

Analyzing GBS data using TASSEL 5.0

(Trait Analysis by aSSociation, Evolution, and Linkage)
Hands-on tutorial

Dev Paudel

Agronomy Department Room 340 Cancer & Genetics Research Complex University of Florida Gainesville, FL

dpaudel@outlook.com

11/23/2015

Outline

- Brief overview of genotyping by sequencing (GBS)
- File formats used in GBS
- TASSEL pipeline for calling SNPs
- Loading data in TASSEL GUI
- Creating linkage disequilibrium plots
- Creating Manhattan plots
- Creating QQ plots
- Creating cladograms

Genotyping by sequencing (GBS)

- Isolate DNA from samples/tissues
 - 33 genotypes
- Plate DNA & adapter pair
- Digest with Restriction Enzymes
 - Eg. PstI

```
5′. . . C T G C A G . . . 3′
3′. . . G A C G T C . . . 5′
```

Ligate adapters

DNA samples for GBS

Restriction Digestion of DNA samples

Genotyping by sequencing (GBS)

- Isolate DNA from samples/tissues
 - 33 genotypes
- Digest with Restriction Enzymes
- Ligate with adapters
- Pool all DNA together
- PCR
- Sequence (Illumina)

Getting to know your GBS data

- 2 files
 - Key file
 - Sequence file

Key file / barcode file

Flowcell	Lane	Barcode	DNASample	LibraryPlate	Row	Col	LibraryPrepID	LibraryPlateID	Enz
C7U82ANXX	7	GAATGCAATA	34c1	NGflwgbs1	E	11	250515680	450023798	Pst
C7U82ANXX	7	ACGGTACT	34c10	NGflwgbs1	F	8	250515657	450023798	Pst
C7U82ANXX	7	CGCAACCAGT	34c11	NGflwgbs1	F	9	250515665	450023798	Pst
C7U82ANXX	7	CAGTGCCATT	34c12	NGflwgbs1	F	10	250515673	450023798	Pst
C7U82ANXX	7	TAGCAG	34c13	NGflwgbs1	F	11	250515681	450023798	Pst
C7U82ANXX	7	GCTCCGA	34c14	NGflwgbs1	F	12	250515689	450023798	Pst
C7U82ANXX	7	CCGAACA	34c15	NGflwgbs1	G	1	250515602	450023798	Pst
C7U82ANXX	7	GGTGT	34c16	NGflwgbs1	G	2	250515610	450023798	Pst
C7U82ANXX	7	CGTGGACAGT	34c17	NGflwgbs1	G	4	250515626	450023798	Pst
C7U82ANXX	7	CTTGA	34c18	NGflwgbs1	G	5	250515634	450023798	Pst
C7U82ANXX	7	СТСТА	34c19	NGflwgbs1	G	6	250515642	450023798	Pst
C7U82ANXX	7	CAACCACACA	34c2	NGflwgbs1	E	12	250515688	450023798	Pst

Each barcode is associated with only 1 sample

Getting to know your GBS data

- 2 files
 - Key file
 - Sequence file
- Key file / barcode file
- Sequence file: FASTQ format (100 base pair long)

Getting to know your GBS data

Flowcell

C7U82ANXX

C7U82ANXX

C7U82ANXX

C7U82ANXX

C7U82ANXX

- 2 files
 - Key file
 - Sequence file
- Key file / barcode file
- Sequence file : FASTQ format

Barcode

Barcode

ACGGTACT

TAGCAG

CAGTGCCATT

GAATGCAATA 34c1

CGCAACCAGT 34c11

Lane

DNASample

34c10

34c12

34c13

Filtering raw data:

- Remove reads that do not have barcodes
- Remove low quality reads
- Remove barcodes
- Remove nucleotides > 64bp
- Retained good barcoded sequences are called 'Tags'

Extract unique 'tags'

Master TagCounts:

merge tag counts (filter based on minimum count)

Align 'tags' to reference genome

 Match reads to lines and create a matrix of sequence reads by their lines of origin (tags by taxa or TBT)

Taxa = Each sample / genotype is called a taxa

SNP calling

- Physical positions and taxa are known for the GBS tags
- Tags that map to the same location (according to the TOPM file) are considered a locus
- The sequence differences between those tags and their relative abundance (found in the TBT file) are used to identify SNPs at the locus > Tabulated in hapmap format

