Example

December 18, 2020

1 Experimental setup

SIRIUS Beamline: Experiment 1234

Example

- Type: ProposalSafety: YellowDate: 12/12/2020
- Main proposer: Hemmerle
- Local contact: Myself
- Users (on site): Home office
- Recording directory: recording/
- Machine:
 - Current: 450 mAMode: Top-up
- Optics:
 - DCM: Si111
 - MGM: Not used
 - M1: M1-A Pt Track
 - M2: M2 Pt Track
 - M3: No M3
 - M4: M4 Pt Track
- Beam:
 - Fixed/Variable energy: Fixed
 - Energy (keV): 8
 - Wavelength (nm): 0.155
 - Harmonic: 12
 - Polarisation: LH
 - Phase (deg): 0
 - Horizontal focalisation: False
 - Vertical focalisation: True
 - Horizontal beamsize (mm): 2
 - Vertical beamsize (mm): 0.5
- Monitors and XBPM:
 - mon1:

- mon2:

- mon3:

- mon4: thick diamond

- Detectors: Pilatus on delta0

• Remarks: This is an example.

2 Beamline alignment

Here we show functions used during beamline alignent.

LaTeX formula can be used:

$$\frac{786 - 558}{2 \times 2069} \times 0.0355 = 1.9 mrad$$

2.1 Subsection

2.1.1 SIRIUS_2020_03_11_0744: dscan basez -.2 .2 50 .1

Fit with erf function.

2.1.2 SIRIUS_2020_03_11_0752: One can edit the scan info here as well

Fit with a gaussian.

2.2 Calibration thetaz

3 GIXD

3.0.1 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5

Extraction of the Vineyard.

- Open Nexus Data File :

recording/SIRIUS_2020_03_12_0756.nxs

- . Number of data points: 101
- . Available Counters:
 - 0 ----> delta
 - 1 ----> zs
 - 2 ----> gamma
 - 3 ----> hu36energy
 - 4 ----> xs
 - 5 ----> energydcm
 - 6 ----> current
 - 7 ----> mon2
 - 8 ----> surfacepressure
 - 9 ----> areapermolecule
 - 10 ----> qxy
 - 11 ----> pilatus
 - 12 ----> pilatusroi1
 - 13 ----> integration_time
 - 14 ----> sensorsRelTimestamps
 - 15 ----> sensorsTimestamps
- . Pilatus data found, (column 11, alias pilatus)
- . qxy data found, (column 10, alias qxy)
- . Valid data between points 0 and 100
- . Surface pressure data found, mean value 19.74 \pm 0.006163 mN/m
- . Area per molecule data found, mean value 0.3557 \pm 3.866e-05 nm2 per molecule
 - . Gamma motor data found, mean value $-0.0004715~\mathrm{deg}$

SIRIUS 2020 03 12 0756.nxs

Data not saved. To save data, run a GIXD on the scan. Channel0: 607

3.0.2 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5

Classic GIXD with:

$$q_{xy} = \frac{4\pi}{\lambda} \sin\left(\frac{2\theta}{2}\right)$$

Generates:

- SIRIUS_2020_03_12_0756_1D_qz.dat for each binning
- SIRIUS_2020_03_12_0756_1D.dat
- SIRIUS_2020_03_12_0756_1D.mat for each binning
- SIRIUS_2020_03_12_0756_1D.moy for each binning

3.0.3 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5

. Absorbers:

29 - Vide

SIRIUS_2020_03_12_0756.nxs

3.0.4 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5

It is possible to print all info on the scan and the counters.

