統計的学習理論読み(Chapter 1)

松井孝太

名古屋大学大学院医学系研究科 生物統計学分野 matsui.k@med.nagoya-u.ac.jp

導入I

- ▶ 機械学習の文脈でよく見る
 - ・モデルが汎化する
 - ・モデルの汎化性能が高い
- ▶ 予測損失 (期待損失) が小さいことと定義される
- ▶ practical にはテスト誤差 (学習データとは独立に取得したテストデータで評価した誤差) で汎化性能を評価している

素朴な疑問(学習理論が答えようとしていること)

- ▶ 上記の方法はどのように正当化されているのか?
- ▶ 経験損失最小化でなぜ予測損失を小さくできるのか?
- ▶ 経験損失と予測損失にどんなギャップがあるのか?

1

導入Ⅱ

Vapnik の思想 [Vapnik, 98]

Nothing is more practical than a good theory.

理論に基づいたアルゴリズム

- ▶ カーネル法 (サポートベクターマシン)
- ▶ ブースティング (アダブースト)...

このセミナーでは [4] を読んで機械学習の理論的側面に親しみたい. 本スライドは [4] の第 1 章のまとめである.

Table of contents

1. 統計的学習理論の枠組み

統計的学習理論の枠組み

統計的学習理論の枠組み

1.1 問題設定

問題設定 I (p. 1~3)

問題設定 II 判別問題 **(**§1.1.1)

- ▶ $|\mathcal{Y}| < \infty$ のとき, input data から label を予測する.
 - ・ $|\mathcal{Y}| = 2:2$ 値判別 (e.g. 迷惑メール分類 $\mathcal{Y} = \{\text{"spam"}, \text{"nonspam"}\}$)
 - ・ $|\mathcal{Y}| \geq 3$: 多値判別
- ▶ 判別問題における loss function (0-1 loss)

$$\begin{split} \ell(\hat{y},y) &= \mathbb{1}[\hat{y} \neq y] = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{otherwise} \end{cases} \\ & \left(= \begin{cases} \ell_y & \text{if } y \neq \hat{y} \\ 0 & \text{otherwise} \end{cases} \right) \end{split}$$

損失が真ラベルに依存する場合

問題設定 Ⅲ 回帰問題 **(**§1.1.2**)**

- $y = \mathbb{R}$ のとき input から output を予測 (e.g. 株価や電力需要の予測)
- ▶ 回帰問題の loss function (squared loss)

$$\ell(\hat{y}, y) = |\hat{y} - y|^2$$

問題設定 IV ランキング問題 (§1.1.3)

▶ 3 つ組 data $(x, x', y) \in \mathcal{X}^2 \times \mathcal{Y}$ を観測

$$y = \begin{cases} +1 & \text{if } x \succ x' \\ -1 & \text{if } x \prec x' \end{cases}$$

▶ 以下のような仮説 $h: \mathcal{X} \to \mathbb{R}$ を学習

$$x \succ x' \Rightarrow h(x) > h(x')$$

 $x \prec x' \Rightarrow h(x) \leq h(x')$

▶ ランキング問題の loss function (0-1 loss)

$$\ell(\hat{h}, y) = \begin{cases} 1 & \text{if } y(h_1 - h_2) \le 0\\ 0 & \text{otherwise} \end{cases}$$

ここで
$$h_1 = h(x)$$
, $h_2 = h(x')$, $\hat{h} = (h_1, h_2) \in \mathbb{R}^2$. $0 - 1$ 損失の下でランキング問題は判別として扱える.

