Sammanfattning av SG1183 Differentialekvationer och transformmetoder

Yashar Honarmandi yasharh@kth.se

 $13\ {\rm september}\ 2018$

Sammanfattning

Innehåll

1	\mathbf{Ord}	linarie differentialekvationer (ODE)	1
	1.1	Användbara defitioner och satser	1
	1.2	Första ordningen	2
	1.3	Andra ordningen	4
	1.4	Annat	7
	1.5	System av ODE	7

1 Ordinarie differentialekvationer (ODE)

1.1 Användbara defitioner och satser

Lipschitzkontinuitet En funktion f är Lipschitzkontinuerlig om det finns ett K så att det för varje x_1, x_2 gäller att

$$|f(x_1) - f(x_2)| \le K|x_1 - x_2|.$$

Lipschitzkontinuitet och deriverbarhet Låt $f \in C^1$. Då är f Lipschitzkontinuerlig.

Grönwalls lemma Antag att det finns positiva A, K så att $h: [0, T \to \mathbf{R}]$ uppfyller

$$h(t) \le K \int_{0}^{t} h(s) \, \mathrm{d}s + A.$$

Då gäller att

$$h(t) \le Ae^{Kt}$$
.

Bevis Definiera

$$I(t) = \int_{0}^{t} h(s) \, \mathrm{d}s.$$

Då gäller att

$$\frac{\mathrm{d}I}{\mathrm{d}t}(t) = h(t) \le KI(t) + A.$$

Denna differentialolikheten kan vi lösa vid att tillämpa integrerande faktor. Detta kommer att ge

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{-Kt} I(t) \right) \le A e^{-Kt}.$$

Vi integrerar från 0 till r och använder att I(0) = 0 för att få

$$I(r) \le \frac{A}{K} (e^{Kr} - 1).$$

Derivation på båda sidor ger

$$h(r) \le Ae^{Kr}$$
,

vilket skulle visas.

Linjära differentialekvationer Om en differentialekvation kan skrivas på formen $F(t, y, \frac{dy}{dx}, \dots) = 0$, är den linjär om F är linjär i alla sina argument förutom t.

Wronskianen Wronskianen definieras som

$$W(y_1, y_2)(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ \frac{dy_1}{dt}(t) & \frac{dy_2}{dt}(t) \end{vmatrix}.$$

För vektorvärda funktioner definieras den som determinanten av matrisen vars kolumner är de olika funktionerna.

Linjärt beroende funktioner $f: I \to \mathbf{R}, g: I \to \mathbf{R}$ är linjärt beroende om det finns k_1, k_2 så att

$$k_1 f(t) + k_2 g(t) = 0 \ \forall \ t \in I.$$

1.2 Första ordningen

Entydighet av lösning Betrakta differentialekvationen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(y),$$
$$y(0) = y_0.$$

Detta har en unik lösning om f är Lipschitzkontinuerlig.

Observera att beviset kan även göras för en funktion f(t, y) vid att skriva differentialekvationen som ett system och komma med en motsvarande sats för system av differentialekvationer.

Bevis Betrakta två lösningar y, z av differentialekvationen. Vi får

$$y(\tau) - y_0 = \int_0^{\tau} f(y) \, \mathrm{d}t$$

och samma för z. Vi subtraherar dessa två resultat och får

$$y(\tau) - z(\tau) = y_0 - z_0 + \int_0^{\tau} f(y) - f(z) dt.$$

Vid att beräkna absolutbeloppet av båda sidor och använda Cauchy-Schwarz' oliket får man vidare

$$|y(\tau) - z(\tau)| \le |y_0 - z_0| + \int_0^{\tau} |f(y) - f(z)| dt.$$

Kravet om Lipschitzkontinuitet av f ger vidare

$$|y(\tau) - z(\tau)| \le |y_0 - z_0| + \int_0^{\tau} K|y(t) - z(t)| dt.$$

Grönwalls lemma ger slutligen

$$|y(\tau) - z(\tau)| \le |y_0 - z_0|e^{K\tau}$$
.

Om $y_0 = z_0$ är y = z, och beviset är klart.

Lösning av linjära ODE av första ordning Antag att vi har en differentialekvation på formen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) + p(t)y(t) = g(t).$$

Beräkna

$$P(t) = \int_{a}^{t} p \, \mathrm{d}x$$

och inför den integrerande faktorn $e^{P(t)}$. Multiplicera med den på båda sidor för att få

$$e^{P(t)} \frac{\mathrm{d}y}{\mathrm{d}t}(t) + p(t)e^{P(t)}y(t) = e^{P(t)}g(t).$$

Detta kan skrivas om till

$$\frac{\mathrm{d}}{\mathrm{d}t} (ye^P)(t) = e^{P(t)}g(t) = \frac{\mathrm{d}H}{\mathrm{d}t}(t).$$

Analysens huvudsats ger då

$$y(t)e^{P(t)} = H(t) + c$$

och slutligen

$$y(t) = ce^{-P(t)} + e^{-P(t)}H(t).$$

Låt oss lägga till bivillkoret $y(a) = y_0$. Man kan då visa att lösningen kan skrivas som

$$y(t) = y_0 e^{-\int_a^t p dx} + \int_a^t g(x) e^{-\int_x^t p ds} dx.$$

Separabla ODE av första ordning Antag att vi har en differentialekvation som kan skrivas på formen

$$m(x) + n(y(x))\frac{\mathrm{d}y}{\mathrm{d}x}(x) = 0.$$

Denna betecknas som en separabel ODE av första ordning.

