

PATENT
19629.0002
Express Mail Label No. EV 324 110 556 US

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:	Art Unit: Not assigned
Eiji OKABE et al.	Examiner: Not assigned
Serial No: Not assigned	
Filed: December 2, 2003	
For: Liquid Crystal Composition and Liquid Crystal Display Element	

TRANSMITTAL OF PRIORITY DOCUMENT

Mail Stop PATENT APPLICATION
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Dear Sir:

Enclosed herewith is a certified copy of Japanese patent application No. 2002-352262 which was filed December 4, 2002, from which priority is claimed under 35 U.S.C. § 119 and Rule 55.

Acknowledgment of the priority document(s) is respectfully requested to ensure that the subject information appears on the printed patent.

Respectfully submitted,

HOGAN & HARTSON L.L.P.

By:
Anthony J. Orler
Registration No. 41,232
Attorney for Applicant(s)

Date: December 2, 2003

500 South Grand Avenue, Suite 1900
Los Angeles, California 90071
Telephone: 213-337-6700
Facsimile: 213-337-6701

CS510645

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office

出願年月日

Date of Application:

2002年12月 4日

出願番号

Application Number:

特願2002-352262

[ST.10/C]:

[JP2002-352262]

出願人

Applicant(s):

チッソ株式会社

チッソ石油化学株式会社

2003年 5月23日

特許長官
Commissioner,
Japan Patent Office

太田 信一

出証番号 出証特2003-3038175

【書類名】 特許願

【整理番号】 770023

【提出日】 平成14年12月 4日

【あて先】 特許庁長官殿

【国際特許分類】 C09K 19/04

G02F 1/13

【発明者】

【住所又は居所】 千葉県市原市五井海岸5番地の1 チッソ石油化学株式会社 機能材料研究所内

【氏名】 岡部 英二

【発明者】

【住所又は居所】 千葉県市原市五井海岸5番地の1 チッソ石油化学株式会社 機能材料研究所内

【氏名】 富 嘉剛

【特許出願人】

【識別番号】 000002071

【氏名又は名称】 チッソ株式会社

【代表者】 後藤 舜吉

【電話番号】 03-3534-9826

【特許出願人】

【識別番号】 596032100

【氏名又は名称】 チッソ石油化学株式会社

【代表者】 ▲かせ▼野 修平

【手数料の表示】

【予納台帳番号】 012276

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

特2002-352262

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 液晶組成物および液晶表示素子

【特許請求の範囲】

【請求項1】 第一成分として式(1-1)、(1-2)、および(1-3)で表される化合物の群から選択された少なくとも1つの化合物、第二成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物、そして第三成分として式(3-1)、(3-2)、および(3-3)で表される化合物の群から選択された少なくとも1つの化合物を含有する液晶組成物。

式(1-1)、(1-2)、(1-3)、(2)、(3-1)、(3-2)、および(3-3)において、 R^1 はアルキルであり； R^2 はアルキルまたは任意の水素がフッ素に置き換えられてもよいアルケニルであり； R^3 はアルキルまたはアルコキシであり； R^4 はアルキルまたはアルコキシメチルであり； R^5 はアル

キルまたはアルケニルであり；A¹は1, 4-シクロヘキシレンまたは1, 4-フェニレンであり；Z¹は単結合または-COO-であり；X¹およびX²は独立して水素またはフッ素であり；そしてY¹はフッ素または-OCH₃である。

【請求項2】 第一成分が式(1-1)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。

【請求項3】 第一成分が式(1-1)で表される化合物の群から選択された少なくとも1つの化合物および式(1-2)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。

【請求項4】 第一成分が式(1-1)で表される化合物の群から選択された少なくとも1つの化合物および式(1-3)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。

【請求項5】 第一成分が式(1-1)で表される化合物の群から選択された少なくとも1つの化合物、式(1-2)で表される化合物の群から選択された少なくとも1つの化合物、および式(1-3)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。

【請求項6】 第一成分が式(1-2)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。

【請求項7】 第一成分が式(1-2)で表される化合物の群から選択された少なくとも1つの化合物および式(1-3)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。

【請求項8】 第一成分が式(1-3)で表される化合物の群から選択された少なくとも1つの化合物である請求項1に記載の液晶組成物。

【請求項9】 液晶組成物の全重量に基づいて、第一成分を5～50重量%の範囲で、第二成分を5～40重量%の範囲で、そして第三成分を10～70重量%の範囲で含有する請求項1から8のいずれか1項に記載の液晶組成物。

【請求項10】 第四成分として式(4-1)、(4-2)、(4-3)、および(4-4)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する請求項1から9のいずれか1項に記載の液晶組成物。

式(4-1)、(4-2)、(4-3)、および(4-4)において、R¹はアルキルであり；R³はアルキルまたはアルコキシであり；R⁵はアルキルまたはアルケニルであり；A²は1, 4-シクロヘキシレンまたは1, 3-ジオキサン-2, 5-ジイルであり；A³は1, 4-シクロヘキシレン、1, 4-フェニレン、1, 3-ジオキサン-2, 5-ジイルまたは3-フルオロ-1, 4-フェニレンであり；A⁴は1, 4-シクロヘキシレン、1, 4-フェニレンまたは3, 5-ジフルオロ-1, 4-フェニレンであり；A⁵は1, 4-シクロヘキシレンまたは3-フルオロ-1, 4-フェニレンであり；Z¹は単結合または-COO-であり；Z²は単結合または-(CH₂)₂-であり；Z³は単結合、-COO-、-(CH₂)₂-または-CF₂O-であり；Z⁴は単結合、-COO-または-(CH₂)₂-であり；Y¹はフッ素または-OCF₃であり；Y²はフッ素、塩素または-OCF₃であり；そしてnは0または1である。

【請求項11】 液晶組成物の全重量に基づいて、第四成分を1～50重量%の範囲で含有する請求項10に記載の液晶組成物。

【請求項12】 請求項1から11のいずれか1項に記載の液晶組成物を含有する液晶表示素子。

【請求項13】 液晶表示素子がIPSのAM素子である請求項12に記載の液晶表示素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、主としてAM (active matrix) 素子に適する液晶組成物およびこの組成物を含有するAM素子に関する。

【0002】

【従来の技術】

液晶表示素子において、液晶の動作モードに基づいた分類は、PC (phase change) 、TN (twisted nematic) 、STN (super twisted nematic) 、ECB (electrically controlled birefringence) 、OCB (optically compensated bend) 、IPS (in-plane switching) 、VA (vertical alignment) などである。素子の駆動方式に基づいた分類は、PM (passive matrix) とAM (active matrix) である。PMはスタティック (static) とマルチプレックス (multiplex) などに分類され、AMはTFT (thin film transistor) 、MIM (metal insulator metal) などに分類される。TFTの分類は非晶質シリコン (amorphous silicon) および多結晶シリコン (polycrystal silicon) である。後者は製造工程によって高温型と低温型とに分類される。光源に基づいた分類は、自然光を利用する反射型、バックライトを利用する透過型、そして自然光とバックライトの両方を利用する半透過型である。

【0003】

これらの素子は適切な特性を有する液晶組成物を含有する。良好な一般的な特性を有するAM素子を得るには組成物の一般的な特性を向上させる。2つの一般的な特性における関連を下記の表1にまとめた。組成物の一般的な特性を市販されているAM素子に基づいてさらに説明する。ネマチック相の温度範囲は、素子の使用できる温度範囲に関連する。ネマチック相の好ましい上限温度は70°C以上であり、そしてネマチック相の好ましい下限温度は-20°C以下である。組成物の粘度は素子の応答時間に関連する。素子で動画を表示するためには短い応答時間が好ましい。したがって、組成物における小さな粘度が好ましい。低い温度における小さな粘度はより好ましい。

【0004】

表1. 組成物とAM素子における一般的特性

No	組成物の一般的特性	AM素子の一般的特性
1	ネマチック相の範囲が広い	使用できる温度範囲が広い
2	粘度が小さい ¹⁾	応答時間が短い
3	光学異方性が適切である	コントラスト比が大きい
4	正または負の誘電率異方性が大きい ²⁾	駆動電圧が小さい
5	比抵抗が大きい	コントラスト比が大きい、電圧保持率が大きい

