EXAMEN D'ESTIMATION STOCHASTIQUE – 2ASRI

1° session – Mercredi 16 Décembre 2015 – Durée 1h15

Tous documents de Cours, TD, TP autorisés – Tablettes et objets communicants interdits

les questions I/, II/, III/-8, III/-9, III/-11, III/-12 sont indépendantes.

I/ Questions de cours. Répondre en trois phrases maximum convenablement construites, sans nécessairement invoquer des formules mathématiques à chacune des questions suivantes.

- 1. Indiquer en quoi diffèrent les cadres théoriques de l'estimation dite « classique » et de l'estimation Bayésienne.
- 2. Expliquer en langage simple ce que sont le biais et la covariance d'un estimateur.
- 3. À quoi sert l'inégalité de Cramér-Rao?
- 4. Soient Θ et Z deux variables aléatoires. Quelle signification peut-on accorder à la loi a priori $p_{\Theta}(\theta)$ de Θ et à sa loi a posteriori $p_{\Theta|Z}(\theta|z)$?

II/ Soit X une variable aléatoire vectorielle, et X_1, \ldots, X_N ses composantes.

- 5. À quelle condition X_1, \ldots, X_N sont-elles mutuellement indépendantes?
- 6. On suppose que $X \sim \mathcal{N}(\bar{x}, P)$, c.-à-d. que X suit la loi Gaussienne réelle multidimensionnelle de moyenne \bar{x} et de covariance P. Répondre aux questions suivantes.
 - (a) Comment s'écrit la densité de probabilité $p_X(x)$ de X?
 - (b) Si les variables aléatoires scalaires X_1, \ldots, X_N sont indépendantes identiquement distribuées, comment $p_X(x)$ se réécrit-elle?
 - (c) À quelle condition sur \bar{x} et/ou P les variables aléatoires scalaires X_1, \ldots, X_N sont-elles (a) centrées ; (b) mutuellement indépendantes ; (c) corrélées sans être linéairement dépendantes ; (d) linéairement dépendantes ?

III/ Soit $\mathcal{N}(m, \sigma^2)$ la loi Gaussienne scalaire réelle de moyenne m et de variance $v = \sigma^2$. On suppose que m est une constante connue. Sur la base d'un vecteur z constitué de n échantillons z_1, \ldots, z_N i.i.d. selon $\mathcal{N}(m, \sigma^2)$, on construit l'estimé

$$\hat{v} = g(z) = \frac{1}{N} \sum_{n=1}^{N} (z_n - m)^2$$
(1)

de v. Cette question se propose d'analyser l'estimateur $\hat{V} = g(Z)$ associé, où $Z = (Z_1, \dots, Z_N)^T$ désigne la variable vectorielle aléatoire qui s'est réalisée en $z = (z_1, \dots, z_N)^T$.

- 7. Exprimer \hat{V} en fonction de Z_1, \ldots, Z_N .
- 8. On souhaite montrer que \hat{V} n'est pas biaisé.
 - (a) Écrire quelle égalité mathématique doit être vérifiée pour justifier ce résultat.
 - (b) Comme indiqué ci-dessus, $\forall n, Z_n \sim \mathcal{N}(m, v)$. Comment s'écrit alors l'espérance $\mathbb{E}\{(Z_n m)^2\}$?
 - (c) En déduire la propriété de non-biais de \hat{V} .
- 9. On souhaite exprimer la variance de \hat{V} . Une manière de procéder est de constater que $X = \frac{N}{\sigma^2} \hat{V}$ est équivalent à la somme des carrés de N variables Gaussiennes mutuellement indépendantes, de moyenne nulle et de variance unité.
 - (a) Quelle est la distribution de probabilité (que l'on notera $X \sim \chi^2_N$) de X?

- (b) Exprimer le lien de proportion nalité qui unit la variance $\mathrm{Var}(\hat{V})$ de \hat{V} à la variance $\mathrm{Var}(X)$ de X.
- (c) Sachant que Var(X) = 2N (propriété de la loi χ_N^2), en déduire $Var(\hat{V})$.
- 10. Déduire des propriétés démontrées ci-dessus le comportement de \hat{V} lorsque le nombre d'échantillons N croît indéfiniment.
- 11. On se propose de démontrer en outre que \hat{V} est l'estimateur du maximum de vraisemblance de v.
 - (a) Écrire la loi $p_{Z|v}(z|v)$ et simplifier son expression en exploitant l'indépendance des composantes de Z.
 - (b) On rappelle que $p_{Z|v}(z|v)$, considérée comme une fonction de v, exprime la vraisemblance L(v;z) de v étant donné un vecteur d'observation z. Écrire l'anti log-vraisemblance $\mathrm{NLL}(v;z) = -\ln \mathrm{L}(v;z)$. Rappeler quels problèmes d'optimisation permettent l'obtention de l'estimé du maximum de vraisemblance \hat{v}_{MLE} de v à partir de $p_{Z|v}(z|v)$, puis de $\mathrm{NLL}(v;z)$.
 - (c) Écrire la condition nécessaire de stationnarité sur NLL(v; z) que doit satisfaire \hat{v}_{MLE} , et la développer. En déduire l'égalité de \hat{V}_{MLE} et de \hat{V} introduit en (1).
- 12. \hat{V} est-il l'estimateur efficace ? Justifier soigneusement le résultat.