

Collusion-resistant fingerprinting and group testing

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Van der Meulen seminar, Enschede, The Netherlands (November 27, 2014)

Outline

Search problems

Introduction

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

Search problems

Introduction

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}. \qquad (z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$$

Search problems

Introduction

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

Search problems

Introduction

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}. \qquad (z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}. \qquad (z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \\ 0.99 \end{bmatrix}$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \\ 0.99 \end{bmatrix}$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \\ 0.99 \end{bmatrix}$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

$$\begin{vmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{vmatrix} = \begin{vmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \end{vmatrix} \implies (y_S)_{k \in \mathbb{N}} = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \dots)$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

$$\begin{vmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{vmatrix} = \begin{vmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \end{vmatrix} \implies (y_S)_{k \in \mathbb{N}} = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, \dots)$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

$$\begin{vmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{vmatrix} = \begin{vmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \\ 0.95 \end{vmatrix} \implies (y_{\mathcal{S}})_{k \in \mathbb{N}} = (0, 0, 1, 0, 1, 0, 0, 0, 0, 1, \dots)$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

$$\begin{vmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{vmatrix} = \begin{vmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \\ 0.95 \end{vmatrix} \implies (y_{\mathcal{S}})_{k \in \mathbb{N}} = (1, 0, 0, 1, 0, 0, 0, 0, 1, 0, \dots)$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_z.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

$$\begin{vmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{vmatrix} = \begin{vmatrix} 0.30 \\ 0.50 \\ 0.95 \end{vmatrix} \implies (y_{\mathcal{S}})_{k \in \mathbb{N}} = (1, 0, 0, 1, 1, 0, 1, 1, 0, 1, \dots)$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_z.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

$$\begin{vmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ 0 \end{vmatrix} = \begin{vmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \\ 0.95 \end{vmatrix} \implies (y_{\mathcal{S}})_{k \in \mathbb{N}} = (1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, \dots)$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}.$$
 $(z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$

$$\begin{vmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \end{vmatrix} = \begin{vmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \end{vmatrix} \implies (y_{\mathcal{S}})_{k \in \mathbb{N}} = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \dots)$$

Search problems

Problem: Given a universe \mathcal{U} of n elements and a model $\vec{\theta}$, find a hidden subset $\mathcal{C} \subset \mathcal{U}$ of size $c \ll n$ using subset queries.

$$\mathbb{P}(Y_{\mathcal{S}}=1)=\theta_{z}. \qquad (z=|\mathcal{S}\cap\mathcal{C}|\in\{0,\ldots,c\})$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} = \begin{bmatrix} 0.01 \\ 0.30 \\ 0.50 \\ 0.95 \\ 0.99 \end{bmatrix}$$

Search problems

```
\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \vdots \\ \theta_{c-1} \\ \theta_c \end{bmatrix} =
```

Search problems

Search problems

	Fingerprinting	coinflip atk.	majority atk.	linear atk.
$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \vdots \\ \theta_{c-1} \\ \theta_c \end{bmatrix} =$	[0] * * * : * : 1]	$\begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 1/2 \\ \vdots \\ 1/2 \\ 1 \end{bmatrix}$	[0] 0 0 0 :: 1 1]	$\begin{bmatrix} 0 \\ 1/c \\ 2/c \\ 3/c \\ \vdots \\ (c-1)/c \\ 1 \end{bmatrix}$

Search problems

Fingerprinting and group testing models

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \vdots \\ \theta_{c-1} \\ \theta_c \end{bmatrix} = \begin{bmatrix} \mathbf{Fine} \\ \mathbf{Fi$$

Fingerprinting: Model corresponds to adversary; unknown

Search problems

Fingerprinting and group testing models

		Fingerprinting	coinflip atk.	majority atk.	linear atk.	Group testing
$\lceil \theta_0 \rceil$		[0]	[0]	[0]	[0]	[0]
		*	1/2	0	1/c	1
$egin{array}{c} heta_1 \ heta_2 \ heta_3 \end{array}$		*	1/2	0	$\frac{2}{c}$	1
θ_3	=	*	1/2	0	$\frac{2}{c}$ $\frac{3}{c}$	1
:			:	:	:	:
θ_{c-1}		*	1/2	1	(c-1)/c	1
$\left[\begin{array}{c} heta_c \end{array}\right]$		$\lfloor 1 \rfloor$	$\lfloor 1 \rfloor$	$\lfloor 1 \rfloor$		$\lfloor 1 \rfloor$

