Claims

1. A compound having the formula

$$Q = N + N + R^{2b}$$

$$R^{3a}$$

$$R^{2a}$$

$$R^{2a}$$

$$R^{2a}$$

- 5 a prodrug, *N*-oxide, addition salt, quaternary amine, metal complex, or a stereochemically isomeric form thereof; wherein
 - G is a direct bond or C₁₋₁₀alkanediyl optionally substituted with one or more substituents individually selected from the group of substituents consisting of hydroxy, C₁₋₆alkyloxy, Ar¹C₁₋₆alkyloxy, C₁₋₆alkylthio, Ar¹C₁₋₆alkylthio, HO(-CH₂-CH₂-O)_n-, C₁₋₆alkyloxy(-CH₂-CH₂-O)_n- or
- 10 $HO(-CH_2-CH_2-O)_n$ -, C_{1-6} alkyloxy $(-CH_2-CH_2-O)_n$ or Ar^1C_{1-6} alkyloxy $(-CH_2-CH_2-O)_n$ -;
- R¹ is Ar¹ or a monocyclic or bicyclic heterocycle being selected from piperidinyl, piperazinyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, tetrahydrofuranyl, thienyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, isothiazolyl, pyrazolyl, isoxazolyl, oxadiazolyl, quinolinyl, quinoxalinyl, benzofuranyl, benzothienyl, benzimidazolyl, benzoxazolyl, benzthiazolyl, pyridopyridyl, naphthiridinyl, 1*H*-imidazo[4,5-b]pyridinyl, 3*H*-imidazo[4,5-b]pyridinyl, imidazo[1,2-a]-pyridinyl, 2,3-dihydro-1,4-dioxino[2,3-b]pyridyl or a radical of formula

$$(CH_{2})m \qquad (CH_{2})m \qquad (CH_{2})m \qquad (CH_{2})m \qquad (CH_{2})m \qquad (CH_{2})p \qquad (CH_$$

```
wherein each of said monocyclic or bicyclic heterocycles may optionally be substituted
               with 1 or where possible more, such as 2, 3, 4 or 5, substituents individually
               selected from the group of substituents consisting of halo, hydroxy, amino, cyano,
               carboxyl, C<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxy, C<sub>1-6</sub>alkylthio, C<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkyl, Ar<sup>1</sup>,
 5
               Ar<sup>1</sup>C<sub>1-6</sub>alkyl, Ar<sup>1</sup>C<sub>1-6</sub>alkyloxy, hydroxyC<sub>1-6</sub>alkyl, mono-or di(C<sub>1-6</sub>alkyl)amino,
               mono-or di(C<sub>1-6</sub>alkyl)aminoC<sub>1-6</sub>alkyl, polyhaloC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkylcarbonylamino,
               C_{1-6}alkyl-SO_2-NR^{5c}-, Ar^1-SO_2-NR^{5c}-, C_{1-6}alkyloxycarbonyl, -C(=O)-NR^{5c}R^{5d},
               HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, halo(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, C<sub>1-6</sub>alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-,
               Ar^{1}C_{1-6}alkyloxy(-CH_{2}-CH_{2}-O)_{n}- and mono-or di(C_{1-6}alkyl)amino(-CH_{2}-CH_{2}-O)_{n}-;
10
        each n independently is 1, 2, 3 or 4;
        each m independently is 1 or 2;
        each p independently is 1 or 2;
        each t independently is 0, 1 or 2;
        Q is R<sup>7</sup>, pyrrolidinyl substituted with R<sup>7</sup>, piperidinyl substituted with R<sup>7</sup> or homo-
15
        piperidinyl substituted with R<sup>7</sup> wherein
       R^7 is C_{1-6}alkyl substituted with a heterocycle or R^7 is C_{1-6}alkyl substituted with both a
        radical -OR<sup>8</sup> and a heterocycle, wherein said heterocycle is selected from the group
        consisting of oxazolidine, thiazolidine, 1-oxo-thiazolidine, 1,1-dioxothiazolidine,
        morpholinyl, thiomorpholinyl, 1-oxo-thiomorpholinyl, 1,1-dioxothiomorpholinyl,
20
        hexahydrooxazepine, hexahydrothiazepine, 1-oxo-hexahydrothiazepine, 1,1-dioxo-
        hexahydrothiazepine; wherein each of said heterocyle may be optionally substituted
        with one or two substituents selected from the group consisting of C<sub>1-6</sub>alkyl,
        hydroxyC<sub>1-6</sub>alkyl, aminocarbonylC<sub>1-6</sub>alkyl, hydroxy, carboxyl, C<sub>1-4</sub>alkyloxycarbonyl,
        aminocarbonyl, mono- or di(C<sub>1</sub>4alkyl)aminocarbonyl, C<sub>1</sub>4alkylcarbonylamino,
        aminosulfonyl and mono- or di(C<sub>1-4</sub>alkyl)aminosulfonyl;
25
        R<sup>8</sup> is hydrogen, C<sub>1-6</sub>alkyl or Ar<sup>1</sup>C<sub>1-6</sub>alkyl;
        one of R<sup>2a</sup> and R<sup>3a</sup> is selected from halo, optionally mono- or polysubstituted C<sub>1-6</sub>alkyl,
               optionally mono- or polysubstituted C<sub>2-6</sub>alkenyl, nitro, hydroxy, Ar<sup>2</sup>, N(R<sup>4a</sup>R<sup>4b</sup>).
               N(R<sup>4a</sup>R<sup>4b</sup>)sulfonyl, N(R<sup>4a</sup>R<sup>4b</sup>)carbonyl, C<sub>1-6</sub>alkyloxy, Ar<sup>2</sup>Oxy, Ar<sup>2</sup>C<sub>1-6</sub>alkyloxy,
               carboxyl, C_{1-6}alkyloxycarbonyl, or -C(=Z)Ar^2; and the other one of R^{2a} and R^{3a} is
30
               hydrogen;
               wherein
                    =Z is =O, =CH-C(=O)-NR^{5a}R^{5b}, =CH_2, =CH-C_{1-6}alkyl, =N-OH or
                    =N-O-C_{1-6}alkyl; and
```

