

ORIENTABILIDAD DE SUPERFICIES

Alan Reyes-Figueroa Geometría Diferencial

(AULA 13) 24.FEBRERO.2021

Recordemos el efecto del signo del determinante en \mathbb{R}^n :

Efecto del determinante en \mathbb{R}^2 : (a) preserva la orientación, (b) invierte la orientación.

Definición

Sea $S \subseteq \mathbb{R}^3$ superficie regular. Dos parametrizaciones $\mathbf{x}_1: U_1 \subseteq \mathbb{R}^2 \to V_1 \cap S$ y $\mathbf{x}_2: U_2 \subseteq \mathbb{R}^2 \to V_2 \cap S$ en la superficie S son **coherentes** cuando $W = V_1 \cap V_2 \cap S = \varnothing$, o cuando $W = V_1 \cap V_2 \cap S \neq \varnothing$ y la matriz jacobiana satisface $\det D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{q}) > 0, \quad \forall \mathbf{q} \in \mathbf{x}_1^{-1}(W).$

Obs! Como det $D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{q})$ es una función continua en \mathbf{q} (¿por qué?) entonces su signo queda completamente determinado en cada componente conexa de $\mathbf{x}_1^{-1}(W)$.

Luego, todo cambio de coordenadas, o es coherente en todos sus puntos, o no lo es en ninguno.

Definición

Un **atlas** A de clase C^k en una superficie $S \subseteq \mathbb{R}^3$ es una colección de parametrizaciones o cartas locales $A = \{(\mathbf{x}_i, U_i)\}_i$, con $\mathbf{x}_i : U_i \subseteq \mathbb{R}^2 \to V_i \cap S$, tales que

- $S = \bigcup_i V_i$, esto es, los $V_i = \mathbf{x}(U_i)$ cubren a todos S.
- las parametrizaciones \mathbf{x}_i son todas de clase C^k .

Definición

Un atlas A de S se llama **coherente** cuando cualesquiera dos parametrizaciones $(\mathbf{x}_i, U_i), (\mathbf{x}_j, U_j) \in A$ son coherentes.

Un atlas coherente de clase C^k para S es **maximal** si no está contenido en otro atlas coherente maximal de clase C^k para S.

Obs! Por el Lema de Zorn, todo atlas coherente dee S está contenido en un atlas coherente maximal.

Teorema (Lema de Zorn)

Todo conjunto parcialmente ordenado no vacío en el que toda cadena ascendente tiene cota superior, contiene un elemento maximal.

En este caso, si $A_0 = \{(\mathbf{x}_i, U_i)\}_i$ es un atlas coherente de S, podemos hacer el siguiente mecanismo:

Consideremos una carta local adicional (\mathbf{x}, U) . Si (\mathbf{x}, U) es coherente con todas las cartas locales de \mathcal{A}_o , la agregamos: $\mathcal{A}_1 = \mathcal{A}_o \cup \{(\mathbf{x}, U)\}$. Podemos continuar este mecanismo indefinidamente, para formar una cadena creciente de atlases

$$A_0 \subset A_1 \subset A_2 \subset \dots$$

(o hasta que ya no podamos agregar más cartas coherentes). Del lema de Zorn, esta cadena tiene una cota superior $\widehat{\mathcal{A}}$, el cual debe ser un atlas coherente maximal.

Definición

Unsa superficie $S \subseteq \mathbb{R}^3$ es **orientable** cuando existe al menos un atlas coherente de clase C^k en S.

En este caso, existe también un atlas coherente maximal \mathcal{A} , llamado una **orientación** para S.

Una **superficie orientada** es una superficie orientable en la cual se hizo una elección de una orientación A.

Un atlas coherente preserva la misma orientación en todos los T_pS .