1) 液晶セルに組成物を注入する時間が短縮できる

2) IPS素子では大きな開口率に寄与する

【0005】

組成物の光学異方性は、素子のコントラスト比に関連する。素子におけるコントラスト比を最大にするために、組成物の光学異方性 (Δn) と素子のセルギャップ (d) との積 ($\Delta n \cdot d$) を約 $0.45 \mu m$ に設計する。したがって、組成物における光学異方性は主に $0.08 \sim 0.12$ の範囲である。組成物の大きな誘電率異方性は素子の小さな駆動電圧に寄与する。したがって、大きな誘電率異方性が好ましい。組成物における大きな比抵抗は、素子における大きな電圧保持率と大きなコントラスト比に寄与する。したがって、初期に大きな比抵抗を有する組成物が好ましい。長時間使用したあとでも大きな比抵抗を有する組成物が好ましい。

【0006】

T NのAM素子に適した組成物は大きな比抵抗を有することが好ましい。一方、IPSのAM素子に適した組成物は、TNのAM素子に適した組成物に比べて小さな比抵抗を有してもよい。小さな比抵抗を有する組成物を含有するIPSのAM素子は大きな電圧保持率を有するからである。このことは、インターナショナルディスプレイワークショップの1997年講演予稿集 (IDW'97 Proceedings of The Fourth International Display WorkshopsのP171~P174) に説明されている。IPSのAM素子に適した組成物は、末端にシアノを有する化合物を含有してもよい。

【0007】

IPSのAM素子において、組成物の大きな誘電率異方性は素子の大きな開口

率に寄与する。したがって、この素子において、大きな開口率で動画を表示するために、小さな粘度および大きな誘電率異方性を有する組成物が特に望まれている。従来の組成物は、次の特許文献に開示されている。

【0008】

【特許文献1】

特開平10-204016号公報

【特許文献2】

特開平10-204436号公報

【特許文献3】

特開2001-3051号公報

【特許文献4】

特開2001-3053号公報

【特許文献5】

特開2001-123170号公報

【特許文献6】

国際公開01/46336号パンフレット

【0009】

【発明が解決しようとする課題】

本発明の目的は、ネマチック相の広い温度範囲、小さな粘度、適切な光学異方性、および大きな誘電率異方性の特性において、複数の特性を充足する液晶組成物を提供することにある。この目的は複数の特性に関して適切なバランスを有する液晶組成物を提供することでもある。この目的は、この組成物を含有する液晶表示素子を提供することでもある。この目的は、小さな粘度、0.08～0.12の光学異方性および大きな誘電率異方性を有する組成物を含有し、そして大きな電圧保持率を有するIPSのAM素子を提供することである。

【0010】

【課題を解決するための手段】

本発明は下記の項1から21のとおりである。

1. 第一成分として式(1-1)、(1-2)、および(1-3)で表される

化合物の群から選択された少なくとも1つの化合物、第二成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物、そして第三成分として式(3-1)、(3-2)、および(3-3)で表される化合物の群から選択された少なくとも1つの化合物を含有する液晶組成物。

【0011】

【0012】

式(1-1)、(1-2)、(1-3)、(2)、(3-1)、(3-2)、および(3-3)において、R¹はアルキルであり；R²はアルキルまたは任意の水素がフッ素に置き換えられてもよいアルケニルであり；R³はアルキルまたはアルコキシであり；R⁴はアルキルまたはアルコキシメチルであり；R⁵はアルキルまたはアルケニルであり；A¹は1,4-シクロヘキシレンまたは1,4-フェニレンであり；Z¹は単結合または-COO-であり；X¹およびX²は

独立して水素またはフッ素であり；そしてY¹はフッ素または-O-CF₃である。

【0013】

2. 第一成分が式(1-1)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。

【0014】

3. 第一成分が式(1-1)で表される化合物の群から選択された少なくとも1つの化合物および式(1-2)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。

【0015】

4. 第一成分が式(1-1)で表される化合物の群から選択された少なくとも1つの化合物および式(1-3)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。

【0016】

5. 第一成分が式(1-1)で表される化合物の群から選択された少なくとも1つの化合物、式(1-2)で表される化合物の群から選択された少なくとも1つの化合物、および式(1-3)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。

【0017】

6. 第一成分が式(1-2)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。

【0018】

7. 第一成分が式(1-2)で表される化合物の群から選択された少なくとも1つの化合物および式(1-3)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。

【0019】

8. 第一成分が式(1-3)で表される化合物の群から選択された少なくとも1つの化合物である項1に記載の液晶組成物。

【0020】

9. 液晶組成物の全重量に基づいて、第一成分を5～50重量%の範囲で、第二成分を5～40重量%の範囲で、そして第三成分を10～70重量%の範囲で含有する項1から8のいずれか1項に記載の液晶組成物。

【0021】

10. 第四成分として式(4-1)、(4-2)、(4-3)、および(4-4)で表される化合物の群から選択された少なくとも1つの化合物をさらに含有する項1から9のいずれか1項に記載の液晶組成物。

【0022】

式(4-1)、(4-2)、(4-3)、および(4-4)において、R¹はアルキルであり；R³はアルキルまたはアルコキシであり；R⁵はアルキルまたはアルケニルであり；A²は1,4-シクロヘキシレンまたは1,3-ジオキサン-2,5-ジイルであり；A³は1,4-シクロヘキシレン、1,4-フェニレン、1,3-ジオキサン-2,5-ジイルまたは3-フルオロ-1,4-フェニレンであり；A⁴は1,4-シクロヘキシレン、1,4-フェニレンまたは3,5-ジフルオロ-1,4-フェニレンであり；A⁵は1,4-シクロヘキシレンまたは3-フルオロ-1,4-フェニレンであり；Z¹は単結合または-CO-O-であり；Z²は単結合または-(CH₂)₂-であり；Z³は単結合、-COO-、-(CH₂)₂-または-CF₂O-であり；Z⁴は単結合、-COO-または-(CH₂)₂-であり；Y¹はフッ素または-OCF₃であり；Y²

はフッ素、塩素または $-OCF_3$ であり；そしてnは0または1である。

【0023】

11. 液晶組成物の全重量に基づいて、第四成分を1～50重量%の範囲で含有する項10に記載の液晶組成物。

【0024】

12. 項1から11のいずれか1項に記載の液晶組成物を含有する液晶表示素子。

【0025】

13. 液晶表示素子がIPSのAM素子である項12に記載の液晶表示素子。

【0026】

14. 第三成分が式(3-1)で表される化合物の群から選択された少なくとも1つの化合物である項1から8のいずれか1項に記載の液晶組成物。

【0027】

15. 第三成分が式(3-1)で表される化合物の群から選択された少なくとも1つの化合物および式(3-2)で表される化合物の群から選択された少なくとも1つの化合物である項1から8のいずれか1項に記載の液晶組成物。

【0028】

16. 第三成分が式(3-1)で表される化合物の群から選択された少なくとも1つの化合物および式(3-3)で表される化合物の群から選択された少なくとも1つの化合物である項1から8のいずれか1項に記載の液晶組成物。

【0029】

17. 第三成分が式(3-1)で表される化合物の群から選択された少なくとも1つの化合物、式(3-2)で表される化合物の群から選択された少なくとも1つの化合物、および式(3-3)で表される化合物の群から選択された少なくとも1つの化合物である項1から8のいずれか1項に記載の液晶組成物。

【0030】

18. 第三成分が式(3-2)で表される化合物の群から選択された少なくとも1つの化合物である項1から8のいずれか1項に記載の液晶組成物。

【0031】

19. 第三成分が式（3-3）で表される化合物の群から選択された少なくとも1つの化合物である項1から8のいずれか1項に記載の液晶組成物。

【0032】

20. 第三成分が式（3-2）で表される化合物の群から選択された少なくとも1つの化合物および式（3-3）で表される化合物の群から選択された少なくとも1つの化合物である項1から8のいずれか1項に記載の液晶組成物。

【0033】

21. 液晶組成物の全重量に基づいて、第一成分を5～50重量%の範囲で、第二成分を5～40重量%の範囲で、そして第三成分を10～70重量%の範囲で含有する項14から20のいずれか1項に記載の液晶組成物。

【0034】

【発明の実施形態】

この明細書における用語の使い方は次のとおりである。本発明の液晶組成物または本発明の液晶表示素子をそれぞれ「組成物」または「素子」と略すことがある。液晶表示素子は液晶表示パネルおよび液晶表示モジュールの総称である。液晶組成物の主成分は液晶性化合物である。この液晶性化合物は、ネマチック相、スメクチック相などの液晶相を有する化合物および液晶相を有さないが組成物の成分として有用な化合物の総称である。式（1）で表わされる化合物の群から選択された少なくとも1つの化合物を「化合物（1）」と略すことがある。他の式に関する化合物も同様に略すことがある。

