Linear Regression Analysis 7 and 8 Variables

March 14, 2020

```
[3]: import pandas as pd
    from sklearn.linear_model import LinearRegression
    import scipy.stats as stats
    import statsmodels.api as sm
    from statsmodels.formula.api import ols
    import matplotlib.pyplot as plt
    import numpy as np
    pd.set_option('display.max_rows', 600)
    gapminder = pd.read_csv('gapminder.csv')
    gapminder = gapminder.loc[gapminder['time'] <= 2020]</pre>
    gapminder = gapminder.loc[gapminder['time'] >= 1970]
    gapminderVariables = list()
    for col in gapminder.columns:
        if(col != 'geo' and col != 'time' and col !=__
     →'child_mortality_0_5_year_olds_more_years_version_7' and col !=u
     →'infant_mortality_rate_per_1000_births' and col !=
     →'under five mortality from ihme per 1000 born' and col !=__
     →'dead_kids_per_woman' and col != 'newborn_mortality_rate_per_1000' and col !
     \hookrightarrow= 'all_causes_deaths_in_children_1_59_months_per_1000_births' and col !=\sqcup
     \hookrightarrow 'all_causes_deaths_in_newborn_per_1000_births' and col !=\sqcup
     → 'maternal mortality ratio per 100000 live births' and col != u
     →'life expectancy male' and col != 'hdi human_development index' and col != '
     \hookrightarrow 'life_expectancy_at_birth_with_projections' and col !=\sqcup
     →'life_expectancy_years' and col != 'life_expectancy_at_birth_data_from_ihme'
     →and col != 'literacy_rate_youth_total_percent_of_people_ages_15_24' and col !
     →= 'North America' and col != 'Central America' and col != 'South America'
     →and col != 'Europe' and col != 'Balkans' and col != 'Middle East' and col != '
     → 'Coastal Africa' and col != 'Landlocked Africa' and col != 'Northern Asia'
     →and col != 'Southern Asia' and col != 'Pacific Islands' and col != 'Greater,
     →Australia'):
           gapminderVariables.append(col)
```

```
elif(col != 'geo' and col != 'time' and col !=__
gapminder = gapminder.drop(columns = col, axis = 1)
correlationStudy = gapminder.corr()
childMortalityCorrelation = correlationStudy.
→child_mortality_0_5_year_olds_dying_per_1000_born.sort_values()
print(childMortalityCorrelation)
highCorrelationVariables = gapminder[['geo', 'time', _
\hookrightarrow 'child_mortality_0_5_year_olds_dying_per_1000_born', \sqcup
→'at_least_basic_water_source_overall_access_percent',
→'at least basic sanitation overall access percent',

    diarrhoeal_deaths_in_newborn_per_1000_births', □

¬'pneumonia_deaths_in_children_1_59_months_per_1000_births',

→'birth_asphyxia_deaths_in_newborn_per_1000_births']]
highCorrelationVariables = highCorrelationVariables.
→loc[highCorrelationVariables['time'] <= 2020]</pre>
highCorrelationVariables = highCorrelationVariables.
→loc[highCorrelationVariables['time'] >= 1970]
vifCalculation = highCorrelationVariables
currentCountry = ''
previousCountry = ''
averages = list()
currentCountry = ''
countryData = pd.DataFrame()
countryList = list()
for country in vifCalculation['geo']:
   if(country != currentCountry):
       countryData = vifCalculation[vifCalculation['geo'] == country]
       previousCountry = currentCountry
       currentCountry = country
       countryList.append(countryData)
for country in countryList:
   for variable in country.columns:
       if(variable != 'geo' and variable != 'time' and variable != 'id'):
           count = vifCalculation[variable].count()
           summation = vifCalculation[variable].sum()
           average = summation/count
           vifCalculation[variable] = vifCalculation[variable].fillna(average)
print(vifCalculation)
linregression = LinearRegression()
vif = ""
for x in vifCalculation:
   for y in vifCalculation:
       if(x != y):
```

```
if(y := 'geo' \text{ and } y := 'time' \text{ and } x := 'geo' \text{ and } x := 'time'):
                 xValues = vifCalculation[x].values.reshape(-1,1)
                 yValues = vifCalculation[y].values.reshape(-1,1)
                 linregression.fit(xValues, yValues)
                 prediction = linregression.predict(xValues)
                 score = linregression.score(xValues, yValues)
                 if(score < 1):</pre>
                     vif = str(1 / (1 - score))
                 else:
                     vif = ""
                     vif = "estimably equal to 1. This will cause a divide by ⊔
 ⇒zero error"
                 print("When " + y + " is compared to " + x + " the relationship...
 \hookrightarrowhas an R Square equal to " + str(score) + " and a variance inflation factor\sqcup
 \rightarrow" + vif + ".\n")
primary_school_completion_percent_of_girls
-0.855468
at_least_basic_water_source_overall_access_percent
-0.852226
at_least_basic_sanitation_overall_access_percent
-0.848195
literacy_rate_youth_female_percent_of_females_ages_15_24
-0.842420
primary completion rate total percent of relevant age group
-0.836248
at least basic sanitation urban access percent
-0.828710
literacy_rate_adult_total_percent_of_people_ages_15_and_above
-0.824839
at_least_basic_water_source_rural_access_percent
-0.821059
mean_years_in_school_women_of_reproductive_age_15_to_44
-0.819884
mean_years_in_school_women_15_to_24_years
-0.818229
literacy_rate_youth_male_percent_of_males_ages_15_24
-0.813916
literacy_rate_adult_female_percent_of_females_ages_15_above
-0.813607
births_attended_by_skilled_health_staff_percent_of_total
-0.811122
literacy_rate_adult_male_percent_of_males_ages_15_and_above
-0.811102
at_least_basic_sanitation_rural_access_percent
-0.806423
mean_years_in_school_men_15_to_24_years
```

```
-0.805339
at_least_basic_water_source_urban_access_percent
-0.800932
mean_years_in_school_women_25_to_34_years
-0.800178
primary_school_completion_percent_of_boys
-0.793543
mean_years_in_school_men_25_to_34_years
-0.791785
mean_years_in_school_women_percent_men_25_to_34_years
-0.784416
ratio_of_girls_to_boys_in_primary_and_secondary_education_perc
-0.783895
contraceptive_use_percent_of_women_ages_15_49
-0.775856
mean_years_in_school_men_25_years_and_older
-0.775669
mean_years_in_school_men_35_to_44_years
-0.771402
mean_years_in_school_women_25_years_and_older
-0.762752
mean years in school women 35 to 44 years
-0.761273
ratio_of_young_literate_females_to_males_percent_ages_15_24
-0.748589
mean_years_in_school_men_45_to_54_years
-0.746449
mean_years_in_school_men_55_to_64_years
-0.723205
mean_years_in_school_women_45_to_54_years
-0.723056
dtp3_immunized_percent_of_one_year_olds
-0.717784
cholesterol_fat_in_blood_men_mmolperl
-0.716004
math_achievement_4th_grade
-0.715412
body_mass_index_bmi_men_kgperm2
-0.713236
female_service_workers_percent_of_female_employment
-0.690792
mean_years_in_school_men_65_plus_years
-0.689566
mean_years_in_school_women_55_to_64_years
-0.685860
cholesterol_fat_in_blood_women_mmolperl
-0.676642
male_service_workers_percent_of_male_employment
```

```
-0.673795
food_supply_kilocalories_per_person_and_day
-0.666601
math_achievement_8th_grade
-0.657882
gdpperemployee_us_inflation_adjusted
-0.655953
sugar_per_person_g_per_day
-0.654651
body_mass_index_bmi_women_kgperm2
-0.653836
male_industry_workers_percent_of_male_employment
-0.651935
median_age_years
-0.648601
urban_population_percent_of_total
-0.645050
mean_years_in_school_women_65_plus_years
-0.642192
mcv_immunized_percent_of_one_year_olds
-0.640909
female salaried workers percent of non agricultural female employment
-0.617336
age_at_1st_marriage_women
-0.614997
salaried_workers_percent_of_non_agricultural_employment
-0.604993
population_aged_40_59_years_male_percent
-0.598606
smoking_adults_percent_of_population_over_age_15
-0.598527
roads_paved_percent_of_total_roads
-0.596992
population_aged_40_59_years_both_sexes_percent
-0.595854
fixed_line_subscribers_per_100_people
-0.594202
service_workers_percent_of_employment
-0.593949
cars_trucks_and_buses_per_1000_persons
-0.588383
colonandrectum_cancer_new_cases_per_100000_women
-0.587266
municipal_water_withdrawal_cu_meters_per_person
-0.587244
hourly_labour_cost_constant_2011_usd
-0.583769
population_aged_40_59_years_female_percent
```

```
-0.579127
corruption_perception_index_cpi
-0.578147
breast_cancer_new_cases_per_100000_women
-0.576178
colonandrectum_cancer_new_cases_per_100000_men
-0.569270
corruption_perception_index_cpi_pre2012
-0.561754
medical_doctors_per_1000_people
-0.560037
population_aged_60plus_years_both_sexes_percent
-0.558455
population_aged_60plus_years_male_percent
-0.556233
population_aged_60plus_years_female_percent
-0.555761
alternative_gdppercapita_ppp_inflation_adjusted_from_pwt
-0.553490
sex_ratio_0_14_years
-0.549512
lung_cancer_new_cases_per_100000_men
-0.531706
alternative_gdp_per_capita_ppp_pwt_7_1
-0.529623
lung_cancer_deaths_per_100000_men
-0.523551
alternative_gdp_per_capita_ppp_pwt_8_0
-0.514163
smoking_women_percent_of_women_over_age_15
-0.511783
broadband_subscribers_per_100_people
-0.509712
