

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 416 725 A2

②

EUROPEAN PATENT APPLICATION

⑬ Application number: 90307566.1

⑬ Int. Cl. 5: C12N 15/51, C07K 15/00,
//A61K39/29, G01N33/576

⑭ Date of filing: 11.07.90

The microorganisms have been deposited with
Fermentation Research Institut, Japan under
numbers: FERM BP 2951 - 2968.

The title of the invention has been amended
(Guidelines for Examination in the EPO, A-III,
7.3).

⑮ Priority: 14.07.89 JP 182073/89
19.07.89 JP 184739/89
22.07.89 JP 189874/89
27.07.89 JP 192721/89
29.07.89 JP 195413/89
03.08.89 JP 200217/89
10.08.89 JP 205722/89
21.09.89 JP 243304/89
22.09.89 JP 245268/89
19.10.89 JP 270398/89

⑯ Date of publication of application:
13.03.91 Bulletin 91/11

⑰ Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI NL SE

⑰ Applicant: Chugai Seiyaku Kabushiki Kaisha
5-1, 5-chome, Ukimura Kita-ku
Tokyo(JP)

Applicant: Arima, Terukatsu
5-13-1, Sakuragaoka
Kagoshima-shi, Kagoshima(JP)

⑰ Inventor: Arima, Terukatsu
5-13-1, Sakuragaoka
Kagoshima-shi, Kagoshima(JP)
Inventor: Yamamoto, Osamu
3-30-304, Izumi-cho
Numazu-shi, Shizuoka(JP)
Inventor: Tsuchiya, Masayuki
5-3-301, Masago-cho
Numazu-shi, Shizuoka(JP)
Inventor: Oshima, Masanobu
1528-16, Nakashinden
Ebina-shi, Kanagawa(JP)

⑰ Representative: Davies, Jonathan Mark et al
Reddle & Grose 16 Theobalds Road
London WC1X 8PL(GB)

⑲ Blood-borne non-A, non-B hepatitis specific protein, DNA encoding it, and process for its production.

⑲ A DNA coding for a blood-borne non-A, non-B hepatitis specific antigenic protein and corresponding to an RNA directly isolated from a human blood or liver tissue is disclosed. This antigenic protein can be produced by using the DNA, and the antigenic protein binds to a antibody in the serum of the patient with the non-A, non-B hepatitis. Therefore, the antigenic protein is useful for the diagnostic measurement of an antibody against the non-A, non-B hepatitis specific antigen.

EP 0 416 725 A2

BLOOD-BORNE NON-A, NON-B HEPATITIS SPECIFIC ANTIGENIC PROTEIN, A DNA CODING FOR THE PROTEIN AND A PROCESS FOR PRODUCING THE PROTEIN

TECHNICAL FIELD

The present invention relates to a novel protein and a DNA fragment. More particularly, it relates to a blood-borne non-A, non-B hepatitis specific antigenic protein which appears specifically on the pathogenesis of blood-borne non-A, non-B hepatitis, a DNA fragment coding for the protein, and a process for producing the protein by using the DNA fragment.

BACKGROUND ART

10 The viruses of the viral hepatitis type A and type B have been discovered, the hepatitis has been successfully diagnosed by the immunological method, and vaccines for these viruses have been developed. Nevertheless, currently the entity of the hepatitis which is neither type A nor type B, i.e., non-A, non-B hepatitis, is not clear, since the pathogenic virus is present only in an extremely small quantity in 15 organisms. Blood-borne non-A, non-B hepatitis is responsible for 90% of the occurrences of post-transfusion hepatitis, which occurs in 10 to 20% of transfused patients [Experimental Medicine vol. 7, 196 - 201 (1988)].

20 Research into antigenic protein associated with blood-borne non-A, non-B hepatitis has been made by various researchers using patient's blood as samples. For example, Choo et al. described in Science, 244, 359 - 362 (1989) and European Unexamined Patent Publication No. 0318 218 A1, that a chimpanzee was infected with hepatitis by infusing the blood of a patient suffering from blood-borne non-A, non-B hepatitis, RNA was then extracted from the serum of the chimpanzee, and a fragment of a non-A, non-B hepatitis virus gene was isolated from a cDNA library prepared from the RNA. Further, it has been reported that 25 blood infected with non-A, non-B hepatitis can be diagnosed at a probability of 60 - 70% of the blood samples infected with non-A, non-B hepatitis virus, as a result of the blood sample test carried out in Japan using an immunological diagnostic reagent based on the afore-mentioned virus gene fragment (KOSEISHO KAN-EN KENKYU RENRAKU KYOGIKAI HOKOKU 1989, 3, 13).

20 On the other hand, Japanese Unexamined Patent Publication No. 2576/1989 disclosed that a chimpanzee was infected with non-A, non-B hepatitis by infusing the blood of a patient suffering from the hepatitis, RNA was extracted from the liver cell of the chimpanzee, and using the extracted RNA, the gene coding the non-A, non-B hepatitis specific antigenic protein was cloned.

35 The former report gives insufficient information, in that the diagnostic reagent has a low diagnostic probability for blood infected with the non-A, non-B hepatitis virus, the cloned gene as described in that paper has an insufficient number of bases, compared with the assumed number of bases of the blood-borne non-A, non-B hepatitis virus gene, and there is a possibility that two or more kinds of the blood-borne non-A, non-B hepatitis viruses exist.

In the latter report, no direct evidence is shown that the cloned gene is specific to human non-A, non-B hepatitis.

40 In both of the investigations described above, RNA obtained through a chimpanzee was used and not RNA extracted directly from human patients suffering from the blood-borne non-A, non-B hepatitis, and thus it remains uncertain whether or not the cloned DNA truly reflects the gene for the human non-A, non-B hepatitis virus. Accordingly, new approaches must be made to meet the demand for the development of a diagnostic reagent having a higher diagnostic probability, and a vaccine.

45 As one such approach, one of the present inventors extracted RNA directly from the blood of human patients with non-A, non-B hepatitis, and reported successful results with a method to be described hereinafter [Experimental Medicine, Vol. 7, 196 - 201 (1989)].

DISCLOSURE OF THE INVENTION

50 The present inventors conducted intensive research into the solving of the aforementioned problems, and as a result, succeeded in directly extracting RNA from the liver cell or blood of human patients with non-A, non-B hepatitis, and from this RNA cloning DNAs coding for a blood-borne non-A, non-B hepatitis specific antigenic proteins.

Therefore, the present invention provides DNAs coding for a blood-borne non-A, non-B hepatitis specific antigenic protein which appears in a human liver cell and/or blood upon the pathogenesis of a blood-borne non-A, non-B hepatitis.

5 The present invention also provides a process for preparing the blood-borne non-A, non-B hepatitis specific antigenic protein, comprising culturing a host transformed by an expression vector containing the DNA.

The present invention further provides the proteins produced by the above-described process.

10 BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the DNA sequence of the insert in a phage clone λ HC2211;

Fig. 2 shows the DNA sequence of the insert in a phage clone λ HC2246;

15 Fig. 3 shows the DNA sequence of the insert in a phage clone λ HC512, and the corresponding amino acid sequence;

Fig. 4 shows the DNA sequence of the insert in a phage clone λ HC2208, and the corresponding amino acid sequence;

Fig. 5 shows the DNA sequence of the insert in a phage clone λ HC2207, and the corresponding amino acid sequence;

20 Fig. 6 shows the DNA sequence of the insert in a phage clone λ HC2218, and the corresponding amino acid sequence;

Fig. 7 shows the DNA sequence of the insert in a phage clone λ HC2220, and the corresponding amino acid sequence;

Fig. 8 shows the DNA sequence of the insert in a phage clone λ HC2230, and the corresponding amino acid sequence;

25 Fig. 9 shows the DNA sequence of the insert in a phage clone λ HC2232, and the corresponding amino acid sequence;

Fig. 10 shows the DNA sequence of the insert in a phage clone λ HC2244, and the corresponding amino acid sequence;

30 Fig. 11 shows the DNA sequence of the insert in a phage clone λ HC2248, and the corresponding amino acid sequence;

Fig. 12 shows the DNA sequence of the insert in a phage clone λ HC2258, and the corresponding amino acid sequence;

35 Fig. 13 shows the DNA sequence of the insert in a phage clone λ HC2258, and the corresponding amino acid sequence;

Fig. 14 shows the DNA sequence of the insert in a phage clone λ HC2270C, and the corresponding amino acid sequence;

40 Fig. 15 shows the DNA sequence of the insert in a phage clone λ HC2410, and the corresponding amino acid sequence;

Fig. 16 shows the DNA sequence of the insert in a phage clone λ HC2533, and the corresponding amino acid sequence;

Fig. 17 shows the DNA sequence of the insert in a phage clone λ HC2607, and the corresponding amino acid sequence;

45 Fig. 18 shows the DNA sequence of the insert in a phage clone λ HC2610, and the corresponding amino acid sequence;

Fig. 19 shows the DNA sequence of the insert in a phage clone λ HC2211 as shown in Fig. 1, and the corresponding amino acid sequence;

Fig. 20 shows the DNA sequence of the insert in a phage clone λ HC2246 as shown in Fig. 2, and the corresponding amino acid sequence;

50 Fig. 21 is a schematic illustration of the construction of the expression plasmid pFETR3;

Fig. 22 shows the structure of the plasmid pTRC24 with which cDNA of the phage clone 2207 has been integrated; and

Fig. 23 shows the structure of the plasmid pFET42 with which cDNA of the phage clone 2246 has been integrated.

