

DTM0660 product brochures

4000/6000 indexing
T-RMS Digital Multimeter ASIC

Eye record

	Pages
1 Introduction	
	34 inside
the box 45 FIG	he package
sheet 47 in FIG pin description	
58 69 key Specifications	
defined	
810 other functions described	PROM
option setting The method of correcting process	912
13 13 application circuit and description	
The liquid crystal display 1714 2915	
sheet package dimensions	
modify record	
31 30 16	

1 Brief introduction

DTM0660 is Taiwan's latest revolutionary digital multimeter standard of chip development, built more than 14 noise free ΣΔ ADC, so that each can easily reach 6600 Counts range of performance. While providing high-speed output mode, the output rate of up to 12.5kHz. With internal digital processor (DSP) can be done digital 1kHz True RMS measurements, without any external components.

DTM0660 built multi-functional automatic range of very elastic network, in addition to each range can be done fast automatic transmission, but also simplify smart meter outside line, you can easily plan the needs of their specific measuring function. Built-in calibration program with external EEPROM, can easily complete a variety of high-precision digital correction and support multiple user settings.

2 main feature

- 2.1 Maximum Display: 4000/6000 (frequency, capacitance 9999).
- 2.2 Conversion rate: 3 times / sec.
- 2.3 Range: automatic / manual range.
- 2.4 Polarity Indication: Automatic.
- 2.5 Operating voltage: 2.4V ~ 3.6V.
- 2.6 Operating Current: (less than 2µA during sleep) ≤1mA.

AC rectifier 2.7: True RMS equipped with a digital processor, no external rectifying circuit, a bandwidth of 1kHz, error is less than 0.5%, high-speed response.

- 2.8 Flexible application multifunctional switching network, can quickly automatic range shifting.
- 2.9 Measurement function definition with the EEPROM and calibration.
- 2.10 built 100ppm / °C 1.2V low temperature drift voltage reference.
- 2.11 function keys: SELECT, RANGE, REL, HZ / DUTY, HOLD / (BACKLIGHT), MAX / MIN, BACKLIGHT.
- 2.12 LCD is 4 × 15, with a display and a backlight unit symbol.
- 2.13 may be equipped with a temperature detector thermocouple cold junction compensation of the temperature measurement, without the compensation circuit.
- 2.14 settable voltage and current value of OL and Alarm.
- 2.15 MAX / MIN data logging.

Automatic shutdown 2.16: 15 or 30 minutes (adjustable).

- 2.17 Low voltage detection: internal or external input can be set, two inner low-voltage detection 3V supply, 4.5 ~ 9V supply low voltage detection period.
- 2.18 tone frequency: about 1.95kHz.
- 2.19 LQFP64 for encapsulating sheet and die.

3 Measurement category

- $3.1\ DC\ voltage:\ 60.00mV\ /\ 600.0mV,\ (600.0mV)\ /6.000V/60.00V/600.0V/1010V$
- 3.2 AC voltage: 60.00mV / 600.0mV, (600.0mV) /6.000V/60.00V/600.0V/750V
- 3.3 DC current: 600.0µA / 6000µA, 60.00mA / 600.0mA, 6.000A / 60.00A
- $3.4~AC~Current:~600.0 \mu A~/~6000 \mu A,~60.00 m A~/~600.0 m A,~6.000 A~/~60.00 A$
- 3.5 Resistance: 600.0Ω / $6.000k\Omega$ / $60.00k\Omega$ / $600.0k\Omega$ / $6.000M\Omega$ / $60.00M\Omega$
- $3.6 \ Capacitance: 9.999nF \ / \ 999.9nF \ / \ 999.9nF \ / \ 999.9pF \$

99.99mF

3.7 Frequency: 9.999Hz / 99.99Hz / 999.9Hz / 9.999kHz / 99.99 kHz / 999.9kHz / 9.999MHz

The duty ratio of 3.8: 1% ~ 99%

- 3.9 Diode: 0.000V ~ 3.000V, 3.0V above the display OL
- 3.10 Continuity Check: less than <utterance when 50Ω ,> 600Ω display OL
- 3.11 clamp meter current: the user can set the range, decimal, alone or in two auto range
- 3.12 Temperature Measurement: °C / °F
- 3.13 Transistor: 0 ~ 2000 (hFE)
- 3.14 Non-contact AC voltage detector (NCV)

4 Applications

- 4.1 autoranging / manual range handheld digital multimeter.
- 4.2 autoranging / manual range Card Digital Meter.
- 4.3 auto-range digital multimeter pen.
- 4.4 autoranging clamp meter.
- 4.5 Digital Panel Meters.

5 internal block diagram

1 DTM0660 block diagram of FIG.

6 sheet package pin-out position of FIG.

figure 2 DTM0660 LQFP64 pin map

7 Pin Description

Pin number sy	mbol	port	Trace State
1 ~ 12	SEG3 ~ SEG14		3 ~ Strokes 14 .
·	PT2.3	1/01	Data input / output port.
13	TMCK1, LVDIN	17 01	RC Clock input interface, LVD External input interface.
	PT2.2	I / OI	Data input / output port. A pulse width modulated output, a
14	PWM, PFD	17 01	frequency-modulated output.
15	PT2.1. XTI	L/O I Data is	nput / output port, an external oscillator input.
	,		
16	PT2.0, XTO	<u>I / O, O</u> Data i	nput / output port, an external oscillator output.
17	PT1.7, PSDO, BZ	I / O, O Data	input / output port, buzzer output, OTP Read / write interface (PSDO) .
18	PT1.6, SCK	I / O Data ir	put / output port, SPI Communication output interface (SCK) .
19	PT1.5, SDO	<u>I / O, O</u> Data i	nput / output port, SPI Communication output interface (SDO) .
20	PT1.4, TX	I / O, O Data i	nput / output port, EUART Communication Interface(TX) .
twenty one	PT1.3, RC, TST		Data input, EUART Communication Interface(RC), Test mode enable.
twenty two	PT1.2, SDI	I / O, I Data ii	nput / output port, SPI Communication Interface(SDI) .
twenty thre	PSDI, INTI	I / OI	Data input / output port, SPI Communication Interface(SCE) , OTP Read / write interface (PSDI), Interrupt Source INTI .
twenty four	PT1.0	I / OI	Data input / output port,
twenty loui	PSCK, INTO		OTP Read / write interface (PSCK), Interrupt Source INTO .
25	PT3.6, CNT	I / O, I Data ii	nput / output port, a frequency count input interface.
26	PT3.7, CMPO	<u>I / O, O</u> Data i	nput / output, the comparator output interfaces.
27	PT2.7 CMP3,	I / OI	Data input / output port, a comparator input interface,
	INT27		interrupt sources E27IF.
28	PT2.6 CMP2,	I / OI	Data input / output port, a comparator input interface,
	INT26	.,	interrupt sources E26IF.
29	PT2.5 CMP1,	1/01	Data input / output port, a comparator input interface,
20	INT25	17 01	interrupt sources E25IF.
30	PT2.4 CMP0,	I / OI	Data input / output port, a comparator input interface,
30	INT24	17 01	
21		L/O I Data is	interrupt sources E24IF .
31	PT3.5, PB5	I / O, I Data II	nput / output port, a digital / analog inputs.
32	PB4		A digital / analog inputs.
33	PB3	<u> </u>	A digital / analog inputs.
34	PB1 / PB2	<u> </u>	A digital / analog inputs.
35	PB0	ı	A digital / analog inputs.
36	FTP	I / O Prefilte	er capacitor connection port.
37	FTN	I / O Prefilte	er capacitor connection port.
38	RLU	I / O An ana	log / digital converter switch network interface.
39	RLD	I / O An ana	log / digital converter switch network interface.
40	PA6	I / O An ana	log / digital converter switch network interface.
41	PA5	I / O An ana	log / digital converter switch network interface.
42	PA4		log / digital converter switch network interface.
43	PA3		log / digital converter switch network interface.
44	PA2		log / digital converter switch network interface.
45	PA1		log / digital converter switch network interface.
46	PA0		log / digital converter switch network interface.
47	REFO	1/ O All alla	1.2V The reference voltage output.
			· ·
48	AGND		on reference point of the measurement (COM) .
49	ACM		nce voltage interface.
50	VDDA		ower supply voltage doubler.
51	VGG		upply voltage doubler.
52	CA		e doubling capacitor connection point.
53	СВ	-	e doubling capacitor connection point.
54	VSS	Р	IC Negative supply.
55	RST, VPP	I, P IC Rese	t mouth, EEPROM Source voltage when the read / write.
56	VDD	Р	IC Positive supply.
57	VLCD	1/0	LCD power source.
58 ~ 61 CC	M0 ~ COM3	O Public b	ackplanes 0 ~ Public backplanes 3 .
62 ~ 64	SEG0 ~ SEG2	O Stroke:	0 ~ Strokes 2.
· ·	or: O Outout: L/O input		

