

AR Number: AR-001-505

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

R.A.N. RESEARCH LABORATORY

EDGECLIFF, N.S.W.

RANRL TECHNICAL NOTE No. 4/80

C COMMONWEALTH OF AUSTRALIA 1980

CLIMATIC MAPS OF THE SEA SURFACE-AIR DIFFERENCE IN VAPOUR PRESSURE AND IN POTENTIAL TEMPERATURE OVER THE EASTERN INDIAN OCEAN (U)

BY

A. HIRST

THE UNITED STATES NATIONAL
TECHNICAL INFORMATION SERVICE
IS AUTHORISED TO
REPRODUCE AND SELL THIS REPORT

APPROVED FOR PUBLIC RELEASE

COPY No. 27

1989

UNCLASSIFIED

(14) RAN LL-TN-4/8A

DEPARTMENT OF DEFENCE

RAN RESEARCH LABORATORY

12/32/

11) 20 May 80/

RANRL TECHNICAL NOTE, NO. 4/80

Climatic Maps of the Sea Surface-Air Difference in Vapour Pressure and in Potential Temperature over the Eastern Indian Ocean

bу

A./HIRST

ABSTRACT

Maps are presented in this report showing, 1. the mean difference between the vapour pressure at the sea surface and at a height at 10 m, and 2. the mean difference between the potential temperature at the ocean surface and at a height of 10 m, over the ocean surface from 5°S to 50°S and from 100°E to 140°E, for the months of February, May, August and November. The maps are derived from maps of relevant variables shown in the World Ocean Atlas (1976). The sizes of errors in the maps presented here are discussed. The largest errors arise from errors in the W.O.A. maps. (U)

POSTAL ADDRESS: The Superintendent, RAN Research Laboratory P.O. Box 706, Darlinghurst N.S.W. 2010

411110

DOCUMENT CONTROL DATA SHEET

Security classification of this page: UNCLASSIFIED

DOCUMENT REFERENCES SECURITY CLASSIFICATION a. AR number: AR-001-505 Authority: P.J. MULHEARN a. b. Document series and number: ъ. Document: UNCLASSIFIED RANRL Tech Note 4/80 Title: UNCLASSIFIED c. Abstract: UNCLASSIFIED c. Number of pages: 30 d. d. Task: NAV78/052 e. Reclassification: N/A e. Sponsor: NAVY f. Date: 20 May 1980 g. Release authorised by: 47 Huntin **DESCRITPORS:** COSATI CODES: Air-Sea Interaction, Meteorological 0402 0803 Maps, Humidity. TITLE: PERSONAL AUTHORS A. HIRST Climatic Maps of the Sea Surface-Air Difference in Vapour Pressure and Temperature over the Eastern Indian Ocean. ANNOUNCEMENT LIMITATIONS (of CORPORATE AUTHORS date on this page). RAN Research Laboratory, P.O. Box 706, No Limitation DARLINGHURST. N.S.W. 2010. SECONDARY DISTRIBUTION LIMITATIONS AUSTRALIAN: Approved for Public Release **OVERSEAS:** NO PR 1 Ē

ABSTRACT

 $\mathcal{D} EG$

Maps are presented in this report showing, (1) the mean difference between the vapour pressure at the sea surface and at a height at 10 m, and 2, the mean difference between the potential temperature at the ocean surface and at a height of 10 m, over the ocean surface from 5°S to 50°S and from 100°E to 140°E, for the months of February, May, August and November. The maps are derived from maps of relevant variables shown in the World Ocean Atlas (1976). The sizes of errors in the maps presented here are discussed. The largest errors arise from errors in the W.O.A. maps. (U).

