Detección de Intrusos mediante técnicas de MInería de DAtos

DIMIDA

Antonio Bella Sanjuán abella@dsic.upv.es

Máster Universitario en Redes Corporativas e Integración de Sistemas

Índice

- 1. Motivación inicial
- 2. Conceptos básicos
- 3. Integración y recopilación de datos
- 4. Selección, limpieza y transformación
- 5. Minería de datos
- 6. Evaluación e interpretación
- 7. Difusión y uso
- Bibliografía

1. Motivación inicial (I)

- Tesina. ¿Qué mejor que aplicar minería de datos a algún problema de redes?
- A la detección de intrusos.
- La búsqueda "data mining" AND "intrusion detection" da 230.000 entradas en el google.
- Todo inventado,... pero se podrían realizar experimentos si se dispusieran de datos reales y etiquetados (¿intrusión o no?)

1. Motivación inicial (II)

 Contrariamente a lo que normalmente sucede,... existen datos reales, correctamente etiquetados y GRATIS.

KDD Cup 1999 Data [1]

2. Conceptos básicos

Se puede definir *intrusión* como cualquier conjunto de acciones que tratan de comprometer la integridad, confidencialidad o disponibilidad de un recurso. [2]

La *detección de intrusos* es la capacidad de detectar ataques en una red, incluyendo dispositivos y computadores. [3]

3. Integración y recopilación de datos (I)

- La tarea de la KDD Cup era conseguir un detector de intrusos, un modelo predictivo capaz de distinguir entre las conexiones "malas", llamadas intrusiones o ataques, y las "buenas" o normales.
- La base de datos original contiene un conjunto de datos con ataques variados en una red militar, recogidos durante 9 semanas (7 de entrenamiento y 2 de prueba)

3. Integración y recopilación de datos (II)

- Cada conexión (registro) está etiquetada como "normal" o como ataque, con un tipo específico de ataque, que se podrán agrupar en:
 - DOS: denegación de servicio
 - R2L: acceso no autorizado a una máquina remota
 - U2R: acceso no autorizado a los privilegios de superusuario.
 - Probe: monitorización.
- Los datos de prueba no tienen la misma distribución de probabilidad que los de entrada, para hacer la tarea más realista.

3. Integración y recopilación de datos (III)

- 42 atributos (100 bytes / registro)
- Duration: tiempo de conexión (continuo)
- Protocol_type: tipo de protocolo (discreto)
- Service: servicio de red en el destino (discreto)
- Src_bytes: nº bytes de datos de fuente a destino (continuo)
- Dst_bytes: nº bytes de datos de destino a fuente (continuo)
- **.**..
- Attack_type: Tipo de ataque (clase)

4. Selección, limpieza y transformación

- Fichero entrenamiento: 743 MB
- Fichero 10 % entrenamiento: 75 MB
- Transformar el attack_type a los 5 valores:
 - back → DOS, buffer_overflow → U2R, ftp_write → R2L, guess_passwd → R2L, imap → R2L, ipsweep → probe,...
- 1. Resample 10 % unsupervised
 - Selección de atributos: de 42 a 8 (src_bytes, dst_bytes, logged_in, count, srv_diff_host_rate, dst_host_count, dst_host_srv_diff_host_rate, attack_type)
- 2. Resample 10 % supervised
 - Selección de atributos: de 42 a 5 (src_bytes, dst_bytes, logged_in, dst_host_count, attack_type)

5. Minería de datos (II)

- Características técnicas:
 - WEKA 3.4.6
 - Intel Pentium 4 (3,40 GHz)
 - □ 992 MB de RAM
 - Microsoft Windows XP Professional. Versión 2002. Service Pack 2

5. Minería de datos (III)

- Métodos utilizados:
 - Rules
 - ZeroR
 - Ridor
 - PART
 - Decision Table
 - Conjuctive Rule
 - Bayes
 - Bayes Net
 - Naive Bayes

- Decision Stump
- J48
- Random Forest
- REPTree

Functions

- Logistic
- Simple Logistic

6. Evaluación e interpretación (I)

Matriz de coste:

		predicho						
		normal	probe	DOS	U2R	R2L		
r	normal	0	1	2	2	2		
е	probe	1	0	2	2	2		
а	DOS	2	1	0	2	2		
ı	U2R	3 _	2	2	0	2		
	R2L	4	2	2	2	0		

6. Evaluación e interpretación (II)

		8	atributos	5 atributos		
		Aciertos	Coste Unitario	Aciertos	Coste Unitario	
Rules	ZeroR	74,42%	0,3647	74,42%	0,3647	
	Ridor	92,09%	0,1339	89,50%	0,1648	
	PART	92,04%	0,1336	91,67%	0,1529	
	DecisionTable	92,02%	0,1369	89,78%	0,1626	
	ConjuctiveRule	90,53%	0,1491	89,91%	0,1684	
Trees	DecisionStump	90,10%	0,1533	89,57%	0,1718	
	J48	92,07%	0,1286	91,38%	0,1471	
	RandomForest	92,19%	0,1280	91,62%	0,1450	
	REPTree	92,32%	0,1245	91,51%	0,1424	
Functions	Logistic	90,68%	0,1480	86,23%	0,2303	
	SimpleLogistic	90,64%	0,1485	86,15%	0,2311	
Bayes	BayesNet	91,30%	0,1477	89,29%	0,1661	
	NaiveBayes	85,00%	0,2663	84,26%	0,2708	

6. Evaluación e interpretación (III)

- Mejor coste unitario obtenido en la KDD'99 0,2331.
- Mejoramos en 0,1086.
- Sólo 8 atributos de los 42.
- REPTree es un árbol de clasificación con modelo comprensible (reglas if then else)

7. Difusión y uso

 Snort es una herramienta, de código abierto, para la prevención y detección de intrusiones en una red, mediante el uso de un lenguaje basado en reglas [4]

8. Bibliografía

- [1] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
- [2] Zurutuza, U., Uribeetxeberria R., Revisión del estado actual de la investigación en el uso de data data mining para la detección de intrusiones, CEDI'05.
- [3] http://cisco.netacad.net, Fundamentals of Network Security.
- [4] http://www.snort.org
- [5] J. Hernández, M. J. Ramírez, C. Ferri, *Introducción a la Minería de Datos.*

