1

운영체제의 기능

1 자원 관리 기능

메모리 관리

주변장치 관리

프로세스 관리

파일 관리

1 자원 관리 기능 - 메모리 관리

메인 메모리 관리

프로세서가 직접 주소로 지정할 수 있는 유일한 메모리

- → 메모리 관리의 기능
 - 메모리의 어느 부분을 사용하고, 누가 사용하는 지 점검
 - 메모리에 저장할 프로세스 결정
 - 메모리를 할당하고 회수하는 방법 결정

1 자원 관리 기능 - 메모리 관리

보조기억장치 관리

메인 메모리는 공간이 제한되어 데이터와 프로그램을 계속 저장할 수 없어 보조기억장치 이용

- ◆ 보조기억장치 관리의 기능
 - ▶ 빈 여유 공간 관리
 - ▶ 새로운 파일 작성 시 저장 장소 할당
 - 메모리 접근 요청 스케줄링
 - 파일 생성하고 삭제

1 자원 관리 기능 - 프로세스 관리

프로세스

- → 하나의 프로세스는 프로세서, 메모리, 파일, 입출력 장치와 같은 자원으로 구성
- → 자원은 프로세스 생성할 때 제공하거나 실행 중에 도 할당 가능

1 자원 관리 기능 - 프로세스 관리

시스템

- → 프로세스의 집합
- → 시스템 코드 수행하는 운영체제 프로세스와 사용자 코드 수행하는 사용자 프로세스로 구분
- ◆ 모든 프로세스는 프로세서 분할 사용하여 병행 수행 가능

1 자원 관리 기능 - 프로세스 관리

프로세스 관리를 위한 운영체제의 기능

- → 프로세스와 스레드 스케줄링
- ◆ 사용자 프로세스와 시스템 프로세스 생성, 제거
- ◆ 프로세스 중지, 재수행
- → 프로세스 동기화 방법 제공
- → 프로세스 통신 방법 제공
- → 교착 상태(Deadlock)를 방지하는 방법 제공

- 1 자원 관리 기능 입출력 관리
- ◆ 운영체제는 특수 프로그램인 장치 드라이브를 사용 하여 입출력장치와 상호작용
- → 장치 드라이버는 특정 하드웨어장치와 통신할 수 있는 인터페이스를 제공하므로 특정 하드웨어에 종속된 프로그램

1 자원 관리 기능 - 입출력 관리

- → 주변장치(입출력장치) 관리를 위한 운영체제의 기능
 - 임시 저장buffer-caching 시스템 기능 제공
 - 일반 장치용 드라이버 인터페이스 제공
 - 특정 장치 드라이버 제공

1 자원 관리 기능 - 파일 관리

- → 입출력 파일의 위치, 저장, 검색 관리 의미
- → 컴퓨터 시스템은 물리적으로 다양한 형태로 파일 저장 가능
- ◆ 운영체제는 데이터의 효율적 사용을 위해 단일화된 저장 형태 제공
- ◆ 운영체제는 파일의 용이한 사용을 위해 보통 디렉터리로 구성, 다수의 사용자가 여기에 접근하려고할 때는 이 접근을 제어

- 1 자원 관리 기능 파일 관리
- → 파일 관리를 위한 운영체제의 기능
 - 파일 생성, 삭제
 - 디렉터리 생성, 삭제
 - 보조기억장치의 파일 맵핑
 - 안전한(비휘발성) 저장장치에 파일 저장

2 시스템 보호

→ 보호란?

