SPACEX

WINNING SPACE RACE WITH DATA SCIENCE

Cihan Acilov 13/02/2022

Outline

What is covered in the presentation?

Executive Summary

Introduction

Methodology

Results

Conclusion

Appendix

Introduction

Project background and context

SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars.

Other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.

Therefore, if we can determine if the first stage will land, we can determine the cost of a launch. This information can be used if an alternate company wants to bid against SpaceX for a rocket launch.

Problems we want to find answers

Can we determine/predict whether the first stage of the rocket will land successfully?

Which variables are playing a significant role in determining whether a rocket will land successfully, and what are their influences on the outcome?

Can we manipulate the significant variables to influence the outcome of rocket launches?

Section 1 METHODOLOGY

Methodology

Executive Summary

Data collection methodology:

Through SpaceX API

Web Scraping

Perform data wrangling

Data preprocessing
Dealing with missing
values

EDA using visualization and SQL

Interactive visual with Folium and Plotly Dash

Predictive analysis:
Classification models

Build, tune, evaluate classification models

Data Collection

Data set is collected through:

1. SpaceX REST API: https://api.spacexdata.com/v4/

2.Wikipedia: https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922

WikipediA

SpaceX REST API

- Api.spacexdata.com/v4/rockets/
- Api.spacexdata.com/v4/payloads/
- Api.spacexdata.com/v4/rockets/
- Api.spacexdata.com/v4/launchpads/
- Api.spacexdata.com/v4/core/
- Api.spacexdata.com/v4/landigsucces/

Data Collection - SpaceX API

GitHub URL of the completed SpaceX API calls notebook: GitHub

94 rows & 17 columns of data collected

```
1 df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 94 entries, 0 to 93
Data columns (total 17 columns):
     Column
                     Non-Null Count Dtype
     FliahtNumber
                                      int64
                     94 non-null
     Date
                     94 non-null
                                      object
     BoosterVersion
                     94 non-null
                                      object
     PayloadMass
                     88 non-null
                                      float64
     0rbit
                     94 non-null
                                      object
     LaunchSite
                     94 non-null
                                      object
                     94 non-null
     Outcome |
                                      object
     Flights
                     94 non-null
                                      int64
     GridFins
                     94 non-null
                                      bool
     Reused
                     94 non-null
                                      bool
                     94 non-null
10
    Legs
                                      bool
    LandingPad
                     64 non-null
                                      object
 12
    Block
                     90 non-null
                                      float64
                     94 non-null
    ReusedCount
                                      int64
    Serial
                     94 non-null
                                      object
    Longitude
                     94 non-null
                                      float64
                     94 non-null
                                      float64
    Latitude
dtypes: bool(3), float64(4), int64(3), object(7)
memory usage: 10.7+ KB
```

```
1 launch dict = {'FlightNumber': list(data['flight number']),
2 'Date': list(data['date']),
3 'BoosterVersion':BoosterVersion,
4 'PayloadMass':PayloadMass,
5 'Orbit':Orbit,
6 'LaunchSite':LaunchSite.
7 'Outcome':Outcome.
8 'Flights':Flights,
9 'GridFins':GridFins.
10 'Reused':Reused,
11 'Legs':Legs,
12 'LandingPad':LandingPad,
13 'Block':Block,
14 'ReusedCount':ReusedCount.
15 'Serial':Serial,
16 'Longitude': Longitude,
17 'Latitude': Latitude}
18
```

Data Collection - Scraping

GitHub URL of the completed SpaceX API calls notebook:

<u>GitHub</u>

HTTP GET method to request the Falcon9 Launch HTML page, as an HTTP response

BeautifulSoup object from the HTML response

Locate the table with the launch **records** of SpaceX

Extract data from the tables and create a data from parsing the HTML

:	Flight No.	Launch site	Payload	Payload mass	Orbit	Customer	Launch outcome	Version Booster	Booster landing	Date	Time
(1	CCAFS	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success\n	F9 v1.0B0003.1	Failure	4 June 2010	18:45
1	2	CCAFS	Dragon	0	LEO	NASA	Success	F9 v1.0B0004.1	Failure	8 December 2010	15:43
2	3	CCAFS	Dragon	525 kg	LEO	NASA	Success	F9 v1.0B0005.1	No attempt\n	22 May 2012	07:44
3	4	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA	Success\n	F9 v1.0B0006.1	No attempt	8 October 2012	00:35
4	5	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA	Success\n	F9 v1.0B0007.1	No attempt\n	1 March 2013	15:10

