

Student ID:

Name:

Instructions: Please write your answer on a file or piece of paper and return it to me by uploading it in the Assignment Moodle section. I will look at all homework but will consider for evaluation only those retuned **not later than Thursday May 12**.

IMPORTANT: This homework is not mandatory so you will still be able to get your full score at the final test even if you can't do it or can't return it on time!

Questions:

1. Consider the transmission line circuit shown below. Calculate the incident power, the reflected power and the power transmitted into the 60Ω line. Show that power conservation is satisfied.

2. Design a quarter-wave transformer to match a Z_L =10 Ω load to a 50 Ω line at f = 2 GHz. The transmission line used to realize the transformer is a coaxial cable, which is filled with a dielectric with ϵ_r =2.25. Sketch the design of the microwave system, including the quarter-wave transformer and calculate its geometrical dimensions. See the sketch below for a section of the coaxial cable used to realize the quarter-wave transformer and its characteristic impedance formula.

3. A W-band rectangular waveguide is filled with air. Using the data in the table below, determine the cut-off frequencies of the first four propagating modes. Then assume to fill the same waveguide with Teflon (ϵ_r =2.08). Calculate the new cut-off frequencies of the first four propagating modes.

Assuming the operating frequency at f=9GHz, calculate the speed of light in Teflon, and phase and group velocities of the modes in the waveguide.

APPENDIX | STANDARD RECTANGULAR WAVEGUIDE DATA

Band*	Recommended Frequency Range (GHz)	TE ₁₀ Cutoff Frequency (GHz)	EIA Designation WR-XX	Inside Dimensions [Inches (cm)]	Outside Dimensions [Inches (cm)]
L	1.12-1.70	0.908	WR-650	6.500 × 3.250 (16.51 × 8.255)	6.660 × 3.410 (16.916 × 8.661)
R	1.70-2.60	1.372	WR-430	4.300 × 2.150 (10.922 × 5.461)	4.460 × 2.310 (11.328 × 5.867)
S	2.60-3.95	2.078	WR-284	2.840 × 1.340 (7.214 × 3.404)	3.000 × 1.500 (7.620 × 3.810)
H (G)	3.95-5.85	3.152	WR-187	1.872×0.872 (4.755×2.215)	2.000 × 1.000 (5.080 × 2.540)
C (J)	5.85-8.20	4.301	WR-137	1.372 × 0.622 (3.485 × 1.580)	1.500 × 0.750 (3.810 × 1.905)
W (H)	7.05-10.0	5.259	WR-112	1.122 × 0.497 (2.850 × 1.262)	1.250 × 0.625 (3.175 × 1.587)
X	8.20-12.4	6.557	WR-90	0.900 × 0.400 (2.286 × 1.016)	1.000 × 0.500 (2.540 × 1.270)
Ku (P)	12.4-18.0	9.486	WR-62	0.622 × 0.311 (1.580 × 0.790)	0.702 × 0.391 (1.783 × 0.993)
K	18.0-26.5	14.047	WR-42	0.420×0.170 (1.07×0.43)	0.500 × 0.250 (1.27 × 0.635)
Ka (R)	26.5-40.0	21.081	WR-28	0.280×0.140 (0.711×0.356)	0.360 × 0.220 (0.914 × 0.559)
Q	33.0-50.5	26.342	WR-22	0.224×0.112 (0.57×0.28)	0.304 × 0.192 (0.772 × 0.488)
U	40.0-60.0	31.357	WR-19	0.188 × 0.094 (0.48 × 0.24)	0.268×0.174 (0.681×0.442)
v	50.0-75.0	39.863	WR-15	0.148×0.074	0.228×0.154
E	60.0-90.0	48.350	WR-12	(0.38 × 0.19) 0.122 × 0.061	(0.579 × 0.391) 0.202 × 0.141
W	75.0-110.0	59.010	WR-10	(0.31×0.015) 0.100×0.050	(0.513 × 0.356) 0.180 × 0.130
F	90.0-140.0	73.840	WR-8	(0.254 × 0.127) 0.080 × 0.040	(0.458 × 0.330) 0.160 × 0.120
D	110.0-170.0	90.854	WR-6	(0.203×0.102) 0.065×0.0325	(0.406 × 0.305) 0.145 × 0.1125
G	140.0-220.0	115.750	WR-5	(0.170 × 0.083) 0.051 × 0.0255 (0.130 × 0.0648)	(0.368 × 0.2858) 0.131 × 0.1055 (0.333 × .2680)

 $^{^*}$ Letters in parentheses denote alternative designations.