SEQUENCE LISTING

<110> Kuai, Jun Lin, Lih-Ling Wooters, Joseph L. Nickbarg, Elliot <120> METHODS AND REAGENTS RELATING TO INFLAMMATION AND APOPTOSIS <130> WYTH-P01-001 <140> US 10/523,328 <141> 2005-02-01 <150> 60/400,410 <151> 2002-08-01 <160> 20 <170> PatentIn version 3.2 <210> 1 <211> 233 <212> PRT <213> Homo sapiens <400> 1 Met Ser Thr Glu Ser Met Ile Arg Asp Val Glu Leu Ala Glu Glu Ala 10 Leu Pro Lys Lys Thr Gly Gly Pro Gln Gly Ser Arg Arg Cys Leu Phe 30 Leu Ser Leu Phe Ser Phe Leu Ile Val Ala Gly Ala Thr Thr Leu Phe Cys Leu Leu His Phe Gly Val Ile Gly Pro Gln Arg Glu Glu Ser Pro Arg Asp Leu Ser Leu Ile Ser Pro Leu Ala Gln Ala Val Arg Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala His Val Val Ala Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg Ala Asn Ala Leu 105 Leu Ala Asn Gly Val Glu Leu Arg Asp Asn Gln Leu Val Val Pro Ser

120

Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe Lys Gly Gln Gly 130 135 140	
Cys Pro Ser Thr His Val Leu Leu Thr His Thr Ile Ser Arg Ile Ala 145 150 155 160	
Val Ser Tyr Gln Thr Lys Val Asn Leu Leu Ser Ala Ile Lys Ser Pro 165 170 175	
Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu 180 185 190	
Pro Ile Tyr Leu Gly Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu 195 200 205	
Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe Ala Glu Ser Gly 210 220	
Gln Val Tyr Phe Gly Ile Ile Ala Leu 225 230	
<210> 2 <211> 701 <212> DNA <213> Homo sapiens	
<400> 2 atgagcactg aaagcatgat ccgggacgtg gagctggccg aggaggcgct ccccaagaag	
	60
acaggggggc ccagggctcc aggcggtgct tgttcctcag cctcttctcc ttcctgatcg	60 120
acagggggc ccagggctcc aggcggtgct tgttcctcag cctcttctcc ttcctgatcg tggcaggcgc caccacgctc ttctgcctgc tgcactttgg agtgatcggc ccccagaggg	
	120
tggcaggcgc caccacgctc ttctgcctgc tgcactttgg agtgatcggc ccccagaggg	120 180
tggcaggcgc caccacgctc ttctgcctgc tgcactttgg agtgatcggc ccccagaggg aagagttccc cagggacctc tctctaatca gccctctggc ccaggcagtc agatcatctt	120 180 240
tggcaggcgc caccacgctc ttctgcctgc tgcactttgg agtgatcggc ccccagaggg aagagttccc cagggacctc tctctaatca gccctctggc ccaggcagtc agatcatctt ctcgaacccc gagtgacaag cctgtagccc atgttgtagc aaaccctcaa gctgaggggc	120 180 240 300
tggcaggcgc caccacgctc ttctgcctgc tgcactttgg agtgatcggc ccccagaggg aagagttccc cagggacctc tctctaatca gccctctggc ccaggcagtc agatcatctt ctcgaacccc gagtgacaag cctgtagccc atgttgtagc aaaccctcaa gctgaggggc agctccagtg gctgaaccgc cgggccaatg ccctcctggc caatggcgtg gagctgagag	120 180 240 300 360
tggcaggcgc caccacgctc ttctgcctgc tgcactttgg agtgatcggc ccccagaggg aagagttccc cagggacctc tctctaatca gccctctggc ccaggcagtc agatcatctt ctcgaacccc gagtgacaag cctgtagccc atgttgtagc aaaccctcaa gctgaggggc agctccagtg gctgaaccgc cgggccaatg ccctcctggc caatggcgtg gagctgagag ataaccagct ggtggtgcca tcagagggcc tgtacctcat ctactcccag gtcctcttca agggccaagg ctgcccctcc acccatgtgc tcctcaccca caccatcagc cgcatcgccg tctcctacca gaccaaggtc aacctcctct ctgccatcaa gagccctgc cagagggaga	120 180 240 300 360 420 480 540
tggcaggcgc caccacgctc ttctgcctgc tgcactttgg agtgatcggc ccccagaggg aagagttccc cagggacctc tctctaatca gccctctggc ccaggcagtc agatcatctt ctcgaacccc gagtgacaag cctgtagccc atgttgtagc aaaccctcaa gctgaggggc agctccagtg gctgaaccgc cgggccaatg ccctcctggc caatggcgtg gagctgagag ataaccagct ggtggtgcca tcagagggcc tgtacctcat ctactcccag gtcctcttca agggccaagg ctgcccctcc acccatgtgc tcctcaccca caccatcagc cgcatcgccg	120 180 240 300 360 420 480

701

ccgagtctgg gcaggtctac tttgggatca ttgccctgtg a

<210> 3

<211> 455

<212> PRT

<213> Homo sapiens

<400> 3

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu 1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys 35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 55 60

Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 65 70 75 80

Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu 85 90 95

Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val

Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg 115 120 125

Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 135 140

Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 145 150 155 160

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu 165 170 175

Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr 180 185 190

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser 195 200 205

Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu Gly Glu Leu Glu Gly Thr Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys Pro Asn Phe Ala Ala Pro Arg Arg Glu Val Ala Pro Pro Tyr Gln Gly Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Gln Tyr Ser Met Leu Ala Thr Trp Arg Arg Thr Pro Arg Arg Glu Ala Thr Leu Glu Leu Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro

Pro Ala Pro Ser Leu Leu Arg 450 455

<210> 4 <211> 1367 <212> DNA <213> Homo sapiens

<400> 4 60 atgggcctct ccaccgtgcc tgacctgctg ctgccgctgg tgctcctgga gctgttggtg 120 ggaatatacc cctcaggggt tattggactg gtccctcacc taggggacag ggagaagaga gatagtgtgt gtccccaagg aaaatatatc caccctcaaa ataattcgat ttgctgtacc 180 240 aagtgccaca aaggaaccta cttgtacaat gactgtccag gcccggggca ggatacggac tgcagggagt gtgagagcgt ctccttcacc gcttcagaaa accacctcag acactgcctc 300 360 agctgctcca aatgccgaaa ggaaatgggt caggtggaga tctcttcttg cacagtggac cgggacaccg tgtgtggctg caggaagaac cagtaccggc attattggag tgaaaacctt 420 ttccagtgct tcaattgcag cctctgcctc aatgggaccg tgcacctctc ctgccaggag 480 aaacagaaca ccgtgtgcac ctgccatgca ggtttctttc taagagaaaa cgagtgtgtc 540 600 tcctgtagta actgtaagaa aagcctggag tgcacgaagt tgtgcctacc ccagattgag aatgttaagg gcactgagga ctcaggcacc acagtgctgt tgcccctggt cattttcttt 660 ggtctttgcc ttttatccct cctcttcatt ggtttaatgt atcgctacca acggtggaag 720 780 tccaagctct actccattgt ttgtgggaaa tcgacacctg aaaaagaggg ggagcttgaa 840 ggaactacta ctaagcccct ggccccaaac ccaagcttca gtcccactcc aggcttcacc cccacctgg gcttcagtcc cgtgcccagt tccaccttca cctccagctc cacctatacc 900 960 cccggtgact gtcccaactt tgcggctccc cgcagagagg tggcaccacc ctatcagggg 1020 gctgacccca tccttgcgac agccctcgcc tccgacccca tcccaacccc cttcagaagt gggaggacag cgcccacaag ccacagagcc tagacactga tgaccccgcg acgctgtacg 1080 ccgtggtgga gaacgtgccc ccgttgcgct ggaaggaatt cgtgcggcgc ctagggctga 1140 gcgaccacga gatcgatcgg ctggagctgc agaacgggcg ctgcctgcgc gaggcgcaat 1200 acagcatgct ggcgacctgg aggcggcgca cgccgcggcg cgaggccacg ctggagctgc 1260 1320 tgggacgcgt gctccgcgac atggacctgc tgggctgcct ggaggacatc gaggaggcgc tttgcggccc cgccgcctc ccgcccgcgc ccagtcttct cagatga 1367 <212> PRT

<213> Homo sapiens

<400> 5

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 1 5 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr
20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln 35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 50 55 60

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 65 70 75 80

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 95

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg
100 105 110

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 115 120 125

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 135 140

Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 155 160

Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 175

Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly
180 185 190

Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 210 215 220

Gln 225	His	Thr	Gln	Pro	Thr 230	Pro	Glu	Pro	Ser	Thr 235	Ala	Pro	Ser	Thr	Ser 240
Phe	Leu	Leu	Pro	Met 245	Gly	Pro	Ser	Pro	Pro 250	Ala	Glu	Gly	Ser	Thr 255	Gly
Asp	Phe	Ala	Leu 260	Pro	Val	Gly	Leu	Ile 265	Val	Gly	Val	Thr	Ala 270	Leu	Gly
Leu	Leu	Ile 275	Ile	Gly	Val	Val	Asn 280	Cys	Val	Ile	Met	Thr 285	Gln	Val	Lys
Lys	Lys 290	Pro	Leu	Cys	Leu	Gln 295	Arg	Glu	Ala	Lys	Val 300	Pro	His	Leu	Pro
Ala 305	Asp	Lys	Ala	Arg	Gly 310	Thr	Gln	Gly	Pro	Glu 315	Gln	Gln	His	Leu	Leu 320
Ile	Thr	Ala	Pro	Ser 325	Ser	Ser	Ser	Ser	Ser 330	Leu	Glu	Ser	Ser	Ala 335	Ser
Ala	Leu	Asp	Arg 340	Arg	Ala	Pro	Thr	Arg 345	Asn	Gln	Pro	Gln	Ala 350	Pro	Gly
Val	Glu	Ala 355	Ser	Gly	Ala	Gly	Glu 360	Ala	Arg	Ala	Ser	Thr 365	Gly	Ser	Ser
Asp	Ser 370	Ser	Pro	Gly	Gly	His 375	Gly	Thr	Gln	Val	Asn 380	Val	Thr	Cys	Ile
Val 385	Asn	Val	Cys	Ser	Ser 390		Asp		Ser	Ser 395	Gln	Cys	Ser	Ser	Gln 400
Ala	Ser	Ser	Thr	Met 405	Gly	Asp	Thr	Asp	Ser 410	Ser	Pro	Ser	Glu	Ser 415	Pro
Lys	Asp	Glu	Gln 420	Val	Pro	Phe	Ser	Lys 425	Glu	Glu	Cys	Ala	Phe 430	Arg	Ser
Gln	Leu	Glu 435	Thr	Pro	Glu	Thr	Leu 440	Leu	Gly	Ser	Thr	Glu 445	Glu	Lys	Pro
Leu	Pro 450	Leu	Gly	Val	Pro	Asp 455	Ala	Gly	Met	Lys	Pro 460	Ser			

<210> 6 <211> 1384 <212> DNA <213> Homo sapiens	
<400> 6 atggcgcccg tcgccgtctg ggccgcgctg gccgtcggac tggagctctg ggctgcggcg	60
cacgcettge cegeceaggt ggeatttaca ecetaegeee eggageeegg gageacatge	120
cggctcagag aatactatga ccagacagct cagatgtgct gcagcaaatg ctcgccgggc	180
caacatgcaa aagtettetg taccaagace teggacaceg tgtgtgaete etgtgaggae	240
agcacataca cccagctctg gaactgggtt cccgagtgct tgagctgtgg ctcccgctgt	300
agctctgacc aggtggaaac tcaagcctgc actcgggaac agaaccgcat ctgcacctgc	360
aggcccggct ggtactgcgc gctgagcaag caggaggggt gccggctgtg cgcgccgctg	420
cgcaagtgcc gcccgggctt cggcgtggcc agaccaggaa ctgaaacatc agacgtggtg	480
tgcaagccct gtgccccggg gacgttctcc aacacgactt catccacgga tatttgcagg	540
ccccaccaga tctgtaacgt ggtggccatc cctgggaatg caagcatgga tgcagtctgc	600
acgtccacgt ccccacccg gagtatggcc caggggcagt acacttaccc cagccagtgt	660
ccacacgatc ccaacacacg cagccaactc cagaacccag cactgctcca agcacctcct	720
tectgetece aatgggeece ageceecage tgaagggage actggegaet tegetettee	780
agttggactg attgtgggtg tgacagcctt gggtctacta ataataggag tggtgaactg	840
tgtcatcatg acccaggtga aaaagaagcc cttgtgcctg cagagagaag ccaaggtgcc	900
tcacttgcct gccgataagg cccggggtac acagggcccc gagcagcagc acctgctgat	960
cacagegeeg agetecagea geageteeet ggagageteg geeagtgegt tggacagaag	1020
ggcgcccact cggaaccagc cacaggcacc aggcgtggag gccagtgggg ccggggaggc	1080
ccgggccagc accgggagct cagattette ccctggtgge catgggacce aggtcaatgt	1140
cacctgcatc gtgaacgtct gtagcagctc tgaccacagc tcacagtgct cctcccaagc	1200
cagctccaca atgggagaca cagattccag cccctcggag tccccgaagg acgagcaggt	1260
ccccttctcc aaggaggaat gtgcctttcg gtcacagctg gagacgccag agaccctgct	1320
ggggagcacc gaagagaagc ccctgcccct tggagtgcct gatgctggga tgaagcccag	1380
ttaa	1384

