EZ.9 - MATHS 4 (EE - 24 yr)

UNIVERSITY OF LONDON

[II(4)E 2005]

B.ENG. AND M.ENG. EXAMINATIONS 2005

For Internal Students of Imperial College

This paper is also taken for the relevant examination for the Associateship of the City & Guilds of London Institute

PART II : MATHEMATICS 4 (ELECTRICAL ENGINEERING)

Thursday 2nd June 2005 2.00 - 4.00 pm

Answer FOUR questions.

Answer questions from Section A and Section B in separate answerbooks.

A statistics data sheet is provided.

[Before starting, please make sure that the paper is complete; there should be 4 pages, with a total of 6 questions. Ask the invigilator for a replacement if your copy is faulty.]

SECTION A

1. Find the eigenvalues and normalized eigenvectors of the matrix

$$A = \begin{pmatrix} 2 & \sqrt{6} & 0 \\ \sqrt{6} & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Using these, or otherwise, show that the matrix

$$P = \begin{pmatrix} \sqrt{\frac{3}{5}} & \sqrt{\frac{2}{5}} & 0 \\ \sqrt{\frac{2}{5}} & -\sqrt{\frac{3}{5}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

diagonalizes A such that

$$P^{-1}AP = \begin{pmatrix} 4 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

2. Show that the quadratic form

$$Q = x_1^2 + 4x_1x_2 + 4x_2^2 + 6x_3^2$$

can be written as

$$Q = \boldsymbol{x}^T A \boldsymbol{x},$$

where $x = (x_1, x_2, x_3)^T$ and A is a real symmetric matrix, which is to be found. Hence show that Q can be re-expressed in the diagonal form

$$Q = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2,$$

where the λ_i are to be determined, by finding a matrix P that satisfies $\mathbf{x} = P\mathbf{y}$ where $\mathbf{y} = (y_1, y_2, y_3)^T$. Find y_1, y_2 and y_3 in terms of x_1, x_2 and x_3 from the matrix P.

PLEASE TURN OVER

SECTION B

3 (i) Suppose that

$$P(A) = \frac{1}{2}, \quad P(B) \coloneqq \frac{7}{12}, \quad P(C) = \frac{3}{4},$$

$$P(A \cap B) = P(A \cap C) = P(B \cap C) = \frac{1}{3} \quad \text{and} \quad P(A \cap B \cap C) = \frac{1}{6}.$$

Calculate $P(B \cup C)$, $P(A \cup B)$, $P(A \mid B)$ and $P(A \cup B \mid B \cap C)$.

(ii) In a sequence of success/failure trials the probability of a success is p if the preceding trial was a success, and q if it was a failure. The initial state, preceding trial number 1, is taken to be a success.

What are the probabilities that

- (a) trials 2 and 3 are both successes?
- (b) no two consecutive trials have the same outcome in trials 1 to 6?

4. A certain discrete distribution, in which the random variable N takes integer values $(0, 1, 2, \ldots)$, is defined by the system of equations

$$P(N=r+1) = \frac{\lambda}{r+1} P(N=r)$$
 for $r=0, 1, 2, ...$

Why does this system of equations imply that $\lambda \geq 0$? What does $\lambda = 0$ imply about P(N=r)?

Derive the relationship

$$P(N=r+1) = \frac{\lambda^2}{(r+1)r} P(N=r-1)$$
,

express P(N=r) in terms of P(N=0), and derive an explicit expression for P(N=r) in terms of r and λ .

Calculate $P(N = r \mid N > 0)$ and $E(N \mid N > 0)$.

5. The random variables Y_1 and Y_2 are independent, each generated from the distribution with density $f(y) = ye^{-y}$ on $(0, \infty)$. Write down the joint density of Y_1 and Y_2 and the conditional density of Y_2 given Y_1 .

Calculate $E(Y_1)$, $E(3Y_1 - 2Y_2)$ and $E(Y_1 Y_2)$.

Derive the identity

$$P(Y_2 > 2Y_1) = \int_0^\infty y(2y+1)e^{-3y}dy.$$

Given that this integral has value 7/27, calculate the probability that the larger of Y_1 and Y_2 exceeds twice the smaller of Y_1 and Y_2 .

6. A random sample, (y_1, \ldots, y_n) , is available from the uniform distribution on $(0, \theta)$. Let $y_{min} = \min(y_1, \ldots, y_n)$ and $y_{max} = \max(y_1, \ldots, y_n)$ denote the sample minimum and maximum, respectively.

Derive

$$P(y_{max} \le u) = (u/\theta)^n \qquad (0 \le u \le \theta)$$
.

Hence, write down the density function of y_{max} and use it to calculate $E(y_{max})$ and $var(y_{max})$.

Given that $E(y_{min}) = \theta/(n+1)$, compare the estimators y_{max} and ny_{min} of θ in terms of bias.

Given also that $\text{var}(y_{min}) = n\theta^2 / \{(n+1)^2(n+2)\}$, calculate the ratio of variances, $\text{var}(ny_{min})/\text{var}(y_{max})$.

