МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет» РТУ МИРЭА»

ЛЕКЦИОННЫЕ МАТЕРИАЛЫ

Конфиденциальная информация и ее защита в документационном обеспечении управления Электроника

Уровень бакалавриат	
Форма обучения очная	
Направление подготовки 10.03.01 Информационная безопаснос	СТЬ
Институт комплексной безопасности и специальн	ого приборостроения
Кафедра кафедра электроники	
Лектор д.т.н., профессор Филинов В.В.	
Используются в данной редакции с учебного года	2020/21
Проверено и согласовано « » 20	Γ.
	(подпись директора Института Филиала с расшифровкой)

Москва 2020г.

2.2. Генераторы электрических сигналов

Генераторы гармонических сигналов предназначены для преобразования энергии источника питания в энергию электрического сигнала синусоидальной формы требуемой частоты и мощности. На практике, часто, такой генератор представляет собой ОУ охваченный глубокой **положительной** обратной связью с коэффициентом передачи β_+ (см.рис.2.26). для схемы входное и выходное напряжения связаны соотношениями :

$$\dot{U}_{BX} = \dot{\beta}_{+} \dot{U}_{BbIX}$$

$$\dot{U}_{BbIX} = \dot{K}_{0} \dot{U}_{BX}$$

откуда $\dot{U}_{BblX}=\dot{eta}_{+}\dot{K}_{0}\dot{U}_{BblX}$, справедливое при $\dot{eta}_{+}\dot{K}_{0}\geq1$.

Выполнение последнего условия обеспечивает в автогенераторе незатухающие колебания. Величины \dot{K}_0 и $\dot{\beta}_+$ в уравнении являются комплексными, поэтому можно записать

$$\dot{\beta}_{+}\dot{K}_{0} = K_{0} e^{j\phi} \cdot \beta_{+} e^{j\psi} = 1$$

Последнее выполняется при двух условиях:

$$\phi + \psi = 0$$
 — условие баланса фаз автогенератора, $K_0 \, \beta_+ = 1$ — условие баланса амплитуд.

Условие баланса фаз означает, что в схеме существует положительная обратная связь. Условие баланса амплитуд соответствует тому, что энергия, теряемая в генераторе за одно колебание, восполняется энергией от источника питания. Выполнение условий баланса фаз и амплитуд обеспечивает возникновение сигналов генератора сложной формы, состоящих из большого числа гармонических составляющих. Для возникновения сигнала генератора нужной частоты обеспечивают выполнение условий баланса фаз и амплитуд, только для частоты f_0 , путем включения частотно-зависимых схем, например, Т-образного моста.

Рис. 2.27. Схема генератора с Т-мостом

Пример выполнения автогенератора гармонических колебания с Тобразным мостом рис.2.27. приведен на положительная ОС создается R_3 резисторами R_4 OC отрицательная резонаторами R_2 И \mathbf{R}_{1} обеспечивают которые самовозбуждения условие генератора: баланс амплитуд $K_0\beta_+ = -(R_2/R_1) \cdot \beta_+ \ge 1$; баланс фаз $\Phi + \Psi = 0$ ($\Phi \Psi = 0$. Поскольку в автогенераторе в цепь отрицательной обратной связи включен образный мост, то условия

самовозбуждения генератора

выполняются только для одной резонансной частоты $f_0=1/2\pi RC$.

Приведенная на рис.27 схема относится к генераторам **RC-типа**, применяемых для возбуждения гармонических сигналов низких и средних частот (условно до 300 к Γ ц). Электрические сигналы более высоких частот (условно выше 300 к Γ ц) создаются генераторами **LC** – **типа** примером которых может служить схема, представленная на рис.2.28.

Усилитель в схеме LC-генератора рис.2.28 выполнен на базе **УОЭ** с транзистором n-p-n типа (см.рис.2.6). назначение всех элементов УОЭ известно (см. п.2.1.4), вместо коллекторного сопротивления R_K включен дроссель $L_{дP}$, выполняющий функцию R_K в УОЭ по переменному току и обеспечивающий $R_K=0$ по постоянному току, чтобы уменьшить потери энергии. ОС выполняется за счет магнитной связи M контура $L_K C_K$, включенного между выходом УОЭ и катушкой L_6 входной цепи УОЭ. Условие баланса амплитуд обеспечивается правильным выбором $K_u \beta \ge 1$, где K_M

коэффициент усиления УОЭ, $\beta = \frac{M}{\sqrt{L_{\delta} \cdot L_{K}}}$ - коэффициент магнитной связи,

 M, L_6 , L_K - соответственно взаимная индуктивность и индуктивность катушек. Условие баланса фаз обеспечивается $\phi + \psi = 0$ за счет положительной OC:

 $\phi=180^{0}$ для УОЭ, $\psi=180^{0}$ из-за обратной намотки катушек индуктивности L_{K} и L_{6} (на рис.2.28 начало обмоток обозначены «*»). Частота гармонического сигнала генератора определяется резонансной частотой

контура
$$f_0 = \frac{1}{2\pi \sqrt{L_{\scriptscriptstyle K} \cdot C_{\scriptscriptstyle K}}}$$
 .

