H378K	: Octo	ber 2	th 20	Q5.							
	Statis										
	Popula	ion.	e	?.g.,	all	the	people	e in	His o	class	
	Sample										
		We	assu	me	that	its	REPI	RESEA	STATNE	SAME	LE.
	(or p	the ding	same from	the	d for popu	the Lati	nesult on w/	on (mean unknou commo	uning on bu	t'n.
Defin.	. A rai	ndom	sam	ple recto	व्य क्ष	2e n	from	1 a	distri	butio	mD
					2,,						
	Such	that:									
	4.	Y4,	, Yn	are	ind	epen	deut				
	2.	every	Y	has	the	di	stribu	tion	D .		
Exampl	e. Con	sider	10 n	neas	urema	nt.	Y ₁ , Y ₂ , ey're	, Ya	o. endew	t.	
		a sta									
			Yi	are	DOLM	nally	عنل و	tribul	ed		
Sac	enavio (f	4 1.30	land		H. a	otha-			known		
500		<u> </u>									
		Then		(; ~	MCF	, 0	-0.4 3	, 6	-7 10		
Sco	enanio	2. W	e don	it k	enow	the	stand	lard	devid	ation	σ
	1	hen,		Y: ~	N(µ	,0)	, i=1.	.10			

Defin. Any function of the random sample is called a STATIONIC. A POINT ESTIMATOR is any function (rule procedure)
of the random sample (7, ..., rn) which included
only known constants (w/ the purpose of estimating a
model parameter). An interval estimator is a pair of point estimators. ESTIMATORS MUSTU'T CONTAIN THE UNKNOWN PARAMETER WE'RE TRYING TO ESTIMATE. · If of people in the "committee" who like ice crean ie, a sample proportion; in the normal example, we look @ the sample mean 7 = Y4+Y2 + ... + Yn

M378K Introduction to Mathematical Statistics

Problem Set #13

Order Statistics.

Problem 13.1. An insurance company is handling claims from two categories of drivers: the good drivers and the bad drivers. The waiting time for the first claim from a **good** driver is modeled by an exponential random variable T_g with mean 6 in years). The waiting time for the first claim from a **bad** driver is modeled by an exponential random variable T_b with mean 3 in years). We assume that the random variables T_g and T_b are independent.

What is the distribution of the waiting time T until the first claim occurs (regardless of the type of driver this claim was filed by)?

T= min(Tg, Tb)

$$S_{T} = [0, \omega)$$
 $t > 0: F_{T}(t) = P[T < t]$
 $= P[min(T_{b}, T_{g}) < t]$
 $= 1 - P[min(T_{b}, T_{g}) > t]$
 $= 1 - P[T_{b} > t, T_{g} > t] \quad (independent)$
 $= 1 - P[T_{b} > t] \cdot P[T_{g} > t]$
 $= 1 - e^{-\frac{t}{C_{b}}} \cdot e^{-\frac{t}{C_{g}}}$
 $= 1 - e^{-t} \left(\frac{1}{C_{b}} + \frac{1}{C_{b}}\right)$
 $T \sim E(T) \quad \omega / \quad T = \frac{1}{\frac{1}{C_{g}} + \frac{1}{C_{b}}} = \frac{1}{\frac{1}{C_{b}} + \frac{1}{C_{b}}} = \frac{1}{\frac{1}{C_{b}}} = \frac{1}$

Definition 13.1. Let Y_1, \ldots, Y_n be a random sample. The random sample ordered in an increasing order is called an order statistic and denoted by

$$Y_{(1)}, Y_{(2)}, \ldots, Y_{(n)}.$$

Question Write $Y_{(1)}$ as a function of Y_1, Y_2, \ldots, Y_n .

Question Write $Y_{(n)}$ as a function of Y_1, Y_2, \ldots, Y_n .

Problem 13.2. What is the distribution function of the random variable
$$Y_{(n)}$$
?

 \Rightarrow : for $y \in \mathbb{R}$: $F_{(n)}(y) = \mathbb{P}[Y_{(n)} \leq y] = \mathbb{P}[\max(Y_{(n)}, ..., Y_{(n)}) \leq y]$
 $= \mathbb{P}[Y_{(n)} \leq y] = \mathbb{P}[\max(Y_{(n)}, ..., Y_{(n)}) \leq y$
 $= \mathbb{P}[Y_{(n)} \leq y] \cdot ... \cdot \mathbb{P}[X_{(n)} \leq y] \cdot (\text{identically distribution})$
 $= (\mathbb{P}[Y_{(n)} \leq y])^n = (\mathbb{F}_{(n)}(y))^n$

Problem 13.3. Assume that the random sample comes from a density f_Y . Is the r.v. $Y_{(n)}$ continuous? If so, what is its density $g_{(n)}$?