Matrix Approximation for Large-Scale Learning

Mehryar Mohri
Courant Institute and Google Research
mohri@cs.nyu.edu

Joint work with Corinna Cortes, Sanjiv Kumar, Ameet Talwalkar

Motivation

- Kernel-based algorithms:
 - SVMs, Kernel Ridge Regression, KPCA.
 - arbitrary positive definite kernel $K: X \times X \to \mathbb{R}$.
 - kernel matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$.
- Computational cost for large-scale problems:
 - $\Omega(n^2)$ space.
 - $O(n^3)$ time for matrix inversion or SVD.

Example

- Invert a large matrix with n=18M:
 - $\mathbf{K} \approx 1300 \mathrm{TB}$.
 - $320,000 \times 4 GB$ RAM machines.
- Iterative methods:
 - require matrix-vector products.
 - not suitable for very large dense matrices.
- Sampling-based low-rank approximation:
 - compute and store only $l \ll n$ columns of **K**.
 - column-sampling, Nyström method.

This Talk

- Algorithms
- Empirical results
- Guarantees

Low-Rank Approximation

- \blacksquare Positive definite symmetric matrix $\mathbf{K} \in \mathbb{R}^{n \times n}$.
 - singular value decomposition (SVD): $K = U\Sigma U^{T}$.
 - best k-rank approximation: $\mathbf{K}_k = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{U}_k^{\top}$.
- Objectives
 - find approximation $\widetilde{\mathbf{K}}_k$ of \mathbf{K}_k in linear time with respect to n .
 - minimize reconstruction error $\|\mathbf{K} \widetilde{\mathbf{K}}_k\|_{\xi}$, with $\xi = 2, F$.
 - similar loss in learning: $\mathcal{L}_{\mathbf{K}}(h_S) \approx \mathcal{L}_{\widetilde{\mathbf{K}}_k}(h_S')$.

Nyström Approximation

(Williams & Seeger, 2000; Drineas and Mahoney, 2005)

 \blacksquare Sampling: l columns from $\mathbf{K} \longrightarrow \mathbf{C}$.

$$\mathbf{K} = egin{bmatrix} \mathbf{C} \\ \mathbf{W} \\ \mathbf{K}_{21} \end{bmatrix} n egin{bmatrix} \mathbf{K}_{21}^{ op} \\ \mathbf{K}_{22} \end{bmatrix}$$

Approximation: $k \leq l$.

$$\widetilde{\mathbf{K}} = \mathbf{C}\mathbf{W}_k^+\mathbf{C}^{ op}$$

when $k\!=\!l$, eq. to $\mathbf{K}_{22} o \mathbf{K}_{21} \mathbf{W}^{+} \mathbf{K}_{21}^{\top}$.

- Computational cost:
 - SVD of W: $O(l^3)$.
 - computation of $\widetilde{\mathbf{K}}$: O(nlk).

Nyström Woodbury Approximation

(Williams & Seeger, 2000)

Matrix inversion lemma:

$$(\lambda \mathbf{I} + \mathbf{K})^{-1}$$

$$\approx (\lambda \mathbf{I} + \widetilde{\mathbf{K}})^{-1}$$

$$= (\lambda \mathbf{I} + \mathbf{C} \mathbf{W}_{k}^{+} \mathbf{C}^{\top})^{-1}$$

$$= \frac{1}{\lambda} \left(\mathbf{I} - \mathbf{C} \left[\lambda \mathbf{I} + \mathbf{W}_{k}^{+} \mathbf{C}^{\top} \mathbf{C} \right]^{-1} \mathbf{W}_{k}^{+} \mathbf{C}^{\top} \right).$$

inversion of an $l \times l$ matrix instead of an $n \times n$ one.

Applications

Examples

- Spectral Clustering (Fowlkes et al., 2004).
- Kernel Ridge Regression (Cortes, MM, and Talwalkar, AISTATS 2010).
- Support Vector Machines (Fine and Scheinberg, 2001).
- Kernel Logistic Regression (Karsmarker et al., 2007).
- Manifold Learning (Kumar and Talwalkar, 2008).

Large-Scale Manifold Learning

- Nyström Isomap on 18M web faces:
 - largest-scale study to date.
- Visualization suggests good embedding
 - PeopleHopper on Orkut.

Shortest path between images of various celebrities

Fixed Sampling

- Fixed distribution over columns:
 - uniform O(1).
 - diagonal O(n).
 - column-norm $O(n^2)$.
- Empirical results:
 - uniform sampling w/o replacement: best results and fastest for real-world datasets

(Kumar, MM, and Talwalkar, 2009).

method typically used in practice.

Adaptive Sampling

- Adaptive selection of columns, pre-processing:
 - sparse greedy approximation (Smola and Schoelkopf, 2000).
 - incomplete Cholesky decomposition (Fine and Scheinberg, 2002; Bach and Jordan, 2002).
 - adaptive Nyström (Kumar, MM, and Talwalkar, ICML 2009).
 - K-means (Zhang, Tsang, and Kwok, 2009).

