Clustering

Course of Machine Learning Master Degree in Computer Science University of Rome "Tor Vergata"

Giorgio Gambosi

a.a. 2017-2018

Partitional clustering

Problem

Given a dataset $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$, with $\mathbf{x}_i \in \mathbb{R}^d (i = 1, \dots, n)$.

We wish to derive a set of clusters clusters (i.e. a partition of X into subsets of "near" elements). Clusters are represented by their prototypes $(\mathbf{m}_1, \ldots, \mathbf{m}_k)$, with $\mathbf{m}_j \in \mathbb{R}^d, j=1,\ldots,k$.

Rappresentation of a clustering

- 1. Cluster prototypes $(\mathbf{m}_1,\ldots,\mathbf{m}_k)$, with $\mathbf{m}_j\in\mathbb{R}^d (j=1,\ldots,k)$
- 2. Element assignment to clusters: for each \mathbf{x}_i , k binary flags $r_{ij} \in \{0,1\}$, $j=1,\ldots,k$. If \mathbf{x}_i is assigned the t-th cluster, then $r_{it}=1$ and $r_{ij}=0$ for $j\neq t$

Clustering types

Partitional clustering

Given a set of items (points) $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, we wish to partition \mathbf{X} by assigning each element to one out of k clusters C_1, \dots, C_k in such a way to maximize (or minimize) a given cost J. The number k of clusters could be given or should have to be computed.

Hierarchical clustering

Given a set of items (points) $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, we wish to derive a set of nested partitions of \mathbf{X} , from the partition composed by all singletons (one cluster for each node) to the one composed by a single item (the whole set).

Partitional clustering

Brute force methods

Check all partitions of a set of n elements into k subsets, selecting the one with minimum J. The number P(n,k) of such partitions can be recursively defined as follows:

$$P(n + 1, k) = P(n, k - 1) + kP(n, k)$$

 $P(n, 1) = 1$
 $P(n, n) = 1$

It is possible to prove that this results in the following closed form characterization:

$$P(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

This is the Stirling number of the second type which is known to be at least $\frac{1}{2}(k^2+k+2)k^{n-k-1}$ for $n\geq 2$, $1\leq k\leq n-1$.

Clustering cost

Sum of squares

Let us define the cost a clustering as follows:

$$J(R, M) = \sum_{i=1}^{k} \sum_{j=1}^{n} r_{ij} ||\mathbf{x}_{j} - \mathbf{m}_{i}||^{2} = \sum_{i=1}^{k} \sum_{j=1}^{n} r_{ij} (\mathbf{x}_{j} - \mathbf{m}_{i})^{T} (\mathbf{x}_{j} - \mathbf{m}_{i})$$

where

- $R_{ij}=r_{ij}$, where $r_{is}=1$ and $r_{ij}=0$ for $j\neq s$ if x_i is assigned to cluster C_s
- $M_i = \mathbf{m}_i$, i = 1, ..., k is the prototype (centroid) of cluster C_i ,

$$\mathbf{m}_i = \frac{1}{n_i} \sum_{j=1}^n r_{ij} \mathbf{x}_j$$

k-means clustering

Dataset $\mathbf{X}=(x_1,\ldots,x_n)$, $x_i\in\mathbb{R}^d$: we wish to derive k clusters with prototypes $\mathbf{m}_1,\ldots,\mathbf{m}_k$

Assignment of elements to cluster: for each x_i , k binary flags r_{ij} $(j=1,\ldots,k)$

· if x_i is assigned to cluster s, then $r_{is}=1$, and $r_{ij}=0$ for $j\neq k$

Cost: sum of the distances of each point from the prototype of the corresponding cluster

$$J(R, M) = \sum_{i=1}^{n} \sum_{j=1}^{k} r_{ij} ||x_i - \mathbf{m}_j||^2$$

Objective: finding r_{ij} and \mathbf{m}_j $(i=1,\ldots,n,j=1,\ldots,k)$ to minimize J(R,M)

Algorithm

1. Given a set of prototypes \mathbf{m}_{ij} , minimize wrt r_{ij} (assigning elements to clusters).

For each x_i , minimize $\sum_{j=1}^k r_{ij} ||x_i - \mathbf{m}_j||^2$.