UNCLASS IFIED

(Security classification of this page)

PRIMARY DISTRIBUTION		COPY NO.
AUSTRALIA		
Chief Defen	Chief Defence Scientist	
Deputy Chie	Deputy Chief Defence Scientist	
Controller	Controller Service Laboratories and Trials	
Superintendent Scientific and Technical Programme		4
Defence Cen	Defence Central Library, Campbell Park	
<u>-</u> •	ector, Scientific and Technical Ligence, JIO	6
Document Ex	cchange Centre, DISB	7
Senior Libr Salisb	rarian, Defence Research Centre, oury	8
Mr. Neil Jo Salisb	ones, Defence Research Centre, oury	9
Master Copy	7	10
RANRL		11 - 17
UNITED STATES OF AMERI	ICA_	
Defence Doo	cumentation Centre (via DISB)	18 - 29
UNITED KINGDOM		
Defence Res	search Information Centre (via DISB)	30
CANADA		
Director So (via I	cientific Information Services DISB)	31
NEW ZEALAND		
Ministry of	f Defence (via DISB)	32

Accession For

NTIS GRARI
DDC TAB
Unannounced
Justification

By

Distribution/
Availability Codes

Availand/or
special

CONTENTS	PAGE NO.
INTRODUCTION	1
THE DATA SOURCE	2
METHOD	
Preparation of the e - e 10 Maps	2
Preparation of the $\theta_0 - \theta_{10}$ Maps	3
ERRORS	
Reliability of the World Ocean Atlas	3
Additional Sources of Error	3
PRESENTATION OF MAPS	4
DISCUSSION	
General Trends in $e_0 - e_{10}$ and $\theta_0 - \theta_{10}$.	4
CONCLUSIONS	5
REFERENCES	6

INTRODUCTION

l. Knowledge of the mean difference between the vapour pressure at the sea surface e , and the vapour pressure at a height of 10 m, e_{10} , is useful in the climatic study of some atmospheric phenomena. In particular, it can be shown that the thickness of the surface radar duct, $h_{\rm d}$, in near neutral conditions is approximated by the expression

$$h_d = \frac{72 c_E}{\sqrt{c_D}} (e_o - e_{10})$$
 Eqn (1)

where C_{n} is the drage coefficient of the ocean surface, and

 C_E is the aerodynamic water vapour transfer coefficient (see Jones and Stewart, 1977). In near neutral conditions, C_D has been found to be approximately constant when the wind speed is less than 12 ms⁻¹(Antonia and others, 1978; Smith 1970). If C_E is assumed to behave similarly, then the mean duct thickness, h_d , is proportional to the mean vapour pressure difference,

i.e.
$$\overline{h_d} = \frac{72 C_E}{\sqrt{C_D}} (\overline{e_0 - e_{10}})$$
 Eqn (2)

in a region where the atmosphere is mostly neutral and the windspeed usually less than 12 ms⁻¹. In an unstable atmosphere, the surface radar duct thickness is over-estimated by equations 1 or 2 (Jones and Stewart, 1977).

2. Maps have been prepared showing $e_0 - e_{10}$ over the ocean surface from $5^{\circ}S$ to $50^{\circ}S$ and from $100^{\circ}E$ to $140^{\circ}E$, for the months of February, May, August and November. Maps showing the mean difference between the potential temperature at the ocean surface, θ_0 , and at a height of 10 m, θ_{10} , have been prepared for the same region and the same months, primarily to indicate the expected stability above the ocean surface, and hence to applicability of Equation 2. However, instability will arise if $(e_0 - e_{10})$ is large, even if $(\theta_0 - \theta_{10})$ is small.

THE DATA SOURCE

3. Maps of mean sea surface temperature (SST), air vapour pressure and air temperature for the relevant region and the relevant months were obtained from the World Ocean Atlas, Vol. I: Pacific Ocean (1976). This atlas was used because it was the most recently published atlas available which contained monthly maps of the three relevant variables. The SST maps are based on oceanographic expedition data from 1925 to 1968, and on the data contained in ships' meteorological radio messages from 1950 to 1967. The SST isohyets are at 1°C intervals. Maps of the air vapour pressures and air temperature "at the surface of the ocean" are given in the atlas. These maps are based on merchant ship and meteorological expeditions observations for the period 1890 - 1965. The air temperature isotherms are at 2°C intervals and the vapour pressure isotherms are at 2 mb intervals. In order to find the values at the ocean surface, the data would have been corrected to sea level from the bridge height (usually 7 to 15 m) using adiabatic correction, i.e. the air temperatures have been corrected to potential temperatures. Thus the maps show the average vapour pressure and potential temperature at approximately 10 m in height.

