

BÀI TẬP MÔN PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN

by

Hoàng Quang Khải - 21520952 Lê Tuấn Vũ - 21521679 Nguyễn Nhật Minh - 21521135 Lê Tiến Quyết - 21520428

Faculty of Computer Science

Homework #01: Đánh giá thuật toán dùng kỹ thuật toán sơ cấp

GV hướng dẫn: Huỳnh Thị Thanh Thương

TPHCM, March 9, 2023

1 Tính tổng hữu hạn

a)
$$1+3+5+7+\ldots+999 = \frac{n(2a_1+(n-1)d)}{2} = \frac{500(2+499.2)}{2} = 250000$$

b)
$$2+4+8+16+\ldots+1024 = \frac{u_1(q^n-1)}{q-1} = \frac{2(2^{10}-1)}{2-1} = 2046$$

c)
$$\sum_{i=3}^{n+1} 1 = n+1-3+1 = n-1$$

d)
$$\sum_{i=3}^{n+1} i = \sum_{i=1}^{n+1} i - \sum_{i=1}^{2} i = \frac{(n+1)(n+2)}{2} - 3 = \frac{1}{2} (n^2 + 3n - 4)$$

e)

$$\sum_{i=0}^{n-1} i(i+1) = \sum_{i=0}^{n-1} (i^2 + i) = \sum_{i=0}^{n-1} i^2 + \sum_{i=0}^{n-1} i$$

$$= \frac{n(n-1)(2n-1)}{6} + \frac{n(n-1)}{2} = \frac{n(n+1)^2}{3}$$

f)

$$\sum_{j=1}^{n} 3^{j+1} = 3 \sum_{j=1}^{n} 3^{j} = 3 \left(\sum_{j=0}^{n} 3^{j} - 3^{0} \right) = 3 \left(\frac{3^{n+1} - 1}{3 - 1} - 1 \right) = \frac{3^{n+2} - 9}{2}$$
$$= \frac{9}{2} (3^{n} - 1)$$

g)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij = \sum_{i=1}^{n} i \frac{n(n+1)}{2} = \frac{n(n+1)}{2} \frac{n(n+1)}{2} = \frac{(n^2+n)^2}{4}$$

h)

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \sum_{i=1}^{n} i \left(\frac{1}{i} - \frac{1}{i+1} \right) = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1}$$
$$= \frac{n}{n+1}$$

i)
$$\sum_{j \in \{2,3,5\}} (j^2 + j) = (2^2 + 2) + (3^2 + 3) + (5^2 + 5) = 48$$

j)

$$\sum_{i=1}^{m} \sum_{j=0}^{n} \sum_{k=0}^{100} (i+j) = 101 \sum_{i=1}^{m} \sum_{j=0}^{n} (i+j) = 101 \sum_{i=1}^{m} \left[i(n+1) + \frac{n(n+1)}{2} \right]$$
$$= 101 \left[\frac{m(n+1)(m+1)}{2} + \frac{mn(n+1)}{2} \right] = \frac{101}{2} m(n+1)(m+n+1)$$

2 Đếm số phép gán và so sánh

$$\begin{array}{c} s \leftarrow 0; & /* \ 2g \ */\\ i \leftarrow 1; & \\ \textbf{while} \ i \leq n \ \textbf{do} & \\ & j \leftarrow 1; & /* \ 1g; \ \texttt{n+1} \ \texttt{ss} \ */\\ \textbf{while} \ j \leq i^2 \ \textbf{do} & \\ & | \ s \leftarrow s+1 \ ; & /* \ 2g \ */\\ & | \ j \leftarrow j+1; & \\ & \textbf{end} & \\ & i \leftarrow i+1; & /* \ 1g \ */\\ & \textbf{end} & \\ \end{array}$$

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \leq i^2 \quad (\alpha_i \geq 1)$ Vì α_i là số con j mà j chạy từ $1 \to i^2$ với bước tăng là 1. Do đó, α_i nhận các giá trị $\{1,4,9,\ldots,i^2\} \to \alpha_i = i^2$

$$Gán(n) = 2 + 2n + \sum_{i=1}^{n} 2\alpha_i = 2 + 2n + 2\sum_{i=1}^{n} i^2 = 2 + 2n + \frac{n(n+1)(2n+1)}{3}$$
$$= \frac{2n^3 + 3n^2 + 7n + 6}{3}$$

Sosánh(n) =
$$n + 1 + \sum_{i=1}^{n} (\alpha_i + 1) = n + 1 + \sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} 1$$

= $2n + 1 + \frac{n(n+1)(2n+1)}{6} = \frac{2n^3 + 3n^2 + 13n + 6}{6}$

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \leq i^2 \quad (\alpha_i \geq 1)$ Vì α_i là số con j mà j chạy từ $n-i^2 \to i^2$ với bước tăng là 1. Do đó, α_i nhận các giá trị $\{n-i^2,\ldots,i^2\}$ $\Rightarrow \alpha_i = i^2 - (n-i^2) + 1 = 2i^2 - n + 1$ Với $\alpha_i \geq 1 \Leftrightarrow n-i^2-i^2 \leq 0 \Rightarrow i \geq \left\lceil \sqrt{\frac{n}{2}} \right\rceil \quad (i \geq 1)$

Ta có:

$$Gán(n) = 2 + 2n + \sum_{i=1}^{n} 2\alpha_i = 2 + 2n + 2\sum_{i=1}^{n} (2i^2 - n + 1)$$
$$= 2 + 2n + 2\sum_{i=\lceil \sqrt{\frac{n}{2}} \rceil}^{n} (2i^2 - n + 1)$$

Sosánh(n) = n + 1 +
$$\sum_{i=1}^{n} (\alpha_i + 1) = n + 1 + \sum_{i=1}^{n} \alpha_i + \sum_{i=1}^{n} 1$$

