Guía de Ejercicios - Algebra - Plan Común Ingenierías Civiles y Matemática

Profesores: M. Teresa Alcalde - Raúl Benavides - César Burgueño Mauricio Carrillo - Floridemia Salazar - Alex Sepúlveda

IME-006 Año 2008

Lógica y Conjuntos

- 1. Si p es la proposición "hoy es miércoles" y q es "mañana es domingo". Determine los días de la semana en que son verdaderas las proposiciones siguientes:
 - $(a) \ p \vee q \quad (b) \ p \wedge q \quad (c) \ p \Rightarrow q \quad (d) \ p \Leftrightarrow q \quad (e) \ \overline{p} \wedge (p \vee q)$
- 2. Determine el valor de verdad de la siguiente proposición:

Si
$$3^4 - 4^3 = 7$$
 entonces $\frac{a}{b} : \frac{b}{a} = 1$

- 3. Si p,q,r son proposiciones y $p\equiv V,\ q\equiv F$ y r es una proposición cualesquiera, obtenga el valor de verdad de:
 - (a) $(p \land q) \lor r$ (b) $\overline{p \land \overline{q}} \Rightarrow (p \lor r)$
 - $(c) \ (p \vee r) \Rightarrow r \ (d) \ [(p \Rightarrow r) \Rightarrow q] \Rightarrow (r \Leftrightarrow q)$
 - (e) $(\overline{p} \vee \overline{r} \wedge r)$
- 4. Estudie el valor de verdad de las siguientes proposiciones, y en caso de ser falsas dé un contraejemplo.
 - (a) $(\forall x \in \mathbb{R})(\exists n \in \mathbb{N})(x+3 > n)$
 - (b) $(\exists! m \in \mathbb{Z})(3+m=5)$
 - (c) $(\forall m \in \mathbb{Z})(\exists! n \in \mathbb{Z}; n|m)$
- 5. Niegue las proposiciones de la pregunta anterior.
- 6. Estudie el valor de verdad de las siguientes proposiciones, y en caso de ser falsas dé un contraejemplo.
 - $\begin{array}{lll} (a) & [p \wedge (p \Rightarrow q)] \Rightarrow q & (b) & \underline{[p \Rightarrow (q \vee r)]} \Leftrightarrow [(\overline{p} \wedge \overline{r}) \Rightarrow q] \\ (c) & (p \wedge \overline{p}) \vee (q \vee \overline{q}) & (d) & \overline{[p \wedge (q \vee r)]} \end{array}$

7. Si p, q, r son proposiciones, pruebe sin usar tablas de verdad que la siguiente proposición es una tautología:

$$(p \lor q \Leftrightarrow p \land r) \Rightarrow [(q \Rightarrow p) \land (p \Rightarrow r)]$$

- 8. Sea $A = \{a, \{a\}, \{a, \{a\}\}\}$. Diga cuáles de las siguientes afirmaciones son verdaderas
 - $\begin{array}{lll} (a) & a\subseteq A & (b) & a\in A & (c) & \{a\}\in A \\ (d) & \{a\}\subseteq A & (e) & \{\{a\}\}\subseteq A & (f) & \{\{a\},a\}\subseteq A \end{array}$
- 9. Sea $A = \{a, \emptyset, \{b\}, \{a\}, \{\emptyset\}, \{a, \emptyset\}\}\$. Encuentre P(A).
- 10. Puede dar un ejemplo en que $P(A) = \emptyset$?
- 11. Un hotel recibe 60 visitantes, de los cuales 37 permanecen al menos una semana, 43 gastan al menos \$30 diarios, 32 están completamente satisfechos del servicio; 30 permanecieron al menos una semana y gastaron al menos \$30 diarios; 26 permanecieron al menos una semana y quedaron completamente satisfechos; 27 gastaron al menos \$30 diarios y quedaron completamente satisfechos y 24 permanecieron al menos una semana, gastaron al menos \$30 diarios y quedaron completamente satisfechos.
 - a) Cuántos visitantes permanecieron al menos una semana, gastaron al menos \$ 30 diarios pero no quedaron completamente satisfechos?
 - b) Cuántos visitantes quedaron completamente satisfechos pero permanecieron menos de una semana y gastaron menos de \$ 30 diarios?
 - c) Cuántos visitantes permanecieron menos de una semana, gastaron menos de \$ 30 diarios y no quedaron completamente satisfechos.
- 12. Demuestre que: $A \cap (A \cup B) = A$
- 13. Para cuáles $S \in \{\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}\}$ son verdaderas las siguientes afirmaciones?

(a)
$$\{x \in S/x^2 = 5\} \neq \emptyset$$
 (b) $\{x \in S/ \mid x - 1 \mid \leq \frac{1}{2}\} = \{1\}$ (c) $\{x \in \mathbb{R} \mid x^2 = -1\} = \emptyset$

14. Dé un ejemplo de tres conjuntos A, B y C tales que:

$$A \cap B \neq \emptyset, B \cap C \neq \emptyset, A \cap C \neq \emptyset$$
 pero $A \cap B \cap C = \emptyset$

15. Dibuje los siguientes subconjuntos del plano

$$a)\{(x,y)\in\mathbb{R}\times\mathbb{R};x^2+y^2=1\} \quad (b)\{(x,y)\in\mathbb{R}\times\mathbb{R};x\geq1\}$$

$$c)\{(x,y)\in\mathbb{R}\times\mathbb{R};x+y\geq1\} \quad (d)\{(x,y)\in\mathbb{R}\times\mathbb{R};xy=1\}$$

- 16. Sea $A=[1,4]\subseteq\mathbb{R},\ B=[0,4]\subseteq\mathbb{R},\ C=[0,3]\subseteq\mathbb{R};\ D=[1,2]\subseteq\mathbb{R}.$ Dibuje en un diagrama $(A\times B)\cap(C\times D)$
- 17. Determine las posibles relaciones de inclusión entre A y B:
 - a) $A = \{0, 1, 2, 6\}, B = \{ \text{ divisores de } 30 \}$
 - b) A = X (Y T), B = T
 - c) $A = E S, B = \{x \in S; x \in E S\}$
 - d) A = P(E S), B = P(E) P(S)
- 18. Demostrar las identidades:
 - a) X (Y X) = X b) $X (X Y) = X \cap Y$
 - c) $P(A) = P(B) \Leftrightarrow A = B$ d) $P(A) \cup P(B) \subset P(A \cup B)$
 - e) $P(A) \cup P(B) = P(A \cup B) \Leftrightarrow A \subset B$ o $B \subset A$
- 19. Sea $X = \{1, 2, 3, ..., 18\}$. Si X tiene p subconjuntos con un número par de elementos e i subconjuntos con un número impar de elementos, compare p e i. χ Puede calcularlos ?
- 20. Verdadero o falso?:
 - (a) $\forall x : x \supseteq \Phi$
 - (b) $\forall x : \emptyset \in x$
 - (c) El único conjunto que es subconjunto de todos los conjuntos es el vacío.
 - (d) $\emptyset \subseteq \{\{\}\}$
 - (e) $\{1\} \in \mathbb{N}$
 - (f) $\{1\} \subseteq \mathbb{N}$
- 21. Sea P el conjunto de los nmeros primos (un primo es un entero que tiene exactamente cuatro divisores). Describa el conjunto P.
- 22. Muestre que $\{2x + 5/x \in \mathbb{Z}\} = \{1 + 2y/y \in \mathbb{Z}\}\$
- 23. Pruebe las siguientes propiedades:
 - (a) $A \subseteq A \cup B$; $A \cap B \subseteq A$
 - (b) $B \subseteq A \Leftrightarrow A \cup B = A$
 - (c) $B \subseteq A \Leftrightarrow A \cap B = B$
 - (d) $A, B \subseteq C \Leftrightarrow A \cup B \subseteq C$
 - (e) $A, B \supseteq C \Leftrightarrow A \cap B \supseteq C$
 - (f) $A \cup B = A \cap B \Leftrightarrow A = B$

- (g) $A \cup B = (A B) \cup (B A) \cup (A \cap B)$
- (h) $A \subseteq B \Leftrightarrow P(A) \subseteq P(B)$
- 24. ¿Verdadero o falso? (dar una demostración o un contraejemplo):
 - (a) Si para todo X se tiene $X \cap B = X \cap C$ entonces B = C
 - (b) Si existe un X tal que $X \cap B = X \cap C$, entonces B = C
 - (c) $(A \cup B) \cap C = A \cup (B \cap C)$
 - (d) Si $A \subseteq B$ y B y C son disjuntos, entonces $A \cap (B \cup C) = A$
 - (e) $(A \cup B) A = B A$
 - (f) $A \subseteq B \Leftrightarrow A B = \emptyset$
 - (g) A (B C) = (A B) C
- 25. Dados los conjuntos A y B, se define su diferencia simétrica por: $A\Delta B = (A-B) \cup (B-A)$
 - (a) Muestre que la operación Δ es conmutativa.
 - (b) ¿Qué conjunto es $A\Delta\emptyset$?
 - (c) ¿Qué conjunto es $A\Delta U$?
 - (d) Si $A \subseteq B$ diga qué conjunto es $A\Delta B$
 - (e) Muestre que: $\overline{A\Delta B} = \overline{A \cup B} \bigcup (A \cap B)$
 - (f) Muestre que: $A = B \Leftrightarrow A\Delta B = \emptyset$
 - (g) Muestre que: $A\Delta B = C \Leftrightarrow A\Delta C = B$
- 26. Analice la posible relación entre los siguientes pares de conjuntos:
 - (a) $P(\overline{A})$, $\overline{P(A)}$
 - (b) P(A B), P(A) P(B)
- 27. Sean E, F dos conjuntos y $S_{E,F}$ definido por:

$$S_{E,F} = \{A \times B; A \subset E, B \subset F\}$$

Muestre que:

- $a)S_{E,F} \subset P(E \times F)$
- $b)S_{E,F} = P(E \times F) \Leftrightarrow E \circ F \text{ es un singleton.}$
- 28. Sea $A = \{a, b, c\}$
 - a) ξ Cuántas relaciones se pueden establecer de A en A?
 - b) ¿ Cuántas reflexivas? ¿ Simétricas?
 - c) Construya todas las relaciones de equivalencia posibles sobre A.

