

PROGRAMACIÓN SOBRE GRANDES VOLUMENES DE DATOS BIG DATA

Magister - Efraín Alberto Oviedo eaoc46@gmail.com

UNIVERSIDAD DE ANTIOQUIA
FACULTAD DE INGENIERÍA
ESPECIALIZACIÓN EN ANALÍTICA Y CIENCIA DE DATOS

AGENDA

- 1. Introducción
- 2. Evolución de la ciencia de datos
- 3. Datos
- 4. Aplicaciones

¿QUÉ ES BIG DATA?

¿QUÉ ES BIG DATA?

"Conjunto de **técnicas** que permiten **analizar, procesar y gestionar** conjuntos de datos **extremadamente grandes** que pueden ser analizados informáticamente para **revelar patrones, tendencias y asociaciones**, especialmente en relación con la conducta humana y las interacciones con los usuarios"

Unidades de Medida de Almacenamiento

Unidad	Valor	Tamaño (en bytes)		
bit (b)	0 o 1	1/8 de un byte		
Byte (B)	8 bits	1 byte		
Kilobyte (KB)	1.024 bytes	1.024 bytes		
Megabyte (MB)	1.024 kilobytes	1.048.576 bytes		
Gigabyte (GB)	1.024 megabytes	1.073.741.824 bytes		
Terabyte (TB)	1.024 gigabytes	1.099.511.627.776 bytes		
Petabyte (PB)	1.024 terabytes	1.125.899.906.842.624 bytes		
Exabyte (EB)	1.024 petabytes	1.152.921.504.606.846.976 bytes		
Zettabyte (ZB)	1.024 exabytes	1.180.591.620.717.411.303.424 bytes		
Yottabyte (YB)	1.024 zettabytes	1.208.925.819.614.629.174.706.176 bytes		

Big Data = Transactions + Interactions + Observations

Source: Contents of above graphic created in partnership with Teradata, Inc.

Las Vs del Big Data

https://www.indracompany.com/es/blogneo/cuantas-v-deberia-big-data

The New York Stock Exchange captures

1 TB OF TRADE INFORMATION

during each trading session

ANALYSIS OF STREAMING DATA

By 2016, it is projected there will be

18.9 BILLION NETWORK CONNECTIONS

 almost 2.5 connections per person on earth

Modern cars have close to

that monitor items such as

fuel level and tire pressure

100 SENSORS

The FOUR V's of Big **Data**

and services that the world relies on every day.

As a leader in the sector, IBM data scientists break big data into four dimensions: Volume, **Velocity, Variety and Veracity**

4.4 MILLION IT JOBS

As of 2011, the global size of data in healthcare was estimated to be

150 EXABYTES

[161 BILLION GIGABYTES]

Variety

DIFFERENT **FORMS OF DATA**

4 BILLION+ **HOURS OF VIDEO**

By 2014, it's anticipated

WEARABLE, WIRELESS

HEALTH MONITORS

there will be

420 MILLION

are watched on YouTube each month

are sent per day by about 200 million monthly active users

30 BILLION PIECES OF CONTENT are shared on Facebook

1 IN 3 BUSINESS

don't trust the information they use to make decisions

in one survey were unsure of how much of their data was inaccurate

Poor data quality costs the US economy around

\$3.1 TRILLION A YEAR

Veracity

UNCERTAINTY OF DATA

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

Las Vs del Big Data

https://images.xenonstack.com/blog/10-vs-of-big-data.png

¿DE DONDE SALEN LOS DATOS?

Redes sociales y Aplicaciones

IoT

2020 This Is What Happens In An Internet Minute

https://bornintelligence.com/blog/2020/06/ 12/what-happens-in-one-internet-minute/

2020 This Is What Happens In An Internet Minute

2021 This Is What Happens In An Internet Minute

IoT (Internet Of Things)

Tres letras que lo están cambiando todo

 Antes: Los seres humanos eran quienes capturaban la información y la subían a internet

 Ahora: Las cosas (dispositivos instalados sobre cualquier objeto físico, con capacidad de medición y comunicación) se encargan de capturar y subir la información a internet

IoT - Dispositivos

https://www.cisco.com/c/dam/global/es es/assets/executives/pdf/Internet of Things IoT IBSG 0411FINAL.pdf

