[센서공학 2025 오픈북 준비]

1. 교수님께서 수업시간에 강조하신 사항

1.1. 비율 측정법

- 센서의 정확도(Accuracy)를 향상시키는 강력한 방법의 하나.
- 오류의 원인이 덧셈형이 아니라 곱셈형 특성(multiplicative)을 가져야만 유용하다.
- 열적 노이즈에는 쓸모가 없다.
- 전원 불안전성, 주변 온도, 습도, 압력, 노화의 영향 등의 여러 요인에 대한 센서의 감도 의존성 문제를 해결하는 데 매우 효과적이다.
- 기본적으로 입력자극에 반응하는 동작 센서와 해당 자극으로부터 실드(차폐)되거나 민감하지 않은 보상 센서(기준 센서)를 사용한다: 동작 센서와 반드시 같아야 하지는 않지만, 노이즈를 초래하는 물리적 특성은 같아야 함.

1.2. 휘트스톤 브리지

- 센서가 인터페이스 회로에 연결되기 전에 비율 측정 기법(나눗셈)과 차동 측정 기법(차감법)을 매우 효과적으로 구현할 수 있음.
- 임피던스 Z는 액티브(active) 또는 리액티브(Reactive)일 수 있음
- 압전 저항 Strain Gauge와 같은 단순한 저항성분일 수도 있고, 커패시터&인덕터 또는 이들의 조합일 수 있음.
- 순수한 저항의 경우 임피던스는 R이고, 이상적인 커패시터의 경우 임피던스의 크기는 1/(2*pi*f*C), 인덕터의 경우 2*pi/L 이다. (f : 브리지 암(arm)을 통과하는 전류의 주파수.)
- 브리지의 출력 전압: V_out=((Z_1/(Z_1+Z_2))-(Z_3/(Z_3+Z_4)))*V_out
- 평형 상태에서의 출력 전압은 0.
- 다음 조건을 만족하면 브리지는 평형 상태로 간주 : Z_1/Z_2 = Z_3/Z_4

1.3. 차동 변압기(Differential Transformer)의 기본 개념

- 1차 코일에 교류 입력전압이 인가되면: 서로 반대방향으로 감기고, 직렬 연결된 2차 코일 1, 2에 유도전압이 발생.
- 출력 전압은 2차 코일 1, 2의 유도전압의 합으로 정해짐: V_out = V_s1 V_s2
- 2차 코일 1, 2에 유도되는 전압의 극성은 서로 반대이다.
- 1차 코일과 2차 코일 사이에는 강자성체 코어가 위치하여 상/하 양방향으로 움직임.
- 강자성체 코어는 1차 코일과 2개의 2차 코일 사이의 reluctance(자기저항) 변화에 크게 영향을 미침 -> 2차 코일
- 1, 2에 유도되는 전압의 크기가 달라짐.
- 강자성체 코어의 위치에 따라 2차 코일 1, 2에 유도되는 전압의 크기가 달라짐.
- 강자성체 코어가 2차 코일 1, 2 사이 정중앙에 있으면 출력 전압이 0.
- 강자성체 코어의 위치에 따라 출력 전압의 크기 및 극성이 달라짐.

- 1.4. Rotary Encoder : 회전변위, 회전속도 측정
- Photo Coupler: LED -> PD(Photo Current), 이 과정에서 light, slot mask 사용된다.
- 위치 변위 속도 센서 : Linear Encoder, Rotary Encoder
- 동작 알고리즘 : LED가 빛을 발하고 있는 상태에서 디스크가 회전 -> 수광부에서 빛을 받음/못받음 에 의해 pulse 신호가 출력된다. -> Pulse 출력 : 각도의 증분, 방향 또는 기준점 대비 절대 각도.

1.5. 홀 센서

- 홀 효과 : 전계(전류)에 수직 방향으로 자계를 인가하면, 전류 중 (+)/(-) 전하는 자기력을 받고, 그 결과로 소자 양단에 전위차(홀 전압 : V_-S)가 생성된다.
- 홀 센서 모듈을 "sideways detection" 방식으로 구동하고, 모터의 톱니바퀴를 N극 및 S극의 영구자석이 교차로 설치된 구조로 하면, 모터의 회전에 따라 정현파 또는 펄스파 출력이 얻어진다.
- 출력 신호를 계산하면, 회전 변위와 회전 속도 정보를 얻을 수 있음.

1.6. 도플러식 속도계

- 피측정면(주행 중 자동차)에 주파수 f_1, 파장 "람다"의 전자파가 입사각 ceta_1으로 입사.
- 피측정체로부터 주파수 f_2, 반사각 ceta_2로 반사되어 수신기에 도달.
- 반사파는 입사파와 다른 주파수가 되는 도플러 변이가 생김.
- 송신파 f_1과 수신파 f_2의 차에 의한 도플러 변이(주파수 차)에 의해 속도 v가 계산된다.
- v = (f_1-f_2)*(람다)/(cos(ceta_1) + cos(ceta_2))
- 전파나 음파의 도플러 효과를 이용하여 속도를 측정.
- 피측정체를 비접촉식으로 측정할 수 있으므로, 운동상태에 관계없이 속도를 측정할 수 있음.
- 자동차의 속도감시장치, 야구공의 속도 측정에 이용

- 1.7. Thermo-Couple : 온도변화를 열기전력 (전압) 변화로 출력
- 온도변화를 열기전력(전압) 변화로 출력.
- a : seebeck coefficient,,, 제벡 효과(?)

