Electrical Engineering Technology

Mesh Analysis Breakout (4x4 system)
Fall 2018 (2181)

Find:

- The loop (MESH) currents as drawn

$$I_{1} = -6.8kI_{1} - 4.7kI_{1} + 4.7kI_{2} + 6 - 2.2kI_{1} + 2.7kI_{4} = 0$$

$$-13.7kI_{1} + 4.7kI_{2} + 0I_{3} + 2.7kI_{4} = -6$$
 (1)

$$I_{2} loop: -6 - 4.7h I_{2} + 4.7k I_{1} - 2.7h I_{2} - 8.2k I_{2} + 8.2k I_{3} = 0$$

$$4.7k I_{1} - 15.6k I_{2} + 8.2k I_{3} + 0 I_{4} = 6$$
(2)

$$I_{3} loop! - 22kI_{3} + 22kI_{4} - 8.2kI_{3} + 8.2kI_{6} - 9 - 1.1kI_{3} = 0$$

$$0I_{1} + 8.2kI_{2} - 31.3kI_{3} + 22kI_{4} = 9$$
(3)

$$I_{4} loop: -1.2k I_{4} - 2.2k I_{4} + 2.2k I_{1} - 22k I_{4} + 22k I_{3} + 5 = 0$$

$$2.2k I_{1} + 0 I_{2} + 22k I_{3} - 25.4k I_{4} = -5$$
(4)

$$-13.7kI_1 + 4.7hI_2 + 0I_3 + 2.2hI_4 = -6$$

$$4.7kI_1 - 15.6kI_2 + 8.2kI_3 + 0I_4 = 6$$

$$0I_1 + 8.2kI_2 - 31.3kI_3 + 22kI_4 = 9$$

$$2.2kI_1 + 0I_2 + 22kI_3 - 25.4hI_4 = -5$$

$$(4)$$

Your AC Circuits calculator will handle this with ease

But how using the Sharp EL-516?

Method of Determinants (Appendix B and your calculator manual)

Expanding From Appendix B To Solve A 4x4

$$a_1 w + b_1 x + c_1 y + d_1 z = e_1$$
 $a_2 w + b_2 x + c_2 y + d_2 z = e_2$
 $a_3 w + b_3 x + c_3 y + d_3 z = e_3$
 $a_4 w + b_4 x + c_4 y + d_4 z = e_4$
 $variable$
 $variable$

WHERE
$$\begin{vmatrix} a_1 & b_1 & C_1 & d_1 \\ a_2 & b_2 & C_2 & d_2 \\ a_3 & b_3 & C_3 & d_3 \\ a_4 & b_4 & C_4 & d_4 \end{vmatrix}$$

$$\omega = \begin{vmatrix} e_{1} & b_{1} & c_{1} & d_{1} \\ e_{2} & b_{2} & c_{2} & d_{2} \\ e_{3} & b_{3} & c_{3} & d_{3} \\ e_{4} & b_{4} & c_{4} & d_{4} \end{vmatrix}$$

$$\sum_{\chi} = \begin{vmatrix} a_{1} & e_{1} & c_{1} & d_{1} \\ a_{2} & e_{2} & c_{2} & d_{2} \\ a_{3} & e_{3} & c_{3} & d_{3} \end{vmatrix}$$

- Column 1 is the vector e1, e2, e3, e4
- The remaining columns are the variable coefficients from the system of equations

- Column 2 is the vector e1, e2, e3, e4
- The remaining columns are the variable coefficients from the system of equations

And so on for variables y and z...

$$-13.7kI_{1} + 4.7hI_{2} + oI_{3} + 2.2hI_{4} = -6$$

$$4.7kI_{1} - 15.6kI_{2} + 8.2kI_{3} + oI_{4} = 6$$

$$0I_{1} + 8.2kI_{2} - 31.3kI_{3} + 22kI_{4} = 9$$

$$2.2kI_{1} + oI_{2} + 22kI_{3} - 25.4hI_{4} = -5$$

$$(4)$$

WHERE
$$\begin{vmatrix} a_1 & b_1 & C_1 & d_1 \\ a_2 & b_2 & C_2 & d_2 \\ a_3 & b_3 & C_3 & d_3 \\ a_4 & b_4 & C_4 & d_4 \end{vmatrix}$$
Becomes ->

	-13,700	4700	0	2,200
D =	4700	-15,609	8200	0
	0	8,200	-31,300	22,000
	2200	0	22,000	-25,400

$$\omega = \begin{vmatrix} e_1 & b_1 & c_1 & d_1 \\ e_2 & b_2 & c_2 & d_2 \\ e_3 & b_3 & c_3 & d_3 \\ e_4 & b_4 & c_4 & d_4 \end{vmatrix}$$
Becomes ->

	- 6	4700	0	2,200
T -	6	-15,600	8200	0
T, =	9	8,200	-31,300	22,000
	-5	0	22,000	-25,400

Solving D on the EL-516T:

	Y			
	-13,700	4700	0	2,200
D =	4700	-15,600	8200	0
	0	8,200	-31,300	22,000
	2200	0	22,000	-25,400

MODE	= 5 (MATRIX)
MATH	1 (E01T)
	44 (4×4)
	ENTER
	ENTER COEPFICIENTS
ON/C	
MATH	3 0 (STORES IN A)
ON/C	
MATH	4 (087)
MATH	@ @ (RECALLS A) ENTER

Yields: D = 30.4341E15

 See the posted Sharp EL-516 manual and accompanying examples for previous versions of the EL-516

Following the same procedure for the numerator of:

Yields:

$$\boldsymbol{I_1} = \frac{977.2880E9}{30.4341E15}$$

Or
$$I_1 = 32.11 \text{ uA}$$

- Find I₂, I₃ and I₄ using the same method... i.e. I₂ is variable x and so on
- Find I₂, I₃ and I₄ by substituting I₁ into the original equations and solving the remaining 3x3 system