Homework 9

** Problem 1. Let $f: \mathbb{R}^n \to \mathbb{R}^m$. Then

$$f((x_1, x_2, \dots, x_n)) = (f_1((x_1, x_2, \dots, x_n)), f_2((x_1, x_2, \dots, x_n)), \dots, f_m((x_1, x_2, \dots, x_n))).$$

If $f_k : \mathbb{R}^n \to \mathbb{R}$ is differentiable for all $1 \le k \le m$, then f is differentiable.

Proof. Since f_k is differentiable for all $1 \le k \le m$, there exists a linear transformation L_k such that for all $x \in \mathbb{R}^n$ we have

$$\lim_{h \to 0} \frac{|f_k(x+h) - f_k(x) - L_k h|}{|h|} = \lim_{h \to 0} \frac{|f_k((x_1 + h_1, x_2 + h_2, \dots, x_n + h_n)) - f_k((x_1, x_2, \dots, x_n)) - L_k h|}{|h|} = 0$$

But then we must have

$$0 = \lim_{h \to 0} \frac{|(f_1((x_1 + h_1, \dots, x_n + h_n)) - f_1((x_1, \dots, x_n)), \dots, f_m((x_1 + h_1, \dots, x_n + h_n)) - f_m((x_1, \dots, x_n)))|}{|h|}$$

$$= \lim_{h \to 0} \frac{|(f_1((x_1 + h_1, \dots, x_n + h_n)), \dots, f_m((x_1 + h_1, \dots, x_n + h_n)))|}{|h|}$$

$$- \frac{(f_1((x_1, \dots, x_n)), \dots, f_m((x_1, \dots, x_n))) - Lh|}{|h|}$$

$$= \lim_{h \to 0} \frac{|f(x + h) - f(x) - Lh|}{|h|}$$

** Problem 2. Show that if $f: U \to \mathbb{R}$, $U \subseteq \mathbb{R}^n$ is differentiable at $x \in U$ then $D_v f(x) = \nabla f(x) \cdot v$.

Proof. We have

$$\nabla f(x) \cdot v = \sum_{i=1}^{n} D_i f(x) v_i = \sum_{i=1}^{n} \lim_{t \to 0} \frac{f(x + te_i) - f(x)}{t} v_i = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t} = D_v f(x).$$

** Problem 3. Relative to the standard basis, we can represent Df(a) by the $m \times n$ matrix $[D_j f_i(a)]$ where j = 1, ..., n and i = 1, ..., m.

Proof. We already know that in one variable, $f: \mathbb{R}^n \to \mathbb{R}$ we have

$$Df(x) = (D_1 f(x), \dots, D_n f(x)).$$

This immediately extends to m dimensions if $f: \mathbb{R}^n \to \mathbb{R}^m$. We know each component function, $f_i: \mathbb{R}^n \to \mathbb{R}$ with $i = 1, \dots m$, is differentiable. Then the ith row of f'(x) is $f'_i(x)$.

** **Problem 4.** Let U be an open set in \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}$ such that f is differentiable on U. Suppose $x, y \in U$ and the line segment

$$L = \{(1-t)x + ty \mid 0 \le t \le 1\} \subseteq U.$$

Then there exists $z \in L$ such that f(y) - f(x) = Df(z)(y - x).

Proof. Let F(t) = f((1-t)x + ty) for $0 \le t \le 1$. Then by the Mean Value Theorem there exists $s \in [0,1]$ such that F'(s) = f(x) - f(y). Then by the Chain Rule note that F'(s) = f'((1-s)x + sy)(x-y). Taking z = (1-s)x + sy gives the desired result.

** Problem 5. Let

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{x^3y + xy^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

Are $D_1 f(x,y)$ and $D_2 f(x,y)$ continuous at (0,0)?

Yes.

Proof. We have

$$D_1 f(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}.$$

Since the power on the numerator always exceeds that of the denominator, we must have

$$\lim_{(x,y)\to (0,0)}\frac{y(x^4+4x^2y^2-y^4)}{(x^2+y^2)^2}=0.$$

A similar proof holds for $D_2 f(x, y)$.

