
| 23487  | Dinendranath Tagore                         | Amar Milan Lagi Tumi                           | 0.996        | 1940 |
| 23475  | Milios                                      | O Menoysis kai o Mpirmpilis                    | 0.996        | 1940 |

### Top 20 Canciones Según Acousticness y sus Interpretes

```
[222] artistas_canciones3 = datos2.iloc[:,[1,12,0,18]]
[223] acoustic = artistas_canciones3.sort_values('acousticness',ascending=False)
```

```
text7 = acoustic.name.head(20).values
wordcloud = WordCloud().generate(str(text7))
plt.figure( figsize=(10,10), facecolor='k')
plt.imshow(wordcloud)
plt.axis("off")
plt.show()
```



```
plt.figure(figsize=(14,8))
plt.title("Caracteristicas a travez del Tiempo", fontdict={"fontsize": 15})

lines = ['energy','instrumentalness','danceability','acousticness']

for line in lines:
    ax = sns.lineplot(x='year', y=line, data=year_avrg)
plt.ylabel("value")
plt.legend(lines)

# Según se aprecia en este gráfico los valores de Acousticness decaen con el pasar del tiempo, mientras que energy en su lugar
#incrementano con el pasar de los años , Danceability presenta fluctuaciones pero se recupera con el tiempo.
```

<matplotlib.legend.Legend at 0x7f3f548109d0>



 Comportamiento de energy, instrumentalness, danceability, acousticness a través del tiempo



- Según se aprecia en este gráfico los valores de Acousticness decaen con el pasar del tiempo, mientras que energy en su lugar se va incrementando.
- Danceability presenta fluctuaciones pero se recupera con el tiempo



Según se aprecia en este gráfico los valores en duración promedio de las canciones

para mantenerse con el pasar de los años, sin embargo el valor de la popularidad

sí se ve afectado por el paso del tiempo, las canciones más recientes presentan mayor popularidad





Songs dataset

### Modelo de Machine Learning

#### [ ] datos1

|        | acousticness | danceability | duration_ms | energy | explicit | instrumentalness | liveness | loudness | popularity | speechiness | tempo   | valence | year |
|--------|--------------|--------------|-------------|--------|----------|------------------|----------|----------|------------|-------------|---------|---------|------|
| 0      | 0.991000     | 0.598        | 168333      | 0.224  | 0        | 0.000522         | 0.3790   | -12.628  | 12         | 0.0936      | 149.976 | 0.6340  | 1920 |
| 1      | 0.643000     | 0.852        | 150200      | 0.517  | 0        | 0.026400         | 0.0809   | -7.261   | 7          | 0.0534      | 86.889  | 0.9500  | 1920 |
| 2      | 0.993000     | 0.647        | 163827      | 0.186  | 0        | 0.000018         | 0.5190   | -12.098  | 4          | 0.1740      | 97.600  | 0.6890  | 1920 |
| 3      | 0.000173     | 0.730        | 422087      | 0.798  | 0        | 0.801000         | 0.1280   | -7.311   | 17         | 0.0425      | 127.997 | 0.0422  | 1920 |
| 4      | 0.295000     | 0.704        | 165224      | 0.707  | 1        | 0.000246         | 0.4020   | -6.036   | 2          | 0.0768      | 122.076 | 0.2990  | 1920 |
|        |              |              |             |        |          |                  |          |          |            |             |         |         |      |
| 174384 | 0.009170     | 0.792        | 147615      | 0.866  | 0        | 0.000060         | 0.1780   | -5.089   | 0          | 0.0356      | 125.972 | 0.1860  | 2020 |
| 174385 | 0.795000     | 0.429        | 144720      | 0.211  | 0        | 0.000000         | 0.1960   | -11.665  | 0          | 0.0360      | 94.710  | 0.2280  | 2021 |
| 174386 | 0.806000     | 0.671        | 218147      | 0.589  | 0        | 0.920000         | 0.1130   | -12.393  | 0          | 0.0282      | 108.058 | 0.7140  | 2020 |
| 174387 | 0.920000     | 0.462        | 244000      | 0.240  | 1        | 0.000000         | 0.1130   | -12.077  | 69         | 0.0377      | 171.319 | 0.3200  | 2021 |
| 174388 | 0.239000     | 0.677        | 197710      | 0.460  | 0        | 0.891000         | 0.2150   | -12.237  | 0          | 0.0258      | 112.208 | 0.7470  | 2020 |

