INVESTIGATING MOVIE DATASET EXPLORATORY DATA ANALYSIS (EDA)

Md. Sayeed Akram	Parth Praveen Shetty	Raghav Chugh
PES2UG20CS201	PES2UG20CS240	PES2UG20CS260

Q. How many rows and attributes?

Code:

import csv
import pandas as pd

df=pd.read_csv("tmdb_movies_data.csv")

df.head()

print("Number of rows in dataset: ",len(df.index))

print("Number of columns in dataset: ",len(df.columns))

print('\n\n')

print("Attributes of dataset are", df.columns)

Output:

Out[5]:

		id	imdb_id	popularity	budget	revenue	original_title	cast	homepage	director	tagline	 •
(0 1350	397	tt0369610	32.985763	150000000	1513528810	Jurassic World	Chris Pratt Bryce Dallas Howard Irrfan Khan Vi	http://www.jurassicworld.com/	Colin Trevorrow	The park is open.	t Ji
1	1 763	341	tt1392190	28.419936	150000000	378436354	Mad Max: Fury Road	Tom Hardy Charlize Theron Hugh Keays- Byrne Nic	http://www.madmaxmovie.com/	George Miller	What a Lovely Day.	ar st th
2	2 262	500	tt2908446	13.112507	110000000	295238201	Insurgent	Shailene Woodley Theo James Kate Winslet Ansel	http://www.thedivergentseries.movie/#insurgent	Robert Schwentke	One Choice Can Destroy You	F
:	3 1406	607	tt2488496	11.173104	200000000	2068178225	Star Wars: The Force Awakens	Harrison Ford Mark Hamill Carrie Fisher Adam D	http://www.starwars.com/films/star-wars-episod	J.J. Abrams	Every generation has a story.	yι
4	4 1682	259	tt2820852	9.335014	190000000	1506249360	Furious 7	Vin Diesel Paul Walker Jason Statham Michelle	http://www.furious7.com/	James Wan	Vengeance Hits Home	
5	rows	× 21	columns									

Conclusion:

We have chosen Movie Dataset for our data analytics project. This database has 21 attributes and has close to 10,866 rows.

Q2. How many missing data and outliers?

Code for Outliers:

```
Q1 = df.quantile(0.25) 
Q3 = df.quantile(0.75) 
IQR = Q3 - Q1 
print("OUTLIERS") 
((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).sum() #sum of outliers in each attribute
```

Output & Conclusion for Outliers:

Out[23]:	budget	1370
	budget_adj	1231
	cast	0
	director	0
	genres	0
	homepage	0
	id	1606
	imdb_id	0
	keywords	0
	original_title	0
	overview	0
	popularity	946
	production_companies	0
	release_date	0
	release_year	403
	revenue	1736
	revenue_adj	1689
	runtime	781
	tagline	0
	vote_average	197
	vote_count	1518
	dtype: int64	

Code for Missing values:

print("MISSING VALUES")
df.isnull().sum()

Output & Conclusion for Missing Values:

	MISSING VALUES		
Out[22]:	id	0	
	imdb_id	10	
	popularity	0	
	budget	0	
	revenue	0	
	original_title	0	
	cast	76	
	homepage	7930	
	director	44	
	tagline	2824	
	keywords	1493	
	overview	4	
	runtime	0	
	genres	23	
	production_companies	1030	
	release_date	0	
	vote_count	0	
	vote_average	0	
	release_year	0	
	budget_adj	0	
	revenue_adj dtype: int64	0	
	dtype: 11104		

Q. Any inconsistent, incomplete, duplicate or incorrect data?

There a lot many inconsistent, incomplete, duplicate or incorrect data in our data set

```
print("Duplicates: ",df.duplicated().sum())

n=len(df.columns)
sm=0

for i in range (0, n):
    k=df.columns[i]
    sm+=(df[k]==0).sum()

#sm=0

#for i in range (0,n):
# sm+=(df2[i])
print("Incorrect:",sm)
```

```
df3=df.isnull().sum()
sm=0
for i in range (0,n):
    sm+=(df3[i])
print("Incomplete:",sm)
```

