8

Thermodynamics

Thermal Equilibrium

When temperature of system A and system B becomes equal, then heat exchanged between them becomes zero. It is said that thermal equilibrium has been established between system A and system B.

Zeroth law of thermodynamics

When system A and system B are in thermal equilibrium with a third system C then system A and B are said to be in thermal equilibrium with each other.

$$\left. \begin{array}{l}
 T_{A} = T_{C} \\
 T_{B} = T_{C}
 \end{array} \right\} \implies T_{A} = T_{B}$$

Thermal Expansion

	Thermal Expansion					
Linear expansion	Surface expansion	Volume expansion				
(1- dimensional)	(2-dimensional)	(3-dimensional)				
- Change in length takes place.	- Change in length and breadth takes place.	- Change in length, breadth and height takes place. (photographic enlargement)				
$-\Delta l = \alpha l \Delta T$ $\alpha = \frac{\Delta l}{l \Delta T}$	$\Delta A = \beta A \Delta T$	$\Delta V = \gamma V \Delta T$				
$\alpha = \frac{1}{l\Delta T}$ $\alpha = \text{Coefficient of linear}$ expansion	$\beta = \frac{\Delta A}{A \Delta T}$	$\gamma = \frac{\Delta V}{V \Delta T}$				
Unit: $\alpha = {}^{\circ}C^{-1}$ or K^{-1}	β = Coefficient of surface expansion $\beta = 2\alpha$ Unit: °C ⁻¹ or K ⁻¹	γ = Coefficient of volume expansion $\gamma = 3\alpha$ Unit: °C ⁻¹ or K ⁻¹				

Percentage change in density due to volume expansion:

$$\frac{\rho - \rho_0}{\rho_0} = \frac{\gamma \Delta T}{1 + \gamma \Delta T}$$

Relation between different scales of temperature :

(1) Celsius and kelvin : $T_C = T_k - 273$

(2) Fahrenheit and celsius : $T_F = \frac{9}{5} T_C + 32$

(3) Fahrenheit and kelvin : $T_F = \frac{9}{5} [T_k - 273] + 32$

Phase diagram:

Graph of $P \rightarrow T$ for any substance is called its phase diagram.

Curve OA: Sublimation curve. Solid and gaseous form coexists.

Curve AB: Fusion curve. Solid and liquid form coexists.

Curve AC: Vaporisation curve. Liquid and gaseous form coexists.

- (1) A gas thermometer is used to measure temperature. When it is dipped in water, triple point temperature is 273.16 K and pressure is 3×10⁴ Nm⁻². When this gas thermometer is dipped in some other liquid, pressure indicated is 3.5×10⁴ Nm⁻² then the new temperature will be
 - (A) 54.6 K
- (B) 45.6 K
- (C) 54.6 °C
- (D) 45.6 °C
- (2) There are two similar metal strips one of copper and other of brass. Here $\alpha_{\rm p} > \alpha_{\rm c}$. On increasing temperature by ΔT , both strips form an arc of radius R. Then R

- (A) d $(\alpha_{\rm B} \alpha_{\rm C}) \Delta T$ (B) $\frac{d^2}{(\alpha_B \alpha_C) \Delta T}$ (C) $\frac{d}{(\alpha_B \alpha_C) \Delta T}$ (D) $\frac{(\alpha_B \alpha_C) \Delta T}{d^2}$
- (3) On adding steam to 100 g water, temperature of water increases from 24°C to 90°C. How much steam should be added?
 - (A) 25 g
- (B) 12 g
- (C) 21 g
- (D) 100 g
- (4) In a temperature scale "A", melting point of water is shown as −160° A and boiling point of water as -50° A then in its scale, temperature 340 K will be shown as
 - $(A) -86.3 \, ^{\circ}A$
- (B) +86.3 °A
- (C) -86.3 °K
- (D) -86.3 °C
- (5) In a thermometer, if melting point of water is 20 °C and boiling point of water is 150 °C then 50 °C will be shown in this thermometer as
 - (A) 85 °C
- (B) -85 °C
- (C) 58 °C
- (D) -58 °C
- Mass of ice at -20 °C temperature is 1200 g. To completely melt it, how much steam at 100 °C will (6) be required?

