

Evidências empíricas usando uma comparação entre modelos estimados por Máxima Verossimilhança

Previsão da demanda de transporte no DF

Leandro Marques

24 de abril de 2023

Brasília - DF

Agenda

- Descrição das Variáveis
- Regressão Probit
- Regressão Logit
- Regressão Probit Multinomial
- 5 Conclusão

Descrição das Variáveis

- **escolha**: (1: carro, 2: transporte público, 3: bicicleta)
- tempo_carro: Tempo gasto para se deslocar de carro
- tempo_transporte_publico: Tempo gasto para se deslocar tp
- tempo_bicicleta: Tempo gasto para se deslocar de bicicleta
- **custo_carro**: Custo do deslocamento de carro
- **custo_transporte_publico**: Custo do deslocamento utilizando transporte público
- **custo_bicicleta**: Custo do deslocamento de bicicleta
- renda: Renda do indivíduo
- idade: Idade do indivíduo
- genero: Gênero do indivíduo
- ocupacao_empregado: Se o indivíduo é empregado ou não
- ocupacao_autonomo: Se o indivíduo é autônomo ou não
- **educacao fundamental**: Se o indivíduo possui educação fundamental ou não
- **educacao**_**medio**: Se o indivíduo possui educação média ou não
- **possui_carro**: Se o indivíduo possui carro próprio ou não

Regressão Probit

Tabela 1: Resultados do Modelo Probit

	Dependent variable:		
	choice_bin		
custo_bicicleta	-o.128***		
	(0.042)		
renda	-0.00001		
	(0.00001)		
idade	-o . oo5		
	(0.004)		
genero	-o.155*		
	(0.086)		
Constant	-o.393		
	(0.335)		
Observations	896		
Note:	*p<0.1: **p<0.05: ***p<0.01		

Descrição das Variáveis Regressão Probit Regressão Logit Regressão Probit Multinomial Conclusão
O●○○○○○○○

Resíduos Probit e Logit

Figura 1: Resíduos Probit

Figura 2: Resíduos Logit

Comparação dos Modelos Probit e Logit

Tabela 2: Estimativa Probit(1) e estimativa logit (2)

	Escolha de Transporte		
	probit	logit	
Tempo de Carro	0.004	0.006	
	(0.016)	(0.025)	
Tempo de Transporte Público	0.011	0.018	
	(0.009)	(0.014)	
Custo da Bicicleta	-o.128***	-0.206***	
	(0.042)	(0.068)	
Gênero	-0.155*	-0 . 250*	
	(0.086)	(0.138)	
Observações	896	896	
Nota:	*p<0.1; **p<0.05; ***p<0.01		

Descrição das Variáveis Regressão Probit Regressão Logit Regressão Probit Multinomial Conclusão

Regressão Probit Multinomial

$$P(Y_i = j) = \frac{\exp(\alpha_j + \beta_{j,\text{custo}} Custo_i + \beta_{j,\text{tempo}} Tempo_i)}{1 + \sum_{b=1}^{J-1} \exp(\alpha_k + \beta_{k,\text{custo}} Custo_j + \beta_{k,\text{tempo}} Tempo_i)}, \quad j = 1, \dots, J-1$$
 (1

$$P(Y_i = J) = \frac{1}{1 + \sum_{k=1}^{J-1} \exp(\alpha_k + \beta_{k, \text{custo}} Custo_i + \beta_{k, \text{tempo}} Tempo_i)}$$
(2)

onde:

- Y_i é a variável resposta para o indivíduo i
- \blacksquare j é a categoria de resposta, variando de 1 a J 1
- lacksquare $eta_{j, {
 m custo}}$ é o coeficiente de regressão do custo para a categoria j
- $lacksquare eta_{j, \mathsf{tempo}}$ é o coeficiente de regressão do tempo para a categoria j
- Custo; é o custo para o indivíduo i
- *Tempo*; é o tempo para o indivíduo *i*

Efeito Marginal da Regressão Multinomial

Densidade dos Efeitos Marginais

Figura 3

Descrição das Variáveis Regressão Probit Regressão Logit Regressão Probit Multinomial Conclusão
O○○○●○○○

Comparação dos Modelos

Tabela 3: Comparação do Modelo Multinomial Logit e Modelo Linear

Modelo	Variável	Coeficiente	Erro Padrão	Valor-p
Multinomial Probit	tempo	0.0466873	0.0044457	0.0
	custo	-0.6867563	0.0377647	0.0
Modelo Linear	tempo	0.0106353	0.0006521	0.0
	custo	-0.1017805	0.0023418	0.0

Curva ROC

Descrição das Variáveis

As Curvas ROC resumem o desempenho do modelo avaliando os trade-offs entre taxa de verdadeiros positivos (sensibilidade) e taxa de falsos positivos (1- especificidade).

Figura 4: Curva ROC

Referências

- [1] A. Colin Cameron e Pravin K. Trivedi. *Microeconometrics: Methods and Applications*. Cambridge University Press, 2005. DOI: 10.1017/CB09780511811241.
- [2] Stan Lipovetsky. "Practical Multivariate Analysis (6th ed.)". Em: Technometrics 62.2 (2020), pp. 1–283. DOI: 10.1080/00401706.2020.1744907. eprint: https://doi.org/10.1080/00401706.2020.1744907. URL: https://doi.org/10.1080/00401706.2020.1744907.
- [3] Instituto de Pesquisa Econômica Aplicada (IPEA). Infodf. https://infodf.ipe.df.gov.br/. Acesso em: 11 abr. 2023. 2023.

references

Perguntas?

Obrigado!