För att lösa den, beräkna primitiv funktion på båda sidor, vilket ger

$$M(x) + N(y(x)) = c, c \in \mathbf{R}.$$

Om N är inverterbar, får man då y enligt

$$y(x) = N^{-1}(c - M(x)).$$

1.3 Andra ordningen

Entydighet av lösning Betrakta den andra ordningens ODE

$$\frac{d^{2}y}{dt^{2}}(t) + p(t)\frac{dy}{dt}(t) + q(t)y(t) = g(t), \ y > t_{0},$$
$$y(t_{0}) = y_{0},$$
$$\frac{dy}{dt}(t_{0}) = y'_{0}.$$

Den har en entydig lösning om p,q är Lipschitzkontinuerliga.

Form på lösning av andra ordningens ODE Betrakta den andra ordningens ODE

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = L(t,y) = g(t).$$

Låt $y_{\rm P}$ vara en partikulär lösning till denna. Då är y en lösning om och endast om

$$y = y_{\rm H} + y_{\rm P}$$

där $y_{\rm H}$ löser den homogena ekvationen.

Bevis Vi har

$$L(t, y) = L(t, y_P + y_H) = L(t, y_P) + L(t, y_H) = g(t) + 0 = g(t),$$

och därmed löser y differentialekvationen. Vi har även

$$L(t, y - y_P) = g(t) - g(t) = 0,$$

och $y - y_{\rm P}$ löser den homogena ekvationen. Eftersom detta är sant, har vi visat ekvivalens.

Fundamentala lösningar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I,$$

där p,q,g är kontinuerliga på I. Låt y_1 uppfylla

$$y_1(t_0) = 1, \frac{\mathrm{d}y_1}{\mathrm{d}t}(t_0) = 0$$

och y_2 uppfylla

$$y_2(t_0) = 0, \frac{\mathrm{d}y_2}{\mathrm{d}t}(t_0) = 1.$$

Då definieras y_1, y_2 som mängden av fundamentala lösningar av differentialekvationen.

Linjär kombination av lösningar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t > t_0,$$
$$y(t_0) = y_0,$$
$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y_0'$$

och anta att y_1, y_2 är lösningar. Då finns det c_1, c_2 så att $y = c_1 y_1 + c_2 y_2$ är en lösning om $W(y_1, y_2)(t_0) \neq 0$.

Abels sats Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I,$$
$$y(t_0) = y_0,$$
$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y'_0$$

och anta att y_1, y_2 är lösningar. Då gäller att

$$W(y_1, y_2)(t) = W(y_1, y_2)(t_0)e^{-\int_{t_0}^t p(s)ds}$$
.

Bevis

$$\frac{dW}{dt}(t) = \frac{dy_1}{dt}(t)\frac{dy_2}{dt}(t) - \frac{dy_1}{dt}(t)\frac{dy_2}{dt}(t) + y_1\frac{d^2y_2}{dt^2}(t) - y_2\frac{d^2y_1}{dt^2}(t)$$

$$= y_1\left(-p(t)\frac{dy_2}{dt}(t) + q(t)y_2(t)\right) - y_2\left(-p(t)\frac{dy_1}{dt}(t) + q(t)y_1(t)\right)$$

$$= -p(t)W(y_1, y_2)(t).$$

Denna differentialekvationen har lösning

$$W(y_1, y_2)(t) = W(y_1, y_2)(t_0)e^{-\int_{t_0}^t p(s)ds},$$

vilket skulle visas.

Linjärt beroende av lösningar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I,$$
$$y(t_0) = y_0,$$
$$\frac{\mathrm{d}y}{\mathrm{d}t}(t_0) = y'_0$$

och anta att y_1, y_2 är lösningar. Då är dessa linjärt beroende på I om och endast om $W(y_1, y_2)(t) = 0$.

Bevis Om dessa är linjärt beroende, ser man att Wronskianen blir lika med 0, då kolumnerna i matrisen vars determinant ger Wronskianen kommer vara multipler av varandra.

