Practical Data Science *in finance

Puneet Batra

Goals

- Introduce relevant Python libraries
 - o numpy
 - o pandas
 - o scikit-learn
- Use these libraries to
 - Extract Data
 - Align/clean data
 - Do something useful
- Why use these tools?

Practical Data Science

numpy

- Python package used for scientific/numerical computing
- Lots of useful functions
 - >> np.exp(1)>> 2.7182818284590451
 - >> np.log([1,2,3])>> array([0., 0.69314718, 1.09861229])
 - > np.linalg.eig(foo)

 (array([2.53349352, 0.41821668, 0.55359127, 0.81049877, 0.68419976]), array([[0.43048555, 0.2161367, 0.53748643, -0.42905633, 0.54312626], [0.5006138, 0.62269993, -0.58715677, -0.06323348, -0.11348603], [0.50952931, -0.74753099, -0.37272446, -0.13964699, 0.15215944], [0.43037763, -0.07736151, 0.44100365, -0.04520822, -0.78247191], [0.34528682, 0.02724608, 0.18151453, 0.88902594, 0.23815963]]))

pandas

- Utility functions to read/write data
 - o read_csv: Read a comma-delimited file and maintain column headers
- Friendly Data structures
 - Capable of holding a variety of data types e.g. strings, int, float, etc.
 - Series
 - o one dimensional labeled array
 - DataFrame
 - Two dimensional object
 - o Each column can be different types e.g. ticker, date, price
 - Can refer to columns by column names instead of numbers
 - E.g. stockReturns['JPM']
- Example (using numpy and pandas)
 - >> numpy.sum(stockReturns['JPM']) 0.7285

scikit-learn

- Open source machine learning library for Python
 - Classification
 - Decision Trees
 - Logistic Regression
 - · etc.
 - o Regression
 - Decision Trees
 - Support Vector Machines
 - etc.
 - Clustering
 - K Means, etc.
 - o Preprocessing
 - e.g. binary encoding a.k.a. One Hot Encoding
 - o Dimensionality Reduction
 - e.g. Principal Component Analysis

scikit-learn

Data – always step #1

Comma separated file containing components of S&P 500 Index

Ticker	Name	Sector	SubIndustry	Address
MMM	3M Company	Industrials	Industrial Conglomerates	St Paul, Minnesota
ABT	Abbott Laboratories	Health Care	Health Care Equipment & Services	North Chicago, Illinois
ABBV	AbbVie	Health Care	Pharmaceuticals	North Chicago, Illinois
ANF	Abercrombie & Fitch Company A	Consumer Discretionary	Apparel, Accessories & Luxury Goods	New Albany, Ohio
ACE	ACE Limited	Financials	Property & Casualty Insurance	Zurich, Switzerland
ACN	Accenture plc	Information Technology	IT Consulting & Services	Dublin, Ireland
ACT	Actavis plc	Health Care	Pharmaceuticals	Parsippany, New Jersey
ADBE	Adobe Systems Inc	Information Technology	Application Software	San Jose, California
ADT	ADT Corp	Industrials	Diversified Commercial Services	Boca Raton, Florida
AMD	Advanced Micro Devices	Information Technology	Semiconductors	Sunnyvale, California
AES	AES Corp	Utilities	Electric Utilities	Arlington, Virginia
AET	Aetna Inc	Health Care	Managed Health Care	Hartford, Connecticut
AFL	AFLAC Inc	Financials	Life & Health Insurance	Columbus, Georgia
A	Agilent Technologies Inc	Health Care	Health Care Equipment & Services	Santa Clara, California
GAS	AGL Resources Inc.	Utilities	Gas Utilities	Atlanta, Georgia
APD	Air Products & Chemicals Inc	Materials	Industrial Gases	Allentown, Pennsylvania
ARG	Airgas Inc	Materials	Industrial Gases	Radnor, Pennsylvania
AKAM	Akamai Technologies Inc	Information Technology	Internet Software & Services	Cambridge, Massachusetts
AA	Alcoa Inc	Materials	Aluminum	New York, New York
ALXN	Alexion Pharmaceuticals	Health Care	Biotechnology	Cheshire, Connecticut
ATI	Allegheny Technologies Inc	Materials	Diversified Metals & Mining	Pittsburgh, Pennsylvania
AGN	Allergan Inc	Health Care	Pharmaceuticals	Irvine, California
ALL	Allstate Corp	Financials	Property & Casualty Insurance	Northfield Township, Illinois
ALTR	Altera Corp	Information Technology	Semiconductors	San Jose, California
MO	Altria Group Inc	Consumer Staples	Tobacco	Richmond, Virginia
AMZN	Amazon.com Inc	Consumer Discretionary	Internet Retail	Seattle, Washington
AEE	Ameren Corp	Utilities	Multi-Utilities & Unregulated Power	St. Louis, Missouri
AEP	American Electric Power	Utilities	Electric Utilities	Columbus, Ohio

