COMP9318: Data Warehousing and Data Mining

Course Introduction

What is Data Warehousing?

- "A data warehouse is a subject-oriented, integrated, time-variant, and non-volatile collection of data in support of management's decision-making process." W. H. Inmon
- Data warehousing:
 - The process of constructing and using data warehouses
- Difference between data warehouse and database

What is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data
 - Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- In this course, we will cover several major topics in data mining
 - Classification
 - Clustering
 - Association rule mining

• . . .

Lecture in Charge

- Lecturer-in-charge:
 - Dr. Yifang Sun
 - School of Computer Science and Engineering
 - office: K17-208
 - email: yifangs@cse.unsw.edu.au
 - use [comp9318] in subject
- Research interests
 - High dimensional data
 - Machine learning (Natural language processing)
 - Knowledge graph
 - Integration of DB and AI

Course Aims

- Introduce the foundation of data warehousing
 - OLAP
- Introduce the theories of various data mining techniques
 - Classification
 - Clustering
 - Association rules
 - . . .
- Explore the practice of developing data mining applications
 - Programming project
 - Labs
 - . . .

Course Aims - cont.

- Not possible to cover every aspect of data warehousing and data mining
- We will focus on
 - concepts
 - algorithms
 - principles
- We will not focus on
 - programming languages and API
 - specific platforms/tools
- Make use of tutorials and documents on the Internet

Lectures

- Delivered through pre-recorded videos
 - location: anywhere you like
 - time: anytime you want
 - links to videos available on Ed before the lecture
 - email LiC ASAP if you have problem access to Ed
- Slides on course website
- No QA sessions during lectures
 - Ask in the forum or during online consultations
 - Will address common questions at the beginning of each lecture
- Schedule and length of lectures may vary based on the progress of the course
- Note: watching every lecture is assumed

Consultations

- Online QA discussions using Ed
 - encourage you all to participant
 - Raise questions and try to help others
- Online consultation with tutor
 - 12pm 1pm every Friday
 - using Zoom
 - room number and password will be in Ed
- Private online consultation with LiC
 - please book an appointment with me with a brief description of your questions, with [comp9318] in subject
 - only for problems cannot solve in the forum and during the online consultation

Resources

• Lecture Slides

• Contains many materials not found in the text/reference books.

Textbooks

- Jensen et al, Multidimensional Databases and Data Warehousing. (Accessible from a UNSW IP)
- Han et al, Data Mining: Concepts and Techniques, 1st/2nd edition, Kaufmann Publishers.

Reference Books

- Charu Aggarwal, Data Mining: The Textbook, Springer, 2015.
- Tan et al, Introduction to Data Mining, Addison-Wesley, 2005.
- Leskovec et al, Mining of Massive Datasets (ver 2.1), Available at http://infolab.stanford.edu/~ullman/mmds.html

Resources - cont.

- Software
 - Anaconda
 - Python 3
 - Jupyter notebook
 - Python libs such as numpy, pandas, matplotlib, scikit-learn, . . .
- Reading Materials
 - Papers from machine learning/data mining conferences/journals, white papers, surveys, etc.
 - All available from the course Web page
- Online Resources
 - Online courses and tutorials from YouTube, Coursera

Pre-requisite

- Official prerequisites
 - Discrete mathematics (COMP9020)
 - Data Structures and Algorithms (COMP9024)
 - Database Systems (COMP9311)
- •Before commencing this course, you should
 - have experiences and good knowledge of algorithm design
 - have solid background in database systems
 - have solid programming skills in Python
 - be familiar with Linux operating systems
 - have basic knowledge of linear algebra, probability theory and statistics

Please do not enrol if you...

