"Theory of Computation"

Computation

Example:
$$f(x) = x^3$$

$$f(x) = x^3$$

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

output memory

Program memory

compute X * X

compute $x^2 * x$

CPU

temporary memory

$$f(x) = x^3$$

$$z = 2 * 2 = 4$$

$$f(x) = z * 2 = 8$$

input memory

$$x = 2$$

f(x) = 8

output memory

Program memory

compute x * x

CPU

compute $x^2 * x$

Automaton

Different Kinds of Automata

Automata are distinguished by the temporary memory

· Finite Automata: no temporary memory

Tonno from acces 1201: Lastin-first in

• Pushdown Automata: stack อีงเทยความอำเพื่อเมา

• Turing Machines: random access memory

Finite Automaton

Example: Vending Machines (small computing power)

Pushdown Automaton

ยูก ตัวอย่าว เช่น

Example: Compilers for Programming Languages (medium computing power)

Turing Machine

Power of Automata

