Advanced Algorithms I

Todd Davies

December 23, 2015

Introduction

This course unit has two objectives. The first is to introduce the student to a range of advanced algorithms for difficult computational problems, including matching, flow networks and linear programming. The second objective is to outline the mathematical techniques required to analyse the complexity of computational tasks in general. There are two pieces of assessed coursework, and an exam at the end.

Aims

This unit provides an advanced course in algorithms, assuming the student already knows algorithms for common computational tasks, and can reason about the correctness of algorithms and understand the basics of computing the complexity of algorithms and comparing algorithmic performance.

The course focuses on the range of algorithms available for computational tasks, considering the fundamental division of tractable tasks, with linear or polynomial-time algorithms, and tasks that appear to be intractable, in that the only algorithms available are exponential-time in the worst case.

To examine the range of algorithmic behaviour and this fundamental divide, two topics are covered:

- Examining a range of common computational tasks and algorithms available; We shall consider linear and polynomial-time algorithms for string matching tasks and problems that may be interpreted in terms of graphs. For the latter we shall consider the divide between tractable and intractable tasks, showing that it is difficult to determine what range of algorithms is available for any given task.
- Complexity measures and complexity classes: How to compute complexity measures of algorithms, and comparing tasks according to their complexity. Complexity classes of computational tasks, reduction techniques. Deterministic and non-deterministic computation. Polynomial-time classes and non-deterministic polynomial-time classes. Completeness and hardness. The fundamental classes P and NP-complete. NP-complete tasks.

Additional reading

Title	Author	Year	
Core Algorithm design:	Goodrich, Michael T.	2002	
foundations, analysis	analysis and Roberto Tamassia		
and internet examples			
Introduction to the the-	Sipser, Michael	2013	
ory of computation (3rd			
edition)			

Contents

1	\mathbf{Alg}	Algorithmic Wisdom						
	1.1	Different types of algorithms						
	1.2	Computability						
	1.3	Asymptotics and optimisation						
2	Gra	phs						
	2.1	Connectivity						
	2.2	Representing graphs						
	2.3	Classifying Edges						
	2.4	Graph Algorithms						
		2.4.1 Depth first search						
		2.4.2 Dijkstra's algorithm						
		2.4.3 Tarjan's Algorithm						
3		ear Programming Background mathematics						

1 Algorithmic Wisdom

Lectures 2 & 3

The first two lectures of the course describe different types of algorithms, what is computable, where to optimise algorithms, asymptotics and heuristics.

1.1 Different types of algorithms

There are three types of algorithms that are mentioned:

Note:

You should know all of this from COMP26120.

Divide and conquer

These algorithms continually break a problem down into smaller parts, which are easier to solve, until eventually, the problems are trivial and easily solved. This is often used when the data you're operating on is in a recursive datastructure such as a tree. If you're writing an algorithm to find how many nodes there are in a tree, then you could use divide and conquer:

```
int countTreeSize(tree) {
int size = 1;
if (tree.left) size += countTreeSize(tree
if (tree.right) size += countTreeSize(tree
return size;
}
```

As you can see from the example, divide and conquer algorithms are usually recursive.

The divide and conquer technique can be applied to graphs, but in order to do this, you must keep track of which nodes you've visited with a flag on each node. If we wanted to count the nodes in a graph, we could do:

```
int countGraphSize(graph) {
  if (graph.visited) return 0;
  graph.visited = true;
  int size = 1;
  for (child in graph) {
    size += countGraphSize(child);
  }
  return size;
}
```

Mutual Recursion

Mutual recursion describes an algorithm that operates on data where one type of data can reference another, and the other can reference it. The example given is that of statements and expressions in programming languages; statements contain expressions, and expressions can also contain statements. Parsing such a structure might involve two algorithms that recurse on each other!

Dynamic Programming

Dynamic programming exploits the fact that when some problems are broken down into smaller sub-problems, some of the sub-problems are identical. Dynamic programming algorithms start from the very smallest subproblems and build up to the final solution, and usually cache results to sub-problems in a table so that work is not done twice.

