2024

КЫК

12 июня 2024 г.

Содержание

	· · · ·	
1	Геометрическая оптика и её законы. Относительный и абсолютный показатель преломления. Явление полного внутреннего отражения и его применение. Закон обратимости световых лучей.	2
2	Прохождение света через призму. Вывод угла отклонения при прохождении света через призму с малым углом преломления	3
3	Геометрическая оптика. Принцип Гюйгенса. Связь абсолютного по-казателя преломления со скоростью распространения света в среде.	3
4	Световой поток. Кривая видности. Точечный источник. Сила света и световой поток: определения и единицы измерения	4
5	Световой поток. Кривая видности. Освещенность, светимость, яркость: определения и единицы измерения.	5
6	Принцип Ферма. Оптическая длина пути. Вывод из принципа Ферма закона отражения.	5
7	Принцип Ферма. Оптическая длина пути. Вывод из принципа Ферма закона преломления.	6
8	Геометрическая оптика. Основные понятия и определения: гомоцентрический и астигматический пучок; стигматическое, действительное и мнимое изображение, идеальная оптическая система, пространство предметов и пространство изображений.	6
9	Центрированная оптическая система. Кардинальные точки и плоскости центрированной оптической системы.	7

10	10. Центрированная оптическая система. Отражение и преломление на сферической поверхности. Оптическая сила сферической поверхности.	
11	Линза. Тонкая линза, её характерные точки и лучи. Оптическая сила. Построение изображений в тонких линзах. Поперечное увеличение	9
12	Вывод формулы тонкой линзы с использованием хода кардинальных параксиальных лучей.	ē
13	Линза. Тонкая линза. Формула тонкой линзы. Аналитическое исследование формул тонкой собирающей и рассеивающих линз	10
14	Человеческий глаз как оптическая система (аккомодация, расстояния наилучшего зрения, дефекты зрения и их коррекция).	11
15	Оптические приборы (лупа, микроскоп, зрительная труба). Увеличение прибора	11

1 Геометрическая оптика и её законы. Относительный и абсолютный показатель преломления. Явление полного внутреннего отражения и его применение. Закон обратимости световых лучей.

Четыре закона оптики:

- 1. Закон прямолинейного распространения света: в однородной среде свет распространяется прямолинейно
- 2. Закон независимости световых лучей: при пересечении световые лучи не возмущают друг друга
- 3. Закон отражения света: отражённый луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной в точке падения. Угол падения равен углу отражения.
- 4. Закон преломления света: преломленный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной в точке падения. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных веществ: $\frac{\sin i_1}{\sin i_2} = n_{12} = const$

Величина n_{12} называется **относительным показателем преломления** второго вещества по отношению к первому.

Показатель преломления вещества по отношению к вакууму называется абсолютным показателем преломления данного вещества.

Предельный угол - такой угол падения, начиная с которого угол преломления равен 90°, т.е. свет не проникает во вторую среду и интенсивность отраженного луча равна интенсивности падающего. Это явление называется полным внутренним отражением.

Полное внутреннее отражение (т.е. отсутствие поглощения света) используется в волоконной оптике для передачи световых сигналов на большие расстояния, а также в оптических приборах.

Закон обратимости световых лучей: если навстречу лучу, претерпевшему ряд отражений и преломлений, пустить другой луч, то он пойдет по тому же пути, что и первый (прямой) луч, но в обратном направлении.

2 Прохождение света через призму. Вывод угла отклонения при прохождении света через призму с малым углом преломления

Coming soon.

3 Геометрическая оптика. Принцип Гюйгенса. Связь абсолютного показателя преломления со скоростью распространения света в среде.

Принцип Гюйгенса: каждая точка, до которой доходит волновое движение, служит центром вторичных волн; огибающая этих волн даёт положение фронта волны в

следующий момент. Абсолютный показатель преломления n и скорость распространения света в среде v связаны соотношением: $n=\frac{c}{v}$, получаемым из волновой теории.

4 Световой поток. Кривая видности. Точечный источник. Сила света и световой поток: определения и единицы измерения

Световой поток - поток лучистой энергии, оцениваемый по зрительному ощущению. Полный световой поток равен $\Phi = \int_0^\infty V(\lambda)\phi(\lambda)d\lambda$, где $V(\lambda)$ - функция видности, $\phi(\lambda)$ - функция распределения энергии потока по длинам волн, λ - длина волны.

Кривая видности даёт чувствительность среднего нормального человеческого глаза

к излучению разной длины волны:

Как видно, максимум на длине волны 0.555 мк (зеленая часть спектра).

Точечный источник - такой источник света, размерами которого можно пренебречь по сравнению с расстоянием от места наблюдения до источника.

Сила света - поток излучения точечного источника, приходящийся на единицу телесного угла: $I = \frac{d\Phi}{d\Omega}$. Единица измерения - свеча (св).

Единица измерения светового потока - люмен (лм). 1 лм = 1 св * 1 стер.

5 Световой поток. Кривая видности. Освещенность, светимость, яркость: определения и единицы измерения.

Освещенность - характеризует степень освещенности поверхности падающим на неё световым потоком: $E=\frac{d\Phi}{dS}$. Единица измерения освещенности - люкс (лк), 1лк = 1 лм : 1 2 .

