Faktorizacija matrik

Osnovni cilj faktorizacije je izraziti matriko X kot produkt dveh matrik nižjega reda (k):

$$X \sim W * H$$

Pri čemer je:

```
X reda (m, n)
W reda (m, k)
H reda (k, n)
```

Nižji red (k) predstavlja pričakovano število vzorcev v podatkih.

Primer - ekspresija genov

Iščemo torej takšni matriki W in H, katerih produkt bo karseda dobro aproksimiral izvirni X.

$$X \sim X_app = W * H$$

Začnimo s primerom (naključno generirani podatki X):

```
In [1]:
```

```
import numpy as np
G = np.random.rand(10, 2)
Out[1]:
array([[ 0.21381082,
                       0.00948609],
       [ 0.77222321,
                       0.35733436],
       [ 0.03124893,
                       0.5519926 ],
       [ 0.83341421,
                       0.35948197],
       [ 0.78357
                       0.11266154],
       [ 0.17109978,
                       0.07669748],
       [ 0.71735885,
                       0.94300482],
       [ 0.16732064,
                       0.26768403],
       [ 0.54822884,
                      0.93092406],
       [ 0.75105457,
                       0.48829814]])
In [2]:
X = G.dot(G.T)
Х
```

```
array([[ 0.04580505,
                       0.16849939,
                                      0.01191761,
                                                    0.18160306,
                                                                  0.168
60447,
                                      0.03831424,
         0.03731054,
                       0.16232451,
                                                    0.12604809,
                                                                  0.165
21563],
                                                    0.77203705,
                                      0.22137707,
       [ 0.16849939,
                       0.72401653,
                                                                  0.645
34879,
                       0.89092918,
                                      0.22486158,
                                                    0.75600619,
                                                                  0.754
         0.15953387,
46748],
       [ 0.01191761,
                       0.22137707,
                                      0.30567233,
                                                    0.22447469,
                                                                  0.086
67406,
         0.04768313,
                       0.54294838,
                                      0.15298819,
                                                    0.53099476,
                                                                  0.293
00661],
       [ 0.18160306,
                       0.77203705,
                                      0.22447469,
                                                    0.82380653,
                                                                  0.693
53817,
         0.17016835,
                       0.93685029,
                                      0.23567498,
                                                    0.79155212,
                                                                  0.801
47393],
       [ 0.16860447,
                       0.64534879,
                                      0.08667406,
                                                    0.69353817,
                                                                  0.626
67458,
         0.14270951,
                       0.66834126,
                                      0.16126513,
                                                    0.53445501,
                                                                  0.643
51625],
       [ 0.03731054,
                       0.15953387,
                                      0.04768313,
                                                    0.17016835,
                                                                  0.142
70951,
         0.03515764,
                       0.19506604,
                                      0.04915922,
                                                    0.16520137,
                                                                  0.165
95651],
                       0.89092918,
                                      0.54294838,
                                                    0.93685029,
                                                                  0.668
       [ 0.16232451,
34126,
         0.19506604,
                       1.40386181,
                                      0.37245627,
                                                    1.27114269,
                                                                  0.999
24315],
                       0.22486158,
                                      0.15298819,
                                                    0.23567498,
       [ 0.03831424,
                                                                  0.161
26513,
         0.04915922,
                       0.37245627,
                                      0.09965093,
                                                    0.3409235 ,
                                                                  0.256
37654],
       [ 0.12604809,
                       0.75600619,
                                      0.53099476,
                                                    0.79155212,
                                                                  0.534
45501,
                       1.27114269,
         0.16520137,
                                      0.3409235 ,
                                                    1.16717446,
                                                                  0.866
31826],
                                                                  0.643
       [ 0.16521563,
                       0.75446748,
                                      0.29300661,
                                                    0.80147393,
51625,
                                      0.25637654,
                                                    0.86631826,
                                                                  0.802
         0.16595651,
                       0.99924315,
51804]])
```

Kako torej določiti W in H, da bo X ~ W * H?

