JAYOR DEL MAR CA F/G 6/21
TEST PLANNING, COLLECTION AND ANALYSIS OF PRESSURE DATA RESULTI--ETC(U)
MAY 80 S SLINKER, H C EVANS, C JORDON DAMD17-78-C-8087
NL AD-A118 400 UNCI ASSIFIED 1 m **2** 

DIE FILE COPY



E

This document has been approved for public release and sale; its distribution is unlimited.

205 South Whiting Street Alexandria, Virginia 22304 **82** 08 19 02 1



| AD |  |
|----|--|
|    |  |

# TEST PLANNING, COLLECTION AND ANALYSIS OF PRESSURE DATA RESULTING FROM ARMY WEAPON SYSTEMS. VOL V - SHOCK TUBE ANALYSIS AND CORRELATION STUDY

Final Report

Steve Slinker Henry C. Evans Carol Jordon

May 1980

Supported by US Army Medical Research and Development Command Fort Detrick Frederick, MD 21701

Contract No. DAMD17-78-C-8087

10 1982

JAYCOR 1401 Camino Del Mar Del Mar, CA 92014

DOD Distribution Statement: Approved for Public Release; Distribution Unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

| REPORT DOCUMEN                                                              | ITATION PAGE                                       | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |
|-----------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|
| . REPORT NUMBER                                                             | 2. GOVT ACCESSION NO.                              | 3. RECIPIENT'S CATALOG NUMBER                                  |
|                                                                             | AD-A118 400                                        |                                                                |
| TITLE (and Substite) FEST PLANNING, COLLECTION, DATA RESULTING FROM ARMY WE | AND ANALYSIS OF PRESSURE<br>APON SYSTEMS - VOL V - | 1979 - May 1980                                                |
| LOVELAGE DATA ANALYSIS AND                                                  | CORRELATION STUDY                                  | 6. PERFORMING ORG. REPORT NUMBER                               |
| - AUTHOR(a)                                                                 |                                                    | 8. CONTRACT OR GRANT NUMBER(4)                                 |
| Steve Slinker<br>Henry C. Evans<br>Carol Jordon                             |                                                    | DAMD17-78-C-8087                                               |
| PERFORMING ORGANIZATION NAME AN                                             | ID ADDRESS                                         | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS |
| JAYCOR                                                                      |                                                    |                                                                |
| 1401 Camino Del Mar                                                         |                                                    | 61102A.3M161102BS01.00.064                                     |
| Del Mar, CA 92014<br>1. CONTROLLING OFFICE NAME AND AD                      |                                                    | 12. REPORT DATE                                                |
| US Army Medical Research an                                                 |                                                    | May 1980                                                       |
| Fort Detrick                                                                | a peveropment center                               | 13. NUMBER OF PAGES                                            |
| Frederick, MD 21701                                                         |                                                    | 102                                                            |
| 4. MONITORING AGENCY NAME & ADDRE                                           | SS(II different from Controlling Office)           | 15. SECURITY CLASS. (of this report)                           |
|                                                                             |                                                    | Unclassified                                                   |
|                                                                             |                                                    | 15a, DECLASSIFICATION/DOWNGRADING                              |
| 6. DISTRIBUTION STATEMENT (of this Re                                       | port)                                              |                                                                |
| Approved for Public Release                                                 | •                                                  |                                                                |
|                                                                             |                                                    |                                                                |
| 17. DISTRIBUTION STATEMENT (of the abe                                      | tract entered in Black 20. If different fro        | m Pennet)                                                      |

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Correlation Coefficients

M198 howitzer

Charge

M203 Propellant Charge

Variation of Waveforms

M109 howitzer

Blast Overpressures

Shock Tube

Peak Pressures

ASSTRACT (Cauthus as reverse eth N necessary and identity by block number)
This research project compares the blast overpressures from the Shock Tube of Lovelace Inhalation and Toxicology Research Institute to ascertain its conformity to the blast from the M198 howitzer fired with the M203 propellant charge. The Shock Tube is used for differing rates of fire and to approximate the gunner's position on the howitzer. With a slower rate of fire and with reflecting plates in the shock tube a closer correlation is achieved.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

| SECURITY CLASSIFICATION OF THIS PAGE(When Date Sintered) | ·   |
|----------------------------------------------------------|-----|
|                                                          |     |
| 1                                                        |     |
|                                                          | ļ   |
| Ì                                                        | ]   |
|                                                          |     |
|                                                          | Ì   |
|                                                          |     |
| <u>}</u>                                                 |     |
|                                                          | 1   |
|                                                          | İ   |
|                                                          |     |
|                                                          |     |
|                                                          |     |
|                                                          | l   |
| }                                                        |     |
|                                                          |     |
|                                                          | ]   |
|                                                          |     |
| ]                                                        |     |
| ]                                                        |     |
|                                                          |     |
|                                                          | İ   |
|                                                          | ]   |
|                                                          | i   |
|                                                          | ł   |
|                                                          |     |
|                                                          |     |
|                                                          |     |
|                                                          | ļ   |
| <b>)</b>                                                 | ļ   |
|                                                          | 1   |
|                                                          | [   |
|                                                          | - [ |
|                                                          | ľ   |
|                                                          | j   |
|                                                          | ł   |
|                                                          |     |
|                                                          |     |
|                                                          | ]   |
| <b>]</b>                                                 | 1   |

This report compares the blast overpressure from the shock tube under superivision of the Lovelace Inhalation and Toxicology Research Institute. The comparison of data is with the far field data obtained from trial firings from the M198 howitzer using the M203 charge. The purpose of this research is to ascertain if there is a reasonable correlation and possible duplication of pressure shocks from a shock tube so that future research can use data generated by a shock tube. Test firings of howitzers are costly in terms of timing, personnel, weather and funds. By using a shock tube Walter Reed Army Institute of Research could attain blast information against various animals under controlled conditions. It is concluded that with an addition of a reflector plate in the shock tube there is a close correlation of shock data to the field trial firings of the howitzer.



ò

X

ð

#### TABLE OF CONTENTS

| Section 1- | INTRODUCTION                           | <u>Page</u> |
|------------|----------------------------------------|-------------|
|            | 1-1 Background                         |             |
| Section 2- | DATA COLLECTION AND PROCESSING         |             |
|            | 2-1 Data Collection and Digitization   | 9           |
| Section 3- | DETAILED DATA SUMMARY                  |             |
|            | 3-1 Tables of Data                     | 19          |
| Section 4- | SUMMARY DATA                           |             |
|            | 4-1 Presentation of Data4-2 Conclusion | 52          |
|            | CONTRACT PUBLICATION AND PERSONNEL     | 94          |
|            | DISTRIBUTION LIST                      | 95          |

## TABLES

| <u>Page</u> |                                                                                                        | TABLE          |
|-------------|--------------------------------------------------------------------------------------------------------|----------------|
| 5           | Summary of Test                                                                                        | 1-1            |
| 8           | Determination of Sampling Rate                                                                         | 2-1            |
| 8           | Conversion Factors                                                                                     | 2-2            |
| 8           | Percent Change in Calibration Factors                                                                  | 2-3            |
| 53          | Recorded Maximum                                                                                       | 2-4            |
| 57          | Estimated Impulse                                                                                      | 2-5            |
| 61          | Positive Impulse                                                                                       | 2-6            |
| 66          | Ratios of the Standard Deviations of the Peak Recorded Pressures to the Average Peak Recorded Pressure | 2-7            |
| 67          | Ratios of the Standard Deviation of the Positive Impulse to the Average Positive Impulse               | 2-8            |
| 68          | M198 Correlations                                                                                      | 2-9            |
| 69          | Shock Tube Correlations                                                                                | 2-10           |
| 71          | Correlations Between Tests                                                                             | 2-11           |
| 72          | Standard Deviation, Skewness and Kurtosis of 50ms Records, M198 and Shock Tube                         | 2-12           |
| (20-51)     | Shock Tube - Detailed Data Summaries - May and June 1979                                               | 3-1 to<br>3-32 |

#### LIST OF ILLUSTRATIONS

| •        | FIGURE/GRAP | <u>Page</u>                                                        |
|----------|-------------|--------------------------------------------------------------------|
|          | 1-1         | Ground Map for Locations of Measurement2                           |
| n        | 1-2         | Pressure Time History, C22 Position4                               |
|          | 2-1         | Preshot Calibration Signal, Gauge 310                              |
|          | 2-2         | Postshot Calibration Signal, Gauge 311                             |
| C.       | 2-3         | Example of Day 1 Record Exhibiting Ringing12                       |
|          | 2-4         | Pressure Time History, Face - On14                                 |
|          | 2-5         | Pressure Time History, Grazing Gauge15                             |
| <b>C</b> | 2-6         | Face - On, First 4ms                                               |
|          | 2-7         | Grazing, First 4ms17                                               |
|          | Section 5-  | GRAPHS                                                             |
| <b>E</b> | 5-1         | Shock Tube - May 79, Gauge 2, Day 8, On - Axis, Grazing, Shot 5    |
|          | 5-2         | M198 - May 79, C22, 5ft, 267/0, Shot 3175                          |
| •        | 5-3         | M198 - May 79, C22, 5ft, 267/0, Shot 15                            |
|          | 5-4         | M198 - May 79, C22, 5ft, 267/0, Shot 577                           |
|          | 5-5         | M198 - May 79, C22, 5ft, 800/0, Shot 11                            |
| s.       | 5-6         | M198 - May 79, C22, 5ft, 800/0, Shot 1079                          |
|          | 5-7         | M198 - May 79, C22, 5ft, 800/0, Shot 380                           |
|          | 5-8         | Shock Tube - March 79, Gauge 2, Day 5, On-Axis, Grazing, Shot 681  |
|          | 5-9         | Shock Tube - March 79, Gauge 2, Day 5, On-Axis, Grazing, Shot 1682 |
|          | 5-10        | Shock Tube - March 79, Gauge 2, Day 5, On-Axis, Grazing, Shot 683  |
| •        | 5-11        | Shock Tube - May 79, Gauge 2, Day 8, On-Axis, Grazing, Shot 1884   |

## LIST OF ILLUSTRATIONS (Cont'd)

| Section 5- | GRAPHS (Cont'd)                                                | <u>Page</u> |
|------------|----------------------------------------------------------------|-------------|
| 5-12       | Shock Tube - May 79, Gauge 2, Day 7, On-Axis, Grazing, Shot 18 | 85          |
| 5-13       | Shock Tube - May 79, Gauge 2, Day 7, On-Axis, Grazing, Shot 4  | 86          |
| 5-14       | Shock Tube - May 79, Gauge 2, Day 6, On-Axis, Grazing, Shot 18 | 87          |
| 5-15       | M198 - Nov 78, C22, 5ft, 800/0, Shot 31                        | 88          |
| 5-16       | M198 - Nov 78, C22, 5ft, 800/0, Shot 30                        | 89          |
| 5-17       | M198 - Nov 78, C22, 4ft, 267/0, Shot 17                        | 90          |
| 5-18       | M198 - Nov 78, C22, 4ft, 267/0, Shot 14                        | 91          |
| 5-19       | M198 - Nov 78, C22, 4ft, 267/0, Shot 15                        | 92          |
| 5-20       | M198 - Nov 78, C22, 5ft, 800/0, Shot 32                        | 93          |

## SECTION 1 INTRODUCTION

#### 1-1 BACKGROUND

Recent improvements in the propellant charges used in howitzers have caused concern that the acoustic shock wave produced in crew areas may be strong enough to cause respiratory damage. In an attempt to study this possible hazard Walter Reed Army Institute of Research (WRAIR) has asked the Lovelace Inhalation and Toxicology (I&T) Research Institute to simulate with a shock tube the blast wave produced by a howitzer. Specifically, the blast wave produced by the M198 howitzer with the M203 propellant charge at the gunner's position, 4 feet off the ground is to be simulated. This position is designated the C22 position on the howitzer (see Figure 1-1). The howitzer is fired at 0 mils azimuth (center of traverse) and 267 mils quadrant elevation. A pressure time history recorded at this position from tests made at Aberdeen Proving Grounds in November 1978 is shown in Figure 1-2.

From March 22 to April 2, 1979, test firings of the shock tube were made by personnel at the Lovelace I&T Research Institute. The data recorded was analyzed by JAYCOR and is reported in Reference 1.

Further test firings were made from May 22 to June 4, 1979. The purpose of these tests was to improve the reproducibility of the blast wave generated by the shock tube.

#### 1-2 REPORT STRUCTURE

This report is an analysis of the data taken during this shock tube test series. A brief description of the test design and the major conclusions drawn from the data analysis follow in this chapter. Section 2 of this report contains descriptions of the data collection and processing. The summary data from this test and previous tests of shock tube and howitzer are the basis for conclusions drawn and are also presented in Sections 2 and 4. Section 3 contains detailed data for each of the shots in the test and Section 5 contains graphs of some of the shots used in the analysis.



Figure 1-1 Ground map for locations of measurement.

#### 1-3 TEST DESIGN

A dominant characteristic of the blast produced at the C22 position of the howitzer is the presence of a pressure peak due to the reflection of the shock wave off the ground (see Figure 1-2). In the March 1979 tests of the shock tube, the simulated reflected peak was produced by a second coil of primercord located an appropriate distance form the main coil within the shock tube. These primercord coils were electrically ignited simultaneously to produce the blast wave. In the May tests, the second coil was replaced by a reflecting plate. Consequently only one explosion occurs. It was anticipated that any timing problems with ignition of the primercord would be eliminated and the resulting blast waves would be more uniform.

A second major purpose of the May tests was to investigate the repetition of the firing rate which could reliably be achieved with the shock tube. Since the howitzer can be fired at rates up to three shots per minute, it was desired that the shock tube also be fired at this maximum rate. Though this is physically possible to achieve, it appeared that the variance from shot to shot was unacceptable. This is probably due to a need for the tube to "cool" down and for the hot gases produced by the shock tube to disperse. In the May 1979 series, repetition rates of three per minute were tested.

After some preliminary investigations to determine the appropriate primercord and reflector plate configuration, the testing began on May 22, 1979 and terminated June 4, 1979. Table 1-1 summarizes the test sequence. The entire test consisted of eight sets of 25 shots each and in each set the time between shots was constant. For each shot a 40 foot length coil of 100 gram primercord was used. It was located nine feet from the reflector plate in the shock tube.

Data was collected by four ST-2 pressure transducers located at two locations; one, directly on the axis of the shock tube approximately six feet from the opening, the other was two feet from the first, perpendicular to the axis. Two gauges were put at each position: one oriented face-on to the blast wave and one grazing. The purpose of the face-on gauges was to obtain an indication of the dynamic pressures.



TABLE 1-1. SUMMARY OF TEST

| Name Used<br>in Report | Day of<br>Test<br>(1979) | Time<br>Between<br>Shots | Average<br>Temperature<br>(°C) | Average<br>Barometric<br>Pressure<br>(mm Hg) |
|------------------------|--------------------------|--------------------------|--------------------------------|----------------------------------------------|
| Day 1                  | 22 May                   | 3 min                    | 24.8 - 30.0                    | 625.0 - 624.6                                |
| Day 2                  | 23 May                   | 3 min                    | 26.2 - 28.0                    | 626.9 - 626.3                                |
| Day 3                  | 24 May                   | 1 min                    | 18.4 - 20.8                    | 626.6 - 626.5                                |
| Day 4                  | 25 May                   | 20 secs                  | 18.2                           | 625.3                                        |
| Day 5                  | 30 May                   | 1 min                    | 20.4 - 21.6                    | 622.6 - 622.6                                |
|                        | 30 May                   | 30 secs                  | 25.2                           | 621.9                                        |
| Day 6                  | 1 June                   | 30 secs                  | 16.2 - 16.3                    | 626.3 - 626.6                                |
| Day 7                  | 4 June                   | 1 min                    | 21.5 - 22.2                    | 623.0 - 623.0                                |

Though the gauges were switched during the testing the following convention for the gauges was:

GAUGE 1: LOCATED ON AXIS, ORIENTED FACE-ON GAUGE 2: LOCATED ON AXIS, ORIENTED GRAZING

GAUGE 3: LOCATED ON AXIS, ORIENTED FACE-ON

GAUGE 4: LOCATED ON AXIS, ORIENTED GRAZING

#### 1-4 CONCLUSIONS

The major conclusions drawn from this test are listed below. The data which support these conclusions are found in the ensuing sections of this report.

- o Addition of the reflector plate improved the shot-to-shot reproducibility of the shock tube.
- o The modification of the shock tube, however, introduced a small pressure pulse about 180ms from the shock front. The effects of this pulse must be considered in the implementation of any future experimentation especially when exposing animals or humans to the shock tube blasts.
- o The shot-to-shot reproducibility of the shock tube improves as the time between shots increases. A rate of three shots per minute is probably too fast to give acceptable shot-to-shot uniformity for physiological experiments. Performance is much better at a rate of one firing per minute while two per minute may be acceptable in some cases.
- o On a given day, the shot-to-shot correlations of the shock tube are comparable to that of the howitzer.
- o There is a day-to-day variability in the shock tube. However, this is also true for the howitzer.

# SECTION 2 DATA COLLECTION AND PROCESSING

#### 2-1 DATA COLLECTION AND DIGITIZATION

The data from the four ST-2 transducers were collected and recorded at the Lovelace Inhalation and Toxicology Research Institute. A dubbing of the analog tapes was performed by personnel at the US Army Aeromedical Laboratory (USAARL) at Ft. Rucker, Alabama. The dubbed tapes were then sent to JAYCOR for digitization and processing.

A preliminary study was made to determine the best sampling rate. Three shots were sampled with different combinations of sampling rate and tape playback speed. The results are summarized in Table 2-1.

As was expected, the peak pressures increased with sampling rate (the greater the sampling rate, the greater the chance of sampling near the peak analog signal), and the standard deviation between trials on the same shot decreased with sampling rate.

It was decided to use a sampling rate of 160 KHz with no analog antialiasing filter. Due to the high levels of pressure encountered in the face-on gauges from the gauge surface reflected pulse (see Ref 1), and due to the diffraction spike or overshoot, it was decided to omit the filter which would tend to flatten these high frequency spikes. As explained in Section 3-1, an attempt was made to correct for the overshoot. The resulting parameter is called the Estimated Peak Pressure and is used in this report.

During the samplings, record lengths of 206.25ms were taken which corresponds to 33,000 digitized points.

TABLE 2-1. DETERMINATION OF SAMPLING RATE

| Effective<br>Sampling<br>(Hz)         | SHOT A<br>Average<br>Peak Over-<br>pressure | Standard<br>Deviation                | SHOT B<br>Average<br>Peak Over-<br>pressure | Standard<br>Deviation                        | SHOT C<br>Average<br>Peak Over-<br>pressure  | Standard<br>Deviation                        | Number of<br>Samplings<br>at this<br>rate |
|---------------------------------------|---------------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|
| 10 K<br>20 K<br>40 K<br>80 K<br>160 K | 3.97<br>4.56<br>4.78<br>5.01<br>5.21        | 0.06<br>0.65<br>0.38<br>0.14<br>0.04 | 4.84<br>4.35<br>4.31<br>4.83<br>4.84        | 0.10<br>0.58<br>0.33<br>0.10<br>0.02<br>0.01 | 3.82<br>3.97<br>4.24<br>4.48<br>4.64<br>4.82 | 0.13<br>0.34<br>0.36<br>0.15<br>0.05<br>0.04 | 2<br>4<br>6<br>6<br>4<br>2                |

TABLE 2-2. CONVERSION FACTORS

|                                                               | Gauge 1                                                     | Gauge 2                                            | Gauge 3                                            | Gauge 4                                                     |
|---------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|
| Day 1<br>Day 2<br>Day 3<br>Day 4<br>Day 5-6<br>Day 7<br>Day 8 | 1.153<br>1.152<br>1.101<br>1.115<br>1.126<br>1.124<br>1.139 | 1.124<br>1.138<br>1.029<br>1.126<br>1.142<br>1.130 | 1.105<br>1.102<br>1.167<br>1.167<br>1.179<br>1.147 | 1.138<br>1.139<br>1.138<br>1.133<br>1.145<br>1.130<br>1.135 |

TABLE 2-3. % CHANGE IN CALIBRATION FACTORS (SINUSOIDAL CALIBRATION)

|                | Gauge 1 | Gauge 2 | Gauge 3 | Gauge 4 |
|----------------|---------|---------|---------|---------|
| Day 1          | xxx     | xxx     | -1.1%   | xxx     |
| Day 2          | 0.1%    | 0.6%    | 10.6%   | 1.9%    |
| Day 3          | 1.5%    | 2.2%    | -6.5%   | 0.2%    |
| Day 4          | 1.0%    | 2.9%    | -0.5%   | 0.9%    |
| Day 5-6        | 2.2%    | 0.5%    | 0.3%    | -3.1%   |
|                | XXX     | 1.7%    | -2.6%   | 1.0%    |
| Day 7<br>Day 8 | 2.2%    | 3.8%    | -0.9%   | 0.3%    |

#### 2-2 CALIBRATION DATA

Each gauge was calibrated by Lovelace before and after each series of test firings. Two different calibration methods were used: a pulse calibration signal, and a sinusoidal calibration signal. For a discussion of these two types of calibrations, see Ref. 1.

All results presented in this report were derived using the sinusoidal calibration data. Table 2-2 gives the conversion factors needed to convert from sinusoidal to pulse calibration. Any quantity having units of PSI can be converted to the pulse calibration by multiplying by the appropriate value from the table. All time measurements will remain the same.

Table 2-3 gives the percent of change from pre-shot to post-shot calibration factors using the sinusoidal calibration signals. The numbers give an indication of instrumentation drift during the particular test series.

#### 2-3 DATA ANALYSIS

There were four shots for which no data was recorded. These were shot 8 on Day 2, shots 11 and 23 on Day 6 and shot 11 on Day 7.

Electronic problems were exhibited in the data for several shots. In particular, the signals recorded on Gauge 3 for shots 4-25 on Day 6 were unusable. Electronic problems occurred most frequently on the first day of the test, May 22. The data collected from Gauge 2 was unreadable and the signal quality from the other three gauges decreased as this day's series progressed. Figures 2-1 and 2-2 illustrate this decrease in quality. Figure 2-1 is the pre-shot calibration signal recorded by Gauge 3, while Figure 2-2 is the post-shot calibration signal recorded by the same gauge. Figure 2-3 shows the noise and ringing present in the Gauge 3 records for this day. Similar noise was found on the other gauge's records for day 1. Consequently, although data were reported for Gauges 1,3 and 4 on Day 1, the quality of the signals was not nearly as clear as on the other days and the data from Day 1 should be used with caution.



Figure 2-1. Preshot Calibration Signal, Gauge 3, Day 4



Figure 2-2. Postshot Calibration Signal, Gauge 3, Day 1



Figures 2-4 and 2-5 are typical pressure time histories. Figure 2-4 was taken from a face-on gauge on Day 3. Figure 2-5 was taken from a grazing gauge. About two hundred milliseconds of the records are shown.

Note the pulse which occurred about 180ms form the main peak. This pulse was not present in the records from the March 1979 shock tube tests and, therefore, was probably due to the presence of the reflector plate. Though these pulses were much smaller than the main shock fronts, they nevertheless had peak pressures over 1 PSI and their effects should not be neglected in any experiments. The pulse was not present in the first 200-225ms after the main pulse in the previous test. Longer record lengths were not available to the investigator.

Figures 2-6 and 2-7 are expanded forms of the same shots as shown in Figures 2-4 and 2-5. Of particular note is the extremely sharp spike of short duration which occurred at the shock front. Several phenomena contributed to its existence. For the face-on gauges (Gauges 1 and 3), a major contribution to the spike was the reflection of the shock front off the face of the gauge. Theory predicts that the pressure at the point of reflection of an acoustic shock wave normal to a planar surface is over twice as great as the pressure in the shock front in free space. Though the surface of the gauge is small, it is still finite in extent and the contribution of the reflected shock front was present.

Other factors which contributed to the presence of the spike were edge effects of the gauge, gauge overshoot, and misalignment of the grazing gauges (i.e., if the surface was not perfectly grazing to the shock front, then the reflection off the gauge surface would have an effect).

Since these spikes had a high frequency content, one method of handling them was to send the signals through a low pass antialiasing filter before digitization. However, since a major part of the spike was not due to an artifact, it was decided not to use the filter and, instead, to make an attempt to eliminate the high frequency content influence through the processing procedure.

Lines were fitted to the time history in the region immediately following the spike. The line was then traced back in time to give an Estimated Peak Pressure



Figure 2-4. Pressure Time History, Face-On, Day 3



Figure 2-5. Pressure Time History, Grazing Gauge, Day 8



Figure 2-6. Face-On, First 4 ms



(see Figures 2-6 and 2-7). Section 4 contains tables of the actual recorded peaks and the estimated peaks.

Since the B-duration, MIL STD. 1474B, is defined in terms of the peak pressure, its value for a given pressure time history will depend on whether the actual record peak or the estimated peak is used. In the detailed data summaries in Section 3, both values of the B-duration are provided.

## SECTION 3 DETAILED DATA SUMMARY

#### 3-1 TABLES OF DATA

This section contains tables of detailed data summaries for each of the shots during this test series. The parameters of the tables are:

SHOT - Shot number. MAXIMUM PRESSURE - Maximum recorded pressure in both PSI and dB. MIN - Minimum recorded pressure in PSI (relative to ambient). - Time relative to the initial shock front at which the min-TIME MIN imum recorded pressure occurred in milliseconds. INIT MAX - Maximum recorded pressure occurring during the initial pulse in PSI. REFL MAX - Maximum recorded pressure occurring in the pulse reflected from the reflector plate in PSI. TIME REFL - Time relative to the initial shock front at which the reflected maximum occurred in milliseconds. EST MAX, AVE EST - As described in Section 2, an attempt was made during processing to correct for the sharp spike occurring at the This was accomplished by fitting several shock front. lines to the curve. The maximum estimation is given as EST MAX and the average given by the fitting lines is AVE EST. Both are expressed in PSI. A-DUR - A-duration given in milliseconds. - The B-duration is in milliseconds. B-DUR uses the recorded B-DUR EST B-DUR maximum to calculate the B-duration. EST B-DUR uses the estimated maximum to determine the B-duration. TOT IMP - The total impulse of the record in PSI-Ms. POS IMP The positive impulse from pulse onset until the A-duration in PSI-Ms.

TABLE 3-1. MAY 22, ON AXIS, FACE-ON, 3 MIN.

LOVELACE SHOCK TUBE LEST

22 MAY 79 UN AXIS, FACE-UN 3 MIN METWEEN SHOTS

| AXIMO        | •    | 3     | _        | REFL  | FIME | EST    | AVE        |      |                  | EST    |     | POS  |
|--------------|------|-------|----------|-------|------|--------|------------|------|------------------|--------|-----|------|
| RESSUR       | ZII  | Ī     | <<br>1   | X Y Y | Ĺe.  | XAX    | ES T       | ADUR | ROOK             | BUUR   | 3   | IMP  |
|              | S    | S     | 2.5      | PSI   | A S  | PSI    | PSI        | HS   | S:<br>¥.         | S      | S   | ı    |
| 1 11.6 192.0 | 6.0- | 34.11 | 11.6     | 5.4   | 3.14 | 4.9    | 4.8        | 4.1  | 27.              | 193.   | 0.1 | 17.3 |
| 4 19         | -:-  | 7.4   | <b>-</b> | 5.2   | 3    | 4.9    | 4.7        | 6.7  | 24.              | $\sim$ | ~   | -    |
| •            | -1.2 | 2.3   | •        | 0.9   | æ    | 5.3    | 5.1        | 6.1  | 27.              | ~      | •   | :    |
| .2 191.      | -1.0 | 2.3   | ċ        | 8.1   | ~    | 4.9    | 4.7        | 6.3  | 55.              | ~      | 5.  | •    |
| 12.1 192.    | -1.2 | 4.7   | 2.       | 5.7   |      | 5,1    | 9.4        | 9.2  | 13.              | $\sim$ | •   |      |
| 10.9 19      | -1.3 | 1.7   | 0        | 7.7   | 70   | 5,3    | 2.5        | 9.3  | 58               | ~      | ~   |      |
| 10.          | -1.0 | 3.7   | ن        | 6.5   | •    | 5.1    | 6,4        | 9.7  | 21.              | ~      | æ   |      |
| 11.8 192.    | -1,3 | 3.3   | -        | 6.3   |      | 5.1    | 4.9        | 9.5  | 56.              |        | ~   | ·    |
| 14.7 194.    | -1.1 | 4.4   | 4        | 0.6   | 3    | 5.6    | 5.4        | 9.6  | <b>*</b>         | ~      | •   | ,    |
| 0 10,5 191.  | -1.1 | 3.5   | ċ        | 5.7   | ~    | 5.0    | 4.7        | 9.5  | 56.              | -41    | ÷   | -    |
| 10.9 191.    | -1.2 | 4 · B | ÷        | 6.4   |      | 5.0    | ¥.         | 6.9  | 59.              | $\sim$ | _   | 7    |
| 2 10,9 19    | -1.1 | 4.9   | ċ        | 7.2   |      | 5.4    | 5.2        | 9.4  | 2.1.             | 30     | *   | 30   |
| 13,4 193.    | -1.3 | 4.7   | ~        | 9.9   | æ    | 5.4    | 5,3        | 6.1  | 55.              | ~      | •   |      |
| 12,8 192,    | -1.0 | 3.5   | 2        | 4.9   | 4    | ¥.     | 4.7        | 4.6  | 23.              |        |     | ÷    |
| 11.2 19      | -1.3 | H     | <b>-</b> | 5°C   | 0    | 5.5    | 5.0        | 6.5  | 56.              | 2      | ~   | •    |
| 6 13.0 193.  | -1.3 | 4     |          | 6.2   | 4.05 | 5.0    | 4 • B      | 9.5  | 21.              | 205.   | •   | -    |
| 7 10.7 191.  | -1.  | 4 . K | ÷        | 5.6   | ~    | 5,4    | 2.5        | ۴.۶  | 78.              |        | m   |      |
| B 12.1 19    | -1.3 | 4.8   | 2.       | 6.7   |      | ن<br>ئ | 5.3        | 6.3  | - <del>8</del> - |        | •   |      |
| 9 13.0 193.  | -1.1 | 3.4   | ~        | 5.6   | ~    | 5.1    | 5.0        | 9.4  | 24.              | 10     | ~   | •    |
| 0 12,9 19    | -1,2 | 4.6   | ?        | 8.2   | ~    | 5.6    | 5,4        | 9.6  | <b>5</b>         | $\sim$ | -   |      |
| 1 10.6 19    | -1.3 | 2.9   | ċ        | 5.7   | ~    | 5.0    | ਲ <b>•</b> | 9.1  | 51.              | ~      | -   |      |
| 2 13,7 193.  | -1.3 | 2.0   | ~        | 5.1   | ₫.   | 5.4    | 5.1        | 9.5  | ĵ.               | -      | ~   | -    |
| 11,9 19      | -1.2 | 1.7   | •        | 6.4   | •    | 5.2    | 5.1        | 9.5  | 21.              | 7      | •   |      |
| 4 14.5 194.  | •    | 7.1   | •        | 6.6   | œ    | 5, 1   | 9.0        | A. 7 | 'n               | m      | =   |      |
| 5 11.0 191.  | -1.1 | 1.7   | •        | 7.0   | 0    | 5.6    | 5.4        | 4    | 58.              | -      | c   | 7    |

TABLE 3-2. MAY 22, ON AXIS, GRAZING, 3 MIN.