- 1.8. ECU
- 1.9. 압전 방식
- 1.10. NTC Thermistor
- 1.11. 자이로센서

2. 족보 기반 빈출

- 2.1. "Cold junction"에서의 온도가 일정해야 하는 이유 서술하기(출제연도:2024, 2024)
- "Seebeck Effect": 열전대(Thermocouple)의 출력 전압은 측정 지점과 기준 지점의 온도 차이에 비례.
- 따라서 기준점(cold junction)의 온도가 변하면 출력 전압도 같이 변하기 때문에, 기준 온도를 일정하게 유지해야만 정확한 온도 측정이 가능하다.
- 2.2. Capacitive transducer가 humidity detection에 적합한가? 근거를 들어 서술하라
- 습도에 따라 유전체의 유전율(e_r)이 변하므로, 정전용량 C = (e_0)*(e_r)*A/d 도 함께 변화한다.
- 이를 감지하여 습도 변화로 인한 Capacitance 변화를 측정할 수 있어 적합하다.
- 2.3. Quartz crystal is a versatile element for diverser applications in practical fields. Give two different examples for given keywords and describe briefly about reach[Keywords: sensor, actuator].
- Sensor : 압력 센서(압력 -> 주파수 변화), 온도 센서(주파수 drift)
- Actuator : 초음파 발생기, 정밀 모터 제어기
- 정리 요점: Quartz는 안정된 공진 특성 -> 정밀한 주파수 제어, 진동 변환에 모두 적합.
- 2.4. **"Thermopile"** 개념을, 주어진 키워드를 사용하여 서술하기[키워드: "Detection mechanism : structure, advantage, contact & non-contact type measurement"]
- 구조 : 여러 개의 열전대(thermocouple)를 직렬 또는 병렬로 연결한 구조.
- Detection mechanism : 적외선 또는 온도차에 의한 열기전력 축적 -> 전압으로 출력.
- 장점 : 높은 출력 전압, 비접촉 적외선 온도 감지에 유리
- 적용 : 체온계, IR 온도계
- 2.5. RTD와 Strain Gauge의 공통정 & 차이점 서술
- 공통점 : 둘 다 저항의 변화로 측정값을 얻는 저항 기반 센서.
- 차이점 : RTD는 온도 변화에 의한 저항 변화, Strain Gauge는 기계적 변형(변형률)에 의한 저항 변화.
- 2.6. Thermistor은 Bio Sensor에 적합한가? 근거를 들어 서술하라
- 적합하다(Yes). 특히 NTC Thermistor가 적합하다.
- 이유 : 고감도, 소형화 가능, 낮은 온도 범위에서의 정밀성 우수.
- 2.7. Selectivity 특성을 간략하게 설명하기
- 정의 : 센서가 특정 자극에만 반응하고, 다른 자극에는 무감한 특성.
- 중요성 : 분리도 확보, 오차 최소화.
- 2.8. Transducer, Sensor의 정의(빈칸 채우기) (Ch1)
- Transducer : 한 형태의 에너지를 다른 형태로 변환.
- Sensor : 비전기적 물리량을 전기 신호로 변환.
- Sensor : 비전기적 신호(물리적, 화학적, 생물학적인 상태)를 전기적 신호로 변환하여 수신 또는 응답하는 소형장치 또는 중계기라 할 수 있으며, 절대 혼자 기능을 할 수 없다. 센서의 출력신호는 전압, 전류, 전하의 형태로 나오고 더 추가해서 진폭, 주파수, 위상으로 나타내질 수 있다.
- Transducer : 한 에너지를 다른 에너지를 변환하는 장치이며, 센서가 입력된 신호를 전기적 신호로만 변환하는 반면에 tranducer는 전기적 신호 외에도 다른 여러 가지 형태의 신호로 변환시킬 수 있다.
- 2.9. Dead band, hysteresis 그림 보고 빈칸 채우기
- Dead band : 일정 입력 범위 내에서 출력 변화 없음.
- Hysteresis : 입력 경로(증가 vs 감소)에 따라 출력 값 달라짐.

2.10. Accuracy, Precision의 정의(빈칸 채우기)

- Accuracy : 실제 값에 얼마나 가까운가?

- Precision : 측정된 값의 일관성(실제 값과 상관없이)

2.11. Sensitivity, offset의 정의(빈칸 채우기)

- Sensitivity : 입력 변화에 따른 출력의 기울기

- Offset : 입력이 0일 때의 출력(기저값)

2.12. Sensing device로 사용 시, strain gauge의 동작원리와 기능을 간략히 설명

- 기계적 변형률 -> 저항 변화 -> 전기 신호 출력
- Gauge factor 이용한 감지.

2.13. Pressure detecting으로 사용 시 strain gauge의 동작원리 설명

- 압력 -> 변형률 -> 저항 변화 -> 전압 변화(브리지 회로 포함 가능)

2.14. Voltage/SAW Transducer의 동작원리 및 활용처

- Voltage : 대부분의 센서 출력 형태 (전압 신호)

- SAW(Surface Acoustic Wave) : 표면 음향파 변화로 자극 감지 -> 온도/습도/기체 감지에 활용.

3. 강의노트

[Ch1: Introduction to Sensors & Transducers]

<Sensors>

-비전기적 신호(물리적, 화학적, 생물학적인 상태)를 전기적 신호로 변환하여

수신 또는 응답하는 소형장치 또는 중계기라 할 수 있으며 절대 혼자서 기능을 할 수 없다. 센서의 출력신호는 전압,전류,전하의 형태로 나오고 더 추가해서 진폭,주파수,위상으로 나타내질 수 있다.

<transducer>

-한 에너지를 다른 에너지로 변환하는 장치이며 센서가 입력된 신호를 전기적 신호로만 변환하는 반면에 transducer는 전기적 신호 외에도 여러 신호로 변환시킨다.

<분류: in terms of Working Power>

- Active
- Passive

1.5 Classification

- Categorization in terms of Working Power : Active- or Passive-type
 - Active type
 - An additional (auxiliary) power is needed for sensing mechanism (in conversion process)
 - Normal input controls just the output,
 - while main portion of the output (sensor) power is provided by the additional (auxiliary) power
 - Merit \rightarrow sensitivity can be adjusted by supplied power (voltage)
 - Normally more connection line is needed than passive type.
 - If the supplement power is used in an exploding ambient, explosion risk could be considered
 - Called in other word as a modulating sensor.
 - Example: photo transistor, thermistor

**Categorization in terms of Working Power: Active- or Passive-type **Passive Type* - No additional power for sensing mechanism - Main portion of the sensor output power is solely supplied by input - Power for conversion (sensing mechanism) is supplied by the input measurand - Called in other word, a self generating sensor - Example: solar cell, thermocouple, etc. Input Sensor Output Sensor Thermocouple

<분류: In terms of Output Signal>

- Analog type
- Digital type
- Categorization in terms of Output Signal : Analog- or Digital-type

Analog type

- Sensor O/P is continuously varying analog signal
- Detection information is normally amplitude variance of the signal
- O/P signal with frequency variance: classified normally as analog type,
 but can also be as a quasi-digital type because the periodic signal could be converted to digital signal
- Almost all sensors are analog type : sensor output is inherently in analog nature
- General performance: higher speed, higher sensitivity
- Limited resolution: normally approx. 0.1%
- Affected easily by errors
- Must be converted to digital signal for digital signal processing via ADC

· Categorization in terms of Output Signal : Analog- or Digital-type

■ Digital type

- Sensor O/P is a digital signal
- Easy signal transmission, superior reproducibility, high reliability, high accuracy ..
- The sensor device is normally in analog nature, but additional ADC is connected as a module or integrated in a chip
- Suitable for realization of intelligent sensor system
- Normally inferior response speed and sensitivity relatively to analog type

[Ch2: Sensor Characteristics]

2.0. Introduction

<Sensitivity : S> (민감도 : slope)

-입력변화에 대한 출력변화의 비율

2.1. Transfer Function

- 센서가 이상적으로 설계&제작되었다면 : 센서의 출력은 항상 자극의 true values를 출력한다!

2.1 Transfer Function

- · An ideal or theoretical input-output (or stimulus-response) relationship exists for every sensor,
- if a sensor is → ideally designed & fabricated ideally (ideal materials; ideal workers; in ideal environment; ideal tools)
- the output of such a sensor would always represent:
 - → the true values of the stimulus!
- Transfer function:
 - a time-variant **relationship** between **stimulus** s and response electrical signal S:

measured number

represents the value of stimulus

(electrical) output signal S S = f(s) stimulus s: normally unknown value to be informed or estimated

→ becomes known during the measurement: (ex) voltage, current, digital count, etc.

Sensor is attached

to a measuring system:

- → of which one of the jobs is to "break the code S"
- \rightarrow infer the unknown value of s from the measured value of S
- \rightarrow an inverse transfer function $f^{-1}(s)$: F(S)
 - → employed to obtain the value of the stimulus §

2.2. Input Full Scale (Span)

 Input Full Scale(FS)

-센서에 의해 변환된 자극(최대입력과 최소입력 사이)의 동적범위로 큰 부정확성의 원인이 되지 않으면 서 센서가 받아들일 수 있는 가장 높은 입력값을 말한다.

Span = Xmax - Xmin

-종종 데시벨로 표현, 데시벨은 절대값을 측정하는 것이 아니라 값의 비율을 측정.

