

Um Problema de Programação Linear (PPL) pode ser escrito em uma *forma padrão*, definida como:

$$\begin{array}{llll} \text{minimizar} & z = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \\ \text{sujeito a} & a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n & = & b_1 \\ & a_{21} x_1 + a_{22} x_2 + \ldots + a_{2n} x_n & = & b_2 \\ & \vdots & & & \vdots \\ & & a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n & = & b_m \\ \text{com} & x_1 \geqslant 0, x_2 \geqslant 0, \ldots, x_n \geqslant 0 \end{array}$$

Podemos reescrever ainda da seguinte forma:

minimizar
$$z = \sum_{j=1}^{n} c_j x_j$$

sujeito a $\sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1, 2, ..., m$
 $x_j \ge 0, j = 1, 2, ..., n$

Forma padrão de qualquer programa linear

Função objetivo (Maximização e minimização)

$$z^* = \max \sum_{j=1}^n c_j x_j = -\min \sum_{j=1}^n -c_j x_j.$$

- Variáveis de folga
 - Cada restrição de desigualdade pode ser substituída com o acréscimo de uma variável $y_i \ge 0$, por uma restrição de igualdade e uma restrição trivial.

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \geqslant b_1 \iff a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n - y_i = b_1$$

ou

$$a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \le b_1 \iff a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n + y_i = b_1$$

Exemplo: Considere o problema:

Adicionando um variável de folga a cada desigualdade, temos forma que:

Exercício: Escreva o PPL a seguir na forma padrão:

$$\begin{array}{lll} \text{maximizar} & z = x_1 + 2x_2 + 3x_3 \\ \text{sujeito a} & x_1 + x_2 + x_3 & \leqslant & 60 \\ & x_1 + 2x_2 + 2x_3 & \leqslant & 110 \\ & x_1 + x_2 + 2x_3 & \leqslant & 90 \\ & x_1, \ x_2, \ x_3 \geqslant 0 \end{array}$$

Exercício: Escreva o PPL a seguir na forma padrão:

maximizar
$$z = x_1 + 2x_2 + 3x_3$$

sujeito a $x_1 + x_2 + x_3 \leqslant 60$
 $x_1 + 2x_2 + 2x_3 \leqslant 110$
 $x_1 + x_2 + 2x_3 \leqslant 90$
 $x_1, x_2, x_3 \geqslant 0$

maximizar
$$z = x_1 + 2x_2 + 3x_3 + 0x_4 + 0x_5 + 0x_6$$
 sujeito a $x_1 + x_2 + x_3 + x_4 = 60$ $x_1 + 2x_2 + 2x_3 + x_5 = 110$ $x_1 + x_2 + 2x_3 + x_6 = 90$ $x_i \geqslant 0, \ i = 1, 2, 3, 4, 5, 6.$

Podemos reescrever o problema do programação linear em forma matricial:

maximizar
$$cx$$

sujeito a $Ax = b$
 $x \ge 0$,

Onde
$$c = (c_1 \ c_2 \ \dots \ c_n), \ x^T = (x_1 \ x_2 \ \dots \ x_n), \ b^T = (b_1 \ b_2 \ \dots \ b_m), \ A = (a_1 \ a_2 \ \dots \ a_n)$$
 e $a_j^T = (a_{1j} \ a_{2j} \ \dots \ c_{mj}), \ \text{isto} \ \acute{e} \ c \in \mathbb{R}^n, \ x^T \in \mathbb{R}^n, \ A \in \mathbb{R}^{m \times n} \ e \ a_j \in \mathbb{R}^n$

Definição

Seja $X = \{x \in \mathbb{R}^n | Ax = b, \ x \ge 0\}$. O conjunto X é denominado conjunto ou região viável do (PPL), e se $x \in X$, então x é uma solução viável do mesmo problema. Dado $x^* \in X$, x^* é denominado uma solução ótima do PPL se $cx^* \ge cx$, para todo $x \in X$

