MA571 Midterm 1: Practice Problems

Carlos Salinas

October 5, 2015

Problem 1. Let $A \subset X$ and $B \subset Y$. Show that the space $X \times Y$,

$$\overline{A \times B} = \overline{A} \times \overline{B}$$
.

Proof. Before we proceed, we need to prove the following nontrivial facts:

Claim 1 (Munkres §17, Ex. 3). If A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Proof of claim. We will show that the complement of $A \times B$ is open in $X \times Y$. Let $(x,y) \in (X \times Y) \setminus (A \times B)$. Then $x \notin A$ and $y \notin B$. Since A and B are closed in X and Y, respectively, there exist neighborhoods U and V of x and y, respectively, such that $U \subset X \setminus A$ and $V \subset Y \setminus B$. Then $U \times V \subset (X \times Y) \setminus (A \times B)$ is a neighborhood of (x,y) so, by Lemma C, $(X \times Y) \setminus (A \times B)$ is open. Thus, $A \times B$ is closed.

Since $A \subset \overline{A}$ and $B \subset \overline{B}$ then $A \times B \subset \overline{A} \times \overline{B}$. Then by Lemma B $\overline{A \times B} \subset \overline{\overline{A} \times \overline{B}}$, but by Claim 1 $\overline{A} \times \overline{B} = \overline{A} \times \overline{B}$ so $\overline{A \times B} \subset \overline{A} \times \overline{B}$. To see the reverse containment, take an element $(x,y) \in \overline{A} \times \overline{B}$ then for $x \in \overline{A}$ and $y \in \overline{B}$. Thus, by Theorem 17.5(a) for every neighborhood $U \ni x$ and $V \ni y$, we have $U \cap A \neq \emptyset$ and $V \cap B \neq \emptyset$. Thus, $U \times V \cap A \times B \neq \emptyset$ so by Theorem 17.5(b), since $U \times V$ is a basis element for the topology on $X \times Y$, $(x,y) \in \overline{A \times B}$. Thus, $\overline{A \times B} \supset \overline{A} \times \overline{B}$ and the equality $\overline{A \times B} = \overline{A} \times \overline{B}$ holds.

Problem 2. Let X be a topological space and let A be a dense subset of X. Let Y be a Hausdorff space and let $g, h: X \to Y$ be continuous functions which agree on A. Prove that g = h.

Proof. Suppose, towards a contradiction, that $g \neq h$. Then $g(x) \neq h(x)$ for some $x \in X \setminus A$. Since Y is Hausdorff, there exists neighborhoods $U \ni g(x)$ and $V \ni h(x)$ with $U \cap V = \emptyset$. Since g and h are continuous, $g^{-1}(U)$ and $h^{-1}(V)$ are neighborhoods of x. In particular, $g^{-1}(U) \cap h^{-1}(U)$ is a nonempty neighborhood of x. Since $\overline{A} = X$, by Theorem 17.5(a), $(g^{-1}(U) \cap h^{-1}(V)) \cap A \neq \emptyset$. Let $x_0 \in (g^{-1}(U) \cap h^{-1}(V)) \cap A$. Then $g(x_0) = h(x_0) \in U \cap V$. This contradicts the fact that U and V were chosen to be disjoint.

Problem 3. Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Let G_f (called the *graph* of f) be the subspace $\{x \times f(x) \mid x \in X\}$ of $X \times Y$. Prove that if Y is Hausdorff then G_f is closed.

Proof. We will show that the complement of G_f in $X \times Y$ is open. Let $(x, y) \in (X \times Y) \setminus G_f$. Since Y is Hausdorff, choose neighborhoods U and V of y and f(x) respectively, such that $f^{-1}(U) \cap V = \emptyset$. Then $f^{-1}(U) \times V \ni (x, y)$ is contained in the complement of G_f so, by Lemma C, G_f is open.

Problem 4. Let X be a topological space and let $f, g: X \to \mathbf{R}$ be continuous. Define $h: X \to \mathbf{R}$ by

$$h(x) = \min\{(f(x), g(x))\}.$$

Use the pasting lemma to prove that h is continuous. (You will not get full credit for any other method.)

