Lecture 1: Introduction, Polynomial Curve Fitting, and Probability Theory - 13/01/20

H₂ Notations

using Classifying Hand Written Digits as example

- A training set of N digits
- Each digit, i, is an image, representing as an **input vector of pixel values** x_i
- The category of each digit, i, is known and expresses as **target vector** t_i
- ML algorithm outputs function y(x), which can take new digit input x and output vector y, which is a **guess** of the target t. The precise form of y(x) is determined during the training phases.
- The ability to categorise new examples that differ from those used for training is called *generalisation*

H2 Supervised Learning

Problems are ones where the data contains both input and corresponding target vectors.

- Classification
- Regression

The inputs may be *pre-processed* to reduce variability in the inputs.

H2 Unsupervised Learning

Problems are ones where the data contains only input vetors but no targets.

- *Clustering* discovering groups of similiar examples
- **Density Estimation** learning how data is distributed
- *Dimensionality Reduction* representing high dimensional data with just a few variables

H2 Reinforcement Learning

Problems are ones that interact with an environment by choosing actions and observing changes in state. Actions must act to maximise a *reward signal*. Optimal actions are discovered by *trials and errors*.

H₂ Polynomial Curve Fitting

- Training inputs $\boldsymbol{x} = (x_1, \dots, x_N)^T$
- ullet Training targets $oldsymbol{t} = (t_1, \dots, t_N)^T$

This is *synthetic data* - we know how it originatged

- Each x_i is sampled uniformly from [0,1]
- Each $t_i = sin(2\pi x_i) + (Gaussian\ Noise)$

Data tends to have an underlying regularity or structure obscured by noise. Noise can be:

- intrinsically stochastic (random)
- resulted of unobserved sources of variability

- Predict a target $\hat{m{t}}$ for an unseen input $\hat{m{x}}$
- Discover the underlying structure
- Sparate it from the *noise*

H₃ Fitting with Linear Model

$$y(x,\mathbf{w})=w_0+w_1x+w_2x^2+\cdots+w_Mx^M=\sum_{j=0}^M w_jx^j$$

- M is the order of the polynomial
- Polynomial coefficients w_0, \ldots, w_M are collected into vector \mathbf{w}
- $y(x, \mathbf{w})$ is non-linear in x, but it is linear in \mathbf{w} and so we call this a *linear model*

We estimate values for $m{w}$ by fitting the function to training data. Fit the function by $m{minising}$ an $m{error}$ function

H3 Error Function

A widely used error function is the Sum of Square Errors

$$E(oldsymbol{w}) = rac{1}{2} \sum_{n=1}^N [y(x_n, \mathbf{w}) - t_n]^2$$

- Best Fit $w^* = \arg\min_{w} E(\mathbf{w})$
- Perfect Fit if $E(\mathbf{w}^*) = 0$
- Bigger differences are increasingly *penalised*

H₃ Finding the Best Polynomial Degree

Choosing the best M is an example of **Model Selection**

- ullet Small values of $\,M\,$ give a poor fit
- Large values of M appear to over-fit capture the noise rather than underlying structure

H2 Evaluating Fit and Regularisation

We need an objective way to test our fit

Root Mean Squared Error (RMSE)

$$E_{RMS} = \sqrt{rac{2}{N}E(\mathbf{w}^*)}$$

Comparable for different amounts of data

H2 Avoiding Over-fitting

H₃ Indirect Evidence of Over-fitting

- ullet Dramatic increse of E_{RMS} of training set and the difference between the E_{RMS} of training set and testing set as degree gets larger
- Magnitude of \mathbf{w}_{i}^{*} is extremely large

Over-fitting means we fail to generalise to un seen data

$\begin{array}{c} w_0^{\star} \\ w_1^{\star} \\ w_2^{\star} \\ w_3^{\star} \end{array}$	$\begin{array}{ c c }\hline M=0\\\hline 0.19\\ \end{array}$	M = 1 0.82 -1.27	M = 3 0.31 7.99 -25.43 17.37	M = 9 0.35 232.37 -5321.83 48568.31	M = 0 0 0 0 0 0 0 0 0 0
w_{4}^{\star} w_{5}^{\star} w_{6}^{\star} w_{7}^{\star} w_{8}^{\star} w_{9}^{\star}				-231639.30 640042.26 -1061800.52 1042400.18 -557682.99 125201.43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

