

Tema 4: Grid Computing

Sistemas Distribuidos

Marcos Novalbos

Limitaciones de clusters

- Mantenimiento:
 - La ampliación de un cluster es costosa en grandes tamaños.
 - Es una solución escalable ... pero ¿hasta que punto?
- Recursos infrautilizados:
 - Los clusters son instalaciones dedicadas.
 - Un organización típica desperdicia millones de ciclos de computo en sus ordenadores personales.
- Siempre existe un problema mas grande

Grandes retos computacionales

- Problemas científicos mas importantes a los que se enfrenta el ser humano que requieren del uso de recursos computacionales para resolverlos
- Para enfrentarse a ellos hay que desarrollar nuevos mecanismos computacionales, hardware y software
- Su resolución implica también un avance fundamental en las tecnologías de la computación

Grandes retos computacionales

 Problemas que los ordenadores todavía no pueden resolver facilmente

Aerospace:

Biology:

E-commerce:

Earth sciences:

¿Cómo resolver el problema?

Cluster computing

Internet computting

¿Cloud Computing?

Grid computing

- La computación grid permite el acceso a recursos computacionales geográficamente dispersos
- Tipos de recursos
 - Potencia computacional
 - Almacenamiento
 - Equipos para aplicaciones específicas
- Grid utiliza protocolos de Internet e ideas de la computación paralela y distribuida
- Soporte de computación y almacenamiento para aplicaciones que necesitan una gran capacidad de cómputo y requieren análisis de un gran número de datos

Computación como servicio

- Analogía del suministro eléctrico: Power Grid
 - Modelo arcaico: Cada usuario tiene un generador en su casa
 - Caro, poco fiable, al alcance de pocos, fomenta soluciones particulares difíciles de generalizar...
 - Modelo moderno: Cada usuario se conecta a una red que proporciona electricidad como servicio
 - Fiable, siempre disponible, al alcance de muchos, con calidad de servicio establecida...

Grid

- Un Grid se puede definir como:
 - "... coordinate resources that are not subject to centralized control using standard, open, general-purpose protocols and interfaces" [lan Foster, What is the grid? (2002)]
- Ampliando la definición:
 - Los recursos de cómputo y de almacenamiento se encuentran distribuidos geográficamente en "sitios"
 - Los "sitios" se encuentran habitualmente conectados mediante redes de área extensa (WAN)
 - Cada sitio suele estar formado por un cluster de red de área local (LAN)
 - Permite la compartición de recursos entre diferentes organizaciones

Escenario

- Compartición de recursos flexible, segura y coordinada entre individuos e instituciones
- Permite a comunidades (organizaciones virtuales) compartir recursos geográficamente dispersos para alcanzar un objetivo común
 - En aplicaciones que no pueden ser abordadas con los recursos de una única organización
 - O en aquéllas donde los resultados puedan ser obtenidos más rápidamente o con menor coste

Organizaciones virtuales

- Tienen una actividad común
 - Conjunto de individuos y/o organizaciones que colaboran mas allá de las fronteras institucionales
 - Comparten un conjunto de reglas
 - Incluyen recursos y servicios
 - Más grandes o más pequeñas

Organizaciones virtuales

- Pueden corresponderse, o no, con una organización real
- Coordinación en la resolución de problemas
 - Distribución y Colaboración
 - Confianza, políticas, negociación, pago

Beneficios del Grid

- Potencia de cómputo virtualmente ilimitada
- Posibilidad de eliminar los cuellos de botella de determinados procesos (eligiendo los recursos más apropiados en cada momento)
- Posibilidad de aprovechar los recursos de múltiples organizaciones (posiblemente dispersas)
- Integración de sistemas y dispositivos heterogéneos
- Escalabilidad
- Adaptabilidad. La volatilidad del escenarios es una característica inherente al grid

Estado del arte

- Es necesario bastante experiencia para poder utilizar de manera eficiente la tecnología Grid
- Necesidad de estandarización
 - Existen muchos proyectos Grid
 - Las distintas implementaciones tienen que poder comunicarse entre ellas
 - Open Grid Forum (GGF)
 - http://www.ogf.org
 - Estandarización de Grid Services, protocolos e interfaces.