gnipercapita_constant_2010_us
-0.507289
subsistence_incomes_per_person
colonandrectum_cancer_deaths_per_100000_men
-0.501062
alternative_gdp_per_capita_ppp_wb
-0.496131
gnipercapita_ppp_current_international
-0.495497
income_per_person_with_projections
-0.495413
all_forms_of_tb_detection_rate_percent
-0.494903
male_salaried_workers_percent_of_non_agricultural_male_employment
```

```
-0.492849
gdpperworking_hour_us_inflation_adjusted
-0.489458
internet_users
-0.488359
electricity_generation_per_person
-0.485954
government_share_of_total_health_spending_percent
-0.484713
total_health_spending_per_person_international_dollar
-0.483725
smoking_men_percent_of_men_over_age_15
-0.471508
electricity_use_per_person
-0.468646
government_health_spending_per_person_international_dollar
-0.465478
residential_electricity_use_per_person
-0.460529
gdppercapita_us_inflation_adjusted
-0.457950
democracy score use as color
-0.448862
personal_computers_per_100_people
-0.443531
lung_cancer_new_cases_per_100000_women
-0.442429
all_forms_of_tb_detection_rate_percent_dots_only
-0.441753
income_per_person_gdppercapita_ppp_inflation_adjusted
-0.439191
income_per_person_long_series
-0.436530
pab_immunized_percent_of_newborns
-0.423721
population_in_urban_agglomerations_m_1_million_percent_of_total
-0.421576
prostate_cancer_new_cases_per_100000_men
-0.416867
nuclear_power_generation_per_person
-0.415751
industry_workers_percent_of_employment
-0.415448
gnipercapita_atlasmethod_current_us
-0.409188
colonandrectum_cancer_deaths_per_100000_women
-0.403385
total_health_spending_per_person_us
```

```
-0.402446
energy_use_per_person
-0.402390
lung_cancer_deaths_per_100000_women
-0.400447
government_and_society_aid_given_percent_of_aid
-0.397735
population_aged_20_39_years_male_percent
-0.397158
time
-0.393888
aid_given_per_person_2007_us
-0.389990
government_health_spending_per_person_us
-0.389843
cell_phones_per_100_people
-0.389260
energy_supply_per_person_toe
-0.384580
alcohol_consumption_per_adult_15plus_litres
-0.379229
population_aged_20_39_years_both_sexes_percent
-0.377948
services_percent_of_gdp
-0.376490
co2_emissions_tonnes_per_person
-0.374198
oil_consumption_per_cap
-0.361355
privately_owned_other_wooded_land_percent
-0.356089
average_age_of_dollar_billionaires_years
-0.351576
expenditure_per_student_primary_percent_of_gdp_per_person
-0.347750
population_aged_20_39_years_female_percent
-0.347452
industrial_water_withdrawal_percent_of_total
-0.344993
income_share_of_2nd_richest_20percent
-0.340478
income_share_of_middle_20percent
-0.337932
multisector_cross_cutting_aid_given_percent_of_aid
-0.335555
hepb3_immunized_percent_of_one_year_olds
-0.314841
government_health_spending_of_total_gov_spending_percent
```

```
-0.306402
income_share_of_2nd_poorest_20percent
-0.305692
privately_owned_forest_land_percent
-0.304148
exports_percent_of_gdp
-0.301728
art_coverage_percent_cd4_1_350
-0.301436
coal_consumption_per_cap
-0.284194
female_industry_workers_percent_of_female_employment
-0.277779
infectious_tb_detection_rate_percent
-0.276295
bad_teeth_per_child_12_yr
-0.269684
economic_growth_over_the_past_10_years
-0.266710
hib3_immunized_percent_of_one_year_olds
-0.262884
suicide_age_45_59_per_100000_people
infectious_tb_detection_rate_percent_dots_only
-0.254076
patents_granted_total
-0.252784
health_aid_given_percent_of_aid
-0.251194
tax_revenue_percent_of_gdp
-0.249765
co2_intensity_of_economic_output_kg_co2_per_2011_ppp_of_gdp
-0.248325
aid_given_percent_of_gni
-0.246285
high_technology_exports_percent_of_manufactured_exports
-0.240294
suicide_age_60plus_per_100000_people
-0.239530
suicide_age_30_44_per_100000_people
-0.238325
patent_applications_total
-0.235896
hydro_power_generation_per_person
-0.231281
suicide_per_100000_people
-0.226379
natural_gas_production_total
```

```
-0.223630
infectious_tb_treatment_dots_completed_percent
-0.222962
natural_gas_production_per_person
-0.221098
stomach_cancer_new_cases_per_100000_men
-0.221024
suicide_women_per_100000_people
-0.220864
pump_price_for_gasoline_us_per_liter
-0.220007
income_share_of_poorest_20percent
-0.213607
total_health_spending_percent_of_gdp
-0.211769
suicide_men_per_100000_people
-0.206026
patents_in_force_total
-0.204348
breast_cancer_deaths_per_100000_women
-0.203978
hydro_power_generation_total
-0.196162
oil_proved_reserves_total
-0.193310
external_debt_total_us_not_inflation_adjusted
-0.190619
gdppercapita_growth_over_next_10_years
-0.188660
merchandise_trade_percent_of_gdp
-0.187008
oil_proven_reserves_per_person
-0.182956
blood_pressure_sbp_men_mmhg
-0.180146
sex_ratio_15_24_years
-0.179944
suicide_age_15_29_per_100000_people
-0.179040
prostate_cancer_number_of_male_deaths
-0.177238
imports_percent_of_gdp
-0.176439
investments_percent_of_gdp
-0.175372
total_gdp_us_inflation_adjusted
-0.172713
oil_production_total
```

```
-0.171844
nuclear_power_generation_total
-0.168930
imports_unit_value_index_2000100
-0.167052
total_sulfur_emission_kilotonnes
-0.165059
trade_balance_percent_of_gdp
-0.164920
colonandrectum_cancer_number_of_new_female_cases
-0.164830
residential_electricity_use_total
-0.161513
market_value_of_listed_companies_percent_of_gdp
-0.159897
present_value_of_debt_percent_of_gni
-0.157912
total_gdp_ppp_inflation_adjusted
-0.157582
income_share_of_poorest_10percent
-0.156067
colonandrectum cancer number of new male cases
-0.154240
industry_percent_of_gdp
-0.154016
total_gni_ppp_current_international
-0.150175
armed_forces_personnel_percent_of_labor_force
-0.148876
colonandrectum_cancer_number_of_female_deaths
-0.148303
aid_received_per_person_current_us
-0.147141
suicide_total_deaths
-0.146889
cumulative_co2_emissions_tonnes
-0.145984
breast_cancer_number_of_new_female_cases
-0.145652
prostate_cancer_number_of_new_male_cases
-0.142448
personal_computers_total
-0.141525
colonandrectum_cancer_number_of_male_deaths
-0.140074
oil_consumption_total
-0.139643
yearly_co2_emissions_1000_tonnes
```

```
-0.137972
sulfur_emissions_per_person_kg
-0.131091
water_and_sanitation_aid_given_percent_of_aid
-0.127515
water_withdrawal_cu_meters_per_person
-0.123634
arms_exports_us_inflation_adjusted
-0.122930
males_aged_55_64_unemployment_rate_percent
-0.121879
broadband_subscribers
-0.118921
population_density_per_square_km
-0.118655
sex_ratio_15_49_years
-0.117509
forest_products_removal_total_dollar
-0.115905
planted_forest_area_ha
-0.114858
energy_production_total
-0.114248
energy_production_per_person
-0.109673
lung_cancer_number_of_new_female_cases
-0.109089
lung_cancer_number_of_new_male_cases
-0.108268
lung_cancer_number_of_male_deaths
-0.106514
electricity_generation_total
-0.105536
breast_cancer_number_of_female_deaths
-0.105502
aged_55_64_unemployment_rate_percent
-0.105060
municipal_water_withdrawal_percent_of_total
-0.103920
lung_cancer_number_of_female_deaths
-0.103345
total_number_of_dollar_billionaires
-0.101974
natural_gas_proved_reserves_total
-0.101242
dollar_billionaires_per_million_people
-0.098041
natural_gas_proven_reserves_per_person
```

```
-0.097763
armed_forces_personnel_total
-0.096611
traffic_mortality_15_29_per_100000_people
-0.096057
urban_population
-0.095386
male_long_term_unemployment_rate_percent
-0.094665
cell_phones_total
-0.093068
long_term_unemployment_rate_percent
-0.088980
population_aged_60plus_years_total_number
-0.088408
tsunami_deaths_annual_number
-0.087093
arms_imports_us_inflation_adjusted
-0.086081
males_aged_15_24_unemployment_rate_percent
-0.084667
foreign direct investment net inflows percent of gdp
-0.084225
desalinated_water_produced_billion_cu_meters
-0.081016
oil_production_per_person
-0.080877
gdp_per_capita_yearly_growth
-0.080312
gdppercapita_growth_percent_per_year
-0.077867
stomach_cancer_deaths_per_100000_men
-0.074346
stomach_cancer_number_of_new_female_cases
-0.072068
female_long_term_unemployment_rate_percent
-0.071417
males_aged_15plus_unemployment_rate_percent
-0.070148
stomach_cancer_number_of_new_male_cases
-0.067573
aged_15plus_unemployment_rate_percent
-0.067190
total_reserves_percent_of_debt_to_foreigners
-0.063427
aged_15_24_unemployment_rate_percent
-0.059107
stomach_cancer_number_of_male_deaths
```

```
-0.057648
stomach_cancer_number_of_female_deaths
-0.056403
traffic_total_deaths
-0.052773
stomach_cancer_new_cases_per_100000_women
-0.052362
population_aged_40_59_years_total_number
-0.052046
plane_crash_affected_annual_number
-0.051826
plane_crash_deaths_annual_number
-0.051290
coal_consumption_total
-0.048594
aid_given_2007_us
-0.048467
liver_cancer_number_of_new_female_cases
-0.047691
primary_forest_area_ha
-0.046015
tsunami affected annual number
-0.044222
exports unit value index 2000100
-0.044222
foreign_direct_investment_net_outflows_percent_of_gdp
-0.043320
forest_coverage_percent
-0.042991
males_aged_15_64_labour_force_participation_rate_percent
-0.042939
liver_cancer_number_of_female_deaths