Results:

- can achieve better performance.
- but very costly, no parallelization.

Ensemble Nyström

(Kumar, MM, and Talwalkar, NIPS 2009)

- \blacksquare Sample: l = pm + s columns.
 - p samples S_1, \ldots, S_p of size m.
 - ullet validation sample of size s.
- Approximation: convex combination of p base Nyström approximations.

$$\mathbf{K}_{\mathrm{ens}} = \sum_{k=1}^{p} \mu_k \mathbf{K}_r, \quad \text{with } \boldsymbol{\mu} \in \Delta.$$

- Computational cost: $O(pm^3 + pmkn + C(\mu))$.
 - parallelization: cost similar to single Nyström.

Ensemble Weights

- Uniform: $\mu_r = 1/p$.
- **Exponential:** $\mu_r = \exp(-\eta \hat{\epsilon}_r)/Z$, with
 - $\eta \ge 0$ learning parameter, Z normalization factor, and $\widehat{\epsilon}_r$ error of rth expert.
- Regression based weights:

$$\min_{\boldsymbol{\mu} \in \Delta} \lambda \|\boldsymbol{\mu}\|_2^2 + \left\| \sum_{r=1}^p \mu_r \widetilde{\mathbf{K}}_r - \mathbf{K}_s \right\|_F^2.$$

- similar with a Lasso-type objective.
- in practice: non-negativity condition and regularization have small effects.

This Talk

- Algorithms
- Empirical results
- Guarantees

Relative error: $\frac{\|\mathbf{K} - \widetilde{\mathbf{K}}\|_F}{\|\mathbf{K}\|_F}$

Relative error: $\frac{\|\mathbf{K} - \mathbf{K}\|}{\|\mathbf{K}\|_2}$

Fixed-time constraint. IM points.

This Talk

- Algorithms
- Empirical results
- Guarantees

Nyström Learning Bounds

(Kumar, MM, and Talwalkar, NIPS 2009)

■ Theorem: assume that the columns are drawn uniformly w/o replacement. Then, for any $\delta > 0$, with probability at least $1 - \delta$,

$$\frac{\|\mathbf{K} - \widetilde{\mathbf{K}}_{\text{ens}}\|_2}{\|\mathbf{K}\|_2} \le \frac{\|\mathbf{K} - \mathbf{K}_k\|_2}{\|\mathbf{K}\|_2} + O\left(\frac{1}{\sqrt{m}}\left(1 + \sqrt{\log \frac{1}{\delta}}\right)\right).$$

Similar bounds for Frobenius norm. More favorable bounds for ensemble Nyström.

Kernel Stability

(Cortes, MM, and Talwalkar, AISTATS 2010)

Scenario:

- sample $S = ((x_1, y_1), \dots, (x_n, y_n)) \in (X \times Y)^n$.
- training with K' instead of K.
- testing with the true kernel function.

Question:

- how does the use of the approximate kernel K' affect the learning performance?
- algorithm-dependent.
- bounds in terms of $\|\mathbf{K}' \mathbf{K}\|_{\xi}$.

Kernel Stability - Ridge Regression

(Cortes, MM, and Talwalkar, AISTATS 2010)

Optimization problem:

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \boldsymbol{\alpha} (\mathbf{K} + \lambda_0 n \mathbf{I}) \boldsymbol{\alpha} - 2 \boldsymbol{\alpha}^\top \mathbf{y}.$$

Theorem: assume that $\max_{x}(K'(x,x),K(x,x)) \leq R^2$ and $|y| \leq M$, then

$$\forall x \in X, |h'(x) - h(x)| \le \frac{R^2 M}{\lambda_0^2 n} ||\mathbf{K}' - \mathbf{K}||_2.$$

Similar guarantees for several other algorithms:
 SVMs, SVR, kernel PCA.

Kernel Ridge Regression + Nyström

(Kumar, MM, and Talwalkar, NIPS 2009)

Theorem: under the same kernel stability assumptions and for uniform sampling w/o replacement, for any $\delta > 0$, with probability at least $1 - \delta$,

$$\forall x \in X, |h'(x) - h(x)| \le \frac{\kappa M}{\lambda_0^2 m} \left[\|\mathbf{K} - \mathbf{K}_k\|_2 + \frac{m}{\sqrt{n}} \mathbf{K}_{\max} \left(2 + \log \frac{1}{\delta} \right) \right].$$

Conclusion

- Ensemble Nyström algorithm.
 - significant performance improvement.
 - very large-scale experiments.
- Guarantees:
 - Nyström learning bounds.
 - algorithmic kernel stability.
- Better algorithms based on the combination of spectral error and kernel stability.