Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2017 AU3ES09 / FT3ES09 / ME3ES09

Engineering Materials

Programme: B.Tech. Branch/Specialisation: AU/FT/ME

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q .1 (MCQs) should be written in full instea	d of only a, b, c or d.	
) .1	i.	Atomic packing factor (APF)	in the case of copper crystal is	1
		(a) 0.52 (b) 0.68	(c) 0.74 (d) 1.633	
	ii.	Which of the following is not	a point defect?	1
		(a) Interstitial atom	(b) Substitutional atom	
		(c) Edge dislocation	(d) None of these	
	iii.	Consideration of creep is impo	ortant in	1
		(a) Industrial belts	(b) Blades of gas turbines	
		(c) Nuclear reactors	(d) All of these	
	iv.	Plastic deformation results fro	m the following	1
		(a) Slip	(b) Twinning	
		(c) Both (a) & (b)	(d) None of these	
	v.	As per Gibb's phase rule is a	given by $(F = number of degree of$	1
		freedom, $C = number of components$, $P = number of phases$)		
		(a) $F = C + P$	(b) $F = C + P - 2$	
		(c) $F = C - P - 2$	(d) $F = C - P + 2$	
vi.		Which one of the following ha	as maximum hardness	1
		(a) Austenite (b) Pearlite	(c) Marten-site(d) Sorbite	
	vii.	18/8 stainless steel contains		1
		(a) 18% Nickle, 8% Chromiun	n	
		(b) 18% Chromium, 8% Nickl	e	
		(c) 18% Tungsten, 8% Nickle		
		(d) 18% Tungsten, 8% Chrom	ium	
			DТ	\circ

P.T.O.

1

viii. The blade of a power saw is made up of

		(a) Boron steel (b) High speed ste	el	
		(c) Stainless steel (d) Malleable cast	iron	
	ix.	Bakelite is an example of		
		(a) An elastomer (b) A fibre		
		(c) A thermoset (d) A thermoplast		
	х.	Cubic boron nitride is used		1
		(a) As lining material in induction furnaces		
		(b) For making optical quality glass(c) For heat treatment		
		(d) None of these		
Q.2 i. What is the difference between atomic structure and crystal structure?			and crystal	2
	ii.	Determine the indices for the direction shown in	the hexagonal	3
		unit cell of sketch below:		
		a_3 a_1		
	iii.	What do you mean by dislocation in crystal?	_	5
		types of dislocation and explain each of them with neat sketch.		
OR	iv.	Show that the ideal c/a ratio is 1.633 for HCP cr	ystal structure.	5
Q.3	i.	Write down any four mechanical properties and	define them	2
Q .5	ii.	What are different mechanisms of plastic of		8
	11.	explain one of them in brief with neat sketch. Also derive an expression of critical resolved shear stress and state how observed CRSS differ from estimated CRSS?		

OR	iii.	Classify strengthening mechanisms and explain any three of them in brief with neat sketch.	8
Q.4	i.	Define Phase, Isomorphous system with an example, lever rule with neat sketch.	3
	ii.	Draw iron-iron carbide metastable diagram and explain the salient points on the curve.	7
OR	iii.	Name various heat treatment processes for plain carbon steel and explain any three of them with their effects on mechanical properties of steel.	7
Q.5	i.	What do you mean by HSLA? Also write the applications of them.	4
OR	ii. iii.	Classify Mg-alloys and Titanium alloys along with applications. Classify various types Cast Iron and explain them in brief along characteristics and applications.	6
Q.6		Attempt any two:	
	i.	What are composites? Also write engineering applications and explain one of the production techniques.	5
	ii.	How metallic fibres are manufactured? (with neat sketch)	5
	iii.	What is polymerisation? Classify various types polymerisation and explain them in brief.	5

AU3ES09 / FT3ES09 / ME3ES09 Engineering Materials

Marking Scheme

Q.1	i)	(c) 0.74	1
	ii)	(c) Edge dislocation	1
	iii)	(d) All of these	1
	iv)	(c) Both (a) & (b)	1
	v)	(d) $F = C - P + 2$	1
	vi)	(c) Marten-site	1
	vii)	(b) 18% Chromium, 8% Nickle	1
	viii)	(b) High speed steel	1
	ix)	(c) A thermoset	1
	x)	(d) None of the above	1
Q.2	i.	Each difference consists 1 mark (1 mark * $2 = 2$ marks)	2
	ii.	There are three co-ordinates of such crystal structure, determination of each carry 1 mark (1 mark $*$ 3 = 3 marks)	3
	iii.	Definition - 1 mark Classification - 1 mark Explanation - 2 marks Diagram - 1 mark	5
OR	iv.	Diagram - 1 mark Identification of equilateral triangle and getting magnitude of one side in term of 'a' - 1 mark Identification of right angle triangle and applying Pythagoras theorem - 2 marks Getting relation between 'a' and 'c' - 1 mark	5
Q.3	i.	Each property and definition carry 0.5 mark $(0.5 \text{ mark} * 4 = 2 \text{ marks})$	2
	ii.	Different mechanisms - 1 mark Explanation - 3 marks Diagram - 1 mark Derivation - 1 mark	8
		Diagram used for derivation – 1 mark	
		Difference between observed CRSS differ from estimated CRSS - 1 mark	

