Navier-Stokes Gleichungen

University of Stuttgart IAG

Studentenvortrag 6. Februar, 2023

Überblick

1 Grundlagen

Navier-Stokes Gleichungen viskose Zeitschrittbedingung

2 Ergebnisse

SineWave Testcase Blasius Boundary Layer Zylinderumströmung

3 Lessons learned Flussberechnung

Navier-Stokes Gleichungen

Eulergleichungen sind Vereinfachung der Navier-Stokes Gleichungen für $\mathrm{Re} o \infty$

$$\rho_t + \nabla \cdot (\rho v) = 0
(\rho v)_t + \nabla \cdot ((\rho v) \circ v) + \nabla p = \nabla \tau
e_t + \nabla \cdot (v(e+p)) = \nabla \cdot (\tau \cdot v) - \nabla \cdot q$$
(1)

Zusätzliche Terme:

Reibungstensor $au = \mu (\nabla v + (\nabla v)^T) - \frac{2}{3}\mu (\nabla \cdot v)$ Wärmeleitung $q = -\frac{c_p\mu}{Pr}\nabla T$

Analog zu den Eulergleichungen können auch die Navier-Stokes-Gleichungen in die Flussformulierung gebracht werden.

$$U_t + \nabla \cdot \mathbb{F}^C(U) = \nabla \cdot \mathbb{F}^D(U, \nabla U)$$
 (2)

Navier-Stokes Flüsse

konvektive Flüsse:

- hyperbolisch
- Transport von Information

viskose Flüsse:

- parabolisch
- Dissipation und Wärmeleitung

Viskoste Flüsse

$$\mathbf{F}_{x}^{D} = \begin{pmatrix} 0 \\ \mu\left(\frac{4}{3}\left(v_{1}\right)_{x} - \frac{2}{3}\left(v_{2}\right)_{y}\right) \\ \mu\left(\left(v_{1}\right)_{y} + \left(v_{2}\right)_{x}\right) \\ \mu\left[v_{1}\left(\frac{4}{3}\left(v_{1}\right)_{x} - \frac{2}{3}\left(v_{2}\right)_{y}\right) + v_{2}\left(\left(v_{1}\right)_{y} + \left(v_{2}\right)_{x}\right)\right] + \lambda T_{x} \end{pmatrix}$$

$$\mathbf{F}_{y}^{D} = \begin{pmatrix} 0 \\ \mu\left(\left(v_{1}\right)_{y} + \left(v_{2}\right)_{x}\right) \\ \mu\left(\frac{4}{3}\left(v_{2}\right)_{y} - \frac{2}{3}\left(v_{1}\right)_{x}\right) \\ \mu\left[v_{1}\left(\left(v_{1}\right)_{y} + \left(v_{2}\right)_{x}\right) + v_{2}\left(\frac{4}{3}\left(v_{2}\right)_{y} - \frac{2}{3}\left(v_{1}\right)_{x}\right)\right] + \lambda T_{y} \end{pmatrix}$$

Viskose Zeitschrittbedingung

Parabolischer Charakter der Reibungsterme beeinflussen die Stabilität des numerischen Verfahrens stark \Rightarrow DFL-Bedingung.

DFL-Bedingung:

CFL-Bedingung

$$\Delta t \le \frac{\min(\rho)\Delta x^2}{2\mu}$$
 (3) $\Delta t \le \frac{\Delta x}{\max(|v|+c)}$

viskose Zeitschrittbedingung - projizierte Flächen

Viskose Zeitschritt wird über die projezierten Längen S_x und S_y der Gitterelemente berechnet.

$$\Delta t_{\rm visc} = {
m DFL} rac{S}{4(\Lambda_x + \Lambda_y)}$$
 (5)

Die viskosen spektralen Radien sind dabei:

$$\Lambda_x = \max\left(\frac{4}{3}, \frac{\gamma}{\Pr}\right) \frac{\mu}{\rho} \frac{S_x^2}{S}$$

$$\Lambda_y = \max\left(\frac{4}{3}, \frac{\gamma}{\Pr}\right) \frac{\mu}{\rho} \frac{S_y^2}{S}$$

SineWave Testcase

Konvergenzordnung

Es wird ein sinusförmiger Dichtepuls transporiert.

