# Faster and Cheaper Circuits through Self-timing

Adrian Wheeldon a.r.wheeldon2@ncl.ac.uk

#### **Motivation**

- Process variation on the increase.
  - Smaller silicon feature sizes.
- ► Subthreshold regime attractive for ultra-low-power.
  - ▶ 10x variation in gate delays vs. superthreshold.
- ► Multi-corner multi-mode analysis required in synchronous.
  - ▶ In order to meet highly variable timing.
- Self-timed datapaths adapt to delay variations at runtime.
  - Maximum performance for runtime environment.
  - Less design-time analysis required.

## **Self-timing & Dual-rail Logic**

- ► No global clock.
  - ▶ Blocks exchange data on request/acknowledge.



- ► Each data bit represented on two 'rails'. e.g. {a1,a0}.
  - ▶ Data 0: {0,1}, Data 1: {1,0}.
  - $\triangleright$  Spacer:  $\{0,0\}$  separates data temporally.
  - ▶ Completion Detector asserts when gate has computed.
  - Performance adapts to gate delays at runtime.



#### **Early Completion**

- ► Actual computation time depends on operands.
  - ▶ A ripple-carry adder has a log-normal distribution:



- ▶ A comparator shows a negative exponential distribution.
- ▶ Computation is faster than worst-case for most operands.
- A synchronous circuit is idle for some of the clock cycle.
  - ightharpoonup Latch answer early ightharpoonup avoid leaking energy.

## Results

► Self-timed with early completion vs. synchronous.

|                   | Average |        | Worst |        |          |
|-------------------|---------|--------|-------|--------|----------|
|                   | Delay   | Energy | Delay | Energy | Area     |
| 32-bit Adder      | 0.2x    | 0.1x   | 1.1x  | 1.3x   | 2.3x     |
| 32-bit Comparator | 0.2x    | 0.06x  | 0.9x* | 0.6x*  | $0.9x^*$ |

- \*Less than 1x is achieved by maintaining 1-of-3 encoding at the output.
- Improved average delay and energy due to early completion.
  - Worst-case suffers, but encountered infrequently.
- ▶ Duplicated logic and completion detection increase area.
  - ▶ But rail swaps can replace inverters for area recovery.

## **ASIC** Design Flow

Integrates into synchronous design flow.



► Glitch-less logic guaranteed by unate gates and encoding.

#### **Future Work**

- ► More logic = more leakage.
  - ▶ How can we efficiently power-gate self-timed circuits?
- Conventionally, each gate requires a completion detector.
  - Can we introduce easy-to-meet timing constraints to reduce the number of completion detectors?
- ightharpoonup Automation of single-rail ightarrow dual-rail conversion.
- ightharpoonup Logical Equivalence Checking of single-rail ightarrow dual-rail.