Validation results

Meg Cychosz

30 December 2020

```
# get total # of clips from each recording
complete2 <- complete %>%
  group_by(id) %>%
  distinct(file_name, .keep_all = T) %>%
  mutate(num_clips = NROW(Media)*2)
clips <- complete2 %>%
  select(id, num_clips) %>%
  distinct(id, .keep_all = T)
data <- merge(clips, random, by='id')</pre>
data2 <- rbind(data, complete2)</pre>
data3 <- data2 %>%
  group_by(method, id) %>%
  mutate(num_clips_drawn = (NROW(file_name))) %>%
  mutate(percen_ofallclips_drawn=(NROW(file_name)/num_clips)*100) # sanity check - complete method shou
data_annon <- data3 %>%
 gather("addressee", "language", Adult2OtherChild, Adult2Others, Adult2TargetChild, Adult2unsure, Other
  filter(language=='Mixed' | language=='Spanish' | language=='English/Quechua' | language =='Unsure') %
  group_by(id, method) %>%
  distinct_at(., vars(file_name, language), .keep_all = T) %% # don't record multiple speakers speakin
  mutate(total_annotations = NROW(file_name)) # N of annotations made; distinct from N of speech clips
# separately, calculate the num and % of annotated clips
data_annon_cts <- data_annon %>%
  group_by(id, method) %>%
  distinct(file_name, .keep_all = T) %>%
  mutate(speech_clips = NROW(file_name)) %>% # N of unique clips annotated - NOT the # of annotations
  mutate(percen_ofallclips_annon=(NROW(file_name)/num_clips)*100) %>% # % of total clips annotated
  select(speech_clips, percen_ofallclips_annon, id, method, file_name, num_clips_drawn, percen_ofallcli
for_speech_clips <- data_annon_cts %>%
  select(id, method, speech_clips) %>%
  distinct_at(., vars(id, method), .keep_all = T)
# first load in the complete files so we can estimate the # of available clips
all <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Meg_data/1032_config.csv')</pre>
all2 <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Meg_data/1060_config.csv')
all3 <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Meg_data/1075_config.csv')
```

```
all4 <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Meg_data/1077_config.csv')
all5 <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Meg_data/1081_config.csv')</pre>
all6 <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Anele_data/179config.csv')</pre>
all7 <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Anele_data/198config.csv')</pre>
all8 <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Anele_data/199config.csv')
all9 <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Anele_data/261config.csv')</pre>
all10 <- read.csv('/Users/megcychosz/Google Drive/biling_CDS/Anele_data/267config.csv')
config files <- rbind(all, all2, all3, all4, all5, all6, all7, all8, all9, all10)
# calculate the num and % of all clips available for annotation
data_avbl <- config_files %>%
  group_by(id) %>%
  distinct(file name, .keep all = T) %>% # duplicates bc drawn with replacement
  mutate(voc = if_else(percents_voc > 0, "1", "0")) %>% # turn percents_voc binary
  filter(sleeping=='1' | researcher_present == '1' | voc == '0') %>%
  count() %>%
  rename(not_avl_clips = n) %>%
  merge(., data_annon, by=c('id')) %>%
  mutate(avbl_clips = num_clips - not_avl_clips) %% # clips that were *available* for annotation out o
  merge(., for_speech_clips, by=c('id', 'method')) %% # N of unique clips annotated - NOT the # of ann
  mutate(percen_avl_annon = (speech_clips / avbl_clips)*100) %>% # the # of clips annotated / # of avbl
  distinct_at(., vars(id, method), .keep_all = T) %>%
  group_by(method) %>%
  mutate(avbl_clips = paste(speech_clips, "(",round(percen_avl_annon,2),"%)")) %>%
  ungroup()%>%
  select(avbl_clips, id, method) %>%
  pivot wider(names from=method, values from=c("avbl clips"))
percen_tbl <- data_annon_cts %>%
  select(-file_name) %>%
  distinct_at(., vars(id,method), .keep_all = T) %>%
  mutate(clips_drawn = paste(num_clips_drawn,"(",round(percen_ofallclips_drawn,2),"%)")) %>%
  mutate(clips_annon = paste(speech_clips,"(",round(percen_ofallclips_annon,2),"%)")) %>%
  select(-num_clips_drawn, -percen_ofallclips_annon, -speech_clips, -percen_ofallclips_drawn) %>%
  relocate(c(id, method, clips_drawn, clips_annon)) %>%
  pivot_wider(names_from=method, values_from=c("clips_drawn", "clips_annon")) %>%
  merge(., data_avbl, by=c('id'))
percen_tbl$id <- plyr::mapvalues(percen_tbl$id,</pre>
                                 from=c('267-12mo', '261-8mo', '199', '198-9mo', '179', '1081', '1077',
            to=c('Spanish-English (267)', 'Spanish-English (261)', 'Spanish-English (199)',
  'Spanish-English (198)', 'Spanish-English (179)', 'Quechua-Spanish (1081)', 'Quechua-Spanish (1077)',
# actually decided to split this table and move part to the appendix
clip_annon_tbl <- percen_tbl %>%
  select(id, clips_annon_random, clips_annon_complete) %>%
  arrange(desc(id))
knitr::kable(clip_annon_tbl, caption = 'Number of clips annotated by child and annotation method.',
             booktabs=T.
             row.names = FALSE,
             col.names = c("Corpus (ID)", "Random", "Complete")) %>% # "
  kable_styling() %>%
```

```
add_header_above(c(" " = 1, "# of clips annotated (% of total clips)" = 2)) %>%
kableExtra::kable_styling(latex_options = "hold_position")
```

 $\left\{ \text{table} \right\} [!h]$

\caption{(#tab:% drawn and annotated table) Number of clips annotated by child and annotation method.}

	# of clips annotated (% of total clips)			
Corpus (ID)	Random	Complete		
Spanish-English (267)	101 (5.26 %)	274 (14.27 %)		
Spanish-English (261)	92 (4.79 %)	294 (15.31 %)		
Spanish-English (199)	118 (6.15 %)	467 (24.32 %)		
Spanish-English (198)	81 (4.22 %)	302 (15.73 %)		
Spanish-English (179)	120 (6.25 %)	633 (32.97 %)		
Quechua-Spanish (1081)	92 (7.5 %)	285 (23.25 %)		
Quechua-Spanish (1077)	83 (7.23 %)	355 (30.92 %)		
Quechua-Spanish (1075)	81 (8.69 %)	199 (21.35 %)		
Quechua-Spanish (1060)	111 (10.51 %)	405 (38.35 %)		
Quechua-Spanish (1032)	97 (5.05 %)	372 (19.38 %)		

 \end{table}

\begin{table}[!h]

kableExtra::kable_styling(latex_options = "hold_position")

\caption{(#tab:% drawn and annotated table)Number of clips drawn and number of clips annotated, by child and annotation method.}

	# of clips drawn	n (% of total clips)	# of clips annotated (% of available clips)		
Corpus (ID)	Random	Complete	Random	Complete	
Spanish-English (267)	345 (17.97 %)	960 (50 %)	101 (13.1 %)	274 (35.54 %)	
Spanish-English (261)	290 (15.1 %)	960 (50 %)	92 (8.18 %)	294 (26.13 %)	
Spanish-English (199)	192 (10 %)	960 (50 %)	118 (10.61 %)	467 (42 %)	
Spanish-English (198)	284 (14.79 %)	960 (50 %)	81 (7.96 %)	302 (29.67 %)	
Spanish-English (179)	192 (10 %)	960 (50 %)	120 (8.05 %)	633 (42.48 %)	
Quechua-Spanish (1081)	249 (20.31 %)	613 (50 %)	92 (13.83 %)	285 (42.86 %)	
Quechua-Spanish (1077)	137 (11.93 %)	574 (50 %)	83 (8.15 %)	355 (34.84 %)	
Quechua-Spanish (1075)	267 (28.65 %)	466 (50 %)	81 (14.21 %)	199 (34.91 %)	
Quechua-Spanish (1060)	154 (14.58 %)	528 (50 %)	111 (12.01 %)	405 (43.83 %)	
Quechua-Spanish (1032)	263 (13.7 %)	960 (50 %)	97 (10.16 %)	$372\ (38.95\ \%)$	

