

ارزیابی الگوریتمها یادگیری ماشین (روش و معیار)

نادیه آرمین گروه مهندسی کامپیوتر دانشگاه فردوسی پاییز ۹۹

1

پروژه یادگیری ماشین

- أمادهسازى مسئله
 - 2. شناخت دادهها
- 3. آمادهسازی دادهها
- 2. ساخت و **ارزیابی مدل**
 - 5. بهبود دقت
 - 6. نهایی کردن مدل

manipulate data

سر فصل

- روش ارزیابی
- داده آموزشی و داده آزمایشی
 - اعتبارسنجی متقابل K تایی
- اعتبارسنجى متقابل Leave One Out
 - تقسیمبندی داده تصادفی و تکراری
 - معیار ارزیابی
 - معیارهای دستهبندی
 - معیارهای رگرسیون

ارزيابي

√هدف ارزيابي:

مدل به چه میزان روی دادههای ناشناخته خوب عمل می کند؟

□بیش برازش

	Underfitting	Just right	Overfitting
علائم	• خطای بالای آموزش • خطای آموزش نزدیک به خطای آزمایش • پیشقدر زیاد	• خطای آموزش کمی کمتر از خطای آزمایش	• خطای آموزش بسیار کم • خطای آموزش بسیار کمتر از خطای آزمایش • واریانس بالا
			1

بیش برازش

overfitting

	Underfitting	Just right	Overfitting
علائم	• خطای بالای آموزش • خطای آموزش نزدیک به خطای آزمایش • پیشقدر زیاد	• خطای آموزش کمی کمتر از خطای آزمایش	• خطای آموزش بسیار کم • خطای آموزش بسیار کمتر از خطای آزمایش • واریانس بالا
نمایش وایازش			My
نمایش دستهبندی			
نمایش یادگیری عمیق	Error اعتبارسنجی آموزش Epochs	اعتبارسنجی آموزش Epochs	Error اعتبارسنجى آموزش Epochs
اصلاحات احتمالي	• مدل را پیچیدهتر کنید • ویژگیهای بیشتری اضافه کنید		• نظامبخشی انجام دهید • دادههای بیشتی گدآوری کنید

• مدت طولانیتری آموزش دهید

• دادههای بیشتری گردآوری کنید

ارزیابی:روش

روش ارزیابی

- داده آموزشی و داده آزمایشی
- اعتبار سنجى متقابل K تايي
- اعتبار سنجى متقابل Leave One Out
 - تقسیمبندی داده تصادفی و تکراری

روش ارزیابی: داده آموزشی و داده آزمایشی

تقسیم مجموعه داده:

- بخش آموزش(۶۷٪)
 - بخش تست (۳۳٪)
 - ✓ ساده ترین روش
 - ✓ سریع ترین روش
- ✓ مناسب برای دادههای بزرگ
- تفاوت در دو مجموعه منجر به تفاوت در دقت
 - بذر تصادفی(Random seed)

روش ارزیابی: داده آموزشی و داده آزمایشی

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

 $test_size = 0.33$

seed = 7

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=test_size ,random_state=seed)

model =LogisticRegression(max_iter=1000)

model.fit(X_train,Y_train)

result = model.score(X_test,Y_test)

print("Accuracy: %.3f" %(result*100.0))

یادگیری ماشین با پایتون

روش ارزیابی: اعتبارسنجی متقابل Kتایی

تقسیم مجموعه داده به K بخش:

- بخش آموزش(K-1 بخش)
 - بخش تست(۱ بخش)
 - ✓ قابل اطمینان
- اندازه k باید هربخش مجموعه تست را به اندازه کافی بزرگ بگیرد تا نمونه معقولی از مساله باشد

All Data

Training data

Test data

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

Test data

روش ارزیابی: اعتبارسنجی متقابل Kتایی

Fold 2

Fold 1

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

num_folds =10

seed=7

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 1 Fold 5 Fold 2 Fold 3 Fold 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 1 Fold 3 Fold 4 Fold 5 Fold 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 3

Fold 4

Fold 5

 $Kfold = KFold (n_splits = num_folds, random_state = seed\ , shuffle = True)$

model = LogisticRegression(max_iter=1000)

result=cross_val_score(model, X ,Y ,cv=Kfold)

print("Accuracy: %.3f (%.3f)" %(result.mean()*100.0 ,result.std()*100.0))

یادگیری ماشین با پایتون

روش ارزیابی: اعتبارسنجی متقابلLeave One Out

from pandas import read_csv

$from \ sklearn.model_selection \ import \ LeaveOneOut$

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read csv(filename, names=names)

array = dataframe.values

seprate array into input and output component

X = array[:, 0:8]

