Introduction to Deep Learning

Basics of Artificial Neural Networks

Biological Neural Networks

 Several neurons are connected to one another to form a neural network or a layer of a neural network.

Feed Forward Neural Networks (FFNN)

Neuron with Threshold Logic Activation Function

McCulloch-Pitts Neuron

Linearly Separable Classes

- Regions of two classes are separable by a linear surface (line, plane or hyperplane)
- Perceptron model that uses a single MuCulloch-Pitts neuron can be trained using the perceptron learning algorithm

Decision surface in a 2-dimensional space is a line:

$$w_1 x_1 + w_2 x_2 + w_0 = 0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

Decision surface in a d-dimensional space is a hyperplane:

$$\sum_{i=0}^{d} w_i x_i = \mathbf{w}^t \mathbf{x} = \mathbf{0}$$

Perceptron Learning

 X_2

Perceptron learning rule for weight update:

At Step m, choose a training example $\mathbf{x}(m)$.

$$w(m+1) = w(m) + \eta x(m)$$
, for $w(m)^{t} x(m) \le 0$ and $x(m) \in C_1$

$$w(m+1) = w(m) - \eta x(m)$$
, for $w(m)^{t} x(m) > 0$ and $x(m) \in C_2$

Here η is the learning rate parameter.

Classification of a test pattern x of using the weights w obtained by training the model:

If $\mathbf{w}^t \mathbf{x} > 0$ then \mathbf{x} is assigned to C_1 If $\mathbf{w}^t \mathbf{x} \le 0$ then \mathbf{x} is assigned to C_2

Hard Problems

• Nonlinearly separable classes

Neuron with Continuous Activation Function

Sigmoidal Activation Functions

Logistic function:

Range of output is 0.0 to 1

$$f(a) = \frac{1}{1 + e^{-\beta a}}$$

$$\frac{df(a)}{da} = \beta f(a) (1 - f(a))$$

10

Hyperbolic tangent function:

Range of output is -1.0 to 1.0

$$f(a) = \tanh(\beta a)$$

$$\frac{df(a)}{da} = \beta (1 - f^2(a))$$

Logistic function and Hyperbolic tangent functions can be used in hidden layers and output layer

Softmax Activation Function

Softmax activation function:

- Used in the output layer only
- Used for multi-class pattern classification tasks
- Outputs of softmax neurons are in the range 0.0 to 1.0, and add up to 1.0
- Outputs of softmax neurons can be interpreted as probabilities for classes
- Let K be the number of classes
- Let a_j , j = 1, 2, ..., K, be the activation value for the node of class j.
- Then the output of kth node is given by

$$s_k = \frac{e^a}{K \atop j = e^a}$$

The following can be derived:

$$\frac{\partial s}{\partial a} = s_k (1 - s_k)$$

$$\frac{\partial s}{\partial a} = -s_k s$$

$$j$$

Rectilinear Activation Function

Rectilinear activation function:

- Used in the hidden layers only (mainly in convolutional neural networks)
- Can not be used in the output layer
- Nodes with rectilinear activation function are called as Rectilinear Units (ReLU)
- No saturating region in the activation function

$$f(a) = \max(0, a)$$

$$\frac{df(a)}{da} = 1, \text{ for } a > 0$$

Multilayer Feedforward Neural Network

Architecture:

- Input layer ---- Linear neurons
- One or more hidden layers ---- Nonlinear neurons
- Output layer ---- Linear or nonlinear neurons

Computations in Forward Pass

$$x_{i} \xrightarrow{i} s_{i} = x_{i} \xrightarrow{j} y_{k}$$

$$S_{j}^{h} = f_{j}^{h}(a_{j}^{h})$$

$$a_{j}^{h} = \sum_{i=1}^{d} w_{ij}^{h} s_{i} - \theta_{j}^{h}, \text{ where } s_{i} = x_{i}$$

$$s_{k}^{o} = f_{k}^{o}(a_{k}^{o})$$

$$a_{k}^{g} = \sum_{j=1}^{d} w_{jk}^{h} s_{j}^{h} - \theta_{k}^{o}$$

$$s_{k}^{g} = f_{k}^{o} \left[\sum_{i=1}^{J} w_{jk}^{h} s_{j}^{h} - \theta_{k}^{o} \right]$$

