Asana-Math.otf

Analyse Fonctionnelle Avancée et Applications aux EDP

Méthodes Numériques pour les EDF

Les slides sont disponibles sur

 $\verb|https://github.com/cemosis/unistra.ufr.math|\\$

Analyse Fonctionnelle Avancée et Applications aux EDP

Analyse Fonctionnelle Avancée et Applications

Méthodes Numériques pour les EDP

Objectifs

- Préparation du M2MF 2015-2016
- Acquisition du vocabulaire et des outils mathématiques nécessaires à l'analyse des équations aux dérivées partielles

Objets

Étant donné $\Omega \subset \mathbb{R}^d, d=1,2,3$, les espaces $H^s(\Omega)$

$${\it H^s}(\Omega)=\{u\in {\it L}^2(\Omega)\mid \forall \alpha \ {\it tel que}\ |\alpha|\leq s,\ {\it D}^\alpha u\in {\it L}^2(\Omega)\}$$

Questions

- Propriétés de ces espaces
- Applications aux EDP: cadre fonctionel pour montrer l'existence et unicité de solutions

Méthodes Numériques pour les EDP

Analyse Fonctionnelle Avancée et Applications aux EDP

Méthodes Numériques pour les EDP

Motivations ici pour les EDP (video/images)...

Méthodes Numériques pour les EDP

Analyse Fonctionnelle Avancée et Applications

Méthodes Numériques pour les EDP

Objectifs

- Étude mathématique et numérique de la méthode des éléments finis qui propose un cadre général pour passer de formulations continues à discrètes
- le cadre théorique est donnée par le cours d'Analyse Fonctionnelle Avancée

Questions

- Existence et unicité de solution pour des problèmes elliptiques linéaires coercifs au niveaux continus et discrets
- Construction de fonctions de bases, dites élément fini
- lacksquare Erreur d'interpolation et d'approximation en norme L^2 et H^1
- Implémentation de la méthode et Vérification numériques des théorèmes