<210> 7 <211> 328 <212> PRT

<213> Homo sapiens

<400> 7

Leu Ala Gly Val Gly Thr Gln Ala Pro Pro Arg Arg Pro Gly Gly Glu
1 5 10 15

Met Ala Ala Gly Gln Asn Gly His Glu Glu Trp Val Gly Ser Ala Tyr 20 25 30

Leu Phe Val Glu Ser Ser Leu Asp Lys Val Val Leu Ser Asp Ala Tyr 35 40 45

Ala His Pro Gln Gln Lys Val Ala Val Tyr Arg Ala Leu Gln Ala Ala 50 55 60

Leu Ala Glu Ser Gly Gly Ser Pro Asp Val Leu Gln Met Leu Lys Ile 65 70 75 80

His Arg Ser Asp Pro Gln Leu Ile Val Gln Leu Arg Phe Cys Gly Arg 85 90 95

Gln Pro Cys Gly Arg Phe Leu Arg Ala Tyr Arg Glu Gly Ala Leu Arg 100 105 110

Ala Ala Leu Gln Arg Ser Leu Ala Ala Ala Leu Ala Gln His Ser Val 115 120 125

Pro Leu Gln Leu Glu Leu Arg Ala Gly Ala Glu Arg Leu Asp Ala Leu 130 135 140

Leu Ala Asp Glu Glu Arg Cys Leu Ser Cys Ile Leu Ala Gln Gln Pro 145 150 155 160

Asp Arg Leu Arg Asp Glu Glu Leu Ala Glu Leu Glu Asp Ala Leu Arg 165 170 175

Asn Leu Lys Cys Gly Ser Gly Ala Arg Gly Gly Asp Gly Glu Val Ala 180 185 190

Ser Ala Pro Leu Gln Pro Pro Val Pro Ser Leu Ser Glu Val Lys Pro 195 200 205

Pro Pro Pro Pro Pro Pro Ala Gln Thr Phe Leu Phe Gln Gly Gln Pro 210 215 220

Val Val Asn Arg Pro Leu Ser Leu Lys Asp Gln Gln Thr Phe Ala Arg 225 230 235 240

Ser Val Gly Leu Lys Trp Arg Lys Val Gly Arg Ser Leu Gln Arg Gly 245 250 255

Cys Arg Ala Leu Arg Asp Pro Ala Leu Asp Ser Leu Ala Tyr Glu Tyr 260 265 270

Glu Arg Glu Gly Leu Tyr Glu Gln Ala Phe Gln Leu Leu Arg Arg Phe 275 280 285

Val Gln Ala Glu Gly Arg Arg Ala Thr Leu Gln Arg Leu Val Glu Ala 290 295 300

Leu Glu Glu Asn Glu Leu Thr Ser Leu Ala Glu Asp Leu Leu Gly Leu 305 310 315 320

Thr Asp Pro Asn Gly Gly Leu Ala 325

<210> 8

<211> 987

<212> DNA

<213> Homo sapiens

<400> 8

ctggcgggcg tgggaaccca ggccccgccg aggcggccag gaggtgagat ggcagctggg 60 caaaatgggc acgaagagtg ggtgggcagc gcatacctgt ttgtggagtc ctcgctggac 120 aaggtggtcc tgtcggatgc ctacgcgcac ccccagcaga aggtggcagt gtacagggct 180 ctgcaggctg ccttggcaga gagcggcggg agcccggacg tgctgcagat gctgaagatc 240 caccgcagcg acccgcagct gatcgtgcag ctgcgattct gcgggcggca gccctgtggc 300 cgcttcctcc gcgcctaccg cgagggggcg ctgcgcgccg cgctgcagag gagcctggcg 360 gccgcgctcg cccagcactc ggtgccgctg caactggagc tgcgcgccgg cgccgagcgg 420 ctggacgctt tgctggcgga cgaggagcgc tgtttgagtt gcatcctagc ccagcagccc 480 gaccggctcc gggatgaaga actggctgag ctggaggatg cgctgcgaaa tctgaagtgc 540 ggctcggggg cccggggtgg cgacggggag gtcgcttcgg cccccttgca gcccccggtg 600 ccctctctgt cggaggtgaa gccgccgccg ccgccgccac ctgcccagac ttttctgttc 660 cagggtcagc ctgtagtgaa tcggccgctg agcctgaagg accaacagac gttcgcgcgc 720 tctgtgggtc tcaaatggcg caaggtgggg cgctcactgc agcgaggctg ccgggcgctg 780

cgggacccgg cgctggactc gctggcctac gagtacgagc gcgagggact gtacgagcag												
gccttccagc tgctgcggcg cttcgtgcag gccgagggcc gccgcgccac gctgcagcgc												
ctggtggagg cactcgagga gaacgagctc accagcctgg cagaggactt gctgggcctg												
accgatecea atggeggeet ggeetag												
<210> 9 <211> 501 <212> PRT <213> Homo sapiens												
<400> 9												
Met Ala Ala Ser Val Thr Ser Pro Gly Ser Leu Glu Leu Leu Gln 1 5 10 15												
Pro Gly Phe Ser Lys Thr Leu Leu Gly Thr Arg Leu Glu Ala Lys Tyr 20 25 30												
Leu Cys Ser Ala Cys Lys Asn Ile Leu Arg Arg Pro Phe Gln Ala Gln 35 40 45												
Cys Gly His Arg Tyr Cys Ser Phe Cys Leu Thr Ser Ile Leu Ser Ser 50 55 60												
Gly Pro Gln Asn Cys Ala Ala Cys Val Tyr Glu Gly Leu Tyr Glu Glu 65 70 75 80												
Gly Ile Ser Ile Leu Glu Ser Ser Ser Ala Phe Pro Asp Asn Ala Ala 85 90 95												
Arg Arg Glu Val Glu Ser Leu Pro Ala Val Cys Pro Asn Asp Gly Cys 100 105 110												
Thr Trp Lys Gly Thr Leu Lys Glu Tyr Glu Ser Cys His Glu Gly Leu 115 120 125												
Cys Pro Phe Leu Leu Thr Glu Cys Pro Ala Cys Lys Gly Leu Val Arg 130 135 140												
Leu Ser Glu Lys Glu His His Thr Glu Gln Glu Cys Pro Lys Arg Ser 145 150 155 160												
Leu Ser Cys Gln His Cys Arg Ala Pro Cys Ser His Val Asp Leu Glu 165 170 175												

Val His Tyr Glu Val Cys Pro Lys Phe Pro Leu Thr Cys Asp Gly Cys 190 185 180 Gly Lys Lys Ile Pro Arg Glu Thr Phe Gln Asp His Val Arg Ala 195 200 Cys Ser Lys Cys Arg Val Leu Cys Arg Phe His Thr Val Gly Cys Ser 215 Glu Met Val Glu Thr Glu Asn Leu Gln Asp His Glu Leu Gln Arg Leu 240 230 235 225 Arq Glu His Leu Ala Leu Leu Ser Ser Phe Leu Glu Ala Gln Ala 250 Ser Pro Gly Thr Leu Asn Gln Val Gly Pro Glu Leu Leu Gln Arg Cys 265 Gln Ile Leu Glu Gln Lys Ile Ala Thr Phe Glu Asn Ile Val Cys Val 275 280 Leu Asn Arg Glu Val Glu Arg Val Ala Val Thr Ala Glu Ala Cys Ser 295 Arg Gln His Arg Leu Asp Gln Asp Lys Ile Glu Ala Leu Ser Asn Lys 305 Val Gln Gln Leu Glu Arg Ser Ile Gly Leu Lys Asp Leu Ala Met Ala Asp Leu Glu Gln Lys Val Ser Glu Leu Glu Val Ser Thr Tyr Asp Gly Val Phe Ile Trp Lys Ile Ser Asp Phe Thr Arg Lys Arg Gln Glu Ala 360 Val Ala Gly Arg Thr Pro Ala Ile Phe Ser Pro Ala Phe Tyr Thr Ser 375 Arg Tyr Gly Tyr Lys Met Cys Leu Arg Val Tyr Leu Asn Gly Asp Gly 395 390 Thr Gly Arg Gly Thr His Leu Ser Leu Phe Phe Val Val Met Lys Gly 410 405

Pro Asn Asp Ala Leu Leu Gln Trp Pro Phe Asn Gln Lys Val Thr Leu 420 425 430

Met Leu Leu Asp His Asn Asn Arg Glu His Val Ile Asp Ala Phe Arg 435 440 445

Pro Asp Val Thr Ser Ser Ser Phe Gln Arg Pro Val Ser Asp Met Asn 450 455 460

Ile Ala Ser Gly Cys Pro Leu Phe Cys Pro Val Ser Lys Met Glu Ala 465 470 475 480

Lys Asn Ser Tyr Val Arg Asp Asp Ala Ile Phe Ile Lys Ala Ile Val 485 490 495

Asp Leu Thr Gly Leu 500

<210> 10

<211> 1573

<212> DNA

<213> Homo sapiens

<400> 10

atggctgcag ctagcgtgac ccccctggc tccctggagt tgctacagcc cggcttctcc 60 aagaccctcc tggggaccaa gctggaagcc aagtacctgt gctccgcctg cagaaacgtc 120 ctccgcaggc ccttccaggc gcagtgtggc caccggtact gctccttctg cctggccagc 180 240 atcctcaqct ctgggcctca gaactgtgct gcctgtgttc acgagggcat atatgaagaa 300 qqcatttcta ttttaqaaaq cagttcggcc ttcccagata atgctgcccg cagggaggtg gagageetge eggeegtetg teccagtgat ggatgeacet ggaaggggae eetgaaagaa 360 tacgagaget gecacgaagg eegetgeeeg eteatgetga eegaatgtee egegtgtaaa 420 ggcctggtcc gccttggtga aaaggagcgc cacctggagc acgagtgccc ggagagaagc 480 ctgagctgcc ggcattgccg ggcaccctgc tgcggagcag acgtgaaggc gcaccacgag 540 gtctgcccca gttcccctta acttgtgacg gctgcggcaa gaagaagatc ccccgggaga 600 agtttcagga ccacgtcaag ttccccttaa cttgtgacgg ctgcggcaag aagaagatcc 660 cccgggagaa gtttcaggac cacgtcaaga cttgtggcaa gtgtcgagtc ccttgcagat 720 tccacgccat cggctgcctc gagacggtag agggtgagaa acagcaggag cacgaggtgc 780 agtggctgcg gagcacctgg ccatgctact gagctcggtg ctggaggcaa agcccctctt 840 gggagaccag agccacgcgg ggtcagagct cctgcagagg tgcgagagcc tggagaagaa 900

gacggccact tttgaga	aaca ttgtctgcgt	cctgaaccgg	gaggtggaga	gggtggccat	960
gactgccgag gcctgca	agcc ggcagcaccg	gctggaccaa	gacaagattg	aagccctgag	1020
tagcaaggtg cagcag	ctgg agaggagcat	tggcctcaag	gacctggcga	tggctgactt	1080
ggagcagaag gtcagg	ecct tecaggegea	gtgtggccac	cggtactgct	ccttctgcct	1140
ggccagcatc ctcagga	aagc tccaggaagc	tgtggctggc	cgcatacccg	ccatcttctc	1200
cccagccttc tacacca	agca ggtacggcta	caagatgtgt	ctgcgtatct	acctgaacgg	1260
cgacggcacc gggcgag	ggaa cacacctgtc	cctcttcttt	gtggtgatga	agggcccgaa	1320
tgacgccctg ctgcgg	tggc ccttcaacca	gaaggtgacc	ttaatgctgc	tcgaccagaa	1380
taaccgggag cacgtg	attg acgccttcag	gcccgacgtg	acttcatcct	cttttcagag	1440
gccagtcaac gacatga	aaca tcgcaagcgg	ctgccccctc	ttctgccccg	tctccaagat	1500
ggaggcaaag aattcc	tacg tgcgggacga	tgccatcttc	atcaaggcca	ttgtggacct	1560
gacagggctc taa					1573

