Fiche de TD n⁰ 1 Espace de probabilité, Variables aléatoires

Espace de probabilité

Exercice 1 (Tribu discrète) Soit $\Omega = \{1, 2, 3, 4, 5\}$. Déterminer la tribu $\sigma(\{A, B, C\})$ où $A = \{1, 2\}, B = \{2, 3\}, C = \emptyset$.

- 1. Quelles sont les variables aléatoires réelles définies sur Ω ?
- 2. Que se passe-t-il si on retire C?
- 3. Que rajouter à $\{A, B, C\}$ pour engendrer $\mathcal{P}(\Omega)$?

Exercice 2 (Convergence monotone pour les probabilités) Soit l'espace mesurable (Ω, \mathcal{F}) et $\mathbb{P}: \mathcal{F} \to [0, +\infty[$ une application additive (c'est-à-dire $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$ lorsque $A, B \in \mathcal{F}$ et $A \cap B = \emptyset$), telle que $\mathbb{P}(\Omega) = 1$. Montrer que les quatre affirmations suivantes sont équivalentes :

- 1. \mathbb{P} est une probabilité (c'est-à-dire elle est σ -additive).
- 2. \mathbb{P} est continue sur des suites croissantes :

$$(A_n)_{n\in\mathbb{N}}\subset\mathcal{F}, A_n\subset A_{n+1}\Rightarrow \mathbb{P}(\cup_{n\in\mathbb{N}}A_n)=\lim_{n\to+\infty}\mathbb{P}(A_n).$$

(On notera pour des telles suites croissantes $\lim_n A_n = \bigcup_{n \in \mathbb{N}} A_n$.)

3. P est continue sur des suites décroissantes :

$$(A_n)_{n\in\mathbb{N}}\subset\mathcal{F}, A_n\supset A_{n+1}\Rightarrow \mathbb{P}(\cap_{n\in\mathbb{N}}A_n)=\lim_{n\to+\infty}\mathbb{P}(A_n).$$

(On notera pour des telles suites décroissantes $\lim_n A_n = \bigcap_{n \in \mathbb{N}} A_n$.)

4. $\mathbb P$ est continue sur des suites décroissantes vers \emptyset :

$$(A_n)_{n\in\mathbb{N}}\subset\mathcal{F}, A_n\supset A_{n+1} \text{ et } \cap_{n\in\mathbb{N}} A_n=\emptyset\Rightarrow \lim_{n\to+\infty}\mathbb{P}(A_n)=0.$$

Exercice 3 (Limites inférieure et supérieure) Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. On considère une suite d'ensembles mesurables $(A_n)_{n\in\mathbb{N}}\subset\mathcal{F}$ et on note

$$\liminf_{n} A_n = \bigcup_{n \in \mathbb{N}} \bigcap_{m \ge n} A_m, \quad \limsup_{n} A_n = \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} A_m.$$

- 1. Montrer que $\omega \in \liminf_n A_n$ ssi à partir d'un certain rang, ω est dans tous les A_n .
- 2. Montrer que $\omega \in \limsup_n A_n$ ssi ω est dans une infinité de A_n .

- 3. Montrer que $\mathbb{P}(\liminf_{n} A_n) \leq \liminf_{n \to +\infty} \mathbb{P}(A_n) \leq \limsup_{n \to +\infty} \mathbb{P}(A_n) \leq \mathbb{P}(\limsup_{n} A_n)$.
- 4. On dit que la suite $(A_n)_{n\in\mathbb{N}}$ est convergente si $\liminf_n A_n = \limsup_n A_n$. Montrer que si la suite est croissante (respectivement décroissante) alors elle est convergente et

$$\lim_{n} A_{n} = \bigcup_{n \in \mathbb{N}} A_{n} \quad \text{(respectivement } \lim_{n} A_{n} = \bigcap_{n \in \mathbb{N}} A_{n} \text{)}.$$

5. Montrer que si la suite $(A_n)_{n\in\mathbb{N}}$ est convergente, on a la propriété de continuité de la mesure : $\mathbb{P}(\lim_n A_n) = \lim_{n \to +\infty} \mathbb{P}(A_n)$.

Exercice 4 (Presque sûr) On dit qu'un évènement $A \in \mathcal{F}$ est presque sûr si A est presque sûrement égal à Ω , c'est-à-dire $\Omega = A \cup N$ avec N un ensemble négligeable (ie. $\exists B \in \mathcal{F} : N \subset B, \mathbb{P}(B) = 0$). Soit $(A_j)_{j \in J}, J \subset \mathbb{N}$, une famille d'évènements presque sûrs. Montrer que $\bigcap_{j \in J} A_j$ est presque sûr.

Exercice 5 (Tribu complète) Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Soit la famille d'ensembles suivante :

$$\mathcal{F}_{\mathbb{P}} = \{ C \in \mathcal{P}(\Omega) : \exists A_1, A_2 \in \mathcal{F}, \text{tels que} A_1 \subset C \subset A_2 \text{ et } \mathbb{P}(A_2 \setminus A_1) = 0 \}.$$

- 1. Montrer que $\mathcal{F}_{\mathbb{P}} = \sigma(\mathcal{F} \cup \mathcal{N})$ où \mathcal{N} est la classe des ensembles \mathbb{P} -négligeables, ie. $\mathcal{N} = \{N \subset \Omega : \exists A \in \mathcal{F} : N \subset A, \mathbb{P}(A) = 0\}.$
- 2. On définit $\bar{\mathbb{P}}$ sur $\mathcal{F}_{\mathbb{P}}$ par $\bar{\mathbb{P}}(C) = \mathbb{P}(A_1) = \mathbb{P}(A_2)$. Montrer que $\bar{\mathbb{P}}$ est bien définie (c'est-à-dire que sa valeur ne dépend par du choix de A_1 et de A_2). Montrer que $\bar{\mathbb{P}}$ est la seule mesure sur $\mathcal{F}_{\mathbb{P}} = \sigma(\mathcal{F} \cup \mathcal{N})$ qui prolonge \mathbb{P} (ie. qui coïncide avec \mathbb{P} sur \mathcal{F}).
- 3. Montrer que pour toute fonction X réelle $\mathcal{F}_{\mathbb{P}}$ -mesurable, il existe deux variables aléatoires (ie. \mathcal{F} -mesurables) U, V réelles telles que $U \leq X \leq V$ et V U = 0 \mathbb{P} -p.s.