Gradient Descent Method

Backpropagation Learning

- Gradient descent method
- Error backpropagation algorithm
- Forward computation:
 - Innerproduct computation
 - Activation function computation
- Backward operation:
 - Error calculation and propagation
 - Modification of weights
- Given a set of N input-output pairs

$$(\mathbf{x}_{n}, \mathbf{t}_{n}), n=1,2,....N.$$

• Instantaneous error for the *n*th pattern:

$$\tilde{E}_n = \frac{1}{2} \sum_{k=1}^K (t_{nk} - y_k)^2$$
 Sum-of-squared errors

Modes of Learning

- Pattern Mode :
 - Stochastic Gradient Descent Method
 - Weights are updated after the presentation of each example.

$$\Delta w(m) = -\eta \frac{\partial \tilde{E}(m)}{\partial w}$$

- Epoch: Presentation of all the examples once.
- Batch Mode:
 - Weights are updated after the presentation of all the examples once.

$$\Delta w(m) = -\eta \frac{\partial E_{av}(m)}{\partial w}$$
where $E_{av} = \frac{1}{N} \sum_{n=1}^{N} \tilde{E}_n$

Modes of Learning

Mini-Batch Mode:

- The training dataset of N examples is divided into M subsets, with approximately same number of examples in each subset.
- Weights are updated after the presentation of examples in the subset (mini-batch)
- It is empirically shown that the mini-batch mode is more effective than the pattern mode and batch mode.

Backpropagation Learning (contd.)

$$\begin{array}{c|c}
 & x_i \\
\hline
 & i \\
\hline
 & y_j \\
\hline
 & y_{jk} \\
\hline
 &$$

Change in weight at output layer is given by

$$\Delta w_{jk}(m) = -\eta \frac{\partial \tilde{E}(m)}{\partial w_{jk}}$$
 It can be shown that these two are equal
$$\delta_k^o = -\frac{\partial \tilde{E}(m)}{\partial a_k^o} = (t_k - s_k^o) \frac{df_k^o(a_k^o)}{da_k^o}$$
 Activation value

 δ_k^o is called the Local Gradient. It is the negative of the derivative of instantaneous error with respect to activation value of target node of the connection.

Backpropagation Learning (contd.)

$$\begin{array}{c|c}
\hline
 & S_i = X_i \\
\hline
 & V_{ij} \\
\hline
 & V_{jk} \\
\hline
\end{array}$$

$$\begin{array}{c|c}
S_k^h \\
\hline
 & V_{jk} \\
\hline
\end{array}$$

Change in weight at hidden layer is given by

$$\Delta w_{ij}^h(m) = -\eta \frac{\partial \tilde{E}(m)}{\partial w_{ij}^h}$$

$$\Delta w_{ij}^h(m) = \eta \delta_j^h s_i$$

$$\delta_j^h = -\frac{\partial \tilde{E}(m)}{\partial a_j^h} = \left(\sum_{k=1}^K \delta_k^o w_{jk}\right) \frac{df_j^h(a_j^h)}{da_j^h}$$

$$\Delta w_{ij}^h(m) = \eta \delta_j^h s_i = \eta \left(\sum_{k=1}^K \delta_k^o w_{jk}\right) \frac{df_j^h(a_j^h)}{da_j^h} s_i$$

$$\Delta w_{ij}^h(m) = \eta \left(\sum_{k=1}^K (t_k - s_k^o) \frac{df_k^o(a_k^o)}{da_k^o} w_{jk}\right) \frac{df_j^h(a_j^h)}{da_j^h} s_i$$

Practical Considerations

- Stopping Criterion:
 - Threshold on average error
 - Threshold on average gradient
- Number of Weights:
 - Depends on number of input nodes, output nodes, hidden nodes
- Number of Hidden Nodes
 - Cross-validation method
- Data Requirements
- Limitations:
 - Slow convergence
 - Local minima problem

Feedforward Neural Networks: Summary

- Perceptrons, with threshold logic function as activation function, are suitable for pattern classification tasks that involve linearly separable classes.
- Multilayer feedforward neural networks, are suitable for pattern classification tasks that involve nonlinearly separable classes.
 - Complexity of the model to be used for a given task depends on
 - Dimension of the input pattern vector
 - Number of classes
 - Shapes of the decision surfaces to be formed
 - Architecture of the model is empirically determined
 - Large number of training examples are required when the complexity of the model is high
 - Local minima problem
- Multilayer feedforward neural network with one or two hidden layers is now called a shallow network.
- Multilayer feedforward neural network with more than two hidden layers is called a Deep Feedforward Neural Network (DNN).