Principal components and factor analysis

- Principal components:
 - Purely mathematical.
 - Find eigenvalues, eigenvectors of correlation matrix.
 - No testing whether observed components reproducible, or even probability model behind it.
- Factor analysis:
 - some way towards fixing this (confirmatory factor analysis, later, a long way).
 - ◆ In factor analysis, each variable modelled as: "common factor" (eg. verbal ability) and "specific factor" (left over).
 - ◆ SAS: choose the common factors to "best" reproduce pattern seen in correlation matrix.
 - Iterative procedure, different answer from principal components.

Example

- 145 children given 5 tests, called PARA, SENT, WORD, ADD and DOTS. 3 linguistic tasks (paragraph comprehension, sentence completion and word meaning), 2 mathematical ones (addition and counting dots).
- Correlation matrix:

```
para 1 0.722 0.714 0.203 0.095 sent 0.722 1 0.685 0.246 0.181 word 0.714 0.685 1 0.170 0.113 add 0.203 0.246 0.170 1 0.585 dots 0.095 0.181 0.113 0.585 1
```

- Is there small number of underlying "constructs" (unobservable) that explains this pattern of correlations?
- First item on each line is name of variable: use SAS special variable _name_ to read these in.
- First task: figure out number of factors:
 - ◆ again can count eigenvalues > 1
 - draw scree plot and look for "elbow".

Code

```
data rmat(type=corr);
  infile "rex2.dat";
  input _name_ $ para sent word add dots;

proc factor scree method=prinit;
```

- Names on INPUT line same as names of variables in file.
- On PROC FACTOR line, specify method of extracting factors (there are others) and ask for scree plot.
- As in principal components, can ask for output data set containing factor scores, but:
 - only if have actual data rather than correlations
 - only goal for this run of PROC FACTOR is to determine a good number of factors.

Output

Start with eigenvalues:

Preliminary Eigenvalues: Total = 5 Average = 1

	Eigenvalue	Difference	Proportion	Cumulative
1	2.58746987	1.16575215	0.5175	0.5175
2	1.42171772	1.00652661	0.2843	0.8018
3	0.41519110	0.10409071	0.0830	0.8849
4	0.31110040	0.04657948	0.0622	0.9471
5	0.26452092		0.0529	1.0000

2 factors will be retained by the MINEIGEN criterion.

2 eigenvalues bigger than 1, so SAS keeps 2 factors. 80% of variability explained by these, not bad.

Scree plot

Looking for where plot "turns corner" or "has elbow": at 3rd eigenvalue, so keep 3-1=2 factors.

Eigenvalues of reduced correlation matrix

After SAS has finished iterating, the eigenvalues are different:

Eigenvalues of the Reduced Correlation Matrix: Total = 3.31477718 Average = 0.66295544

	Eigenvalue	Difference	Proportion	Cumulative
1	2.28220070	1.25031114	0.6885	0.6885
2	1.03188956	1.00687378	0.3113	0.9998
3	0.02501578	0.02604204	0.0075	1.0073
4	00102626	0.02227632	-0.0003	1.0070
5	02330258		-0.0070	1.0000

Sometimes they are slightly negative, but this is nothing to worry about.

SAS chose 2 factors, so other eigenvalues very close to 0.

Factor pattern and communality estimates

	Factor Pattern	
	Factor1	Factor2
para	0.83498	-0.24200
sent	0.82533	-0.13946
word	0.78992	-0.22671
add	0.40982	0.63174
dots	0.33454	0.70949

Factor 1 mostly "words" and factor 2 mostly "numbers", but could be clearer. Called "factor loadings", easier to interpret if close to 0 or ± 1 .

```
Final Communality Estimates: Total = 3.314090

para sent word add dots

0.75574929 0.70062380 0.67537332 0.56705315 0.61529069
```

Show how each variable related to the factors (jointly): a low communality means the variable concerned not related to any of the factors. Here, though, all communalities reasonably high. (Actually R-squareds from regression of variable on factor.)