Output

Duplicates: 1 Incorrect: 23455 Incomplete: 13434

Q. Are the variables correlated to each other?

Yes, a few variables are positively correlated

Code:

```
df7=df.corr()
print(df7)
((df7 > 0.5)).sum()-1
```

Output using numbers:

```
id popularity
                                            budget
                                                             runtime vote count
                                                    revenue
                    1.000000 -0.014350 -0.141351 -0.099227 -0.088360 -0.035551
        popularity -0.014350 1.000000 0.545472 0.663358 0.139033 0.800828
        budget -0.141351 0.545472 1.0000000 0.754547
revenue -0.099227 0.663358 0.734901 1.000000 0.162838
                                                                       0.632702
                                                                       0.791175
                    -0.088360 0.139033 0.191283 0.162838 1.000000 0.163278
        vote_count -0.035551 0.800828 0.632702 0.791175 0.163278
                                                                       1.000000
        vote_average -0.058363
release_year 0.511364
                                0.209511 0.081014 0.172564 0.156835
                                                                       0.253823
                                0.089801 0.115931 0.057048 -0.117204
                                                                       0.107948
        budget_adj -0.189015
                                0.513550 0.968963 0.706427 0.221114
                                                                       0.587051
        revenue_adj -0.138477
                                0.609083 0.622505 0.919110 0.175676
                                                                       0.707942
                     vote_average release_year budget_adj revenue_adj
        id
                        -0.058363
                                      0.511364 -0.189015
                                                          -0.138477
                        0.209511
                                                             0.609083
                                      0.089801
                                                 0.513550
        popularity
                                    0.115931
0.057048
        budget
                        0.081014
                                                0.968963
                                                             0.622505
                        0.172564
        revenue
                                                 0.706427
                                                             0.919110
                        0.156835
                                    -0.117204
                                                0.221114
        runtime
                                                            0.175676
                        0.253823
                                    0.107948 0.587051
        vote_count
                                                            0.707942
        vote_average
                        1.000000 -0.117632
                                                 0.093039
                                                            0.193085
        release year
                       -0.117632
                                    1.000000
                                                 0.016793 -0.066256
                     0.093039
                                    0.016793 1.000000 0.646607
        budget_adj
                        0.193085 -0.066256
                                                 0.646607
                                                            1.000000
        revenue_adj
Out[81]: id
        popularity
                       5
        budget
                       5
                       5
        revenue
        runtime
        vote_count
        vote_average
                       0
        release_year
                       1
        budget adj
                       5
                       5
        revenue adj
        dtype: int64
```

Code for graphical representation:

```
import matplotlib.pyplot as plt
import seaborn as sns
corr=df.corr()
f,ax=plt.subplots(figsize=(12,12))
sns.heatmap(corr,vmax=1)
plt.show()
```

Output using graph:

Q. Are any of the pre-processing techniques needed: dimensionality reduction, range transformation, standardization, etc.?

Yes, we need to pre-process data since we have a lot many inconsistencies in dataset. By preprocessing data, we **make it easier to interpret and use**.

This process eliminates inconsistencies or duplicates in data, which can otherwise negatively affect a model's accuracy. Dimensionality reduction can be used in order to process the data

Q. Does PCA help visualize the data?

Principal component analysis (PCA) is an unsupervised machine learning technique. Perhaps the most popular use of principal component analysis is dimensionality reduction. Besides using PCA as a data preparation technique, we can also use it to help visualize data.

Q. Do we get any insights from histograms/ bar charts/ line plots, etc.?

Every new visualization is likely to give us some insights into our data. Some of those insights might be already known (but perhaps not yet proven) while other insights might be completely new or even surprising to us. Some new insights might mean the beginning of a story, while others could just be the result of errors in the data, which are most likely to be found by visualizing the data.