= $2n + 1 + \sum_{i=\lceil \sqrt{\frac{n}{2}} \rceil}^{n} (2i^2 - n + 1)$

Đặt
$$t = \left\lceil \sqrt{\frac{n}{2}} \right\rceil$$
, ta được:

$$\sum_{i=\lceil \sqrt{\frac{n}{2}} \rceil}^{n} (2i^{2} - n + 1) = \sum_{i=t}^{n} (2i^{2} - n + 1) = \sum_{i=t}^{n} (-n + 1) + 2 \sum_{i=t}^{n} i^{2}$$

$$= (-n + 1)(n - t + 1) + 2 \sum_{i=1}^{n} i^{2} - 2 \sum_{i=1}^{t-1} i^{2}$$

$$= (-n + 1)(n - t + 1) + \frac{n(n + 1)(2n + 1)}{3} - \frac{t(t - 1)(2t - 1)}{3}$$

Kết luận

$$Gán(n) = 2 + 2n + 2(-n+1)(n-t+1) + \frac{2}{3}[n(n+1)(2n+1) - t(t-1)(2t-1)]$$
$$= 4 + 2(-n+1)(n-t) + \frac{2}{3}[n(n+1)(2n+1) - t(t-1)(2t-1)]$$

Sosánh(n) =
$$2n + 1 + (-n+1)(n-t+1) + \frac{1}{3}[n(n+1)(2n+1) - t(t-1)(2t-1)]$$

= $2 + n + (-n+1)(n-t) + \frac{1}{3}[n(n+1)(2n+1) - t(t-1)(2t-1)]$

Với
$$t = \left\lceil \sqrt{\frac{n}{2}} \right\rceil$$

4 Đếm số phép gán và so sánh

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \leq i \quad (\alpha_i \geq 1)$ Vì α_i là số con j mà j chạy từ $1 \rightarrow i$ với tỉ lệ bước tăng là 2. Và j nhận các giá trị $\{1, 2, 4, 8, 16, \dots, 2^k\}, k \in \mathbb{N}$ Do đó: α_i là số phần tử của tập $\{k \in \mathbb{N} \mid 2^k \leq i\} \Rightarrow 0 \leq k \leq \log_2 i$ $\Rightarrow \alpha_i = \lfloor \log_2 i \rfloor + 1$

Kết luận

$$\begin{split} \mathrm{Gán}(n) &= 2 + 4n + \sum_{i=1}^{n} 2\alpha_{i} = 2 + 4n + 2\sum_{i=1}^{n} (\lfloor \log_{2} i \rfloor + 1) \\ &= 2 + 4n + 2\sum_{i=1}^{n} \lfloor \log_{2} i \rfloor + 2\sum_{i=1}^{n} 1 = 2 + 6n + 2\sum_{i=1}^{n} \lfloor \log_{2} i \rfloor \\ \mathrm{Sos\acute{a}nh}(n) &= n + 1 + \sum_{i=1}^{n} (\alpha_{i} + 1) = n + 1 + \sum_{i=1}^{n} \lfloor \log_{2} i \rfloor + \sum_{i=1}^{n} 2 \\ &= 3n + 1 + \sum_{i=1}^{n} \lfloor \log_{2} i \rfloor \end{split}$$

5 Đếm số phép gán và so sánh

$$\begin{array}{l} sum \leftarrow 0; & /* \ 2g \ */\\ i \leftarrow 1; & \\ \textbf{while} \ i \leq n \ \textbf{do} & \\ & j \leftarrow n - i; & /* \ 1g; \ n+1 \ ss \ */\\ \textbf{while} \ j \leq 2i \ \textbf{do} & \\ & | \ sum \leftarrow sum + ij; & /* \ 2g \ */\\ & j \leftarrow j + 2; & \\ \textbf{end} & \\ & k \leftarrow i; & /* \ 1g \ */\\ & \textbf{while} \ k > 0 \ \textbf{do} & \\ & | \ sum \leftarrow sum + 1; & /* \ 2g \ */\\ & | \ k \leftarrow k/2; & \\ & \textbf{end} & \\ & i \leftarrow i + 1; & /* \ 1g \ */\\ & \textbf{end} & \\ \end{array}$$

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \leq 2i$. Vì α_i là số con j mà j chạy từ $n-i \to 2i$ với bước tăng là 2.

Do đó:

$$\alpha_i$$
là số phần tử của tập $\{n-i,n-i+2,\dots,2i\}=\frac{2i-(n-i)}{2}+1$
$$=\frac{3i-n+2}{2}$$

Với $\alpha_i \ge 1 \Leftrightarrow n-i \le 2i \Leftrightarrow i \ge \frac{n}{3}$. Vậy:

$$\alpha_i = \left\{ \begin{array}{ll} 0, & i < \left\lceil \frac{n}{3} \right\rceil \\ \\ \frac{3i - n + 2}{2}, & i \ge \left\lceil \frac{n}{3} \right\rceil \end{array} \right.$$

Gọi β_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện k > 0. Vì β_i là số con j mà j chạy từ $i \to 1$ với tỉ lệ bước giảm là $\frac{1}{2}$. Do đó:

$$\beta_i \text{ là số phần tử của tập } \left\{i,\frac{i}{2},\frac{i}{4},\dots,\frac{i}{2^k} \mid k \in \mathbb{N}, \frac{i}{2^k} \geq 1\right\} \Rightarrow 0 \leq k \leq \lfloor \log_2 i \rfloor$$