Podemos reescrever o problema do programação linear em forma matricial:

maximizar
$$cx$$

sujeito a $Ax = b$
 $x \ge 0$,

Onde
$$c = (c_1 \ c_2 \ \dots \ c_n), \ x^T = (x_1 \ x_2 \ \dots \ x_n), \ b^T = (b_1 \ b_2 \ \dots \ b_m), \ A = (a_1 \ a_2 \ \dots \ a_n)$$
 e $a_j^T = (a_{1j} \ a_{2j} \ \dots \ c_{mj}), \ \text{isto} \ \acute{e} \ c \in \mathbb{R}^n, \ x^T \in \mathbb{R}^n, \ A \in \mathbb{R}^{m \times n} \ e \ a_j \in \mathbb{R}^n$

Definição

Seja $X=\{x\in\mathbb{R}^n|Ax=b,\ x\geqslant 0\}$. O conjunto X é denominado conjunto ou região viável do (PPL), e se $x\in X$, então x é uma solução viável do mesmo problema. Dado $x^*\in X$, x^* é denominado uma solução ótima do PPL se $cx^*\geqslant cx$, para todo $x\in X$

- O método gráfico pode ser utilizado para duas ou três variáveis. Entretanto, na prática, ele é usado apenas para duas variáveis;
- Método simples e de fácil compreensão;
- Útil para melhorar nossa intuição sobre um problema em estudo;
- Permite-nos intuir várias propriedades teóricas e delinear um método de solução.

Exemplo: Observe a situação a seguir, onde há uma empresa que pretende otimizar a produção mensal de dois produtos $A \in B$:

Recursos disponíveis:

Madeira	300 metros
Hora de Trabalho	110 horas

Consumos unitários previstos:

	Madeira (metros)	Horas de trabalho (h)
Produto A	30	5
Produto B	20	10

<u>Lucro unitário da venda</u>

Lucio amitario da verida		
	Produto A	Produto B
	6	8

Nesta situação é necessária entender que:

- O objetivo é maximizar o lucro total da venda da produção;
- A produção está superiormente limitada pelos 300 metros de madeira e 110 horas de trabalho disponíveis;
- São possíveis vários níveis de produção;
- Dos possíveis níveis de produção é necessário conhecer qual ou quais podem classificar-se de ótimos.

Definir as duas variáveis de decisão:

- ► x₁ como o número de unidades do produto A;
- ▶ x₂ como o número de unidades do produto B.

Que valores podemos admitir para as variáveis de decisão?

- Em x_1 unidades de A consomem-se $30x_1$ metros de madeira e em x_2 unidades de B consomem-se $20x_2$ metros de madeira.
- ▶ Não ultrapassando o limite de 300*m* de madeira disponíveis $(30x_1 + 20x_2 \le 300)$.
- Em x_1 unidades de A consomem-se $5x_1$ horas de trabalho e em x_2 unidades de B consomem-se $10x_2$ horas de trabalho.
- Não ultrapassando o limite de 110h de trabalho disponíveis $(5x_1 + 10x_2 \le 110)$
- ▶ E a restrição de não negatividade do problema $x_1 \ge 0$ e $x_2 \ge 0$.

Qual o objetivo a ser alcançado com a produção de A e B?

- ▶ O lucro da venda de 1 unidade de A é de \$ 6;
- ▶ O lucro da venda de 1 unidade de *B* é de \$ 8;
- ▶ O lucro total da venda de x_1 unidades de A e de x_2 unidades de B é de $6x_1 + 8x_2$.

Considere o PPL:

maximizar
$$z=6x_1+8x_2$$

sujeito a $30x_1+20x_2\leqslant 300$
 $5x_1+10x_2\leqslant 110$
 $x_1, x_2\geqslant 0$

- Resolver um PPL consiste em encontrar uma solução ótima, isto é, para um problema de maximização, consiste em determinar uma solução viável x^* tal que $f(x^*) \ge f(x)$, para todo x viável.
- Denominamos região viável:

$$X = \{(x_1, x_2) \in \mathbb{R}^2 | 30x_1 + 20x_2 \le 300, \ 5x_1 + 10x_2 \le 110, \ x_1 \ge 0, \ x_2 \ge 0\}$$

