Le transistor en commutation

1. Fonctionnement du transistor bipolaire

Soit un transistor NPN utilisé dans le montage suivant:

- la maille d'entrée donne l'équation de la droite d'attaque du transistor :

$$Ve = R_B . I_B + V_{BE} \tag{1}$$

 la maille de sortie conduit à l'équation de la droite de charge:

$$E = R_C . I_C + V_{CE} \tag{2}$$

Figure 1

L'équation (2) donne, en divisant par R_C, : $\frac{E}{R_C} = I_C + \frac{V_{CE}}{R_C}$

D'où :
$$I_C = \frac{E}{R_C} - \frac{V_{CE}}{R_C}$$

On suppose $V_{BE} = C^{ste} = 0.6 \text{ V}$ (transistor au silicium)

Cette équation est celle de la droite de charge qui coupe les axes en deux points:

pour
$$I_C=0$$
, on a $V_{CE}=E$

- pour
$$V_{CE} = 0$$
, on a $I_C = \frac{E}{R_C}$

La caractéristique de transfert Vs = f(Ve) est la suivante :

Dans la figure 3, on distingue 3 zones de fonctionnement du transistor :

• Zone 1: $Ve < V_{BE0}$

La jonction BE est polarisée en inverse (I_B= 0) ou en direct mais I_B est négligeable.

Or $I_C = \beta . I_B$ donc I_C est négligeable, ainsi que la chute de tension dans la résistance R_C

$$D'où : Vs = E$$
 Le transistor est bloqué

• Zone 2: jonction BE polarisée en direct et la jonction BC en inverse

$$I_C = \beta.I_B \qquad \qquad \& \qquad \qquad V_{BE} = C^{ste}$$

→ Les équations précédentes donnent une variation linéaire de Vs en fonction de Ve

 \rightarrow Le transistor fonctionne en amplificateur : $Vs = E - R_C I_C = E - R_C . \beta \left(\frac{Ve - V_{BE}}{R_B} \right)$

Zone 3: Ve \uparrow & Vs \downarrow

Si $Ve > V_0$ alors la jonction BC devient passante:

⇒ ce qui a pour effet de rendre pratiquement nulle la résistance entre

l'émetteur et le collecteur

Il en résulte que $V_{BE} \approx V_{BC}$

D'où : $V_S = V_{CE} = V_{BC}$ - $V_{BE} \approx 0$ Le transistor est saturé

2. Application : le transistor en commutation

T: Transistor: 2N2219

R1: 2,2 kΩ (résistance d'entrée)

R2: 150 Ω (résistance de base)

 R_C : 470Ω (résistance de charge)

K: interrupteur:

Position OUVERTE: 0V (signal logique 0)

Position FERMEE: +9V (signal logique 1)

Figure 4

• 1^{er} Cas: K ouvert (Niveau logique 0 sur l'entrée)

- Le transistor est bloqué ($V_B \approx V_E = 0$)
- La résistance Collecteur-Emetteur >> R_C
- Aucun courant ne circule dans le circuit

-
$$V_S = +9 V$$

-
$$niveau logique S = 1$$

- 2^{ème} cas : K fermé (Niveau logique 1 sur l'entrée)
 - pont diviseur à l'entrée \Rightarrow $V_B = 0,57 \text{ V}$
 - la résistance Collecteur-Emetteur ≈ 0
 - Seule la résistance R_C limite le courant dans le circuit
 - $Vs \approx 0 V$
 - niveau logique S = 0

Lorsque l'interrupteur K est ouvert (niveau logique 0 en entrée), la sortie S est au niveau logique 1. Inversement, lorsque K est fermé, (niveau logique 1), la sortie S est au niveau logique 0. Ce qui se traduit par la table de vérité suivante :

$$\begin{array}{c|cccc} K & S \\ \hline 0 & 1 \\ 1 & 0 \end{array}$$
 Ce qui correspond à la fonction **NON**: $S = \overline{K}$

Les points de fonctionnement du transistor (figure 2) sont alors:

- K ouvert : $I_B = 0$ (point P)

- K fermé : I_B maxi (point Q)