Reading from a file

```
>> import pandas as pd
>> sp500components =
pd.read csv("c:/dev/sp500 components 20131030.csv")
>>> sp500components
    <class 'pandas.core.frame.DataFrame'>
    Index: 500 entries, MMM to ZTS
    Data columns (total 5 columns):
    ticker 500 non-null values
           500 non-null values
    name
    Sector 500 non-null values
    SubIndustry 497 non-null values
    Address 500 non-null values
    dtypes: object(5)
```

Accessing the data

```
>>> sp500components['ticker'][0:5]
```

ticker

MMM MMM

ABT ABT

ABBV ABBV

ANF ANF

ACE ACE

Name: ticker, dtype: object

Why does the ticker appear twice??

Accessing the data

```
>>> sp500components[['ticker', 'Sector']][0:5]
      ticker
                             Sector
ticker
MMM
         MMM
                        Industrials
         ABT
                       Health Care
ABT
ABBV ABBV
                      Health Care
             Consumer Discretionary
    ANF
ANF
                         Financials
ACE
         ACE
```

Accessing the data

The "Index" can be anything – very useful

>>> sp500components[['ticker', 'Sector']][0:5]

	ticker		Sector
0	MMM		Industrials
1	ABT		Health Care
2	ABBV		Health Care
3	ANF	Consumer	Discretionary
4	ACE		Financials

Practical Data Science

Pulling data from the web

Stock prices from Yahoo! Finance

```
import pandas.io.data as web
startDate = datetime.datetime(2002,1,1)
endDate = datetime.datetime(2013,10,29)
thisData = web.DataReader("AAPL", "yahoo", startDate, endDate)
>>> thisData
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2978 entries, 2002-01-02 00:00:00 to 2013-10-29 00:00:00
Data columns (total 6 columns):
Open 2978 non-null values
High 2978 non-null values
Low 2978 non-null values
Close 2978 non-null values
Volume 2978 non-null values
Adj Close 2978 non-null values
dtypes: float64(5), int64(1)
```

What's the index here??

- Dates need to be aligned
 - o merge is a very useful function in the pandas package
 - o Can be used to merge two data-frames, on a specified index

```
>>> aapl = web.DataReader("AAPL", "yahoo", startDate, endDate)
>>> fslr = web.DataReader("FSLR", "yahoo", startDate, endDate)
>>> min(aapl.index)
       Timestamp('2002-01-02 00:00:00', tz=None)
>>> min(fslr.index)
       Timestamp('2006-11-17 00:00:00', tz=None)
>>> newData = pd.merge(aapl, fslr, how='outer', left index=True, right index=True)
>>> newData
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2978 entries, 2002-01-02 00:00:00 to 2013-10-29 00:00:00
Data columns (total 12 columns):
Open x 2978 non-null values
High_x 2978 non-null values
Low_x 2978 non-null values
Close_x 2978 non-null values
Volume_x 2978 non-null values
Adj Close_x 2978 non-null values
Open_y 1748 non-null values
High_y 1748 non-null values
Low_y 1748 non-null values
Close_y 1748 non-null values
Volume_y 1748 non-null values
Volume_y 1748 non-null values
Adj Close y 1748 non-null values
dtypes: float64(11), int64(1)
```

```
>>> newData = pd.merge(aapl, fslr, how='outer',
left index=True, right index=True, suffixes=["AAPL","FSLR"])
>>> newData
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2978 entries, 2002-01-02 00:00:00 to 2013-10-29 00:00:00
Data columns (total 12 columns):
OpenAAPL 2978 non-null values
HighAAPL 2978 non-null values
LowAAPL 2978 non-null values
CloseAAPL 2978 non-null values
VolumeAAPL 2978 non-null values
Adj CloseAAPL 2978 non-null values
OpenFSLR 1748 non-null values
HighFSLR 1748 non-null values
LowFSLR 1748 non-null values
CloseFSLR 1748 non-null values
VolumeFSLR 1748 non-null values
Adj CloseFSLR 1748 non-null values
dtypes: float64(11), int64(1)
```

Why is this useful??