** Problem 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined in ** Problem 5. Is $D_2(D_1f)(0,0) = D_1(D_2f)(0,0)$?

No.

Proof. We have

$$D_1 f(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2}$$

and

$$D_2 f(x,y) = \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}.$$

Note that $D_2 f(x,0) = x$ for all x and $D_1 f(0,y) = -y$ for all y. Now $D_2(D_1 f)(0,0) = D(D_1 f(0,y)) = D(-y) = -1$ and $D_1(D_2 f)(0,0) = D(D_2 f(x,0)) = D(x) = 1$.

** **Problem 7.** Take $f: U \to \mathbb{R}$ where $U \subseteq \mathbb{R}^n$ such that f is differentiable and $D_j(D_i f)(x)$ exists for all $x \in U$. If $D_i(D_j f)$ is continuous for all i, j, then $D_i(D_j f) = D_j(D_i f)$.

Proof. Let $x \in U$. Consider the function

$$F_{ij}(h) = (f(x_1, \dots, x_i + h, \dots, x_j + h, \dots, x_n) - f(x_1, \dots, x_i + h, \dots, x_j, \dots, x_n)) - (f(x_1, \dots, x_i, \dots, x_j + h, \dots, x_n) + f(x_1, \dots, x_n))$$

and let

$$g(y) = f(x_1, \dots, y, \dots, x_i + h, \dots, x_n) - f(x_1, \dots, y, \dots, x_i, \dots, x_n)$$

then

$$F_{ij}(h) = g(x_i + h) - g(x_i).$$

By the Mean Value Theorem there exists $c \in [x_i, x_i + h]$ such that

$$g(x_i + h) - g(x_i) = g'(c)h = h(D_i f(x_1, \dots, c, \dots, x_i + h, \dots, x_n) - D_1 f(x_1, \dots, c, \dots, x_i, \dots, x_n)).$$

Now use the Mean Value Theorem again on $D_i f$ so that there exists $d \in [x_i, x_i + h]$ such that

$$D_i f(x_1, \dots, c, \dots, x_j + h, \dots, x_n) - D_i f(x_1, \dots, c, \dots, x_j, \dots, x_n) = D_{ij}(x_1, \dots, c, \dots, d, \dots, x_n) h.$$

Now we have

$$F_{ij}(h) = h^2 D_{ij}(x_1, \dots, c, \dots, d, \dots, x_n).$$

Note that as $h \to 0$ we have $c \to x_i$ and $d \to x_j$, so by the continuity of $D_{ij}f$ we have

$$\lim_{h \to 0} \frac{F_{ij}(h)}{h^2} = \lim_{c,d \to 0,0} D_{ij} f(x_1, \dots, c, \dots, d, \dots, x_n) = D_{ij} f(x_1, \dots, x_i, \dots, x_j, \dots, x_n).$$

But then it's clear that $F_{ij} = F_{ji}$ which results in $D_{ij}f = D_{ji}f$.

```
Problem 1. Find f' for the following:
```

- 1) $f(x, y, z) = x^y$
- 2) $f(x, y, z) = (x^y, z)$
- 3) $f(x,y) = \sin(x\sin y)$
- 4) $f(x, y, z) = \sin(x \sin(y \sin z))$
- $5) f(x, y, z) = x^{y^z}$
- 6) $f(x, y, z) = x^{y+z}$
- 7) $f(x, y, z) = (x + y)^z$
- 8) $f(x,y) = \sin(xy)$
- 9) $f(x,y) = (\sin xy)^{\cos 3}$
- 10) $f(x, y) = (\sin xy, \sin(x \sin y), x^y)$.

