Universidade de São Paulo

EP 1 - MAP3121

Decomposição LU para Matrizes Tridiagonais

Nome	NUSP
Diogo Vaccaro	8803195
Otávio Henrique Monteiro	10774159

Conteúdo

Сара	1	
Conteúdo	2	
Introdução	3	
Decomposição LU	3	
Matrizes Tridiagonais	4	
Matrizes Tridiagonais cíclicas	5	
Desenvolvimento	6	
Saídas para n=20	8	
Referências	9	
Anexos	9	
1. Resultados n=20 (utilizados para o gráfico)	9	
2. Código	10	

Introdução

O primeiro exercício programa proposto pela equipe de Métodos Numéricos e Aplicações diz respeito a um tipo de decomposição de matrizes, pelo método LU, i.e. decompondo uma matriz triangularizável em uma matriz triangular inferior e uma matriz triangular superior.

Decomposição LU

Sendo assim, para uma matriz diagonalizável **A** temos a decomposição em matriz **L** e **U** que recuperam a matriz original com uma multiplicação de matrizes, e.g. para n=3:

$$A = L \cdot U = \begin{pmatrix} 1 & 0 & 0 \\ L_{2,1} & 1 & 0 \\ L_{3,1} & L_{3,2} & 1 \end{pmatrix} \cdot \begin{pmatrix} U_{1,1} & U_{1,2} & U_{1,3} \\ 0 & U_{2,2} & U_{2,3} \\ 0 & 0 & U_{3,3} \end{pmatrix}$$
(1)

Assim, fica evidente que os elementos da matriz A podem ser encontrados por uma relação do tipo:

$$A_{ij} = \sum_{k=1}^{\min\{i,j\}} L_{ik} U_{kj}.$$
 (2)

$$A_{3,3} = L_{3,1} \cdot U_{1,3} + L_{3,2} \cdot U_{2,3} + 1 \cdot U_{3,3} \tag{3}$$

Assim, podemos resolver qualquer sistema linear Ax = b resolvendo-se um sistema triangular inferior (usando L) e outro triangular superior (usando B), como segue:

Sistema: Ax = bDecomposição: A = LUEntão: LUx = b

Chamamos: y = Ux

- i. Resolve o sistema triangular inferior Ly = b
- ii. Resolve o sistema triangular superior Ux = y

As equações a seguir, que mostram uma forma de calcular os coeficientes de forma diferente, podem ser encontradas rearranjando as equações desenvolvidas diretamente pela multiplicação matricial:

$$U_{ij} = A_{ij} - \sum_{k=1}^{i-1} L_{ik} U_{kj}, \quad j = i, \dots, n$$
 (4)

$$L_{ji} = \left(A_{ji} - \sum_{k=1}^{i-1} L_{jk} U_{ki}\right) / U_{ii}, \quad j = i+1, \cdots, n$$
(5)

$$U_{3,3} = A_{3,3} - (L_{3,1} \cdot U_{1,3} + L_{3,2} \cdot U_{2,3}) \tag{6}$$

Matrizes Tridiagonais

Em especial, estudaram-se as matrizes tridiagonais, cujos elementos não são nulos apenas nas diagonais principal e secundárias acima e abaixo da principal.

$$A = \begin{bmatrix} b_1 & c_1 \\ a_2 & b_2 & c_2 \\ & \ddots & \ddots & \ddots \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ & & & a_n & b_n \end{bmatrix}$$
(7)

Esse tipo de matriz pode ser entendida diretamente pelo conjunto de diagonais, que facilita o armazenamento e cálculos a serem realizados. Seja A uma matriz

tridiagonal triangularizável pelo método de Eliminação de Gauss sem trocas de linhas. Podemos notar que os termos da matriz A que são dados da forma c_i , não são alterados durante o escalonamento. Isso acontece porque durante o processo de anular os termos a_{i+1} abaixo dos pivôs b_i toda a linha do termo a_{i+1} é subtraída da linha do pivô multiplicada pelo termo a_{i+1} . No entanto, todos os termos imediatamente acima dos c_i são nulos. Portanto, os termos c_i não são alterados. Ou seja, na matriz U, triangular superior do escalonamento, os termos $U_{i,i+1}$ são iguais a c_i .

Além desse fato acima, os únicos multiplicadores que podem ser não nulos são os $L_{i+1,i}$ já que para cada pivô b_i apenas a linha abaixo possui um número a ser anulado a_{i+1} que resultará justamente no multiplicador L_{i+1} .