<u> IoT — Arquitectura General</u> REPORT AUTOMATE INGESTION < **GATEWAYS DEVICES BIG DATA** & ACT intelligent cloud event

https://www.scientechworld.com/internet-of-things/iot-solutions/iot-builder

AGENDA

- 1. Introducción
- 2. Evolución de la ciencia de datos
- 3. Datos
- 4. Aplicaciones

Arquitecturas de Sistemas de Información

Sistemas Centralizados

Sistemas de Almacenamiento Distribuido

Sistemas de Procesamiento Distribuido

• Sistemas de Almacenamiento y procesamiento distribuido

Sistemas Centralizados

Almacenamiento Distribuido

Procesamiento Distribuido

Almacenamiento y Procesamiento Distribuido

Escalabilidad

Añadir capacidad a un sistema para garantizar el servicio a los usuarios

Vertical: Añadir recursos a una máquina

Horizontal: Añadir una o varias máquina mas

http://semantica.cs.lth.se/pyspark/slides/Lecture%201.pdf

Escalabilidad

Ley de Amdahl: Representa de forma matemática la influencia de una mejora de uno o varios componentes de una computadora en el rendimiento global de la misma.

Escalabilidad

Y si aumentamos el número de procesadores para paralelizar la

aplicación?

La aceleración de un programa paralelo está limitada por la porción serial del mismo

http://tinomenosesmas.blogspot.com/ 2012/01/que-es-la-ley-de-amdahl.html

Number of Processors

AGENDA

- 1. Introducción
- 2. Evolución de la ciencia de datos
- 3. Datos
- 4. Aplicaciones

Datos

- Representación simbólica de la información
- Pueden clasificarse en:

- Datos Estructurados
- Datos No estructurados
- Datos Semiestructurados
- Se almacenan en Bases de Datos

Datos Estructurados

Tienen una estructura definida

• Se conocen sus propiedades: tamaño, longitud.

• Suelen representarse en tablas. Son los que podemos encontrar en la mayoría de bases de datos

ID	Nombre	Edad	Sexo	Profesión	Salario
1	Juan	33	M	Ingeniero	4.500.000
2	Ana	38	F	Arquitecta	6.200.000
3	María	7	F	Abogada	9.600.000

Datos Semiestructurados

• Combinación entre datos estructurados y no estructurados

No están completamente estructurados pero contienen metadatos

para describir sus objetos y relaciones

- Ejemplo:
 - XML
 - JSON

```
"Ciudades": [
"Nombre": "Medellín"
"Departamento": "Antioquia"
"Población":2.500.000
"Nombre": "Bogotá"
"Departamento": "Cundinamarca"
"Población":8.200.000
```

Datos NO Estructurados

- No tienen una estructura definida
- Ejemplo:
 - Audio
 - Imágenes
 - Texto

Almacenamiento de Datos

Document Database

Wide Column Stores

Key-Value Databases

Amazon SimpleDB

NoSQL: Clave - Valor

• Modelo de base de datos NoSQL mas popular y mas sencillo

Cada elemento está identificado por una llave única

• Eficiente en lectura y escritura

NoSQL: Clave - Valor

El valor puede ser cualquier tipo de dato como una imagen, un archivo, una página web, un código de programación

http://www.diegocalvo.es/ba
se-de-datos-clave-valor/

NoSQL: Documental

- Almacena la información como un documento
- Utiliza documentos que contienen estructuras simples (XML, JSON)
- La indexación de los documentos se hace bajo una clave única
- Permite crear indices

NoSQL: Documental

XML

ID	Nombre	Edad	Sexo	Profesión	Salario
1	Juan	33	M	Ingeniero	4.500.000
2	Ana	38	F	Arquitecta	6.200.000

```
<?xml version="1.0" encoding="UTF-8" ?>
<empleados>
        <Id>1</Id>
        <Nombre>Juan</Nombre>
        <Edad>33</Edad>
        <Sexo>M</Sexo>
        <Profesión>Ingeniero</Profesión>
        <Salario>4500000</Salario>
</empleados>
<empleados>
        <Id>2</Id>
        <Nombre>Ana</Nombre>
        <Edad>38</Edad>
        <Sexo>F</Sexo>
        <Profesión>Arquitecta</Profesión>
        <Salario>6200000</Salario>
</empleados>
```

