# Chapter 2

Digital Design and CArchitecture, 2nd Ed. L. H Digital Design and Computer Architecture, 2nd Editiononey Harris and Sarah L. Harris



# Chapter 2 :: Topics

- Introduction
- Boolean Equations
- Boolean Algebra
- From Logic to Gates
- Multilevel Combinational Lo
- X's and Z's, Oh My
- Karnaugh Maps
- Combinational Building Bloc
- Timing





### Introduction

A logic circuit is composed of:

- Inputs
- **Outputs**
- Functional specification





### Circuits

n1 E1 **E**3 E2

- Circuit elements



# Types of Logic Circuits

#### Combinational Logic

- Outputs determined by current values of

#### Sequential Logic

- Outputs determined by previous and





### Rules of Combinational

- Every element is combinational
- Every node is either an input or connects to exactly one output
- The circuit contains no cyclic paths





# Boolean Equations

- Functional specification of outputs in terms of inputs
- Example:  $S = F(A, B, C_{in})$  $C_{\text{out}} = F(A, B, C_{\text{in}})$



$$S = A \oplus B \oplus C_{in}$$
  
 $C_{out} = AB + AC_{in} + BC_{in}$ 



#### Some Definitions

- Complement: variable

  A, B, C
   Literal: variable or its

  A, A, B, B, C, C
   Implicant: product of I

  ABC, AC, BC
   Minterm: product that variables

  ABC, ABC, ABC
   Maxterm: sum that inc variables

  (A+B+C), (A+B+C), Complement: variable with a bar over it
  - Literal: variable or its complement
  - Implicant: product of literals
  - Minterm: product that includes all input
  - Maxterm: sum that includes all input

$$(A+B+C), (A+B+C), (A+B+C)$$



# Sum-of-Products (SOP)

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

|             |                               |                  | -                     |              | ` '                            |           |
|-------------|-------------------------------|------------------|-----------------------|--------------|--------------------------------|-----------|
|             | <ul> <li>Each mint</li> </ul> | erm              | is TI                 | RUE          | for that ro                    | ow (and o |
| 7           | • Form func                   | tion             | by C                  | ORin         | g minterm                      | s where t |
| MBINATIONAL | • Thus, a su                  | m (C             | OR) o                 | of pro       | oducts (Al                     | ND terms  |
| 0           |                               |                  |                       |              |                                | minterm   |
|             | _                             | A                | В                     | Y            | minterm                        | name      |
|             |                               | 0                | 0                     | 0            | $\overline{A} \; \overline{B}$ | $m_0$     |
| <b>d</b>    |                               | 0                | 1                     | 1            | $\overline{A} \; B$            | $m_1$     |
|             |                               | 1                | 0                     | 0            | $A\overline{B}$                | $m_2$     |
|             |                               | 1                | 1                     | 1            | АВ                             | $m_3^-$   |
|             |                               |                  |                       |              |                                |           |
| 2           | ]                             | $Y = \mathbf{I}$ | F(A,                  | <b>B</b> ) = |                                |           |
|             | al Design and Computer A      | Architec         | ture, 2 <sup>nd</sup> | d Edition    | n, 2012                        | Chapter 2 |

$$Y = F(A, B) =$$



# Sum-of-Products (SOP) Sum-of-Products Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

|             |                              |            | -                     |              | ` '                            |           |
|-------------|------------------------------|------------|-----------------------|--------------|--------------------------------|-----------|
| 7           | <ul> <li>Each min</li> </ul> | term       | is TI                 | RUE          | for that ro                    | ow (and o |
| 7           | • Form fun                   | ction      | by C                  | ORin         | g minterm                      | s where t |
| MBINATIONAL | • Thus, a si                 | um (C      | OR) o                 | of pro       | oducts (Al                     | ND terms  |
|             |                              |            |                       |              |                                | minterm   |
|             |                              | _ <b>A</b> | В                     | Y            | minterm                        | name      |
|             |                              | 0          | 0                     | 0            | $\overline{A} \; \overline{B}$ | $m_0$     |
| A           |                              | 0          | 1                     | 1            | A B                            | $m_1$     |
|             |                              | 1          | 0                     | 0            | $A\overline{B}$                | $m_2^-$   |
|             |                              | 1          | 1                     | 1            | АВ                             | $m_3$     |
|             |                              |            |                       |              |                                |           |
|             |                              | Y = I      | $\exists (A,$         | <b>B</b> ) = |                                |           |
|             | al Design and Computer       | Architec   | ture, 2 <sup>nd</sup> | d Edition    | 1, 2012                        | Chapter 2 |

$$Y = F(A, B) =$$



# Sum-of-Products (SOP) Sum-of-Products Form

- All equations can be written in SOP form
- Each row has a **minterm**
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)
- Form function by ORing minterms where the output is TRUE
- Thus, a sum (OR) of products (AND terms)

