Pràctica 4: Quadratura de Gauss

Arnau Mas

6 de juny 2018

1 Introducció

Les fórmules de quadratura gaussianes apareixen per intentar millorar la precisió de les regles de quadratura de Newton-Cotes. Fent una tria precisa dels nodes es pot reduir molt la fita de l'error comès. Concretament, posem que tenim unz funció $f:[a,b] \longrightarrow \mathbb{R}$ integrable i $\omega:[a,b] \longrightarrow [0,\infty)$ una funció pes no negativa en [a,b]. Aleshores aproximarem la integral $\int_a^b \omega(x) f(x) dx$ per

$$\int_{a}^{b} \omega(x) f(x) dx \approx \sum_{i=1}^{n} \omega_{i} f(\alpha_{i}).$$

Els α_i s'anomenen els nodes i els ω_i reben el nom de pesos. L'utilitat de la quadratura de Gauss apareix per a una bona tria de nodes —un cop triats els nodes els pesos queden determinats imposant exactitud de la fórmula per a polinomis de graus entre 0 i n-1.

La funció pes ω indueix un producte interior semidefinit positiu a l'espai de funcions definit com

$$\langle f, g \rangle := \int_a^b \omega(x) f(x) g(x) dx.$$

Es diu que és semidefinit positiu perquè per tota f integrable no nul·la $\langle f, f \rangle \geq 0$. Aleshores podem definir una noció d'ortogonalitat dient que f i g són ortogonals si i només si $\langle f, g \rangle = 0$. Direm que una família de polinomis (p_n) és ortogonal si $\langle p_i, p_j \rangle = 0$ per tot $i \neq j$. Es pot demostrar que per tot pes existeix una única família ortogonal (p_n) de polinomis mònics i tals que gr $p_n = n$. A més, cada membre de la família p_n té n arrels diferents totes contingudes a [a,b]. Precisament aquestes arrels són els nodes de la corresponent fórmula de quadratura de gauss. Els dos pesos que farem servir en aquesta pràctica són $\omega(x) = 1$, que dóna lloc als polinomis de Legendre, i $\omega(x) = (1-x^2)^{-1/2}$, que dóna lloc als polinomis de Chebyshev —ambdós pesos estan definits a [-1,1]. A partir d'ara L_n denotarà el polinomi de Legendre de grau n i C_n denotarà el polinomi de Chebyshev de grau n.

2 Càlcul dels nodes

Existeixen fórmules recursives per a trobar els polinomis de Legendre i de Chebyshev, concretament

$$L_n = \frac{2n-1}{n}xL_{n-1} - \frac{n-1}{n}L_{n-2}$$
(2.1)

i

$$C_n = 2xC_{n-1} - C_{n-2}, (2.2)$$

amb $L_0 = C_0 = 1$ i $L_1 = C_1 = x$.

Al programa polinomis.c hi ha rutines que implementen les equacions (2.1) i (2.2) per calcular els polinomis de Chebyshev i Legendre de grau n. També hi ha implementada una rutina que detecta els punts on un polinomi canvia de signe avaluant-lo a increments petits. Com que sabem que L_n i C_n tenen n arrels diferents a [-1,1], aquesta rutina ens permet trobar una primera aproximació d'aquestes: guarda el punt mig entre dos punts on el polinomi té signe diferent, sabent que ha de trobar exactament n canvis de signe. Si no els troba, ho torna a repetir avaluant a increments més petits. Seguidament, aquestes primeres aproximacions es milloren fent servir el mètode de Newton amb una tolerància donada. Amb tot això tenim els nodes per a les quadratures de Gauss-Legendre i Gauss-Chebyshev.

3 Càlcul dels pesos

Ja hem mencionat que els pesos ω_i queden determinats imposant exactitud de la fórmula. Concretament imposem

$$\int_{-1}^{1} \omega(x) x^k \, dx = \sum_{i=1}^{n} \omega_i \alpha_i^k$$

per tot $0 \le k \le n-1$. Fem el càlcul explícit per les quadratures de Gauss-Legendre i Gauss-Chebyshev. Pel cas de Legendre es té $\omega(x)=1$ i

$$\int_{-1}^{1} x^{k} dx = \left[\frac{x^{k+1}}{k+1} \right]_{-1}^{1} = \frac{1}{k+1} \left(1 + (-1)^{k} \right).$$

Per tant, per tot $0 \le k \le n-1$ s'ha de verificar

$$\sum_{i=1}^{n} \omega_i \alpha_i^k = \frac{1}{k+1} \left(1 + (-1)^k \right).$$

Podem escriure-ho en forma matricial com

asfdjk