END OF PAPER

MATHEMATICS DEPARTMENT

MATHEMATICAL FORMULAE

1. VECTOR ALGEBRA

$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} = (a_1, a_2, a_3)$$

Scalar (dot) product: $\mathbf{a} \cdot \mathbf{b} = c$

 $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$

Vector (cross) product:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar triple product:

[a, b, c] = a.b x c = b.c x a = c.a x b =
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Vector triple product: $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$

2. SERIES

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots \quad (\alpha \text{ arbitrary, } |x| < 1)$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{(n+1)} + \dots (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

$$\sin(a+b) = \sin a \cos b + \cos a \sin b ;$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos iz = \cosh z$$
; $\cosh iz = \cos z$; $\sin iz = i \sinh iz$; $\sinh iz = i \sin z$.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} Df D^{n-1}g + \ldots + \binom{n}{r} D^{r}f D^{n-r}g + \ldots + D^{n}f g.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h) = f(a) + hf'(a) + h^2f''(a)/2! + \ldots + h^nf^{(n)}(a)/n! + \epsilon_n(h),$$

where $\epsilon_n(h) = h^{n+1} f^{(n+1)} (a + \theta h) / (n+1)!$, $0 < \theta < 1$.

(c) Taylor's expansion of f(x, y) about (a, b):

$$f(a+h,\ b+k) = f(a,\ b) + \left[hf_x + kf_y \right]_{a,b} + 1/2! \, \left[h^2 f_{xx} + 2hkf_{xy} + k^2 f_{yy} \right]_{a,b} + \dots$$

(d) Partial differentiation of f(x, y):

i. If
$$y = y(x)$$
, then $f = F(x)$, and $\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$.

ii. If
$$x = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

iii. If
$$x = x(u, v)$$
, $y = y(u, v)$, then $f = F(u, v)$, and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.$$

(e) Stationary points of f(x, y) occur where f_x = 0, f_y = 0 simultaneously. Let (a, b) be a stationary point: examine D = [f_{xx}f_{yy} - (f_{xy})²]_{a.b.}
If D > 0 and f_{xx}(a, b) < 0, then (a, b) is a maximum;
If D > 0 and f_{xx}(a, b) > 0, then (a, b) is a minimum;
If D < 0 then (a, b) is a saddle-point.

(f) Differential equations:

i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor $I(x) = \exp[\int P(x)(dx)$, so that $\frac{d}{dx}(Iy) = IQ$.

ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.

5. INTEGRAL CALCULUS

- $\sin \theta = 2t/(1+t^2)$, $\cos \theta = (1-t^2)/(1+t^2)$, $d\theta = 2dt/(1+t^2)$. (a) An important substitution: $tan(\theta/2) = t$:
- (b) Some indefinite integrals:

$$\int (a^2 - x^2)^{-1/2} dx = \sin^{-1}\left(\frac{x}{a}\right), \ |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a}\right) = \ln \left\{\frac{x}{a} + \left(1 + \frac{x^2}{a^2}\right)^{1/2}\right\}.$$

$$\int (x^2 - a^2)^{-1/2} dx = \cosh^{-1} \left(\frac{x}{a} \right) = \ln \left| \frac{x}{a} + \left(\frac{x^2}{a^2} - 1 \right)^{1/2} \right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of f(x) = 0 occurs near x = a, take $x_0 = a$ and $x_{n+1} = x_n - [f(x_n)/f'(x_n)], n = 0, 1, 2 ...$

(Newton Raphson method).

- (b) Formulae for numerical integration: Write $x_n = x_0 + nh$, $y_n = y(x_n)$.
- i. Trapezium rule (1-strip): $\int_{x_0}^{x_1} y(x) dx \approx (h/2) \left[y_0 + y_1 \right]$.
- ii. Simpson's rule (2-strip): $\int_{x_0}^{x_2}y(x)dx\approx (h/3)\left[y_0+4y_1+y_2\right].$
- (c) Richardson's extrapolation method: Let $I=\int_a^b f(x)dx$ and let I_1 , I_2 be two

estimates of I obtained by using Simpson's rule with intervals h and h/2.

Then, provided h is small enough,

$$I_2 + (I_2 - I_1)/15$$
,

is a better estimate of I.

7. LAPLACE TRANSFORMS

Transform	800
	į
Function	1

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

f(t)

$$af(t) + bg(t)$$

 d^2f/dt^2

sF(s)-f(0)

F(s-a)

$$aF(s) + bG(s)$$

Transform

Function

$$s^2 F(s) - sf(0) - f'(0)$$
$$-dF(s)/ds$$

$$-dF(s)/ds$$
 $F(s)/s$

$$C^{t} f(t) dt$$

$$G^{t}(t)dt$$

$$\int_0^t f(t)dt$$

$$\int_0^{\infty} f(t)dt$$

$$\int_0^t f(t)dt$$

$$\int_0^t f(t) dt$$

 $(\partial/\partial\alpha)F(s,\alpha)$

 $(\partial/\partial\alpha)f(t,\alpha)$

F(s)G(s)

