Fundação Getulio Vargas Escola de Matemática Aplicada

Wellington José

Resumo de EDO

1 Equações Diferenciais de Primeira Ordem (22/02)

Vamos considerar a equação diferencial linear de Primeira ordem com p(x) e g(x) funções contínuas em $I \subset \mathbb{R}$:

$$y' + p(x)y = q(x)$$

Se g(x) = 0, temos uma equação homogênea, de solução:

$$y(x) = e^{-\int p(x)dx} \cdot e^c$$

Para o caso geral a ideia é multiplicar a equação por um fator integrante transformando-a numa forma imediatamente integrável. Seja u(x) este fator integrante, então

$$u(x)y' + u(x)p(x)y = u(x)g(x)$$

Chegamos que:

$$y(x) = \frac{1}{u(x)} \int u(x)g(x)dx + c$$

е

$$u(x) = e^{\int p(x)dx}$$

2 Equação de Bernoulli e Equações separáveis (24/02)

Um exemplo de equação de Primeira ordem que não é linear é a **equação** de Bernoulli:

$$y' + p(x)y = q(x)y^{\alpha}, \ \alpha \in \mathbb{R}$$

Equações separáveis

São equações diferenciais do tipo

$$M(x) + N(x)\frac{dy}{dx} = 0$$

ou

$$M(x)dx + N(y)dy = 0 (*)$$

Suponhamos $H_1 = \int M(x) dx$ e $H_2 = \int N(y) dy$, então (*) tem como solução

$$H_1(x) + H_2(y) = c$$

que geralmente está na forma implícita.

3 Equações Diferenciais Exatas e Equações Diferenciais Não Exatas (01/03)

Equações Diferenciais Exatas

Considere a equação diferencial

$$M(x,y)dx + N(x,y)dy = 0$$

E suponha que existe uma função f(x, y) tal que

$$\frac{\partial f}{\partial x} = M(x, y), \ \frac{\partial f}{\partial y} = N(x, y), e \ f(x, y) = c$$

Então f(x,y) = M(x,y)dx + N(x,y)dy, e a equação diferencial é **exata**.

Teorema 3.1 Suponha que as funções M, N, M_y e N_x são contínuas na região R: a < x < b, c < y < d. Então a equação M(x,y)dx + N(x,y)dy = 0 é uma equação diferencial exata em R se e somente se:

$$M_y(x,y) = N_x(x,y) \ em \ R$$

Isto é, existe uma função f(x,y)=c, tal que

$$\frac{\partial f}{\partial x} = M(x, y) \ e \ \frac{\partial f}{\partial y} = N(x, y)$$

se e somente se $M_y = N_x$

Equações Diferenciais Não Exatas

Em geral a equação M(x,y)dx + N(x,y)dy = 0 não é exata, mas eventualmente é possível transformá-la numa equação diferencial exata multiplicando por um fator integrante.

Se $\frac{M_y - N_x}{N}$ for uma função só de x então podemos encontrar $u(x) = e^{\int \frac{M_y - N_x}{N} dx}$ como fator integrante. Se $\frac{N_x - M_y}{M}$ for uma função só de y então podemos encontrar $u(y) = e^{\int \frac{N_x - M_y}{M} dy}$ como fator integrante.

Exemplo: ydx - xdy = 0

Como

$$\frac{\partial M}{\partial y} = 1$$
 e $\frac{\partial N}{\partial x} = -1$ não é exata

Note que, $\frac{N_x - M_y}{N} = \frac{2}{x}$ depende apenas de x, e

$$u(x) = e^{-\int \frac{2}{x} dx} = \frac{1}{x^2}$$

Logo, a nova equação

$$\frac{y}{x^2}dx - \frac{1}{x}dy = 0 \text{ \'e exata}$$

4 Problemas de diluição, Resfriamento de um corpo e Juros compostos (03/03)

Problemas de diluição

Considere um tanque contendo no estado inicial V_0 litros de salmoura com α kg de sal (pode ser $\alpha=0$). Uma outra solução de salmoura contendo c kg quilos de sal por litro é derramada nesse tanque a uma taxa a l/min, enquanto simultaneamente a mistura bem agitada deixa o tanque a uma taxa de b l/min. Queremos determinar (Q(t)) a quantidade de sal (em quilos) no tempo t dentro do tanque. Temos que

