

Master of Science HES-SO in Engineering Av. de Provence 6 CH-1007 Lausanne

Master of Science HES-SO in Engineering

Orientation: Information and Communication Technologies (ICT)

GenBot

Author:

Romain Claret¹

Under the direction of:
Prof. Dr. Jean Hennebert
HES-SO//Fribourg
Institute of Complex Systems (iCoSys)

External expert: Dr. Christophe Gisler

Lausanne, HES-SO//Master, March 25, 2019

Accepted by the HES-SO//Master (S	Switzerland, Lausanne) on a proposal fron
Prof. Dr. Jean Hennebert, deepening Dr. Christophe Gisler, iCoSys, main	• • •
Place, date:	
Prof. Dr. Jean Hennebert	Prof. Dr. Philippe Passeraub
Supervisor	Dean, HES-SO//Master

Dedicate

Contents

Co	Contents	V
Αc	cknowledgements	vii
GI	Blossary	ix
Αc	acronyms	хi
ΑŁ	bstract	xiii
1	Introduction 1.1 Aim of Study	
2	Questions2.1 Initial Broad Questions2.2 Narrowed Questions2.3 Deepening Project Questions	 . 3
3	Plan 3.1 Initial Plan	 5
4	Literature Review and Research Proposal 4.1 State of the art	
5	Results 5.1 Frameworks 5.1.1 Gensim 5.2 Materials 5.3 Products	 9
6	Discussion	11
7	Experimental Part	13
8	Conclusion	15
Re	References	17

Contents

Appendix						19
.0.1	Appendix	 	 	 	 	 19

Acknowledgments

Glossary

AdaGrad

Adaptive Gradient Algorithm that maintains a per-parameter learning rate that improves performance on problems with sparse gradients (e.g. natural language and computer vision problems)..

Acronyms

13C

carbon-13.

ACN

Acetonitrile.

CHCA

Cyano 4 hydroxy cinnamic acid.

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Key words: Data Engineering, Machine Learning, Data Services, Conversational Agents conversational, chatbot, Natural Language Understanding (NLU), generic

Introduction

Today Beginning of 2019, Chatbots are everywhere but very limited to narrow tasks, and are, in most cases, sequences of if-else conditions resulting in a very weak AI. Indeed, hard-coded connections are requiring an infinite amount of human power to create generic Chatbots able to maintain a conversation at a human level. However, the progress in the field of machine learning is demonstrating that providing large corpora to an unsupervised algorithm is enough to maintain a passive conversation with users, which results into a shifting of the human power into data engineering. Multiple algorithms and technics are emerging monthly, which are demonstrating promising conversational performance improvement; however, they are all still narrow Als. Indeed, even if they are getting better at providing meaningful sentences, they are still not able to generalize all tasks linked to a conversation, such as, understanding the context, search and learn for missing information, initiate conversation in a meaningful manner, be intuitive, and more. The generalization of those features would allow a significant step forward into general Chatbots. Humbly, the goal of this deepening semester project is to suggest and demonstrate approaches as a premise to Artificial General Intelligence and getting a step closer to general Chatbots, which can initiate and maintain human-like conversations in a pro-active manner.

Driver iCoSys, the Institut of Complex Systems at University of Applied Sciences and Arts at Fribourg, Switzerland, is interested into the result of this project as a study for their Al-News project, whose goal is to provide a chatbot as a tool to reader, to help them narrow their interests and deliver the right information. Al-News is in collaboration with Swiss Innovation Agency from the Swiss Confederation, and La Liberté, the daily newspaper from Fribourg.

1.1 Aim of Study

1.2 Scope and Limitation of Study

Questions

2.1 Initial Broad Questions

- Is the artificial neural network approach appropriate to represent the world?
- Can agents be made exclusively from a language?
- Can agents able to experience an environment?
- Is a narrative environment be enough to understand an environment?
- Is the language able to provide to an agent an understanding of the world?
- Is the knowledge of the language syntax enough to gain an understanding?
- Is the result of unsupervised learning enough to discover all nuances?
- Is the unsupervised learning sufficient to make sense to an environment?
- Is a descriptive explanation of the world be expressed in a language?
- Is the description good enough to catch all the nuances?
- Is the language good enough to explain?
- Can we augment or make a semantic language?
- Can we create a common symbolic language?
- Is the language multi-dimensional?
- How many dimensions are needed for a complex language?
- Is it possible to give a word equivalence to machines for human-specific words?
- Are all emotions describable into words?
- Are emotions altering language descriptions?
- Is an approximation of the real world enough to understand the environment?
- Would a the simulated world be a good approximation of the real world?

