

SCHOOL OF AEROSPACE MECHANICAL AND MECHATRONIC ENGINEERING

AERO3760: SPACE ENGINEERING 2

Group E: SnapSat

Data Package Document 1 Critical Design Review

21 AUGUST 2015

Name and Email	Role and Responsibility
James Allworth 312073038 jall8741@uni.sydney.edu.au	Attitude Determination and Control System TASKS
Thomas Forbutt 312101058	Communications and Data Handling
tfor8012@uni.sydney.edu.au	TASKS
Oscar McNulty 312106130	Structural Design and Development
omcn3220@uni.sydney.edu.au	TASKS
Penelope Player 312106718	On-board Computer and Power System
ppla7388@uni.sydney.edu.au	TASKS
Nikita Sardesai 312088205	Thermal System Design and Payload
nsar2497@uni.sydney.edu.au	TASKS

Contents

1	System Overview	2		
2	Payload Design	3		
3	Structural Subsystem	4		
4	Attitude Determination and Control Subsystem	5		
5	Electrical Power Subsystem	6		
6	On-Board Computer and On-board Data Handling Subsystem	7		
7	Communications Subsystem	8		
8	Thermal Control Subsystem	9		
Li	ist of Figures			
	8.1 Incoming thermal radiation on the satellite	9		
List of Tables				

1 System Overview

2 Payload Design

3 Structural Subsystem

4	Attitude Determin	nation and	Control	Subsystem
---	-------------------	------------	---------	-----------

5 Electrical Power Subsystem

6	On-Board Computer and On-board Data Handling Subsystem

7	Commu	ınications	s Subsystem
---	-------	------------	-------------

8 Thermal Control Subsystem

The method of developing thermal control used for SnapSat considers the following simplified model of the satellite. The main body is idealised as a system dissipating heat (located at the centre of the CubeSat) to the boundary located on the face of the CubeSat. This boundary is exposed to the outer environment. Energy conservation laws require that in steady state, the heat dissipated by the internal electronics is equal to that transferred to the boundary. Thus, the heat from internal dissipation added to the heat adsorbed from the outside is equal to the heat rejected to space. The general governin equation is

$$Q_{1\to 2} = K_{1\to 2}(T_a - T_2)$$

Where Q = heat exchange (Watts)

K = proportionality factor constant (Watts/Kelvin)

T =temperature of bodies (Kelvin)

between bodies 1 and 2. Additionally, the heat radiated from a surface of temperature T is given by

$$Q_r = KT^4$$

Where the proportionality factor depends on physical constants, the material properties, surface conditions and geometry. A schematic of the incominng thermal radiation on the CubeSat in Low-Earth Orbit (LEO) is shown below.

Figure 8.1: Incoming thermal radiation on the satellite

References