the optional substituents on C₁₋₆alkyl and C₂₋₆alkenyl can be the same or can be different relative to one another, and are each independently selected from the group of substituents consisting of hydroxy, cyano, halo, nitro, N(R^{4a}R^{4b}), N(R^{4a}R^{4b})sulfonyl, Het, Ar², C₁₋₆alkyloxy, C₁₋₆alkyl-S(=O)_t, Ar²oxy,

 Ar^2 -S(=O)_t, Ar^2C_{1-6} alkyloxy, Ar^2C_{1-6} alkyl-S(=O)_t, Het-oxy, Het-S(=O)_t, HetC₁₋₆alkyloxy, HetC₁₋₆alkyl-S(=O)_t, carboxyl, C₁₋₆alkyloxycarbonyl and -C(=Z) Ar^2 ;

in case R^{2a} is different from hydrogen then R^{2b} is hydrogen, C_{1-6} alkyl or halogen and R^{3b} is hydrogen;

5

30

in case R^{3a} is different from hydrogen then R^{3b} is hydrogen, $C_{1\text{-}6}$ alkyl or halogen and R^{2b} is hydrogen;

 R^{4a} and R^{4b} can be the same or can be different relative to one another, and are each independently selected from the group of substituents consisting of hydrogen,

 $C_{1\text{-}6}alkyl, \ Ar^2C_{1\text{-}6}alkyl, \ (Ar^2)(hydroxy)C_{1\text{-}6}alkyl, \ Het-C_{1\text{-}6}alkyl, \ hydroxyC_{1\text{-}6}alkyl, \ mono- \ and \ di-(C_{1\text{-}6}alkyloxy)C_{1\text{-}6}alkyl, \ (hydroxyC_{1\text{-}6}alkyl)oxyC_{1\text{-}6}alkyl, \ Ar^1C_{1\text{-}6}alkyloxy-C_{1\text{-}6}alkyl, \ dihydroxyC_{1\text{-}6}alkyl, \ (C_{1\text{-}6}alkyloxy)(hydroxy)C_{1\text{-}6}alkyl, \ (Ar^1C_{1\text{-}6}alkyloxy)(hydroxy)C_{1\text{-}6}alkyl, \ Ar^1oxy-C_{1\text{-}6}alkyl, \ (Ar^1oxy)(hydroxy)-C_{1\text{-}6}alkyl, \ aminoC_{1\text{-}6}alkyl, \ mono- \ and \ di(C_{1\text{-}6}alkyl)amino-C_{1\text{-}6}alkyl, \ (Ar^1oxy)(hydroxy)-C_{1\text{-}6}alkyl, \ (Ar^1oxy)-C_{1\text{-}6}alkyl, \ (Ar$

carboxyl C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl C_{1-6} alkyl, aminocarbonyl C_{1-6} alkyl, monoand di(C_{1-6} alkyl)aminocarbonyl C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl, (C_{1-4} alkyloxy) $_2$ P(=O)-O- C_{1-6} alkyl, aminosulfonyl- C_{1-6} alkyl, mono- and di(C_{1-6} alkyl)aminosulfonyl- C_{1-6} alkyl, C_{1-6} alkylcarbonyl, Ar 2 carbonyl, Het-carbonyl, Ar 2 C $_{1-6}$ alkylcarbonyl, Het- C_{1-6} alkylcarbonyl,

C₁₋₆alkylsulfonyl, aminosulfonyl, mono- and di(C₁₋₆alkyl)aminosulfonyl, Ar^2 sulfonyl, Ar^2C_{1-6} alkylsulfonyl, Ar^2 , Het, Het-sulfonyl, HetC₁₋₆alkylsulfonyl; R^5 is hydrogen or C_{1-6} alkyl;