Y = array[:, 8]

loocv=LeaveOneOut()

model=LogisticRegression(max_iter=1000)

result=cross_val_score(model,X,Y,cv=loocv)

print("Accuracy: %.3f (%.3f)" %(result.mean()*100.0 ,result.std()*100.0))

اعتبار سنجى متقابل با K=1

■ نتایج متغییرتری نسبت به K های بالاتر دارد. (واریانس نتایج بیشتر است)

روش ارزیابی: تقسیمبندی داده تصادفی و تکراری

from pandas import read_csv

$from \ sklearn.model_selection \ import \ Shuffle Split$

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

n_splits=10

test size=0.33

kfold=ShuffleSplit(n_splits=n_splits,test_size=test_size, random_state=7)

model = LogisticRegression(max_iter=1000)

result = cross_val_score(model , X,Y,cv=Kfold)

 $print(''Accuracy: \%.3f \ (\%.3f)'' \ \% (result.mean()*100.0 \ , result.std()*100.0))$

یادگیری ماشین با پایتون

اعتبارسنجی متقابل Xتایی به صورت تصادفی:

- بخش آموزش(۶۷٪)
 - بخش تست (۳۳٪)

- افزونگی در ارزیابی

13

ارزیابی: معیار

- ماتریس درهم ریختگی
 - صحت دسته بندی
 - گزارش دسته بندی
 - اتلاف لگاریتمی
- مساحت زیر منحنی ROC
 - معیارهای رگرسیون
 - میانگین قدر مطلق خطا
 - میانگین مربعات خطا
 - R^2 ■

Classification

Regression

ارزیابی: معیار

معیارهای دستهبندی

- ماتریس درهم ریختگی
 - صحت دسته بندی
 - گزارش دسته بندی
 - اتلاف لگاریتمی
- مساحت زیر منحنی ROC

معیار ارزیابی (دسته بندی): ماتریس درهم ریختگی

پیش بینی ها روی محور X مقادیر واقعی روی محور Y

معیار ارزیابی (دسته بندی): ماتریس درهم ریختگی

دسته واقعى

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import confusion_matrix

filename = 'pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.33 ,random_state=7)

model =LogisticRegression(max_iter=1000)

model.fit(X_train,Y_train)

predicted = model.predict(X_test)

matrix = confusion_matrix(Y_test,predicted)

print(matrix)

یادگیری ماشین با پایتون

ا مقادیر روی قطر اصلی: تعداد پیش بینی های درست

دسته پیشبینیشده

TP True Positives FN False Negatives Type II error

FP False Positives Type I error

TN True Negatives

16

معیار ارزیابی(دسته بندی): صحت دسته بندی

Cross Validation Classification Accuaracy

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

Kfold=KFold(n_splits=10,random_state=7,shuffle=True)

model = LogisticRegression(max_iter=1000)

scorring='accuracy'

result=cross_val_score(model, X ,Y ,cv=Kfold, scoring=scorring)

 $print(''Accuracy: \%.3f \ (\%.3f)'' \ \% (result.mean()*100.0 \ , result.std()*100.0))$

یادگیری ماشین با پایتون

تعداد پیش بینی های صحیح به نسبت همه پیش بینی ها

$$Accuracy = rac{TP + TN}{TP + FP + FN + TN}$$

✓ متداول ترین معیار کارایی برای دستهبندی

- مناسب است اگر تعداد مشاهدات مساوی در هر دسته باشند.
- تمام پیش بینی ها و خطاهای پیش بینی به یک اندازه مهم است

معیار ارزیابی(دسته بندی): گزارش دسته بندی

from pandas import read_csv

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report

filename = 'pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.33,random_state=7)

model =LogisticRegression(max_iter=1000)

model.fit(X_train,Y_train)

predicted = model.predict(X_test)

report = classification_report(Y_test,predicted)

print(report)

یادگیری ماشین با پایتون

گزارش سریعی از دقت و فراخوانی و امتیاز f

معیار ارزیابی(دسته بندی): گزارش دسته بندی

معیارهای متداول برای الگوریتمهای دسته بندی

معيار	فرمول	
صحت (Accuracy)	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	
دقت (Precision)	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	
فراخوانی (Recall)	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	
ویژگی (Specificity)	$\frac{\rm TN}{\rm TN + FP}$	
F1 score	$\frac{\rm 2TP}{\rm 2TP+FP+FN}$	

		Predicted Class		
		Positive	Negative	
Actual Class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity $\frac{TP}{(TP+FN)}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{(TN + FP)}$
		$\frac{TP}{(TP+FP)}$	Negative Predictive Value $\frac{TN}{(TN + FN)}$	Accuracy $\frac{TP + TN}{(TP + TN + FP + FN)}$

