MODELISATION MOTEUR A COURANT CONTINU

On cherche à établir un modèle dynamique (fonction de transfert) de la machine à courant continu à excitation indépendante

1) Equations Electromécanique du moteur à courant continu en régime dynamique

On a donc deux relations de proportionalité entre la f.ém E et la vitesse du rotor

$$=>E=K\times\Omega$$

Et un moment du couple électromagnétique directement proportionnel au courant d'induit

$$=>Tem=K\times I$$

a) Equations électriques :

La tension d'induit (en convention récepteur) ${m U}(t)={m R}.{m i}(t)+{m L}{dt\over dt}(t)+{m e}(t)$

b)Equation mécaniques :

Le principe fondamental de la dynamique (PFD)nous permet d'écrire

$$J\frac{d\Omega}{dt} = Tu - Tr \quad avec \ Tu = Tem - Tp$$

on suppose que le moment du couple de perte est de la forme : $Tp = f \cdot \Omega(5)$

f: coéfficient de frottement visqueux

$$J\frac{d\Omega}{dt} = Tem - f\Omega - Tr$$

2) Equations électromécaniques dans le domaine de Laplace

• La transformée de Laplace de l'équation $U(t) = R.i(t) + L\frac{di}{dt}(t) + e(t)$

est:

$$U(p) = RI(p) + LIp(p) + K\Omega$$

• La transformée de Laplace de l'équation $E = K \times \Omega$

est:

$$E = K \times \Omega(p)$$

• La transformée de Laplace de l'équation $J\frac{d\Omega}{dt} = Tem - f\Omega - Tr$

est:

$$J\Omega p(p) = KI - f\Omega(p) - Tr$$

Soit:

$$\Omega(p) = \frac{KI - Tr}{Jp + f}$$

3) Fonction de transfert du moteur

on suppose que le moment du coupe de pertes (qui est vu comme une perturbation) est négligeable devant le moment du couple électromagnétique ce qui donne :

$$\Omega(p) = \frac{KI}{Jp + f}$$

Le courant I est donc :

$$I = \frac{(Jp + f)\Omega(p)}{K}$$

et en remplaçant cette nouvelle éxpression de I(p) dans l'équation

$$U(p) = R.I(p) + LIp(p) + K\Omega$$

on obtient:

$$U(p) = R \cdot \frac{(Jp + f)\Omega(p)}{K} + L \frac{(Jp + f)\Omega(p)}{K} p(p) + K\Omega$$

$$U = \frac{RJ\Omega p + Rf\Omega + LJ\Omega p^2 + Lf\Omega p + K^2\Omega}{K}$$

$$\frac{U}{\Omega} = \frac{LJp^2 + (RJ + Lf)p + Rf + K^2}{K}$$

on peut maintenant éxprimer la fonction de transfert en boucle fermée la vitesse de sortie par rapport à la tension d'entrée :

$$T = \frac{\Omega}{U} = \frac{K}{LJp^2 + (RJ + f)p + f + K^2}$$

On peut écrire aussi sous la forme canonique d'une fonction de transfert de second ordre :

$$T = \frac{Ko}{\tau \cdot \tau e p^2 + (\tau + \alpha \tau e)p + 1}$$

Avec: $\tau e = \frac{L}{R}$ et $\tau = \frac{RJ}{K^2 + Rf}$ $Ko = \frac{K}{K^2 + Rf}$ et $\alpha = \frac{Rf}{K^2 + Rf}$ on peut négliger α car $KI \gg f\Omega$

Idem pour E:

$$E = K\Omega \gg RI$$

on aura une nouvelle écriture de la fonction de transfert :

$$T = \frac{Ko}{\tau \cdot \tau e p^2 + \tau p + 1}$$

et si l'on a $\tau e << \tau$, c'est souvent le cas: la constante de temps électrique est négligeable devant la constante de temps électromécanique, on peut alors réecrire une nouvelle fois la fonction de transfert en factorisant son dénominateur: ($\tau + \tau e \# \tau$ on rajoute une quantité négligeable (τe) à τ)

$$T = \frac{Ko}{\tau \cdot \tau e p^2 + (\tau + \tau e)p + 1}$$

et on factorise à nouveau :

$$T = \frac{Ko}{(1 + \tau ep)(1 + \tau p)}$$

Explications:

$$U(p) = RI(p) + LIp(p) + E$$

$$I = \frac{U - E}{Lp + R}$$

$$Tem = KI (gain 1)$$

$$J\frac{d\Omega}{dt} = Tu - Tr \quad avec Tu = Tem - Tp$$

$$J\frac{d\Omega}{dt} = Tem - Tp - Tr = Tem - f\Omega - Tr$$

$$J\Omega p = Tem - f\Omega - Tr = > Tem - Tr = \Omega(Jp + f)$$

$$\Omega = \frac{Tem - Tr}{Jp + f}$$

$$E = K\Omega$$