<210> 11

<211> 908

<212> PRT

<213> Homo sapiens

<400> 11

Met Glu Glu Gly Arg Asp Lys Ala Pro Val Gln Pro Gln Gln Ser 1 5 10 15

Pro Ala Ala Pro Gly Gly Thr Asp Glu Lys Pro Ser Gly Lys Glu
20 25 30

Arg Arg Asp Ala Gly Asp Lys Asp Lys Glu Gln Glu Leu Ser Glu Glu
35 40 45

Asp Lys Gln Leu Gln Asp Glu Leu Glu Met Leu Val Glu Arg Leu Gly 50 60

Glu Lys Asp Thr Ser Leu Tyr Arg Pro Ala Leu Glu Glu Leu Arg Arg 65 70 75 80

Gln Ile Arg Ser Ser Thr Thr Ser Met Thr Ser Val Pro Lys Pro Leu 85 90 95

Lys Phe Leu Arg Pro His Tyr Gly Lys Leu Lys Glu Ile Tyr Glu Asn 100 105 110

Met Ala Pro Gly Glu Asn Lys Arg Phe Ala Ala Asp Ile Ile Ser Val Leu Ala Met Thr Met Ser Gly Glu Arg Glu Cys Leu Lys Tyr Arg Leu Val Gly Ser Gln Glu Glu Leu Ala Ser Trp Gly His Glu Tyr Val Arg His Leu Ala Gly Glu Val Ala Lys Glu Trp Gln Glu Leu Asp Asp Ala Glu Lys Val Gln Arg Glu Pro Leu Leu Thr Leu Val Lys Glu Ile Val Pro Tyr Asn Met Ala His Asn Ala Glu His Glu Ala Cys Asp Leu Leu Met Glu Ile Glu Gln Val Asp Met Leu Glu Lys Asp Ile Asp Glu Asn Ala Tyr Ala Lys Val Cys Leu Tyr Leu Thr Ser Cys Val Asn Tyr Val Pro Glu Pro Glu Asn Ser Ala Leu Leu Arg Cys Ala Leu Gly Val Phe Arg Lys Phe Ser Arg Phe Pro Glu Ala Leu Arg Leu Ala Leu Met Leu Asn Asp Met Glu Leu Val Glu Asp Ile Phe Thr Ser Cys Lys Asp Val Val Val Gln Lys Gln Met Ala Phe Met Leu Gly Arg His Gly Val Phe Leu Glu Leu Ser Glu Asp Val Glu Glu Tyr Glu Asp Leu Thr Glu Ile Met Ser Asn Val Gln Leu Asn Ser Asn Phe Leu Ala Leu Ala Arg Glu Leu Asp Ile Met Glu Pro Lys Val Pro Asp Asp Ile Tyr Lys Thr His

Leu Glu Asn Asn Arg Phe Gly Gly Ser Gly Ser Gln Val Asp Ser Ala 360 355 Arg Met Asn Leu Ala Ser Ser Phe Val Asn Gly Phe Val Asn Ala Ala 370 375 Phe Gly Gln Asp Lys Leu Leu Thr Asp Asp Gly Asn Lys Trp Leu Tyr 395 400 390 Lys Asn Lys Asp His Gly Met Leu Ser Ala Ala Ala Ser Leu Gly Met 415 405 410 Ile Leu Leu Trp Asp Val Asp Gly Gly Leu Thr Gln Ile Asp Lys Tyr 420 425 Leu Tyr Ser Ser Glu Asp Tyr Ile Lys Ser Gly Ala Leu Leu Ala Cys 435 440 Gly Ile Val Asn Ser Gly Val Arg Asn Glu Cys Asp Pro Ala Leu Ala 455 460 Leu Leu Ser Asp Tyr Val Leu His Asn Ser Asn Thr Met Arg Leu Gly 470 475 Ser Ile Phe Gly Leu Gly Leu Ala Tyr Ala Gly Ser Asn Arg Glu Asp Val Leu Thr Leu Leu Pro Val Met Gly Asp Ser Lys Ser Ser Met Glu Val Ala Gly Val Thr Ala Leu Ala Cys Gly Met Ile Ala Val Gly Ser Cys Asn Gly Asp Val Thr Ser Thr Ile Leu Gln Thr Ile Met Glu 535 Lys Ser Glu Thr Glu Leu Lys Asp Thr Tyr Ala Arg Trp Leu Pro Leu 550 Gly Leu Gly Leu Asn His Leu Gly Lys Gly Glu Ala Ile Glu Ala Ile 570 Leu Ala Ala Leu Glu Val Val Ser Glu Pro Phe Arg Ser Phe Ala Asn 580

Thr Leu Val Asp Val Cys Ala Tyr Ala Gly Ser Gly Asn Val Leu Lys 600 · 595 Val Gln Gln Leu Leu His Ile Cys Ser Glu His Phe Asp Ser Lys Glu 610 615 Lys Glu Glu Asp Lys Asp Lys Lys Glu Lys Lys Asp Lys Asp Lys Lys 635 630 Glu Ala Pro Ala Asp Met Gly Ala His Gln Gly Val Ala Val Leu Gly 650 645 Ile Ala Leu Ile Ala Met Gly Glu Glu Ile Gly Ala Glu Met Ala Leu 665 Arg Thr Phe Gly His Leu Leu Arg Tyr Gly Glu Pro Thr Leu Arg Arg 680 Ala Val Pro Leu Ala Leu Ala Leu Ile Ser Val Ser Asn Pro Arg Leu 695 700 Asn Ile Leu Asp Thr Leu Ser Lys Phe Ser His Asp Ala Asp Pro Glu 720 715 705 Val Ser Tyr Asn Ser Ile Phe Ala Met Gly Met Val Gly Ser Gly Thr 735 730 Asn Asn Ala Arg Leu Ala Ala Met Leu Arg Gln Leu Ala Gln Tyr His 740 745 Ala Lys Asp Pro Asn Asn Leu Phe Met Val Arg Leu Ala Gln Gly Leu Thr His Leu Gly Lys Gly Thr Leu Thr Leu Cys Pro Tyr His Ser Asp 775 780 Arg Gln Leu Met Ser Gln Val Ala Val Ala Gly Leu Leu Thr Val Leu 785 795 Val Ser Phe Leu Asp Val Arg Asn Ile Ile Leu Gly Lys Ser His Tyr 805 Val Leu Tyr Gly Leu Val Ala Ala Met Gln Pro Arg Met Leu Val Thr

825

820

Phe Asp Glu Glu Leu Arg Pro Leu Pro Val Ser Val Arg Val Gly Gln 840 835

Ala Val Asp Val Val Gly Gln Ala Gly Lys Pro Lys Thr Ile Thr Gly 860. 855

Phe Gln Thr His Thr Thr Pro Val Leu Leu Ala His Gly Glu Arg Ala 870 875

Glu Leu Ala Thr Glu Glu Phe Leu Pro Val Thr Pro Ile Leu Glu Gly 890 885

Phe Val Ile Leu Arg Lys Asn Pro Asn Tyr Asp Leu 905

<210> 12 <211> 2727 <212> DNA

<213> Homo sapiens

<400> 12

atggaggagg	gaggccggga	caaggcgccg	gtgcagcccc	agcagtctcc	agcggcggcc	60
cccggcggca	cggacgagaa	gccgagcggc	aaggagcggc	gggatgccgg	ggacaaggac	120
aaagaacagg	agctgtctga	agaggataaa	cagcttcaag	atgaactgga	gatgctcgtg	180
gaacgactag	gggagaagga	tacatccctg	tatcgaccag	cgctggagga	attgcgaagg	240
cagattcgtt	cttctacaac	ttccatgact	tcagtgccca	agcctctcaa	atttctgcgt	300
ccacactatg	gcaaactgaa	ggaaatctat	gagaacatgg	cccctgggga	gaataagcgt	360
tttgctgctg	acatcatctc	cgttttggcc	atgaccatga	gtggggagcg	tgagtgcctc	420
aagtatcggc	tagtgggctc	ccaggaggaa	ttggcatcat	ggggtcatga	gtatgtcagg	480
catctggcag	gagaagtggc	taaggagtgg	caggagctgg	atgacgcaga	gaaggtccag	540
cgggagcctc	tgctcactct	ggtgaaggaa	atcgtcccct	ataacatggc	ccacaatgca	600
gagcatgagg	cttgcgacct	gcttatggaa	attgagcagg	tggacatgct	ggagaaggac	660
attgatgaaa	atgcatatgc	aaaggtctgc	ctttatctca	ccagttgtgt	gaattacgtg	720
cctgagcctg	agaactcagc	cctactgcgt	tgtgccctgg	gtgtgttccg	aaagtttagc	780
cgcttccctg	aagctctgag	attggcattg	atgctcaatg	acatggagtt	ggtagaagac	840
atcttcacct	cctgcaagga	tgtggtagta	cagaaacaga	tggcattcat	gctaggccgg	900
catggggtgt	tcctggagct	gagtgaagat	gtcgaggagt	atgaggacct	gacagagatc	960
atgtccaatg	tacagctcaa	cagcaacttc	ttggccttag	ctcgggagct	ggacatcatg	1020

gagcccaagg	tgcctgatga	catctacaaa	acccacctag	agaacaacag	gtttgggggc	1080
agtggctctc	aggtggactc	tgcccgcatg	aacctggcct	cctcttttgt	gaatggcttt	1140
gtgaatgcag	cttttggcca	agacaagctg	ctaacagatg	atggcaacaa	atggctttac	1200
aagaacaagg	accacggaat	gttgagtgca	gctgcatctc	ttgggatgat	tctgctgtgg	1260
gatgtggatg	gtggcctcac	ccagattgac	aagtacctgt	actcctctga	ggactacatt	1320
aagtcaggag	ctcttcttgc	ctgtggcata	gtgaactctg	gggtccggaa	tgagtgtgac	1380
cctgctctgg	cactgctctc	agactatgtt	ctccacaaca	gcaacaccat	gagacttggt	1440
tccatctttg	ggctaggctt	ggcttatgct	ggctcaaatc	gtgaagatgt	cctaacactg	1500
ctgctgcctg	tgatgggaga	ttcaaagtcc	agcatggagg	tggcaggtgt	cacagcttta	1560
gcctgtggaa	tgatagcagt	agggtcctgc	aatggagatg	taacttccac	tatccttcag	1620
accatcatgg	agaagtcaga	gactgagctc	aaggatactt	atgctcgttg	gcttcctctt	1680
ggactgggtc	tcaaccacct	ggggaagggt	gaggccatcg	aggcaatcct	ggctgcactg	1740
gaggttgtgt	cagagccatt	ccgcagtttt	gccaacacac	tggtggatgt	gtgtgcatat	1800
gcaggctctg	ggaatgtgct	gaaggtgcag	cagctgctcc	acatttgtag	cgaacacttt	1860
gactccaaag	agaaggagga	agacaaagac	aagaaggaaa	agaaagacaa	ggacaagaag	1920
gaagcccctg	ctgacatggg	agcacatcag	ggagtggctg	ttctggggat	tgcccttatt	1980
gctatggggg	aggagattgg	tgcagagatg	gcattacgaa	cctttggcca	cttgctgaga	2040
tatggggagc	ctacactccg	gagggctgta	cctttagcac	tggccctcat	ctctgtttca	2100
aatccacgac	tcaacatcct	ggatacccta	agcaaattct	ctcatgatgc	tgatccagaa	2160
gtttcctata	actccatttt	tgccatgggc	atggtgggca	gtggtaccaa	taatgcccgt	2220
ctggctgcaa	tgctgcgcca	gttagctcaa	tatcatgcca	aggacccaaa	caacctcttc	2280
atggtgcgct	tggcacaggg	cctgacacat	ttagggaagg	gcacccttac	cctctgcccc	2340
taccacagcg	accggcagct	tatgagccag	gtggccgtgg	ctggactgct	cactgtgctt	2400
gtctctttcc	tggatgttcg	aaacattatt	ctaggcaaat	cacactatgt	attgtatggg	2460
ctggtggctg	ccatgcagcc	ccgaatgctg	gttacgtttg	atgaggagct	gcggccattg	2520
ccagtgtctg	tccgtgtggg	ccaggcagtg	gatgtggtgg	gccaggctgg	caagccgaag	2580
actatcacag	ggttccagac	gcatacaacc	ccagtgttgt	tggcccacgg	ggaacgggca	2640
gaattggcca	ctgaggagtt	tcttcctgtt	acccccattc	tggaaggttt	tgttatcctt	2700
cggaagaacc	ccaattatga	tctctaa				2727

