Functions and its properties

Let A, B be two nonempty sets.

The cartesian product of A and B is

$$A \times B = \{(a,b)|a \in A, b \in B\}$$

Note: $A \times B \neq B \times A$.

Let $A = \{1, 2, 3\}, B = \{a, b\}.$ Then

$$A \times B = \{(1, a), (2, a), (3, a), (1, b), (2, b), (3, b)\}$$

Definition (Function)

A function f from A to B is an assignment for each element a of A, a unique element b of B. $a \rightsquigarrow b$

A function f from A to B is a subset of $A \times B$ such that for each $a \in A$, there exists unique $b \in B$ such that $(a, b) \in f$.

Notation: $f: A \rightarrow B$: a function f from A to B for each $(a, b) \in f$, we write f(a) = b.

Examples of function

▶ Let $A = \{a, b\}$ and $\{1, 2, 3\}$. Then

$$f = \{(a,2),(b,3)\}$$

is a function; whereas

$$g = \{(a,1),(a,2),(b,1)\}$$

is not a function.

- ▶ Let $A = B = \mathbb{R}$ and $f(x) = x^2$. Then $f : \mathbb{R} \to \mathbb{R}$ is a function. Define $g : \mathbb{R} \to \mathbb{R}$ as g(x) := y, if $y^2 = x$. Then g is not a function from \mathbb{R} to \mathbb{R} .
- Let A be a non-empty set. The identity function on A, 1_A is defined as $1_A(a) = a$ for all $a \in A$.

Definition

Suppose

$$f:A\to B$$

$$g:B\to C$$

are functions. The composite of f and g, $g \circ f : A \to C$ is a function defined as

$$g \circ f(a) := g(f(a))$$
 for each $a \in A$.

Let $f: A \rightarrow B$ be a function.

Domain of f=A.

Codomain of f=B.

Range of $f = \{b \in B | f(a) = b \text{ for some } a \in A\}$

f is said to be onto/surjective if Range of f = B.

f is said to be injective if f(a) = f(a') then a = a'

Define $f, g : \mathbb{R} \to \mathbb{R}$ as

$$f(x) = x^{2},$$

$$g(x) = +\sqrt{|x|}$$

$$g \circ f(x) = |x|$$

What is $f \circ g$?

Theorem

Let $f,g:\mathbb{R}\to\mathbb{R}$ be two functions. Suppose $g\circ f$ is injective. Then f is injective

Proof.

Let
$$f(a) = f(a')$$
.

We need to prove a = a'

Hence
$$g(f(a)) = g(f(a'))$$
, i.e., $g \circ f(a) = g \circ f(a')$

Since $g \circ f$ is injective, a = a'.

Let $f: A \rightarrow B$ be a function,i.e.,

$$f = \{(a, f(a)) | a \in A\}$$

Consider the set

$$g = \{(f(a), a) | a \in A\} \subseteq B \times A$$

If g is a function from B to A, then f is said to be invertible with $f^{-1} = g$.

Note: $f \circ f^{-1} = 1_B$ and $f^{-1} \circ f = 1_A$

Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$.

$$f = \{(a, 2), (b, 1), (c, 2)\}$$

Is f invertible?

Let $f: A \rightarrow B$ be a function, i.e.,

$$f = \{(a, f(a)) | a \in A\}$$

Consider the set

$$g = \{(f(a), a) | a \in A\} \subseteq B \times A$$

If g is a function from B to A, then f is said to be invertible with $f^{-1} = g$.

Note: $f \circ f^{-1} = 1_B$ and $f^{-1} \circ f = 1_A$

Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$.

$$f = \{(a, 2), (b, 1), (c, 2)\}$$

Is f invertible? No.

Is $g = \{(a, 2), (b, 1), (c, 3)\}$ invertible?

Let $f: A \rightarrow B$ be a function, i.e.,

$$f = \{(a, f(a)) | a \in A\}$$

Consider the set

$$g = \{(f(a), a) | a \in A\} \subseteq B \times A$$

If g is a function from B to A, then f is said to be invertible with $f^{-1} = g$.

Note: $f \circ f^{-1} = 1_B$ and $f^{-1} \circ f = 1_A$

Example: Let $A = \{a, b, c\}$ and $B = \{1, 2, 3\}$.

$$f = \{(a,2), (b,1), (c,2)\}$$

Is f invertible? No.

Is $g = \{(a, 2), (b, 1), (c, 3)\}$ invertible? Yes.