Si \mathcal{A} es una orientación para S y $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \cap S$ es una parametrización, entonces la aplicación $N: V \cap S \to \mathbb{R}^3$ dada por

$$\mathbf{n} = N(\mathbf{p}) = rac{\mathbf{x}_u(\mathbf{q}) imes \mathbf{x}_v(\mathbf{q})}{||\mathbf{x}_u(\mathbf{q}) imes \mathbf{x}_v(\mathbf{q})||}, \quad \mathsf{con} \; \mathbf{q} = \mathbf{x}^{-1}(\mathbf{p}),$$

define un vector normal unitario sobre $V \cap S$. En particular, $N(\mathbf{p}) \in T_{\mathbf{p}}S^{\perp}$ y

 $||N(\mathbf{p})|| = 1.$

Cuando consideramos a todo el conjunto de vectores $N(\mathbf{p})$, con $\mathbf{p} \in V \cap S$, obtenemos un **campo de vectores normales**, o un **campo normal unitario** a $V \cap S$.

Campo normal a la superficie S.

Teorema

Sea $S \subseteq \mathbb{R}^3$ superficie regular. Entonces, S es orientable \iff existe una aplicación continua $N: S \to \mathbb{R}^3$ tal que $N(\mathbf{p}) \in T_\mathbf{p} S^\perp \ y \ ||N(\mathbf{p})|| = 1, \ \forall \mathbf{p} \in S$ (esto es, S admite un campo normal unitario continuo N).

Prueba:

[\Rightarrow]. Suponga que S es orientable. Entonces existe un atlas coherente $\mathcal{A} = \{(\mathbf{x}_i, U_i)\}_{i \in I}$ con $\mathbf{x}_i : U_i \subseteq \mathbb{R}^2 \to V_i \cap S$, parametrizaciones coherentes. Además, $S = \bigcup_i V_i = \bigcup_i \mathbf{x}_i(U_i)$.

Dado $\mathbf{p} \in S$, existe $j \in I$ tal que $\mathbf{p} \in V_j$. Definimos entonces

$$N(\mathbf{p}) = rac{\mathbf{x}_{ju}(\mathbf{q}) imes \mathbf{x}_{jv}(\mathbf{q})}{||\mathbf{x}_{iu}(\mathbf{q}) imes \mathbf{x}_{iv}(\mathbf{q})||}, \quad ext{donde } \mathbf{q} = \mathbf{x}_j^{-1}(\mathbf{p}) \in U_j.$$

Si existe algún otro índice $k \in I$ tal que $\mathbf{p} \in V_k = \mathbf{x}_k(U_k)$, entonces como \mathbf{x}_j y \mathbf{x}_k son coherentes, se tiene que $\{\mathbf{x}_{ju}, \mathbf{x}_{jv}\}$ y $\{\mathbf{x}_{ku}, \mathbf{x}_{kv}\}$ son bases de $T_{\mathbf{p}}S$, ambas con la misma orientación (¿por qué?).

Luego, $\mathbf{x}_{ku} \times \mathbf{x}_{kv} = \lambda(\mathbf{x}_{ju} \times \mathbf{x}_{jv})$, con $\lambda > 0$, y se tiene que

$$\frac{\mathbf{x}_{ku}(\mathbf{q}) \times \mathbf{x}_{kv}(\mathbf{q})}{||\mathbf{x}_{ku}(\mathbf{q}) \times \mathbf{x}_{kv}(\mathbf{q})||} = \frac{\lambda(\mathbf{x}_{ju}(\mathbf{q}) \times \mathbf{x}_{jv}(\mathbf{q}))}{||\lambda(\mathbf{x}_{ju}(\mathbf{q}) \times \mathbf{x}_{jv}(\mathbf{q}))||} = \frac{\mathbf{x}_{ju}(\mathbf{q}) \times \mathbf{x}_{jv}(\mathbf{q})}{||\mathbf{x}_{ju}(\mathbf{q}) \times \mathbf{x}_{jv}(\mathbf{q})||}.$$

de modo que el vector normal $N(\mathbf{p})$ está bien definido e independe de la carta local \mathbf{x}_i en el atlas coherente.

Además, $N(\mathbf{p})$ es una función continua, pues en cartas locales, depende de cocientes y productos cruz de funciones diferenciables.

[\Leftarrow]. Suponga ahora que existe un campo normal unitario continuo $N: S \to \mathbb{R}^3$. Sea $\mathbf{x}: U \subseteq \mathbb{R}^2 \to V \cap S$, con U conexo.

