

N-Channel Enhancement Mode Power MOSFET

Description

The GT023N10Q uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. It can be used in a wide variety of applications.

General Features

 $ullet V_{DS} = 100V$ $ullet I_D (at V_{GS} = 10V) = 226A$ $ullet R_{DS(ON)} (at V_{GS} = 10V) = 2.7mΩ$

• 100% Avalanche Tested

RoHS Compliant

Application

- Power switch
- DC/DC converters

Schematic diagram

TO-247

Ordering Information

Device	Package	Marking	Packaging
GT023N10Q	TO-247	GT023N10	30pcs/Tube

Absolute Maximum Ratings $T_C = 25^{\circ}C$, unless otherwise noted					
Parameter	Symbol	Value	Unit		
Drain-Source Voltage	V _{DS}	100	٧		
Continuous Drain Current	I _D	226	А		
Pulsed Drain Current (note1)	I _{DM}	904	А		
Gate-Source Voltage	V_{GS}	±20	V		
Power Dissipation	P _D	250	W		
Single pulse avalanche energy (note2)	E _{AS}	600	mJ		
Operating Junction and Storage Temperature Range	T_J,T_stg	-55 To 175	°C		

Thermal Resistance					
Parameter	Symbol	Value	Unit		
Thermal Resistance, Junction-to-Ambient	R _{thJA}	62	°C/W		
Maximum Junction-to-Case	R _{thJC}	0.5	°C/W		

Specifications T _J = 25°C, u	Specifications T _J = 25°C, unless otherwise noted						
Parameter	Oh al	Test Conditions	Value			11.24	
	Symbol		Min.	Тур.	Max.	Unit	
Static Parameters							
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250\mu A$	100			V	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 100V, V_{GS} = 0V$			1	μΑ	
Gate-Source Leakage	I _{GSS}	V_{GS} = $\pm 20V$			±100	nA	
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	3.0	4.0	V	
Drain-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10V, I_{D} = 80A$		2.1	2.7	mΩ	
Forward Transconductance	9 _{FS}	V _{GS} = 5V, I _D = 80A		126		S	
Dynamic Parameters	,						
Input Capacitance	C_{iss}			8488		pF	
Output Capacitance	C _{oss}	$V_{GS} = 0V$, $V_{DS} = 50V$, f = 0.5MHz		3436			
Reverse Transfer Capacitance	C _{rss}			97			
Total Gate Charge	Q_g	$V_{DD} = 50V,$ $I_{D} = 80A,$ $V_{GS} = 10V$		121			
Gate-Source Charge	Q_{gs}			36		nC	
Gate-Drain Charge	Q_{gd}			26			
Turn-on Delay Time	t _{d(on)}			24			
Turn-on Rise Time	t _r	$V_{DD} = 50V$, $I_D = 80A$, $R_G = 5\Omega$		30			
Turn-off Delay Time	$t_{d(off)}$			94		ns	
Turn-off Fall Time	t _f			74			
Drain-Source Body Diode Characteristics							
Continuous Body Diode Current	Is	T _C = 25°C			226	Α	
Body Diode Voltage	V _{SD}	T _J = 25°C, I _{SD} = 80A, V _{GS} = 0V			1.2	V	
Reverse Recovery Charge	Qrr	I _F = 80A, V _{GS} = 0V		297		nC	
Reverse Recovery Time	Trr	di/dt=100A/us		94		ns	

Notes

1. Repetitive Rating: Pulse width limited by maximum junction temperature

- 2. EAS condition : Tj=25°C ,VDD=50V,VGS=10V,L=0.5mH,Rg=25 Ω
- 3. Identical low side and high side switch with identical $R_{\mbox{\scriptsize G}}$

Gate Charge Test Circuit

Switch Time Test Circuit

EAS Test Circuit

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Figure 1. Output Characteristics

Figure 3. Drain Source On Resistance

Figure 5. Capacitance

Figure 2. Transfer Characteristics

Figure 4. Gate Charge

Figure 6. Source-Drain Diode Forward

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Figure 7. Drain-Source On-Resistance

Figure 8. Safe Operation Area

10

V_{DS}, Drain-Source Voltage(V)

100

1000

Figure 9. Normalized Maximum Transient Thermal Impedance

0.01

0.01

0.1

TO-247 Package Information

CVMDOI	mm		
SYMBOL	MIN	NOM	MAX
A	4. 80	5. 00	5. 20
A1	2. 21	2.41	2. 59
A2	1.85	2.00	2. 15
b	1. 11	1. 21	1.36
b2	1. 91	2.01	2. 21
b4	2. 91	3. 01	3. 21
С	0. 51	0.61	0.75
D	20.70	21.00	21. 30
D1	16. 25	16. 55	16.85
Е	15. 50	15. 80	16. 10
E1	13.00	13. 30	13. 60
E2	4. 80	5. 00	5. 20
E3	2. 30	2. 50	2. 70
е	5. 44BSC		
L	19.62	19. 92	20. 22
L1	-	_	4. 30
φ P	3. 40	3. 60	3.80
ø P1	_	_	7. 30
S	6. 15BSC		