CLAIM AMENDMENTS:

Dr. Paul Vincent

1 to 7 cancelled.

- 8. (amended)The method of claim 7, A method for monitoring a communication media access schedule of a communication controller in a communication system, the communication system comprising a communication media and nodes connected to the communication media, each node having a communication controller, wherein messages are transmitted among the nodes across the communication media based on a cyclic time triggered communication media access scheme, the method comprising:
 - a) providing a priori knowledge about possible deviations from the communication media access schedule during startup of the communication; and
 - b) using said a priori knowledge during startup of the communication to distinguish between an allowed deviation and a forbidden deviation caused by a failure of the communication controller, wherein, during startup of the communication, the communication controller of one of the nodes transmits a first trigger signal (ARM) to a bus guardian assigned to that communication controller, wherein said first trigger signal (ARM) is transmitted at a beginning of a timeslot in a cycle of the communication media access scheme and a first expectation window is defined at an end of said timeslot in said cycle, wherein a further trigger signal (ARM) within a further expectation window defines a beginning of a new cycle of the communication media access scheme,

wherein each of a number said number of further expectation windows is defined at a beginning of subsequent cycles of the communication media access scheme according to a parameter (ColdStartMax) defining a maximum number of cycles for which the communication controller is allowed to actively try to establish communication with a further communication controller of one of the other nodes of the communication system.

9. cancelled

Dr. Paul Vincent

- 10. (currently amended) The method of claim 6claim 8, wherein for a valid schedule-reset (SR), there are no further trigger signals (ARM) within the further expectation windows.
- 11. (currently amended) The method of claim 4claim 8, wherein for a forbidden deviation from the communication media access schedule, there are no further signals (ARM) outside the expectation windows.

12. to 21. cancelled

22. (currently amended) The method of claim4claim 8, wherein during startup of the communication, at least one expectation window is defined according to said a priori information, an occurrence of further trigger signals within the at least one expectation window is monitored, and between an allowed deviation and a forbidden deviation is distinguished in dependence on an occurrence of further trigger signals within the at least one expectation window and in dependence on said a priori knowledgeinformation.

Dr. Paul Vincent

- 23. (previously presented) The method of claim 22, wherein allowed deviations from the communication media access schedule during startup of the communication are represented by reset information (SR) and by a chronological occurrence of the reset information (SR), wherein the reset information (SR) is monitored and the chronological occurrence of the reset information (SR) during the startup of the communication.
- 24. (previously presented) The method of claim 22, wherein for an allowed deviation from the communication media access schedule, the expectation windows may or may not contain further trigger signals (ARM).
- 25. (currently amended) One of a number of nodes connected to a communication media, wherein messages are transmitted among the nodes across the communication media based on a cyclic time triggered communication media access scheme, the node comprising:

a communication controller; and means for monitoring the communication media access schedule of said communication controller, in which means a priori knowledge about possible deviations from the communication media access schedule during startup of the communication is stored and means for making use of said a priori knowledge in order to distinguish between an allowed deviation and a forbidden deviation caused by a failure of said communication controller during startup wherein during startup of the communication,

the communication controller being arranged to of one of the nodes-transmitstransmit a first trigger signal (ARM) to a bus guardian assigned to that communication controller at a

beginning of a timeslot in a cycle of the communication media access scheme and a first expectation window is defined at an end of said timeslot in said cycle,

wherein the communication controller is further arranged to transmit a further trigger signal (ARM) within a further expectation window, which further trigger signal (ARM) defines a beginning of a new cycle of the communication media access scheme,

wherein the communication controller is further arranged to define each of a number of further expectation windows at a beginning of subsequent cycles of the communication media access scheme according to a parameter (ColdStartMax) defining a maximum number of cycles for which the communication controller is allowed to actively try to establish communication with a further communication controller of one of the other nodes of the communication system.

26. (currently amended) A communication system comprising:

a communication controller; and nodes connected to said communication media, wherein messages are transmitted among said nodes across said communication media based on a cyclic time triggered communication media access scheme, each node having a communication controller and a monitoring unit, for monitoring a communication media access schedule of said communication controller, wherein said monitoring unit has a priori knowledge about possible deviations from the communication media access schedule during startup of the communication and said monitoring unit has means for making use of said a priori

knowledge in order to distinguish between an allowed deviation and a forbidden deviation caused by a failure of said communication controller during startup of the communication wherein during startup of the communication, the communication controller of one of the nodes transmits a first trigger signal (ARM) to a bus guardian assigned to that communication controller at a beginning of a timeslot in a cycle of the communication media access scheme and a first expectation window is defined at an end of said timeslot in said cycle,

wherein the communication controller is further arranged to transmit a further trigger signal (ARM) within a further expectation window, which further trigger signal (ARM) defines a beginning of a new cycle of the communication media access scheme,

wherein the communication controller is further arranged to define each of a number of further expectation windows at a beginning of subsequent cycles of the communication media access scheme according to a parameter (ColdStartMax) defining a maximum number of cycles for which the communication controller is allowed to actively try to establish communication with a further communication controller of one of the other nodes of the communication system.

27. (currently amended) A data carrier on which a computer program for execution on one of a computer and a microprocessor is stored, wherein the computer program is programmed to execute the method of claim 4 computer readable storage medium storing a program having computer executable instructions that when executed by a processor cause to execute a method for monitoring a

communication media access schedule of a communication controller in a communication system,

the communication system comprising a communication media and nodes connected to the communication media, each node having a communication controller, wherein messages are transmitted among the nodes across the communication media based on a cyclic time triggered communication media access scheme, the method comprising:

- a) providing a priori knowledge about possible deviations from the communication media access schedule during startup of the communication; and
- b) using said a priori knowledge during startup of the communication to distinguish between an allowed deviation and a forbidden deviation caused by a failure of the communication controller, wherein, during startup of the communication, the communication controller of one of the nodes transmits a first trigger signal (ARM) to a bus quardian assigned to that communication controller. wherein said first trigger signal (ARM) is transmitted at a beginning of a timeslot in a cycle of the communication media access scheme and a first expectation window is defined at an end of said timeslot in said cycle, wherein a further trigger signal (ARM) within a further expectation window defines a beginning of a new cycle of the communication media access scheme, wherein each of a number of further expectation windows is defined at a beginning of subsequent cycles of the communication media access scheme according to a parameter (ColdStartMax) defining a maximum number of cycles for which the communication controller is allowed to actively try to establish communication with a further

<u>communication controller of one of the other nodes of the communication system.</u>

28. (currently amended) The <u>computer readable storage mediumdata</u> carrier of claim 27, wherein the computer program is stored is one of a read-only-memory, a random-access-memory, and a flash-memory.