Les fonctions

- 1. Une **fonction** est un procédé qui relie un ou plusieurs nombres à un unique autre nombre.
- 2. Soit f une fonction, et soit a et b 2 nombres réels tels que :

$$f(a) = b$$

- 'b' est l'image de 'a' par f,
- 'a' est un antécédent de 'b' par f,
- Une image est unique,
- Il peut exister plusieurs antécédents à une image.
- 3. La **représentation graphique** d'une fonction est la courbe constituée de l'ensemble des points de coordonnées (x;f(x)).
- 4. L'ensemble de définition d'une fonction, noté usuellement D est l'ensemble des nombres pour lesquels il existe une image par la fonction.
- Soit f une fonction, soit D_f l'ensemble de définition de f, soit x∈D_f.
 L'expression algébrique de la fonction f donne f(x) en fonction de la variable x.

1. La fonction donnant le volume d'un cube d'arête x : $\mathcal{V}(x) = x^3$ La fonction g(x,y,z) représentant la loi normale (ou loi de Laplace-Gauss) de paramètre σ centrée au point de coordonnées (0;0;0) :

$$g(x,y,z) = \frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{(x^2+y^2+z^2)}{\sigma^2}\right)$$

3. Représentation graphique de la loi normale à une seule variable

4. Domaine de définition :

$$D_{\mathcal{V}} = [0; +\infty[$$

$$D_{g(x,y,z)} = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^{3}$$

Algèbre

Les fonctions de références

La fonction carré :

Domaine de définition : $D_f = \mathbb{R}$ Équation : $y = x^2$

Tableau de valeur :

	X	-3	-2	-1	0	1	2	3
f(x)	9	4	1	0	1	4	9

Représentation graphique :

La fonction inverse :

Domaine de définition : $D_f = \mathbb{R}^*$

<u>Équation</u>: $y = \frac{1}{x}$

Tableau de valeur :

			1	0			
f(x)	-1/3	-1/2	-1	X	-1	1/2	1/3

Représentation graphique :

La fonction racine carrée :

Domaine de définition : $D_f = \mathbb{R}^+$

<u>Équation</u>: $y = \sqrt{x}$

Tableau de valeur :

Χ	0	1	4	9	16	25	36
f(x)	0	1	2	3	4	5	6

Représentation graphique :

définition

propriété

méthode

Somme, produit généralisés et sommation d'Einstein

Somme généralisée :

La somme généralisée permet d'abréger des expressions algébriques.

$$\sum_{i=0}^{100} i = 0 + 1 + 2 + 3 + \dots + 97 + 98 + 99 + 100$$

$$\sum_{i=1}^{3} a_i = a_1 + a_2 + a_3 + a_4$$

$$\sum_{i=1}^{3} \sum_{i=1}^{3} a_{ij} = a_{11} + a_{21} + a_{31} + a_{12} + \dots + a_{23} + a_{33}$$

Produit généralisée :

Le produit généralisé permet d'abréger des expressions algébriques.

$$\prod_{i=0}^{4} a_i = a_0 \times a_1 \times a_2 \times a_3 \times a_4$$

Convention de sommation d'Einstein :

C'est également une notation permettant d'alléger les expressions algébriques. Un indice « i » répété 2 fois dans un terme indique qu'une somme généralisée d'indice « i » est effectuée. Cet indice est également appelé indice muet.

$$i \in \{0, 1, 23\}$$
 : $b_{ii} = b_{00} + b_{11} + b_{22} + b_{33}$

$$k \in \{0, 1, 2, 3\}$$
 : $a_{kl}x_k = a_{1l}.x_1 + a_{2l}.x_2 + a_{3l}.x_3$

La convention de notation d'Einstein est communément utilisé dans les expressions faisant intervenir des opérations entre vecteurs et matrices.

