Business Report

Title:

Terro's Real Estate Agency

Submitted By, Arulson.Y

Q1) Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation.

CRIME_RATE		AGE		INDUS	
Mean	4.871976285	Mean	68.57490119	Mean	11.13677866
Standard Error	0.129860152	Standard Error	1.251369525	Standard Error	0.304979888
Median	4.82	Median	77.5	Median	9.69
Mode	3.43	Mode	100	Mode	18.1
Standard Deviation	2.921131892	Standard Deviation	28.14886141	Standard Deviation	6.860352941
Sample Variance	8.533011532	Sample Variance	792.3583985	Sample Variance	47.06444247
Kurtosis	-1.189122464	Kurtosis	-0.967715594	Kurtosis	-1.233539601
Skewness	0.021728079	Skewness	-0.59896264	Skewness	0.295021568
Range	9.95	Range	97.1	Range	27.28
Minimum	0.04	Minimum	2.9	Minimum	0.46
Maximum	9.99	Maximum	100	Maximum	27.74
Sum	2465.22	Sum	34698.9	Sum	5635.21
Count	506	Count	506	Count	506

NOX		DISTANCE		TAX	
Mean	0.554695059	Mean	9.549407115	Mean	408.2371542
Standard Error	0.005151391	Standard Error	0.387084894	Standard Error	7.492388692
Median	0.538	Median	5	Median	330
Mode	0.538	Mode	24	Mode	666
Standard Deviation	0.115877676	Standard Deviation	8.707259384	Standard Deviation	168.5371161
Sample Variance	0.013427636	Sample Variance	75.81636598	Sample Variance	28404.75949
Kurtosis	-0.064667133	Kurtosis	-0.867231994	Kurtosis	-1.142407992
Skewness	0.729307923	Skewness	1.004814648	Skewness	0.669955942
Range	0.486	Range	23	Range	524
Minimum	0.385	Minimum	1	Minimum	187
Maximum	0.871	Maximum	24	Maximum	711
Sum	280.6757	Sum	4832	Sum	206568
Count	506	Count	506	Count	506

PTRATIO		AVG_ROOM		LSTAT	
Mean	18.4555336	Mean	6.284634387	Mean	12.65306324
Standard Error	0.096243568	Standard Error	0.031235142	Standard Error	0.317458906
Median	19.05	Median	6.2085	Median	11.36
Mode	20.2	Mode	5.713	Mode	8.05
Standard Deviation	2.164945524	Standard Deviation	0.702617143	Standard Deviation	7.141061511
Sample Variance	4.686989121	Sample Variance	0.49367085	Sample Variance	50.99475951
Kurtosis	-0.285091383	Kurtosis	1.891500366	Kurtosis	0.493239517
Skewness	-0.802324927	Skewness	0.403612133	Skewness	0.906460094
Range	9.4	Range	5.219	Range	36.24
Minimum	12.6	Minimum	3.561	Minimum	1.73
Maximum	22	Maximum	8.78	Maximum	37.97
Sum	9338.5	Sum	3180.025	Sum	6402.45
Count	506	Count	506	Count	506

AVG_PRICE	
Mean	22.53280632
Standard Error	0.408861147
Median	21.2
Mode	50
Standard Deviation	9.197104087
Sample Variance	84.58672359
Kurtosis	1.495196944
Skewness	1.108098408
Range	45
Minimum	5
Maximum	50
Sum	11401.6
Count	506

Observation:

- The mean provides the average value of each variable.
- Standard deviation measures the dispersion or spread of the data.
- Median is the middle value in a data set.
- Mode is the most frequently occurring value.
- Skewness measures the asymmetry of the data distribution.
- Kurtosis measures the "tailedness" of the data distribution.
- Range is the difference between the maximum and minimum values.

Q2) Plot a histogram of the Avg_Price variable. What do you infer?

A histogram is a visual depiction of the distribution of AVG_PRICE values in a dataset. The x-axis displays intervals or bins of average prices, while the y-axis indicates the frequency or count of instances falling within each AVG_PRICE range. In this histogram plot (21,25) have the most AVG_PRICEs and (37,41) have the least AVG_PRICEs .

Q3) Compute the covariance matrix. Share your observations.

