齋藤正彦『線型代数入門』解答集

数学書解答集作成班

		p19:問 2-(下)	12	p42:問 2	25
目次		p19:問 2-(下)-(イ)	12	p42:問 3	25
		p19:問 2-(下)-(口)	13	p42:問 3-(イ)	25
		p19:問 2-(下)-(ハ)	13	p42:問 3-(口)	26
はじめに	4	p22:問 1	14	p42:問 3-(八)	26
概要	4	p22:問 1-(イ)	14	FQ + 88	07
		p22:問 1-(口)	14	p52:問	27
Special Thanks	4	p22:問 1-(八)	14	p58:問	27
				p58:問-(イ)	27
第1章	5	第1章・章末問題	14	p58:問-(口)	28
p5:問 1	5	p29-30:1	14	p58:問-(ハ)	28
P- 17-		-		p62-63:問 1	29
p5:問 2	5	p29-30:2	17		20
p7:問-(上)	5	p29-30:3	17	p62:問 2	29
			4.0	p62-63:問 3	29
p7:問-(下)	6	p29-30:4	18	p65: 問 1	30
p8:問 1	6	p29-30:5	18	p03. [4] 1	30
p8:問 1-(イ)	6		10	p65: 問 2	31
p8:問 1-(口)	6	p29-30:6	19 19		
nQ:問う	6	p29-30:6-(イ) p29-30:6-(ロ)		第2章・章末問題	31
p 8:問 2 p8:問 2-(イ)	6	p29−30∶6-(□)	20		
p8:問 2-(イ)	6 6 7	p29−30 : 6-(□)	20 20	p70–73 : 1	31
p8:問 2-(イ) p8:問 2-(口)	6	p29-30:6-(ロ)	20 20 20	p70-73:1 p70-73:1-(イ)	31 31
p8:問 2-(イ)	6	p29−30 : 6-(□)	20 20	p 70-73:1 p70-73:1-(イ)	31 31 32
p8:問 2-(イ) p8:問 2-(口)	6	p29-30:6-(ロ)	20 20 20	p70-73:1 p70-73:1-(イ)	31 31 32 33
p8:問2-(イ) p8:問2-(口) p10:問1 p10:問2	6 7 7 8	p29-30:6-(ロ)	20 20 20 20 21	p70-73:1 p70-73:1-(イ)	31 31 32 33 33
p8:問2-(イ) p8:問2-(口) p10:問1	6 7 7	p29-30:6-(ロ)	20 20 20 20	p70-73:1 p70-73:1-(イ)	31 31 32 33 33 34
p8:問2-(イ) p8:問2-(口) p10:問1 p10:問2	6 7 7 8	p29-30:6-(ロ)	20 20 20 20 21 22	p70-73:1 p70-73:1-(イ)	31 31 32 33 33
p8:問2-(イ)	6 7 7 8 8	p29-30:6-(ロ)	20 20 20 21 22 22	p70-73:1 p70-73:1-(イ)	31 31 32 33 33 34 34 35
p8:問2-(イ) p8:問2-(口) p10:問1 p10:問2 p11:問1	6 7 7 8	p29-30:6-(ロ)	20 20 20 20 21 22	p70-73:1 p70-73:1-(イ)	31 31 32 33 33 34 34 35
p8:問2-(イ)	6 7 7 8 8	p29-30:6-(ロ)	20 20 20 21 22 22 22 22	p70-73:1 p70-73:1-(イ)	31 31 32 33 33 34 34 35 35
p8:問2-(イ)	6 7 7 8 8 9 9	p29-30:6-(ロ)	20 20 20 21 22 22	p70-73:1 p70-73:1-(イ)	31 31 32 33 33 34 34 35
p8:問2-(イ)	6 7 7 8 8 9	p29-30:6-(ロ)	20 20 20 21 22 22 22 22	p70-73:1 p70-73:1-(イ)	31 31 32 33 33 34 34 35 35
p8:問2-(イ)	6 7 7 8 8 9 9	p29-30:6-(ロ)	20 20 20 21 22 22 22 23 23	p70-73:1 p70-73:1-(イ)	31 31 32 33 34 34 35 35 35
p8:問2-(イ)	6 7 8 8 9 9 10 11	p29-30:6-(ロ)	20 20 20 21 22 22 22 23 23 23	p70-73:1 p70-73:1-(イ) p70-73:1-(ロ) p70-73:2 p70-73:2-(イ) p70-73:2-(口) p70-73:2-(ハ) p70-73:3 p70-73:3-(イ) p70-73:3-(ロ) p70-73:5-(ロ)	31 31 32 33 34 34 35 35 36 36
p8:問2-(イ)	6 7 7 8 8 9 9	p29-30:6-(ロ)	20 20 20 21 22 22 22 23 23	p70-73:1 p70-73:1-(イ) p70-73:1-(ロ) p70-73:2 p70-73:2-(ロ) p70-73:2-(ハ) p70-73:2-(ハ) p70-73:3 p70-73:3 p70-73:3-(ロ) p70-73:5-(ロ)	31 31 32 33 34 34 35 35 36 36 36
p8:問2-(イ)	6 7 8 8 9 9 10 11	p29-30:6-(ロ)	20 20 20 21 22 22 22 23 23 23	p70-73:1 p70-73:1-(イ) p70-73:1-(ロ) p70-73:2 p70-73:2-(イ) p70-73:2-(口) p70-73:2-(ハ) p70-73:3 p70-73:3 p70-73:3-(イ) p70-73:5 p70-73:6 p70-73:6	31 31 32 33 34 34 35 35 36 36 36 37
p8:問2-(イ)	6 7 8 8 9 9 10 11 11	p29-30:6-(ロ)	20 20 20 21 22 22 22 23 23 23 23	p70-73:1 p70-73:1-(イ) p70-73:1-(ロ) p70-73:2 p70-73:2-(ロ) p70-73:2-(ハ) p70-73:2-(ハ) p70-73:3 p70-73:3 p70-73:3-(ロ) p70-73:5-(ロ)	31 31 32 33 34 34 35 35 36 36 36

p70−73 : 6-(二)	38	p83:問-(口)	53	p107-108:問 1-(口)	66
70. 72 + 7	20			p107-108:問 1-(ハ)	66
p70–73:7	38	第3章・章末問題	53	p107-108:問 1-(二)	67
p70-73:8	39	p90-91:1	53	p107-108:問 2	67
p70-73:9	39	p90-91:1-(イ)	53	p107-108:問 2-(イ)	67
		p90−91∶1-(□)	54	p107-108:問 2-(口)	67
p70–73:10	40	p90–91:1-(八)	54	p107-108:問 2-(ハ)	68
p70-73:10-(イ)	40	p90–91:1-(=)	55	p107-108:問 2-(二)	68
p70−73:10-(□)	40	()		p122:問	68
p70-73:10-(ハ)	41	p90-91:2	56	p122 · [H]	00
p70-73:11	41	p90-91:2-(イ)	56	p124:問-1)	69
p70-73:11-(イ)	41	p90−91∶2-(□)	56		
p70–73∶11-(□)	42	p90-91:3	56	 第4章・章末問題	70
p70-73:11-(八)	42	p90-91:3-(イ)	56	377年 羊水间烟	, ,
()		p90−91 : 3-(□)	57	p127-130:1	70
p70-73:12	43	p30 31 · 0 (II) · · · · · ·	01	107 120 : 0	71
p70-73:13	44	p90–91:4	57	p127–130 : 2	71
p70-73:13-(イ)	44	-00 01 · E	EO	p127-130:5	72
p70–73 : 13-(□)	44	p90-91:5	58		
p70-73:13-(八)	44	p90–91:6	58	p127-130:6	72
p70-73:13-(=)	46			p127-130:6-(イ)	72
pro 73 · 15-(—) · · · ·	40	p90–91:7	59	p127−130 : 6-(□)	72
p70-73:14	46	p90-91:8	59	p127–130 : 7	73
p70-73:15	46	p90-91:9	60	p127–130 : 8	74
p70-73:15-(イ)	46	p30 31 · 3	00	p==: === :	
p70−73∶15-(□)	47	p90–91:10	61	p127–130:12	75
p70-73:15-(ハ)	47	00 01 : 11	61	p127-130:12-(イ)	75
		p90-91:11	61	p127−130:12-(□)	76
第3章	49	p90-91:11-(イ)	61	p127–130 : 9	76
		p90-91:11-(口) p90-91:11-(八)	61	p127 130 · 3	10
p77:問1	49	p90-91 · 11-(/\)	62	p127-130:10	77
p77:問 2	50			p127-130:10-(イ)	77
pri - 163 2	30	第4章	63		
p77:問 3	50	p93:問	63	第5章	79
p79:問	51	p94:問	63	p139:問	79
p79:問-(イ)	51	ha4 • lei	03	p200 - [6]	
p79:問-(口)	51	p106-107:問 1	64	附録Ⅲ	80
p83:問	51	p106-107:問 2	64	000 · BP	
02 ・甲	EO	"107 100 · BB 1	65	p228:問	80
p83:問	52	p107-108:問 1	65	p228:問-(イ)	80
p83:問-(イ)	52	p107–108:問 1-(イ)	65	p228:問-(口)	80

p239:問 1	80	p239:問 2-(イ)	81	p249:問-(口)	82
p239:問 1-(イ)	80	p239:問 2-(口)	81		82
p239:問 1-(口)	80	p249:問	82	p255 · 1	82
p239:問2	81		82		

はじめに

概要

この文書は、なまちゃんが運営する「数学書解答集作成班」が制作した、齋藤正彦著『線型代数入門』(東京大学出版会)の解答集である。

未完ではあるものの、編集の際の利便性を考慮して、オープンソースでの公開となった。それゆえ、数学的な誤りや誤植、改善案の提案などがあればぜひ Issue に書き込んだり、Pull Request を送っていただきたい † 1.

Special Thanks

掲載許可を得た方のみ^{†2}を敬称略で掲載する.

- ねたんほ (解答の提供)
- まっちゃん (解答の提供)
- かねこ (解答の提供)
- qwer (解答の提供)
- やたろう (解答の提供, Git 管理)
- 不自然対数(LATEX 関連)

その他,多くの方々.

^{†1} 永遠の工事中

 $^{^{\}dagger 2}$ 掲載されていないという方は「ニックネーム」を記入のもと、なまちゃんへ連絡していただきたい。

第1章

p5:問1

証明

線分 PQ の中点を M とする. このとき,

$$\overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{PM}$$

$$= a + \frac{b - a}{2}$$

$$= \frac{a + b}{2}$$

である.

p5:問2

証明

三角形 PQR の重心を G, PQ の中点を N とする。 G は線分 RN を 2:1 に内分する点なので,

$$\overrightarrow{OG} = \overrightarrow{OR} + \frac{2}{3}\overrightarrow{RN}$$

$$= c + \frac{2}{3}\left(\frac{a+b}{2} - c\right)$$

$$= \frac{a+b+c}{3}$$

である.

p7:問-(上)

解答

求めるベクトルを、x = (x, y, z) (ただし $x^2 + y^2 + z^2 = 1$) とおく. このとき、内積の定義により、

$$\mathbf{x} \cdot \begin{pmatrix} 1\\1\\1 \end{pmatrix} = x + y + z = 1 \cdot \sqrt{3} \cdot \cos \frac{\pi}{6} = \frac{3}{2}$$
$$\mathbf{x} \cdot \begin{pmatrix} 1\\1\\4 \end{pmatrix} = x + y + 4z = 1 \cdot 3\sqrt{2} \cdot \cos \frac{\pi}{4} = 3$$

これらの式から,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} (2 \pm \sqrt{2})/4 \\ (2 \mp \sqrt{2})/4 \\ 1/2 \end{pmatrix} \quad (複号同順)$$

である.

p7:問-(下)

解答

ここでは、[1.4] の結果を利用する.

求める三角形の面積をSとし、

$$\mathbf{a} = \overrightarrow{P_1P_2} = (x_2 - x_1, y_2 - y_1, z_2 - z_1), \quad \mathbf{b} = \overrightarrow{P_1P_3} = (x_3 - x_1, y_3 - y_1, z_3 - z_1)$$

とおく、このとき、

$$\begin{split} S &= \frac{1}{2} \sqrt{\left\| \overrightarrow{\mathbf{P}_1 \mathbf{P}_2} \right\|^2 \left\| \overrightarrow{\mathbf{P}_1 \mathbf{P}_3} \right\|^2 - (\overrightarrow{\mathbf{P}_1 \mathbf{P}_2}, \overrightarrow{\mathbf{P}_1 \mathbf{P}_3})^2} \\ &= \frac{1}{2} \sqrt{\left\| \boldsymbol{a} \right\|^2 \left\| \boldsymbol{b} \right\|^2 - (\boldsymbol{a}, \boldsymbol{b})^2} \\ &= \frac{1}{2} \{ [(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2] [(x_3 - x_1)^2 + (y_3 - y_1)^2 + (z_3 - z_1)^2] \\ &- [(x_2 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1) + (z_2 - z_1)(z_3 - z_1)]^2 \}^{\frac{1}{2}} \end{split}$$

である。

p8:問1

p8:問1-(イ)

解答

与えられた直線を l とする。l の方程式に x=-1 を代入すると,y=2 となるため,l は点 (-1,2) を通る。また,l は点 (2,0) を通るため,l の方向ベクトルのひとつは,

$$\begin{pmatrix} 2 - (-1) \\ 0 - 2 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$

である. よって, l のベクトル表示のひとつは, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} 3 \\ -2 \end{pmatrix} \ (-\infty < t < \infty)$ である.

p8:問1-(口)

解答

与えられた直線を l' とする。 l' の方向ベクトルのひとつは, $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ である。 また, l' は点 (3,0) を通るので, そのベクトル表示のひとつは, $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \end{pmatrix} \; (-\infty < t < \infty)$ となる.

p8:問2

p8:問2-(イ)

解答

与えられたベクトル表示から.

$$\begin{cases} x = 1 + 2t \\ y = -1 + t \end{cases}$$

であるから,

$$\begin{cases} t = \frac{x-1}{2} \\ t = y+1 \end{cases}$$

である。これからtを消去すると、

$$\frac{x-1}{2} = y+1$$

$$\therefore x-2y-3 = 0$$

である.

p8:問2-(口)

解答

点 (-1,-2) を通り、x 軸に平行な直線を表すから、y=-2 が求める直線の方程式である.

p10:問1

解答

$$\begin{cases} x + 2y + 3z = 1\\ 3x + 2y + z = -1 \end{cases}$$

から,

$$-2x + 2z = 2$$
$$\therefore -x + z = 1$$

である。このとき, $\binom{x}{z}=\binom{1}{2}$, $\binom{2}{3}$ はこれを満たす.このときの y の値を計算すると,それぞれ -3,-5 なので,結局,与えられた直線は 2 点 (1,-3,2),(2,-5,3) を通る.すなわち,この直線の方向 ベクトルのひとつは

$$\begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

である。 したがって求めるベクトル表示のひとつは、 直線上の任意の位置ベクトルを x とすると、

$$\boldsymbol{x} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$

と表せる.

p10:問2

証明

 $\overrightarrow{P_1P_2}$ 上の任意の点 P における位置ベクトル x をとり,

$$t = \frac{\left\|\overrightarrow{\mathbf{P}_1}\overrightarrow{\mathbf{P}}\right\|}{\left\|\overrightarrow{\mathbf{P}_1}\overrightarrow{\mathbf{P}_2}\right\|}$$

なる実数 t を定める.

$$\left\| \overrightarrow{\mathbf{P_1P}} \right\| + \left\| \overrightarrow{\mathbf{PP_2}} \right\| = \left\| \overrightarrow{\mathbf{P_1P_2}} \right\|$$

だから,両辺を $\left\|\overrightarrow{P_1P_2}\right\|$ で割り,

$$t + \frac{\left\|\overrightarrow{\mathbf{P}}\overrightarrow{\mathbf{P}_2}\right\|}{\left\|\overrightarrow{\mathbf{P}_1}\overrightarrow{\mathbf{P}_2}\right\|} = 1$$

より、 $0 \le t \le 1$ である.

また,

$$\overrightarrow{P_1P} = t\overrightarrow{P_1P_2}$$

であるから

$$\mathbf{x} - \mathbf{x}_1 = t(\mathbf{x}_2 - \mathbf{x}_1)$$

$$\therefore \mathbf{x} = (1 - t)\mathbf{x}_1 + t\mathbf{x}_2.$$

ここで

$$1 - t = t_1, \quad t = t_2$$

と置き直すと $t_1, t_2 \ge 0$, $t_1 + t_2 = 1$ であり,

$$\boldsymbol{x} = t_1 \boldsymbol{x}_1 + t_2 \boldsymbol{x}_2$$

となる. これが証明すべきことであった.

p11:問1

解答

与えられた平面を(S)とおく(S)は3点(-1,0,1),(2,0,-1),(0,-1,0)を通るので、

$$m{x}_1 = egin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}, \quad m{x}_2 = egin{pmatrix} 2 \ 0 \ -1 \end{pmatrix} \quad m{x}_3 = egin{pmatrix} 0 \ -1 \ 0 \end{pmatrix}$$

と改めておくと,

$$x_2 - x_1 = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix}, \quad x_3 - x_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$

となり、 x_2-x_1 と x_3-x_1 は線型独立なので、求めるベクトル表示のひとつは、

$$(S) \colon \boldsymbol{x} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} \ (-\infty < t, \ s < \infty)$$

p12:問2

解答

$$\begin{cases} x = 1 + t - s \\ y = 2 - t - 2s \\ z = 0 + 2t + s \end{cases}$$

からtとsを消去して、

$$x - y - z = -1$$

これが求める直線の方程式である。

p12:問3

証明

$$\overrightarrow{\mathrm{OP}_1} = \boldsymbol{x}_1, \quad \overrightarrow{\mathrm{OP}_2} = \boldsymbol{x}_2, \quad \overrightarrow{\mathrm{OP}_3} = \boldsymbol{x}_3$$

とする。三角形 $P_1P_2P_3$ 上の任意の点の位置ベクトル x をとり、 $\triangle P_1P_3P$ が三角形 $P_1P_2P_3$ の面積を表すとし、

$$s = \frac{\triangle \mathbf{P}_1 \mathbf{P}_3 \mathbf{P}}{\triangle \mathbf{P}_1 \mathbf{P}_2 \mathbf{P}_3}, \quad t = \frac{\triangle \mathbf{P}_1 \mathbf{P} \mathbf{P}_2}{\triangle \mathbf{P}_1 \mathbf{P}_2 \mathbf{P}_3}$$

と s, t を定める. このとき,

$$\triangle P_1 P_3 P + \triangle P_1 P P_2 + \triangle P P_2 P_3 = \triangle P_1 P_2 P_3$$

の両辺を $\triangle P_1 P_2 P_3$ で割ると,

$$s + t + \frac{\triangle PP_2P_3}{\triangle P_1P_2P_3} = 1$$

このことから、 $0 \le s \le 1$ 、 $0 \le t \le 1$ 、 $s+t \le 1$ を満たす実数 s、t が存在することがわかる。また、 x_2-x_1 と x_3-x_1 は線型独立なので、 $x-x_1$ は、実数 a,b を用いて、

$$x - x_1 = a(x_2 - x_1) + b(x_3 - x_1)$$

と一意に表せる.

ここで,

$$(x_3 - x_1) \times (x - x_1) = (x_3 - x_1) \times (a(x_2 - x_1) + b(x_3 - x_1))$$

= $a(x_3 - x_1) \times (x_2 - x_1)$.