 R^{5a} and R^{5b} can be the same or can be different relative to one another, and are each independently hydrogen or C_{1-6} alkyl; or

25 R^{5a} and R^{5b} taken together may form a bivalent radical of formula -(CH₂)_s- wherein s is 4 or 5;

 R^{5c} and R^{5d} can be the same or can be different relative to one another, and are each independently hydrogen or C_{1-6} alkyl; or

R^{5c} and R^{5d} taken together may form a bivalent radical of formula -(CH₂)_s- wherein s is 4 or 5;

Ar¹ is phenyl or phenyl substituted with 1 or more, such as 2, 3 or 4, substituents selected from halo, hydroxy, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, polyhaloC₁₋₆alkyl, and C₁₋₆alkyloxy;

Ar² is phenyl, phenyl annelated with C₅₋₇cycloalkyl, or phenyl substituted with 1 or more, such as 2, 3, 4 or 5, substituents selected from halo, cyano, C₁₋₆alkyl, Het-C₁₋₆alkyl, Ar¹-C₁₋₆alkyl, cyanoC₁₋₆alkyl, C₂₋₆alkenyl, cyanoC₂₋₆alkenyl, R^{6b}-O-C₃₋₆alkenyl, C₂₋₆alkynyl, cyanoC₂₋₆alkynyl, R^{6b}-O-C₃₋₆alkynyl, Ar¹, Het, R^{6b}-O-, R^{6b}-S-, R^{6c}-SO-, R^{6c}-SO₂-, R^{6b}-O-C₁₋₆alkyl-SO₂-, -N(R^{6a}R^{6b}), polyhalo-

$$\begin{split} &C_{1\text{-}6}alkyl, \, polyhaloC_{1\text{-}6}alkyloxy, \, polyhaloC_{1\text{-}6}alkylthio, \, R^{6c}\text{-}C(=O)\text{-}, \\ &R^{6b}\text{-}O\text{-}C(=O)\text{-}, \, N(R^{6a}R^{6b})\text{-}C(=O)\text{-}, \, R^{6b}\text{-}O\text{-}C_{1\text{-}10}alkyl, \, R^{6b}\text{-}S\text{-}C_{1\text{-}6}alkyl, \\ &R^{6c}\text{-}S(=O)_2\text{-}C_{1\text{-}6}alkyl, \, N(R^{6a}R^{6b})\text{-}C_{1\text{-}6}alkyl, \, R^{6c}\text{-}C(=O)\text{-}C_{1\text{-}6}alkyl, \\ &R^{6b}\text{-}O\text{-}C(=O)\text{-}C_{1\text{-}6}alkyl, \, N(R^{6a}R^{6b})\text{-}C(=O)\text{-}C_{1\text{-}6}alkyl, \, R^{6c}\text{-}C(=O)\text{-}NR^{6b}\text{-}, \\ &R^{6c}\text{-}C(=O)\text{-}O\text{-}, \, R^{6c}\text{-}C(=O)\text{-}NR^{6b}\text{-}C_{1\text{-}6}alkyl, \, R^{6c}\text{-}C(=O)\text{-}O\text{-}C_{1\text{-}6}alkyl, \\ &N(R^{6a}R^{6b})\text{-}S(=O)_2\text{-}, \, H_2N\text{-}C(=NH)\text{-}; \end{split}$$

R^{6a} is hydrogen, C₁₋₆alkyl, Ar¹, Ar¹C₁₋₆alkyl, C₁₋₆alkylcarbonyl, Ar¹carbonyl, Ar¹C₁₋₆alkylcarbonyl, C₁₋₆alkylsulfonyl, Ar¹sulfonyl, Ar¹C₁₋₆alkylsulfonyl, C₁₋₆alkyloxyC₁₋₆alkyl, aminoC₁₋₆alkyl, mono- or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, hydroxyC₁₋₆alkyl, (carboxyl)-C₁₋₆alkyl, (C₁₋₆alkyloxycarbonyl)-C₁₋₆alkyl, aminocarbonylC₁₋₆alkyl, mono- and di(C₁₋₆alkyl)aminocarbonylC₁₋₆alkyl, aminosulfonyl-C₁₋₆alkyl, mono- and di(C₁₋₆alkyl)aminosulfonyl-C₁₋₆alkyl, Het, Het-C₁₋₆alkyl, Het-carbonyl, Het-sulfonyl, Het-C₁₋₆alkylcarbonyl;

R^{6b} is hydrogen, C₁₋₆alkyl, Ar¹ or Ar¹C₁₋₆alkyl;

15 R^{6c} is C_{1-6} alkyl, Ar^1 or Ar^1C_{1-6} alkyl;

5

10

20

25

30

Het is a heterocycle being selected from tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, pyrrolidinonyl, furanyl, thienyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, isothiazolyl, pyrazolyl, isoxazolyl, oxadiazolyl, thiadiazolyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, tetrahydroquinolinyl, quinolinyl, isoquinolinyl, benzodioxanyl, benzodioxolyl, indolinyl, indolyl, each of said heterocycle may optionally be substituted with oxo, amino, Ar¹, C₁₋₄alkyl, aminoC₁₋₄alkyl, Ar¹C₁₋₄alkyl, mono- or di(C₁₋₆alkyl)amino, (hydroxyC₁₋₆alkyl)amino, and optionally further with one or two C₁₋₄alkyl radicals.

