Package 'ExactVaRTest'

August 22, 2025

Title Exact Finite-Sample Value-at-Risk Back-Testing

Version 0.1.3

Language en-US

Maintainer Yujian Chen <yjc4996@gmail.com>

Description Provides fast dynamic-programming algorithms in 'C++'/'Rcpp' (with pure 'R' fallbacks) for the exact finite-sample distributions and p-values of Christoffersen (1998) independence (IND) and conditional-coverage (CC) VaR backtests. For completeness, it also provides the exact unconditional-coverage (UC) test following Kupiec (1995) via a closed-form binomial enumeration. See Christoffersen (1998) <doi:10.2307/2527341> and Kupiec (1995) <doi:10.3905/jod.1995.407942>.

License GPL (>= 3)

Depends R (>= 3.5.0)

Imports Rcpp, stats

LinkingTo Rcpp

Suggests bench, dplyr, tidyr, purrr, ggplot2, xts, quantmod, knitr, rmarkdown, testthat (>= 3.0.0)

Encoding UTF-8

RoxygenNote 7.3.2

URL https://github.com/YujianCHEN219/ExactVaRTest

BugReports https://github.com/YujianCHEN219/ExactVaRTest/issues

Acknowledgements I greatly appreciate Christian Francq, Christophe Hurlin, and Jean-Michel Zakoian's guidance and support. In particular, Christian Francq generously shared the initial idea; without his help, this package would not exist.

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation yes

Author Yujian Chen [aut, cre]

Repository CRAN

Date/Publication 2025-08-22 17:20:02 UTC

Contents

ExactVaRTest-package
backtest_all
backtest_lr
lr_cc_dist
lr_cc_stat
lr_ind_dist
lr_ind_stat
lr_uc_dist
lr_uc_stat
print.ExactVaRBacktest
print.ExactVaRBacktestAll
pval_lr_cc
pval_lr_ind
pval_lr_uc

ExactVaRTest-package ExactVaRTest - Exact Finite-Sample VaR Back-Testing

Description

Provides fast dynamic-programming algorithms (C++/Rcpp) – with pure-R fall-backs – for the exact finite-sample distributions and p-values of Christoffersen's (1998) VaR back-tests: Independence (IND) and Conditional Coverage (CC) tests, and the Unconditional Coverage (UC) test via closed-form binomial enumeration.

Author(s)

Maintainer: Yujian Chen <yjc4996@gmail.com>

See Also

Useful links:

- https://github.com/YujianCHEN219/ExactVaRTest
- Report bugs at https://github.com/YujianCHEN219/ExactVaRTest/issues

backtest_all 3

backtest_all

Exact UC/IND/CC back-tests in one call

Description

Exact UC/IND/CC back-tests in one call

Usage

```
backtest_all(x, alpha = 0.05, sig = 0.05, prune_threshold = 1e-15)
```

Arguments

```
x 0/1 exception series.

alpha Exception probability.

sig Significance level (default 0.05).

prune_threshold

Passed to the dynamic programming engine.
```

Value

An object of class "ExactVaRBacktestAll" (a named list) with components: uc, ind, cc (each a list with stat, pval, reject), and scalars sig (significance level), alpha (model exception probability), n (sample size).

Examples

```
set.seed(1)
x <- rbinom(300, 1, 0.02)
backtest_all(x, alpha = 0.02)</pre>
```

backtest_lr

Exact finite-sample back-test for a VaR exception series

Description

Exact finite-sample back-test for a VaR exception series

Usage

```
backtest_lr(
    x,
    alpha = 0.05,
    type = c("uc", "ind", "cc"),
    sig = 0.05,
    prune_threshold = 1e-15
)
```

lr_cc_dist

Arguments

x 0/1 exception series.

alpha Exception probability.

type "uc", "ind" or "cc".

sig Significance level (default 0.05).

prune_threshold

Passed to the dynamic-programming engine.

Value

An object of class "ExactVaRBacktest" (a named list) with components: stat (numeric LR statistic), pval (numeric exact p-value in [0,1]), reject (logical; TRUE if p < sig), type (character; one of "uc", "ind", "cc"), alpha (numeric model exception probability), sig (numeric significance level), n (integer sample size).

Examples

```
set.seed(123)
x <- rbinom(250, 1, 0.01)
backtest_lr(x, alpha = 0.01, type = "uc")</pre>
```

lr_cc_dist

Exact LR_cc (and LR_uc) distribution (auto-select engine)

Description

Returns the finite-sample distribution of Christoffersen's conditional-coverage statistic $LR_{\rm cc}$. The returned list also includes the matching unconditional-coverage distribution $LR_{\rm uc}$, produced by the same dynamic-programming run.

Usage

```
lr_cc_dist(n, alpha = 0.05, prune_threshold = 1e-15)
```

Arguments

n Integer sample size $(n \geq 1)$. alpha Exception probability $\alpha \in (0,1)$. prune_threshold

Probability below which states are pruned by the dynamic-programming recursion

Value

A named list with elements LR_cc, prob_cc, LR_uc, prob_uc. The pairs (LR_cc, prob_cc) and (LR_uc, prob_uc) have equal lengths; each probability vector is in [0, 1] and sums to 1.

lr_cc_stat 5

Examples

```
lr_cc_dist(8, 0.05)
```

lr_cc_stat

Christoffersen LR_cc statistic

Description

Christoffersen LR_cc statistic

Usage

```
lr_cc_stat(x, alpha = 0.05)
```

Arguments

x 0/1 exception series.alpha Exception probability.