Vậy:

$$\beta_i = \lfloor \log_2 i \rfloor + 1$$

Ta có

$$Gán(n) = 2 + 3n + \sum_{i=1}^{n} 2\alpha_i + \sum_{i=1}^{n} 2\beta_i$$

$$= 2 + 3n + \sum_{i=\lceil \frac{n}{3} \rceil}^{n} (3i - n + 2) + 2\sum_{i=1}^{n} (\lfloor \log_2 i \rfloor + 1)$$

$$= 2 + 5n + \sum_{i=\lceil \frac{n}{3} \rceil}^{n} (3i - n + 2) + 2\sum_{i=1}^{n} \lfloor \log_2 i \rfloor$$

$$Sosánh(n) = n + 1 + \sum_{i=1}^{n} (\alpha_i + 1) + \sum_{i=1}^{n} (\beta_i + 1)$$

$$= n + 1 + \sum_{i=1}^{n} \alpha_i + \sum_{i=1}^{n} \beta_i + 2\sum_{i=1}^{n} 1$$

$$= 3n + 1 + \frac{1}{2} \sum_{i=\lceil \frac{n}{3} \rceil}^{n} (3i - n + 2) + \sum_{i=1}^{n} (\lfloor \log_2 i \rfloor + 1)$$

$$= 4n + 1 + \frac{1}{2} \sum_{i=\lceil \frac{n}{2} \rceil}^{n} (3i - n + 2) + \sum_{i=1}^{n} \lfloor \log_2 i \rfloor$$

Đặt $t = \left\lceil \frac{n}{3} \right\rceil$, ta được:

$$\sum_{i=\lceil \frac{n}{3} \rceil}^{n} (3i - n + 2) = \sum_{i=t}^{n} (-n+2) + 3 \sum_{i=t}^{n} i$$

$$= (-n+2)(n-t+1) + \frac{3}{2}(n-t+1)(n+t)$$

$$Gán(n) = 2 + 5n + (-n+2)(n-t+1) + \frac{3}{2}(n-t+1)(n+t) + 2\sum_{i=1}^{n} \lfloor \log_2 i \rfloor$$
$$= 4 + \frac{15}{2}n + \frac{1}{2}n^2 + \frac{1}{2}t(2n-1) - \frac{3}{2}t^2 + 2\sum_{i=1}^{n} \lfloor \log_2 i \rfloor$$

Sosánh(n) =
$$4n + 1 + \frac{1}{2}(-n+2)(n-t+1) + \frac{3}{4}(n-t+1)(n+t) + \sum_{i=1}^{n} \lfloor \log_2 i \rfloor$$

= $2 + \frac{21}{4}n + \frac{1}{4}n^2 + \frac{1}{4}t(2n-1) - \frac{3}{4}t^2 + \sum_{i=1}^{n} \lfloor \log_2 i \rfloor$

```
/* 2g */
i \leftarrow 1;
count \leftarrow 0;
while i \leq 4n do
                                                                /* 3g; 4n+1 ss */
    x \leftarrow (n-i)(i-3n);
    y \leftarrow i - 2n;
    j \leftarrow 1;
    while j \leq x do
                                                                               /* 2g */
       count \leftarrow count - 2;
        j \leftarrow j + 2;
    \mathbf{end}
    if x > 0 then
         if y > 0 then
          | count \leftarrow count + 1;
                                                                               /* 1g */
         \quad \text{end} \quad
    end
    i \leftarrow i + 1;
                                                                               /* 1g */
end
```

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \leq x$. Vì α_i là số con j mà j chạy từ $1 \to x$ với bước tăng là 2. Do đó:

$$\alpha_i$$
 là số phần tử của tập $\{1,3,5,\ldots,x\} = \frac{x-1}{2} + 1 = \frac{x+1}{2} \approx \left\lceil \frac{x}{2} \right\rceil$
$$\approx \left\lceil \frac{(n-i)(i-3n)}{2} \right\rceil$$

Với $\alpha_i \geq 1 \Leftrightarrow n+1 \leq i \leq 3n-1$.

Vậy:

$$\alpha_i = \begin{cases} 0, & i \le n \text{ hoặc } i \ge 3n \\ \left\lceil \frac{(n-i)(i-3n)}{2} \right\rceil, & n+1 \le i \le 3n-1 \end{cases}$$

Ta có bảng xét dấu:

i	1		n		2n		3n		4n
x = (n-i)(i-3n)		_	0	+		+	0	_	
y = i - 2n		_		_	0	+		+	

$$\begin{split} \mathrm{Gán}(n) &= 2 + 4 \times 4n + \sum_{i=1}^{4n} 2\alpha_i + [3n - 1 - (2n+1) + 1] \\ &= 17n + 1 + 2\sum_{i=n+1}^{3n-1} \left\lceil \frac{(n-i)(i-3n)}{2} \right\rceil \\ &\approx 17n + 1 + \frac{1}{3}n(4n^2 - 1) = \frac{4}{3}n^3 + \frac{50}{3}n + 1 \end{split}$$

Sosánh(n) =
$$4n + 1 + \sum_{i=1}^{4n} (\alpha_i + 1) + 4n + [3n - 1 - (n+1) + 1]$$

= $14n + \sum_{i=n+1}^{3n-1} \left\lceil \frac{(n-i)(i-3n)}{2} \right\rceil$
 $\approx 14n + \frac{1}{3}n(4n^2 - 1) = \frac{41}{3}n + \frac{4}{3}n^3$

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \leq x$. Vì α_i là số con j mà j chạy từ $1 \to x$ với bước tăng là 1. Do đó:

$$\alpha_i$$
 là số phần tử của tập $\{1, 2, 3, \dots, x\} = x = (n-i)(i-3n)$

Với
$$\alpha_i \ge 1 \Leftrightarrow n+1 \le i \le 3n-1$$
.
Vậy:

$$\alpha_i = \begin{cases} 0, & i \le n \text{ hoặc } i \ge 3n \\ (n-i)(i-3n), & n+1 \le i \le 3n-1 \end{cases}$$

Ta có bảng xét dấu:

i	1		n		2n		3n		4n
x = (n-i)(i-3n)		_	0	+		+	0	_	
y = i - 2n		_		_	0	+		+	

Để câu lệnh $count \leftarrow count - 2$ được thực hiện $\Leftrightarrow i \leq 2y \Leftrightarrow i \leq 2(i-2n)$ $\Leftrightarrow i \leq 4n \Rightarrow$ Câu lệnh luôn được thực hiện khi **while** $i \leq 4n$ thoả mãn.