- •Don't have COMP9020/9024/9311 knowledge
- Cannot produce correct Python program on your own
- Have poor time management
- Are too busy to watch lecture videos/labs

•Otherwise, you are likely to perform badly in this subject

Assessment

- Five labs (full mark: 25)
 - Only the best 3 will be counted
- •One written assignment (full mark: 25)
- •One programming project (full mark: 50)
- •Final exam (full mark: 100)
 - Double pass (>=40)
- •Final Mark = $\frac{2 \cdot (labs + assn + proj) \cdot final}{labs + assn + proj + final}$ if $final \ge 40$
 - FL if *final* < 40

Labs

- Labs to help you with programming and projects
- •Only the best 3 will be counted
 - lab = np.mean(sorted([lab1, lab2, lab3, lab4, lab5], reverse=True)[:3])
- Unlimited trials
- Immediate feedback
 - Don't rely on the feedback and blindly try
- No late submission allowed for labs

Written Assignment

- Exam-style questions
 - Computational, short answer
 - no essay, no multiple choice
- Regarding the lecture contents
 - algorithms, principles, ...
 - to assess your understanding, not memory
- Late penalty
 - firm deadline
 - zero mark for late submission

Programming project

- Individual task
- •Both results and source codes will be checked.
 - Zero mark if your codes cannot be run due to some bugs.
- Late penalty
 - 10% reduction of raw marks for the 1st day, 30% reduction per day for the following 3 days

Final exam

- Open book exam
- Firm deadline
- •No supplementary exam will be given if you fail
- Special consideration must be submitted prior to the start of the exam

More details on the way

Tentative course schedule

Week	Topic	Labs/Assignment/Project
1	Course Introduction and Math review	
2	Data warehousing and OLAP	lab1
3	Data preprocessing	
4	Classification	lab2
5	Classification	lab3
6	Flexibility Week (no lecture)	project
7	Clustering	Assignment
8	Clustering	lab4
9	Association rule mining	
10	Revision and Exam Preparation	lab5

Warning

- This course has
 - Broad coverage
 - Heavy workload
 - High fail rate $\geq 20\%$
- Specially, we do not accept personal plea or excuses
 - if you have valid reasons that affect your performance, apply for a UNSW Special Consideration
 - https://student.unsw.edu.au/special-consideration.

Warning - cont.

- Common excuses
 - I spent so much time and effort on this course but still failed?
 - I did the work by myself and may have shared it with my classmate for discussion.
 - If I fail this course, I will [...]. Please.

• We aim to build a fair environment for every student in this course

Academic honesty and plagiarism

- Zero tolerance to plagiarism
 - You will get 0 marks
- Examples of misconduct:
 - Copy other students' work
 - Let other students copy your work
 - Copy from GitHub
 - Find a ghost writer
 - •
- I will not accept the following excuses:
 - "I've left the lab with my screen unlocked"
 - "He stole it from my computer"
 - "I only gave my code to A. A didn't use it but gave it to B"
 - •
- Make sure you read all types of plagiarism, esp. collusion in https://student.unsw.edu.au/plagiarism.

General Recommendations

- Make use of LiC and tutors
 - don't hesitate to ask questions
- Make use of the forum
 - read the notices in course website and Ed
 - participate in the discussions in Ed
- Make use of course materials
 - understand lecture slides
 - read specifications carefully
 - try all the labs although they are not compulsory
- Do not misconduct

About Learning

- Understand (not memorize) concepts/equations/algorithms
 - Ask why
 - Describe it in you own language to a layman

Example

• Phil got a positive result for the α test and the probability that patients with the deadly β disease having a positive α test is 99%. Should Phil be worried about having the β disease?

Example

• Phil got a positive result for the α test and the probability that patients with the deadly β disease having a positive α test is 99%. Should Phil be worried about having the β disease?

•Plot the function $Pr[\beta|\alpha]$ with respect to $Pr[\alpha|\text{not }\beta]$ given $Pr[\beta]=0.00008$

Example

- Phil got a positive result for the α test.
- All patients with the deadly β disease have a positive α test result.
- Does Phil have the ß disease?

Your Feedbacks are Always Welcome

•Please advice where I can improve after each lecture, through Ed or by email

•myExperience system