|             |                              |            | -                     |              | ` '                                                      |                 |
|-------------|------------------------------|------------|-----------------------|--------------|----------------------------------------------------------|-----------------|
|             | <ul> <li>Each min</li> </ul> | ıterm      | is TI                 | RUE          | for that ro                                              | ow (and o       |
| 7           | • Form fun                   | ction      | by C                  | ORin         | g minterm                                                | s where t       |
| MBINATIONAL | • Thus, a s                  | um (C      | OR) o                 | of pro       | oducts (Al                                               | ND terms        |
|             |                              |            |                       |              |                                                          | minterm         |
|             |                              | _A         | В                     | Y            | minterm                                                  | name            |
|             |                              | 0          | 0                     | 0            | $\overline{A} \ \overline{B}$                            | $m_0$           |
| A           |                              | 0          | 1                     | 1            | A B                                                      | $m_1$           |
|             |                              | 1          | 0                     | 0            | ΑB                                                       | $m_2$           |
|             |                              | 1          | 1                     | 1            | АВ                                                       | $m_3$           |
|             |                              |            |                       |              |                                                          |                 |
| M           |                              | Y = I      | F(A,                  | <b>B</b> ) = | $\overline{\mathbf{A}}\mathbf{B} + \mathbf{A}\mathbf{B}$ | $= \Sigma(1,3)$ |
|             | al Design and Compute        | r Architec | ture, 2 <sup>nd</sup> | d Edition    | 1, 2012                                                  | Chapter 2       |

$$Y = F(A, B) = AB + AB = \Sigma(1, 3)$$



## Product-of-Sums (POS)

- All Boolean equations can be written in POS form
- Each row has a **maxterm**
- A maxterm is a sum (OR) of literals
- Each maxterm is FALSE for that row (and only that row)
- Form function by ANDing the maxterms for which the
- Thus, a product (AND) of sums (OR terms)

| 7           | •        | Each max                  | term i      | is FA            | LSE for th                                                | at row (and o                                              |
|-------------|----------|---------------------------|-------------|------------------|-----------------------------------------------------------|------------------------------------------------------------|
| AL          | •        | Form function output is F |             |                  | NDing the                                                 | maxterms fo                                                |
| NC          | •        | Thus, a pr                | oduct       | (AN              | (D) of sum                                                | s (OR terms)                                               |
|             |          |                           |             |                  | _                                                         | maxterm                                                    |
|             |          |                           | В           | Y                | maxterm                                                   | name                                                       |
|             |          | <b>(</b>                  | 0           | 0                | A + B                                                     | $M_{\circ}$                                                |
|             |          |                           |             |                  |                                                           |                                                            |
|             |          | 0                         | 1           | 1                | $A + \overline{B}$                                        | $M_1$                                                      |
| IN          |          |                           | 1<br>0      | 1                | A + B<br>A + B                                            | $M_1$ $M_2$                                                |
| BIN         |          | 0                         | 1<br>0<br>1 |                  |                                                           | $M_1$ $M_2$ $M_3$                                          |
| MBINATIONAL | ral Dasi | 0<br>1<br>1               | 1<br>(A, B  | 0<br>1<br>3) = ( | $\frac{\overline{A} + B}{\overline{A} + B}$ $A + B$ )(A + | $ M_{1} $ $ M_{2} $ $ M_{3} $ $ B) = \Pi(0, 2) $ Chapter 2 |

$$Y = F(A, B) = (A + B)(A + B) = \Pi(0, 2)$$



# **Boolean Equations**

- You are going to the cafeteria for
  - You won't eat lunch (E)
  - If it's not open (O) or
  - If they only serve corndogs (C)
- You are going to lunch

   You won't eat lur

   If it's not open (C)

   If they only serve

   Write a truth tab if you will eat lur Write a truth table for determining if you will eat lunch (E)C



# Boolean Equations

- You are going to the cafeteria for
  - You won't eat lunch (E)
  - If it's not open (O) or
  - If they only serve corndogs (C)
- You are going to lunch

   You won't eat lunt

   If it's not open (County only serve)

   Write a truth tab if you will eat lunt Write a truth table for determining if you will eat lunch (E)C



### SOP & POS Form

| produ | ıcts | Ε | minterm            |
|-------|------|---|--------------------|
| 0     | 0    |   | <u> 0</u> <u>C</u> |
| 0     | 1    |   | <u> </u>           |
| 1     | 0    |   | 0 <u>C</u>         |
| 1     | 1    |   | 0 C                |



### SOP & POS Form

| 7                 |                 |           |           |                                 |
|-------------------|-----------------|-----------|-----------|---------------------------------|
| )                 | • SOP -         | sun       | n-of-     |                                 |
| 15                | produ           | cţs       | E         | minterm                         |
| 0                 | 0               | 0         | 0         | <u>0</u> <u>C</u>               |
| 7                 | 0               | 1         | 0         | <u>o</u> c                      |
| 7                 | 1               | 0         | 1         | 0 <u>C</u>                      |
| 4                 | 1               | 1         | 0         | 0 C                             |
|                   |                 |           |           |                                 |
| 0                 |                 |           |           | _                               |
| MBINATIONAL LOGIC | • POS –         | pro       | duct<br>E | r-of-<br>maxterm                |
| D                 | 0               | 0         | 0         | 0 + C                           |
|                   | 0               | 1         | 0         | $0 + \overline{C}$              |
|                   | 1               | 0         | 1         | <u>0</u> + C                    |
|                   | (1              | 1         | 0         | $\overline{O} + \overline{C}$   |
|                   |                 |           |           |                                 |
| Digital           | Design and Comp | uter Arcı | hitecture | , 2 <sup>nd</sup> Edition, 2012 |

$$E = OC$$
$$= \Sigma(2)$$

$$E = (O + C)(O + \overline{C})(\overline{O} + \overline{C})$$
  
=  $\Pi(0, 1, 3)$ 



# Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have o
  0)
  • Duality in axiom
  – ANDs and ORs, 0's variables have only two values (1 or
  - Duality in axioms and theorems:
    - ANDs and ORs, 0's and 1's interchanged