3.0.5 SIRIUS_2020_03_12_0756: continuous_ascan delta -24 -19 100 5

- Open Nexus Data File :

recording/SIRIUS_2020_03_12_0756.nxs

- . Number of data points: 101
- . Available Counters:
 - 0 -----> delta
 - 1 ----> zs
 - 2 ----> gamma
 - 3 ----> hu36energy
 - 4 ----> xs
 - 5 ----> energydcm
 - 6 ----> current
 - 7 ----> mon2
 - 8 ----> surfacepressure
 - 9 ----> areapermolecule
 - 10 ----> qxy
 - 11 ----> pilatus
 - 12 ----> pilatusroi1
 - 13 ----> integration_time
 - 14 ----> sensorsRelTimestamps
 - 15 ----> sensorsTimestamps
- . Pilatus data found, (column 11, alias pilatus)
- . qxy data found, (column 10, alias qxy)
- . Valid data between points 0 and 100

- . Surface pressure data found, mean value 19.74 \pm 0.006163 mN/m
- . Area per molecule data found, mean value 0.3557 \pm 3.866e-05 nm2 per molecule
 - . Gamma motor data found, mean value -0.0004715 deg

SIRIUS_2020_03_12_0756.nxs

- . Original, non binned, matrix saved in: working/SIRIUS_2020_03_12_0756_1D.mat
- . Scalar data saved in: working/SIRIUS_2020_03_12_0756_1D.dat
- . qz values saved in:

working/SIRIUS_2020_03_12_0756_1D_qz.dat10

- . Binned matrix saved in: working/SIRIUS_2020_03_12_0756_1D.mat10
- . XYZ data saved in: working/SIRIUS_2020_03_12_0756_1D.moy10
- . qz values saved in:

working/SIRIUS_2020_03_12_0756_1D_qz.dat20

- . Binned matrix saved in: working/SIRIUS_2020_03_12_0756_1D.mat20
- . XYZ data saved in: working/SIRIUS_2020_03_12_0756_1D.moy20
- . qz values saved in:

working/SIRIUS_2020_03_12_0756_1D_qz.dat40

- . Binned matrix saved in: working/SIRIUS_2020_03_12_0756_1D.mat40
- . XYZ data saved in: working/SIRIUS_2020_03_12_0756_1D.moy40

4 Isotherm

$4.0.1 \quad SIRIUS_Isotherm_2019_02_17_01544: isotherm \ 1.97 \ 46 \ 35000 \ 1$

Plot the isotherm. Generates SIRIUS_Isotherm_2019_02_17_01544.dat

$4.0.2 \quad SIRIUS_Isotherm_2019_02_17_01544: \ isotherm \ 1.97 \ 46 \ 35000 \ 1$

5 1D plot

5.0.1 SIRIUS_2020_03_12_0760: run cont_regh.ipy

Add a 1D plot by clicking on ''Add plot to report". Generates SIRIUS_2020_03_12_0760.dat

6 GIXS

6.0.1 SIRIUS_2019_11_07_00325: tscan 10 10

GIXS: q_z vs q_{xy} .

Image and profiles with the approximation $q_{xy} = \frac{4\pi}{\lambda} \sin\left(\frac{2\theta}{2}\right)$.

Generates:

- SIRIUS_2019_11_07_00325_pilatus_sum.tiff
- SIRIUS_2019_11_07_00325_pilatus_sum.mat
- SIRIUS_2019_11_07_00325_integrated_qz.dat
- SIRIUS_2019_11_07_00325_integrated_qxy.dat
 - . Absorbers: 29 Vide
 - . Gamma is forced to the value : gamma = 0
 - . Delta is forced to the value : delta = 11.578

7 Plot pilatus

$7.0.1 \quad SIRIUS_2019_11_07_00325: \ tscan \ 10 \ 10$

Plot the sum of the images from the Pilatus (time integration). Generates:

- SIRIUS_2019_11_07_00325_pilatus_sum.tiff
- SIRIUS_2019_11_07_00325_pilatus_sum.mat
- SIRIUS_2019_11_07_00325_integrated_x.dat
- SIRIUS_2019_11_07_00325_integrated_y.dat

. Absorbers: 29 - Vide

8 XRF

8.0.1 SIRIUS_2017_12_11_08042: run xsw7.ipy

Plot XRF from the 4-elements detector, in channels and without peak identification. Generates:

