<u> 7P : Tracé de la caractéristique d'une cellule photovoltaïque</u>

Éclairée par une source de lumière, une cellule photovoltaïque convertit l'énergie lumineuse en énergie électrique. Une tension électrique apparaît à ses bornes susceptible par exemple d'éclairer une

Dispositif expérimental

En branchant un conducteur ohmique de résistance variable à ses bornes, on peut alors étudier ses caractéristiques de fonctionnement pour un éclairement donné.

La caractéristique d'un dipôle correspond à l'évolution de l'intensité I qui le traverse en fonction de la tension U à ses bornes : courbe I = f(U).

Le schéma ci-dessous montre le circuit permettant de réaliser les mesures nécessaires au tracé de la caractéristique de la cellule photovoltaïque.

Schéma du montage expérimental

Résultats expérimentaux

R Ohm	0	1	3	5	7	10	20	30	40	80	100	190	400
U (V)	0,676	0,78	0,98	1,2	1,4				3,3	3,4	3,5	3,5	3,5
I (A)	0,12	0,12	0,12	0,12	0,12				0,07	0,040	0,032	0,018	0,0090
$P = U \times I (W)$	0,081	0,094	0,12	0,14	0,17				0,231	0,136	0,112	0,063	0,0315

Caractéristique de la cellule photovoltaïque

pour un éclairement de $4 \times 10^3 \ \text{W/m}^2$ I(A) 0,14 0,12 0,1 0,08 0,06 0,02 U(V)

Puissance en fonction de la tension pour un

P (puissance électrique délivrée par la cellule) Rendement de la cellule =

P lumineuse reçue

Travail à faire :

* Faire un montage électrique simple permettant d'allumer la lampe.

Matériel disponible :

- ✓ Cellule photoélectrique
- ✓ Lampe
- ✓ Fils électrique
- ✓ Projecteur
- ♣ Faire le montage décrit dans le document 2

Appeler le professeur pour vérification avant de brancher ou allumer les appareils!

• Complétez le tableau du document 2 en effectuant des mesures.

La puissance lumineuse reçue par la cellule se définit par :

P lumineuse = E.S

Avec E = 'eclairement du projecteur en W/m^2 et $S = \text{surface de la cellule en } m^2$

- ♣ L'éclairement moyen E du projecteur a été mesurée et vaut en moyenne 4×10³ W/m². Calculez la puissance lumineuse reçue par la cellule.
- A l'aide des résultats expérimentaux, calculez-en % le rendement maximal de cette cellule.
- Proposez des solutions pour améliorer ce rendement.

Correction:

R Ohm	0	1	2	3	4	5	6	7	8	9	10
U(V)	1,63	2,22	2,5	2,8	2,9	3,0	3,1	3,1	3,1	3,1	3,1
I(A)	0,492	0,496	0.503	0,451	0,414	0,377	0,337	0,295	0,284	0,263	0,24
$P = U \times I$	0,80	1,10	1,25	1,26	1,20	1,13	1,04	0,91	0,88	0,81	0,74
(W)											

Surface de la cellule $S = 14 \times 8 = 112 \text{ cm}^2 = 112 \times 10^{-4} \text{ m}^2$

P lumineuse reçue par la cellule $\,=E\,.S=7000\,x\,112\,x10^{-4}\approx78\,W$

Rendement maximal:

Rendement max de la cellule =
$$\frac{P \text{ (puissance \'electrique d\'elivr\'ee par la cellule)max}}{P \text{ lumineuse reçue}} \approx \frac{1,3}{78} \approx 1,7 \%$$

Ce qui est faible.

Solutions pour améliorer le rendement :

- -source moins étendue pour améliorer E, l'éclairement et éviter les pertes d'énergie lumineuse
- une surface éclairée plus grande (P lumineuse augmente mais P électrique aussi et pas proportionnellement)
- cellules multi-jonction
- -autre ...