

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

Сетевые операционные системы

Студент: Сапожков Андрей Максимович ИУ7-53Б

Научный руководитель: Строганов Юрий Владимирович

Цель и задачи

Цель — классификация существующих операционных систем для устройств интернета вещей.

Задачи:

- 1) проанализировать предметную область интернета вещей;
- 2) рассмотреть существующие операционные системы для интернета вещей;
- 3) сформулировать критерии сравнения и оценки рассмотренных операционных систем;
- 4) сравнить существующие решения по выделенным критериям.

Интернет вещей

Интернет вещей¹ — это концепция, описывающая сеть физических объектов, оснащённых технологиями для подключения и обмена данными с другими устройствами через интернет. **Интернет вещей**² — это система взаимосвязанных вычислительных устройств, которые могут собирать и передавать данные по беспроводной сети без участия человека.

- 1. https://www.kaspersky.ru/resource-center/definitions/what-is-iot
- 2. https://www.oracle.com/internet-of-things/what-is-iot/

Приложения интернета вещей

- 1. Интернет вещей в быту;
- 2. Промышленный интернет вещей (ПоТ):
 - Умные города;
 - Производства;
 - Транспорт и логистика;
 - Розничная торговля;
 - Государственный сектор;
 - Здравоохранение;
 - Общая безопасность во всех отраслях.

Архитектура интернета вещей

- 7. Взаимодействие и процессы.
- 6. Приложения.
- 5. Абстракция данных.
- 4. Накопление данных.
- 3. Граничные вычисления.
- 2. Соединение.
- 1. Физические устройства и контроллеры.

ОС реального времени

OC	Тип ядра	Тип	POSIX	Многозадачность	Кроссплатформенность	Применение
		лицензии				
Azure	Наноядро	Microsoft	Отсутствует	Вытесняющая	+	IIoT
RTOS		Software				
		License				
Azure	Монолитное	GPL-2.0	Частичная	Вытесняющая	+	IIoT
Sphere		license				
Amazon	Микроядро	MIT	Полная	Вытесняющая	+	IIoT
FreeRTOS						
Zephyr	Наноядро	Apache	Частичная	Вытесняющая и	+	IIoT
	•	Licence 2.0		кооперативная		
OCPB	Монолитное	BSD-3-Clause	Частичная	Вытесняющая и	+	IIoT
MAKC		license		кооперативная		
Huawei	Микроядро	BSD-3-Clause	Полная	Вытесняющая	-	IIoT
LiteOS		license				

ОС разделения времени

ОС	Тип ядра	Тип	POSIX	Многозадачность	Кроссплатформенность	Применение
		лицензии				
Windows 10 IoT	Гибридное	Microsoft Software License	Отсутствует	Вытесняющая	+	IIoT
Contiki- NG	Монолитное	BSD-3-Clause license	Частичная	Кооперативная	+	IIoT
Mbed OS	Монолитное	Apache Licence 2.0	Полная	Кооперативная	-	ПоТ
Kaspersky OS	Микроядро	Проприетарн ая	Частичная	Не декларировано	+	ПоТ
TinyOS	Монолитное	BSD	Полная	Кооперативная	+	HIoT
Ubuntu Core	Монолитное	CC-BY-SA version 3.0 UK licence	Полная	Вытесняющая	+	HIoT
Raspbian	Монолитное	GNU GPL	Полная	Вытесняющая	-	HIoT

Рекомендации по применению

В результате сравнения были выделены:

• наиболее функциональные и масштабируемые:

Azure Sphere, Windows 10 IoT u Amazon FreeRTOS;

- наиболее доступные с точки зрения использования прикладных служб: **OCPB MAKC** и **KasperskyOS**;
- наиболее адаптированные для бытового применения: Ubuntu Core и Raspbian.

Заключение

В рамках научно-исследовательской работы была проведена классификация существующих операционных систем для интернета вещей. Для достижения этой цели были решены следующие задачи:

- 1) проанализирована предметная область интернета вещей;
- 2) рассмотрены существующие операционные системы для интернета вещей;
- 3) сформулированы критерии сравнения и оценки рассмотренных операционных систем;
- 4) проведено сравнение существующих решений по выделенным критериям.