METHOD

Preparation of the $e_0 - e_{10}$ Maps

4. The air at the sea surface is assumed to be saturated and at the temperature of the sea surface. Thus the mean SST map can be readily transformed into a e_0 map. For each month, the latitudes at which the SST isotherm crossed selected lines of longitude $(100^{\circ}\text{E}, 105^{\circ}\text{E}, 110^{\circ}\text{E} \text{ etc})$ were recorded to a precision of 0.1° . e_{10} was found at each point, usually by linear interpolation between the e_{10} isohyets on either side. Cubic interpolation was used when $\frac{\partial^2 e_{10}}{\partial^2}$ (latitude) was sufficiently great. These values of e_{10} were subtracted from the corresponding e_0 values, to give the value of $e_0 - e_{10}$ at each point. The $e_0 - e_{10}$ isolines were positioned using linear interpolation between adjacent points.

Preparation of the $\theta_0 - \theta_{10}$ Maps

5. As both $\overline{\theta}_0$ and $\overline{\theta}_{10}$ maps have the same units ($^{\circ}$ C) a much simpler method was used in preparing the $\overline{\theta}_0$ - $\overline{\theta}_{10}$. Odd number isotherms were firstly generated on the $\overline{\theta}_{10}$ map by linear interpolation between the existing even number isotherms. Then the maps were superimposed and the positions at which the isotherms crossed outlined the $\overline{\theta}_0$ - $\overline{\theta}_{10}$ isolines.

ERRORS

Reliability of the World Ocean Atlas

6. No indication of the area density of the data that were used to prepare the relevant maps is given in the World Ocean Atlas. Away from the main shipping routes, e.g. south of 40°S, the data are probably very sparse. Further accuracy may have been lose because of the smoothing results from the use of 5° x 5° averaging squares. Just before this report was completed, the World Ocean Atlas, Vol. 2: Atlantic and Indian Oceans (1977) became available. Additional data from several countries, especially the USA were used in preparing the maps at the Eastern Indian Ocean. Maps of the relevant variables were compared, and the SST in the 1976 Atlas was between 1°C lower and 2°C higher than in the 1977 Atlas (see Hirst, 1980), while $\overline{e_{10}}$ was between 0 and 2 mb higher, and $\overline{\theta_{10}}$ was between 1°C lower and 1°C higher. If these differences are used as estimates for the errors the 1976 Atlas values of $\frac{\theta_0}{e_1}$, $\frac{\theta_0}{e_10}$ and $\overline{\theta_{10}}$ from the true means, then the errors in the plotted $\overline{e_0} - \overline{e_{10}}$ values will generally be smaller than \pm 2 mb, while the errors in the plotted $\theta_0 - \theta_{10}$ values will generally be smaller than $\pm 2^{\circ}$ C.

Additional Sources of Error

- 7. There are three additional sources of error;
 - a. The errors in reading the logitudes at $\overline{\theta}/\overline{e}$ isolines are estimated to cause errors of up to $\pm 0.2^{\circ}$ C or ± 0.2 mb respectively.
 - b. The errors in reading the longitudes at $\overline{\theta_{10}}$ and $\overline{e_{10}}$ isolines are estimated to cause errors of up to \pm 0.2 °C or \pm 0.2 mb respectively.
 - c. Interpolation is estimated to cause errors of up to ± 0.2 mb or ± 0.2 C so the map reading and inter-

polation errors in $e_0 - e_{10}$ and $\theta_0 - \theta_{10}$ are estimated to be no greater than $\pm 0.2^{\circ}$ C and ± 0.2 mb. This error is much smaller than the estimated errors in the original Pacific Ocean maps.

PRESENTATION OF MAPS

- 8. The maps for each month are presented in the following order:
 - a. Mean Sea Surface Temperature (θ_0) , with the corresponding saturated vapour pressure in brackets (from W.O. Atlas, 1976).
 - b. Mean Air Vapour Pressure (e10) (from W.O. Atlas, 1976).
 - c. Mean Air Temperature $(\overline{\theta_{10}})$ (from W.O. Atlas, 1976).
 - d. $\overline{e_0 e_{10}}$
 - e. $\theta_0 \theta_{10}$

