

Contents

- Quick recap
- Shannon –Hartley Law Implications
- Upper limit
- Bandwidth S/N trade off

Shannon's Hartley law / Shannon's Third Theorem

- The Theorem states that the capacity of the bandlimited Gaussian Channel with AWGN is given by
- C= B log(1+ S/N) bits/sec

B= Channel bandwidth in Hz

S= signal power in watts

N = noise power in watts , N = NO. B N =

Shannon – Hartley Law Implications

c = B log (1+ 5) bils/sec - 0 indicalis that a noiseless gaussian channel 5 = 00 has an infinté capacily On the other hand, while the channel capacity does increase, il does not become infinite because willian increase es Bw, hoise ponier also micreares (N=NOB).

Upper Limit for Channel Capacity

Thus for a fixed signal power and in persence of worn; the channel capacity approaches an upper limit willi

increasing Bw.

The limit

$$C = B \begin{cases} \log_2 \left(1 + \frac{S}{\eta B}\right) \end{cases}$$

$$= \frac{S \cdot \eta}{2} \cdot B \begin{cases} \log_2 \left(1 + \frac{S}{\eta B}\right) \end{cases}$$

$$Substituli : x = \frac{s}{\eta B} \quad \text{Log m}^{n}$$

$$C = \frac{s}{\eta B} \quad \text{log } x = \frac{s}{\eta B} \quad \text{as } B \Rightarrow 0 \quad n \to 0.$$

$$C = \frac{s}{\eta B} \quad \text{log } x = \frac{s}{\eta B} \quad \text{when } B \to \infty, \quad n \to 0.$$

Department of ECE, SCMS School of Engineering & Technology

Department of ECE, SCMS School of Engineering & Technology

2. Bandwidth S/N trade off

Let us consider the track off by BW and
$$S|N$$
.

Let $S = F$ $B = 4 \text{ KHZ}$

$$C = 4 \text{ KHZ} \cdot \log_2 \left(1 + \frac{S_1}{N_1}\right) = 12 \times 10^3 \text{ bits} |\text{sec}|$$

The channel capacity $C_1 = B_1 \log \left(1 + \frac{S_1}{N_1}\right) = 12 \times 10^3 \log(1 + 7) = 12 \times 10^3 \log(1 + 7)$

The channel capacity C_2 same as C_1 and if signal-to-noise ratio is increased to 15, then

$$C_2 = C_1 = 12 \times 10^9 = B_2 \log \left(1 + \frac{S_2}{N_2}\right) = B_2 \log (1 + 15)$$

Beging the channel of ECE, SCMS School of Engineering & Technology

Since the noise power $N = \eta B$, as the bandwidth gets reduced from 4 to 3 KHz, the noise lso decreases indicating an increase in signal power as shown below.

We have
$$N_1 = \eta B_1 = (\eta) (4 \text{ KHz})$$

and $N_2 = \eta B_2 = (\eta) (3 \text{ KHz})$

$$Consider \frac{(S_2/N_2)}{(S_1/N_1)} = \frac{15}{7}$$

$$\frac{S_2}{3N_1} = \frac{15N_2}{3N_1} = \frac{(15)(\eta)(3 \text{ KHz})}{(7)(\eta)(4 \text{ KHz})}$$

$$\frac{(7)(\eta)(4 \text{ KHz})}{(7)(\eta)(4 \text{ KHz})} = \frac{1.6}{28} \approx 1.6$$

Inference

> mits 3 KHz Bw, noise porner mill be 3 des læge as mults 4KHz > Thus SIN power will have to be increased by the factor 3×15 = 1.60. . . 25 . reduction in banduirds requires 60 . increase in signal pomer Thus to decease the Bw; the signal power has to be inceed; 1118 to ducease signal power, bandwidth must be increased

Department of LCL, SCHIS School of Engineering & 1 centiology

Bandwidth S/N trade off curve

Bw,
$$S|N$$
 Trade off Change.

To draw the trade of become from Shannon Hartly law; $C = B\log_{3}(1 + \frac{S}{N})$.

 $C \ni bilisec$.

 $\frac{B}{C} = \frac{1}{\log_{3}(1 + \frac{S}{N})}$.

log2(1+50)=5.6

Table for B/C for different values of S/N

<u>S</u>	0.5	1	2	5	10	20	50			
B/c.	1.71	1	0.63	0.37	0.289	0.23	0.176	1 1 2 5	14	B= 20 K E

B/c vs S/N trade off curve

The plot shows B/C as a function of S/C

Inference of the curve

1. Using the curve same channel capacity may be obtained by increasing bandwidth if S/N is small

Conclusion

- Upper limit for Shannon's capacity
- Trade off curve

