Elliptic Curve Diffie-Hellman Key Exchange MTH426: Algebraic Curves

Manvendra Somvanshi (MS20126)

Department of Mathematical Sciences IISER Mohali

April 28, 2024

- Introduction
- 2 Discrete Log Problem
- 3 Diffie Hellman Key Exchange
- 4 Elliptic Curves
- 5 Elliptic Curve Diffie Hellman

Introduction

• Modern society is highly dependent on encyrption: all banking transactions, personal messages, military secrets, etc. require cryptographic algorithms and encryption.

Introduction

- Modern society is highly dependent on encyrption: all banking transactions, personal messages, military, etc. require cryptographic algorithms and encryption.
- Suppose that Alice and Bob want to communicate remotely but Big Brother is watching. They devise an encryption function f which takes a key k and a message M and encrypts it. This is invertible so that the same key can be used to decrypt the message using f^{-1} .

Introduction

- Modern society is highly dependent on encyrption: all banking transactions, personal messages, military, etc. require cryptographic algorithms and encryption.
- Suppose that Alice and Bob want to communicate remotely but Big Brother is watching. They devise an encryption function f which takes a key k and a message M and encrypts it. This is invertible so that the same key can be used to decrypt the message using f^{-1} .
- Alice and Bob can safely communicate with each other once they agree on a secret key k, even though the algorithm f is known publicly. But how do they agree on a secret key? This process is known as Key Sharing.

- Introduction
- 2 Discrete Log Problem
- 3 Diffie Hellman Key Exchange
- 4 Elliptic Curves
- 5 Elliptic Curve Diffie Hellman

Discrete Log Problem

Discrete Log Problem

Let G be a group and $g, h \in G$ where we know that h is some power of g. Then determine $n \in \mathbb{Z}$ such that $h = g^n$.

Discrete Log Problem

Discrete Log Problem

Let G be a group and $g, h \in G$ where we know that h is some power of g. Then determine $n \in \mathbb{Z}$ such that $h = g^n$.

The Discrete Log problem is a classically hard problem. This means that there is no algrithm on classical computers that can solve it in polynomial time (in the number of digits of |G|).

Discrete Log Problem

Discrete Log Problem

Let G be a group and $g, h \in G$ where we know that h is some power of g. Then determine $n \in \mathbb{Z}$ such that $h = g^n$.

The Discrete Log problem is a classically hard problem. This means that there is no algrithm on classical computers that can solve it in polynomial time (in the number of digits of |G|).

Note:

This is not post quantum secure! Solving Discrete Log problem comes down to solving prime factorization, which can solved by quantum computers by Shor's algorithm.

- Introduction
- 2 Discrete Log Problem
- 3 Diffie Hellman Key Exchange
- 4 Elliptic Curves
- 5 Elliptic Curve Diffie Hellman

Diffie Hellman Key Exchange

- Let's return to Alice, Bob, and Big brother. The Diffie-Hellman key exchange works as follows:
 - lacktriangle Alice and Bob publically agree on a group G an element g.
 - ② Alice and Bob each choose an integer, say $a, b \in \mathbb{Z}$ respectively, privately. This is not known to anyone.
 - **3** Alice makes the element $h_A = g^a$ public and Bob makes $h_B = g^b$ public.
 - ① Alice calculates $(h_B)^a = (g^b)^a$ and Bob calculates $(h_A)^b = (g^a)^b$. Clearly both are the same and thus they have a shared secret.
 - **5** This shared secret $k = g^{ab}$ is used are their key for symmetric encryption.
- Here a, b are called private keys of Alice and Bob and h_A, h_B are public keys.

Diffie Hellman Key Exchange

Alice	Public (Big Brother)	Bob
	(G,g)	
a		b
1 ab	g_A,g_B	$k = g^{ab}$
$k = g^{ab}$		$\kappa = g^{\omega}$

Table: Diffie Hellman Key exchange.

- Big Brother only has g_A, g_B and the information that these are powers of g. Thus he has to solve the discrete log problem to determine the encryption key k.
- Thus Alice and Bob have successfully shared a secret which the Big Brother cannot figure out, if the group chosen is large enough.
- Note that DH key exchange is vulnerable to MITM attacks!

- Introduction
- 2 Discrete Log Problem
- 3 Diffie Hellman Key Exchange
- 4 Elliptic Curves
- 5 Elliptic Curve Diffie Hellman

Definition

An elliptic curve E in \mathbb{P}^2 is given by $Y^2Z=X^3+aXZ^2+bZ^3$ where $a,b,c\in k$.

Definition

An elliptic curve in \mathbb{P}^2 is given by $Y^2Z = X^3 + aXZ^2 + bZ^3$ where $a, b, c \in k$.

• The curve $E_* \subset U_3 \cong \mathbb{A}^2$ with a = -1 & b = 1 is shown in the figure below. Outside U_3 the curve only passes through one point (0:1:0), which we call the point at infinity. Call this point ∞ .

Figure: $V(Y^2Z = X^3 - XZ + Z^3) \cap U_3$.