LOVELACE SHOCK FURE TEST

22 MAY 79 ON AXIS, GRAZING 3 MIN HETWEEN SHUFS

| Pris  | 4.      | I       | 0.0  | 0.0    | 0.0      | 0.0      | 0.0     | 0.0    | 0.0  | 0.0  | 0.0      | 0.0          | э·<br>Э | 0.0    | 0.0            | 0.0         | 0.0     | 0.0    | 0.0  | 0.0      | 1).0     | 0.0  | 0.0      | •      | •        | 0.0      | •      |
|-------|---------|---------|------|--------|----------|----------|---------|--------|------|------|----------|--------------|---------|--------|----------------|-------------|---------|--------|------|----------|----------|------|----------|--------|----------|----------|--------|
| ror   | d x     | PS      | 0.0  |        | •        | •        | •       | 0.0    | 0.0  | 0.0  |          | •            |         | •      |                |             | •       | 0.0    |      |          |          |      |          | •      | •        |          | •      |
| ESI   | BOUR    | R S     | •    | •      |          | •        | •<br>•  | •<br>• | °    | •    | 0        | •            | •<br>•  | •<br>• | •              | <b>.</b>    | •       | 0      | •    | <b>.</b> | •        | C    | •        | ÷      | <b>.</b> | •<br>•   | 0      |
|       | SUUS    | S E     |      | •<br>• | •<br>•   | <b>.</b> | 0       | ÷      | ÷    | ÷    | <b>.</b> | 0            | ÷       | •      | e <sup>*</sup> | •<br>•      | ÷       | •<br>• | •    | •<br>•   | <b>.</b> | ÷    | <b>.</b> | •<br>• | °.       | <b>•</b> | 0      |
|       | ADUK    | RS      | 0.0  | 0.0    | 0.0      | o.c      | 0.0     | 0.0    | 0.0  | 0.0  | o•0      | 0.0          | 0.0     | 0.0    | 0.0            | <b>C</b> •0 | o.<br>0 | 0.0    | 0.0  | 0.0      | 0.5      | 0.0  |          | 0.0    | 0.0      |          | 0.0    |
| AVE   | EST     | PS1     | 0.0  | 0.0    | 0.0      | 0.0      | o.<br>O | 0.0    | 0.0  | 0.0  | 0.0      | ŋ <b>•</b> 0 | )<br>)  | 0.0    | 0.0            | 0.0         | o•0     | 0.0    | 0.0  | 0.0      | e • 0    | 0.0  | o•0      |        | 0.0      | 0.0      | =<br>= |
| ES T  | X Y X   | ps I    | 0.0  | 0.0    | <b>9</b> | 0.0      | 0.0     | 0.0    | 0.0  | 0.0  | 0.0      | 0.0          | 0.0     | 0.0    | 0.0            | 0.0         | 0.0     | 0.0    | 0.0  | 0.0      | 0.0      | 0.0  | 0.0      | 0.0    | 0.0      | 0.0      | ى<br>0 |
| 3 1 1 | REFL    | S.      | 00.0 | 00.0   | 00 0     | 00.0     | 0,00    | 000    | 00.0 | 00.0 | 00.0     | 00.0         | 00.0    | 000    | 00.0           | 00.0        | 00.0    | 00.0   | 00.0 | 0.00     | 00.0     | 00.0 | 0.00     | 00.0   |          | 00.0     |        |
| REFL  | XYK     | PSI     | 0.0  | o.0    | 0.0      | 0.0      | 0.0     | 0.0    | 0.0  | 0.0  | 0.0      | o.0          | 0.0     | 0.0    | 0.0            | 0.0         | 0       | 0.0    | 0.0  | 0.0      | 0.0      | 0.0  | 0.0      | 0.0    | e.<br>e  | 0.0      | 0.0    |
| INIT  | ž       | PSI     | 0.0  | 0.0    | o•0      | 0.0      | 0.0     | 0.0    | 0.0  | 0.0  | 0.0      | 0.0          | 0.0     | 0.0    | 0.0            | 0.0         | 0.0     | 0.0    | 0.0  | 0.0      | 0.0      | 0.0  | 0.0      | 0.0    | 0.0      | 0.0      | 0      |
| FIME  | P. I. H | Y.<br>Y | 00.0 | 00.0   | 00.0     | 00.0     | 00.0    | 00.0   | 0.00 | 00.0 | 00.0     | 00.0         | 00.0    | 0.00   | 0.00           | 0.00        | 0.00    | 00.0   | 0.00 | 00.0     | 00.0     | 0.00 | 00.0     | 00.0   | 00.00    | 0.00     | 0.0    |
|       | -       | S       | c.   |        |          | •        | •       |        |      | •    |          | •            | •       | •      | •              |             | •       | c.0    | •    | •        | •        | •    | •        | •      | •        | 0.0      | •      |
| =     | SURE    | ОН      | 0.0  | •      | 0.0      | •        | •       | •      | •    | •    | •        | •            | •       | •      |                | •           | •       | c • 0  | •    | •        | •        | •    |          | •      |          | •        |        |
| ××    | RES     | S       | 0.0  | •      | •        | •        | •       | •      | •    | •    | •        | •            |         | •      |                | •           | •       | •      | •    | •        | •        | •    | •        | •      | •        | •        | •      |
|       | SHOT    |         |      | ~      | ~        | •        | ξ,      | ٥      | 7    | æ    | <b>S</b> | 2            |         | 1.5    | 7              | * -         | 15      | 91     |      |          |          |      |          |        |          | 24       |        |

TABLE 3-3. MAY 22, OFF AXIS, FACE-ON. 3 MIN.

LOVELACE SHOCK TUBE TEST

22 MAY 79 UFF AXIS, FACE-DH 3 MIN HETWEEN SHUFS

|      | JAP   |         | 13.5  | •    | 13.7 | •    | •    | 1 3.E | •    | •    |         | •          | •    | •    | •    |       | 13.5            |             | 13.5 | 13.8        | 13.4       | 14.3 | 13.6     | 12.1        | 13.7  | 13.6  | 14.0       |
|------|-------|---------|-------|------|------|------|------|-------|------|------|---------|------------|------|------|------|-------|-----------------|-------------|------|-------------|------------|------|----------|-------------|-------|-------|------------|
| TOT  | d N I | SI      | •     | •    | •    | •    |      | •     | 1.0  | 1.5  | 1.6     | 3.3        | -2.3 | 0.1  | 0.8  | -0.5  | 3.2             | -2.7        | 1.2  | 1.4         | 1.1        | 5.9  | 4.0      | <b>5.8</b>  | 0.7   | 4.7   | 4.1        |
| EST  | HOUR  | MS.     | 182.  | 189. | 187. | 201, | 205. | 199.  | 180. | 185. | 168.    | 187.       | 195. | 193. | 142. | 3 x T | 188.            | 189.        | 178. | 186.        | 180.       | 189. | 192.     | 193.        | 188.  | 187.  | 192.       |
|      | ADOR  | S       | 24.   | 24.  | 56.  | 24.  | SB.  | 55.   | 24.  |      | S       | 55.        | £    | 56.  | ~    | N     | 22.             | 54.         | 10.  | -           | 24.        | 20.  | 2.5      | 56.         | 17.   | 26.   | э.<br>•    |
|      | ADOR  | #S      |       |      | •    | 3.6  |      |       | 7.1  | 6.1  | æ.<br>œ | 8.7        | 0.0  | 9.1  | 4.6  | 4.6   | €. <del>6</del> | 9.5         | 9.5  | 4.6         | 9.4        | 7.6  | 4.6      | 6.4         | 9.4   | 8.6   | •          |
|      |       | S       | 4.7   | •    | •    | •    | •    |       | •    | •    | •       | •          | •    | •    | •    | •     | 4.5             | •           | •    | •           | •          | •    | •        | •           | •     |       | •          |
| EST  | X A X | PSI     | 4.8   | 4.7  | 4.8  | 4.6  | 5.0  | 5.0   | 4.9  | 5.1  | 4.9     | 4.6        | 4.7  | 4.7  | 5.2  | 6.4   | 4.7             | <b>6.</b> ◆ | 5.0  | <b>2.</b> 0 | <b>5</b>   | 5.0  | 3.<br>\$ | 5.1         | 5.1   | 5.2   | 5.1        |
| -    | REFL  |         | 6     | à    | 0    | 30   | 5    | ~     | 9    | œ    | ₩.      | ŝ          | ~    | -    | ~    | 9     | 2.90            | 2           | ~    | $\sim$      | 4          | •    | $\sim$   | 4           | S     | 5     | 1.99       |
|      |       |         | 6.2   | 5.0  | 6.3  | 5.4  | 5.1  | 5.1   | 4.9  | 5,3  | 5.0     | 5,0        | 4.6  | 4.8  | 5.7  | 5,3   | 4.9             | 5.2         | 5.3  | 5.0         | <b>6.1</b> | 5.0  | 5.1      | <b>0.</b> 9 | 7.3   | 5.    | <b>6.8</b> |
|      | ~     | 20      |       |      |      |      |      |       | •    | •    | •       | •          |      |      |      | •     | 10.8            | •           | ÷    | -           |            | _    | ċ        | •           |       |       | •          |
| TIME | I     | S)<br>Z | æ     | 7.   | -    | *    | 4    |       |      | 5.   | •       | ?          | 2.   | 5.   | 2    | ÷     | 32,07           | 5.          | ċ    |             | •          |      | 2.       | 5.          | 4     |       | æ          |
|      | Z     | S       | 6.0-  | 6.0- | -1.3 | -:-  | -1.1 | -1.1  | 6.0- | 0.0  | -1.2    | •          | •    | -1:1 | •    | •     |                 | -1.1        | •    | •           | -1.7       |      | •        | -1.2        | •     | •     | -1.1       |
| HIM  | SUA   | DH      | 191.7 | 0    | -    | ÷    | 05   | 189.5 | 90.  | •    | -       | <b>5</b> . |      |      | 2    | 406   | 191.4           | =           | -    | 2.          | 191.7      | •    | •        | •           | 192,0 | 191.7 |            |
| HAX  | PPES  | S       | 11.2  | •    |      | •    | •    | •     | 6.6  |      |         | •          | •    | •    | •    | •     | 10.B            | •           | •    | •           | 11.1       | •    | 10.3     | •           | •     | 11.1  | 11.7       |
|      | SHUT  |         | -     | 8    | ~    | ∢    | Ω.   | •     |      | æ    | 3       |            | =    |      | 13   |       | 15              |             |      |             |            |      |          |             |       |       |            |

TABLE 3-4. MAY 22, OFF AXIS, GRAZING, 3 MIN.

LOVELACE SHOCK TUBE TEST

22 MAY 79 OFF AXIS, GRAZING 3 FIN BETWEEN SHOTS

| POS   | G N I      | 3   | 9.1  | 9.5   | 9.6   | 5.6   | 9.6  | 9.4   | 6.1  | Ŧ.6  | 10.0    | 6.6     | 9.3   | £.5  | A. 6 | 9.6  | 9.1        | 10.0 | 9.3    | 9.9  | 0.6  | 10.1       | 9.3        | 0.6        | 9°B      | 10.0  | 10.0   |
|-------|------------|-----|------|-------|-------|-------|------|-------|------|------|---------|---------|-------|------|------|------|------------|------|--------|------|------|------------|------------|------------|----------|-------|--------|
| TOT   | <b>4</b> 1 | P.S | _    | 11.   | 6     | -9.3  | 0.8- | -14.9 | 11.  | 13.  | 0 · H - |         | +     | 4.   | -    | -    | 14.        | 12.  | 6      |      | 12.  | •          | 12.        | 11,        | -10.7    | -     | -10.7  |
| EST   | BUUR       | S.  | 144. | 150.  | 149.  | 149.  | 152. | 154.  | 07   | 5.5  | 50      | 49      | 53    | 55   | 150. | 9    | 52         | 51   | 53     | 54   | 148. | <b>4</b> & | 30         | 150.       | 155.     | 154.  | 151,   |
|       | HOOK       | S   | 53.  | 46.   | 75.   | 64    | 58   | 40.   | 49.  | 106. | 74.     | 54.     | B 4 . | 55.  | 60°  | 54.  | 53.        | 59.  | 70.    | 5.5  | 4 B. | 54.        | 5.4.       | 49.        | ж<br>0 ж | 57.   | *<br>* |
|       | ADOR       | MS  | 8.1  | 6 . H | 9 • 9 | 8.1   | 5.8  | t. 5  | 7.9  | 0.8  | 7.h     | ж.<br>1 | S.    | 7.5  | 7.3  | 7.7  | 6.1        | 7.8  | ٠<br>٩ | н.1  | 4.4  | O .        | <b>6.6</b> | 5.<br>B    | 7.4      | 7.6   | 7.2    |
| >     | ESF        | S   | •    | •     | •     | •     | •    | •     | •    | •    |         | •       |       |      |      |      | •          |      |        |      | •    | •          |            |            |          |       | •      |
| EST   | XVX        | PSI | 3.7  | 3.7   | 3,8   | 3.8   | 3.8  | 3.8   | 3.8  | 3.7  | 3.8     | 3.7     | 3.8   | 3.7  | 4.0  | 3.A  | 3.6        | 3.8  | 3.8    | 3.9  | 3.8  | 3.8        | 3.8        | 3.9        | 4.0      | 3. R  | 7.0    |
| II 4E | REFL       | S   | 3.58 | 9.    | . 2   | 3.76  | -    | • 5   |      | . 2  |         | 5.      | •     | -    |      | 4.   | .2         | -    | ٦.     | -    | ~    | 0          |            | -          | 5.       | ٥.    | ٥.     |
| REFL  | MAX        | PSI | 2.7  | 3,3   | 2.8   | 5.9   | 3.0  | 3.5   | 2.5  | 3.2  | 3.0     | 2.9     | 3.5   | 3.4  | 3.0  | 2.H  | <b>5.8</b> | 3.3  | 3,3    | 3,3  | 3.0  | 3.4        | 3.0        | <b>2.6</b> | 3.5      | 3.7   | 4.0    |
|       | XXX        |     |      | 5.1   | 5.4   | 5,3   | 5.6  | 9.9   | 5.6  | 5.1  | 5.9     | 5.7     | 4.9   |      | 5.3  |      | 6.3        | 9.9  | 5.0    | 6.1  | 6.2  | 6.4        | 6.1        | 6.1        | 5.5      | 9 • 9 | 5,5    |
| TIME  | 7 7 7      | 32  | 2.2  | 2.0   | 1.8   | 26.06 | 2.1  | 3.5   | 6.9  | 3.0  | 5.1     | 1.8     | 2.1   | 5.5  | 6.0  | 4.2  | 7.6        | 5.1  | 5.1    | 5.1  | 2.7  | 5.1        | 4.9        | 5.5        | 5.1      | 1.0   | 4.5    |
|       | -          | S   | -1.1 | •     | •     | •     |      | -1.5  |      |      | -1.1    | •       | •     | •    | -1.2 | •    | •          |      | -1.1   |      |      | -1.3       | -1.2       | -1.3       | -1.2     | •     |        |
| MUMI  | SUP        |     | 185. | 184.  | 1н6.  | 185   | 185. | 187.  | 185. | 184. | 186.    | 185.    | 184.  | 186. | 185. | 185. | 146.       | 187. | 184.   | 186. | 186. | 186.       | 186.       | 186.       | 185.     | 187.  | 185.   |
| ×     | RFS        | S   |      | •     | •     | •     | •    | •     | •    | •    | •       | •       | •     | •    | •    | •    | •          | •    | •      | •    | •    | •          | •          | •          | •        | •     | •      |
|       | SHUT       |     | -    | ~     | ~     | ~     | 3    | 9     | 7    | 30   | S       |         |       | 12   |      |      |            |      |        |      |      |            |            |            | 23       |       |        |

TABLE 3-5. MAY 23, ON AXIS, FACE-ON, 3 MIN.

LOVELACE SHUCK FUBE TEST
23 MAY 79
ON AXIS, FACE-UN
3 MEN BETWEEN SHUTS

|      |       |        |      |      |           |          |      |          |              |      |      | _        |      |      |      |              |      |       |            | _    | _     |      | _        |      |         |            |      |
|------|-------|--------|------|------|-----------|----------|------|----------|--------------|------|------|----------|------|------|------|--------------|------|-------|------------|------|-------|------|----------|------|---------|------------|------|
|      | JAP   | - NS   | 16.6 | 17.0 | 17.0      | 16.6     | 16.9 | 16.0     | 16.2         | 0.0  | 17.3 | 16.9     | 17.3 | 16.3 | 16.7 | 17.3         | 17.2 | 15. R | 17.4       | 17.0 | 14.9  | 16.9 | 17.6     | 17.5 | 16.1    | 17.3       | 18.2 |
| נסב  | X     | ı      | •    | 1    |           | •        | •    | 1        | ,            |      | •    | •        | •    | •    | •    | •            | •    | •     | •          |      | •     | •    |          | •    | 7       |            | _    |
| EST  | HOOR  | K<br>S | 135. | 140. | 85.       | 140.     | 140. | 144.     | 135.         | •    | 139. | 145.     | 81.  | 81.  | 90   | 140.         | 104. | 136.  | 135.       | 85.  | 81.   | 59.  | 140.     | 101. | 112.    | 4.5        | 72.  |
|      | HOOH  | S<br>K | 23.  | 23.  | Ŧ.        | <b>.</b> | 10.  | 34.      | 59.          | •    | 23.  | 12.      | 10   | 25.  | Ŧ.   | Ŧ            | 27.  | 10.   | 24.        | 23.  | æ     | 23.  | 23.      | 12.  | 24.     | 24.        | 22.  |
|      | ADOR  | S.     | 6.3  | 6.3  |           | 4.1      | 9.6  | ¥.       | <b>5</b>     | 0.0  | 9.6  | •        | 9.5  | •    | •    | •            | H. 3 | •     | •          | •    | •     | 9.6  | •        | •    | 0.0     | 9.5        | 6.6  |
| >    | ES L  | v.     | 4.9  | •    | <b>4.</b> | 4.6      | 5.0  | 4.6      |              |      |      |          | •    |      | •    |              | 4.0  | •     | •          | •    |       |      | •        | 5,3  | 5.<br>C | 4.7        | 5.3  |
| S    | HAX   | PSI    | 5.0  |      |           | 5.0      |      |          |              | 0.0  |      | •        | •    | 4.8  | •    |              |      | •     | •          | •    | 6.0   | •    | Ŧ.       | 5.4  | S. U    | 4 · B      | 5.3  |
| -    |       | HS     | 3.14 | 4.10 | 4.30      | 4.03     | 3.84 | 2.       | -            | 0.00 | •    | •        | •    | •    | •    | •            | 1.65 |       | •          | •    | •     | •    | •        | •    | 4.21    | 4.15       | 4.36 |
| REFL | MAX   | PS1    | 5.1  | 0.9  | 6.1       | 5.6      | 6.4  | 8°S      | 5.1          | 0.0  | 6.3  | 5.3      | 6.7  | 5.5  | 5.6  | 6.4          | 7.1  | 5.6   | 6.3        | 5.6  | 5,5   | 5.7  | 6.3      | 6.3  | 5.1     | 4.7        | 5.9  |
| -    | X V H | PSI    | 10.H | 10.3 | 10,9      | 11.3     | 11.2 | 11.1     | 10.H         | 0.0  | _    | •        | ·    | 10.5 | ?    | -            | 11.4 | 11.0  | 12.4       | 11.1 | 11.9  | 11.5 | 11.7     | 11,7 | 11.3    | 11.5       | 12,5 |
|      |       |        |      | 2.2  | 2.8       |          | ÷    | <u>.</u> | 9.1          | 0.00 | *    | 2.1      | 3.5  | 3.9  | 0.9  | 4.1          | 5.   | 4.    | 3.7        | 3.8  | A. A. |      | 1.6      | 4    | 33,47   |            |      |
|      |       | PSI    |      |      |           | •        |      |          | <b>-</b> 0.9 | 0.0  |      | # O.     |      |      |      | <b>6.</b> 0- |      | P.O.  | -1.0       | 6.0- | 6.0-  | 8.0- | 8.0-     | 5.0- |         | •          | -0.7 |
| E    | SUR   | DR     | 91.  | 91.  | 91.       | •        | 91.  | 91.      | 91.          | 0.0  | 91.  | 5        | 91.  | 91.  | 45.  | 92.          | •    | 91.   | 92.        | 91.  | 92.   | 92.  | 92.      | 92.  | -       | 92.        | ?    |
| ×    | PRES  | 3      | 10.8 | ċ    | •         | •        |      | <u>.</u> | •            | •    | -    | <b>•</b> | •    | ċ    | 2.   | -            | •    | -     | <b>~</b> : | _    | -     | •    | <b>-</b> | -    | •       | <b>-</b> • | 2.   |
|      | SHUT  |        | -    | 7    | ~         | ₹        | ŝ    | ·£       |              | ဆ    | 5    |          |      | 12   |      |              |      | 91    |            |      |       |      |          |      |         |            | 25   |

TABLE 3-6. MAY 23, ON AXIS, GRAZING, 3 MIN.

LOVELACE SHUCK TUBE TEST

23 MAY 79 OH AXIS, GRAZING 3 MIN HETWEEN SHUPS

| TOT          | E Marianta de la companya de la comp | CE-102 | 5.0 10   | 6.0 10 | о<br>ж | 5.5  | 4,3 10 | 1.1 10 | 6 H 0 | 0.0        | -0.3 0 | • | ₹       | -7.3 9 | -7.3 9<br>-3.4 10<br>-1.5 10 | -7.3 9<br>-1.5 10<br>-2.5 9             | 17.3<br>13.4 10<br>11.5 10<br>12.5 9    | -7.3<br>-13.4 10<br>-1.5 10<br>-2.5 9<br>-2.0 8 | -7.3 9<br>-3.4 10<br>-2.5 10<br>-2.5 9<br>-1.2 11 | 17.3<br>13.4<br>12.5<br>10.2<br>12.0<br>10.2<br>10.2<br>10.2<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1      | 13.4.<br>12.1.<br>12.5.5<br>10.1.<br>13.9.10<br>15.0.10 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                    | 1.2.5.10<br>1.2.5.10<br>1.2.5.10<br>1.2.4.10<br>1.3.9.10<br>1.5.0.10 | 1                                                 | 2                                               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1           |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|--------|--------|------|--------|--------|-------|------------|--------|---|---------|--------|------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| ESF          | 8008<br>3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0      | 135.     | 136.   | 127.   | 140. | 114.   | 144.   | 14R.  | •<br>•     | 56     | 7 | 7       | 4 4    | 134.<br>148.<br>135.         | 4 4 6 4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 4 4 4 4 2 5                                     | 4 4 4 4 7 5 4<br>4 8 8 8 8 8 8 8 8                | 4 4 4 4 7 4 4<br>4 8 8 9 9 8 9 8 9 8 9                                                                                       | 44 4 4 7 7 4 4 4<br>4 8 8 9 9 8 9 8 9 8 9 8 9 | 44 4 4 7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                | 44 4 4 7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                    | 7 4 7 7 4 4 4 7 7 8 8 8 8 8 8 8 8 8 8 8                              | 4 4 4 6 7 5 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 7 2 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 | 4 4 4 7 2 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 72.      |        | 57.    | R 5. | # I •  | -      | 148.  | <b>°</b>   |        | • |         | • .^   |                              | * · ^ = *                               |                                         | - ~ ^                                           |                                                   |                                                                                                                              |                                               |                                                         |                                                             |                                                                      |                                                   |                                                 | 00111111100000000000000000000000000000          |
|              | ADER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ç.     | 7.0      | ۴.3    | 5,2    | 2.5  | 6.8    | •      | 5.5   | 0.0        | o.c    | • | 5.1     | . v.   | v v »                        | <br>                                    |                                         |                                                 |                                                   |                                                                                                                              |                                               |                                                         |                                                             |                                                                      |                                                   |                                                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~          |
| >            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0      | •        | •      | •      | •    | •      |        | •     | •          | •      |   | •       |        |                              |                                         |                                         | 3 3 4 3 W 3                                     |                                                   |                                                                                                                              |                                               |                                                         |                                                             |                                                                      |                                                   |                                                 |                                                 |
| EST          | < ∶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n      | •        | •      | •      | •    | •      | 3.7    | 3.7   | 0.0        | 0.0    | • | ٠.<br>د | 2 W    | <br>                         |                                         | , a u a u                               | , a m a m a m                                   | , , , , , , , , , , , , , , , , , , ,             | , a u a u a u a u                                                                                                            | , , , , , , , , , , , , , , , , , , ,         | , , , , , , , , , , , , , , , , , , ,                   | uuuuuauauauu<br>yororoo⊶oo                                  | , , , , , , , , , , , , , , , , , , ,                                | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          | uuuuuuuuuuuuuauu<br>,,,,,,,,,,,,,,,,,,,,,,      |
| <b>3</b> . ( | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n      |          | æ      | 2      | 7    | 30     | ~      | e.    | 0          | 5      | * | •       |        | * 10 m                       | ະທຸຕຸລ                                  | * * * * * * * * * * * * * * * * * * *   | 2 - 2 m nz                                      |                                                   |                                                                                                                              |                                               |                                                         |                                                             |                                                                      |                                                   |                                                 |                                                 |
| ٠<br>•       | X S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | To.    | 3.1      | 4.2    | 3.4    | 5.9  | 2.7    | 2.8    | 2.8   | <b>3.0</b> | 0,2    |   | 0 • 7   | 3.0    | . m m                        | , w w w                                 |                                         |                                                 |                                                   |                                                                                                                              |                                               |                                                         |                                                             |                                                                      |                                                   |                                                 |                                                 |
|              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •      | _        | _      | _      | _    | _      | ¥.     | 5.3   | _          | _      |   | _       |        |                              |                                         |                                         |                                                 |                                                   |                                                                                                                              |                                               |                                                         |                                                             |                                                                      |                                                   |                                                 |                                                 |
| <b>I</b>     | Z ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 8.7      | 9.0    | S.     | 5.6  | 5      | 4      | ŝ     | 0          | 1,5    | 7 | •       |        | 2                            | 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 |                                         |                                                 |                                                   | 0.40 a 5 4 5 4 5 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6                                                                               |                                               |                                                         | . 50 2 50 2 50 4 50 4 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |                                                                      |                                                   |                                                 | 3M0M000m840470m                                 |
| •            | 2 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a      | <b>-</b> |        | •      | -    | _      |        | -     | 0          | =      | • | _       |        |                              |                                         |                                         |                                                 |                                                   |                                                                                                                              | •••••                                         |                                                         | • • • • • • • • • • •                                       | · · · · · · · · · · · · · · · · · · ·                                | · · · · · · · · · · · · · · · · · · ·             |                                                 |                                                 |
| 3            | :<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2      | 85.      | E S    | #5.    | H 5. | H5.    |        | # 5°  | 0          | 74.    | 2 |         | H5.    | 95.<br>94.                   | 8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |                                         |                                                 |                                                   |                                                                                                                              |                                               | : 数页 8 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3            |                                                             | : 数                                                                  | : 数页 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8          | : 数页的 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2     | : 🌣 🕾 🌣 🌣 🌣 🌣 🌣 🌣 🌣 🌣 🌣 🌣 🌣 🌣 🌣                 |
| = (          | P :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n      | •        |        |        |      | •      |        |       | •          |        | - | •       |        | • •                          |                                         |                                         |                                                 |                                                   |                                                                                                                              |                                               |                                                         |                                                             |                                                                      |                                                   |                                                 |                                                 |
|              | SHOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | -        | 7      | ~      | 4    | ÷      | \$     | 7     | <b>3</b>   | 9      |   |         |        |                              |                                         |                                         |                                                 |                                                   |                                                                                                                              |                                               |                                                         |                                                             |                                                                      |                                                   |                                                 | 22222222222222222222222222222222222222          |

TABLE 3-7. MAY 23, OFF AXIS, FACE-ON, 3 MIN.

LUVELACE SHOCK TUBE TEST

23 MAY 79 OFF AXIS, FACE-ON 3 MIN BERWEEN SHOTS

| 9    | 4        |            | 14.3      | 14.1  | 14.4       | 13.9     | 14.4     | 14.2  | 14.4  | •        |           | *          |      |      |          |      |      | 14.9  |                | •    |       | •    | 14.2 | 10.1 | 14.2       | 14.6  | 14.3  |
|------|----------|------------|-----------|-------|------------|----------|----------|-------|-------|----------|-----------|------------|------|------|----------|------|------|-------|----------------|------|-------|------|------|------|------------|-------|-------|
| TOT  | T        | 21         | 0.3       |       |            | -0.1     | 1.0      | 1.0   | 4.5   | 0.0      | 3.7       | 2.1        |      | ~    |          | -    | -    | 6.9   | -              | 8.2  | ~     | ċ    | -4.3 | _:   | -1.H       | -2.0  |       |
| EST  | RUUR     | S          | <b>80</b> | 41.   | 65.        | 99       | 80       | 101.  | 71.   | •        | <b>66</b> | 65,        | 75.  | 135. | 66.      | 73.  | A 7. | 72.   | 57.            | 58.  | 73.   | 67.  | 83   | 65.  | 64.        | 75.   | 6.8   |
|      | BOUR     | H S        | 22.       | 23.   | •          | <b>.</b> | 58       | 24.   | 21.   | <b>.</b> | 24.       | 21.        | 5.   | 25.  | 23.      | 23.  | ~    | 7.    | <b>.</b><br>30 | 7.   | 7.    | ¢    |      | 27.  |            | 7.    | 1.    |
|      | ADOR     | N.S        | 9.3       | P. 1  | 9.5        | в.9      | 9.4      | 6.5   | 9.5   | 0.0      | 9.4       | 9.3        | ÷ 7  | 9.2  | 6.3      | 9.3  | 6.1  | 9.3   | 8.7            | 9.0  | 9.1   | 6.9  | 9.3  | 9.3  | 9.1        | 9.3   | 9.6   |
| AVE  | EST      | PSI        | 9.0       | 5.2   | 4.0        | 4.9      | 5.1      | 4.7   | ¥.    | 0.0      | 2.0       | 5.0        | 5.1  | 4.8  | 5.0      | 5.1  | 5.2  | 5.1   | 5.3            | 5,3  | 5.2   | 5.0  | 4.   | 5.4  | 5.0        | 4.8   | 5.1   |
| ES I | # A X    | PSI        | 5.1       | 5.3   | 5.0        | 5.0      | 5.1      | 4.7   | 4 . B | 0.0      | 5.1       | 5,1        | 5.5  | 4.8  | 5.1      | 5.2  | 5,3  | 5.5   | 5.5            | 5.4  | 5.3   | 5.0  | 5.0  | 5.5  | 5,1        | 6.4   | 2.5   |
| _    | RFFL     | E S        | 4.52      | 2,99  | 3,51       | 3.01     | 7.68     | 3,36  | 4.60  | 00.0     | 26.2      | 2,53       | 2,40 | 3,39 | 4.44     | 3,46 | 1.73 | 2.60  | 2,39           | 2.54 | 2.9h  | 4.56 | 3.74 | 2.44 | 3.06       | 2.89  | 4.54  |
| REFL | MAX      | <b>ps1</b> | 5.2       | 4.9   | 5.0        | 4.5      | 5.2      | 5.4   | 4.9   | 0.0      | 5.3       | 5.1        | 5.9  | 4°8  | 9.0      | 5.2  | 7.4  | 4.1   | 6.0            | S. S | 5.6   | 5.1  | 5.3  | 5.7  | <b>4</b> . | 5.0   | 5.2   |
| -    | •        | :0         | _:        | •     | 2          | •        | •        | ÷     |       |          | •         | ċ          | _:   | ċ    | •        | =    | •    | •     | •              | 2.   | -     | 2.   | 2.   | -    | _:         | 11.5  |       |
| TIME | <u> </u> | NS         | Œ         | •     | ?          | 5.       | <b>x</b> | ċ     | •     | •        | Ŧ         | <b>5</b> . | 5.   | 5    | <b>B</b> | _    | 5.   | •     | ŝ              | ÷.   | 3.    | =    | 3    | •    | <u>~</u>   | 26,18 | 3. E  |
|      |          | PSI        | •         | •     | •          | •        | •        | •     | •     | •        | •         | •          | •    | •    | •        | •    | •    | 8.0-  | •              | •    | •     | •    | •    | •    | •          | 8.0-  | •     |
| MOMI | SUR      | O th       | 191,9     | 191.1 | 2.         | •        | •        | 191.0 | •     | •        | 6         | •          | ~    | _    |          | _:   | =    | 191.4 | -              | 2.   | 191.6 | •    | •    | •    |            | 192.0 | 192.0 |
| HAX  | 2        |            | 11.5      | ÷     | •          | •        |          |       | •     | •        |           | •          |      | •    | •        | •    | •    | 10.8  | •              | •    | 11.0  | •    | •    | •    | •          | 11.5  | •     |
|      | SHOT     |            | -         | 7     | <b>~</b> ) | 4        | ς.       | £     | 7     | æ        | 2         | 10         | -    | 12   | 13       | 14   | 15   | 16    | 1.1            |      | 19    |      |      |      |            | 24    |       |

TABLE 3-8. MAY 23, OFF AXIS, GRAZING, 3 MIN.