Variables aléatoires

Exercice 6 (Variable aléatoire constante) Montrer qu'une application $\Omega \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ est une variable aléatoire par rapport à la tribu triviale sur Ω si et seulement si elle est constante.

Exercice 7 (Comparaison de limite supérieure et inférieure d'ensembles et de v.a.) Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a. réelles définies sur un espace mesurable (Ω, \mathcal{F}) .

- 1. Comparer les ensembles $\{\limsup_n X_n > 1\}$, $\limsup_n \{X_n > 1\}$, $\{\limsup_n X_n \geq 1\}$ et $\limsup_n \{X_n \geq 1\}$.
- 2. Comparer les ensembles $\{\liminf_n X_n > 1\}$, $\liminf_n \{X_n > 1\}$, $\{\liminf_n X_n \ge 1\}$ et $\liminf_n \{X_n \ge 1\}$.

Exercice 8 (Approximation) Soit X une variable aléatoire positive. On considère

$$A_{n,k} = \left\{ \omega : \frac{k-1}{2^n} \le X(\omega) < \frac{k}{2^n} \right\}, \quad B_n = \{\omega : X(\omega) > n\}.$$

- 1. Montrer que $X_n = \sum_{k=1}^{n2^n} \frac{k-1}{2^n} \mathbf{1}_{A_{n,k}} + n \mathbf{1}_{B_n}$ est une variable aléatoire.
- 2. Montrer que $\lim_{n\to+\infty} X_n(\omega) = X(\omega)$ pour tout $\omega \in \Omega$.
- 3. Montrer que $(X_n(\omega))_{n\geq 1}$ est une suite croissante.

Exercice 9 (Copies ordonnées) 1. Soient X, Y deux variables aléatoires réelles sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ telles que

$$\mathbb{P}(Y < t < X) = 0 \quad \forall t \in \mathbb{R}.$$

Montrer que $\mathbb{P}(Y < X) = 0$.

2. On suppose cette fois que X et Y ont même loi. Montrer que si $X \ge Y$ p.s. alors X et Y sont presque sûrement égales.

Exercice 10 1. Montrer qu'il existe une variable aléatoire X à valeurs dans \mathbb{N} telle que

$$\mathbb{P}(X=k) = \frac{e^{-2}}{4} \frac{2^k}{k!} (1+ak) \quad \forall k \in \mathbb{N},$$

pour une unique valeur de a qu'on déterminera.

2. Soit Y une variable aléatoire de loi de Poisson de paramètre $\lambda>0.$ Trouver la loi de

$$Z := \begin{cases} Y/2 & \text{si } Y \text{ est pair,} \\ (1-Y)/2 & \text{si } Y \text{ est impair.} \end{cases}$$

3. Soit T une variable aléatoire de loi géométrique de paramètre $p \in]0,1[$. On considère U=4|T/2|-2T+1 où $[\cdot]$ désigne la partie entière. Trouver la loi de U.

Exercice 11 1. Montrer qu'il existe une variable aléatoire X dont la fonction de répartition vaut

$$F(t) = (1 + e^{-t})^{-1} \quad \forall t \in \mathbb{R}.$$

- 2. Calculer la densité de X.
- 3. On pose $U = e^X$, $V = \mathbf{1}_{\{0 < X < 1\}}$ et $W = X \mathbf{1}_{\{0 < X < 1\}}$. Trouver les lois de U, V et W.

Exercice 12 Soit $X \sim \mathcal{U}([-1,3])$. On pose Y = |X|. Trouver la fonction de répartition et la densité de Y.

Exercice 13 Soient $n \ge 1$ un entier fixé et p_1, p_2, p_3 trois réels positifs. On note

$$p_{i,j} = \begin{cases} \frac{n!}{i!j!(n-i-j)!} p_1^i p_2^j p_3^{n-i-j} & \text{si } i+j \leq n \\ 0 & \text{sinon.} \end{cases}$$

3

- 1. À quelle condition sur p_1, p_2, p_3 existe-t-il un couple (X, Y) tel que $\mathbb{P}(X = i, Y = j) = p_{i,j}$.
- 2. Déterminer les lois de X et de Y.

Exercice 14 Le couple aléatoire (X, Y) a la densité, par rapport à la mesure de Lebesgue sur \mathbb{R}^2 ,

$$f(x,y) = cy \mathbf{1}_{[0,2]}(x) \mathbf{1}_{[0,1]}(y).$$

- 1. Calculer la constante c.
- 2. Trouver les densités marginales de X et de Y.
- 3. Mêmes questions pour

$$g(x,y) = c(x+2y)e^{-2x-y}\mathbf{1}_{[0,+\infty[}(x)\mathbf{1}_{[0,+\infty[}(y).$$

4. Mêmes questions encore pour

$$h(x,y) = c \exp\left(-\frac{x^2 + 2xy + 4y^2}{8}\right).$$

Exercice 15 (Fonctions de répartition**)

Soit X une v.a. réelle définie sur un espace probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ de fonction de répartition F. On se propose de construire une v.a. Y sur l'espace $(]0,1[,\mathcal{B}(]0,1[),\lambda)$ de même fonction de répartition que X, où λ mesure de Lebesgue sur $(]0,1[,\mathcal{B}(]0,1[))$.