>>> newData[["Adj CloseAAPL", "Adj CloseFSLR"]][0:5] Adj CloseAAPL Adj CloseFSLR Date 2002-01-02 NaN 2002-01-03 11.47 NaN 2002-01-04 11.52 NaN 2002-01-07 11.14 NaN 2002-01-08 10.99 NaN >>> newData[["Adj CloseAAPL", "Adj CloseFSLR"]][2973:2978] Adj CloseAAPL Adj CloseFSLR Date

51.48

52.37

2013-10-23 524.96 53.08 2013-10-24 531.91 54.22

2013-10-25 525.96 52.80

Dates are aligned!

2013-10-28 529.88 2013-10-29 516.68

- Prices are not very useful need returns
 - o Return can be calculated using 2 methods:
 - Method 1, more common: $(P_t P_{t-1})/P_{t-1}$
 - Method 2, log of difference: $log(P_t) log(P_{t-1}) = log(Pt / Pt-1)$
 - Method 2 is easier to calculate for large data sets
 - It also yields symmetrical returns
 - Method 1:
 - o If price goes from 100 to 101: 1.000%
 - o If price goes from 101 to 100: -0.990%
 - Method 2:
 - o If price goes from 100 to 101: 0.995%
 - o If price goes from 101 to 100: -0.995%
 - The two methods are 99.9% correlated
 - o In the following examples, I use method 2, for ease of calculation

Processing the data Calculating returns

```
>> np.diff(np.log(aapl["Adj Close"].tolist()))
array([ 0.01228086, 0.00434972, -0.03354242, ..., -0.01124914, 0.0074254, -0.02522684])
np.diff() takes a list and gives you lagged differences, e.g.:
>> np.diff([1, 2, 4, 5, 6, 10, 11, 20])
        array([1, 2, 1, 1, 4, 1, 9])
  We get one less item than in the original list!
>> len(aapl["Adj Close"])
   2978
>> len(np.diff(np.log(aapl["Adj Close"].tolist())))
   2977
  We append a 0 to the front of the list
>> len(np.insert(np.diff(np.log(aapl["Adj Close"].tolist())), 0, [0]))
   2978
As we saw before, log differences are equivalent to returns.
aaplRets = np.insert(np.diff(np.log(aapl["Adj Close"].tolist())), 0, [0])
```

Merged data. What next?

>> mergedRetData[['MMM','DRI','AAPL','JPM','HD']][0:9]

	MMM	DRI	AAPL	JPM	HD
Date					
2002-01-02	0.00000	0.00000	0.00000	0.00000	0.00000
2002-01-03	-0.003401	0.030013	0.012281	0.025986	-0.006897
2002-01-04	0.003175	0.056953	0.004350	0.044185	0.017785
2002-01-07	-0.012072	-0.025254	-0.033542	-0.002567	-0.007076
2002-01-08	-0.005745	0.00000	-0.013556	-0.007742	0.010093
2002-01-09	-0.003463	0.002554	-0.042757	0.002956	-0.016709
2002-01-10	-0.012567	0.003057	-0.020145	0.011009	0.001021
2002-01-11	0.005139	0.003047	-0.007782	-0.020650	0.003056
2002-01-14	-0.018103	-0.009682	0.003899	-0.027192	-0.018476

Analyze the data

```
>>> cormat = mergedRetData.corr()
>>> thisKMeans = cluster.KMeans(10)
>>> thisKMeans.fit(cormat)
KMeans (copy x=True, init='k-means++', man jobs=1, precompute distances=True,
verbose=0)
>>> cormat['AAPL']
A 0.404374
AA 0.390887
AAPL 1.000000
ABC 0.206329
YUM 0.300696
ZION 0.299398
ZMH 0.248488
Name: AAPL, Length: 436, dtype: float64
>>> cormat.shape
(436, 436)
```

