

AD-A228 194

MEMORANDUM REPORT BRL-MR-3870

BRLUSE OF THE MAGNUS FORCE IN
THE MODIFIED POINT MASS TRAJECTORY MODEL

ROBERT F. LIESKE

OCTOBER 1990

DTIC
ELECTED
NOV 01 1990
S D
C B

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

40 10 21 022

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE October 1990	3. REPORT TYPE AND DATES COVERED Final	
4. TITLE AND SUBTITLE Use of the Magnus Force in the Modified Point Mass Trajectory Model		5. FUNDING NUMBERS 1L162618AH80	
6. AUTHOR(S) Robert F. Lieske		8. PERFORMING ORGANIZATION REPORT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army Ballistic Research Laboratory ATTN: SLCBR-DD-T Aberdeen Proving Ground, MD 21005-5066		10. SPONSORING / MONITORING AGENCY REPORT NUMBER ARL-MR-3870	
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.		12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) A method is presented for determining the Magnus force coefficient for use with the Modified Point Mass Trajectory model, to improve the simulated time of flight, based on the firing table experimental range firing impact and time-of-flight data. A comparison is made with the Magnus force coefficients determined from aerodynamic testing for the 155mm, HE, M107 and 8-Inch, HE, RA, M650 projectiles. The Magnus force coefficients contained in the firing table data base for artillery projectiles are presented. <i>(Key word(s))</i>			
14. SUBJECT TERMS Magnus Force Trajectory Modeling Flight Performance		15. NUMBER OF PAGES 25	
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED		18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	
19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED		20. LIMITATION OF ABSTRACT SAR	

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANH Std. 298-1B
298-102**UNCLASSIFIED**

INTENTIONALLY LEFT BLANK.

Acknowledgement

The author would like to express his appreciation to Messrs. James W. Bradley, Robert L. McCoy and Charles J. Nietubicz for their very helpful comments and suggestions during the preparation and review of this report.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
P-1	

INTENTIONALLY LEFT BLANK.

Table of Contents

	<u>Page</u>
List of Figures	vii
List of Tables	ix
I. Introduction	1
II. Discussion and Results	1
III. Conclusions	4
References	15
Distribution List	17

INTENTIONALLY LEFT BLANK.

List of Figures

<u>Figure</u>		<u>Page</u>
1	Trajectory height versus range for projectile 155mm, HE, M107, fired with propelling charge M119A1, charge 8.	5
2	Estimated yaw of repose versus time of flight for projectile 155mm, HE, M107, fired with propelling charge M119A1, charge 8.	6
3	Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M3A1, charge 1G.	7
4	Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M3A1, charge 3G.	8
5	Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M3A1, charge 5G.	9
6	Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M4A2, charge 5W.	10
7	Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M4A2, charge 7W.	11
8	Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M119A1, charge 8.	12
9	Magnus force coefficient for the 155mm, HE, M107, projectile (Figure 26 of Reference 3) with the effective Magnus force coefficient added.	13
10	Magnus force coefficient for the 8-Inch, HE, RA, M650, projectile (Figure 9 of Reference 4) with the effective Magnus force coefficient added.	14

INTENTIONALLY LEFT BLANK.

List of Tables

<u>Table</u>		<u>Page</u>
1	Significance of Magnus Force Coefficient ($C_{N_p\alpha}$) for Projectile 155mm, HE, M107 Fired with Propelling Charge M119A1.	2
2	Firing Table Data Base Magnus Force Coefficients ($C_{N_p\alpha}$).	3

INTENTIONALLY LEFT BLANK.

I. Introduction

The Modified Point Mass Trajectory Model^{1,2} is the primary method of trajectory simulation used in the preparation of Firing Tables. This model requires three types of input data: projectile mass properties, aerodynamic coefficients and the performance parameters determined from experimental range testing. This report discusses the significance of the Magnus force coefficient and a method of determining the Magnus force coefficient for trajectory simulation using the Modified Point Mass Trajectory model. It also compares the Magnus force coefficients of the 155mm, HE, M107 and the 8-Inch, HE, RA, M650 projectiles with results based on aerodynamic testing reported by MacAllister and Krial³ and by Piddington,⁴ respectively.