29. Sea $n \in \mathbb{N}$

$$xRy \iff \begin{cases} x = y \\ \sum_{k=0}^{n} x^k y^{n-k} = 1 \text{ si } x \neq y \end{cases}$$

- a) Demuestre que R es una relación de equivalencia.
- b) Describa las clases de equivalencia para n = 0, 1, 2.
- 30. Sea una relación definida en ${\rm I\!R}$ por $xSy \Longleftrightarrow x^2 = x \mid y+1 \mid$. Haga el gráfico.
- 31. Sea $A=\{1,2,3,4\}$. Determine los gráficos de las relaciones R, S, definidas en A por (i) $aRb \Longleftrightarrow a+b \le 4$, (ii) $aSb \Longleftrightarrow a(b+1) \le 6$
- 32. Las relaciones R_1 y R_2 están definidas por

(i)
$$xR_1y \iff -10 \le x + 5y \le 10$$

(ii)
$$xR_2y \iff x^2 + y^2 \le 4, x \ge y$$

Haga un gráfico de estas relaciones.

33. Discuta la reflexividad, simetría, antisimetría y transitividad de las siguientes relaciones en el conjunto $\{a,b,c\}$:

$$\text{(i) } \{(a,a),(b,b)\} \qquad \text{(ii) } \{(c,c),(c,b)\} \qquad \text{(iii) } \{(a,a),(a,b),(b,a),(b,b)\}$$

(iv)
$$\{(a,a),(b,b),(c,c)\}$$
 (v) $\{(a,a),(b,b),(c,c),(a,b),(b,a)\}$

34. Sobre $\mathbb{R} \times \mathbb{R}$, discuta las relaciones siguientes:

(i)
$$\{(a,b) \in \mathbb{R} \times \mathbb{R}; a^2 + b^2 \ge 0\}$$
 (ii) $\{(a,b) \in \mathbb{R} \times \mathbb{R}; 0 < ab < 1\}$

- 35. Averigue si la relación en $Z\!\!Z$ definida por $aRb \Longleftrightarrow ab \geq 0$ es una relación de equivalencia.
- 36. En \mathbb{Z} definimos: a Rb \iff $a^2+a=b^2+b$. Demuestre que R es una relación de equivalencia y encuentre las clases de equivalencia de los elementos 0,1,a.
- 37. En $\mathbb{N} \times \mathbb{N}$ se define $(a,b) \sim (c,d)$ ssi a+d=b+c. Demuestre que \sim es una relación de equivalencia y encuentre la clase del elemento (2,1).
- 38. Consideremos P(A), donde A es un conjunto. En P(A) se define una relación como sigue: ARB ssi $A \subset B$. Determine si R es una relación de orden.

- 39. Sea $A \neq \phi$ y R una relación en A. Se dice que R es circular si $(x,y) \in R$ y $(y,z) \in R$ entonces $(z,x) \in R$. Demuestre que si R es refleja y circular, entonces R es simétrica.
- 40. Considere el conjunto $\mathbb{N}^n = \mathbb{N} \times \mathbb{N} \times \cdots \times \mathbb{N}$ de n-tuplas con componentes en los naturales. Se define la relación R_1 sobre \mathbb{N}^n por

$$xR_1y \Leftrightarrow [x_1 \le y_1, x_1 + x_2 \le y_1 + y_2, \cdots, \sum_{i=1}^n x_i \le \sum_{i=1}^n y_i]$$

- (a) Demuestre que R_1 es una relación de orden parcial.
- (b) Sea R_2 la relación de orden de orden usual de n-tuplas, es decir,

$$\forall x, y \in \mathbb{N}^n, xR_2y \Leftrightarrow x_i \leq y_i, \forall i \in \{1, 2, \dots, n\}$$

Demuestre que

$$xR_2y \Rightarrow xR_1y$$

Verifique que la implicación en el otro sentido es falsa. Para ello construya un contraejemplo.

Funciones

- 41. Considere las funciones $f: \mathbb{N} \{0\} \longrightarrow \mathbb{Q}$ definida en cada $n \in \mathbb{N} \{0\}$ por $f(n) = \frac{1}{2n}$ y $g: \mathbb{Q} \longrightarrow \mathbb{Q}$ definida en cada $q \in \mathbb{Q}$ por $g(q) = \frac{q}{2}$.
 - (a) Determine si $f, g, g \circ f$ son inyectivas, epiyectivas y biyectivas.
 - (b) Determine los conjuntos pre-imágenes $g^{-1}(\mathbb{Z})$
- 42. Sea $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ definida por:

$$f(n) = \begin{cases} \frac{n}{3} & ; & n \text{ es múltiplo de 3} \\ \frac{n+2}{3} & ; & n \text{ es múltiplo de 3 más 1} \\ \frac{n+1}{3} & ; & n \text{ es múltiplo de 3 más 2} \end{cases}$$

Encuentre el dominio de f, la imagen de f y estudie si f es inyectiva, epiyectiva o biyectiva.

- 43. Estudie en $P(\mathbb{N})$ si son inyectivas o epiyectivas las funciones $f_i: P(\mathbb{N}) \to P(\mathbb{N})$ definidas por:
 - (a) $f_1(X) = X \cap \{2\}$
 - (b) $f_2(X) = X \cup \{2\}$
 - (c) $f_3(X) = X \{2\}$

- 44. Sean $A, B \subseteq E$ y $h: P(E) \to P(A) \times P(B)$ definida por $h(X) = (X \cap A, X \cap B)$. Estudie las condiciones para que h sea: (a) inyectiva, (b) epiyectiva, (c) biyectiva.
- 45. Sea $f_{ab}: \mathbb{Z} \to \mathbb{Z}$; $f_{ab}(n) = an + b$, con $a, b \in \mathbb{Z}$. Encuentre para qué valores de a, b, la aplicación f_{ab} es biyectiva.
- 46. Sea $f_i: \mathbb{R}^* \to \mathbb{R}$, definidas por:
 - (a) $f_1(x) = x + 3$
 - (b) $f_2(x) = \frac{1}{x}$

Encuentre $f_i^n = f_i \circ f_i \circ \cdots \circ f_i$, n veces.

- 47. Sean $P_f(\mathbb{N}) = \{A; A \subseteq \mathbb{N}, Afinito\} \text{ y } s : P_f(\mathbb{N}) \to \mathbb{N}; s(\{a_1, a_2, \dots, a_n\}) = a_1 + a_2 + \dots + a_n$
 - (a) Estudie si s es inyectiva o epiyectiva.
 - (b) Calcule $s(\{n, n+1, ..., 2n\})$
 - (c) $s^{-1}(\{6\})$
- 48. Dada $f : \mathbb{R} \to \mathbb{R}; f(x) = |2x + 3|$
 - (a) Estudie si f es inyectiva o epiyectiva.
 - (b) Calcule $f \circ f$.
- 49. Sean $A = \{0, 1, 2, \dots, 99\}$ y $f: A \rightarrow A$ definida por f(a) = |a 99|
 - (a) Demuestre que f es biyectiva.
 - (b) Determine f^{-1}
- 50. Sea $f:A\to B$ una función. Considere en A la relación:

$$aRb \Leftrightarrow f(a) = f(b)$$

- (a) Pruebe que R es una relación de equivalencia.
- (b) Para $A = \{1, 2, \dots, n\}$ y

$$f(n) = \begin{cases} n+2 & \text{; si } n \text{ es par} \\ n+1 & \text{; si } n \text{ es impar} \end{cases}$$

Encuentre A/R (el conjunto cuociente de A/R)

51. Sean $f, g: \mathbb{Z} \longrightarrow \mathbb{Z}$ dos funciones definidas por:

$$f(x) = \begin{cases} x^2 + 2 & ; & x > 0 \\ x + 2 & ; & x \neq 0 \end{cases}$$

$$g(x) = \begin{cases} 2x+5 & ; & x>3\\ x^3 & ; & x<3 \end{cases}$$

Determine g(f(x))

52. Sea $E \neq \emptyset$ un conjunto fijo. Para todo subconjunto A de E $(\forall A \subset E)$ se define la función característica de A como sigue:

 $\Psi_A: E \longrightarrow \{0,1\}; \text{ tal que}$

$$\Psi_A(x) = \begin{cases} 1 & ; & \text{si } x \in A \\ 0 & ; & \text{si } x \notin A \end{cases}$$

- (a) Describa $\Psi_E(x)$ y $\Psi_{\emptyset}(x)$, $\forall x \in E$.
- (b) Demuestre que $(\forall x \in E)$: $\Psi_{A \cap B}(x) = \Psi_A(x) \cdot \Psi_B(x)$
- (c) Si $C, D \subset E$, entonces

$$C \subset D \Leftrightarrow (\forall x \in E); \Psi_C(x) \leq \Psi_D(x)$$

53. Sea $A = \{-7, -6, -5, \cdots, 5\} \subset \mathbb{Z}, f : A \longrightarrow \mathbb{Z}; \text{ tal que}$

$$f(n) = \begin{cases} \frac{1}{2}(n+7) + 2 & ; & -7 \le n < -3 \\ 1 & ; & -3 \le n \le 0 \\ (n-3)^2 - 1 & ; & 1 \le n \le 5 \end{cases}$$

Calcule f(3), f(1); f(5). Estudie si f es inyectiva y justifique. Haga las restricciones mínimas necesarias para que f sea una función biyectiva y determine f^{-1} .