 $\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremat$

0.0.1 Language categories across random and full methods

```
lang_annon <- data_annon %>%
  filter(language=='Mixed' | language=='Spanish' | language=='English/Quechua') %>% # only clips where
  group_by(id, method) %>%
  distinct_at(., vars(file_name, language), .keep_all = T) %% # don't record multiple speakers speakin
  mutate(total_lang_annotations = NROW(file_name)) # N of language annotations made; distinct from N of
que <- lang_annon %>%
  group_by(id, method) %>%
  filter(language=='English/Quechua') %>%
  group_by(method) %>%
  distinct(file_name, .keep_all = T) %>%
  group_by(id, method) %>% # irrespective of speaker/addressee; by-child only
  mutate(n_que=n()) %>%
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_que = n_que / total_lang_annotations) # compute que/enq ratio
span <- lang_annon %>%
  group_by(id, method) %>%
  filter(language=='Spanish') %>%
  group_by(method) %>%
  distinct(file_name, .keep_all = T) %>%
  group_by(id, method) %>%
  mutate(n_span = n()) %>%
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_span = n_span / total_lang_annotations) # compute span ratio
mixed <- lang_annon %>%
  group_by(id, method) %>%
  filter(language=='Mixed') %>%
  group_by(method) %>%
  distinct(file_name, .keep_all = T) %>%
  group_by(id, method) %>%
  mutate(n_mxd = n()) %>%
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_mxd = n_mxd / total_lang_annotations) # compute mixed ratio
# now simulate 100 minority lang estimates from each child
# take however many clips were used to compute the randomly-sampled estimate
# then compute the prop. of those that are spanish/quechua
# repeat 100X
nsims=100
# total_reg_annotations refers to the # of clips used to estimate language prop
# get that variable
random_lang_clips <- lang_annon %>%
  filter(method=='random') %>%
  distinct_at(., vars(id), .keep_all = T) %>%
  ungroup() %>%
  select(id, total_lang_annotations)
sim_lang_data <- lang_annon %>%
  filter(method=='complete') %>% # we're only sampling from all-day annotations
```

```
select(-total_lang_annotations) %>% # this is the # of all-day clips annotated and we want # of rando
  merge(., random_lang_clips, by='id') %>%
  group_by(id) %>%
  replicate(nsims, ., simplify = FALSE) %>% # simulate 100 collections of random clips
  map_dfr(~ sample_n(., total_lang_annotations), .id = "simulation") # sample the same # of clips per s
# now compute the Quechua estimate for the Bolivia corpus
que sim results <- sim lang data %>%
  filter(language=='English/Quechua' & location=='Bolivia') %>%
  group by(id, simulation) %>%
  distinct(file_name, .keep_all = T) %>%
  mutate(n_que=n()) %>%
  distinct(id, .keep all = T) %>%
  mutate(percen_que = n_que / total_lang_annotations) # compute que/to all else
# and the Spanish estimate for the US corpus
span_sim_results <- sim_lang_data %>%
  filter(language=='Spanish' & location=='US') %>%
  group_by(id, simulation) %>%
  distinct(file_name, .keep_all = T) %>%
  mutate(n_span=n()) %>%
  distinct(id, .keep_all = T) %>%
  mutate(percen_span = n_span / total_lang_annotations) # compute span/to all else
# now some descriptive stats from those results
# by corpus
que_sim_stats <- que_sim_results %>%
  ungroup() %>%
  summarize(mean_sim_que = round(mean(percen_que),2),
        sd_sim_que = round(sd(percen_que),2),
        min_sim_que = round(range(percen_que)[1],2),
        max_sim_que = round(range(percen_que)[2],2)) %>%
  mutate(sim_stat = paste(mean_sim_que,"(",sd_sim_que,")",min_sim_que,"-",max_sim_que)) %>%
  select(sim_stat)
span_sim_stats <- span_sim_results %>%
  ungroup() %>%
  summarize(mean_sim_span = round(mean(percen_span),2),
         sd_sim_span = round(sd(percen_span),2),
          min_sim_span = round(range(percen_span)[1],2),
        max_sim_span = round(range(percen_span)[2],2)) %>%
  mutate(sim_stat = paste(mean_sim_span,"(",sd_sim_span,")",min_sim_span,"-",max_sim_span)) %>%
  select(sim stat)
# now the spanish estimate by individual child in US corpus
span_sim_child_stats <- span_sim_results %>%
  group_by(id) %>%
  summarize(mean_sim_span = round(mean(percen_span),2),
        sd_sim_span = round(sd(percen_span),2),
        min_sim_span = round(range(percen_span)[1],2),
         max_sim_span = round(range(percen_span)[2],2)) %>%
  mutate(sim_stat_child = paste(mean_sim_span,"(",sd_sim_span,")",min_sim_span,"-",max_sim_span)) %>%
  select(id, sim_stat_child)
```

```
# and the quechua estimate by individual child in Bolivia corpus
que_sim_child_stats <- que_sim_results %>%
  group by(id) %>%
  summarize(mean sim que = round(mean(percen que),2),
         sd_sim_que = round(sd(percen_que),2),
         min sim que = round(range(percen que)[1],2),
         max_sim_que = round(range(percen_que)[2],2)) %>%
  mutate(sim_stat_child = paste(mean_sim_que,"(",sd_sim_que,")",min_sim_que,"-",max_sim_que)) %>%
  select(id, sim stat child)
span_lang_estimate <- span %>%
  filter(location=='US')
que_lang_estimate <- que %>%
  filter(location=='Bolivia') %>%
  mutate(actual_percen_minority = percen_que)
actual_lang_estimate <- span_lang_estimate %>%
  mutate(actual_percen_minority = percen_span) %>%
  rbind(., que lang estimate) %>%
  filter(method=='random') %>%
  select(id, actual_percen_minority)
que sim results2 <- que sim results %>%
  mutate(sim_percen_minority = percen_que)
minority_sim_results <- span_sim_results %>%
  mutate(sim_percen_minority = percen_span) %>%
  rbind(., que_sim_results2)
dropLeadingZero <- function(1){</pre>
  str_replace(1, '0(?=.)', '')
#minority language
lang_density <- actual_lang_estimate %>%
  merge(., minority_sim_results, by="id") %>%
  mutate(id=recode(id, "198-9mo"="198", "261-8mo"="261", "267-12mo"="267")) %%
  mutate(language=recode(location, "Bolivia" = "Quechua", "US" = "Spanish")) %>%
  ggplot(., aes(x=sim_percen_minority, fill=language)) +
  geom density(alpha=.75) +
  scale fill manual(values=c("lightsalmon", "#CC99FF")) +
  facet_wrap(~id, scales="fixed") +
    scale_x_continuous(breaks = seq(0, 1, .25),
                     labels = dropLeadingZero) +
  geom_vline(aes(xintercept=actual_percen_minority),
            color="gray36", linetype="dashed", size=1) +
  xlab("Estimates of minority language quantity") +
  ylab("Density") +
  theme(axis.text=element_text(size=8),
      axis.title=element_text(size=17,face="bold"))
lang_density
```


jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/min_lang_density_plot.jpeg", height = 4 lang_density dev.off() ## pdf ## vars <- data_annon_cts %>% select(percen_ofallclips_drawn, id, method) %>% colnames(.) final_data <- span %>% merge(., data_annon_cts, by=vars) %>% select(id, num_clips, age_YYMMDD, gender, location, method, percen_span, speech_clips, percen_ofallcl final_data2 <merge(final_data, que, by=c('id', 'method', 'percen_ofallclips_drawn', 'gender', 'location', 'num_cli select(id, gender, location, method, percen_span, percen_que, num_clips, percen_ofallclips_drawn, spe plot_data <merge(final_data2, mixed, by=c('id', 'method', 'percen_ofallclips_drawn', 'gender', 'location', 'num_ select(id, gender, location, method, percen_span, percen_que, percen_mxd, num_clips, percen_ofallclip # sanity check: calculate percen mixed + spanish + english/quechua plot_data\$total <- plot_data\$percen_mxd + plot_data\$percen_span + plot_data\$percen_que

```
# compute correlations
us_cor <- plot_data %>%
  distinct_at(., vars(method, id), .keep_all = T) %>%
  select(method, id, percen_span, location) %>%
  spread("method", "percen span") %>%
  filter(location=='US') %>%
  summarize(., paste("r=",round(cor.test(complete, random)$estimate,2),",","p=",round(cor.test(complete
bo_cor <- plot_data %>%
  distinct_at(., vars(method, id), .keep_all = T) %>%
  select(method, id, percen_que, location) %>%
  spread("method", "percen_que") %>%
  filter(location=='Bolivia') %>%
  summarize(., paste("r=",round(cor.test(complete, random)$estimate,2),",","p=",round(cor.test(complete
#AW added below (correlations for all random sampling simulations and descriptive stats for them)
us_cor2 <- plot_data %>%
  distinct_at(., vars(method, id), .keep_all = T) %>%
  select(method, id, percen_span, location) %>%
  spread("method", "percen_span") %>%
  filter(location=='US')
us_cor_sim <- span_sim_results %>%
  distinct_at(., vars(simulation, id), .keep_all = T) %>%
  select(simulation, id, percen_span, location) %>%
  spread("simulation", "percen_span") %>%
  merge(., us_cor2, by=c('id', 'location')) %>%
  select(-id, -location)
bo_cor2 <- plot_data %>%
  distinct_at(., vars(method, id), .keep_all = T) %>%
  select(method, id, percen_que, location) %>%
  spread("method", "percen_que") %>%
  filter(location=='Bolivia')
bo_cor_sim <- que_sim_results %>%
  distinct_at(., vars(simulation, id), .keep_all = T) %>%
  select(simulation, id, percen_que, location) %>%
  spread("simulation", "percen_que") %>%
  merge(., bo_cor2, by=c('id', 'location')) %>%
  select(-id, -location)
us_corsimmatrix <- as.data.frame(round(cor(us_cor_sim),2))</pre>
us_corsimmatrix_stats <- us_corsimmatrix %>%
    summarize(mean_corsim_us = mean(us_corsimmatrix$complete[1:nsims]),
         min_corsim_us = min(us_corsimmatrix$complete[1:nsims]),
         max_corsim_us = max(us_corsimmatrix$complete[1:nsims])) %>%
  mutate(corsim_stat_us = paste(mean_corsim_us,",",min_corsim_us,"-",max_corsim_us)) %>%
  select(corsim_stat_us)
bo_corsimmatrix <- as.data.frame(round(cor(bo_cor_sim),2))</pre>
```

```
bo_corsimmatrix_stats <- bo_corsimmatrix %>%
    summarize(mean_corsim_bo = mean(bo_corsimmatrix$complete[1:nsims]),
         min_corsim_bo = min(bo_corsimmatrix$complete[1:nsims]),
         max_corsim_bo = max(bo_corsimmatrix$complete[1:nsims])) %>%
  mutate(corsim_stat_bo = paste(mean_corsim_bo,",",min_corsim_bo,"-",max_corsim_bo)) %>%
  select(corsim stat bo)
# calculate absolute and relative errors (we're only using absolute)
us_rel_error <- plot_data %>%
  filter(location=='US') %>%
  group_by(method, id) %>%
  summarize(avg=mean(percen_span)) %>%
  spread(key='method', value='avg') %>%
  mutate(relative_error = ((abs((random - complete)) / complete)*100),
         avg_rel_error = round(mean(relative_error),2),
         sd_rel_error = round(sd(relative_error),2)) %>%
  mutate(rel_error_stats=paste(avg_rel_error,"(",sd_rel_error,")")) %>%
  distinct(rel_error_stats)
us_abs_error <- plot_data %>%
  filter(location=='US') %>%
  distinct_at(vars(id, method, percen_span)) %>%
  mutate(percen_span = round(percen_span,2)) %>%
  spread(key='method', value='percen_span') %>%
  mutate(abs error = round((abs(random - complete)),2))
bo_rel_error <- plot_data %>%
  filter(location=='Bolivia') %>%
  group_by(method, id) %>%
  summarize(avg=mean(percen_que)) %>%
  spread(key='method', value='avg') %>%
  mutate(relative_error = ((abs((random - complete)) / complete)*100),
         avg_rel_error = round(mean(relative_error),2),
         sd_rel_error = round(sd(relative_error),2)) %>%
  mutate(rel_error_stats=paste(avg_rel_error,"(",sd_rel_error,")")) %>%
  distinct(rel_error_stats)
bo_abs_error <- plot_data %>%
  filter(location=='Bolivia') %>%
  distinct_at(vars(id, method, percen_que)) %>%
  mutate(percen_que = round(percen_que,2)) %>%
  spread(key='method', value='percen_que') %>%
  mutate(abs_error = round((abs(random - complete)),2))
# add correlations to table - will make pretty below
us_lang_tbl2 <- cbind(us_abs_error, us_cor) %>%
  merge(., span_sim_child_stats, by='id') %>%
  mutate(id=recode(id, "179"="Spanish-English (179)", "198-9mo"="Spanish-English (198)", "199"="Spanish-
  relocate(c(id, random, complete, abs_error, sim_stat_child))
bo_lang_tbl2 <- cbind(bo_abs_error, bo_cor) %>%
  merge(., que_sim_child_stats, by='id') %>%
  mutate(id = paste("Quechua-Spanish","(",id,")")) %>%
  relocate(c(id, random, complete, abs_error, sim_stat_child))
```

```
lang_tbl <- rbind(us_lang_tbl2, bo_lang_tbl2)</pre>
```