55 BEST MODE OF CARRYING OUT THE INVENTION

The DNA coding for the blood-borne non-A, non-B hepatitis specific antigenic protein of the present

invention is cloned as follows:

Namely, the total RNA is prepared by dissolving a liver tissue in a guanidinium thiocyanate solution, extracting the mixture with phenol-chloroform and precipitating the RNA with isopropanol, according to the method of Chomczynski et al. [ANALYTICAL BIOCHEMISTRY, 162, 158 - 159 (1987)]. Alternatively, the total RNA is prepared by an ultra centrifugation of blood, and a portion of the total RNA thus obtained is purified by oligo(dT)cellulose column chromatography to isolate a poly A⁺ RNA.

The cDNA library is obtained with the total RNA or the poly A⁺ RNA as a template, by the random primer method described by Ebina et al., Cell, 40, 747 - 758 (1980). The construction of the cDNA library is accomplished by using a commercially available kit (Amersham Co.; cDNA Synthesis System Plus, cDNA Cloning System- λ gt 11). This kit utilizes an expression vector λ gt 11, and the cDNA is integrated into the β -gal gene on the λ gt 11 phage, and thus is easily expressed as the fused protein with β -galactosidase by the induction of a lactose operon promotor with isopropyl β -D-galactopyranoside (IPTG) or the like after infection of the phage with Escherichia coli.

The expression can be confirmed by the immunological screening method. This is conducted by coupling the serum of a patient suffering from the blood-borne non-A, non-B hepatitis, and an IgG fraction prepared therefrom as a 1st antibody, with an enzyme labelled 2nd antibody to develop a color [see Experimental Medicine, 6, 958 - 984 (1988) for the principle].

The positive clones thus obtained are further screened with serums from the patients suffering from hepatitis B and sera from healthy persons, to select a clone that specifically reacts with the serum from the patients suffering from non-A, non-B hepatitis.

The DNAs thus obtained encodes all or a part of the native protein of a blood-borne non-A, non-B hepatitis specific antigen, and the DNA of the present invention is not limited to the cDNAs but includes DNAs which encode the amino acid sequence of the protein via a different codon. The DNA of the present invention is not completely identical to the cDNA, from the viewpoint of their DNA sequences, but is homologous to the extent that it can be hybridized with the cDNA under the usual conditions used for the identification of viruses. The DNAs of the present invention also include DNAs coding for a protein having the aforementioned antigenicity.

The aforementioned DNA of the present invention is useful as a material for constructing a gene system which can be used for the production of a blood-borne non-A, non-B hepatitis specific antigen, in a host such as bacteria, yeast or animal cells etc. The bacterial host includes Escherichia coli. The required antigenic protein can be produced by a conventional genetic engineering method using the cDNA which has been cloned in the present invention. For example, an expression vector such as an expression plasmid can be constructed by adding a translational initiation codon and a translational termination codon upstream and downstream of the coding region of the cDNA according to the present invention, respectively, and inserting the obtained sequence to a vector such as a plasmid, comprising has an expression control system such as a promotor, a terminator or the like, functional in a selected host.

Promoter-terminator systems which can be used, include trp promoter, lac promoter, T7 promoter, rnb terminator, and the like in Escherichia coli, and PGK promoter, ADH 1 promoter, GAL 10 promoter, ADH terminator, and the like in a yeast such as Saccharomyces cerevisiae. Also, there can be used SV40 early promoter, adenovirus major late promoter, Rous sarcoma virus LTR, SV40 poly A signal, and the like in an animal cell such as CHO, CV-1 and NIH3T3 cells. Conventional methods can be used for the construction of an expression vector, the transformation, the culture of a host, the induction of expression, and the recovery and purification of a produced protein. For example, the recovery and purification of a protein produced by E. coli can be carried out by homogenizing E. coli cells, dissolving insoluble matters containing a desired protein with 8M urea or the like, and subjecting to column chromatography on ion-exchange resin or the like. The production of the antigenic protein according to the present invention is specifically described in Example 7.

The DNA of the present invention can be used as a gene source for producing a live vaccine by integrating the DNA into a vector, such as vaccinia virus or the like.

The non-A, non-B hepatitis specific antigenic protein of the present invention is useful as a reagent for the diagnosis of non-A, non-B hepatitis when using a blood sample. For example, the 1st antibody of non-A, non-B hepatitis in the serum from a patient can be detected with the antigenic protein obtained by the process of the present invention, by methods such as the Western blot method, the enzyme immunoassay method, the latex agglutination method or the radioimmunoassay method, and thus an infection with blood-borne non-A, non-B hepatitis can be diagnosed. This has been confirmed by the successful results of the experimental detection of the 1st antibody in the serum from a patient suffering from non-A, non-B hepatitis with the antigenic protein prepared in Example 7 by the Western blot method.

The present invention is explained in more detail with reference to the following Examples.

Example 1 Construction of a cDNA library(1) Preparation of RNA

6 A non-cancerous tissue having a weight of ca. 1 g was obtained by an excision of liver cancer from a patient suffering from chronic blood-borne non-A, non-B hepatitis complicated with liver cancer. The total RNA was prepared from the tissue, by the method of Chomczynski et al. [ANALYTICAL CHEMISTRY, 1987, 156 - 159 (1987)].

10 A 10 ml portion of the solution D [4 M guanidinium thiocyanate, 25 mM sodium citrate (pH 7), 0.5% sarcosyl, 0.1 M 2-mercaptoethanol] was added to about 1 g of each of the liver tissues derived from six patients, and each mixture was homogenized and solubilized. Then, to the solubilized products were sequentially added 1 ml of 2 M sodium acetate (pH 4), 10 ml of a water saturated-phenol, and 2 ml of chloroform/isoamyl alcohol (49 : 1), and the mixture was kept on ice for 15 minutes. The aqueous phase was recovered by centrifuging the mixture at 12,000 rpm for 20 minutes at 4°C in a Sorvall ss-34 rotor, mixed with 10 ml of isopropanol and stood at -20°C for 1 hour. Then centrifugation was conducted at 12,000 rpm and 4°C for 20 minutes with a Sorvall SS-34 rotor, and the resulting precipitate was again dissolved in 3 ml of the solution D, mixed with 3 ml of isopropanol, and again stood at -20°C for 1 hour. The precipitate was recovered by centrifugation and washed with 75% ethanol, and the an amount of 0.5 mg - 1.5 mg of precipitate of the total RNA thus obtained was dissolved in distilled water.

20 The total RNA was prepared from blood by the following procedures to a 70 liter portion of plasma having an abnormal high ALT value and negative to HBsAg and HBV-DNA was added an equivalent amount of a diluent (50 mM Tris-HCl, 1 mM EDTA, pH 8.0), and the mixture was subjected to sucrose density gradient centrifugation at 90,000 x g to obtain a fraction having a specific gravity of 1.12 - 1.29. The fraction was dialized against to the diluent, lyophilized, and then dissolved in a solution D containing guanidinium thiocyanate. After adding poly C as a carrier, the mixture was extracted with a mixture of phenol/chloroform/isoamyl alcohol, and to the aqueous phase was added an equivalent amount of isopropanol, to precipitate nucleic acid. After this procedure was repeated once more, the nucleic acid was stored in 75% ethanol, and further, was treated with a RNase free DNase fraction which had been removed 25 a potentially contaminated RNase in a trace amount by affinity chromatography of a commercially available RNase free DNase on agarose-5'- (4-aminophenylphosphoryl)-uridine-2' (3')-phosphate, to remove DNA incorporated in the RNA fraction. Further, the poly C as a carrier in the remaining RNA was removed with an oligo (dG)-cellulose column and purified with NENSORB (DuPont Co.).