### **Boolean Axioms**

|    | Axiom                           |     | Dual                         | Name         |
|----|---------------------------------|-----|------------------------------|--------------|
| A1 | $B = 0 \text{ if } B \neq 1$    | A1′ | $B = 1 \text{ if } B \neq 0$ | Binary field |
| A2 | $\overline{0} = 1$              | A2′ | $\overline{1} = 0$           | NOT          |
| A3 | $0 \bullet 0 = 0$               | A3′ | 1 + 1 = 1                    | AND/OR       |
| A4 | 1 • 1 = 1                       | A4′ | 0 + 0 = 0                    | AND/OR       |
| A5 | $0 \bullet 1 = 1 \bullet 0 = 0$ | A5' | 1 + 0 = 0 + 1 = 1            | AND/OR       |

| Во       | olean                               | Axi | oms                          |                                       |
|----------|-------------------------------------|-----|------------------------------|---------------------------------------|
|          | Axiom                               |     | Dual                         | Name                                  |
| A1       | $B = 0 \text{ if } B \neq 1$        | A1′ | $B = 1 \text{ if } B \neq 0$ | Binary field                          |
| A2       | $\overline{0} = 1$                  | A2′ | $\overline{1} = 0$           | NOT                                   |
| A3       | $0 \bullet 0 = 0$                   | A3′ | 1 + 1 = 1                    | AND/OR                                |
| A4       | 1 • 1 = 1                           | A4′ | 0 + 0 = 0                    | AND/OR                                |
| A5       | $0 \bullet 1 = 1 \bullet 0 = 0$     | A5' | 1 + 0 = 0 + 1 = 1            | AND/OR                                |
|          | Theorem                             |     | Dual                         | Name                                  |
|          |                                     |     |                              |                                       |
| T1       | B • 1 = B                           | T1' | B+0=B                        | Identity                              |
| T1<br>T2 |                                     | T1' | B + 0 = B $B + 1 = 1$        | Identity Null Element                 |
|          | B • 1 = B                           |     |                              | · · · · · · · · · · · · · · · · · · · |
| T2       | $B \bullet 1 = B$ $B \bullet 0 = 0$ | T2' | B + 1 = 1                    | Null Element                          |



# T1: Identity Theorem



Chapter 2 < 19 >

# T1: Identity Theorem

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
  $=$   $B$ 



### T2: Null Element Theorem



### T2: Null Element Theorem

$$\begin{bmatrix} B \\ 0 \end{bmatrix} = 0$$

$$\begin{bmatrix} B \\ 1 \end{bmatrix}$$
  $=$  1



# T3: Idempotency Theorem



# T3: Idempotency Theorem

$$B - = B - = B$$

$$\begin{bmatrix} B \\ B \end{bmatrix} = B$$



# T4: Identity Theorem



# T4: Identity Theorem

$$B \longrightarrow B \longrightarrow$$



# T5: Complement Theorem

• 
$$B \cdot B = 0$$

• 
$$B + \overline{B} = 1$$



# T5: Complement Theorem

$$\frac{B}{B}$$
  $\bigcirc$   $\bigcirc$   $\bigcirc$  0

$$\frac{B}{B} \longrightarrow = 1$$



### **Boolean Theorems**

|               | Theorem                      |                               | Dual                   | Name         |
|---------------|------------------------------|-------------------------------|------------------------|--------------|
| T1            | $B \bullet 1 = B$            | T1'                           | B+0=B                  | Identity     |
| T2            | $B \bullet 0 = 0$            | T2'                           | B + 1 = 1              | Null Element |
| Т3            | $B \bullet B = B$            | T3′                           | B + B = B              | Idempotency  |
| T4            |                              | $\bar{\bar{B}} = B$           |                        | Involution   |
| T5            | $B \bullet \overline{B} = 0$ | T5'                           | $B + \overline{B} = 1$ | Complements  |
|               |                              |                               |                        |              |
|               |                              |                               |                        |              |
|               |                              |                               |                        |              |
|               |                              |                               |                        |              |
|               |                              |                               |                        |              |
| al Design and | Computer Architecture, 2     | 2 <sup>nd</sup> Edition, 2012 | Chapter 2              | <29> Ë       |



### Boolean Theorems of

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | Dual                                                                                                                      | Name                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------|----------------------|
| Т6   | $R \bullet C = C \bullet R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T6'     | B + C = C + B                                                                                                             | Commutati            |
| T7   | $(B \bullet C) \bullet D = B \bullet (C \bullet D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T7'     | (B+C)+D=B+(C+D)                                                                                                           | Associativit         |
| T8   | $(B \bullet C) + (B \bullet D) = B \bullet (C + D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T8'     | $(B+C) \bullet (B+D) = B + (C \bullet D)$                                                                                 | Distributivi         |
| T9   | $B \bullet (B + C) = B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T9'     | $B + (B \cdot C) = B$                                                                                                     | Covering             |
| T10  | $(B \bullet C) + (B \bullet \overline{C}) = B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T10'    | $(B + C) \bullet (B + \overline{C}) = B$                                                                                  | Combining            |
| T11  | $(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$<br>= $B \bullet C + \overline{B} \bullet D$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T11'    | $(B + C) \bullet (\overline{B} + D) \bullet (C + D)$<br>= $(B + C) \bullet (\overline{B} + D)$                            | Consensus            |
| T12  | $ \overline{B_0 \bullet B_1 \bullet B_2 \dots} \\ = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T12′    | $ \overline{B_0} + \overline{B_1} + \overline{B_2} $ $ = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2}) $ | De Morgan<br>Theorem |
|      | B • $C = C • B$<br>(B • C) • D = B • (C • D)<br>(B • C) + (B • D) = B • (C + D)<br>B • (B + C) = B<br>(B • C) + (B • C) = B<br>(B • C) + (B • D) + (C • D)<br>= B • C + B • D<br>$B_0 • B_1 • B_2$<br>$= (B_0 + B_1 + B_2)$<br>e: T8' differs from traditional computer Architecture, 2nd Editional Computer Arc | ional a | lgebra: OR (+) distributes c                                                                                              | over AND             |
| Note |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                                                                                                           |                      |



$$Y = AB + AB$$



Simplifying Boo

Example 1:

$$Y = AB + AB$$
 $= B(\overline{A} + A)$  T8

 $= B(1)$  T5'