Desenhando a região viável (X):

Podemos reescrever o problema do programação linear em forma matricial:

maximizar
$$cx$$

sujeito a $Ax = b$
 $x \ge 0$,

- Suporemos, sem perda de generalidade, que a matriz A tenha posto igual a m, isto é, existem m colunas de A linearmente independentes.
- ▶ Uma variável x_j irrestrita em sinal será expressa: $x_j = x_j^+ x_j^-$, $x_j^+ \ge 0$ e $x_j^- \ge 0$, deixando sempre o problema na forma (PPL).

- Particionaremos a matriz A da seguinte maneira: $A = (B \ N)$, onde B é uma matriz quadrada $m \times m$ e inversível.
- Analogamente particionaremos os vetores x e c: x^T = (x_B^T x_N^T), c = (c_B c_N), x_B e c_B possuirão m componentes associadas à matriz B.
 Dessa maneira o (PPL) poderá ser escrito:

maximizar
$$z = c_B x_B + c_N x_N$$

sujeito a:
 $Bx_B + Nx_N = b$
 $x_B \ge 0, x_N \ge 0$

Explicitaremos x_B em função de x_N :

$$x_B = B^{-1}b - B^{-1}Nx_N$$

Façamos $x_N = 0$ e $\bar{x}_B = B^{-1}b$.

Definição

 \overline{x} é uma **solução básica** se $\overline{x}^T = (\overline{x}_B^T \ 0)$. As variáveis associadas às componentes de \overline{x}_B são denominadas básicas e as demais não básicas. Quando \overline{x}_B possuir ao menos uma componente nula diremos que \overline{x} é uma solução básica degenerada.

Sejam I_B o conjunto dos índices das colunas de A pertencendo à matriz B e I_N o conjunto dos demais índices de A. Lembremos que $I_B \cap I_N = \emptyset$ e $I_B \cup I_N = \{1, 2, ..., n\}$. x_B em função de x_N temos:

maximizar
$$z=c_BB^{-1}b-(c_BB^{-1}N-c_N)x_N$$
 sujeito a:
$$x_B=B^{-1}b-B^{-1}Nx_N$$

$$x_B\geqslant 0,\ x_N\geqslant 0$$

Por comodidade, definiremos seguindo alguns autores clássicos dos textos de programação linear, por exemplo, Dantzig, novos parâmetros para o último (PPL):

$$u = c_B B^{-1}, \qquad u^T \in \mathbb{R}^m,$$

$$\overline{x}_B = B^{-1}b, \qquad \overline{x}_B \in \mathbb{R}^m,$$

$$z_j = ua_j, \qquad (j \in I_B \cup I_N), \qquad z_j \in \mathbb{R},$$

$$y_j = B^{-1}a_j, \qquad (j \in I_B \cup I_N), \qquad y_j \in \mathbb{R}^m,$$

$$\overline{z} = c_B B^{-1}b = ub = c_B \overline{x}_B$$

Assim poderemos escrever $(c_B B^{-1} N - c_N) x_N = \sum_{j \in I_N} (z_j - c_j) x_j$ e o (PPL) se tornará:

$$\text{maximizar} \quad z = \overline{z} - \sum_{j \in I_N} (z_j - c_j) x_j$$

sujeito a:

$$x_B = \overline{x}_B - \sum_{j \in I_N} y_j x_j$$
$$x_B \ge 0, \ x_j \ge 0, \ j \in I_n$$

Definindo $y_j^T = (y_{1j} \ y_{2j} \ \dots \ y_{mj}), \ x_B^T = (x_{B(1)} \ x_{B(2)} \ \dots \ x_{B(m)}) \ e \ \overline{x}_B^T = (\overline{x}_{B(1)} \ \overline{x}_{B(2)} \ \dots \ \overline{x}_{B(m)})$ então as restrições poderão ainda ser escrito como:

$$x_{B(i)} = \overline{x}_{B(i)} - \sum_{i \in I_N} y_{ij} x_j, \ i = 1, 2, ..., m.$$

Proposição

Se $\overline{x}_B\geqslant 0$ e $z_j-c_j\geqslant 0$, $\forall j\in I_N$ então o vetor $x^*\in \mathbb{R}^n$, onde $x_{B(i)}=\overline{x}_{B(i)},\ i=1,2,\ldots,m$ e $x_j=0,\ j\in I_N$, será uma solução ótima do (PPL).