Here, specific heat of ice S = 0.5 cal $g^{-1} \circ C^{-1}$

specific heat of water S = 1 cal $g^{-1} \circ C^{-1}$

Latent heat of ice L = 80 cal g^{-1}

Latent heat of steam $L = 540 \text{ cal g}^{-1}$

- (A) 18.75 kg
- (B) 18.75 g
- (C) 1.875 kg
- (D) 1.875 g

(7)	A copper sphere of m	ass 1 kg is heated upto	500 °C and th	an nlocad	long hig piece of ice	01
(7)	0 °C then how much ic		300 C and u	en piaced	on a big piece of ice	aı
	[specific heat of coppe	$r S = 400 \text{ Jkg}^{-1} ^{\circ}\text{C}^{-1}, \text{ lat}$	ent heat of ice	$L = 3.5 \times$	10 ⁵ Jkg ⁻¹]	
	(A) 0.57 kg	(B) 570 gm	(C) 5.7 kg		(D) 57 kg	
(8)	On heating a metal sph of linear expansion of t	ere to temperature 60 °C metal wil be	C, its volume in	ncreases by	y 0.12 % then coefficie	nt
	(A) $6.66 \times 10^{-6} ^{\circ}\text{C}^{-1}$	(B) $66.6 \times 10^{-6} ^{\circ}\text{C}^{-1}$	(C) 5.56×1	$0^{-5} {}^{\circ}\mathrm{C}^{-1}$	(D) $55.6 \times 10^{-6} {}^{\circ}\text{C}^{-1}$	
(9)	Co-ordinate of triple po	oint of water is				
	(A) 4.58 mm-Hg, 273.	16 K	(B) 4.58 mm	-Hg, 0 K		
	(C) 5.58 m-Hg, 273.16	K	(D) 5.58 mm	1-Hg, 0 K		
(10)	For values of pressure equilibrium.	re and temperature at	triple point,	forms	s of matter coexists	ir
	(A) Gas and liquid	(B) Solid and gas	(C) Solid and	liquid	(D) All three	
(11)	Relation between temp	erature in Fahrenheit (T	and in Celsiu	is (T _C) is		
	(A) $T_F = \frac{5}{9} T_C - 32$		(B) $T_F = \frac{9}{5}$	$T_{C} + 32$		
	(C) $T_F = \frac{5}{9} T_C + 32$		(D) $T_F = \frac{9}{5}$	$T_{\rm C} - 32$		
(12)	Temperature difference	e of 10 °C is equal to	temperature	difference.		
	(A) 10 °F	(B) 20 °F	(C) 50 °F		(D) 40 °F	
(13)	Temperature of body	of a patient is 40° C. It v	would be in	ı Fahrenho	eit scale.	
	(A) 100 °F	(B) 101 °F	(C) 102 °F		(D) 104 °F	
(14)	If temperature of a sub (A) 293 K	estance changes by 20° (B) 20 K	C then change i (C) 293 °F	n kelvin s	cale will be (D) -20 °C	
(15)	Ice at -5 °C temperate following graph shows	ure is heated slowly til this entire process?	l it converts in	to steam	at 100°C. Which of the	ıe
	(A) (Emperature		(B) mperature	 		

(16)	f rotation/sec about an	axis passing through its	pecific heat S is rotating s centre. Now, on stopping it en the equation giving increase	it suddenly, its 50 %
	(A) $\frac{2}{5} \frac{S}{\pi^2 R^2 f^2}$	(B) $\sqrt{\frac{2}{5}} \frac{\pi R^2 f^2}{S}$	(C) $\sqrt{\frac{2}{5}} \frac{\pi^2 R f}{S^2}$	(D) $\frac{2}{5} \frac{\pi^2 R^2 f^2}{S}$
(17)	Heat capacity of alumi	nium piece of mass 100	g is (specific heat S =	= 0.2 cal g ⁻¹ °C ⁻¹)
	(A) 4.4 J °C	(B) 44 J °C	(C) 4.4 J °C ⁻¹	(D) 44 J °C ⁻¹
(18)	At triple point of water	, temperature measured i	in Celsius scale will be °	C.
	(A) 0	(B) -273.16	(C) 100	(D) 0.01
(19)	At atmospheric pressurtemperature is taken	•	established between pure v	vater and its vapour,
	(A) 100	(B) 273.15	(C) 373.15	(D) 273.16
(20)	Value of absolute zero	temperature in fahrenhei	it scale is °F.	
	(A) 0	(B) -273.15	(C) -459.67	(D) -356.67
(21)	At which temperature	does value on °C scale a	and °F scale becomes same s	?
	(A) 0	(B) 40	(C) –40	(D) 32
(22)	At which temperature of	density of water is maxim	num ?	
	(A) 32 °F	(B) 39.2 °F	(C) 42 °F	(D) 4 °F
(23)	At which temperature	does coefficient of volum	ne expanssion of water become	nes zero ?
	(A) 0 °C	(B) 4 °C	(C) 15.5 °C	(D) 100 °C
(24)	Ratio of heat required Here $R_1 = 2R_2$	to raise temperature of	two copper spheres of radii	\boldsymbol{R}_1 and \boldsymbol{R}_2 by 1K is
	(A) $\frac{8}{27}$	(B) $\frac{27}{8}$	(C) $\frac{8}{1}$	(D) $\frac{1}{8}$
(25)	A thermodynamic syst work done in both case		from P_1 , V to $2P_1$, V and (ii) P_1 , V_1 to P_1 , $2V_1$
	(A) 0, 0	(B) $0, P_1V_1$	$(C) PV_1, 0$	(D) PV_1, P_1V_1
(26)	change in internal ener	gy will be	C temperature. If we neglect	t expansion of water,
	(specific heat of water	$= 4184 \text{ J kg}^{-1} \text{ K}^{-1}$		
	(A) 1046.00 cal	(B) 10460 cal	(C) 1046.00 J	(D) 10460 J
(27)	For isothermal process	of an ideal gas, $\frac{dP}{P} =$		
	$(A) - \gamma \frac{dV}{V}$	(B) $-\frac{dV}{V}$	(C) $-\sqrt{\gamma} \frac{dV}{V}$	(D) $-\gamma^2 \frac{dV}{V}$

