Calcul Intégral III

STEP, MINES ParisTech

10 septembre 2020 (#7589d72)

Question 1 Déterminer l'aire des pavés suivants du plan étendu :

Ensemble de $[-\infty, +\infty]^2$	Aire (mesure de Lebesgue)
$[0,1] \times]-1,1[$	
\mathbb{R}^2	
$\{+\infty\} \times [-\infty, +\infty]$	

Question 2 (réponse multiple)

Soit $D = \{(x, y) \in \mathbb{R}^2 \mid x = y\}$ la diagonale principale de \mathbb{R}^2 . Alors

- \square A: pour tout $r>0,\,D\cap[-r,r]$ est négligeable,
- \square B: l'ensemble D est négligeable,
- \square C: l'aire de l'ensemble D est nulle.

Question 3 (réponse multiple) Si $f: \mathbb{R}^2 \to \mathbb{R}$ est mesurable et que

$$\int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(x, y) \, dx \right] \, dy$$

est bien définie, alors

- □ A: l'intégrale $\int_{-\infty}^{+\infty} f(x,y) dx$ est nécessairement définie pour tout $y \in \mathbb{R}$, □ B: l'intégrale $\int_{\mathbb{R}^2} f(x,y) dx dy$ est bien définie, □ C: l'intégrale $\int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(x,y) dy \right] dx$ est bien définie,
- \square D: si $\int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f(x,y) \, dy \right] dx$ est également bien définie, alors les deux intégrales sont égales,

Question 4 (réponse multiple) Soient $f: \mathbb{R} \to [0, +\infty[$ et $g: \mathbb{R} \to [0, +\infty[$ deux fonctions intégrables. Alors,

- \square C: on a

$$\int_{\mathbb{R}^2} f(x)g(y)\,dxdy = \left(\int_{-\infty}^{+\infty} f(x)\,dx\right)\left(\int_{-\infty}^{+\infty} g(y)dy\right).$$

Question 5 (réponse multiple) Soient $f: \mathbb{R}^2 \to \mathbb{R}$. L'intégrale

$$\int_{\mathbb{R}^2} f(x, y - x) \, dx dy$$

- \square A: est définie si f est mesurable et positive,
- \square B: est égale à $\int_{\mathbb{R}^2} f(x,y) \, dx dy$ si f est intégrable.