

Note " This is equivalent to the gally - point approximation, i.e. using an equations of B! 6. De fin efterne a orin es always : w [s, m, m] = 2 [s, m, m] T DA DC OE ex([; Sest, com/om + ; \ _ = = (] = A = + - - - = - - -] n the free - feld (init goo, co are less um the quadratic S = A = - = (2 A = - = (2 A =) - = (2 A =) - = (2 A =) - (°:ē°) (°; -7) } - = (= =) 2 - (= =) (= =) } = | 10 = | = An B An + = (an An) 2 - = (> i + =) 2 - (); =) (); =)] + = (- =) (2; A;) - (2; c =)] can to the part integral be can & it is just a Coursiion , but eritor to use saddle point approximation, which is known her, Denoting en fells collectively by \$, and are classical solver Timo by del, then a con expand the commend action)

S(4) =
$$2 \cdot \frac{1}{4} \cdot \frac{1$$

$$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) \right) \right) \right) \\
= \frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}$$