(28)	For adiabetic process of	of an ideal gar $\frac{dP}{P} = \dots$		
	(A) $-\gamma \frac{dV}{V}$	(B) $-\frac{dV}{V}$	(C) $-\sqrt{\gamma} \frac{dV}{V}$	(D) $-\gamma^2 \frac{dV}{V}$
(29)	Amount of heat require	ed to raise temperature of	f a substance by 1° C is called	ed
	(A) Water equivalent	(B) Heat capacity	(C) Entropy	(D) Specific heat
(30)	Unit of coefficient of li	near expansion is		
	(A) °C	(B) °C ^{−1}	(C) m °C	(D) m $^{\circ}$ C ⁻¹
(31)	Length of a metal rod	is 50 cm. On increasing	its temperature by 100 °C, he	ow much increase in
	its length takes place?	(for metal, $\alpha = 1.1 \times 10^{\circ}$	$0^{-5} \circ C^{-1}$	
	(A) 5.5×10^{-2} m	(B) 5.5×10^{-2} cm	(C) 5.5×10^{-3} m	(D) 5.5×10^{-3} cm
(32)	Radius of a circular d	isc made of copper is 1	0 cm and there is a hole o	f radius 1 cm at its
	center. On heating the	dics, area of hole		
	(A) increases		(B) decreases	
	(C) does not change		(D) hole will be destroyed	
(33)	5 mole gas at tempera	nture 20 °C is adiabetical	ally compressed at pressure	1 atm such that its
	volume becomes tenth	part of its original volum	e then final temperature is	··· ·
	(A) 736 K	(B) 846 K	(C) 736 °C	(D) 523.5 K
(34)	An ideal gas having vol	lume 3 Litre and pressure	20 atm is isothermally expar	nded to make volume
	24 L. Work required is	······ ·		
	(A) 15600 J	(B) 12600 J	(C) 13750 J	(D) 12.600 J
(35)	•	*	in one direction as "a" and '. Then coefficient of volum	
	(A) 2a + b	(B) $a + 3b$	(C) a + 2b	(D) $3a + b$
(36)	For adiabetic process of	of an ideal gas, relation b	etween pressure and temerate	ure is
	(A) $P^{\gamma} T^{\gamma-1} = constant$		(B) $PV^{\gamma} = constant$	
	(C) $PV = constant$		(D) $P^{1-\gamma} T^{\gamma} = constant$	
(37)	Dimensional equation	of γ in equation $PV^{\gamma} = cc$	onstant for adiabetic process i	s
	(A) $M^0L^1T^{-1}$	(B) $M^1L^1T^0$	(C) $M^1L^0T^1$	(D) $M^0L^0T^0$
(38)	• •	ressing a gas at 1 atm prebe $m - Hg$. [$\gamma = 1.4$]	ssure, its volume becomes ha	lf of original volume
	(A) $\frac{0.76}{(2)^{1.4}}$	(B) $0.76 \times (2)^{1.4}$	(C) $7.6 \times (2)^{0.4}$	(D) $0.76 \times (2)^{0.4}$
(39)	Temperature of a subst $T^{\circ}F$ then $T = \dots$.	tance on kelvin scale is	T K and same temperature o	n fahrenheit scale is
	(A) 40	(B) 313	(C) 574.25	(D) 301.25

(40)	Air inside tyre of vehicle has pressure 4 atm and temperature 27 °C. Suddenly tyre bursts, then				
	new temperature of air	r becomes $[\gamma = \frac{7}{5}]$]		
	<u>-2</u>	_2	<u>2</u>	2	
	(A) $300(4)^7$	(B) $400(3)^{\frac{-2}{7}}$	(C) $300(4)^7$	(D) $400(3)^{\frac{2}{7}}$	
(41)	95 K temperature on	kelvin scale is equivalen	t to on fahrenheit scale.		
	(A) –288° F	(B) −146° F	(C) –338° F	(D) 178° F	
(42)	On heating a metal wi	re, its length increases b	y 2 % then increase in its are	ea of cross-section is	
	(A) 1 %	(B) 2 %	(C) 3 %	(D) 4 %	
(43)		` '	` '		
(- /	A glass beaker at 4 °C temperature is completely filled with water and kept in a fridge. Now, its temperature goes below 4 °C, then (A) water will come out. (B) no change in level of water. (C) water will go in the beaker. (D) water will initially go inside and then come out.				
(44)	A long rod of L_A + respectively. Coefficient	$L_{\rm B}$ is made by joining rent of linear expansion	of A and B are α_A and α_B change in length of every roof	respectively. When	
	$\frac{L_A}{L_A + L_B} = \dots \cdot (\alpha_C)$	acoefficient of combine 1	inear expansion).		
	(A) $\frac{\alpha_{\rm C}}{\alpha_{\rm A}}$	(B) $\frac{\alpha_A}{\alpha_C}$	(C) α_A . α_C	(D) $\alpha_A + \alpha_B$	
(45)	substance showing 2 140 °C then celsius the	12° F temperature. Wheremometer will shows de	hen fahrenheit thermometer ecrease in temperature by	shows temperature .	
(46)	(A) 40°	(B) 30°	(C) 60°	(D) 80°	
(46)	is ($\alpha = 11 \times 10^{-6} {}^{\circ}\text{C}^{-1}$))	e is 30 cm then its length at	•	
(45)	(A) 30 cm	(B) 29.99 cm	(C) 30.10 cm	(D) 29.10 cm	
(47)	same. Then value of T) 100 K and 500 K and (ii)	T K and 900 K are	
	(A) 250 K	(B) 280 K	(C) 200 K	(D) 180° K	
(48)		ture of a metal sphere up ne expansion (γ) will be	pto 30 °C, its volume increas	es by 0 0.30 % then	
	(A) 0.00003 °C ⁻¹	(B) 0.0003 °C ⁻¹	(C) 0.0001 °C ⁻¹	(D) 0.001 °C ⁻¹	
(49)	In thermal expansion, ra	atio of coefficient of linear	r expansion (α), coefficient of	surface expansion (β)	
	and coefficient of volum	ne expansion (γ) is			
	(A) 3:2:1	(B) 2:3:1	(C) $1:2:3$	(D) 1:3:2	