-0.042818
males_aged_25_54_unemployment_rate_percent
-0.042727
liver_cancer_number_of_new_male_cases
-0.041267
sex_ratio_all_age_groups
-0.039474
liver_cancer_number_of_male_deaths
-0.038847
forest_area_sq_km
-0.038616
forest_land_total_area_ha
-0.034581
aged_25_54_unemployment_rate_percent
-0.031019
females_aged_15_24_unemployment_rate_percent
```

```
-0.027858
males_aged_25_54_labour_force_participation_rate_percent
-0.027648
trade_balance_us_not_inflation_adjusted
-0.027263
wood_removal_cubic_meters
-0.027083
extreme_temperature_deaths_annual_number
-0.026342
population_aged_20_39_years_total_number
-0.025110
surface_area_sq_km
-0.023919
females_aged_25_54_unemployment_rate_percent
-0.022846
female_population_with_projections
-0.018069
male_population_with_projections
-0.014429
aged_25_54_labour_force_participation_rate_percent
-0.013612
females aged 15plus unemployment rate percent
-0.012102
extreme_temperature_affected_annual_number
-0.010459
storm_affected_annual_number
-0.010364
population_total
-0.010286
blood_pressure_sbp_women_mmhg
-0.009551
internal_renewable_water_cu_meters_per_person
-0.007709
total_population_with_projections
-0.006621
central_bank_discount_rate_annual_percent
-0.006432
earthquake_affected_annual_number
-0.005334
flood_affected_annual_number
-0.005308
females_aged_55_64_unemployment_rate_percent
-0.005197
biomass_stock_in_forest_tons
-0.001116
total_water_withdrawal_billion_cu_meters
0.001073
population_aged_15_19_years_total_number
```

```
0.002986
cervical_cancer_number_of_new_female_cases
0.004122
gdp_total_yearly_growth
0.006102
epidemic_affected_annual_number
0.006187
prostate_cancer_deaths_per_100000_men
0.008784
earthquake_deaths_annual_number
0.009812
sex_ratio_above_50_years
0.011715
drought_affected_annual_number
0.012096
renewable_water_cu_meters_per_person
0.015017
suicide_age_0_14_per_100000_people
0.016117
population_aged_10_14_years_total_number
0.016896
females aged 25 54 labour force participation rate percent
0.017908
flood_deaths_annual_number
0.020573
military_expenditure_percent_of_gdp
0.029023
population_aged_5_9_years_total_number
0.031765
inflation_annual_percent
0.032616
cervical_cancer_number_of_female_deaths
0.034701
aged_15_64_labour_force_participation_rate_percent
0.036930
storm_deaths_annual_number
0.037195
drought_deaths_annual_number
0.041600
population_aged_0_4_years_total_number
0.049873
forest_products_removal_per_ha_dollar
0.050634
data_quality_income_per_person
0.051865
tb_programme_dots_population_coverage_percent
0.052854
other_deaths_in_newborn_total_deaths
```

```
0.062423
murder_total_deaths
0.065878
all_forms_of_tb_number_of_new_cases_reported
0.068037
new_births_total_number_estimated
0.072623
infectious_tb_number_of_new_cases_reported
0.073115
murdered_children_0_14_per_100000_people
0.078500
aid_received_total_us_inflation_adjusted
0.082589
females_aged_15_64_labour_force_participation_rate_percent
0.083600
all_forms_of_tb_number_of_existing_cases_estimated
0.087692
debt_servicing_costs_percent_of_exports_and_net_income_from_abroad
0.089003
traffic deaths women per 100000 people
0.092336
population_policies_aid_given_percent_of_aid
debt_to_foreigners_by_public_and_private_percent_of_gni
0.097567
traffic_mortality_children_0_14_per_100000_people
0.101523
infectious_tb_number_of_new_cases_estimated
0.101880
epidemic_deaths_annual_number
0.104354
agricultural_land_percent_of_land_area
0.104948
all_forms_of_tb_number_of_new_cases_estimated
0.106518
net_barter_terms_of_trade_2000_100
0.112716
other_social_services_aid_given_percent_of_aid
0.125979
data_quality_children_per_woman
0.134570
expenditure_per_student_secondary_percent_of_gdp_per_person
0.134892
ncd_deaths_in_children_1_59_months_total_deaths
0.136148
stomach_cancer_deaths_per_100000_women
0.140165
data_quality_life_expectancy
```

```
0.140259
all_forms_of_tb_number_of_deaths_estimated
0.143695
number_of_people_in_poverty
0.145529
pneumonia_deaths_in_newborn_total_deaths
economical_infrastructure_aid_given_percent_of_aid
0.148378
injury_deaths_in_children_1_59_months_total_deaths
0.157992
traffic_deaths_per_100000_people
0.169761
newborn_deaths
0.170470
diarrhoeal_deaths_in_newborn_total_deaths
0.173948
traffic_mortality_60plus_per_100000_people
0.181495
newly_hiv_infected_number_all_ages
0.183177
people_living_with_hiv_number_all_ages
0.185598
motorcycle_deaths_per_100000_people
0.185632
pertussis_deaths_in_children_1_59_months_total_deaths
0.189762
males_aged_65plus_unemployment_rate_percent
0.190354
newly_hiv_infected_percent_age_15_49
0.191240
traffic_deaths_men_per_100000_people
0.193433
males_aged_15_24_employment_rate_percent
0.196087
all_causes_deaths_in_newborn_total_deaths
0.200243
number_of_child_deaths
0.202981
annual_hiv_deaths_number_all_ages
0.205010
tb_with_hivplus_number_of_new_cases_estimated
0.205689
tb_with_hivplus_number_of_existing_cases_estimated
0.206024
aged_65plus_unemployment_rate_percent
0.207664
males_aged_15plus_employment_rate_percent
```

```
0.211790
traffic_mortality_45_59_per_100000_people
0.213564
education_aid_given_percent_of_aid
0.217876
prematurity_deaths_in_newborn_total_deaths
tb_with_hivplus_number_of_deaths_estimated
0.230080
aged_15_24_employment_rate_percent
0.230507
traffic_mortality_30_44_per_100000_people
0.233827
working_hours_per_week
0.236232
females_aged_15_24_employment_rate_percent
0.236366
males_aged_15plus_labour_force_participation_rate_percent
0.238025
females_aged_15plus_employment_rate_percent
0.239034
congenital deaths in newborn total deaths
0.239652
birth_asphyxia_deaths_in_newborn_total_deaths
0.244483
females_aged_15plus_labour_force_participation_rate_percent
0.246371
aged_15plus_employment_rate_percent
0.253195
all_forms_of_tb_new_cases_per_100000_reported
0.259990
measles_deaths_in_children_1_59_months_total_deaths
0.260858
maternal_deaths_total_number
0.264607
females_aged_65plus_unemployment_rate_percent
sepsis_deaths_in_newborn_total_deaths
0.270854
liver_cancer_new_cases_per_100000_men
0.277114
children_out_of_school_primary_female
0.278009
ncd_deaths_in_children_1_59_months_per_1000_births
0.279120
battle_deaths_per_100_000
0.279256
aged_15plus_labour_force_participation_rate_percent
```

```
0.280231
aid_received_percent_of_gni
0.283125
urban_poverty_percent_urban_people_below_national_urban
0.284251
malaria_number_of_cases_reported
0.285275
liver_cancer_new_cases_per_100000_women
0.290706
inequality_index_gini
0.291040
hiv_deaths_in_children_1_59_months_total_deaths
0.291436
children_out_of_school_primary
0.293621
adults_with_hiv_percent_age_15_49
0.303902
children_out_of_school_primary_male
0.305835
income share of richest 20percent
0.311287
tb_with_hivplus_new_cases_per_100000_estimated
0.311796
tb_with_hivplus_existing_cases_per_100000_estimated
0.311996
malaria_number_of_deaths_reported
0.315354
income_share_of_richest_10percent
0.320138
murdered_women_per_100000_people
0.322565
malaria_deaths_per_100000_reported
0.327510
tetanus_deaths_in_newborn_total_deaths
0.333650
liver_cancer_deaths_per_100000_men
0.339556
meningitis_deaths_in_children_1_59_months_total_deaths
0.341433
gapminder_gini
0.342453
car_deaths_per_100000_people
0.343807
malaria_deaths_in_children_1_59_months_total_deaths
0.349156
pneumonia_deaths_in_children_1_59_months_total_deaths
0.351006
liver_cancer_deaths_per_100000_women
```

```
0.353263
murdered_15_29_per_100000_people
0.354010
tb_with_hivplus_deaths_per_100000_estimated
0.354167
agricultural_water_withdrawal_percent_of_total
0.359437
malaria_cases_per_100000_reported
0.366366
other_deaths_in_newborn_per_1000_births
0.370915
all_causes_deaths_in_children_1_59_months_total_deaths
0.376721
population_growth_annual_percent
0.377955
population_growth_annual_percent_with_projections
0.381243
diarrhoeal_deaths_in_children_1_59_months_total_deaths
0.387082
population_aged_15_19_years_male_percent
0.389015
urban_population_growth_annual_percent
0.407469
murdered_30_44_per_100000_people
0.412309
population_aged_15_19_years_both_sexes_percent
0.417350
other_infections_deaths_in_children_1_59_months_total_deaths
0.420404
data_method_maternal_mortality
0.424561
murder_per_100000_people
0.425192
murdered_men_per_100000_people
0.425942
murdered_45_59_per_100000_people
0.430553
population_aged_15_19_years_female_percent
0.431083
infectious_tb_new_cases_per_100000_reported
0.437078
expenditure_per_student_tertiary_percent_of_gdp_per_person
0.443783
out_of_pocket_share_of_total_health_spending_percent
0.446265
injury_deaths_in_children_1_59_months_per_1000_births
0.449886
hiv_deaths_in_children_1_59_months_per_1000_births
```

```
0.459324
rural_poverty_percent_rural_people_below_national_rural
0.473420
private_share_of_total_health_spending_percent
0.485206
measles_deaths_in_children_1_59_months_per_1000_births
0.495028
murdered_60plus_per_100000_people
0.508139