- 54. Sean $f:A\to B$ y $g:C\to D$, con la condición $D\subset A$. Probar que:
 - (a) Si f y g son inyectivas, entonces $f \circ g$ es inyectiva.
 - (b) Si f y g son epiyectivas, entonces $f \circ g$ es epiyectiva
 - (c) Si f y g son crecientes, entonces fog es creciente
- 55. Sea $f: \mathbb{Z} \longrightarrow \mathbb{Z}$ una función con la propiedad siguiente:

$$f(n+m) = f(n) + f(m).$$

para cada par de enteros n y m

(a) Se define la relación R en \mathbb{Z} por:

$$nRm \Leftrightarrow f(n) = f(m)$$

Probar que R es una relación de equivalencia.

- (b) Probar que f(0) = 0, recuerde para ello que 0 + 0 = 0
- (c) Probar que f(-m) = -f(m); $\forall m \in \mathbb{Z}$. Indicación: use que m-m =
- (d) Pruebe que f es inyectiva $ssif-1(\{0\}) = \{0\}$
- 56. Sea $f: E \longrightarrow F$ una función. Se dice que un subconjunto A de E es estable si $f^{-1}(f(A)) = A$. Probar que si A y B son subconjuntos estables de E entonces $A \cup B$ y $A \cap B$ también lo son.
- 57. Sea $\mathcal{F} = \{f : A \longrightarrow B; f \text{ es función}\}\$, es decir, es el conjunto que contiene a todas las funciones de A en B. Sea R una relación de orden en B. Se define en \mathcal{F} la relación R^* por:

$$fR^*g \Leftrightarrow \forall a \in A, f(a)Rg(a)$$

Probar que R^* es una relación de orden en \mathcal{F} . Probar que si A y B tienen al menos dos elementos entonces R^* es una relación de orden parcial.

Inducción y Conteo

- 58. Calcule las siguientes sumatorias:
 - (a) $\sum_{i=1}^{n} (2+3i)$ (b) $\sum_{i=8}^{100} i$
- 59. La suma de 3 números en Progresión Aritmética es 27 y la suma de sus cuadrados es 293. Determine tales números.
- 60. Si en una progresión aritmética, el quinto término es 15 y el décimo es 30, entonces determine la P.A.
- 61. Calcule la suma de los 101 primeros términos de la P.G. siguiente:

$$G = \{\frac{12}{\sqrt{3}}, 3\sqrt{3}, \cdots\}$$

62. La suma de tres números en P.G. es 26, su producto es 216. Determine tales números.

63. Si los números x, y, z están en P.G. y son distintos, demuestre que

$$\frac{1}{y-x}, \frac{1}{2y}, \frac{1}{y-z}$$

están en P.A.

- 64. La suma de tres números en P.A. es 30. Si al primero de ellos se le agrega 1, al segundo 5 y al tercero 29 se obtiene una P.G. Determinar ambas progresiones.
- 65. Considere las progresiones

$$G = \{g_1, g_2, g_3, \dots\}$$
 $P.G.$ $A = \{3, a_2, a_3, \dots\}$ $P.A.$

Tal que

- (a) $g_3 = 12$; $g_7 = 192$
- (b) $\sum_{i=1}^{11} g_i = \sum_{i=1}^{50} a_i$

Determine la diferencia de la P.A.

- 66. Demuestre usando inducción las fórmulas proposicionales siguientes:
 - (a) $F(n) = \sum_{i=1}^{n} i2^{i-1} = 1 + (n-1)2^n$.
 - (b) $10^n + 3 \cdot 4^{n+2} + 5$ es divisible por 9.
 - (c) $n^3 + 2n$ es divisible por 3.
 - (d) $3^{2n+1} + 2^{n+2}$ es divisible por 7
 - (e) $5^{2n} + (-1)^{n+1}$ es divisible por 13.
 - (f) $7^{2n} + 16n 1$ es divisible por 64.
 - (g) $x^{2n} y^{2n}$ es divisible por x y.
 - (h) $x^{2n-1} + y^{2n-1}$ divisible por x + y
 - (i) $(1+x)^n \ge 1 + nx$

Son verdaderas $\forall n; n \in \mathbb{N}$

- 67. Demostrar que si n es un entero, entonces $\frac{(n+6)(n+13)(n-4)}{6}$, también es un número entero.
- 68. Demuestre que si n es un entero, entonces $n^3 + 11n$ es divisible por 6
- 69. Probar que para todo natural mayor o igual a 1 se tiene:

$$\sum_{k=1}^{n+1} \frac{1}{n+k} \le \frac{5}{6}$$

- 70. La a_k es una sucesión de números reales tal que satisface : $\sum_{k=1}^n = 2n + 3n^2$. Demuestre que es una P.A. y encuentre una expresión para a_n en términos de n.
- 71. Sean $(a_k)_{k\in\mathbb{N}}$ $(b_k)_{k\in\mathbb{N}}$ dos secuencias de números reales. Considere los naturales p y n tales que $p \leq n$. Probar que

$$\sum_{k=p}^{n} (a_{k+1} - a_k)b_k = a_{n+1}b_{n+1} - a_pb_p - \sum_{k=p}^{n} a_{k+1}(b_{k+1} - b_k)$$

- 72. Demuestre, sin inducción que:
 - (a) $\sum_{k=1}^{n} {n \choose k} \cdot k = \sum_{k=1}^{n} {n-1 \choose k-1} \cdot n$
 - (b) $\sum_{k=0}^{n} k \cdot C_n^k = n \cdot 2^{n-1}$
- 73. Demuestre que $\sum_{k=0}^{n} \frac{C_n^k}{k+1} = \frac{2^{n-1}}{n+1}$
- 74. Sea $k \in \{0,1,\cdot,n-1\}$. Verifique que $k \cdot C_n^k = n \cdot C_{n-1}^{k-1}$
- 75. Determine el término que contiene $\frac{x^2}{y^2}$ en el desarrollo binomial:

$$\left(\frac{x}{y} - \frac{y^2}{2x^2}\right)^8$$

76. Pruebe que para $n \geq 1$, para cualquier $j \geq 0$ se cumple que:

$$\sum_{i=1}^{n} \binom{i+j-1}{j} = \binom{n+j}{j+1}$$

77. Pruebe sin usar inducción que para $n \ge 1, \ 0 \le k \le n$,

$$\binom{n}{k} \le \frac{n^k}{k!}$$

y deduzca que

$$(1+\frac{1}{n})^n \le \sum_{k=0}^n \frac{1}{k!}$$

78. Demuestre que si C es el coeficiente del término que contiene a x^a en el desarrollo binomial

$$(x^3 - \frac{1}{r})^{3n}$$

entonces

$$C = (-1)^{\frac{9n-a}{4}} \frac{(3n)!}{(\frac{9n-a}{4})!(\frac{3n+a}{4})!)}$$

79. Sean $p \neq q$ dos reales no negativos tales que p+q=1. Calcular

$$\sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} k$$

Indicación: $k^2 = k(k-1) + k$

Estructuras Algebraicas

80. En ${\rm I\!R} \times {\rm I\!R}$ se define la ley de composición siguiente:

$$(a,b)*(c,d) = (ac,bc+d)$$

- (a) Estudie las propiedades de \ast
- (b) Calcule $(1,2)^3$, $(2,1)^{-2}$, $(2,4)^4$
- 81. Estudie las siguientes estructuras:
 - (a) $(\mathbb{R}^2, *)$; (a, b) * (c, d) = (a + c, b + d + 2bd)
 - (b) Sea $S = \{a + b\sqrt{2}; a, b \in \mathbb{R}\}$. Se define $\forall x, y \in S$ $x * y = (a + b\sqrt{2})(c + d\sqrt{2})$ $x\triangle y = (a + b\sqrt{2}) + (c + d\sqrt{2})$
 - (c) $(\mathbb{N}, *), a * b = \max\{a, b\}$
 - (d) $(\mathbb{N}, *), a * b = \max\{a, b\} \min\{a, b\}$
 - (e) Sea $S = \{1, 2, 3, 4, 6\}$, Estudie (S, *), donde a * b = m.c.d.(a, b)
 - (f) Sea $S = \{1, 2, 5, 10\}$, y considere (S, +, *), donde a + b = m.c.d.(a, b) y a * b = m.c.m.(a, b)
 - (g) $(P(X), \triangle, \cap), X \neq \emptyset$, donde \triangle es la diferencia simétrica.
 - (h) $(P(X), \cup, \cap), X \neq \emptyset$
- 82. (a) Demuestre que el conjunto formado por los giros alrededor del origen forman un grupo con la composición. Demuestre además que si g_{α} denota el giro en α grados, entonces

$$g_{\alpha} \cdot g_{\beta} = g_{\alpha+\beta}$$

(b) Demuestre que (\mathcal{M}, \cdot) es un grupo, donde

$$\mathcal{M} = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix}; a^2 + b^2 = 1, a, b \in \mathbb{R} \right\}$$

- (c) Demuestre que los dos grupos anteriores son isomorfos.
- 83. Demuestre que
 - (a) $H_1 = \{\overline{0}, \overline{2}, \overline{4}\}$ es un subgrupo de $(\mathbb{Z}_6, +)$
 - (b) $H_2 = \{Id, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}\}$ es un subgrupo de (S_3, \cdot)
 - (c) $H_3 = \{\overline{1}, \overline{3}, \overline{9}\}$ es un subgrupo de $(\mathbb{Z}_{13}^*, \cdot)$
- 84. Demuestre que si $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$, entonces $S = \{id, \tau\}$ no es un subgrupo de S_3 , sin embargo $H = \{id, \tau, \tau^{-1}\}$ es un subgrupo de S_3
- 85. Dados \mathbb{Z}_2 y $\mathbb{Z}_3,$ se define la operación * en $\mathbb{Z}_2 \times \mathbb{Z}_3$ dada por:

$$(a,b)*(c,d) = (a \otimes_2 c, b \oplus_3 d)$$

Estudie las propiedades de *.