2.3. Full Scale Output

<Full Scale Output> (FSO)

- -최대입력과 최소입력에 따른 전기적 출력 신호의 대수적 차이. (Ymax Ymin)
- -표준 입·출력을 주의해 FSO를 고려.

2.4. Accuracy

<Accuracy, Inaccuracy>

- ·lnaccuracy 입력이 이상적이거나 참값인 센서가 나타낸 값의 최고 편차로 측정된다.
- ·Accuracy(확도) 출력값이 참값에 가까운 정도. 에러는 FSO 비율로 나타난다.

$$error = \frac{Xm - Xt}{FSO} \times 100\% FSO (Xm : 측정값, Xt : 실제값)$$

·Precision(정도) - 짧은 간격으로 동일한 조건과 방법하에 반복적으로 측정된 똑같은 입력값이 얼마나 흩어져 표시되는가를 나타내는 정도.

-Precision: bad

2.5. Calibration Error

- Calibration Error란, 센서가 실제 입력값에 대해 출력값을 정확하게 일치시키지 못하고, 이론적인 기준 곡선 (transfer function)과 어긋나는 정도를 말합니다.
- 센서를 보정(calibrate)할 때 기준값과 측정값 사이의 차이가 남아 있는 것
- 원인: 센서의 비선형성, 제조 공정의 편차, 노화나 온도 변화에 의한 특성 변화, 불완전한 보정 과정
- 해결 방법: Calibration curve 재조정, 오차 보정 알고리즘 적용, 일정 주기마다 재보정(recalibration)
- Calibration Error = (측정된 출력값) (이론적 출력값)

FIGURE 2.3. Calibration error.

A two-point calibration of a real linear transfer function

S₁, S₂; stimuli to determine the slope & intercept

 A_1, A_2 ; output signals

A₁; measured accurately, A₂; measured with error -Δ

- → a new intercept, a₁ will differ from the real intercept, a₂
- → the slope will be calculated with error

$$\delta_a = a_1 - a = \frac{\Delta}{s_2 - s_1}$$
, $\delta_b = -\frac{\Delta}{s_2 - s_1}$

2.6. Hysteresis(경로 의존성)

- 정의: 같은 입력 값에 대해, 입력이 증가하는 경로와 감소하는 경로에서 출력값이 서로 다르게 나타나는 현상이에 R..
- 예: 입력을 0->10까지 올렸다가, 다시 10->0으로 내릴 때, 5에서 측정된 출력이 "올라가는 중에는 2.1, 내려가는 중에는 1.9"로 측정되었다면: Hysteresis 존재
- Hysteresis Error = Output(상승 경로) Output(하강 경로)

2.7. Nonlinearity

- 정의: 센서의 출력이 입력에 비례하지 않거나, 일정한 기울기(선형 관계)를 가지지 않고 곡선 형태로 응답할 때, 기준 직선과의 최대 편차가 Nonlinearity Error로 정의된다.
- 센서 입력이 허용 범위를 넘어가면, 출력이 더 이상 선형적으로 증가하지 않고 포화됨.

2.8. Saturation

- 센서의 입력 자극(stimulus)이 일정 한계를 넘으면, 출력이 더 이상 선형적으로 반응하지 않고 일정 수준에 머무르는 현상을 "Saturation (포화)"이라고 합니다.

2.9. Repeatability

- 정의: 같은 조건에서 같은 입력을 반복했을 때, 센서 출력값이 일관되지 않고 다르게 나오는 현상을 Repeatability Error 또는 재현성 오차라고 합니다.
- 센서가 동일 조건 하에서 동일 출력을 낼 수 없는 무능력에서 발생하는 오차.
- 원인: Thermal noise, 전하 축적(Build-up charge), 재료의 소성 변형(plasticity), 센서 내부의 Hysteresis

$$\delta_r = rac{\Delta}{FS} imes 100\%$$

- Δ: 동일 조건 하에서 두 번의 측정값 차이
- FS: Full Scale (센서 출력의 전체 범위)

$$\delta_r = \frac{\Delta}{FS} 100\%$$
 Expressed as max. difference output readings between output readings as determined by two calibrating cycles

2.10. Dead Band

- 정의: 센서가 일정 범위의 입력 변화에 민감하게 반응하지 않고, 출력이 거의 일정하거나 0으로 유지되는 입력 영역
- 그래프 해석: 가운데 Dead Band Zone에서는 입력을 줘도 출력 변화가 거의 없음. 이 영억을 벗어나면 선형 응답 (Linear Region)으로 정상 작동, 실제 응용에서는 이 영역을 노이즈 제거 또는 오차 무시 범위로 설정하기도 함.

2.11. Resolution

<Resolution> (해상도,분해능)

- 해상도는 감지할 수 있는 자극의 가장 작은 증분을 말하며 작을수록 좋다.
- 출력에 의해서가 아닌 센서가 받아들이는 입력에 의해 초래되는 변화와 센서에서 만들어지는 소음이 하급 해상도를 만든다.
- 예: Potentiometric transducer(위치 변화가 어느 정도 되어야 출력이 바뀜), IR occupancy detector(마스크 간격보다 작은 움직임은 감지되지 않음.)
- Resolution 표현방법(Analog Sensor): 종종 (Resolution)/(Full Scale)*100(%)로 표현
- Resolution 표현방법(Digital Sensor): 비트 단위로 주어짐.
- sometimes it may be specified as percents of full scale (FS)
 - → an angular sensor with 270° FS; then "the 0.5° resolution may be 0.181% of FS": an analogue sensor
 - → resolution of a digital sensor; decided by an unit of bit ex.) 12 bit resolution $\frac{1}{100} = \frac{1}{100} = 0.024\% FS$

4096

2.12. Special Properties

- 예시 설명: 광 센서(light detector)는 특정 광학 대역(optical bandwidth) 내에서만 민감하게 반응하기 때문에, 해당 센서를 사용할 때는 스펙트럼 응답(Spectral Response)을 명시해야 함.

[example]

- → light detectors are sensitive within a limited optical bandwidth
 - → to specify for them a spectral response

2.13. Output Impedance

- 전압 출력형 센서: 센서의 출력 임피던스는 낮게, 연결 회로의 입력 임피던스는 높게!
- 전류 출력형 센서: 센서의 출력 임피던스는 높게, 연결 회로의 입력 임피던스는 낮게!

2.14. Excitation

- Excitation Signal: Active Type Sensor가 동작하기 위해 필요한 전기적 입력 신호.
- Excitation 신호가 정확하게 제공되지 않으면, 센서의 전달 함수(Transfer Function)가 바뀌고 출력 오차(Output Error)가 발생할 수 있음.
- 예시: Thermistor의 최대 전류 제한 -> 공기 중: 최대 50uA, 물 속: 최대 200uA.
- 즉, 주변 환경에 따라 허용되는 excitation이 달라짐.

☑ 특징

- 전압(Voltage) 또는 전류(Current) 형태로 제공됨
- Active Sensor는 외부에서 전력을 공급받아야 동작함 → 보조 전력 또는 여기 신호 필요
- 경우에 따라 **주파수(frequency)**도 excitation signal로 사용되며, 이 경우 **안정성 (stability)**이 중요함

2.15. Dynamic Characteristics

- 정의: 센서가 갑작스러운 입력 변화에 어떻게 반응하는지 설명하는 특성.
- 센서가 입력 변화에 얼마나 빠르고 정확하게 반응하는지 보여줌.
- 일반적으로, Step function input에 대한 시간 응답 특성(tau, 상승시간, 정착시간)을 통해 분석.