【0035】

ネマチック相の上限温度を「上限温度」と略すことがある。ネマチック相の下限温度を「下限温度」と略すことがある。「比抵抗が大きい」は、組成物が初期に大きな比抵抗を有し、そして長時間使用したあとでも組成物が大きな比抵抗を有することを意味する。「電圧保持率が大きい」は、素子が初期に大きな電圧保持率を有し、そして長時間使用したあとでも素子が大きな電圧保持率を有することを意味する。光学異方性などの特性を説明するときは、実施例に記載した方法で測定した値を用いる。組成物における成分の割合（百分率）は、組成物の全重量に基づいた重量百分率（重量%）である。

【0036】

本発明の組成物は、ネマチック相の広い温度範囲、小さな粘度、適切な光学異方性、および大きな誘電率異方性の特性において、複数の特性を充足する。この組成物は、複数の特性に関して適切なバランスを有する。本発明の素子はこの組成物を含有する。小さな粘度、0.08～0.12の光学異方性および大きな誘電率異方性を有する組成物を含有するIPSのAM素子は大きな電圧保持率を有する。

【0037】

本発明の組成物を次の順で説明する。第一に、組成物における成分の構成を説明する。第二に、成分である化合物の主要な特性、および化合物が組成物に及ぼす主要な効果を説明する。第三に、成分である化合物の好ましい割合およびその理由を説明する。第四に、成分である化合物の好ましい形態を説明する。第五に、成分である化合物の具体的な例を示す。第六に、成分である化合物の合成法を説明する。

【0038】

第一に、組成物における成分の構成を説明する。第一成分、第二成分、および第三成分である化合物(1-1)～化合物(3-3)の組み合わせは49とおりである。これをタイプ1～タイプ49に分類して表2にまとめた。表2においてマル印は該当する化合物が成分であることを意味する。空欄は該当する化合物が成分でないことを意味する。例えば、タイプ1は、化合物(1-1)、化合物(2)、および化合物(3-1)が組成物の成分であることを意味する。これら49タイプの組成物は、第四成分である化合物(4-1)～化合物(4-4)から選択された少なくとも1つの化合物をさらに含有することができる。

【0039】

表2 化合物の組み合わせ例

	化合物(1-1)	化合物(1-2)	化合物(1-3)	化合物(2)	化合物(3-1)	化合物(3-2)	化合物(3-3)
タイプ1	○			○	○		
タイプ2	○			○		○	
タイプ3	○			○			○
タイプ4	○			○	○	○	
タイプ5	○			○	○		○
タイプ6	○			○		○	○
タイプ7	○			○	○	○	○
タイプ8		○		○	○		
タイプ9		○		○		○	
タイプ10		○		○			○
タイプ11		○		○	○		
タイプ12		○		○	○		○
タイプ13		○		○		○	○
タイプ14		○		○	○	○	○
タイプ15			○	○	○		
タイプ16			○	○		○	
タイプ17			○	○			○
タイプ18			○	○	○	○	
タイプ19			○	○	○		○
タイプ20			○	○		○	○
タイプ21			○	○	○	○	○
タイプ22	○	○		○	○		
タイプ23	○	○		○		○	
タイプ24	○	○		○			○
タイプ25	○	○		○	○	○	
タイプ26	○	○		○	○		○
タイプ27	○	○		○		○	○
タイプ28	○	○		○	○	○	○
タイプ29	○		○	○	○		
タイプ30	○		○	○		○	
タイプ31	○		○	○			○
タイプ32	○		○	○	○	○	
タイプ33	○		○	○	○		○
タイプ34	○		○	○		○	○
タイプ35	○		○	○	○	○	○
タイプ36		○	○	○	○		
タイプ37		○	○	○		○	
タイプ38		○	○	○			○
タイプ39		○	○	○	○	○	
タイプ40		○	○	○	○		○
タイプ41		○	○	○		○	○
タイプ42		○	○	○	○	○	○
タイプ43	○	○	○	○	○		
タイプ44	○	○	○	○		○	
タイプ45	○	○	○	○			○
タイプ46	○	○	○	○	○	○	
タイプ47	○	○	○	○	○		○
タイプ48	○	○	○	○		○	○
タイプ49	○	○	○	○	○	○	○

【0040】

本発明の組成物は組成物Aと組成物Bに分類される。組成物Aはその他の化合物をさらに含有してもよい。「その他の化合物」は液晶性化合物、添加物などである。この液晶性化合物は化合物(1-1)～化合物(4-4)とは異なる。こ

の液晶性化合物は、特性を調整する目的で組成物に混合される。この添加物は光学活性な化合物、色素などである。液晶のらせん構造を誘起してねじれ角を与える目的で光学活性な化合物が組成物に混合される。G H (Guest host) モードの素子に適合させるために色素が組成物に混合される。

【0041】

組成物Bは、実質的に化合物(1-1)～化合物(4-4)から選択された化合物のみからなる。「実質的に」は、これらの化合物とは異なる液晶性化合物を組成物Bが含有しないことを意味する。「実質的に」は、これらの化合物に含まれていた不純物、光学活性な化合物、色素などの化合物を組成物Bがさらに含有してもよいことも意味する。組成物Bは組成物Aに比較して成分の数が少ない。組成物Bはコストの観点から組成物Aよりも好ましい。その他の液晶性化合物を混合することによって物性をさらに調整できるので、組成物Aは組成物Bよりも好ましい。

【0042】

第二に、成分である化合物の主要な特性、および化合物が組成物に及ぼす主要な効果を説明する。化合物の主要な特性を表3にまとめた。表3の記号において、Lは大きいまたは高い、Mは中程度の、そしてSは小さいまたは低いを意味する。0は誘電率異方性がほぼゼロである（または極めて小さい）ことを意味する。L、MおよびSの記号は、これらの化合物における相対的な評価である。

【0043】

表3 化合物の特性

	(1-1)	(1-2)	(1-3)	(2)	(3-1)	(3-2)	(3-3)
上限温度	S	M	M	M	S	M	L
粘度	L	L	L	M	S	S	S
光学異方性	S	M	L	M	S	M	L
誘電率異方性	M	M	L	L	0	0	0
比抵抗	L	L	L	S	L	L	L

【0044】

化合物(1-1)～化合物(1-3)は、組成物において比抵抗を上げ、そして誘電率異方性を上げる。化合物(2)は、組成物において誘電率異方性を上げ、そして比抵抗を下げる。化合物(3-1)～化合物(3-3)は、組成物において比抵抗を上げ、そして粘度を下げる。

【0045】

化合物(4-1)～化合物(4-4)は、組成物の特性をさらに調整するために混合される。化合物(4-1)および化合物(4-2)は、組成物において誘電率異方性を調整するのに適する。化合物(4-3)および化合物(4-4)は、粘度を調整するのに適する。

【0046】

第三に、成分である化合物の好ましい割合およびその理由を説明する。第一成分の好ましい割合は、誘電率異方性を上げるために5%以上であり、そして下限温度を下げるために50%以下である。さらに好ましい割合は10%～40%である。第二成分の好ましい割合は、誘電率異方性を上げるために5%以上であり、そして下限温度を下げるために、または比抵抗を上げるために40%以下である。さらには好ましい割合は、5%～30%である。第三成分の好ましい割合は、粘度を下げるために10%以上であり、そして下限温度を下げるために、または誘電率異方性を上げるために70%以下である。さらに好ましい割合は20%～60%である。第四成分を混合する場合、この成分の好ましい割合は、特性を調整するために1%以上であり下限温度を下げるために50%以下である。さらに好ましい割合は1%～40%である。特に好ましい割合は10%～40%である。

【0047】

第四に、成分である化合物の好ましい形態を説明する。成分である化合物の化学式において、 R^1 の記号を複数の化合物に用いた。これらの化合物において、 R^1 の意味は同一であってもよいし、または異なってもよい。例えば、化合物(1-1)の R^1 がエチルであり、化合物(1-2)の R^1 がエチルであるケースがある。化合物(1-1)の R^1 がエチルであり、化合物(1-2)の R^1 がプロピルであるケースもある。このルールは、 R^2 、 R^3 、 R^4 、 R^5 、 R^6 、 A^1 、 A^2 、 A^3 、 A^4 、 A^5 、 Z^1 、 Z^2 、 Z^3 、 Z^4 、 X^1 、 X^2 、 Y^1 、 Y^2 、またはnの記号についても適用する。

