CHUỘT HAMSTER

Giáo sư X có một con chuột hamster và thường cho nó chơi trò "vòng xoay may mắn". Trong trò chơi này có một vòng gồm n ô đánh số từ 1 tới n, ô thứ i chứa một chữ cái s_i . Trên vòng tròn theo chiều kim đồng hồ, ô 1 liền trước ô 2, ô 2 liền trước ô 3, ..., ô n-1 liền trước ô n và ô n liền trước ô 1.

Giáo sư X thích chữ cái x, ông luôn thả con chuột vào ô mang chữ cái x. Con chuột thì thích chữ cái y: Dù nó đang đứng ở đâu nó cũng luôn tìm được cách di chuyển nhanh nhất (xuôi hoặc ngược chiều kim đồng hồ) để đến ô chứa chữ cái y.

Để bắt con chuột vận động nhiều hơn, giáo sư X muốn tìm một ô mang chữ cái x để thả con chuột vào sao cho thời gian vận động của nó phải nhiều nhất có thể. Biết rằng trong một giây, con chuột có thể di chuyển sang ô liền kề (liền trước hoặc liền sau).

Yêu cầu: Tìm giúp giáo sư X ô để thả con chuột vào theo yêu cầu trên, cho biết số giây con chuột cần di chuyển theo phương án tìm được.

Dữ liệu: Vào từ file văn bản HAMSTER.INP

Dòng 1 chứa số nguyên dương $n \le 10^6$

Dòng 2 chứa n chữ cái hoa liền nhau: s₁, s₂, ..., s_n

Dòng 3 chứa hai ký tự hoa liền nhau: x và y

(Chắc chắn các chữ cái x, y có mặt trên vòng tròn)

Kết quả: Ghi ra file văn bản HAMSTER.OUT một số nguyên duy nhất là số giây con chuột cần di chuyển.

HAMSTER.INP	HAMSTER.OUT
7	2
XAAEFYB	
ΧY	
14	3
OIIIXIOIIXIIOX	
X 0	
9	0
ABABABABA	
АА	

DÃY CON

Cho dãy số nguyên $A=(a_1,a_2,\dots,a_n)$ và một số nguyên dương k. Hãy xóa đi một số ít nhất các phần tử trong dãy A để thu được một dãy con có tổng các phần tử chia hết cho k.

Dữ liệu: Vào từ file văn bản SUBDIV.INP

- $\ref{prop:sphere:eq:def}$ Dòng 1 chứa hai số nguyên dương $n \leq 1000; k \leq 1000$
- $\ref{prop:sphere:eq:$

Các số trên một dòng của input file được ghi cách nhau bởi dấu cách

Kết quả: Ghi ra file văn bản SUBDIV.OUT một số nguyên duy nhất là số phần tử bị xóa theo phương án tìm được **Ví dụ**

SUBDIV.INP	SUBDIV.OUT
7 8	3
12 4 3 12 3 12 3	

CHÓ KÉO XE

Có n bạn (đánh số từ 1 tới n) đi chơi ở một khu du lịch mùa đông, trọng lượng của bạn thứ i là a_i . Các bạn thuê n xe trượt tuyết đánh số từ 1 tới n, mỗi xe có một chỗ ngồi cho một bạn, trọng lượng của xe thứ j là b_i

Xe trượt tuyết được kéo bởi các chú chó, mỗi chú chó có thể kéo được một trọng lượng không quá k. Tức là nếu bạn i ngồi xe j thì sẽ cần $\left\lceil \frac{a_i+b_j}{k} \right\rceil$ chú chó để kéo xe ấy, ví dụ nếu mỗi chú chó kéo được một trọng lượng $\leq k = 5$, thì một bạn trọng lượng 8 ngồi xe trọng lượng 10 sẽ cần 4 chú chó để kéo tổng trọng lượng bằng 18.

Yêu cầu: Sắp xếp n bạn vào n xe, mỗi xe đúng một bạn, sao cho số chú chó cần để kéo các xe là nhỏ nhất.

