

SUBJECT: Computer Systems 3B (RKE3B)

TITLE: Practical Assessment 5B – Outcome C

DATE: 14 October 2014

MARKS: 30

Build a SOS signal Detector

1.) Introduction:

Space tourism is space travel with the purpose of recreation and leisure. There are a number of start-up companies such as Virgin Galactic and XCOR aerospace developing space shuttles for the purpose of enabling a space tourism industry. A space flight tickets from Earth to one of the orbiting Space Station hotels will cost approximately \$250 000 per person. This will become a hobby for the rich and famous. An example of a space station hotel can be seen in Figure 1.

Figure 1: Space station hotel designed by Robert Bigalow

The company you work for develops technology to ensure safe space travel. You were tasked to develop a system that runs on the Altera DEO FPGA development board that can detect an SOS signal from a serial source. This system will be cheap to produce and will act as a method of detecting stranded space tourists.

You are only developing the prototype allowing you to simulate the input signal using push-buttons. Your system will use 2 push-buttons B_{on} and B_{off} and 1 flip-switch En.

- **BUTTONO** \rightarrow Push-button B_{on} will provide an ON (1) input signal when $B_{on} = 1$.
- **BUTTON1** \rightarrow Push-button B_{off} will provide an OFF (0) input signal when $B_{off} = 1$.
- **SW0** \rightarrow Flip-switch En should reset the system when En = 0 and allow SOS signals to be detected when En = 1.

A compact form of the SOS Morse code message needs to be detected by your system, the message you need to detect is **110011**. When the compact SOS signal was detected the Light (**LEDG0**) needs to be turned ON.

Your SOS signal detector need to be implemented as a Mealy State Machine and you must use D flip-flops (7474).

2.) Tips:

- Remember that push-buttons work in reverse, the push-button returns **1** if released and **0** when pressed.
- You must derive the input signal w and the clk from the 2 input push-buttons B_{on} and B_{off} . Every time one of the buttons are pressed the clk = 1 else clk = 0. The input signal w = 1 when B_{on} is pressed and w = 0 when B_{off} is pressed.

3.) Submission and Practical Notes:

- Submit only the *.bdf Block Diagram/Schematic file for the Practical on Edulink.
- Both group members need to submit the project design files on their blackboard accounts.
- Only groups of 2 allowed Except when I have provided permission.
- Your submition will be tested for Plagiarism.
- "No submission = No Mark" No extensions will be given.
- All work must be completed before 16:40 at the date of the practical session. If you
 have not yet completed your work by 16:40, a mark will be assigned based on your
 progress.
- Signed mark sheets (controlled by Demi's) are used as attendance.
- You need to show your calculations on paper or no marks (0%) will be awarded.

4.) Mark Distribution Guide:

Description	<u>Mark</u>
Question	(30)
Not present	Fail the course
Calculations Correct but not working	0/30 -> 18/30 (0%-60%) [18 Marks]
SOS detector working	18/30 -> 30/30 (60%-100%) [12 Marks]

5.) Solution:

State Diagram:

State Table:

Present	Next	State	Outp	ut z
State	w = 0	w = 1	w = 0	w = 1
Α	Α	В	0	0
В	Α	С	0	0
С	D	С	0	0
D	Е	В	0	0
E	Α	F	0	0
F	Α	G	0	1
G	G	G	1	1
-	dd	dd	dd	dd

State Assignment Table:

	Present	Next	State	Outp	ut z
	State	w = 0	w = 1	w = 0	w = 1
	$x_3 x_2 x_1$	$y_3y_2y_1$	$y_3y_2y_1$		
Α	000	000	001	0	0
В	001	000	010	0	0
С	010	011	010	0	0
D	011	100	001	0	0
Ε	100	000	101	0	0
F	101	000	110	0	1
G	110	110	110	1	1
-	111	dd	dd	dd	dd

Karnaugh Maps:

x_3x_2 x_1w	0 0	0 1	11	10		x_3x_2 x_1w	0 0	0 1	11	10
0 0	0	1	0	0		0 0	0	1	1	0
0 1	1	0	0	1		0 1	0	1	1	0
11	0	1	d	0		11	1	0	d	1
10	0	0	d	0		1 0	0	0	d	0
		y_1						y_2		
$v - \overline{v}$	$\gamma_{-}\overline{\gamma_{-}}\overline{u}$	$\frac{1}{7} + \frac{1}{2}$	$\overline{x_1}w +$	x_2x_1w		y	$x_2 = x_2$	$2\overline{x_1} + \overline{x_2}$	$\overline{x_2}x_1w$	
$y_1 - x_3$	3×2×1 n	1 3023	.1							
$y_1 - x_3$ $x_3 x_2$ $x_1 w$		0 1	11	10		x_3x_2 x_1w	0 0	0 1	11	10
x_3x_2						x_3x_2	0 0	0 1	11	10
x_3x_2 x_1w	0 0	0 1		10		x_3x_2 x_1w				
$\begin{array}{c} x_3 x_2 \\ x_1 w \\ 0 \ 0 \end{array}$	0 0	0 1		10		$\begin{array}{c} x_3 x_2 \\ x_1 w \\ 0 \ 0 \end{array}$	0	0	1	0
$\begin{array}{c} x_3x_2 \\ x_1w \\ \hline 0 0 \\ \hline 0 1 \\ \end{array}$	0 0	0 0	1 1	10		$x_3x_2 \\ x_1w \\ 0 0 \\ 0 1$	0	0	1	0
$\begin{array}{c} x_3 x_2 \\ x_1 w \\ \hline 0 0 \\ \hline 0 1 \\ \hline 1 1 \end{array}$	0 0 0 0	0 0	1 1	1 0 0		x_3x_2 x_1w 00 01 11	0 0 0	0 0 0	1 1 d	0 0

Logic Circuit:

