Analysis of Mnx1 protein, its homologous sequences, phylogenetic tree and mutations

G. Görkem Köse - 25359

Ahmet Ölçüm - 25915

Sayed Damon Sadraije Najafi - 26260

Emir Can Ülkü - 26740

Currarino Syndrome

- Teratoma
- Hamartoma
- Neurenteric cyst
- Anterior meningocele

Mnx1 Protein

- Nuclear Protein
- Homeodomain
- Hox Protein Like
- Pancreas
- Motor-neuron

Homeodomain Proteins

- Gene expression regulation
- Developmental Proteins

Homeodomain Proteins

- Gene expression regulation
- Developmental Proteins

Top: (Left) Normal fruitfly; (Right) Fruitfly with mutation in antennapedia gene Bottom: (Left) Normal fruitfly; (Right) Fruitfly with a homeotic mutation that gives it two thoraxes. Bottom images courtesy of the Archives, California Institute of Technology.

Materials & Methods

- 1. Research
- 2. Getting the protein sequence for Mnx1 (UniProt)
- 3. Finding homologous proteins (BlastP)
- 4. Alignment of the homologous proteins (MEGA11)
- 5. Building Trees (MEGA11)
- 6. Rerooting the Phylogenetic Tree (FigTree)
- 7. Pruning the Clade (Python, ete3 library)
- 8. Calculating conservation scores (Python)
- 9. Retrieving mutations (Clinical papers & gnomAD)
- 10. Mapping mutation occurring sites to the aligned sequences (Python)
- 11. Classification
- 12. Statistical tests to assess the effect of allele frequencies on mutation type (Python, scipy library)

Research

- From rarediseases.info.nih.gov website, Currarino Triad Syndrome is chosen.
- The protein which cause Currarino Triad Syndrome when a mutation occurs is identified.
- The protein sequence for Mnx1 is retrieved from UniProt.

Finding homologous sequences

BlastP

blastn b	plastp blastx tblastn tblastx							
E-10	BLASTP programs search protein databases using a protein query, more							
Enter Query Enter accession	number(s), gi(s), or FASTA sequence(s) Query subrange Query subrange To							
Or, upload file Job Title Align two or m	Choose File No file chosen Enter a descriptive title for your BLAST search ?							
Choose Sear	rch Set							
Database	Non-redundant protein sequences (nr)							
Organism Optional	Enter organism name or itd—completions will be suggested							
Exclude Optional	☐ Models (XM/XP)☐ Non-redundant RefSeq proteins (WP)☐ Uncultured/environmental sample sequences							
Program Sel	lection							
Algorithm	Quick BLASTP (Accelerated protein-protein BLAST) blastp (protein-protein BLAST) PSI-BLAST (Position-Specific literated BLAST) PHI-BLAST (Position-Specific literated BLAST) PHI-BLAST (Pattern HIt initiated BLAST) DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm							
BLAST	Search database nr using Blastp (protein-protein BLAST) Show results in a new window							

Multiple sequence alignment

MEGA11, Muscle (MUltiple Sequence Comparison by Log-Expectation)

Phylogenetic tree construction

MEGA11, Neighbor-Joining method

Rerooting the phylogenetic tree

FigTree

Pruning the clade

Python3, Ete3 library

Calculating conservation scores

```
seqDict = fastareader(filename)
sequences = list(seqDict.values())
aaList = ["A", "R", "N" , "D" , "C" , "Q" , "E" , "G" , "H" , "I" , "L" , "K" , "M" , "F" , "P" , "S" , "T" , "W" ,"Y" ,"V"]
consensus = ""
consensus_aminoacid_score = {}
for pos in range(len(sequences[0])):
    aa_percent_dict = dict.fromkeys(aaList, 0)
    aminoacids onsamepos = ""
    for seq in sequences:
        aminoacids_onsamepos += seq[pos]
    for aa in aaList:
        count_aa = aminoacids_onsamepos.count(aa)
       aa_percent_dict[aa] = count_aa / len(sequences)
    aa_percent_dict = dict(sorted(aa_percent_dict.items(), key=lambda x: x[1], reverse=True))
    consensus_aa = list(aa_percent_dict.keys())[0]
   max_score = list(aa_percent_dict.values())[0]
    consensus += consensus aa
    consensus_aminoacid_score[pos] = {consensus_aa:max_score}
conservation_scores_file = open("../conservation/conservation_scores_pruned_s=500.tsv", "w")
conservation scores file.write("Position"+"\t"+"Consensus Aminoacid"+"\t" +"Conservation Score" + "\n")
```

3 different conservation score calculation sets

- First method:
 - 500 aligned sequences
- Second method:
 - Already aligned sequences that are in the focus clade
- Third method:
 - Realigned sequences that are in the focus clade

Conservation score histograms for different methods

Conservation scores per position

Second method

Third method

Retrieving mutations

- Known pathogenic mutations are retrieved from clinical papers about Currarino Syndrome. (17 such mutations)
- The mutations for which the clinical significance is not know are retrieved from gnomAD. (173 such mutations)

