Astronomy & Astrophysics LATEX template Subtitle

N. Puyaubreau¹ and F. Déliat^{2,*}

¹ EDP Sciences, 91940, Les Ulis, France

e-mail: nicolas.puyaubreau@edpsciences.org **

² EDP Sciences, 91940, Les Ulis, France

Received September 30, 20XX

ABSTRACT

Context. Optional, leave empty if necessary. The heading "Context" is used when needed to give background information on the research conducted in the paper

Aims. Mandatory. The objectives of the paper are defined here.

Methods. Mandatory. The methods of the investigation are outlined here

Results. Mandatory. The results are summarized here.

Conclusions. Optional, leave empty if necessary. "Conclusions" can be used to explicit the general conclusions that can be drawn from the paper.

Key words. giant planet formation – κ -mechanism – stability of gas spheres

1. Introduction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2. Citations and maths examples

In this section the one-zone model of Baker (1966), originally used to study the Cepheïd pulsation mechanism, will be briefly reviewed, see Fig. 2, Table 4 and Eq. (3). For the one-zone-model Baker obtains necessary conditions for dynamical, secular and vibrational (or pulsational) stability (Eqs. (34a, b, c) in Baker 1966).

$$\tau_{\rm co} = \frac{E_{\rm th}}{L_{r0}}\,,\tag{1}$$

and the local free-fall time

$$\tau_{\rm ff} = \sqrt{\frac{3\pi}{32G}} \frac{4\pi r_0^3}{3M_r} \,, \tag{2}$$

Baker's K and σ_0 have the following form:

$$\sigma_0 = \frac{\pi}{\sqrt{8}} \frac{1}{\tau_{\rm ff}} \tag{3}$$

$$K = \frac{\sqrt{32}}{\pi} \frac{1}{\delta} \frac{\tau_{\rm ff}}{\tau_{\rm co}}; \tag{4}$$

where $E_{\rm th} \approx m(P_0/\rho_0)$ has been used and

$$\delta = -\left(\frac{\partial \ln \rho}{\partial \ln T}\right)_{P}$$

$$e = mc^{2}$$
(5)

is a thermodynamical quantity which is of order 1 and equal to 1 for nonreacting mixtures of classical perfect gases. The physical meaning of σ_0 and K is clearly visible in the equations above. σ_0 represents a frequency of the order one per free-fall time. K is proportional to the ratio of the free-fall time and the cooling time. Substituting into Baker's criteria, using thermodynamic identities and definitions of thermodynamic quantities,

$$\Gamma_{1} = \left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{S}, \ \chi_{\rho} = \left(\frac{\partial \ln P}{\partial \ln \rho}\right)_{T}, \ \kappa_{P} = \left(\frac{\partial \ln \kappa}{\partial \ln P}\right)_{T}$$

$$\nabla_{\mathrm{ad}} = \left(\frac{\partial \ln T}{\partial \ln P}\right)_{S} , \ \chi_{T} = \left(\frac{\partial \ln P}{\partial \ln T}\right)_{\rho} , \ \kappa_{T} = \left(\frac{\partial \ln \kappa}{\partial \ln T}\right)_{T}$$

^{*} Shows the usage of elements in the author field

^{**} Shows the usage of elements in the author field

Fig. 1: A onecolumn \figure* with six graphics

Fig. 1: continued.

3. Figures examples

Examples of figures using graphicx. The guide "Using Imported Graphics in LaTeX2e" by Keith Reckdahl is available on a lot of LaTeXpublic servers or CTAN mirrors.

Fig. 2: Figure as large as the column width

Fig. 3: Rotated figure

Fig. 4. Figure with caption on the right side

Fig. 5: Figure with a new BoundingBox

Fig. 6: A figure including three graphics

Fig. 7: Continued figure numbering

Fig. 7: continued.

Fig. 7: continued.

40 4. Tables examples

50

The jump in table numbering below is caused by the command \longtable*. This command only works in the onecolumn environment. For this reason, we recommend either:

- placing your long tables in onecolumn appendices (cf. C.1 and E.1),
- or using the longtab environment as illustrated by tables 2 and 3. Note that the longtab environment will preserve the table numbering and automatically places long tables after the appendices. They will be moved inside the appendices by the Publisher, if necessary.

Table 1: Simple A&A Table

HJD	Е	Method#2	Method#3
1	50	-837	970
2	47	877	230

Table 4: Table with notes

Star	Spectral type	RA(J2000)
69	B1 V	09 15 54.046
LS 1267 (86)	O8 V	09 15 52.787
24.6	7.58	1.37
MO 2-119	B0.5 V	09 15 33.7
LS 1269	O8.5 V	09 15 56.60

Notes. The top panel shows likely members of Pismis 11. The bottom panel displays stars outside the clusters.