- 86. Sea $A = \mathbb{Q} \{\frac{1}{4}\}$. Para todo $x, y \in A$ se define $x \otimes y = x + y 4xy$
 - (a) Demuestre que \otimes es una ley de composición interna.
 - (b) Demuestre que (A, \otimes) es un grupo abeliano.
- 87. En el conjunto de los números naturales, se da la siguiente ley de composición interna $x\otimes y=|x-y|$. Pruebe que esta ley de composición las siguientes propiedades:
 - (a) No asociativa (basta un contra-ejemplo)
 - (b) Conmutativa
 - (c) Tiene neutro
 - (d) Tiene inversos
- 88. Sabiendo que $A = \{a, b, c, d\}$ es un grupo, complete la siguiente tabla de composición:

0	a	b	c	d
a	c			
b				
c				
d			c	

- 89. Consideremos la permutación $\sigma \in S_5, \ \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 1 & 2 \end{pmatrix}$
 - (a) Determine σ^{12345}

- (b) Determine $\theta \in S_5$, tal que $\sigma^{-1} \circ \theta \circ \sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 1 \end{pmatrix}$
- 90. En \mathbb{Z}_{11}
 - (a) Encuentre $\frac{1}{7}$, $\frac{1}{5}$, $\frac{1}{8}$, $\frac{2}{5}$, $\frac{3}{7}$, $\frac{5}{8}$
 - (b) calcule: $\frac{3}{7} \frac{1}{5}$.
 - (c) Resuelva la ecuación: 3x + 7 = 2
- 91. Estudie si el número: $1273^{1273} + 806^{806}$, es divisible por 7.
- 92. Determine la hora que marca un reloj 777 horas después de que sean las once?

Números Complejos

- 93. Dados $z_1 = -3 + 4i$ y $z_2 = 5 + i$. Calcule $z_1 + z_2, z_1 \cdot z_2, z_1^{-1}, z_2^{-1}$
- 94. Expresar en la forma x + yi, el número complejo:

$$\frac{(3+5i)(2-i)^3}{-1+4i}$$

95. Calcular el módulo del complejo:

$$\frac{(2-3i)^4(1-i)^3}{5+i}$$

96. Hallar un complejo z tal que:

$$|z| = \frac{1}{|z|} = |1 - z|$$

- 97. Hallar un complejo z tal que $z^{-1} + 2(\overline{z})^{-1} = 1 + i$
- 98. Expresar en su forma polar los complejos $-\sqrt{3} + i$ y 3 4i
- 99. Calcule $(\frac{1+\sqrt{3}i}{1-i})^{40}$
- 100. Dados los números complejos $z_1 = -2 \frac{2}{\sqrt{3}}i$ y $z_2 = -\sqrt{3} + \sqrt{3}i$, determine:
 - (a) z_1^{12}
 - (b) Las raíces cuartas de z_2
- 101. Sea dada la ecuación: $iz^3 + 27 = 0$. Determinar sus soluciones y representarlas gráficamente en el plano complejo.

- 102. En \mathbb{C} , resuelva la ecuación $x^4 = -8 + 8\sqrt{3}i$.
- 103. (a) Calcule todas las soluciones complejas de la ecuación

$$z^n = -1$$
, para $n \ge 2$

- (b) Pruebe que la suma de las soluciones obtenidas en la parte anterior es cero.
- 104. Calcule las raíces de la ecuación $z^2 = -i$ y expréselas de la forma a + bi
- 105. Si $z+\frac{1}{z}=2\cos\alpha,$ calcule los posibles valores de $z\in\mathbb{C}$ y muestre que $z^n+\frac{1}{z^n}=2\cos n\alpha$
- 106. Dados los números complejos : $z_1=e^{-\frac{\pi}{3}i}$ y $z_2=\frac{1}{2}+\frac{\sqrt{3}}{2}i$. Calcule las raíces cúbicas de: $\frac{z_1}{z_2}$
- 107. Demuestre que $z=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}i$ es una raíz octava de 1.
- 108. Pruebe que

$$\forall n \in \mathbb{N}, \quad (1-i)^n + (1+i)^n \in \mathbb{R}$$

- 109. Se
a $z=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}.$ Verifique que $z^5-1=0$
- 110. Demostrar que $\overline{cis\alpha}=cis-\alpha$ y $cis(\alpha-\beta)=\frac{cis\alpha}{cis\beta}$
- 111. Demostrar que las raíces cúbicas de

$$z = 4(1 + \sqrt{3}i)$$

tienen suma nula.

112. Se tiene que (S^1,\cdot) es un grupo, donde $S^1=\{z\in\mathbb{C};|z|=1\}$ y el producto habitual de números complejos. Demuestre que el producto en S^1 es una ley de composición interna.

Polinomios

- 113. Al dividir el polinomioP(X) por (X-1) el resto es a y al dividirlo por (X-2) es b. Encuentre el resto que resulta al dividirlo por (X-1)(X-2).
- 114. Determine los valores de $k \in \mathbb{R}$ para que el polinomio $P(X) = 2k^2X^3 + 3kX^2 2$ sea divisible por X 1 y tenga slo raíces reales.
- 115. Estudie si el polinomio $P(x) = \frac{1}{2}X^4 \frac{1}{2}X^3 \frac{1}{2}X \frac{1}{2}$, es reducible el $\mathbb{Q}[X]$
- 116. Encuentre todos los polinomios irreducibles de grado 2, en $\mathbb{R}[X]$
- 117. Sabiendo que el polnomio

$$P(X) = X^4 - 4X^3 + 10X^2 - 12X + 8$$

posee solamente raíces complejas y que una de ellas tiene módulo 2, encuentre todas las raíces del polinomio

- 118. Sea $P(X) = X^3 + aX^2 + bX + c$ un polinomio con coeficientes reales. Sea r(X) el resto de la división de P(X) por X 1. Si r(4) = 0 y x = i es una raíz de P(X), calcule a, b, c.
- 119. Estudie para que valores de a y b, el polinomio $P(X) = 3X^2 + bX b^2 a$ es divisible por X + 2, pero al dividirlo por X 1 da resto 1.
- 120. Al dividir el polinomio $P(X) = aX^4 2X^3 + bX^2 18X + a$ por (X 1) el resto es 3 y el cuociente es un polinomio que toma el valor 33 para X = 2. Encuentre el valor de a y b.
- 121. Factorice en $\mathbb{C}[X]$ y en $\mathbb{R}[X]$, el polinomio

$$P(X) = X^3 - 14X^2 + 124X - 200$$

sabiendo que una de sus raíces es 6 - 8i

- 122. Sea $P(X) = X^4 + bX^3 13^2 14X + 24$.
 - (a) Determinar $b \in \mathbb{R}$, de modo que -2 sea una raíz de P(X)
 - (b) Determinar las raíces restantes.
- 123. Determinar las constantes reales A,B,C para que se cumpla:

$$\frac{Ax^2 + Bx + C}{(x-1)(x-2)(x-3)} = \frac{2}{x-1} - \frac{9}{x-2} + \frac{8}{x-3}$$

124. Exprese como suma de fracciones parciales, la fracción racional siguiente:

$$\frac{5x^3 + 16x^2 + 13x + 9}{(x+2)^2(x^2 - x + 1)}$$

125. En los reales, descomponga en fracciones parciales, la fracción racional siguiente:

$$\frac{4x^3 + 10x^2 - x + 5}{x^4 + x^3 - x^2 + x - 2}$$

Sistemas de Ecuaciones

126. Estudie los siguientes sistemas de ecuaciones lineales:

(a)
$$\begin{cases} 2x_1 + x_2 + x_4 &= 2\\ 3x_1 + 2x_2 + 3x_3 + 5x_4 &= 4\\ 3x_1 - 3x_3 - 2x_4 &= 3 \end{cases}$$

(b)
$$\begin{cases} 2x + y + w &= 2 \\ 3x + 3y + 3z + 5w &= 3 \\ 3x - 3z - 2w &= 3 \end{cases}$$

(c)
$$\begin{cases} 2x + y + z &= 1 \\ 4x + 2y + 3z &= 1 \\ -2x - y + z &= 2 \end{cases}$$

(d)
$$\begin{cases} 2x_1 + x_2 + 2x_3 + 3x_4 + x_5 + 4x_6 &= 1 \\ x_2 + x_3 + 2x_4 + 2x_5 &= -1 \\ 2x_1 + x_2 + 3x_3 + x_4 + 5x_6 &= 1 \end{cases}$$

- 127. Estudie si existen, $a,b,c\in\mathbb{R}$ tales que la ecuación $x^3=a+bx+cx^2$ se verifique para todo $x\in\mathbb{R}.$
- 128. Demuestre que no hay números reales a y b tales que $\sqrt{x}=a+bx$ se verifique para todo $x\in\mathbb{R}.$
- 129. En \mathbb{C} , estudie el sistema

1)
$$(1+i)x + iy = 1$$

2)
$$(1-i)x + y + iz = i$$

130. Estudie las siguientes familias de sistemas para los diferentes valores de k.

(a) 1)
$$x_1 + 2x_2 + kx_3 = 1$$

$$2) \ 2x_1 + kx_2 + 8x_3 = 8$$

(b) 1)
$$kx_1 + x_2 + x_3 = 1$$

$$2) x_1 + kx_2 + x_3 = 1$$

3)
$$x_1 + x_2 + kx_3 = 1$$

Espacios Vectoriales

- 131. Verifique que ${\rm I\!R}$ es un espacio vectorial sobre ${\rm \mathbb{Q}}.$
- 132. Demuestre que:
 - (a) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}; \ a, b \in \mathbb{Q}\}\$
 - (b) $A = \{a + b\sqrt{2} + c\sqrt{3}; \ a, b, c \in \mathbb{Q}\}\$
 - (c) $B = \{a + b\Pi + c\Pi^2 + d\Pi^3; a, b, c, d \in \mathbb{Q}\}\$

son \mathbb{Q} -sub espacios vectoriales de \mathbb{R}

- 133. Demuestre que:
 - (a) $\mathbb{Z}_3(\alpha) = \{a + b\alpha; \ a, b \in \mathbb{Z}_3, \ \alpha^2 = 2\}$
 - (b) $C = \{a + be + ce^2; a, b, c \in \mathbb{Q}\}$ son \mathbb{Z}_3 -esp. vectoriales.
- 134. Si V y W son espacios vectoriales sobre ${\rm I\!R}$, demuestre que $V \bigoplus W$ con las operaciones $({\rm v,w})+({\rm v',w'})=({\rm v+v',w+w'})$ y $\alpha \bullet (v,w)=(\alpha v,\alpha w)$ es también un espacio vectorial sobre ${\rm I\!R}$.
- 135. Demuestre que son espacios vectoriales los sgtes. conjuntos:
 - (a) $M_{2\times 2}(\mathbb{R}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{R} \}$ con las operaciones sgtes:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix}$$
$$y \alpha \odot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{pmatrix}$$

(b)
$$D_{2\times 2}(\mathbb{R}) = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}; a, b \in \mathbb{R} \right\}$$

con las mismas operaciones anteriores.

136. Estudie si los sg
tes. cj
tos. con las operaciones suma y producto por escalar que se indican son
 ${\rm I\!R}$ - esp. vect. y vea qué propiedades verifican:

(a)
$$V_1 = \{(x, y) \in \mathbb{R}^2\}$$
; con $(x, y) + (x_1, y_1) = (x + x_1, y + y_1)$ y $\alpha \bullet (x, y) = (\alpha x, y)$

- (b) $V_2 = \mathbb{R}^3$ con las operaciones: $v \otimes w = v w$, $\alpha \odot v = -\alpha v$
- (c) $V_3 = \{(x,y) \in \mathbb{R}^2\}; (x,y) \triangleleft (x_1,y_1) = (x+x_1,0); \ \alpha \diamond (x,y) = (\alpha x,0)$
- (d) $V_4 = \mathbb{R}^2$ con la suma habitual y $\alpha \star (x, y) = (\alpha^2 x, \alpha^2 y)$

- 137. Averigüe si los s
gtes. subconjuntos de \mathbbm{R}^3 son sub-espacios vectoriales reales (con las mismas operaciones que tiene
 \mathbbm{R}^3)
 - (a) $V_1 = \{(x, y, z) \in \mathbb{R}^3; x = 0\}$
 - (b) $V_2 = \{(x, y, z) \in \mathbb{R}^3; x = 0, y = 3\}$
 - (c) $V_3 = \{(x, y, z) \in \mathbb{R}^3; x = 3\lambda, y = 2\lambda, z = \lambda, \lambda \in \mathbb{R}\}$
 - (d) $V_4 = \{(x, y, z) \in \mathbb{R}^3; x + 5y = 0\}$
 - (e) $V_5 = \{(x, y, z) \in \mathbb{R}^3; Ax + By + Cz = 0 \text{ con A, B, C fijos en } \mathbb{R} \}$
- 138. Averigüe cuáles de los sg
tes. sub-cjtos. son sub-espacios de \mathbb{R}^4 :
 - (a) $\{(x, y, x, y) \in \mathbb{R}^4\};$
 - (b) $\{(x, 2x, y, x + y) \in \mathbb{R}^4\};$
 - (c) $\{(x, y, z, t) \in \mathbb{R}^4; 2y = 3t\};$
 - (d) $\{(x, y, x + y, 1) \in \mathbb{R}^4\}$;
 - (e) $\{(x, \lambda_0, z, t) \in \mathbb{R}^4; \lambda_0 \text{ fijo en } \mathbb{R}\}.$
- 139. Ver si los sgtes. cjtos. con las operaciones habituales en el espacio de las funciones reales son IR-subespacios vectoriales de él:
 - (a) $V_1 = \{ f : [0,1] \longrightarrow \mathbb{R}; \ 2f(0) = f(1) \}$
 - (b) $V_2 = \{ f : \mathbb{R} \longrightarrow \mathbb{R}; \ f(x) = f(1-x) \}$
 - (c) $V_3 = \{ f : \mathbb{R} \longrightarrow \mathbb{R}; f \text{ continua}, f \ge 0 \}$
 - (d) $V_4 = \{f : \mathbb{R} \longrightarrow \mathbb{R}; f \text{ continua}, f(1) = f(0) + 1\}$
 - (e) $V_5 = \{f : \mathbb{R} \longrightarrow \mathbb{R}; \ f(-x) = f(x)\}$
- 140. Determinar cuales de los subconjuntos siguientes son subespacios de \mathbb{R}^3 :
 - (a) $\{(x, y, z); x + 2y z = 0\}$
 - (b) $\{(x, y, z); x + 2y z = 1\}$
 - (c) $\{(x,y,z); x^2+y^2-z^2=0\}$
 - (d) $\{(x, y, z); x \ge 0\}$
 - (e) $\{(x, y, z); x^2 + y^2 + z^2 > 0\}$
 - (f) ¿ Puede Ud. enunciar una regla general?
- 141. Sea S un sub-esp. de V. Demuestre que: $x \sim y \Leftrightarrow x y \in S$, define una relación de equivalencia en V. Encuentre la clase de $\vec{0}$.
- 142. Sea $V = M_{2\times 2}(\mathbb{R})$. Vea si son sub-esp. vect. de V:

- (a) $\left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix}; a, b, c \in \mathbb{R} \right\}$
- (b) $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{R} \text{ tales que } ad bc = 0 \right\}$
- (c) $\left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; a, b, c, d \in \mathbb{R} \text{ tales que } ad bc = 1 \right\}$
- (d) $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}; a, b, c \in \mathbb{R} \right\}$
- 143. Considere los vectores $u=(1,-3,2),\ v=(2,-1,1)\in {\rm I\!R}^3$
 - (a) Escriba como combinación lineal de u y v los vectores $w_1 = (0, -5, 3)$, $w_2 = (5, -10, 7)$
 - (b) Diga para qué valores de k, l, m, el vector (k, l, m) es combinación lineal de los vectores w_1 y w_2
- 144. Escriba $u=3t^2+t-7$ como combinación lineal de $v=2t^2+3t-4$ y $w=t^2-2t-3$. Lo mismo para $u=5t^2+4t-11$.
- 145. Diga para que valores de α , el vector $(1,3,\alpha+3)$ es combinación lineal de los vectores $(1,1,0),(0,1,2),(4,9,10),(6,6,\alpha+3)$
- 146. Sea $V=\mathbbm{R}^3$. Consideremos los s
gtes. subcjtos. de \mathbbm{R}^3 : $S=\{(1,0,1),(0,1,1)\},\ S'=\{(3,2,5),(0,2,2),(1,1,2)\}.$ Demuestre que < < > >=< S' >.
- 147. Encuentre 3 cjtos. de generadores de \mathbb{R}^2 , \mathbb{R}^3 y $M_{2\times 2}(\mathbb{R})$ de 4 elementos cada conjunto. Nótese <u>cuatro</u>.
- 148. Averigüe si son generadores del esp. vect. respectivo, los cjtos. de vectores sgtes.:
 - (a) $\{(1, -2, -3), (3, 2, 1)\}\ de\ \mathbb{R}^3;$
 - (b) $\{(1,1),(2,1),(1,2)\}\ de\ \mathbb{R}^2;$
 - (c) $\{(1,1,2),(1,1,1),(1,0,0)\}\$ de \mathbb{R}^3
- 149. Averigüe si el vector (1,2,3) está contenido en el sub-esp. generado por los vectores (2,2,2) , (3,1,2).
- 150. Averigüe si son linealmente independientes sobre \mathbb{R} :
 - (a) $\{(1,0),(0,1),(0,0)\}$
 - (b) $\{(2,1),(1,3)\}$
 - (c) $\{(1,1,-1),(1,0,0),(-3,-3,3)\}$

- (d) $\{(1,1,2),(1,1,1),(-1,1,1)\}$
- 151. Encuentre 3 cjtos l.i. de \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 y $M_{2x2}(\mathbb{R})$.
- 152. En $C[0,1]=\{f:[0,1]\to {\rm I\!R};$ continuas $\}$, demuestre que son l.i. los sgtes. cjtos de vectores.:
 - (a) $\{f_1, f_2, f_3 \in C[0, 1]; f_1(x) = 1, f_2(x) = x, f_3(x) = x^2\}$
 - (b) $\{sen(), cos()\}$
 - (c) $\{sen(), sen2()\}$
 - (d) $\{e^{(\cdot)}, e^{2(\cdot)}\}$
- 153. En \mathbb{C}^2 sobre \mathbb{R} , estudie la dependencia lineal de los vectores u = (2+3i, 5+2i) y v = (-4+7i, 1+12i).
- 154. Idem ejercicio anterior pero en \mathbb{C}^2 sobre \mathbb{C} .
- 155. Sea V un K-espacio vectorial. Sea $\{u, v, w\}$ una base de V. Estudie la dependencia lineal del conjunto $\{u + v + w, u 2v + w, u + v w\}$.
- 156. Sean V un k-espacio vectorial, $\{s, u, v, w\}$ una familia l.i. de V. Sea α un escalar cualquiera y consideremos la familia de vectores $\{x, y, z, t\}$ definida por $x = s u, y = u v, z = v w, t = \alpha w s$.
 - (a) Estudie para que valores de α la familia $\{x, y, z, t\}$ es l.i.
 - (b) Demuestre que si la familia $\{x,y,z,t\}$ es l.i., entonces engendra el mismo subespacio que la familia $\{s,u,v,w\}$
- 157. Encuentre 3 bases diferentes de \mathbb{R}^2 , \mathbb{R}^3 y $M_{2x2}(\mathbb{R})$.
- 158. Sea V un K-espacio vectorial. Sea $\{u,v,w\}$ un conjunto linealmente independiente. Estudie la dependencia lineal del conjunto:

$$\{u, 2u+v, u+2v+(\alpha-5)w+(\alpha-5)t, -u+v+(\alpha+1)(\alpha-5)w+(2\alpha-10)t\}$$