Theorem (Criteria for invertible functions)

A function $f: A \rightarrow B$ is invertible if and only if f is injective and onto.

Theorem (Criteria for invertible functions)

A function $f: A \rightarrow B$ is invertible if and only if f is injective and onto.

Proof.

Let f be invertible.

Since $f^{-1}: B \to A$ is a function, Domain of $f^{-1} = B$.

Hence Range of f = B, i.e., f is onto.

Theorem (Criteria for invertible functions)

A function $f: A \rightarrow B$ is invertible if and only if f is injective and onto.

Proof.

Let f be invertible.

Since $f^{-1}: B \to A$ is a function, Domain of $f^{-1} = B$.

Hence Range of f = B, i.e., f is onto.

Let f(a) = f(a')

Since f^{-1} is a function,

$$f^{-1}(f(a)) = f^{-1}(f(a'))$$

i.e., $a = a'$

Theorem

Let A and B be two nonempty finite sets of same cardinality and $f: A \to B$ be a function. If f is injective, then f is invertible.

Theorem

Let A and B be two nonempty finite sets of same cardinality and $f: A \to B$ be a function. If f is injective, then f is invertible.

Proof.

Let
$$A = \{a_1, \cdots, a_n\}$$
.

Since f is injective, $f(a_1), f(a_2), \dots, f(a_n)$ are all distinct elements of B.

But
$$|B| = |A| = n$$
. Hence

$$B = \{f(a_1), f(a_2), \dots, f(a_n)\}, \text{ i.e., } f \text{ is onto.}$$

Theorem

Let A and B be two nonempty finite sets of same cardinality and $f: A \to B$ be a function. If f is injective, then f is invertible.

Proof.

Let $A = \{a_1, \cdots, a_n\}$.

Since f is injective, $f(a_1), f(a_2), \dots, f(a_n)$ are all distinct elements of B.

But |B| = |A| = n. Hence

$$B = \{f(a_1), f(a_2), \dots, f(a_n)\}, \text{ i.e., } f \text{ is onto.}$$

Theorem

Let A and B be two nonempty finite sets of same cardinality and $f: A \to B$ be a function. If f is surjective, then f is invertible.

Application of invertible functions in Cryptography

Let $A = \{a, b, \dots, z\}$ and $f : A \to A$ be an invertible function. Take a message. Encode the message by replacing each alphabet of it by its image under f.

(In order to decode this encoded message, f must have inverse.) The recipient decodes the message by applying f^{-1} to each alphabet.

Graph of a function

Definition (Graph of a function)

Let $f: A \rightarrow B$ be a function. The graph of f is the set of ordered pairs

$$\{(a, f(a))|a \in A\}$$

Graph of a function

Definition (Graph of a function)

Let $f: A \rightarrow B$ be a function. The graph of f is the set of ordered pairs

$$\{(a, f(a))|a \in A\}$$

Question: Display the graph of a function $f: \mathbb{Z} \to \mathbb{Z}$ defined as $f(n) = n^2$.

Sequence is a ordered list of elements.

Definition (Sequence)

A sequence of the set S is a function

$$a: A \rightarrow S$$
 where $A \subseteq \mathbb{N}$

We will write it as $(a_n)_{n=1}^{\infty}$, where $a_n = a(n)$, n^{th} term of the sequence.

Sequence is a ordered list of elements.

Definition (Sequence)

A sequence of the set S is a function

$$a: A \rightarrow S$$
 where $A \subseteq \mathbb{N}$

We will write it as $(a_n)_{n=1}^{\infty}$, where $a_n = a(n)$, n^{th} term of the sequence.

Examples:

1. $a_n = \frac{1}{n}$ sequence of rational numbers.

Sequence is a ordered list of elements.

Definition (Sequence)

A sequence of the set S is a function

$$a: A \rightarrow S$$
 where $A \subseteq \mathbb{N}$

We will write it as $(a_n)_{n=1}^{\infty}$, where $a_n = a(n)$, n^{th} term of the sequence.

Examples:

- 1. $a_n = \frac{1}{n}$ sequence of rational numbers.
- 2. (Arithmetic progression) $\{a, a+d, a+2d, a+3d, ...\}$. n^{th} term is a+(n-1)d

Sequence is a ordered list of elements.

