# MS&E 233 Game Theory, Data Science and Al Lecture 8

Vasilis Syrgkanis

**Assistant Professor** 

Management Science and Engineering

(by courtesy) Computer Science and Electrical Engineering

Institute for Computational and Mathematical Engineering

#### **Computational Game Theory for Complex Games**

- Basics of game theory and zero-sum games (T)
- Basics of online learning theory (T)
- Solving zero-sum games via online learning (T)
- HW1: implement simple algorithms to solve zero-sum games
- Applications to ML and AI (T+A)
- HW2: implement boosting as solving a zero-sum game
- Basics of extensive-form games
- Solving extensive-form games via online learning (T)
- HW3: implement agents to solve very simple variants of poker
- General games, equilibria and online learning (T)
- Online learning in general games
  - HW4: implement no-regret algorithms that converge to correlated equilibria in general games

#### **Data Science for Auctions and Mechanisms**

- Basics and applications of auction theory (T+A)
- Learning to bid in auctions via online learning (T)
- HW5: implement bandit algorithms to bid in ad auctions

- Optimal auctions and mechanisms (T)
- Simple vs optimal mechanisms (T)
- HW6: calculate equilibria in simple auctions, implement simple and optimal auctions, analyze revenue empirically
- Optimizing mechanisms from samples (T)
- Online optimization of auctions and mechanisms (T)
  - HW7: implement procedures to learn approximately optimal auctions from historical samples and in an online manner

#### **Further Topics**

- Econometrics in games and auctions (T+A)
- A/B testing in markets (T+A)
- HW8: implement procedure to estimate values from bids in an auction, empirically analyze inaccuracy of A/B tests in markets

#### **Guest Lectures**

- Mechanism Design and LLMs, Song Zuo, Google Research
- A/B testing in auction markets, Okke Schrijvers, Central Applied Science, Meta

#### Recap: Regret vs Correlated Equilibrium

No-regret property, implies

Distributions that satisfy this are called **Coarse Correlated Equilibria** 

$$\left\{ \forall s_i' : \sum_{s} \pi^T(s) \left( u_i(s) - u_i(s_i', s_{-i}) \right) \ge -\tilde{\epsilon}(T, \delta) \to 0 \right\}$$

Correlated equilibrium requires conditioning on recommendation

$$\forall s_i^*, s_i': \sum_{s: s_i = s_i^*} \pi^T(s) \left( u_i(s) - u_i(s_i', s_{-i}) \right) \ge 0$$

$$s^1$$
  $s^2$   $s^3$   $s^4$   $s^5$   $s^6$   $s^7$   $s^8$   $s^9$   $s^{10}$ 

At subset of periods when played  $s_i^*$ 



You

You don't regret switching to  $s'_i$ 

#### Recap: Swaps and Correlated Equilibrium

Correlated equilibrium requires conditioning on recommendation

$$\forall s_i^*, s_i': \sum_{s: s_i = s_i^*} \pi^T(s) \left( u_i(s) - u_i(s_i', s_{-i}) \right) \ge 0$$

• Equivalently: for any **swap** function  $\phi$  that maps original actions  $s_i$  to deviating actions  $s_i'$  (potentially different for each original  $s_i$ )

At all periods

#### Recap: No-Swap Regret!

No-regret property requires

$$\frac{1}{T} \sum_{t=1}^{T} u_i(s^t) \ge \max_{s_i' \in S_i} \frac{1}{T} \sum_{t=1}^{T} u_i(s_i', s_{-i}^t) - \tilde{\epsilon}(T, \delta)$$

No-swap regret property requires

$$\forall \phi \colon \frac{1}{T} \sum_{t=1}^{T} u_i(s^t) \ge \frac{1}{T} \sum_{t=1}^{T} u_i(\phi(s_i^t), s_{-i}^t) - \tilde{\epsilon}(T, \delta)$$

**Theorem.** If all players use no-swap regret algorithms, then the empirical joint distribution converges to a Correlated Equilibrium