Table 1: (#tab:generate lang tables)Minority language estimates by child and annotation method.

	Annotation	n Method			
Corpus (ID)	Random	All-day	Absolute error	n=100 simulations of random sampling Avg. (SD) Range	Within-conbetween ra all-day est
Spanish-English (179)	0.57	0.57	0.00	0.56 (0.04) 0.49 - 0.66	r= 0.96 , p
Spanish-English (198)	0.87	0.78	0.09	0.78 (0.04) 0.68 - 0.89	r = 0.96, p
Spanish-English (199)	0.76	0.70	0.06	0.7 (0.04) 0.6 - 0.8	r = 0.96, p
Spanish-English (261)	0.69	0.65	0.04	0.66 (0.04) 0.55 - 0.75	r = 0.96,
Spanish-English (267)	0.92	0.92	0.00	0.93 (0.02) 0.88 - 0.97	r = 0.96,
Quechua-Spanish (1032)	0.59	0.64	0.05	$0.64 \; (\; 0.05 \;) \; 0.52$ - 0.75	r=0.9, p
Quechua-Spanish (1060)	0.55	0.61	0.06	$0.61 \ (\ 0.04\)\ 0.52$ - 0.7	r=0.9, p
Quechua-Spanish (1075)	0.51	0.43	0.08	$0.43 \; (\; 0.05 \;) \; 0.29$ - 0.56	r=0.9, p
Quechua-Spanish (1077)	0.44	0.41	0.03	$0.41 \; (\; 0.05 \;) \; 0.3$ - 0.52	r=0.9, p
Quechua-Spanish (1081)	0.29	0.32	0.03	0.33 (0.05) 0.17 - 0.43	r=0.9, p

```
# for later
per_ann <- plot_data %>%
 filter(method=='random') %>%
  select(id, percen_ofallclips_drawn)
us_plot <- plot_data %>%
  filter(location=='US') %>%
  distinct_at(., vars(method, id), .keep_all = T)%>%
  select(-percen_que, -percen_ofallclips_drawn, -percen_mxd, -speech_clips, -total) %>%
  spread("method", "percen_span") %>%
  merge(., per_ann, by='id') %>%
  distinct(id, .keep_all = T) %>%
ggplot(., aes(random, complete)) +
  geom_smooth(method = "lm", color="black") +
  geom_jitter(aes(size=num_clips,color=round(percen_ofallclips_drawn,2)),alpha=.9,position = position_j
  scale_size_continuous(range = c(5, 9)) +
  scale_colour_gradient(low='indianred1', high = 'indianred4') +
  ylab("Proportion computed over \n entire recording") +
  xlab("Proportion computed over \n randomly sampled clips") +
```



```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/us_plot.jpeg", height = 500, width = 60
us_plot
dev.off()

## pdf
## 2

bo_plot <- plot_data %>%
    filter(location=='Bolivia') %>%
    distinct_at(., vars(method, id), .keep_all = T) %>%
    select(-percen_span, -percen_ofallclips_drawn, -percen_mxd, -speech_clips, -total) %>%
    spread("method", "percen_que") %>%
    merge(., per_ann, by='id') %>%
```

distinct(id, .keep_all = T) %>%

```
ggplot(., aes(random, complete)) +
  geom_smooth(method = "lm", color="black") +
  geom_jitter(aes(size=num_clips,color=round(percen_ofallclips_drawn,2)),alpha=.9,position = position_j
  scale_size_continuous(range = c(5, 9)) +
  scale_colour_gradient(low='indianred1', high = 'indianred4') +
  ylab("Proportion computed over \n entire recording") +
  xlab("Proportion computed over \n randomly sampled clips") +
  ylim(0,1) +
  xlim(0,1)+
  #facet_wrap(~location, scales = "free") +
  labs(col='% of clips drawn \n in random sampling') +
       \#title = 'Proportion of Quechua clips \n in Bolivian corpus') +
 theme(title = element_text(size=18, face="bold"),
   axis.text=element_text(size=14),
      axis.title=element_text(size=17,face="bold"),
     legend.title = element_text(size=15))+
       \#legend.position = c(.8, .5)) +
      guides(size=guide_legend(title="Total # of clips in \n recording"))
bo_plot
```



```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/bolivia_plot.jpeg", height = 500, width
bo_plot
dev.off()
```

```
## pdf
## 2
```

```
# finally, we want to actuallly plot the proportions of each language category by child and annotation
lang_props <- plot_data %>%
  gather("language", "proportion", percen_span, percen_que, percen_mxd) %>%
  distinct_at(., vars(id, proportion, language), .keep_all = T) %>%
  mutate(method=plyr::mapvalues(method, "complete", "all-day"),
         id=plyr::mapvalues(id, c("198-9mo", "261-8mo", "267-12mo"), c("198", "261", "267")),
         language=case_when(language=='percen_que' & location=='Bolivia' ~ " Quechua",
                         language=='percen_que' & location=='US' ~ ' English',
                         TRUE ~ as.character(language)),
         language=plyr::mapvalues(language, c("percen_mxd", "percen_span"), c("Mixed", "Spanish"))) %>%
  ggplot(., aes(fill=language, y=proportion, x=method)) +
  geom_bar(position='stack', stat='identity') +
  facet_grid(~id) +
  xlab('annotation method') +
    labs(subtitle = "Quechua-Spanish corpus
                                                                  Spanish-English corpus") +
  \#labs(title="Proportion of language categories, by child and annotation method",
        subtitle = "Quechua-Spanish corpus
                                                                                     Spanish-English cor
  theme(axis.text.x = element_text(angle = 45, hjust = .9, vjust=.8, size=11),
        plot.title = element_text(face="bold"),
       plot.subtitle = element_text(color='gray50',hjust = .55, face='bold', size=14),
        axis.title=element_text(size=17,face="bold"),
        legend.title = element_text(size=15,face = "bold"),
        legend.text = element_text(size=13),
        strip.text.x = element_text(size=9, face="bold"))
lang_props
```

.echua-Spanish corpus

Spanish-English corpus


```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/stacked_lang_plot.jpeg", height = 500,
lang_props
dev.off()

## pdf
## 2
```