O primeiro termo de U, U_{11} , é o termo b_1 diretamente, pois já é um termo pivô. Para os demais termos, fazendo o escalonamento, temos que:

$$\begin{split} L_{i+1,i} &= a_{i+1} / u_i \text{ (multiplicador)} \\ U_{ii} &= b_i - L_{i,i-1} * c_i \text{ (próximo pivô)} \end{split}$$

Assim, a matriz tridiagonal pode ser guardada em 3 vetores a, b e c que contém as diagonais principal e secundárias.

Matrizes Tridiagonais cíclicas

Ademais, o método desenvolvido para esse tipo de matriz pode ser expandido facilmente para sistemas tridiagonais cíclicos, que adicionam um elemento a cada diagonal secundária.

$$A = \begin{bmatrix} b_1 & c_1 & & & a_1 \\ a_2 & b_2 & c_2 & & \\ & \ddots & \ddots & \ddots & \\ & & a_{n-1} & b_{n-1} & c_{n-1} \\ c_n & & & a_n & b_n \end{bmatrix}$$

Sua solução é dada por:

$$x_n = \frac{d_n - c_n \tilde{y}_1 - a_n \tilde{y}_{n-1}}{b_n - c_n \tilde{z}_1 - a_n \tilde{z}_{n-1}} \quad e \quad \tilde{x} = \tilde{y} - x_n \tilde{z}$$

onde T é a submatriz principal de A (n-1)x(n-1); y~ é a solução do sistema linear Ty~ = d~ e z~ é a solução do sistema linear Tz~=v, onde v = $(a_1,0,...,0,c_{n-1})$; e d~=d (n-1).

Foi dado como objetivo do exercício programa desenvolver um método capaz de decompor uma matriz tridiagonal A $n \times n$ e resolver um sistema tridiagonal cíclico, que será utilizado em exercícios futuros.

Desenvolvimento

Este exercício programa foi desenvolvido em C++, seguindo as especificações detalhadas no enunciado fornecido. Foi criado um documento *LEIAME.txt* contendo uma explicação breve de compilação, interação, funcionamento e saídas do programa.

O programa interage com o usuário pedindo a forma de entrada, que pode ser matricial ou diretamente com os parâmetros das diagonais e vetor *d*. No primeiro caso são extraídos estes parâmetros e no segundo a matriz é reconstruída, para facilitar os cálculos de comparação de resultados ao final da execução. Dessa forma o programa é capaz de se adaptar ao tipo de entrada de trabalhos posteriores.

Após a entrada de dados e extração de parâmetros é realizada a decomposição LU seguindo-se o algoritmo encontrado com base no Método de eliminação de Gauss:

Achamos então a solução, por meio da seguinte combinação:

$$Ax = d \Rightarrow LUx = d$$

 $L(Ux) = d \Rightarrow Ly = d$
 $Ux = y$

Dessa forma, somos capazes de encontrar os valores de solução Ax=d. Esses valores de x encontrados são então usados na multiplicação matricial com a matriz A original e comparados com o valor esperado (d).

Foi fornecido um exemplo de sistema linear tridiagonal cíclico para testes, com funções para determinar os parâmetros das diagonais e resultado. Foram realizados testes para diferentes n, em especial para n=20.

```
//Parametros até n-1

for (int i = 1; i < n; i++)

{
    float aux = (float) i;
    a[i] = (2*aux - 1)/(4*aux);
    b[i] = 2;
    c[i] = 1 - a[i];
    d[i] = cos((2*PI*i*i)/(n*n));
}

//Parametros em i=n

a[n] = (2*n - 1)/(2*n);

b[n] = 2;

c[n] = 1 - a[n];

d[n] = cos(2*PI);
```

Saídas para n=20

Os parâmetros e resultados, gerados durante a execução do programa, para o exemplo desse sistema linear tridiagonal cíclico de dimensões n=20 estão também no arquivo *output.txt*.

O vetor solução encontrado é:

```
x = \{ +0.33032 ; +0.33370 ; +0.33082 ; +0.32459 ; +0.31054 ; +0.28498 ; +0.24376 ; +0.18349 ; +0.10274 ; +0.00361 ; -0.10670 ; -0.21473 ; -0.30114 ; -0.34331 ; -0.32098 ; -0.22451 ; -0.06386 ; +0.12581 ; +0.28714 ; +0.35589 \}
```

O seguinte gráfico mostra a comparação entre o resultado obtido pela multiplicação de $\bf A$ com os valores encontrados de $\bf x$ e o resultado esperado $\bf d$:

Repara-se que no gráfico as curvas estão sobrescritas, já que os resultados numéricos são idênticos.