Ta có

$$Gán(n) = 2 + 4 \times 4n + \sum_{i=1}^{4n} 2\alpha_i = 2 + 16n + 2\sum_{i=n+1}^{3n-1} (n-i)(i-3n)$$

Sosánh(n) =
$$4n + 1 + \sum_{i=1}^{4n} (\alpha_i + 1) + \sum_{i=1}^{4n} \alpha_i$$

= $8n + 1 + 2\sum_{i=n+1}^{3n-1} (n-i)(i-3n)$

Xét:

$$\sum_{i=n+1}^{3n-1} (n-i)(i-3n) = \sum_{i=n+1}^{3n-1} (-3n^2 + 4ni - i^2)$$

$$= -3n^2 \sum_{i=n+1}^{3n-1} 1 + 4n \sum_{i=n+1}^{3n-1} i - \sum_{i=n+1}^{3n-1} i^2$$

$$= -3n^2 (2n-1) + 4n \times 2n(2n-1) - \sum_{i=1}^{3n-1} i^2 + \sum_{i=1}^{n} i^2$$

$$= 10n^3 - 5n^2 - \frac{3n(3n-1)(6n-1)}{6} + \frac{n(n+1)(2n+1)}{6} = \frac{4n^3 - n}{3}$$

$$Gán(n) = 2 + 16n + \frac{2}{3}(4n^3 - n) = \frac{6 + 46n + 8n^3}{3}$$

$$Sosánh(n) = 1 + 8n + \frac{2}{3}(4n^3 - n) = \frac{3 + 22n + 8n^3}{3}$$

```
/* 2g */
i \leftarrow 1;
count \leftarrow 0;
while i \leq 3n do
                                                                /* 3g; 3n+1 ss */
    x \leftarrow 2n - i;
    y \leftarrow i - n;
    j \leftarrow 1;
    while j \leq x do
         if j \geq n then
          | count \leftarrow count - 1;
                                                                               /* 1g */
         end
                                                                               /* 1g */
         j \leftarrow j + 1;
    \quad \text{end} \quad
    if y > 0 then
        if x > 0 then
             count \leftarrow count + 1;
                                                                               /* 1g */
         \mathbf{end}
    end
                                                                               /* 1g */
    i \leftarrow i + 1;
```

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \leq x$. Vì α_i là số con j mà j chạy từ $1 \to x$ với bước tăng là 1. Do đó:

 α_i là số phần tử của tập $\{1,2,3,\ldots,x\}=x=2n-i$

Với $\alpha_i \ge 1 \Leftrightarrow i \le 2n - 1$.

Ta có bảng xét dấu:

Ta co sang nee c							
i	1		n		2n		3n
x = 2n - i		+		+	0	_	
y = i - n		_	0	+		+	

Gọi β_i là số lần câu lệnh **if** $j \geq n$ thoả mãn.

$$\beta_i = \text{ số phần tử của tập hợp } \{n,n+1,\dots,x\} = x-n+1$$

$$= 2n-i-n+1 = n-i+1$$

Với $\beta_i \ge 1 \Leftrightarrow i \le n$

Từ bảng xét dấu:

$$x > 0 \Leftrightarrow 1 \le i \le 2n - 1$$
$$y > 0 \Leftrightarrow n + 1 \le i \le 3n$$
$$\begin{cases} x > 0 \\ y > 0 \end{cases} \Leftrightarrow n + 1 \le i \le 2n - 1$$

$$Gán(n) = 2 + 4 \times 3n + \sum_{i=1}^{3n} \beta_i + \sum_{i=1}^{3n} \alpha_i + [2n - 1 - (n+1) + 1]$$

$$= 1 + 13n + \sum_{i=1}^{n} (n - i + 1) + \sum_{i=1}^{2n-1} (2n - i)$$

$$= 1 + 13n + (n+1) \sum_{i=1}^{n} 1 - \sum_{i=1}^{n} i + 2n \sum_{i=1}^{2n-1} 1 - \sum_{i=1}^{2n-1} i$$

$$= 1 + 13n + n(n+1) - \frac{n(n+1)}{2} + 2n(2n-1) - \frac{2n(2n-1)}{2}$$

$$= \frac{5n^2 + 25n + 2}{2}$$

$$\begin{aligned} \operatorname{Sos\'{a}nh}(n) &= 3n + 1 + \sum_{i=1}^{3n} (\alpha_i + 1) + \sum_{i=1}^{3n} \alpha_i + 3n + [3n - (n+1) + 1] \\ &= 1 + 8n + \sum_{i=1}^{3n} 1 + 2 \sum_{i=1}^{3n} \alpha_i \\ &= 1 + 11n + 2 \sum_{i=1}^{2n-1} (2n - i) \\ &= 1 + 11n + 4n \sum_{i=1}^{2n-1} 1 - 2 \sum_{i=1}^{2n-1} i \\ &= 1 + 11n + 4n(2n - 1) - 2 \times \frac{2n(2n - 1)}{2} = 4n^2 + 9n + 1 \end{aligned}$$

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \leq i$. Vì α_i là số con j mà j chạy từ $1 \rightarrow i$ với bước tăng là một cấp số cộng với số hạng đầu là $u_1 = 3$ và công bội d = 2. Do đó:

 α_i là số phần tử của tập $\{1,4,9,\ldots,i\}=$ số phần tử của tập $\{m\in\mathbb{N}^*\mid m^2\leq i\}$

