Lecture 2: Threshold for a random graph containing a cycle

For a series of events E_1, E_2, \ldots we say that E_n occurs with high probability, abbreviated whp, if $\mathbb{P}(E_n) \to 1$ as $n \to \infty$.

Theorem 1.6. Let \mathcal{A}_{\circ} be the set of graphs which contain a cycle as a subgraph then the function $p^* = \frac{1}{n}$ is a threshold for \mathcal{A}_{\circ} .

Proof. Let p = p(n) be any function such that $p/p^* \to 0$, i.e. such that $np \to 0$. Now sample the random graph $G_n \sim G(n,p)$. We want to show that whp G_n does not contain a cycle as a subgraph.

Let $X_n = X_n(G_n)$ be the random variable which counts the number of cycles in G_n . For example the number of cycles in the following graphs is $\#(\square) = 1$, $\#(\square) = 0$ and lastly $\#(\square) = 3$ as the graph \square contains two \triangle s and the 4-cycle \square .

The probability that G_n has a cycle is at most the expectation of X_n :

$$\mathbb{P}(G_n \text{ has a cycle}) = \mathbb{P}(X_n > 0) = \sum_{k=1} \mathbb{P}(X_n = k) \le \sum_{k=0} k \mathbb{P}(X_n = k) = \mathbb{E}(X_n),$$

and so it will be enough to show that $\mathbb{E}(X_n) \to 0$ as $n \to \infty$.

Let S be the set of all places in the graph where a cycle could occur. Explicitly, S_k is the set of all subsets of k vertices ordered up to rotation and orientation of the cycle and $S = \bigcup_{k \geq 3} S_k$. For $S \in S$ define A_S to be the event that a cycle occurs on S in the random graph G_n . As expectation is linear,

$$\mathbb{E}(X_n) = \sum_{S \in \mathcal{S}} \mathbb{E}(1_{A_S}) = \sum_{k \ge 3} \sum_{S \in \mathcal{S}_k} \mathbb{P}(A_S)$$
 (1)

For $S \in \mathcal{S}_k$ the probability that a cycle occurs on S is p^k as we need each of the k independent edges which form the cycle to be present in our random graph. We want to know $|\mathcal{S}_k|$. The number of ordered sets of size k is $\binom{n}{k}k!$ - which overcounts each $S \in \mathcal{S}_k$ by 2k times. Why 2k? Once for each starting position on the cycle $(\times k)$, and once for each direction of the cycle $(\times 2)$. Hence² $\mathcal{S}_k = \binom{n}{k}k!/(2k) = \binom{n}{k}(k-1)!/2$. Thus by (1),

$$\mathbb{E}(X_n) = \sum_{i>3} \binom{n}{k} \frac{(k-1)!}{2} p^k.$$

Now note that $\binom{n}{i}i! = n(n-1)\dots(n-i+1) \le n^i$ and we get

$$\mathbb{E}(G_n) \le \sum_{k > 3} n^k p^k = \frac{n^3 p^3}{1 - np},$$

which so $E(X_n)$ goes to zero for $np \to 0$. Hence as $\mathbb{P}(G_n \text{ has a cycle}) \leq \mathbb{E}(X_n)$ we have proven that whp G_n has no cycle, i.e. whp $G_n \notin \mathcal{A}_{\circ}$ for $p/p^* \to 0$.

For the second part of the proof we need to show that whp $G_n \in \mathcal{A}_{\circ}$ for $np \to \infty$. Recall (Q 2a) that any graph on n vertices with at least n edges must contain a cycle. We show that for p = 3/n whp the number of edges in G(n,p) is at least n. By Theorem 1.4 this implies for $p \geq 3/n$ that whp G(n,p) contains a cycle as required.

²For the purpose of the proof it would be enough to establish that $S_k \leq \binom{n}{k} k!$.

Let $G_n \sim G(n,3/n)$ and write Y_n for the number of edges in G_n . Notice $Y_n = \sum_{1 \leq i < j \leq n} 1_{ij \in E(G_n)}$ is the sum of $\binom{n}{2}$ independent random variables each of which is 1 with probability p = 3/n and 0 with probability 1-p. Thus Y has the binomial distribution³ of bin($\binom{n}{2}$, p) with expectation $\mathbb{E}(Y_n) = \binom{n}{2}p$ and variance $\mathbb{V}(Y_n) = \binom{n}{2}p(1-p)$.