Demonstração

Como $z_j - c_j \geqslant 0$ e $x_j \geqslant 0$, $\forall j \in I_N$, então temos $z \leqslant \bar{z} = cx$. O máximo de z não ultrapassará $\bar{z} = cx$, mas x é um solução viável do (PPL), logo x é uma solução ótima do (PPL)

Suponhamos agora que $\hat{x} \in \mathbb{R}^n$ seja uma solução viável, então podemos reescrever as restrições como:

$$\widehat{x}_{B(i)} = \overline{x}_{B(i)} - \sum_{j \in I_N} y_{ij} \widehat{x}_j, \quad i = 1, 2, \dots, m.$$

e $\hat{x} \ge 0$, $j \in I_B \cup I_N$, fornecendo um valor \hat{z} à função objetivo:

$$\hat{z} = \bar{z} - \sum_{j \in I_N} (z_j - c_j) \hat{x}_j = c \hat{x}$$

Suporemos também que $\hat{x} \in \mathbb{R}^n$ não seja uma solução básica, isto quer dizer que haverá ao menos uma componente $\hat{x}_i > 0$, $j \in I_N$.

Como passar da solução \hat{x} a uma solução básica viável x do (PPL) tal que $cx \ge \hat{z} = c\hat{x}$?

Variar o valor de uma variável x_k , $k \in I_N$ enquanto que o valor das outras variáveis cujos índices pertencem a I_N não se modificam, isto é, $x_j = \hat{x}_j$ para $j \in I_N - \{k\}$. Deste modo, podemos reescrever as restrições como:

$$x_{B(i)} = \overline{x}_{B(i)} - \sum_{j \in I_N - \{k\}} y_{ij} \hat{x}_j - y_{ik} x_k, \ i = 1, 2, ..., m.$$

onde x_k poderá variar (aumentar ou diminuir).

Sabemos que $x_k \ge 0$, $x_{B(i)} \ge 0$, i = 1, 2, ..., m, e que os outros valores associados a x_j , $j \in I_N - \{k\}$, não serão modificados. Assim sendo: $x_{B(i)} \ge 0$ implica que

$$\bar{x}_{B(i)} - \sum_{j \in I_N - \{k\}} y_{ij} \hat{x}_j - y_{ik} x_k \geqslant 0, \ i = 1, 2, ..., m.$$

Consideremos L_0 , L_1 , L_2 uma partição de $\{1, 2, \ldots, m\}$, tal que

$$L_0 = \{i \mid y_{ik} = 0\}, \ L_1 = \{i \mid y_{ik} > 0\}, \ L_2 = \{i \mid y_{ik} < 0\}.$$

Busquemos os limites de variação para x_k pois sabemos que:

$$y_{ik}x_k \leq \bar{x}_{B(i)} - \sum_{j \in I_N - \{k\}} y_{ij}\hat{x}_j, \ i = 1, 2, ..., m.$$

- ▶ Para $i \in L_0$ basta que o valor de x_k seja não-negativo.
- ▶ Para $i \in L_1$

$$x_k \leqslant \frac{1}{y_{ik}} \Big(\bar{x}_{B(i)} - \sum_{j \in I_N - \{k\}} y_{ij} \hat{x}_j \Big).$$

▶ Para $i \in L_2$

$$x_k \geqslant \frac{1}{y_{ik}} \Big(\bar{x}_{B(i)} - \sum_{j \in I_N - \{k\}} y_{ij} \hat{x}_j \Big).$$

