Глава 1

Синтез управления

1.1 Идентификация

1.1.1 Системы координат

Всего у нас будет 3 системы координат:

- 1. Связанная с основанием робота базовая система координат. Центр системы координат выберем следующим образом: он будет находиться на пересечении оси вращения первого джоинта и горизональной плоскости, проходящей через ось вращения второго. Такое начало координат заложенно производителем.
- 2. Связанная с центром фланца рабочего инструмента.
- 3. Связанная с силомоментным датчиком.

Датчик закреплён на фланце робота таким образом, что оси z у них совпадают, систему координат, связанную с датчиком можно получить, повернув систему координат, связанную с фланцем, на угол $\frac{\pi}{2}$. В итоге для реализации управления нам необходимо составить матрицы прехода из первой системы координат во вторую и из второй - в третью. Обозначим матрицу перехода из первой системы во вторую M_{p12} , из второй в третью - M_{p23} .

1.1.2 Нахождение матрицы перехода 1-2

Для нахождения матрицы перехода из первой системы во вторую можно воспользоваться одним из двух способов:

- 1. Углы Эйлера в zyz конвенции
- 2. Прямая задача кинематики

Углы Эйлера От контроллера Kawasaki мы можем в режиме реального времени мы получаем координаты X,Y,Z и углы Эйлера O,A,T в zyz конвенции (Рисунок 1.1). По этим координатам мы можем построить матрицу перехода из первой системы координат во вторую:

$$M_{p12} = egin{bmatrix} cOcAcT - sOsT & -cOcAcT - sOcT & cOsA & X \\ sOcAcT + cOsT & -sOcAsT + cOcT & sOsA & Y \\ -sAsT & sAsT & cA & Z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Прямая задача кинематики Методом Денавита-Хартенберга определим кинематические параметры каждого звена манипулятора. Значения параметров представлены в Таблице 1.1, кинематическая схема на рисунке 1.2.

Обобщённую координату i-го джоинта обозначим как θ_i . Т.к. ось вращения первого джоинта направлена вертикально вниз, а z в базовой системе координат направлена вертикально вверх, было введено дополнительное преобразование из базовой системы координат в систему отсчёта первого джоинта.

Для i-го кинематического звена матрица перехода имеет вид:

$$A_{i} = \begin{bmatrix} c\theta & -s\theta c\alpha & s\theta s\alpha & c\theta a \\ s\theta & c\theta c\alpha & -c\theta s\alpha & s\theta a \\ 0 & s\alpha & c\alpha & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Тогда $M_{p12}=A_0A_1A_2A_3A_4A_5A_6$

Рис. 1.1: ZYZ конвенция углов Эйлера

Нахождение матрицы перехода 2-3 1.1.3

Т.к. матрица перехода 2-3 постоянна и имеет тривиальную форму, объявим её как константу:
$$M_{p12}=\begin{bmatrix}0&-1&0&0\\1&0&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}$$

Рис. 1.2: Кинематическая схема

1.2 Обработка Сил

1.2.1 Компенсация внутренних силовых напряжений

Т.к. монтаж датчика на фланец осуществлён совместно со схватом за счёт жёсткой фиксации, то возникают внутреннее давление которое порождает паразитные показания силы. Для

таолина г г кинематические звенья	Таблица	1 1.	Кинематические	звенья
-----------------------------------	---------	------	----------------	--------

Taominga 1.1. Kinicmath teekhe Shelibh							
№ Звена	$ heta_i$	d_i	a_i	α_i			
0	0	0	0	pi			
1	$\theta_1 - pi/2$	0	0.1	pi/2			
2	$\theta_2 - pi/2$	0	0.45	pi			
3	$\theta_3 + pi/2$	0	0.04	pi/2			
4	θ_4	0.45	0	-pi/2			
5	θ_5	0	0	pi/2			
6	$\theta_6 + pi/2$	0.1	0	0			

определения паразитных сил зафиксируем фланец робота в двух положениях: вертикально вверх и вертикально вниз. Получены следующие значения:

$$\begin{pmatrix} -12.5 \\ 0 \\ -50 \end{pmatrix}$$
 - для ориентации вертикально вверх $\begin{pmatrix} -12.5 \\ 0 \\ 10 \end{pmatrix}$ - для ориентации вертикально вниз.

Отсюда получаем, что внутреннее напряжение равно по оси x 12.5H, а по оси z -20H. Учитывая, что инструмент и монтажные элементы весят примерно 3кг, делаем вывод о правильных расчётах.