2. A compound according to claim 1 wherein the compound has the formula:

$$R^{7a}-Alk^{1}-N$$

$$R^{5}$$

$$R^{2b}$$

$$R^{3a}$$

$$R^{2a}$$

$$R^{2a}$$

$$R^{2a}$$

wherein R^5 , G, R^1 , R^{2a} , R^{2b} , R^{3a} , R^{3b} are as claimed in claim 1 and Alk¹ is $C_{1.6}$ alkanediyl;

R^{7a} is a heterocycle which is selected from the group consisting of oxazolidine, thiazolidine, 1-oxo-thiazolidine, 1,1-dioxothiazolidine, morpholinyl, thiomorpholinyl, 1-oxo-thiomorpholinyl, 1,1-dioxothiomorpholinyl, hexahydro-oxazepine, hexahydrothiazepine, 1-oxo-hexahydrothiazepine and

1,1-dioxohexahydrothiazepine; wherein each of said heterocyle may be optionally substituted with one or two substituents selected from the group consisting of C_{1-6} alkyl, hydroxy, carboxyl, C_{1-4} alkyloxycarbonyl, aminocarbonyl, mono- or $di(C_{1-4}$ alkyl)aminocarbonyl, C_{1-4} alkylcarbonylamino, aminosulfonyl and mono- or $di(C_{1-4}$ alkyl)aminosulfonyl.

3. A compound according to claim 1 wherein the compound has the formula:

5

10

15

20

$$R^{7a}-Alk^{1}-N$$

$$R^{5}$$

$$N$$

$$R^{2b}$$

$$R^{3a}$$

$$R^{2a}$$

$$R^{2a}$$

$$R^{2a}$$

wherein R^5 , G, R^1 , R^{2a} , R^{2b} , R^{3a} , R^{3b} are as claimed in claim 1 and Alk^1 and R^{7a} are as claimed in claim 2.

4. A compound according to claim 1 wherein the compound has the formula:

$$R^{7a}$$
-Alk¹-N R^{2b} or R^{7a} -Alk¹-N R^{3a} (I-c-1) R^{7a} -Alk¹-N R^{3a}

wherein R⁵, G, R¹, R^{2a}, R^{2b}, R^{3a}, R^{3b} are as claimed in claim 1, and Alk¹ and R^{7a} are as claimed in claim 2.

5. A compound according to claim 1 wherein the compound has the formula:

$$R^{7a}$$
 Alk R^{9} (I-c-3)

wherein R^5 , G, R^1 , R^{3b} , R^{4a} are as claimed in claim 1, and Alk^1 and R^{7a} are as claimed in claim 2; and

 $R^9, R^{10}, R^{11} \ \text{each independently are selected from halo, cyano, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, cyano$C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$

 $R^{6b}\text{-O-C}_{3\text{-}6}alkenyl,\ C_{2\text{-}6}alkynyl,\ cyanoC_{2\text{-}6}alkynyl,\ R^{6b}\text{-O-C}_{3\text{-}6}alkynyl,\ Ar^{1},\ Het,\ R^{6b}\text{-O-},\ R^{6b}\text{-S-},\ R^{6c}\text{-SO-},\ R^{6c}\text{-SO}_{2\text{-}},\ R^{6b}\text{-O-C}_{1\text{-}6}alkyl\text{-SO}_{2\text{-}},\ -N(R^{6a}R^{6b}),\ polyhaloC_{1\text{-}6}alkyl,\ polyhaloC_{1\text{-}6}alkyloxy,\ polyhaloC_{1\text{-}6}alkylthio,\ R^{6c}\text{-C}(=O)\text{-},\ R^{6b}\text{-O-C}(=O)\text{-},\ N(R^{6a}R^{6b})\text{-C}(=O)\text{-},\ R^{6b}\text{-O-C}_{1\text{-}6}alkyl,\ R^{6b}\text{-S-C}_{1\text{-}6}alkyl,\ R^{6c}\text{-S-C}_{1\text{-}6}alkyl,\ R^{6c}\text{-C}(=O)\text{-C}_{1\text{-}6}alkyl,\ R^{6c}\text{-C}(=O)\text{-NR}^{6b}\text{-},\ R^{6c}\text{-C}(=O)\text{-C}_{1\text{-}6}alkyl,\ N(R^{6a}R^{6b})\text{-C}(=O)\text{-C}_{1\text{-}6}alkyl,\ R^{6c}\text{-C}(=O)\text{-NR}^{6b}\text{-},\ R^{6c}\text{-C}(=O)\text{-O-},\ R^{6c}\text{-C}(=O)\text{-NR}^{6b}\text{-C}_{1\text{-}6}alkyl,\ R^{6c}\text{-C}(=O)\text{-O-}_{1\text{-}6}alkyl,\ N(R^{6a}R^{6b})\text{-S}(=O)_{2\text{-}},\ H_{2}N\text{-C}(=NH)\text{-};\ and\ Alk\ is\ C_{1\text{-}6}alkanediyl.}$

