CO142 - Discrete Structures

Prelude

The content discussed here is part of CO142 - Discrete Structures (Computing MEng); taught by Steffen van Bakel, in Imperial College London during the academic year 2018/19. The notes are written for my personal use, and have no guarantee of being correct (although I hope it is, for my own sake). This should be used in conjunction with the (extremely detailed) notes.

9th October 2018

Recommended Books

- K.H. Rosen. Discrete Mathematics and its Applications
- J.L. Gersting. Mathematical Structures for Computer Science
- J.K. Truss. Discrete Mathematics for Computer Science
- R. Johsonbaugh. Discrete Mathematics
- C. Schumacher. Fundamental Notions of Abstract Mathematics

However, these books don't cover the same content. Learn his notation.

Logical Formula, and Notation

This notation will be shared with **CO140**.

B A and B both hold	• $A \wedge B$
B A or B holds (or both)	\bullet $A \lor B$
A does not hold	 ¬A
$\Rightarrow B$ if A holds, then so does B	• $A \Rightarrow B$
$\Rightarrow B$ A holds if and only if B holds	• $A \Leftrightarrow B$
A) the predicate A holds for all x	• $\forall x(A)$
A) the predicate A holds for some x	$\bullet \ \exists x(A)$
A the object a is in the set A (a is an element of	• $a \in A$
	• <i>A</i>)
A the object a is not in the set A	• $a \notin A$
tests whether two elements of A are the same	$\bullet =_A$

Sets

Sets are like data types in Haskell: Haskell data type declaration;

- data Bool = False | True
- {false, true}

set of boolean values

• [true, false, true, false]

list of boolean values

• {false, true} = {true, false}

set equality (note that order doesn't matter)

A set is a collection of objects from a pool of objects. Each object is an *element*, or a *member* of the set. A set *contains* its elements. Sets can be defined in the following ways;

• $\{a_1, ..., a_2\}$

as a collection of n distinct elements

• $\{x \in A \mid P(x)\}$

for all the elements in A, where P holds

• $\{x \mid P(x)\}$ for all elements, where P holds (dangerous - Russel's paradox)

Use of "triangleq"

The use of \triangleq is for "is defined by". Hence the empty set, $\varnothing \triangleq \{\}$. The difference between \triangleq and =, is that the former cannot be proven, it is fact, whereas the latter takes work to prove.

Russel's paradox

Not everything we write as $\{x \mid P(x)\}$ is automatically a set. Assume $R = \{X \mid X \notin X\}$ is a set, the set of all sets which don't contain themselves. As R is a set, then $R \in R$, or $R \notin R$ (law of excluded middle), and thus we can do a case by case analysis.

- Assume $R \in R$. By the definition of R, it then follows that $R \notin R$ (if $R \in R$, then it doesn't satisfy the definition of R) which is a contradiction.
- Assume $R \notin R$. It then follows that $R \in R$, as it follows the definition of R, hence it is another contradiction.

As both assumptions lead to contradictions, it's possible to write sets which aren't defined. We should only select from a set that we know is defined; $\{x \in A \mid P(x)\}\$ - where A is a well-defined set.

12th October 2018