Proof. Define the sets

$$A = \{ x \in X \mid f(x) \le g(x) \} \text{ and } B = \{ x \in X \mid f(x) \ge g(x) \}.$$

Note $X = A \cup B$ and f(x) = g(x) for every $x \in A \cap B$. Moreover, we have that

$$h(x) = \min\{f(x), g(x)\} = \begin{cases} f(x) & \text{if } x \in A \\ g(x) & \text{if } x \in B \end{cases}.$$

Thus, by the pasting lemma, h is continuous if we can show that A and B are closed in X.

We will prove that the complement of A in X is open; the proof of B is similar. Let $x \in X \setminus A$. Then f(x) > g(x). Thus we have the following result

Lemma 2. Let $x, y \in X$ with the order topology. Then there exists a neighborhood $U \ni x, V \ni y$ with $U \cap V = \emptyset$ and x' < y' for all $x' \in U$, $y' \in V$.

Proof of lemma. We break the demonstration into the following cases:

Case 1: Suppose there exists $z \in X$ with x < z < y, i.e., $z \in (x,y)$. Let U be the ray $U = (-\infty, z)$ and V be the ray $V = (z, \infty)$. Then $U \cap V = \emptyset$ and for every $x' \in V$, $y' \in U$ x' < c < y', in particular, x' < y'.

Case 2: Suppose that there does not exists $z \in X$ with x < z < y, i.e., $(x,y) = \emptyset$. Let U be the ray $U = (-\infty, x)$ and V be the ray $V = (y, \infty)$. Then $U \cap V = \emptyset$ and for every $x' \in U$, $y' \in V$ we have x' < x < y < y', in particular, x' < y'.

By Lemma 2, choose $U \ni g(x)$ and $V \ni f(x)$ as above. Then $g^{-1}(U) \cap f^{-1}(V)$ is a neighborhood of x with g(x) < f(x) for all. Hence $g^{-1}(U) \cap f^{-1}(V) \subset X \setminus A$ and, by Lemma C, $X \setminus A$ is open. Thus, A is closed.

Having satisfied the conditions of the pasting lemma (Theorem 18.3), it follows that h is continuous.

Problem 5. Let X and Y be topological spaces and let $f: X \to Y$ be a function with the property that

$$f(\overline{A})\subset \overline{f(A)}$$

for all subsets A of X. Prove that f is continuous.

Proof. Suppose that f has the property given above. Then we claim that:

Claim 3. For every closed set B of Y, $f^{-1}(B)$, $f^{-1}(B)$ is closed in X.

Proof of claim. Let B be closed in Y. We will show that $\overline{f^{-1}(B)} = f^{-1}(B)$. To that end, it suffices to show that $\overline{f^{-1}(B)} \subset f^{-1}(B)$ since the containment $\overline{f^{-1}(B)} \supset f^{-1}(B)$ is immediate (from the definition of the closure). By Munkres §2 Ex. 1(b), we have that $f(f^{-1}(B)) \subset B$ so if $x \in \overline{f^{-1}(B)}$ then $f(x) \in B$ since, by our assumption on f together with Lemma C, we have

$$f\big(\overline{f^{-1}(B)}\big)\subset \overline{f(f^{-1}(B))}\subset B.$$

Thus,
$$x \in f^{-1}(B)$$
 so $\overline{f^{-1}(B)} \subset f^{-1}(B)$ as desired.

Let U be open in Y. Then $Y \setminus U$ is closed in Y. Then, by Claim 3, $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$ is closed in X so $X \setminus (X \setminus f^{-1}(U)) = f^{-1}(U)$ is open in X. Thus, f is continuous.

Problem 6. Let X and Y be topological spaces and let $f: X \to Y$ be a continuous function. Prove that

$$f(\overline{A}) \subset \overline{f(A)}$$

for all subsets A of X.

