Bayesian Analytics What, How, and Application

LG Aimers

김재환 고려대학교 경영대학

Bayesian Analytics

- Bayesian: Principle and Structure
 - Example
 - Principles and Structure
- Bayesian: Estimation Algorithm
 - MCMC
 - Gibbs Sampler | Metropolis-Hastings Algorithm
- Bayesian: Solving Real Problem
 - Predicting heterogeneous consumer response

Conditional Probability

Bayes 정리

Sampling?

사후확률

Markell O 지 안 · Bayesian 으로 그 Aoint

Marginal Probability

Algorithm

Bayesian Analytics

P(궁금한대상|Data)

변수

예: GPA

3.75

4.12

4.30

2.41

3.01

•

변수

예: GPA

3.75 4.12 4.30 2.41 3.01 • 분포

・ 분포 요약

평균 : 3.48 중위수: 3.54 표준편차: 0.65

변수

예: GPA

3.75 4.12 4.30 2.41 3.01

모수

 $\mathfrak{A}: \quad \mathbf{Salary} = \beta \cdot \mathbf{GPA} + \varepsilon$

0.45 0.01 1.24 1.13 0.75

• 분포

• 분포 요약

모수

 $\mathbf{Q}: \quad \mathbf{Salary} = \beta \cdot \mathbf{GPA} + \varepsilon$

0.45 0.01 1.24 1.13 0.75

평균: 0.60 중위수: 0.60

표준편차: 0.49

95%C.I: [-0.36, 1.56]

변수

예:

GPA

3.75

4.12

4.30

2.41

3.01

•

모수

• 분포

예:

Salary $= \beta \cdot GPA + \varepsilon$

• 분포 요약

0.45

0.01

1.24

1.13

0.75

:

변수

예:

GPA

3.75

4.12

4.30

2.41

3.01

•

모수

• 분포

예:

Salary $= \beta \cdot GPA + \varepsilon$

• 분포 요약

0.45

0.01

1.24

1.13

0.75

:

Question

*X*의 y 에 대한 예측 력

Data: (y, x)

obs	y	X
1	16.3	0
2	11.5	1
3	8.3	1
4	16.2	0
5	13.6	0
•	•	•

Model

$$y = \beta_0 + \beta_1 X + \varepsilon$$
$$\varepsilon \sim N(0, \sigma^2)$$

Results

$$\beta_0 = ? \beta_1 = ? \sigma^2 = ?$$

> Answers

	beta.0	beta.1	s.sq
mean	15.04	-4.03	2.11
2.5%	14.91	-4.22	1.91
97.5%	15.17	-3.84	2.32

Probability distribution of beta.1

Question

Data: (y, x)

Model

Results

Data: (y, x)

Question

$$\beta_0 = ? \beta_1 = ? \sigma^2 = ?$$

Results

 $P(\beta_0|Data)$

 $P(\beta_1|Data)$

 $P(\sigma^2|Data)$

Model

Question

$$\beta_0 = ? \beta_1 = ? \sigma^2 = ?$$

Model

$$y = \beta_0 + \beta_1 X + \varepsilon$$

$$\varepsilon \sim N(0, \sigma^2)$$

Data: (y, x)

obs	У	X
1	16.3	0
2	11.5	1
3	8.3	1
4	16.2	0
5	13.6	0
•	•	•

Results

 $P(\beta_0|Data)$

 $P(\beta_1|Data)$

 $P(\sigma^2|Data)$

Question

$$\beta_0 = ? \beta_1 = ? \sigma^2 = ?$$

parameters

Results

 $P(\beta_0|Data)$ $P(\beta_1|Data)$ $P(\sigma^2|Data)$

Question

parameters

P(parameters)

Data: (y, x)

P(Data|parameters)

Results

P(parameters|Data)

Question

parameters

Results

P(*parameters*)

Data: (y, x)

P(Data|parameters)

P(parameters|Data)

Prior

Likelihood

Prior *P*(*parameters*) parameters Data: (y, x) P(Data|parameters)P(parameters|Data)

Likelihood

$$y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

parameters

$$P(\beta_0), P(\beta_1), P(\sigma^2)$$

P(parameters)

Prior

$$P(y|\beta_0,\beta_1,\sigma^2,X)$$

Data: (y, x)

P(Data|parameters)

Likelihood

$$P(\beta_0|y,X), P(\beta_1|y,X),$$

 $P(\sigma^2|y,X)$

P(parameters|Data)

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 , $\boldsymbol{\beta} = (\beta_0, \beta_1)'$

parameters

$$P(\beta_0), P(\beta_1), P(\sigma^2)$$

P(parameters)

Prior

$$P(y|\beta_0,\beta_1,\sigma^2,X)$$

Data: (y, x)

P(Data|parameters)

Likelihood

$$P(\beta_0|y,X), P(\beta_1|y,X),$$

 $P(\sigma^2|y,X)$

P(parameters|Data)

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$
 , $\boldsymbol{\beta} = (\beta_0, \beta_1)'$

parameters

 $P(\boldsymbol{\beta}), P(\sigma^2)$

P(parameters)

Prior

 $P(\mathbf{y}|\mathbf{\beta},\sigma^2,\mathbf{X})$

Data: (y, x)

P(Data|parameters)

Likelihood

$$P(\boldsymbol{\beta}|\mathbf{y},\mathbf{X}), P(\sigma^2|\mathbf{y},\mathbf{X})$$

P(parameters|Data)

parameters

$$\beta \sim N(\beta_{prior}, \Sigma_{prior})$$

 $\sigma^2 \sim IG(a_{prior}, b_{prior})$

P(parameters)

Prior

$$\mathbf{y} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$$

P(Data|parameters)

Data: (y, x)

Likelihood

$$\beta \sim N(\beta_{post}, \Sigma_{post})$$

 $\sigma^2 \sim IG(a_{post}, b_{post})$

P(parameters|Data)