$$\frac{dQ}{dt} + \frac{b}{V_0 + at - bt}Q = ac$$

Resfriamento de um corpo

Sendo T a temperatura do corpo, T_a a temperatura no ambiente, a taxa de variação da temperatura do corpo é de $\frac{dT}{dt}$ e assim chegamos que a variação da temperatura do corpo é (se a temperatura do ambiente não muda):

$$T = (T_0 - T_a)e^{-kt} + T_a$$

Agora e se a T_a varia com o tempo (perdendo ou ganhando calor):

$$\frac{dT}{dt} + k(1+A)T = k(T_{a,0} + AT_0)$$

onde

$$A = \frac{m_c}{m_a c_a}$$

com solução:

$$T(t) = \left(\frac{T_0 - T_{a,0}}{1+A}\right) e^{k(1+A)t} + \frac{T_{a,0} + AT_0}{1+A}$$

Juros Compostos

(Análogo aos casos anteriores), com solução

$$S(t) = S_0 e^{rt} + \frac{k}{r} (e^{rt} - 1)$$

5 Equações autônomas (08/03)

Uma classe de EDO importante são as quais não aparece a variável independente explicitamente. São as **equações autônomas**:

$$\frac{dy}{dt} = f(y)$$

Tais equações tem solução análoga as que já vimos.

6 Existência e Unicidade (10/03)

Uma EDO sempre possui solução e ela é única (não é necessário provar aqui). Video explicativo

7 Equações diferenciais lineares de segunda ordem (17/03)

Uma equação diferencial linear de segunda ordem, com condições iniciais é um equação do tipo

$$y'' + p(t)y' + q(t)y = g(t), \ y(t_0) = y_0, \ y'(t_0) = y'_0$$
 (1)

Se g(t) = 0 a equação ?? é dita homogênea.

Teorema 7.1 Quando a equação é homogênea onde p(t) e q(t) são funções contínuas em um intervalo I, possui uma solução única y(t) em I.

Teorema 7.2 Se $y_1(t)$ e $y_2(t)$ são soluções, então a combinação linear $c_1y_1(t) + c_2y_2(t)$ também é solução.

Definição 1 Considere as funções diferenciáveis f(t) e g(t) o determinante $\left\| \begin{array}{ccc} f(t) & g(t) \\ f'(t) & g'(t) \end{array} \right\| = W(f,g)(t)$ é chamado de Wronskiano das funções f(t) e g(t).

Definição 2 Duas funções f(t), g(t) são ditas linearmente dependentes em um intervalo I se existem constantes k_1 e k_2 , com pelo menos uma delas não nulas tal que

$$k_1 f(t) + k_2 g(t) = 0 \ \forall t \in I$$

Definição 3 As funções f(t) e g(t) são L.I. se $k_1 f(t) + k_2 g(t) = 0 \ \forall t \in I$ se e só se $k_1 = k_2 = 0$.

Teorema 7.3 Sejam f(t) e g(t) funções diferenciáveis em I, e suponhamos que $W(f,g)(t_0) \neq 0$ para algum $t_0 \in I$. Então f(t) e g(t) são L.I.

Teorema 7.4 Suponhamos que $y_1(t)$ e $y_2(t)$ são duas soluções da equação diferencial de segunda ordem y'' + p(t)y' + q(t)y = 0, e que para $t_0 \in I$ temos que $W(y_1, y_2) \neq 0$ e as condições iniciais $y(t_0) = y_0$ e $y'(t_0) = y'_0$. Então podemos encontrar constantes c_1 e c_2 para os quais $y(t) = c_1y_1(t) + c_2y_2(t)$ satisfazem a equação ?? (Ou seja, data duas soluções particulares L.I. podemos achar a geral).

Definição 4 A equação característica de ay'' + by' + cy = 0 é a equação $ak^2 + bk + c = 0$, e vamos usar ela na hora de resolver.