つまり、 $\|({m x}_3-{m x}_1) imes ({m x}-{m x}_1)\| = |a| \|({m x}_3-{m x}_1) imes ({m x}_2-{m x}_1)\|$ である。そして、 $\triangle P_1P_2P_3$ を含む平面上で、点 P と P_2 は $\overrightarrow{P_1P_3}$ に対して同じ側にあるので、外積の定義により $a\geqq 0$ である。ゆえに、

$$2\triangle P_1PP_3 = 2a\triangle P_1P_2P_3,$$

$$\therefore a = \frac{2\triangle P_1 P_3 P}{2\triangle P_1 P_2 P_3} = s.$$

また.

$$(x_2 - x_1) \times (x - x_1) = (x_2 - x_1) \times (a(x_2 - x_1) + b(x_3 - x_1))$$

= $b(x_2 - x_1) \times (x_3 - x_1)$.

つまり、 $\|(\boldsymbol{x}_2-\boldsymbol{x}_1)\times(\boldsymbol{x}-\boldsymbol{x}_1)\|=|b|\|(\boldsymbol{x}_2-\boldsymbol{x}_1)\times(\boldsymbol{x}_3-\boldsymbol{x}_1)\|$ である。そして、 $\triangle P_1P_2P_3$ を含む平面上で、点 $P \geq P_3$ は $\overline{P_1P_2}$ に対して同じ側にあるので、外積の定義により $b \geq 0$ である。ゆえに、

$$2\triangle P_1PP_2 = 2b\triangle P_1P_2P_3,$$

$$\therefore b = \frac{2\triangle P_1 P P_2}{2\triangle P_1 P_2 P_3} = t.$$

よって.

$$\boldsymbol{x} - \boldsymbol{x}_1 = s(\boldsymbol{x}_2 - \boldsymbol{x}_1) + t(\boldsymbol{x}_3 - \boldsymbol{x}_1)$$

$$\therefore \quad \boldsymbol{x} = (1 - s - t)\boldsymbol{x}_1 + s\boldsymbol{x}_2 + t\boldsymbol{x}_3.$$

 $1-s-t=t_1$, $s=t_2$, $t=t_3$ と改めて書き直すと, 先に示したことから

$$0 \le t_1 \le 1$$
, $0 \le t_2 \le 1$, $0 \le t_3 \le 1$

であり,

$$x = t_1x_1 + t_2x_2 + t_3x_3, \quad t_1 + t_2 + t_3 = 1$$

となる。これが証明すべきことであった。

p13:問1

解答

 (S_1) , (S_2) の法線ベクトルをそれぞれ x_1 , x_2 とおくと,

$$oldsymbol{x}_1 = egin{pmatrix} 1 \ 1 \ 2 \end{pmatrix}$$
 , $oldsymbol{x}_2 = egin{pmatrix} 3 \ 3 \ 0 \end{pmatrix}$

である. ゆえに, 交角を $\theta \ (0 \le \theta \le \frac{\pi}{2})$ とすると,

$$\cos \theta = \frac{\mathbf{x}_1 \cdot \mathbf{x}_2}{\|\mathbf{x}_1\| \|\mathbf{x}_2\|} = \frac{3}{3\sqrt{2}} = \frac{1}{\sqrt{2}}$$

であるから、 $0 \le \theta \le \frac{\pi}{2}$ より $\theta = \frac{\pi}{4}$ である.

p13:問2

証明

平面 π_1 , π_2 を考え, π_1 , π_2 の法線ベクトルをそれぞれ n_1 , n_2 とおく.

n_1 と n_2 が平行なとき

 π_1 に垂直な平面は π_2 にも垂直であり、このような平面を π_3 とすると、 π_3 は n_1 、 n_2 と平行である。よって π_3 と π_1 、 π_2 はそれぞれ並行であり、このような平面は確かに存在する。

n_1 と n_2 が平行でないとき

 $n_1,n_2 \neq \mathbf{0}$ は明らかなので、 $n_3 \coloneqq n_1 \times n_2$ とすると、 $n_3 \neq \mathbf{0}$ である.よって、 n_3 は π_1 、 π_2 に垂直である.このとき n_3 を法線ベクトルとする平面を取ればよい.

以上の考察により証明された。

p18:問

証明

A, B, C が 2×2 行列の場合を証明する.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}, C = \begin{pmatrix} i & j \\ k & l \end{pmatrix}$$

とし、A、B、C の成分はすべて複素数であるとする。このとき、

$$(AB)C = \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} \begin{pmatrix} i & j \\ k & l \end{pmatrix}$$

$$= \begin{pmatrix} aei + bgi + afk + bhk & aej + bgj + afl + bhl \\ cei + dgi + cfk + dhk & cej + dgj + cfl + dhl \end{pmatrix}$$

となる。他方

$$\begin{split} A(BC) &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} ei + fk & ej + fl \\ gi + hk & gj + hl \end{pmatrix} \\ &= \begin{pmatrix} aei + afk + bgi + bhk & aej + afl + bgj + bhl \\ cei + cfk + dgi + dhk & cej + cfl + dgi + dhl \end{pmatrix} \end{split}$$

となり、たしかに (AB)C = A(BC) である.

p19:問1-(上)

証明

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$

となり,これは明らかに線型変換である.対応する行列は, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ である.

p19:問2-(上)

証明

式 (15) より、 2×2 行列 A, B とベクトル x について、

$$T_B(T_A(\boldsymbol{x})) = B(A\boldsymbol{x})$$

= $(BA)\boldsymbol{x}$
= $T_{BA}(\boldsymbol{x})$

である. これが証明すべきことであった.

p19:問1-(下)

解答

$$m{x} = egin{pmatrix} x \ y \end{pmatrix}$$
 とおくと、(17) 式より、 $Tm{x} = rac{ax + by}{a^2 + b^2}m{a}$ $= egin{pmatrix} a^2x + aby \ abx + b^2y \end{pmatrix}$ $= egin{pmatrix} a^2 & ab \ ab & b^2 \end{pmatrix} m{x}$ $= egin{pmatrix} a^2 & ab \ ab & b^2 \end{pmatrix} m{x}$

であるから,

$$T = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}$$

となる.

p19:問2-(下)

p19:問2-(下)-(イ)

証明

$$m{a} = inom{a_1}{a_2}, \ m{b} = inom{b_1}{b_2}, \ m{a}
eq m{0}$$
 かつ $m{b}
eq m{0}$ とする。このとき、

$$Tx = \frac{(a, x)}{(a, a)}a$$

$$= \frac{a_1x + a_2y}{a_1^2 + a_2^2} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

$$= \frac{1}{a_1^2 + a_2^2} \begin{pmatrix} a_1^2 & a_1a_2 \\ a_1a_2 & a_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

となる。つまり、 $T=rac{1}{{a_1}^2+{a_2}^2}egin{pmatrix} {a_1}^2 & {a_1}{a_2} \ {a_1}{a_2} & {a_2}^2 \end{pmatrix}$ である。このとき、

$$\begin{split} T^2 &= \frac{1}{(a_1{}^2 + a_2{}^2)^2} \begin{pmatrix} a_1{}^4 + a_1{}^2 a_2{}^2 & a_1{}^3 a_2 + a_1 a_2{}^3 \\ a_1{}^3 a_2 + a_1 a_2{}^3 & a_2{}^4 + a_1{}^2 a_2{}^2 \end{pmatrix} \\ &= \frac{1}{a_1{}^2 + a_2{}^2} \begin{pmatrix} a_1{}^2 & a_1 a_2 \\ a_1 a_2 & a_2{}^2 \end{pmatrix} = T \end{split}$$

となり、 $T^2 = T$ である。 $S^2 = S$ も同様にして示される。

p19:問2-(下)-(口)

証明

$$m{a}=egin{pmatrix} a_1 \ a_2 \end{pmatrix}, \ m{b}=egin{pmatrix} b_1 \ b_2 \end{pmatrix}$$
 とする.このとき, $m{a}$ と $m{b}$ が直交することから,

$$a \cdot b = 0$$

$$a_1b_1 + a_2b_2 = 0$$

である. ここで,

$$\begin{split} TS &= \frac{1}{(a_1{}^2 + a_2{}^2)} \begin{pmatrix} a_1{}^2 & a_1a_2 \\ a_1a_2 & a_2{}^2 \end{pmatrix} \frac{1}{(b_1{}^2 + b_2{}^2)} \begin{pmatrix} b_1{}^2 & b_1b_2 \\ b_1b_2 & b_2{}^2 \end{pmatrix} \\ &= \frac{a_1b_1 + a_2b_2}{(a_1{}^2 + a_2{}^2)(b_1{}^2 + b_2{}^2)} \begin{pmatrix} a_1b_1 & a_1b_2 \\ a_2b_1 & a_2b_2 \end{pmatrix} = O \\ & (\because a_1b_1 + a_2b_2 = 0) \end{split}$$

である.同様にSTを計算すると、ST=Oであることもわかり、これでTS=ST=Oが証明された.

p19:問2-(下)-(ハ)

証明

イ), 口)の文字や結論を用いると,

$$\begin{split} T\boldsymbol{x} + S\boldsymbol{x} &= \frac{1}{a_1^2 + a_2^2} \begin{pmatrix} a_1^2 & a_1 a_2 \\ a_1 a_2 & a_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \frac{1}{b_1^2 + b_2^2} \begin{pmatrix} b_1^2 & b_1 b_2 \\ b_1 b_2 & b_2^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \frac{1}{(a_1^2 + a_2^2)(b_1^2 + b_2^2)} \begin{pmatrix} (a_1^2 + a_2^2)(b_1^2 + b_2^2) & (a_1^2 + a_2^2)(b_1^2 + b_2^2) \\ (a_1^2 + a_2^2)(b_1^2 + b_2^2) & (a_1^2 + a_2^2)(b_1^2 + b_2^2) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\ &= \begin{pmatrix} x \\ y \end{pmatrix} = \boldsymbol{x} \end{split}$$

となる. これが証明すべきことであった.

p22:問1

p22:問1-(イ)

解答

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ -z \end{pmatrix}$$

となり、これはy軸に関する対象点に移す変換を表す。

p22:問1-(口)

解答

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \cos \alpha - z \sin \alpha \\ y \sin \alpha + z \cos \alpha \end{pmatrix}$$

となり、これはx軸まわりに角 α だけ回転する変換を表す。

p22:問1-(ハ)

解答

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ z \\ x \end{pmatrix}$$

第1章・章末問題

p29-30:1

証明

$$P = \left\{ \boldsymbol{x} = t_1 \boldsymbol{x}_1 + t_2 \boldsymbol{x}_2 + \dots + t_k \boldsymbol{x}_k \mid t_i \ge 0 \ (1 \le i \le k), \ \sum_{i=1}^k t_i = 1 \right\}.$$

であることを示す.

$$\begin{array}{c|c} \text{(i)} \ \ P \subset \left\{ \boldsymbol{x} = t_1 \boldsymbol{x}_1 + t_2 \boldsymbol{x}_2 + \dots + t_k \boldsymbol{x}_k \ \middle| \ t_i \ \geqq 0 \ (1 \leqq i \leqq k), \ \sum_{i=1}^k t_i = 1 \right\} \\ \text{(ii)} \ \ P \supset \left\{ \boldsymbol{x} = t_1 \boldsymbol{x}_1 + t_2 \boldsymbol{x}_2 + \dots + t_k \boldsymbol{x}_k \ \middle| \ t_i \ \geqq 0 \ (1 \leqq i \leqq k), \ \sum_{i=1}^k t_i = 1 \right\} \\ \end{array}$$

とする.

■(i) の証明 数学的帰納法により示す。k=4 のときの考察のために、四面体 $P_1P_2P_3P_4$ を考える。三角形 $P_2P_3P_4$ の任意の周および内部の点を T とする。 $0 \le k \le 1$, $0 \le s \le 1$ をみたす $k,s \in \mathbb{R}$ によって

$$\overrightarrow{P_2T} = k\{s\overrightarrow{P_2P_3} + (1-s)\overrightarrow{P_2P_4}\}$$

$$= ks(\boldsymbol{x}_3 - \boldsymbol{x}_2) + k(1-s)(\boldsymbol{x}_4 - \boldsymbol{x}_2)$$

$$= -k\boldsymbol{x}_2 + ks\boldsymbol{x}_3 + k(1-s)\boldsymbol{x}_4$$

と表される。

さて、線分 P_1 T 上の任意の点を Q とすると、 $0 \le t \le 1$ をみたす $t \in \mathbb{R}$ によって

$$\overrightarrow{P_1Q} = t\overrightarrow{P_1T}$$

$$= t\overrightarrow{P_2T} - t\overrightarrow{P_2P_1}$$

$$= t(-kx_2 + ksx_3 + k(1-s)x_4) - t(x_1 - x_2)$$

$$= -tx_1 + (t - kt)x_2 + kstx_3 + kt(1-s)x_4$$

と表されるから、k=4 のときの求める位置ベクトルは

$$\mathbf{x} = \mathbf{x}_1 + \overrightarrow{\mathbf{P}_1 \mathbf{Q}}$$

= $(1 - t)\mathbf{x}_1 + (t - kt)\mathbf{x}_2 + kst\mathbf{x}_3 + kt(1 - s)\mathbf{x}_4$

となり,

$$(1-t) + (t-kt) + kst + kt(1-s) = 1$$

であるから、 $1-t=t_1$ 、 $t-kt=t_2$ 、 $kst=t_3$ 、 $kt(1-s)=t_4$ とおくと、

$$x = t_1x_1 + t_2x_2 + t_3x_3 + t_4x_4, \quad t_1, t_2, t_3, t_4 \ge 0, \quad t_1 + t_2 + t_3 + t_4 = 1$$

となり、ここまででk = 4 の場合が示された。

ここで、 $n \ge 4$ として k = n のときに主張が成り立つと仮定する。このとき、

$$t_1 \boldsymbol{x}_1 + t_2 \boldsymbol{x}_2 + \cdots + t_n \boldsymbol{x}_n$$

は仮定により多面体 $\{P_n\}$ の点であり、これを簡単のために X_n とおく、

さて、 $\{P_n\}$ の点と P_{n+1} とを結ぶ線分上の点は、 $0 \le l \le 1$ をみたす $l \in \mathbb{R}$ によって、

$$l(t_1x_1 + t_2x_2 + \dots + t_nx_n) + (1-l)x_{n+1}, \quad t_1 + t_2 + \dots + t_n = 1$$

とかける. ここで,

$$l(t_1 + t_2 + \dots + t_n) + (1 - l) = 1$$

なので、 $\{P_n\}$ の点と P_{n+1} とを結ぶ線分上の点はこのように表せる。 よって、k=n のときも問題の主張が成り立つ。

以上のことと数学的帰納法により, (i) が示された.

 \blacksquare (ii) の証明 数学的帰納法により示す。 k=4 のときの考察のために

$$x = t_1x_1 + t_2x_2 + t_3x_3 + t_4x_4, \quad t_1, t_2, t_3, t_4 \ge 0, \quad t_1 + t_2 + t_3 + t_4 = 1$$

とする. このとき,

$$x = (t_1 + t_2 + t_3) \cdot \frac{t_1 x_1 + t_2 x_2 + t_3 x_3}{t_1 + t_2 + t_2} + t_4 x_4$$

と変形でき、p12: 問 3 の考察と併せると x が四面体 $P_1P_2P_3P_4$ の点であることが示される.

ここで、 $n \ge 4$ として k = n のときに主張が成り立つと仮定する.

$$x = t_1 x_1 + t_2 x_2 + \dots + t_n x_n + t_{n+1} x_{n+1}, \quad t_1, t_2, \dots, t_n, t_{n+1} \ge 0, \quad t_1 + t_2 + \dots + t_n + t_{n+1} = 1$$

としたとき,

$$\mathbf{x} = \frac{t_1 \mathbf{x}_1 + t_2 \mathbf{x}_2 + \dots + t_n \mathbf{x}_n}{t_1 + t_2 + \dots + t_n} \cdot (t_1 + t_2 + \dots + t_n) + t_{n+1} \mathbf{x}_{n+1}$$
$$= (t_1 + t_2 + \dots + t_n) \mathbf{X}_n + t_{n+1} \mathbf{x}_{n+1}$$
$$= (1 - t_{n+1}) \mathbf{X}_n + t_{n+1} \mathbf{x}_{n+1}$$

と変形できる。このとき、以下の二つのことが導かれる:

$$\frac{X_n}{1 - t_{n+1}} = \frac{t_1 x_1 + t_2 x_2 + \dots + t_n x_n}{t_1 + t_2 + \dots + t_n}.$$

$$\frac{t_1}{t_1 + t_2 + \dots + t_n} + \frac{t_2}{t_1 + t_2 + \dots + t_n} + \dots + \frac{t_n}{t_1 + t_2 + \dots + t_n}$$

$$= \frac{t_1 + t_2 + \dots + t_n}{t_1 + t_2 + \dots + t_n}$$

$$= 1.$$

これらと数学的帰納法の仮定を併せると,

$$\frac{X_n}{1 - t_{n+1}}$$

は、多面体 $\{P_n\}$ の内部の点であり、

$$(1-t_{n+1})\cdot \frac{\boldsymbol{X}_n}{1-t_{n+1}} + t_{n+1}\boldsymbol{x}_{n+1}$$

は多面体 $\{P_n\}$ の点と P_{n+1} を結ぶ線分上の点である.

以上の考察と数学的帰納法により, (ii) が示された.

■結論 以上(i), (ii) の考察により,

$$P = \left\{ \boldsymbol{x} = t_1 \boldsymbol{x}_1 + t_2 \boldsymbol{x}_2 + \dots + t_k \boldsymbol{x}_k \mid t_i \ge 0 \ (1 \le i \le k), \ \sum_{i=1}^k t_i = 1 \right\}.$$

p29-30:2

証明

 $2 \land P_1$, P_2 を通る直線の方程式を ax + by + c = 0 (ただし (a,b) = 0) とおく. このとき,

$$\begin{cases} ax + by + c = 0 \\ ax_1 + by_1 + c = 0 \\ ax_2 + by_2 + c = 0 \end{cases}$$

が成立する. すなわちこれは

$$\begin{pmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{0}$$

をみたす。これをa, b, c についての連立方程式とみたとき、与条件により自明でない解があり、

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

が成立する. 転置行列の行列式はもとの行列の行列式に等しいので, 行列式の交代性なども用いて,

$$\begin{vmatrix} 1 & 1 & 1 \\ x & x_1 & x_2 \\ y & y_1 & y_2 \end{vmatrix} = 0$$

を得る. これが証明すべきことであった.

p29-30:3

解答

点を以下の順で移動させる変換を考える.

- (1) 原点中心に $-\theta$ 回転させる.
- (2) x 軸に関して対称移動させる.
- (3) 原点中心に θ 回転させる.

ここで、(1) から (3) までの変換を表す行列をそれぞれ $R_{-\theta}$ 、 A_x 、 R_{θ} とすると.

$$R_{-\theta} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix},$$

$$A_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

となる. よって, この変換を表す行列は

$$R_{\theta}A_{x}R_{-\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos^{2}\theta - \sin^{2}\theta & 2\sin\theta\cos\theta \\ 2\sin\theta\cos\theta & \sin^{2}\theta - \cos^{2}\theta \end{pmatrix}$$
$$= \begin{pmatrix} \cos2\theta & \sin2\theta \\ \sin2\theta & -\cos2\theta \end{pmatrix}$$

である.

p29-30:4

証明

以下では、直線 $y= an \theta$ に関する折り返しを T_{θ} とかくことにする。 さて、直線 $y= an(\theta/4)x$ に関する折り返しは、

$$T_{\theta/4} = \begin{pmatrix} \cos(\theta/2) & \sin(\theta/2) \\ \sin(\theta/2) & -\cos(\theta/2) \end{pmatrix}$$

で表される。

また、直線 $y = \tan(-\theta/4)x$ に関する折り返しは.

$$T_{-\theta/4} = \begin{pmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ -\sin(\theta/2) & -\cos(\theta/2) \end{pmatrix}$$

で表される.

