УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Геометрија И-смер

део 6: Аналитичка геометрија равни и простора

Тијана Шукиловић

17. новембар 2023.

• Експлицитна једначина:

$$p: y = kx + n$$

Слика 1: Експлицитна једначина

• Експлицитна једначина:

$$p: y = kx + n$$

$$k = \tan \theta \qquad n = |OY|$$

Слика 1: Експлицитна једначина

• Експлицитна једначина:

$$p: y = kx + n$$

$$k = \tan \theta \qquad n = |OY|$$

Вертикалне праве?

Слика 1: Експлицитна једначина

• Имплицитна једначина:

$$p: ax + by + c = 0$$

Слика 2: Имплицитна једначина

• Имплицитна једначина:

$$p: (a)x + (b)y + (c) = 0$$

$$\overrightarrow{n_p} \qquad c = -\overrightarrow{OP} \circ \overrightarrow{n_p}$$

Слика 2: Имплицитна једначина

• Имплицитна једначина:

$$p: \overrightarrow{a}x + \overrightarrow{b}y + \overrightarrow{c} = 0$$

$$\overrightarrow{n_p} \qquad c = -\overrightarrow{OP} \circ \overrightarrow{n_p}$$

$$|\overrightarrow{n_p}| = \sqrt{a^2 + b^2} = 1$$

Нормализована једначина

Слика 2: Имплицитна једначина

Слика 2: Имплицитна једначина

• Нормална једначина:

$$p: x\cos\phi + y\sin\phi = \rho$$
$$\phi \in [0, 2\pi), \quad \rho \ge 0$$

Слика 3: Нормална једначина

• Параметарска једначина:

$$p: M(t) = P + t\overrightarrow{p}, \ t \in \mathbb{R}$$

Слика 4: Параметарска једначина

• Параметарска једначина:

$$p:\,M(t)=P+t$$
 $\overrightarrow{p},\,\,t\in\mathbb{F}$ брзина кретања

Слика 4: Параметарска једначина

• Параметарска једначина:

$$p:M(t)=P+t$$
 $\overrightarrow{p},\ t\in\mathbb{R}$ брзина кретања $x=x_0+tp_x,$ $y=y_0+tp_y,\ t\in\mathbb{R}$

Слика 4: Параметарска једначина

• Параметарска једначина:

$$p:\,M(t)=P+t$$
 $\overrightarrow{p},\,\,t\in\mathbb{R}$ брзина кретања

$$x = x_0 + tp_x,$$

$$y = y_0 + tp_y, \quad t \in \mathbb{R}$$

Слика 4: Параметарска једначина

Равномерно праволинијско кретање

Параметарски — имплицитни облик

• Параметарски облик:

$$x = x_0 + tp_x, \quad y = y_0 + tp_y, \quad t \in \mathbb{R}.$$

Параметарски — имплицитни облик

• Параметарски облик:

$$x = x_0 + tp_x, \quad y = y_0 + tp_y, \quad t \in \mathbb{R}.$$

• Канонски облик:

$$t = \frac{x - x_0}{p_x} = \frac{y - y_0}{p_y}.$$

Параметарски — имплицитни облик

• Параметарски облик:

$$x = x_0 + tp_x$$
, $y = y_0 + tp_y$, $t \in \mathbb{R}$.

• Канонски облик:

$$t = \frac{x - x_0}{p_x} = \frac{y - y_0}{p_y}.$$

• Имплицитни облик:

$$p_y x - p_x y + (p_x y_0 - p_y x_0) = 0.$$

Имплицитни — параметарски облик

• Имплицитни облик:

$$ax + by + c = 0.$$

Имплицитни — параметарски облик

• Имплицитни облик:

$$ax + by + c = 0.$$

• Параметарски облик:

$$\vec{p} = (-b, a), \quad P\left(\frac{-ac}{a^2 + b^2}, \frac{-bc}{a^2 + b^2}\right).$$

Пример 2

Одредити имплицитну једначину праве које садржи тачку M(1,2) и паралелна је са y-осом.

Пример 3

Одредити параметарску једначуну праве која садржи тачку P(-2,3) и нормална је на праву q:2x+3y-1=0.