1.2 Computability

There are many different definitions of computability, including lambda calculus, Turing machines, rewriting rules, random access machines and (many) more. The idea that relates all of these things, is that they all have the same capabilities. That is to say that if you can compute something using one of these ideas, then you can also compute it on all the others too.

There are also a class of 'alternate' computing mechanisms, such as quantum computers and neural computers. These ideas have the potential to compute things that a Turing machine (or its equivalents cannot), but they are significantly harder to build, and functional implementations do not exist yet.

1.3 Asymptotics and optimisation

When you have to get a computer to perform a task, implementing a simple algorithm first is a good idea, since you will at least have something to demonstrate to people, and you will gain a good understanding of the problem at hand. However, simple algorithms are often slow; how should we evolve our implementation to be as fast as we need it to be?

Profiling can tell you where your code is spending most of its time. Sometimes your algorithm will be really fast, and the processor will spend most of its time waiting for IO to give it more data; this is often the case with GPU computation.

Assuming you find some CPU bottleneck in your code, before you spend hours making it faster, consider whether it is worth the effort. If this part takes up 10% of your runtime, and you make it twice as fast, your program will only run 5% faster. This is an example of the Law of Diminishing Returns.

As well as optimising specific parts of an algorithm, you also should consider its asymptotic run time. An algorithm that runs in $O(n^2)$ time is probably going to be better than one that runs in O(nlog(n)) time. However, this isn't always the case; some algorithms (often ones with good asymptotic run times) take a long time to set up, usually when you have to transform the data into some different datastructure. If you are running your algorithm on a small amount of data, then an algorithm that you can run on your data as is might outperform a fancier algorithm that you have to invest more overhead in.

Note:

Sometimes a good solution is to use different algorithms depending on the input. If there are only a few cases that produce worst-case performance, you could even hard-code solutions to those!

The average case runtime of a algorithm is also important. Haskell uses a type checker that runs in $O(2^{n^n})$ time in the worst case, but for every program that isn't made specifically

to mess with the compiler, runs in linear time.

2 Graphs

A graph is a pair G = (V, E) where V is a finite set, and E is a set of pairs between items in V. Elements in V are vertices or nodes, and elements in E are edges.

Different mathematicians have different rules about what exactly can go in a graph. For the purposes of this course, the graphs shown in Figure 1 aren't allowed.

Figure 1: Self loops, duplicate edges and arrows are not allowed.

A **directed graph** is just like a normal graph, except the edges do have arrows. The only mathematical difference is that the set E is a set of ordered pairs.

The *degree* of a node in a graph, is the number of edges that are adjacent to (touching) it. If the graph is directed, then it is the number of edges originating from the node.

A weighted graph is one where each edge is associated with a value representing its weight. The length of a path between nodes is simply the sum of the edge weights connecting the nodes.

2.1 Connectivity

A node a is **reachable** from another node b if there is some sequence of nodes connected by edges that go from the a to b.

A graph where every node is reachable from every other node is **connected**. A strongly connected graph is a **directed graph** where each node is reachable from each other node.

Figure 2: This graph is not strongly connected, but the subgraph with only nodes A and B is. If we were to remove the arrows, then the graph would be connected.

2.2 Representing graphs

We can store graphs in computer memory in two ways:

Adjacency List

There are two different kinds of adjacency list, the first is like so:

```
public class Graph {
   List < Vertex > nodes;
   List < Edge > edges;
```

```
public class Edge { Vertex a, b; }
public class Vertex { List<Edge> out1
```

Here, we keep a list of all the nodes, and a list of all the edges. From any edge, we can see what nodes it connects, and from any node, we can see what edges it connects.