Pour $x \in]0,1[$, on pose

$$Y(x) = \inf \{ y \in \mathbb{R} : F(y) \ge x \}.$$

1. On suppose que la loi de X admet une densité (par rapport à la mesure de Lebesgue) strictement positive.

Montrer que $\forall x \in]0, 1[, Z(x) = Y(x) = F^{-1}(x).$

Montrer que F(X) suit la loi uniforme sur]0,1[et que Y admet F comme fonction de répartition.

2. Cas général : Montrer que $\{y \in \mathbb{R} : F(y) \ge x\} = [Y(x), +\infty[$ et en déduire que Y a F pour fonction de répartition.

Exercice 16 (Variable aléatoire mixte) Soit X une variable aléatoire qui prend ses valeurs dans [0,1] et telle que $\mathbb{P}(X=0)=1/4$ et $\mathbb{P}(X=1)=p$ et pour tout intervalle $[a,b]\subset]0,1[$, on a

$$\mathbb{P}(X \in [a, b]) = \frac{b - a}{3}.$$

- 1. Déterminer p pour qu'on ait ainsi bien défini une loi de probabilité.
- 2. Exprimer la loi \mathbb{P}_X sous la forme $\mathbb{P}_X = \mu_1 + \mu_2$ où μ_1 est une mesure discrète et μ_2 est une mesure à densité.
- 3. Calculer la fonction de répartition de X.
- 4. Calculer l'espérance et la variance de X.

Fiche de TD n⁰ 2 Espérance, variance, moment, fonction caractéristique

Espérance, variance

Exercice 1 Soit U une variable aléatoire de loi $\mathcal{U}(]0,1[)$. On considère $X=\left[\frac{1}{U}\right]$ où $[\cdot]$ désigne la fonction partie entière.

- 1. Montrer que X est une variable aléatoire discrète et donner sa loi.
- 2. Calculer la probabilité de l'évènement $\{X \ge 100\}$.
- 3. La variable aléatoire X est-elle intégrable?

Exercice 2 Soit $X:(\Omega,\mathcal{F},\mathbb{P})\to\mathbb{R}$ une variable aléatoire. Calculer $\mathbb{E}[X]$, $\mathbb{E}[|X|]$, $\mathbb{E}[X^2]$, $\mathbb{E}[e^{itX}]$ dans les cas suivants :

- 1. $\mathbb{P}_X(dx) = \frac{1}{2} \mathbf{1}_{[-1,1]}(x) dx$;
- 2. $\mathbb{P}_X(dx) = \exp(-(x^2 2x)/4)dx/(\sqrt[4]{e}\sqrt{4\pi}).$

Exercice 3 (Espérance, variance, moments) Soit X une variable aléatoire réelle de densité

$$f_X(x) = c(x\mathbf{1}_{[0,1]}(x) + (2-x)\mathbf{1}_{[1,2]}(x)).$$

Déterminer c et calculer les moments (signés) $\mu_n(X) = \mathbb{E}[X^n], n \in \mathbb{N}^*, \text{ de } X \text{ et } \text{Var}(X).$

Exercice 4 (Inverse de Cauchy) Soit X une variable aléatoire de loi de Cauchy de paramètre 1. Déterminer la loi de $Y = X^{-1}$.

Exercice 5 (Cauchy tronqué) Soit X une variable aléatoire de loi de Cauchy. Calculer $\mathbb{E}[\min(|X|, 1)]$.

Exercice 6 (Cadeau bonux) Une marque de lessive joint à chacun de ses paquets une carte d'un jeu de 52 cartes. On suppose le nombre de paquets infiniment grand et on note S le nombre de paquets à acheter pour avoir un jeu complet. Estimer l'espérance de S.

Indication. On posera X_k la variable égale au nombre de paquets à acheter pour avoir une carte différente des k distinctes déjà obtenues et on exprimera S en fonctions des X_k .

Exercice 7 (Couple de v.a.) Soit U=(X,Y) une v.a. dans \mathbb{R}^2 de densité $(x,y)\mapsto ke^{-x}\mathbf{1}_{0<|y|< x}$.

1. Quelle est la valeur de k?

- 2. Déterminer les lois marginales.
- 3. Quelle est la loi du vecteur $\left(\frac{X-Y}{2},\frac{X+Y}{2}\right)$?

Exercice 8 (Couple gaussien) Soit

$$f(x,y) = C \exp\left(-\frac{x^2 + 2\alpha xy + y^2}{2}\right).$$

- 1. Pour quels $\alpha \in \mathbb{R}$, la fonction f peut-elle définir la densité d'un couple (X,Y)? Déterminer alors la constante C.
- 2. Déterminer les lois de X et de Y.
- 3. Calculer $\mathbb{E}[XY]$ et Var(X+Y).

Exercice 9 (Tirages avec remise) Soit $X \sim \mathcal{G}(p)$ et soit $n \in \mathbb{N}^*$.

- 1. On note $Y = \inf(X, n)$. Calculer $\mathbb{E}[Y]$.
- 2. Une urne contient 2 boules rouges et 3 boules noires. On tire successivement et avec remise à chaque fois une boule de l'urne et on cesse les tirages dès qu'une boule rouge est sortie. On désigne par Z le nombre de boules noires obtenues pendant l'expérience. Calculer $\mathbb{E}[Z]$ et $\mathrm{Var}(Z)$.

Exercice 10 (Moment et queue d'une loi) Soit X une variable aléatoire positive de fonction de répartition F_X .

