Santa Clara University

Department of Electrical and Computer Engineering

No	Name (please print)	
 Include this page with Homework Write Name and Page Number on each page 		
ELEN 153 Fall 2020	Problem Set #	Due: 11-12-2020, Thursday, 12:00 pm

- 1. An nFET with Channel width and length of 6 µm and 45 nm, respectively, is built in a process where $\kappa_n' = 158 \,\mu\text{A/V}^2$ and $V_{Tn} = 0.75 \,\text{V}$. The voltages are set to a value of $V_{GSn} = V_{DSn} = V_{DD} = 3.3 \,\text{V}$.
- a) Is the transistor saturated or non-saturated?
 - b) Calculate the drain-source resistance using the appropriate relationship for the transistor.
 - c) Compare your value in b) with that found using relationship (6.71) Page 214, with a value of $\eta = 1$.
 - 2. Consider the NOT gate (see below) when an external load of $C_L = 72$ fF is connected to the output. Note that the electrical channel length is $L = 0.8 \mu m$.
- a) Calculate the input capacitance, $C_{in} = C_{Gp} + C_{Gn}$ of the circuit. b) Calculate the FET capacitance, $C_{FET} = C_{Dp} + C_{Dn}$ and the Output capacitance $C_{out} = C_{FET} + C_{L}$. $C_{Dp} = C_{GDp} + C_{DBp} = (C_{gd} + C_{gdo}) + C_{Ddiff}$, where $C_{Ddiff} = C_{jo}W_pL_{Dp} + C_{jswo}(W_p + 2L_{Dp})$
 - An nFET has a gate oxide with a thickness of $t_{ox} = 24$ nm. The p-type bulk region is doped with Boron at a density of $N_a = 4 \times 10^{15} / \text{cm}^3$. Channel width = 4 μm ; Channel length = 25 nm.
 - a) Calculate the device No body-bias threshold voltage.
 - b) Calculate the body bias coefficient γ.
 - c) What is the device threshold voltage if a body bias voltage of $V_{SBn} = 1.2 \text{ V}$ is applied.
 - d) Calculate the drain current with bias voltages of V_{GSn}= 2.3V, V_{DSn}= 1.9 V applied to the device in c). Use mobility value from mobility chart.

1) a)
$$V_{sat} = V_{USN} - V_T = 3.3 - 0.75 = 2.55$$

 $V_{DSN} = 3.3 > 2.55$ saturated

b)
$$R_n = \frac{2V_{pen}}{\beta_n(V_{sat})^2} = \frac{2(3.3)}{(158)(\frac{6000}{45})(2.55)^2} = 48.18 \text{ A}$$

()
$$R_n = \frac{n}{\beta_n (V_{00} - V_{rn})} = \frac{1}{(158)(\frac{6000}{45})(3.3 - 0.75)} = 16.62 \Omega$$

2) a)
$$C_{in} = C_{GP} + C_{Gn} = C_{ox} L_{eff} (W_P + W_n)$$

= (2.7)(1)(3+4) = 32.44 ff

b)
$$C_{DP} = C_{CDP} + C_{DBP} = C_{OX}(W_p)(\frac{1}{2}L_{CPP} + X_1) + C_{jo}W_pL_{DP} + C_{jwo}(W_p + 2L_{DP})$$

$$= (2.7)(8)(\frac{1}{2}(0.8)+0.1)+(1.05)(8)(2)+(0.32)(8+2(2))$$

$$= 31.44 + F$$

$$C_{Dn} = (o_{x}(W_{n})(\frac{1}{2}L_{eff} + x_{A}) + C_{jon}(W_{n})(L_{Dn}) + C_{joun}(W_{n} + 2L_{Dn})$$

$$= (2.7)(4)(\frac{1}{2}(0.8) + 0.1) + (0.86)(4)(2) + (0.24)(4 + 2(2))$$

$$= 14.2 ff$$

3) 9)
$$\phi_{\varsigma} = \frac{kT}{9} \ln \left(\frac{N_1}{N_1} \right) = \frac{(1.381 \cdot 10^{-23})(\frac{3}{900})}{1.602 \cdot 10^{-19}} \ln \left(\frac{4 \cdot 10^{15}}{1.45 \cdot 10^{10}} \right)$$

$$= 0.324 \frac{1}{7} \left(\frac{500}{1.45 \cdot 10^{-14}} \right) = \frac{3.9(9.854 \cdot 10^{-14})}{1.45 \cdot 10^{-14}} = \frac{1114 \cdot 10^{-7}}{1.45 \cdot 10^{10}}$$

$$\left(o_{K} = \frac{s_{oK}}{to_{K}} = \frac{3.9(9.854 \cdot 10^{-14})}{24(\frac{1cm}{10^{2}m})} = 1.44 \cdot 10^{-7} \, F/cm^{2}$$

$$V_{T0n} = \frac{1}{\cos \sqrt{295}} \sqrt{1295} \sqrt{1295} + 295$$

$$= \frac{1}{1.44.10^{-7}} \sqrt{2(1.602.10^{-19})(11.7.8.854.10^{-14})(4.10^{15})(2.0.324)}$$

$$+ 2(0.324)$$

$$= 0.852 \sqrt{100}$$

$$b) y = \int \frac{2q \, \epsilon_{si} \, N_4}{C_{ox}} = \int \frac{2(1.602 \cdot 10^{-19})(11.7 \cdot 8.854 \cdot 10^{-14})(4 \cdot 10^{15})}{1.44 \cdot 10^{-7}}$$

$$= 0.753$$

C)
$$V_{Tn} = V_{Ton} + 7(\sqrt{2\phi_F} + V_{SBN} - \sqrt{2\phi_F})$$

= 0.852 + (2.53)($\sqrt{2(0.324)} + 1.2 - \sqrt{2(0.324)}$)
= 0.992 $\sqrt{\frac{2(0.324)}{2(0.324)}}$

$$M_{n} = 10^{4/33} \cdot 1000 = 1321.94$$

$$B_{n} = M_{n}(o_{x}(\frac{w_{n}}{L_{n}}) = (1321.94)(1.44.10^{7})(\frac{4880}{25})$$

$$= 0.0305^{4}/v$$
 $V_{sat} = V_{csn} - V_{T_{n}} = 2.3 - 0.992 = 1.308V$
 $V_{DSn} = 1.9 > 1.308$ Saturation

$$I_{0n} = \frac{1}{2}B_n(V_{sat})^2 = \frac{1}{2}(0.0305)(1.308)^2$$

= 0.026 A