Table 5: Table with multiple notes

Star	Spectral type	RA(J2000)
69	B1 V	09 15 54.046
LS 1267 (86)	O8 V	11.07^{a}
24.6	7.58^{1}	1.37^{a}
MO 2-119	B0.5 V	11.74^{c}
LS 1269	O8.5 V	10.85^{d}

Notes. The top panel shows likely members of Pismis 11. The bottom panel displays stars outside the clusters.

Table 6: Table with references

CNI	F 1.	D 1.
SN name	Epoch	Bands
	(with respect to <i>B</i> maximum)	
1981B	0	UBV
1990N	2, 7	UBVRI
1991M	3	VRI
	SNe 91bg-like	
1991bg	1, 2	BVRI
1999by	-5, -4, -3, 3, 4, 5	UBVRI
	SNe 91T-like	
1991T	-3, 0	UBVRI
2000cx	-3, -2, 0, 1, 5	UBVRI

References. (1) Zheng (1997); (2) Mizuno (1980); (3) Balluch (1988); (4) Cox (1980); (5) Cox (1969); (6) Tscharnuter (1987); (7) Terlevich (1992); (8) Yorke (1980a).

5. Conclusions

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. In- teger tempus convallis augue. Etiam facilisis.

Acknowledgements. Part of this work was supported by ESO, project number Ts 17/2-1

References

Baker, N. 1966, in Stellar Evolution, ed. R. F. Stein, & A. G. W. Cameron (Plenum, New York) 333

Balluch, M. 1988, A&A, 200, 58

Cox, J. P. 1980, Theory of Stellar Pulsation (Princeton University Press, Princeton) 165

Cox, A. N.,& Stewart, J. N. 1969, Academia Nauk, Scientific Information 15, 1 Mizuno H. 1980, Prog. Theor. Phys., 64, 544

Tscharnuter W. M. 1987, A&A, 188, 55

Terlevich, R. 1992, in ASP Conf. Ser. 31, Relationships between Active Galactic Nuclei and Starburst Galaxies, ed. A. V. Filippenko, 13

Yorke, H. W. 1980a, A&A, 86, 286

Zheng, W., Davidsen, A. F., Tytler, D. & Kriss, G. A. 1997, preprint

60

⁽a) Photometry for MF13, LS 1267 and HD 80077 from Dupont et al. (b) Photometry for LS 1262, LS 1269 from Durand et al. (c) Photometry for MO2-119 from Mathieu et al.

Appendix A: Wide tables and figures after an appendix title: recommended method

In the PDF output, floats should be placed under their own appendix, not before the title, nor after the title of the next appendix. In short appendices, one-column floats {figure*} or {table*} will generate a blank page. To prevent this behaviour, we recommend to switch to \onecolumn and set the [h!] parameter in your floats: please check the Lagrange of this appendix.

In case you have a lot of floating objects for little text and the LATEXengine moves the floats away from their context, the command \FloatBarrier of the "placeins" package will empty the float buffer and place all stored floats in the continuity. If you still encounter problems with wide floats placement, just use the \onecolumn environment throughout the appendices.

Fig. A.1: A one-column {figure*}[h!] after a section title. If text follows like below, it is easier to finish the section in \onecolumn. If needed, you may revert to \twocolumn when reaching the next page.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Appendix B: Wide tables and figures after an appendix title: alternate method

To prevent a blank page, a second method is to insert the appendix title \underline{after} declaring the onecolumn float. This method should be reserved to appendices containing only one-column floats{figure*} or {table*} and no text.