 $\int_0^t f(u)g(t-u)du$

$$(n-1.9)$$

$$t^n(n=1,\,2\ldots)$$

 $n!/s^{n+1}$, (s>0)

$$1/(s-a), (s>a)$$
 $\sin \omega t$ $\omega/(s^2+\omega^2), (s>0)$ $s/(s^2+\omega^2), (s>0)$ $S/(s^2+\omega^2), (s>0)$ $S/(s^2+\omega^2), (s>0)$

 $1/(s-a),\ (s>a)$

cos mt

$$\omega/(s^- + \omega^-)$$
, $(s > 0)$

8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L)=f(x), and

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \text{ where}$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
, $n = 0, 1, 2, ...$, and

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, 3, \dots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} [f(x)]^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) .$$

1. Probabilities for events

For events
$$A$$
, B , and C
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 More generally
$$P(\cup A_i) = \sum P(A_i) - \sum P(A_i \cap A_j) + \sum P(A_i \cap A_j \cap A_k) - \cdots$$
 The odds in favour of A
$$P(A) / P(\overline{A})$$
 Conditional probability
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ provided that } P(B) > 0$$
 Chain rule
$$P(A \cap B \cap C) = P(A) P(B \mid A) P(C \mid A \cap B)$$
 Bayes' rule
$$P(A \mid B) = \frac{P(A) P(B \mid A)}{P(A) P(B \mid A) + P(\overline{A}) P(B \mid \overline{A})}$$
 A and B are independent if
$$P(B \mid A) = P(B)$$
 A, B , and C are independent if
$$P(A \cap B \cap C) = P(A) P(B) P(C), \text{ and } P(A \cap B) = P(A) P(B), P(C) = P(B) P(C), P(C \cap A) = P(C) P(A)$$

2. Probability distribution, expectation and variance

The probability distribution for a discrete random variable X is the complete set of

probabilities
$$\{p_x\} = \{P(X = x)\}$$

$$\underline{ \text{Expectation}} \quad E(X) \ = \ \mu \ = \ \sum_{x} x p_{x}$$

Sample mean
$$\overline{x} = \frac{1}{n} \sum_{k} x_k$$
 estimates μ from random sample x_1, x_2, \dots, x_n

Variance
$$var(X) = \sigma^2 = E\{(X - \mu)^2\} = E(X^2) - \mu^2$$
, where $E(X^2) = \sum_{x} x^2 p_x$

Sample variance
$$s^2 = \frac{1}{n-1} \left\{ \sum_k x_k^2 - \frac{1}{n} \left(\sum_j x_j \right)^2 \right\}$$
 estimates σ^2

Standard deviation
$$\operatorname{sd}(X) = \sigma$$

If value \boldsymbol{y} is observed with frequency $n_{\boldsymbol{y}}$

$$n = \sum_{y} n_{y}, \sum_{k} x_{k} = \sum_{y} y n_{y}, \sum_{k} x_{k}^{2} = \sum_{y} y^{2} n_{y}$$

For function g(x) of x, $E\{g(X)\} = \sum g(x)p_x$

$$\underline{\mathsf{Skewness}} \quad \beta_1 \ = \ E\left(\frac{X-\mu}{\sigma}\right)^3 \qquad \quad \mathsf{is \ estimated \ by} \ \ \frac{\cdot \ 1}{n-1} \ \sum \left(\frac{x_i-\overline{x}}{s}\right)^3$$

$$\underline{\mathsf{Kurtosis}} \qquad \beta_2 \ = \ E\left(\frac{X-\mu}{\sigma}\right)^4 - 3 \qquad \text{is estimated by} \quad \frac{1}{n-1} \ \sum \left(\frac{x_i - \overline{x}}{s}\right)^4 - 3$$

Sample median \widetilde{x} . If the sample values x_1,\ldots,x_n are ordered $x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$ $\tilde{x}=x_{(\frac{n+1}{2})}$ if n is odd, and $\tilde{x}=\frac{1}{2}(x_{(\frac{n}{2})}+x_{(\frac{n+2}{2})})$ if n is even.

 α -quantile $Q(\alpha)$ is such that $P(X \leq Q(\alpha)) = \alpha$

Sample lpha-quantile $\widehat{Q}(lpha)$ is the sample value for which the proportion of values $\leq \widehat{Q}(lpha)$ is lpha (using linear interpolation between values on either side)

The sample median \widetilde{x} estimates the population median Q(0.5).

Probability distribution for a continuous random variable 3.

The cumulative distribution function (cdf)

$$F(x) = P(X \le x) = \int_{x_0 = -\infty}^{x} f(x_0) \mathrm{d}x_0$$

The probability density function (pdf)

$$f(x) = \frac{\mathrm{d}F(x)}{\mathrm{d}x}$$

$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$
, $var(X) = \sigma^2 = E(X^2) - \mu^2$,

$$var(X) = \sigma^2 = E(X^2) - \mu^2$$

where
$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

4. Discrete probability distributions

Discrete Uniform Uniform(n)