## Can we construct algorithms with vanishing no-swap regret?

- At period t you choose action  $i_t$  from distribution  $x_t$  over n actions
- Observe vector  $\ell_t = (\ell_t^1, \dots, \ell_t^n)$  containing loss of each action
- ullet You incur the loss of the action you chose  $\ell_t^{l_t}$
- No-regret: for any action i, you do not regret always taking action i

$$\frac{1}{T} \sum_{t} \ell_t^{i_t} \le \frac{1}{T} \sum_{t} \ell_t^{i} + \tilde{\epsilon}(T, \delta), \quad \text{w. p. } 1 - \delta$$



- At period t you choose action  $i_t$  from distribution  $x_t$  over n actions
- Observe vector  $\ell_t = (\ell_t^1, \dots, \ell_t^n)$  containing loss of each action
- ullet You incur the loss of the action you chose  $\ell_t^{l_t}$
- No-swap regret: for any swap function  $\phi$  mapping original actions i to alternatives  $i' = \phi(i)$ , you do not regret making that swap

$$\frac{1}{T} \sum_{t} \ell_t^{i_t} \le \frac{1}{T} \sum_{t} \ell_t^{\phi(i_t)} + \tilde{\epsilon}(T, \delta), \quad \text{w. p. } 1 - \delta$$









Vanishing regret for complex swaps is implied by vanishing regret of simple swaps: switch to j' whenever you had played j and leave everything else as is

• No-swap regret: for any swap function  $\phi$  mapping original actions i to alternatives  $i' = \phi(i)$ , you do not regret making that swap

$$\frac{1}{T} \sum_{t} \ell_t^{i_t} \le \frac{1}{T} \sum_{t} \ell_t^{\phi(i_t)} + \tilde{\epsilon}(T, \delta), \quad \text{w. p. } 1 - \delta$$

• Equivalently: for subset of periods when you played i you don't regret any other action  $i^\prime$ 

$$\frac{1}{T} \sum_{t:i_t=i}^{T} \ell_t^{i_t} \le \max_{i'} \frac{1}{T} \sum_{t:i_t=i}^{T} \ell_t^{i'} + \tilde{\epsilon}(T, \delta), \quad \text{w.p.} 1 - \delta$$



Yes

0%

No

0%









No-swap regret is weirdly implied by no-regret when you only have two actions. **Intuition:** no-regret towards action j is the same as no-regret on the subset of periods when you did not play j. With two actions, these are exactly the periods when you played j'



## Can we reduce no-swap regret to no-regret?

• For subset of periods when played i don't regret any other i'

$$\frac{1}{T} \sum_{t:i_t=i} \ell_t^{i_t} \le \max_{i'} \frac{1}{T} \sum_{t:i_t=i} \ell_t^{i'} + \tilde{\epsilon}(T, \delta), \quad \text{w.p.} 1 - \delta$$

- This looks like the no-regret property, but on a subset of periods
- ullet If ahead of time we knew on which subset of periods we'd play i
- ullet We could spawn a separate no-regret algorithm  $A_i$
- When it was time to play i we would call  $A_i$  and report back loss

actions

1

:

j

:

n



 $A_{1}$  Responsible for controlling regret in periods when 1 was played

:

Responsible for controlling regret in periods when i was played

:

 $A_n$  Responsible for controlling regret in periods when n was played

actions

1

:

j

n



 $A_1$  Responsible for controlling regret in periods when 1 was played

Responsible for controlling regret in periods when *i* was played

:

 $A_n$  Responsible for controlling regret in periods when n was played

actions

1

:

j

:

n

Master Algorithm (M)

 $A_1$  Responsible for controlling regret in periods when 1 was played  $\vdots \qquad q_t^{i_t}$   $A_{i_t}$  Responsible for controlling regret in periods when  $i_t$  was played Chosen algorithm

:

 $A_n$ Responsible for controlling regret in periods when n was played

actions

1

:

j

:

n







actions

1

:

j

:

n

Algorithm  $A_{i_t}$  reports some probability distribution  $p_t^{i_t}$  over actions

