1 (CO)HOMOLOGY WITH COEFFICIENTS

Let \mathcal{C} be a chain complex of free \mathbb{Z} -modules (free abelian groups)

$$\cdots \to C_{n+1} \stackrel{\partial}{\to} C_n \stackrel{\partial}{\to} C_{n-1} \to \cdots,$$

then we can apply any functor $\mathcal{F}: \mathbf{Ab} \to \mathbf{Ab}$ (perhaps contravariant) to get another complex \mathcal{FC} . In particular, we can use the following two functors, where G is some abelian group.

- $-\otimes G$ (covariant) maps $C \mapsto C \otimes G$ and $\phi \mapsto \phi \otimes id$; since G is an abelian group, we're implicitly using $\otimes_{\mathbb{Z}}$;
- $\operatorname{Hom}(-,G)$ (contravariant) maps $C \mapsto \operatorname{Hom}(C,G)$ and $\phi \mapsto \phi^*$ (precomposition with ϕ).

Definition 1. For a chain complex C, its **homology with** G **coefficients** is

$$H_*(\mathcal{C};G) := H_*(\mathcal{C} \otimes G).$$

Its cohomology with G coefficients is

$$H^*(\mathcal{C};G) := H_*(\operatorname{Hom}(\mathcal{C},G)).$$

Note that $C \otimes_{\mathbb{Z}} \mathbb{Z} \cong C$ for any abelian group C, so $H_*(\mathcal{C}; \mathbb{Z}) \cong H_*(\mathcal{C})$. Also, when dealing with H^* , we throw "co-" on the front of all the vocab words, e.g. "cocyle" instead of "cycle".

go over why using TP and hom instead of hom and hom...

2 **EXT AND TOR**

Derived functors measure the extent to which a functor fails to preserve exactness. Ext and Tor are two examples of derived functors, which we will use in a bit to formulate the Universal Coefficient Theorem.

Definition 2. A covariant functor \mathcal{F} is one of the below if it preserves exactness in the manner depicted.

$$\begin{array}{llll} \mathbf{exact} & A \to B \to C & \leadsto & 0 \to \mathcal{F}A \to \mathcal{F}B \to \mathcal{F}C \to 0 \\ \mathbf{left} \ \mathbf{exact} & 0 \to A \to B \to C & \leadsto & 0 \to \mathcal{F}A \to \mathcal{F}B \to \mathcal{F}C \\ \mathbf{right} \ \mathbf{exact} & A \to B \to C \to 0 & \leadsto & \mathcal{F}A \to \mathcal{F}B \to \mathcal{F}C \to 0 \end{array}$$

The following apply to a contravariant functor \mathcal{G} instead.

$$\begin{array}{llll} \mathbf{exact} & A \to B \to C & \leadsto & 0 \to \mathcal{G}C \to \mathcal{G}B \to \mathcal{G}A \to 0 \\ \mathbf{left} \ \mathbf{exact} & A \to B \to C \to 0 & \leadsto & 0 \to \mathcal{G}C \to \mathcal{G}B \to \mathcal{G}A \\ \mathbf{right} \ \mathbf{exact} & 0 \to A \to B \to C & \leadsto & \mathcal{G}C \to \mathcal{G}B \to \mathcal{G}A \to 0 \end{array}$$

In Ab, the above definitions are equivalent to those given by including 0's on the left and right of each LHS, but the forms above are a bit easier to work with since we won't always have things with 0's bookending them.

Definition 3. A free resolution of an abelian group A is an exact sequence of abelian groups

$$\cdots \rightarrow F_2 \rightarrow F_1 \rightarrow F_0 \rightarrow A \rightarrow 0$$
,

where each F_i is free.

Note 1. We're really only concerned with the derived functors Ext and Tor, which are both formulated in terms of projective resolutions. But that's okay, since a free module is projective. Thus we only need to concern ourselves with free resolutions.

