

LFA - Aula 06

Equivalência entre AFD e AFND Equivalência entre ER's e AF's Equivalência entre GR's e AF's

Celso Olivete Júnior celso.olivete@unesp.br

Na aula passada...

- Autômato finito não-determinístico com e sem movimentos vazios
 - O autômato tem o poder de estar em vários estados ao mesmo tempo

No estado **p** ao ler o símbolo **a** assume **q1** e **q2** como novos estados atuais

Na aula de hoje:

- Equivalência entre AFND e AFD
- · Conversões:

ER's em AF's e AF's em ER's

GR's em AF's e AF's em GR's

Referência bibliográfica

HOPCROFT, J. E.; ULLMAN, J. D.; MOTWANI, R. Introdução à Teoria de Autômatos, Linguagens e Computação. Editora Campus, 2002 → Capítulos 2 e 3

Equivalência entre AFD's e AFND's

Linguagens Formais e Teoria da Computação

Equivalência entre AFD e AFND

- •Teorema: Seja L o conjunto aceito por um AFND, então existe um AFD que aceita L são equivalentes.
- •Embora muitas vezes seja mais fácil construir um AFND para uma L, o AFD tem na prática quase o mesmo número de estados que um AFND, embora ele tenha mais transições.
- •No pior caso, o menor AFD pode ter 2ⁿ estados, enquanto o menor AFND (para a mesma linguagem) tem apenas n estados

Equivalência entre AFD e AFND

 A prova de que os AFD's podem fazer tudo o que os AFND's podem fazer envolve a construção de subconjuntos

- •A construção dos subconjuntos começa a partir de um AFND N = $(\mathbf{Q}_n, \Sigma, \delta_n, \{\mathbf{q}_0\}, \mathbf{F}_n)$. O objetivo é a descrição de um AFD D= $(\mathbf{Q}_D, \Sigma, \delta_D, \{\mathbf{q}_0\}, \mathbf{F}_D)$ \rightarrow tal que L(D) = L(N)
 - Σ é o mesmo
 - O estado inicial de D é o conjunto que contem apenas o estado inicial de N

Equivalência entre AFD e AFND

- · Construção dos outros elementos de D
 - ${}^{ullet}Q_D$ é o conjunto de subconjuntos de Q_N
 - $\cdot Q_D$ representa o conjunto de potências de Q_N . Ex:
 - •Se Q_N tem n estados Q_D terá 2^n estados (no pior caso)
 - •F_D é o conjunto de subconjuntos de S de $Q_N \to$ representa todos os conjuntos de estados de N que incluem pelo menos um estado de aceitação de N

$$\delta_{D}(S,a) = U \delta_{N}(p,a)$$

•Para calcular δ_D (S,a), basta observar todos os estados de p em S, e ver para quais estados N vai para p sobre a entrada "a" e fazemos a união de todos esses estados.

Linguagens Formais e Teoria da Computação

AFND aceita cadeia de 0's e 1's com final 01

Estados de N \rightarrow {q0,q1,q2}

• 3 estados: logo envolverá a construção de 2³ = 8 subconjuntos. O AFD terá no máximo 8 estados.

Construção dos subconjuntos

Entrada

Estado	0	1
Ø	Ø	Ø
→{q0}	{q0,q1}	{q0}
{q1}	Ø	{q2}
*{q2}	Ø	Ø
{q0,q1}	{q0,q1}	{q0,q2}
*{q0,q2}	{q0,q1}	{q0}
*{q1,q2}	Ø	{q2}
*{q0,q1,q2}	{q0,q1}	{q0,q2}

Renomeando os subconjuntos

Entrada

	Entrada	
Estado	0	1
Α	Α	Α
→B	Е	В
С	Α	D
*D	Α	Α
Е	E	F
* F	Е	В
* G	Α	D
* H	Е	F

Olivete

Linguagens Formais e Teoria da Computa

Equivalência entre AFD e AFND

Eliminando estados inacessíveis

A partir de B (est.inicial) só é possível chegar em B, E e F. Os outros estados são inacessíveis e devem ser removidos.