Definition (Sequence)

A sequence of the set S is a function

$$a: A \rightarrow S$$
 where $A \subseteq \mathbb{N}$

We will write it as $(a_n)_{n=1}^{\infty}$, where $a_n = a(n)$, n^{th} term of the sequence.

Examples:

- 1. $a_n = \frac{1}{n}$ sequence of rational numbers.
- 2. (Arithmetic progression) $\{a, a+d, a+2d, a+3d, ...\}$. n^{th} term is a+(n-1)d
- 3. (Geometric progression) $\{a, ar, ar^2, ar^3, ...\}$. n^{th} term is $ar^{(n-1)}$

 $\{1,\frac{1}{2},\frac{1}{3},\ldots\}$ be a sequence. n^{th} term of the sequence is

 $\{1,\frac{1}{2},\frac{1}{3},\ldots\}$ be a sequence. n^{th} term of the sequence is $\frac{1}{n}$. $\{6,2,\frac{2}{3},\frac{2}{9},\frac{2}{27},\ldots\}$ be a sequence. n^{th} term of the sequence is

 $\{1,\frac{1}{2},\frac{1}{3},\ldots\}$ be a sequence. n^{th} term of the sequence is $\frac{1}{n}$. $\{6,2,\frac{2}{3},\frac{2}{9},\frac{2}{27},\ldots\}$ be a sequence. n^{th} term of the sequence is $\frac{2}{3^{n-2}}$. $\{2,6,18,54,162,\ldots\}$ be a sequence. Then n^{th} term of the sequence is

 $\{1,\frac{1}{2},\frac{1}{3},\ldots\}$ be a sequence. n^{th} term of the sequence is $\frac{1}{n}$. $\{6,2,\frac{2}{3},\frac{2}{9},\frac{2}{27},\ldots\}$ be a sequence. n^{th} term of the sequence is $\frac{2}{3^{n-2}}$. $\{2,6,18,54,162,\ldots\}$ be a sequence. Then n^{th} term of the sequence is $2.(3)^{n-1}$.

$$\sum_{i=m}^{n} a_i := a_m + a_{m+1} + \cdots + a_n$$

$$\sum_{i=m}^{n} a_i := a_m + a_{m+1} + \cdots + a_n$$

$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} (a_i) + \sum_{i=m}^{n} (b_i)$$

$$\sum_{i=m}^{n} a_i := a_m + a_{m+1} + \cdots + a_n$$

$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} (a_i) + \sum_{i=m}^{n} (b_i)$$

$$\sum_{i=m}^{n} (ca_i) = c \sum_{i=m}^{n} (a_i), \text{ where c is a constant}$$

$$\sum_{i=m}^{n} a_i := a_m + a_{m+1} + \cdots + a_n$$

$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} (a_i) + \sum_{i=m}^{n} (b_i)$$

$$\sum_{i=m}^{n} (ca_i) = c \sum_{i=m}^{n} (a_i), \text{ where c is a constant}$$

$$\sum_{i=1}^{4} \sum_{j=2}^{3} ij = \sum_{i=1}^{4} 2i + 3i = (2+3) + (4+6) + (6+9) + (8+12) = 50$$

$$\sum_{i=m}^{n} a_i := a_m + a_{m+1} + \cdots + a_n$$

$$\sum_{i=m}^{n} (a_i + b_i) = \sum_{i=m}^{n} (a_i) + \sum_{i=m}^{n} (b_i)$$

$$\sum_{i=m}^{n} (ca_i) = c \sum_{i=m}^{n} (a_i), \text{ where c is a constant}$$

$$\sum_{i=1}^{4} \sum_{j=2}^{3} ij = \sum_{i=1}^{4} 2i + 3i = (2+3) + (4+6) + (6+9) + (8+12) = 50$$

$$\sum_{i=1}^{4} \sum_{j=2}^{3} ij = \sum_{i=1}^{4} i \sum_{j=2}^{3} j = \sum_{i=1}^{4} i(5) = 5(1+2+3+4) = 50$$

Question: Let a, r be real numbers and $r \neq 0, 1$. Find $\sum_{j=0}^{n} ar^{j}$.

Question: Let a, r be real numbers and $r \neq 0, 1$. Find $\sum_{j=0}^{n} ar^{j}$.