Referências

[1] Equipe de Métodos Numéricos. Decomposição LU para Matrizes Tridiagonais - MAP3121, 2022.

Anexos

1. Resultados n=20 (utilizados para o gráfico)

d[i]	Encontrado	Esperado	Erro
1	0,999877	0,999877	5,96E-08
2	0,998027	0,998027	0
3	0,990024	0,990024	5,96E-08
4	0,968583	0,968583	0
5	0,923879	0,923880	5,96E-08
6	0,844328	0,844328	0
7	0,718126	0,718126	5,96E-08
8	0,535827	0,535827	0
9	0,294040	0,294040	2,98E-08
10	0,000000	0,000000	3,73E-09
11	-0,323917	-0,323917	2,98E-08
12	-0,637424	-0,637424	0
13	-0,883766	-0,883766	0
14	-0,998027	-0,998027	0
15	-0,923880	-0,923880	5,96E-08
16	-0,637424	-0,637424	5,96E-08

17	-0,171929	-0,171929	1,49E-08
18	0,368125	0,368125	0
19	0,818150	0,818150	0
20	1,000000	1,000000	0

2. Código

```
#include<stdio.h>
#include <iostream>
#include <cmath>
const double PI = 3.141592653589793238463;
#define MAX 100
using namespace std;
 algoritmo para decomposi��o LU de uma matriz tridiagonal A nxn
void solucaoLU(float x[MAX],float y[MAX], float d[MAX],float l[MAX], float u[MAX], float c[MAX], int n);
 Solu��o da equa��o matricial LUx = d
void decomposicaoLU(float a[MAX],float b[MAX],float c[MAX],float l[MAX],float u[MAX], int n);
void imprimir vetor(float V[MAX],int n,int p);
void imprimir matriz(float A[MAX][MAX],int l, int c);
 / imprime a matriz A de tamanho lxc
void erro_solucao(float A[MAX][MAX],float x[MAX],float d[MAX],int n);
int main(){
// INICIALIZAR VARI�VEIS
  bool ciclica;
  int opcao;
  int n;
  float A[MAX][MAX];
  float a[MAX];
  float b[MAX];
  float c[MAX];
  float d[MAX];
  float I[MAX];
  float u[MAX];
  float y[MAX];
  float x[MAX];
  float z[MAX];
```

```
cout << "-- Bem vindo ao EP1 --" << endl;
cout<< "1 - Inserir a matriz tridiagonal" << endl;</pre>
cout << "2 - Gerar a matriz do enunciado (ciclica)" << endl;
cout << "Digite o numero de uma das opcoes acima: ";
cin>>opcao;
cout << "Digite o numero n de linhas e colunas da matriz Anxn: ";
switch (opcao){
     cout<<"Entre com os valores linha a linha: "<< endl;</pre>
        cout<<"Entre individualmente com os valores da linha "<<i<" : "<< endl;
        for (int j = 1; j \le n; j++){

cin >> A[i][j];

       a[i] = A[i][i-1];
       b[i] = A[i][i];
       c[i] = A[i][i+1];
     //Ciclica?
     cout << "A matriz e' ciclica? [S/N] :";</pre>
     char cicl;
     cin >> cicl;
     if (cicl == 'S' || cicl == 's'){ciclica = true;}
     else{ciclica = false;}
     if (ciclica){
       a[1] = A[1][n];
       c[n] = A[n][1];
       a[1] = 0;
       c[n] = 0;
       A[1][n] = 0;
       A[n][1] = 0;
     //Entrada de d
     cout << "Digite os valores do termo d: "<<endl;</pre>
     cin.clear();
     fflush(stdin);
       case 2: // Gerar a matriz
     ciclica = true;
        for (int i = 1; i < n; i++)
          float aux = (float)i;
          a[i] = (2*aux - 1)/(4*aux);
          b[i] = 2;
          c[i] = 1 - a[i];
```

```
d[i] = \cos((2*PI*i*i)/(n*n));
        //Parametros em i=n
        float aux = (float) n;
         a[n] = (2*aux - 1)/(2*aux);
        b[n] = 2;
        c[n] = 1 - a[n];
        d[n] = \cos(2*PI);
        // construir a matriz A
        for (int i = 1; i \le n; i++)
