大学数学试卷 答案 2019.12.30

简答题(每小题7分,共4题,计28分)

① 设 $\alpha_1, \alpha_2, \alpha_3$ 均为三维列向量,记三阶矩阵 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + 2\alpha_2 + 4\alpha_3, \alpha_1 + 3\alpha_2 + 9\alpha_3)$,若 |A| = -3,计算 |B|.

$$B = (\alpha_1, \alpha_2, \alpha_3)$$
 $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix}$, 所以, $|B| = |A|$ $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = (-3) \times 2 = -6$.

解法二: $|B| = |\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, 2\alpha_2 + 8\alpha_3| = |\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + 3\alpha_3, 2\alpha_3| = 2|\alpha_1, \alpha_2, \alpha_3| = -6$.

2. 设三阶方阵 $A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix}$,三维列向量 $\alpha = (\lambda, 1, 1)^{\mathrm{T}}$,若 $A\alpha$ 与 α 线性相关,求常数 λ .

解: $A\alpha = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & 4 \end{pmatrix} \begin{pmatrix} \lambda \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda \\ 2\lambda + 3 \\ 3\lambda + 4 \end{pmatrix}$,由 $A\alpha$ 与 α 线性相关,得 $\frac{\lambda}{\lambda} = \frac{2\lambda + 3}{1} = \frac{3\lambda + 4}{1}$,解得: $\lambda = -1$.

解法二: $(A\alpha,\alpha)=\begin{pmatrix} \lambda & \lambda \\ 2\lambda+3 & 1 \\ 3\lambda+4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & \lambda+1 \\ 0 & 0 \end{pmatrix}$,由 $A\alpha$ 与 α 线性相关,得 $\lambda+1=0$,即 $\lambda=-1$.

3. λ 取何值时,实二次型 $f(x_1,x_2,x_3)=x_1^2+x_2^2+5x_3^2+2\lambda x_1x_2-2x_1x_3+4x_2x_3$ 是正定的. 解: 二次型 f 对应的矩阵为 $A=\begin{pmatrix} 1 & \lambda & -1 \\ \lambda & 1 & 2 \\ -1 & 2 & 5 \end{pmatrix}$,二次型正定的充要条件是 A 的所有顺序主子式:

$$\Delta_1 = \det(1) = 1 > 0, \Delta_2 = \begin{vmatrix} 1 & \lambda \\ \lambda & 1 \end{vmatrix} = 1 - \lambda^2 > 0, \Delta_3 = \begin{vmatrix} 1 & \lambda & -1 \\ \lambda & 1 & 2 \\ -1 & 2 & 5 \end{vmatrix} = -5\lambda^2 - 4\lambda > 0,$$

解得: $-\frac{4}{5} < \lambda < 0$.

解法二: 合同变换: $A \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 - \lambda^2 & \lambda + 2 \\ 0 & \lambda + 2 & 4 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & -(5\lambda^2 + 4\lambda)/4 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$

A 正定,则合同对角阵对角元均为正: $-(5\lambda^2+4\lambda)/4>0$,解得: $-\frac{4}{\epsilon}<\lambda<0$.

ル サン・ 9 (4) 设 A 为二阶方阵, α_1,α_2 是线性无关的二维列向量,且 $A\alpha_1=0,A\alpha_2=2\alpha_1+\alpha_2$,求 A 的所有特征值.解:由 α_1,α_2 线性无关,所以 $\alpha_1\neq 0,2\alpha_1+\alpha_2\neq 0$.由 $A\alpha_1=0=0\alpha_1$,则 $\lambda_1=0$ 是一个特征值; 又有 $A(2\alpha_1+\alpha_2)=0+A\alpha_2=2\alpha_1+\alpha_2$,故 $\lambda_2=1$ 是另一个特征值,则 A 的所有特征值为 0,1.

(本题12分) 已知线性方程组 $\begin{cases} x_1 & +\lambda x_2 & +\mu x_3 & +x_4 & = 0 \\ 2x_1 & +x_2 & +x_3 & +2x_4 & = 0 \\ 3x_1 & +(2+\lambda)x_2 & +(4+\mu)x_3 & +4x_4 & = 1 \end{cases}$ 若 $(1,-1,1,-1)^{\mathrm{T}}$ 是该方程组的一个解,求: (1) 方程组的通解; (2) 方程组满足 $x_2=x_3$ 的全部解.

$$A = \begin{pmatrix} 1 & \lambda & \lambda & 1 \\ 2 & 1 & 1 & 2 \\ 3 & 2+\lambda & 4+\lambda & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2\lambda & 1-\lambda \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 2(2\lambda-1) & 2\lambda-1 \end{pmatrix}$$

若
$$(1,-1,1,-1)^{\mathrm{T}}$$
 是该方程组的一个解,求: (1) 方程组的通解; (2) 方程组满足 $x_2=$ 解: 将 $(1,-1,1,-1)^{\mathrm{T}}$ 代入方程组,得 $\lambda=\mu$. 已知 $\gamma=(1,-1,1,-1)^{\mathrm{T}}$ 是方程组的一个特解. 对齐次方程组 $Ax=0$ 进行行初等变换: $(1,-1,1)^{\mathrm{T}}$ 发 $\lambda=\begin{pmatrix} 1 & \lambda & \lambda & 1 \\ 2 & 1 & 1 & 2 \\ 3 & 2+\lambda & 4+\lambda & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -2\lambda & 1-\lambda \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 2(2\lambda-1) & 2\lambda-1 \end{pmatrix}$. (1) 当 $\lambda\neq 1/2$ 时, $A\to\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1/2 \\ 0 & 0 & 1 & 1/2 \end{pmatrix}$, $Ax=0$ 的基础解系的秩为 1,

故可求得方程组的通解为:
$$\xi = (1, -1, 1, -1)^{\mathrm{T}} + k(-1, 1/2, -1/2, 1)^{\mathrm{T}}, k \in \mathbf{R};$$
 当 $\lambda = 1/2$ 时, $A \rightarrow \begin{pmatrix} 1 & 0 & -1 & 1/2 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, $Ax = 0$ 的基础解系的秩为 2,

故可求得方程组的通解为: $\xi = (1, -1, 1, -1)^{\mathrm{T}} + k_1(1, -3, 1, 0)^{\mathrm{T}} + k_2(-1/2, -1, 0, 1)^{\mathrm{T}}, k_1, k_2 \in \mathbf{R}$. (2) 若 $x_2 = x_3$, 当 $\lambda \neq 1/2$ 时,由 -1 + k/2 = 1 - k/2,解得 k = 2,

此时方程组的通解为: $\xi = (1, -1, 1, -1)^{\mathrm{T}} + 2(-1, 1/2, -1/2, 1)^{\mathrm{T}} = (-1, 0, 0, 1)^{\mathrm{T}};$

当 $\lambda = 1/2$ 时,由 $-1 - 3k_1 - k_2 = 1 + k_1$,解得 $k_2 = -2 - 4k_1$,

此时方程组的通解为: $\xi = (2,1,1,-3)^{\mathrm{T}} + k(3,1,1,-4)^{\mathrm{T}}$.