The February maps are labelled la to e

- " May " " " 2a to e
- " August " " " 3a to e
- " November " " 4a to e

DISCUSSION

General Trends in
$$e_0 - e_{10}$$
 and $\theta_0 - \theta_{10}$

- 9. In all four months, $e_0 e_{10}$ tends to decrease towards the south, this trend being especially consistent south of 30° S. $e_0 e_{10}$ varies between 7 and 10 mb at 15° S, between 4 and 7 mb at 35° S, and between 0 and 2 mb at 50° S. Most other variations in $e_0 e_{10}$ are less than the usual maximum error at about ± 2 mb, except for the particularly high values of $e_0 e_{10}$ that occur locally off the West Australian coast, at about 30° S, in November and especially in May. Figures 2a and 4a indicate that the high values are caused by an extension of warm water down the West Australian Coast.
- 10. In most areas $\theta_0 \theta_{10}$ is less than the usual maximum error of about \pm 2°C. High values at $\theta_0 \theta_{10}$, over \pm 4°C occur locally along the West Australian coast near 30°S in May and in August. Figures 2a and 2c, 3a and 3c indicate that the high values are caused by extension

of warm water down the West Australian coast, without a compensating increase in air temperature above this warm water.

CONCLUSIONS

- 11. a. The major source of error in the $e_0 e_{10}$ and $\theta_0 \theta_{10}$ maps comes from the errors in the maps of the relevant variables given in the World Ocean Atlas (1976).
 - b. $e_0 e_{10}$ decreases toward the south, south of 30° S, in all four months.
 - c. In most areas, the calculated θ_0 θ_{10} is less than the estimated usual maximum error.
 - d. Locally high values of $e_0 e_{10}$ and $\theta_0 \theta_{10}$ occur along the West Australian coast near 30°S, in some months.

REFERENCES

- 1. Antonia R.A., Chambers, A.J., Rajagopalan., S. and Sreenivasan, K.R. 1978, J. Phys. Oceanog. 8, 28-37.
- 2. Hirst, A. 1980. RANRL Tech. Memo. No. 5/80. A comparison of sea surface temperature maps covering the Eastern Indian Ocean. UNCLASSIFIED.
- Jones, I. and R. Stewart. 1977. RANRL Tech. Memo No. 11/76. Radar surface ducting in tropical waters. UNCLASSIFIED.
- 4. Smith, S. 1970. J. Geophys. Res. <u>75</u>, 6758-6770.
- 5. World Ocean Atlas, Vol. 1: Pacific Ocean, 1976, USSR Navy. Edited by Gorshkov, S.G.
- World Ocean Atlas, Vol. 2: Atlantic and Indian Ocean, 1979.
 USSR Navy edited by Gorshkov, S.G.

Fig. 1(a) Mean February e_{sat} given in the Pacific Atlas.

Fig. 1(b) February, $\overline{e_{10}}$ in mb.

Fig. 1(c) February, $\overline{\Theta}_{10}$ in °C.

Fig. 1(d) February, $\overline{e_0} - \overline{e_{10}}$ in mb.

Fig. 1(e) February, $\overline{\theta_0 - \theta_{10}}$ in °C.

Fig. 2(a) Mean May SST in °C.

Fig. 2(b) May, $\overline{e_{10}}$ in mb.

Fig. 2(c) May, $\overline{\Theta_{10}}$ in °C.

Fig. 2(d) May, $\overline{e_0-e_{10}}$ in mb.

Fig. 2 (e) May, $\overline{\theta_0 - \theta_{10}}$ in °C.

Fig. 3 (a) Mean August e_{sat} given in the Pacific Atlas.

Fig. 3(b) August, $\overline{e_{10}}$ in mb.

Fig. 3 (c) August, $\overline{\theta_{10}}$ in °C.

Fig. 3 (d) August, $\overline{e_0 - e_{10}}$ in mb.

Fig. 3 (e) August, $\overline{\theta_0 - \theta_{10}}$ in °C.

Fig. 4(a) Mean November SST in °C.

Fig. 4 (b) November e₁₀ in mb.

Fig. 4 (c) November $\overline{\Theta_{10}}$ in °C.

Fig. 4(d) November $\overline{e_0-e_{10}}$ in mb.

Fig. 4(e) November $\overline{\theta_0 - \theta_{10}}$ in °C.

