

DNS: The Backbone of the Internet

DNS translates domain names into IP addresses, connecting web browsers to the right servers and making the internet accessible to users.

How DNS Works

Domain Name Entered

A user types a domain name into their web browser or application.

DNS Lookup

The user's device sends a request to a DNS server to translate the domain name into an IP address.

IP Address Returned

The DNS server responds with the correct IP address, allowing the user's device to connect to the website.

Types of DNS Servers

Root Servers

The authoritative servers at the top of the DNS hierarchy, responsible for directing queries to the appropriate top-level domain servers.

Top-Level Domain (TLD) Servers

Responsible for the top-level domains like .com, .org, and .gov, and directing queries to the appropriate domain name servers.

Recursive Servers

Responsible for resolving domain names by querying other DNS servers on behalf of client devices and applications.

DNS Record Types

1 A Record

Maps a domain name to an IPv4 address.

3 CNAME Record

Allows one domain name to be an alias of another domain name.

2 AAAA Record

Maps a domain name to an IPv6 address.

4 MX Record

Specifies the mail server responsible for accepting email messages on behalf of a domain.

DNS Caching and Performance

Caching

DNS servers cache resolved IP addresses to improve lookup speed and reduce the load on the overall DNS infrastructure.

Hierarchical Design

The hierarchical structure of DNS, with root, TLD, and authoritative servers, helps distribute the workload and improve overall performance.

Time-to-Live (TTL)

The TTL value determines how long a cached DNS record is considered valid before it needs to be refreshed.

Redundancy

Multiple DNS servers at each level provide redundancy and failover, ensuring reliable DNS resolution even if a server goes down.

DNS Security

DNSSEC

Cryptographically verifies DNS responses to prevent spoofing.

DNS Firewalls

Block access to known malicious domains, stopping harmful traffic.

Encrypted DNS

Protocols like DoH encrypt queries to prevent eavesdropping.

DDoS Attacks

DNS servers can be targets of overwhelming DDoS attacks.

THANK YOU

By Noraldim kamis