Рис.2.28. Схема LC-генератора

Рис. 2.29. Кварц:

- (а) графическое обозначение;
- (б) эквивалентная схема

Важным параметром генератора является коэффициент нестабильности частоты $\gamma = \frac{\Delta f}{f_0}$, показывающий уход частоты Δf

относительно рабочей f_0 за промежуток времени из-за температурной нестабильности элементов схемы. У обычных генераторов $\gamma \approx 10^{-5}$. На практике в высокоточной схемотехнике (например, высокоточный счет времени) необходимо обеспечить $\gamma \approx 10^{-7} \div 10^{-8}$. В таких случаях применяют кварцевые резонаторы — «кварцы», представляющие собой кварцевую пластину, обладающую пьезоэффектом и закрепленную в кварцедержателе (рис.2.29а).

Кварцевый резонатор эквивалентен электрическому колебальному контуру. Эквивалентная схема кварцевого резонатора изображена на рис.2.29.б. Как видно, кварц эквивалентен последовательно включенным элементам L_{KB} , R_{KB} , C_{KB} , а в такой цепи может быть резонанс напряжения с

частотой
$$\omega_{\text{H}} = \frac{1}{\sqrt{L_{\textit{KB}} \cdot C_{\textit{KB}}}}$$
. Индуктивность кварца L_{KB} может быть

значительной — от десятков микрогенри до нескольких миллигенри. Емкость кварца C_{KB} мала (сотые доли пикофарад). Кварцевый резонатор обладает острым резонансом, что свидетельствует о небольшом сопротивлении R_{KB} , порядка единиц Ом. Поэтому добротность кварца достигает 10^5-10^6 , т.е. она на два-три порядка больше добротности контуров, выполненных на дискретных элементах — индуктивной катушке и конденсаторе.

Так как кристалл кварца помещают в кварцедержатель, который обладает емкостью C_0 , равной нескольким десяткам пикофарад, то в кварцевом резонаторе возможен и резонанс токов с частотой $\omega_{r} = \frac{1}{\sqrt{C_{\text{эк}} \cdot L_{\text{кв}}}}$, где

2.3. Источники питания электронных устройств

Для работы различных электрических устройств необходимы источники электрической энергии (источники питания) постоянного напряжения. Преобразование переменного напряжения первичного источника питания (например, промышленной сети переменного тока) в постоянное осуществляется с помощью выпрямителей. Выпрямительные устройства, в состав которых входит блок выпрямителя, применяют для питания большинства электронных устройств, как на дискретных элементах, так и на интегральных микросхема, в электроприводе, в установках для электролиза и т.д.

Структурная схема выпрямительного устройства показана на рис. 2.30. В нее входит: Тр - трансформатор, изменяющий величину получаемого от сети переменного напряжения в соответствии с необходимой величиной напряжения на выходе выпрямителя; В – выпрямитель, содержащий один или несколько вентилей (диодов); СФ – сглаживающий фильтр, уменьшающий пульсации выпрямленного напряжения; Ст - стабилизатор, поддерживающий постоянное напряжение на нагрузочном устройстве; Н – нагрузочное устройство (например, нагрузочный резистор).

В зависимости от требований к выпрямительному устройству отдельные элементы его могут отсутствовать. Выпрямители бывают управляемые и неуправляемые. В управляемом выпрямителе, используемом, в частности, в электроприводе, в структурной схеме предусматриваются также элементы регулирования выпрямленного напряжения.

По числу фаз различают однофазные и многофазные (обычно трехфазные) выпрямители. По величине мощности их подразделяют на

выпрямители малой, средней и большой мощности. Выпрямители малой мощности, как правило, однофазные, а средней и большой – трехфазные.

Выпрямитель характеризуют следующие основные параметры:

Среднее выпрямленное напряжение на нагрузке U_{Hcp} , средний ток I_{Hcp} , определяемые требованиями потребителя; коэффициент пульсаций на выходе P. последний характеризует величину пульсаций на выходе выпрямителя и определяется

$$P = \frac{U_{Hm}}{U_{Hcp}},$$

где U_{нт} – амплитуда основной гармоники выпрямленного напряжения.

Рассчитывают диоды для выпрямителей по основным параметрам:

Максимальное обратное напряжение на диоде $U_{\text{обр m}}$, средний ток $I_{\text{a cp}}$, и максимальный ток $I_{\text{a m}}$, диода.

