

MACHINE REASONING DAY 4

https://robohub.org/wp-content/uploads/2016/11/bigstock-Retro-Robot-Reading-A-Book-Is-110707406.jpg

DAY 4 AGENDA

- 4.1 Contemporary Reasoning Systems
- 4.2 Course Review
- 4.3 { Course Assessment 2 }
- 4.4 Creating Reasoning System Workshop(Graded workshop & project deliverables)

DAY 4 TIMETABLE

No	Time	Topic	By Whom	Where
1	9 am	4.1 Contemporary Reasoning Systems	GU Zhan (Sam)	Class
2	10.10 am	Morning Break		
3	10.30 am	4.2 Course Review	GU Zhan (Sam)	Class
4	10:45 am	4.3 { Course Assessment 2 }	All	Class
5	12.10 pm	Lunch Break		
6	1.30 pm	4.4 Creating Reasoning System Workshop Tutorial	GU Zhan (Sam) All	Class
7	3.10 pm	Afternoon Break		
8	3.30 pm	4.4 Workshop: CreatingReasoning System	All	Class
9	4.50 pm	Summary and Review	All	Class
10	5 pm	End		

Question Answering System: IBM Watson

Image Object Recognition: Google Vision

Chat-Bot: DBpedia

Vehicle Scheduling: Delivery routing

Constrain Satisfaction: Business Task Optimizer

- Finite state machines
- Scripting
- Dynamic scripting
- Probabilistic inference
- Influence maps
- Neural networks
- Swarm intelligence
- Potential fields
- Genetic programming

4.2 COURSE REVIEW

4.2 COURSE REVIEW EXERCISE

The following set of rules was designed to help a new zoo-keeper look after his animals:

```
IF feathers(x) THEN bird(x)

IF flies(x) AND lays_eggs(x) THEN bird(x)

IF gives_milk(x) THEN mammal(x)

IF eats_meat(x) THEN carnivore(x)

IF mammal(x) AND sharp_teeth(x) THEN carnivore(x)

IF carnivore(x) THEN feed_meat(x)

IF bird(x) AND not_flies(x) THEN penguin(x)

IF penguin(x) THEN feed_fish(x)

IF carnivore(x) THEN dangerous(x)
```

Initial facts:

```
sharp_teeth(Lucy), feathers(Penny), not_flies(Penny), gives_milk(Lucy), lays_eggs(Penny)
```

- Q3: What can be derived from the knowledge base by forward chaining? Explain your answer.
- Q4: How can backward chaining be used to determine which animals are known to be dangerous? Work through the details.

4.3

COURSE ASSESSMENT

(60 MINUTES)

Search files

Q

MY MODULES MODULE SEARCH CONTENT BANKS RESEARCH RECRUITMENT STUDENT FEEDBACK

ISY5001

Grad Cert in Intelligent Reasoning Systems (IRS-MR, IRS-RS, ...

[1920] 2019/2020 Semester 2

GENERAL

Module Overview

Module Settings 9

Module Details

Class & Groups

Attendance Ø

Task Report

TOOLS

Announcements

Chat 95

Conferencing

Consultation

Files

Forum

01-S-AssessmentQuestion A1234567B_GuZhan(Sam).docx

Upload word, pdf or zip file to LumiNUS (one single file per participant)

...

4.4 WORKSHOP CREATING REASONING SYSTEM

(GRADED WORKSHOP & PROJECT DELIVERABLES)

4.4 WORKSHOP CREATING REASONING SYSTEM

KIE BPMS/BRMS Business System Enhancement

- Access control [User/Group/Role]
- Business system enhancement [Group]
- Business system enhancement [Deploy] v7.0.0
- Workshop project submission [Export/Import]

4.4 WORKSHOP CREATING REASONING SYSTEM

EEP & MTech Stackable

Individual Workshop Submission due 16:30 last lecture day

Prepare project deliverables, e.g. export enhanced system:

Mortgage Approval; Upload zip file to LumiNUS (one single file

per participant);

Folc	der Name 🕏	Opening Date 🕏	Expiry Date 🕏	Status	
	IRS-MR: Machine Reasoning Courseware			Open	7.
	IRS-MR: Machine Reasoning In-Class Workshop			Open	
面	IRS-MR: Machine Reasoning In-Class Workshop Submission Submission			Open	
D	IRS-MR: Machine Reasoning In-Class Assessment			Closed	
	IRS-MR: Machine Reasoning In-Class Assessment Submission			Open	

DAY 4 SUMMARY

4.1 Contemporary Reasoning Systems

- Question & Answering
- Image Object Recognition
- Chat-Bot
- Business Resource Optimization
- Real Time Strategy (RTS) Game Al
- 4.2 Machine Reasoning Course Review
- 4.3 Machine Reasoning Assessment (Graded individual exam)
- 4.4 Creating Reasoning System Workshop

DAY 4 REFERENCE

- CLIPS (C Language Integrated Production System) : A
 Tool for Building Expert Systems from NASA
 http://www.clipsrules.net/
- 2. FuzzyCLIPS: A fuzzy logic extension of the CLIPS tool https://quentin.pradet.me/blog/fuzzyclips-downloads.html
- PyKnow: Expert Systems for Python (inspired by CLIPS)
 https://pyknow.readthedocs.io/en/stable/index.html
- Getting Started With Red Hat Business Optimizer (PAM / OptaPlanner)
 - https://access.redhat.com/documentation/enus/red hat decision manager/7.2/htmlsingle/getting started with red hat business optimizer/
- OptaPlanner constrain solver for business planning https://www.optaplanner.org/

END OF LECTURE NOTES