Sejam

$$\alpha_{k} = \frac{1}{y_{sk}} \left(\bar{x}_{B(s)} - \sum_{j \in I_{N} - \{k\}} y_{sj} \hat{x}_{j} \right) = \min_{i \in L_{1}} \left\{ \frac{1}{y_{ik}} \left(\bar{x}_{B(i)} - \sum_{j \in I_{N} - \{k\}} y_{ij} \hat{x}_{j} \right) \right\}$$

$$\beta_{k} = \frac{1}{y_{lk}} \left(\bar{x}_{B(l)} - \sum_{j \in I_{N} - \{k\}} y_{lj} \hat{x}_{j} \right) = \max_{i \in L_{2}} \left\{ \frac{1}{y_{ik}} \left(\bar{x}_{B(i)} - \sum_{j \in I_{N} - \{k\}} y_{ij} \hat{x}_{j} \right) \right\}$$

e $\gamma_k = \max\{0, \beta_k\}.$

Logo $\gamma_k \leqslant x_k \leqslant \alpha_k$. Quando $L_1 = \emptyset \Rightarrow \alpha_k = \infty$ e quando $L_2 = \emptyset \Rightarrow \beta_k = -\infty$.

Tomemos x_k tal que $x_k = \hat{x}_k > 0$ e $k \in I_N$.

1 caso: $z_k - c_k > 0$, decresceremos o valor de x_k até alcançar λ_k ;

se $\lambda_k=0$, faremos $x_k=0$ e utilizaremos (2.19) para atualizar os valores de x_R se $\lambda_k=\beta_k$, faremos $x_k=\beta_k$ que ocasionará $x_{B(I)}=0$ em

$$x_{B(i)} = \overline{x}_{B(i)} - \sum_{j \in I_N - \{k\}} y_{ij} \hat{x}_j - y_{ik} x_k, \ i = 1, 2, ..., m.$$

, como $y_{lk} \neq 0$ então poderemos fazer

$$I_B := (I_B - \{B(I)\}) \cup \{k\},$$

 $I_N := (I_N - \{k\}) \cup \{B(I)\},$

isto é, teremos uma nova matriz B inversível, extraída de A, onde a coluna $a_{B(I)}$ será substituída por a_k ;

2 caso: $z_k - c_k < 0$, aumentaremos o valor de x_k até alcançar α_k ;

se $\alpha_k = +\infty$, a solução do (PPL) será ilimitada, pois $x_k \to +\infty$ implica $z \to +\infty$;

se $\lambda_k = \beta_k$, faremos $x_k = \alpha_k$ que ocasionará $x_{B(s)} = 0$ em

$$x_{B(i)} = \overline{x}_{B(i)} - \sum_{j \in I_N - \{k\}} y_{ij} \hat{x}_j - y_{ik} x_k, \ i = 1, 2, ..., m.$$

, como $y_{sk} \neq 0$ então poderemos fazer

$$I_B := (I_B - \{B(s)\}) \cup \{k\},\$$

$$I_N := (I_N - \{k\}) \cup \{B(s)\},$$

isto é, teremos uma nova matriz B inversível, extraída de A, onde a coluna $a_{B(s)}$ será substituída por a_k :

3 caso: $z_k - c_k = 0$, aplicaremos o que foi realizado no 1^o caso.

maximizar
$$z = 3x_1 + 5x_2$$
 sujeito a:

$$\begin{array}{ccc}
x_1 & \leqslant & 4 \\
 & + & x_2 & \leqslant & 6 \\
3x_1 + 2x_2 & \leqslant & 18 \\
x_1, & x_2 \geqslant 0
\end{array}$$

maximizar
$$z = 3x_1 + 5x_2$$
 sujeito a: x_1

$$x_1 \le 4$$

 $+ x_2 \le 6$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$

Associaremos às restrições não triviais as variáveis de folga $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$ tais que o (PPL) fique sob a seguinte forma:

maximizar
$$z = 3x_1 + 5x_2$$
 sujeito a:

$$\begin{array}{ccc}
x_1 & \leqslant & 4 \\
 & + & x_2 & \leqslant & 6 \\
3x_1 + 2x_2 & \leqslant & 18 \\
x_1, & x_2 \geqslant 0
\end{array}$$