1. Soit ϕ une fonction positive strictement croissante de classe C^1 sur $[0, +\infty[$, nulle en 0. Montrer que

$$\mathbb{E}[\phi(X)] = \int_0^{+\infty} \phi'(t) (1 - F_X(t)) dt.$$

2. On suppose de plus que $\phi(X)$ est intégrable. Montrer que

$$\lim_{t \to +\infty} \phi(t) \mathbb{P}(X > t) = 0.$$

- 3. Expliciter le cas particulier $\phi(t) = t^n$, $n \in \mathbb{N}^*$.
- 4. On suppose maintenant que pour t assez grand, on a

$$\mathbb{P}(X \ge t) \le \frac{c}{t^{\alpha}}$$

où c > 0. Montrer que X admet un moment d'ordre k pour tout $k \in \mathbb{N}^*$ avec $k < \alpha$.

Exercice 11 (Moments et loi) Soit $X \sim \mathcal{N}(0,1)$.

- 1. Déterminer tous les moments $\mathbb{E}[X^n]$, $n \geq 1$, de X.
- 2. Trouver la densité f_Y de $Y = e^X$ et calculer les moments $\mu_n(Y) = \mathbb{E}[Y^n], n \in \mathbb{N}^*$.
- 3. On note Y_a , $|a| \le 1$, la variable aléatoire de densité

$$f_{Y_a}(x) = f_Y(x)(1 + a\sin(2\pi\ln(x))).$$

Calculer les moments $\mu_n(Y_a) = \mathbb{E}[Y_a^n], n \in \mathbb{N}^*, \text{ de } Y_a.$

4. En déduire une conclusion intéressante.

Fonctions caractéristiques

Exercice 12 (Opérations sur les fonctions caractéristiques) Soit X une variable aléatoire de fonction caractéristique φ . On dit que X est de loi symétrique si la loi de -X est la même que celle de X, i.e. $\mathbb{P}(X \in A) = \mathbb{P}(-X \in A)$ pour tout $A \in \mathcal{B}(\mathbb{R})$.

- 1. Donner un exemple de loi symétrique.
- 2. Montrer que si X est de loi symétrique ssi φ est à valeurs réelles.
- 3. Soit Y une variable aléatoire de même loi que X mais indépendante de X. Donner, en fonction de φ , la fonction caractéristique de X-Y.
- 4. Soit U une variable indépendante de X et de loi $\mathbb{P}(U=1)=\mathbb{P}(U=-1)=1/2$. Donner, en fonction de φ , la fonction caractéristique de UX.
- 5. Soient φ et ψ deux fonctions caractéristiques et $p \in [0, 1]$. Montrer que $p\varphi + (1-p)\psi$ est encore une fonction caractéristique.

Exercice 13 (cosⁿ) Montrer que la fonction $t \mapsto \cos^n t$ ($t \in \mathbb{R}, n \geq 1$ entier) est une fonction caractéristique.

Exercice 14 (Loi arithmétique) Une variable aléatoire X suit une loi arithmétique s'il existe $a \ge 0$ et b > 0 tels que X prenne ses valeurs dans le réseau $a + b\mathbb{Z}$, c'est à dire :

$$\mathbb{P}(X \in \{a + nb, n = 0, \pm 1, \pm 2, \ldots\}) = 1.$$

- 1. On suppose que X suit une loi arithmétique. Montrer qu'il existe $c \neq 0$ tel que $|\varphi_X(c)| = 1$.
- 2. Réciproquement, s'il existe $c \neq 0$ tel que $|\varphi_X(c)| = 1$, on montre que X suit une loi arithmétique.
 - (a) Montrer que si $|\varphi_X(c)| = 1$ alors l'argument de e^{icX} est ps constant.
 - (b) En déduire que X suit une loi arithmétique.
- 3. S'il existe $c \neq 0$ et $c' \neq 0$ tels que $|\varphi_X(c)| = |\varphi_X(c')| = 1$ avec $c'/c \notin \mathbb{Q}$, montrer que X est ps constante.

Exercice 15 (Dérivabilité en 0 de la fonction caractéristique)

On considère une variable aléatoire X de support $\mathbb{Z} \setminus \{-1,0,1\}$ et loi donnée par

$$p_n = p_{-n} = \frac{c}{n^2 \ln(n)}, \ n \in \mathbb{N} \setminus \{0, 1\}, \quad p_{-1} = p_0 = p_1 = 0$$

c'est-à-dire $\mathbb{P}_X = \sum_{n=2}^{+\infty} \frac{c}{n^2 \ln(n)} (\delta_n + \delta_{-n})$ (où c est une constante qu'on ne demande pas de préciser).

1. Justifier qu'on définit bien de cette façon une loi de probabilité.

2. Montrer que la fonction caractéristique φ_X de X s'exprime sous la forme

$$\varphi_X(t) = \sum_{n=2}^{+\infty} \frac{2c(1 - 2\sin^2(nt/2))}{n^2 \ln(n)}.$$

3. Soit, pour $N \ge 2$,

$$f_N(t) = \sum_{2 \le n \le N} \frac{\sin^2(nt/2)}{tn^2 \ln(n)}, \quad g_N(t) = \sum_{n > N} \frac{\sin^2(nt/2)}{tn^2 \ln(n)}.$$

- (a) Exprimer $\frac{\varphi_X(t)-t}{t}$ à l'aide de $f_N(t)$ et de $g_N(t)$.
- (b) Montrer que $|f_N(t)| \leq \frac{|t|N}{4\ln 2}$.
- (c) Montrer que $|g_N(t)| \leq \frac{1}{|t|N \ln(N)}$.
- 4. Trouver une fonction $t \mapsto N(t) \in [0, +\infty[$ telle que $\lim_{t\to 0} f_{N(t)}(t) = 0$ et $\lim_{t\to 0} g_{N(t)}(t) = 0$.
- 5. En déduire que φ est dérivable en 0 et formuler une remarque pertinente.