Let
$$S = \sum_{j=0}^{n} ar^{j}$$

$$rS = \sum_{j=0}^{n} ar^{j+1}$$

$$= \sum_{k=1}^{n+1} ar^{k}$$

$$= (\sum_{k=0}^{n} ar^{k}) + (ar^{n+1} - a)$$

$$rS = S + (ar^{n+1} - a)$$

$$(r-1)S = (ar^{n+1} - a)$$

$$S = \frac{(ar^{n+1} - a)}{r-1} \text{ since } r \neq 1$$

Determine whether each of these functions from **Z** to **Z** is one-to-one.

a)
$$f(n) = n - 1$$

b)
$$f(n) = n^2 + 1$$

c)
$$f(n) = n^3$$

$$\mathbf{d)} \ f(n) = \lceil n/2 \rceil$$

Which functions in Exercise 12 are onto?

Determine whether $f: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$ is onto if

a)
$$f(m,n) = 2m - n$$
.

b)
$$f(m,n) = m^2 - n^2$$
.

c)
$$f(m,n) = m + n + 1$$
.

d)
$$f(m,n) = |m| - |n|$$
.

e)
$$f(m,n) = m^2 - 4$$
.

We learnt that if A is a finite set then |A| = no. of distinct elements of A.

We learnt that if A is a finite set then |A| = no. of distinct elements of A.

What about cardinality of infinte sets?

We learnt that if A is a finite set then |A| = no. of distinct elements of A.

What about cardinality of infinte sets?

We saw

If S is a finite set, then every injective function $f:S\to S$ is surjective.

We learnt that if A is a finite set then |A| = no. of distinct elements of A.

What about cardinality of infinte sets?

We saw

If S is a finite set, then every injective function $f:S\to S$ is surjective.

This statement is same as

If there exists an injective function $f: S \to S$ which is not surjective, then S is not finite(that is, infinite).

Infinite sets

We learnt that if A is a finite set then |A| = no. of distinct elements of A.

What about cardinality of infinte sets?

We saw

If S is a finite set, then every injective function $f: S \to S$ is surjective.

This statement is same as

If there exists an injective function $f: S \to S$ which is not surjective, then S is not finite(that is, infinite).

Definition

A set S is said to be infinite if there exists an injective function $f:S\to S$ which is not surjective.

Infinite sets

We learnt that if A is a finite set then |A| = no. of distinct elements of A.

What about cardinality of infinte sets?

We saw

If S is a finite set, then every injective function $f: S \to S$ is surjective.

This statement is same as

If there exists an injective function $f: S \to S$ which is not surjective, then S is not finite(that is, infinite).

Definition

A set S is said to be infinite if there exists an injective function $f:S\to S$ which is not surjective.

Example: The sets $\mathbb{N}, \mathbb{Q}, \mathbb{R}$ are infinite sets.

Infinite sets

We learnt that if A is a finite set then |A| = no. of distinct elements of A.

What about cardinality of infinte sets?

We saw

If S is a finite set, then every injective function $f:S\to S$ is surjective.

This statement is same as

If there exists an injective function $f: S \to S$ which is not surjective, then S is not finite(that is, infinite).

Definition

A set S is said to be infinite if there exists an injective function $f: S \to S$ which is not surjective.

Example: The sets $\mathbb{N}, \mathbb{Q}, \mathbb{R}$ are infinite sets.

Definition (countable set)

A set S is said to be countable if either it is finite or if there exists a bijective (injective and surjective) function $f : \mathbb{N} \to S$.

We define the cardinality of $\mathbb{N}:=\aleph_0$

We define the cardinality of $\mathbb{N}:=\aleph_0$ If there exists an injective function $f:A\to B$, then we say $|A|\leq |B|$.

We define the cardinality of $\mathbb{N}:=\aleph_0$ If there exists an injective function $f:A\to B$, then we say $|A|\leq |B|$. |A|=|B| if and only if there exists a bijective function $f:A\to B$

We define the cardinality of $\mathbb{N} := \aleph_0$

If there exists an injective function $f: A \rightarrow B$, then we say

 $|A| \leq |B|$.

|A| = |B| if and only if there exists a bijective function $f: A \to B$

Theorem (Schröder-Bernstein-Cantor theorem)

If $f:A\to B$ and $g:B\to A$ are injective functions then there exists a bijective function $h:A\to B$.

We define the cardinality of $\mathbb{N} := \aleph_0$

If there exists an injective function $f: A \rightarrow B$, then we say

 $|A| \leq |B|$.

|A| = |B| if and only if there exists a bijective function $f: A \to B$

Theorem (Schröder-Bernstein-Cantor theorem)

If $f: A \to B$ and $g: B \to A$ are injective functions then there exists a bijective function $h: A \to B$.