LOVELACE SHICK TUBE TEST

23 MAY 79 OFF AXIS, GRAZING 3 MIN HETWEEN SHUTS

|                            | The dr | X        | 0.3 0.0  | 21 -     | _   | _    | _    |      |      |      | _ | •        | ~ ~        | ~ ~ ~                |                                       |                                         |                                                      |                                         |                                                  |                                           |                                         |                                         |                                                          |                                                                    | O                                                 |                                                                        |                                                                                               |
|----------------------------|--------|----------|----------|----------|-----|------|------|------|------|------|---|----------|------------|----------------------|---------------------------------------|-----------------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                            | ~      |          |          |          |     |      |      |      | •    |      |   | •        |            |                      | • • • •                               | • • • • •                               | • • • • • •                                          | • • • • • •                             | • • • • • • •                                    |                                           | ••••                                    | ••••                                    |                                                          |                                                                    |                                                   | •••••                                                                  | •••••                                                                                         |
| EST                        |        | S.¥      | 156      | 91       | 83  | 8 2  | 8    | 92   | 9.5  | 3    | : | 76       | 76<br>75   | 57<br>57<br>57<br>57 | ¥ 2 2 E L                             | 2 2 2 C C                               | 20 H C C C L                                         | 2                                       | 22<br>22<br>6<br>72<br>6<br>72<br>72<br>72<br>73 | 7 C C C C C C C C C C C C C C C C C C C   | 2                                       | 2                                       | 2                                                        |                                                                    | 10 10 10 10 10 10 10 10 10 10 10 10 10 1          | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                               |                                                                                               |
|                            | BOOR   | SE       | æ        | 47.      | 57. | 41.  | 56.  | 4 5. | 51.  | ð    | ! | 57.      | 57.<br>55. | 57.<br>55.<br>58.    | 57.<br>55.<br>58.                     | 57.<br>58.<br>57.                       | გი გი გი გი<br>გამ გი გი გი<br>გამ გი გი გი          | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 67.4<br>7.4<br>7.4<br>7.4<br>7.4<br>7.6          | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8     | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8   | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                    | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                              | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8             | 88 88 88 88 88 88 88 88 88 88 88 88 88                                 | 88 88 88 88 88 88 88 88 88 88 88 88 88                                                        |
|                            | ADUK   | МS       | <b>0</b> | G. 8     | 7.9 | 8.0  | 7.5  | h. 2 | 7.8  | 0 0  |   | 7.9      | 7.9        | 7.9                  | 7.9<br>7.5<br>7.8                     | 6.00<br>6.00<br>7.00<br>8.00            | C C C C C C C C C C C C C C C C C C C                | C C C C C C C C C C C C C C C C C C C   | C C C C C C C C C C C C C C C C C C C            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~    | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  | <b>ててらてらるららて 3 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</b> | <b>ててらてらてらいらて出来まらいられますのいらによりのらんている</b>                             | <b>ててらてらてらいらてはまれるりいちゅんりりょうにょうりんんているてき</b>         | <b>ててらてらてらららては発出らららいらられよりのらんているています</b>                                | <b>ててらてらけらららり 日日日日の日日</b><br>のらら日本ののららて 0 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7               |
| AVE                        | EST    | PSI      | 0.3      | ٠.<br>د. | 3.9 | 3.9  | 3.9  | 3.8  | 3.7  | 0.0  |   | 3.9      | ۳ م<br>م   | 6 6 6<br>6 6 6       | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~   | w w w w w 4<br>v v v v v v v v v v v v v v v v v v v | wwwww44<br>••••••••                     | w w w w w 4 4 ~<br>v v v v v v - c v             | w w w w w 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4   | w w w w w 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | w w w w w 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | w w w w w 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                  | w w w w w 4 4 4 4 4 4 4 w w<br>v v v v v v v v v v v v v v v v v v | w w w w w 4 4 4 4 4 4 w w 4<br>                   | w w w w w 4 4 4 4 4 4 w w 4 w<br>• • • • • • • • • • • • • • • • • • • | wwwwwaa a a a a wwa a ww<br>o o o o o o o o o o o o o o o o o o                               |
| S                          | ⋖      | 3        | 0.4      |          | 3.9 | 3.9  | 3.9  | 3.8  | 3.8  | 0.0  |   | <b>.</b> | 4 W        | 4 W 4                | 4 W 4 W<br>5 2 5 E                    | 4 W 4 W W                               | 4 W 4 W W 4                                          | 4 W 4 W W 4 4<br>0 2 3 ± 2 ~ 0          | 4 W 4 W W 4 4 W                                  | 4 W 4 W W 4 4 W 4<br>5 2 3 3 3 0 - C 2 V  | 4 W 4 W W 4 4 W 4 4                     | 4 W 4 W W 4 4 W 4 4 4 4 9 9 9 9 9 9 9 9 | 4 W 4 W W 4 4 W 4 4 4 W                                  | 4 W 4 W W 4 4 W 4 4 W 4                                            | 4 W 4 W W 4 4 W 4 4 A W 4 4 A W 4 4 A W 4 A A A A | 4 W 4 W W 4 4 W 4 4 A A A A A A A A A A                                | 4 M 4 M 4 4 M 4 4 M 4 4 A M<br>- • • • • • • • • • • • • • • • • • • •                        |
| 3<br>3<br>3<br>3<br>3<br>3 | REFL   | HS       | 14,05    | 3,02     |     | 3.04 | 2,70 | 3.29 | 3,14 | 00.0 |   | 3.07     | 3.08       | 3.07<br>3.08<br>2.43 | 3.07<br>2.08<br>2.43<br>3.31          | 3.08<br>2.43<br>3.31                    | 3.07<br>3.08<br>3.43<br>3.06                         | 3.06<br>3.06<br>3.06<br>3.06            |                                                  | 2 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 222 W W W W W W W W W W W W W W W W W W | 2022 - 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2               |                                                                    | 2 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8         |                                                                        |                                                                                               |
| <b>RFF L</b>               | <      | PSI      | 0.3      | 3.2      | 2.6 | 2.H  | 2.8  | 3.5  | 5.6  | 0.0  | 1 | 2.5      | 2.5        | 3 5 8<br>3 5 8       | 2.5                                   | 2 2 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 222323<br>222325                                     | 2 2 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2          | 20 4 2 4 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4  |                                         | 00000000000000000000000000000000000000  | 00m00040mm00                                             | 00m00040mm000                                                      |                                                   |                                                                        | 00m00040mm000m00                                                                              |
| I N I I                    | ×××    | PSI      | #<br>*   |          | 5.5 | 5,6  | 5.4  | 5.4  | 5.2  | 0.0  |   | 5.       | ທ<br>ທີ່ຕິ |                      |                                       |                                         |                                                      |                                         |                                                  | • • • • • • • •                           | งหนุงหนุงหนุง<br>ของจอก                 |                                         |                                                          |                                                                    |                                                   |                                                                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                        |
|                            |        | S F      |          | •        | •   | ċ    | 3.   | 2    |      | 0    |   | S.       | κ. γ.      | ស្រួស                | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |                                         | 00000                                                | 80008                                   | \$ 200 S 2                                       |                                           |                                         |                                         |                                                          | 88880008000000000000000000000000000000                             |                                                   |                                                                        | 255.65<br>255.75<br>255.75<br>30.14<br>30.15<br>255.62<br>255.68<br>30.34<br>255.68<br>255.68 |
|                            | 2<br>1 | PS.I     | _        | -1.0     |     | =    | -    |      | -1.0 | 0    |   | -        | - 0        | - 0 -                |                                       | -00                                     |                                                      |                                         |                                                  |                                           |                                         |                                         |                                                          |                                                                    |                                                   |                                                                        |                                                                                               |
| I.A.                       | Ś      | <b>-</b> | H2.      | æ 5.     | •   | E 55 | H5.  | 85.  | 85.  | ÷    |   | и5.      | 85.        | 85.<br>85.           | 85.<br>85.                            | 85.<br>85.<br>84.                       | 33 33 33 34 35 35 35 35 35 35 35 35 35 35 35 35 35   | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3   | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3            | 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3   | 3322333333<br>5073455555<br>607355555   | **************************************  | **************************************                   | **************************************                             | 3 3 2 2 3 3 3 4 3 3 3 4 3 3 3 3 4 4 3 3 3 3       | 3 3 2 3 3 3 4 4 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6                    | 231<br>231<br>231<br>231<br>231<br>231<br>231<br>231<br>231<br>231                            |
| •                          | ~      | SI       |          | •        | •   | •    | •    |      |      |      |   | 5        | ٠.<br>ب    | ٠.٠.                 | v.v                                   | v.v.u                                   | らちょートゥ                                               | v.v.w v. 2.0                            | n.v.w                                            | v.v.a≻.a.o.æ.æ                            | v.v.ar.b.o.a.a.c                        | vvm-ro-0880-                            | らちまーフリらほのりてる                                             | らちまーフリらほほのフスは                                                      | らちまーフリらほのロアスHO                                    | <ul><li>υν m = ν ο φ α α ο ν α α ο υ</li></ul>                         | <b>555-100-100-100-100-100-100-100-100-100-</b>                                               |
|                            | SHUL   |          | -        | 7        | ~   | 4    | ĸ    | ٥    | 7    | 30   |   | 3        |            |                      |                                       |                                         |                                                      |                                         |                                                  |                                           |                                         |                                         |                                                          |                                                                    |                                                   |                                                                        | 9012242678901284                                                                              |

TABLE 3-9. MAY 24, OFF AXIS, FACE-ON, 1 MIN.

LOVELACE SHOCK TUBE TEST

24 MAY 79 OFF AXIS, FACE-ON 1 MIN BETWEEN SHOFS

| PUS   | 3 4    | I     | 16.5  | 17.0     | 16.2 | 15.7  | 16.4 | 15.9  | 16.8        | 16.6  | 16.2       | 17.0     | 16.6    | 16.9 | 16.5    |        | 16.5           | -     | 16.4    | 17.0        | 16.6 | 9    | 16.5 |       | 15.9      | 15.7    | 16.4  |
|-------|--------|-------|-------|----------|------|-------|------|-------|-------------|-------|------------|----------|---------|------|---------|--------|----------------|-------|---------|-------------|------|------|------|-------|-----------|---------|-------|
| TOL   | T M D  |       | -1.0  |          | ~    |       | -0.5 | ~     | 3.2         | _     | -2.6       | $\sim$   | $\circ$ | 4. B | -1.4    | $\sim$ | -3.0           | 3.1   | _       | 0.0         | *    | C    | -2.6 | 6.0-  | ¥.0-      | -3.5    | -3.2  |
| EST   | BOUR   | SE SS | 67.   | 59.      | 62.  | 65.   | 60   | 76.   | 57.         | £1.   | 59.        | 58       | 58.     | 57.  | 58.     | 62.    | 67.            | 59.   | 65,     | 62.         | 65.  | 67.  | 65.  | 56.   | <b>66</b> | 69      | 65.   |
|       | HUUH   | S     | 22.   | <b>.</b> | æ    | Š.    | 7.   | 22.   | -           | 7.    | 23.        | ٠,       | 7.      | 23.  | 7.      | Š      | <b>.</b><br>20 | S.    | 24.     | 22.         | 21.  | `    | -    | s.    | 2.5       | æ.      | 7.    |
|       | AUUR   | N S   | 10.4  | 8°6      | 9.5  | 9.5   | 10.1 | 9.5   | 4.1         | 9.1   | 10.1       | 9.7      | 9.6     | 9.6  | 9.7     | 11.0   | 9.6            | 4.5   | 9.1     | <b>6.</b> 6 | 10.4 | 9.4  | 7.6  | 6.5   | 10.2      | 9.6     | 9.6   |
| A V E | EST    |       | 2.5   |          |      |       |      | 5.4   | 5.6         | 5.7   | 5.5        | 5.6      | 5.7     | 5.0  | 5.6     | 5.0    | 5.5            | 6.1   | 5.1     | 5.6         | 5.3  | 5.6  | 5.6  | 8 ° S | S. 4      |         | 5.3   |
| S     | XYT    | PS1   |       | 5.7      | 5.7  | 5,5   | 5.7  |       | 5.6         |       |            |          |         |      |         |        | 5.6            |       |         |             | 5,3  | 5.7  |      | 5,0   |           |         | 5.3   |
|       | 포<br>고 | Z     | 2,77  |          | 2,48 | 2,11  | 3.07 | 2.46  | 2.90        | 2.80  | 3.17       | 2.28     | 2.86    | 2.76 | 2,49    | 2,53   | 4.09           | 2.17  | 2,70    | 2.67        | 3.38 | 2.26 | 2,70 | 2.48  |           | 3.56    | 2,15  |
| REFL  | MAX    | 184   | 5.1   | 4.5      |      | 7.9   | 5.0  | 6.1   | <b>b.</b> 0 | 5.1   | æ• ♦       |          | •       | •    |         | •      | 5.4            | •     | •       | •           |      |      |      | 5,9   | 5.6       | 4.3     | 7.2   |
| INT ( | _      |       | 10.9  | 12,8     | 13.1 | 13.2  | 13.3 | 12.1  | 13.4        | 12.5  | 11,7       | 13.3     | 12.4    | 14.0 | 12.2    | 13.3   | 13.5           | 12.3  | 13,5    | 12.5        | 12.6 | 13.5 | 12,3 | 13.A  | 12.6      | 12.6    | 11.6  |
|       | Ξ      |       | 14.93 |          | •    | 14.68 | •    | 11.64 | 15,60       | 14,79 | 15,76      | 14,59    | 14.74   | ε    | 14.75   | ~      |                | 14.81 | 5.      |             |      |      | •    | •     |           | 15.53   | 14.78 |
|       |        | PSI   |       | H.O.     |      | 5.0-  |      | 6.0-  | 1.0-        | •     | 8.0-       | A.O.     | 8.0-    | 8·0- | 8 ° 0 = | •      | 8 · O •        | -0.B  | H . O - | B. ()-      | -0.7 | B.0- | ¥.   | 5.0-  | -0.9      | # . C - | -1.0  |
| CW.   | SURE   | 3     | 191.  | 192.     | 193. | 193.  | 193. | 192   | 193.        | 192.  | 192.       | 193.     | 192.    | 193. | 192.    | 193.   | 193.           | 192.  | 193.    | 192.        | 192. | 193. | 192. | 193.  | 192.      | 7       | 192.1 |
| XAX   | 3      | S     | 10,9  |          | ~    |       | ~    |       | <u>~</u>    | 2     | -          | <b>ب</b> | 2.      | 4    | ~       | ~      |                | 2     | ~       | 2.          | •    | ~    | 2.   | ۳,    | ?         | •       | 11.6  |
|       | SHOT   |       | -     | ~        | m    | 4     | S    | •     | 7           | ¥     | <b>J</b> . |          | 11      | 12   | 13      |        |                | 16    |         |             |      |      |      |       |           |         |       |

TABLE 3-10. MAY 24, OFF AXIS, GRAZING, 1 MIN.

LOVELACE SHOCK THRE TEST

24 MAY 79 OFF AXIS, GRAZING I MIN HETWEEN SHOTS

| MAXIM   | ¥<br>5  |      | TIME  | -   |     | LIME          | ES J | AVE |       |             | ESL  |              | POS           |
|---------|---------|------|-------|-----|-----|---------------|------|-----|-------|-------------|------|--------------|---------------|
| RESSH   | x       |      | _     | 4   | <   | Œ.            | 4    | S   | ACCIR | BOOK        | BOUR | ¥            | <u>م</u><br>۲ |
| SI      |         | PS I | U)    | ŝ   | S   |               | U,   | S   | S)    | S<br>Z      | SE   | ٩            | SH:           |
| .2 18   | 5.      | -1.0 | •     | 5.2 | 3.5 | $\overline{}$ | •    | •   | 5.8   | 82.         | 117. | •            | 9.5           |
| .4 18   | 5       | -1.2 | 9     | •   | •   | æ.            | •    | •   | 8.6   | 82.         | 110. | <del>.</del> | 10.6          |
| .4 18   | S.      | -1,0 | ~     | •   | 3.0 | 5.            | •    | •   | •     | 55,         | 82.  |              | 7.6           |
| . 8 1H  | Š       | -1.0 | 9•    | 5.8 | 3.6 | -             | •    | •   | 5.4   | 65.         | 94.  | •            | ٠<br>د<br>د   |
| . H 1.A | 5       | -1.1 | 3     | 5,8 | 2.9 | -             |      |     | 8.5   | 58.         | 116. |              | 10.5          |
| .6 1H   | 5.      | -1.1 | _     | 5.6 | 3.4 | 4             |      | •   | 7.9   | 45.         | 96.  |              | 10.1          |
| .6 16   | •       | -1.6 | _     |     | •   | -,            |      | •   |       | 156,        | 156. | 0.4          | 0.0           |
| .6 18   | ري<br>• | -1.0 | •     |     | •   | 3.            |      | •   |       | 72.         | 115. |              | 10.3          |
| .3 18   | 5.      | -1.1 | 0.    | •   | •   | • 6           |      | •   | •     | я2.         | 151. |              | 10.1          |
| .3 18   | \$      | -1.2 | 4.    | •   | •   | ~             |      | •   | •     | н2.         | 116. |              | 9.5           |
| . 4 1H  | \$      | 0.1- | 4.5   |     | •   | æ             |      | •   | •     | 48.         | 115. | ~            | <b>*</b> • •  |
| .7 18   | 5.      | -1.0 | 25,97 |     | 2.7 | `             | 4.1  |     |       | 57.         | 66   | -1.5         | <b>9. 6</b>   |
| .5 .    | ٠,      | -1.0 | 1.7   | 5.5 | •   | ۳,            |      | •   | •     | 56.         | 100. |              | 10.4          |
| . 4 1H  | 30      | -1.0 | 5.2   | 5.4 | 3.0 | 5             |      | •   | •     | 59.         | 101. | 0            | 9.4           |
| .5 18   | 5.      | -1.0 | 6.0   | 5.5 | 3.2 |               |      | •   | •     | 61.         | 116. |              | 10.5          |
| .9 18   | •       | 0.1- | 4.7   | 5.9 | 3.7 | ?             |      |     |       | 55.         | 88   | -1.3         | 11.0          |
| .1 18   | 5.      | -1.0 | 9.    |     | 3.0 | . 7           |      | 3.9 |       | 55          | 116, |              | 0.6           |
| .3 18   | 5.      | 0.1- | 1.8   | •   | 5.9 | 9.            |      | •   |       | <b>.</b> 08 | 116. |              | . a<br>6      |
| .2 18   | 3       | 0.1- | 5.3   | 5.2 | 3.0 | ٠,            |      | •   |       | 65.         | 116. | -3.6         | 10.2          |
| .4 18   | 5.      | -1.0 | 5.7   |     | 3.4 | .2            |      | 4.0 |       | 82.         | 116. |              | 1.6           |
| 5,3 18  | S       | -1.1 | 4.9   | 5,3 | 2.1 | 3.11          | 3.9  | 3.9 | 7.7   | 65.         | 94.  | -3.6         | 10.2          |
| .0 1H   | \$      | -1.0 | •     | 0.9 | 3.2 | 9 *           | 4.2  |     |       | 45.         | 80   |              | 10.4          |
| .4 18   | \$      |      | 4     | •   | 2,5 | . 2           | 3.8  | 3.8 |       | 66.         | 100. |              | 4.6           |
| .0 18   | 4       | -1.0 | \$    | 5.0 | 5.0 | 5             | 3.9  | •   | 5° 8  | 8.7.        | 114. |              | 10.4          |

TABLE 3-11. MAY 24, ON AXIS, FACE-ON, 1 MIN.

LOVELACE SHUCK TURE TEST

24 MAY 79 ON AXIS, FACE-ON 1 MIN BETWEEN SHOTS

| PUS  | 1.49     | - H S | 15.0     | 16.1   | 14.8 | 14.6  | 16.2    | 15.1     | 15.7 | 15.0  | 14.6 | 14.9 | 15.9      | 14.6      | 14.9    | 15.1   | 16.0  | 15.5         | 15.6   | 14.4 | 15.4  |          |          | 14.6  | 14.1     | 15.5        | 15.1        |
|------|----------|-------|----------|--------|------|-------|---------|----------|------|-------|------|------|-----------|-----------|---------|--------|-------|--------------|--------|------|-------|----------|----------|-------|----------|-------------|-------------|
| TOT  | dr J     | 5     | 0.6      | -2.0   | -2.3 | -5.1  | 1.5     | 0.9      | 1.2  | -1.8  | 0.1  | -2.3 | 6.0       | 43.9      | -0.3    | 6. A   | ٠.    | 2.5          | - I.   | -2.5 |       | -2.9     |          | -3.7  | -2.5     | <b>-0.4</b> | 2.4         |
| EST  | BOUR     | SE    | 150.     | 71.    | ₹6   | 75.   | 65.     | 136.     | 61.  | 85.   | 137. | 67.  | <b>80</b> | 82.       | 71.     | 102.   | н3.   | H).          | 102.   | 136. | 101.  | 66.      | 80.      | 137.  | 96       | 136.        | 137.        |
|      | HDUR     | S     | 23.      | æ      | 23.  | 21.   | 37.     | <b>*</b> | ζ.   | 7.    | Ð    | 24.  | `.        |           | 5.      | æ      | 24.   | \$           | 21.    | 23.  | 24.   | <b>5</b> |          | 21.   | <b>±</b> | 23.         | 0.7         |
|      | ADOR     | S     | 7.1      | 0.6    |      | 5.5   | н.9     | •        | 8.5  | 6,7   | 7.0  | 5.9  | H.7       | 7.1       | 9.9     | ٠<br>٩ | 9,3   | 5,5          | &<br>* | 5,6  | H • H | 5.9      | ۴. A     | •     | 5.9      | •           |             |
| AVE  | EST      | pst   | 4 · E    | 5,3    | 5.1  | 5.3   | 5.<br>S | 5.1      | 5,3  | 5,1   | ÷.   | 5,1  | 5.6       | 5,3       | 5.0     | 5.5    | 5.0   | 5.4          | 4.9    | 3°   | 4.9   | 5.2      | 4 ° 0    | 5.1   | 5,1      | 3.          | æ• <b>₹</b> |
| ESL  | X A X    | PSI   | <b>4</b> | 5.4    | 5.5  | 5,3   | 5.5     | 5.2      | 5.5  | 5.3   | 5.1  | 5.2  | 5,6       | 5.4       | 5.1     | 5.4    | 5,1   | 5.6          | 5.1    | 4.9  |       |          |          |       | 5.2      |             |             |
| SKIJ | REFL     | 5.7   | 3.84     |        | 2,48 | 0     | 4.12    | _        | 9    | 2.83  | 2    | ~    | z         | $\approx$ | 1       | σ.     | ~     | -            | 9      | Ŷ    | ~     | 9        | Œ        | 4     | 4        | 4.78        | 2.11        |
| REFL | X V M    | PSI   | 4.9      |        | 5.4  | 6.4   | 6.1     | 5.4      | 5,2  | 5,3   | 5.3  | 5,5  | 4.6       | 5.5       | 6.1     | 6.2    | 4 • B | 6.9          | 5.0    | 4.4  | 5.2   | 5.5      | 4.9      | h.0   | •        | 4.3         | •           |
|      | <        | Š     | 11.9     | 12,3   | 11.9 | 13,2  | 12.9    | 12.4     | 12.4 | 11.9  | 12.2 | 11.8 | 13.3      | 12.6      | 12.6    | 12.7   | 6.11  | 13.4         | 11,7   | 12,3 | 12.2  | 13.1     | 12,0     | 12.0  | 12.8     | 11.7        | 11.0        |
|      |          | Z S   | 14.09    |        | •    | 13.65 | 34.20   |          |      | 13.71 |      | •    | •         | •         |         | •      |       |              | •      |      |       | -        |          | 14.90 | 15,18    | 15.04       | 11.64       |
|      | _        | S     | B. 0-    | 0.1-   | 8.0- | •     | •       | 6.0-     | •    | 6.0-  | 6.0- | •    | 0.1-      | •         | 6.0-    | •      | •     | 6.0-         | •      | •    | -1.0  | •        |          | •     | 5.0-     | •           | -1.0        |
| IMUM | ESSURE   | 08    | 192.2    | 2.     |      | •     | ~       | •        | ~    | 192,3 | ?    | ~    | ~         | 2.        | •       | ~      | 2.    | <del>«</del> | •      | •    | •     |          | <b>~</b> |       | •        |             | 191.6       |
| XAX  | HUT PRES | S     | 1 11.9   | 2 12,3 | 11.  | 13.   | 12.     | 12.      | 12.  | _     | •    | •    | 13,       | •         | 13 12.6 | 12.    | •     |              | 11.    | •    | 9 12. | 0 13.    | 1 12.    | 2 12. | 23 12,8  | 4 11.       | 25 11,0     |
|      | Š        |       |          |        |      |       |         |          |      |       |      | _    | _         |           |         |        | -     |              |        | _    | _     | . •      | •        | •     | •        | •           | . •         |

TABLE 3-12. MAY 24, ON AXIS, GRAZING, 1 MIN.

LOVELACE SHOCK TURE FEST

24 MAY 79 ON AXIS, GRAZING 1 MIN BETWEEN SHOTS

| _    | 3. L  | SH-IS | •    | .9 10       |       | 4.8 10   | 2.6 10      | 2.0 10 | -5.5 10.2 | 1.6 10 | .2 9 | 4.9 10  | .3 10        | 2.2 1 | 3.6 10 | .5 10 | 3. h 1 | .2 11 | 5.6  | -4.1 10.5 | ۳,   |             | 3.8 1 |              | -3.5 9.9 | -0.8 10.5 |
|------|-------|-------|------|-------------|-------|----------|-------------|--------|-----------|--------|------|---------|--------------|-------|--------|-------|--------|-------|------|-----------|------|-------------|-------|--------------|----------|-----------|
| EST  | RDUR  | A.S.  | 129. | 63.         | 100   | 94.      | 141.        | 152.   | в1.       | 117.   | •    | 136.    | н <b>9</b> • | 115.  | 129.   | 0 H   | н2.    | 129.  | 128. | 141.      | 136. | 131.        | 137.  | 100.         | 93.      | 137.      |
|      | ADUR  | SE    | 56.  | SH.         | .63   | 54.      | 57.         | 56.    | 56,       | 57.    | SB.  | 54,     | 51.          | 57.   | 65.    | 57.   | 5 H •  | 81.   | 79.  | 57.       | 57.  | <b>6</b> 0. | 58    | 80.          | я2.      | # 2·      |
|      | ADUR  | いま    | 5.6  | 7.3         | 5.5   | 5,3      | <b>6.</b> 0 |        | 5.5       | •      | •    | 5.3     | •            | •     | •      |       |        |       | •    |           |      | •           |       |              | 5.5      | •         |
| >    | S     | V.    | 3.7  |             | •     |          | 4.1         | •      | 4.0       |        | •    |         | ٠            | -     |        |       | 3,8    | _     |      | •         | ٠.   |             | •     | _            | 0.4      | •         |
| S    | XAX   | V2    | 3.7  |             | 4.0   | <b>4</b> | 4.1         | 3,8    | 4.1       | 4.0    | 3,8  | 3,9     | 4.2          | 4.0   | 3.9    | 3.9   | 3.9    |       | 3.8  | 3. H      | 3.8  | 3.9         | 3.9   | 3.4          | 4.1      | 3. A.     |
| FIME | REFL  | MS    | 3.80 | •           | 3,79  | •        | •           | •      |           | •      |      | •       | •            | •     | •      |       |        | •     |      | •         | •    |             | •     | 3.88         | 4,36     | 4.71      |
| REFL | MAX   | PSI   | 3.1  | 3.0         | 5.9   | 3.4      | 3.8         | 2.7    | 2.8       | 3.1    | ٦.٠  | 3.7     | 3.2          |       | 3.8    | 3.1   | 3. H   | 3.7   | 2.7  | 3.h       | 3,5  | 3.1         | 3.0   | 3.0          | 3.0      | 3,3       |
| IVIF | <     | ::2   | 5.5  | ٠.          | -     | -        | 5.6         | 5.6    | 5.6       |        |      |         | 5.7          | 5,8   | 5,3    |       | 5.3    |       | 5.2  |           | 5.4  |             |       | -            | 5.1      | •         |
| TIME | 7 11  | S. F. |      | 5           | 15.03 | 9        | _           | Ç      | ~         | £      | \$   | ź       | X            | ₽.    | 5      | ``    | ç      | S     | •    | 5         | •    | ع           | X     | 4            | 4.2      | •         |
|      | MIN   | PSI   | 6.0- | 0.1-        | 6.0-  | c        | 0.1-        | -1.1   |           | 6.0-   |      | 6.0-    | 0.1-         | -1:1  | ÷      |       | 6.0-   | 0.1-  | -1.0 | 6.0-      | 6.0- | c. I -      | -1·   | 5.0-         | -1.0     | 6.0-      |
|      | SUR   | SEC.  | #5°  | <b>#5</b> • | Œ     | H6.      | 85.         | 85.    | æ         | R5.    | Н5.  | ж<br>5. | <b>85</b> .  | 86.   | ĸ5.    | ¥5.   | Œ      | н5.   | ¥.   | Ŧ         | 88.  | в5.         | я5.   | $\mathbf{x}$ |          | I         |
| <    | 3     | PS I  | 5,5  | 5.1         | 5.9   | S. H     | 9.6         | 5.6    | 5.6       | 5.6    | 5.4  | 5,3     | 5.7          | 9°5   | 5.3    | 5.6   | 5.3    | 5.1   | 5.3  | 5.4       | 5.4  | 5.6         | 5.3   | 5.6          | 5.7      | 5.4       |
|      | SHIJT |       | -    | 7           | Ť     | 4        | K)          | •      |           | ¥      | 6    |         |              |       |        |       |        |       |      |           |      |             |       |              | 23       |           |

TABLE 3-13. MAY 25, OFF AXIS, FACE-ON, 20 SEC.

LOVELACE SHOCK TUBE TEST

25 MAY 79 DFF AXIS, FACE-ON 20 SEC HETWEEN SHOTS

| POS          | 0.<br>7 | - W S     | 16.3   | 14.4          | 15.1        | 14.9  | 16.0     | 15.2         | •        | 14.7   |             | •       | •      | 14.6  | •     | •     | 15.5        |       | •            | 14.8     |      | 15.4  | •     | 15.5  | 15.4    | 15.2                | 15.0  |
|--------------|---------|-----------|--------|---------------|-------------|-------|----------|--------------|----------|--------|-------------|---------|--------|-------|-------|-------|-------------|-------|--------------|----------|------|-------|-------|-------|---------|---------------------|-------|
| <b>F</b> 0.1 | J. M.   | PS1       |        | -4.1          | 6.0-        | -2.7  | -0.8     | 0.1          | -6.5     | -1.    | -2.1        | -2.7    |        | -2.7  | -2.2  | -3.4  | -3.5        | -1.6  | -1.3         | ₽•9-     | 2.   | •     | 0.0   | •     | 2.0     | 9.0-                | 0.0   |
| ES J         | RDUR    | H.S       | 74.    | 85.           |             | 64.   | 149.     | 108.         | 105.     | 92.    | 150.        | 73.     | 138.   | 80    | 108   | 167.  | 83.         | 70.   | 8 8          | 136.     | 136. | 133.  | £     | 70.   | 96      | 136.                | 156.  |
|              | BUUK    | E<br>S    | 21.    | 7.            | <b>\$</b>   | . /   | 81.      | 24.          | •        | 25.    | 5.          | 23,     | ٠<br>٠ |       | 25.   | 24.   | 7.          | ۍ.    | ċ            | <b>.</b> | 5.9  | 53.   | æ     | 22.   | 23.     | 15.                 | 14.   |
|              | ADIJR   | SI E      | 9.6    | ₽.6           | 9.4         | H. 6  | 5<br>• 5 | æ<br>æ       | æ.<br>8  | æ<br>æ | ж<br>ж      | φ.<br>• | 8.8    | н, 3  | π     | H. 4  | <b>8.</b> 6 | 7.9   | A. 5         |          | 9,5  |       | 9.6   |       | θ.<br>6 | н. 3                | 0.0   |
| AVE          | EST     | PSI       | 5,3    | 5.3           | <b>2</b> •0 | 5.1   | 3.2      | 4.2          | 5,1      | 4.5    | 4.3         | 4.4     | 4.3    | 4.7   | 4.4   | 3.6   | 4.4         | 5,1   | <b>4</b> . B | 4.3      | æ•£  | 4.3   | 4.7   | 4.6   | 4,3     | 3.9                 | 0.3   |
|              |         | S         | 5.4    |               | 5,1         | 5.3   | 3,3      | 4.2          | 5,2      | 4.5    | 4.4         | 4.4     | 4.4    |       |       | •     |             | •     | •            | •        | •    | •     | 4.7   | •     |         | 3.9                 | 0.7   |
| TIME         | REFL    | N S       | 2,38   | 3.76          | 2,73        | 3,31  | 3.01     | 3,94         | 3.57     | 4.13   | 3.96        | 2.92    | 3.79   | 2.97  | 3.67  | 3,39  | 3.09        | 3,13  | 3,02         | 7,67     | 5.43 | 2.51  | 3.20  | 2,92  | 3.17    | 5.79                | 17.83 |
| REFL         | <       | Ś         | 9•9    | 4.3           | 5,8         | 5.4   | 4.6      | 4.5          |          | 5.1    | •           |         | 6.1    | 4.1   | 5.1   | •     | 6.4         | •     | 6.3          | 1.1      | 5.1  |       | 8.9   | 7.6   | 6.3     | <del>ე</del> .<br>ჯ | 8 · 6 |
| INI          | MAX     | PSI       | 11.9   | 13,1          | 12.7        | 11.3  | 5.2      | н <b>°</b> 6 | 12.4     | 11.3   | <b>4</b> 6. | 9.<br>H |        | 7.6   | •     | 8,3   | 10,8        | •     | 12,3         | 10.0     | 3° 8 | 10.1  | 11.2  | 10.6  | 10.6    | 9.5                 | 6.2   |
| FIME         |         | S<br>E    | 25.75  | ±.            | 4.2         | 17.00 | •        | 18.29        |          | 34.09  | 17.08       | 14.17   | 39.33  | 14.88 | 14,95 | 14.24 |             | 13.98 | 4.0          | ÷        | 9.5  | 5.0   | 17.15 | 3.7   | 7.1     |                     | 0.21  |
|              |         | PSI       | •      |               | •           | 1:1-  | •        |              |          | •      |             | •       | •      | •     | •     | •     | -1.0        | -1.0  | -1.0         | -1.0     | •    | •     | -1.0  | •     |         | •                   | -2.9  |
| J M U        | SUR     | <b>80</b> | 92.    | $\overline{}$ | 92.         | 91.   | S.       | 90.          | <b>?</b> | 91.    | 90.         | 90.     | ċ      | 90    | 90.   | •     | 91.         | 92.   | ė 5 ė        | •        | я9.  | 9:    | 191.7 | 191.3 | Ϊ.      | =                   |       |
|              | Ξ       | S         | 1 11.9 | 13.           | 12.         | 11.   | 5.       | 5            | 12.      | 11.    | 6.          | \$      | ъ.     | 9.    | 6     | 3     | 10.         | 6 12. | 7 12.        | в 10.    | 9 8  | 0 10. | 1 11. | 2 10. | 3 10.   | 4 9.                | 5 В.  |
|              | S       |           |        |               |             |       |          |              |          |        |             |         | -      |       | ~     | -     | ~           |       |              |          |      |       | 7     |       |         |                     |       |

\*

TABLE 3-14. MAY 25, OFF AXIS, GRAZING, 20 SEC.