For M=9, the magnitude of some \mathbf{w}_i^* are very large, and the model makes some extreme predictions

Dilemma: Complex Models(more expressive) v. Over-fitting

H₃ Solution 1: Use More Data

H₃ Solution 2: Regularisation

Using a new *error function* that *penalises* extreme parameter values

$$ilde{E}(\mathbf{w}) = rac{1}{2} \sum_{n=1}^N [y(x_n, \mathbf{w}) - t_n]^2 + rac{\lambda}{2}$$

Where

$$||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \dots + w_M^2$$

Minimising error function

$$\mathbf{w}^* = \arg\min_w \tilde{E}(\mathbf{w})$$

Regularisation appears to control the effective complexity of the model, and hence the degree of overfitting.

H2 Probability Theory

H3 Frequentist Probability

 p_{XY} is $\emph{probability mass function}$ over values that random variables X and Y can take.

$$Pr(X = x_i, Y = y_i) = p_{XY}(x_i, y_i)$$

X is a random variable that can take any value x_i , so does Y with y_i If we sample (X,Y) a large number of times N:

- n_{ij} is the number of times $X = x_i, Y = y_j$
- ullet c_i is the number of times $X=x_i$
- r_j is the number of times $Y = y_j$

Probability mass functions capture the relative frequency of outcomes

H₃ Probability

Marginal Probability:

$$Pr(X=X_I)=p_X(x_i)=rac{c_i}{N}$$

Joint Probability:

$$Pr(X=x_i,Y=y_j)=p_{XY}(x_i,y_j)=rac{n_{ij}}{N}$$

Conditional Probability:

$$Pr(Y=y_j|X=x_i)=p_{Y|X}(y_j|x_i)=rac{n_{ij}}{c_i}$$

H₃ Rule

Sum Rule:

$$p_X(x) = rac{c_i}{N} = rac{1}{N} \sum_j n_{ij} = \sum_j p_{xy}(x_i, y_j)$$

Product Rule:

$$p_{XY}(x_i,y_j) = rac{n_{ij}}{N} = rac{n_{ij}}{c_i} imes rac{c_i}{N} = p_{Y|X}(y_j|x_i)p_X(x_i)$$

H₄ Application in 3 Random Variables Case

$$egin{aligned} p(x,y) &= \sum_z p(x,y,z) \ p(x,y,z) &= p(x,y|z)p(z) \ &= p(y,z|x)p(x) \end{aligned}$$

If $p_{XY}(x,y) = p_X(x)p_Y(y)$, we say X and Y are **independent**

H₄ Application of Probability Rule

Randome Variables:

- A disease status (ill or healthy)
- B blood test (+ve or -ve)

$$p_{AB}(a,b)=p_{A|B}(a|b)p_B(b)=p_{B|A}(b|a)p_A(a)$$

 $egin{aligned} p_A(ill) &= Pr(person\ has\ disease) = 1\% \ p_B(+ve) &= Pr(person\ has\ +ve\ blood\ test) = 10\% \ p_{B|A}(+ve|ill) &= Pr(blood\ test\ is\ +ve\ given\ person\ is\ ill) = 70\% \ p_{A|B}(ill|+ve) &= Pr(person\ is\ ill\ given\ blood\ test\ is\ +ve) = 7\% \end{aligned}$

H₃ Reasoning

$$p(y|x) = rac{p(x|y)p(y)}{p(x)}$$

 $p(x) = \sum_y p(x|y) p(y)$ *normalises* the equation Practically:

$$p(y|x) \propto p(x|y)p(y)$$

 $posterior \propto likelihood imes prior$

H2 Frequentist v. Bayesian

In the frequentist perspective, probability distributions represent *expected outcomes given a large number of trails*, e.g.

$$E[X] = \lim_{N o \infty} rac{1}{N} \sum_n x_n$$

Bayesian Inference involves shfting the perspective in order to reason about vents that may happen only once, in which probability is a measure of belief