2.2 Narrowed Questions

- Common human-machine language
 - Is it possible to create a multi-dimensional human-machine language, which includes a common semantic, symbolic, and emotion definition.
 - Is it possible to create an abstract world for machines to understand human symbolic based on a real world, and define fundamentals for machine representation of the language.
- Machine intuition

Chapter 2. Questions

- Is it possible to provide to machines an human-like intuition (inside voice), which would help to keep a long term context and specialize in specific fields.
- Evaluate human-machine communication
 - Is it possible to provide a protocol to test the communication skills and machine understanding.

2.3 Deepening Project Questions

- How to verify and quantify a chatbot understanding?
- What is the premise to make chatbots general with today's technology?
- How chatbot can be proactive?
- How to simulate human-like intuition in chatbots?

Plan

3.1 Initial Plan

Timeframe: 15 weeks Starting date: 18.02.2019 Ending date: 31.05.2019

18.02.19 to 08.03.19 (3 weeks)

- Do the initial research about general chatbots
- Determine the project target
- Play with the subject
- DELIVERABLE: Plan and Initial Specification document

11.02.19 to 29.03.19 (3 weeks)

- Explore the Word2Vec methodology and its extensions
- Combine and test ANN algorithms with Word2Vec
- MVP: Basic multi-dimensional word embedding space

01.04.19 to 19.03.19 (3 weeks)

- Explore ANN algorithm topology for the chatbot
- Analysis of the chatbot intuition with parallel algorithms
- Analysis of a protocol to evaluate proactive chatbots
- MVP: Basic conversational agent

22.04.19 to 10.05.19 (3 weeks)

- Profile-based initiatives
- · Analysis and experiment of the profile nurturing
- Analyze and experiment with chatbot initiatives with no profiles.
- MVP: Basic proactive chatbot

Chapter 3. Plan

13.05.19 to 31.05.19 (3 weeks)

- Overall improvements
- Autonomous data gathering
- Make suggestions
- Determine possible continuation and future outcomes for the project
- **DELIVERABLE:** Report + Sources

Literature Review and Research Proposal

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.1 State of the art

4.1.1 Patent law

Results

5.1 Frameworks

5.1.1 Gensim

verify further Mem ory allocation clair

Errors Memory allocation with multi-core. The problem is occurring during the merge of the cores. Indeed, my current machine has 128GB ram, and the dataset weights about 16GB in the memory, and each core during merging is processing at least the same amount, plus the processed informations.

```
2019-03-25 08:31:18,867 : INFO : PROGRESS: pass 0, dispatched chunk #34 = documents up to #70000/4614519, outstanding queue size 31

Exception in thread Thread-1:
Traceback (most recent call last):
File "/usr/lib/python3.5/threading.py", line 914, in _bootstrap_inner self.run()
File "/usr/lib/python3.5/threading.py", line 862, in run self. target('self. args, **self. kwargs)
File "/usr/lib/python3.5/multiprocessing/pool.py", line 366, in _handle_workers pool. maintain pool()
File "/usr/lib/python3.5/multiprocessing/pool.py", line 240, in _maintain_pool self. repopulate pool()
File "/usr/lib/python3.5/multiprocessing/pool.py", line 233, in _repopulate_pool w.start()
File "/usr/lib/python3.5/multiprocessing/pootess.py", line 105, in start self. popen = self. Popen(self)
File "/usr/lib/python3.5/multiprocessing/context.py", line 267, in _Popen return Popen(process obj)
File "/usr/lib/python3.5/multiprocessing/popen_fork.py", line 20, in __init__ self._launch(process_obj)
File "/usr/lib/python3.5/multiprocessing/popen_fork.py", line 67, in _launch self.pid = os.fork()
OSError: [Errno 12] Cannot allocate memory
```

5.2 Materials

5.3 Products

Discussion

Experimental Part

Conclusion

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

[1][2][3][4] Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

AdaGrad Acetonitrile (ACN) 13C Cyano 4 hydroxy cinnamic acid (CHCA)

Lausanne, March 25, 2019

Romain Claret

References

- [1] J. J. Li and E. J. Corey. "Name Reactions in Heterocyclic Chemistry". In: *John Wiley & sons, Inc.* 2005.
- [2] 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science (New Orleans, Louisiana, June 25–28, 2013). IEEE Computer Society, 2013. ISBN: 978-1-4799-0413-6.
- [3] Dirk Pattinson. "The Logic of Exact Covers. Completeness and Uniform Interpolation". In: pp. 418–427.
- [4] (New Orleans, Louisiana, June 25–28, 2013). IEEE Computer Society, 2013. ISBN: 978-1-4799-0413-6.

Appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

.0.1 Appendix