SOLAR AND NET RADIATION

AT

PALMER, ALASKA

1960-71

C.Ivan Branton Robert H. Shaw Lee D. Allen

Solar Energy

Terrestrial Radiation

University of Alaska

Technical Bulletin No.3

Institute of Agricultural Sciences

June 1972

Acknowledgment:

The authors gratefully acknowledge their indebtedness to D. L. Pollock for maintaining the various instruments and to Mr. R.L. Johnson for converting chart readings to data.

Solar and net radiation received at Palmer, Alaska (61° 36' N. lat., 149° 06' W. long.) have been observed for more than ten years. On a yearly basis, the daily average incoming global short wave radiation has been 219.1 langleys, and net radiation has been 70.0 langleys.

From May 3 thru August 1, net radiation averages 221.2 langleys. This is 2.571 kilowatt hours per square meter, or 815.2 Btu per square foot (English units).

From November 1 thru January 30, net radiation is negative, showing an energy loss of 54.2 langleys per day. This is equivalent to 0.630 kilowatt hours per square meter or 199.8 Btu per square foot.

CONTENTS

Acknowledgment
Introduction and general comments
Instrumentation and data handling
Results and discussion
References
Explanation of Data, tables and charts
Figure 1 — Pattern of global hemispherical radiation
Net radiation — Mean, June 1960—1971
Table 1 — Solar radiation at Palmer, Alaska, Latitude 61° 36' N 4,5
Table 2 — Net radiation at Palmer, Alaska, Latitude 61° 36' N 6,7
Table 3 — Solar energy received on a horizontal surface at various latitudes

Digitized by the Internet Archive in 2022 with funding from University of Alberta Library

SOLAR AND NET RADIATION AT PALMER, ALASKA

1960-71

Solar radiation which falls upon the surface of the earth exerts a powerful influence upon many physical and biological processes. It provides the energy both for photosynthesis and atmospheric circulation. Crabb (1952) states, in discussing hydrologic relationships, that the amount and intensity of radiant solar energy is known to have a marked effect on losses of soil moisture by evaporation. This radiation is also related to evapotranspiration (Mielke and Peck, 1967), and to soil temperatures (McWhorter and Brooks, 1965).

The annual peak of solar radiation generally occurs about one month before the peak of air temperatures (Peck, et al., 1968). The distribution and variation of solar energy at different times of the year are important in all areas of the world, but are particularly important in high latitudes where energy is in short supply.

Solar radiation is highly concentrated in the visible and short infra-red wave lengths. Its measurement gives an incomplete picture of the total energy flux. Net radiation, the difference between the incoming and outgoing components of radiant energy, has become recognized as an important meteorological parameter. Net radiation will be positive (incoming component greater than the outgoing component) on a sunny day and negative (outgoing component greater than the incoming component) on a clear night. For a 24-hour period it is usually positive in the warm season, and in areas of high latitudes is negative during the cold season. At Palmer, Alaska, both solar and net radiation have been measured over a period of eleven years.

Instrumentation and Data Handling

The incident solar radiation on a horizontal surface was first measured at Palmer with a 10-junction Eppley pyranometer starting June 13, 1960. On February 19, 1962 a new but similar instrument was installed; this was

replaced on April 25, 1962 with a more sensitive Eppley unit. On November 23, 1966, a 50-Junction Eppley was obtained and since that date it has been used for winter conditions and the 10-Junction unit for warm season measurements.

The original net radiation instrument, a Beckman and Whitley radiometer, was installed June 13, 1960. Data from a Funk net radiometer installed October 19, 1964, were used for the remaining record. On December 9, 1969, a new sensor was installed on the Funk radiometer. The plastic domes on the radiometer have been replaced as necessary.

Originally the data were recorded on strip charts and the daily totals obtained by hand integration. On October 19, 1965, automatic integrators were installed. The data are still recorded on strip charts as a back-up source in case of integrator malfunction and to provide a record of the daily pattern of radiation.