production_sector_aid_given_percent_of_aid
0.537736
population_aged_10_14_years_male_percent
0.548911
drownings_per_100000_people
0.557160
population_aged_10_14_years_female_percent
0.559180
population_aged_10_14_years_both_sexes_percent
0.560518
female_family_workers_percent_of_female_employment
0.562656
male family workers percent of male employment
congenital deaths in newborn per 1000 births
0.582633
all_forms_of_tb_new_cases_per_100000_estimated
0.585424
cervical_cancer_new_cases_per_100000_women
0.586304
family_workers_percent_of_employment
0.589860
alternative_poverty_percent_below_nationally_defined_poverty
0.589877
infectious_tb_new_cases_per_100000_estimated
0.600328
underweight children
all_forms_of_tb_deaths_per_100000_estimated
0.612516
surviving_kids_per_woman
0.615561
malnutrition_weight_for_age_percent_of_children_under_5
0.618406
females_aged_65plus_labour_force_participation_rate_percent
0.628866
falls_deaths_per_100000_people
0.629278
population_aged_5_9_years_female_percent
```

```
0.652181
males_aged_65plus_labour_force_participation_rate_percent
0.657067
population_aged_5_9_years_male_percent
0.662152
population_aged_5_9_years_both_sexes_percent
0.663966
aged_65plus_labour_force_participation_rate_percent
0.666317
cervical_cancer_deaths_per_100000_women
0.669661
ifpri_underweight_children
0.670207
tetanus_deaths_in_newborn_per_1000_births
0.670606
poisonings_deaths_per_100000_people
0.672319
residential_energy_use_percent
0.674266
all_forms_of_tb_existing_cases_per_100000_estimated
0.681486
agriculture workers percent of employment
0.692921
children_and_elderly_per_100_adults
0.705636
agriculture_percent_of_gdp
0.733753
male_self_employed_percent_of_male_employment
0.734867
female_agriculture_workers_percent_of_female_employment
0.735043
burns_deaths_per_100000_people
0.739889
population_aged_0_4_years_female_percent
0.739897
teen_fertility_rate_births_per_1000_women_ages_15_19
0.750962
self_employed_percent_of_employment
0.755169
population_aged_0_4_years_both_sexes_percent
0.757348
male_agriculture_workers_percent_of_male_employment
0.760384
female_self_employed_percent_of_female_employment
0.760608
population_aged_0_4_years_male_percent
0.762051
poverty_percent_people_below_550_a_day
```

```
0.765574
pertussis_deaths_in_children_1_59_months_per_1000_births
0.775066
energy_from_solid_biofuels_percent
0.785773
malaria_deaths_in_children_1_59_months_per_1000_births
crude_death_rate_deaths_per_1000_population
0.807075
pneumonia_deaths_in_newborn_per_1000_births
0.820177
children_per_woman_total_fertility_with_projections
0.825955
children_per_woman_total_fertility
0.828776
poverty_percent_people_below_320_a_day
0.831533
extreme_poverty_percent_people_below_190_a_day
0.831917
other infections deaths in children 1 59 months per 1000 birt
0.832290
maternal deaths lifetime risk per 1000
crude_birth_rate_births_per_1000_population
0.838020
diarrhoeal_deaths_in_children_1_59_months_per_1000_births
0.845715
meningitis_deaths_in_children_1_59_months_per_1000_births
0.848874
sepsis_deaths_in_newborn_per_1000_births
0.854768
diarrhoeal_deaths_in_newborn_per_1000_births
0.856222
pneumonia_deaths_in_children_1_59_months_per_1000_births
0.867087
birth_asphyxia_deaths_in_newborn_per_1000_births
child_mortality_0_5_year_olds_dying_per_1000_born
1.000000
data_quality_population
NaN
income_mountains
Name: child_mortality_0_5_year_olds_dying_per_1000_born, dtype: float64
                   child_mortality_0_5_year_olds_dying_per_1000_born
         geo time
         afg 1970
171
                                                            306.000000
172
         afg 1971
                                                            300.400000
173
         afg 1972
                                                            294.700000
```

```
174
         afg 1973
                                                             288.900000
175
         afg
             1974
                                                             282.700000
79294 world 2016
                                                             66.249344
                                                             66.249344
79295 world 2017
79296 world 2018
                                                             66.249344
79297 world 2019
                                                             66.249344
79298 world 2020
                                                             66.249344
       primary_school_completion_percent_of_girls \
171
                                         77.269723
172
                                         77.269723
173
                                         77.269723
                                         77.269723
174
175
                                          4.401400
79294
                                         77.269723
79295
                                         77.269723
79296
                                         77.269723
79297
                                         77.269723
79298
                                         77.269723
       at_least_basic_water_source_overall_access_percent \
171
                                                84.775057
172
                                                84.775057
173
                                                84.775057
174
                                                84.775057
175
                                                84.775057
79294
                                                84.775057
79295
                                                84.775057
                                                84.775057
79296
79297
                                                84.775057
79298
                                                84.775057
       at_least_basic_sanitation_overall_access_percent
171
                                               72.610103
172
                                               72.610103
173
                                               72.610103
174
                                               72.610103
                                               72.610103
175
79294
                                               72.610103
79295
                                               72.610103
79296
                                               72.610103
79297
                                               72.610103
79298
                                               72.610103
```

```
literacy_rate_youth_female_percent_of_females_ages_15_24 \
171
                                                 83.959326
172
                                                 83.959326
173
                                                 83.959326
174
                                                 83.959326
175
                                                 83.959326
79294
                                                 83.959326
79295
                                                 83.959326
79296
                                                 83.959326
79297
                                                 83.959326
79298
                                                 83.959326
       sepsis_deaths_in_newborn_per_1000_births
171
                                          2.43827
172
                                          2.43827
173
                                          2.43827
                                          2.43827
174
175
                                          2.43827
79294
                                          2.43827
79295
                                          2.43827
79296
                                          2.43827
79297
                                          2.43827
79298
                                          2.43827
       diarrhoeal_deaths_in_newborn_per_1000_births \
171
                                             0.252356
172
                                             0.252356
173
                                             0.252356
174
                                             0.252356
175
                                             0.252356
79294
                                             0.252356
79295
                                             0.252356
79296
                                             0.252356
79297
                                             0.252356
79298
                                             0.252356
       pneumonia_deaths_in_children_1_59_months_per_1000_births \
                                                  6.889712
171
172
                                                  6.889712
173
                                                  6.889712
174
                                                  6.889712
                                                  6.889712
175
79294
                                                  6.889712
79295
                                                  6.889712
```

