

10.11.2004

日本特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2003年11月 5日
Date of Application:

出願番号 特願2003-376022
Application Number:
[ST. 10/C]: [JP2003-376022]

出願人 日本発条株式会社
Applicant(s):

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年12月16日

特許庁長官
Commissioner,
Japan Patent Office

小川

洋

【書類名】 特許願
【整理番号】 PNHA-15728
【提出日】 平成15年11月 5日
【あて先】 特許庁長官殿
【国際特許分類】 G01R 1/06
G01R 1/067
H01L 21/66
H01R 13/24

【発明者】
【住所又は居所】 神奈川県横浜市金沢区福浦3丁目10番地 日本発条株式会社内
【氏名】 風間 俊男

【発明者】
【住所又は居所】 神奈川県横浜市金沢区福浦3丁目10番地 日本発条株式会社内
【氏名】 中山 浩志

【特許出願人】
【識別番号】 000004640
【氏名又は名称】 日本発条株式会社

【代理人】
【識別番号】 100089118
【弁理士】
【氏名又は名称】 酒井 宏明

【手数料の表示】
【予納台帳番号】 036711
【納付金額】 21,000円

【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 0310413

【書類名】特許請求の範囲**【請求項 1】**

所定回路構造に対して信号入出力を行う信号用導電性接触子と、該所定回路構造に対してアース電位供給を行うアース用導電性接触子とを少なくとも収容する導電性接触子ホルダであって、

導電性材料によって形成され、前記信号用導電性接触子を収容する第1開口部および前記アース用導電性接触子との電気的接続を維持しつつ前記アース用導電性接触子を収容する第2開口部が形成されたホルダ基板と、

前記第1開口部の内面を被覆する絶縁部材と、
を備えたことを特徴とする導電性接触子ホルダ。

【請求項 2】

前記第1開口部内に、内面が前記アース用導電性接触子と接触するよう配置された導電性パイプ部材をさらに備えたことを特徴とする請求項1に記載の導電性接触子ホルダ。

【請求項 3】

所定回路構造に対する信号入出力に用いられる信号用導電性接触子を少なくとも収容する導電性接触子ホルダであって、

前記信号用導電性接触子を収容する開口部が形成されたホルダ基板と、

誘電材料によって形成されると共に、収容される前記信号用導電性接触子の外周上に位置するよう形成され、前記信号用導電性接触子における特性インピーダンスを補正するインピーダンス補正部材と、

を備えたことを特徴とする導電性接触子ホルダ。

【請求項 4】

前記信号用導電性接触子は、所定の外径を備えた円柱状の形状を有し、

前記インピーダンス補正部材は、前記信号用導電性接触子と同軸の円筒形状を有し、該円筒形状の外径および前記誘電材料の誘電率を調整することによって前記特性インピーダンスを補正することを特徴とする請求項3に記載の導電性接触子ホルダ。

【請求項 5】

前記ホルダ基板は、導電性を有することを特徴とする請求項3または4に記載の導電性接触子ホルダ。

【請求項 6】

前記ホルダ基板は、前記所定回路構造の熱膨張係数と適合する材料によって形成されることを特徴とする請求項1～5のいずれか一つに記載の導電性接触子ホルダ。

【請求項 7】

前記ホルダ基板は、前記所定回路構造に対して電力供給を行う給電用導電性接触子を収容する第3開口部が形成された構造を有し、

前記第3開口部の内面を被覆する絶縁部材をさらに備えたことを特徴とする請求項1～6のいずれか一つに記載の導電性接触子ホルダ。

【請求項 8】

所定回路構造に対して信号入出力を行う信号用導電性接触子と、

前記所定回路構造に対してアース電位供給を行うアース用導電性接触子と、

導電性材料によって形成され、前記信号用導電性接触子を収容する第1開口部および前記アース用導電性接触子との電気的接続を維持しつつ前記アース用導電性接触子を収容する第2開口部が形成されたホルダ基板と、該第1開口部の内面を被覆する絶縁部材とを有する導電性接触子ホルダと、

少なくとも前記信号用導電性接触子と電気的に接続され、前記所定回路構造に対して入力する信号を生成する回路を有する回路基板と、

を備えたことを特徴とする導電性接触子ユニット。

【請求項 9】

前記信号用導電性接触子は、所定の外径を備えた円柱形状を有し、

前記絶縁部材は、前記信号用導電性接触子と同軸の円筒形状を有し、該円筒形状の外径

および前記誘電部材の誘電率を調整することによって、前記信号用導電性接触子における特性インピーダンスを補正することを特徴とする請求項8に記載の導電性接触子ユニット。

【請求項10】

アース電位を供給するアース電位供給手段と、
前記ホルダ基板と前記アース電位供給手段との間を電気的に接続する接続手段と、
をさらに備えたことを特徴とする請求項8または9に記載の導電性接触子ユニット。

【書類名】明細書

【発明の名称】導電性接触子ホルダ、導電性接触子ユニット

【技術分野】

【0001】

本発明は、所定回路構造に対して信号入出力を行う信号用導電性接触子と、該所定回路構造に対してアース電位供給を行うアース用導電性接触子とを少なくとも収容する導電性接触子ホルダおよび導電性接触子ユニットに関するものである。

【背景技術】

【0002】

従来、半導体集積回路の電気特性検査に関する技術分野において、半導体集積回路の外部接触用電極に対応して複数の導電性接触子を配設した導電性接触子ユニットに関する技術が知られている。かかる導電性接触子ユニットは、複数の導電性接触子と、導電接触子を収容する開口部が形成された導電性接触子ホルダと、導電性接触子と電気的に接続された検査回路を備えた検査回路とを備えた構成を有する（例えば、特許文献1参照。）。

【0003】

導電性接触子ユニットに備わる複数の導電性接触子は、それぞれ検査対象たる半導体集積回路に対して所定信号の入出力を行う信号用導電性接触子と、半導体集積回路に対してアース電位を供給するアース用導電性接触子と、半導体集積回路に対して駆動電力を供給する電力供給用導電性接触子とに大別される。これらの導電性接触子は、それぞれ検査回路内に備わる信号生成回路等と電気的に接続されることによって上記の機能を実現している。

【0004】

【特許文献1】特開2002-124552号公報（第1図）

【発明の開示】

【発明が解決しようとする課題】

【0005】

しかしながら、近年の半導体集積回路の小型化および動作の高速化に伴い、導電性接触子ユニットも小型かつ高速動作が可能な構成を採用することが要求され、従来の導電性接触子ユニットではかかる要求に対して十分に応えられないという問題を有する。

【0006】

例えば、半導体集積回路の小型化に伴い、半導体集積回路に備わる複数の外部接続用電極が小型化されることに対応して導電性接触子の外径も1mm以下程度にまで小型化され、導電性接触子ホルダの下部に配置される回路基板の電極との接触面積が低減されることとなる。このため、例えば半導体集積回路に対してアース電位を供給するアース用導電性接触子について、安定したアース電位供給が困難であるという問題が生じることとなる。

【0007】

すなわち、半導体集積回路に対して安定したアース電位供給を行うためにはアース用導電性接触子自身が安定したアース電位を有していることが条件となる。しかしながら、アース用導電性接触子に対してアース電位を供給する回路構造から延伸した電極との接触面積が小さい場合、十分なアース電位供給を受けることが困難である。

【0008】

また、半導体集積回路の高速化に伴い、半導体集積回路と信号用導電性接触子との間のインピーダンス整合の精度も問題となる。すなわち、一般に高周波数の電気信号を入出力する場合には、それぞれの特性インピーダンスの差に応じて電気信号の入力効率が低下することが知られており、検査等を安定的に行うためには特性インピーダンスを精度良く整合した信号用導電性接触子を用いる必要がある。しかしながら、半導体集積回路の小型化に伴い信号用導電性接触子の外径は1mm程度以下にまで小型化されており、かかる微小の信号用導電性接触子自体の特性インピーダンスを調整することは容易ではない。

【0009】

本発明は、上記に鑑みてなされたものであって、使用時に電気的に接觸させる半導体集

積回路等の回路構造の小型化、高速化に対応した導電性接触子ホルダおよび導電性接触子ユニットを提供することを目的とする。

【課題を解決するための手段】

【0010】

上述した課題を解決し、目的を達成するために、請求項1にかかる導電性接触子ホルダは、所定回路構造に対して信号入出力を行う信号用導電性接触子と、該所定回路構造に対してアース電位供給を行うアース用導電性接触子とを少なくとも収容する導電性接触子ホルダであって、導電性材料によって形成され、前記信号用導電性接触子を収容する第1開口部および前記アース用導電性接触子との電気的接続を維持しつつ前記アース用導電性接触子を収容する第2開口部が形成されたホルダ基板と、前記第1開口部の内面を被覆する絶縁部材とを備えたことを特徴とする。

【0011】

この請求項1の発明によれば、アース用導電性接触子をホルダ基板と電気的に接続することとしたため、安定したアース電位を所定回路構造に対して供給することができる。

【0012】

また、請求項2にかかる導電性接触子ルダは、上記の発明において、前記第1開口部内に、内面が前記アース用導電性接触子と接触するよう配置された導電性パイプ部材をさらに備えたことを特徴とする。

【0013】

また、請求項3にかかる導電性接触子ホルダは、所定回路構造に対する信号入出力に用いられる信号用導電性接触子を少なくとも収容する導電性接触子ホルダであって、前記信号用導電性接触子を収容する開口部が形成されたホルダ基板と、誘電材料によって形成されると共に、収容される前記信号用導電性接触子の外周上に位置するよう形成され、前記信号用導電性接触子における特性インピーダンスを補正するインピーダンス補正部材とを備えたことを特徴とする。

【0014】

この請求項3の発明によれば、信号用導電性接触子における特性インピーダンスを補正するインピーダンス補正部材を備えることとしたため、信号用導電性接触子の構成を変更することなく、特性インピーダンスの値を補正することができる。

【0015】

また、請求項4にかかる導電性接触子ホルダは、上記の発明において、前記信号用導電性接触子は、所定の外径を備えた円柱状の形状を有し、前記インピーダンス補正部材は、前記信号用導電性接触子と同軸の円筒形状を有し、該円筒形状の外径および前記誘電材料の誘電率を調整することによって前記特性インピーダンスを補正することを特徴とする。

【0016】

また、請求項5にかかる導電性接触子ホルダは、上記の発明において、前記ホルダ基板は、導電性を有することを特徴とする。

【0017】

また、請求項6にかかる導電性接触子ホルダは、上記の発明において、前記ホルダ基板は、前記所定回路構造の熱膨張係数と適合する材料によって形成されることを特徴とする。

。

【0018】

また、請求項7にかかる導電性接触子ホルダは、上記の発明において、前記ホルダ基板は、前記所定回路構造に対して電力供給を行う給電用導電性接触子を収容する第3開口部が形成された構造を有し、前記第3開口部の内面を被覆する絶縁部材をさらに備えたことを特徴とする。

【0019】

また、請求項8にかかる導電性接触子ユニットは、所定回路構造に対して信号入出力を行う信号用導電性接触子と、前記所定回路構造に対してアース電位供給を行うアース用導電性接触子と、導電性材料によって形成され、前記信号用導電性接触子を収容する第1開口部

口部および前記アース用導電性接触子との電気的接続を維持しつつ前記アース用導電性接触子を収容する第2開口部が形成されたホルダ基板と、該第1開口部の内面を被覆する絶縁部材とを有する導電性接触子ホルダと、少なくとも前記信号用導電性接触子と電気的に接続され、前記所定回路構造に対して入力する信号を生成する回路を有する回路基板と、を備えたことを特徴とする。

[0 0 2 0]

また、請求項9にかかる導電性接触子ユニットは、上記の発明において、前記信号用導電性接触子は、所定の外径を備えた円柱形状を有し、前記絶縁部材は、前記信号用導電性接触子と同軸の円筒形状を有し、該円筒形状の外径および前記誘電部材の誘電率を調整することによって、前記信号用導電性接触子における特性インピーダンスを補正することを特徴とする。

[0 0 2 1]

また、請求項10にかかる導電性接触子ユニットは、上記の発明において、アース電位を供給するアース電位供給手段と、前記ホルダ基板と前記アース電位供給手段との間に電気的に接続する接続手段とをさらに備えたことを特徴とする。

【発明の効果】

[0022]

本発明にかかる導電性接触子ホルダおよび導電性接触子ユニットは、アース用導電性接触子をホルダ基板と電気的に接続する構成としたため、安定したアース電位を所定回路構造に対して供給することができ、導電性接触子ホルダおよび導電性接触子ユニットが小型化した場合であっても、所定回路構造に対して安定したアース電位の供給が可能となるという効果を奏する。

[0023]

また、本発明にかかる導電性接触子ホルダおよび導電性接触子ユニットは、信号用導電性接触子における特性インピーダンスを補正するインピーダンス補正部材を備える構成としたため、信号用導電性接触子の構成を変更することなく、特性インピーダンスの値を補正することができ、小型かつ高速で動作する所定回路構造に対して電気信号を高効率で入出力することができる導電性接触子ユニットを実現することができるという効果を奏する

【発明を実施するための最良の形態】

[0024]

以下に、本発明にかかる導電性接触子ホルダおよび導電性接触子ユニットを実施するための最良の形態（以下、「実施の形態」と称する）を、図面を参照しつつ詳細に説明する。なお、図面は模式的なものであり、各部分の厚みと幅との関係、それぞれの部分の厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。

[0025]

(実施の形態 1)

(実施の形態1)
まず、実施の形態1にかかる導電性接触子ユニットについて説明する。本実施の形態1にかかる導電性接触子ユニットは、半導体集積回路等の所定の回路構造に対して電気信号の入出力、電力供給およびアース電位供給を行うためのものであり、特に安定したアース電位供給を行うため、アース電位供給を行うアース用導電性接触子と、導電性材料で形成された導電性接触子ホルダとを電気的に接続させた構成を有する。

[0026]

図1は、本実施の形態1にかかる導電性接触子ユニットの構造を示す模式図である。図1に示すように、本実施の形態1にかかる導電性接触子ユニットは、半導体集積回路1に供給する信号の生成等を行う回路を備えた回路基板2と、回路基板2上に配置され、所定の開口部（図1では図示省略）を備えた導電性接触子ホルダ3と、導電性接触子ホルダ3の開口部内に収容される導電性接触子4とを備える。また、使用の際に半導体集積回路1の位置ずれが生じるのを抑制するためのホルダ部材5が回路基板2上かつ導電性接触子ホルダ3の位置に設けられる。

ルダ3の外周に配置されている。

[0027]

回路基板 2 は、検査対象の半導体集積回路 1 の電気的特性を検査するための検査回路を備える。また、回路基板 2 は、内蔵する回路を導電性接触子 4 に対して電気的に接続するための電極（図 1 では図示省略）を導電性接触子ホルダ 3 との接触面上に配置した構成を有する。

[0028]

導電性接触子ホルダ3は、導電性接触子4を収容するためのものである。具体的には、導電性接触子ホルダ3は、金属等の導電性材料によって形成されたホルダ基板およびホルダ基板表面の必要な領域を被覆する絶縁部材とを備える。そして、ホルダ基板は、導電性接触子4の配設場所に対応した領域に開口部が形成され、かかる開口部に導電性接触子4を収容する構造を有する。

[0029]

導電性接触子4は、回路基板2内に備わる回路と、半導体集積回路1との間を電気的に接続するためのものである。導電性接触子4は、半導体集積回路に対して供給する信号の種類等に応じて3パターンに大別され、具体的には、半導体集積回路1に対して電気信号を入出力するための信号用導電性接触子と、半導体集積回路1に対してアース電位を供給するアース用導電性接触子と、半導体集積回路1に対して電力を供給する給電用導電性接触子とを有する。なお、以下においては信号用導電性接触子、アース用導電性接触子および給電用導電性接触子を総称する際に導電性接触子と称し、個々について言及する際にはそれぞれの名称を用いることとする。

[0 0 3 0]

図2は、導電性接触子ホルダ3と導電性接触子4の詳細な構成について示す模式図である。図2に示すように、導電性接触子ホルダ3は、導電性材料によって形成される第1基板6である。図2に示すように、導電性接触子ホルダ3は、導電性材料によって形成される第1基板6および板6および第2基板7をネジ部材を用いて接合した構成を有すると共に第1基板6および第2基板7を貫通する第1開口部8、第2開口部9および第3開口部10が形成されたホルダ基板11と、第1開口部8および第3開口部10の内面およびホルダ基板11の表面を被覆する絶縁部材13および絶縁部材14とを備える。

[0031]

ホルダ基板11（第1基板6、第2基板7）は、導電性を有する材料によって形成され、導電性接触子ホルダ3の母材として機能する。具体的には、ホルダ基板11は、導電性金属または導電性樹脂によって形成されており、後述するアース機能および電界遮蔽機能について効果を奏する観点からは、体積固有抵抗が $10^{10} \Omega \cdot m$ 以下の導電性材料を用いることが好ましい。

[0032]

第1開口部8、第2開口部9および第3開口部10は、それぞれ半導体集積回路1に対し信号の入出力を行う信号用導電性接触子15、アース電位供給を行うアース用導電性接触子16および電力供給を行う給電用導電性接触子17を収容するためのものである。これらの開口部は、それぞれ円柱状かつホルダ基板11を貫通するよう形成されており、かかる形状に形成されることによって収容する導電性接触子の位置決め手段およびガイド手段としての機能を果たしている。第1開口部8等は、それぞれ第1基板6および第2基板7に対してエッチング、打抜き成形を行うことや、レーザ、電子ビーム、イオンビーム、ワイヤ放電等を用いた加工を行うことによって形成される。

[0 0 3 3]

【0034】

また、第1開口部8、第2開口部9および第3開口部10は、導電性接触子の抜け止めのためにそれぞれホルダ基板11の上下の外表面近傍において内径が狭まるよう形成されている。後述するように導電性接触子は抜け止めのための突起部を有していることから、上下の表面近傍においてかかる突起部と開口部とを当接させるよう内径を狭める構成としている。なお、上下両方の表面近傍で内径を狭める構成を採用していることから、作製時に導電性接触子を第1開口部8等に収容可能にするため、ホルダ基板11は、第1基板6と第2基板7とを貼り合わせて形成する構造を採用している。

【0035】

絶縁部材13、14は、第1開口部8および第3開口部10の内面に形成されることによって、信号用導電性接触子15および給電用導電性接触子17と、ホルダ基板11とを電気的に絶縁する機能を有する。また、絶縁部材13、14は、ホルダ基板11の外表面上にも形成されることによって、半導体集積回路1および回路基板2と、ホルダ基板11とを電気的に絶縁する機能を有する。本実施の形態1において、絶縁部材13、14を構成する材料および絶縁部材13、14の厚み等については特に制限はなく、絶縁機能を十分果たし得るものであれば任意の材料および厚みを有するものを用いて絶縁部材13、14を構成することが可能である。なお、絶縁部材13、14は、例えばコーティング等により皮膜状に形成され、コーティングの具体例としては、カレンダー加工、押し出し、浸漬、スプレー、スプレッド、電着などを用いることが可能である。また、CVD (Chemical Vapor Deposition) 法等を用いて絶縁部材13、14を形成することとしても良い。さらには、絶縁部材13、14をアルマイド等の酸化膜によって形成することとしても良い。

【0036】

次に、導電性接触子の構造について説明する。信号用導電性接触子15、アース用導電性接触子16および給電用導電性接触子17は、果たす機能は異なるものの具体的な構造に関しては同様とみなすことが可能なため、以下では代表して信号用導電性接触子15の構造について説明を行う。

【0037】

信号用導電性接触子15は、回路基板2に備わる電極と電気的に接続するための針状体19と、使用時に半導体集積回路1に備わる接続用電極と電気的に接続するための針状体20と、針状体19と針状体20との間に設けられ、針状体19、20間を電気的に接続すると共に、信号用導電性接触子15を長軸方向に伸縮させるためのバネ部材21とを備える。針状体19、針状体20およびバネ部材21は、それぞれの軸線が第1開口部8の軸線と一致するよう第1開口部8に収容され、かかる軸線方向に移動可能な構成を有する。

【0038】

針状体19は、回路基板2の表面上に配置される電極と電気的に接続するためのものである。具体的には、針状体19は、回路基板2側に先鋒端を有し、かかる先鋒端が回路基板2に備わる電極と接触する構成を有する。針状体19はバネ部材21の伸縮作用によつて軸線方向に移動が可能であることから、回路基板2に備わる電極の凹凸に対応して最適な状態で接触すると共にバネ部材21による伸張方向の押圧力によって、接触抵抗を低減した状態で電極と接触することが可能である。

【0039】

また、針状体19は、図2にも示すように軸線と垂直な方向に突起した突起部を有する。上述したように、ホルダ基板11の下側表面近傍において第1開口部8の内径は狭まるよう形成されることから、針状体19が下側に移動するに従って上記突起部と第1開口部8の内面に設けられた絶縁部材13とが当接し、針状体19が抜け止めされるようになっている。

【0040】

針状体20は、本実施の形態1にかかる導電性接触子ユニット使用時に半導体集積回路

1に備わる接続用電極に対して電気的に接続するためのものである。具体的には、針状体20は、半導体集積回路1側の端部において接続用電極と接触する構成を有する。また、針状体20は、針状体19と同様にバネ部材21の伸縮作用によって軸線方向に移動可能であると共に、軸線と垂直な方向に突起した突起部を有することによって抜け止めされた構造を有する。以上の構成を有することで、導電性接触子は、回路基板2に備わる電極と半導体集積回路1に備わる接続用電極との間を電気的に接続する。

【0041】

次に、本実施の形態1にかかる導電性接触子ユニットの利点について説明する。図3は、本実施の形態1にかかる導電性接触子ユニットの使用時において、導電性接触子と導電性接触子ホルダとの間における電気的相互作用について示す模式図である。なお、図3では、導電性接触子ユニットの利点の説明を容易にするため、信号用導電性接触子15aおよび信号用導電性接触子15bが隣接した構成について示している。

【0042】

まず、アース用導電性接触子16における電気的作用について説明する。本実施の形態1におけるアース用導電性接触子16は、電極22cを介して回路基板2からの電位を半導体集積回路1に供給するのみならず、ホルダ基板11からの電位をも受けて半導体集積回路1に対してアース電位を供給するように構成されている。すなわち、図2にも示すように、ホルダ基板11は、アース用導電性接触子16を収容する第2開口部9の内面には絶縁部材が形成されておらず、第2開口部9の内面は、アース用導電性接触子16の外周面、具体的には図3に示すように、収縮動作に伴ってたわんだバネ部材21と直接接触する構成を有する。そして、上述のようにホルダ基板11は導電性材料によって形成されることから、アース用導電性接触子16とホルダ基板11とは電気的に接続されることとなる。従って、アース用導電性接触子16とホルダ基板11との間では内部電荷が自由に行き来することが可能となることから、アース用導電性接触子16が供給する電位と、ホルダ基板11の電位とは等しい値となる。

【0043】

アース用導電性接触子16は、半導体集積回路1の小型化に伴いきわめて微小な構造を有する一方、ホルダ基板11は導電性接触子を数百本～数千本の単位で収容することが可能な程度の容積を有する。従って、ホルダ基板11にとって個々の導電性接触子は無視しきる程度の大きさしか有さず、かかる微小な導電性接触子から与えられる電荷によって生じるホルダ基板11の電位変動値はほぼ0とみなすことが可能である。このため、アース用導電性接触子16に対して半導体集積回路1から所定の電荷が流入した場合には、かかる電荷は速やかにホルダ基板11に放出・拡散され、アース用導電性接触子16およびホルダ基板11の電位はアース電位に維持されることとなる。以上のことから、アース用導電性接触子16が導電性材料によって形成されるホルダ基板11と電気的に接觸することによってアース用導電性接触子16の電位は安定的にアース電位に維持されることとなる。

【0044】

また、アース用導電性接触子16の外周面全体がホルダ基板11に形成される第2開口部9に接触することによる利点も存在する。すなわち、アース用導電性接触子16は、図2等でも示すように全体として円柱状に形成されており、軸線に垂直な断面の面積と比較して外周面の面積が著しく大きくなる構造を有する。従って、アース用導電性接触子16が外周面を介してアース電位の供給を受ける構成とすることで、アース電位の供給源（すなわち、ホルダ基板11）との接觸面積を増大させることが可能となる。この結果、本実施の形態1にかかる導電性接触子ユニットでは、アース電位供給源とアース用導電性接触子16との間の電気的な接觸抵抗が低減され、アース用導電性接触子16に対して効率良くアース電位供給を行えるという利点を有することとなる。

【0045】

次に、信号用導電性接触子15a、15bおよびこれらの近傍における電気的作用について説明する。信号用導電性接触子15a、15bは、それぞれ回路基板2内で生成された電気信号を電極22a、22bから受け取り、受け取った電気信号を半導体集積回路1

に対して入出力するためのものである。ここで、信号用導電性接触子 15a を電気信号が通過する際に、通過する電気信号に対応した電磁波が信号用導電性接触子 15a 内部で発生し、外部に放射される。かかる電磁波が信号用導電性接触子 15b に入力された場合には、信号用導電性接触子 15b が入出力する電気信号の波形に乱れが生じる等の弊害が存在することから、特に導電性接触子間の間隔が狭くなる構造の場合には、かかる電磁波を遮蔽する機構が必要となる。

【0046】

これに対して、本実施の形態 1 にかかる導電性接触子ユニットでは、信号用導電性接触子 15a、15b に対して、それぞれ絶縁部材 13 および絶縁部材 14 を介して導電性を有するホルダ基板 11 が配置された構成を有しており、かかるホルダ基板 11 に電磁波を遮蔽する機能を果たさせることができ可能である。上述したようにホルダ基板 11 の電位はほぼアース電位に、すなわち定電位に維持されているものとみなすことが可能である。従って、信号用導電性接触子 15a、15b で生じた電磁波は、いずれもホルダ基板 11 によって吸収されることとなり、信号用導電性接触子 15a、15b のいずれか一方で生じた電磁波が他方に伝わることを抑制することが可能である。従って、本実施の形態 1 にかかる導電性接触子ユニットは、信号用導電性接触子間の間隔が狭まった構造となる場合であっても、一方で生じる電磁波によって他方の動作が受ける影響を許容しうるレベルにまで抑制することが可能である。

【0047】

また、導電性接触子以外の原因によって電磁波が生じた場合も同様である。例えば、本実施の形態 1 にかかる導電性接触子ユニットの近傍に携帯電話等の電磁波発生源が存在した場合であっても、導電性接触子の周囲に位置するホルダ基板 11 によって導電性接触子に対して電磁波が流入することを抑制することが可能である。

【0048】

なお、かかる電磁波の遮蔽機能に関しては、信号用導電性接触子 15 のみならず、給電用導電性接触子 17 に関しても同様に機能する。すなわち、給電用導電性接触子 17 内を通過する電力に起因して電磁波が生じた場合であってもホルダ基板 11 の遮蔽機能によって他の導電性接触子に悪影響を及ぼすことが抑制される一方、給電用導電性接触子 17 以外で生じた電磁波についても、ホルダ基板 11 の遮蔽機能によって給電用導電性接触子 17 に悪影響を及ぼすことが抑制されている。

【0049】

さらに、ホルダ基板 11 を金属材料によって形成することによる利点も存在する。まず、従来のように、ホルダ基板を絶縁性樹脂材料によって形成した場合には、集積回路 1 の熱膨張係数とホルダ基板 11 の熱膨張係数とが必ずしも一致せず、温度変化に応じて集積回路 1 に備わる接続用電極と、ホルダ基板 11 に収容される導電性接触子との位置関係にずれが生じるという問題が存在した。

【0050】

しかしながら、ホルダ基板 11 を金属材料、例えばインバー材、コバール材（商標）等の材料を用いて形成することとした場合、ホルダ基板 11 の熱膨張係数を集積回路 1 の母材であるシリコンの熱膨張係数と近似させることができ可能である。すなわち、適切な金属材料を用いて集積回路 1 等の所定回路構造の熱膨張係数に適合したホルダ基板 11 を形成することで、温度変化にかかわらず安定して使用可能な導電性接触子ホルダおよび導電性接触子ユニットを実現することが可能という利点を有する。

【0051】

また、金属材料を用いてホルダ基板 11 を形成した場合には、外気の影響による形状変化を抑制できるという利点を有する。すなわち、金属材料を用いた場合には、外気中に存在する水分の吸収によってホルダ基板 11 が伸縮することを抑制できる他、外気中の所定成分との間に生じる化学反応による永久的な寸法変化の発生を抑制することが可能である。従って、本実施の形態 1 にかかる導電性接触子ユニットは、外気の影響による形状変化が抑制され、接続用電極と導電性接触子との位置関係にずれが生じることを防止できる。

いう利点を有する。

【0052】

さらには、金属材料を用いることによって、ホルダ基板11の強度を向上させることができある。かかる強度向上により、本実施の形態1にかかる導電性接触子ユニットは、ホルダ基板11に多数の開口部を設けて導電性接触子を収容した場合であっても、導電性接触子の反力によってホルダ基板11に反りが生じることを防止できるという利点を有する。

【0053】

以上のように、本実施の形態1にかかる導電性接触子ユニットでは、導電性接触子を収容する導電性接触子ホルダ3の母材を導電材料によって形成されたホルダ基板11とすることで、アース用導電性接触子16によるアース電位供給機能の効率化および信号用導電性接触子15および給電用導電性接触子17に関する電磁波の遮蔽機能を果たすことが可能である。これらの機能はホルダ基板11の電位安定性に大きく依存することから、ホルダ基板11の電位安定性を高めることで、アース電位供給機能および電磁波の遮蔽機能をより高めることが可能となる。

【0054】

図4は、ホルダ基板11の電位安定性をさらに向上させることを目的とした導電性接触子ユニットの変形例について示す模式図である。図4に示す変形例では、ホルダ基板11は、ネジ部材25によって接続ケーブル26の一端と電気的に接続された構成を有し、接続ケーブル26の他端は、アース電位供給装置27に接続されている。

【0055】

アース電位供給装置27は、定電位源等を内部に備え、接続ケーブル26を介してホルダ基板11に対してアース電位を供給する構成を有する。従って、ホルダ基板11の電位は、アース電位供給装置27によって外部から強制的にアース電位に維持されることとなり、電位をさらに安定させることができるとなる。従って、図4に示す変形例は、上述のアース用導電性接触子16のアース電位供給機能および電磁波の遮蔽機能をさらに向上させることができるという利点を有する。

【0056】

また、アース用導電性接触子16のアース電位供給機能を向上させるため、アース用導電性接触子16の外周面上に、アース用導電性接触子16との接触面が平滑な導電部材を配置する構成を採用することも有効である。図5は、実施の形態1にかかる導電性接触子に対するかかる変更を施した変形例の部分的構成を示す模式図である。図5に示す変形例では、ホルダ基板28を構成する第1基板29および第2基板30に形成される第2開口部は、実施の形態1における第2開口部9よりも内径が大きくなるよう形成されている。そして、かかる第2開口部の内面とアース用導電性接触子16の外周面との間に導電性パイプ部材31、32を挿入した構成を有する。

【0057】

導電性パイプ部材31、32は、それぞれ円筒形状を有したもののが同軸的に配置され、かかる円筒形状の内面がアース用導電性接触子16の外周面と接触し、外面が第2開口部の内面に接触するよう配置されている。すなわち、導電性パイプ部材31、32は、第2開口部の内面に接触することでホルダ基板28の電位、すなわちアース電位を供給されると共に、アース用導電性接触子16の外周面と接触することで、アース用導電性接触子16に対してアース電位を供給する機能を有する。

【0058】

導電性パイプ部材31、32は、例えば、白銅、りん青銅、黄銅、ステンレス等によって形成されたパイプ構造を母材とし、かかるパイプ構造の内面に金の薄板を貼り合わせた構造を有する。かかる構造は、例えば、あらかじめ白銅等の板状体に対して金の薄板を貼り合わせた後、金の薄板が内面になるよう丸めた上で細径パイプへと引いていくことによって形成される。なお、上記の構成以外であっても、パイプ構造の内面に金メッキ等を施すことによって導電性パイプ部材31、32を形成することとしても良い。

【0059】

図5に示す変形例で導電性パイプ部材31、32を用いた理由について説明する。既に述べたように、実施の形態1にかかる導電性接触子ユニットでは、アース用導電性接触子16がホルダ基板に形成された第2開口部の内面と電気的に接続することによってアース電位供給を受ける構成を採用している。従って、実施の形態1では、図2にも示すように、アース用導電性接触子16が第2開口部9の内面に物理的に接觸した状態で収容され、第2開口部9の内面との接觸部分を介してアース電位の供給を受けると共に、アース用導電性接触子16は、第2開口部9の内面に接觸した状態を維持しつつ伸縮動作を行うこととなる。

【0060】

しかしながら、近年の半導体集積回路1の小型化に伴う導電性接触子の微小化によって、開口部の径はきわめて小さな値となることから、開口部の形成は容易ではない。また、かかる小径の開口部を形成した場合であっても、開口部の内面に微細な凹凸が生じることを防止することは困難である。従って、開口部の内面に直接導電性接触子を接觸させる構成とした場合、導電性接触子の伸縮動作に対する抵抗および導電性接触子の外周面と開口部の内面との間における電気的な接觸抵抗が増加するおそれがある。

【0061】

このため、図5に示す変形例では、平滑な内面を有する導電性パイプ部材31、32を第2開口部とアース用導電性接触子16との間に挿入することとしている。かかる構成を有することで、本変形例では、アース用導電性接触子16の伸縮動作における動作抵抗が低減されると共に、アース用導電性接触子16の外周面上における電気的な接觸抵抗が低減されるという利点を有する。

【0062】

さらに別の変形例として、導電性接触子およびホルダ基板の構造を簡素化することも有効である。図6は、かかる変形例の構成を示す模式図である。図6に示す変形例では、信号用導電性接触子34、アース用導電性接触子35および給電用導電性接触子36のそれぞれがバネ部材33と、針状体20とによって形成された構造を有する。具体的には、本変形例における導電性接触子は、回路基板2と接觸する側に存在した針状体を省略した構造を有し、回路基板2に備わる電極22との間の電気的接觸はバネ部材33によって行われることとしている。

【0063】

本変形例において、導電性接触子を図2の針状体19に相当する部材を省略した構成としたのは次の理由に基づく。すなわち、図2の構成において針状体19は、回路基板2に備わる電極構造と電気的に接觸するための機能のみならず、軸線方向と垂直な方向に突起する部を備えることで、下方向に関する導電性接触子の抜け止めを行う機能を果たすためのものであった。これに対して、導電性接触子ホルダと回路基板2とを密着させることで導電性接触子の抜け止めを行うことが可能であることから、図6に示す変形例では、図2に示す針状体19に相当する部材を省略した構成を有する。従って、本変形例は、導電性接触子の構成部品の数を低減すると共に、構造を単純化することが可能という利点を有する。

◦

【0064】

また、本変形例にかかる導電性接触子ユニットは、針状体19を省略した構成とすることで、ホルダ基板38を单一の板状体によって形成することが可能という利点も有する。すなわち、ホルダ基板38に形成される各開口部は、下側表面近傍において、抜け止めのために内径を狭める必要がなくなる。従って、図2の構成のように、導電性接触子を開口部内に収容する際に困難性が生じるといった問題はなく、ホルダ基板38の下面側から容易に導電性接触子を収容することが可能であり、2枚の基板によってホルダ基板を形成する必要がない。従って、本変形例ではホルダ基板38を单一の板状体によって構成することとしており、製造上の負担を低減することが可能である。

【0065】

(実施の形態2)

次に、実施の形態2にかかる導電性接触子ユニットについて説明する。本実施の形態2にかかる導電性接触子ユニットは、少なくとも信号用導電性接触子を備えた構成を有する。そして、本実施の形態2では、ホルダ基板に形成され、信号用導電性接触子を収容するための第1開口部の内面と、信号用導電性接触子の外周面との間に信号用導電性接触子における特性インピーダンスの値を補正するためのインピーダンス補正部材を配置した構成を有する。

【0066】

図7は、本実施の形態2にかかる導電性接触子ユニットのうち、信号用導電性接触子15の近傍部分の部分的な構成を示す模式図である。なお、本実施の形態2にかかる導電性接触子ユニットにおいて、導電性接触子ホルダを除く各構成要素、例えば回路基板2、ホルダ部材5等は、以下で特に言及しない限り実施の形態1におけるものと同様の構造を有し、同様に動作するものとする。

【0067】

図7に示すように、本実施の形態2にかかる導電性接触子ユニットは、信号用導電性接触子15を収容するための第1開口部52が形成された第1基板47および第2基板48によって構成されるホルダ基板49を備える。そして、本実施の形態2にかかる導電性接触子ユニットは、ホルダ基板49の上下の外表面上に絶縁部材50、51を備えると共に、第1開口部52の内面と信号用導電性接触子15との間にインピーダンス補正部材44、45を備えた構成を有する。

【0068】

インピーダンス補正部材44、45は、所定の誘電率を有する誘電材料を円筒形状に形成したものであって、信号用導電性接触子15における特性インピーダンスの値を補正するためのものである。具体的には、インピーダンス補正部材44、45は、誘電材料が有する誘電率と、円筒形状の外径とを調整することによって、信号用導電性接触子15における特性インピーダンスを、例えば半導体集積回路1の特性インピーダンスと一致するよう補正している。

【0069】

インピーダンス補正部材44、45の構造と、信号用導電性接触子15における特性インピーダンスとの具体的な関係について説明する。信号用導電性接触子15における特性インピーダンス Z_0 の値は、インピーダンス補正部材44、45を構成する誘電材料の比誘電率 ϵ_r と、円筒形状の外径 d_2 と、信号用導電性接触子15の外径 d_1 とを用いて、

【数1】

$$Z_0 = \frac{138}{\sqrt{\epsilon_r}} \log_{10} \frac{d_2}{d_1} \quad \dots \quad (1)$$

と与えられる。

【0070】

例えば、インピーダンス補正部材44、45の誘電材料としてポリエチレンを使用し、信号用導電性接触子15の外径を0.4mm、使用する半導体集積回路1の特性インピーダンスを50Ωとした構成に関して、信号用導電性接触子15における特性インピーダンスの値を半導体集積回路1と一致させる場合を考える。ポリエチレンの比誘電率は0.23であることから、これらの値を(1)式に代入することによって、インピーダンス補正部材44、45の外径を1.4mmとすれば良いことが導かれる。従って、以上の構成を実現することによって、信号用導電性接触子15における特性インピーダンスの値を50Ωに補正することが可能となる。

【0071】

次に、本実施の形態2において、インピーダンス補正部材44、45を用いて信号用導電性接触子15における特性インピーダンスの補正を行うことによる利点について説明する。一般に、交流信号を扱う電子回路においては、インピーダンスの異なる配線同士が接

続する箇所において、異なるインピーダンス間の比に応じた量だけ信号が反射し、信号の伝搬が妨げられることが知られている。このことは使用する半導体集積回路1と信号用導電性接触子15との関係においても同様であって、半導体集積回路1の特性インピーダンスと、信号用導電性接触子15における特性インピーダンスとが大きく異なる値を有する場合には、互いに電気的に接続されているにもかかわらず、電気信号の入出力が困難になるという問題を生じることとなる。

【0072】

また、特性インピーダンスの相違に起因して接続箇所において生じる信号反射の程度は、信号用導電性接触子15の電気的な長さ（電気信号の周期に対する伝搬経路の長さ）が大きくなるにつれて顕在化することが知られている。すなわち、本実施の形態2にかかる導電性接触子ユニットの場合は、半導体集積回路1の高速化、すなわち高周波数化に伴つて電気信号の反射の程度が顕在化することとなる。従って、高周波数で駆動する半導体集積回路1に対応した導電性接触子ユニットを作製する際には、信号用導電性接触子15の特性インピーダンスの値を半導体集積回路1のものと一致させる、いわゆるインピーダンス整合を精度良く行うことが重要となる。

【0073】

しかしながら、インピーダンス整合を行う観点から信号用導電性接触子15の形状等を変化させることは容易ではない。信号用導電性接触子15は、その外径が1mm以下に抑制されると共に針状体19、20およびバネ部材21によって構成される複雑な形状を有する等の制限が本来的に与えられることから、インピーダンス整合に適した形状に変更することは設計上および製造上の観点から困難となるためである。

【0074】

従って、本実施の形態2では、信号用導電性接触子15の構造を変更するのではなく、信号用導電性接触子15の周囲に誘電材料によって形成したインピーダンス補正部材44、45を配置することによって特性インピーダンスの値を補正する構成を採用している。かかる構成を採用することで、信号用導電性接触子15の構造については従来のものを流用することが可能となり、設計上および製造上の増加を防止することが可能である。

【0075】

また、インピーダンス補正部材44、45を新たに設けることによって設計上および製造上の負担が増大することはない。インピーダンス補正部材44、45は、円筒形状の部材が第1開口部52の内面上に形成された構造を有し、例えば第1開口部52を形成した後にCVD法等を用いて誘電材料を堆積させることによって形成される。CVD法等による誘電膜の堆積は既に微細加工の分野で広く利用されており、正確な膜厚制御等の技術は既に確立されていることから、インピーダンス補正部材44、45を容易に作製することが可能である。

【0076】

以上のことから、本実施の形態2にかかる導電性接触子ユニットは、インピーダンス補正部材44、45を備えることによって、使用する半導体集積回路1との間で精度良くインピーダンス整合を行うことが可能であり、今後予想される半導体集積回路1のさらなる高速化にも対応した導電性接触子ユニットを実現することが可能である。また、インピーダンス補正部材44、45は、簡易な構成によって実現されることから、本実施の形態2にかかる導電性接触子ユニットは、製造コストを上昇させることなく、優れた特性を実現することが可能である。

【0077】

図8は、本実施の形態2にかかる導電性接触子ユニットの全体構成の一例について示す模式図である。簡易な構成としては、図8に示すように、信号用導電性接触子15、アース用導電性接触子16および給電用導電性接触子17が収容されるそれぞれの開口部近傍の構成を同一のものとすることが好ましい。すなわち、それぞれの開口部において導電性接触子の機能に応じて異ならせることなく一律に形成することによって、製造上の負担を低減することが可能である。かかる構成とした場合であっても信号用導電性接触子15に

おける特性インピーダンスの補正を行うことが可能である。

【0078】

以上、実施の形態1、2およびこれらの変形例によって本発明を説明したが、本発明は上記のものに限定して解釈するべきではなく、当業者であれば様々な変形例、実施例等に想到することが可能である。例えば、実施の形態1と実施の形態2とを組み合わせた導電性接触子ホルダおよび導電性接触子ユニットを構成することが可能である。すなわち、信号用導電性接触子15に関しては実施の形態2の構造を採用する一方、アース用導電性接触子16に関しては実施の形態1の構造を採用することとしても良い。

【0079】

また、実施の形態1等では、ホルダ部材5の形状からも明らかのように、半導体チップ等の集積回路に対して用いる形態を想定しているが、かかる形態に限定して解釈する必要はなく、例えば、液晶パネルの特性を検出する装置に本発明を適用することとしても良い。さらには、導電性接触子の構成についても実施の形態1等に示されたものに限定されず、本発明においては任意の構成のものを用いることが可能である。

【図面の簡単な説明】

【0080】

【図1】実施の形態1にかかる導電性接触子ユニットの全体構成を示す模式図である。

【図2】実施の形態1にかかる導電性接触子ユニットを構成する導電性接触子ホルダおよび導電性接触子の詳細な構造を示す模式図である。

【図3】実施の形態1にかかる導電性接触子ユニットの利点について説明するための模式図である。

【図4】実施の形態1にかかる導電性接触子ユニットの変形例の構成を示す模式図である。

【図5】実施の形態1にかかる導電性接触子ユニットの他の変形例の部分的構成を示す模式図である。

【図6】実施の形態1にかかる導電性接触子ユニットの他の変形例の構成を示す模式図である。

【図7】実施の形態2にかかる導電性接触子ユニットの部分的構成を示す模式図である。

【図8】実施の形態2にかかる導電性接触子ユニットの全体構成の一例を示す模式図である。

【符号の説明】

【0081】

- 1 半導体集積回路
- 2 回路基板
- 3 導電性接触子ホルダ
- 4 導電性接触子
- 5 ホルダ部材
- 6、29、47 第1基板
- 7、30、48 第2基板
- 8、39、52 第1開口部
- 9、40 第2開口部
- 10、41 第3開口部
- 11、28、49 ホルダ基板
- 13、14、50、51 絶縁部材
- 15、34 信号用導電性接触子
- 16、35 アース用導電性接触子
- 17、36 給電用導電性接触子
- 19、20 針状体

- 2 1 バネ部材
- 2 2 電極
- 2 3 接続用電極
- 2 5 ネジ部材
- 2 6 接続ケーブル
- 2 7 アース電位供給装置
- 3 1、3 2 導電性パイプ部材
- 3 3 バネ部材
- 3 8 ホルダ基板
- 4 4 インピーダンス補正部材

【書類名】図面
【図 1】

【図 2】

【図3】

【図 4】

【図 5】

【図 6】

【図 7】

【図 8】

【書類名】要約書

【要約】

【課題】使用時に電気的に接触させる半導体集積回路等の回路構造の小型化、高速化に対応した導電性接触子ホルダおよび導電性接触子ユニットを提供すること。

【解決手段】アース用導電性接触子 16 が収容される第 2 開口部 9 が形成されたホルダ基板 11 を備え、第 2 開口部 9 の内面とアース用導電性接触子 16 の外周面とが直接接触する構成を有する。このため、アース用導電性接触子 16 はホルダ基板 11 からアース電位の供給を受けることが可能であり、使用する半導体集積回路等に対して安定したアース電位の供給が可能である。

【選択図】

図 2

特願 2003-376022

出願人履歴情報

識別番号 [000004640]

1. 変更年月日 2002年 3月 11日

[変更理由] 名称変更

住所 神奈川県横浜市金沢区福浦3丁目10番地
氏名 日本発条株式会社