- (50)Amount of heat required to convert substance of unit mass from solid state to liquid state at constant temperature is called
 - (B) Latent heat of fusion (A) Heat energy
- (C) Specific heat
- (D) Internal energy

(51)Depending on phase diagram, match the following:

	Column-1		Column-2
(a)	Solid and gaseous form of substance	P	Sublimation curve
	coexists		
(b)	Liquid and gaseous form of substance	Q	Fusion curve
	coexists		
(c)	Solid and liquid form of substance	R	Triple point
	coexists		
(d)	All three forms of substance coexists	S	Vaporisation curve

$$(A) \ a \rightarrow S \ ; \ b \rightarrow R \ ; \ c \rightarrow P \ ; \ d \rightarrow Q \\ (B) \ a \rightarrow P \ ; \ b \rightarrow S \ ; \ c \rightarrow Q \ ; \ d \rightarrow R$$

(B)
$$a \rightarrow P$$
; $b \rightarrow S$; $c \rightarrow Q$; $d \rightarrow F$

(C)
$$a \rightarrow O : b \rightarrow P : c \rightarrow S : d \rightarrow R$$

(C)
$$a \rightarrow Q$$
; $b \rightarrow P$; $c \rightarrow S$; $d \rightarrow R$ (D) $a \rightarrow R$; $b \rightarrow Q$; $c \rightarrow P$; $d \rightarrow S$

Ans.: 1 (D), 2 (C), 3 (B), 4 (A), 5 (A), 6 (B), 7 (A), 8 (A), 9 (A), 10 (D), 11 (B), 12 (C), 13 (D), 14 (B), 15 (A), 16 (D), 17 (D), 18 (D), 19 (C), 20 (C), 21 (C), 22 (B), 23 (B), 24 (D), 25 (B), 26 (D), 27 (B), 28 (A), 29 (B), 30 (B), 31 (B), 32 (A), 33 (A), 34 (B), 35 (C), 36 (D), 37 (D), 38 (B), 39 (C), 40 (A), 41 (A), 42 (D), 43 (A), 44 (A), 45 (A), 46 (B), 47 (D), 48 (C), 49 (C), 50 (B), 51 (B)

1st law of thermodynamics:

$$\Delta U = \Delta Q - \Delta W$$

where,

- (A) ΔU = Change in internal energy of system
 - \rightarrow depends only on initial and final state of system.
 - \rightarrow If temperature of system increases, $\Delta U = positive$
 - \rightarrow If temperature of system decreases, $\Delta U =$ negative
 - → It is a function depending only on temperature of system
- (B) ΔQ = Change in heat energy of system
 - \rightarrow If heat given to system, $\Delta Q = positive$
 - \rightarrow If heat lost by system, $\Delta Q =$ negative
- (C) $\Delta W = Work done$
 - \rightarrow If work done by system (its volume increases), $\Delta W = positive$
 - \rightarrow If work done on system (its volume decreases), $\Delta W =$ negative

1st law of thermodynamics for different processes:

- (A) Isothermal process:
 - Temperature remains constant during entire process.
 - $\Delta T = 0 \implies \Delta U = 0$

$$\therefore 0 = \Delta Q - \Delta W$$

$$\therefore \Delta Q = \Delta W$$

- Boyle's law : PV = constant
- Work done $W = \Sigma P \Delta V = \int P dV$

$$W = \mu RT \ln \left(\frac{V_2}{V_1}\right) = \mu RT \ln \left(\frac{P_1}{P_2}\right)$$
$$= 2.303 \ \mu RT \log \left(\frac{V_2}{V_1}\right) = 2.303 \ \mu RT \log \left(\frac{P_1}{P_2}\right)$$

(B) Adiabetic Process:

- Exchange of heat energy between system and surrounding $\Delta Q = 0$
- $\Delta U = -\Delta W$

 \therefore if work done by system, $\Delta U =$ negative

& if work done on system, $\Delta U = positive$

• Work done $W = \sum P\Delta V = \int PdV$

$$W = \frac{P_1 \ V_1 - P_2 \ V_2}{\gamma - 1} \ = \frac{\mu \, R \, (T_1 - T_2)}{\gamma - 1}$$

• Relation between P, V and T:

$$PV^{\gamma} = constant, \ TV^{\gamma-1} = constant, \ TP^{\frac{1-\gamma}{\gamma}} = constant$$

(C) Isobaric process:

- Pressure of system remain constant

(D) Isochoric process:

- Volume of system remains constant
- $\bullet \qquad \Delta V = 0$

$$\therefore$$
 W = P (Δ V) = P(0) = 0

$$\Delta U = \Delta Q$$

(E) For isolated system:

•
$$\Delta Q = 0 \Rightarrow \Delta U = 0 \Rightarrow U = constant$$

$$\Delta W = 0$$

• Heat capacity:

$$H_{C} = \frac{\Delta Q}{\Delta T} \qquad \text{Unit}: \quad \frac{\text{cal}}{\text{°C}} \quad ; \quad \frac{J}{K}$$

- Depends on type and mass of substance.
- Specific heat:

$$C = \frac{H_C}{m} = \frac{\Delta Q}{m\Delta T}$$
 [for solid and liquid]