The expected number of edges is $\mathbb{E}(Y_n) = \binom{n}{2} \frac{3}{n} = \frac{3n}{2} (1 - 1/n)$. Hence to show that whp the number of edges is at least n it is sufficient to show that whp $|\mathbb{E}(Y_n) - Y_n| < n/3$. But we can do this using Chebyshev's inequality

$$\mathbb{P}(|\mathbb{E}(Y_n) - Y_n| \ge n/3) \le \frac{\mathbb{V}(Y_n)}{(n/3)^2} = \frac{3^3}{2n} \left(1 - \frac{1}{n}\right) \left(1 - \frac{3}{n}\right) \to 0.$$

Hence whp $e(G_n) \geq n$ and (consequently) whp G_n contains a cycle for $np \to \infty$.

At the end of lecture 2 we began a proof that the threshold function for having \mathbb{Z} as a subgraph is $p^* = \frac{1}{n^{2/3}}$. This will be continued in lecture 3.

$$f'(x)\big|_{x=1} = tp(x + (1-p))^{t-1}\big|_{x=1} = np,$$

and

$$f''(x)$$
) $\Big|_{x=1} = t(t-1)p^2(x+(1-p))^{t-2}\Big|_{x=1} = t(t-1)p.$

Thus $\mathbb{E}(Y) = tp$ and the variance is

$$\mathbb{V}(Y) = \mathbb{E}(Y(Y-1)) + \mathbb{E}(Y) - \mathbb{E}(Y^2) = t(t-1)p^2 + np - t^2p^2 = tp(1-p).$$

³There are many ways to calculate the expectation and variance of the binomial random variable bin(t, p) and this is not part of the course but for completeness we write out one method below.

For any random variable taking values in $\{0,1,\ldots,t\}$, one can construct the polynomial (known as the probability generating function of X), $f(x) = \sum_{i=1}^t \mathbb{P}(X=k)x^k$ and note that $f'(x)\big|_{x=1} = \mathbb{E}(X)$ and $f''(x)\big|_{x=1} = \mathbb{E}(X(X-1))$.

Hence for the random variable Y with distribution bin(t,p) the probability generating function is $f(x) = \sum_{i=1}^{t} {t \choose k} p^k (1-p)^{t-k} x^k = (px-(1-p))^t$ which means

Exercise 5. Show whp $np \to \infty$ implies whp G_n contains \triangle i.e. a 3-cycle⁴.

Let Y_n count the number of Δ in G_n and for any 3-subset of vertices $S \subset V(G)$ let A_S be the event that G_n restricted to the vertices S is a Δ .

(a) Show by linearity of expectation that:

$$\mathbb{V}(Y_n) = \sum_{S,T \in \binom{[n]}{3}} \left(\mathbb{P}(A_S \& 1_{A_T}) - \mathbb{P}(A_S)\mathbb{P}(A_T) \right).$$

(b) Notice that when the sets of vertices S and T don't intersect that the events A_S and A_T are independent. What about when they intersect on one vertex? Using (a) show that:

$$\mathbb{V}(Y_n) \le \sum_{|S \cap T| = \{2,3\}} \mathbb{P}(A_S \& A_T).$$

- (c) After some case analysis and from (b) show: $\mathbb{V}(Y_n) \leq n^4 p^5 + n^3 p^3$.
- (d) From (c) conclude that whp $Y_n > 0$. Hint: use Chebyshev's inequality.

Exercise 6. Given $k \in \mathbb{N}$, let \mathcal{P}_k be the set of graphs which have a path on k vertices as a subgraph. Find the threshold function for \mathcal{P}_3 (containing the path \wedge as a subgraph) and for \mathcal{P}_4 . Can you find the threshold for \mathcal{P}_k in terms of k and k?

⁴This exercise demonstrates a different way to prove the second part of Theorem 1.6. In the proof we showed that whp $e(G_n) \ge n$ for $np \to \infty$ and from this and Q 2a we concluded that $np \to \infty$ implies whp G_n has a cycle.