Concepts and Notations

- **Alphabet:** A finite, nonempty set of symbols. Conventionally, we use the symbol Σ for an alphabet.
 - Examples:
 - The set of all ASCII characters, or the set of all printable ASCII characters.
 - $\Sigma_1 = \{ a, b \}$
 - Σ_2 = { Spring, Summer, Autumn, Winter }
 - $\Sigma_3 = \{ 0, 1 \}$
- **String**: A finite sequence of zero or more symbols from an alphabet.
 - The empty string: ε
 - 01101 is a string from the binary alphabet Σ = { 0, 1 }

Concepts and Notations

- **Powers of an Alphabet**: If Σ is an alphabet, we denote by Σ^{κ} the set of all strings of length k.
 - Examples: Let $\Sigma = \{a, b, c\}$
 - $\Sigma^0 = \varepsilon$
 - $\Sigma^1 = \{ a, b, c \}$
 - Σ^2 = { aa, ab, ac,ba, bb, bc, ca, cb, cc }
 - Σ^3 = { aaa, aab, aac, aba, abb, abc, aca, acb, }

```
\Sigma^* = The set of all strings over \Sigma = \Sigma^0 \ U \ \Sigma^1 \ U \ \Sigma^2 \ U \ .... \Sigma^+ = The set of nonempty strings over \Sigma = \Sigma^1 \ U \ \Sigma^2 \ U \ \Sigma^3 \ U \ .... \Sigma^* = \Sigma^+ \ U \ \{\epsilon\}
```

• Exercise: Given $\Sigma = \{0, 1\}$, compute Σ^+ and Σ^* .

Formal Language

- Language: A set of strings over an alphabet.
 - If Σ is an alphabet, and $L \subseteq \Sigma^*$, then L is a language over Σ.
 - Also known as a formal language.
- Examples:
 - The language of all strings consisting of n 0's followed by n 1's for some n>=0:

$$\{\epsilon, 01, 0011, 000111, \ldots\}.$$

The set of string with equal numbers of 0's and 1's

$$\{\epsilon, 01, 10, 0011, 0101, 1001, \ldots\}$$

The set of binary numbers whose value is a prime

$$\{10, 11, 101, 111, 1011, \ldots\}$$

— The empty language, denoted \emptyset , is a language over any alphabet.

Operations on Languages

• Suppose L_1 and L_2 are languages over some common alphabet.

- Union $(L_1 \cup L_2)$: $\{w | w \in L_1 \lor w \in L_2\}$
- Concatenation ($L_1.L_2$): $\{w \cdot z | w \in L_1 \land z \in L_2\}$
- The Kleene Closure (L_1^*) : $\{\varepsilon\} \cup \{w \cdot z | w \in L_1 \land z \in L_1^*\}$

Regular Language

 Regular Languages are the simplest class of formal languages.

- Regular languages can be specified by
 - regular expressions (REs),
 - finite-state automata (FSAs),
 - regular grammars.