В результате получаем вектор внутренних напряжений:

$$F_v = \begin{pmatrix} -12.5\\0\\-20 \end{pmatrix}$$

1.2.2 Компенсация силы тяжести

Обозначим матрицу перехода из системы координат датчика в базовую систему координат как $M_{p13}=M_{p12}M_{p23}$. Т.к. сила тяжести направлена всегда вертикально вниз, то мы знаем вектор силы тяжести в базовой системе координат. Т.о. нам необходимо

перевести вектор силы тяжести из базовой системы координат в систему координат датчика. $F_1=\begin{pmatrix}0\\0\\-30\end{pmatrix}$, тогда в системе координат датчика $F_g=M_{13}^{-1}F_1.$

1.2.3 Перевод измерений датчика в базовую систему координат

Пусть F_0 - вектор сил, полученный с датчика. Тогда вектор показаний F_r , в котором уже скомпенсированны внутренние напряжения и сила тяжести: $F_r = F_0 - F_v - F_g$. Тогда показания датчика в базовой системе координат будут следующими: $F_r^* = M_{13}F_r$

1.3 Обработка Моментов

1.3.1 Компенсация внутренних напряжений

По причинам, описанным в п1.2.1 в системе при ориентации вертикально вверх (все моменты, порождённые внешними силами, должны быть равны 0) мы получаем ненулевые значения. Обозначим вектор внутренних моментов как M_v , тогда

$$M_v = \begin{pmatrix} -0.34 \\ -0.18 \\ 0.52 \end{pmatrix}$$

1.3.2 Компенсация момента силы тяжести

Для того, чтобы скомпенсировать момент силы тяжести, введём вектор, соединяющий центр фланца и центр тяжести инструмента при ориентированном вертикально вверх инструменте:

$$r_{c_0} = \begin{pmatrix} 0\\0\\0.07 \end{pmatrix}$$

тогда вектор соединяющий центр фланца и центр тяжести в произвольной конфигурации робота r_c будет равен $M_{13}r_{c_0}$. Тогда момент силы тяжести в произвольном конфигурации в базовой системе координат равен в базовой системе координат

$$M_{g_0} = rc \times \begin{pmatrix} 0 \\ 0 \\ -30 \end{pmatrix}$$

В системе координат датчика тогда момент будет: $M_g = M_{13}^{-1} M_{g_0}$

1.3.3 Перевод измерений датчика в систему обобщённых координат

Пусть M_0 - вектор моментов, полученный с датчика. Тогда вектор показаний M_r , в котором уже скомпенсированны внутренние напряжения и сила тяжести: $M_r = M_0 - M_v - M_g$. Наше управление будет построено следующим образом: возьмём первые четыре джоинта, будем последовательно переходить от системы координат шестого джоинта к системе координат третьего джоинта.

Перед каждым переходом z координату вектора моментов будем сохранять в качестве приведённого момента m_i . После чего следует обнулить z - координату вектора моментов, после чего следует умножить полученный вектор на обратную матрицу поворота из (i-1)-ой системы координат в i-ю.

$$\begin{pmatrix} x_{i-1} \\ y_{i-1} \\ z_{i-1} \end{pmatrix} = \begin{pmatrix} x_i \\ y_i \\ 0 \end{pmatrix} M_{i(i-1)_{3x3}}^{-1}$$

1.4 Построение регуляторов

1.4.1 Определение формы задающих воздействий

Т.к. единственный способ управления роботом представляет из себя формирование задания по относительному смещению рабочего инструмента или относительному повороту джоинта, выход регулятора будет представлять собой вектор смещения

$$egin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}$$
 в случае управления по силе и вектор поворотов $egin{pmatrix} \Delta heta_3 \\ \Delta heta_4 \\ \Delta heta_5 \\ \Delta heta_6 \end{pmatrix}$ в случае управления по моментам

Для реализации управления используется трёх-канальный ПИ-регулятор в случае управления по силам, принимающий на вход вектор сил и четырёх-канальный в случае управления по моментам, принимающий на вход вектор приведённых моментов.

1.4.2 Вычисление интегральной ошибки

Т.к. у нас дискретная система, то для подсчёта интегральной компоненты реализована FIFO структура, иными словами, очередь фиксированной длины. Значение интегральной компоненты равно сумме всех элементов очереди.