2.16. Environmental Factors

- 센서의 정확도, 수명, 신뢰성에 영향을 미치는 모든 외부 환경 요소.
- Storage Conditions(보관 조건) : 센서가 동작하지 않는 상태에서 보관 중 견뎌야 하는 최대한의 환경 조건.
- 주요 조건: 최고, 최저 온도, 최대 상대습도(해당 온도에서), 최대 압력, 특정 가스 존재, 오염성 증가 등.
- 단기 안정성(Short-term Stability): 짧은 시간 내 성능의 일시적 변동, 온도 변화나 진동 등에 의한 일시적 오차.
- 장기 안정성(Long-term Stability): 재료의 노화로 인해 발생하는 영구적인 성능 변화. 변화의 방향은 일반적으로 한쪽으로만 진행(Unidirectional Drift)
- Pre-aging: 극한 조건에서 미리 센서를 노화시켜 초기 불안정성을 제거.

2.17. Reliability

- 신뢰도: 주어진 조건에서 특정 기간 동안 센서가 요구된 기능을 수행할 수 있는 능력. 즉, 고장 없이 제대로 동작할 확률.
- Drift나 노이즈 안정성(Stability)과는 다름
- Reliability는 "고장(Failure)"이라는 명확한 성능 한계 초과 상황을 다룪.
- 이 고장은 일시적일 수도, 영구적일 수도 있음.
- MTBF(Mean Time Between Failures): 미국을 포함한 많은 전자기기에서 사용됨. "평균적으로 두 고장 사이의 시간 간격"(예: MTBF=1000시간 -> 평균 1000시간마다 한번 고장남.)
- 2.18. Application Characteristics (be geared to: ~에 맞춰져 있다.)

2.18 Application Characteristics

- are geared to specific areas of applications.
 - → design, weight, overall dimensions, etc.

2.19. Uncertainty

- 불확실성: 측정값에 대해, 오차가 얼마나 클 수 있는지 추정하는 정도. 즉, 오차의 신뢰 범위.
- 시스템 오차는 일부 보정 가능하지만, Uncertainty는 보정 이후에도 여전히 남아 있음. 측정 신뢰도를 위해 불확실 성 평가가 반드시 필요.
- CIPM 분류: 두 종류의 불확실성
- 1) Class A Uncertainty : 통계적 방법 사용, 반복 측정을 통한 표준편차 계산.
- 2) Class B Uncertainty : 경험적/기타 방법으로 평가, 측정 기기의 제조사 제공 정밀도, 환경 요인 추정치 등.

<Sensitivity Error and Offset(상쇄)>

3.1. Resistance and Resistive Transducers

🔽 1. 기본 원리: 전기 저항과 비저항 (Resistivity)

• 저항 R: 전도체 내부에 전류가 흐를 때 생기는 전압 강하를 나타냄

$$R = \rho \frac{l}{A}$$

- ρ: 비저항 (specific resistivity)
- *l*: 도체 길이, *A*: 단면적

▼ 2. 온도계수 TCR (Temperature Coefficient of Resistance)

• TCR은 저항이 온도에 따라 어떻게 변화하는지 나타내는 계수

$$\rho = \rho_0 [1 + \alpha (T - T_0)]$$

- α: TCR
- 좁은 온도 범위에서는 선형 근사(linear approximation) 사용

☑ 3. PTC / NTC 구분

- PTC: Positive Temperature Coefficient → 온도↑ → 저항↑
- NTC: Negative Temperature Coefficient → 온도↑ → 저항↓

선서 예시:

→ RTD (Pt-RTD), Thermistor 등

✓ 6. RTD의 온도-저항 특성

$$R = R_0[1 + \alpha(T - T_0)]$$

● 제한된 온도 범위 (0~100°C 등)에서는 선형 관계 성립

7. TCR 계산식

$$lpha = rac{1}{R_0} \cdot rac{R_{100} - R_0}{100 [^\circ C]}$$

- R₁₀₀: 100°C에서의 저항
- R_0 : 0°C 기준 저항

☑ 4. 스트레인 게이지의 원리

- 금속 와이어형 저항기를 **물체 표면에 부착** → 힘(하중)을 받으면 **길이 변화 → 저항**
- 저항 변화를 통해 **기계적 변형률(strain)**을 측정함

5. Load Cell에의 적용

- **브리지 회로(Wheatstone bridge)**와 연결해 **미세한 저항 변화**를 전압 변화로 정밀
- 측정 대상: 힘, 무게, 하중 등

- TCR(Temperature Coefficient of Resistance)
- RSD(Resistive Strain Detector) : 스트레인 게이지
- RTD

3.2. Electric Potential and Potentiometric Transducers

- Potentiometric Transducer : 전위(Potential) 차이에 따라 출력이 결정되는 transducer.
- 생화학 센서(bio/chemical sensor)의 주요 메커니즘.
- 다양한 transducer 중 가장 널리 사용되고 발전된 형태.
- 센싱 전극(sensing electrode)과 기준 전극(reference electrode) 두 개 필요: 생화학 반응 또는 이온/전자 이동 반응이 일어나는 곳. 전극의 설계가 민감도, 선택성, 정확도에 핵심적인 역할.
- 원칙: Electrochemical sensor는 폐회로(closed circuit)를 가져야 한다. 즉, 최소 2개의 전극이 필요!
- 전형적인 구조: electrochemical cell -> 전압, 전류, 저항, 정전용량 등을 측정.

3.3. Capacitive Transducers

☑ 1. 기본 원리: 정전용량(Capacitance)

• 정전용량 C는 아래 식으로 정의됨:

$$C=arepsilon_0arepsilon_rrac{A}{d}$$

- ε_0 : 자유공간 유전율 (전기 상수)
- ε_r: 상대 유전율 (물질의 전기적 특성)
- A: 전극 면적
- *d*: 전극 간 거리
- ightarrow 따라서, 센서의 출력은 A, d, $arepsilon_r$ 의 변화에 따라 결정됨
- → 이들 중 **하나가 자극(input stimulus)**이 되면 센서 동작 원리가 됨

2. 절연체(Dielectric)의 분극 효과

- 유전체를 삽입하면 전기장 E는 유지되지만 **축적되는 전하(Q)**는 증가함
- 따라서 정전용량이 증가

$$arepsilon_{r}=rac{Q}{Q_{0}}=rac{C}{C_{0}}$$

2-1. Capacitive Position Sensor

- 위치에 따라 d 혹은 면적 A 변화 ightarrow C 변화
- 회로 측정 결과로 위치 추정 가능
 - 📌 예: 평판 이동형 위치 센서

✓ 2-2. Capacitive Force / Pressure Sensor

• 힘이 작용하면 전극 간 거리 $m{d}$ 가 변함 ightarrow C 변화

$$C=arepsilon_0arepsilon_rrac{A}{d}$$

📌 예: 정전용량형 압력 센서

2-3. Load Cell

- 하중(force)이 가해지면 구조가 변형되어 d **값이 달라짐**
 - ightarrow 결과적으로 정전용량 C 변화 ightarrow 하중 측정 가능

✓ 2-4. 회전 위치 센서 (Position, Displacement Detection)

- 회전형 샤프트의 위치에 따라 전국 면적 A가 변함
 - → 변위 감지

2-5. Capacitive Level Sensor

- **탱크 내 액체 높이 *h***에 따라 유전체 영역이 바뀜
- 정전용량 공식:

$$C = k \cdot rac{arepsilon_1 h + arepsilon_2 (H-h)}{\log(R/r)}$$

변화량:

$$\Delta C = \varepsilon_s C_0 - C_0 = C_0 (\varepsilon_s - 1)$$

• 액체 높이, 유체 종류 변화에 따라 정전용량이 달라짐 → 액체 레벨 측정 가능

3.4. Electro-magnetic Induction and Inductive Transducers(중요!!!!!)

1. Inductive Sensors

> Position and Displacement Detection

- 자기 유도 방식으로 위치와 변위를 감지.
- **자기 플럭스 결합(Magnetic Flux Coupling)**은 두 코일 사이의 위치 변화로 변하고, 이는 출력 전압 (V_out)으로 변환됨.

