README.md 2025-10-06

дисциплина	Архитектура комьютера и язык ассемблера
ИНСТИТУТ	Передовая инженерная школа СВЧ-электроники
КАФЕДРА	Передовых технологий
ВИД УЧЕБНОГО МАТЕРИАЛА	Методические указания по дисциплине
ПРЕПОДАВАТЕЛЬ	Астафьев Рустам Уралович
CEMECTP	1 семестр, 2025/2026 уч. год

Ссылка на материал:

https://github.com/astafiev-rustam/computer-architecture-and-assembly-language/tree/practice-1-1

Практическое занятие №1: Информация и информатика

Теория информации, фундамент которой заложил Клод Шеннон в середине XX века, возникла из прагматичной необходимости оптимизации систем связи. Её ключевая идея — **информация есть мера уменьшения неопределенности (энтропии)**. Это означает, что мы измеряем не смысл сообщения, а то, насколько оно делает наше знание более определенным. Сообщение о случайном и маловероятном событии (например, «в Москве в июле пошел снег») несет гораздо больше информации, чем сообщение о событии ожидаемом («в Москве в июле тепло»).

Термины и определения:

Информация (в техническом смысле) — это снятая неопределенность. Количество информации измеряется изменением энтропии системы.

Энтропия (Н) — мера неопределенности или хаотичности системы. В теории информации это средняя мера количества информации, приходящейся на одно сообщение из источника. Чем выше энтропия, тем более непредсказуемы сообщения источника и тем больше информации несет каждое из них.

Бит — базовая единица измерения информации, определяющая количество информации, содержащейся в сообщении, которое уменьшает неопределенность ровно в два раза (выбор из двух равновероятных событий).

Вероятностный подход — подход к измерению информации, основанный на использовании понятий теории вероятностей. Количество информации в сообщении обратно пропорционально вероятности его появления.

Алфавитный подход — подход, при котором количество информации оценивается по длине кода (количеству символов), необходимого для её представления, без учета смысла.

Формулы измерения информации

Количество информации для отдельного события. Если событие имеет вероятность р, то количество информации i, содержащееся в сообщении о его наступлении, вычисляется по формуле Хартли в

README.md 2025-10-06

```
логарифмическом виде: i = \log_2(1/p) = -\log_2(p) (бит).
```

Пример: Результат подбрасывания идеальной монеты (орел или решка) имеет вероятность p=0.5. Количество информации в сообщении о результате равно $i = -log_2(0.5) = 1$ бит.

Энтропия источника информации (средняя информация). Для источника, генерирующего множество событий (символов) с вероятностями p_1, p_2, \ldots, p_n , энтропия H (среднее количество информации на одно сообщение) рассчитывается как сумма: $H = -\sum_{i=1}^n p_i + \log_2(p_i)$, где суммирование ведется от i=1 до n.

Пример: Рассмотрим источник, генерирующий два символа: 'A' (p=0.75) и 'B' (p=0.25). Его энтропия: $H=-(0.75*log_2(0.75)+0.25*log_2(0.25))\approx 0.81$ бит/символ. Это меньше 1 бита, так как символ 'A' предсказуем.

Место двоичной системы счисления

Абстрактное понятие бита находит свое идеальное физическое воплощение в двоичной системе счисления. Её доминирование в цифровой технике обусловлено следующими ключевыми факторами:

Технологическая надежность. Проще и дешевле создавать электронные элементы, которые надежно работают в двух состояниях (транзистор «открыт/закрыт», напряжение «высокое/низкое», магнитный домен «намагничен/размагничен»), чем в десяти и более. Распознавание двух состояний значительно устойчивее к помехам.

Логическая интерпретация. Двоичная система напрямую соответствует булевой алгебре, оперирующей значениями «ИСТИНА» (1) и «ЛОЖЬ» (0). Это позволяет унифицировать арифметические и логические операции внутри процессора.

Универсальность представления. Любая информация — числа, текст, команды, мультимедиа — может быть закодирована в виде последовательности битов.

Трактовка вычислительных процессов

С позиций теории информации, работа любого вычислительного устройства — это не что иное, как последовательное преобразование информационной энтропии. Исходные данные обладают высокой неопределенностью для пользователя. Процессор, выполняя детерминированную последовательность логических и арифметических операций над битами, преобразует эти данные в результат, который имеет для пользователя низкую энтропию (т.е. является решением задачи). Таким образом, вычисление — это целенаправленное уменьшение неопределенности входных данных по строго определенным законам, реализованным в виде физических процессов в электронных схемах. Эта трактовка связывает абстрактную математику Шеннона с конкретной инженерией, показывая, что архитектура компьютера — это материальная реализация принципов управления информацией.

Работа с Logisim

Основной платформой реализации практических работ по дисциплине будет являться среда Logisim, которая представляет собой среду моделирования логических схем и структур на базовых элементах логики, позволяет моделировать поведение реальных построенных объектов, изучать на них основные принципы их работы, в т.ч. проектировать основные логические автоматы и структуры.

README.md 2025-10-06

Загрузить приложение на свой компьютер можно здесь: https://cburch.com/logisim/ru/download.html

После успешной установке рекомендуется ознакомиться с инструкциями по работе с платформой и документацией по ней: https://cburch.com/logisim/docs/2.7/ru/html/guide/tutorial/index.html