           for (int j = 1; j < = n; j + +){
             if(i==j+1)
                 A[i][j]=a[i];
              \} else if(i==j){
                 A[i][j]=b[i];
              else if(i+1==j)
                 A[i][j]=c[i];
              } else if(i==1 && j==n){
                 A[i][j]=a[i];
              } else if(i==n && j==1){
                A[i][j]=c[n];
        break:
     default: cout << "escolha invalida";
//Imprimir a matriz
cout << endl << "A matriz inserida eh a seguinte:" << endl << endl;;
imprimir matriz(A,n,n);
//Mostra das diagonais
cout << endl << "Os parametros utilizados sao: "<< endl;
cout << "a[] = " << endl;</pre>
imprimir_vetor(a,n,0);
cout << "b[] = " << endl;
imprimir_vetor(b,n,0);
cout << "c[] = " << endl;
imprimir_vetor(c,n,0);</pre>
\overline{\cot} << \overline{d}[] = " << \text{endl};
imprimir vetor(d,n,1);
// SOLUCAO DO EP
decomposicaoLU(a,b,c,l,u,n);
if (ciclica) { // resolver matriz ciclica
   float dn = d[n];
   float aux[MAX];
   float v[MAX];
   for(int i=1;i<=n;i++){
     v[i]=0;
   v[1]=a[1];
   v[n-1]=c[n-1];
   // Obter y e z solucoes das equações Ty=d ; Tz=v
   solucaoLU(y,aux,d,l,u,c,n-1);
   solucaoLU(z,aux,v,l,u,c,n-1);
   x[n]=(d[n]-c[n]*y[1]-a[n]*y[n-1])/(b[n]-c[n]*z[1]-a[n]*z[n-1]);
   for (int i=n-1; i>0; i--)
```

```
x[i]=y[i]-x[n]*z[i];
    solucaoLU(x,y,d,l,u,c,n);
  // Imprimir resposta
  cout << "\nO vetor solucao da matriz A eh:" << endl;
  imprimir vetor(x,n,1);
  erro solucao(A,x,d,n);
  cout << "\n\nDigite algum caractere para finalizar.\n";</pre>
  char end:
  cin >> end;
  return 1;
 oid decomposicaoLU(float a[MAX],float b[MAX],float c[MAX],float l[MAX],float u[MAX],int n){
  u[1]=b[1];
  for(int i=2;i <= n;i++){
     l[i]=a[i]/u[i-1];
     u[i]=b[i]-l[i]*c[i-1];
oid solucaoLU(float x[MAX],float y[MAX], float d[MAX],float l[MAX], float u[MAX], float c[MAX],int n)
  y[1]=d[1];
for (int i=2;i<=n;i++)
    y[i]=d[i]-l[i]*y[i-1];
  x[n]=y[n]/u[n];
  for (int i=n-1;i>0;i--)
     x[i]=(y[i]-c[i]*x[i+1])/u[i];
void imprimir vetor(float V[MAX],int n,int p){
  if (p==0){ // horizontal cout << "| ";
     for(int i=1;i \le n;i++)
       printf("%+7.5f",V[i]);
if(i!=n)cout << " ";
     cout << " |" << endl;
  } else{// p==1 -> vertical
     for (int i=1;i<=n;i++) {
       cout <<" | ";
printf("%+7.5f ",V[i]);
       cout <<" | " << endl;
 void imprimir matriz(float A[MAX][MAX],int 1, int c){
     for (int i=1;i <=1;i++) {
       if(i==1/2)
          cout \ll " Matriz A[] = | ";
       else cout << "
       for (int j=1; j <=c; j++) {
          printf("%+7.5f",A[i][i]);
```

```
cout << "|" << endl;
}

void erro_solucao(float A[MAX][MAX],float x[MAX],float d[MAX],int n) {

//Calcular resultado e avaliar se bate
float solucao[MAX];
float erro[MAX];
cout<=endl<="color: blue;">cout<=endl<=endl<=endl<=endl<=endl;
for (int i = 1; i <= n; i++) {
    solucao[i] = 0;
    for (int j = 1; j <= n; j++) {
        solucao[i] + A[i][j]*x[j];
    }
    if (d[i]>solucao[i]) {
        erro[i]=d[i]-solucao[i];
    } else erro[i]=solucao[i]-d[i];
    cout<<"d"<<i:=encontrada="<<solucao[i]<<"; esperada="<<d[i]<<"; erro="<=erro[i]<<"\n";
}
}
</pre>
```