COMP9444 Neural Networks and Deep Learning 10a. Review

Assessment

Assessment will consist of:

Assignment 1 30%

Assignment 2 30%

Final Exam 40%

The Final Exam will be available on Moodle.

You will have 2 hours to complete the exam, within the window of 14:00 to 18:00 (Sydney time) on Monday 24 August.

The exam will be open-book.

You MUST complete the exam YOURSELF, without assistance from others, and without assisting others.

Examinable Topics

- 1c. Perceptrons
- 1d. Backpropagation
- 2a. Probability & Backprop Variations
- 3a. Hidden Unit Dynamics
- 4a. Convolutional Networks
- 4b. Image Processing
- 5a. Recurrent Networks
- 5b. Word Vectors
- 7a. Reinforcement Learning
- 7b. Deep Reinforcement Learning
- 8a. Hopfield Networks & Bolzmann Machines
- 8b. Language Processing
- 9a. Autoencoders
- 9b. Generative Adversarial Networks

Not Examinable

These topics are NOT examinable:

- 1b. Neuroanatomy
- 3b. PyTorch

Final Exam

The Final Exam will consist of:

Part A: (12 Marks)

Multiple Choice Questions (1 mark each)

Part B: (28 Marks)

Structured Questions involving a combination of: selecting from multiple options, and/or entering numeric values

Part A Questions will be similar to the Quizzes.

Part B Questions will be similar to the Exercises.

Sample Exam

There is a Sample Exam available in Moodle.

Part A of the Sample Exam has only one Question.

(Part A of the real Final Exam will have 12 Questions.)

Part B of the Sample Exam is made up of Questions from the Exercises, converted to a suitable on-line format. (Part B of the real Final Exam will contain questions that are similar in style and scope, although the length, content and mark allocation of individual questions won't be exactly the same.)

Related Courses

- COMP3411/9414 Artificial Intelligence
- COMP9417 Machine Learning and Data Mining
- COMP4418 Knowledge Representation and Reasoning
- COMP3431 Robotic Software Architecture
- COMP9517 Machine Vision
- 4th Year Thesis topics

Possible 4th Year Projects

- generative models
- autoencoders, bidirectional GANs
- dimensionality reduction, deep PCA
- deep learning for signal processing
- deep learning combined with evolution
- other topics in deep learning, evolution, games

UNSW myExperience Survey

Please remember to fill in the UNSW myExperience Survey.

Neural Networks and Deep Learning

QUESTIONS?

Neural Networks and Deep Learning

GOOD LUCK!