What to do next

- 2 factors appears to be good. No longer worry about scree plot or getting SAS to choose: we specify.
- Factor rotation:
 - So far, choose 1st factor to maximize spread, and 2nd factor ditto, while unrelated to 1st factor.
 - Now know we'll have 2 factors, so choose them to jointly maximize spread.
 - Introduces extra "degree of freedom", can use to get "interpretable" factors by idea of factor rotation.
 - Varimax rotation tries to drive columns of factor pattern close to 0 or ± 1 .
 - Quartimax rotation tries to arrange that each variable only appears in one factor.

More code

Replace previous PROC FACTOR call with following:

proc factor n=2 method=prinit rotate=varimax;

We decide on 2 factors, ask for varimax rotation.

Produces output from before plus following:

Rotated factors

Rotated Factor Pattern

	Factor1	Factor2
para	0.86556	0.08098
sent	0.81899	0.17284
word	0.81804	0.07868
add	0.14966	0.73801
dots	0.05112	0.78274

Now rather clearer that factor 1 is verbal ability and factor 2 mathematical.

Final Communality Estimates: Total = 3.314090

para	sent	word	add	dots
0.75574929	0.70062380	0.67537332	0.56705315	0.61529069

Communalities unaffected by rotation.

A bigger example: BEM sex role inventory

- 369 women asked to rate themselves on 44 traits, like "self-reliant" or "shy".
- Rating 1 "never or almost never true of me" to 7 "always or almost always true of me".
- 44 personality traits is a lot. Can we find a smaller number of factors that capture aspects of personality?
- The whole BEM sex role inventory on next page.

The whole inventory

1. self reliant	21.reliable	41.warm
2. yielding	22.analytical	42.solemn
helpful	23.sympathetic	43. willing to take a stand
4. defends own	24.jealous	44.tender
beliefs	25.leadership ability	45.friendly
5. cheerful	26.sensitive to other's needs	46.aggressive
6. moody	27.truthful	47.gullible
7. independent	28.willing to take risks	48.inefficient
8. shy	29.understanding	49.acts as a leader
9. conscientious	30.secretive	50.childlike
10.athletic	31.makes decisions easily	51.adaptable
11.affectionate	32.compassionate	52.individualistic
12.theatrical	33.sincere	53.does not use harsh
13.assertive	34.self-sufficient	language
14.flatterable	35.eager to soothe hurt	54.unsystematic
15.happy	feelings	55.competitive
16.strong personality	36.conceited	56.loves children
17.loyal	37.dominant	57.tactful
18.unpredictable	38.soft spoken	58.ambitious
19.forceful	39.likable	59.gentle
20.feminine	40.masculine	60.conventional

Reading a SAS data set

- Data come to us as a SAS data set (somebody else has read the numbers in from a file and created a SAS data set, which they saved).
- First step is to specify the libname, where the data set file is, which is usually in same folder as code. This can be given any name, like fred, resulting in libname fred '.';
- Then data step only needs to contain one line (no infile, input etc):

```
data x;
set fred.datasetname;
```

links our SAS data set x to SAS data set file datasetname in current directory (folder).

More; number of factors

■ In our case, data in file factor.sas7bdat, so code as below. Also, data step can contain other things like defining new variables. In our case, data file contains variable subno, which we don't want:

```
libname sasdata '.';

data bem;
  set sasdata.factor;
  drop subno;
```

- Run PROC FACTOR with scree plot, look at eigenvalues.
- No rotation yet, since interpretation later.

```
proc factor scree method=prinit;
```

Scree plot

Scale makes it hard to tell, but might be an elbow at 5, favouring 4 factors.

The eigenvalues

Preliminary Eigenvalues: Total = 44 Average = 1

	Eigenvalue	Difference	Proportion	Cumulative
1	7.53227628	2.51208242	0.1712	0.1712
2	5.02019387	2.61617135	0.1141	0.2853
3	2.40402251	0.33369433	0.0546	0.3399
4	2.07032818	0.37202817	0.0471	0.3870
5	1.69830001	0.28605615	0.0386	0.4256
6	1.41224387	0.06851943	0.0321	0.4577
7	1.34372444	0.18080134	0.0305	0.4882
8	1.16292310	0.01544149	0.0264	0.5146
9	1.14748161	0.04705296	0.0261	0.5407
10	1.10042865	0.02197431	0.0250	0.5657
11	1.07845434	0.07540628	0.0245	0.5902
12	1.00304806	0.04746411	0.0228	0.6130
13	0.95558395	0.03978141	0.0217	0.6348
14	0.91580253	0.05321790	0.0208	0.6556
15	0.86258464	0.01134500	0.0196	0.6752
16	0.85123963	0.03066264	0.0193	0.6945
43	0.23079710	0.08266928	0.0052	0.9966
44	0.14812782		0.0034	1.0000

