Division *-algebras

James Moody

April 2020

Introduction

Definition 0.1. A *-algebra over a field \mathcal{K} is a vector space \mathcal{A} over \mathcal{K} together with a not necessarily commutive nor associative binary multiplication operator $\cdot : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$, and a unary involution * : $\mathcal{A} \to \mathcal{A}$ satisfying the following axioms:

- (1) Left distributivity of multiplication over addition: $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) + (\mathbf{x} \cdot \mathbf{z})$
- (2) Right distributivity of multiplication over addition: $(\mathbf{x} + \mathbf{y}) \cdot \mathbf{z} = (\mathbf{x} \cdot \mathbf{z}) + (\mathbf{y} \cdot \mathbf{z})$
- (3) Compatibility with scalars: $(a\mathbf{x}) \cdot (b\mathbf{y}) = (ab)(\mathbf{x} \cdot \mathbf{y})$
- (4) * is an additive homomorphism: $(\mathbf{x} + \mathbf{y})^* = \mathbf{x}^* + \mathbf{y}^*$
- (5) * is a multiplicative anti-homomorphism: $(\mathbf{x} \cdot \mathbf{y})^* = \mathbf{y}^* \cdot \mathbf{x}^*$

Definition 0.2. A **presentation** of a *-algebra over a field \mathcal{K} is a vector space V over \mathcal{K} together with a \mathcal{K} linear function $L: V \to End(V)$ and an involution $^{\dagger}: V \to V$ such that for all $x, y \in V$ $(L(x)y)^{\dagger} = L(y^{\dagger})x^{\dagger}$.

We say $(V, L, ^{\dagger})$ is a **presentation of** \mathcal{A} if there is a linear isomorphism $\pi : \mathcal{A} \to V$ such that:

- (a) For all $\mathbf{x}, \mathbf{y} \in \mathcal{A}$, $\pi(\mathbf{x} \cdot \mathbf{y}) = L(\pi(\mathbf{x}))\pi(\mathbf{y})$
- (b) For all $\mathbf{x} \in \mathcal{A}$, $\pi(\mathbf{x}^*) = \pi(\mathbf{x})^{\dagger}$

Observation 0.3. Every *-algebra \mathcal{A} over a field \mathcal{K} has a presentation where π is the forgetful map from \mathcal{A} to the underling vector space V of \mathcal{A} , $L(x)y := \pi(\pi^{-1}(x) \cdot \pi^{-1}(y))$, and $x^{\dagger} := \pi(\pi^{-1}(x)^*)$.

Proof. Properties (a) and (b) are satisfied by definition. It's clear \dagger is an involution. $(x,y) \mapsto L(x)y$ is bilinear since it is the pushforward of multiplication in \mathcal{A} , so $x \mapsto L(x)$ is \mathcal{K} -linear. It suffices to show then that for all $x, y \in V$, $(L(x)y)^{\dagger} = L(y^{\dagger})x^{\dagger}$. We can see this as follows:

$$(L(x)y)^{\dagger} = \pi(\pi^{-1}(L(x)y)^*) = \pi((\pi^{-1}(x) \cdot \pi^{-1}(y))^*)$$
$$= \pi(\pi^{-1}(y)^* \cdot \pi^{-1}(x)^*) = \pi(\pi^{-1}(y^{\dagger}) \cdot \pi^{-1}(x^{\dagger})) = L(y^{\dagger})x^{\dagger}$$

Definition 0.4. A division *-algebra over \mathcal{K} is a *-algebra over \mathcal{K} satisfying the following two additional conditions:

- (6) Right division: for any \mathbf{x} and any non-zero \mathbf{y} , there exists a unique \mathbf{z} such that $\mathbf{x} = \mathbf{z} \cdot \mathbf{y}$
- (7) Left division: for any \mathbf{x} and any non-zero \mathbf{y} , there exists a unique \mathbf{z} such that $\mathbf{x} = \mathbf{y} \cdot \mathbf{z}$