30 The poly A⁺ RNA was prepared in the following manner. To a solution containing ca. 500 µg of the total RNA was added 20% sodium laurylsulfate to adjust to 0.5%, and the mixture was heated at 65°C for 10 minutes. After the adjustment of the mixture to 10 mM Tris-HCl (pH 8), 0.5 M NaCl and 1 mM of EDTA, the mixture was subjected to oligo(dT)cellulose (Pharmacia Co.) column chromatography. Thereafter, elution with a solution comprising 10 mM Tris-HCl (pH 7.5) and 1 mM EDTA produced a poly A⁺ RNA, in a yield of 10 - 15 µg.

40

(2) Synthesis of cDNA

45 cDNA was synthesized with a commercially available cDNA synthesizing kit [Amersham Co.: cDNA Synthesis System Plus, (code: RPN 1258)], and to 5 µg of the RNA prepared above were added 10 µl of 5 x the first strand synthesis reaction buffer, 2.5 µl of a sodium pyrophosphate solution, 2.5 µl of human placenta ribonuclease inhibitor, 5 µl of a deoxynucleoside triphosphate mixture, 5 µl of a primer, 2 µl of [α -³²P]dCTP (Amersham PB 10205), water and 100 units of a reverse transcriptase solution, to a total volume of 50 µl. As the primer, an oligo(dT)primer was used for RNA Nos. 4 and 5 as template, and a random 50 hexanucleotide primer was used for other RNAs. After incubation at 42°C for 40 minutes, to the first strand cDNA synthesis reaction mixture were added 93.5 µl of the second strand synthesis reaction buffer, 4 units of *E. coli* ribonuclease H, 115 units of *E. coli* DNA polymerase I and water to a total volume of 250 µl. After reaction at 12°C for 60 minutes and at 22°C for 60 minutes, the reaction mixture was incubated at 70°C for 10 minutes. Then, after adding 10 units of T4 DNA polymerase and incubating 37°C for 10 minutes, 10 µl of 0.25 M EDTA (pH 8.0) was added. The reaction mixture was extracted with phenol/chloroform, and after adding a 4 M ammonium acetate solution in an equivalent amount, subjected to ethanol precipitation. The cDNAs shown in Table 1 were obtained by repeating the above-described procedures. Note, the RNA sample Nos. 4, 5, 22, 24 and 25 are derived from liver cells and No. 28 is

derived from blood.

Table 1

RNA Sample	Amount of RNA (μg)	Double Strand cDNA (ng)
No. 4 (poly A ⁺ RNA)	15	1280
5 (poly A ⁺ RNA)	10.5	4500
22 (total RNA)	8	260
24 (total RNA)	20	1400
25 (total RNA)	22	260
26 (total RNA)	5	5200

15

(3) Construction of cDNA library

20

The cDNA library was constructed using a cDNA Cloning System-λgt 11 (Amersham code RPN 1280), and to the cDNA obtained above (ca. 1 μg) were added 4 μl of the M buffer, 2 μl of 1 x SAM solution, water, and 20 units of EcoR I methylase, to a total volume of 20 μl. After reaction at 37°C for 60 minutes, the reaction mixture was heated at 70°C for 10 minutes and then 3 μl of L buffer, 2 μl of a EcoR I linker, water, and 5 units of T4 DNA ligase were added, to a total volume of 30 μl, and the mixture allowed to react at 15°C overnight. After terminating the reaction by heating at 70°C for 10 minutes, 10 μl of the E buffer, water, and 100 units of EcoR I were added to a total volume of 100 μl, and the mixture allowed to react at 37°C for 5 hours. After terminating the reaction by heating at 70°C for 10 minutes, free linkers were removed with a column equipped in the cDNA cloning system, to yield the EcoR I linker coupled cDNAs in the amounts shown in Table 2.

30

Table 2

RNA Sample	EcoR I linker coupled cDNA (ng)
No. 4 (poly A ⁺ RNA)	460
5 (poly A ⁺ RNA)	1470
22 (total RNA)	27
24 (total RNA)	100
25 (total RNA)	24
26 (total RNA)	2200

45

To 10 - 100 ng of the cDNA were added 1 μg of the λgt 11 arm, 1 μg of the L buffer, water, and 2.5 units of T4 DNA ligase, to a total volume of 10 μl, and the mixture allowed to react at 15°C overnight. To this reaction mixture were added 10 μl of Extract A and 15 μl of Extract B, and the mixture was kept at 20°C for 2 hours to carry out in vitro packaging. Then, to the mixture were added 0.5 ml of SM buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 10 mM MgSO₄, 0.01% gelatin), and several drops of chloroform, to obtain a phage solution. The phage solution was titrated, and the results shown in Table 3 below were obtained as the cDNA libraries.

55

Table 3

RNA Sample	Recombinant Phage Number (PFU)	Recombination Rate (%)
No. 4 (poly A ⁺ RNA)	1.2×10^6	75
5 (poly A ⁺ RNA)	3.2×10^6	82
22 (total RNA)	3.0×10^5	48
24 (total RNA)	1.3×10^6	48
25 (total RNA)	2.0×10^5	53
26 (total RNA)	5.1×10^7	89

Recombination rate = Recombinant phage number/total phage number $\times 100$

Example 2 Preparation of a first antibody for the screening of the cDNA libraries

E. coli Y1090 strain was incubated with shaking in an L-broth (10 g/l bacto-tryptan, 5 g/l bacto-yeast extract and 10 g/l NaCl) containing 0.4% maltose and 50 μ g/ml ampicillin. Then, one ml portion of the culture was added to 50 ml of the L-broth containing 0.4% maltose and ampicillin (50 μ g/ml), and the mixture was incubated with shaking at 37°C until OD₆₀₀ reached 0.5 (2.5×10^8 cells/ml). E. coli was collected by centrifugation and suspended in 5 ml of Phosphate buffered-saline (PBS). A 6 μ l of 0.5 M EDTA (pH 8) and lysozyme (final concentration: 0.1 mg/ml) were added, and the mixture was kept in ice for 30 minutes. E. coli lysate was obtained by repeating freezing and thawing three times.

The 1st antibody was obtained by the procedure described below. Sera of 5 convalescents from acute non-A, non-B hepatitis and sera of 5 patients suffering from chronic non-A, non-B hepatitis were used together as the serum from patients with blood-borne non-A, non-B hepatitis. A 10 ml portion of the serum was treated in 33% saturated ammonium sulfate to give a precipitate containing immunoglobulin, the precipitate was suspended in 10 ml of TBS [10 mM Tris-HCl (pH 7.5), 150 mM NaCl], 10 ml of the aforementioned E. coli lysate was added, and the mixture was shaken at 4°C overnight or at 37°C for 1 hour. After removing the precipitate by centrifugation at 3,000 rpm for 10 minutes (HITACHI 05PR-22), 180 ml of TBS containing 1% gelatin was added, and the mixture was filtered with MILLEX-HA (0.45 μ m, Millipore Co.) to give a 1st antibody.

For the serum from healthy people and the serum from a patient suffering from hepatitis B, 1 ml of the E. coli lysate was added to 1 ml of each serum, and the mixture was shaken at 4°C overnight. After removing the precipitate by centrifugation at 3,000 rpm for 10 minutes (HITACHI 05PR-22), 18 ml of TBS containing 1% gelatin was added, and the mixture was filtered with MILLEX-HA (0.45 μ m, Millipore Co.) to give a 1st antibody.

Example 3 Screening of cDNA libraries

After the E. coli Y1090 strain was cultured in 10 ml of L-broth containing 0.4% maltose and ampicillin (50 μ g/ml) at 37°C overnight, collected by centrifugation and suspended in 4 ml of 10 mM MgSO₄ to give a cell for plating. The phage solution was diluted with an SM buffer to give a concentration of ca. 6,000 PFU/100 μ l and 200 μ l of the cell for plating and 100 μ l of the phage solution were combined and maintained at 37°C for 15 - 20 minutes. The solution was added to 10 ml of L-top agar [L-broth containing agarose (7 g/l)] and poured into a plate (EIKEN CHEMICAL CO., LTD.: No. 2 type square schale) containing L-agar (L-broth containing 15 g/l bacto-agar). After culturing at 43°C for 3 - 4 hours, a nitrocellulose filter (Schleicher & Schnell, BA85) impregnated with 10 mM IPTG (isopropyl β -D-thiogalactopyranoside) and air-dried was layered on the plate, and culturing was continued further at 37°C for 3 - 4 hours. The filter was removed and washed with TBS (10 mM Tris-HCl, pH 7.5, 150 mM NaCl) and shaken in TBS containing 5% skimmed milk (Snow Brand Milk Products Co., Ltd.) at room temperature for 1 - 2 hours. The filter was washed by shaking in TBS for 1 - 2 minutes. After repeating these procedures, the filter was dipped in the aforementioned 1st antibody, and the reaction was conducted at 4°C overnight. After washing the filter five times in TBST (TBS containing 0.05% Tween 20) for 5 minutes, it was dipped into a peroxidase conjugated anti-human IgG (goat) (Cappel Co.; code 3201-0081) solution (500-fold dilution with TBS containing 1%

gelatin), to conduct the reaction at room temperature for 1.5 hours. The filter was then washed with TBST in the same manner as described above, and was reacted with a HRP-color solution [120 mg HRP-color (Bio-RAD Co.) in 40 ml of methanol, 200 ml of TBS and 120 μ l of hydrogen peroxide], and the colored clone was judged positive. As a result, the positive clones as shown in Table 4 were obtained.