> Variable-Reluctance Transducers

- 자화되지 않은 강자성체 매질을 사용하여 **자기저항(reluctance)**을 변화시킴.
- 일반적으로 Primary Coil, Secondary Coil 구성.
- 대표적 장치:
 - LVDT (Linear Variable Differential Transformer)
 - RVDT (Rotary Variable Differential Transformer)
 - Mutual Inductance Proximity Sensors

* 2. Electronic Pressure Sensor

▷ 동작 원리

- Differential Transformer 원리를 사용.
- 정밀 전자 저울 등 고정밀 압력 측정에 사용.

▷ 구조

- **1차 코일**: 일정 전압/주파수로 구동됨.
- 2차 코일: 금속 코어가 움직이면서 유도 기전력 발생.

▷ 특징

- 코어가 정중앙일 때: e₀ = 0
- 코어 이동 → 불균형 유도기전력 → 출력 전압 e₀가 변위에 비례

📌 3. LVDT & RVDT

LVDT (Linear Variable Differential Transformer)

- 변위의 크기 및 방향까지 측정 가능
- 방향은 1차와 2차 전압의 위상차로 판단
- 안정적인 오실레이터로 구동

RVDT (Rotary Variable Differential Transformer)

- 회전형 코어를 사용
- **각도(Angular Displacement)**를 측정

4. Eddy Current Sensors

- 외부 AC 자기장이 도체에 유도 전류를 발생시킴 → Eddy Current
- 이 유도 전류가 자기장을 만들어 반응함.
- 변위 센서로 활용
- 수학식:

$$\oint E \cdot dl = -rac{\partial B}{\partial t} \quad , \quad \mu_0 I = \oint B \cdot dl$$

5. Electronic Flow Sensor

▷ 원리

- 도전성 유체가 자기장 내를 이동 → 유도기전력(e) 발생
- 전극이 이 전위를 감지하여 속도를 측정

▷ 공식

• 전위차:

$$e = BDv$$

• 체적 유량:

$$Q = rac{\pi D^2}{4} \cdot v$$

▷ 응용

• 전자 유량계로, 유체의 속도 및 유량을 측정함.

3.5. Piezoelectric Effect based Transducers

<piezoelectric effect> (압전효과)

-세라믹이나 수정과 같은 결정 압전체에 외부압력을 가하면 내부의 변형에 의해 발생되는 내부 분극현상으로 양 전극 표면에 전하가 발생하는 현상을 말한다.

(Mechanical Stress -> Electric Charge)

Structure and interfacing of piezoelectric device

3.6. Pyroelectric Effect based Transducers

1. Pyroelectric Effect란?

- 특정 강유전체 결정(BaTiOs, LiTaOs 등) 은 열에 반응하여 전하 분리 현상이 발생
- 열 복사선(Infrared Radiation) 이 표면을 가열하면:
 - 결정의 분극 상태(polarization state) 가 줄어들고
 - 표면에 있는 전하가 이동 → 전압 발생

▶ 작동 원리 요약

- 1. 고전압으로 표면 분극 유도
- 2. 주변 전하가 이를 중화시킴
- 3. **적외선(IR)** 흡수 시, 표면 전하의 불균형 유도
- 4. 양단 전압 차 발생 **→ 출력 전압**

결과적으로, **온도 변화에 따라 출력 전압이 생기므로**, 이를 **온도 센서(Temperature Sensor)** 로 사용 가능

📌 2. Pyroelectric vs Piezoelectric

- 모든 Pyroelectric 물질은 Piezoelectric 특성도 가짐
- 따라서 Pyroelectric 센서를 사용할 때는 선택성 문제(selectivity issue) 발생 가능

֍ Pyroelectric 효과

- 열 → 전기 에너지 변환
- 열로 인해 전하 불균형 → 전압

∦ Converse Piezoelectric 효과

전기 신호 → 기계적 변형

▲ Caution

Pyroelectric 센서를 사용할 때는 Piezoelectric 효과로 인한 오차 신호를 제거하기 위해 차동 측정 (Differential Measurement) 기법 사용

🧪 차동 측정 방식

$$V_{
m out} = (V_T + V_M) - V_M = V_T$$

- V_T : 온도 의존 출력
- V_M : 공통(노이즈성) 신호
- Working Sensor Shielded Sensor 조합 사용

👔 부가 응용 효과

- Electro-optic : 빛의 굴절/투과율 변화 (광학 센서에 활용)
- Electrocaloric : 열 생성/제거
- 다양한 에너지 변환 응용 가능

3.7. Hall Effect based Transducers

♦ 1. Hall Effect란?

- 자기장 B가 반도체 평면에 수직으로 인가되고, 전류 I,가 흐르면,
- **전자(음전하)**는 **자기력 F** 을 받아 **한쪽(A)**으로 몰리게 됩니다.
 - 이로 인해 **반대쪽(B)**에는 **정공(양전하)**가 유도되어 **전압(V H)** 발생
- 이 전압은 자기장 세기(H)에 비례합니다.

3.7.1 Hall Switches

- → digital output which can be adapted to different logic systems such as latched, unipolar, bipolar
- → an open-drain output transistor + an external pull up resistor to the supply voltage
- → a standard hall switch has a single hall plate
 → can respond to the absolute value of the magnetic field perpendicular to the plate
- → characterized by the magnetic switching points

Linear transfer function

♦ 2. Hall Switches (디지털 출력 센서) • 자기장이 있을 때와 없을 때를 구분해서 디지털 신호를 생성합니다. 상태 동작 자기장 유무 OFF 개방 회로 자기장 없음 폐회로 충분한 세기의 자기장 존재 • 내부에는 **Comparator(비교기)**가 있어 정해진 문턱값 이상이면 ON, 미만이면 OFF로 동작 • 응용: 자석 감지, 위치 감지, 모터 속도 감지 등

🔵 3. Linear Hall Sensors (선형 아날로그 출력)

- 자기장의 세기에 따라 출력 전압이 선형적으로 변화하는 센서
- 출력 전압은 자기 플럭스(B)에 비례
- 특징:
 - 낮은 소비 전력
 - 연속적(analog) 전압 출력
 - 온도 안정성 높음
 - 강한 자기장 → 높은 출력 전압 약한 자기장 → 낮은 출력 전압
- 그래프:
 - → 일정 범위에서는 **선형**, 그 이후는 **포화 영역**

3.8. Seebeck Effect based Transducers

- Seebeck effect : 온도 차이에 의해 전기가 발생하는 현상.
- 두 종류의 금속을 서로 연결하고 그 두 접점을 서로 다른 온도로 만들면, 전류가 흐르기 시작하고 전압이 발생.
- 이 현상을 이용한 것이 바로 "열전소자(Thermocouple)"

💧 Thermocouple의 구조와 원리

- **두 개의 서로 다른 금속선(예: 금속 A, 금속 B)**을 한 쌍으로 사용해.
- 이 금속선들을 두 지점의 다른 온도에 접촉시키면,
 - 높은 온도 지점: Hot Junction (열 접점)
 - 낮은 온도 지점: Cold Junction (냉 접점)
- 두 지점 간의 **온도 차이**가 생기면, 내부적으로 **전자들의 이동**, 즉 **전류 흐름**이 생겨서 → **전압(emf)** 가 발생해!
- 📌 중요한 건 이 전압은 **온도 차이(Th Tc)에 비례**한다는 것!
- Hot junction, Cold junction
- Thermocouple

3.9. Gravimetric/SAW Transducers

- Bio/Chemical sensor -> Gas sensor

▼ 핵심 개념: Gravimetric Transducer란?