The other type of adjacency list is a bit simpler, but less efficient in some cases:

```
public class Graph<T> {
    Set<T, List<T>> adjList;
}
```

Adjacency Matrix

Here, a matrix indicates whether there is an edge between two nodes:

	A	В	С	D
A	0	1	0	0
A B	1	0	0	1
\mathbf{C}	0	1	0	0
D	0	0	0	0

This adjacency matrix represents the graph in Figure 3. You can see that it is fairly wasteful in terms of memory O(|E|*|V|), though with bit arrays, it has a very low constant overhead.

2.3 Classifying Edges

During a depth first traversal (Section 2.4.1) of a graph, we can classify each edge into one of four types. When doing the traversal, we process each edge from left to right (from the viewer's perspective), and we define an edge to be an ancestor of another edge if there is a path from the ancestor edge to the descendent edge and the ancestor is traversed first. The four types of edges are:

Tree edges

These edges lead to a new node during a search. If you remove all the edges from the graph except tree edges, then you get a tree!

Forward edges

These go from ancestor edges to descendent edges, but are not tree edges (i.e. the descendent node has been visited already).

Cross edges

These go between edges where no node is the ancestor of the other.

Back edges

An edge that goes from a descendant to an ancestor.

Figure 3: A pictorial illustration of the different edge types.

2.4 Graph Algorithms

You will have covered some of the algorithms featuring here in previous courses, or perhaps seen them in the wild. They are however interesting and useful, so it's worth a recap even if they're not new! I've ordered these in roughly increasing order of mental strain.

2.4.1 Depth first search

Depth first search (DFS) is an algorithm to find a node in a graph starting from another node. It works on both directed and undirected graphs, and runs in O(|V| + |E|) (linear) time. The psudo code looks like this:

Note:

Note how we mark nodes as having been visited (by adding them to visitedNodes). This is so if there is a loop in the graph, the algorithm doesn't run indefinitely.

```
Node dfs(Node haystack, Node needle) {
   Stack<Node> toVisit = new Stack <>();
   Set<Node> visitedNodes = new Set <>();
   toVisit.push(haystack);
   while(!toVisit.isEmpty()) {
     Node node = toVisit.pop();
     if (visitedNodes.contains(node)) continue
     visitedNodes.add(node);
     if(node.equals(needle)) {
        return needle;
     } else {
```

```
for (Node child : node.children) {
    toVisit.push(child);
    }
}
return null;
}
```

A Breadth First Search is the same, except you use a Queue instead of a Stack.

Note:

To see if a graph is connected, do a depth first search as in the example code, but don't stop when you find a needle, only stop when the toVisit stack is empty. If visitedNodes contains all of the nodes in the graph, then the graph is connected.

Depth first search also lets you find if one node is reachable from another in linear time, and also if a graph is connected in linear time too, with a few modifications.

We can also find out if a directed graph is strongly connected in O(|V| + |E|) time using Tarjan's algorithm, which we'll see later.

2.4.2 Dijkstra's algorithm

Dijkstra's algorithm finds the undirected shortest path between two nodes in a graph. Here is the psudo-code:

Note:

My best advice for learning an algorithm like this, is to get a whiteboard, draw out the problem, and then run the solution manually on the whiteboard. Then you have a pictorial and visual explanation of how the algorithm *really* works.

```
function Dijkstra (Graph, source):
  create vertex set Q
 // Initialization
  for each vertex v in Graph:
    dist[v] = INFINITY
    prev[v] = UNDEFINED
    add v to Q
 // Distance from source to source
  dist[source] = 0
  while Q is not empty:
    u = vertex in Q with min dist[u]
    remove u from Q
  for each neighbour v of u:
    alt = dist[u] + length(u, v)
    // A shorter path to v has been found
    if alt < dist[v]:
      dist[v] = alt
      prev[v] = u
```

```
return dist[], prev[]
Listing 1: Dijkstra's algorithm (from Wikipedia)
```

If we use a Fibonacci heap, for the priority queue, then the runtime of Dijkstra's algorithm is O(|E| + |V| log(|V|)). If we use a normal heap, then the runtime is O(|E| log(|V|)).