79296	6.889712
79297	6.889712
79298	6.889712
	birth_asphyxia_deaths_in_newborn_per_1000_births
171	3.945409
172	3.945409
173	3.945409
174	3.945409
175	3.945409
•••	
79294	3.945409
79295	3.945409
79296	3.945409
79297	3.945409
79298	3.945409

[13001 rows x 11 columns]

When primary_school_completion_percent_of_girls is compared to child_mortality_0_5_year_olds_dying_per_1000_born the relationship has an R Square equal to 0.2633377090089972 and a variance inflation factor 1.3574741265156105.

When at_least_basic_water_source_overall_access_percent is compared to child_mortality_0_5_year_olds_dying_per_1000_born the relationship has an R Square equal to 0.08458870130100526 and a variance inflation factor 1.0924051313559542.

When at_least_basic_sanitation_overall_access_percent is compared to child_mortality_0_5_year_olds_dying_per_1000_born the relationship has an R Square equal to 0.08513199031616525 and a variance inflation factor 1.093053849752147.

When literacy_rate_youth_female_percent_of_females_ages_15_24 is compared to child_mortality_0_5_year_olds_dying_per_1000_born the relationship has an R Square equal to 0.02830726209936496 and a variance inflation factor 1.0291319066153808.

When sepsis_deaths_in_newborn_per_1000_births is compared to child_mortality_0_5_year_olds_dying_per_1000_born the relationship has an R Square equal to 0.004745596988137368 and a variance inflation factor 1.0047682250626333.

When diarrhoeal_deaths_in_newborn_per_1000_births is compared to child_mortality_0_5_year_olds_dying_per_1000_born the relationship has an R Square equal to 0.004761761115112728 and a variance inflation factor 1.0047845439705452.

When pneumonia_deaths_in_children_1_59_months_per_1000_births is compared to child_mortality_0_5_year_olds_dying_per_1000_born the relationship has an R Square equal to 0.004883368851376524 and a variance inflation factor 1.0049073331693188.

When birth_asphyxia_deaths_in_newborn_per_1000_births is compared to child_mortality_0_5_year_olds_dying_per_1000_born the relationship has an R Square equal to 0.005522908240507052 and a variance inflation factor 1.0055535801541045.

When child_mortality_0_5_year_olds_dying_per_1000_born is compared to primary_school_completion_percent_of_girls the relationship has an R Square equal to 0.263337709008997 and a variance inflation factor 1.35747412651561.

When at_least_basic_water_source_overall_access_percent is compared to primary_school_completion_percent_of_girls the relationship has an R Square equal to 0.1040383934013065 and a variance inflation factor 1.1161192540339577.

When at_least_basic_sanitation_overall_access_percent is compared to primary_school_completion_percent_of_girls the relationship has an R Square equal to 0.09624867383055347 and a variance inflation factor 1.1064990678780011.

When literacy_rate_youth_female_percent_of_females_ages_15_24 is compared to primary_school_completion_percent_of_girls the relationship has an R Square equal to 0.03708042270836065 and a variance inflation factor 1.0385083277802443.

When sepsis_deaths_in_newborn_per_1000_births is compared to primary_school_completion_percent_of_girls the relationship has an R Square equal to 0.005785962226538377 and a variance inflation factor 1.0058196344114152.

When diarrhoeal_deaths_in_newborn_per_1000_births is compared to primary_school_completion_percent_of_girls the relationship has an R Square equal to 0.005048610918810703 and a variance inflation factor 1.005074228725358.

When pneumonia_deaths_in_children_1_59_months_per_1000_births is compared to primary_school_completion_percent_of_girls the relationship has an R Square equal to 0.005843810507399461 and a variance inflation factor 1.0058781613685692.

When birth_asphyxia_deaths_in_newborn_per_1000_births is compared to primary_school_completion_percent_of_girls the relationship has an R Square equal to 0.006551909456686268 and a variance inflation factor 1.0065951200863479.

When child_mortality_0_5_year_olds_dying_per_1000_born is compared to at_least_basic_water_source_overall_access_percent the relationship has an R Square equal to 0.08458870130100504 and a variance inflation factor

1.092405131355954.

When primary_school_completion_percent_of_girls is compared to at_least_basic_water_source_overall_access_percent the relationship has an R Square equal to 0.10403839340130638 and a variance inflation factor 1.1161192540339575.

When at_least_basic_sanitation_overall_access_percent is compared to at_least_basic_water_source_overall_access_percent the relationship has an R Square equal to 0.737881392515068 and a variance inflation factor 3.8150668111476422.

When literacy_rate_youth_female_percent_of_females_ages_15_24 is compared to at_least_basic_water_source_overall_access_percent the relationship has an R Square equal to 0.025018327916181637 and a variance inflation factor 1.0256603058626839.

When sepsis_deaths_in_newborn_per_1000_births is compared to at_least_basic_water_source_overall_access_percent the relationship has an R Square equal to 0.03192117740345124 and a variance inflation factor 1.0329737379419512.

When diarrhoeal_deaths_in_newborn_per_1000_births is compared to at_least_basic_water_source_overall_access_percent the relationship has an R Square equal to 0.028557156471334836 and a variance inflation factor 1.029396640946578.

When pneumonia_deaths_in_children_1_59_months_per_1000_births is compared to at_least_basic_water_source_overall_access_percent the relationship has an R Square equal to 0.03523018897426211 and a variance inflation factor 1.0365166784570152.

When birth_asphyxia_deaths_in_newborn_per_1000_births is compared to at_least_basic_water_source_overall_access_percent the relationship has an R Square equal to 0.03716178581482843 and a variance inflation factor 1.0385960852688814.

When child_mortality_0_5_year_olds_dying_per_1000_born is compared to at_least_basic_sanitation_overall_access_percent the relationship has an R Square equal to 0.08513199031616515 and a variance inflation factor 1.0930538497521467.

When primary_school_completion_percent_of_girls is compared to at_least_basic_sanitation_overall_access_percent the relationship has an R Square equal to 0.09624867383055347 and a variance inflation factor 1.1064990678780011.

When at_least_basic_water_source_overall_access_percent is compared to

at_least_basic_sanitation_overall_access_percent the relationship has an R Square equal to 0.737881392515068 and a variance inflation factor 3.8150668111476422.

When literacy_rate_youth_female_percent_of_females_ages_15_24 is compared to at_least_basic_sanitation_overall_access_percent the relationship has an R Square equal to 0.02971356170620887 and a variance inflation factor 1.0306234948088722.

When sepsis_deaths_in_newborn_per_1000_births is compared to at_least_basic_sanitation_overall_access_percent the relationship has an R Square equal to 0.03535760999474857 and a variance inflation factor 1.0366535934571113.

When diarrhoeal_deaths_in_newborn_per_1000_births is compared to at_least_basic_sanitation_overall_access_percent the relationship has an R Square equal to 0.029471551086662995 and a variance inflation factor 1.0303664989106307.