統計的学習理論の枠組み

1.2 予測損失と経験損失

予測損失と経験損失Ⅰ

Definition 1 (予測 (期待) 損失)

 $test\ data\ (X,Y)$ の従う分布 $\mathcal D$ の下での仮説 h の予測損失を以下で定義

$$R(h) := \mathbb{E}_{(X,Y) \sim \mathcal{D}}[\ell(h(X), Y)]$$

Example 1 (0-1 loss)

0-1 loss の予測損失 (期待判別誤差) は

$$R_{err}(h) = \Pr[h(X) \neq Y] = \mathbb{E}[\mathbb{1}[h(X) \neq Y]]$$

学習の目標

data の真の分布が未知なため直接計算不可能な期待損失を観測 data のみを用いて小さくする

1

予測損失と経験損失 II

Definition 2 (経験損失)

 $\{(X_i,Y_i)\}_{i=1}^n$: observed data 仮説 h の経験損失を以下で定義

$$\hat{R}(h) := \frac{1}{n} \sum_{i=1}^{n} \ell(h(X_i), Y_i)$$

経験分布による表現

 $\hat{\mathcal{D}}$: 経験分布 i.e. $(X,Y)\sim\mathcal{D}\Longleftrightarrow\Pr[(X,Y)=(X_i,Y_i)]=rac{1}{n}$ とするとき,

$$\hat{R}(h) = \mathbb{E}_{(X,Y) \sim \hat{\mathcal{D}}}[\ell(h(X), Y)]$$

予測損失 R(h) と経験損失 $\hat{R}(h)$ の違いは期待値を真の分布 \mathcal{D} で取るか, 経験分布 \hat{D} で取るかの違い

予測損失と経験損失 Ⅲ

Fact 1

 $(X_i, Y_i) \sim \mathcal{D}$ (identically distributed)

$$\implies \mathbb{E}[\hat{R}(h)] = R(h)$$

i.e. \hat{R} は R の不偏推定量.

(::) $\mathcal{D}^n: (X_i, Y_i)$, i = 1, ..., n の joint distribution とするとき,

$$\mathbb{E}_{\mathcal{D}^n}[\hat{R}(h)] = \mathbb{E}_{\mathcal{D}^n} \left[\frac{1}{n} \sum_{i=1}^n \ell(h(X_i), Y_i) \right] = \frac{1}{n} \sum_{i=1}^n \underbrace{\mathbb{E}_{\mathcal{D}}[\ell(h(X_i), Y_i)]}_{R(h)} = R(h) \quad \Box$$

予測損失と経験損失 Ⅳ

経験損失は予測損失の不偏推定量: $\mathbb{E}[\hat{R}(h)] = R(h)$

▶ 上の事実は data の独立性を仮定していない. 独立性があると, さらに一致性が示せる(大数の弱法則):

Proposition 1

 $(X_i, Y_i) \sim_{i,i,d} \mathcal{D}$ のとき, $\forall \varepsilon > 0$,

$$\lim_{n \to \infty} \Pr_{\mathcal{D}^n}[|\hat{R}(h) - R(h)| > \varepsilon] = 0$$

- ▶ 様々な学習問題は, 予測損失 R の最小化が目標 (分布 D が未知 なので R も未知)
 - \longrightarrow 代理として経験損失 \hat{R} の最小化を通して R を小さくする

統計的学習理論の枠組み

1.3 ベイズ規則とベイズ誤差

ベイズ規則とベイズ誤差I

Definition 3 (Bayes error / Bayes rule)

- ▶ ℓ: loss 関数
- ▶ Hall: 可測関数全体

のとき, Bayes error は予測誤差の最小値を達成する仮説:

Bayes error :=
$$\inf_{h \in \mathcal{H}_{all}} R(h)$$

また, Bayes error を達成する仮説 h_0 を Bayes rule という i.e.

$$R(h_0) = \text{Bayes error}$$

ベイズ規則とベイズ誤差 II

Bayes rule を具体的に求めてみる.