5

Table 4

	RNA Sample	Treated clone Number	Positive clone Number
10	No. 4	340,000	5
	5	270,000	8
	22	150,000	45
	24	300,000	14
	25	200,000	18
	26	260,000	9

20 Single plaque isolation was conducted for the positive clones thus obtained, and their reactivities with the serum derived from healthy subjected and the serum derived from the patient suffering from hepatitis B was examined.

25 As a result of the reaction with the 1st antibodies derived from 5 normal subjects and 5 patients with hepatitis B in the same manner as described above, 81 clones were obtained which reacted specifically with the serum derived from patients with blood-borne non-A, non-B hepatitis. These clones (phages) are shown in Table 5.

30 In this connection, *E. coli* Y1090 strains containing these clones have been deposited with the Agency of Industrial Science and Technology, Fermentation Research Institute, Japan (address: 1-3, Higashi 1-Chome, Tsukuba, Ibaragi, Japan), and some of these strains were transferred to international deposit based on the Budapest Treaty, on June 14, 1990.

35

40

45

50

55

Table 5

	Phage Clone No.	National Deposit No. (FERM P.)	International Deposit No. (FERM BP.)	Deposit Date
10	λHC 432	10897		1987 7 26
	λHC 436	10898		1989 7 26
	λHC 512	10841	2951	1989 7 13
15	λHC 522	10842		1989 7 13
	λHC 524	10843		1989 7 13
20	λHC 526	10844		1989 7 13
	λHC 2206	10845	2952	1989 7 13
	λHC 2207	10846	2953	1989 7 13
25	λHC 2211	10876	2956	1989 7 21
	λHC 2216	10877	2957	1989 7 21
30	λHC 2217	10852		1989 7 18
	λHC 2220	10853	2954	1989 7 18
	λHC 2225	10854		1989 7 18
35	λHC 2230	10916	2966	1989 8 2
	λHC 2232	10930	2968	1989 8 9
40	λHC 2239	10931		1989 8 9
	λHC 2240	10855		1989 7 18
	λHC 2241	10856		1989 7 18
45	λHC 2242	10857		1989 7 18
	λHC 2243	10878		1989 7 21
50	λHC 2244	10879	2958	1989 7 21
	λHC 2246	10858	2955	1989 7 18

Table 5 (continued)

5	Phage Clone No.	National Deposit No. (FERM P.)	International Deposit No. (FERM BP.)	Deposit Date
10	λHC 2248	10880	2959	1989 7 21
	λHC 2249	10917		1989 8 2
	λHC 2250	10904		1989 7 28
15	λHC 2252	10881		1989 7 21
	λHC 2255	10889		1989 7 26
20	λHC 2256	10890	2960	1989 7 26
	λHC 2558	10891	2961	1989 7 26
	λHC 2259	10892		1989 7 26
25	λHC 2263	10893		1989 7 26
	λHC 2264	10932		1989 8 9
30	λHC 2265	10933		1989 8 9
	λHC 2268	10894		1989 7 26
	λHC 2270	10895	2962	1989 7 26
35	λHC 2271	10896		1989 7 26
	λHC 2404C	10899		1989 7 26
40	λHC 2405B	10900		1989 7 26
	λHC 2410A	10905		1989 7 28
	λHC 2410C	10918	2967	1989 8 2
45	λHC 2410D	10934		1989 8 9
	λHC 2413	10919		1989 8 2
50	λHC 2414A	10906		1989 7 28
	λHC 2424A	10911		1989 7 28

Table 5 (continued)

	Phage Clone No.	National Deposit No. (FERM P.)	International Deposit No. (FERM BP.)	Deposit Date
10	λHC 2501	10920		1989 8 2
	λHC 2502	10847		1989 7 13
15	λHC 2505	10921		1989 8 2
	λHC 2507	10935		1989 8 9
	λHC 2508	10859		1989 7 18
20	λHC 2509	10936		1989 8 9
	λHC 2512	10882		1989 7 21
25	λHC 2514	10860		1989 7 18
	λHC 2516	10861		1989 7 18
	λHC 2533	10907	2963	1989 7 28
30	λHC 2534	10937		1989 8 9
	λHC 2535	10883		1989 7 21
35	λHC 2602	10908		1989 7 28
	λHC 2603B	10922		1989 8 2
	λHC 2607	10909	2964	1989 7 28
40	λHC 2608	10923		1989 8 2
	λHC 2610	10910	2965	1989 7 28

45

Example 4 DNA sequence of the cDNA inserted into the phage clone λHC2211

50 The recombinant phage λHC2211 was proliferated in the *E. coli* Y1090 strain, the phage was purified by a conventional method (Experimental Medicine, Vol. 5, 994 - 998, 1987), and the phage DNA was prepared by a treatment with sodium lauryl sulfate and phenol. An amount of ca. 100 µg of the phage DNA was treated with EcoR I, and ca. 0.8 µg of a DNA fragment having ca. 700 base pairs (bp) as a cDNA was recovered by 1% low melting agarose (Biolad Co.) gel electrophoresis. This DNA fragment was integrated at the EcoR I site in a phage vector M13mp18 (TAKARA SHUZO), and further inserted at the EcoR I site in a plasmid pUC19 (TAKARA SHUZO), to give pMC26. Next, an EcoR I-ended cDNA fragment was prepared from the pMC26, treated with Bal I, and inserted to the Hinc II site and the Hinc II-EcoR I site of M13mp18. Also, the EcoR I-ended cDNA fragment was treated with Sau3A I and then inserted to the BamH I-EcoR I

site of M13mp18. The DNA sequence of the cDNA was determined by the dideoxy method (J. Messing, Methods in Enzymology, 101, 20 - 78, 1983) using a recombinant phage containing the M13mp18 thus obtained as a vector. The DNA sequence is shown in Fig. 1.

The blood-borne non-A, non-B virus is believed from its property to be a flavivirus [Qui-Lim Choo et al., 5 Science, 244, 359 (1989)]. A protein derived from the flavivirus is synthesized as a precursor polyprotein from a serial long open reading frame [E.G. Westaway, Advances in virus research, 33, 45 (1987)]. On the other hand, the synthesis of the protein, which will be presumably synthesized from the 5'-end of the DNA sequence shown in Fig. 1, is terminated on the way of the cDNA by the presence of a terminating codon. Considering cDNA inserted to λ HC2211 to be derived from the blood-borne non-A, non-B hepatitis virus 10 which is a flavivirus, it can be assumed as an inevitable possibility in the construction of the cDNA library that two DNA fragments have been integrated at the same time. It can be also considered that the region specific to non-A, non-B hepatitis in λ HC2211 may be at least a part of a protein portion in front of the terminating codon.

15

Example 5 DNA sequence of the cDNA inserted into the phage clone λ HC2248

The phage DNA was prepared from the recombinant phage λ HC2248 in the same manner as in Example 4. Approximately 10 μ g of the phage DNA was treated with Kpn I and Sac I, and blunt-ended with 20 a Klenow fragment of *E. coli* DNA polymerase I. About 0.3 μ g of a DNA fragment having ca. 2.5 kilo base pairs (kb) was recovered by 1% low melting agarose (Biolab Co.) gel electrophoresis, and integrated at the Sma I site in a phage vector M13mp18 (TAKARA SHUZO). This DNA fragment was also inserted into the Sma I site of a plasmid pUC18 (TAKARA SHUZO) to give pMC42. Next, about 20 μ g of pMC42 was treated 25 with EcoR I and Pvu II, and about 2 μ g of the DNA fragment having ca. 0.5 kb and containing the cDNA was recovered by 1% low melting agarose (Biolab Co.) gel electrophoresis. The EcoR I-Pvu II DNA fragment was treated with Bal I, and inserted into the EcoR I-Hinc II site and the Hinc II site of M13mp18, respectively. Using the recombinant phage on M13mp18 vector, the DNA sequence of the cDNA was 30 determined by the dideoxy method with a Lambda gt11 primer (New England Biolab Co.) or an M13 primer (TOYO BOSEKI) (J. Messing, Methods in Enzymology, 101, 20 - 78, 1983). The DNA sequence is shown in Fig. 2.