Note: I- enter; O- Output; I / O- input Output.

8 Technical Specifications (VDD = 3V, $Ta = 25 \degree C$)

8.1 Maximum rating

parameter	symbol	quota
voltage	VDD (VDDA) -VSS (VSSA)	-0.2V ~ 4V
Voltage may be applied to any range of foot		-0.3V ~ VDD + 0.3V
Each leg receiving current protection diode		± 2mA
Storage temperature	Tstg	50 °C ~ + 150 °C
Foot soldering temperature	Temp	300 °C
Welding time	Time	10 second
Total power consumption		500mW

8.2 Recommended operating conditions

symbol		parameter	The test	strip condition	Least Typic	al Maximum U	<u>Init</u>	
VDD	vol	togo	All peripheral co	mponents and CPU	2.2		3.6 V	
VDD	VOI	tage	Analog Pe	eripheral Component	2.4		3.6	
<u>VSS</u>	vol	tage			0		0	
		Clock crystal		XTSP [0] = 0, <u>XTHSP [0] = 0</u>	32	.768kHz		
XT Extern	nal oscillation frequency	Ceramic oscillator	VDD = 2.2V ENXT [0] = 1	XTSP [0] = 1, <u>XTHSP [0] = 0</u>	400k		8M	Hz
		Quartz crystal		XTSP [0] = 1, <u>XTHSP [0] = 0</u>	1M		8M	

8.3 internal RC oscillation

symbol	parameter	The test strip condition	Minimum T	ypical Maxin	ıum Units	
HAO High	speed oscillation frequency	ENHAO [0] = 1		4		MHz_
LPO Low	power oscillator frequency VDD can	LPO		32		<u>kHz</u>

8.4 V DD Total current

1						
accords at		The test strip condition	The minim	um typical m	aximum sin	gle
symbol	parameter					Place
IAM 1	Active mode 1 OSC	CY = 8MHz, OSC_HAO = off,		1.34 2		mA
		CPU_CK = 8MHz				
IAM 2	Active mode 2 OSC	CY = off, OSC_HAO = 4MHz,		0.36 0.	55 mA	
		CPU_CK = 4MHz				
IAM 3	Active mode 3 OSC	CY = off, OSC_HAO = 4MHz,		0.2	0.3 m/	4
		CPU_CK = 2MHz				
ILP1	Low Power 1 OSC_	CY = 32768Hz, OSC_HAO = off,		7	12	μΑ
		CPU_CK = 16384Hz				
ILP2	Low Power 2 OSC_	CY = off, OSC_HAO = off,		1.65 3		μΑ
		CPU_CK = LPO, Idle state				
ILP3	Low Power 3 OSC_	CY = off, OSC_HAO = off,		0.65	1.3 µA	
		CPU_CK = off, Sleep state				

8.5 end mouth $1 \sim \text{End}$ mouth 3

symbol parameter	The test strip condition	Least typica	maximum <u>uni</u>		
	Input voltage, Schmitt trigger, leak Curr	ent time			
VIH Input High				2.2 V	
VIL Input low		0.9			
VHYS Enter the delay (VI	H-VIL)		0.8		
ILKG Leakage Current				0.1 μΑ	
RPU Port pullup			180		kΩ
	Output voltage and cur	rent			
VOH Output high	IOH = 10mA	<u>Vdd-0.3</u>			
VOL Output low	IOL = 10mA			Vss + 0.3	V

8.6 Reset (Down, external reset, Low voltage detection)

0.0 1/6361 11	Down, external reset , Low voltage (detection)				
symbol	parameter	Minimum 7	ypical Maximur	<u>n</u> unit		
	Internal reset pulse width in i	need, td-LVR	2			μs
BOR	VDD Starting voltage required to un	dergo internal reset (L ⇒ H),	1.6	1.85	2.1 V	
BOR	VLVR					
	Hysteresis voltage, VHYS-VLVR,			70		mV
	Required as a reset pulse width / VI	PP Foot required to undergo internal reset,	d-RST2			μs
DOT						
RST	Receiving an input voltage for an in	ternal reset,	0.9			V
	Hysteresis voltage, VHYS-RST			8.0		V
	Working current, ILVD			10	15	μΑ
	The reference voltage			1.2		V
LVD	The reference voltage coefficient		100		ppm / °C	
	Inside the first point LVD Detection			2.4		.,,
	Inside the second point LVD Detect	ion		2.2		V

Note: BOR = Brownout Reset

LVR = Low Voltage Reset of BOR LVD =

Low Voltage Detect RST = Reset (External

Reset Pin)

8.7 For digital multimeters table(DMM) The electrical parameters

parameter	Test Conditions	Minimum	ypical Maxir	num unit	
Zero input reading	VIN = 0V, in 500mV Input calibration 1		0	+ 1	Word Count
Zero input temperature drift	VIN = 0V, in 500mV Input calibration.	-0.00 3	0	+ 0.003 Word	Count / °C
	TA = 0 °C ~ 70 °C				
Linear	in 500mV Input calibration.	- 1	0	+ 1	Word Count
Input leakage current	VIN = 0V .		1	10	pА
Comparison of Bandwidth	VIN = 600mVp-p (Sine wave)		62		MHz
(CMPH versus CMPL)	VIN = 400mVp-p (Sine wave)				MHz
Compare current	CMPH versus CMPL		40		μΑ
	PS0 ~ PS1 DS0 ~ DS1 DS2 ~ DS6,		204		
Notice of a citate as a fator of	PS2 ~ PS6 SS0 ~ SS6, FS0 ~ FS6		080		Ω
Network switch resistance					Ω
			<u>400</u>		
ADI Working current	No reference input buffer		90		μΑ
Current low-pass filter			50		μΑ
True RMS current converter			210		μΑ
Sleep Current			1		μA

9 Key Definitions

9.1 K1 : SELECT

SELECT The function selection button to trigger action, with the key as the measurement function selection key.

