Tangent Spaces, Overview

by M.B.Kocic - Version 1.02 (2017-06-03) - Advanced GR - (partly based on F.P. Schuller's lectures, WE-Heraeus, 2015)

The velocity of a curve γ at a point $p \in \mathcal{M}$.

Let $(\mathcal{M}, \mathcal{O}, \mathcal{A})$ be a smooth manifold with a topology \mathcal{O} and a smooth atlas \mathcal{A} . Let further,

$$\gamma: \mathbb{R} \to \mathcal{M}$$
,

be at least C^1 smooth curve on \mathcal{M} parameterized by $\lambda \mapsto \gamma(\lambda)$.

The velocity of a curve γ at a point $p \in \mathcal{M}$ is the linear map,

$$v_{\gamma,p}: C^{\infty}(\mathcal{M}) \to \mathbb{R},$$

defined by,

$$f \mapsto v_{\gamma,p}(f) := (f \circ \gamma)'(\lambda_0),$$

where $p = \gamma(\lambda_0)$.

Here, $C^{\infty}(\mathcal{M})$ is the vector space of smooth functions on the manifold \mathcal{M} ,

$$C^{\infty}(\mathcal{M}) := \{ f : \mathcal{M} \to \mathbb{R} \mid f \text{ is smooth} \}.$$

Note: $(f+g)(p) := v(p) + g(p), (\alpha \cdot f)(p) := \alpha \cdot f(p)$.

Tangent space, intrinsic definition

The tangent space to \mathcal{M} at p, denoted by $T_p\mathcal{M}$, is the **set** of the velocities of all smooth curves in \mathcal{M} passing through p,

$$T_p\mathcal{M} := \{v_{\gamma,p} \mid \gamma \text{ is smooth}\}.$$

Define two binary operations on $T_n\mathcal{M}$,

$$(v_{\gamma,p} + v_{\delta,p})(f) := v_{\gamma,p}(f) + v_{\delta,p}(f),$$
$$(\alpha \cdot v_{\gamma,p})(f) := \alpha \cdot v_{\gamma,p}(f),$$

where $v_{\gamma,p}, v_{\delta,p} \in T_p \mathcal{M}$ and $\alpha \in \mathbb{R}$.

Proposition. $T_p\mathcal{M}$ equipped with + and \cdot from above is a **vector space**.

Proof by construction (in an arbitrary chart). E.g., $(x \circ \sigma)(\lambda) = (x \circ \gamma)(\lambda_0 + \lambda) + (x \circ \delta)(\lambda_1 + \lambda) - (x \circ \gamma)(\lambda_0)$ where $p = \gamma(\lambda_0) = \delta(\lambda_1)$.

The components of a vector $\in T_p\mathcal{M}$ wrt a chart.

Let (\mathcal{U}, x) be a chart, $(\mathcal{U}, x) \in \mathcal{A}$, covering the curve γ at p, $p = \gamma(\lambda_0) \in \mathcal{U} \subseteq \mathcal{M}$.

The coordinates of p are given by scalar functions $x^{\mu}(p)$, where $\mu = 1, ..., m$.

Expand $v_{\gamma,p}(f)$ in terms of chart representatives,

$$v_{\gamma,p}(f) = (f \circ \gamma)'(\lambda_0)$$

$$= ((f \circ x^{-1}) \circ (x \circ \gamma)) (\lambda_0)$$

$$= (x^{\mu} \circ \gamma)'(\lambda_0) \cdot \partial_{\mu}(f \circ x^{-1}) (x(p))$$

Define,
$$\dot{\gamma}^{\mu}_{(x),p} := (x^{\mu} \circ \gamma)'(\lambda_0) \qquad \leftarrow \text{components}$$

$$\left(\frac{\partial f}{\partial x^{\mu}}\right)_p := \partial_{\mu}(f \circ x^{-1}) (x(p)) \leftarrow \text{basis}$$

Then:
$$v_{\gamma,p}(f) = \dot{\gamma}^{\mu}_{(x),p} \left(\frac{\partial f}{\partial x^{\mu}} \right)_p \implies v_{\gamma,p} = \dot{\gamma}^{\mu}_{(x),p} \left(\frac{\partial}{\partial x^{\mu}} \right)_p$$
.

4 Chart induced basis:

Choice of a chart in ${\mathscr M}$ gives the choice of a basis in $T_p{\mathscr M}$.

Proposition. $\left(\frac{\partial}{\partial x^1}\right)_p, \dots \left(\frac{\partial}{\partial x^m}\right)_p \in T_p \mathcal{U}$ constitutes a basis of $T_p \mathcal{U} \subseteq T_p \mathcal{M}$.

Proof of the linear independence. Apply $\left(\frac{\partial}{\partial x^{\mu}}\right)_p$ on x^{ν} ,

$$0 = \lambda^{\mu} \left(\frac{\partial x^{\nu}}{\partial x^{\mu}} \right)_{p} = \lambda^{\mu} \partial_{\mu} (x^{\nu} \circ x^{-1}) \left(x(p) \right) = \lambda^{\mu} \delta^{\nu}_{\mu} = \lambda^{\nu}.$$

Corollary: $\dim T_p \mathcal{M} = \dim T_p \mathcal{U} = \dim \mathcal{U} = \dim \mathcal{M}$.