Proof. 1)

$$(yx^{y-1} e^{y\ln x} \ln x 0)$$

2)
$$\begin{pmatrix} yx^{y-1} & e^{y\ln x} \ln x & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $(\cos(x\sin y)\sin y - \cos(x\sin y)x\cos y)$

4)

 $(\cos(x\sin(y\sin z))\sin(y\sin z))\cos(x\sin(y\sin z))\cos(y\sin z)\sin z\cos(x\sin(y\sin z))\cos(y\sin z)y\cos z$

5)
$$\left(y^z x^{y^z - 1} e^{y^z \ln x} z y^{z - 1} \ln x e^{e^{z \ln y} \ln x} \left(\frac{1}{x} e^{z \ln y} + \ln x e^{z \ln y} \ln y \right) \right)$$

6)
$$((y+z)x^{y+z-1} e^{(y+z)\ln x} \ln x e^{(y+z)\ln x} \ln x)$$

7)
$$(z(x+y)^{z-1} \quad z(x+y)^{z-1} \quad e^{z\ln(x+y)}\ln(x+y))$$

$$(\cos(xy)y - \cos(xy)x)$$

9)
$$(\cos(3)\sin(xy)^{\cos(3)-1}y\cos(xy) \cos(3)\sin(xy)^{\cos(3)-1}x\cos(xy))$$

10)
$$\begin{pmatrix} \cos(xy)y & \cos(xy)x \\ \cos(x\sin y)\sin y & \cos(x\sin y)x\cos y \\ yx^{y-1} & e^{y\ln x}\ln x \end{pmatrix}$$

Problem 2. Find f' for the following where $g: \mathbb{R} \to \mathbb{R}$ is continuous:

1)
$$f(x,y) = \int_{a}^{x+y} g$$

2)
$$f(x,y) = \int_{a}^{xy} g$$

1)
$$f(x,y) = \int_{a}^{x+y} g$$

2) $f(x,y) = \int_{a}^{xy} g$
3) $f(x,y,z) = \int_{xy}^{\sin(x\sin(y\sin z))} g$.

Proof. 1)

$$(g(x+y) g(x+y))$$

2)

3)

$$g(\sin(x\sin(y\sin z)))Dh_1(x,y,z) - g(x^y)Dh_2(x,y,z)$$

where $h_1 = \sin(x\sin(y\sin z))$ and $h_2 = x^y$ have solutions in Parts 1) and 4) of Problem 1.

Problem 3. A function $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^p$ is bilinear if for $x, x_1, x_2 \in \mathbb{R}^n$, $y, y_1, y_2 \in \mathbb{R}^m$ and $a \in \mathbb{R}$ we have

$$f(ax, y) = af(x, y) = f(x, ay),$$

$$f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y),$$

$$f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2).$$

1) Prove that if f is bilinear, then

$$\lim_{(h,k)\to 0} \frac{|f(h,k)|}{|(h,k)|} = 0.$$

- 2) Prove that Df(a, b)(x, y) = f(a, y) + f(x, b).
- 3) Show that Dp(a,b)(x,y) = bx + ay where $p: \mathbb{R}^2 \to \mathbb{R}$ is defined by p(x,y) = xy is a special case of Part 2).

Proof. Note that

$$f(h,k) = \sum_{i=1}^{n} \sum_{j=1}^{m} h_i k_j f(e_i, e_j)$$

and so this function is linear. Thus there exists some M>0 such that

$$|f(h,k)| < M \max(|h_i|) \max(|k_i|) < M|h||k|$$
.

Since $|(h,k)| = \sqrt{|h|^2 + |k|^2}$, we need only show the result is true when n = m = 1 and f is simply p, mentioned in Part 3). But this has already been shown to be true.

2) We have

$$\lim_{(h,k)\to 0} \frac{|f(a+h,b+k)-f(a,b)-f(a,k)-f(h,b)|}{|(h,k)|} = \lim_{(h,k)\to 0} \frac{|f(h,k)|}{|(h,k)|} = 0$$

by bilinearity and Part 1).

3) Taking
$$n=m=p=1$$
 we have $f:\mathbb{R}^2\to\mathbb{R}$. If $f(x,y)=xy$ then from Part 2) we have $Df(a,b)(x,y)=f(a,y)+f(b,x)=bx+ay$.

Problem 4. Define $IP : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by $IP(x,y) = \langle x,y \rangle$.

