▶ Die Polynome $p_1(t) = 1$, $p_2(t) = 1 + t$, $p_3(t) = 1 - t^2$ sind linear unabhängig, denn aus $x_1p_1(t) + x_2p_2(t) + x_3p_3(t) \equiv 0$ folgt $x_1 = x_2 = x_3 = 0$.

▶ Die Polynome $p_1(t) = 1$, $p_2(t) = 1 + t$, $p_3(t) = 1 - t$ sind linear abhängig, denn $2p_1(t) - p_2(t) - p_3(t) \equiv 0$.

Definition

Sei v_1, \ldots, v_n ein Erzeugendensystem eines Vektorraums V. Falls die Vektoren v_1, \ldots, v_n linear unabhängig sind, heisst die Menge $\{v_1, \ldots, v_n\}$ eine **Basis** von V.

Lemma

Sei V ein VR. v_1, \ldots, v_k seien linear unabhängige Vektoren in V und w_1, \ldots, w_n sei ein Erzeugendensystem von V. Dann gilt $k \leq n$.

Daraus folgt sofort:

Satz

Sind $\{v_1, \ldots, v_k\}$ und $\{w_1, \ldots, w_n\}$ Basen eines VR V, so gilt k = n.

- ▶ Sei $V \neq \{0\}$ ein VR mit Basis $\{v_1, \dots, v_n\}$. Dann heisst n **Dimension** von V und wird mit dim V bezeichnet.
- Man setzt $dim\{0\} := 0$.
- Ist V unendlichdimensional so schreibt man $\dim V = \infty$.

Beispiel

- ▶ $\{e^{(i)}: 1 \le i \le n\}$ ist eine Basis von \mathbb{R}^n und somit $\dim \mathbb{R}^n = n$. Diese Basis heisst **Standardbasis** von \mathbb{R}^n .
- $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ ist eine Basis der symmetrischen } 2 \times 2\text{-Matrizen}.$

Satz

Sei V ein n-dimensionaler VR. Dann gilt:

- ▶ Mehr als n Vektoren in V sind linear abhängig.
- ▶ Weniger als *n* Vektoren in *V* sind nicht erzeugend.
- n Vektoren in V sind linear unabhängig genau dann, wenn sie erzeugend sind, und genau dann bilden sie eine Basis von V.

Beispiel: $V = \mathbb{R}^n$.

Seien $a_1, \ldots, a_k \in \mathbb{R}^n$, $A = (a_1 \ldots a_k) \in \mathbb{R}^{n \times k}$, r = Rang A. Dann gilt folgende Übersicht:

a_1, \ldots, a_k ist erzeugend	$Ax = b$ ist für jedes $b \in \mathbb{R}^n$ lösbar	r = n
a_1, \ldots, a_k ist linear unabhängig	Ax = 0 hat nur die triviale Lösung	r = k
a_1, \ldots, a_k ist linear abhängig	Ax = 0 hat nichttriviale Lösungen	r < k
a_1, \ldots, a_k ist eine Basis	n = k = r	$\det A \neq 0$

Repetition

Lineare Algebra

Lineare Unabhängigkeit

Basen

Beispiel für $V = \mathbb{R}^n$

Seien $a_1, \ldots, a_k \in \mathbb{R}^n$. Man wähle darunter eine maximale Anzahl linear unabhängige Vektoren aus.

Lösung: Die Matrix $A=(a_1\dots a_k)\in\mathbb{R}^{n\times k}$ wird durch das Gauss-Verfahren auf Zeilenstufenform gebracht. Am Endschema $R=(r_1\dots r_k)$ wird der Rang ρ abgelesen und die Pivotspalten r_{i_1},\dots,r_{i_ρ} . Dann sind a_{i_1},\dots,a_{i_ρ} linear unabhängig und mehr als ρ Vektoren sind linear abhängig.

Merksatz

Rang A ist die maximale Anzahl linear unabhängiger Spalten von A und auch die maximale Anzahl linear unabhängiger Zeilen von A.

Repetition

Lineare Algebra

Lineare Unabhängigkeit

Basen

Koordinaten

Definition

Sei V ein reller endlichdimensionaler VR mit Basis $\mathcal{B}=\{b_1,\ldots,b_n\}$. Dann kann jeder Vektor $x\in V$ in eindeutiger Weise als Linearkombination

$$x = \sum_{i=1}^{n} x_i b_i$$

dargestellt werden. Die Koeffizienten x_1, \ldots, x_n heissen Koordinaten von x bezüglich der Basis \mathcal{B} .

Repetition

Lineare Algebra

Unabhängigkei

Dasell

 $\mathcal{B} = \{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 9 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix} \}$ ist eine Basis von \mathbb{R}^3 . Man bestimme die Koordinaten des Vektors $x = \begin{pmatrix} 5 \\ -1 \\ 9 \end{pmatrix}$ bezüglich \mathcal{B} .

Lösung: Das LGS

$$\begin{pmatrix} 5 \\ -1 \\ 9 \end{pmatrix} = \mathbf{x_1} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \mathbf{x_2} \begin{pmatrix} 2 \\ 9 \\ 0 \end{pmatrix} + \mathbf{x_3} \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}$$

hat die eindeutige Lösung $x_1 = 1$, $x_2 = -1$, $x_3 = 2$.

$$\mathsf{Man} \ \mathsf{nennt} \ \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \ \mathsf{den} \ \mathbf{Koordinatenvektor} \ \mathsf{von} \ x \ \mathsf{bez\"{u}glich}$$

der Basis \mathcal{B} . $\begin{pmatrix} 5 \\ -1 \\ 0 \end{pmatrix}$ ist also der Koordinatenvektor von xbezüglich der Standardbasis $\{e^{(1)}, e^{(2)}, e^{(3)}\}.$

Lineare Algebra

Merke:

Die Koordinaten eines Vektors hängen von der gewählten Basis ab.

Repetition

Lineare Algebra

Lineare Unabhängigkeit

Basen