Proof. Suppose f is continuous. Then, for every U open in Y, $f^{-1}(U)$ is open in X. Let $A \subset X$ and consider $\overline{f(A)}$. Then, $f^{-1}(Y \setminus \overline{f(A)}) = X \setminus f^{-1}(\overline{f(A)})$ is open in X so its complement $f^{-1}(\overline{f(A)})$ is closed in X. Moreover, by Munkres §2 Ex. 1(a), we we have $A \subset f^{-1}(f(A))$ and since, by Theorem 17.6, $\overline{f(A)} = f(A) \cup f(A)'$ we have that

$$A \subset f^{-1}(\overline{f(A)}) = f^{-1}(f(A) \cup f(A)') = f^{-1}(f(A)) \cup f^{-1}(f(A)').$$

In particular, by Lemma C, $\overline{A} \subset f^{-1}(\overline{f(A)})$ so, by Munkres §2 Ex. 1(b), we have

$$f(\overline{A}) \subset f(f^{-1}(\overline{f(A)})) \subset \overline{f(A)},$$

as desired.

Problem 7. Let X be any topological space and let Y be a Hausdorff space. Let $f, g: X \to Y$ be continuous functions. Prove that the set $\{x \in X \mid f(x) = g(x)\}$ is closed.

Proof. By Munkres §17 Ex. 13, Y is Hausdorff if and only if $\Delta_Y = \{ (y, y) \mid y \in Y \}$ is closed in $Y \times Y$. By Theorem 18.4, the map $F = (f, g) \colon X \to Y \times Y$ is continuous since f and g are continuous. We claim that $F^{-1}(\Delta_Y) = \{ x \in X \mid f(x) = g(x) \}$.

It is clear that if f(x) = g(x) = y then $F(x) = (y, y) \in \Delta_Y$ so $F^{-1}(\Delta_Y) \supset \{x \in X \mid f(x) = g(x)\}$. Now suppose $x \in F^{-1}(\Delta_Y)$ then $F(x) = (f(x), g(x)) = (y, y) \in \Delta_Y$ so f(x) = g(x) = y so $x \in \{x \in X \mid f(x) = g(x)\}$. Thus, $F^{-1}(\Delta_Y) = \{x \in X \mid f(x) = g(x)\}$ so, by Theorem 18.1(3), it follows that $\{x \in X \mid f(x) = g(x)\}$ is closed in X.

Problem 8. Let X be a topological space and A a subset of X. Suppose that

$$A \subset \overline{X \setminus \overline{A}}.$$

Prove that \overline{A} does not contain any nonempty open set.

Proof. Suppose, seeking a contradiction, that int $A \neq \emptyset$. Then there exists $x \in \text{int } A \subset A$ and a neighborhood $U \ni x$ with $U \subset A$. Then $U \subset \overline{X \setminus \overline{A}}$. In particular, $x \in \overline{X \setminus \overline{A}}$ so $U \cap \overline{X \setminus \overline{A}} \neq \emptyset$. But $U \subset A \subset \overline{A}$ so $U \cap (X \setminus \overline{A}) = \emptyset$. This is a contradiction since $x \in \overline{X \setminus \overline{A}}$. Thus, int $A = \emptyset$.

Problem 9. Let X be a topological space with a countable basis. Prove that every open cover of X has a countable subcover.

Proof.

Problem 10. Let X_{α} be an infinite family of topological spaces.

- (a) Define the product topology on $\prod X_{\alpha}$.
- (b) For each α , let A_{α} be a subspace of X_{α} . Prove that $\overline{\prod A_{\alpha}} = \overline{\prod A_{\alpha}}$.

Proof. (a)From Munkres §19, p. 114:

Definition. Let S_{β} denote the collection

$$S_{\beta} = \left\{ \left. \pi_{\beta}^{-1}(U_{\beta}) \right| U_{\beta} \text{ open in } X_{\beta} \right\},$$

and let S denote the union of these collections,

$$S = \bigcup S_{\beta}$$
.

The topology generated by the subbasis S is called the *product topology*.