$$p_x = \frac{1}{\pi}$$
 $(x = 1, 2, \dots, n)$

$$\mu = \frac{1}{2} (n+1)$$
, $\sigma^2 = \frac{1}{12} (n^2 - 1)$

Binomial distribution $Binomial(n, \theta)$

$$p_x = \binom{n}{x} \theta^x (1-\theta)^{n-x} \quad (x = 0, 1, 2, ..., n)$$
 $\mu = n\theta$, $\sigma^2 = n\theta (1-\theta)$

$$\mu = n\theta$$
 , $\sigma^2 = n\theta(1-\theta)$

Poisson distribution $Poisson(\lambda)$

$$p_x=rac{\lambda^x e^{-\lambda}}{x!} \quad (x=0,1,2,\ldots) \quad ext{(with $\lambda>0$)} \qquad \qquad \mu=\lambda \,, \;\; \sigma^2=\lambda$$

$$\mu=\lambda$$
 , $\sigma^2=\lambda$

Geometric distribution $Geometric(\theta)$

$$p_x = (1 - \theta)^{x-1}\theta$$
 $(x = 1, 2, 3, ...)$

$$\dot{\mu} = \frac{1}{\theta}, \quad \sigma^2 = \frac{1 - \theta}{\theta^2}$$

5. Continuous probability distributions

Uniform distribution $Uniform(\alpha, \beta)$

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & (\alpha < x < \beta), & \mu = (\alpha + \beta)/2, \\ 0 & \text{(otherwise)}. & \sigma^2 = (\beta - \alpha)^2/12. \end{cases}$$

Exponential distribution $Exponential(\lambda)$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & (0 < x < \infty), & \mu = 1/\lambda, \\ 0 & (-\infty < x \le 0). & \sigma^2 = 1/\lambda^2. \end{cases}$$

Normal distribution $N\left(\mu,\sigma^2\right)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\} \quad (-\infty < x < \infty)$$
$$E(X) = \mu, \quad \text{var}(X) = \sigma^2$$

Standard normal distribution N(0,1)

If
$$X$$
 is $N(\mu, \sigma^2)$, then $Y = \frac{X - \mu}{\sigma}$ is $N(0, 1)$

6. Reliability

For a device in continuous operation with failure time random variable T having pdf $f(t) \ (t>0)$

The reliability function at time t R(t) = P(T > t)

The failure rate or hazard function h(t) = f(t)/R(t)

The <u>cumulative hazard</u> $H(t) = \int_0^t h(t_0) dt_0 = -\ln\{R(t)\}$

The Weibull (α, β) distribution has $H(t) = \beta t^{\alpha}$

7. System reliability

For a system of k devices, which operate independently, let

$$R_i = P(D_i) = P(\text{"device } i \text{ operates"})$$

The system reliability, R, is the probability of a path of operating devices

A system of devices in series operates only if every device operates

$$R = P(D_1 \cap D_2 \cap \cdots \cap D_k) = R_1 R_2 \cdots R_k$$

A system of devices in parallel operates if any device operates

$$R = P(D_1 \cup D_2 \cup \cdots \cup D_k) = 1 - (1 - R_1)(1 - R_2) \cdots (1 - R_k)$$

8. Covariance and correlation

The covariance of X and Y $cov(X,Y) = E(XY) - \{E(X)\}\{E(Y)\}$

From pairs of observations $(x_1, y_1), \ldots, (x_n, y_n)$ $S_{xy} = \sum_k x_k y_k - \frac{1}{n} (\sum_i x_i) (\sum_j y_j)$

$$S_{xx} = \sum_{k} x_{k}^{2} - \frac{1}{n} (\sum_{i} x_{i})^{2}, \qquad S_{yy} = \sum_{k} y_{k}^{2} - \frac{1}{n} (\sum_{j} y_{j})^{2}$$

Sample covariance
$$s_{xy} = \frac{1}{n-1} S_{xy}$$
 estimates $cov(X,Y)$

Correlation coefficient
$$\rho = \operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\operatorname{sd}(X) \cdot \operatorname{sd}(Y)}$$

$$\frac{\text{Sample correlation coefficient}}{\sqrt{S_{xx}S_{yy}}} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \text{estimates } \rho$$

9. Sums of random variables

$$\begin{split} E(X+Y) &= E(X) + E(Y) \\ \text{var}\,(X+Y) &= \text{var}\,(X) + \text{var}\,(Y) + 2 \operatorname{cov}\,(X,Y) \\ \text{cov}\,(aX+bY), \ cX+dY) &= (ac)\operatorname{var}\,(X) + (bd)\operatorname{var}\,(Y) + (ad+bc)\operatorname{cov}\,(X,Y) \\ \text{If} \ X \text{ is } N(\mu_1,\sigma_1^2), \ Y \text{ is } N(\mu_2,\sigma_2^2), \text{ and } \operatorname{cov}\,(X,Y) = c, \\ \text{then } \ X+Y \text{ is } N(\mu_1+\mu_2,\ \sigma_1^2+\sigma_2^2+2c) \end{split}$$

10 Bias, standard error, mean square error

If t estimates θ (with random variable T giving t)

Bias of
$$t$$
 bias $(t) = E(T) - \theta$

Standard error of
$$t$$
 se (t) = sd (T)