 $= B$  T1



$$Y = A(AB + ABC)$$



Example 2:  

$$Y = A(AB + ABC)$$

$$= A(AB(1 + C)) \qquad T8$$

$$= A(AB(1)) \qquad T2'$$

$$= A(AB) \qquad T1$$

$$= (AA)B \qquad T7$$

$$= AB \qquad T3$$
Sigital Design and Computer Architecture, 2<sup>nd</sup> Edition, 2012 Chapter



# DeMorgan's Theorem

• 
$$Y = \overline{A}B = \overline{A} + B_{B}$$
•  $Y = \overline{A} + \overline{B} = A$ 

B

Pigital Design and Computer Architecture, 2<sup>nd</sup> Edition, 2012

•  $Y = \overline{A}B = \overline{A}B$ 

Characteristics of the second sec

• 
$$Y = \overline{A} + \overline{B} = A$$
 $A = A$ 
 $A =$ 



# **Bubble Pushing**









#### **Bubble Pushing**

What is the Boolean expression for this





#### **Bubble Pushing**

What is the Boolean expression for this



$$Y = AB + CD$$



#### **Bubble Pushing Rules**

- Begin at output, then work toward inputs
- Push bubbles on final output back
- Draw gates in a form so bubbles cancel





Chapter 2 <39>

















#### From Logic to Gates

- Two-level logic: ANDs followed by ORs
- Example:  $Y = \overline{ABC} + \overline{ABC} + ABC$





#### Circuit Schematics Rules

- Inputs on the left (or top)
- Outputs on right (or bottom)
- Gates flow from left to right
- Straight wires are best



#### Circuit Schematic Rules

- Wires always connect at a T
- Wires always conjunction
   A dot where wire indicates a connection the wires
   Wires crossing wires connect make mo connect A dot where wires cross indicates a connection between
  - Wires connect ossing without a dot do without a dot do makemo connection not connect



#### Multiple-Output Circuits

#### Example: Priority Circuit

Output asserted corresponding to most significant TRUE input



|       | 416   |         |         |                |       |       |         |
|-------|-------|---------|---------|----------------|-------|-------|---------|
| $A_3$ | $A_2$ | $A_{1}$ | $A_{o}$ | Y <sub>3</sub> | $Y_2$ | $Y_1$ | $Y_{o}$ |
| 0     | 0     | 0       | 0       |                |       |       |         |
| 0     | 0     | 0       | 1       |                |       |       |         |
| 0     | 0     | 1       | 0       |                |       |       |         |
| 0     | 0     | 1       | 1       |                |       |       |         |
| 0     | 1     | 0       | 0       |                |       |       |         |
| 0     | 1     | 0       | 1       |                |       |       |         |
| 0     | 1     | 1       | 0       |                |       |       |         |
| 0     | 1     | 1       | 1       |                |       |       |         |
| 1     | 0     | 0       | 0       |                |       |       |         |
| 1     | 0     | 0       | 1       |                |       |       |         |
| 1     | 0     | 1       | 0       |                |       |       |         |
| 1     | 0     | 1       | 1       |                |       |       |         |
| 1     | 1     | 0       | 0       |                |       |       |         |
| 1     | 1     | 0       | 1       |                |       |       |         |
| 1     | 1     | 1       | 1<br>0  |                |       |       |         |
| 1     | 1     | 1       | 1       |                |       |       |         |
|       |       |         | ,       | •              |       |       |         |



#### Multiple-Output Circuits

#### Example: Priority Circuit

Output asserted corresponding to most significant TRUE input



| $A_3$ | $A_2$ | $A_{1}$ | $A_{0}$ | $Y_3$ | $Y_2$ | $Y_1$ | $Y_{o}$ |
|-------|-------|---------|---------|-------|-------|-------|---------|
| 0     | 0     | 0       | 0       | 0     | 0     | 0     | 0       |
| 0     | 0     | 0       | 1       | 0     | 0     | 0     | 1       |
| 0     | 0     | 1       | 0       | 0     | 0     | 1     | 0       |
| 0     | 0     | 1       | 1       | 0     | 0     | 1     | 0       |
| 0     | 1     | 0       | 0       | 0     | 1     | 0     | 0       |
| 0     | 1     | 0       | 1       | 0     | 1     | 0     | 0       |
| 0     | 1     | 1       | 0       | 0     | 1     | 0     | 0       |
| 0     | 1     | 1       | 1       | 0     | 1     | 0     | 0       |
| 1     | 0     | 0       | 0       | 1     | 0     | 0     | 0       |
| 1     | 0     | 0       | 1       | 1     | 0     | 0     | 0       |
| 1     | 0     | 1       | 0       | 1     | 0     | 0     | 0       |
| 1     | 0     | 1       | 1       | 1     | 0     | 0     | 0       |
| 1     | 1     | 0       | 0       | 1     | 0     | 0     | 0       |
| 1     | 1     | 0       | 1       | 1     | 0     | 0     | 0       |
| 1     | 1     | 1       | 0       | 1     | 0     | 0     | 0       |
| 1     | 1     | 1       | 1       | 1     | 0     | 0     | 0       |
|       |       |         |         |       |       |       |         |



