Component Wear Anomalies

Skinwrapper Machines

Let's consider the Vega skinwrapper family of packaging machines by **OCME**

- They work by wrapping products (bottles) in a plastic film
- ...Which is cut and heated, so that the film shrinks and stabilizes the content

OCME Vega Shrinker

A public dataset for a skinwrapper is available from Kaggle

- The dataset contains a single run-to-failure experiment
- I.e. the machine was left running until its blade became unusable

This is an example of anomaly due to component wear

- It's a common type of anomaly
- ...And run-to-failure experiments are a typical way to investigate them

OCME Vega Shrinker

A public dataset for a skinwrapper is available from Kaggle

- The dataset contains a single run-to-failure experiment
- I.e. the machine was left running until its blade became unusable

This is an example of anomaly due to component wear

- It's a common type of anomaly
- ...And run-to-failure experiments are a typical way to investigate them

All problems in this class share a few properties

- There is a critical anomaly at the end of the experiment
- The behavior becomes more and more distant from normal over time
- ...Meaning that they are good fit for many of the techniques we have studied

The Dataset

Let's have a first look at the dataset

In [5]: data = pd.read_csv(data_file) data Out[5]: mode segment smonth sday pCut::Motor_Torque pCut::CTRL_Position_controller::Lag_error pCut::CTI stime timestamp 184148 0.008000 0.199603 0.027420 62839262 0 1 4 1 184148 0.012000 0.281624 0.002502 6283926 ()4 0 1 184148 0.016000 0.349315 -0.018085 6283926 3 0 184148 0.020000 0.444450 -0.054680 6283926 184148 0.024000 -0.042770 0.480923 6283926 **1062907** 2 518 12 28 185909 8.179999 -0.277697 -0.023948 1949244 **1062908** 2 518 12 185909 8.183999 -0.285098 -0.022138 19492450 28 **1062909** 2 185909 8.187999 -0.155192 -0.034412 1949245 518 12 **1062910** 2 185909 8.191999 0.031594 518 12 -0.371426 19492450 **1062911** 2 12 185909 8.195999 19492459 518 28 -0.284030 0.010178 1062912 rows × 14 columns

The data refers to disjoint measurement windows

The Dataset

Let's check some statistics

In [6]: data.describe() Out[6]: pCut::Motor Torque pCut::CTRL_Po mode segment smonth sday stime timestamp 1.062912e+06 1.062912e+06 1.062912e+06 1.062912e+06 1.062912e+06 1.062912e+06 1.062912e+06 1.062912e+06 2.323699e+00 1.362122e+05 -5.472746e-05 2.590000e+02 5.271676e+00 1.654143e+01 4.102069e+00 -1.206338e-01 mean 1.649207e+00 1.498222e+02 3.505212e+00 8.490150e+00 3.226381e+04 2.364827e+00 6.078708e-01 1.212122e-01 std -1.888258e+00 1.000000e+00 0.000000e+00 1.000000e+00 1.000000e+00 8.115800e+04 4.000000e-03 -6.560303e+00 min 1.000000e+00 1.290000e+02 -2.201461e-02 25% 2.000000e+00 9.000000e+00 1.113170e+05 2.056000e+00 -3.696310e-01 2.000000e+00 2.590000e+02 4.000000e+00 1.800000e+01 1.348180e+05 -1.187128e-01 6.456900e-04 50% 4.104000e+00 75% 3.000000e+00 8.000000e+00 1.618270e+05 2.380830e-02 3.890000e+02 2.300000e+01 6.152000e+00 2.546913e-01 8.000000e+00 5.180000e+02 1.200000e+01 3.100000e+01 2.232490e+05 8.199999e+00 2.021531e+00 3.856873e+00 max

The data is neither normalized nor standardized

Missing Values

Let's check for missing values in the columns related to sensor readings

```
In [7]: data.isnull().any()
Out[7]: mode
                                                                  False
                                                                  False
        segment
        smonth
                                                                  False
        sday
                                                                  False
        stime
                                                                  False
                                                                  False
        timestamp
        pCut::Motor Torque
                                                                  False
        pCut::CTRL Position controller::Lag error
                                                                  False
        pCut::CTRL Position controller::Actual position
                                                                  False
        pCut::CTRL Position controller::Actual speed
                                                                  False
        pSvolFilm::CTRL Position controller::Actual position
                                                                  False
        pSvolFilm::CTRL Position controller::Actual speed
                                                                  False
        pSvolFilm::CTRL Position controller::Lag error
                                                                  False
        pSpintor::VAX speed
                                                                  False
        dtype: bool
```

No missing value in the dataset

Acquisition Windows

And let's check the length of each segment

```
In [8]: data.groupby('segment')['mode'].count().describe()
Out[8]: count
                   519.0
                  2048.0
        mean
        std
                     0.0
                 2048.0
        min
        25%
                 2048.0
        50%
                 2048.0
                 2048.0
        75%
                  2048.0
        max
        Name: mode, dtype: float64
```