10

15

5

6. A compound according to claim 1 wherein the compound has the formula:

wherein R⁵, G, R¹, R^{4a}, R^{2b} are as claimed in claim 1, and Alk¹ and R^{7a} are as claimed in claim 2; R⁹, R¹⁰, R¹¹ and Alk are as claimed in claim 5.

7. A compound according to claim 1 wherein the compound has the formula:

$$R^{7a}-Alk \longrightarrow N R^{6a}R^{6b}$$

$$R^{7a}-Alk \longrightarrow R^{9}$$

$$R^{3b}$$

$$R^{9}$$

$$R^{9}$$

$$R^{9}$$

$$R^{9}$$

wherein R⁵, G, R¹, R^{3b} are as claimed in claim 1, and Alk¹ and R^{7a} are as claimed in claim 2; R⁹, R¹⁰ and Alk are as claimed in claim 5; and

R^{6a} is hydrogen, C, calkyl, Ar¹, Ar¹C, calkyl, C, calkyl, arbonyl, Ar¹carbonyl

 $R^{6a} \ is \ hydrogen, \ C_{1\text{-}6}alkyl, \ Ar^{1}, \ Ar^{1}C_{1\text{-}6}alkyl, \ C_{1\text{-}6}alkylcarbonyl, \ Ar^{1}carbonyl, \ Ar^{1}C_{1\text{-}6}alkylcarbonyl, \ C_{1\text{-}6}alkylsulfonyl, \ Ar^{1}sulfonyl, \ Ar^{1}C_{1\text{-}6}alkylsulfonyl, \ C_{1\text{-}6}alkylsulfonyl, \ Ar^{1}carbonyl, \ Ar^{1}C_{1\text{-}6}alkylsulfonyl, \ Ar^{1}C_{1\text{-}6}alkylsulfonyl, \ Ar^{1}C_{1\text{-}6}alkyl) amino \ C_{1\text{-}6}alkyl, \ hydroxyC_{1\text{-}6}alkyl, \ (carboxyl)-C_{1\text{-}6}alkyl, \ (C_{1\text{-}6}alkyloxycarbonyl)-C_{1\text{-}6}alkyl, \ aminocarbonylC_{1\text{-}6}alkyl, \ mono- \ and \ di(C_{1\text{-}6}alkyl) aminocarbonylC_{1\text{-}6}alkyl, \ aminosulfonyl-C_{1\text{-}6}alkyl, \ mono- \ and \ di(C_{1\text{-}6}alkyl) aminosulfonyl-C_{1\text{-}6}alkyl, \ Het, \ Het-C_{1\text{-}6}alkyl, \ Het-carbonyl, \ Het-sulfonyl, \ Het-C_{1\text{-}6}alkylcarbonyl; \ R^{6b} \ is \ hydrogen, \ C_{1\text{-}6}alkyl, \ Ar^{1} \ or \ Ar^{1}C_{1\text{-}6}alkyl.$

8. A compound according to claim 1 wherein the compound has the formula:

wherein R^5 , G, R^1 , R^{2b} are as claimed in claim 1, and Alk^1 and R^{7a} are as claimed in claim 2; R^9 , R^{10} and Alk are as claimed in claim 5; and R^{6a} and R^{6b} are as claimed in claim 7.

10 9. A compound according to claim 1 wherein the compound has the formula:

$$R^{7a}-Alk - N \qquad \qquad N \qquad \qquad R^{2b}$$

$$R^{7a}-Alk - N \qquad \qquad N \qquad \qquad R^{2a}$$

$$(I-d-1)$$

or of formula:

5

15

$$R^{7a}$$
-Alk¹-N R^{5} R^{3a} (I-d-2)

wherein R^5 , G, R^1 , R^{2a} , R^{2b} , R^{3a} , R^{3b} are as claimed in claim 1, and Alk^1 and R^{7a} are as claimed in claim 2.

10. A compound according to any of claims 2 to 9, wherein R^{7a} is a heterocycle
 20 selected from the group consisting of oxazolidine, thiazolidine, morpholinyl, thiomorpholinyl, hexahydrooxazepine, hexahydrothiazepine; wherein each of said heterocyle may be optionally substituted with one or two substituents selected from the group consisting of C₁₋₆alkyl, hydroxyC₁₋₆alkyl, aminocarbonylC₁₋₆alkyl.

