学号	
----	--

姓名____

6.4 基 础 题

6.4.1 第六章练习一答案

1. 设 X_1, \dots, X_n 是来自总体 $N(\mu_0, \sigma^2)$ 的简单随机样本, σ^2 未知,则下列不为统计量的 是 (D)

- (A) $T = \min\{X_i \mu_0\}$
- (B) $T = \overline{X}$
- (C) $T = (X_1, \dots, X_n)$
- (D) $T = (X_1 + \cdots + X_n)/\sigma$

2. 下列关于分位数的说法,不正确的是(c)

- $(A) \quad z_{1-\alpha} = -z_{\alpha}$
- (B) $t_{1-\alpha} = -t_{\alpha}$
- (C) $\chi_{1-\alpha}^2(n) = -\chi_{\alpha}^2(n)$ (D) $F_{1-\alpha}(m,n)F_{\alpha}(n,m) = 1$

3. X_1, \dots, X_n 是来自正态总体 N(0,1) 的样本, \overline{X}, S^2 分别为样本均值与样本方差,则

(A)
$$\overline{X} \sim N(0,1)$$

(B)
$$n\overline{X} \sim N(0,1)$$

(A)
$$\overline{X} \sim N(0,1)$$
 (B) $n\overline{X} \sim N(0,1)$ (C) $\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$ (D) $\frac{\overline{X}}{S} \sim t(n-1)$

(D)
$$\frac{\overline{X}}{S} \sim t(n-1)$$

4. 设随机变量 X 和 Y 相互独立,且都服从正态分布 $N(0.3^2)$,设 X_1,X_2,\cdots,X_9 ,

 Y_1, Y_2, \dots, Y_9 分别是来自两总体的简单随机样本,则统计量 $U = \frac{1}{\sqrt{\sum_{i=1}^9 Y_i^2}} \sum_{i=1}^n X_i$ 服从

分布是(A).

- (A) t(9) (B) t(8) (C) N(0,81) (D) N(0,9)

二. 填空题(请将答案填在下面的答题框内)

5. 设 X_1, \dots, X_n 是来自具有 $\chi^2(n)$ 分布总体的样本, \overline{X}, S^2 分别为样本均值与样本方差, 则

$$(1) \ E\overline{X} = n \qquad (2) \ D\overline{X} = 2$$

6*. 设 X_1, \cdots, X_n 为来自总体分布为泊松分布 $P(\lambda)$ 的样本, \overline{X}, S^2 分别为样本均值与样本 方差,则

注: 嘎玛分布记号沿用浙江大学版《概率论与数理统计》

(1)
$$D(\overline{X}) = \frac{\lambda}{n}$$
 (2) $D(S^2) = \frac{1}{(n-1)^2} (n\lambda^3 + 2(n-1)\lambda^2)$

三. 解答题(请将每题答案填在答题框内,并在指定处列出主要步骤及推演过程)

7. 设
$$X_1, \dots, X_6$$
是来自总体 $N(\mu, \sigma^2)$ 的样本, $S^2 = \frac{1}{5} \sum_{i=1}^{6} (X_i - \overline{X})^2$,求 $D(S^2)$

解: 由基本定理可知,

$$S^{2} = \frac{1}{5} \sum_{i=1}^{6} (X_{i} - \overline{X})^{2} \sim \chi^{2}(5)$$

再由卡方分布的性质可知,

$$D(S^2) = 2 \times 5 = 10$$

8*. 设
$$X_1, \dots, X_4$$
是来自正态总体 $N(0, \sigma^2)$ 的样本,记 $V = \frac{\sqrt{3}X_1}{\sqrt{X_2^2 + X_3^2 + X_4^2}}$,求 V 的分

布。

解: 不妨假设 $\sigma=1$, 否则分子分母同除以 σ 。

$$X_2^2 + X_3^2 + X_4^2 \sim \chi^2(3)$$

由 t分布的定义可知,

$$V = \frac{\sqrt{3}X_1}{\sqrt{X_2^2 + X_3^2 + X_4^2}} = \frac{X_1}{\sqrt{(X_2^2 + X_3^2 + X_4^2)/3}} \sim t(3)$$

姓名

6.4.2 第六章练习二餐餐

1. 设随机变量 X_1, X_2, X_3 相互独立, $X_1 \sim N(0,1), X_2 \sim N(0,\frac{1}{2}), X_3 \sim N(0,\frac{1}{3})$,则

 $X_1^2 + 2X_2^2 + 3X_3^2$ 服从_________分布。

(A) $\chi^2(3)$

(B) $\gamma^2(3)$

(C) $\gamma^2(3)$

(D) t(3)

2*. 设 X_1,X_2,\cdots,X_m 为来自总体 $N(\mu_1,\sigma_1^2)$ 的简单随机样本, Y_1,Y_2,\cdots,Y_n 为来自总体 $N(\mu_2,\sigma_2^2)$ 的简单随机样本,且两者独立; S_X^2,S_Y^2 为样本方差;则下列说法正确的是(D)