- 1) Find D(IP)(a,b) and (IP)'(a,b).
- 2) If $f, g: \mathbb{R}^n \to \mathbb{R}$ are differentiable and $h: \mathbb{R} \to \mathbb{R}$ is defined by $h(t) = \langle f(t), g(t) \rangle$, show that

$$h'(a) = \langle f'(a)^T, q(a) \rangle + \langle f(a), q'(a)^T \rangle.$$

- 3) If $f: \mathbb{R} \to \mathbb{R}^n$ is differentiable and |f(t)| = 1 for all t, show that $\langle f'(t)^T, f(t) \rangle = 0$.
- 4) Exhibit a differentiable function $f: \mathbb{R} \to \mathbb{R}$ such that the function |f| defined by |f|(t) = |f(t)| is not differentiable.

Proof. 1) Since IP is bilinear, we have $D(IP)(a,b)(x,y) = \langle b,x \rangle + \langle a,y \rangle$. Then (IP)'(a,b) = (a,b)

- 2) Note that $h(t) = (IP) \circ (f, g)$. Now we simply use the Chain Rule and Part 1) to obtain the result.
- 3) This is just Part 2) applied to $\langle f(t), f(t) \rangle = 1$. Differentiating both sides gives the desired result.
- 4) Take f(t) = t. Then |f(t)| is not differentiable at 0.

Problem 5. Let E_i with $i=1,\ldots k$ be Euclidean spaces of various dimensions. A function $f: E_1 \times \cdots \times E_k \to \mathbb{R}^p$ is called multilinear if for each choice of $x_j \in E_j$, $j \neq i$ the function $g: E_i \to \mathbb{R}^p$ defined by $g(x) = f(x_1, \ldots, x_{i-1}, x, x_{i+1}, \ldots, x_k)$ is a linear transformation.

1) If f is multilinear and $i \neq j$, show that for $h = (h_1, \dots h_k)$, with $h_l \in E_l$ we have

$$\lim_{h\to 0} \frac{|f(a_1,\ldots,h_i,\ldots,h_j,\ldots,a_k)|}{|h|} = 0.$$

2) Prove that

$$Df(a_1, \dots a_k)(x_1, \dots x_k) = \sum_{i=1}^k f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_k).$$

Proof. 1) Since $f(a_1, \ldots, h_i, \ldots, h_j, \ldots, a_k)$ is bilinear, this is an immediate result of Part 2) of Problem 3.

2) This is a similar case to Part 3) of Problem 3. Using the definition of a derivative, we can expand the numerator in a similar fashion as in Part 3) of Problem 3. Then using Part 1) we obtain a similar result, with more terms. This limit finally goes to 0 for the same reasons as in Part 3) of Problem 3.

Problem 6. Regard and $n \times n$ matrix as a point in the n-fold product $\mathbb{R}^n \times \cdots \times \mathbb{R}^n$ by considering each row as a member of \mathbb{R}^n .

1) Prove that $\det : \mathbb{R}^n \times \cdots \times \mathbb{R}^n \to \mathbb{R}$ is differentiable and

$$D(\det)(a_1, \dots, a_n)(x_1, \dots, x_n) = \sum_{i=1}^n \det(a_1, \dots, x_i, \dots, a_n)^T.$$

2) If $a_{ij}: \mathbb{R} \to \mathbb{R}$ are differentiable and $f(t) = \det(a_{ij}(t))$, show that

$$f'(t) = \sum_{j=1}^{n} \det \begin{pmatrix} a_{11}(t), & \dots & , a_{1n}(t) \\ \vdots & & & \vdots \\ a'_{j1}(t), & \dots & , a'_{jn}(t) \\ \vdots & & & \vdots \\ a_{n1}(t), & \dots & , a_{nn}(t) \end{pmatrix}.$$

3) If $\det(a_{ij}(t)) \neq 0$ for all t and $b_1, \ldots, b_n : \mathbb{R} \to \mathbb{R}$ are differentiable, let $s_1, \ldots, s_n : \mathbb{R} \to \mathbb{R}$ be the functions such that $s_1(t), \ldots, s_n(t)$ are the solutions of the equations

$$\sum_{i=1}^{n} a_{ji}(t)s_{j}(t) = b_{i}(t)$$

for i = 1, ..., n. Show that s_i is differentiable and find $s'_i(t)$.