Table B.1: A one-column {table*}

ISO-L1551	$F_{6.7}$ [mJy]	$\alpha_{6.7-14.3}$	YSO type ^d	Status	Comments
		New YS	SO candidates		
1	1.56 ± 0.47	_	Class II ^c	New	Mid
2	0.79:	0.97:	Class II ?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
5	1.44 ± 0.33	1.88	Class II	New	
1	1.56 ± 0.47	_	Class II ^c	New	Mid
2	0.79:	0.97:	Class II ?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
5	1.44 ± 0.33	1.88	Class II	New	
1	1.56 ± 0.47	_	Class Π^c	New	Mid
2	0.79:	0.97:	Class II ?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
5	1.44 ± 0.33	1.88	Class II	New	
1	1.56 ± 0.47	_	Class II ^c	New	Mid
2	0.79:	0.97:	Class II ?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
5	1.44 ± 0.33	1.88	Class II	New	
2	0.79:	0.97:	Class II ?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
5	1.44 ± 0.33	1.88	Class II	New	
1	1.56 ± 0.47	_	Class Π^c	New	Mid
2	0.79:	0.97:	Class II ?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
5	1.44 ± 0.33	1.88	Class II	New	
1	1.56 ± 0.47	_	Class II ^c	New	Mid
2	0.79:	0.97:	Class II ?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
5	1.44 ± 0.33	1.88	Class II	New	
1	1.56 ± 0.47	_	Class II ^c	New	Mid
2	0.79:	0.97:	Class II ?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
5	1.44 ± 0.33	1.88	Class II	New	
			ly known YSOs		
61	0.89 ± 0.58	1.77	Class I	HH 30	Circumstellar disk
96	38.34 ± 0.71	37.5	Class II	MHO 5	Spectral type

Appendix C: Long tables in appendices

For long tables (multipage) in appendices, we use the method described in appendix A. For long landscape tables, please refer to Appendix E.

Table C.1: A long table

Catalogue	M_V	Spectral	Distance	Mode	Count Rate
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
G1 00	2.07	111 ,	,,	H	0.008686
Gl 86 ¹	5.92	K0 V	10.91	S	0.058230
G1 60	5.92	K0 V K0 V		S	0.058230
C1 22			10.91		
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
			, , , ,	Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
G1 60	5.92	K0 V K0 V	10.91	S	0.058230
Gl 33					
	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
G1 00	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K0 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
C1 06	5 00	170 17	10.01	Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	Š	0.043170
Gl 66AB	6.26	K2 V	8.15	Š	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
G1 00	3.07	IXI V	7.47		
C1 96	5.00	VO V	10.01	Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
C1 22	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230

¹ Source not included in the HRI catalog. See Sect. 5.4.2 for details.

Table C.1: continued.

Catalogue	M_V	Spectral	Distance	Mode	Count Rate
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230

Appendix D: Rotated single page tables

To prevent a blank page with {sidewaystable*}, we use the method described in appendix B: declare the table first, and the section second.

- 2 % % - 6		$\alpha_{6.7-14.3}$	YSO type"	Status	Commission
- 0 % % - c		New YS	New YSO candidates		
0 m m - c	1.56 ± 0.47	I	Class II ^c	New	Mid
<i>c</i> ,	0.79:	0.97:	Class II?	New	
⊗ - c	4.95 ± 0.68	3.18	Class II / III	New	
- 1 c	1.44 ± 0.33	1.88	Class II	New	
c	1.56 ± 0.47	I	Class Π^c	New	Mid
1	0.79:	0.97:	Class II?	New	
33	4.95 ± 0.68	3.18	Class II / III	New	
S	1.44 ± 0.33	1.88	Class II	New	
	1.56 ± 0.47	I	Class Π^c	New	Mid
2	0.79:	0.97:	Class II?	New	
С	4.95 ± 0.68	3.18	Class II / III	New	
S	1.44 ± 0.33	1.88	Class II	New	
	1.56 ± 0.47	I	Class Π^c	New	Mid
2	0.79:	0.97:	Class II?	New	
8	4.95 ± 0.68	3.18	Class II / III	New	
S	1.44 ± 0.33	1.88	Class II	New	
	1.56 ± 0.47	I	Class Π^c	New	Mid
2	0.79:	0.97:	Class II?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
S	1.44 ± 0.33	1.88	Class II	New	
1	1.56 ± 0.47	I	Class Π^c	New	Mid
2	0.79:	0.97:	Class II?	New	
κ	4.95 ± 0.68	3.18	Class II / III	New	
S	1.44 ± 0.33	1.88	Class II	New	
1	1.56 ± 0.47	I	Class Π^c	New	Mid
2	0.79:	0.97:	Class II?	New	
3	4.95 ± 0.68	3.18	Class II / III	New	
S	1.44 ± 0.33	1.88	Class II	New	
		Previous	Previously known YSOs		
61	0.89 ± 0.58	1.77	Class I	HH 30	Circumstellar disk
96	38.34 ± 0.71	37.5	Class II	MHO 5	Spectral type

Appendix E: Rotated long tables in appendices

For rotated long tables in appendices, we use the method described in appendix A, combined with {landscape}.

Table E.1: A long landscape table

5.87 K1 V
6.37 K2
5.87 K1
5.92 K0
0.37 7C 5
5.92 K0
5.87 K1
5.92 KU 6.37 K2
5.92 K0
56
5.87 K1
0/1 (0.5
5.52 VX
07.0
5.8/ KI V
5.92 K0
.26

² Source not included in the HRI catalog. See Sect. 5.4.2 for details.

