

Этикетка

КСНЛ.431279.007 ЭТ

Микросхема 1564ЛП22УЭП

Микросхема интегральная 1564ЛП22УЭП Функциональное назначение: 8-разрядный двунаправленный мажоритарный элемент

Схема расположения выводов Номера выводов показаны условно

Условное графическое обозначение

Таблица назначения выводов

№	Обозначение	Назначение вывода	№	Обозначен	Назначение
вывода	вывода		вывода	ие вывода	вывода
1	0V	Общий	25	Ucc	Питание
2	D1.0	Двунаправленные порты буферов	26	B4	Входы мажоритарного элемента 5-ой
3	D0.0	ИС 1-ой ячейки	27	C4	ячейки
4	A0	Дополнительный выход 1-ой ячейки, независимый от нап-	28	A4	Дополнительный выход 5-ой ячейки, независимый от направления работы
		равления работы буферов ИС			буферов ИС
5	C0	Входы мажоритарного элемента	29	D0.4	Двунаправленные порты буферов ИС
6	В0	1-ой ячейки	30	D1.4	5-ой ячейки
		Двунаправленные порты буферов			Входы мажоритарного элемента 6-ой
7	D1.1	ИС 2-ой ячейки	31	B5	ячейки
8	D0.1		32	C5	
9	A1	Дополнительный выход 2-ой	33	A5	Дополнительный выход 6-ой ячейки,
		ячейки, независимый от нап-			независимый от направления работы
		равления работы буферов ИС			буферов ИС
10	C1	Входы мажоритарного элемента	34	D0.5	Двунаправленные порты буферов ИС
11	B1	2-ой ячейки	35	D1.5	6-ой ячейки
12	M	Вход выключения входов ма-	36	U_{CC}	
		жоритарных элементов ячеек ИС			Питание
13	0V	Общий	37	nc	Свободный
14	D1.2	Двунаправленные порты буферов ИС 3-ей ячейки	38	0E.0	Вход задания направления работы буферов ИС
15	D0.2		39	B6	
16	A2	Дополнительный выход 3-ей	40	C6	Входы мажоритарного элемента 7-ой
		ячейки, независимый от нап-			ячейки
		равления работы буферов ИС			
17	C2	Входы мажоритарного элемента	41	A6	Дополнительный выход 7-ой ячейки,
		3-ей ячейки			независимый от направления работы буферов ИС
18	B2		42	D0.6	Двунаправленные порты буферов ИС
19	D1.3	Двунаправленные порты буферов	43	D1.6	7-ой ячейки
20	D0.3	ИС 4-ой ячейки	44	В7	Входы мажоритарного элемента 8-ой ячейки

21	A3	Дополнительный выход 4-ой	45	C7	
		ячейки ,независимый от			
		направления работы буферов ИС			
22	C3	Входы мажоритарного элемента	46	A7	Дополнительный выход 8-ой ячейки,
		4-ой ячейки			независимой от направления работы
					буферов ИС
23	В3		47	D0.7	Двунаправленные порты ИС 8-ой
24	nc	Свободный	48	D1.7	ячейки

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25 ± 10 °C)

Наименование параметра, единица измерения, режим измерения	ние параметра, единица измерения, режим измерения Буквенное Норма		ома
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
U _{CC} =2,0 B, U _{IL} =0,3 B, U _{IH} =1,5 B, I _O =20 mkA	$U_{OL\;max}$	_	0,10
U _{CC} =4,5 В, U _{IL} =0,9 В, U _{IH} =3,15, I _O =20 мкА	O OL max	_	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 mkA		-	0,10
при:			,
$U_{CC}=4,5 \text{ B}, U_{IL}=0,9 \text{ B}, U_{IH}=3,15 \text{ B}, I_{O}=6,0 \text{ MA}$		-	0,26
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, U_{IH}=4.2 \text{ B}, I_{O}=7.8 \text{ MA}$		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15, I_{O} = 20 MKA	-	4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 мкА		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 mA		3,98	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_0 = 7,8 mA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IL}		
- по выходам M, OE, B0-B7, C0-C7		-	/-0,1/
- по выходам D0.0-D0.7, D1.0-D1.7		-	/-0,5/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	$ m I_{IH}$	-	
 по выходам M, ОЕ, ВО-В7, СО-С7 			0,1
- по выходам D0.0-D0.7, D1.0-D1.7			5,0
5. Ток потребления, мкА, при	T.		2.0
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	2,0
6. Динамический ток потребления, мА, при:	T		20.0
$U_{CC} = 6.0 \text{ B}, f = 1.0 \text{ M}\Gamma_{\text{II}}$	l _{occ}	-	20,0
7. Время задержки распространения сигнала от вывода D0.i, или от D1.i до	$t_{PHL,}$		
вывода A і при включении и выключении нс, при: $U_{CC} = 4.5 \; B, \; C_L = 50 \; n\Phi$	$t_{ m PLH}$		18
8. Время задержки распространения сигнала от вывода D0.i, до вывода D1.i	+	-	10
ол. Бремя задержки распространения сигнала от вывода Do.i, до вывода Dr.i или от вывода D1.i до вывода D0.i при включении и выключении нс, M=0	t _{PHL1} ,		
при:	t_{PLH1}		
U_{CC} = 4,5 B, C_1 = 50 пФ		_	30
9. Время задержки распространения сигнала от вывода D0.i, до вывода D1.i	t _{PHL2}		30
или от вывода D1.i до вывода D0.i при включении и выключении нс, M=1	$t_{\rm PLH2}$		
при:	VFLH2		
U_{CC} = 4,5 B, C_L =50 пФ		_	27
10. Время задержки распространения сигнала от вывода Ві, до вывода Сі до	t _{PHL3}		
вывода D0.і до вывода D1.і при включении и выключении нс, при:	t _{PLH3}		
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	1110	-	25
11. Задержка по переходу выходов D0.і или D1.і в высокоимпедансное	t_{PLZ}		
состояние LZ или HZ, нс, при:	t_{PHZ}		
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}$		-	18 ¹⁾
12. Сопротивление триггерной петли в режиме хранения логической <1>	R_{ZL}		
или логического <0>, кОм	R_{ZH}	6	20
9. Входная емкость, пФ, при: U _{CC} = 0 В, для любого входа или	C_{I}	=	10
двунаправленного вывода микросхемы			
1) — нормы по параметров 11 не проверяются, параметр гарантируется	конструкцией		

1.2 Содержание драгоценных металлов в	1000	ШТ.	микросхе	И.
---------------------------------------	------	-----	----------	----

MM.

ЗОЛОТО	г/м
в том числе:	
серебро	Γ.
золото	Γ.

на 48 выводах длиной

2 НАДЕЖНОСТЬ

- 2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых
- ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{\rm CC} = 5$ В \pm 10% не менее 135000ч.
- 2.2 Гамма процентный срок сохраняемости ($T_{\rm C_7}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-26ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564 ПП22VЭП	соответствуют техническим условиям	AF 9P 431200 424-26TV	и признаны	голикими пла эксплуатации

Приняты по от (извещение, акт и др.) (дата)	-
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	» (дата)
Приняты по от от дата)	_
Место для штампа ОТК	Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