Začnimo z naključnima matrikama nižjega reda:

In [3]:

Out[2]:

```
k = 2 # red faktorizacije, pričakovano število vzorcev v podatkih

m, n = X.shape
W = np.random.rand(m, k)
H = np.random.rand(k, n)
```

```
In [4]:
W
Out[4]:
array([[ 0.34933672,
                      0.06023433],
       [ 0.60606465,
                      0.67990942],
       [ 0.2972438 ,
                      0.56089648],
       [ 0.25393023,
                      0.25691046],
       [ 0.75965251,
                      0.02115036],
       [ 0.61711351,
                      0.51448533],
       [ 0.98833306,
                      0.84340659],
       [ 0.94017607,
                      0.98065244],
       [ 0.02479218,
                      0.76359887],
       [ 0.30903088,
                      0.65583998]])
In [5]:
Η
Out[5]:
array([[ 0.4763206 , 0.28677701,
                                    0.95133682, 0.87076167,
                                                               0.675
4595 ,
         0.70104067,
                      0.86729464,
                                    0.36462253,
                                                 0.88728992,
                                                               0.271
55853],
       [ 0.52710875,
                      0.92365904,
                                    0.90862696, 0.61327978,
                                                               0.894
16723,
         0.2366802 , 0.31938903 , 0.15417188 , 0.23323164 ,
                                                               0.129
12498]])
```

Za posamezno celico [i, j] pogledamo odstopanje trenutne vrednosti celice v X_app od prave vrednosti celice v X.

```
In [6]:
```

```
X_app = W.dot(H)
dif = X - X_app
print "celica [0,0]:", X[0,0], X_app[0,0], dif[0,0]
print "celotna napaka:", np.sqrt(((dif**2).sum()))
```

```
celica [0,0]: 0.0458050543144 0.198146320435 -0.15234126612 celotna napaka: 5.20463549416
```

Postopno ju popravlja mo z določenimi pravili.

Najprej ugotovimo razlike (napake):

```
In [7]:

dw = np.zeros((m, k))
dh = np.zeros((k, n))
for i, j in zip(*(X.nonzero())):
    for f in xrange(k):
        dw[i, f] = dw[i, f] + (X[i, j] - W[i, :].dot(H[:, j])) * H[f, j]
        dh[f, j] = dh[f, j] + (X[i, j] - W[i, :].dot(H[:, j])) * W[i, f]
```

Nato ustrezno popravimo matriki W in H:

```
In [8]:
```

```
eta = 0.02

W = W + eta * dw

H = H + eta * dh

W = W * (W > 0)

H = H * (H > 0)
```

Postopek ponavljamo dokler ni

X_app = W * H dovolj podobna pravemu X.

```
In [9]:
```

```
X_app = W.dot(H)
dif = X - X_app
print "celica [0,0]:", X[0,0], X_app[0,0], dif[0,0]
print "celotna napaka:", np.sqrt(((dif**2).sum()))
```

```
celica [0,0]: 0.0458050543144 0.159042814945 -0.113237760631 celotna napaka: 4.35424510542
```

Algoritem za faktorizacijo - gradientni spust

```
In [10]:
from itertools import combinations, product
import numpy as np
import sys
def pgdnmf(X, rank, max iter=100, tol=1e-5, eta=1e-2):
        NMF using projected gradient descent.
        Minimize | | X - WH | | F, subject to W, H >= 0.
        :param X:
            Data matrix.
        :param rank
            Maximal rank of the model (W, H).
        :param max iter
            Maximum number of iterations.
        :return
            Data model W, H.
    11 11 11
    m, n = X.shape
          = np.random.rand(m, rank)
          = np.random.rand(rank, n)
          = 0
    itr
    error = float("inf")
    known = X.nonzero()
    while error > tol and itr < max iter:</pre>
        error = 0
        if itr % 10 == 0:
            sys.stdout.write("%s/%s\r" % (itr, max_iter))
            sys.stdout.flush()
        dw = np.zeros((m, rank))
        dh = np.zeros((rank, n))
        for i, j in zip(*known):
            for k in xrange(rank):
                           = dw[i, k] + (X[i, j] - W[i, :].dot(H[:, j])) * H[
k, j]
                dh[k, j]
                           = dh[k, j] + (X[i, j] - W[i, :].dot(H[:, j])) * W[
i, k]
            error += (X[i, j] - W[i, :].dot(H[:, j]))**2
        W = W + eta * dw
        H = H + eta * dh
        W = W * (W > 0)
```