GOVELACE SHOCK TUBE TEST

25 MAY 79 OFF AXIS, GHAZING 20 SEC HETWEEN SHUTS

| P05     | 4 r l  | 85-    |      |      |       | ~    |      | 10.   | _    | -     | _          | _    | _    | _        | 10.      | 10.      | _      | ٠                  | 10.  | -      | 10.7       | 9.6      | 10.6 | 10.4 | 10.3 | 10.4  | 10.1   |
|---------|--------|--------|------|------|-------|------|------|-------|------|-------|------------|------|------|----------|----------|----------|--------|--------------------|------|--------|------------|----------|------|------|------|-------|--------|
| 101     | 7      | ps1    | •    | •    | •     | •    | ÷    | -3.2  | •    | *     | 5.         | +    | ŝ    | Ŧ.       | ÷        | +        | 4.     | ÷                  | ~    | 4      | S          | 3        | ·.   | ~    | *    | -5.5  | $\sim$ |
| EST     | BDUR   | S.     | 151. | 150. | 148.  | 149. | 154. | 144.  | 112. | 136.  | 149.       | 143. | 150. | 144.     | 151.     | 151.     | 135.   | 128,               | 128. | 149.   | 145.       | 135.     | 136. | 135. | 136. | 151.  | 125.   |
|         | RIOR   | E<br>S | 119. | 56.  | 114.  | 54.  | 106. | 113.  | 81.  | 55.   | 56.        | 90   | 45.  | 79.      | 55.      | 142.     | •<br>• | 70.                | 64.  | · 75   | •<br>?6    | 53.      | 91.  | 78.  | 90   | 70.   | 147.   |
|         | ADUR   | S      | 6.2  | 7.5  |       | •    | 7.5  | H.2   | ¥.   | ж.    | 8.7        | 8,0  | H. 3 | π.<br>•  | 8.1      | ₹•<br>æ  | 8.2    | <del>ه.</del><br>پ | 7.3  | 7.8    | 4.5        | 5.4      | н. 2 | ° ×  | 8.1  | я•0   | -<br>£ |
| AVE     | EST    | PS1    | 3.9  | 3.7  | 3.6   | 3.1  | 2.4  | 5.9   | 3.5  | 3,3   | 3.1        | 3.0  | 1.1  | 3.3      | 3.1      | 2.5      | 3,1    | 3.5                | 3.4  | ۰<br>۳ | 3,0        | 3.2      | 3,3  | 3.4  | 3.1  | 7.7   | 3.2    |
| S       | <      | \$2    | 3.9  |      |       | •    | •    | 5.9   | •    |       |            | •    |      |          | •        |          | 3.1    | •                  | •    |        | 3.0        |          |      |      |      | 2.7   |        |
| -       | REFL   | S E    | 4.   | ٥.   | æ     | ٣.   | 6.   | 3.99  | -    | ~     | <b>5</b> . | 6.   |      | Ġ.       | 9.       | ~        | ۲.     | ٦.                 | 0    | 9      | ٥.         | • 5      | -    | ್.   | ÷    | 2.19  | æ      |
| REFL    | ΗΛΧ    | PSI    | 3.0  | 2.6  | 3.4   | •    | •    | 2.5   | •    | •     |            |      | •    |          | •        | •        | 4.0    | •                  | •    | 4.2    | ٠.         | 5,3      | 4.4  | 4.3  |      | 5.0   | 2.5    |
| LINT    |        |        |      |      |       |      |      | 3,8   |      |       |            |      |      |          |          |          |        |                    |      |        |            |          |      |      |      | 3.5   |        |
| THE     | E E    | A S    | 5    | •    | 4.    |      | •    | 14.91 | •    | •     | •          | •    | •    | 4.       | <b>±</b> | <b>~</b> | •      | 7.                 | ÷    | ÷.     | <b>5</b> . | <b>±</b> | 9.1  | 5.9  | 4.3  | 14.39 | 9.     |
|         | X<br>N | ŝ      |      | -1.1 | -1.1- | 0.1- |      | -1.0  |      |       | -1.0       | •    | •    | -1.0     |          | •        | -1.0   |                    |      | -1.0   |            | -1.0     | -:-  | -1.1 | 0.1. | 0.1-  | -1.1   |
| # C # C | SUR    | æ<br>0 | 85.  | ₽5.  | \$    | 85.  | #2.  | ~     | 4.   | 8 A . | £ 4 •      | 83.  | ¥3.  | <b>.</b> | 83.      | 82.      | ٠,     | 84.                | #4.  | ÷      | H2.        | 95°      | 84.  | 4.   | 30   | 4.    | 180.7  |
| ×       | PRES   | ు      | •    | •    | •     | •    | •    | •     | •    | •     | •          | •    | •    |          | •        |          |        |                    | •    | •      | •          | •        | •    | •    | •    | 5.0   | •      |
|         | SHUT   |        | -    | ~    | ~     | 4    | ŝ    | •     |      | œ     | э,         |      |      |          |          |          |        |                    |      |        |            |          |      |      |      | 24    |        |

TABLE 3-15. MAY 25, ON AXIS, FACE-ON, 20 SEC.

LOVELACE SHUCK TUBE FEST

25 MAY 79 ON AXIS, FACE-UN 20 SEC BETWEEN SHOTS

| Pus  | d * I | - HS   | 14.7 | 14.6      | 14.5        | 14.5     | 15.7 | 4            | S   | 4          | 15.3 | 4        | V.         | ~        | v.   | 4        | 15.4                   | ₹          | S        | 14.9      | S        | 15.2     | Ð         | 3        | 15.0 | 15.0        | 14.8      |
|------|-------|--------|------|-----------|-------------|----------|------|--------------|-----|------------|------|----------|------------|----------|------|----------|------------------------|------------|----------|-----------|----------|----------|-----------|----------|------|-------------|-----------|
| TOT  | da l  | -ISd   | -0.1 | 3.5       | <b>4.</b> 0 | 0.1      | 4.1. | -0.3         | 0.5 | -2.4       | -1.3 | -5.1     | -1.3       | -1.7     | -1.7 | -0.A     | -0.1                   | -1.6       | e.<br>C  | 1.2       | 7.1      | 6.0      | -0.1      | + O -    | -0-  | -0-         | -2.4      |
| EST  | ROUR  | SE     | 147. | <b>66</b> | 144.        | 133.     | 65.  | 73.          | 97. | 133,       | 132. | 123.     | 137.       | 133.     | 87.  | 71.      | 88                     | H 4.       | 75.      | 133.      | 41.      | 104.     | <b>66</b> | 78.      | H 4. | 1.36.       | <b>66</b> |
|      | BDUR  | i<br>S | 23.  | 10.       | 10.         | 6        | ċ    | 55.          | 6   | 24.        | 24.  | 5        | 59.        | 27.      | 2    | 24.      | $\stackrel{\frown}{=}$ | 23.        | 53.      | 54.       | 11.      | 22.      | 22.       | 24.      | 54.  | 56.         | 25.       |
|      | ADUR  | S.     | 5.9  | 7.8       |             | ₽.<br>¥. | H.5  |              | 7.8 | 9°0        | ±.   | h. 4     | 7.8        | 7.5      | 8.7  | 7.3      | o • 9                  | 8 · y      | 7.4      | 6.2       | 3.7      | ж.<br>У  | ж<br>ж    | 7.3      | o•8  | <b>6.</b> 6 | 6.1       |
| AVE  |       | Ç      | 4.8  |           | _           | 4 B.     | 5.3  | 4.9          | •   |            | 4.7  | •        |            |          | •    | 5.7      |                        | 5.3        | •        | •         |          | 4.7      | •         | -        | •    | 4.5         | 4.9       |
| EST  | Y Y X | £      | 4.8  |           |             | •        |      | •            |     | •          |      |          |            | •        |      | •        |                        |            | •        | •         | •        |          |           |          | •    |             | 5.0       |
| TIME | REFL  | N S    | 2,33 |           | ~           | ~        | 5.   | 3            | æ   | ~          | •    | ₽.       | <b>T</b> . | 5.       |      | ~        | ÷.                     | =          | ٦.       | <b>و.</b> | 3        | 4.       | ٦.        | 8        | -    | 2.73        | 6.        |
| REFL | -     | PSI    |      | 5.0       | 4,3         | 7.3      | 5.5  |              | •   | 5.5        | •    | •        |            |          |      |          | <b>8.</b> 9            | •          | •        |           | Α.<br>6. |          |           | -        |      | 5.          | _         |
| INI  | MAX   | PSJ    | 11.8 | 11.6      | 5           | $\circ$  | ~    | 11.0         | _   | ~          | 10.9 | ~        | Œ          | 3        | _    | 4        | 10.4                   | -          | _        | _         | -        | 10.7     | -         | -        | 12.3 | 11.3        | _         |
| TIME |       |        | ~    | 4         | 6.1         | 3.5      | 3.9  | 2.9          | 3,3 | 1.4        | 3.8  | 6.3      | ₩. ₩       | <b>.</b> | 3.7  | 3,5      | 13.11                  | 0.0        | 2.9      | 3.2       | 8.5      | 3.0      | 3,5       | ~        | 0    | ~           | 13.63     |
|      | -     | :3     | 6.0- | •         | 6.0-        |          | •    | ₽.0 <u>-</u> | •   | 8.0-       | •    |          | •          |          | 6.0- | •        | 5.0-                   | 0.0-       | •        | 6.0-      | 6.0-     | ¥.0.     | ¥.0-      | -1.0     | ÷.   |             | 8.0-      |
| _    | S     |        | 92.  | 92.       | .06         | 91.      | 92.  | 91.          | 92. | 97.        | 91.  | 92.      | . 6 н      | 91.      | 42.  | 93.      |                        | 91.        | 92.      | 91.       | 91.      | <b>-</b> | 92.       | ~        | 2.   | -           |           |
| ⋖    | PR    | S      | -    | •         | •           | •        | 2.   | •            | 1.  | _          | •    | <b>~</b> | •          | ċ        | _    | <b>.</b> | •                      | <b>-</b> : | <b>-</b> | _         | _        | •        |           | <u>.</u> | 2.   | 11,3        | 2.        |
|      | SHUT  |        |      | ~         | ~           | 4        | ĸ    | ٥            |     | <b>3</b> 0 | 37   |          |            |          |      |          |                        |            |          |           |          |          |           |          |      | 24          |           |

TABLE 3-16. MAY 25, ON AXIS, GRAZING, 20 SEC.

LOVELACE SHUCK THRE FEST

25 MAY 79 ON AXIS, GRAZING 20 SEC HETWEEN SHOTS

| P.0   | QHI . | 1     |       | ~    | •     | _     | _       | -    | _    | 7    | 4 10.      | ٠,   | A 11. | ~     | 5 10. | 9 11. | 11.  | 9 10. | 7 11. | 3 10. | 1 10. | 10.      | 9 11.    | _    | ~    | -     | 2 10.9 |
|-------|-------|-------|-------|------|-------|-------|---------|------|------|------|------------|------|-------|-------|-------|-------|------|-------|-------|-------|-------|----------|----------|------|------|-------|--------|
| roı   |       |       |       |      |       |       |         |      |      |      |            |      |       |       |       |       |      |       |       |       |       |          |          |      |      |       |        |
| ES F  | BNUR  | χX    | 149.  | 150. | 152.  | 151.  | 152.    | 153. | 155. | 153. | 150.       | 151. | 128.  | 154.  | 151.  | 155.  | 154. | 153.  | 150.  | 152.  | 152.  | 105.     | 153.     | 155. | 153. | 155.  | 154.   |
|       | HUUR  | A S   | 666   | 115. | 152.  | 105.  | 113.    | 139. | 153. | 153. | 156.       | 150. | 155.  | 154.  | 151.  | 150.  | 149. | 152.  | 139.  | 149.  | 152.  | 149.     | 147.     | 152. | 146. | 152.  | 153.   |
|       | ADUR  | E CS. | 5.6   | 0.9  | 5.4   | 6.4   | æ• 4    | 7.6  | 9.9  | 7.0  | 7.3        | 6.2  | h.4   | 6.4   | 7.2   | 7.0   | 6.4  | t. 5  | 4.1   | 6.2   | 3.7   | h.1      | 7.5      | 6.5  | ٠.   | h. 5  | 6.5    |
| AVE   |       |       | 3.7   |      |       |       |         |      |      |      |            |      |       |       |       |       |      |       |       |       |       |          |          |      |      | 3.2   | 3.5    |
| EST   | MAX   | PS.J. | 3.7   | 4.0  | 3.4   | 3.8   | 4.0     | 3.6  | 3.6  | 3.4  | 3.4        | 3.9  | 6.1   | 3.4   | 3.6   | 4.0   | 3.4  | 3.6   | 3.8   | 3.5   | 3.1   | 7.2      | 4.0      | 3.7  | 3.7  | 3,2   | 3.6    |
|       | REFL  | S.    | . 1   | 4.14 | 3.0 B | 3,30  | $\circ$ | 9    | 20   | -    | 1.58       | œ    |       | 6     | 9     | 4     | 9    | 9     | 0     | œ     | •     | 5        | -        | æ    | -    | 2,71  | 1,61   |
| REFL  | MAX   | psı   | 2.7   |      |       |       |         |      |      |      |            |      |       |       |       |       |      |       | •     |       |       | <b>*</b> | <u>.</u> |      | •    | 5.4   | 2.3    |
| INI   | 2     | P.S   | ις:   | S    | ~     | 2     | £       | 5.1  | 5,3  | 4.7  | 4.5        | 2    | 4     | ₹     | ŝ     | R)    | ιĊ   | S     | 2     | 5.    | 4     | S.       |          | S    |      |       | 5.1    |
| FIME  | 718   | E     | 13.56 |      |       | 13.44 | •       | •    | ~    | •    | 4          | •    |       | 14,41 | •     | •     | •    | •     | •     |       | •     |          | •        | •    | •    |       | 10.23  |
|       | -     | \$    |       |      | 0-    | 0     | -       | -1.  | 9    | 9-   | 0-         | -    | -0-   | -1.   | 0-    | Ģ     | 0,   | .0,   | -0-   | -     | -     | -1.      | =        | ີ    | 9    | -     | 6.0-   |
| XIMUM | SSURE | 90    | 4     | 86.  | 163.4 | 4,    | •       | 4    | •    | 4.   | 183.9      | 5.   | ~     | *     |       | •     | 84.  | 185.4 |       | 4.    |       | •        | S.       |      | 3.   | 185.3 |        |
| X     | PRE   | S     | 5.1   | •    | •     | •     | •       | •    | •    | •    |            | •    | •     | •     | •     | •     | •    | •     | •     | •     | •     | •        | •        | •    | •    | •     | 5.1    |
|       | SHOT  |       | -     | 7    | m     | 4     | .v      | ٥    | _    | œ    | <b>5</b> . | _    | 7     |       |       |       |      |       |       |       |       |          |          |      |      | 24    |        |

TABLE 3-17. MAY 30, OFF AXIS, FACE-ON, 1 MIN.

LOVELACE SHUCK TUBE TEST

30 MAY 79 OFF AXIS, FACE-ON 1 MIN BETWEEN SHOTS

| PUS  | JMD  | SK-  | 16.3  | 16.0     | 15.5     |       | 16.7         | 15.8  | 15.7 | 15,6          | 16.6 | 14.9  | 14.4  |        | 15.4     | 15.6  | •     |       |          | •             | 16.9          | 16.0      | 16.0   | 16.1  | 17.4  |             | 15.6  |
|------|------|------|-------|----------|----------|-------|--------------|-------|------|---------------|------|-------|-------|--------|----------|-------|-------|-------|----------|---------------|---------------|-----------|--------|-------|-------|-------------|-------|
| ror  | IND  | PST  | 6.0-  | 1.1      | -7.2     | -0.1  | -1.3         |       |      | -2.0          |      | ·     | 6     | 9      | 0.9      |       | ÷     | 2     | -3.H     | -3.2          | <b>4</b> . B. | -2.4      | -6.5   | -1.5  | -1.2  | -2.H        | I     |
| EST  | BDUR | X X  | 90    | 57.      | 143.     | 57.   | 74.          | 92.   |      |               | 73.  |       | 96    | 64.    | 711.     | 9     | æ     | 95.   | <b>G</b> | 59.           | 57.           | <b>60</b> | 58.    | 57.   | 79.   | 60          | #2.   |
|      | HOOK | いえ   | 22.   | <b>.</b> | 24.      | 23.   | 24.          | 23.   | æ    | 21.           | 7.   | 24.   | 22.   | 23.    | 21.      | S.    | 22.   | 56.   | ċ        | æ             | 23.           | 24.       | 5.     | 22.   | -     | 19 <b>.</b> | -     |
|      | AUUR | SE   | 9.6   | 6 0      | 4.6      | 9.5   | 10.2         | 5.6   | 6.6  | 10.0          | 10.8 | 9.5   | y.5   | 0.6    | æ.6      | 9.5   | 9.4   | 9.6   | 6.6      | 10.5          | 6.6           | 9°5       | ک<br>ب | 9.5   | 10.6  | 6.1         | £.    |
| AVE  | EST  | hS I | 5.5   | 5.3      | 4.7      | 5.2   | 5,3          | 5.3   | 5.1  | 5.0           | 5.5  | 5.0   | 5,1   | 5.4    | 5.3      | S. 5. | 5.6   | 5.1   | 5,3      | 5.4           | 5.6           | S         | 5.7    | 5.4   | 5,3   | 5.2         | 2.0   |
|      | <    | V.   | 5.5   | •        | A.<br>R. | •     | •            |       | •    | •             | 5.h  | •     | •     | •      | •        | •     | •     | 5.2   | •        | •             | •             |           |        | 5.5   |       | 5.2         |       |
|      | REFL | ž    |       | 3,63     | <b>-</b> | •     |              | 9     | 0    | æ.            |      | œ.    | 3.    | . 7    | <b>8</b> | 5     | ~     | 4.43  | ٥.       | 8             | 9.            | -         |        | . 2   | •     | ٠.          | ~     |
| REFL | ¥γ×  | PSI  | 4.8   | 4 . B    | 5.0      | 5.0   | 4 <b>.</b> R | 5.0   | 5,3  | 5.9           | 4.8  | 5.9   | 5.2   | 1.5    | 5.8      | 5.3   | 4 · B | 4.9   | 7.4      | 6.2           | 5.2           | 8.9       | 5.7    | 7.7   | 0 . 8 | 6.3         | 5. A  |
| JINI | æ    | 184  | 11.4  | 12.8     | 11.2     | 11.0  | 12,2         | 10.9  | ~    | C             |      | -     | 7.    | $\sim$ | 11.8     | 12.6  | -     | 10.7  | ?        | $\overline{}$ | _             | -         | ~;     | 12.0  | 12.7  | 11.0        | 11,2  |
| TIME | F    | MS   | 15,54 | 14,01    | 25,27    | 31,38 | 26.01        | 15,84 | 6.7  | 15,83         | 4.0  | H. 6  | 15.81 | 4.9    | 14,91    | 5.0   | 15.74 | 18.73 | 4.7      | 14,99         | 4.2           | 13,93     | 14.01  | 25,33 | 25,38 |             | j.    |
|      | -    | V.   | -0.B  | 8.0-     | #.O-     | 6.0-  | 8.0-         | 10.1  | •    | •             | 1.0- | •     |       | •      | 6.0-     |       | 8.0-  | -0.7  | 6.0-     | 5.0-          | 9 · C-        | B. O.     | 6.0    |       | ¥.0-  |             |       |
| 1404 | SUR  | ÐB   |       | 192.9    | 91.      | _     | ~            | -     | ?    | $\Rightarrow$ | 2    | 42.   | 2.    | 2.     | 2.       | ~     | 91.   | 5     | ?        | 91.           | ?             |           | ~      | ?     | 2.    | -           | •     |
| MAX  | ×    | S    |       | •        | 11.      | 11.   | 12.          | 10.   | 12.  | 10.           | 11.  | 0 11. | 1 12. | 2 12.  | 3 11.    | 4 12. | 5 11. | 10.   | 7 12.    | B 11.         | 9 11.         | 0 11.     | 1 13.  | 2 12, | 3 12. | 4 11.       | 5 11. |
|      | S    |      |       |          |          |       |              |       |      |               |      | _     | _     | _      | _        | -     |       | _     |          | -             | ~             |           | •      | . 7   | ••    | , •         | ٠,    |

TABLE 3-18. MAY 30, OFF AXIS, GRAZING, 1 MIN.

LUVELACE SHOCK TURE TEST

30 MAY 79 OFF AXIS, GHAZING I MIN HEFWEEN SHOTS

| Pus  | 7     | 88      | 10.4 | 10.4    |      |              |      | 9.6        | 9   | 10.2   | 9.6       | 10.0 | 5    |         | 5    |     | 10.5 |       | 9        |       | <b>2.</b> 6    | 10.4     | 3° 5° | 9.5       | 10.2  | 10.1        | 6.6   |
|------|-------|---------|------|---------|------|--------------|------|------------|-----|--------|-----------|------|------|---------|------|-----|------|-------|----------|-------|----------------|----------|-------|-----------|-------|-------------|-------|
| 9    | J.    | S       | •    |         | -3.4 | <b>*</b> • 0 | 4.1- | -2,5       | •   |        | 2.        | •    | 4    | 5.      | -5.2 | 2.  | :    | -1.3  | $\sim$   | ÷     | $\blacksquare$ | 2        | •     |           | -1.7  | -2.6        |       |
| EST  | BOUR  | S       | 117. | -       | 129. | 113.         | 115. | 2          | 16  | 17     | 91        | 17   | 60   | 07      | 34   | 7   | -    | 150.  | 17       | ~     | 15             | 4        | 1.4   | 95        | 148.  | •           | 117.  |
|      | BOUR  | SE      | 75.  | 5.5     |      |              | 66   | H 1.       | 85. | 84.    | £ 1.      | 72.  | 41.  | 54.     | 71.  | 72. | 73.  | H.Z.  | н<br>Н   |       | 93.            | *<br>6 H | 56.   | 44.       | 42    | 114.        | 78.   |
|      | ADOR  | S.<br>Z | •    | æ<br>3. | •    | 8.6          | 5,3  | 4.4        | 7.8 | 7.B    | 5.3       | В.3  | H.3  | ۲.<br>۳ | 5.6  | ¥.  | ¥.6  | 7.8   | 6.<br>4. | 0 ° 8 | 5.7            | 8.4      | 5.4   | ري<br>4 . | 2.5   | h.3         | 5°    |
| >    | S     | S       | 4.1  | •       |      |              | •    |            |     | •      | •         | •    | •    | •       | •    | •   |      | 1.7   |          | •     | •              | •        | •     | •         | •     | •           | 3.H   |
| S    | ۸A۲   | S       | 4.1  | 3.9     |      | 4.0          |      |            | •   | •      |           | •    | •    |         | •    | •   |      | 3.8   | . •      | •     | •              |          | •     |           | 3.9   |             | 3.B   |
| -    | REFL  | MS      | 3.08 | •       | •    | •            | •    |            |     | •      | •         | •    | •    |         | •    |     | •    | 3,20  | •        | •     | •              | •        | •     | •         | •     |             | •     |
| REFL | MAX   |         | 2.H  |         |      | •            |      | •          |     |        |           | •    | •    | •       | •    | •   | •    | 3.3   | •        | •     | •              | •        |       | •         |       | •           | 3.2   |
| INIT | 4     | PSI     |      | 5.1     | 4. H | æ.<br>•      | 5,3  | 5.1        | 5.3 | 5.3    | 5.1       | 5.1  | •    |         | •    | 5.5 |      | . 5.1 | 5.2      | 5.6   | 5.6            | 4. H     | 5.8   | 5.4       | 5.3   | 5,3         | 4.0   |
| TIME | 7 N   | M S     | 5.4  | ~       | 5.4  | 1.2          | 5.6  | ~          | ~   | $\sim$ | 8         | •    | 5,6  | A . S   | 5.1  | 5.1 | 3. t | 15.64 | ÷.5      | 5.3   | 5.1            | ~        | 0.1   | 1.6       | -0    | æ           | 15.24 |
|      | 2 T 4 | PSI     | -1.1 | -1.1    | -1.1 | •            | •    | •          | •   | •      | •         | •    | -1.0 | •       | -1.0 |     | -1.1 | -1.1  | -1.2     | c     | -1.1           | -1:1     | -1.1  | -1.2      | -1.1  | -1.1        | -1.0  |
| IMU  | SURE  | 90      | \$   | ÷.      | 84.  | 4            | 85.  | <b>4</b> 8 | #5. | 85.    | <b>85</b> | A5.  | 85.  | H5.     | H5.  | A5. | 85   | •     | 85.      | 95.   | 3              | 84       | Ħ6.   | 95.       | 185.3 | <b>#</b> 5. | 4.    |
| X    | RES   | s I     | 5. B | •       | •    | •            |      | •          |     |        | •         | •    |      | •       |      |     | •    | •     | •        | •     | •              | •        | •     |           | 5.3   | •           | •     |
|      | SHOF  |         |      | ~       | ~    | 4            | 'n   | s          |     | 20     | <b>3</b>  |      |      |         | 13   |     |      | 16    |          |       |                |          |       |           |       |             |       |

TABLE 3-19. MAY 30, ON AXIS, FACE-ON, 1 MIN.

LUVEGACE SHOCK TUBE TEST

30 MAY 79 UN AXIS, FACE-ON I MIN BETWEEN SHUTS

| 2    | 7      | E - I        | -     | 9 15.3   | 0        | h 14  | 15.7  | ٠<br>۲      | 14.   | B 13. | 7 14.    | 6 1 4. | 5 13.    | n 13.       | H 14. | H 13. | 6 14.1 | 2 14.     | 15.   | -     | -     | 5        | 4 14.7 | 9 14.4    | 1 15.2 | 2 14.9   | • |
|------|--------|--------------|-------|----------|----------|-------|-------|-------------|-------|-------|----------|--------|----------|-------------|-------|-------|--------|-----------|-------|-------|-------|----------|--------|-----------|--------|----------|---|
| TOT  | 1 15   | P.S          | ~~    | <b>~</b> | <u>-</u> | 6-    | -1.   | =           | 2.    | 0-    | 0        | -      | -2.      | - 1         | ÷     | -     | 9      | °.        | .0    | ~     | -     | 9        | ξ.     | •         | 0      | ÷        |   |
| EST  | ROUR   | S            | P 4 . | 106.     | 140.     | 136.  | 105.  | 135.        | 144.  | 135.  | 136.     | 140.   | 139.     | 140.        | 137.  | 135.  | 140.   | 91.       | 135.  | 73.   | 68.   | 134.     | 100    | <b>86</b> | F.     | 92.      | 1 |
|      | ROUR   | S: E         | 26.   | <b>x</b> | 2.7      | 23.   | 27.   | æ           | 22.   | 25.   | 26.      |        |          |             | 21.   | 10.   | 23.    | 5в.       | 5     | 24.   | .97   | 24.      | 22.    | 20.       | 7.5    | <b>5</b> | ; |
|      | ADUR   | :S: <b>5</b> | 6.7   | 9.1      | 6.9      | 7.0   | H.7   | θ.6         | 1.9   | 6.4   | 6.3      | O.B    | 8 · 4    | <b>6.</b> 6 | 8.5   | 5.5   | 7.1    | 4.6       | 5.5   | 6.7   | 6.7   | 6.1      | 5.5    | 6,5       | 5.6    | \$<br>\$ |   |
| AVE  | EST    |              | 4.9   |          |          | 4.6   | 4.6   | 4.8         | 4.9   | 4.7   | 4 · B    | 4.7    | 4.7      | 4.8         | R • # | A. 8  | 4.6    | 4.9       | 4.9   | 5,0   | 5.0   | 4.€      | 4.9    | 5.0       | 4.9    | ¥.       | , |
| ဟ    | XXX    | S            |       |          |          |       | _     | •           | 5.0   | •     | 4.9      |        | 4.<br>B. | 4.9         | 4.8   | 6.0   | 4.7    | 5,0       | 5,0   | 5.1   | 5.1   | 4.9      | 5,1    | 5.1       | 5.0    | 5.0      | • |
| FIME | REFL   | X<br>X       | 3.96  | •        | 4,25     | 4,35  | 3.76  | 4.46        | 3,10  | 2,85  | 2.55     | 3,39   | 4.16     | 3.97        | 2,81  | 2,53  | 4,33   | 3.17      | 1.84  | 5.89  | 3.80  | 3.14     | 2.70   | 2,22      | 1.54   | 3.64     | ; |
| REFL | MAX    | PSI          | 5.3   | 5,3      | 4.5      | 4.5   | 6,1   | \$ <b>*</b> | 5.4   | 4.9   | 5.9      | 5.3    | 5.1      | 4.6         | 5.1   | 5.6   | 5.6    | <b>4.</b> | 6.5   | 4.7   | 4.6   | 5,4      | 5.1    | 7.4       | 6.5    | 7.3      |   |
| INI  |        | V2           | 10.7  | 11.7     | 11,1     | 10.5  | 10.0  | 12.0        | 11.5  | 11.4  | 10.7     |        |          |             | 11.9  |       | 10.8   |           | •     | •     |       | •        |        | 12.2      | 11.6   | 10.5     | , |
| TIME | ₹<br>N |              | 4.7   |          | 0.0      | 15,16 | 33,29 | _           | 14,04 | 13,73 | 13,55    | 12,50  | 18.43    | 1H.74       | 13,63 | 13,59 | 18.76  | 30,83     | 13,19 | 14.94 | 24.70 | 18.87    | 13.69  | 13,67     | 30,35  | 13,45    |   |
|      | =      | V.           | 8.01  | •        | •        | •     | # O-  | •           | •     | •     | #.<br>0- | •      | •        | •           | •     | •     | 6.0-   | •         | •     | #. C- | •     | •        | •      | •         | •      | ¥.0-     |   |
|      | SUR    | 03           | 91.   |          | 91.      |       | 190.7 | 92.         |       |       | _        | .26    | <u>-</u> | ~           | 92.   | _     | 191.4  | =         | 2.    | -     | •     | ~        |        | 2.        |        | •        | ; |
| •    |        | S            |       |          | •        | ċ     |       | 2           |       | -     | 10.7     | -      | -        | 2           | -     | =     | •      | <b>=</b>  | _     | ÷     | 11.8  | <b>-</b> | 2.     |           | •      | C        |   |
|      | SHUT   |              | -     | ~        | ~        | 4     | S     | 9           | 7     | 30    | 9        | 10     | 11       | 12          | 13    | 14    | 15     | 10        |       |       |       |          |        |           |        | 24       |   |

TABLE 3-20. MAY 30, ON AXIS, GRAZING, 1 MIN.