•	depends only on type of substance				
	Unit: $\frac{\text{cal}}{\text{g }^{\circ}\text{C}}$; $\frac{\text{J}}{\text{kg K}}$				
•	Specific heat of gas at constant volume (C_v) :				
	$C_V = \left(\frac{\Delta Q}{\mu \Delta T}\right)_{V = }$	$constant = \frac{fR}{2}$			
•	Specific heat of	gas at constant pressur	re (C_p) :		
	$C_p = \left(\frac{\Delta Q}{\mu \Delta T}\right)_{P = }$	$= \left(1 + \frac{f}{2}\right) R = \frac{fR}{2}$. + R		
•	Relation between	en C_p and C_V :			
	$C_P - C_V = R$	(for ideal gas)			
	$\gamma = \frac{C_{P}}{C_{V}} = \frac{f+2}{f}$	$r = 1 + \frac{2}{f}$			
During	g a thermodynam	ic process, 1000 J heat i	s lost on doing 100 J work.	Thus, change in its	
interna	al energy will be				
(A) - 9	900 J	(B) +900 J	(C) +1100 J	(D) -1100 J	
In a	thermodynamics	process, on changing	pressure of gas, it releases	s 200 J heat and	
	work is done on	it. If initial internal ene	rgy of system is 10 J then fi	nal internal energy	
(A) 29	90 J	(B) 90 J	(C) -290 J	(D) -90 J	
420 J	work is done on	a system, then change in	its internal energy is cal	l .	
(A) 42	20	(B) +100	(C) -420	(D) -100	
For h	ydrogen gas, C _p	$= 3400 \text{ cal kg}^{-1} ^{\circ}\text{C}^{-1} \text{ ar}$	and $C_V = 2400 \text{ cal kg}^{-1} ^{\circ}\text{C}^{-1}$.	Work required to	
increa	se temperature of	hydrogen gas from 30°	C to 40° C at constant pressi	ure is J if mass	
of hyd	rogen gas is 10 k	g.			
(A) 10	00 cal	(B) 1000 cal	(C) 100000 cal	(D) 10 cal	
If temperature of 100 m^3 gas at 1 atm pressure is increased from 27° C to 627° C adiabetically,					
then final pressure will be (Take $\gamma = 1.5$)					
(A) 27	atm atm	(B) 2.7 atm	(C) 270 atm	(D) 2700 atm	
Heat Q is given to a diatomic (rigid rotator) gas at constant pressure then work done by gas					
is	•				
(A) $\frac{2}{3}$	Q	(B) $\frac{3}{2}$ Q	(C) $\frac{2}{7}$ Q	(D) $\frac{7}{2}$ Q	

When a system is taken from initial state (i) to find state (f) through path iaf, Q = 500 cal and W = 100 cal is needed. When system is taken through path ibf, Q = 2000 cal then W = on path ibf.

(A) 1400 cal

(52)

(53)

(54)

(55)

(56)

(57)

- (B) 1900 cal
- (C) 1600 cal
- (D) 1500 cal

	pressure to that at cons	stant volume is		
	(A) $\frac{5}{7}$	(B) $\frac{7}{5}$	(C) $\frac{9}{7}$	(D) $\frac{7}{9}$
(60)	_	TP is adiabetically comping the process is	pressed to volume 0.7 L.	If initial temperature is
	$(A) \frac{3}{2} RT_1$	(B) $\frac{9}{2}$ RT ₁	(C) $\frac{8}{9}$ RT ₁	(D) $\frac{9}{8}$ RT ₁
(61)	During adiabetic proc	ess, relation between p	ressure and volume is 1	$P^3 \propto \frac{1}{V^4}$ then ratio of
	specific heat is			
	(A) 1.80	(B) 1.33	(C) 1.67	(D) 1.42
(62)		le ideal gas at 100 K cone during this process is	onstant temperature, its	volume increases from
	(A) 5763 J	(B) 5673 J	(C) 57.63 J	(D) 567.3 J
(63)	•	-	kilo mole gas is 146 kJ. \sim (R = 8.3 Jmol ⁻¹ k	
	(A) Monoatomic	(B) Diatomic	(C) Triatomic	(D) Polyatomic
(64)	Coefficient of volume expansion of glycerine is 49×10 ⁻⁵ °C ⁻¹ . On increasing its temperature by 20 °C, percentage decreases in its density is			
	(A) 10 %	(B) 0.98 %	(C) 1 %	(D) 9.8 %
(65)	If γ is ratio of specific $C_p = \dots$.	heats and R is gas cons	tant then molar specific	heat at constant pressure
	(A) $\frac{\gamma R}{\gamma + 1}$	(B) $\frac{R}{\gamma+1}$	(C) $\frac{\gamma R}{\gamma - 1}$	(D) $\frac{R}{\gamma - 1}$
(66)	If γ is ratio of specific $C_v = \dots$.	heats and R is gas cons	stant then molar specific	heat at constant volume
	(A) $\frac{\gamma+1}{R}$	(B) $\frac{\gamma - 1}{R}$	(C) $\frac{R}{\gamma+1}$	(D) $\frac{R}{\gamma - 1}$
(67)	During an adiabetic profile. Then for this gas $\gamma =$		s directly proportional to	cube of its temperature.
	(A) $\frac{3}{2}$	(B) $\frac{5}{3}$	(C) $\frac{7}{5}$	(D) $\frac{5}{7}$
(68)	1 mole ideal gas at t	emperature T ₁ K does	6R J work adiabeticall	y. If $\gamma = \frac{5}{2}$ then final
	temperature of gas is.			3
		(B) $(T_1 - 4) K$	(C) (T. + 8) K	(D) $(T_1 - 8) K$
(69)	•	•	J. If energy required to	i
` /	168 J then change in in		2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1 &
	(A) 2408 J	(B) 2240 J	(C) 2072 J	(D) 1904 J