Alternatively, we have the theorem:

Theorem (Munkres, Thm. 19.2). Suppose the topology on each space X_{α} is given by a basis \mathcal{B}_{α} . The collection of all sets of the form

$$\prod B_{\alpha}$$
,

where $B_{\alpha} \in \mathfrak{B}_{\alpha}$ for finitely many indicel α and $B_{\alpha} = X_{\alpha}$ for all the remaining indices is a basis for the product topology on $\prod X_{\alpha}$.

(b) (cf. Munkres §19, Theorem 19.5) Let $\mathbf{x} = (x_{\alpha}) \in \prod \overline{A}_{\alpha}$; we show that $\mathbf{x} \in \prod A_{\alpha}$. Let $U = \prod U_{\alpha} \ni x$ be a basis element. Since $x_{\alpha} \in \overline{A}_{\alpha}$, there exists $y_{\alpha} \in U_{\alpha} \cap A_{\alpha}$ for each α . Then $\mathbf{y} = (y_{\alpha})$ belongs to both U and $\prod A_{\alpha}$. Since U is arbitrary, it follows that $\mathbf{x} \in \prod A_{\alpha}$.

Conversely, suppose that $\mathbf{x} = (x_{\alpha}) \in \overline{\prod} A_{\alpha}$; we show that $x_{\beta} \in \overline{A}_{\beta}$ for any index β . Let $V_{\beta} \ni x_{\beta}$ be an arbitrary neighborhood in X_{β} . Since $\pi_{\beta}^{-1}(V_{\beta})$ is open in $\prod X_{\alpha}$, it contains a point $\mathbf{y} = (y_{\alpha})$ of $\prod A_{\alpha}$. Then $y_{\beta} \in V_{\beta} \cap A_{\beta}$. It follows that $x_{\beta} \in \overline{A}_{\beta}$.

Problem 11. Suppose that we are given an indexing set A, and for each $\alpha \in A$ a topological space X_{α} . Suppose also that for each $\alpha \in A$ we are given a point $b_{\alpha} \in X_{\alpha}$. Let $Y = \prod X_{\alpha}$ with the product topology. Let $\pi_{\alpha} \colon Y \to X_{\alpha}$ be the projection. Prove that the set

$$S = \{ y \in Y \mid \pi_{\alpha}(y) = b_{\alpha} \text{ except for finitely many } \alpha \}$$

is dense in Y (that is, its closure is Y).

Proof. We want to show that $\overline{S} = X$ therefore, we will show that for every open subset U of X, $U \cap S \neq \emptyset$. By Theorem 17.5(b), it suffices to show this for basis elements. Let \mathcal{B}_{α} be a basis for X_{α} and $U = \prod U_{\alpha}$ be a basis element in the product topology on $\prod X_{\alpha}$. Then, by Theorem 19.2, $U_{\alpha} \in \mathcal{B}_{\alpha}$ for finitely many indices α and $U_{\alpha} = X_{\alpha}$ for all the remaining indices. Hence, at least one $X_{\alpha} \ni b_{\alpha}$ so $U \cap S \neq \emptyset$. Since U was arbitrary, we conclude that $\overline{S} = X$.

Problem 12. Let X be the Cartesian product $\mathbf{R}^{\omega} = \prod_{i=1}^{\infty} \mathbf{R}$ with the box topology (recall that a basis for this topology consists of all sets of the form $\prod_{i=1}^{\infty} U_i$, where each U_i is open in \mathbf{R}). Let $f: \mathbf{R} \to X$ be the function which takes t to (t, t, t, ...). Prove that f is not continuous.

Proof. (cf. Example 2 in Munkres $\S19$) It suffices to show that the preimage of a basis element U in the box topology is not open in \mathbf{R} . Let

$$U = \prod \left(-\frac{1}{n}, \frac{1}{n} \right).$$

Suppose that f is continuous. Then $f^{-1}(U)$ is open. Then by 18.1(4), for some $\delta > 0$, $(-\delta, \delta) \ni 0 \subset f^{-1}(U)$, $f((-\delta, \delta)) = \prod (-\delta, \delta) \subset B$. But, by the Archimedean principle, there exists $n \in \mathbf{Z}_+$ such that $1/n < \delta$ so $(-\delta, \delta) \not\subset (-1/N, 1/N)$ for any $N \ge n$. This is a contradiction. Therefore, f is not continuous on \mathbf{R}^{ω} with the box topology.