35 Example 6 DNA sequences of cDNA inserted into phage λ HC512, λ HC2206, λ HC2207, λ HC2216, λ HC2220, λ HC2230, λ HC2232, λ HC2244, λ HC2248, λ HC2256, λ HC2258, λ HC2270, λ HC2410c, λ HC2533, λ HC2607 and λ HC2610

The phage DNAs were prepared in the same manner as in Example 4 from the recombinant phages λ HC512, λ HC2206, λ HC2207, λ HC2216, λ HC2220, λ HC2230, λ HC2232, λ HC2244, λ HC2248, λ HC2256, λ HC2258, λ HC2270, λ HC2410c, λ HC2533, λ HC2607 and λ HC2610.

40 The EcoR I fragments containing the cDNA of λ HC2206 and λ HC2232 were prepared in the same manner as Example 4, and inserted into the EcoR I site of M13mp18 and pUC18, respectively. On the other hand, the Kpn I-Sac I fragments containing cDNA of λ HC512, λ HC2207, λ HC2216, λ HC2220, λ HC2230, λ HC2244, λ HC2248, λ HC2256, λ HC2258, λ HC2270, λ HC2410c, λ HC2533, λ HC2607 and λ HC2610 were prepared in the same manner as in Example 5, and the DNA fragments from λ HC2230, λ HC2256, λ HC2270, λ HC2410c, λ HC2533, λ HC2607 and λ HC2610 were inserted into the Sma I site of pUC18, the DNA 45 fragments from λ HC512, λ HC2207, λ HC2216, λ HC2220 and λ HC2244 were inserted to the Hinc II site of pUC19, and the DNA fragments from λ HC2248 and λ HC2258 were inserted to the Kpn I-Sac I site of pUC19, respectively. Further, the Hinc II-Cla I fragment containing cDNA was recovered from the plasmid to which the DNA fragment of λ HC2244 had been inserted, and inserted to the Hinc II-Cla I site of M13mp18. 50 Using the obtained plasmids and phages, the DNA sequences of the cDNAs were determined by the dideoxy method with a Lambda gt11 primer (New England Biolabs Co.) or an M13 primer (TOYO BOSEKI) (J. Messing, Methods in Enzymology, 101, 20 - 78, 1983). Further, oligonucleotides having the corresponding sequence to a part of the DNA sequence of the obtained cDNA were synthesized by an automatic DNA synthesizer (380A/APPLIED BIOSYSTEMS CO.). The DNA sequences of the cDNAs were also determined 55 by the dideoxy method using the synthetic oligonucleotides as a primer.

The determined DNA sequences of the cDNAs are shown in Figs. 3 - 18, respectively.

Example 7 Expression of the cDNAs coding for the blood-borne non-A, non-B hepatitis specific antigenic protein in *E. coli*

5 (1) Construction of the expression vector pFETR3 (Fig. 21)

Plasmid pTM1 wherein the 331 bp DNA fragment containing a tryptophan (trp) promoter from the Hpa II site 310 bp upstream of the transcriptional initiation site to the Taq I site 21 bp downstream of the transcriptional initiation site of the *E. coli* trp operon, prepared from trp transducing phage λ cl857 trpED10 [G.F. Miozzari et al., J. Bacteriology, 133, 1457 (1978)] had been inserted into the Cla I site of pBR322, was digested with EcoR I and Hind III, and ca. 0.4 kb DNA fragment containing the trp promoter was recovered by low-melting agarose gel electrophoresis. pKK223-3 (Pharmacia Co.) was digested with EcoR I and Hind III to give a 4.5 kb DNA fragment, to which the aforementioned ca. 0.4 kb DNA fragment was then ligated using T4 DNA ligase. The plasmid thus obtained was digested with EcoR I and blunted with the *E. coli* DNA polymerase I (Klenow fragment), and digested with Pvu II. The ca. 3 kb DNA fragment thus obtained was cyclized using the T4 DNA ligase to give a plasmid pFETR1.

The plasmid pFETR1 was digested with EcoR I, made the ends of the DNA fragment were blunted with the *E. coli* DNA polymerase I (Klenow fragment) and then cyclized using T4 DNA ligase, to give a plasmid pFETR12 containing trp promoter wherein the EcoR I site had been deleted.

20 To give the translational initiation codon (ATG) and the termination codon (TGA) and the cloning site downstream of the trp promoter on the plasmid pFETR12, oligonucleotides of 36-mer and 38-mer were synthesized by an automatic DNA synthesizer (380A/APPLIED BIOSYSTEMS CO.) and annealed to give the following DNA linker.

25

To the DNA fragment obtained by digesting the aforementioned plasmid pFETR12 with Cla I and Hind III was ligated the aforementioned synthetic DNA linker using the T4 DNA ligase, to give an expression vector pFETR3 containing a trp promoter.

35 (2) Expression of cDNA in the recombinant phage λ HC2207 in *E. coli*

40 As described in Example 6, the plasmid (referred to as pMC24 hereinafter) obtained by inserting the cDNA of λ HC2207 (Fig. 5) into the Hinc II site of pUC19 was digested with Pst I and EcoR I, and the about 0.6 kb DNA fragment containing cDNA was obtained by low-melting agarose gel electrophoresis. Since this DNA fragment has been deleted a part of the 5'-end of the cDNA, oligonucleotides of 79 mer and 73 mer were synthesized on the basis of the amino sequence encoded by the cDNA portion corresponding to the deleted region using the DNA synthesizer (380A/APPLIED BIOSYSTEMS CO.), phosphorylated with T4 polynucleotide kinase, and then annealed to give the following DNA linker:

50

55

15 The aforementioned plasmid pFETR3 was digested with Cla I and EcoR I, and the obtained DNA fragment was ligated to the aforementioned synthetic linker and the aforementioned 0.8 kb DNA fragment, to give an expression vector pTRC24 containing a trp promoter and λ HC2207 cDNA under the control of said promoter. The structure of this plasmid is shown in Fig. 22.

20 The *E. coli* W3110 strain was transformed in the conventional manner with pTRC24. The transformed strain was inoculated in a 2 x TY medium (1.6% bacto-tryptone, 1% yeast extract, 0.5% NaCl) containing tryptophan (100 μ g/ml) and ampicillin (50 μ g/ml), and cultured by shaking at 37°C for 12 - 18 hours. A 40 ml portion of the culture was inoculated in 1 liter of the M9 medium (0.8% Na_2HPO_4 , 0.3% KH_2PO_4 , 0.1% NH_4Cl , 0.05% NaCl, 1 mM MgCl_2 , 0.1 mM CaCl_2) containing 0.8% glucose, 0.5% casamino acid, 10 μ g/ml of thiamin hydrochloride, and 50 μ g/ml of ampicillin and cultured by shaking at 37°C for ca. 8 hours.

25 The cells were collected by centrifugation, suspended in a buffer containing 2% sodium dodecylsulfate (SDS) and 500 mM 2-mercaptoethanol, solubilized by boiling, and subjected to SDS-polyacrylamid gel electrophoresis in the conventional manner. The proteins were blotted on a nitrocellulose filter using a semidry blotting apparatus (ATTO Co.), and the reacted with the antibody prepared from the serum of the patient with non-A, non-B hepatitis as described in Example 3. As a result, it was confirmed that the expression product reacted with the antibody.

(3) Expression of the cDNA in the recombinant phage λ HC2248 in *E. coli*

35 As described in Example 5, the plasmid (referred to as pMC42 hereinafter) obtained by inserting the cDNA of λ HC2248 (Fig. 2) into the Sma I site of pUC18 was digested with EcoR I and Pvu II, and subjected to low-melting agarose gel electrophoresis, to give the ca. 0.5 kb DNA fragment containing the cDNA. This DNA fragment was ligated to the EcoR I/Pvu II site of pFETR3 using the T4 DNA ligase, to give pFETR342.

40 The plasmid pGEMEXTM-1 containing a T7 promoter (PROMEGA Co.) was digested with Xba I and Hind III and subjected to low-melting agarose gel electrophoresis to give the ca. 3.1 kb DNA fragment containing the T7 promoter. To provide the cloning site downstream of the T7 promoter, two kinds of 57 mer oligonucleotides were synthesized by the automatic DNA synthesizer (APPLIED BIOSYSTEMS CO.), and annealed to give the following linker.

45

50

55 The aforementioned ca. 3.1 kb DNA fragment and the above DNA linker were ligated using T4 DNA ligase, to give a plasmid pFET710 having the translational initiation codon(ATG) and the cloning site downstream of the T7 promoter.

pFETR342 was digested with EcoR I and Hind III and subjected to low-melting agarose gel elec-

5 trophoresis, to give the ca. 0.5 kb DNA fragment containing the cDNA and the translational termination codon. On the other hand, a DNA fragment was obtained by digesting pFET710 with EcoR I and Hind III. This DNA fragment and the ca. 0.5 kb DNA fragment were ligated using T4 DNA ligase, to give an expression vector pFET42 containing a T7 promoter and λ HC2248 cDNA under the control of said promoter. The structure of the vector is shown in Fig. 23.