Data Wrangling

Missing values by Orbit is replaced by MEAN

All variable's excluding label are normalized

Unnacsarry columns are removed

One Hot Encoding

1	data_falcon9.isnull().sum(
Flig Date Boos Pay Orbs Laur Oute Flig	ghtNumber sterVersion loadMass it nchSite come ghts dFins	9.isnull(). 0 0 5 0 0 0 0	sum()				
Reus Seri Long Lati	dingPad ck sedCount	26 0 0 0 0					

EDA with Data Visualization

Scatter Plot is used to see the relationship between different variables:

- Flight Number and Launch Site
- Flight Number and Payload Mass
- Launch Site and Payload Mass
- Orbit and Flight Number
- Orbit and Payload Mass
- Add the GitHub URL

Bar Plot is used to see the relationship between success rate of each orbit:

Orbit vs Class

Line Plot is used to see the yearly trend of successful launches:

Year vs Class

Following SQL queries are implemented:

- Names of the unique launch sites
- Total payload mass carried by boosters launched by NASA (CRS)
- Average payload mass carried by booster version
- Listing successful landing outcomes
- Names of the boosters which have success in drone ship
- Total number of successful and failure mission outcomes
- Boosters with maximum payload mass/
- Failed landing outcomes, and launching sides

EDA with SQL

The launch success rate may depend on the location and the proximity of launch site. To locate an **OPTIMAL LOCATION**, the available data is visualized in interactive maps by using Python Folium library:

- Launch sites are marked on the map based on LAT. & LONG.
- Launch sites are separated by Circles and Marks (names of the sites).
- Succeeded and failed launches are marked per Launch
 Site.
- Distance is calculated to railway, highway, coastline etc.
 To see whether successful launches have commonalities regarding location.

An Interactive Plotly Dash application is built for users to perform visual analytics on SpaceX launch data in real-time

- A drop-down menu is created for the selection of a specific Launch Site, when a Launch site is selected the visuals in the dashboard filtered accordingly.
- Number of launches by Launch Site are visualized with a Pei Chart, which clearly shows the performance difference of different Launch Site.
- An interactive scatter plot is built including a slider which helps user to select a range for Payload Mass. The visual clearly shows the difference in Booster Version and Payload Mass and whether they succeeded or failed.

Predictive Analysis (Classification)

Model Building

- Class (target variable) is extracted from Panda's Data Frame into a NumPy array.
- Relevant features are selected and normalized to create a common scale between predicting variables/features
- The dataset is split into training and testing set, so that the predictions can be validated through the testing test.
- Different classification models are used and the best performing hyperparameters are selected by making use of Sklearn GridSearchCV

Model Evaluation

- Accuracy measurement
- Tweaking hyper parameters.
- Confusion Matrix
- Feature engineering

Model Selection

Multiple classification models are trained. Best performing model will be selected based on the performance of the model on an unknown data.

Results

Exploratory data analysis results

Interactive analytics demo in screenshots

Predictive analysis results

As the Flight Number increases there are more successful landings by all Launch Sites.

The launch site VAFB-SLC has no Flights after approximately Fight Number 60.

Flight Number vs. Launch Site

The launch site VAFB-SLC has no rockets launched for heavy payload mass(greater than 10000)

Launch Site vs. Payload Mass

Success Rate vs. Orbit Type

The Bar Chart is showing different orbits and the success rate between 0 (failure) and 1 (successful) for rocket launches.

Successful landings are frequent during the launches to ES-L1,GEO,HEO and SSO.

LEO orbit the Success appears related to the number of flights; on the other hand, there seems to be no relationship between flight number when in GTO orbit

Flight Number vs. Orbit Type

With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.

However, for GTO we cannot distinguish this well as both positive landing rate and negative landing (unsuccessful mission) are both there here.

Payload Mass vs. Orbit Type

Launch Success Yearly Trend

Since 2013 the success rate is increasing.

EDA SQL

All Launch Site Names

launch_site

CCAFS LC-40

CCAFS SLC-40

KSC LC-39A

VAFB SLC-4E

The dataset contains entry for four DISTINCT launch sites.

EDA SQL

Launch Site Names Begin with 'CCA'

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
 2010-06-04	18:45:00	F9 v1.0 B0003	CCAFS LC-40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010-12-08	15:43:00	F9 v1.0 B0004	CCAFS LC-40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012-05-22	07:44:00	F9 v1.0 B0005	CCAFS LC-40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012-10-08	00:35:00	F9 v1.0 B0006	CCAFS LC-40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013-03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

The dataset is filtered using SQL commands to retrieve first 5 entries where the launch site name begins with "CCA"

1

45596

Total payload mass carried by boosters launched by NASA (CRS)

EDA SQL Total Payload Mass

EDA SQL Average Payload Mass by F9 v1.1

1

2928

F9 v1.1 rocket launchers have an average payload mass of 2928 kg.

