Домашняя работа № 1, часть № 2

Автор: Минеева Екатерина

Задача 8

Данная задача — назовем ее SubSetIntersection — является NP полной. Докажем это:

- ▲ 1. $SubSetIntersection \in NP$. Действительно, существует полиномиальный от размера входа алгоритм верификации: по сертификату (собственно множеству S) он будет искать пересечение с каждым S_i можно сделать это за $\underline{O}(n)$ и сравнивать мощность пересечения с l_i и h_i . Общая сложность, таким образом, $\underline{O}(nk)$ полином.
- 2. Докажем, что любая задача из класса NP сводится к SubSetIntersection за полиномиальное время. Достаточно свести одну из NP-полных задач к нашей задаче: например, задачу о вершинном покрытии.

Дано: Граф (V, E), число t.

Вопрос: Существует ли такое $W \subset V$ что $\forall (u,v) \in E : (u \in W) \lor (v \in W)$ и при этом |W| = t?

Пусть |E|=m. $E=\{(u_1,v_1),(u_2,v_2),\ldots,(u_m,v_m)\}$. Построим сведение к SubSetIntersection:

$$\begin{split} S &= W, \ |S| = n \\ S_{m+1} &= S, \ l_{m+1} = h_{m+1} = t \\ S_i &= \{u_i, v_i\}, \ l_i = 1, \ h_i = 2, \ i = 1 \dots m \end{split}$$

Докажем корректность сведения:

- а) Пусть $\exists T$, удовлетворяющее условиям задачи SubSetIntersection. Тогда возьмем в исходном графе в качестве W=T. Это будет действительно вершнинное покрытие: $\forall 1 \leq i \leq m: |S_i \cap T| \geq 1 \Leftrightarrow \forall (u,v) \in E: (u \in W) \lor (v \in W)$. А в силу того, что $t \leq |S \cap T| \leq t$ получаем, что |W| = t.
- б) Пусть существует вершинное покрытие W. Возьмем T=W и абсолютно аналогично предыдущему пункту получим, что такое T удовлетворяет условиям SubSetIntersection

Такое сведение действительно полиномиально, так как $n=|V|,\ k=\underline{\mathrm{O}}(|E|),\ \forall 1\leq i\leq (m+1): |S_i|,\ l_i,\ h_i=\underline{\mathrm{O}}(n).$

Таким образом, 1) + 2) $\Rightarrow SubSetIntersection$ является NP-полной задачей.