Interpreting eigenvalues

- No "obvious" gaps maybe first 2 eigenvalues bigger than others (but then only 28.5% of variability explained).
- Scree plot said 4 eigenvalues before "elbow".
- 12 eigenvalues > 1, even then only 61.3% of variability explained.
- Personality is complicated, multidimensional thing.

Extract 4 factors for interpretation

- Specify to extract 4 factors.
- Aim for interpretation of them: rotation (varimax).
- Plot factor scores for first 2.
- Code:

```
proc factor method=prinit n=4 rotate=varimax out=fred;
proc plot data=fred;
plot Factor2*Factor1;
```

Rotated factor pattern

	Factor1	Factor2	Factor3	Factor4
HELPFUL	0.26184	0.26300	0.27923	0.20967
RELIANT	0.36213	0.07112	0.11709	0.43997
DEFBEL	0.42138	0.01991	0.27629	0.07063
YIELDING	-0.14990	0.31860	0.15308	0.04241
CHEERFUL	0.14162	0.50944	0.02272	0.11443
INDPT	0.44735	0.00272	0.01255	0.43723
ATHLET	0.30056	0.22166	-0.10326	-0.03315
SHY	-0.40567	-0.07819	-0.04059	-0.05705
ASSERT	0.63003	-0.04904	0.12778	-0.02520
STRPERS	0.70736	0.00870	0.05617	-0.07512
FORCEFUL	0.67282	-0.18610	0.04465	-0.03587
AFFECT	0.25423	0.47711	0.32397	-0.30032
FLATTER	0.18401	0.26908	0.06747	-0.30375
LOYAL	0.17038	0.31797	0.27964	-0.07210
ANALYT	0.28690	-0.00555	0.19432	0.05692

More

FEMININE	0.06328	0.27971	0.18228	0.15442
SYMPATHY	-0.02104	0.13347	0.65757	-0.00735
MOODY	0.05025	-0.32997	0.11292	-0.34756
SENSITIV	0.08165	0.04258	0.59779	0.06167
UNDSTAND	0.01071	0.22379	0.68323	0.14200
COMPASS	0.05335	0.18929	0.75108	0.04977
LEADERAB	0.70626	0.04234	0.08985	0.20489
SOOTHE	0.03670	0.31150	0.53622	-0.05341
RISK	0.45177	0.14371	0.09032	0.02003
DECIDE	0.47222	0.10438	0.06711	0.35742
SELFSUFF	0.39617	0.10659	0.08957	0.63085
CONSCIEN	0.21155	0.16877	0.28705	0.43193
DOMINANT	0.67958	-0.26115	-0.05550	0.02484
MASCULIN	0.30166	-0.29009	-0.09734	-0.06293
STAND	0.58910	0.03865	0.22935	0.14560
HAPPY	0.11130	0.62439	-0.00707	0.12417

More

SOFTSPOK	-0.30162	0.30583	0.13379	0.22252
WARM	0.09721	0.61767	0.39400	-0.12470
TRUTHFUL	0.08921	0.20685	0.23252	0.07630
TENDER	0.07217	0.60209	0.37809	-0.10875
GULLIBLE	-0.07654	0.14233	0.04295	-0.36485
LEADACT	0.71462	0.00697	-0.02843	0.17498
CHILDLIK	0.00468	-0.07610	-0.07340	-0.40445
INDIV	0.43371	0.10224	0.03320	0.18009
FOULLANG	-0.00735	0.16780	0.01744	0.03762
LOVECHIL	0.00090	0.30809	0.13968	-0.09332
COMPETE	0.50472	0.19757	-0.11419	-0.06369
AMBITIOU	0.41041	0.18988	0.00370	0.11983
GENTLE	-0.02111	0.61269	0.35327	-0.03461