Mean square error of
$$t$$
 $MSE(t) = E\{(T-\theta)^2\} = \{\operatorname{se}(t)\}^2 + \{\operatorname{bias}(t)\}^2$

If \overline{x} estimates μ , then $\mathrm{bias}(\overline{x})=0$, $\mathrm{se}\left(\overline{x}\right)=\sigma/\sqrt{n}$, $\mathrm{MSE}(\overline{x})=\sigma^2/n$, $\widehat{\mathrm{se}}\left(\overline{x}\right)=s/\sqrt{n}$

11 Likelihood

The <u>likelihood</u> is the joint probability as a function of the unknown parameter θ . For a random sample x_1, x_2, \ldots, x_n

$$\ell(\theta; x_1, x_2, \dots, x_n) = P(X_1 = x_1 \mid \theta) \cdots P(X_n = x_n \mid \theta)$$
 (discrete distribution)

$$\ell(\theta; x_1, x_2, \dots, x_n) = f(x_1 \mid \theta) f(x_2 \mid \theta) \cdots f(x_n \mid \theta)$$
 (continuous distribution)

The maximum likelihood estimator (MLE) is $\widehat{\theta}$ for which the likelihood is a maximum.

12. Confidence intervals

If x_1,x_2,\ldots,x_n are a random sample from $N(\mu,\sigma^2)$ and σ^2 is known, then the 95% confidence interval for μ is $(\overline{x}-1.96\frac{\sigma}{\sqrt{n}},\ \overline{x}+1.96\frac{\sigma}{\sqrt{n}})$ If σ^2 is estimated, then from the Student t table for t_{n-1} we find $t_0=t_{n-1,0.05}$ The 95% confidence interval for μ is $(\overline{x}-t_0\frac{s}{\sqrt{n}},\ \overline{x}+t_0\frac{.s}{\sqrt{n}})$

13. Standard normal table Values of pdf $\phi(y) = f(y)$ and cdf $\Phi(y) = F(y)$

y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\phi(y)$	$\Phi(y)$	y	$\Phi(y)$
0	.399	.5	.9	.266	.816	1.8	.079	.964	2.8	.997
.1	.397	.540	1.0	.242	.841	1.9	.066	.971	3.0	.998
.2	.391	.579	1.1	.218	.864	2.0	.054	.977	0.841	.8
.3	.381	.618	1.2	.194	.885	2.1	.044	.982	1.282	.9
.4	.368	.655	1.3	.171	.903	2.2	.035	.986	1.645	.95
.5	.352	.691	1.4	.150	.919	2.3	.028	.989	1.96	.975
.6	.333	.726	1.5	.130	.933	2.4	.022	.992	2.326	.99
.7	.312	.758	1.6	.111	.945	2.5	.018	.994	2.576	.995
.8	.290	.788	1.7	.094	.955	2.6	.014	.995	3.09	.999

14. Student t table Values $t_{m,p}$ of x for which P(|X|>x)=p , when X is t_m

	p	.10	.05	.02	0.01		p	.10	.05	.02	0.01
m	1	6.31	12.71	31.82	63.66	m	9	1.83	2.26	2.82	3.25
	2	2.92	4.30	6.96	9.92		10	1.81	2.23	2.76	3.17
	3	2.35	3.18	4.54	5.84		12	1.78	2.18	2.68	3.05
	4	2.13	2.78	3.75	4.60		15	1.75	2.13	2.60	2.95
	5	2.02	2.57	3.36	4.03		20	1.72	2.09	2.53	2.85
	6	1.94	2.45	3.14	3.71		25	1.71	2.06	2.48	2.78
	7	1.89	2.36	3.00	3.50		40	1.68	2.02	2.42	2.70
	8	1.86	2.31	2.90	3.36		∞	1.645	1.96	2.326	2.576

15. Chi-squared table

Values $\chi^2_{k,p}$ of x for which P(X>x)=p , when X is χ^2_k and p=.995,~.975,~etc

\overline{k}	.995	.975	.05	.025	.01	.005	k	.995	.975	.05	.025	.01	.005
1	.000	.001	3.84	5.02	6.63	7.88	18	6.26	8.23	28.87	31.53	34.81	37.16
2	.010	.051	5.99	7.38	9.21	10.60	20	7.43	9.59	31.42	34.17	37.57	40.00
3	.072	.216	7.81	9.35	11.34	12.84	22	8.64	10.98	33.92	36.78	40.29	42.80
4	.207	.484	9.49	11.14	13.28	14.86	24	9.89	12.40	36.42	39.36	42.98	45.56
5	.412	.831	11.07	12.83	15.09	16.75	26	11.16	13.84	38.89	41.92	45.64	48.29
6	.676	1.24	12.59	14.45	16.81	18.55	28	12.46	15.31	41.34	44.46	48.28	50.99
7	.990	1.69	14.07	16.01	18.48	20.28	30	13.79	16.79	43.77	46.98	50.89	53.67
8	1.34	2.18	15.51	17.53	20.09	21.95	40	20.71	24.43	55.76	59.34	63.69	66.77
9	1.73	2.70	16.92	19.02	21.67	23.59	50	27.99	32.36	67.50	71.41	76.15	79.49
10	2.16	3.25	13.31	20.48	23.21	25.19	60	35.53	40.48	79.08	83.30	88.38	91.95
12	3.07	4.40	21.03	23.34	26.22	28.30	70	43.28	48.76	90.53	95.02	100.4	104.2
14	4.07	5.63	23.68	26.12	29.14	31.32	80	51.17	57.15	101.9	106.6	112.3	116.3
16	5.14	6.91	26.30	28.85	32.00	34.27	100	67.33	74.22	124.3	129.6	135.8	140.2