컴퓨터 자원에서 프로그램, 프로세스, 사용자의 접근 제어 방법

- ◆ 운영체제는 파일 사용 권한 부여, 데이터 암호화 등 서비스를 제공, 데이터와 시스템 보안
- → 컴퓨터 시스템에서는 여러 프로세스 동시 실행 가능하므로 상호 보호해야 함
- → 컴퓨터 시스템에서는 여러 프로세스 동시 실행 가능하므로 상호 보호해야 함

2 시스템 보호

- 랜섬웨어나 바이러스로 인해 폴더에 영향을 주었을 때 파일을 복구 할 수 있는 방법이 있음
 (※ 단, 이전에 윈도우 시스템 보호 기능을 켜 두셔야 하며 윈도우 시스템 보호 기능은 주기 적으로 파일을 백업하기 때문에 변형되기 전 파일로 복구가 가능한 것임)
- 윈도우 시스템 보호 기능이 활성화 되어 있어야 함

2 시스템 보호

2 시스템 보호

2 시스템 보호

2 시스템 보호

3 네트워크(통신 기능)

- → 프로세서는 다양한 방법으로 구성된 네트워크 이용, 완전 접속과 부분 접속 방법으로 연결
- ◆ 연결된 프로세서가 통신을 할 때는 경로 설정, 접속 정책, 충돌, 보안 등 고려(운영체제가 관리)

- 1 부팅(Booting) 또는 부트스트래핑(Bootstrapping)
- ♦ 운영체제를 메인 메모리에 적재하는 과정
- → 부트 로더는 부트스트랩 로더(Bootstrap loader) 줄인 말로 하드디스크와 같은 보조기억장치에 저장된 운영체제를 메인 메모리에 적재하는 ROM에 고정시킨 소규모 프로그램

부팅(Booting) 또는 부트스트래핑(Bootstrapping)

⑤ 운영 체제 명령에 의해 CPU가 프로그 램을 실행한다.

주기억 장치

RAM 부팅 프로그램 운영 체제 프로세스 :

- ② 부팅 프로그램을 주기억 장치에 로딩 된다.
- ③ 운영 체제를 주기 억장치에 로딩된다.
- ④ 운영 체제에 의해 프로그램이 로드된 다.

보조 기억 장치

부팅 프로그램 · 운영 체제 · 프로그램

※ 출처: http://blog.daum.net/pj5880/4

2 사용자 서비스 제공

- → 사용자 인터페이스
 - : 사용자와 컴퓨터 간의 상호작용 발생 공간 (CLI, 메뉴, GUI 등 구현)
 - CLI(Command Line Interface, 명령 라인 인터 페이스)
 - 사용자가 키보드 등으로 명령어 입력하여 시스템에서 응답 받은 후, 또 다른 명령어를 입력 하여 시스템을 동작하게 하는 텍스트 전용 인터페이스

- 2 사용자 서비스 제공
- → 메뉴 인터페이스
 - 메뉴 등을 사용하여 시스템과 상호작용
 - 사용 매우 편리, 배우거나 기억해야 할 명령 없음

2 사용자 서비스 제공

- → GUI(Graphical User Interface, 그래픽 사용자 인 터페이스)
 - 윈도우 환경에서 사용자에게 정보와 작업을 표현하는 텍스트, 레이블이나 텍스트 탐색과 함께 그래픽 아이콘과 시각적 표시기, 버튼이나 스크롤바와 같은 위젯(Widget) 그래픽 제어 요소를 사용

2 사용자 서비스 제공

- → 프로그램 실행
 - 프로그램 실행하려면 먼저 메모리에 적재, 프로 세서 시간 할당
 - 운영체제는 프로그램을 실행하려고 메모리 할당 이나 해제, 스케줄링 등 중요 작업 처리

- 2 사용자 서비스 제공
- → 입출력 동작 수행
 - 운영체제는 입출력 동작 직접 수행할 수 없는 사용자 프로그램의 입출력 동작 방법 제공
- → 파일 시스템 조작
 - 사용자는 디스크에서 파일 열고, 저장, 삭제하는 등 다양하게 파일 조작