Para cada entrada a calcula-se $\delta_D(S,a) \rightarrow obtêm$ os acessíveis

Para o exemplo anterior

B
$$\delta_{D}(\{q0\}, 0) = \{q0, q1\}$$
 $\delta_{D}(\{q0\}, 1) = \{q0\}$

$$\delta_{D}$$
 ({q0}, 1) = {**q0**}

$$\delta_{D}(\{q0,q1\},0) = \{q0,q1\}$$
 $\delta_{D}(\{q0,q1\},1) = \{q0,q2\}$

$$\delta_{D}(\{q0,q1\},1) = \{q0,q2\}$$

F Pois:
$$\delta_{D}$$
 ({q0,q2}, 0) = δ_{N} ({q0}, 0) U δ_{N} ({q2}, 0) \rightarrow {q0,q1} U Ø = {q0,q1} δ_{D} ({q0,q2}, 1) = δ_{N} ({q0},1) U δ_{N} ({q2},1) \rightarrow {q0} U Ø = {q0}

Como {q0,q1} e {q0} já foram encontrados → a simplificação pára (convergiu), conhecemos todos os estados acessíveis e suas transições

Equivalência entre AFD e AFND

AFND AFD

- mesmo número de estados, porém o AFD tem um número maior de transições

Prevendo entradas erradas

•A definição de um AF EXIGE que todo estado tenha uma transição para cada símbolo (\in ao Σ) lido da entrada

•Podemos criar um estado de não aceitação (erro) para prever um possível dado inválido de uma determinada linguagem (AF "morre"). Ex: reconhece identificadores de variáveis em ling. C

Q0 Q2 Q2

L={A..Z, a..z}

 $D=\{0..9\}$

AFND para busca em textos

- Exemplo: Através de palavras-chave encontrar ocorrência de quaisquer dessas palavras em um repositório de documentos on-line.
 - Passos
 - O texto do documento é transferido um caractere de cada vez
 - •O AFD deverá reconhecer as palavras-chave. Ex: web, ebay

Exercícios

1. Converta o AFND para AFD

Exercícios

2. Construa um AFND (sem mov. vazios) que seja capaz de reconhecer as seguintes palavras-chave {he, she, hers, his}. Utilize tratamento de erros, por exemplo: caso seja encontrado um caractere inválido (Σ={h, e, r, s, i}) retorne para o estado inicial, reiniciando a leitura.

3. Converta para AFD o exercício anterior.

Linguagens Formais e Teoria da Computação

- 4. Seção 2.3 (páginas 71 a 73)
- 5. Seção 2.4 (página 78)

Equivalência entre AF's e ER's

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- 3. Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- 3. Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- 3. Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- 3. Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- 3. Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

ER correspondente. Passos:

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- 3. Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

Passo 2

ER1: (0+1)*1(0+1)

Passo 2

ER1: (0+1)*1(0+1)

Passo 2

Passo 2

ER2: (0+1)*1(0+1)(0+1)

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- 3. Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

Linguagens Formais e Teoria da Computação

Conversão de AF para ER

Passo 2 ER1 (0+1)* (0+1) (0+1) 1 1 0 q2 q3 Passo 2

ER1: (0+1)*1(0+1)

Passo 2

ER2 Passo 2

ER2: (0+1)*1(0+1)(0+1)

ER correspondente. Passos:

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

ER final. Passo 3 ER: ER1 ∪ ER2

ER= (0+1)*1(0+1) + (0+1)*1(0+1)(0+1)

Dado o AFD que reconhece a $L=\{0^n1^m \mid n \geq 0 \text{ e m \'e}$ múltiplo de 3}, encontre a ER correspondente.

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- 3. Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

Dado o AFD que reconhece a $L=\{0^n1^m \mid n \geq 0 \text{ e m \'e}$ múltiplo de 3}, encontre a ER correspondente.

ER 0*+(0*10*10*1)*

ER correspondente. Passos:

- 1. Encontrar a ER para cada estado
- 2. Encontrar, a partir da união de todas as ER's, uma ER que vai do estado inicial para o estado final
- Caso tenha mais de um estado final, a ER resultante será a união das ER's obtidas no passo 2

Olivete Júnior 26

- •Toda linguagem definida por um ER também é definida por um AF.
- •Construção de um AF a partir de uma ER → componentes básicos:

Caso a ER tenha mais de um operador (união, concatenação e fechamento).

União

ER = R + S

Caso a ER tenha mais de um operador (união, concatenação e fechamento).

Concatenação

ER = RS

Caso a ER tenha mais de um operador (união, concatenação e fechamento).

