Learning from Relationships between Target Variables

Jaemin Yoo

Computer Science & Engineering Seoul National University

Outline

- Introduction
- Node classification
- Time series forecasting
- Conclusion

Relationships

- Real-world variables are related to each other
- Such relationships are the key to enhance our understanding
- For example, consider the price movements of several stocks:

Market Summary > LG Electronics Inc.

123,500 KRW
-2,000 (1.59%) → today

Market Summary > SK Hynix Inc **97,900** KRW -2,100 (2.10%) **↓** today

Multivariate Time Series

- Stock prices are representative data of multivariate time series
 - Target variables move together with strong correlations
 - Multivariate time series include weather, server usage, sales, ...

Graphs

- **Graphs** effectively represent the relationships between variables
- Consider a graph whose edges represent similarities
 - Indicates that variables A and B are similar, while A and C are different

Sparsity of Graphs (1)

- What if we don't know the exact relationships?
- N variables make $O(N^2)$ connections, making *clique* graphs
 - Clique graphs are accurate but provide no information

Sparsity of Graphs (2)

- It is the **sparsity** of graphs that gives us information
- A graph is more informative if it contains **fewer** edges
 - Sparsity leads to the (conditional) independence between variables

Research Goals

- My research is *learning from relationships between variables*
 - I believe that ALL target variables are connected
 - The difference is whether we know the **sparse** structure or not
- Case 1. If the graph is given, I use it to solve challenging tasks
- Case 2. If the graph is not given, I aim to learn it from data

Specific Problems

- I've studied the following problems related to my research goals:
- Node classification
 - **Given** a graph
 - Goal is to classify each node
 - With challenging constraints:
 - 1. Cold-start learning
 - 2. Graph subsampling
 - 3. PU learning

- Time series forecasting
 - Given a multivariate time series
 - Goal is to forecast future values
 - With learning the correlations:
 - 4. Static attention map
 - 5. Multi-head Transformer

Outline

- Introduction
- Node classification
- Time series forecasting
- Conclusion

Node Classification

- Node classification is a popular problem in the graph domain
 - Given a graph G = (V, E) and the feature vectors of all nodes
 - Train a classifier with the labels of training nodes
 - **Predict** the unknown labels of test nodes in the given graph G

Graph Neural Networks

- Graph neural networks (GNN) are specialized for graph data
 - Focus on combining node features and a graph structure
 - Make a computational graph following the graph structure

My Research on Graphs

- I've studied the generalization of GNNs into challenging tasks
- Specifically, I aim to answer the following questions:
 - Q. How can we accurately classify new, isolated nodes?
 - Q. How can we find a small subgraph suitable for classification?
 - Q. How can we learn a GNN classifier without negative labels?

BPN [IJCAI-19]

- Q. How can we accurately classify new, isolated nodes?
- Existing GNNs perform badly if the test nodes are given in isolation
 - We call this problem hard (cold-start) inductive learning
 - Because GNNs mix node features and a graph without separation

BPN [IJCAI-19]

- The idea is the **separation** between *prediction* and *diffusion*
 - Predict the labels of nodes with a nodewise classifier f
 - Run graphical inference to *diffuse* the predictions
 - Update f using the diffused predictions as pseudo answers

(a) Forward propagation of BPN.

(b) Backward propagation of BPN.

BPN [IJCAI-19]

- The resulting classifier f requires no neighborhood at test time
 - Still, the training graph is fully leveraged in the training process
- Observe that induction loss increases at first and then decreases

Method	Pubmed	Cora	Citeseer	Amazon
Planetoid	$ 74.6 \pm 0.5 $	66.2 ± 0.9	66.8 ± 1.0	70.1 ± 1.9
GCN-I	74.1 ± 0.2	67.8 ± 0.6	63.6 ± 0.5	76.5 ± 0.3
SEANO	75.7 ± 0.4	64.5 ± 1.2	66.3 ± 0.8	78.6 ± 0.6
GAT	76.5 ± 0.4	70.1 ± 1.0	66.7 ± 1.0	77.5 ± 0.4
BPN (ours)	$ 78.3 \pm 0.3 $	$\textbf{72.2} \pm \textbf{0.5}$	$\textbf{70.1} \pm \textbf{0.9}$	$\textbf{81.5} \pm \textbf{1.3}$

BTW [WSDM-20]

- Q. How can we find a small subgraph suitable for classification?
- Motivation: Not all edges are required for node classification
 - Graph sampling can improve both the accuracy and speed of inference

BTW [WSDM-20]

- The main idea is to sample a subgraph with bounded treewidth
- Low treewidth makes a graph with a simple, efficient structure
 - Still, it preserves the connectivity of the original graph

BTW [WSDM-20]

- We evaluate the subgraphs with two inference algorithms
 - Baseline is loopy belief propagation (BP) run on the original graph
- The JT algorithm (blue lines)
 - Runs exact inference
 - Improves accuracy of inference
- Loopy BP (green lines)
 - Much faster due to our sampling
 - Still, the accuracy is preserved well

GRAB [ICDM-21]