10 The *E. coli* JM109 (DE3) strain (PROMEGA Co.), wherein the expression of the T7 RNA polymerase can be induced with IPTG, was transformed with pFET42. The transformed strain was inoculated in the L medium (1% bacto-trypton, 0.5% yeast extract, 0.5% NaCl) containing ampicillin (50 μ g/ml) and cultured by shaking at 30 °C for 12 - 18 hours. A 1 ml portion of the culture was inoculated in 100 ml of the L medium containing ampicillin (50 μ g/ml), and subjected to shake culture at 30 °C. When A_{660} reached ca. 0.3, 0.5 mM IPTG was added, and the culture was further continued for 3 - 5 hours. The bacterial cell obtained was treated in the same manner as described above (2), and it was confirmed that the expression product reacted with the antibody prepared from the serum of the patient with non-A, non-B hepatitis.

15 (4) The expression of cDNA in λ HC2207 and cDNA in λ HC2248 in *E. coli* was confirmed in the above-mentioned (2) and (3), and it is apparent that any cDNAs in other λ HC recombinant vectors can be expressed to give an expression product thereof.

20 As illustrated in (2) and (3), the expression products of the cDNAs in λ HC2207 and λ HC2248 clones obtained in Example 3 reacted with the serum of the patient with non-A, non-B hepatitis, as when using the recombinant phage in Example 3. Therefore, it has been confirmed that the expression product of the DNA which encodes a non-A, non-B hepatitis specific antigenic protein according to the present invention can be used for the detection of an antibody to a non-A, non-B hepatitis specific antigen.

Industrial Applicability

25 The DNA coding for the blood-borne non-A, non-B hepatitis specific antigenic protein according to the present invention is useful as a gene for producing said antigen. Also, the antigenic protein as the expression product of the gene reacts with a antibody in serum against the hepatitis specific antigen, therefore, said antigenic protein is useful as a reagent for the diagnosis of the presence of the antibody in the serum of a subject.

Claims

35 1. A DNA coding for a blood-borne non-A, non-B hepatitis specific antigenic protein which appears in a human liver cell and/or blood on the pathogenesis of the blood-borne non-A, non-B hepatitis.

2. A DNA according to claim 1, wherein said DNA is a cDNA corresponding to RNA extracted from the liver cell of a human patient suffering from the blood-borne non-A, non-B hepatitis.

3. A DNA according to claim 1, wherein said DNA is the cDNA corresponding to RNA extracted from the blood of a human patient suffering from the blood-borne non-A, non-B hepatitis.

40 4. A DNA according to claims 2 or 3, wherein said DNA is a cDNA inserted to the following phage clone, or contains said cDNA:

45

50

55

	Phage Clone No.	National Deposit No. (FERM P.)	International Deposit No. (FERM BP.)
5	λHC 432	10897	
10	λHC 436	10898	
	λHC 512	10841	2951
	λHC 522	10842	
15	λHC 524	10843	
	λHC 526	10844	
20	λHC 2206	10845	2952
	λHC 2207	10846	2953
	λHC 2211	10876	2956
25	λHC 2216	10877	2957
	λHC 2217	10852	
30	λHC 2220	10853	2954
	λHC 2225	10854	
	λHC 2230	10916	2966
35	λHC 2232	10930	2968
	λHC 2239	10931	
40	λHC 2240	10855	
	λHC 2241	10856	
	λHC 2242	10857	
45	λHC 2243	10878	
	λHC 2244	10879	2958
50	λHC 2246	10858	2955

	Phage Clone No.	National Deposit No. (FERM P.)	International Deposit No. (FERM BP.)
5	λHC 2248	10880	2959
10	λHC 2249	10917	
	λHC 2250	10904	
15	λHC 2252	10881	
	λHC 2255	10889	
20	λHC 2256	10890	2960
	λHC 2258	10891	2961
	λHC 2259	10892	
	λHC 2263	10893	
25	λHC 2264	10932	
	λHC 2265	10933	
30	λHC 2268	10894	
	λHC 2270	10895	2962
	λHC 2271	10896	
35	λHC 2404C	10899	
	λHC 2405B	10900	
40	λHC 2410A	10905	
	λHC 2410C	10918	2967
	λHC 2410D	10934	
45	λHC 2413	10919	
	λHC 2414A	10906	
50	λHC 2424A	10911	

	Phage Clone No.	National Deposit No. (FERM P.)	International Deposit No. (FERM BP.)
5	λHC 2501	10920	
10	λHC 2502	10847	
15	λHC 2505	10921	
20	λHC 2507	10935	
25	λHC 2508	10859	
30	λHC 2509	10936	
35	λHC 2512	10882	
40	λHC 2514	10860	
	λHC 2516	10861	
	λHC 2533	10907	2963
	λHC 2534	10937	
	λHC 2535	10883	
	λHC 2602	10908	
	λHC 2603B	10922	
	λHC 2607	10909	2964
	λHC 2608	10923	
	λHC 2610	10910	2965

5. A DNA coding for an amino acid sequence encoded by the DNA according to claims 2 or 3 with a different codon.

6. A DNA having a nucleotide sequence according to any one of Figs. 1 - 18.

45 7. A DNA coding for an amino acid sequence according to any one of Figs. 3 - 20.

8. A blood-borne non-A, non-B hepatitis specific antigenic protein which appears in a human liver cell and/or blood on the pathogenesis of the blood-borne non-A, non-B hepatitis, characterized by being produced with a DNA coding for said protein by a genetic recombination technique.

9. A protein according to claim 8, wherein said protein has an amino acid sequence described in any one of Figs. 3 - 20.

50 10. A process for producing a blood-borne non-A, non-B hepatitis specific antigenic protein which appears in a human liver cell and/or blood on the pathogenesis of the blood-borne non-A, non-B hepatitis, characterized in that a host transformed with an expression vector containing a DNA coding for said protein is cultured.

55 11. A process according to claim 10, wherein said expression vector is a plasmid and said host is *Escherichia coli*.

12. A recombinant DNA molecule for use in the cloning of DNA in bacteria, yeast or animal cells, which is (a) a cDNA inserted into the phage clones listed below:

(b) a DNA which can be hybridized with said cDNA and encodes a blood-borne non-A, non-B hepatitis specific antigenic protein; or
 (c) a DNA coding for an amino acid sequence encoded by the DNA described in said (a) or (b) with a different codon:

5

	Phage Clone No.	National Deposit No. (FERM P.)	International Deposit No. (FERM BP.)
	λHC 432	10897	
15	λHC 436	10898	
	λHC 512	10841	2951
	λHC 522	10842	
20	λHC 524	10843	
	λHC 526	10844	
25	λHC 2206	10845	2952
	λHC 2207	10846	2953
	λHC 2211	10876	2956
30	λHC 2216	10877	2957
	λHC 2217	10852	
35	λHC 2220	10853	2954
	λHC 2225	10854	
	λHC 2230	10916	2966
40	λHC 2232	10930	2968
	λHC 2239	10931	
45	λHC 2240	10855	
	λHC 2241	10856	
	λHC 2242	10857	
50	λHC 2243	10878	
	λHC 2244	10879	2958
55	λHC 2246	10858	2955

	Phage Clone No.	National Deposit No. (FERM P.)	International Deposit No. (FERM BP.)
5	λHC 2248	10880	2959
10	λHC 2249	10917	
	λHC 2250	10904	
	λHC 2252	10881	
15	λHC 2255	10889	
20	λHC 2256	10890	2960
	λHC 2258	10891	2961
	λHC 2259	10892	
	λHC 2263	10893	
25	λHC 2264	10932	
	λHC 2265	10933	
30	λHC 2268	10894	
	λHC 2270	10895	2962
	λHC 2271	10896	
35	λHC 2404C	10899	
	λHC 2405B	10900	
40	λHC 2410A	10905	
	λHC 2410C	10918	2967
	λHC 2410D	10934	
45	λHC 2413	10919	
	λHC 2414A	10906	
50	λHC 2424A	10911	

	Phage Clone No.	National Deposit No. (FERM P.)	International Deposit No. (FERM BP.)
5	λHC 2501	10920	
	λHC 2502	10847	
10	λHC 2505	10921	
	λHC 2507	10935	
15	λHC 2508	10859	
	λHC 2509	10936	
	λHC 2512	10882	
20	λHC 2514	10860	
	λHC 2516	10861	
25	λHC 2533	10907	2963
	λHC 2534	10937	
	λHC 2535	10883	
30	λHC 2602	10908	
	λHC 2603B	10922	
35	λHC 2607	10909	2964
	λHC 2608	10923	
	λHC 2610	10910	2965

