Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
21/09/2016	diff. du 1° et 2° ordre	TD3

Systèmes régis par une équation différentielle du 1° et du 2° ordre

TD3

Modélisation d'un moteur à courant continu par schéma bloc

Programme - Compétences		
		Grandeurs utilisées:
A51 ANALYSER	- unités du système international	
	- homogénéité des grandeurs	
B24 MODELISER	Systèmes linéaires continus et invariants:	
	MODELICED	- Modélisation par équations différentielles
	IVIODELISEK	- Calcul symbolique
	- fonction de transfert; gain, ordre, classe, pôles, zéros	
		Schéma-bloc:
B26	MODELISER	- fonction de transfert en chaîne directe
		- fonction de transfert en boucle ouverte et en boucle fermée
B28	MODELISER	Modèles de comportement

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
21/09/2016	diff. du 1° et 2° ordre	TD3

Exercice 1: Moteur à courant continu - MCC

Mise en situation

L'objet de cette étude est un moteur à courant continu.

Lorsque l'on impose une tension continue aux bornes de ce moteur, celui-ci accélère jusqu'à une vitesse donnée.

Les équations physiques qui régissent le fonctionnement de ce moteur sont les suivantes :

(1)	$u(t) = e(t) + Ri(t) + L\frac{di(t)}{dt}$	Equations électriques du moteur à
(2)	$e(t) = K_e \omega(t)$	courant continu
(3)	$c_m(t) = K_c i(t)$	
(4)	$c_f(t) = f\omega(t)$	Couple de frottement proportionnel à la vitesse de rotation
(5)	$c_m(t) - c_f(t) - c_r(t) = J \frac{d\omega(t)}{dt}$	Equation issue du principe fondamental de la dynamique

Avec:

- u(t): Tension d'entrée aux bornes du moteur (V)
- e(t): Force contre électromotrice (V)
- i(t): Intensité (A)
- $\omega(t)$: Vitesse de rotation du moteur $(rad. s^{-1})$
- $c_m(t)$: Couple moteur (N.m)
- $c_r(t)$: Couple résistant (N.m)
- $c_f(t)$: Couple de frottement (N.m)
- J: Inertie équivalente en rotation de l'arbre moteur $(Kg. m^2)$
- L: Inductance de la bobine (H)
- R: Résistance électrique du moteur (Ω)
- K_e : Constante de force contre-électromotrice ($V.rad^{-1}.s$)
- K_c : Constante de couple $(N.m.A^{-1})$
- f: Coefficient de frottement $(N. m. rad^{-1}. s)$

Objectif

L'objectif de cet exercice est d'obtenir le schéma bloc du moteur et d'en déterminer la fonction de transfert.

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
21/09/2016	diff. du 1° et 2° ordre	TD3

On suppose des conditions initiales nulles.

Question 1: Traduire ces équations dans le domaine de Laplace.

Question 2: Représenter les équations (1)(2)(3)(4+5) par 4 schémas bloc.

Question 3: Déterminer le schéma bloc du système en réfléchissant à ce que sont les variables d'entrée et de sortie du moteur, à placer en premier.

Question 4: Dans le cas où Cr est nul, déterminer la fonction de transfert $H(p)=\frac{\Omega(p)}{U(p)}$ du système.

Question 5: Préciser l'ordre du moteur à courant continu étudié.

Selon les moteurs étudiés, L et f peuvent ou non être négligés. Cela sera toujours précisé, et vous rencontrerez très probablement l'une de ces situations.

Question 6: Préciser l'influence qu'ont ces hypothèses sur l'ordre du moteur.

Supposons *Cr* non nul.

Question 7: Peut-on encore exprimer le rapport $\frac{\Omega(p)}{U(p)}$ sous la forme d'une fonction de transfert ?

Question 8: Donner l'expression de $\Omega(p)$ en fonction de U(p) et Cr(p).

Question 9: Compléter le schéma bloc suivant, équivalent au schéma bloc du moteur

Exercice 2: Manipulation de schémas blocs

Dernière mise à jour	Systèmes régis par une équa.	Denis DEFAUCHY
21/09/2016	diff. du 1° et 2° ordre	TD3

Question 1: Proposer une manipulation du schéma bloc dans le but de faire apparaître des boucles fermées « classiques »

Question 2: Déterminer la fonction de transfert $H(p)=rac{S(p)}{E(p)}$ du système complet