Definamos la función $f:U o\mathbb{R}$ por

$$f(\mathbf{q}) = \left\langle N(\mathbf{x}(\mathbf{q})), \frac{\mathbf{x}_u(\mathbf{q}) \times \mathbf{x}_v(\mathbf{q})}{||\mathbf{x}_u(\mathbf{q}) \times \mathbf{x}_v(\mathbf{q})||} \right\rangle.$$

Entonces,
$$N(\mathbf{x}(\mathbf{q})) = f(\mathbf{q}) \cdot \frac{\mathbf{x}_u \times \mathbf{x}_v}{||\mathbf{x}_u \times \mathbf{x}_v||}(\mathbf{q})$$
, con $f(\mathbf{q}) = 1$ ó $f(\mathbf{q}) = -1$.

Como f es continua en U y U es conexo, entonces $f \equiv 1$ ó $f \equiv -1$ en U.

Si $f \equiv -1$, redefinimos la parametrización **x** por $\widetilde{\mathbf{x}}(u,v) = \mathbf{x}(v,u)$ (esto es, $\widetilde{\mathbf{x}} = \mathbf{x} \circ r$, donde r es la reflexión $(u,v) \to (v,u)$), en el conjunto $\widetilde{U} = \{(v,u) : (u,v) \in U\}$. Observe que $\widetilde{\mathbf{x}}(\widetilde{U}) = \mathbf{x}(U) = V \cap S$ y $f(\widetilde{U}) \equiv 1$.

Sea A la colección

$$\mathcal{A} = \{(\mathbf{x}, U): \ U \subseteq \mathbb{R}^2 \ \mathsf{conexo}, \mathbf{x}: U \to V \cap S, \ \mathsf{y} \ \mathsf{N}(\mathbf{x}(\mathbf{q})) = \frac{\mathbf{x}_u \times \mathbf{x}_v}{||\mathbf{x}_u \times \mathbf{x}_v||}(\mathbf{q}), \ \forall \mathbf{q} \in U\}.$$

Para cualquier parametrización con dominio conexo U, se tiene que $(\mathbf{x}, u) \in \mathcal{A}$ ó $(\widetilde{\mathbf{x}}, \widetilde{U}) \in \mathcal{A}$. Luego, como S es superficie, podemos cubrir S con cartas locales (\mathbf{x}, U) ,

donde, de ser necesario, restringimos los dominios U a abiertos conexos. En particular, $S = \bigcup_{\mathbf{x} \in A} \mathbf{x}(U)$.

Sean $(\mathbf{x}_i, U_i), (\mathbf{x}_i, U_i) \in \mathcal{A}$. Mostramos que \mathbf{x}_i y \mathbf{x}_i son coherentes.

Si $\mathbf{x}_i(U_i) \cap \mathbf{x}_j(U_j) = \emptyset$, no hay nada que mostrar. Caso contrario, tome $\mathbf{p} \in \mathbf{x}_i(U_i) \cap \mathbf{x}_j(U_j)$, con $\mathbf{x}_i(\mathbf{q}_i) = \mathbf{p} = \mathbf{x}_j(\mathbf{q}_j)$. Como,

$$\frac{\mathbf{x}_{iu}(\mathbf{q}_i) \times \mathbf{x}_{iv}(\mathbf{q}_i)}{||\mathbf{x}_{iu}(\mathbf{q}_i) \times \mathbf{x}_{iv}(\mathbf{q}_i)||} = N(\mathbf{x}_i(\mathbf{q}_i) = N(\mathbf{x}_j(\mathbf{q}_j)) = \frac{\mathbf{x}_{ju}(\mathbf{q}_j) \times \mathbf{x}_{jv}(\mathbf{q}_j)}{||\mathbf{x}_{ju}(\mathbf{q}_j) \times \mathbf{x}_{jv}(\mathbf{q}_j)||}.$$

Esto muestra que $\mathbf{x}_{iu} \times \mathbf{x}_{iv}$ y $\mathbf{x}_{ju} \times \mathbf{x}_{jv}$ tienen igual signo, de modo que las bases $\{\mathbf{x}_{iu}, \mathbf{x}_{iv}\}$ y $\{\mathbf{x}_{ju}, \mathbf{x}_{jv}\}$ tienen igual orientación \Rightarrow las cartas (\mathbf{x}_i, U_i) , (\mathbf{x}_j, U_j) son coherentes.

