Financial Trading Application

Financial Technical indicatrors + Machine Learning Classifiers for Financial Trading

• Table of Content

Introduction

Literature Review

Methodology

Conclusion

Research question:

How to create a robust and replicable machine learning model to different stock markets using technical indicators?

- Create a machine learning model capable of predicting the trends and classify in the 3 classes called "buy," "hold," or "sell" for a given stock. This model will have as input data technical indicators calculated from the stock opening price to identify market movements.
- Select the model that better predicts the opening prices according to the evaluation metrics.
- Compare the winning model to a base model.

This stock, also known as Texas light sweet, is a benchmark for crude oil globally, it is used as a reference for oil prices and trading activities around the world for its quality.

ETF iShares MSCI World Index

This stock incorporates an exchange-traded fund (ETF). This ETF seeks to track the performance of the MSCI World Index, which measures the performance of different companies in developed countries.

Meta

Also known as Facebook, it is a recognized company in the technology sector, it serves as a reference to review the behavior of other companies in the technology sector, its focus is technological, which is why they invest in innovation, virtual and augmented reality.

Business and data understanding

Yahoo Finance

Dataset:

- o Date
- o Open Price
- o High
- o Low
- Close
- o Volume
- Adj Close

Indicator

- RSI (Relative Strength Index)
- MACD (Moving Average Convergence Divergence)
- Moving Averages
- Stochastic Oscillator
- EMA (Exponential Moving Average)
- o Bollinger Bands
- o Ichimoku Cloud
- Standard Deviation

$$Target_t = \begin{cases} 1 \ if \ Daily_change_t > Sell_threshold \\ 2 \ if \ Daily_change_t < Buy_threshold \\ 0 \ otherwise \end{cases}$$

$$Daily_Change_t = \left(\frac{\text{Open}_t - \text{Open}_{t-1}}{\text{Open}_{t-1}}\right) \times 100$$

sell threshold=1.0 buy threshold=-1.0

Business and data understanding

Business and data understanding

Dataset	X_train_sha	y_train_sha	X_test_sha	y_test_sha	
	pe	pe	pe	pe	
meta	(881, 19)	(881,1)	(378, 19)	(378,1)	
WTI	(882, 19)	(882,1)	(378, 19)	(378,1)	
iShares	(878, 19)	(878,1)	(377, 19)	(377,1)	

Variance calculation

Feature	META	ISHARES	WTI
RSI	154.6	138.7	145.6
MACD	59.0	0.4	
MACD-Histogram	3.9	0.0	0.3
Signal	54.3	0.3	3.6
Moving Averages	6236.6	62.3	405.2
Stochastic Oscillator %K	639.2	776.6	592.4
Stochastic Oscillator %D	598.1	729.4	555.8
Exponential Moving Average	7374.3	70.8	415.9
Lower Band	6719.6	71.8	397.4
Middle Band	7130.3	68.9	415.0
Upper Band	7816.6	68.1	458.8
Bandwidth	104.0	16.2	638.2
Percent B	0.1	0.1	0.1
Senkou Span A	5962.9	62.4	469.4
Senkou Span B	5148.5	58.8	565.4
Tenkan-sen	7372.5	71.4	442.0
Kijun-sen	6897.7	68.5	491.9
Chikou Span	7616.3	70.9	429.1
Standard deviation	56.7	0.4	4.4

After calculating the variance, only 1 feature was removed for iShares, leaving it with 18 and meta and WTI with 19.

Missing Values and imputation

Feature Reduction

KMO Value

Range	Description		
0.00 to 0.49	Unacceptable		
0.50 to 0.59	Miserable		
0.60 to 0.69	Mediocre		
0.70 to 0.79	Middling		
0.80 to 0.89	Meritorious		
0.90 to 1.00	Marvelous		

Dataset	KMO Model	Result		
Meta	0.806	Meritorious		
WTI	0.816	Meritorious		
iShares	0.823	Meritorious		

PCA effectively reduces data dimensionality for all the stocks, with KMO test indicating data suitability for PCA

Smote before and after for iShares

Summary steps

Meta Winning Model

Decision trees emerged as the winning model for Meta, outperforming iShares in terms of accuracy, with higher rates of true positives and false predictions. it is possible to see that in all classes they are better than a random classification.

WTI Winning Model

The predictive model for WTI(Random forest) is more accurate for buy and sell <u>classes</u>, <u>but</u> has a high false positive rate. It generally yields positive <u>results</u>, <u>but</u> struggles with hold indicator classification.

Buy

iShares Winning Model

The random forest model for iShares effectively differentiates the Hold class but struggles with the sell and buy classes, as shown in the average Micro ROC curve

Backtesting results

The machine learning model's profitability analysis showed a positive trend for iShares, with Meta offering the highest margin but high risk, while WTI experienced constant falls.

Backtesting results

Date	Open	Target	Predicted Signal	Signal	Portfolio Value	Action	Profitability %	Holdings	Cash
4/22/2024	489.72	2	2	buy	108.80	hold	8.80	0.22	0.00
4/23/2024	491.25	0	2	buy	109.14	hold	9.14	0.22	0.00
4/24/2024	508.06	1	1	sell	111.75	sell	11.75	0.00	111.75
4/25/2024	421.4	2	2	buy	110.63	buy	10.63	0.26	0.00

Target: the real market signal.

Predicted Signal: the market signal predicted by the model.

Signal: the actual name representing that class, i.e. 0=Hold, 1=sell and 2=buy.

Portfolio Value: the total value of the portfolio that day (cash + holdings * price).

Action: the action taken that day according to the available balance or available

stocks.

Profitability: the change in the portfolio due to the action taken.

Holdings: the number of shares held that day.

Backtesting results – Base strategy

The base strategy, which uses RSI for buy and sale decisions, demonstrated the highest performance across all studied stocks, demonstrating its precision across various sectors.

Conclusion

- The Roc curve and confusion matrix show consistent models, but base strategy wins in all cases, suggesting ML models require improvement.
- This evaluation shows that in general the model can capture well the trends of certain sectors such as technology and the diversified market.
- The difference in performance (Roc and confusion matrix) for Meta and WTI models regarding iShares may be related to class balancing.
- iShares exhibits a conservative growth pattern due to its constant market growth, resulting in stable profits but not high compared to other stocks.
- Machine learning models perform better with stock with rapid changes and fluctuations, but not with stable models or constant upward trends.