Advanced Computer Graphics

Oliver Eisenberg

November 25, 2019

Contents

1	Labs		
	1.1	Lab 1 - Rasterising Lines	2
	1.2	Lab 2 - Reading Models	2
	1.3	Lab 3 - Simple Raytracing	2
		1.3.1 Raycasting	2
		1.3.2 Triangle intersection	2
	1.4	Lab 4 - Basic Lighting and Shadows	2
		1.4.1 Spotlights	2
		1.4.2 Pointlights	2
		1.4.3 Shadows	2
2	Optimisations		2
3	Adv	vanced Features	2

1 Labs

- 1.1 Lab 1 Rasterising Lines
- 1.2 Lab 2 Reading Models
- 1.3 Lab 3 Simple Raytracing
- 1.3.1 Raycasting

1.3.2 Triangle intersection

To compute triangle intersections the Möller–Trumbore algorithm was used. This was used instead of the method on the *slides* anticipating the requirements for the baracentric coordinates to complete Gouraud shading further in the coursework.

1.4 Lab 4 - Basic Lighting and Shadows

1.4.1 Spotlights

1.4.2 Pointlights

The slides refer to two methods to create pointlights, with and without an associated direction. As spot lights are directional, pointlights with a constant intensity were implemented. This allows a pointlight to be placed between objects to cast shadow outwa

1.4.3 Shadows

2 Optimisations

3 Advanced Features