Université de Rennes 1 UFR de Mathématiques

L3 Mathématiques Probabilités

Fiche de TD n⁰ 3 : Indépendance

Exercice 1 Une maladie affecte 0.5% de la population. Un test T permet de dépister cette maladie avec la fiabilité suivante :

T est positif pour 95% des personnes affectées par la maladie

T est négatif pour 99% des personnes non affectées par la maldie.

- 1. Calculer la probabilité qu'un individu ayant un test positif soit affecté par la maladie.
- 2. Calculer la probabilité qu'un individu soit non malade quand le test est négatif

Exercice 2 1. On considère une variable X de loi exponentielle de paramètre $\alpha > 0$. Vérifier que la loi exponentielle satisfait la propriété d'absence de mémoire, ie

$$\forall s, t > 0$$
, $\mathbb{P}(X > t + s | X > s) = \mathbb{P}(X > t)$.

2. Soit X une variable positive à densité satisfaisant la propriété d'absence de mémoire. Montrer que X est de loi exponentielle dont on précisera le paramètre.

Exercice 3 (Couple aléatoire) Soit $f(x,y) = Ce^{-x(1+y^2)}$ définie pour $(x,y) \in \mathbb{R}^+ \times \mathbb{R}$.

- 1. Calculer C pour que f soit la densité de probabilité d'un couple aléatoire (X,Y).
- 2. Exprimer les lois marginales.
- 3. Les variables X et Y sont-elles indépendantes?
- 4. Les variables aléatoires X, Y ont-elles une espérance? Si oui, les calculer.
- 5. Reprendre avec $f(x,y) = \frac{\lambda}{x^2 y} \mathbf{1}_{x \ge 1} \mathbf{1}_{1/x \le y \le x}$

Exercice 4 (Min et max) Soient X_1, \ldots, X_n des variables aléatoires réelles indépendantes de même fonction de répartition F. On note $U = \min_{1 \le i \le n} X_i$ et $V = \max_{1 \le i \le n} X_i$.

- 1. Calculer les fonctions de répartitions de U et V à l'aide de F.
- 2. Si F admet une densité f, montrer que U et V admettent des densités et les calculer.

Exercice 5 (Exponentielles) Un appareil électronique est composé de n éléments (montés en série) dont les durées de fonctionnement sont indépendantes et de lois exponentielles.

- 1. Déterminer la loi de la durée de fonctionnement de l'appareil.
- 2. Quelle est la probabilité que le composant n°i soit responsable de la défaillance?

Exercice 6 (Tribu asymptotique) On considère $(X_n)_{n\geq 1}$ une suite de variables aléatoires définies sur l'espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$.

1. On définit alors la suite $(S_n)_{n\geq 0}$ par $S_0=0$ et $S_n=X_1+\ldots+X_n$. Vérifier que $A_0=\{X_n\to 0\}, A_1=\{\limsup_n(X_n)<+\infty\}$ et $A_2=\{\left(\frac{S_n}{n}\right) \text{ converge dans } \mathbb{R}\}$ sont des événements de la tribu asymptotique \mathcal{F}^{∞} associée à $(X_n)_{n\geq 1}$.

- 2. On suppose maintenant que les variables X_n sont indépendantes.
 - (a) Que peut-on dire de $\mathbb{P}((X_n)$ converge)?
 - (b) On suppose que X_n converge \mathbb{P} -presque surement vers une variable X. Que peut-on dire de X?

Exercice 7 (Lemmes de Borel-Cantelli) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires de même loi. Soit $p\geq 1$ et c>0.

- 1. Montrer que si $\mathbb{E}[|X_0|^p] < \infty$, alors $\mathbb{P}(\limsup_n \{|X_n| > cn^{1/p}\}) = 0$.
- 2. Montrer la réciproque dans le cas indépendant.

Exercice 8 (Poisson composé) Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires indépendantes de même loi et dans L^2 . On considère N une variable aléatoire indépendante de loi $\mathcal{P}(\alpha)$ et on pose $Y = \sum_{i=1}^{N} X_i$ (on convient que la somme est nulle si elle est vide).

- 1. Calculer l'espérance et la variance de Y.
- 2. Déterminer la fonction caractéristique de Y.
- 3. Reconnaitre la loi de Y lorsque $X_0 \sim \mathcal{B}(p)$.

Exercice 9 (Quotient d'exponentielles) Soient X et Y deux variables aléatoires indépendantes de même loi exponentielle $\mathcal{E}(1)$. On note Z = X/Y et $U = \ln(X)$, $V = -\ln(Y)$.

- 1. Exprimer $\mathbb{P}(Z \leq t)$ à l'aide des variables aléatoires U et V.
- 2. Montrer que la densité de U est donnée par $f_U(x) = \exp(x e^x)$.
- 3. En déduire la densité de V.
- 4. Montrer que U+V admet pour densité $f_{U+V}(x)=\frac{e^{-x}}{(1+e^{-x})^2}$.
- 5. Calculer $\mathbb{P}(Z \leq t)$.

Exercice 10 (Sommes de variables aléatoires) Soient les variables aléatoires indépendantes X et Y. Calculer la loi de la somme X + Y lorsque

- 1. $X \sim \mathcal{B}(n, p)$ et $Y \sim \mathcal{B}(m, p)$.
- 2. $X \sim \mathcal{P}(\lambda)$ et $Y \sim \mathcal{P}(\mu)$.
- 3. $X \sim \mathcal{N}(m, \sigma^2)$ et $Y \sim \mathcal{N}(n, \tau^2)$.
- 4. $X \sim \text{Gamma}(p, \lambda)$ et $Y \sim \text{Gamma}(q, \lambda)$.