174389 rows × 13 columns

```
[ ] X = datos1 # Renombrando variable para utilizarla en Scikit-Learn
```

```
[ ] # Normalizando dataframe
    scaler = StandardScaler()
    X_std = scaler.fit_transform(X)
```

### Componentes Principales como Optimizador de la cantidad de Variables Optimas

```
[ ] # Importando PCA
    pca = PCA()
    pca.fit(X std)
    PCA(copy=True, iterated power='auto', n components=None, random state=None,
        svd solver='auto', tol=0.0, whiten=False)
[ ] evr = pca.explained_variance_ratio_
    evr
    array([0.27784755, 0.13833818, 0.10201131, 0.08905998, 0.07564155,
           0.07117316, 0.06344042, 0.04854184, 0.04534896, 0.03380018,
           0.02501394, 0.02053265, 0.00925028])
[ ] # Ploteando grafico de Componentes principales
    fig = plt.figure(figsize=(8,8))
    plt.plot(range(1, len(X.columns)+1), evr.cumsum(), marker='o', linestyle=':')
    plt.xlabel('Numero de Componentes', fontsize=18)
    plt.ylabel('Varianza Acumulada Explicada',fontsize=18)
    plt.xticks(fontsize=16)
    plt.yticks(fontsize=16)
    plt.show()
```



Numero de Componentes Optimos: 7



Se observan cluester bien definidos (el cluster 0,1, 4) pero a su vez se observan puntos muy fuera de los cluster.

Se debe proceder a realizar una revisión de outliers

```
# Visualizando caracteristicas generales de cada cluster
clusters = [1, 3, 5]
features = ["acousticness", "speechiness", "instrumentalness"]
#colors = ['tab:green', 'tab:olive', 'tab:cyan']
dim = len(clusters)
fig, axes = plt.subplots(dim, dim, figsize=(24, 12))
i = 0
test cluster = data.loc[data['Cluster'] == clusters[0]]
for ax in (axes.flatten()):
   if i % dim == 0 and i != 0:
       test_cluster = data.loc[data['Cluster'] == clusters[i // dim]]
    col = features[i % dim]
   y = test_cluster[col]
   x = [i for i in range(len(y))]
   ax.bar(x, y) #colors[i//dim]
    ax.set ylabel(col, fontsize=14)
    ax.set title("Cluster " + str(clusters[i // dim]), fontsize=16)
    ax.hlines(np.mean(data[col]), 0, len(y))
    plt.subplots adjust(wspace=.5, hspace=.5)
   i += 1
```



















# Clusters vistos con PCA Cluster 6 Componente Componente 2

# Clusters con Limpieza de Outliers

 Una vez aplicado una limpia en dos características de los valores outliers, se puede apreciar un cambio en lo que se refleja en los clusters.



