Biplab Sinha Mahapatra

School of Applied Science and Humanities Haldia Institute of Technology Mathematics-III (Probability & Statistics) Module-I

Probability Distribution

1. A random variable X has the density function

$$f(x) = \begin{cases} \frac{x}{2}, 0 \le x \le 1\\ \frac{1}{2}, 1 < x \le 2\\ \frac{1}{2} (3 - x), 2 < x \le 3 \end{cases}$$

Find the mean and variance of X.

Ans:
$$\frac{3}{2}$$
, $\frac{5}{12}$

Show that the function $f(x) = \begin{cases} |x|, -1 < x < 1 \\ 0, \text{ otherwise} \end{cases}$ density function and hence find the corresponding distribution function.

Ans:
$$F(x) = \begin{cases} 0, -\infty < x \le -1 \\ \frac{1}{2}(1-x^2), -1 < x \le 0 \\ \frac{1}{2}(1+x^2), 0 < x \le 1 \\ 1, 1 < x < \infty \end{cases}$$

3. For what values of a, P(x) will be a pmf. of a discrete random variable X, whose probability distribution is given below:

X	0	1	2	3	4
P(x):	a	2a	7a ²	2a	a

Hence find (i) P(X > 1) (ii) $P(X < 3/X \ge 1)$. Ans: $a = \frac{1}{7}$ (i) $\frac{4}{7}$ (ii) $\frac{2}{3}$

Ans:
$$a = \frac{1}{7}(i) \frac{4}{7}(ii) \frac{2}{3}$$

- Let X is a random variable whose density function f forms an isosceles triangle above the unit interval I = [0, 1] and 0 elsewhere. Then prove that
 - a) Height of the triangle is 2.
 - b) Formula for pdf is $f(x) = \begin{cases} 4x, & 0 \le x \le \frac{1}{2} \\ -4x + 4, & \frac{1}{2} \le x \le 1 \end{cases}$
 - c) The mean of X is $\frac{1}{2}$.
- The diameter of an electric cable, say X is assumed to be a continuous random variable with pdf f(x) = 6x(1-x), $0 \le x \le 1$
 - i) Check that f(x) is a pdf
 - ii) Determine a number b such that $P(X < b) = P(X \ge b)$.

Ans: (ii)
$$b = \frac{1}{2}$$
.

A random variable X has the following probability mass function:

<i>x</i> :	-2	-1	0	1	2	3
f(x)	0.1	k	0.2	2k	0.3	3k

- i) Find k
- ii) Evaluate $P(X < 2), P(X \le 2), P(-2 < X < 2)$.
- iii) Determine the distribution function F(x).

Answer: i)
$$\frac{1}{15}$$
 ii) 0.5, 0.8, 0.4

iii)
$$F(x) = \begin{cases} 0; & -\infty < x < -2\\ 0.1; & -2 \le x < -1\\ \frac{1}{6}; & -1 \le x < 0\\ \frac{11}{30}; & 0 \le x < 1\\ \frac{1}{2}; & 1 \le x < 2\\ \frac{4}{5}; & 2 \le x < 3\\ 1; & x \ge 3 \end{cases}$$

- 7. The pdf of a random variable X is $f(x) = \{\frac{1}{4}; -2 \le x \le 2, \text{ find } \}$
 - i) P(X < 1),
 - ii) $P\left(|X-1| \ge \frac{1}{2}\right)$

Answer: i) $\frac{3}{4}$ ii) $\frac{3}{4}$

8. The pdf of a random variable X is given by $f(x) = \frac{3}{4}x(2-x)$, 0 < x < 2. Compute Mean and Variance.

Answer: $1, \frac{1}{5}$

9. Let $f(x) = ke^{-\alpha x}(1 - e^{-\alpha x}), x \ge 0$. Find k such that f(x) is a density function. Find also the corresponding distribution function.

Answer: 2α , $1 - 2e^{-\alpha x} + e^{2\alpha x}$

10. For a random variable X, Var(X) = 1, find Var(2X + 3).

Answer: 4

11. The length of life of tyre manufactured by a company follows a continuous distribution given by the density $\binom{k}{k}$ 1000 to 11500

function $f(x) = \begin{cases} \frac{k}{x^3}; 1000 \le x \le 1500 \\ 0; Elsewhere \end{cases}$. Find k and find the probability that a randomly selected tyre would

function for at least 1200 hours.

Answer: 36×10^5 , 0.45

12. The pdf of a continuous random variable X is given by $f(x) = \begin{cases} \frac{2(\beta+x)}{\beta(\alpha+\beta)}; & -\beta \le x < 0 \\ \frac{2\alpha(\alpha-x)}{(\alpha+\beta)}; & 0 \le x < \alpha \end{cases}$. Find the Expectation and

Variance of X. Given $\alpha > \beta > 0$.

Answer:
$$\frac{1}{3}(\alpha - \beta)$$
, $\frac{1}{18}(\alpha^2 + \alpha\beta + \beta^2)$

13. Find the value of the constant k such that $f(x) = \begin{cases} kx(1-x), 0 < x \le 1 \\ 0, Else\ where \end{cases}$ is a possible density function and compute $P\left(X > \frac{1}{2}\right)$. Also find E(X).

Ans: (i) k = 6, (ii) 0.5, (iii) 0.5

- 14. The distribution function of a random variable X is $F(x) = \begin{cases} cx^3, 0 \le x < 3 \\ 1, x \ge 3 \\ 0, x < 0 \end{cases}$. If P(X = 3) = 0 find
- (i) The constant c
- (ii) The density function.
- (iii) P(X > 1)

(iv)
$$P(1 < X \le 2)$$

(v)
$$P(3X + 2 < 8)$$

Ans: (i)
$$1/27$$
 (ii) $f(x) = \frac{x^2}{9}$, $0 \le x < 3$ (iii) $26/27$ (iv) $7/27$ (v) $8/27$

15. The pdf of a random variable X is $f(x) = cx^2$, $0 \le x \le 1$. Find

(ii)
$$P\left(0 \le X \le \frac{1}{2}\right)$$

(iii)
$$P(4X > 3)$$

(iv)
$$P(1 < 4X < 3)$$

(vi)
$$E(5X - 8), Var(4X + 6)$$

Ans: (i) 3, 1/8, 37/64, 13/32, 3/5

16. The pdf of a R. V. X is given by
$$f(x) = k(x-1)(2-x)$$
, $1 \le x \le 2$. Determine

(iii)
$$P\left(\frac{5}{4} \le X \le \frac{3}{2}\right)$$

(v)
$$E(3X - 9)$$

(vi)
$$Var(4X + 6)$$

Ans: (i) 6 (ii)
$$F(x) = 5 - 12x + 9x^2 - 2x^3$$
, $1 \le x < 2$ (iii) 11/32 (iv) 3/2, 1/20 (v) $-\frac{9}{2}$ (vi) $\frac{4}{5}$