Variant ID	Source	HGVS Consequence	VEP Annotation	<u>LoF</u> Curation	Clinical Significance	Flags	Allele Count	Allele Number	Allele Frequency	Н
7-156798251-G-C	E	p.Pro390Arg	missense				1	166492	6.01e-6	
7-156798251-G-A	E G	p.Pro390Leu	missense				3	197408	1.52e-5	
7-156798254-G-A	E	p.Ser389Leu	missense				11	172340	6.38e-5	
7-156798258-C-A	E G	p.Asp388Tyr	missense				3	212878	1.41e-5	
7-156798259-G-C	E	p.Asp387Glu	missense				1	185122	5.40e-6	
7-156798266-G-A	E	p.Ser385Leu	missense				1	202342	4.94e-6	
7-156798267-A-G	E	p.Ser385Pro	missense				1	204042	4.90e-6	
7-156798269-G-A	E	p.Ser384Phe	missense				1	205914	4.86e-6	
7-156798269-G-T	E	p.Ser384Tyr	missense				3	205914	1.46e-5	
7-156798281-G-A	E	p.Ser380Phe	missense				1	218876	4.57e-6	
7-156798282-A-C	E	p.Ser380Ala	missense				1	219394	4.56e-6	
7-156798282-A-G	E	p.Ser380Pro	missense				1	219394	4.56e-6	
7-156798284-G-A	E	p.Ala379Val	missense				6	220344	2.72e-5	
7-156798294-C-T	E	p.Val376Ile	missense				1	226638	4.41e-6	
7-156798294-C-G	E	p.Val376Leu	missense				1	226638	4.41e-6	
7-156798299-G-A	E	p.Ala374Val	missense				1	230024	4.35e-6	
7-156798302-C-T	E	p.Gly373Asp	missense				1	231712	4.32e-6	
7-156798303-C-G	E	p.Gly373Arg	missense				1	232518	4.30e-6	
7-156798309-T-G	E	p.Ser371Arg	missense				1	236242	4.23e-6	
7-156798321-GGT	E	p.Asp364_Asp366del	o inframe deletion				1	238208	4.20e-6	
		a lite same								

Mapping mutation occurring sites to aligned sequences

- Original sequence:
 - MEKSKNFRIDALLAVDP...

- Aligned sequence:
 - o ...-----MEKSKNFRI-----DA...

• For a mutation such as M1A, the position is not 1 in the aligned sequence. Therefore, the actual positions and the aligned positions are mapped.

Classification

 For each conservation score table, the conservation scores at the positions for the known pathogenic mutations are averaged and set as a threshold for classification.

```
    For each unknown-type mutation:
        if the conservation score is above the threshold:
            classify as pathogenic
        else
            classify as neutral
```

Classification results

First method:

- Classification threshold: 0.68
- Number of pathogenic mutations: 77
- Number of neutral mutations: 96

Second method:

- Classification threshold: 0.89
- Number of pathogenic mutations: 104
- Number of neutral mutations: 69

Third method:

- Classification threshold: 0.91
- Number of pathogenic mutations: 102
- Number of neutral mutations: 71

Statistical tests to assess the effect of allele frequencies on mutation type

 Pathogenic and neutral mutations are separated into two samples, and an independent t-test is conducted on the allele frequencies.

```
from scipy import stats as st
import pandas as pd

df = pd.read_csv("../classification/classification_pruned_realigned_s=500.csv")

a = df.loc[df['isPathogenic'] == True, 'Allele_frequency'].to_numpy()
b = df.loc[df['isPathogenic'] == False, 'Allele_frequency'].to_numpy()

pvalue = st.ttest_ind(a=a, b=b, equal_var = True).pvalue
```

- p-values for:
 - \circ First method $\rightarrow 0.18$
 - \circ Second method $\rightarrow 0.08$
 - \circ Third method $\rightarrow 0.35$

Issues

- Why we did not use the sequence files of 100 and 250?
- Why we did not use the sequence files of 1000 and 5000?

Discussion

- Number of known pathogenic mutations should increase in order to classify the unknown mutations accurately.
- As the genetic relevance of the sequences increases in a set of sequences, conservation scores also increase.
- Given the same conservation score calculation method:
 - \circ as classification threshold increases \rightarrow sensitivity decreases.
 - \circ as classification threshold decreases \rightarrow specificity decreases.
- Number of mutations which identified as pathogenic and the classification thresholds are very close for the second and third method.
- With the observation of p-values, there is no statistical significance of the allele frequencies.

References

- Thompson, Nancy & Gésina, Emilie & Scheinert, Peter & Bucher, Philipp & Grapin-Botton, Anne. (2012). RNA Profiling and Chromatin Immunoprecipitation-Sequencing Reveal that PTF1a Stabilizes Pancreas Progenitor Identity via the Control of MNX1/HLXB9 and a Network of Other Transcription Factors. Molecular and cellular biology. 32. 1189-99. 10.1128/MCB.06318-11.
- Truscott M., Nepveu A. (2005) Homeodomains. In: Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29623-9_2740
- Currarino syndrome Lynch, SA Review on Currarino syndrome, with data on clinics, and the genes involved. Jean-Loup Huret (Editor-in-Chief) INIST-CNRS (Publisher) 2008
- Mark, M., Rijli, F. & Chambon, P. Homeobox Genes in Embryogenesis and Pathogenesis. *Pediatr Res* 42, 421–429 (1997). https://doi.org/10.1203/0006450-199710000-00001
- Genetic Science Learning Center. (2016, March 1) Homeotic Genes and Body Patterns. Retrieved December 25, 2021, from https://learn.genetics.utah.edu/content/basics/hoxgenes/
- Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, Chen X, Taipale J, Hughes TR, Weirauch MT.(2018) The Human Transcription Factors. Cell. 172(4):650-665. doi: 10.1016/j.cell.2018.01.029.
 Review.