원리, 구성요소

• Prior: $\beta \sim N(\widetilde{\beta}, \Sigma_0)$

• Likelihood: $y \sim N(X\beta, \sigma^2 I)$

• Posterior: $\beta|y, X, \sigma^2 \sim N(\beta_1, \Sigma_1) \propto Prior \times Likelihood$

원리, 구성요소

• Prior: $\beta \sim N(\widetilde{\beta}, \Sigma_0)$

$$P(\boldsymbol{\beta}) = (2\pi^K |\Sigma_0|)^{-1/2} \exp\left\{-\frac{1}{2}(\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}})'\Sigma_0^{-1}(\boldsymbol{\beta} - \widetilde{\boldsymbol{\beta}})\right\}$$

• Likelihood: $y \sim N(X\beta, \sigma^2 I)$

$$P(\mathbf{y}|\mathbf{X},\boldsymbol{\beta}) \equiv L(\boldsymbol{\beta}|\mathbf{y},\mathbf{X}) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right\}$$

• Posterior: $\beta|y, X, \sigma^2 \sim N(\beta_1, \Sigma_1) \propto Prior \times Likelihood$

$$P(\boldsymbol{\beta}|\mathbf{y},\mathbf{X},\sigma^2) = (2\pi^K|\Sigma_1|)^{-1/2} \exp\left\{-\frac{1}{2}(\boldsymbol{\beta}-\boldsymbol{\beta}_1)'\Sigma_1^{-1}(\boldsymbol{\beta}-\boldsymbol{\beta}_1)\right\}$$

$$\mathbf{\beta}_1 = \mathbf{\Sigma}_1 \left(\mathbf{\Sigma}_0^{-1} \widetilde{\mathbf{\beta}} + \sigma^{-2} \mathbf{X}' \mathbf{y} \right)$$
$$\mathbf{\Sigma}_1 = (\mathbf{\Sigma}_0^{-1} + \sigma^{-2} \mathbf{X}' \mathbf{X})^{-1}$$

$$\boldsymbol{\beta}_{MLE} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$Var(\boldsymbol{\beta}_{MLE}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1}$$

Bayesian?

Bayesian?

$$Posterior\ Probability = \frac{Prior\ Probability \times Likelihood}{Marginalized\ Probability}$$

$$\Rightarrow P(\beta|Data) = \frac{P(\beta) \cdot P(Data|\beta)}{P(Data)}$$
Bayes 정리
$$= \frac{P(\beta) \cdot P(Data|\beta)}{\int P(\beta) \cdot P(Data|\beta) d\beta}$$
적분

Bayesian?

$$Posterior\ Probability = \frac{Prior\ Probability \times Likelihood}{Marginalzed\ Probability}$$

$$\Leftrightarrow P(\beta|Data) = \frac{P(\beta) \cdot P(Data|\beta)}{P(Data)}$$

Bayes 정리

$$= \frac{P(\beta) \cdot P(Data|\beta)}{\int P(\beta) \cdot P(Data|\beta) d\beta}$$

적분

$$\Leftrightarrow$$
 $P(\beta|Data) \propto P(\beta) \times P(Data|\beta)$
Posterior Prior Likelihood

Summary

P(궁금한대상|Data)P(parameter|Data)

Summary

What is Bayesian Analytics?

Question is about "parameter" and answer is about "parameter".

For unknown parameter, assessing uncertainty through the **probability** distribution of parameter **after** data were seen.

Data Scientist's job (Components)

- Model: Parameter + Data
- Computation: Prior × Likelihood ∞ Posterior
- Output: Posterior distribution of parameters

Bayesian Analytics What, How, and Application

LG Aimers

김재환 고려대학교 경영대학

Bayesian Analytics

- Bayesian: Principle and Structure
 - Example
 - Principles and Structure
- Bayesian: Estimation Algorithm
 - MCMC
 - Gibbs Sampler | Metropolis-Hastings Algorithm
- Bayesian: Solving Real Problem
 - Predicting heterogeneous consumer response

Posterior

∞ Likelihood x Prior

 $P(Data|\beta)$ $P(\beta)$

Case 1

Easy

 $P(Data|\beta)$ $P(\beta)$ $P(\beta|Data)$ $Poisson(\beta) \times Gamma(a,b) \propto Gamma(a_1,b_1)$

Posterior

∞ Likelihood x Prior

$$P(Data|\beta) \quad P(\beta)$$

Case 2

Not easy

$$P(Data|\beta)$$
 $P(\beta)$ $P(\beta|Data)$ $P(\beta|Data)$ $P(\beta|Stic(\beta) \times Normal(\tilde{\beta}, \tilde{\sigma}^2) \propto$?

Estimation Algorithm

Monte Carlo?

Drawing samples 'many times' from a probability distribution

예:
$$\theta^{(i)} \sim f(\theta_{fix})$$
 $i = 1, ...R(big\ number)$

Markov Chain + Monte Carlo ?

Drawing samples 'many times' from a probability distribution that is dependent on the last sample

예:
$$\theta^{(i)} \sim f\left(g(\theta^{(i-1)})\right)$$
 $i = 1, ...R(big\ number)$

Algorithm 1: Gibbs Sampler

- Goal: Estimate Joint Posterior Distribution of Parameters
- = Reaching the joint probability distribution via sampling from conditional distribution

Example

Model: $y = X\theta_1 + \varepsilon$ $\varepsilon \sim N(0, \theta_2)$

Output: $P(\theta_1, \theta_2 | y, X)$

When: It is "not easy" to draw from the joint posterior distribution, $P(\theta_1, \theta_2 | y, X)$, but "easy" to draw from the conditional distributions, $P(\theta_1 | \theta_2, y, X)$, $P(\theta_2 | \theta_1, y, X)$.

