Prácticas Algorítmica

Práctica 2: Algoritmos Divide y vencerás.

1. Introducción

En nuestra práctica tratará de realizar un algoritmo de tal manera que teniendo K vectores ordenados (de menor a mayor), cada uno con n elementos, combinarlos en un único vector ordenado. Primeramente tendremos un algoritmo clásico que mezcla los dos primeros vectores y posteriormente mezclar el resultado con el tercero, y así sucesivamente.

De este algoritmo calcularemos su eficiencia empírica e hibrida.

Seguidamente haremos un algoritmo con la técnica divide y vencerás, y también calcularemos sus eficiencias.

Para finalizar se hará una comparación de ambos algoritmos.

2. Algoritmo clásico.

Este algoritmo funciona de la forma descrita anteriormente se reduce a un algoritmo clásico que mezcla los dos primeros vectores y posteriormente mezclar el resultado con el tercero, y así sucesivamente. El resultado de este algoritmo es un único vector ordenado.

La implementación de este algoritmo será adjuntado junto a la memoria de la práctica.

2.1. Calculo de la eficiencia Empírica.

n° elementos	Tiempo(s)	n° elementos	Tiempo(s)	n° elementos	Tiempo(s)
100	0.005133	1800	1.62265	3500	6.11224
200	0.020329	1900	1.80992	3600	6.61078
300	0.045334	2000	1.99132	3700	6.85466
400	0.080664	2100	2.2094	3800	7.26931
500	0.125412	2200	2.44205	3900	7.61078
600	0.180962	2300	2.65012	4000	7.97684
700	0.245671	2400	2.87367	4100	8.38083
800	0.320125	2500	3.13111	4200	8.80057
900	0.406008	2600	3.365	4300	9.24958
1000	0.503808	2700	3.65005	4400	9.64928
1100	0.603094	2800	3.90684	4500	10.1376
1200	0.721512	2900	4.21462	4600	10.6817
1300	0.841956	3000	4.47824	4700	11.0514
1400	0.982038	3100	4.79779	4800	11.4943
1500	1.1191	3200	5.29258	4900	12.0436
1600	1.28251	3300	5.44126	5000	12.4697
1700	1.43771	3400	5.86189		

2.2. Calculo de la eficiencia Hibrida.

Como vemos la gráfica que forma la eficiencia de este algoritmo se ajusta bastante bien a la curva ajustada del mismo. En alguno de los puntos vemos que sobresale de la curva ajustada.

3. Algoritmo utilizando divide y vencerás.

Este algoritmo trata el mismo problema que el clásico pero en este caso mediante la técnica divide y vencerás. Hacemos k/2, y estos vectores resultantes se mezclan en otro, y así sucesivamente hasta obtener la mezcla de todos estos vectores en uno.

La eficiencia teórica seria con la ecuación de $T(k)=T(k/2)+K^*n$ y sale de orden (n log n). El resultado de esta práctica será un único vector ordenado el cual combina todos los otros vectores. La implementación de este algoritmo se adjuntara con esta memoria.

3.1. Calculo de la eficiencia Empírica.

n°elementos	Tiempo(s)	n°elementos	Tiempo(s)	n°elementos	Tiempo(s)	n°elementos	Tiempo(s)
100	0.00253	2600	0.045248	5100	0.095512	7600	0.149482
200	0.002578	2700	0.04716	5200	0.097532	7700	0.150561
300	0.004153	2800	0.049255	5300	0.09888	7800	0.152012
400	0.005683	2900	0.050958	5400	0.101057	7900	0.154472
500	0.007384	3000	0.052914	5500	0.102698	8000	0.156037
600	0.008987	3100	0.054754	5600	0.106146	8100	0.158131
700	0.010598	3200	0.057004	5700	0.106594	8200	0.160495
800	0.012332	3300	0.059573	5800	0.109	8300	0.164103
900	0.014279	3400	0.061604	5900	0.110085	8400	0.164521
1000	0.016047	3500	0.063604	6000	0.113071	8500	0.166537
1100	0.017635	3600	0.065399	6100	0.114841	8600	0.169631
1200	0.019444	3700	0.08193	6200	0.117269	8700	0.170747
1300	0.021119	3800	0.069242	6300	0.117813	8800	0.173572
1400	0.022902	3900	0.071121	6400	0.121609	8900	0.174625
1500	0.024452	4000	0.07341	6500	0.12364	9000	0.176688
1600	0.026535	4100	0.075116	6600	0.143654	9100	0.179151
1700	0.029368	4200	0.077529	6700	0.129186	9200	0.184542
1800	0.030745	4300	0.079068	6800	0.131643	9300	0.183185
1900	0.032403	4400	0.082152	6900	0.132884	9400	0.186102
2000	0.034346	4500	0.08294	7000	0.135798	9500	0.187407
2100	0.036565	4600	0.085199	7100	0.138006	9600	0.190919
2200	0.037907	4700	0.086978	7200	0.143754	9700	0.191811
2300	0.039463	4800	0.089737	7300	0.142286	9800	0.193527
2400	0.041707	4900	0.090832	7400	0.143843	9900	0.19442
2500	0.043524	5000	0.093359	7500	0.145875	10000	0.199078

3.2. Calculo de la eficiencia Hibrida.

En la gráfica podemos observar como la eficiencia empírica se ajusta muy bien a la curva ajustada, aunque se ve que algunos puntos salen de la curva.

4. Conclusión.