LOVELACE SHOCK TIBE TEST

30 MAY 79 ON AXIS, GRAZING I MIN HETWEEN SHOTS

| Pris     | J H P | SH-    | 9.7   | 10.8         | 10.3 | 6.6  | 10.3 | 10.9 |          | 10.1    |        |              | 0        | 10.5 | 6     | 10.0 | _     | 10.4  | 10.9         | 11.2   | 10.7 |       | 10.8       | 10.5 | 11.0   | 10.5    | 10.3  |
|----------|-------|--------|-------|--------------|------|------|------|------|----------|---------|--------|--------------|----------|------|-------|------|-------|-------|--------------|--------|------|-------|------------|------|--------|---------|-------|
| TOT      | d N I | -      | -10.4 | -5.4         | -3.2 | -2.5 | 2.5  | 0.1  | -5.0     | -3.4    | -      | 3            | ₩.       | 0.7  | # S # | ~    | -3,3  | -8.5  | -5.5         | 7.7    | -3.2 | 4.8-  | <br>       | -5.6 | 0.2    | -1.1    | -2.7  |
| ES I     | BOOR  | S      | 149.  | 142.         | 151. | 139. | 150. | 136. | 143.     | 146.    | 142.   | 142.         | 145.     | 148. | 14.4. | 137. | 151.  | 147.  | 137.         | 156.   | 140. | 147.  | 156.       | 137. | 148.   | - 4 H   | 155.  |
|          | BUUR  | S      | 59.   | 99.          | н1.  | 66   | 114. | 45.  | H1.      | 80.     | *<br>* | 79.          | 81.      | 72.  | 84.   | 96   | 80.   | RU.   | 72.          | 19.    | 94.  | 59.   | 20.        | 56.  | 5 H •  | 711.    | 91.   |
|          | ADOR  | E<br>S | 5.2   | P. 4         | 6.5  | 5.5  | 6.1  | 8.4  | 7.1      | ٠.<br>ع | 5.9    | 6.5          | ڊ• ¢     | ь. Э | 5,5   | 5.1  | 8.5   | 6.4   | 5.3          | -<br>- | 6.4  | 6.2   | 0.0        |      | 5.1    | h. 1    | 6.3   |
|          | S     | PSI    | 3.7   | 3.5          | 3.4  | 3.5  | •    | •    |          |         | •      | •            | •        |      | •     | •    | •     | •     | •            | •      | •    | •     | ٥ <b>.</b> |      | 3.6    | 3.6     | 3.4   |
| S        | ×     | PSI    | 3.8   | 3.6          | 3.4  | 3.5  | 3,6  | •    |          | 3.5     | •      |              |          |      |       |      |       | 3.7   | 3.7          | 0.1    | 3.8  | 3.6   | 0.0        | 3.8  | 3.7    | 3.7     | 3.4   |
| PI 4E    | REFL  | MS     | 5,89  | -            |      | 4.26 | .5   | 2,14 | •        | •       | 3,92   | •            | •        | •    | •     | •    | 4.23  | 1.59  | <b>5.</b> 06 | 11,17  | 1.13 | 4.16  | 34.17      | 1.84 | 1.54   | 1.58    | 1,82  |
| REFL     | HAX   | PS1    | 5.6   | 3.4          | 3,0  | 5.9  | 3.4  | 3,3  | 2.5      | 3,3     | 3.2    | 3,0          | 3.1      | 3.2  | 2.8   | 4.0  | 3.6   | 3.8   | 4.<br>E.     | 5.4    | 3.9  | 3,3   | 5,41       | 4.2  | 4 • B  | ٠.<br>ا | 3.7   |
| J. J N T | <     |        | 5.1   | 4.0          | 4.9  | 4.8  | 4.8  | 5.0  | 4.9      | 4 · 8   | 4. A   | <b>4</b> . R | 5.0      | 5.0  |       |      |       |       |              | 3,4    |      |       | 5.1        | 5.2  | 5.2    | 5.0     | 4.9   |
| TIME     |       | M<br>S | 6.0   |              | 5.1  | 0    |      |      | <u>پ</u> |         | Š      | 5.           | Ġ.       | ±    | 4.    | ۳,   | •     |       | ~            | 2.     | 4.   | 5.    |            | 5.6  | т<br>Т | ~       | 14.82 |
|          | -     | P51    |       |              | 6.0. | •    | -1.0 | 5.0- | 8.0-     | 6.0-    | 6°C-   | •            | •        | æ.   | •     | •    | •     | J. O. | 0.1.         | # O-   | ÷.   | -1.0  | -0.91      | -1.0 | -1.0   | -1.1    | 5.0-  |
| # () # ) | SU    |        | 85.   | $\mathbf{x}$ | 84.  | ₽₩.  | 84.  | 84.  | 84.      | 84      | 84.    | 84.          | 7.<br>4. | H 4. | 85.   | 84.  | H 4 • | x     | 85.          | 8 S •  | £5   | . F A | ŝ          | Ŧ    | Œ      | H 4.    | æ     |
| ¥        | PRES  | V.     | 5.1   | •            |      |      |      | •    |          | •       |        | •            | •        |      |       |      | ٠     |       |              |        |      | •     | •          | •    |        | •       | •     |
|          | SHUT  |        |       | 7            | ~    | 4    | S    | \$   | 7        | 30      | 6      |              |          |      |       |      |       |       |              |        |      |       | 21         |      |        |         |       |

TABLE 3-21. MAY 30, OFF AXIS, FACE-ON, 30 SEC. LUVELACE SHUCK TUBE TEST

30 MAY 79 UFF AXIS, FACE-ON 30 SEC NETWEEN SHOTS

| PUS | d M ]       | I        |      | 1        | •    |     |     | 0.0      |       |      | 0.0    | •        | •   | •      | c •    | •      | •   | •      | •   | •        | • | •    | •              | • | 0.0    | •      | •      |
|-----|-------------|----------|------|----------|------|-----|-----|----------|-------|------|--------|----------|-----|--------|--------|--------|-----|--------|-----|----------|---|------|----------------|---|--------|--------|--------|
|     |             | P.S      | 2.   | •        | •    | •   | •   | 0.0      | •     | •    | •      | •        | •   | •      | •      |        | •   | •      | •   | •        | • | •    | •              |   | 0.0    | •      | •      |
| EST | BUUR        | N.S      | 156. | 76.      | 156. | •   | ċ   | <b>.</b> | •     | °    | •<br>• | °        | 0   | •<br>0 | •<br>• | •<br>• | 0   | •<br>• | •   | •        | ô | 0    | e <sup>*</sup> | • | •<br>• | •<br>• | •<br>• |
|     | BOUR        | N N      | 12.  | <b>.</b> | •    | 0   | ·   | ÷        | •     | •    | o<br>o | <b>.</b> | ÷   | ÷      | ÷      | 0      | .0  | ÷      | 0   | <u>.</u> | ÷ | •    | ÷              | ÷ | ÷      | •<br>• | •<br>• |
|     | ADUR        | R        | •    | 11.2     | •    | 0.0 | 0.0 | 0.0      | o • 0 | •    | •      | •        | •   | •      | 0.0    | •      | 0.0 | •      | 0.0 |          | • | 0.0  | 0.0            | • | 0.0    | •      | •      |
| >   | S,          | U,       | •    | •        | •    | •   |     | e.<br>e  | •     | 0.0  | •      | 0.0      | •   | •      | •      | •      | •   | •      | •   | 0.0      | • | •    | C. C           | • | o•0    | •      | •      |
| S   | ⋖           | S        | •    | •        | •    | •   | •   | 0.0      | •     | •    | •      | •        | •   |        | •      | •      | •   | •      | •   | •        | • | •    | •              | • | •      | •      | •      |
| _   | REFL        | S        | •    | •        | 50.  | •   | •   | 00.0     | •     | •    | •      | •        | •   | •      |        | •      | •   | •      | •   | •        | • | •    | •              | • | 0.00   | •      | •      |
| حد  | 4           | 3        |      |          |      | •   |     | 0.0      | •     | •    |        | •        | 0.0 | •      | 0.0    |        | •   | •      | •   | 0.0      | • | •    | •              | • | 0.6    | •      | •      |
| _   | <           | S        | ٠    | ~        | •    | •   |     | 0.0      |       | •    | •      | •        | •   | •      | •      | •      | •   | •      | •   | •        |   | •    | •              |   | •      | •      | •      |
|     | Z<br>-<br>S |          | ċ    |          |      | •   | •   | 00.0     | 00.0  | 00.0 | 00.0   | 0.00     | •   | 0000   | 00.0   | •      | •   | •      | •   | •        | • | 00.0 | 00.0           | • | 0.00   | 00.0   |        |
|     | -           | **       | •    | •        |      | •   | •   | c • o    |       |      |        | •        | •   | •      | •      |        |     | •      | •   |          |   | •    | •              | • | •      | •      | •      |
| = M | S           | <b>a</b> | 92.  | •        | 92.  | •   | •   | 0.0      | •     | •    | •      |          | •   | •      | •      | •      | •   | •      | •   | •        | • | •    | •              | • | •      | •      | •      |
| ⋖   | P           | S        | •    | ?        | •    | •   | •   | 0.0      | •     | •    | •      | •        | •   | •      | •      | •      | •   | •      | •   | •        | • | •    | •              | • | •      | •      | •      |
|     | SHUT        |          |      | ~        | ~    | *   | ς.  | æ        | 7     | Œ    | 5      | 10       | 11  | 1.2    | 13     |        |     |        |     |          |   |      |                |   | 23     |        |        |

TABLE 3-22. MAY 30, OFF AXIS, GRAZING, 30 SEC.

LOVELACE SHUCK THRE TEST

30 MAY 79 OFF AXIS, GHAZING 30 SEC HELWEEN SHUTS

| POS   | dal           | SE-      | 2     | 9.6   | 10.2  | C     | 10.1  | 10.4  | 10.7  | 6.6  | 10.2 | 10.3  | 0.0  | 10.2  | 6.6    | 0.4   | 10.5 | 10.5   | 6.6  | 10.1 | 9.5    | 10.5  | 10.4 | 10.2  | 0.0  | 10.3                                  |   |
|-------|---------------|----------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|------|-------|--------|-------|------|--------|------|------|--------|-------|------|-------|------|---------------------------------------|---|
| TOT   | <u> 선</u> 도 1 | $\vec{}$ | ~     | •     | -     | •     |       |       | 5°C   | -2.1 | •    | _     | 0    | -3.6  | æ. 0 - | -6.6  | 1.0  | 2.5    | 5· 0 | -0.5 | ж<br>С | 2.4   | 3.1  | 1.1   | 0.0  | -1.0                                  |   |
| EST   | BDUR          | SE       | 150.  | 121,  | 129.  | 129.  | 126.  | 114.  | 56    | 26   | 126. | 44    | 2    | 121.  | 53     | 34    | 5.3  | 117.   | 52   | 30   | 30     | 113.  | 52   | 146.  | •    | 151,                                  |   |
|       | BOOK          | E S      | 115.  | 72.   | 110.  | 110.  | 64.   | 93.   | 61.   | 74.  | 41.  | 72.   | 0    | 73.   | 112.   | # J • | ¥3.  | 9.1    | н3.  | 112. | 91.    | 19.   | 106. | 93.   | å    | = = = = = = = = = = = = = = = = = = = |   |
|       | ADUR          | S        | 5.7   | 5,3   | 7.8   | 7.8   | 7.6   | 7.8   | 0.0   | 7.8  | 7.B  | ±.    | 0.0  | R. 5  | 7.9    | 5.4   | 7.8  | -<br>- | 7.7  | 8.2  | 5.7    | 7.7   | 8.3  | 7.8   | 0.0  | 8.1                                   |   |
| AVE   | EST           | PSI      | 4.1   | 4.1   | 3,3   | 3.3   | ¥.£   | ٠.    | 0.1   | 3.8  | 4.1  | 4.1   | 0.0  | 4.0   | 3.1    | 3,3   | 3.7  | 3.6    | 3.6  | 3.8  | 3.8    | 4.0   | 3,3  | 3.2   | 0.0  | 4.0                                   |   |
| EST   | 4             |          | 4.1   | 4.1   | 3.3   | 3.3   | 3.4   | 4.1   | 0.2   | 3.8  | 4.1  | 4.1   | 0.0  | 4.0   | 3.7    | 3.4   | 3.7  | 3.6    | 3.7  | 3.R  | 3.8    | 4.1   | 3.3  | 3.3   | 0.0  | 4.0                                   |   |
| TIME  | REFL          | S        | 2.77  | 2,23  | 3.66  | 3.66  | 2.51  | 3.51  | 23,61 | 4.02 | 3,49 | 3,10  | 00.0 | 3,13  | 3,99   | 2,35  | 3.48 | 3,83   | 2,79 | 9.53 | 2.28   | 3,55  | 4.05 |       | 00.0 | •                                     | • |
| REFL  | 4 A X         | P.S.1    | 2.7   | 3,3   | 3.6   | 3.6   | 3,3   | 2.8   | 5.9   | 3.0  | 2.5  | 2,4   | 0.0  | 5.0   | 2.5    | 3.0   | 3.2  | 2.3    | 3.3  | 2.7  | 3.5    | 3.0   | 5.9  | 3.0   | 0.0  | સ•~                                   |   |
| INI   | <             | S        |       | •     | •     |       | 5.6   | 5.2   | 0.7   | 5.1  | 5.4  | 5.5   | 0.0  | 5.7   | 5.2    | 5.2   | 5.2  | 5,3    | 5.3  | 5.2  | 5.3    | 5.7   | 4.5  | 4.9   | 0.0  | 5.3                                   |   |
| TIME  | ナーギ           | <b>3</b> | 31,77 | 14.07 | 16.36 | 16,36 | 31.17 | 17.81 | ٠.    | -    | •    | 18,31 | •    | 30,37 | ·      | ~     | Ŧ.   | ~      | S.   | ~    | 4      | 31,09 | S.   | 24.44 | ċ    | 18,85                                 |   |
|       | -             | PSI      | 1:1-  | -1.1  | -1.0  | -1.0  | -I.a  | -1.0  | •     | •    | -1.1 | •     | •    | 0.1-  | •      | •     | •    | -1.0   | -1.0 |      | •      | •     | •    | -1.0  | 0.0  | -1.0                                  |   |
| WIE W | SUR           | £0       | Š     | 186.0 | •     | 4     | ٠,    | \$    | 9     | 4    | Ŧ    | Ş     | 6    |       | Š      | \$    | 5.   | S      | 5    | 5.   | 30     | Š     |      | +     | 0    | 185.2                                 | • |
| ~     | ×             | 3        | 5.4   | •     | •     | •     | •     | •     | •     | •    | •    | •     | •    | •     | •      | •     | •    | •      | •    | •    | •      | •     | •    |       | 0.0  | 5.3                                   |   |
|       | SHUT          |          | -     | ~     | ~     | *     | ίΩ    | 9     | 7     | æ    | Q.   |       |      |       |        |       |      |        |      |      |        |       |      |       | 23   |                                       |   |

TABLE 3-23. MAY 30, ON AXIS, FACE-ON, 30 SEC.

LOVELACE SHOCK THUE FEST

30 MAY 79 ON AXIS, FACE=ON 30 SEC BETWEEN SHOTS

| 3       | d H I | SH-  |        |     | 13.7 |        | 15.1      | 15,5 | 16.0   |         | 15.8  |         |     | 15.3 |       | 13.9 | 15.4 | •             | •        | 14.R  | •       | 15.3    | 15.4  | 13.6     | 0.0    | 15.2 | 15.3    |
|---------|-------|------|--------|-----|------|--------|-----------|------|--------|---------|-------|---------|-----|------|-------|------|------|---------------|----------|-------|---------|---------|-------|----------|--------|------|---------|
| TOF     | G H J | _    | -1.0   | •   | 2.   | •      |           |      |        | - 1 . 8 | 1.1   |         | 0   | 0.1  |       | 1.1  | 2.7  | -1.1          | -2.9     | -3.3  | -2°0    | 5,0     | 4.0-  |          | 0.0    |      | 8.0     |
| ES T    | BOUR  | S    | 135.   | 84. | £ #  | 72.    | 136.      | 5¥.  | 94.    | 71.     | .66   | 90.     | 0   | 136. | 138.  | 143. | 97.  |               | 106.     | 136.  | 144.    | 71.     | 137.  | 79.      | c      | 95.  | 128.    |
|         | 303K  | S E  | 2.4.   | 5.  | 5.   | ٠<br>ټ | <b>98</b> | ¢    | ŝ      | 22.     | 23.   | 25.     | •   | 23,  | 25.   | 22.  | 59.  | •             | <u>ب</u> | 12,   | 24.     | :S:     | 10.   | •        | •<br>• | 2₩.  | , 1 è   |
|         | ACHIR | N.S. | 6.9    | 7.8 | 5.6  | 9.6    | 8.5       | 39°  | 7.9    | 9.1     | X.    | φ.<br>8 | 0.0 | 0.5  | 8.5   | 5.5  | H. 4 | ۍ<br>ع        | 5.5      | 9.1   | χ.<br>Ξ | 3.<br>H | £.8   | 5.6      | 0.0    | н. 1 | 6.9     |
| A V E   | EST   | PS1  | 9.0    | 5.4 | ¥.   | S. 8   | 4.5       | 7.4  | 5<br>0 | 5.1     | 5.0   | 4.9     | 0.0 | 5.2  | 4.4   | 4.5  | 4.7  | 4.9           | 4.7      | 4.3   | 5,1     | 5,0     | 4.7   | 4.7      | 0.0    | æ•*  | 5.1     |
|         |       | S    | 5,1    | •   | •    | •      | 4.5       | 5.1. | 5.1    | 5.2     | 5.1   | ۵.      | 0.0 |      | •     |      |      |               | •        | 4.3   | •       | •       | •     |          | 0.0    | 4.9  | 5.5     |
| I' I ME | REFL  | W S  | 3.81   | •   |      | •      | •         | •    | •      | •       | •     | •       | •   | •    | •     | •    | •    | •             | •        | •     |         | •       | •     | •        | 9      | 4,21 | •       |
| REFL    | Y Y X | ::   | 5.2    | •   | 5,3  | •      | 4.8       | 6.1  | ۴. ا   | H.7     | 6.1   | ¥.      | •   | 4.8  | 7.B   | 5.4  | 6.1  | 5.4           | 4.5      | h. 3  | 6.3     | 4.4     | 11.0  | 4.2      | 0.0    | 5.3  | 5.<br>B |
| 7 1 2 1 | XVI   | 3    | æ • •  | •   | •    | •      |           | 2.   | ~      | ~       |       | ÷       | •   | •    |       | =    |      | $\overline{}$ | _        | 4.1   | 12.3    | 12,3    | 12.0  |          | •      | 11.7 | 11.3    |
| TIME    | KIK   | S.   | ~      | 3:  | ~    | $\sim$ | ~         | _    | ~      |         | 69.21 | £       | _   | 4    | 18,95 | ~    | ~    | ~             | $\sim$   | 18.86 | -       | ~       | 18.82 | 13.28    | 00.0   | •    | 26.     |
|         |       | V.   | H . O- | •   | •    | •      | •         | •    | •      | •       | -1.3  | •       | •   |      | •     | •    |      | •             | •        | # O.  | •       | •       | •     | •        | •      | •    | -1.41   |
| IMUM    | SURE  | 90   | ÷      | ~   | 2.   | 92.    | =         | 92.  | 92.    | ~       | 92.   |         |     | 92.  | 40.   | ٠.   |      | 91.           | 92.      | 90.   | ~       | 92.     | 2.    | <b>-</b> |        | 92   | -       |
| MAXI    | ×     | S    | 9.     | 12. | 12.  | 12.    | •6        | 12.  | 12.    | 12.     | 12.   | 10.     | ċ   | 12.  | 6     | 10.  | 11.  | 11.           | 11.      | ÷     | 12.     | 12.     | 12.   | 10.      | ċ      | =    | 11.     |
|         | SHO   |      | 1      | 2   | ~    | 4      | S         | ٥    | 7      | 30      | 3     | 10      |     | 1.2  | 13    | 14   | 15   | -             | 1.7      |       |         |         |       |          |        | 24   |         |

TABLE 3-24. MAY 30, ON AXIS, GRAZING, 30 SEC.

LUVELACE SHOCK TUBE TEST

30 MAY 79 UN AXIS, GHAZING 30 SEC BETWEEN SHUFS

| C d    | <b>₹</b> | ·HS-   | 10.     | 10.   | 10.   | 10.   | 6     | 10.   |       |          | 0    | 0     | 0        | )        | 10.   | 6                   | C     | 10.   | 3        | $\circ$         | 10.   |       | 11.    | æ     | 0       |       | 10.   |
|--------|----------|--------|---------|-------|-------|-------|-------|-------|-------|----------|------|-------|----------|----------|-------|---------------------|-------|-------|----------|-----------------|-------|-------|--------|-------|---------|-------|-------|
| roı    | 3        | Ş      | -8.7    | ÷     |       | ~     | ?     |       | -     |          | ~    | C     | 0.0      | <u>~</u> | æ     | •                   | 4.    | Ŷ     | ·        | _               | 16.7  | æ     | 17.7   | Ş     | =       |       | 28.9  |
| ES T   | RDIBR    | ¥ S    | 144     | 151.  | 153,  | 155.  | 154.  | 153.  | 149.  | 148.     | 154. | 152.  | •        | 138.     | 153,  | 155.                | 154.  | 153,  | 153.     | 153.            | 125.  | 153.  | 148.   | 156.  | •       | 142.  |       |
|        | BOOK     | S      | 82.     | 113.  | 116.  | 114.  | 123.  | 153.  | 111.  | 9н.      | 119. | 114.  | <u>.</u> | ٠<br>٩   | 115.  | 117.                | 150.  | 140.  | 113.     | 152.            | 107.  | 148.  | 113.   | 113.  | •<br>•  | • P 6 | 141.  |
|        | ADUR     | N<br>S | ĸ.3     | 5.2   | 8.1   | 7.6   | 5.5   | 5.5   | 5.1   | 4.<br>5  | 5.6  | R 5   | 0.0      | 8.5      | ¥.6   | 5.5                 | H. 1  | 7.6   | 5.4      | <b>⊅</b> .<br>≆ | 5.3   | 0.8   | x<br>v | 5.1   | 0.0     | ¥.    | 7.1   |
| AVE    | EST      | PSI    | 3.6     | 4.0   | 3.7   | 4.1   | 3.4   | 3.7   | 3.6   | 3.7      | 3.6  | 3.6   | 0.0      | 3.7      | 3.3   | 3,3                 | 3.5   | 3.6   | 3.5      | 3.1             | 3.7   | 3.6   | 3.5    | 3.3   | ر.<br>د | 3.6   | 3.H   |
| ESL    | XAX      | PSI    | 3.7     | 4.1   | 3.7   | 4.1   | 3.4   | 3.7   | 3.7   | 3.8      | 3.7  | 3.1   | 0.0      | 3. B     | 3.3   | . <del>.</del> . 3. | 3.5   | 3.6   | نې.<br>س | 3.2             | 3.7   | 3.6   | 3.6    | 3.3   | 0.0     | 3.6   | 3.8   |
| ) I 4E | REFL     | M S    | 3.89    | 3.06  | 3,92  | 3.98  | 4.04  | 3.88  | 2,94  | 4.16     | 3,99 | 3,95  | 00.0     | 4.10     | 4.21  | 2,33                | 3,80  | 1,13  | 3,91     | 4.46            | 3.14  | 3.8H  | 4.22   | 3.96  | 00.0    | •     | 91.54 |
| REFL   | MAX      | PSI    | 2. H    | 3.8   | 5.9   | 4.0   | S . Z | 3.4   |       | 4.3      | 3.3  | 3.5   | 0.0      | 2.9      | 3.7   | 2. h                | 3.8   | 5.9   | 2.9      | 3.5             | 3.8   | 5.6   | 4.2    | 2.5   | O .C    | 3.4   | 4.1   |
| INIT   | 4        | Ś      | 5.4     | •     | •     | 5,4   | •     | 5.3   | •     | •        | 4.8  | •     |          |          |       |                     | 5.5   | •     |          |                 | •     | •     | 5,4    | •     |         | 4.9   | 5.3   |
| TIME   | ı        | S      | 5.5     | 28.77 | ٤.    | 3.5   | -     | 20,38 | 12,99 | 14.96    | 4    | 18.01 | <b>-</b> | 4        | 21,23 | 14,33               | ~     | 14.10 | 13,69    | 21.24           | 31,83 | 14,39 | 14.64  | 12.96 | 00.0    | 18.86 | 01.60 |
|        | Z        | PSI    | -1.0    | 6.0-  | -1.0  | 6.0-  | 6.0-  | -1.3  | -1.0  | 8.0-     | -1.0 | 6.0-  | 0.0      | 6.0-     | 8.0-  | 6.0-                | 6.0-  | 6.0-  | 6.0-     | 5.0-            | 6.0-  | ¥.0-  | -1.0   | -1.1  | 0.0     | æ.0-  | -2.51 |
| FUF T  | SURE     | OB     | 4 185.3 | 185.9 | 184.9 | 185.4 | 183.8 | 185,3 | 144.9 |          | •    |       | 0.0      | 1H5.4    |       |                     | 185.0 | 184.4 | 184,5    | 183.7           | 185.5 |       | 185,4  | •     | 0,0     | 184.5 | 186.4 |
| XXX    | <u>a</u> | S      | 5.1     | •     | •     | •     | •     | 5.3   | 5, 1  | 5.2      |      | •     | 0.0      | •        | •     | •                   | 5.2   | •     | 4 · B    | 4.4             | 5.5   | •     | 5.4    | •     | 0.0     | 4.9   | 6.1   |
|        | SHUT     |        | -       | ~     | ~     | 4     | ŝ     | 9     |       | <b>æ</b> | 6    | 10    | 1        | 1.5      | 13    | 14                  | 15    | 16    | 17       | 8               |       |       |        |       |         | 24    |       |

TABLE 3-25. JUNE 1, OFF AXIS, FACE-ON, 30 SEC.

LOVELACE SHOCK TUBE FEST

1 JUN 79 OFF AXIS, FACE-UN 30 SEC METHEEN SHOFS

|      | dw T   | -WS     | 14.4  |      | 13.9        |        | 13.7     | 13.6     |       |         |       | 13.9  |          | <u>«</u> |             | 4          |        | 14.6     |      |       | 14.2  |       | 14.9  | 14.4 | 14.0  | 14.0     | 14.3  |
|------|--------|---------|-------|------|-------------|--------|----------|----------|-------|---------|-------|-------|----------|----------|-------------|------------|--------|----------|------|-------|-------|-------|-------|------|-------|----------|-------|
| ror  | de I   |         | -0.6  | 3.1  | -1.1        | 6.0    | 1.9      | -5.7     | -2.7  | £ . 9 . | -0-   | -2,5  | 0.0      | 1.8.1    | æ*c         | -2.6       | 1.4    | <b>-</b> |      | 2.    | •     | 0.5   | •     | 0    | ~     |          | 3,7   |
| EST  | RUUR   | S X     | 138.  | 141. | 145         | 136,   | 142.     | 148.     | 141.  | 153.    | 141.  | 1.39. | ٠        | 149.     | 139.        | 138.       | 133.   | 131.     | 138. | 139.  | 139.  | 99.   | 137.  | 93.  | 144.  | 1.39.    | 117.  |
|      | HUUK   | S       | 6     | 27.  | 15.         | 24.    | 22.      | S b ,    | 23.   | 21.     | 40    | 17.   | ÷        | 24.      | 11.         | 46.        | ć<br>ć | 17.      | 15.  | 17.   | æ     | æ     | ۴.    | 7.   | 32.   | 22.      | 24,   |
|      | ADOLR  | ج<br>دی | 7.8   | 8.9  | 0°8         | ه<br>ت | 9 · B    | 8.0      | 8.1   | o<br>*  | H     | 9°0   | ٥<br>• ٥ | 0°8      | А.2         | н <b>.</b> | æ<br>æ | 8.1      | 0.6  | я,2   | 8.2   | <br>∞ | ¥.1   | 8.1  |       | н.2      | 8.2   |
| AVE  | ESY    | PSI     | 5.0   |      | # · F       |        | 4.1      | 4.5      | 4.3   | 5.0     | 4.5   | 4.6   | o*0      | 4.6      | 5,0         |            | •      |          | •    | 4.7   |       | •     |       | 5,3  |       | 4. H     | 4 · A |
| EST  | YAX    | PSI     | 5.1   | 4.7  | <b>4.</b> B | 5.5    | 4.2      | 4.5      | 4.3   | 5.1     | 4.6   | 4.6   | 0.0      | 4.7      | 5.1         | 4 · B      | 5,3    | 4.8      | 4.6  | 4.7   | 4 . B | 4.9   | 4 · H | 5,3  | 5.1   | 4.9      | 4.9   |
| -    | REFL   | N<br>S  | 9     |      | 2.94        | 4.44   | 3.96     |          | 3.68  | 2.68    | •     | 3.03  | 00.0     | 5.04     | 3.24        | 3,43       | 4.24   | 3.68     | 4.54 | 3,38  | 3.74  | 2.88  | 2,65  | 3.09 | 2.63  |          | 3,13  |
| REFL | X A M  | 184     | 4.8   | 4.0  | 4.4         | 4.1    | 4.0      | 4.2      | 3.9   | 4.0     | 3.7   | 4.2   | 0.0      | 4.8      | \$ <b>.</b> | 4.2        | 5.4    | 6.1      | 6° E | 4.3   | 3.2   | 4.2   | 5.5   | 4.2  | 4.7   | S. R     | 5.3   |
| TINI | <      | PSI     | 12.5  |      | 12,0        | 12.9   | _        | 11.1     | 10.1  | 11.0    | 10.4  | 10.3  | 0.0      | 11.0     | 10.9        | 11,3       | 11.8   | 11.0     | 10.4 | 11.5  | 11,3  | 11,6  | 6.6   | 12.4 | 11,5  | 10.9     | 10.3  |
|      | 7 1 2  |         | 19.64 |      | 14.86       | 10.61  | •        | \$       | 19,04 | 14.66   | 17,17 | 2     | 00.0     | 19,05    |             | 3          | 5      | 17.01    | 7    | 14,83 | 14.11 | 13,95 | 14.65 | •    | 14.78 | 16.98    | 11.04 |
|      | _      | P.S.1   | -1.0  |      | •           | -1,2   | •        | •        | 0.1-  | •       | •     | •     |          | •        | •           | •          | •      | -1.3     | •    | •     | •     | •     | •     | •    | •     | -1.1     | -1.1  |
| HOWI | S      |         | -     | 141. | -           | 193.   | 191.1    | 7        | 90    | _       | 41.   | _     | ÷        | 91.      | -           | _          | ~      | 91.      | _    |       | -     | ~     | =     | ~    | _     | <u>.</u> | •     |
|      | ₹<br>* | S       | ~     | ÷    |             | ~      |          | <u>-</u> | 10,1  |         | ċ     | •     |          |          | ċ           | •          | •      | •        |      |       |       |       |       | 12.4 | •     |          | 10,3  |
|      | SHUT   |         | _     | 8    | ~           | ₹      | <b>₽</b> | S        | 7     | æ       | 5     |       | 11       |          | 13          | 14         | 15     |          |      |       | 19    |       |       |      |       |          | 25    |

TABLE 3-26. JUNE 1, OFF AXIS, GRAZING, 30 SEC.

LOVELACE SHUCK TUBE TEST

1 JUN 79 UPF AXIS, GRAZING 30 SEC RETWEEN SHOTS

| PUS    | d k I       | Ŧ.   | 11.1  | 10.8 | 10.5 | 10.8 | 10,5  | 9.5      | 10.2 | 10.6 |         | 10.4  | c • o   | 10.3      | 10.1 | 10.4     | 10.1     | 10.8  | 10.4      | 10.4     | 10.3  | 10.3 | 11.1  | 10.6      | 10.2    | 10.5   | 10.3  |
|--------|-------------|------|-------|------|------|------|-------|----------|------|------|---------|-------|---------|-----------|------|----------|----------|-------|-----------|----------|-------|------|-------|-----------|---------|--------|-------|
| rur    | X           | S    | -1.2  | •    | -2.5 | -4.1 | -5.7  | 9.9      | -6.3 | •    |         | -7.2  |         | -3.0      | •    | •        | <b>.</b> | -6.5  |           | 0.4-0    | •     | •    | •     | -2.6      | •       | -2.6   | -4.5  |
| ESF    | HOUR        | S.¥  | 150.  | 135. | 129. | 128  | 147.  | 136.     | 136. | 91.  | 1 32.   | 148.  | o       | 117.      | 137. | 134.     | 85.      | 136.  | 116.      | 15.3.    | 143.  | 122. | 139.  | 128.      | 116.    | 128.   | 118.  |
|        |             | S)   |       | 44.  |      | 73.  | 93.   | 81.      | HOH. | 80   | 56.     | 92.   | ÷       | 8 3.      | 92.  | 102.     | 73.      | 73.   | 95.       | ж        | 73.   | 73.  | v ó   | 81.       |         | H 2.   | 55.   |
|        | ADUK        | S S  | H . 9 | 8.9  | ۴.6  | 8.7  | 8.6   | 5.9      | 9.0  | К.5  | д.      | ж.    | o.<br>0 | 9.3       | 8.1  | χ<br>• υ | н.2      | ~° =  | 9 ° 8     | ь.<br>2  | К. 1  | H.   | 8 · 6 | н. 3      | т.<br>Ж | ٠<br>ج | н.    |
| A V F. | EST         | PSI  | 4.1   | 3.8  | 3.9  | 4.2  | 3.4   | ₩.<br>₩. | 3.5  | 4.1  | ж•<br>* | 3.5   | 0.0     | •         | 3. H | 3.7      | 4.3      | 3.6   | 3,9       | 3.7      | 3.7   | 4.1  | 3.7   | ٠.<br>۲   | 3.9     | 3.7    | 3.9   |
| S      | X A X       | PS I | 4.2   |      | •    | 4.2  | •     | •        | 3.5  |      | 3.9     |       | •       |           | •    |          | •        | 3.6   |           |          | 3.7   |      |       | 4.0       |         | 3.8    | 3.9   |
| 1.1 ×E | REF1.       |      |       |      | ٠.   | C    | 3,93  | 2.80     | 3,67 | 3.24 | 3.94    | 3.82  | 00.0    | 4.19      | 3.26 | 3,75     | 4.18     | 3.66  | •         | ٣.       | •     | 6.   | ع.    | 3,91      | 2.94    |        |       |
| KEF'L  | 4           | PSI  | 5.9   |      | 3.9  | 2.8  |       | 2,7      |      |      |         |       | 0.0     |           | 2.9  |          |          | 3.4   | 2.4       | 2.8      | 2.2   | •    | 3.1   |           | 2.5     | •      | 3.0   |
|        |             |      | 5.4   |      | •    | •    | 4.6   |          | 4.7  |      |         |       |         | 4.8       |      | •        |          | •     | •         |          | •     |      | •     |           |         | •      | 5.5   |
| FIME   | 7<br>1<br>2 | 3    | Œ     |      | 5.6  | н,2  | H . 5 |          | \$   |      | 14.71   | 19.HI | 00.0    | 18,82     | _    | B.6      |          | 18.97 | द्ध<br>इ. | <b>.</b> | 17,16 | ٠.   | 19,26 | ж.<br>• 4 | Ψ,      | 14.50  | 14,30 |
|        | 2 [ 8       | 184  | -1.2  |      |      | -1.1 |       | -1.1     | -1.2 | -1.1 |         | -1.1  |         | -1.1      | -1.2 |          |          | -1:1  | 0.        | -1.0     | -1.0  | -1.1 | -1.1  | -1.0      | -1.2    | -1.1   | -1.1  |
| HOWI   | SUR         | 0.8  | 185.4 | 5.   | ŝ    | 9    | ÷     | •        | 4    | 5.   | •       | *     |         | 1 H 4 . 3 | ÷    | 4        | 5        | •     | 4.        | S        | ξ.    | ۶.   | 4     | <u>.</u>  | 184.9   | 4.     | 185.5 |
| MAX    | <u>م</u>    | S    | 5.4   | •    | •    |      | •     | 5,1      | •    | •    | •       | •     | •       | æ.        | •    | •        | •        | •     | •         | •        | •     | •    | •     | •         | 5.1     | •      | 5.5   |
|        | SHOT        |      | -     | ~    | ~    | 4    | ß     | £        | 7    | 30   | 3r      | 01    | 11      | 12        | 13   | 14       |          |       |           |          |       |      |       |           |         |        | 25    |

TABLE 3-27. JUNE 1, ON AXIS, FACE-ON, 30 SEC.

