Body kinematics
Newton's laws
Torque
Momenta
Center of mass
Moments of inertia
Whole kinematics

Basic concepts from physics

Dr. Giuseppe Maggiore

NHTV University of Applied Sciences Breda, Netherlands

Table of contents

- Body kinematics
- 2 Newton's laws
- 3 Torque
- 4 Momenta
- Center of mass
- 6 Moments of inertia
- Whole kinematics

Body kinematics
Newton's laws
Torque
Momenta
Center of mass
Moments of inertia
Whole kinematics

Introduction

Kinematics

- Study of motion
- Position, Velocity, and Acceleration
- Rotation, Angular velocity, and Torque
- Cartesian coordinates in 2D and in 3D

Body kinematics
Newton's laws
Torque
Momenta
Center of mass
Moments of inertia

Introduction

Forces

Newton's laws of motion

Body kinematics
Newton's laws
Torque
Momenta
Center of mass
Moments of inertia

Introduction

Momenta

- Linear momentum
- Angular momentum

Body kinematics
Newton's laws
Torque
Momenta
Center of mass
Aoments of inertia

Introduction

Angular momentum

- Center of mass
- Inertia tensor
- Torque

- We start with a particle moving across the xy plane
- Position at time t is r(t) = (x(t), y(t))

XY particle

- Velocity at time t is $v(t) = \dot{r} = (\dot{x}, \dot{y})^a$
- Speed is |v|
- Acceleration is $a(t) = \dot{v} = \ddot{r} = (\ddot{x}, \ddot{y})$

^aa dot above denotes derivation over time; this means that $\dot{x} = \frac{dx}{dt}$

- Tangent is $T(t) = \frac{v}{|v|}$
- Normal is N(t) and is perpendicular to T
- r, T, N is the moving frame of the particle (or body space, or local space)

XY particle motion with respect to frame

•
$$v = |v|T = \dot{s}T$$

$$\bullet$$
 $a = \dot{v} =$

- We now consider a particle moving in space
- Position at time t is r(t) = (x(t), y(t), z(t))

- Velocity at time t is $v(t) = \dot{r} = (\dot{x}, \dot{y}, \dot{z})$
- Speed is |v|
- Acceleration is $a(t) = \dot{v} = \ddot{r} = (\ddot{x}, \ddot{y}, \ddot{z})$

- Tangent is $T(t) = \frac{v}{|v|}$
- We have an infinite set of possible vectors normal to T

Body kinematics Newton's laws Torque Momenta Center of mass Moments of inertia Whole kinematics

SLIDE

Circle of potential normals

- Normal N is perpendicular to T
- We are missing an axis to have a complete frame
- Binormal is $B = T \times N$
- r, T, N, B is the moving frame of the particle (or body space, or local space)

Body kinematics

Rigid body

- $R = [T \ N \ B]$ put in matrix form (T, N, B) are used as columns of the matrix) is the rotation matrix of the body
- $r(t) = R(t)r_0 + x(t)$ where x(t) is the position of the *center* of the body
- \bullet $\omega(t)$, a vector, is the angular velocity of the body
 - Its direction $\frac{\omega(t)}{|\omega(t)|}$ is the rotation axis
 - Its magnitude $|\omega(t)|$ is in rad/s

Rigid body rotation

- We need to study $\dot{r}(t)$, in order to determine \dot{R}
- We decompose r(t) into a, b where a is parallel to ω and b is perpendicular
 - linearly moving component
 - rotating component
- The instantaneous velocity of r(t) is

$$\dot{r} = \omega(t) \times b = \omega(t) \times (a+b) = \omega(t) \times r(t)$$

Rigid body rotation

- We now consider the inertial frames, which are the columns of the rotation matrix
- We compute $\dot{T}=\omega(t)\times T$, $\dot{N}=\omega(t)\times N$, and $\dot{B}=\omega(t)\times B$
- These are the velocities of the axes of the inertial frame
- Also known as the columns of \dot{R}

Body kinematics
Newton's laws
Torque
Momenta
Center of mass
Moments of inertia
Whole kinematics

Newton's laws

Topic

- Inertia, the tendency of an object to remain in motion
- Force, the mechanism through which inertia is changed

Newton's laws

About the laws

- The **second law** is the one we work the most with
- Mass is assumed to be always constant, so $F = \frac{d}{dt}(mv) = m\frac{d}{dt}v = ma$
- Each of the vector quantities of position, velocity, and acceleration is measured with respect to some arbitrary but fixed coordinate system, referred to as the *inertial frame*, or global space

Torque

From force to torque

- Removing log nuts with a wrench
- Exert a force on the end of the wrench, the nut turns
- The longer the wrench, the easier (but slower) the nut turns

Body kinematics
Newton's laws
Torque
Momenta
Center of mass
Moments of inertia
Whole kinematics

SLIDE

Torque

Definition

- The ease of turning is proportional to the length of the wrench and the force applied
- This product is referred to as torque or moment of force
- Torque is defined as $\tau = r \times F$
 - Direction of torque is axis (and direction) of rotation
 - Length of torque is in rad/s

