MPAMIDR_EL1, MPAM ID Register (EL1)

The MPAMIDR EL1 characteristics are:

Purpose

Indicates the presence and maximum PARTID and PMG values supported in the implementation. It also indicates whether the implementation supports MPAM virtualization.

Configuration

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAMIDR_EL1 are undefined.

Attributes

MPAMIDR EL1 is a 64-bit register.

Field descriptions

63 62		61	60		59	58		!	57	5655545	3 52	51	50	49	48	474645
RES0	HAS_	SDEFLT	HAS_FOR	CE_NS	SP4	HAS_T	IDR	HAS_	ALTSP					RES0		
-				RE	S 0						VPI	MR_	MAX	HAS_HCR	RES0	
31 30		29	28		27	26			25	2423222	L 20	19	18	17	16	151413

MPAMIDR_EL1 indicates the MPAM implementation parameters of the PE.

Bits [63:62]

Reserved, res0.

HAS_SDEFLT, bit [61]

HAS_SDEFLT indicates support for <u>MPAM3_EL3</u>.SDEFLT bit. Defined values are:

HAS_SDEFLT	Meaning
0b0	The SDEFLT bit is not
	implemented in
	MPAM3_EL3.
0b1	The SDEFLT bit is
	implemented in
	MPAM3_EL3.

When <u>MPAM3_EL3</u>.SDEFLT == 1, accesses from the Secure Execution state use the default PARTID, PARTID == 0.

HAS_FORCE_NS, bit [60]

HAS_FORCE_NS indicates support for <u>MPAM3_EL3</u>.FORCE_NS bit. Defined values are:

HAS_FORCE_NS	Meaning
0b0	The FORCE_NS bit is
	not implemented in
	MPAM3_EL3.
0b1	The FORCE NS bit is
	implemented in
	MPAM3_EL3.

When $\underline{MPAM3_EL3}$.FORCE_NS == 1, accesses from the Secure Execution state have MPAM_NS == 1.

SP4, bit [59]

Supports 4 MPAM PARTID spaces.

SP4	Meaning
0b0	MPAM supports 2 PARTID spaces.
0b1	MPAM supports 4 PARTID spaces.

HAS_TIDR, bit [58]

HAS_TIDR indicates support for <u>MPAM2_EL2</u>.TIDR bit. Defined values are:

HAS_TIDR	Meaning
0b0	The TIDR bit is not
	implemented in
	MPAM2_EL2.
0b1	The TIDR bit is
	implemented in
	MPAM2_EL2.

Note

Arm recommends that when the MPAM version is MPAM v0.1 or MPAM v1.1, MPAMIDR_EL1.HAS_TIDR is 1 and that the MPAM2_EL2.TIDR field is implemented.

HAS ALTSP, bit [57]

HAS ALTSP indicates support for alternative PARTID spaces.

HAS_ALTSP	Meaning
0b0	Alternative PARTID
	spaces are not
	implemented.
0b1	Alternative PARTID
	spaces are implemented
	with control bits in
	MPAM3_EL3 and
	MPAM2_EL2.

Bits [56:40]

Reserved, res0.

PMG MAX, bits [39:32]

The largest value of PMG that the implementation can generate. The PMG_I and PMG_D fields of every MPAMn_ELx must implement at least enough bits to represent PMG MAX.

Bits [31:21]

Reserved, res0.

VPMR_MAX, bits [20:18] When MPAMIDR EL1.HAS HCR == 1:

Indicates the maximum register index n for the MPAMVPM<n>_EL2 registers.

Otherwise:

Reserved, RAZ.

HAS HCR, bit [17]

HAS_HCR indicates that the PE implementation supports MPAM virtualization, including MPAMHCR_EL2, MPAMVPMV_EL2, and MPAMVPM<n>_EL2 with n in the range 0 to VPMR_MAX. Must be 0 if EL2 is not implemented in either Security state.

HAS_HCR	Meaning
0b0	MPAM virtualization is not
	supported.
0b1	MPAM virtualization is
	supported.

Bit [16]

Reserved, res0.

PARTID_MAX, bits [15:0]

The largest value of PARTID that the implementation can generate. The PARTID_I and PARTID_D fields of every MPAMn_ELx must implement at least enough bits to represent PARTID MAX.

Accessing MPAMIDR EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMIDR_EL1

op0	op1	CRn	CRm	op2	
0b11	0b000	0b1010	0b0100	0b100	

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && MPAMIDR_EL1.HAS_HCR == '1'
&& MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MPAMIDR_EL1.HAS_TIDR ==
'1' && MPAM2 EL2.TIDR == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        X[t, 64] = MPAMIDR\_EL1;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = MPAMIDR\_EL1;
elsif PSTATE.EL == EL3 then
   X[t, 64] = MPAMIDR\_EL1;
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.