解法二:将 $(1,-1,1,-1)^T$ 代入方程组,得 $\lambda = \mu$.

(1)
$$\stackrel{.}{=}$$
 $\lambda \neq 1/2$ $\stackrel{.}{=}$ $\stackrel{.}{=}$ $(A,b) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1/2 & -1/2 \\ 0 & 0 & 1 & 1/2 & 1/2 \end{pmatrix}$,

 $\mathbf{r}(A,b)=\mathbf{r}(A)=3<4,4-3=1$, 故方程组由无穷多组解,且其基础解系的秩为 1,

故可求得方程组的通解为: $\xi = (0, -1/2, 1/2, 0)^{\mathrm{T}} + k(-2, 1, -1, 2)^{\mathrm{T}}, k \in \mathbf{R};$

当
$$\lambda = 1/2$$
 时, $(A,b) \rightarrow \begin{pmatrix} 1 & 0 & -1 & 1/2 & -1/2 \\ 0 & 1 & 3 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$,

r(A,b) = r(A) = 2 < 4, 4 - 2 = 2, 故方程组由无穷多组解, 且其基础解系的秩为 2,

故可求得方程组的通解为: $\xi = (-1/2, 1, 0, 0)^{\mathrm{T}} + k_1(1, -3, 1, 0)^{\mathrm{T}} + k_2(-1, -2, 0, 2)^{\mathrm{T}}, k_1, k_2 \in \mathbf{R}.$

(2) 若 $x_2 = x_3$, 当 $\lambda \neq 1/2$ 时,由 -1/2 + k = 1/2 - k,解得 k = 1/2,

此时方程组的通解为: $\xi = (0, -1/2, 1/2, 0)^{\mathrm{T}} + 0.5(-2, 1, -1, 2)^{\mathrm{T}} = (-1, 0, 0, 1)^{\mathrm{T}};$

当 $\lambda = 1/2$ 时,由 $1 - 3k_1 - 2k_2 = k_1$,解得 $k_1 = 1/4 - k_2/2$,此时方程组的通解为: $\xi = (-1/4, 1/4, 1/4, 0)^{\mathrm{T}} + k(-3/2, -1/2, -1/2, 2)^{\mathrm{T}}$.

(三)(本题12分) 确定常数 k,使得向量组 $\alpha_1 = (1,1,k)^{\mathrm{T}}, \alpha_2 = (1,k,1)^{\mathrm{T}}, \alpha_3 = (k,1,1)^{\mathrm{T}}$ 可由向量组 $\beta_1 = (1,1,k)^{\mathrm{T}}, \beta_2 = (-2,k,4)^{\mathrm{T}}, \beta_3 = (-2,k,k)^{\mathrm{T}}$ 线性表出,但向量组 β_1,β_2,β_3 不能由向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性表出.

解: 令 $A=(\alpha_1,\alpha_2,\alpha_3), B=(\beta_1,\beta_2,\beta_3)$,若 $\mathbf{r}(A)=3$,则向量组 $\alpha_1,\alpha_2,\alpha_3$ 就是一个极大无关组, $\begin{vmatrix} 1 & 1 & k \end{vmatrix}$

与题意不合,故
$$\mathbf{r}(A) < 3$$
,则 $\begin{vmatrix} 1 & 1 & k \\ 1 & k & 1 \\ k & 1 & 1 \end{vmatrix} = 0 \Rightarrow k = 1$ 或 $k = -2$.

当
$$k=1$$
 时, $A=(\alpha_1,\alpha_2,\alpha_3)=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$,即 $\mathbf{r}(A)=1$,

$$B = (\beta_1, \beta_2, \beta_3) = \begin{pmatrix} 1 & -2 & -2 \\ 1 & 1 & 1 \\ 1 & 4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \mathbb{P} \ \mathbf{r}(B) = 3,$$

故 $\beta_1, \beta_2, \beta_3$ 不能由向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性

当
$$k = -2$$
 时, $A = (\alpha_1, \alpha_2, \alpha_3) = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -2 \\ 0 & -3 & 3 \\ 0 & 3 & -3 \end{pmatrix}$,即 $\mathbf{r}(A) = 2$,

$$B = (\beta_1, \beta_2, \beta_3) = \begin{pmatrix} 1 & -2 & -2 \\ 1 & -2 & -2 \\ -2 & 4 & -2 \end{pmatrix}$$
, $\mathbb{P} \ \mathbf{r}(B) = 2$, $\mathbb{P} \ \mathbf{r}(B) =$

$$B = (\beta_1, \beta_2, \beta_3) = \begin{pmatrix} 1 & -2 & -2 \\ 1 & -2 & -2 \\ -2 & 4 & -2 \end{pmatrix}, \quad \mathbb{D} \ \mathbf{r}(B) = 2, \quad \text{此时,} \quad \beta_1 = \alpha_1, \beta_2 = -2\alpha_1,$$
对于 $C = (\beta_1, \alpha_2, \beta_3), \quad \text{由于} |C| = \begin{vmatrix} 1 & 1 & -2 \\ 1 & -2 & -2 \\ -2 & 1 & -2 \end{vmatrix} = 18 \neq 0, \quad \mathbb{D} \ \alpha_2 \ \text{不能被} \ \beta_1, \beta_2, \beta_3 \ \text{线性表出,}$
故符合顯音的解是 $k = 1$

故符合题意的解是 k=1.

解法二: 行列初等变换:

光をしないないない。かんは、かんは、からないないない。

$$A = (\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = \begin{pmatrix} 1 & 1 & k & 1 & -2 & -2 \\ 1 & k & 1 & 1 & k & k \\ k & 1 & 1 & k & 4 & k \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & k - 1 & 1 - k & 0 & k + 2 & k + 2 \\ k & 1 - k & 1 - k^2 & 0 & 2k + 4 & 3k \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

秩为 3, 故 $\{\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3\}$ 的极大无关组的向量个数为 3. $\alpha_1, \alpha_2, \alpha_3$ 可由 $\beta_1, \beta_2, \beta_3$ 线性表出,则 $\beta_1, \beta_2, \beta_3$ 为极大无关组,

于是
$$|\beta_1, \beta_2, \beta_3| = \begin{vmatrix} 1 & -2 & -2 \\ 1 & k & k \\ k & 4 & k \end{vmatrix} = (k+2)(k-4) \neq 0.$$

 $\beta_1, \beta_2, \beta_3$ 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出,则 $\alpha_1, \alpha_2, \alpha_3$ 不是极大无关组,线性相关,

于是
$$|\alpha_1, \alpha_2, \alpha_3| = \begin{vmatrix} 1 & 1 & k \\ 1 & k & 1 \\ k & 1 & 1 \end{vmatrix} = -(k+2)(k-1)^2 = 0$$
,解得 $k = 1$.