The minimum is obtained for $r_{ik}=1$ (and $r_{ij}=0$ for $j\neq k$), where $||x_i-\mathbf{m}_k||^2$ is the minimum distance. That is, each point is assigned to the cluster of the nearest prototype.

2. Given a set of assignments r_{ij} , minimize wrt \mathbf{m}_{ij} (defining new cluster prototypes)

For each \mathbf{m}_k , $J=\sum_{i=1}^n\sum_{j=1}^k r_{ij}\,||x_i-\mathbf{m}_j||^2$ is a quadratic function of \mathbf{m}_k . By setting its derivative to zero, the values of \mathbf{m}_k providing its minimum are obatined

$$\frac{\partial J}{\partial \mathbf{m}_k} = 2\sum_{i=1}^n r_{ik}(x_i - \mathbf{m}_k) = 0 \Longrightarrow \mathbf{m}_k = \frac{\sum_{i=1}^n r_{ik}x_i}{\sum_{i=1}^n r_{ik}}$$

That is, the new prototype is the mean of the elements assigned to the cluster

At each step, ${\it J}$ does not increase. There is a convergence to a local minimum.

How to choose K

Cross validation

- Apply cross validation for different values of K, measuring the quality of the clustering obtained
- · How to measure the quality of a clustering?
 - 1. mean distance of elements from the prototypes of their clusters
 - 2. log-likelihood of the elements wrt the resulting mixture model

Note

Measures improves as K increases (overfitting). A value such that further increases provide limited improvement should be found

How to choose K

Penalty

Use of penalty terms wrt number of parameters

· Akaike Information Criterion (AIC)

$$AIC = 2K - 2\ln L$$

· Bayesian Information Criterion (BIC)

$$\mathrm{BIC} = K \ln n - 2 \ln L$$

where L is the model likelihood

Hierarchical clustering

Aim

Derivation of a binary tree. Node: cluster; arc: inclusion.

The tree specifies a set of pairwise merge of clusters.

- \cdot Aggregation, starting from n singleton clusters
- \cdot Separation, starting from a single cluster of size n

Requirements

k-means requires:

- \cdot a number K of clusters
- · an initizl assignment
- · a distance function between elements

Hierarchical clustering requires:

· a similarity function between clusters

Hierarchical clustering by aggregation

Algorithm

- define n clusters (singleton)
- · repeat
 - · compute the matrix of distances between clusters
 - · merge the pair of clusters which are ``nearest''
- · until ``a single cluster has remained"

Hierarchical clustering by aggregation

Properties

- · Each tree level is a partition of elements
- The algorithm provides a sequence of clusterings
- · The best clustering has to be found
- · Monotonicity: similarity between paired clusters decreases

Dendrogram

- Tree of cluster pairings
- The height of the nodes is inversely proportional to the similarity of the paired clusters

Dendrogramma

Cluster similarity

Many measures. Most frequent ones:

· Similarity between nearest nodes (Single linkage)

$$d_{SL}(C_1, C_2) = \min_{\mathbf{x}_1 \in C_1, \mathbf{x}_2 \in C_2} d(x_i, x_j)$$

Similarity between farthest nodes (Complete linkage)

$$d_{CL}(C_1, C_2) = \max_{\mathbf{x}_1 \in C_1, \mathbf{x}_2 \in C_2} d(x_i, x_j)$$

Mean similarity (Group average)

$$d_{GA}(C_1, C_2) = \frac{1}{|C_1| \cdot |C_2|} \sum_{\mathbf{x}_1 \in C_1} \sum_{\mathbf{x}_2 \in C_2} d(x_i, x_j)$$

Different measures provide different dendrograms

Dendrogram with complete linkage

