VE281

Data Structures and Algorithms

Recitation Class Graph Theory Tutorial

TA Group

What is a Graph?

- A graph is a pictorial representation of a set of objects where some pairs of objects are connected by links. The interconnected objects are represented by points termed as **vertices**, and the links that connect the vertices are called **edges**.
- Formally, a graph is a pair of sets (V, E), where V is the set of vertices and E is the set of edges, connecting the pairs of vertices.

Example

- In the above graph,
 - $V = \{a, b, c, d, e\}$
 - E = {ab, ac, bd, cd, de}

- Vertex
 - A vertex is a point where multiple lines meet. It is also called a **node**. Similar to points, a vertex is also denoted by an alphabet.

• a

- Edge
 - An edge is the mathematical term for a line that connects two vertices. Many edges can be formed from a single vertex.

- Graph
 - A graph 'G' is defined as G = (V, E) Where V is a set of all vertices and E is a set of all edges in the graph.

- Loop
 - In a graph, if an edge is drawn from vertex to itself, it is called a loop.

- Degree of Vertex
 - It is the number of vertices adjacent to a vertex V.
 - Notation $\deg(V)$.
- Degree in Undirected Graph
 - deg(a) = 2, deg(b) = 2, deg(c) = 2, deg(d) = 2, and deg(e) = 0.
 - The vertex 'e' is an isolated vertex. The graph does not have any pendent vertex.

- Degree in Directed Graph
 - Indegree of a Graph
 - Indegree of vertex V is the number of edges which are coming into the vertex V.
 - Notation $\deg^-(V)$.
 - Outdegree of a Graph
 - Outdegree of vertex V is the number of edges which are going out from the vertex V.
 - Notation $\deg^+(V)$.

- Pendent Vertex
 - A vertex with degree one is called a pendent vertex.

- Isolated Vertex
 - A vertex with degree zero is called an isolated vertex.

- Adjacency
 - In a graph, two vertices are said to be **adjacent**, if there is an edge between the two vertices.
 - In a graph, two edges are said to be **adjacent**, if there is a common vertex between the two edges.
- Parallel Edges
 - In a graph, if a pair of vertices is connected by more than one edge, then those edges are called parallel edges.

- Multi Graph
 - A graph having parallel edges is known as a Multigraph.

- Degree Sequence of a Graph
 - If the degrees of all vertices in a graph are arranged in **descending** or **ascending** order, then the sequence obtained is known as the degree sequence of the graph.

- Distance between Two Vertices
 - It is number of edges in a shortest path between Vertex U and Vertex V. If there are multiple paths connecting two vertices, then the **shortest** path is considered as the distance between the two vertices.
 - Notation d(U,V)

Dijkstra

- Step1: Think of the initial points on the graph as one set S, and the other points as another set.
- Step2: According to the initial point, calculate the distance d[i] from other points to the initial point (if adjacent, d[i] is the edge weight; if not adjacent, d[i] is infinite).
- Step3: Select the smallest d[i] (denoted as d[x]) and add the point corresponding to this d[i] edge (denoted as x) into the set S.
- Step4: According to x, update d[y] value of y adjacent to x: $d[y] = min\{d[y], d[x] + edge weight w[x][y]\}$
- Repeat (3), (4) until the target point also joins the set. At this time, the corresponding d[i] of the target point is the shortest path length.

- Step1: Initialize the matrix S. The distances between two vertices are the weights of the edges. If there is no edge connected between the two vertices, the weight is infinite.
- Step2: Each node w is the intermediate vertex in turn. For every pair of vertices u and v, update S(u,v) by min(S(u,v), S(u,w)+S(w,v)).