Esto muestra que $\mathcal A$ es un atlas coherente para $S\Rightarrow S$ es orientable. \square

Corolario

Si la superficie $S \subseteq \mathbb{R}^3$ es la imagen inversa de un valor regular de una función diferenciable $f: U \subseteq \mathbb{R}^3 \to \mathbb{R}$, entonces S es orientable.

Prueba:

Sea $S = f^{-1}(a)$, a valor regular de f. Para $\mathbf{p} \in S$, consideremos $\mathbf{x}(u,v) = (x(u,v),y(u,v),z(u,v))$ una parametrización de una vecindad $V \cap S$ de \mathbf{p} .

Tomemos una curva parametrizada dada por $\alpha: (-\varepsilon, \varepsilon) \to V \cap S$, tal que $\alpha(t) = (x(t), y(t), z(t))$, con $\alpha(0) = \mathbf{p}$. Entonces

$$f(\alpha(t)) = f(x(t), y(t), z(t)) = a$$
, para todo $t \in (-\varepsilon, \varepsilon)$.

Derivando la ecuación anterior en t = 0, obtenemos

$$D(f \circ \alpha)(o) = \nabla f(\mathbf{p}) \cdot \alpha'(o) = \frac{\partial f}{\partial x}(\mathbf{p})x'(o) + \frac{\partial f}{\partial y}(\mathbf{p})y'(o) + \frac{\partial f}{\partial z}(\mathbf{p})z'(o) = o.$$

Luego, $\nabla f(\mathbf{p}) \cdot \alpha'(\mathbf{0}) = \mathbf{0}$. Como esto vale para toda curva parametrizada α en S pasando por \mathbf{p} , entonces $\nabla f(\mathbf{p})$ es normal a $T_{\mathbf{p}}S$. Como esto vale en todo punto $\mathbf{p} \in S$, entonces

$$N(\mathbf{p}) = rac{
abla f(\mathbf{p})}{||
abla f(\mathbf{p})||}$$

define un campo normal unitario continuo para S. Por el teorema anterior, S es orientable. \Box

Ejemplo 1: (Abiertos de \mathbb{R}^2)

Todo abierto $U \subseteq \mathbb{R}^2$ es orientable. Para ello, basta considerar el atlas $\mathcal{A} = \{(id, U)\}$, el cual es coherente ya que consiste de una sola carta local.

Ejemplo 2: (Grafos de funciones)

Todo gráfico de una función diferenciable

$$G_f = \{(u, v, f(u, v)) : (u, v) \in U \subseteq \mathbb{R}^2\}$$
 es una superficie orientable.

Podemos parametrizar G_f por $\mathbf{x}(u,v) = (u,v,f(u,v))$, y considerar el atlas coherente $\mathcal{A} = \{(\mathbf{x},U)\}$.

Ejemplo 3: (La esfera S²)

La esfera unitaria S^2 es orientable. Considere el campo normal $N:S^2\to\mathbb{R}^3$ dado por

$$N(\mathbf{p}) = \mathbf{p}, \quad \forall \mathbf{p} \in S^2.$$

Este es un campo normal unitario diferenciable.

Ejemplo 4: (Preimagen de un valor regular)

Sea $f: \mathbb{R}^3 \to \mathbb{R}$ función diferenciable, a valor regular de f, y $S = f^{-1}(a)$. Entonces S es orientable. Basta ver que

$$N(\mathbf{p}) = rac{
abla f(\mathbf{p})}{||
abla f(\mathbf{p})||}$$

define un campo normal unitario continuo sobre S.

Propiedad

Sea $S \subseteq \mathbb{R}^3$ superficie regular. Suponga que $S = \mathbf{x}_1(U_1) \cup \mathbf{x}_2(U_2)$, con $\mathbf{x}_1 : U_1 \to V_1$, $\mathbf{x}_2 : U_2 \to V_2$ parametrizaciones. En otras palabras, $\mathcal{A} = \{(\mathbf{x}_1, U_1), (\mathbf{x}_2, U_2)\}$ es un atlas para S. Si $W = V_1 \cap V_2 = \mathbf{x}_1(U_1) \cap \mathbf{x}_2(U_2)$ es conexo, entonces S es orientable.

