Fourier Analysis Stein: Chapter 8. Problems.

Kelvin Hong kh.boon2@gmail.com

Xiamen University Malaysia, Asia Pacific University Malaysia — August 11, 2024

1 Problems

1. Prove that there are infinitely many primes by observing that if there were only finitely many, p_1, \ldots, p_N , then

$$\prod_{j=1}^{N} \frac{1}{1 - 1/p_j} \ge \sum_{n=1}^{\infty} \frac{1}{n}.$$

Solution: Assumes there are only finitely many primes p_1, \ldots, p_N . Given a positive integer M, each positive integer $n \leq M$ can be expressed as a product of primes $p_1^{k_1} \cdots p_N^{k_N}$ for some integers k_1, \ldots, k_N . We let K_1, \ldots, K_N be the maximum values of k_1, \ldots, k_N across all $n \leq M$. Thus, we have

$$\prod_{j=1}^{N} \frac{1}{1 - 1/p_j} \ge \prod_{j=1}^{N} \left(\sum_{k=0}^{K_j} \frac{1}{p_j^k} \right) \ge \sum_{n=1}^{M} \frac{1}{n}.$$

Taking the limit as $M \to \infty$, we see that the RHS diverges, which is a contradiction to our assumption.

2. In the text we showed that there are infinitely many primes of the form 4k + 3 by a modification of Euclid's original argument. Adapt this technique to prove the similar result for primes of the form 3k + 2, and for those of the form 6k + 5.

Solution: Assume there are only finitely many primes of the form 3k + 2, and let p_1, \ldots, p_N be all of them in increasing order and $p_1 = 5$. Consider the number $n = 3p_1 \cdots p_N + 2$. This is a number of the form 3k + 2 and $n > p_N$, so it must be composite by our assumption. Since it is not divisible by 3, it must have prime factors of the form 3k + 1 and 3k + 2. If it only has prime factors of the form 3k + 1, the product of these primes would be still of the form 3k + 1, so it will at least has a prime factor of the form 3k + 2. But this is a contradiction since n is not divisible by any of the primes p_1, \ldots, p_N .

For another solution, we assume there are only finitely many primes of the form 6k+5, q_1,\ldots,q_M , in increasing order, where $q_1=11$. We can let $m=6q_1\cdots q_M+5$, we can argue similarly by noting that if m is composite, it must have prime factors of the form 6k+1 and 6k+5, and also it must have at least one prime factor of the form 6k+5, which create a contradiction.

3. Prove that if p and q are relatively prime, then $\mathbb{Z}^*(p) \times \mathbb{Z}^*(q)$ is isomorphic to $\mathbb{Z}^*(pq)$.

Solution: Let $\phi : \mathbb{Z}^*(p) \times \mathbb{Z}^*(q) \to \mathbb{Z}^*(pq)$ be defined by $\phi(a,b) = aq + bp \mod pq$. Obviously both sets are groups, so we only need to show the mapping is one-to-one and surjective.

To show ϕ is one-to-one, suppose $\phi(a,b) = \phi(c,d)$, then $aq + bp \equiv cq + dp \mod pq$. There is an integer k such that (a-c)q + (b-d)p = kpq. Rearrange to get (a-c)q = p(kq-b+d). Since p and q are relatively prime, p divides a-c, hence $a \equiv c \pmod p$. Similarly $b \equiv d \pmod q$.

To show ϕ is surjective, we first let x,y be integers such that $py+qx\equiv 1\pmod pq$ with $x\in\mathbb{Z}^*(p)$ and $y\in\mathbb{Z}^*(q)$. For any $z\in\mathbb{Z}^*(pq)$, we can write $z=z\cdot 1=z(py+qx)=zpy+zqx$. We find that $\phi(zx,zy)=z$ just because z is both relatively prime to p and q.