<210> 13

<211> 729

<212> PRT

<213> Homo sapiens

<400> 13

Met Gln Ser Thr Ser Asn His Leu Trp Leu Leu Ser Asp Ile Leu Gly
1 10 15

Gln Gly Ala Thr Ala Asn Val Phe Arg Gly Arg His Lys Lys Thr Gly 20 25 30

Asp Leu Phe Ala Ile Lys Val Phe Asn Asn Ile Ser Phe Leu Arg Pro 35 40 45

Val Asp Val Gln Met Arg Glu Phe Glu Val Leu Lys Lys Leu Asn His 50 55 60

Lys Asn Ile Val Lys Leu Phe Ala Ile Glu Glu Glu Thr Thr Thr Arg 70 75 80

His Lys Val Leu Ile Met Glu Phe Cys Pro Cys Gly Ser Leu Tyr Thr 85 90 95

Val Leu Glu Glu Pro Ser Asn Ala Tyr Gly Leu Pro Glu Ser Glu Phe 100 105 110

Leu Ile Val Leu Arg Asp Val Val Gly Gly Met Asn His Leu Arg Glu
115 120 125

Asn Gly Ile Val His Arg Asp Ile Lys Pro Gly Asn Ile Met Arg Val 130 135 140

Ile Gly Glu Asp Gly Gln Ser Val Tyr Lys Leu Thr Asp Phe Gly Ala 145 150 155 160

Ala Arg Glu Leu Glu Asp Asp Glu Gln Phe Val Ser Leu Tyr Gly Thr 165 170 175

Glu Glu Tyr Leu His Pro Asp Met Tyr Glu Arg Ala Val Leu Arg Lys 180 185 190

Asp His Gln Lys Lys Tyr Gly Ala Thr Val Asp Leu Trp Ser Ile Gly
195 200 205

Val Thr Phe Tyr His Ala Ala Thr Gly Ser Leu Pro Phe Arg Pro Phe Glu Gly Pro Arg Arg Asn Lys Glu Val Met Tyr Lys Ile Ile Thr Gly Lys Pro Ser Gly Ala Ile Ser Gly Val Gln Lys Ala Glu Asn Gly Pro Ile Asp Trp Ser Gly Asp Met Pro Val Ser Cys Ser Leu Ser Arg Gly Leu Gln Val Leu Leu Thr Pro Val Leu Ala Asn Ile Leu Glu Ala Asp Gln Glu Lys Cys Trp Gly Phe Asp Gln Phe Phe Ala Glu Thr Ser Asp Ile Leu His Arg Met Val Ile His Val Phe Ser Leu Gln Gln Met Thr Ala His Lys Ile Tyr Ile His Ser Tyr Asn Thr Ala Thr Ile Phe His Glu Leu Val Tyr Lys Gln Thr Lys Ile Ile Ser Ser Asn Gln Glu Leu Ile Tyr Glu Gly Arg Arg Leu Val Leu Glu Pro Gly Arg Leu Ala Gln His Phe Pro Lys Thr Thr Glu Glu Asn Pro Ile Phe Val Val Ser Arg Glu Pro Leu Asp Thr Ile Gly Leu Ile Tyr Glu Lys Ile Ser Leu Pro Lys Val His Pro Arg Tyr Asp Leu Asp Gly Asp Ala Ser Met Ala Lys Ala Ile Thr Gly Val Val Cys Tyr Ala Cys Arg Ile Ala Ser Thr Leu Leu Leu Tyr Gln Glu Leu Met Arg Lys Gly Ile Arg Trp Leu Ile Glu

Leu Ile Lys Asp Asp Tyr Asn Glu Thr Val His Lys Lys Thr Glu Val 455 450 Val Ile Thr Leu Asp Phe Cys Ile Arg Asn Ile Glu Lys Thr Val Lys 470 475 Val Tyr Glu Lys Leu Met Lys Ile Asn Leu Glu Ala Ala Glu Leu Gly 490 485 Glu Ile Ser Asp Ile His Thr Lys Leu Leu Arg Leu Ser Ser Ser Gln 500 505 Gly Thr Ile Glu Thr Ser Leu Gln Asp Ile Asp Ser Arg Leu Ser Pro 520 515 Gly Gly Ser Leu Ala Asp Ala Trp Ala His Gln Glu Gly Thr His Pro 535 530 Lys Asp Arg Asn Val Glu Lys Leu Gln Val Leu Leu Asn Cys Met Thr 555 545 Glu Ile Tyr Tyr Gln Phe Lys Lys Asp Gln Ala Glu Arg Arg Leu Ala 570 Tyr Asn Glu Glu Gln Ile His Lys Phe Asp Lys Gln Lys Leu Tyr Tyr 585 His Ala Thr Lys Ala Met Thr His Phe Thr Asp Glu Cys Val Lys Lys Tyr Glu Ala Phe Leu Asn Lys Ser Glu Glu Trp Ile Arg Lys Met Leu 615 His Leu Arg Lys Gln Leu Leu Ser Leu Thr Asn Gln Cys Phe Asp Ile 630 Glu Glu Glu Val Ser Lys Tyr Gln Glu Tyr Thr Asn Glu Leu Gln Glu 650 Thr Leu Pro Gln Lys Met Phe Thr Ala Ser Ser Gly Ile Lys His Thr 665 Met Thr Pro Ile Tyr Pro Ser Ser Asn Thr Leu Val Glu Met Thr Leu 680

Gly Met Lys Lys Leu Lys Glu Glu Met Glu Gly Val Val Lys Glu Leu 690 695 700

Ala Glu Asn Asn His Ile Leu Glu Arg Phe Gly Ser Leu Thr Met Asp 705 710 715 720

Gly Gly Leu Arg Asn Val Asp Cys Leu 725

<210> 14

<211> 2190

<212> DNA <213> Homo sapiens

<400> 14

atgcagagca cttctaatca tctgtggctt ttatctgata ttttaggcca aggagctact 60 120 gcaaatgtct ttcgtggaag acataagaaa actggtgatt tatttgctat caaagtattt 180 aataacataa gcttccttcg tccagtggat gttcaaatga gagaatttga agtgttgaaa 240 aaactcaatc acaaaaatat tqtcaaatta tttgctattg aagaggagac aacaacaaga 300 cataaaqtac ttattatgga attttgtcca tgtgggagtt tatacactgt tttagaagaa 360 ccttctaatg cctatggact accagaatct gaattcttaa ttgttttgcg agatgtggtg 420 ggtggaatga atcatctacg agagaatggt atagtgcacc gtgatatcaa gccaggaaat 480 atcatgcgtg ttatagggga agatggacag tctgtgtaca aactcacaga ttttggtgca 540 gctagagaat tagaagatga tgagcagttt gtttctctgt atggcacaga agaatatttg caccetgata tgtatgagag agcagtgeta agaaaagate atcagaagaa atatggagca 600 660 acaqttgatc tttggagcat tggggtaaca ttttaccatg cagctactgg atcactgcca 720 tttagaccct ttgaagggcc tcgtaggaat aaagaagtga tgtataaaat aattacagga aagcettetg gtgcaatate tggagtacag aaagcagaaa atggaccaat tgactggagt 780 ggagacatgc ctgtttcttg cagtctttct cggggtcttc aggttctact tacccctgtt 840 900 cttgcaaaca tccttgaagc agatcaggaa aagtgttggg gttttgacca gttttttgca 960 qaaactaqtg atatacttca ccgaatggta attcatgttt tttcgctaca acaaatgaca 1020 qctcataaqa tttatataca tagctataat actgctacta tatttcatga actggtatat aaacaaacca aaattatttc ttcaaatcaa gaacttatct acgaagggcg acgcttagtc 1080 ttagaacctg gaaggctggc acaacatttc cctaaaacta ctgaggaaaa ccctatattt 1140 gtagtaagcc gggaacctct ggataccata ggattaatat atgaaaaaat ttccctccct 1200 aaagtacatc cacgttatga tttagacggg gatgctagca tggctaaggc aataacaggg 1260

gttgtgtgtt	atgcctgcag	aattgccagt	accttactgc	tttatcagga	attaatgcga	1320
aaggggatac	gatggctgat	tgaattaatt	aaagatgatt	acaatgaaac	tgttcacaaa	1380
aagacagaag	ttgtgatcac	attggatttc	tgtatcagaa	acattgaaaa	aactgtgaaa	1440
gtatatgaaa	agttgatgaa	gatcaacctg	gaagcggcag	agttaggtga	aatttcagac	1500
atacacacca	aattgttgag	actttccagt	tctcagggaa	caatagaaac	cagtcttcag	1560
gatatcgaca	gcagattatc	tccaggtgga	tcactggcag	acgcatgggc	acatcaagaa	1620
ggcactcatc	cgaaagacag	aaatgtagaa	aaactacaag	tcctgttaaa	ttgcatgaca	1680
gagatttact	atcagttcaa	aaaagaccaa	gcagaacgta	gattagctta	taatgaagaa	1740
caaatccaca	aatttgataa	gcaaaaactg	tattaccatg	ccacaaaagc	tatgacgcac	1800
tttacagatg	aatgtgttaa	aaagtatgag	gcatttttga	ataagtcaga	agaatggata	1860
agaaagatgc	ttcatcttag	gaaacagtta	ttatcgctga	ctaatcagtg	ttttgatatt	1920
gaagaagaag	tatcaaaata	tcaagaatat	actaatgagt	tacaagaaac	tctgcctcag	1980
aaaatgttta	cagcttccag	tggaatcaaa	cataccatga	ccccaattta	tccaagttct	2040
aacacattag	tagaaatgac	tcttggtatg	aagaaattaa	aggaagagat	ggaaggggtg	2100
gttaaagaac	ttgctgaaaa	taaccacatt	ttagaaaggt	ttggctcttt	aaccatggat	2160
ggtggccttc	gcaacgttga	ctgtctttag				2190

<210> 15

<211> 834

<212> PRT

<213> Homo sapiens

<400> 15

Met Ala Val Glu Asp Glu Gly Leu Arg Val Phe Gln Ser Val Lys Ile 1 5 10 15

Lys Ile Gly Glu Ala Lys Asn Leu Pro Ser Tyr Pro Gly Pro Ser Lys 20 25 30

Met Arg Asp Cys Tyr Cys Thr Val Asn Leu Asp Gln Glu Glu Val Phe 35 40 45

Arg Thr Lys Ile Val Glu Lys Ser Leu Cys Pro Phe Tyr Gly Glu Asp 50 55 60

Phe Tyr Cys Glu Ile Pro Arg Ser Phe Arg His Leu Ser Phe Tyr Ile 65 70 75 80

Phe Asp Arg Asp Val Phe Arg Arg Asp Ser Ile Ile Gly Lys Val Ala 85 Ile Gln Lys Glu Asp Leu Gln Lys Tyr His Asn Arg Asp Thr Trp Phe 100 105 Gln Leu Gln His Val Asp Ala Asp Ser Glu Val Gln Gly Lys Val His 120 115 Leu Glu Leu Arg Leu Ser Glu Val Ile Thr Asp Thr Gly Val Val Cys 130 135 His Lys Leu Ala Thr Arg Ile Val Glu Cys Gln Gly Leu Pro Ile Val 150 155 Asn Gly Gln Cys Asp Pro Tyr Ala Thr Val Thr Leu Ala Gly Pro Phe 165 170 Arg Ser Glu Ala Lys Lys Thr Lys Val Lys Arg Lys Thr Asn Asn Pro 185 Gln Phe Asp Glu Val Phe Tyr Phe Glu Val Thr Arg Pro Cys Ser Tyr 195 200 Ser Lys Lys Ser His Phe Asp Phe Glu Glu Glu Asp Val Asp Lys Leu 210 215 220 Glu Ile Arg Val Asp Leu Trp Asn Ala Ser Asn Leu Lys Phe Gly Asp 230 Glu Phe Leu Gly Glu Leu Arg Ile Pro Leu Lys Val Leu Arg Gln Ser Ser Ser Tyr Glu Ala Trp Tyr Phe Leu Gln Pro Arg Asp Asn Gly Ser Lys Ser Leu Lys Pro Asp Asp Leu Gly Ser Leu Arg Leu Asn Val Val 280 Tyr Thr Glu Asp His Val Phe Ser Ser Asp Tyr Tyr Ser Pro Leu Arg 300 295 Asp Leu Leu Lys Ser Ala Asp Val Glu Pro Val Ser Ala Ser Ala 310