معیار ارزیابی(دسته بندی): اتلاف لگاریتمی

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

Kfold=KFold(n_splits=10,random_state=7,shuffle=True)

model = LogisticRegression(max_iter=1000)

scorring='neg_log_loss'

result=cross_val_score(model, X ,Y ,cv=Kfold, scoring=scorring)

print("Logloss: %.3f (%.3f)" %(result.mean()*100.0 ,result.std()*100.0))

یادگیری ماشین با پایتون

Logloss

برای ارزیابی پیش بینی های احتمالات عضویت در یک کلاس معین

میزان عدم اطمینان از پیش بینی بر اساس میزان تفاوت آن از برچسب اصلی

$$LogLoss = -\frac{1}{n} \sum_{i=0}^{n} [y_i log(\hat{y}_i) + (1 - y_i) log(1 - \hat{y}_i)]$$

✓ هرچه کمتر بهتر

معیار ارزیابی(دسته بندی): مساحت زیر منحنی ROC

AUC (Area Under Curve) – ROC(Receiver Operating Characteristic) منحنی ROC: نسبت «نرخ مثبت صحیح» (True Positive Rate) برحسب «نرخ مثبت صحیح» (FPR (False Positive Rate)

$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN} = 1 - FNR$$

$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN} = 1 - TNR$$

معیار ارزیابی (دسته بندی): مساحت زیر منحنی ROC

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

filename = 'pima-indians-diabetes.csv'

names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']

dataframe = read_csv(filename, names=names)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

Kfold=KFold(n_splits=10,random_state=7,shuffle=True)

model = LogisticRegression(max_iter=1000)

scorring='roc_auc'

result=cross_val_score(model, X,Y,cv=Kfold, scoring=scorring)

print("AUC: %.3f (%.3f)" %(result.mean()*100.0 ,result.std()*100.0))

یادگیری ماشین با پایتون

معیار عملکرد برای دسته بندی های دودویی

مقدار ۱: تمام پیش بینی ها صحیح

مقدار ۵/۰: پیش بینی ها تصادفی

ارزیابی: معیار

$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^2 = 1 - \frac{\sum (y_i - \hat{y})^2}{\sum (y_i - \bar{y})^2}$$

Where,

 \hat{y} - predicted value of y \bar{y} - mean value of y

معیارهای رگرسیون

- میانگین قدر مطلق خطا
 - میانگین مربعات خطا
 - R^2 •

معیار ارزیابی(رگرسیون): میانگین قدر مطلق خطا

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = 'california_housing_train.csv'

dataframe = read_csv(filename,header=0)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

Kfold=KFold(n_splits=10,random_state=7,shuffle=True)

model = LinearRegression ()

scorring='neg_mean_absolute_error'

result=cross_val_score(model, X ,Y ,cv=Kfold, scoring=scorring)

print("MAE: %.3f (%.3f)" %(result.mean()*100.0 ,result.std()*100.0))

یادگیری ماشین با پایتون

MAE: مجموع قدر مطلق تفاضل بین پیش بینی ها و مقادیر واقعی(خطا)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$
test set

make the predicted value actual value actual value test set

معیار ارزیابی(رگرسیون): میانگین مربعات خطا

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = 'california_housing_train.csv'

dataframe = read_csv(filename,header=0)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

Kfold=KFold(n_splits=10,random_state=7,shuffle=True)

model = LinearRegression ()

scorring='neg_mean_squared_error'

result=cross_val_score(model, X ,Y ,cv=Kfold, scoring=scorring)

print("MSE: %.3f (%.3f)" %(result.mean()*100.0 ,result.std()*100.0))

یادگیری ماشین با پایتون

MSE: مربع تفاضل بین پیش بینی ها و مقادیر واقعی(خطا)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
test set

test set

معیار ارزیابی(رگرسیون): R^2

from pandas import read_csv

from sklearn.model_selection import KFold

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LinearRegression

filename = 'california_housing_train.csv'

dataframe = read_csv(filename,header=0)

array = dataframe.values

X = array[:, 0:8]

Y = array[:, 8]

Kfold=KFold(n_splits=10,random_state=7,shuffle=True)

model = LinearRegression ()

scorring='r2'

result=cross_val_score(model, X,Y,cv=Kfold, scoring=scorring)

print("R^2: %.3f (%.3f)" %(result.mean()*100.0 ,result.std()*100.0))

$$\hat{R}^2 = 1 - \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{\sum_{i=1}^n (Y_i - \bar{Y})^2} = 1 - \frac{\frac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{\frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2}$$

۰:عدم برازش ۱: برازش کامل