Fechamento

ER = R*

Converter a ER = (0 + 1)* 1(0 + 1) em um AFND com movimentos vazios.

(0 + 1)*

Converter a ER = (0 + 1)* 1(0 + 1) em um AFND com movimentos vazios.

Exercícios

5. Da Seção 3.2 (exercícios 3.2.1, 3.2.2, 3.2.3e 3.2.4) - páginas 113 a 115

Conversão entre GR's e AF's

Equivalência entre GR's e AF's

•Dada uma gramática linear à direita é possível construir um autômato finito capaz de reconhecer a mesma linguagem.

Seja G uma gramática linear à direita. Então é possível definir um autômato finito M de tal modo que L(G) = L(M).

Equivalência entre GR's e AF's

• Dada a gramática G = (V,T,P,S), onde P são do tipo:

$$1. X \rightarrow aY$$

$$2. X \rightarrow Y$$

$$3. X \rightarrow a$$

$$4. X \rightarrow \varepsilon$$

• com
$$S,Y \in V$$
, $a \in T$

Algoritmo de equivalência entre GR's e AF's

- ·Algoritmo de conversão GR → AF
- Entrada: uma gramática linear à direita G;
- •Saída: um autômato finito M tal que L(M) = L(G);
- ·Método:

1. Conjunto de estados:

- 1. $X \rightarrow \alpha Y$
- 2. $X \rightarrow Y$ G = (V, T, P, S)
- 3. $X \rightarrow a$
- 4. $X \rightarrow \varepsilon$
- com $X,Y \in V$, $a \in T$
- Cada estado de M corresponde a um dos símbolos não-terminais de G. A esse conjunto acrescenta-se um novo símbolo (estado) $Z \notin V$, ou seja, $\{Q\} = V \cup \{Z\}$. O estado inicial de M é S, a raiz da gramática. O estado final de M é Z, o novo estado acrescentado.

2. Alfabeto de entrada:

• O alfabeto de entrada Σ de M é o mesmo alfabeto Σ de G.

Algoritmo de equivalência entre GR's e AF's

- ·Algoritmo de conversão GR → AF
 - 3. Função de transição:

·Para cada regra de produção em P da gramática G, e

conforme seu tipo:

1. Se
$$X \rightarrow aY$$
 então $\delta = \delta \cup \{(X,a) \rightarrow Y\}$;

2. Se
$$X \rightarrow Y$$
 então $\delta = \delta \cup \{(X, \epsilon) \rightarrow Y\}$;

3. Se
$$X \rightarrow a$$
 então $\delta = \delta \cup \{(X,a) \rightarrow Z\}$;

4. Se
$$X \rightarrow \varepsilon$$
 então $\delta = \delta \cup \{(X, \varepsilon) \rightarrow Z\}$;

$$G = (V,T,P,S)$$

1.
$$X \rightarrow aY$$

2.
$$X \rightarrow Y$$

3.
$$X \rightarrow a$$

4.
$$X \rightarrow \varepsilon$$

• com
$$X,Y \in V$$
, $a \in T$

Algoritmo de equivalência entre GR's e AF's

3. Função de transição:

- •\delta =∅;
- •Para cada regra de produção em P da gramática G, e conforme seu tipo:
 - 1. Se $X \rightarrow aY$ então $\delta = \delta \cup \{(X,a) \rightarrow Y\}$;

2. Se X \rightarrow Y então $\delta = \delta \cup \{(X, \varepsilon) \rightarrow Y\}$;

3. Se $X \rightarrow a$ então $\delta = \delta \cup \{(X,a) \rightarrow Z\}$;

4. Se $X \rightarrow \varepsilon$ então $\delta = \delta \cup \{(X, \varepsilon) \rightarrow Z\}$;

·Seja G uma gramática linear à direita:

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

$$T = \{a,b,c\}$$

$$P = \{S \rightarrow a, S \rightarrow aK, K \rightarrow bK, K \rightarrow L, L \rightarrow cL, L \rightarrow \epsilon\}$$

·Seja G uma gramática linear à direita:

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

$$T = \{a,b,c\}$$

$$P = \{S \rightarrow a, S \rightarrow aK, K \rightarrow bK, K \rightarrow L, L \rightarrow cL, L \rightarrow \epsilon\}$$

·Seja G uma gramática linear à direita:

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

$$T = \{a,b,c\}$$

$$P = \{S \rightarrow a, S \rightarrow aK, K \rightarrow bK, K \rightarrow L, L \rightarrow cL, L \rightarrow \epsilon\}$$

·Seja G uma gramática linear à direita:

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

$$T = \{a,b,c\}$$

$$P = \{S \rightarrow a, S \rightarrow aK, K \rightarrow bK, K \rightarrow L, L \rightarrow cL, L \rightarrow \epsilon\}$$

·Seja G uma gramática linear à direita:

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

$$T = \{a,b,c\}$$

$$P = \{S \rightarrow a, S \rightarrow aK, K \rightarrow bK, K \rightarrow L, L \rightarrow cL, L \rightarrow \epsilon\}$$

$$\delta = \delta \cup \{(L,c) \rightarrow L\};$$

·Seja G uma gramática linear à direita:

$$G = (V,T,P,S)$$

$$V = \{S, K, L\}$$

$$T = \{a,b,c\}$$

$$P = \{S \rightarrow a, S \rightarrow aK, K \rightarrow bK, K \rightarrow L, L \rightarrow cL, L \rightarrow \epsilon\}$$

$$\delta = \delta \cup \{(L, \varepsilon) \rightarrow Z\};$$

·Seja G uma gramática linear à direita:

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

$$T = \{a,b,c\}$$

$$P = \{S \Rightarrow a, S \Rightarrow aK, K \Rightarrow bK, K \Rightarrow L, L \Rightarrow cL, L \Rightarrow \epsilon\}$$

$$\delta = \delta \cup \{(L,\epsilon) \Rightarrow L\};$$

Celso Olivete Júnior

 $\delta = \delta \cup \{(L, \varepsilon) \rightarrow Z\};$

·Seja G uma gramática linear à direita:

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

$$T = \{a,b,c\}$$

 $P = \{S \rightarrow a, S \rightarrow aK, K \rightarrow bK, K \rightarrow L, L \rightarrow cL, L \rightarrow \epsilon\}$

•O AF corresponde

é dado por:

Qual a L(G) e a L(M)?

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

$$T = \{a,b,c\}$$

 $P = \{S \rightarrow a, S \rightarrow aK, K \rightarrow bK, K \rightarrow L, L \rightarrow cL, L \rightarrow \epsilon\}$

•O AF corresponde é dado por:

Qual a L(G) e a L(M)?

R.: ab*c*

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

Qual a L(G) e a L(M)?

R.: ab*c*

Seja G uma gramática linear à direita. Então é possível definir um autômato finito M de tal modo que L(G) = L(M).

$$G = (V,T,P,S)$$

$$V = \{S,K,L\}$$

$$T = \{a,b,c\}$$

Qual a L(G) e a L(M)?

R.: ab*c*

Exemplo de sentença

aceita por L: abbcc

$$P = \{S \rightarrow a, S \rightarrow aK, K \rightarrow bK, K \rightarrow L, L \rightarrow cL, L \rightarrow \epsilon\}$$

•O AF corresponde

é dado por:

Conversão entre AF's e GR's

Equivalência entre AF's e GR's

Seja M um autômato finito qualquer. Então é possível definir uma gramática linear à direita G, de tal modo que L(M) = L(G).

• Dado $M = (\{Q\}, \Sigma, \delta, q0, \{F\})$ um $AFND-\varepsilon$ é possível construir uma gramática linear à direita G = (V, T, P, S) a partir de M.

Algoritmo de equivalência entre AF's e GR's

- ·Algoritmo de conversão AF → GR
- Entrada: um autômato finito M;
- •Saída: uma gramática linear à direita G tal que L(G) = L(M);
- ·Método:
 - 1. Definição do conjunto de símbolos não-terminais:
 - Os símbolos não-terminais de G correspondem aos estados de M. A raiz da gramática é q0 (estado inicial).
 - 2. Alfabeto de entrada:
 - O alfabeto Σ de G é o próprio alfabeto de entrada Σ de M.

Algoritmo de equivalência entre AF's e GR's

- ·Algoritmo de conversão AF → GR
 - 3. Produções:
 - P ← ∅;
 - Para cada elemento de δ do AFND- ϵ M, e conforme o tipo das transições de M:
 - •1 Se $\delta(X,a) = Y$, então $P\{X \rightarrow aY\}$;
 - •2 Se $\delta(X,\varepsilon) = Y$, então $P\{X \rightarrow Y\}$.
 - Para cada elemento de Q do AFND-ε M:
 - •1 Se $X \in F$, então $P\{X \rightarrow \epsilon\}$.

