Devoir maison 10.

Exercice 1

Partie 1

- **1**°) $\{0_E\}$ ⊂ $\operatorname{Ker}(f + \operatorname{id}_E) \cap \operatorname{Ker}(f^2 + \operatorname{id}_E)$ car $\operatorname{Ker}(f + \operatorname{id}_E) \cap \operatorname{Ker}(f^2 + \operatorname{id}_E)$ est un sous-espace vectoriel de E.
 - Réciproquement, soit $x \in \text{Ker}(f + \text{id}_E) \cap \text{Ker}(f^2 + \text{id}_E)$. Montrons que $x = 0_E$. On a : $(f + \text{id}_E)(x) = 0_E$ et $(f^2 + \text{id}_E)(x) = 0_E$ donc $f(x) + x = 0_E$ et $f^2(x) + x = 0_E$. f(x) = -x donc, en appliquant f, f(f(x)) = f(-x) = -f(x) puisque f est linéaire. Cela se réécrit $f^2(x) = -f(x)$ et comme $f(x) + x = 0_E$, on en tire $f^2(x) = -(-x) = x$. Mais on a aussi $f^2(x) = -x$ par hypothèse, donc -x = x, donc $2x = 0_E$ donc $x = 0_E$. On a donc : $\text{Ker}(f + \text{id}_E) \cap \text{Ker}(f^2 + \text{id}_E) \subset \{0_E\}$.
 - Finalement, $\left[\operatorname{Ker}(f+\operatorname{id}_E)\cap\operatorname{Ker}(f^2+\operatorname{id}_E)=\{0_E\}\right]$.

 Donc $\left[\operatorname{Ker}(f+\operatorname{id}_E)\operatorname{et}\operatorname{Ker}(f^2+\operatorname{id}_E)\operatorname{sont}\operatorname{en}\operatorname{somme}\operatorname{directe}\right]$
- 2°) a) Soit $x \in E$.

$$\begin{split} (f+\mathrm{id}_E)(y) &= f(y) + y \\ &= f(f^2(x)+x) + f^2(x) + x \\ &= f^3(x) + f(x) + f^2(x) + x \qquad \text{par linéarité de } f \\ &= 0_E \qquad \text{par } (*) \end{split}$$

Ainsi, $y \in \text{Ker}(f + \text{id}_E)$

$$(f^2 + id_E)(z) = f^2(z) + z$$

= $f^2(x - f^2(x)) + x - f^2(x)$
= $f^2(x) - f^4(x) + x - f^2(x)$ par linéarité de f^2
= $x - f^4(x)$

Calculons f^4 :

$$f^{3} = -f^{2} - f - id_{E}$$

$$f^{3} \circ f = (-f^{2} - f - id_{E}) \circ f$$

$$f^{4} = -f^{3} - f^{2} - f$$

$$f^{4} = id_{E} \quad \operatorname{car} f^{3} + f^{2} + f = -id_{E}$$

On en déduit que : $(f^2 + id_E)(z) = 0_E$.

Ainsi, $z \in \text{Ker}(f^2 + \text{id}_E)$.

b) Soit $x \in E$. On pose $y = f^2(x) + x$ et $z = x - f^2(x)$.

Alors, $x = \frac{1}{2}(y+z)$ donc $x = \frac{1}{2}y + \frac{1}{2}z$.

Par la question précédente, $y \in \text{Ker}(f + id_E)$ et $z \in \text{Ker}(f^2 + id_E)$.

Donc, $\frac{1}{2}y \in \text{Ker}(f + \text{id}_E)$ et $\frac{1}{2}z \in \text{Ker}(f^2 + \text{id}_E)$ car un noyau est stable par combinaison linéaire (c'est un sous-espace vectoriel de E).

On a montré que tout élément de E peut s'écrire comme somme d'un vecteur de $\operatorname{Ker}(f+\operatorname{id}_E)$ et d'un vecteur de $\operatorname{Ker}(f^2+\operatorname{id}_E)$. Ainsi, $E=\operatorname{Ker}(f+\operatorname{id}_E)+\operatorname{Ker}(f^2+\operatorname{id}_E)$.

3°) On a démontré que $\operatorname{Ker}(f+\operatorname{id}_E)\cap\operatorname{Ker}(f^2+\operatorname{id}_E)$ et $E=\operatorname{Ker}(f+\operatorname{id}_E)+\operatorname{Ker}(f^2+\operatorname{id}_E)$. Donc, $E=\operatorname{Ker}(f+\operatorname{id}_E)\oplus\operatorname{Ker}(f^2+\operatorname{id}_E)$. Cela signifie que $\operatorname{Ker}(f+\operatorname{id}_E)$ et $\operatorname{Ker}(f^2+\operatorname{id}_E)$ sont supplémentaires dans E.