LOVELACE SHOCK TOBE TEST

1 JUN 79 ON AXIS, FACE-ON 30 SEC BETWEEN SHOFS

| POS   | d a I | - 4.S  | 15.1 |      | 14.3 | 16.0     | 15.1  | 14.4       |          | 15.9 |          |          |        |      |              | 14.0 |       | 15.9 | •        | 14.5     |      | 14.4     | 15.4     | 14.8  | 15.1     | 15.4     | 14.0  |
|-------|-------|--------|------|------|------|----------|-------|------------|----------|------|----------|----------|--------|------|--------------|------|-------|------|----------|----------|------|----------|----------|-------|----------|----------|-------|
| TOL   | J.W.  | PSI    | 2.0  | •    | 0.2  |          | 1.7   | -1.3       | -1.5     |      | -5.1     | $\sim$   | 0.0    |      | £ 0.         | -3.B | c.c   | 0.9  | -2.6     | 0,5      | 2.0  |          | 4.8      | 9.0   | -0.2     | _•       | -2.7  |
| EST   | BUUR  | s<br>S | 76.  | 136. | 103. | 136.     | 137,  | 135.       | 101.     | 140. | 153.     | 138.     | 0      | 138. | 8 <b>4</b> • | 145, | 152.  | 81.  | 140.     | 136.     | 144. | 92.      | 97.      | 97.   | 136.     | 144.     | 143.  |
|       | BUUR  | S      |      | 2.5. | 57.  | 57.      | 25.   | 22.        | 24.      | 23.  | 7.       | 23.      | •<br>• | 4    | 5.           | 9    | 56.   | 24.  | 10.      | <b>2</b> | 12.  | Ŝ        | 57.      | ç     | \$       | 23.      |       |
|       | ADUR  | N.S.   | 6.2  | 6.6  | 6.1  | 0.6      | 9.3   | 6.7        | 8.7      | 8.7  | 5.9      | 6.7      |        | 3.4  |              |      | 7.1   |      |          |          | u.,  |          | h.7      | 6.7   | H. b     | 0.0      | 6°4   |
| AVE   | S     | S      | 5.5  | •    | •    | 5.0      | 4 · 8 | 4.9        | 4.7      | B. 4 | 4.7      | <b>4</b> |        |      |              |      | 3,9   |      |          |          |      |          |          | 5.5   |          |          |       |
| S     | ⋖     | S      | 5.6  | •    | •    | 5.1      |       | 5.0        |          | 4.8  | •        | 4.9      | •      | •    |              | 4.7  |       | •    | •        | •        | •    | •        | •        |       | •        |          | 4.3   |
| 3 1 1 |       |        | .,   | ~    | •    | ÷        | ~     | 3,95       | •        | •    | • 2      | ٥.       | =      | ~    | •            | ÷    | 4.43  | ~    | 4.       |          | -    | 5.       | 5.       | •     | ٠,       | <u>-</u> | 4.04  |
| REFL  | MAX   | PSI    | 5.7  | •    |      | £.       |       | •          |          | 5.2  | •        |          |        |      |              | 4.5  |       | 5.5  | •        | •        |      | 5.7      | 5.5      | 5.2   | 6.5      | 9.1      | 5.6   |
| INI   | <     |        | 10.H | ċ    | 11.6 | <u>-</u> | •     | 11,8       | 11.1     | 11.3 | 11.3     | 11.6     | 0.0    | 7    | 13.0         | _    | 9.5   | 11.4 | $\hat{}$ | 11.3     | 11.3 |          |          | 13.5  | 13.4     | 10.2     | 10.3  |
| TIME  | Z     |        | 4.9  | •    | 2.5  | 7.       | 5     |            | ٠,       | •    |          |          | •      | •    | •            | •    | 14.84 | •    | 0        | C        | •    | ċ        | 8.4      | 13.78 | <u>.</u> | *        | 18.31 |
|       |       | S.     | -0.7 | 8.0- | 5.0- | -1,21    | -1.0  | 6.0-       | 6.0-     |      | 6.0-     |          | •      |      | •            |      | 8.0-  | •    | 6.0-     | 6.0-     | H 0- | ∓.<br>≎- | # 0 F    |       | Ξ.<br>C. | 8.0-     | -2.11 |
| FRUM  | SUR   | 90     | 91.  | 92.  | 2.   | 92.      | 91.   | 92         | <u>-</u> | 91.  | <b>-</b> | 92.      |        | 92.  | 93.          | 91.  | 190.3 | 91.  | 91.      | -        |      | •        | <b>-</b> | 193.4 |          | .06      | 191.0 |
| <     | ₹     | S      | C    | •    | -    | •        | •     | •          | •        | •    | •        | •        | •      |      | •            | •    | 9.5   | •    | •        | •        | •    | •        | •        | 13.5  | •        | ċ        | •     |
|       | SHUT  |        | -    | ~    | ~    | 4        | 3.    | · <b>•</b> | 7        | æ    | 6        |          | 1.1    |      | 13           | 14   | 15    |      |          |          |      |          |          | 2.2   |          |          |       |

TABLE 3-28. JUNE 1, ON AXIS, GRAZING, 30 SEC.

LOVELACE SHOCK TUBE TEST

1 JUN 79 ON AXIS, GRAZING 30 SEC HETWEEN SHUTS

| POS   | 7                | - X S  | 11.1  | 10.5  | 10.7  | 11.7  | 10.5  | 10.7   | -     | _        | -            | -     |          |       | •     | -     | -     | •           | _       | -     | ~     | ~     | -     | ~     | -     | -     | -     |
|-------|------------------|--------|-------|-------|-------|-------|-------|--------|-------|----------|--------------|-------|----------|-------|-------|-------|-------|-------------|---------|-------|-------|-------|-------|-------|-------|-------|-------|
| TOT   | dr. T            | ps 1   | -1.8  | æ     | 6     | 15.1  | 5     | 11.7   | 6.1   | 9.6      | <b>†</b> • • | 13.0  | 0        | 1.9   | 5.    | ŝ     | 4     | 10.9        | 7       | æ.    | 2     | 11,3  | 7     |       | 7.2   | O. H  | 18.2  |
| EST   |                  |        |       |       |       |       |       |        |       |          |              |       |          |       |       |       |       |             |         |       |       |       |       |       |       |       | 152.  |
|       | HUUK             | Z S    | 669   | 115.  | 119.  | 115.  | 115.  | 114.   | 113.  | 113.     | 149.         | 115.  | <b>.</b> | 115.  | 113.  | 114.  | 145.  | 114.        | 115.    | 115.  | 115.  | 115.  | 120.  | 117.  | 114.  | 116.  | 115.  |
|       | ADUR             | MS     | 6.2   | 4.4   | 5.4   | ¥.    | 7.2   | 5.7    | 6.3   | 6.1      | æ<br>•£      | 6.0   | o.0      | 3.7   | 6.3   | Ξ.    | 4.4   | ن<br>د<br>د | 7.1     | 7.2   | t. 0  | 0.0   | ħ. A  | 6.9   | 7.2   | 7.2   | 8.4   |
| AVE   | EST              | PS1    | 4.0   | 3.6   | 3.6   | 4.0   | 3.6   | 3.7    | 3.7   | 3.7      | 3.7          | 3.7   | 0.0      | 1,1   | ð. 6  | 3.5   | 3,0   | 6.4         | 3.5     | 32°   | 3.4   | 0.3   | 3.5   | 4.0   | 3.9   | 1.4   | 3,3   |
| EST   | XVX              | PSI    | 4.1   | 3.7   | 3.6   | 4.0   | 3.7   | 3,8    | 3.7   | 3.7      | 3,7          | 3.8   | 0.0      | 3.7   | 4.1   | 3.6   | 3.0   | 4.0         | 3,5     | æ•    | 3.5   | 0.4   | 3.5   | 4.1   | 4.0   | 3.4   | 3,3   |
| 11 4E | REFL             | яS     | 3.91  | 4.2H  | 4.04  | 4.11  | 4.30  | 3.87   | 4.62  | 3,95     | 4.20         | 3.99  | 00.0     | 4.68  | 3.48  | 4.00  | 4.33  | 3.98        | 4.38    | 4.08  | 4.14  | 21,75 | 4.04  | 3,96  | 3,85  | 4.04  | 3.98  |
| REFL  | M A X            | PSI    | 3.4   | 5.4   | 4.2   | 3.8   | 3.5   | 3.6    | 5.2   | 3,9      | 3.5          | 3.6   | 0.0      | 3.9   | 5.4   | 3.1   | 3.9   | 3,3         | 3.3     | 3.7   | 4.5   | 5.1   | 3.1   | 3.7   | 3.7   | 3.7   | 4.1   |
| LINI  | × < ×            | 184    | 5.7   | 5.1   | 5.1   | 5.5   | 5.3   | 5.3    | 5,1   | 5.1      | 4.7          | 5.1   | ÷.       | 5.2   | 5.9   | 5.0   | 4.0   | 5.7         | 4.<br>H | 2.5   | 4.8   | 1.3   | 4 · B | 5,4   | 5.7   | 5.0   | 4.4   |
| FIME  | MIY              | X<br>S | 14.72 | 14,19 | 18.99 | 14.30 | 17,26 | 13.84  | 17.13 | 14.84    | 14,17        | 14.49 | 00.0     | 17.11 | 14.64 | 40.10 | 19,16 | 13,57       | 16.78   | 21,31 | 14.68 | 0.13  | 13.64 | 13,75 | 13.78 | 13.85 | 17,13 |
|       | N<br>N           | PSI    |       |       |       |       |       | = 1 :- |       |          |              |       | c • o    | -1.1  |       | 6.0-  |       | -1.0        |         | -1.0  | 0.1-  |       |       | 6.0-  |       |       | 6.0-  |
| ] ¥ I | SUPE             |        | 85.   | 85.   | 84.   | H 5.  | я5.   |        | я5.   | 84.      | 84.          | ##    | •        | 85.   | #6    | 84.   | 63.   | £5.         | ¥ 4.    | 85.   | 84.   | 94.   | ÷ 9   | 85°   | ďδ.   | #4    | 183.7 |
| ⋖     | $\boldsymbol{x}$ | ŝ      | 5.7   | •     | •     |       | •     | •      | •     | •        | •            | •     | •        | •     |       | •     | •     | •           | •       | •     | •     | •     | •     | •     | •     | •     | •     |
|       | SHOT             |        | -     | 7     | ~     | 4     | S     | ç      | 7     | <b>3</b> | 5            |       |          |       |       |       |       |             |         |       |       |       |       |       |       |       | 25    |

TABLE 3-29. JUNE 4, OFF AXIS, FACE-ON, 1 MIN.

LOVELACE SHOCK THUE TEST

4 JUN 79 OFF AXIS, FACE-ON 1 MIN HEIWEEN SHOTS

| POS    |       | -48 | ξ.      | 16.8       | 9       |       | ŝ   | 16.4   | 16.7         |       | 7.   | 18.4     | •   |        | 5    | ę.   | Ŧ    | •      | 5.   |        | 5    |     |          | S       | 30     | 15.5     | 16.2   |
|--------|-------|-----|---------|------------|---------|-------|-----|--------|--------------|-------|------|----------|-----|--------|------|------|------|--------|------|--------|------|-----|----------|---------|--------|----------|--------|
| rol    | d # 1 | PSF |         |            | ~       |       | •   |        | •            |       |      | -        | •   | •      | -3,1 | ~    | ~    | $\sim$ | æ. * | ~      | -    | _   |          | 2.      |        | 0        |        |
| E.S. I | BUUR  | Z.  | 58      | <b>0</b> 0 | 71.     | 58.   | 73. | 67.    | 74.          | 61.   | 140. | 66.      | 78  | 73.    | 73.  | 72.  | 73.  | 81.    | 7.3. | 74.    | 66.  | 73. | 73.      | н<br>1. | 64.    | 58       | A 3.   |
|        | HUUK  | S   | 24.     | 5.         | 22,     |       | 7.  | 5.     | 7.           | 7.    | ۲.   | 7.       | 7.  | Š      | '.   | -    | 7.   | 7.     | 23.  |        | 21.  | 22. | 55.      | 7.      | 23.    | <b>*</b> | 22.    |
|        | ADOR  | S.  | ٠.<br>د | B.         | æ.<br>T | 10.7  | 9.1 | 9.0    | 1.6          |       | 10.3 | 10.5     | 9.5 | 10,3   | 9.3  | 9.5  | 10.7 | •      |      |        |      |     | •        |         |        | 10.0     |        |
| AVE    | ES I  | PSI | 5.5     | 5.6        | 5.3     | 5.4   |     | 5.5    | 5.4          | 5.6   | 5.3  | 5.7      | 5.5 | 3°5    | 5.2  | 5.3  | 5.3  | 5.3    | 5.1  | 5.4    | 5.5  | 5.4 | 5.6      | 5.3     | 5.4    | 5.4      | 5.4    |
| S      | ۸V×   | S   | •       | •          | •       |       | •   | •      | •            | •     | •    | •        | •   |        |      | •    |      |        | •    |        | •    | •   | •        | •       |        | 5.5      | •      |
| -      | REFL  |     | •       | 2,11       | •       | •     | 5   | 2,12   | æ.           |       | _    | 50       | ~   | . 7    | 4    | ٠.   | •    | -      | -    | $\sim$ | £    | 9•  | 6        | 5.      | $\sim$ | 3.51     | 2,63   |
| REFL   | <     | ÷   | 7.2     | •          | •       | •     | •   | •      | •            | 7.6   | 7.6  | •        | •   | •      | •    |      |      | ÷.     | •    | •      | •    | •   | •        |         | •      | •        | 5.B    |
| JIKI   | M A K | 50  |         | 13.4       | 12.9    |       | •   | 12.2   |              | •     | •    | ?        |     | ~      | ~    |      | •    | 11.6   | •    |        | •    | •   | •        | 12,3    | 11.9   | 11.4     | 12,5   |
| TIME   | ↑ J H | S.E | 5       | •          | H.6     |       | 5.6 | •      | h. 1         | 5.7   | 3.0  | 4.9      | b b | 5.0    | 5.1  | 3.6  | 5.0  | 4.4    | 5.5  | .5     | 4.0  | 5.5 | . 3      | 14.46   | 6.6    | 4.6      | 15,55  |
|        | -     | PS1 | 5.0-    |            |         | ₩. O. |     | I.O.   | F. C.        | 4.0-  | 1.0- | B.O.     | •   |        |      | ¥ 0- | 6.0- | 5.0-   |      | -0. B  | H 0- | 30. | -0.H     | F. 0    | •      | 6.0-     | ¥ 0-   |
| MUM    | SURE  | NO  | 191.6   |            |         | •     | ~   | 192,5  | <del>-</del> | 191.7 |      | 2.       | ~   | $\sim$ | 2.   | ~    |      | 192.0  | ~    | •      | ~:   | 2.  | <u>ب</u> | 192.5   | 2      | •        | 192.7  |
| MAX    | 23    | PSI | 1 11.0  | •          | 3 12.9  | 11.   | 11. | 6 12.2 | 11.          | 11.   | 13.  | 12.      | 12. | 12.    | 12.  | 11.  | 11.  | 11.    | 11.  | 12.    | 12.  | 11. | 13.      | 12.     | 11.    | 11.      | 5 12.5 |
|        | SHUT  |     | •       | -          |         | •     |     | _      | •            | _     | _    | <u> </u> | -   | =      | -    | ÷    |      | =      |      |        |      | ~   |          | 5       |        |          | ~      |

TABLE 3-30. JUNE 4, OFF AXIS, GRAZING, 1 MIN.

LOVELACE SHOCK TUBE TEST

4 JUH 79 DFF AXIS, GRAZING I MIN RETWEEN SHOTS

| 3     | 1 4P | MS    |             | 9.5      | 10.4  | <b>-</b> | 10.1 |      | 10.9  |       |          | 10.9 | $\Rightarrow$         |      | 9.6         |      |      |      | 10.2         | 19.6 | 10.1 | 10.0  | 10.6 | 10.2 | •    | 6.6         | 10.3        |
|-------|------|-------|-------------|----------|-------|----------|------|------|-------|-------|----------|------|-----------------------|------|-------------|------|------|------|--------------|------|------|-------|------|------|------|-------------|-------------|
|       | Œ    | S     | £           | <b>÷</b> | -3,4  |          | -4.3 |      | ·     | -13.6 | ~        | -    | 0.0                   | -1.6 | 2.          | 1,3  | -1.6 | _    | -2.2         | •    | _    |       | -3.2 |      | -7.B | $\sim$      |             |
| ဟ     |      |       | 127.        | -        | •     | 8.5      | 134. | 118. | 116.  | 136.  | œ        | 28   | 16                    | 27   | 128.        | 16   | 18   | 35   | 17           | 15   | 4    | 54    | 5    | 137. | •    | 115.        | 0           |
|       | ROOK |       | 71.         |          | 74.   |          |      | н2.  | 69    | 57.   | 86.      | 98.  | 74.                   | 45.  | <b>5</b> 6. | H1.  | 73,  | 74.  | <b>.</b> O B | 94.  | 74.  | 55.   | .11. | 115. | 54   | =           | 9 b.        |
|       | ADUR | N S   | 5.3         | •        | •     |          |      | 7.8  |       | •     | 5.5      | H•/  | 1.9                   | 5.2  | 6.6         | 8.1  | θ.4  | 7.7  | 8.5          | 7.7  | 7.8  | ~ · × | 6.5  | 7.9  | 1.1  | К.З         | 7.8         |
| AVE   | EST  | P.S.I | <b>7.</b> 0 | 4.1      | 9.9   | 4.0      | 3.9  | 4.0  | 3.9   | 4.0   | 3.H      | 4.1  | 3,9                   | •    | ×.          | £. 9 | •    | 3. H | •            |      | •    | ٥.۴   | •    | 3.H  | •    | <b>4</b> .0 | 3.9         |
| 10    | d    | 20    |             |          | 3,9   |          |      |      | -     | _     | _        | 4.1  | _                     |      | 3. A        | _    | _    | ₩. K | -            | -    |      | -     |      |      | •    | 4.1         | <b>4</b> .0 |
| ×     | REFL | S     | . 2         | -        | 2,65  | 4        | S    | _    | $\Xi$ | 0     | $\sim$   | 9    | $\boldsymbol{\gamma}$ | æ    | 4           | 9    | 9    | ~    | _            | 2    | 0    | S     | 5    | 2    | ~    | 3.51        | 9           |
| -     | ¥Α₩  | S     | 3.5         | •        | 3.1   |          | 3.2  |      | 3.8   | 3.4   | 3.6      | 4.2  | 4.0                   | 4.5  | 3.0         | 4.2  | 5.9  | 4.0  | 2.7          | 3,3  | 2.9  | 2.5   | 2.7  | 2,5  | 2.2  | 2.5         | 3.1         |
| _     | <    | S     |             | •        | •     |          | •    |      |       |       |          |      | •                     |      | •           | •    |      |      |              | •    |      |       | •    |      |      | 5.4         | •           |
| Z     | X    | 3     | 9.3         | 5.6      | 1.6   | 5.5      | 4.3  | 1.4  | 2,3   | 9.9   | g. 6     | 5.3  | 0.1                   | 5.4  | 8.5         | 5.1  | 5,3  | 5.5  | 6.5          | 5.4  | 8.3  | 5.8   | 5.5  | 0.2  | 6.2  | 15,79       | 1.9         |
|       | -    | 5     | -1.2        | •        | •     | -1.2     | 0.1- | 1:1  | -1.0  | -1.2  | -1.0     | •    | -1.1                  | •    | •           | •    | •    | -1,0 | •            | •    | •    |       | •    | •    | •    | -1.0        | •           |
| IMUMI | SURE | 90    | 186.1       | 5        | 185.3 |          | •    | :0   | •     |       |          |      | .5                    | 10   |             | 10   | ıc.  | .0   | 10           | ٠,   |      | •     | .0   | •    | •    | 4 185.3     | •           |
| I     | x    | Ç,    | •           | •        | •     | •        | •    | •    | •     |       |          | •    | •                     | •    | •           | •    | •    | •    | •            | •    | •    | •     | •    | •    | •    | 5.4         |             |
|       | SHOT |       | -           | 7        | ~     | 7        | S    | 9    | 7     | æ     | <b>3</b> | 10   |                       | 12   | 13          |      |      |      |              |      |      |       |      |      |      | 24          |             |

TABLE 3-31. JUNE 4, ON AXIS, FACE-ON, 1 MIN.

LOVERACE SHUCK TUBE TEST

4 JUN 79 UN AKIS, FACE-UH I MIN BETWEEN SHUTS

| Pius    | dr I | S # -      | 14.1  | 14.B     | 14,5     | 14.3 | 14.0    | 16.2  | 14.H  | 15,3     | 16.4       | 15,6  | 15.1  | 14.8     | 13.8  | 15.3  | 14.4     | 14.3  | 1.3.8       | 15.0 | 14.5  | 12.9  | 14.0  | 13.5    | 14.7    | 14.7  | 15.4  |
|---------|------|------------|-------|----------|----------|------|---------|-------|-------|----------|------------|-------|-------|----------|-------|-------|----------|-------|-------------|------|-------|-------|-------|---------|---------|-------|-------|
| TOT     | dw1  | -          | -3.0  | 3.0      | 1.2      | -5.3 | -5.2    | 10.1  | •     | •        | 4.2        |       | 2.2   |          |       | ~     | 2.1      | •     | 0.5         |      | -1.4  | 1.5   | -3.1  | æ. 0-   | 4.0     | 0.6   | 6.3   |
| ESF     | 400R | <b>≽</b> . | 147.  | 108.     | 153.     | 146. | 140.    | 128.  | 139,  | 94.      | 107.       | 85    | 137.  | 91.      | 148   | 133.  | 135.     | 138.  | 140.        | .66  | 143.  | 142.  | 130.  | 144.    | 135.    | 97.   | 107.  |
|         | BUUR | ž.         | 24.   | 26.      | 21,      | æ    | 21.     | 24.   | 10.   | æ        | 6          | 26.   | 5     | 24.      | S.    | 5.8   | <b>œ</b> | 20.   | 23.         | 23.  | æ     | 10.   | 23.   | 22.     | æ       | 57.   | 23.   |
|         | ADOR | V.<br>X    | 5.4   | 6.1      | 9.0      | 5.5  | 6.1     | 8.5   | 6.3   | 6.1      | H.         | 6.1   | 6.7   | 5,4      | 4.4   | 6.2   | 6.2      | 5.7   | <b>6.</b> b | 6.7  | t. 6  | 3.5   | h.2   | 5.9     | 8.5     | 8.7   | 2 ° S |
| A V F.  | EST  | 1 S d      | 4.8   |          | 4 · E    | 6.4  | 4.9     | 5,1   | 4.9   | 5.1      | 5.0        | 5.1   | 5.0   | 5,3      | 5.1   | 5.2   | 4.7      | 4.6   | 4.9         | 5.2  | 5.3   | 4.9   | 5.2   | 4.9     | 5.1     | ¥.    | 5.0   |
| ESF     |      |            | 4.9   |          |          |      |         | 5.5   |       |          |            |       |       |          |       | 5,3   | o. *     | 4.7   | 5.0         | 5.3  | 5.3   | •     | 5.    |         | 5.2     | 4.9   | 5,1   |
| J. 1 4E | REFL | S          | 5,09  |          |          | 3.66 | 2.58    | 2,06  | 1.77  | 2.06     | 2,11       | 1,52  | 2,25  | 1.71     | 2.43  | 1.89  | 3.81     | 2,13  | 3.14        | 7.56 | 3.16  | 4.43  | 3,90  | 4.00    | 4.56    | 4.51  | 2,65  |
| REFE    | MAX  | PSI        | 6.3   | 7.1      | 5.B      | 5.7  | 5.<br>E | 9•9   | 7.2   | 7.1      | 6.4        |       | 6.2   |          |       | 7.1   | 5.5      | S. E  | 5.5         | 5.7  | 6.3   | 5.5   | ¥.    | 4.6     | 5.2     | 5.4   | 5.4   |
| INIT    | MAX  | ps i       | 12.3  | 12.3     | 12.2     | 12.0 | 11.B    | 12.2  | 11.7  | 12.8     | 11,9       | 10.9  | 12.8  | 11.5     | 12.7  | 11.4  | 11.8     | 11.3  | 11.2        | 11.1 | 12.3  | 12.7  | 12.H  | 11,3    | 12.2    | 11.3  | 11.9  |
| TIME    | MIN  | S          | 7     | <u>.</u> | ٠.<br>•  | 4.   | 31.44   | 13,38 | 13.54 | 18,89    | 33,45      | 31,06 | 13,37 | 13,38    | 13.53 | 29,06 | 17,98    | 13,52 | 18.71       | 00.0 | 18.03 | 18.34 | 18.h0 | $\circ$ | 33.40   | 15.06 | 14.79 |
|         | Z Z  | PS [       | -0,91 | ÷.       | •        | H.O. | 6.0-    | b.0-  | •     | H . 0 -  | •          | •     | H 0-  | •        | •     | -1.9  | 8·0-     | b.0-  | 6.0-        | -1:1 | 6.0-  | 1.0-  | 6.0-  | 7.0-    | H . O . | •     | 6.0-  |
| HOHI    | SURE | 90         | 192.5 | 92.      | <b>?</b> | •    | ~       | 192.5 | •     | 2        | •          | _     | •     | <b>.</b> | ~     |       | 2.       | •     | _•          | •    | 42.   | •     | ?     | •       | 192.5   | 191.8 | 5     |
|         | P.E. | S          | •     | •        |          | 2    | •       | ~     | _     | 2.       | 11.0       |       | ~     |          | 2.    |       |          | •     |             | _    | 12,3  | ~     | ~     | -       | •       | 11.3  | -     |
|         | SHUT |            | -     | ~        | ~        | 4    | S       | •     | 7     | <b>æ</b> | <b>5</b> . |       | 11    |          | 13    | 14    | 15       |       | 17          |      |       |       |       |         |         | 24    |       |

TABLE 3-32. JUNE 4, ON AXIS, GRAZING, 1 MIN.

LOVELACE SHOCK TUBE FEST

4 JUN 79 ON AXIS, GRAZING I MIN HETWEEN SHOTS

|          | •   |             |      |          |       | REFL       | r I ve |      | 5     |         |       | ES L |       | Pns           |
|----------|-----|-------------|------|----------|-------|------------|--------|------|-------|---------|-------|------|-------|---------------|
| SHUT     | Ξ   | SSURE       | 2 11 | I        | <     | ⋖          | REFL   | XYX  | v.    | ADIIR   | BOOR  | BUUR | Œ     | IAP           |
|          | v.  | D8          | S    |          | 5     | PSI        | NS     |      | 50    | M S     | МS    | ₹.S  | Ġ     | S             |
| -        | 5.1 | £ #         | -1.0 | 5.5      | 5.1   | 3.4        | 2,12   | 3.7  | 3.6   | 5.3     | в1.   | 147. | -10.6 |               |
| ~        | •   | •           | •    | •        | •     | 3.5        | 7.06   | æ.€  |       | 5,3     | 649   | 131. | ~     | 10.4          |
| ~        | •   | ¥5.         | 6.0- | 1.3      |       | 3.2        | 3.88   | 3.7  | •     | 7.0     | H 4 . | 141. | 9     |               |
| ~        | •   | •           | 0.0  | •        | 0 · c | 0.0        | 00.0   | 0.0  | 0.0   | 0°0     | •     | •    | 0     | 0.0           |
| s        |     | ž.          |      | _        | 5.1   | 3.5        | 3.89   | 3.7  | 3.7   | 5,3     | 79.   | 149. | ^     | 6.6           |
| £        | •   | 84          | •    | ÷        | 6· V  | 3 · 6      | 7.0H   | 3. H | •     | 5.3     | ж I.  | 136. |       | 10.3          |
| 1        |     | <b>85</b> . | •    | <b>-</b> | •     | 3.7        | 3.24   | 3°E  | 3.7   | 5.5     | 57.   | 151. | -3.2  | -             |
| æ        | •   | 85.         | •    | 5.       | 5.2   | 3.3        | 2.13   | 3.9  | 3 . B | 8.0     | H2.   | 140. | -3.0  | •             |
| <b>ઝ</b> | •   | 8 S.        |      | 4        | •     | 3.5        | 2,13   | 3.7  | 3.7   | 0°8     | 114.  | 140. | -2.1  | •             |
|          | •   | 85.         | •    | 5.       | •     | 4.3        | 1.52   | 3°E  | 3.7   | 5.2     | 65.   | 139. | -4.7  | -             |
|          | •   | H 5.        | •    | *        | •     | 3.0        | 2,27   | 3.8  | 3.7   | 5.3     | 8 I • | 139. | 0.H-  | -             |
|          | •   | <b>85</b>   |      | 5        |       | 4.1        | 1.74   | 3.9  | 3.8   | 5.3     | 70.   | 128. | -3.5  | ~             |
|          |     | 85.         | •    | <u>.</u> | •     | 2.6        | 2,44   | 3. в | 3.B   | ь.<br>В | 66.   | 130. | -3.R  | ~             |
|          |     | 85.         |      | m        | •     | 3,3        | 1.91   | 3.9  | 3.8   | 5.3     | 75.   | 143. | -3.0  | -             |
|          | •   | H 4.        | ું•  | ~        | •     | 2 · B      | 3.86   | 3.6  | 3.5   | 4.4     | *     | 139. | -1.4  | -             |
| 9        | •   | 184.6       | -1.0 | 25, 31   | 4.9   | 3.5        | 2,15   |      | 3.5   | 5.2     | 73.   | 148. | -3.3  | 10.4          |
|          |     | # 4         | •    | ~        | •     | 3.2        | 4,25   |      | 3.6   | K.5     | 80°   | 141. | -1.7  | ~             |
|          | •   | £           |      | 5.       | •     | <b>-</b> • | 2.28   | 3.9  | 3,8   | 5,5     | 65.   | 105. | -3.7  | _             |
|          |     | H5.         | 6.0- | 5.       | •     | 5,5        | 5.44   |      | -0.2  | 0.0     | 66.   | 156, | -7.8  | _             |
|          | •   | H 4 .       | ¥.0- | 5.       | •     | 3.5        | 4,35   |      | 3.7   | 8.5     | 72.   | 139. | 0.4-  | -             |
|          | •   | H5.         | -1.0 | <b>÷</b> | •     | 3.1        | 3.89   |      | 3.8   | 5.5     | 59.   | 134. | 1.4.7 | 6.6           |
|          | •   | # 4 ·       | 6.0- | Э.       |       | 3.0        | 4,24   |      | 3.6   | 7.1     | 99    | 140. | -1.9  | 10.1          |
|          | •   |             | 6.0- | 5        | 5.4   | 3,3        | 4.49   | 3.8  | 3.8   | 6.4     | 57.   | 152. | -6.2  | 9.1           |
|          | •   | ¥5.         | _    | _        |       | 3.6        | 4.44   | 3.7. | 3.6   | ج.<br>چ | H 2.  | 141. |       | 10.6          |
|          | •   | 85.         | -1.4 | 56,34    | 5.5   | 3,1        | 3,49   | 3.7  | 3.7   | 6.7     | 106.  | 140. | -3.3  | $\Rightarrow$ |

## SECTION 4 SUMMARY DATA

## 4-1 PRESENTATION OF DATA

In this section, the data supporting the conclusion drawn in Section 1 are presented. Following the text of this section are nine tables summarizing the May shock tube test and its relation to other tests of the shock tube and howitzer.

Tables 2-4 through 2-6 list the peak recorded pressures, estimated peak pressures (see Section 3) and positive impulses for each shot of the May test. (The positive impulse of a pressure time history is the pressure impulse from pulse onset to the point in time when the pressure returns to the ambient level for the first time.) Also included in these three tables are some summary statistics.

Table 2-7 gives the the ratios of the standard deviation in peak pressure to the average peak recorded pressure expressed in percentages. Table 2-8 gives similar information on the positive impulses.

Tables 2-9 through 2-11 contain correlation information. The correlation coefficients between various pressure time histories 50ms after pulse onset are presented. In addition, the minimum correlation coefficient occurring during this time interval is presented. Volume III of this series of reports gives an explanation of this parameter (see References).

The last table, Table 2-12, presents the standard deviation, normalized skewness and normalized kurtosis of the correlated pressure time histories. Graphs of the pressure time histories of the shots analyzed in this Section can be found in Section 5.

