

# **SQL Fundamentals**

Kick off your career in data science & analytics

# Module 2: Working with SQL and Databases



In this module, we will introduce how to write queries in SQL. Specifically, we will share with you:

- What we can achieve with SQL
- SQL data types
- Working with databases and tables



#### **RDBMS** & Operations

What is SQL?

Why learn SQL?

What can SQL do?

SQL Data Types

Working with Databases and Tables

## Agenda.





PataBase Management System
has the following major components:

- Table
- View
- Index
- Schema



## What are the Components of a RDBMS?: Table

Introduction to SQL

A table is a <u>collection of data</u> represented in rows and columns. The column's data type is explicitly defined.

#### **Column Header**

Row

| ProductID | ProductName                                                    | ProductCategory |
|-----------|----------------------------------------------------------------|-----------------|
| 5889      | White GlueTop Scratch Pads                                     | Office Supplies |
| 15497     | Fellowes 8 Outlet Superior Workstation Surge Protector         | Office Supplies |
| 16735     | "Belkin 325VA UPS Surge Protector, 6"                          | Office Supplies |
| 23721     | Gyration Ultra Cordless Optical Suite                          | Technology      |
| 27473     | Epson FX-980 Dot Matrix Printer                                | Technology      |
| 30902     | "Adams Phone Message Book, Professional, 400 Message C         | Office Supplies |
| 34354     | "O'Sullivan Elevations Bookcase, Cherry Finish"                | Furniture       |
| 37176     | "SAFCO PlanMaster Heigh-Adjustable Drafting Table Base, 4      | Furniture       |
| 37996     | Belkin 8 Outlet Surge Protector                                | Office Supplies |
| 41129     | "Letter/Legal File Tote with Clear Snap-On Lid, Black Granite" | Office Supplies |
| 46361     | Letter or Legal Size Expandable Poly String Tie Envelopes      | Office Supplies |
| 47324     | Xerox 1980                                                     | Office Supplies |
| 48396     | "It's Hot Message Books with Stickers, 2 3/4"" x 5"""          | Office Supplies |
| 49746     | "Hewlett-Packard Business Color Inkjet 3000 [N, DTN] Series    | Technology      |

| product | ProductID                             | int(11)      |
|---------|---------------------------------------|--------------|
| product | ProductName                           | varchar(200) |
| product | ProductCategory                       | varchar(20)  |
| product | ProductSubCateg                       | varchar(50)  |
| product | ProductContainer                      | varchar(20)  |
| product | <ul> <li>ProductBaseMargin</li> </ul> | decimal(4,2) |

**Data Type** 

Column



## What are the Components of a RDBMS?: Schema

Introduction to SQL

A schema is a <u>collection of database objects</u> including tables, views, constraints, indexes, sequences, etc.

Non-schema objects include users and roles.

| In                   | nfo Tak | oles Co | lumns Ind  | exes | Triggers Vie   | ews Stored Pro | cedures Func    | tions Grants | Events    |
|----------------------|---------|---------|------------|------|----------------|----------------|-----------------|--------------|-----------|
| Name ^               | Engine  | Version | Row Format | Rows | Avg Row Length | Data Length    | Max Data Length | Index Length | Data Free |
| customer             | InnoDB  | 10      | Dynamic    | 1832 | 98             | 176.0 KiB      | 0.0 bytes       | 0.0 bytes    | 0.0 bytes |
| customer_multi_order | InnoDB  | 10      | Dynamic    | 44   | 372            | 16.0 KiB       | 0.0 bytes       | 0.0 bytes    | 0.0 bytes |
| order_multi_prod     | InnoDB  | 10      | Dynamic    | 2032 | 56             | 112.0 KiB      | 0.0 bytes       | 0.0 bytes    | 0.0 bytes |
| orders               | InnoDB  | 10      | Dynamic    | 7909 | 200            | 1.5 MiB        | 0.0 bytes       | 0.0 bytes    | 4.0 MiB   |
| product              | InnoDB  | 10      | Dynamic    | 1234 | 189            | 224.0 KiB      | 0.0 bytes       | 0.0 bytes    | 0.0 bytes |
| product_new          | InnoDB  | 10      | Dynamic    | 1234 | 146            | 176.0 KiB      | 0.0 bytes       | 0.0 bytes    | 0.0 bytes |
| returns              | InnoDB  | 10      | Dynamic    | 572  | 8              | 48.0 KiB       | 0.0 bytes       | 0.0 bytes    | 0.0 bytes |



## What are the Components of a RDBMS?: Index

Introduction to SQL

An index is a copy of selected columns of data from a table. It can be used to speed up searches/queries when retrieving data from the database.