Partie 2 : Résolution d'une équation différentielle

- $\mathbf{4}^{\circ}$) $E \subset C^{\infty}(\mathbb{R})$.
 - La fonction nulle appartient à E donc $E \neq \emptyset$
 - Soit $(y_1, y_2) \in E^2$, $\lambda \in \mathbb{R}$. Montrons que $\lambda y_1 + y_2 \in E$. Tout d'abord, $\lambda y_1 + y_2$ est de classe C^{∞} sur \mathbb{R} . De plus, en notant $y = \lambda y_1 + y_2$,

$$\begin{split} y^{(3)} + y'' + y' + y &= (\lambda y_1 + y_2)^{(3)} + (\lambda y_1 + y_2)'' + (\lambda y_1 + y_2)' + \lambda y_1 + y_2 \\ &= \lambda y_1^{(3)} + y_2^{(3)} + \lambda y_1'' + y_2'' + \lambda y_1' + y_2' + \lambda y_1 + y_2 \text{ par linéarité de la dérivation} \\ &= \lambda (y_1^{(3)} + y_1'' + y_1' + y_1) + y_2^{(3)} + y_2'' + y_2' + y_2 \\ &= 0 \qquad \text{car } y_1 \in E, y_2 \in E \end{split}$$

Ainsi, $\lambda y_1 + y_2 \in E$

On a montré que E est un sev de $C^{\infty}(\mathbb{R})$ donc est un \mathbb{R} -ev

5°) Pour tout $(y, z) \in E^2$, pour tout $\lambda \in \mathbb{R}$, $\varphi(\lambda y + z) = (\lambda y + z)' = \lambda y' + z' = \lambda \varphi(y) + \varphi(z)$, donc φ est linéaire.

Soit $y \in E$. Montrons que $\varphi(y) \in E$.

On note $z = \varphi(y)$ i.e. z = y'.

On sait que $y^{(3)} + y'' + y' + y = 0$ donc, en dérivant (puisque les fonctions concernées sont toutes de classe C^{∞} sur \mathbb{R}):

$$(y^{(3)} + y'' + y' + y)' = 0$$

 $y^{(4)} + y^{(3)} + y'' + y' = 0$ par linéarité de la dérivation
 $z^{(3)} + z'' + z' + z = 0$

Donc, $z \in E$. Ainsi, $\varphi(y) \in E$.

On a montré que $\varphi \in \mathcal{L}(E)$

 $\mathbf{6}^{\circ}) \ \forall y \in E,$

$$y^{(3)} + y'' + y' + y = 0$$

$$\varphi^{3}(y) + \varphi^{2}(y) + \varphi(y) + id_{E}(y) = 0$$

$$(\varphi^{3} + \varphi^{2} + \varphi + id_{E})(y) = 0$$

Ainsi,
$$\varphi^3 + \varphi^2 + \varphi + \mathrm{id}_E = 0$$

 7°) • Soit $y \in E$.

$$y \in \operatorname{Ker}(\varphi + \operatorname{id}_E) \iff (\varphi + \operatorname{id}_E)(y) = 0$$

 $\iff \varphi(y) + y = 0$
 $\iff y' + y = 0$

On reconnaît une équation différentielle linéaire d'ordre 1 homogène, définie sur \mathbb{R} . Une primitive de $x\mapsto 1$ est $x\mapsto x$ donc l'ensemble des solutions est $x\mapsto \lambda e^{-x}$ où $\lambda\in\mathbb{R}$. On note $Y_1:x\mapsto e^{-x}$. Alors, $\left\lceil \operatorname{Ker}(\varphi+\operatorname{id}_E)=\operatorname{Vect}(Y_1)\right\rceil$.

• Soit $y \in E$.

$$y \in \operatorname{Ker}(\varphi^2 + \operatorname{id}_E) \iff (\varphi^2 + \operatorname{id}_E)(y) = 0$$

 $\iff \varphi^2(y) + y = 0$
 $\iff y'' + y = 0$

On reconnaît une équation différentielle linéaire d'ordre 2 homogène, définie sur \mathbb{R} , à coefficients constants.

L'équation caractéristique est : $r^2 + 1 = 0 \iff r = i$ ou r = -i.

Les solutions sont les fonctions $x \mapsto \lambda \cos(x) + \mu \sin(x)$ où $(\lambda, \mu) \in \mathbb{R}^2$.

