

Analog IC Design

Lecture 13 gm/ID Design Methodology

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

13: gm/ID Design [Sedra/Smith, 2015]

Regions of Operation Summary

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \quad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \quad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

$$v_{bs} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs}$$

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- Always in saturation
- \square Bulk effect: $g_m \rightarrow g_m + g_{mb}$

Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$
 $G_m = \frac{i_{out,sc}}{v_{in}}$
 $A_v = G_m R_{out}$
 $A_i = G_m R_{in}$

- Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)
	R _D , V _{out} V _{out,sc} V _x R _s i _{out,sc}	R _D , V _{out} j _{out,sc} V _{in}	iout,sc V _x V _{in} V _{out} iout,sc
	Voltage & current amplifier	Current buffer	Voltage buffer
Rin	∞	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D / / r_o [1 + (g_m + g_{mb}) R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Differential Amplifier

	Pseudo Diff Amp	Diff Pair (w/ ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} $ $\gg 1$

Op-Amp

- ☐ An op-amp is simply a high gain differential amplifier
- The gain can be increased by using cascodes and multi-stage amplifiers

Op-Amp vs OTA

- ☐ An OTA is an op-amp without an output stage (buffer)
- ☐ Some designers just use op-amp name and symbol for both

	Op-amp	ОТА
Rout	LOW	HIGH
Model	$V_{in} \longrightarrow I_{in}$ $A_{v}V_{in} \longrightarrow A_{v}V_{in}$	$V_{in} \bigcirc V_{in} \bigcirc V_{out}$ $R_{in} \longrightarrow R_{out} \bigcirc V_{out}$
Diff input, SE output		
Fully diff 13: gm/ID Design		12

MOSFET Figures-of-Merit (FoM)

- ☐ Intrinsic gain (gm*ro)
- Intrinsic frequency (transit frequency) (gm/Cgg)
- Current efficiency (gm/ID)

Intrinsic Gain

$$v_{out} = -(g_m v_{in})r_o$$
$$|A_v| = \left|\frac{v_{out}}{v_{in}}\right| = g_m r_o$$

 \Box $g_m r_o$ is the max gain that can be obtained from a single transistor

$$g_m r_o = \frac{2I_D}{V_{ov}} \cdot \frac{1}{\lambda I_D} = \frac{2}{\lambda V_{ov}}$$

- Lower V_{ov} (or equivalently lower I_D): weak inversion and subthreshold operation
- Longer L (i.e., smaller λ)
- Both come at the expense of speed

Intrinsic Frequency

 \Box f_T is the frequency at which the MOSFET current gain drops to one (i.e., unity-gain frequency)

$$i_{out} = g_m v_{gs} = g_m \frac{i_{in}}{s C_{gg}}$$

 $\theta i_{out} = i_{in}$ $f_T = \frac{g_m}{2\pi C_{gg}}$ $\approx \frac{1}{2\pi} \cdot \mu C_{ox} \frac{W}{L} V_{ov} \cdot \frac{1}{\frac{2}{3} W L C_{ox}}$ $\approx \frac{3\mu V_{ov}}{4\pi L^2}$

Intrinsic Frequency (Speed)

 \Box f_T is the frequency at which the MOSFET current gain drops to one (i.e., unity-gain frequency)

$$f_T \approx \frac{3\mu V_{ov}}{4\pi L^2}$$

- For higher speed
 - Higher V_{ov} (or equivalently higher I_D): strong inversion and higher power consumption
 - Shorter L (technology scaling helps!)
 - Just opposite to higher gain!
 - Analog design is all about trade-offs!
- lacktriangle After velocity sat, g_m and f_T saturate and become independent of V_{ov}

gm/ID

- gm/ID is the transconductance per unit current (a measure of energy efficiency)
 - How much transconductance (or GBW) can we get from each micro-amp of current

$$\frac{g_m}{I_D} = \frac{2}{V_{ov}}$$

- For higher efficiency
 - Lower V_{ov} (or equivalently lower I_D): weak inversion and subthreshold operation
 - Comes at the expense of speed

☐ Subthreshold slope (S) = 80mV/decade

[Razavi, CMOS]