- There are 519 segments overall
- ...Each with 2048 samples

Let's have a look at all non-time related columns

```
In [9]: feat_in = data.columns[[0, 6, 7, 8, 9, 10, 11, 12, 13]]
        data2 = data[feat_in].copy()
        util.plot_dataframe((data2 - data2.mean()) / data2.std(), figsize=figsize)
```


Let's have a look at all non-time related columns

```
In [9]: feat_in = data.columns[[0, 6, 7, 8, 9, 10, 11, 12, 13]]
        data2 = data[feat_in].copy()
        util.plot_dataframe((data2 - data2.mean()) / data2.std(), figsize=figsize)
```

■ A few features (row 0, 2, 3, 5, 8) have very "suspicious" behavior

Column 0 corresponds to an operating mode

■ The mode is a controlled parameter and does not change in the middle of a segment

Intuitively, the mode has an impact on the machine behavior

Column 8 is also a fixed over long periods of time

- This is likely a controlled parameter
- Ideally, we would speak with the customer (but in this excercise we can't)

Column 2 peaks repeatedly over short time periods

- There is nothing really wrong with this
- ...And it explains the mostly white row in our previous plot

Column 3 contains an odd, localized, deviation

- This is likely the result of manual adjustment
- We'd better keep this column off

...And the same holds for column 5

- Again, this is probably the a mistake, or due to human intervention
- We'd better keep this column off

This dataset contain high-frequency data (4ms sampling period)

- In this situation, feeding the raw data to a model does not usually make sense
- So we will use subsampling

A binning approach typically works as follows:

We apply a sliding window, but so that its consecutive applications do not overlap

- Each window application is called a bin
- ...From which we extract one or more features
- ...By applying different aggregation functions

The result is series that contains a smaller number of samples

...But typically a larger number of features

We will apply binning to all columns not related to time

... Except for the two we chose to discard

```
In [15]: feat_in_r = data2.columns[[0, 1, 2, 4, 6, 7, 8]]
    print(list(feat_in_r))

['mode', 'pCut::Motor_Torque', 'pCut::CTRL_Position_controller::Lag_error', 'pCut::CTRL_Position_controller::Actual_speed', 'pSvolFilm::CTRL_Position_controller::Actual_speed', 'pSvolFilm::CTRL_Position_controller::Lag_error', 'pSpintor::VAX_speed']
```

First, we define which aggregation function to apply to each field

```
In [16]: aggmap = {a: ['mean', 'std', 'skew'] for a in feat_in_r}
aggmap['mode'] = 'first'
aggmap['pSpintor::VAX_speed'] = 'first'
```

■ For the features that are fixed over a segment, we pick the first value

Then we build out bins

- We process each segment individually
- ...So that we are sure that no bin overlaps two segments

We chose our bin size based on:

- Having enough data to compensate noise
- Capture regular patterns (e.g. our spiking signal)

Let's inspect the result

In [18]: data_b

Out[18]:

	mode pCut::Motor_Torque				pCut::CTRL_Position_controller::Lag_error			pCut::CTRL_Position_controller::Actual_speed			р
	first	mean	std	skew	mean	std	skew	mean	std	skew	m
bin											
0	1	-0.125718	0.544329	-2.488922	-0.000167	0.110956	-3.746651	1599.917513	3999.045185	-0.209394	3
1	1	-0.072671	0.540906	-2.635165	-0.000567	0.103435	-3.336454	844.540436	3862.165458	0.309415	3
2	1	0.014070	0.354287	0.152579	0.000724	0.031961	0.032216	60.570994	2816.788446	-0.245380	3
3	1	-0.207667	0.455206	-3.803152	-0.000150	0.103125	-4.496910	2670.353585	2474.506197	0.155697	2
4	1	-0.289142	0.434465	-4.372388	-0.000275	0.106193	-5.242337	2579.037789	2626.919219	-0.502959	3
•••											
2071	2	-0.184381	0.781750	-3.758458	0.000508	0.116385	-1.459755	1819.838542	4007.857890	-0.029032	3
2072	2	-0.207829	0.791797	-3.968010	-0.000285	0.115259	-1.482473	1936.977300	3932.533837	-0.082154	3
2073	2	-0.146367	0.846064	-3.683229	-0.001013	0.116217	-1.488226	1556.298091	4088.929784	0.137784	3
2074	2	-0.125521	0.800829	-3.798401	-0.001139	0.117804	-1.245373	1148.293884	3980.947227	0.422832	3
2075	2	0.032077	0.349737	-0.137235	-0.000274	0.034452	-0.078601	493.331985	3127.137947	0.204754	3

2076 rows × 17 columns

We have much fewer rows, and more columns