Goal: Draw
$$\begin{pmatrix} \theta_1^{(1)} \\ \theta_2^{(1)} \end{pmatrix}$$
, $\begin{pmatrix} \theta_1^{(2)} \\ \theta_2^{(2)} \end{pmatrix}$, $\begin{pmatrix} \theta_1^{(3)} \\ \theta_2^{(3)} \end{pmatrix}$, ..., $\begin{pmatrix} \theta_1^{(R)} \\ \theta_2^{(R)} \end{pmatrix}$ from $P(\boldsymbol{\theta_1}, \boldsymbol{\theta_2} | y, X)$

Goal: Draw
$$\begin{pmatrix} \theta_1^{(1)} \\ \theta_2^{(1)} \end{pmatrix}$$
, $\begin{pmatrix} \theta_1^{(2)} \\ \theta_2^{(2)} \end{pmatrix}$, $\begin{pmatrix} \theta_1^{(3)} \\ \theta_2^{(3)} \end{pmatrix}$, ..., $\begin{pmatrix} \theta_1^{(R)} \\ \theta_2^{(R)} \end{pmatrix}$ from $P(\theta_1, \theta_2 | y, X)$

Step 0. Pick an initial $\theta_2^{(0)}$

Goal: Draw
$$\begin{pmatrix} \theta_1^{(1)} \\ \theta_2^{(1)} \end{pmatrix}$$
, $\begin{pmatrix} \theta_1^{(2)} \\ \theta_2^{(2)} \end{pmatrix}$, $\begin{pmatrix} \theta_1^{(3)} \\ \theta_2^{(3)} \end{pmatrix}$, ..., $\begin{pmatrix} \theta_1^{(R)} \\ \theta_2^{(R)} \end{pmatrix}$ from $P(\boldsymbol{\theta_1}, \boldsymbol{\theta_2} | y, X)$

Step 0. Pick an initial $(\theta_2^{(0)})$ Step 1-(1). One draw from $P\left(\theta_1 | \theta_2^{(0)} y, X\right) \to \text{Keep it as } \theta_1^{(1)}$

Goal: Draw
$$\begin{pmatrix} \theta_1^{(1)} \\ \theta_2^{(1)} \end{pmatrix}$$
, $\begin{pmatrix} \theta_1^{(2)} \\ \theta_2^{(2)} \end{pmatrix}$, $\begin{pmatrix} \theta_1^{(3)} \\ \theta_2^{(3)} \end{pmatrix}$, ..., $\begin{pmatrix} \theta_1^{(R)} \\ \theta_2^{(R)} \end{pmatrix}$ from $P(\boldsymbol{\theta_1}, \boldsymbol{\theta_2} | \boldsymbol{y}, \boldsymbol{X})$

Step 0. Pick an initial $\theta_2^{(0)}$

Step 1-(1). One draw from
$$P\left(\theta_1 | \theta_2^{(0)} y, X\right) \to \text{Keep it as}\left(\theta_1^{(1)}\right)$$

Step 1-(2). One draw from
$$P\left(\theta_2 | \theta_1^{(1)} \hat{y}, X\right) \to \text{Keep it as } \theta_2^{(1)}$$

Goal: Draw
$$\begin{pmatrix} \theta_1^{(1)} \\ \theta_2^{(1)} \end{pmatrix}$$
, $\begin{pmatrix} \theta_1^{(2)} \\ \theta_2^{(2)} \end{pmatrix}$, $\begin{pmatrix} \theta_1^{(3)} \\ \theta_2^{(3)} \end{pmatrix}$, ..., $\begin{pmatrix} \theta_1^{(R)} \\ \theta_2^{(R)} \end{pmatrix}$ from $P(\boldsymbol{\theta_1}, \boldsymbol{\theta_2} | \boldsymbol{y}, \boldsymbol{X})$

Step 0. Pick an initial $\theta_2^{(0)}$

Step 1-(1). One draw from
$$P\left(\theta_1 | \theta_2^{(0)} y, X\right) \to \text{Keep it as } \theta_1^{(1)}$$

Step 1-(2). One draw from
$$P\left(\theta_2 | \theta_1^{(1)} y, X\right) \to \text{Keep it as}\left(\theta_2^{(1)}\right)$$

Step 2-(1). One draw from
$$P\left(\theta_1 | \theta_2^{(1)} y, X\right) \to \text{Keep it as } \theta_1^{(2)}$$

. . .

Step R-(2). One draw from
$$P\left(\theta_1 | \theta_1^{(R)} y, X\right) \to \text{Keep it as } \theta_2^{(R)}$$

Goal: Draw
$$\begin{pmatrix} \theta_1^{(1)} \\ \theta_2^{(1)} \end{pmatrix}$$
, $\begin{pmatrix} \theta_1^{(2)} \\ \theta_2^{(2)} \end{pmatrix}$, $\begin{pmatrix} \theta_1^{(3)} \\ \theta_2^{(3)} \end{pmatrix}$, ..., $\begin{pmatrix} \theta_1^{(R)} \\ \theta_2^{(R)} \end{pmatrix}$ from $P(\theta_1, \theta_2 | y, X)$

	$ heta_1$	$ heta_2$
1	$ heta_1^{(1)}$	$ heta_2^{(1)}$
2	$ heta_1^{(2)}$	$ heta_2^{(2)}$
3	$\theta_1^{(3)}$	$\theta_2^{(3)}$
•		
•		
R	$ heta_1^{(R)}$	$ heta_2^{(R)}$

Goal: Draw
$$\begin{pmatrix} \theta_1^{(1)} \\ \theta_2^{(1)} \end{pmatrix}$$
, $\begin{pmatrix} \theta_1^{(2)} \\ \theta_2^{(2)} \end{pmatrix}$, $\begin{pmatrix} \theta_1^{(3)} \\ \theta_2^{(3)} \end{pmatrix}$, ..., $\begin{pmatrix} \theta_1^{(R)} \\ \theta_2^{(R)} \end{pmatrix}$ from $P(\boldsymbol{\theta_1}, \boldsymbol{\theta_2} | y, X)$