Indexes include a low-level disk block address/direct link to the complete row of data it was copied from.

wikipedia

#### INDEX

academic journals, 262, 280–82
Adobe e Book Reader, 148–53
advertising, 36, 45–46, 127, 145–46, 167–
68, 321n
Africa, medications for HIV patients in,
257–61
Agee, Michael, 223–24, 225
agricultural patents, 313n
Albo robotic dog, 153–55, 156, 157, 160
AIDS medications, 257–60
air traffic, land ownership vs., 1–3
Akerlof, George, 232
Alben, Alex, 100–104, 105, 198–99, 295,
317n
alcohol prohibition, 200
Alici, Advertures in Wonderland (Carroll),
Alici, Advertures in Wonderland (Carroll)

ABC, 164, 321n

Anello, Douglas, 60 animated cartoons, 21-24 antiretroviral drugs, 257-61 Apple Corporation, 203, 264, 302 architecture, constraint effected through. 122, 123, 124, 318n archive.org, 112 see also Internet Archive archives, digital, 108-15, 173, 222, 226-27 Aristotle, 150 Armstrong, Edwin Howard, 3-6, 184, 196 Arrow, Kenneth, 232 art, underground, 186 publicity rights on images of, 317n recording industry payments to, 52, 58-59, 74, 195, 196-97, 199, 301,

#### Example:

A book without an index would make it very difficult to find subjects of interest!





## What are the Components of a RDBMS?: View

Introduction to SQL

A view is the resulting set of a stored query on data, which users can query just as they would for a persistent database collection object.

It allows you to simplify complex queries as well as provide extra security by limiting data access to specific users.





## What are the Components of a RDBMS?: View

Introduction to SQL



## Anatomy of a View

- One or more tables make up a view
- Query follows "SELECT" statement format
- Views are generally read-only
- Views don't require additional storage



## **How Does RDBMS Store Data?**

#### Introduction to SQL



#### Sector



{Sector: 4, Track: 3}



## **How Does RDBMS Organize Data?**

#### **Introduction to SQL**

#### Column Size in **Bytes**

| 10 <sub>byte</sub> | 20 <sub>byte</sub> |
|--------------------|--------------------|
| ProductID          | Pointer            |
| 15                 |                    |
| 35                 |                    |
| 37                 |                    |
| 236                |                    |
| 751                |                    |
|                    |                    |
|                    |                    |
|                    |                    |
|                    |                    |
|                    |                    |
|                    |                    |
|                    |                    |

#### Index

Index is stored on disk as well. In the above example, it takes 30 Bytes to index one row 128 Bytes

#### Column Size in **Bytes**

| 10 <sub>byte</sub> | 50 <sub>byte</sub> | 25 <sub>byte</sub> | 25 <sub>byte</sub> | 18 <sub>bytes</sub> |
|--------------------|--------------------|--------------------|--------------------|---------------------|
| ProductID          | sP_Name            | sP_Cat             | <b>B</b> _Subcat   | P_Price             |
| 15                 | python             | book               | tech               | \$64.5              |
| 35                 | 7 habits           | book               | business           | \$34.2              |
| 37                 | macbook            | ck 1 (4 r          | mac                | \$3,500.0           |
| 236                | converse           | sport              | basketball         | \$45.0              |
| 751                | soccer             | shoe               | nike               | \$213.0             |
|                    | Blo                | ck 2 ( 4 r         | ows)               |                     |
|                    | Blo                | ck 3 ( 4 r         | ows)               |                     |
|                    |                    |                    |                    |                     |



#### **How Does a Hard Disk Drive Store Data?**

#### **Introduction to SQL**

#### Column Size in Bytes

| 10 <sub>bytes</sub> | 50 <sub>bytes</sub> | 25 <sub>bytes</sub> | 25 <sub>bytes</sub> | 18 <sub>bytes</sub> |
|---------------------|---------------------|---------------------|---------------------|---------------------|
| ProductID           | P_Name              | P_Cat               | P_Subcat            | P_Price             |
| 15                  | python              | book                | tech                | \$64.5              |
| 35                  | 7 habits            | book                | business            | \$34.2              |
| 37                  | macbook             | computer            | mac                 | \$3,500.0           |
| 236                 | converse            | sport               | basketball          | \$45.0              |
| 751                 | soccer              | shoe                | nike                | \$213.0             |



Block size = **512 Bytes** 

# Rows per block = **512 / 128 = 4** 



| Row 1 | Row 2 | Row 3 | Row4 |
|-------|-------|-------|------|
|-------|-------|-------|------|

Block = 512 Bytes

## RDBMS & Operations

What is SQL?

Why learn SQL?

What can SQL do?

SQL Data Types

Working with Databases and Tables

## Agenda.



## **RDBMS Database Operations: Create**

Introduction to SQL

**CRUD** 

Create | Read | Update | Delete

## Index

|            | ProductID | Pointer |
|------------|-----------|---------|
|            | 15        |         |
|            | 35        |         |
|            | 37        |         |
| _          | 236       |         |
| Insert (3) | 751       |         |

## Table

|          | ProductID | P_Name      | P_Cat        | P_Subcat    | P_Price   |
|----------|-----------|-------------|--------------|-------------|-----------|
|          | 15        | python      | book         | tech        | \$64.5    |
|          | 35        | 7 habits    | book         | business    | \$34.2    |
|          | 37        | macbook Blo | computer 4 I | OWS)<br>mac | \$3,500.0 |
|          | 236       | converse    | sport        | basketball  | \$45.0    |
| Insert ( | 751       | soccer      | shoe         | nike        | \$213.0   |





## **RDBMS Database Operations: Read**

Introduction to SQL

**CRUD** 

Create | Read | Update | Delete

#### Index

| ProductID | Pointer |
|-----------|---------|
| 15        |         |
| 35        |         |
| 37        |         |
| 236       |         |
| 751       |         |

Read (1)

#### Table

| ProductID | P_Name   | P_Cat      | P_Subcat   | P_Price   |
|-----------|----------|------------|------------|-----------|
| 15        | python   | book       | tech       | \$64.5    |
| 35        | 7 habits | book       | business   | \$34.2    |
| 37        | macbook  | ck 1 (4 re | mac mac    | \$3,500.0 |
| 236       | converse | sport      | basketball | \$45.0    |
| 751       | soccer   | shoe       | nike       | \$213.0   |

Read (3)





## **RDBMS Database Operations: Update**

**Introduction to SQL** 

**CRUD** 

Create | Read | Update | Delete

#### Index

|            | ProductID | Pointer |  |  |  |
|------------|-----------|---------|--|--|--|
|            | 15        |         |  |  |  |
|            | 35        |         |  |  |  |
|            | 37        |         |  |  |  |
|            | 236       |         |  |  |  |
|            | 751       |         |  |  |  |
| Update (1) |           |         |  |  |  |

## Table

| ProductID | P_Name   | P_Cat      | P_Subcat   | P_Price   |
|-----------|----------|------------|------------|-----------|
| 15        | python   | book       | tech       | \$64.5    |
| 35        | 7 habits | book       | business   | \$34.2    |
| 37        | macbook  | ck 1 (4 re | mac        | \$3,500.0 |
| 236       | converse | sport      | basketball | \$45.0    |
| 751       | soccer   | shoe       | nike       | \$258.0   |

Update



Update



## **RDBMS Database Operations: Delete**

Introduction to SQL

**CRUD** 

Create | Read | Update | Delete

#### Index

| ProductID | Pointer |
|-----------|---------|
| 15        |         |
| 35        |         |
| 37        |         |
| 236       |         |
| 751       |         |
|           |         |

Delete

#### Table





#### **RDBMS & Operations**

#### What is SQL?

Why learn SQL?

What can SQL do?

**SQL** Data Types

Working with Databases and Tables

## Agenda.





designed by ' freepik

Image: <u>Technology vector created by</u> <u>pikisuperstar - www.freepik.com</u>

# SQL a.k.a <u>Structured Query Language</u> allows users to:

- Create databases and objects within them
- Store data in databases
- Change and analyze data
- Produce reports, web pages, and/or other visualizations

RDBMS & Operations

What is SQL?

#### Why learn SQL?

What can SQL do?

**SQL** Data Types

Working with Databases and Tables

## Agenda.









Data **Scientist** 

Data Analyst

Data Engineer





RDBMS & Operations

What is SQL?

Why learn SQL?

What can SQL do?

SQL Data Types

Working with Databases and Tables

## Agenda.



## **Relational Databases: Operational Databases**

Introduction to SQL

#### **Enterprise Resource Planning (ERP)**

- Manages data about employees and productivity of a company
- Focuses on the processes and reducing cost.

#### **Customer Relationship Management (CRM)**

- Manages data about existing and potential customers of a company
- Focuses on the customer
- Helps companies stay connected to customers, streamline processes, and improve sales/profitability



## **Relational Databases: CRM System and Databases**

Introduction to SQL





## **Relational Databases: BI and Reporting**

#### Introduction to SQL





## Relational Databases: BI and Reporting (Cont'd)

#### Introduction to SQL



RDBMS & Operations

What is SQL?

Why learn SQL?

What can SQL do?

#### **SQL** Data Types

Working with Databases and Tables

## Agenda.





Image: <u>Data vector created by</u> <u>stories - www.freepik.com</u>

SQL supports many data types which can be grouped into three categories:

- Numeric
- String
- Date and Time





## **Data Types: Numeric**

| Data Type Syntax       | Maximum Size                    | Description                                                                    |
|------------------------|---------------------------------|--------------------------------------------------------------------------------|
| INT(m)                 | 2, 147, 483, 647                | <ul> <li>Integer types</li> </ul>                                              |
| BIGINT( <i>m</i> )     | 9, 223, 372, 036, 854, 775, 807 | • Integer: -9, 223, 372, 036, 854, 775, 808 to 9, 223, 372, 036, 854, 775, 807 |
| DECIMAL( <i>m, d</i> ) | m → precision<br>d → scale      | Any values with m digits and d decimals                                        |
| FLOAT( <i>m, d</i> )   | m → precision<br>d → scale      | The FLOAT types represent approximate numeric data values                      |
| DOUBLE(m, d)           | m → precision<br>d → scale      | The DOUBLE types represent approximate numeric data values                     |



| Data Type Syntax | Maximum Size | Description                                                                                                                                                 |
|------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHAR(size)       | 255          | Fixed length                                                                                                                                                |
| VARCHAR(size)    | 255          | <ul><li>Variable length</li><li>VARCHAR is store inline with the table</li></ul>                                                                            |
| TEXT(size)       | 65, 535      | <ul> <li>Used for large text blobs</li> <li>TEXT is stored off the table</li> <li>Table just has a pointer to the location of the actual storage</li> </ul> |



## **Data Types: Date and Time**

| Data Type Syntax | Format              | Description                                                                                                                                             |
|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| DATE             | YYYY-MM-DD          | Used when you need values that contain only the date information                                                                                        |
| DATETIME         | YYYY-MM-DD HH:MM:SS | Used when you need values that contain both date and time information                                                                                   |
| TIMESTAMP        | YYYY-MM-DD HH:MM:SS | TIMESTAMP values are converted from<br>the current timezone to UTC for storage,<br>and converted back from UTC to the<br>current timezone for retrieval |

RDBMS & Operations

What is SQL?

Why learn SQL?

What can SQL do?

**SQL** Data Types

**Working with Databases and Tables** 

## Agenda.

Example of a dashboard built for sales reporting





## **Superstore Database: Entity Relationship Model**





Here are the **datasets** we'll use for the lecture and lab:





## **Superstore Database: Entity Relationship Model**

#### **Introduction to Database Queries**

#### **Product** Dataset

| ProductID | ProductName                                            | ProductCat      | ProductSubCateg      | ProductC   | Pr   |
|-----------|--------------------------------------------------------|-----------------|----------------------|------------|------|
| 5889      | White GlueTop Scratch Pads                             | Office Supplies | Paper                | Wrap Bag   | 0.39 |
| 15497     | Fellowes 8 Outlet Superior Workstation Surge Protector | Office Supplies | Appliances           | Small Box  | 0.56 |
| 16735     | "Belkin 325VA UPS Surge Protector, 6"                  | Office Supplies | Appliances           | Small Box  | 0.60 |
| 23721     | Gyration Ultra Cordless Optical Suite                  | Technology      | Computer Peripherals | Small Box  | 0.46 |
| 27473     | Epson FX-980 Dot Matrix Printer                        | Technology      | Office Machines      | Jumbo Drum | 0.59 |

#### **Orders** Dataset

| OrderID | ProductID | OrderDate  | OrderPrior    | OrderQuantity | Sales     | Discount | ShipMode    | Profit | UnitPrice | ShippingCost |
|---------|-----------|------------|---------------|---------------|-----------|----------|-------------|--------|-----------|--------------|
| 8710    | 657768    | 2009-01-04 | Critical      | 42            | 151.35000 | 0.07     | Express Air | 8.33   | 3.71      | 1.93         |
| 16326   | 657768    | 2010-05-10 | High          | 39            | 147.46000 | 0.06     | Regular Air | 14.13  | 3.71      | 1.93         |
| 59815   | 657768    | 2010-12-15 | Not Specified | 14            | 51.56000  | 0.09     | Regular Air | -1.06  | 3.71      | 1.93         |
| 58470   | 657768    | 2011-06-08 | High          | 13            | 49.08000  | 0.06     | Regular Air | -0.31  | 3.71      | 1.93         |
| 50657   | 657768    | 2011-12-18 | High          | 16            | 60.02000  | 0.10     | Express Air | 0.94   | 3.71      | 1.93         |