Lösning av andra ordningens ODE med konstanta koefficienter Låt r_1, r_2 vara lösningar till

$$r^2 + pr + q = 0.$$

Då ges lösningarna till

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p\frac{\mathrm{d}y}{\mathrm{d}t}(t) + qy(t) = L(t, y) = 0$$

av

$$y(t) = \begin{cases} c_1 e^{r_1 t} + c_2 e^{r_2 t}, & r_1 \neq r_2, \\ (c_1 t + c_2) e^{r_1 t}, & r_1 = r_2. \end{cases}$$

Variation av parametrar Betrakta

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}(t) + p(t)\frac{\mathrm{d}y}{\mathrm{d}t}(t) + q(t)y(t) = g(t), \ t \in I$$

där p, q, g är kontinuerliga på I och y_1, y_2 är lösningar av den motsvarande homogena ekvationen, ges en partikulär lösning av ekvationen av

$$y_{p} = -y_{1} \int_{t_{0}}^{t} \frac{y_{2}(s)g(s)}{W(y_{1}, y_{2})(s)} ds + y_{2} \int_{t_{0}}^{t} \frac{y_{1}(s)g(s)}{W(y_{1}, y_{2})(s)} ds$$

 $d\ddot{a}r \ t_0 \in I$.

1.4 Annat

Exakta differentialekvationer Betrakta ekvationen

$$M(x,y(x)) + N(x,y(x)) \frac{\mathrm{d}y}{\mathrm{d}x}(x) = 0.$$

Denna är exakt om den kan skrivas på formen

$$\frac{\mathrm{d}\psi}{\mathrm{d}x}(x,y(x)) = 0.$$

Det gåller då att

$$\frac{\partial \psi}{\partial x}(x,y(x)) = M(x,y(x)), \ \frac{\partial \psi}{\partial y}(x,y(x)) = N(x,y(x)),$$

och lösningarna ges implicit av

$$\psi(x, y(x)) = c.$$

Exakthet av differentialekvationen Differentialekvationen

$$M(x, y(x)) + N(x, y(x)) \frac{\mathrm{d}y}{\mathrm{d}x}(x) = 0$$

är exakt om

$$\frac{\partial M}{\partial y}(x, y(x)) = \frac{\partial N}{\partial x}(x, y(x)).$$

Eulers metod Betrakta differentialekvationen

$$\frac{\mathrm{d}y}{\mathrm{d}t}(t) = f(t, y), \ 0 < t < T,$$
$$y(0) = y_0.$$

Vi gör indelningen $t_n = n\Delta t, n = 0, 1, ..., N$ så att $\Delta t = \frac{T}{N}$ och inför $y_n = y(t_n)$. Vidare gör vi approximationen

$$\frac{y_{n+1} - y_n}{\Delta t} = f(t_n, y).$$

1.5 System av ODE

Formulering Betrakta ett system av funktioner x_1, x_2, \ldots som beskrivs av systemet

$$\frac{\mathrm{d}x_1}{\mathrm{d}t}(t) = g_1(t) + \sum_{i} p_{1i}x_i,$$

$$\frac{\mathrm{d}x_2}{\mathrm{d}t}(t) = g_2(t) + \sum_{i} p_{2i}x_i,$$

av differentialekvationer. Definiera

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \end{bmatrix}, \mathbf{g}(t) = \begin{bmatrix} g_1(t) \\ g_2(t) \\ \vdots \end{bmatrix}, P(t) = \begin{bmatrix} p_{11}(t) & p_{12}(t) & \dots \\ p_{21}(t) & p_{22}(t) & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}.$$

Då kan systemet skrivas som

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{g}(t) + P\mathbf{x}(t).$$

Form på lösning av system av ODE $\text{Låt } \mathbf{x}_p \text{ lösa}$

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \mathbf{g}(t) + P\mathbf{x}(t).$$

Då är alla lösningar på formen

$$\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$$

där \mathbf{x}_{h} löser det motsvarande homogena systemet.

Linjär kombination av lösningar Låt $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)} \in \mathbf{R}, \ 0 < t < T$ vara linjärt oberoende lösningar till

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P(t)\mathbf{x}(t), \ t > 0,$$

där P är kontinuerlig. Då kan varje lösning till ekvationen skrivas som

$$\mathbf{x} = \sum c_i \mathbf{x}^{(i)}$$

på precis ett sätt.

 ${\bf Bevis}\quad {\rm Begynnelses} {\it vär}$ deproblemet implicerar att vår lösning måste uppfylla

$$\left[\mathbf{x}^{(1)}(0)\dots\mathbf{x}^{(n)}(0)\right]\begin{bmatrix}c_1\\\vdots\\c_n\end{bmatrix}=\mathbf{x}(0).$$

Detta har bara en lösning om $|\mathbf{x}^{(1)}(0)...\mathbf{x}^{(n)}(0)| \neq 0$. Eftersom alla lösningarna är linjärt oberoende, är detta uppfylld. Konstanterna c_i ges då unikt, och beviset är klart.

System av ODE med konstant matris Betrakta

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = P\mathbf{x}(t),$$

där Pär en konstant matris. Vi gör ansatsen $\mathbf{x}(t) = e^{rt}\pmb{\xi}$ och får

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) - P\mathbf{x}(t) = e^{rt}(rI - A)\boldsymbol{\xi}.$$

Eftersom exponentialfunktionen alltid är nollskild, kan detta bara bli noll om

$$P\boldsymbol{\xi} = r\boldsymbol{\xi}.$$

Alltså är ${\bf x}$ bara en lösning om ${\pmb \xi}$ är en egenvektor till P och r är det motsvarande egenvärdet.