Goal: Draw
$$\begin{pmatrix} \theta_1^{(1)} \\ \theta_2^{(1)} \end{pmatrix}$$
, $\begin{pmatrix} \theta_1^{(2)} \\ \theta_2^{(2)} \end{pmatrix}$, $\begin{pmatrix} \theta_1^{(3)} \\ \theta_2^{(3)} \end{pmatrix}$, ..., $\begin{pmatrix} \theta_1^{(R)} \\ \theta_2^{(R)} \end{pmatrix}$ from $P(\boldsymbol{\theta_1}, \boldsymbol{\theta_2} | y, X)$

Goal: Draw
$$\begin{pmatrix} \theta_1^{(1)} \\ \theta_2^{(1)} \end{pmatrix}$$
, $\begin{pmatrix} \theta_1^{(2)} \\ \theta_2^{(2)} \end{pmatrix}$, $\begin{pmatrix} \theta_1^{(3)} \\ \theta_2^{(3)} \end{pmatrix}$, ..., $\begin{pmatrix} \theta_1^{(R)} \\ \theta_2^{(R)} \end{pmatrix}$ from $P(\boldsymbol{\theta_1}, \boldsymbol{\theta_2} | y, X)$

Algorithm 2: Metropolis-Hastings

Goal: Estimate Joint Posterior Distribution of Parameters

When: It is "not easy" to draw from the posterior distribution.

Algorithm 2: Metropolis-Hastings

Goal: Estimate Joint Posterior Distribution of Parameters

When: It is "not easy" to draw from the posterior distribution.

Example

Model:
$$U = X\theta + \varepsilon$$
 $\varepsilon \sim logistic(0,1)$ $y = 1$ if $U > 0$ $y = 0$ otherwise

Likelihood: $P(y|\theta, X) = \left[\frac{exp(X\theta)}{1 + exp(X\theta)}\right]^y \left[\frac{1}{1 + exp(X\theta)}\right]^{1-y}$

Prior: $\theta \sim N(\mu_\theta, \sigma_\theta)$

Output: $P(\theta|y, X) = ?$

Goal: Draw $\theta^{(1)}$, $\theta^{(2)}$, $\theta^{(3)}$, ..., $\theta^{(R)}$ from $P(\theta|y,X)$

- Idea:
- (i) "A candidate draw" is sampled from an auxiliary density from which we can easily take samples.
- (ii) Either "Accept or Reject" the candidate draw based on some rules that are related to the posterior distributions.
- (iii) The accepted draws are used to summarize the posterior distribution.

Goal: Draw $\theta^{(1)}$, $\theta^{(2)}$, $\theta^{(3)}$, ..., $\theta^{(R)}$ from $P(\theta|y,X)$

Step 0. Pick an initial $\theta^{(0)}$

Step 1-(1). One draw,
$$\delta$$
, from $N(0,\tau^2) \to \text{Let } \theta_{candidate} = \theta^{(0)} + \delta$

Step 1-(2). Evaluate $a = \frac{\text{Likelihood}(\theta_{candidate}) \times Prior(\theta_{candidate})}{\text{Likelihood}(\theta^{(0)}) \times Prior(\theta^{(0)})} \times N(\theta^{(0)} | \theta_{candidate}) \times N(\theta^{(0)} | \theta_{candidate})$

Step 1-(3). One draw, u , from $Uniform(0,1) \to Accept \theta_{candidate}$ as $\theta^{(1)}$ if $a > u$ Keep $\theta^{(0)}$ as $\theta^{(1)}$ otherwise

:

Repeat until last iteration

Goal: Draw $\theta^{(1)}$, $\theta^{(2)}$, $\theta^{(3)}$, ..., $\theta^{(R)}$ from $P(\theta|y, X)$

Goal: Draw $\theta^{(1)}$, $\theta^{(2)}$, $\theta^{(3)}$, ..., $\theta^{(R)}$ from $P(\theta|y,X)$

 θ

Goal: Draw $\theta^{(1)}$, $\theta^{(2)}$, $\theta^{(3)}$, ..., $\theta^{(R)}$ from $P(\theta|y,X)$

Summary

How to estimate posterior distribution of parameters?

• MCMC

- Recursive sampling from the conditional distributions over the long iterations will give the joint posterior distribution of parameters.
- Gibbs Sampling
 - When we know the conditional distribution:
 → all draws are 'accepted'
- Metropolis Hastings (Random Walk MH)
 - When we don't know the conditional distribution: → some draws are 'accepted'

Data Scientist's job:

- Input: Data, Prior, Likelihood, Starting values
- Output: Trace plot, Distribution, Summary statistics

Summary

Data Scientist's job (cont'd)

- Check list for Metropolis algorithm:
 - 1. Convergence
 - 2. Multiple starting points
 - 3. Burn-in
 - 4. Autocorrelation Acceptance rate, ACF

```
Step 0. Pick an initial \theta_{ij}^{(0)}
```

```
Step 1-(1). One draw, \delta, from N(0, \tau^2) \to \text{Let } \theta_{candidate}^{\square} + \delta

Step 1-(2). Evaluate a = \frac{\text{Likelihood}(\theta_{candidate}^{\square}) \times \text{Prior}(\theta_{candidate}^{\square}) \times N(\theta_{\square}^{(0)} | \theta_{candidate}^{\square})}{\text{Likelihood}(\theta_{\square}^{(0)}) \times \text{Prior}(\theta_{\square}^{(0)})} \times N(\theta_{candidate}^{\square} | \theta_{\square}^{(0)})}

Step 1-(3). One draw, u, from \text{Uniform}(0,1) \to \text{Accept } \theta_{candidate}^{\square} as \theta_{\square}^{(1)} if a > u Keep \theta_{\square}^{(0)} as \theta_{\square}^{(1)} otherwise
```