#### Priority Circuit Hardware

| MBINATIONAL LOGIC DE |        |         |        |                            |         |          |                     |         |                |
|----------------------|--------|---------|--------|----------------------------|---------|----------|---------------------|---------|----------------|
| U                    |        |         |        |                            | ı       | 1        |                     |         |                |
|                      |        | $A_{2}$ | $A_2$  | $A_{\scriptscriptstyle 1}$ | $A_{0}$ | Y        | Υ,                  | Υ,      | Y <sub>0</sub> |
| 5                    | _      | 0       | 0      | 0                          | 0       | 0        | 0                   | 0       | 0              |
| Õ                    |        | 0       | 0      | 0                          | 1       | 0        | 0                   | 0       | 1              |
|                      |        | 0<br>0  | 0<br>0 | 1<br>1                     | 0<br>1  | 0<br>0   | 0<br>0              | 1       | 0<br>0         |
|                      |        | 0       | 1      | 0                          | 0       | 0        | 1                   | 0       | 0              |
| _1                   |        | 0       | 1      | 0                          | 1       | 0        | 1                   | 0       | 0              |
|                      |        | 0       | 1      | 1                          | 0       | 0        | 1                   | 0       | 0              |
|                      |        | ⊍<br>1  | U<br>T | U<br>T                     | Θ<br>T  | 0<br>1   | 9<br>T              | 0       | 0<br>0         |
| 2                    |        | i       | 0      | 0                          | 1       | î        | 0                   | 0       | 0              |
|                      |        | 1       | 0      | 1                          | 0       | 1        | 0                   | 0       | 0              |
|                      |        | 1       | 0      | 1                          | 1       | 1        | 0                   | 0       | 0              |
|                      |        | ⊥<br>1  | ⊥<br>1 | 0                          | 0<br>1  | 1        | 0                   | 0       | 0              |
|                      |        | i       | i      | 1                          | 0       | ī        | 0                   | 0       | 0              |
|                      |        | 1       | 1      | 1                          | 1       | 1        | 0                   | 0       | 0              |
| 2                    |        |         |        |                            |         |          |                     |         |                |
|                      |        |         |        |                            |         |          |                     |         |                |
|                      |        |         |        |                            |         |          |                     |         |                |
|                      |        |         |        |                            |         |          |                     |         |                |
|                      | _      |         |        |                            |         |          | - nd - *-           |         |                |
| Digital              | Design | and     | Comp   | uter Ai                    | rchited | cture, i | 2 <sup>na</sup> Edi | tion, 2 | 2012           |





| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | SESI                 |                                           | )c                                                  | n                                                        | 't     | C                                       | a                                                             | re                                                  | 25                                      |   |
|-------------------------------------------------------|----------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|--------|-----------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|---|
| O                                                     | BINATIONAL LOGIC DES | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1 | 0<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>1 | 0<br>1 | 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 010000000000000000000000000000000000000 | _ |

| $A_3$ | $A_2$ | $A_1$ | $A_o$ | Y <sub>3</sub> 0 0 0 0 | $Y_2$ | $Y_{\underline{1}}$ | $Y_0$ |
|-------|-------|-------|-------|------------------------|-------|---------------------|-------|
| 0     | 0     | 0     | 0     | 0                      | 0     | 0                   | 0     |
| 0     | 0     | 0     | 1     | 0                      | 0     | 0                   | 1     |
| 0     | 0     | 1     | Χ     | 0                      | 0     | 1                   | 0     |
| 0     | 1     | X     | Χ     | 0                      | 1     | 0                   | 0     |
| 1     | Χ     | Χ     | X     | 1                      | 0     | 0                   | 0     |



#### Contention: X

- Contention: circuit tries to drive output to 1
  - Actual value somewhere in between
  - Could be 0, 1, or in forbidden zone
  - Might change with voltage, temperature, time,
- Contention: circuit and 0

   Actual value somew

   Could be 0, 1, or in 1

   Might change with v noise

   Often causes exte

   Warnings:

   Contention usually in

   X is used for "don' look at the context to - Often causes =xte ≥ive power dissipation -Y = X
  - - Contention usually indicates a bug.
    - X is used for "don't care" and contention look at the context to tell them apart



# Floating: Z

- Floating, high im high Z
   Floating output I somewhere in be
   A voltmeter won't in is floating

   E A Y
   O O Z
   O 1 Z
   1 O O
   1 1 1
   O O
   I 1 1
   O O
   I 1 1
   O O
   I 1 1
   O O
   I 1 1
   O O
   I 1 1
   O O
   I 1 1
   O O
   I 1 1
   O O
   I 1 1
   O O
   I I I
   O O
   I I I
   O O
   I I I
   O O
   I I I
   O O
   I I I
   O O
   I I I
   O O
   I I I
   O O
   I I I
   O O
   I I I
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   O O
   Floating, high impedance, open,
  - Floating output might be 0, 1, or somewhere in between
    - A voltmeter won't indicate whether a node

state Buffer



#### Tristate Busses

• Floating nodes a tristate busses

- Many different dri

- Exactly one is action

once Floating nodes are used in

Many different drivers

Exactly one is active at





## Karnaugh Maps (K-Maps)

- Boolean expressions can be minimized by combining terms
- K-maps minimize equations

| Α | В | С | Y |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

| Y AB |    |    |    |    |  |  |  |
|------|----|----|----|----|--|--|--|
| c    | 00 | 01 | 11 | 10 |  |  |  |
| 0    | 1  | 0  | 0  | 0  |  |  |  |
| 1    | 1  | 0  | 0  | 0  |  |  |  |

| <i>Y</i> ∧ <i>A</i> | В   |     |     |     |
|---------------------|-----|-----|-----|-----|
| C                   | 00  | 01  | 11  | 10  |
| 0                   | ĀĒĈ | ĀBĒ | ABĈ | AĒĈ |
| 1                   | ĀĒC | ĀBC | ABC | AĒC |