Vậy:

$$\alpha_i = \left\lfloor \sqrt{i} \right\rfloor$$

$$Gán(n) = 2 + 3n + \sum_{i=1}^{n} 3\alpha_i = 2 + 3n + 3\sum_{i=1}^{n} \left\lfloor \sqrt{i} \right\rfloor$$
$$= 2 + 3n + \frac{1}{2} \left\lfloor \sqrt{n} \right\rfloor \left(-2 \left\lfloor \sqrt{n} \right\rfloor^2 - 3 \left\lfloor \sqrt{n} \right\rfloor + 6n + 5 \right)$$

$$\operatorname{Sos\acute{a}nh}(n) = n + 1 + \sum_{i=1}^{n} (\alpha_i + 1) = 2n + 1 + \sum_{i=1}^{n} \alpha_i$$
$$= 2n + 1 + \sum_{i=1}^{n} \left\lfloor \sqrt{i} \right\rfloor$$
$$= 2n + 1 + \frac{1}{6} \left\lfloor \sqrt{n} \right\rfloor \left(-2 \left\lfloor \sqrt{n} \right\rfloor^2 - 3 \left\lfloor \sqrt{n} \right\rfloor + 6n + 5 \right)$$

```
/* 3g */
sum \leftarrow 0;
i \leftarrow 1;
idx \leftarrow -1;
while i \leq n do
   j \leftarrow 1;
                                                                   /* 1g; n+1 ss */
    while j \leq n do
         if (i = j) AND (i + j = n + 1) then
     | idx \leftarrow i;
end
sum \leftarrow sum + a[i][j];
j \leftarrow j + 1;
                                                                   /* 2g; n+1 ss */
                                                                                /* 1g */
    i \leftarrow i + 1;
end
if idx \neq -1 then
   sum \leftarrow sum - a[idx][idx];
end
```

$$D\mathring{e} \text{ gán } idx \leftarrow i: \left\{ \begin{array}{c} i = j \\ i + j = n + 1 \end{array} \Leftrightarrow 2i = n + 1 \Leftrightarrow n \mathring{e} \right.$$

Nhân rét

TH 1: n lẻ \rightarrow tồn tại duy nhất 1 trường hợp thoả mãn điều kiện để $idx \leftarrow i$, khi đó:

$$Gán(n) = 3 + 2n + (1 + 2n^2) + 1 = 2n^2 + 2n + 5$$
$$Sosánh(n) = n + 1 + n(n+1) + 2n^2 + 1 = 3n^2 + 2n + 2$$

TH 2: n chẵn \rightarrow không tồn tại trường hợp thoả mãn điều kiện $\Rightarrow idx \leftarrow -1$, khi đó:

$$Gán(n) = 3 + 2n + 2n^{2}$$
$$Sosánh(n) = n + 1 + n(n+1) + 2n^{2} + 1 = 3n^{2} + 2n + 2$$

Gán(n) =
$$\begin{cases} 2n^2 + 2n + 5, & n \text{ lẻ} \\ 2n^2 + 2n + 3, & n \text{ chẵn} \end{cases}$$

$$Sosánh(n) = 3n^2 + 2n + 2$$

11 Đếm và kiểm tra số phép gán, so sánh

11.1 Kỹ thuật toán sơ cấp

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \leq s$. Vì α_i là số con j mà j chạy từ $1 \rightarrow s$ với bước tăng 1. Mặt khác:

$$s$$
nhận các giá trị $\left\{1,1+\frac{1}{2},\ldots,1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{i}\right\}$

Do đó:

$$\alpha_i$$
 là số phần tử của tập $\{1,2,3,\ldots,s\}=s=\left\lfloor\sum_{x=1}^i\frac{1}{x}\right\rfloor$

$$Gán(n) = 3 + 3n + \sum_{i=1}^{n} 2\alpha_{i}$$

$$= 3 + 3n + 2\sum_{i=1}^{n} \left[\sum_{x=1}^{i} \frac{1}{x} \right]$$

$$\approx 3 + 3n + 2\sum_{i=1}^{n} \left[\ln i + \gamma \right] \quad (\gamma \approx 0.5772)$$
(2)

Sosánh(n) = n + 1 +
$$\sum_{i=1}^{n} (\alpha_i + 1) = 2n + 1 + \sum_{i=1}^{n} \left[\sum_{x=1}^{i} \frac{1}{x} \right]$$
 (3)

$$\approx 2n + 1 + \sum_{i=1}^{n} \lfloor \ln i + \gamma \rfloor \quad (\gamma \approx 0.5772) \tag{4}$$

11.2 Kiểm tra bằng chương trình C++

```
1 // The function counts the number of assignments and
      comparisons performed in the process based on n.
2 // The function takes three parameters: n (the upper
      limit), Assign (a vector to store the assignment
      counts), Compare (a vector to store the comparison
      counts).
  void Function(int n, vector<int>& Assign, vector<int>&
      Compare) {
4
       float i = 1, ret = 0, s = 0, j;
       int count_assign = 3, count_compare = 0;
5
6
       // Increment compare counter
7
       count_compare++;
8
       // Loop from 1 to n
9
       while (i \le n){
            count_compare++;
10
            // Initialize j
11
12
            j = 1;
13
            count_assign++;
14
            s = s + (1 / i);
            count_assign++;
15
            count_compare++;
16
17
            // Loop from 1 to s
           while (j \le s){
18
19
                count_compare++;
20
                ret = ret + i * j;
21
                count_assign++;
22
                // Increment j
23
                j = j + 1;
24
                count_assign++;
25
26
            // Increment i
27
           i = i + 1;
28
            count_assign++;
29
       }
```

```
30
       // Store assign counter in vector
31
        Assign.push_back(count_assign);
32
        // Store compare counter in vector
33
        Compare.push_back(count_compare);
34 }
35
36
   int main(){
37
       int n;
38
        vector < int > Assign;
39
       vector < int > Compare;
40
        cout << "n\t\t";
41
        // Print values of n from 1 to 20
42
       for (int i = 1; i <= 20; i++) cout << i << "\t";</pre>
        // Call function for each value of n
43
        for (n = 1; n \le 20; n++) Function(n, Assign,
44
           Compare);
45
        cout << "\nGan(n)</pre>
46
        // Print assign values for each n
        for (int i = 0; i < 20; i++) cout << Assign[i] << "\</pre>
47
           t";
48
        cout << "\nSosanh(n) ";</pre>
49
        // Print compare values for each n
50
        for (int i = 0; i < 20; i++) cout << Compare[i] << "</pre>
           \t";
        return 0;
51
52
   }
```

n	1	2	3	4	5	6	7	8	9	10
Gan(n)	8	13	18	25	32	39	46	53	60	67
SoSanh(n)	4	7	10	14	18	22	26	30	34	38