Exercice 11 (Box-Muller) On considère un point (aléatoire) M du plan cartésien. On note (X,Y) ses coordonnées cartésiennes et (R,Θ) ses coordonnées polaires. Montrer que X,Y sont indépendantes de même loi $\mathcal{N}(0,1)$ ssi R^2 et Θ indépendantes avec $R^2 \sim \mathcal{E}(1/2)$ et $\Theta \sim \mathcal{U}([0,2\pi])$.

Exercice 12 (Loi beta) Soient a, b > 0. Désignons par Z_a , Z_b deux variables aléatoires indépendantes de lois respectivement Gamma(a, 1), Gamma(b, 1).

- 1. Trouver la densité du vecteur aléatoire $(U, V) = (Z_a + Z_b, Z_a/Z_a + Z_b)$.
- 2. Les variables aléatoires U et V sont-elles indépendantes? (on dit que V suit une loi beta B(a,b)).

Exercice 13 (Bernstein) Soient X et Y deux v.a. indépendantes de même loi.

- 1. Montrer que si X et Y sont deux variables normales centrées réduites alors X + Y et X Y sont indépendantes.
- 2. Théorème de Bernstein. Réciproquement, on suppose que X et Y sont de carrés intégrables et que X+Y et X-Y sont indépendantes. On veut montrer que X et Y sont deux variables normales. Pour cela :
 - (a) Montrer qu'on peut supposer que X et Y sont centrées et de variance 1.
 - (b) Montrer que φ , la fonction caractéristique commune de X et de Y satisfait l'égalité : $\varphi(2t) = \varphi(t)^3 \varphi(-t)$.
 - (c) En utilisant la continuité de φ en 0, en déduire que φ ne s'annule nulle part.
 - (d) On pose $\psi(t) = \varphi(t)/\varphi(-t)$. Montrer que $\psi(2t) = \psi(t)^2$.
 - (e) En étudiant le comportement de φ au voisinage de 0, en déduire que $\psi(t)=1$ $\forall t\in\mathbb{R}.$
 - (f) En déduire que $\varphi(t) = e^{-t^2/2}$.

Université de Rennes 1 UFR de Mathématiques

Fiche de TD n⁰ 4 : Convergences probabilistes

Exercice 1 (Convergence en probabilité) Soit $(X_n)_{n\geq 1}$, X et Y des v.a. réelles avec $(X_n)_{n\geq 1}$ converge en probabilité vers X.

- 1. On suppose dans cette question que pour tout $n \ge 1$, $|X_n| \le Y$ p.s.
 - (a) Montrer que $|X| \leq Y$ p.s.
 - (b) Montrer que si Y est bornée, alors $(X_n)_{n\geq 1}$ converge vers X dans L^p , $\forall p\geq 1$.
- 2. Montrer que $\mathbb{E}[|X|] \leq \liminf \mathbb{E}[|X_n|]$. (Indic. Si $x \geq 0$ et $k \geq 0$, $x \geq \min(x, k)$).

Exercice 2 (Convergence de variables aléatoires exponentielles) Soit $(\theta_n)_{n\geq 1}$ une suite de réels strictement positifs telle que $\lim_{n\to+\infty}\theta_n=+\infty$. On considère $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes de loi exponentielle $\mathcal{E}(\theta_n)$.

- 1. Montrer que la suite $(X_n)_{n\geq 1}$ converge en probabilité.
- 2. La suite $(X_n)_{n\geq 1}$ converge-t-elle dans L^1 ?
- 3. Étudier la convergence presque sûre dans les deux cas suivants : $\theta_n = n$; $\theta_n = \ln n$.

Exercice 3 (Loi forte des grands nombres dans le cas L^4)

- 1. Soit $(X_n)_{n\geq 1}$ une suite de v.a. réelles indépendantes et de même loi telles que $\mathbb{E}[X_1] = 0$ et $\mathbb{E}[X_1^4] < \infty$. Montrer que $\frac{1}{n}(X_1 + \ldots + X_n)$ converge presque sûrement vers 0.
- 2. Montrer que dire si les v.a. X_n ne sont plus de même loi mais $\sup_{n>1} \mathbb{E}[X_n^4] < \infty$?

Exercice 4 (Théorème de Weierstrass) Soit f une fonction continue sur [a, b].

- 1. Soit $x \in \mathbb{R}$ et X_n une suite de v.a. à valeurs dans [a, b], d'espérance x et de variance $\sigma_n^2(x)$. Montrer que si $\sigma_n^2(x)$ converge uniformément vers 0 sur l'intervalle [a, b], alors $\mathbb{E}[f(X_n)] \to f(x)$ quand $n \to \infty$ uniformément sur [a, b].
- 2. On considère f continue sur [0,1]. Déduire le théorème de Weierstrass de la question précédente.
 - Indic : considérer $X_n = \frac{1}{n}(Y_1 + \ldots + Y_n)$ avec Y_i indépendantes de loi $\mathcal{B}(x)$.
- 3. Comment étendre le résultat précédent à n'importe quel intervalle [a, b]?

Exercice 5 (Lois binomiales) Soit $\lambda > 0$ et $(X_n)_{n \geq 0}$ une suite de v.a.r. de loi binomiale $X_n \sim \mathcal{B}(n, \lambda/n)$. Montrer que X_n converge en loi. Préciser la limite.

Exercice 6 (Lois uniformes) Soit $(X_n)_{n\geq 1}$ une suite de v.a.r. de loi uniforme $X_n \sim \mathcal{U}(1,\ldots,n)$. Montrer que $\frac{X_n}{n}$ converge en loi. Préciser la limite.

