1 Subshift

Se $N \geq 2$, definimos o conjunto Σ_N formado sequências de números naturais limitados entre 1 e N. Precisamente,

$$\Sigma_N = \{(x_n)_{n=0}^{\infty} \in \mathbb{N}^{\mathbb{N}} : 1 \le x_n \le N \}.$$

Definimos também a função $d_N: \Sigma_N \times \Sigma_N \to \mathbb{R}$ dada por

$$d_N(x,y) = \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{N^i},$$

onde $x = (x_n)_{n=0}^{\infty}$ e $y = (y_n)_{n=0}^{\infty}$. Observe que d_N está bem definida pois $\sum_{i=0}^{\infty} \frac{1}{N^i} < \infty$.

Proposição 1.1. (Σ_N, d_N) é um espaço métrico.

Demonstração. Se $x=(x_n)_{n=0}^{\infty}, y=(y_n)_{n=0}^{\infty}, z=(z_n)_{n=0}^{\infty}\in\Sigma_N$, então

- 1. $d_N(x,y) \ge 0$, pois $|x_i y_i| \ge 0$ para todo $i \ge 0$,
- 2. $d_N(x,y) = d_N(y,x)$, pois $|x_i y_i| = |y_i x_i|$ para todo $i \ge 0$,
- 3. $d_N(x,z) \le d_N(x,y) + d_N(y,z)$, pois $|x_i z_i| = |x_i y_i + y_i z_i| \le |x_i y_i| + |y_i z_i|$ para todo $i \ge 0$.

Desse modo, d_N é uma distância em Σ_N e (Σ_N, d_N) é um espaço métrico.

Proposição 1.2. Sejam $x=(x_n)_{n=0}^{\infty}, y=(y_n)_{n=0}^{\infty}\in\Sigma_N$.

- 1. Se $x_i = y_i$ para todo $0 \le i \le k$, então $d_N(x, y) \le \frac{1}{N^k}$.
- 2. Se $d_N(x,y) < \frac{1}{N^k}$, então $x_i = y_i$ para todo $0 \le i \le k$.

Demonstração. 1. Se $x_i = y_i$ para todo $0 \le i \le k$, então

$$d_N(x,y) = \sum_{i=k+1}^{\infty} \frac{|x_i - y_i|}{N^i} \le \sum_{i=k+1}^{\infty} \frac{1}{N^i} = \frac{1}{N^{k+1}} \sum_{i=0}^{\infty} \frac{1}{N^i} = \frac{1}{N^{k+1}} \frac{N}{N-1} < \frac{1}{N^k}$$

2. Se $x_j \neq y_j$ para algum $0 \leq j \leq k$, então

$$d_N(x,y) = \sum_{i=0}^{\infty} \frac{|x_i - y_i|}{N^i} \ge \frac{1}{N^j} \ge \frac{1}{N^k}$$

Definição 1.3. Seja $A = (a_{ij})_{1 \leq i,j \leq N}$ uma matriz quadrada de ordem N. Dizemos que A é uma matriz de transição de ordem N se $a_{ij} \in \{0,1\}$ para todo $1 \leq i,j \leq N$.

Se A uma matriz de transição de ordem N, definimos o conjunto Σ_A como

$$\Sigma_A = \{(x_n)_{n=0}^{\infty} \in \Sigma_N : a_{x_i x_{i+1}} = 1 \text{ para todo } i \ge 0\}.$$

Proposição 1.4. Σ_A é fechado em (Σ_N, d_N) .

Demonstração. Seja $(x_n)_{n=0}^{\infty}$ uma sequência de elementos em Σ_A convergente para $x = (\xi_n)_{n=0}^{\infty}$.

Suponha que $x \notin \Sigma_A$. Então, existe $j \geq 0$ tal que $a_{\xi_j \xi_{j+1}} = 0$. Por outro lado, pela definição de convergência, existe $n_0 \geq 0$ tal que $d(x_{n_0}, x) < \frac{1}{N^{j+1}}$ e, portanto, as j+1 primeiras entradas de x e x_{n_0} são iguais. Absurdo, pois $x_{n_0} \in \Sigma_A$.

Seja $x = (x_n)_{n=0}^{\infty} \in \Sigma_A$. Observando que $a_{x_i x_{i+1}} = 1$ para todo $i \geq 1$, temos que $\sigma(x) = (x_n)_{n=1}^{\infty} \in \Sigma_A$. Desse modo, podemos definir a função $\sigma_A : \Sigma_A \to \Sigma_A$ como sendo a restrição de σ em Σ_A . Dizemos que σ_A é o subshift definido pela matriz de transição A.

No restante desse seção vamos estudar a dinâmica da função quadrática $F_{\mu}(x) = \mu x(1-x)$, onde o parâmetro $\mu = 3.839$ está fixado. Será omitido μ na notação da função e escreveremos apenas F.

Proposição 1.5. Se $x \notin \{0, a_1, a_2, a_3\}$ é um ponto periódico de F, então $x \in I_1 \cup I_2$.

Demonstração.

Lema 1.6. Λ é um conjunto hiperbólico.

Demonstração.

Teorema 1.7. $F|_{\Lambda}$ e σ_A são topologicamente conjugadas.

 \square

Proposição 1.8. Seja A uma matriz de transição de ordem N. Então σ_A possui $Tr(A^k)$ pontos periódicos de período k.

Demonstração.