

SEQUENCE LISTING

<110> Debinski, Waldemar
Thompson, Jeffrey

<120> IL13 MUTANTS

<130> 6460-28

<140> US 09/679,710

<141> 2000-10-05

<160> 23

<170> PatentIn version 3.0

<210> 1

<211> 114

<212> PRT

<213> Homo sapiens

<400> 1

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Leu Phe Arg Glu Gly Arg
100 105 110

Phe Asn

<210> 2

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Glu to Lys substitution at residue 13

<400> 2

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Lys Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
 100 105 110

Phe Asn

<210> 3

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Glu to Ile substitution at residue 13

<400> 3

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Ile Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
 100 105 110

Phe Asn

<210> 4

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Glu to Cys substitution at residue 13

<400> 4

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Cys Leu Ile Glu

1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
100 105 110

Phe Asn

<210> 5

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Glu to Ser substitution at residue 13

<400> 5

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Ser Leu Ile Glu
1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
 100 105 110

Phe Asn

<210> 6

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Glu to Arg substitution at residue 13

<400> 6

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Arg Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
100 105 110

Phe Asn

<210> 7
<211> 114
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<221> misc_feature
<223> hIL13 mutant having a Glu to Tyr substitution at residue 13

<400> 7

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Tyr Leu Ile Glu
1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
100 105 110

Phe Asn

<210> 8

<211> 114
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<221> misc_feature
<223> hIL13 mutant having a Glu to Asp substitution at residue 13

<400> 8

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Asp Leu Ile Glu
1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
85 90 95

Val Lys Asp Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
100 105 110

Phe Asn

<210> 9
<211> 114
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<221> misc_feature
<223> hIL13 mutant having a Glu to Lys substitution at residue 16

<400> 9

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Lys

1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly

20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala

35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr

50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln

65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe

85 90 95

Val Lys Asp Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg

100 105 110

Phe Asn

<210> 10

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Glu to Lys substitution at residue 17

<400> 10

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu

1 5 10 15

Lys Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly

20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
 100 105 110

Phe Asn

<210> 11
<211> 114
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<221> misc_feature
<223> hIL13 mutant having a Arg to Asp substitution at residue 66

<400> 11

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Asp Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln

65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
 100 105 110

Phe Asn

<210> 12
 <211> 114
 <212> PRT
 <213> ARTIFICIAL SEQUENCE

<220>
 <221> misc_feature
 <223> hIL13 mutant having a Ser to Asp substitution at residue 69

<400> 12

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Asp Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
 100 105 110

Phe Asn

<210> 13

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Asp to Lys substitution at residue 99

<400> 13

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu

1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly

20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala

35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr

50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln

65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe

85 90 95

Val Lys Lys Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg

100 105 110

Phe Asn

<210> 14

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Leu to Ala substitution at residue 102

<400> 14

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
85 90 95

Val Lys Asp Leu Leu Ala His Leu Lys Lys Leu Phe Arg Glu Gly Arg
100 105 110

Phe Asn

<210> 15

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Leu to Ala substitution at residue 104

<400> 15

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu

1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu His Ala Lys Lys Leu Phe Arg Glu Gly Arg
 100 105 110

Phe Asn

<210> 16

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Lys to Asp substitution at residue 105

<400> 16

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Asp Lys Leu Phe Arg Glu Gly Arg
 100 105 110

Phe Asn

<210> 17

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Lys to Asp substitution at residue 106

<400> 17

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Asp Leu Phe Arg Glu Gly Arg
100 105 110

Phe Asn

<210> 18
<211> 114
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<221> misc_feature
<223> hIL13 mutant having a Leu to Ala substitution at residue 107

<400> 18

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Ala Phe Arg Glu Gly Arg
100 105 110

Phe Asn

<210> 19

<211> 114
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<221> misc_feature
<223> hIL13 mutant having a Phe to Tyr substitution at residue 108

<400> 19

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Tyr Arg Glu Gly Arg
100 105 110

Phe Asn

<210> 20
<211> 114
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<221> misc_feature
<223> hIL13 mutant having a Arg to Asp substitution at residue 109

<400> 20

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Asp Glu Gly Arg
 100 105 110

Phe Asn

<210> 21

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having a Arg to Asp substitution at residue 112

<400> 21

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
 65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
 85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Asp
 100 105 110

Phe Asn

<210> 22
<211> 114
<212> PRT
<213> ARTIFICIAL SEQUENCE

<220>
<221> misc_feature
<223> hIL13 mutant having a Phe to Asp substitution at residue 113

<400> 22

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
 1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
 20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
 35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
 50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln

65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
100 105 110

Asp Asn

<210> 23

<211> 114

<212> PRT

<213> ARTIFICIAL SEQUENCE

<220>

<221> misc_feature

<223> hIL13 mutant having an Asn to Asp substitution at residue 113

<400> 23

Ser Pro Gly Pro Val Pro Pro Ser Thr Ala Leu Arg Glu Leu Ile Glu
1 5 10 15

Glu Leu Val Asn Ile Thr Gln Asn Gln Lys Ala Pro Leu Cys Asn Gly
20 25 30

Ser Met Val Trp Ser Ile Asn Leu Thr Ala Gly Met Tyr Cys Ala Ala
35 40 45

Leu Glu Ser Leu Ile Asn Val Ser Gly Cys Ser Ala Ile Glu Lys Thr
50 55 60

Gln Arg Met Leu Ser Gly Phe Cys Pro His Lys Val Ser Ala Gly Gln
65 70 75 80

Phe Ser Ser Leu His Val Arg Asp Thr Lys Ile Glu Val Ala Gln Phe
85 90 95

Val Lys Asp Leu Leu Leu His Leu Lys Lys Leu Phe Arg Glu Gly Arg
100 105 110

Phe Asp

SEARCHED INDEXED SERIALIZED FILED
NOVEMBER 20 1968