基板機鑽穴位散孔圖異常

人工智慧辨識模型開發

期中報告

委託單位:日月光半導體股份有限公司

執行單位:國立成功大學(統計學系)

目錄

一、內容摘要	3~5
二、使用方法	6~9
三、實驗結果	10~12
四、系統架構	13
五、未來展望	14

第一節 內容摘要

1、背景

機台鑽孔位置 Shifting (位移) 散孔圖經常用來判斷是否有異常, 例如定位失準等, 然而大多數都是藉由人力觀測散孔圖的狀況來判斷是否異常, 雖然觀測機台可提供門檻值以外的分布密度, 但對於在門檻值內的無法評估, 因此若少量異常將不易提前觀測到, 若需做到準確的異常判斷, 經常是費時耗力之工作。

2、目的

利用大數據分析與人工智慧系統開發智慧異常之對應散孔圖分類。本計畫分三階段,第一階段乃是開發散孔圖的異常與正常之二元分類系統開發,資料清理,以及模型確立,第二階段則是開發數據融合技術,以便融合機台統計資料與影像資料,並延伸至多分類任務,也就是除了能辨識出異常的散孔圖,並可細分出四類。第三階段乃是強化辨識效能至目標規格;兩個模型的開發之規格後敘。

3、執行成果簡述

我們觀察資料後,認為一筆散孔圖資料可由主要四個部件組成,分別是(1)粉色target影像(2)綠色panel影像(3)統計數值資訊(4)散孔圖點位分佈資訊。我們經由影像裁切、光學字元辨識模組獲得四個不同的部件的具體資訊。

因為這四筆資料分別具備不同的性質,我們分別使用了不同的機器學習模型或神經網路來完成分類任務。對於(1)(2)兩類影像資料,我們使用卷積深度神經網路進行特徵萃取,最後透過全連接層完成分類。對於(3)(4)兩類數值資料,我們使用決策樹模型切割特徵空間,最後遵循決策邊界來完成分類。

對於已標註的三筆主要散孔圖資料, 我們將不同類型的模型的二分類結果取最優者, 作為二分類正確率分別如下表所示:

圖號	A282570	A296960	A158200
二分類模型	lightgbm L	extraTree	lightgbm L
驗證集分類正確率	0.984127	0.9661	0.9784
測試集分類正確率	0.964706	0.9196	0.9743

對於已標註的三筆主要散孔圖資料,我們將不同類型的模型的多分類模型結果取最優者,作為多分類正確率分別如下表所示:

圖號	A282570	A296960	A158200
多分類模型	卷積神經網	卷積神經網	卷積神經網
	路	路	路
驗證集分類正 確率	0.940299	0.95	0.959459
測試集分類正 確率	0.895523	0.85	0.932432

對於已標註的三筆主要散孔圖資料,我們同時也建置了<u>二分類之通用模型</u>來完善系統架構,增加分類系統的泛化能力及穩健性。通用模型對於不同圖號之間的分類結果如下:

訓練圖號	三圖號資料合併後固定比例分割,分別用 做訓練集及測試集				
測試圖號	A282570 A296960 A158200				
二分類模型	lightgbm L lightgbm L lightgbm L				
測試集分類正 確率	0.9464	0.9520	0.93496		

對於已標註的三筆主要散孔圖資料,我們同時也建置了多分類之通用模型來完善系統架構,增加分類系統的泛化能力及穩健性。通用模型對於不同圖號之間的分類結果如下:

訓練圖號	三圖號資料合併後固定比例分割 ,分別用做訓練集、驗證集及測 試集
多分類模型	卷積神經網路
驗證集分類正確率	0.895833
測試集分類正確率	0.870833333333333

實驗結果顯示,對於計劃書上對第一階段的預期進展已順利完成目標。而第二階段的預期進展,我方也達成初步目標,但目前仍在進行優化的階段。

第二節 使用方法

1、方法概述

由於資料內部的訊息的多樣性,單一筆散孔圖資料具有統計數值訊息、散孔分佈資訊、Target影像及Panel影像、刀具資訊等,各自含有不同類型的特徵。經實驗觀察,我們認為統計數值資訊、散孔分佈資訊、Target影像等三類特徵是最適合建置分類模型的資料屬性。因為資料屬性差異非常大,我們使用了不同的機器學習模型來完成分類任務。本節的內容包括但不限於:資料探索分析、資料前處理、光學字元辨識、決策樹模型及卷積神經網路等內容。

