Title & Objective

Legal Document Classification

Document TextCategory

"The court rules in favor of the defendant". "Judgment"
This agreement is valid for one year. "Contract"
Take notice of the change. "Notice"

Data Processing Cleaning

Original;

"The court rules in favor of the defendant."

1. Lowercase;

"the court rules in favor of the defendant."

Example: Makes "Court" and "court" the same word.

2. Stopword Removal ;

Removes common words like the, in, of, a that don't define the category.

3. Lemmatization ;

Reduce rules to itS rule

Feature Extraction (TF-IDF)

Machine learning models only understand numbers. TF-IDF converts the cleaned text into numerical vectors, assigning a score to each word based on its importance

TF (Term Frequency): How often a word appears in the current document.

IDF (Inverse Document Frequency): Penalizes common words that appear across *all* documents.

Word	Document 1 (judgement)	Document 2 (contract)	Document 3 (notice)	TF - IDF SCORE
COURT	1	0	0	High (Specific to Judgment)
AGGREMENT	0	1	0	High (Specific to Contract)
NOTICE	0	0	1	High (Specific to Notice)
VAILD	0	1	0	Medium

The model sees each document as a list of numbers (a vector):

Judgment Vector: [0.8,0.0,0.0,0.0]
Contract Vector: [0.0,0.9,0.0,0.7]
Notice Vector: [0.0,0.0,0.9,0.0]

4. Model Training (SVM)

The Support Vector Machine (SVM) model takes these numerical vectors and plots them in a high-dimensional space.

- It finds the best boundary (hyperplane) to separate the 'Judgment' points from the 'Contract' points, and so on.
- After training, this hyperplane is fixed and used to classify new points (new documents).

Precision, Recall, and F1-Score (Detailed Metrics)

These metrics are calculated *per category* and provide a deeper understanding than just accuracy:

Metric	Simple Explanation	Calculation based on our error
Precisio n	How trustworthy is the prediction? Out of all documents predicted as "Contract," how many were actually "Contract"?	Predicted ContractTrue Contract=21 (50%)
Recall	How many did we find? Out of all documents that <i>were</i> "Notice," how many did the model correctly find?	Actual NoticeTrue Notice=10 (0%)
F1-Score	The single summary score. A balance of Precision and Recall.	Lower F1 for 'Notice' shows poor performance on that class.

Confusion Matrix (Graph)

The Confusion Matrix is a visual table that shows where the model is confused (where the prediction and actual category differ).

Actual / Predicted	Contract	Judgment	Notice
Contract	1 (Correct)	0	0
Judgment	0	1 (Correct)	0
Notice	1 (Error!)	0	0 (Wrong!)