5 Change of vector components under a change of chart.

Let (\mathcal{U}_x, x) and (\mathcal{U}_y, y) be two charts from the atlas \mathcal{A} , such that, $p = \gamma(\lambda_0) \in \mathcal{U}$,

where $\mathcal{U} = \mathcal{U}_x \cap \mathcal{U}_y \subseteq \mathcal{M}$.

Consider a vector $V_p \in T_p \mathcal{M}$. Then, there are unique components $V_{(x),p}^{\mu}$ and $V_{(y),p}^{\mu}$ in the chart induces bases with respect to (\mathcal{U}_x, x) and (\mathcal{U}_y, y) , such that,

$$V_p = V^{\mu}_{(x),p} \left(\frac{\partial}{\partial x^{\mu}} \right)_p = V^{\nu}_{(y),p} \left(\frac{\partial}{\partial y^{\nu}} \right)_p.$$

But,
$$\left(\frac{\partial f}{\partial x^{\mu}}\right)_{p} = \partial_{\mu}(f \circ x^{-1})(x(p))$$

 $= \partial_{\mu}\left((f \circ y^{-1}) \circ (y \circ x^{-1})\right)(x(p))$
 $= \partial_{\mu}(y^{\nu} \circ x^{-1})(x(p)) \cdot \partial_{\nu}(f \circ y^{-1})(y(p))$
 $= \left(\frac{\partial y^{\nu}}{\partial x^{\mu}}\right)_{p} \left(\frac{\partial f}{\partial y^{\nu}}\right)_{p},$

so that: $V^{\mu}_{(x),p} \left(\frac{\partial y^{\nu}}{\partial x^{\mu}} \right)_{p} \left(\frac{\partial f}{\partial y^{\nu}} \right)_{p} = V^{\nu}_{(y),p} \left(\frac{\partial}{\partial y^{\nu}} \right)_{p}$. Therefore, $V^{\nu}_{(y),p} = V^{\mu}_{(x),p} \left(\frac{\partial y^{\nu}}{\partial x^{\mu}} \right)_{p}$

- Passive (or alias) transformation
- Active (or alibi) transformation

Change of vector components under a pushforward.

Let $\varphi : \mathcal{M} \to \mathcal{N}$ be a smooth map between manifolds. Let further $q : \mathcal{N} \to \mathbb{R}$ be a smooth function on \mathcal{N} .

Then the pullback of the function g by φ to $p \in \mathcal{M}$ is the precomposition of g by φ at p,

$$(\varphi^*g)(p) \coloneqq (g \circ \varphi)(p) = g(\varphi(p)) = g(q),$$

where $q = \varphi(p) \in \mathcal{N}$.

Let V_p be a vector in $T_p\mathcal{M}$. Then the pushforward of V_p by φ to $T_q\mathcal{N}$ (to act on $g \in C^{\infty}(\mathcal{N})$) is the composition of V_p with the pullback of g by φ ,

$$(\varphi_* V_p)(g) \coloneqq V_p(\varphi^* g) = V_p(g \circ \varphi) = V_p(f).$$

Let (\mathcal{U}_x, x) be a chart on \mathcal{M} and (\mathcal{V}_z, z) a chart on \mathcal{N} , such that $\mathcal{U}_x = \operatorname{preim}_{\varphi} \mathcal{V}_z$ and $p \in \mathcal{U}_x$, $q \in \mathcal{V}_z$. We have, $(\varphi_* V_p)_q (g) = (\varphi_* V_p)_{(z),q}^{\alpha} \left(\frac{\partial g}{\partial z^{\alpha}}\right)_q$, but also: $(\varphi_* V_p)_q (g) = V_p (\varphi^* g) = V_p (f) = v_{\gamma,p}(f) = v_{\gamma,p}(g \circ \varphi)$ $= (g \circ \varphi \circ \gamma)' (\lambda_0) = ((g \circ z^{-1}) \circ (\hat{z} \circ \gamma))' (\lambda_0)$ $= ((g \circ z^{-1}) \circ (\hat{z} \circ x^{-1}) \circ (x \circ \gamma))' (\lambda_0)$ $= (x^{\mu} \circ \gamma)' (\lambda_0) \cdot \partial_{\mu} (\hat{z}^{\nu} \circ x^{-1}) (x(p)) \cdot \partial_{\nu} (g \circ z^{-1}) (z(q))$ $= V_{(x),p}^{\mu} \left(\frac{\partial \hat{z}^{\alpha}}{\partial x^{\mu}}\right)_p \left(\frac{\partial g}{\partial z^{\alpha}}\right)_q$. Hence, $(\varphi_*)_{\mu}^{\alpha} = \left(\frac{\partial \hat{z}^{\alpha}}{\partial x^{\mu}}\right)_p$ and, \perp

If φ is bijective and φ^{-1} is also smooth, then φ is called a *diffeomorphism*.

 $\left| \left(\varphi_* V_p \right)_{(z),q}^{\alpha} = V_{(x),p}^{\mu} \left(\frac{\partial \hat{z}^{\alpha}}{\partial x^{\mu}} \right)_p \right|$