2023 CSP七连测-day05

题目名称	原神	方舟	铁道	启动
题目类型	传统型	传统型	传统型	传统型
英文题目名称	genshin	ark	railway	qidong
输入文件名	genshin.in	ark.in	railway.in	qidong.in
输出文件名	genshin.out	ark.out	railway.out	qidong.out
每个测试点时限	1s	1s	1s	1s
内存限制	256MB	256MB	256MB	256MB
提交的源文件名	genshin.cpp	ark.cpp	railway.cpp	qidong.cpp

【C++编译选项】 -lm -std=c++14 -Wl,--stack=1000000000 -02

【试题下载地址】 ftp://172.16.2.202/竞赛资料/20231013.zip 匿名访问即可

【结果上传地址】 ftp://172.16.2.202/20231013文件回收 用户名密码均为test

【赛后补题地址】 http://zhb.wms.edu/d/JH2023/ 训练

【提交文件夹格式】

--准考证号\ **(平时训练用中文姓名)**

T1 原神 (genshin)

题目描述

你在玩一款卡牌类游戏。

你有 n 个敌人,第 i 个敌人的攻击力是 a_i 。

你手上有 m 瓶魔法药水以及 1 瓶神奇药水,第 i 瓶魔法药水的能力是使得某一个你指定的敌人的攻击力上升 b_i ,神奇药水的能力是将所有攻击力为奇数的敌人杀死。

你可以以任意顺序使用任意数量的药水,一瓶药水不能使用多次,请最小化敌方剩余敌人的攻击力之和,并输出答案。

输入格式

第一行,包含一个整数 n,表示敌人个数。

第二行包含 n 个整数 a_1, a_2, \dots, a_n 表示敌人的攻击力。

第三行,包含一个整数 m,表示手中魔法药水数量。

第四行包含 m 个整数 b_1, b_2, \cdots, b_m ,表示每瓶魔法药水可以给敌人提供的攻击力。

输出格式

一行,一个整数,表示敌方剩余敌人的攻击力之和。

样例

输入样例 1

```
10
36 2 76 18 28 60 72 80 57 42
8
42 62 97 31 15 1 17 89
```

输出样例 1

样例解释

使用魔法药水将敌人攻击力变为 36+1,2,76+97,18,28,60+17,72+31,80+15,57,42+89, 然后使用神奇药水敌人攻击力变为 2,18,28, 答案即为 48, 可以证明没有更优答案。

数据范围

对于 50% 的数据, $n, m \leq 10, a_i, b_i \leq 100$ 。

对于另外 30% 的数据, $n, m \leq 1000, a_i, b_i \leq 10^5$ 。

对于 100% 的数据, $0 \le n, m \le 10^5$, $1 \le a_i, b_i \le 10^9$ 。

T2 方舟 (ark)

题目描述

sgl 给你了一个可重集 S,共有 n 种数,其中值为 a_i 有 m_i 个。LEE 觉得不够刺激,又在集合中加入了 $1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{k}$ 这些数各一个。

现在,sgl 想要询问你,这个集合 S 中所有大小为偶数的子集 T (**包含空集**)的贡献之和是多少。定义一个集合 A 的贡献为 A 中所有元素的乘积(如果 A 为空集则贡献为 1)。

形式化题意:给定一个集合S,请求出:

$$\sum_{T \subset S} \prod_{t \in T} t \mod P$$
,其中 $2||T|$

输入格式

一行 7 个整数, 表示 $n, m, k, P, s_1, s_2, s_3$ 。

你必须通过以下代码生成所需的读入。

重要提醒:

请勿修改 init() 函数里面的任何内容。例如以下行为:

- 把 cin 修改为 scanf 或手写快读等。
- 把 unsigned int 修改为其他数据类型, 比如 define int long long 。

```
int n, k, P, m_[N], a_[N];
unsigned int s1, s2, s3;
unsigned int next(){
    unsigned int res;
    s1^=s3, s3+=3055373123u;
    res=s1, s2=(s2^s3)&31;
    s3=(s3>>s2)|((s3<<(31^s2))<<1);
    return res;
}
void init() {
    int m; cin >> n >> m >> k >> P >> s1 >> s2 >> s3;
    for(int i = 1; i <= n; i++) {
        m_{[i]} = next() % m + 1;
        a_[i] = next() % P;
    }
}
```

其中 n 表示有 n 组 (m_i, a_i) , 即可重集中有 $m_i \wedge a_i$ 。

k 表示 LEE 新加入进可重集中的 $1, \frac{1}{2}, \cdots, \frac{1}{k}$.

