Max. Marks: 80

V Semester B.C.A. Degree Examination, October/November 2012 (Y2K7 Scheme)

COMPUTER SCIENCE

BCA 505: Operations Research

Time: 3 Hours

Instructions: 1) Answer all Sections.

2) Use graph sheet wherever necessary.

SECTION - A

Answer any eight questions of the following.

 $(8 \times 3 = 24)$

- 1. Solve the following LPP graphically Maximize $Z = 3x_1 + 5x_2$ Subject to constraints $x_1 + 2x_2 \le 2000$, $x_1 + x_2 \le 1500$, $x_2 \le 600$ and $x_1, x_2 \ge 0$.
- 2. Define slack and surplus variable with an example.
- 3. Explain in brief 'North-West Corner Rule'.
- 4. Explain saddle point with an example.
- 5. Write the steps for backward computation.
- 6. Define Basic solution and Basic Feasible solution.
- 7. Write the dual of the following primal problem

 Maximize $Z_x = 5x_1 + 12x_2 + 4x_3$ Subject to constraints

$$x_1 + 2x_2 + x_3 \le 5,$$

 $2x_1 - x_2 + 3x_3 = 2$

where $x_1, x_2, x_3 \ge 0$.

0 ≤ ux .,× argriw_{P.T.O.}

- 8. Define:
 - i) Pessimistic time
 - ii) Most likely time
 - iii) Optimistic time.
- 9. Give the mathematical formulation of transportation problem.
- 10. Describe Hungarian method for Assignment problem.

SECTION-B

Answer any four full questions.

 $(14 \times 4 = 56)$

11. a) A firm can produce three types of cloth, say: A, B and C. Three kinds of wool are required for it, say: red, green and blue. One unit length of type A cloth needs 2 meters of red wool and 3 meters of blue wool; one unit length of type B cloth needs 3 meters of red wool, 2 meters of green wool, and 2 meters of blue wool; and one unit of C cloth needs 5 meters of green wool and 4 meters of blue wool. The firm has only stock of 8 meters of red wool, 10 meters of green wool, and 15 meters of blue wool. It is assumed that the income obtained from one unit length of type A cloth is Rs. 3, of type B cloth is Rs. 5 and of C cloth is Rs. 4.

Determine how the firm should use the available material so as to maximize the income from the finished cloth.

Q

b) Solve the following LPP by simplex method

Max.
$$Z = 3x_1 + 2x_2 + 5x_3$$

Subject to constraints

$$x_1 + 2x_2 + x_3 \le 430,$$

 $3x_1 + 2x_3 \le 460,$
 $x_1 + 4x_2 \le 420$

where
$$x_1, x_2, x_3 \ge 0$$
.

6 Define Basto solution and Basic Feesbale so

12. a) Solve the following LPP by using Big-M method.

Max.
$$Z = 3x_1 - x_2$$

Subject to constraints

$$2x_1 + x_2 \ge 2$$

$$x_1 + 3x_2 \le 3$$

$$X_2 \le 4$$

where
$$x_1, x_2 \ge 0$$
.

enemy 8

b) Give the dual of the following LPP

Min.
$$Z = 2x_2 + 5x_3$$

Subject to constraints

$$x_1 + x_2 \ge 2$$

 $2x_1 + x_2 + 6x_3 \le 6$
 $x_1 - x_2 + 3x_3 = 4$
where $x_1, x_2, x_3 \ge 0$.

13. a) Determine an initial basic feasible solution to the following transportation problem using VAM.

		and the second section of the second second				
	W ₁	W ₂	W ₃	W ₄	Availability	
F,	19	30	50	10	7	
F ₂	70	30	40	60	9	
F ₃	40	8	70	20	18	8
Requirement	5	8	7	14	emelhobowier e	

b) Write the steps to find initial basic feasible solution by Matrix-Minima Method or Least Cost Method.

14. a) The XYZ company has 5 jobs to be done and 5 men to do these jobs. The number of hours each men would take to accomplish each job is given by the following:

			Jobs				
		L	11	111	IV	V	
	Α	16	13	17	19	20	1
	В	14	12	13	16	17	
Men	C	14	11	12	17	18	
	D	5	5	8	8	11	
	E	5	3	8	8	10	

Work out the optimum assignment and the total minimum time taken.

b) Give the mathematical formulation of an assignment problem. Justify assignment problem can be viewed as a LPP.

15. A project has the following time schedule

Activity	Time in months
(1 - 2)	2
(1 - 3)	2
(1 - 4)	livernatica formula
(2 – 5)	4
(3 - 6)	ne Jol 8 ving Van
(3 - 7)	5
(4 - 6)	3
(5 - 8)	numana fame i
(6 - 9)	5
(7 - 8)	4
(8 - 9)	3

- i) Construct a network diagram and calculate T_F and T_I.
- ii) Find critical path and its duration.
- iii) Calculate total float and identify critical path.

14

16. a) Define with example

- i) Pure strategy
- ii) Mixed strategy
- iii) Pay off matrix
- iv) Value of the game.

6

b) The pay off matrix of a game is given. Find the solution of the game to the Player A and B.

Player B

8