## K-Map

- Circle 1's in adjacent squares
- Circle 1's in adjacen
   In Boolean expressic literals whose true an are **not** in the circle

  | A | B | C | Y | Y |
  | 0 | 0 | 0 | 1 |
  | 0 | 0 | 0 | 1 |
  | 0 | 0 | 0 |
  | 1 | 0 | 0 |
  | 1 | 0 | 0 |
  | 1 | 0 | 0 |
  | 1 | 1 | 0 |
  | 1 | 1 | 0 |
  | 1 | 1 | 0 |
  | 1 | 1 | 0 |
  | 1 | 1 | 1 | 0 |
  | 1 | 1 | 1 | 0 |
  | 2 | Y |

  | Y |
  | Y |
  | Y |
  | Y |
  | Y |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | D |
  | O | In Boolean expression, include only literals whose true and complement form

| Α | В | С | Y |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| Θ | 0 | 1 | 1 |
| Θ | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

| YA | В  |    |    |    |
|----|----|----|----|----|
| C  | 00 | 01 | 11 | 10 |
| 0  | 1  | 0  | 0  | 0  |
| 1  | 1  | 0  | 0  | 0  |

$$Y = AB$$



| ESI                | 3-                       | In               | рι               | ıt K                    | -M         | ар    |              |
|--------------------|--------------------------|------------------|------------------|-------------------------|------------|-------|--------------|
| 11C E              |                          |                  | Y<br>C           | B<br>00                 | 01         | 11    | 10           |
| 90                 |                          |                  | 0                | ĀĒC                     | ĀBĒ        | ABŌ   | AĒĈ          |
| 7 7                |                          |                  | 1                | ĀĒC                     | ĀBC        | ABC   | ABC          |
| NATIONAL LOGIC DES | <i>A</i><br>⊙<br>⊙       | Truth            | Tabl  C 0 1 0    | e  Y 0 0 1              | Y          | AB 00 | <b>K-M</b> a |
|                    | 0<br>1<br>1<br>1         | 1<br>0<br>0<br>1 | 1<br>0<br>1<br>0 | 1<br>0<br>0<br>0        |            | 1     |              |
| Digital            | <b>1</b><br>Design and ( | Comput           | er Archi         | tecture, 2 <sup>n</sup> | d Edition, | 2012  | C            |

| A | В | C | Y |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| Θ | 1 | 0 | 1 |
| Θ | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | Θ |
| 1 | 1 | 1 | 1 |

#### K-Map





| ESI                | 3-1                   | n                     | οl                    | ıt K                    | -M                 | ар         |                           |
|--------------------|-----------------------|-----------------------|-----------------------|-------------------------|--------------------|------------|---------------------------|
| 1 )!!              |                       |                       | Y                     | B<br>00                 | 01                 | 11         | 10                        |
| 90                 |                       |                       | 0                     | ĀĒC                     | ĀBĒ                | ABŌ        | AĒĈ                       |
| 7 7                |                       |                       | 1                     | ĀĒC                     | ĀBC                | ABC        | ABC                       |
| NATIONAL LOGIC DES | _ A_                  | В                     | Tabl                  | e<br>                   | Y                  | \ AB       | K-Ma                      |
| ATIC               | 0<br>0<br>0<br>0<br>1 | 0<br>0<br>1<br>1<br>0 | 0<br>1<br>0<br>1<br>0 | 0<br>0<br>1<br>1<br>0   | C                  | o <b>O</b> |                           |
| BIN                | 1                     | 0<br>1                | 1                     | 0<br>0                  |                    | 1 0        | 1                         |
| Pigital            | 1<br>Design and Co    | ompute                | er Archi              | tecture, 2 <sup>n</sup> | $Y = \overline{A}$ | B + B      | $\overline{\overline{C}}$ |

| _ <b>A</b> | В | С | Y |
|------------|---|---|---|
| 0          | 0 | 0 | 0 |
| Θ          | Θ | 1 | 0 |
| Θ          | 1 | 0 | 1 |
| Θ          | 1 | 1 | 1 |
| 1          | 0 | 0 | 0 |
| 1          | 0 | 1 | 0 |
| 1          | 1 | 0 | 0 |
| 1          | 1 | 1 | 1 |

#### K-Map



$$Y = \overline{A}B + B\overline{C}$$



#### K-Map Definitions

- Complement: variable with a bar over it
- Literal: variable or its complement
- Implicant: product of literals
- Complement: variable or A, B, C
   Literal: variable or A, A, B, B, C, C
   Implicant: product ABC, AC, BC
   Prime implicant: corresponding to the map Prime implicant: implicant corresponding to the largest circle in a K-



