Lecture 3: What have we learned

Sampling from random distribution

- Inversion Method:
 - Discrete RV
 - Continuous RV (where it is possible to compute $F^{-1}(x)$)
- Use known relationship between RV
 - \triangleright Examples: Gamma, χ^2 distributions
- Change of variables
 - Univariate: scale and location parameters
 - Bivariate: Box-Muller algorithm
- Ratio of uniforms method
 - Don't need to know the normalising constant
 - Example: Cauchy distribution

Inversion method

Let F be a distribution, and let $U \sim \mathcal{U}[0,1]$.

a) Let F be the distribution function of a random variable taking non-negative integer values. The random variable X given by

$$X = x_i$$
 if and only if $F_{i-1} < u \le F_i$

has distribution function F.

b) If F is a continuous function, the random variable $X = F^{-1}(u)$ has distribution function F.

Change of variables

- Can sample from $X \sim \text{Exp}(1)$.
- Interested in $Y = \frac{1}{2}X$
- Method: sample $X \sim \exp(1)$, return $Y = \frac{1}{7}X$

Why does it work?? We have that: $y = g(x) = \frac{1}{3}x$. Application of the change of variables formula leads to:

$$f_Y(y) = f_X(g^{-1}(x)) \left| \frac{d \ g^{-1}(x)}{d \ x} \right| = \exp(-\lambda y) \lambda$$

It follows: $Y \sim \text{Exp}(\lambda)$.

Bivariate techniques

Generalization of the previous technique

- $(x_1, x_2) \sim f_X(x_1, x_2)$
- $(y_1, y_2) = g(x_1, x_2) \Leftrightarrow (x_1, x_2) = g^{-1}(y_1, y_2)$
- $f_Y(y_1, y_2) = f_X(g^{-1}(y_1, y_2)) \cdot |J|$

Example: Box-Muller to simulate from $\mathcal{N}(0,1)$

Box-Muller algorithm

Let

$$X_1 \sim \mathcal{U}[0,2\pi]$$
 and $X_2 \sim \mathsf{Exp}\left(rac{1}{2}
ight)$

independently (We already know how to do this).

Let

$$y_1 = \sqrt{x_2} \cos x_1$$

$$y_2 = \sqrt{x_2} \sin x_2$$

$$\Rightarrow \begin{cases} x_1 = \tan^{-1} \left(\frac{y_2}{y_1} \right) \\ x_2 = y_1^2 + y_2^2 \end{cases}$$

This defines a one-to-one function g.

Then hat $v_1 \sim \mathcal{N}(0,1)$ and $v_2 \sim \mathcal{N}(0,1)$ independently.

Graphical interpretation:

Relationship between polar and Cartesian coordinates.

Box-Muller algorithm

Generate

$$x_1 \sim U(0,\pi)$$

Generate

$$x_2 \sim \exp(0.5)$$

$$y_1 \leftarrow \sqrt(x_2)\cos(x_1)$$

$$y_2 \leftarrow \sqrt(x_2)\sin(x_1)$$

return (y_1, y_2)

Ratio-of-uniforms method

- $f^*(x)$ non-negative function with $\int_{-\infty}^{\infty} f^*(x) dx < \infty$
- $C_f = \{(x_1, x_2) | 0 < x_1 < \sqrt{f^*(x_2/x_1)} \}$

Thus

a) then C_f has finite area.

Let (x_1, x_2) be uniformly distributed on C_f .

b) Let
$$y = \frac{x_2}{x_1}$$
, then $f(y) = \frac{f^*(y)}{\int_{-\infty}^{\infty} f^*(u)du}$

Plan for today

- More on ratio of uniform method
- Methods based on mixtures
- The multivariate normal distribution
- Rejection sampling

How to sample from C_f ?

- Sometimes we can find an easy way to sample directly from C_f (example: half circle.)
- In general, it can be difficult to sample uniformly from C_f but it is easy in some special cases....

We have
$$C_f = \{(x_1, x_2) \mid 0 \le x_1 \le \sqrt{f^*(\frac{x_2}{x_1})}\}.$$

If $f^*(x)$ and $x^2f^*(x)$ are bounded we have

$$C_f \subset [0, a] \times [b_-, b_+],$$
 with

- $a = \sqrt{\sup_{x} f^{\star}(x)} > 0$
- $b_+ = \sqrt{\sup_{x\geq 0}(x^2f^*(x))}$
- $b_- = -\sqrt{\sup_{x \le 0} (x^2 f^*(x))}$ TMA4300 Lecture3 Ratio unif

Ratio of uniform method

If $f^*(x)$ and $x^2f^*(x)$ are bounded we have

$$C_f \subset [0,a] \times [b_-,b_+],$$
 with

- Proof: see notes from last class
- Use Rejection sampling to sample from C_f .

Example: Normal distribution

see notes from last class

Example: Normal distribution

Methods based on mixtures

Remember:
$$f(x_1, x_2) = f(x_1|x_2)f(x_2)$$

Thus: To generate $(x_1, x_2) \sim f(x_1, x_2)$ we can

- generate $x_2 \sim f(x_2)$
- generate $x_1 \sim f(x_1|x_2)$, where x_2 is the value just generated.

Here x_2 is called the mixing element.

Methods based on mixtures

Note: This mechanism automatically provides a value x_1 from its marginal distribution,

$$x_1 \sim f(x_1) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_2.$$

 \Rightarrow We are able to generate a value for x_1 even when its marginal density is awkward to sample from directly.

Example: Simulation from Student-t (I)

The density of a Student t distribution with n>0 degrees of freedom, mean μ and scale σ^2 is

$$f_t(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \frac{1}{\sqrt{n\pi\sigma^2}} \left[1 + \frac{1}{n} \left(\frac{x-\mu}{\sigma}\right)^2 \right]^{-\frac{n+2}{2}}, \quad -\infty < x < \infty.$$

Let

$$egin{aligned} x_1 &\sim \mathsf{Ga}\left(rac{n}{2},rac{n}{2}
ight) \ x_2|x_1 &\sim \mathcal{N}\left(\mu,rac{\sigma^2}{x_1}
ight) \end{aligned}$$

It can be shown that then

$$x_2 \sim t_n(\mu, \sigma^2)$$
 (show yourself)

Example: Simulation from Student-t (II)

Thus, we can simulate $x_1 \sim t_n(\mu, \sigma^2)$ by

Generate $x_1 \sim \mathsf{Ga}\left(\frac{n}{2},\frac{n}{2}\right)$ Generate

 $x_2|x_1 \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{x_1}\right)$

return x2

marginal distr for x2

Another example: Mixture of normal distributions

If the mixing element is discrete $f(a_i) = P(X_2 = a_i) = p_i$, i = 1, ..., k, then:

$$f(x_2) = \sum_i f(x_2|X_1 = a_i) * P(X_1 = a_i)$$

Say we have that $X_1=\{1,2\}$ with $p_1=0.2$ and $p_2=0.8$ and $f(x_2|X_1=i)=\mathcal{N}(\mu_i,\sigma_i)$ for i=1,2

Mixture of normal distribution

Generate $x_1 \sim \mathsf{Binom}\,(1,p_1)$ if $x_1 = 0$ then Generate $x_2 \sim \mathcal{N}(\mu_1,\sigma_1)$ else Generate $x_2 \sim \mathcal{N}(\mu_2,\sigma_2)$ end if return x_2

Multivariate normal distribution

$$\mathbf{x} = (x_1, \dots, x_d)^{ op} \sim \mathcal{N}_d(\boldsymbol{\mu}, \Sigma)$$
 if the density is

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{rac{d}{2}}} \cdot \frac{1}{\sqrt{|\Sigma|}} \exp\left(-rac{1}{2}(\mathbf{x} - oldsymbol{\mu})^{ op} \Sigma^{-1}(\mathbf{x} - oldsymbol{\mu})
ight)$$

with

- $\mathbf{x} \in \mathbb{R}^d$
- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_d)^{\top}$
- $\Sigma \in \mathbb{R}^{d \times d}$, Σ must be positive definite.

Important properties (I)

Important properties of $\mathcal{N}_d(\mu,\Sigma)$

(known from "Linear statistical models")

i) Linear transformations:

$$\mathbf{x} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow \mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b} \sim \mathcal{N}_r(\mathbf{A}\boldsymbol{\mu} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\top}), \text{ with } \mathbf{A} \in \mathbb{R}^{r \times d}, \ \mathbf{b} \in \mathbb{R}^r.$$

ii) Marginal distributions:

Let $\mathbf{x} \sim \mathcal{N}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}^{-1} = \mathsf{Q}$, and:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}, \ \mathbf{\mu} = \begin{bmatrix} \mathbf{\mu}_1 \\ \mathbf{\mu}_2 \end{bmatrix}, \ \mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{bmatrix}, \ \mathbf{Q} = \begin{bmatrix} \mathbf{Q}_{11} & \mathbf{Q}_{12} \\ \mathbf{Q}_{21} & \mathbf{Q}_{22} \end{bmatrix}.$$

Then

$$\mathbf{x}_1 \sim \mathcal{N}(\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_{11})$$

$$\mathbf{x}_2 \sim \mathcal{N}(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$$

TMA4300 - Lecture3 The multivariate normal distribution

Important properties (II)

iii) Conditional distributions:

With the same notation as in ii) we also have,

$$|\mathbf{x}_1|\mathbf{x}_2 \sim \mathcal{N}(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}),$$

and,

$$m{x}_1 | m{x}_2 \sim \mathcal{N}(m{\mu}_1 - m{Q}_{11}^{-1} m{Q}_{12}(m{x}_2 - m{\mu}_2), m{Q}_{11}^{-1}).$$

iv) Quadratic forms:

$$\mathbf{x} \sim \mathcal{N}_d(\mathbf{\mu}, \mathbf{\Sigma}) \Rightarrow (\mathbf{x} - \mathbf{\mu})^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) \sim \chi_d^2$$

Simulation from the multivariate normal

How can we simulate from $\mathcal{N}_d(\mu, \Sigma)$?

Let $\mathbf{x} \sim \mathcal{N}_d(0, 1)$

$$\mathbf{y} = \boldsymbol{\mu} + \mathsf{A}\mathbf{x} \quad \overset{\mathsf{i})}{\Rightarrow} \quad \mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \mathsf{A}\mathsf{A}^{\top})$$

Thus, if we choose A so that $AA^{\top} = \Sigma$ we are done.

Note: There are several choices of A. A popular choice is to let A be the Cholesky decomposition of Σ .

We discuss a general approach to generate samples from some target distribution with density f(x), called rejection sampling, without actually sampling from f(x).

Rejection sampling

The goal is to effectively simulate a random number $X \sim f(x)$ using two independent random numbers

- $U \sim U(0,1)$ and
- $X \sim g(x)$,

where g(x) is called proposal density and can be chosen arbitrarily under the assumption that there exists an c > 1 with

$$f(x) \le c \cdot g(x)$$
 for all $x \in \mathbb{R}$.

Rejection sampling - Algorithm

Let f(x) denote the target density.

- 1. Generate $x \sim g(x)$
- 2. Generate $u \sim \mathcal{U}(0, 1)$.
- 3. Compute $\alpha = \frac{1}{c} \cdot \frac{f(x)}{g(x)}$.
- 4. If $u \leq \alpha$ return x (acceptance step).
- 5. Otherwise go back to (1) (rejection step).

Note $\alpha \in [0,1]$ and α is called acceptance probability.

Claim: The returned x is distributed according to f(x).

Proof

See blackboard

- We want $x \sim f(x)$ (density).
- We know how to generate realisations from a density g(x)
- We know a value c > 1, so that $\frac{f(x)}{g(x)} \le c$ for all x where f(x) > 0.

Algorithm:

```
finished = 0  \text{while (finished} = 0)   \text{generate } x \sim g(x)   \text{compute } \alpha = \frac{1}{c} \cdot \frac{f(x)}{g(x)}   \text{generate } u \sim U[0,1]   \text{if } u \leq \alpha \text{ set finished} = 1   \text{return } x
```

TMA4300 - Lecture3 Rejection Sampling

What is the overall acceptance probability??

$$\mathsf{P}(U \leq \frac{1}{c} \cdot \frac{f(X)}{g(X)}) = \int_{-\infty}^{\infty} \frac{f(x)}{c \cdot g(x)} g(x) \, dx = \int_{-\infty}^{\infty} \frac{f(x)}{c} \, dx = c^{-1}.$$

The single trials are independent, so the number of trials up to the first success is geometrically distributed with parameter 1/c.

The expected number of trials up to the first success is therefore c.

Problem:

In high-dimensional spaces c is generally large so many samples will get rejected.

Example: Sample from N(0,1) with rejection sampling

Target distribution:

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

Proposal distribution:

$$g(x) = \frac{\lambda}{2} \exp(-\lambda |x|), \lambda > 0$$

Sampling from a double exponential

Proposal distribution:

$$g(x) = \frac{\lambda}{2} \exp(-\lambda |x|), \lambda > 0$$

How to sample from g(x):

Sampling from a double exponential

Proposal distribution:

$$g(x) = \frac{\lambda}{2} \exp(-\lambda |x|), \lambda > 0$$

Example: Sample from N(0,1) with rejection sampling

Target distribution:

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

Proposal distribution:

$$g(x) = \frac{\lambda}{2} \exp(-\lambda |x|), \lambda > 0$$

• Need to find c such that $\frac{f(x)}{g(x)} < c$, $\forall x$ where f(x) > 0

Example: Find an efficient bound c

$$\frac{f(x)}{g(x)} \le \sqrt{\frac{2}{\pi}} \lambda^{-1} \exp\left(\frac{1}{2}\lambda^2\right) \le c$$

Which value of λ should we choose for proposal density?

We need to choose the smallest possible value for c

Do this yourself

Example: Illustration

- Left: Comparison of f(x) versus $c \cdot g(x)$ when $\lambda \stackrel{\mathsf{x}^1}{=} 1$ and $\lambda = 1$.
- Right: Distribution of accepted samples compared to f(x). 10000 samples were generated and 7582 accepted for $\lambda = 1$. 10000 samples were generated and 4774 accepted for $\lambda = 0.5$.

LATEX was unable to guess the total number of pages correctly. A

the final page this extra page has been added to receive it.

for this document.

Temporary page!

there was some unprocessed data that should have been added t

If you rerun the document (without altering it) this surplus page will go away, because LATEX now knows how many pages to expe