• Fingerprinting: Model corresponds to adversary; unknown

Search problems

Fingerprinting and group testing models

		Fingerprinting	coinflip atk.	majority atk.	linear atk.	Group testing	with noise	with thresholo
$\lceil \theta_0 \rceil$		[0]	[0]	[0]	[0]	[0]	$\lceil r \rceil$	[0]
θ_1		*	1/2	0	1/c	1	1	*
θ_2		*	1/2	0	$^{2}/_{c}$	1	1	*
θ_3	=	*	1/2	0	3/c	1	1	1
:				:				:
θ_{c-1}		*	1/2	1	$\left (c-1)/c \right $	1	1	1
θ_c		$\lfloor 1 \rfloor$	1	1	1 1	1	1	1

• Fingerprinting: Model corresponds to adversary; unknown

Search problems

		Fingerprinting	coinflip atk.	majority atk.	linear atk.	Group testing	with noise	with thresholds
Γ θ ₀]		[0]	[0]	[0]	[0]	[0]	$\lceil r \rceil$	[0]
		*	1/2	0	1/c	1	1	*
θ_2		*	1/2	0	$\frac{2}{c}$	1	1	*
$egin{array}{c} heta_1 \ heta_2 \ heta_3 \end{array}$	=	*	1/2	0	3/c	1	1	1
:		:		:		:		:
θ_{c-1}		*	1/2	1	(c-1)/c	1	1	1
$\left[\begin{array}{c} \theta_c \end{array}\right]$		$\lfloor 1 \rfloor$	1	1		1	$\lfloor 1 \rfloor$	$\lfloor 1 \rfloor$

- Fingerprinting: Model corresponds to adversary; unknown
- **Group testing**: Model generally known but possibly noisy

Overview

Lower bounds on fingerprinting

How many queries ℓ are necessary for non-adaptive fingerprinting?

- 1998: $\ell = \Omega(c \log n)^{[1]}$
- 2003: $\ell = \Omega(c^2 \log \frac{n}{c})^{[2]}$
- 2003: $\ell = \Omega(c^2 \log n)^{[3]}$
- 2009: $\ell \stackrel{?}{\sim} 2c^2 \ln n^{[4]}$
- 2012: $\ell \sim 2c^2 \ln n^{[5]}$
 - lacktriangle asymptotic optimal attack is the linear attack $(heta_z=z/c)$

^[1]D. Boneh J. Shaw, "Collusion-secure fingerprinting for digital data," IEEE Transactions on Information Theory, 44, 5, 1897–1905, 1998.

^[2]C. Peikert et al., "Lower bounds for collusion-secure fingerprinting," ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003, 472–479.

^[3] G. Tardos, "Optimal probabilistic fingerprint codes," ACM Symposium on Theory of Computing (STOC), 2003. 116–125.

^[4]E. Amiri G. Tardos, "High rate fingerprinting codes and the fingerprinting capacity," ACM-SIAM Symposium on Discrete Algorithms (SODA), 2009, 336–345.

^[5]Y.-W. Huang P. Moulin, "On the saddle-point solution and the large-coalition asymptotics of fingerprinting games," *IEEE Transactions on Information Forensics and Security*, 7, 1, 160–175, 2012.

Overview Upper bounds on fingerprinting

How many queries ℓ are sufficient for non-adaptive fingerprinting?

- 1995: $\ell = O(c^4 \log n)^{[1]}$
- 2003: $\ell = 100c^2 \ln n^{[2]}$ ("the Tardos scheme")
- 2006: $\ell \sim 4\pi^2 c^2 \ln n^{[6]}$
- 2008: $\ell \sim \pi^2 c^2 \ln n^{[7]}$
- 2011: $\ell \sim \frac{1}{2}\pi^2 c^2 \ln n^{[8]}$
- 2013: $\ell \sim 2c^2 \ln n^{[9]}$
 - decoder designed against the linear attack is 'optimal'

^[6] B. Skoric et al., "Tardos fingerprinting is better than we thought," IEEE Transactions on Information Theory, 54, 8, 3663–3676, 2008.

