CLAIM AMENDMENTS

Please cancel claims 17-20 and 23-25.

Please amend claims 1, 26, 30, and 40 as follows.

(Currently Amended) An apparatus, comprising: 1.

an integrated circuit having:

a set of voltage generators to generate a set of direct current (DC)

voltages;

a set of sense amplifiers coupled to compare [[a]] an externally

supplied reference voltage with the set of DC voltages; and

a boundary scan register coupled to each sense amplifier in the set of

sense amplifiers to interpret the comparison of the externally supplied reference voltage and

the set of DC voltages.

2. (Original) The integrated circuit of claim 1 wherein the set of voltage generators is

responsive to a set of configuration bits to determine the set of DC voltages.

3. (Original) The integrated circuit of claim 2, further comprising a set of switches

coupled between the set of voltage generators and the set of sense amplifiers to enable the set

of DC voltages to be applied to the non-inverting input of each sense amplifier in the set of

sense amplifiers.

4. (Original) The integrated circuit of claim 2, wherein each voltage generator in the set

of voltage generators is a digital-to-analog converter.

5. (Previously Presented) The integrated circuit of claim 3, further comprising second

logic to open and close a set of switches to connect the set of DC voltages to the non-

inverting inputs of the set of sense amplifiers.

Examiner: Tabone Jr., John J. 42P10961 Art Unit: 2133

Serial No. 09/941,484 - 2 - 6. (Original) The integrated circuit of claim 5, wherein the second logic comprises a

boundary-scan register.

7. (Original) The integrated circuit of claim 5, wherein the second logic comprises an

input/output loop back pattern generator.

8. (Previously Presented) A system, comprising:

an integrated circuit having a set of voltage generators to generate a set of

direct current (DC) voltages, a set of sense amplifiers coupled to compare a reference voltage

with the set of DC voltages, and a boundary scan register coupled to each sense amplifier in

the set of sense amplifiers to interpret the comparison of the reference voltage and the set of

DC voltages; and

a structural tester coupled to the integrated circuit to apply a reference voltage

to the inverting input of each sense amplifier in the set of sense amplifiers.

9. (Original) The system of claim 8, wherein the set of voltage generators is responsive

to a set of configuration bits to determine the set of DC voltages.

10. (Original) The system of claim 8, wherein the integrated circuit further comprises a

set of switches coupled between the set of voltage generators and the set of sense amplifiers

to enable the set of DC voltages to be applied to the non-inverting input of each sense

amplifier in the set of sense amplifiers.

11. (Original) The system of claim 8, wherein each voltage generator in the set of voltage

generators is a digital-to-analog converter.

Claims 12-25. (Canceled).

26. (Currently Amended) An apparatus, comprising:

an integrated circuit device having:

a set of input pins;

Examiner: Tabone Jr., John J.

- 3 -

Art Unit: 2133

levels generating circuitry coupled to a subset of the input pins;
logic to apply a set of configuration bits to the levels generating
circuitry to enable concurrent input levels testing or parallel input levels testing of the set of
input pins using the subset of input pins;

a set of voltage generators to generate a set of direct current (DC) voltages;

a set of sense amplifiers coupled to compare [[a]] <u>an external</u> reference voltage with the set of DC voltages; and

logic coupled to each sense amplifier in the set of sense amplifiers to interpret the comparison of the external reference voltage and the set of DC voltages.

27. (Canceled)

voltages.

- 28. (Previously Presented) The apparatus of claim 26, further comprising a set of switches coupled between the set of voltage generators and the set of sense amplifiers to enable the set of DC voltages to be applied to the non-inverting input of each sense amplifier in the set of sense amplifiers.
- 29. (Previously Presented) The integrated circuit of claim 26, wherein each voltage generator in the set of voltage generators is a digital-to-analog converter.

30. (Currently Amended) A method, comprising:

testing at least one integrated circuit device having a first number of input pins and levels generating circuitry coupled to at least some of the first number of input pins by:

receiving a set of configuration bits at the levels generating circuitry;
receiving test input levels at a second smaller number of input pins to
enable parallel input levels testing of the first number of input pins;

generating direct current (DC) voltages;

comparing [[a]] an external reference voltage with the set of DC voltages; and interpreting the comparison of the external reference voltage and the set of DC

42P10961 Examiner: Tabone Jr., John J. Serial No. 09/941,484 - 4 - Art Unit: 2133

31. (Canceled)

32. (Previously Presented) The method of claim 30, wherein receiving a set of

configuration bits at a levels generating circuitry comprises receiving a set of configuration

bits at digital-to-analog converters.

33. (Previously Presented) A system, comprising:

an integrated circuit having a set of voltage generators to generate a set of

direct current (DC) voltages, a set of sense amplifiers coupled to compare a reference voltage

with the set of DC voltages, and input/output loop back compare circuitry coupled to each

sense amplifier in the set of sense amplifiers to interpret the comparison of the reference

voltage and the set of DC voltages; and

a structural tester coupled to the integrated circuit to apply a reference voltage

to the inverting input of each sense amplifier in the set of sense amplifiers.

34. (Previously Presented) The system of claim 33, wherein the set of voltage generators

is responsive to a set of configuration bits to determine the set of DC voltages.

35. (Previously Presented) The system of claim 33, wherein the integrated circuit further

comprises a set of switches coupled between the set of voltage generators and the set of sense

amplifiers to enable the set of DC voltages to be applied to the non-inverting input of each

sense amplifier in the set of sense amplifiers.

36. (Previously Presented) The system of claim 33, wherein each voltage generator in the

set of voltage generators is a digital-to-analog converter.

37. (Previously Presented) A system, comprising:

an integrated circuit having a set of voltage generators to generate a set of

direct current (DC) voltages, a set of sense amplifiers coupled to compare a reference voltage

with the set of DC voltages, and logic coupled to each sense amplifier in the set of sense amplifiers to interpret the comparison of the reference voltage and the set of DC voltages;

a structural tester coupled to the integrated circuit to apply a reference voltage to the inverting input of each sense amplifier in the set of sense amplifiers; and

a set of switches coupled between the set of voltage generators and the set of sense amplifiers to enable the set of DC voltages to be applied to the non-inverting input of each sense amplifier in the set of sense amplifiers, and wherein the integrated circuit further comprises second logic coupled to open and close the set of switches.

- 38. (Previously Presented) The system of claim 37, wherein the second logic comprises a boundary-scan register.
- 39. (Previously Presented) The system of claim 37, wherein the second logic comprises an input/output loop back pattern generator.
- 40. (Currently Amended) A method of manufacturing an integrated circuit, comprising:

 coupling a set of levels generating circuits to a set of sense amplifiers, wherein
 the set of sense amplifiers are to compare [[a]] an external voltage to a set of direct current
 (DC) voltage levels generated by the set of levels generating circuits; and

coupling the set of sense amplifiers to input/output loop back compare circuitry to interpret the comparison of the <u>external</u> reference voltage and the set of voltage levels.

- 41. (Previously Presented) The method of claim 40, further comprising coupling the set of levels generating circuits to be responsive to a set of configuration bits to set the values of the set of DC voltage levels.
- 42. (Previously Presented) The method of claim 41, further comprising coupling a set of switches between the set of levels generating circuits and the set of sense amplifiers to enable the set of DC voltage levels to be applied to the non-inverting input of each sense amplifier.

43. (Previously Presented) The method of claim 42, wherein coupling a set of levels generating circuits to a set of sense amplifiers comprises coupling a set of digital-to-analog converters to the set of sense amplifiers.