- (A) $S_X^2 + S_Y^2$ 是混合样本的样本方差 (B) S_X^2/S_Y^2 是 σ_1^2/σ_2^2 的无偏估计量
- (C) $S_X^2/S_Y^2 \sim F(m-1,n-1)$ (D) $\not\equiv \sigma_1^2 = \sigma_2^2 \not\equiv S_X^2/S_Y^2 \sim F(m-1,n-1)$
- 3. 下列判断中,错误的是(D).
 - (A) 若 $F \sim F(m,n)$, 则 $\frac{1}{F} \sim F(n,m)$ (B) 若 $T \sim t(n)$, 则 $T^2 \sim F(1,n)$

 - (C) 若 $X \sim N(0,1)$,则 $X^2 \sim \chi^2(1)$ (D) 在正态总体下 $\frac{1}{\sigma^2} \sum_{i=1}^n (X_i \mu)^2 \sim \chi^2(n-1)$

4. 设总体 X 服从 $N(\mu_{\!_1},\sigma^2)$,总体 Y 服从 $N(\mu_{\!_2},\sigma^2)$, $X_{\!_1},X_{\!_2},\cdots,X_{\!_{n_{\!_1}}}$ 为来自总体 X 的 简单随机样本, Y_1,Y_2,\cdots,Y_n ,为来自总体Y的简单随机样本,则

$$E\left(\frac{\sum_{i=1}^{n_1} (X_i - \overline{X})^2 + \sum_{i=1}^{n_2} (Y_i - \overline{Y})^2}{n_1 + n_2 - 2}\right) = (A).$$

- (A) σ^2 (B) $2\sigma^2$ (C) $3\sigma^2$ (D) $4\sigma^2$
- 二. 填空题(请将答案填在下面的答题框内)
- 5. 设 X_1 , X_2 ,… X_n 是来自总体 $N(\mu,\sigma^2)$ 的一个样本,则 $\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\mu)^2$ 服从 $\chi^2(n)$ 分
- 注: 嘎玛分布记号沿用浙江大学版《概率论与数理统计》

布,
$$\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\overline{X})^2$$
 服从 $\frac{n-1}{\sigma^2}\chi^2$ $(n-1)=\Gamma\left(\frac{n-1}{2},\frac{2(n-1)}{\sigma^2}\right)$ 分布.

6. 设
$$X_1$$
, X_2 ,… X_{25} 是来自总体 $X \sim \chi^2(1)$ 的一个样本,则 $\sum_{i=1}^{25} X_i$ 服从 $\chi^2(25)$ 分布.

7*. 设总体 X 服从指数分布 $Exp(\lambda)$, 而 X_1 , X_2 , $\cdots X_n$ 为来自总体 X 的简单随机样本,

- 三. 解答题(请将每题答案填在答题框内,并在指定处列出主要步骤及推演过程)
- 8 、设 X_1, \dots, X_6 是来自正态总体N(0,1)的样本,又设

$$Y = (X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2$$

试求常数c, 使cY服从 χ^2 分布。

解: 由正态分布的性质可知, $X_1 + X_2 + X_3 \sim N(0,3)$, $X_4 + X_5 + X_6 \sim N(0,3)$

$$\frac{1}{\sqrt{3}}(X_1 + X_2 + X_3) \sim N(0,1), \quad \frac{1}{\sqrt{3}}(X_4 + X_5 + X_6) \sim N(0,1)$$

再由卡方分布的定义可知

$$\frac{1}{3}(X_1 + X_2 + X_3)^2 + \frac{1}{3}(X_4 + X_5 + X_6)^2 \sim \chi^2(2)$$

所以

$$3Y \sim \chi^2(2)$$

因此,应取常数 $c = \frac{1}{3}$.

9*、设 X_1, \cdots, X_4 是来自正态总体N(0,1)的样本,设

$$X = a(X_1 - 2X_2)^2 + b(3X_3 - 4X_4)^2$$

则当a,b为何值时,X服从 χ^2 分布?其自由度为何?

解: 由正态分布的性质可知, $X_1-2X_2 \sim N(0.5)$, $3X_3-4X_4 \sim N(0.25)$

注: 嘎玛分布记号沿用浙江大学版《概率论与数理统计》

$$\frac{1}{\sqrt{5}}(X_1 - 2X_2) \sim N(0,1), \quad \frac{1}{5}(3X_3 - 4X_4) \sim N(0,1)$$

再由卡方分布的定义可知

$$\frac{1}{5}(X_1 - 2X_2)^2 + \frac{1}{25}(3X_3 - 4X_4)^2 \sim \chi^2(2)$$

所以 $a = \frac{1}{5}$, $b = \frac{1}{25}$, X 服从自由度为 2 的 χ^2 分布。