Package 'sim1000G'

July 19, 2017

2 computePairIBD12

sim10	000G-package	Simul genor		of	rai	·e/c	on	ım	on	va	ria	nt	s u	sii	ng	ha	pl	oty	pε	e d	lat	'a j	fro	m	10	000	
Index																											12
	writePED		 	•			•	•		•		•	•	•		•	•		•			•		•	•	•	11
	startSimulation .																										
	SIM		 																								10
	readVCF																										9
	readGeneticMapFr	omFile	 																								9
	readGeneticMap .																										
	printMatrix	_																									
	plotRegionalGenet																										7
	newNuclearFamily																										7
	newFamilyWithOf																										e
	getCMfromBP																										ϵ
	geneticMap		 																								

(generic description)

computePairIBD12

Computes pairwise IBD1/2 for a specific pair of individuals

Description

Computes pairwise IBD1/2 for a specific pair of individuals

Usage

```
computePairIBD12(i, j)
```

Arguments

- i Index of first individual
- j Index of second individual

Value

Mean IBD1 and IBD2 as computed from shared haplotypes

createVCF 3

createVCF Creates a regional vcf file using bcftools to extract a region from 1000 genomes vcf files

Description

Creates a regional vcf file using bcftools to extract a region from 1000 genomes vcf files

Usage

createVCF()

Value

none

crossoverCDFvector

Contains recombination model information.

Description

This vector contains the density between two recombination events, as a cumulative density function.

Usage

crossoverCDFvector

Format

An object of class logical of length 1.

 ${\tt downloadGeneticMap}$

Downloads a genetic map for a particular chromosome under GRCh37 coordinates for use with sim1000G.

Description

Downloads a genetic map for a particular chromosome under GRCh37 coordinates for use with sim1000G.

Usage

```
downloadGeneticMap(chromosome)
```

Arguments

chromosome

Chromosome number to download recombination distances from.

generate Recombination Distances

Generate recombination distances using a chi-square model.

Description

Generate recombination distances using a chi-square model.

Usage

generateRecombinationDistances(n)

Arguments

n

Number of distances to generate

Value

vector of recombination distances in centimorgan

 ${\tt generateRecombinationDistances_noInterference}$

Generate recombination distances using a no-interference model.

Description

Generate recombination distances using a no-interference model.

Usage

generateRecombinationDistances_noInterference(n)

Arguments

. .

Number of distances to generate

Value

recombination distances in centimorgan

generateSingleRecombinationVector

Genetates a recombination vector arising from one meiotic event. The origin of segments is coded as (0 - haplotype1, 1 - haplotype2)

Description

Genetates a recombination vector arising from one meiotic event. The origin of segments is coded as (0 - haplotype1 , 1 - haplotype2)

Usage

generateSingleRecombinationVector(cm)

Arguments

cm

The length of the region that we want to generate recombination distances.

geneticMap

Holds the genetic map information that is used for simulations.

Description

Holds the genetic map information that is used for simulations.

Usage

geneticMap

Format

An object of class environment of length 0.

getCMfromBP

Converts centimorgan position to base-pair.

Description

Converts centimorgan position to base-pair.

Usage

```
getCMfromBP(bp)
```

Arguments

bp

vector of base-pair positions

newFamilyWithOffspring

Simulates genotypes for 1 family with n offspring

Description

Simulates genotypes for 1 family with n offspring

Usage

```
newFamilyWithOffspring(family_id, noffspring = 2)
```

newNuclearFamily 7

Arguments

family_id What will be the family_id (for example: 100)
noffspring Number of offsprings that this family will have

Value

family structure object

newNuclearFamily

Simulates genotypes for 1 family with 1 offspring

Description

Simulates genotypes for 1 family with 1 offspring

Usage

```
newNuclearFamily(family_id)
```

Arguments

family_id What will be the family_id (for example: 100)

Value

family structure object

 $\verb|plotRegionalGeneticMap| \\$

Generates a plot of the genetic map for a specified region.

Description

The plot shows the centimorgan vs base-pair positions. In addition it showt the locations of the markers that have been read.

Usage

```
plotRegionalGeneticMap(bp)
```

Arguments

bp Vect

Vector of base-pair positions to generate a plot for

8 readGeneticMap

	_:				<u>-</u>
nı	r 1	n	ΓIV	ιат	rix

Prints a matrix

Description

Prints a matrix

Usage

```
printMatrix(m)
```

Arguments

m

Matrix to be printed

readGeneticMap

Reads a genetic map downloaded from the function download G enetic Map.

Description

The map contains a complete chromosome to be used for simulations. The file must be downloaded using the function downloadGeneticMap.

Usage

```
readGeneticMap(chromosome, dir = ".")
```

Arguments

chromosome

Chromosome number to download recombination distances from.

dir

Directory the map file is located.

readGeneticMapFromFile

Reads a genetic map to be used for simulations.

Description

The file must be contain the following columns in order: chromosome, basepaire, rate(not used), centimorgan

Usage

```
readGeneticMapFromFile(filelocation)
```

Arguments

filelocation Filename containing the genetic map

readVCF

Read a vcf file, with options to filter out low or high frequency markers.

Description

Read a vcf file, with options to filter out low or high frequency markers.

Usage

```
readVCF(filename = "haplosims/1.vcf", thin = 1, maxNumberOfVariants = 400,
    min_maf = 0.02, max_maf = NA)
```

Arguments

filename Input VCF file

thin How much to thin markers

maxNumberOfVariants

Maximum number of variants to keep from region

min_maf Minimum allele frequency of markers to keep
max_maf Maximum allele frequency of markers to keep

Value

none

10 startSimulation

SIM

Holds data necessary for a simulation.

Description

Holds data necessary for a simulation.

Usage

SIM

Format

An object of class environment of length 5.

startSimulation

Start the simulation

Description

Start the simulation

Usage

```
startSimulation(vcf, totalNumberOfIndividuals = 250, randomdata = 0)
```

Arguments

vcf

Input vcf file of a region (can be .gz). Must contain phased data.

totalNumberOfIndividuals

Maximum Number of individuals that will ever be generated

randomdata

If 1, disregards the genotypes in the vcf file and generates markers that are not in LD. Generally do not use.

writePED 11

writePED	Writes a plink compatible PED/MAP file from the simulated genotypes

Description

Writes a plink compatible PED/MAP file from the simulated genotypes

Usage

```
writePED(vcf, fam, filename = "out")
```

Arguments

vcf vcf object used in simulation
fam Individuals / families to be written

filename Basename of output files (.ped/.map will be added automatically)

Index

```
*Topic datasets
    crossoverCDFvector, 3
    geneticMap, 6
    SIM, 10
computePairIBD12, 2
createVCF, 3
crossoverCDFvector, 3
downloadGeneticMap, 4
generateRecombinationDistances, 4
{\tt generateRecombinationDistances\_noInterference},
{\tt generateSingleRecombinationVector}, {\tt 5}
geneticMap, 6
getCMfromBP, 6
{\tt newFamilyWithOffspring}, {\color{red} 6}
newNuclearFamily, 7
plotRegionalGeneticMap, 7
printMatrix, 8
readGeneticMap, 8
readGeneticMapFromFile, 9
readVCF, 9
SIM, 10
sim1000G(sim1000G-package), 2
sim1000G-package, 2
{\it startSimulation}, \\ 10
writePED, 11
```