0.0.2 Child-directed speech across random and full methods

```
reg_annon <- data_annon %>%
  filter(addressee=='Adult2TargetChild' | addressee=='Otherchild2TargetChild' | addressee=='Adult2Other
  group_by(id, method) %>%
  distinct_at(., vars(file_name, addressee), .keep_all = T) %>% # don't record multiple speakers speaki
  mutate(total_reg_annotations = NROW(file_name)) # N of register annotations made; distinct from N of s
cds <- reg_annon %>%
  group_by(id, method) %>%
  filter(addressee=='Adult2TargetChild' | addressee=='Otherchild2TargetChild') %>%
  group_by(id, method) %>%
  mutate(n_cds = n()) %>% # # of CDS clips
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_cds = n_cds / total_reg_annotations) %>%
  select(id, num_clips, age_YYMMDD, gender, location, method, percen_cds, n_cds, percen_ofallclips_draw
ads <- reg_annon %>%
  filter(addressee=='Adult20thers' | addressee=='Otherchild2adults') %>%
  group_by(id, method) %>%
  mutate(n_ads = n()) %>% # # of ADS clips
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_ads = n_ads / total_reg_annotations) %>%
  select(id, num_clips, age_YYMMDD, gender, location, method, percen_ads, n_ads, percen_ofallclips_draw.
o_child <- reg_annon %>%
  filter(addressee=='Adult20therChild' | addressee=='Otherchild20therChild') %%
  group_by(id, method) %>%
  mutate(n_ods = n()) %>% # # of ODS clips
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen ods = n ods / total reg annotations) %>%
  select(id, num_clips, age_YYMMDD, gender, location, method, percen_ods, n_ods, percen_ofallclips_draw
o2 <- merge(cds, ads, all=T)
o3 <- merge(o2, o_child, all = T)
o3[is.na(o3)] <- 0 # one child doesn't have any ODS
# sanity check
o3$total <- o3$percen_ods + o3$percen_ads + o3$percen_cds
set.seed(1234)
# now simulate 100 CDS estimates from each child
# take however many clips were used to compute the randomly-sampled estimate
# then compute the prop. of those that are CDS
# repeat 100X
```

```
# total_reg_annotations refers to the # of clips used to estimate speech register
# get that variable
random_clips <- reg_annon %>%
  filter(method=='random') %>%
  distinct_at(., vars(id), .keep_all = T) %>%
  ungroup() %>%
  select(id, total_reg_annotations)
sim_data <- reg_annon %>%
  filter(method=='complete') %>% # we're only sampling from all-day annotations
  select(-total_reg_annotations) %>% # this is the # of all-day clips annotated and we want # of random
  merge(., random_clips, by='id') %>%
  group_by(id) %>%
  replicate(100, ., simplify = FALSE) %>% # simulate 100 collections of random clips
  map_dfr(~ sample_n(., total_reg_annotations), .id = "simulation") # sample the same # of clips per si
# now compute the CDS estimate
cds_sim_results <- sim_data %>%
  group_by(id, simulation) %>%
  filter(addressee=='Adult2TargetChild' | addressee=='Otherchild2TargetChild') %>%
  mutate(n_cds = n()) %>% # # of CDS clips
  distinct(id, .keep_all = T) %>%
  mutate(percen_cds = n_cds / total_reg_annotations)
# now some descriptive stats from those results
cds_sim_stats <- cds_sim_results %>%
  group_by(id) %>%
  summarize(mean_sim_cds = round(mean(percen_cds),2),
         sd_sim_cds = round(sd(percen_cds),2),
         min_sim_cds = round(range(percen_cds)[1],2),
         max_sim_cds = round(range(percen_cds)[2],2)) %>%
  mutate(sim_stat = paste(mean_sim_cds,"(",sd_sim_cds,")",min_sim_cds,"-",max_sim_cds)) %>%
  select(id, sim_stat)
# now compute the ADS estimate
ads_sim_results <- sim_data %>%
  group by(id, simulation) %>%
  filter(addressee=='Adult2Others' | addressee=='Otherchild2adults') %>%
  mutate(n_ads = n()) %>% # # of CDS clips
  distinct(id, .keep_all = T) %>%
  mutate(percen_ads = n_ads / total_reg_annotations)
# now some descriptive stats from those results
ads_sim_stats <- ads_sim_results %>%
  group_by(location) %>%
  summarize(mean_sim_ads = round(mean(percen_ads),2),
         sd_sim_ads = round(sd(percen_ads),2),
         min_sim_ads = round(range(percen_ads)[1],2),
         max_sim_ads = round(range(percen_ads)[2],2)) %>%
  mutate(sim_stat_ads = paste(mean_sim_ads,"(",sd_sim_ads,")",min_sim_ads,"-",max_sim_ads)) %>%
  select(location, sim_stat_ads)
```

```
#cds alone
cds_density <- o3 %>%
  filter(method=='random') %>%
  mutate(random_percencds_estimate=percen_cds) %>% # get the actual cds estimate from random sampling
  select(id, random_percencds_estimate) %>%
  merge(., cds_sim_results, by="id") %>%
  mutate(id=recode(id,"198-9mo"="198","261-8mo"="261","267-12mo"="267")) %>%
  ggplot(., aes(x=percen_cds)) +
  geom_density(fill="antiquewhite", color='gray57',alpha=.75) +
  facet_wrap(~id, scales="fixed") +
    scale_x_continuous(breaks = seq(0, 1, .25),
                     labels = dropLeadingZero) +
  geom_vline(aes(xintercept=random_percencds_estimate),
            color="chocolate2", linetype="dashed", size=1) +
  xlab("Estimates of child-directed speech quantity") +
  ylab("Density") +
  theme(axis.text=element_text(size=8),
      axis.title=element_text(size=17,face="bold"))
cds_density
```


Estimates of child-directed speech quantity

```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/cds_density_plot.jpeg", height = 400, w
cds_density
dev.off()
```

```
## pdf
## 2
```

```
reg_density <- o3 %>%
  filter(method=='random') %>%
  mutate(random_percencds_estimate=percen_cds) %>% # get the actual cds estimate from random sampling
  mutate(random percenads estimate=percen ads) %>% # qet the actual ads estimate from random sampling
  select(id, random_percencds_estimate, random_percenads_estimate) %>%
  merge(., cds_sim_results, by="id") %>%
  select(id, random_percenads_estimate, random_percencds_estimate, percen_cds, simulation) %>%
  merge(., ads sim results, by=c("simulation", "id")) %>%
  group by(id) %>%
  mutate(avg_percen_cds = mean(percen_cds),
         avg_percen_ads = mean(percen_ads)) %>%
  ungroup() %>%
  gather("Register", "estimate", percen_cds, percen_ads) %>%
  mutate(Register=recode(Register, "percen_ads"='Adult-directed \n speech', "percen_cds"='Target child-
  mutate(id=recode(id, "198-9mo"="198", "261-8mo"="261", "267-12mo"="267")) %>%
  ggplot(., aes(x=estimate, fill=Register)) +
  geom_density(alpha=.75) +
  scale_fill_manual(values=c("lightsalmon", "skyblue1")) +
  facet_wrap(~id, scales = "fixed") +
  scale_x_continuous(breaks = seq(0, 1, .25),
                     labels = dropLeadingZero) +
  geom_vline(aes(xintercept=random_percenads_estimate),
            color="indianred3", linetype="dashed", size=.5) +
    geom_vline(aes(xintercept=random_percencds_estimate),
            color="dodgerblue3", linetype="dashed", size=.5) +
    #geom_vline(aes(xintercept=avg_percen_ads),
            #color="indianred3", linetype="solid", size=.5) +
    #geom_vline(aes(xintercept=avg_percen_cds),
            #color="dodgerblue3", linetype="solid", size=.5) +
  xlab("Speech register estimates") +
  ylab("Density") +
  theme(axis.text=element_text(size=10),
      axis.title=element_text(size=17,face="bold"),
      legend.title = element_text(face="bold", size=15))
reg_density
```



```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/reg_density_plot.jpeg", height = 400, w
reg_density
dev.off()
## pdf
##
# for later
percen_cds_df <- o3 %>%
  distinct_at(., vars(id, method), .keep_all = T) %>%
  filter(method=='random') %>%
  select(id, percen_ofallclips_drawn) # get the % of clips annotated for each id and method
cds_plot_data <- o3 %>%
  select(id, gender, location, num_clips, method, percen_cds) %>%
  spread("method", "percen_cds") %>%
  merge(., percen_cds_df, by='id')
# compute correlations
cds_cors <- cds_plot_data %>%
  group_by(location) %>%
  summarize(., paste("r=",round(cor.test(complete, random)$estimate,2),",","p=",round(cor.test(complete
# also do a correlation for both corpora
cds_cors_all <- cds_plot_data %>%
  summarize(., paste("r=",round(cor.test(complete, random)$estimate,2),",","p=",round(cor.test(complete
```

```
#AW added below (correlations for cds random sampling simulations and descriptive stats for them)
cds_cor_sim <- cds_sim_results %>%
  distinct_at(., vars(simulation, id), .keep_all = T) %>%
  select(simulation, id, percen cds, location) %>%
  spread("simulation", "percen_cds") %>%
  merge(., cds_plot_data, by=c('id', 'location'))
cds cor sim us <- cds cor sim %>%
  filter(location=='US') %>%
  select(-id, -location, -gender, -num_clips, -percen_ofallclips_drawn)
cds_cor_sim_bo <- cds_cor_sim %>%
  filter(location=='Bolivia') %>%
  select(-id, -location, -gender, -num_clips, -percen_ofallclips_drawn)
  cds_cor_sim_bo[is.na(cds_cor_sim_bo)] <- 0 #replace NA with 0</pre>
cds_corsimmatrix_us <- as.data.frame(round(cor(cds_cor_sim_us),2))</pre>
cds_corsimmatrix_bo <- as.data.frame(round(cor(cds_cor_sim_bo),2))</pre>
cds_corsimstats_us <- cds_corsimmatrix_us %>%
    summarize(mean_corsim_cds_us = mean(cds_corsimmatrix_us$complete[1:nsims]),
         min_corsim_cds_us = min(cds_corsimmatrix_us$complete[1:nsims]),
         max_corsim_cds_us = max(cds_corsimmatrix_us$complete[1:nsims])) %>%
  mutate(corsim_stat_cds_us = paste(mean_corsim_cds_us,",",min_corsim_cds_us,"-",max_corsim_cds_us)) %>
  select(corsim_stat_cds_us)
cds_corsimstats_bo <- cds_corsimmatrix_bo %>%
    summarize(mean_corsim_cds_bo = mean(cds_corsimmatrix_bo$complete[1:nsims]),
         min_corsim_cds_bo = min(cds_corsimmatrix_bo$complete[1:nsims]),
         max_corsim_cds_bo = max(cds_corsimmatrix_bo$complete[1:nsims])) %>%
  mutate(corsim_stat_cds_bo = paste(mean_corsim_cds_bo,",",min_corsim_cds_bo,"-",max_corsim_cds_bo)) %>
  select(corsim_stat_cds_bo)
#req_tbl <- o3 %>%
# group_by(method, location) %>%
# summarize(avg=round(mean(percen_cds),2),
            sd=round(sd(percen_cds),2)) %>%
# mutate(stats=paste(avq, "(",sd, ")")) %>%
# select(-avg, -sd) %>%
# spread(key='method', value = "stats")
# calculate absolute and relative errors
cds_rel_error <- o3 %>%
  group_by(id) %>%
  #summarize(avg=mean(percen_cds)) %>%
  select(id,method,percen_cds,location) %>%
  spread(key='method', value='percen_cds') %>%
  mutate(relative_error = round(((abs(random - complete) / complete)*100),2)) %>%
  #mutate(avg_rel_error = round(mean(relative_error),2),
          sd_rel_error = round(sd(relative_error),2),
          rel_error_stats=paste(avg_rel_error, "(",sd_rel_error,")")) %>%
  distinct(relative_error, .keep_all = T)
cds_abs_error <- o3 %>%
```

```
group_by(id) %>%
  #summarize(avg=mean(percen_cds)) %>%
  select(id,method,percen_cds,location) %>%
  spread(key='method', value='percen_cds') %>%
  mutate(abs_error = round(abs(random - complete),2)) %>%
  #mutate(avg_rel_error = round(mean(relative_error),2),
          sd_rel_error = round(sd(relative_error),2),
          rel_error_stats=paste(avg_rel_error, "(",sd_rel_error,")")) %>%
  distinct(abs_error, .keep_all = T)
# add correlations and simulated stats to table - will make pretty below
final_reg_tbl <- cds_abs_error %>%
  merge(., cds_cors, by='location') %>%
  merge(., cds_sim_stats, by='id')
final_reg_tbl$location <-</pre>
  plyr::mapvalues(final_reg_tbl$location,
                  from = c("Bolivia", "US"),
                  to =c("Quechua-Spanish", "Spanish-English"))
final_reg_tbl2 <- final_reg_tbl %>%
  mutate(random = round(random,2),
         complete = round(complete,2)) %>%
  mutate(corpus_id = paste(location,"(",id,")")) %>%
  select(-location, -id) %>%
  relocate(corpus_id, random, complete, abs_error, sim_stat)
knitr::kable(final_reg_tbl2, caption = 'Target child-directed speech estimates by child and annotation a
             booktabs=T.
             row.names = FALSE,
             col.names = c("Corpus (ID)", "Random", "All-day", "Absolute error", "n=100 simulations of
  column_spec(1, width = "4cm") %>% # force column headers onto two rows
  column_spec(4, width = "3cm") %>%
  column_spec(5:6, width = "4cm") %>%
  kable_styling() %>%
  add_header_above(c(" " = 1, "Annotation Method" = 2, " " = 3)) %>%
  kableExtra::kable_styling(latex_options = "hold_position")
ads_plot_data <- o3 %>%
  #filter(location=='Bolivia') %>%
  select(id, gender, location, num_clips, method, percen_ads) %>%
  spread("method", "percen_ads") %>%
  merge(., percen_cds_df, by='id')
# compute correlations
ads cors <- ads plot data %>%
  group_by(location) %>%
  summarize(., paste("r=",round(cor.test(complete, random)$estimate,2),",","p=",round(cor.test(complete
```