무게(질량)가 변하면, **진동 주파수**가 변하는 현상을 이용한 센서야.

★ 기본 수식:

$$rac{\Delta f}{f} = S_m \cdot \Delta m$$

• Af / f : 진동 주파수의 상대적 변화량

• Sm : 감도(Sensitivity)

Δm : 질량의 변화량

👉 즉, 질량이 변하면 진동 주파수도 변한다!

(냄새 분자, 가스 등 뭔가가 표면에 붙어서 질량이 늘어나면, 그에 따라 주파수도 변한다는 뜻이야)

- Ouartz Crystal 기반 센서

🥕 예시 1: Quartz Crystal 기반 센서

- 구조: 쿼츠(Quartz) 결정 + 냄새 분자를 감지하는 막 (lipid layer)
- 작동:
 - 냄새 분자가 막에 붙으면 → 질량 증가
 - 진동 주파수 f 가 감소
 - f → f Δf 로 변함
- 결과
 - 이 Δf 를 통해 냄새 농도나 존재 여부를 판단함
- 📈 오른쪽 아래 그래프에서 보면:
- → **냄새 농도(ppm)가 높아질수록**, **주파수 변화량(Δf)**도 커지는 걸 보여줌.

- SAW(Surface Acoustic Wave) Type 센서

(2) SAW (Surface Acoustic Wave) Type 센서

- 그림 오른쪽 위 참고
- 구조:
 - 표면에 전국 + 피에조 필름을 두고 진동을 유도
 - 센싱 코팅층(coating)에 기체가 흡착되면 **질량 증가**
- 결과:
 - 주파수 감소 → **출력 주파수로 질량 변화 감지**

☑ Bio/Chemical Sensor 구성

이 센서는 다음처럼 두 부분으로 나뉘어:

- Sensing Element (감지부): 예를 들어 냄새 분자가 붙는 막.
- Gravimetric Transducer (변환기): 진동수 변화를 감지함 (ex. quartz crystal, SAW 구조 등)
- 이 둘이 합쳐져서 가스 센서, 화학 센서, 바이오 센서로 쓰여,

3.10. Optical Transducers

✓ Optical Transducer란?

빛을 이용한 센서 구조로 다음과 같은 구성을 기본으로 해.

📌 구조

- 광원(Light Source): 보통 LED 사용 (가시광선 또는 적외선)
- 광 검출기(Light Detector): 보통 포토다이오드 사용

이 둘이 센서 내부 또는 공간 양 끝에 배치돼 있고, **빚의 변화**를 통해 외부 상태를 감지하는 방식이야.

대표 예시 1: Optical Gas Sensor (광학식 가스 센서)

- 구조
 - 위쪽: 가스 투과 막 (Gas permeable membrane
 - 내부: LED → Wafer A → 감지 → Wafer B → PD1, PD2(포토다이오드)
- 원리:
 - LED에서 나온 빛이 특정 가스에 반응하여 광의 흡수량이 바뀜
- 이 빛의 강도 변화는 PD1/PD2가 감지해서 전압 V_S 로 변환됨
- 특징·
 - 비접촉식 가스 감지 가능
 - 일반적으로 CO₂, 알코올 증기 등을 감지

☑ 대표 예시 2: Optical Smoke Detector (연기 감지기)

- 구성:
 - IR LED와 포토다이오드가 서로 마주보지 않게 배치됨
- 워리
 - 평상시: 빛이 직선으로 가서 포토다이오드는 빛을 감지하지 않음
 - 연기 발생: 연기가 빛을 산란시키면서 포토다이오드 쪽으로 빛이 도달
 - 이 변화가 감지되면 → 화재 경보 발생
- 그림에선 좌측은 정상상태, 우측은 연기 입자 산란 상태를 보여줌

☑ 대표 예시 3: PIR (Passive InfraRed) Detector — 적외선 인체 감지기

- 구성:
 - PIR 센서 + Fresnel Lens + 증폭기 + 비교기
- 워리:
 - 사람이나 동물이 **열(적외선)을 방출**하면
 - 이 열이 PIR 센서에 **온도 차이(thermal energy)**를 유도함
 - 이걸 증폭 → 비교기에서 춬력
- MQ
 - 인체 감지, 침입 감지, 자동문 감지기 등
- Fresnel Lens : 두껍고 무거운 렌즈의 역할을 얇고 가볍게 구현한 렌즈.

☑ 왜 센서에 쓰이나?

- PIR 센서(적외선 인체 감지기)에서는 사람 몸에서 나오는 열(적외선)을 감지해야 해.
- 이때 Fresnel Lens가 열 신호(적외선)를 효율적으로 집중시켜서 센서가 잘 감지할 수 있도록 도와줘.
- 즉, 멀리 있는 사람의 적외선 신호도 잘 모아서 PIR 센서에 전달해 주는 역할이야.

🔽 한 줄 요약 (시험용 문장)

Fresnel Lens는 얇고 계단 모양 구조를 가진 렌즈로, PIR 센서 등에서 적외선을 집중시켜 감지 성능을 높이는 데 사용된다.

3.11. Thermal Transducers

- Thermal Transducer : 열의 변화 -> 전기 신호 로 바꾸는 센서.
- 주로 온도 변화에 민감하게 반응하는 서미스터(Thermistor)가 사용된다.
- Thermistor : 온도에 따라 저항이 변하는 소자.
- NTC : 온도 증가 -> 저항 감소. - PTC : 온도 증가 -> 저항 증가.

3.11 Thermal Transducers

A biosensor based on transducer of thermistor

이건 생화학 반응을 통해 생기는 온도 변화를 Thermistor로 측정하는 구조야.

구성 순서 요약:

- 1. 버퍼 + 펌프: 샘플이 이동할 수 있도록 도와줌.
- 2. Enzyme pre-column: 특정 물질을 효소와 먼저 반응시킴.
- 3. Sample loop로 주입 → **Enzyme column (실험) + Reference column (비교군)**에 흐름
- 4. 두 열 반응에서 생긴 **온도 변화**를 각각 **Thermistor**가 측정함.
- 5. Amplifier가 미세한 저항 변화(=온도 변화)를 전기 신호로 증폭시켜 줌.