Светимость - световой поток, испускаемый единицей поверхности наружу по всем направлениям: $R = \frac{d\Phi}{dS}$. Измеряется также в люксах.

6 Принцип Ферма. Оптическая длина пути. Вывод из принципа Ферма закона отражения.

Принцип Ферма - свет распространяется по такому пути, для прохождения которого ему требуется минимальное время ИЛИ Свет распространяется по такому пути, оптическая длина которого минимальна. **Оптическая длина пути** - величина $L = \int_1^2 n ds$,

7 Принцип Ферма. Оптическая длина пути. Вывод из принципа Ферма закона преломления.

Тут будут выводы.

8 Геометрическая оптика. Основные понятия и определения: гомоцентрический и астигматический пучок; стигматическое, действительное и мнимое изображение, идеальная оптическая система, пространство предметов и пространство изображений.

Геометрическая (лучевая) оптика - раздел оптики, основывающийся на представлениях о световых лучах.

 Π учок - совокупность лучей.

Гомоцентрический пучок - продолжения лучей пересекаются в одной точке. Ему со-

ответствует сферическая волновая поверхность.

Астигматический пучок - пучок, которому соответствует волновая поверхность двоякой кривизны. Лучи пересекаются в совокупности точек, расположенных на двух

взаимно перпендикулярных отрезках.

Если оптическая система не нарушает гомоцентричности пучков, то лучи, вышедшие из одной точки P, пересекутся также в одной точке P' - **оптическом изображении** первой точки. Если любая точка предмета изображается в виде точки, то изображение предмета называется **точечным** (**стигматическим**).

Изображение **действительное**, если световые лучи действительно пересекаются в P', и **мнимое**, если в P' пересекаются продолжения лучей, проведенные в направлении, обратном распространению света.

Оптическая система, дающая стигматическое изображение, геометрически подобное изображаемому предмету, называется **идеальной**. С помощью такой системы пространственная непрерывность точек P изображается в виде пространственной непрерывности точек P'. Первая называется **пространством предметов**, вторая - **пространством изображений**.

9 Центрированная оптическая система. Кардинальные точки и плоскости центрированной оптической системы.

Оптическая система, образованная сферическими (в частности плоскими) поверхностями, называется **центрированной**, если центры всех поверхностей лежат на одной

прямой.

Кардинальные плоскости - фокальные, главные и узловые плоскости. **Кардинальные точки** - фокусы, главные точки и узлы.

10 10. Центрированная оптическая система. Отражение и преломление на сферической поверхности. Оптическая сила сферической поверхности.

Похуй.

11 Линза. Тонкая линза, её характерные точки и лучи. Оптическая сила. Построение изображений в тонких линзах. Поперечное увеличение

Линза - система двух сферических преломляющих поверхностей.

Линза с пренебрежимо малым d называется тонкой. В случае тонкой линзы расстоянием O_1O_2 можно пренебречь и считать их находящимися в одной точке, называемой **оптическим центром** тонкой линзы. Любой луч, идущий через него, не изменяет своего направления.

Оптическая сила тонкой линзы равна алгебраической сумме оптических сил преломляющих поверхностей: $\Phi=\Phi_1+\Phi_2$

12 Вывод формулы тонкой линзы с использованием хода кардинальных параксиальных лучей.

Формула тонкой линзы: $\frac{1}{s'} - \frac{1}{s} = \frac{n - n_0}{n_0} \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$

13 Линза. Тонкая линза. Формула тонкой линзы. Аналитическое исследование формул тонкой собирающей и рассеивающих линз

Характеристики изображений в собирающих линзах

в зависимости от расстояния d от предмета до линзы

Предмет	Изображение					
Расстояние от линзы d	Расстояние от линзы f	Тип	Ориентация	Относ		
d > 2F	F < f < 2F	Действительное	Перевернутое Г < 0	Умень Г <		
d = 2F	f = 2F	Дейс <mark>т</mark> вительное	Перевернутое Г < 0	Того х разме Г =		
F < d < 2F	f>2F	Действительное	Перевернутое Г < 0	Увели Г >		
d = F	f = ± ∞					
d < F	f<0; f <	Мнимое	Прямое Г < 0	Увели Г >		

14 Человеческий глаз как оптическая система (аккомодация, расстояния наилучшего зрения, дефекты зрения и их коррекция).

Аккомодация - способность глаза менять фокусное расстояние глаза посредством мышечного усилия, приспосабливаясь к расстоянию до рассматриваемого предмета. Ограничена снизу 20 см.

Расстояние наилучшего зрения - расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета.

Близорукость - дефект зрения, при отсутствии аккомодации изображение предмета лежит впереди сетчатки. Корректируется рассеивающей линзой.

Дальнозоркость - дефект зрения, при отсутствии аккомодации изображение предмета лежит за сетчаткой. Корректируется собирающей линзой.

Астигматизм - дефект зрения, искажённая кривизна роговицы и/или хрусталика, что провоцирует нечеткость изображения. Корректируется цилиндрическими линзами.

15 Оптические приборы (лупа, микроскоп, зрительная труба). Увеличение прибора

Bullshit.