Hasta ahora el modelo estándar es:

$$\dot{\xi} = K r(\xi) - D\xi + F - Q$$

Este modelo está basado en leyes físicas (fenomenológico).

Pero...

¿qué valores toma r?

¿cómo se relaciona con los estados?

Normalmente, son relaciones determinadas empíricamente.

Sin embargo, deben cumplir algunas propiedades para mantener la positividad y conservación de masa.

Todas las masas tienen que ser positivas y la masa dentro del reactor no puede exceder a la masa introducida (más la inicial).

Propiedad 1 (condición suficiente):

Para cada variable de estado ξ_i , el campo $\partial \xi_i/\partial t$ en el eje $\xi_i=0$ debe apuntar hacia cuadrantes aceptables del espacio de estados:

De manera general, para $\xi \in [L_{min}, L_{max}]$:

$$\xi = L_{min} \Rightarrow \frac{\partial \xi_i}{\partial t} \ge 0$$
 $\xi = L_{max} \Rightarrow \frac{\partial \xi_i}{\partial t} \le 0$

Específicamente, para ξ_i positivo:

$$\xi_i = 0 \Rightarrow \frac{\partial \xi_i}{\partial t} \ge 0$$

La reacción no puede suceder si falta algún reactante esencial.

Propiedad 2:

Si ξ_i es un reactante esencial de la reacción i, entonces ξ_i se puede factorizar en r_i :

$$r_i(\xi) = \prod_j \xi_j \, \nu_j(\xi)$$

Luego, se verifica fácilmente que si $\xi_j = 0 \Rightarrow r_i(\xi) = 0$.

Por ejemplo, una tasa de crecimiento:

$$r_{x}(\xi) = \mu(\xi) \cdot x$$

Si x = 0, no habrá crecimiento.

Por ejemplo, una tasa de crecimiento:

$$r_{x}(\xi) = \mu(\xi) \cdot x$$

Si x = 0, no habrá crecimiento.

Todas las tasas se suelen definir de manera similar:

$$r_{\scriptscriptstyle S}(\xi) = q_{\scriptscriptstyle S}(\xi) \cdot x$$

$$r_{O_2} = q_{O_2}(\xi) \cdot x$$

$$\boldsymbol{r}(\xi) = \boldsymbol{q}(\xi) \cdot \boldsymbol{x}$$

Las q_i se conocen como tasas específicas y las r_i como tasas volumétricas.

Por ejemplo:

 r_x puede tener unidades de $\left[\frac{g \ de \ X}{h}\right]$, en cambio μ tiene de $\left[\frac{1}{h}\right]$.

 r_S puede tener unidades de $\left[\frac{g \ de \ S}{h}\right]$, en cambio q_S tiene de $\left[\frac{g \ de \ S}{g \ de \ X \ h}\right]$.

Tasas específicas: Modelo de Monod

- Expresión más comúnmente usada.
- Empírica, basada en ley de Michaelis-Menten para cinéticas enzimáticas.
- Monótona (no hay inhibición).

$$\mu = \mu_{max} \frac{s}{s + K_s}$$

$$\mu_{max} = \left[\frac{1}{h}\right] \qquad K_s = \left[\frac{g}{l}\right]$$

Tasas específicas: Modelo de Monod

$$\mu = \mu_{max} \frac{s}{s + K_s}$$

Si $s \ll K_s$

Si
$$s \gg K_s$$

$$\mu \approx \mu_{max} \frac{s}{K_s}$$

$$\mu \approx \mu_{max}$$

Además:

$$r_{x} = \mu \cdot x = s \cdot x \cdot \left(\mu_{max} \frac{1}{s + K_{s}}\right)$$

$$r_i(\xi) = \prod_j \xi_j \, \nu_j(\xi)$$

Tasas específicas: Modelo de Monod

Sustrato limitante	K _S (mg/l)
Glucosa	4
Lactosa	20
PO ₄ H ₂ ⁻	1,6
Arginina	0,5
NH ₄ ⁺	0,1-1

Tabla 2.1: Constante de saturación media de sustratos para E. coli creciendo a 37ºC

Microorganismos/células	$\mu_{max}(h^{-1})$	t_D (h)
Bacterias	0,6-1,4	0,5-1,15
Levaduras y hongos filamentosos	0,2-0,6	1,15-3
Célula animales	0,01-0,04	17-70
Célula vegetales	0,007-0,03	23-100

