Embedded Linux Systems

Presented By:
Kitrek Riese

• • Presentation Overview

- Why Choose Linux
- Embedded Linux Architecture
- Options and Attributes of Embedded Linux
- Embedded Linux Examples

The Start of Embedded Linux

- At first there was VxWorks, pSOS, Neculeus, and Windows CE
- Although now a common practice, the first concepts of embedded Linux arrived on the scene around 1997.

• • Why Choose Linux

- Linux is Open Source.
 - Additions to functionality are made easier.
 - Large support network for developers.
 - Ability the fix code without help from outside organizations.

• • Why Choose Linux

- Quality and Readability of Linux Code
 - Separate functionality is found in separate modules and the different modules are split into different files, reflecting their functionality. The result of this is high cohesion and low coupling.

• • Disadvantages of Linux

- Real Time Performance is provided through Kernel Modules
 - A code error can crash the entire OS

- Same as 'normal'
 Linux Architecture
- Contains six layers of abstraction

 Applications: Includes your normal desktop applications

- Libraries: Allow applications to communicate with the Linux Kernel
 - GNU C library
 - Qt
 - XML
 - MD5
- These libraries are not part of the application but rather exist separately within the Linux structure.
- Different applications to use the same instance of a library. This saves memory because you need only one copy of the library to be loaded into RAM

- The Linux Kernel
 - Essentials:
 - High-Level Abstractions
 - Kernel Internals
 - Low Level Abstractions
 - Internal abstraction gives the Kernel ability to interface with many File-Systems and Network Protocols

Embedded Linux Necessities

- Minimalist Linux
 - A boot utility
 - The Linux micro-kernel, composed of memory management, process management and timing services
 - An initialization process
- To doing anything useful while remaining minimal, you also need to add:
 - Drivers for hardware
 - One or more application processes to provide the needed functionality
- As additional requirements become necessary, you might also want:
 - A file system (perhaps in ROM or RAM)
 - TCP/IP network stack
 - A disk for storing semi-transient data and swap capability
 - A 32-bit internal CPU (required by all complete Linux systems)

Embedded Linux Hardware

- Many Hardware Options Available
 - x86
 - ARM
 - IBM/Motorola Power PC
 - MIPS
 - Hitachi Super H
 - Motorola 68000

• • Embedded Linux Hardware

o x86

- Introduced by Intel in 1985
- Large amounts of documentation available
- Most widely used and tested on Linux platforms
- Many applications developed on the x86 for the purpose of porting to other hardware.

Embedded Linux Hardware

- ARM (Advanced RISC Machine)
 - No particular manufacturer, maintained by ARM Holdings Ltd.
 - ARM Holdings designs CPU cores and the ARM instruction set
 - Customers find their own manufacturer which allows for greater customization
 - Linux supports ten different ARM CPUs on sixteen different platforms, along with two hundred related boards.

Embedded Linux Hardware

- Busses and Interfaces
 - PCI
 - PCMCIA
 - Parallel Port
 - SCSI
 - USB
 - FireWire
 - Serial Port

- Linux also supports a wide variety IO devices
 - Printers
 - Mice
 - Sound
 - Storage
 - Display Devices

Development Tools and Environments

- Required Software
 - Bootloader
 - Build-Tools
 - Debugging Tools
 - Linux Kernel

Development Tools and Environments

- GNU cross-platform development toolchain
 - Kernel Setup Software
 - Binary File Manipulation Utilities (Binutils)
 - C Library (Can be replaced with others)
 - Full C Compiler

Development Tools and Environments

- Available IDE's
 - Anjuta
 - Eclipse
 - Glimmer
 - KDevelop
 - SourceNavigator

• • The Linux Kernel

- Development of Embedded Linux does not coincide with the development of the Kernel
- Each architecture will have its own Kernel.

• • The Linux Kernel

- Configuring the Kernel
 - Loadable Module Support
 - Network Options
 - SCSI Support
 - File Systems
 - Sound
 - Console Drivers

• • The Linux Kernel

- Configuration Options
 - 'make config' Command Line
 - 'make oldconfig' Premade Config still command line but faster
 - 'make menuconfig' Text Based Config
 - 'make xconfig' X Window Based Config

Root File System

- bin
- boot
- o dev
- etc
- root
- sbin
- tmp

- o usr
- var
- home
- lib
- o mnt
- opt
- o proc

Bootloader Concepts

- The bootloader loads the Linux Kernel
- Thousands of choices in bootloaders to choose from and many configurations of each
- Many architectures have well known or commonly used bootloaders
- Some architectures have no standard bootloader

Bootloader Concepts

- X86 Bootloaders
 - GRUB (Grand Unified Bootloader)
 - LILO (Linux Loader)
 - ROLO
 - loadlin
 - Etherboot
 - LinuxBIOS
 - blob
 - PMON

• • Networking Services

- Linux Networking Features
 - SNMP Remote Administration
 - Network Login through Telnet
 - SSH
 - HTTP
 - DHCP

Networking Services

SNMP

- Almost every device which connects to a TCP/IP network has SNMP
- Net-SNMP
 - Free
 - Large
 - SNMP agent is all that is necessary

• • Networking Services

- O HTTP
 - Apache HTTP Servers
 - Not for embedded systems
 - Boa
 - thttpd

• • Networking Services

DHCP

- Dynamic Host Configuration Protocol
 - Automatic network configuration of hosts
 - Standard DHCP package is free with most Linux distributions

• • The Linksys Wi-Fi Router

Linux gives us "the premium OS for inexpensive, feature-packed wireless networking."
 (Ewing)

The IBM/Citizen Linux Watch

- 56 X 48 mm
- Motherboard 27.5 X35.2 mm
- 8 MB Flash Memory
- 8 MB DRAM
- Touch Sensitive Display
- 1.5 oz
- 32-bit RISC Processor (74-18 MHz)

- A fully featured Linux kernel requires about 1 MB of memory
- The Linux micro-kernel actually consumes only 100 K

• • How is This Possible?

- With the networking stack and basic utilities, a complete Linux system runs quite nicely in 500 K of memory on an Intel 386 microprocessor, with an 8-bit bus
- A Linux system can actually be adapted to work with as little as 256 KB ROM and 512 KB RAM