16. The chi-squared goodness-of-fit test

The frequencies n_y are grouped so that the fitted frequency \widehat{n}_y for every group exceeds about 5.

$$X^2 = \sum_y \frac{(n_y - \widehat{n}_y)^2}{\widehat{n}_y}$$
 is referred to the table of χ_k^2 with significance point p ,

where k is the number of terms summed, less one for each constraint, eg matching total frequency, and matching \overline{x} with μ .

Joint probability distributions

$$\begin{array}{lll} \underline{\text{Discrete distribution}} & \{p_{xy}\}, & \text{where} & p_{xy} = P(\{X=x\} \cap \{Y=y\}) \ . \\ \underline{\text{Let}} & p_{x\bullet} = P(X=x), & \text{and} & p_{\bullet y} = P(Y=y), & \text{then} \\ p_{x\bullet} & = & \sum_y p_{xy}, & \text{and} & P(X=x \, \big| \, Y=y) \ = \ \frac{p_{xy}}{p_{\bullet y}} \ . \end{array}$$

Continuous distribution

Marginal pdf of
$$X$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y_0) \, \mathrm{d}y_0$$

Conditional pdf of X given Y=y $f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)}$ (provided $f_Y(y)>0$)

18. Linear regression

To fit the linear regression model $y = \alpha + \beta x$ by $\hat{y}_x = \hat{\alpha} + \hat{\beta} x$ from observations $(x_1, y_1), \dots, (x_n, y_n)$, the least squares fit is

$$\widehat{\alpha} = \overline{y} - \overline{x}\widehat{\beta}, \quad \widehat{\beta} = S_{xy}/S_{xx}$$

The <u>residual sum of squares</u> RSS = $S_{yy} - \frac{S_{xy}^2}{S_{xx}}$

$$\widehat{\sigma^2} = \frac{{\sf RSS}}{n-2}$$
 , $\frac{n-2}{\sigma^2} \; \widehat{\sigma^2} \; {\sf is from} \; \; \chi^2_{n-2}$

$$E(\widehat{\alpha}) = \alpha$$
, $E(\widehat{\beta}) = \beta$,

$$\operatorname{var}\left(\widehat{\alpha}\right) = \frac{\sum x_i^2}{n \, S_{xx}} \sigma^2 \,, \quad \operatorname{var}\left(\widehat{\beta}\right) = \frac{\sigma^2}{S_{xx}} \,, \quad \operatorname{cov}\left(\widehat{\alpha}, \widehat{\beta}\right) = -\frac{\overline{x}}{S_{xx}} \, \sigma^2$$

$$\widehat{y}_x = \widehat{\alpha} + \widehat{\beta}x$$
, $E(\widehat{y}_x) = \alpha + \beta x$, $\operatorname{var}(\widehat{y}_x) = \left\{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}\right\} \sigma^2$

$$rac{\widehat{lpha}-lpha}{\widehat{\operatorname{se}}\;(\widehat{lpha})}\;, \qquad rac{\widehat{eta}-eta}{\widehat{\operatorname{se}}\;(\widehat{eta})}\;, \qquad rac{\widehat{y}_x-lpha-eta\,x}{\widehat{\operatorname{se}}\;(\widehat{y}_x)} \quad ext{are each from} \;\; t_{n-2}$$

19. Design matrix for factorial experiments With 3 factors each at 2 levels

EE 2

MATHEMATICS FOR ENGINEERING STUDENTS .

EXAMINATION QUESTION / SOLUTION

MATHS PAPER 4 2004 - 2005

2005 Please write on this side only, legibly and neatly, between the margins

PAPER

4

QUESTION

SOLUTION EI

3

$$A = \begin{pmatrix} 2 & \sqrt{6} & 0 \\ \sqrt{6} & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$\lambda_3 = 3 \qquad \begin{vmatrix} 2-\lambda & \sqrt{6} \\ \sqrt{6} & 1-\lambda \end{vmatrix} = 0 \implies \lambda^2 - 3\lambda - 4 = 0$$

$$\lambda_1 = 4$$
; $\lambda_2 = -1$ $\lambda_3 = 3$

$$\lambda_{1} = 4 : \begin{pmatrix} -2 & \sqrt{6} & 6 \\ \sqrt{6} & -3 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} p \\ q \\ r \end{pmatrix} = 0 \quad p = q\sqrt{3} \begin{cases} \sqrt{3} \\ 1 \\ 0 \end{cases} = \sqrt{3} \begin{pmatrix} \sqrt{3} \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \sqrt{3} \\ \sqrt{3} \\ 1 \\ 0 \end{pmatrix}$$