解法三:
$$(\alpha_{1},\alpha_{2},\alpha_{3},\beta_{1},\beta_{2},\beta_{3}) = \begin{pmatrix} 1 & 1 & k & 1 & -2 & -2 \\ 1 & k & 1 & 1 & k & k \\ k & 1 & 1 & k & 4 & k \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & k & 1 & -2 & -2 \\ 0 & k-1 & 1-k & 0 & k+2 & k+2 \\ 0 & 1-k & 1-k^{2} & 0 & 2k+4 & 3k \end{pmatrix}$$

$$\begin{pmatrix} \beta_{1},\beta_{2},\beta_{3},\beta_{3},\alpha_{1},\alpha_{2},\alpha_{3},\beta_{3},\beta_{3},\beta_{3},\alpha_{1},\beta_{2},\beta_{3},\beta$$

因为 $\alpha_1,\alpha_2,\alpha_3$ 不能表示 β_1,β_2,β_3 ,故行梯形前3列有零行而后3列对应有非零行,即必须k=1或k=-2.

又有:
$$(\beta_1, \beta_2, \beta_3, \alpha_1, \alpha_2, \alpha_3) \rightarrow \begin{pmatrix} 1 & -2 & -2 & 1 & 1 & k \\ 0 & k+2 & k+2 & 0 & k-1 & 1-k \\ 0 & 0 & k-4 & 0 & 3(1-k) & -(1-k)^3 \end{pmatrix}$$

因为 β_1,β_2,β_3 可以表示 $\alpha_1,\alpha_2,\alpha_3$,故行梯形不能出现前3列有零行而后3列对应有非零行, 即必须 $k \neq 4$ 或 $k \neq -2$. 综合起来有 k = 1.

四)(本题12分) 设向量 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是线性方程组 Ax=0 的一个基础解系,向量 β 不是解,即 $A\beta\neq 0$, 证明: 向量组 β , $\beta + \alpha_1$, $\beta + \alpha_2$, \cdots , $\beta + \alpha_n$ 线性无关.

证明: 向量组 $\beta, \beta + \alpha_1, \beta + \alpha_2, \cdots, \beta + \alpha_n$ 线性无关. 证明: 设有一组数 k, k_1, k_2, \cdots, k_n ,使得 $k\beta + k_1(\beta + \alpha_1) + k_2(\beta + \alpha_2) + \cdots + k_n(\beta + \alpha_n) = 0$,(k+を放) β を β はいる β を β はいる β を β はいる β を β にはっている。 はいる β にはっている。 はいる β にはっし、はいる β にはっている。 はいる β にはっている β

故线性无关,即 $k_1=k_2=\cdots=k_n=0$,则推得 k=0,所以向量组 $\beta,\beta+\alpha_1,\cdots,\beta+\alpha_n$ 线性无关.

五. (本题12分) 设 A, C 为 n 阶正定矩阵,若 B 是关于 Z 的矩阵方程 AZ + ZA = C 的唯一解,

证明: B 是正定矩阵. 证明: 由题意,AB + BA = C,因 A, C 为正定矩阵,故对称,则两边转置得,

 $C=C^{\mathrm{T}}=(AB+BA)^{\mathrm{T}}=(AB)^{\mathrm{T}}+(BA)^{\mathrm{T}}=B^{\mathrm{T}}A^{\mathrm{T}}+A^{\mathrm{T}}B^{\mathrm{T}}=B^{\mathrm{T}}A+AB^{\mathrm{T}}=AB^{\mathrm{T}}+B^{\mathrm{T}}A,$ 即 B^{T} 也是矩阵方程 AZ+ZA=C 的解,由题设(解的唯一性),得 $B^{\mathrm{T}}=B$,故 B 是对称矩阵. MARE BX- XX, XB= XXT 设 λ 是 B 的任一特征值,x 是属于 λ 的一个特征向量,则: $x^{\mathrm{T}}Cx = x^{\mathrm{T}}(AB + BA)x = x^{\mathrm{T}}ABx + x^{\mathrm{T}}BAx = x^{\mathrm{T}}A\lambda x + (Bx)^{\mathrm{T}}Ax = \lambda x^{\mathrm{T}}Ax + \lambda x^{\mathrm{T}}Ax = 2\lambda x^{\mathrm{T}}Ax \cdot \sqrt{(x-x)^{\mathrm{T}}Ax} + \lambda x^{\mathrm{T}}Ax = 2\lambda x^{\mathrm{T}}Ax + \lambda$

所以 B 为正定矩阵.

六. (本题12分) 设线性变换 T 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的矩阵为 $A = \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix}$.

- (1) 求 T 在基 $\beta_1 = 2\alpha_1 + 3\alpha_2 + \alpha_3, \beta_2 = 3\alpha_1 + 4\alpha_2 + \alpha_3, \beta_3 = \alpha_1 + 2\alpha_2 + 2\alpha_3$ 下的矩阵;
- (2) 若向量 $x = \alpha_1 + 6\alpha_2 \alpha_3, y = \beta_1 \beta_2 + \beta_3$,求 Tx, Ty 在 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标.

解:设从基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 下的过渡矩阵为 P,由题意,

$$P = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix}, \ \exists \vec{x} \neq P^{-1} = \begin{pmatrix} -6 & 5 & -2 \\ 4 & -3 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

(1) 设
$$T$$
在基 β_1,β_2,β_3 下的矩阵为 B ,则

$$B = P^{-1}AP = \begin{pmatrix} -6 & 5 & -2 \\ 4 & -3 & 1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix};$$

(2) 设
$$Tx, Ty$$
 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标分别为 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$, 因 x 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为 $\begin{pmatrix} 1 \\ 6 \\ -1 \end{pmatrix}$,

所以
$$y = (\beta_1, \beta_2, \beta_3) \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

于是
$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}.$$

(2)的解法二: (2) 设
$$Tx, Ty$$
 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标分别为 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$

因
$$x$$
 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为 $\begin{pmatrix} 1 \\ 6 \\ -1 \end{pmatrix}$, 故 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 6 \\ -1 \end{pmatrix} = \begin{pmatrix} -56 \\ -78 \\ -40 \end{pmatrix}$.

因
$$y$$
 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为 $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$,故 Ty 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为 $B\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$,

故
$$Ty$$
 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的坐标为 $\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = P \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$.

$(\mathcal{A}_{\mathsf{A}},\mathsf{V}_{\mathsf{C}},\mathsf{A}_{\mathsf{C}})$ (本题12分) 设 A 为三阶方阵, $lpha_1,lpha_2,lpha_3$ 是线性无关的三维列向量,

- (1) 求矩阵 B, 使得 $A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3)B$;
- (2) 求矩阵 *A* 的特征值;

(2) 來矩阵
$$A$$
 的特征值;
(3) 求可逆矩阵 P ,使得 $P^{-1}AP$ 为对角矩阵。解:(1) 由题设,
解:(1) 由题设,
 $A(\alpha_1, \alpha_2, \alpha_3) = (\alpha_1, \alpha_2, \alpha_3)$
 $A(\alpha_1, \alpha_2, \alpha_3$

(2) 因 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,故矩阵 $C=(\alpha_1,\alpha_2,\alpha_3)$ 可逆,则 $C^{-1}AC=B$,即 A 与 B 相似,

于是它们有相同的特征值.
$$|\lambda E - B| = \begin{vmatrix} \lambda - 1 & 0 & 0 \\ -1 & \lambda - 2 & -2 \\ -1 & -1 & \lambda - 3 \end{vmatrix} = (\lambda - 1)^2 (\lambda - 4) = 0.$$