Table 2: (#tab:cds proportion stats)Target child-directed speech estimates by child and annotation method.

	Annotation	n Method			
Corpus (ID)	Random	All-day	Absolute error	n=100 simulations of random sampling Avg. (SD) Range	Within-corpus corre- between random and all-day estimates
Quechua-Spanish (1032)	0.19	0.17	0.02	0.18 (0.03) 0.1 - 0.28	r= 0.64 , p= 0.24
Quechua-Spanish (1060)	0.12	0.07	0.04	0.07 (0.02) 0.03 - 0.14	r = 0.64, $p = 0.24$
Quechua-Spanish (1075)	0.12	0.14	0.02	0.14 (0.03) 0.06 - 0.21	r = 0.64, $p = 0.24$
Quechua-Spanish (1077)	0.10	0.11	0.01	0.11 (0.02) 0.06 - 0.19	r = 0.64, $p = 0.24$
Quechua-Spanish (1081)	0.13	0.05	0.07	$0.05 \;(\; 0.02\;)\; 0.01$ - 0.1	r = 0.64, $p = 0.24$
Spanish-English (179)	0.53	0.47	0.06	0.47 (0.04) 0.38 - 0.55	r = 0.97, $p = 0.01$
Spanish-English (0.65	0.66	0.01	0.66 (0.06) 0.47 - 0.8	r = 0.97, $p = 0.01$
198-9mo)					
Spanish-English (199)	0.29	0.31	0.02	$0.31 \; (\; 0.04 \;) \; 0.22$ - 0.42	r = 0.97, $p = 0.01$
Spanish-English (0.80	0.82	0.02	0.82 (0.04) 0.73 - 0.88	r = 0.97, $p = 0.01$
261-8mo)					
Spanish-English (0.40	0.47	0.07	$0.47 \; (\; 0.04 \;) \; 0.35$ - 0.56	$r{=}\;0.97$, $p{=}\;0.01$
267-12mo)					

```
reg_tbl <- o3 %>%
  group_by(method, location) %>%
  summarize(avg=round(mean(percen_ads),2),
            sd=round(sd(percen_ads),2)) %>%
  mutate(stats=paste(avg,"(",sd,")")) %>%
  select(-avg, -sd) %>%
  spread(key='method', value = "stats")
# calculate absolute and relative errors
ads_rel_error <- o3 %>%
  group_by(method, location, id) %>%
  summarize(avg=mean(percen_ads)) %>%
  spread(key='method', value='avg') %>%
  group_by(id) %>%
  mutate(relative_error = ((abs(random - complete) / complete)*100)) %>%
  ungroup() %>%
  group_by(location) %>%
  mutate(avg_rel_error = round(mean(relative_error),2),
         sd_rel_error = round(sd(relative_error),2),
         rel_error_stats=paste(avg_rel_error,"(",sd_rel_error,")")) %>%
  distinct(rel_error_stats)
ads_abs_error <- o3 %>%
  group_by(method, location, id) %>%
  summarize(avg=mean(percen_ads)) %>%
  spread(key='method', value='avg') %>%
  mutate(abs_error = (abs(random - complete))) %>%
  ungroup() %>%
  group_by(location) %>%
  mutate(avg_abs_error = round(mean(abs_error),2),
         sd_abs_error = round(sd(abs_error),2),
```

```
abs_error_stats=paste(avg_abs_error,"(",sd_abs_error,")")) %>%
  distinct(abs_error_stats)
# add correlations to table - will make pretty below
final_reg_tbl <- reg_tbl %>%
  merge(., ads_cors, by='location') %>%
  merge(., ads_abs_error, by='location') %>%
 merge(., ads sim stats, by='location') %>%
  relocate(location, random, complete, abs_error_stats, sim_stat_ads)
final_reg_tbl$location <-
  plyr::mapvalues(final_reg_tbl$location,
                  from = c("Bolivia", "US"),
                  to =c("Quechua-Spanish", "Spanish-English"))
knitr::kable(final_reg_tbl, caption = 'Average adult-directed speech estimates by corpus and annotation
             booktabs=T,
             row.names = FALSE,
             col.names = c("Corpus", "Random", "All-day", "Average absolute error (SD)", "n=100 simulat
  column_spec(1, width = "3.5cm") %>%
  column_spec(4, width = "3cm") %>%
  column_spec(5:6, width = "4cm") %>%
  kable_styling() %>%
  add_header_above(c(" " = 1, "Annotation Method" = 2, " " = 3)) %>%
  kableExtra::kable_styling(latex_options = "hold_position")
```

Table 3: (#tab:ads proportion stats) Average adult-directed speech estimates by corpus and annotation method.

Annotation Method		on Method			
Corpus	Random	All-day	Average absolute error (SD)	n=100 simulations of random sampling Avg. (SD) Range	Correlation betweestimates
Quechua-Spanish Spanish-English	0.42 (0.11) 0.27 (0.2)	0.48 (0.14) 0.27 (0.17)	0.07 (0.07) 0.04 (0.04)	0.48 (0.13) 0.18 - 0.72 0.27 (0.16) 0.01 - 0.65	r= 0.84 , p= 0.0 r= 0.95 , p= 0.0

```
# reorder location variable
cds_plot_data$location <- factor(cds_plot_data$location, levels = c("US", "Bolivia"))

cds_plot <- ggplot(cds_plot_data, aes(random, complete)) +
    geom_smooth(method = "lm", color="black") +
    geom_jitter(aes(size=num_clips,color=round(percen_ofallclips_drawn,2)),alpha=.9,position = position_j
    scale_size_continuous(range = c(5, 9)) +
    scale_colour_gradient(low='indianred1', high = 'indianred4') +
    ylab("Proportion computed over entire recording") +
    xlab("Proportion computed over randomly sampled clips") +
    ylim(0,0.9) +
    xlim(0,0.9)+
    facet_wrap(~location, scales = "fixed") +
    labs(col='% of clips annotated \n in random sampling') +</pre>
```

```
#title = 'Proportion of child-directed speech clips \n in U.S. and Bolivian corpora') +
theme(title = element_text(size=18, face="bold"),
    axis.text=element_text(size=14),
    axis.title=element_text(size=17,face="bold"),
    legend.title = element_text(size=9),
    #legend.position = c(.85, .55),
    strip.text.x = element_text(size=12, face="bold")) +
    guides(size=guide_legend(title="Total # of clips in \n recording"))
cds_plot
```



```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/cds_plot.jpeg", height = 500, width = 5
cds_plot
dev.off()
```

```
## pdf
## 2
```

```
# finally, we want to actuallly plot the proportions of each speech register category by child and anno
reg_props <- o3 %>%
  gather("register", "proportion", percen_cds, percen_ods, percen_ads) %>%
  distinct_at(., vars(id, proportion, register), .keep_all = T) %>%
  mutate(method=plyr::mapvalues(method, "complete", "all-day"),
        id=plyr::mapvalues(id, c("198-9mo", "261-8mo", "267-12mo"), c("198", "261", "267")),
        register=plyr::mapvalues(register, c("percen_cds", "percen_ods", "percen_ads"), c("Target child
ggplot(., aes(fill=register, y=proportion, x=method)) +
```

```
geom_bar(position='stack', stat='identity') +
  facet grid(~id) +
  xlab('annotation method') +
  labs(subtitle = "Quechua-Spanish corpus
                                                             Spanish-English corpus") +
  #labs(title="Proportion of speech register categories, by child and annotation method",
       #subtitle = "Quechua-Spanish corpus
                                                                                  Spanish-English corpus
  theme(axis.text.x = element_text(angle = 45, hjust = .9, vjust=.8, size=11),
        plot.title = element_text(face="bold"),
        plot.subtitle = element_text(color='gray50',hjust = .55, face='bold', size=14),
        axis.title=element_text(size=17,face="bold"),
        legend.title = element_text(size=15,face = "bold"),
        legend.text = element_text(size=13),
        strip.text.x = element_text(size=9, face="bold"))
reg_props
```

