Preconditioned CG

CS292 F May 17, 2021 Lecture 13 CG: minimize = x Ax - bx = f(x) over all XZE KZ(A,b) Po=b, xo=0 for t= 1,2,...

To compute Apt-1 · A-orthogonalize that against earlier p; toget · compate C_{t} to minimize P_{t} . · $X_{t}:X_{t-1}+C_{t}P_{t}$ $f(C_{t}P_{t})$ · $Y_{t}:X_{t-1}+C_{t}P_{t}$ "residual" vector.

min $11 \times 1 - \times 11$ A systs 0 in exact $\times_{\ell} \in K_{\ell}(b)$ arithmetic when Apolynomial 3(2) with 3(0)=1 and 9(1)=0 for every eigenvoke 7 of A. THM
Afeod step t, max 19t(A)|

A eigenvolues

OP A IIXIA C min polynomials of Logree to EVALS close together are good.

(Cinsters of Evals)

K(A) = 34 Condition (if Ais Sy man + can a phynomial be on this whole interval? humber pos det) Answer: Chelysheu polynourials. Can use their pays to get convergence borneds for CG based on K(A), for example: $\frac{||r_{t}||}{||b||} \leq 10^{-6} \text{ for } t = O(\sqrt{3}(a))$ $||b|| \leq \frac{10^{-6} \text{ for } t = O(\sqrt{3}(a))}{||b||}$ $||b|| \leq \frac{10^{-6} \text{ for } t = O(\sqrt{3}(a))}{||b||}$ $||b|| \leq \frac{10^{-6} \text{ for } t = O(\sqrt{3}(a))}{||b||}$