■ MOSFET behaves as a BJT (npn for an NMOS) with its base coupled to the gate through capacitive divider

$$I_D = I_{Do} \frac{W}{L} e^{\frac{V_{GS}}{nV_T}}$$

$$n = \frac{C_i + C_d}{C_i} \approx 1.5$$

V_{GS} [V] [Rabaey, Low-Power Essentials]
13: gm/ID Design

■ MOSFET behaves as a BJT (npn for an NMOS) with its base coupled to the gate through capacitive divider

$$I_{D} = I_{Do} \frac{W}{L} e^{\frac{V_{GS}}{nV_{T}}}$$

$$V_{T} = \frac{kT}{q}$$

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \frac{I_{D}}{nV_{T}} = \frac{2I_{D}}{V^{*}}$$

$$V^{*} = 2nV_{T}$$

Onset of strong inversion

$$V^* = V_{ov} \rightarrow V_{ov} = 2nV_T \approx 80mV$$

- lacktriangle MOSFET in saturation if $V_{DS} > V^*$
- \Box For strong inversion: $V^* = V_{ov}$

Subthreshold Intrinsic Gain

$$g_m r_o = \frac{2}{\lambda V^*} = \frac{1}{\lambda n V_T}$$

- \Box Independent of V_{ov}
- No improvement as we go deeper in subthreshold

Subthreshold Intrinsic Speed

$$f_T = \frac{g_m}{2\pi C_{gg}}$$

$$\approx \frac{1}{2\pi} \cdot \frac{2I_D}{V^*} \cdot \frac{1}{C_{gg}}$$

$$\approx \frac{I_D}{2\pi n V_T C_{gg}}$$

 \square Continues to degrade as I_D decreases

Subthreshold Current Efficiency

$$\frac{g_m}{I_D} = \frac{2}{V^*} = \frac{1}{nV_T}$$

- \square Independent of V_{ov}
- No improvement as we go deeper in subthreshold

CAUTION

Exponential IV characteristics

Very sensitive to PVT variations

Don't be a SPICE Monkey!

- In absence of a clear methodology for hand analysis, many designers tend to converge toward a "SPICE monkey" design methodology
 - No hand calculations, iterate in SPICE until the circuit "somehow" meets the specifications
 - Typically results in sub-optimal designs, uninformed design decisions, etc.
- A SPICE monkey is someone who does not use hand analysis to figure out how to design a circuit, but rather plugs stuff into SPICE and uses whatever value works

gm/ID Design Methodology

- Traditionally, square-law was used in hand analysis to obtain initial design point
 - But short channel devices in recent technologies do not obey the square law
 - Square law is seldom used in nowadays designs
- The popular approach nowadays is using gm/ld (or equivalently V*) design methodology
 - V* is not equal to V_{ov} (also known as V_{eff}) except for a long channel devices at strong inversion
- Perform DC sweeps for both PMOS and NMOS to generate design charts vs gm/ld (or V*)
 - Use these charts to design your circuit to meet required specs

Design Tradeoffs

- ☐ There are always tradeoffs between gain, speed, and energy efficiency
- The design knobs that you use to control the tradeoffs are W and L
- ☐ Finding the best compromise for design tradeoffs given required specs is your job as a designer
- ☐ For practical designs, other factors like matching, signal-swing, and noise are also very important

OTA Design Example

☐ We are allowed to use ideal external 10uA DC current source

Technology	0.18um CMOS
Supply voltage	1.8V
Load	5pF
Cgg	<= 100fF
Open loop DC voltage gain	>= 40dB
Phase margin	>= 70°
Total current consumption	<= 30uA
CM input range – low	<= 0.2V
CM input range – high	>= 1.1V
GBW	5MHz

Architecture Selection

- ☐ The required gain is not high (only 40dB=100) so it can be achieved by a simple single stage OTA
 - If the gain is high, we must use cascode or two stage OTA
- ☐ Since the required CMIR is close to the ground rail, we need to use PMOS input stage
- PMOS input stage has other advantages as well
 - PMOS usually has low flicker noise
 - PMOS input transistors can be placed in a separate well so they don't suffer from body effect