9.2 K2: RANGE

RANGE Key to Auto / When the manual range switching button to trigger action, power or turn the dial, auto preset range. Clicking switches to manual range. In the manual range mode, each press this button will move upward to the most high after Press to return to the lowest, followed by cycle. Frequency and capacitance measurement does not have manual range. Such as by RANGE Button for more than 2 Second switch or dial, manual range state is exited.

9.3 K3: REL/RS232

REL Key is the relative value measurement button to trigger actions, in addition to Hz / Duty, Diode, CONT External functions are measured as a relative value. When this button is pressed to exit the autorange mode, enter the manual range mode, displays the current value as a reference value, and then displays the difference between the measured value and the reference value, Press again to exit the relative value measurement. Pressing this key is greater than 2 Seconds, enter RS232 Data transmission mode. in RS232 Mode, auto-off function will be canceled. in RS232 State, press this key is greater than 2 S exit RS232 mode. (Note: The user can EEPROM The keys have not within the set RS232 Switching function)

9.4 K4: HZ / DUTY

HZ / DUTY Bond is a frequency / duty cycle selector button to trigger action, measured at a frequency range, press the keys to select the frequency or duty cycle measurement mode; when the AC voltage or AC current measurements, press the key can be a voltage / frequency / duty cycle or current / frequency / duty cycle measurement mode selection.

9.5 K5: HOLD / BACKLIGHT

HOLD Key is the reading hold key to trigger action function is to hold the display reading. Click to display the value when keys are locked, it has remained the same, pressing a key HOLD Function is canceled. Press to greater than 2 Seconds, turn on the backlight display, then press this key 2 Seconds to turn off the backlight. Backlit display about 30 Seconds (set). (Note: The user can EEPROM The set HOLD There is no key backlight switch function)

9.6 K6: MAX / MIN

MAX / MIN Key data record button to trigger action. Press enter after the manual range mode automatically, the automatic shutdown function is canceled and MAX Value, then press this button to display MIN Value, then the display MAX-MIN Value, this cycle. press MAX / MIN Key for more than 2 Seconds, the exit data logging mode.

9.7 K7: BACKLIGHT

BACKLIGHT Independent key backlight function key switch, with trigger operation. Open press backlit display, in a case where the backlight is opened Press again to turn off the backlight. Backlit display of greater than 30 Seconds (set) automatically turn off the backlight.

10 Other Function

10.1 Full power on display 2 After the second, normal measurement state. Such as EEPROM Error display ErrE .

10.2 Automatic shut-down

In the measurement process, 15 Within minutes (adjustable) position switch function keys and no action, the meter will enter the sleep state. In the sleep state, press Select Function keys, the instrument will return to work mode. Press and hold the power off state SELECT Key and then turn on the power, auto power off function is canceled. Shutdown reopened the reply automatic shutdown.

10.3 buzzer

Press any key switch or turn function, if the function key is valid, the buzzer will "Beep" I heard (about 0.25 second).

In the alarm value measured voltage or current is greater than a set of, for example, an AC voltage> 600V DC voltage> 1000V, AC / DC Current> 10A When the buzzer will continue to sound as over-range warning. Automatic shutdown before about 1 Minute buzzer will emit a continuous 5 Sound warning buzzer will shut down before 1 Long acoustic warning. When the automatic shutdown function is canceled, each 15 Min (i.e., the set time of automatic shutdown) continuously emits 5 Sound alerts.

10.4 Low voltage detector

3V Detecting when the internal power supply VDD When less than 2.4V, The battery symbol is displayed, but can still work; if less than 2.2V After the display, the whole power of the battery only significant symbols, can not work.

4.5 ~ 9V The power supply, the design condition is when the supply voltage drops below the voltage of the original 75% When the PT2.3 / LVD for 1.2V. This is done two resistors connected in series between the positive and negative power supply voltage, which is connected to the connection point PT2.3 / LVD, So that the resistance of the resistor connecting point voltage 1.2V. enter PT2.3 Mouth with IC internal 1.2V A voltage comparator falls below 1.2V, Battery symbol is displayed, but can still work.

10.5 PT1.2 Work output at a high level, output low when dormant, the power switch can be used as other external devices.

11 EEPROM option setting

11 . 1 EEPROM Initialization data

Address	s 0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
00	FF	FF	FF F	F	FF	FF F	=	FF	FF 5	2	00 F	4	00	00 B	E	03
10	70	17	3818		44	02 6	.	4B	64 30	C	3C 3	O	0A	FF 4	0	FF
20	99	99	0080		64	0096		00	0080		0080		00	8000		80
30	4E	02	09 41	=	02	0977		FD	0A 9	4	19 0	4	00	00 0	4	00
40	00	01	0001		00	0798		00	6400		6400		64	0000		00
50	00	80	0080		00	8000		80	0080		0080		00	8000		80
60	00	80	0083		01	00 6)	2A	0000		0000		00	0000		00
70	00	80	0080		00	80 E)	7C	1801		0000		00	0000		00
80	00	00	0000		00	0000		00	0000		0000		00	0000		00
90	00	00	0000		00	0000		00	0000		0000		00	0000		00
A0	00	00	0000		00	0000		00	0000		0000		00	0000	1	00
В0	00	00	0000		00	0000		00	0000		0000		00	0000		00
C0	0D	00	0210		0D	0003		20	2000		0320		20	0003		10
D0	41	00	0308		41	0003		05	4100		0305		0D	0002		20
E0	00	80	0080		00	8000		80	0080		0080		00	8000		80
F0	00	80	FF F	F	FF	FF F		FF	5A C	7	CC 0	F	0F	8200		00

