

Representação por Bordos (Mortenson 2006)

- Descreve completamente um objetos sólido como uma coleção organizada de suas superfícies limitantes (:377)
- Uma superfície limitante separa pontos que são internos e externos ao sólido (:379)
- As superfícies do sólido deve atender às seguintes condições (377):
 - Fechadas, Orientáveis, Não auto-intersectantes, todas conectadas, e todas limitantes do objeto.

B-reps Generalizados

◆ Faces podem ser "retalhos" (patches) de superfícies livres se o algoritmo que trata a representação conseguir trabalhar com as curvas de interseção resultantes (grau maior de complexidade)

B-rep Poliédrico Foley 1996 12.5.1

- Um B-rep simplificado representa um poliedro, ou seja:
 - O objeto é limitado por superfícies planares poligonais
 - As faces são limitadas por arestas retas
 - As arestas são limitadas por dois vértices no R3

Características do B-rep

- Limitações
 - Conceito de Superfície/Face nem sempre é claro e facilmente representável
 - Não unicidade construtiva
- Vantagens
 - Dados Wireframe podem ser facilmente derivados dos modelos B-rep baseados em grafos
 - Pode-se obter B-rep de várias outras formas de representação e criação

Representação Linear por Partes

- Objeto parametrizado com geometria complexa pode ser aproximado por uma superfície linear por partes
- Pode-se particionar o domínio da parametrização por um conjunto de polígonos.
 - Cada vértice no domínio poligonal é levado para a superfície pela parametrização.
 - Em seguida é ligado aos vértices adjacentes mantendo as conectividades do domínio.

- Triângulos são a primeira escolha de polígonos
 - Eles são sempre planares
 - Hardware gráfico são otimizados para triângulos
 - Nvidia TITAN X:
 - 3584 núcleos NVIDIA CUDA
 - Processa a 11TFLOPS
 - Obs.: Não se apeguem muito a estes números. São similares aos número que dizem de velocidade de processadores. Eles não dizem de fato o quão rápido é o computador.
 - Ver nas versões 2024/2025.

Triangularização Como os triângulos são obtidos? Triangularizando um conjunto de pontos da superfície Existem várias técnicas diferentes Triangularização de Delaunay tenta equalizar o ângulos internos (evita triângulos finos e longos)

Operações Importantes sobre Malhas Poligonais Desenhar a malha. Identificar adjacências Achar todas as arestas que incidem em um vértice. Achar as faces que incidem numa aresta ou vértice. Achar as arestas na fronteira de uma face.

Estruturas de Dados para B-reps

- **♦** Sólidos Poliédricos (2-manifold)
- ◆3-manifold
- N-manifold
- Non-manifold

LAGE, LEWINER, LOPES e VELHO. Editor Escalável para Malhas Tetraédricas. SIBGRAPI 2005, pp 349-...

Manifolds and Shapes

- ◆ Curvas → 1D-manifolds
- ◆ Surpefícies ⇒ 2D-manifolds
- Solidos ⇒ 3D-manifolds with boundary

B-rep Sólidos 2-manifold

- ◆ Codificação Explícita
- Lista de Vértices
- Lista de Arestas
- ◆ Winged-Edge de Weiler, 1988 (Foley 96: 2.5.2)
- ◆ Half-Edge de Mantyla, 1988
- ◆ Quad-Edge de Guibas e Stolfi, 1985
- ◆ Handle-Edge
- Corner Table
- Direct-Edges

Codificação explícita

 Codifica explicitamente os polígonos da superfície fornecendo uma lista de vértices com suas coordenadas

Codificação explícita

 $f_1 = ((x_1, y_1, z_1), (x_5, y_5, z_5), (x_2, y_2, z_2))$

 $f_2 = ((x_3, y_3, z_3), (x_2, y_2, z_2), (x_5, y_5, z_5))$

 $f_3 = ((x_3, y_3, z_3), (x_4, y_4, z_4), (x_5, y_5, z_5))$

 $f_4 = ((x_1, y_1, z_1), (x_4, y_4, z_4), (x_5, y_5, z_5))$

 $f_5 = ((x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3), (x_4, y_4, z_4))$

Codificação explícita

- Vantagens:
 - Extremamente simples.
- Desvantagens:
 - Redundância (não considera que os vértices são compartilhados):
 - Ocupa espaço de armazenamento desnecessário.
 - Operações geométricas introduzem erros numéricos independentes nas coordenadas dos vértices.
 - Ineficiência (cada aresta é desenhada duas vezes na visualização).

Propriedades desejadas em uma codificação

- Para solucionar os problemas encontrados na codificação explícita devemos eliminar os seguintes problemas
 - Evitar a replicação de vértices.
 - Codificar as informações de adjacência.