Exercice 7 (Convergence du min de v.a.i. uniformes) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes ayant toutes une loi uniforme sur [0,1]. On pose

$$M_n = \min(X_1, \dots, X_n), \qquad U_n = nM_n.$$

- 1. Calculer les fonctions de répartition de M_n et U_n .
- 2. Montrer que la suite $(U_n)_{n\geq 1}$ converge en loi. Préciser la limite.
- 3. Étudier la convergence de M_n : en loi, en proba, p.s., dans L^p , dans L^{∞} .

Exercice 8 (Renormalisation et maximum de variables aléatoires iid, cas borné) Soient X_1, \ldots, X_n des variables aléatoires indépendantes de même loi avec un support borné. On note F leur fonction de répartition commune et $M_n = \max(X_1, \ldots, X_n)$.

- 1. Montrer qu'il existe $x_0 \in \mathbb{R}$ tel que $\forall x < x_0, F(x) < 1$, et $F(x_0) = 1$.
- 2. Montrer que $\lim_{n \to +\infty} \mathbb{P}(M_n \in]a, b]) = 0$ si $b < x_0$ ou si $a \ge x_0$ et que la limite est égale à 1 si $a < x_0 \le b$.
- 3. En déduire que M_n converge en loi vers x_0 .

On suppose désormais $x_0 = 1$ et $F(x) = 1 - (1 - x)^{\alpha}$ si $x \in [0, 1]$ (où $\alpha > 0$).

- 4. Montrer que si $\alpha = 1$ les v.a. X_i sont uniformément distribuées sur [0,1].
- 5. Soit $Z_n = n^{1/\alpha}(M_n 1)$. Montrer que

$$\lim_{n \to +\infty} \mathbb{P}(Z_n < x) = \begin{cases} \exp(-(-x)^{\alpha}) & \text{si } x \le 0\\ 1 & \text{si } x > 0. \end{cases}$$

Exercice 9 (Renormalisation et maximum de variables aléatoires *iid*, cas non borné) Comme dans l'exercice $8, X_1, \ldots, X_n$ sont des v.a. iid de fonction de répartition F. On suppose que $\forall x \in \mathbb{R}, F(x) < 1$. On pose $M_n = \max(X_1, \ldots, X_n)$.

- 1. Montrer que, pour tout $x \in \mathbb{R}$, $\lim_{n \to +\infty} \mathbb{P}(M_n > x) = 1$.
- 2. On suppose que les variables aléatoires X_i sont de loi exponentielle $\mathcal{E}(\theta)$ et on pose $Z_n = \theta M_n \ln n$. Déterminer, pour tout $x \in \mathbb{R}$, $\lim_{n \to +\infty} \mathbb{P}(Z_n \leq x)$.
- 3. On suppose maintenant que les variables aléatoires X_i sont de loi de Cauchy $\mathcal{C}(\theta)$ et on pose $Z_n = \pi M_n/n\theta$. Montrer que

$$\lim_{n \to +\infty} \mathbb{P}(Z_n \le x) = \begin{cases} \exp(-x^{-1}) & \text{si } x > 0 \\ 0 & \text{sinon.} \end{cases}$$

Indication. On utilisera l'identité trigonométrique

$$\forall x > 0$$
, $\arctan(x) + \arctan(1/x) = \pi/2$.

Exercice 10 (Loi de Cauchy) Soit $(X_n)_{n\geq 1}$ une suite de v.a. iid de loi de Cauchy $\mathcal{C}(1)$.

- 1. Déterminer la loi de $\frac{1}{n}(X_1 + \cdots + X_n)$.
- 2. La suite $\frac{1}{n}(X_1 + \cdots + X_n)$ converge-t-elle presque sûrement quand $n \to +\infty$?

Exercice 11 (LGN) Soit f une fonction continue bornée de \mathbb{R} dans \mathbb{R} . Montrer que

$$\lim_{n \to +\infty} \sum_{k=0}^{+\infty} e^{-n\lambda} \frac{(n\lambda)^k}{k!} f\left(\frac{k}{n}\right) = f(\lambda).$$

Exercice 12 (TCL et Poisson) En utilisant le TCL pour des variables aléatoires de Poisson $\mathcal{P}(1)$, montrer que

$$\lim_{n \to +\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \frac{1}{2}.$$

Exercice 13 (Méthode de Monte-Carlo) Soit $\psi : [0,1] \to [0,1]$ mesurable et soit $(U_n)_{n\geq 0}$ une suite de variables aléatoires réelles indépendantes de loi uniforme sur [0,1]. On pose

$$I = \int_0^1 \psi(x)dx, \quad Y_k = \begin{cases} 1 & \text{si } \psi(U_{2k}) \ge U_{2k+1} \\ 0 & \text{sinon.} \end{cases}$$

- 1. Déterminer la limite de $\bar{Y}_n := \frac{1}{n}(Y_1 + \dots + Y_n)$.
- 2. Méthode de Monte-Carlo : On veut estimer I à l'aide de \bar{Y}_n et l'erreur relative est

$$\varepsilon_n = \frac{|\bar{Y}_n - I|}{I}.$$

Donner un majorant de $\mathbb{P}(\varepsilon_n > \alpha)$ en termes de α , I, n.

3. Supposons que des estimations ont permis par ailleurs de voir que I>0,5. À partir de quelle valeur de n s'assure-t-on 19 chances sur 20 de faire une erreur relative inférieure à 1% en estimant I?

Exercice 14 (δ -méthode) Soit $\phi : \mathbb{R} \to \mathbb{R}$ dérivable avec ϕ' continue en un point $m \in \mathbb{R}$.

1. Soient $\{c_n : n \in \mathbb{N}\}$ une suite de réels strictement positifs, telle que $c_n \to +\infty$ et X une v.a. réelle, $\{X_n : n \in \mathbb{N}\}$ une suite de v.a. telles que $c_n(X_n - m) \xrightarrow{\mathcal{L}oi} X$ quand $n \to +\infty$. Montrer que quand $n \to +\infty$

$$c_n(\phi(X_n) - \phi(m)) \xrightarrow{\mathcal{L}oi} \phi'(m)X.$$

Indication. Commencer par montrer que $X_n \stackrel{proba}{\longrightarrow} m$.