Interpretation

- I used 0.40 (or close) as cutoff.
- Factor 1: defends own beliefs, independent, not-shy, assertive, strong personality, forceful, has leadership ability, takes risks, is decisive, self-sufficient, dominant, willing to take a stand.
- Factor 2: cheerful, affectionate, happy, warm, tender, gentle.
- Factor 3: sympathetic, sensitive, understanding, compassionate, soothes hurt feelings, warm.
- Factor 4: self-reliant, independent, self-sufficient, conscientious, not-childlike.
- Decide for yourself what traits in each factor have in common!
- Some traits appear in more than one factor, some in none.

Communalities

HELPFUL	RELIANT	DEFBEL	YIELDING	CHEERFUL	INDPT
0.25966592	0.34347676	0.25927866	0.14921084	0.29319613	0.39145262
ATHLET	SHY	ASSERT	STRPERS	FORCEFUL	AFFECT
0.15123194	0.17558566	0.41630723	0.50923469	0.49059572	0.48740930
FLATTER	LOYAL	ANALYT	FEMININE	SYMPATHY	MOODY
0.20308368	0.21353167	0.12334064	0.13931465	0.45071468	0.24495805
SENSITIV	UNDSTAND	COMPASS	LEADERAB	SOOTHE	RISK
0.36963797	0.53717166	0.60527481	0.55064036	0.38876534	0.23331239
DECIDE	SELFSUFF	CONSCIEN	DOMINANT	MASCULIN	STAND
0.36614500	0.57430213	0.34219775	0.53373041	0.18858344	0.42233319
HAPPY	SOFTSPOK	WARM	TRUTHFUL	TENDER	GULLIBLE
0.41771222	0.25191883	0.56174959	0.11063193	0.52249779	0.16107602
LEADACT	CHILDLIK	INDIV	FOULLANG	LOVECHIL	COMPETE
0.54215483	0.17477789	0.23208669	0.02992972	0.12313782	0.31086844
		AMBITIOU	GENTL	E	
	0	.21885749	0.5018244	1	

Interpreting communalities

- Low communality means variable not related to any factor.
- Eg. yielding, athletic, shy, feminine, masculine, truthful, gullible, childlike, uses foul language (very low), loves children.
- Large number of low communalities means that more factors necessary to describe data well.

Factor scores plot

- p. 25

Unusual individuals

- With factor 1 score near -3 (left)
- with factor 2 score less than -3 (bottom)
- Find in data set by printing out factor scores for everyone, then printing out variable values for everyone. Note syntax for selecting a lot of variables.

```
proc print;
  var Factor1 Factor2;

proc print;
  var helpful--gentle;

  Obs Factor1 Factor2
  214 -0.64023 -3.32687
  258 -2.87195 0.47781
```

Then find these individuals in second PROC PRINT output.