11.2 EEPROM Set data Description (Unspecified reservations and do not modify the data to fill in a default value)

Description	on Address default set	ttings F9H
	Bit7: 1	Retention
	Bit6: 1	Retention
	Bit54: 00	Voltage VDDA 00 = 3.6V, 01 = 3.2V, 10 = 2.8V, 11 = 2.4V
	Bit32: 01	VLCD voltage 00 = 3.3V 01 = 3.0V 10 = 2.8V 11 = 2.5V
	Bit1: 1	PT1.2 boot state is set: = 1 PT1.2 = 1; = 0 PT1.2 = 0 (Note: PT1.2 open NCV
		synchronization function changes, set to 1 only)
	Bit0: 1	. = 1 NCV function PT1.2 be synchronized with a buzzer sound changes to 1, when the ring is not 0; 0 = None
FAH	Bit7: 1	= 1 MV profile for 60.00mv / 600.0mv; = 0 MV profile for 600.0mv
	Bit6: 1	Retention
	Bit43: 01	Time = 00 BL ON PT2.2 = 0; when OFF PT2.2 = 1 = time of
		01 BL ON PT2.2 = 1; when OFF PT2.2 = 0
		Time = 10 BL ON PT2.2 = pwm, PT2.3 = 0; when OFF PT2.2 = 1, PT2.3 = when 1 = 11 BL ON PT2.2 = pwm, PT2.3 = 1;
		when OFF PT2 .2 = 1, PT2.3 = 0 (Note: backlight high / low output mode, PT2.3 as LVD detection port; backlight mode
		PWM output, PT2.3 power source used as a backlight switch.)
	Bit2: 1	= 1 HOLD key press can be on / off the backlight, No = 0
	Bit1: 0	= 1 REL bond may press the on / off RS232, = 0 None
	Bit0: 0	0 = Normal 1 = Table Clamp
FBH	0FH	Auto off time setting, the default 15 minutes (units: minutes, from 1 to 255, does not automatically shut 0)
FCH	0FH	Auto-off time of the backlight setting, default 15 seconds (unit: sec, 1 to 255, 0 does not automatically close)
FDH	82H	bit7 = 1 Frequency shift effective measuring frequency channel switching. Pt3.6 & RLD
		= 0 A fixed measuring frequency channel Pt3.6 Bit6 = 1 UART Transmission format bit3 ~ 0->
		com0 ~ 3 = 0 bit3 ~ 0-> com3 ~ 0 Bit5 = 1 UART send 14bytes (seg0 seg13) = 0 15bytes (seg0 seg14)
		Bit4 = 1 PT1.2 Only for ncv led ~
		= 0 PT1.2 Make ncv led and power led
		Bit3 ~ bit0 = 2 Low voltage power off delay seconds 2s, most 15s
10H, 11H	1770H	Index number of the default settings 6000D (Note: 10H: 70H is low byte, 11H: 17H is high byte, hereinafter the same)
12H, 13H	1838H	The upper limit bit shift 6200d (4000 indexing set 4200d)

Dream Tech International Ltd.

14H, 15H 02	44H	The lower limit of the shift position 580d (4000 indexing to 380d)
16H	6EH	OL 1100V DC voltage value (unit: * 10V)
17h	4BH	OL AC voltage value 750V (Unit: * 10V)
18H	64H	Alarm DC voltage 1000V (Unit: * 10V)
19H	3CH	600V AC warning voltage value (unit: * 10V)
1AH	3CH	uA current alarm file value 6000uA (Unit: * 100uA)
1BH	3CH	of mA current 600mA alarm value (Unit: * 10mA)
1CH	0AH	A value of the current alarm file 10A (Unit: * 1A)
1EH	40H	NCV display symbols, the default section G (bit0 ~ 6 sequentially correspond ABCDEFG '8' word segment 7)
20H, 21H 99	99H	Amplifier parameters
22H, 23H 80	рон	500mV correction rate
24H, 25H 00	64H	NCV base number (10.0mv)
26H, 27H 00	96H	NCV resolution (15.0mv)
28H, 29H 80	рон	Voltage compensation ratio AC6V speed (frequency)
2AH, 2BH 80		500uA correction rate
2CH, 2DH 80	00Н	50mA correction rate
2EH, 2FH 80		5A correction rate
60H, 61H 80		Resistor 50K correction rate
62H, 63H 83	DOH	50M resistance profile correction ratio
70H, 71H 80	00H	Correction rate 500nF capacitor
74H, 75H 80	ро н	50uF capacitance correction rate
76H, 77H 7C	E0H	Gear ratio correcting capacitance 50mF
0BH, 0CH 00		Ambient temperature (25.0 °C)
DDH ~ 0FH 03	BE00H	The default value of the ambient temperature ADC
50H, 51H 80	рон	6A speed correction rate
52H, 53H 80	ро н	Gear ratio correcting 60A
54H, 55H 80	рон	Gear ratio correcting 600A
56H, 57H 80	рон	6000A shift correction rate
40H, 41H 01	рон	The number of gear noise deduction AC60mV (direct input signal and the internal amplification)
42H, 43H 01	рон	The deduction AC600mV gear noise (internal signal is not directly input amplification)
44H, 45H 07	рон	AC600mV gear noise deduction number (10M / 1.111M resistor divider and amplified)
46H, 47H 00		AC6V gear noise deduction number (10M / 1.111M resistor divider)
48H, 49H 00	64H	AC60V gear noise deduction number (10M / 101k resistor divider)
4AH, 4BH 00	64H	AC600V gear noise deduction number (10M / 10k resistor divider)
4CH, 4DH 00	64H	File number AC1000V noise deduction (10M / 1k resistor divider)
78H, 79H 01	18H	The deduction in base capacitance 9nF profile (load capacitance of the display is not modify this number is 0, the unit is 0.0
30H ~ BFH		Measurement function setting region (Blue section), According to need to refer to 11.3 / 11.4 description Modify
E 8H, E9H 80	00Н	DCV correction rate in DC600mV
EAH, EBH 80		DCV correction rate in DC6V
ECH, EDH 80		DCV correction rate in DC60V
EEH, EFH 80		DCV correction rate in DC600V
F0H, F1H 80	İ	DCV in correction rate DC1000V

Dream Tech International Ltd.

11.3 EEPROM measurement function setting (80H ~ BFH)

11.3	EEPROM measuremen	t function setting (80H ~ BFH)						
Measurements	Jumper	Function Description						
Code		· ·						
00H	-	No function						
01H		': 60.00mV / 600.0mV 02H						
	<u>J1A, J1B</u> ACn	iV: 60.00mV / 600.0mV 03H						
	X	DCV (without mV): 6.000V / 60.00V / 600.0V / 1000V						
04H	X	CV (without mV): 6.000V / 60.00V / 600.0V / 750V						
05H	X	DCVmV (with mV): 600.0mV / 6.000V / 60.00V / 600.0V / 1000V						
06H	X	ACVmV (with mV): 600.0mV / 6.000V / 60.00V / 600.0V / 750V						
07H	J1A, J1B 600	.0Ω / 6.000kΩ / 6.000kΩ / 60.00kΩ / 600.0kΩ / 6.000MΩ /						
		60.00ΜΩ						
08H	-	-						
09H	J1A, J1B Cor	nt OAH						
	J1A, J1B Dio	de OBH						
	J1A, J1B Car	o: 9.999nF / 99.99nF / 999.9nF / 9.999µF / 99.99µF /						
		9.999mF / 99.99mF						
0CH	J4 (or J5) DCu	J4 (or J5) DCuA 600.0μA / 6000μA (or clamp DCA 600.0A / 6000A) 0DH						
	J4 (or J5) ACu	A 600.0μA / 6000μA (or clamp ACA 600.0A / 6000A) 0EH						
	J3 (or J5) DCm	A 60.00mA / 600.0mA (or clamp DCA 60.00A / 600.0A) 0FH						
	J3 (or J5) ACm	A 60.00mA / 600.0mA (or clamp ACA 60.00A / 600.0A) 10H						
	X (or J5) DCA	6.000A / 60.00A (or clamp DCA 6.000A / 60.00A) 11H						
	X (or J5) ACA	6.000A / 60.00A (or clamp ACA 6.000A / 60.00A) 12H						
	J1A and							
	<u>J2, j2 '</u> Hz / D	uty						
13H	J1A	Temp (°C)						
14H	J6	hFE						
15H	J1A	Temp (°F)						
16H	J1A	DCA 6.000A						
17H	J1A	ACA 6.000A						
18H	J1A	DCA 60.00A						
19H	J1A	ACA 60.00A						
1AH	J1A	DCA 600.0A						
1BH	J1A	ACA 600.0A						
1CH	J1A	DCA 6000A						
1DH	J1A	ACA 6000A						
1EH	X	NCV						

Jumper Description:

Jx indicates that this jumper to be

short-circuited X represents do not pick any jumpers

11.4 Measurement Function Select

11.4.1 selecting dial encoding MEA4 \sim MEA1 measurements, a total of 16 selected 0000,0001,0010,0011, ... 1110, 1111. Float "1", then VSS is "0."