 $f(x) = 2.x^2 + 10.x + 1$

Polynôme du 2nd degré

Fonction polynomiale:

Une fonction f définie sur \mathbb{R} est qualifiée de polynomiale d'ordre 2 s'il existe $(a,b,c)\in\mathbb{R}^*\times\mathbb{R}^2$ tels que :

$$f(x) = a.x^2 + b.x + c$$

Représentation graphique :

Équation du 2nd degré :

Soit $(a,b,c) \in \mathbb{R}^* \times \mathbb{R} \times \mathbb{R}$, une équation du 2^{nd} degré est de la forme :

$$a.x^2 + b.x + c = 0$$

Discriminant:

Le discriminant de f(x) se note Δ et est donnée par :

$$\Delta = b^2 - 4ac$$

- $\Delta < 0$, alors l'équation $a.x^2+b.x+c=0$ n'a pas de solutions dans \mathbb{R} .
- Δ = 0, l'équation a.x²+b.x+c = 0 n'a 1 solution dans \mathbb{R} : $x_0 = \frac{-b}{2a}$
- $\Delta > 0$, l'équation $a.x^2+b.x+c=0$ admet 2 solutions dans \mathbb{R} .

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Exemples:

$$f_1(x) = x^2 + 4.x - 5$$

On calcul le discriminant :

$$\Delta = 4^2 - 4 \times 1 \times (-5) = 36$$

 $\Delta > 0$, $f_1(x)$ admet 2 racines réelles :

$$x_1 = -5$$
 et $x_2 = 1$

$$f_2(x) = 6.x^2 + 4.x + 1$$

On calcul le discriminant :

$$\Delta = 4^2 - 4 \times 6 \times 1 = -8$$

 Δ < 0, f₂(x) n'admet aucunes racines réelles.

définition

propriété

méthode

Polynôme du 2nd degré

<u>Variation de f(x) :</u>

Les variations et le signe de celle-ci sur son domaine de définition peuvent être synthétisés dans un tableau (ici a>0):

Х	$-\infty$	x_1	α	x_2	$+\infty$
signe	signe a	þ	signe -a	þ	signe a
f(x)	$+\infty$	- 0 -	β	0-	+∞
	lpha :	$=rac{-b}{2a}$	$\beta = f(\alpha)$)	

Différents scénarios de variation de f(x) :

En fonction du signe du coefficient "a" et du discriminant, on peut distinguer 6 cas :

propriété

méthode

<u>Les polynômes</u>

Formule générale :

Les polynômes du 2nd degré sont des cas particuliers de la famille des polynômes. Un polynôme de **degré n** est définit par la formule :

$$P = a_0 + a_1 \cdot x + \dots + a_n \cdot x^n = \sum_{i=0}^{n} a_i \cdot x^i$$

L'exposant n du terme **x**ⁿ correspondant au terme à la puissance la plus élevée du polynôme est également ce que l'on appelle le **degré du polynôme** P et se note **deg(P)**.

Forme factorisée :

Une seconde forme du polynôme est sa forme factorisée qui s'écrit :

$$P(x) = \lambda \prod_{i=0}^{N} (x - a_i)$$

Où λ est un scalaire (ici dans ce contexte un réel) et a_i est la ie racine du polynôme P. Ici, cette forme implique que P est autant de racine réelle que son degré, ce qui n'est pas forcément le cas dans \mathbb{R} .

Propriétés:

- La somme, le produit ou la composée de polynômes est un polynôme.
- Le produit d'un polynôme de degré p et d'un polynôme de degré q est un polynôme de degré p+q.
- Le produit de 2 polynômes P et Q est nul si au moins un des 2 polynômes est nul :

$$P \times Q = 0 \iff P = 0 \text{ ou } Q = 0$$

Les polynômes

Exemple de fonctions polynomiales :

Voici quelques exemples de fonctions polynomiales $p_1(x)$, $p_2(x)$, $p_3(x)$ et $p_4(x)$ respectivement de degré 3, 5, 4 et 6 :