II. Discussion and Results

The 155mm, HE, M107 projectile fired with propelling charge M119A1, charge 8 (684 metres per second muzzle velocity) is used as an example to show the effect of the Magnus force on trajectory time of flight. Figure 1 shows the trajectory height versus range for projectiles fired with quadrant elevations of 400, 800 and 1200 mils. Figure 2 presents the Modified Point Mass Trajectory model estimate for the yaw of repose versus time of flight for the three trajectories. The yaw of repose is the steady-state angle of attack due to gravity-induced curvature of the trajectory.⁵ The nose of a spinning projectile is to the right of its flight path; therefore, the Magnus force, which is perpendicular to the yaw of repose, results in an acceleration in the vertical plane with the acceleration increasing proportionally with the yaw of repose.

Artillery projectiles fired at quadrant elevations up to approximately 1300 mils will normally function properly; however, projectiles fired at higher quadrant elevations exhibit erratic flight performance, such as drift to the left, base first impacts, large range and deflection dispersion, etc.⁶ A yaw of repose limit of .6 radian (34.4 degrees), based on experimental range firings, has been included in the Modified Point Mass Trajectory model to determine the maximum firing quadrant elevation used in the preparation of aiming data.⁷

The form factor, a multiplier on the total drag term, is the parameter used in the Modified Point Mass Trajectory model to achieve a match with the experimental range firing impact data. Therefore, to obtain the same range with and without the Magnus force coefficient, the form factor was varied. Table 1 presents trajectory simulations to the same range, with and without a Magnus force coefficient (-.75), for the 155mm, HE, M107 projectile. The same range was obtained by increasing the form factor by 1.0, 1.2 and 1.3 percent for the quadrant elevations 400, 800 and 1200 mils, respectively. The value of the Magnus force coefficient was determined from experimental range firing impact and time-of-flight data for the projectile fired with propelling charges: M3A1, charges 1G, 2G, 3G, 4G and 5G; M4A2, charges 3W, 4W, 5W, 6W and 7W; and M119A1 charge 8 at quadrant elevations from 200 mils to 1250 mils. The inclusion of the Magnus force

coefficient increases the time of flight .15, .35 and 1.11 seconds for the charge 8 simulations at quadrant elevations of 400, 800 and 1200 mils, respectively.

The precision probable error in functioning time for modern mechanical and electronic time fuzes is less than .30 and .05 seconds, respectively. Therefore, the Magnus force coefficient is included in the Modified Point Mass Trajectory simulation model.

Table 1. Significance of Magnus Force Coefficient ($C_{N_{p_a}}$) for Projectile 155mm, HE, M107 Fired with Propelling Charge M119A1.

Quadrant Elevation (Mils)	Time of Flight (Seconds)		
	$C_{N_{p_a}} = 0$	$C_{N_{p_a}} = -.75$	Δ
400	39.31	39.46	.15
800	67.91	68.26	.35
1200	89.75	90.86	1.11

The Magnus force coefficient is difficult to determine by aerodynamic testing and is not normally available. Therefore, an alternative method based on experimental range firing impact and time-of-flight data has been developed to determine the Magnus force coefficient for use with the Modified Point Mass Trajectory model. The Magnus force coefficient is determined by varying the coefficient until the overall difference between the simulated and mean observed times of flight is acceptable for the applicable propellant charges (muzzle velocities) and quadrant elevations. The Magnus force coefficient (-.75) was determined for the 155mm, HE, M107 projectile using this iterative process. Figures 3 through 8 show the difference between the mean observed and simulated time of flight (mean observed minus simulated) versus simulated time of flight when a constant Magnus force coefficient is used in the trajectory model. The figures present results for projectiles fired with propellant charges: M3A1, charges 1G, 3G and 5G; M4A2, charges 5W and 7W; and M119A1, charge 8. The approximate muzzle velocities for these charges are: 208, 276, 376, 397, 568 and 684 metres per second, respectively. Each point represents the difference between the mean observed and simulated time of flight for a group of five to ten projectiles and each symbol represents a different firing program. The variation in the results is probably due to the difficulty in measuring the time of flight with stop watches, since it is difficult to determine the zero time and impact time needed to manually start and stop the watches. Figures 3 through 8 demonstrate that the method can be used to obtain an acceptable mean difference between the observed and simulated time-of-flight results for the M107 projectile. "Acceptable" here implies that this mean difference has no overall bias and that individual charge bias can be compensated for by a simple correction to the