- 11. A compound according to any of claims 2 to 10, wherein R^{7a} is a heterocycle, wherein said heterocycle is oxazolidine, thiazolidine, morpholinyl or thiomorpholinyl, wherein each of said heterocyle may be optionally substituted with one or two substituents selected from the group consisting of C₁₋₆alkyl, hydroxy-C₁₋₆alkyl, aminocarbonylC₁₋₆alkyl.
 - 12. A compound according to any of claims 2 to 10, wherein R^{7a} is morpholinyl.
- 10 13. A compound according to any of claims 5 to 8, wherein Alk is methylene.

- 14. A compound according to any of claims 2 to 10, wherein Alk¹ is C₁₋₄alkanediyl.
- 15. A compound according to any of claims 5 to 8, wherein R⁹, R¹⁰, R¹¹ are selected from halo, cyano, C₁₋₆alkyl, Het-C₁₋₆alkyl, Ar¹-C₁₋₆alkyl, cyanoC₁₋₆alkyl, C₂₋₆alkenyl, cyanoC₂₋₆alkenyl, R^{6b}-O-C₃₋₆alkenyl, C₂₋₆alkynyl, cyanoC₂₋₆alkynyl, R^{6b}-O-C₃₋₆alkynyl, Ar¹, Het, R^{6b}-O-, R^{6b}-S-, R^{6c}-SO-, R^{6c}-SO₂-, R^{6b}-O-C₁₋₆alkyl-SO₂-, -N(R^{6a}R^{6b}), CF₃, R^{6c}-C(=O)-, R^{6b}-O-C(=O)-, N(R^{6a}R^{6b})-C(=O)-, R^{6b}-O-C₁₋₆alkyl, R^{6c}-S-C₁₋₆alkyl, R^{6c}-S(=O)₂-C₁₋₆alkyl, N(R^{6a}R^{6b})-C₁₋₆alkyl, R^{6c}-C(=O)-C₁₋₆alkyl, R^{6b}-O-C(=O)-C₁₋₆alkyl, N(R^{6a}R^{6b})-C(=O)-C₁₋₆alkyl and R^{6c}-C(=O)-NR^{6b}-, H₂N-C(=NH)-.
- A compound according to any of claims 5 to 8, wherein R⁹, R¹⁰, R¹¹ are selected from C₁₋₆alkyl, Het-C₁₋₆alkyl, Ar¹-C₁₋₆alkyl, cyanoC₁₋₆alkyl, C₂₋₆alkenyl, cyano-C₂₋₆alkenyl, R^{6b}-O-C₃₋₆alkenyl, C₂₋₆alkynyl, cyanoC₂₋₆alkynyl, R^{6b}-O-C₃₋₆alkynyl, R^{6b}-O-C₁₋₆alkyl, R^{6c}-S-C₁₋₆alkyl, R^{6c}-S(=O)₂-C₁₋₆alkyl, N(R^{6a}R^{6b})-C₁₋₆alkyl, R^{6b}-O-C(=O)-C₁₋₆alkyl and N(R^{6a}R^{6b})-C(=O)-C₁₋₆alkyl;
- 17. A compound according to any of claims 5 to 8, wherein R⁹, R¹⁰, R¹¹ are selected from C₁₋₆alkyl, Het-C₁₋₆alkyl, Ar¹-C₁₋₆alkyl, cyanoC₁₋₆alkyl, C₂₋₆alkenyl, cyano-C₂₋₆alkynyl, R^{6b}-O-C₁₋₆alkyl, amino-S(=O)₂-C₁₋₆alkyl, R^{6b}-O-C(=O)-C₁₋₆alkyl, amino-C(=O)-C₁₋₆alkyl, mono-and diamino-C(=O)-C₁₋₆alkyl;
- 35 18. A compound according to any of claims 5 to 8, wherein R⁹, R¹⁰, R¹¹ are C₁₋₆alkyl or R^{6b}-O-C₁₋₆alkyl; and R¹⁰and/or R¹¹ may also be hydrogen.
 - 19. A compound according to any of claims 1 to 18, wherein G is C_{1-10} alkanediyl.