2、資料前處理

針對影像以及統計數據我們使用不同的方法進行前處理,這 邊將對兩種不同資料的前處理方法依序解釋。

(一) 影像前處理

由於我們只需要散孔圖中的Target或者Panel影像,因此我們把這兩種影像裁切出來。接著把Target圖的靶圈給刪除掉以免影響模型訓練。再來,我們將影像轉為灰階照片,減少影像的複雜性以幫助模型分類,最後更改影像的大小至模型所需的大小。

(二)統計數值前處理

我們使用OCR(Optical Character Recognition)將散孔圖中的統計資訊和散孔分佈資料讀取並轉成csv檔以供後續使用。

3、決策樹模型

此模型是針對統計數據使用,我們將各個圖號的統計數值套用Autogluon套件進行模型訓練。Autogluon可以同時訓練多個機器學習模型並自動進行參數優化,快速取得結果。機器學習模型我們挑選KNN、Lightgbm、RandomForest、XGBoost、Catboost、Extratrees以及Weighted Ensemble。在此模型中我們有使用5-fold交叉驗證減少過擬合和測試模型效能。我們同時也有套用Lasso進行變數的篩選,希望能達到減少過擬合以及模型訓練時間的效果。

4、 卷積神經網路模型

此模型是針對Target圖以及Panel圖使用。我們將前處理完的 影像輸入ResNet50的50層卷積神經網路進行訓練。模型參數 採用預訓練的參數,可以是訓練速度更快速。

5、通用模型

現階段我們都只使用廠商提供的三種圖號進行模型的訓練以及測試,之後若有全新的圖號要預測的話,恐怕不會有同樣的好效果。因此我們設計了兩種通用模型,可以同時萃取各個圖號的特徵。未來要對新圖號做分類時,只要微調參數就可以達到不錯的效果。

(一)圖號合併進行模型訓練

我們將各個圖號隨機抽取33~34張圖片, 而各圖號抽取出的

照片的正常和異常比例跟原本圖號的正常和異常比例一樣(例如:A158200圖號的正常和異常比例為3.4:1, 則隨機抽取出的圖片裡的正常和異常比例也要為3.4:1)。總共抽取出100張照片當作訓練資料集, 剩下沒抽取出的照片為驗證及測試資料集。模型使用決策樹模型以及卷積神經網路模型。最後將訓練出的模型預測三個圖號中的照片。此模型的好處是可以同時萃取三種圖號各自不同的特徵, 使模型不拘束於一個圖號的特徵。

無論是決策樹模型還是卷積神經網路模型,都只能處理單一模態的分類。因此我們提出一個模型可以同時處理統計數值以及影像資料。影像資料我們同樣使用卷積神經網路進行模型訓練,每張影像會輸出成一個64*64的張量(tensor)。

統計數值的部分則改成使用MLP(多層感知器), 將1*38的張量轉換成64*64的張量。這樣一來, 我們就能將影像資料和統

計數值轉換成同樣維度。最後將影像資料和統計數值的張量接在一起,並輸入另一個MLP進行模型訓練,得出預測結果。此模型為多模態的模型,有別於其他的模型,它能萃取統計數值和影像資料的特徵。由於有些影像的特徵在數值中較不明顯,若同時考慮影像的特徵應能加強模型的效能。

第三節 實驗結果

1.決策樹模型結果

我們分為兩種情況:有使用Lasso和沒有使用Lasso。有使用 Lasso的情況下,訓練資料集只會有Lasso篩選過的變數。下 表為各圖號篩選出的重要變數。

A282570	194/142	A296960	52/52	A158200	284/84
刪除9個變數 38保留	¥29	38保留8個變數		38保留19	
1. 半徑5 2. 半徑20 4. 半徑20 4. 半徑25 5. 半徑30 6. 半徑435 7. 半徑40 8. 半徑45 9. 半徑45 11. X軸至5 11. X軸位 12. X軸位 14. X軸3Sigma 16. X轴Avg .3Sig	17. Y軸平均值 18. Y軸標準 19. Y軸Cp 20. Y軸Cpk 21. Y軸Sigma 22. Y軸Avg .3Sig 23. 偏移量平均值 24. 偏移量平度 25. 製程標準度 26. 製程能力Cpk 28. 製程3Sigma 29. 製程Avg .3Sig	1.半徑35 2.半徑40 3.X軸Ca 4.X軸Cp 5.Y軸標準差 6.Y軸Ca 7.Y軸Cp 8.製成精密度Cp		1. 半徑10 12. Y軸C 2. 半徑15 13. Y軸C 3. 半徑20 14. Y軸3 4. 半徑35 15. Y軸5 5. 半徑45 16. 偏移6 6. 半徑50 17. 總點數 18. 製程 8. X軸平均值 19. 專 9. X軸Ca 10. X軸Cp 11. Y軸標準差	CP Sig Ng .3Sig 量平均值 量標準差 青密度Cp