ここで,

$$\begin{split} T_{\theta/4}T_{-\theta/4} &= \begin{pmatrix} \cos(\theta/2) & \sin(\theta/2) \\ \sin(\theta/2) & -\cos(\theta/2) \end{pmatrix} \begin{pmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ -\sin(\theta/2) & -\cos(\theta/2) \end{pmatrix} \\ &= \begin{pmatrix} \cos^2(\theta/2) - \sin^2(\theta/2) & -2\sin(\theta/2)\cos(\theta/2) \\ 2\sin(\theta/2)\cos(\theta/2) & \cos^2(\theta/2) - \sin^2(\theta/2) \end{pmatrix} \\ &= \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \end{split}$$

となり、これは原点のまわりに θ 回転する行列を表す。

以上の考察により証明された.

p29-30:5

解答

任意の点 $P(p),\ p\in\mathbb{R}^3$ を平面 (a,x) に対して折り返すことを考える. 点 P から (a,x) におろした垂線の足は、 $t\in\mathbb{R}$ を用いて

$$\boldsymbol{p} + t \frac{\boldsymbol{a}}{(\boldsymbol{a}, \boldsymbol{a})}$$

と表せ、これが平面 (a,x) 上にあるので、

$$(\boldsymbol{a}, p + t \frac{\boldsymbol{a}}{(\boldsymbol{a}, \boldsymbol{a})}) = 0$$

$$\therefore t = -(\boldsymbol{a}, \boldsymbol{p})$$

である.

また、求める点を P'(p') とすると、

$$egin{aligned} oldsymbol{p}' &= oldsymbol{p} + t rac{2oldsymbol{a}}{(oldsymbol{a}, oldsymbol{a})} \ &= oldsymbol{p} - rac{2(oldsymbol{a}, oldsymbol{p})}{(oldsymbol{a}, oldsymbol{a})} oldsymbol{a} \end{aligned}$$

であるから、これはたしかに V^3 の線型変換を引き起こし、その変換公式は

$$m{x} \mapsto m{x} - rac{2(m{a}, m{x})}{(m{a}, m{a})} m{a}$$

である.

p29-30:6

p29-30:6-(イ)

解答

(S) と x 軸, y 軸, z 軸の交点をそれぞれ A, B, C とする。このとき,A, B, C の座標は図のようになり,この三角錐の体積を V とすると,

$$V = \frac{1}{2} \cdot \frac{1}{3} \cdot \left| \det \left(\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC} \right) \right|$$
$$= \frac{1}{6} \cdot \frac{|d|^3}{|abc|} = \frac{|d|^3}{6|abc|}$$

である.ここで, $\left|\det\left(\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}\right)\right|$ が \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} の張る平行六面体の体積を表すことを用いた.

p29-30:6-(口)

解答

三角形 ABC の体積を T, O から平面 ABC におろした垂線の足を H とすると,

$$V = \frac{1}{3} \left\| \overrightarrow{OH} \right\| \cdot T$$

である. ここで,

$$\|\overrightarrow{OH}\| = \frac{|a \cdot 0 + b \cdot 0 + c \cdot 0 - d|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|d|}{\sqrt{a^2 + b^2 + c^2}}$$

なので、イ) の結果から $V=\dfrac{\left|d\right|^{3}}{6|abc|}$ なのを加味すると、

$$T = \frac{d^2\sqrt{a^2 + b^2 + c^2}}{2|abc|}$$

である.

p29-30:7

p29-30:7-(イ)

解答

a, b, c が張る平行六面体の体積は,

$$|\det(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})|$$

で与えられる.

一方, この平行六面体の O, B, C を含む面の面積は,

$$\|oldsymbol{b} imesoldsymbol{c}\|$$

で与えられる.

以上の考察により、求める長さは、

$$\frac{|\text{det}(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c})|}{\|\boldsymbol{b}\times\boldsymbol{c}\|}$$

p29-30:7-(口)

解答

 \overrightarrow{BA} と \overrightarrow{BC} の外積は,

$$\|(a - b) \times (c - b)\|.$$

これを $\left\|\overrightarrow{\mathrm{BC}}\right\|$ で割ればよく,求める長さは

$$\frac{\|(\boldsymbol{a}-\boldsymbol{b})\times(\boldsymbol{c}-\boldsymbol{b})\|}{\|\boldsymbol{c}-\boldsymbol{b}\|}.$$

p29-30:8

証明

$$m{a} = egin{pmatrix} a_1 \ a_2 \ a_3 \end{pmatrix}, \quad m{b} = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}, \quad m{c} = egin{pmatrix} c_1 \ c_2 \ c_3 \end{pmatrix}$$

とする. このとき,

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$

$$= \begin{pmatrix} a_1^2 + a_2^2 + a_3^2 & a_1b_1 + a_2b_2 + a_3b_3 & a_1c_1 + a_2c_2 + a_3c_3 \\ b_1a_1 + b_2a_2 + b_3a_3 & b_1^2 + b_2^2 + b_3^2 & b_1c_1 + b_2c_2 + b_3c_3 \\ c_1a_1 + c_2a_2 + c_3a_3 & c_1b_1 + c_2b_2 + c_3b_3 & c_1^2 + c_2^2 + c_3^2 \end{pmatrix}$$

$$= \begin{pmatrix} (\boldsymbol{a}, \boldsymbol{a}) & (\boldsymbol{a}, \boldsymbol{b}) & (\boldsymbol{a}, \boldsymbol{c}) \\ (\boldsymbol{b}, \boldsymbol{a}) & (\boldsymbol{b}, \boldsymbol{b}) & (\boldsymbol{b}, \boldsymbol{c}) \\ (\boldsymbol{c}, \boldsymbol{a}) & (\boldsymbol{c}, \boldsymbol{b}) & (\boldsymbol{c}, \boldsymbol{c}) \end{pmatrix}$$

である.

一方,

$$\det(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$= c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix} + c_2 \begin{vmatrix} a_3 & b_3 \\ a_1 & b_1 \end{vmatrix} + c_3 \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}$$

$$= c_1(a_2b_3 - b_2a_3) + c_2(a_3b_1 - b_3a_1) + c_3(a_1b_2 - b_1a_2)$$

$$= a_3(b_1c_2 - b_2c_1) + b_3(c_1a_2 - c_2a_1) + c_3(a_1b_2 - b_1a_2)$$

$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

であるから、これと行列式の積の性質により、

$$\begin{vmatrix} (\boldsymbol{a}, \boldsymbol{a}) & (\boldsymbol{a}, \boldsymbol{b}) & (\boldsymbol{a}, \boldsymbol{c}) \\ (\boldsymbol{b}, \boldsymbol{a}) & (\boldsymbol{b}, \boldsymbol{b}) & (\boldsymbol{b}, \boldsymbol{c}) \\ (\boldsymbol{c}, \boldsymbol{a}) & (\boldsymbol{c}, \boldsymbol{b}) & (\boldsymbol{c}, \boldsymbol{a}) \end{vmatrix} = \det(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})^2$$

である.

p29-30:9

解答

 $\det(x,y,z)$ は、x、y、z の張る平行六面体の体積に符号をつけたものに等しい。与条件より、 $\det(x,y,z)$ が最大になるのは、x.y、z の張る図形が立方体のときであり、そのとき

$$det(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}) = 1$$

である. これからただちに $\det(x,y,z)$ の最小値が -1 であることも従う.

以上により、 $\det(x,y,z)$ の最大値は 1、最小値は -1 である.

p29-30:10

p29-30:10-(イ)

証明

単位ベクトル e_1 , e_2 , e_3 を適当にとり,

$$\boldsymbol{a} = \alpha_1 \boldsymbol{e}_1, \quad \boldsymbol{b} = \beta_1 \boldsymbol{e}_1 + \beta_2 \boldsymbol{e}_2, \quad \boldsymbol{c} = \gamma_1 \boldsymbol{e}_1 + \gamma_2 \boldsymbol{e}_2 + \gamma_3 \boldsymbol{e}_3$$

とおく. このとき,

$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \alpha_1 \beta_2 \mathbf{e}_3 \times (\gamma_1 \mathbf{e}_1 + \gamma_2 \mathbf{e}_2 + \gamma_3 \mathbf{e}_3)$$
$$= \alpha_1 \beta_2 \gamma_1 \mathbf{e}_2 - \alpha_1 \beta_2 \gamma_2 \mathbf{e}_1$$
$$= -(\mathbf{b}, \mathbf{c}) \mathbf{a} + (\mathbf{a}, \mathbf{c}) \mathbf{b}$$

であり、これが証明すべきことであった $^{\dagger 1}$.

 $^{\dagger 1}$ この等式をラグランジュの恒等式とよぶ.

p29-30:10-(口)

証明

イ) の結果により.

$$(\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c} = -(\boldsymbol{b}, \boldsymbol{c})\boldsymbol{a} + (\boldsymbol{a}, \boldsymbol{c})\boldsymbol{b},$$

 $(\boldsymbol{b} \times \boldsymbol{c}) \times \boldsymbol{a} = -(\boldsymbol{c}, \boldsymbol{a})\boldsymbol{b} + (\boldsymbol{b}, \boldsymbol{a})\boldsymbol{c},$

$$(c \times a) \times b = -(a, b)c + (c, b)a.$$

であるから,

$$(a \times b) \times c + (b \times c) \times a + (c \times a) \times b = 0$$

となる. これが証明すべきことであった.

第2章

p34:問1

証明

後半二つの主張は明らか。また、二つ目の主張は一つ目の主張と同様にして示すことができるので、一つ目のみ示すことにする。

 $A=(a_{pq})$ を $k\times l$ 行列, $B=(b_{qr})$, $C=(c_{qr})$ を $l\times m$ 行列とする.示したい式の両辺がともに定義され,ともに $k\times m$ 行列であることはよい.行列 B+C の (q,r) 成分は $b_{qr}+c_{qr}$ であるから,左辺の (p,r) 成分は,

$$\sum_{q=1}^{l} a_{pq} (b_{qr} + c_{qr}) = \sum_{q=1}^{l} a_{pq} b_{qr} + \sum_{q=1}^{l} a_{pq} c_{qr}$$

とかける。この等号の右辺は AB の (p,r) 成分と AC の (p,r) 成分の和である。これより、主張が示された。

p40:問

p40:問-(イ)

解答

$$A_{11} = \begin{pmatrix} 1 & -1 \\ 0 & -2 \end{pmatrix}, \quad A_{22} = \begin{pmatrix} -2 & 3 \\ 1 & 1 \end{pmatrix}, \quad B_{11} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, \quad B_{22} = \begin{pmatrix} 1 & 1 \\ 2 & -3 \end{pmatrix}$$

とおくと,

(与式) =
$$\begin{pmatrix} A_{11} & O \\ O & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & O \\ O & B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11}B_{11} & O \\ O & A_{22}B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 4 & -11 \\ 0 & 0 & 3 & -2 \end{pmatrix}$$

である.

p41:問1

解答

(1)
$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$
とする。このとき、

$$AX = \begin{pmatrix} x_{11} + 2x_{21} & x_{12} + 2x_{22} \\ 2x_{11} + 4x_{21} & 2x_{12} + 4x_{22} \end{pmatrix}$$

となり、これが E_2 と等しくなるためには

$$\begin{cases} x_{11} + 2x_{21} = 1\\ x_{12} + 2x_{22} = 0\\ 2x_{11} + 4x_{21} = 0\\ 2x_{12} + 4x_{22} = 1 \end{cases}$$

となることが必要かつ十分であるが、これを満たす $x_{11},x_{12},x_{21},x_{22}\in\mathbb{C}$ は存在しない。よって前半の主張が示された。

後半について示す.
$$Y=egin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix}$$
とする.このとき,

$$YA = \begin{pmatrix} y_{11} + 2y_{12} & 2y_{11} + 4y_{12} \\ y_{21} + 2y_{22} & 2y_{21} + 4y_{22} \end{pmatrix}$$

となり、これが E_2 と等しくなるためには

$$\begin{cases} y_{11} + 2y_{12} = 1\\ 2y_{11} + 4y_{12} = 0\\ y_{21} + 2y_{22} = 0\\ 2y_{21} + 4y_{22} = 1 \end{cases}$$

となることが必要かつ十分であるが、これを満たす $y_{11},y_{12},y_{21},y_{22}\in\mathbb{C}$ は存在しない。よって後半の主張も示された。

(2) X, Y を (1) で定義したものとする. このとき,

$$AX = \begin{pmatrix} x_{11} + 2x_{21} & x_{12} + 2x_{22} \\ 0 & 0 \end{pmatrix}$$

となり、これがBと等しくならないことは明らか。 後半について、

$$YA = \begin{pmatrix} x_{11} & 2x_{11} \\ x_{21} & 2x_{21} \end{pmatrix}$$

となり,これが B と等しくなるためには $x_{11}=1$, $x_{21}=2$ となることが必要かつ十分であるが, x_{12} , x_{22} については任意の複素数である.以上の議論により,このような Y は無限に存在する

(3) A の第 k 列の成分が全て 0 であるとする. ただしここで $1 \le k \le n, \ k \in \mathbb{N}$ であるとする. XA = E をみたす X が存在すると仮定する. このとき,X は明らかに $n \times n$ 行列であり,積 XA は定義される. いま $X = (x_{jk}), \ A = (a_{kj}), \ 1 \le j, k \le n$ と表す. このとき,

$$(XA\mathcal{O}(j,j)$$
成分) = $\sum_{k=1}^{n} x_{jk} a_{kj} = 0$

となり、これは XA = E に矛盾する。よってこのような X は存在しないことが示された。 \Box

p42:問1

証明

まず.

$$\overline{A} \ \overline{A^{-1}} = \overline{AA^{-1}} = E, \quad \overline{A^{-1}} \ \overline{A} = \overline{A^{-1}A} = E$$

より、 \overline{A} は正則で、逆行列は $\overline{A^{-1}}$ である。 さらに、

$${}^{t}A^{t}A^{-1} = {}^{t}(A^{-1}A) = E, \quad {}^{t}A^{-1}A = {}^{t}(AA^{-1}) = E$$

であるから, tA は正則であり,逆行列は ${}^tA^{-1}$ である.

p42:問2

解答

$$A \coloneqq \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad A' \coloneqq \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$

とする. このとき,

$$AA' = \begin{pmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{pmatrix}$$

である。AA'=E となる条件は、x、y、z、w についてのふたつの連立方程式

$$\begin{cases} ax + bz = 1 \\ cx + dz = 0 \end{cases}, \quad \begin{cases} ay + bw = 0 \\ cy + dw = 1 \end{cases}$$

が解を持つことで、その条件は $ad-bc \neq 0$ である。 そのときの解は、

$$(x,y,z,w)=(\frac{d}{ad-bc},-\frac{b}{ad-bc},-\frac{c}{ad-bc},\frac{a}{ad-bc})$$

である.これを用いて A'A を計算すると,A'A=E となり. たしかに A' は A の逆行列である. 以上の議論により, $ad-bc\neq 0$ となることが必要十分条件である.

p42:問3

p42:問3-(イ)

解答

(2) の結果により,

$$\frac{1}{3 \cdot 3 - 2 \cdot 4} \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$$

が求める逆行列である.

p42:問3-(口)

解答

まず.

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$

としたときに

$$XA = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} x_{11} & 2x_{11} + x_{12} & -x_{11} + 3x_{12} + x_{13} \\ x_{21} & 2x_{21} + x_{22} & -x_{21} + 3x_{22} + x_{23} \\ x_{31} & 2x_{31} + x_{32} & -x_{31} + 3x_{32} + x_{33} \end{pmatrix}$$

であるから、これに関して

$$\begin{pmatrix} x_{11} & 2x_{11} + x_{12} & -x_{11} + 3x_{12} + x_{13} \\ x_{21} & 2x_{21} + x_{22} & -x_{21} + 3x_{22} + x_{23} \\ x_{31} & 2x_{31} + x_{32} & -x_{31} + 3x_{32} + x_{33} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

となれば、行列 X が求める逆行列である、計算すると

$$X = \begin{pmatrix} 1 & -2 & 7 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{pmatrix}$$

であり、これが求める逆行列であった.

p42:問3-(ハ)

解答

まず,

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{pmatrix}$$

としたとき,

$$XA = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} x_{14} & x_{13} & x_{12} & x_{11} \\ x_{24} & x_{23} & x_{22} & x_{21} \\ x_{34} & x_{33} & x_{32} & x_{31} \\ x_{44} & x_{43} & x_{42} & x_{41} \end{pmatrix}$$

であるから、これに関して

$$\begin{pmatrix} x_{14} & x_{13} & x_{12} & x_{11} \\ x_{24} & x_{23} & x_{22} & x_{21} \\ x_{34} & x_{33} & x_{32} & x_{31} \\ x_{44} & x_{43} & x_{42} & x_{41} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

となれば、行列 X が求める逆行列である.