Exercise: Show that |[0,1]| = |(0,1)|.

We define the cardinality of $\mathbb{N} := \aleph_0$

If there exists an injective function $f: A \rightarrow B$, then we say

$$|A| \leq |B|$$
.

|A| = |B| if and only if there exists a bijective function $f: A \to B$

Theorem (Schröder-Bernstein-Cantor theorem)

If $f: A \to B$ and $g: B \to A$ are injective functions then there exists a bijective function $h: A \to B$.

Exercise: Show that |[0,1]| = |(0,1)|. If the set A is countably infinite, then

$$|A| = \aleph_0$$

We define the cardinality of $\mathbb{N} := \aleph_0$

If there exists an injective function $f: A \rightarrow B$, then we say

 $|A| \leq |B|$.

|A| = |B| if and only if there exists a bijective function $f: A \to B$

Theorem (Schröder-Bernstein-Cantor theorem)

If $f:A\to B$ and $g:B\to A$ are injective functions then there exists a bijective function $h:A\to B$.

Exercise: Show that |[0,1]| = |(0,1)|. If the set A is countably infinite, then

$$|A| = \aleph_0$$

An infinite set is said to be uncountable if it is not countable.

We define the cardinality of $\mathbb{N} := \aleph_0$

If there exists an injective function $f: A \rightarrow B$, then we say

 $|A| \leq |B|$.

|A| = |B| if and only if there exists a bijective function $f: A \to B$

Theorem (Schröder-Bernstein-Cantor theorem)

If $f:A\to B$ and $g:B\to A$ are injective functions then there exists a bijective function $h:A\to B$.

Exercise: Show that |[0,1]| = |(0,1)|. If the set A is countably infinite, then

$$|A| = \aleph_0$$

An infinite set is said to be uncountable if it is not countable. $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ are countable.

 \mathbb{R} is uncountable.

 \mathbb{R} is uncountable.

Proof: Suppose not, i.e., \mathbb{R} is countable.

 \mathbb{R} is uncountable.

Proof: Suppose not, i.e., \mathbb{R} is countable.

Then [0,1] is also countable.

 \mathbb{R} is uncountable.

Proof: Suppose not, i.e., \mathbb{R} is countable.

Then [0,1] is also countable.

Let $f: \mathbb{N} \to [0,1]$ be a bijection.

 r_1, r_2, r_3, \cdots be all real numbers of [0, 1], where $f(n) = r_n$

 \mathbb{R} is uncountable.

Proof: Suppose not, i.e., \mathbb{R} is countable.

Then [0,1] is also countable.

Let $f: \mathbb{N} \to [0,1]$ be a bijection.

 r_1, r_2, r_3, \cdots be all real numbers of [0, 1], where $f(n) = r_n$

Use Cantor's diagonalization argument as follows:

 $r_1=0.d_{11}d_{12}d_{13}\cdots$

 $r_2 = 0.d_{21}d_{22}d_{23}\cdots$

 $r_3 = 0.d_{31}d_{32}d_{33}\cdots$ and so on

Construct $r = 0.d_1d_2d_3d_4\cdots$ as follows:

Choose d_i different from d_{ii} for all i

 \mathbb{R} is uncountable.

Proof: Suppose not, i.e., \mathbb{R} is countable.

Then [0,1] is also countable.

Let $f: \mathbb{N} \to [0,1]$ be a bijection.

 r_1, r_2, r_3, \cdots be all real numbers of [0, 1], where $f(n) = r_n$

Use Cantor's diagonalization argument as follows:

$$r_1 = 0.d_{11}d_{12}d_{13}\cdots$$

$$r_2 = 0.d_{21}d_{22}d_{23}\cdots$$

$$r_3 = 0.d_{31}d_{32}d_{33}\cdots$$
 and so on

Construct $r = 0.d_1d_2d_3d_4\cdots$ as follows:

Choose d_i different from d_{ii} for all i

Then $r \neq r_i$ for any i.

 \mathbb{R} is uncountable.

Proof: Suppose not, i.e., \mathbb{R} is countable.

Then [0,1] is also countable.

