Exercise Sheet 7

Exercise 4

Let $\alpha = \sqrt[3]{2} \in \mathbb{R}$ and $K = \mathbb{Q}(\alpha)$.

- 1. Show that $\mathcal{O}_K = \mathbb{Z}[\alpha]$.
- 2. Find the factorizations in prime ideals of the ideals

$$2\mathcal{O}_K, \quad 3\mathcal{O}_K, \quad 5\mathcal{O}_K, \quad \text{and } 7\mathcal{O}_K.$$
 (1)

and describe the relative degree of each factor.

3. Is there a prime number $p \in \mathbb{Z}$ such that $(p) \subset \mathbb{Z}$ completely splits in \mathbb{O}_K ?

Solution 1.

The one side of the inclusion $\mathbb{Z}[\alpha] \subset \mathcal{O}_K$ is clear. We will prove the other direction. Let $x \in \mathcal{O}_K$.