Non-Singular Elliptic curves

We want to consider the elliptic curves which are non-singular. The curve is singular at a point p iff $(F_X, F_Y, F_Z, F) = 0$ when evaluated at p. Let p = (x : y : z), then we get the system of equations:

$$3x^2 + az^2 = 0$$
, $2yz = 0$, $y^2 = 2axz + 3bz^2$, $y^2z = x^3 + axz^2 + bz^3$

If z=0 then we know that the point p is ∞ which does not solve the third equation. Thus we can assume that z=1 and work in \mathbb{A}^2 . We get the equations:

$$3x^2 + a = 0$$
, $y = 0$, $y^2 = 2ax + 3b$, $y^2 = x^3 + ax + b$.

this can be solved to get that p is $(\pm \sqrt{-a/3}:0:1)$. Substituting this in the other two equations, we get the same equation $4a^3 - 27b^2 = 0$.

Non-Singular Elliptic Curves

The previous slide can be summarized as:

Proposition.

An elliptic curve E is non-singular if and only if $4a^3 - 27b^2 \neq 0$.

Addition on Elliptic Curves

Addition on E

Let $o \in E$ be a finxed point and p,q be arbitrary points on E and let L be the unique line passing through p,q. Then we have $L \cap C = p + q + r$ (p,q,r) may not be distinct. Define $\phi : C \times C \to C$ to be the function $(p,q) \mapsto r$. Define $p \oplus q = \phi(o,\phi(p,q))$.

Theorem

(E,o) with the operation \oplus is an abelian group.

Proof.

The identity is o since if $\phi(o, p) = r$ then $\phi(o, r) = p$. The inverse of p is just $r = \phi(o, p)$. The abelian part is also easy to see since $\phi(p, q) = \phi(q, p)$. Associativity is non-trivial. Consider three points p_1, p_2, p_3 and let L_1 be the line joining p_1, p_2 .

Addition on Elliptic Curves

proof (cont.)

Now let

$$L_1 \cap C = p + q + s', \ M_1 \cap C = o + s' + s,$$

 $L_2 \cap C = r + s + t', \ M_2 \cap C = q + r + u',$
 $L_3 \cap C = o + u' + u, \ M_3 \cap C = p + u + t'',$

where L_i and M_i are lines. Then define $C_1 = L_1 L_2 L_3$ and $C_2 = M_1 M_2 M_3$. Then

$$C_1 \cap C = p + q + s' + r + s + t' + o + u + u'$$

 $C_2 \cap C = o + s' + s + q + r + u' + p + u + t''$

Since all the points are same except t' and t'' we have that t' = t''. Since $p \oplus (q \oplus r) = t''$ and $(p \oplus q) \oplus r = t'$, the associativity follows.

- Introduction
- 2 Discrete Log Problem
- 3 Diffie Hellman Key Exchange
- 4 Elliptic Curves
- 5 Elliptic Curve Diffie Hellman

Elliptic Curve Diffie Hellman

- Let E be an elliptic curve over \mathbb{F}_p and fix the identity element to be ∞ . Let p_0 be some fixed point. The elliptic curve itself is determined by constants $a, b \in k$. Let $np_0 = \infty$. Then define h = |E|/n (which is an integer by Lagrange's theorem).
- The tuple (p, a, b, p_0, n, h) is called the domain of E.
- In ECDH, the domain of a curve E is made public. Alice and Bob choose integers d_A and d_B between 1 and n-1.
- Alice shares $Q_A = d_A p_0$ publically and Bob shares $Q_B = d_B p_0$ publically.
- Alice calculates $d_A Q_B$ and Bob calculates $d_B Q_A$. Both of these are the same point on the curve (x, y). Then x is chosen as the encyption key for symmetric encyption.

Elliptic Curve Diffie Hellman

- For ECDH the choice of the curve matters a lot. For some special curves, the ECDLP has been cracked.
- Calculating the parameters n and h require quite heavy computation. This is why there are a lot of standard curves which are prescribed by NIST.
- For the purposes of efficiency NIST recommends using psuedo-Mersenne primes p (of the form $2^{n_1} 2^{n_2} \cdots 1$), when choosing the field \mathbb{F}_p . They also recommend a = -3, as it makes addition faster.

Implementation of ECDH

 Below is a simple implimentation of ECDH using a python script.
 I am using the tinyec package, and use the curve brainpool256r1 which has a 256 bit key.

Implementation of ECDH

```
1 from tinyec import registry
2 import secrets
4 def compress(pubKey):
5
      return hex(pubKey.x) + hex(pubKey.y % 2)[2:]
7 curve = registry.get_curve('brainpoolP256r1')
9 # gen Alice's private and public keys
10 alicePrivKev = secrets.randbelow(curve.field.n)
11 alicePubKey = alicePrivKey * curve.g
12 print("Alice public key:", compress(alicePubKey))
14 # gen Bob's private and public key
bobPrivKey = secrets.randbelow(curve.field.n)
16 bobPubKev = bobPrivKev * curve.g
17 print("Bob public key:", compress(bobPubKey))
19 print("Now exchange the public keys (e.g. through Internet)")
21 aliceSharedKey = alicePrivKey * bobPubKey
22 print("Alice shared kev:", compress(aliceSharedKev))
24 bobSharedKey = bobPrivKey * alicePubKey
25 print("Bob shared key:", compress(bobSharedKey))
27 print("Equal shared keys:", aliceSharedKey == bobSharedKey)
```

Thank You!