

Martin Mundt, Dr. Iuliia Pliushch, Prof. Dr. Visvanathan Ramesh

Pattern Analysis & Machine Intelligence Praktikum: MLPR-WS19

Week 8: K-Means and PCA

Unsupervised learning: K-Means and PCA

• K-means: clustering algorithm which operates on the distances between points and the supposed cluster centers

• PCA: helps in analyzing the data variance and can be used for data compression

K-Means clustering (Lloyd algorithm)

Input: d-dimensional data points

- Randomly initialize k cluster means
- Assign points to its closest cluster mean
- Update the cluster means and repeat the two previous steps until the means converge

https://de.coursera.org/lecture/genomic-data/the-lloyd-algorithm-for-k-means-clustering-309eh

https://de.wikipedia.org/wiki/K-Means-Algorithmus

K-Means: Difficulties

• How do we determine k – the number of clusters to split the data into?

Elbow	Silhouette
- run k-means for different	- run k-means for different values
values of k	of k
- calculate WCSS:	- calculate the average silhouette
within cluster sum of squares	- plot the measure for growing k
- plot WCSS for growing k	- take the k at the peak
- take the k where 'the elbow	
bends'	

K-Means: Difficulties (1)

• How do we determine k – the number of clusters to split the data into?

https://towardsdatascience.com/clustering-metrics-better-than-the-elbow-method-6926e1f723a6

K-Means: Difficulties (2)

What if the cluster are not of a spherical shape?

https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a

PCA: Basis transformation

The same vector having different representation depending on basis used

https://www.12000.org/my_notes/similarity_transformation_and_SVD/index.htm

PCA: Eigenvalues & eigenvectors

Interpretation: the eigenvector v does not change (its direction) when multiplied by A, it is only scaled.

PCA - Principal Component Analysis

• Input: d-dimensional data

- Subtract the mean from your data
- Compute the covariance matrix for your zero-mean data
- Compute the eigenvalues and eigenvectors of the **covariance matrix**
- Sort the **eigenvectors** (=principal components) in descending order according to the eigenvalues
- Pick a subset of them and transform your data

http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/pca_tutorial.pdf

Covariance matrix

Variance:

$$var(X) = \frac{\sum_{i \in N} (x_i - \mu_X)^2}{N - 1} = \frac{\sum_{i \in N} (x_i - \mu_X) * (x_i - \mu_X)}{N - 1}$$

Covariance:

$$covar(X,Y) = \frac{\sum_{i \in N} (x_i - \mu_x) * (y_i - \mu_y)}{N-1}$$

http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/pca_tutorial.pdf

Dimensionality reduction: 3D - 2D

Facial recognition: Eigenfaces

https://en.wikipedia.org/wiki/Eigenface