40

45

50

55

SEQUENCE LISTING

SEQ ID NO.: 1

SEQUENCE TYPE: Nucleotide

SEQUENCE LENGTH: 668 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAATTCTTCA CGGAATTGGA TGGGGTGC GG CTACACAGGT ACGCTCCGGC 50
GTGCAAGCCT CTCCTACGGG ATGAGGTCAC ATTCCAGGTC GGGCTCAACC 100
AATTCCCGGT TGGGTACAG CTCCCATGTG AACCCGAACC GGATGTAATG 150
GTGGTCACCT CTATGCTCAC CGACCCCTCC CATATTACAG CAGAGACGGC 200
TAAGCGTAGG CTGGCCAGAG GGTCTCCCCC TTCTTTGGCC AGCTCTTCAG 250
CTAGTCAGTT GTCTGCGCCC TCCTTGAAGG CGACATGCAC CACCCGTCA 300
GACTCCCCGG ACGCTGACCT CATAGAGGCC AACCTCCTGT GGCAGGAGGA 350
GATGGGCGGG AACATCACCC GTGTGGAGTC AGAGAATAAG GTAGTGATTT 400
TGGACTCTTT TGAACCGCTT CGGGTGGAGG AGGATGAGAG GGAAGTATCC 450
GTAGCGGC GG ATTTCA GTGA CTTGAATGCA GAATGAATCC CGTGGCTCAC 500
TTCCTAGACT ATTTGCCAAA GAAGATGTTG CCTCTGGCCAT GATCAAGATG 550
ACACAAACGG TGGCCTTTTG CAGGGAGAAC CGCCGTGGAG GCCTGTGTCT 600
GTGGCACTGG TAGCTTCTCT CTGCAGGCAA AGACCCCATG GCTTAGTTCT 650
TCATCAGAGT GAGAATTC 668

SEQ ID NO.: 2

SEQUENCE TYPE: Nucleotide

SEQUENCE LENGTH: 479 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAATTCTTCA CGGAGTTGGA TGGGGTACGG CTGCACAGGT ACGCTCCGGC 50
GTGCAAGCCA CTCCTACGGG ATGAGGTCAC ATTCCAGGTC GGGCTCAACC 100
AATTTCCAGT TGGATCACAG CTCCCATGTG AGCCCGAGCC GGATGTAGCG 150
GTGCTCACTT CCATGCTCAC CGACCCCTCC CACATTACAG CAGAGACGGC 200
TAAGCGTAGG CTGGCCAGGG GGTCCCCCCC CTCCTTGGCC AGCTCTTCAG 250
CTAGTCAGTT GTCTGCCCCC TCCTTGAAGG CGACATGCAC TACCCACCAT 300
GACTCCCCGG ACGCTGACCT CATCGAGGCC AACCTCCTGT GGCGGCAGGA 350
GATGGGAGGA AACATCACCC GCGTGGAGTC AGAGAATAAG GTAGTAATTC 400
TAGACTCTTT TGACCCGCTC CGAGCGGAGG AGGATGAGAG GGAAGTGTCC 450
GTTGCGGCGG AGATCCTGCG GAAGACCAG

479

SEQ ID NO.: 3

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 498 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

TCA CTC AAT CCT CGA CGG TGC TGC CGG TGC GGC AAT CCG	39
Ser Leu Asn Pro Arg Arg Cys Cys Arg Cys Gly Asn Pro	
5 10	
GAA CGA TAC CGA CGC CGG ATC GCC CTG CTG CCC CCA CGC	78
Glu Arg Tyr Arg Arg Ile Ala Leu Leu Pro Pro Arg	
15 20 25	
ATT TAC CGC CCG GAC TGT CAG CCT GTA GTT CCC CAG CGC	117
Ile Tyr Arg Pro Asp Cys Gln Pro Val Val Pro Gln Arg	
30 35	
CAG TTG CGT GAA GCG GTA TGT GGT TTC CGT CGT CCG GGC	156
Gln Leu Arg Glu Ala Val Cys Gly Phe Arg Arg Pro Gly	
40 45 50	
CGT GCT GAC CAG CCG CTC ACT GCC GTC GTC CGT GTT ACG	195
Arg Ala Asp Gln Pro Leu Thr Ala Val Val Arg Val Thr	
55 60 65	
GTC AGA CGG AGC AGG AAA CTC ACG CCT TCA CAC TTC GGT	234
Val Arg Arg Ser Arg Lys Leu Thr Pro Ser His Phe Gly	
70 75	
GTG TCC CAT CGC GCC AGC ACC TGATATTCCC CGCTGTCTGC	275
Val Ser His Arg Ala Ser Thr	
80 85	
AGTGACTTCT GCGGTCAGGT GCTGCACCGC TCGTGACACC	315
ATTCAACCGTG CCACTCTGTT CGCCGTAAA GTGCGCCCCG	355
TTATCCACGA TGGCCTCTTT TTCCGGCACA TGCTGCACGG	395

EP 0 416 725 A2

CGGTGATGGC ATACGTGCCG TCGTCGTTCT CACGGATACT	435
CACGCAGCGG AACAGTCCTG GCGCAGCGTC GGCAGCTTCA	475
GCTCCCATAAC GCTGTATTCA GCT	498

SEQ ID NO.: 4

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 685 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific antigenic protein coding gene

GAA TTC TTC ACA GAG TTG GAC GGG GTG CGG CTG CAC AGG 39
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg
 5 10

TAC GCT CCG GCG TGC AGA CCT CTC CTG CGG GAT GAG GTC 78
 Tyr Ala Pro Ala Cys Arg Pro Leu Leu Arg Asp Glu Val
 15 20 25

ACA TTC CAG GTC GGG CTC AAC CAA TAC CCG GTT GGG TCA 117
 Thr Phe Gln Val Gly Leu Asn Gln Tyr Pro Val Gly Ser
 30 35

CCG CTC CCA TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC 156
 Pro Leu Pro Cys Glu Pro Glu Pro Asp Val Thr Val Val
 40 45 50

ACT TCC ATG CTC ACC GAC CCC TCC CAC ATT ACA GCG GAA 195
 Thr Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu
 55 60 65

ACT GCC AGG CGT AGG TTG GCC AGG GGG AGT CCC CCT TCC 234
Thr Ala Arg Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser
70 75

TTG GCC AGC TCT TCA GCT AGT CAG TTG TCT GCA CCT TCC 273
 Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser
 82 83 84 85 86 87 88 89 90

TTG AAG GCG ACA TGT ACT ACC CAT CAT GAC TCT CCA GAC 312
 Leu Lys Ala Thr Cys Thr Thr His His Asp Ser Pro Asp
 25 50 75 100

GCT GAT CTC ATC GAG GCC AAC CTT CTA TGG CGG CAG GAG Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu 105 110 115	351
ATG GGC GGG AAC ATC ACC CGT GTG GAG TCA GAG AAT AAG Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys 120 125 130	390
GTA GTA ATC CTA GAC TCT TTT GAC CCG CTT CGA GCG GAG Val Val Ile Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu 135 140	429
GAG GAT GAG AGG GAA GTA TCC GTT GCG GCG GAG ATC CTG Glu Asp Glu Arg Glu Val Ser Val Ala Ala Glu Ile Leu 145 150 155	468
CGG AGA ACC AGG AGA TTC CCC CCG GCG ATA CCT GTA TGG Arg Arg Thr Arg Arg Phe Pro Pro Ala Ile Pro Val Trp 160 165	507
GCG CGC CCG GAC TAC AAC CCG CCA CTG ATA GAA TCT TGG Ala Arg Pro Asp Tyr Asn Pro Pro Leu Ile Glu Ser Trp 170 175 180	546
AAG GAC CCA GAC TAC GTC CCA CCG GTG GTA CAC GGG TGT Lys Asp Pro Asp Tyr Val Pro Pro Val Val His Gly Cys 185 190 195	585
CCA TTG CCA CCT GCC AAG ACC CCT CAA GTG GAT ATT CAG Pro Leu Pro Pro Ala Lys Thr Pro Gln Val Asp Ile Gln 200 205	624
ACC TCT TTG AGG CTT TCG TTG GAA ACG GGA TTT CTT CAT Thr Ser Leu Arg Leu Ser Leu Glu Thr Gly Phe Leu His 210 215 220	663
ACT ATG CTA GAC AGA AGA ATT C Thr Met Leu Asp Arg Arg Ile 225	685

