MATH 2210 HOMEWORK WORKSHEET 4

Arc Length and Curvature

1. Find the length of the curve $\mathbf{r}(t) = \langle 2t^{2/3}, \cos(2t), \sin(2t) \rangle, 0 \le t \le 1.$

2. Reparameterize the curve

$$\mathbf{r}(t) = e^t \mathbf{i} + e^t \sin t \mathbf{j} + e^t \cos t \mathbf{k}$$

with respect to arc length measured from the point (1,0,1) in the direction of increasing t.

3.	Consider	the	curve	given	by r	(t)	= ($/\sin^3$	t.	$\cos^3 t$	\sin^2	t	0	<	<i>t</i> <	$< \pi$	/2
J.	Consider	011C	curve	given	Dy I	(U)	_ \	OIII	ι ,	ι	SIII	0/	, v	_	ι	\ //	14

(a) Find the unit tangent vector. Note: This question was asked on the previous homework as well.

(b) Find the unit normal vector.

(c) Find the unit binormal vector.

(d) Find the curvature.

Motion in Space: Velocity and Acceleration

4. Find the velocity, speed, and acceleration of a particle moving with position function

$$\mathbf{r}(t) = (2t^2 - 3)\mathbf{i} + 2t\mathbf{j}.$$

Sketch the path of the particle on the axes below and draw the position, velocity, and acceleration vectors for t = 1.

5. Find the tangential and normal components of the acceleration vector of the curve

$$\mathbf{r}(t) = t\,\mathbf{i} + 2\mathbf{e}^t\,\mathbf{j} + \mathbf{e}^{2t}\,\mathbf{k}.$$