Ainsi,
$$\operatorname{Ker}(\varphi^2 + \operatorname{id}_E) = \operatorname{Vect}(\cos, \sin)$$

8°) $\varphi \in \mathcal{L}(E)$ et $\varphi^3 + \varphi^2 + \varphi + \mathrm{id}_E = 0$.

Donc, par la partie 1, $E = \text{Ker}(\varphi + id_E) \oplus \text{Ker}(\varphi^2 + id_E)$.

On en déduit que, l'ensemble E est exactement l'ensemble de toutes les fonctions s'écrivant :

$$x \mapsto \alpha e^{-x} + \beta \cos(x) + \gamma \sin(x)$$
 où $(\alpha, \beta, \gamma) \in \mathbb{R}^3$

On peut aussi écrire E sous la forme : $E = \text{Vect}(Y_1, \cos, \sin)$

Remarque : Pour décrire l'ensemble E, on a en fait juste besoin du fait que $E = \text{Ker}(\varphi + \text{id}_E) + \text{Ker}(\varphi^2 + \text{id}_E)$.

Exercice 2

- $\mathbf{1}^{\circ}$) Soit $Q \in \mathbb{R}[X]$.
 - ★ Si Q est constant, on a bien sûr Q(X+1) = Q(X).
 - ★ Supposons maintenant que Q(X+1) = Q(X).

Raisonnons par l'absurde en supposant que Q est un polynôme non constant. Alors il aurait une racine dans \mathbb{C} , notons-en une λ .

On pose, pour tout $k \in \mathbb{N}$, $H_k : \lambda + k$ est racine de Q.

- H_0 est vraie par hypothèse.
- Si H_k est vraie pour un $k \in \mathbb{N}$ fixé, alors $Q(\lambda + k) = 0$; en évaluant l'égalité Q(X+1) = Q(X) en $\lambda + k$, on obtient $Q(\lambda + k + 1) = 0$, donc H_{k+1} est vraie.
- Conclusion : pour tout $k \in \mathbb{N}$, $\lambda + k$ est racine de Q.

Cela fait une infinité de racines, donc Q=0 : contradiction avec l'hypothèse que Q était non constant.

Finalement, on a montré que Q(X+1) = Q(X) si et seulement si Q est constant

- **2**°) **a**) On pose, pour tout $k \in \{0, ..., 2022\}$, $H_k : P(-k) = 0$.
 - En évaluant l'égalité (X+2023)P(X)=XP(X+1) en 0, on obtient 2023P(0)=0P(1)=0, donc $P(0)=0:H_0$ est vraie.
 - Supposons H_k est vraie pour un $k \in \{0, \dots, 2021\}$ fixé. Évaluons l'égalité (X + 2023)P(X) = XP(X+1) en -(k+1), on obtient :

$$(2023 - k - 1)P(-k - 1) = -(k + 1)P(-k) = 0$$
 par HR

Or $k \le 2021$ donc $k+1 \le 2022$ et donc $2023-k-1 \ne 0$. Nécessairement, $P\left(-(k+1)\right) = 0$, donc donc H_{k+1} est vraie.

- donc donc H_{k+1} est vraie.

 Conclusion : pour tout $k \in \{0, ..., 2022\}, -k$ est racine de P.
- b) Comme il s'agit de racines deux à deux distinctes, il existe donc un polynôme $Q \in \mathbb{R}[X]$ tel

que
$$P(X) = Q(X) \prod_{k=0}^{2022} (X+k)$$
.

3°) D'après la question 2, on peut chercher les solutions sous la forme $P(X) = Q(X) \prod_{k=0}^{2022} (X+k)$, où $Q \in \mathbb{R}[X]$.

$$P \text{ solution de } (*) \iff (X+2023)Q(X) \prod_{k=0}^{2022} (X+k) = XQ(X+1) \prod_{k=0}^{2022} (X+1+k)$$

$$\iff Q(X) \prod_{k=0}^{2023} (X+k) = XQ(X+1) \prod_{j=1}^{2023} (X+j) \quad \text{(changement d'indice } j=k+1)$$

$$\iff Q(X) \prod_{k=0}^{2023} (X+k) = Q(X+1) \prod_{j=0}^{2023} (X+j)$$

$$\iff Q(X) \prod_{k=0}^{2023} (X+k) = Q(X+1) \prod_{k=0}^{2023} (X+k)$$

$$\iff Q(X) = Q(X+1) \quad \text{car le polynôme } \prod_{k=0}^{2023} (X+k) \text{ n'est pas le polynôme nul}$$

$$\iff Q \text{ constant} \quad \text{d'après la question } 1$$

Ainsi, en notant $R(X) = \prod_{k=0}^{2022} (X+k)$, l'ensemble des solutions de (*) est :