Proyectos Grid

Internet computing

Seti@home setiathome.ssl.berkeley.edu

Folding@home folding.stanford.edu

Proyectos Grid Europeos

LHC Computing GRID (LCG) cern.ch/lcg

European Grid Infrastructure (EGI) www.egi.eu

Proyectos Grid Norteamericanos

TeraGrid (2011) <u>www.teragrid.org</u>

XSEDE www.XEDE.org

Ej: Proceso intensivo de datos

 Sistemas que generan un flujo de datos a alta velocidad que debe ser analizado en tiempo real

- Experimentos de física de alta energía (CERN)
 - Proyectos
 - LHC
 - Alice (computer engine)
 - ATLAS
 - CMS (gestión de contenidos)
 - 100 PetaBytes almacenados
 - 25 PetaBytes / año
 - 1.750 billones de eventos o colisiones
 - Selección de 17000 millones de sucesos
 - ATLAS:
 - 3.000 científicos
 - 176 instituciones de 38 países

Arquitectura

Arquitectura del Grid

Diversas alternativas, con elementos comunes

Application High level Middleware EDG, NSF Teragrid Low level Middleware Globus, GLite Operating systems Unix, Linux, Windows

Hardware

Middleware Grid

- Recursos + Middleware = Infraestructura Grid
 - Hace posible el grid como tal
- La infraestructura Grid es la base para proporcionar servicios Grid
 - En la analogía de la red eléctrica, sería la red eléctrica en si misma junto con los mecanismos de control y gestión
- Distintos tipos (o capas) de middleware
 - Grid fabric: SGE, Condor Hawkeye, Ganglia
 - Core Grid middleware: Unicore, Globus, gLite, XtreemOS
 - User level Grid middleware: OGSA
 - Grid portals: GridSphere, Portal and Gateway Toolkit
- Estándar de facto: The Globus Toolkit (Core Grid middleware)

Globus toolkit

- The Globus Toolkit está considerado como el estándar de facto de la tecnología Grid (core grid middleware)
 - Construye servicios Grid middleware
 - Permite desarrollar aplicaciones Grid
 - Open source
 - Utilizado en múltiples proyectos Grid
 - Provee interfaces y protocolos que posibilita el acceso a recursos remotos como si fueran locales
 - Incluye librerías para:
 - Monitorización y búsqueda de recursos
 - Gestión de ficheros
 - Seguridad
- Basado en OGSA

Globus toolkit

OGSA: Open Grid Services Architecture

- Enfoque común propuesto por el Open Grid Forum (OGF), la Globus Alliance e IBM
- Convergencia hacia los servicios Web (pero con estado)
 - Servicios de infraestructura
 - Servicios para la gestión de la ejecución de trabajos
 - Servicios de datos
 - Servicios para la gestión de recursos
 - Servicios de seguridad
 - Servicios de auto-control
 - Servicios de información

Servicios que ofrece un Grid

- Servicios de cómputo: Information Power Grid (IGP) de la Nasa, World LHC Computing Grid (WLCG), NSF TeraGrid
- Servicios de datos: European Data Grid (EDG)
- Servicios de aplicaciones: NetSolve/GridSolve
- Servicios de información

Localización de recursos

- Para poder usar los recursos que ofrece el Grid hace falta un intermediario
 - Los recursos son dinámicos (pueden entrar y salir del grid)
 - No sabemos cuáles están disponibles en cada momento
 - Ni cuáles son los más adecuados a nuestras necesidades
- Servicio de brokering
 - Identificación
 - Caracterización
 - Evaluación
 - Selección
 - Asignación

Servicio de Brokering

Servicio de Brokering

Clasificación de brokers

Orientados a los clientes

- Seleccionan los servicios que más se adecuan a las necesidades de los usuario
- No tienen en cuenta al resto de usuarios del grid y sus solicitudes de recursos
- Ejemplo: Gridway

Orientados al sistema

- Visión global de todos los recursos y clientes del grid
- Maximizan el aprovechamiento del sistema
- Normalmente son entidades independientes
- Un único punto de fallo y cuello de botella
 - Jerarquía de brokers
- Ejemplo: Nimrod/G

Gestión de Recursos

Gestión de recursos

- La gestión de recursos incluye el uso eficiente de recursos de almacenamiento y de computo
 - Tiempo de procesador
 - Memoria
 - Almacenamiento
 - Red
- Transparente al usuario
- Interactúa con el resto de componentes del Grid