☑ 핵심 원리:

효소 반응 시 **발생하는 열** ightarrow 온도 차이 ightarrow Thermistor가 감지 ightarrow 전기 신호

Thermistor as a transducer

★ 그림 오른쪽: Thermistor가 센서로 쓰이는 다양한 방식

위쪽:

- 서미스터 소자 구조
 - 세라믹 재질로 만들고, 플라스틱이나 에폭시로 감싸기도 해 (내구성 ↑)

아래쪽:

- Enzyme 코팅된 미세 채널에 흐름을 보내고,
 - 그 반응에서 생기는 열을 pair of film thermistors가 감지함
- 각 효소(urease, lactate oxidase 등)는 특정 물질만 반응하므로 **고유의 파형**이 나옴

[Ch4: Physical Sensors1 - Strain, Force, Pressure]

4.1. Strain

- Strain(변형률) : 어떤 물체에 힘을 가했을 때, 그 물체가 얼마나 늘어나거나 줄어드는가를 나타내는 물리량.
- Strain Gauge : 입력(물리량) -> 출력(전기신호). 물리적 자극(힘, 응력, 압력 등)이 주어졌을 때 물체가 변형되고, 저항이 변함 -> 전기적으로 감지 가능!, 표면의 변형을 측정하는 센서. 주로 금속막(저항선)을 일정한 패턴으로 만들어 얇은 판 위에 붙이고, 이걸 측정 대상 표면에 부착한다.
- Strain Gauge 동작 원리: 저항의 변화 = (기하학적 변화: 길이, 면적 변화에 따른 저항 변화) + (비저항 변화: Piezoelectric effect, 재료의 고유 특성 변화)
- Load cell: 스트레인 게이지를 4개 사용해서 만든 센서. 브리지 회로로 구성됨. 힘/무게를 정확히 측정할 수 있음.
- Load cell 구조 요약 : 스트레인 게이지 4개를 물체에 부착, 힘이 가해지면 저항 변화 발생, 브리지 회로를 통해 전압 변화 -> 힘 계산.

■ Resistive Strain Detector

4.2. Pressure

4.2.1. Introduction

- 1) 압력 센서의 기본 개념
- Pressure 입력(물리적 압력)
- 압력으로 인한 기계적 변위 발생(물리적 움직임)
- 이를 전기적 신호로 변화(Conversion)
- Signal Processing으로 증폭/정제해서 출력.
- 2) 압력을 감지하는 구조적 형태들
- Bourdon Tube (부르동 튜브) : 기계식 압력계에서 많이 씀. 튜브가 압력을 받으면 펼쳐지는 방향으로 움직여!(C-shaped(C자형) : 압력 받으면 펼쳐지면서 직선에 가까워짐 / Helical type(나선형) : 압력 받으면 코일이 풀리듯 움직임)
- Bellows (벨로우즈): 주름진 구조로 되어 있어 부드럽고 민감하게 압력 감지 가능!(Capsule(캡슐형): 얇은 두 개의 다이어프램(diaphragm)이 압력 받으면 중앙부가 눌림. / Bellows(벨로우즈형): 아코디언처럼 생긴 구조가 압력에 따라 길이가 늘어나거나 줄어듦.)
- Diaphragm (다이어프램): 압력에 따라 막(membrane)이 휘어지며 움직이는 구조. (Flat(평면형): 평평한 얇은 막이 압력을 받아서 중앙이 움푹 들어감. / Corrugated(물결형): 표면에 주름을 넣어 감도가 좋음. 작은 압력에도 더 큰 변위 발생.)

4.2.2. Piezoresistive Pressure Sensor(압저항형 압력 센서)

- 원리: 압력 -> diaphragm 변형 -> 스트레인 게이지 저항 변화 -> 전압 출력

🧩 반도체 구조 내부 모습 (왼쪽 아래 그림 설명)		
구조	설명	
SiO ₂ Passivation	산화막, 표면 보호	
Diaphragm	얇은 막 구조, 압력 받아 변형됨	
Piezo-resistor	압력 → 저항 변화 유도	
Al-electrode	전기 신호 읽기 위한 전극	
N-Si / Si-base	반도체 기판 구조	

4.2.3. Piezoelectric Pressure Sensor(압전형 압력 센서)

- 핵심 워리 : 압력이 Piezoelectric 물질에 가해지면 -> 전하(q)가 생성됨 -> 전압 출력

🚺 원리 (왼쪽 그림)

구조

- 두 전국 사이에 압전 결정체(Piezoelectric Crystal) 가 끼워져 있음
- 압력이 수직으로 가해짐 → 결정체가 변형 → 전하(a) 발생

▶ 수식 이해

• 기본 전하 방정식

$$q=CV_0=rac{arepsilon A}{h}V_0$$

- → 압전 소재의 면적(A), 두께(h), 유전율(ɛ) 관련
- 압력에 의한 전하 생성

$$q = S_q \cdot A \cdot p$$

- $ightarrow S_q$: 압전 물질의 전하 민감도
- → 압력 p가 클수록 전하 많이 생성됨
- 출력 전압

$$V_0 = \left(rac{S_q}{arepsilon}
ight) h \cdot p = S_v \cdot h \cdot p$$

 $\rightarrow S_{\eta}$: 센서의 전압 민감도

2 설치 방식 (오른쪽 그림)

- Quartz Electrode가 다이어프램과 연결되어 있음
- 압력이 다이어프램을 누르면 → Quartz가 변형 → 전하 생성
- IC Amplifier를 통해 신호 증폭 후 출력
- Lead wire를 통해 외부로 전송

기호	의미
S_q	Charge sensitivity (C/N)
S_v	Voltage sensitivity (V/N)
ε	유전율 (Permittivity)
h	결정체 두께
A	전극 면적
p	가해진 압력

■ Concept of the Piezoelectric Pressure Sensor

$$q = CV_0 = \frac{\varepsilon A}{h}V_0$$
 $q = S_qAp$ $V_0 = \left(\frac{S_q}{\varepsilon}\right)hp = S_Ehp$

 S_q : charge sensitivity of piezoelectric material S_E : voltage sensitivity of sensor

4.2.4. Capacitive Pressure Sensor(정전용량식 압력 센서)

- 핵심 원리: 압력 -> 다이어프램이 이동 -> 두 판 사이의 거리 d 변화 -> 정전용량 C 변화 -> 전기적 신호 출력.

🚺 기본 구조 및 원리

• 기본 식

$$C = \varepsilon_0 \varepsilon_r \frac{A}{d}$$

- *C*: 정전용량 [F]
- ε_0 : 진공 유전율
- ε_r : 상대 유전율
- A: 두 전극의 면적
- d: 전극 사이 거리 (Displacement!)
- 압력이 가해지면
 - 실리콘 다이어프램이 휘어지면서 d가 변함
 - \rightarrow 정전용량 C가 변함
 - → 이를 통해 압력을 전기적 신호로 변환

🙎 Micro-machined Capacitive Sensor의 특징 (오른쪽)

- 실리콘(Silicon)으로 만들어진 다이어프램 사용
- 정전용량은 **백플레이트(reference plate)**와의 거리 변화로 측정
- 특히 저압 감지에 유리함 (고해상도!)

