Data as objects & architectures

Readings for today

- Wickham, H. (2014). Tidy data. Journal of Statistical Software, 59(10), 1-23.
- Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., Das, S., Duff, E. P., ... & Handwerker, D. A. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific data, 3(1), 1-9.

<u>Supplemental reading</u>: Wickham, H., & Grolemund, G. (2016). R for data science: import, tidy, transform, visualize, and model data. "O'Reilly Media, Inc.".

Topics

1. Data tables

2. Tidy data

3. Standardized data architectures

Data tables

What is data?

<u>Data</u>: Information, especially facts or numbers, collected to be examined and considered and used to help decision-making, or information in an electronic form that can be stored & used in a computer. - Cambridge Dictionary

Data Types:

- 1. Quantitative a direct and continuous mapping between variation in an observable phenomenon and numeric value.
- 2. Qualitative a discrete mapping between an static environmental state or category and an alphanumerical symbol.

How is data stored?

Data files: How your data are stored in a physical medium.

- 1. Human readable files that can be read in text editors by humans (e.g., .csv, .txt)
- 2. **Binary** files that are compressed for storage or security (e.g., .mat, .R, .sav)

Human readable (.csv)

Binary (.mat)

How is data organized?

<u>Data Tables</u>: Data that is loaded into memory and organized in a way that allows for it to be analyzed.

Tidy data

Tidy data

Definition: A standard way of mapping the meaning of a dataset to its structure.

Properties:

- 1. Each variable forms a column.
- 2. Each observation forms a row.
- 3. Each observational unit forms a table.

		iable -			
	date	daily deaths	hospitalized		
observation -	5/7/20	2752	51425		
	4/29/20	2685	55987		
	4/15/20	2546	59924		
	5/5/20	2494	53176		
	4/21/20	2481	59773		
	12/1/20	2473	98691		
	4/14/20	2353	59600		ر ما م
	11/25/20	2289	89959	\vdash	obs
e.	4/16/20	2197	59498		
	4/30/20	2153	54921		
	4/17/20	2118	58886		
	4/22/20	2082	59212		
	4/11/20	2079	55557		
	4/28/20	2077	56034		
	4/10/20	2072	53167		
	11/24/20	2066	88080		

observational unit

Key terms

Dataset: collection of values.

Value: analytical unit (number/string).

Variable: values that measure the same attribute across units.

Observation: all values measured on the same unit.

<u>Table</u>: collection of variables and observations organized as a two-dimensional array.

Dirty vs. tidy tables

Dirty

Person	Treatment	Result
Joe	a	_
June	a	16
Mary	a	3
Joe	b	2
June	b	11
Mary	b	1

Tidy

	a	b
Joe	_	2
June	16	11
Mary	3	1

- 1. Each variable forms a column.
- 2. Each **observation** forms a **row**.
- 3. Each observational unit forms a table.

Problem

1. Column headers are values, not variable names.

Solution

Melting

Melting

Dirty

row	a	b	C
X	1	4	7
Y	2	5	8
Z	3	6	9

Melting: Unify data across columns that are subordinate to a common variable.

Tidy

label	condition	Value
X	a	1
Y	a	2
Z	a	3
X	b	4
Y	b	5
Z	b	6
X	C	7
Y	C	8
Z	С	9

Problem Solution

- 1. Column headers are values, not variable names.
- 2. Multiple variables are stored in one column.

Melting

Splitting

Splitting

Dirty

	J	
Country	Group	Cases
US	M014	0
US	M1524	0
US	F014	1
US	F1524	0
UK	M014	2
UK	M1524	1
UK	F014	0
UK	F1524	3

Tidy

Country	Gender	Age	Cases
US	М	0-14	0
US	M	15-24	0
US	F	0-14	1
US	F	15-24	0
UK	M	0-14	2
UK	M	15-24	1
UK	F	0-14	0
UK	F	15-24	3

Splitting: Separating one column with multiple variables in to multiple columns with one variable.

Problem Solution

- 1. Column headers are values, not wariable names.
- 2. Multiple variables are stored in one Splitting column.
- 3. Variables are stored in both rows and columns.

 Casting

Casting

Dirty

Date	Measure	Value
1/20	mean	23
1/20	variance	10
2/20	mean	35
2/20	variance	7
3/20	mean	29
3/20	variance	15

Tidy

Date	Mean	Variance
1/20	23	10
2/20	35	7
3/20	29	15

Casting: Values in a single column reflecting multiple types of variables are rotated into separate columns.