The unusual individuals

				Y	C						F					F	S		S	U		L
	Н	R		I	Н					S	0		F			E	Y		E	N	C	E
	E	E	D	E	E		A		A	Т	R	A	L		A	M	M		N	D	0	A
	L	L	E	L	E	I	Т		S	R	С	F	A	L	N	I	Р	M	S	S	M	D
	P	I	F	D	R	N	Н		S	Р	E	F	Т	0	A	N	A	0	I	Т	P	E
0	F	A	В	I	F	D	L	S	E	E	F	E	Т	Y	L	I	Т	0	Т	A	A	R
b	U	N	E	N	U	Р	E	Н	R	R	U	С	E	A	Y	N	Н	D	I	N	S	A
s	L	Т	L	G	L	T	T	Y	Т	S	L	Т	R	L	T	E	Y	Y	V	D	S	В
	_	_	_	J	_	_	_	_	_	D	_	_	10	_	_	_	_	_	v	ע		٦
214	7	5	3	1	3	6	1	3	5	4	2	1	1	7	7	3	4	4	7	5	5	6
258	6	4	1	7	5	7	7	7	3	1	1	4	1	7	4	4	7	3	7	7	6	1
430	O	4	Τ.	/	5	/	/	/	3	Τ.		4		/	4	4	/	3	/	/	0	
				a		_	ъ /г			a								_	_		7	
				S -	C	D	M			S		T -		G	_	C		F	L	~	A	
				E	0	0	A			0		R		U	L	Η		0	0	C	M	
	S		D	L	N	M	S			F		U	Т	L	E	Ι		U	V	0	В	G
	0		Ε	F	S	Ι	C	S	Η	Т		Т	E	L	A	L	Ι	L	Ε	M	Ι	Ε
	0	R	C	S	C	N	U	T	A	S	W	Η	N	I	D	D	N	L	C	P	Т	N
0	T	I	I	U	I	A	L	A	Р	P	A	F	D	В	A	L	D	A	Η	E	I	T
b	H	S	D	F	E	N	I	N	P	0	R	U	E	L	C	I	I	N	I	T	0	L
s	E	K	E	F	N	T	N	D	Y	K	M	L	R	E	T	K	V	G	L	E	U	E
214	3	1	7	6	7	4	4	5	4	7	1	6	3	4	5	1	5	5	7	2	4	2
258	7	5	1	4	7	1	1	1	6	6	6	5	6	7	1	1	3	4	7	2	2	7

What makes them unusual

- #214 scores mostly low on cheerful (3), affectionate (1), happy (4), warm (1), tender (3), gentle (2).
- #258 scores mostly low on defends own beliefs (1), independent (7?), high on shy (7), low on assertive (3), strong personality (1), forceful (1), leadership ability (1), takes risks (5), decisive (1), self-sufficient (4), dominant (1), take stand (1).

12 factors

Just for fun, I tried 12 factors (the number of eigenvalues > 1). High loadings (bigger than 0.5) are now:

- 1. assertive, strong personality, forceful, dominant
- 2. sympathetic, sensitive, understanding, compassionate, soothes hurt feelings
- 3. affectionate, loyal, warm, tender, gentle (0.48)
- 4. self-reliant, independent, self-sufficient
- 5. competitive, ambitious, athletic (0.33), takes risks (0.36)
- 6. cheerful, not-moody, happy
- 7. leadership ability, acts like a leader, dominant (0.34)
- 8. feminine, not-masculine (0.38)
- 9. soft-spoken, gentle (0.48)
- 10. willing to take a stand (0.47), truthful (0.43), defends own beliefs (0.35), not-gullible (0.30)
- 11. childlike, not-self-sufficient (0.30)
- 12. decisive, takes risks (0.34), willing to take a stand (0.30)

Confirmatory factor analysis

- Exploratory: what do data suggest as hidden underlying factors (in terms of variables observed)?
- Confirmatory: have theory about how underlying factors depend on observed variables; test whether theory supported by data:
 - does theory provide some explanation (better than nothing)
 - can we do better?
- Also can compare two theories about factors: is more complicated one significantly better than simpler one?

Children and tests again

Previously had this data (based on 145 children):

```
para 1      0.722  0.714  0.203  0.095
sent 0.722  1       0.685  0.246  0.181
word 0.714  0.685  1        0.170  0.113
add  0.203  0.246  0.170  1        0.585
dots 0.095  0.181  0.113  0.585  1
```

- SAS: use type=corr. Special variable _NAME_ for reading in variable names; numbers read as correlations by default.
- Now have to specify sample size. Now have to use special variable _TYPE_ which is CORR for correlation, N for sample size.
- Only one sample size, but need to be 5 values: others can be missing.

New data file and code

Note that sample size has no variable name (all variables have n = 145): n . 145 . . . corr para 1 0.722 0.714 0.203 0.095 corr sent 0.722 1 0.685 0.246 0.181 corr word 0.714 0.685 1 0.170 0.113 corr add 0.203 0.246 0.170 1 0.585 corr dots 0.095 0.181 0.113 0.585 1 Read it in with data rex(type=corr); infile "rex3.dat"; input _type_ \$ _name_ \$ para sent word add dots;

How to specify theories

- SAS uses PROC CALIS for confirmatory factor analysis (and many other things besides).
- Specify relationship between variables and factors (looks like regression analysis with "error").
- Two competing theories:
 - One-factor "general intelligence" model: all the test scores are high or low together for a child.
 - ◆ Two-factor "verbal and mathematical intelligence" model: a child might be good at the verbal tests, or good at the mathematical tests (or both or neither). These are 2 factors we found before.