Ala His Ile Leu Gly Glu Val Cys Arg Glu Lys Gln Glu Ala Ala Val Pro Leu Val Arg Leu Phe Leu His Tyr Gly Arg Val Val Pro Phe Ile Ser Ala Ile Ala Ser Ala Glu Val Lys Arg Thr Gln Asp Pro Asn Thr Ile Phe Arg Gly Asn Ser Leu Ala Ser Lys Cys Ile Asp Glu Thr Met Lys Leu Ala Gly Met His Tyr Leu His Val Thr Leu Lys Pro Ala Ile Glu Glu Ile Cys Gln Ser His Lys Pro Cys Glu Ile Asp Pro Val Lys Leu Lys Asp Gly Glu Asn Leu Glu Asn Asn Met Glu Asn Leu Arg Gln Tyr Val Asp Arg Val Phe His Ala Ile Thr Glu Ser Gly Val Ser Cys Pro Thr Val Met Cys Asp Ile Phe Phe Ser Leu Arg Glu Ala Ala Ala Lys Arg Phe Gln Asp Asp Pro Asp Val Arg Tyr Thr Ala Val Ser Ser Phe Ile Phe Leu Arg Phe Phe Ala Pro Ala Ile Leu Ser Pro Asn Leu Phe Gln Leu Thr Pro His His Thr Asp Pro Gln Thr Ser Arg Thr Leu Thr Leu Ile Ser Lys Thr Val Gln Thr Leu Gly Ser Leu Ser Lys Ser Lys Ser Ala Ser Phe Lys Glu Ser Tyr Met Ala Thr Phe Tyr Glu Phe Phe Asn Glu Gln Lys Tyr Ala Asp Ala Val Lys Asn Phe Leu Asp Leu

Ile Ser Ser Ser Gly Arg Arg Asp Pro Lys Ser Val Glu Gln Pro Ile 570 565 Val Leu Lys Glu Gly Phe Met Ile Lys Arg Ala Gln Gly Arg Lys Arg 590 580 585 Phe Gly Met Lys Asn Phe Lys Lys Arg Trp Phe Arg Leu Thr Asn His 600 595 Glu Phe Thr Tyr His Lys Ser Lys Gly Asp Gln Pro Leu Tyr Ser Ile 615 Pro Ile Glu Asn Ile Leu Ala Val Glu Lys Leu Glu Glu Glu Ser Phe 630 635 Lys Met Lys Asn Met Phe Gln Val Ile Gln Pro Glu Arg Ala Leu Tyr 645 650 Ile Gln Ala Asn Asn Cys Val Glu Ala Lys Asp Trp Ile Asp Ile Leu 665 Thr Lys Val Ser Gln Cys Asn Gln Lys Arg Leu Thr Val Tyr His Pro 680 Ser Ala Tyr Leu Ser Gly His Trp Leu Cys Cys Arg Ala Pro Ser Asp 695 700 Ser Ala Pro Gly Cys Ser Pro Cys Thr Gly Gly Leu Pro Ala Asn Ile 715 Gln Leu Asp Ile Asp Gly Asp Arg Glu Thr Glu Arg Ile Tyr Ser Leu Phe Asn Leu Tyr Met Ser Lys Leu Glu Lys Met Gln Glu Ala Cys Gly Ser Lys Ser Val Tyr Asp Gly Pro Glu Gln Glu Glu Tyr Ser Thr Phe 760 Val Ile Asp Asp Pro Gln Glu Thr Tyr Lys Thr Leu Lys Gln Val Ile 775 Ala Gly Val Gly Ala Leu Glu Gln Glu His Ala Gln Tyr Lys Arg Asp 790

Lys Phe Lys Lys Thr Lys Tyr Gly Ser Gln Glu His Pro Ile Gly Asp 805 810 815

Lys Ser Phe Gln Asn Tyr Ile Arg Gln Gln Ser Glu Thr Ser Thr His 820 825 830

Ser Ile

<210> 16

<211> 2505

<212> PRT

<213> Homo sapiens

<400> 16

Ala Thr Gly Gly Cys Gly Gly Thr Gly Gly Ala Gly Gly Ala Cys Gly
1 5 10 15

Ala Gly Gly Gly Cys Thr Cys Cys Gly Gly Gly Thr Cys Thr Thr 20 25 30

Cys Cys Ala Gly Ala Gly Cys Gly Thr Gly Ala Ala Gly Ala Thr Cys
35 40 45

Ala Ala Gly Ala Thr Cys Gly Gly Thr Gly Ala Ala Gly Cys Cys Ala 50 55 60

Ala Ala Ala Cys Cys Thr Thr Cys Cys Cys Thr Cys Thr Thr Ala 65 70 75 80

Cys Cys Cys Gly Gly Gly Cys Cys Gly Ala Gly Cys Ala Ala Gly
85 90 95

Ala Thr Gly Ala Gly Gly Gly Ala Thr Thr Gly Cys Thr Ala Cys Thr 100 105 110

Gly Cys Ala Cys Gly Gly Thr Gly Ala Ala Cys Cys Thr Gly Gly Ala 115 120 125

Cys Cys Ala Gly Gly Ala Gly Gly Ala Gly Gly Thr Thr Thr Thr Cys 130 135 140

Ala Gly Gly Ala Cys Cys Ala Ala Ala Ala Thr Thr Gly Thr Gly Gly 145 150 155 160

Ala Ala Ala Gly Thr Cys Ala Cys Thr Cys Thr Gly Cys Cys Gly Thr Thr Thr Ala Cys Gly Gly Ala Gly Ala Ala Gly Ala Cys Thr Thr Thr Ala Cys Thr Gly Thr Gly Ala Ala Thr Thr Cys Cys Thr Cys Gly Gly Ala Gly Cys Thr Thr Thr Cys Gly Thr Cys Ala Cys Cys Thr Gly Thr Cys Cys Thr Thr Cys Thr Ala Cys Ala Thr Thr Thr Thr Cys Gly Ala Thr Ala Gly Ala Gly Ala Cys Gly Thr Thr Thr Thr Cys Cys Gly Gly Ala Gly Gly Gly Ala Thr Thr Cys Cys Ala Thr Cys Ala Thr Ala Gly Gly Gly Ala Ala Gly Gly Thr Gly Gly Cys Cys Ala Thr Cys Cys Ala Gly Ala Ala Gly Gly Ala Gly Gly Ala Cys Thr Thr Gly Cys Ala Gly Ala Ala Gly Thr Ala Cys Cys Ala Cys Ala Ala Cys Ala Gly Gly Gly Ala Cys Ala Cys Cys Thr Gly Gly Thr Thr Cys . 325 Cys Ala Gly Cys Thr Gly Cys Ala Gly Cys Ala Cys Gly Thr Gly Gly Ala Cys Gly Cys Thr Gly Ala Cys Thr Cys Gly Gly Ala Ala Gly Thr Gly Cys Ala Gly Gly Cys Ala Ala Ala Gly Thr Gly Cys Ala Cys Cys Thr Gly Gly Ala Gly Cys Thr Gly Cys Gly Gly Cys Thr Gly Ala

Gly Cys Gly Ala Gly Gly Thr Cys Ala Thr Cys Ala Cys Ala Gly Ala Cys Ala Cys Thr Gly Gly Gly Thr Cys Gly Thr Cys Thr Gly Cys Cys Ala Cys Ala Ala Gly Cys Thr Cys Gly Cys Cys Ala Cys Ala Cys Gly Cys Ala Thr Cys Gly Thr Cys Gly Ala Gly Thr Gly Cys Cys Ala Gly Gly Cys Cys Thr Cys Cys Cys Cys Ala Thr Cys Gly Thr Gly Ala Ala Thr Gly Gly Gly Cys Ala Ala Thr Gly Thr Gly Ala Cys Cys Cys Cys Thr Ala Cys Gly Cys Cys Ala Cys Cys Gly Thr Gly Ala Cys Gly Cys Thr Gly Gly Cys Ala Gly Gly Ala Cys Cys Cys Thr Thr Cys Ala Gly Ala Thr Cys Ala Gly Ala Ala Gly Cys Ala Ala Ala Gly Ala Ala Gly Ala Cys Gly Ala Ala Ala Gly Thr Gly Ala Ala Gly Ala Gly Gly Ala Ala Gly Ala Cys Cys Ala Ala Cys Ala Ala Thr Cys Cys Cys Cys Ala Gly Thr Thr Cys Gly Ala Thr Gly Ala Ala Gly Thr Gly Thr Thr Thr Ala Thr Thr Thr Gly Ala Gly Gly Thr Gly Ala Cys Cys Cys Gly Gly Cys Cys Cys Thr Gly Thr Ala Gly Cys Thr Ala Cys Ala Gly Cys Ala Ala Gly Ala Ala Gly Thr Cys Cys Cys Ala Cys Thr

Thr Thr Gly Ala Cys Thr Thr Gly Ala Gly Gly Ala Gly Gly Ala Ala Gly Ala Cys Gly Thr Gly Gly Ala Cys Ala Ala Gly Cys Thr Cys Gly Ala Ala Ala Thr Cys Ala Gly Ala Gly Thr Thr Gly Ala Cys Cys Thr Cys Thr Gly Gly Ala Ala Thr Gly Cys Cys Ala Gly Thr Ala Ala Cys Cys Thr Gly Ala Ala Gly Thr Thr Thr Gly Gly Ala Gly Ala Thr Gly Ala Ala Thr Thr Cys Cys Thr Gly Gly Gly Ala Gly Ala Ala Cys Thr Ala Ala Gly Gly Ala Thr Cys Cys Cys Gly Thr Thr Gly Ala Ala Ala Gly Thr Cys Cys Thr Gly Cys Gly Gly Cys Ala Gly Thr Cys Cys Ala Gly Cys Thr Cys Cys Thr Ala Cys Gly Ala Gly Gly Cys Gly Thr Gly Gly Thr Ala Cys Thr Thr Cys Cys Thr Cys Cys Ala Gly Cys Cys Cys Cys Gly Gly Gly Ala Cys Ala Ala Thr Gly Gly Thr Ala Gly Cys Ala Ala Gly Ala Gly Cys Cys Thr Ala Ala Ala Gly Cys Cys Ala Gly Ala Cys Gly Ala Cys Cys Thr Gly Gly Cys Thr Cys Cys Cys Thr Gly Cys Gly Gly Cys Thr Gly Ala Ala Cys Gly Thr Gly Gly Thr Ala Thr Ala Cys Ala Cys Gly Gly Ala Ala Gly Ala Cys Cys Ala Cys Gly