Problem 13. Prove that the countable product \mathbf{R}^{ω} (with the product topology) has the following property: there is a countable family \mathcal{F} of neighborhoods of the point $\mathbf{0} = (0, 0, 0, ...)$ such that for every neighborhood V of $\mathbf{0}$ there is a $U \in \mathcal{F}$ with $U \subset V$.

Note: the book proves that \mathbf{R}^{ω} is a metric space, but you may not use this in your proof. Use the definition of the product topology.

Proof. Define \mathcal{F} to be the collection of all sets $U_{k,\ell} = \prod U_n$ where $U_n = (-1/k, 1/k)$ for $1 \leq n \leq \ell$ and $U_n = \mathbf{R}$ otherwise. Then we want to show that for every neighborhood V of $\mathbf{0}$, there exists $U \in \mathcal{F}$ with $U \subset V$. By Theorem 17.5(b) it suffices to prove this for basis elements containing $\mathbf{0}$. Hence, let $V = \prod V_n$ be a basis element containing $\mathbf{0}$. Then, by Theorem 19.2, V_n is a basis element for the standard topology on \mathbf{R} containing $\mathbf{0}$, i.e, $V_n = (a_n, b_n)$ for $a_n < 0 < b_n$, for finitely many n and $V_n = \mathbf{R}$ otherwise. Without loss of generality, we may assume that $V = (a_1, b_1) \times \cdots (a_N, b_N) \times \mathbf{R} \times \cdots$. Let $\delta = \min\{|a_1|, b_1, ..., |a_N|, b_N\}$. Then by the Archimedean principle, there exists a positive integer m such that $1/m < \delta$. Thus, $U_{m,N} \subset V$.

Problem 14. Let X be the two-point set $\{0,1\}$ with the discrete topology. Let Y be a countable product of copies of X, thus an element of Y is a sequence of 0's and 1's. For each $n \geq 1$, let $y_0 \in Y$ be the element (1, ..., 1, 0, ..), with n 1's at the beginning and all other entries 0. Let $y \in Y$ be the element with all 1s. Prove that the set $\{y_n\}_{n\geq 1} \cup \{y\}$ is closed. Give a clear explanation. Do not use a metric.

Proof. Let $A = \{y_n\}_{n \geq 1} \cup \{y\}$. We will show that the complement of A in Y is open. By Lemma C, it suffices to find a basis element $U \ni \mathbf{x}$ with $U \cap A = \emptyset$. Let $\mathbf{x} \in Y \setminus A$. Then \mathbf{x} is a sequence of 0's and 1's where, say the first n terms, are not all 1. Let k, for $1 \leq k \leq n$, be the first zero to appear in the sequence \mathbf{x} and ℓ , for $\ell > k$, be the first one to appear right after. Then the product $U = \prod U_n$ where

$$U_n = \begin{cases} \{0\} & \text{if } n = k, \\ \{1\} & \text{if } n = \ell, \\ X & \text{otherwise,} \end{cases}$$

is a basis element containing \mathbf{x} , but $U \cap A = \emptyset$ for otherwise there is a sequence $\mathbf{y} \in A$ with $y_k = 0$, but $y_\ell = 1$ which is impossible since $\ell > k$ and A consists of sequences \mathbf{y} with the property that if $y_N = 1$ then $y_n = 1$ for all $n \leq N$. Thus, $Y \setminus A$ is open so A is closed.

Problem 15. Let X be the two-point set $\{0,1\}$ with the discrete topology. Let Y be a countable product of copies of X; thus an element of Y is a sequence of 0's and 1's. Let A be the subset of Y consisting of sequences with only a finite number of 1's. Is A closed? Prove or disprove.

Proof. A is not closed. Consider the point $\mathbf{1}=(1,1,...)\notin A$. But for every basis element $U=\prod U_n\ni \mathbf{1}$ where $U_n=X_n$ except for finitely many n's, $U\cap A\neq\emptyset$.