【0048】

好ましい R^1 は炭素数1～10のアルキルである。好ましい R^2 は炭素数1～

10のアルキルまたは任意の水素がフッ素に置き換えられてもよい炭素数2～10のアルケニルである。好ましいR³は炭素数1～10のアルキルまたは炭素数1～10のアルコキシである。好ましいR⁴は炭素数1～10のアルキルまたは炭素数1～10のアルコキシメチルである。好ましいR⁵は炭素数1～10のアルキルまたは炭素数2～10のアルケニルである。

【0049】

好ましいアルキルは、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル、またはオクチルである。さらに好ましいアルキルは、エチル、プロピル、ブチル、ペンチル、またはヘプチルである。

【0050】

好ましいアルケニルは、ビニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-ペンテニル、2-ペンテニル、3-ペンテニル、4-ペンテニル、1-ヘキセニル、2-ヘキセニル、3-ヘキセニル、4-ヘキセニル、または5-ヘキセニルである。さらに好ましいアルケニルは、ビニル、1-プロペニル、3-ブテニル、または3-ペンテニルである。これらのアルケニルにおける-CH=CH-の好ましい立体配置は、二重結合の位置に依存する。1-プロペニル、1-ブテニル、1-ペンテニル、1-ヘキセニル、3-ペンテニル、3-ヘキセニルのようなアルケニルにおいてはトランスが好ましい。2-ブテニル、2-ペンテニル、2-ヘキセニルのようなアルケニルにおいてはシスが好ましい。

【0051】

任意の水素がフッ素で置き換えられたアルケニルの好ましい例は、2, 2-ジフルオロビニル、3, 3-ジフルオロ-2-プロペニル、4, 4-ジフルオロ-3-ブテニル、または5, 5-ジフルオロ-4-ペンテニルである。さらに好ましい例は、2, 2-ジフルオロビニルまたは4, 4-ジフルオロ-3-ブテニルである。

【0052】

好ましいアルコキシは、メトキシ、エトキシ、プロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、またはヘプチルオキシである。さらに好ましいアル

コキシは、メトキシまたはエトキシである。

【0053】

好ましいアルコキシメチルは、メトキシメチル、エトキシメチル、プロポキシメチル、ブトキシメチル、またはペンチルオキシメチルである。さらに好ましいアルコキシメチルはメトキシメチルである。

【0054】

成分である化合物において、1, 4-シクロヘキシレンまたは1, 3-ジオキサン-2, 5-ジイルに関する立体配置は、シスよりもトランスが好ましい。

【0055】

第五に、成分である化合物の具体的な例を示す。好ましい化合物(1-1)～化合物(4-4)は、化合物(1-1-1)～化合物(4-4-2)である。これら的好ましい化合物において、R¹、R⁵およびR⁶の記号を複数の化合物に用いた。任意の2つの化合物において、R¹などによって表わされる具体的な基は同一であってもよいし、または異なってもよい。このことはすでに記載した。

【0056】

R¹およびR⁶は独立してアルキルであり、R⁵はアルキルまたはアルケニルである。好ましいR¹またはR⁶は炭素数1～10のアルキルである。好ましいR⁵は炭素数1～10のアルキルまたは炭素数2～10のアルケニルである。好ましいアルキルまたはアルケニル、およびさらに好ましいアルキルまたはアルケニルはすでに記載したとおりである。これらアルケニルにおいて、-CH=CH-の好ましい立体配置は、すでに記載したとおりである。これらの好ましい化合物において1, 4-シクロヘキシレンおよび1, 3-ジオキサン-2, 5-ジイルに関する立体配置はシスよりもトランスが好ましい。

【0057】

【0058】

【0059】

【0060】

【0061】

【0062】

第六に、成分である化合物の合成法を説明する。これらの化合物は既知の方法によって合成できる。合成法を例示する。化合物（1-1-1）、化合物（1-2-1）および化合物（1-3-1）は、特開平10-251186号公報に記載された方法を修飾することによって合成する。化合物（2-2）は、特開昭59-176240号公報に記載された方法によって合成する。化合物（3-1-1）は、特開昭59-70624号公報に記載された方法によって合成する。化合物（3-2-1）は、特開昭57-165328号公報に記載された方法によって合成する。化合物（3-3-4）は、特開平2-237949号公報に記載された方法によって合成する。化合物（4-1-1）は、特開平2-233626号公報に記載された方法によって合成する。化合物（4-2-1）は、特開昭57-154135号公報に記載された方法によって合成する。化合物（4-3-6）は、特開昭57-2226号公報に記載された方法によって合成する。化合物（4-4-1）は、特開昭56-68636号公報に記載された方法によつて合成する。

【0063】

合成法を記載しなかった化合物は、オーガニック・シンセシス (Organic Syntheses, John Wiley & Sons, Inc)、オーガニック・リアクションズ (Organic Reactions, John Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シン

セシス (Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座（丸善）などの成書に記載された方法によって合成できる。組成物は、このようにして得た化合物から公知の方法によって調製される。例えば、成分である化合物を混合し、加熱によって互いに溶解させる。

【0064】

本発明の組成物は、主として0.08～0.12の光学異方性を有する。成分である化合物の割合を制御することによって、またはその他の化合物を混合することによって、0.07～0.18の光学異方性を有する組成物、さらには0.06～0.20の光学異方性を有する組成物を調製してもよい。この組成物は末端にシアノを有する化合物を含有し、そして特に大きな誘電率異方性を有する。この組成物を含有するIPSのAM素子は大きな電圧保持率を有する。したがって、この組成物は透過型のIPS素子に特に適する。

【0065】

この組成物はAM素子だけでなくPM素子にも使用することが可能である。この組成物は、PC、TN、STN、ECB、OCB、VAなどのモードを有する素子に使用できる。これらの素子が反射型、透過型または半透過型であってもよい。この組成物をマイクロカプセル化して作製したNCAp (nematic curvilinear aligned phase) 素子や、組成物中に三次元の網目状高分子を形成させたPD (polymer dispersed) 素子、例えばPN (polymer network) 素子にも使用できる。

【0066】

【実施例】

実施例により本発明を詳細に説明する。本発明は下記の実施例によって限定されない。比較例および実施例における化合物は、下記の表4の定義に基づいて記号により表した。表4において、1,4-シクロヘキシレンおよび1,3-ジオキサン-2,5-ジイルに関する立体配置はトランスである。 $-\text{CH}=\text{CH}-$ の結合基に関する立体配置はトランスである。実施例において記号の後にあるかっこ内の番号は好ましい化合物の番号に対応する。（-）の記号はその他の化合物を意味する。化合物の割合（百分率）は、組成物の全重量に基づいた重量百分率

(重量%)である。最後に、組成物の特性値をまとめた。

【0067】

表4 記号を用いた化合物の表記方法

R-(A₁)-Z₁-……-Z_n-(A_n)-X

1) 左末端基 R-	記号	3) 結合基 -Z _n -	記号
C _n H _{2n+1} -	n-	-C ₂ H ₄ -	2
C _n H _{2n+1} OC _m H _{2m} -	nOm-	-COO-	E
CH ₂ =CH-	V-	-C≡C-	T
CH ₂ =CHC _n H _{2n} -	Vn-	-C ₂ F ₄ -	W
C _n H _{2n+1} CH=CHC _m H _{2m} -	nVm-	-CF ₂ O-	X
CF ₂ =CH-	VFF-		
CF ₂ =CHC _n H _{2n} -	VFFn-		
2) 環構造 -A _n -	記号	4) 右末端基 -X	記号
	B	-F	-F
	B(F)	-Cl	-CL
	B(F, F)	-OCF ₃	-OCF3
	H	-CN	-C
	G	-C _n H _{2n+1}	-n
		-OC _n H _{2n+1}	-On
		-CH=CH ₂	-V
		-CH=CHC _n H _{2n+1}	-Vn
		-CH=CF ₂	-VFF
5) 表記例			
例1 5-HXB(F, F)-F		例3 3-H2HB(F)-F	
例2 3-HB(F)-C			