Taux de variation:

Le taux de variation d'une fonction f entre a et b est donné par :

$$\frac{f(b) - f(a)}{b - a}$$

Le taux de variation est usuellement noté $\mathbf{T}_{\mathbf{f}}(\mathbf{a};\mathbf{b})$ ou $\frac{\Delta f}{\Delta x}(a;b).$

Dérivée en un point:

La fonction f est dite **dérivable au point d'abscisse a** si et seulement si le taux de variation de f entre a et a+h tend vers **un nombre réel unique lorsque h tend vers 0**. Ce nombre est le nombre dérivée de f en a que l'on note f'(a):

 $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Par « tend vers un nombre » signifie « se rapproche de plus en plus de ce nombre ».

<u>Dérivée en un point:</u>

La fonction f est **dérivable** sur un intervalle I si elle est **dérivable en tout réel x appartenant à cet intervalle**.

Soit la fonction f dérivable sur un intervalle I, on appelle fonction dérivée de la fonction f, la fonction notée f', qui à tout réel x de I associe le réel f'(x).

Autrement dit, **l'ensemble des valeurs dérivées de f en x**, où x appartient au domaine de dérivabilité de f , forme la fonction dérivée f'.

L'ensemble de dérivabilité d'une fonction est l'ensemble des points où f est dérivable.

propriété

Illustration de la notion de dérivée:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

La valeur de h tend vers 0

De manière grossière on peut assimiler la dérivée d'une fonction en un point comme le taux de variation pour une valeur de Δx infinitésimale, qui correspond aussi à la pente de la tangente à f au point d'abscisse a.

Formulaire sur les dérivées :

$$\forall k \in \mathbb{R}, \ f(x) = k \Longrightarrow f'(x) = 0$$

$$\forall k \in \mathbb{R}, \ f(x) = k \Longrightarrow f'(x) = 0$$

$$\forall n \in \mathbb{Z}^*, \ f(x) = x^n \Longrightarrow f'(x) = n \times x^{n-1}$$

$$f(x) = \exp(u(x)) \Longrightarrow f'(x) = u'(x) \cdot \exp(u(x))$$

$$f(x) = \ln(u(x)) \Longrightarrow f'(x) = \frac{u'(x)}{u(x)}$$

$$f(x) = u(x) + v(x) \Longrightarrow f'(x) = u'(x) + v'(x)$$

$$f(x) = u(x) \times v(x) \Longrightarrow f'(x) = u'(x) \times v(x) + u(x) \times v'(x)$$

$$f(x) = \frac{u(x)}{v(x)} \Longrightarrow f'(x) = \frac{u'(x) \times v(x) - u(x) \times v'(x)}{v(x)^2}$$

Exemples de fonctions dérivées:

$$f(x) = 5$$

f(x) est une fonction constante, on en déduit que la dérivée f'(x) est :

$$f'(x) = 0$$
$$g(x) = 3x^5$$

g(x) est une fonction de la forme $\mathbf{k.x^n}$,((k,n) $\in \mathbb{R} \times \mathbb{Z}^*$) on en déduit que la dérivée f'(x) est :

$$g'(x) = 3 \times 5.x^{5-1} = 15.x^4$$
$$h(x) = \exp(2.x^3 - x)$$

h(x) est une fonction de la forme $\exp(\mathbf{u}(\mathbf{x}))$ on en déduit que la dérivée h'(x) est : $h'(x) = (6.x^2 - 1) \exp(2.x^3 - x)$

$$i(x) = \ln(x^2 - 5x + 3)$$

i(x) est une fonction de la forme $\ln(\mathbf{u}(\mathbf{x}))$ on en déduit que la dérivée i'(x) est : 2x-5

$$i'(x) = \frac{2x - 5}{x^2 - 5x + 3}$$

$$j(x) = (2x^2 - x) \cdot \exp(x^3)$$

j(x) est une fonction de la forme $\mathbf{u}(\mathbf{x}).\mathbf{v}(\mathbf{x})$ on en déduit que la dérivée j'(x) est :

$$j'(x) = (4x - 1) \cdot \exp(x^3) + (2x^2 - x) \cdot (3x^2) \cdot \exp(x^3)$$

$$\Leftrightarrow j'(x) = (6x^4 - 3x^3 + 4x - 1) \cdot \exp(x^3)$$

Notation df/dx:

Le processus de dérivation peut s'écrire d'une autre manière que celle où « ' » est placée en exposant de la fonction que l'on dérive. La seconde notation s'exprime comme suit :

$$\frac{df}{dx} \equiv f'(x)$$

Composition de fonction:

Comme vous avez pu le voir, il arrive d'avoir des fonctions "imbriquées" dans d'autres fonctions. On appelle cela des fonctions composées. Par exemple la fonction f suivante :

$$f(u) = \exp(u(x)) + \exp(3.u(x))$$
$$u(x) = 3.x^2 + \sqrt{x}$$

On constate que f dépend de la fonction u qui dépend elle même de la variable x.

Il est possible d'écrire la fonction f directement en fonction de x pour dériver ensuite la fonction, mais cela peut devenir assez technique. Il est alors préférable de dériver f en fonction de u puis u en fonction de x:

$$\frac{df}{dx} = \frac{df}{du} \times \frac{du}{dx}$$

Il faut ensuite exprimer la dérivée de f en fonction de u, de même pour la dérivée de u en fonction de x :

$$\frac{df}{du} = \exp(u(x)) + 3 \cdot \exp(3 \cdot u(x)) \qquad \frac{du}{dx} = 6 \cdot x + \frac{1}{2\sqrt{x}}$$

La dérivée de f en fonction de x est donc :

$$\frac{df}{dx} = \left(\exp(u(x)) + 3 \cdot \exp(3 \cdot u(x))\right) \cdot \left(6x + \frac{1}{2\sqrt{x}}\right)$$

$$\frac{df}{dx} = \left(\exp(3.x^2 + \sqrt{x}) + 3.\exp(9.x^2 + 3\sqrt{x})\right) \cdot \left(6x + \frac{1}{2\sqrt{x}}\right)$$

La fonction exponentielle

Définition:

Domaine de définition : $D_f=\mathbb{R}$

<u>Équation</u>: y = exp(x)

Notations: $exp(x), e^x$

Х	$-\infty$	0	$+\infty$
exp	0	→ 1	$\rightarrow +\infty$

<u>Propriétés :</u>

- $\exp(0) = 1$
- $(\exp(x))' = \exp(x)$
- $\exp(a+b) = \exp(a) \times \exp(b)$
- $(\exp(a))^n = \exp(n.a)$

Représentation graphique

- $\exp(1) = e \approx 2,72$
- $\exp(-a) = \frac{1}{\exp(a)}$
- $\exp(a-b) = \frac{\exp(a)}{\exp(b)}$
 - $\forall x \in \mathbb{R}, \ \exp(x) > 0$

Composition de l'exponentielle:

- Si f(x) et g(x) 2 fonctions définies sur $\mathbb R$ telles que $f(x) = \exp(g(x))$ la dérivée de la fonction f est donnée par : $f'(x) = g'(x) \times \exp(g(x))$
- Soit k >0, la fonction $f(x) = \exp(k.x)$ est strictement croissante.
- Soit k < 0, la fonction $f(x) = \exp(k.x)$ est strictement décroissante.

$$f(x) = c$$

$$f(x) = c^{-3.x}$$

$$f(x) = e^{-3.x}$$

Algèbre

La fonction logarithme

Définition:

Domaine de définition : $D_f = \mathbb{R}^{+*}$

<u>Équation</u>: $y = \ln(x)$

ln(x), log(x)Notation:

Х	0	1	$+\infty$
In		→ 0	$\rightarrow +\infty$

Représentation graphique

Remarque:

La notation log est abusive car elle est normalement réservée pour le logarithme décimal

<u>Propriétés :</u>

- ln(1) = 0
- $\left(\ln(x)\right)' = \frac{1}{x}$
- $\ln(a \times b) = \ln(a) + \ln(b)$
- $\ln(a^n) = n \times \ln(a)$

- ln(e) = 1
- $\ln(\frac{1}{a}) = \ln(1) \ln(a) = -\ln(a)$
- $\ln(\frac{a}{h}) = \ln(a) \ln(b)$

<u>Composition du logarithme:</u>

Si f(x) et g(x) 2 fonctions définies sur R telles que $f(x) = \ln(g(x))$ la dérivée de la fonction f est donnée par :

$$f'(x) = \frac{g'(x)}{\ln(g(x))}$$

méthode

Les fonctions multivariables

Fonctions $\mathbb{R}^{\underline{n}} \to \mathbb{R}$:

Ici, nous nous intéressons uniquement aux fonctions définies \mathbb{R}^n (ou un sous ensemble non vide) dont le domaine image, noté Im(f), est égal ou inclut dans \mathbb{R} . Cela pour des raisons pratiques et de simplicité.

Nous nous intéressons donc aux fonctions à N variables indépendantes :

$$(x_1, x_2, ..., x_N) \in \mathbb{R}^N, f(x_1, x_2, ..., x_n) \in \mathbb{R}$$

Que l'on peut écrire aussi :

$$\mathbf{x} \in \mathbb{R}^N, f(\mathbf{x}) \in \mathbb{R}$$

Exemples:

Distribution gaussienne à 3 variables :

$$g(x, y, z) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x^2 + y^2 + z^2)}{\sigma^2}\right)$$

Masse d'une canette :

$$m(r, t, h, \rho) = 2\pi r^2 t \cdot \rho + 2\pi r \cdot h \cdot t \cdot \rho$$

où r est le rayon, h la hauteur, t l'épaisseur et ρ la masse volumique du matériau utilisé.

Surface représentative :

La représentation graphique des fonctions à plusieurs variables est aisée et "naturelle" pour des fonctions définies sur \mathbb{R}^2 . Au delà de il est courant de transformer une ou plusieurs variables en paramètres et tracer plusieurs surface pour différentes valeurs du/des paramètres.

Mais au-delà de 4 ou 5 variables, la représentation graphique tend à être abandonnée.

$$f(x,y) = \frac{1}{6\sqrt{2\pi}} \exp\left(-\frac{(x^2 + y^2)}{36}\right)$$

propriété

Les fonctions multivariables

Dérivation de fonction multivariables :

De la même manière que pour les fonctions à une variable, les fonctions à plusieurs variables peuvent être dérivée et est notée df.

La dérivée d'une fonction à plusieurs variables est la somme des dérivées partielles :

$$f(x, y, z) \Rightarrow df = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z}$$

 $\frac{\partial f}{\partial x}$ est la dérivée partielle de f par rapport à x (y et z sont considérées constantes)

 $\frac{\partial f}{\partial y}$ est la dérivée partielle de f par rapport à y (x et z sont considérées constantes)

 $\frac{\partial f}{\partial z}$ est la dérivée partielle de f par rapport à z (x et y sont considérées constantes)

Exemples:

$$f(x, y, z) = 3.x^3 + 2.\sqrt{y} - \frac{2}{z}$$

$$df = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 9.x^2 + \frac{2}{2\sqrt{y}} - \frac{2}{z^2}$$

$$g(x, y, z) = \exp\left(-\frac{x^2 + y^2 + z^2}{\sigma^2}\right)$$

$$dg = -\frac{2}{\sigma^2}(x+y+z)\exp\left(-\frac{x^2+y^2+z^2}{\sigma^2}\right)$$