Results and Discussion

The average daily solar and net radiation in langleys per day for each week of record, and the weekly average for the eleven year period, are presented in Tables 1 and 2. Data were summarized by climatological weeks. The data for the interval February 21-28 or 29, were all included in the last week of the climatological year.

Dale (1956) reported that the June and July, 1954 records of the Matanuska Experiment Station showed solar radiation roughly comparable to stations in the northwestern and northeastern United States. This was an exceptionally high radiation period. The 11-year record summarized here shows that individual days can reach quite high radiation levels, but that on the average, solar radiation is lower here than for stations in

any of the 49 more southern states.

Data summarized by Lof et al., (1966) indicates that the 2-year record of Goose Bay, Labrador is the closest to that of Palmer of all the stations in the U.S. and Canada having available records. Seattle records for solar radiation during May and June are only slightly higher than those at Palmer but for July and August their records exceed those of Palmer three out of four years.

A similar relationship exists between Palmer, Alaska and Caribou, Maine. The cloudiness that usually occurs during July-August at Palmer results in a reduction of radiation for this period.

Net radiation reaches an average maximum of about 250 langleys per day in mid-June. Positive values are usually obtained from March 15 to October 12 and negative values for the rest of the year. The daily mean values for each week appear in Table 2.

Figure 1 shows graphically the average amount of incoming short wave energy (insolation) and the extent and direction of the net radiation. The large range of diurnal variability in incoming short wave energy is illustrated by the intervals between the probability curves at the 10 percent and 25 percent "chance" of receiving greater or lesser amounts shown on Figure 1. Solar energy received on a horizontal surface at various locations in the United States is shown on Table 3. Palmer and Fairbanks, Alaska receive the lowest amounts of insolation of any locations shown in the tables during the months of October, November, December, January, and February, due primarily to the positions of high latitude.

Energy from the sun is continuous in supply and free except for the cost of interception and utilization. Planning for its use requires an estimate of the variability and minimum levels of anticipated energy flux. These data provide such information for a period of eleven years at Palmer, Alaska.

REFERENCES

- 1. Crabb. G. A., Jr. 1952. Insolation: A Primary Factor in Evaporation from a Free Water Surface in Michigan. Michigan Agricultural Experiment Station Quarterly Bulletin 35: 182-192.
- 2. Dale, R. F. 1956. The Climate of the Matanuska Valley, U.S. Dept. of Commerce Weather Bureau Technical Paper 27.
- 3. Lof, G.O., J.A. Duffie, and C.O. Smith. 1966. World Distribution of Solar Radiation. University of Wisconsin Solar Energy Laboratory Report 21.
- 4. McWhorter, J.C., and B. P. Brooks, Jr. 1965. Climatological and Solar Radiation Relationships. Mississippi Agricultural Experiment Station Bulletin 715.
- 5. Mielke, L. N. and N. H. Peck. 1967. Evapotranspiration by Snap Beans Grown in Sand Nutrient Culture. Agronomy Journal 59: 602-604.
- 6. Peck, N. H., and M. T. Vittum, and G. H. Gibbs. 1968. Growing Season Weather at Geneva, New York. New York Agricultural Experiment Station (Geneva) Bulletin 822.
- 7. U.S. Dept. of Commerce Publications

Weather Bureau:

Climatological Summaries, Volumes 11, 12, 13, 14, and 15, 1960-1964.

Environmental Science Service Administration:

Climatological Summaries, Volumes 16 thru 20 inc. 1965-1969.

National Oceanic and Atmospheric Administration:

Climatological Summary, Volume 21, 1970.

