A. AMENDMENTS TO CLAIMS

Please cancel Claims 18 and 28, add new Claims 44-49, and amend the claims as indicated hereinafter.

1 1 - 9 (CANCELED)

1 10. (CURRENTLY AMENDED) A method for communicating at least first and second
2 digital data streams over a communications link from a source to a destination
3 comprising:
4 receiving said first data stream, said first data stream being a synchronous data stream

having a first average data bit rate;

clocking said first data stream into a first FIFO buffer;

receiving said second data stream, said second data stream being an asynchronous data stream having a second average data bit rate;

clocking said second data stream into a second FIFO buffer;

transmitting, over said communications link, an output bit stream, at an output data bit rate,

wherein the output bit stream includes bits output from the first data rate buffer and the output bit stream also includes bits from the second data rate buffer, and wherein each Jth bit of a sequential plurality of bits in the first data stream are bits sequentially output from the first FIFO buffer, to define first bits of the output bit stream, and wherein at least one bit of the sequential plurality of bits, other than the first bits, is output from the second FIFO buffer, wherein the sequential

9

10

11

12

13

14

15

16

17

18		plurality of time periods includes at least first and second subpluralities of time
19		periods.
1	11.	(CANCELED)
1	12.	(ORIGINAL) A method as claimed in claim 10 wherein said output bit stream includes
2		time division multiplexing of at least said first data stream and second data stream.
1	13 - 1	9. (CANCELED)
1	20.	(CURRENTLY AMENDED) Apparatus for communicating at least first and second
2		digital data streams over a communications link from a source to a destination, said first
3		data stream being a synchronous data stream having a first average data bit rate, said
4		second data stream being an asynchronous data stream having a second average data bit
5	j.	rate, comprising:
6		means for clocking said first data stream into a first FIFO buffer;
7		means for clocking said second data stream into a second FIFO buffer;
8		means for transmitting, over said communication link, an output bit stream, at an output
9		data bit rate,
10		wherein the output bit stream includes bits output from the first data rate buffer and the
11		output bit stream also includes bits from the second data rate buffer, and
12		wherein each J th bit of a sequential plurality of bits in said first data stream are bits
13		sequentially output from the first FIFO buffer, to define first bits of said output bit
14		stream, and wherein at least one bit of said sequential plurality of bits, other than
15		said first bits, is output from the second FIFO buffer.

1	21.	(CANCELED)
1	22.	(ORIGINAL) Apparatus as claimed in claim 20 wherein said output bit stream is
2		provided by time division multiplexing of at least said first data stream and second data
3		stream.
1	23 - 25	(CANCELED)
1	30.	(CURRENTLY AMENDED) A computer-readable medium for communicating at least
2		first and second digital data streams over a communications link from a source to a
3		destination, the computer-readable medium carrying one or more sequences of
4		instructions which, when executed by one or more processors, cause the one or more
5		processors to perform the steps of:
6		receiving the first data stream, the first data stream being a synchronous data stream
7		having a first average data bit rate;
8		clocking the first data stream into a first FIFO buffer;
9		receiving the second data stream, the second data stream being an asynchronous data
10		stream having a second average data bit rate;
11		clocking the second data stream into a second FIFO buffer;
12		transmitting, over the communications link, an output bit stream, at an output data bit
13		rate,

wherein the output bit stream includes bits output from the first data rate buffer and the

output bit stream also includes bits from the second data rate buffer, and

sequentially output from the first FIFO buffer, to define first bits of the output bit

16

17

wherein each Jth bit of a sequential plurality of bits in the first data stream are bits

stream, and wherein at least one bit of the sequential plurality of bits, other than 18 the first bits, is output from the second FIFO buffer, wherein the sequential 19 20 plurality of time periods includes at least first and second subpluralities of time 21 periods. (PREVIOUSLY PRESENTED) A computer-readable medium as recited in Claim 30, 1 31. 2 further comprising one or more additional instructions which, when executed by the one 3 or more processors, cause the one or more processors to cause the output bit stream to include time division multiplexing of at least the first data stream and the second data stream. (CURRENTLY AMENDED) A method for communicating at least first and second 1 32. 2 digital data streams over a communications link from a source to a destination 3 comprising: 4 receiving the first data stream, the first data stream being a synchronous data stream 5 having a first average data bit rate; 6 clocking the first data stream into a first data rate buffer; 7 receiving the second data stream, the second data stream being an asynchronous data 8 stream having a second average data bit rate; 9 clocking the second data stream into a second data rate buffer; 10 wherein the first and second data rate buffers define a next out data bit for outputting in 11 response to a clock-out signal; and 12 transmitting, over the communication link, an output bit stream, at an output data bit rate, 13 wherein the output bit stream includes bits output from the first data rate buffer and the