When pneumonia_deaths_in_children_1_59_months_per_1000_births is compared to at_least_basic_sanitation_overall_access_percent the relationship has an R Square equal to 0.0336167997211384 and a variance inflation factor 1.0347862004548898.

When birth_asphyxia_deaths_in_newborn_per_1000_births is compared to at_least_basic_sanitation_overall_access_percent the relationship has an R Square equal to 0.040469517109196884 and a variance inflation factor 1.0421763746236319.

When child_mortality_0_5_year_olds_dying_per_1000_born is compared to literacy_rate_youth_female_percent_of_females_ages_15_24 the relationship has an R Square equal to 0.02830726209936496 and a variance inflation factor 1.0291319066153808.

When primary_school_completion_percent_of_girls is compared to literacy_rate_youth_female_percent_of_females_ages_15_24 the relationship has an R Square equal to 0.03708042270836054 and a variance inflation factor 1.038508327780244.

When at_least_basic_water_source_overall_access_percent is compared to literacy_rate_youth_female_percent_of_females_ages_15_24 the relationship has an R Square equal to 0.02501832791618175 and a variance inflation factor 1.0256603058626839.

When at_least_basic_sanitation_overall_access_percent is compared to literacy_rate_youth_female_percent_of_females_ages_15_24 the relationship has an R Square equal to 0.02971356170620898 and a variance inflation factor 1.0306234948088722.

When sepsis_deaths_in_newborn_per_1000_births is compared to literacy_rate_youth_female_percent_of_females_ages_15_24 the relationship has an R Square equal to 0.0012524669851509127 and a variance inflation factor 1.0012540376258754.

When diarrhoeal_deaths_in_newborn_per_1000_births is compared to literacy_rate_youth_female_percent_of_females_ages_15_24 the relationship has an R Square equal to 0.0015207908358094715 and a variance inflation factor 1.0015231071632253.

When pneumonia_deaths_in_children_1_59_months_per_1000_births is compared to literacy_rate_youth_female_percent_of_females_ages_15_24 the relationship has an R Square equal to 0.000673760620244046 and a variance inflation factor 1.0006742148796794.

When birth_asphyxia_deaths_in_newborn_per_1000_births is compared to literacy_rate_youth_female_percent_of_females_ages_15_24 the relationship has an R Square equal to 0.001290996058689653 and a variance inflation factor 1.00129266488396.

When child_mortality_0_5_year_olds_dying_per_1000_born is compared to sepsis_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.004745596988137146 and a variance inflation factor 1.004768225062633.

When primary_school_completion_percent_of_girls is compared to sepsis_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.005785962226538377 and a variance inflation factor 1.0058196344114152.

When at_least_basic_water_source_overall_access_percent is compared to sepsis_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.03192117740345146 and a variance inflation factor 1.0329737379419515.

When at_least_basic_sanitation_overall_access_percent is compared to sepsis_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.03535760999474846 and a variance inflation factor 1.036653593457111.

When literacy_rate_youth_female_percent_of_females_ages_15_24 is compared to sepsis_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.001252466985150802 and a variance inflation factor 1.0012540376258754.

When diarrhoeal_deaths_in_newborn_per_1000_births is compared to sepsis_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.8248256302940663 and a variance inflation factor 5.708597677152806.

When pneumonia_deaths_in_children_1_59_months_per_1000_births is compared to sepsis_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.681017908720277 and a variance inflation factor 3.1349722361782253.

When birth_asphyxia_deaths_in_newborn_per_1000_births is compared to sepsis_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.9334311802256414 and a variance inflation factor 15.022047910562275.

When child_mortality_0_5_year_olds_dying_per_1000_born is compared to diarrhoeal_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.004761761115112839 and a variance inflation factor 1.0047845439705454.

When primary_school_completion_percent_of_girls is compared to diarrhoeal_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.005048610918810925 and a variance inflation factor 1.0050742287253582.

When at_least_basic_water_source_overall_access_percent is compared to diarrhoeal_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.028557156471334836 and a variance inflation factor 1.029396640946578.

When at_least_basic_sanitation_overall_access_percent is compared to diarrhoeal_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.029471551086663213 and a variance inflation factor 1.030366498910631.

When literacy_rate_youth_female_percent_of_females_ages_15_24 is compared to diarrhoeal_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.0015207908358092492 and a variance inflation factor 1.0015231071632251.

When sepsis_deaths_in_newborn_per_1000_births is compared to diarrhoeal_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.8248256302940664 and a variance inflation factor 5.7085976771528095.

When pneumonia_deaths_in_children_1_59_months_per_1000_births is compared to diarrhoeal_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.6850245403297122 and a variance inflation factor 3.174850513899676.

When birth_asphyxia_deaths_in_newborn_per_1000_births is compared to diarrhoeal_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.8539298251973123 and a variance inflation factor 6.84602453136518.

When child_mortality_0_5_year_olds_dying_per_1000_born is compared to pneumonia_deaths_in_children_1_59_months_per_1000_births the relationship has an R Square equal to 0.004883368851376413 and a variance inflation factor 1.0049073331693188.

When primary_school_completion_percent_of_girls is compared to pneumonia_deaths_in_children_1_59_months_per_1000_births the relationship has an R Square equal to 0.0058438105073995725 and a variance inflation factor

1.0058781613685694.

When at_least_basic_water_source_overall_access_percent is compared to pneumonia_deaths_in_children_1_59_months_per_1000_births the relationship has an R Square equal to 0.03523018897426211 and a variance inflation factor 1.0365166784570152.

When at_least_basic_sanitation_overall_access_percent is compared to pneumonia_deaths_in_children_1_59_months_per_1000_births the relationship has an R Square equal to 0.0336167997211384 and a variance inflation factor 1.0347862004548898.

When literacy_rate_youth_female_percent_of_females_ages_15_24 is compared to pneumonia_deaths_in_children_1_59_months_per_1000_births the relationship has an R Square equal to 0.0006737606202443791 and a variance inflation factor 1.00067421487968.

When sepsis_deaths_in_newborn_per_1000_births is compared to pneumonia_deaths_in_children_1_59_months_per_1000_births the relationship has an R Square equal to 0.681017908720277 and a variance inflation factor 3.1349722361782253.

When diarrhoeal_deaths_in_newborn_per_1000_births is compared to pneumonia_deaths_in_children_1_59_months_per_1000_births the relationship has an R Square equal to 0.6850245403297122 and a variance inflation factor 3.174850513899676.

When birth_asphyxia_deaths_in_newborn_per_1000_births is compared to pneumonia_deaths_in_children_1_59_months_per_1000_births the relationship has an R Square equal to 0.7523482403502538 and a variance inflation factor 4.037928102809767.

When child_mortality_0_5_year_olds_dying_per_1000_born is compared to birth_asphyxia_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.005522908240506942 and a variance inflation factor 1.0055535801541045.

When primary_school_completion_percent_of_girls is compared to birth_asphyxia_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.006551909456686045 and a variance inflation factor 1.0065951200863477.

When at_least_basic_water_source_overall_access_percent is compared to birth_asphyxia_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.03716178581482821 and a variance inflation factor 1.0385960852688811.

When at_least_basic_sanitation_overall_access_percent is compared to

birth_asphyxia_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.04046951710919666 and a variance inflation factor 1.0421763746236317.

When literacy_rate_youth_female_percent_of_females_ages_15_24 is compared to birth_asphyxia_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.0012909960586893199 and a variance inflation factor 1.0012926648839597.

When sepsis_deaths_in_newborn_per_1000_births is compared to birth_asphyxia_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.9334311802256414 and a variance inflation factor 15.022047910562275.

When diarrhoeal_deaths_in_newborn_per_1000_births is compared to birth_asphyxia_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.8539298251973123 and a variance inflation factor 6.84602453136518.