Problem Solution

- 1. Column headers are values, not variable names.
- 2. Multiple variables are stored in one column.
- 3. Variables are stored in both rows <u>and</u> columns.
- 4. Multiple types of observations are stored in the same table.

Melting

Splitting

Casting

Parsing

Parsing

Raw

DOI	Author	Title	Year	Citations
0.001	Verstynen	"Data rules"	2017	2
0.001	Verstynen	"Data rules"	2018	10
0.001	Verstynen	"Data rules"	2019	50
0.001	Verstynen	"Data rules"	2020	101
0.002	Holt	"Theory rules!"	2017	10
0.002	Holt	"Theory rules!"	2018	211
0.002	Holt	"Theory rules!"	2019	561
0.002	Holt	"Theory rules!"	2020	1014

Types of observations:

- 1. Paper identity
- 2. Citations across time

Parsing

Article Identity (Table 1)

DOI	Author	Title
0.001	Verstynen	"Data rules"
0.002	Holt	"Theory rules!"

Parsing: Take 1 table, with multiple observational units, and separate it into multiple tables with unique observational units.

Citations (Table 2)

DOI	Year	Citations
0.001	2017	2
0.001	2018	10
0.001	2019	50
0.001	2020	101
0.002	2017	10
0.002	2018	211
0.002	2019	561
0.002	2020	1014

Problem

- 1. Column headers are values, not variable names.
- 2. Multiple variables are stored in one column.
- 3. Variables are stored in both rows <u>and</u> columns.
- 4. Multiple types of observations are stored in the same table.
- 5. Single observational unit stored in multiple tables.

Solution

- Melting
- Splitting
- Casting
- Parsing

Concatenation

Concatenation

Raw (Subject 1)

Raw (Subject 2)

Trial	Cond	RT
1	Α	380
2	В	599
3	Α	240
	•	

Trial	Cond	RT
1	Α	692
2	В	476
3	A	301

Concatenate: Merge multiple data tables, with the same observational units, into a single table.

Tidy

Subject ID	Trial	Cond	RT
S001	1	Α	380
S001	2	В	599
S001	3	Α	240
S002	1	Α	692
S002	2	В	476
S002	3	A	301

Problem

- 1. Column headers are values, not variable names.
- 2. Multiple variables are stored in one column.
- 3. Variables are stored in both rows <u>and</u> columns.
- 4. Multiple types of observations are stored in the same table.
- 5. Single observational unit stored in multiple tables.

Solution

- Melting
- Splitting
- Casting
- Parsing

Concatenation

Standardized data architectures

Beyond data tables

<u>Data Standardization:</u> Systematic file formats, directory organization, & naming logic that allows for effective collaboration & sharing.

Advantages:

- 1. **Minimal curation**: Makes it possible for those not involved in the research to understand the data with minimal instructions.
- 2. Error reduction: Reduces errors attributed to misunderstanding the meaning of a given datum.
- 3. Optimal Data Use: Facilitates aggregation across studies to promote reuse & re-analysis.
- 4. Automation: Fosters the development of tools that work across data sets.

Data architectures

A formal logic of data & directory organization.

Pay attention to:

- File types
- Naming logic
- Directory hierarchy
- Documentation & meta-data

Raw architecture **BIDS** my_dataset/ dicomdir/ participants.tsv 1208200617178_22/ sub-01/ □ 1208200617178_22_8973.dcm ■ anat/ 1208200617178 22 8943.dcm sub-01_T1w.nii.gz 1208200617178 22 2973.dcm □ 1208200617178_22_8923.dcm sub-01_task-rest_bold.nii.gz 1208200617178_22_4473.dcm sub-01_task-rest_bold.json 1208200617178_22_8783.dcm 1208200617178_22_7328.dcm 1208200617178_22_9264.dcm sub-01_dwi.nii.gz sub-01_dwi.json 1208200617178_22_9967.dcm 1208200617178_22_3894.dcm aub-01_dwi.bval 1208200617178_22_3899.dcm sub-01_dwi.bvec sub-02/ 1208200617178_23/ sub-03/ 1208200617178_24/

1208200617178 25/

sub-04/

Take home message

Having a standard logic for your data tables (e.g., tidy) and files (e.g., BIDS) reduces many sources of errors and facilitates data & code sharing.