(59) For an ideal gas, specific heat at constant pressure is $\frac{7}{2}$ R then ratio of specific heats at constant

(70)For cyclic process shown in figure, net heat absorbed by system in every cycle is

- (A) 10π unit
- (B) π unit
- (C) 100π unit
- (D) π^2 unit

(71)2

In the figure, ideal gas 1 and 2 move from state A to state B by different path. If change in internal energy for path 1 and 2 are $(\Delta U_{int})_1$ and $(\Delta U_{int})_2$ then

- (A) $(\Delta U_{int})_1 = (\Delta U_{int})_2$
- (B) $(\Delta U_{int})_1 < (\Delta U_{int})_2$
- (C) $(\Delta U_{int})_1 > (\Delta U_{int})_2$
- (D) $(\Delta U_{int})_1 = 5 (\Delta U_{int})_2$
- Which part of graph of $P \rightarrow V$ shown in figure represents (72)Isothermal process, Isochoric process and Isobaric process respectively.

- (A) 12; 34; 23
- (B) 12; 14; 34
- (C) 23; 34; 12
- (D) 34; 12; 23

For cyclic process in graph of $P \rightarrow V$ shown in figure, work done = \dots .

- (A) 2 PV
- (B) 4 PV
- (C) 9 PV
- (D) 6 PV
- As shown in figure, 1 mole He gas experience cyclic (74)process ABCA. During the process, 1000 J heat is obtained P from the gas then work done during stage BC is $(R = 8.3 \ 1 \ mol^{-1} \ K^{-1})$

- (A) +3490 J
- (B) 1490 J
- (C) -3490 J
- (D) 1490 J

(75)

- Cyclic process of μ mole Ar gas is shown in figure. Efficiency of thermodynamic process is
 - (A) 100 %
 - (B) 25 %
 - (C) 75 %
 - (D) 50 %
- Which of the following is the graph of $\beta \to P$ for an ideal gas at constant temperature where β = (76)compressibility of gas = $\frac{-d V/dP}{V}$.
 - (A)

(B)

(C)

(D)

- (77)Liquid O₂ at 1 atm pressure is heated from 50 K to 300 K at constant pressure. Rate of heating is constant. Which of the following shows graph of change in temperature with time?
 - (A)

(B)

(C)

(D)

(78) 1 mole ideal gas moves from state A to state B by two different ways. Firstly, volume is changed from V to 3V by isothermal expansion and then volume is decreased from 3V to V at constant pressure. Which of the following is the graph of P → V showing these two processes ?

(A)

P

(B)

(C)

(D)

(79) In the figure, a system moves on path 1-2-1. In the $P \to V$ graph, different paths are shown such that each time thermal equilibrium is set up between system and environment. During which closed path is work done maximum positive?

(B)
$$1 - c - 2 - e - 1$$

(C)
$$1 - d - 2 - e - 1$$

(D)
$$1 - a - 2 - f - 1$$

(80)

For graph of $P \to V$ of a cyclic process, shown in figure, change in internal energy of gas $\Delta U =$ and net heat exchange $\Delta Q =$.

- (A) positive, negative
- (B) positive, zero
- (C) zero, negative
- (D) zero, positive

(81) During cyclic process shown in figure, net heat absorbed by system per cycle is

- (A) $20 \times 10^6 \text{ J}$
- (B) $2 \times 10^5 \text{ J}$
- (C) $200 \times 10^7 \text{ J}$
- (D) $20 \times 10^7 \,\text{J}$

Ans.: 52 (A), 53 (D), 54 (B), 55 (C), 56 (A), 57 (C), 58 (C), 59 (B), 60 (D), 61 (B), 62 (A), 63 (B), 64 (B), 65 (C), 66 (D), 67 (A), 68 (B), 69 (C), 70 (B), 71 (A), 72 (C), 73 (C), 74 (C), 75 (D), 76 (A), 77 (D), 78 (D), 79 (B), 80 (C), 81 (A)

Efficiency of heat engine:

$$\eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}$$

 $\eta < 1$ (always)

where Q_1 = Heat absorbed from heat source at high temperature

 Q_2 = Heat released in sink at low temperature

Coefficient of performance of refrigerator:

$$\alpha = \frac{Q_2}{W} = \frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2}$$

 $\alpha > 1$ but never infinity

where Q_1 = Heat released by working substance in surrounding at higher temperature (T_1)

 Q_2 = Heat absorbed by working substance from arrangement at lower temperature (T_2)

Efficiency of Carnot engine:

$$\eta = 1 - \frac{T_2}{T_1} = 1 - \frac{Q_2}{Q_1}$$

where T_1 = Temperature of heat source

 T_2 = Temperature of sink

- (82) Efficiency of a heat engine is 30 %. During each cycle, difference of heat absorbed and heat released is 60 J. Then heat absorbed from heat saurce during every cycle, is and that released in sink is
 - (A) 100 J, 63 J
- (B) 150 J, 65 J
- (C) 200 J, 63 J
- (D) 200 J, 140 J
- (83) A heat engine absorbs 50 kJ heat from heat source. If its efficiency in 30 % then it releases heat in sink.
 - (A) 35 kJ
- (B) 350 kJ
- (C) 35 J
- (D) 350 J
- (84) If heat engine absorbs 2 kJ heat from heat source and releases 1.5 kJ heat in sink then efficiency $\eta = \dots$.
 - (A) 5 %
- (B) 25 %
- (C) 50 %
- (D) 2.5 %
- (85) A Carnot engine absorbs heat 3×10⁶ cal from heat source at temperature 627 °C and releases some heat in sink at temperature 27 °C then work done is
 - (A) 8.4×10^6 cal
- (B) $2 \times 10^6 \, \text{J}$
- (C) $8.4 \times 10^6 \text{ J}$
- (D) $12 \times 10^6 \text{ J}$
- (86) Efficiency of a Carnot engine is 40 % and temperature of sink is 400 K. Keeping temperature of heat source constant, if efficiency is to be made 80 %, temperature of sink should be made
 - (A) 300 K
- (B) 667 K
- (C) 532 K
- (D) 133 K
- (87) A heat engine works between temperature 227° C and 127° C of Carnot cycle. If it absorbs 6 kJ heat from heat source then it converts heat into work,
 - (A) $1.2 \times 10^3 \text{ J}$
- (B) 1.2×10^3 cal
- (C) 1200 J
- (D) 1200 cal

	(A) 2500 K Efficiency of a heat endoubles. Temperature (A) 37 °C	Ü	(C) 250 K	(D) 200 K
(89)	doubles. Temperature	Ü	erature of sink is reduced	
	•	of heat source will be	oracide of sink is reduced	by 62 °C, its efficiency
	(A) 37 °C			
		(B) 99 °C	(C) 62 °C	(D) 52 °C
	•	engine is 20 %. It works n how much heat will sin	•	rigerator. If 50 J is work
	(A) 200 cal	(B) 100 cal	(C) 200 J	(D) 100 J
		•		20 J heat per cycle from hot reservoir at higher
	(A) 96 cal	(B) 144 cal	(C) 96 J	(D) 144 J
Ans.:	82 (D), 83 (A), 84 (B)	, 85 (C), 86 (D), 87 (A),	88 (A), 89 (B), 90 (C), 9	1 (D)
Asserti	on - Reason type Qu	estion:		
Instruc	tion: Read assertion	and reason carefully,	select proper option fro	om given below.
	(a) Both assertion and	reason are true and reason	on explains the assertion.	
	(b) Both assertion and	reason are true but reason	on does not explain the as	ssertion.
	(c) Assertion is true bu	it reason is false.		
	(d) Assertion is false a	nd reason is true.		
(92)	Assertion: Its difficu	It to find reversible proce	ess in practice.	
	Reason: Most of the	processes lost on energy	y.	
	(A) a	(B) b	(C) c	(D) d
(93)	Assertion : When air	comes out of balloon, it is	feels instantly cool.	
	Reason: Air experien	ces adiabetic expansion v	while coming out.	
	(A) a	(B) b	(C) c	(D) d
(94)	Assertion: Carnot cy	cle is useful in understan	ding efficiency of heat er	ngine.
	Reason: It shows pro	bability of obtaining max	imum possible efficiency	at a given temperature.
	(A) a	(B) b	(C) c	(D) d
(95)	Assertion: On coolin	g milk kept in a glass in	a room, its disorderness ((entropy) decreases.
	Reason: on cooling a	hot substance, it does no	ot dissolved. second law of	of Themodyhamics.
	(A) a	(B) b	(C) c	(D) d
(96)	Assertion : Entropy (Disorderness) of an isola	ted always increases.	
	Reason: Processes of	ccuring in isolated systen	n are adiabetic.	
	(A) a	(B) b	(C) c	(D) d

(97)		Temperature on surface of Share large and sare alteria 80		•	cusing sunray	s with help
		huge lens, one can obtain 80	•		ios socond lov	.,
	(A) a	s temperature can be obtained (B) b	(C) c	mermodynam	(D) d	٧.
(98)	` '	efrigerator absorb heat from	. ,	ura and ralance	, ,	naratura
(98)		mally heat can not be flow fr	•			perature.
	(A) a	(B) b	(C) c	, 41	(D) d	
(99)	` '	an efficiency of Carnot engine	. ,	when temperat	,	ll decrease
(33)	Reason: $\eta =$	_	will increase	when temperat	are or shik wi	ii decreuse.
	(A) a	(B) b	(C) c		(D) d	
(100)	Assertion: In	nternal energy of ideal gas dep	pends only on	temperature a	nd not on vol	ume.
	Reason: Tem	nperature is more important th	an volume.			
	(A) a	(B) b	(C) c		(D) d	
(101)	Assertion: compression p	Internal energy and temporocess.	erature of s	ystem will b	e decrease i	n adiabatic
	Reason: An	adiabatic process is very slov	v process.			
	(A) a	(B) b	(C) c		(D) d	
(102)	Assertion : W	Then a bottle of cold drink like	pepsi is opene	d, some fogg w	ill produced ar	ound it.
	Reason: As	low temperature, gas get adia	batic expansion	on and vapour	of water cool	S.
	(A) a	(B) b	(C) c		(D) d	
Ans.	: 92 (A), 93 (A), 94 (A), 95 (A), 96 (A), 97 (D), 98 (C), 99	9 (A), 100 (A),	101 (D), 102	(A)
Comp	rehension Typ	e Questions :		D. A		
Parag	raph :			$(N m^{-2})$	٨	ъ.
	A $P \rightarrow T$ cyc	lic process done on 1 mole A	r gas	4×10^{5}	A	B
	is shown in fig	gure along path ABCD.		$(N \text{ m}^{-2})$ 4×10^{5} 2×10^{5}	D	-C
				0	100 K 200 K	300 K T
(103)	Work done to	take Ar gas from A to B at o	constant press	sure (4×10^5)	√ m ⁻²) is	

(C) 166.28 J

(C) 172900 J

(D) 16.628 J

(D) 1729 J

(B) 1662.8 J

(B) 172.9 J

Work done to take Ar gas from B to C at constant temperature (300 K) is

(A) 16628 J

(A) 17.29 J

(104)

Paragraph:

A process ABCA on 1 mole Ar is shown in figure.

