F# Tutorial

Pipe-Forward Operator

March 1, 2018

1 Modified Project Euler Questions

https://projecteuler.net/problem=1 https://projecteuler.net/problem=2

Change the url so that you get problem=3, problem=4, etc.

Question 1

Original Question. Implement a function that sums up all multiples of 3 or 5 in a list.

Question 2

Original Question. The Fibonacci sequence (starting with 1 and 2) looks something like:

$$1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

(For example, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8, etc.) Find the sum of all even-valued fibonacci numbers below 4 million.

- (a) List down the first 40 fibonacci numbers. Show that the 40th Fibonacci number already exceed 4 million (in fact, probably the 32nd or 33rd number already exceed 4 million)
- (b) Sum all even-valued fibonacci numbers below 4 million. (In particular, by part (a), the first 40 numbers are already sufficient)

Question 3

Exercise (Euler Project Question 3)

Modified Question. Write a function that takes a list of (positive) integers, and returns the largest prime number in that list (assuming each integer is less than INT_MAX).

Question 4

Original Question. A palindromic number reads the same from left-to-right or right-to-left.

The largest palindromic number made from the product of two 2-digit numbers is $9009 = 91 \times 99$.

Find the largest palindrome made from the product of two 3-digit numbers.

Question 5

Modified Question. Given a list of integers, find the lowest common multiple (LCM) of all those numbers. (Assume no integer overflow)

Question 6

Original Question. Given a list of integers x_1, x_2, \ldots, x_n , write a function that calculates the following:

$$\left(\sum_{i=1}^{n} x_i\right)^2 - \left(\sum_{i=1}^{n} x_i^2\right)$$

Question 7

Original Question. The list of prime numbers are $2, 3, 5, 7, 11, 13, \ldots$ We can see that the 6th prime number is 13.

What is the 10001th prime number?

- (a) How many prime numbers are there between 2 and 500000? Verify that there are more than 10000 prime numbers between this range. (In fact, more than 40000 prime numbers)
- (b) What is the 10001th prime number between 2 and 500000?

Question 8

Modified Question. Given a list of digits, find four adjacent digits with the largest product. For example, in the following number:

7316717653133062491922511**9674**426574742355349194934

The 4 consecutive digits that gives the largest product is $9 \times 6 \times 7 \times 4 = 9674$ (Notice that this line is the first line in the original question)

Question 9

Original Question. Find the only Pythagorean triplet a, b, c that satisfy:

$$a < b < c$$
, $a + b + c = 1000$, $a^2 + b^2 = c^2$

Question 10

Exercise (Euler Project Question 10)

Modified Question. Given a number N < 200,000, find the sum of all prime numbers between 2 and N.

2 Original Project Euler Solutions

Question 1, 2, 4, 6, 7, 9

We did not modify Question 1, 2, 4, 6, 7, 9.

Question 5

Original Question. Find the least common multiple (LCM) of 1 to 20. (You may encounter integer overflow)

Question 8

Original Question. In the webpage, a 1000 - digit number is provided.

The four adjacent digits in the 1000-digit number that have the greatest product are $9 \times 9 \times 8 \times 9 = 5832$.

Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. (You may encounter integer overflow)

Question 10

Original Question. The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17

Find the sum of all the primes below two million (2,000,000). (You may encounter integer overflow)

Question 3

Question. Given an integer Z, write a function that finds the largest prime factor of Z. e.g. The prime factors of 13195 are 5, 7, 13, 29, and so the largest for 13195 is 29.

Problem Analysis

Remark: Given an integer Z, it is possible that the largest prime factor of Z is greater than \sqrt{Z}

• Example: $6 \times 11 = 66$. The largest prime factor is $11 > \sqrt{66} \approx 8.12$.

To solve this question, we need some additional mathematical consideration (which is not quite directly related to programming).

- (a) Let $S_1 = \{a_1, \ldots, a_n\}$ be all the factors of Z (not necessarily prime factors) between 1 and \sqrt{Z} . This set will always contain at least one element: $a_1 = 1$.
- (b) Let $S_2 = \left\{ \frac{Z}{a_1}, \dots, \frac{Z}{a_n} \right\}$. These are all the factors of Z between \sqrt{Z} and Z. This set will always contain at least one element: $\frac{Z}{a_1} = Z$.
- (c) So, $S_1 \cup S_2 = \left\{ a_1, \dots, a_n, \frac{Z}{a_1}, \dots, \frac{Z}{a_n} \right\}$ are all the factor of Z (not necessarily prime factors).
- (d) Out of our list of candidates $S_1 \cup S_2$, which number is the largest, prime number?