 $\begin{array}{c} A_1 \\ p_t^1 \\ \text{ble for controlling regret} \\ \vdots \\ q_t^{i_t} \\ \\ p_t^{i_t} \\ \text{ble for controlling regret} \\ \text{othosen} \\ \text{algorithm} \\ \end{array}$ 

 $q_t^1$ 

Master Algorithm (M)

 $q_t^n$   $A_n$ ble for controlling regret
ods when n was played



actions



:



 $p_t^{i_t n}$ 



 $q_t^1$ 















## Sum: The reduction protocol

At each period we choose each action with probability

$$z_t^j = \Pr(M \text{ choose action } j)$$

$$= \underbrace{\sum_{i} \Pr(M \text{ choose algo } A_i)}_{q_t^i} \cdot \underbrace{\Pr(A_i \text{ choose action } j)}_{p_t^{ij}}$$

ullet We update each algorithm  $A_j$  with loss vector

$$z_t^j \ell_t = \Pr(M \text{ choose action } j) \cdot (\text{loss vector})$$

• The distribution over algorithms  $q_t$  is chosen such that

$$\Pr(M \text{ choose action } j) \approx \Pr(M \text{ choose algo } A_j)$$

# From No-Regret of Algos to No-Swap Regret of Master

Regret = Loss – Benchmark Loss

#### Loss Analysis at Each Step

• How much loss does algorithm  $A_i$  perceive?

$$\frac{\Pr(M \text{ choose action } i)}{\text{The fraction of the loss vector that M attributed and reported back to } A_i \\ \sum_{j} \Pr(A_i \text{ choose action } j) \cdot \text{loss}(j)$$

• How much total loss do all the algorithms perceive?

$$\sum_{i} \Pr(M \text{ choose action } i) \sum_{j} \Pr(A_i \text{ choose action } j) \cdot \text{loss}(j)$$

• How much loss does the master algorithm incur?

$$\sum_{i} \Pr(M \text{ choose algo } A_i) \sum_{j} \Pr(A_i \text{ choose action } j) \cdot \text{loss}(j)$$

#### Loss Analysis at Each Step

• How much loss does algorithm  $A_i$  perceive?

$$\frac{\Pr(M \text{ choose action } i)}{\text{The fraction of the loss vector that M attributed and reported back to } A_i \\ } \Pr(A_i \text{ choose action } j) \cdot \text{loss}(j)$$

How much total loss do all the algorithms perceive?

$$\sum_{i} \Pr(M \text{ choose action } i) \sum_{j} \Pr(A_i \text{ choose action } j) \cdot \text{loss}(j)$$
• How much loss loes the master algorithm incur?
$$\sum_{i} \Pr(M \text{ choose algo } A_i) \sum_{j} \Pr(A_i \text{ choose action } j) \cdot \text{loss}(j)$$

$$\sum_{i} \Pr(M \text{ choose algo } A_i) \sum_{j} \Pr(A_i \text{ choose action } j) \cdot \text{loss}(j)$$

#### Recap: Loss Analysis at Each Step

Corollary. If we can guarantee that

$$\underbrace{\Pr(M \text{ choose action } i)}_{z_t^i} \approx \underbrace{\Pr(M \text{ choose algo } A_i)}_{q_t^i}$$

Then the total loss perceived by the separate algorithms is approximately the same as the total loss experienced by the master

total loss perceived by algos ≈ total loss of master

#### Competing Benchmark Analysis at Each Step

• What can each algorithm  $A_i$  compete with based on **no-regret**?

$$\frac{\Pr(M \text{ choose action } i)}{\text{The fraction of the loss vector that M attributed and reported back to } A_i \text{ this is a constant action comparison with } i' = \phi(i)$$

• What can in total all algorithms compete with based on no-regret?

$$\sum_{i} \Pr(M \text{ choose action } i) \cdot \operatorname{loss}(\phi(i))$$

What does the master want to compete with for no-swap regret?

$$\sum_{i} \Pr(M \text{ choose action } j) \cdot \operatorname{loss}(\phi(j))$$

#### Competing Benchmark Analysis at Each Step

• What can each algorithm  $A_i$  compete with based on **no-regret**?