Summary

- Data Scientist's job (cont'd)
 - Check list for Metropolis algorithm:
 - 1. Convergence
 - 2. Multiple starting points
 - 3. Burn-in
 - 4. Autocorrelation Acceptance rate, ACF
 - 30% acceptance rate
 - Every __th draws are kept in the final output

Bayesian Analytics What, How, and Application

LG Aimers

김재환 고려대학교 경영대학

Bayesian Analytics

- Bayesian: Principle and Structure
 - Example
 - Principles and Structure
- Bayesian: Estimation Algorithm
 - MCMC
 - Gibbs Sampler | Metropolis-Hastings Algorithm
- Bayesian: Solving Real Problem
 - Predicting heterogeneous consumer response

Hierarchical Bayesian Analysis for Heterogeneous Consumer Behavior

• Prediction : 수요예측

• Heterogeneity: 개인 고객별로 parameter가 다른 상태

• Conjoint Method: 현재 시장내 제품에는 없는, 새로운 feature 도입되었을 시의 수요에 대한 예측

Hierarchical Bayesian Analysis for Heterogeneous Consumer Behavior

00 기업

Want : 현재 사업 지역 → 다른 지역으로 확장

As-is: 낯선 경쟁사의 서비스를 좋아할 리는 없을 것. 승산은 없는가?

Prediction/Decision: 어느 고객에게 어떤 식으로 제안하면 그래도 승산 있을까?

$$r \times m - c > 0$$

Hierarchical Bayesian Analysis for Heterogeneous Consumer Behavior

Decision Problem [D]

- Whom to target
- What to offer

Information Need [I]

 Who is likely to respond to our service offering?

Data Scientist's job

Offering answers to [D] and [I]
 via providing posterior probability of parameters

Hierarchical Bayesian Analysis for Heterogeneous **Consumer Behavior**

비교

Likelihood:
$$y = x\beta + \varepsilon$$
 $y_h = x_h\beta_h + \varepsilon_h$:

Prior $\beta \sim N(\beta_{prior}, \sigma_{prior}^2)$ $\beta_h \sim N(\bar{\beta}, v)$ Here

$$y_h = x_h \beta_h + \varepsilon_h$$
 : Likelihood
$$\beta_h \sim N(\bar{\beta}, v)$$
 Heterogeneity

Hierarchical Bayesian Analysis for Heterogeneous Consumer Behavior

- Data
- Model Output and Input
- Estimation
- Output processing
- Managerial Decision

Data

Transaction

Time	Buy	Customer
오전 11:10:14	С	ID 00001
오후 9:04:35	C	ID 00001
오후 8:15:43	Α	ID 00001
오전 10:41:49	В	ID 13247
오후 1:07:35	C	ID 13247
오후 2:22:59	В	ID 13247
오후 2:04:27	В	ID 13247
오후 4:57:06	С	ID 00586
오후 3:10:53	C	ID 00586
:	•	:

{ **y** }

Data

Service offering

{ **X** }

Transaction

	Time	Buy	Customer	_
	오전 11:10:14	С	ID 00001	
-{	오후 9:04:35	С	ID 00001	
Ī	오후 8:15:43	Α	ID 00001	
	오전 10:41:49	В	ID 13247	
	오후 1:07:35	C	ID 13247	
	오후 2:22:59	В	ID 13247	Ш
	오후 2:04:27	В	ID 13247)
	오후 4:57:06	С	ID 00586)
	오후 3:10:53	C	ID 00586	
_	:	•	:	_ 5
_		{ y }		

Consumer

$$\begin{bmatrix} Z_1 & Z_2 & ... & Z_N \end{bmatrix}$$

$$\begin{array}{c|cccc} Z_1 & Z_2 & .. & Z_N \end{array}$$

{ **Z** }

1 . Among the competing services (i = A, B, C, D), an individual(h)'s purchase of a service/product(i) is dependent on the attributes, $\mathbf{x}_{h,i} = (x_{1,i}, \dots, x_{K,i})$ and how much she values those attributes, $\mathbf{\beta}_h = (\beta_{1,h}, \dots, \beta_{K,h})$; She purchases one that she likes most.

$$P(y_{h,t} = i | \boldsymbol{\beta}_h, \mathbf{X}_{h,t}) = \frac{\exp(\boldsymbol{\beta}_h' \mathbf{X}_{h,i,t})}{\sum_j \exp(\boldsymbol{\beta}_h' \mathbf{X}_{h,j,t})}$$

$$h = 1,..., H$$
, $i = A,..., D$, $t = 1,..., T_h$

2 . Such attribute importance is 'different' across individuals ($\beta_h \neq \beta_h$)

$$P(y_{h,t} = \mathbf{i} | \boldsymbol{\beta}_h, \mathbf{X}_{h,t}) = \frac{\exp(\boldsymbol{\beta}_h' \mathbf{X}_{h,i,t})}{\sum_{j} \exp(\boldsymbol{\beta}_h' \mathbf{X}_{h,j,t})}$$

$$\boldsymbol{\beta}_1 = (\beta_{1,h}, \dots, \beta_{K,h}) \qquad 1 \qquad 2, \dots \qquad , -1$$

$$\boldsymbol{\beta}_2 = (\beta_{1,h}, \dots, \beta_{K,h}) \qquad 2 \qquad 0, \dots \qquad , -3$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\boldsymbol{\beta}_H = (\beta_{1,h}, \dots, \beta_{K,h}) \qquad H \qquad -3, \dots \qquad , -0.1$$

- 2 . Such attribute importance is 'different' across individuals ($\beta_h \neq \beta_h$ ')
- 3 . Individual-specific parameter may be related to that individuals observed characteristics such as demo-, techno-, socio-, psycho-graphic characteristics, $\mathbf{z}_h = (z_{1,h}, \cdots, z_{N,h})$

$$P(y_{h,t} = i | \boldsymbol{\beta}_h, \mathbf{X}_{h,t}) = \frac{\exp(\boldsymbol{\beta}_h' \mathbf{x}_{h,i,t})}{\sum_j \exp(\boldsymbol{\beta}_h' \mathbf{x}_{h,j,t})}$$

