

Sessão 5: Gestão de configuração

1) Instalação do Ansible

Clonar template para ansible, 10.0.42.5/24. Renomear e integrar no LDAP/SSH-ca como de costume. Criar entradas no DNS direto/reverso para ansible.intnet.

Como root@ldap, crie um usuário para o Ansible, membro dos grupos setup e fwadm:

```
# ldapadduser ansible setup
# ldapaddusertogroup ansible setup
# ldapaddusertogroup ansible fwadm
```

Como root@nfs, permita ao usuário ansible executar quaisquer comandos como root sem digitar senha:

```
# grep ansible /config/sudoers
ansible ALL=(ALL:ALL) NOPASSWD: ALL
```

Como root@ansible, instale o Ansible no servidor:

```
# echo "deb http://ppa.launchpad.net/ansible/ansible/ubuntu trusty main" >
/etc/apt/sources.list.d/ansible.list
# apt-get install dirmngr
# apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 93C4A3FD7BB9C367
# apt-get update
# apt-get install ansible
```

2) Execução de comandos simples

Como ansible@ansible, assine um par de chaves para logar nos servidores integrados no sistema LDAP/SSH-CA:

```
$ bash scripts/sshsign_user.sh
(sshca@10.0.42.2) Enter passphrase:
# 10.0.42.2:22 SSH-2.0-OpenSSH_7.4p1 Debian-10+deb9u4

(CA private key) Enter passphrase: seg10_user_ca
Signed user key id_rsa-cert.pub: id "ansible" serial 0 for ansible valid from 2018-11-06T13:25:23 to 2021-11-05T12:30:23
```

Crie um diretório ~/ansible, e um arquivo de hosts identificando as máquinas a gerenciar.


```
$ mkdir ~/ansible
$ cd ~/ansible
```

```
$ nano ~/ansible/hosts
(...)
```

```
$ cat ~/ansible/hosts
[srv]
fw
ldap
nfs
log
ansible
```

Execute um comando simples em todas as máquinas gerenciadas pelo Ansible.

```
$ ansible -i ~/ansible/hosts srv -b --become-user=root -m shell -a 'hostname ; whoami'
ansible | CHANGED | rc=0 >>
ansible
root
fw | CHANGED | rc=0 >>
fw
root
ldap | CHANGED | rc=0 >>
ldap
root
nfs | CHANGED | rc=0 >>
nfs
root
log | CHANGED | rc=0 >>
log
root
```

3) Uso de roles no Ansible

Vamos usar roles (papéis) no Ansible para configurar o sudo de forma local, mais segura. Crie o diretório ~/ansible/roles, e inicialize o papel sudoers:

```
$ mkdir ~/ansible/roles
$ cd ~/ansible/roles/
```



```
$ ansible-galaxy init sudoers
- sudoers was created successfully
```

```
$ ls -R sudoers/
sudoers/:
defaults files handlers meta README.md tasks templates tests vars
sudoers/defaults:
main.yml
sudoers/files:
sudoers/handlers:
main.yml
sudoers/meta:
main.yml
sudoers/tasks:
main.yml
sudoers/templates:
sudoers/tests:
inventory test.yml
sudoers/vars:
main.yml
```

Copie o arquivo sudoers do NFS para a pasta files:

```
$ cp /config/sudoers ~/ansible/roles/sudoers/files/
```

Observe as permissões do arquivo sudoers original. Com isso em mente, edite o arquivo ~/ansible/roles/sudoers/tasks/main.yml como se segue:

```
$ ls -ld /etc/sudoers.old
-r--r--- 1 root root 669 jun 5 2017 /etc/sudoers.old
```



```
$ cat ~/ansible/roles/sudoers/tasks/main.yml
---
- name: Propagate sudoers configuration
become: yes
become_user: root
copy:
    src: sudoers
    dest: /etc
    owner: root
    group: root
    mode: 0440
```

Crie o arquivo ~/ansible/srv.yml para amarrar os hosts à nova role.

```
$ cat ~/ansible/srv.yml
---
- hosts: srv
roles:
    - sudoers
```