$$\frac{\Pr(M \text{ choose action } i)}{\text{The fraction of the loss vector that M}} \cdot \text{loss}(\phi(i))$$
 For each algo  $A_i$  this is a constant attributed and reported back to  $A_i$  action comparison with  $i' = \phi(i)$ 

What can in total all algorithms compete with based on no-regret?

$$\sum_{i} \Pr(M \text{ choose action } i) \cdot \operatorname{loss}(\phi(i))$$

What does the master want to compete with for no-swap regret?

$$\sum_{j} \Pr(M \text{ choose action } j) \cdot \operatorname{loss}(\phi(j))$$

#### **Recap:** Benchmark Analysis at Each Step

**Corollary.** The total *perceived* benchmark loss that algorithms compete with, where each algorithm i considers the no-regret benchmark of always playing action  $i' = \phi(i)$ , is equal to the *true* swap benchmark loss that the master wants to compete with, associated with the swap function  $\phi$ .

Regret = Loss – Benchmark Loss

#### Regret Analysis at Each Step

**Corollary.** If we can guarantee that

 $Pr(M \text{ choose action } i) \approx Pr(M \text{ choose algo } A_i)$ 

then swap regret of master is upper bounded by sum of plain regrets of algos

Swap Regret of Master = Total Loss of Master - Swap Benchmark

≈ Total Perceived Loss by Algos – Total Algo Fixed Action Benchmark

= Total Perceived Regret of Algos

#### Regret Analysis at Each Step

**Corollary.** If we can guarantee that

 $Pr(M \text{ choose action } i) \approx Pr(M \text{ choose algo } A_i)$ 

then swap regret of master is upper bounded by sum of plain regrets of algos

$$\sum_{t} \sum_{j} z_{t}^{j} \ell_{t}^{j} - z_{t}^{j} \ell_{t}^{\phi(j)} = \sum_{t} \sum_{i} q_{t}^{i} \sum_{j} p_{t}^{ij} \ell_{t}^{j} - \sum_{t} \sum_{j} z_{t}^{j} \ell_{t}^{\phi(j)}$$

$$\approx \sum_{t} \sum_{i} z_{t}^{i} \sum_{j} p_{t}^{ij} \ell_{t}^{j} - \sum_{t} \sum_{i} z_{t}^{i} \ell_{t}^{\phi(i)}$$

$$= \sum_{i} \sum_{t} \langle p_{t}^{i}, z_{t}^{i} \ell_{t} \rangle - z_{t}^{j} \ell_{t}^{\phi(i)}$$

Can we pick  $q_t$  such that:

 $\Pr(M \text{ choose action } j) \approx \Pr(M \text{ choose algo } A_j)$ 

• Choose  $q_t$  such that

$$Pr(M \text{ choose action } j) \approx Pr(M \text{ choose algo } A_j)$$

Remember that

$$Pr(M \text{ choose action } j) = \sum_{i} Pr(M \text{ choose algo } A_i) \cdot Pr(A_i \text{ choose action } j)$$

ullet We need the distribution over algos  $q_t$  to satisfy the self-consistency property

$$\sum_{i} \Pr(M \text{ choose algo } A_i) \cdot \Pr(A_i \text{ choose action } j) = \Pr(M \text{ choose algo } A_j)$$

$$q_t^i \qquad p_t^{ij} \qquad q_t^j$$

#### Does there exist a distribution $q_t$ such that:

$$\sum_{i} \Pr(M \text{ choose algo } A_i) \cdot \Pr(A_i \text{ choose action } j) = \Pr(M \text{ choose algo } A_j)$$

$$\sum_{i=1}^{n} q_t^i \cdot p_t^{ij} = q_t^j$$















#### A Markov Chain over the Algos/Actions

Starting from a distribution q over nodes and applying one step of the random transitions, brings us to a new distribution over states



#### Stationary Distributions of Markov Chains

If new distribution is the same as the original distribution, then this distribution is called a Stationary Distribution of the Markov Chain