Равномерно и убрзано праволинијско кретање

Слика 5: Брзина и убрзање

$$C(t) = S + t^2 \vec{a}, \quad t \in \mathbb{R}$$
 – полуправа [SC)

Параметризација паралелограма

Слика 6: Параметарска једначина паралелограма

$$X(t_1, t_2) = A + t_1 \overrightarrow{AB} + t_2 \overrightarrow{AD}, \ 0 \le t_1, t_2 \le 1.$$

Параметризација троугла

Слика 7: Параметарска једначина троугла

$$X(t_1, t_2) = A + t_1 \overrightarrow{AB} + t_2 \overrightarrow{AC}, \ 0 \le t_1, t_2 \le 1, \ t_1 + t_2 \le 1.$$

• C, D су са исте стране праве p ако: $[CD] \cap p = {\emptyset}$.

- C, D су са исте стране праве p ако: $[CD] \cap p = {\emptyset}$.
- ullet Полураван = скуп свих тачака са исте стране праве p.

- C, D cy са исте стране праве p ако: $[CD] \cap p = {\emptyset}$.
- Полураван = скуп свих тачака са исте стране праве p.
- p: f(x,y) = ax + by + c = 0:

$$C, D \stackrel{\cdot \cdot}{-} p \iff \operatorname{sign}(f(C)) = \operatorname{sign}(f(D)).$$

- C, D су са исте стране праве p ако: $[CD] \cap p = {\emptyset}$.
- Полураван = скуп свих тачака са исте стране праве p.
- p: f(x,y) = ax + by + c = 0:

$$C, D \stackrel{\cdot \cdot}{-} p \iff \operatorname{sign}(f(C)) = \operatorname{sign}(f(D)).$$

• $p: A, B \in p$:

$$C, D \xrightarrow{\cdot \cdot} p \iff \operatorname{sign}(D_{ABC}) = \operatorname{sign}(D_{ABD}).$$

- C, D су са исте стране праве p ако: $[CD] \cap p = \{\emptyset\}$.
- ullet Полураван = скуп свих тачака са исте стране праве p.
- p: f(x,y) = ax + by + c = 0:

$$C, D \stackrel{\cdot \cdot}{-} p \iff \operatorname{sign}(f(C)) = \operatorname{sign}(f(D)).$$

• $p: A, B \in p$:

$$C, D \stackrel{\cdot \cdot}{-} p \iff \operatorname{sign}(D_{ABC}) = \operatorname{sign}(D_{ABD}).$$

• $p: P, \vec{p}, A \equiv P, B = A + \vec{p}.$

Имплицитна једначина равни

Раван α је одређена тачком $A(x_0,y_0,z_0)$ која јој припада и нормалним вектором равни $\overrightarrow{n_{\alpha}}$.

Имплицитна једначина равни

Раван α је одређена тачком $A(x_0, y_0, z_0)$ која јој припада и нормалним вектором равни $\overrightarrow{n_{\alpha}}$.

$$M(x, y, z) \in \alpha \Longrightarrow \overrightarrow{AM} \perp \overrightarrow{n_{\alpha}}$$

$$0 = \overrightarrow{n_{\alpha}} \circ \overrightarrow{AM}$$

$$= (a, b, c) \circ (x - x_0, y - y_0, z - z_0)$$

$$= a(x - x_0) + b(y - y_0) + c(z - z_0)$$

$$= ax + by + cz - ax_0 - by_0 - cz_0$$

Слика 8: Имплицитна једначина равни

Нормализована једначина равни

Имлицитна једначина равни:

$$ax + by + cz + d = 0$$
, $\overrightarrow{n_{\alpha}} = (a, b, c)$

Нормализована једначина равни

Имлицитна једначина равни:

$$ax + by + cz + d = 0$$
, $\overrightarrow{n_{\alpha}} = (a, b, c)$

Нормализована једначина равни:

$$ax + by + cz + d = 0$$
, $|\overrightarrow{n_{\alpha}}|^2 = a^2 + b^2 + c^2 = 1$

Слика 9: Раван z=0

Слика 9: Раван z - 4 = 0

Слика 9: Раван x=0

Слика 9: Раван y = 0

Пример – скицирати раван

Слика 10: Раван x + 2y + 3z - 6 = 0

Пример – скицирати раван

Слика 10: Раван x + 2y - 5 = 0

Полуростор

Полупростор је скуп свих тачака са исте стране неке равни $\alpha : ax + by + cz + d = 0$.

