

DECISION SUPPORT SYSTEM

MULTI-CRITERIA DECISION MAKING

TEACHING TEAM
DECISION SUPPORT SYSTEM COURSE

Multi-Criteria Decision Making (MCDM)

MCDM

- It is a scientific branch of operations research which deals with decision making based on many criteria
- Determining the best alternative from a number of alternatives based on certain criteria

Sometimes interpreted the same

MADM

Multi-attributes Decision Making

- Problems with discrete decision scope
- Single goal
- Alternatives have been defined beforehand

MODM

Multi-objective Decision Making

- Problems with continuous decision scope
- Many goals
- Alternatives are infinite, because there is an alternative design process within it
- Alternatives are based on specific goals and procedures

MCDM Classification

Concepts in MCDM (1)

Alternative

The options that will be chosen by the decision maker

Multi Criteria

- Criteria used to determine which alternative will be selected
- Can be arranged in hierarchical form (AHP)

Attribute Conflict / Attribute Type

- Attributes in MCDM very likely represent different dimensions, their values have opposite meanings. Example, expenses (costs) and income (profit)
- So, there are 2 types of attributes in MCDM,
 - Cost, and
 - Benefit

Concepts in MCDM (2)

Different Criteria Units

- The criteria in the MCDM case are very likely to have different units
- Example: Expenditures → Rupiah; Distance → Kilometers

Decision Weight

 Most methods in MCDM use weights to determine the level of importance of criteria

Decision Matrix

 MCDM uses a decision matrix to represent the relationship between alternatives and the criteria used

Decision Matrix

	C_1	C_2		C_n
Alternative	(w ₁	W_2		w _n)
A_1	r ₁₁	r ₁₁		r_{1n}
A_2	r ₂₁	r ₂₂	•••	r _{2n}
•	•	•	•••	•••
•	•	•	•••	•••
•	•	•	•••	•••
A_{m}	A_{m1}	A_{m2}		A_{mn}

• C: Criteria

• A: Alternative

• r: Value of the i-th alternative on the j-th criterion

Decision Making Steps in MADM

Understand the problems and objectives of decision making

Determine alternatives (A_{1...}A_m)

Determine criteria $(C_1...C_n)$

Determine the value of each criterion for each alternative

Normalize the value of each criterion for each alternative

Determine the weight of each criterion $(w_1...w_n)$

Calculating alternative values

Sensitivity test

Normalization Techniques (1)

Normalization Type	Benefit Attribute	Cost Attribute	
Simple	$r_{ij} = \frac{S_{ij}}{\max(S_j)}$	$r_{ij} = \frac{\min(S_j)}{S_{ij}}, S_{ij} > 0$	
Nijkamp's	$r_{ij} = 1 - \frac{\max(S_j) - S_{ij}}{\max(S_j) - \min(S_j)}$	$r_{ij} = 1 - \frac{S_{ij} - \min(S_j)}{\max(S_j) - \min(S_j)}$	
Linear Max	$r_{ij} = \frac{S_{ij}}{\max(S_j)}$	$r_{ij} = 1 - \frac{S_{ij}}{\max(S_j)}$	
Linear Max Min	$r_{ij} = \frac{S_{ij} - \min(S_j)}{\max(S_j) - \min(S_j)}$	$r_{ij} = \frac{\max(S_j) - S_{ij}}{\max(S_j) - \min(S_j)}$	

 $r_{ij} = Normalization value of alternative i on criterion j$

 $S_{ij} = Original \ value \ of \ alternative \ i \ on \ criterion \ j$

 $\max(S_i) = Maximum \ value \ of \ criterion \ j \ from \ all \ alternatives$

 $min(S_j) = Minimum \ value \ of \ criterion \ j \ from \ all \ alternatives$

Normalization Techniques (2)

Normalization Type	Benefit Attribute	Cost Attribute
Linear Sum	$r_{ij} = \frac{S_{ij}}{\sum_{1}^{m} S_{ij}}$	$r_{ij} = \frac{1/S_{ij}}{\sum_{1}^{m} 1/S_{ij}}$
Vector normalization	$r_{ij} = \frac{S_{ij}}{\sqrt{\sum_{1}^{m} S_{ij}^2}}$	$r_{ij} = 1 - \frac{S_{ij}}{\sqrt{\sum_{1}^{m} S_{ij}^2}}$

 $r_{ij} = Normalization value of alternative i on criterion j$

 $S_{ij} = Original \ value \ of \ alternative \ i \ on \ criterion \ j$

 $\max(S_i) = Maximum \ value \ of \ criterion \ j \ from \ all \ alternatives$

 $min(S_i) = Minimum \ value \ of \ criterion \ j \ from \ all \ alternatives$