Polkadot Runtime Specification Glossary

Web3 Foundation

February 2020

Basics

b a sequence of bytes of length n $b := (b_0, b_1,, b_{n-1})$ such that $0 \le b_i \le 255$ \mathbb{B}_n the set of all byte arrays of length n $\mathbb{B} := \bigcup_{i=0}^{\infty} \mathbb{B}_i$ I little-endian representation of a non-negative integer $I = (B_n B_0)_{256}$ B byte array $B = (b_0, b_1,, b_n)$ such that $b_1 := B_i$ C a blockchain is a directed path graph. Each node of the graph is called Block and indicated by B P(B) the parent of block B	Sym- bol	Description	Defined
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		a garwan as of but as of langth a	h. (h h h) guah that
$\mathbb{B}_n \qquad \text{the set of all byte arrays of length } n \\ I \qquad \text{little-endian representation of a non-negative integer} \qquad \qquad I = (B_nB_0)_{256} \\ B \qquad \text{byte array} \qquad \qquad \qquad B = (b_0,b_1,,b_n) \text{ such that } b_1 := B_i \\ C \qquad \text{a blockchain is a directed path graph. Each node of the graph is called Block and indicated} \\ \text{by } B \\ P(B) \qquad \text{the parent of block } B \\ \qquad \qquad B_{n+1} := P(B_n)$	O	a sequence of bytes of length n	•
I little-endian representation of a non-negative integer $I = (B_nB_0)_{256}$ B byte array $B = (b_0, b_1,, b_n)$ such that $b_1 := B_i$ E Or a blockchain is a directed path graph. Each node of the graph is called Block and indicated by B P(B) the parent of block B E E E E E E E			$0 \le \theta_i \le 255$
I little-endian representation of a non-negative integer $I = (B_nB_0)_{256}$ B byte array $B = (b_0, b_1,, b_n)$ such that $b_1 := B_i$ E Or a blockchain is a directed path graph. Each node of the graph is called Block and indicated by B P(B) the parent of block B E E E E E E E	\mathbb{B}_n	the set of all byte arrays of length n	$\mathbb{B} := \bigcup_{i \in \mathcal{I}} \mathbb{B}_i$
I little-endian representation of a non-negative integer $I = (B_nB_0)_{256}$ B byte array $B = (b_0, b_1,, b_n)$ such that $b_1 := B_i$ C a blockchain is a directed path graph. Each node of the graph is called Block and indicated by B $P(B)$ the parent of block B $B_{n+1} := P(B_n)$	-11		i=0
C a blockchain is a directed path graph. Each node of the graph is called Block and indicated by B $P(B)$ the parent of block B $B_{n+1} := P(B_n)$	I	little-endian representation of a non-negative integer	$I = (B_n B_0)_{256}$
by B $P(B) \qquad \text{the parent of block } B$ $B_{n+1} := P(B_n)$	B	byte array	$B = (b_0, b_1,, b_n)$ such that $b_1 := B_i$
$P(B)$ the parent of block B $B_{n+1} := P(B_n)$	C	a blockchain is a directed path graph. Each node of the graph is called Block and indicated	
		by B	
N the set of the nodes of the Polkadot state trie	P(B)	the parent of block B	$B_{n+1} := P(B_n)$
VV 0110 DOV OF VIIO ITO ADD OF VIIO I DIRECTOR VIIO	\mathcal{N}	the set of the nodes of the Polkadot state trie	
N an individual node in the trie $N \in \mathcal{N}$	N	an individual node in the trie	$N\in\mathcal{N}$
\mathcal{N}_b a branch node which has one child or more (max 16) $\mathcal{N}_b := \{N \in \mathcal{N} \mid Nisabranchnode\}$	\mathcal{N}_b	a branch node which has one child or more (max 16)	$\mathcal{N}_b := \{ N \in \mathcal{N} \mid Nisabranchnode \}$
\mathcal{N}_l a leaf node is a childless node $\mathcal{N}_l := \{N \in \mathcal{N} \mid Nisaleafnode\}$	\mathcal{N}_l	a leaf node is a childless node	$\mathcal{N}_l := \{N \in \mathcal{N} \mid Nisaleafnode\}$
pk_N TODO	pk_N	TODO	
pk_N^{Agr} TODO	pk_N^{Agr}	TODO	
HeadN the node header of node N			
v_N the node value which is stored by the node $N \in \mathcal{N}$ $v_N := Head_N \parallel Enc_{HE}(pk_N) \parallel SV_N$			$v_N := Head_N \parallel Enc_{HE}(pk_N) \parallel SV_N$