Code for the 1-factor model

Specify how each variable related to the factor(s) hypothesized. I use symbol f for common factor(s) and e for specific factors.

```
proc calis method=lsml;
  lineqs
    para=x1 f1 + e1,
    sent=x2 f1 + e2,
    word=x3 f1 + e3,
    add =x4 f1 + e4,
    dots=x5 f1 + e5;
  std
    f1=1,
    e1-e5=eps1-eps5;
  bounds
    eps1-eps5>0;
```

Note punctuation in lineqs section (and other sections): commas at end of each line, except semicolon at end of last.

Output (heavily edited)

To start:

```
The 5 Endogenous Variables

Manifest para sent word add dots

Latent

The 6 Exogenous Variables

Manifest

Latent f1

Error e1 e2 e3 e4 e5
```

- "Endogenous" means "going in".
- "Manifest" means "observed".
- "Latent" means "not able to be observed".
- "Exogenous" means "coming out".
- Original variables are endogenous and manifest.
- Factors are exogenous and latent (or "error", for specific factors).

Did it converge?

Look for "maximum likelihood estimation":

									Ratio
									Between
									Actual
						Objective	Max Abs		and
			Function	Active	Objective	Function	Gradient		Predicted
	Iter	Restarts	Calls	Constraints	Function	Change	Element	Lambda	Change
	1	0	2	0	0.41335	0.0104	0.0256	0	1.206
	2	0	3	0	0.41302	0.000329	0.00349	0	1.174
	3	0	4	0	0.41301	9.497E-6	0.000603	0	1.171
	4	0	5	0	0.41301	2.771E-7	0.000099	0	1.171
	5	0	6	0	0.41301	8.072E-9	0.000017	0	1.171
	6	0	7	0	0.41301	2.35E-10	2.905E-6	0	1.171
				Opti	mization Resu	lts			
	Iteratio	ns			6 Functi	on Calls			8
Jacobian Calls				7 Active	Constraint	S		0	
Objective Function			0.41300	83436 Max Ab	s Gradient	Element		2.9047445E-6	
	Lambda				0 Actual	Over Pred	Change		1.1706449333
	Radius			0.00004	63356				

GCONV convergence criterion satisfied.

Answer: yes. Objective function stopped changing, and the largest gradient element very close to 0. Also, see last line.

Assessing and testing the fit

There follows a long list of things, of which we need only these:

```
Goodness of Fit Index (GFI) 0.8764
GFI Adjusted for Degrees of Freedom (AGFI) 0.6291

Chi-Square 59.4732
Chi-Square DF 5
Pr > Chi-Square < <.0001

Independence Model Chi-Square DF 298.65
Independence Model Chi-Square DF 10
```

- GFI and AGFI like R-squared and adjusted R-squared in regression.
- AGFI quite a bit smaller here because we estimated a lot of things.
- Model that fits perfectly has 0 DF.
- 1st chi-square and P-value says "are we significantly worse than perfect", ie. "can we do better"? Answer here "yes".

Are we better than nothing?

Chi-Square	59.4732
Chi-Square DF	5
Pr > Chi-Square	<.0001
Independence Model Chi-Square	298.65
Independence Model Chi-Square DF	10

- Independence model has no common factors (only specific factors), so by comparing our model chisquare and DF with it, we answer "are we better than nothing?". Take difference of chi-squares, 298.65 59.47 = 239.18, difference of DF, 10 5 = 5 to get very small P-value.
- 1-factor model doing better than nothing, but can do better.

