Intégration - Résumé

October 25, 2023

THEVENET Louis

Table des matières

1.	Définitions et motivations	1
2.	Théorie de la mesure	2
	2.1. Applications mesurables	2
	2.2. Mesure et espaces mesurés	
	2.3. La mesure de Lebesgue	5
3.	Intégral de Lebesgue des fonctions mesurables positives	5
	3.1. Fonctions étagées positives	5
	3.2. Fonctions mesurables positives	6
4.	Intégration	7
	Au partiel (d'après le prof)	

1. Définitions et motivations

On veut étendre l'ensemble des fonctions intégrables

Définition 1.1: Tribu

E un ensemble et $A \in \mathcal{P}(E)$ une famille de parties de E. A est une **tribu** si :

- 1. $E \in \mathcal{A}$
- 2. \mathcal{A} est stable par passage au complémentaire
- 3. \mathcal{A} est stable par réunion dénombrable

Définition 1.2:

E un ensemble, \mathcal{A} une tribu sur E. (E,\mathcal{A}) est appelé **espace mesurable**

Définition 1.3: Tribu engendrée

Soit $\mathcal{C} \subset \mathcal{P}(E)$, on appelle **tribu engendrée** par \mathcal{C} , notée $\sigma(\mathcal{C})$, l'intersection des toutes les tribus contenant \mathcal{C}

Si (E,\mathcal{O}) est un espace topologique, $\sigma(\mathcal{O})=\sigma(\mathcal{F})\coloneqq\mathcal{B}(E)$, avec \mathcal{F} ensemble des fermés de E

On appelle $\mathcal{B}(E)$ la **tribu de Borel** de E

Définition 1.4:

- Tribu réciproque : $f^{-1}(\mathcal{A}_2)=\left\{f^{-1}(B)\subset E_1\mid B\in\mathcal{A}_2\right\}$

Théorème 1.1: Lemme de transport

Soit $f:E_1\to E_2$ et une classe de parties E_2 , notée $\mathcal C.$ Alors

$$\sigma(f^{-1}(\mathcal{C})) = f^{-1}(\sigma(\mathcal{C}))$$

Définition 1.5: Tribu trace

La tribu trace de $\mathcal{B}(E)$ sur X définie par $\operatorname{tr}(\mathcal{B}) = \{B \cap X \mid B \in \mathcal{B}(E)\}$ est la tribu engendrée par la topologie trace de \mathcal{O} sur X, i.e. par $\sigma(\operatorname{tr}(\mathcal{O}))$

2. Théorie de la mesure

2.1. Applications mesurables

Définition 2.1.1:

f est mesurable de (E_1,\mathcal{A}_1) dans (E_2,\mathcal{A}_2) si $f^{-1}(\mathcal{A}_2)\subset\mathcal{A}_1$ i.e.

$$\forall B \in \mathcal{A}_2, f^{-1}(B) = \{x \in E_1 \mid f(x) \in B\} \in \mathcal{A}_1$$

- Si E_1 et E_2 sont des espaces topologiques et \mathcal{A}_1 , \mathcal{A}_2 des tribus de Borel correspondantes, alors f est **borélienne**
- Si $(E_2, \mathcal{A}_2) = (\mathbb{R}, \mathcal{B}(\mathbb{R})),$ on parle de fonctions **mesurables**

Méthode 2.1.1: f est mesurable de (E_1, \mathcal{A}_1) dans (E_2, \mathcal{A}_2) si

$$\forall B \in \mathcal{A}_2, f^{-1}(B) = \{x \in E_1 \ | \ f(x) \in B\} \in \mathcal{A}_1$$

2

Théorème 2.1.1: Critères de mesurabilité

• \mathcal{C} une classe de parties d'un ensemble F, i.e. $\mathcal{C} \subset \mathcal{P}(F), B \coloneqq \sigma(\mathcal{C})$

$$f:(E,\mathcal{A})\to (F,\mathcal{B})$$
 mesurable $\Leftrightarrow f^{-1}(\mathcal{C})\subset \mathcal{A}$

- f_1, f_2 mesurables $\Rightarrow f_1 \circ f_2$ mesurable
- Si $\mathcal{A} = \mathcal{B}(E)$ et $\mathcal{B} = \mathcal{B}(F)$ tribus de Borel, f continue $\Rightarrow f$ mesurable
- $f:[a,b] \to \mathbb{R}$ cpm $(a < b \in \mathbb{R})$, alors f mesurable de $([a,b],\mathcal{B}([a,b]))$ dans $(\mathbb{R},\mathcal{B}(\mathbb{R}))$