OR	iii.	Classification - 2 mark	8
		Explanation of each 1 mark (1 mark $*$ 3 = 3 marks)	
		Diagram of each 1 mark (1 mark * 3 = 3 marks)	
Q.4	i.	Definition of each 1 mark (1 mark $*$ 3 = 3 marks)	3
	ii.	Well labelled iron-iron carbide diagram - 4 marks	7
		Explanation of α -ferrite, δ -ferrite and cementite – 1.5 marks	
		Explanation of Eutectoid, Eutectic and Peritectic reaction – 1.5 marks	
OR	iii.	Name various heat treatment processes – 1 mark	7
		Explanation of each 1 mark $(1 \text{ mark } * 3 = 3 \text{ marks})$	
		Effect on properties of each process on steel (1 mark $*$ 3 = 3 marks)	
Q.5	i.	Definition 1 mark	4
		Each application 1 mark (1 mark $*$ 3 = 3 marks)	
	ii.	Classification of each 2 mark (2 mark $*$ 2 = 4 marks)	6
		Application of each 1 mark (1 mark * $2 = 2$ marks)	
OR	iii.	Classification - 1 mark	6
		Explanation - 2 marks	
		Characteristics – 1.5 marks	
		Application - 1.5 marks	
Q.6		Attempt any two:	
	i.	Definition - 1 mark	5
		Application – 1 mark	
		Production technique - 2 marks	
		Diagram - 1 marks	
	ii.	Manufacturing process – 3 marks	5
		Diagram - 2 marks	
	iii.	Definition - 1 mark	5
		Classification – 1 mark	
		Explanation 3 marks	

Q2-(II)

Determination of Directional Indices for a Hexagonal Unit Cell

Determine the indices for the direction shown in the hexagonal unit cell of sketch (a) below.

Solution

In sketch (b), one of the three parallelepipeds comprising the hexagonal cell is delineated—its corners are labeled with letters A through H, with the origin of the a_1 - a_2 - a_3 -z axes coordinate system located at the corner labeled C. We use this unit cell as a reference for specifying the directional indices. It now becomes necessary to determine projections of the direction vector on the a_1 , a_2 , and z axes. These respective projections are a (a_1 axis), a (a_2 axis) and c (z axis), which become 1, 1, and 1 in terms of the unit cell parameters. Thus,

$$u' = 1$$
 $v' = 1$ $w' = 1$

Also, from Equations 3.6a, 3.6b, 3.6c, and 3.6d

$$u = \frac{1}{3}(2u' - v') = \frac{1}{3}[(2)(1) - 1] = \frac{1}{3}$$

$$v = \frac{1}{3}(2v' - u') = \frac{1}{3}[(2)(1) - 1] = \frac{1}{3}$$

$$i = -(u + v) = -\left(\frac{1}{3} + \frac{1}{3}\right) = -\frac{2}{3}$$

$$w = w' = 1$$

Multiplication of the above indices by 3 reduces them to the lowest set, which yields values for u, v, t, and w of 1, 1, -2 and 3, respectively. Hence, the direction shown in the figure is [11 $\overline{2}$ 3].

1. For the HCP crystal structure, show that the ideal c/a ratio is 1.633.

We are asked to show that the ideal c/a ratio for HCP is 1.633. A sketch of one third of an HCP unit cell is shown below.

Consider the tetrahedron labeled as JKLM, which is reconstructed as

The atom at point M is midway between the top and bottom faces of the unit cell that is $\overline{MH} = c/2$. And, since atoms at points J, K, and M, all touch one another,

$$JM = JR = 2R = a$$

where R is the atomic radius. Furthermore, from triangle JHM,

$$(\overline{JM})^2 = (\overline{JH})^2 + (\overline{MH})^2$$
, or $a^2 = (\overline{JH})^2 + (\frac{c}{2})^2$

Now, we can determine the \overline{JH} length by consideration of triangle JKL, which is an equilateral triangle,

$$\cos 30^{\circ} = \frac{a/2}{JH} = \frac{\sqrt{3}}{2}$$
, and

$$JH = \frac{a}{\sqrt{3}}$$

Substituting this value for JH in the above expression yields

$$a^2 = \left(\frac{a}{\sqrt{3}}\right)^2 + \left(\frac{c}{2}\right)^2 = \frac{a^2}{3} + \frac{c^2}{4}$$

and, solving for c/a

$$\frac{c}{a} = \sqrt{\frac{6}{3}} = 1.633$$