計算すると.

$$X = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

であり、これが求める逆行列であった.

p52:問

解答

$$\frac{\left(\begin{array}{ccc|c} 1 & 3 & 2 & 1 & 0 & 0 \\ 2 & 6 & 3 & 0 & 1 & 0 \\ -2 & -5 & -2 & 0 & 0 & 1 \end{array}\right) }{\left(\begin{array}{ccc|c} 1 & 3 & 2 & 1 & 0 & 0 \\ 2 & 6 & 3 & 0 & 1 & 0 \\ -2 & -5 & -2 & 0 & 0 & 1 \end{array}\right) }$$

$$\frac{\hat{\pi} 1 \text{ 行の } (-2) \text{ 倍, } \hat{\pi} 1 \text{ 行o } 2 \text{ 倍をそれぞれ第 } 2 \text{ 行, } \hat{\pi} 3 \text{ 行に加える} }{\left(\begin{array}{ccc|c} 1 & 3 & 2 & 1 & 0 & 0 \\ 0 & 0 & -1 & -2 & 1 & 0 \\ 0 & 1 & 2 & 2 & 0 & 1 \\ 0 & 0 & -1 & -2 & 1 & 0 \end{array}\right) }$$

$$\frac{\hat{\pi} 2 \text{ 行c } (-3) \text{ 倍を第 } 1 \text{ 行に加え, } \hat{\pi} 3 \text{ 行o } (-4) \text{ 倍を第 } 1 \text{ 行に加える} }{\left(\begin{array}{ccc|c} 1 & 0 & 0 & 3 & -4 & -3 \\ 0 & 1 & 2 & 2 & 0 & 1 \\ 0 & 0 & -1 & -2 & 1 & 0 \end{array}\right) }$$

$$\frac{\hat{\pi} 3 \text{ 行o } 2 \text{ 倍を第 } 2 \text{ 行に加え, } \hat{\pi} 3 \text{ 行c } (-1) \text{ 倍する} }{\left(\begin{array}{ccc|c} 1 & 0 & 0 & 3 & -4 & -3 \\ 0 & 1 & 0 & -2 & 2 & 1 \\ 0 & 0 & 1 & 2 & -1 & 0 \end{array}\right) }$$

よって, 求める逆行列は

$$\begin{pmatrix} 3 & -4 & -3 \\ -2 & 2 & 1 \\ 2 & -1 & 0 \end{pmatrix}$$

である.

p58:問

p58:問-(イ)

解答

与えられた連立方程式について、拡大係数行列を考えて基本変形を施すと、

$$\begin{pmatrix} 1 & 0 & 1 & -4/3 \\ 0 & 1 & 1 & 8/3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

となる。 つまり、解は存在し、 ひとつの任意定数を含む。 任意定数を $x_3=\alpha$ とすると、

$$x_1 = -\frac{4}{3} - \alpha$$
, $x_2 = \frac{8}{3} - \alpha$, $x_3 = \alpha$

とかける.ベクトルの形で表すと,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -4/3 \\ 8/3 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

である.

p58:問-(口)

解答

与えられた連立方程式について、拡大係数行列を考えて基本変形を施すと、

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{pmatrix}$$

となるが、0 = -1 とはならないため、この連立方程式は解を持たない。

p58:問-(八)

解答

与えられた連立方程式について、拡大係数行列を考えて基本変形を施すと、

$$\begin{pmatrix} 1 & 0 & 0 & 2 & 6 & 6 \\ 0 & 1 & 0 & -2 & -11 & -9 \\ 0 & 0 & 1 & 0 & 19 & 14 \end{pmatrix}$$

となる。ただしここで第3列と第4列を入れ替えた。

つまり、解は存在し、ふたつの任意定数を含む、任意定数を $x_3=\alpha$ 、 $x_5=\beta$ とすると、この連立方程式の解は

$$x_1 = 6 - 2\alpha - 2\beta$$
, $x_2 = -9 + 2\alpha + 11\beta$, $x_3 = \alpha$, $x_4 = 14 - 19\beta$, $x_5 = \beta$

とかける. ベクトルの形で表すと,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 6 \\ -9 \\ 0 \\ 14 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -2 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -2 \\ 11 \\ 0 \\ -19 \\ 1 \end{pmatrix}$$

である.

p62-63:問1

証明

定義に従って計算すると,

$$||x + y||^{2} + ||x - y||^{2} = (x + y, x + y) + (x - y, x - y)$$

$$= (x, x) + (x, y) + (y, x) + (y, y) + (x, x) - (x, y) - (y, x) + (y, y)$$

$$= 2((x, x) + (y, y))$$

$$= 2(||x||^{2} + ||y||^{2})$$

となり、これが証明すべきことであった.

p62-63:問2

証明

$$\|x + y\|^2 = (x, x) + (x, y) + (y, x) + (y, y)$$

である.ここで,xとyが直交することから,

$$(\boldsymbol{x}, \boldsymbol{y}) + (\boldsymbol{y}, \boldsymbol{x}) = (\boldsymbol{x}, \boldsymbol{y}) + \overline{(\boldsymbol{x}, \boldsymbol{y})} = 0$$

であり、これを用いると

$$\|x + y\|^2 = (x, x) + (y, y) = \|x\|^2 + \|y\|^2$$

となる. x, y がともに実ベクトルのときは (x,y)=0 であるから確かに逆が成り立つが,たとえば $x=\begin{pmatrix}2\\0\end{pmatrix}, y=\begin{pmatrix}2i\\0\end{pmatrix}$ とすれば,等式は成り立つが x と y は直交しないため,逆は成り立たない.

p62-63:問3

証明

 $oldsymbol{x},oldsymbol{y}\in\mathbb{R}^n$ のとき,

$$||x + y||^{2} - ||x - y||^{2} = (x + y, x + y) - (x - y, x - y)$$

$$= ||x||^{2} + (x, y) + (y, x) + ||y||^{2} - (||x||^{2} - (x, y) - (y, x) + ||y||^{2})$$

$$= ||x||^{2} + 2(x, y) + ||y||^{2} - (||x||^{2} - 2(x, y) + ||y||^{2})$$

$$= 4(x, y)$$

であるから、この両辺を4で割るとただちに主張が従う.

また、 $x,y \in \mathbb{C}$ のときにはこの等式が成り立たないことがある。 $x = {}^t(2i,0), y = {}^t(2,0)$ とすると、

$$\frac{\|x+y\|^2 - \|x-y\|^2}{4} = \frac{4-4}{4}$$

であるが,

$$(\boldsymbol{x}, \boldsymbol{y}) = (2, 0) \begin{pmatrix} -2i \\ 0 \end{pmatrix}$$
$$= -4i$$

となり、確かにこれが反例になっている.

p65: 問 1

解答

$$A \coloneqq \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

とおく. このとき,

$$A^{t}A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
$$= \begin{pmatrix} a^{2} + b^{2} & ac + bd \\ ac + bd & c^{2} + d^{2} \end{pmatrix}$$

となり、これがEに等しいので、

$$\begin{cases} a^2 + b^2 = 1, \\ c^2 + d^2 = 1, \\ ac + bd = 0 \end{cases}$$

となる. このことから $0 \le \theta < 2\pi$, $0 \le \phi < 2\pi$ として

$$a = \cos \theta, \quad b = \sin \theta,$$

 $c = \cos \phi, \quad d = \sin \phi$

とおくと,

$$ac + bd = \cos\theta\cos\phi + \sin\theta\sin\phi$$
$$= \cos(\theta - \phi)$$

となり、これが 0 に等しいので、

$$\theta - \phi = \pi/2, 3\pi/2,$$

$$\therefore \phi = \theta - \pi/2, \theta - 3\pi/2.$$

これより,任意の二次直交行列は $0 \le \theta < 2\pi$, $0 \le \phi < 2\pi$ として

$$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}, \quad \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$$

のいずれかで表される.

p65: 問 2

証明

$$(A^*A)^* = A^*A^{**} = A^*A, \quad (AA^*)^* = A^{**}A^* = AA^*$$

であるから、 A^*A 、 AA^* はエルミート行列である。

また、任意の $n \times 1$ ベクトルxに対して、

$$(\boldsymbol{x}, A^*A\boldsymbol{x}) = (A^{**}\boldsymbol{x}, A\boldsymbol{x})$$
$$= (A\boldsymbol{x}, A\boldsymbol{x})$$
$$= ||A\boldsymbol{x}||^2 \ge 0$$

であり、また、x として第i 成分のみ1 でほかの成分は0 のベクトル e_i をとると、

$$(e_i, A^*Ae_i) = A^*A$$
 の (i, i) 成分

となる。 先の不等式よりこれは 0 または正なので, A^*A の対角成分は 0 または正である. 同様にして AA^* の対角成分も 0 または正である.

以上のことが証明すべきことであった.

第2章・章末問題

p70-73:1

p70-73:1-(イ)

解答

よって, 求める逆行列は,

$$\begin{pmatrix} 4 & 18 & -16 & -3 \\ 0 & -1 & 1 & 1 \\ 1 & 3 & -3 & 0 \\ 1 & 6 & -5 & -1 \end{pmatrix}$$

である.

p70-73:1-(口)

解答

よって, 求める逆行列は

$$\begin{pmatrix} -3 & -1 & 1 & -1 \\ -3 & -1 & 0 & 1 \\ -4 & -1 & 1 & 0 \\ -10 & -3 & 1 & 1 \end{pmatrix}$$

である.

p70-73:2

p70-73:2-(イ)

解答

与えられた連立方程式について、拡大係数行列を考えて基本変形を施すと、

$$\begin{pmatrix} 1 & 0 & 0 & 2 & 2 & 0 \\ 0 & 1 & 0 & 0 & 0 & -3/5 \\ 0 & 0 & 1 & -1 & 0 & 1/5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

となる. ただしここで第2列と第5列を入れ替えた.

つまり、解は存在し、2 つの任意定数を含む。任意定数を $x_4=\alpha$ 、 $x_2=\beta$ とすると、

$$x_1 = -2\alpha - 2\beta$$
, $x_2 = \beta$, $x_3 = \alpha + \frac{1}{5}$, $x_4 = \alpha$, $x_5 = -\frac{3}{5}$

となる。ベクトルの形で表すと

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1/5 \\ 0 \\ -3/5 \end{pmatrix} + \alpha \begin{pmatrix} -2 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

となる.

p70−73 : 2-(□)

解答

与えられた連立方程式について、拡大係数行列を考えて基本変形を施すと、

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

となる.

つまり、解は存在し、一つの任意定数を含む。任意定数を $x_4 = \alpha$ とすると、

$$x_1 = -1 - 2\alpha$$
, $x_2 = 1 + \alpha$, $x_3 = -1 + \alpha$, $x_4 = \alpha$

となる。ベクトルの形で表すと

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -2 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

となる.

p70-73:2-(ハ)

解答

与えられた連立方程式について、拡大係数行列を考えて基本変形を施すと、

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

となる.

つまり、解は存在し、

$$x_1 = 3$$
, $x_2 = 4$, $x_3 = 1$, $x_4 = 1$

となる。ベクトルの形で表すと

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 1 \\ 1 \end{pmatrix}$$

となる.

p70-73:2-(=)

解答

与えられた連立方程式について、拡大係数行列を考えて基本変形を施すと、

$$\begin{pmatrix} 1 & 0 & 0 & 2 & -2 & 0 \\ 0 & 1 & 0 & 0 & 24 & 4 \\ 0 & 0 & 1 & 0 & 10 & 3 \end{pmatrix}$$

となる。ただしここで第2列と第4列を入れ替えた。

つまり、解は存在し、2 つの任意定数を含む。 $x_2=lpha$ 、 $x_5=eta$ とすると、

$$x_1 = -2\alpha + 2\beta$$
, $x_2 = \alpha$, $x_3 = 3 - 10\beta$, $x_4 = 4 - 24\beta$, $x_5 = \beta$

となる。ベクトルの形で表すと

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 3 \\ 3 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 0 \\ -10 \\ -24 \\ 1 \end{pmatrix}$$

となる.

p70-73:3

p70-73:3-(イ)

解答

$$\begin{pmatrix} 1 & 3 & 2 & | & 1 & 0 & 0 \\ -1 & -2 & -1 & | & 0 & 1 & 0 \\ 2 & 4 & 3 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\frac{\hat{\pi} 1 \text{ 列を掃き出す}}{} \begin{pmatrix} 1 & 3 & 2 & | & 1 & 0 & 0 \\ 0 & 1 & 1 & | & 1 & 1 & 0 \\ 0 & -2 & -1 & | & -2 & 0 & 1 \end{pmatrix}$$

$$\frac{\hat{\pi} 2 \text{ 列を掃き出す}}{} \begin{pmatrix} 1 & 0 & -1 & | & -2 & -3 & 0 \\ 0 & 1 & 1 & | & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 2 & 1 \end{pmatrix}$$

$$\frac{\hat{\pi} 3 \text{ 列を掃き出す}}{} \begin{pmatrix} 1 & 0 & 0 & | & -2 & -1 & 1 \\ 0 & 1 & 0 & | & 1 & -1 & -1 \\ 0 & 0 & 1 & | & 0 & 2 & 1 \end{pmatrix}$$

である. ゆえに

$$P^{-1} = \begin{pmatrix} -2 & -1 & 1\\ 1 & -1 & -1\\ 0 & 2 & 1 \end{pmatrix}$$

である。だから

$$P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

p70−73:3-(□)

解答

$$\begin{split} A^n &= PB^nP^{-1} \\ &= \begin{pmatrix} 1 & 3 & 2 \\ -1 & -2 & -1 \\ 2 & 4 & 3 \end{pmatrix} \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1^n & 0 \\ 0 & 0 & 0^n \end{pmatrix} \begin{pmatrix} -2 & -1 & 1 \\ 1 & -1 & -1 \\ 0 & 2 & 1 \end{pmatrix} \\ &= \begin{pmatrix} -2^{n+1} + 3 & -2^n - 3 & 2^n - 3 \\ 2^{n+1} - 2 & 2^n + 2 & -2^n - 2 \\ -2^{n+2} + 4 & -2^{n+1} - 4 & 2^{n+1} - 4 \end{pmatrix} \end{split}$$

となる.

p70-73:4

解答

与えられた行列をAとする.

A の第1列に、第2列から第n列までを足して変形すると、

$$\begin{pmatrix} (n-1)x+1 & x & x & \cdots & x \\ (n-1)x+1 & 1 & x & \cdots & x \\ (n-1)x+1 & x & 1 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ (n-1)x+1 & x & x & \cdots & 1 \end{pmatrix}$$

となる.

ここで、この行列の第2行から第n行までの各行から第1行を引くと、

$$\begin{pmatrix} (n-1)x+1 & x & x & \cdots & x \\ 0 & 1-x & 0 & \cdots & 0 \\ 0 & 0 & 1-x & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1-x \end{pmatrix}$$

となるので、行列 A の階数は、x=1 のとき 1、x=-1/(n-1) のとき n-1、それ以外の場合は n である.

p70-73:5

証明

A が正則でないと仮定すると,

$$Ax = 0$$

をみたす $x \in \mathbb{C}^n$ が存在する.

また、 $x={}^t(x_1,x_2,\ldots,x_n)$ とし、 x_1,x_2,\ldots,x_n の中で絶対値が最大のものを x_p とする. Ax の p 行を考えると、

$$a_{p1}x_1 + a_{p2}x_2 + \dots + a_{pp}x_p + \dots + a_{pn}x_n = 0$$

$$\therefore x_p = -(a_{p1}x_1 + a_{p2}x_2 + \dots + a_{pn}x_n) = -\sum_{\substack{i \neq p \\ i \in \{1, 2, \dots, n\}}} a_{pi}x_i$$

となる.

ここで,

$$|x_p| \leq \sum_{\substack{i \neq p \\ i \in \{1, 2, \dots, n\}}} |a_{pi}| |x_i|$$

$$< \sum_{\substack{i \neq p \\ i \in \{1, 2, \dots, n\}}} \frac{1}{n-1} |x_i|$$

$$< \frac{n-1}{n-1} \cdot |x_p| = |x_p|$$

と計算でき、 $|x_p| < |x_p|$ となり、これは矛盾である.

よって、先の過程が誤りであり、このとき A は正則である。

p70-73:6

p70-73:6-(イ)

証明

$$AA^{k-1} = A^{k-1}A = E$$

なので、A は正則である。

p70−73:6-(□)

証明

A が正則であるとすると, A^{-1} が存在して,

$$A^{-1}A^2 = A^{-1}A$$
$$A = E$$

となるが、これは矛盾であるため、Aは正則でない。

p70-73:6-(ハ)

証明

A が正則であるとすると,

$$E = (A^{-1}A)^k$$
$$= A^{-k}A^k$$
$$= O$$

となるが、これは矛盾であるため、A は正則でない。

p70-73:6-(二)

証明

k を用いて、 A^k を考えると

$$E = (E - A)(E + A + A^{2} + \dots + A^{k-1})$$

であり、逆からかけても同じであるため、E-A は正則であり、

$$(E-A)^{-1} = E + A + A^2 + \dots + A^{k-1}$$

である.

また,

$$E = (E + A)(E - A + A^2 - \dots + A^{k-1})$$

であり、逆からかけても同じなので、E + A は正則であり、

$$(E+A)^{-1} = E - A + A^2 - \dots + A^{k-1}$$

である.

p70-73:7

証明

$$X=(x_{ij}),\;Y=(y_{ij})$$
 とする.ここで, XY の (i,i) 成分は $\sum_{j=1}^n x_{ij}y_{ji}$ であるから,

$$\operatorname{tr}(XY) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} x_{ij} y_{ji} \right)$$

となる. YX については、同様の議論により、

$$\operatorname{tr}(YX) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} y_{ij} x_{ji} \right)$$
$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} x_{ji} y_{ij} \right)$$

である.ここで,iとjをおきかえれば,

$$\operatorname{tr}(YX) = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} x_{ij} y_{ji} \right) \tag{1}$$

となる. これより,

$$tr(XY) = tr(YX) (2)$$

を得て、これとトレースの線型性により $\operatorname{tr}(XY-YX)=0$ であるが、 $\operatorname{tr}(E_n)=n\neq 0$ であるため、これは矛盾である。

ゆえに、 $XY - YX = E_n$ となる n 次行列 X, Y は存在しないことが示された.

p70-73:8

証明

行列 B の階数を r とすると,m 次正則行列 P,n 次正則行列 Q によって,

$$PBQ = F_{m,n}(r)$$

と表せる.

これにより,

$$ABQ = AP^{-1}F_{m,n}(r)$$

とかける. A_{11} を r 次の行列として,

$$AP^{-1} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad F_{m,n}(r) = \begin{pmatrix} E_r & O \\ O & O \end{pmatrix}$$

とかくと.

$$AP^{-1}F_{m,n}(r) = AP^{-1}Q$$
$$= \begin{pmatrix} A_{11} & O \\ A_{21} & O \end{pmatrix}$$

とかけ、 A_{11} の定義により、ABQ の階数は r 以下となる。いま Q は基本行列の積なので、 AB の階数 も r 以下である。

行列 A についても同様に示せる.

以上の議論により、行列 AB の階数は行列 A、行列 B の階数以下であることが証明された。

p70-73:9

解答

3 つの平面が 1 本の直線を共有する必要十分条件は、与式を x, y, z に関する方程式とみたときに、解が存在して 1 つの任意定数を含むことである。

これは

$$\begin{cases} r(A) = 2 \\ r(A) = r(\tilde{A}) \end{cases}$$

と同値であり、したがって、

$$r(A) = r(\tilde{A}) = 2$$

が必要十分条件である.

p70-73:10

p70-73:10-(イ)

証明

AX = E をみたす n 次正則行列 X が存在するとする。このとき、

$$X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$

とおくと.

$$AX = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$
$$= \begin{pmatrix} ax_{11} - bx_{21} & ax_{12} - bx_{22} \\ bx_{11} + ax_{21} & bx_{12} + ax_{22} \end{pmatrix}$$

となり、これがEに等しいので、

$$\begin{cases} ax_{11} - bx_{21} = 1\\ ax_{12} - bx_{22} = 0\\ bx_{11} + ax_{21} = 0\\ bx_{12} + ax_{22} = 1 \end{cases}$$

となり、これを変形すると、

$$\begin{cases} (a^2 + b^2)x_{11} = a\\ (a^2 + b^2)x_{12} = b\\ (a^2 + b^2)x_{21} = -b\\ (a^2 + b^2)x_{22} = a \end{cases}$$

となるから、このような x_{11} 、 x_{12} 、 x_{21} 、 x_{22} が存在する必要十分条件は

$$a^2 + b^2 \neq 0$$

である. このことから直ちに主張が従う.

p70-73:10-(口)

証明

$$A' = \begin{pmatrix} a' & -b' \\ b' & a' \end{pmatrix}, \quad \alpha' = a' + b'i$$

とおく.

和については

$$A + A' = \begin{pmatrix} a + a' & -(b + b') \\ b + b' & a + a' \end{pmatrix}, \quad \alpha + \alpha' = (a + a') + (b + b')i$$

となり、このときたしかに A + A' と $\alpha + \alpha'$ が一対一に対応する.

積については

$$AA' = \begin{pmatrix} aa' - bb' & -(ab' + ba') \\ ab' + ba' & aa' - bb' \end{pmatrix}, \quad \alpha\alpha' = (aa' - bb') + (ab' + ba')i$$

となり、たしかに AA' と $\alpha\alpha'$ が一対一に対応する.