14

output bit stream also includes bits from the second data rate buffer,

15		wherein the output bit stream includes at least a sequential plurality of time periods for
16		transmitting a data bit during each of the sequential plurality of time periods,
17		and wherein the transmitting includes
18		a) outputting the next out data bit from the first data rate buffer and transmitting
19	1	the next out data bit on the communications link during one of a first
20	31	subplurality of the sequential plurality of time periods;
21		b) following step a, transmitting a bit, during one of a second subplurality of the
22		sequential plurality of time periods; and
23		repeating steps a and b to define a plurality of iterations of step a and step b
24		wherein at least some of the bits transmitted during iterations of step b
25		are output from the second data rate buffer.
1	33.	(PREVIOUSLY PRESENTED) A method as recited in claim 32, wherein the output bit
2		stream includes time division multiplexing of at least the first data stream and second
3		data stream.
1	34.	(PREVIOUSLY PRESENTED) A method as recited in Claim 32, wherein all bits
2		transmitted during iterations of step b are output from the second data rate buffer.
1	35.	(PREVIOUSLY PRESENTED) A method as recited in Claim 32, wherein the first
2		subplurality of the sequential plurality of time periods comprises every other time
3		period of the sequential plurality of time periods.
1	36.	(CURRENTLY AMENDED) An apparatus for communicating at least first and second
2		digital data streams over a communications link from a source to a destination, the first
3		data stream being a synchronous data stream having a first average data bit rate, the

4	second data stream being an asynchronous data stream having a second average data bit
5	rate, comprising:
6	means for clocking the first data stream into a first FIFO data rate buffer;
7	means for clocking the second data stream into a second FIFO data rate buffer;
8	wherein the first and second data rate buffers define a next out data bit for outputting in
9	response to a clock-out signal; and
10	means for transmitting, over the communication link, an output bit stream, at an output
11	data bit rate,
12	wherein the output bit stream includes bits output from the first data rate buffer and the
13	output bit stream also includes bits from the second data rate buffer,
14	wherein the output bit stream includes at least a sequential plurality of time periods for
15	transmitting a data bit during each of the sequential plurality of time periods,
16	and wherein the means for transmitting comprises: is configured to:
17	a) means for outputting output the next out bit from the first FIFO to data rate
18	buffer and transmit the next out data bit on the communications link
19	during one of a first subplurality of time periods of the sequential
20	plurality of time periods;
21	b) means for transmitting following step a, transmit a bit, during one of a
22	second subplurality of time periods of the sequential plurality of time
23	periods;
24	means for causing cause steps a and b to be repeated so that at least some of the
25	bits transmitted during one of the second subplurality of time periods are
26	output from the second FIFO. data rate buffer.

1	37.	(PREVIOUSLY PRESENTED) An apparatus as recited in claim 36, wherein the output
2		bit stream is provided by time division multiplexing of at least the first data stream and
3		second data stream.
1	38.	(CURRENTLY AMENDED) An apparatus as recited in Claim 36, wherein all bits
2		transmitted during any of the second subplurality of time periods are output from the
3		second FIFO. data rate buffer.
1	39.	(PREVIOUSLY PRESENTED) An apparatus as recited in Claim 36, wherein the first
2		subplurality of time periods includes every other time period of the sequential plurality
3		of time periods.
1	40.	(CURRENTLY AMENDED) A computer-readable medium for communicating at least
2		first and second digital data streams over a communications link from a source to a
3		destination, the computer-readable medium carrying one or more sequences of one or
4		more instructions which, when executed by one or more processors causes the one or
5		more processors to perform the steps of:
6		receiving the first data stream, the first data stream being a synchronous data stream
7		having a first average data bit rate;
8		clocking the first data stream into a first data rate buffer;
9		receiving the second data stream, the second data stream being an asynchronous data
10		stream having a second average data bit rate;
11		clocking the second data stream into a second data rate buffer;
12		wherein the first and second data rate buffers define a next out data bit for outputting in
13		response to a clock-out signal; and