- 2 . Such attribute importance is 'different' across individuals ($\beta_h \neq \beta_h$)
- 3 . Individual-specific parameter maybe related to that individuals observed characteristics such as demo-, techno-, socio-, psycho-graphic characteristics, $\mathbf{z}_h = (z_{1,h}, \dots, z_{N,h})$ which is 'mean-corrected'.

$$P(y_{h,t} = i | \boldsymbol{\beta}_h, \mathbf{X}_{h,t}) = \frac{\exp(\boldsymbol{\beta}_h' \mathbf{X}_{h,i,t})}{\sum_{j} \exp(\boldsymbol{\beta}_h' \mathbf{X}_{h,j,t})}$$

$$\boldsymbol{\beta}_h = \Gamma \quad \boldsymbol{z}_h + \zeta_h \quad \zeta_h \sim N(\mathbf{0}, \mathbf{V}_\beta)$$

$$(k \times 1) (k \times N) (N \times 1) \quad (K \times 1)$$

- Parameter : $\{\boldsymbol{\beta}_h, h=1,...,H\}$, , \mathbf{V}_{β}
- Data : $\{y_{h,t}\}$, $\{\mathbf{X}_{h,t}\}$, $\{\mathbf{z}_h\}$; h = 1,...,H; $t = 1,...,T_h$
- Likelihood: $P(y_{h,t} = i | \boldsymbol{\beta}_h, \mathbf{X}_{h,t}) = \frac{\exp(\boldsymbol{\beta}_h \cdot \mathbf{x}_{h,i,t})}{\sum_j \exp(\boldsymbol{\beta}_h \cdot \mathbf{x}_{h,j,t})}$
- Heterogeneity: $\beta_h = \Gamma z_h + \zeta_h \Leftrightarrow \beta_h \sim N(\Gamma z_h, \mathbf{V}_{\beta})$
- Prior: $P(vec(\Gamma)|\mathbf{V}_{\beta}) = N(\Gamma_0, \mathbf{V}_{\beta} \otimes \mathbf{A}^{-1})$ $P(\mathbf{V}_{\beta}) = Invert\ Wishart(d_0, \mathbf{D}_0)$

Variable description

Conjoint Data: y, X, z

H = 946; Total observations = 14,799

Y: At each choice task, two alternatives are offered: i=1, 2

X: Attributes (service features)

X	Attributes
X_1	Low fixed rate
X_2	Low annual fee
X_3	Out-of-state
:	:
X ₁₄	High Credit limit

Z: customer characteristics

Z	Characteristics
1	Age
2	Income
3	Gender

Case source

Allenby, G. and J. Ginter, "Using Extremes to Design Products and Segment Markets" 1995.

Output and Input

- Parameter : $\{\boldsymbol{\beta}_h, h=1,...,H\}$, , \mathbf{V}_{β}
- Posterior : $P(\{\boldsymbol{\beta}_h\}, \Gamma, \mathbf{V}_{\beta} \mid \{y_{h,t}\}, \{\mathbf{X}_{h,t}\}, \{\mathbf{z}_h\})$

Output and Input

- Parameter : $\{\boldsymbol{\beta}_h, h=1,...,H\}$, , \mathbf{V}_{β}
- Posterior : $P(\{\beta_h\}, \Gamma, \mathbf{V}_{\beta} \mid \{y_{h,t}\}, \{\mathbf{X}_{h,t}\}, \{\mathbf{z}_h\})$

$$P(y_{h,t} = i | \boldsymbol{\beta}_h, \mathbf{X}_{h,t})$$

$$= \frac{\exp(\boldsymbol{\beta}_h' \mathbf{X}_{h,i,t})}{\sum_j \exp(\boldsymbol{\beta}_h' \mathbf{X}_{h,j,t})}$$

$$\boldsymbol{y}_h$$

$$\boldsymbol{y}_h$$

$$\boldsymbol{y}_h$$

$$\boldsymbol{X}_h$$

- Parameter : $\{\boldsymbol{\beta}_h, h = 1, ..., H\}$, \boldsymbol{V}_{β}
- Posterior : $P(\{\beta_h\}, \Gamma, V_\beta \mid \{y_{h,t}\}, \{X_{h,t}\}, \{z_h\})$

$$\{\boldsymbol{\beta}_h\} \sim P(\{\boldsymbol{\beta}_h\} \mid \Gamma, \mathbf{V}_{\beta}, \{y_{h,t}\}, \{\mathbf{X}_{h,t}\})$$

$$\Gamma \sim P(\Gamma | \{\beta_h\}, \mathbf{V}_{\beta}, \{\mathbf{z}_h\})$$

$$\mathbf{V}_{\beta} \sim P(\mathbf{V}_{\beta} \mid \{\boldsymbol{\beta}_h\}, \boldsymbol{\Gamma}, \{\mathbf{z}_h\})$$

• Posterior: $P(\{\beta_h\}, \Gamma, V_\beta \mid \{y_{h,t}\}, \{X_{h,t}\}, \{z_h\})$

$$\mathbf{1.}\left\{\boldsymbol{\beta}_{h}\right\} \sim P(\left\{\boldsymbol{\beta}_{h}\right\} \mid \boldsymbol{\Gamma}, \boldsymbol{V}_{\boldsymbol{\beta}}, \left\{\boldsymbol{y}_{h,t}\right\}, \left\{\boldsymbol{X}_{h,t}\right\}) \propto \prod_{t} \prod_{i} \left[\frac{\exp(\boldsymbol{\beta}_{h} \boldsymbol{v}_{h,i,t})}{\sum_{j} \exp(\boldsymbol{\beta}_{h} \boldsymbol{v}_{h,j,t})}\right] \times N(\boldsymbol{\Gamma} \boldsymbol{z}_{h}, \boldsymbol{V}_{\boldsymbol{\beta}})$$
For h=1,