Associaremos às restrições não triviais as variáveis de folga $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$ tais que o (PPL) fique sob a seguinte forma:

maximizar
$$z=3x_1+5x_2+0x_3+0x_4+0x_5$$
 sujeito a:
$$x_1 + x_3$$

$$x_1 + x_3 = 4$$

 $x_2 + x_4 = 6$
 $3x_1 + 2x_2 + x_5 = 18$
 $x_i \ge 0, j = 1, 2, 3, 4, 5.$

$$A = (a_1 \ a_2 \ a_3 \ a_4 \ a_5) = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{pmatrix}$$

$$b = \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix}$$
, $c = (3\ 5\ 0\ 0\ 0)$.

Tomemos

$$I_{B} = \{3, 2, 5\}, \quad I_{N} = \{1, 4\},$$

$$B(1) = 3, B(2) = 2, B(3) = 5,$$

$$B = (a_{3} \ a_{2} \ a_{5}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}, \log B^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

$$c_{B} = (0 \ 5 \ 0), \quad u = c_{B}B^{-1} = (0 \ 5 \ 0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} = (0 \ 5 \ 0),$$

$$\bar{x}_B = B^{-1}b = \begin{pmatrix} \bar{x}_3 \\ \bar{x}_2 \\ \bar{x}_5 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \\ 6 \end{pmatrix}$$

$$\bar{z} = c_B B^{-1}b = ub = (0 5 0) \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = 30$$

$$z_1 = ua_1 = (0 5 0) \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = 0 \Rightarrow z_1 - c_1 = 0 - 3 = -3,$$

$$z_4 = ua_4 = (0 5 0) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 5 \Rightarrow z_4 - c_4 = 5 - 0 = 5,$$

 $y_1 = B^{-1} a_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$

 $y_4 = B^{-1}a_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$

maximizar

$$z = 30 + 3x_1 - 5x_4$$

sujeito a:

$$x_3 = 4 - x_1$$

 $x_2 = 6 - x_4$
 $x_5 = 6 - 3x_1 + 2x_4$

$$x_i \ge 0, j = 1, \ldots, 5$$

Tomemos $\hat{x}_1 = 1$, $\hat{x}_2 = 4$, $\hat{x}_3 = 3$, $\hat{x}_4 = 2$, $\hat{x}_5 = 7$ uma solução viável deste problema, facilmente verificada, fornecendo $\hat{z} = 30 + 3x_1 - 5x_2 = 23$. A partir da solução \hat{x} objetivamos encontrar uma solução básica viável que forneça um valor z^* para z, tal que $z^* \ge c\hat{x}$.

A seguir usaremos o algoritmo. Como $z_4-c_4=5>0$, estamos no 1^o caso, portanto faremos x_4 decrescer de valor:

 $4 - \hat{x}_1 \geqslant 0$ qualquer que seja x_4 ,

$$6-x_4\geqslant \Rightarrow x_4\leqslant 6$$

$$6 - 3\hat{x}_1 + 2x_4 \geqslant 0 \Rightarrow 2x_4 \geqslant 3\hat{x}_1 - 6 \Rightarrow x_4 \geqslant \frac{3 \times 1 - 6}{2} = -\frac{3}{2}, \ \beta_4 = -\frac{3}{2},$$

logo $\gamma_4 = \max\{0, -\frac{3}{2}\} = 0$.

Basta fazermos $x_4=0$ e teremos a nova solução viável: $\hat{x}_1=1$, $\hat{x}_4=0$ fornecendo $\hat{x}_3=3$, $\hat{x}_2=6$, $\hat{x}_5=3$ e $\hat{z}=30+3x_1=33$.