Одређен је неједначином ax + by + cz + d > 0, односно ax + by + cz + d < 0.

Полуростор

Полупростор је скуп свих тачака са исте стране неке равни $\alpha : ax + by + cz + d = 0$.

Одређен је неједначином ax + by + cz + d > 0, односно ax + by + cz + d < 0.

Пример 4

Да ли се тачке A(1,1,1) и C(-1,-1,3) налазе са исте стране равни $\beta: x-3y+4z-12=0.$

Параметарска једначина равни

Раван α је одређена тачком $A(x_0,y_0,z_0)$ која јој припада и два вектора $\overrightarrow{v},$ \overrightarrow{u} паралелна $\alpha.$

Параметарска једначина равни

Раван α је одређена тачком $A(x_0,y_0,z_0)$ која јој припада и два вектора \overrightarrow{v} , \overrightarrow{u} паралелна α .

$$M(t,s) = M = A + t\vec{v} + s\vec{w}, \quad t,s \in \mathbb{R}$$

Слика 11: Параметарска једначина равни

Параметарска једначина равни

Раван α је одређена тачком $A(x_0,y_0,z_0)$ која јој припада и два вектора \overrightarrow{v} , \overrightarrow{u} паралелна α .

$$M(t,s) = M = A + t\vec{v} + s\vec{w}, \quad t,s \in \mathbb{R}$$

Параметарска једначина равни:

$$x = x_0 + tv_x + sw_x,$$

$$y = y_0 + tv_y + sw_y,$$

$$z = z_0 + tv_z + sw_z, \quad t, s \in \mathbb{R}$$

Слика 11: Параметарска једначина равни

Прелазак из једног облика равни у други

Параметарски \longrightarrow имплицитни:

$$\overrightarrow{n_{\alpha}} = \overrightarrow{v} \times \overrightarrow{w} = (a, b, c)$$

 $d = -ax_0 - by_0 - cz_0 = -\overrightarrow{n_{\alpha}} \circ \overrightarrow{OA}$

Прелазак из једног облика равни у други

Параметарски \longrightarrow имплицитни:

$$\overrightarrow{n_{\alpha}} = \overrightarrow{v} \times \overrightarrow{w} = (a, b, c)$$

$$d = -ax_0 - by_0 - cz_0 = -\overrightarrow{n_{\alpha}} \circ \overrightarrow{OA}$$

Имплицитни \longrightarrow параметарски:

$$\overrightarrow{v}\perp\overrightarrow{n_{lpha}}$$
 – произвољан $\overrightarrow{w}=\overrightarrow{n_{lpha}} imes\overrightarrow{v}$ $a
eq0:A\left(-rac{d}{a},0,0
ight)$

Параметарска једначина праве

Права у простору се задаје тачком $P(x_0, y_0, z_0)$ и ненула вектором правца $\vec{p}(p_x, p_y, p_z)$:

$$M(t)=M=P+t\,\overrightarrow{p},\quad t\in\mathbb{R}.$$

Параметарска једначина праве

Права у простору се задаје тачком $P(x_0, y_0, z_0)$ и ненула вектором правца $\overrightarrow{p}(p_x, p_y, p_z)$:

$$M(t) = M = P + t \vec{p}, \quad t \in \mathbb{R}.$$

Параметарска једначина праве:

$$x = x_0 + tp_x,$$

$$y = y_0 + tp_y,$$

$$z = z_0 + tp_z, \quad t \in \mathbb{R}.$$

Параметарска једначина праве

Права у простору се задаје тачком $P(x_0, y_0, z_0)$ и ненула вектором правца $\overrightarrow{p}(p_x, p_y, p_z)$:

$$M(t) = M = P + t \overrightarrow{p}, \quad t \in \mathbb{R}.$$

Параметарска једначина праве:

$$x = x_0 + tp_x,$$

$$y = y_0 + tp_y,$$

$$z = z_0 + tp_z, \quad t \in \mathbb{R}.$$

Канонска једначина праве:

$$\frac{x - x_0}{p_x} = \frac{y - y_0}{p_y} = \frac{z - z_0}{p_z}.$$

Права као пресек две равни

$$\alpha: a_1x + b_1y + c_1z + d_1 = 0
\beta: a_2x + b_2y + c_2z + d_2 = 0$$

$$\implies \overrightarrow{p} = \overrightarrow{n_\alpha} \times \overrightarrow{n_\beta}$$

Слика 12: Права као пресек две равни

Примери

Пример 5

Праву p: x-z=0, 2x-y+1=0 записати параметарски.

