Machine Learning in Healthcare

Introduction

- AIML for predicting disease progression
- Identifying patterns and trends in patient data
- Machine Learning Algorithms :
 - Linear Regression
 - Logistic Regression
 - Tree Models
- Stages of medical science :
 - Diagnosis (detection)
 - Prognosis (prediction)
 - Treatment (course of action)

Data Science

Convergence of

Machine Learning

 Ability of machines to learn without being explicitly programmed.(Arthur Samuel, 1950s)

Definitions and Terminologies

- Iris Data set (R.A.Fisher, statistician and biologist):
- Target (species of Iris plant): output variable
- PL, PW, SL, SW: input variables
- Output variable or response variable : our primary focus of interest
- Input variables : Features, Predictors, Inputs

Definitions and Terminologies

- 2 kinds of problems are seen:
 - Supervised Learning:
 - Unsupervised Learning :

CRISP-DM

Disclaimer: In a real life scenario, a lot of this happens parallelly, although above figure shows it in a serial/sequential fashion.

One important thing that is missing from my above figure, is the problem statement. What is it that we are trying to solve, or achieve?

— Deepak.

- Using medical data to predict risks and to predict disease progression and mortality (survival models) based on data available on patient
- Predicting the risk of a future event.
- Prognosis is also useful for guiding treatment.

CHADSVASc score:

- Atrial fibrillation is a abnormal heart rhythm that puts the patient at a risk of stroke.

-

https://en.wikipedia.org/wiki/CHA2DS2% E2%80%93VASc_score

	CHA ₂ DS ₂ -VASc risk factor	Points
С	Congestive heart failure	+1
Н	Hypertension	+1
\mathbf{A}_{2}	Age 75 years or older	+2
D	Diabetes mellitus	+1
S ₂	Previous stroke, transient ischaemic attack or thromboembolism	+2
٧	Vascular disease	+1
Α	Age 65–74 years	+1
Sc	Sex category (female)	+1

- Coming to concordance-index.
- The basic idea behind evaluating a prognostic model is to see how well it performs on pairs of patients.

- Calculation of c-index is shown.
- Example of how to calculate c-index using the table provided.

C-index =	# concordant pairs + 0.5 × $#$ risk ties		
C-mdex —	# permissible pairs		

Patient	Event	Risk
A	Yes	0.8
В	No	0.43
C	Yes	0.62
D	Yes	0.58
E	No	0.62

Decision Trees

- Can be used for classification and regression problems.
- Non parametric
- Splits the data into quadrants
- ▶ High overfitting based on data, so high variance, low bias.

Decision Trees

Bagging

- Sampling with replacement: Single data point can be sampled multiple times and used to train models.
- Aggregation : aggregating all these models together and getting an average
- ▶ Parameters: Number of samples to consider, number of trees to create
- Reduces variance

Decision Trees

- Boosting
 - ► Incremental Learning
 - ▶ Second model learns from first, third model from the second, and so on
 - ▶ The errors in previous model is weighted and given in the next model so that it learns from it more and so on.
 - Reduces bias

Random Forests

- Ensemble method
- Compared to bagging, reduces the correlation in the models
- m 'random' predictors possible at each level = sqrt(p) or p/3