Rezultat faktorizacije na prejšnjem primeru

H = H * (H > 0)

itr += 1

return W, H

```
W, H = pgdnmf(X, rank=3)

In [12]:

X_app = W.dot(H)
dif = X - X_app
print "celica [0,0]:", X[0,0], X_app[0,0], dif[0,0]
print "celotna napaka:", np.sqrt(((dif**2).sum()))
print np.linalg.norm(dif, ord="fro")

celica [0,0]: 0.0458050543144 0.00658480778938 0.0392202465251
celotna napaka: 0.73254455696
0.73254455696
```

Katero vrednost k izbrati?

```
In [14]:
```

In [11]:

```
# koda se izvaja zelo dolgo časa (~10 min), predvsem zaradi notranje zanke
pts = []
for k in range(1, 20):
    # ponovimo večkrat, da se izognemo lokalnemu minimumu
es = []
for _ in range(25):
    W, H = pgdnmf(X, rank=k, max_iter=300)
    X_app = W.dot(H)
    e = np.linalg.norm(X - X_app, ord="fro")
    es.append(e)
pts.append((k, es))
```

```
In [15]:
```

```
import pylab
%matplotlib inline

xs, ys = zip(*pts)
pylab.boxplot(ys, positions=xs)
pylab.plot(xs, np.amin(ys, axis=1));
```


Realen primer - podatki iris

In [16]:

```
import Orange
data = Orange.data.Table("iris")
#imputer = Orange.feature.imputation.ModelConstructor()
#imputer.learner_continuous = Orange.regression.mean.MeanLearner()
#imputer.learner_discrete = Orange.classification.bayes.NaiveLearner()
#imputer = imputer(data)
#data = imputer(data)
X, c, _ = data.to_numpy()
print "Dimenzije tabel: X = %s, c = %s" % (X.shape, c.shape)
```

```
Dimenzije tabel: X = (150, 4), c = (150,)
```

Če podatkov preveč, vzemimo le podmnožico podatkov.

```
In [17]:
```

```
sub_i = sorted(np.random.choice(X.shape[0], 120, replace=False))
X = X[sub_i,:]
c = c[sub_i]
print "Dimenzije tabel: X = %s, c = %s" % (X.shape, c.shape)
```

```
Dimenzije tabel: X = (120, 4), c = (120,)
```

```
In [18]:

k = 2
W, H = pgdnmf(X, rank=k, max_iter=200)
print "Residual error: ", np.linalg.norm(X - W.dot(H), ord="fro")
```

Residual error: 3.4321756678

Izrišimo podatke (atribute, razred) ter faktorje (W in H).

In [19]:

```
pylab.figure(figsize=(10,10))
pylab.subplot(1, 4, 1)
pylab.title("X")
pylab.imshow(X, aspect=0.2, cmap=pylab.cm.Greys, interpolation='none'); pylab
.xticks([]); pylab.yticks([])
pylab.subplot(1, 4, 2)
pylab.title("c")
pylab.imshow(np.matrix(c).T, aspect=0.2, cmap=pylab.cm.Greys); pylab.xticks([
]); pylab.yticks([])
vmin = min(W.min(), W.min())
vmax = max(W.max(), H.max())
pylab.subplot(1, 4, 3)
pylab.title("W")
pylab.imshow(W, cmap=pylab.cm.Greys, aspect=0.2, vmin=vmin, vmax=vmax, interpo
lation='none'); pylab.xticks([]); pylab.yticks([])
pylab.subplot(1, 4, 4)
pylab.title("H")
pylab.imshow(H, cmap=pylab.cm.Greys, aspect=0.8, vmin=vmin, vmax=vmax, interpo
lation='none'); pylab.xticks([]); pylab.yticks([]);
```


Kateri faktorji so povezani s katerimi atributi?

```
In [20]:
```

```
for i, a in enumerate(data.domain.attributes):
    print "(%s) %s" % (i, a.name)
```