Table E.1: continued.

Count Rate	0.058230	0.043170	0.260478	0.026610	0.008686	0.058230	0.043170	0.260478	0.026610	0.008686	0.058230	0.043170	0.260478	0.026610	0.008686	0.058230	0.043170	0.260478	0.026610	0.008686	0.058230	0.043170	0.260478	0.026610	0.008686	0.058230	0.043170	0.260478	0.026610	0.008686	0.058230
Mode	S	S	S	Ь	Η	S	S	S	Ь	Η	S	S	S	Ь	Η	S	S	S	Ь	Η	S	S	S	Ь	Н	S	S	S	Ь	Η	S
Distance	10.91	7.46	8.15	7.47		10.91	7.46	8.15	7.47		10.91	7.46	8.15	7.47		10.91	7.46	8.15	7.47		10.91	7.46	8.15	7.47		10.91	7.46	8.15	7.47		10.91
Spectral	K0 V	K2 V	K2 V	K1 V		K0 V	K2 V	K2 V	K1 V		K0 V	K2 V	,	K1 V		K0 V	K2 V	K2 V	K1 V		K0 V	K2 V		K1 V		K0 V		K2 V	K1 V		K0 V
M_V	5.92	6.37	6.26	5.87		5.92	6.37	6.26	5.87		5.92	6.37	6.26	5.87		5.92	6.37	6.26	5.87		5.92	6.37	6.26	5.87		5.92	6.37		5.87		5.92
Catalogue	GI 86	GI 33	Gl 66AB	GI 68		GI 86	GI 33	Gl 66AB	GI 68			GI 33	Gl 66AB	GI 68			GI 33	Gl 66AB	GI 68			GI 33		GI 68			GI 33		GI 68		98 IS

Table 2: A long table using the longtab environment

Catalogue	M_V	Spectral	Distance	Mode	Count Rate
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86 ³	5.92	K0 V	10.91	S	0.058230
G1 00	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K0 V K2 V	7.46	S	0.038230
Gl 66AB				S	
	6.26	K2 V	8.15		0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
01 00	0.07		,,	H	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
G1 80	5.92	K0 V K0 V	10.91	S	0.058230
C1 22					
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	Š	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
G1 08	3.67	IX1 V	7.47	H	0.028686
C1.06	5.02	IZO V	10.01		
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	Š	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
	5.87		7.47	P P	
Gl 68	3.07	K1 V	7.47		0.026610
G1 0.6	7.00	****	10.01	H	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
G1 00	5.92	K0 V	10.91	S	0.058230
C1 22					
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
				Н	0.008686
Gl 86	5.92	K0 V	10.91	S	0.058230
	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
Gl 68	5.87	K1 V	7.47	P	0.026610
		1 3 1 V	/ . +/	1	0.020010
GI 08	5.07			Н	0.008686

 $[\]overline{\ \ }^3$ Source not included in the HRI catalog. See Sect. 5.4.2 for details.

Table 2: continued.

Catalogue M _V Spector Gl 86 5.92 K0 V 5.92 K0 V Gl 33 6.37 K2 V Gl 66AB 6.26 K2 V	10.91 10.91	Mode S S	Count Rate 0.058230		
5.92 K0 V Gl 33 6.37 K2 V Gl 66AB 6.26 K2 V	10.91				
Gl 33 6.37 K2 V Gl 66AB 6.26 K2 V			0.058230		
Gl 66AB 6.26 K2 V	/. + 0	S	0.038230		
	8.15	S	0.260478		
Gl 68 5.87 K1 V		P	0.26610		
0108 3.87 K1 V	7.47	H	0.028686		
Gl 86 5.92 K0 V	10.91	S	0.058230		
5.92 K0 V		S	0.058230		
		S			
		S	0.043170		
Gl 66AB 6.26 K2 V			0.260478		
Gl 68 5.87 K1 V	7.47	P	0.026610		
C1.06 5.03 K0.V	10.01	Н	0.008686		
Gl 86 5.92 K0 V		S	0.058230		
5.92 K0 V		S	0.058230		
GI 33 6.37 K2 V		S	0.043170		
Gl 66AB 6.26 K2 V		S	0.260478		
Gl 68 5.87 K1 V	7.47	P	0.026610		
		Н	0.008686		
Gl 86 5.92 K0 V		S	0.058230		
5.92 K0 V		S	0.058230		
Gl 33 6.37 K2 V		S	0.043170		
Gl 66AB 6.26 K2 V		S	0.260478		
Gl 68 5.87 K1 V	7.47	P	0.026610		
		Н	0.008686		
Gl 86 5.92 K0 V		S	0.058230		
5.92 K0 V	10.91	S	0.058230		
Gl 33 6.37 K2 V		S	0.043170		
Gl 66AB 6.26 K2 V		S	0.260478		
Gl 68 5.87 K1 V	7.47	P	0.026610		
		Н	0.008686		
Gl 86 5.92 K0 V	10.91	S	0.058230		
5.92 K0 V	10.91	S	0.058230		
Gl 33 6.37 K2 V	7.46	S	0.043170		
Gl 66AB 6.26 K2 V	8.15	S	0.260478		
Gl 68 5.87 K1 V	7.47	P	0.026610		
		Н	0.008686		
Gl 86 5.92 K0 V	10.91	S	0.058230		