逆数については

$$A^{-1} = \frac{1}{a^2 + b^2} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \quad \frac{1}{\alpha} = \frac{1}{a^2 + b^2} (a - bi)$$

となり、たしかに A^{-1} と $1/\alpha$ が一対一に対応する.

以上の考察により証明された.

p70-73:10-(ハ)

証明

$$\alpha = r(\cos\theta + i\sin\theta)$$

と表せるとすると,

$$a + bi = r(\cos\theta + i\sin\theta)$$

であるから,

$$a = r \cos \theta, \quad r = r \sin \theta$$

とかけ, このとき

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = r \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

となる. これが証明すべきことであった.

p70-73:11

p70-73:11-(イ)

証明

 ${}^tPP = E$ を加味して $(P \pm E)$ の転置行列を考えると

$$^{t}(P \pm E) = {}^{t}P \pm {}^{t}PP = {}^{t}P^{t}(E \pm P)$$

となり、これを用いると、

$$tA = t\{(P - E)(P + E)^{-1}\}$$

$$= t(P + E)^{-1}t(P - E)$$

$$= (E + tP)^{-1}tP^{t}P(E - P)$$

$$= \{tP(P + E)\}^{-1}tP(E - P)$$

$$= (P + E)^{-1}tP^{-1}tP(E - P)$$

$$= (P + E)^{-1}(E - P)$$

$$= -(P + E)^{-1}\{(P + E) - 2E\}$$

$$= -(P + E)^{-1}\{(P + E) + 2E(P + E)^{-1}\}$$

$$= -(P + E)(P + E)^{-1} + 2E(P + E)^{-1}$$

$$= (-(P + E) + 2E)(P + E)^{-1}$$

$$= -(P - E)(P + E)^{-1} = -A$$

となり、これが証明すべきことであった。

p70-73:11-(□)

証明

計算すると,

$$E - A = E - (P - E)(P + E)^{-1}$$

$$= (P + E)(P + E)^{-1} - (P - E)(P + E)^{-1}$$

$$= \{(P + E) - (P - E)\}(P + E)^{-1}$$

$$= 2(P + E)^{-1}$$

と変形でき、いま (P+E) が正則だから、 $2(P+E)^{-1}$ も正則であり、

$$(E-A)^{-1} = \frac{1}{2}(P+E)$$

である.

p70-73:11-(八)

証明

まず,

$$E + A = (P + E)(P + E)^{-1} + (P - E)(P + E)^{-1}$$
$$= \{(P + E) + (P - E)\}(P + E)^{-1}$$
$$= 2P(P + E)^{-1}$$

であるから、これを用いると

$$(E+A)(E-A)^{-1} = 2P(P+E)^{-1}\frac{1}{2}(P+E) = P$$

となり、これが証明すべきことであった。

p70-73:12

証明

以下の3つの命題が同値であることを示す.

- (1) A は正規行列である. すなわち $A^*A = AA^*$ である.
- (2) 任意の $x \in \mathbb{C}^n$ について, $||Ax|| = ||A^*x||$ が成立する.
- (3) 任意の $x, y \in \mathbb{C}^n$ について, $(Ax, Ay) = (A^*x, A^*y)$ が成立する.
- (1) \Longrightarrow (2) $x \in \mathbb{C}^n$ を任意にとる。このとき

$$\|Ax\|^2 = (Ax, Ax)$$

= (x, A^*Ax)
= (x, AA^*x) (∵ 正規行列の定義)
= $(A^*x, A^*x) = \|A^*x\|^2$

であるから、 $||Ax|| = ||A^*x||$ が成立する.

(2) \Longrightarrow (3) $x,y \in \mathbb{C}^n$ を任意にとる。このとき

$$||A(x + y)||^{2} = (A(x + y), A(x + y))$$

$$= ||Ax||^{2} + (Ax, Ay) + (Ay, Ax) + ||Ay||^{2}$$

$$= ||Ax||^{2} + (Ax, Ay) + \overline{(Ax, Ay)} + ||Ay||^{2}$$

であり、同様に計算すると

$$\left\|A^*(\boldsymbol{x}+\boldsymbol{y})\right\|^2 = \left\|A^*\boldsymbol{x}\right\|^2 + (A^*\boldsymbol{x},A^*\boldsymbol{y}) + \overline{(A^*\boldsymbol{x},A^*\boldsymbol{y})} + \left\|A^*\boldsymbol{y}\right\|^2$$

を得る. $||A(x+y)|| = ||A^*(x+y)||$, $||Ax|| = ||A^*x||$, $||Ay|| = ||A^*y||$ を仮定したので,

$$(A\boldsymbol{x},A\boldsymbol{y}) + \overline{(A\boldsymbol{x},A\boldsymbol{y})} = (A^*\boldsymbol{x},A^*\boldsymbol{y}) + \overline{(A^*\boldsymbol{x},A^*\boldsymbol{y})}$$

となり、これは $\operatorname{Re}(Ax, Ay) = \operatorname{Re}(A^*x, A^*y)$ であることを表す。

また、 $m{x}$ を $im{x}$ におきかえることで、 $\operatorname{Im}(Am{x},Am{y})=\operatorname{Im}(A^*m{x},A^*m{y})$ も示される.ゆえにこのとき

$$(A\boldsymbol{x}, A\boldsymbol{y}) = (A^*\boldsymbol{x}, A^*\boldsymbol{y}).$$

(3) \Longrightarrow (1) 任意の $x,y \in \mathbb{C}^n$ に対して,

$$(\boldsymbol{x}, (A^*A - AA^*)\boldsymbol{y}) = 0$$

である. いま y をいったん固定すると, x は任意なので, $x = (A^*A - AA^*)y$ とすることができ,

$$\|(A^*A - AA^*)\boldsymbol{y}\|^2 = 0,$$

$$\therefore (A^*A - AA^*)\boldsymbol{y} = \mathbf{0}.$$

y は任意だから、 $A^*A = AA^*$ となり、A は正規行列である.

以上の議論により証明された.

p70-73:13

p70-73:13-(イ)

解答

まず,

$$\begin{aligned} [[X,Y],Z] &= [XY-YX,Z] \\ &= (XY-YX)Z - Z(XY-YX) \\ &= XYZ-YXZ - ZXY + ZYX. \end{aligned}$$

同様に計算すると,

$$[[Y, Z], X] = YZX - ZYX - XYZ + XZY,$$

$$[[Z, X], Y] = ZXY - XZY - YZX + YXZ.$$

よって,

$$[[X,Y],Z] + [[Y,Z],X] + [[Z,X],Y] = O$$

である.

p70-73:13-(□)

証明

X, Y は交代行列だから,

$$X = -^t X, \quad Y = -^t Y.$$

これを用いると,

$$[X,Y] = XY - YX$$

$$= (-^{t}X)(-^{t}Y) - (-^{t}Y)(-^{t}X)$$

$$= ^{t}(YX) - ^{t}(XY)$$

$$= -^{t}(XY - YX)$$

$$= -^{t}[X,Y]$$

となる. よってこのとき [X,Y] は交代行列である.

p70-73:13-(ハ)

証明

以下では

$$Y = \begin{pmatrix} 0 & -z' & y' \\ z' & 0 & -x' \\ -y' & x' & 0 \end{pmatrix}, \quad \boldsymbol{y} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

とおく.

であり、なおかつ

$$\boldsymbol{x} + \boldsymbol{y} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x + x' \\ y + y' \\ z + z' \end{pmatrix}$$

であるから、たしかに X + Y と x + y は対応する.

 $[cX \ge cx$ について]

$$cX = c \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix} = \begin{pmatrix} 0 & -cz & cy \\ cz & 0 & -cx \\ -cy & cx & 0 \end{pmatrix}$$

であり、なおかつ

$$c\boldsymbol{x} = c \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} cx \\ cy \\ cz \end{pmatrix}$$

であるから、たしかに cX と cx は対応する.

 $\llbracket [X,Y]$ と $oldsymbol{x} imesoldsymbol{y}$ についてbrace

$$[X,Y] = \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix} \begin{pmatrix} 0 & -z' & y' \\ z' & 0 & -x' \\ -y' & x' & 0 \end{pmatrix} - \begin{pmatrix} 0 & -z' & y' \\ z' & 0 & -x' \\ -y' & x' & 0 \end{pmatrix} \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -z'x + x'z & y'x - x'y \\ z'x - x'z & 0 & -y'z + z'y \\ -y'x + x'y & z'y - y'z & 0 \end{pmatrix}$$

であり、なおかつ

$$\boldsymbol{x} \times \boldsymbol{y} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} yz' - zy' \\ zx' - xz' \\ xy' - yx' \end{pmatrix}$$

であるから、たしかに [X,Y] と $x \times y$ は対応する.

[Xy と $x \times y$ について] $\begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -n & x & 0 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} -zy' + yz' \\ zx' - xz' \\ -yx' + xy' \end{pmatrix}$

であり, なおかつ

$$\boldsymbol{x} \times \boldsymbol{y} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \times \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} yz' - zy' \\ zx' - xz' \\ xy' - yx' \end{pmatrix}$$

であるから、たしかに Xy と $x \times y$ は対応する.

p70-73:13-(=)

証明

ハ) で証明したことから、[X,Y] には $x \times y$ が対応する.

また、イ) で証明したことより、 [[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y]=O であり、この左辺には $(x\times y)\times z+(y\times z)\times x+(z\times x)\times y$ が対応し、右辺には 0 が対応する。

以上の考察により

$$(x \times y) \times z + (y \times z) \times x + (z \times x) \times y = 0$$

であることが示された.

p70-73:14

証明

二つに分けて証明する,

イ) **一 口**)

A が正則であると仮定すると、 A^{-1} が存在し、

$$\boldsymbol{x} = A^{-1}(A\boldsymbol{x})$$

と変形できるから、Ax が非負ベクトルであれば、x も非負ベクトルである。

ロ) ⇒ イ)

まず、Ax=0 であると仮定する。このとき、A(-x)=0 であるから、A(-x) も非負ベクトルであり、条件から x、-x は非負ベクトルである。したがって x=0 となり、A は正則である。また、非負ベクトル x を任意にとると、

$$\boldsymbol{x} = A(A^{-1}\boldsymbol{x})$$

も非負ベクトルであり、条件から $A^{-1}x$ も非負ベクトルである。ここで、 A^{-1} が非負行列でないと仮定すると、ある単位ベクトル e_j について、 $A^{-1}e_j$ が非負ベクトルでないことになり、x が非負ベクトルであることに反する。これより A^{-1} は非負行列である。

以上の議論により証明された.

p70-73:15

p70-73:15-(イ)

証明

まず、 $A=(a_{ij})$ 、 $f={}^t(f_1,f_2,\ldots,f_j)={}^t(1,1,\ldots,1)$ とおくと、Af の第i 行の成分は

$$\sum_{j=1}^{n} a_{ij} f_j = \sum_{j=1}^{n} a_{ij}$$
$$= 1$$

であるから、f の定義とあわせて、

$$A\mathbf{f} = \mathbf{f}$$

が成り立つ.

p70-73:15-(□)

証明

 $C = AB = (c_{ij})$ とすると、C の (i,k) 成分は

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$$

である. これにより,

$$\sum_{k=1}^{n} c_{ik} = \sum_{k=1}^{n} \left(\sum_{j=1}^{n} a_{ij} b_{jk} \right)$$
$$= \sum_{j=1}^{n} a_{ij} \sum_{k=1}^{n} b_{jk}$$
$$= \sum_{j=1}^{n} a_{ij} \cdot 1$$
$$= 1$$

であるから、C すなわち AB は確率行列である.

p70-73:15-(ハ)

証明

 $Am{x}=lpham{x}$ において, $m{x}$ の成分で絶対値が最大のものを x_p とする. このとき, $Am{x}=lpham{x}$ の第 p 行成分の絶対値を考えると,

$$|\alpha||x_p| \leq \sum_{j=1}^n a_{pj}|x_j|$$

$$\leq \sum_{j=1}^n a_{pj}|x_p|$$

$$= |x_p|$$

であるから,

$$|\alpha||x_p| \le |x_p|$$

を得るので,

$$|\alpha| \leq 1$$

となり、これが証明すべきことであった.

第3章

p77:問1

3 文字の置換

解答

3 文字の置換は 3!=6 個ある。それを互換の数によって分類する。

0 つ 1 個のみ. 偶置換かつ恒等置換.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}.$$

1つ3個. 奇置換.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

2つ2個. 偶置換.

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

4 文字の置換

解答

4 文字の置換は 4! = 24 通りある。それを互換の数によって分類する。

0 つ 1 個. 偶置換(恒等置換).

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}.$$

1 つ 6 個. 奇置換.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}.$$

2つ11個. 偶置換.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}.$$

3 つ 6 個. 奇置換

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 1 & 3
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 1 & 4 & 2
\end{pmatrix}, \\
\begin{pmatrix}
1 & 2 & 3 & 4 \\
3 & 4 & 2 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 1 & 2 & 3
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{pmatrix}.$$

p77:問2

証明

 S_n の偶置換全体の集合を A_n , 偶置換全体の集合を B_n とする。置換は必ず奇置換か偶置換のいずれかであるから,

$$S_n = A_n \cup B_n,$$
$$A_n \cap B_n = \emptyset$$

となる.

ここで,

$$\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

とすると、 τ は奇置換であり、 $\sigma\in A_n$ のとき、 $\tau\sigma\in B_n$ である。 同様に、 $\rho\in B_n$ のとき、 $\tau^{-1}\rho=\tau\rho\in A_n$ である。 これらにより、全単射

$$A_n \ni \sigma \mapsto \tau \sigma \in B_n$$

が存在し、偶置換と奇置換は同数あり、その個数は n!/2 である.

p77:問3

解答

 $m \in \mathbb{N} \$ とする.

(I) n=2m とかけるとき、この置換を互換の積で表すと、

$$(1,2m)(2,2m-1)\cdots(m,m+1)$$

となるため、置換の符号は $(-1)^m$ 、すなわち

$$(-1)^{\frac{n}{2}}$$

となる.

(II) n=2m-1 とかけるとき、この置換を互換の積で表すと、

$$(1,2m-1)(2,2m-2)\cdots(m-1,m+1)$$

となるため、置換の符号は $(-1)^{m-1}$ 、すなわち

$$(-1)^{\frac{n-1}{2}}$$

となる

p79:問

p79:問-(イ)

解答

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ n & n-1 & \cdots & 1 \end{pmatrix}$$

とすると, $m \in \mathbb{N}$ として,

$$\operatorname{sgn} \sigma = \begin{cases} (-1)^{\frac{n}{2}} & (n = 2m \, \text{のとき}) \\ (-1)^{\frac{n-1}{2}} & (n = 2m - 1 \, \text{のとき}) \end{cases}$$

となる. また,

(与式) =
$$\sum_{\sigma \in S_n} \operatorname{sgn} \sigma \cdot a_1 a_2 \cdots a_n$$

だから,

(与式) =
$$\begin{cases} (-1)^{\frac{n}{2}} a_1 a_2 \cdots a_n & (n = 2m \text{ のとき}) \\ (-1)^{\frac{n-1}{2}} a_1 a_2 \cdots a_n & (n = 2m - 1 \text{ のとき}) \end{cases}$$

である.

p79:問-(口)

解答

計算すると,

(与式) =
$$a^3 + b^3 + c^3 - abc - bca - cab$$

= $a^3 + b^3 + c^3 - 3abc$

となる.

p83:問

証明

$$(n,n)$$
 行列 A , X を

$$A = (a_1, a_2, \dots, a_n), \quad X = (x_1, x_2, \dots, x_n)$$

とする. このとき, AX は定義され,

$$AX = (A\boldsymbol{x}_1, A\boldsymbol{x}_2, \dots, A\boldsymbol{x}_n)$$

と表せる。ここで、 Ax_i を単位ベクトルの線型結合で表すと、

$$Ax_j = A^t(x_{1j}e_1, x_{2j}e_2, \dots, x_{nj}e_n)$$

$$= A(x_{1j}e_1 + x_{2j}e_2 + \dots + x_{nj}e_n)$$

$$= x_{1j}a_1 + x_{2j}a_2 + x_{nj}a_n$$

$$= \sum_{i=1}^n x_{ij}a_i$$

となる。これにより、|AX|は、多重線型性を用いて、

$$|AX| = \left| \sum_{i_1=1}^n x_{i_1 1} \boldsymbol{a}_{i_1}, \sum_{i_2=1}^n x_{i_2 2} \boldsymbol{a}_{i_2}, \dots, \sum_{i_n=1}^n x_{i_n n} \boldsymbol{a}_{i_n} \right|$$

$$= \sum_{i_1=1}^n \sum_{i_2=1}^n \dots \sum_{i_n=1}^n x_{i_1 1} x_{i_2 2} \dots x_{i_n n} |\boldsymbol{a}_{i_1}, \boldsymbol{a}_{i_2}, \dots, \boldsymbol{a}_{i_n}|$$

と変形できる。ここで、

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix}$$

とおくと,

$$|\boldsymbol{a}_{\sigma(1)}, \boldsymbol{a}_{\sigma(2)}, \dots, \boldsymbol{a}_{\sigma(n)}| = \operatorname{sgn} \sigma |A|$$

$$|AX| = \sum_{\sigma \in S_n} x_{\sigma(1)1} x_{\sigma(2)2} \dots x_{\sigma(n)n} \cdot \operatorname{sgn} \sigma |A|$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn} \sigma \cdot x_{\sigma(1)1} x_{\sigma(2)2} \dots x_{\sigma(n)n} |A|$$

$$= |t^{t}X| |A|$$

$$= |A| |X|$$

を得る. これが証明すべきことであった.

p83:問

p83:問-(イ)

解答

多重線型性などを用いて変形すると,

$$(5\vec{\pi}) = -\begin{vmatrix} 2 & -5 & 3 & 10 \\ 1 & 0 & 2 & -3 \\ 5 & 3 & -2 & 2 \\ -3 & -2 & 4 & 2 \end{vmatrix} = -\begin{vmatrix} 0 & -5 & -1 & 16 \\ 1 & 0 & 2 & -3 \\ 0 & 3 & -12 & 17 \\ 0 & -2 & 10 & -7 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 & -3 \\ 0 & -5 & -1 & 16 \\ 0 & 3 & -12 & 17 \\ 0 & -2 & 10 & -7 \end{vmatrix}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} -5 & -1 & 16 \\ 3 & -12 & 17 \\ -2 & 10 & -7 \end{vmatrix} = 539$$

となるので、この行列式の値は539である.

p83:問-(口)

解答

多重線型性などを用いて変形すると,

$$(5\vec{\pi}) = -\begin{vmatrix} 2 & 3 & 5 & -4 \\ 1 & -7 & -8 & 6 \\ 3 & 10 & 6 & 1 \\ 5 & 2 & 4 & 3 \end{vmatrix} = -\begin{vmatrix} 0 & 17 & 21 & -16 \\ 1 & -7 & -8 & 6 \\ 0 & 31 & 30 & -17 \\ 0 & 37 & 44 & -27 \end{vmatrix} = \begin{vmatrix} 1 & -7 & -8 & 6 \\ 0 & 17 & 21 & -16 \\ 0 & 31 & 30 & -17 \\ 0 & 37 & 44 & -27 \end{vmatrix}$$
$$= 1 \cdot (-1)^{1+1} \begin{vmatrix} 17 & 21 & -16 \\ 31 & 30 & -17 \\ 37 & 44 & -27 \end{vmatrix}$$

となる。ここで、第2列に第1列の-1倍を加え、第3列に第1列を加えると、

(与式) =
$$\begin{vmatrix} 17 & 4 & 1 \\ 31 & -1 & 14 \\ 37 & 7 & 10 \end{vmatrix}$$

を得る. ここで, 第1列に第3列の-2倍を加えると,

(与式) =
$$\begin{vmatrix} 15 & 4 & 1 \\ 3 & -1 & 14 \\ 17 & 7 & 10 \end{vmatrix} = -750$$

となるため、この行列式の値は -750 である.