Thr Gly Thr Thr Thr Cys Thr Thr Cys Thr Gly Ala Cys Thr Ala 885 890 895

Thr Thr Ala Cys Ala Gly Cys Cys Cys Thr Cys Thr Gly Cys Gly Gly
900 905 910

Gly Ala Cys Cys Thr Gly Cys Thr Gly Thr Thr Gly Ala Ala Gly Thr 915 920 925

Cys Thr Gly Cys Gly Gly Ala Thr Gly Thr Gly Gly Ala Gly Cys Cys 930 935 940

Cys Gly Thr Gly Thr Cys Ala Gly Cys Gly Thr Cys Thr Gly Cys Gly 945 950 955 960

Gly Cys Cys Cys Ala Cys Ala Thr Cys Cys Thr Gly Gly Gly Cys Gly
965 970 975

Ala Gly Gly Thr Thr Thr Gly Cys Cys Gly Gly Gly Ala Gly Ala Ala 980 985 990

Gly Cys Ala Gly Gly Ala Gly Gly Cys Gly Gly Cys Gly Thr Cys 995 1000 1005

Cys Cys Gly Cys Thr Gly Gly Thr Gly Cys Gly Gly Cys Thr Cys 1010 1015 1020

Thr Thr Cys Cys Thr Ala Cys Ala Cys Thr Ala Thr Gly Gly Cys 1025 1030 1035

Ala Gly Gly Gly Thr Gly Gly Thr Gly Cys Cys Ala Thr Thr Cys 1040 1045 1050

Ala Thr Cys Ala Gly Thr Gly Cys Cys Ala Thr Cys Gly Cys Cys 1055 1060 1065

Ala Gly Cys Gly Cys Gly Gly Ala Gly Gly Thr Gly Ala Ala Gly 1070 1075 1080

Cys Gly Gly Ala Cys Cys Cys Ala Gly Gly Ala Cys Cys Cys 1085 1090 1095

Ala Ala Cys Ala Cys Cys Ala Thr Cys Thr Thr Cys Cys Gly Ala 1100 1105 1110

Gly	Gly 1115	Ala	Ala	Ala	Cys	Thr 1120	Cys	Ala	Cys	Thr	Gly 1125	Gly	Cys	Gly
Thr	Cys 1130	Cys	Ala	Ala	Gly	Thr 1135	Gly	Cys	Ala	Thr	Cys 1140	Gly	Ala	Cys
Gly	Ala 1145	Gly	Ala	Cys	Cys	Ala 1150	Thr	Gly	Ala	Ala	Gly 1155	Cys	Thr	Gly
Gly	Cys 1160	Gly	Gly	Gly	Gly	Ala 1165	Thr	Gly	Cys	Ala	Thr 1170	Thr	Ala	Cys
Cys	Thr 1175	Gly	Cys	Ala	Thr	Gly 1180	Thr	Cys	Ala	Cys	Cys 1185	Cys	Thr	Gly
Ala	Ala 1190	Gly	Cys	Cys	Cys	Gly 1195	Cys	Cys	Ala	Thr	Cys 1200	Gly	Ala	Gly
Gly	Ala 1205	Gly	Ala	Thr	Ala	Thr 1210	Gly	Cys	Cys	Ala	Gly 1215	Ala	Gly	Cys
Cys	Ala 1220	Cys	Ala	Ala	Ala	Cys 1225	Cys	Cys	Thr	Gly	Thr 1230	Gly	Ala	Ala
Ala	Thr 1235	Cys	Gly	Ala	Cys	Cys 1240		Thr	Gly	Thr	Gly 1245	Ala	Ala	Gly
Thr	Thr 1250	_	Ala	Ala	Ala	Gly 1255	Ala	Cys	Gly	Gly	Ala 1260	Gly	Ala	Ala
Ala	Ala 1265	_	Cys	Thr	Thr	Gly 1270	Ala	Ala	Ala	Ala	Cys 1275	Ala	Ala	Cys
Ala	Thr 1280	Gly	Gly	Ala	Gly	Ala 1285	Ala	Cys	Cys	Thr	Ala 1290	Cys	Gly	Gly
Cys	Ala 1295	Gly	Thr	Ala	Thr	Gly 1300	Thr	Gly	Gly	Ala	Cys 1305	Cys	Gly	Cys
Gly	Thr 1310	Cys	Thr	Thr	Cys	Cys 1315	Ala	Cys	Gly	Cys	Cys 1320	Ala	Thr	Cys
Ala	Cys 1325	Cys	Gly	Ala	Gly	Thr 1330	Cys	Thr	Gly	Gly	Gly 1335	Gly	Thr	Gly

Ala	Gly 1340	Cys	Thr	Gly	Cys	Cys 1345		Gly	Ala	Cys	Cys 1350	Gly	Thr	Cys
Ala	Thr 1355	Gly	Thr	Gly	Thr	Gly 1360		Cys	Ala	Thr	Cys 1365	Thr	Thr	Cys
Thr	Thr 1370	Cys	Thr	Cys	Cys	Cys 1375	Thr	Cys	Cys	Gly	Gly 1380	Gly	Ala	Gly
Gly	Cys 1385	Gly	Gly	Cys	Gly	Gly 1390		Cys	Ala	Ala	Gly 1395	Cys	Gly	Cys
Thr	Thr 1400	Cys	Cys	Ala	Gly	Gly 1405	Ala	Thr	Gly	Ala	Cys 1410	Cys	Cys	Gly
Gly	Ala 1415	Cys	Gly	Thr	Cys	Ala 1420	Gly	Gly	Thr	Ala	Cys 1425	Ala	Cys	Thr
Gly	Cys 1430	Ala	Gly	Thr	Gly	Ala 1435	Gly	Cys	Ala	Gly	Cys 1440	Thr	Thr	Cys
Ala	Thr 1445	Cys	Thr	Thr	Cys	Cys 1450	Thr	Gly	Ala	Gly	Gly 1455	Thr	Thr	Cys
Thr	Thr 1460	Thr	Gly	Cys	Gly	Cys 1465	Cys	Cys	Gly	Cys	Cys 1470	Ala	Thr	Thr
Cys	Thr 1475	Cys	Thr	Cys	Cys	Cys 1480	Cys	Cys	Ala	Ala	Cys 1485	Cys	Thr	Cys
	Thr 1490		Cys			Cys 1495		Cys			Gly 1500		Cys	Gly
Cys	Ala 1505	Cys	Cys	Ala	Cys	Ala 1510	Cys	Gly	Gly	Ala	Cys 1515	Cys	Cys	Cys
Cys	Ala 1520	Gly	Ala	Cys	Gly	Thr 1525	Cys	Cys	Ala	Gly	Gly 1530	Ala	Cys	Gly
Cys	Thr 1535	Gly	Ala	Cys	Ala	Thr 1540	Thr	Gly	Ala	Thr	Cys 1545	Thr	Cys	Cys
Ala	Ala 1550	Gly	Ala	Cys	Cys	Gly 1555	Thr	Thr	Cys	Ala	Gly 1560	Ala	Cys	Cys

Cys	Thr 1565	Cys	Gly	Gly	Cys	Ala 1570	Gly	Cys	Cys	Thr	Gly 1575	Thr	Cys	Cys
Ala	Ala 1580	Gly	Thr	Cys	Cys	Ala 1585	Ala	Ala	Thr	Cys	Thr 1590	Gly	Cys	Gly
Ala	Gly 1595		Thr	Thr	Thr	Ala 1600		Gly	Gly	Ala	Gly 1605	Thr	Cys	Cys
Thr	Ala 1610	Cys	Ala	Thr	Gly	Gly 1615	Cys	Thr	Ala	Cys	Ala 1620	Thr	Thr	Thr
Thr	Ala 1625	Thr	Gly	Ala	Ala	Thr 1630		Cys	Thr	Thr	Cys 1635	Ala	Ala	Thr
Gly	Ala 1640	Gly	Cys	Ala	Gly	Ala 1645	Ala	Ala	Thr	Ala	Thr 1650	Gly	Cys	Thr
Gly	Ala 1655	Thr	Gly	Cys	Gly	Gly 1660	Thr	Gly	Ala	Ala	Gly 1665	Ala	Ala	Cys
Thr	Thr 1670	Cys	Thr	Thr	Gly	Gly 1675	Ala	Thr	Cys	Thr	Gly 1680	Ala	Thr	Thr
Thr	Cys 1685	Gly	Thr	Cys	Cys	Thr 1690	Cys	Gly	Gly	Gly	Gly 1695	Ala	Gly	Ala '
Ala	Gly 1700	Ala	Gly	Ala	Cys	Cys 1705	Cys	Cys	Ala	Ala	Gly 1710	Ala	Gly	Thr
Gly	Thr 1715	Thr	Gly	Ala	Gly	Cys 1720	Ala	Gly	Cys	Cys	Cys 1725	Ala	Thr	Cys
Gly	Thr 1730	Gly	Cys	Thr	Thr	Ala 1735	Ala	Ala	Gly	Ala	Ala 1740	Gly	Gly	Gly
Thr	Thr 1745	Cys	Ala	Thr	Gly	Ala 1750	Thr	Cys	Ala	Ala	Gly 1755	Ala	Gly	Gly
Gly	Cys 1760	Cys	Cys	Ala	Ala	Gly 1765	Gly	Ala	Cys	Gly	Gly 1770	Ala	Ala	Gly
Cys	Gly 1775	Cys	Thr	Thr	Thr	Gly 1780	Gly	Gly	Ala	Thr	Gly 1785	Ala	Ala	Gly

Ala	Ala 1790	Thr	Thr	Thr	Thr	Ala 1795	Ala	Gly	Ala	Ala	Gly 1800	Ala	Gly	Ala
Thr	Gly 1805	Gly	Thr	Thr	Thr	Cys 1810	Gly	Cys	Thr	Thr	Gly 1815	Ala	Cys	Cys
Ala	Ala 1820	Cys	Cys	Ala	Thr	Gly 1825	Ala	Ala	Thr	Thr	Thr 1830	Ala	Cys	Cys
Thr	Ala 1835	Cys	Cys	Ala	Cys	Ala 1840	Ala	Ala	Ala	Gly	Cys 1845	Ala	Ala	Ala
Gly	Gly 1850	Gly	Gly	Ala	Cys	Cys 1855	Ala	Gly	Cys	Cys	Thr 1860	Cys	Thr	Cys
Thr	Ala 1865	Cys	Ala	Gly	Cys	Ala 1870	Thr	Thr	Cys	Cys	Cys 1875	Ala	Thr	Cys
Gly	Ala 1880	Gly	Ala	Ala	Cys	Ala 1885	Thr	Cys	Cys	Thr	Gly 1890	Gly	Cys	Ala
Gly	Thr 1895	Gly	Gly	Ala	Gly	Ala 1900	Ala	Gly	Cys	Thr	Gly 1905	Gly	Ala	Gly
Gly	Ala 1910	Gly	Gly	Ala	Gly	Thr 1915		Thr	Thr	Thr	Cys 1920	Ala	Ala	Ala
Ala	Thr 1925	Gly	Ala	Ala	Ala	Ala 1930		Cys	Ala	Thr	Gly 1935	Thr	Thr	Cys
_	Ala 1940	_	_		_	Ala 1945		Cys	Cys	Ala	Gly 1950	Cys	Cys	Ala
Gly	Ala 1955	Gly	Cys	Gly	Thr	Gly 1960	Cys	Gly	Cys	Thr	Gly 1965		Ala	Cys
Ala	Thr 1970	Cys	Cys	Ala	Gly	Gly 1975	Cys	Cys	Ala	Ala	Cys 1980	Ala	Ala	Cys
Thr	Gly 1985	Cys	Gly	Thr	Gly	Gly 1990	Ala	Gly	Gly	Cys	Cys 1995	Ala	Ala	Gly
Gly	Ala 2000	Cys	Thr	Gly	Gly	Ala 2005	Thr	Cys	Gly	Ala	Cys 2010	Ala	Thr	Thr

Cys	Thr 2015	Cys	Ala	Cys	Cys	Ala 2020	Ala	Ala	Gly	Thr	Gly 2025	Ala	Gly	Cys
Cys	Ala 2030	Gly	Thr	Gly	Cys	Ala 2035	Ala	Cys	Cys	Ala	Gly 2040	Ala	Ala	Gly
Cys	Gly 2045	Cys	Cys	Thr	Cys	Ala 2050	Cys	Cys	Gly	Thr	Cys 2055	Thr	Ala	Cys
Cys	Ala 2060	Cys	Cys	Cys	Gly	Thr 2065	Cys	Cys	Gly	Cys	Cys 2070	Thr	Ala	Cys
Cys	Thr 2075	Gly	Ala	Gly	Cys	Gly 2080	Gly	Cys	Cys		Cys 2085	Thr	Gly	Gly
Cys	Thr 2090	Gly	Thr	Gly	Cys	Thr 2095	Gly	Thr	Ala	Gly	Gly 2100	Gly	Cys	Gly
Cys	Cys 2105	Ala	Thr	Cys	Cys	Gly 2110	Ala	Cys	Thr	Cys	Gly 2115	Gly	Cys	Thr
Cys	Cys 2120	Gly	Gly	Gly	Cys	Thr 2125	Gly	Cys	Thr	Cys	Gly 2130	Cys	Cys	Cys
Thr	Gly 2135	Cys	Ala	Cys	Thr	Gly 2140	Gly	Cys	Gly	Gly	Cys 2145	Cys	Thr	Cys
Cys	Cys 2150	Ala	Gly	Cys	Cys	Ala 2155	Ala	Cys	Ala	Thr	Cys 2160	Cys	Ala	Gly
Cys	Thr 2165	Gly	Gly	Ala	Cys	Ala 2170	Thr	Thr	Gly	Ala	Thr 2175	Gly	Gly	Gly
Gly	Ala 2180	Cys	Cys	Gly	Thr	Gly 2185	Ala	Gly	Ala	Cys	Gly 2190	Gly	Ala	Gly
Cys	Gly 2195	Thr	Ala	Thr	Cys	Thr 2200	Ala	Cys	Thr	Cys	Cys 2205	Cys	Thr	Cys
Thr	Thr 2210	Cys	Ala	Ala	Cys	Thr 2215	Thr	Gly	Thr	Ala	Cys 2220	Ala	Thr	Gly
Ala	Gly 2225	Cys	Ala	Ala	Gly	Cys 2230	Thr	Gly	Gly	Ala	Gly 2235	Ala	Ala	Gly