# Resumen de los Resultados



### Resumen de los Resultados

- Songs dataset
- Top de Canciones
- Correlaciones

### Resumen de Datos

### [ ] data.describe().T

|                  | count    | mean          | std           | min    | 25%         | 50%           | 75%         | max         |
|------------------|----------|---------------|---------------|--------|-------------|---------------|-------------|-------------|
| acousticness     | 174389.0 | 0.499228      | 0.379936      | 0.0    | 0.0877      | 0.517000      | 0.8950      | 0.996       |
| danceability     | 174389.0 | 0.536758      | 0.176025      | 0.0    | 0.4140      | 0.548000      | 0.6690      | 0.988       |
| duration_ms      | 174389.0 | 232810.032026 | 148395.797680 | 4937.0 | 166133.0000 | 205787.000000 | 265720.0000 | 5338302.000 |
| energy           | 174389.0 | 0.482721      | 0.272685      | 0.0    | 0.2490      | 0.465000      | 0.7110      | 1.000       |
| explicit         | 174389.0 | 0.068135      | 0.251978      | 0.0    | 0.0000      | 0.000000      | 0.0000      | 1.000       |
| instrumentalness | 174389.0 | 0.197252      | 0.334574      | 0.0    | 0.0000      | 0.000524      | 0.2520      | 1.000       |
| key              | 174389.0 | 5.205305      | 3.518292      | 0.0    | 2.0000      | 5.000000      | 8.0000      | 11.000      |
| liveness         | 174389.0 | 0.211123      | 0.180493      | 0.0    | 0.0992      | 0.138000      | 0.2700      | 1.000       |
| loudness         | 174389.0 | -11.750865    | 5.691591      | -60.0  | -14.9080    | -10.836000    | -7.4990     | 3.855       |
| mode             | 174389.0 | 0.702384      | 0.457211      | 0.0    | 0.0000      | 1.000000      | 1.0000      | 1.000       |
| popularity       | 174389.0 | 25.693381     | 21.872740     | 0.0    | 1.0000      | 25.000000     | 42.0000     | 100.000     |
| speechiness      | 174389.0 | 0.105729      | 0.182260      | 0.0    | 0.0352      | 0.045500      | 0.0763      | 0.971       |
| tempo            | 174389.0 | 117.006500    | 30.254178     | 0.0    | 93.9310     | 115.816000    | 135.0110    | 243.507     |
| valence          | 174389.0 | 0.524533      | 0.264477      | 0.0    | 0.3110      | 0.536000      | 0.7430      | 1.000       |
| year             | 174389.0 | 1977.061764   | 26.907950     | 1920.0 | 1955.0000   | 1977.000000   | 1999.0000   | 2021.000    |
| Cluster          | 174389.0 | 3.273578      | 1.327022      | 0.0    | 2.0000      | 3.000000      | 4.0000      | 5.000       |



- La caracteristica \*\*explicit\*\* presenta una leve relación co n la caracteristica \*\*speechiness\*\* con un valor de 0.3, si incrementa una puede presentar un incremento en la otra
- La caracteristica presenta \*\*explicit\*\* una relación negativ a leve con las caracteristicas \*\*acousticness\*\* y \*\*instrumentalness\*\* con un valor de 0.2 con ambas caracteristicas.
- la caracteristica \*\*liveness\*\* presenta poca o casi nula en las correlaciones con las demás caracteristicas. con la qu e presenta el valor mayor sería con \*\*danceability\*\* con u n valor negativo de -0.13
- La caracteristica loudness presenta una correlación positiva alta con la caracteristica energy con un valor de 0.81 si aumenta una la otra tambien aumenta
- popularity presenta una correlación positiva alta con la caracteristica year por lo que si aumenta una la otra también aumentará. Además la carcteristica popularity presenta una correlación negativa con la caractistica acousticness con un valor de -0.4 si aumenta una la otra va a disminuir.

### Sin Tratamiento de Outliers

### Con Tratamiento de Outliers







# El artista que aparece como moda en el dataset

 Tadeusz Dołęga-Mostowicz fue un escritor, periodista y autor polaco de más de una docena de novelas populares. Por lo tanto el artista que aparece como moda en el dataset corresponde a una lista de reproducciones de relatos cortos, poesía y demás, muy distinto a lo que podría suponerse como un artista moderno.



La canción top según popularidad

drivers license



# La canción top según Danceability

Funky Cold Medina



Canción Top según característica Acousticness

• Mentiras. Año 1930



### Songs dataset

#### Caracteristica a considerar a futuro

El dataset podría haber incluido una caracteristica de **genero musical**, con esto se lograría un agrupamiento de los datos según el genero musical. Esto podría permitir asignar relaciones entre las otras caracteristiscas a cada genero musical.

#### Recomendaciones Musicales

Se pueden realizar recomendaciones musicales o playlist por algunas características que presenten las canciones que el usuario escuche, si por casualidad el usario tiende a escuchar musica actual pero con características de acustics, entonces se le puede recomendar algunas acustic greathits por épocas, si el usuario se interesa más por características con Danceability, entonces la App puede recomendarle canciones Mix Dance.