Problem 16. Let Y be a topological space.Let X be a set and let $f: X \to Y$ be a function. Give X the topology in which the open sets are the sets $f^{-1}(V)$ with V open in Y (you do not have to verify that this is a topology). Let $a \in X$ and let B be a closed set in X not containing a. Prove that f(a) is not in the closure of f(B).

Proof. Suppose B is closed in X and $a \in X \setminus B$. Then $X \setminus B$ is open in X so $X \setminus B = f^{-1}(V)$ for some V open in Y. Then $f(X \setminus B) \subset V \ni f(a)$ with $V \cap f(B) = \emptyset$ (otherwise $f(b) \in V$ for some $b \in B$, but the preimage of V lies in the complement of B). By Theorem 17.5(a), $f(a) \notin \overline{f(B)}$.

Problem 17. Let $f: X \to Y$ be a function that takes closed sets to closed sets. Let $y \in Y$ and let U be an open set containing $f^{-1}(y)$. Prove that there is an open set V containing y such that $f^{-1}(V)$ is contained in U.

Proof. Since U is open in X, $X \setminus U$ is closed in X. Since f is a closed mapping, $f(X \setminus U)$ is closed in Y so $Y \setminus f(X \setminus U)$ is open in Y. Moreover, $y \in Y \setminus f(X \setminus U)$ since $y \notin f(X \setminus U)$. Let $V \ni y$ open in Y. Then we claim that $f^{-1}(V) \subset U$. Otherwise, there exists $x \in f^{-1}(V) \cap (X \setminus U)$ so $f(x) \in V \cap f(X \setminus U)$, but this contradicts that $V \subset X \setminus f(X \setminus U)$.

Problem 18. Let X be a topological space with an equivalence relation \sim . Suppose that the quotient space X/\sim is Hausdorff. Prove that the set $S=\{x\times y\in X\times X\mid x\sim y\}$ is a closed subset of $X\times X$.

Proof. Recall that a space Y is Hausdorff if and only if Δ_Y is closed in $Y \times Y$. Therefore, X/\sim is Hausdorff implies $\Delta_{X/\sim}$ is closed in $X/\sim\times X/\sim$. Now consider the map $P=(p,p)\colon X\to X/\sim\times X/\sim$ where $p\colon X\to X/\sim$ is the quotient map on X. p is continuous by the definition of the quotient topology so by Theorem 18.4, the composite map P is continuous since it is continuous in each factor. Hence, we have that

$$P^{-1}(\Delta_{X/\sim}) = \{ (x, y) \in X \times X \mid P(x, y) \in \Delta_{X/\sim} \}$$

$$= \{ (x, y) \in X \times X \mid p(x) = p(y) \}$$

$$= \{ (x, y) \in X \times X \mid x \sim y \}$$

$$= S,$$

so by Theorem 18.1(3), S is closed in X.

Problem 19. Let $p: X \to Y$ be a quotient map. Let us say that a subset S of X is saturated if it has the form $p^{-1}(T)$ for some subset T of Y. Suppose that for every $y \in Y$ and every open neighborhood U of $p^{-1}(y)$ there is a saturated open set V with $p^{-1}(y) \subset V \subset U$. Prove that p takes closed sets to closed sets.

Proof. Suppose that $W \neq X$ is closed so $X \setminus W$ is open. If p(W) = Y we are done. Suppose $p(W) \neq Y$. Then there exists some $y \in Y \setminus p(W)$ so $p^{-1}(y) \subset X \setminus W$. Then, for some open $V \in Y$, $p^{-1}(y) \subset p^{-1}(V) \subset X \setminus W$. Thus, $y \in V \subset p(X \setminus W)$, but $p(X \setminus W) \subset Y \setminus p(W)$ since $y \in p(X \setminus W)$ if and only if y = p(x) for $x \notin W$, but $y \in Y \setminus p(W)$ if and only if $y \neq p(x)$ for $x \in W$. Thus, $Y \setminus p(W)$ is open so p(W) is closed.