- Q. How can we learn a GNN classifier without negative labels?
- Positive-unlabeled (PU) learning is a challenging but essential task
 - We are given positive and unlabeled nodes, without negative labels

GRAB [ICDM-21]

- The main idea is to treat all unlabeled nodes as latent variables
 - We consider the given graph as a Markov network
 - Then, we estimate $p(\mathbf{z})$ and include it in the objective function:

$$\begin{split} \mathcal{L}(\theta; \mathbf{X}, \mathbf{y}, \mathcal{P}, \mathcal{U}) &= \frac{1}{|\mathcal{P}|} \sum_{i \in \mathcal{P}} (-\log \hat{y}_i(+1)) \quad \text{Predictions of a GNN classifier} \\ &+ \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z}|\mathbf{X}, \mathbf{y})} \Big[\frac{1}{|\mathcal{U}|} \sum_{j \in \mathcal{U}} (-\log \hat{y}_j(z_j)) \Big], \end{split}$$
 Expectation over $p(\mathbf{z})$

GRAB [ICDM-21]

- We take an EM-like approach to minimize the objective function
 - Expectation: Estimate the marginals of Z from the prediction of f
 - Maximization: Update a GNN classifier f with the computed marginals
- GRAB improves the accuracy of f through iterative optimization

Outline

- Introduction
- Node classification
- Time series forecasting
- Conclusion

Time Series Forecasting

- Time series forecasting is a core problem related to many tasks
- We focus on multivariate time series data
 - There are a set of variables that are correlated with each other

Future values?

Attention Mechanism

- Attention measures asymmetric correlations between variables
 - Makes an $N \times N$ correlation matrix having different weights
 - Different values of weights give structural information like sparsity

My Research on Time Series

- I've studied multivariate time series forecasting in two domains
 - 1. General data where each variable has one observation at a time
 - An input is a 2D matrix
 - 2. Stock price data where each variable has a feature vector at a time
 - An input is a 3D tensor

Var. Case 1
Var. Case 2

Time

Time

Attention AR [SDM-21]

- Q. How can we efficiently learn the correlation matrix?
- Challenge: Multivariate models easily overfit to training data
 - Why? They use all D variables at the same time
 - This makes $D \times$ larger inputs and $D \times$ fewer training examples

- Multivariate models
 - 1 instance of size $D \times T$
- Univariate models
 - *D* instances of length *T*

Attention AR [SDM-21]

- Our idea is to minimize the model size using simple attention
- We compare three attention functions having different properties
 - Time-invariant attention works the best in all our datasets

(b) Hybrid attention (Section 3.3.2).

(c) Time-invariant attention (S. 3.3.3).

Attention AR [SDM-21]

- Our model makes the smallest error with the fewest parameters
- The learned correlation matrix gives an insight about the dataset

Correlations make high accuracy

No correlations in some cases

DTML [KDD-21]

- **Q.** How can we forecast the price movements of stocks?
- We specialized the previous work into the financial domain
 - Diff. 1. Each variable has multiple features at each time step
 - Diff. 2. Data have no clear temporal patterns (such as repetition)
- We changed the problem into classification
 - Binary classification: To predict the movement of price into up/down

DTML [KDD-21]

- Our idea is to combine temporal and spatial attention modules
 - Temporal: attention LSTM that focuses on recent observations
 - Spatial: multi-head Transformer that models rich stock correlations

DTML [KDD-21]

- Our attention modules work well between dates and between stocks
- Temporal attention map:

Spatial attention map:

Outline

- Introduction
- Node classification
- Time series forecasting
- Conclusion

Conclusion

- I've introduced my previous works on two research fields
 - Node classification: inductive learning, graph sampling, PU learning
 - Time series forecasting: general multivariate data, stock prices
- My goal is to utilize relationships between variables in all tasks
 - I believe that ALL variables are connected to each other
 - I love working on new, challenging tasks that are underexplored

Future Work

- I'm currently doing active research in the following topics:
 - Topic 1. Graph-based generative learning
 - Q. How can we estimate missing node features in a graph?
 - Topic 2. Graph augmentation
 - **Q.** How can we augment graphs for accurate graph classification?
 - Topic 3. Temporal graph structure learning
 - Q. How can we learn a sparse temporal graph from time series?

References

Node classification

- [1] <u>Jaemin Yoo</u> et al., "Belief Propagation Network for Hard Inductive Semi-Supervised Learning", **IJCAI 2019**
- [2] <u>Jaemin Yoo</u> et al., "Sampling Subgraphs with Guaranteed Treewidth for Accurate and Efficient Graphical Inference", **WSDM 2020**
- [3] Jaemin Yoo et al., "Accurate Graph-Based PU Learning without Class Prior", ICDM 2021

Time series forecasting

- [4] <u>Jaemin Yoo</u> and U Kang, "Attention-Based Autoregression for Accurate and Efficient Multivariate Time Series Forecasting", **SDM 2021**
- [5] <u>Jaemin Yoo</u> et al., "Accurate Multivariate Stock Movement Prediction via Data-Axis Transformer with Multi-Level Contexts", **KDD 2021**

Thank you!

Email: jaeminyoo@snu.ac.kr

Homepage: https://jaeminyoo.github.io