- (0) sepal length
- (1) sepal width
- (2) petal length
- (3) petal width

Izračunajmo aproksimacijo X_apr, razliko do pravega X in vse izrišimo.

```
In [21]:

X_apr = W.dot(H)
X_dif = abs(X - X_apr)
print "Največja razlika:", X_dif.max()

Največja razlika: 0.560882611475

In [22]:

vmin = min(X.min(), X_apr.min())
vmax = max(X.max(), X_apr.max())

pylab.figure(figsize=(10,10))
pylab.subplot(1, 4, 1)
pylab.title("X")
```

pylab.imshow(X, cmap=pylab.cm.Greys, aspect=0.2, vmin=vmin, vmax=vmax, interpo

pylab.imshow(X_apr, cmap=pylab.cm.Greys, aspect=0.2, vmin=vmin, vmax=vmax, int

pylab.imshow(X_dif, cmap=pylab.cm.Greys, aspect=0.2, vmin=vmin, vmax=vmax, int

pylab.imshow(X dif, cmap=pylab.cm.Greys, aspect=0.2, vmin=vmin, vmax=vmax/10,

lation='none'); pylab.xticks([]); pylab.yticks([])

erpolation='none'); pylab.xticks([]); pylab.yticks([])

erpolation='none'); pylab.xticks([]); pylab.yticks([])

pylab.title("X dif = X - X apr\n(normaliziran izris)")

interpolation='none'); pylab.xticks([]); pylab.yticks([]);

pylab.subplot(1, 4, 2)
pylab.title("X_apr")

pylab.subplot(1, 4, 3)

pylab.subplot(1, 4, 4)

pylab.title("X dif = X - X apr")

Izris primerov in atributov v prostoru faktorjev

```
pylab.figure(figsize=(20,20))
for f1 in range(k):
    for f2 in range(k):
        pylab.subplot(k, k, 1+f1*k+f2)
        pylab.scatter(W[:,f1], W[:,f2], c=c, label='primeri', edgecolor='none')

        pylab.scatter(H[f1,:], H[f2,:], c='black', label='atributi', edgecolor='none', s=80.0)
        pylab.xlabel("faktor %s" % f1)
        pylab.ylabel("faktor %s" % f2)
        [pylab.text(x-0.2, y+0.2, "(%s) %s" % (i, data.domain.attributes[i].na
me)) for i, (x, y) in enumerate(zip(H[f1,:], H[f2,:]))]
```


Kateri faktorji najboljše ločujejo razrede? Pozor, razred ni bil uporabljen pri faktorizaciji.

Faktorji kot novi atributi

Za gradnjo napovednega modela lahko uporabimo aproksimirano matriko, saj naj bi iz nje bil odstranjen "šum".

Napovedni lahko zgradimo iz matrike W, ki primere preslika v prostor faktorjev.

```
In [24]:
```

```
_, p = W.shape # število atributov

features = [Orange.feature.Continuous("X%i" % (i + 1)) for i in range(p)]

class_var = Orange.feature.Discrete("C", values=data.domain.class_var.values)

# razred

domain = Orange.data.Domain(features, class_var)

data_faktorji = Orange.data.Table(domain, np.column_stack((W, c)))

print data[0]

print data_faktorji[0]
```

```
[5.1, 3.5, 1.4, 0.2, 'Iris-setosa']
[0.072, 0.973, 'Iris-setosa']
```

Izvedimo prečno preverjanje na obeh.

```
In [25]:
```

```
learners = [Orange.classification.bayes.NaiveLearner(),
            Orange.classification.tree.TreeLearner(),
            Orange.classification.knn.kNNLearner(k=3),
            Orange.classification.svm.SVMLearner(),
            Orange.classification.majority.MajorityLearner()]
print "data"
cv = Orange.evaluation.testing.cross validation(learners, data, folds=5)
for i, score in enumerate(learners):
    print "%10s: CA= %.3f, AUC= %0.3f" % (learners[i].name, Orange.evaluation.
scoring.CA(cv)[i], Orange.evaluation.scoring.AUC(cv)[i])
print
print "data faktorji"
cv = Orange.evaluation.testing.cross validation(learners, data faktorji, folds
=5)
for i, score in enumerate(learners):
    print "%10s: CA= %.3f, AUC= %0.3f" % (learners[i].name, Orange.evaluation.
scoring.CA(cv)[i], Orange.evaluation.scoring.AUC(cv)[i])
print
data
     naive: CA= 0.920, AUC= 0.990
      tree: CA= 0.953, AUC= 0.977
       kNN: CA= 0.960, AUC= 0.985
       sVM: CA= 0.960, AUC= 0.999
  majority: CA= 0.333, AUC= 0.500
data faktorji
```