#### Customer Dataset

| CustomerID | CustomerName        | Province         | Region   | CustomerSegme  |
|------------|---------------------|------------------|----------|----------------|
| 40732966   | Tamara Dahlen       | Ontario          | Ontario  | Corporate      |
| 68464052   | Bill Donatelli      | Ontario          | Ontario  | Corporate      |
| 63834266   | Christy Brittain    | British Columbia | West     | Consumer       |
| 38512011   | Barry Blumstein     | British Columbia | West     | Small Business |
| 82335880   | Aleksandra Gannaway | New Brunswick    | Atlantic | Corporate      |

**Returns** Dataset

| OrderID | Status   |
|---------|----------|
| 65      | Returned |
| 69      | Returned |
| 134     | Returned |
| 135     | Returned |
| 230     | Returned |





#### **Introduction to Database Queries**



#### **Syntax**

**SHOW** DATABASES;

**CREATE** DATABASE table\_name;

#### NOTE:

- The first step is always to create a database
- In a real work environment, the database admin/developer should have done that for you
- You rarely will need to create your own database as an analyst





#### **Introduction to Database Queries**

```
/* create and load orders table */
drop table if exists superstore.orders;
create table superstore.orders (
    OrderID
                         int.
   ProductID
                         int.
   OrderDate
                         date.
   OrderPriority
                         varchar(20).
   OrderQuantity
                         int.
    Sales
                         decimal(15.5).
   Discount
                         decimal(3,2),
    ShipMode
                         varchar(20),
    Profit
                         decimal(15,2).
   UnitPrice
                         decimal(15,2).
    ShippingCost
                         decimal(15.2)
);
```



#### **Syntax**

#### NOTE:

- In real work environments, you may need to create tables occasionally
- However, most of the production databases and tables have been created by the database experts and data has been ingested into the tables
- As a data analyst/scientist, you need to focus on writing queries to extract information





- -- clear the data in this table while keeping the table in database
- -- to avoid repeated insertion of same data

#### truncate superstore.product;

-- load data into the product table (please change the file path accordingly) load data local infile 'data/superstore/tutorial/product\_sample.csv' into table superstore product character set 'latin1' fields terminated by '\t' lines terminated by '\n' Remember to change the path accordingly

## **Syntax**

**TRUNCATE** table\_name; LOAD DATA LOCAL INFILE '/PATH/file.txt' INTO TABLE table\_name FIELDS TERMINATED BY " LINES TERMINATED BY '\n';

| ProductID | ProductName                                           | ProductCateg    | ProductSubCategory   | ProductContain | ProductBaseMar |
|-----------|-------------------------------------------------------|-----------------|----------------------|----------------|----------------|
| 5889      | White GlueTop Scratch Pads                            | Office Supplies | Paper                | Wrap Bag       | 0.39           |
| 23721     | Gyration Ultra Cordless Optical Suite                 | Technology      | Computer Peripherals | Small Box      | 0.46           |
| 115501    | Newell 308                                            | Office Supplies | Pens & Art Supplies  | Wrap Bag       | 0.60           |
| 213268    | "Advantus Employee of the Month Certificate Frame, 11 | Furniture       | Office Furnishings   | Small Pack     | 0.44           |
| 284312    | Belkin 105-Key Black Keyboard                         | Technology      | Computer Peripherals | Small Box      | 0.68           |



#### **Introduction to Database Queries**

#### -- describe a table describe superstore.product

| Field              | Type         | Null | Key | Default | Extra |
|--------------------|--------------|------|-----|---------|-------|
| ProductID          | int(11)      | NO   | PRI | NULL    |       |
| ProductName        | varchar(200) | YES  |     | NULL    |       |
| ProductCategory    | varchar(20)  | YES  |     | NULL    |       |
| ProductSubCategory | varchar(50)  | YES  |     | NULL    |       |
| ProductContainer   | varchar(20)  | YES  |     | NULL    |       |
| ProductBaseMargin  | decimal(4,2) | YES  |     | NULL    |       |
|                    |              |      |     |         |       |

#### **Syntax**

**SHOW** TABLES;

**DESCRIBE** db.table\_name;

#### NOTE:

- Knowing the data types of columns in your table is always helpful, especially when you apply SQL functions
- Describing table schema is a good habit when you work with new data sources

