FANCY MASTERARBEIT OF DEATH

Jonathan Förste

April 13, 2018

Contents

1	Intr	ODUCTION	5
2	Рнуя	SICAL PROPERTIES OF TRANSISION METAL DICHALCOGENIDE MONOLAYERS	7
	2.1	Crystal structure and symmetries	7
	2.2	Electronic bandstructure	7
	2.3	Excitons in TMDs	7
		2.3.1 Binding energy	7
		2.3.2 Phonons and dark states	7
		2.3.3 Trions	7
	2.4	The Valley Zeeman Effect	7
	2.5	Bilayer WSe ₂	7
3	Fabr	RICATION OF FIELD EFFECT STRUCTURES	9
	3.1	Mechanical exoliation	9
		3.1.1 Layer number	9
	3.2	Hexagonal boron nitide	9
	3.3	Electrode fabrication	9
		3.3.1 UV lithography	9
		3.3.2 Backgate and contacting	9
	3.4	Hot pickup and stamping	9
	3.5	Annealing	9
4	Ехре	ERIMENTAL METHODS AND RESULTS	11
-	4.1	Optical setup	11
		4.1.1 Photoluminescence spectroscopy	11
		4.1.2 Absorption spectroscopy	11
	4.2	Sample characterization	11
	_	4.2.1 Electrical properties	11
		4.2.2 Narrow linewidth	11
	4.3	Gate sweep in magnetic field # full control	11
		4.3.1 g-factors	11
Ar	PEND	ICES	13
A	Line	SHAPES AND FITTING PROCEDURES	15
	A.1	Asymmetric Lorentzian	15
	Аз	Fano Resonance Lineshane	1.5

1 Introduction

2 Physical Properties of Transision Metal Dichalcogenide Monolayers

- 2.1 CRYSTAL STRUCTURE AND SYMMETRIES
- 2.2 ELECTRONIC BANDSTRUCTURE AND SPIN ORBIT COUPLING
- 2.3 Excitons in TMDs
- 2.3.1 BINDING ENERGY
- 2.3.2 Phonons and dark states
- 2.3.3 Trions
- 2.4 THE VALLEY ZEEMAN EFFECT
- 2.5 BILAYER WSE₂

3 Fabrication of field effect structures

- 3.1 MECHANICAL EXOLIATION
- 3.1.1 LAYER NUMBER
- 3.2 HEXAGONAL BORON NITIDE
- 3.3 Electrode Fabrication
- 3.3.1 UV LITHOGRAPHY
- 3.3.2 BACKGATE AND CONTACTING
- 3.4 Hot pickup and stamping
- 3.5 ANNEALING

4 Experimental methods and results

- 4.1 OPTICAL SETUP
- 4.1.1 PHOTOLUMINESCENCE SPECTROSCOPY
- 4.1.2 Absorption spectroscopy
- 4.2 SAMPLE CHARACTERIZATION
- 4.2.1 ELECTRICAL PROPERTIES
- 4.2.2 NARROW LINEWIDTH
- 4.3 Gate sweep in magnetic field # full control
- 4.3.1 Doping regimes
- 4.3.2 G-FACTORS

Appendices

A Lineshapes and fitting procedures

A.1 ASYMMETRIC LORENTZIAN

A.2 FANO RESONANCE LINESHAPE