1. Initialize the matrix S

	A	B	C	D	E	F	G
A	0	12	INF	INF	INF	16	14
B	12	0	10	INF	INF	7	INF
C	INF	10	0	3	5	6	INF
D	INF	INF	3	0	4	INF	INF
$\frac{E}{F}$	INF	INF	5	4	0	2	8
F	16	7	6	INF	2	0	9
G	14	INF	INF	INF	8	9	0

2. Take A as the intermediate vertex and update S

UNI 4-	A	B	C	D	E	F	G
A	0	12	INF	INF	INF	16	14
B	12	0	10	INF	INF	7	26
C	INF	10	0	3	5	6	INF
D	INF	INF	3	0	4	INF	INF
E	INF	INF	5	4	0	2	8
F	16	7	6	INF	2	0	9
G	14	26	INF	INF	8	9	0

3. Take B as the intermediate vertex and update S

	A	B	C	D	E	F	$G_{\underline{}}$
A	0	12	22	INF	INF	16	14
B	12	0	10	INF	INF	7	26
C	22	10	0	3	5	6	36
D	INF	INF	3	0	4	INF	INF
E	INF	INF	5	4	0	2	8
F	16	7	6	INF	2	0	9
G	14	26	36	INF	8	9	0

4. Take C as the intermediate vertex and update S

A	B	C	D	E	F	$G_{\underline{}}$
0	12	22	25	27	16	14 26 36 39
12	0	10	13	15	7	26
22	10	0	3	5	6	36
25	13	3	0	4	9	39
27	15	5	4	0	2	8
16	7	6	9	2	0	9
14	26	36	39	8	9	8 9 0
	A 0 12 22 25 27 16 14	A B 0 12 12 0 22 10 25 13 27 15 16 7 14 26	A B C 0 12 22 12 0 10 22 10 0 25 13 3 27 15 5 16 7 6 14 26 36	A B C D 0 12 22 25 12 0 10 13 22 10 0 3 25 13 3 0 27 15 5 4 16 7 6 9 14 26 36 39	A B C D E 0 12 22 25 27 12 0 10 13 15 22 10 0 3 5 25 13 3 0 4 27 15 5 4 0 16 7 6 9 2 14 26 36 39 8	A B C D E F 0 12 22 25 27 16 12 0 10 13 15 7 22 10 0 3 5 6 25 13 3 0 4 9 27 15 5 4 0 2 16 7 6 9 2 0 14 26 36 39 8 9

5. Take D as the intermediate vertex and update S

	A	B	C	D	E	F	G_{\perp}
A	0	12	22	25	27	16	14
B C D E	12	0	10	13	15	7	26
C	22	10	0	3	5	6	36
D	25	13	3	0	4	9	39
E	27	15	5	4	0	2	8
F G	16	7	6	9	2	0	9
G	14	26	36	39	8	9	0

6. Take E as the intermediate vertex and update S

	A	B	C	D	E	F	G
A	0	12	22	25	27	16	14 23 13
A B C	0 12 22 25 27 16 14	0	10	13	15	7	23
C	22	10	0	3	5	6	13
D	25	13	3	0	4	6	12
E	27	15	5	4	0	2	8
D E F	16	7	6	6	2	0	8 9 0
G	14	23	13	12	8	9	0

7. Take F as the intermediate vertex and update S

A B C D	E F G
A \[0 \ 12 \ 22 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	18 16 14 9 7 16
A 0 12 22 22 B 12 0 10 13 C 22 10 0 3 D 22 13 3 0 E 18 9 5 4 F 16 7 6 6 G 14 16 13 12	9 7 16
C 22 10 0 3	5 6 13 4 6 12 0 2 8
D 22 13 3 0	4 6 12
<i>E</i> 18 9 5 4	0 2 8
F 16 7 6 6	2 0 9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E F G 18 16 14 9 7 16 5 6 13 4 6 12 0 2 8 2 0 9 8 9 0

8. Take G as the intermediate vertex and update S

	A	B	C	D	E	F	G
A	0	12 0	22	22	18	16 7	14
B	12	0	10	13	9		16
C	22	10	0	3	5	6	13
D	22	13 9 7	3	0	4	6 2	12
E	18	9	5	4	0	2	8
F	16	7	6	6	2	0	9
G	0 12 22 22 18 16 14	16	13	12	8	9	14 16 13 12 8 9