Value

Numeric LR_cc statistic.

lr_ind_dist

Exact LR_ind distribution (auto-select engine)

Description

Returns the finite-sample distribution of Christoffersen's independence statistic $LR_{\rm ind}$.

Usage

```
lr_ind_dist(n, alpha = 0.05, prune_threshold = 1e-15)
```

Arguments

n Integer sample size $(n \geq 1)$. alpha Exception probability $\alpha \in (0,1)$. prune_threshold

Probability below which states are pruned by the dynamic-programming recursion

Value

A named list with elements LR and prob of equal length, where LR is the support of the LR statistic and prob are the corresponding probabilities in [0,1] that sum to 1.

lr_uc_dist

Examples

```
lr_ind_dist(8, 0.05)
```

lr_ind_stat

Christoffersen LR_ind statistic

Description

Christoffersen LR_ind statistic

Usage

```
lr_ind_stat(x, alpha = 0.05)
```

Arguments

x 0/1 exception series.alpha Exception probability.

Value

Numeric LR_ind statistic.

lr_uc_dist

Exact LR_uc distribution (closed-form binomial)

Description

Exact LR_uc distribution (closed-form binomial)

Usage

```
lr_uc_dist(n, alpha = 0.05)
```

Arguments

n Integer sample size $(n \geq 1)$. alpha Exception probability $\alpha \in (0,1)$.

Value

A named list with elements LR and prob of equal length, where LR is the support of the LR statistic and prob are the corresponding probabilities in [0, 1] that sum to 1.

Examples

```
lr_uc_dist(8, 0.01)
```

lr_uc_stat 7

lr_uc_stat

Christoffersen LR_uc statistic

Description

Christoffersen LR_uc statistic

Usage

```
lr_uc_stat(x, alpha = 0.05)
```

Arguments

x 0/1 exception series.alpha Exception probability.

Value

Numeric LR_uc statistic.

```
print.ExactVaRBacktest
```

Print method for ExactVaRBacktest

Description

Print method for ExactVaRBacktest

Usage

```
## S3 method for class 'ExactVaRBacktest'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

Arguments

x An object of class 'ExactVaRBacktest'.

digits Number of digits to print.

... Further arguments passed to or from other methods (ignored).

Details

Prints the test name, sample size n, model alpha, significance level, LR statistic, exact p-value, and the decision at the specified level.

Value

The input object x, returned invisibly (class ExactVaRBacktest).

8 pval_lr_cc

```
print.ExactVaRBacktestAll
```

Print method for ExactVaRBacktestAll

Description

Print method for ExactVaRBacktestAll

Usage

```
## S3 method for class 'ExactVaRBacktestAll'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

Arguments

x An object of class 'ExactVaRBacktestAll'.

digits Number of digits to print.

. . . Further arguments passed to or from other methods (ignored).

Details

Prints a header with sample size n, model alpha and significance level, followed by per-test blocks for UC, IND, and CC: LR statistic, exact p-value, and the decision at the specified level.

Value

The input object x, returned invisibly (class ExactVaRBacktestAll).

```
pval_lr_cc
```

Exact p-value for LR_cc

Description

Exact p-value for LR_cc

Usage

```
pval_lr_cc(lr_obs, n, alpha = 0.05, prune_threshold = 1e-15)
```

Arguments

1r_obs Observed LR_cc statistic.

n Sample size.

alpha Exception probability.

prune_threshold

State-pruning threshold for DP engine.

pval_lr_ind 9

Value

Numeric exact p-value in [0, 1]; may be NA_real_ if the finite-sample distribution is unavailable.

pval_lr_ind

Exact p-value for LR_ind

Description

Exact p-value for LR_ind

Usage

```
pval_lr_ind(lr_obs, n, alpha = 0.05, prune_threshold = 1e-15)
```

Arguments

1r_obs Observed LR_ind statistic.

n Sample size.

alpha Exception probability.

prune_threshold

State-pruning threshold for DP engine.

Value

Numeric exact p-value in [0, 1]; may be NA_real_ if the finite-sample distribution is unavailable.

pval_lr_uc

Exact p-value for LR_uc

Description

Exact p-value for LR_uc

Usage

```
pval_lr_uc(lr_obs, n, alpha = 0.05)
```

Arguments

1r_obs Observed LR_uc statistic.

n Sample size.

alpha Exception probability.

Value

Numeric exact p-value in [0, 1]; may be NA_real_ if the finite-sample distribution is unavailable.

Index

```
backtest_all, 3
backtest_lr, 3

ExactVaRTest (ExactVaRTest-package), 2
ExactVaRTest-package, 2

lr_cc_dist, 4
lr_cc_stat, 5
lr_ind_dist, 5
lr_ind_stat, 6
lr_uc_dist, 6
lr_uc_stat, 7

print.ExactVaRBacktest, 7
print.ExactVaRBacktestAll, 8
pval_lr_cc, 8
pval_lr_ind, 9
pval_lr_uc, 9
```