## 4-2 CONCLUSIONS

The replacement of the second coil of primercord improved the shot-to-shot reproducibility of the shock tube. This is supported in Tables 2-7, 2-8 and 2-10. Table 2-7 shows that the standard deviation in peak pressures on a given day

TABLE 2-4. RECORDED MAXIMUM

LUYELACE SHUCK TURE TEST

12.8 9.5 11.9 0.58 0.34 12.9 12 9.8 25 0.93 DOAY 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2008 THE CO 2 1.04 11.5 1.09 1.19 0.89 12.5 25 10.3 2 **?** • UVENPRESSURE SUMMARY (PSE)
UALLY AVERAGE 11.9 11.3
SFU. DEV. 1.25 0.57
UALLY VARIANCE 1.56 0.33
UKRAND AVERAGE AND VANJANCE MAX, AND SHOT NO. 14.7 WARIANCE METWEEN GROUPS WARIANCE AITHIN GROUPS HECOMORD NAXIAUM (PSI) UM AXIS, FACE-UM 1.4 11.7 10.4 1.6.7

12.8 21 10.4 10

13.5 22 9.5 15

TABLE 2-4 (Cont.). ESTIMATED MAXIMUM

LUVELACE SHUCK TUBE TEST

ON AAIS, FACE-ON

ESTINATED MAXIMUM (PSI)

|       |         |             |     |     |     |     |     |      |     |             |     |           |     |             |     |     |     |           |          |           |     |             |      |     |             |           |                                      |               |           |                |                            |                         |                        | 5.7.13               |                  |
|-------|---------|-------------|-----|-----|-----|-----|-----|------|-----|-------------|-----|-----------|-----|-------------|-----|-----|-----|-----------|----------|-----------|-----|-------------|------|-----|-------------|-----------|--------------------------------------|---------------|-----------|----------------|----------------------------|-------------------------|------------------------|----------------------|------------------|
|       |         |             |     |     |     |     |     |      |     |             |     |           |     |             |     |     |     |           |          |           |     |             |      |     |             |           |                                      | 5.1           | 0.17      | f0.0           |                            |                         |                        | 7 6 5                |                  |
| DAYB  | 2 1 4 1 | ø. <b>+</b> | 5.1 | 3.0 | 5.1 | 5.0 | 5.2 | 5.0  | 2.5 | 5.3         | 5.2 | 5.2       | 5.4 | 5.1         | 5.3 | 6.4 | 4.7 | 5.0       | 5.3      | 5.3       | 4.0 | 5.3         | 6.4  | 5.3 | 4.9         | 5.1       |                                      | <b>5.</b>     | 0.40      | 0.16           |                            |                         |                        | 2.5                  |                  |
| DAY   | JUSEC   | 5.6         | 3.4 | ₹.  | 5.1 | 5.0 | 5.0 | ð. 4 | 3.6 | <b>7.</b> E | *.  |           | 4.9 | 5.1         | 4.7 | • • | 5.3 | 4.6       | 5.0      | 1.1       | 5.0 | 4.6         | 5.4  | 5.4 | 4.6         | 4.3       |                                      | 5.0           | 0.34      | 0.12           |                            |                         |                        | 3 6                  |                  |
| DAY6  | 30SEC   | 5.1         | 5.4 | 4.9 | 5.9 | 4.5 | 5.1 | 5.1  | 5.2 | 5.1         | 4.9 |           | 5.3 | \$ <b>*</b> | 4.6 | 39. | 7.4 | <b>9.</b> | 4.3      | 2.5       | 5.1 | æ. <b>7</b> | æ. • |     | 4.9         | 5.2       |                                      |               |           | 20.0           |                            |                         |                        | -                    |                  |
| DATS  | ZII     | 5.1         | 4.0 | 4.0 | 4.1 | 8.4 | 6.4 | 5.0  | 4.7 | 4.9         | 7:  | <b>9.</b> | 6.4 | æ.          | ₩.  | 4.7 | 5.0 | 5.0       | 5.1      | 5.1       | 4.9 | 5.1         | 5.1  | 2.0 | 5.0         | 4.5       |                                      | 5.0           | 0.44      | 91.0           | 60.0                       |                         |                        |                      |                  |
| DAY4  | OSEC    | #. <b>#</b> | 5.5 | 4.1 | ¥.  | 5.5 | 5.1 | 5.0  | 9.6 | 4.7         | 5.5 | 4.2       | 4.5 | 5.1         | 5.8 | 4.7 | 5.5 | 5.3       | 4.9      | 4.9       | 1.1 | 5.6         | 5.4  | 5.2 | 4.6         | 5.0       | 2                                    | 2.            | 0.12      | 0.05           | 5.0                        |                         |                        |                      |                  |
|       | 1412 2  |             | 5.4 | 5.2 | 5.3 | 5.5 | 5,2 | 5.5  | 5.3 | 5.1         | 5.2 | 5.6       | 5.4 | 5,1         | 5.4 | 5.1 | 5.t | 5.1       | 6.4      | 5.0       | 5.3 | 5.0         | 2.5  | 5.2 | 4.9         | ±.        | IARY (PS)                            | 5.0           | 0.18      | €              |                            | 91.10                   |                        |                      |                  |
|       |         |             | 5.2 | 5.1 | 2.0 | 5,1 | 1.1 | 4.¢  |     | 5.0         | 5.1 | 5.1       | 2.  | <b>5.</b> 0 | 4.7 | 5.0 | 5.1 | 5.2       | 5,3      | <b>↑.</b> | 5.1 | #.E         | 5.4  | 5.0 | <b>4.</b> t | 5,3       | SOURE SUMA                           | 5.2           | 0.24      | 90.0           | AND VARIA                  | CEN GROUPS              | IN GROUPS              | SHOP NO.             | CA IDEO GRA CATA |
|       | JM12    |             |     |     |     |     |     |      |     | 2.6         | 5.0 | ٠.٠       | 5.4 | 5.4         | 7.4 | 2.5 | 5.0 | 5.4       | 5.5      | 5.1       | 5.6 | 5.0         | 5.1  | 5.2 | ۶.۱         | \$        | ESTIHATED OVERPRESSURE SUMMARY (PSI) | DAILY AVERAGE | STD. DEV. | DATEY VARIANCE | GHAND AVERAGE AND VARIANCE | VARIANCE RETWEEN GROUPS | VAKIANCE MITHIN GROUPS | CA TORS ONE TAX NITE |                  |
| Sitor |         | -           | ~   | ~   | Ŧ   | •   | ٤   | -    | *   | 7           | =   | =         | 1.2 |             |     | c   | =   | -         | <u>=</u> | 7.3       | 5.0 | 77          | 88   | 73  | *?          | <b>47</b> | ESTIMAT                              | 140           | STS       | 1 40           | A H S                      | * >                     | * * >                  | 1 V C                |                  |

5.4 12

TABLE 2-4 (Cont.). IOSITIVE IMPULSE

15.0 0.50 0.25 15.1 0.56 0.34 GRADD AVENAGE AND VAKJANCE VAKJAUCK HETWERN GROUPS 27,48 VAKJANCE WITHIN GROUPS 0,41 16.9 0.57 0.33 (PSI-HS) 15.0 17.2 0.44 0.19 PUSIFIER IMPULSE (PSI-NS) SUMMARY LIVELACE SHUCK THRE TEST DAILY VARIANCE HALLY AVEHAGE STD. DEV. UN ARIS. FACE-UM PUSTIVE IMPULSE 

15.4 4 12.4 20

**4** 2 16.0

7 16.0

15.7 5

16.7 21 14.3 8

16.2 5

18.7 25

DAILY MAK, AND SHUT NO. 18.3 20 DAILY AIN, AND SHUT NO. 16.1 4

14.7 0.82 0.68

14.8 0.84 0.71

14.9 0.74 0.55

14.4 0.56 0.31

55

TABLE 2-4. (Cont.). RECORDED MAXIMUM

LOVELACE SHOCK TUBE TEST

UH AXIS, GHAZING HECUHDED MAXIMUM (PSI)

|         |       |     |     |         |             |     |     |             |     |     |           |     |     |         |          |     |     |       |     |     |     |     |     |     |     |            |               |     |           |             |          |                                 |   | 5.9 11      |
|---------|-------|-----|-----|---------|-------------|-----|-----|-------------|-----|-----|-----------|-----|-----|---------|----------|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|------------|---------------|-----|-----------|-------------|----------|---------------------------------|---|-------------|
|         |       |     |     |         |             |     |     |             |     |     |           |     |     |         |          |     |     |       |     |     |     |     |     |     |     |            |               | 5.2 | 0.21      | 0.04        |          |                                 |   | 6.1 25      |
|         |       |     | 5.1 | 5.3     | 5.0         | 5.1 | 4.9 | 5.5         | 5.2 | 5.2 | 5.4       | 5.3 | 5.4 | 5.4     | 5.2      | 1.1 | 5.4 | 5.1   | 5.3 | 5.5 | 5.0 | 5.4 | 5.1 | 5.4 | 5.4 | 5.5        |               | 5.2 | 0.39      | 0.15        |          |                                 |   | 5.4.21      |
| 1 1 4 6 | 30250 | ~~  | 5.4 | 5.1     | 5.5         | 2.5 | 5.3 | 2.5         | 5.1 | 4.7 | 5.1       |     | 5.2 | 5.9     | 9.0      | +.+ | 5.1 | # · # | 5.3 | ¥.  | 5.1 | 4.4 | 5.4 | 5.1 | 5.0 | :          |               | 5.1 | 0.42      | 0.18        | ,        |                                 |   | 6.5         |
|         | JOSEC | ¥.5 | Ŧ.  | 5.1     | \$.¢        | 4.5 | 5.3 | 5.1         | 5.2 | 4.8 | 6.4       |     | 5.4 | 5.1     | 4.5      | 5.3 | 4.8 | Ŧ.    | ₹.  | 5.5 | 5.6 | 5.4 | 4.7 |     | 4.9 | -:         |               | 9.0 | 0.21      | 0.04        |          |                                 |   | ~ .         |
| 2111    |       | 5.1 | 6.4 | a.<br>T | <b>4.</b> 8 | 3.4 | 9.0 | <b>4.</b> 9 | 4.6 | ¥.  | <b>8.</b> | 5.0 | 5.0 | 5.2     | 5.1      | 4.7 | 5.1 | 5.2   | 5.4 | 5.2 | 5.0 | 5.4 | 5.2 | 5.2 | 9.0 | 4.9        |               | 5.2 | 0.51      | 0.26        | Ξ.       |                                 |   | 5°3         |
|         | /usec | 5.1 | 5.9 | 4.3     | 5.1         | 6.6 | 5.1 | 5.3         | 4.7 | 4.5 | 5.4       | 4.5 | 4.5 | 5.3     | 5.7      | 5.0 | 5.4 | 5.4   | 5.0 | 4.4 | 5.0 | 5.1 | 5.1 | 5.5 | 5.4 | 5.1        |               | 5.5 | 0.19      | 0.04        | 5.2 0    |                                 |   | ۰.<br>د د د |
|         |       |     | 5.7 | 5.9     | 9.6         | 5.6 | 5.6 | 5.6         | 5.6 | 5.6 | 5.4       | 5,3 | 5.7 | 9.6     | 5.1      | 5.6 | 5.3 | 5.1   | 5.2 | 5.4 | 5.4 | 5.6 | 5.3 | 5.6 | 5.7 | 5.4        |               | 5,3 | 0.22      | 0.05        | ANCE     | 0.69<br>0.11                    |   | ء<br>•      |
|         |       | 2.5 | 5.4 | 5.2     | 5.1         | 5.2 | Ξ.  | 5.1         |     |     | 5.3       | 5.5 | 4.9 | 5.2     | 5.0      | 5.0 | 5.3 | 5.5   | 5.6 | 5.3 | 5.2 | 5,3 | 5.5 | 5.5 | 5.1 | 5.4        | ARY (PSI)     |     | 00.0      | 00.00       | AND VARI | BETAEEN GROUPS<br>WITHIN GROUPS | , | DE SHOF NO. |
|         | 2 .   | ٥.  | 0.0 | 0.0     | 0.0         | 0.0 | 0.0 | 0.0         | 0.0 | 0.0 | ٥.0       | 0.0 | 0.0 | e.<br>0 | c.0      | 0.0 | 0.0 | 0.0   | o•c | 0.0 | 0.0 | ٥.0 | ٥.0 | 0.0 | 0.0 | 0.0        | SSURE SUMMARY |     | Sru. DEV. | I.Y VARIANC | •••      | VAKIANCE BETA<br>Vakiance with  |   | LY MAX. AND |
| 2000    |       | -   | 7   | •       | •           | ŝ   | £   |             | r   | >   | 2         | =   | 2   | 6.1     | <b>-</b> | ÷.  | =   | 2     | ĭ   | 1.6 | ۹7  | 77  | 22  | 2.5 | 24  | <b>5</b> 2 | UVERPRESSURE  | DAU | SFU       | 140         | GRA      | > ><br>> >                      |   | 74 LY       |

5.8 .4.1 .15

TABLE 2-5. ESTIMATED MAXIMUM

LOVELACE SHOCK TUBE TEST

ESTINATED MAXIMUM (PSI)

UN AKIS, CHAZING

|            |        |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     |                                      |               |      |             |        |                              |                                         | =                       |      |
|------------|--------|------|--------|---------|-----|---------|---------|---------|--------|-----|---------|-----|------|-----|----------|-----|----------|------------|----------|---------|-----|---------|-----|----------|-----|-----|--------------------------------------|---------------|------|-------------|--------|------------------------------|-----------------------------------------|-------------------------|------|
|            |        |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     |                                      |               |      |             |        |                              |                                         |                         | • •  |
|            |        |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     |                                      |               |      |             |        |                              |                                         | •                       | , :  |
|            |        |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     |                                      | ~             | 0.17 | 6.59        | •      |                              |                                         | 1.7                     | ,    |
| DAYB       | HIL    | 7.1  | E .    | 1.1     | 3.7 | 7.      | æ.      | 8,0     | 5.0    | 3.7 | 3.6     | 9.6 | 3.9  | 8.5 | 3.8      | 3.6 | 3.6      | 3,6        | 3.9      | •       | 3.7 | 2.9     | 3.7 | B. 4     | 3.7 | 3.7 |                                      | _             | م.   | _           |        |                              |                                         | -                       |      |
| _          | _      |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     |                                      | -             | 0.26 | 0.0         | •      |                              |                                         | *                       |      |
| DAY        | 30 SEC |      | 3.7    | 1.6     | -   | 7:1     | 3.E     | 3.1     | 3.7    | 3.7 | 3.6     | ,   | 3.1  | 4.1 | 3.6      | 0.6 | 4.0      | 3.5        | 3.6      | 3.5     |     | 3.5     | +:1 | <b>4</b> | 3.4 | 3,3 |                                      | 9             | 0.23 | 0.5         |        |                              |                                         | =                       |      |
|            | ~      |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     |                                      | _             | •    | 5           |        |                              |                                         | 1.0                     |      |
| DAY6       | BUSEC  | 3.7  | -      | 3.7     | +:  | 3.4     | 3.1     | 3.1     | 3. H   | 3.7 | 3.1     |     | 3.8  | 3.3 |          | 3.5 | 3.6      | 3.5        | 3.5      | 3.7     | 3.6 | 3.6     | 7.7 |          | 3.6 | 3.E |                                      | 3.6           | 0.10 | 10.0        |        |                              |                                         | 2                       |      |
|            | ^      |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     |                                      |               |      |             |        |                              |                                         | 4.2                     |      |
| 1) A Y S   | 7 T T  | 7. E | 3.6    | 3.4     | 3.5 | 3.6     | 3.7     | 3.6     | 3.5    | 3.7 | 3.6     | 3.6 | 3.7  | 3.7 | 4.7      | 1.4 | 1.1      | 3.7        |          | ¥.      | 3.6 |         | 3.8 | 3.7      | 3.7 | 7.4 |                                      |               | 0.5# | 0.34        | ~      |                              |                                         | 20                      | . •  |
|            |        |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     |                                      | 6             | ~    | =           | 0      |                              |                                         |                         |      |
| <b>UAY</b> | 20SEC  | 7.7  | ÷.     | 7.4     |     | 0.4     | 3.6     | 3.5     | 3.4    | 3.4 | 4.6     | •   | J. 4 | ÷.  | 4.0      | 3.4 | 3.6      | 3.8        | 3.5      | 3.1     |     | 4.0     | 3.7 | 3.7      | 3,2 | ••  | _                                    | 3.9           | 0.12 | ÷           | 3.7    |                              |                                         | •                       |      |
|            | ~      |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     | (PSI                                 | œ             | 12   | 02          |        | 38                           | 0.16                                    | =                       | •    |
| 7473       | 2 2 2  | 7.   | -      | •       | ð.  | -       | Ξ.      |         | •      | •   | 3.8     | 3.5 | 4.2  | ÷.  | 1.9      | 9.6 | 3.9      | <b>.</b> . | 3. B     | 3.6     | ¥.  | 3.9     | ÷.  | 3.9      |     | 3.6 | ARY                                  | ~             | Š    | •           | INCE   | =                            | •                                       | 0.0                     |      |
|            |        |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     | SUR                                  | 0.0           | 0n.  | ٠<br>و.     | VARI   | KON                          | Series                                  | C NO.                   |      |
| 714        | 2 1 2  | 3.E  | 4.4    | 3.7     | 3.6 | 7.      | 3.7     | 1.1     |        |     | ٠.      | . v | 1.1  | ¥.  | 3.7      | ۵.  | <b>.</b> | 3.9        | 7.       | 3.9     | 6.  |         | ÷   | 3.6      | B.£ | •   | SURE                                 |               | -    | •           | AMO    |                              | ≊<br>≅                                  | SHO                     | 200  |
|            |        |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     | RPHES                                | KAGE.         |      | IAnce       | KAGE   | 4 3 3 3 4                    | ======================================= | NA.                     | 1    |
|            | 2 2 2  | ÷.   | e<br>• | c.<br>0 | •   | e.<br>0 | 3.<br>9 | e.<br>c | ٠<br>: | •   | e.<br>= | ÷.  | c.   | =   | ٥.0      | ٥.  | c.<br>3  | 0.0        | ÷.       | e.<br>9 | c.  | =.<br>0 | c.  | c.       | ٥.٥ | ÷.  | OVE                                  | AVE           | DEV. | ¥<br>×<br>> | A VE   | 2                            | ن.<br>ت                                 | XAX                     | 3    |
| -          | -      |      |        |         |     |         |         |         |        |     |         |     |      |     |          |     |          |            |          |         |     |         |     |          |     |     | ESTINATED OVERPHESSURE SUMMARY (PSI) | UALLY AVERAGE | sru. | UALLY       | in tro | VARIANCE MELALER GROUPS 0.38 | ٠<br>-<br>-                             | HATLY MAK, AND SHOF NO. | 1714 |
|            |        | -    | ~      | ~       | •   | ď       | و       | -       | z      | 7   | 2       | =   | 2    | =   | <u>-</u> | ŗ   | ٤_       | -          | <b>⊉</b> | -       | 2   | 7.      | 7.7 | 5.8      | * * | \$  | 371                                  | _             |      | -           | -      |                              | _                                       | -                       |      |

3.4 12 1.5 15

TABLE 2-5 (Cont.). POSITIVE IMPULSE

LOVELACE SHUCK TUBE TEST

UN AKIS, GRAZING

PUSITIVE IMPULSE (PSI-HS)

|       |      |      |      |      |      |          |      |          |      |      |      |     |      |      |     |      |      |      |      |          |      |      |      |      |             |          |                                   |               |           |                |                            |                         |                        | •  | . ~                     |
|-------|------|------|------|------|------|----------|------|----------|------|------|------|-----|------|------|-----|------|------|------|------|----------|------|------|------|------|-------------|----------|-----------------------------------|---------------|-----------|----------------|----------------------------|-------------------------|------------------------|----|-------------------------|
|       |      |      |      |      |      |          |      |          |      |      |      |     |      |      |     |      |      |      |      |          |      |      |      |      |             |          |                                   |               |           |                |                            |                         |                        | •  |                         |
|       |      |      |      |      |      |          |      |          |      |      |      |     |      |      |     |      |      |      |      |          |      |      |      |      |             |          |                                   |               |           |                |                            |                         |                        | 7. | 22                      |
|       |      |      |      |      |      |          |      |          |      |      |      |     |      |      |     |      |      |      |      |          |      |      |      |      |             |          |                                   | 10.5          | 0,42      | 0.17           |                            |                         |                        |    |                         |
| JAYR  | 2    | 0.2  | 4.0  | 9.0  | 9.0  | 6.6      | 0.3  | 0.5      | 1.6  | 1.   | 0.1  | 0.2 | 0.5  | 0.1  | 9.0 | 4.0  | • •  | 6.0  | 4.0  | 9.0      | 0.1  | 5.6  | 0.1  | 9.7  | 9.0<br>0    | 10.3     |                                   | ~             | •         | 5              |                            |                         |                        | •  | -                       |
| =     | _    | _    | _    | _    | _    |          | ~    | -        |      | _    | _    | ~   | -    | -    | _   | _    | -    | -    | -    | _        | 6.7  |      | _    |      | _           | _        |                                   | 10.           | -         | -              |                            |                         |                        |    | 4.7                     |
| DAYT  | OSEC | 1:1  | 10.5 | 10.1 | 11.1 | 10.5     | 10.7 | 10.1     | 10.1 | 10.2 | 10.4 |     | 9.6  | 10.4 | 1.1 | 10,5 | 10.1 | 10.1 | 10.1 | 10.4     | 10.9 | 11.3 | 11.0 | 10.1 | 10.8        | 11.2     |                                   | 6.5           | 0.55      | 30             |                            |                         |                        | ,  | ; -                     |
|       |      |      |      |      |      |          |      |          |      |      |      |     |      |      |     |      |      |      |      |          |      |      |      |      |             |          |                                   | ~             | J         | 5              |                            |                         |                        | :  | 9.6                     |
| DAYE  | DSEC | 6.01 | 10.4 | 9.01 | 10.5 | 9.<br>B  | 10.1 | 10.5     | 10.1 | 10.1 | 10.  |     | 10.B | 10.7 | 9.9 | 6.01 | 10.1 | 6.6  | 10.7 | 10.2     |      |      | 8.7  |      |             | 10.1     |                                   | 10.4          | 0.42      | 91.0           |                            |                         |                        | -  | e e                     |
| _     | ž    |      |      | _    |      |          |      |          |      |      |      |     |      | _    |     | _    | _    |      | _    | _        | _    | _    |      |      | _           | _        |                                   |               |           |                |                            |                         |                        | •  | - 3                     |
| A Y S | 21 1 | 1.6  | 8.0  | 0.2  | 2.0  |          | 0.1  | 0.2      | 1.0  | 4.0  | 6.6  | 0.0 | 0.5  | 3.0  | 0.0 | 0.   | 4.0  | 6.0  | 1.2  | 0.7      | 7.0  | 8.0  | 0.5  | 0.1  | 0.5         | 0.3      |                                   | 10.8          | 0.46      | 0.21           | =                          |                         |                        | Ī  | •                       |
| a     | -    |      | _    | -    |      | _        |      | -        | -    | -    |      | -   | _    |      | -   | _    | -    | -    | -    | -        | -    | ~    | -    | -    | -           | -        |                                   |               |           |                | 0.2                        |                         |                        | 36 | 5 4                     |
| A Y 4 | SEC  | 1.0  | 0.2  | 9.6  | ۵.5  | 1:1      | æ. e | Ð. C     | 9.0  | 6.0  | 9.6  |     | 0.2  | 0.7  | 1.1 | 1.0  | 0.3  | 1.2  | · ·  | 0.6      | 5.0  | 1.1  | 1.1  |      | <b>5</b> .0 | ٠.<br>ت  |                                   | 10.4          | 0.38      | 0.15           | ٠,                         |                         |                        | :  | - 30                    |
| 3     | 20   | _    | _    |      | _    | _        | _    | _        |      |      |      | _   | _    | _    | _   | _    | _    | _    | _    | _        | _    | _    | _    | _    | _           | -        | _                                 | =             | _         | =              | 0                          | 1.38                    | 24                     | •  | <b>;</b> =              |
| * * * | 2 7  |      | B.0  | 4.0  | 0.3  | 6.5      | 0.0  | 0.2      | 7.0  | 0.7  | 3.0  | 5.0 | 0.3  | 7.5  | 5.0 | 1,1  | *    |      | Ŧ.   | 5.5      | 6.4  | 7.1  | 9.6  | 4.0  | 6.6         | 5.0      | POSITIVE IMPULSE SUMMARY (PSI-MS) | 10.0          | 0.7       | 0.50           | VCE                        |                         | 0.2                    | •  | - 0                     |
| à     | Ξ    | Ξ    | Ξ    | Ξ    | ~    | <u>~</u> | -    | <u>-</u> | =    | _    | •    | Ξ   | Ξ    | Ξ    | =   | -    | =    | =    | ٠    | Ξ        | •    | Ξ    | Ξ    | -    | •           | Ξ        | 3                                 | 0.0           | 00        | 00             | AHIA                       | JUPS                    | e S                    | •  | Ç                       |
| 72    | =    | 7.   | _    | -    | ٥.   | . 2      | -    | ٠.       |      |      | ₹.   | 7   | Ξ,   | ۲.   | s   | ٥.   | -    | ٥.   | ٥.   | >        | -    | ٠.   | ٤.   | Ŧ.   | 7           | æ.       | ***                               | 9             | 00.0      | 00.0           | N GN                       | 25                      | GRU                    | 5  | SHUT                    |
| YO    | I    | 2    | 10.7 | 20   | 3    | 2        | 2    | <b>~</b> |      |      | 30   | 2   | =    | 3    | *   | -    | 2    | 2    | =    | Y . C    | Ξ    | 5    | 2    | 3    | •           | <b>5</b> | SU                                | 3             |           | NCF:           | 3E A                       | PWEE                    | FHIR                   | 4  | 324                     |
| _     | z    | •    | •    | 0    | c    | 0        | =    | •        | 9    | э    | 5    | •   | 9    | 9    | 0   | 0    | 0    | c    | 9    | •        | 0    | c    | 0    | =    | 0           | 9        | 6104                              | DAILY AVERAGE |           | DAILY VARIANCE | GRAND AVERAGE AND VARIANCE | VARIANCE BETWEEN GROUPS | VAMIANCE WITHIN GROUPS | *  | CALLY MIN. AND SHUT NO. |
| ÛΑΥ   | 1    | 9.0  | 0.0  | =    | =    | 5        | c    | <b>3</b> | 9    | \$   | 0    | 0   | =    | Ċ    | =   | •    | =    | c    | 0    | 0.0      | c    | 0.0  | ċ    | =    | 9           | 0.0      | - E                               | I.Y A         | STU. DEV. | 7 7            | A CE                       | DWE                     | IANC                   | •  | 1                       |
| ٠.    |      | _    | ~    | -    | -    |          | ,    | _        |      | •    | •    | _   | ~    | _    | _   | _    |      | _    | -    |          | _    | _    | ~    | _    | _           | _        | A 1 J 1 S                         | 141           | S         | UAI            | 4 × :                      | 4                       | ¥ >                    | 44 |                         |
| SAUF  |      | _    | . 1  | .,   | •    | • ′      | _    | -        | •    | •    | Ē    | _   | _    | _    | ~   | -    | =    | 1    | Ξ    | <u>.</u> | 20   | 7    | 7.7  | 7    | č           | ~        | P.0.4                             |               |           |                |                            |                         |                        |    |                         |
|       |      |      |      |      |      |          |      |          |      |      |      |     |      |      |     |      |      |      |      |          |      |      |      |      |             |          |                                   |               |           |                |                            |                         |                        |    |                         |

TABLE 2-5 (Cont.). RECORDED MAXIMUM

LOVELACE SHOCK TUBE TEST

UPF AXIS, FACE-UN

| SHIT     | DAYI           | DAY2                                             | UAY3       | DAY4    | DAYS           | DAY6    | DAY     | DAYB      |       |   |
|----------|----------------|--------------------------------------------------|------------|---------|----------------|---------|---------|-----------|-------|---|
|          | 2 2            | N I K                                            | 2 T T      | 20SEC   | 2 7            | BOSEC   | 30860   | 2 2 -     |       |   |
| -        | 11.2           | 11.5                                             | 10.9       | 6.11    | 1.4            | 12.1    | 12.5    | 11.0      |       |   |
| ~        | 9.6            | 10.4                                             | 12.8       | 13.1    | 12.8           | 12.2    | 10.5    | 13.4      |       |   |
| ~        | 10.6           | 12.0                                             | 13.1       | 12.7    | 11.2           | 11.7    | 12.0    | 12.9      |       |   |
| •        | 7.0            | o.<br>5                                          | 13.2       | 11.3    | 11.0           | o.c     | 12.9    | 11.6      |       |   |
| ĸ.       | <b>5.</b> 5.   | æ.                                               | 13.3       |         | 12.2           | 0.0     | 10.5    | 11.9      |       |   |
| ٤        | F. 7           | 10,3                                             | 12.1       | Ξ.      | 10.9           | 0.0     | 11.1    | 12.2      |       |   |
| ~        |                | 10.7                                             | 13.4       | 12.4    | 12.1           | ÷.      | 10,1    | 11.2      |       |   |
| Ŧ        | 10.1           |                                                  | 12.5       | 11.3    | 10.1           | 0.0     | 11.0    | 11.1      |       |   |
| 3.       | 10.4           | <b>9.</b> 8                                      | 11.7       | 4.5     | 11.5           | 0.0     | 10.4    | 13.1      |       |   |
| =        | æ. #           | 10.2                                             | 13,3       | 9.6     | 11.5           | o.<br>o | 10.3    | 12.4      |       |   |
| =        | 10.2           | 11.6                                             | 12.4       | 9.6     | 12.4           | 0.0     |         | 12.7      |       |   |
| 7.       | Ξ.             | 10.3                                             | 14.0       | 4.7     | 12.6           | 0.0     | 11.0    | 12.1      |       |   |
| 7        | 1              | 10.5                                             | 12.2       | 4.1     | # . I .        | 0.0     | 10.9    | 12.4      |       |   |
| -        | 6.3            | 10.1                                             | 13.1       | В.3     | 12.6           | 0.0     | 11.3    | 11.7      |       |   |
| 7.       | 10.            | 6.0                                              | 13,5       | 9.01    | 11.4           | 0.0     | = -     | 11.7      |       |   |
| =        | 4.5            | 10.7                                             | 12.1       | 12.7    | 10.1           | 0.0     | 11.0    | 11.6      |       |   |
| -        | 10.4           | 10.4                                             | 13.5       | 12.3    | 12.6           | 0.0     | 10.4    | 11.5      |       |   |
| <u>=</u> | 11.5           | 12.4                                             | 12,5       | 10.0    | <b>*</b> ::    | o.0     | 11.5    | 12.6      |       |   |
| <u>-</u> | 1.1            | ٥                                                | 12.h       | æ.      | 11.7           | 0.0     | 11.3    | 12.5      |       |   |
| ?        | H. E.          | 12.1                                             | 13,5       | 10.1    | 11.4           | 0.0     | 13.6    | 11.9      |       |   |
| 7.       | 10.1           | 12.1                                             | 12.3       | 11.2    | 13.3           | 0.0     | 6.6     | 13.1      |       |   |
| 7.7      | 10.5           | 11.2                                             | 1 3.A      | 10.6    | 12.0           | 0.0     | 12.4    | 12,3      |       |   |
| .7       | ÷.=            | 11.5                                             | 12.6       | 10.6    | 12.7           | 0.0     | 11.5    | ٥. ١ .    |       |   |
| *~       | 11.1           | 11.5                                             | 12.6       | 4.5     | 0.11           | e. e    | 10.9    | 11.4      |       |   |
| £        | 11.7           | 11.6                                             | ١١. ٩      | ¥.\$    | 11.2           | 0.0     | 10.3    | 12.5      |       |   |
| 111      | =              |                                                  |            | :       |                |         | ;       |           | •     |   |
|          | CAILY AVERAGE  |                                                  | # O F      | 17.8    | 9.0            | 7:-     | o.<br>= | -:-       | 1.7.1 |   |
|          |                | 96.0                                             | 95.0       | 0.75    | 1.39           | 0.76    | 0.00    | 0.19      | 0.66  |   |
|          |                | INCF. 0.93                                       | 0.92       |         | 1.92           | 0.54    | 00.0    | 0.63      | 0.43  |   |
|          | -              | AVERAGE AND VARIANCE<br>NCE NETWEEN GROUPS 19.01 | کر<br>تاتی | ~       | . <del>.</del> |         |         |           |       |   |
|          | VARIABLE WE    | THIN CRUUT                                       |            | •       |                |         |         |           |       |   |
|          | DAILY MAX. AND | SHUF                                             | NO. 11.8   | 20 12.4 | 18 14.0        | 1.3     | 11.1 2  | 1 4 3 3 1 |       | 2 |
|          |                |                                                  |            |         |                |         |         |           |       |   |

11.0

TABLE 2-5 (Cont.). ESTIMATED MAXIMUM

LOVELACE SHOCK TUNE TEST

UFF AXIS, FACE-ON

ESFINATED HAXIMUM (PSI)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.3 15                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~ ~                                                                    |
| 80 00<br>80 00<br>80 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.7                                                                    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.7 21<br>4.8 3                                                        |
| 00<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6 14                                                                 |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.2 16<br>5.2 24                                                       |
| 21<br>A X X X A X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.5<br>9                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 5.5                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.2 13                                                                 |
| A W W W W W W W W W W W W W W W W W W W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SHOT NO.                                                               |
| HUT DAYL DAY2 DAY3 C<br>1 4.8 5.1 5.3<br>3 4.8 5.1 5.7<br>4.6 5.0 5.7<br>5.0 5.7<br>5.0 5.7<br>6.0 5.7<br>6.0 5.7<br>6.0 6.1<br>11 4.7 5.0 5.8<br>12 4.7 5.8<br>13 4.9 5.1 5.8<br>14 4.7 5.8<br>15 6.0<br>16 4.6 5.1 5.8<br>17 5.0 5.1 5.1 5.1<br>18 4.9 5.1 5.1<br>19 4.9 5.1 5.1<br>10 4.9 5.1 5.0<br>11 4.7 5.2 5.8<br>12 4.7 5.2 5.8<br>13 5.2 5.8<br>14 4.9 5.1 5.8<br>15 6.2 5.8<br>16 4.9 5.1 5.9<br>17 5.0 5.0 5.9<br>18 5.1 5.1 5.1<br>18 5.2 5.8<br>19 5.1 5.1 5.1<br>19 5.2 5.8<br>10 6.9 5.9<br>10 6.9 5.9<br>10 6.9 5.9<br>11 6.9 5.9<br>12 5.1 5.1 5.1<br>13 5.1 5.1 5.1<br>14 6.9 5.1 5.9<br>15 6.9 5.9<br>16 6.9 5.9<br>17 6.9 5.0 5.9<br>18 5.1 5.1 5.1<br>18 5.2 5.9<br>18 5.1 5.1 5.1<br>18 5.2 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.1 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5.9<br>18 5 | VANIANCE WITHIN GROUPS DAILY MAX, AND SHOT NO. DAILY MIR, AND SHOF NO. |
| SHOT  34  34  34  34  34  34  34  34  34  3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DAILY<br>DAILY<br>DAILY                                                |

5.8 12 5.2 17

POSITIVE IMPULSE TABLE 2-6.