- ▶ $\ell(\hat{y}, y)$: loss 関数
- ► P: test distribution

とするとき.

$$R(h) = \mathbb{E}_{(X,Y) \sim P}[\ell(\hat{y}, y)] = \mathbb{E}_{X} \left[\mathbb{E}_{Y} \left[\ell(\hat{y}, y) | X \right] \right]$$

$$(\cdot \cdot \cdot)$$

$$\mathbb{E}_{X} \underbrace{\left[\mathbb{E}_{Y} \left[\ell(h(\boldsymbol{x}), y) | X \right] \right]}_{(\diamond)} = \int_{\mathcal{X}} \left\{ \int_{\mathcal{Y}} \ell(h(\boldsymbol{x}), y) dP(y | x) \right\} dP(x)$$

$$= \int_{\mathcal{X} \times \mathcal{Y}} \ell(h(\boldsymbol{x}), y) dP(x, y)$$

$$= R(h) \square$$

積分の単調性から (\diamond) を小さくする h を選べば予測損失も小さくなる

Example 1.1 判別問題

▶ 0-1loss を用いると,

$$(\diamond) = \sum_{y \in \mathcal{Y}} \ell(h(X), Y) P(Y = y|X) = 1 - P(Y = h(X)|X)$$

より,

$$h_0(X) = \underset{y \in \mathcal{Y}}{\operatorname{arg max}} P(Y = y|X)$$

が予測誤差を最小にする仮説 (input に対して最も出現確率の大きなラベルを出力)

▶ このときの Bayes error は

$$R^* = 1 - \mathbb{E}_X \left[\max_{y \in \mathcal{Y}} P(Y = y | X) \right]$$

Example 1.2 回帰問題

▶ 2乗 loss を用い, Y の分散を V[Y] とおくと,

$$\mathbb{E}_{Y}[\ell(h,Y)] = \mathbb{E}[h^{2} - 2hY + Y^{2}]$$

$$= \mathbb{E}[h^{2}] - 2\mathbb{E}[hY] + \mathbb{E}[Y^{2}] + \mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2}$$

$$= h^{2} - 2h\mathbb{E}[Y] + \mathbb{E}[Y]^{2} + \underbrace{\mathbb{E}[Y^{2}] - \mathbb{E}[Y]^{2}}_{V[Y]}$$

$$= (h - \mathbb{E}[Y])^{2} + V[Y]$$

第1項を最小にする h が Bayes rule

▶ このとき, Bayes error は

$$R^* = R(h_0) = \mathbb{E}_X[\underbrace{\mathbb{E}_Y[\ell(h_0(X), Y)|X]}_{V[Y|X]}]$$
$$= \mathbb{E}[V[Y|X]]$$

条件付き分散が一定値 σ^2 ならば, Bayes error も σ^2

Example 1.3 ランキング問題 I

ランキングを2値判別として定式化すると,仮説空間が

$$\mathcal{H} = \{ \operatorname{sign}(h(\boldsymbol{x}) - h(\boldsymbol{x}')) \}$$

なる形の関数空間に制限される.

- → 2 値判別の Bayes rule からランキングの Bayes rule は構成できない
- → data 分布に仮定をおき, Bayes rule を特徴づける

設定

- ▶ input を $(x_+,x_-)\in\mathcal{X}^2$ とおき, 常に $x_+\succ x_-$, y=+1 とする
- ト もし (x,x',-1) なる data があれば (x',x,+1) と変換
- ▶ $x_+\sim_{i.i.d.}\mathcal{D}_+$, $x_-\sim_{i.i.d.}\mathcal{D}_-$ とし, ランキング関数 $h:\mathcal{X}\to\mathbb{R}$ を学習

Example 1.3 ランキング問題 II

Definition 4 (true positive rate / false positive rate)

しきい値 $a \in \mathbb{R}$ に対して,

$$TP_h(a) := \mathbb{E}_{\boldsymbol{x}_+ \sim \mathcal{D}_+}[\mathbb{1}[h(\boldsymbol{x}_+) > a]]$$

 $FP_h(a) := \mathbb{E}_{\boldsymbol{x}_- \sim \mathcal{D}_-}[\mathbb{1}[h(\boldsymbol{x}_-) > a]]$

- ▶ $TP_h(a)$: しきい値 a において positive sample を正しく positive と判定出来ている割合.
- ▶ $FP_h(a)$: しきい値 a において negative sample を誤って positive と判定している割合.

