

EE-241 Electromagnetic Field Theory			
Course Code:	EE-241	Semester:	4 th
Credit Hours:	3+0	Prerequisite Codes:	NIL
Instructor:	Dr. Salman Ghafoor	Discipline:	BEE
Office:	Room # B205, IAEC	Telephone:	051-9085-2560
Lecture Days:	Mon, Tue, Fri	E-mail:	salman.ghafoor@seecs.edu.pk
Class Room:	CR 13, 14, UG Block SEECS	Consulting Hours:	Through email first
Knowledge Group:	Telecom and Networks	Updates on LMS:	End of Week

Course Objectives:

The successful completion of course should lay down the required foundation for all subsequent courses in Telecommunication, especially in RF & Microwave engineering domain. Further, to understand the fundamental principles and laws of electromagnetism and the phenomenon of Wave propagation.

Course Learning Outcomes:

CLO	Description	ВТ	PLOs
	After the completion of the course the students will be able to:	Level	
1.	Describe the theories and concepts related to Electrostatics and Magnetostatics	C2	1
2.	Analyze the behavior of electric and magnetic fields at boundaries of different mediums	C4	2
3.	Describe application of Maxwell's Equations and phenomenon of Electromagnetic Wave Propagation	C2	1

Mapping of CLOs to Program Learning Outcomes

PLOs/CLOs	CLO1	CLO2	CLO3
PLO 1 (Engineering Knowledge)	٧		٧
PLO 2 (Problem Analysis)		٧	
PLO 3 (Design/Development of Solutions)			
PLO 4 (Investigation)			
PLO 5 (Modern tool usage)			
PLO 6 (The Engineer and Society)			
PLO 7 (Environment and Sustainability)			
PLO 8 (Ethics)			
PLO 9 (Individual and Team Work)			
PLO 10 (Communication)			
PLO 11 (Project Management)			
PLO 12 (Lifelong Learning)			

Assessment Modules, Weightages, and Mapping to CLOs

Assessments/CLOs	CLO1	CLO2	CLO3
Quizzes: 10%	٧	٧	٧
Assignments: 10%	٧	٧	٧
OHTs: 30%	٧	٧	٧
End Semester Exam:50%	٧	٧	٧

Books:	
Text Book:	Elements of Electromagnetics by Matthew N.O.Sadiku, 3rd Edition
Reference	Engineering Electromagnetics by William H. Hayt, JR and John A. Buck, 7th Edition
Books:	 Introduction to Electrodynamics by Griffiths
	 Engineering Electromagnetics by Nathan Ida,2nd Edition
	 Engineering Electromagnetics by Kenneth and Demarest

Main Topics to be Covered:

- Vector Analysis: Vector Algebra, Coordinate Systems and Transformation, Vector Calculus
- Electrostatic Fields: Coulomb's Law, Gauss's Law, Electric Potential, An Electric Dipole, Maxwell's First equation
- Electric Fields in Material Space: Properties of Materials, Electric Current, Dielectrics, Boundary Conditions
- Poisson's and Laplace's equation: Derivation of Poisson's and Laplace's equations, Resistance and Capacitance
- Magnetostatics Fields: Biot-Savart's Law, Ampere's Circuit Law, Maxwell's Equation, Magnetic Potential
- Magnetic Forces, Materials and Devices: Magnetic Force, Magnetic Torque, A magnetic Dipole, Boundary Conditions, Inductors and Inductances, Magnetic Energy
- Maxwell's Equation and Wave Propagation: Faraday's Law, Motional EMFs, Displacement Current, Maxwell's Equations in Final Form, Time- Varying Potentials
- Plane Electromagnetic Waves: Uniform plane waves, phase and group velocity, wave impedance,
- dielectric and conducting media, polarization, energy and Poynting vector