computed time-of-flight. This method seems to have the capability of extracting a good approximate value for the Magnus force coefficient from the data, even though there are large occasion-to-occasion differences between the observed and simulated time-of-flight results.

Figures 9 and 10 show a comparison of the Magnus force coefficient determined from experimental range impact and time-of-flight firings with values of the Magnus force coefficient determined from aerodynamic test data. Figure 9 is Figure 26 of reference 3 and Figure 10 is Figure 9 of reference 4, showing the Magnus force coefficients based on aerodynamic testing for the 155mm, HE, M107 and 8-Inch, HE, RA, M650 projectiles, respectively. Also shown on the figures is the Magnus force coefficient for the projectiles, based on the experimental range impact and time-of-flight firings. The comparison shows that the value of the coefficient determined from the range firing data is in good agreement with the subsonic results obtained from aerodynamic range testing for the 155mm, M107 projectile as reported by MacAllister and Krial (Reference 3) and the 8-Inch, M650 projectile as reported by Piddington (Reference 4). The Magnus force coefficient determined from the experimental range impact and time-of-flight firings would be expected to represent the subsonic value. This is because the effect of the Magnus force on the trajectory is proportional to the yaw of repose and normally subsonic velocities and large yaws of repose occur simultaneously for artillery projectiles.

Table 2 presents a summary of the Magnus force coefficients contained in the Firing Table data base for artillery projectiles. These values are based on ballistic analysis of the experimental range firing impact and time-of-flight data.

Table 2. Firing Table Data Base Magnus Force Coefficients ($C_{N_{pa}}$).

Projectile Diameter	Projectile Shape					
	M1		Long Range		Cargo	
	Projectile	$C_{N_{pa}}$	Projectile	$C_{N_{pa}}$	Projectile	$C_{N_{pa}}$
105mm	M1	-.76	M548	-.40	-	-
155mm	M107	-.75	M549A1	-.50	M483A1	-.50
175mm	-	-	M437A2	-.66	-	-
8-Inch	M106	-.38	M650	-1.00	M509A1	-.50

III. Conclusions

The inclusion of the Magnus force coefficient significantly improves the trajectory time-of-flight results of the Modified Point Mass Trajectory model. The Magnus force coefficients for the 155mm, HE, M107 and 8-Inch, HE, RA, M650 projectiles based on the experimental range firing impact and time-of-flight data are in good agreement with the results based on the aerodynamic testing. The Magnus force coefficients determined from the experimental range firing impact and time-of-flight data are of similar magnitude for the different shapes (M1, long range, and cargo) and sizes (105mm, 155mm, 175mm, and 8-Inch) of artillery projectiles.

Figure 1. Trajectory height versus range for projectile 155mm HE, M107, fired with propelling charge M119A1, charge 8.

Figure 2. Estimated yaw of repose versus time of flight for projectile 155mm, HE, M107,
fired with propelling charge M119A1, charge 8.

Figure 3. Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M3A1, charge 1G.

Figure 4. Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M3A1, charge 3G.

Figure 5. Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M3A1, charge 5G.

Figure 6. Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M4A2, charge 5W.

Figure 7. Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M4A2, charge 7W.

Figure 8. Difference between observed and simulated time of flight (Δ time of flight) versus simulated time of flight for projectile, 155mm, HE, M107 fired with propelling charge M119A1, charge 8.