③ Capacitive vs Piezoresistive 다이어프램 설계 차이			
항목	Capacitive Sensor	Piezoresistive Sensor	
작동부	중심부 이동을 사용	가장자리 응력을 활용	
센서 구조	정전용량 변화 감지	저항 변화 감지	
감도	고감도, 고해상도	응력 분포 기반	
적용 분야	저압, 미세 압력 측정에 유리	높은 압력에도 사용 가능	

4.2.5. Electromagnetic Pressure Sensor(전자기식 압력 센서)

- 핵심 원리: Differential Transformer (차동 트랜스포머)의 원리를 이용해서 압력 → 변위 → 전압 신호로 변환함.

differential transformer

4.2.6. Variable Reluctance Pressure Sensor(가변 자기저항 센서)

< VRP센서> (Variable Reluctance Pressure Sensor - 가변 자기저항 센서)

- 차동변압기의 자기저항을 조절하기 위해 자기 전도성 다이어프램을 사용한다. 차동 변압기 구조 기반.
- E자형 자성체 코어의 투자율은 공극보다 1000배 더 높고 자기저항은 훨씬 낮으며 이것은 코어-코일 조립체의 인덕턴스를 결정한다.
- 다이어프램이 굴절될 때, 굴절방향에 따라 공극이 증가 혹은 감소하고, 이것은 인덕턴스 변조의 원인이 된다.

4.2.7. Optoelectronic Pressure Sensor(광전자식 압력 센서)

- Capacitive sensor와 유사하지만, 정전용량 대신 광학 공진기(optical cavity) 사용.

- 집 압력 감지 원리 (Detection Mechanism)

 ↑ 빛의 반사 투과가 파장에 따라 주기적으로 변함
- cavity로부터 나오는 반사·투과는 **역파장(1/\)**의 함수로 거의 주기적
- 압력에 따라 ω가 선형적으로 변하므로, 빛의 파장이 조절됨
- 📌 즉, 압력 변화 → 다이어프램 변위 → 공진기 간격 변화 → 간섭파장 변화

📮 정리	
항목	설명
센서 유형	광전자식 압력 센서
주요 원리	Fabry-Perot 간섭계 이용
압력 감지 방식	다이어프램 변위 → 파장 변조
주요 구성	LED (광원) + Detector Chip (포토다이오드 3개 포함)
응용	정밀 광학 압력 센서 분야 (소형화 및 고감도 센싱)

- 4.3. Force and Tactile/Touch
- 4.3.2. Tactile/Touch Sensor
- 1) Tactile Sensor
- 아주 얇은 두계를 가지는 힘(force) 또는 압력(pressure) 센서.
- 두 물체가 가까이 접근했을 때 생기는 힘이나 압력을 감지하는 데 유용.

Tactile Sensor - piezoelectric type (active)

주 재료:

PVDF (Polyvinylidene fluoride) 필름

- → 압력을 가하면 **전하를 생성**하는 압전 필름
- 구조:

3개의 필름을 적층 → 가운데 층은 음향 결합층(acoustic coupling layer)

- 회로 구성:
 - 압전 필름 → 압력 받으면 전하 발생
 - 증폭기(amplifier) → 동기 검파기(demodulator) → 출력 전압 신호로 변환
- 특징:

액티브 방식은 외부 **자극(oscillator)**를 줘야 동작함

Tactile Sensor - piezoelectric type (passive)

구조

PVDF 필름이 고무 외피에 삽입되어 있음

- 작동 방식:
 - 외부 힘이 가해지면 필름이 변형 → 전기 신호 생성
 - 자극 주파수 변화에 비례한 응답을 출력 (응력의 크기가 아니라 응력의 변화율에 반응함)
- 용도
 - 로봇의 슬라이딩 동작 감지
 - 빠르게 변하는 진동 감지에 적합

Tactile Sensor – resistive type

• 워리

힘이 가해지면 저항이 바뀌는 재료 사용

- FSR (Force Sensitive Resistor):
 가해진 힘에 따라 저항이 줄어듦
 - (→ 출력 전압은 그에 따라 변화)
- 재료:
 - 도전성 고무(elastomer) 또는 압력 감응성 잉크
- 작동 원리:
 - (a) 접촉 면적 변화
 - (b) 두께 변화
 - → 둘 다 저항 변화로 이어짐
- 출력 특성 그래프:
 - 힘이 작으면 저항이 급격히 감소
 - 일정 힘 이상부터는 **포화(saturation)** 상태

<Tactile sensor - membrane switch(막 스위치)>

- -on/off 출력을 주는 간단한 촉각 센서(tactile sensor)
- -두개의 금속 박막중 하나는 접지, 다른 하나는 pull-up resister에 연결되어 있고, multiplexer는 하나 이상의 sensing 영역이 필요하면 사용된다.
- -외부 힘을 가하면 upon conductor가 구부러져서 lower conductor에 붙는다.
- => 전기적 접촉을 만듦 => pull-up resistor가 접지 => 출력신호 0이 됨(힘이 없으면 출력신호 ≠ 0)

<Tactile sensor - active piezoelectric type(능동성 압전 타입)>

- -촉각 센서는 능동과 수동 모드에 사용되는 PVDF같은 압전 필름과 함께 설계되었다.
- →세개의 필름이 함께 박층구조로 되어있다.
- →위쪽과 아래쪽 필름은 PVDF인 반면에 중앙 필름은 탄성결합을 위한 것이다.
- →중앙 필름의 소프트함은 센서의 동작 범위와 민감성을 결정한다.
- 1)아래쪽 압전 필름은 발전기로부터 나오는 교류 전압에 의해 운용된다.
- 2)자극 신호는 중앙 필름의 기계적 수축을 야기고, 결과적으로 위쪽 압전 필름은 수신기로서의 역할을 하는 것이다.
- 3)압전 현상은 가역 현상이기 때문에, 압축 필름으로부터 기계적 진동을 받게 하면서 교류 전압을 발생시킨다.
- 4)이 진동들은 증폭되어 동기 복조기에 반영된다.
- 5)복조기는 전달된 신호의 진폭과 위상에 민감하다.
- 6)압축 힘 F가 위쪽 필름에 전달될 때, 3층 조립체 사이의 기계적 결합이 변한다.
- 7)이라한 변화는 전달되는 신호의 진폭과 위상에 영향을 끼친다.
- 8)이런 변화들은 복조기에 의해 인지되고. 출력 신호에서 가변 전압으로 나타난다.

<Tactile sensor - Passive piezoelectric type(수동적 압전 타입)>

FIGURE 8.5. Tactile sensor with a piezoelectric film for detecting sliding forces. A: A cross sectional view; B: a typical response (adapted from [4]).

- -PVDF 필름 조각과 결합된 압전 촉각 센서는 고무 스킨에 깊이 박혀있다.
- -수동적이기 때문에 출력 신호는 자극신호가 필요 없는 압전 필름에 의해 만들어진다.
- -이 센서는 스트레스 크기보다 스트레스 률에 비례되는 반응을 생성한다.
- -이 센서는 슬라이딩 모션을 감지하는데 적합한 robotic application에 맞추어져 있다.
- 압전 센서 조각으로부터 생성된 전기적 신호는 마찰력으로부터 나온 탄성 고무의 움직임을 나타낸다.
- -압전 필름이 방향마다 다르게 반응하기 때문에, 신호의 크기는 어떤 방향에서도

<Tactile sensor - resistive type(저항 타입)>

- -이 센서는 전기적 저항의 물질을 사용함으로서 만들어 질 수 있고, 인가된 압력에 따라 저항값이 변하는 FSR(힘에 민감한 저항기)을 포함한다.
- -저항 변화에 의한 작동원리
- ->접촉면적과 두께의 변화
- -외부 힘이 변할 때, pusher와 elastomer 사이의 접촉 면적이 변함
- -> 전기적 저항이 감소
- -어느 압력 지점에서 접촉면적 최대가 됨 -> 전달함수는 포화상태로 감(정상상태)
- -실생활에서 잘 적용되나 비교적 큰 두께 때문에 로봇이나 의학적 사용엔 어려움.