SNP calling – hapmap format Locus

																																										\subseteq				1				9
	0: 157104	1: 1947984	2: 2914066	3-201474	4. 2045070	4: Z915U78	5: 2915242	6: 2973508	7: 3205252	8: 3205262	9: 3206090	10: 3706018	11:4175293	12: 4429897	13: 4429927	14: 4430055	15: 4490461	16: 4835434	17. 4835558	19: 4835659	40, 400,000	19: 4836542 20: 4912526	20, 49 12320	21: 5353319	52: 5353655	23: 5562502	24: 80/55/2	25: 8300308	26: 8366411	27: 836/944	20: 0033047	30: 9024005	31: 9029842	32: 9084948	33: 9084979	34: 9273299	35: 9300391	36: 9300541	37: 40065344		30-10066126	39, 10000 120	40: 1006/544	41: 10067604	42: 10067746	43: 10067852	44: 10068726	45: 10069039	46: 10069145	
33-16	Ċ		0	Ľ	1	2	-	0	-	0	U	_	-	_	0	14	^	Λ	0		1	1	1	<u> </u>	3 1	4 4	2	7	9 /	1 /	1	/ 0	9	1	G		9	1	1	1		-1	3	-	<u>^</u>	^	4	9		G
38-11	С	G	G		(3	T	C	<u>T</u>	С	T	С	T	T	С	T	T	N	C	1	10) P	1 (2 (_	G (G (9	1 (3 /	A A	\ T	G	T	C	C	G	G	C	; G		(3	4	A	A	<u>T</u>	G	G	A
4226	С	С	G	I	(3	T	С	<u>T</u>	С	С	С	Т	С	С	T	A	A	C		10) P	1 (2 (-	3 (3 /	1	G /	A /	A A	N	G	C	C	C	G	A	C	; A	C	-	3	4	A	A	T	G	G	Α
4722	С	G	G	I	(3	I	S	T	С	T	С	С	N	N	C	Α	Α	C	1	10) P	1 (3 (3 (3	T (1 0	4 L	I N	G	T	С	T	G		C	; G			3	4	A	A	T	N		G
A188	Α	С	G		(3	Т	С	T	С	T	С	T	С	G	T	Α	Α	C	1	10) A	1 /	A (-	G (G (1 T	V /	A C) C	G	T	С	T	G	4	, C	; G	41		3	<u>-</u>	A	Α	T	G		G
A214N	С	С	T	Α	(3	A	С	Т	С	Т	Т	Т	С	С	T	T	Α	C		10) A	1 (3 (G (G (C	9	1 (3	I A	\ T	G	T	C	T	G	A	C	; G		/	A	1	A	1	T	G		Α
A239	A	С	T	I	1	١.	A	С	Т	С	Т	С	Т	С	С	T	A	N	С	1	() A	1 (C (G (3 (3 (3	1 1	V /	A A	\ T	G	C	C	C	G	Α	C	; G	41	(3		A	Α	T	G		G