Пример 6

Праву $p: x=t+4, y=-t+1, z=3t, t\in \mathbb{R}$ записати као пресек две равни.

Пример 7

Одредити једначину праве која садржи тачке A(1,2,3) и B(3,2,1).

Прамен равни

Теорема 2.1

Скуп свих равни које садрже праву $p=\alpha\cap\beta$ је дат једначином:

$$\gamma: \lambda_1(a_1x+b_1y+c_1z+d_1)+\lambda_2(a_2x+b_2y+c_2z+d_2)=0,$$
 за $\lambda_1,\lambda_2\in\mathbb{R}.$

Прамен равни

Теорема 2.1

Скуп свих равни које садрже праву $p=\alpha\cap\beta$ је дат једначином:

$$\gamma: \lambda_1(a_1x + b_1y + c_1z + d_1) + \lambda_2(a_2x + b_2y + c_2z + d_2) = 0,$$
 за $\lambda_1, \lambda_2 \in \mathbb{R}$.

Пример 8

Одредити једначину равни која садржи тачку M(1,4,-2) и праву p: x-y-1=0, z-2x=0.

Пресек имплицитно задатих правих

• Решити систем:

$$p: a_1x + b_1y + c_1 = 0$$
$$q: a_2x + b_2y + c_2 = 0.$$

• Крамерово правило:

$$\Delta = \left(\begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \end{array}\right), \ \Delta_x = \left(\begin{array}{cc} c_1 & b_1 \\ c_2 & b_2 \end{array}\right), \ \Delta_y = \left(\begin{array}{cc} a_1 & c_1 \\ a_2 & c_2 \end{array}\right).$$

•
$$\Delta \neq 0$$
 – праве се секу у $x = \frac{\Delta_x}{\Delta}$, $y = \frac{\Delta_y}{\Delta}$;

•
$$\Delta = \Delta_x = \Delta_y = 0$$
 – праве се поклапају;

•
$$\Delta = 0$$
, $\Delta_x \neq 0$ или $\Delta_y \neq 0$ – праве су паралелне.

$$P+t\overrightarrow{p}=M=N=Q+s\overrightarrow{q}$$

• $D(\vec{p}, \vec{q}) \neq 0$ – праве се секу

$$t = \frac{D(\overrightarrow{PQ}, \overrightarrow{q})}{D(\overrightarrow{p}, \overrightarrow{q})}, \ s = \frac{D(\overrightarrow{PQ}, \overrightarrow{p})}{D(\overrightarrow{p}, \overrightarrow{q})}$$

• $D(\vec{p}, \vec{q}) \neq 0$ – праве се секу

$$t = \frac{D(\overrightarrow{PQ}, \overrightarrow{q})}{D(\overrightarrow{p}, \overrightarrow{q})}, \ s = \frac{D(\overrightarrow{PQ}, \overrightarrow{p})}{D(\overrightarrow{p}, \overrightarrow{q})}$$

• $D(\vec{p}, \vec{q}) = 0$, $D(\overrightarrow{PQ}, \vec{q}) = 0$ – праве се поклапају

• $D(\vec{p}, \vec{q}) \neq 0$ – праве се секу

$$t = \frac{D(\overrightarrow{PQ}, \overrightarrow{q})}{D(\overrightarrow{p}, \overrightarrow{q})}, \ s = \frac{D(\overrightarrow{PQ}, \overrightarrow{p})}{D(\overrightarrow{p}, \overrightarrow{q})}$$

- $D(\overrightarrow{p}, \overrightarrow{q}) = 0$, $D(\overrightarrow{PQ}, \overrightarrow{q}) = 0$ праве се поклапају
- $D(\vec{p}, \vec{q}) = 0$, $D(\overrightarrow{PQ}, \vec{q}) \neq 0$ праве су паралелне