Théorème 2.1.2: Limite d'une suite de fonction

 $(f_n)_n$ une suite de fonctions **mesurables** sur (E,\mathcal{A}) à valeurs dans $|(\mathbb{R})$

- 1. $\sup_{n} f_n$ et $\inf_{n} f_n$ sont **mesurables**
- 2. $\lim_{n\to+\infty}\sup f_n=\lim_{n\to+\infty}\sup_{k\geq n}f_k$ et $\lim_{n\to+\infty}\inf f_n=\lim_{n\to+\infty}\sup_{k\geq n}f_k$ sont **mesurables**
- 3. Si $(f_n)_n \xrightarrow[n \to \infty]{\mathcal{CS}} f$, alors f est **mesurable**

2.2. Mesure et espaces mesurés

Définition 2.2.1: Mesure

Soit (E, \mathcal{A}) un espace mesurable. on appelle **mesure** sur (E, \mathcal{A}) une application $\mu : \mathcal{A} \to \overline{\mathbb{R}}_+ := \mathbb{R}_+ \cup \{+\infty\}$ telle que

- $1. \ \mu(\emptyset) = 0$
- 2. $\forall A_1, A_2, ..., A_n \in \mathcal{A}$ 2 à 2 disjoints : $\mu\left(\bigsqcup_n A_n\right) = \sum_n \mu(A_n)$ (σ -additivité)

Méthode 2.2.1: Montrer que μ est une mesure

- existence
- $\mu(\emptyset) = 0$
- σ -additivité

Définition 2.2.2: Espace mesuré

Soit (E, \mathcal{A}) un espace mesurable et μ une mesure dessus.

On appelle Soit (E, \mathcal{A}, μ) espace mesuré.

Définition 2.2.3: Soit (E, \mathcal{A}) un espace mesurable. Une mesure μ est dite :

- 1. **finie** si $\mu(E) < +\infty$
- 2. de probabilité si $\mu(E) = 1$
- 3. σ -finie si

$$\exists {(A_n)}_n \in \mathcal{A}^{\mathbb{N}} \mid E = \bigcup_n A_n$$

et $\mu(A_n) < +\infty \forall n$

Exemple: Exercice 2.3.3. du cours que je laisse pour Nouloun

- $\mu(\emptyset) = 1$ car \emptyset est dénombrable
- Soient $A_1,...,A_n \in \mathcal{A}$ 2 à 2 disjoints

On a A_i et A_j dénombrables et disjoints donc $A_i \cup A_j$ dénombrable

Donc $\mu(A_i \cup A_j) = 0 = 0 + 0 = \mu(A_i) + \mu(A_j)$

Donc $\mu(\bigcup_n (A_n)) = \sum_n (\mu(A_n))$

Donc μ est une mesure

Définition 2.2.4: Pour (E, \mathcal{A}, μ) un espace mesuré.

 $A \in \mathcal{A}$ est négligeable si $\mu(A) = 0$

Théorème 2.2.1: Mesure image

Soient $(E_1,\mathcal{A}_1),$ (E_2,\mathcal{A}_2) deux espaces mesurables. $\mu:\mathcal{A}_1\to\overline{\mathbb{R}}_+$ une mesure sur (E_1,\mathcal{A}_1) et f mesurable de (E_1,\mathcal{A}_1) dans (E_2,\mathcal{A}_2)

On pose

$$\mu: \begin{cases} \mathcal{A}_2 \to \overline{\mathbb{R}}_+ \\ B \mapsto \mu_f(B) \coloneqq \mu(f^{-1}(B)) \end{cases}$$

 μ_f est une mesure sur (E_2, \mathcal{A}_2) appelée **mesure image** de μ par f.

2.3. La mesure de Lebesgue

Théorème 2.3.1: Mesure de Lebesgue (ou mesure de Borel-Lebesgue)

Il existe une **unique** mesure μ_d sur les boréliens de \mathbb{R}^d telle que la mesure de tout pavé $\prod_{i=1}^d]a_i, b_{i[}$ est :

$$\mu_d\left(\bigcap_{i=1}^d]a_i,b_i[\right)=\prod_{i=1}^d(b_i-a_i)$$

Elle est appelée **mesure de Lebesgue** et notée μ si il n'y a pas d'ambiguïté sur la dimension.