NoSQL: Documental

JSON

ID	Nombre	Edad	Sexo	Profesión	Salario
1	Juan	33	M	Ingeniero	4.500.000
2	Ana	38	F	Arquitecta	6.200.000

```
"empleados": [
   "Id": 1,
    "Nombre": "Juan",
    "Edad": 33,
    "Sexo": "M",
    "Profesión": "Ingeniero",
    "Salario": 4500000
  },
   "Id": 2,
    "Nombre": "Ana",
    "Edad": 38,
    "Sexo": "F",
    "Profesión": "Arquitecta",
    "Salario": 6200000
```

Grafos

Problema de los puentes de Königsberg

Empezar en un punto, pasar por los siete puentes sin repetir ninguno y volver al punto de partida

https://www.gaussianos.com/los-puentes-de-konigsberg-el-comienzo-de-la-teoria-de-grafos/

Grafos

• Representar la ciudad de Königsberg como un grafo

- Vértices: Las cuatro zonas de la ciudad (A,B,C,D)
- Aristas: Puentes de la ciudad

NoSQL: Orientado a Grafos

 Se almacena la información como nodos de un grafo y sus relaciones con otros nodos

 Presenta mejor rendimiento, permite una navegación mas eficiente entre los nodos y sus relaciones que en un modelo relacional

Permite una gran flexibilidad

NoSQL: Orientado a Grafos

Ejemplo: María y Juan son amigos y ambos han leído el libro cien años de soledad

NoSQL: Orientado a Grafos

Ejemplo: María y Juan son amigos y ambos han leído el libro cien años de soledad

• Almacena los datos en forma de Columnas bajo una clave única

• Cada registro puede convertirse en una o mas columnas

• Cada columna puede contener distintas estructuras de datos

• Se utilizan para consultar datos de tipo histórico

Row key1	Column Key1 Column Key2 Column Key3						
	Column Value1	Column Value2	Column Value3	•••			

	Super Column key1		Super Column key2				
Row key1	Subcolumn Key1	Subcolumn Key2	•••	Subcolumn Key3	Subcolumn Key4		
	Column Value1	Column Value2		Column Value3	Column Value4		
		:			,		

Relational Model	Cassandra Model
Database	Keyspace
Table	Column Family (CF)
Primary key	Row key
Column name	Column name/key
Column value	Column value

Ejemplo: Crear una tabla para almacenar tweets

) WITH CLUSTERING ORDER BY (timestamp DESC);

https://www.elconspirador.com/2018/01/29/definicion-claves-cluster-y-particion-apache-cassandra-parte-1/

Marca de tiempo 1

Tweet

Idioma

Dispositivo

lp

Clave de clúster

Marca de tiempo 2

Tweet

Idioma

Dispositivo

Y si un solo usuario crea muchos tweets al mes?

CREATE TABLE tweet (usuario bigint, year int, Clave de partición month int, timestamp timestamp, Usuario tweet text, Año Mes dispositivo text, idioma text, ip text, PRIMARY KEY ((usuario, year, month), timestamp)) WITH CLUSTERING ORDER BY (timestamp DESC);

AGENDA

- 1. Introducción
- 2. Evolución de la ciencia de datos
- 3. Datos
- 4. Aplicaciones

0 one

https://www.youtube.com/watch?v=EK
mWMjvWFPg

https://www.youtube.com
/watch?v=DXq30dvE0Xg

https://www.youtube.com/watch?v=-4R3m4ybDz4

https://www.youtube.com/watch?v=ku78zo9fhol

https://www.estrategiasdeinversion.com/analisis/bolsa-y-mercados/el-experto-opina/el-big-data-nos-ayuda-a-predecir-el-comportamiento-n-323203

https://www.dw.com/es/predecir-el-futuro-con-el-big-data/av-17816690

https://www.youtube.com/watch?v=fO7G6gRFLLM

https://www.youtube.com/watch?v=ImN4FTarqfo&t=53s

Video

https://colombiadigital.net/actualidad/noticias/item/9006-caoba-centro-de-excelencia-y-apropiacion-en-big-data-y-data-analytics.html

EVALUACIÓN

Actividad	%
Taller I: Map-reduce	30
Taller II: RDD	30
Taller III: Dataframe	20
Taller IV: Machine Learning	20