- SIRIUS_2017_12_11_08042_fluospectrum.mat for each element
- SIRIUS_2017_12_11_08042.dat

8.0.2 SIRIUS_2017_12_11_08042: run xsw7.ipy

. Absorbers: Al 200micron

8.0.3 SIRIUS_Fluo_2020_07_03_0042: tscan 500 30

Plot XRF from the 1-element detector, in eVs and with peak identification. Generates:

- SIRIUS_Fluo_2020_07_03_0042_fluospectrum04.mat
- SIRIUS_Fluo_2020_07_03_0042.dat
 - . Absorbers: Al 800micron

9 Insert script

Script inserted (with automatic scan numbering) using ''Insert script"'.

9.0.1 script_with_loop.ipy

```
%shopen
%amove delta -40
%run reset_motors.ipy
\%amove delta -35
%continuous_ascan delta -35 -25 250 5 #123
%run reset_motors.ipy
for i in range(4):
    %amove delta -20
    %continuous_ascan delta -10 -3 175 5 #124 #126 #128 #130
    %run reset_motors.ipy
    %run cont_regh_abs.ipy #125 #127 #129 #131
for i in range(3):
    %amove delta -20
    continuous_ascan delta -10 -3 175 5 #132 #135 #138
    %run reset_motors.ipy
    %run cont_regh_abs.ipy #133 #136 #139
    %run cont_regh_abs.ipy #134 #137 #140
for i in range(2):
    %amove delta -20
    %tscan 10 100 #141 #142
%continuous_ascan delta -35 -25 250 5 #143
%amove delta -40
%shclose
```

10 Insert positions

Positions extracted from the logs, using "Insert positions".

10.0.1 wm zs

 $\frac{zs}{-40.9178}$

10.0.2 wm diffracto

deltacodeur	euchi	euth	euphi	kappa_h	kappa_k
	1.00196	-89.57961	90.42039	-0.00580	-0.08252
Degrees	\deg	\deg	\deg		

kappa_l	qxy	qxy0	qz	basexPoint	basexTrait
-0.18486		23.82 nm-1		-15.7275	-15.7274

basezPlan	basezPoint	${\bf basezTrait}$	basepitch	baseroll	basex
71.1257	71.1257	71.1257	-0.0000	0.000	
			mrad	mrad	mm

baseyaw	basez	alphax	alphay	delta	delta0
-0.000	71.126	0.2998	0.2000	-2.9110	-34.2322
mrad	mm				

deltaa	etaa	gamma	kappav	mu	kphi
0.0000	0.0000	1.2997	1.3080	-179.9997	0.0000

thetaa	thetah	komega	XS	ky	ys
0.0000	0.0185	0.0000	0.0000	-0.1000	0.0000

kz	ZS	kx	
0.0000	-41.9999	-0.1000	

11 Insert commands

Commands extracted from the logs, using "Insert commands".

```
Wed, 11 Mar 2020 16:46:47 ct 1
Wed, 11 Mar 2020 16:46:56 dmove basez 1
Wed, 11 Mar 2020 16:47:01 ct 1
Wed, 11 Mar 2020 16:47:05 dmove basez 1
Wed, 11 Mar 2020 16:47:09 ct 1
Wed, 11 Mar 2020 16:47:13 dmove basez -5
Wed, 11 Mar 2020 16:47:26 ct 1
Wed, 11 Mar 2020 16:47:30 dmove basez 1
Wed, 11 Mar 2020 16:47:35 ct 1
Wed, 11 Mar 2020 16:47:53 dscan basez -1 0 50 .1 #741
```

12 Convert logs

Human-readable logs generated in the folder /working/readable_logs/ by clicking on ''Convert logs"'.

13 Insert an image

Using the command "Insert image".

14 Export to pdf

PDF generated by clicking on '''Export to pdf"'.