Consideraciones para el análisis de datos en los cursos de laboratorio de Física

Héctor F. Hernández G.

7 de junio de 2024

Introducción

En este capítulo, se abordan conceptos fundamentales relacionados con el manejo de datos numéricos en el laboratorio.

- Redondeo de números para obtener valores aproximados.
- Consideración de cifras significativas para expresar la precisión de una magnitud.

Redondeo

El redondeo permite simplificar números manteniendo una precisión adecuada.

- Si el primer dígito a suprimir es menor que 5, el último dígito conservado no cambia.
- Si es mayor o igual a 5, se aumenta en uno el último dígito conservado.

	Número	5 cifras	4 cifras	3 cifras	2 cifras	1 cifra
а	3.14159	3.1416	3.142	3.14	3.1	3
b	9.8070e-3	9.8070e-3	9.807e-3	9.81e-3	9.8e-3	1e-2
С	0.644510	0.64451	0.6445	0.645	0.64	0.6
d	327508	32751e1	3275e2	328e3	33e4	3e5

Cifras Significativas

Las cifras significativas son los dígitos que aportan información sobre la precisión de una medición.

- Se cuentan desde el primer dígito diferente de cero.
- Incluyen todos los dígitos hasta el primer dígito afectado por el error.

Ejemplos:

- 1.231 m; 123.1 cm; 1231 mm (4 cifras significativas)
- 2 21.03 g y 200.3 cm (4 cifras significativas)
- 3 2.00 cm y 740 m (3 cifras significativas)
- 4 0.48 s y 0.0052 g (2 cifras significativas)
- **6** 323e-3 kg y 3.00e8 m/s (3 cifras significativas)

Operaciones con Cifras Significativas

Suma y Resta

• Redondear el resultado final al número de cifras decimales de la magnitud menos precisa.

1) 25.340	2) 58.0	3) 1.6523
+5.465	+0.038	-0.015
+0.322	+1.0001	
31.127	59.0381	1.6373
Resultado	59.0	1.637

Regresión Lineal 7 de junio de 2024

Operaciones con Cifras Significativas

Multiplicación y División

- Redondear el resultado final al número de cifras significativas del factor menos preciso.
- $7,485 \cdot 8,61 = 64,4 \text{m}^2$
- **2** $7485 \cdot 8,61 = 644 \times 10^2 \text{m}^2$

Orden de Magnitud

El orden de magnitud de una cantidad es la potencia de diez más cercana a esa cantidad.

- ullet La masa de la Tierra: $5{,}983 imes 10^{24} \ \mathrm{kg}
 ightarrow 10^{25} \ \mathrm{kg}$
- $0.0035 \rightarrow 10^{-3}$
- $800 \times 10^{-3} \rightarrow 10^0$ cm

Ejemplos de Orden de Magnitud

Determinar el orden de magnitud de una cantidad física:

$$10^{24} {\rm kg} < 5.983 \times 10^{24} {\rm kg} < 10^{25} {\rm kg}$$

Diferencias respectivas:

$$5{,}983\times10^{24}{\rm kg}-10^{24}{\rm kg}=4{,}983\times10^{24}{\rm kg}$$

$$10^{25} \mathrm{kg} - 5{,}983 \times 10^{24} \mathrm{kg} = 4{,}017 \times 10^{24} \mathrm{kg}$$

La menor diferencia indica mayor proximidad, por lo tanto, 10^{25} es el orden de magnitud más cercano.

Ejercicios

• Determinar el número de cifras significativas y el orden de magnitud de:

1 Radio de la Tierra: 6.371×10^6 m

2 Volumen de la Tierra: $1{,}087 \times 10^{21} \text{ m}^3$

3 Aceleración de la gravedad: 9,80665 m/s²

2 Expresar en órdenes de magnitud:

1 Edad del universo: 3×10^{10} años en segundos.

2 Velocidad de la luz en: m/s, m/h y km/día.

3 Densidad del hierro en: kg/m³ y g/cm³.

3 Un estudiante midió el radio de una esfera como 10.00 mm.

1 Calcular el área.

2 Calcular el volumen.

3 Indicar el orden de magnitud.

4 Expresar los siguientes números con diferentes cifras significativas:

0.4536	98.372	70045.6
163571	3.13100	26.39
0.45330	0.00332998	20150.0

5 Calcular L con cifras significativas:

$$L = \frac{k^2}{a} + \epsilon$$

4 D > 4 B > 4 B > 4 B > B 990

9/1