	CRIME_RA	AGE	INDUS	NOX	DISTANC	TAX	PTRATI	AVG_ROO	LSTAT	AVG_PRI
	TE				Ε		0	М		CE
CRIME_RA	8.5161									
TE										
AGE	0.5629	790.792								
		5								
INDUS	-0.1102	124.267	46.9714							
		8								
NOX	0.0006	2.3812	0.6059	0.0134						
DISTANCE	-0.2299	111.550	35.4797	0.6157	75.6665					
		0								
TAX	-8.2293	2397.94	831.713	13.020	1333.11	28348.62				
		17	3	5	67	36				
PTRATIO	0.0682	15.9054	5.6809	0.0473	8.7434	167.8208	4.6777			
AVG ROO	0.0561	-4.7425	-1.8842	-	-1.2813	-34.5151	-0.5397	0.4927		
_ M				0.0246						
LSTAT	-0.8827	120.838	29.5218	0.4880	30.3254	653.4206	5.7713	-3.0737	50.894	
		4							0	
AVG_PRIC	1.1620	-97.3962	-	-	-30.5008	-724.8204	-	4.4846	-	84.4196
E			30.4605	0.4545			10.090		48.351	
							7		8	

Observation:

Positive Relationships:

- Variables with positive covariances tend to increase or decrease together.
- **Examples:** AGE and CRIME_RATE, DISTANCE and NOX.

Negative Relationship:

- Variables with negative covariances tend to move in opposite directions.
- **Examples:** TAX and CRIME_RATE, AVG_PRICE and NOX.

Q4) Create a correlation matrix of all the variables. (Use Data analysis tool pack).

	CRIME _RATE	AGE	INDUS	NOX	DISTA NCE	TAX	PTRAT IO	AVG_ ROOM	LSTAT	AVG_ PRIC E
CRIM E_RAT E	1									
AGE	0.0068 59463	1								
INDUS	0.0055 10651	0.6447 78511	1							
NOX	0.0018 50982	0.7314 70104	0.7636 51447	1						
DISTA NCE	0.0090 55049	0.4560 22452	0.5951 29275	0.6114 40563	1					
TAX	- 0.0167 48522	0.5064 55594	0.7207 6018	0.6680 232	0.9102 28189	1				
PTRAT IO	0.0108 00586	0.2615 15012	0.3832 47556	0.1889 32677	0.4647 41179	0.4608 53035	1			
AVG_ ROO M	0.0273 9616	- 0.2402 64931	- 0.3916 75853	- 0.3021 88188	0.2098 46668	- 0.2920 47833	0.3555 01495	1		
LSTAT	- 0.0423 98321	0.6023 38529	0.6037 99716	0.5908 78921	0.4886 76335	0.5439 93412	0.3740 44317	0.6138 08272	1	
AVG_ PRICE	0.0433 37871	- 0.3769 54565	- 0.4837 2516	- 0.4273 20772	- 0.3816 26231	- 0.4685 35934	- 0.5077 86686	0.6953 59947	- 0.7376 62726	1

a) Which are the top 3 positively correlated pairs.

Top 3 positively correlated:

 1.DISTANCE and TAX:
 0.910228189

 2.INDUS and NOX:
 0.763651447

 3.AGE and NOX:
 0.731470104

b) Which are the top 3 negatively correlated pairs.

Top 3 negatively correlated:

1.AVG_PRICE and LSTAT: 2.LSTAT and AVG_ROOM: 3.AVG_PRICE and PTRATIO: -0.737662726 -0.613808272 -0.507786686

Q5) Build an initial regression model with AVG_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.

SUMMARY								
OUTPUT								
Regression	Statistics							
Multiple R	0.73766							
	2726							
R Square	0.54414							
·	6298							
Adjusted R	0.54324							
Square	1826							
Standard	6.21576							
Error	0405							
Observatio	506							
ns								
ANOVA								
	df	SS	MS	F	Signific			
					ance F			
Regression	1	23243.9	23243.9	601.61	5.0811E			
		14	14	78711	-88			
Residual	504	19472.3	38.6356					
		8142	7742					
Total	505	42716.2						
		9542						
	Coeffici	Standar	t Stat	P-value	Lower	Upper	Lower	Upper
	ents	d Error			95%	95%	95.0%	95.0%
Intercept	34.5538	0.56262	61.4151	3.7431	33.4484	35.6592	33.448	35.6592
	4088	7355	4552	E-236	5704	2472	45704	2472
LSTAT	-	0.03873	-	5.0811	-	-	-	-
	0.95004	3416	24.5278	E-88	1.02614	0.87395	1.0261	0.87395
	9354		9985		82	0508	482	0508

a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and Residual plot?

Variance Explained:

R-Square value is (0.544146298)

Coefficient value:

The Coefficient for the variable LSTAT is (-0.95004)

Intercept:

The Intercept is (34.5538)

Residual Plot:

b) Is LSTAT variable significant for the analysis based on your model?

Yes, the LSTAT variable is significant for the analysis as indicates by it's very low P-value (5.0811E-88) in the regression output.

