Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe¹ and Kyle Cranmer¹

New York University

In this note, ... [GL: todo.]

I. INTRODUCTION

[GL: Prescribed vs. implicit. See case of non-diff models in Balaji et al.]

II. PROBLEM STATEMENT

We consider a family of parameterized densities $p_{\theta}(\mathbf{x})$ defined implicitly through the simulation of a stochastic generative process, where $\mathbf{x} \in \mathbb{R}^d$ is the data and θ are the parameters of interest. The simulation may involve some complicated latent process, such that

$$p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}$$
 (1)

where $\mathbf{z} \in \mathbb{R}^m$ is a latent variable providing an external source of randomness.

We assume that we already have an accurate simulation of the stochastic generative process that defines $p_{\theta}(\mathbf{x}|\mathbf{z})$, as specified through a deterministic function $g(\cdot;\theta):\mathbb{R}^m \to \mathbb{R}^d$. That is,

$$p_{\theta}(\mathbf{x}) = \frac{\partial}{\partial x_1} \dots \frac{\partial}{\partial x_d} \int_{\{\mathbf{z}: q(\mathbf{z}:\theta) \leq \mathbf{x}\}} p(\mathbf{z}) d\mathbf{z}. \tag{2}$$

The simulator g is assumed to be a non-invertible function, that can only be used to generate data in forward mode. For this reason, evaluating the integral in Eqn. 2 is intractable. Importantly, and as increasingly found in science, we consider the additional constraint that g is a non-differentiable model, e.g. when specified as a computer program.

Given some observed data $\{\mathbf{x}_i|i=1,\ldots,N\}$ drawn from the (unknown) true distribution p_r , our goal is the inference of the parameters of interest θ^* that minimize the divergence between p_r and the modeled data distribution p_{θ} induced by $g(\cdot;\theta)$ over \mathbf{z} . That is,

$$\theta^* = \arg\min_{\theta} \rho(p_r, p_\theta), \tag{3}$$

where ρ is some distance or divergence.

III. BACKGROUND

A. Generative adversarial networks

Generative adversarial networks (GANs) were first proposed by [4] as a way to build an implicit generative model capable of producing samples from random noise \mathbf{z} . More specifically, a generative model $g(\cdot;\theta)$ is pit against an adversarial classifier $d(\cdot;\phi):\mathbb{R}^d\to[0,1]$ whose antagonistic objective is to recognize real data \mathbf{x} from generated data $g(\mathbf{z};\theta)$. Both models g and d are trained simultaneously, in such a way that g learns to maximally confuse its adversary d (which happens when g produces samples comparable to the observed data), while d continuously adapts to changes in g. When d is trained to optimality before each parameter update of the generator, it can be shown that the original adversarial learning procedure amounts to minimizing the Jensen-Shannon divergence $\mathrm{JSD}(p_r \parallel p_\theta)$ between p_r and p_θ .

As thoroughly explored in [1], GANs remain remarkably difficult to train because of vanishing gradients as d saturates, or because of unreliable updates when the training procedure is relaxed. As a remedy, Wasserstein GANs [2] reformulate the adversarial setup in order to minimize the Wasserstein-1 distance $W(p_r, p_\theta)$ by replacing the adversarial classifier with a 1-Lipschitz adversarial critic $d(\cdot; \phi) : \mathbb{R}^d \to \mathbb{R}$. Under the WGAN-GP formulation of [5], training d and g results in alternating gradient updates on ϕ and θ in order to respectively minimize

$$\mathcal{L}_{d} = \mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\hat{\mathbf{x}}}} [d(\tilde{\mathbf{x}}; \phi)] - \mathbb{E}_{\mathbf{x} \sim p_{r}} [d(\mathbf{x}; \phi)] + \lambda \mathbb{E}_{\hat{\mathbf{x}} \sim p_{\hat{\mathbf{x}}}} [(||\nabla_{\hat{\mathbf{x}}} d(\hat{\mathbf{x}}; \phi)||_{2} - 1)^{2}]$$

$$\mathcal{L}_{q} = -\mathbb{E}_{\tilde{\mathbf{x}} \sim p_{\hat{\mathbf{x}}}} [d(\tilde{\mathbf{x}}; \phi)]$$
(5)

where $\hat{\mathbf{x}} := \epsilon \mathbf{x} + (1 - \epsilon)\tilde{\mathbf{x}}$, for $\epsilon \sim U[0, 1]$, $\mathbf{x} \sim p_r$ and $\tilde{\mathbf{x}} \sim p_{\theta}$.

B. Variational optimization

IV. ADVERSARIAL VARIATIONAL OPTIMIZATION

V. EXPERIMENTS

A. Toy problem

B. Physics example

VI. RELATED WORKS

[GL: Implicit generative models.] [GL: ABC.] [GL: carl [3].] [GL: Wood's papers.] [GL: CMA-ES.]

VII. SUMMARY

1505463 and PHY-1205376.

ACKNOWLEDGMENTS

GL and KL are both supported through NSF ACI-1450310, additionally KC is supported through PHY-

- [1] Arjovsky, M., and Bottou, L. Towards Principled Methods for Training Generative Adversarial Networks. *ArXiv e-prints* (Jan. 2017).
- [2] Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein GAN. *ArXiv e-prints* (Jan. 2017).
- [3] Cranmer, K., Pavez, J., and Louppe, G. Approximating likelihood ratios with calibrated discriminative classifiers. arXiv preprint arXiv:1506.02169 (2015).
- [4] GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-FARLEY, D., OZAIR, S., COURVILLE, A., AND BENGIO, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems (2014), pp. 2672– 2680.
- [5] GULRAJANI, I., AHMED, F., ARJOVSKY, M., DUMOULIN, V., AND COURVILLE, A. Improved Training of Wasserstein GANs. ArXiv e-prints (Mar. 2017).