Estuaries and Climate Change

Lara van Niekerk

Estuaries Climate Change plot....

Developed a conceptual model

Feature/process	West Coast	Western	Southern	Eastern	Wild Coast	KwaZulu Natal
Current location and velocity	L	Cape L	Cape	Cape M	M	M
Upwelling	M	M	L	L	M	M
Land temperatures	Н	Н	Н	Н	Н	Н
Sea temperatures	M ⁻	M ⁻	M⁺	M ⁺	M⁺	L
Community composition along land–sea gradient	М	М	М	М	М	L
pecies range extensions along coast	L	L	М	Н	Н	Н

Changes in terrestrial climatic and hydrological processes Southern Eastern Wild KwaZulu Feature/process Coast Cape Coast Natal Cape Cape Runoff М М L Frequency and duration of mouth closure М М L L Salinity regime L М М Biogeochemical fluxes (nutrients, DO, SS, М L М Floods & sediment deposition/erosion cycles М L L Contaminant behaviour & accumulation М L L L (e.g. toxic substances) Shifts in estuary habitat type & nursery М L М function/ availability

Ocean acidification

Feature/process Decrease in pH	West Coast M	Western Cape M	Southern Cape L	Eastern Cape L	Wild Coast L	KwaZulu Natal L
Calcifying organisms require more energy to maintain dissolving exoskeleton	М	М	L	L	L	L

Sea level rise (between +0.5 and +1.0 m MSL)

Feature/process	West Coast	Western Cape	Southern Cape	Eastern Cape	Wild Coast	KwaZulu Natal
Increase salinity penetration	н	М	М	М	М	L
Increased tidal flushing/prism	н	н	н	М	L	н
Changes in the frequency and duration of mouth closure	н	н	н	М	L	н
Changes in habitat (e.g. plants) & nursery function/ availability	н	н	н	М	М	н

Estuaries Climate Change plot....

- Developed a conceptual model
- Going to be very difficult to tease out anthropogenic signal from climate change
- Using the Estuaries NBA as a platform
- Register:
 - Trends: Who is monitoring what?
 - Responses: What is gov doing about change?
- How can we use our existing data sets and response to track and respond to climate change??

Estuaries NBA Monitoring and Management Register

- Lots of noise
- Small community (< 10 groups doing 90% of effort)
- ♦ NBA to set criteria/rating system (Gov seems confused about what is monitoring (> 2 years)
- Need information on the drivers:
 - River inflow (DWS ~10%, 2 30 years)
 - Mouth conditions (DWS ~10%, 2 30 years)
 - pH ?
 - Turbidity ?
 - Temperature (DWS/SAEON 10%, <5 years)
- Track biotic responses (few long term data sets DAFF/SAIAB/SAEON)
- ♦ Slant to the large permanently open systems, but the small Temporarily open estuaries the most vulnerable

Estuaries Research Agenda

- Whitfield bibliography
- NBA high light some research needs
- Consortium of Estuarine Research and Management
- Water Research Commission

- High variability region need different tools to find the patterns
 - Lags
 - Cycles with in cycles
 - Anthropogenic (flow, fishing, pollution) signal
- Coastal sediments!!!
- pH require better equipment

Great Brak Estuary 1: 20 Year Flood - 22 November 2007

Great Brak Estuary Very High Waves: 1 September 2008

Photos: Piet Huizinga