Block Format

Sym-	Description	Defined
\mathbf{bol}		
H	the 32-byte Blake2b hash of the header of the parent of the block	

SCALE Codec

Sym-	Description	Defined
bol		
\overline{A}	Byte array	$A := b_1, b_2, \dots b_n$
T	Tuple where A_i 's are values of different types	$T := (A_1,, A_n)$
S	Sequence where Ai 's are values of the same type (and the decoder is unable to infer value of n from the context)	$S := A_1,, A_n$
au	Varying data type (TODO)	$T = \{T_1,, T_n\}$
$Enc_{SC}()$	A)SCALE encoding of byte array A such that $n < 2^{256}$	$Enc_{SC}(A) := Enc_{SC}^{Len}(\parallel A \parallel) \parallel A$
$Enc_{SC}($	T)SCALE encoding of tuple T	$Enc_{SC}(T) := Enc_{SC}(A_1) \parallel Enc_{SC}(A_2) \parallel \parallel$
		$Enc_{SC}(A_n)$
$Enc_{SC}(x)$	S)SCALE encoding of sequence S	$Enc_{SC}(S) := Enc_{SC}^{Len}(\parallel S \parallel) Enc_{SC}(A_1) \mid$
		$Enc_{SC}(A_2) \mid \mid Enc_{SC}(A_n)$

GRANDPA

\mathbf{Symbol}	Description	Defined
\overline{v}	GRANDPA Voter	
k_v^{pr}	ED25519 private key of v	
v_{id}	ED25519 public key of v	
\mathbb{V}	set of all GRANDPA voters	
\mathbb{V}_B	set of all GRANDPA voters for a given block	
\mathbb{V}_{id}	is an incremental counter tracking membership, which changes in V	
GS	GRANDPA state	$GS := \{ \mathbb{V}, id_{\mathbb{V}}, r \}$
V(B)	GRANDPA vote	$V(B) := (H_h(B), H - I(B))$
$V_v^{r,pv}$	pre-vote	
$V_v^{r,pc}$	pre-commit	
r	Voting round number	
$V_i d$	Incremental counter tracking membership	
$V_v^{r,stage}(B)$	equivocatory vote	
$\mathcal{E}^{r,stage}$	set of all equivocators voters in sub-round "stage" of round r	
$\mathcal{E}^{r,stage}_{obs(v)}$	set of all equivocators voters in sub-round "stage" of round r observed by	
003(0)	voter v	
$VD_{obs(v)(B)}^{r,stage}$	the set of observed direct votes for block B in round r	
$V_{obs(v)}^{r,stage}$	the set of total votes observed by voter v in sub-round "stage" of round r	
$V_{obs(v)}^{r,stage}(B)$	set of all observed votes by v in the sub-round stage of round r for block B	$V_{obs(v)}^{r,stage}(B) := \bigcup_{v \in \mathbb{N}} VD_{obs(v)}^{r,stage}(B')$

Description	Defined
A broadcasted message by the voter v casting his vote to the	$M_v^{r,stage} :=$
network	$Enc_{SC}(r, id_{\mathbb{V}}, Enc_{SC}(stage, V_v^{r, stage}, Sig_{ED25519}(Enc_{SC}(stage, V_v^{r, stage}, r, V_{id}), v_{id})))$
The justification for block B in round r	The justification is a vector of pairs of the type
	$(V(B'), (Sign_{vi}^{r,pc}(B'), v_{id}))$ in which either $B' \geq B$ or $V_{vi}^{r,pc}(B')$ is an
	equivocatory vote
(${\it B}$) he signature of voter v , broadcasted during the pre-commit	
sub-round of round r	
BT he finalizing message broadcasted by voter v to the network	$M_v^{r,Fin}(B) := Enc_{SC}(r, V(B), J^r(B))$
indicating that voter v has finalized book B in round r	
	A broadcasted message by the voter v casting his vote to the network The justification for block B in round r (B) e signature of voter v , broadcasted during the pre-commit sub-round of round r B) he finalizing message broadcasted by voter v to the network

Cryptographic keys

Symbol	Description	Defined
Account key (sk^a, pk^a)	A keypair of type of either SR25519, ED25519, secp256k1	

Hex encoding

Symbol	Description	Defined
Account key (sk^a, pk^a)	A keypair of type of either SR25519, ED25519, secp256k1	