Proof. 1) Since det is multilinear, this follows immediately from Problem 5, Part 2).

- 2) This is a direct consequence of Part 1) and the Chain Rule.
- 3) Using Cramer's Rule, we can write $s_i = \det(B_i)/\det(A)$ where $A = [a_{ij}(t)]$ and B_i is the matrix obtained by replacing the *i*th column of A with $(b_1(t), \ldots, b_n(t))^T$. Taking the transpose of these matrices doesn't change the determinant, which allows us to use Part 2) and the quotient rule to find

$$s_i'(t) = \frac{\det(B_i) \det'(A) - \det(A) \det'(B_i)}{\det^2(B_i)}.$$

Problem 7. Suppose $f: \mathbb{R}^n \to \mathbb{R}^n$ is differentiable and has a differentiable inverse $f^{-1}: \mathbb{R}^n \to \mathbb{R}^n$. Show that $(f^{-1})'(a) = (f'(f^{-1}(a)))^{-1}$.

Proof. Note that $f \circ f^{-1}(x) = x$. Differentiating both sides we have $f'(f^{-1}(x))(f^{-1})'(x) = 1$. Dividing gives the result.

Problem 8. A function $f: \mathbb{C} \to \mathbb{C}$ is complex differentiable at $z_0 \in \mathbb{C}$ if

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists. A function f is analytic on an open set $U \subseteq \mathbb{C}$ if f is differentiable at each point of U. Write f(z) = u(x,y) + iv(x,y), where $u,v: \mathbb{R}^2 \to \mathbb{R}$, and z = x + iy.

- 1) Suppose f is analytic on an open set $U \subseteq \mathbb{C}$. Show that u and v are differentiable on U considered as a subset of \mathbb{R}^2 .
- 2) Suppose f is analytic on an open set $U \subseteq \mathbb{C}$. Show that $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$. These are the Cauchy-Riemann Equations.
- 3) If $U \subseteq \mathbb{C}$ is an open set and u and v are in $C^1(U)$ and satisfy the Cauchy-Riemann Equations, show that f(z) = u(x,y) + iv(x,y) is analytic on U.
- 4) Find an example of a function $f: \mathbb{C} \to \mathbb{C}$ that is differentiable at one point, but not in a neighborhood of that point.

Proof. 1) Let $z_0 = x_0 + iy_0 \in U$ and consider

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

$$= \lim_{x + iy \to x_0 + iy_0} \frac{u(x, y) + iv(x, y) - u(x_0, y_0) + iv(x_0, y_0)}{x + iy - x_0 + iy_0}$$

$$= \lim_{x + iy \to x_0 + iy_0} \frac{u(x, y) - u(x_0, y_0)}{x + iy - x_0 + iy_0} + i \lim_{x + iy \to x_0 + iy_0} \frac{v(x, y) - v(x_0, y_0)}{x + iy - x_0 + iy_0}.$$

In \mathbb{R}^2 these last two terms correspond to

$$\lim_{(x,y)\to(x_0,y_0)} \frac{u(x,y) - u(x_0,y_0)}{(x,y) - (x_0,y_0)}$$

and

$$\lim_{(x,y)\to(x_0,y_0)} \frac{v(x,y)-v(x_0,y_0)}{(x,y)-(x_0,y_0)}.$$

Since these two limits exist, u and v are differentiable functions in \mathbb{R}^2 .