A272	Α	С	T	T	1	Α.	Α	G	Т	С	Т	С	Т	С	С	Τ	Α	Α	C	1	() A	1 /	A (G (G (G (3	T (0 /	A A	\ T	G	Т	G	Т	Α	G	C	; G	I	(3	Γ	A	Α	Т	G		G
A441-5	С	С	G	T	(3	Т	С	Т	С	Т	Т	Т	С	G	Т	Α	Α	C	1	. () A	1 (G (G (G (3	T (2	ГС) C	G	T	C	T	G	G	C	; A	C	; (3	Г	Α	Α	Т	G	_	G
A554	С	G	T	T	1	1	Т	С	Т	С	Т	Т	С	С	С	Т	Α	Α	C	1	. () A	1 (0 (G (G (G (3	T (٦.	ΓΑ	\ T	G	T	С	T	G	A	\ C	; A	C	; (3	Г	Α	Α	Т	G	_	Α
A556	С	С	G	T	. (3	Т	N	Ν	Ν	Т	С	Т	С	С	Т	Т	Α	C	1	. () A	1 (0 (G (0 (G F	3	G (٦.	ΓΑ	\ T	T	С	С	T	G	A	\ C	; A	C	; (3	Γ	Α	Α	Т	G		G
A6	Α	С	T	T	1	١,	A	С	Т	С	Т	Т	Т	С	С	Т	Α	Α	C	1	. () A	1 (0 (G (G (0	3	T (0 .	ΓΑ	\ T	G	С	С	C	G	G	C	; G	J	(G T	Γ	Α	Α	Т	G		G
A619	С	G	G	T	(3	Т	С	Α	G	Т	С	С	С	С	Т	Α	Α	C	1	. () A	1 /	A (G (G (3 0	3	T (0 /	A C) C	G	Т	C	C	G	G	C	; G	J	1	A (Α	Α	Α	Α	С	G
A632	С	С	Т	Α	(3	A	С	Т	С	Т	С	С	С	С	Т	Α	Α	C	1	() <i>f</i>	1 (0 (G (G (0 0	3	T (0	ΓΑ	\ T	G	T	C	T	G	A	\ C	; G	, T	1	A T	Γ	Α	Т	Т	G	C	Α
A634	С	С	T	Α	(3	Α	С	Т	С	Т	Т	Т	С	С	Т	Т	Α	C	1	() <i> </i>	1 (0 (G (G (0	3	T (0 .	ΓΑ	N	G	T	C	T	G	A	(C	; G	J	1	A T	Γ	Α	Т	Т	G	С	Α
A635	С	С	T	Α	(3	Α	С	Т	С	Т	Т	Т	С	С	Т	Т	Α	C	1	() <i> </i>	1 (0 (G (G (0 0	3	T (0	ΓΑ	N	G	T	C	T	G	A	\ C	; G	, 1	1	A T	Γ	Α	Т	Т	G	С	Α
A641	Α	С	T	T	1	4	Т	С	Т	С	Т	Т	Т	С	С	Т	Т	Α	C	1	() <i>f</i>	1 (0 0	G (G (0 1	1	T (0	ΓΑ	\ T	G	T	C	T	G	A	\ C	; G	, T	1	A T	Γ	Α	Т	Т	G	С	Α
A654	N	G	Т	T	1	4	Т	С	Т	С	Т	С	Т	С	С	Т	Α	Α	C	1	() A	4 (G (1 E	N /	1	G /	4 /	A A	N	G	С	С	T	Α	G	C	; G	, T	(G 7	Γ	Α	Α	Т	G	G	Α
A659	Α	G	Т	T	1	4	Т	С	Т	С	Т	Т	Т	С	С	Т	Α	Α	C	1		C A	1 (0 (G (G (0 0	3	G (1 A	I C	G	T	C	C	G	A	(C	; G	, T	(3	Γ	Α	Α	Т	G	G	G
A661	С	G	Т	T	1	4	N	С	Т	С	Т	С	С	С	С	Τ	Α	Α	C	1	(C A	1 (0 (G (G (3 0	3	T (0	ГС) C	G	T	C	C	G	G	C	, N	i T	(G 7	Γ	Α	Α	Т	G	G	Α
