METODY NUMERYCZNE – LABORATORIUM

Zadanie 4, Wariant 2 – etody całkowania numerycznego

Opis rozwiązania

Igor Ordecha

Celem zadania jest porównanie dokładności różnych metod całkowania numerycznego dla funkcji ważonych wagą Gaussa-Hermite'a. Analizowane są zarówno metoda Simpsona, jak i specjalizowana kwadratura Gaussa-Hermite'a dla różnych liczb węzłów.

Kroki algorytmu:

- 1. Wybór opcji dla obu metod
- 2. Dla każdej funkcji obliczana jest wartość całki numerycznie metodą Simpsona oraz kwadraturą Gaussa-Hermite'a dla różnych liczby węzłów.
- 3. Wyniki numeryczne porównywane są z wartościami teoretycznymi, a błędy zapisywane i wizualizowane.

Wyniki

Funkcja	Simpson (ε=1e-4)	gauss n=2	gauss n=3	gauss n=4	gauss n=5
1	-3.915493e-05	0.0	2.2204460e-16	0.0	0.0
X	3.719247e-15	0.0	0.0	2.775557e-17	2.081668e-17
x^2	-4.638038e-07	2.220446e-16	1.110223e-16	2.220446e-16	1.110223e-16
sin(x)	1.641655e-14	0.0	0.0	0.0	1.040834e-17
exp(x)	-1.691199e-06	0.041534	2.074406e-03	7.411457e-05	2.060102e-06
1/(1+x^2)	-3.597815e-06	0.161657	7.466965e-02	3.727479e-02	2.013261e-02

Wnioski

Całkowanie przy użyciu kwadratury Gaussa-Hermite'a sprawdza się bardzo dobrze dla całek w postaci $\int_{-\infty}^{\infty} e^{-x^2} f(x) dx$. Można również zauważyć że w przypadku niektórych funkcji większa ilość węzłów nie zawsze zwiększa dokładność.

Metoda Simpsona jest ogólna lecz potrzebuje znacznie więcej iteracji aby osiągnąć podobną dokładność.