- 159. Encuentre una base sobre Q de:
 - (a) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}; \ a, b \in \mathbb{Q}\}\$
 - (b) $A = \{a + b\sqrt{2} + c\sqrt{3}; \ a, b, c \in \mathbb{Q}\}\$
 - (c) $B = \{a + b\Pi + c\Pi^2 + d\Pi^3; a, b, c, d \in \mathbb{Q}\}\$
- 160. Encuentre una base sobre \mathbb{Z}_3 de:
 - (a) $\mathbb{Z}_3(\alpha) = \{a + b\alpha; \ a, b \in \mathbb{Z}_3, \ \alpha^2 = 2\}$
 - (b) $C = \{a + be + ce^2; a, b, c \in \mathbb{Z}_3\}$

- 161. Encuentre una base del sub-esp. generado por los vectores:
 - (a) $\{(1,2),(1,3),(1,1),(2,3)\}$
 - (b) $\{(1,1,2),(1,-1,1),(3,-1,4)\}$
- 162. Demuestre que :
 - (a) $\{1, i\}$ es una base de \mathbb{C} sobre \mathbb{R} .
 - (b) $\{a+bi,c+di\}$ es una base de $\mathbb C$ sobre $\mathbb R$ ssi $ad-bc\neq 0$
- 163. Sean U y $W \leq \mathbb{R}_2[X]$ tal que $U=<2+X,1-X^2>$, $W=\{a+bX+cX^2;\ a+b=0,\ 3b-2c=0\}.$ Determine una base de W, $U\cap W$ y U+W.
- 164. Estudie la posible igualdad de los siguientes sub-espacios de \mathbb{R}^4 :

$$S = \{(2x, x, 4x + 2y, -2x - 4y); x, y \in \mathbb{R}\} \text{ y}$$

$$S' = \langle (1, 0, 2, 3), (1, 2, 1, -1), (-1, -6, 1, 3) \rangle$$

165. Encuentre dos bases diferentes de los siguientes sub-espacios vectoriales de \mathbb{R}^3 , encuentre, si existe, un espacio suplementario en cada caso.

$$W = \{(x, y, z); x + 3y - z = 0\}$$

$$T = \{(3y + 3z + 9u, x + 4y + 2z + 5u, x + 5y + 3z + 8u); x, y, z, u \in \mathbb{R}\}$$

- 166. Sea V un K-espacio vectorial. Sea $\{u_1, u_2, ..., u_n\}$ una base de V. Estudie si $\{u_1 + u_2, u_2, u_3 + u_2, ..., u_n + u_2\}$ es una base de V.
- 167. En \mathbb{R}^3 , encuentre un espacio suplementario de $S = \{(x+2y,x+y,3x+y);x,y\in\mathbb{R}\}$
- 168. En \mathbb{R}^4 , considere los sgtes. sub-espacios : $S_1 = <(2,2,-1,2), (1,1,1,-2), (0,0,2,-4) > y$ $S_2 = <(2,-1,1,1), (-2,1,3,3), (3,-6,0,0) >.$ Encuentre $S_1 \cap S_2$ y las dimensiones de S_1, S_2 y $S_1 \cap S_2$.
- 169. Sea $V' \leq V$. Demuestre que:
 - (a) dim $V' \leq \dim V$.
 - (b) Si $\dim V' = \dim V$ entonces V' = V.
- 170. Demuestre que $\omega=1+i, \overline{\omega}=1-i,$ generan $\mathbb C$ como $\mathbb R$ -espacio vectorial.
- 171. Demuestre que $u_1=1, u_2=1-t, u_3=(1-t)^2, u_4=(1-t)^3$ generan el espacio de los polinomios de grado ≤ 3
- 172. Demuestre que la intersección de dos sub-esp
. de V, es un sub-espacio vectorial de V.

- 173. Muestre en un ejemplo que se puede tener $S \bigoplus T = S \bigoplus W$, y $T \neq W$.
- 174. Sean U y V dos sub-esp. dados por: U = <(1,2,0,1), (0,1,1,0)>, V = <(1,1,2,1), (2,5,1,2)>
 - (a) Encuentre una base de U + V.
 - (b) Encuentre si existe, un sub-espacio suplementario de U+V en \mathbb{R}^4 .

Aplicaciones Lineales

- 175. Determine cuáles de las siguientes aplicaciones son lineales:
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por T(x,y) = (2x y, x + y, -x + 3y)
 - (b) $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por f(x, y, z) = (x + 2y 1, 3y + z)
 - (c) $g: M_{2\times 1}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ definida por $g(\begin{pmatrix} x \\ y \end{pmatrix}) = \begin{pmatrix} x+y & y \\ x & x-y \end{pmatrix}$
 - (d) $D: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ definida por

$$D(a_0 + a_1x + \dots + a_nx^n) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}$$

176. Si $f: \mathbb{R}^3 \to \mathbb{R}^2$ es lineal y

$$f(1,1,1) = (1,1); f(1,1,0) = (1,1); f(1,0,0) = (1,0)$$

Calcule f(2,3,1), f(1,0,1) y f(x,y,z)

- 177. Determine si existe una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que:
 - (a) f(2,1) = (1,0), f(0,1) = (0,1) y f(1,1) = (3,2)
 - (b) $f(2,1) = (1,0), f(0,1) = (0,1) \text{ y } f(1,1) = (\frac{1}{2}, \frac{1}{2})$
- 178. Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$; f(x, y, z) = (x + 2y + z, x y z).
 - (a) Encuentre la base escalonada y la dimensión de N(f) y de Im(f).
 - (b) Estudie la inyectividad y epiyectividad de f.
 - (c) Obtenga una base de \mathbb{R}^3 , completando la base obtenida para N(f)
 - (d) Obtenga una base de \mathbb{R}^2 , completando la base obtenida para Im(f).
- 179. Sea F el operador lineal definido por $F: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R}); F(X) = BX$ donde $B = \begin{pmatrix} 4 & 1 \\ 5 & -1 \end{pmatrix} \in M_{2\times 2}(\mathbb{R})$. Mismas preguntas que en el ejercicio anterior.

180. Sea $f: \mathbb{R}^5 \to \mathbb{R}^5$, definida por:

$$f(x, y, z, u, v) =$$

$$=(x+y+z+u,2x+2y+z+v,x+y+z+u,2x-y+z+v,y-z-2u+v)$$

Mismas preguntas que en el ejercicio anterior.

181. Sea $f: \mathbb{R}_2[t] \to M_2(\mathbb{R})$ lineal, tal que:

$$f(1+t^2) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ f(2t^2) = \begin{pmatrix} 4 & 2 \\ 0 & 0 \end{pmatrix}, \ f(1+t+t^2) = \begin{pmatrix} 3 & 1 \\ -1 & -1 \end{pmatrix}$$

- (a) Encuentre $f(x + yt + zt^2)$.
- (b) Encuentre la base escalonada del núcleo de f y de la imagen de f.
- 182. Sea $f_{\alpha}: \mathbb{R}^3 \to \mathbb{R}^3$; una transformación lineal tal que:

$$f_{\alpha}(x, y, z) = (x + z, y + 2z, (\alpha - 3)z)$$

Estudie le inyectividad y epiyectividad de f_{α} de acuerdo a los distintos valores de α .

- 183. Observando las imagenes de los elementos de la base, estudie si la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $f(1,0,0)=(1,1,0); \ f(0,1,0)=(0,0,1)$ y f(0,0,1)=(2,2,-1) es un:
 - (a) Monomorfismo
 - (b) Epimorfismo
 - (c) Automorfismo
- 184. Misma pregunta que en ejercicio anterior para $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por f(1,0,0)=(1,-1,1); f(0,1,0)=(1,2,-1) y f(0,0,1)=(-1,1,3).
- 185. Misma pregunta que en ejercicio anterior para la aplicación lineal $f: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ definida por $f(1) = x x^2$; $f(x) = 1 + x + x^2$; $f(x^2) = 2 x + 5x^2$.
- 186. Sea $f_{\alpha}: K^3 \longrightarrow K^3$, definida por

$$f_{\alpha}(x, y, z) = (x + z, (\alpha + 5)y, (\alpha + 5)y + (\alpha^{2} - 25)z)$$

- (a) Encuentre la base escalonada del núcleo e imagen de de f_{α} .
- (b) Estudie la inyectividad y epiyectividad de f_{α} .

según los diferentes valores de α

- 187. Sea $f_{\alpha}: K^3 \longrightarrow K^3$, definida por $f_{\alpha}(x,y,z) = (x+\alpha z, x+y+(\alpha+2)z, (\alpha)-3)z)$ Según los diferentes valores del escalar α
 - (a) Encuentre la base escalonada de $Im f_{\alpha}$ y $N(f_{\alpha})$
 - (b) Estudie en cada caso si es inyectiva o epiyectiva

Matrices

- 188. Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$. Encuentre la matriz asociada a f según las bases $B = \{(1,0,0), (1,1,0), (1,1,1)\}$ de \mathbb{R}^3 y $C = \{(1,0), (1,1)\}$ de \mathbb{R}^2 , en los siguientes casos:
 - (a) f(x, y, z) = (x + 2y, x)
 - (b) f(x, y, z) = (3z, x y)
- 189. Sea $f: \mathbb{R}^2 \to \mathbb{R}^3$. Encuentre la matriz asociada a f según las bases $B = \{(1,1,1), (1,1,0), (1,0,0)\}$ de \mathbb{R}^3 y la base canónica de \mathbb{R}^2 , donde:
 - (a) f(x,y) = (2x, x + y, x 2y)
 - (b) f(x,y) = (x+y, x-y, 2y)
- 190. Sea $F: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ def. por F(P(x)) = (1-x)P'(x). Determinar la matriz de F con respecto a la base canónica.
- 191. Determinar el endomorfismo f de \mathbb{R}^2 cuya matriz con respecto a la base $B=\{(2,1),(1,2)\}$ es $\begin{pmatrix}1&2\\3&0\end{pmatrix}$.
- 192. Determinar $f: \mathbb{R}^2 \to \mathbb{R}^3$ cuya matriz con respecto a las bases $B = \{(1,1), (1,-1)\}$ y $C = \{(1,1,1), (1,0,0), (1,1,0)\}$ es

$$(f;B,C) = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 1 \end{pmatrix}$$

- 193. Sea F un endomorfismo de \mathbb{R}^2 cuya matriz con respecto, a la base $B = \{(1,1),(1,-1)\} \text{ es } (F;B) = \begin{pmatrix} 7 & 0 \\ 0 & 2 \end{pmatrix}. \text{ Determinar la matriz de } F$ con respecto a la base canónica
- 194. Considere $\mathbb C$ como espacio vectorial sobre $\mathbb R$. Determine la matriz de $f \in End(\mathbb C)$ dada por $f(z) = \overline{z}$ con respecto a la base $\{1, i\}$ y la base $\{1 + i, 1 + 2i\}$.