Hình 1: Kết quả chạy chương trình với $n \in [1, 10]$

11	12	13	14	15	16	17	18	19	20
76	85	94	103	112	121	130	139	148	157
43	48	53	58	63	68	73	78	83	88

Hình 2: Kết quả chạy chương trình với $n \in [11, 20]$

Bảng 1: Bảng thống kê so sánh kết quả giữa công thức và chương trình

n	Gán(n) = (1)	Code	SS(n) = (3)	Code
1	8	8	4	4
2	13	13	7	7
3	18	18	10	10
4	25	25	14	14
5	32	32	18	18
6	39	39	22	22
7	46	46	26	26
8	53	53	30	30
9	60	60	34	34
10	67	67	38	38
11	76	76	43	43
12	85	85	48	48
13	94	94	53	53
14	103	103	58	58
15	112	112	63	63
16	121	121	68	68
17	130	130	73	73
18	139	139	78	78
19	148	148	83	83
20	157	157	88	88

12 Đếm và kiểm tra số phép gán, so sánh

```
\begin{array}{l} i \leftarrow 1; \\ res \leftarrow 0; \\ \textbf{while } i \leq n \ \textbf{do} \\ & | \ j \leftarrow 1; \\ & \textbf{while } j \leq i \ \textbf{do} \\ & | \ res \leftarrow res + ij; \\ & | \ j \leftarrow j + 1; \\ & \textbf{end} \\ & | \ i \leftarrow i + 5; \\ & \textbf{end} \end{array}
```

12.1 Kỹ thuật toán sơ cấp

Đặt
$$i = 1 + 5k \Rightarrow 1 \le 1 + 5k \le n \Rightarrow 0 \le k \le \left\lfloor \frac{n-1}{5} \right\rfloor$$

Khi đó số lần lặp vòng **while** ngoài chính là số giá trị k thoả mãn điều kiện trên.

 \Rightarrow số lần lặp vòng while ngoài = $\left\lfloor \frac{n-1}{5} \right\rfloor + 1$. Gọi α_i là số lần lặp của vòng

lặp **while** nhỏ với điều kiện $j \leq i$.

Vì α_i là số con j mà j chạy từ $1 \to i$ với bước tăng 1. Do đó:

 α_i là số phần tử của tập $\{1,2,3,\ldots,i\}=1+5k$

Kết luận

$$Gán(n) = 2 + 2\left(\left\lfloor\frac{n-1}{5}\right\rfloor + 1\right) + \sum_{k=0}^{\left\lfloor\frac{n-1}{5}\right\rfloor} 2\alpha_{i}$$

$$= 4 + 2\left\lfloor\frac{n-1}{5}\right\rfloor + 2\sum_{k=0}^{\left\lfloor\frac{n-1}{5}\right\rfloor} (1+5k)$$

$$= 4 + 2\left\lfloor\frac{n-1}{5}\right\rfloor + 2\sum_{k=0}^{\left\lfloor\frac{n-1}{5}\right\rfloor} 1 + 10\sum_{k=0}^{\left\lfloor\frac{n-1}{5}\right\rfloor} k$$

$$= 4 + 2\left\lfloor\frac{n-1}{5}\right\rfloor + 2\left(\left\lfloor\frac{n-1}{5}\right\rfloor + 1\right) + 5\left\lfloor\frac{n-1}{5}\right\rfloor \left(\left\lfloor\frac{n-1}{5}\right\rfloor + 1\right)$$

$$= 6 + 9\left\lfloor\frac{n-1}{5}\right\rfloor + 5\left\lfloor\frac{n-1}{5}\right\rfloor^{2}$$
(5)

$$\operatorname{Sosánh}(n) = \left(\left\lfloor \frac{n-1}{5} \right\rfloor + 1\right) + 1 + \sum_{k=0}^{\left\lfloor \frac{n-1}{5} \right\rfloor} (\alpha_i + 1)$$

$$= 2 + \left\lfloor \frac{n-1}{5} \right\rfloor + \sum_{k=0}^{\left\lfloor \frac{n-1}{5} \right\rfloor} 1 + \sum_{k=0}^{\left\lfloor \frac{n-1}{5} \right\rfloor} \alpha_i$$

$$= 2 + \left\lfloor \frac{n-1}{5} \right\rfloor + \left\lfloor \frac{n-1}{5} \right\rfloor + 1 + \sum_{k=0}^{\left\lfloor \frac{n-1}{5} \right\rfloor} (1+5k)$$

$$= 3 + 2 \left\lfloor \frac{n-1}{5} \right\rfloor + \sum_{k=0}^{\left\lfloor \frac{n-1}{5} \right\rfloor} 1 + 5 \sum_{k=0}^{\left\lfloor \frac{n-1}{5} \right\rfloor} k$$

$$= 4 + \frac{11}{2} \left\lfloor \frac{n-1}{5} \right\rfloor + \frac{5}{2} \left\lfloor \frac{n-1}{5} \right\rfloor^2$$

