Latex Math Assignment ncert-exemplar/12/leep210.pdf- Excercise 10.3 Short Answer (S.A):

- 1. Find the unit vector in the direction of sum of vectors $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$ and $\vec{b} = 2\hat{j} + \hat{k}$.
- 2. If $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} 2\hat{k}$, find the unit vector in the direction of
 - (a) $6\vec{a}$
 - (b) $2\vec{a} \vec{b}$
- 3. Find a unit vector in the direction of \overline{PQ} , where P and Q have co-ordinates (5,0,8) and (3,3,2), respectively.
- 4. If \vec{a} and \vec{b} are the postion vectors of A and B, respectively, find the position vector of a point C in BA produced such that BC=1.5BA.
- 5. Using vectors, find the value of k such that the points (k, -10, 3), (1, -1, 3) and (3, 5, 3) are collinear.
- 6. A vector \vec{r} is inclined at equal angles to the three axis. If the magnitude of \vec{r} is $2\sqrt{3}$ units, find \vec{r} .
- 7. A vector \vec{r} has a magnitude 14 and direction ratios 2,3,-6. Find the direction cosines and components of \vec{r} , given that \vec{r} makes an acute angle with x-axis.
- 8. Find a vector of magnitude 6, which is perpendicular to both the vectors $2\hat{i} \hat{j} + 2\hat{k}$ and $4\hat{i} \hat{j} + 3\hat{k}$.
- 9. Find the angle between the vectors $2\hat{i} \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} \hat{k}$.
- 10. If $\vec{a} + \vec{b} + \vec{c} = 0$, show that $\vec{a} \times \vec{b} = \vec{b} \times \vec{c} = \vec{c} \times \vec{a}$. Interpret the result geometrically?
- 11. Find the sine of the angle between the vectors $\vec{a} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} 2\hat{j} + 4\hat{k}$.
- 12. If A,B,C,D are the points with position vectors $\hat{i} + \hat{j} \hat{k}$, $2\hat{i} \hat{j} + 3\hat{k}$, $2\hat{i} 3\hat{k}$, $3\hat{i} 2\hat{j} + \hat{k}$, respectively, find the projection of \overline{AB} along \overline{CD} .
- 13. Using vectors, find the area of $\triangle ABC$ with vertices A(1,2,3), B(2,-1,4) and C(4,5,-1).
- 14. Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.

Long Answer(L.A)

- 15. Prove that in any $\triangle ABC$, $\cos A = \frac{b^2 + c^2 a^2}{2bc}$, where a,b,c are the magnitudes of the sides opposite to the vertices A,B,C respectively.
- 16. If \vec{a} , \vec{b} , \vec{c} , determine the vertices of a triangle, show that $\frac{1}{2} \left[\vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b} \right]$ gives the vector area of the triangle. Hence deduce the condition that the three points \vec{a} , \vec{b} , \vec{c} , are collinear. Also find the unit vector normal to the plane of the triangle.
- 17. Show that area of the parallelogram whose diagonals are given by $\vec{a} \times \vec{b}$ is $\frac{|\vec{a} \times \vec{b}|}{2}$. Also find the area of the parallelogram whose diagonals are $2\hat{i} \hat{j} + \hat{k}$ and $\hat{i} + 3\hat{j} \hat{k}$.
- 18. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ and $\vec{b} = \hat{j} \hat{k}$, find a the vector \vec{c} such that $\vec{a} \times \vec{c} = \vec{b}$ and $\vec{a} \cdot \vec{c} = 3$.

Objective Type Questions

Choose the correct answer from the given four options in each of the Excercise from 19 to 33(M.C.Q)

- 19. The vector in the direction of the vector $\hat{i} 2\hat{j} + 2\hat{k}$ that has magnitude 9 is
 - (a) $\hat{i} 2\hat{j} + 2\hat{k}$
 - (b) $\hat{i} 2\hat{i}$
 - (c) $3(\hat{i}-2\hat{j}+2\hat{k})$
 - (d) $9(\hat{i} 2\hat{j} + 2\hat{k})$
- 20. The position vector of the point which divides the join of points $2\vec{a} 3\vec{b}$ and $\vec{a} + \vec{b}$ in the ratio 3:1 is
 - (a) $\frac{3\vec{a}-2\vec{b}}{2}$
 - (b) $\frac{7\vec{a} 8\vec{b}}{4}$