- 195. Sea $F: \mathbb{R}_3[t] \to \mathbb{R}$ la transformación lineal definida por $F(P(t)) = \int_0^1 P(t)dt$. Determinar la matriz de F con respecto a las bases $B = \{1, t, t^2, t^3\}$ y $C = \{1\}$ de $\mathbb{R}_3[t]$ y \mathbb{R} respectivamente.
- 196. Sean $f,g:\mathbb{R}^2\to\mathbb{R}^2$ definidas por f(x,y)=(2x,x-y); g(x,y)=(x,2y-x). Encuentre la matriz de f,g,f+g,fog,3f y f^2 con respecto a la base canónica.
- 197. Sean $F, G : \mathbb{R}^2 \to \mathbb{R}^3$, sabiendo que F(x,y) = (3x, x+y, y) y que la matriz de F + G con respecto a las bases canónicas de \mathbb{R}^2 y \mathbb{R}^3 es $\begin{pmatrix} 2 & 1 \\ 0 & 1 \\ 3 & 3 \end{pmatrix}$, determine G(x,y) y la matriz de G con respecto a esas bases.
- 198. Sea A una matriz cuadrada de orden 3.
 - (a) Si A es simétrica, encuentre $A A^t$
 - (b) Si A es triangular superior, encuentre A^t y A^2
 - (c) Si A es diagonal, encuentre A^t
- 199. Una matriz se dice idempotente si y sólo si $A^2 = A$.
 - (a) Pruebe que $A = \begin{pmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{pmatrix}$ es idempotente.
 - (b) Demuestre que si A es idempotente, entonces $B = I_n A$ es idempotente y AB = BA.
- 200. Determinar A^t , B^t , $(A+B)^t$, A^t+B^t , $B+B^t$, $A+A^t$, $A-A^t$, $A\cdot A^t$, $B\cdot B^t$; para las matrices A y B siguinetes:

(a)
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 0 & 1 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 4 & 3 & 0 \\ -1 & 5 & 0 \end{pmatrix}$

(b)
$$A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 3 \\ -1 & 5 \end{pmatrix}$$

201. Sea V un K-espacio vectorial y $B = \{v_1, v_2, \dots, v_n\}$ una base de V. Se considera $f: V \to V$ un endomorfismo definido por

$$f(v_k) = \begin{cases} 0 & \text{si } k = 1\\ v_1 + v_2 + \dots + v_{k-1} & \text{si } k \ge 2 \end{cases}$$

- (a) Encuentre (f; B, B).
- (b) Estudie si f es inyectiva o epiyectiva

- (c) Para n=2,3,4 encuentre (f;B,B). En cada unos de stos tres casos encuentre $m\in\mathbb{N}$ tal que $(f;B,B)^m=0$. Deduzca el caso general (n cualquiera).
- 202. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$, una transformación lineal tal que:

$$f(x, y, z) = (x + 2y + z, x + z, z)$$

- (a) Encuentre f^{-1} .
- (b) Si $B = \{(-1,1,0),(0,1,0),(0,-1,1)\}$ una base ordenada de \mathbb{R}^3 , encuentre (f;B) y $(f^{-1};B)$.
- 203. Encuentre, si existe, la inversa de los siguientes endomorfismos:
 - (a) f(x,y) = 2(x,-y);
 - (b) $f: M_{2\times 2} \to M_{2\times 2}$; f(X) = AX, donde $A = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$;
 - (c) $f : \mathbb{R}_n[X] \to \mathbb{R}_n[X] ; f(p(x)) = p(x) p(0)$
- 204. Calcule la inversa de la matriz $\begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 9 \end{pmatrix}$.
- 205. Demuestre que una matriz triangular superior con elementos distintos de cero en la diagonal principal, tiene por inversa una matriz triangular superior.
- 206. Sea $A = \begin{pmatrix} cos\theta & -sen\theta \\ sen\theta & cos\theta \end{pmatrix}$. Encuentre A^{-1} .
- 207. Si A es invertible, demuestre que $(A^{-1})^{-1} = A$.
- 208. Si AB = 0, $B \neq 0$. ¿Es A invertible?
- 209. Si $A^2 = 0$. Estudie si A es invertible.
- 210. Determinar $a \in \mathbb{R}$, de manera que la matriz real $A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & a \end{pmatrix}$ sea invertible.
- 211. Encuentre los valores de α en K, para los cuales la matriz:

$$A_{\alpha} = \begin{pmatrix} 1 & \alpha - 2 & \alpha^2 - 4 \\ 1 & 2\alpha - 4 & 2\alpha^2 - 8 \\ 0 & \alpha - 2 & \alpha - 2 \end{pmatrix}$$

es invertible y en los casos que sea invertible, encuentre su inversa.

212. Sea
$$B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- (a) Encuentre B^n
- (b) Demuestre por inducción que su resultado es el correcto.
- 213. Si A es una matriz invertible, demuestre que $(A^{-1})^t = (A^t)^{-1}$, donde A^t es la transpuesta de A, y $A \in M_{3\times 3}(K)$.
- 214. Una matriz A se dice ortogonal si A es invertible y $A^{-1} = A^t$.
 - (a) Determine si es posible $x,y\in\mathbb{R}$, de manera que la matriz $\begin{pmatrix}\sqrt{2}&x\\y&\sqrt{2}\end{pmatrix}$ sea ortogonal.
 - (b) Demuestre que el producto de dos matrices ortogonales es ortogonal.
- 215. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $f(1,0)=(0,1), \ f(0,1)=(1,-1)$. Encuentre $f(x,y), \ \forall (x,y) \in \mathbb{R}^2$. Demuestre que f es un isomorfismo y encuentre su inverso.
- 216. Determine cuáles de las siguientes matrices son invertibles, y en caso que lo sean, encuentre sus inversas:

(a)
$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
; (b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$; (c) $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$; (d) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; (e) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$;

(f)
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
; (g) $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$; (h) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$.

- 217. Si la matriz de un endomorfismo con respecto a la base canónica es $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Determine la matriz de este endomorfismo con respecto a la base $B = \{(1,1), (1,-1)\}$.
- 218. Determine los valores de α para los cuales las siguientes matrices son invertibles y en caso que lo sean encuentre su inversa:

(a)
$$\begin{pmatrix} \alpha & 1 \\ 1 & 0 \end{pmatrix}$$
; (b) $\begin{pmatrix} 1 & \alpha \\ 1 & 0 \end{pmatrix}$; (c) $\begin{pmatrix} 1 & \alpha \\ 1 & \alpha \end{pmatrix}$; (d) $\begin{pmatrix} 1 & 1 \\ 1 & \alpha \end{pmatrix}$;

(e)
$$\begin{pmatrix} 1 & \alpha & 0 \\ \alpha & 1 & \alpha \\ 0 & \alpha & 1 \end{pmatrix}$$
; (f) $\begin{pmatrix} \alpha & 1 & 0 \\ 1 & \alpha & 1 \\ 0 & 1 & \alpha \end{pmatrix}$; (g) $\begin{pmatrix} 1 & 1 & \alpha \\ 1 & 1 & \alpha \\ 1 & \alpha & 1 \end{pmatrix}$.

219. Calcule la inversa de cada una de las siguientes matrices, cuando ella exista:

(a)
$$\begin{pmatrix} 2 & -1 \\ 3 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 & 3 \\ -1 & 0 & 4 \\ 1 & 3 & 0 \end{pmatrix}$

(e)
$$\begin{pmatrix} \cos\theta & 0 & -sen\theta \\ 0 & 1 & 0 \\ sen\theta & 0 & \cos\theta \end{pmatrix}$$

Determinantes

220. Calcule el determinante de las siguientes matrices:

(a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & -1 \\ 0 & 2 & 3 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 3 & 1 & -1 \\ 0 & 2 & 4 & 1 \\ -1 & 1 & 2 & 0 \\ 0 & 3 & 1 & 3 \end{pmatrix}$

221. Pruebe la siguiente identidad:

$$\det \begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix} = (b-a)(c-a)(c-b)$$

222. Dadas las matrices:
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 1 \\ -2 & 0 & 5 \end{pmatrix}$$
 $B = \begin{pmatrix} 3 & -1 & 2 \\ 4 & 0 & 1 \\ -2 & 1 & 5 \end{pmatrix}$

Constate que det(AB) = det(A)det(B)

223. Si ω es una raíz cúbica imaginaria de la unidad, hallar el valor de:

$$\det \begin{pmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{pmatrix}, \quad \det \begin{pmatrix} 1 & \omega^3 & \omega^2 \\ \omega^3 & 1 & \omega \\ \omega^2 & \omega & 1 \end{pmatrix}$$

224. Calcule el determinante de cada una de las siguientes matrices :

$$A = \begin{pmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix} \qquad B = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}$$