Ala	Thr 2240	Gly	Cys	Ala	Gly	Gly 2245	Ala	Gly	Gly	Cys	Cys 2250	Thr	Gly	Thr
Gly	Gly 2255	Gly	Ala	Gly	Cys	Ala 2260	Ala	Ala	Thr	Cys	Thr 2265	Gly	Thr	Gly
Thr	Ala 2270	Thr	Gly	Ala	Cys	Gly 2275		, CA2	Cys	Cys	Gly 2280	Gly	Ala	Gly
Cys	Ala 2285	_	Gly	Ala	Gly	Gly 2290	Ala	Gly	Thr	Ala	Thr 2295	Thr	Cys	Gly
Ala	Cys 2300	Gly	Thr	Thr	Cys	Gly 2305	Thr	Cys	Ala	Thr	Thr 2310	Gly	Ala	Cys
Gly	Ala 2315		Cys	Cys	Суѕ	Cys 2320	Ala	Gly	Gly	Ala	Gly 2325	Ala	Cys	Cys
Thr	Ala 2330	Cys	Ala	Ala	Gly	Ala 2335	Cys	Gly	Cys	Thr	Ala 2340	Ala	Ala	Gly
Cys	Ala 2345	Ala	Gly	Thr	Cys	Ala 2350	Thr	Cys	Gly	Cys	Thr 2355	Gly	Gly	Gly
Gly	Thr 2360	Thr	Gly	Gly	Gly	Gly 2365	Cys	Thr	Thr	Thr	Gly 2370	Gly	Ala	Gly
Cys	Ala 2375	Gly	Gly	Ala	Gly	Cys 2380	Ala	Cys	Gly	Cys	Cys 2385	Cys	Ala	Gly
						Ala 2395							Ala	Gly
Thr	Thr 2405	Cys	Ala	Ala	Gly	Ala 2410	Ala	Gly	Ala	Cys	Gly 2415	Ala	Ala	Ala
Thr	Ala 2420	Thr	Gly	Gly	Ala	Ala 2425		Cys	Cys	Ala	Gly 2430	Gly	Ala	Gly
Cys	Ala 2435	Cys	Cys	Cys	Cys	Ala 2440	Thr	Cys	Gly	Gly	Ala 2445	Gly	Ala	Cys
Ala	Ala 2450	Gly	Ala	Gly	Cys	Thr 2455	Thr	Cys	Cys	Ala	Gly 2460	Ala	Ala	Cys

Thr Ala Cys Ala Thr Cys Cys Gly Gly Cys Ala Gly Cys Ala Gly 2465 2470 2475

Thr Cys Cys Gly Ala Gly Ala Cys Cys Thr Cys Cys Ala Cys Thr 2480 2485 2490

Cys Ala Thr Thr Cys Cys Ala Thr Thr Thr Ala Ala 2495 2500 2500

<210> 17

<211> 821

<212> PRT

<213> Homo sapiens

<400> 17

Met Pro Thr Arg Val Cys Cys Cys Cys Ser Ala Leu Arg Pro Arg Tyr 1 5 10 15

Lys Arg Leu Val Asp Asn Ile Phe Pro Glu Asp Pro Lys Asp Gly Leu 20 25 30

Val Lys Thr Asp Met Glu Lys Leu Thr Phe Tyr Ala Val Ser Ala Pro 35 40 45

Glu Lys Leu Asp Arg Ile Gly Ser Tyr Leu Ala Glu Arg Leu Ser Arg 50 55 60

Asp Val Val Arg His Arg Ser Gly Tyr Val Leu Ile Ala Met Glu Ala 65 70 75 80

Leu Asp Gln Leu Leu Met Ala Cys His Ser Gln Ser Ile Lys Pro Phe 85 90 95

Val Glu Ser Phe Leu His Met Val Ala Lys Leu Leu Glu Ser Gly Glu 100 105 110

Pro Lys Leu Gln Val Leu Gly Thr Asn Ser Phe Val Lys Phe Ala Asn 115 120 125

Ile Glu Glu Asp Thr Pro Ser Tyr His Arg Arg Tyr Asp Phe Phe Val 130 135 140

Ser Arg Phe Ser Ala Met Cys His Ser Cys His Ser Asp Pro Glu Ile 145 150 155 160

Arg Thr Glu Ile Arg Ile Ala Gly Ile Arg Gly Ile Gln Gly Val Val Arg Lys Thr Val Asn Asp Glu Leu Arg Ala Thr Ile Trp Glu Pro Gln His Met Asp Lys Ile Val Pro Ser Leu Leu Phe Asn Met Gln Lys Ile Glu Glu Val Asp Ser Arg Ile Gly Pro Pro Ser Ser Pro Ser Ala Thr Asp Lys Glu Glu Asn Pro Ala Val Leu Ala Glu Asn Cys Phe Arg Glu Leu Leu Gly Arg Ala Thr Phe Gly Asn Met Asn Asn Ala Val Arg Pro Val Phe Ala His Leu Asp His His Lys Leu Trp Asp Pro Asn Glu Phe Ala Val His Cys Phe Lys Ile Ile Met Tyr Ser Ile Gln Ala Gln Tyr Ser His His Val Ile Gln Glu Ile Leu Gly His Leu Asp Ala Arg Lys Lys Asp Ala Pro Arg Val Arg Ala Gly Ile Ile Gln Val Leu Leu Glu Ala Val Ala Ile Ala Ala Lys Gly Ser Ile Gly Pro Thr Val Leu Glu Val Phe Asn Thr Leu Leu Lys His Leu Arg Leu Ser Val Glu Phe Glu Ala Asn Asp Leu Gln Gly Gly Ser Val Gly Ser Val Asn Leu Asn Thr Ser Ser Lys Asp Asn Asp Glu Lys Ile Val Gln Asn Ala Ile Ile Gln Thr Ile Gly Phe Phe Gly Ser Asn Leu Pro Asp Tyr Gln Arg Ser Glu

Ile Met Met Phe Ile Met Gly Lys Val Pro Val Phe Gly Thr Ser Thr His Thr Leu Asp Ile Ser Gln Leu Gly Asp Leu Gly Thr Arg Arg Ile Gln Ile Met Leu Leu Arg Ser Leu Leu Met Val Thr Ser Gly Tyr Lys Ala Lys Thr Ile Val Thr Ala Leu Pro Gly Ser Phe Leu Asp Pro Leu Leu Ser Pro Ser Leu Met Glu Asp Tyr Glu Leu Arg Gln Leu Val Leu Glu Val Met His Asn Leu Met Asp Arg His Asp Asn Arg Ala Lys Leu Arg Gly Ile Arg Ile Ile Pro Asp Val Ala Asp Leu Lys Ile Lys Arg Glu Lys Ile Cys Arg Gln Asp Thr Ser Phe Met Lys Lys Asn Gly Gln Gln Leu Tyr Arq His Ile Tyr Leu Gly Cys Lys Glu Glu Asp Asn Val Gln Lys Asn Tyr Glu Leu Leu Tyr Thr Ser Leu Ala Leu Ile Thr Ile Glu Leu Ala Asn Glu Glu Val Val Ile Asp Leu Ile Arg Leu Ala Ile Ala Leu Gln Asp Ser Ala Ile Ile Asn Glu Asp Asn Leu Pro Met Phe His Arg Cys Gly Ile Met Ala Leu Val Ala Ala Tyr Leu Asn Phe Val Ser Gln Met Ile Ala Val Pro Ala Phe Cys Gln His Val Ser Lys Val Ile Glu Ile Arq Thr Met Glu Ala Pro Tyr Phe Leu Pro Glu His Ile

Phe	Arg	Asp	Lys	Cys 645	Met	Leu	Pro	Lys	Ser 650	Leu	Glu	Lys	His	Glu 655	Lys		
Asp	Leu	Tyr	Phe 660	Leu	Thr	Asn	Lys	Ile 665	Ala	Glu	Ser	Leu	Gly 670	Gly	Ser		
Gly	Tyr	Ser 675	Val	Glu	Arg	Leu	Ser 680	Val	Pro	Tyr	Val	Pro 685	Gln	Val	Thr		
Asp	Glu 690	Asp	Arg	Leu	Ser	Arg 695	Arg	Lys	Ser	Ile	Val 700	Asp	Thr	Val	Ser		
Ile 705	Gln	Val	Asp	Ile	Leu 710	Ser	Asn	Asn	Val	Pro 715	Ser	Asp	Asp	Val	Val 720		
Ser	Asn	Thr	Glu	Glu 725	Ile	Thr	Phe	Glu	Ala 730	Leu	Lys	Lys	Ala	Ile 735	Asp		
Thr	Ser	Gly	Met 740	Glu	Glu	Gln	Glu	Lys 745	Glu	Lys	Arg	Arg	Leu 750	Val	Ile		
Glu	Lys	Phe 755	Gln	Lys	Ala	Pro	Phe 760	Glu	Glu	Ile	Ala	Ala 765	Gln	Cys	Glu		
Ser	Lys 770	Ala	Asn	Leu	Leu	His 775	Asp	Arg	Leu	Ala	Gln 780	Ile	Leu	Glu	Leu		
Thr 785	Ile	Arg	Pro	Pro	Pro 790	Ser	Pro	Ser	Gly	Thr 795	Leu	Thr	Ile	Thr	Ser 800		
Gly	His	Ala		Tyr 805		Ser			Val 810		Glu	Met	Lys	Phe 815			
Asp	Leu	Cys	Val 820	Tyr													
<210 <210 <210 <210	1> 2 2> I	18 2466 DNA Homo	sap:	iens													
<400		18 ccc (gaqta	atqci	tg ci	tgcto	gttc	e get	tttg	egte	ctc	gcta	caa a	acgc	ctggtg	6	0
															aaattg	12	0
															gcagaa	18	0

