Квантовые компьютеры

АНТОН КАРПУТКИН

В действительности все не так, как на самом деле (С. Е. Лец)

Содержание

- О классических вычислениях и их пределах
- ▶ Квантовые биты
- Квантовые алгоритмы
- Реализация

WTF?

- Квантовый компьютер устройство, использующее квантовые эффекты, такие как суперпозиция и запутывание для проведения вычислений
- ▶ Квантовый компьютер ≠ параллельный компьютер
- Квантовый компьютер не всегда дает экспоненциальный прирост производительности
- Квантовый компьютер не всегда дает прирост производительности

О классических вычислениях и их пределах

▶ MOSFET-транзисторы

О классических вычислениях и их пределах

- ▶ Intel roadmap
 - ▶ 65 nm 2006
 - ▶ 45 nm 2008
 - ▶ 32 nm 2010
 - ▶ 22 nm 2012
 - ▶ 14 nm 2014
 - ▶ 10 nm 2016-2017
 - ▶ 7 nm 2017-2018
 - ▶ 5 nm 2020-2021
- Что дальше?

Диаметр атома - 0.2 нм

О классических вычислениях и их пределах

- Туннельный эффект:

 - При ограничении частицы в пространстве увеличивается вероятность больших скоростей
 - ▶ Частица перепрыгивает через препятствие
- ▶ Bug or feature?

|1>

|0|

$$\alpha|0\rangle + \beta|1\rangle$$

$$\alpha, \beta \in \mathbb{C}$$

$$|\alpha|^2 + |\beta|^2 = 1$$

|00}

|10>

$$\alpha|00\rangle + \beta|01\rangle + \gamma|10\rangle + \delta|11\rangle,$$

$$|\alpha|^2 + |\beta|^2 + |\gamma|^2 + |\delta|^2 = 1$$

|11>

Квантовое запутывание

Квантовое запутывание

$$\alpha|00\rangle + \beta|11\rangle$$

Квантовые вычисления

- Квантовый алгоритм = унитарное преобразование системы кубитов
 - ightharpoonup n кубитов матрица размера $2^n imes 2^n$
 - lack Унитарная матрица $A=\left(a_{ij}\right)\Rightarrow A^*=\overline{A^T}=\left(\overline{a_{ji}}\right)=A^{-1}$
 - lacktriangle Сохраняет длины векторов: $\sum_i |\alpha_i|^2 = 1 \Rightarrow \sum_i |{\alpha_i}'|^2 = 1$
 - Квантовые вычисления обратимы
 - ▶ X = y превращается в $|xy\rangle \rightarrow |x(x \oplus y)\rangle$
 - ▶ x&y превращается в $|xy0\rangle \rightarrow |xy(0\oplus(x&y))\rangle$
- Для любой вычислимой классическим алгоритмом функции существует соответствующий квантовый алгоритм

Квантовые вычисления

Операция Адамара

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H(\alpha|0\rangle + \beta|1\rangle) = \frac{1}{\sqrt{2}}(\alpha + \beta)|0\rangle + \frac{1}{\sqrt{2}}(\alpha - \beta)|1\rangle$$

$$\blacktriangleright |1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Поиск Грувера

```
int searchSomething(int a[]){
    for(int i = 0; i < a.length; i++){
        if(someFunction(a[i])){
            return i;
        }
    }
    return -1;
}</pre>
```

- Поиск Грувера
 - \blacktriangleright Длина массива $N=2^n$
 - ▶ Только один элемент a[i], удовлетворяющий условию
 - ▼ ТВ данных ~ 10¹² запросов
 - Квантовому алгоритму хватает миллиона запросов

- Поиск Грувера
 - lacktriangledown л основных кубитов и некоторое количество дополнительных для промежуточных вычислений
 - ▶ $|i\rangle$ искомый вектор

 - ightharpoonup e, \mathbf{u} , |i
 angle лежат в одной плоскости
 - ightharpoonup ϕ угол между ${f e}$ и ${f u}$

- \blacktriangleright Начинаем с вектора |00 ... $0\rangle$
- ▶ Операцией Адамара переводим $|00...0\rangle$ в **u**
- $\mathbf{v} := \mathbf{u}$

- Отражение вокруг е
 - Добавим дополнительный кубит |0>

 - ▶ Над последним кубитом применим Z gate: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{cases} |0\rangle \to |0\rangle \\ |1\rangle \to -|1\rangle$
 - ► CHOBO $\sum_{j} a_{j} |j0\rangle \rightarrow \sum_{j} a_{j} |j(0 \oplus f(j))\rangle$
 - lacktriangle В конце получим $\sum_{j \neq i} a_j |j0\rangle a_i |i0
 angle$

- Отражение вокруг и
 - $ightharpoonup \mathbf{u} \rightarrow |0\rangle$
 - ▶ Отразить вокруг $|0\rangle$, используя $g(x) = \begin{cases} g(0) = 0 \\ g(x) = 1, x \neq 0 \end{cases}$
 - \blacktriangleright $|0\rangle \rightarrow \mathbf{u}$

- ▶ Количество итераций?