8. Heating and Ventilating's Reference Data. April 1954. ASHRAE.

PATTERN OF GLOBAL HEMISPHERICAL RADIATION

NET RADIATION-MEAN, June 1960 - 1971

Figure 1

1	4
Av.	142 233 233 233 233 233 233 233 334 444 454 4437 4437 4429 4437 4429 338 338 338 338 338 338 338 338 338 33
1971	163 188 254 297 312 314 312 346 346 347 445 445 445 445 331 231 231 245 331 245 331 245 331 245 331 333 333 102
1970	134 192 175 175 264 331 256 331 402 340 448 448 430 448 331 292 334 349 355 368 370 270 270 270 235 103
1969	170 197 247 286 262 365 345 345 345 345 414 474 474 474 474 474 474 477 470 470 47
1968	121 234 225 234 252 238 338 338 338 338 338 338 338 338 33
7	222 233 286 286 286 286 318 318 318 318 318 319 310 310 310 310 310 310 310 310 310 310
1966	2255 2255 2273 2273 2273 2273 2273 2273
2	
1964	266 280 280 301 301 301 301 301 300 300 300 300 30
1963	83 137 257 268 378 376 344 441 441 443 375 441 443 375 441 473 386 443 386 463 313 310 281 283 283 283 283 283
1962	196 277 309 341 309 421 423 443 443 443 443 443 443 443 443 443
1961	223 300 239 371 371 371 371 371 371 371 371 371 371
1960	
Period	Mar 1-7 Mar 8-14 Mar 15-21 Mar 22-28 Mar 22-28 Mar 29-Apr 4 Apr 12-18 Apr 12-18 Apr 19-25 Apr 19-25 Apr 19-25 Apr 19-25 Aug 31-Jun 6 Jun 21-27 Jun 28-Jul 4 Jul 26-Aug 1 Aug 2-8 Aug 2-8 Aug 2-8 Aug 23-29 Aug 30-Sep 5 Sep 6-12 Sep 27-0ct 3

Table 1. (Continued)

Period	1960	1961	1962	1963	1964	1965	1966 -67	1967 -68	1968 -69	1969 -70	1970	Av.
Oct 4-10 Oct 11-17 Oct 18-24 Oct 25-31 Nov 1-7 Nov 8-14 Nov 29-Dec 5 Dec 6-12 Dec 13-19 Dec 27-Jan 2 Jan 3-9 Jan 17-23 Jan 24-30 Jan 31-Feb 6 Feb 7-13 Feb 21-28	151 166 126 117 71 71 71 71 40 83 63 63 169	200 138 138 173 447 47 47 47 17 17 17 17 100 85 200	196 196 833 669 689 77 159 105 105	112 87 87 87 87 87 13 14 44 44 43 83 115 91	100 100 100 100 100 100 100 100 100 100	angleys p 92 133 118 73 94 44 41 17 23 10 15 21 15 22 48 56 62 90	99 78 105 68 31 62 41 19 26 23 7 7 11 19 33 44 55 83 83	168 101 101 101 133 333 134 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	134 100 101 101 101 103 22 22 22 22 22 24 25 33 33 34 36 37 38 38 38 38 38 38 38 38 37 37 37 37 37 37 37 37 37 37 37 37 37	124 151 155 155 155 155 155 155 155 155 15	122 126 126 127 127 138 138 138 138 138 138 138 138 138 138	134 108 78 78 59 51 17 17 17 17 18 55 55 66 93 123
Total		90,916	87,276	78,064	78,288	71,736	76,643	69,510	83,846	86,975	71,575	79,483
Av. per mo.		7,576	7,273	6,505	6,524	5,978	6,387	5,793	6,987	7,248	5,965	6,624

Calculations made on standard climatological weeks where March 1-7 is week 1. Period December 27-January includes last 5 days of one calendar year and only 2 days of next calendar year. February 21-28 includes days, except in leap years when 9 days are included.

Table 2. NET RADIATION AT PALMER, ALASKA, LATITUDE 61° 36' N.