3. Intégral de Lebesgue des fonctions mesurables positives

3.1. Fonctions étagées positives

Définition 3.1.1: Fonctions étagée

$$f$$
 est une fonction étagée si elle s'écrit : $f=\sum_{i\in I}\alpha_i\mathbbm{1}_{A_i}$ avec $A_i=f^{-1}(\{\alpha_i\})=:\{f=\alpha_i\}$

Définition 3.1.2: Intégrale d'une fonction étagée

On appelle intégrale d'une fonction étagée f positive par rapport à la mesure μ sur (E,\mathcal{A}) :

$$\int_E f \mathrm{d} \mu \coloneqq \sum_{\alpha \in f(E)} \alpha \mu \big(f^{-1}(\{\alpha\}) \big) \in [0, +\infty[$$

Si $\int_E f \mathrm{d}\mu < +\infty$, on dit que $m{f}$ est intégrable

3.2. Fonctions mesurables positives

Théorème 3.2.1: Toute fonction de \mathcal{M}_+ est limite d'une suite de fonctions de \mathcal{E}_+ (étagées positives)

Définition 3.2.1:

On appelle intégrale d'une fonction mesurable **positive** f par rapport à μ sur (E, \mathcal{A}) :

$$\int_E f \mathrm{d}\mu = \sup \left\{ \int_E \varphi \mathrm{d}\mu \mid \varphi \in \mathcal{E}_+ \text{ et } \varphi \leq f \right\} \in [0, +\infty[$$

Si $\int_E \varphi d\mu < +\infty$, on dit que ${m f}$ est intégrable

Corollaire 3.2.1:
$$\mu(A)=0 \Rightarrow \int_E f \mathbb{1}_A \mathrm{d}\mu = \int_A f \mathrm{d}\mu = 0$$

Corollaire 3.2.2: Si $f \leq g$ et g est intégrable, alors f est intégrable

Théorème 3.2.2: Si μ est finie, alors $\forall f \in \mathcal{M}_+$, si f est bornée alors f est intégrable

Corollaire 3.2.3: $\forall f \in \mathcal{M}_+, \int_E f \mathrm{d}\mu < +\infty \Rightarrow \mu(\{f=+\infty\}) = 0$

Théorème 3.2.3: Théorème de convergence monotone

Si $\left(f_{n}\right)_{n}$ est une suite croissante de $\mathcal{M}_{+}(\mathcal{A}),$ alors $f\coloneqq\lim_{n\to\infty}f_{n}\in\mathcal{M}_{+}(\mathcal{A})$ et

$$\int_E f \mathrm{d}\mu = \int_E \Bigl(\lim_{n \to +\infty} f_n\Bigr) \mathrm{d}\mu = \lim_{n \to \infty} \int_E f_n \mathrm{d}\mu$$

Utilité : On veut calculer l'intégrale de f, on sait pas faire, on peut faire l'intégrale des f_n puis passer à la limite.

Corollaire 3.2.4: Pour toute suite $(f_n) \in \mathcal{M}_+ : \sum_n f_n \in \mathcal{M}_+$ et

$$\int_{E} \left(\sum_{n} f_{n} \right) d\mu = \sum_{n} \left(\int_{E} f_{n} d\mu \right)$$

Proposition 3.2.1: $\forall f \in \mathcal{M}_+: \int_E f \mathrm{d}\mu = 0 \Leftrightarrow \mu(\{f \neq 0\}) = 0$

4. Intégration

Définition 4.1: Intégrale d'une fonction de $\mathcal{M}(\mathcal{A}, \mathcal{B}(\mathbb{R}))$

$$\int_{E} f \mathrm{d}\mu = \int_{E} f \mathrm{d}\mu + \int_{E} f \mathrm{d}\mu$$

Proposition 4.1: $f \in \mathcal{L}^1 \Leftrightarrow \left| \int_E f d\mu \right| \leq \int_E f d\mu < +\infty$

5. Au partiel (d'après le prof)

• à l'examen, est-ce que l'indicatrice est mesurable pour un (E, \mathcal{A}) donné (voir exemple 2.2.1)