Полученные значения $U_{\text{обр m}}$, $I_{\text{a m}}$ и $I_{\text{a cp}}$ не должны превышать соответствующих предельных параметров диода.

Анализ работы выпрямителей проводят при допущениях, что диод (вентиль) и трансформатор идеальны. Это означает, что

- а) вентиль идеален, когда сопротивление вентеля в прямом направлении равно нулю, а в обратном бесконечно велико,
- б) трансформатор идеален, когда активные и индуктивные сопротивления рассеяния обмоток трансформатора равны нулю.

Работа выпрямителя рассматривается с помощью временных диаграмм.

2.3.1. Однополупериодный выпрямитель

Схема и временные диаграммы напряжений и токов однополупериодного выпрямителя приведены на рис.2.31. схема содержит Тр, в цепь вторичной обмотки которого включены последовательно, диод Д и сопротивление нагрузки $R_{\rm H}$. При принятых допущениях (идеальный трансформатор) следует, что если напряжение U_1 на первичной обмотке трансформатора меняется по синусоидальному закону, то напряжение на вторичной обмотке U_2 также синусоидально.

Ток через диод $i_{\rm H}$ появляется в те полупериоды, когда потенциал точки а выше потенциала точки b вторичной обмотки трансформатора т.к. в эти полупериоды диод Д открыт. Когда потенциал точки, а отрицателен по

Рис.2.31. Однополупериодный выпрямитель

отношению К потенциалу точки b, закрыт, ток в диод цепи равен нулю. Таким образом, ток в резисторе появляется только один из полу периодов напряжения и2, а схема называется однополупериодной. При принятых допущениях (идеальный диод) положительный полупериод напряжения

величина напряжения нагрузочном на резисторе равна величине и2, а на диоде нулю, отрицательный

полупериод $u_H = 0$, а

величина $u_a = u_2$. В этой схеме $U_{HCP} = 0.4U_2$. Недостатки этой схемы — высокий пульсации (P=1,57). Эти недостатки уровень устраняются двухполупериодных схемах выпрямителей, в которых используются оба периода напряжения сети. Наиболее распространенной схемой является мостовая схема двухполупериодного выпрямителя.

2.3.2. Мостовая схема выпрямителя

Мостовая схема двухполупериодного выпрямителя и соответствующие ей временные диаграммы приведены на рис.2.32. В этой схеме диоды Д_I – Д₄ включены по мостовой схеме, к одной диагонали которой подведено переменное напряжение u_2 , а к другой подключен нагрузочный резистор R_H . В течение первой половины периода напряжения u_2 , когда потенциал точки а положителен, точки b – отрицателен, диоды A_1 , A_3 открыты, A_2 , A_4 – заперты, ток i_H = i_{a1} = i_{a3} течет через диоды I_1 , I_3 и нагрузочный резистор I_4 . К диодам и2. В другой полупериод напряжения и2, потенциал точки а ниже потенциала точки b, диоды $Д_2$, $Д_4$ открыты, $Д_1$, $Д_3$ – закрыты, при этом i_H = i_{a2} = i_{a4} течет

Рис.2.32. Мостовая схема выпрямителя

2.3.3 Сглаживающие фильтры

Выпрямленное напряжение имеет пульсирующий характер и его нельзя непосредственно использовать для питания электронных устройств. Поэтому для уменьшения коэффициента пульсаций на входе выпрямителя применяют сглаживающие фильтры. Включение сглаживающего фильтра между выпрямителем и нагрузочным устройством $R_{\rm H}$ уменьшает коэффициент пульсаций напряжения. Величина, показывающая во сколько раз происходит уменьшение коэффициента пульсаций на выходе ($P_{\rm BMX}$) фильтра по сравнению с его значением на входе ($P_{\rm BX}$), носит название коэффициента сглаживания

$$q = P_{BX}/P_{BIJX}$$

Фильтры состоят из конденсаторов и катушек индуктивности. Основные виды фильтров – емкостной, индуктивный и смешанный (рис.2.33).

На рис.2.34 показаны осциллограммы напряжений на активном сопротивлении нагрузочного устройства $R_{\rm H}$ двухполупериодного выпрямителя при включенном емкостном C_{Φ} (рис. 2.34a) и индуктивном L_{Φ} -фильтрах (рис. 2.34б).

Рис.2.33. Фильтры: емкостной, индуктивный, Γ и Π - образные

Емкостной фильтр включается параллельно нагрузочному резистору (рис.2.33а) и шунтирует его по переменной составляющей тока. При этом

конденсатор попеременно заряжается до значения напряжения U $_{H\,m}$ (период времени t_1-t_2 рис.2.34a), а затем разряжается через резистор R_H (период времени t_2-t_3 рис. 2.34a). Если постоянна времени разряда конденсатора $\tau=C_{\varphi}$ R_H значительно превышает период времени T изменения u_H , то напряжение на конденсаторе при разряде уменьшается несущественно за время (t_2-t_3) . Это приводит к значительному увеличению среднего значения напряжения на

нагрузочном резисторе U_{HCP} и к снижению пульсаций выпрямленного напряжения. Емкостной фильтр используют в маломощных источниках питания при высокоомной нагрузке $R_{\rm H}$.