14	
15	
16	
17	
18	
19	\bigcap
20	101
21	
22	
23	

24

25

26

27

1

2

3

4

5

transmitting, over the communication link, an output bit stream, at an output data bit rate,

wherein the output bit stream includes bits output from the first data rate buffer and the

output bit stream also includes bits from the second data rate buffer,

wherein the output bit stream includes at least a sequential plurality of time periods for

transmitting a data bit during each of the sequential plurality of time periods,

and wherein the transmitting includes

- a) outputting the next out data bit from the first data rate buffer and transmitting

 the next out data bit on the communications link during one of a first subplurality of the sequential plurality of time periods;
- b) following step a, transmitting a bit, during one of a second subplurality of the sequential plurality of time periods; and repeating steps a and b to define a plurality of iterations of step a and step b wherein at least some of the bits transmitted during iterations of step b
- 41. (PREVIOUSLY PRESENTED) A computer-readable medium as recited in claim 40, further comprising one or more additional instructions which, when executed by the one or more processors, cause the one or more processors to cause the output bit stream to include time division multiplexing of at least the first data stream and the second data stream.

are output from the second data rate buffer.

1 42. (PREVIOUSLY PRESENTED) A computer-readable medium as recited in Claim 40,
2 wherein all bits transmitted during iterations of step b are output from the second data
3 rate buffer.

1	43.	(PREVIOUSLY PRESENTED) A computer-readable medium as recited in Claim 40,
2		wherein the first subplurality of the sequential plurality of time periods comprises every
3		other time period of the sequential plurality of time periods.
1	44.	(NEW) An apparatus for communicating at least first and second digital data streams
2		over a communications link from a source to a destination, the first data stream being a
3		synchronous data stream having a first average data bit rate, the second data stream being
4		an asynchronous data stream having a second average data bit rate, the apparatus
5		comprising:
6	ı	a first FIFO buffer configured to receive the first data stream;
7 (/	a second FIFO buffer configured to receive the second data stream;
8 \	5	a transmitter configured to transmit an output bit stream over the communications link at
9	•	an output data bit rate;
10		wherein the output bit stream includes bits output from the first data rate buffer and the
11		output bit stream also includes bits from the second data rate buffer, and
12		wherein each J th bit of a sequential plurality of bits in the first data stream are bits
13		sequentially output from the first FIFO buffer, to define first bits of the output bit
14		stream, and wherein at least one bit of the sequential plurality of bits, other than
15		the first bits, is output from the second FIFO buffer.
1	45.	(NEW) The apparatus as claimed in claim 20, further comprising a time division
2		multiplexer configured to generate the output bit stream by time division multiplexing at
3		least the first data stream and second data stream.

1	46.	(NEW) An apparatus for communicating at least first and second digital data streams
2		over a communications link from a source to a destination, the first data stream being a
3		synchronous data stream having a first average data bit rate, the second data stream being
4		an asynchronous data stream having a second average data bit rate, the apparatus
5		comprising:
6		a first data rate buffer configured to receive the first data stream;
7		a second data rate buffer configured to receive the second data stream;
8		wherein the first and second data rate buffers define a next out data bit for outputting in
9		response to a clock-out signal, and
10		a transmitter configured to transmit an output bit stream over the communication link at
11		an output data bit rate,
12		wherein the output bit stream includes bits output from the first data rate buffer and the
13		output bit stream also includes bits from the second data rate buffer,
14		wherein the output bit stream includes at least a sequential plurality of time periods for
15		transmitting a data bit during each of the sequential plurality of time periods,
16		and wherein the transmitter is further configured to:
17		a) output the next out bit from the first data rate buffer and transmitting the next
18		out data bit to the communications link during one of a first subplurality
19		of time periods of the sequential plurality of time periods;
20		b) following step a, transmit a bit, during one of a second subplurality of time
21		periods of the sequential plurality of time periods;

,	22		cause steps a and b to be repeated so that at least some of the bits transmitted
,	23		during one of the second subplurality of time periods are output from the
	24		second data rate buffer.
	1	47.	(NEW) The apparatus as recited in claim 46, further comprising a time division
	2		multiplexer configured to generate the output bit stream by time division multiplexing at
/	3		least the first data stream and second data stream.
7	1	48.	(NEW) The apparatus as recited in Claim 46, wherein all bits transmitted during any of
	2		the second subplurality of time periods are output from the second data rate buffer.
	1	49.	(NEW) The apparatus as recited in Claim 46, wherein the first subplurality of time
	2		periods includes every other time period of the sequential plurality of time periods.