Dữ liêu: Vào từ file văn bản SLEDDOGS.INP

- Dòng 1 chứa hai số nguyên dương $n \le 10^5$, $k \le 10^9$
- Dòng 2 chứa n số nguyên dương $a_1, a_2, ..., a_n \ (\forall i: a_i \le 10^9)$
- Dòng 3 chứa n số nguyên dương $b_1, b_2, ..., b_n$ ($\forall i: b_i \leq 10^9$)

Các số trên một dòng của input được ghi cách nhau bởi dấu cách

Kết quả: Ghi ra file văn bản SLEDDOGS.OUT một số nguyên duy nhất là số chú chó cần để kéo xe theo phương án tìm được.

Ví dụ

SLEGDOGS.INP	SLEGDDOGS.OUT
2 10	3
1 3	
5 19	
5 4	19
1 4 7 10 13	
2 5 8 11 14	

Giải thích 2 Chú chó kéo bạn trọng lượng 1 và xe trọng lượng 19 1 Chú chó kéo bạn trọng lượng 3 và xe trọng lượng 5

Xe	a[i]	b[j]	Tổng	Số chó
#1	1	2	3	1
#2	4	8	12	3
#3	7	5	12	3
#4	10	14	24	6
#5	13	11	24	6

GIẢI MÃ

Xét một cơ chế mã hóa các xâu ký tự định nghĩa như sau:

- Nếu *A* là một xâu không chứa dấu ngoặc thì *A* cũng là xâu mã hóa của chính nó.
- Nếu xâu A là mã hóa của xâu B thì xâu (A) là mã hóa của xâu tạo thành từ xâu B bằng cách viết các ký tự theo
 thứ tự ngược lại.
- Nếu xâu A là mã hóa của xâu B và xâu A' là mã hóa của xâu B' thì xâu AA' là mã hóa của xâu BB'.

Ví dụ xâu TOPOFTHEWORLD có thể được mã hóa thành TO((FTHE)(PO))(DLROW)

Yêu cầu: Cho xâu mã hóa *A*, hãy tìm xâu *B* chỉ gồm các chữ cái nhận *A* làm xâu mã hóa của nó.

Dữ liệu: Vào từ file DECODE.INP gồm một dòng chứa xâu ký tự A độ dài không quá 10^6 chỉ gồm các chữ cái in hoa và dấu ngoặc đơn. Dữ liệu vào được cho hợp lệ

Kết quả: Ghi ra file DECODE.OUT một dòng là xâu *B* tìm được.

DECODE.INP	DECODE.OUT
TO((FTHE)(PO))(DLROW)	TOPOFTHEWORLD

CĂP ĐÔI

Có n người xếp hàng dọc đánh số từ 1 tới n từ đầu hàng tới cuối hàng, người thứ i có chiều cao là h_i . Ta nói hai người i,j nhìn thấy nhau nếu giữa hai người đó không tồn tại người nào khác có chiều cao $\geq \min\{h_i,h_j\}$, hay nói cách khác, tất cả những người đứng giữa người i và người j (nếu có) đều có chiều cao thấp hơn cả hai người này.

Yêu cầu: Đếm số cặp chỉ số i, j (i < j) mà hai người i, j nhìn thấy nhau

Dữ liệu: Vào từ file văn bản PAIRS.INP

Dòng 1 chứa số nguyên dương $n \le 5.10^5$

 $\ \, \bullet \ \,$ Dòng 2 chứa n số nguyên dương $h_1,h_2,\ldots,h_n \ (\forall i\colon h_i\le 10^6)$ cách nhau bởi dấu cách

Kết quả: Ghi ra file văn bản PAIRS.OUT một số nguyên duy nhất là số cặp chỉ số i, j (i < j) mà hai người i, j nhìn thấy nhau

PAIRS.INP	PAIRS.OUT
6	7
2 1 4 3 6 5	
5	4
22222	

TRAM XĂNG

Giáo sư X dự định thực hiện một chuyến đi bằng ô tô trên con đường dài n km tính từ km 0 (nơi xuất phát) tới km n (nơi kết thúc). Ô tô của giáo sư X có bình xăng dung tích là k lít, mỗi lít xăng cho phép ô tô đi được quãng đường dài đúng 1 km.