A679	С	С	Т	Α	(A	4	Т	G	Т	С	Ν	Т	Т	С	С	Т	Т	Α	C	1		C A	1 (0 (G		0 1	1	G /	۹ .	ГС) C	G	С	С	C	G	A	(C	; G	, T	- /	A (Α	Α	Α	Α	C	Α
A680	С	С	Т	Α	(A	4	Т	G	Т	С	Т	Т	Т	С	С	Τ	Т	Α	C	1	(CA	1 (0 (G (0 0	G (3	1 T	4 .	I N	I C	G	С	С	С	G	A	(C	; G	, T	- /	A (Α	Α	Α	Α	C	Α
A682	С	С	T	Α	(3	Т	G	Т	С	Т	С	С	С	С	Τ	Α	Α	C	1		C A	1 (0 (G (3 (G (3	T (0	ΓΑ	\ T	G	С	С	C	G	A	(C	; G	, T	(G 7	Γ	Α	Α	Т	G	G	Α
AB28A	Α	G	Т	Α	(3	N	С	Ν	Ν	Т	С	Т	Т	G	С	Α	Α	С	1	() <i> </i>	A (C	0	G (0	3	T (0 1	ГС) C	G	Т	С	С	G	A	(C	; A	C) (G 7	Γ	Α	Α	Т	G	G	G
B10	Α	С	G	T	(3	Т	С	Т	С	Т	Т	Т	С	С	T	Т	Α	C	1	(CA	1 (0 (G (0	C	1	G /	4 /	A A	\ T	G	C	C	C	G	A	C	; G	J	1	A (Α	Α	Α	Α	C	Α
B103	Α	С	G	Т	(3	Т	С	Т	С	Т	Т	Т	С	С	Ν	Α	Α	C	T	(C /	1 /	A (G	3 (3 (3	G (0	ΓΑ	\ T	G	Т	G	С	G	A	C	; G	T	(G 7	Γ	Α	Α	Т	G	G	Α
B104	С	С	T	Т	1	4	Т	С	Т	С	С	Т	Т	С	С	Τ	Α	Α	C	1	(0 /	1 (0 (G (0	C	1	G /	Α .	ΓΑ	\ T	G	Т	C	T	G	G	C	; G	T	1	A (0	Α	Α	Α	Α	С	Α
B105	С	С	T	Т	1	4	Т	С	Т	С	С	Т	Т	С	С	T	Α	Α	C	1	(0 /	1 (C	G	0	0	3	T (0 .	ΓΑ	T	G	Т	C	T	G	A	C	; G	. 7	1	A T	Г	A	T	Т	G	C	Α
B109	С	С	G	Т	(3	Т	С	Т	С	Т	Т	Т	С	С	Т	Т	N	C	1	(1	1 (C	G (0	CA	1	G /	4	ГС) C	G	N	С	С	G	A	C	; G	, 7	1	A (C	Α	Α	Α	Α	C	Α
B115	С	G	G	Т	0	3	Т	С	Α	G	Т	С	Т	С	С	Т	Α	N	C	1	(C /	4 (C	G	3 (CE	3	G /	4	ΓΑ	T	G	С	C	С	G	A	C	; G	, 7	(G 7	Г	Α	Α	Т	G	G	G
B14A	С	С	T	Α	(3	Α	С	Т	С	Т	Т	Т	С	С	Т	Т	N	C	1	(CA	4 (CI	G (3 (0	3	T (0 1	ΓΑ	\ T	G	С	C	С	G	A	C	; G	, 7	- 7	A 7	Г	Α	Α	Α	G		Α
B164	С	G	Т	T	1	4	Т	С	Т	С	Т	С	Т	С	С	Т	Т	Α	C	1	(CA	A /	A (G (3 (3 (3	T (0 /	4 C) C	Т	Т	G	С	G	A	C	; G	. 7	(G T	Г	Α	Α	Т	G		G
B2	Α	С	G	T	(3	Т	С	Т	С	Т	Т	С	С	N	Т	Α	Α	N	1	(CA	A /	A (G (3 (0	3	T (0 1	ΓΑ	T	G	T	C	T	Α	G	C	; G	, 7	- (G T	Г	Α	Α	Т	G		G
																												_													_	_			_					