2 사용자 서비스 제공

- → 통신(네트워크)
 - 프로세스가 다른 프로세스와 정보를 교환하는 방법
 - 동일한 컴퓨터에서 수행하는 프로세스 간의 정보 교환
 - 두 번째는 네트워크로 연결된 컴퓨터 시스템에서 수행하는 프로세스 간의 정보 교환

2 사용자 서비스 제공

- → 오류 탐지
 - 운영체제는 가능한 모든 하드웨어와 소프트웨어 수준에서 오류 탐지, 시스템 모니터링하여 조정 함으로써 하드웨어 문제 예방
 - 입출력 장치에 관련된 오류와 메모리 오버 플로, 하드디스크의 불량 섹터 검출, 부적당한 메모리 접근과 데이터 손상 등
 - 운영체제는 다음 오류 유형을 감지한 후 유형별로 적절히 조치

3 시스템 서비스

- → 자원 할당
 - 운영체제는 다수의 사용자나 작업 동시 실행 시 운영체제가 자원을 각각 할당하도록 관리
 - 프로세서 사이클, 메인 메모리, 파일 저장 장치 등은 특수한 할당 코드를 갖지만, 입출력장치 등 더 일반적인 요청과 해제 코드 가질 수 있음

3 시스템 서비스

- → 계정
 - 운영체제는 각 사용자가 어떤 컴퓨터 자원을 얼마나 많이 사용하는지 정보 저장 추적
 - 이 정보는 사용자 서비스 개선을 위해 시스템 재구성하는 연구자에게 귀중한 도구가 됨

3 시스템 서비스

- → 보호와 보안
 - 운영체제는 다중 사용자 컴퓨터 시스템에 저장 된 정보 소유자의 사용을 제한
 - 서로 관련이 없는 여러 작업을 동시에 수행할 때는 한 작업이 다른 작업이나 운영체제를 방해하지 못하게 해야 함

3 시스템 서비스

→ 보호와 보안

보호란?

 시스템 호출 하려고 전달한 모든 매개변수의 타 당성 검사하고, 시스템 자원에 모든 사용자 접근 을 제어하도록 보장하는 것

보안이란?

 잘못된 접근 시도에서 외부 입출력장치 방어, 외부에 사용자 인증을 요구하는 것

4 시스템 호출 서비스

- → 실행 중인 프로그램과 운영체제 간의 인터페이스, API(Application Programming Interfaces)라고도 함
- → 사용자 프로그램은 시스템 호출을 하여 운영체제의 기능 제공 받음
- → 핵심 커널 서비스와 통신, 새로운 프로세스의 생성과 실행, 하드웨어 관련 서비스 등이 있음
- → 시스템과 상호작용하는 동작은 대개 사용자 수준 프로세스에서는 사용할 수 없으나, 시스템 호출을 하여 운영체제에 서비스를 요청할 수 있음

- 4 시스템 호출 서비스
- → 시스템 호출 방법
 - 프로그램에서 명령이나 서브루틴의 호출 형태로 호출
 - ▶ 시스템에서 명령 해석기를 사용하여 대화 형태로 호출

- 4 시스템 호출 서비스
- → 운영체제가 제공하는 일반적인 시스템 호출
 - 프로세스 제어, 파일 조작, 장치 관리, 정보 유지 등

응영체제의 미래

1 사람 같은 인공지능 OS , 미래 아닌 현재형

※ 출처: 새로운 인공지능 운영체계 아멜리아를 소개하고 있는 아멜리아의 수석 설계자 겸 IP소프트 부사장 어건 에키시. (사진출처=IP소프트 홈페이지)

1 사람 같은 인공지능 OS , 미래 아닌 현재형

조: "문제가 생겼어. 차 시동이 걸리질 않아!"

아멜리아: "이런. 계기판을 한 번 확인해볼래?

배터리등은 켜졌어?"

조: "아니."

아멜리아: "차에 있는 전등이 하나라도 켜지니?"

조: "아니."

아멜리아: "그렇다면 배터리 문제일꺼야.