 $a \in \mathbb{R}$ に対して, $(FP_h(a), TP_h(a)) \in [0, 1]^2$

Example 1.3 ランキング問題 III

Definition 5 (ROC curve)

 $a \to \infty$ とするとき, $(FP_h(a), TP_h(a))$ は $(0,0) \to (1,1)$ と動く. その軌跡の描く曲線を ROC curve という

- ► AUC: ROC curve と (1,0) で囲 まれる領域の面積
- ▶ ランダムな仮説 (TP=FP, 45 度 直線) は *AUC* = 0.5
- ► AUC が大きいほど TP が大き いので良い

Figure 1: "統計的学習理論" 図 1.3 より抜粋

Example 1.3 ランキング問題 IV

期待損失と AUC との関係

0-1 loss の下で,

$$R(h) = 1 - \mathbb{E}_{\boldsymbol{x}_{\pm} \sim \mathcal{D}_{\pm}} \left[\mathbb{1}[h(\boldsymbol{x}_{+}) - h(\boldsymbol{x}_{-}) > 0] \right]$$

$$= 1 - \mathbb{E}_{\boldsymbol{x}_{-} \sim \mathcal{D}_{-}} \left[\mathbb{E}_{\boldsymbol{x}_{+} \sim \mathcal{D}_{+}} \left[\mathbb{1}[h(\boldsymbol{x}_{+}) > h(\boldsymbol{x}_{-})] \right] \right]$$

$$= 1 - \mathbb{E}_{\boldsymbol{x}_{-} \sim \mathcal{D}_{-}} \left[TP_{h}(h(\boldsymbol{x}_{-})) \right]$$

$$= 1 - AUC(h)$$

よって $x_+ \perp x_-$ のとき,

- $h_0 = \arg\max AUC(h)$
- ▶ Bayes error = $1 AUC(h_0)$

統計的学習理論の枠組み

1.4 学習アルゴリズムの性能評価

学習アルゴリズムの性能評価I

Definition 6 (学習アルゴリズム)

学習アルゴリズムは観測データ集合から仮説集合への map:

$$\mathcal{A}: 2^{\mathcal{X} \times \mathcal{Y}} \longrightarrow \mathcal{H}$$
$$S \mapsto \mathcal{A}(S) = h_S$$

ここで,
$$S = \{(X_i, Y_i)\}_{i=1}^n$$

学習アルゴリズムの性能評価 II

A の性能の評価指標

1. 予測損失の学習データに関する期待値をとる:

$$\mathbb{E}_{S \sim \mathcal{D}^n}[R(h_S)]$$

- → A の平均的な性能を評価
- 2. 汎化誤差の分布を評価:

Bayes error を $R^* = \inf R(h)$ とおく. $\varepsilon > 0$ と $\delta \in (0,1)$ に対して

$$\Pr[R(h_S) - R^* < \varepsilon] > 1 - \delta$$

が成り立つとする.

ightarrow 十分大きい確率 $1-\delta$ に対して arepsilon を十分小さく取れれば Bayes error に近い予測損失を達成する仮説が求まる

学習アルゴリズムの性能評価 Ⅲ

Fact 2 (評価指標1と2の関係)

$$P_{S \sim \mathcal{D}^n}[R(h_S) - R^* \ge \varepsilon] \le \frac{\mathbb{E}_{S \sim \mathcal{D}^n}[R(h_S)] - R^*}{\varepsilon}$$

ト 予測損失と Bayes error の差が ε 以上である確率は、予測損失の期待値と Bayes error の差で上から抑えられる

(∵) Markov's inequality:

$$P(|X| \ge a) \le \frac{\mathbb{E}[|X|]}{a}, \quad a > 0$$

より, $|X| = R(h_S) - R^*$, $a = \varepsilon$ とおくと直ちに従う \square

学習アルゴリズムの性能評価 IV

Definition 7 (統計的一致性)