Let $f: \mathbb{N} \to [0,1]$ be a bijection.

 r_1, r_2, r_3, \cdots be all real numbers of [0, 1], where $f(n) = r_n$

Use Cantor's diagonalization argument as follows:

$$r_1 = 0.d_{11}d_{12}d_{13}\cdots$$

$$r_2 = 0.d_{21}d_{22}d_{23}\cdots$$

$$r_3 = 0.d_{31}d_{32}d_{33}\cdots$$
 and so on

Construct
$$r = 0.d_1d_2d_3d_4\cdots$$
 as follows:

Choose d_i different from d_{ii} for all i

Then
$$r \neq r_i$$
 for any i .

Define
$$|\mathbb{R}| := c$$

If |S| = n then $|P(S)| = 2^n$

Theorem

Let S be a set. Then |S| < |P(S)|

Theorem

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Theorem

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Clearly, f is an injection. Hence $|S| \leq |P(S)|$

Theorem

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Clearly, f is an injection. Hence $|S| \leq |P(S)|$

Claim: Any function $g: S \to P(S)$ is not surjective (hence not bijective).

Theorem

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Clearly, f is an injection. Hence $|S| \leq |P(S)|$

Claim: Any function $g: S \to P(S)$ is not surjective (hence not bijective).

$$A = \{x | x \notin g(x)\} \in P(S)$$

If
$$|S| = n$$
 then $|P(S)| = 2^n$
What if S is infinite?

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Clearly, f is an injection. Hence $|S| \leq |P(S)|$

Claim: Any function $g: S \to P(S)$ is not surjective (hence not bijective).

$$A = \{x | x \notin g(x)\} \in P(S)$$

$$A = g(a)$$
 for some $a \in S$

If
$$|S| = n$$
 then $|P(S)| = 2^n$
What if S is infinite?

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Clearly, f is an injection. Hence $|S| \leq |P(S)|$

Claim: Any function $g: S \to P(S)$ is not surjective (hence not bijective).

$$A = \{x | x \not\in g(x)\} \in P(S)$$

$$A = g(a)$$
 for some $a \in S$
 $a \in A \Leftrightarrow a \in \{x | x \notin g(x)\}$

If
$$|S| = n$$
 then $|P(S)| = 2^n$
What if S is infinite?

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Clearly, f is an injection. Hence $|S| \leq |P(S)|$

Claim: Any function $g: S \to P(S)$ is not surjective (hence not bijective).

$$A = \{x | x \notin g(x)\} \in P(S)$$

$$A = g(a)$$
 for some $a \in S$
 $a \in A \Leftrightarrow a \in \{x | x \notin g(x)\}$
 $\Leftrightarrow a \notin g(a)$

If
$$|S| = n$$
 then $|P(S)| = 2^n$
What if S is infinite?

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Clearly, f is an injection. Hence $|S| \leq |P(S)|$

Claim: Any function $g: S \to P(S)$ is not surjective (hence not bijective).

$$A = \{x | x \notin g(x)\} \in P(S)$$

$$A = g(a)$$
 for some $a \in S$
 $a \in A \Leftrightarrow a \in \{x | x \notin g(x)\}$
 $\Leftrightarrow a \notin g(a)$
 $\Leftrightarrow a \notin A$

If
$$|S| = n$$
 then $|P(S)| = 2^n$
What if S is infinite?

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Clearly, f is an injection. Hence $|S| \leq |P(S)|$

Claim: Any function $g: S \to P(S)$ is not surjective (hence not bijective).

$$A = \{x | x \notin g(x)\} \in P(S)$$

Suppose g is surjective.

$$A = g(a)$$
 for some $a \in S$
 $a \in A \Leftrightarrow a \in \{x | x \notin g(x)\}$
 $\Leftrightarrow a \notin g(a)$
 $\Leftrightarrow a \notin A$

Contradiction to g is surjective.

If
$$|S| = n$$
 then $|P(S)| = 2^n$
What if S is infinite?

Let S be a set. Then |S| < |P(S)|

Proof.

Define $f: S \to P(S)$ as

$$f(a) = \{a\}$$

Clearly, f is an injection. Hence $|S| \leq |P(S)|$

Claim: Any function $g: S \to P(S)$ is not surjective (hence not bijective).

$$A = \{x | x \notin g(x)\} \in P(S)$$

Suppose g is surjective.

$$A = g(a)$$
 for some $a \in S$
 $a \in A \Leftrightarrow a \in \{x | x \notin g(x)\}$
 $\Leftrightarrow a \notin g(a)$
 $\Leftrightarrow a \notin A$

Contradiction to g is surjective. Hence $|S| \neq |P(S)|$