Fractional Knapsack Problem

Input Data

Item	Value (Profit)	Weight	Value/Weight Ratio
1	25	5	5.0
2	24	4	6.0
3	15	6	2.5
4	40	12	3.33
5	30	6	5.0
6	20	8	2.5
7	10	10	1.0
8	10	3	3.33

Steps

- 1. Compute the Value/Weight Ratio
- 2. The Value/Weight Ratio for each item is computed as:

$$VWR = \frac{Value}{Weight}$$

Ratios are shown in the table above.

3. Sort Items by Value/Weight Ratio

Items are arranged in decreasing order of their Value/Weight Ratio:

Item	Value	Weight	Value/Weight Ratio
2	24	4	6.0
1	25	5	5.0
5	30	6	5.0
4	40	12	3.33
8	10	3	3.33
3	15	6	2.5
6	20	8	2.5

- 40 40 40					
/ 10 10 1.0	7	10	10	1.0	

4. Fill the Knapsack

The knapsack has a maximum weight of **20**. Items are added until the weight limit is reached.

a. **Item 2**: Weight = 4 (entire item fits), Value = 24.

Remaining Capacity = 20 - 4 = 16.

- b. **Item 1**: Weight = 5 (entire item fits), Value = 25. Remaining Capacity = 16 5 = 11.
- c. **Item 5**: Weight = 6 (entire item fits), Value = 30. Remaining Capacity = 11-6=5.
- d. **Item 4**: Weight = 12 (only part fits).

Fraction Taken = 5/12.

Value = $40 \times (5/12) = 16.67$.

Remaining Capacity = 5 - 5 = 0.

5. Total Value:

24+25+30+16.67=95.67

Time Complexity

- 1. Compute Value/Weight Ratios: O(n), where n is the number of items.
- 2. Sort Items by Ratio: $O(n \log n)$.
- 3. Fill the Knapsack: O(n).

Total Time Complexity: $O(n \log n)$.

Final Output

The maximum value of items in the knapsack is **95.67**.

Selected Items:

• Entire Items: 2, 1, 5

• Fraction of Item: 4 (=5/12)