		O
Av.		190 2218 227 227 227 227 227 243 243 243 217 230 230 230 230 129 102 102 82 36
1971		156 169 170 170 127 134 127 1135 105 105 103 103 103 103
1970		202 202 2250 249 188 179 179 179 179 179 179 179 179 179 179
1969		28 192 223 196 177 204 204 213 169 169 169 95 82 82 82 82
1968		230 230 205 205 212 205 241 274 170 206 133 150 107 80 80 76 41
1967	day	172 172 172 175 175 186 186 186 166 167 168 173 173 173 173 174 175 175 175 175 175 175 175 175 175 175
1966		200 182 227 227 227 238 238 135 138 138 101 61 61 61
1965	1 an	239 205 204 204 227 228 228 230 170 175 175 104 33 33
1964		245 245 252 323 323 373 373 373 199 115 142 455 30
1963		263 319 319 264 267 217 217 217 106 118 115 115 34
1962		186 221 221 272 272 272 240 376 242 283 312 284 283 312 179 179 116 104
1961 -62	-30 -7 -29 34 134 117 192 108 226	282 282 282 299 270 270 244 244 153 241 241 124 101
1960		- - 359 428 178 256 386 216 122 196 208 153 154 96
Period	202 202 203 203 203 303	May 10-16 May 17-23 May 24-30 May 31-Jun 6 Jun 7-13 Jun 14-20 Jun 21-27 Jun 28-Jul 4 Jul 19-25 Jul 26-Aug 1 Aug 2-8 Aug 30-Sep 5 Sep 6-12 Sep 6-12 Sep 13-19 Sep 20-26 Sep 27-0ct 3

Table 2. (Continued)

SOLAR ENERGY RECEIVED ON A HORIZONTAL SURFACE AT VARIOUS LATITUDES Table 3.

City	North Latitude	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	No v	Dec	A .	
							- langle	eys per	day						
Miami, FL	<u> </u>	\sim	384	468	546	\sim	∞	< <td></td> <td>522</td> <td>\sim</td> <td>400</td> <td>70</td> <td>\sim</td> <td>4</td>		522	\sim	400	70	\sim	4
le	10	5	329	401	486	4	loom	\sim	561		411	_	4	P	
cola,	<t< td=""><td>/</td><td>346</td><td>435</td><td>536</td><td>0</td><td>0</td><td>\sim</td><td>485</td><td>55</td><td>408</td><td>\sim</td><td>9</td><td>\sim</td></t<>	/	346	435	536	0	0	\sim	485	55	408	\sim	9	\sim	
\succeq	<u> </u>	4	441	556	674	3	\mathcal{C}		630	5	471	4	0	\sim	
Charleston, SC	10	3	310	418	518	5	S	\sim 1	480	S	367	9	3	0	
Riverside, CA	3	~	358	468	584	0	\sim	CO	611		394	9	LO		
promptos		9	379	495	625	0	S	(0)	619	_	434	_	9		
Oak Ridge, TN	10	∞	244	327	418	0	\sim	α	443	/	308	9	LO	LO	
4.0		∞	374	509	632	0	\sim		627	4	436	0	5	07	
-	\sim	∞	272	418	537	∞		(NI	640	0	351	_	5	LO	
Columbia, MO	10	9	264	344	432	S	70	α	517	0	312	0	/	~	
Salt Lake City, UT		∞	288	427	504	4			601	9	362	_	9	LO	
2	$\overline{}$	LΩ	228	317	400			0	447	9	269	5	3	\sim	
	O.L.	S	191	280	466	9	3		453	4	241	2	9	$\overline{}$	
ord,	OL	_	216	352	475	∞	LO	0	595	/	290	4	0	LO	
Ithaca, NY	42°27'	122	202	282	361	465	511	491	423	346	221	103	91	247	
son, WI		∞	271	359	411	2	9	_	202	9	262	2	3	0	
Cloud	\sim	164	263	361	402	1	3	(0)	479	4	245	4	_	4	
Caribou, ME	10	149	238	466	429	9			416	_	199	_	0	N	
ne,	\sim	108	196	319	429	2	\sim	10	535	0	239	_	1	LO	
eattle,	\sim	71	145	243	337	3		O.I.	426		198	0	59	∞	
Sgow	_	154	239	380	434	_	∞	\sim	539	∞	260	152	117	(0	
000		70	160	290	380	4	\sim	α I	330	4	140	80	09	10	
Palmer, AK	61°36'	36	87	220	339	422	433	393	307	211	112	43	17	219	
Fairbanks, AK	64°51'	17	74	219	378	495	531	477	338	212	85	32	9	239	