Tabla 2.2: μ_{max} y t_D para diferentes tipos de microorganismos y células

Tasas específicas: Modelo de Haldane

- No Monótona
- Inhibición por exceso de sustrato

$$\mu = \mu_{max} \frac{s}{K_s + s + \frac{s^2}{K_i}} = \mu_{max} \frac{s}{K_s + s \left(1 + \frac{s}{K_i}\right)}$$

$$s^* = \sqrt{K_s K_i} \qquad \qquad \mu^* = \frac{\mu_{max}}{1 + 2\sqrt{\frac{K_s}{K_i}}}$$

$$\mu_{max} = \left[\frac{1}{h}\right] \qquad K_s = \left[\frac{g}{l}\right] \qquad K_i = \left[\frac{g}{l}\right]$$

Tasas específicas: Modelo de Haldane

Tasas específicas: otros modelos

Sin inhibición

	Name	Remark	Normalized kinetics $\tilde{r}(C_S)$
a	Monod	Only the substrate uptake step is rate limiting	$\frac{C_{S}}{K_{S}+C_{S}}$
b	Blackman	Another rate limiting step besides substrate uptake determines the maximum rate	$\min(1, K_S C_S)$
c	Teissier	Empirical equation	$1-e^{-K_SC_S}$
d	Moser	Substrate uptake with higher order of reaction, e.g. for gaseous substrates	$\frac{C_S^N}{K_S^N+C_S^N}$
e	Contois	Diffusion layer around the cell	$\frac{C_S}{K_S C_X + C_S}$
f	Powel	Considers back diffusion of inner substrate	$\frac{C_S - K_1 \tilde{r}(C_S)}{K_S + C_S - K_1 \tilde{r}(C_S)}$
g	Mason and Millis	Parallel uptake by transport and diffusion	$\frac{C_S}{K_S+C_S}+K_1C_S$
h	Vavilin	Extension of d) for initial inactivation by toxic substrates	$\frac{C_{S}^{N}}{K_{S}^{N-M}C_{S(t=0)}^{M}+C_{S}^{N}}$

Con inhibición

	Name	Normalized kinetics $\tilde{r}(C_S)$
a	Haldane (uncompetitive) ^a	$\frac{C_S}{K_S + C_S \left(1 + \frac{C_S}{K_I}\right)}$
Ь	Ierusalimsky (non-competitive) ^a	$\frac{C_{\mathcal{S}}}{K_{\mathcal{S}} + C_{\mathcal{S}}} \frac{1}{\left(1 + \frac{C_{\mathcal{S}}}{K_{\mathcal{I}}}\right)}$
С	Aiba, Edwards	$\frac{C_S}{K_S+C_S}e^{-\frac{C_S}{K_t}}$
d	Yano (generalized uncompetitive)	$\frac{C_{\mathcal{S}}}{K_{\mathcal{S}} + C_{\mathcal{S}} \left(1 + \sum_{i=1}^{N} \left(\frac{C_{\mathcal{S}}}{K_{F_{i}}}\right)^{i}\right)}$
e	Teissier type	$e^{-\frac{C_S}{K_I}}-e^{-K_SC_S}$
f	Webb	$\frac{C_{\mathcal{S}}\left(1+\frac{C_{\mathcal{S}}}{K_{II}}\right)}{K_{\mathcal{S}}+C_{\mathcal{S}}\left(1+\frac{C_{\mathcal{S}}}{K_{I}}\right)}$
g	Hill (allosteric)	$\frac{C_{\rm S}^N}{K_{\rm S}^N+C_{\rm S}^N}$
h	Wayman and Tseng (toxic substrate)	$\frac{C_S}{K_S + C_S} - K_I \min(C_{SI} - C_S)$

Tasas específicas: otros modelos

Tasas específicas: factores

Múltiples factores afectan las tasas de crecimiento o consumo:

- Concentración de sustratos
- Concentración de biomasa
- pH

- Temperatura
- Iluminación (microalgas)
- Inhibidores

La forma usual de componer los efectos es mediante su producto:

$$\mu = \mu(s) \cdot \mu(x) \cdot \mu(p) \cdot \mu(pH) \cdot \mu(T) \cdot \mu(I) \dots$$

Ejemplo típico:

$$\mu = \mu_{max} \frac{s}{s + K_s} \cdot \frac{c}{c + K_c}$$

Tasas específicas: efecto de la temperatura

- Efecto muy importante y complejo.
- Cada microorganismo tiene una temperatura óptima.
- El control de temperatura es un lazo esencial.

Clasificación	Rango de temperatura (°C)	Temperatura óptima (°C)
Psicrófilos	0-20	~ 15
Psicrótrofos	10-30	~ 20
Mesófilos	15-45	~ 35
Termófilos	35-70	~ 60

Tasas específicas: efecto del pH

- Efecto muy importante y complejo.
- Cada microorganismo tiene un pH óptim.
- El control de pH es un lazo esencial*.

Clasificación	Rango de pH óptimo
Acidófilos	2-5,5
Neutrófilos	5,5-8
Alcalófilos	8-11