2. Soit $(X_n)_{n\in\mathbb{N}}$ une suite *iid* de variables aléatoires d'espérance m et de variance σ^2 . On note $\bar{X} = \frac{1}{n}(X_1 + \dots + X_n)$ la moyenne empirique. Montrer que

$$\sqrt{n}(g(\bar{X}) - g(m)) \xrightarrow{\mathcal{L}oi} \mathcal{N}(0, (\sigma g'(m))^2).$$

Exercice 15 (Central téléphonique) Un central téléphonique dessert 5000 abonnés. A un instant donné, chaque abonné a une probabilité égale à 2% d'utiliser son téléphone et les appels des abonnés sont supposés indépendants. Quel nombre minimal d'appels doit pouvoir traiter simultanément le central pour que sa probabilité d'être saturé à un instant donné soit inférieure à 2,5%?

Exercice 16 (La tour d'argent) Le restaurant La tour d'argent peut servir 75 repas. La pratique montre que 20% des clients avant réservé ne viennent pas.

- 1. Le restaurateur accepte 90 réservations. Quelle est la probabilité qu'il se présente plus de 50 clients ?
- 2. Combien le restaurateur doit-il accepter de réservations pour avoir une probabilité supérieure ou égale à 0,9 de pouvoir servir tous les clients qui se présenteront?

 Indication. La table de la loi normale centrée réduite donne

$$\mathbb{P}(N \le 1, 281) = 0, 9, \quad N \sim \mathcal{N}(0, 1).$$

Université de Rennes 1 UFR de Mathématiques

Fiche de TD n⁰ 5 : Vecteurs gaussiens

Exercice 1 (Vecteur gaussien 1) Soit $\mathbf{X} = (X_1, X_2, X_3)^t$ un vecteur gaussien de moyenne $m = (1, 0, -2)^t$ et de matrice de covariance

$$K = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{array}\right).$$

- 1. La loi \mathbb{P}_X du vecteur **X** admet-elle une densité dans \mathbb{R}^3 ?
- 2. Dans quel espace vit le vecteur \mathbf{X} (ie. le plus petit espace (affine) dans lequel \mathbf{X} vit; on pourra décrire ce support par une équation cartésienne)?

Exercice 2 (Vecteur gaussien 2) On considère un vecteur gaussien $\mathbf{X} = (X_1, X_2, X_3)^t$ de moyenne $(1, 0, 0)^t$ et de matrice de covariance

$$K = \left(\begin{array}{ccc} 3 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

- 1. Justifier l'existence du vecteur X.
- 2. Déterminer le support de X.
- 3. Existe-t-il $\alpha \in \mathbb{R}$ tel que X_1 et $X_2 + \alpha X_3$ soient indépendants? Si, oui déterminer α . Même question pour $\beta \in \mathbb{R}$ tel que X_2 et $X_1 + \beta X_3$ soient indépendants.
- 4. Soit $\mathbf{Y} = A\mathbf{X}$ où

$$A = \frac{1}{2} \left(\begin{array}{rrr} -1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & -1 & 1 \end{array} \right).$$

Déterminer la loi de $\mathbf{Y} = (Y_1, Y_2, Y_3)^t$. Que dire de Y_1 ? Donner la densité du couple (Y_2, Y_3) .

Exercice 3 (Couple de variables aléatoires normales) Soit X une variable aléatoire gaussienne centrée réduite et a > 0 un réel. On pose

$$Y = \begin{cases} X & \text{si } |X| \le a, \\ -X & \text{si } |X| > a. \end{cases}$$

- 1. Montrer que la variable aléatoire Y suit une loi normale centrée réduite.
- 2. Montrer que $Cov(X, Y) = 1 2\mathbb{E}[X^2 \mathbf{1}_{\{|X| > a\}}].$
- 3. Montrer qu'il existe a > 0 de sorte que X et Y sont non corrélées.

- 4. Déterminer X + Y en fonction de X et en déduire si le couple aléatoire (X, Y) est gaussien ou pas.
- 5. Les variables aléatoires X et Y sont-elles indépendantes? Commenter.

Exercice 4 (Lemme de Stein-Gauss)

1. Soit X une variable aléatoire de loi $\mathcal{N}(0,1)$. Montrer que

$$\mathbb{E}[f'(X) - Xf(X)] = 0 \tag{1}$$

pour toute fonction f continue, C^1 par morceaux telle que $\mathbb{E}[|f'(X)|] < +\infty$.

- 2. Réciproquement, soit X une variable aléatoire vérifiant (1) pour toute fonction f continue, dérivable par morceaux telle que $\mathbb{E}[|f'(Y)|] < +\infty$ où $Y \sim \mathcal{N}(0, 1)$.
 - (a) Montrer que $\mathbb{E}[X^2] = 1$. En déduire l'existence des deux premiers moments de X.
 - (b) Déduire de (1) une équation différentielle pour la fonction caractéristique φ_X de X.
 - (c) En déduire que $X \sim \mathcal{N}(0, 1)$.

Exercice 5 (Fonctionnelles de vecteur gaussien) Soit (X_1, X_2, X_3) un vecteur gaussien centré de matrice de covariance identité et $a = (a_1, a_2)$. Déterminer les lois des variables aléatoires

$$Y = \frac{a_1 X_1 + a_2 X_2}{\sqrt{a_1^2 + a_2^2}}, \quad Z = \frac{X_1 + X_2 X_3}{\sqrt{1 + X_3^2}}.$$

Indication: Utiliser les fonctions caractéristiques.