

What is the distribution?

Before analyzing a set of sample data, we must make an assumption as to the type of distribution it follows.

After collecting data:

Generate graphical summaries

- histogram
- may also find boxplot or dot plot useful
- run chart if data collected over time

Generate Descriptive Statistics

- measures of location: mean, median,
- measures of dispersion: standard deviation, range

Review graphs

Outliers, Bi/Mulit- modal – investigate causes

Shape – Typically looking first to see if from a normal distribution or not

Checks for normality

On the histogram

- · Is the data symmetric and bell shaped?
- Is there no more than one outlier?

With the descriptive statistics

- Are the mean and median fairly close together?
- Is the range about equal to 6 times the standard deviation?

If no to these questions – likely not normal data.

If yes to these questions - likely normal data

With limited amounts of data, or uncertainty in the answers - generate a normal probability plot

Probability Plot

- Graphic used to determine if a sample of data might reasonably be assumed to come from a specific distribution
- Probability plots are available for various distributions
 - i.e., Normal, Lognormal, Exponential, Weibull)
- Subjective interpretation
 - A straight line indicates a fit to the distribution
 - The more curved the line, the less of a fit the data has
- Quantitative measures of goodness of fit available

Normal Probability Plot Normal Probability Plot Normal Probability Plot A histogram for data that is close to normal will have a probability plot where the points fall reasonably close to a straight line.

Frequency Table						
		Frequency	Relative		Cumulative	
		Count	Frequency		Count	Rel. Freq
79 •	79	1	0.033		1	0.033
80 -	80	0	0.000		1	0.033
81	81	4	0.133		5	0.167
82.	82	4	0.133		9	0.300
83 .	83	1	0.033		10	0.333
84.	84	3	0.100		13	0.433
85	85	5	0.167		18	0.600
36 .	86	1	0.033		19	0.633
87	87	3	0.100		22	0.733
88 •	88	1	0.033		23	0.767
89	89	4	0.133		27	0.900
90 -	90	0	0.000		27	0.900
91 • •	91	2	0.067		29	0.967
92 .	92	1	0.033		30	1.000
1	Sum	30				

Creating a Normal Probability Plot

(with normal probability plot paper)

- 1. Rank order the data from smallest to largest
- 2. Number the list from 1 to n. These are the i values.
- 3. For each i value, compute the value (i-0.5)/n
- 4. On normal probability graph paper, for each point plot

(i-.5)/n as the percent on the y axis versus the associated value of the x

5. Evaluate the plot

For the next several slides in this lecture you will need to use the Normal Plot worksheet found in Blackboard.

No voice

Probability Plot Worksheet

The following 10 data observations are collected from a process.

 $47.0 \quad 55.3 \quad 48.8 \quad 50.5 \quad 42.8 \quad 49.6 \quad 47.6 \quad 43.0 \quad 53.2 \quad 53.9$

Analysis is to be performed to see if the assumption of normality is reasonable. Complete the data table on the worksheet, then answer the following questions:

What is the i=5 value from your initial data set (x)?

A) 42.8

B) 48.8

B) 0.75

C) 49.6

D) 50.5

What is the (i-.5)/n value for data point 53.9?

A) 0.65

C) 0.85

D) 0.95

Plot the points on your chart.

Is the assumption of normality a reasonable assumption?

- A) No, because the points are not equally spaced throughout the line.
- B) No, because there is not enough data to determine if it is reasonable.
- C) Yes, because the points fall in a reasonably straight line.
- D) Yes, because the slope of a line drawn through the points would be negative.

