Simulating Stock Prices

- The geometric Brownian motion stock price model
 - ightharpoonup Recall that a rv Y is said to be lognormal if $X = \ln(Y)$ is a normal random variable.
 - Alternatively, Y is a lognormal rv if $Y = e^X$, where X is a normal rv.
 - \triangleright If v and σ , are the mean and standard deviation of X, the mean and variance of Y are given by

$$E[Y] = e^{v + \sigma^2/2}, \quad \text{var}[Y] = e^{2v + \sigma^2} (e^{\sigma^2} - 1).$$

- Note that $E[Y] \neq e^{E[X]} = e^{v}$ although $Y = e^{X}$.
- A popular stock price model based on the lognormal distribution is the *geometric Brownian motion* model, which relates the stock prices at time 0, S_0 , and time t > 0, S_t by the following relation:

$$ln(S_t) = ln(S_0) + (\mu - \sigma^2/2)t + \sigma z(t)$$
,

where, μ and $\sigma > 0$ are constants and z(t) is a normal rv with mean 0 and variance t.

➤ It follows that $\ln(S_t/S_0)$ is a normal random variable with mean $(\mu - \sigma^2/2)t$ and variance $\sigma^2 t$.

1

 $^{^{1}}$ z(t) is called a Brownian motion.

- That is, S_t/S_0 is a lognormal rv with mean and variance $E[S_t/S_0] = e^{\mu t \sigma^2 t/2 + \sigma^2 t/2} = e^{\mu t}$, $var[S_t/S_0] = e^{2(\mu t \sigma^2 t/2) + \sigma^2 t/2} (e^{\sigma^2 t} 1) = e^{\mu t} (e^{\sigma^2 t} 1)$.
- Note that μ can be seen as the stock rate of return assuming continuous compounding. So μ is called the *expected return* of the stock.
- \triangleright In addition, σ measures the variability of the stock price. So σ is called the *volatility* of the stock price.
- > Typical values for these parameters are $\mu = 13\%$ and $\sigma = 15\%$ when time t is measured in years.
- ➤ The main idea behind the geometric Brownian motion model is that the probability of a certain percentage change in the stock price within a time *t* is the same at all times.
- ➤ This is a memoryless or Markovian behavior indicating that past stock values won't help in predicting future values.
- ➤ In addition, the *expected* value and variance of the stock price typically follow an increasing trend.

• Simulating geometric Brownian motion stock prices

- The key idea for simulating a stock price is that $\ln(S_t/S_0)$ is normally distributed with mean $(\mu \sigma^2/2)t$ and variance $\sigma^2 t$.
- An algorithm for simulating the stock price at a time t > 0, given that current stock price (at t = 0) is S_0 is as follows.
 - 1. Generate $Z \sim N(0,1)$
 - 2. Set $\mu_t = (\mu \sigma^2/2)t$ and $\sigma_t = \sigma t^{0.5}$.
 - 3. Set $S_t = S_0 \times e^{\mu t + \sigma t Z}$
- In practice the expected return, μ , is too difficult to estimate accurately, while the volatility σ can be estimated reasonably well from historical data.

- For estimating μ one is better off making a subjective estimate or a probability distribution.
- \triangleright Estimating σ can be made based on historical data. However, an implied volatility approach is often used.
- The idea of implied volatility is to find σ based on the market prices of certain financial instruments.
- ➤ Among the widely used instruments for this purpose are European stock options.

• European options and the Black – Scholes model

- ➤ A *European call option* is a financial instrument that gives its holder the right, but not the obligation, to *buy* one (or more) share(s) of stock price for a *strike price K* per share at a *maturity time T* in the future.
- The buyer of the option pays a price or a *premium*, *C*, in exchange for it.
- \triangleright Obviously, a European call option is beneficial only when the stock price at time T exceeds K+C.
- A European put option is a financial instrument that gives its holder the right, but not the obligation, to sell one (or more) share(s) of stock price for a strike price K per share at a maturity time T in the future,
- ➤ The buyer of the option pays a premium, P, in exchange for it.