When pneumonia_deaths_in_children_1_59_months_per_1000_births is compared to birth_asphyxia_deaths_in_newborn_per_1000_births the relationship has an R Square equal to 0.7523482403502538 and a variance inflation factor 4.037928102809767.

```
[62]: # seven variable models
     yValues = highCorrelationVariables.
      ⇒child_mortality_0_5_year_olds_dying_per_1000_born.values.reshape(-1,1)
     exclusionOne = pd.DataFrame()
     for x1 in highCorrelationVariables:
         if (x1 != 'geo' and x1 != 'time' and x1 != 
      xValues = []
             exclusionOne = highCorrelationVariables.drop(columns = x1)
             for values in exclusionOne:
                 if(values != 'geo' and values != 'time' and values !=_

¬'child_mortality_0_5_year_olds_dying_per_1000_born'):
                    xValues.append(highCorrelationVariables[values])
             xArray = np.array(xValues, np.float64)
             xArray = xArray.transpose()
             print(xArray.shape)
             estimate = sm.OLS(yValues, xArray)
             estimation = estimate.fit()
             outputString = "\nPredicting_

→child_mortality_0_5_year_olds_dying_per_1000_born using "
             for column in exclusion1.columns:
```

```
if(column != 'geo' and column != 'time' and column !=_
if(count < 7):</pre>
                outputString += "x" + str(count) + " = " + column + ", "
            else:
                outputString += "x" + str(count) + " = " + column
            count += 1
     outputString += ".\n"
     print(outputString)
     print(estimation.summary())
```

(13001, 7)

Predicting child_mortality_0_5_year_olds_dying_per_1000_born using x1 = primary_school_completion_percent_of_girls, x2 = at_least_basic_water_source_overall_access_percent, x3 = at_least_basic_sanitation_overall_access_percent, x4 = literacy_rate_youth_female_percent_of_females_ages_15_24, x5 = sepsis_deaths_in_newborn_per_1000_births, x6 = diarrhoeal_deaths_in_newborn_per_1000_births, x7 = pneumonia_deaths_in_children_1_59_months_per_1000_births.

OLS Regression Results

======

Dep. Variable: R-squared (uncentered):

0.562

Model: OLS Adj. R-squared (uncentered):

0.562

Method: Least Squares F-statistic:

2382.

Sat, 14 Mar 2020 Prob (F-statistic): Date:

0.00

Time: Log-Likelihood: 20:42:19

-71659.

No. Observations: 13001 AIC:

1.433e+05

Df Residuals: 12994 BIC:

1.434e+05

Df Model: 7 Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1	0.1099	0.097	1.130	0.259	-0.081	0.301
x2	-0.9981	0.066	-15.076	0.000	-1.128	-0.868
x3	0.5935	0.077	7.683	0.000	0.442	0.745

x4	-27.1506	5.755	-4.718	0.000	-38.431	-15.870
x5	-127.8999	29.404	-4.350	0.000	-185.536	-70.264
x6	-0.8020	0.988	-0.812	0.417	-2.739	1.135
x7	46.3804	4.818	9.627	0.000	36.937	55.824
=======	=========	=======	========		========	
Omnibus:		4624	779 Durk	oin-Watson:		0.108
Prob(Omni	bus):	C	0.000 Jaro	ue-Bera (JB):	14928.226
Skew:		1	.848 Prob	(JB):		0.00
Kurtosis:		ϵ	3.728 Cond	l. No.		7.88e+03
=======	=========		========		========	========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.88e+03. This might indicate that there are strong multicollinearity or other numerical problems. (13001, 7)

```
Predicting child_mortality_0_5_year_olds_dying_per_1000_born using x1 = primary_school_completion_percent_of_girls, x2 = at_least_basic_water_source_overall_access_percent, x3 = at_least_basic_sanitation_overall_access_percent, x4 = literacy_rate_youth_female_percent_of_females_ages_15_24, x5 = sepsis_deaths_in_newborn_per_1000_births, x6 = diarrhoeal_deaths_in_newborn_per_1000_births, x7 = pneumonia_deaths_in_children_1_59_months_per_1000_births.
```

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.644

Model: OLS Adj. R-squared (uncentered):

0.644

Method: Least Squares F-statistic:

3357.

Date: Sat, 14 Mar 2020 Prob (F-statistic):

0.00

Time: 20:42:19 Log-Likelihood:

-70313.

No. Observations: 13001 AIC:

1.406e+05

Df Residuals: 12994 BIC:

1.407e+05

Df Model: 7
Covariance Type: nonrobust

coef std err

t

x1	-1.7151	0.031	-54.686	0.000	-1.777	-1.654
x2	-0.4073	0.033	-12.216	0.000	-0.473	-0.342
x3	1.7169	0.064	26.790	0.000	1.591	1.842
x4	-29.8320	5.182	-5.757	0.000	-39.990	-19.674
x5	-143.9762	26.390	-5.456	0.000	-195.704	-92.248
x6	-1.5120	0.889	-1.701	0.089	-3.254	0.230
x7	51.4620	4.292	11.989	0.000	43.048	59.876
======	=========	=======	========		========	========
Omnibus:		4986.	491 Durbi	n-Watson:		0.273
Prob(Omn	ibus):	0.	000 Jarqu	e-Bera (JB)	:	20783.439
Skew:		1.	880 Prob(JB):		0.00
Kurtosis	:	7.	922 Cond.	No.		7.61e+03
======	=========	=======	========	========	========	========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.61e+03. This might indicate that there are strong multicollinearity or other numerical problems.
 (13001, 7)

```
Predicting child_mortality_0_5_year_olds_dying_per_1000_born using x1 = primary_school_completion_percent_of_girls, x2 = at_least_basic_water_source_overall_access_percent, x3 = at_least_basic_sanitation_overall_access_percent, x4 = literacy_rate_youth_female_percent_of_females_ages_15_24, x5 = sepsis_deaths_in_newborn_per_1000_births, x6 = diarrhoeal_deaths_in_newborn_per_1000_births, x7 = pneumonia_deaths_in_children_1_59_months_per_1000_births.
```

OLS Regression Results

_		_	_	_
	_	_	_	

```
Dep. Variable: y R-squared (uncentered):
0.641

Model: OLS Adj. R-squared (uncentered):
0.641

Method: Least Squares F-statistic:
3311.
Date: Sat, 14 Mar 2020 Prob (F-statistic):
```

0.00

Time: 20:42:19 Log-Likelihood:

-70371.

No. Observations: 13001 AIC:

1.408e+05

Df Residuals: 12994 BIC:

1.408e+05

Df Model:	7
Covariance Type:	nonrobust

=======			.========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
x1	-1.7712	0.032	-55.883	0.000	-1.833	-1.709
x2	-0.2780	0.050	-5.612	0.000	-0.375	-0.181
x3	1.6227	0.071	22.942	0.000	1.484	1.761
x4	-30.2649	5.209	-5.810	0.000	-40.475	-20.055
x5	-152.7686	26.542	-5.756	0.000	-204.796	-100.742
x6	-1.4955	0.894	-1.672	0.094	-3.248	0.257
x7	53.8425	4.325	12.449	0.000	45.364	62.321
======	==========				========	
Omnibus:		4852.	987 Durbi	n-Watson:		0.279
Prob(Omn	ibus):	0.	000 Jarqu	ue-Bera (JB)	:	19482.245
Skew:		1.	839 Prob((JB):		0.00
Kurtosis	:	7.	737 Cond.	No.		7.99e+03
======	==========		.=======	========	========	========

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.99e+03. This might indicate that there are strong multicollinearity or other numerical problems.
 (13001, 7)

```
Predicting child_mortality_0_5_year_olds_dying_per_1000_born using x1 = primary_school_completion_percent_of_girls, x2 = at_least_basic_water_source_overall_access_percent, x3 = at_least_basic_sanitation_overall_access_percent, x4 = literacy_rate_youth_female_percent_of_females_ages_15_24, x5 = sepsis_deaths_in_newborn_per_1000_births, x6 = diarrhoeal_deaths_in_newborn_per_1000_births, x7 = pneumonia_deaths_in_children_1_59_months_per_1000_births.
```

OLS Regression Results

```
Dep. Variable: y R-squared (uncentered): 0.634
```

0.054

Model: OLS Adj. R-squared (uncentered):

0.634

Method: Least Squares F-statistic:

3219.

Date: Sat, 14 Mar 2020 Prob (F-statistic):

0.00

Time: 20:42:19 Log-Likelihood:

-70488.

No. Observations: 13001 AIC:

1.410e+05

Df Residuals: 12994 BIC:

1.410e+05

Df Model: 7
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1 x2	-1.6040 1.5127	0.031	-51.335 18.804	0.000	-1.665 1.355	-1.543 1.670
x3	-1.0112	0.060	-16.920	0.000	-1.128	-0.894
x4 x5	-46.0706 -261.5193	5.180 25.988	-8.894 -10.063	0.000 0.000	-56.224 -312.460	-35.917 -210.579
x6 x7	-1.3259 81.5629	0.903 4.037	-1.468 20.202	0.142 0.000	-3.096 73.649	0.444 89.477
Omnibus: Prob(Omnib Skew: Kurtosis:	======================================	1		•	======================================	0.280 15653.442 0.00 7.44e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.44e+03. This might indicate that there are strong multicollinearity or other numerical problems. (13001, 7)

```
Predicting child_mortality_0_5_year_olds_dying_per_1000_born using x1 = primary_school_completion_percent_of_girls, x2 = at_least_basic_water_source_overall_access_percent, x3 = at_least_basic_sanitation_overall_access_percent, x4 = literacy_rate_youth_female_percent_of_females_ages_15_24, x5 = sepsis_deaths_in_newborn_per_1000_births, x6 = diarrhoeal_deaths_in_newborn_per_1000_births, x7 = pneumonia_deaths_in_children_1_59_months_per_1000_births.
```

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.645

Model: OLS Adj. R-squared (uncentered):

0.645

Method: Least Squares F-statistic:

3372.