Practical Data Science

Save your output

```
clusterDistances = thisKMeans.transform(cormat)
clusterDistances[0,:]
array([ 2.24614501, 1.45824868, 1.38389929, 2.99676636, 2.27274464,
       2.19303793, 1.35246865, 1.90428341, 2.16030916, 1.67363007,
       2.29423109, 2.81273354,
                                1.33286153, 1.99858223, 4.03701107,
       2.35519057, 1.21179857, 2.098009 , 2.05794025, 1.10006343,
       3.66823202, 1.76523283, 1.11351949, 1.81320414, 2.75810668,
       2.58122509, 2.11497663, 1.77503711, 0.76635101, 3.05929254,
       2.43152803, 2.15090248, 2.45870967, 2.03636479, 1.48396469,
       2.16925974, 5.35974798, 1.53908383, 3.6498919, 2.61885338,
       1.48165862, 1.63719572, 3.5198943, 1.56530971, 2.91279676,
       1.4984982 , 1.46975875, 1.14341005, 1.23312652, 4.87159054])
stockClusters = pd.DataFrame(thisKMeans.predict(cormat), index=stockList)
stockClusters.columns=['cluster']
stockClusters = pd.merge(stockClusters, sp500components, how='left',
left index=True, right index=True)
stockClusters.sort("cluster")
outData = stockClusters.sort("cluster")
outData.to csv("c:/dev/stocks clustered.50.output.csv")
```

K Means Clustering

- Sci-kit learn provides a KMeans class
- We compute a correlation matrix and run K Means

```
>> cormat = mergedRetData.corr()
>> thisKMeans = cluster.KMeans(10)
>> thisKMeans.fit(cormat)
>>> thisKMeans.predict(cormat)
array([6, 1, 9, 8, 8, 5, 9, 8, 6, 6, 2, 5, 6, 0, 0, 3, 8, 7, 2, 8, 7, 9, 7,
       6, 3, 6, 9, 8, 3, 9, 5, 2, 8, 4, 4, 1, 1, 5, 5, 7, 8, 1, 1, 2, 5, 7,
      3, 5, 7, 2, 8, 8, 5, 1, 8, 4, 3, 1, 7, 5, 1, 8, 9, 2, 8, 4, 7, 7, 6,
      8, 8, 4, 1, 7, 8, 9, 1, 8, 3, 4, 5, 8, 1, 8, 4, 8, 7, 5, 1, 8, 3, 4,
      7, 4, 5, 5, 4, 2, 8, 2, 6, 1, 5, 2, 6, 9, 9, 2, 4, 0, 1, 1, 6, 8, 5,
      1, 1, 3, 2, 4, 4, 1, 1, 2, 0, 0, 3, 4, 9, 6, 1, 0, 1, 0, 2, 9, 1, 1,
      4, 7, 4, 8, 4, 2, 1, 0, 3, 0, 5, 2, 5, 4, 3, 5, 0, 9, 2, 5, 7, 9, 1,
      5, 1, 2, 1, 8, 4, 8, 0, 5, 5, 1, 8, 8, 9, 1, 2, 9, 1, 5, 1, 4, 2, 2,
      7, 7, 7, 7, 5, 4, 2, 1, 1, 1, 4, 6, 2, 3, 6, 7, 8, 3, 6, 5, 5, 6, 9,
      1, 5, 1, 2, 3, 1, 1, 6, 1, 2, 9, 1, 8, 9, 4, 7, 5, 8, 7, 6, 2, 2, 8,
      8, 2, 5, 1, 5, 7, 3, 8, 2, 6, 2, 1, 8, 7, 5, 6, 6, 5, 1, 2, 5, 7, 1,
      5, 2, 8, 6, 8, 5, 8, 8, 7, 5, 8, 2, 1, 3, 3, 1, 2, 8, 4, 1, 6, 9, 7,
       6, 4, 1, 8, 4, 4, 4, 0, 3, 4, 0, 5, 2, 4, 5, 6, 1, 0, 4, 9, 5, 2, 4,
      5, 6, 2, 4, 5, 5, 5, 1, 8, 1, 3, 5, 2, 8, 2, 2, 7, 2, 7, 1, 5, 9, 7,
      5, 7, 5, 0, 0, 1, 0, 3, 7, 7, 5, 9, 1, 4, 6, 5, 3, 4, 3, 7, 5, 9, 5,
      1, 1, 2, 4, 2, 2, 5, 0, 1, 2, 2, 1, 8, 4, 2, 1, 9, 0, 7, 5, 8, 0, 7,
      8, 7, 3, 1, 4, 8, 2, 9, 2, 5, 3, 0, 0, 6, 5, 3, 5, 2, 7, 5, 1, 7, 8,
      9, 2, 5, 6, 5, 3, 8, 7, 1, 1, 2, 7, 1, 8, 5, 4, 5, 7, 9, 7, 2, 2, 8,
       9, 0, 7, 2, 5, 8, 5, 3, 2, 2, 1, 4, 3, 7, 6, 4, 5, 2, 9, 2, 7, 81)
```