Q6) Build a new Regression model including LSTAT and AVG_ROOM together as Independent variables and AVG_PRICE as dependent variable.

					ı			
SUMMARY								
OUTPUT								
Regression	Statistics							
Multiple R	0.9738853							
•	53							
R Square	0.9484526							
•	81							
Adjusted R	0.9463662							
Square	78							
Standard Error	5.5357665							
	4							
Observations	506							
ANOVA								
	df	SS	MS	F	Significanc e F			
Regression	2	284181.405	142090.70	4636.7120	0			
	_	6	28	87				
Residual	504	15444.9344	30.644711					
		4	19					
Total	506	299626.34						
	Coefficient	Standard	t Stat	P-value	Lower 95%	Upper 95%	Lower	Upper
	S	Error					95.0%	95.0%
Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
AVG_ROOM	4.9069060	0.07019333	69.905579	1.6137E-	4.7689984	5.0448136	4.7689984	5.0448136
2	71	9	97	261	82	61	82	61
LSTAT	-	0.03055856	-	4.81185E-	-	-	-	-
	0.6557399	1	21.458471	73	0.7157778	0.5957021	0.7157778	0.5957021
	93	_	15	, ,	47	38	47	38

a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG_PRICE?

How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging?

Ans:

Regression Equation:

AVG_PRICE=4.9069*AVG_ROOM+(-0.6557) *LSTAT

AVG_ROOM=7 LSTAT=20

AVG_PRICE is 21.23354265

Predicted value is \$ 21,233.54

Company quoting value is \$ 30,000.00

Yes, Company is overcharging.

b) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain.

Ans:

Adjusted R Square is (0.946366278)

Question 5 Adjusted R Square is (0.543241826)

Based on the adjusted R-Square values, it can be inferred that the performance of the current model is better than the previous model. The higher adjusted R-Square indicates a most effective and accurate model in explaining the variance in the dependent variable.

Q7) Build another Regression model with all variables where AVG_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted R-square, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG_PRICE.

SUMMARY								
OUTPUT								
Regression S	Statistics							
negression s	Stutistics							
Multiple R	0.8329788							
	24							
R Square	0.6938537							
	2							
Adjusted R	0.6882986							
Square	47							
Standard Error	5.1347635							
Observations	506							
ANOVA								
	df	SS	MS	F	Significanc			
	uj	<i>ა</i> ა	IVIS	·	e F			
Regression	9	29638.8605	3293.2067	124.90450	1.9328E-			
Negression		25050.0005	22	49	121			
Residual	496	13077.4349	26.365796	13	121			
residuai	130	2	2					
Total	505	42716.2954	-					
Total	303	2						
	Coefficient	Standard	t Stat	P-value	Lower 95%	Upper 95%	Lower	Upper
	S	Error					95.0%	95.0%
Intercept	29.241315	4.81712559	6.0702829	2.53978E-	19.776827	38.705802	19.776827	38.705802
	26	6	26	09	84	67	84	67
CRIME_RATE	0.0487251	0.07841864	0.6213463	0.5346572	-	0.2027988	-	0.2027988
	41	7	69	01	0.1053485	27	0.1053485	27
					44		44	
AGE	0.0327706	0.01309781	2.5019968	0.0126704	0.0070366	0.0585047	0.0070366	0.0585047
	89	4	17	37	5	28	5	28
INDUS	0.1305513	0.06311733	2.0683921	0.0391208	0.0065410	0.2545617	0.0065410	0.2545617
	99	4	65	6	94	04	94	04
NOX	-	3.89403625	-	0.0082938	-	-	-	-
	10.321182	6	2.6505101	59	17.972022	2.6703428	17.972022	2.6703428
	8		95		79	09	79	09
DISTANCE	0.2610935	0.06794706	3.8426025	0.0001375	0.1275940	0.3945931	0.1275940	0.3945931
	75	7	76	46	12	38	12	38
TAX	-	0.00390515	-	0.0002512	-	-0.0067285	-	-0.0067285
	0.0144011	8	3.6877360	47	0.0220738		0.0220738	
	9		63		81		81	
PTRATIO	-	0.13360172	-	6.58642E-	-	-	-	-
	1.0743053	2	8.0411040	15	1.3368004	0.8118102	1.3368004	0.8118102
	48		61		38	59	38	59
AVG_ROOM	4.1254091	0.44275899	9.3175049	3.89287E-	3.2554947	4.9953235	3.2554947	4.9953235
	52	9	29	19	42	61	42	61
LSTAT	-	0.05308116	-	8.91071E-	-	-	-	-
	0.6034865 89	1	11.369129 37	27	0.7077782 4	0.4991949 38	0.7077782 4	0.4991949 38

Adjusted R-Square:

The adjusted R-Square is 68.83%.