Индуктивный фильтр L_{Φ} включается последовательно с резистором R_H (рис.2.336). Поэтому переменная составляющая тока через нагрузку значительно уменьшается из-за действия закона электромагнитной индукции — Фарадея (рис.2.346) и снижаются пульсации выпрямленного напряжения. Индуктивный фильтр используется в выпрямителях средней и большой мощности с низкоомной нагрузкой R_H .

Рис. 2.34. Осциллограммы напряжений на активном сопротивлении нагрузочного устройства R_H двухпериодного выпрямителя при включённом емкостном C_{φ} (а) и индуктивном L_{φ} (б) фильтрах

Чаще всего используются смешанные фильтры: Γ - образный LC – фильтр (рис.2.33в) или Π -образный CLC – фильтр (рис.2.33г). Они обеспечивают более высокую степень сглаживания выпрямленного напряжения. При этом коэффициент сглаживания смешанного фильтра определяется $q = q_1q_2...q_n$, где q_n – коэффициент сглаживания каждого простого звена фильтра.

2.3.4. Внешняя характеристика выпрямителя

Внешней характеристикой выпрямителя называют зависимость напряжения на нагрузочном устройстве от тока в нем $U_H = f(I_H)$. Наличие такой зависимости обусловлено тем, что в реальном выпрямителе сопротивления диодов и обмоток трансформатора не равны нулю, а имеют конечные значения. На этих сопротивлениях от протекания выпрямленного тока I_H создается падение напряжения, приводящее к уменьшению напряжения U_H .

На рис.2.35 изображена зависимость $U_H = f(I_H)$ выпрямителя без фильтра (кривая 1), где $U_{H\,x}$ - напряжение холостого хода. Кривая 2 на рис.2.35 соответствует выпрямителю с емкостным фильтром. При $I_H = 0$ кривая берет свое начало из точки на оси ординат, соответствующей напряжению

Рис. 2.35. Внешние характеристики выпрямителей

 $\mathbf{U}_{2m} = \sqrt{2}\mathbf{U}_2,$ так как В отсутствии тока I_{H} конденсатор Сф заряжается до амплитудного значения напряжения вторичной обмотки u_2 . с ростом тока I_H кривая 2 спадает быстрее, чем кривая 1, что объясняется не только увеличением падения напряжения на вторичной обмотке трансформатора прямом сопротивлении диода,

но и уменьшением постоянной времени разряда $\tau = R_H \, C_\Phi$, обусловливающим дополнительное снижение среднего значения выпрямленного напряжения $U_{H.}$ Можно легко показать, что при дальнейшем уменьшении R_H кривая 2 будет асимптотически стремиться к кривой 1 и при R_H =0 они придут в одну точку на оси абсцисс.

Внешняя характеристика Π -образного фильтра (кривая 3) на рис.2.35 имеет еще более крутой наклон, чем кривая 2. Это вызвано дополнительным падением напряжения на последовательно включенной катушке L_{Φ} .

2.3.5. Стабилизаторы напряжения

Уменьшение напряжения нагрузки U_H при изменении потребляемого тока I_H (рис.2.35) или из-за изменения температуры является нежелательным явлением, т.к. снижают надежность работы электронных устройств.

Поддержание напряжения нагрузочного устройства на заданном уровне обеспечивают стабилизаторы напряжения.

По способу стабилизации различают параметрические и компенсационные стабилизаторы.

Параметрические стабилизаторы используют в принципе работы свойства ВАХ электронных приборов. Для примера рис.2.36а приведена схема параметрического стабилизатора, выполненного на основе стабилитрона.

Рис.2.36. Схема параметрического (а) и ВАХ (б) стабилизатора

Стабилитрон Д включен параллельно нагрузке R_{H} , при этом изменение тока в пределах Δ I практически не меняет $U_{CT}=U_{H}$ (рис. 2.36б). Последовательно со стабилитроном выключен балластный резистор R_{B} обеспечивающий требуемый режим работы стабилитрона.

компенсационных стабилизаторах постоянство напряжения обеспечивается счет автоматического регулирования выходного за напряжения источника питания. Это достигается наличием отрицательной обратной связи между выходом и регулирующим элементом (транзистор, микросхема), который изменяет свое сопротивление так, что компенсирует возникающие отклонения выходного напряжения. Схемотехнических решений компенсационных стабилизаторов множество.