MANUALE SEZTORSIONE

INTRODUZIONE

Si spiega brevemente come inserire i dati nei file di input.

SEZIONE.CSV

Fig. 1

NUMERO PUNTI

Specificare il numero di punti che compongono la sezione. Ad esempio una sezione a doppio T è composta da 6 punti. Una sezione a C è composta da 4 punti (vedi figura sotto).

Fig. 2

X PUNTI

Si mette la coordinata X dei punti. L'ordine è:

$$[x_{punto1}, x_{punto2}, \dots, x_{puntoi}, \dots, x_{puntoN}]$$

Y PUNTI

Si mette la coordinata Y dei punti. L'ordine è:

$$[y_{punto1}, y_{punto2}, \dots, y_{puntoi}, \dots, y_{puntoN}]$$

NUMERO DI ASTE

È il numero di segmenti rettilinei che compongono la sezione. Ad esempio una sezione a doppio T è composta da 5 aste, una sezione a C è composta da 3 aste (vedi figura sotto) .

Fig. 3

CONNETTIVITA

Questo è il punto fondamentale. Se si sbaglia la connettività della sezione il programma non funziona.

All'interno delle parantesi quadre si deve scrivere una lista di coppie di numeri. Questi numeri sono i nomi dei nodi che vengono collegati dalle aste. Ad esempio l'asta 3 della figura precedente va dal nodo 2 al nodo 5, dunque si scriverà:

$$[[I1, J1], [I2, J2], [2, 5], \dots]$$

È FONDAMENTALE CHE CIASCUN NODO RISULTI ESSRE NODO DI ARRIVO SOLAMENTE PER UN ASTA, nella figura seguente viene illustrato il significato di questa frase.

Fig. 4: Definizione corretta della connettività.

Se in un unico nodo convergono due o più aste il software non funziona e restituisce un errore.

SPESSORI

Sono gli spessori delle aste, quindi è una lista di numeri. La lista è composta da un numero di valori pari al numero di aste.

SCALA DIAGRAMMA

Serve a riscalare il diagramma della funzione di ingobbamento che potrebbe essere troppo grande o troppo piccolo. Andando per tentativi si può trovare la visualizzazione piu corretta.

Fig. 5: Definizione sbagliata della connettività.

+

SCHEMA STATICO.CSV

Fig. 6

LUNGHEZZA TRAVE

Si specifica la lunghezza della trave in metri.

ESTREMO DESTRO VINCOLATO

Se l'estremo destro è vincolato la trave avrà vincolo sia a sinistra che a destra come nella seguente figura.

Altrimenti la trave è incastrata solo a sinistra.

NUMERO MOMENTI TORCENTI CONCENTRATI

Il numero di momenti torcenti lungo la trave.

INTENSITA MOMENTI TORCENTI CONCENTRATI

L'intensità dei moemnti torcenti lungo la trave in kNm.

POSIZIONE MOMENTI TORCENTI CONCENTRATI

La posizione è sempre data a partire dal nodo sinistro. Lo schema è quello della seguente figura.

Fig. 9

MATERIALE

È acciaio oppure calcestruzzo. Le proprietà del calcetruzzo non vengono calcolate in base alla classe ma sono fissate pari a E=30000MPa eG=15000MPa.

TRAVE PRISMATICA

Se la trave è prismatica allo è a sezione costante e basta indicare solamente un valore di Jt e uno di J ψ . Altrimenti bisognerà fare una lisa di valori del tipo [Jt del tratto 1, Jt del tratto 2, Jt del tratto 3, ...].

JT

Jt relativo alla torsione primaria. Di fatto è:

$$J_t = \sum_{i=1}^{Naste} \frac{s_i^3 * L_i}{3}$$

 $\mathsf{J}\psi$

È il modulo di inerzia settoriale. La formula generale è:

$$J_{\psi} = \int_{A} \psi^{2} dA$$

Di fatto è calcolato con la teoria delle aree settoriali.