Raumordnung: 1, 2

 μ : 0, 0.01, 0.05, 0.1

Gitterzahl: 100x100, 200x200, 400x400

Die empirische Konvergenzordnung des Verfahrens ergibt sich zu

$$n = \frac{\log(\frac{E_1}{E_2})}{\log(\frac{h_1}{h_2})},\tag{8}$$

wobei E die Diskretisierungsfehler und h den gemittelten Gitterabstand darstellen.

Abbildung: SineWave Testcase Density für $\mu = 0.1$

SineWave Testcase

Konvergenzordnung

Ordnung	μ	n ₂ -Ordnung	Rechenzeit [s]
1 (E)	-	0.983	68.11
1 (NS)	0	0.980	91.50
1 (NS)	0.01	0.979	387.41
1 (NS)	0.05	0.962	1906.77
1 (NS)	0.1	0.972	3263.09

Tabelle: Rechenzeit und Ordnung bei O1 (400x400 Zellen)

SineWave Testcase

Konvergenzordnung

Ordnung	μ	n ₂ -Ordnung	Rechenzeit [s]
2 (E)	-	1.84	300.55
2 (NS)	0	1.85	262.63
2 (NS)	0.01	2.02	1205.84
2 (NS)	0.05	1.87	6123.78
2 (NS)	0.1	1.81	11998.56

Tabelle: Rechenzeit und Ordnung bei O1 (400x400 Zellen)

Blasius Grenzschicht

- Entdimensionalisierung der Größen
- Vergleich der numerischen Ergebnisse mit der analytischen Lösung der Grenzschichtgleichung.
- Implizite Berechnung (DFL-Bedingung)

Grenzschichtgleichung:

$$\delta_{99} = \frac{5 \cdot x}{\sqrt{Re_x}} \tag{9}$$

Abbildung: Axialgeschwindigkeit über einer laminar angeströmten ebenen Platte.

Grenzschichtströmung

Geschwindigkeitsprofil

Abbildung: Profil der Axialgeschwindigkeit an der Stelle x=2.

Grenzschichtströmung

Grenzschichtdicke

Abbildung: Vergleich der theoretischen Grenzschichtdicke zur Simulation.

Cylinder Testcase

Viskoser Fall oben - Euler Fall unten

Cylinder Testcase

Auftriebs- und Widerstandsbeiwert

Cylinder Testcase

Vergleich Auftriebs- und Widerstandsbeiwert

Rechnung	Rechenzeit [s]	$c_l[-]$	$c_d[-]$
$\mu = 0$	150.83	0.001063	0.323603
$\mu = 0.002$	3229.61	[-0.8; 0.8]	[1.259; 1.63]

Lessons learned

- DFL-Bedingung erhöht Rechenzeit unter Umständen spürbar
- Viskosität hat keinen Einfluss auf das Konvergenzverhalten
- Ergebnisse der numerischen Lösung sind Modellabhängig ⇒ Vorsicht bei der Konstruktion der Randbedingungen!

Vielen Dank für die Aufmerksamkeit!

Anhang

Ordnung	μ	Gitter	L_1 — Fehler	L_2 — Fehler	L_{inf} — Fehler
1	0	100x100	3.36E-3	4.26E-3	1.11E-2
1	0	200x200	1.71E-3	2.17E-3	5.73E-3
1	0	400x400	8.67E-4	1.10E-3	2.93E-3
2	0	100x100	7.97E-5	1.13E-4	5.16E-4
2	0	200x200	2.04E-5	2.80E-	1.42E-4
2	0	400x400	5.86E-6	7.78E-6	4.05E-5
1	0.01	100x100	3.19E-3	4.06E-3	1.06E-2
1	0.01	200x200	1.59E-3	2.01E-3	6.55E-3
1	0.01	400x400	8.15E-4	1.02E-3	3.89E-3
2	0.01	100x100	5.26E-5	6.79E-5	2.61E-4
2	0.01	200x200	1.25E-5	1.62E-5	7.32E-5
2	0.01	400x400	3.06E-6	4.00E-6	2.23E-5

Flussberechnung auf strukturierten Gittern

1. Satz von Green

$$\int_{v'} \frac{\partial f}{\partial x} - \frac{\partial g}{\partial y} \, dx = \oint_{\partial v'} g dx + f dy$$