Figure 26. Magnus force coefficient versus Mach Number

Figure 9. Magnus force coefficient for the 155mm, HE, M107, projectile (Figure 26 of Reference 3) with the effective Magnus force coefficient added.

References

1. Lieske, R.F. and K. Lier, M.L., "Equations of Motion for a Modified Point Mass Trajectory," BRL Report No. 1314, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, March 1966. (AD 485869)
2. NATO STANAG 4355 (Draft Edition 1), The Modified Point Mass Trajectory Model, February 1988.
3. MacAllister, L.C. and Krial, K.S., "Aerodynamic Properties and Stability of the 155mm Howitzer Shell, M107," BRL Memorandum Report No. 2547, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, October 1975. (AD B007930L)
4. Piddington, M.J., "Aerodynamic Characteristics of the 155mm Model of the 8-Inch XM650E2," BRL Memorandum Report No. 2538, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, October 1975. (AD B007751L)
5. Murphy, C.H., "Gravity-Induced Angular Motion of a Spinning Missile," BRL Report No. 1546, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, July 1971. (AD 730641)
6. Collins, W.Z. and Lieske, R.F., "A Study of Artillery Shell Drift at High Angle of Fire Using Solar Aspect Sensors," BRL Memorandum Report No. 2244, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, March 1966. (AD 907598L)
7. Matts, B.J. and McCoy, D.H., "Maximum Quadrant Elevation for Artillery Firing Tables." An Appendix to "A Study of Artillery Shell Drift at High Angle of Fire Using Solar Aspect Sensors," BRL Memorandum Report No. 2244, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, March 1966. (AD 907598L)

INTENTIONALLY LEFT BLANK.

No of Copies	Organization	No of Copies	Organization
1	Office of the Secretary of Defense OUSD(A) Director, Live Fire Testing ATTN: James F. O'Bryon Washington, DC 20301-3110	1	Director US Army Aviation Research and Technology Activity ATTN: SAVRT-R (Library) M/S 219-3 Ames Research Center Moffett Field, CA 94035-1000
2	Administrator Defense Technical Info Center ATTN: DTIC-DDA Cameron Station Alexandria, VA 22304-6145	1	Commander US Army Missile Command ATTN: AMSMI-RD-CS-R (DOC) Redstone Arsenal, AL 35898-5010
1	HQDA (SARD-TR) WASH DC 20310-0001	1	Commander US Army Tank-Automotive Command ATTN: AMSTA-TSL (Technical Library) Warren, MI 48397-5000
1	Commander US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001	1	Director US Army TRADOC Analysis Command ATTN: ATRC-WSR White Sands Missile Range, NM 88002-5502
1	Commander US Army Laboratory Command ATTN: AMSLC-DL Adelphi, MD 20783-1145	(Class. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD (Security Mgr.) Fort Benning, GA 31905-5660
2	Commander US Army, ARDEC ATTN: SMCAR-IM1-I Picatinny Arsenal, NJ 07806-5000	(Unclass. only) 1	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660
2	Commander US Army, ARDEC ATTN: SMCAR-TDC Picatinny Arsenal, NJ 07806-5000	1	Air Force Armament Laboratory ATTN: AFATL/DLODL Eglin AFB, FL 32542-5000
1	Director Benet Weapons Laboratory US Army, ARDEC ATTN: SMCAR-CCB-TL Watervliet, NY 12189-4050		<u>Aberdeen Proving Ground</u>
1	Commander US Army Armament, Munitions and Chemical Command ATTN: SMCAR-ESP-L Rock Island, IL 61299-5000	2	Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP, H. Cohen
1	Commander US Army Aviation Systems Command ATTN: AMSAV-DACL 4300 Goodfellow Blvd. St. Louis, MO 63120-1798	1	Cdr, USATECOM ATTN: AMSTE-TD
		3	Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-MSI
		1	Dir, VLAMO ATTN: AMSLC-VL-D