draw,
$$\delta$$
, from $N(0, \tau^2) \rightarrow \beta_{candidate}^{(i)} = \beta_h^{(i-1)} + \delta$

$$log.posterior(candidate) = \left[\sum_{t} d_{h,i,t} \ln \left(\frac{\exp(\boldsymbol{\beta}_{h}' \mathbf{x}_{h,i,t})}{\sum_{j} \exp(\boldsymbol{\beta}_{h}' \mathbf{x}_{h,j,t})} \right) + \ln N(\boldsymbol{\beta}_{h} | \Gamma \mathbf{z}_{h}, \mathbf{V}_{\beta}) \right]_{\boldsymbol{\beta}_{h}^{(i)}}$$

$$log.posterior(current) = \left[\sum_{t} d_{h,i,t} \ln \left(\frac{\exp(\boldsymbol{\beta}_{h}' \mathbf{x}_{h,i,t})}{\sum_{j} \exp(\boldsymbol{\beta}_{h}' \mathbf{x}_{h,j,t})} \right) + \ln N(\boldsymbol{\beta}_{h} | \Gamma \mathbf{z}_{h}, \mathbf{V}_{\beta}) \right]_{\boldsymbol{\beta}_{h}^{(i-1)}}$$

• Posterior: $P(\{\beta_h\}, \Gamma, \mathbf{V}_{\beta} \mid \{y_{h,t}\}, \{\mathbf{X}_{h,t}\}, \{\mathbf{z}_h\})$

1.
$$\{\boldsymbol{\beta}_h\} \sim P(\{\boldsymbol{\beta}_h\} \mid \boldsymbol{\Gamma}, \boldsymbol{V}_{\boldsymbol{\beta}}, \{y_{h,t}\}, \{\boldsymbol{X}_{h,t}\}) \propto \prod_t \prod_i \left[\frac{\exp(\boldsymbol{\beta}_h \boldsymbol{x}_{h,i,t})}{\sum_j \exp(\boldsymbol{\beta}_h \boldsymbol{x}_{h,j,t})} \right]^{a_{h,i,t}} \times N(\boldsymbol{\Gamma} \boldsymbol{z}_h, \boldsymbol{V}_{\boldsymbol{\beta}})$$

 $a = \exp(log.posterior(candidate) - log.posterior(current))$

One draw,
$$u$$
, from $Uniform(0,1) \rightarrow \beta_h^{(i)} = \beta_{candidate}^{(i)}$ if $a > u$

$$\beta_h^{(i)} = \beta_h^{(i-1)} \quad otherwise$$

→ Repeat for h=2,.....H

• Posterior : $P(\{\beta_h\}, \Gamma, V_\beta \mid \{y_{h,t}\}, \{X_{h,t}\}, \{z_h\})$

2. $\Gamma \sim P(\Gamma | \{\beta_h\}, \mathbf{V}_{\beta}, \{\mathbf{z}_h\})$

$$vec(\Gamma) \sim N(\mathbf{\gamma}^*, \mathbf{G})$$

$$\begin{split} \mathbf{G} &= (\mathbf{Z}^{*\prime}(\mathbf{I} \otimes \mathbf{V}_{\beta}^{-1})\mathbf{Z}^{*})^{-1} \\ \boldsymbol{\gamma}^{*} &= \mathbf{G}(\mathbf{Z}^{*\prime}(\mathbf{I} \otimes \mathbf{V}_{\beta}^{-1})\mathbf{Z}^{*}\tilde{\mathbf{v}}) \\ \tilde{\mathbf{v}} &= (\mathbf{Z}^{*\prime}(\mathbf{I} \otimes \mathbf{V}_{\beta}^{-1})\mathbf{Z}^{*})^{-1} \ (\mathbf{Z}^{*\prime}(\mathbf{I} \otimes \mathbf{V}_{\beta}^{-1})\boldsymbol{\beta}) \\ \boldsymbol{\beta} &= (\boldsymbol{\beta}_{1}^{\prime}, \cdots, \boldsymbol{\beta}_{H}^{\prime})^{\prime} \\ \mathbf{Z}^{*} &= (\mathbf{I} \otimes \mathbf{z}_{h=1}, \mathbf{I} \otimes \mathbf{z}_{h=2}, \cdots, \mathbf{I} \otimes \mathbf{z}_{h=H})^{\prime} \end{split}$$

• Posterior : $P(\{\beta_h\}, \Gamma, V_\beta \mid \{y_{h,t}\}, \{X_{h,t}\}, \{z_h\})$

3. $V_{\beta} \sim P(V_{\beta} | \{\beta_h\}, \Gamma, \{z_h\})$

 $\mathbf{V}_{\beta} \sim Inverted\ Whishart(d_1, \mathbf{D}_1)$

$$d_1 = d_0 + H$$

$$\mathbf{D}_1 = \mathbf{D}_0 + \sum_{h} (\mathbf{\beta}_h - \Gamma \mathbf{z}_h) (\mathbf{\beta}_h - \Gamma \mathbf{z}_h)'$$