Table 3: A long landscape table using the longtab environment

Catalogue	M_V	Spectral	Distance	Mode	Count Rate
GI 33	6.37	K2 V	7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
GI 68	5.87		7.47	Ь	0.026610
				Η	0.008686
	5.92	K0 V	10.91	S	0.058230
GI 33	6.37		7.46	S	0.043170
Gl 66AB	6.26	,	8.15	S	0.260478
GI 68	5.87	K1 V	7.47	Ь	0.026610
				Η	0.008686
GI 86	5.92	K0 V	10.91	S	0.058230
GI 33	6.37	,	7.46	S	0.043170
GI 66AB	6.26	,	8.15	S	0.260478
GI 68	5.87	K1 V	7.47	Ь	0.026610
				Η	0.008686
GI 86	5.92		10.91	S	0.058230
GI 33	6.37		7.46	S	0.043170
Gl 66AB	6.26	K2 V	8.15	S	0.260478
GI 68	5.87	K1 V	7.47	Ь	0.026610
				Η	0.008686
	5.92	K0 V	10.91	S	0.058230
	6.37		7.46	S	0.043170
	6.26	,	8.15	S	0.260478
GI 68	5.87	K1 V	7.47	Ь	0.026610
				Η	0.008686
	5.92	K0 V	10.91	S	0.058230
	6.37		7.46	S	0.043170
	6.26	K2 V	8.15	S	0.260478
GI 68	5.87	K1 V	7.47	Ь	0.026610
				Η	0.008686
	5.92	K0 V	10.91	S	0.058230
GI 33	6.37		7.46	S	0.043170
	6.26		8.15	S	0.260478
GI 68	5.87	K1 V	7.47	Ь	0.026610
				Η	0.008686
GI 86	5.92	K0 V	10.91	S	0.058230
Gl 33	6.37	K2 V	7.46	S	0.043170
		,	8.15	S	0.260478
GI 68	5.87	K1 V	7.47	Ь	0.026610
				Η	9800
	5.92	K0 V	10.91	S	0.058230
GI 33	6.37		7.46	S	0.043170

⁴ Source not included in the HRI catalog. See Sect. 5.4.2 for details.

Table 3: continued.

Mode Count Rate	S 0.260478	P 0.026610	989800:0 Н	S 0.058230	S 0.043170	S 0.260478	P 0.026610	H 0.008686	S 0.058230	S 0.043170	S 0.260478	P 0.026610	H 0.008686	S 0.058230	S 0.043170	S 0.260478	P 0.026610	989800:0 Н	S 0.058230	S 0.043170	S 0.260478	P 0.026610	989800:0 Н	S 0.058230	S 0.043170	S 0.260478		P 0.026610
Distance	8.15	7.47		10.91	7.46	8.15	7.47		10.91	7.46	8.15	7.47		10.91	7.46	8.15	7.47		10.91	7.46	8.15	7.47		10.91	7.46	8.15	777	÷:
Spectral	K2 V	K1 V			K2 V	K2 V			K0 V	K2 V	K2 V				K2 V		K1 V			K2 V	K2 V	K1 V			K2 V			
M_V	6.26	5.87		5.92	6.37	6.26	5.87		5.92	6.37	6.26	5.87		5.92	6.37	6.26	5.87		5.92	6.37	6.26	5.87		5.92	6.37	6.26	5 87	5
Catalogue	GI 66AB	GI 68		GI 86	GI 33	Gl 66AB	GI 68		GI 86	GI 33	Gl 66AB	GI 68		GI 86	GI 33	Gl 66AB	GI 68		GI 86	GI 33	Gl 66AB	GI 68		GI 86	GI 33	Gl 66AB	GI 68	