UNIVERSIDADE FEDERAL DO MARANHÃO - UFMA

Disciplina: Álgebra Linear Aluno(a):

Segundo exercício

Atenção: Resolva até 5 (cinco) questões dentre as questões abaixo. Resolução de questão ou item excedente será desconsiderada, respeitando-se a ordem de apresentação das soluções.

- 1. (2,5 pontos) Determine $(F)_B$, em que $F \in L(\mathbb{R}^2)$ é dado por F(x,y) = (x,0) e $B = \{(1,-1),(1,0)\}$
- 2. (2,5 pontos) Obtenha o operador linear F sobre \mathbb{R}^2 cuja matriz na base $B = \{(1,1),(1,0)\}$ é dada por $B = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$.
- 3. Seja A uma matriz fixa de $M_n(\mathbb{R})$
 - (a) (1,5 ponto) Verifique que $F:M_n(\mathbb{R})\to M_n(\mathbb{R})$ dada por $F(X)=AX,\ \forall X\in M_n(\mathbb{R})$ é uma transformação linear.
 - (b) (1,5 ponto) Se $A\neq 0$, mostre que $G:M_n(\mathbb{R})\to M_n(\mathbb{R})$ dada por $G(X)=A+X,\, \forall X\in M_n(\mathbb{R})$ não é uma transformação linear.
- 4. (2,5 pontos) Dada a aplicação linear $F: \mathbb{R}^2 \to \mathbb{R}$ definida por F(x,y) = x-y, determine uma base e a dimensão do núcleo e da imagem.
- 5. (2,5 pontos) Determine um operador linear $F:\mathbb{R}^3 \to \mathbb{R}^3$ cuja imagem é gerada por (1,0,1) e (-1,1,0).
- 6. (2,5 pontos) Determine um operador linear de \mathbb{R}^4 cujo núcleo é gerado por (1,0,1,0) e (0,1,1,-1).
- 7. (2,5 pontos) Chama-se traço de uma matriz $A=(a_{ij})$, quadrada de ordem n, a soma dos termos da sua diagonal principal e o denotamos por tr(A). Assim,

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn}.$$

Sendo $V=M_n(\mathbb{R}),$ então $\langle A,B\rangle=\operatorname{tr}(B^tA)$ define um produto interno sobre V.

Considerando $V=M_2(\mathbb{R})$, munido desse produto interno, calcule $\langle A,B\rangle,\,\|A\|,\,\|B\|$, onde A e B são as matrizes $A=\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ e $B=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

São Luís, 16 de novembro de 2023.