- Eccentricity of a Vertex
 - The maximum distance between a vertex to all other vertices is considered as the eccentricity of vertex.
 - Notation e(V)
 - e(a) = 3, e(b) = 3, e(c) = 3, e(d) = 2, e(e) = 3, e(f) = 3, e(g) = 3

- Radius of a Connected Graph
 - The minimum eccentricity from all the vertices is considered as the radius of the Graph G.
 - Notation r(G)
- Diameter of a Graph
 - The maximum eccentricity from all the vertices is considered as the diameter of the Graph G.
 - Notation -d(G)

- Central Point
 - If the eccentricity of a graph is equal to its radius, i.e. e(V) = r(V), then it is known as the central point of the graph.
- Centre
 - The set of all central points of 'G' is called the centre of the Graph.

- Null Graph
 - A graph having no edges
- Trivial Graph
 - A graph with only one vertex
- Non-Directed Graph
 - A non-directed graph contains edges but the edges are not directed ones.
- Directed Graph
 - In a directed graph, each edge has a direction.

- Simple Graph
 - A graph with no loops and no parallel edges is called a simple graph.
- Connected Graph
 - A graph G is said to be connected if there exists a path between every pair of vertices.
- Disconnected Graph
 - A graph G is disconnected, if it does not contain at least two connected vertices.

- Regular Graph
 - A graph G is said to be regular, if all its vertices have the same degree. In a graph, if the degree of each vertex is 'k', then the graph is called a 'k-regular graph'.
- Complete Graph
 - In the graph, a vertex should have edges with all other vertices, then it called a complete graph.
- Cycle Graph
 - If the degree of each vertex in the graph is two, then it is called a Cycle Graph.

- Wheel Graph
 - A wheel graph is obtained from a cycle graph C_{n-1} by adding a new vertex. That new vertex is called a **Hub** which is connected to all the vertices of C_n .

- Cyclic Graph
 - A graph with at least one cycle is called a cyclic graph.
- Acyclic Graph
 - A graph with no cycles is called an acyclic graph.
- Tree
 - A connected acyclic graph is called a tree.
- Spanning Trees
 - Let G be a connected graph, then the sub-graph H of G is called a spanning tree of G if
 - H is a tree
 - H contains all vertices of G

Kirchoff's Theorem

- Kirchoff's theorem is useful in finding the number of spanning trees that can be formed from a connected graph.
- Example

Kirchoff's Theorem

$$A = \begin{bmatrix} 0 & a & b & c & d \\ a & 0 & 1 & 1 & 1 \\ b & 1 & 0 & 0 & 1 \\ c & 1 & 0 & 0 & 1 \\ d & 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

By using kirchoff's theorem, it should be changed as replacing the principle diagonal values with the degree of vertices and all other elements with -1.A

$$= \begin{vmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 2 & -1 \\ -1 & -1 & -1 & 3 \end{vmatrix} = M$$

$$\mathbf{M} = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 2 & -1 \\ -1 & -1 & -1 & 3 \end{bmatrix}$$

Cofactor of m1 =
$$\begin{vmatrix} 2 & 0 & -1 \\ 0 & 2 & -1 \\ -1 & -1 & 3 \end{vmatrix} = 8$$

Thus, the number of spanning trees = 8.

Kruskal

- Step1: Sort all the edges in the graph by cost, from smallest to largest
- Step2: Consider the n vertices in the graph as a forest of n individual trees
- Step3: Select edges from small to large by weight. The two vertices that the selected edge connects, ui,vi, should belong to two different trees. Combine the two trees as one.
- Step4: Repeat (3) until all vertices are in a tree or the tree has n-1 edges.

Kruskal

Prim

- Step1: The set of all vertices of the graph is V. Set $u=\{s\}$, v=v-u.
- Step2: Of the edges that two sets u and v can form, select the least costly edge (u0,v0), add to the minimum spanning tree, and add v0 into the set u.
- Step3: Repeat (2) until the minimum spanning tree has n-1 edges or n vertices.

Prim