【0068】

特性値の測定は次の方法にしたがった。

ネマチック相の上限温度 ($N I$; ℃) : 偏光顕微鏡を備えた融点測定装置のホットプレートに試料を置き、1℃／分の速度で加熱した。試料の一部がネマチック相から等方性液体に変化したときの温度を測定した。ネマチック相の上限温度を「上限温度」と略すことがある。

【0069】

ネマチック相の下限温度 (T_C ; ℃) : ネマチック相を有する試料を0℃、-10℃、-20℃、-30℃、および-40℃のフリーザー中に10日間保管したあと、液晶相を観察した。例えば、試料が-20℃ではネマチック相のままであり、-30℃では結晶またはスメクチック相に変化したとき、 T_C を<-20℃と記載した。ネマチック相の下限温度を「下限温度」と略すことがある。

【0070】

光学異方性 (Δn ; 25℃で測定) : 波長が589 nmの光によりアッベ屈折計を用いて測定した。

【0071】

粘度 (η ; 20℃で測定; mPa・s) : 測定にはE型粘度計を用いた。

【0072】

誘電率異方性 ($\Delta \epsilon$; 25℃で測定) : 2枚のガラス基板の間隔（セルギャップ）が9 μm、ツイスト角が80度のTN素子に試料を入れた。このセルに10ボルトを印加して、液晶分子の長軸方向における誘電率 ($\epsilon \parallel$) を測定した。0.5ボルトを印加して、液晶分子の短軸方向における誘電率 ($\epsilon \perp$) を測定した。誘電率異方性の値は、 $\Delta \epsilon = \epsilon \parallel - \epsilon \perp$ の式から計算した。正の誘電率異方性を有する組成物をこの方法によって測定した。試料が化合物のときは、化合物を適切な液晶組成物に混合して誘電率異方性を測定した。

【0073】

しきい値電圧 (V_{th} ; 25℃で測定; V) : 2枚のガラス基板の間隔（セルギャップ）が($0.5 / \Delta n$) μmであり、ツイスト角が80度であるノーマリーホワイトモード (normally white mode) のTN素子に試料を入れた。 Δn は上記の方法で測定した光学異方性の値である。このTN素子に周波数が32 Hzである矩形波を印加した。印加電圧を上昇させ、素子を通過する光の透過率が9

0%になったときの電圧の値を測定した。

【0074】

電圧保持率 (V.H.R ; 85°Cで測定 ; %) : 日本電子機械工業会規格 (Standard of Electric Industries Association of Japan) EIAJ・ED-2521 Aに記載された液晶組成物および配向膜を有する素子の電圧保持率を測定する方法にしたがった。測定に用いたIPS素子(樹形電極セル)はポリイミド配向膜を有し、そしてセルギャップは6μmであった。IPS素子に印加した電圧の波形を陰極線オシロスコープで観測し、単位周期において電圧曲線と横軸との間の面積を求めた。IPS素子を取り除いたあと測定した電圧の波形から同様にして面積を求めた。2つの面積の値を比較して電圧保持率を算出した。

【0075】

比較例1

特開2001-123170号公報に開示された組成物の中から実施例10を選んだ。理由は、この組成物が本発明の化合物(1-3)を含有し、そして最も小さな光学異方性を有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、下限温度は高く、粘度は大きく、光学異方性は大きく、そして誘電率異方性は小さい。

3-BBB(F, F) XB-O CF3	7%
2-HB(F, F) XB(F, F)-F	2%
2-BB(F, F) XB(F, F)-F	8%
3-BB(F, F) XB(F)-O CF3	2%
3-HBB(F, F) XB(F)-F	2%
2-HBB(F, F) XB(F, F)-F	3%
3-HBB(F, F) XB(F, F)-F	10%
5-HBB(F) B-2	3%
5-HBB(F) B-3	2%
3-HB-O 2	7%
3-HH-4	3%
2-HHB-CL	7%

3 - H H B - C L	7 %
4 - H H B - C L	8 %
3 - H H B - 1	8 %
3 - H H B - 3	3 %
3 - H G B (F, F) - F	3 %
2 - H B E B (F, F) - F	3 %
3 - H B E B (F, F) - F	4 %
4 - H B E B (F, F) - F	4 %
5 - H B E B (F, F) - F	4 %

N I = 114. 8°C ; T_C < -20°C ; Δ n = 0. 135 ; Δ ε = 7. 3 ; η = 37. 2 mPa · s ; V H R = 93. 5 %.

【0076】

比較例2

特開平10-204436号公報に開示された組成物の中から実施例5を選んだ。理由は、この組成物が本発明の化合物(1-1)および化合物(1-2)を含有し、そして最も小さな粘度を有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、上限温度は低く、下限温度は高く、粘度は大きく、そして誘電率異方性は小さい。

5 - H X B (F) - F	2 %
5 - H X B (F) - O C F 3	2 %
2 - H H X B (F, F) - F	5 %
3 - H H X B (F, F) - F	5 %
4 - H H X B (F, F) - F	5 %
5 - H H X B (F, F) - F	5 %
7 - H B (F, F) - F	8 %
3 - H 2 H B (F, F) - F	7 %
3 - H H B (F, F) - F	10 %
4 - H H B (F, F) - F	5 %
2 - H H B B (F, F) - F	4 %

3-HHBB (F, F) - F	4 %
3-HHBXB (F, F) - F	2 %
3-HH BXB (F) - OCF3	2 %
3-HBXB (F) - OCF3	11 %
4-HBXB (F) - OCF3	11 %
5-HBXB (F) - OCF3	12 %
N I = 70. 4°C ; T _C < -20°C ; Δ n = 0. 082 ; Δ ε = 5. 4 ; η = 23. 8 mPa · s ; VHR = 93. 1 %.	

【0077】

比較例3

特開2001-3053号公報に開示された組成物の中から実施例3を選んだ。理由は、この組成物が本発明の化合物(1-3)を含有し、そして最も大きな誘電率異方性を有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、上限温度は低く、下限温度は高く、粘度は大きく、そして光学異方性は大きい。

2-BB (F, F) XB (F, F) - F	12 %
3-BB (F, F) XB (F, F) - F	13 %
3-HBB (F, F) XB (F) - F	5 %
2-HBB (F, F) XB (F, F) - F	10 %
3-HBB (F, F) XB (F, F) - F	10 %
2-BB (F, F) XBB (F) - F	5 %
3-BB (F, F) XBB (F) - F	5 %
3-BB (F, F) XB (F, F) B (F) - F	3 %
2-BBB (F, F) XB (F, F) - F	3 %
3-BBB (F, F) XB (F, F) - F	4 %
3-HHB (F, F) - F	8 %
4-HHB (F, F) - F	5 %
3-H2HB (F, F) - F	10 %
3-H2BB (F, F) - F	7 %

N I = 78. 7°C ; T_C < -20°C ; Δ n = 0. 139 ; Δ ε = 16. 4 ; η = 39. 4 mPa · s ; V H R = 93. 6 %.

【0078】

比較例4

特開2001-3053号公報に開示された組成物の中から実施例6を選んだ。理由は、この組成物が本発明の化合物(1-3)を含有し、そして最も小さな粘度を有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、上限温度は低く、下限温度は高く、そして誘電率異方性が小さい。

2-BB (F, F) XB (F, F) - F	9 %
3-BB (F, F) XB (F, F) - F	9 %
7-HB (F, F) - F	6 %
3-H2HB (F, F) - F	9 %
4-H2HB (F, F) - F	9 %
5-H2HB (F, F) - F	9 %
3-HHB (F, F) - F	7 %
4-HHB (F, F) - F	5 %
3-HH2B (F, F) - F	4 %
3-HHBB (F, F) - F	3 %
3-HB-O2	3 %
3-HH-4	10 %
3-HH-5	5 %
3-HHB-1	2 %
4-HHB-CL	4 %
2-HHHB (F, F) - F	2 %
3-HHHB (F, F) - F	2 %
4-HHHB (F, F) - F	2 %

N I = 72. 9°C ; T_C < -20°C ; Δ n = 0. 082 ; Δ ε = 8. 0 ; η = 20. 8 mPa · s ; V H R = 92. 9 %.