• $D(\overrightarrow{p}, \overrightarrow{q}) \neq 0$ – праве се секу

$$t = \frac{D(\overrightarrow{PQ}, \overrightarrow{q})}{D(\overrightarrow{p}, \overrightarrow{q})}, \ s = \frac{D(\overrightarrow{PQ}, \overrightarrow{p})}{D(\overrightarrow{p}, \overrightarrow{q})}$$

- $D(\overrightarrow{p}, \overrightarrow{q}) = 0$, $D(\overrightarrow{PQ}, \overrightarrow{q}) = 0$ праве се поклапају
- $D(\overrightarrow{p},\overrightarrow{q})=0,\,D(\overrightarrow{PQ},\overrightarrow{q})\neq 0$ праве су паралелне

Пример 9

Одредити пресек правих p и q које су задате тачком и вектором правца:

- (a) P(3,1), $\vec{p} = (1,0)$, Q(2,3), $\vec{q} = (1,1)$;
- (6) P(3,1), $\vec{p} = (1,0)$, Q(2,3), $\vec{q} = (-2,0)$;
- (B) P(3,1), $\vec{p} = (1,-2)$, Q(2,3), $\vec{q} = (-2,4)$.

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

• Дужи се секу ако је $D(\overrightarrow{AB}, \overrightarrow{CD}) \neq 0$ и

$$0 \le t = \frac{D(\overrightarrow{AC}, \overrightarrow{CD})}{D(\overrightarrow{AB}, \overrightarrow{CD})}, \ s = \frac{D(\overrightarrow{AC}, \overrightarrow{AB})}{D(\overrightarrow{AB}, \overrightarrow{CD})} \le 1$$

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

• Дужи се секу ако је $D(\overrightarrow{AB}, \overrightarrow{CD}) \neq 0$ и

$$0 \le t = \frac{D(\overrightarrow{AC}, \overrightarrow{CD})}{D(\overrightarrow{AB}, \overrightarrow{CD})}, \ s = \frac{D(\overrightarrow{AC}, \overrightarrow{AB})}{D(\overrightarrow{AB}, \overrightarrow{CD})} \le 1$$

Слика 14: Пресек дужи

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

• Ако је
$$D(\overrightarrow{AB},\overrightarrow{CD})=0$$
 и $D(\overrightarrow{AC},\overrightarrow{CD})=0$:

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

• Ако је $D(\overrightarrow{AB}, \overrightarrow{CD}) = 0$ и $D(\overrightarrow{AC}, \overrightarrow{CD}) = 0$:

дужи се поклапају

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

• Ако је $D(\overrightarrow{AB},\overrightarrow{CD})=0$ и $D(\overrightarrow{AC},\overrightarrow{CD})=0$:

дужи се поклапају дужи се делимично преклапају \Longrightarrow потребна додатна анализа!

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

• Ако је $D(\overrightarrow{AB},\overrightarrow{CD})=0$ и $D(\overrightarrow{AC},\overrightarrow{CD})=0$:

дужи се поклапају дужи се делимично преклапају дужи се не секу \Longrightarrow потребна додатна анализа!

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

• Дужи се не секу у свим осталим случајевима.

$$[AB]: A + t\overrightarrow{AB}, \qquad [CD]: C + s\overrightarrow{CD}, \ t, s \in [0, 1]$$

• Дужи се не секу у свим осталим случајевима.

Слика 15: Дужи се не секу

Слика 16: Праве које се поклапају

Слика 16: Паралелне праве

неколинеарни

Међусобни положаји две праве

Слика 16: Мимоилазне праве

Пример 10

Одредити међусобни положај правих:

(a)
$$p: \frac{x-2}{1} = \frac{y-19}{5} = \frac{z-2}{1}, \quad q: \frac{x-1}{2} = \frac{y}{3} = \frac{z+2}{4};$$

(6)
$$p: \frac{x-2}{1} = \frac{y-2}{0} = \frac{z-2}{-1}, \quad q: 2x = y, 3x = z;$$

(B)
$$p: \frac{x-2}{1} = \frac{y-2}{0} = \frac{z-2}{-1}, \quad q: \frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1};$$

(r)
$$p: \frac{x-2}{1} = \frac{y-2}{0} = \frac{z-2}{-1}, \quad q: \frac{x+1}{-2} = \frac{y-2}{0} = \frac{z+7}{2}.$$

Мимоилазне праве

Теорема 3.1

Мимоилазне праве p и q имају јединствену заједничку нормалу, тј. праву која сече обе праве и нормална је на њих.