Napovedovanje vrednosti - testni podatki v matriki

Vrednosti v celicah, ki bistveno odstopajo med pravimi podatki in aproksimiranimi, so potencialne nove napovedi.

```
In [26]:

mis_X = np.copy(X)
mis_X[0,0] = 0 # postavimo na 0
print "trenutna vrednost celice, ki želimo napovedati:", mis_X[0,0]
print "dejanska vrednost:", X[0,0] # dejanska vrednost
```

trenutna vrednost celice, ki želimo napovedati: 0.0 dejanska vrednost: 5.09999990463

naive: CA= 0.958, AUC= 0.991 tree: CA= 0.917, AUC= 0.957 kNN: CA= 0.925, AUC= 0.988 sVM: CA= 0.950, AUC= 0.992

majority: CA= 0.333, AUC= 0.500

```
In [27]:

k = 2
W, H = pgdnmf(mis_X, rank=k, max_iter=200)
X_mis_apr = W.dot(H)
print "napovedana vrednost:", X_mis_apr[0,0]

napovedana vrednost: 5.0341782975

Če primerjamo vrednosti aproksimacije in prave vrednosti, hitro odkrijemo "težavne" primere.
In [28]:
```

```
W, H = pgdnmf(X, rank=k, max iter=200)
X apr = W.dot(H)
X \text{ dif} = abs(X - X apr)
# vrstice (primeri) z največjimi odstopanji
max dif rows = sorted([(max(r), ri) for ri, r in enumerate(X dif)], reverse=Tr
ue)
for _, ri in max_dif_rows[:5]:
   print "%3s (%s): %s" % (ri, c[ri], X[ri])
                      %s" % (X apr[ri])
   print
95 (2.0): [ 5.80000019 2.79999995
                                     5.0999999
                                                 2.4000001 ]
           [ 5.99685951
                        2.50503159
                                     5.21308409
                                                 1.839206661
                        3.4000001
                                     5.5999999
109 (2.0): [ 6.30000019
                                                 2.4000001
           [ 6.67604095
                        2.89836643
                                     5.56963215
                                                 1.94278002]
107 (2.0): [ 6.0999999
                         2.5999999
                                     5.5999999
                                                 1.39999998]
           [ 6.16408241
                        2.57146687
                                     5.36574252
                                                 1.89375816]
118 (2.0): [ 6.19999981
                        3.4000001
                                     5.4000001
                                                 2.299999951
           [ 6.57051669
                        2.90687168
                                     5.36571763
                                                 1.86017971]
```

5.69999981

5.77460862

2.5

2.01518951]

3.29999995

2.99593822

114 (2.0): [6.69999981

[6.91071413

Napovedovanje vrednosti - novi primer, izven matrike

Nove primere lahko projeciramo v prostor faktorjev, in potem naprej sklepamo o njegovih drugih lastnostih (recimo, razredu ali drugih atributih).

```
W = (X * H.T) / (W * H * H.T)
```

Spomnimo se: W je reda (m, k) H je reda (k, n)

```
X je reda (m, n)
```

Torej, v zgornjem izrazu delimo matriki, ki sta reda:

```
X * H.T = (m, n) * (n, k) => (m, k)

W * H * H.T = (m, k) * (k, n) * (n, k) => (m, k)
```

Dimenzije se torej ujemajo z dimenzijami W (m, k).

In [29]:

```
In [30]:
```

```
W_example = nmf_fix(X[0:2,:], H, k, max_iter=1000)
print W_example
print W[0:2]
```

Hkratna faktorizacija več matrik -> zlivanje podatkov

Osnovni cilj faktorizacije dopolnimo na več matrik X_i, ki jih izrazimo kot produkt dveh matrik nižjega reda (k):

```
X_i ~ W * H_i
```

Pri čemer je:

```
X_i reda (m, n_i)
W reda (m, k)
H_i reda (k, n_i)
```

Nižji red (k) predstavlja pričakovano število vzorcev v podatkih. Matrika W je skupna, in preko nje prihaja do "zlivanja" podatkov med matrikami X_i.

Primer zlivanja podatkov o interakciji protein-RNA

iCLIP cDNA count

... TDP-43

hnRNPC TIAL1

Group

DNA k-mer

ш

AAA AAC

Region type

In []: