Question 43.

Transverse intersction. Let M, N be two smooth surfaces in \mathbb{R}^3 . We say that M and N intersect transversally if $T_pM \neq T_pN$ for all $p \in M \cap N$.

- (a) Prove that if M, N intersect transversally, then $M \cap N$ is a smooth curve in \mathbb{R}^3 .
- (b) Show by example that the conclusion of (a) fails without the assumption of transverse intersection

Proof.

(a)

Suppose that M and N intersect transversally. We will show that $M \cap N$ is a smooth 1-manifold in \mathbb{R}^3 . Let $p \in M \cap N$. Then there is some relatively open neighborhood U of M and V of N that is the zero set of some smooth functions $f, g : \mathbb{R}^3 \to \mathbb{R}$, that is, U = Z(f) and V = Z(g). Let $\Phi : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $\Phi = (f, g)$. We claim that $(U \cap V, \Phi)$ is the desired chart containing p. We first start by verifying that $U \cap V$ is relatively open to $M \cap N$. This is quick, as we know that U and V are relatively open to M and N respectively, for each point in $U \cap V$, we can choose two open balls with radii r_1, r_2 that stays within M and N respectively. We then take the lesser of the radii as our radius.

Moving on, we see that Φ is smooth, and $Z(\Phi) = U \cap V$. It remains to show that $J\Phi(q)$ has rank 2 for all $q \in U \cap V$. The Jacobian of Φ is a 2×3 matrix given by

$$J\Phi(q) = \left(\frac{\nabla f(q)}{\nabla g(q)}\right).$$

It necessarily has rank at most 2 and at least 1 (because $\nabla f, \nabla g$ have at least rank 1). Suppose for contradiction that rank $J\Phi(q)=1$. Then $\nabla f(q)=c\nabla g(q)$ for some non-zero constant c. We know that the tangent space T_qM is given by the set of tagged vectors orthogonal to $\nabla f(q)$. Likewise, T_qN consists of tagged vectors orthogonal to $\nabla g(q)$. But notice that for $v \in T_qM$, we have $\nabla f(q) \cdot v = 0$ but also $c\nabla f(q) \cdot v = \nabla g(q) \cdot v = 0$. If we additionally apply the same argument to $u \in T_qN$, we can see that $T_qM = T_qN$ which is a contradiction. Thus $J\Phi(q)$ must have rank 2. From here, it follows that $\Phi^{-1}(\{0\}) = U \cap V$ is a smooth manifold with dimension 1, so we can conclude that $M \cap N$ is a smooth curve.

(b):

Let M be the xy-plane, and let N be the graph of $f(x,y) = x^2 + y^2$. Then $M \cap N$ is simply the origin, which is not a smooth curve.

Question 44.

Suppose that M is a smooth manifold, and let \mathcal{A} be an open cover of M by pairwise consistently oriented charts. Let \mathcal{A}^+ be the collection of all charts on M which are positively oriented with \mathcal{A} ; likewise, let \mathcal{A}^- be the collection of all charts on M which are negatively oriented with \mathcal{A} .

Now suppose that \mathcal{B} is some other open cover of M by charts, such that any two (overlapping) charts in \mathcal{B} are consistently oriented. Prove that if M is connected, then either \mathcal{B} is completely contained in \mathcal{A}^+ , or else it is completely contained in \mathcal{A}^- .

Proof. First, we will quickly prove a form of transitivity for manifold charts.

Lemma. From a manifold M, take two charts (U, φ) , (V, ψ) that are consistently oriented with each other. Then (U, φ) is positively oriented with \mathcal{A}^+ if and only if (V, ψ) is positively oriented with \mathcal{C}^+

2