Execute a role.

```
$ ansible-playbook -i ~/ansible/hosts ~/ansible/srv.yml
ok: [nfs]
ok: [ldap]
ok: [fw]
ok: [ansible]
ok: [log]
changed: [fw]
changed: [ldap]
changed: [nfs]
changed: [ansible]
changed: [log]
ansible
              : ok=2
                    changed=1
                          unreachable=0
                                    failed=0
                   changed=1
fw
              : ok=2
                           unreachable=0 failed=0
              : ok=2
                   changed=1
                           unreachable=0
                                    failed=0
ldap
              : ok=2
log
                    changed=1
                           unreachable=0
                                    failed=0
              : ok=2
nfs
                    changed=1
                           unreachable=0
                                    failed=0
```


Verifique que o arquivo /etc/sudoers é lido localmente, agora.

```
$ ls -ld /etc/sudoers
-r--r---- 1 root root 1392 nov 6 13:50 /etc/sudoers
```

4) Versionamento de configuração com git

5) sudo

1. Vamos configurar o arquivo /config/sudoers de acordo com a especificação da atividade. Usando o comando visudo -f /config/sudoers, edite o arquivo com o seguinte conteúdo:


```
1 Defaults
                   env_reset
 2 Defaults
                   mail_badpass
 3 Defaults
                   secure path
="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
4
 5 User_Alias ADMINS
                         = aluno, \
6
                           luke, \
7
                           han
8
9 User_Alias FWUSERS
                         = leia
10
11 User_Alias LDAPUSERS = %ldapadm
12
13 Host_Alias FWHOSTS
                         = fw
14
15 Host_Alias LDAPHOSTS = ldap
16
17 Cmnd_Alias FWCMDS
                         = /sbin/iptables
18
19 Cmnd Alias LDAPCMDS = /usr/sbin/ldapaddgroup,
20
                           /usr/sbin/ldapadduser,
21
                           /usr/sbin/ldapaddusertogroup,
22
                           /usr/sbin/ldapdeletegroup,
23
                           /usr/sbin/ldapdeleteuser,
24
                           /usr/sbin/ldapdeleteuserfromgroup,
25
                           /usr/sbin/ldapmodifygroup,
26
                           /usr/sbin/ldapmodifymachine,
27
                           /usr/sbin/ldapmodifyuser,
28
                           /usr/sbin/ldaprenamegroup,
29
                           /usr/sbin/ldaprenameuser,
30
                           /usr/sbin/ldapsetpasswd,
31
                           /usr/sbin/ldapsetprimarygroup
32
33 root
             ALL=(ALL:ALL)
                               ALL
34
             ALL=(ALL:ALL)
                               ALL
35 ADMINS
36
37 FWUSERS
             FWHOSTS=(root)
                               FWCMDS
38
39 LDAPUSERS LDAPHOSTS=(root) LDAPCMDS
40
41 #includedir /etc/sudoers.d
```

O que estamos fazendo? Vamos ver:

 Nas linhas [5-10] definimos aliases (apelidos) de usuários para agrupar os elementos que serão configurados para usar o sudo. Criamos um alias ADMINS para agrupar os usuários aluno, luke e han, FWUSERS para leia e LDAPUSERS para o grupo ldapadm. É especialmente importante manter um alias apontando para um usuário local, como o usuário aluno, caso

haja problemas com o LDAP.

- Nas linhas [12-14] definimos *aliases* para máquinas, ns1 e ns2. Também poderíamos usar endereços IP, se desejado.
- Nas linhas [16-30] definimos aliases de comandos: para a máquina ns1, apenas o comando /sbin/iptables é suficiente; já para a máquina ns2 configuramos uma lista detalhada dos comandos que o alias LDAPUSERS poderá usar.
- Nas linhas [32-38] fazemos a "amarração" dos aliases previamente definidos, atribuindo aos usuários/grupos em quais máquinas eles podem executar os comandos, como quais usuários, e quais são esses comandos.
- 2. Vamos testar o acesso de leia na máquina ns1. Antes disso o primeiro passo, é claro, é criar o diretório /config e configurar sua montagem automática durante o *boot* via /etc/fstab. Acesse ns1 como root, crie o diretório /config e insira a linha a seguir no final do arquivo:

```
# hostname ; whoami
fw
root
```

```
# mkdir /config
```

```
# nano /etc/fstab
(...)
```

```
# tail -n1 /etc/fstab
10.0.42.3:/config /config nfs defaults 0 0
```