ua-Spanish corpus

Spanish-English corpus


```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/stacked_register_plot.jpeg", height = 5
reg_props
dev.off()
```

pdf ## 2

0.0.3 Part III: language across random and questionnaire methods

```
# enter questionnaire estimates
ques <- data.frame("id"=c("179", "198-9mo", "199", "261-8mo", "267-12mo"),
                   "ques est"=c(".74", ".55", ".95", ".73", ".87"))
ques_tbl <- plot_data %>%
  filter(location=='US') %>%
  merge(., ques, by='id') %>%
  distinct_at(., vars(method, id), .keep_all = T) %>%
  select(-percen_ofallclips_drawn, -percen_mxd, -percen_que, -speech_clips, -total, -gender, -location,
  mutate(percen_span = round(percen_span,2)) %>%
  spread("method", "percen_span") %>%
  merge(., span_sim_child_stats, by='id') %>%
  relocate(id, random, complete, sim_stat_child)
# compute correlations
ques_random_cors <- ques_tbl %>%
  mutate(ques_est = as.numeric(ques_est)) %>%
  summarize(., paste("r=",round(cor.test(ques_est, random)$estimate,2),",","p=",round(cor.test(ques_est
ques_complete_cors <- ques_tbl %>%
  mutate(ques_est = as.numeric(ques_est)) %>%
  summarize(., paste("r=",round(cor.test(ques_est, complete)$estimate,2),",","p=",round(cor.test(ques_e
# create table
knitr::kable(ques_tbl, caption = 'Spanish language estimates in U.S. corpus, by child and estimation me
             booktabs=T,
             row.names = FALSE,
             col.names = c("Child ID", "Random", "All-day", "n=100 simulations of random sampling Avg.
  column_spec(4:5, width = "4cm") %>%
  kable_styling() %>%
  add_header_above(c(" " = 1, "From daylong recording" = 3, " " = 1)) %>%
  kableExtra::kable_styling(latex_options = "hold_position")
```

Table 4: (#tab:make table for questionnaire method)Spanish language estimates in U.S. corpus, by child and estimation method.

Child ID	Random	All-day	n=100 simulations of random sampling Avg. (SD) Range	Parental Questionnaire
179	0.57	0.57	0.56 (0.04) 0.49 - 0.66	.74
198-9mo	0.87	0.78	0.78 (0.04) 0.68 - 0.89	.55
199	0.76	0.70	0.7 (0.04) 0.6 - 0.8	.95
261-8mo	0.69	0.65	0.66~(~0.04~)~0.55 - 0.75	.73
267-12mo	0.92	0.92	0.93 (0.02) 0.88 - 0.97	.87

```
# we also want to know what the results are for the combination of CDS*Spanish, not just Spanish
reg_annon2 <- data_annon %>%
filter(addressee=='Adult2TargetChild' | addressee=='Otherchild2TargetChild') %>% # only CDS clips
group_by(id, method) %>%
distinct_at(., vars(file_name, addressee), .keep_all = T) %>% # don't record multiple speakers speaki
```

```
mutate(total_cds_annotations = NROW(file_name))#
span_cds_tbl <- reg_annon2 %>%
  group_by(id, method) %>%
  filter(addressee=='Adult2TargetChild' | addressee=='Otherchild2TargetChild' & location=='US') %>% # o
  merge(., ques, by='id') %>%
  filter(language=='Spanish') %>% # only Spanish clips
  group by(id, method) %>%
  mutate(n_span_cds = n()) %% # # of CDS clips where Spanish was spoken
  distinct_at(., vars(id, method), .keep_all = T) %>%
  mutate(percen_span_cds = round(n_span_cds / total_cds_annotations,2)) %>%
  select(method, percen_span_cds, id, ques_est) %>%
  spread("method", "percen_span_cds") %>%
  relocate(id, random, complete)
# compute correlations
cor.test(as.numeric(span_cds_tbl$ques_est), span_cds_tbl$complete)
##
## Pearson's product-moment correlation
## data: as.numeric(span_cds_tbl$ques_est) and span_cds_tbl$complete
## t = 0.73817, df = 3, p-value = 0.5139
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.7494380 0.9468201
## sample estimates:
##
         cor
## 0.3920602
cor.test(as.numeric(span_cds_tbl$ques_est), span_cds_tbl$random)
##
## Pearson's product-moment correlation
##
## data: as.numeric(span_cds_tbl$ques_est) and span_cds_tbl$random
## t = -0.12222, df = 3, p-value = 0.9105
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.8969526 0.8656354
## sample estimates:
## -0.07038707
# simulate 100 estimates from random samples
# total_cds_annotations refers to the # of clips used to estimate CDS*spanish
# what prop. of totalCDS are spoken in Spanish?
random_cds_clips <- reg_annon2 %>%
  filter(method=='random' & location=='US') %>%
  distinct at(., vars(id), .keep all = T) %>%
  ungroup() %>%
  select(id, total_cds_annotations)
```

```
cdsspan_sim_data <- reg_annon2 %>%
  filter(method=='complete' & location=='US') %>% # we're only sampling from all-day annotations
  select(-total_cds_annotations) %>% # this is the # of all-day clips annotated and we want # of random
  merge(., random_cds_clips, by='id') %>%
  group_by(id) %>%
  replicate(100, ., simplify = FALSE) %>% # simulate 100 collections of random clips
  map_dfr(~ sample_n(., total_cds_annotations), .id = "simulation") # sample the same # of clips per si
# now compute the CDS*spanish estimate
cdsspan_sim_results <- cdsspan_sim_data %>%
  group_by(id, simulation) %>%
 filter(language=='Spanish') %>%
  mutate(n_cdsspan = n()) % * # # of spanish clips amongst these CDS clips
  distinct(id, .keep_all = T) %>%
  mutate(percen_cdsspan = n_cdsspan / total_cds_annotations)
# now some descriptive stats from those results
cdsspan_sim_stats <- cdsspan_sim_results %>%
  group_by(id) %>%
  summarize(mean_sim_cdsspan = round(mean(percen_cdsspan),2),
            sd_sim_cdsspan = round(sd(percen_cdsspan),2),
           min_sim_cdsspan = round(range(percen_cdsspan)[1],2),
            max_sim_cdsspan = round(range(percen_cdsspan)[2],2)) %>%
  mutate(sim_stat_cdsspan = paste(mean_sim_cdsspan,"(",sd_sim_cdsspan,")",min_sim_cdsspan,"-",max_sim_c
  select(id, sim stat cdsspan)
# now combine the simulated data with the span*cds table
span_cds_tbl2 <- span_cds_tbl %>%
 merge(., cdsspan_sim_stats, by='id') %>%
 relocate(id, random, complete, sim_stat_cdsspan)
# create table
knitr::kable(span_cds_tbl2, caption = 'Spanish language in child-directed speech \n estimates in U.S. c
             booktabs=T,
             row.names = FALSE,
             col.names = c("Child ID", "Random", "All-day", "n=100 simulations of random sampling Avg.
  column_spec(1:3, width = "2cm") %>%
  column_spec(4:5, width = "4cm") %>%
  kable_styling() %>%
  add_header_above(c(" " = 1, "From daylong recording" = 3, " " = 1)) %>%
  kableExtra::kable_styling(latex_options = "hold_position")
# for later
per_ann <- plot_data %>%
  filter(method=='random' & location=='US') %>%
  select(id, percen_ofallclips_drawn)
ques_plot <- plot_data %>%
  filter(location=='US') %>%
  merge(., ques, by='id') %>%
  distinct_at(., vars(method, id), .keep_all = T) %>%
  select(-percen_que, -percen_ofallclips_drawn, -percen_mxd, -speech_clips, -total) %>%
```

Table 5: Spanish language in child-directed speech estimates in U.S. corpus, by child and estimation method.