Problem 20. Let X be a topological space, let D be a connected subset of X, and let $\{E_{\alpha}\}$ be a collection of connected subsets of X.

Prove that if $D \cap E_{\alpha} \neq \emptyset$ for all α , then $D \cup (\bigcup E_{\alpha})$ is connected.

Proof. Consider the collection $\{D_{\alpha}\}$ where $D_{\alpha} = D \cup E_{\alpha}$. By Theorem 23.3, $D \cup E_{\alpha}$ is connected so every D_{α} is connected. Moreover $D_{\alpha} \cap D_{\beta} \supset D \neq \emptyset$ so by Theorem 23.3,

$$\bigcup D_{\alpha} = \bigcup D \cup E_{\alpha} = D \cup \left(\bigcup E_{\alpha}\right)$$

is connected.

Problem 21. Let X and Y be connected. Prove that $X \times Y$ is connected.

Proof. Seeking a contradiction, suppose C, D is a separation of $X \times Y$. Fix an $y_0 \in Y$. Then the map $X \hookrightarrow X \times Y$ given by $x \mapsto (x, y_0)$ is continuous (by Theorem 18.4) so by Theorem 23.5 its image, $X \times y_0$, is connected. Similarly, the maps $y \mapsto (x, y)$ for fixed $x \in X$ are continuous and hence their images, $x \times Y$ are connected. Since $X \times y_0$ is connected, by Theorem 23.2, $X \times y_0 \subset C$ or D. Without loss of generality, suppose $X \times y_0 \subset C$. Then, since $x \times Y \cap X \times y_0 \ni (x, y_0) \neq \emptyset$ then $x \times Y \subset C$ for all x. Thus,

$$X \times y_0 \cup \left(\bigcup_{x \in X} x \times Y\right) = X \times Y \subset C$$

implies that $D = \emptyset$. This contradicts the assumption that C, D is a separation of $X \times Y$.

Problem 22. For any space X, let us say that two points are "inseparable" if there is no separation $X = U \cup V$ into disjoint open sets such that $x \in U$ and $y \in V$.

Write $x \sim y$ if x and y are inseparable. Then \sim is an equivalence relation (you don't have to prove this).

Now suppose that X is locally connected (this means that for every point x and every open neighborhood U of x, there is a connected open neighborhood V of x contained in U).

Prove that each equivalence class of the relation \sim is connected.

Proof. Let x and C_x be the equivalence class of x. Then we claim that C_x is both closed and open. To see that C_x is closed we will show that $C_x = \overline{C_x}$. Let $y \in \overline{C_x}$. Now, suppose $y \notin C_x$. Then, there exists disjoint neighborhoods $U \ni y$, $V \ni x$ with $X = U \cup V$. By Theorem 17.5(a), for every neighborhood $U \ni y$, $U \cap C_x \ne \emptyset$. Let $x' \in U \cap C_x$, then $U \ni x'$, $V \ni x$ is a separation of X so x' and x are separable. This contradicts that $x' \in C_x$. Thus, C_x is closed.

To see that C_x is open we will show that $X \smallsetminus C_x$ is closed. Let $y \in \overline{X \smallsetminus C_x}$ and suppose that $y \notin X \smallsetminus X$. Then $y \in C_X$. Let $U \ni y$ be a neighborhood, then since X is locally connected, there exists a connected neighborhood $V \ni y$. But since $y \in \overline{X \smallsetminus C_x}, V \cap X \smallsetminus C_x \ne \emptyset$. Let $z \in V \cap X \smallsetminus C_x$. Then there exist a separation $U_z \ni y, V_z \ni z$ of X, i.e., y and z are separable. Then $U_z \cap V, V_z \cap V$ is a separation of V. This is a contradiction. Thus, $X \smallsetminus C_x$ is closed so C_x is open.

Now for the contradiction. Let C, D be a separation of C_x . Then by Theorem 16.2, C and D are open in X. Choose $x \in C$ and $y \in D$. Then $x \in C \cup (X \setminus C_x)$ and $y \in D$ is a separation of X so x and y are separable. This contradicts that $x, y \in C_x$, i.e., $x \sim y$.