Слика 17: Мимоилазне праве

Примери

Пример 11

Дијагонале наспрамних пљосни коцке су мимоилазне праве, а њихова заједничка нормала је одређена средиштима тих дијагонала.

Примери

Пример 12

Шта је заједничка нормала мимоилазних ивица PQ и RS правилног тетраедра PQRS?

Међусобни положаји праве и равни

Права p и раван α могу да:

- се секу;
- буду паралелне;
- права припада равни.

Међусобни положаји праве и равни

Права p и раван α могу да:

- се секу;
- буду паралелне;
- права припада равни.

Пример 13

Одредити међусобни положај праве $p: \frac{x+4}{0} = \frac{y}{-1} = \frac{z-1}{1}$ и равни $\alpha: x-2y+5z-1=0.$

Паралелно пројектовање

- $f: \mathbb{E}^3 \longrightarrow \mathbb{E}^2$
 - паралелно пројектовање (специјално: ортогонална пројекција)

Слика 20: Паралелно пројектовање

Ортогонална пројекција на координатне равни

Слика 21: Ортогонална пројекција

Пример 14

Одредити ортогоналну пројекцију квадрата ABCD, A(1,2,-1), B(-1,0,2), D(3,1,1), на xy-раван.

Ортогонална пројекција на произвољну раван

Слика 22: Ортогонална пројекција

$$X' = (E - pp^T)X, \quad p = [\overrightarrow{p}], \overrightarrow{p}$$
 – јединични

Централно пројектовање

- $f: \mathbb{E}^3 \longrightarrow \mathbb{E}^2$
 - централно пројектовање

Слика 23: Централно пројектовање

 Шта све може бити ортогонална пројекција сфере на раван?

- Шта све може бити ортогонална пројекција сфере на раван?
- Шта све може бити централна пројекција сфере на раван?

- Шта све може бити ортогонална пројекција сфере на раван?
- Шта све може бити централна пројекција сфере на раван?
- Картографске пројекције:

- Шта све може бити ортогонална пројекција сфере на раван?
- Шта све може бити централна пројекција сфере на раван?
- Картографске пројекције:
 - конформне (чувају углове)
 - еквивалентне (чувају однос површина)
 - еквидистантне (чувају растојања)

Конформне пројекције

Слика: Стереографска пројекција

Стереографска пројекција

Слика 25: Стереографска пројекција са северног пола на раван z=-1

Особине стереографске пројекције

- Шта је слика круга који припада сфери, а садржи северни пол?
- У шта се сликају паралеле?
- Шта је слика меридијана?
- Да ли се чувају углови?
- Да ли се чува однос површина?
- Да ли се чувају растојања дуж меридијана? А дуж паралела?

Растојање тачке од праве

Теорема 4.1 (важи и у простору)

$$d(M,p) = d = \frac{|\overrightarrow{p} \times \overrightarrow{PM}|}{|\overrightarrow{p}|}.$$

Слика 26: Растојање тачке од праве

Растојање тачке од праве

Теорема 4.1 (важи и у простору)

$$d(M,p) = d = \frac{|\overrightarrow{p} \times \overrightarrow{PM}|}{|\overrightarrow{p}|}.$$

Слика 26: Растојање тачке од праве

Пример 15

Одредити растојање тачке M(1,1) од праве $p: P(-2,0), \vec{p} = (3,4).$

Растојање тачке од праве

Теорема 4.2 (важи и у простору)

$$d(M,p) = d = \frac{|\overrightarrow{p} \times \overrightarrow{PM}|}{|\overrightarrow{p}|}.$$

Слика 27: Растојање тачке од праве

Теорема 4.2 (важи и у простору)

$$d(M,p) = d = \frac{|\overrightarrow{p} \times \overrightarrow{PM}|}{|\overrightarrow{p}|}.$$