#### Stationary Distributions of Markov Chains

If new distribution is the same as the original distribution, then this distribution is called a Stationary Distribution of the Markov Chain



## **Recap:** Choosing Distribution over Algos

**Corollary.** If we choose  $q_t$  as stationary distribution of the Markov Chain defined by transition probabilities  $\Pr(i \to j) = p_t^{ij}$  then

$$Pr(M \text{ choose action } j) = Pr(M \text{ choose algo } A_j)$$

Therefore

Swap Regret of Master = Total Fixed Action Regret of Algos  $\rightarrow 0$ 

#### **Sum:** The reduction protocol

- At each period calculate stationary distribution  $q_t$  of the Markov Chain defined by the transition probabilities  $\Pr(i \to j) = p_t^{ij}$
- Choose each action with probability

$$z_t^j = \Pr(M \text{ choose action } j) = \Pr(M \text{ choose algo } j) = q_t^j$$

• Update each algorithm  $A_i$  with loss vector

$$z_t^j \ell_t = \Pr(M \text{ choose action } j) \cdot (\text{loss vector})$$

## Finding Stationary Distributions

• Define the matrix  $P_t$ , whose (i,j) entry is  $p_t^{ij}$ 

Then the stationary distribution satisfies

$$q^{\mathsf{T}} = q^{\mathsf{T}} P_t$$

• q is a left eigenvector of  $P_t$  associated with eigenvalue 1

 $\bullet$  We can calculate q via eigen-decomposition of  $P_t$  and identifying the eigenvector associated with eigenvalue 1

## Overall Algorithm using EXP for each Algo

```
Initialize Pt with each row being the uniform distribution
For t in 1..T
    # Calculate choice probability q of master based on
    # choice probabilities Pt of algos
    Calculate stationary distribution q of matrix Pt
    Draw action jt based on distribution q
    Observe loss vector 1t
    # update each algorithms choice probabilities
    For i in 1...n
        Calculate perceived loss plt[i] = q[i] * lt
        Pt[i] = EXP-Update(Pt[i], plt[i])
```

#### Recap: Final Theorem

**Theorem.** If we choose  $q_t$  as stationary distribution of the Markov Chain defined by transition probabilities  $\Pr(i \to j) = p_t^{ij}$  and each algorithm updates their choice probabilities using the EXP rule then

Average Swap Regret of Master 
$$\leq 2n\sqrt{\frac{\log(n)}{T}} \to 0$$

# Back to Games

#### Convergence to Correlated Equilibrium

**Theorem.** If all players use such an algorithm, then the empirical joint distribution of actions converges to the set of correlated equilibria.

At every T the empirical joint distribution of strategies  $\pi^T$  is an  $\epsilon(T)$ approximate correlated equilibrium, in the sense that:

SwapRegret<sub>i</sub>
$$(s_i, s_i', T) = \sum_{s_{-i}} \pi^T(s_i, s_{-i}) \cdot \left(u_i(s_i', s_{-i}) - u_i(s_i, s_{-i})\right) \le \epsilon(T)$$
 with  $\epsilon(T) = 2n\sqrt{\frac{\log(n)}{T}}$ , where  $n$  is number of actions of player  $i$ 

with 
$$\epsilon(T) = 2n\sqrt{\frac{\log(n)}{T}}$$
, where  $n$  is number of actions of player  $i$ 

#### Note on Approximation Error

$$\sum_{S_{-i}} \pi^{T}(s_{i}, s_{-i}) \cdot \left(u_{i}(s'_{i}, s_{-i}) - u_{i}(s_{i}, s_{-i})\right) \leq \epsilon$$

If we wanted to analyze the conditional expectation of gains:

$$E_{s \sim \pi^T} \left[ u_i \left( s_i', s_{-i} \right) - u_i \left( s_i, s_{-i} \right) \mid s_i \right] \le \tilde{\epsilon}$$

This translates to:

$$\sum_{S_{-i}} \frac{\pi^T(s_i, s_{-i})}{\Pr(s_i)} \cdot \left( u_i(s_i', s_{-i}) - u_i(s_i, s_{-i}) \right) \le \tilde{\epsilon}$$