【0079】

比較例5

特開2001-3051号公報に開示された組成物の中から実施例19を選んだ。理由は、この組成物が本発明の化合物(1-3)を含有し、そして最も小さな粘度を有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、上限温度は低く、そして誘電率異方性は小さい。

3-BB(F, F)-XB(F, F)-F	3%
5-HB(F, F)-XB(F, F)-F	3%
3-HBB(F, F)-F	20%
5-HBB(F, F)-F	15%
3-HHBB(F, F)-F	6%
3-HHB(F, F)-F	8%
3-HHEB(F, F)-F	10%
2-HBEB(F, F)-F	3%
3-HBEB(F, F)-F	5%
5-HBEB(F, F)-F	3%
5-HB-CL	11%
3-HH-4	8%
3-HHB-1	5%

N I = 74.2°C ; T_C < -30°C ; Δn = 0.104 ; Δε = 8.8 ; η = 22.0 MPa·s ; VHR = 93.3%.

【0080】

比較例6

特開2001-3051号公報に開示された組成物の中から表2におけるaの組成物を選んだ。理由は、この組成物が本発明の化合物(1-3)および化合物(2)を含有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、上限温度は低く、下限温度は高く、粘度は大きく、そして光学異方性は大きい。

3-HB-C	20.4%
--------	-------

5-HB-C	30. 6%
5-HB-C	21. 25%
3-BB-C	12. 75%
3-BB(F, F) XB(F, F)-F	15%
N I = 60. 2°C ; T _C < -20°C ; Δn = 0. 133 ; Δε = 13. 8 ; η = 29. 0 mPa · s ; VHR = 92. 1%.	

【0081】

比較例7

特開平10-204016号公報に開示された組成物の中から実施例11を選んだ。理由は、この組成物が本発明の化合物(1-2)および化合物(2)を含有し、最も大きな誘電率異方性を有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、上限温度は低く、下限温度は高く、粘度は大きく、そして光学異方性は大きい。

3-HB-C	20. 4%
5-HB-C	30. 6%
7-HB-C	21. 25%
3-HBB-C	12. 75%
3-HHXB(F, F)-F	15%
N I = 73. 7°C ; T _C < -20°C ; Δn = 0. 128 ; Δε = 14. 4 ; η = 28. 6 mPa · s ; VHR = 91. 9%.	

【0082】

比較例8

特開平10-204016号公報に開示された組成物の中から使用例24を選んだ。理由は、この組成物が本発明の化合物(1-2)および化合物(2)を含有し、最も小さな粘度を有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、下限温度は高く、光学異方性は大きく、そして誘電率異方性は小さい。

3-HHXB(F, F)-F	11%
1V2-BEB(F, F)-C	5%

3 - H B - C	2 5 %
1 - B T B - 3	5 %
2 - B T B - 1	1 0 %
3 - H H - 4	1 1 %
3 - H H B - 3	9 %
3 - H 2 B T B - 2	4 %
3 - H 2 B T B - 3	4 %
3 - H 2 B T B - 4	4 %
3 - H B (F) T B - 2	6 %
3 - H B (F) T B - 3	6 %

N I = 82. 8°C ; T_C < -20°C ; Δ n = 0. 158 ; Δ ε = 8. 3 ; η = 14. 3 mPa · s ; VHR = 92. 2 %.

【0083】

比較例9

WO 96 / 23851 公報に開示された組成物の中から実施例 21 を選んだ。理由は、この組成物が最も大きな誘電率異方性を有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、上限温度は低く、下限温度は高く、粘度は大きく、そして光学異方性は小さい。

2 - H H B (F, F) - F	1 6 %
3 - H H B (F, F) - F	1 4 %
5 - H H B (F, F) - F	1 1 %
2 - H H B - OCF 3	1 7 %
3 - H H B - OCF 3	1 4 %
2 - G B (F) - C	3 %
3 - G B (F) - C	6 %
5 - G B (F) - C	1 1 %
3 - HGB (F, F) - F	8 %

N I = 59. 8°C ; T_C < -10°C ; Δ n = 0. 074 ; Δ ε = 12. 9 ; η = 35. 8 mPa · s ; VHR = 92. 5 %.

【0084】

比較例10

WO 96 / 23851 公報に開示された組成物の中から実施例31を選んだ。理由は、この組成物が最も小さな回転粘性係数 (γ_1) を有するからである。この組成物の成分および特性は下記のとおりである。この組成物において、上限温度は低く、下限温度は高く、そして光学異方性は小さい。

3 - H B - C	8 %
2 - H H B (F, F) - F	13 %
3 - H H B (F, F) - F	7 %
5 - H H B (F, F) - F	9 %
2 - H H B - O C F 3	16 %
3 - H H B - O C F 3	15 %
5 - H H B - O C F 3	5 %
2 - H B (F, F) - C	6 %
3 - H B (F, F) - C	8 %
3 - H H - 4	8 %
3 - H H - 5	5 %

$N I = 67.5^{\circ}\text{C}$; $T_C < -10^{\circ}\text{C}$; $\Delta n = 0.073$; $\Delta \epsilon = 9.7$; $\eta = 28.3 \text{ mPa} \cdot \text{s}$; VHR = 92.3 %.

【0085】

実施例1

5 - H X B (F, F) - F	(1 - 1 - 1)	3 %
3 - H X B (F) - F	(1 - 1 - 2)	3 %
3 - H X B (F) - O C F 3	(1 - 1 - 3)	3 %
2 - H H X B (F) - F	(1 - 2 - 1)	5 %
3 - H H X B (F) - F	(1 - 2 - 1)	10 %
2 - H H X B (F) - O C F 3	(1 - 2 - 2)	5 %
3 - H H X B (F) - O C F 3	(1 - 2 - 2)	10 %
3 - H B - C	(2 - 1)	29 %

3 - HH - 4	(3 - 1 - 1)	5 %
5 - HH - VFF	(3 - 1 - 2)	12 %
VFF - HHB - 1	(3 - 2 - 3)	3 %
VFF2 - HHB - 1	(3 - 2 - 4)	3 %
1O1 - HBBH - 3	(3 - 3 - 2)	3 %
1O1 - HBBH - 4	(3 - 3 - 2)	3 %
1O1 - HBBH - 5	(3 - 3 - 2)	3 %

N I = 84.9 °C ; T_C < -30 °C ; Δ n = 0.100 ; Δ ε = 10.6 ; η = 18.2 mPa · s ; VHR = 92.3 %.

【0086】

実施例2

3 - HHXB (F) - F	(1 - 2 - 1)	10 %
3 - HHXB (F) - OCF3	(1 - 2 - 2)	10 %
3 - BB (F, F) XB (F, F) - F	(1 - 3 - 1)	6 %
3 - BB (F, F) XB (F) - F	(1 - 3 - 2)	6 %
3 - HB (F) - C	(2 - 2)	16 %
3 - HH - 4	(3 - 1 - 1)	10 %
5 - HH - V	(3 - 1 - 1)	20 %
3 - HHB - 1	(3 - 2 - 1)	3 %
V - HHB - 1	(3 - 2 - 1)	4 %
VFF - HHB - 1	(3 - 2 - 3)	5 %
3 - HBBH - 5	(3 - 3 - 1)	3 %
1O1 - HBBH - 4	(3 - 3 - 2)	3 %
1O1 - HBBH - 5	(3 - 3 - 2)	4 %

N I = 87.6 °C ; T_C < -30 °C ; Δ n = 0.091 ; Δ ε = 11.5 ; η = 17.7 mPa · s ; VHR = 92.8 %.

【0087】

実施例3

5 - HXB (F, F) - F	(1 - 1 - 1)	3 %
--------------------	-------------	-----

3 - H X B (F) - F	(1 - 1 - 2)	3 %
3 - H X B (F) - O C F 3	(1 - 1 - 3)	3 %
3 - H H X B (F) - F	(1 - 2 - 1)	1 0 %
3 - H H X B (F) - O C F 3	(1 - 2 - 2)	1 0 %
3 - B B (F, F) X B (F, F) - F	(1 - 3 - 1)	3 %
3 - B B (F, F) X B (F) - F	(1 - 3 - 2)	3 %
3 - B B (F, F) X B (F) - O C F 3	(1 - 3 - 3)	3 %
2 - B E B (F) - C	(2 - 4)	3 %
3 - B E B (F) - C	(2 - 4)	4 %
4 - B E B (F) - C	(2 - 4)	4 %
3 - H H - 4	(3 - 1 - 1)	1 0 %
5 - H H - V	(3 - 1 - 1)	2 0 %
3 - H H B - 1	(3 - 2 - 1)	3 %
V - H H B - 1	(3 - 2 - 1)	3 %
1 O 1 - H B B H - 4	(3 - 3 - 2)	5 %
1 O 1 - H B B H - 5	(3 - 3 - 2)	5 %
5 - H B (F) B H - 3	(3 - 3 - 3)	5 %

N I = 87. 3°C ; T_C < -30°C ; Δ n = 0. 094 ; Δ ε = 12. 6 ; η = 20. 6 mPa · s ; V H R = 92. 3 %.