Supose we have a right exact covariant functor \mathcal{F} and a free resolution

$$\cdots \to F_2 \to F_1 \to F_0 \twoheadrightarrow A \to 0$$
,

then applying \mathcal{F} gives

$$\cdots \to \mathcal{F}F_2 \to \mathcal{F}F_1 \to \mathcal{F}F_0 \twoheadrightarrow \mathcal{F}A \to 0.$$

Since \mathcal{F} is right exact, the blue subsequence above is still exact. Removing $\mathcal{F}A$, we get a new sequence

$$\cdots \to \mathcal{F}F_2 \to \mathcal{F}F_1 \to \mathcal{F}F_0 \to 0$$
,

Taking homology gives us the **derived functors** of \mathcal{F} . A similar story holds when \mathcal{F} is a contravariant left exact functor instead. check that still functor, i.e. a morphism $X \to Y$ induces morphism $L_iX \to L_iY$.

Theorem 1. Different free resolutions yield **isomorphic** derived functors.

Proof. Do this.

Note 2. A nice thing about working with abelian groups is that you can find short free resolutions, which makes calculating derived functors much easier by Theorem 1.

Proposition 1. Every abelian group A has a free resolution

$$0 \to \operatorname{Ker} \varepsilon \hookrightarrow \langle A \rangle \stackrel{\varepsilon}{\twoheadrightarrow} A \to 0.$$

Proof. First note that all objects in the sequence are free abelian since the kernel of a free abelian group is itself free abelian. Construct ε by extenting id_A. Exactness is clear.

Note 3. To be clear, $\langle A \rangle$ is not necessarily the same thing as A, since A might have extra relations. None of these relations are in $\langle A \rangle$. Thus Ker ε is generated by the relations of A.

Corollary 1. calc derived functors for abelian group.

how to turn $0 \to A \to B \to C \to 0$ SES into LES using derived functors?

With all this in place, we can finally define Ext and Tor as the derived functors of particular functors.

Definition 4. Ext is the derived functors of Hom(-,G), and Tor is the derived functors of

Note that both of these use projetive resolutions, as Hom(-, G) is contravariant and left exact and $-\otimes G$ is covariant and right exact. Go over earlier in more detail why contra/left and cov/right work with free resolutions.

3 THE UNIVERSAL COEFFICIENT THEOREM

Homology with coefficients is useful for simplifying certain calculations, but as it turns out, it encodes the exact same information that the usual homology with \mathbb{Z} coefficients does. The idea is that although $H_n(\mathcal{C} \otimes G) \ncong H_n(\mathcal{C}) \otimes G$ and $H^*(\text{Hom}(\mathcal{C},G)) \ncong \text{Hom}(H_n\mathcal{C},G)$ in general, we can use these as approximations and introduce some correction terms. These corrections are Ext and Tor.

Theorem 2 (The Universal Coefficient Theorem). Let \mathcal{C} be a chain complex of free abelian groups, and let G be any abelian group. Then there are short exact sequences

$$0 \longrightarrow H_n\mathcal{C} \otimes G \longrightarrow H_n(\mathcal{C}; G) \longrightarrow \operatorname{Tor}(H_{n-1}\mathcal{C}, G) \longrightarrow 0,$$

$$0 \longleftarrow \operatorname{Hom}(H_n\mathcal{C}, G) \longleftarrow H^n(\mathcal{C}; G) \longleftarrow \operatorname{Ext}(H_{n-1}\mathcal{C}, G) \longleftarrow 0$$

that are natural and split (although the splitting isn't natural). In other words,

$$H_n(\mathcal{C}; G) \cong (H_n\mathcal{C} \otimes G) \oplus \operatorname{Tor}(H_{n-1}\mathcal{C}, G),$$

 $H^n(\mathcal{C}; G) \cong \operatorname{Hom}(H_n\mathcal{C}, G) \oplus \operatorname{Ext}(H_{n-1}\mathcal{C}, G).$

We'll be mostly interested in the second statement since we care more about cohomology. If we're working with field coefficients, then the UCT gets simpler.

Theorem 3 (UCT for Fields). If **k** is a field, then

$$H^n(\mathcal{C}, \mathbf{k}) \cong \operatorname{Hom}_{\mathbf{k}} (H_n(\mathcal{C}; \mathbf{k}), \mathbf{k}).$$

Note that it's $H_n(\mathcal{C}; \mathbf{k})$, not $H_n(\mathcal{C})$.