$$(6)$$

12.2 Kiểm tra bằng chương trình C++

- 1 // The function counts the number of assignments and comparisons performed in the process based on n.
- 2 // The function takes three parameters: n (the upper limit), Assign (a vector to store the assignment counts), Compare (a vector to store the comparison counts)

```
3 void Function(int n, vector<int> &Assign, vector<int> &
      Compare) {
       // Initialize i to 1
4
5
       int i = 1, res = 0;
6
       // Initialize count_assign and count_compare to 2
          and 1 respectively
7
       int count_assign = 2, count_compare = 1;
8
       // Loop from i to n with a step of 5
9
       while (i <= n){</pre>
10
           // Initialize j to 1
11
            int j = 1;
12
            // Increment count_assign by one
13
            count_assign++;
            // Increment count_compare by one
14
15
            count_compare++;
16
            // Loop from j to i with a step of one
17
           while (j \le i){
18
                res = res + i * j;
                // Increment j by one
19
20
                j = j + 1;
21
                // Increment count_assign by two
22
                count_assign += 2;
23
                // Increment count_compare by one
24
                count_compare++;
25
           }
26
           // Increment i by five
27
           i = i + 5;
            // Increment count_assign and count_compare by
28
               one
29
            count_assign++;
30
            count_compare++;
31
32
       // Append the final value of count_assign to Assign
          vector
33
       Assign.push_back(count_assign);
       // Append the final value of count_compare to
34
          Compare vector
35
       Compare.push_back(count_compare);
36 }
37
38
   int main(){
39
       // Declare an integer variable n
40
       int n;
```

```
41
       // Declare a vector variable Assign
42
       vector < int > Assign;
43
       // Declare a vector variable Compare
44
       vector < int > Compare;
45
       cout << "n\t\t";
46
       // Print values of n from 1 to 20 separated by tabs
       for (int i = 1; i <= 20; i++) cout << i << "\t";</pre>
47
       // Call Function for each value of n from 1 to 20
48
           and pass Assign and Compare vectors as arguments
49
       for (n = 1; n \le 20; n++) Function(n, Assign,
           Compare);
50
        cout << "\nGan(n)</pre>
51
        // Print assign values for each n separated by tabs
       for (int i = 0; i < 20; i++) cout << Assign[i] << "\</pre>
52
           t";
       cout << "\nSosanh(n) ";</pre>
53
54
       // Print compare values for each n separated by tabs
55
       for (int i = 0; i < 20; i++) cout << Compare[i] << "</pre>
           \t";
       return 0;
56
57 }
```

n	1	2	3	4	5	6	7	8	9	10
Gan(n)	6	6	6	6	6	20	20	20	20	20
Sosanh(n)	4	4	4	4	4	12	12	12	12	12

Hình 3: Kết quả chạy chương trình với $n \in [1, 10]$

11	12	13	14	15	16	17	18	19	20
44	44	44	44	44	78	78	78	78	78
25	25	25	25	25	43	43	43	43	43

Hình 4: Kết quả chạy chương trình với $n \in [11, 20]$

Bảng 2: Bảng thống kê so sánh kết quả giữa công thức và chương trình

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0 0	
2 6 6 4 4 3 6 6 4 4 4 6 6 4 4 5 6 6 4 4 6 20 20 12 12 7 20 20 12 12 8 20 20 12 12 9 20 20 12 12 10 20 20 12 12 11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	n	Gán(n) = (5)	Code	SS(n) = (6)	Code
3 6 6 4 4 4 6 6 4 4 5 6 6 4 4 6 20 20 12 12 7 20 20 12 12 8 20 20 12 12 9 20 20 12 12 10 20 20 12 12 11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	1	6	6	4	4
4 6 6 4 4 5 6 6 4 4 6 20 20 12 12 7 20 20 12 12 8 20 20 12 12 9 20 20 12 12 10 20 20 12 12 11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43 19 78 78 43 43	2	6	6	4	4
5 6 6 4 4 6 20 20 12 12 7 20 20 12 12 8 20 20 12 12 9 20 20 12 12 10 20 20 12 12 11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43 19 78 78 43 43	3	6	6	4	4
6 20 20 12 12 7 20 20 12 12 8 20 20 12 12 9 20 20 12 12 10 20 20 12 12 11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	4	6	6	4	4
7 20 20 12 12 8 20 20 12 12 9 20 20 12 12 10 20 20 12 12 11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	5	6	6	4	4
8 20 20 12 12 9 20 20 12 12 10 20 20 12 12 11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	6	20	20	12	12
9 20 20 12 12 10 20 20 12 12 11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	7	20	20	12	12
10 20 20 12 12 11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	8	20	20	12	12
11 44 44 25 25 12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	9	20	20	12	12
12 44 44 25 25 13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	10	20	20	12	12
13 44 44 25 25 14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	11	44	44	25	25
14 44 44 25 25 15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	12	44	44	25	25
15 44 44 25 25 16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	13	44	44	25	25
16 78 78 43 43 17 78 78 43 43 18 78 78 43 43 19 78 78 43 43	14	44	44	25	25
17 78 78 43 43 18 78 78 43 43 19 78 78 43 43 43 43 43	15	44	44	25	25
18 78 78 43 43 19 78 78 43 43	16	78	78	43	43
19 78 78 43 43	17	78	78	43	43
	18	78	78	43	43
	19	78	78	43	43
20 78 78 43 43	20	78	78	43	43

13 Đếm và kiểm tra số phép gán, so sánh

```
sum \leftarrow 0;
i \leftarrow n;
\mathbf{while} \ i > 0 \ \mathbf{do}
\begin{vmatrix} j \leftarrow i; \\ \mathbf{while} \ j > 0 \ \mathbf{do} \\ & | \ sum \leftarrow sum + 1; \\ & | \ j \leftarrow j - 1; \\ & \mathbf{end} \\ & | \ i \leftarrow i \div 2; \\ \mathbf{end} \end{aligned}
```

13.1 Kỹ thuật toán sơ cấp

Đặt
$$i = \frac{n}{2^k} \Rightarrow 0 < i \le n \Leftrightarrow 1 \le \frac{n}{2^k} \le n \Rightarrow 0 \le k \le \lfloor \log_2 n \rfloor$$

Khi đó số lần lặp vòng **while** ngoài chính là số giá trị k thoả mãn điều kiện trên.

