24 septembre 2022 MP2I

Devoir Surveillé 1

Bon courage pour votre premier devoir de mathématiques! Je vous rappelle les consignes:

- Écrire lisiblement sur des feuilles grandes et doubles, au stylo ou à l'encre bleu foncé ou noir et souligner ou encadrer ses résultats. On accordera de l'importance à la présentation.
- La calculatrice est interdite.
- Vous avez le droit de sauter des questions et d'admettre les résultats correspondants pour traiter les questions suivantes.
- Les différents exercices sont indépendants et vous pouvez les traiter dans l'ordre que vous désirez. Il est conseillé de parcourir le sujet dans sa globalité avant de commencer.
- La durée de ce devoir est de 2 heures.

Exercice 1. Limite d'une somme. Le but de l'exercice est de déterminer la limite quand n tend vers l'infini de la suite définie par :

$$\forall n \in \mathbb{N}^*, \ u_n = \frac{1}{n^n} \sum_{k=0}^n k^n.$$

- 1) Majoration de la suite. Dans toute la question, on fixe $n \in \mathbb{N}^*$.
 - a) À l'aide d'un changement d'indice, montrer que $u_n = \sum_{i=0}^n \left(1 \frac{j}{n}\right)^n$.
 - b) Démontrer que $\forall x \in \mathbb{R}, 1 + x \leq e^x$.
 - c) En déduire que pour tout $x \ge -1$, $(1+x)^n \le e^{xn}$, puis que $u_n \le \sum_{j=0}^n e^{-j}$.
 - d) Calculer la somme précédente et en déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ est majorée par $\frac{e}{e-1}$.

On admet alors que la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante (on ne demande pas de le vérifier), ce qui implique puisqu'elle est majorée qu'elle converge. Dans toute la suite, on notera $L = \lim_{n\to +\infty} u_n$.

- 2) Minoration de L. Soient $1 \le m < n$ des entiers.
 - a) Justifier que $\sum_{j=0}^{m} \left(1 \frac{j}{n}\right)^n \le u_n$.
 - b) Rappeler la définition de « la fonction f est dérivable en 0 ». En introduisant une fonction f dérivable bien choisie, montrer que $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$.

1

- c) Soit $j \in [0, m]$ fixé.
 - i) Justifier que $1 \frac{j}{n} > 0$ puis que $\left(1 \frac{j}{n}\right)^n = e^{n\ln\left(1 \frac{j}{n}\right)}$.
 - ii) Montrer finalement que $\lim_{n\to +\infty} \left(1-\frac{j}{n}\right)^n = e^{-j}$.
- d) En déduire que $\sum_{i=0}^{m} e^{-j} \leq L$.
- 3) Montrer finalement que $L = \frac{e}{e-1}$.

Exercice 2. Deux équations fonctionnelles. Les deux questions sont indépendantes.

- 1) On veut déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que $\forall x, y \in \mathbb{R}, f(xy) = xf(x) + yf(y)$.
 - a) On suppose f solution.
 - i) En évaluant en des valeurs simples de x et y, montrer que f(0) = 0.
 - ii) En déduire que $\forall x \in \mathbb{R}, f(x) = 0.$
 - b) Réciproquement, montrer que la fonction nulle vérifie bien l'équation proposée. Déterminer alors toutes les fonctions vérifiant l'équation proposée.
- 2) On veut déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que $\forall x, y \in \mathbb{R}, f(x f(y)) = 1 x y$.
 - a) On suppose f solution.
 - i) Montrer qu'il existe $z \in \mathbb{R}$ tel que f(z) = 0.
 - ii) En déduire que $\exists k \in \mathbb{R} / \forall x \in \mathbb{R}, f(x) = -x + k$.
 - b) Déterminer toutes les fonctions vérifiant l'équation proposée.

Exercice 3. Autour de la périodicité. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On rappelle que $(u_n)_{n\in\mathbb{N}}$ est périodique si :

$$\exists T \in \mathbb{N}^* / \forall n \in \mathbb{N}, \ u_{n+T} = u_n.$$

Un tel T est appelé une période de $(u_n)_{n\in\mathbb{N}}$.

1) Montrer que la suite définie par $\forall n \in \mathbb{N}, u_n = (-1)^n$ est périodique.

On donne alors les définitions suivantes :

- $(u_n)_{n\in\mathbb{N}}$ est périodique à partir d'un certain rang si : $\exists N\in\mathbb{N} \ / \ \exists T\in\mathbb{N}^* \ / \ \forall n\geq N, \ u_{n+T}=u_n$.
- $(u_n)_{n\in\mathbb{N}}$ est répétable si : $\forall n\in\mathbb{N}, \exists T\in\mathbb{N}^* / u_{n+T}=u_n$.
- 2) Montrer que si $(u_n)_{n\in\mathbb{N}}$ est une suite périodique, alors elle est périodique à partir d'un certain rang et elle est répétable.
- 3) Donner un exemple de suite périodique à partir d'un certain rang mais non périodique.
- 4) Donner un exemple de suite périodique à partir d'un certain rang mais non répétable.
- 5) On étudie dans cette question la suite $(u_n)_{n\in\mathbb{N}}$ dont les termes sont :

$$\underbrace{1}_{u_0}, \underbrace{1, 2}_{u_1, u_2}, \underbrace{1, 2, 3}_{u_3, u_4, u_5}, \underbrace{1, 2, 3, 4}_{u_6, u_7, u_8, u_9}, \underbrace{1, 2, 3, 4, 5}_{u_{10}, u_{11}, u_{12}, u_{13}, u_{14}}, \dots$$

a) Montrer que $\forall k \in \mathbb{N}, \ u_{\frac{k(k+1)}{2}} = 1.$

On pose pour tout $k \in \mathbb{N}$, $v_k = \frac{k(k+1)}{2}$.

- b) Justifier que $\forall n \in \mathbb{N}, \ \exists k \in \mathbb{N} \ / \ v_k \leq n < v_{k+1}.$
- c) Montrer alors que $(u_n)_{n\in\mathbb{N}}$ est répétable. On justifiera de manière précise en utilisant la définition avec des quantificateurs de la répétabilité.
- d) $(u_n)_{n\in\mathbb{N}}$ est-elle périodique à partir d'un certain rang? On justifiera soigneusement.