 $\forall \mathcal{D}: \textit{distribution}, \forall \varepsilon > 0$ に対して, 学習アルゴリズム $\mathcal{A}: S \mapsto h_S$ が統計的一致性をもつ

$$:\iff \lim_{n\to\infty} P_{S\sim\mathcal{D}^n}[R(h_S)-R^*\leq \varepsilon]=1$$

"data が多ければ最適な仮説を達成する"という良い学習アルゴリズムの性質

統計的学習理論の枠組み

1.5 有限仮説集合を用いた学習

予測判別誤差 (0-1 loss の汎化誤差) の評価 I

問題設定

- ▶ 2 値判別問題 (ℓ: 0-1 loss)
- ▶ 有限仮説集合: $\mathcal{H} := \{h_1, ..., h_T\}, h_t : \mathcal{X} \to \{+1, -1\}$
- ▶ 学習データ: $S = \{(X_i, Y_i)\}_{i=1}^n$, $(X_i, Y_i) \sim_{i.i.d.} P$

このとき, 学習アルゴリズムとして経験判別誤差を最小にする仮説を 出力するものを考える:

$$\mathcal{A}: 2^{\mathcal{X} \times \mathcal{Y}} \to \mathcal{H}$$

$$S \mapsto \mathcal{A}(S) = h_S = \underset{h \in \mathcal{H}}{\operatorname{arg min}} \underbrace{\hat{R}_{err}(h)}_{\frac{1}{n} \sum_{i=1}^{n} \ell(h(X_i), Y_i)}$$

分布 P の下での 0-1 loss に関する Bayes rule を h_0 とする (一般に $h_0 \notin \mathcal{H}$)

予測判別誤差 (0-1 loss の汎化誤差) の評価 II

予測判別誤差と Bayes error の gap

$$R_{err}(h_S) - R_{err}(h_0)$$

を評価.

いま, $h_{\mathcal{H}} := \underset{h \in \mathcal{H}}{\operatorname{arg \; min}} \, R_{err}(h)$ とおくと以下が成立:

- $R_{err}(h_0)$ $\leq R_{err}(h_{\mathcal{H}})$ $\leq R_{err}(h_S)$ 全可測関数で min \mathcal{H} 内で min
- $\qquad \qquad \hat{R}_{err}(h_S) \le \hat{R}_{err}(h_{\mathcal{H}})$

予測判別誤差 (0-1 loss の汎化誤差) の評価 Ⅲ

$$\begin{split} &R_{err}(h_{S}) - R_{err}(h_{0}) \\ &= R_{err}(h_{S}) - \hat{R}_{err}(h_{S}) + \hat{R}_{err}(h_{S}) - R_{err}(h_{\mathcal{H}}) + R_{err}(h_{\mathcal{H}}) - R_{err}(h_{0}) \\ &\leq R_{err}(h_{S}) - \hat{R}_{err}(h_{S}) + \hat{R}_{err}(h_{\mathcal{H}}) - R_{err}(h_{\mathcal{H}}) + R_{err}(h_{\mathcal{H}}) - R_{err}(h_{0}) \\ &\leq \max_{h} |\hat{R}_{err}(h) - R_{err}(h)| + \max_{h} |\hat{R}_{err}(h) - R_{err}(h)| + R_{err}(h_{\mathcal{H}}) - R_{err}(h_{0}) \\ &= 2 \max_{h} |\hat{R}_{err}(h) - R_{err}(h)| + R_{err}(h_{\mathcal{H}}) - R_{err}(h_{0}) - (\diamond) \end{split}$$

ここで (⋄) の第1項に Hoeffding's inequality を使う

Lemma 1 (Hoeffding's inequality)

Z: [0,1]-valued r.v. で $Z_1,...,Z_n \sim_{i.i.d.} P_Z$ のとき, $\varepsilon > 0$,

$$P\left[\left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mathbb{E}[Z]\right|\geq\varepsilon\right]\leq2e^{-2n\varepsilon^{2}}$$