- 225. Si A y B son matrices invertibles de $n \times n$. Estudie si AB y A+B son invertibles.
- 226. Estudie para qué valores de x la matriz $\begin{pmatrix} x-3 & 4 \\ 2 & x-1 \end{pmatrix}$ no es invertible

- 227. Se define la traza de una matriz de $n \times n$ como la suma de los elementos de la diagonal. Sea A una matriz de 2×2 . Pruebe que: $det(I_2 + A) = 1 + detA$ si y sólo si Tr(A) = 0 (donde Tr(A) = Traza de A).
- 228. Sea A una matriz de 3×3 . Pruebe que si $det(xI_3 A) = ax^3 + bx^2 + cx + d$, entonces a = 1, b = Tr(A) y d = -detA

Diagonalización

- 229. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que T(x, y, z) = (-3x + z, -2x + y, -x + 2y + 4z)
 - (a) Calcule la matriz asociada a T según la base canónica.
 - (b) Encuentre bases C y D de \mathbb{R}^3 tal que (T;C,D) esté en su forma normal.
 - (c) Estudie si existe una base B de \mathbb{R}^3 tal que (T; B) sea diagonal.
- 230. Analice la diagonalización de las siguientes matrices:

(a)
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 4 \\ 1 & -2 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$

(e)
$$\begin{pmatrix} 1 & 1 & -2 \\ 4 & 0 & 4 \\ 1 & -1 & 4 \end{pmatrix}$$
 (f) $\begin{pmatrix} 3 & -2 & 1 \\ 2 & 1 & -1 \\ 2 & -6 & 4 \end{pmatrix}$ (g) $\begin{pmatrix} 2 & 2 & -3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{pmatrix}$

(h)
$$\begin{pmatrix} 2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1 \end{pmatrix}$$
 (i) $\begin{pmatrix} 3 & -2 & 1 \\ 2 & 1 & -1 \\ 2 & -6 & 4 \end{pmatrix}$ (j) $\begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix}$

$$\text{(k)} \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{pmatrix} \text{(l)} \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix} \text{(m)} \begin{pmatrix} 3 & 0 & 1 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

$$(n) \begin{pmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{pmatrix}$$

- 231. Sea v un vector propio de T asociado al valor propio λ , probar que $\forall n \in \mathbb{N}$ v también es un vector propio de T^n correspondiente al valor propio λ^n .
- 232. Ilustre el ejercicio anterior haciendo n=2 y la matriz asociada a T igual a $\begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$.
- 233. Si λ es un valor propio de T y F(x) es un polinomio, pruebe que $F(\lambda)$ es un valor propio de F(T).

- 234. Una matriz cuadrada $A \neq 0$ se dice que es nilpotente si existe $k \in \mathbb{N}, k \neq 0$ tal que $A^k = 0$. Probar que si A es nilpotente entonces 0 es el único valor propio de A. Concluya que A no es diagonalizable.
- 235. Para cada una de las siguientes matrices, encuentre, si existe, una matriz invertible P, tal que $P^{-1}AP$ sea diagonal:

(a)
$$\begin{pmatrix} 4 & 2 & 3 \\ 2 & 1 & 2 \\ -1 & -2 & 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & -1 \\ 2 & 3 \end{pmatrix}$

- 236. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(x, y, z) = (2x + 3y, -y + 4z, 3z). Encuentre el polinomio característico y los valores y vectores propios de f.
- 237. Dada la matriz $A = \begin{pmatrix} 6 & -1 & 3 \\ -3 & 2 & -3 \\ -1 & 1 & 2 \end{pmatrix}$

Encuentre:

- (a) Valores propios asociados a A.
- (b) Subespacios propios de A.
- (c) Una matriz P invertible tal que $P^{-1}AP$ sea una matriz diagonal.
- 238. Sea V un IR -espacio vectorial de dimensión finita y $f:V\to V$ lineal, distinta de la identidad. Muestre que:
 - (a) Si $f^2 = f$, entonces f es diagonalizable.
 - (b) Si $f^3 = Id$, entonces f no es diagonalizable.

Formas Bilineales

- 239. Estudie cuales de las siguientes funciones son bilineales:
 - (a) $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ tal que f((x, y, z), (a, b, c)) = x + a + y + b + z + c
 - (b) $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ tal que f((x, y), (a, b)) = 3ax + by
 - (c) $f: \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}$ tal que f((x, y, z, t), (a, b, c, d)) = ax + 2by 3cz + kdt, donde k es un real fijo.
 - (d) $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ tal que f((x, y), (a, b)) = ay 1

Para aquellas que son bilineales, encuentre la matriz con respecto a:

i. La base canónica. ii. Las bases

$$B = \{(0,1), (1,2)\} \text{ de } \mathbb{R}^2, C = \{(1,0,2), (-1,2,0), (0,1,1,1)\} \text{ de } \mathbb{R}^3 \text{ y}$$

$$D = \{(1,1,1,2), (1,2,-1,-1), (0,0,2,0), (1,0,0,0)\} \text{ de } \mathbb{R}^4.$$

- 240. Diga cuales de las formas bilineales del ejercicio anterior son producto escalar.
- 241. Sea $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, tal que f((x,y),(a,b)) = xa + ya + xb + 2yb
 - (a) Demuestre que f es un producto escalar.
 - (b) Defina norma para este producto escalar y calcule la longitud del vector (0,1)
 - (c) Defina el ángulo entre dos vectores y calcule el ángulo entre los vectores $(0,1) \ y \ (1,0)$
- 242. Sea $k \in \mathbb{R}$ y $f : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida por:

$$f((a,b),(x,y)) = ax - 3ay - 3bx + kby$$

Diga para qué valores de k, f es un producto escalar en ${\rm I\!R}^2$

243. Si $f: V \times V \to \mathbb{R}$ es un producto interno, verifique que

$$f(u,v) = \frac{1}{4}(||u+v||^2 - ||u-v||^2)$$

- 244. Sea $g: M_{n \times n}(\mathbb{R}) \times M_{n \times n}(\mathbb{R}) \to \mathbb{R}$ tal que $g(A, B) = tr(B^t A)$
 - (a) Demuestre que g es un producto interno.
 - (b) Para n=2 y para $A=\begin{pmatrix}1&2\\3&4\end{pmatrix},\ B=\begin{pmatrix}1&6\\2&5\end{pmatrix},$ calcule || A ||, d(A,B), el ángulo entre A y B
- 245. Encuentre bases ortonormales para los siguientes subespacios sobre IR:
 - (a) <(i, i, -i), (i, 0, i) > (b) <(2, 1, 1), (1, 3, -1) >

$$(c) < (1, 2, 1, 0), (1, 2, 3, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, -1, 1, 1), (-1, 0, 2, 1) > (d) < (1, 1, 0, 0), (1, 0, 0),$$

- 246. Sea $v=(1,2,-1),\ w=(0,2,0)$ vectores de \mathbbm{R}^3 . Encuentre el conjunto S de todos los vectores ortogonales a v y w simultáneamente. Demuestre que S es un subespacio vectorial de \mathbbm{R}^3
- 247. Encuentre una base ortogonal de \mathbb{R}^3 que contenga el vector (1, -1, 0). Lo mismo para \mathbb{R}^4 , con el vector $(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3}, 0)$
- 248. Sea $f: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ una forma bilineal tal que

$$f((a,b,c),(x,y,z)) = ax - 2bx + 3cx - 2ay + by + cy + 3az + 4cz$$

- (a) Encuentre la matriz de f, respecto de la base canónica de \mathbb{R}^3
- (b) Diga si f es un producto interno en \mathbb{R}^3 . Justifique.

- (c) Si la respuesta en (b) es afirmativa, ortonormalice $\{(1,1,0),(1,2,3)\}$ con respecto al producto interno f.
- (d) Si la respuesta en (b) es negativa, ortonormalice el conjunto dado con respecto al producto usual.
- 249. Encuentre una base ortonormal de $W = \{(x, y, z) \in \mathbb{R}^3; y = 3x\}$ con respecto al producto usual y extiéndala hasta una base ortonormal de \mathbb{R}^3 .
- 250. Sea V el espacio vectorial real de los polinomios de grado menor o igual a n. Demuestre que:

$$\langle f,g \rangle = \int_0^1 f(t)g(t)dt$$

- es un producto escalar y encuentre su matriz con respecto a la base $\{1,t,t^2,...,t^n\}$.
- 251. Sea $V = \mathbb{R}^3[t]$, dotado del producto escalar definido en el ejercicio anterior. Ortonormalice la base $\{1, t, t^2, t^3\}$.
- 252. Sea V el espacio vectorial real con base $\{sen(t), cos(t)\}$. Se define el producto escalar:

$$\langle f,g \rangle = \int_{-\pi}^{\pi} f(t)g(t)d(t)$$

- (a) Encuentre la matriz de este producto escalar con respecto a la base dada.
- (b) Encuentre un vector ortogonal al vector 2sen(t) 3cos(t).
- 253. Se
aV un espacio euclidiano y sean u
yvvectores de V. Demuestre que
:u=vsi y sólo si $< u,w> = < v,w> \forall w \in V$
- 254. Considerar \mathbb{R}^4 con el producto escalar usual. Sea W el subespacio de \mathbb{R}^4 formado por todos los vectores ortogonales a (1,0,-1,1) y (2,3,-1,2). Encuentre una base de W.
- 255. Si v=(x,y,z) de ${\rm I\!R}^3,$ encuentre la forma bilineal asociada a cada una de las formas cuadráticas:

$$f(v) = xy;$$
 $g(v) = xz + y^2;$ $h(v) = 2xy - zx$

256. Dada la función cuadrática $q: \mathbb{R}^3 \to \mathbb{R}$;

$$q(x, y, z) = 10xy + 4xz - 10x^2 + 6yz + 6z^3$$

- (a) Encuentre la matriz de q con respecto a la base canónica.
- (b) Si v=(x,y,z), w=(a,b,c) y f es la función bilineal asociada a q, calcule f(v,w).