^[7] B. Skoric *et al.*, "Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes," *Designs, Codes and Cryptography*, 46, 2, 137–166, 2008.

^[8] T. Laarhoven B. de Weger, "Optimal symmetric Tardos traitor tracing schemes," Designs, Codes and Cryptography, 71, 1, 83–103, 2014.

^[9] J.-J. Oosterwijk et al., "A capacity-achieving simple decoder for bias-based traitor tracing schemes," Cryptology ePrint Archive, 2013.

OverviewLower bounds on group testing

How many queries ℓ are necessary for non-adaptive group testing?

- 1985: $\ell \sim c \log_2 n^{[10]}$
- 1989: $\ell = \Omega(c^2 \log n)^{[11]}$ (deterministic tracing)
- 2009: $\ell = \Omega(\frac{c \log n}{(1-r)^2})^{[12]}$ (noise)
- ...

[10] A. Sebő, "On two random search problems," Journal of Statistical Planning and Inference, 11, 1, 23–31, 1985.

[12] G. K. Atia V. Saligrama, "Boolean compressed sensing and noisy group testing," IEEE Transactions on Information Theory, 58, 3, 1880–1901, 2012.

^[11] A. G. Dyachkov et al., "Superimposed distance codes," Problems of Control and Information Theory, 18, 4, 237–250, 1989.

OverviewUpper bounds on group testing

How many queries ℓ are sufficient for non-adaptive group testing?

- 2005: $\ell \sim 2c^2 \log_2 n^{[13]}$ (linear gap)
- 2009: $\ell = O(\frac{c \log n}{(1-r)^3})^{[14]}$ (noise)
- 2011: $\ell \sim ec \ln n^{[15]}$
- 2013: $\ell \sim O(\sqrt{g}c \log n)^{[16]}$ (coinflip gap)
- 2013: $\ell \sim \pi c \ln n^{[17]}$ (majority)
- ...

[13] A. D. Lungo et al., "The guessing secrets problem: a probabilistic approach," Journal of Algorithms, 55, 142–176, 2005.

^[14] M. Cheraghchi et al., "Group testing with probabilistic tests: theory, design and application," IEEE Transactions on Information Theory, 57, 10, 7057–7067, 2011.

^[15] C. L. Chan et al., "Non-adaptive probabilistic group testing with noisy measurements," Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2011, 1832–1839.

^[16] C. L. Chan et al., "Stochastic threshold group testing," IEEE Information Theory Workshop (ITW), 2013, 1–5.

^[17] T. Laarhoven, "Efficient probabilistic group testing based on traitor tracing," Annual Allerton Conference on Communication, Control and Computing (Allerton), 2013, 1358–1365.

Contributions

Explicit asymptotics of the capacities of various models^[18]

- Information-theoretic approach: Mutual information game
- Both simple (efficient) and joint (optimal) decoding
- Can be applied to arbitrary models $\vec{ heta}$

^[18] T. Laarhoven, "Asymptotics of fingerprinting and group testing: tight bounds from channel capacities," submitted to IEEE Transactions on Information Theory, 1–14, 2014.

^[19] T. Laarhoven, "Asymptotics of fingerprinting and group testing: capacity-achieving log-likelihood decoders," submitted to IEEE Transactions on Information Theory, 1–13, 2014.

Contributions

Explicit asymptotics of the capacities of various models^[18]

- Information-theoretic approach: Mutual information game
- Both simple (efficient) and joint (optimal) decoding
- Can be applied to arbitrary models $ec{ heta}$

Capacity-achieving decoders for arbitrary models^[19]

- Statistical approach: Neyman-Pearson hypothesis testing
- Both simple and joint decoding
- Asymptotically optimal regardless of the model

^[18] T. Laarhoven, "Asymptotics of fingerprinting and group testing: tight bounds from channel capacities," submitted to IEEE Transactions on Information Theory, 1–14, 2014.