【0088】

実施例4

5 - H X B (F, F) - F	(1 - 1 - 1)	4 %
3 - H H X B (F) - F	(1 - 2 - 1)	1 0 %
3 - H H X B (F) - O C F 3	(1 - 2 - 2)	1 0 %
3 - B B (F, F) X B (F, F) - F	(1 - 3 - 1)	5 %
3 - B B (F, F) X B (F) - F	(1 - 3 - 2)	5 %
3 - B B (F, F) X B (F) - O C F 3	(1 - 3 - 3)	5 %
3 - H B (F, F) - C	(2 - 3)	1 0 %
3 - H H - 4	(3 - 1 - 1)	5 %

5 - H H - V	(3 - 1 - 1)	2 5 %
V F F - H H B - 1	(3 - 2 - 3)	3 %
V F F 2 - H H B - 1	(3 - 2 - 4)	3 %
1 O 1 - H B B H - 3	(3 - 3 - 2)	3 %
1 O 1 - H B B H - 4	(3 - 3 - 2)	6 %
1 O 1 - H B B H - 5	(3 - 3 - 2)	6 %

N I = 83. 8 °C ; T_C < -30 °C ; Δ n = 0. 093 ; Δ ε = 12. 2 ; η = 19. 7 mPa · s ; VHR = 92. 2 %.

【0089】

実施例 5

5 - H X B (F, F) - F	(1 - 1 - 1)	2 %
3 - H X B (F) - F	(1 - 1 - 2)	2 %
3 - H X B (F) - OCF 3	(1 - 1 - 3)	2 %
2 - HHXB (F) - F	(1 - 2 - 1)	5 %
3 - HHXB (F) - F	(1 - 2 - 1)	10 %
3 - BB (F, F) XB (F, F) - F	(1 - 3 - 1)	15 %
3 - H B - C	(2 - 1)	16 %
1 V 2 - B E B (F, F) - C	(2 - 5)	3 %
3 - H H - 4	(3 - 1 - 1)	6 %
5 - H H - V	(3 - 1 - 1)	18 %
3 - H H B - 1	(3 - 2 - 1)	3 %
V - H H B - 1	(3 - 2 - 1)	5 %
3 - H H B - O 1	(3 - 2 - 2)	3 %
1 O 1 - H B B H - 4	(3 - 3 - 2)	5 %
1 O 1 - H B B H - 5	(3 - 3 - 2)	5 %

N I = 81. 4 °C ; T_C < -30 °C ; Δ n = 0. 103 ; Δ ε = 13. 2 ; η = 19. 9 mPa · s ; VHR = 92. 5 %.

【0090】

実施例 6

2-HHXB (F) - F	(1-2-1)	5 %
3-HHXB (F) - F	(1-2-1)	10 %
2-HHXB (F) - OCF3	(1-2-2)	5 %
3-HHXB (F) - OCF3	(1-2-2)	10 %
3-HB (F, F) - C	(2-3)	10 %
1V2-BEB (F, F) - C	(2-5)	3 %
3-HH-4	(3-1-1)	10 %
5-HH-VFF	(3-1-2)	14 %
VFF-HHB-1	(3-2-3)	6 %
5-HBB (F) B-2	(3-3-4)	3 %
2-HHB (F) - F	(4-2-1)	3 %
3-HHB (F) - F	(4-2-1)	3 %
5-HHB (F) - F	(4-2-1)	3 %
V-HHB (F) - F	(4-2-1)	3 %
2-H2HB (F) - F	(4-2-2)	3 %
3-HH2B (F) - F	(4-2-3)	3 %
3-HHEB (F) - F	(4-2-4)	3 %
5-HB-CL	(4-3-6)	3 %

N I = 80. 0°C ; T_C < -30°C ; Δ n = 0. 084 ; Δ ε = 13. 1 ; η = 19. 5 mPa · s ; VHR = 92. 3 %.

【0091】

実施例7

3-BB (F, F) XB (F, F) - F	(1-3-1)	10 %
3-BB (F, F) XB (F) - F	(1-3-2)	10 %
3-HB-C	(2-1)	20 %
5-BEB (F, F) - C	(2-5)	3 %
3-HH-4	(3-1-1)	10 %
5-HH-VFF	(3-1-2)	18 %
1O1-HBBH-3	(3-3-2)	3 %

1 O 1 - H B B H - 4	(3 - 3 - 2)	6 %
1 O 1 - H B B H - 5	(3 - 3 - 2)	6 %
3 - H H B - O C F 3	(4 - 3 - 3)	3 %
3 - H H 2 B - O C F 3	(4 - 3 - 4)	3 %
3 - H H E B - F	(4 - 3 - 5)	4 %
5 - H H E B - F	(4 - 3 - 5)	4 %

N I = 84. 7 °C ; T_C < -30 °C ; Δ n = 0. 109 ; Δ ε = 13. 5 ; η = 20. 0 mPa · s ; VHR = 92. 8 %.

【0092】

実施例8

2 - H H X B (F) - F	(1 - 2 - 1)	5 %
3 - H H X B (F) - F	(1 - 2 - 1)	10 %
V 2 - H B - C	(2 - 1)	7 %
1 V 2 - H B - C	(2 - 1)	7 %
1 V 2 - B E B (F, F) - C	(2 - 5)	4 %
3 - H H - 4	(3 - 1 - 1)	5 %
5 - H H - V F F	(3 - 1 - 2)	20 %
3 - H H B - 1	(3 - 2 - 1)	4 %
3 - H H B (F, F) - F	(4 - 1 - 1)	3 %
3 - H H 2 B (F, F) - F	(4 - 1 - 3)	3 %
3 - H H X B (F, F) - F	(4 - 1 - 4)	3 %
3 - H H E B (F, F) - F	(4 - 1 - 5)	3 %
3 - H H B (F) - F	(4 - 2 - 1)	4 %
5 - H H B (F) - F	(4 - 2 - 1)	3 %
3 - H H 2 B (F) - F	(4 - 2 - 3)	4 %
3 - H H B - F	(4 - 3 - 1)	3 %
3 - H H B - C L	(4 - 3 - 2)	6 %
7 - H B - 1	(4 - 4 - 1)	3 %
3 - H B - O 2	(4 - 4 - 2)	3 %

$N_I = 84.0^\circ\text{C}$; $T_C < -30^\circ\text{C}$; $\Delta n = 0.092$; $\Delta \varepsilon = 11.6$; $\eta = 17.7 \text{ mPa} \cdot \text{s}$; $VHR = 92.5\%$.

【0093】

実施例9

3-HHXB (F) - F	(1-2-1)	10%
3-HHXB (F) - OCF3	(1-2-2)	6%
3-BB (F, F) XB (F, F) - F	(1-3-1)	5%
3-HB (F, F) - C	(2-3)	8%
1V2-BEB (F, F) - C	(2-5)	3%
5-HH-VFF	(3-1-2)	20%
3-HHB-1	(3-2-1)	3%
V-HHB-1	(3-2-1)	9%
1O1-HBBH-4	(3-3-2)	4%
1O1-HBBH-5	(3-3-2)	4%
2-HBB (F) - F	(4-2-5)	3%
3-H2BB (F) - F	(4-2-6)	3%
3-HHB (F) - OCF3	(4-2-7)	3%
3-HB (F, F) B (F) - F	(4-2-8)	3%
3-HHB-CL	(4-3-2)	3%
5-HB-CL	(4-3-6)	10%
3-HB (F) EB-OCF3	(4-3-7)	3%

$N_I = 80.2^\circ\text{C}$; $T_C < -30^\circ\text{C}$; $\Delta n = 0.100$; $\Delta \varepsilon = 14.0$; $\eta = 21.0 \text{ mPa} \cdot \text{s}$; $VHR = 92.2\%$.