$$\lambda_{2} = -1 \quad \begin{pmatrix} 3 & \sqrt{6} & 0 \\ \sqrt{6} & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 9 \\ 7 \end{pmatrix} = 0 \quad 9 = -p\sqrt{\frac{3}{2}}, \quad \alpha_{2} = \sqrt{\frac{2}{5}} \begin{pmatrix} 1 \\ -\sqrt{2} \\ 0 \end{pmatrix} = \begin{pmatrix} \sqrt{2} / 5 \\ -\sqrt{2} / 5 \\ 0 \end{pmatrix}$$

$$\lambda_{3} = 3 \qquad \qquad \alpha_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\beta = \left(\underline{a}_1 \, \underline{a}_2 \, \underline{q}_3\right)$$

$$= P \Lambda \qquad \Lambda = \begin{pmatrix} \lambda_1 & \alpha_1 & \lambda_2 & \alpha_2 & \lambda_3 & \alpha_3 \\ 0 & \lambda_2 & 0 & \lambda_3 \end{pmatrix}$$

$$P^{-1}AP = \Lambda = \begin{pmatrix} 4 & -1 & 0 \\ 0 & -1 & 2 \end{pmatrix}$$

$$P = \begin{pmatrix} \sqrt{3}/_{5} & \sqrt{2}/_{5} & 0 \\ \sqrt{2}/_{5} & -\sqrt{3}/_{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Acceptable to write out P-IAP longhand but time-consumy

Setter: J. D. G IBBON

Setter's signature: J.D. Likon.

Checker's signature:

Checker:

4.6.

EXAMINATION QUESTION / SOLUTION 2004 - 2005

4

PAPER

QUESTION

Please write on this side only, legibly and neatly, between the margins

SOLUTION E2

$$Q = x_1^2 + 4x_1x_2 + 4x_2^2 + 6x_3^2$$

$$= x_1^T A x_1 \qquad A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 0 \\ 0 & 0 & 6 \end{pmatrix}$$

$$\frac{1}{\lambda_3} = 0 \qquad \lambda (\lambda - 5) = 0 \Rightarrow \lambda_1 = 5$$

$$\lambda_2 = 0$$

$$\lambda_3 = 0$$

$$\lambda_1 = 5 \quad \begin{pmatrix} -4 & 2 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 9 \end{pmatrix} = 0 \quad 9 = 2P \quad \underline{\alpha}_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \stackrel{1}{\sqrt{5}}$$

$$= \begin{pmatrix} -2 \\ 1 \end{pmatrix} \frac{1}{\sqrt{5}}$$

$$\lambda_{1}=0 \quad \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = 0 \quad p = -2q \qquad \underline{q}_{2} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \frac{1}{\sqrt{5}}$$

$$\lambda_{3}=6 \qquad \underline{q}_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Write
$$P = (a_1 a_2 a_3) = \begin{pmatrix} \frac{1}{12} & -\frac{2}{12} & 0 \\ \frac{2}{12} & \frac{2}{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

5

Choose
$$\underline{\chi} = P\underline{y}$$

$$AP = P\Lambda \Rightarrow P^{-1}AP = \Lambda$$
 $P^{T}AP = \Lambda$

$$2 - Q = y^{T} \Lambda y = 5y_{1}^{2} + 6y_{3}^{2}$$

$$\underline{y} = \underline{f} \underline{y} \Rightarrow \underline{y} = \underline{p}^{-1} \underline{y} = \underline{p}^{T} \underline{y} = \begin{pmatrix} \frac{1}{2} & \frac{3}{2} & 0 \\ -\frac{3}{2} & \frac{1}{2} & 0 \end{pmatrix} \underline{y}$$

$$-1.45 y_1 = 11_1 + 11_2$$

 $\sqrt{5} y_2 = -21_1 + 11_2$

Setter: J.D. GIBBON

Setter's signature: J.D. Li Hon.

CA

Checker: 1.6-

Checker's signature :

(20)

EXAMINATION QUESTION / SOLUTION

2004-2005

Please write on this side only, legibly and neatly, between the margins

PAPER

11(4) E

QUESTION

SOLUTION

3.

(i)
$$P(B \cup C) = 1$$
,

$$P(A \cup B) = \frac{3}{4},$$

$$P(A \mid B) = \frac{1}{3} \div \frac{7}{12} = \frac{4}{7},$$

$$P(A \cup B \mid B \cap C) = P\{(A \cup B) \cap B \cap C) \div P(B \cap C) = \frac{1}{3} \div \frac{1}{3} = 1.$$

(ii) (a)
$$P(sss) + P(fss) = p^3 + (1-p)qp$$
.

(b)
$$P(sfsfsf) + P(fsfsfs)$$

= $p(1-p)q(1-p)q(1-p) + (1-p)q(1-p)q(1-p)q$
= $(p+q)(1-p)^3q^2$.