Architecture Selection

- Single stage is unconditionally sable, so we don't need to worry about PM
 - For two-stage you must use compensation network
- ☐ We use simple current mirror for biasing
 - The input current is 10uA, so all the remaining current (30-10=20uA) will go to our diff pair

PMOS Design Charts

 \Box L = 0.2um:0.2um:2um, VDS = 1V

PMOS Input Stage

$$\Box GBW = \frac{g_m}{2\pi C_L}$$

$$\Box g_m = 2\pi \times 5p \times 5M \approx 160 \mu S$$

$$\Box I_d = \frac{20\mu}{2} = 10\mu A$$

$$\Box \frac{g_m}{I_d} = 16$$

☐ From the design charts we find that

$$V_{ov} \approx 56mV$$

PMOS Input Stage

- ☐ Next, we need to find the channel length to get the required gain
- $lue{}$ We assume PMOS and NMOS have same r_o

$$A_v = \frac{g_m r_o}{2} \to \frac{g_m}{g_{ds}} > 200$$

- ☐ From the design chart, we find that required length is **L=0.6um**
- We can also calculate $r_o \approx \frac{230}{g_m} \approx 1.44 M\Omega$ (we will use this later when we design the NMOS load)
- Going again to the chart we find that

$$\frac{I_d}{W} = 0.384 \rightarrow W = \frac{10}{0.384} \approx 26 \mu m$$

■ Back to the chart to check the capacitance we find that

$$\frac{g_m}{C_{gg}} = 1.83e9 \rightarrow C_{gg} \approx 87fF$$

NMOS Design Charts

 \Box L = 0.2um:0.2um:5um, VDS = 1V

13: gm/ID Design gm/ld gm/ld 39

NMOS Current Mirror Load

- ☐ The design of current mirror load is determined by noise, CMIR, and output swing specs
- ☐ Given our CMIR requirements (CMIR-low < 0.2V) and since there no noise spec, we can go for V*=200mV (gm/ld=10) since this is usually a good compromise

$$V^* = \frac{2I_d}{g_m} \rightarrow \frac{g_m}{I_d} = 10$$
$$g_m = 100\mu S$$

NMOS Current Mirror Load

☐ To select channel length we use gain spec to determine gm/gds

$$r_o = \frac{1}{g_{ds}} = 1.44M$$

$$\frac{g_m}{g_{ds}} = 100\mu \times 1.44M = 144$$

- To meet this requirement we select <u>L=4.2um</u> as shown in the NMOS design charts
 - We find this corresponds to $V_{ov} \approx 165 mV$
- Going again to the chart we find that

$$\frac{I_d}{W} = 1.174 \rightarrow W = \frac{10}{1.174} \approx 8.5 \mu m$$

Tail Current Source

- ☐ The design considerations here are as follows:
 - Long channel length means large output resistance: good CMRR
 @DC and good mirroring

$$A_{vCM} = \frac{V_{out}}{V_{iCM}} \approx -\frac{1}{2g_{m3,4}R_{SS}}$$

$$CMRR \approx g_{m1,2}(r_{o2}//r_{o4}) \cdot 2g_{m3,4}R_{SS}$$

- But long L → large W → large parasitic cap: CMRR and power supply rejection ratio (PSRR) degrades at high frequencies
- Large V* means better mirroring and better matching
- But large V* means smaller swing

Tail Current Source

- Given no strict specs, we may go for V*=200mV (gm/Id=10) which also meets our swing requirements (CMIR-high > 1.1V), noting that V_T is ~0.4V (V_T is a function of W and L)
- Note that the tail current source has double the current

Notes

- \square The design charts (especially gm/gds) depend on V_{DS}
 - We neglected this dependence for simplicity
 - But practically you need to add some margin to your specs (e.g., 20%) to account for this
 - Or use multiple charts at multiple V_{DS}
- The total load capacitance is composed of external load capacitance and parasitic capacitance from the OTA itself
 - We did not consider parasitic cap in this tutorial for simplicity
 - But practically it should be considered by adding some margin to GBW or increasing effective load cap (or re-iterate)
- ☐ We did not consider process variations, mismatch, and noise

Thank you!