MM2015 Matemática Discreta 1 Proyecto Corto 1 – Funciones

Condiciones de entrega:

- Al finalizar deberá subir las respuestas de los ejercicios y un solo archivo *.py con las funciones implementadas, en el espacio habilitado en Canvas.
- Asegúrese que el archivo puede abrirse correctamente antes de subirlo a Canvas, ya que de no ser posible verlo, el trabajo se calificará con una nota de cero puntos.
- Se aplicará una penalización del 25 % de la nota por cada día o fracción de entrega tarde. No se aceptará la entrega de trabajos por correo electrónico, ni habrá reposición de esta actividad.
- Se fomenta la colaboración entre estudiantes para el intercambio de ideas o discusiones. Sin embargo, se espera que los estudiantes entreguen sus propias soluciones de los ejercicios. Cualquier sospecha de copia será sancionada con una nota de cero puntos.

Cualquier sospecha de copia o fraude, será sancionada según las **Normas y sanciones académicas**. Pueden consultar el reglamento en el siguiente enlace: Reglamento de Evaluación de los Aprendizajes, artículos 16 a 20.

Instrucciones: Realice una implementación de un programa de computadora escrito en Python que realice lo que se indica.

Función de dispersión

Implemente un sistema de hash (utilizando una función de dispersión H(x)) para almacenar números enteros positivos en un arreglo.

Input: un arreglo finito $\mathbf{a} = [a_1, a_2, \dots, a_n]$ de n enteros positivos y un entero m tal que $m \ge n$ (el módulo de la función de dispersión H(x)).

Output: un arreglo finito **b** con los n números enteros positivos del arreglo **a** almacenados según la función de dispersión H(x).

Nota: Implemente la política para solución de colisiones vista en clase.

Generador de números pseudoaleatorios

Escriba un programa que genere números pseudoaleatorios usando el método congruencia lineal.

Input: cinco números enteros no negativos; el módulo m, el multiplicador a, el incremento c, la semilla s y la cantidad de números aleatorios a generar n con $n \ge 1$.

Output: un arreglo finito \mathbf{b} de tamaño n con el listado de números pseudoaleatorios generados.

Observación: No es necesario implementar programación defensiva.

Ejercicios:

1. Se requiere almacenar los números:

$$1489, 1237, 1312, 1548, 1209, 853, 519, 992, 339, 535, 883, 1246, 1325, 582, 82, 1517 y 744$$

utilizando un sistema hash con m = 17.

Escriba su respuesta en la forma: $[b_0, b_1, \ldots, b_{16}]$.

Nota: Incluya los corchetes y escriba los enteros almacenados separados por coma y sin espacios.

2. Se requiere simular un proceso generando un listado de 20 números pseudoaleatorios, utilizando el método congruencia lineal. Use los siguientes parámetros:

$$m = 23, a = 5, c = 17 \text{ y } s = 2$$

Escriba su respuesta en la forma: $[r_1, r_2, \ldots, r_{20}]$.

Nota: Incluya los corchetes y escriba los enteros generados separados por coma y sin espacios.

Importante: Para poder acceder al cuestionario en Canvas, usted necesita de un código de acceso. El código es el término F_{17} de la función definida recursivamente como:

$$F_{n+2} = F_n + F_{n+1} \text{ con } F_0 = 1 \text{ y } F_1 = 1, \ n \ge 0$$