Primeira Prova

Universidade Federal de Goiás (UFG) - Câmpus Jataí Bacharelado em Ciência da Computação Lógica para Ciência da Computação Esdras Lins Bispo Jr.

16 de Maio de 2014

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta (exceto o material contido na própria avaliação);
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 05 (cinco) componentes que formarão a média final da disciplina: dois testes, duas provas e exercícios;
- A média final será calculada pela média ponderada das cinco supraditas notas [em que o primeiro teste tem peso 20 (vinte), o segundo teste tem peso 10 (dez), a primeira prova tem peso 40 (quarenta), a segunda prova tem peso 30 (trinta) e os exercícios têm peso 10 (dez)];
- O conteúdo exigido compreende os seguintes pontos apresentados no Plano de Ensino da disciplina: (1) Lógica Proposicional, (2) Semântica da Lógica Proposicional, (3) Construção de tabelas-verdade, (4) Implicação lógica e argumento; e (6) Satisfazibilidade.

Nome:	
Assinatura:	

1. (2,5 pt) O conectivo binário ↓ é definido da seguinte forma:

\overline{p}	\overline{q}	$p \downarrow q$
0	0	1
0	1	0
1	0	0
1	1	0

Mostre que $p \lor q \equiv \neg (p \downarrow q)$.

2. (2,0 pt) Augustus De Morgan (1806 -1871) foi um matemático e lógico britânico. Foi o primeiro a introduzir o termo e tornar rigorosa a ideia da indução matemática. Ele é bastante conhecido na Lógica por formular duas Leis:

(a)
$$\neg (p \land q) \equiv \neg p \lor \neg q$$
 (1.0 pt)

(a)
$$\neg (p \land q) \equiv \neg p \lor \neg q$$
 (1,0 pt)
(b) $\neg (p \lor q) \equiv \neg p \land \neg q$ (1,0 pt)

Verifique se as duas Leis de De Morgan são válidas.

- 3. (3,5 pt) Classifique a fórmula $(p \land q) \lor r \to p \land (q \lor r)$ de acordo com sua satisfazibilidade, validade, falsicabilidade ou insatisfazibilidade.
- 4. (2,0 pt) Provar ou refutar a consequência lógica
 $p \to q \models p \to q \land r$ usando tabela-verdade.