Gestión de recursos

- Local Resource Management System (LRMS) gestiona los recursos locales de computación
- Global Resource Management (GRM) gestiona múltiples elementos de computación

Grid Resource Allocation Manager

- Características
 - Provee una interfaz Grid para Local Resource Management System
 - Encargado del envío y control de trabajos
 - Simplifica el uso de sistemas diferentes (Ej: Condor, PBS, LSF) ofreciendo una interfaz común
 - Es necesario especificar la maquina de ejecución
- GRAM no es:
 - Planificador
 - Broker

Nimrod/G

- Características
 - Colas de trabajos globales
 - Planificación por recursos y económica
 - Descubrimiento de recursos

Sistemas de Información

Sistemas de Información

- Proveen información sobre:
 - El propio Grid
 - Recursos básicos
 - Servicios
 - Aplicaciones Grid
- El servicio de información registra y monitoriza servicios
- Autenticación requerida
- Los distintos proyectos Grid tienen sus propias implementaciones:
 - Globus: MDS (Monitoring and Discovery Service)
 - MDS 2 en GT2: basado en LDAP
 - WS MDS en WSRF: orientado a Web Services

MDS 2

WS MDS

- Conjunto de servicios web para la monitorización y descubrimiento de recursos de un Grid
- Dispone de los recursos para la publicación de información general de un Grid
- Permite agregar la información de las siguientes fuentes (Aggregator Framework):
 - Propiedades de recursos de servicios WSRF
 - Información específica de sistemas de monitorización

Gestión de datos

Data Grid

- Conjunto de recursos de almacenamiento y componentes de adquisición de datos que permiten a las aplicaciones acceder a los datos que necesitan a través de mecanismos de software especiales
- Necesidades:
 - Transferencia de datos
 - Localización y replicación de información

Storage Resource Management

- Los datos son almacenados en conjuntos de discos y en sistemas de almacenamiento masivo
- Storage Resource Management
 - Acceso transparente a ficheros
 - Reserva de espacio
 - Notificación de estado de ficheros
- SRM (Storage Resource Manager) es un Grid Service que provee una interfaz Grid para el almacenamiento
- Soporta políticas locales
 - Cada recurso de almacenamiento puede ser gestionado independientemente
- Provee espacio disponible y usado

Transferencia de datos

- GridFTP: Protocolo para transferencia de datos de forma segura en un entorno de tipo Grid
 - Extiende el protocolo FTP
 - Utiliza Grid Security Infrastructure (GSI)
 - Varios sistemas de almacenamiento proveen interfaces GridFTP:
 - Castor
 - EDG's SRM
- Reliable File Transfer (RFT) es un Grid Service que provee interfaces para controlar y monitorizar transferencias de ficheros usando servidores GridFTP
 - El control de la transferencia se encuentra en el propio servicio pudiendo realizarse consultas a través del servicio asociado

Localización y Replicación

- Debido a la complejidad de un entorno de tipo Grid podría ser conveniente poseer varias replicas de un mismo fichero
- Por tanto, es necesario identificar y localizar replicas idénticas
- El Replica Location Service (RLS) es un Grid Service que registra las localizaciones de replicas de datos permitiendo su posterior descubrimiento
 - Mantiene mapeados entre identificadores lógicos y físicos
 - Para el almacenamiento de los metadatos utiliza una base de datos

Bibliografía

- "The Grid: Blueprint for a New Computing Infrastructure". I. Foster and C. Kesselman. Morgan Kaufmann. 1998.
- "The Anatomy of the Grid: Enabling Scalable Virtual Organizations". I. Foster, C. Kessleman and S. Tuecke. International Journal of Supercomputer Applications. 2001
- "Physiology of the Grid. An Open Grid Service Architecture for Distributed Systems Integration".
 I. Foster, C. Kessleman, J. M. Nick and S. Tuecke. Global Grid Forum. 2002
- "Open Grid Services Infrastructure (OGSI) version 1.0". S. Tuecke et. at. Global Grid Forum. 2003.
- "Grid-2: Blueprint for a New Computing Infrastructure". I. Foster and C. Kesselman. Morgan Kaufmann. 2004.