- 20. A compound according to any of claims 1 to 18, wherein G is methylene.
- 21. A compound according to any of claims 1 to 19 wherein R¹ is Ar¹, quinolinyl, benzimidazolyl, a radical of formula

$$N$$
 (CH₂)_m (c-4)

pyrazinyl, or pyridyl; or wherein Ar¹, quinolinyl, benzimidazolyl, a radical of formula (c-4) may be substituted with 1 or where possible with 2 or 3 substituents independently selected from the group consisting of halo, hydroxy, amino, cyano, carboxyl, C₁₋₆alkyl, C₁₋₆alkyloxy, C₁₋₆alkylthio, C₁₋₆alkyloxyC₁₋₆alkyl, Ar¹, Ar¹C₁₋₆alkyl, Ar¹C₁₋₆alkyloxy, hydroxyC₁₋₆alkyl, mono-or di(C₁₋₆alkyl)amino, mono-or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, polyhaloC₁₋₆alkyl, C₁₋₆alkylcarbonylamino, C₁₋₆alkyl-SO₂-NR^{5c}-, Ar¹-SO₂-NR^{5c}-, C₁₋₆alkyloxycarbonyl, -C(=O)-NR^{5c}R^{5d}, HO(-CH₂-CH₂-O)_n-, halo(-CH₂-CH₂-O)_n-, C₁₋₆alkyloxy(-CH₂-CH₂-O)_n-, Ar¹C₁₋₆alkyloxy(-CH₂-CH₂-O)_n- and mono-or di(C₁₋₆alkyl)amino(-CH₂-CH₂-O)_n-; wherein each n independently is 1, 2, 3 or 4; each m independently is 1 or 2; Ar¹, R^{5c}, R^{5d} are as claimed in claim 1.

- A compound according to any of claims 1 to 20 wherein R¹ is Ar¹, quinolinyl,
 benzimidazolyl or a radical of formula (c-4) wherein m is 2, pyrazinyl, or pyridyl, wherein each of these radicals may optionally be substituted with one, two or three radicals selected from the group consisting of halo, hydroxy, C₁₋₆alkyl, C₁₋₆alkyloxy, Ar¹C₁₋₆alkyloxy, (C₁₋₆alkyloxy)C₁₋₆alkyloxy.
- 23. A compound according to any of claims 1 to 20 wherein R¹ is phenyl optionally substituted with one, two or three radicals selected from the group consisting of halo, hydroxy, C¹-6alkyl, C¹-6alkyloxy; quinolinyl; a radical (c-4) wherein m is 2, optionally substituted with up to two radicals selected from C¹-6alkyl; benzimidazolyl optionally substituted with C¹-6alkyl; pyridyl optionally substituted with one or two radicals selected from hydroxy, halo, C¹-6alkyl, benzyloxy and C¹-6alkyloxy, pyrazinyl optionally substituted with up to three radicals selected from C¹-6alkyl; or pyridyl substituted or optionally substituted with one or two radicals selected from the group consisting of halo, hydroxy, C¹-6alkyl, C¹-6alkyloxy, Ar¹C¹-6alkyloxy, (C¹-6alkyloxy)C¹-6alkyloxy.

- 24. A compound according to any of claims 1 to 20 wherein R¹ is pyridyl optionally substituted with one or two radicals selected from hydroxy, halo, C₁₋₆alkyl, benzyloxy and C₁₋₆alkyloxy,
- 25. A compound according to any of claims 1 to 20 wherein R¹ is pyridyl optionally substituted with one or two radicals selected from hydroxy and C₁₋₆alkyl. C₁₋₆alkyloxy,

- A compound according to any of claims 1 to 25, wherein, where applicable, one of R^{2a} and R^{3a} is selected from -N($R^{4a}R^{4b}$), ($R^{4a}R^{4b}$)N-CO-, $C_{1.6}$ alkyl substituted with one or two substituents selected from hydroxy, cyano, Ar^2 , Het or -N($R^{4a}R^{4b}$) and $C_{2.6}$ alkenyl substituted with cyano or Ar^2 ; and the other one of R^{2a} and R^{3a} is hydrogen; and
- in case R^{2a} is different from hydrogen then R^{2b} is hydrogen, $C_{1\text{-}6}$ alkyl or halogen and R^{3b} is hydrogen; in case R^{3a} is different from hydrogen then R^{3b} is hydrogen, $C_{1\text{-}6}$ alkyl or halogen and R^{2b} is hydrogen.
- 27. A compound according to any of claims 1 to 25, wherein, where applicable, one of R^{2a} and R^{3a} is selected from (R^{4a}R^{4b})N-CO-; C₁₋₆alkyl optionally substituted with hydroxy, Ar², Het or -N(R^{4a}R^{4b}); and C₂₋₆alkenyl substituted with Ar¹; and the other one of R^{2a} and R^{3a} is hydrogen; or in case R^{2a} is different from hydrogen then R^{2b} is hydrogen or C₁₋₆alkyl and R^{3b} is hydrogen; in case R^{3a} is different from hydrogen then R^{3b} is hydrogen or C₁₋₆alkyl and R^{2b} is hydrogen; Ar², Het, R^{4a} and R^{4b} are as in the definitions of the compounds of formula (I) or as in any subgroup specified herein.
 - 28. A compound according to any of claims 26 or 27, wherein, where applicable, R^{2b} and R^{3b} are both hydrogen.
- 29. A compound according to claim 1, wherein the compound is 2-[6-{[2-(3-hydroxy-propyl)-5-methyl-phenylamino]-methyl}-2-(3-morpholin-4-yl-propylamino)-benzimidazol-1-ylmethyl]-6-methyl-pyridin-3-ol.
 - 30. A compound as claimed in any one of claims 1 to 29 for use as a medicine.