Chapter 2 <58>

#### K-Map Rules

- Every 1 must be circled at least once
- Each circle must span a power of 2 (i.e. 1, 2, 4) squares in each direction
- Each circle must be as large as possible
- A circle may wrap around the edges
- Every 1 must be ci
  Each circle must si
  1, 2, 4) squares in
  Each circle must be
  A circle may wrap at
  A "don't care" (X) it helps minimize the A "don't care" (X) is circled only if it helps minimize the equation



| DESI | 4- | ·lr                                                           | ηp                                                                 | u                                                        | t                                                        | K-I                                                           | VIa |
|------|----|---------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----|
|      |    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 1<br>0<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | Y   |





| DESI | 4- | ·lr                                                           | ηp                                                                 | u                                                        | t                                                        | K-I                                                           | VIa |
|------|----|---------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----|
|      |    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | 0<br>0<br>1<br>1<br>0<br>0<br>1<br>1<br>0<br>0<br>1<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 1<br>0<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | Y   |

| Y   |         |    |    |    |
|-----|---------|----|----|----|
| CDA | B<br>00 | 01 | 11 | 10 |
| 00  | 1       | 0  | 0  | 1  |
| 01  | 0       | 1  | 0  | 1  |
| 11  | 1       | 1  | 0  | 0  |
| 10  | 1       | 1  | 0  | 1  |



| 4-Input K-May  A B C D Y  0 0 0 0 0 1  0 0 0 1 0  0 0 1 0 1  0 1 0 0 0  0 1 0 1 | DESI | 4- | ·lr                                                           | ηp                                                                 | u                                                             | t                                                        | K-I                                                           | VIa |
|---------------------------------------------------------------------------------|------|----|---------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----|
|                                                                                 |      |    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>1<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1<br>1 | 0<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>1<br>0<br>0<br>1<br>1 | 0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1 | 1<br>0<br>1<br>1<br>0<br>1<br>1<br>1<br>1<br>0<br>0<br>0<br>0 | C   |



$$Y = \overline{AC} + \overline{ABD} + A\overline{BC} + \overline{BD}$$



#### K-Maps with Don't Cares

| )ESI               | K-         | . <b> </b> V                                 | la                     | p:                           | S '                       | with                                                          |   |
|--------------------|------------|----------------------------------------------|------------------------|------------------------------|---------------------------|---------------------------------------------------------------|---|
| NATIONAL LOGIC DES |            | A<br>0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 | B<br>00001111000011111 | C<br>0 0 1 1 0 0 1 1 0 0 1 1 | D 0 1 0 1 0 1 0 1 0 1 0 1 | Y<br>1<br>0<br>1<br>1<br>0<br>X<br>1<br>1<br>1<br>X<br>X<br>X |   |
| <b>B</b> Oigital   | Design and | d Com                                        | puter                  | Archite                      | ecture,                   | , 2 <sup>nd</sup> Edition, 201                                | 2 |





#### K-Maps with Don't Cares

| 7       |                                         |          |        |               |                            |      |
|---------|-----------------------------------------|----------|--------|---------------|----------------------------|------|
| 0       | A 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          |        |               |                            |      |
|         | Δ                                       | R        | C      | D             | \ \ \                      |      |
| 5       | 0                                       | <u> </u> | 0      | 0             | 1                          |      |
|         | 0                                       | 0        | 0      | 1             | 0                          |      |
|         | Θ                                       | 0        | 1      | 0             | 1                          |      |
|         | 0                                       | 0        | 1      | 1             | 1                          |      |
|         | 0                                       | 1        | 0      | 0             | 0                          |      |
|         | 0                                       | 1        | 0      | 1             | X                          |      |
|         | 0<br>0                                  | ⊥<br>1   | ⊥<br>1 | ⊍<br>1        | 1<br>1                     |      |
| 2       | 1                                       | 0        | 0      | 0             | 1                          |      |
|         | 1                                       | 0        | 0      | 1             | 1                          |      |
|         | 1                                       | 0        | 1      | 0             | X                          |      |
|         | 1                                       | 0        | 1      | 1             | X                          |      |
|         | 1                                       | 1        | 0      | 0             | X                          |      |
|         | 1                                       | 1        | 0      | 1             | X                          |      |
| 2       | 1                                       | 1        | 1      | <b>⊍</b><br>1 | X                          |      |
|         | т.                                      | <b>T</b> | Т.     | Т.            | _ ^                        |      |
|         |                                         |          |        |               |                            |      |
|         |                                         |          |        |               |                            |      |
| 2       |                                         |          |        |               |                            |      |
| Pigital | Design and Co                           | mputer   | Archit | ecture        | , 2 <sup>nd</sup> Edition, | 2012 |

| Y   |         |    |    |    |
|-----|---------|----|----|----|
| CDA | B<br>00 | 01 | 11 | 10 |
| 00  | 1       | 0  | X  | 1  |
| 01  | 0       | X  | X  | 1  |
| 11  | 1       | 1  | Х  | X  |
| 10  | 1       | 1  | X  | Х  |