혹시 점퍼 케이블 있어?"

※ 출처: http://www.econovill.com/news/articleView.html?idxno=221252

- 1 사람 같은 인공지능 OS , 미래 아닌 현재형
- → 앞서 대화는 일상 속의 대화처럼 평범해 보이지만, 사실은 사람과 컴퓨터 운영체제(OS)가 실제 나눈 대화 내용

컴퓨터와의 대화가 새삼스럽게 놀랄 만한 것은 아니나 주목할 만한 점은 OS가 기존의 <mark>단순 정보전달</mark> 차원에 서 <mark>문제 해결능력</mark>을 갖추는 단계까지 이르렀다는 점

※ 출처: http://www.econovill.com/news/articleView.html?idxno=221252

- 1 사람 같은 인공지능 OS , 미래 아닌 현재형
- → 월스트리트저널은 영화 '그녀(Her)'의 여주인공인 인공 지능(AI) OS '사만다'와 가장 비슷한 존재로 '아멜리아' 를 소개하는 기사를 지난 9월 28일 보도함
- → 기사에 의하면 통신·에너지분야 등 다양한 산업의 포춘 100대 기업들은 이미 아멜리아를 테스트 중에 있음

- 1 사람 같은 인공지능 OS , 미래 아닌 현재형
- → 아멜리아는 새로운 인공지능 접근법인 '인지 컴퓨팅 (Cognitive computing)'을 적용한 시스템
- ◆ 인지 컴퓨팅의 가장 큰 특징은 학습이 가능한 기계라는 것
 - 미국 IT 서비스 회사 IP소프트가 개발 중에 있는 아멜 리아는 교과서·대화 기록·이메일 등 모든 종류의 텍 스트로부터 배움
 - 아멜리아가 받아들인 데이터에 답이 들어있는 한 OS는 문제를 해결할 수 능력을 지니게 됨

※ 출처: http://www.econovill.com/news/articleView.html?idxno=221252

- 1 사람 같은 인공지능 OS , 미래 아닌 현재형
- → 아멜리아가 잠재적으로 활용될 수 있는 곳 중 하나가 '콜센터'
- → 콜센터의 목표는 '일관성'이라 고객이 콜센터로 전화를 할 때마다 아멜리아는 동일하고 정확한 답을 할 수 있어 야 함
- ◆ 회사가 고객으로부터 요구받는 모든 요청을 받아들이 고 직원이 고객에게 대응하는 과정을 통해 아멜리아는 학습하고 그 결과 정확한 답을 내놓을 수 있게 됨

- 2 구글 OS 푸크시아
- → 관련 기사
 - 구글이 크롬에 이어 세번째 OS인 '푸크시아'를 최근 개발자들에게 공개함
 - 초기버전이기 때문에 앞으로 변경될 가능성이 많지 만, loT 및 ATM기 등 확장성을 염두한 것이라는 평 가가 나오면서 관심이 높아지고 있음

- 2 구글 OS 푸크시아
- → 관련 기사
 - '푸크시아'가 당초 임베디드 시스템 위한 OS로 개발 되다가, 태블릿PC와 스마트폰은 물론, 사물인터넷 및 ATM기, 심지어 신호등을 비롯한 일상의 기기에 도 적용이 가능함

- 2 구글 OS 푸크시아
- → 관련 기사
 - 이에 대해, 데이브 버크 구글 안드로이드 엔지니어링 부사장은 BGR과의 인터뷰를 통해 "초기 단계의 실 험적 프로젝트로, 오픈소스이기 때문에 다른 초기 단 계 프로젝트와 마찬가지로 사람들의 의견을 수렴한 이후 변형될 것" 이라며 구체적인 언급은 피했음