第3章・章末問題

p90-91:1

p90-91:1-(イ)

解答

 $k \in \{2,3,\ldots,n\}$ として,第1列に第k列の x^k 倍を加えると,

$$\begin{vmatrix} 0 & -1 & 0 & \cdots & 0 & 0 \\ 0 & x & -1 & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & -1 \\ a_n + a_{n-1}x + \cdots + a_1x^{n-1} + a_0x^n & a_{n-1} & a_{n-2} & \cdots & a_1 & a_0 \end{vmatrix}$$

第1列で余因子展開すると,

(与式) =
$$(-1)^{n+2}(a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n)$$
 $\begin{vmatrix} -1 & 0 & \dots & 0 \\ x & -1 & \dots & 0 \\ 0 & x & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & x & -1 \end{vmatrix}$ = $(-1)^{n+2}(a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n) \cdot (-1)^{n-2} \begin{vmatrix} -1 & 0 \\ x & -1 \end{vmatrix}$ (*) = $(-1)^{n+2}(a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n) \cdot (-1)^{n-2}$ = $(-1)^{2n}(a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n)$ = $a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n$

となる。 ただし (*) では同様の余因子展開を繰り返した。 以上の計算により、

(与式) =
$$a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n$$
.

p90−91:1-(□)

解答

与式の第2列から第n列までを第1列に足すと、

$$\begin{vmatrix} x + \sum_{k=1}^{n} a_k & a_1 & a_2 & \cdots & a_n \\ x + \sum_{k=1}^{n} a_k & x & a_2 & \cdots & a_n \\ x + \sum_{k=1}^{n} a_k & a_2 & x & \cdots & a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x + \sum_{k=1}^{n} a_k & a_n & a_{n-1} & \cdots & x \end{vmatrix}$$

である。第2行から第n行のそれぞれから第1行を引くと、

$$\begin{vmatrix} x + \sum_{k=1}^{n} a_k & a_1 & a_2 & \cdots & a_n \\ 0 & x - a_1 & 0 & \cdots & 0 \\ 0 & a_2 - a_1 & x - a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_n - a_1 & a_{n-1} - a_2 & \cdots & x - a_n \end{vmatrix}$$

である。第1列で余因子展開すると、

$$(x + \sum_{k=1}^{n} a_k) \begin{vmatrix} x - a_1 & 0 & \cdots & 0 \\ a_2 - a_1 & x - a_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_n - a_1 & a_{n-1} - a_2 & \cdots & x - a_n \end{vmatrix}$$

$$= (x + \sum_{k=1}^{n} a_k)(x - a_1)(x - a_2) \cdots (x - a_n)$$

$$= (x + \sum_{k=1}^{n} a_k) \prod_{k=1}^{n} (x - a_k).$$

p90-91:1-(ハ)

解答

この形の $n \times n$ 行列を A_n とすると,

$$A_{n+2} = \begin{vmatrix} 1+x^2 & x & 0 & \cdots & 0 \\ x & 1+x^2 & x & \cdots & 0 \\ 0 & x & 1+x^2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1+x^2 \end{vmatrix}$$

$$= (1+x^2) \begin{vmatrix} 1+x^2 & x & \cdots & 0 \\ x & 1+x^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1+x^2 \end{vmatrix} - x \begin{vmatrix} x & 0 & \cdots & 0 \\ x & 1+x^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1+x^2 \end{vmatrix}$$

$$= (1+x^2)A_{n+1} - x^2A_n$$

となる.

よって,

$$A_{n+2} - A_{n+1} = x^2 (A_{n+1} - A_n) \quad (n \ge 2).$$

これと
$$A_1 = 1 + x^2$$
, $A_2 = 1 + x^2 + x^4$ により, $n \ge 2$ のとき

$$A_{n+1} - A_n = x^2 (A_n - A_{n-1})$$

$$= x^4 (A_{n-1} - A_{n-2})$$

$$= \dots = x^{2(n-1)} (A_2 - A_1)$$

$$= x^{2(n-1)} ((1 + x^2 + x^4) - (1 + x^2))$$

$$= x^{2(n+1)}$$

であるから, $n \ge 2$ のとき,

$$A_n = A_1 + \sum_{k=1}^{n-1} x^{2k+2}$$

$$= 1 + x^2 + \frac{x^4 (1 - x^{2(n-1)})}{1 - x^2}$$

$$= 1 + x^2 + \frac{x^4 (1 - x^2)(1 + x^2 + \dots + x^{2(n-2)})}{1 - x^2}$$

$$= 1 + x^2 + x^4 + x^6 + \dots + x^{2n}$$

となる。この A_n を用いると、 $A_1=1+x^2$ 、 $A_2=1+x^2+x^4$ であるから、与えられた行列式の値は、 $n\times n$ 行列の場合

$$1 + x^2 + x^4 + x^6 + \dots + x^{2n}$$

である.

p90-91:1-(=)

解签

第1列で余因子展開すると

$$\begin{split} (\mbox{5}\mbox{$\vec{\Xi}$}) &= -a^2 \begin{vmatrix} a^2 & b^2 & 1 \\ c^2 & 0 & 1 \\ 1 & 1 & 0 \end{vmatrix} + b^2 \begin{vmatrix} a^2 & b^2 & 1 \\ 0 & c^2 & 1 \\ 1 & 1 & 0 \end{vmatrix} - \begin{vmatrix} a^2 & b^2 & 1 \\ 0 & c^2 & 1 \\ c^2 & 0 & 1 \end{vmatrix} \\ &= -a^2(b^2 + c^2 - a^2) + b^2(b^2 - c^2 - a^2) - (a^2c^2 + b^2c^2 - c^4) \\ &= a^4 + b^4 + c^4 - 2a^2b^2 - 2b^2c^2 - 2c^2a^2. \end{split}$$

p90-91:2

p90-91:2-(イ)

証明

余因子展開を用いると,

(与式) =
$$-a\begin{vmatrix} a & b & c \\ -d & 0 & f \\ -e & -f & 0 \end{vmatrix} + b\begin{vmatrix} a & b & c \\ 0 & d & e \\ -e & -f & 0 \end{vmatrix} - c\begin{vmatrix} a & b & c \\ 0 & d & e \\ -d & 0 & f \end{vmatrix}$$

$$= -a(-cdf + bfe - af^2) + b(be^2 - cde - adf) - c(-adf + bde - cd^2)$$

$$= af(cd - be + af) - be(-be + cd + af) + cf(af - be - cd)$$

$$= (af - be + cd)^2.$$

となり、これが証明すべきことであった.

p90−91:2-(□)

証明

A を n 次行列とする。 $^tA = -A$ であるから、

$$\left| {}^{t}A \right| = (-1)^{n} |A|.$$

ここで、n は奇数であるから、

$$|^t A| = -|A|.$$

また、行列式の転置に関する不変性により、 $|^tA|=|A|$ なので、

$$|A| = -|A|,$$
$$\therefore |A| = 0$$

となり、これが証明すべきことであった.

p90-91:3

p90-91:3-(イ)

証明

与えられた行列式に対して多重線型性を用いると,

(与式) =
$$\begin{vmatrix} A+B & A+B \\ B & A \end{vmatrix}$$

$$= \begin{vmatrix} A+B & O \\ B & A-B \end{vmatrix}$$

$$= |A+B| \cdot |A-B|$$

となり、これが証明すべきことであった.

p90-91:3-(□)

解答

与えられた行列式に対して多重線型性を用いると、

(与式) =
$$\begin{vmatrix} A+iB & iA-B \\ B & A \end{vmatrix}$$
$$= \begin{vmatrix} A+iB & O \\ B & A-iB \end{vmatrix}$$
$$= \det(A+iB) \cdot \det(A-iB)$$

となり、いまA, B は実行列なので、

$$\det(A+iB) \cdot \det(A-iB) = \det(A+iB) \cdot \overline{\det(A+iB)}$$
$$= |\det(A+iB)|^2$$

である.

p90-91:4

証明

 $\alpha^n=1$ をみたす $\alpha\in\mathbb{C}$ をひとつ固定する.さて,与えられた行列式の第 j 行を α^{j-1} 倍して第 1 列に足す操作を行うと,この行列式は

$$\begin{vmatrix} \sum_{i=0}^{n-1} \alpha^{i} x_{i} & x_{1} & x_{2} & \cdots & x_{n-1} \\ \alpha \sum_{i=0}^{n-1} \alpha^{i} x_{i} & x_{0} & x_{1} & \cdots & x_{n-2} \\ \alpha^{2} \sum_{i=0}^{n-1} \alpha^{i} x_{i} & x_{n-1} & x_{0} & \cdots & x_{n-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha^{n-1} \sum_{i=0}^{n-1} \alpha^{i} x_{i} & x_{n-2} & x_{n-3} & \cdots & x_{0} \end{vmatrix}$$

と変形できる。よって、この行列式は

$$\sum_{i=0}^{n-1} \alpha^i x_i = x_0 + \alpha x_1 + \alpha^2 x_2 + \dots + \alpha^{n-1} x_{n-1}$$

を因数にもつ。 すべての α に関してこのことがいえるから,因数定理により,この行列式は

$$\prod_{\alpha^{n}=1} (x_0 + \alpha x_1 + \alpha^2 x_2 + \dots + \alpha^{n-1} x_{n-1})$$

を因数にもつ。これはn次式であり、なおかつ x_0 の係数は1であることより、結果として

$$\begin{vmatrix} x_0 & x_1 & x_2 & \cdots & x_{n-1} \\ x_{n-1} & x_0 & x_1 & \cdots & x_{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_1 & x_2 & x_3 & \cdots & x_0 \end{vmatrix} = \prod_{\alpha^n = 1} (x_0 + \alpha x_1 + \alpha^2 x_2 + \cdots + \alpha^{n-1} x_{n-1})$$

である。これが証明すべきことであった。

p90-91:5

解答

前問において、n=4、 $x_1=i$, $x_2=1$, $x_3=-i$ とした場合を考えればよいので、 $\alpha=\pm 1, \pm i$ により、

(与式) =
$$\prod_{\alpha^4=1} (x + \alpha i + \alpha^2 - \alpha^3 i)$$

= $(x+i+1-i)(x-i+1+i)(x-1-1-1)(x+1-1+1)$
= $(x+1)^3(x-3)$

となる.

p90-91:6

証明

 $i \in \{1, 2, ..., n\}$ のもとで、n 個の点を $(x_i, y_i) \in \mathbb{R}^2$ とする。このとき、

$$\begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^{n-1} = y_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 + \dots + a_n x_2^{n-1} = y_2 \\ \vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^{n-1} = y_3 \end{cases}$$

である, これを行列の形に表すと,

$$\begin{pmatrix} 1 & x_1 & {x_1}^2 & \cdots & {x_1}^{n-1} \\ 1 & x_2 & {x_2}^2 & \cdots & {x_2}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & {x_n}^2 & \cdots & {x_n}^{n-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

となる.

ここで,

$$A := \begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}$$

とおくと, $\left| {}^tA \right|$ はヴァンデルモンドの行列式である.

行列式の値は, 行列の転置に対して不変なので,

$$|A| = \prod_{i < j} (x_j - x_i)$$

となり、条件によりこの値は0でない。ゆえに先の連立方程式はただ一つの解をもつ。以上の考察によって、これらn個の点を通る直線がただ一つ存在することが示された。

p90-91:7

解答

与えられた行列式の係数行列式を A, A の第 j 列を $^t(1,0,0,0)$ で置き換えた行列を A_j とする。また,

$$T = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}, \quad S = \begin{pmatrix} c & -d \\ d & c \end{pmatrix}$$

とする. このとき,

$$\begin{vmatrix} T & -T \\ S & S \end{vmatrix} = \begin{vmatrix} 2T & -T \\ O & S \end{vmatrix}$$
$$= |2T||S|$$
$$= 4(a^2 + b^2)(c^2 + d^2).$$

クラメールの公式により

$$\begin{cases} x = |A_1|/|A|, \\ y = |A_2|/|A|, \\ z = |A_3|/|A|, \\ u = |A_4|/|A|. \end{cases}$$

さて,

$$|A_1| = \begin{vmatrix} 1 & -b & -a & b \\ 0 & a & -b & -a \\ 0 & -d & c & d \\ 0 & c & d & c \end{vmatrix}$$
$$= 1 \cdot \begin{vmatrix} a & -b & -a \\ -d & c & d \\ c & d & c \end{vmatrix}$$
$$= 2a(c^2 + d^2).$$

よって,

$$x = \frac{|A_1|}{|A|} = \frac{2a(c^2 + d^2)}{4(a^2 + b^2)(c^2 + d^2)} = \frac{a}{2(a^2 + b^2)}.$$

同様にしてy,z,uを求めると

$$x = \frac{a}{2(a^2 + b^2)}, \quad y = -\frac{b}{2(a^2 + b^2)}, \quad z = -\frac{a}{2(a^2 + a^2)}, \quad u = \frac{b}{2(a^2 + b^2)}.$$

p90-91:8

解答

与えられた行列式は,

$$\begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2 \\ a_3 x + b_3 y = c_3 \end{cases}$$

の拡大係数行列の行列式を表す、基本変形を施すと、この行列式は

$$\begin{pmatrix} 1 & 0 & g_1 \\ 0 & 1 & g_2 \\ 0 & 0 & g_3 \end{pmatrix}, \tag{3}$$

$$\begin{pmatrix} 1 & t & h_1 \\ 0 & 0 & h_2 \\ 0 & 0 & h_3 \end{pmatrix} \tag{4}$$

の場合に変形できる.

- (I) (3) の場合、行列式が 0 となる条件は $g_3=0$ である、このとき、上の連立方程式の解 (x,y) は存在し一意に定まる。これは 3 直線が 1 点で交わることを表す。
- (II) (4) の場合、行列式は常に 0 であり、このとき、3 直線はすべて平行であるか一致するかである。

以上の考察により、与えられた行列式が 0 であるのは

- (i) 3 直線が 1 点で交わる
- (ii) 3 直線が平行である
- (iii) 3 直線が一致する

のいずれかの場合である.

p90-91:9

証明

 $3 \triangle P_1$, P_2 , P_3 を通る平面の方程式を ax + by + cz + d = 0 とおく. このとき,

$$\begin{cases} ax + by + cz + d = 0 \\ ax_1 + by_1 + cz_1 + d = 0 \\ ax_2 + by_2 + cz_2 + d = 0 \\ ax_3 + by_3 + cz_3 + d = 0 \end{cases}$$

が成立する. すなわちこれは

$$\begin{pmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \mathbf{0}$$

をみたす。これをa, b, c, d についての連立方程式とみたとき、与条件により自明でない解があり、

$$\begin{vmatrix} x & y & z & 1 \\ x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \end{vmatrix} = 0$$

が成立する. これが証明すべきことであった.

p90-91:10

証明

必要性・十分性をそれぞれ証明する。

(1) A が正則かつ A^{-1} が整数行列であると仮定し、 $\det A=\pm 1$ であることを示す。 A は整数行列であり、その行列式は、各要素の和と積でかけているから $\det A\in\mathbb{Z}$ である。同様にして $\det(A^{-1})\in\mathbb{Z}$ である。逆行列の行列式は、

$$\det(A^{-1}) = \frac{1}{\det A}$$

であり、つまり $\det A$, $1/\det A \in \mathbb{Z}$ である. これを満たす整数は ± 1 だけである.

(2) $\det A = \pm 1$ であることを仮定し、A が正則かつ A^{-1} が整数行列であることを示す。 $\det A \neq 0$ より A の正則性がわかる。 また、A の余因子行列を \tilde{A} とすると、余因子は A の各要素の和と積によって表現される。 つまり、余因子は整数であるから \tilde{A} は整数行列である。 また

$$A^{-1} = \frac{1}{\det A}\tilde{A}$$

となる. $\det A = \pm 1$ であり、 余因子は整数であるから、 A^{-1} は整数行列である.

以上の議論により証明された.

p90-91:11

p90-91:11-(イ)

証明

 ${}^tA_\sigma$ は $(j,\sigma(j))$ 成分が 1 でそれ以外が 0 である行列である.いま $A=(a_1,a_2,\ldots,a_n)$ とすると,

$${}^{t}A_{\sigma}A_{\sigma} = \begin{pmatrix} (\boldsymbol{a}_{1}, \boldsymbol{a}_{1}) & (\boldsymbol{a}_{1}, \boldsymbol{a}_{2}) & \cdots & (\boldsymbol{a}_{1}, \boldsymbol{a}_{n}) \\ (\boldsymbol{a}_{2}, \boldsymbol{a}_{1}) & (\boldsymbol{a}_{2}, \boldsymbol{a}_{2}) & \cdots & (\boldsymbol{a}_{2}, \boldsymbol{a}_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ (\boldsymbol{a}_{n}, \boldsymbol{a}_{1}) & (\boldsymbol{a}_{n}, \boldsymbol{a}_{2}) & \cdots & (\boldsymbol{a}_{n}, \boldsymbol{a}_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$= E$$

となり、A は直交行列である.

p90-91:11-(□)

証明

置換 σ , τ に関して

$$a_{ij} = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise} \end{cases}, \quad b_{ij} = \begin{cases} 1 & \text{if } i = \tau(j) \\ 0 & \text{otherwise} \end{cases}$$

と定義する. このとき,

$$(A_{\sigma}A_{\tau})_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}.$$

 b_{jk} が 1 になるのは $j = \tau(k)$ のときなので,

$$(A_{\sigma}A_{\tau})_{ik} = a_{i,\tau(k)}.$$

さらに、 $a_{i,\tau(k)}$ が 1 になるのは $i = \sigma(\tau(k))$ のときなので、

$$(A_{\sigma}A_{\tau})_{ik} = \begin{cases} 1 & \text{if } i = \sigma\tau(k) \\ 0 & \text{otherwise} \end{cases}.$$

これは $A_{\sigma\tau}$ の定義そのものなので,

$$A_{\sigma}A_{\tau}=A_{\sigma\tau}.$$

p90-91:11-(八)

証明

$$\tau = \sigma^{-1} \, \, \exists \, \, \exists \, \, \zeta \, \, \xi$$

$$\begin{split} A_{\sigma} &= \sum_{\tau \in S_n} \operatorname{sgn}(\tau) a_{1\tau(1)} a_{2\tau(2)} \cdots a_{n\tau(n)} \\ &= \sum_{\tau \in S_n} \operatorname{sgn}(\tau) a_{\tau^{-1}(1)1} a_{\tau^{-1}(2)2} \cdots a_{\tau^{-1}(n)n} \\ &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma^{-1}) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n} \\ &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{\sigma(1)1} a_{\sigma(2)2} \cdots a_{\sigma(n)n} \\ &= \operatorname{sgn}(\sigma). \end{split}$$

これにより

$$\operatorname{sgn}(\sigma) = \pm 1 \iff A_{\sigma} = \pm 1.$$

第4章

p93:問

証明

 $|A \cup B|$ について、 $|A \cap B|$ は $A \in B$ の共通部分の元の個数を考えているので、

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$\therefore |A| + |B| = |A \cup B| + |A \cap B|$$

である。これが証明すべきことであった。

p94:問

解答

3つのことを証明する.