解得: B (即 A) 的特征值为 $\lambda_1 = \lambda_2 = 1, \lambda_3 = 4$;

(3) 当 $\lambda_1 = \lambda_2 = 1$ 时,由 (E - B)x = 0 解得基础解系为: $\xi_1 = (-1, 1, 0)^{\mathrm{T}}, \xi_2 = (-2, 0, 1)^{\mathrm{T}}$, 当 $\lambda_3 = 4$ 时,由 (4E - B)x = 0 解得基础解系为: $\xi_3 = (0, 1, 1)^{\mathrm{T}}$.

$$\diamondsuit Q = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} -1 & -2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}, \quad \textcircled{II} \quad \underbrace{Q^{-1}BQ}_{Q} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \quad \textcircled{th} \quad Q^{-1}BQ = Q^{-1}C^{-1}ACC$$

司
$$\lambda_3 = 4$$
 时,由 $(4E - B)x = 0$ 解得基础解系为: $\xi_3 = (0, 1, 1)^2$. 令 $Q = (\xi_1, \xi_2, \xi_3) = \begin{pmatrix} -1 & -2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$,即 $Q^{-1}BQ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$,由 $Q^{-1}BQ = Q^{-1}C^{-1}ACQ$,记矩阵 $P = CQ = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} -1 & -2 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} = (-\alpha_1 + \alpha_2, -2\alpha_1 + \alpha_3, \alpha_2 + \alpha_3)$,P即为所求的可逆矩阵.

大学数学试卷 答案 2021.1.4

简答题(每小题7分,共4题,计28分)

1. 没矩阵
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
, 且 $A^2B + A = B + E$, 求矩阵 B 及行列式 $|B|$.

解: 由 $A^2B + A = B + E$ 可得 (A - E)(A + E)B = E - A,且 $|A - E| = -2 \neq 0$, 故 (A + E)B = -E, $B = -(A + E)^{-1} = -\begin{pmatrix} 2 & 0 & -2 \\ 0 & 3 & 0 \\ -1 & 0 & 2 \end{pmatrix}^{-1} = -\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1/3 & 0 \\ 1/2 & 0 & 1 \end{pmatrix}$, |B| = -1/6.

解法二: 由 $A^2B + A = B + E$ 可得 $(A^2 - E)B = E$

は
$$B = (A^2 - E)^{-1}(E - A) = \begin{pmatrix} 2 & 0 & -4 \\ 0 & 3 & 0 \\ -2 & 0 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 0 & 0 & 2 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1/3 & 0 \\ -1/2 & 0 & -1 \end{pmatrix}, |B| = -1/6.$$
解法三: 由 $A^2B + A = B + E$ 可得 $(A^2 - E)B = E - A$,解矩阵方程
$$(A^2 - E, E - A)$$

$$(A^2 - E, E - A) = \begin{pmatrix} 0 & 3 & 0 & 0 & -1 & 0 \\ 0 & 3 & 0 & 0 & -1 & 0 \\ -2 & 0 & 2 & 1 & 0 & 0 \end{pmatrix} \xrightarrow{-1} \begin{pmatrix} 1 & 0 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1/3 & 0 \\ 0 & 0 & 1 & -1/2 & 0 & -1 \end{pmatrix},$$

故
$$B = \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1/3 & 0 \\ -1/2 & 0 & -1 \end{pmatrix}, |B| = -1/6.$$

2. 设
$$\alpha = (1,1,-1)^{\mathrm{T}}$$
 是矩阵 $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix}$ 的一个特征向量,求常数 a,b 的值.

解:
$$A\alpha = \begin{pmatrix} 2 & -1 & 2 \\ 5 & a & 3 \\ -1 & b & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ a+2 \\ b+1 \end{pmatrix}$$
,由 $A\alpha 与 \alpha$ 线性相关,得 $\frac{-1}{1} = \frac{a+2}{1} = \frac{b+1}{-1}$. 解得 $a = -3, b = 0$.

解法二: 因为
$$A\alpha = \lambda \alpha$$
,故得
$$\begin{cases} -1 &= \lambda, \\ a+2 &= \lambda, \\ b+1 &= -\lambda. \end{cases}$$
 解得 $\lambda = -1, a = -3, b = 0.$

解法三: 由单位向量
$$\alpha$$
 构造标准正交向量组 $\beta_1, \beta_2, \dots, \beta_n$,其中 $\beta_1 = \alpha$,令 $P = (\beta_1, \beta_2, \dots, \beta_n)$,

$$P^{\mathrm{T}}AP = E - kP^{\mathrm{T}}lphalpha^{\mathrm{T}}P^{\mathrm{T}} = E - kE_{11}^{\mathrm{T}}E_{11} = \begin{pmatrix} 1 - k & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix}$$
,由于 A 正定,故 $1 - k > 0$,即 $k < 1$.

解法四: 任取n维向量 $x \neq \theta$, $A = E - k\alpha\alpha^T$ 为正定矩阵,故要满足 $x^TAx = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \propto A = \alpha^T\alpha - k(\alpha^T\alpha)^2 = 1 - k > 0$. 当 1 - k > 0 时,由柯西不等式 $(\alpha^Tx)^2 \leq (x^Tx)(\alpha^T\alpha) = x^Tx$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx - k(\alpha^Tx)^2 > 0$, $\Delta x \approx x^T + \lambda x = x^Tx + \lambda$ AZ? JAQ=Jd-kJdJd=1-k>0 1 再用的面子对式记忆1-12707.4%年的《在文》 $\alpha^{\mathrm{T}}x \neq 0$ 时有 $x^{\mathrm{T}}Ax = x^{\mathrm{T}}x - k(\alpha^{\mathrm{T}}x)^2 \ge (\alpha^{\mathrm{T}}x)^2 - k(\alpha^{\mathrm{T}}x)^2 = (1-k)(\alpha^{\mathrm{T}}x)^2 > 0$, $\alpha^{T}x = 0$ 时显然有 $x^{T}Ax = x^{T}x - k(\alpha^{T}x)^{2} = x^{T}x > 0$, 故 k 满足 k < 1.

4. 设 $A = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$, $B = \begin{pmatrix} b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & a \end{pmatrix}$, 证明 $A \subseteq B$ 合同,即存在可逆矩阵 P,使得 $B = P^{T}AP$. 证: 依次交换 A 的第1,2行,第2,3行,同时做相应的列操作,可将 A 合同变换至 B, (A) によっている 即取 $P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$,可使得 $B = P^{T}AP$. (P 也可以为 $\begin{pmatrix} 0 & 0 & \pm 1 \\ \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \end{pmatrix}$ 中的任何一种矩阵).