- 31. A pharmaceutical composition comprising a pharmaceutically acceptable carrier, and as active ingredient a therapeutically effective amount of a compound as described in any one of claims 1 to 29.
- 5 32. The use of a compound as claimed in any of claims 1 to 29 for the manufacture of a medicament for inhibiting RSV.
 - 33. A process for preparing a compound as claimed in any of claims 1 to 29, said process comprising
- 10 (a) reacting an intermediate of formula (II) with a reagent (III) as in the following reaction scheme:

$$Q = N + R^{1} - G - W$$

$$Q = N + R^{1} - G - W$$

$$Q = N + R^{2a}$$

$$R^{2b}$$

$$R^{2b}$$

$$R^{2b}$$

$$R^{2b}$$

$$R^{2b}$$

$$R^{2b}$$

$$R^{2b}$$

$$R^{2b}$$

$$R^{2b}$$

20

(b) reducing a compound (I-1-a) or (I-1-b) to obtain a compound (I-2-a) or (I-2-b) and subsequently oxidizing the alcohol group in (I-2-a) or (I-2-b) with a mild oxidant to obtain an intermediate (I-3-a) or (I-3-b) and subsequently alkylating (I-3-a) or (I-3-b) to obtain (I-4-a) or (I-4-b), which is further alkylated to obtain (I-5-a) or (I-5-b) as in the following reaction schemes wherein R¹² is C₁₋₆alkyl wherein is R^{4a} and R^{4b} are as claimed in claims 1 to 28 but are other than hydrogen.

$$Q = N$$

$$R^{5}$$

$$R^{1}$$

$$Q = N$$

$$R^{5}$$

$$R^{3}$$

$$(I-1-a)$$

$$R^{5}$$

$$Q = N$$

$$R^{3}$$

$$(I-2-a)$$

oxidation
$$\mathbb{R}^5$$
 \mathbb{R}^1 \mathbb{R}^3 \mathbb{R}^3

(c) converting the alcohol group in (I-2-a) or (I-2-b) to a leaving group and subsequently reacting the thus obtained products with an amine thus obtaining (I-6-a) or (I-6-b)

(d) converting an intermediate (I-3-a) or (I-3-b) to a compound (I-7-a) or (I-7-b) using a Wittig or Wittig-Horner procedure; selectively reducing the double bond in (I-7-a) or (I-7-b) thus obtaining compounds (I-8-a) or (I-8-b); reducing the cyano group in (I-9-a) or (I-9-b) to a methylene-amine group thus obtaining (I-10-a) or (I-10-b); mono- or dialkylating the latter thus obtaining compounds (I-11-a) or (I-11-b); or (I-12-a) or (I-12-b), wherein Alk¹ is C₄₋₆alkanediyl, R^{2a-1} is any of the substituents on alkenyl as defined in any of claims 1 – 28, and preferably R^{2a-1} is Ar² or CN:

5

10

QN CH=CH-Alk¹-R^{2a-1}

QN CH=CH-Alk¹-R^{2a-1}

(I-7-a)

$$R^5$$
 R^1
 R^3
(I-7-a)

 R^5
 R^1
 R^3
(I-7-a)

 R^5
 R^1
 R^3
(I-8-a)

$$Q = N$$

$$Q = N$$

$$R^{5}$$

$$R^{1}$$

$$CH_{2}-CH_{2}-Alk^{1}-CH_{2}NH_{2}$$

$$R^{3}$$

$$(I-9-a)$$

$$Q = N$$

$$R^{5}$$

$$R^{3}$$

$$(I-10-a)$$

$$CH_{2}-CH_{2}-Alk^{1}-CH_{2}NHR^{4a}$$

$$R^{3}$$

$$Q = N$$

$$R^{5}$$

$$R^{1}$$

$$R^{3}$$

$$CH_{2}-CH_{2}-Alk^{1}-CH_{2}NHR^{4a}$$

$$R^{3}$$

$$Q = N$$

$$R^{5}$$

$$R^{1}$$

$$Q = N$$

$$R^{5}$$

$$R^{1}$$

$$Q = N$$

$$R^{3}$$

$$(I-11-a)$$

alkylation

$$\begin{array}{c}
R^5 \\
N
\end{array}$$
 $\begin{array}{c}
CH-CH-Alk^1-CH_2-NR^{4a}R^{4b}
\end{array}$

arylation

 $\begin{array}{c}
R^3 \\
(I-12-a)
\end{array}$

and optionally converting the thus obtained compounds of formula (I) into their pharmaceutically acceptable base-addition or acid addition salt form by treatment with a suitable base or acid and conversely treating the base-addition or acid addition salt form with an acid or a base to obtain the free form of the compound of formula (I).

5