IOI Training Camp 2011 – Final 2, 22 June, 2011

Problem 2 Boxes and Coins [RunC]

Two friends, Ehrenfeucht and Fraïssé, decide to play a game one afternoon, since their internet connection is dead.

They have two rows of boxes, one with N_0 boxes and one with N_1 boxes. In row i, $i \in \{0,1\}$, the boxes are arranged in a line, numbered 0 to $N_i - 1$ from left to right. In addition, each of Ehrenfeucht and Fraïssé has a set of K coins, numbered 0 to K - 1. Ehrenfeucht's ith coin is indistinguishable from Fraïssé's ith coin.

The game is played in K successive rounds, numbered 0 to K-1, as follows:

- In the *i*th round, Ehrenfeucht chooses one of the two rows of boxes, and places his *i*th coin in some box in the chosen row.
- Fraïssé responds by placing his *i*th coin in some box in the *other* row.

There are no further restrictions on which boxes are chosen; in particular it is legal to place a coin in a box that already has coins.

Note that at the end of the game, after K rounds have been played, each row contains K coins, numbered 0 to K-1. The winner is determined as follows: Fraïssé wins if the relative positions of the coins are the same in both the rows, and Ehrenfeucht wins otherwise. More precisely, Fraïssé wins if and only if, for all $0 \le i \le j < K$, all the following hold:

- Coin i is in a lower numbered box than coin j in row 0 if and only if coin i is in a lower numbered box than coin j in row 1.
- Coin i and coin j are in the same box in row 0 if and only if coin i and coin j are in the same box in row 1.
- Coin i is in a higher numbered box than coin j in row 0 if and only if coin i is in a higher numbered box than coin j in row 1. (This is implied by the previous two conditions)

Fraïssé manages to convince Ehrenfeucht to choose the numbers N_0 , N_1 , and K such that N_0 , $N_1 \ge 2^K$, since this will guarantee that Fraïssé has a winning strategy. Your task is to play this game as Fraïssé, and win.

You must implement functions fraisse_start(NO,N1,K) and fraisse_turn(row,box) in fraisse.cpp.

- In the beginning, fraisse_start will be called exactly once, with the values of N_0 , N_1 , and K.
- Then fraisse_turn(row, box) will be called exactly K times, corresponding to the K rounds. In the ith call, the details of Ehrenfeucht's ith move will be supplied: the row (row $\in \{0,1\}$) and the box number ($0 \le box < N_{row}$).

fraisse_turn must return the box in the other row where Fraïssé places his coin (this must be a number between 0 and $N_{1-row} - 1$ inclusive).

Test Data

In all subtasks, $1 \le K \le 60$, $1 \le N_0, N_1 \le 3 \times 10^{18}$, and $N_0, N_1 \ge 2^K$.

- Subtask 1 (5 marks): $N_0 = N_1$.
- Subtask 2 (25 marks): $N_1 = N_0 + 1$.
- Subtask 3 (70 marks) : No further constraints on N_0 and N_1 .

Limits

The time limit for this problem is 2 seconds. The memory limit is 64MB.