Coefficients:

CRIME_RATE: (0.048725141)

AGE: (0.032770689)

INDUS: (0.130551399)

NOX: (-10.3211828)

DISTANCE: (0.261093575)

TAX: (-0.01440119)

PTRATIO: (-1.074305348)

AVG_ROOM: (4.125409152)

LSTAT: (-0.603486589)

Intercept:

The Intercept value is (29.2413).

Explanation:

The model suggests that AGE, INDUS, NOX, DISTANCE, TAX, PTRATIO, AVG_ROOM, LSTAT are statistically significant predictors of AVG_PRICE, while CRIME_RATE is not statistically significant.

Q8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:

SUMMARY				l				
OUTPUT								
Regression :	Statistics							
Multiple R	0.8328357							
Watapic it	73							
D. Carrons								
R Square	0.6936154							
	26							
Adjusted R	0.6886836							
Square	82							
Standard Error	5.1315911							
	13							
Observations	506							
ANOVA								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
	df	SS	MS	F	Significanc e F			
Regression	8	29628.6814	3703.5851	140.64304	1.911E-122			
		2	78	11				
Residual	497	13087.6139	26.333227					
		9	35					
Total	505	42716.2954						
		2						
		_						
	Coefficient	Standard	t Stat	P-value	Lower 95%	Upper 95%	Lower	Upper
	S	Error	t Stat	1 -value	LOWEI 3370	Ορρεί 33/0	95.0%	95.0%
NOV	3	3.89084922		0.0005457			93.0%	93.0%
NOX			2 6402240	0.0085457	47.047245	2 6204644	47.047245	2 6204644
		2	2.6402218	18	17.917245	2.6281644	17.917245	2.6281644
			37		7	66	7	66
PTRATIO	-	0.13345352	-	7.08251E-	-	-	-	-
	1.0717024	9	8.0305292	15	1.3339051	0.8094998	1.3339051	0.8094998
	73		71		09	36	09	36
LSTAT	-	0.0529801	-	5.41844E-	-	-	-	-
	0.6051592		11.422388	27	0.7092518	0.5010667	0.7092518	0.5010667
	82		41		6	04	6	04
TAX	-	0.00390187	-	0.0002360	-	-	-	-
•	0.0144523	7	3.7039464	72	0.0221185	0.0067861	0.0221185	0.0067861
	45	,	06		53	37	53	37
AGE	0.0329349	0.01308705	2.5166059	0.0121628	0.0072221	0.0586477	0.0072221	0.0586477
AUL	0.0329349	5	52	75	87	34	87	34
INDUC	0.1307100	0.06307782	2.0722022	0.0387616	0.0067779	0.2546420	0.0067779	0.2546420
INDUS								
DISTANCE	07	3	64	69	42	71	42	71
DISTANCE	0.2615064	0.06790184	3.8512420	0.0001328	0.1280963	0.3949164	0.1280963	0.3949164
	23	1	24	87	75	71	75	71
AVG_ROOM	4.1254689	0.44248544	9.3234004	3.68969E-	3.2560963	4.9948416	3.2560963	4.9948416
	59		61	19	04	15	04	15
Intercept	29.428473	4.80472862	6.1248981	1.84597E-	19.988389	38.868557	19.988389	38.868557
	49	4	57	09	59	4	59	4
		•				•	•	•

a) Interpret the output of this model.

Adjusted R-Square:

The adjusted R-Square is 68.86%.

Coefficients:

AVG_ROOM: (4.125468959)

DISTANCE: (0.261506423)

INDUS: (0.130710007)

AGE: (0.03293496)

TAX: (-0.014452345)

LSTAT: (-0.605159282)

PTRATIO: (-1.071702473)

NOX: (-10.27270508)

Intercept:

The Intercept value is (29.4284).

b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

Ans:

The adjusted R-square for this model is 0.6887, while the adjusted R-square for the model in the previous question was 0.6883.

The difference is minimal, and both models perform similarly in explaining the variability in AVG_PRICE.

c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?

Coefficients in Ascending order:

NOX: (-10.27270508)

PTRATIO: (-1.071702473)

LSTAT: (-0.605159282)

TAX: (-0.014452345)

AGE: (0.03293496)

INDUS: (0.130710007)

DISTANCE: (0.261506423)

AVG_ROOM: (4.125468959)

If the value of NOX is more in a locality according to the model, the average price tends to decrease.

d) Write the regression equation from this model.