11.4.2 Each dial encoding the EEPROM 4 functions to set up, with the SELECT key switch function. (Note: the same jumper before dial into the same coding)

$11.4.3\ The\ following\ measurement\ functions\ at\ a\ store\ address\ EEPROM,\ Required\ fields\ measuring\ function\ code\ (PT2.4\sim PT2.7\ hanging\ properties)$

Empty is "1", then VSS "0 ";.) PT2.7

	PT2.6	PT2.5	PT2.4	Function 1	Function 2	Function 3	Function 4
(MEA4)	(MEA3)	(MEA2)	(MEA1)				
0	0	0	0	80H	90H	A0H	В0Н
0	0	0	1	81H	91H	A1H	B1H
0	0	1	0	82H	92H	A2H	B2H
1	1	1	1	8FH	9FH	AFH	BFH

Example 1: dial encoding MEA4 ~ 1 = 1111, function to DCV / ACV; fill in the EEPROM address 8FH

Into 03H, 9FH fill 04H, AFH fill 00H, BFH filled 00H Example 2: encoding a dial MEA4 \sim 1 = 1101, functionality

is provided to Ohm / Diode / Cont / Cap, the EEPROM

Address 8DH fill 07H, 9DH fill 0AH, ADH fill 0BH, BDH fill 09H.

Common measurements combined 1 (PT2.4 ~ PT2.7 float "1", then VSS is "0"):

PT2.7	PT2.6 PT	2.5	PT2.4	Function 1	Function 2	Function 3 Fu	nction 4
1	1	1	1	DCV	ACV		
1	1	1	0	Ohm	Diode	Cont	Сар
1	1	0	1	DCmV	AC mV		
1	0	1	1	DCμA	AC µA		
1	1	0	0	DCmA	AC mA		
1	0	0	1	DCA	ACA		
1	0	1	0	Temp °C	Temp °F		
1	0	0	0	Hz / Duty			
0	1	1	1	AC6000A	DC6000A		
0	1	1	0	AC600.0A	DC600.0A		
0	1	0	1	AC60.00A	DC60.00A		
0	0	1	1	AC6.000A	DC6.000A		
0	1	0	0	AC 6A / 60A	DC 6A / 60A		
0	0	1	0	AC 60A / 600A	DC 60A / 600A		
0	0	0	1	AC 600A / 6000A DC 600A / 6000A			
0	0	0	0	hFE]		

Common measurements composition 2 (PT2.4 ~ PT2.7 float "1", then VSS is "0"):

PT2.7 PT2.6 PT2.5 PT2.4			Function 1	Function Fur	nction Function 2 3 4	
1	1	1	1	DCV		
1	1	1	0	ACV		
1	1	0	1	Ohm		
1	0	1	1	Diode	Cont	
1	1	0	0	Diode	Cont	Сар
1	0	0	1	Сар		
1	0	1	0	DC mV	AC mV	
1	0	0	0	DCμA	AC µA	
0	1	1	1	DC mA	AC mA	
0	1	1	0	DC A	AC A	
0	1	0	1	Temp °C	Temp °F	
0	0	1	1	Hz / Duty		
0	1	0	0	AC 6000A	DC 6000A	
0	0	1	0	AC 600.0A	DC 600.0A	
0	0	0	1	AC 60.00A	DC 60.00A	
0	0	0	0	AC 6.000A	DC 6.000A	

Note: the above table is only for illustrative current range, the current need to use ordinary multimeter separated from the clamp current, i.e., the only available current.

The method of correcting process 12

The following describes a flow of the calibration circuit of FIG subject to this specification. (See the circuit diagram). Button assignments during calibration:

SELECT: Skip / function selection

HOLD: Less(-)

Remaining keys: plus (+)

12.1 Calibration mode is entered

J8 short boot into calibration mode. (Resistance profile measurement function should be placed, and remove the input pen)

12.1.1 After checking automatically displayed CAL IC internal circuit, LCD display ADC code value, if there is an error prompting Err0 ~ 4, this time off the measurement view dividing resistor is connected for a short circuit, open circuit, the size of the resistance is correct, checked and after the error, and then reboot, start the calibration process, the self-test parameters are automatically saved to E2 is completed, the buzzer BEEP beep prompts to complete. If too has been detected, press the SELECT button to skip the examination.

12.1.2 Then automatically check the internal amplifier-related parameters, the parameters are automatically saved to the E2 self-test is completed, the buzzer sounds for instructions to complete BEEP. If too has been detected, press the SELECT button to skip the examination.

12.2 correction voltage (DC 500.0mV)

Measurement function to be placed in the calibration table DC millivolt range (or resistivity profile (J1A, J1B short circuit)).

The positive voltage output terminal of the correction instrument lead into V / CAP Port, a negative terminal lead into the COM Port, an output correction device DC500.0mV Press +/- to adjust the display 500.0mV It can be. If you have already adjusted, press the SELECT button to skip this adjustment.

Correcting the output values may be used: 100mV ~ 500mV (100mV integer multiple thereof), the recommended value 500.0mV. Adjust the displayed value to output the same to the instrument, similar steps.

12.3 resistance calibration (50.00K Ω)

Measurement function to be placed in the calibration table resistance profile (J1A, J1B short circuit).

Calibrator output $50.00K\Omega$, adjust the display according to +/- $50.00~K\Omega$ can be. If you have already adjusted, press the SELECT button to skip this adjustment.

Correcting the output values may be used: $10K\Omega \sim 50K\Omega$ ($10K\Omega$ integer multiple thereof), the recommended value $50.00K\Omega$.

12.4 Correction capacitor (500.0nF, 50.00µF)

Measurement function to be placed in the calibration table gear capacitance (or resistance profile (J1A, J1B short circuit)).

Correction device outputs 500.0nF, after waiting for a stable display, adjust the display according to +/- 500.0 nF; can be used to correct an output value of: 200nF ~ 600nF (100nF integer multiple thereof), the recommended value 500.0nF.

Calibrator output 50.00μF, After waiting for a stable display, press +/- to adjust the display 50.00 μF. If you have already adjusted, press the SELECT button to skip this adjustment.

Correcting the output values may be used: $20\mu F \sim 60\mu F$ ($10\mu F$ integer multiple thereof), the recommended value $50.00\mu F$. Note: The above adjustments capacitor requires two points, the corresponding direct output capacitance value range, the program will automatically switching range.