另外,保证 P 是质数,并且 $0 \le a_i, k < P$ 。

输出格式

一行一个整数表示答案。

样例

样例输入1

1 1 2 998244353 1 2 3

样例输出 1

206749456

样例输入2

3 2 3 998244353 3 2 1

样例输出 2

2810123

样例解释

对于第一组样例,集合为 $\{803329205,1,499122177\}$,其中 499122177 为 $\frac{1}{2}$ 在模 998244353 意义下的数。答案为:

 $(1+803329205 \times 1+803329205 \times 499122177+1 \times 499122177) \bmod 998244353 = 206749456$

数据范围

对于 5% 的数据, $n \le 15, m = 1, k \le 5$.

对于另外 15% 的数据, $\sum m_i + k \leq 10^6$ 。

对于另外 20% 的数据, $n \le 2 \times 10^5, k = 0$ 。

对于另外 20% 的数据, n=0。

对于另外 30% 的数据, $n \leq 2 \times 10^5$.

对于 100% 的数据, $0 \le n \le 10^6, 1 \le m_i \le 10^9, 10^8 \le P \le 10^9, 0 \le a_i, k < P$,P 是质数。

T3 铁道 (railway)

题目描述

有一高楼总共有 n 层,需要设计若干台电梯,为了上下楼的方便在任意两层之间都有至少一部电梯直达(中间没有停留的楼层),同时为了效率每部电梯最多停 4 层,问最少需要多少部电梯才能满足上述条件,并给出具体方案。

形式化地,给定 n,你需要给出最少的电梯数量 m 以及电梯停靠方案 $1 \le a_i \le b_i \le c_i \le d_i$ 使得 $\forall 1 \le i \le j \le n$, $\exists 1 \le k \le m$, $(i,j) \in \{(a_k,b_k),(b_k,c_k),(c_k,d_k)\}$ 。

本题采用 Special Judge。

输入格式

一行一个整数代表 n。

输出格式

第一行一个整数表示总电梯数量 m。

之后 m 行每行 4 个递增整数 a_i, b_i, c_i, d_i ,表示第 i 个电梯的停靠方案。

样例

样例输入1

3

样例输出 1

2

1 2 3 3

1 3 3 3

样例解释

我们允许 $a_i=b_i=c_i=d_i$,这个时候表示电梯停靠层数小于 4 层,但是你仍然要输出 4 个数字,参考样例输出。

在样例 1 中, 第一个电梯停靠 1, 2, 3 层, 第二个电梯停靠 1, 3 层。

3

1 1 1 2

1 1 1 3

2 2 2 3

这也是样例一的一组合法输出,但是你只能拿到90分。

数据范围

对于 10% 的数据, $n \leq 10$ 。

对于另外 20% 的数据, $n \leq 100$ 。

对于另外 30% 的数据, $n \leq 1000$ 。

对于 100% 的数据, $2 \le n \le 3000$ 。

评分标准

假设最好的方案使用了 ans 台电梯,在你的方案**合法**的前提下,令你的答案为 res,则每个测试点你的得分是 $100 - \min(10, res - ans) \times 10$ 。如果你的方案不合法,则你的得分为 0。

温馨提示

本题输出量较大, 请注意输出优化。

T4 启动 (qidong)

题目描述

对于正整数 $n \geq 3$,定义 f(n) 为最大的小于 n-1 的整数 k,使得 $k^2 \equiv 1 \pmod n$ 。例如 f(15) = 11。

共有 q 次询问,对每次询问 n,你需要求出 f(n)。

输入格式

第一行一个整数 q,代表询问次数。

接下来一行 q 个整数,每个整数是 n,表示询问。

输出格式

共q行,每行一个整数,表示f(n)。

样例

样例输入1

8 3 4 5 6 7 8 9 10

样例输出 1

1

1

1

1

5

1

1

样例解释

注意到 $5 \times 5 = 25 \equiv 1 \pmod{8}$,所以 f(8) = 5,可以证明没有其他更大的符合条件的整数。

数据范围

对于 5% 的数据, $n \leq 10^5$ 。

对于另外 10% 的数据, $n \leq 10^9$ 且 n 为质数。

对于另外 10% 的数据, $n \leq 10^9$ 且 n 是质数的幂。

对于另外 70% 的数据, $n \leq 10^9$ 。

对于 100% 的数据, $1 \le q \le 10^3, 3 \le n \le 10^{18}$ 。

保证数据随机。