

ФПИиКТ, Системное и Прикладное Программное Обеспечение

Лабораторная работа № 2

Тема: "Разработка аппаратных

ускорителей математических вычислений"

Вариант №7

по Функциональной схемотехнике

Выполнил:

Провоторов Александр Владимирович

Группа:

P33112

Преподаватель практики:

Салонина Екатерина Александровна

Преподаватель:

Кустарев Павель Валерьевич

Цель работы.

Получить навыки описания арифметических блоков на RTL-уровне с использованием языка описания аппаратуры Verilog HDL.

Задание в соответствии с вариантом.

Таблица 1

№ варианта	Функция	Ограничения
2	$y = a^3 + \sqrt[2]{b}$	2 сумматора и 1 умножитель

Схема основных функциональных блоков:

Схема конечного автомата для итоговой функции

Описание работы разработанного блока

Когда приходит сигнал rst_i происходит сброс модулей нашего автомата и схема входит в состояние ST_IDLE. По сигналу start_i равному 1 автомат переходит в состояние POWER2, в котором умножитель используется для подсчета a_bi * mux(a_bi, part_res), а значение мультиплексора в данном случае, исходя из значения state, которое равно как раз POWER2, он выберет a_bi и умножит, после чего сохранит в part_res и перейдет в состояние MUL_REFRESH. В данном состоянии регистр m_power_end будет сброшен, после чего модуль будет готов для дальнейший подсчетов и перейдет в состояние POWER3. В этом состоянии mux выберет уже part_res и таким образом мы получим число, возведенное в 3 степень, и перейдем к следующему состоянию, SQRT. Здесь уже начнет работать модуль вычисления корня из числа b_bi. После вычисления, схема перейдет в состояние ADDER, где, исходя из названия, наши два числа будут сложены, и мы получим итоговое значение нашей функции, после чего она обратно вернется в состояние ST_IDLE.

КОД РАЗРАБОТАННОГО АВТОМАТА

Область допустимых значений разработанного блока

$$a \in [0; 256), b \in [0; 256)$$

$$\begin{bmatrix} y \in \{a + b | a, b \in \{0...2^{24} - 1\} \times \{0...255\}\} \\ y \in [0; 2^{25}) \end{bmatrix}$$

Результат тестирования разработанного блока (временная диаграмма)

Время вычисления результата при частоте тактового сигнала в 100 МГц

Время выполнения: 850 нс

Выводы по работе

В ходе выполнения лабораторной работы я понял, что Vivado не создан для людей очень сложно проектировать, разрабатывать и создавать даже простейшие схемы, особенно включающих много мелких деталей, требующих высокую точность вычислений. А также очень сложно следить одновременно везде за отсутствием утечки памяти, ведь даже неправильное тестирование может дать ложно-верное представление о работе схемы, коим оно не является на самом деле.