 \Rightarrow số lần lặp vòng while ngoài = $\lfloor \log_2 n \rfloor + 1$.

Gọi α_i là số lần lặp của vòng lặp **while** nhỏ với điều kiện $j \geq 0$.

Vì α_i là số con j mà j chạy từ i $\to 1$ với bước giảm 1.

Do đó:

$$\alpha_i$$
 là số phần tử của tập $\{i,i-1,i-2,\ldots,1\}=i=\left\lfloor\frac{n}{2^k}\right\rfloor$

$$Gán(n) = 2 + 2 \left(\lfloor \log_2 n \rfloor + 1 \right) + \sum_{k=0}^{\lfloor \log_2 n \rfloor} 2\alpha_i$$

$$= 4 + 2 \lfloor \log_2 n \rfloor + 2 \sum_{k=0}^{\lfloor \log_2 n \rfloor} \alpha_i$$

$$= 4 + 2 \lfloor \log_2 n \rfloor + 2 \sum_{k=0}^{\lfloor \log_2 n \rfloor} \left\lfloor \frac{n}{2^k} \right\rfloor$$

$$\approx 4 + 2 \lfloor \log_2 n \rfloor + 4n - 2 = 2 + 4n + 2 \lfloor \log_2 n \rfloor$$
(8)

$$\operatorname{Sos\acute{a}nh}(n) = (\lfloor \log_2 n \rfloor + 1) + 1 + \sum_{k=0}^{\lfloor \log_2 n \rfloor} (\alpha_i + 1)$$

$$= 2 + \lfloor \log_2 n \rfloor + \sum_{k=0}^{\lfloor \log_2 n \rfloor} \alpha_i + \sum_{k=0}^{\lfloor \log_2 n \rfloor} 1$$

$$= 2 + \lfloor \log_2 n \rfloor + \lfloor \log_2 n \rfloor + 1 + \sum_{k=0}^{\lfloor \log_2 n \rfloor} \lfloor \frac{n}{2^k} \rfloor$$

$$= 3 + 2 \lfloor \log_2 n \rfloor + \sum_{k=0}^{\lfloor \log_2 n \rfloor} \lfloor \frac{n}{2^k} \rfloor$$

$$\approx 3 + 2 \lfloor \log_2 n \rfloor + 2n - 1 = 2 + 2n + 2 \lfloor \log_2 n \rfloor \tag{9}$$

13.2 Kiểm tra bằng chương trình C++

```
1 // The function counts the number of assignments and
      comparisons performed in the process based on n.
  // The function takes three parameters: n (the upper
      limit), Assign (a vector to store the assignment
      counts), Compare (a vector to store the comparison
      counts)
   void Function(int n, vector<int> &Assign, vector<int> &
      Compare) {
4
       int sum = 0;
5
       // Initialize i to n
6
       int i = n;
7
       // Initialize count_assign and count_compare to 2
          and 1 respectively
       int count_assign = 2, count_compare = 1;
8
9
       // Loop from i to zero with a step of dividing by
          two
10
       while (i > 0){
11
           // Initialize j to i
12
           int j = i;
13
           count_assign++;
14
           count_compare++;
            // Loop from j to zero with a step of
15
              subtracting one
           while (j > 0){
16
17
                sum = sum + 1;
18
                j = j - 1;
```

```
19
                count_assign += 2;
20
                count_compare += 1;
21
            }
22
            i = i / 2;
23
            count_assign++;
24
            count_compare++;
25
26
        // Append the final value of count_assign to Assign
           vector
27
       Assign.push_back(count_assign);
28
        // Append the final value of count_compare to
           Compare vector
29
        Compare.push_back(count_compare);
30 }
31
   int main(){
32
33
       // Declare an integer variable n
34
35
       // Declare a vector variable Assign
36
       vector < int > Assign;
37
       // Declare a vector variable Compare
38
       vector < int > Compare;
39
       cout << "n\t\t";
40
       // Print values of n from 1 to 20 separated by tabs
41
       for (int i = 1; i <= 20; i++) cout << i << "\t";</pre>
       // Call Function for each value of n from 1 to 20
42
           and pass Assign and Compare vectors as arguments
43
       for (n = 1; n \le 20; n++) Function(n, Assign,
           Compare);
44
        cout << "\nGan(n)</pre>
                               " ;
45
        // Print assign values for each n separated by tabs
       for (int i = 0; i < 20; i++) cout << Assign[i] << "\</pre>
46
           t";
47
        cout << "\nSosanh(n)</pre>
                               и;
48
        // Print compare values for each n separated by tabs
       for (int i = 0; i < 20; i++) cout << Compare[i] << "</pre>
49
           \t";
50
       return 0;
51
```

n	1	2	3	4	5	6	7	8	9	10
Gan(n)	6	12	14	22	24	28	30	40	42	46
Sosanh(n)	4	8	9	14	15	17	18	24	25	27

Hình 5: Kết quả chạy chương trình với $n \in [1, 10]$

11	12	13	14	15	16	17	18	19	20
48	54	56	60	62	74	76	80	82	88
28	31	32	34	35	42	43	45	46	49

Hình 6: Kết quả chạy chương trình với $n \in [11, 20]$

 $\mathbf{Bång}$ 3: Bảng thống kê so sánh kết quả giữa công thức và chương trình

n	Gán(n) = (7)	Code	SS(n) = (9)	Code
1	6	6	4	4
2	12	12	8	8
3	14	14	9	9
4	22	22	14	14
5	24	24	15	15
6	28	28	17	17
7	30	30	18	18
8	40	40	24	24
9	42	42	25	25
10	46	46	27	27
11	48	48	28	28
12	54	54	31	31
13	56	56	32	32
14	60	60	34	34
15	62	62	35	35
16	74	74	42	42
17	76	76	43	43
18	80	80	45	45
19	82	82	46	46
20	88	88	49	49