^[19] T. Laarhoven, "Asymptotics of fingerprinting and group testing: capacity-achieving log-likelihood decoders," submitted to IEEE Transactions on Information Theory, 1–13, 2014.

Contributions

Explicit asymptotics of the capacities of various models^[18]

- Information-theoretic approach: Mutual information game
- Both simple (efficient) and joint (optimal) decoding
- Can be applied to arbitrary models $ec{ heta}$
- Focus of this talk

Capacity-achieving decoders for arbitrary models^[19]

- Statistical approach: Neyman-Pearson hypothesis testing
- Both simple and joint decoding
- Asymptotically optimal regardless of the model

^[18] T. Laarhoven, "Asymptotics of fingerprinting and group testing: tight bounds from channel capacities," submitted to IEEE Transactions on Information Theory, 1–14, 2014.

^[19] T. Laarhoven, "Asymptotics of fingerprinting and group testing: capacity-achieving log-likelihood decoders," submitted to IEEE Transactions on Information Theory, 1–13, 2014.

CapacitiesRandomized construction

Choosing the subsets $S \subseteq \mathcal{U}$ to query

- Choose a parameter $p \in (0,1)$
- For every query and element j: $\mathbb{P}(j \in \mathcal{S}) = p$
 - ▶ Different queries and elements are independent

CapacitiesRandomized construction

Choosing the subsets $S \subseteq \mathcal{U}$ to query

- Choose a parameter $p \in (0,1)$
- For every query and element j: $\mathbb{P}(j \in \mathcal{S}) = p$
 - Different queries and elements are independent

Finding the hidden subset $C \subseteq \mathcal{U}$

- Simple decoding: Decide whether $j \in \mathcal{C}$ based on...
 - ▶ X: The information whether $j \in S$ or not
 - Y: The output bits y_S
 - ▶ P: The randomly drawn parameters p
- Joint decoding: Decide whether $j \in C$ based on...
 - ▶ X': The information whether $j' \in \mathcal{S}$ or not, for all $j' \in \mathcal{U}$
 - Y: The output bits y_S
 - P: The randomly drawn parameters p

Capacities Simple decoding

- Simple decoding: Decide whether $j \in \mathcal{C}$ based on...
 - ▶ X: The information whether $j \in S$ or not
 - Y: The output bits y_S
 - ▶ P: The randomly drawn parameters p

Capacities Simple decoding

- Simple decoding: Decide whether $j \in \mathcal{C}$ based on...
 - ▶ X: The information whether $j \in S$ or not
 - \triangleright *Y*: The output bits y_S
 - P: The randomly drawn parameters p

For fixed $\vec{\theta}$, the simple capacity is given by [5]

$$C^{\text{simple}}(\vec{\theta}) = \max_{p \in (0,1)} I(X; Y|P = p).$$

Capacities Simple decoding

- Simple decoding: Decide whether $j \in \mathcal{C}$ based on...
 - ▶ X: The information whether $j \in S$ or not
 - ightharpoonup Y: The output bits $y_{\mathcal{S}}$
 - ▶ P: The randomly drawn parameters p

For fixed $\vec{\theta}$, the simple capacity is given by [5]

$$C^{\text{simple}}(\vec{\theta}) = \max_{p \in (0,1)} I(X; Y|P = p).$$

I(X; Y|P = p) is an explicit function of $\vec{\theta}$ and p.

Capacities Joint decoding

- Joint decoding: Decide whether $j \in C$ based on...
 - ▶ X': The information whether $j' \in S$ or not, for all $j' \in U$
 - ▶ Y: The output bits y_S
 - ▶ P: The randomly drawn parameters p

Capacities Joint decoding

- Joint decoding: Decide whether $j \in C$ based on...
 - ▶ X': The information whether $j' \in S$ or not, for all $j' \in U$
 - \triangleright *Y*: The output bits y_S
 - ▶ P: The randomly drawn parameters p