- (c) $\frac{\vec{3a}}{4}$
- (d) $\frac{\vec{5a}}{4}$
- 21. The vector having intial and terminal points as (2,5,0) and (-3,7,4), respectively is
 - (a) $-\hat{i} + 12\hat{j} + 4\hat{k}$
 - (b) $5\hat{i} + 2\hat{j} 4\hat{k}$
 - (c) $5\hat{i} + 2\hat{j} + 4\hat{k}$
 - (d) $\hat{i} + \hat{j} + \hat{k}$
- 22. The angles between two vectors \vec{a} and \vec{b} with magnitude $\sqrt{3}$ and 4, respectively, and \vec{a} , $\vec{b} = 2\sqrt{3}$ is
 - (a) $\frac{\pi}{6}$
 - (b) $\frac{\pi}{3}$
 - (c) $\frac{\pi}{2}$
 - (d) $\frac{5\pi}{2}$
- 23. Find the value of λ such that the vectors $\vec{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal.
 - (a) 0
 - (b) 1
 - (c) $\frac{3}{2}$
 - (d) $-\frac{5}{2}$
- 24. The value of λ for which the vectors $3\hat{i} 6\hat{j} + \hat{k}$ and, $2\hat{i} 4\hat{j} + \lambda\hat{k}$ are parallel is
 - (a) $\frac{2}{3}$
 - (b) $\frac{3}{2}$
 - (c) $\frac{5}{2}$
 - (d) $\frac{2}{5}$
- 25. The vector from origin to the points A and B are $\vec{a} = 2\hat{i} 3\hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} + \hat{k}$, respectively, then the area of $\triangle OAB$ is
 - (a) 340
 - (b) $\sqrt{25}$
 - (c) $\sqrt{229}$
 - (d) $\frac{1}{2}\sqrt{229}$
- 26. For any vector \vec{a} , the value of $(\vec{a} \times \hat{i})^2 + (\vec{a} \times \hat{j})^2 + (\vec{a} \times \hat{k})^2$ is equal to
 - (a) a
 - (b) 3a
 - (c) 4a
 - (d) 2a
- 27. If $|\vec{a}|=10$, $|\vec{b}|=2$ and \vec{a} , $\vec{b}=12$, then value of $|\vec{a}\times\vec{b}|$ is
 - (a) 5
 - (b) 10
 - (c) 14
 - (d) 16
- 28. The vectors $\lambda \hat{i} + \lambda \hat{j} + 2\hat{k}$, $\hat{i} + \lambda \hat{j} \hat{k}$ and $2\hat{i} \hat{j} + \lambda \hat{k}$ are coplanar if
 - (a) $\lambda = -2$
 - (b) $\lambda = 0$

- (c) $\lambda = 1$
- (d) $\lambda = -1$
- 29. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then the value of $\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}$ is
 - (a) 1
 - (b) 3
 - (c) $\frac{-3}{2}$
 - (d) None of these
- 30. Projection vector of \vec{a} on \vec{b} is
 - (a) $\left(\frac{\vec{a}.\vec{b}}{\left|\vec{b}\right|^2}\right)$
 - (b) $\frac{\vec{a}.\vec{b}}{|\vec{b}|}$
 - (c) $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$
 - (d) $\left(\frac{\vec{a}.\vec{b}}{|\vec{a}|^2}\right)$
- 31. If $\vec{a}, \vec{b}, \vec{c}$ are the three vectors such that $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 5$, the value of $\vec{a}.\vec{b} + \vec{b}.\vec{c} + \vec{c}.\vec{a}$ is
 - (a) 0
 - (b) 1
 - (c) -19
 - (d) 38
- 32. If $|\vec{a}| = 4$ and $-3 \le \lambda \le 2$, then the range of $|\lambda \vec{a}|$ is
 - (a) [0, 8]
 - (b) [-12, 8]
 - (c) [0, 12]
 - (d) [8, 12]
- 33. The number of vectors of unit length perpendicular to the vectors $\vec{a}=2\hat{i}+\hat{j}+2\hat{k}$ and $\vec{b}=\hat{j}+\hat{k}$ is
 - (a) one
 - (b) two
 - (c) three
 - (d) infinite

Fill in the blanks in each of the Excercises from 34 to 40.

- 34. The vector $\vec{a} + \vec{b}$ bisects the angle between the non-collinear vectors \vec{a} and \vec{b} if ______.
- 35. If $\vec{r}.\vec{a}=0$, $\vec{r}.\vec{b}=0$ and $\vec{r}.\vec{c}=0$ for some non-zero vector \vec{r} , then the value of $\vec{a}.(\vec{b}\times\vec{c})$ is _____.
- 36. The vectors $\vec{a} = 3\hat{i} 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} 2\hat{k}$ are the adjancent sides of a parallelogram. The acute angle between its diagonals is _____.
- 37. The values of k for which $\left| \vec{ka} \right| < |\vec{a}|$ and $k\vec{a} + \frac{1}{2} \vec{a}$ is parallel to \vec{a} holds true are _____.
- 38. The value of the expression $|\vec{a} \times \vec{b}| + (\vec{a}.\vec{b})$ is _____.
- 39. If $\left| \vec{a} \times \vec{b} \right|^2 + \left| \vec{a}.\vec{b} \right|^2 = 144$ and $\left| \vec{a} \right| = 4$, then $\left| \vec{b} \right|$ is equal to _____.

40. If \vec{a} is any non-zero vector, then $(\vec{a}.\hat{i})\hat{i}+(\vec{a}.\hat{j})\hat{j}+(\vec{a}.\hat{k})$ \hat{k} equals _____.

State **True** or **False** in each of the following Exercises.

- 41. If $|\vec{a}| = \left| \vec{b} \right|$, then necessarily it implies $\vec{a} = \pm \vec{b}$.
- 42. Position vector of point P is a vector whose intial point is origin.
- 43. If $\left|\vec{a} + \vec{b}\right| = \left|\vec{a} \vec{b}\right|$, then the vectors \vec{a} and \vec{b} are orthogonal.
- 44. The formula $(\vec{a} + \vec{b}) = \vec{a} + \vec{b} + 2\vec{a} \times \vec{b}$ is valid for non-zero vectors \vec{a} and \vec{b} .
- 45. If \vec{a} and \vec{b} are adjacent sides of a rhombus, then $\vec{a}.\vec{b}.=0$.