证法二: 易知 A 有特征值 $\lambda_1 = a, \lambda_2 = b, \lambda_3 = c$,对应特征向量 $\xi_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\lambda_1 = a, \lambda_2 = b, \lambda_3 = c$,对应特征向量 $\xi_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \xi_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \xi_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, P = (3i, 3i, 3i) 则令 $P = (\pm \xi_2, \pm \xi_3, \pm \xi_1)$,则 P为正交阵,且 $P^{-1}AP = P^{T}AP = \begin{pmatrix} \lambda_2 & 0 & 0 \\ 0 & \lambda_3 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix} = \begin{pmatrix} b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & a \end{pmatrix} = B.$

(注: 用 $P = \operatorname{diag}(\sqrt{\frac{b}{a}}, \sqrt{\frac{c}{b}}, \sqrt{\frac{a}{c}})$ 是错的,因为 a, b, c 可能为0)

二、 (本题12分) 已知二次型 $f=x_1^2+x_2^2+x_3^2+2ax_1x_2+2x_1x_3+2bx_2x_3$ 经正交变换可化为

标准形 $f = 2y_1^2 + y_3^2$,试求 a, b.

解: 由 $A = \begin{pmatrix} 1 & a & 1 \\ a & 1 & b \\ 1 & b & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} = B$,可得 $A - E \sim B - E$,
可知 $|A| = 2ab - a^2 - b^2 = |B| = 0$, |A - E| = 2ab = |B - E| = 0,因此 a = b = 0.

解法二: 由 $A = \begin{pmatrix} 1 & a & 1 \\ 1 & b & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 1 & b & 1 \end{pmatrix}$,可知 A 有特征值 $\lambda = 2,0,1$,代入特征多项式 $|\lambda E - A|$ 得 $|2E - A| = -a^2 - b^2 - 2ab = 0$, $|0E - A| = a^2 + b^2 - 2ab = 0$,|E - A| = -2ab = 0,解得 a = b = 0.

解法三: 由 $A = \begin{pmatrix} 1 & a & 1 \\ a & 1 & b \\ 1 & b & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$,可知 A 有特征值 $\lambda = 2, 0, 1$, 故 $|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -a & -1 \\ -a & \lambda - 1 & -b \\ -1 & -b & \lambda - 1 \end{vmatrix} = \lambda^3 - 3\lambda^2 + (2 - a^2 - b^2)\lambda + (a^2 + b^2 - 2ab)$

(三、) (本题12分) 设3阶实对称矩阵 A 的各行元素之和都为2,向量 $\alpha_1 = (1,0,-1)^T, \alpha_2 = (1,-1,0)^T$ 为线性方程组 Ax = 0 的两个解.

(1) 求 A 的全部特征值与特征向量; (2) 求正交矩阵 P, 使得 $P^{T}AP$ 为对角阵; (3) 求矩阵 A.

解: (1) 由 $A(1,1,1)^{\mathrm{T}}=2(1,1,1)^{\mathrm{T}}$,可知 $\lambda=2$ 是 A 的一个特征值,且 $\alpha_3=(1,1,1)^{\mathrm{T}}$ 是 A 的 属于特征值2的特征向量. 再由 $A\alpha_1=0, A\alpha_2=0$ 知,A 的特征值为0,0,2. 属于特征值0的全部

(注: P 不唯一,只要构成矩阵 P 的前两列 β_1, β_2 与 $\beta_3 = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})^{\mathrm{T}}$ 构成标准正交向量组即可)

(3)解法一:
$$A = P\begin{pmatrix} 0 & & \\ & 0 & \\ & & 2 \end{pmatrix} P^{T} = \frac{2}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

解法二: $A(\alpha_1, \alpha_2, \alpha_3) = (0, 0, 2\alpha_3)$, 故 $A = (0, 0, 2\alpha_3)(\alpha_1, \alpha_2, \alpha_3)^{-1} = \frac{2}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

解法二: (1) 设矩阵 $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, 则根据条件,有 $A\alpha_1 = A\alpha_2 = 0$, $A\alpha_3 = 2\alpha_3$,即 $\begin{pmatrix} a_{11} - a_{13} & = & 0, \\ a_{21} - a_{23} & = & 0, \\ a_{31} - a_{33} & = & 0, \\ a_{31} - a_{32} & = & 0, \\ a_{31} - a_{32} & = & 0, \end{pmatrix} \begin{cases} a_{11} + a_{12} + a_{13} & = & 2, \\ a_{21} + a_{22} + a_{23} & = & 2, \\ a_{31} + a_{32} + a_{33} & = & 2. \end{cases}$ 解得 $a_{11} = a_{12} = a_{13} = a_{21} = a_{22} = a_{23} = a_{31} = a_{32} = a_{33} = 2/3$,即 $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.

$$\begin{bmatrix} a_{31} - a_{33} &= 0, & a_{31} - a_{32} &= 0, & a_{31} + a_{32} + a_{33} &= 2. & A > a_{31} = a_{32} = a_{33} = a_{33} = a_{33} = 2/3.$$
 與 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

 $|\lambda E - A| = \lambda^2 (\lambda - 2)$,故有特征值 $\lambda = 0$ (二重), 2.

当 $\lambda = 0$ 时,解得无关特征向量为: $\xi_1 = (-1, 1, 0)^{\mathrm{T}}, \xi_2 = (-1, 0, 1)^{\mathrm{T}}$,特征向量为 $k_1 \xi_1 + k_2 \xi_2, k_1, k_2$ 不全为0.

当 $\lambda = 0$ 时,解得无关特征问量为: $\xi_3 = (1,1,1)^{\mathrm{T}}$,特征向量为 $k_3\xi_3, k_3 \neq 0$. (2) 将 $\lambda = 0$ 的无关特征向量 ξ_1, ξ_2 标准正交化得 $\beta_1 = \frac{1}{\sqrt{2}}(-1,1,0)^{\mathrm{T}}, \beta_2 = \frac{1}{\sqrt{6}}(-1,-1,2)^{\mathrm{T}}$,将 $\lambda = 2$

的无关特征向量 ξ_3 单位化得 $\beta_3 = \frac{1}{\sqrt{3}}(1,1,1)^{\mathrm{T}}$,令 $P = (\beta_1,\beta_2,\beta_3)$,则 P 正交且 $P^{\mathrm{T}}AP = \mathrm{diag}(0,0,2)$.

(3) 由(1)己得
$$A = \frac{2}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
.

(四) (本题12分) 设 n 阶矩阵 $A=(\alpha_1,\alpha_2,\cdots,\alpha_{n-1},\alpha_n)$ 的前 n-1 个列向量线性无关,

(1) 证明: 方程组 $Ax = \beta$ 有无穷多组解; (2) 求方程组 $Ax = \beta$ 的通解.

解: (1) 因为 β 可以由 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1},\alpha_n$ 线性表示,故方程组 $Ax=\beta$ 有解,即 $\mathbf{r}(A)=\mathbf{r}(A,b)$.

又因为 $\alpha_2, \dots, \alpha_{n-1}, \alpha_n$ 线性相关,因此 $\mathbf{r}(A,b) = \mathbf{r}(A) < n$,从而方程组 $Ax = \beta$ 有无穷多组解.

(2) $n-1=\mathbf{r}(\alpha_1,\alpha_2,\cdots,\alpha_{n-1})\leq \mathbf{r}(A)< n$,因此 $\mathbf{r}(A)=n-1$,又有 $\alpha_2+\cdots+\alpha_{n-1}-\alpha_n=0$,于是 $Ax=\beta$ 的通解为 $(1,1,\cdots,1)^{\mathrm{T}}+k(0,1,\cdots,1,-1)^{\mathrm{T}}$,k 为任意实数.

