Problem 5.9. Let $T = \{\langle M \rangle \mid M \text{ is a } \mathbf{TM} \text{ that accepts } w^R \text{ whenever it accepts } w\}$. Show that T is undecidable.

Proof. Show that A_{TM} reduces to T. Assume for the sake of contradiction that TM R decides T. Then construct a TM S that uses R to decide A_{TM} .

S = "On input $\langle M, w \rangle$, where M is a **TM** and w is a string:

- 1. Use M and w to construct the following TM M_w . M_w = "On input x:
 - 1. If $x = w^R$, accept.
 - 2. If $x \neq w$, reject.
 - 3. Run M on x and output whatever M outputs."
- 2. Run R on $\langle M_w \rangle$.
- 3. If R accepts, M accepts w, so accept. Otherwise, reject."

Thus, if **TM** R exists, we can decide A_{TM} , but we know that A_{TM} is undecidable¹. By virtue of this contradiction, we can conclude that R does not exist. Therefore, T is undecidable.

¹Theorem 4.11 A_{TM} is undecidable.