# Лабораторная работа №7

Эффективность рекламы. Вариант №55

Коняева Марина Александровна

НФИбд-01-21

Студ. билет: 1032217044

2024

RUDN

### Информация о докладчике

- Коняева Марина Александровна
- Студентка группы НФИбд-01-21
- Студ. билет 1032217044
- Российский университет дружбы народов



# Цель лабораторной работы

• Изучить и построить модель эффективности рекламы

#### Теоретическое введние

Мальтузианская модель роста (англ. Malthusian growth model), также называемая моделью Мальтуса — это экспоненциальный рост с постоянным темпом. Модель названа в честь английского демографа и экономиста Томаса Мальтуса.

### Теоретическое введние. Построение математической модели (1\3)

Модель рекламной кампании описывается следующими величинами. Считаем, что  $\frac{dn}{dt}$  - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, N - общее число потенциальных платежеспособных покупателей, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом  $\alpha_1(t)(N-n(t))$ , где  $\alpha_{\scriptscriptstyle 1} > 0$  - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной  $lpha_2(t)n(t)(N-n(t))$ . эта величина увеличивается с увеличением потребителей узнавших о товаре.

## Теоретическое введние. Построение математической модели (2\3)

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

## Теоретическое введние. Построение математической модели (3\3)

При  $\alpha_1(t) >> \alpha_2(t)$  получается модель типа модели Мальтуса, решение которой имеет вид



Рис. 1: График решения уравнения модели Мальтуса

## Теоретическое введние. Построение математической модели (4)

В обратном случае  $\alpha_1(t) << \alpha_2(t)$  получаем уравнение логистической кривой

$$P(t)=rac{L}{1+e^{-k(t-t_0)}}$$

Рис. 2: уравнение логистической прямой



Рис. 3: График логистической кривой

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

$$\begin{array}{l} \text{1. } \frac{dn}{dt} = (0.58 + 0.00008n(t))(N-n(t)) \\ \text{2. } \frac{dn}{dt} = (0.000058 + 0.8n(t))(N-n(t)) \\ \text{3. } \frac{dn}{dt} = (0.58\cos t + 0.38\cos (3t)n(t))(N-n(t)) \end{array}$$

При этом объем аудитории N=1550, в начальный момент о товаре знает 8 человек.

Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

## Ход выполнения лабораторной работы

#### Математическая модель

По представленному выше теоретическому материалу были составлены модели на обоих языках программирования.

### Результаты работы кода на Julia и Open Modelica для первого случая

$$\frac{dn}{dt} = (0.58 + 0.00008n(t))(N - n(t))$$
:



**Рис. 4:** "График, построенный на языке Julia"



**Рис. 5:** "График, построенный на языке Open Modelica"

#### Результаты работы кода на Julia и Open Modelica для случая

$$\frac{dn}{dt} = (0.000058 + 0.8n(t))(N - n(t))$$
:



**Рис. 6:** "График, построенный на языке Julia"



**Рис. 7:** "График, построенный на языке Open Modelica"

#### Результаты работы кода на Julia и Open Modelica для случая

$$\frac{dn}{dt} = (0.58\cos t + 0.38\cos (3t)n(t))(N-n(t))$$
 :



**Рис. 8:** "График, построенный на языке Julia"



**Рис. 9:** "График, построенный на языке Open Modelica"

#### Анализ полученных результатов. Сравнение языков.

- В итоге проделанной работы мы построили графики распространения рекламы для трех случаев на языках Julia и OpenModelica.

  Построение модели распространения рекламы на языке

  ОреnModelica занимает значительно меньше строк, чем аналогичное построение на Julia
- Кроме того, построения на языке OpenModelica проводятся относительно значения времени t по умолчанию, что упрощает нашу работу

#### Вывод

В ходе выполнения лабораторной работы была изучена модель эффективности рекламы и в дальнейшем построена модель на языках Julia и Open Modelica.

### Список литературы. Библиография

- [1] Документация по Julia: https://docs.julialang.org/en/v1/
- [2] Документация по OpenModelica: https://openmodelica.org/
- [3] Решение дифференциальных уравнений: https://www.wolframalpha.com/
- [4] Мальтузианская модель роста: https://www.stolaf.edu//people/mckelvey/envision.dir/malthus.html