No. of Weeks	Lecture No.	Торіс
	1	Course Introduction, Vector Algebra
1 st	2	Cartesian and Cylindrical Coordinates
	3	Spherical Coordinates
2 nd	4	Vector Calculus - Integral of a Vector, Del, Gradient
	5	Vector Calculus – Divergence, Curl, Stokes' Theorem, Laplacian
	6	Coulomb's Law and Field Intensity
3 rd	7	E-Field due to line charge distribution
	8	Problem Session
	9	E-Field due to Surface charge distribution
	10	E-Field due to Volume charge distribution
4 th	11	Electric Flux Density and Gauss's Law
	12	Applications of Gauss's Law- Symmetry Arguments

	13	Problem Session		
5 th	14	Electric Potential and Potential Energy, Relationship between E & V		
	15	An Electric Dipole, Energy Density in Electrostatics		
6 th		ONE HOUR TEST (I)		
7 th	16	Problem Session		
	17	Problem Session		
	18	Convection and Conduction Currents, Conductors		
	19	Polarization in Dielectrics, Dielectric Constant and Dielectric Strength		
8 th	20	Continuity Equation and Relaxation Time		
	21	Dielectric-Dielectric Boundary Conditions		
	22	Conductor-Dielectric Boundary Conditions, Linear, Isotropic and Homogeneous Dielectrics		
9 th	23	Problem Session		
	24	Poisson's and Laplace's Equations, Resistance and Capacitance		
	25	Problem Session		
10 th	26	Problem Session		
	27	Magnetostatics - Biot-Savart's Law, Example 7.1 and Example 7.3		
	28	Third Maxwell's Equation, Ampere's Law		
11 th	29	Ampere's Law, Magnetic Flux Density & Fourth Maxwell's Equation		
	30	Problem Session		
12 th		ONE HOUR TEST (II)		
	31	Forces due to magnetic fields		
13 th	32	Problem Session		
	33	Problem Session		
	34	Magnetic Torque, Magnetization, Boundary Conditions		
14 th	35	Problem Session		
	36	Problem Session		
	37	Inductance, Magnetic Energy, Faraday's Law, Transformer and Motional EMFs,		
15 th		Displacement Current, Maxwell's Equations		
15	38	Electromagnetic Wave Equation		
	39	Electromagnetic Wave Equation		
	40	Transverse Electromagnetic Wave, x-oriented E-field		
16 th	41	Intrinsic Impedance		
	42	Wave Propagation in a low-loss Dielectric		
	43	Wave Propagation in a low-loss Dielectric, Loss Tangent		
17 th	44	Wave Propagation in a Good Conductor, Wave Velocity		
	45	Power and the Poynting Vector		
	46	Problem Session		
18 th	47	Problem Session		
	48	Problem Session		
19 th		FINAL EXAM		
19 th	48			

Grading Policy:

Quiz Policy:

The quizzes will be a combination of announced and unannounced and normally last for ten minutes. The question framed is to test the concepts involved in last few lectures. Number of quizzes that will be used for evaluation is minimum 5. Grading for quizzes will be on a fixed scale of 0 to 10. A score of 10 indicates an exceptional attempt towards the answer and a score of 1 indicates your answer is entirely wrong but you made a reasonable effort towards the solution. Scores in between indicate very good (8-9), good (6-7), satisfactory (4-5), and poor (2-3) attempt. Failure to make a reasonable effort to answer a question scores a 0. There will be no 'best-of' policy.

Assignment Policy:

In order to develop comprehensive understanding of the subject, assignments will be given. Late assignments will not be accepted / graded. All assignments will count towards the total (No 'best-of' policy). The students are advised to do the assignment themselves. Copying of assignments is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee.

SEECS maintains a zero tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the SEECS plagiarism policy will lead to strict penalties including zero marks in assignments and referral to the academic coordination office for disciplinary action.

Plagiarism:

SEECS maintains a zero tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the SEECS plagiarism policy will lead to strict penalties including zero marks in assignments and referral to the academic coordination office for disciplinary action.