Improving the model

Obvious way to improve things: original idea of 2 common factors, one verbal (para, sent, words), one mathematical (add, dots). Code for that:

```
proc calis method=lsml;
  lineqs
    para=x1 f1 + e1,
    sent=x2 f1 + e2,
    word=x3 f1 + e3,
    add =x4 f2 + e4,
    dots=x5 f2 + e5i
  std
    f1=1,
    f2=1,
    e1-e5=eps1-eps5;
  bounds
    eps1-eps5>0;
  COV
    f1 f2 = rho;
```

Endogenous and exogenous variables

```
Manifest para sent word add dots
Latent

The 7 Exogenous Variables

Manifest
Latent f1 f2
Error e1 e2 e3 e4 e5
```

Now 2 exogenous latent variables (common factors).

Convergence

All good:

7 til good.									
								Actual	
						Max Abs		Over	
	Rest	Func	Act	Objective	Obj Fun	Gradient		Pred	
Iter	arts	Calls	Con	Function	Change	Element	Lambda	Change	
1	0	2	0	0.02038	0.00325	0.00679	0	1.019	
2	0	3	0	0.02035	0.000026	0.000721	0	1.028	
3	0	4	0	0.02035	2.16E-7	0.000043	0	1.058	
4	0	5	0	0.02035	1.61E-9	5.325E-6	0	1.081	
	Optimization Results								
Iterati	ons			4	Function	Calls			6
Jacobian Calls				5	Active Co	onstraints		(0
Objective Function			0.	0.0203513722 Max Abs (Element		Gradient	5.32	251548E-0	5
Lambda				0	Actual Or Change	ver Pred	1.08	31471368	9
Radius			0.	0008266204					

ABSGCONV convergence criterion satisfied.

Quality of fit

```
Goodness of Fit Index (GFI) 0.9919
GFI Adjusted for Degrees of Freedom (AGFI) 0.9697
```

GFI and (especially) AGFI much better than 0.88 and 0.63 from before. Near-perfect fit.

```
Chi-Square 2.9306
Chi-Square DF 4
Pr > Chi-Square 0.5695
```

No longer significantly worse than perfect fit: no point trying to do better.

Better than nothing?

Predictably yes:

Chi-Square	2.9306
Chi-Square DF	4
Pr > Chi-Square	0.5695
Independence Model Chi-Square	298.65
Independence Model Chi-Square DF	10

Chi-square 298.65 - 2.93 = 295.72 with 10 - 4 = 6 DF. P-value extremely small.

Communalities and estimated correlation

Squared Multiple Correlations

		Error	Total	
	Variable	Variance	Variance	R-Square
1	para	0.25049	1.00000	0.7495
2	sent	0.30038	1.00000	0.6996
3	word	0.32651	1.00000	0.6735
4	add	0.04949	1.00000	0.9505
5	dots	0.63996	1.00000	0.3600

Correlations Among Exogenous Variables

Var1	Var2	Parameter	Estimate
C 1	5.0	1	0.05105
±1	f2	rho	0.25197

Communalities (in R-squared column) nice and high (possibly excepting DOTS). Correlation between factors estimated at 0.25.

Using SAS to figure out those P-values

To save hauling out your calculator and tables to figure out the comparison between 298.65 with 10 DF and 2.9306 with 4 DF, make a file stat.dat with this in it:

```
and a file stat.sas with this in it:
data xx;
  infile "stat.dat";
  input c1 df1 c2 df2;
  mystat=c1-c2;
  mydf=df1-df2;
  pval=1-probchi(mystat,mydf);
```

This works out the P-value in pval; printing out the whole "data set" shows it to you.

The P-value

```
Obs c1 df1 c2 df2 mystat mydf pval

1 298.65 10 2.9306 4 295.719 6 0
...is close to 0.
```

Can also compare the 1- and 2-factor models to see if the 2-factor one fits significantly better. The chi square statistics are 59.4732 with 5 DF and 2.93 with 4 DF, so change stat.dat to read 59.4372 5 2.93 4 and re-run to get:

```
Obs c1 df1 c2 df2 mystat mydf pval
1 59.4372 5 2.9306 4 56.5066 1 5.5955E-14
```

P-value is the merest smidgen bigger than 0. The 2-factor model is a significantly better description of the data than the 1-factor.