2.4.3 Tarjan's Algorithm

Before we delve into Tarjan's Algorithm, we need to discuss strongly connected components. You will remember from Section 2.1, that a graph is strongly connected if all nodes are reachable from any other node.

A strongly connected component is a subset of edges within a graph, where the subset is strongly connected. If a graph has only one strongly connected component, then it is strongly connected.

The psudo code here is from Wikipedia. If you're reading this after week 8 of the COMP36111 course, then you probably have your own implementation in C.

```
algorithm tarjan is input: graph G = (V, E) output: set of strongly connected components index := 0 S := empty
```

for each v in V do
 if (v.index is undefined) then
 strongconnect(v)

```
end if
end for
function strongconnect(v)
  // Set the depth index for v to the smalles
 v.index := index
 v.lowlink := index
 index := index + 1
 S.push(v)
 v.onStack := true
  // Consider successors of v
  for each (v, w) in E do
    if (w.index is undefined) then
      // Successor w has not yet been visited
      strongconnect (w)
      v.lowlink := min(v.lowlink, w.lowlink)
    else if (w.onStack) then
      // Successor w is in stack S and hence
     v.lowlink := min(v.lowlink, w.index)
    end if
  end for
  // If v is a root node, pop the stack and
  if (v.lowlink = v.index) then
    start a new strongly connected component
    repeat
     w := S.pop()
     w.onStack := false
      add w to current strongly connected cor
    while (w != v)
```

output the current strongly connected corend if end function

3 Linear Programming

Linear programming is an optimisation problem, where we want to find the 'best' solution to a set of equations. We're going to solve it using the *simplex* method, but before we do, I think it's a good idea to recap some high-school mathematics first. Feel free to skip the next subsection if you're feeling confident with it.

3.1 Background mathematics

An inequality relation is just like a normal equation, except the equals sign is replaced by either <, >, \le or \ge . When you solve an inequality, you generally want to get all of the similar terms on one side (e.g. move all the variable terms over to one side, and all of the constants to another side). This *mostly* works like a normal equation; you can add and subtract from both sides just like normal, however, if you want to divide or multiply **by a negative quantity**, then you need to **reverse the equality**.

$$-2x > -2$$
$$2x < 2$$
$$x < 1$$

This equality is satisfied whenever x is less than 1. If we have two terms in the equality (something similar to $ax + by \ge c$), it becomes slightly harder to solve. To solve this we can:

- Plot a graph of the line ax + by = c.
- Pick a test point (x, y) not on the line, and plot it on the graph.
- If the point (x, y) satisfies the inequality, then shade the opposite side of the line to which the point is on, otherwise, shade the same side.

For example, given $3x + 4y \le 6$, and choosing the point (-2, 1) we end up with what's in Figure 4.

Figure 4: A graph of $3x + 4y \le 6$, with all the valid values shaded blue.

If we have multiple inequalities, we want to find the region where all of them are satisfied. This involves plotting each line, and shading the regions where they're not satisfied, which means the blank bit is the bit we want.

If we have the equations $3x + 4y \le 6$, $2y - x \le 2$ and $x \ge 0$, we will get something like in Figure 5.

Figure 5: A graph plotting $3x + 4y \le 6$, $2y - x \le 2$ and $x \ge 0$, where the points not satisfying the inequalities are shaded in blue, green and red respectively. The clear region satisfies all points.

Figure 6: The valid region in the three inequalities from Figure 5. The corner points are (2,0), (-2,0) and $(\frac{2}{5},\frac{6}{5})$.

The corner points are especially important to us, since that's often where the useful numbers are (we'll see more of this later). In order to find the corner points, we solve the two lines that form them. Solving the following equations gives the points in Figure 6.

•
$$x = 0, 3x + 4y = 6$$

•
$$x = 0, 2y - x = 2$$

$$\bullet 2y - x = 2,3x + 4y = 6$$