- (105) Work done during isochoric process AB is
 - (A) 0 J
- (B) 300 J
- (C) 100 J
- (D) 200 J

- (106) Work done during isothermal process BC is
 - (A) 46.11 J
- (B) 461.1 J
- (C) 3586 J
- (D) 4611 J

- (107) Work done during adiabatic process CA is
 - (A) 0 J
- (B) 1000 J
- (C) 3200 J
- (D) 2494 J

Paragraph:

Pressure of gas and volume change while heat of gas remain constant. This process is known as Adiabatic process. For such process $PV^{\gamma} = \text{constant}$. Process is very rapid and walls of a system are thermal insulator, so no exchange of heat takes place between system and its environment. For this changes, $\Delta Q = 0$ and according to thermodynamics first law $\Delta Q = \Delta U + \Delta W = 0$. $\Delta U = -\Delta W$

Answer the following questions according to above paragraph:

- (108) Bicycle's tyre burst suddenly. Changes in air pressure and volume will be
 - (A) Isothemal
- (B) Adiabatic
- (C) Isobaric
- (D) Isochoric
- (109) The temperature of gas, which is suddenly compressed in system,
 - (A) Increase

(B) Decrease

(C) Constant

- (D) Depend on environment temperature
- (110) When gas in system is suddenly compressed then internal energy of gas will be
 - (A) increase

(B) decrease

(C) constant

- (D) no comment
- (111) The specific heat of gas during adiabatic process
 - (A) 1

- (B) -1
- (C) 0

(D) infinite (∞)

Match the columns:

(112) A thermodynamic processes are shown in column-1 and in column-2 equation of work done are given. Match it appropriately.

	Column-1		Column-2
(a)	Adiabatic process	(P)	W = 0
(b)	Isothermal process	(Q)	$W = \frac{\mu R(T_1 - T_2)}{\gamma - 1}$
(c)	Isochoric process	(R)	$W = 2.303 \ \mu RT \log \left(\frac{V_2}{V_1} \right)$
(d)	Isobaric process	(S)	$W = P \Delta V$

- (A) a \rightarrow P; b \rightarrow R; c \rightarrow Q; d \rightarrow S
- (B) $a \rightarrow Q$; $b \rightarrow R$; $c \rightarrow S$; $d \rightarrow R$
- (C) $a \rightarrow R ; b \rightarrow S ; c \rightarrow P ; d \rightarrow Q$
- (D) $a \rightarrow S$; $b \rightarrow Q$; $c \rightarrow R$; $d \rightarrow P$

(113)		Column-1		Column-2
	(a)	Adiabatic process	(P)	$\Delta U = 0$
	(b)	Isothermal process	(Q)	$\Delta Q \neq 0; \Delta U \neq 0, \Delta W \neq 0$
	(c)	Isochoric process	(R)	$\Delta W = 0$
	(d)	Isobaric process	(S)	$\Delta Q = 0$

(A) a
$$\rightarrow$$
 R ; b \rightarrow P ; c \rightarrow Q ; d \rightarrow S

(B)
$$a \rightarrow Q$$
; $b \rightarrow R$; $c \rightarrow S$; $d \rightarrow P$

(C)
$$a \rightarrow S$$
; $b \rightarrow P$; $c \rightarrow R$; $d \rightarrow Q$

(D)
$$a \rightarrow P$$
; $b \rightarrow S$; $c \rightarrow Q$; $d \rightarrow R$

(114) Different thermodynamic processes are shown in graph of $(P) \rightarrow (V)$

	Column-1	Column-2		
(a)	Graph AB	(P)	Isochoric process	
(b)	Graph GH	(Q)	Adiabatic process	
(c)	Graph EF	(R)	Isobaric process	
(d)	Graph CD	(S)	Isothermal process	

(A)
$$a \rightarrow Q$$
; $b \rightarrow P$; $c \rightarrow S$; $d \rightarrow R$

(B) a
$$\rightarrow$$
 P ; b \rightarrow Q ; c \rightarrow R ; d \rightarrow S

(C)
$$a \rightarrow S$$
; $b \rightarrow R$; $c \rightarrow P$; $d \rightarrow Q$

(D)
$$a \to R$$
; $b \to S$; $c \to Q$; $d \to P$

(115) Match according to concept of heat transfer:

Column A			Column B		
(a)	Heat required to convert a gas from liquid.	(P)	2256 kJ		
(b)	Heat required to convert a liquid from solid.	(Q)	333 kJ		
(c)	Heat required to convert 1g ice to water	(R)	Heat of fusion		
(d)	Heat required to convert 1g water to vapour.	(S)	Heat of vaporization		

(A)
$$a \rightarrow B$$
 $b \rightarrow C$ $c \rightarrow D$ $d \rightarrow A$

(B)
$$a \to D$$
 $b \to C$ $c \to B$ $d \to A$

(C)
$$a \rightarrow A$$
 $b \rightarrow B$ $c \rightarrow C$ $d \rightarrow D$

(D)
$$a \to D$$
 $b \to A$ $c \to B$ $d \to C$

Ans.: 103 (A), 104 (D), 105 (A), 106 (D), 107 (D), 108 (B), 109 (A), 110 (A), 111 (C), 112 (B), 113 (C), 114 (D), 115 (B)