K Means Clustering

ticker	cluster	name	Sector	SubIndustry
LEN		1 Lennar Corp.	Consumer Discretionary	Homebuilding
PHM		1 Pulte Homes Inc.	Consumer Discretionary	Homebuilding
AKAM		2 Akamai Technologies Inc	Information Technology	Internet Software & Services
BAC		3 Bank of America Corp	Financials	Banks
JPM		3 JPMorgan Chase & Co.	Financials	Banks
PRU		3 Prudential Financial	Financials	Diversified Financial Services
ALL		4 Allstate Corp	Financials	Property & Casualty Insurance
DIS		4 The Walt Disney Company	Consumer Discretionary	Broadcasting & Cable TV
DRI		4 Darden Restaurants	Consumer Discretionary	Restaurants
FDX		4 FedEx Corporation	Industrials	Air Freight & Logistics
GPS		4 Gap (The)	Consumer Discretionary	Apparel Retail
HD		4 Home Depot	Consumer Discretionary	Home Improvement Retail
LOW		4 Lowe's Cos.	Consumer Discretionary	Home Improvement Retail
SBUX		4 Starbucks Corp.	Consumer Discretionary	Restaurants
TGT		4 Target Corp.	Consumer Discretionary	General Merchandise Stores
TRV		4 The Travelers Companies Inc.	Financials	Property & Casualty Insurance
URBN		4 Urban Outfitters	Consumer Discretionary	Apparel Retail
AFL		5 AFLAC Inc	Financials	Life & Health Insurance
AIV		5 Apartment Investment & Mgmt	Financials	REITs
AVB		5 AvalonBay Communities, Inc.	Financials	REITs
AXP		5 American Express Co	Financials	Consumer Finance
F		5 Ford Motor	Consumer Discretionary	Automobile Manufacturers
М		5 Macy's Inc.	Consumer Discretionary	Department Stores
SPG		5 Simon Property Group Inc	Financials	REITs
USB		5 U.S. Bancorp	Financials	Banks
VNO		5 Vornado Realty Trust	Financials	REITs
JNJ		6 Johnson & Johnson	Health Care	Health Care Equipment & Services
ко		6 The Coca Cola Company	Consumer Staples	Soft Drinks
MCD		6 McDonald's Corp.	Consumer Discretionary	Restaurants
MO		6 Altria Group Inc	Consumer Staples	Tobacco
PEP		6 PepsiCo Inc.	Consumer Staples	Soft Drinks
COP		7 ConocoPhillips	Energy	Integrated Oil & Gas
HES		7 Hess Corporation	Energy	Integrated Oil & Gas
OXY		7 Occidental Petroleum	Energy	Oil & Gas Exploration & Production
SLB		7 Schlumberger Ltd.	Energy	Oil & Gas Equipment & Services
AMGN		8 Amgen Inc	Health Care	Biotechnology
CVX		8 Chevron Corp.	Energy	Integrated Oil & Gas
LLY		8 Lilly (Eli) & Co.	Health Care	Pharmaceuticals
MMM		8 3M Company	Industrials	Industrial Conglomerates
MRK		8 Merck & Co.	Health Care	Pharmaceuticals
PFE		8 Pfizer Inc.	Health Care	Pharmaceuticals
SHW		8 Sherwin-Williams	Materials	
UPS		8 United Parcel Service	Industrials	Air Freight & Logistics
XOM		8 Exxon Mobil Corp.	Energy	Integrated Oil & Gas
JDSU		9 JDS Uniphase Corp.	Information Technology	Telecommunications Equipment
NVDA		9 Nvidia Corporation	Information Technology	Semiconductors
SNDK		9 SanDisk Corporation	Information Technology	Computer Storage & Peripherals
AMZN		10 Amazon.com Inc	Consumer Discretionary	Internet Retail
csco		10 Cisco Systems	Information Technology	Networking Equipment
ORCL		10 Oracle Corp.	Information Technology	Application Software
QCOM		10 QUALCOMM Inc.	Information Technology	Semiconductors
SYMC		10 Symantec Corp.	Information Technology	Application Software
YHOO		10 Yahoo Inc.	Information Technology	Internet Software & Services
		10 Tanob III0.	miornation reciniology	Internet Cartwine & Convinces