0.42 0.18 0.00 <del>-</del> ~ 14.6 15.9 0.69 0.48 4 5 17.8 16.1 24 16.6 0.43 0.19 DAJLY AVERAGE 13,4 14,5
STD, DEV. 0.58 0.47
DAJLY VARIANCE 0.33 0,22
GHAMD AVERAGE AND VARIANCE 15
VARIANCE BETWEEN GHOUPS 37,09
VARIANCE WITHIN GROUPS 0.33 DAILY MAX, AND SHUF NO. 14.3 20 DAILY MIN, AND SHOT NO. 11.9 7 SUMMARY (PSI-MS) (PS1-MS) LOVELACE SHOCK TURE TEST UFF AXIS, FACE-ON POSTRIVE IMPULSE PUSITIVE IMPULSE 

= 2 18.4 15.3

22 14.9

0.1

23

16.5 0.79 0.62

TABLE 2-6 (Cont.). RECORDED MAXIMUM

5.9 5.3 0.22 0.05 202 5.2 0.33 0.11 5.E 5.3 0.32 0.10 25 20 4000440000000 27........ 27........ 5.3 0.30 0.09 23 0.9 12 6.0 6.6 1.9 II 2.93 DATE AVERAGE 5.8 5.6 STD. DEV. DEV. D.26 DATEY VARIANCE 0.26 0.07 GHAND AVERAGE AND VARIANCE VARIANCE BEEMEEN GRUUPS VARIANCE WITHIN GRUIPS DATET MAX. AND SHUT NO. DAILT MIN. AND SHOT NO. UVERPRESSURF SUMMARY (PSI) LOVELACE SHOCK TUBE TEST DFF AXIS, GRAZING RECORDED MAXIMUM らかにアー かいけんのらかいんこうへきんけらか にてん だんたん しょうしょしょし

5.8 1 4.9 22

7 21

POSITIVE IMPULSE TABLE 2-6 (Cont.).

LOVELACE SHOCK TUBE TEST

10.2 0.46 0.21 10.0 0.52 0.27 (PSI-MS)
b 10.7
3 0.29 9.°° 0.11 0.00 UFF AXIS, GHAZING IMPULSE POSTRIVE 52222 23222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 24222 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 2422 242 2422 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242 242

DONE CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTROL OF CONTRO

200 EC 300 |             |           |       |       |                              |                        | UAILY MAX. AMD SHOT NO. 10.1 20 10.7 20 11.0 17 10.7 15 10.5 16 10.7 7 11.1 21 10. | 4    |
|-------------|-----------|-------|-------|------------------------------|------------------------|------------------------------------------------------------------------------------|------|
|             |           |       |       |                              |                        | =                                                                                  | 2    |
|             |           |       |       |                              |                        | -                                                                                  | 7    |
| 10.2        | 0.47      | 0.22  |       |                              |                        | 10.7                                                                               | 9    |
| <b>.</b>    | •         | ~     |       |                              |                        | 91                                                                                 | -    |
| 0.          | 0.34      |       |       |                              |                        | 10.5                                                                               | 7    |
|             | ÷.        | 91.   |       |                              |                        | 15                                                                                 | -    |
|             |           |       |       |                              |                        | 10.7                                                                               | 3    |
| 10.0        | 0.37      | 0.14  |       |                              |                        | 1.1                                                                                | 3    |
| ~           | ۰         | _     |       |                              |                        | 11.0                                                                               | 9    |
| _           | 9         | 0     | 0.21  |                              |                        | 20                                                                                 | =    |
| 10.0        | 0.52 0.46 | 0.23  | -     | VAMIANCE HEIMEEN GROUPS 1.37 |                        | 10.1                                                                               | 7    |
| ^           | •         | æ     | 3     | 3.                           | ۽                      | 50                                                                                 | 22   |
| <u>.</u>    | 0.2       | 0.0   | CE    | 1.37                         | ÷                      | 10.1                                                                               | 9    |
| ٥           | 33        | =     | AHIAR | JUPS                         | JPS                    | ,<br>CN                                                                            | 3    |
| 3           | ċ         | 0     | NO V  | Z CE                         | GRU                    | SHUT                                                                               | SHOF |
| SE          |           | HCF   | GE. A | INFE                         | THIN                   | 445                                                                                | AME  |
| <b>NERA</b> |           | VAHIA | VERA  | CH HE                        | VARIANCE WITHIN GROUPS | AAX.                                                                               | 2 -  |
| , Y         | ٠.<br>د   | 1.7   | CHI   | ILAM                         | ILAM                   | , L.Y.                                                                             | Y Y  |
| UAJ         | SFE       | 1     | CKA   | 14 >                         | X A X                  | I V I                                                                              | 4    |
|             |           |       |       |                              |                        |                                                                                    |      |

<u>=</u> -

TABLE 2-6 (Cont.). ESTIMATED MAXIMUM

22 0.09 7 3.9 0.23 0.06 4.2 3.8 0.28 0.08 - 3 3.9 308EC 308EC 4.1 4.1 3.3 3.3 \*::: 4.0 1.3 17 3.8 24 3.3 0.36 0.13 74 4.0 0.01 1.0 4.2 ESTIMATED DVERPHESSURE SUMMARY (PSI)
DAILY AVERAGE 8.8 4.0
SIN. DEV. 0.08 0.10 0.
DAILY VARIANCE 0.01 0.01 0.
GRAWD AVERAGE AND VARIANCE 1.8
VARIANCE WITHIN GRUUPS 1.53 4.0 13 3.6 15 MAX. AND SHOT MU. LUVELACE SHUCK TUBE FEST ESTIMATED MAXIMUM (PSI) 4 4 4 4 4 4 DAY2 3MIN 4W 4W 4 4 W 4 4 W 4 4 W 4 OFF AAIS, GRAZING 111140

4.1 12 3.8 22

in May were less than during the March tests. Though not as striking, the standard deviations in positive impulse given in Table 2-8 show similar conclusions. Finally, the shot-to-shot correlation coefficients given in Table 2-10 show that on Day 8 of the May test, the shock tube correlated with the coefficient of 0.95 to 0.96. The three shots chosen from Day 4 of the March test were of near equal coefficients but the three shots from Day 5 of the March test did not correlate as well. For other shot-to-shot correlations of the March test, see Reference 1.

The minimum correlations were comparable for the March and May firings of the shock tube.

From the data in Table 2-7, it is obvious that as the time between shots increased from 20 sec to 1 min, the ratio of the standard deviation in peak pressures to average peak pressure decreased considerably. This indicates that the larger repetition rates lead to less variance in shot-to-shot peak pressures. However, the data in Table 2-8 does not indicate similar conclusions can be drawn about the positive impulse. It appears that this parameter is insensitive to the rate of firing.

On a given day the shot-to-shot reproducibility of the shock tube is comparable to that of the M198.

When data from different days are considered, there is evidence of a discernable difference in the performance of the shock tube and also the M198. There could be several reasons for this: atmospheric conditions, topographic variations, slight changes in gauge placement (a variation of a foot can show considerable change in the structure of the pressure time history as explained in Volume II and IV of reports), changes in the response and performance of the recording equipment, changes in powder and primercord, etc. These variations seem to be unavoidable, but since the M198 will be fired under a variety of conditions, it is not unreasonable to accept some day to day variation in the performance of the shock tube as long as it is carefully monitored.

TABLE 2-7 RATIOS OF THE STANDARD DEVIATIONS
OF THE PEAK RECORDED PRESSURES TO THE
AVERAGE PEAK RECORDED PRESSURE X 100%

| Shock Tube<br>25 Shots<br>March Test            | Time<br>Between<br>Shots                  | Gauge 1                                               | Gauge 2                                       | Gauge 3                                            | Gauge 4                                               |
|-------------------------------------------------|-------------------------------------------|-------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|-------------------------------------------------------|
| Day 1<br>Day 2<br>Day 3<br>Dau 4<br>Day 5       | 20s<br>20s<br>20s<br>20s<br>20s           | 9.0<br>18.0<br>17.0<br>12.8<br>18.9                   | 7.3<br>14.6<br>13.8<br>9.5<br>16.2            | 10.0<br>13.5<br>7.3<br>13.8                        | 8.9<br>10.3<br>13.2<br>7.7<br>12.8                    |
| May Test                                        |                                           |                                                       |                                               |                                                    |                                                       |
| Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 | 3m<br>3m<br>1m<br>20s<br>1m<br>30s<br>30s | 10.5<br>5.0<br>4.7<br>9.5<br>6.7<br>9.1<br>8.2<br>4.9 | 4.2<br>3.5<br>9.8<br>4.2<br>8.2<br>7.5<br>4.0 | 9.2<br>8.9<br>5.9<br>13.1<br>6.5<br><br>7.1<br>5.5 | 8.8<br>4.6<br>4.5<br>13.0<br>5.7<br>6.0<br>6.3<br>4.2 |

Average Value for Time Interval

| Time          |         |              |         |         |
|---------------|---------|--------------|---------|---------|
| Between Shots | Gauge 1 | Gauge 2      | Gauge 3 | Gauge 4 |
| 3m*           | Ž.6     | 7 <b>.</b> 1 | 3.2     | 2.8     |
| 1m            | 4.4     | 3.9          | 3.9     | 4.5     |
| 30s           | 5.4     | 4.7          | 3.0     | 3.7     |
| 20s-May       | 3.3     | 4.3          | 3.7     | 4.5     |
| 20s-Mar       | 7.7     | 3.0          | 3.4     | 3.5     |

\*Day 1 omitted because of signal quality. See Table 3-2.

| M198<br>Nov 7 | '8                     |                         |                       |                     |                               |        |
|---------------|------------------------|-------------------------|-----------------------|---------------------|-------------------------------|--------|
|               | Position<br>C22<br>C22 | Qe/AZ<br>267/0<br>800/0 | Gauge Ht.<br>4'<br>5' | No. Shots<br>3<br>3 | St.D./Ave. Peak<br>2.4<br>3.9 | X 100% |
| May 7         | C22<br>C22             | 267/0<br>800/0          | 5'<br>5'              | 12<br>12            | 7.6<br>3.5                    |        |

# TABLE 2-8 RATIOS OF THE STANDARD DEVIATION OF THE POSITIVE IMPULSE TO THE AVERAGE POSITIVE IMPULSE X 100%

| Shock Tube<br>25 Shots<br>March Test | Time<br>Between Shots | Gauge 1       | Gauge 2      | Gauge 3 | Gauge 4 |
|--------------------------------------|-----------------------|---------------|--------------|---------|---------|
| Day 1                                | 20s                   |               | 2.3          | ~ ~     | 2.8     |
| Day 2                                | 20s                   | 7.2           | 3.4          | 3.7     | 3.5     |
| Day 3                                | 20s                   | 7.2           | 3.4          | 4.0     | 4.3     |
| Day 4                                | 20s                   | 4.6           | 1.8          | 3.0     | 3.3     |
| Day 5                                | 20s                   | 11.8          | 3.9          | 2.7     | 3.4     |
| May Test                             |                       |               |              |         |         |
| Day 1                                | 3m                    | 2.6           |              | 4.3     | 3.4     |
| Day 2                                | 3m                    | 2.6           | 7.1          | 3.2     | 2.8     |
| Day 3                                | lm                    | 3.7           | 3.7          | 2.6     | 5.2     |
| Day 4                                | 20s                   | 3.3           | 4.3          | 3.7     | 4.5     |
| Day 5                                | 1m                    | 3.9           | 4.0          | 4.3     | 3.7     |
| Day 6                                | 30s                   | 5.0           | 5.2          |         | 4.0     |
| Day 7                                | 30s                   | 5.7           | 4.1          | 3.0     | 3.3     |
| Day 8                                | 1m                    | 5.6           | 4.0          | 4.8     | 4.6     |
|                                      | Averag                | e Value for T | ime Interval |         |         |
|                                      | 3m*                   | 2.6           | 7.1          | 3.2     | 2.8     |
|                                      | lm                    | 4.4           | 3.9          | 3.9     | 4.5     |
|                                      | 30s                   | 5.4           | 4.7          | 3.0     | 3.7     |
|                                      | 20s-May               | 3.3           | 4.3          | 3.7     | 4.5     |
|                                      | 20s-Mar               | 7.7           | 3.0          | 3.4     | 3.5     |
|                                      |                       |               |              |         |         |

<sup>\*</sup>Day 1 omitted because of signal quality. See Section C

TABLE 2-9 M198 CORRELATIONS

|                                                                     | 50ms                    | C2<br>Corre       | 2<br>lation                     | 4'                                 |                                            | QE/AZ                                              | ' = 267/<br>M                                      |                                                                    | Nov 78<br>Correlat                                                         | ion                                                                |                                                                            |
|---------------------------------------------------------------------|-------------------------|-------------------|---------------------------------|------------------------------------|--------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------|
| Shot<br>14<br>15                                                    | . <u>15</u><br>.94      |                   | .94<br>.94                      |                                    |                                            | 14<br>15                                           | . <u>15</u><br>.83                                 |                                                                    |                                                                            | .73<br>.88                                                         |                                                                            |
|                                                                     | C22<br>50ms             | Correl            | 5'<br>ation                     |                                    | QE/AZ                                      | = 800/0                                            |                                                    | /78<br>inimum (                                                    | Correlat                                                                   | ion                                                                | - <del></del>                                                              |
| Shot<br>30<br>31                                                    | <u>31</u><br><u>0</u> 2 |                   | 32<br>.92<br>.92                |                                    |                                            | 30<br>31                                           | . <u>31</u><br>.87                                 |                                                                    |                                                                            | .90<br>.90                                                         |                                                                            |
| <del></del>                                                         |                         | C2                | 2                               | 5'                                 | 50ms C                                     | QE/AZ<br>orrelat                                   | . = 267/<br>ion                                    | 0                                                                  | 1ay 79                                                                     | <del>- · · · · · -</del> ·                                         |                                                                            |
| Shot 4 5 6 13 14 15 22 23 24 31 32                                  |                         | 6<br>0.89<br>0.93 | 13<br>0.93<br>0.94<br>0.92      | 14<br>0.92<br>0.92<br>0.91<br>0.93 | 15<br>0.93<br>0.93<br>0.91<br>0.93<br>0.92 | 22<br>0.93<br>0.93<br>0.90<br>0.93<br>0.92<br>0.94 | 23<br>0.93<br>0.92<br>0.92<br>0.93<br>0.93<br>0.91 | 24<br>0.93<br>0.92<br>0.92<br>0.94<br>0.92<br>0.91<br>0.92         | 31<br>0.89<br>0.91<br>0.93<br>0.92<br>0.90<br>0.91<br>0.90                 | 32<br>0.91<br>0.93<br>0.91<br>0.92<br>0.92<br>0.94<br>0.93<br>0.91 | 33<br>0.91<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.92<br>0.92<br>0.91 |
|                                                                     |                         |                   |                                 | ì                                  | 1inimum                                    | Correla                                            | ıtion                                              |                                                                    |                                                                            |                                                                    |                                                                            |
| Shot<br>4<br>5<br>6<br>13<br>14<br>15<br>22<br>23<br>24<br>31<br>32 |                         | 6<br>0.89<br>0.92 | 13<br>0.91<br>0.94<br>0.92      | 14<br>0.92<br>0.92<br>0.91<br>0.92 | 15<br>0.91<br>0.93<br>0.91<br>0.93<br>0.92 | 22<br>0.93<br>0.93<br>0.90<br>0.93<br>0.90         | 23<br>0.92<br>0.90<br>0.89<br>0.88<br>0.89<br>0.89 | 24<br>0.91<br>0.87<br>0.92<br>0.93<br>0.92<br>0.87<br>0.90<br>0.88 | 31<br>0.89<br>0.91<br>0.91<br>0.92<br>0.90<br>0.91<br>0.90<br>0.91<br>0.88 | 32<br>0.91<br>0.92<br>0.90<br>0.91<br>0.92<br>0.92<br>0.92<br>0.91 | 33<br>0.91<br>0.93<br>0.93<br>0.93<br>0.93<br>0.92<br>0.89<br>0.90<br>0.89 |
| Shot 3 10                                                           | 50ms<br>10<br>•90       |                   | 2<br>lation<br>11<br>.91<br>.89 | 5'                                 |                                            | QE/AZ                                              |                                                    |                                                                    | May 78<br>Correlat<br>1                                                    | . <u>1</u>                                                         |                                                                            |

TABLE 2-10 SHOCK TUBE CORRELATIONS

|                                     |             |                   | Gauge                     | 2                                 | On-Axis,                                  | Gr                                                | azing                                                     | Marci                                                     | n 79                                                                       |                                                                    |                                                                                            |
|-------------------------------------|-------------|-------------------|---------------------------|-----------------------------------|-------------------------------------------|---------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| <b>5 5</b>                          |             | 50ms              | Correl                    | ation                             |                                           |                                                   | М                                                         | inimum (                                                  | Correlat                                                                   | tion                                                               |                                                                                            |
| Day 5<br>Shot                       |             | <u>16</u>         |                           | 21                                |                                           |                                                   |                                                           | <u>16</u>                                                 |                                                                            | <u>21</u>                                                          |                                                                                            |
| 6<br>16                             |             | .84               |                           | .86<br>.94                        |                                           | <u>.</u>                                          | <u>6</u><br>1 <u>6</u>                                    | .70                                                       |                                                                            | .76<br>.74                                                         |                                                                                            |
| Day 4                               | <del></del> | 50ms              | Correl                    | ation                             |                                           |                                                   | М                                                         | inimum (                                                  | Correla                                                                    | tion                                                               | <del>-                                    </del>                                           |
| Shot                                |             | <u>15</u>         |                           | 22                                |                                           |                                                   |                                                           | <u>15</u>                                                 |                                                                            | <u>22</u>                                                          |                                                                                            |
| <u>3</u><br>15                      |             | .97               |                           | .95<br>.96                        |                                           | <u>.</u>                                          | <u>3</u><br>15                                            | •91                                                       |                                                                            | .86<br>.92                                                         |                                                                                            |
|                                     |             |                   | Gauge                     | 2                                 | On Axis,<br>50ms C                        | Gi<br>orrelat                                     | razing<br>ion                                             | May                                                       | 79                                                                         | <del>'</del>                                                       |                                                                                            |
| Day 8 Shot  1 2 3 4 5 6 7 8 9 10 11 | 2<br>0.97   | 3<br>0.96<br>0.96 | 4<br>0.96<br>0.96<br>0.96 | 5<br>0.96<br>0.96<br>0.97<br>0.97 | 6<br>0.97<br>0.98<br>0.95<br>0.96<br>0.95 | 7<br>0.96<br>0.97<br>0.95<br>0.96<br>0.95         | 8<br>0.97<br>0.98<br>0.95<br>0.97<br>0.95<br>0.97         | 9<br>0.97<br>0.97<br>0.95<br>0.96<br>0.95<br>0.97<br>0.97 | 10<br>0.95<br>0.96<br>0.93<br>0.94<br>0.95<br>0.97<br>0.96                 | 11<br>0.97<br>0.97<br>0.95<br>0.97<br>0.96<br>0.97<br>0.96<br>0.97 | 12<br>0.95<br>0.96<br>0.93<br>0.95<br>0.94<br>0.96<br>0.97<br>0.96<br>0.96                 |
| Day 0                               |             |                   |                           |                                   | Minimum                                   | Correla                                           | ation                                                     |                                                           |                                                                            |                                                                    |                                                                                            |
| Day 8 Shot 1 2 3 4 5 6 7 8 9 10     | 20.92       | 3<br>0.81<br>0.80 | 4<br>0.69<br>0.70<br>0.67 | 5<br>0.84<br>0.83<br>0.96<br>0.89 | 6<br>0.94<br>0.96<br>0.76<br>0.86<br>0.80 | 7<br>0.80<br>0.84<br>0.71<br>0.76<br>0.73<br>0.81 | 8<br>0.92<br>0.95<br>0.77<br>0.85<br>0.79<br>0.95<br>0.84 | 9<br>0.94<br>0.92<br>0.79<br>0.87<br>0.81<br>0.92<br>0.84 | 10<br>0.70<br>0.73<br>0.66<br>0.67<br>0.68<br>0.69<br>0.82<br>0.71<br>0.73 | 11<br>0.90<br>0.87<br>0.82<br>0.91<br>0.85<br>0.89<br>0.80<br>0.89 | 12<br>0.74<br>0.79<br>0.65<br>0.70<br>0.67<br>0.76<br>0.91<br>0.78<br>0.78<br>0.85<br>0.74 |

# TABLE 2-10 (Cont'd) CORRELATIONS OF DIFFERENT DAYS

|                                                                                                              |                 |                        | Gau                             | ge 2                                   | 0n                                                    | Axis,                                                  | Gr                                                      | azing                                                                  | Ma                                                                      | y 79                                                                   |                                                                                                 |                                                                                                |                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------|-----------------|------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Day<br>Shot<br>2 4<br>2 18<br>3 4<br>3 18<br>4 4<br>4 18<br>5 4<br>5 17<br>6 4<br>6 18<br>7 4<br>7 18<br>8 5 | 2<br>18<br>0.95 | 3<br>4<br>0.93<br>0.95 | 3<br>18<br>0.96<br>0.96<br>0.95 | 4<br>0.91<br>0.91<br>0.90<br>0.91      | 50<br>4<br>18<br>0.91<br>0.93<br>0.94<br>0.93<br>0.92 | 0.95<br>0.93<br>0.93<br>0.91<br>0.95<br>0.92           | relati 5 17 0.90 0.94 0.96 0.92 0.89 0.92 0.89          | 0.94<br>0.93<br>0.99<br>0.94<br>0.94<br>0.91<br>0.95<br>0.88           | 6<br>18<br>0.89<br>0.88<br>0.86<br>0.88<br>0.93<br>0.88<br>0.91<br>0.83 | 7<br>4<br>0.94<br>0.92<br>0.94<br>0.92<br>0.95<br>0.95<br>0.95         | 7<br>18<br>0.93<br>0.93<br>0.91<br>0.94<br>0.91<br>0.95<br>0.88<br>0.97<br>0.93                 | 8<br>5<br>0.95<br>0.97<br>0.95<br>0.97<br>0.94<br>0.94<br>0.94<br>0.94                         | 8<br>18<br>0.93<br>0.96<br>0.97<br>0.95<br>0.91<br>0.95<br>0.91<br>0.96                                         |
|                                                                                                              |                 |                        |                                 |                                        | Mini                                                  | mum Co                                                 | rrelat                                                  | ions                                                                   |                                                                         |                                                                        |                                                                                                 |                                                                                                |                                                                                                                 |
| Day<br>Shot<br>2 4<br>2 18<br>3 4<br>3 18<br>4 4<br>4 18<br>5 4<br>5 17<br>6 4<br>6 18<br>7 4<br>7 18<br>8 5 | 2<br>18<br>0.84 | 3<br>4<br>0.74<br>0.81 | 3<br>18<br>0.90<br>0.87<br>0.76 | 4<br>4<br>0.74<br>0.69<br>0.64<br>0.74 | 4<br>18<br>0.69<br>0.77<br>0.75<br>0.79<br>0.64       | 5<br>4<br>0.88<br>0.74<br>0.64<br>0.85<br>0.79<br>0.66 | 5<br>17<br>0.58<br>0.70<br>0.79<br>0.60<br>0.48<br>0.49 | 6<br>4<br>0.85<br>0.78<br>0.61<br>0.87<br>0.85<br>0.61<br>0.89<br>0.47 | 6<br>18<br>0.68<br>0.60<br>0.48<br>0.67<br>0.80<br>0.59<br>0.77<br>0.37 | 7<br>4<br>0.85<br>0.75<br>0.66<br>0.84<br>0.83<br>0.68<br>0.50<br>0.90 | 7<br>18<br>0.84<br>0.76<br>0.62<br>0.87<br>0.83<br>0.63<br>0.63<br>0.47<br>0.95<br>0.77<br>0.89 | 8<br>5<br>0.86<br>0.90<br>0.81<br>0.93<br>0.69<br>0.78<br>0.63<br>0.80<br>0.59<br>0.76<br>0.79 | 8<br>18<br>0.75<br>0.81<br>0.88<br>0.80<br>0.62<br>0.71<br>0.63<br>0.68<br>0.65<br>0.43<br>0.66<br>0.54<br>0.86 |

TABLE 2-11 CORRELATIONS BETWEEN TESTS

| Nov 30 31 32                         | 3<br>.88<br>.85<br>.84                       |                              | C22<br>elation<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 1198<br>5'<br>ns<br>11<br>.85<br>.85 | QE/AZ<br>May<br>Nov<br>30<br>31<br>32 | 3<br>.75<br>.81    | M198<br>nimum Corr<br>10<br>.84<br>.86<br>.85 | elations<br>11<br>.77<br>.81<br>.80 |                              |
|--------------------------------------|----------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|--------------------|-----------------------------------------------|-------------------------------------|------------------------------|
| 1                                    | _                                            | March<br>Gauge E<br>ms Corro | nsembl<br>elation                                                                                             | e -                                  | -<br>- C22                            | Nov 78<br>4'<br>Mi | M198<br>267/0 E<br>nimum Corre<br>.74         |                                     |                              |
| Gun D<br>Shot 14<br>15<br>17         | e<br>lay<br>Shot 7<br>4<br>.78<br>.78<br>.82 | -                            | 8<br>5<br>.77<br>.78<br>.80                                                                                   |                                      | Gun<br>Shot                           | ube<br>Day<br>Shot | 3 .17                                         | 8<br>5<br>.35<br>.51                | 8<br>18<br>.43<br>.37<br>.44 |
| Mar May Day Shot Shot  5 6 5 16 5 21 | 7<br>4<br>.83<br>.87                         | _                            | 8<br>5<br>.81<br>.89                                                                                          | : Fon<br>Mar<br>Di                   | may Day Shot Shot 5                   | t                  | imum Corre  7                                 | 8<br>5<br>.54<br>.78<br>.73         | 8<br>18<br>.50<br>.70        |

TABLE 2-12 STANDARD DEVIATION, SKEWNESS AND KURTOSIS OF 50 MS RECORDS, M198 AND SHOCK TUBE

| M 198 Nov 78                                                     | SHOT                                                                                                 | ST.D                                                                                            | SKEW.                                                                                                                                   | KURT.                                                                                                    |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| C22 5' 800/0                                                     | 30<br>31<br>32                                                                                       | .525<br>.500<br>.515                                                                            | 1.77<br>1.66<br>1.56                                                                                                                    | 8.17<br>7.81<br>7.16                                                                                     |
| C22 4' 267/0                                                     | 14<br>15<br>17                                                                                       | .598<br>.603<br>.584                                                                            | 1.61<br>1.76<br>1.76                                                                                                                    | 6.92<br>7.37<br>6.96                                                                                     |
| M198 May 79<br>C22 5' 800/0                                      | 3<br>10<br>11                                                                                        | .467<br>.464<br>.478                                                                            | 1.52<br>1.54<br>1.68                                                                                                                    | 6.55<br>6.78<br>7.19                                                                                     |
| C22 5' 267/O                                                     | 4<br>5<br>6<br>13<br>14<br>15<br>22<br>23<br>24<br>31<br>32<br>33                                    | 0.552<br>0.538<br>0.551<br>0.537<br>0.560<br>0.547<br>0.554<br>0.542<br>0.575<br>0.552<br>0.551 | 2.108<br>1.907<br>1.621<br>1.853<br>1.752<br>1.861<br>1.821<br>1.833<br>1.999<br>1.451<br>1.620<br>2.017                                | 8.292<br>8.050<br>6.473<br>7.159<br>6.597<br>7.800<br>7.403<br>6.884<br>7.773<br>5.751<br>6.486<br>8.166 |
| Tube Mar 78<br>Day 4                                             | 3<br>15<br>22                                                                                        | .763<br>.762<br>.748                                                                            | 2.57<br>2.68<br>2.56                                                                                                                    | 10.4<br>11.5<br>10.2                                                                                     |
| Day 5<br>16<br>21                                                | 6<br>.730<br>.678                                                                                    | .710<br>2.85<br>2.55                                                                            | 2.69<br>12.6<br>10.3                                                                                                                    | 12.6                                                                                                     |
| Tube May 78  Day 2  18  4  18  4  18  4  17  4  18  4  18  5  18 | 4<br>0.829<br>0.829<br>0.808<br>0.779<br>0.788<br>0.776<br>0.839<br>0.744<br>0.709<br>0.790<br>0.790 | 0.785 2.807 2.885 2.958 2.816 2.962 2.980 2.903 3.055 2.787 2.727 2.908 2.914 2.868             | 3.005<br>11.453<br>11.871<br>12.724<br>11.309<br>12.243<br>12.610<br>11.576<br>13.350<br>11.346<br>10.963<br>12.226<br>11.866<br>11.608 | 13.767                                                                                                   |

## SECTION 5 GRAPHS

#### 5-1 GRAPHS

This section contains graphs of the shots analyzed in Section 2-3. A listing of each of the graphs is provided. Although many pressure time histories were examined during the analysis, only the pressure time histories that had a significant impact on the analysis are incorporated in this section. A listing of these graphs are:

## Graph

```
5-1
         Shock Tube - May 79, Gauge 2, Day 8, On-Axis, Grazing, Shot 5
 5-2
         M198 - May 79, C22, 5ft, 267/0, Shot 31
         M198 - May 79, C22, 5ft, 267/0, Shot 15
 5-3
 5-4
         M198 - May 79, C22, 5ft, 267/0, Shot 5
5-5
         M198 - May 79, C22,5ft, 800/0, Shot 11
 5-6
         M198 - May 79, C22, 5ft, 800/0, Shot 10
 5-7
         M198 - May 79, C22, 5ft, 800/0, Shot 3
 5-8
         Shock Tube - March 79, Gauge 2, Day 5, On-Axis, Grazing, Shot 6
 5-9
         Shock Tube - March 79, Gauge 2, Day 5, On-Axis, Grazing, Shot 16
5-10
         Shock Tube - March 79, Gauge 2, Day 5, On-Axis, Grazing, Shot 6
5-11
         Shock Tube - May 79, Gauge 2, Day 8, On-Axis, Grazing, Shot 18
5-12
         Shock Tube - May 79, Gauge 2, Day 7, On-Axis, Grazing, Shot 18
5-13
         Shock Tube - May 79, Gauge 2, Day 7, On-Axis, Grazing, Shot 4
         Shock Tube - May 79, Gauge 2, Day 6, On-Axis, Grazing, Shot 18
5-14
5-15
         M198 - Nov 78, C22, 5ft, 800/0, Shot 31
         M198 - Nov 78, C22, 5ft, 800/0, Shot 30
5-16
5-17
         M198 - Nov 78, C22, 4ft, 267/0, Shot 17
        M198 - Nov 78, C22, 4ft, 267/0, Shot 14
5-18
5-19
        M198 - Nov 78, C22, 4ft, 267/0, Shot 15
        M198 - Nov 78, C22, 5ft, 800/0, Shot 32
5-20
```











Graph 5-5. M198 - May 79, C22, 5 ft, 800/0, Shot 11

78





Graph 5-7. M198 - May 79, C22, 5 ft, 800/0, Shot 3









Graph 5-11. Shock Tube - May 79, Gauge 2, Day 8, On-Axis, Grazing, Shot 18



Graph 5-12. Shock Tube - May 79, Gauge 2, Day 7, On-Axis, Grazing, Shot 18





Graph 5-14. Shock Tube - May 79, Gauge 2, Day 6, On-Axis, Grazing, Shot 18









Graph 5-17. M198 - Nov 78, C22, 4 ft, 267/0, Shot 17

\_ \_





Graph 5-19. M198 - Nov 78, C22, 4 ft, 267/0, Shot 15



# CONTRACT PUBLICATION AND PERSONNEL

Publications and personnel supported by this contract. Test Planning collection, and Analysis of Pressure Data Resulting from Army Weapon Systems - are listed in chronological order by volume, subject matter and personnel contributing to the effort.

November 1979 - Volume I -

Pure Tone Audiograms for Minipigs -

Dr. William M. Jenkins

Mr. Henry C. Evans, Jr.

April 1980 - Volume II -

Modeling of Far Field Data

Dr. J. Stuhmiller

Dr. F. Chan

Dr. P Masiello

M(s) K. Tani

May 1980 - Volume III -

A Correlation Window for the M198 Howitzer

Dr. Steve Slinker

Mr. Henry C. Evans, Jr.

May 1980 - Volume IV -

Data Analysis of the M198 and M109 May 1979

Firings

Dr. Steve Slinker

Dr. Henry C. Evans, Jr.

May 1980 - Volume V -

Shock Tube Analysis and Correlation Study

Or. Steve Slinker

Mr. Henry C. Evans, Jr.

M(s) Carol Jordon

# DISTRIBUTION LIST

12 Copies

Director (ATTN: SGRD-UWZ-C)

Walter Reed Army Institute of Research

Walter Reed Army Medical Center

Washington, DC 20012

4 Copies

USAMRDC (SGRD-RMS)

Fort Detrick

Frederick, MD 21701

12 Copies

Defense Technical Information Center (DTIC)

ATTN: DTIC-DDA Cameron Station

Alexandria, VA 22314

1 Copy

Dean

School of Medicine

Uniformed Services University

of the Health Sciences

4301 Jones Bridge Road

Bethesda, MD 20014

1 Copy

Commandant

Academy of Health Sciences, US Army

ATTN: AHS-CDM

Fort Sam Houston, TX 78234