Child ID	Random	All-day	n=100 simulations of random sampling Avg. (SD) Range	Parental Questionnaire
179	0.53	0.52	0.52 (0.06) 0.41 - 0.69	.74
198-9mo	0.78	0.64	0.64 (0.07) 0.47 - 0.86	.55
199	0.64	0.66	$0.66\ (\ 0.08\)\ 0.45$ - 0.85	.95
261-8mo	0.55	0.48	$0.48 \stackrel{()}{(} 0.05 \stackrel{()}{)} 0.35 - 0.57$.73
267-12mo	0.82	0.87	$0.86\ (\ 0.05\)\ 0.74$ - 0.97	.87

```
spread("method", "percen_span") %>%
  select(-complete) %>%
  merge(., per_ann, by='id') %>%
  distinct(id, .keep_all = T) %>%
ggplot(., aes(as.numeric(random), as.numeric(ques_est))) +
  geom_smooth(method = "lm", color="black", se=FALSE) +
  geom_jitter(aes(size=num_clips,color=round(percen_ofallclips_drawn,2)),alpha=.9,position = position_j
  scale_size_continuous(range = c(5, 9)) +
  scale_colour_gradient(low='indianred1', high = 'indianred4') +
  ylab("Proportion computed from \n background questionnaire") +
  xlab("Proportion computed over \n randomly sampled clips") +
 ylim(0,1) +
  xlim(0,1)+
  labs(col='% of clips drawn \n in random sampling') +
       #title = 'Proportion of Spanish clips \n in U.S. corpus: random sampling and background question
 theme(title = element_text(size=18, face="bold"),
  axis.text=element_text(size=14),
      axis.title=element_text(size=17,face="bold"),
     legend.title = element_text(size=15)) +
      guides(size=guide_legend(title="Total # of clips in \n recording"))
ques_plot
```



```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/ques_plot.jpeg", height = 500, width = 0
ques_plot
dev.off()
## pdf
```

0.0.4 Part I: Running variance

##

```
reg_annon <- data_annon %>%
  #filter(addressee=='Adult2TargetChild' /
            addressee=='Otherchild2TargetChild' /
   #
    #
            addressee=='Adult2Others' /
            addressee=='Otherchild2adults' /
            addressee=='Adult2OtherChild' /
            addressee=='Otherchild2OtherChild') %>% # option to omit clips where there is language but
  group_by(id, method) %>%
  distinct_at(., vars(file_name, addressee), .keep_all = T) %>% # don't record the same register 2x in
  mutate(total_reg_annotations = NROW(file_name)) # N of register annotations made; distinct from N
# of speech clips since one clip could contain multiple distinct registers
reg_annon$id <- plyr::mapvalues(reg_annon$id,</pre>
                from=c("198-9mo", "261-8mo", "267-12mo"),
                to=c("198", "261", "267"))
cds_rolling <- reg_annon %>%
```

```
filter(method!='complete') %>%
 group_by(id) %>%
 arrange(file_name) %>% # scramble the register annotations
 mutate(annotation\_num = as.numeric(1:n())) % # where n is the total # of speech register annotation
 group_by(id) %>%
 arrange(annotation_num) %>%
 mutate(cds_cts=recode(addressee, "Adult2TargetChild"="1", "Otherchild2TargetChild"="1",
                       "Otherchild2OtherChild"="0", "Otherchild2adults"="0",
                       "Adult20therChild"="0", "Adult20thers"="0", "Otherchild2unsure"="0",
                       "Adult2unsure"="0")) %>%
 mutate(cds_cts = as.numeric(cds_cts)) %>%
 mutate(cds_running_cts = as.numeric(cumsum(cds_cts))) %>%
 mutate(roll_prop_cds = cds_running_cts / annotation_num,
        roll_mean_cds = rollmean(roll_prop_cds, k=10, fill = NA),
        roll_sd_cds = rollapply(roll_prop_cds, width=10, FUN=sd, fill=NA))
# running binomial confidence interval (wilson)
cds_rolling2 <- cds_rolling %>%
 group_by(id, annotation_num) %>% # group by id and sample size
 arrange(annotation_num) %>%
 summarize(cis = binom.confint(cds_running_cts, annotation_num, methods = 'wilson', conf.level = .95))
 merge(., cds_rolling, by = c('id', 'annotation_num'))
# ----- now do the same for the all-day annotation method -----
# now do the same but for the complete data
cds_rolling_complete <- reg_annon %>%
 filter(method!='random') %>%
 group_by(id) %>%
 arrange(file_name) %>% # scramble the register annotations
 mutate(annotation\_num = as.numeric(1:n())) % # where n is the total # of speech register annotation
 group_by(id) %>%
 arrange(annotation_num) %>%
 mutate(cds_cts=recode(addressee, "Adult2TargetChild"="1", "Otherchild2TargetChild"="1",
                        "Otherchild2OtherChild"="0", "Otherchild2adults"="0",
                        "Adult2OtherChild"="0", "Adult2Others"="0", "Otherchild2unsure"="0",
                       mutate(cds_cts = as.numeric(cds_cts)) %>%
 mutate(cds_running_cts = as.numeric(cumsum(cds_cts))) %>%
 mutate(roll_prop_cds = cds_running_cts / annotation_num,
        roll_mean_cds = rollmean(roll_prop_cds, k=10, fill = NA),
        roll_sd_cds = rollapply(roll_prop_cds, width=10, FUN=sd, fill=NA))
# running binomial confidence interval (wilson)
cds_rolling_complete2 <- cds_rolling_complete %>%
 group_by(id, annotation_num) %>% # group by id and sample size
 arrange(annotation_num) %>%
 summarize(cis = binom.confint(cds_running_cts, annotation_num, methods = 'wilson', conf.level = .95))
 merge(., cds_rolling_complete, by = c('id', 'annotation_num'))
```

```
# ----- for models, compute binomial confidence interval in 5-clip batches -----
#cds_batches <- cds_rolling %>%
# group by(id) %>%
# mutate(five\_clip\_batch = as.integer(gl(n(), 5, n())) * 5,
         five_clip_batch = replace(five_clip_batch, ave(five_clip_batch, five_clip_batch, FUN = lengt
# ungroup %>%
# fill(five_clip_batch) #%>%
#cds batches2 <- cds batches %>%
# group_by(id, five_clip_batch) %>%
# summarize(five_cis = binom.confint(cds_running_cts, 5, methods = 'wilson', conf.level = .95)) %>%
# merge(., cds_batches, by = c('id', 'five_clip_batch'))
cds_var_plot <- cds_rolling2 %>%
\#filter(roll\_sd\_cds!='NA') %>% \# remove rows where variance wasn't estimated
mutate(mean ci = cis$mean,
      upper_ci = cis$upper,
      lower_ci = cis$lower) %>%
ggplot(., aes(annotation_num, roll_prop_cds)) +
  #geom_line(aes(y=rollapply(roll_prop_cds, 10, FUN=sd, fill=NA))) +
  geom_ribbon(aes(ymax=upper_ci, ymin=lower_ci), fill='lightblue', color='deepskyblue4') +
    geom_line(aes(y=mean_ci), color='gray40', size=.8) +
  xlab("# of speech register annotations") +
 ylab("CDS estimation and variance") +
  facet_wrap(~id, scales = "free") +
  #title = 'Variance in child-directed estimation as a function of clips annotated') +
 theme(title = element_text(size=12),
  axis.text=element_text(size=8),
      axis.title=element_text(size=17,face="bold"),
      legend.title = element_text(size=15)) +
  labs(caption = "'# of speech register annotations' includes 'unsure' speech register annotations.")
cds_var_plot
```


'# of speech register annotations' includes 'unsure' speech register annotations.

jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/cds_CI_var_plot.jpeg", height = 450, wi-

```
cds_var_plot
dev.off()
## pdf
##
# now calculate rolling variances for US (Spanish)
lang_annon <- data_annon %>%
  #filter(language=='Mixed' | language=='Spanish' | language=='English/Quechua') %>% # option to omit u
  group_by(id, method) %>%
  distinct_at(., vars(file_name, language), .keep_all = T) %% # don't record the same language 2x in t
  mutate(total_lang_annotations = NROW(file_name)) # N of language annotations made; distinct from N of
lang_annon$id <- plyr::mapvalues(lang_annon$id,</pre>
                                from=c("198-9mo", "261-8mo", "267-12mo"),
                                to=c("198", "261", "267"))
# the code below is just for US data, not Bolivia
span_rolling <- lang_annon %>%
  filter(location=='US' & method=='random') %>%
  group_by(id) %>%
  arrange(file_name) %>%
  mutate(annotation_num = as.numeric(1:n())) %>%
```

```
group_by(id) %>%
  arrange(annotation_num) %>%
  mutate(span_cts=recode(language, "Unsure"="0", "English/Quechua"="0", "Mixed"="0", "Spanish"="1")) %>
  mutate(span_cts = as.numeric(span_cts)) %>%
  mutate(span_running_cts = as.numeric(cumsum(span_cts))) %>%
  mutate(roll_prop_span = span_running_cts / annotation_num,
         roll_mean_span = rollmean(roll_prop_span, k=10, fill = NA),
         roll sd span = rollapply(roll prop span, width=10, FUN=sd, fill=NA))
# running binomial confidence interval (wilson)
span_rolling2 <- span_rolling %>%
  group_by(id, annotation_num) %>% # group by id and sample size
  arrange(annotation num) %>%
  summarize(cis = binom.confint(span_running_cts, annotation_num, methods = 'wilson', conf.level = .95)
  merge(., span_rolling, by = c('id', 'annotation_num'))
span_var_plot <- span_rolling2 %>%
#filter(roll_sd_span!='NA') %>% # remove rows where variance wasn't estimated
   mutate(mean_ci = cis$mean,
         upper_ci = cis$upper,
         lower ci = cis$lower) %>%
ggplot(., aes(annotation_num, roll_prop_span)) +
  geom_ribbon(aes(ymax=upper_ci, ymin=lower_ci), fill='lightblue', color='deepskyblue4') +
  geom_line(aes(y=mean_ci), color='gray40', size=.8) +
  xlab("# of language annotations") +
 ylab("Spanish language estimation \n and variance") +
 facet_wrap(~id, scales = "free") +
  #title = 'Variance in Spanish language estimation as a function of clips drawn: US corpus') +
 theme(title = element_text(size=12),
   axis.text=element_text(size=8),
     axis.title=element_text(size=17,face="bold"),
      legend.title = element_text(size=15)) +
  labs(caption = "'# of language annotations' includes 'unsure' language annotations.")
span_var_plot
```