Practical Data Science

Why use a data-driven approach?

- Eliminate human bias
- We're not ignoring the fundamentals
- Fundamentals are usually reflected in price any way!
- Find patterns before they become humanly noticeable
- Find patterns that may not be noticeable at all
- Requires you to think less!

Other examples – data

ACTION	RESOURCE	MGR_ID	ROLE_ROLLUP_1	ROLE_ROLLUP_2	ROLE_DEPTNAME	ROLE_TITLE	ROLE_FAMILY_DESC	ROLE_FAMILY	ROLE_CODE
	1 77175	3889	117961	118386	121668	117905	240983	290919	117908
	0 16461	. 5919	117961	118446	16232	121594	302830	4673	121596
	0 44724	50056	117893	117894	117878	130479	226503	119784	130481
	1 73815	92887	118315	118316	140453	129229	182258	119788	129231
	1 4675	3023	117961	118343	122012	118321	117906	290919	118322
	1 87802	4193	117961	118343	118514	119849	133986	118638	119851
	1 41264	7551	117961	118052	118867	117905	117906	290919	117908
	1 42085	9959	118742	118743	117920	117899	117897	19721	117900
	1 4675	25557	117961	118300	121951	118321	117906	290919	118322
	1 40069	5730	117961	118446	118684	124305	132003	118762	124307
	1 79092	1331	117961	118225	118403	118784	117906	290919	118786
	0 29304	70479	118953	118954	117941	118568	135898	19721	118570
	1 20097	1755	117961	117962	119223	125793	146749	118643	125795
	1 5764	14811	117961	118343	118344	117905	117906	290919	117908
	1 4675	7454	117961	118413	122007	118321	117906	290919	118322
	1 75078	18686	117961	118386	121883	118321	117906	290919	118322
	0 20897	23345	117961	118327	123757	119997	278014	118131	119998
	1 6977	2612	117961	118327	123901	118321	117906	290919	118322
	1 17308	17598	117961	118300	118631	119928	219829	118331	119929
	1 13878	17881	117961	118300	121030	118801	311498	19793	118803
	1 29108	111936	117961	118300	118783	117905	117906	290919	117908
	1 35068	1923	117902	117903	118783	117905	117906	290919	117908
	0 31183	46663	118256	118257	118623	259173	193644	292795	118943
	1 34924	15385	117902	118041	117945	259173	130913	292795	118943
	1 88481	1483	117961	117962	118840	118841	118842	118643	118843
	1 51987	110249	117961	117962	117904	179731	131272	117887	117973
	0 18072	15484	118256	118257	118623	259173	193644	292795	118943
	1 28360	36051	117961	118386	118635	118685	262400	308574	118687

Other examples – data

ACTION RESOURCE=16461	RESOURCE=44724	RESOURCE=73815	RESOURCE=4675	MGR_ID=3889	MGR_ID=5919	MGR_ID=50056	MGR_ID=92887	MGR_ID=3023
1	0	0	0	0	1	0) () 0
0	1	0	0	0	0	1) (0
0	0	1	0	0	0	0	1 (0
1	0	0	1	0	0	0) 1	0
1	0	0	0	1	0	0) () 1

Classification – steps

- Read the data: pandas.read_csv()
- One Hot Encoding: sklearn.preprocessing.OneHotEncoder()
- Pick a technique, e.g. Logistic Regression
- Fit a model: sklearn.linear_model.LogisticRegression()
- Cross Validation: sklearn.cross_validation.ShuffleSplit()
 - Train on part of the data
 - Test on the remaining data i.e. data you haven't "seen"
- If performance is acceptable, you're good to go!

Classification – ROC curve