2) We have

$$Df = \frac{\partial f}{\partial x}\frac{\partial x}{\partial z} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial z} = \frac{1}{2}\left(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}\right).$$

Substituting for f(x+iy) = u(x,y) + iv(x,y) we have

$$Df = \frac{1}{2} \left(\left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) - i \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \right) = \frac{1}{2} \left(\left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right) + \left(-i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \right) \right).$$

Along the real axis $\partial f/\partial y = 0$, thus

$$Df = \frac{1}{2} \left(\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \right).$$

Along the imaginary axis $\partial f/\partial x = 0$, thus

$$Df = \frac{1}{2} \left(-i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \right).$$

The value of the derivative must be the same in so

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

and

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

3) Given that u and v satisfy the Cauchy-Riemann equations, then we must have

$$\frac{1}{2}\left(\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) + i\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)\right) = \frac{1}{2}\left(\left(\frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial y} + i\frac{\partial v}{\partial y}\right)\right) = \frac{1}{2}\left(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}\right) = \frac{df}{d\overline{z}}.$$

But then this directly implies the differentiability of f since the conjugate function is continuous.

4) Define $f(z) = x^2 + y^2 + ixy$ for z = x + iy. Then the Cauchy-Riemann equations are satisfied only at the origin. Thus, f is differentiable at the origin, but not in any neighborhood of it.

Problem 9. Define $f: \mathbb{C} \to \mathbb{C}$, $f(z) = e^z$ as follows: $f(z) = f(x+iy) = e^x \cos y + ie^x \sin y$. Show that f is analytic on \mathbb{C} .

Proof. We define $u(x,y) = e^x \cos y$ and $v(x,y) = e^x \sin y$. Note that

$$\frac{\partial u}{\partial x} = e^x \cos y = \frac{\partial v}{\partial y}$$

and

$$\frac{\partial u}{\partial y} = -e^x \sin y = -\frac{\partial v}{\partial x}.$$

By Part 3) of Problem 8 we see that f is analytic on \mathbb{C} .

Problem 10. Let $z_0 \in \mathbb{C}$ and define $f: \mathbb{C} \to \mathbb{C}$ by $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, where $a_n \in \mathbb{C}$ for all n. Let r > 0 be the radius of convergence of this power series.

- 1) Show that f(z) is analytic on $B_r(z_0) = \{z \in \mathbb{C} \mid |z z_0| < r\}$.
- 2) Show that the radius of convergence of the power series for f'(z) is equal to r.

Proof. 1) Within the radius of convergence we can write

$$f'(z) = \sum_{n=0}^{\infty} na_n (z - z_0)^{n-1}$$

which represents the term by term differentiation of f(z).

2) We have $r=1/\limsup n\to \infty |a_n|^{1/n}$. The series $\sum_{n=0}^\infty na_nx^{n-1}$ will converge when the series $\sum_{n=0}^\infty na_nx^n$ converges. Now consider $\limsup_{n\to\infty} |na_n|^{1/n} = \limsup_{n\to\infty} n^{1/n} |a_n|^{1/n} = \limsup_{n\to\infty} |a_n|^{1/n}$. Thus the radius of convergence of this series is the same as that of f(z).

Problem 11. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \sqrt{|x| + |y|}$. Find those points in \mathbb{R}^2 at which f is differentiable.

Proof. We have f is differentiable at all points such that $x \neq 0$ and $y \neq 0$. Suppose that x = 0. Then we have

$$f'(x,y) = \lim_{h \to 0} \frac{|\sqrt{|y+h_2|} - \sqrt{|y|}}{\sqrt{h_1^2 + h_2^2}}.$$

Based on the powers of the numerator and the denominator, we see that this limit doesn't exist. A similar case holds for y = 0.

Problem 12. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $|f(x)| \leq ||x||^{\alpha}$ for some $\alpha > 1$. Show that f is differentiable at 0.

Proof. For x = 0 we have

$$f'(x) = \lim_{h \to 0} \frac{|f(x+h) - f(x)|}{|h|} \le \lim_{h \to 0} \frac{||h||^{\alpha}}{||h||}.$$

Since α is strictly greater than 0, this limit goes to 0 and so f is differentiable at 0.

Problem 13. Let $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ be defined by $f(x,y) = x \cdot y$.

- 1) Show that f is differentiable on $\mathbb{R}^n \times \mathbb{R}^n$.
- 2) Show that Df(a,b)(x,y) = ay + bx.

Proof. Both parts follow from Problems 3 and 4.