予測判別誤差 (0-1 loss の汎化誤差) の評価 Ⅳ

Hoeffding's inequality の Z として $\mathbb{1}[h(X) \neq Y]$ を取ると,

$$P\left[2\max_{h\in\mathcal{H}}|\hat{R}_{err}(h) - R_{err}(h)| \ge \varepsilon\right] \le \sum_{h\in\mathcal{H}} \underbrace{P\left[|\hat{R}_{err}(h) - R_{err}(h)| \ge \frac{\varepsilon}{2}\right]}_{\le 2e^{-2n\varepsilon^2/4}}$$
$$\le 2|\mathcal{H}|e^{-n\varepsilon^2/2}$$

ここで, $\delta=2|\mathcal{H}|e^{-n\varepsilon^2/2}$ とおくと, 学習データ S が given の下で

$$P\left[R_{err}(h_S) - R_{err}(h_0) \le R_{err}(h_{\mathcal{H}}) - R_{err}(h_0) + \sqrt{\frac{2}{n}\log\frac{2|\mathcal{H}|}{\delta}}\right] \ge 1 - \delta$$

が成立.

予測判別誤差 (0-1 loss の汎化誤差) の評価 V

$$P\left[R_{err}(h_S) - R_{err}(h_0) \le R_{err}(h_H) - R_{err}(h_0) + \sqrt{\frac{2}{n}\log\frac{2|\mathcal{H}|}{\delta}}\right] \ge 1 - \delta$$

$$(\cdot \cdot \cdot)$$

$$\delta = 2|\mathcal{H}|e^{-n\varepsilon^2/2} \iff \frac{\delta}{2|\mathcal{H}|} = e^{-n\varepsilon^2/2}$$

$$\iff \log\frac{\delta}{2|\mathcal{H}|} = \frac{-n\varepsilon^2}{2}$$

$$\iff \varepsilon^2 = \frac{2}{n}\log\frac{2|\mathcal{H}|}{\delta}$$

$$P\left[2\max_{h\in\mathcal{H}}|\hat{R}_{err}(h) - R_{err}(h)| \ge \varepsilon\right] \le 2|\mathcal{H}|e^{-n\varepsilon^2/2}$$

$$\iff P\left[2\max_{h\in\mathcal{H}}|\hat{R}_{err}(h) - R_{err}(h)| \le \sqrt{\frac{2}{n}\log\frac{2|\mathcal{H}|}{\delta}}\right] \ge 1 - \delta$$

予測判別誤差 (0-1 loss の汎化誤差) の評価 VI

(◊) の第1項を上の評価で置き換えると,

$$R_{err}(h_S) - R_{err}(h_0) \le \sqrt{\frac{2}{n} \log \frac{2|\mathcal{H}|}{\delta}} + R_{err}(h_{\mathcal{H}}) - R_{err}(h_0)$$
 w.p. $1 - \delta$ が言える \square

▶ 仮説集合 \mathcal{H} が Bayes rule を含むとき $(h_{\mathcal{H}} = h_0 \text{ のとき})$:

$$R_{err}(h_{\mathcal{H}}) - R_{err}(h_0) = 0$$

$$\implies R_{err}(h_S) \longrightarrow R_{err}(h_0) \text{ as } n \to \infty$$

▶ 確率オーダー表記 (cf 例 2.1):

$$R_{err}(h_S) = R_{err}(h_0) + \mathcal{O}_p\left(\sqrt{\frac{\log |\mathcal{H}|}{n}}\right)$$

i.e.
$$\lim_{z\to\infty}\limsup_{n\to\infty}P[|R_{err}(h_S)|/\sqrt{\log|\mathcal{H}|/n}>z]=0$$

近似誤差と推定誤差Ⅰ

Definition 8 (近似誤差 (bias) / 推定誤差 (variance) 分解)

