YOLOV3

Prieur Maxime, Quarez Etienne

INSA de Rouen

29 Avril 2020

Plan

- 1. Problème traité
- 2. Méthode proposée
- 3. Implémentation
- 4. Expérience
- 5. Conclusion

Object detection

https://mc.ai/part-2-fast-r-cnn-object-detection/

Problème traité - Transfert learning

Input

- Images couleurs, taille variable
- Flux vidéo

Output

- Position de l'objet (x,y,h,w)
- Nom de la classe
- Score de confiance

Image traité par YOLO V3

https://pythonawesome.com/yolov3-training-and-inference-in-pytorch/

Idée de sujet

RobotMasterhttps://www.tuxboard.com/robot-educatif-dji-robotmaster/

Malandain

Jetson Nano

CenterNet ?

YOLO V3

Méthode Proposée - You Only Look Once

Joseph Redmon

Santosh Divvala Allen Institue for IA

Ross Girshick Facebook Al

Ali Farhadi Washington University

Yolo - 2016

YoloV2 (and 9000) - 2016

YoloV3 - 2018

YOLOV3 - Fonctionnement

Principe de détection

"Boîtes" K-means sur VOC et COCO

	Type	Filters	Size	Output
	Convolutional	32	3×3	256×256
	Convolutional	64	$3 \times 3/2$	128×128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
Į	Residual			128 × 128
	Convolutional	128	$3 \times 3/2$	64×64
	Convolutional	64	1 × 1	
2x	Convolutional	128	3×3	
	Residual			64×64
	Convolutional	256	$3 \times 3/2$	32×32
	Convolutional	128	1 x 1	
8×	Convolutional	256	3×3	
	Residual		200	32×32
	Convolutional	512	$3 \times 3/2$	16 × 16
	Convolutional	256	1 × 1	
8×	Convolutional	512	3×3	
	Residual			16 × 16
	Convolutional	1024	$3 \times 3/2$	8 × 8
	Convolutional	512	1 x 1	
4×	Convolutional	1024	3×3	
	Residual			8 × 8
	Avgpool		Global	
	Connected		1000	
	Softmax			

Architecture DarkNet-53

Implémentation utilisée

- Site de l'auteur : https://pjreddie.com/darknet/yolo/

- Git de l'auteur : https://github.com/pjreddie/darknet

Git de l'adaptation de l'architecture sous Keras : https://github.com/qqwweee/keras-yolo3

Expérimentation - Données

Sites de données :

- https://www.kaggle.com/issaisasank/guns-object-detection
- http://www.imfdb.org/wiki/Main_Page
- <u>https://github.com/SasankYadati/Guns-Dataset</u>
- https://sci2s.ugr.es/weapons-detection
- Extraits de films

Extrait du dataset

Format des labels

Interface de labelIMG

Expérimentation - Procédure de transfert learning

Procédure

- Partir des poids YOLOV3 publiques
- Modèles Freeze (50 epochs)
- Modèle entier sur le reste des epochs

<u>Paramètres</u>

- 1300 images
- Validation set : 10% du dataset
- BatchSize: 32

Callbacks

- Tensorboard
- ModelCheckpoint
- ReduceLROnPlateau (4 epochs, delta=0)
- EarlyStopping (10 epochs, delta=0)

Expérimentation - Métriques & Loss utilisée

Métriques: MAP

Loss:

Loss_1 =
$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2$$

Loss_2 =
$$\lambda_{coord} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (\sqrt{w_i} - \sqrt{\hat{w}_i})^2 + (\sqrt{h_i} - \sqrt{\hat{h}_i})^2$$

Loss_3 =
$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{obj} (C_i - \hat{C}_i)^2 + \lambda_{noobj} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{noobj} (C_i - \hat{C}_i)^2$$

Loss_4 =
$$\sum_{i=0}^{S^2} \mathbb{1}_i^{obj} \sum_{c \in classes} (p_i(c) - \hat{p}_i(c))^2$$

Expérimentation - Résultats

Loss sur trainSet

Ir

Loss sur validationSet

Poids retenu

- Epoch **72**

Loss : **14.133**

Val Loss : 14.79

LearningRate

Conclusion

- Potentiel intéressant
- Diversifier/Enrichir le dataset
- Tester sur un GPU
- Faire varier les paramètres (changer des couches, tailles des batchs etc...)
- Essayer d'autre méthode de détection

Bibliographie

- https://arxiv.org/pdf/1506.02640.pdf, You Only look Once: Unified, Real-Time Object Detection. Joseph Redmon, Santosh
 Divvala, Ross Girshick, Ali Farhadi. 9 Mai 2016
- https://arxiv.org/pdf/1612.08242.pdf, Yolov9000: Better Faster Stronger. Joseph Redmon, Ali Farhadi. 25 Décembre 2016
- https://arxiv.org/pdf/1804.02767.pdf, Yolov3: An Incremental Improvement. Joseph Redmon, Ali Farhadi. 8 Avril 2018