12.5 Ambient temperature correction (input actual ambient temperature)

Measurement function to be subjected to a temperature profile of the calibration table (or resistance profile (J1A, J1B short circuit)).

LCD displays ambient temperature (the temperature of the non-current) at the default value or the last adjustment 25 °C. Based on the ambient temperature correction, according to the display +/- adjusted to ambient temperature (adjustable range 0 ~ 50 Deg.] C).

Note: If not adjusted and LCD The default display of the temperature is the current ambient temperature, At this point at least once by +/- adjustment, If you had to adjust before you do not need to adjust again, press SELECT jump over.

12.6 multimeter correction current (DC 500.0uA, 50.00mA, 5.000A)

Measurements were to be placed in the calibration table DC μA / mA / A to be adjusted.

The positive output terminal of the current correctors pen then the corresponding measurement port, then the negative terminal lead COM port, direct current outputs DC 500.0µA / 50.00mA / 5.000A, adjusted by +/- corresponding range.

Correcting the output values may be used: uA profile 100μ A ~ 500μ A (100μ A integer multiple thereof), recommended values 500.0μ A;

mA mode 10mA ~ 50mA (10mA integer multiple thereof), recommended values 50.00mA;

A Profile 1A \sim 5A (1A integer multiple thereof), the recommended value 5.000A.

Note: The base current adjustment of voltage, voltage adjustment needed to be so correct and then adjust the current, the current clamp similar.

12.7 clamp current correction

To be measured is placed in the calibration table clamp function section, according to an appropriate range of the input current can be corrected, to adjust the display to a +/- standard output value.

60HZ AC output signal recommended adjustment, output correction value of each range as follows:

6.000A: 1A \sim 5A (1A integer multiple thereof), the recommended value 5.000A;

6.000A / 60.00A, 60.00A / 600.0A, 600.0A, 600.0A; 10A ~ 50A (10A integer multiple thereof), recommended values 50.00A;

600.0A / 6000A, 6000A: 100A ~ 500A (100A integer multiple thereof), the recommended value 500.0A; Note: 1 can separate automatic shift range when corrected to a small-scale, low current output corrected easily. The correction profile 6000A automatically shift between the measured values 600.0A / 6000A, this time to adjust the output current of 500.0A, 6.000A and if speed is automatically switched between 600.0mA / 6.000A, 5.000 direct output A current is adjusted.

2. Meter output current should be corrected before the full-scale signal of about 600mV (corresponding to 6000count),

Do not too much deviation, the signal is too large can cause overflow signal is too small may result in insufficient resolution.

Correction voltage range 12.8

Measurement function to be placed in the calibration table DC voltage profile, if the range is set to: DC600Mv / 6V / 60V / 60V / 100V, calibration input signal is recommended: DC500mv / 5v / 50v / 50v / 1000v, appropriate parameters may also be provided on their own calibration, to adjust the display to a +/- standard output value to the calibration current range.

Note:

Step 1. Power On Self Test (12.1) After completion, can go directly to adjust the function, if the dial unmodified coding

When varying (PT2.7 ~ 2.4), press Select key, you can ignore the current adjustments, go to the next adjustment. The default voltage adjustments 12.2, 12.3 resistors, capacitors 12.4, 12.5 four ambient temperature, and can be done without having to switch dial adjustment converted to the corresponding function in the default function of the resistance profile.

- 2. When the adjustment process, standard input signal, to wait for the display stabilizes before Press +/- adjustment. Avoid exceeding output Allowing the signal value range.
- 3. The error will affect the voltage regulator adjustment current readjusted if the voltage, the current also needs readjustment. 4. Correction function is set in the process does not shift, a signal short circuit, open circuit or jitters will cause an error or adjustment error becomes large. If adjustment data over the allowable error (+/- 80%), and the highest digit LCD display or show greater than 6 +/- key press operation will not respond to "OL", no buzzer sound. Normal operation and calibration data is written right after E2 buzzer BEEP beep, data may alter normal but no buzzer sound indicates that the data is not stored properly, readjust again. If the check is still valid E2 line, and J8 jumper is shorted.
 - 5. Please do not adjust the data other than the recommended value.
 - 6. After calibration is complete, determines J8 jumper has been disconnected, normally after power test.

13 and the application circuit described

13.1 3V power supply circuit diagram

3 3V power supply circuit diagram of FIG.

13.2 3V power supply circuit diagram die

3V power supply circuit diagram of the die 4

5 9V power supply circuit diagram of FIG.

NOTE: Component Parameters are for reference to FIG 1., the specific use of the process according to the user depending on their design.

2. For the LCD 4 × 14, SEG14 can not empty.

13.4 Power Systems

13.4.1 VA, VB of IC internal bias voltage input points.

13.4.2 AGND is an analog ground point, which corresponds to the midpoint potential of the battery voltage. The point potential is generated in the IC, and not connected to the midpoint of the battery.

13.4.3 C1 and capacitor C7 bypath, on the other hand to make AGND VDD and VSS stability. C11 is a charge pump, IC let through C11 VDD VGG charging and discharging up to about 2 times VDD.

13.4.4 VDDA VGG after the IC is regulated by the output voltage with respect to VSS is approximately 3.6V.

13.4.5 REFO an IC internal power bandgap reference, relative to AGND is about 1.2V, a stable of 100ppm / °C of.

13.4.6 ACM VSS to about 1.2V, a stable of 50ppm / °C of

The power supply circuit 6 in FIG.

Voltage 13.5 points as follows:

VDD \leftarrow VSS: 2.4 ~ 3.6V VGG \leftarrow VSS: 4.2V VDDA \leftarrow VSS: 3.6V

(Without the use CHARGE PUMP, LDO another 3.2V, 2.8V, 2.4V selectable) AGND $\leftarrow \rightarrow$ VSS: 0.5VDDA, 0.3VDDA, 0.1VDDA select REFO $\leftarrow \rightarrow$ AGND: 1.2V ACM $\leftarrow \rightarrow$ VSS: 1.2V

13.6 Triggered reset circuit

The reset circuit 7 in FIG.

Note: 1. R22 and C9 are automatically reset when the reset assembly, power is turned on.

2. S manual reset button, if the manual reset function, do not use S. $\,$

13.7 buzzer driving circuit

DTM0660 can directly drive the buzzer, the output frequency of about 1.95 kHz. If too little sound, driving transistor can be used, R is the resistance depends on the actual situation.

8 buzzer driving circuit of FIG.

13.8 backlight circuitry

FIG backlight circuit 9 (1)

The backlight circuit (2)

Description:. 1 VCC back circuit (1), depending on the type of light-emitting diodes may be, VDD is 3V power supply, VCC from VDD to The light emitting diode to a desired boost voltage, the circuit may employ a backlight (2) PT2.3 output low, PT2.2 boosting mode to the PWM output to drive the light emitting diode. See E2 parameter setting PWM output of the backlight.

2. R18 visual reality determined.

13.9 higher than 3V supply low voltage detecting circuit

10 low voltage detection circuit of FIG.

Description: R21, R27 is selected when the power supply voltage to a minimum, so adjust the resistance R27 of 13 feet 1.2V.

13.10 AC rectifier circuit

DTM0660 using True RMS internal digital circuit, therefore, there is no need of any external components of the rectifier circuit.

