《数值分析》24

主要内容:

求矩阵按模最大特征值的乘幂法

求矩阵按模最小特征值的反幂法

设A是n阶矩阵,如果数λ和n维非零列向量x使关系式:

$$Ax=\lambda x$$
,

则称数λ为方阵A的特征值,非零向量x称为A的对应于特征值λ的特征向量。

特征值λ计算方法(行列式):

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \Leftrightarrow \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

上述称为A的特征多项式,零根即为A的特征值。

BUT! 在n非常大时,直接求解特征值及其对应的特征向量开销会很大(因为行列式计算量巨大)。因此可以用乘幂法解其数值!

乘幂法是适用于求矩阵按模最大特征值及相应特征向量的算法.

乘幂法适用范围:

- 计算模最大特征值
- n个线性无关特向量 $|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|$
- 有特征值复根,也要求有n个线性无关特向量

设A是n阶矩阵,其n个特征值按模从大到小排序为

$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$$

其中u₁, u₂, ...,u_n为n个线性无关的特征向量

1) 首先考虑 / 为单特征根情况:

$$|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|$$

任意取定初始向量x₀

$$x_0 = a_1 u_1 + a_2 u_2 + \dots + a_n u_n (a_1 \neq 0)$$

建立迭代公式:
$$x_k = Ax_{k-1}$$

$$\begin{aligned} x_1 &= Ax_0 = a_1 A u_1 + a_2 A u_2 + \dots + a_n A u_n \\ &= a_1 \lambda_1 u_1 + a_2 \lambda_2 u_2 + \dots + a_n \lambda_n u_n \\ x_2 &= Ax_1 = A^2 x_0 = a_1 \lambda_1^2 u_1 + a_2 \lambda_2^2 u_2 + \dots + a_n \lambda_n^2 u_n \\ &\vdots \\ x_k &= Ax_{k-1} = A^k x_0 = a_1 \lambda_1^k u_1 + a_2 \lambda_2^k u_2 + \dots + a_n \lambda_n^k u_n \\ &= \lambda_1^k [a_1 u_1 + a_2 (\frac{\lambda_2}{\lambda_1})^k u_2 + \dots + a_n (\frac{\lambda_n}{\lambda_1})^k u_n] \end{aligned}$$

$$\begin{aligned} x_{k+1} &= A x_k = A^{k+1} x_0 = a_1 \lambda_1^{k+1} u_1 + a_2 \lambda_2^{k+1} u_2 + \dots + a_n \lambda_n^{k+1} u_n \\ &= \lambda_1^{k+1} \left[a_1 u_1 + a_2 \left(\frac{\lambda_2}{\lambda_1} \right)^{k+1} u_2 + \dots + a_n \left(\frac{\lambda_n}{\lambda_1} \right)^{k+1} u_n \right] \end{aligned}$$

由上式有:

特征值 / 为(近似):
$$\lim_{k\to\infty} \frac{(x_{k+1})}{(x_k)_i} = /$$

对应的特征向量为(近似): x_k

特别地,因为
$$\left|\frac{\lambda_i}{\lambda_1}\right| < 1$$
 $i = 2, \dots, n$

故当
$$k$$
→∞时, x_k → $\lambda_1^k a_1 u_1$.

因此,特征值 λ_1 的近似特征向量 x_k 为上式!

BUT! 有一严重缺点: 当 $|\lambda_1|>1$, u_1 中不为零的分量将随k的增大而无限增大,计算机就可能出现<u>上溢</u>;当 $|\lambda_1|<1$, u_1 中不为零的分量将随k的增大而无限趋于0,计算机就可能出现下溢.

解决方法:可按规范法计算方式,每步先对向量 x_k 进行规范化处理:

迭代格式改为:

$$\boldsymbol{z}_{k} = \frac{\boldsymbol{x}_{k}}{\|\boldsymbol{x}_{k}\|_{\infty}} \qquad \boldsymbol{x}_{k+1} = \boldsymbol{A}\boldsymbol{z}_{k}$$

$$\boldsymbol{k} = 0.1, 2, \dots$$

乘幂法求矩阵的特征值及特征向量的方法可归纳如下:

输入: 矩阵A, 初始向量 x_0 , 误差限 e, 最大迭代次数 N, $k \leftarrow 0$, $\lambda_0 = 0$

1)规范化计算得到:

$$z_k = \frac{x_k}{\|x_k\|_{\infty}}$$

2)递归计算:

$$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{z}_k$$

改为

- 3) 计算最大值: $\lambda = ||x_{k+1}||_{\infty}$ (即: $\lambda = \max\{|x_{k+1,i}|\}$) $\lambda = z_k \bar{A} z_k / z_k / z_k \bar{A} z_k / z$
- 4) 如果 |λ-λ₀|< e, 则输出:

 λ (特征值), z_{k+1} 或 x_{k+1} (特征向量)

最终计算得入

5) 否则($|\lambda-\lambda_0|>=e$):

如果k<N, 则k \leftarrow k+1, $\lambda_0 \leftarrow \lambda$; 转 1)

同理: 计算其他特征值 λ_i , i=1, 2, 3, ..., n:

在A中去掉主特征值入对应向量的元素:

$$A=A-\lambda_1 z_{k+1} z_{k+1}^T$$

接下来再找下一个特征值入(类似计算)。

2) 考虑 / 不为单特征根情况(复根), 之前结论依

然成立:

$$|\lambda_1| = |\lambda_2| \geq \cdots \geq |\lambda_n|$$

此时有:

特征值 / 依然为(近似):

$$\lim_{k \to \infty} \frac{x_{k+1}}{x_k} = I_1$$

对应的特征向量为(近似):

$$x_k = \int_1^k (a_1 u_1 + a_2 u_2)$$

例: 用乘幂法求矩阵A的按模最大特征值和相应特征向量

$$A = \left(\begin{array}{ccc} 2 & -1 & 0 \\ 0 & 2 & -1 \\ 0 & -1 & 2 \end{array}\right)$$

解: 初值
$$x_0 = (0, 0, 1)^T$$
, $e = 10^{-3}$, $\lambda_0 = 0$

$$\rightarrow$$
 $z_0 = x_0 = (0, 0, 1)^T$

$$-x_1 = Az_0 = (0, -1, 2)^T \longrightarrow \lambda = 2, 判断|\lambda - \lambda_0| < e ??$$
No: $\lambda_0 = \lambda$

Yes: 输出 λ 和特征向量 z_1 或 x_1

$$z_1 = x_1/\max(|x_1|) = (0, -0.5, 1)^T$$

$$\mathbf{x}_2 = \mathbf{A}\mathbf{z}_1 = (0.5, -2, 2.5)^{\mathsf{T}},$$

$$-x_2 = Az_1 = (0.5, -2, 2.5)^T,$$

 $-z_2 = x_2/max(|x_2|) = (0.2, -0.8, 1)^T$

判断窗口

10


```
-x_8 = Az_7 = (2.7650948, -2.9981848, 2.9990924)^T,
\rightarrow \lambda_0 = 2.999092
-z_8 = x_8/max(x_8) = (0.9119772, -0.99969073, 1)^T
                                                   \rightarrow \lambda_0 = 2.9990924
\rightarrow \lambda = 2.9996973
```

此时: $|\lambda - \lambda_0| = |2.9996973 - 2.9990924| = 0.0006049 < e$

故第一个特征值: $\lambda_1 \lesssim 2.9996973$

特征向量: $\mathbf{u}_1 \approx \mathbf{x}_9 = (2.8436517, -2.9993946, 2.9996973)^\mathsf{T}$

事实上:

A的特征值: $\lambda_1 = 3$, $\lambda_2 = 2$, $\lambda_3 = 1$

与λ₁的特征向量为: (1, -1, 1)^T

而乘幂法求得的特征值:

 $\lambda_1 \approx 2.9996973$

特征向量:

 $u_1 \approx (2.8436517, -2.9993946, 2.9996973)^{\mathsf{T}}$

求矩阵按模最小特征值的反幂法

反幂法目的:

求A按模最小特征值及相应的特征向量 (有时候想先知道最小特征值)

若科詩异, 且
$$Ax=\lambda x$$
, 则 $A^{-1}x=\lambda^{-1}x$
(可记为 $\lambda^{-1}=a$, $A^{-1}x=ax$)

注意:

- 1) 求A按模最小特征值,即是求A-1的按模最大特征值和特征向量
- 2) 所以可以按照乘幂法来实现反幂法
- 3) 乘幂法和反幂法区别:

乘幂法: $X_{k+1} = AZ_k$

反幂法: $X_{k+1} = A^{-1}Z_k$

所以计算x_{k+1}时变为Ax_{k+1}=z_{k,}而求解此方程用LU分解 最为简单,所以反幂法中涉及LU分解

求矩阵按模最小特征值的反幂法

反幂法求矩阵的特征值及特征向量的方法可归纳如下:

输入: 矩阵A, 初始向量 x_0 , 误差限e, 最大迭代次数N, k \leftarrow 0, $\lambda_0 = 0$

1)规范化计算得到:
$$z_k = \frac{x_k}{\|x_k\|_{\infty}}$$

2)对A作三角分解A=LU

」即: x_{k+1}= A⁻¹z_k(与乘幂法不同)

3)解方程组: $LUx_{k+1} = z_{k_k}$ (两步: $Lw_k = z_k$, $Ux_{k+1} = w_k$) (对比乘幂法 $x_{k+1} = Az_k$)

改为

4)计算最大值: $a = ||\mathbf{x}_{k+1}||_{\infty}$ (即 $a = \max\{|\mathbf{x}_{k+1}|\}$ 为A-1的模最大特征值近似)

 $\lambda = \mathbf{z_k}^\mathsf{T} \mathbf{A} \mathbf{z_k} / \mathbf{z_k}^\mathsf{T} \mathbf{z_k}$

5)如果 $|a-\lambda_0| < e$, 则输出:

$$\lambda=1/a$$
 (特征值), z_{k+1} 或 x_{k+1} (对应的特征向量)

6) 否则 |*α*-λ₀|>=e:

如果: k < N,则 $k \leftarrow k+1$, $\lambda_0 \leftarrow a$; 转1)

学到了什么?

求矩阵按模最大特征值的乘幂法

求矩阵按模最小特征值的反幂法