Joshua Cuneo

Computer Science Dept. Worcester Polytechnic Institute (WPI)

- For each light in scene
 - Emit 1,000,000,000 photons
 - For each photon
 - Find what geometry photon hits
 - Color photon
 - Scatter photon
 - Find what photon hits next
 - **x** ...
 - Pray photon hits camera CCD
 - Light pixel that CCD micro-square represents

- For each light in scene
 - Emit 1,000,000,000 photons

- Pray photon hits camera CCD
- Light pixel that CCD micro-square represents

ray origin: eye

ray direction: screenCenter + x•screenU + y•screenV

Ray: emission point (e) and direction (d)

Ray: emission point (e) and direction (d)

Point on Ray:
$$p(t) = e + td$$

Circle: center point (o) and radius (r)

Point on circle: $(\mathbf{p} - \mathbf{o}) \cdot (\mathbf{p} - \mathbf{o}) - \mathbf{r}^2 = 0$

Point on circle:
$$(p - o) \cdot (p - o) - r^2 = 0$$

Point on Ray:
$$p(t) = e + td$$

Point on circle:
$$(p - o) \cdot (p - o) - r^2 = 0$$

Point on Ray:
$$p(t) = e + td$$

$$(e + td - o) \cdot (e + td - o) - r^2 = 0$$

Point on circle:
$$(\mathbf{p} - \mathbf{o}) \cdot (\mathbf{p} - \mathbf{o}) - \mathbf{r}^2 = 0$$

Point on Ray:
$$p(t) = e + td$$

$$(tcl + e - o) \cdot (tcl + e - o) - r^2 = 0$$

Point on circle:
$$(p - o) \cdot (p - o) - r^2 = 0$$

Point on Ray:
$$p(t) = e + td$$

$$(tcl + (e - o)) \cdot (tcl + (e - o)) - r^2 = 0$$

Point on circle:
$$(p - o) \cdot (p - o) - r^2 = 0$$

Point on Ray:
$$p(t) = e + td$$

$$t^2(d \cdot d) + 2td \cdot (e - o) + (e - o) \cdot (e - o) - r^2 = 0$$

Point on circle:
$$(p - o) \cdot (p - o) - r^2 = 0$$

Point on Ray:
$$p(t) = e + td$$

$$at^2 + bt + c = 0$$

$$b = 2d \cdot (e - o)$$
 $c = (e - o) \cdot (e - o) - r^2$

Point on circle:
$$(p - o) \cdot (p - o) - r^2 = 0$$

Point on Ray:
$$p(t) = e + td$$

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = u \cdot u$$

 $b = 2d \cdot (e - o)$
 $c = (e - o) \cdot (e - o) - r^2$

Point on **sphere**:
$$(p - o) \cdot (p - o) - r^2 = 0$$

Point on Ray:
$$p(t) = e + td$$

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = u \cdot u$$

 $b = 2d \cdot (e - o)$
 $c = (e - o) \cdot (e - o) - r^2$

$$h = b^2 - 4ac$$

h < 0 : ray misses sphere

h = 0 : ray tangent to sphere

h > 0 : ray intersects sphere 2x

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = d \cdot d$$
 $b = 2d \cdot (e - o)$
 $c = (e - o) \cdot (e - o) - r^2$

$$h = b^2 - 4ac$$

h < 0 : ray misses sphere

h = 0 : ray tangent to sphere

h > 0 : ray intersects sphere 2x

Which intersection should be used?

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$a = d \cdot d$$
 $b = 2d \cdot (e - o)$
 $c = (e - o) \cdot (e - o) - r^2$