Folha Prática – Arrays (tipo de dados composto)

Tipo de dados composto: arrays

Na resolução dos exercícios que se seguem, usar sempre bibliotecas com os subprogramas que vão sendo implementados.

A. Operações básicas

Criar uma biblioteca de nome "OperacoesBasicas.h", para receber todos os subprogramas que podem ser usados nos vários grupos de exercícios.

Impementar um subprograma para inserir a partir do teclado um valor inteiro que esteja entre dois números inteiros, cujo protótipo é o seguinte:

int lerNumeroInteiroValido (int, int);

B. Arrays de 1 dimensão

1. Escreva um programa que leia números inteiros do teclado, guarde-os num array A, cujo tamanho é o valor especificado pela constante TAM, escreva no monitor os valores guardados em A, calcule a soma dos seus elementos e mostre no monitor esta soma. Criar uma biblioteca de nome "Array1DInteiros.h" com os seguintes subprogramas:

```
void lerArray1DInteiros (int[], int);
void escreverArray1DInteiros (int[], int);
int somaArray1DInteiros (int[], int);
```

2. Escreva um programa que calcule o elemento máximo e o elemento mínimo de um array de inteiros cujo tamanho é o valor especificado pela constante TAM. Usar subprogramas da biblioteca "Array1DInteiros.h" e acrescentar os seguintes:

```
int maiorArray1DInteiros (int[], int);
int menorArray1DInteiros (int[], int);
```

3. Escreva um programa que calcule a posição do maior e menor elementos de um **array de inteiros** cujo tamanho é o valor especificado pela constante **TAM**. Usar subprogramas da biblioteca "Array1DInteiros.h" e acrescentar os seguintes:

```
int indiceMaiorArray1DInteiros (int[], int);
int indiceMenorArray1DInteiros (int[], int);
```

4. Escreva um programa que leia vários números **reais** do teclado, guarde-os num array A, cujo tamanho é o valor especificado pela constante **TAM** e escreva depois no

Programação 1

Folha Prática - Arrays (tipo de dados composto)

monitor os valores guardados em A. Criar uma biblioteca de nome "Array1DReais.h" com os seguintes subprogramas:

void lerArray1DReais (float[], int);
void escreverArray1DReais (float[], int);

5. Escreva um programa que some dois **arrays de reais** cujo tamanho é o valor especificado pela constante **TAM**. Usar subprogramas da biblioteca "Array1DReais.h" e acrescentar o seguinte:

void somaArrays1DReais (float[], float[], int);

6. Escreva um programa que copie os elementos de um **array de inteiros** para outro array do mesmo tipo e do mesmo tamanho; o tamanho é especificado pela constante **TAM**. Usar subprogramas da biblioteca "Array1DInteiros.h" e acrescentar o seguinte:

void copiaArray1DInteiros (int[], int[], int);

7. Escreva um programa que calcule a média aritmética dos elementos de um **array de inteiros**, em que o tamanho é especificado pela constante **TAM**. Usar subprogramas da biblioteca "Array1DInteiros.h" e acrescentar o seguinte:

float mediaArray1DInteiros (int[], int);

C. Arrays de 2 dimensões

1. Escreva um programa que leia a partir do teclado um array 2D de reais, em que o número de linhas e o número de colunas são especificados pelas constantes numLinhas e numColunas. Depois, mostre no monitor os elementos do array 2D guardado antes. Criar uma biblioteca de nome "Array2DReais.h" com os seguintes subprogramas:

void lerArray2DReais (float[][], int, int);
void escreverArray2DReais (float[][], int, int);

2. Escreva um programa que calcule a soma dos elementos de um array 2D de reais, em que o número de linhas e o número de colunas são especificados pelas constantes numLinhas e numColunas. Usar subprogramas da biblioteca "Array2DReais.h" e acrescentar o seguinte:

float somaArray2DReais (float[][], int, int);

3. Escreva um programa que calcule o maior elemento e o menor elemento de um array 2D de reais, em que o número de linhas e o número de colunas são especificados pelas constantes **numLinhas** e **numColunas**. Usar subprogramas da biblioteca "Array2DReais.h" e acrescentar os seguintes:

float maiorArray2DReais (float[][], int, int);
float menorArray2DReais (float[][], int, int);

Programação 2

Folha Prática – Arrays (tipo de dados composto)

4. Escreva um programa que escreva no monitor os índices (linha e coluna) do maior e do menor elementos de um array 2D de reais, em que o número de linhas e o número de colunas são especificados pelas constantes **numLinhas** e **numColunas**. Usar as funções que precisar da biblioteca "MatrizReais.h" e acrescentar as seguintes funções:

void indiceMaiorArray2DReais (float[][], int, int); void indiceMenorArray2DReais (float[]);

5. Escreva um programa que some dois arrays 2D de reais, em que o número de linhas e o número de colunas são especificados pelas constantes numLinhas e numColunas. Usar subprogramas da biblioteca "Array2DReais.h" e acrescentar o seguinte:

void somaArrays2DReais (float[][], float[][], int, int);

- **6.** Escreva um programa que leia do teclado um array 2D de reais e depois mostre no monitor o array 2D transposto. Deve usar subprogramas.
- **7.** Escreva um programa que leia do teclado um array 2D de inteiros, e depois mostre no monitor a quantidade de elementos nulos existentes na sua diagonal principal. Deve usar subprogramas!
- **8.** Escreva um programa que leia do teclado dois arrays 2D de reais, calcule o array 2D produto e escreva o array 2D produto calculado no monitor. Deve usar subprogramas!
- **9.** Escreva um programa que, dada um array 2D de reais, determine a linha cuja soma dos seus elementos é máxima. Deve usar subprogramas!
- 10. Um treinador de atletismo treina 5 atletas e faz 12 sessões de treino por semana. Em cada sessão, cada atleta percorre uma distância que é cronometrada. Os valores dos tempos, em segundos, são registados sob a forma de um array 2D T (5 linhas por 12 colunas), onde cada linha diz respeito a um atleta e cada coluna a uma sessão de treino. Supondo já feita a leitura para o array 2D, escreva um programa para (usar subprogramas):
 - a) calcular e escrever a média dos tempos realizados em cada sessão de treinos;
 - **b)** determinar e escrever o melhor tempo realizado por cada um dos atletas nas 12 sessões.
- **11.** Num array 2D de inteiros M com 35 linhas e 12 colunas, encontra-se registado as notas dos 35 alunos de cada uma das 12 turmas da disciplina de Álgebra. Sabendo que todos os elementos de M são valores entre 0 e 20, escreva um programa que (usar funções):
 - a) determine e escreva o número de alunos aprovados (nota >= 10);
 - **b)** determine e escreva a melhor nota em cada uma das turmas;
 - c) identifique a turma com maior número de alunos aprovados.2

Programação 3