CPSC 5031 : Data Structures & Algorithms

Lecture 6: Binary Search Trees

(Levitin, Chapter 4.5, 5.3)

Review: Linear Search

 Collection of data items to be searched is organized in a list

$$X_1, X_2, ... X_n$$

- Assume == and < operators defined for the type</p>
- Linear search begins with item 1
 - continue through the list until target found
 - or reach end of list

Binary Search

• Two requirements?

Binary Search

- Two requirements
 - The data items are in ascending order (can they be in decreasing order?
 - Direct access of each data item for efficiency (why linked-list is not good!)

Binary Search vs. Linear Search

- Usually outperforms Linear Search:
 O(log n) vs. O(n)
- Disadvantages
 - Sorted list of data items (O(n log n) best case)
 - Direct access of storage structure, not good for linked-list
- Good news: It <u>is</u> possible to use a linked structure which can be searched in a binary-like manner

Binary Search Tree (BST)

Consider the following ordered list of integers

- 1. Examine middle element
- 2. Examine left, right sublist (maintain pointers)
- 3. (Recursively) examine left, right sublists

Binary Search Tree

 Redraw the previous structure so that it has a treelike shape – a <u>binary tree</u>

Trees

- A data structure which consists of
 - a finite set of elements called <u>nodes</u> or vertices
 - a finite set of <u>directed arcs</u> which connect the nodes
- If the tree is nonempty
 - one of the nodes (the <u>root</u>) has no incoming arc
 - every other node can be reached by following a unique sequence of consecutive arcs (or paths)

Trees

Tree terminology

Binary Trees

- Each node has at most two children
- Useful in modeling processes where
 - a comparison or experiment has exactly two possible outcomes
 - the test is performed repeatedly
- Example
 - multiple coin tosses
 - encoding/decoding messages in dots and dashes such as Morse code

Array Representation of Binary Trees

• Store the i^{th} node in the i^{th} location of the array

Array Representation of Binary Trees

Works OK for complete trees, not for sparse trees

Some Tree Definition

- Complete trees
 - Each level is completely filled except the bottom level

This means "depth"

- The leftmost positions are filled at the bottom level
- Array storage is perfect for them
- Balanced trees
 - Binary trees
 - |left_subtree| |right_subtree|<=1</pre>
- Tree Height/Depth:
 - Number of levels

Tree Questions

- A complete tree must be a balanced tree?
- Give a node with position i in a complete tree, what are the positions of its child nodes?
 - Left child?
 - Right child?

Linked Representation of Binary Trees

- Uses space more efficiently
- Provides additional flexibility
- Each node has two links
 - one to the left child of the node
 - one to the right child of the node
 - if no child node exists for a node, the link is set to NULL

Linked Representation of Binary Trees

Example

Binary Trees as Recursive Data Structures

A binary tree is either <u>empty</u> ...
 or

Basis step

- Consists of
 - a node called the <u>root</u>
 - root has pointers to two disjoint binary (sub)<u>trees</u> called ...
 - right (sub)tree
 - left (sub)tree

Which is either empty ... or ...

Which is either empty ... or ...

Inductive step

Tree Traversal is Recursive

If the binary tree is empty then do nothing

Else

N: Visit the root, process data

L: Traverse the left subtree

R: Traverse the right subtree

Basis step

The inductive step

Traversal Order

Three possibilities for inductive step ...

 Left subtree, Node, Right subtree the <u>inorder</u> traversal

 Node, Left subtree, Right subtree the <u>preorder</u> traversal

 Left subtree, Right subtree, Node the <u>postorder</u> traversal

Binary Search Tree (BST)

- Collection of Data Elements
 - Binary tree
 - BST property: for each node x,
 - value in left child of x < value in x < in right child of x
- Basic operations
 - Construct an empty BST
 - Determine if BST is empty
 - Search BST for given item

Binary Search Tree (BST)

- Basic operations (ctd)
 - Insert a new item in the BST
 - Maintain the BST property
 - Delete an item from the BST
 - Maintain the BST property
 - Traverse the BST
 - Visit each node exactly once
 - The *inorder traversal* must visit the values in the nodes in ascending order

BST

```
typedef int T;
class BST {
   public:
     BST(): myRoot(0) {}
     bool empty() { return myRoot==NULL; }
   private:
     class BinNode {
       public:
         T data;
         BinNode* left, right;
         BinNode() : left(0), right(0) {}
         BinNode(T item): data(item), left(0), right(0) {}
     }; //end of BinNode
     typedef BinNode* BinNodePtr;
     BinNodePtr myRoot;
};
```

BST Traversals

- Inorder, preorder and postorder traversals (recursive)
- Non-recursive traversals
- Done in divide-and-conquer

BST Searches

- Search begins at root
 - If that is desired item, done
- If item is <u>less</u>, move down <u>left</u> subtree
- If item searched for is greater, move down right subtree
- If item is not found, we will run into an empty subtree

Insertion Operation

Basic idea:

- Use search operation to locate the insertion position or already existing item
- Use a parent point pointing to the parent of the node currently being examined as descending the tree

Three possible cases to delete a node, x, from a BST

1. The node, x, is a leaf

2. The node, x has one child

3. The node, x has two children

3. The node, x has two children (cont.)

Questions?

- What is T(n) of search algorithm in a BST? Why?
- What is T(n) of insert algorithm in a BST?
- Other operations?

Problem of Lopsidedness

- The order in which items are inserted into a BST determines the shape of the BST
- Result in Balanced or Unbalanced trees
- Insert O, E, T, C, U, M, P
- Insert C, O, M, P, U, T, E

Balanced

Unbalanced

Problem of Lopsidedness

- Trees can be totally lopsided
 - Suppose each node has a right child only
 - Degenerates into a linked list

Processing time affected by "shape" of tree

Next week...

- Heap, Heap Sort, and Priority Queues
 - Read 6.4