视频编码国家标准AVS与H.264的比较(节选)

2013年10月18日 13:41:54 阅读数:8313

注:这个报告是官方报告,时间比较早了,AVS和H.264版本更新了很多,仅仅作为参考。

对视频编码标准进行客观评价的常用方法是峰值信噪比PSNR。表9、表10分别给出了AVS与MPEG-2标准以及AVS与MPEG-4 AVC/H.264标准mai n profile的客观编码性能。结果为相同码率条件下峰值信噪比PSNR的增益。可以看出,AVS相对于MPEG-2标准编码效率平均提高2.56dB,相比于H.264标准编码效率略低,平均有0.11dB的损失。

表 9 AVS 与 MPEG-2 标准客观编码效率比较

AVS 相比于 MPEG-2	HD	progressive)	SD interlace 序列		
	pedestrain	Station2	Rushhour	hourseriding	Zy
PSNR 增益(dB)	2.53	1.75	1.39	4.59	2.55

表 10 AVS 与 MPEG-4 AVC/H. 264 标准 main profile 客观编码效率比较

AVS 相比于 H.264	HD progressive 序列			SD interl	ace 序列
AVS THILL J H.204	pedestrain	Station2	Rushhour	hourseriding	Zy
PSNR 增益(dB)	-0.07	0.17 ^{tp} :	// 0.18 CS	dn. 20.28 lei.	kiad 0.17 1020

下面是另一组视频序列的AVS和H.264的性能比较实验结果。实验使用的AVS视频编码器是RM 5.0a,H.264编码器是JM 6.1e。 编码参数如下所示:

表 11 AVS 和 H.264 编码参数

	JM 6.1e	RM 5.0a
熵编码	CABAC	2D-VLC
率失真优化	使用	使用
参考图像	2 帧	2 帧
B帧	2帧(IBBP)	2帧(IBBP)
隔行编码	宏块帧/场自适应	图像帧/场自适应
运动补偿块大小	16×16 到 4×4	16×16 到 8×8
环路滤波	使用	使用

实验结果(分为几个序列):

从上面的数据可以看出,在逐行编码方面,AVS视频标准的性能与H.264基本一致;在隔行编码方面,由于AVS视频标准目前只支持图像级帧/场自适应编码,平均有0.5dB的性能差距。

报告地址: http://download.csdn.net/detail/leixiaohua1020/6418329

文章标签: avs h.264 比较 编码 视频

个人分类: 视频质量评价 视频编码

所属专栏: 视频质量评价

此PDF由spygg生成,请尊重原作者版权!!!

我的邮箱:liushidc@163.com