解法二: (1) $A = (\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, \alpha_n) \xrightarrow{c_n - c_1 - \cdots - c_{n-1}} (\alpha_1, \alpha_2, \cdots, \alpha_{n-1}, 0)$, **公 Y**(A)

故r(A) = $r(\alpha_1, \alpha_2, \dots, \alpha_{n-1}) = n-1$, Ax = 0基础解系含一个向量,由 $\alpha_n = \alpha_2 + \alpha_3 + \dots + \alpha_{n-1}$ 知,

 $0\alpha_1 + \alpha_2 + \alpha_3 + \dots + \alpha_{n-1} - \alpha_n = 0$,即 $\xi = (0, 1, 1, \dots, 1, -1)^{\mathrm{T}}$ 为 Ax = 0的基础解系.

又有 $\beta = \alpha_1 + \alpha_2 + \dots + \alpha_n$ 知 $\eta = (1, 1, \dots, 1)^T$ 是 $Ax = \beta$ 的一个特解,故 $Ax = \beta$ 通解为 $\eta + k\xi, k \in \mathbf{R}$. 由通解公式知 $Ax = \beta$ 有无穷多组解.

(2) 由(1)得到 $Ax = \beta$ 通解为 $\eta + k\xi, k \in \mathbf{R}$.

五、 (本题12分) 设 A 为三阶矩阵, $\lambda_1, \lambda_2, \lambda_3$ 是 A 的三个不同特征值,

对应的特征向量分别为 $\alpha_1, \alpha_2, \alpha_3$,令 $\beta = \alpha_1 + \alpha_2 + \alpha_3$.

(1) 证明 β , $A\beta$, $A^2\beta$ 线性无关; (2) 若 $A^3\beta = A\beta$, 求秩 r(A-E) 及行列式 |A+2E|.

(1)证法一: 由 $\beta = \alpha_1 + \alpha_2 + \alpha_3$ 及 $A\alpha_i = \lambda_i \alpha_i$ (i = 1, 2, 3),可知 $A\beta = \lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \lambda_3 \alpha_3$, $A^2\beta = \lambda_1^2 \alpha_1 + \lambda_2^2 \alpha_2 + \lambda_3^2 \alpha_3$, $O = (\beta, A\beta, A^2\beta)$ 设 $k_1\beta + k_2A\alpha + k_3A^2\beta = 0$,将上式代入整理可得

 $(k_1 + k_2\lambda_1 + k_3\lambda_1^2)\alpha_1 + (k_1 + k_2\lambda_2 + k_3\lambda_2^2)\alpha_2 + (k_1 + k_2\lambda_3 + k_3\lambda_3^2)\alpha_3 = 0.$ 因为 $\alpha_1, \alpha_2, \alpha_3$ 是三个不同特征值对应的特征向量,必线性无关,于是 $(1 \quad \lambda_1 \quad \lambda_1^2) \quad /k_1$

 $\begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 \\ 1 & \lambda_2 & \lambda_2^2 \\ 1 & \lambda_3 & \lambda_3^2 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = 0.$

3

$$(\beta, A\beta, A^2\beta) = (\alpha_1, \alpha_2, \alpha_3) \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 \\ 1 & \lambda_2 & \lambda_2^2 \\ 1 & \lambda_3 & \lambda_2^2 \end{pmatrix} = (\alpha_1, \alpha_2, \alpha_3)B,$$

故 $|\beta, A\beta, A^2\beta| = |\alpha_1, \alpha_2, \alpha_3| \cdot |B|$, 因为 $\lambda_1, \lambda_2, \lambda_3$ 互不相同,故 $|B| = (\lambda_2 - \lambda_1)(\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2) \neq 0$, 且对应的特征向量 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,从而 $|\alpha_1, \alpha_2, \alpha_3| \neq 0$,于是 $|\beta, A\beta, A^2\beta| \neq 0$,

记 $P = (\beta, A\beta, A^2\beta)$,P 可逆且 $P^{-1}AP = B$,即 $A \sim B$,则也有 $A - E \sim B - E$, $A + 2E \sim B + 2E$, 因此 $\mathbf{r}(A - E) = \mathbf{r}(B - E) = \mathbf{r}\begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} = 2$, $|A + 2E| = |B + 2E| = \begin{vmatrix} 2 & 0 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{vmatrix} = 6$.

解法二:由 $(A^3-A)\beta=0$,可知 $(\lambda_1^3-\lambda_1)\alpha_1+(\lambda_2^3-\lambda_2)\alpha_2+(\lambda_3^3-\lambda_3)\alpha_3=0$,而 $\alpha_1,\alpha_2,\alpha_3$ 线性无关, β_1 人 β_2 人 β_3 可知 $\lambda_1,\lambda_2,\lambda_3$ 均满足方程 $\lambda_1^3-\lambda_2=0$,又因为 λ_1 的特征值各个相同,因此只能分别是 λ_1 λ_2 λ_3 与为 λ_3 λ_4 λ_4 λ_5 λ_5 λ_5 λ_5 λ_5 λ_6 λ_5 λ_6 λ_5 λ_6 λ 係数4 而 A=E 的特征值为 A 的特征值減1即-1,-2,0,互不相同,可对角化,故 $A-E\sim \mathrm{diag}(-1,-2,0)$,

从而 r(A-E) = 2,而行列式 $|A+2E| = (0+2) \cdot (-1+2) \cdot (1+2) = 6$.

解法三: 由 $(A^3 - A)\beta = (A - E)(A + E)A\beta = (A - E)(A^2 + A)\beta = (A - E)(A^2\beta + A\beta) = 0$

而 A-E 的特征值为 A 的特征值减1即0,-2,-1,互不相同,可对角化,故 $A-E \sim {\rm diag}(0,-2,-1)$ 从而 r(A-E)=2,而行列式 $|A+2E|=(1+2)\cdot(-1+2)\cdot(0+2)=6$.

