Aula 03 - Parte 01 - Geometria Analítica

Álgebra Linear e Teoria da Informação

Prof. Tiago Tavares

A Reta e a Equação

Toda equação de primeiro grau, como y=ax+b, pode ser representada como uma reta em um plano.

- a é o coeficiente angular, que define a inclinação da reta.
- b é o **coeficiente linear**, que define onde a reta cruza o eixo y.

Cada ponto (x,y) na reta é uma "solução" para a equação.

O Ponto de Encontro

Considere dois corredores:

- Corredor 1: Parte do km 3 e corre a 5 km/h. (y=5x+3)
- Corredor 2: Parte do km 5 e corre a 2 km/h. (y=2x+5)

Quando e onde eles se encontrarão?

A Visão Algébrica: O Sistema Linear

O problema dos corredores pode ser escrito como um **sistema de equações**. Encontrar a solução do sistema é o mesmo que encontrar o ponto de interseção das retas.

$$egin{cases} y = 5x + 3 \ y = 2x + 5 \end{cases}$$

A solução deste sistema é o único par (x,y) que satisfaz **ambas** as equações simultaneamente.

A Conexão: Cada Linha da Matriz é uma Reta

Podemos reescrever nosso sistema na forma matricial $m{AX} = m{Y}$. Cada linha da matriz A define uma das retas do nosso sistema.

$$\begin{cases} y = 5x + 3 \\ y = 2x + 5 \end{cases} \Rightarrow \begin{cases} -5x + y = 3 \\ -2x + y = 5 \end{cases} \Rightarrow \underbrace{\begin{bmatrix} -5 & 1 \\ -2 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 3 \\ 5 \end{bmatrix}}_{Y}$$

- A primeira linha [-5,1] corresponde à equação -5x+1y=3.
- A segunda linha [-2,1] corresponde à equação -2x+1y=5.

E Quando as Retas Não se Cruzam?

Duas retas são **paralelas** quando elas têm a mesma inclinação (mesmo coeficiente angular a).

Quando um sistema de equações é formado por retas paralelas, não há um ponto de interseção. Isso significa que o sistema **não tem solução única**.

O Teste do Cruzamento: O Determinante

Como saber se as retas de um sistema se cruzam sem precisar desenhá-las? Usamos o **determinante** da matriz A.

O determinante é um número único calculado a partir da matriz que nos diz sobre a geometria do sistema.

- Se $\det(A) \neq 0$: As retas se cruzam em um único ponto. O sistema tem uma solução única.
- ullet Se $\det(A)=0$: As retas são paralelas (sem solução) ou coincidentes (infinitas soluções). O sistema não tem solução única.

Como calcular um determinante (2x2)

Vamos partir do sistema:

$$egin{bmatrix} 1 & 2 \ 3 & D \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} y_1 \ y_2 \end{bmatrix}$$

- 1. Quais são as retas determinadas pelo sistema?
- 2. Qual é o coeficiente angular das retas?
- 3. Como podemos calcular ${\cal D}$ para que as retas sejam paralelas (mesmo coeficient angular)?
- 4. Extrapole esse resultado para o caso geral:

$$egin{bmatrix} a & b \ c & d \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} y_1 \ y_2 \end{bmatrix}$$

Matriz Singular

Uma matriz cujo determinante é zero é chamada de matriz singular.

O fato mais importante sobre matrizes singulares é que elas **não possuem uma matriz inversa**.

É por isso que a tentativa de resolver um sistema com retas paralelas usando np.linalg.inv(A) resulta em um erro. A geometria (retas que não se cruzam) e a álgebra (a matriz não pode ser invertida) estão nos dizendo a mesma coisa: não há uma solução única para ser encontrada.

Conclusão: Três Visões, Um Problema

Para um sistema de duas equações com duas variáveis, existem três maneiras de enxergar o mesmo conceito:

Visão	Tem Solução Única	Não Tem Solução Única
Realidade	Corredores se encontram	Corredores nunca se encontram
Geometria	As retas se cruzam em um ponto	As retas são paralelas
Álgebra	det(A) eq 0 (A matriz é invertível)	det(A)=0 (A matriz é singular)