Lista de Vértices

- Definição
 - Há uma lista de vértices armazenados separadamente (geometria)
 - Faces listam os vértices que as compõem (topologia).
- Características
 - Proporciona maior economia de memória.
 - É um esquema simples e rápido.
 - Achar adjacências é complicado.
 - As arestas são desenhadas duas vezes.

Codificação por lista de vértices

Criamos uma lista de vértices e cada polígono da superfície é definido por referência aos vértices desta lista.

> Lista de vértices $v_1 = (x_1, y_1, z_1)$ $v_2 = (x_2, y_2, z_2)$ $v_3 = (x_3, y_3, z_3)$ $v_4 = (x_4, y_4, z_4)$ $v_5 = (x_5, y_5, z_5)$

Lista de faces $f_1 = (v_1, v_5, v_2)$ $f_2 = (v_3, v_2, v_5)$ $f_3 = (v_3, v_4, v_5)$ $f_4 = (v_1, v_4, v_5)$ $f_5 = (v_1, v_2, v_3, v_4)$

- $\bullet \ V = \{V_1 = (x_1, y_1, z_1), V_2 = (x_2, y_2, z_2), V_3 = (x_3, y_3, z_3), V_4 = (x_4, y_4, z_4)\};$
- $P_1 = \{V_1, V_2, V_4\};$
- P₂ = {V₄, V₂, V₃}.

Codificação por lista de vértices

- Proporciona maior economia de espaço (que anterior)
- Ao alterar as coordenadas de um vértice, todos os polígonos nele incidentes são alterados automaticamente.
- É difícil determinar os polígonos que compartilham uma aresta.
- Arestas compartilhadas são desenhadas duas vezes.

Lista de Arestas

- Tem-se uma lista de arestas (sem repeti-las) que indicam os vértices que as compõem
- Faces apontam para a lista de arestas e cada aresta inclui referência para as duas faces que compartilham uma aresta (redundância).
- Facilita a determinação das duas faces incidentes na aresta.
- Arestas são prontamente desenhadas percorrendo-se a lista de arestas.

Codificação por lista de arestas

- Acrescentamos uma lista de arestas definida por pares de referências à lista de vértices.
- A lista de faces é definida por referências às arestas que as definem, descritas na lista de arestas.

1						
Lis	ta	de	vér	tice	<u>es</u>	
V_1	=:((x ₁ ,	y ₁ ,	z ₁)		
V ₂	= ((x ₂ ,	y ₂ ,	z ₂)		-
V ₃	= ((x ₃ ,	у _{з,} ;	z ₃)		
V ₄	= ((x ₄ ,	y ₄ ,	z ₄)		
V ₅	= ((X ₄ ,	y ₄ ,	z ₄)		
1						

Lista	ı.de	are	stas	 	
e ₁ =	V ₁ ,	V ₂		 	
e ₂ =	.V ₂ ,	V ₃ .		 	
e ₃ =	V ₃ ,	V ₄ .		 	
e ₄ =	V ₄ ,	V ₁		 	
e ₅ =	V ₁ ,	V ₅		 	
e ₆ =	.V ₂ ,	V ₅		 	
e ₇ =	V ₃ ,	V ₅		 	
e ₈ =	.V ₄₁	V ₅		 	

110	
	Lista de faces
	$f_1 = e_1, e_5, e_6$
	$f_2 = e_2, e_6, e_7$
	$f_3 = e_3, e_7, e_8$
	$f_4 = e_4, e_8, e_5$
	$f_5 = e_1, e_2, e_3, e_4$

Codificação por lista de arestas Propriedades ■ Temos acesso a todas as arestas sem precisar percorrer as fronteiras dos polígonos. ■ As arestas que incidem em um vértice podem ser obtidas através de uma combinação de algoritmos geométricos e de busca. □ La completa de algoritmos geométricos e de busca.

Winged Edge Foley 1996 12.5.2

- Permite obter todos os 9 tipos de adjacência entre vértices, arestas e faces
- Permite determinar quais faces ou vértices estão adjacentes a aresta em tempo constante mas, outros tipos de adjacências podem requerer um processamento maior.
- Atualizada com o uso de operadores de Euler
- Foi concebido para faces que não têm furos, a priori.

Estrutura de Dados W-E

- ◆A ArestaAlada (Winged-Edge)
- O Vértice tem um ponteiro para uma de suas ArestasAladas
- A Face tem um ponteiro para uma de suas ArestasAladas
- Convenção: indo de N para P, a face P está a direita

H-E versus W-E

- Half-Edges se restringe a representar superfícies manifold o que a torna inútil para certas aplicações
- Winged-Edge, com algumas modificações, é capaz de sobrepor algumas das limitações do H-E