※ 출처: http://www.nvp.co.kr/news/articleView.html?idxno=123058

3 스마트카 운영체제

- → 관련 기사
 - 십여 년 전만 해도 자동차는 단순한 이동 수단이었다. 하지만 빠르게 발전하는 정보기술(IT)이 차 안으로 들어오면서 이제 차는 내비게이션·전화·메시지·오디 오·영상·게임 등 다양한 IT 서비스가 가능한 공간으로 발전함

※ 출처 :

3 스마트카 운영체제

- → 관련 기사
 - 스마트폰에서 이용하던 다양한 서비스를 '스마트카' 안에서 즐기게 된 것
 - 차가 '바퀴 달린 거대한 스마트폰'으로 진화하면서 스마트폰 시장에서 벌어진 경쟁이 자동차 시장으로 확산되고 있다.

※ 출처 :

3 스마트카 운영체제

→ 자동차에 탑재되는 OS는 운전자가 길 안내와 음악 감상 등을 편리하게 이용하고 보다 안전하게 운전할 수 있는 환경을 만드는 데 집중하고 있음

예를 들면

- 예전에는 내비게이션에 목적지를 입력하고 듣고 싶은 음악을 고르려면 버튼을 누르거나 화면을 조작해야 함
- 하지만 카플레이와 안드로이드 오토 등 OS가 탑재 된 스마트카는 목소리만 듣고도 길 안내를 시작하고 전화를 연결하는가 하면, 메시지를 보내고 음악을 틀 어줌

※ 출처 :

3 스마트카 운영체제

→ 자동차에 탑재되는 OS는 운전자가 길 안내와 음악 감상 등을 편리하게 이용하고 보다 안전하게 운전할 수 있는 환경을 만드는 데 집중하고 있음

예를 들면

 주행 중 필요하면 "가까운 휴게소를 안내해줘" 혹은 "졸음 쫓을 수 있는 음악을 켜줘", "친구에게 전화 걸 어줘"라는 명령으로 차 내 서비스를 제어할 수 있는 것

※ 출처 :

3 스마트카 운영체제

주요 IT 업체의 자동차 OS

Apple CarPlay

OS 이름	카플레이	안드로이드 오토	윈도인더카
개발사	애플	구글	마이크로소프트
발표	2014년 제네바 모터쇼	2014년 구글 개발자 콘퍼런스	2014년 MS 빌드 콘퍼런스
공급업체	BMW, 페라리, 메르세데스 벤츠, 볼보 등	아우디, GM, 혼다. 현대자동차	-

※ 출처 :

3 스마트카 운영체제

- → 관련 기사
 - 현대차는 지난해 커넥티드카에 최적화된 독자적인 차량용 운영체제 'ccOS (connec-ted car Operating System)'를 개발하고 있다고 밝혔음
 - 현대차는 ccOS가 주행에 필요한 수많은 기술을 연결하는 커넥티드카 환경을 안정적으로 구축하고, 방대한 데이터를 신속하게 처리할 수 있는 고도화된 소프트웨어 플랫폼이라고 설명했음

※ 출처 :

3 스마트카 운영체제

- → 관련 기사
 - ccOS는 네트워크·차량 제어 기능을 제공하는 차량 연동 프레임워크와 내비게이션·멀티미디어·운전자 맞춤형 서비스 기능을 제공하는 인포테인먼트 프레임워크, 외부 연결 기반 데이터 처리 기능을 제공하는 커넥티비티 프레임워크로 구성

※ 출처 :

- 3 스마트카 운영체제
- → 관련 기사
 - 리눅스 기반의 오픈 소스가 활용될 계획

※ 출처 :

3 스마트카 운영체제

- → 관련 기사
 - 현대차는 남양연구소 차량IT개발센터 내 ccOS 개발을 전담하는 소프트웨어 개발팀도 신설했다. 현대차는 차종 간 호환성 확보 등을 위한 다양한 시뮬레이션 테스트를 거쳐 2020년 ccOS가 탑재된 콘셉트카를 출시할 것이라고 함

※ 출처 :