Problem 23. Let X be a topological space. Let $A \subset X$ be connected. Prove \overline{A} is connected.

Proof. Seeking a contradiction, suppose C,D is a separation of \overline{A} . Then, by Theorem 23.2, $A \subset C$ or $A \subset D$. Suppose, without loss of generality, that $A \subset C$. Let B denote the closure of A in \overline{A} with the subspace topology. Then by Theorem 17.4, $B = \overline{A} \cap \overline{A} = \overline{A}$. Let $x \in B \setminus C$. Then, for every neighborhood $U \ni x \subset D$, $U \cap A \ne \emptyset$. But $D \cap C = \emptyset$. This is a contradiction. Thus, \overline{A} is connected.

Problem 24. Let $X_1, X_2, ...$ be topological spaces. Suppose $\prod_{n=1}^{\infty} X_n$ is locally connected. Prove that all but finitely many X_n are connected.

Proof. Let $X = \prod X_n$ and U be a nonempty open set in X and pick an $x \in U$. Then, since X is locally connected, there exist a connected open neighborhood $V \ni x \subset U$. Now, since V is open let $W = \prod W_n$ be a basis element containing W. Then, by Theorem 19.2, $W_n = X_n$ for all but finitely many n. Then

$$\pi_n(V) \supset \pi_n(W) = W_n$$

is connected by Theorem 23.5. But $W_n = X_n$ for all but finitely many n so $\pi_n(V) = X_n$ for all but finitely many n.

Problem 25. Let X be a connected space and let $f: X \to Y$ be a function which is continuous and onto. Prove that Y is connected. (This is a theorem in Munkres—prove it from the definitions).

Proof. Seeking a contradiction, let C, D be a separation of Y. Then, since f is continuous and C and D are open, $f^{-1}(C)$ and $f^{-1}(D)$ are open. We claim that $f^{-1}(C), f^{-1}(D)$ is a separation of X. It is clear that $X = f^{-1}(C) \cup f^{-1}(D) = f^{-1}(C \cup D) = f^{-1}(Y)$. Moreover, $f^{-1}(C) \cap f^{-1}(D) = f^{-1}(C \cap D) = \emptyset$. Thus, $f^{-1}(C), f^{-1}(D)$ is a separation. But X is connected. This is a contradiction.

Problem 26. Given:

- (i) $p: X \to Y$ is a quotient map.
- (ii) Y is connected.
- (iii) For every $y \in Y$, the set $p^{-1}(y)$ is connected.

Prove that X is connected.

Proof.

Problem 27. Let A be a subset of \mathbb{R}^2 which is homeomorphic to the open unit interval (0,1). Prove that A does not contain a nonempty set which is open in \mathbb{R}^2 .

Proof. Without loss of generality, assume that A is centered at the origin and contains an open ball D about 0 (by abuse of notation). Let $\varphi \colon A \to (0,1)$ be a homeomorphism. Then $\varphi(D) \subset (0,1)$ is connected. However, since φ is a homeomorphism, by Lemma A, $D \setminus \{0\} \approx \varphi(D) \setminus \{\varphi(0)\}$, but $\varphi(D) \setminus \{\varphi(0)\}$ is disconnected. This is a contradiction.

Problem 28. Let X be a connected space. Let \mathcal{U} be an open covering of X and let U be a nonempty set in \mathcal{U} . Say that a set V in \mathcal{U} is reachable from U if there is a sequence $U = U_1, U_2, ..., U_n = V$ of sets in \mathcal{U} such that $U_i \cap U_{i+1} \neq \emptyset$ for each i from 1 to n-1. Prove that every nonempty V in \mathcal{U} is reachable from U.

Proof.

Problem 29. Suppose that X is connected and every point of X has a path-connected open neighborhood. Prove that X is path-connected.

Proof.

Problem 30. Let X be a topological space and let $f, g: X \to [0, 1]$ be continuous functions. Suppose that X is connected and f is onto. Prove that there must be a point $x \in X$ with f(x) = g(x).

Proof.