#### K-Maps with Don't Cares

| 0        | A 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 |        |        |        |             |         |
|----------|-----------------------------------------|--------|--------|--------|-------------|---------|
|          | А                                       | В      | С      | D      | Y           |         |
| U        | 0                                       | 0      | 0      | 0      | 1           |         |
|          | Θ                                       | 0      | 0      | 1      | 0           |         |
|          | Θ                                       | 0      | 1      | 0      | 1           |         |
|          | Θ                                       | 0      | 1      | 1      | 1           |         |
| _1       | 0                                       | 1      | 0      | 0      | 0           |         |
|          | 0                                       | 1      | 0      | 1      | X           |         |
| J        | 0                                       | 1      | 1      | 0      | 1           |         |
|          | U<br>1                                  | T T    | T      | T      | <u> </u>    |         |
|          | 1                                       | 0<br>0 | 0      | 1      | 1<br>1      |         |
| O        | 1                                       | 0      | 1      | 0      | X           |         |
|          | 1                                       | 0      | 1      | 1      | X           |         |
|          | _<br>1                                  | 1      | 0      | 0      | X           |         |
| <b>T</b> | 1                                       | 1      | 0      | 1      | X           |         |
|          | 1                                       | 1      | 1      | 0      | X           |         |
|          | 1                                       | 1      | 1      | 1      | X           |         |
| 20       |                                         |        |        |        |             |         |
| 44       |                                         |        |        |        |             |         |
| 5        |                                         |        |        |        |             |         |
| Digital  | Design and Co                           | mnuter | Archi+ | ectura | 2nd Edition | 2012    |
| Jigital  | Design and Con                          | πρατει | AIGIII | ecture | , Z LUILIUI | 1, 2012 |

| Y   | 5       |    |    |    |
|-----|---------|----|----|----|
| CDA | 00<br>B | 01 | 11 | 10 |
| 00  | 1       | 0  | X  | 1  |
| 01  | 0       | Х  | Х  | 1  |
| 11  | 1       | 1  | X  | X  |
| 10  | 1       | 1  | X  | X  |

$$Y = A + \overline{B}\overline{D} + C$$



#### Combinational Building



Chapter 2 <66>

### Multiplexer (Mux)

- Selects between one of N inputs to connect to output
- Selects betweer connect to outpu
   log<sub>2</sub>N-bit select i input
   Example:

  | S D\_1 D\_0 Y | O D\_1 | 1 | O D\_1 | O log<sub>2</sub>N-bit select input – control



|   | S | $D_1$ | $D_0$ | Y |   | S | Y     |
|---|---|-------|-------|---|---|---|-------|
| • | 0 | 0     | 0     | 0 | _ | 0 | $D_0$ |
|   | 0 | 0     | 1     | 1 |   | 1 | $D_1$ |
|   | 0 | 1     | 0     | 0 |   |   | _     |
|   | 0 | 1     | 1     | 1 |   |   |       |
|   | 1 | 0     | 0     | 0 |   |   |       |
|   | 1 | 0     | 1     | 0 |   |   |       |
|   | 1 | 1     | 0     | 1 |   |   |       |
|   | 1 | 1     | 1     | 1 |   |   |       |



# Multiplexer





#### **Tristates**

- For an N-input mux, use N tristates
- Turn on exactly one to select the appropriate input





#### Logic using Multiplexers

Using the mux as a lookup table



$$Y = AB$$





Chapter 2 <69>

#### Logic using Multiplexers

• Reducing the size of the mux





#### Decoders

- N inputs,  $2^N$  outputs
   One-hot outputs: only once  $\begin{array}{c|c}
   & 2:4 \\
   & 2:4 \\
   & Decode
  \end{array}$   $\begin{array}{c|c}
   & A_1 & A_0 & Y_3 \\
   & A_0 & 0 \\
   & 0 & 0 \\
   & 0 & 0 \\
   & 0 & 1 \\
   & 0 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 1 \\
   & 1 & 0 \\
   & 1 & 1 \\
   & 1 & 0 \\
   & 1 & 1 \\
   & 1 & 0 \\
   & 1 & 1 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 1 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 1 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   & 1 & 0 \\
   &$ One-hot outputs: only one output HIGH at



| $A_1$ | $A_0$ | $Y_3$ | $Y_2$ | $Y_1$ | $Y_0$ |
|-------|-------|-------|-------|-------|-------|
| 0     | 0     | 0     | 0     | 0     | 1     |
| 0     | 1     | 0     | 0     | 1     | 0     |
| 1     | 0     | 0     | 1     | 0     | 0     |
| 1     | 1     | 1     | 0     | 0     | 0     |



# Decoder Implementation





#### Logic Using Decoders





# **ENOUGH FOR**



# Timing

- Delay between input change and output
- How to build fast circuits?





#### Propagation & Contamination

- **Propagation delay:**  $t_{pd}$  = max delay from input to output
- **Contamination delay:**  $t_{cd} = \min \text{ delay from input to}$





#### Propagation & Contamination

- - Capacitance and resistance in a circuit
  - Speed of light limitation
- Reasons why  $t_{pd}$  and  $t_{cd}$  may be different:
  - Different rising and falling delays
  - Multiple inputs and outputs, some of which are
  - Circuits slow down when hot and speed up when



#### Critical (Long) & Short



Critical (Long) Path: 
$$t_{pd} = 2t_{pd\_AND} + t_{pd\_OR}$$

**Short Path:**  $t_{cd} = t_{cd \text{ AND}}$ 



#### Glitches

• When a single input to change multiple to change multiple to When a single input change causes an output to change multiple times



Chapter 2 < 79>

### Glitch Example

• What happens when A = 0, C = 1, B falls?









#### Glitch Example (cont.)







# Fixing the Glitch







#### Why Understand Glitches?

- Glitches don't cause synchronous design Chapter 3)
   It's important to recommulations or on oso
   Can't get rid of all glatransitions on multiple cause glitches Glitches don't cause problems because of synchronous design conventions (see
  - It's important to **recognize** a glitch: in simulations or on oscilloscope
  - Can't get rid of all glitches simultaneous transitions on multiple inputs can also