各圖號的資料集均分為8成的訓練資料集以及2成測試資料集。根據不同圖號,我們挑出各自表現最好的模型作為最終正確率。下表為沒有使用Lasso的二元分類實驗結果。

圖號	A282570	A296960	A158200
二分類模型	lightgbm L	extraTree	lightgbm L
驗證集分類正確率	0.984127	0.9091	0.9784
測試集分類正確率	0.964706	0.9424	0.9743

接下來,下表為有使用Lasso的二元分類實驗結果。

圖號	A282570	A296960	A158200
二分類模型	lightgbm L	extraTree	lightgbm L
驗證集分類正確率	0.984127	0.9661	0.9633
測試集分類正確率	0.964706	0.9196	0.9743

決策樹模型也有運用在多分類的問題中,但是沒有針對有使用Lasso的情況實驗。由於有些圖號有些分類有缺失值,因此我們把三個圖號的資料集合併作為一個資料集。下表的實驗為沒有使用Lasso的多元分類結果。

圖號 三個圖號合併為一個資料集	
------------------------	--

多分類模型	WeightedEnsemble
驗證集分類正確率	0.833333
測試集分類正確率	0.857143

2.卷積神經網路模型

針對二元分類的問題, 我們對A287570和A158200兩個圖號的Target圖進行實驗。同樣將資料分為8成的訓練資料集以及2成的測試資料集。以下為二元分類的實驗結果。

圖號	A287570	A158200
二分類模型	卷積神經網路	卷積神經網路
測試集分類正確率	0.8679	0.87

3.通用模型

我們對統計數值還有影像資料都有設置通用模型,增加泛化性。在圖號合併進行模型訓練的通用模型中,統計數值和影像資料是分開進行實驗。而在CNN+MLP模型中,統計數值和影像資料是合併一起實驗。

(一)圖號合併進行模型訓練

首先,我們設置統計數值的二元分類通用模型,此模型在三個圖號上的結果如下:

訓練圖號	三圖號資料合併後固定比例分割,分別用做訓練集及測試集			
測試圖號	A282570 A296960 A158200			
二分類模型	lightgbm L	lightgbm L	lightgbm L	
測試集分類正確率	0.9464	0.9520	0.93496	

再來,我們設置影像資料的多分類通用模型,此模型的實驗結果如下:

訓練圖號	三圖號資料合併後固定比例分割,	
	分別用做訓練集、驗證集及測試集	
多分類模型	卷積神經網路	
驗證集分類正確率	0.895833	
測試集分類正確率	0.870833333333333	

(二)CNN+MLP 模型

由於此模型還在嘗試階段, 二元分類只有試過A158200資料集。除此之外, 我們也有設置多元分類的CNN+MLP模型。同樣將資料分為8成的訓練資料集以及2成的測試資料集。以下是二元和多分類CNN+MLP模型的實驗結果:

圖號	A158200	三圖號資料合併後固定比例分
		割,分別用做訓練集及測試集
模型類別	二元分類	多分類
測試集分類正確率	0.9103	0.7867

由上述結果可以發現,多分類的實驗結果普遍比二元分類還低。

第四節 系統架構

於系統架構的方面,為了增加實驗的可信度,我們用以下的流程圖進行系統的運作:

現在已知的圖號有3種,分別為A282570、A296960、 A158200,若欲測試的圖號為已知的這三種,在第三章實驗 結果可以得知訓練出來的模型效果不錯,會選擇使用對應的 模型檢測。

若為新的圖號,則會先計算該圖對應三種圖號之間的馬氏距離以及餘弦距離,會使用各圖號的平均數或是中位數進行計算,若是小於門檻值,則使用距離最近的圖號模型進行檢測;若大於門檻值,則進入未知圖號數據量比較決定要使用哪個模型。

若未知圖號數據量足夠大會選擇去再訓練一個模型進行檢測 ;數據量相對小的時候,則會去選擇第三章有提到的通用模型 進行檢測。

第五節 未來展望

在系統架構中有提到的門檻值設定目前三種圖號設定都為相同,但往後會找到一個更有根據的門檻值來完善性統架構;在多分類檢測模型中,因為數據量不足等因素,尚未達到最好的表現,往後可能會使用分類數減少等方式完善多分類的檢測模型。

目前在分類的部分,有一大進展在於將統計數據模型融合使模型表現更佳,未來將會使用統計數據及影像辨識模型融合的方式來強化模型表現;最後就是可能會在系統架構上做微調,將計算圖號間距離時得到的非監督式訊號加入系統一起做考量。