(注: (2)中如果用 $A^3\beta = \lambda^3\beta$, $A\beta = \lambda\beta$, 故特征值满足 $\lambda^3 - \lambda = 0$ 是错误的, 因为 β 不是 A 的特征值)

六、 (本题12分) 已知线性空间 \mathbf{R}^3 的基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为 P,且

 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad P = \begin{pmatrix} 2 & 1 & 2 \\ 4 & 0 & 3 \\ 3 & -2 & 2 \end{pmatrix}$

试求: (1) 基 $\beta_1, \beta_2, \beta_3$: (2) 在基 $\alpha_1, \alpha_2, \alpha_3$ 与 $\beta_1, \beta_2, \beta_3$ 下具有相同坐标的全部向量. 解: (1) 从基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵为 P,即

 $(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 4 & 0 & 3 \\ 3 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 1 & 5 \\ 11 & -2 & 8 \\ 10 & 1 & 8 \end{pmatrix},$

因此基 $\beta_1 = \begin{pmatrix} 6\\11\\10 \end{pmatrix}, \beta_2 = \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \beta_3 = \begin{pmatrix} 5\\8\\8 \end{pmatrix}$

(2)解法一:设所求向量的坐标为x,则 $(\alpha_1,\alpha_2,\alpha_3)x=(\beta_1,\beta_2,\beta_3)x=(\alpha_1,\alpha_2,\alpha_3)Px$,

因为 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,所以 Px = x,即 (P - E)x = 0,经行变换, β 、 β

得 $x = (1, 1, -1)^{\mathrm{T}}$,故所求向量为 $\alpha = k(\alpha_1 + \alpha_2 - \alpha_3) = k(2, 1, 3)^{\mathrm{T}}$,其中 k 为任意常数. 解法二 设所求向量的坐标为 x, 则 $(\beta_1, \beta_2, \beta_3)x = (\alpha_1, \alpha_2, \alpha_3)x$,

即 $(\beta_1 - \alpha_1, \beta_2 - \alpha_2, \beta_3 - \alpha_3)x = 0$, 解方程组 $(\beta_1 - \alpha_1, \beta_2 - \alpha_2, \beta_3 - \alpha_3) = \begin{pmatrix} 5 & 0 & 5 \\ 11 & -4 & 7 \\ 9 & -1 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$

得 $x = (1, 1, -1)^{\mathrm{T}}$,故所求向量为 $\alpha = k(\alpha_1 + \alpha_2 - \alpha_3) = k(2, 1, 3)^{\mathrm{T}}$,其中 k 为任意常数.

 $(\Delta \lambda)$ (本题12分) (1) 已知矩阵 A 的秩 r(A) = 1,证明:存在非零列向量 α 和 β ,使得 $A = \alpha \beta^{\mathrm{T}}$. (2) 已知矩阵 $A = \alpha_1 \beta_1^{\mathrm{T}} + \alpha_2 \beta_2^{\mathrm{T}}$,其中列向量 α_1, α_2 线性无关, β_1, β_2 也线性无关,证明: $\mathbf{r}(A) = 2$. 证: (1) $\mathbf{r}(A) = 1$ 说明 A 的列秩为1,则 $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$ 的任意两列线性相关,

鬼大 a. A=(ha,..., bad)=d(b1,..., bm)
4

```
取 A 的一个非零列向量记为 \alpha,则 \alpha_i = b_i \alpha_i = 1, 2, \cdots, n,记 \beta = (b_1, b_2, \cdots, b_n)^{\mathrm{T}},因为有一个 b_i 为 1,则 \beta 非零,有 A = \alpha\beta^{\mathrm{T}}.

(2)解法一:由 A = \alpha_1\beta_1^{\mathrm{T}} + \alpha_2\beta_2^{\mathrm{T}} = (\alpha_1, \alpha_2) \begin{pmatrix} \beta_1^{\mathrm{T}} \\ \beta_2^{\mathrm{T}} \end{pmatrix} 及线性无关性知,
2 = r(\alpha_1, \alpha_2) + r((\beta_1, \beta_2)^{\mathrm{T}}) - 2 \le r(A) \le r(\alpha_1, \alpha_2) = 2, \text{ in } r(A) = 2.
解法二:由 A = \alpha_1\beta_1^{\mathrm{T}} + \alpha_2\beta_2^{\mathrm{T}} = (\alpha_1, \alpha_2) \begin{pmatrix} \beta_1^{\mathrm{T}} \\ \beta_2^{\mathrm{T}} \end{pmatrix} 及线性无关性知,
2 = r(\alpha_1, \alpha_2) + r((\beta_1, \beta_2)^{\mathrm{T}}) - 2 \le r(A) = r(\alpha_1\beta_1^{\mathrm{T}} + \alpha_2\beta_2^{\mathrm{T}}) \le r(\alpha_1\beta_1^{\mathrm{T}}) + r(\alpha_2\beta_2^{\mathrm{T}}) = 2, \text{ in } r(A) = 2.
解法三:根据结论:若 P 行满秩,则 r(AP) = r(A). 可知 r(A) = r((\alpha_1, \alpha_2)(\beta_1, \beta_2)^{\mathrm{T}}) = r(\alpha_1, \alpha_2) \ge r(\alpha_1, \alpha_2) 解法则,r(AP) = r(A). 可知 r(A) = r((\alpha_1, \alpha_2)(\beta_1, \beta_2)^{\mathrm{T}}) = r(\alpha_1, \alpha_2) \ge r(\alpha_1, \alpha_2) 解法则,r(AP) = r(A). 可知 r(A) = r(\alpha_1, \alpha_2)(\beta_1, \beta_2)^{\mathrm{T}}) = r(\alpha_1, \alpha_2) \ge r(\alpha_1, \alpha_2) 解法则,r(AP) = r(A). 可知 r(A) = r(\alpha_1, \alpha_2)(\beta_1, \beta_2)^{\mathrm{T}}) = r(\alpha_1, \alpha_2) \ge r(\alpha_1, \alpha_2) 解法则,r(AP) = r(A) = r(A
```

大学数学试卷 答案 2021.6.22

简答题(每小题7分,共4题,计28分)

2 (1) 求关于
$$x$$
 的一元四次方程 $\begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix} = 0$ 的根,其中 a 为一个实数.
解: $\begin{vmatrix} x & a & a & a \\ a & x & a & a \\ a & a & x & a \\ a & a & a & x \end{vmatrix} = \begin{vmatrix} x+3a & a & a & a & a \\ x+3a & x & a & a & a \\ x+3a & a & x & a & a \end{vmatrix} = \begin{vmatrix} x+3a & a & a & a & a \\ 0 & x-a & 0 & 0 & 0 \\ 0 & 0 & x-a & 0 & 0 \\ 0 & 0 & x-a & 0 & 0 \\ 0 & 0 & 0 & x-a & 0 \end{vmatrix} = 0$,因此,该方程的根为 $-3a$ (一重), a (三重).

2. 求 a 的范围使得矩阵 $A = \begin{pmatrix} 6 & 2 & 0 \\ 2 & 1 & a \\ 0 & a & 1 \end{pmatrix}$ 为对称正定方阵.

解: A 对称正定,当且仅当 $\det(6) = 6 > 0$, $\begin{vmatrix} 6 & 2 \\ 2 & 1 \end{vmatrix} = 2 > 0$, $|A| = 2 - 6a^2 > 0$,

関此 $-\frac{\sqrt{3}}{3} < a < \frac{\sqrt{3}}{3}$ 时,A 为对称正定方阵。

解法二:合同变换 $A = \begin{pmatrix} 6 & 2 & 0 \\ 2 & 1 & a \\ 0 & a & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1/3 & a \\ 0 & a & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1 - 3a^2 \end{pmatrix}$,

故 A 对称正定当且仅当 $1-3a^2>0$,因此 $-\frac{\sqrt{3}}{3}< a<\frac{\sqrt{3}}{3}$ 时,A 为对称正定方阵.