Monte o diretório e verifique seu conteúdo:

```
# mount -a
```

```
# mount | grep config
10.0.42.3:/config on /config type nfs4
(rw,relatime,vers=4.2,rsize=131072,wsize=131072,namlen=255,hard,proto=tcp,port=0,ti
meo=600,retrans=2,sec=sys,clientaddr=10.0.42.1,local_lock=none,addr=10.0.42.3)
```

```
# ls /config/
sudoers
```

Agora, renomeie o arquivo /etc/sudoers e crie o link simbólico:


```
# mv /etc/sudoers /etc/sudoers.old ; ln -s /config/sudoers /etc/
```

Perfeito, agora vamos testar o funcionamento da configuração. Como leia, tente executar o comando iptables usando o sudo:

```
$ hostname ; whoami
fw
leia
```

```
$ sudo iptables -L
[sudo] senha para leia:
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
```

Excelente! E se tentarmos executar um comando não autorizado?

```
$ sudo rm /etc/shadow
Sinto muito, usuário leia não tem permissão para executar "/bin/rm /etc/shadow"
como root em fw.intnet.
```

De fato, é possível listar exatamente quais comandos um usuário está apto a executar com o comando sudo -1:

```
$ sudo -l
Entradas de Defaults correspondentes a leia em fw:
    env_reset, mail_badpass,
secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/bin

Usuário leia pode executar os seguintes comandos em fw:
    (root) /sbin/iptables
```

E quanto a han? Ele consegue executar qualquer comando como root?

```
$ hostname ; whoami
fw
han
```



```
$ sudo -1
[sudo] senha para han:
Entradas de Defaults correspondentes a han em fw:
    env_reset, mail_badpass,
secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/bin

Usuário han pode executar os seguintes comandos em fw:
    (ALL : ALL) ALL
```

Perfeito! A última questão é a seguinte: e se leia, por qualquer motivo, conseguir obter a senha do usuário root? O que não é exatamente difícil, já que estamos usando rnpesr como senha. Nesse caso, ela terá acesso irrestrito:

```
$ hostname ; whoami
fw
leia

$ su -
Senha:

# whoami
root
```

A solução ideal, nesse caso, é desabilitar a senha do root. Com isso, mesmo que os usuários saibam a senha, ela não poderá ser usada para efetuar escalada de privilégios usando o sudo. Podemos usar o comando passwd -l para fazer isso:

```
# passwd -l root
passwd: informação de expiração de senha alterada.

# exit

$ whoami
leia

$ su -
Senha:
```

su: Falha de autenticação

Com a senha desabilitada, apenas aqueles usuários que tenham permissão de sudo para executar comandos de escalada de privilégio poderão tornar-se o usuário root—todos os demais, restritos a um subconjunto de comandos controlados pelo arquivo /config/sudoers, não conseguirão fazê-lo.

Note que mesmo o usuário han, que possui acesso irrestrito, não consegue executar su diretamente:

```
$ whoami
han
```

```
$ su -
Senha:
su: Falha de autenticação
```

```
$ sudo --login
```

```
# whoami
root
```

Apenas via sudo su ou sudo --login (que equivale a invocar um *shell* de login, como executar sudo bash) é possível escalar privilégio, como demonstrado.

A leitura do arquivo /config/sudoers a partir de um compartilhamento de rede, via NFS, traz consigo uma preocupação de segurança bastante relevante — e se a máquina nfs estiver indisponível? Com efeito, se isso acontecer teremos grandes problemas, já que toda a configuração de autorização do sistema local estará indisponível. Por esse motivo, é fundamental que o sudoers esteja acessível localmente, o que faremos na sessão 6 deste curso.

Por ora, vamos torcer para que nada catastrófico aconteça com a máquina nfs. Dedos cruzados.

