Sciences

Application 01 – Corrigé

Mise à l'eau d'un robot sous-marin

Chapitre 1 - Modélisation multiphysique

Concours Centrale - MP 2019

Savoirs et compétences :

Question 1 À partir des figures précédentes, relier les composants du modèle de simulation multiphysique de la grue portique. Quel(s) ensemble(s) n'ont pas été modélisés?

Exercice 1 - Moteur à courant continux

B2-07

Question 1 Réaliser le schéma-blocs.

Question 2 Mettre le schéma-blocs sous la forme suivante.

En utilisant le schéma-blocs proposé, on a $\Omega(p) = (C_r(p)A(p) + U(p)B(p))C(p).$ D'autre part, $\Omega(p) = \left(C_r(p) + \frac{K}{R + Lp} \left(U(p) - K\Omega(p)\right)\right) \frac{1}{f + Jp}.$ On a donc $(f + Jp)\Omega(p) = C_r(p) + U(p)\frac{\kappa}{R + Lp}$ $\iff (f+Jp)\Omega(p) + \frac{K^2}{R+Lp}\Omega(p) = C_r(p) + U(p)\frac{K}{R+Lp}$ $\iff \left(\left(f + Jp \right) + \frac{K^2}{R + Lp} \right) \Omega(p) = C_r(p) + U(p) \frac{K}{R + Lp}$ $\Leftrightarrow \frac{K^{2} + (f + Jp)(R + Lp)}{R + Lp} \Omega(p) = C_{r}(p) + U(p) \frac{K}{R + Lp}$ $\Leftrightarrow \Omega(p) = \left(C_{r}(p) + U(p) \frac{K}{R + Lp}\right) \frac{R + Lp}{K^{2} + (f + Jp)(R + Lp)}$ Dés lors plusieurs schéma-blocs peuvent répondre à la question. Par exemple, A(p) = 1, $B(p) = \frac{\kappa}{R + Lp}$,

En poursuivant, on a aussi:

 $\Omega(p) = \left(C_r(p)(R+Lp) + U(p)K \right) \frac{1}{K^2 + (f+Jp)(R+Lp)}.$ Cycle 01- Modéliser le comportement des systèmes multiphysiques On a donc aussi, $A(p) = \frac{1}{1} L^2 R^2 + \frac{1}$

$$C(p) = \frac{1}{V^2 + (f + I_{12})(p + I_{12})}$$

l'Ingénieur

Application 02 – Corrigé

La Seine Musicale

Concours Centrale - MP 2020

Savoirs et compétences :

Question 1

Sur la figure suivante, compléter les liens du modèle proposé pour prendre en compte les deux capteurs.

Exercice 2 - Vérin*

B2-07 Pas de corrigé pour cet exercice.

Question 1 Réaliser le schéma-blocs.

On a :

•
$$U_c(p) = \frac{1}{K_a}I(p) + U_s(p)$$

- Q(p) = SpX(p)
- $U_S(p) = K_C \cdot X(p)$

•
$$F(p) = \frac{Q(p)}{I(p)} = \frac{K_d}{1 + Tp}$$

• $I(p) = \frac{I(p)}{I(p)} = \frac{I(p)}{1 + Tp}$

• $I(p) = \frac{I(p)}{I(p)} = \frac{I(p)}{I(p)$

PSI_{*} – MP

Application 03 – Corrigé

000

Direction automatique découplée

Banque PT - SI A 2017

Savoirs et compétences :

Question 1 Compléter ce modèle en traçant les liens manquants qui donneraient un modèle équivalent au schéma bloc de la **??**.

Exercice 3 - Banc d'épreuve hydraulique * B2-07 Pas de corrigé pour cet exercice.

Question 1 Déduire de la relation précédente l'équation reliant Z(p), $P_e(p)$, $P_h(p)$, et Poids(p) = Mg/p, transformées de Laplace de z(t), $P_e(t)$, $P_h(t)$ et du poids perçu comme une perturbation. Les conditions initiales sont supposées nulles.

$$Mp^2Z(p)) = S_h P_h(p) - S_e P_e(pt) - \frac{Mg}{p} - fpZ(p)$$

Question 2 En déduire, en tenant compte de l'équation du débit, deux équations liant L(p), $P_e(p)$ et $Q_e(p)$, transformées de Laplace de L(t), $P_e(t)$ et $Q_e(t)$. Les conditions initiales sont supposées nulles.

$$Q_e(p)=(S_a-S_b)pL(p)+\frac{V_t}{B_e}pP_e(p) \text{ et } mp^2L(p)=-rL(p)+(S_a-S_b)P_e(p)-f'pL(p).$$

Question 3 Compléter le schéma-blocs de l'ensemble (sans le distributeur hydraulique), l'entrée étant la pression d'huile régulée $P_r(p)$ et la sortie la pression

d'épreuve dans le tube $P_e(p)$.