For fixed $\vec{\theta}$, the simple capacity is given by [5]

$$C^{\text{joint}}(\vec{\theta}) = \max_{p \in (0,1)} I(X'; Y|P=p).$$

Capacities Joint decoding

- Joint decoding: Decide whether $j \in C$ based on...
 - ▶ Z: The size of $S \cap C$
 - \triangleright *Y*: The output bits y_S
 - P: The randomly drawn parameters p

For fixed $\vec{\theta}$, the simple capacity is given by [5]

$$C^{\text{joint}}(\vec{\theta}) = \max_{p \in (0,1)} I(Z; Y|P=p).$$

Capacities Joint decoding

- Joint decoding: Decide whether $j \in C$ based on...
 - \triangleright *Z*: The size of $\mathcal{S} \cap \mathcal{C}$
 - ► *Y*: The output bits *y*_S
 - ▶ P: The randomly drawn parameters p

For fixed $\vec{\theta}$, the simple capacity is given by [5]

$$C^{\mathsf{joint}}(\vec{\theta}) = \max_{p \in (0,1)} I(Z; Y|P = p).$$

I(Z; Y|P=p) is an explicit function of $\vec{\theta}$ and p.

Capacities Results

Model $\vec{ heta}$	$C^{simple}(ec{ heta})$	$C^{ m joint}(ec{ heta})$
$(0, *, *, *, \dots, *, *, *, 1)$	$\frac{1}{(2c^2 \ln 2)^{[5]}}$	$\frac{1}{(2c^2 \ln 2)}[5]$
$(0, \frac{1}{c}, \frac{2}{c}, \dots, \frac{(c-1)}{c}, 1)$ $(0, \frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}, \frac{1}{2}, 1)$	$\frac{1}{(2c^2 \ln 2)}$ $\frac{1}{(4c)}$	$\frac{1}{(2c^2 \ln 2)^{[5]}}$ $\log_2(\frac{5}{4})/c$
$(0,0,0,0,\ldots,1,1,1,1)$	$\frac{1}{(\pi c \ln 2)}$	$\frac{1}{c}$
$(0,1,1,1,\ldots,1,1,1,1) \ (r,1,1,1,1,\ldots,1,1,1,1)$	$\frac{\ln 2/c}{[\ln 2 - r + O(r^2)]/c}$	$\frac{1/c^{[10]}}{[1-\frac{1}{2}h(r)+O(r^2)]/c}$

Capacities Results

Model $ec{ heta}$	$C^{simple}(ec{ heta})$	$C^{ m joint}(ec{ heta})$
(0,*,*,*,,*,*,*,1) (0, 1/c, 2/c,, (c-1)/c, 1)	$\frac{1}{(2c^2 \ln 2)^{[5]}}$ $\frac{1}{(2c^2 \ln 2)^{[5]}}$	$\frac{1/(2c^2 \ln 2)^{[5]}}{1/(2c^2 \ln 2)^{[5]}}$
$(0, 1/2, 1/2, \ldots, 1/2, 1/2, 1)$	$\ln 2/(4c)$	$\log_2(\frac{5}{4})/c$
$(0,0,0,0,\ldots,1,1,1,1) \ (0,1,1,1,\ldots,1,1,1,1)$	$1/(\pi c \ln 2)$ $\ln 2/c$	$\frac{1/c}{1/c[10]}$
$(r, 1, 1, 1, \dots, 1, 1, 1, 1)$	$[\ln 2 - r + O(r^2)]/c$	$[1-\frac{1}{2}h(r)+O(r^2)]/c$
• • •	• • •	• • •

$$C^{\text{joint}}(\vec{\theta}) = \frac{1}{c}C(Z\text{-channel with }p = \frac{1}{2}) = \log_2(\frac{5}{4})/c.$$