Voltage measuring 13.11

13.11.1 voltage measurement circuit shown in Figure 11. J1A, J1B off.

13.11.2 When the voltage measurement, the measured voltage by the resistor R6 input directly into the IC; 6V, 60V, 60V, 1000V voltage obtaining profile 1 / 10,1 input voltage by R5, R3, R2, R1 and R6 dividing / 100,1 / 1000, 1/10000 and then into the IC. REFO voltage of 1.2V, without adjustment.

13.11.3 600mV voltage profile measured by the input resistor R6, R5 partial pressure, and then 10 times magnification is fed via the internal ADC IC.

13.11.4 formula dividing the measured voltage is: $V_{\text{out}} = V_{\text{in}} \times [R_{\text{e/f}} R6 + R_{\text{SS}}]$; R & It. As R1, R2, R3 or R5. Thus, R1, R2, R3,

R5, R6 determines the accuracy of the measurement accuracy of each range.

13.11.5 Q1, protection of high voltage power source when inserted into the table typo Q2 and also as a PTC resistance, capacitance, frequency, diodes, and other off measurement, not when the frequency measurement, QI can not, as long as the base of Q2 after the product is connected to the ground electrode (AGND) on it.

Voltage measuring circuit 11 of FIG.

Note: The maximum input voltage rating is DC1000V, AC750V.

13.12 AC / DC millivolt measurement

AC / DC millivolt (AC / DC 60 / 600mV) voltage measurements shown in Figure 12. J1A, J1B turned on. DC millivolt RLD from entering the IC, the maximum range of 600mV (200mV, 400mV can be set), the input impedance is infinite (10 m [Omega]), measured without attenuating the weak signal, so high accuracy. However, there will be some number displayed in the case where the input open circuit, the figures appear to be normal, as long as the lead into the measured point, the readings will stabilize. To prevent large input voltage causes an exception, mV Range can be increased schematic R7 Resistance to 100k Other range is

100 Europe.

12 AC / DC voltage measuring circuit millivolt

Dream Tech International Ltd.

Current measuring 13.13

- 13.13.1 µA profile sampling resistance is R13 + R14 + R15, mA is the profile sampling resistor R14 + R15,10A sampling resistance profile is R15. Were measured by switching the mode switch, when the measured uA, J3 is turned off, the closing J4; when measuring mA, disconnect J4, J3 close; when measuring the bulk current gear 10A, J3, J4 OFF.
- 13.13.2 μA, mA third gear 10A, and the voltage drop generated up to 0.6V and 0.1V. These voltages are fed to the comparator compares the voltage, if more than 60mV, the voltage signal directly into the A / D converter; if less than 60mV, the internal electronic switch is closed, a 10x magnification and then into the A / D converter.
- 13.13.3 method for measuring current in FIG 13, the self-calibration method can be corrected μA, mA and 10A stalls, R13, R14 and R15 does not affect the accuracy of the accuracy of current measurement. It may also be precision resistors R14 and R15, R13 and manual tuning embodiment to calibrate a large current, i.e., the same as the conventional DMM.
- 13.13.4 method for measuring current in FIG 14, the self-calibration method can be corrected only file 10A, no manual adjustment R13. Accuracy µA and mA measured is the precision resistors R14 and R15 to the guaranteed.

FIG current measurement circuit 13 (a)

Current measurement circuit 14 in FIG. (B)

13.14 resistance measurement

Measuring the resistance shown in Figure 15. J1A, J1B turned on.

The resistance is measured as a reference standard resistor, the resistance to be measured with a standard resistance test comparing measured resistance value is obtained. Profile for the standard resistance $60M\Omega \ 10M\Omega \ (R6)$, of other modes are standard resistors R4, R5, R3, R2, R1, measuring the resistance, a voltage of 1.0V IC internal (with respect to AGND), respectively, by the voltage resistors R1, R2, R3, R4, R5 outputted through R7, PTC resistor under test to generate a current I, this current flows through the resistor to produce a measured voltage VR, the voltage IC and the voltage by the return R8 standard resistance compared calculating the resistance of the measured resistance. (60 M [Omega voltage output gear directly to the test by the resistor R6)

When resistance measurement J1A, J1B to be turned. Filter capacitor C3 is a reference resistor, C4 is a filter capacitor of the measured resistance.

Resistance measurement circuit 15 in FIG

13.15 diode measurements

Figure 16 diode measurement.

Diode IC 3.2V measurements generated by the internal voltage (relative to AGND), was applied to the diodes through PTC R7 positive output terminal. Diodes forward voltage drop VD of about 0.5V-0.7V, VD through VD R6 and R5 partial weight of 1/10 into the ADC, the VD value display.

J1A, J1B are mode switch, J1A diode measurement; J1B closed. DTM0660 diode output when the test voltage is measured 3.2V, a detectable contour LED diode forward conduction. When the detection diode voltage drop exceeds 3.0V, indicating overflow to "OL" tabular. Appears "OL" reverse diode may be damaged or measurement.

Diode measurement circuit 16 in FIG.

13.16 Continuity Check

Figure 17 is detected off.

When off internal IC and generates 1.0V voltage (relative to AGND) outputted by R7, applied through PTC-off point to be detected. J1A, J1B are mode switch, on closing, when the Rx made off detection voltage V_{RX} By R8 input IC. Seen from FIG., 1.0V * Rx / (R7 + PTC + Rx) = 0.025V

Known R7 = 100Ω, if PTC = 1kΩ, the Rx = 28.2Ω, if PTC = 1.5K, the Rx = 41Ω. Thus, when the PTC between 1kΩ ~ 1.5kΩ, the buzzer is turned off at point Rx between 28Ω ~ 41Ω.

Off detecting circuit 17 of FIG.

13.17 capacitance measurement

Capacitance measurement and generate a waveform shown in Figure 18 and 19.

Counted divided frequency capacitance measurement and width measurement cycles in two parts, $0 \sim 1 \mu F$ frequency counting type, $1 \mu F$ than width measurement cycle. Measuring the capacitance charge and discharge resistor is formed by shaking the measured capacitance, the frequency of oscillation or cycle required capacitance value. When J1A, J1B of the mode switch, the capacitance measurement, J1A, J1B, J7 closed.

C13 100pF * improving linearity by measuring small capacitance is determined according to the actual

situation. PTC resistance mF file size can affect the accuracy of range, the resistance should be less than $2\mbox{K}\Omega$.

Capacitance measuring circuit 18 of FIG.

FIG 19 is typically input capacitance measurement waveform

13.18 Frequency Measurement

Frequency measurement shown in Figure 20, the frequency measurement J1A and J2, J2 'ON.

Frequency measurement circuit 20 in FIG.

13.19 Transistor hFE measurement

Transistor hFE measured in Figure 21, when measuring the hFE ON J6.

FIG hFE measurement transistor 21

13.20 Temperature Measurement

Figure 22 temperature measurement.

Temperature measurement circuit 22 in FIG.

Description: Temperature is measured using a type K thermocouple, the cold junction compensation is processed by the IC, it turned J1A measured.

