

Projetando um DAC para RaspberryPi

Live 15 – Alimentação Pt. 2

Valeu apoiadores!

Alexandre

Alex G.

Beatriz

Cássio

Digão

Edson

Emanuel

Erik

Henrique

Leonardo B.

Leonardo C.

Luiz

Rogério

Sorteios KZ ZS10 Pro 2 (Reloaded)

- Aberto
 - KZ ZS10 Pro 2 + Camiseta Amplificou Direito
 - Regra: Comentário no LIVE de HOJE!
 - Sorteio na próxima LIVE a combinar
 - Corte (Data da live 1) dia
 - Todos apoiadores acima do nível Técnico já participam

Na última live

Tewico	3.3V	3.3VA	1121	-120
Tapo	L		D(DL+C	DC bc + C
Comerte	18	10	600A	

Passando a limpo

Nome	Tensão	Corrente Requerida	Tipo de conversor
+3.3V	+3.3V	20mA	Linear
+3.3VA	+3.3V	10mA	Linear
+12VA	+12V	350mA (RMSx2)	Chaveado → Linear
-12VA	-12V	350mA (RMSx2)	Chaveado → Linear

E quanto vai pros fones? (por lado)

- Estamos consumindo quase 5W
- E entregando 300mW
 - 100mW Single Ended
 - 200mW Diferencial
- Os valores de pico são muito maiores, mas também retem esse contraste
- Péssima eficiência
 - 0.3W / 5W = **6%**

Por que isto aconteceu?

- Baixa excursão de sinal na saída
 - Apenas 2~3Vrms
 - Alimentação alta → Tensão alta no fone
- Limite de corrente do OPA1622 (SE)
- Margem para aumento no TPA6120 (BAL)
 - Grandes diferenças entre Balanceado e Single-Ended

Entendendo o compromisso

V = Z * I

Impedância

Baixa Impedância

- Exige Corrente
- Limitado pelo AMP
- Tensão RMS baixa
- Corrente RMS alta

Alta Impedância

- Exige Tensão
- Limitado pela fonte
- Tensão RMS alta
- Corrente RMS baixa

Onde priorizar?

- Baixa impedância
 - Corrente de saída garantida
 - Tensão insuficiente para fones de alta impedância
- Alta impedância
 - Tensão alta
 - Amplificadores saturarão em baixas impedâncias

Abaixar o ego e focar no bom senso

- Preservar excursão baixa
- OPA1622 em SE e BAL
- Trocar as fontes para +/- 5V
 - Tirar tudo que a fonte tiver para dar
- Escalonar ganho e potência
 - Reduzir dissipação na fonte e amplificador
- Equalizar experiência entre Single Ended e Balanceado
- Priorizar baixas impedâncias
 - Maior parte dos fones com baixa sensibilidade são de baixa impedância

Resultado da simulação (por lado)

- Passamos a consumir 1.5W
- E entregando 330mW
 - 160mW Single Ended
 - 170mW Diferencial
- Eficiência evoluiu para
 - 0.33W / 1.5W = **22%**
 - **260%** de aumento

E a potência consumida da Raspberry?

Próximos passos

- Ajustar o amp
- Desenhar um diagrama de blocos pra fonte
- Buscar reguladores lineares e chaveados