

1 of 11

Multiclass

Jordan Boyd-Graber University of Colorado Boulder LECTURE 14

Slides adapted from Rob Schapire and Fei Xia

Motivation

- Binary and Multi-class: problems and classifiers
- Solving Multi-class problems with binary classifiers
 - One-vs-all
 - All pairs
 - Error correcting codes

Classification Problems

- Natural binary
 - Spam classification (spam vs. ham)
 - Segmentation (same or different)
 - Coreference

Classification Problems

- Natural binary
 - Spam classification (spam vs. ham)
 - Segmentation (same or different)
 - Coreference
- However, many are multiclass
 - Topic classification
 - Part of speech tagging
 - Scene classification

Classifiers

- Some are directly multi-class (naïve Bayes, logistic regression, KNN)
- Other classifiers are basically binary

Classifiers

- Some are directly multi-class (naïve Bayes, logistic regression, KNN)
- Other classifiers are basically binary
 - SVM
 - Perceptron
 - Boosting

Jordan Boyd-Graber | Boulder Multiclass |

4 of 11

Reduction

Multiclass Data

```
⟨name=Cindy , age=5 , sex=F⟩,  
⟨name=Marcia, age=15, sex=F⟩,  
⟨name=Bobby , age=6 , sex=M⟩,  
⟨name=Jan , age=12, sex=F⟩,  
⟨name=Peter , age=13, sex=M⟩,  
■
```

Multiclass Data

```
⟨name=Cindy , age=5 , sex=F⟩, ⟨name=Marcia, age=15 , sex=F⟩, ⟨name=Bobby , age=6 , sex=M⟩, ⟨name=Jan , age=12 , sex=F⟩, ⟨name=Peter , age=13 , sex=M⟩, ■
```

Binary Classifier

Reduction

Multiclass Data

```
(name=Cindy , age=5 , sex=F),
(name=Marcia, age=15, sex=F),
(name=Bobby , age=6 , sex=M),
(name=Jan , age=12, sex=F),
(name=Peter , age=13, sex=M),
```

Binary Classifier

Goal: Multiclass Classifier

One-Against-All

- Break k-class problem into k binary problems and solve separately
- Combine predictions: evaluate all h's, hope exactly one is + (otherwise, take highest confidence)

Jordan Boyd-Graber | Boulder Multiclass |

6 of 11

One-Against-All

- Break k-class problem into k binary problems and solve separately
- Combine predictions: evaluate all h's, hope exactly one is + (otherwise, take highest confidence)
- Incorrect prediction if only one is wrong

Jordan Boyd-Graber | Boulder Multiclass |

6 of 11

All-Pairs (Friedman; Hastie & Tibshirani)

		■ vs. ■		■ vs. ■		■ vs. ■		■ VS. ■		■ vs. ■		■ vs. ■	
<i>x</i> ₁		<i>x</i> ₁	_					<i>x</i> ₁	_			<i>x</i> ₁	_
<i>X</i> ₂				<i>x</i> ₂	_	<i>x</i> ₂	+					<i>x</i> ₂	+
<i>X</i> 3	\Rightarrow					<i>x</i> ₃	_	<i>x</i> ₃	+	<i>X</i> 3	_		
<i>X</i> 4		X4	_					X4	_			X4	_
<i>X</i> 5		<i>X</i> 5	+	<i>X</i> 5	+					<i>X</i> 5	+		
		↓		#		↓		,	Ų.	١,	\downarrow	1	ļ
		h ₁		h_1 h_2		h ₃		h ₄		h ₅		h ₆	

- One binary problem for each pair of classes
- Take class with most positives and least negatives
- Faster and more accurate than one-against-all

Time Comparison

Assume training time is $\mathcal{O}\left(m^{\alpha}\right)$ and test time is $\mathcal{O}\left(c_{t}\right)$

	Training	Testing
OVA	$\mathcal{O}\left(\mathit{km}^{lpha} ight)$	$\mathcal{O}(kc_t)$
All-pairs	$\mathcal{O}\left(k^2\left(\frac{m}{k}\right)^{\alpha}\right)$	$\mathcal{O}\left(k^2c_t\right)$

Time Comparison

Assume training time is $\mathcal{O}\left(m^{\alpha}\right)$ and test time is $\mathcal{O}\left(c_{t}\right)$

	Training	Testing
OVA	$\mathcal{O}\left(\mathit{km}^{lpha} ight)$	$\mathcal{O}(kc_t)$
All-pairs	$\mathcal{O}\left(k^2\left(\frac{m}{k}\right)^{\alpha}\right)$	$\mathcal{O}\left(k^2c_t\right)$

OVA better for testing time, all-pairs better for training. (All-pairs usually better for performance.)

Error Correcting Output Codes (Dietterich & Bakiri)

Reuce to binary using "coding" matrix

		3		
+	_	+	_	+
_	_	+	+	+
+	+	_	_	_
+	+	+ + - +	+	_

Error Correcting Output Codes (Dietterich & Bakiri)

- Reuce to binary using "coding" matrix
- Train classifier for each bit

		1		2		3		4		5	
<i>x</i> ₁		<i>x</i> ₁	_	<i>x</i> ₁	_	<i>x</i> ₁	+	<i>x</i> ₁	+	<i>x</i> ₁	+
<i>X</i> ₂		<i>x</i> ₂	+	<i>X</i> ₂	+	<i>x</i> ₂			_	<i>x</i> ₂	_
<i>X</i> 3	\Rightarrow					<i>X</i> 3			+	<i>X</i> 3	_
<i>X</i> ₄		<i>X</i> ₄				<i>X</i> ₄		<i>X</i> 4	+	<i>X</i> 4	+
<i>X</i> 5		<i>X</i> 5	+	<i>x</i> ₅	_	<i>X</i> 5			_		+
		1	l	. ↓				↓		↓	
		h	h_1		h ₂		h ₃		h ₄		5

Error Correcting Output Codes (Dietterich & Bakiri)

- Reuce to binary using "coding" matrix
- Train classifier for each bit

		1		2		3		4		5	
<i>x</i> ₁		<i>x</i> ₁	_		_	<i>x</i> ₁	+	<i>x</i> ₁	+	<i>x</i> ₁	+
<i>x</i> ₂		<i>x</i> ₂		<i>x</i> ₂					_	<i>x</i> ₂	_
<i>X</i> 3	\Rightarrow			<i>X</i> 3				<i>X</i> 3	+	<i>X</i> 3	_
<i>X</i> ₄		<i>X</i> ₄	_	<i>X</i> ₄						<i>X</i> 4	+
<i>X</i> 5			+			<i>X</i> 5		_	_	<i>X</i> 5	+
		↓	ļ			↓		↓		↓	
		h	1	h	2	h	3	h	4	h	5

Choose closest row of coding matrix to predict

ECOC

- If rows of M are far apart, will be robust to error
- Much faster if k is large
- Disadvantage: binary problems may be unnatural

That's it for classification!

- You can implement multiple forms of classification
- Derive theoretical bounds for many classification tasks
- Today is bridge to the future: classification foundation of other ML tasks