13.21 AC clamp meter Application Circuit

23 AC current measuring clamp meter circuit of FIG. (A)

24 AC current measuring clamp meter circuit of FIG. (B)

Description:

- 1. A (FIG. 23) PB1 input, there are three current measuring range options, namely 6.000A / 60.00A, 600.0A / 600.0A, 600.0A / 600.0A. Each automatic range shifting.
- 2. RLD by the input port (FIG. 24), there are four current measurement range options, namely 6.000A, 60.00A, 600.0A, 60000A.

When the correction can automatically switch to the enlarged state, easy to adjust, but not the normal measurement range automatically.

13.22 AC / DC Clamp Meter Application Circuit

25 AC / DC clamp meter current measurement circuit (a)

26 AC / DC clamp meter current measuring circuit (II)

Description:

- 1. Hall device made using AC / DC clamp meter can be calibrated manually.
- Since different materials jaws, the current intensity of the magnetic induction are different, the user may need DTM0660 2000/4000/6000 display count set to form.

13.23 NCV measurements

NCV measurements shown in Figure 27.

27 NCV measurement circuit of FIG.

NCV measurement alternating voltage signal from the RLD into the IC, the measurement results of five grades display, 0 ~ 50mV display EF, 50 ~ 100mV / 100 ~ 150mV / 150 ~ 200mV / 250mV above show 1-4 '-' word (available setting), and with different rhythms buzzer sound. Applications need to be adjusted according to the value of Rx and the induction line. NCV measurement and the minimum resolution can be set E2 (in 0.1mV): 25h (H) & 24h (L) set in base NCV measurements, 27h (H) & 26h (L) resolution setting NCV, calculated is the measured value :(- in base) / = 0 ~ 4 resolution (rounded result), the count is greater than 4. 4. Such as: 25h (H) & 24h (L) = 0064h, 27h (H) & 26h (L) = 0096h, measuring the induced signal = 50.0mV, the LEVEL = (50.0-10.0) /15.0~=2, the display section 2 ' - - . "

Optional PT1.2 NCV function as a control indicator (E2 provided F9h.bit0 = 1). When no signal PT1.2 = 0, when the output signal PT1.2 with the buzzer, the buzzer sound PT1. 2 = 1, and 0 otherwise. This setting has no effect on other functions, PT1.2 = 1.

13.25 RS232 transmission protocol

n Direction: one-way to the computer

n Baud Rate: 2400 bps.

n Data bits: 8 bit.

n Parity: None. n Data Format: Hex.

n Data length: 15 Bytes.

n Data: LCD table on-off information.

n Data Format:

1st byte \rightarrow 1X (X is seg1, 4 bits represent the data on the LCD table), 2nd byte \rightarrow 2X (X is seg2, 4 bits represent the data on the LCD table), 3rd byte \rightarrow 3X (X is seg3, 4 bits represent the data on the LCD table),

 $1X \rightarrow 4$ bit, $2X \rightarrow 4$ bit, $3X \rightarrow 4$ bit,, $FXH \rightarrow 4$ bit. n X represents: Bit3 ~ Bit 0 \rightarrow segn (COM3-COM0)

The liquid crystal display 14

14.1 4 × 15 liquid crystal display structure

FIG 28 4 × 15 liquid crystal display structure of FIG.

The liquid crystal display truth table 14.2

PIN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
SEG	/	/	/	/	SEG0	SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14
СПМЗ	/	/	/	СПИЗ	RS232	Α4	В4	A3	В3	A2	B2	A1	B1	₩	□ (10)	H	4-	NCV	MAX
C DM2	/	/	CDM2	/	AUTO	F4	G4	F3	G3	F2	G2	F1	G1	К	М		Hz	hFE	0
CDM1	/	CDM1	/	/	DC	E4	C4	E3	С3	E2	C2	E1	C1	n	%	Ω	\vee	Ĉ	MIN
CDMO	C DMO	/	/	/	AC		D4	P1	D3	P2	D2	Р3	D1	Щ	m	F	Α	*F	Ø

29 LCD truth table of FIG.

Note: 1 Operating voltage:. 3V.

2. Drive method: 1/4 Duty, 1/3 Bias.

The liquid crystal display waveform 14.3

Dream Tech International Ltd.

The liquid crystal display Description of Symbols 14.4

symbol	Say	Bright	symbol	Say Bright
	Battery voltage is less indic	ation	\triangle	Relative value measuring mode
AUTO	Automatic range		mV, V	Voltage unit
AC	AC voltage or alternating or	urrent	μA, mA, A	Current unit
DC	DC voltage or DC curre	nt	Ω, $kΩ$, $MΩ$ resistor	units
	DC voltage or current indica	ative of negative	nF, μF, mF capa	citor unit
454	Diode measurement mode	indication	Hz, kHz, MHz	Frequency Unit
Teff			%	Percent of duty cycle pulse signal
$1(\mathbf{z})$	Off measurement instruction	n	RS232	RS232 function indicator
3)	Data Hold mode		°C °F	Temperature units
hFE	Transistor DC magnification	on	MAX, MIN, MAX-MIN max	ximum, minimum, difference
NCV	NCV function indicator		3	Automatic shutdown instructions

Encapsulating sheet 15 Dimensions

VARIATIONS	(ALL DIME	NSIONS SHO	WN IN MY
SYMBOLS	MIN.	NOM.	MAX.
Α	77	= 1	1.60

A	- t-	, 5	1.60				
A1	0.05		0.15				
A2	1,35	1.40	1.45				
ь	0.13	0.18	0.23				
С	0.09		0.20				
D							
D1	7.00 BSC						
	0.40 BSC						
E	9.00 BSC						
E1	7.00 BSC						
E	0.45	0.75					
L1	1.00 REF						
е	0.	3.5*	7*				

JEDEC MS-026 Compliant

FIG package sheet 31 Dimension

V1.5 Modify records

- 1: eprom Setting content changes (fdh) = 82h.
- 2: Buzzer output frequency parameter to 1.95k. V1.6 Modify

records

1 : Change the application circuit. J1 change to J1A, J1B 2:

24C02 WP Feet to 10k Pull-up resistor

V1.7 Modify records

- 1: Increasing the voltage range calibration, changing the eprom set up e8h ~ f1h The default values.
- 2 : Change the frequency measurement.
- V1.8 Modify records
- 1: ACM Meet PB4, EMC Strengthen immunity test.
- 2: increase J11 Jumper, as mV Speed input channels.

V1.9 Modify records

- 1: cancel mV enter J11 Jumpers can be adjusted depending on the application R7 Resistance, see mV Measuring instructions.
- 2: VDD End increase 0.1uF Filter capacitor
- 3: ACM Stabilizing capacitance to the end . 1uF
- 4: increase UART Upload options

24c02 FDH.6 = 1 selected 9721 Compatible format, FDH.6 = 0 (dtm0660L version)

FDH.5 = 1 send 14Bytes, FDH.5 = 0 send 15Bytes (dtm0660L version)

5: increase Ncv Indicator Control Options

24c02 FDH.4 = 1 pt1.2 Only ncv led, Active high, other modes is low.

24c02 FDH.4 = 0 pt1.2 As a ncv led And the power indicator.

6 :increase diode / cont Relative value Control Options

24c02 FAH.5 = 0 No relative value function

24c02 FAH.5 = 1 Relative value function