Se X é um estado final

Equivalência entre AF's e GR's

•Exemplo: Dado ο AFND-ε M definido e representado abaixo

$$M = (\{Q\}, \Sigma, \delta, q0, \{F\})$$

$$Q = \{q0, q1, q2\}$$

$$\Sigma = \{a,b,c\}$$

$$\delta = \{(q0,a)=q1, (q1,b)=q1, (q1,c)=q2, (q1,\epsilon)=q2, (q2,c)=q2\}$$

$$F = \{q2\}$$

Equivalência entre AF's e GR's

•Aplicando-se o algoritmo de conversão ao AFND- ϵ M, obtém-se a gramática linear à direita G, cujo conjunto de produções P corresponde à segunda coluna da mesma. Note que L(M) = L(G) = ab*c*.

$$G = (V, \Sigma, P, q0)$$

 $V = \{q0,q1,q2\}$
 $\Sigma = \{a,b,c\}$

Linguagens Formais e Teoria da

outação ente

 $G = (V, \Sigma, P, q0)$ $V = \{q0,q1,q2\}$ $\Sigma = \{a,b,c\}$ •Para cada elemento de δ do AFND- ϵ M, e conforme o tipo das transições de M:

1. Se
$$\delta(X,a) = Y$$
, então $P\{X \rightarrow aY\}$;

2. Se
$$\delta(X,\varepsilon) = Y$$
, então $P\{X \rightarrow Y\}$.

Para cada elemento de Q do AFND-ε M:

1. Se
$$X \in F$$
, então $P \leftarrow \{X \rightarrow \epsilon\}$.

 $\delta(q0,a)=q1 \iff q0 \rightarrow aq1$ $\delta(q1,b)=q1 \iff q1 \rightarrow bq1$ $\delta(q1,c)=q2 \qquad q1 \rightarrow cq2$ $\delta(q1,\epsilon)=q2 \qquad q1 \rightarrow q2$ $\delta(q2,c)=q2 \iff q2 \rightarrow cq2$ **q**2 ∈ **F ←2**p **←2**p

G= ({A, B, C}, {a,b,c}, P, A) P:{ $A \rightarrow aB$ $B \rightarrow bB$ Renomeando os estados $B \rightarrow cC$ $A \rightarrow aB$ $A \rightarrow aB$ $A \rightarrow a$

Linguagens Formais e Teoria da Computação


```
G = (\{A, B, C\}, \{a,b,c\}, P, A)
A \rightarrow \alpha B
B→bB
B \rightarrow cC
B \rightarrow C
C \rightarrow cC
C→ε
```


Dado o AFD que reconhece a $L=\{0^n1^m \mid n \geq 0 \text{ e m \'e}$ múltiplo de 3}, encontre a GR correspondente.

Dado o AFD que reconhece a $L=\{0^n1^m \mid n \geq 0 \text{ e m \'e}$ múltiplo de 3}, encontre a GR correspondente.

Dado o AFD que reconhece a L= $\{0^n1^m \mid n \ge 0 \text{ e m \'e}$ múltiplo de 3 $\}$, encontre a GR correspondente.

Dado o AFD que reconhece a $L=\{0^n1^m \mid n \geq 0 \text{ e m \'e}$ múltiplo de 3}, encontre a GR correspondente.


```
G = (\{A, B, C\}, \{0,1\}, P, A)
P:{
A \rightarrow 0A
                       Renomeando os estados
A \rightarrow 1B
                       q0 \rightarrow A
B \rightarrow OB
                       q2→ C
B \rightarrow 1C
C \rightarrow 0C
C \rightarrow 1A
A \rightarrow \epsilon
```


Dado o AFD que reconhece a L= $\{0^n1^m \mid n \ge 0 \text{ e m \'e}$ múltiplo de 3 $\}$, encontre a GR correspondente.

 $G = (\{A, B, C\}, \{0,1\}, P, A)$ Renomeando os estados $A \rightarrow \varepsilon$

Exercícios

•Escolha 5 enunciados (dos 39 propostos) dos exercícios da Aula 3 e aplique os algoritmos de conversão