Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica e Eletrônica

Eletrônica Básica – EEL 7061 Avaliação III – 2015/2 (30/11/2015)

Questão 1: [4,0 pontos] Dado o circuito a seguir e a tabela de parâmetros dos transistores, determine I_{D1} , I_{D2} , I_{D3} , I_{D4} e V_o .

Ī	PMOS:	$V_T=-1V$	$k'=40\mu A/V^2$	$W/L_2=2,5$	W/L ₄ =30	λ≅0
Ī	NMOS:	$V_T=1V$	$k'=100\mu A/V^2$	$W/L_1=4$	$W/L_3 = 40$	λ≅0

<u>Questão 2:</u> [4,0 pontos] Assumindo que g_{m1} e g_{m2} são conhecidos e que $|V_a| \rightarrow \infty$ para ambos os transistores, determine a expressão literal para $A_v = V_o/V_i$.

Questão 3: [2,0 pontos] Implemente a função lógica: $S = A\overline{B} + C$

FORMULÁRIO

• MOSFET reforço (enriquecimento, acumulação, intensificação):

NMOS	Equações	PMOS	
$V_T > 0 V_{DS} > 0$	$K = k' \left(\frac{W}{L}\right)$ $k' = \mu C_{ox}, \lambda = 1/V_A$	$V_T < 0 V_{DS} \le 0$	
$V_{GS} < V_T$	(a) Região de Corte I _D =0	$V_{GS} \ge V_T$	
$\begin{cases} V_{GS} \ge V_T \\ V_{DS} < V_{GS} - V_T \\ V_{GD} \ge V_T \end{cases}$	(b) Região de Triodo $I_D = K \left[(V_{GS} - V_T) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} > V_{GS} - V_T \\ V_{GD} \leq V_T \end{cases}$	
$\begin{cases} V_{GS} \geq V_T \\ V_{DS} \geq V_{GS} - V_T \\ V_{GD} \leq V_T \end{cases}$	(c) Região de Saturação $I_D = \frac{K}{2} (V_{GS} - V_T)^2 (1 + \lambda V_{DS})$	$\begin{cases} V_{GS} \leq V_T \\ V_{DS} \leq V_{GS} - V_T \\ V_{GD} \geq V_T \end{cases}$	
(a) V _{0S}		V ₀₅₀ (c) (b) V ₀₅₁ (a)	

• Modelo de pequenos sinais do MOSFET reforço: $r_d=|V_a|/I_D$; $g_m=K\cdot(V_{GS}-V_T)$