Capacities Results

Model $\vec{ heta}$	$C^{simple}(ec{ heta})$	$C^{ m joint}(ec{ heta})$
$(0, *, *, *, \dots, *, *, *, 1)$	$\frac{1}{(2c^2 \ln 2)^{[5]}}$	$\frac{1}{(2c^2 \ln 2)^{[5]}}$
$ \begin{array}{c} (0, 1/c, 2/c, \dots, (c-1)/c, 1) \\ (0, 1/2, 1/2, \dots, 1/2, 1/2, 1) \end{array} $	$\frac{1}{(2c^2 \ln 2)^{[5]}}$ $\ln 2/(4c)$	$1/(2c^2 \ln 2)^{[5]} \log_2(\frac{5}{4})/c$
$(0,0,0,0,\ldots,1,1,1,1)$	$1/(\pi c \ln 2)$	$\frac{1/c}{1/c}[10]$
$(0,1,1,1,\ldots,1,1,1,1) \ (r,1,1,1,1,\ldots,1,1,1,1)$	$\frac{\ln 2/c}{[\ln 2 - r + O(r^2)]/c}$	$[1-\frac{1}{2}h(r)+O(r^2)]/c$

Results

Lower bounds on fingerprinting

How many queries ℓ are necessary for non-adaptive fingerprinting?

- 1998: $\ell = \Omega(c \log n)^{[1]}$
- 2003: $\ell = \Omega(c^2 \log \frac{n}{c})^{[2]}$
- 2003: $\ell = \Omega(c^2 \log n)^{[3]}$
- 2009: $\ell \stackrel{?}{\sim} 2c^2 \ln n^{[4]}$
- 2012: $\ell \sim 2c^2 \ln n^{[5]}$

Results Upper bounds on fingerprinting

How many queries ℓ are sufficient for non-adaptive fingerprinting?

- 1995: $\ell = O(c^4 \log n)^{[1]}$
- 2003: $\ell=100c^2\ln n^{[2]}$ ("the Tardos scheme")
- 2006: $\ell \sim 4\pi^2 c^2 \ln n^{[6]}$
- 2008: $\ell \sim \pi^2 c^2 \ln n^{[7]}$
- 2011: $\ell \sim \frac{1}{2}\pi^2c^2 \ln n^{[8]}$
- 2013: $\ell \sim 2c^2 \ln n^{[9][19]}$

Results

Lower bounds on group testing

How many queries ℓ are necessary for non-adaptive group testing?

- 1985: $\ell \sim c \log_2 n^{[10]}$
- 1989: $\ell = \Omega(c^2 \log n)^{[11]}$ (deterministic tracing)
- 2009: $\ell = \Omega(\frac{c \log n}{(1-r)^2})^{[12]}$ (noise)
- 2014: $\ell \sim \frac{c \log_2 n}{\ln 2}$ (simple decoding)
- 2014: $\ell \sim \frac{c \log_2 n}{\ln 2 r + O(r^2)}$ [18] (simple decoding, noise)
- 2014: $\ell \sim \frac{c \log_2 n}{1 \frac{1}{2}h(r) + O(r^2)}$ (joint decoding, noise)
- . . .

Results Upper bounds on group testing

How many queries ℓ are sufficient for non-adaptive group testing?

- 2005: $\ell \sim 2c^2 \log_2 n^{[13]}$ (linear gap)
- 2009: $\ell = O(\frac{c \log n}{(1-r)^3})^{[14]}$ (noise)
- 2011: $\ell \sim ec \ln n^{[15]}$ (simple decoding)
- 2013: $\ell \sim O(\sqrt{g}c\log n)^{[16]}$ (coinflip gap)
- 2013: $\ell \sim \pi c \ln n^{[17]}$ (majority)
- 2014: $\ell \sim \frac{c \log_2 n}{\ln 2}$ (simple decoding)
- 2014: $\ell \sim \frac{4c \log_2 n}{\ln 2}$ (simple decoding, coinflip)
- 2014: $\ell \sim c \log_{5/4} n^{[19]}$ (joint decoding, coinflip)
- ...

Conclusion

Explicit asymptotics of the capacities of various models [18]

- Information-theoretic approach: Mutual information game
- Both simple (efficient) and joint (optimal) decoding
- Can be applied to arbitrary models $\vec{ heta}$

Capacity-achieving decoders for arbitrary models [19]

- Statistical approach: Neyman-Pearson hypothesis testing
- Both simple and joint decoding
- Asymptotically optimal regardless of the model

Questions?