Prueba:

Como sólo hay dos cartas locales, con intersección conexa W, entonces hay dos posibilidades para todo punto $\mathbf{q} \in \mathbf{x}_{-1}(W)$:

$$\det D(\boldsymbol{x}_2^{-1} \circ \boldsymbol{x}_1)(\boldsymbol{q}) > O, \quad \acute{O} \quad \det D(\boldsymbol{x}_2^{-1} \circ \boldsymbol{x}_1)(\boldsymbol{q}) < O.$$

Si det > 0, las cartas son coherentes. Caso contrario, podemos hacer la mudanza de parámetros $r:(u,v)\to(v.u)$, y redefinir la parametrización $\widetilde{\mathbf{x}}_1=\mathbf{x}_1\circ r$. Luego, det $D(\mathbf{x}_2^{-1}\circ\widetilde{\mathbf{x}}_1)(\mathbf{q})>0$.

Ejemplo 5: (La esfera S²)

Consideramos la proyección estereográfica

Tenemos dos cartas locales para S^2 : $(\pi_N^{-1}, \mathbb{R}^2)$ y $(\pi_S^{-1}, \mathbb{R}^2)$, con

•
$$S^2 = \pi_N^{-1}(\mathbb{R}^2) \cup \pi_S^{-1}(\mathbb{R}^2)$$

•
$$W = \pi_N^{-1}(\mathbb{R}^2) \cap \pi_S^{-1}(\mathbb{R}^2) = S^2 - \{N, S\} \simeq S^1 \times (0, 1)$$
 es conexo.

Por la propiedad anterior, S² es orientable.

Proposición

 $S\subseteq \mathbb{R}^3$ es no orientable \iff existen dos vecindades conexas parametrizadas $U_1,U_2\subseteq \mathbb{R}^2$, con $\mathbf{x}_1:U_1\to V_1,\mathbf{x}_2:U_2\to V_2$ tales que la intersección $W=V_1\cap V_2\cap S$ tiene dos componentes conexas W_1 y W_2 , con

$$\det D(\boldsymbol{x}_2^{-1} \circ \boldsymbol{x}_1) > O \ \textit{en} \ W_1, \quad \textit{y} \quad \det D(\boldsymbol{x}_2^{-1} \circ \boldsymbol{x}_1) < O \ \textit{en} \ W_2.$$

Idea de prueba:

Las cartas (\mathbf{x}_1, U_1) y (\mathbf{x}_2, U_2) no son coherentes (sí lo son sobre W_1 ó W_2 por separado, pero no sobre toda la intersección W).

Cualquier intento de corregir la coherencia en W_2 (e.g. considerar la reflexión $(u, v) \rightarrow (v, u)$) automáticamente desarma la coherencia sobre W_1 .

Ejemplo 6: La banda de Möbius no es orientable.

Usamos el modelo

$$S = M\ddot{o}bius = [0, 5] \times (0, 1)/\sim$$
, donde $(0, y) \sim (5, 1 - y)$.

Consideramos las cartas locales $\mathbf{x}_1: U_1 \to V_1$, $\mathbf{x}_2: U_2 \to V_2$, donde $U_1 = V_1 = (0, 4) \times (0, 1)$, $U_2 = (0, 3) \times (0, 1)$, $V_2 = ([0, 1) \cup (3, 5]) \times (0, 1)$ y

$$\mathbf{x}_1(u,v) = (u,v), \quad \mathbf{x}_2(u,v) = \begin{cases} (u+3,v), & \text{si } 0 < u \leq 2; \\ (u-2,1-v), & \text{si } 2 \leq u < 3. \end{cases}$$

La intersección $W = V_1 \cap V_2$ tiene dos componentes conexas: $W_1 = (3,4) \times (0,1)$ y $W_2 = (0,1) \times (0,1)$.

Basta ver que

$$D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{p}) = \begin{pmatrix} 1 & O \\ O & 1 \end{pmatrix} \text{ en } W_1, \quad D(\mathbf{x}_2^{-1} \circ \mathbf{x}_1)(\mathbf{p}) = \begin{pmatrix} 1 & O \\ O & -1 \end{pmatrix} \text{ en } W_2.$$