Date: Sat, 14 Mar 2020 Prob (F-statistic):

0.00

Time: 20:42:19 Log-Likelihood:

-70294.

No. Observations: 13001 AIC:

1.406e+05

Df Residuals: 12994 BIC:

1.407e+05

Df Model: 7
Covariance Type: nonrobust

=======		========	.=======			========
	coef	std err	t	P> t	[0.025	0.975]
x1	-1.7463	0.032	-55.333	0.000	-1.808	-1.684
x2 x3	0.7380 -0.8197	0.088	8.368 -13.738	0.000	0.565 -0.937	0.911 -0.703
x4	1.5286	0.070	21.766	0.000	1.391	1.666
x5	-153.2077	25.881	-5.920	0.000	-203.939	-102.477
x6	-0.4722	0.883	-0.534	0.593	-2.204	1.260
x7	28.1621	2.756	10.217	0.000	22.759	33.565
Omnibus:				oin-Watson:		0.261
Prob(Omn	ibus):			que-Bera (JE	3):	20222.538
Skew:		_		o(JB):		0.00
Kurtosis	:	7	7.827 Cond	l. No.		8.81e+03

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 8.81e+03. This might indicate that there are strong multicollinearity or other numerical problems.
(13001, 7)

```
Predicting child_mortality_0_5_year_olds_dying_per_1000_born using x1 = primary_school_completion_percent_of_girls, x2 = at_least_basic_water_source_overall_access_percent, x3 = at_least_basic_sanitation_overall_access_percent, x4 = literacy_rate_youth_female_percent_of_females_ages_15_24, x5 = sepsis_deaths_in_newborn_per_1000_births, x6 = diarrhoeal_deaths_in_newborn_per_1000_births, x7 = pneumonia_deaths_in_children_1_59_months_per_1000_births.
```

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.645

Model: OLS Adj. R-squared (uncentered):

0.645

Method: Least Squares F-statistic:

3375.

Date: Sat, 14 Mar 2020 Prob (F-statistic):

0.00

Time: 20:42:19 Log-Likelihood:

-70291.

No. Observations: 13001 AIC:

1.406e+05

Df Residuals: 12994 BIC:

1.406e+05

Df Model: 7
Covariance Type: nonrobust

=======		=======	========	========	========	========
	coef	std err	t	P> t	[0.025	0.975]
x1	-1.7471	0.032	-55.372	0.000	-1.809	-1.685
x2	0.7534	0.088	8.574	0.000	0.581	0.926
x3	-0.8308	0.059	-13.965	0.000	-0.947	-0.714
x4	1.5472	0.069	22.443	0.000	1.412	1.682
x5	-32.7742	5.064	-6.472	0.000	-42.701	-22.848
x6	-1.7266	0.877	-1.969	0.049	-3.445	-0.008
x7	40.2988	4.157	9.694	0.000	32.150	48.447
=======	=======	40.00				
Omnibus:		4968	3.801 Durb	oin-Watson:		0.262
Prob(Omni	bus):	0	0.000 Jaro	ue-Bera (JB):	20315.964
Skew:		1	.881 Prob	(JB):		0.00
Kurtosis:		7	.832 Cond	l. No.		2.17e+03
=======						

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.17e+03. This might indicate that there are strong multicollinearity or other numerical problems.
 (13001, 7)

```
Predicting child_mortality_0_5_year_olds_dying_per_1000_born using x1 = primary_school_completion_percent_of_girls, x2 = at_least_basic_water_source_overall_access_percent, x3 = at_least_basic_sanitation_overall_access_percent, x4 = literacy_rate_youth_female_percent_of_females_ages_15_24, x5 = sepsis_deaths_in_newborn_per_1000_births, x6 = diarrhoeal_deaths_in_newborn_per_1000_births, x7 = pneumonia_deaths_in_children_1_59_months_per_1000_births.
```

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.646

Model: OLS Adj. R-squared (uncentered):

0.646

Method: Least Squares F-statistic:

3383.

Date: Sat, 14 Mar 2020 Prob (F-statistic):

0.00

Time: 20:42:19 Log-Likelihood:

-70281.

No. Observations: 13001 AIC:

1.406e+05

Df Residuals: 12994 BIC:

1.406e+05

Df Model: 7
Covariance Type: nonrobust

=======	coef	std err	======== t	P> t	[0.025	0.975]
x1	-1.7465	0.032	-55.396	0.000	-1.808	-1.685
x2	0.7207	0.088	8.188	0.000	0.548	0.893
x3	-0.8107	0.060	-13.601	0.000	-0.927	-0.694
x4	1.4640	0.071	20.557	0.000	1.324	1.604
x5	-26.9809	5.140	-5.249	0.000	-37.057	-16.905
x6	-128.5652	26.073	-4.931	0.000	-179.672	-77.458
x7	44.0216	3.961	11.113	0.000	36.257	51.787
=======				 		
Omnibus:		4946		in-Watson:		0.260
Prob(Omni	lbus):	0	.000 Jarqı	ue-Bera (JB)):	20087.057
Skew:		1	.875 Prob	(JB):		0.00
Kurtosis:		7	.798 Cond	. No.		8.88e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.88e+03. This might indicate that there are strong multicollinearity or other numerical problems.
 (13001, 7)

```
Predicting child_mortality_0_5_year_olds_dying_per_1000_born using x1 = primary_school_completion_percent_of_girls, x2 = at_least_basic_water_source_overall_access_percent, x3 = at_least_basic_sanitation_overall_access_percent, x4 = literacy_rate_youth_female_percent_of_females_ages_15_24, x5 = sepsis_deaths_in_newborn_per_1000_births, x6 =
```

diarrhoeal_deaths_in_newborn_per_1000_births, x7 =
pneumonia_deaths_in_children_1_59_months_per_1000_births.

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.643

Model: OLS Adj. R-squared (uncentered):

0.642

Method: Least Squares F-statistic:

3338.

Date: Sat, 14 Mar 2020 Prob (F-statistic):

0.00

Time: 20:42:19 Log-Likelihood:

-70336.

No. Observations: 13001 AIC:

1.407e+05

Df Residuals: 12994 BIC:

1.407e+05

Df Model: 7
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1 x2 x3 x4 x5 x6 x7	-1.7471 0.8583 -0.8920 1.7647 14.7963 -43.3271 2.7979	0.032 0.088 0.059 0.066 3.303 25.460 0.816	-55.178 9.805 -15.024 26.904 4.479 -1.702 3.429	0.000 0.000 0.000 0.000 0.000 0.089 0.001	-1.809 0.687 -1.008 1.636 8.322 -93.232 1.199	-1.685 1.030 -0.776 1.893 21.271 6.577 4.397
Omnibus: Prob(Omni Skew: Kurtosis:		1.		•		0.262 20763.067 0.00 8.65e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 8.65e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- [67]: yValues = highCorrelationVariables.

 →child_mortality_0_5_year_olds_dying_per_1000_born.values.reshape(-1,1)

OLS Regression Results

======

Dep. Variable: y R-squared (uncentered):

0.646

Model: OLS Adj. R-squared (uncentered):

0.646

Method: Least Squares F-statistic:

2960.

Date: Sat, 14 Mar 2020 Prob (F-statistic):

0.00

Time: 20:43:30 Log-Likelihood:

-70280.

No. Observations: 13001 AIC:

1.406e+05

Df Residuals: 12993 BIC:

1.406e+05

Df Model: 8
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1	-1.7466	0.032	-55.401	0.000	-1.808	-1.685
x2	0.7139	0.088	8.093	0.000	0.541	0.887
x3	-0.8080	0.060	-13.547	0.000	-0.925	-0.691
x4	1.4627	0.071	20.536	0.000	1.323	1.602
x5	-27.6879	5.176	-5.349	0.000	-37.834	-17.542
x6	-123.4209	26.447	-4.667	0.000	-175.260	-71.581
x7	-1.0316	0.889	-1.161	0.246	-2.774	0.710
x8	46.0607	4.333	10.629	0.000	37.567	54.555
Omnibus:		4946.228 Durbin-Watson:			0.260	
<pre>Prob(Omnibus):</pre>		0.	000 Jarque	Jarque-Bera (JB):		20089.927
Skew:		1.	874 Prob(.	Prob(JB):		0.00
Kurtosis	s:	7.	799 Cond.	No.		9.01e+03

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.01e+03. This might indicate that there are strong multicollinearity or other numerical problems.

г 1.		
L J •		