

Basic Python and Particle Filter

Nantawat Pinkam

I649E Wireless Sensor Networks

July 4, 2018

https://github.com/i649e/wsn-lab

I649E's Github

https://github.com/i649e/wsn-lab

https://github.com/i649e/wsn-lab

Python Installation

https://www.python.org/downloads/

https://github.com/i649e/wsn-lab

Python References

https://github.com/i649e/wsn-lab/tree/master/Reference

https://www.learnpython.org

This site generously supported by DataCamp. DataCamp offers online interactive Python Tutorials for Data Science. Join **575,000** othe learners and get started learning Python for data science today!

Welcome

Welcome to the LearnPython.org interactive Python tutorial.

Python Module Installation

In command prompt (Windows) or Terminal (macOS/Linux)

Python 2

```
python -m pip install --upgrade pip
python -m pip install <module name>
```

Python 3

```
python3 -m pip install --upgrade pip
python3 -m pip install <module name>
```


https://github.com/i649e/wsn-lab

Basic Python

- Mostly same as C, C#, C++
- Operators
 - =, +, -, *, /
 - // (integer divide), % (modulation), ** (a^b)
- Boolean
 - >, <, >=, <=, ==, !=
 - and, or
- Variable Assignment
 - A=B
 - A=B=1
 - A,B,C = 1,2,3 \rightarrow A=1; B=2; C=3
 - A+=1. \rightarrow A=A+1
- Print value
 - print(A)
 - print("A+B = " + str(2))

(The contents in print must be the same type)

https://github.com/i649e/wsn-lab

Basic Python

- Container
 - List: A=[1, "apple",3] (can be added more variables later)
 - A.append(x), A.extend(x), A.insert(i, x), A.remove(x), A.pop([i]), A.clear(), A.count(x), A.reverse(), A.copy()
 - Tuple: A=(1, "apple",3) (cannot be changed)
 - Dictionary: A={key:value, 1: "apple"}
 - A.get(key), A.has_key(key), A.items(), A.keys(), A.update(B), A.value()
 - Set: A={key1, key2, "apple"}
- Useful commands
 - len(A)
 Number of elements in A
 - A[-1], A[0], A[1], A[-1:1]
 Support positive and negative indexes

https://github.com/i649e/wsn-lab

Statement Blocks

```
: colon
parent statement:
indent statement block1...
       parent statement:
               → statement block2...
     indent
```

Loop and Function

range(x)

0, 1, 2, ..., x-1

Python	С
<pre>for i in range(5): print(i)</pre>	<pre>for (i = 0; i < 5; i++) { printf("%d\n", i); }</pre>
<pre>i=0 while(i < 5): print(i) i+=1</pre>	<pre>int i=0; while(i < 5){ printf("%d\n",i); i++; }</pre>
<pre>def A_plus_B (A, B): return A+B A, B = 1, 2 AB = A_plus_B(A, B) print(AB)</pre>	<pre>int A_plus_B(int A, int B) { return A+B; } int main() { int A=1; int B=2; int AB; AB = A_plus_B(A,B); printf("%d\n",AB); return 0; }</pre>

Sample-based Localization

https://github.com/i649e/wsn-lab

Particle Filter

- Bayesian based filter that sample the whole workspace by a weight function derived from the belief distribution of previous stage.
- Represent belief by random samples.
 (e.g. each particle is the hypothesis of the target state)

1 Randomly place particle all over the workspace.

2 Calculate the weight of each particle

13

3 Find the best estimate and resample the low weight particles [14]

Repeat 2-3 (calculate weight > best estimate > resample)

Random Samples as Particles

$$\mathcal{X} = \left\{ \left\langle x^{[i]}, w^{[i]} \right\rangle \right\}_{i=1,\dots,N}$$
 state importance

hypothesis Example:

- Location (x, y, z)
- Measurement

importance weight

How much should I trust this particle?

Belief Space

Gaussian belief space

Example

 Measurements from a sensor with known direction to the source.

Belief Space

Non-Gaussian belief space

Example

Measurements from a static sensor with **unknown** direction to the source.

https://github.com/i649e/wsn-lab

Particle Weight

- By using likelihood function to determine the weight.
- Basically, we compare the hypothesis with the measurement and calculate the weight.

Weight = $N(x|z,\sigma^2)$

N = normal distribution

Estimation

- Estimate the most likely state from all/some particles.
- Method of estimation: weight average, mean, top particles, etc.
- Particle filter can run with finite iterations or until the criteria are met. (e.g. no more particles improvement)

https://github.com/i649e/wsn-lab

Resample

- Survival of the fittest: Replace unlikely samples by more likely ones
- Avoid many samples cover unlikely states
- Needed as we have a limited number of samples

Roulette wheel

 Stochastic universal sampling

https://github.com/i649e/wsn-lab

Demo: 1D Particle Filter

Requirements: need to install python modules and jupyter notebook

python3 -m pip install numpy scipy matplotlib jupyter

Download Tutorial 2 1D Particle Filter.ipynb from Github In Command prompt/Terminal, cd to your downloaded file directory then type:

jupyter notebook

Open Tutorial 2 1D Particle Filter.ipynb from jupyter notebook You also can run 1D pf.py from the class Github.

Question and Answer

THANK YOU.