評価式

$$R_{err}(h_S) - R_{err}(h_0) \le \sqrt{\frac{2}{n} \log \frac{2|\mathcal{H}|}{\delta}} + R_{err}(h_{\mathcal{H}}) - R_{err}(h_0)$$

において, 近似誤差 (bias) と推定誤差 (var) を以下で定義.

$$bias_{\mathcal{H}} := R_{err}(h_{\mathcal{H}}) - R_{err}(h_0)$$

 $var_{\mathcal{H}} := \sqrt{\frac{2}{n} \log \frac{2|\mathcal{H}|}{\delta}}$

- ▶ bias はモデルが外れている (Bayes rule を含まない) ことで生じる誤差 (一般に $h_0 \notin \mathcal{H}$ より $bias_{\mathcal{H}} \geq 0$)
- ▶ var は学習データ (サンプルサイズ) に由来するばらつき

近似誤差と推定誤差Ⅱ

bias-variance trade-off

仮説空間の増大列 $\mathcal{H}_1 \subset \cdots \subset \mathcal{H}_M$, $|\mathcal{H}_M| < \infty$ に対して

$$bias_{\mathcal{H}_1} \ge \cdots \ge bias_{\mathcal{H}_M}, \ var_{\mathcal{H}_1} \le \cdots \le var_{\mathcal{H}_M}$$

- ▶ 仮説空間が広いほど Bayes rule に近い仮説が手に入りやすい
- ▶ サンプルサイズを止めて \mathcal{H} を広げるとばらつきが増大
- サンプルサイズが十分大⇒ 大きな 升 でも var は bias に対して大きくない
- ▶ サンプルサイズが小さい
 - \Rightarrow var は \mathcal{H} の大きさの影響を受けやすい

近似誤差と推定誤差 III

予測誤差を小さくする仮説集合 $\mathcal{H}_{\hat{m}}$ として, 以下を満たすものが良 さそう

$$\hat{m} = \underset{1 \le m \le M}{\arg \min} \left[bias_{\mathcal{H}_m} + var_{\mathcal{H}_m} \right]$$

- ▶ bias が data 分布に依存するため上手い基準ではない
 - \rightarrow 正則化

正則化I

<u>アイデア:</u> 大きな仮説集合から仮説を選ぶことに対してペナルティを 課す

Definition 9 (ペナルティ関数)

仮説集合の増大列 $\mathcal{H}_1 \subset \cdots \subset \mathcal{H}_M$. $\Phi: \mathcal{H}_m \to \mathbb{R}_{\geq 0}$ が仮説 h に対するペナルティ関数

: $\iff m_1 < m_2$ に対して, $h \in \mathcal{H}_{m_1}$, $h' \in \mathcal{H}_{m_2} \setminus \mathcal{H}_{m_1} \Rightarrow \Phi(h) \leq \Phi(h')$

Example 2 (大きい仮説集合ほどペナルティも大きい)

$$\mathcal{H}_0 = \emptyset$$
 として, $0 < w_1 < \cdots < w_M$ に対して

$$\Phi(h) = \sum_{m=1}^{M} w_m \mathbb{1}[h \in \mathcal{H}_m \backslash \mathcal{H}_{m-1}]$$

正則化II

正則化付き経験誤差最小化

$$\min_{h \in \mathcal{H}_M} \hat{R}_{err}(h) + \lambda \Phi(h)$$

- ▶ 想定する最大の仮説空間で最適化を実行
- ▶ λ の決め方:
 - ・data 数に依存させ, 適切なオーダーで $\lambda_n \to 0$ as $n \to \infty$ とする
 - ・クロスバリデーション

References

- [1] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning theory. In *Advanced lectures* on machine learning, pages 169–207. Springer, 2004.
- [2] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of machine learning.* MIT press, 2012.
- [3] Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge university press, 2014.
- [4] 金森敬文. 統計的学習理論 (機械学習プロフェッショナルシリーズ), 2015.