反射律について 明らかに、A に基本変形を施して A 自身にすることができる。 対称律について P を (m,m) 型の基本行列、Q を (n,n) 型の基本行列として、

$$A = PBQ$$

とかくと、P, Q は正則なので、 P^{-1} , Q^{-1} が存在し、

$$B = P^{-1}AQ^{-1}$$

とかける. よって、対称律が成り立つことが示された.

推移律について P_1 , P_2 を (m,m) 型の基本行列, Q_1 , Q_2 を (n,n) 型の基本行列として,

$$A = P_1 B Q_1, \quad B = P_2 C Q_2$$

とかく. このとき, P_1 , Q_1 は正則だから, P_1^{-1} , Q_1^{-1} が存在し,

$$B = P_1^{-1} A Q_1^{-1}$$

となる. これにより,

$$P_1^{-1}AQ_1^{-1} = P_2CQ_2$$

となり、同様の議論によって

$$A = P_1 P_2 C Q_2 Q_1$$

となり、推移律も成り立つことが示された.

さて、行列 A に基本変形を施すと、A の階数を r として $F_{m,n}(r)$ が得られることと、r は 0 から $\min\{m,n\}$ までの整数値を取り得るので、商集合の元の個数は

$$\min\{m,n\}+1$$

となる.

p106-107:問1

解答

求める $E \to F$ の取り替え行列を $P = (p_{ij})$ とし,

$$m{e}_1 = egin{pmatrix} 1 \ 0 \ 1 \end{pmatrix}, \quad m{e}_2 = egin{pmatrix} 2 \ 1 \ 0 \end{pmatrix}, \quad m{e}_3 = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}, \ m{f}_1 = egin{pmatrix} 3 \ -1 \ 4 \end{pmatrix}, \quad m{f}_2 = egin{pmatrix} 4 \ 1 \ 8 \end{pmatrix}, \quad m{f}_3 = egin{pmatrix} 3 \ -2 \ 6 \end{pmatrix}$$

とする. ここで,

$$f_i = \sum_{j=1}^3 p_{ji} e_j = p_{1i} e_1 + p_{2i} e_2 + p_{3i} e_3$$

であり、i=1,2,3 の場合についての連立方程式を作ると

$$f_1 = p_{11}\mathbf{e}_1 + p_{21}\mathbf{e}_2 + p_{31}\mathbf{e}_3$$

 $f_2 = p_{12}\mathbf{e}_1 + p_{22}\mathbf{e}_2 + p_{32}\mathbf{e}_3$
 $f_3 = p_{13}\mathbf{e}_1 + p_{23}\mathbf{e}_2 + p_{33}\mathbf{e}_3$

これを解くことにより

$$\begin{split} p_{11} &= \frac{9}{2}, \quad p_{21} = -\frac{1}{2}, \quad p_{31} = -\frac{1}{2}, \\ p_{12} &= 5, \quad p_{22} = -2, \quad p_{32} = 3, \\ p_{13} &= \frac{13}{2}, \quad p_{23} = -\frac{3}{2}, \quad p_{33} = -\frac{1}{2} \end{split}$$

なので,

$$P = \begin{pmatrix} 9/2 & 5 & 13/2 \\ -1/2 & -2 & -3/2 \\ -1/2 & 3 & -1/2 \end{pmatrix}$$

である。また

$$(\boldsymbol{f}_1, \boldsymbol{f}_2, \dots, \boldsymbol{f}_n) = (\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n)P$$

であるから

$$\begin{pmatrix} 3 & 4 & 3 \\ -1 & 1 & -2 \\ 4 & 8 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} P$$

$$P = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 3 & 4 & 3 \\ -1 & 1 & -2 \\ 4 & 8 & 6 \end{pmatrix}$$

から求めることもできる.

p106-107:問2

解答

まず,

$$f_i = \sum_{j=1}^2 p_{ji}e_j = p_{1i}e_1 + p_{2i}e_2$$

である、これにより

$$f_1 = p_{11}e_1 + p_{21}e_2,$$

 $f_2 = p_{12}e_1 + p_{22}e_2$

であるから,

$$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = p_{11} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + p_{21} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix},$$

$$\begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = p_{12} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + p_{22} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

となり、これにより

$$p_{11} = -1$$
, $p_{21} = 1$, $p_{12} = -1$, $p_{22} = 2$

であるから、基底の取り替え $E \to F$ の行列は

$$P = \begin{pmatrix} -1 & -1 \\ 1 & 2 \end{pmatrix}$$

である.

p107-108:問1

p107-108:問1-(イ)

解答

この集合を W_1 とおくと、 W_1 は \mathbb{C}^n の部分空間をなす。

$$x = 0 \in W_1$$

であるから, $W_1 \neq \emptyset$ である.

また,

$$v = {}^{t}(v_1, v_2, \dots, v_n), \quad w = {}^{t}(w_1, w_2, \dots, w_n)$$

とおくと,

$$\mathbf{v} + \mathbf{w} = {}^{t}(v_1 + w_1, v_2 + w_2, \dots, v_n + w_n)$$

となり、これに加えて

$$(v_1 + w_1) + (v_2 + w_2) + \dots + (v_n + w_n) = (v_1 + v_2 + \dots + v_n) + (w_1 + w_2 + \dots + w_n) = 0 + 0 = 0$$

となるから、 $v + w \in W_1$ である。 さらに、 $a \in \mathbb{C}$ をとると、

$$a\mathbf{v} = {}^{t}(av_1, av_2, \dots, av_n)$$

であり,

$$av_1 + av_2 + \dots + av_n = a(v_1 + v_2 + \dots + v_n) = a \cdot 0 = 0$$

であるから、このとき $av \in W_1$ である.

以上により、 W_1 は \mathbb{C}^n の線型部分空間をなす.

p107-108:問1-(口)

解答

この集合を W_2 とおくと、 W_2 は \mathbb{C}^n の部分空間をなす.

$$x = 0 \in W_2$$

であるから, $W_2 \neq \emptyset$ である.

また,

$$\mathbf{v} = {}^{t}(v_{p+1}, v_{p+2}, \dots, v_n), \quad \mathbf{w} = {}^{t}(w_{p+1}, w_{p+2}, \dots, w_n)$$

とおくと,

$$\mathbf{v} + \mathbf{w} = {}^{t}(v_{p+1} + w_{p+1}, v_{p+2} + w_{p+2}, \dots, v_n + w_n)$$

であり,

$$(v_{p+1} + w_{p+1}) + (v_{p+2} + w_{p+2}) + \dots + (v_n + w_n)$$

$$= (v_{p+1} + v_{p+2} + \dots + v_n) + (w_{p+1} + w_{p+2} + \dots + w_n)$$

$$= 0 + 0$$

$$= 0$$

となるため、このとき $v + w \in W_2$ である.

また,

$$a\mathbf{v} = {}^{t}(av_{p+1}, av_{p+2}, \dots, av_n)$$

であり,

$$av_{p+1} + av_{p+2} + \dots + av_n = a(v_{p+1} + v_{p+2} + \dots + v_n) = a \cdot 0 = 0$$

であるため、このとき $a\mathbf{v} \in W_2$ である.

以上により、 W_2 は \mathbb{C}^n の線型部分空間をなす.

p107-108:問1-(八)

解答

これは部分空間をなさない.

$$v = {}^{t}(1, 0, 0, \dots, 0), \quad w = {}^{t}(0, 1, 0, \dots, 0)$$

とすると

$$v + w = {}^{t}(1, 1, 0, \dots, 0)$$

となり、与えられた条件式に当てはめると

$$1^2 + 1^2 + 0^2 + \dots + 0^2 = 2 \neq 1$$

であるから、この集合は \mathbb{C}^n の部分空間でない.

p107-108:問1-(二)

解答

この集合を W_3 とおくと、 W_3 は \mathbb{C}^n の部分空間をなす。 $x=\mathbf{0}$ とすると、

$$(\boldsymbol{a}, \boldsymbol{x}) = 0$$

であるため、 $W_3 \neq \emptyset$ である.

さて、v,w が条件を満たすとすると、内積の定義から

$$(a, v + w) = (a, v) + (a, w) = 0$$

である。また、 $c \in \mathbb{C}$ とすると、

$$(\boldsymbol{a}, c\boldsymbol{v}) = c(\boldsymbol{a}, \boldsymbol{v}) = 0$$

である.

以上により、 W_3 は \mathbb{C}^n の線型部分空間をなす.

p107-108:問2

p107-108:問2-(イ)

解答

この集合を W_1 とおくと, W_1 は \mathbb{K}^n の線型部分空間とならない.

たとえば

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

とおくと、 $A, B \in W_1$ であるが、

$$A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

となり、A+B は正則行列である.よって W_1 は \mathbb{K}^n の線型部分空間とならない.

p107-108:問2-(口)

解答

この集合を W_2 とおくと、 W_2 は \mathbb{K}^n の線型部分空間となる.

X=O としたとき,AO=OB が成り立つのは明らかなので, $W_2 \neq \varnothing$ である.また, $X,Y\in W_2$ とすると,

$$A(X+Y) = (X+Y)B$$

が成立し、さらに $a \in \mathbb{K}$ とすると、

$$A(aX) = (aX)B$$

が成立する.

以上により、 W_2 は \mathbb{K}^n の線型部分空間である.

p107-108:問2-(ハ)

解答

この集合を W_3 とおくと、これは \mathbb{K}^n の線型部分空間とならない。 たとえば

$$A = \begin{pmatrix} -1 & 1 \\ -1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

とおくと,

$$A^2 = O, \quad B^2 = O$$

となり, $A, B \in W_3$ であるが,

$$A + B = \begin{pmatrix} -1 & 2 \\ -1 & 1 \end{pmatrix}$$

となり、これは冪零行列とならない。 よって W_3 は \mathbb{K}^n の線型部分空間とならない。

p107-108:問2-(二)

解答

この集合を W_4 とおくと、これは \mathbb{K}^n の線型部分空間とならない。 たとえば、

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

とおき、 $1/2 \in \mathbb{K}$ をとると、

$$\frac{1}{2}A = \begin{pmatrix} 1/2 & 0\\ 0 & 1/2 \end{pmatrix}$$

となり、これは W_4 の元ではない。よって W_4 は \mathbb{K}^n の線型部分空間とならない。

p122:問

解答

まず.

$$a_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad a_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad a_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

とおく.正規直交基底のひとつを e_1 とすると, $\|a_1\| = \sqrt{2}$ により,

$$oldsymbol{e}_1 = rac{1}{\|oldsymbol{a}_1\|}oldsymbol{a}_1 = rac{1}{\sqrt{2}} egin{pmatrix} 1 \ -1 \ 0 \end{pmatrix}$$

となる. また,

$$a_2' = a_2 - (a_2, e_1)e_1$$

とすると,

$$\boldsymbol{a}_2' = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} - \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$$

である. これを用いると,

$$m{e}_2 = rac{1}{\|m{a}_2'\|}m{a}_2' = rac{1}{\sqrt{6}/2}\cdotrac{1}{2}egin{pmatrix} 1 \ 1 \ -2 \end{pmatrix} = rac{1}{\sqrt{6}}egin{pmatrix} 1 \ 1 \ -2 \end{pmatrix}$$

となる. また,

$$a_3' = a_3 - (a_3, e_1)e_1 - (a_3, e_2)e_2$$

とすると,

$$\boldsymbol{a}_3' = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} - \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} - \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \cdot \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} \right\} \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$

となり.

$$oldsymbol{e}_3 = rac{1}{\|oldsymbol{a}_3'\|}oldsymbol{a}_3' = rac{1}{\sqrt{3}}egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix}$$

となる.

以上の考察により、求める正規直交基底は

$$\langle \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1\\0 \end{pmatrix}, \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\1\\-2 \end{pmatrix}, \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \rangle$$

である.

p124:問-1)

証明

任意に $x\in W$ をとる. W^\perp は「W の任意のベクトルと直交するベクトル全体の集合」であるから, $x\in W$ に対しては,任意の $y\in W^\perp$ において (x,y)=0 が成り立つ.

ゆえに,任意の ${m x}\in W$ は W^\perp の元全てと直交することになり,したがって ${m x}\in (W^\perp)^\perp$ が従う.このことから

$$W\subset (W^\perp)^\perp$$

が得られる. また, 定理 [4.7] から

$$\dim W + \dim W^{\perp} = \dim(W + W^{\perp}) + \dim(W \cap W^{\perp}),$$

$$\dim W + \dim W^{\perp} = n.$$

ここで定理 [6.4] から \mathbb{R}^n の計量空間 V は $W\dot{+}W^\perp$ と表されること,[4.8] から,この直和の共通部分は $\{o\}$ のみであることを用いた.

第4章・章末問題

p127-130:1

解答

 $s, t, u, v \in \mathbb{R} \succeq \mathsf{U}$.

$$s\boldsymbol{a}_1 + t\boldsymbol{a}_2 = u\boldsymbol{a}_3 + v\boldsymbol{a}_4$$

とおく、これにより、

$$\begin{pmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & -1 & 9 \\ 0 & 3 & 5 & 1 \\ 4 & -3 & 2 & 4 \end{pmatrix} \begin{pmatrix} s \\ t \\ u \\ v \end{pmatrix} = \mathbf{o},$$

$$\begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} s \\ t \\ u \\ v \end{pmatrix} = \mathbf{o},$$

$$\begin{pmatrix} s \\ t \\ u \\ v \end{pmatrix} = a \begin{pmatrix} -3 \\ -2 \\ 1 \\ 1 \end{pmatrix}. \quad (a は任意の定数)$$

とかけるので、 $W_1 \cap W_2$ の次元は1であり、その基底は

$$s\mathbf{a}_1 + t\mathbf{a}_2 = -a \begin{pmatrix} 1\\8\\6\\6 \end{pmatrix}$$

により,

$$\langle \begin{pmatrix} 1 \\ 8 \\ 6 \\ 6 \end{pmatrix} \rangle$$

である.

p127-130:2

解答

 W_1 に関して, $x_3 = s$, $x_4 = t$ とおくと,

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = s \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -9 \\ 3 \\ 0 \\ 1 \end{pmatrix}$$

とかけるため、 $\dim W_1 = 2$ であり、その基底は

$$\left\langle \begin{pmatrix} 1\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} -9\\3\\0\\1 \end{pmatrix} \right\rangle$$

である。 W_2 に関しても同様にして、 $\dim W_2 = 2$ であり、その基底は

$$\left\langle \begin{pmatrix} 0\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\3\\0\\1 \end{pmatrix} \right\rangle$$

である.したがって W_1+W_2 は

$$\begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -9 \\ 3 \\ 0 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 3 \\ 0 \\ 1 \end{pmatrix}$$

によって生成される.

ここで,

$$x \begin{pmatrix} 1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} -9 \\ 3 \\ 0 \\ 1 \end{pmatrix} + z \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix} + w \begin{pmatrix} -1 \\ 3 \\ 0 \\ 1 \end{pmatrix} = \mathbf{o}$$

とすると,

$$\begin{pmatrix} 1 & -9 & 0 & -1 \\ -1 & 3 & -1 & 3 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \boldsymbol{o}$$

となり、これに基本変形を施すと、

$$\begin{pmatrix} 1 & 0 & 0 & 8 \\ 0 & 1 & 0 & -8 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ z \\ y \\ w \end{pmatrix} = \boldsymbol{o}$$

となる。 したがって、 W_1+W_2 の次元は3であり、その基底は

$$\left\langle \begin{pmatrix} 1\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} -9\\3\\0\\1 \end{pmatrix}, \begin{pmatrix} 0\\-1\\1\\0 \end{pmatrix} \right\rangle$$

である.

p127-130:5

解答

A, B の定める線型写像をそれぞれ T_A , T_B とする。 $m{x}\in {
m Im}(T_A+T_B)$ を任意にとると,ある $m{y}\in \mathbb{R}^n$ が存在して,

$$m{x} = (T_A + T_B)(m{y})$$

= $T_A(m{y}) + T_B(m{y})$ (∵ T_A と T_B は線型写像).

よって.

$$\operatorname{Im}(T_A + T_B) \subset \operatorname{Im} T_A + \operatorname{Im} T_B \tag{*}$$

これにより,

$$\operatorname{rank}(T_A + T_B) = \dim(\operatorname{Im}(T_A + T_B))$$
 (∵ 階数の定義)
 $\leqq \dim(\operatorname{Im}(T_A) + \operatorname{Im}(T_B))$ (∵ (*))
 $\leqq \dim(\operatorname{Im}(T_A)) + \dim(\operatorname{Im}(T_B))$ (∵ 定理 [4.7])
 $= \operatorname{rank}(T_A) + \operatorname{rank}(T_B).$ (∵ 階数の定義)

これを書き換えると

$$\operatorname{rank}(A+B) \leqq \operatorname{rank}(A) + \operatorname{rank}(B).$$

これが証明すべきことであった.

p127-130:6

p127-130:6-(イ)

証明

BA は n 次の正方行列である。ここで、

$$rank(BA) \le min\{rank B, rank A\}$$

= $m < n$

であるから、rank(BA) < n である。よって BA は正則行列でない。

p127-130:6-(口)

証明

AB が正則であるとする。 $m=\operatorname{rank} AB \leqq \min\{\operatorname{rank} A,\operatorname{rank} B\}$ であるから、 $m \leqq \operatorname{rank} A$ かつ $m \leqq \operatorname{rank} B$ である。 一方 $\operatorname{rank} A \leqq m$, $\operatorname{rank} B \leqq m$ でもあるから $m=\operatorname{rank} A=\operatorname{rank} B$ である。

行列 X の定める線形写像を T_X と書くことにする $(T_A: \mathbb{C}^n \to \mathbb{C}^m, T_B: \mathbb{C}^m \to \mathbb{C}^n$ である).

$$\operatorname{rank} AB = \dim(T_{AB}(\mathbb{C}^m))$$
$$= \dim((T_A \circ T_B)(\mathbb{C}^m)).$$

 $W=T_B(\mathbb{C}^m)$ とおく. T_A の定義域を W に制限した写像 $T_A \upharpoonright W:W \to \mathbb{C}^n$ について次元定理を適用すると,

$$\dim W = \dim((T_A \upharpoonright W)(W)) + \dim((T_A \upharpoonright W)^{-1}(\{o_m\})).$$

ここで,

$$(T_A \upharpoonright W)^{-1}(\{o_m\}) = \{x \in W : (T_A \upharpoonright W)(x) = o_m\}$$

$$= \{x \in W : T_A(x) = o_m\}$$

$$= \{x \in \mathbb{C}^n : T_A(x) = o_m\} \cap W$$

$$= T_A^{-1}(\{o_m\}) \cap W.$$

であるから,

$$m = \dim((T_A \circ T_B)(\mathbb{C}^m)) + \dim(T_A^{-1}(\{0_m\}) \cap W).$$

となる. よって,

$$\operatorname{rank} AB = m - \dim(T_A^{-1}(\{o_m\}) \cap W).$$

だから $\dim(T_A^{-1}(\{o_m\}) \cap W) = 0$ である. 以上より,

- (I) $m = \operatorname{rank} A = \operatorname{rank} B$.
- (II) $\dim(T_A^{-1}(\{o_m\}) \cap T_B(\mathbb{C}^m)) = 0.$

は必要条件である.一方,(I) かつ (II) を仮定すると, $\operatorname{rank} AB = m$ であるから AB は正則でもある. よって (I) かつ (II) が必要十分条件である.