Torque

Multiple torques

- Multiple torques (just like forces) are simply added together
- $\tau = \sum_{i} r_i \times F_i$ (discrete body) or $\tau = \int r \times F dr$ (continuous body)

Momenta

- Quantification of Newton's Second Law
- How much motion does the body have?
 - A lot means that a lot of force is needed to change it
 - Little means that little force is needed to change it

Linear momentum

- How much linear motion does the body have?
- $p = mv = \sum_i m_i v_i = \int_R v \ dm$
- Force integrates linear momentum directly
- $\frac{dp}{dt} = \frac{d(mv)}{dt} = m\frac{dv}{dt} = ma = F$

Angular momentum

- How much rotational motion does the body have?
- $L = r \times p = mr \times v$
- Right-hand rule of cross-product:
 - Angular momentum refers to the tendency of the body to rotate around a given axis, L
 - The longer the axis, the harder it is to stop the rotation

Angular momentum

- Just like the derivative of linear momentum is force...
- ...angular momentum derived yields torque (when the body does not change shape)
- $\frac{dL}{dp} = \tau$

Tracking particles?

- Do we really need to track all the particles of a rigid body?
- No!
 - Too slow
 - Center of mass
 - Properties of the motion of the whole body
 - Rigid body behaves as if all the mass were concentrated at a single point
- We compute the center of mass by a weighted average of the body particles relative positions and their respective masses

One dimension

- A wooden plank with two weights at the extremes
- Center of mass is $\bar{x} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} = x_1 \frac{m_1}{m_1 + m_2} + x_2 \frac{m_2}{m_1 + m_2}$

Body kinematics
Newton's laws
Torque
Momenta
Center of mass
Moments of inertia
Whole kinematics

SLIDE

Two dimensions

• Center of mass is $\bar{x} = \frac{\sum_{i} m_{i} x_{i}}{M}$, where x_{i} is a 2D vector a

^aComponent-wise, the result is $(\bar{x}, \bar{y}) = (\frac{\sum_i m_i x_i}{M}, \frac{\sum_i m_i y_i}{M})$

Three dimensions

• Center of mass is $\bar{x} = \frac{\sum_{i} m_{i} x_{i}}{M}$, where x_{i} is a 3D vector

Force projection

- When an external force F_{ext} is applied to a body from some position, r_f
- We use the center of mass to split the force between linear and torque
- $F = F_{\mathsf{ext}} \cdot \frac{(r_f \bar{x})}{|(r_f \bar{x})|}, \ \tau = F_{\mathsf{ext}} \times (r_f \bar{x})$

Moments of inertia

- How difficult is it to set an object into rotation around an axis?
- Rotational equivalent to mass for linear movement

Moment of inertia in 2D

- A single number, because in 2D we can only rotate in one plane
- $I = \sum_{i} m_{i} |(x_{i}, y_{i}) (\bar{x}, \bar{y})|^{2} = \sum_{i} m_{i} (x_{i}^{2} + y_{i}^{2}) m(\bar{x}^{2}, \bar{y}^{2})$

Moment of inertia in 3D

- Harder to express, because suddenly we can rotate along an infinite number of axes
- Let us engineer this from the angular momentum of a particle of the body
- Consider a particle
 - Located at relative vector r
 - Moving with linear velocity $v = \omega \times r$

Mass matrix in 3D

•
$$L_i = r_i \times m_i v_i = m_i r_i \times (\omega \times r_i) = J\omega$$

•
$$J_i = m_i \begin{bmatrix} y_i^2 + z_i^2 & -x_i y_i & -x_i z_i \\ -x_i y_i & x_i^2 + z_i^2 & -y_i z_i \\ -x_i z_i & -y_i z_i & y_i^2 + z_i^2 \end{bmatrix}$$

- $L_i = J_i \omega$, just like P = mv
- For the whole body, we sum all the J_i matrices of the particles
- $J = \sum_{i} J_{i}$, $L = J\omega$
- J must be recalculated from the rotated body, because $r_i = Rr_0 + \bar{x}$

Whole kinematics

Whole kinematics

- Position, integrated from velocity $\dot{x} = v$
- Velocity, derived from linear momentum $v = \frac{P}{m}$
- Linear momentum, integrated from force $\dot{P} = F_{\text{ext}} \cdot \frac{(r_f \bar{x})}{|(r_f \bar{x})|}$

Whole kinematics

Whole kinematics

- Rotation, integrated from angular velocity $\dot{R} = [\omega \times T \ \omega \times N \ \omega \times B]$
- ullet Angular velocity, derived from angular momentum $\omega = J^{-1}L$
- Angular momentum, integrated from torque $\dot{L} = \tau = \frac{(r_f \bar{x})}{|(r_f \bar{x})|} \times F_{\text{ext}}$

Body kinematics
Newton's laws
Torque
Momenta
Center of mass
Moments of inertia
Whole kinematics

That's it

Thank you!