• Posterior : $P(\{\beta_h\}, \Gamma, V_\beta \mid \{y_{h,t}\}, \{X_{h,t}\}, \{z_h\})$

$$\{\boldsymbol{\beta}_h\} \sim P(\{\boldsymbol{\beta}_h\} \mid \boldsymbol{\Gamma}, \boldsymbol{V}_{\boldsymbol{\beta}}, \{y_{h,t}\}, \{\boldsymbol{X}_{h,t}\}) \qquad h = 1, ..., H$$

$$(H \times K) \times \text{no. iterations}$$

$$\Gamma \sim P(\boldsymbol{\Gamma} \mid \{\boldsymbol{\beta}_h\}, \boldsymbol{V}_{\boldsymbol{\beta}}, \{\boldsymbol{z}_h\})$$

$$(K \times N) \times \text{no. iterations}$$

$$V_{\boldsymbol{\beta}} \sim P(\boldsymbol{V}_{\boldsymbol{\beta}} \mid \{\boldsymbol{\beta}_h\}, \boldsymbol{\Gamma}, \{\boldsymbol{z}_h\})$$

$$(K \times K) \times \text{no. iterations}$$

$$\Rightarrow \frac{K \times (K+1)}{2}$$

$$h=1,\ldots,H$$

- √ 1st, Trace plots
- √ 2nd, Posterior distribution
- ✓ 3rd, Summary

• Posterior: $P(\{\beta_h\}, \Gamma, V_\beta \mid \{y_{h,t}\}, \{X_{h,t}\}, \{z_h\})$

$$\Gamma \sim P(\Gamma | \{\beta_h\}, \mathbf{V}_{\beta}, \{\mathbf{z}_h\})$$
 $(K \times N) \times \text{no.iterations}$

√ 1st, Trace plots

2nd, Posterior distribution

3rd, Summary

• Posterior: $P(\{\beta_h\}, \Gamma, V_\beta \mid \{y_{h,t}\}, \{X_{h,t}\}, \{z_h\})$

$$\Gamma \sim P(\Gamma | \{\beta_h\}, \mathbf{V}_{\beta}, \{\mathbf{z}_h\})$$
(K × N)

1st, Trace plots

2nd, Posterior distribution

√ 3rd, Summary

Customer feature Product feature	z ₁ Intercept	z ₂ Age	z ₃ Income	z₄ Gender
(β_1) Low Fixed Interest	4.383	-0.025	0.021	0.324
$(oldsymbol{eta}_2)$ Low Annual Fee	4.158	-0.010	0.004	1.302
$(oldsymbol{eta}_3)$ Out-of-State Bank	-3.758	-0.003	0.013	-0.054
:				
$(\boldsymbol{\beta}_K)$ High Credit Limit	1.116	-0.010	-0.003	0.368

• Posterior : $P(\{\beta_h\}, \Gamma, V_\beta \mid \{y_{h,t}\}, \{X_{h,t}\}, \{z_h\})$

$$\mathbf{V}_{\beta} \sim P(\mathbf{V}_{\beta} \mid \{\beta_h\}, \Gamma, \{\mathbf{z}_h\})$$
 $(K \times K)$

Covariance / Correlation

1 st ,	Trace	plots
-------------------	-------	-------

2nd, Posterior distribution

√ 3rd, Summary

 (β_1) Low Fixed Interest

 (β_2) Low Annual Fee

 (β_3) Out-of-State Bank

•

 (β_K) High Credit Limit

β_1	eta_2	eta_3		β_K
8.8	0.32	0.18		0.16
3.4	13.5	0.55		0.47
2.1	8.1	15.9		0.39
			٠.	
1.2	4.3	3.9		6.3

Whom (to target) and What (to offer)

00 기업

Want : 현재 사업 지역 → 다른 지역으로 확장

As-is: 낯선 경쟁사의 서비스를 좋아할 리는 없을 것. 승산은 없는가?

(β₃) Out-of-State Bank -3.758
Prediction/Decision: 어느 고객에게 어떤 식으로 세안아먼 그래도 승산을 있을까?

Whom (to target) and What (to offer)

To identify incentives so that a regional bank can successfully offer credit cards to out-of-state customers.
 (β₃) Out-of-State Bank -3.758

• Two incentives to overcome this penalty:

Option 1: low fixed interest (β_1)

Option 2: low annual fee (β_2)

Whom (to target) and What (to offer)

To identify incentives so that a regional bank can successfully offer credit cards to out-of-state customers.
 (β₃) Out-of-State Bank -3.758

Customer feature Product feature	z ₁ Intercept	
(β_1) Low Fixed Interest	4.383	
(β_2) Low Annual Fee	4.158	
$({m eta}_3)$ Out-of-State Bank	-3.758	
:		
$(oldsymbol{eta}_K)$ High Credit Limit	1.116	

eta_1	eta_2	eta_3		eta_K
8.8	0.32	0.18		0.16
3.4	13.5	0.55		0.47
2.1	8.1	15.9		0.39
			·.	
1.2	4.3	3.9		6.3

Whom (to target) and What (to offer)

- To identify incentives so that a regional bank can successfully offer credit cards to out-of-state customers. (β_3) Out-of-State Bank -3.758
- Two incentives to overcome this penalty:

Option 1: low fixed interest $(\beta_1) \rightarrow$ on average $(\beta_1 - |\beta_3|) = 4.38$

Option 2: low annual fee (β_2) \rightarrow on average $(\beta_2 - |\beta_3|) = 4.16$

- → (1) Relying on 'average', approximately the same increase in consumer utility
 - (2) Accounting for 'heterogeneity(variance)', they are not the same.

Whom (to target) and What (to offer)

Heterogeneity of net utility across customers

Whom (to target) and What (to offer)

Expected size of customers?

Low-Interest customers

Whom (to target) and What (to offer)

• Two incentives to overcome this penalty:

Option 1: low fixed interest (β_1)

Option 2: low annual fee (β_2)

Summary

- Decision problem: Whom to target and what to offer
- Understanding 'heterogenous' response propensity is the key.

 Posterior distribution of Individual-specific parameter
- Bayesian framework meets heterogeneity.

"Likelihood – Prior" setting mimics "Likelihood – Heterogeneity"
$$P(\mathbf{y}|\beta_h) - \beta_h \sim \beta_h |\beta_o, \mathbf{V}_o \qquad \qquad P(\mathbf{y}|\beta_h) - \beta_h \sim \beta_h |\bar{\beta}, \mathbf{V}_\beta \\ \bar{\beta} \sim \bar{\beta} |\beta_h, \mathbf{V}_\beta \\ \mathbf{V}_\beta \sim \mathbf{V}_\beta |\beta_h, \bar{\beta}$$