

GUIÓN DE PRÁCTICAS 6

ANÁLISIS DE HEURÍSTICAS Y ESTRATEGIAS INFORMADAS

1. Implementa la función heurística de la Distancia de Manhattan para el problema del puzle:

```
int nombre funcion heuristica (tEstado *estado, tEstado *objetivo)
```

- 2. Implementa una función que calcule la longitud de una lista de Nodos.
 - a. Introduce en el código de búsqueda informada un parámetro y las instrucciones necesarias para calcular la máxima longitud de la lista Abiertos.
 - b. Introduce un nuevo parámetro, nodos generados, que vaya sumando el número de nodos generados (expandidos o no).
- 3. Realiza una comparativa entre las dos heurísticas: Nº de piezas mal colocadas y Distancia de Manhattan en función del número de nodos visitados, generados y la máxima longitud de la lista Abiertos.
 - a. Usa los siguientes estados iniciales para el 8-puzle y rellena las siguientes tablas:
 - b. ¿Son Admisibles ambas heurísticas?
 - c. ¿Cuál es la heurística dominante?
 - d. ¿En qué afecta el cambio de orden en los operadores (optimalidad, completitud, eficiencia, etc.)? Haz pruebas con el primer ejemplo.

{1,3,0}, {6,2,4},	Nº de piezas mal colocadas				Distancia de Manhattan				
{8,7,5}	COSTE solución	Generados	Visitados	Máxima Longitud	COSTE solución	Generados	Visitados	Máxima Longitud	
Voraz	6	17	7	12	6	17	7	12	
A*	6	17	7	12	6	17	7	12	

{6,3,1}, {8,0,4}, {7,5,2}	Nº de piezas mal colocadas				Distancia de Manhattan				
	COSTE solución	Generados	Visitados	Máxima Longitud	COSTE solución	Generados	Visitados	Máxima Longitud	
Voraz	144	1298	907	393	24	107	63	46	
A*	18	4181	2491	1692	18	268	154	116	

{1,2,3,4}, {5,6,15,8}, {9,10,0,12}, {13,14,7,11}	Nº de piezas mal colocadas				Distancia de Manhattan				
	COSTE solución	Generados	Visitados	Máxima Longitud	COSTE solución	Generados	Visitados	Máxima Longitud	
Voraz	28	301	183	120	44	278	164	116	
A*	12	557	306	253	12	144	78	68	

Objetivo para el 15-puzle {1, 2, 3, 4},

{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10,11,12}, {13,14,15, 0}