'# of language annotations' includes 'unsure' language annotations.

```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/span_CI_var_plot.jpeg", height = 450, w
span_var_plot
dev.off()
## pdf
##
     2
que_rolling <- lang_annon %>%
  filter(location=='Bolivia' & method=='random') %>%
  group_by(id) %>%
  arrange(file_name) %>%
  mutate(annotation_num = as.numeric(1:n())) %>%
  group_by(id) %>%
  arrange(annotation_num) %>%
  mutate(que_cts=recode(language, "Unsure"="0", "English/Quechua"="1", "Mixed"="0", "Spanish"="0")) %>%
  mutate(que_cts = as.numeric(que_cts)) %>%
  mutate(que_running_cts = as.numeric(cumsum(que_cts))) %>%
  mutate(roll_prop_que = que_running_cts / annotation_num,
         roll_mean_que = rollmean(roll_prop_que, k=10, fill = NA),
         roll_sd_que = rollapply(roll_prop_que, width=10, FUN=sd, fill=NA))
# running binomial confidence interval (wilson)
que_rolling2 <- que_rolling %>%
  group_by(id, annotation_num) %>% # group by id and sample size
  arrange(annotation_num) %>%
  summarize(cis = binom.confint(que_running_cts, annotation_num, methods = 'wilson', conf.level = .95))
  merge(., que_rolling, by = c('id', 'annotation_num'))
```

```
que_var_plot <- que_rolling2 %>%
#filter(roll sd que!='NA') %>% # remove rows where variance wasn't estimated
    mutate(mean_ci = cis$mean,
         upper ci = cis$upper,
         lower_ci = cis$lower) %>%
ggplot(., aes(annotation_num, roll_prop_que)) +
  geom_ribbon(aes(ymax=upper_ci, ymin=lower_ci), fill='lightblue', color='deepskyblue4') +
  geom line(aes(y=mean ci), color='gray40', size=.8) +
  xlab("# of language annotations") +
  ylab("Quechua language estimation \n and variance") +
  facet_wrap(~id, scales = "free") +
  #title = 'Variance in Quechua language estimation as a function of clips drawn: Bolivia corpus') +
 theme(title = element_text(size=12),
   axis.text=element_text(size=8),
      axis.title=element_text(size=17,face="bold"),
      legend.title = element_text(size=15)) +
  labs(caption = "'# of language annotations' includes 'unsure' language annotations.")
que_var_plot
```


'# of language annotations' includes 'unsure' language annotations.

```
jpeg("/Users/megcychosz/Google Drive/biling_CDS/results/figures/que_CI_var_plot.jpeg", height = 450, wi
que_var_plot
dev.off()
## pdf
```

##

```
# report CI ranges at 80-clip mark and when annotation stopped, by child
que_cis_table <- que_rolling2 %>%
  group by(id) %>%
  filter(annotation_num==80 | annotation_num==NROW(id)) %>% # get values at 80-clip mark and cut-off
  mutate(ci range = cis$upper - cis$lower)
lang_cis_table <- span_rolling2 %>%
  group_by(id) %>%
  filter(annotation_num==80 | annotation_num==NROW(id)) %>% # get values at 80-clip mark and cut-off
  mutate(ci_range = cis$upper - cis$lower) %>%
  rbind(., que_cis_table) %>%
  select(id, annotation_num, ci_range) %>%
  mutate(ci_range = round(ci_range,2)) %>%
  mutate(timept = if_else(annotation_num==80, '80-clip_lang', 'Cut-off_lang')) %>%
  select(-annotation_num) %>%
  spread("timept", "ci_range")
final_cis_table <- cds_rolling2 %>%
  group_by(id) %>%
  filter(annotation_num==80 | annotation_num==NROW(id)) %>% # get values at 80-clip mark and cut-off
  mutate(ci range = cis$upper - cis$lower) %>%
  select(id, annotation_num, ci_range) %>%
  mutate(ci_range = round(ci_range,2)) %>%
  mutate(timept = if_else(annotation_num==80, '80-clip', 'Cut-off')) %>%
  select(-annotation num) %>%
  spread("timept", "ci_range") %>%
  merge(., lang_cis_table, by='id')
knitr::kable(final_cis_table, caption = 'Confidence interval range for Spanish/Quechua and child-direct
             booktabs=T,
             row.names = FALSE,
             col.names = c("Child ID", "80-clip", "Cut-off", "80-clip", "Cut-off")) %>% # "
  kable_styling() %>%
  add header above(c(" " = 1, "Language" = 2, "Child-directed speech" = 2)) %>%
  kableExtra::kable_styling(latex_options = "hold_position")
# cds model
# build data sets
cds_model_data_firstthird <- cds_rolling2 %>%
  group_by(id) %>%
  arrange(annotation num) %>%
  mutate(halfrow = as.numeric(n()/2)) %>% # for a sanity check
  filter(row_number() <= n()*.33) # get the bottom 50% of rows from each group
cds_model_data_secondthird <- cds_rolling2 %>%
  group_by(id) %>%
  arrange(annotation_num) %>%
  mutate(halfrow = as.numeric(n()/2)) %>% # for a sanity check
  filter(row_number() < n()*.66 & row_number() > n()*.33) # get the top 50% of rows from each group
cds model data thirdthird <- cds rolling2 %>%
  group_by(id) %>%
```

Table 6: (#tab:report CI ranges)Confidence interval range for Spanish/Quechua and child-directed speech estimation, by child, after annotating 80 clips and at annotation cut-off.

	Lang	guage	Child-directed speech	
Child ID	80-clip	Cut-off	80-clip	Cut-off
1032	0.16	0.13	0.21	0.17
1060	0.15	0.09	0.20	0.15
1075	0.13	0.11	0.17	0.17
1077	0.14	0.10	0.20	0.16
1081	0.08	0.11	0.16	0.13
179	0.21	0.15	0.21	0.15
198	0.21	0.19	0.20	0.19
199	0.18	0.13	0.21	0.15
261	0.21	0.18	0.21	0.18
267	0.20	0.18	0.16	0.15

```
arrange(annotation_num) %>%
  mutate(halfrow = as.numeric(n()/2)) %>% # for a sanity check
  filter(row_number() >= n()*.66) # get the top 50% of rows from each group
#cds_model_data_full <- cds_rolling_complete2 %>% # all the data from the 'complete' annotation
# group_by(id) %>%
# arrange(annotation_num)
# fit models
cds_model_firstthird <- cds_model_data_firstthird %>%
  #filter(roll_sd_cds!='NA') %>%
  filter(location=='US') %>%
  mutate(ci_range = cis$upper - cis$lower) %>%
  lmer(ci_range~annotation_num + (1|id), data = .) %>%
  summary()
cds_model_secondthird <- cds_model_data_secondthird %>%
  #filter(roll_sd_cds!='NA') %>%
  filter(location=='US') %>%
  mutate(ci range = cis$upper - cis$lower) %>%
  lmer(ci_range~annotation_num + (1|id), data = .) %>%
  summary()
cds_model_thirdthird <- cds_model_data_thirdthird %>%
  #filter(roll sd cds!='NA') %>%
  filter(location=='US') %>%
  mutate(ci_range = cis$upper - cis$lower) %>%
  lmer(ci_range~annotation_num + (1|id), data = .) %>%
  summary()
# redo data to get the Bolivia and US corpora (more power for stats)
span_rolling_all <- lang_annon %>%
 filter(method=='random') %>%
 group_by(id) %>%
```

```
arrange(file_name) %>%
 mutate(annotation_num = as.numeric(1:n())) %>%
 group_by(id) %>%
 arrange(annotation_num) %>%
 mutate(span_cts=recode(language, "Unsure"="0", "English/Quechua"="0", "Mixed"="0", "Spanish"="1")) %>
 mutate(span_cts = as.numeric(span_cts)) %>%
 mutate(span_running_cts = as.numeric(cumsum(span_cts))) %>%
 mutate(roll_prop_span = span_running_cts / annotation_num,
        roll_mean_span = rollmean(roll_prop_span, k=10, fill = NA),
        roll_sd_span = rollapply(roll_prop_span, width=10, FUN=sd, fill=NA))
# running binomial confidence interval (wilson)
span rolling all2 <- span rolling all %>%
 group_by(id, annotation_num) %>% # group by id and sample size
 arrange(annotation_num) %>%
 summarize(cis = binom.confint(span_running_cts, annotation_num, methods = 'wilson', conf.level = .95)
 merge(., span_rolling_all, by = c('id', 'annotation_num'))
# now start all over to get running variance for complete data from Bolivia and US
# current not doing this as we're not fitting models to the 'complete' dataset
# fit the spanish models
# make the datasets
span model data firstthird <- span rolling all2 %% # Bolivia and US; running variance over estimates m
 group_by(id) %>%
 arrange(annotation_num) %>%
 filter(row_number() <= n()*.33)</pre>
span_model_data_secondthird <- span_rolling_all2 %>%
 group_by(id) %>%
 arrange(annotation_num) %>%
 mutate(halfrow = as.numeric(n()/2)) %>% # for a sanity check
 filter(row_number() < n()*.66 \& row_number() > n()*.33)
 span_model_data_thirdthird <- span_rolling_all2 %% # Bolivia and US; running variance over estimates
 group_by(id) %>%
 arrange(annotation_num) %>%
 mutate(halfrow = as.numeric(n()/2)) %>% # for a sanity check
 filter(row_number() >= n()*.66)
#span_model_data_full <- span_rolling_complete2 %>% # Bolivia & US; all the data from the 'all-day' ann
# group_by(id) %>%
# arrange(annotation_num)
# fit the models
span_model_firstthird <- span_model_data_firstthird %>%
 #filter(roll_sd_span!='NA') %>%
 mutate(ci_range = cis$upper - cis$lower) %>% # get the variance
 lmer(ci_range~annotation_num + (1|id), data = .) %>%
 summary()
```

```
span_model_secondthird <- span_model_data_secondthird %>%
  #filter(roll_sd_span!='NA') %>%
mutate(ci_range = cis$upper - cis$lower) %>% # get the variance
lmer(ci_range~annotation_num + (1|id), data = .) %>%
summary()

span_model_thirdthird <- span_model_data_thirdthird %>%
  #filter(roll_sd_span!='NA') %>%
mutate(ci_range = cis$upper - cis$lower) %>% # get the variance
lmer(ci_range~annotation_num + (1|id), data = .) %>%
summary()
```