Taxa / genotype

Running TASSEL GUI

eladmin-tassel-5-standalone-ebc440bcffb4 > tasseladmin-tassel-5-standalone-ebc440bcffb4 >											
lame	Date modified	Туре	Size								
example_pipelines	11/20/2015 1:01 PM	File folder									
lib	11/20/2015 1:02 PM	File folder									
TASSELTutorialData	11/20/2015 1:01 PM	File folder									
op.bat	11/20/2015 1:00 PM	Windows Batch File	1 KB								
run_anything.bat	11/20/2015 1:00 PM	Windows Batch File	1 KB								
run_anything.pl	11/20/2015 1:00 PM	PL File	2 KB								
🔊 run_pipeline.bat	11/20/2015 1:00 PM	Windows Batch File	1 KB								
run_pipeline.pl	11/20/2015 1:00 PM	PL File	2 KB								
start_tassel.bat	11/20/2015 1:01 PM	Windows Batch File	1 KB								
start_tassel.pl	11/20/2015 1:01 PM	PL File	2 KB								
🟂 sTASSEL.jar	11/20/2015 1:01 PM	Executable Jar File	2,921 KB								
Tassel5PipelineCLI.pdf	11/20/2015 1:00 PM	Adobe Acrobat D	967 KB								

TASSEL (Trait Analysis by aSSociation, Evolution, and Linkage) 5.2.17	_	ð	×
File <u>Data Impute Filter Analysis Results GBS</u> Workflow			<u>H</u> elp
Data Result			
Result			
0000			
]			

mdp_genotype_subset.hmp.txt

	genotype_hn	. –		Notepad												_	
File Edit		View Help		-4					TD	C	TD	1	CTD	004-	22.16	20 11	422
rs#	alleles		pos	strand	assembl	-	center	protLS		assayLS.		panell		QCcode	33-16	38-11	422
4722	A188	A214N	A239	A272	A441-5	A554	A556	A6	A619	A632	A634	A635	A641	A654	A659	A661	A67
A680	A682	AB28A	B10	B103	B104	B105	B109	B115	B14A	B164	B2PZB00	0859.1	C/A	1	157104	+	NA
NA	NA	NA	NA	NA	C	C	C	C	Α	C	Α	Α	C	C	C	Α	C
C	C	Α	N	Α	C	C	C	C	Α	Α	Α	C	C	C	C	C	C
APZA01	271.1	C/G	1	1947984	+	NA	NA	NA	NA	NA	NA	C	G	C	G	C	C
C	C	G	C	C	G	C	C	C	C	G	G	G	C	C	C	G	C
C	C	C	G	C	G	CPZA036	13.2	T/G	1	2914066	+	NA	NA	NA	NA	NA	NA
G	G	G	G	T	T	T	G	T	G	T	G	T	T	T	T	T	Т
T	T	T	T	G	G	T	T	G	G	T	T	GPZA03	8613.1	T/A	1	2914171	+
NA	NA	NA	NA	NA	NA	T	T	T	T	T	Α	T	T	T	T	T	Т
Α	Α	Α	T	T	T	T	Α	Α	Α	Α	T	T	T	T	T	T	Α

mdp_traits_subset.txt

mdp_traits_subset.txt - Notepad													
<u>F</u> ile	<u>E</u> dit	F <u>o</u> rmat	<u>V</u> iew	<u>H</u> elp									
kTr	ait>	EarHT	dpo	11	EarDia								
811		59.5	-99	9	-999								
33-	16	64.75	64.	5	-999								
38-	11	92.25	68.	5	37.897								
422	6	65.5	59.	5	32.21933								
472	2	81.13	71.	5	32.421								
A18	8	27.5	62		31.419								
A21	4N	65	69		32.006								
A23	9	47.88	61		36.064								
A27	2	35.63	70		-999								

Complete data set available with TASSEL 5.0

TASSELTutorialData>data

Calculating linkage disequilibrium

Calculating linkage disequilibrium

Calculating linkage disequilibrium

Creating LD plots

Creating LD plots

Merge genotype and phenotype data

TASSEL (Trait Analysis by aSSociation, Evolution, and Linkage) 5.2.17

File \underline{D} ata \underline{I} mpute \underline{F} ilter \underline{A} nalysis \underline{R} esults \underline{G} BS Workflow

Union Join

Taxa	EarHT	dpoll	EarDia	Genotype
811	59.5			CCGTGTG
33-16	64.75	64.5		CGGTGTC
38-11	92.25	68.5	37.897	CCGTGTC
4226	65.5	59.5	32.219	CGGTGTS
4722	81.13	71.5	32.421	none
A188	27.5	62	31.419	ACGTGTC
A214N	65	69	32.006	CCTAGAC
A239	47.88	61	36.064	ACTTAACT
A272	35.63	70		ACTTAAGT
A441-5	53.5	67.5	35.008	CCGTGTC
A554	38.5	66	33.418	CGTTATCT
A556	28	65	31.929	CCGTGTN
A6	109.5	80.5	31.517	ACTTAACT
A619	36	61	40.63	CGGTGTC
A632	60	61	35.953	CCTAGAC
A634	54	59	35.601	CCTAGAC
A635	37	64	35.3	CCTAGAC
A641	54.5	66	33.727	ACTTATCT
A654	39	64		NGTTATCT
A659	46.5	58.5	38.846	AGTTATCT
A661	51.5	59	39.323	CGTTANC
A679	65	66	42.471	CCTAATGT
A680	68	65.5	41.152	CCTAATGT

Use fixed effect model to test association

Use fixed effect model to test association

Use fixed effect model to test association

Creating QQ plot

TASSEL (Trait Analysis by aSSociation, Evolution, and Linkage) 5.2.17 Data Impute Filter Analysis Results GBS Workflow 🗂 Data ← ■ Matrix Matrix:mdp_genotype_subset ←

☐ Numerical ndp_traits_subset mdp genotype subset + mdp traits subset ←

Sequence +-60 mdp genotype subset mdp genotype subset chr1 157104-299170077 Tree:mdp_genotype_subset 🗂 Result ← ■ Association GLM Stats mdp genotype subset + mdp traits st NJ Tree

Thank you!