2

2

3

4

5

Setter: M.J.Crowder

Setter's signature:

Checker: R. Coleman

Checker's signature:

MJ Cocincler & Colinsus

EXAMINATION QUESTION / SOLUTION

2004-2005

Please write on this side only, legibly and neatly, between the margins

PAPER

IL (4) E

QUESTION

4

SOLUTION

$$\lambda \ge 0$$
 because $P(N=r+1) \ge 0$ and $P(N=r)/(r+1) \ge 0$.

$$\lambda = 0$$
 implies $P(N = r + 1) = 0$ for $r = 0, 1, 2, ...$, so $P(N = 0) = 1$.

$$P(N=r+1) = \frac{\lambda}{r+1}P(N=r) = \frac{\lambda}{r+1}\frac{\lambda}{r}P(N=r-1).$$

$$P(N = r) = \frac{\lambda}{r} P(N = r - 1) = \dots = \frac{\lambda^r}{r!} P(N = 0)$$

$$P(N = r) = \sum_{r=0}^{\infty} P(N = r) = \sum_{r=0}^{\infty} \frac{\lambda^r}{r!} P(N = 0) = e^{\lambda} P(N = 0),$$

so $P(N = r) = e^{-\lambda} \lambda^r / r!$.

$$P(N = r \mid N > 0) = P(N = r \cap N > 0)/P(N = 0)$$

$$= (e^{-\lambda} \lambda^r / r!) \div (1 - e^{-\lambda}) (r = 1, 2, ...)$$

$$E(N \mid N > 0) = \sum_{r=1}^{\infty} r(e^{-\lambda} \lambda^r / r!) / (1 - e^{-\lambda})$$

$$= (1 - e^{-\lambda})^{-1} e^{-\lambda} \lambda \sum_{r=1}^{\infty} \lambda^{r-1} / (r-1)! = \lambda / (1 - e^{-\lambda}).$$

Setter: M.J.Crowder

Setter's signature:

MJ Crowder

Checker: R. Coleman

C'hecker's signature:

RC

EXAMINATION QUESTION / SOLUTION

2004-2005

Please write on this side only, legibly and neatly, between the margins

PAPER

I(4) E

QUESTION

5

SOLUTION

joint density $f(y_1, y_2) = (y_1 e^{-y_1}) \times (y_2 e^{-y_2})$ (since independent)

conditional density $f(y_2 \mid y_1) = y_2 e^{-y_2}$ (since independent)

$$E(Y_1) = \int_0^\infty y_1^2 e^{-y_1} dy_1 = 2$$

5.

$$E(3Y_1 - 2Y_2) = (3 \times 2) - (2 \times 2) = 2$$

$$E(Y_1Y_2) = 2 \times 2 = 4$$
 (since independent)

$$\begin{split} \mathrm{P}(Y_2 > 2Y_1) &= \int_0^\infty dy_1 \int_{2y_1}^\infty dy_2 \big\{ y_1 \mathrm{e}^{-y_1} y_2 \mathrm{e}^{-y_2} \big\} \\ &= \int_0^\infty \big\{ [-y \mathrm{e}^{-y}]_{2y_1}^\infty + \int_{2y_1}^\infty \mathrm{e}^{-y} dy \big\} dy_1 \\ &= \int_0^\infty y_1 \mathrm{e}^{-y_1} \big(2y_1 \mathrm{e}^{-2y_1} + \mathrm{e}^{-2y_1} \big) dy_1 = result \ given. \end{split}$$

$$P\{\max(Y_1,Y_2)>2\min(Y_1,Y_2)\}=P(Y_2>2Y_1)+P(Y_1>2Y_2)=14/27.$$

2

2

2

2

2

6

4

Setter: M.J.Crowder

Setter's signature:

MJ Crewder

Checker: R. Coleman

Checker's signature:

R C

EXAMINATION QUESTION / SOLUTION

2004-2005

Please write on this side only, legibly and neatly, between the margins

PAPER

I(4) E

QUESTION

6

SOLUTION

$$P(y_{max} \le u) = P(y_1 \le u) \times P(y_2 \le u) \times ... = (u/\theta)^n.$$

density fn
$$f(y_{max}) = \frac{d}{du} P(y_{max} \le u) = n\theta^{-n} u^{n-1}$$
.

$$\mathbb{E}(y_{max}) = \int_0^\theta u \times n\theta^{-n}u^{n-1}du = n\theta/(n+1)$$

$$E(y_{max}^2) = \int_0^\theta u^2 \times n\theta^{-n} u^{n-1} du = n\theta^2/(n+2)$$

$$\Rightarrow \operatorname{var}(y_{max}) = \theta^2(\frac{n}{n+2} - \frac{n^2}{(n+1)^2}) = n\theta^2/\{(n+1)^2(n+2)\}.$$

estimators

bias
$$E(y_{max}) - \theta = \theta(\frac{n}{n+1} - 1) = -\theta/(n+1)$$

bias
$$\mathrm{E}(ny_{min})-\theta=\theta(\frac{n}{n+1}-1)=-\theta/(n+1)$$

variance
$$\operatorname{var}(y_{max}) = n\theta^2/\{(n+1)^2(n+2)\}$$

variance
$${\rm var}(ny_{min})=n^2\times n\theta^2/\{(n+1)^2(n+2)\}$$
 so $ratio=n^2$

Checker R Coleman