- 2. Setze f = u; g = 0
- 3. Integral auflösen

$$V'\frac{\partial u}{\partial x} = \Delta y(U_{i,j} + U_{i+1,j})$$

$$\Rightarrow \frac{\partial u}{\partial x} = \frac{U_{i,j} + U_{i+1,j}}{\Delta x}$$

Analog:

$$\frac{\partial u}{\partial y} = \frac{U_{i+\frac{1}{2},j+\frac{1}{2}} + U_{i+\frac{1}{2},j-\frac{1}{2}}}{\triangle y}$$

Flussbrechung auf strukturierten Gittern

Bei der Gradientenbestimmung werden Werte an den Seitenmittelpunkten verwendet. Diese werden wie folgt berechnet:

$$U_{i+\frac{1}{2},j+\frac{1}{2}} = \frac{1}{4}(U_{i,j} + U_{i,j+1} + U_{i+1,j} + U_{i+1,j+1})$$

$$U_{i+\frac{1}{2},j+\frac{1}{2}} = \frac{1}{4}(U_{i,j} + U_{i,j+1} + U_{i+1,j} + U_{i+1,j+1})$$

Flussberechnung auf unstrukturierten Gittern

Im Gegensatz zum strukturierten Gitter müssen auf unstrukturierten Gittern auch die nicht abgeleiteten Größen durch Mittelung der Nachbarzellen bestimmt werden.

$$(v_1)_a = \frac{(v_1)_{i,a} + (v_1)_{j,a}}{2}$$
 (10)

$$(v_2)_a = \frac{(v_2)_{i,a} + (v_2)_{j,a}}{2}$$
 (11)

$$(\mu_2)_a = \frac{(\mu)_{i,a} + (\mu)_{j,a}}{2} \tag{12}$$

$$(\lambda)_a = \frac{(\lambda)_{i,a} + (\lambda)_{j,a}}{2} \tag{13}$$

Flussberechnung auf unstrukturierten Gittern

Die Gradienten können auf den Zellseiten nicht effizient mit dem Satz von Green bestimmt werden. Lösung mit dem empirischen Ansatz:

$$\nabla U_a = (\overline{\nabla U})_{i,j} - \left[(\overline{\nabla U})_{i,j} \cdot \vec{t_{i,j}} - \left(\frac{\partial U}{\partial l} \right)_{i,j} \right] \vec{t_{i,j}}$$
(14)

Dabei ist $ec{t_{i,j}} = rac{ec{r}_{i,j}}{l_{i,j}}$ der Vektor, zu dem der Gradient

$$(\overline{\nabla U})_{i,j} = 0.5(\nabla U_i + \nabla U_j) \tag{15}$$

verwendet wird. Tangential zu $t_{i,i}$ wird die Richtungsableitung

$$\left(\frac{\partial U}{\partial l}\right)_{i,i} = \frac{U_j - U_i}{l_{i,j}} \tag{16}$$

verwendet.

Anhang

Ordnung	μ	Gitter	L_1 — Fehler	L_2 — Fehler	L_{inf} — Fehler
1	0.5	100x100	2.98E-3	3.72E-3	1.23E-2
1	0.5	200x200	1.55E-3	1.93E-3	7.00E-3
1	0.05	400x400	7.94E-4	9.91E-4	3.84E-3
2	0.05	100x100	5.08E-5	7.10E-5	3.32E-4
2	0.05	200x200	1.28E-5	1.90E-5	1.16E-4
2	0.05	400x400	3.27E-6	5.20E-6	4.07E-5
1	0.1	100x100	3.22E-3	3.90E-3	1.21E-2
1	0.1	200x200	1.67E-3	2.02E-3	6.73E-3
1	0.1	400x400	8.53E-4	1.03E-3	3.58E-3
2	0.1	100x100	5.58E-5	8.57E-5	4.18E-4
2	0.1	200x200	1.44E-5	2.42E-5	1.52E-4
2	0.1	400x400	3.70E-6	6.88E-6	5.56E-5

Blasius-Gleichung

Die Blasius-Gleichung ist eine Vereinfachung der Navier-Stokes Gleichungen und beschreibt die stationäre, inkompressible Strömung auf einer 2D Ebenen Platte auf der sich eine Grenzschicht ausbildet.

$$f''(\theta) + \frac{1}{2}f'(\theta) \cdot \int_0^{\theta} f(t) dt$$