E*. Приоритетная очередь с удалением

Ограничение времени	1.5 секунд
Ограничение памяти	64Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Требуется реализовать приоритетную очередь с помощью бинарной пирамиды, поддерживающую три операции: добавить элемент, извлечь максимальный элемент и удалить заданный элемент. При просеивании нельзя совершать лишние перемещения (например, в случае равенства элементов). Если при просеивании вниз, рассматриваемый элемент можно перемещать как влево вниз, так и вправо вниз, то следует выбрать направление влево.

Формат ввода

В первой строке вводятся два числа — максимальный размер приоритетной очереди N и количество запросов M, $(1 \le M, N \le 10^5)$. Далее идут M строк, в каждой строке — по одному запросу. Первое число в запросе задает его тип, остальные числа (если есть) — параметры запроса. Тип 1 — извлечь максимальный (без параметров). Тип 2 — добавить данный элемент в очередь. Запрос имеет один параметр — число из диапазона $[-10^9;10^9]$. Тип 3 — удалить элемент по индексу (индексы нумеруются с единицы).

Формат вывода

В ответ на запрос типа 1 следует вывести: Если извлекать было нечего (очередь пуста), то -1. Иначе — два числа, первое — индекс конечного положения элемента после его просеивания (если удален последний элемент и просеивать нечего то вывести 0), второе — значение извлеченного элемента.

В ответ на запрос типа 2 следует вывести: Если добавить нельзя (нет места, т.к. в очередь уже N элементов), то -1. Иначе — индекс добавленного элемента.

В ответ на запрос типа 3 следует вывести: Если элемента с таким индексом нет и удаление невозможно, то -1. Иначе — значение удаленного элемента.

После выполнения всех запросов требуется вывести пирамиду в её конечном состоянии

Пример

Ввод	Вывод 🗇
4 10	-1
1	1
2 9	2
2 4	3
2 9	2
2 9	-1
2 7	2 9
1	-1
3 4	4
2 1	9
3 3	9 4 1