Examinaremos agora x_1 . Como $z_1-c_1=-3$ estamos no 2^o caso, portante faremos x_1^o aumentar de valor:

$$x_3 = 4 - x_1 \geqslant 0 \Rightarrow x_1 \leqslant 4$$

$$x_2 = 6 - \hat{x}_4 \geqslant$$
, qualquer que seja x_1

$$x_5 = 6 - 3\hat{x}_1 + 2x_4 \geqslant 0 \Rightarrow 3x_1 \leqslant 6 + 2\hat{x}_4 \Rightarrow x_1 \leqslant \frac{6 + 2 \times 0}{3} = 2$$
,

$$logo~\alpha_1=min\{2,4\}=2,$$

$$s = 3, B(s) = 5$$

A nova base será definida por

$$I_B = \{3, 2, 1\}, I_N = \{4, 5\}.$$

$$I_B = \{3, 2, 1\}, I_N = \{4, 5\},$$

 $B(1) = 3, B(2) = 2, B(3) = 1,$

$$B = (a_3 \ a_2 \ a_1) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 2 & 3 \end{pmatrix}, \ \log B^{-1} = \begin{pmatrix} 1 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

$$c_B = (0\ 5\ 3), \ u = c_B B^{-1} = (0\ 5\ 3) \begin{pmatrix} 1 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & -\frac{2}{3} & \frac{1}{3} \end{pmatrix} = (0\ 3\ 1),$$

$$\bar{x}_B = B^{-1}b = \begin{pmatrix} \bar{x}_3 \\ \bar{x}_2 \\ \bar{x}_1 \end{pmatrix} = \begin{pmatrix} 1 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & -\frac{2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix}$$

$$\bar{z} = c_B B^{-1} b = ub = (0\ 3\ 1) \begin{pmatrix} 4 \\ 6 \\ 18 \end{pmatrix} = 36$$

$$z_4 = ua_4 = (0\ 3\ 1) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 3 \Rightarrow z_4 - c_4 = 3 - 0 = 3,$$

$$z_5 = ua_5 = (0\ 3\ 1) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 1 \Rightarrow z_5 - c_5 = 1 - 0 = 1,$$

$$y_4 = B^{-1}a_4 = \begin{pmatrix} 1 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & -\frac{2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ 1 \\ -\frac{2}{3} \end{pmatrix}$$

$$y_5 = B^{-1}a_5 = \begin{pmatrix} 1 & \frac{2}{3} & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & -\frac{2}{3} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \\ 1 \\ \frac{1}{3} \end{pmatrix}$$

maximizar

$$z = 36 + 3x_4 - x_5$$

sujeito a:

$$x_3 = 2 - \frac{2}{3}x_4 + \frac{1}{3}x_5$$

$$x_2 = 6 - x_4 - x_5$$

$$x_5 = 2 + \frac{2}{3}x_4 - \frac{1}{3}x_5$$

$$x_i \ge 0, j = 1, \ldots, 5$$

A solução obtida será $\hat{x}_1=2,~\hat{x}_2=6,~\hat{x}_3=2,~\hat{x}_4=0,~\hat{x}_5=0$, que é uma solução básica

primal viável. Neste caso obtivemos $z_j - c_j \ge 0$, $\forall j \in I_N$, assim sendo, pela definição, esta última solução é também ótima, fornecendo z = 36.

Sendo dado o problema de programação linear

maximizar
$$z = 3x_1 + 5x_2$$

sujeito a: $x_1 + x_3 = 4$
 $x_2 + x_4 = 6$
 $3x_1 + 2x_2 + x_5 = 18$
 $x_j \ge 0, \ j = 1, 2, 3, 4, 5.$

Verificar que as colunas associadas às variáveis x_1 , x_2 , x_3 formam um base ótima do (P).

Referências I

- P. Belfiore and L.P. Fávero, *Pesquisa operacional para cursos de engenharia*, Elsevier Editora Ltda., 2013.
- Maristela Oliveira dos Santos, *Notas de aula de introdução à pesquisa operacional*, Agosto 2010.
- M.C. Goldbarg and H.P.L. Luna, *Otimização combinatória e programação linear:* modelos e algoritmos, CAMPUS RJ, 2005.
- N. MACULAN and M.H.C. Fampa, Otimização linear, EdUnB, 2006.