柔い (3) 矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 和 $B = \begin{pmatrix} 3 & 4 & 0 \\ -1 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 是否相似,请说明理由? 解:这两个矩阵相似。 A 的三个特征值为 $2,-1,1$, B 的三个特征值为 $2,-1,1$,因此这两个矩阵 都相似于对角矩阵 $\operatorname{diag}(2,-1,1)$,因此它们相似。

181=3 +0 B= 1818, 18* = 1811-1 4. $n \times n$ (n > 1) 方阵 A, B 满足 |A| = 2, |B| = 3,求 $2A^{-1}B^*$ 的行列式的值. 解: $|2A^{-1}B^*| = 2^n|A^{-1}|$ $|B^*| = 2^n \cdot \frac{1}{2} \cdot 3^{n-1} = 6^{n-1}$.

本語の (本題12分) A,B,C,D 是4个 $n\times n$ 方阵,其中 A 可逆且 AC=CA,求证: $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD-CB|$. 解: 注意到: $\begin{pmatrix} A & B \\ C & D \end{pmatrix}\begin{pmatrix} E & A^{-1}B \\ O & E \end{pmatrix} = \begin{pmatrix} A & O \\ C & -CA^{-1}B+D \end{pmatrix}$ 且 $\begin{pmatrix} E & A^{-1}B \\ O & E \end{pmatrix}$ 的行列式为1,因此 $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A & O \\ C & -CA^{-1}B+D \end{vmatrix} = |AD-ACA^{-1}B| = |AD-CB|$,证毕.

(本题12分) 设 A 是一个 $m \times 4$ 矩阵,b 是一个m维列向量.已知 A 的 秩 为 2.线性方程组 AX = b 有 三个解 $\alpha_1, \alpha_2, \alpha_3$ 满足 $\alpha_1 + \alpha_2 = (2, 1, 3, 2)^T, 2\alpha_2 + 3\alpha_3 = (4, -1, 4, 8)^T, 3\alpha_1 + \alpha_3 = (0, -1, 3, 5)^T$.求 线性方程组 AX = b 的通解.

解:线性方程组 AX = b 有4个未知数且 A 的秩为2,因此该方程导出组的基础解系有两个线性无关的向量. 溪 为 再注意到导出组有的两个解

 $2(\alpha_1 + \alpha_2) - (3\alpha_1 + \alpha_3) = (4,3,3,-1)^T, 5(\alpha_1 + \alpha_2) - 2(2\alpha_2 + 3\alpha_3) = (2,7,7,-6)^T,$ 且这两个向量线性无关. 因此 $(4,3,3,-1)^T, (2,7,7,-6)^T$ 是导出组的基础解系. 另一方面 $\frac{1}{2}(\alpha_1 + \alpha_2) = (1,\frac{1}{2},\frac{3}{2},1)^T$ 是方程组 AX = b 的一个解. 综上所述,AX = b 的通解为: $(1,\frac{1}{2},\frac{3}{2},1)^T + k_1(4,3,3,-1)^T + k_2(2,7,7,-6)^T$ $(k_1,k_2 \in \mathbf{R}).$ (本题答案形式 (本题答案形式不唯一)

四、(本题12分) 在
$$\mathbf{R}^3$$
 中取两组基
$$\begin{cases} \alpha_1 = (1,1,0)^{\mathrm{T}} \\ \alpha_2 = (0,1,1)^{\mathrm{T}} \\ \alpha_3 = (1,0,1)^{\mathrm{T}} \end{cases}$$
 和
$$\begin{cases} \beta_1 = (1,2,1)^{\mathrm{T}} \\ \beta_2 = (1,0,-1)^{\mathrm{T}} \\ \beta_3 = (3,4,3)^{\mathrm{T}} \end{cases}$$
. 试求从基 $\alpha_1,\alpha_2,\alpha_3$

到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵以及从基 $\beta_1, \beta_2, \beta_3$ 到基 $\alpha_1, \alpha_2, \alpha_3$ 的过渡矩阵.

解:设从基 $\alpha_1,\alpha_2,\alpha_3$ 到基 β_1,β_2,β_3 的过渡矩阵为 P. 我们应该有:

で
$$(\beta_1, \beta_2, \beta_3) = (\alpha_1, \alpha_2, \alpha_3)P$$
,且从基 $\beta_1, \beta_2, \beta_3$ 到基 $\alpha_1, \alpha_2, \alpha_3$ 的过渡矩阵为 P^{-1} . 计算得:
$$P = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, P^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -2 \\ \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

P= (d,d2,d3) (B, B2,B3)

(本题12分) $f(x_1, x_2, x_3) = x_1^2 - 4x_1x_2 + x_2^2 - 4x_1x_3 + x_3^2 - 4x_2x_3$ 是否为正定二次型? 将 $f(x_1, x_2, x_3)$ 化为标准二次型.

できるがなる。 $\beta_1 = \begin{pmatrix} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{pmatrix}$,两个属于特征值3的互相正交的单位特征向量为 $\beta_2 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \end{pmatrix}$, $\beta_3 = \begin{pmatrix} -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{3} \\ -\frac{\sqrt{6}}{2} \end{pmatrix}$.

 $\sqrt{2}$ 且特征值为 $1 - \lambda$.

(2) 注意到 $XP = (1,0,\cdots,0)$. 从而我们有:

 $P^{\mathrm{T}}(E - \lambda X^{\mathrm{T}}X)P = E - \lambda(XP)\mathrm{T}(XP) = \mathrm{diag}(1 - \lambda, 1, \cdots, 1)$. 得证. (3) $E - \lambda X^{\mathrm{T}}X$ 是一个对称矩阵. 我们有 $(E - \lambda X^{\mathrm{T}}X)(E - \lambda X^{\mathrm{T}}X) = E + (\lambda^2 - 2\lambda)X^{\mathrm{T}}X$.

A $A^TA = EQ$ 因此 $E - \lambda X^T X$ 是对称正交矩阵当且仅当 $\lambda = 0$ 或 $\lambda = 2$.

(4) (本题12分) 一个实系数 $n \times n$ 方阵 A 满足 $A^3 = A$. 证明 A 可以对角化.

证: 设入为A的一个特征值,那么属于 λ 的特征向量 α 满足 $\lambda\alpha=A\alpha=A^3\alpha=\lambda^3\alpha$. 因此 $\lambda^3=\lambda$.

从而 A 的特征值只能为 0,1,-1. 再由条件 $A^3 = A$,我们得到: $-A(A^2 - E) = O$, $(-E - A)(A^2 - A) = O$, $(E - A)(A^2 + A) = O$.

从上面三式中我们可以得到 A 的线性无关特征向量的个数 \geq $\mathbf{r}(A^2-E)$ + $\mathbf{r}(A^2+A)$ + $\mathbf{r}(A^2-A)$. 注意到 $\mathbf{r}(A^2-E)$ + $\mathbf{r}(A^2+A)$ + $\mathbf{r}(A^2-A)$ > $\mathbf{r}(A^2-E)$ + $\mathbf{r}(A^2-E)$ + $\mathbf{r}(A^2-E)$ = $\mathbf{r}(A^2-E)$ + $\mathbf{r}(A^2-E)$ = $\mathbf{r}(A^$

因此我们可以找到 A 的 n 个线性无关的特征向量,从而 A 可对角化.

光明A,到内A,对一巨独M