aggttgagca	gggatgttgt	cagacatcgt	tctgggtatg	ttttgattgc	tatggaggca	240
ctggaccaac	ttctcatggc	ttgccattct	caaagcatta	agccatttgt	agaaagcttt	300
cttcatatgg	tggcaaagct	gctggaatcg	ggggaaccaa	agcttcaagt	tcttggaaca	360
aattcttttg	tcaaatttgc	aaatattgaa	gaagacacac	catcctatca	cagacgttat	420
gacttttttg	tgtctcgatt	cagtgccatg	tgccattcct	gtcatagtga	tccagaaata	480
cgaacagaga	tacgaattgc	tggaattaga	ggtattcaag	gtgtggttcg	caaaacagtc	540
aacgatgaac	ttcgggccac	catttgggaa	cctcagcata	tggataagat	tgttccatcc	600
ctcctgttta	acatgcaaaa	gatagaagaa	gttgacagtc	gcataggccc	tccttcttct	660
ccttctgcaa	ctgacaaaga	agagaatcct	gctgtgctgg	ctgaaaactg	tttcagagaa	720
ctgctgggtc	gagcaacttt	tgggaatatg	aataatgctg	ttagaccagt	ttttgcgcat	780
ttagatcatc	acaaactgtg	ggatcccaat	gaatttgcag	ttcactgctt	taaaattata	840
atgtattcca	ttcaggctca	gtattctcac	catgtgatcc	aggagattct	aggacacctt	900
gatgctcgta	aaaaagatgc	tccccgggtt	cgagcaggta	ttattcaggt	tctgttagag	960
gctgttgcca	ttgctgctaa	aggttccata	ggtccgacag	tgctggaagt	cttcaatacc	1020
cttttgaaac	atctgcgtct	cagcgttgaa	ttcgaagcaa	atgatttaca	ggggggatct	1080
gtaggcagtg	tcaacttaaa	tacaagttcc	aaagacaatg	atgagaagat	tgtgcagaat	1140
gctatcatcc	aaacaatagg	attttttgga	agtaacctac	cagattatca	gaggtcagaa	1200
atcatgatgt	tcattatggg	gaaagtacct	gtctttggaa	catctaccca	tactttggat	1260
atcagtcaac	taggggattt	gggaaccagg	agaattcaga	taatgttgct	gagatctttg	1320
cttatggtga	cctctggata	taaagcgaag	acgattgtta	ctgcactgcc	agggtctttc	1380
ctggatcctt	tgttatcacc	atctctcatg	gaggactacg	aactgagaca	gttggtcttg	1440
gaagtaatgc	ataatctcat	ggatcgtcat	gacaataggg	caaagcttcg	agggatcaga	1500
ataataccgg	atgtagctga	cctaaagata	aaaagagaaa	aaatttgcag	acaagacaca	1560
agtttcatga	aaaagaatgg	gcaacagctg	tatcggcaca	tatatttggg	ttgtaaagag	1620
gaagacaacg	ttcagaaaaa	ctatgaacta	ctttatactt	ctcttgctct	tataactatt	1680
gaactggcta	atgaagaagt	agttattgat	ctcattcgac	tggccattgc	tttacaggac	1740
agtgcaatta	tcaatgagga	taatttgcca	atgttccatc	gttgtggaat	catggcactg	1800
gttgcagcat	acctcaactt	tgtaagtcag	atgatagctg	tccctgcatt	ttgccagcat	1860
gttagcaagg	ttattgaaat	tcgaactatg	gaagcccctt	attttctacc	agagcatatc	1920
ttcagagata	agtgcatgct	tccaaaatct	ttagagaagc	atgaaaaaga	tttgtacttt	1980

ctgaccaaca aga	ittgcaga gtcgctagg	t ggaagtggat	atagtgttga	gagattgtca	2040
gttccgtatg tac	cacaagt aacagatga	a gatcgacttt	ctagaagaaa	aagcattgtg	2100
gacaccgtat cca	ttcaggt ggatatttt	a tccaacaatg	ttccttctga	tgatgtggtt	2160
agtaacactg aag	gaaatcac ttttgaagc	a ttgaagaaag	caattgatac	cagtggaatg	2220
gaagaacagg aaa	aggaaaa gaggcgtct	t gtgatagaga	aatttcagaa	agcacctttt	2280
gaagaaatag cag	cacagtg tgaatccaa	a gcaaatttgc	ttcatgatag	acttgcccaa	2340
atattggaac tca	ccatacg tectectee	c agtccatcag	gaacactgac	cattacttct	2400
gggcatgccc aat	accaatc tgtcccagt	c tatgagatga	agtttccaga	tctgtgtgtg	2460
tactga					2466

<210> 19

<211> 689

<212> PRT

<213> Homo sapiens

<400> 19

Met Ala Val Val Ser Ala Val Arg Trp Leu Gly Leu Arg Ser Arg Leu 5 10

Gly Gln Pro Leu Thr Gly Arg Arg Ala Gly Leu Cys Glu Gln Ala Arg 25

Ser Cys Arg Phe Tyr Ser Gly Ser Ala Thr Leu Ser Lys Val Glu Gly 45

Thr Asp Val Thr Gly Ile Glu Glu Val Val Ile Pro Lys Lys Lys Thr 50

Trp Asp Lys Val Ala Val Leu Gln Ala Leu Ala Ser Thr Val Asn Arg 75 80

Asp Thr Thr Ala Val Pro Tyr Val Phe Gln Asp Asp Pro Tyr Leu Met

Pro Ala Ser Ser Leu Glu Ser Arg Ser Phe Leu Leu Ala Lys Lys Ser 105 110

Gly Glu Asn Val Ala Lys Phe Ile Ile Asn Ser Tyr Pro Lys Tyr Phe 120 125

Gln Lys Asp Ile Ala Glu Pro His Ile Pro Cys Leu Met Pro Glu Tyr 135 130 Phe Glu Arg Gln Ile Lys Asp Ile Ser Glu Ala Ala Leu Lys Glu Arg 150 155 Ile Glu Leu Arg Lys Val Lys Ala Ser Val Asp Met Phe Asp Gln Leu 165 170 Leu Gln Ala Gly Thr Thr Val Ser Leu Glu Thr Thr Asn Ser Leu Leu 180 . 185 Asp Leu Leu Cys Tyr Tyr Gly Asp Gln Glu Pro Ser Thr Asp Tyr His 195 200 Phe Gln Gln Thr Gly Gln Ser Glu Ala Leu Glu Glu Asn Asp Glu 215 210 Thr Ser Arg Arg Lys Ala Gly His Gln Phe Gly Val Thr Trp Arg Ala 230 235 225 Lys Asn Asn Ala Glu Arg Ile Phe Ser Leu Met Pro Glu Lys Asn Glu 245 His Ser Tyr Cys Thr Met Ile Arg Gly Met Val Lys His Arg Ala Tyr 260 265 Glu Gln Ala Leu Asn Leu Tyr Thr Glu Leu Leu Asn Asn Arg Leu His 280 Ala Asp Val Tyr Thr Phe Asn Ala Leu Ile Glu Ala Thr Val Cys Ala 295 290 Ile Asn Glu Lys Phe Glu Glu Lys Trp Ser Lys Ile Leu Glu Leu Leu 310 Arg His Met Val Ala Gln Lys Val Lys Pro Asn Leu Gln Thr Phe Asn Thr Ile Leu Lys Cys Leu Arg Arg Phe His Val Phe Ala Arg Ser Pro 345 340 Ala Leu Gln Val Leu Arg Glu Met Lys Ala Ile Gly Ile Glu Pro Ser 360

Leu Ala Thr Tyr His His Ile Ile Arg Leu Phe Asp Gln Pro Gly Asp Pro Leu Lys Arg Ser Ser Phe Ile Ile Tyr Asp Ile Met Asn Glu Leu Met Gly Lys Arg Phe Ser Pro Lys Asp Pro Asp Asp Lys Phe Phe Gln Ser Ala Met Ser Ile Cys Ser Ser Leu Arg Asp Leu Glu Leu Ala Tyr Gln Val His Gly Leu Leu Lys Thr Gly Asp Asn Trp Lys Phe Ile Gly Pro Asp Gln His Arg Asn Phe Tyr Tyr Ser Lys Phe Phe Asp Leu Ile Cys Leu Met Glu Gln Ile Asp Val Thr Leu Lys Trp Tyr Glu Asp Leu Ile Pro Ser Ala Tyr Phe Pro His Ser Gln Thr Met Ile His Leu Leu Gln Ala Leu Asp Val Ala Asn Arg Leu Glu Val Ile Pro Lys Ile Trp Lys Asp Ser Lys Glu Tyr Gly His Thr Phe Arg Ser Asp Leu Arg Glu Glu Ile Leu Met Leu Met Ala Arg Asp Lys His Pro Pro Glu Leu Gln Val Ala Phe Ala Asp Cys Ala Ala Asp Ile Lys Ser Ala Tyr Glu Ser Gln Pro Ile Arg Gln Thr Ala Gln Asp Trp Pro Ala Thr Ser Leu Asn Cys Ile Ala Ile Leu Phe Leu Arg Ala Gly Arg Thr Gln Glu Ala Trp Lys Met Leu Gly Leu Phe Arg Lys His Asn Lys Ile Pro Arg Ser

Glu Leu Leu Asn Glu Leu Met Asp Ser Ala Lys Val Ser Asn Ser Pro 610 615 620

Ser Gln Ala Ile Glu Val Val Glu Leu Ala Ser Ala Phe Ser Leu Pro 625 630 635 640

Ile Cys Glu Gly Leu Thr Gln Arg Val Met Ser Asp Phe Ala Ile Asn 645 650 655

Gln Glu Gln Lys Glu Ala Leu Ser Asn Leu Thr Ala Leu Thr Ser Asp 660 665 670

Ser Asp Thr Asp Ser Ser Ser Asp Ser Asp Ser Asp Thr Ser Glu Gly 675 680 685

Lys

<210> 20

<211> 2068

<212> DNA

<213> Homo sapiens

<400> 20

atggcggttg tatctgctgt tcgctggctg ggcctccgca gcaggcttgg ccagccgctg 60 acgggtcggc gggcgggttt gtgtgaacag gcacgcagct gcagatttta ttctggtagt 120 gcaaccctct caaaggttga aggaactgat gtaacaggga ttgaagaagt agtaattcca 180 aaaaagaaaa cttgggataa agtagccgtt cttcaggcac ttgcatccac agtaaacagg 240 gataccacag ctgtgcctta tgtgtttcaa gatgatcctt accttatgcc agcatcatct 300 ttggaatctc gttcattttt actggcaaag aaatccgggg agaatgtggc caagtttatt 360 attaattcat accccaaata ttttcagaag gacatagctg aacctcatat accgtgttta 420 atgcctgagt actttgaacc tcagatcaaa gacataagtg aagccgccct gaaggaacga 480 attgagetca gaaaagteaa ageetetgtg gaeatgtttg ateagetttt geaageagga 540 accactgtgt ctcttgaaac aacaaatagt ctcttggatt tattgtgtta ctatggtgac 600 caggageeet caactgatta ecatttteaa caaactggae agteagagea ttggaagagg 660 aaaatgatga gacatctagg aggaaagctg gtcatcagtt tggagttaca tggcgagcaa 720 aaaacaacgc tgagagaatc ttttctctaa tgccagagaa aaatgaacat tcctattgca 780 caatgatccg aggaatggtg aagcaccgag cttatgagca ggcattaaac ttgtacactg 840 agttactaaa caacagactc catgctgatg tatacacatt taatgcattg attgaagcaa 900

cagtatgtgc gataaatg	ag aaatttgagg	aaaaatggag	taaaatactg	gagctgctaa	960
gacacatggt tgcacaga	ag gtgaaaccaa	atcttcagac	ttttaatacc	attctgaaat	1020
gtctccgaag atttcatg	tg tttgcaagat	cgccagcctt	acaggtttta	cgtgaaatga	1080
aagccattgg aatagaac	cc tcgcttgcaa	catatcacca	tattattcgc	ctgtttgatc	1140
aacctggaga ccctttaa	ag agatcatcct	tcatcattta	tgatataatg	aatgaattaa	1200
tgggaaagag attttctc	ca aaggacccgg	atgatgataa	gtttttcagt	cagccatgag	1260
catatgetea teteteag	ag atctagaact	tgcctaccaa	gtacatggcc	ttttaaaaac	1320
cggagacaac tggaaatt	ca ttggacctga	tcaacatcgt	aatttctatt	attccaagtt	1380
cttcgatttg atttgtct	aa tggaacaaat	tgatgttacc	ttgaagtggt	atgaggacct	1440
gataccttca gcctactt	tc cccactccca	aacaatgata	catcttctcc	aagcattgga	1500
tgtggccaat cggctaga	ag tgattcctaa	aatttggaaa	gatagtaaag	aatatggtca	1560
tactttccgc agtgacct	ga gagaagagat	cctgatgctc	atggcaaggg	acaagcaccc	1620
accagagett caggtgge	at ttgctgactg	tgctgctgat	atcaaatctg	cgtatgaaag	1680
ccaacccatc agacagac	tg ctcaggattg	gccagccacc	tctctcaact	gtatagctat	1740
cctcttttta agggctgg	ga gaactcagga	agcctggaaa	atgttggggc	ttttcaggaa	1800
gcataataag attcctag	aa gtgagttgct	gaatgagctt	atggacagtg	caaaagtgtc	1860
taacagccct tcccaggc	ca ttgaagtagt	agagctggca	agtgccttca	gcttacctat	1920
ttgtgagggc ctcaccca	ga gagtaatgag	tgattttgca	atcaaccagg	aacaaaagga	1980
agccctaagt aatctaac	tg cattgaccag	tgacagtgat	actgacagca	gcagtgacag	2040
cgacagtgac accagtga	ag gcaaatga				2068