【0094】

実施例10

3-HXB (F) - OCF3	(1-1-3)	7%
3-HHXB (F) - OCF3	(1-2-2)	7%
3-HB-C	(2-1)	28%
3-HH-4	(3-1-1)	10%

5 - H H - V	(3 - 1 - 1)	1 4 %
1 O 1 - H B B H - 3	(3 - 3 - 2)	3 %
1 O 1 - H B B H - 4	(3 - 3 - 2)	5 %
1 O 1 - H B B H - 5	(3 - 3 - 2)	5 %
5 - H B B (F) B - 2	(3 - 3 - 4)	3 %
3 - G H B (F, F) - F	(4 - 1 - 6)	2 %
3 - H G B (F, F) - F	(4 - 1 - 7)	2 %
3 - H 2 G B (F, F) - F	(4 - 1 - 8)	2 %
3 - H B B (F, F) - F	(4 - 1 - 9)	3 %
3 - H 2 B B (F, F) - F	(4 - 1 - 10)	3 %
3 - H B E B (F, F) - F	(4 - 1 - 11)	3 %
3 - H B (F) B (F, F) - F	(4 - 1 - 12)	3 %

N I = 83. 9°C ; T_C < -30°C ; Δ n = 0.106 ; Δ ε = 10.8 ; η = 20.3 mPa · s ; VHR = 92.9%.

【0095】

実施例 1 1

5 - H X B (F, F) - F	(1 - 1 - 1)	2 %
3 - H X B (F) - F	(1 - 1 - 2)	2 %
3 - H X B (F) - O C F 3	(1 - 1 - 3)	2 %
3 - B B (F, F) X B (F, F) - F	(1 - 3 - 1)	3 %
3 - B B (F, F) X B (F) - F	(1 - 3 - 2)	3 %
3 - B B (F, F) X B (F) - O C F 3	(1 - 3 - 3)	3 %
3 - H B (F, F) - C	(2 - 3)	1 0 %
1 V 2 - B E B (F, F) - C	(2 - 5)	3 %
3 - H H - 4	(3 - 1 - 1)	6 %
5 - H H - V	(3 - 1 - 1)	1 8 %
5 - H H - V F F	(3 - 1 - 2)	5 %
1 O 1 - H B B H - 3	(3 - 3 - 2)	5 %
1 O 1 - H B B H - 4	(3 - 3 - 2)	5 %

1 O 1 - H B B H - 5	(3 - 3 - 2)	5 %
3 - H B (F) B (F, F) - F	(4 - 1 - 1 2)	3 %
2 - H H B (F) - F	(4 - 2 - 1)	3 %
3 - H H B (F) - F	(4 - 2 - 1)	3 %
5 - H H B (F) - F	(4 - 2 - 1)	3 %
V - H H B (F) - F	(4 - 2 - 1)	3 %
3 - H H 2 B (F) - F	(4 - 2 - 3)	3 %
3 - H H B - C L	(4 - 3 - 2)	5 %
3 - H H E B - F	(4 - 3 - 5)	5 %

N I = 81; 5°C; T_C < -30°C; Δ n = 0.093; Δ ε = 13.5; η = 20.5 mPa · s; VHR = 92.2 %.

【0096】

実施例12

5 - H X B (F, F) - F	(1 - 1 - 1)	3 %
3 - H X B (F) - F	(1 - 1 - 2)	3 %
3 - H X B (F) - O C F 3	(1 - 1 - 3)	3 %
3 - H H X B (F) - F	(1 - 2 - 1)	5 %
3 - H H X B (F) - O C F 3	(1 - 2 - 2)	5 %
3 - B B (F, F) X B (F, F) - F	(1 - 3 - 1)	2 %
3 - B B (F, F) X B (F) - F	(1 - 3 - 2)	2 %
3 - B B (F, F) X B (F) - O C F 3	(1 - 3 - 3)	2 %
3 - H B (F) - C	(2 - 2)	1 3 %
5 - H H - V	(3 - 1 - 1)	1 8 %
3 - H H B - 1	(3 - 2 - 1)	3 %
3 - H H B - O 1	(3 - 2 - 2)	3 %
V F F - H H B - 1	(3 - 2 - 3)	5 %
1 O 1 - H B B H - 4	(3 - 3 - 2)	5 %
1 O 1 - H B B H - 5	(3 - 3 - 2)	5 %
3 - H H X B (F, F) - F	(4 - 1 - 4)	3 %

2-HHB (F) - F	(4-2-1)	3 %
3-HHB (F) - F	(4-2-1)	3 %
5-HHB (F) - F	(4-2-1)	3 %
2-H2HB (F) - F	(4-2-2)	3 %
3-HH2B (F) - F	(4-2-3)	3 %
5-HB-CL	(4-3-6)	5 %

N I = 81. 5 °C ; T_C < -30 °C ; Δ n = 0. 089 ; Δ ε = 10. 6 ; η = 19. 1 mPa · s ; VHR = 92. 8 %.

【0097】

実施例13

3-HHXB (F) - F	(1-2-1)	12 %
3-BB (F, F) XB (F, F) - F	(1-3-1)	10 %
3-HB (F) - C	(2-2)	11 %
1V2-BEB (F, F) - C	(2-5)	3 %
3-HH-4	(3-1-1)	5 %
5-HH-V	(3-1-1)	20 %
3-HHB-O1	(3-2-2)	3 %
1O1-HBBH-3	(3-3-2)	4 %
1O1-HBBH-4	(3-3-2)	5 %
1O1-HBBH-5	(3-3-2)	5 %
3-H2HB (F, F) - F	(4-1-2)	3 %
2-HHB (F) - F	(4-2-1)	3 %
3-HHB (F) - F	(4-2-1)	3 %
V-HHB (F) - F	(4-2-1)	3 %
5-HB-CL	(4-3-6)	8 %
1O1-HB-C	(-)	2 %

N I = 85. 4 °C ; T_C < -30 °C ; Δ n = 0. 097 ; Δ ε = 13. 2 ; η = 20. 3 mPa · s ; VHR = 93. 1 %.

【0098】

【発明の効果】

本発明の組成物は、ネマチック相の広い温度範囲、小さな粘度、適切な光学異方性、および大きな誘電率異方性の特性において、複数の特性を充足する。この組成物は、複数の特性に関して適切なバランスを有する。本発明の素子はこの組成物を含有する。小さな粘度、0.08～0.12の光学異方性および大きな誘電率異方性を有する組成物を含有するIPSのAM素子は大きな電圧保持率を有する。

【書類名】 要約書

【要約】

【課題】 本発明の目的は、ネマチック相の広い温度範囲、小さな粘度、適切な光学異方性、および大きな誘電率異方性の特性において、複数の特性を充足する液晶組成物を提供することにある。この目的は複数の特性に関して適切なバランスを有する液晶組成物を提供することでもある。この目的は、この組成物を含有する液晶表示素子を提供することでもある。この目的は、小さな粘度、0.08～0.12の光学異方性および大きな誘電率異方性を有する組成物を含有し、そして大きな電圧保持率を有するIPSのAM素子を提供することでもある。

【解決手段】 第一成分として式(1-1)、(1-2)、および(1-3)で表される化合物の群から選択された少なくとも1つの化合物、第二成分として式(2)で表される化合物の群から選択された少なくとも1つの化合物、そして第三成分として式(3-1)、(3-2)、および(3-3)で表される化合物の群から選択された少なくとも1つの化合物を含有する液晶組成物。

【選択図】 なし

認定・付加情報

特許出願の番号	特願2002-352262
受付番号	50201835553
書類名	特許願
担当官	第六担当上席 0095
作成日	平成14年12月10日

<認定情報・付加情報>

【特許出願人】	申請人
【識別番号】	000002071
【住所又は居所】	大阪府大阪市北区中之島3丁目6番32号
【氏名又は名称】	チッソ株式会社
【特許出願人】	596032100
【識別番号】	東京都中央区勝どき三丁目13番1号
【住所又は居所】	チッソ石油化学株式会社
【氏名又は名称】	

次頁無

出願人履歴情報

識別番号 [000002071]

1. 変更年月日 1990年 8月23日

[変更理由] 新規登録

住 所 大阪府大阪市北区中之島3丁目6番32号

氏 名 チッソ株式会社

出願人履歴情報

識別番号 [596032100]

1. 変更年月日 2002年 7月 1日

[変更理由] 住所変更

住 所 東京都中央区勝どき三丁目13番1号

氏 名 チッソ石油化学株式会社