- Assuming a geometric Brownian motion stock model, Black and Scholes (1973) derived a key result given C (or P) as a function of T, K, μ , σ , and the interest rate r assuming continuous compounding.
- ➤ The Black-Scholes formula for call and put options is given by the following theorem.

Theorem The price at time 0 of a European call and put options with strike price K and maturity T on an underlying stock with volatility σ are

$$C = S_0 N(d_1) - Ke^{-rT} N(d_2) ,$$

$$P = Ke^{-rT} N(-d_2) - S_0 N(-d_1) .$$

where S_0 is the stock price at time 0,

$$d_1 = \frac{\ln(S_0/K) + (r + \sigma^2/2)T}{\sigma\sqrt{T}}, \ d_2 = d_1 - \sigma\sqrt{T} \ and \ N(x) = \int_{-\infty}^{x} \frac{e^{-x^2/2}}{\sqrt{2\pi}} dx \ is$$

the standard Normal cdf.

- The implied volatility, $\hat{\sigma}$, of a stock is the value of σ which make the option price specified by the Black-Scholes formula equal to market prices of the options listed in financial newspapers and websites.
- \triangleright Finding $\hat{\sigma}$ is done numerically.

• Example 1.

- ➤ On June 30, 1998 Dell stock sold for \$94. A European put with a strike price of \$80 expiring on November 22, 1998 was selling for \$5.25. The current 90 day T-Bill (bond) rate is 5.5%. What is the implied volatility for Dell?
- ➤ Solution: See Excel file Dell_stock.xls.

• Example 2 (model with random μ).

- ➤ Simulate the daily Dell stock in Example 1 between July 1, 1998 till the end of 1998. The expected stock return is believed to equally likely take on values 10%, 20%, 30%, and 40%.
- ➤ Solution: See Excel file Dell_stock.xls.

• Example 3 (model with μ based on analyst forecast).

- ➤ Simulate the daily Dell stock in Example 1 between July 1, 1998 till the end of 1998. Analysts consensus view is that Dell stock will be selling for \$120 on 1/1/1999.
- Here we need to solve for μ that makes the expected stock price equal to \$120 on 1/1/1999. Recall that the expected stock price at time t is $E[S_t] = S_0 e^{\mu t}$.

Setting t = 0, at 06/30/1998, then t = 185 on 1/1/1999. Then, we can solve for μ as follows.

$$110 = 94e^{\mu(185/365)} \Rightarrow \ln(110) = \ln(94) + 0.5068\mu \Rightarrow \mu = 0.31$$
.

➤ See Excel file Dell_stock.xls for the complete simulation.

• Example 4 (Strong Buy/Strong Sell Consensus).

➤ On July 10, 2000, Business Week reported the results of a study that estimated how well analysts' consensus of Strong Buy (1) to Strong Sell (5) forecast annual return on a stock. They found the following predictions for annual returns (relative to the market, assessed usually via an index fund).

Rating	Average Excess
	Return over Market
Strong Buy = 1	+4.5%
Buy = 2	+3.5%
Hold = 3	+0.5%
Sell = 4	-1.0%
Strong Sell = 5	-8.5%

➤ Suppose that Dell stock in Example 1 got a rating of 1.6, and the market return is equally likely to be −10%, −5%, 0%, 5%, 10%, 15%. Simulate the daily Dell stock between July 1, 1998 and the end of 1998.

- First, we find the average excess return of Dell over market by interpolating in the Business Week table as $0.4\times4.5+0.6\times3.5 = +3.9\%$.
- \triangleright Then, μ is set as 3.9% plus the simulated market return.
- ➤ See Excel file Dell_stock.xls for the complete simulation.

• Generating Stock Prices by Bootstrapping.

- As an alternative approach to geometric Brownian motion, we use bootstrapping to simulate future stock prices based on a sample of stock history.
- ➤ The idea behind bootstrapping is assuming that every past value is equally likely to occur in the future.

• Example 5 (Bootstrapping).

- ➤ Simulate the first 3 months of 1999 of the Dell stock price in Example 1 based on data from the last three months of 1998 by bootstrapping.
- ➤ See Excel file Dell stock.xls for the complete simulation.