 - ightharpoonup Каждую итерацию поворачиваем на 2ϕ к цели
 - ▶ Всего $\frac{\pi}{2 \cdot 2\phi} = \frac{\pi}{4} 2^{n/2}$ итераций
 - ightharpoonup Сложность $O(\sqrt{N})$

- ► RSA шифрование
 - ightharpoonup Выберем 2 больших простых числа p и q
 - ightharpoonup N = pq
 - $\phi(N) = (p-1)(q-1)$
 - **Выберем** $1 < e < \phi(N)$, взаимно простое с $\phi(N)$
 - lacktriangle Вычислим d, такое что $de \equiv 1 \pmod{\phi(N)}$
 - ▶ $\{e, N\}$ открытый ключ
 - ▶ $\{d, N\}$ закрытый ключ
- ▶ Атака: разложение N на множители
 - ▶ Классический алгоритм: $\sim O\left(2^{\sqrt[3]{\log N}}\right)$
 - \blacktriangleright Квантовый алгоритм (Шора): $O((\log N)^3)$

- Симуляция различных физических и химических квантовых систем
 - Нужно решить систему уравнений Шредингера для множества частиц
 - $i\hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial \mathbf{r}^2} \Psi(\mathbf{r}, t) + V(\mathbf{r}, t) \Psi(\mathbf{r}, t)$
- Другие алгоритмы
 - http://math.nist.gov/quantum/zoo/

Computers in the future may weigh no more than 1.5 tons. – Popular Mechanics, forecasting the relentless march of science, 1949

I think there is a world market for maybe five computers. – Thomas Watson, chairman of IBM, 1943

- ▶ Основные задачи
 - ▶ Выбор физической системы в которой можно определить состояния $|0\rangle$ и $|1\rangle$
 - ▶ Инициализация
 - Преобразования
 - Измерение
- Декогеренция

- Спин электрона
 - Магнитный момент
 - Унитарные операции повороты внешним магнитным полем.
 - ► Измерение Stern-Gerlach
- Фотоны
- Сверхпроводники
- ▶ Квантовая точка
- **...**

▶ D-Wave

- D-Wave
 - Адиабатический компьютер
 - Реализует алгоритм квантовой нормализации
 - ▶ D-Wave One 128 кубитов
 - ▶ D-Wave Two 512 кубитов
- Квантовые языки программирования
 - QCL C-like
 - Quipper библиотека к Haskell
- ▶ 1QBit 1st quantum software development company

Acknowledgements

▶ Котики – Кристина Вербицкая, Instagram: @tinabitspics

▶ Комплексные числа С

$$z = x + iy = r(\cos \phi + i \sin \phi)$$

$$\cos \phi = 1 - \frac{\phi^2}{2!} + \frac{\phi^4}{4!} - \frac{\phi^6}{6!} + \dots = 1 + \frac{(i\phi)^2}{2!} + \frac{(i\phi)^4}{4!} + \frac{(i\phi)^6}{6!} + \dots$$

$$i \sin \phi = i\phi - \frac{i\phi^3}{3!} + \frac{i\phi^5}{5!} - \frac{i\phi^7}{7!} + \dots = i\phi + \frac{(i\phi)^3}{3!} + \frac{(i\phi)^5}{5!} + \dots$$

$$e^{i\phi} = 1 + i\phi + \frac{(i\phi)^2}{2!} + \frac{(i\phi)^3}{3!} + \frac{(i\phi)^4}{4!} + \cdots$$

$$ightharpoonup z = re^{i\phi}, \, \bar{z} = re^{-i\phi}$$

- Линейная алгебра над С
 - ▶ Вектор $\mathbf{z} = (z_1, ..., z_n) \in \mathbb{C}^n$
 - ightharpoonup Скалярное произведение $\langle \mathbf{u}, \mathbf{v} \rangle = \sum_i u_i \overline{v_i}$
 - ▶ Норма вектора ("длина") $\|\mathbf{z}\| = \sqrt{\langle \mathbf{z}, \mathbf{z} \rangle}$

 - lacktriangle Матрица $A=\left(a_{ij}
 ight)\in\mathbb{C}_{m imes n}$
 - ▶ Транспонирование матрицы $A^T = \left(a_{ji}\right) \in \mathbb{C}_{n \times m}$
 - ightharpoonup Сопряженная матрица $\overline{A}=\left(\overline{a_{ij}}\right)$
 - lacktriangle Сопряженная транспонированная матрица $A^* = \left(\overline{a_{ji}}\right)$

- Линейная алгебра над С
 - ▶ Произведение матриц C = AB, $\left(c_{ij}\right) = \left(\sum_k a_{ik}b_{kj}\right)$
 - ightharpoonup Тензорное произведение $A \otimes B$
 - ▶ Обратная матрица A^{-1} , $A^{-1}A = AA^{-1} = I$
- Унитарные матрицы
 - $A^*A = AA^*$

- Уравнение Шредингера
- $i\hbar \frac{\partial}{\partial t} \Psi(x,t) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \Psi(x,t) + V(x,t) \Psi(x,t)$
- ightharpoonup Решение волновая функция $\Psi(x,t)$
- ▶ $\int_a^b |\Psi(x,t)|^2 dx$ Вероятность нахождения частицы между x=a и x=b