- 3. Vamos para o caso do usuário chewie. Acesse a máquina ns2 como o usuário root e:
 - Crie o diretório /config.
 - Configure sua montagem automática durante o boot via /etc/fstab.
 - Configure o sudo para ler a configuração do /config/sudoers.
 - Desabilite a senha do usuário root.
 - Teste o funcionamento da configuração com os usuários chewie e luke.

Dada a semelhança dos primeiros quatro itens com o passo anterior, iremos passar diretamente para o passo final, assumindo que o aluno completou a configuração com sucesso.

Como o usuário chewie na máquina ns2, verifique quais comandos você está autorizado a executar usando o sudo:

```
$ hostname ; whoami
ns2
chewie
```

```
$ sudo -l
Entradas de Defaults correspondentes a chewie em ldap:
    env_reset, mail_badpass,
secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/bin

Usuário chewie pode executar os seguintes comandos em ldap:
    (root) /usr/sbin/ldapaddgroup, /usr/sbin/ldapadduser,
/usr/sbin/ldapaddusertogroup,
    /usr/sbin/ldapdeletegroup, /usr/sbin/ldapdeleteuser,
/usr/sbin/ldapdeleteuserfromgroup,
    /usr/sbin/ldapmodifygroup, /usr/sbin/ldapmodifymachine,
/usr/sbin/ldapmodifyuser,
    /usr/sbin/ldaprenamegroup, /usr/sbin/ldaprenameuser,
/usr/sbin/ldapsetpasswd,
    /usr/sbin/ldapsetprimarygroup
```

Tente criar um novo grupo no LDAP, sudotest, e em seguida delete-o.

```
$ sudo ldapaddgroup sudotest
Successfully added group sudotest to LDAP
```

```
$ sudo ldapdeletegroup sudotest
Successfully deleted group cn=sudotest,ou=Groups,dc=intnet from LDAP
```

Tente executar um comando não-autorizado:

```
$ sudo reboot
Sinto muito, usuário chewie não tem permissão para executar "/sbin/reboot" como
root em ldap.intnet.
```

Como luke, tente logar diretamente como o root usando o su.

```
$ hostname ; whoami
ns2
luke
```


root

```
$ sudo su -

# whoami
```

4. A máquina nfs já está praticamente configurada—a pasta /config é local, o que dispensa a montagem automática durante o *boot*, e o /config/sudoers já foi configurado e testado nos passos (2) e (3). Resta apenas desabilitar a senha do root—faça isso:

```
# hostname ; whoami
nfs
root
```

```
# passwd -l root
passwd: informação de expiração de senha alterada.
```

5. Idealmente, seria interessante que novas máquinas derivadas da VM debian-template estivessem automaticamente integradas com o sistema de sudo centralizado que acabamos de configurar nesta atividade. Para isso, vamos fazer algumas alterações rápidas na máquina.

No Virtualbox, com a máquina desligada, em *Settings > Network > Adapter 1 > Attached to*, escolha *Host-only Adapter*. O nome da rede *host-only* deve ser o mesmo alocado para a interface de rede da máquina virtual ns1, configurada durante a sessão 2, que está conectada à DMZ.

Ligue a máquina debian-template, e acesse como o usuário root.

Reconfigure a rede em /etc/network/interfaces para a DMZ, com o endereço IP 10.0.42.250/24:

```
# hostname ; whoami
debian-template
root
```

```
# nano /etc/network/interfaces
(...)
```



```
source /etc/network/interfaces.d/*

auto lo enp0s3

iface lo inet loopback

iface enp0s3 inet static
address 10.0.42.250/24
gateway 10.0.42.1
```

Crie a pasta /config e configure sua montagem automática no arquivo /etc/fstab:

```
# mkdir /config
```

```
# echo "10.0.42.3:/config /config nfs defaults 0 0" >> /etc/fstab
```

Configure o *symlink* do arquivo /etc/sudoers:

```
# mv /etc/sudoers /etc/sudoers.old ; ln -s /config/sudoers /etc/
```

Finalmente, desabilite a senha do usuário root — usaremos o sudo com o usuário aluno para efetuar a configuração inicial das novas máquinas derivadas da VM debian-template:

```
# passwd -l root
passwd: informação de expiração de senha alterada.
```

Desligue a VM debian-template.