- We can get this version with  $\tilde{\epsilon} = \epsilon / \Pr(s_i)$
- Actions that are played very infrequently have large  $\tilde{\epsilon}$  even if they have small  $\epsilon$

# Recent example research in multiagent RL using Correlated Equilibrium **Techniques**

#### Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium Meta-Solvers

Luke Marris 12 Paul Muller 13 Marc Lanctot 1 Karl Tuyls 1 Thore Graepel 12

#### Abstract

Two-player, constant-sum games are well studied in the literature, but there has been limited progress outside of this setting. We propose Joint Policy-Space Response Oracles (JPSRO), an algorithm for training agents in n-player, general-sum extensive form games, which provably converges to an equilibrium. We further suggest correlated equilibria (CE) as promising meta-solvers, and propose a novel solution concept Maximum Gini Correlated Equilibrium (MGCE), a principled and computationally efficient family of solutions for solving the correlated equilibrium selection problem. We conduct several experiments using CE meta-solvers for JPSRO and demonstrate convergence on n-player, general-sum games.

#### 1. Introduction

Recent success in tackling two-player, constant-sum games (Silver et al., 2016; Vinyals et al., 2019) has outpaced progress in n-player, general-sum games despite a lot of interest (Jaderberg et al., 2019; OpenAI et al., 2019; Brown & Sandholm, 2019; Lockhart et al., 2020; Gray et al., 2020; Anthony et al., 2020). One reason is because Nash equilibrium (NE) (Nash, 1951) is tractable and interchangeable in the two-player, constant-sum setting but becomes intractable (Daskalakis et al., 2009) and potentially non-interchangeable<sup>1</sup> in n-player and general-sum settings. The problem of selecting from multiple solutions is known as the equilibrium selection problem (Goldberg et al., 2013;

Proceedings of the 38th International Conference on Machine

Avis et al., 2010; Harsanvi & Selten, 1988).2

Outside of normal form (NF) games, this problem setting arises in multi-agent training when dealing with empirical games (also called meta-games), where a game payoff tensor is populated with expected outcomes between agents playing an extensive form (EF) game, for example the StarCraft League (Vinyals et al., 2019) and Policy-Space Response Oracles (PSRO) (Lanctot et al., 2017), a recent variant of which reached state-of-the-art results in Stratego Barrage (McAleer et al., 2020).

In this work we propose using correlated equilibrium (CE) (Aumann, 1974) and coarse correlated equilibrium (CCE) as a suitable target equilibrium space for n-player, general-sum games<sup>3</sup>. The (C)CE solution concept has two main benefits over NE; firstly, it provides a mechanism for players to correlate their actions to arrive at mutually higher payoffs and secondly, it is computationally tractable to compute solutions for n-player, general-sum games (Daskalakis et al., 2009). We provide a tractable approach to select from the space of (C)CEs (MG), and a novel training framework that converges to this solution (JPSRO). The result is a set of tools for theoretically solving any complete information<sup>4</sup> multi-agent problem. These tools are amenable to scaling approaches; including utilizing reinforcement learning, function approximation, and online solution solvers, however we leave this to future work.

In Section 2 we provide background on a) correlated equilibrium (CE), an important generalization of NE, b) coarse correlated equilibrium (CCE) (Moulin & Vial, 1978), a similar solution concept, and c) PSRO, a powerful multi-agent training algorithm. In Section 3 we propose novel solution concepts called Maximum Gini (Coarse) Correlated Equilibrium (MG(C)CE) and in Section 4 we thoroughly explore its properties including tractability, scalability, invariance, and

<sup>&</sup>lt;sup>1</sup>DeepMind <sup>2</sup>University College London <sup>3</sup>Université Gustave Eiffel. Correspondence to: Luke Marris <marris@google.com>.

<sup>&</sup>lt;sup>2</sup>The equilibrium selection problem is subtle and can have various interpretations. We describe it fully in Section 4.1 based