There are 10 different landing outcomes, the first successful Ground Landing date was on 22 December 2015

EDA SQL
First
Successful
Ground
Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

The booster version F9 FT B10XXX have frequent successful landing outcome with heavy payloads.

booster_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

mission_outcome freq

Failure (in flight)	1
Success	99
Success (payload status unclear)	1

The total number of successful landing is 100 (1 of which has unknow payload status). I mission was ended with a failure during landing.

Total Number of Successful and Failure Missio n Outcomes

Boosters Carried Maximum Payload

By using a SQL Sub Query, we were able to display Booster version that carried Maximum amount of Payload

boosterversion

F9 B5 B1048.4

F9 B5 B1049.4

F9 B5 B1051.3

F9 B5 B1056.4

F9 B5 B1048.5

F9 B5 B1051.4

F9 B5 B1049.5

F9 B5 B1060.2

F9 B5 B1058.3

F9 B5 B1051.6

F9 B5 B1060.3

F9 B5 B1049.7

landing_outcome	booster_version	launch_site
Failure (drone ship)	F9 v1.1 B1012	CCAFS LC-40
Failure (drone ship)	F9 v1.1 B1015	CCAFS LC-40

Dataset is queried to retrieve entries of 2015 that were failed to land. We can see that in 2015 the Launch Site CCAFS LC-40 is responsible of for 2 launches.

2015 Launch Records

landing_outcome	DATE
No attempt	2017-03-16
Success (ground pad)	2017-02-19
Success (drone ship)	2017-01-14
Success (drone ship)	2016-08-14
Success (ground pad)	2016-07-18
Failure (drone ship)	2016-06-15
Success (drone ship)	2016-05-27
Success (drone ship)	2016-05-06
Success (drone ship)	2016-04-08
Failure (drone ship)	2016-03-04
Failure (drone ship)	2016-01-17
Success (ground pad)	2015-12-22
Precluded (drone ship)	2015-06-28
No attempt	2015-04-27
Failure (drone ship)	2015-04-14
No attempt	2015-03-02
Controlled (ocean)	2015-02-11
Failure (drone ship)	2015-01-10
Uncontrolled (ocean)	2014-09-21
No attempt	2014-09-07
No attempt	2014-08-05
Controlled (ocean)	2014-07-14
Controlled (ocean)	2014-04-18
No attempt	2014-01-06
No attempt	2013-12-03
Uncontrolled (ocean)	2013-09-29
No attempt	2013-03-01
No attempt	2012-10-08
No attempt	2012-05-22
Failure (parachute)	2010-12-08
Failure (parachute)	2010-06-04

Rank Landing
Outcomes
Between
2010-06-04
and 2017-0320

Green Markers are showing the successful launches and the red ones are showing the failed launches

<Folium Map Screenshot 3>

<Folium Map Screenshot 3>

SpaceX Dashboard - Launch Records

Launch Sites - Count of Launch Success

× ×

KSC LC-39A

VAFB SLC-4E CCAFS SLC-40

The highest number of successful launches took place in the Launch Site KSC LC – 39A (

Launch Site with highest number of successful outcome

Approximately 77% of the launches from KSC LC-39A has landed successfully.

All site payload and outcome

<Dashboard Screenshot 3>

two of them having the booster version FT.

Classification Accuracy

Different classification models are implemented on the prepared, normalized and split dataset.

000
000
111
000

Even though the models are performing close to each other, SVM (Support Vector Machine) is the leading classifier, with an accuracy score of 89%.

Confusion Matrix

The model is confident during the prediction of successful landings. (True Positive)

However False Negative and False Positive are equally predicted. So the model is unsure during a prediction of failed landings.

- Yearly trend shows an increasing success rate in launches, successful outcome is increasing by year: meaning that SpaceX is gaining significant experience.
- Payload Mass between 0 KG-5000 KG has higher chance of landing successfully.
- Launch Site KSC LC-39A has the highest number of successful launches
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- Support Vector Machine model is fitting the dataset better than other models, as a result slightly higher accuracy

Conclusions

Appendix

- 1. GitHub Repo: https://github.com/GlobalCJ/Pro-Data-Sci-Cert-Coursera
- 2. Final Rapport: https://github.com/GlobalCJ/Pro-Data-Sci-Cert-Coursera/blob/main/finalrapport.pdf
- 3. Dataset used SpaceX API: https://api.spacexdata.com/v4/
- 4. Dataset used Wikipedia: https://en.wikipedia.org/w/index.php?title=List_of-Falcon_9_and

