JEE Mains 2019 Chapter wise Question Bank

Redox Reactions - Questions

Q1

Consider the following reduction processes:

$$Zn^{2+} + 2e^{-} \rightarrow Zn(s); E^{\circ} = -0.76 \text{ V}$$

$$Ca^{2+} + 2e^{-} \rightarrow Ca(s); E^{\circ} = -2.87 \text{ V}$$

$$Mg^{2+} + 2e^{-} \rightarrow Mg(s); E^{\circ} = -2.36 \text{ V}$$

$$Ni^{2+} + 2e^{-} \rightarrow Ni(s); E^{\circ} = -0.25 \text{ V}$$

The reducing power of the metals increases in the order:

- (1) Ca < Zn < Mg < Ni
- (2) Ni < Zn < Mg < Ca
- (3) $Zn \le Mg \le Ni \le Ca$
- (4) Ca < Mg < Zn < Ni

10 Jan Morning

Q2

In the reaction of oxalate with permanganate in acidic medium, the number of electrons involved in producing one molecule of CO₂ is:

(1) 1

(2) 10

(3) 2

(4) 5

10 Jan Evening

Q3

In order to oxidise a mixture of one mole of each of FeC_2O_4 , $Fe_2(C_2O_4)_3$, $FeSO_4$ and $Fe_2(SO_4)_3$ in acidic medium, the number of moles of $KMnO_4$ required is :

- (1) 2
- (2) 1
- (3) 3
- (4) 1.5

8 April Morning

Q4

An example of a disproportionation reaction is:

- (1) $2MnO_4^- + 10I^- + 16H^+ \rightarrow 2Mn^{2+} + 5I_2 + 8H_2O$
- (2) $2NaBr + Cl_2 \rightarrow 2NaCl + Br_2$
- (3) $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$
- (4) $2CuBr \rightarrow CuBr_2 + Cu$

12 April Morning

To download more free study materials, visit www.mathongo.com

JEE Mains 2019 Chapter wise Question Bank

Redox Reactions - Answers

Q1

(2) Higher the oxidation potential, higher will be the reducing power. So, the order of reducing behaviour

10 Jan Morning

Q2

(1) Reaction involved:

.. The number of electrons involved in producing one mole of CO₂ is 1.

10 Jan Evening

Q3

(1)
$$MnO_4^- + 5e^- \longrightarrow M_n^{2+}$$

(i)
$$FeC_2O_4 \longrightarrow Fe^{3+} + 2CO_2 + 3e^{-}$$

1 mole of FeC_2O_4 reacts with $\frac{3}{5}$ mole of acidified KMnO₄ $\stackrel{\cdot}{\text{(ii)}} \text{Fe}_2(\text{C}_2\text{O}_4)_3 \longrightarrow \text{Fe}^{3+} + \text{CO}_2 + 6\text{e}^{-}$

(ii)
$$\operatorname{Fe}_2(C_2O_4)_3 \longrightarrow \operatorname{Fe}^{3+} + \operatorname{CO}_2 + 6e^{-1}$$

1 mole of $Fe_2(C_2O_4)_3$ reacts with $\frac{6}{5}$ moles of KMnO₄

(iii)
$$FeSO_4 \longrightarrow Fe^{3+} + e^{-}$$

1 mole of FeSO₄ react with $\frac{1}{5}$ moles of KMnO₄

(iv) Fe₂ (SO₄)₃ does not oxidise

$$\therefore$$
 Total moles required $=\frac{3}{6} + \frac{6}{5} + \frac{1}{5} = 2$

8 April Morning

Q4

(4)
$$CuBr \longrightarrow Cu + CuBr_2$$

It is an example of disproportionation reaction, as Cu undergoes both oxidation and reduction.

12 April Morning