Tại mỗi mốc km, từ mốc km 0 tới mốc km n-1, có một trạm xăng, tại đó giáo sư X có thể mua thêm xăng nạp vào bình, tuy nhiên bình xăng không thể chứa quá k lít tính cả lượng xăng còn lại trong xe trước khi mua. Giá xăng ở trạm xăng tại mốc km thứ i là c_i một lít ($\forall i : 0 \le i < n$).

Hãy tìm cách thực hiện chuyến đi với tổng số tiền mua xăng thấp nhất. Biết rằng giáo sư X xuất phát từ km số 0 với một bình xăng rỗng.

Dữ liệu: Vào từ file văn bản GAS.INP

- Dòng 1 chứa hai số nguyên dương $n, k \ (k \le n \le 10^6)$
- Dòng 2 chứa n số nguyên dương $c_0, c_1, ..., c_{n-1}$ ($\forall i: c_i \leq 10^9$)

Các số trên một dòng của input file được ghi cách nhau bởi dấu cách

Kết quả: Ghi ra file văn bản GAS.OUT một số nguyên duy nhất là tổng số tiền mua xăng theo phương án tìm được.

Ví dụ

GAS.INP	GAS.OUT											
9 3	22	0	1	2	3	4	5	6	7	8	9	(km)
172936854												
		1	7	2	9	3	6	8	5	4		(\$/lít)
		†		†		†			†	†		
		31		21		21			11	11		
		3\$		4\$		6\$			5\$	4\$		

THẰNG BỜM VÀ PHÚ ÔNG

Bòm thắng phú ông trong một cuộc đánh cược và buộc phú ông phải đãi rượu. Phú ông bèn bày ra một dãy n chai chứa đầy rượu, và nói với Bòm rằng có thể uống bao nhiêu tuỳ ý, nhưng đã chọn chai nào thì phải uống hết và không được uống ở k chai liền nhau bởi đó là điều xui xẻo.

Bạn hãy chỉ cho Bòm cách uống được nhiều rượu nhất.

Dữ liệu: Vào từ file văn bản BOTTLES.INP

- Dòng 1 chứa hai số nguyên $1 \le n \le 4.10^5$; $2 \le k \le 4.10^5$
- Dòng 2 chứa các số nguyên dương ($\leq 10^6$) là dung tích của các chai rượu phú ông bày ra, theo thứ tự liệt kê từ chai thứ nhất tới chai thứ n

Kết quả: Ghi ra file văn bản BOTTLES.OUT

- Dòng 1 ghi số chai được chọn và lượng rượu tối đa có thể uống.
- Dòng 2 ghi chỉ số của các chai được chọn theo thứ tự tăng dần.

Các số trên một dòng của Input/Output files được/phải ghi cách nhau ít nhất một dấu cách

BOTTLES.INP	BOTTLES.OUT					
6 3	4 40					
6 10 10 13 10 10	2 3 5 6					

DÃY DÀI NHẤT

Cho dãy số nguyên $A=(a_0,a_1,\dots,a_{n-1})$ hãy tìm một dãy con dài nhất gồm các phần tử **liên tiếp** trong A sao cho độ chênh lệch giữa phần tử lớn nhất và phần tử nhỏ nhất của dãy con đó không vượt quá Δ .

Dữ liệu: Vào từ file văn bản LMINMAX.INP

- \bullet Dòng 1 chứa số nguyên dương $n \le 10^6$ và số nguyên không âm $\Delta \le 2.10^9$
- $\ \,$ Dòng 2 chứa n số nguyên a_0,a_1,\ldots,a_{n-1} cách nhau bởi dấu cách ($\forall i:|a_i|\leq 10^9$)

Kết quả: Ghi ra file văn bản LMINMAX.OUT một số nguyên duy nhất là độ dài dãy con tìm được

LMINMAX.INP	LMINMAX.OUT
10 6	5
10 5 4 3 2 1 9 8 7 6	