Слика 27: Растојање тачке од праве

Пример 16

Одредити растојање тачке M(1,0,-1) од праве

$$p: \frac{x}{1} = \frac{y+1}{1} = \frac{z}{2}$$

Растојање тачке од праве у равни

Теорема 4.3

$$d(M,p) = d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

$$d = vt = |\overrightarrow{n_p}||t|$$

$$d$$

$$(x_0 + ta, y_0 + tb)$$

$$d$$

$$\overrightarrow{n_p}(a, b)$$

Слика 28: Растојање тачке од праве

Растојање тачке од праве у равни

Теорема 4.3

$$d(M,p) = d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

$$d = vt = |\overrightarrow{n_p}||t|$$

$$d$$

$$(x_0 + ta, y_0 + tb)$$

$$\overrightarrow{n_p}(a, b)$$

$$p$$

Слика 28: Растојање тачке од праве

Пример 17

Одредити растојање тачке M(1,1) од праве p: 3x + 4y - 5 = 0.

Растојање тачке од равни

Теорема 4.4

Растојање тачке $M(x_0,y_0,z_0)$ од равни $\alpha: ax+by+cz+d=0$ дато је формулом:

$$d = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Растојање тачке од равни

Теорема 4.4

Растојање тачке $M(x_0, y_0, z_0)$ од равни $\alpha: ax + by + cz + d = 0$ дато је формулом:

$$d = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Пример 18

Одредити растојање тачке M(1,0,-1) од равни $\alpha: x+y-4z=0.$

Растојање између мимоилазних правих

Теорема 4.5

Растојање између мимоилазних правих p и q дато је формулом:

$$d = \frac{|[\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{PQ}]|}{|\overrightarrow{p} \times \overrightarrow{q}|}.$$

Теорема 4.5

Растојање између мимоилазних правих p и q дато је формулом:

$$d = \frac{|[\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{PQ}]|}{|\overrightarrow{p} \times \overrightarrow{q}|}.$$

Пример 19

Одредити растојање између мимоилазних правих

$$\begin{split} p: &\frac{x-6}{3} = \frac{y-5}{4} = \frac{z}{0}, \\ q: &\frac{x+1}{4} = \frac{y-4}{-3} = \frac{z-15}{-5}. \end{split}$$

Углови између правих и равни

• Угао између правих p и q је оштар угао између њихових нормалних вектора.

$$\angle(p,q) = \mathrm{omtap} \angle(\overrightarrow{p},\overrightarrow{q}) = \arccos\frac{|\overrightarrow{p} \circ \overrightarrow{q}|}{|\overrightarrow{p}| \cdot |\overrightarrow{q}|}$$

Слика 29: Угао између две праве

Углови између правих и равни

• Угао између равни α и β је оштар угао између правих a и b.

$$\angle(\alpha, \beta) = \arccos \frac{|\overrightarrow{n_{\alpha}} \circ \overrightarrow{n_{\beta}}|}{|\overrightarrow{n_{\alpha}}| \cdot |\overrightarrow{n_{\beta}}|}$$

Слика 30: Угао између две равни

Углови између правих и равни

• Угао између праве p и равни α је угао између праве p и њене нормалне пројекције p' на раван α .

Слика 31: Угао између праве и равни

Продор праве кроз троугао

Слика 32: Продор праве кроз троугао

$$\mathrm{sign}[\overrightarrow{PA},\overrightarrow{PB},\overrightarrow{p}]=\mathrm{sign}[\overrightarrow{PB},\overrightarrow{PC},\overrightarrow{p}]=\mathrm{sign}[\overrightarrow{PC},\overrightarrow{PA},\overrightarrow{p}]$$

Продор праве кроз троугао

$$\begin{split} M &= P + t \, \overrightarrow{p}, \\ t &= \frac{[\overrightarrow{PA}, \overrightarrow{PB}, \overrightarrow{PC}]}{[\overrightarrow{PA}, \overrightarrow{PB}, \overrightarrow{p}] + [\overrightarrow{PB}, \overrightarrow{PC}, \overrightarrow{p}] + [\overrightarrow{PC}, \overrightarrow{PA}, \overrightarrow{p}]} \end{split}$$

Продор праве кроз троугао

Пример 20

Да ли права $p: \frac{x-1}{-1} = \frac{y}{3} = \frac{z+1}{2}$ сече троугао ABC, A(2,4,6), B(-4,2,0), C(6,4,-2)?

Пресек троугла и равни

