

ANTICIPARE LA CRESCITA CON LE NUOVE COMPETENZE SUI BIG DATA – EDIZIONE 2

Operazione Rif. PA 2019-11596/RER "Anticipare la crescita con le nuove competenze sui Big Data - Edizione 2", approvata dalla Regione Emilia-Romagna con DGR n° 789 del 20 maggio 2019 e co-finanziata dal Fondo Sociale Europeo PO 2014-2020

Prog. 4 Ed. 7 Titolo "Tecnologie & Software di Data Science

When we're doing Logistic Regression, the y-axis is converted to the probability that a mouse is obese.

So this Logistic Regression tells us the **probability** that a mouse is **obese** based on its weight.

To evaluate the effectiveness of this Logistic Regression, with the classification threshold set to **0.5**, we can test it with mice that we know are **obese** or **not obese**.

Now let's talk about what happens when we use a different threshold for deciding if a sample is **obese** or **not**.

...but the threshold could be set to anything between 0 and 1.

But even if we made one confusion matrix for each threshold that mattered, it would result in a confusingly large number of confusion matrices.

	Is Obese	Is Not Obese	X*X * X
Is Obese	4	4	
Is Not Obese	0	0	/
			X
		0	XX
			Weight

But even if we made one confusion matrix for each threshold that mattered, it would result in a confusingly large number of confusion matrices.

	Is Obese	Is Not Obese	Is Obese	Is Not Obese	(- XX
Is Obese	4	4 Is Obese	4	2	
Is Not Obese	0	(Is Not Obese	0	2	
	Is Obese	Is Not Obese	Is Obese	Is Not Obese	
Is Obese	4	(Is Obese	3	2	
Is Not	0	, Is Not	4	2	

So instead of being overwhelmed with confusion matrices,

Receiver Operator Characteristic . (ROC) graphs

provide a simple way to summarize all of the information.

The y-axis shows the **True Positive Rate**, which is the same thing as **Sensitivity**.

True Positive Rate (Sensitivity)

False Positive Rate =
$$(1 - Specificity) = \frac{False Positives}{False Positives + True Negatives}$$

		——Act <u>ual</u> ——	
		Is Obese	Is Not Obese
Predicted	Is Obese	True Positives	False Positives
	Is Not Obese	False Negatives	True Negatives

The False Positive Rate tells you the proportion of **not obese** samples that were incorrectly classified and are False Positives.

Any point on this **line** means that the **proportion** of **correctly** classified **obese** samples is the same as the **proportion** of **incorrectly** classified samples that are **not obese**.

In other words, the new threshold for deciding if a sample is **obese** or **not** is better than the first one.

Lastly, we choose a threshold that classifies all of the samples as **not obese**...

If we want, we can connect the dots...

The **ROC** graph summarizes all of the confusion matrices that each threshold produced.

ROC curves make it easy to identify the best threshold for making a decision...

...and the **AUC** can help you decide which categorization method is better.