<u>No. of Copies</u>	<u>Organization</u>	<u>No. of Copies</u>	<u>Organization</u>
1	Director HQ, TRAC RPD ATTN: ATRC-RP Fort Monroe, VA 23651-5143	1	Commander US Army Dugway Proving Ground ATTN: STEDP-MT, Mr. G. C. Travers Dugway, UT 84022
1	Commander TRADOC Analysis Command ATTN: ATRC Fort Leavenworth, KS 66027-5200	1	Commander US Army Yuma Proving Ground ATTN: STEYP-MTW Yuma, AZ 85365-9103
1	OPM Nuclear ATTN: AMCPM-NUC Picatinny Arsenal, NJ 07806-5000	1	Commander Naval Surface Warfare Center, Aerodynamics Branch, K-24, Building 402-12 ATTN: Dr. W. Yanta White Oak Laboratory Silver Spring, MD 20910
2	Department of Army Office of PM ATTN: SFAE-AR-SD, Mr. D. Griggs ATTN: SFAE-AR-HIP-IP, Mr. R. DeKleine Picatinny Arsenal, NJ 07806-5000	1	Headquarters US Marine Corps ATTN: Code LMW/30 Washington, DC 20380
8	Commander US Army, ARDEC ATTN: SMCAR-AET, Mr. F. Scerbo Mr. J. Bera ATTN: SMCAR-AET-A, Mr. R. Kline Mr. F. Brown Mr. H. Hudgins ATTN: SMCAR-FSA, Mr. F. Brody Mr. R. Kantenwein ATTN: SMCAR-FSS, Mr. J. Brooks Picatinny Arsenal, NJ 07806-5000	1	Director Sandia National Laboratories ATTN: Mr. A. Hodapp Division 1631 Albuquerque, NM 87185
2	Commandant US Army Field Artillery School ATTN: ATSF-CCM ATSF-G Fort Sill, OK 73503	1	Director Lawrence Livermore National Laboratory PO Box 808 Livermore, CA 94550
1	Director US Army Field Artillery Board ATTN: ATCT-FAW Fort Sill, OK 73503-5000	1	Arrow Tech Associates, Inc. Mr. R. Whyte PO Box 4218 South Burlington, VT 05401-0042

<u>No. of Copies</u>	<u>Organization</u>
----------------------	---------------------

Aberdeen Proving Ground

- 1 Director, USAMSAA
ATTN: AMXSY-RA,
Mr. R. Scungio
- 1 Commander, USATECOM
ATTN: AMSTE-TE-F,
Mr. W. Vomocil
- 2 Commander, CRDEC, AMCCOM
ATTN: SMCCR-MUS-T,
Mr. D. Bromley
ATTN: SMCCR-RSP-A,
Mr. M. Miller
- 1 PM-SMOKE, Bldg. 324
ATTN: AMCPM-SMK-M,
Mr. J. Callahan
- 2 Director, USAHEL
ATTN: SLCHE-FT,
Mr. G. Horley
Mr. J. Wall
- 2 Director, USACSTA
ATTN: STECS-AS-H
STECS-EN-B

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes.
Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number BRL-MR-3870 Date of Report OCTOBER 1990

2. Date Report Received _____

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest
for which the report will be used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source
of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars
saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate
changes to organization, technical content, format, etc.)

Name _____

CURRENT
ADDRESS

Organization _____

Address _____

City, State, Zip Code _____

7. If indicating a Change of Address or Address Correction, please provide the New or Correct
Address in Block 6 above and the Old or Incorrect address below.

Name _____

OLD
ADDRESS

Organization _____

Address _____

City, State, Zip Code _____

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)

.....FOLD HERE.....

DEPARTMENT OF THE ARMY

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-9989
OFFICIAL BUSINESS

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001, APG, MD

POSTAGE WILL BE PAID BY ADDRESSEE

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T
Aberdeen Proving Ground, MD 21005-9989

.....FOLD HERE.....