p127-130:7

証明

 $M_n(\mathbb{K})$ の基底 $\langle e_{11},e_{12},\ldots,e_{1n},e_{21},\ldots,e_{nn} \rangle$ を、 e_{ij} の (i,j) 成分が 1 で、その他の成分は 0 であるものとして定義する。

 $X=(x_{ji})\in M_n(\mathbb{K})$ を取り、 $A=(a_{ij})$ を $a_{ij}=Te_{ji}$ であるものとすれば、

$$\operatorname{tr}(AX) = \operatorname{tr} \begin{pmatrix} Te_{11} & Te_{12} & \dots & Te_{1n} \\ Te_{21} & Te_{22} & \dots & Te_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ Te_{n1} & Te_{n2} & \dots & Te_{nn} \end{pmatrix} \begin{pmatrix} x_{11} & x_{21} & \dots & x_{n1} \\ x_{12} & x_{22} & \dots & x_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} & x_{2n} & \dots & x_{nn} \end{pmatrix}$$

$$= \operatorname{tr} \begin{pmatrix} \left(x_{11}Te_{11} + x_{12}Te_{12} + \dots + x_{1n}Te_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} & x_{2n} & \dots & x_{nn} \end{pmatrix} \right)$$

$$= \sum_{1 \leq i, j \leq n} x_{ij}Te_{i,j}$$

$$= T \begin{pmatrix} \sum_{1 \leq i, j \leq n} x_{ij}e_{ij} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1n} & x_{2n} & \dots & x_{nn} \end{pmatrix}$$

$$= T(X)$$

となり、上記のようにAをとればよい。

p127-130:8

解答

例7をふまえ,

$$(f,g) = \int_{-\pi}^{\pi} f(x)g(x) dx$$

とする. このとき,

$$\begin{aligned} \|f - g\|^2 &= \int_{-\pi}^{\pi} |f(x) - g(x)|^2 dx \\ &= \int_{-\pi}^{\pi} (f(x) - g(x))^2 dx \\ &= \int_{-\pi}^{\pi} |f(x)|^2 dx - \int_{-\pi}^{\pi} 2f(x)g(x) dx + \int_{-\pi}^{\pi} |g(x)|^2 dx \end{aligned}$$

である. さらに、第2項と第3項に関連して、

$$\int_{-\pi}^{\pi} f(x)g(x) dx = a_0 \int_{-\pi}^{\pi} f(x) dx + \sum_{k=1}^{n} \left(a_k \int_{-\pi}^{\pi} f(x) \cos kx dx + b_k \int_{-\pi}^{\pi} f(x) \sin kx dx \right),$$

$$\int_{-\pi}^{\pi} |g(x)|^2 dx = 2\pi a_0^2 + \pi \sum_{k=1}^{n} (a_k^2 + b_k^2).$$

これらを用いると,

$$\int_{-\pi}^{\pi} |f(x) - g(x)|^2 dx = 2\pi a_0^2 + \pi \sum_{k=1}^{n} (a_k^2 + b_k^2)$$

$$-2 \left(a_0 \int_{-\pi}^{\pi} f(x) dx + \sum_{k=1}^{n} \left(a_k \int_{-\pi}^{\pi} f(x) \cos kx dx + b_k \int_{-\pi}^{\pi} f(x) \sin kx dx \right) \right)$$

$$+ \int_{-\pi}^{\pi} |f(x)|^2 dx$$

$$= 2\pi \left(a_0 - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx \right)^2 + \pi \sum_{k=1}^{n} \left\{ \left(a_k - \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx \right)^2 + \left(b_k - \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx \right)^2 \right\} + R.$$

ただし,

$$R = \int_{-\pi}^{\pi} f(x)^2 dx - 2\pi \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx\right)^2 - \pi \sum_{k=1}^{n} \left(\left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx\right)^2 + \left(\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx\right)^2 \right).$$

ï したがって、 $\left\Vert f-g\right\Vert ^{2}$ を最小にする g(x) は、

$$g(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, dx + \sum_{k=1}^{n} \left(\frac{1}{\pi} \left(\int_{-\pi}^{\pi} f(x) \cos kx \, dx \right) \cos kx + \frac{1}{\pi} \left(\int_{-\pi}^{\pi} f(x) \sin kx \, dx \right) \sin kx \right).$$

p127-130:12

p127-130:12-(イ)

証明

ペクトル空間 V に対して、V の線型汎函数全体の集合を V^* とする.

V の基底 $E=\langle {m e}_1,{m e}_2,\ldots,{m e}_n
angle$ に対して、 V^* の元 ${m f}_i$ を ${m f}_i({m e}_j)=\delta_{ij}$ とする。 $E^*=\langle {m f}_1,{m f}_2,\ldots,{m f}_n
angle$ は V^* の基底である。

任意の $f_i \in V^*$ が線型結合で表されることを示す.

$$(c_1 \mathbf{f}_1 + \dots + c_n \mathbf{f}_n)(\mathbf{x}) = \mathbf{0}$$

とする.ここで $x=e_i$ $(1 \le i \le n)$ を代入すると, $f_i(e_i)=\delta_{ij}$ となり, $c_i=0$ と併せると

$$c_1 = c_2 = \dots = c_n = 0$$

となり線型独立である。

次に、 V^* の元が f_1, f_2, \ldots, f_n の線型結合で表されることを示す。

 V^* の元 f が V の元 $x = x_1 e_1 + \dots + x_n e_n$ に対して $f(e_j) = a_i$ $(1 \le i \le n)$ とすると、

$$f(x) = \sum_{i=1}^{n} x_i f(e_i)$$
 (∵ $f \mathcal{O}$ 線型性)
$$= \sum_{i=1}^{n} a_i x_i$$

$$= \sum_{i=1}^{n} a_i f_i (x_1 e_1 + x_2 e_2 + \dots + x_n e_n) \quad (∵ f_i(e_j) = \delta_{i,j})$$

$$= \left(\sum_{i=1}^{n} a_i f_i\right) (x)$$

と f_1, f_2, \ldots, f_n の線型結合として表される. 以上により, E^* は V^* の基底である.

p127-130 : 12-(□)

証明

$$W^*$$
 の元 $m{f} = c_1 m{f}_1' + \dots + c_n m{f}_n'$ をとる。 V の元 $m{x} = \sum_{k=1}^n x_k m{e}_k$ に対して

$$(T^*f')(x) = f \circ T(x)$$

$$= \sum_{k=1}^{m} c_k f'_k \circ T \left(\sum_{l=1}^{n} x_l e_l\right) \qquad (\because f' \text{ の線型性})$$

$$= \sum_{k=1}^{m} c_k f'_k \left(\sum_{l=1}^{n} x_l T(e_l)\right) \qquad (\because T \text{ の線型性})$$

$$= \sum_{k=1}^{m} c_k \sum_{l=1}^{n} x_l f'_k (a_{1l} e'_1 + a_{2l} e'_2 + \dots + a_{nl} e'_n)$$

$$= \sum_{k=1}^{m} c_k \sum_{l=1}^{n} x_l a_{kl} \qquad (\because \text{ 双対基底の定義と } f'_k \text{ の線型性})$$

$$= \sum_{k=1}^{m} c_k \sum_{l=1}^{n} c_{kl} f_l (x_1 e_1 + \dots + x_n e_n) \qquad (\because \text{ 双対基底の定義と } f'_l \text{ の線型性})$$

$$= \left(\sum_{l=1}^{n} \left(\sum_{k=1}^{m} c_k a_{kl}\right) f_l\right) (x)$$

より、基底 E^* 、 F^* に関する T^* の表現行列 $B=(b_{ij})$ は

$$\begin{pmatrix} \sum_{k=1}^{m} c_k a_{k1} \\ \vdots \\ \sum_{k=1}^{m} c_k a_{kn} \end{pmatrix} = \begin{pmatrix} l_{11} & l_{12} & \dots & l_{1m} \\ \vdots & & & \vdots \\ l_{n1} & l_{n2} & \dots & l_{nm} \end{pmatrix} \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

より、 $b_{ij}=a_{ji}$ となり、 $B={}^tA$ である。

p127-130:9

証明

この写像を φ とする.まず, φ が線型写像であることを示す. $oldsymbol{x},oldsymbol{y}\in V$ と $c\in\mathbb{R}$ に対して, $\forall f\in V^*$ で

$$\begin{split} (\varphi(\boldsymbol{x}+\boldsymbol{y}))(\boldsymbol{f}) &= \boldsymbol{f}(\boldsymbol{x}+\boldsymbol{y}) \\ &= \boldsymbol{f}(\boldsymbol{x}) + \boldsymbol{f}(\boldsymbol{y}) \\ &= (\varphi(\boldsymbol{x}))(\boldsymbol{f}) + (\varphi(\boldsymbol{y}))(\boldsymbol{f}) \\ &= (\varphi(\boldsymbol{x}) + \varphi(\boldsymbol{y}))(\boldsymbol{f}) \end{split}$$

$$\begin{aligned} (\varphi(c\boldsymbol{x}))(\boldsymbol{f}) &= \boldsymbol{f}(c\boldsymbol{x}) \\ &= c\boldsymbol{f}(\boldsymbol{x}) \\ &= c(\varphi(\boldsymbol{x}))(\boldsymbol{f}) \\ &= (c\varphi(\boldsymbol{x}))(\boldsymbol{f}) \end{aligned}$$

であるから、 φ は線型写像である.

次に、V の基底 $E=\langle e_1,e_2,\ldots,e_n\rangle$ に対して、 $e_i'=\varphi(e_i)$ (ただし $1\leq i\leq n$) としたとき、 $(E^*)^*=\langle e_1',e_2',\ldots,e_n'\rangle$ が $(V^*)^*$ の基底であることを示す。

 $E^* = \langle \mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n \rangle$ を E の双対基底とする。 $c_1 e_1' + c_2 e_2' + \dots + c_n e_n' = \mathbf{0}$ となるとき, φ は線型写像で $\varphi(c_1 e_1 + c_2 e_2 + \dots + c_n e_n) = c_1 e_1' + c_2 e_2' + \dots + c_n e_n'$ であるので,

$$(c_1 e'_1 + c_2 e'_2 + \dots + c_n e'_n)(\mathbf{f}_i) = \mathbf{f}_i (c_1 e_1 + c_2 e_2 + \dots + c_n e_n)$$

$$= \sum_{k=1}^n c_k \mathbf{f}_i(e_k)$$

$$= \sum_{k=1}^n c_k \delta_{ik}$$

$$= c_i = 0$$

となり、 $c_1=c_2=\cdots=c_n=0$ であるから、 e_1',e_2',\ldots,e_n' は線型独立であり、 $\dim(V^*)^*=n$ より $(E^*)^*$ は基底である。 とくに φ の階数は n となる。 適当な基底での φ の表現行列 A に対して p.117 の (3) により、r(A)=n となり、これは φ が全単射対応を与えることを示す。

p127-130:10

p127-130:10-(イ)

証明

(1), (2) で双線型性, (3) で対称性, (4) で正値性を証明する.

(1)

$$(f, g_1 + g_2)_p = \int_a^b p(x) f(x) \{g_1(x) + g_2(x)\} dx$$

$$= \int_a^b p(x) f(x) g_1(x) dx + \int_a^b p(x) f(x) g_2(x) dx$$

$$= (f, g_1)_p + (f, g_2)_p.$$

また,

$$(f_1 + f_2, g)_p = \int_a^b p(x) \{f_1(x) + f_2(x)\} g(x) dx$$

$$= \int_a^b p(x) f_1(x) g(x) dx + \int_a^b p(x) f_2(x) g(x) dx$$

$$= (f_1, g)_p + (f_2, g)_p.$$

(2) c は任意の実数とする.

$$(cf,g)_p = \int_a^b p(x) \{cf(x)\} g(x) dx$$
$$= c \int_a^b p(x) f(x) g(x) dx$$
$$= c(f,g)_p.$$

また,

$$(f,cg)_p = \int_a^b p(x)f(x)\{cg(x)\} dx$$
$$= c \int_a^b p(x)f(x)g(x) dx$$
$$= c(f,g)_p.$$

(3)
$$(f,g)_p = \int_a^b p(x)f(x)g(x) dx$$

$$= \int_a^b p(x)g(x)f(x) dx$$

$$= (g,f)_p.$$

(4)
$$(f,f)_p = \int_a^b p(x)f(x)f(x) dx$$

$$= \int_a^b p(x)\{f(x)\}^2 dx$$

$$> 0.$$
 (∵ $p(x)$ は常に正)

等号が成立するのは f(x) = 0 のとき.

(1) から (4) の考察により、 $(f,g)_p$ は内積の定義をみたす。

第5章

p139:問

前半

証明

T をエルミート変換とする。また、 $\lambda \in \mathbb{K}$ を T の固有値, $x \neq o$ を T の固有値 λ に対する固有ベクトルとする。

このとき,

$$\lambda(x,x) = (\lambda x,x)$$
 (内積の定義)
 $= (Tx,x)$ (固有値の定義)
 $= (x,T^*x)$ (p139 式 (1))
 $= (x,Tx)$ (T はエルミート変換)
 $= (x,\lambda x)$ (固有値の定義)
 $= \overline{\lambda}(x,x)$ (内積の定義)

後半

証明

T をユニタリ変換とする。 また, $\lambda \in \mathbb{K}$ を T の固有値, $x \neq o$ を T の固有値 λ に対する固有ベクトルとする.

このとき,

$$\lambda \overline{\lambda}(x,x) = (\lambda x, \lambda x)$$
 (内積の定義)
$$= (Tx,Tx) \quad (固有値の定義)$$

$$= (x,x) \qquad (T はユニタリ変換)$$

 $\forall x \neq 0 \ \text{sp} \ |\lambda| = 1 \ \text{cos}.$

附録Ⅲ

p228:問

p228:問-(イ)

以下により、求める最大公約数は $x^2 + x - 1$ である.

$$\begin{array}{r}
x^{2} + 2x - 1 \\
x^{2} + x - 1
\end{array}$$

$$\begin{array}{r}
x^{4} + 3x^{3} - 3x + 1 \\
\underline{x^{4} + x^{3} - x^{2}} \\
2x^{3} + x^{2} - 3x \\
\underline{2x^{3} + 2x^{2} - 2x} \\
-x^{2} - x + 1 \\
\underline{-x^{2} - x + 1} \\
0
\end{array}$$

p228:問-(口)

以下により、これらは互いに素である.

$$\begin{array}{r}
x + 1 \\
x^2 - 2x - 3 \overline{\smash{\big)}\ x^3 - x^2 - 4x + 4} \\
\underline{x^3 - 2x^2 - 3x} \\
x^2 - x + 4 \\
\underline{x^2 - 2x - 3} \\
x + 7
\end{array}$$

p239:問1

p239:問1-(イ)

解答

計算すると以下のようになる:

$$x_1^2 + x_2^2 + \dots + x_n^2 = \left(\sum_{i=1}^n x_i\right)^2 - 2\sum_{1 \le i < j \le n} x_j x_k$$
$$= (x_1 + x_2 + \dots + x_n)^2 - 2(x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n) = s_1^2 - 2s_2.$$

p239:問1-(口)

計算すると以下のようになる:

$$x_1^3 + x_2^3 + \dots + x_n^3 = \left(\sum_{i=1}^n x_i\right)^3 - 3\left(\sum_{i=1}^n x_i\right) \left(\sum_{1 \le i < j \le n} x_i x_j\right) + 3\sum_{1 \le i < j < k \le n} x_i x_j x_k$$

$$= (x_1 + x_2 + \dots + x_n)^3 - 3(x_1 + x_2 + \dots + x_n)(x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n)$$

$$+ 3(x_1 x_2 x_3 + x_1 x_2 x_4 + \dots + x_{n-2} x_{n-1} x_n)$$

$$= s_1^3 - 3s_1 s_2 + 3s_3.$$

p239:問2

p239:問2-(イ)

Lemma 0.0.1

$$(a+b+c)(a^2+b^2+c^2-ab-bc-ca) = a^3+b^3+c^3-3abc$$

解答

まず.

$$(x-y) + (y-z) + (z-x) = 0.$$

これをふまえ、補題においてa = x - y, b = y - z, c = z - xとおくと、

$$0 = (x - y)^3 + (y - z)^3 + (z - x)^3 - 3(x - y)(y - z)(z - x)$$

$$\therefore (x - y)^3 + (y - z)^3 + (z - x)^3 = 3(x - y)(y - z)(z - x).$$

p239:問2-(口)

Lemma 0.0.2

a+b+c=0 のとき,

$$a^{2} + b^{2} + c^{2} = -2(ab + bc + ca).$$

Lemma 0.0.3

a+b+c=0 のとき,

$$a^5 + b^5 + c^5 = -5abc(a^2 + b^2 + c^2).$$

解答

上記の2つの補題により,

$$(x-y)^5 + (y-z)^5 + (z-x)^5 = -5(x-y)(y-z)(z-x)\{(x-y)(y-z) + (y-z)(z-x) + (z-x)(x-y)\}$$

$$= -5(x-y)(y-z)(z-x)\{(xy+xz+yz) - (x^2+y^2+z^2)\}$$

$$= 5(x-y)(y-z)(z-x)\{(x+y+z)^2 - 3(xy+xz+yz)\}.$$

p249:問

p249: 問-(イ)

証明

体 K の単位元について、0=0+0 であるから、

$$a0 = a(0+0) = a0 + a0$$

 $\therefore a0 = a0 + a0$

K は加法について可換群であるから、a0 の逆元 -a0 が K に存在する。これを用いると、

$$a0 + (-a0) = a0 + a0 + (-a0)$$

 $\therefore 0 = a0 + a0 + (-a0)$

ここで,

$$a0 + a0 + (-a0) = a0 + \{a0 + (-a0)\}\$$

= $a0 + 0$
= $a0$

となるから、0 = a0 である。0 = 0a についても同様。

p249:問-(口)

証明

 $a \neq 0$ とする. このとき, a の逆元 $a^{-1} \in K$ が存在し, ab = 0 の両辺に a^{-1} をかけると,

$$a^{-1}(ab) = a^{-1}0$$
$$(a^{-1}a)b = 0$$
$$1b = 0$$
$$\therefore b = 0$$

である. これと $b \neq 0$ を仮定したときの同様の考察により, ab = 0 のとき, a = 0 または b = 0 である.

p255:1

証明

 $a,b,c\in H$ について、G の演算により、a(bc)=(ab)c が成り立ち、このことから結合法則は成立する。また、仮定より $H\neq\varnothing$ なので、 $x\in H$ をひとつとり、a=x、b=x とすると、

$$ab^{-1} = xx^{-1} = e$$

となり、仮定から e は H の元である。よって H は単位元を持つ。

次に, a = e, b = x とすると,

$$ab^{-1} = ex^{-1} = x^{-1}$$

となり、仮定により x^{-1} は H の元である。 よって H の任意の要素は逆元を持つ。

上の考察により、どの要素も逆元を持つので、a=x、 $b=y^{-1}$ とすると、

$$ab^{-1} = x(y^{-1})^{-1} = xy.$$

これは H の元であるから, H は G の演算について閉じている.

以上の考察から,

- *H* は *G* の演算について閉じている
- lacktriangleright H の元は G の演算について結合法則を満たす
- H は単位元 e を持つ
- Hの任意の要素は逆元を持つ

ということがわかり、H は G の部分群である.

Column I

本題にはあまり関係のない余談ですが、群が空集合でないことは群の定義からただちに従います。

参考文献

[1] 齋藤正彦『線型代数入門』,東京大学出版会,1966