SEQ ID NO.: 5

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 608 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific antigenic protein coding gene

TG ATA GCG TTC GCT TCG CGG GGA AAC CAC GTC TCC CCC 38
 Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro
 5 10

ACC CAG ATC CTC TCC AGC CTT ACC ATC ACT CAG CTG TTG 116
 Thr Gln Ile Leu Ser Ser Leu Thr Ile Thr Gln Leu Leu
 30 35

AAG	AGG	CTC	CAC	CAG	TGG	ATC	AAT	GAG	GAC	TGC	TCC	ACG	155
Lys	Arg	Leu	His	Gln	Trp	Ile	Asn	Glu	Asp	Cys	Ser	Thr	
40					45							50	

CCA TGC TCC GGT TCG TGG CTT AGG GAT GTT TGG GAC TGG 194
 Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp Trp
 55 60

ATA	TGC	ACG	GTG	TTG	ACT	GAC	TTC	AAA	ACC	TGG	CTC	CAG	23
Ile	Cys	Thr	Val	Leu	Thr	Asp	Phe	Lys	Thr	Trp	Leu	Gln	
65				70						75			

TCC AAG CTC CTG CCG CGA TTG CCG GGA GTC CCT TTC CTT 27
 Ser Lys Leu Leu Pro Arg Leu Pro Gly Val Pro Phe Leu
 80 85 90

TCA TGC CAA CGA GGG TAC AAG GGA GTC TGG CGG GGA GAT 311
 Ser Cys Gln Arg Gly Tyr Lys Gly Val Trp Arg Gly Asp
 85 100

GGT GTC ATG CAA ACC ACC TGC CCA TGT GGA GCA CAG ATC Gly Val Met Gln Thr Thr Cys Pro Cys Gly Ala Gln Ile 105 110 115	350
AGT GGG CAT GTC AAA AAT GGC TCC ATG AGG ATC GTT GGG Ser Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly 120 125	389
CCT AGA ACC TGT AGC AAC ACG TGG CAC GGA ACG TTC CCT Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro 130 135 140	428
ATC AAC GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCG Ile Asn Ala Tyr Thr Gly Pro Cys Thr Pro Ser Pro 145 150 155	467
GCG CCC AAC TAC TCT AGG GCG TTG TGG CGG GTG GCT GCT Ala Pro Asn Tyr Ser Arg Ala Leu Trp Arg Val Ala Ala 160 165	506
GAG GAG TAC GTG GAG GTC ACG CGG GTG GGG GAT TTC CAC Glu Glu Tyr Val Glu Val Thr Arg Val Gly Asp Phe His 170 175 180	545
TAC GTG ACG GGC ATG ACC ACT GAC AAC GTA AGA TGC CCA Tyr Val Thr Gly Met Thr Asp Asn Val Arg Cys Pro 185 190	584
TGC CAG GTT CCG GCC CCC GAA TTC Cys Gln Val Pro Ala Pro Glu Phe 195 200	608

SEQ ID NO.: 6

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 473 base pairs

STRANNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific antigenic protein coding gene

GAA TTC TTC ACA GAG TTG GAT GGG GTG CGG TTG CAC AGG 39
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg
 5 10

TAC GCT CCG GCT GCA AAG CCT CTC CTA CGG GAT GAG GTC 78
 Tyr Ala Pro Ala Ala Lys Pro Leu Leu Arg Asp Glu Val
 15 20 25

ACA TTT CAG GTC GGG CTC AAC CAA TTC CCG GTT GGG TCA 117
 Thr Phe Gln Val Gly Leu Asn Gln Phe Pro Val Gly Ser
 30 35

CAG CTC CCA TGT GAG CCC GAA CCG GAT GTA ACA GTG ATC 156
 Gln Leu Pro Cys Glu Pro Glu Pro Asp Val Thr Val Ile
 40 45 50

ACC TCC ATG CTC ACC GAC CCC TCC CAC ATT ACA GCA GAG 195
 Thr Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu
 55 60 65

GCG GCT GGG CGT AGG CTG GCC AGA GGG TCT CCC CCT TCC 234
 Ala Ala Gly Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser
 78 79 80 81 82 83 84 85 86 87 88 89 90

TTG GCC AGC TCT TCG GCT AGT CAG TTG TCT GCG CCC TTC 273
 Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Phe
 30 35 40

CCT GTT GAA GGC CGA CAT GCA CTA CCC GTC ATG ACT CCC 312
 Pro Val Glu Gly Arg His Ala Leu Pro Val Met Thr Pro

CAG ACG CTG ACC TCA TCG AGG CCA ATC TCC TGT GGC GGC	351
Gln Thr Leu Thr Ser Ser Arg Pro Ile Ser Cys Gly Gly	
105 110 115	
AGG AGA TGG GAG GGA ACA TCA CCC GCG TGG AGT CAG AGA	390
Arg Arg Trp Glu Gly Thr Ser Pro Ala Trp Ser Gln Arg	
120 125 130	
ACA AGG TAC TAATCCTAGA CTCTTTGAC CCGCTCCGAG	429
Thr Arg Tyr	
CGGAGGAGGA TGAGAGGGAG ATATCTGTTG CGGCCAGCT GAGC	473

SEQ ID NO.: 7

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 526 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA	TTC	TTC	ACA	GAG	CTG	GAT	GGG	GTG	CGG	TTG	CAC	AGG	39
Glu	Phe	Phe	Thr	Glu	Leu	Asp	Gly	Val	Arg	Leu	His	Arg	
													5
													10
TAC	GCT	CCG	GCG	TGC	AAG	CCT	CTC	CTA	CGG	GAT	GAG	GTC	78
Tyr	Ala	Pro	Ala	Cys	Lys	Pro	Leu	Leu	Arg	Asp	Glu	Val	
													15
													20
													25
ACA	TTT	CAG	GTC	GGG	CTC	AAC	CAA	TTC	CCG	GTT	GGG	TCA	117
Thr	Phe	Gln	Val	Gly	Leu	Asn	Gln	Phe	Pro	Val	Gly	Ser	
													30
													35
CAG	CTC	CCG	TGT	GAG	CCC	GAA	CCG	GAT	GTA	ACG	GTG	ATC	156
Gln	Leu	Pro	Cys	Glu	Pro	Glu	Pro	Asp	Val	Thr	Val	Ile	
													40
													45
													50
ACT	TCC	ATG	CTC	ACC	GAC	CCC	TCC	CAC	ATT	ACA	GCA	GAG	195
Thr	Ser	Met	Leu	Thr	Asp	Pro	Ser	His	Ile	Thr	Ala	Glu	
													55
													60
													65
ACG	GCT	GGG	CGT	AGG	CTG	GCC	AGA	GGG	TCT	CCC	CCT	TCC	234
Thr	Ala	Gly	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser	
													70
													75
TTG	GCC	AGC	TCT	TCG	GCT	AGT	CAG	TTG	TCT	GCG	CCC	TCC	273
Leu	Ala	Ser	Ser	Ser	Ala	Ser	Gln	Leu	Ser	Ala	Pro	Ser	
													80
													85
													90
TTG	AAG	GCA	ACA	TGC	ACT	ACC	CGT	CAT	GAC	TCC	CCA	GAC	312
Leu	Lys	Ala	Thr	Cys	Thr	Thr	Arg	His	Asp	Ser	Pro	Asp	
													95
													100

GCT GAC CTC ATC GAG GCC AAT CTC CTG TGG CGG CAG GAG Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu 105 110 115	351
ATG GGA GGG AAC ATC ACC CGC GTG GAG TCA GAG AAC AAG Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys 120 125 130	390
GTA GTA ATC CTA GAC TCT TTT GAC CCG CTC CGA GCG GAG Val Val Ile Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu 135 140	429
GAG GAT GAG AGG GAG ATA TCT GTT GCG GCG GAG ATC CTA Glu Asp Glu Arg Glu Ile Ser Val Ala Ala Glu Ile Leu 145 150 155	468
CGG AAA TCT AGG AAA TTC CCC CCA GCA TTA CCC ATA TGG Arg Lys Ser Arg Lys Phe Pro Pro Ala Leu Pro Ile Trp 160 165	507
GCG CGC CCG GAC TAC AAC Ala Arg Pro Asp Tyr Asn 170 175	526

SEQ ID NO.: 8

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 599 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA	TTC	TTC	ACA	GAG	TTG	GAT	GGG	GTG	CGG	CTG	CAC	AGG	39
Glu	Phe	Phe	Thr	Glu	Leu	Asp	Gly	Val	Arg	Leu	His	Arg	
5										10			
TAC	GCT	CCG	GCG	TGC	AAA	CCT	CTC	CTG	CGG	GAT	GAG	GTC	78
Tyr	Ala	Pro	Ala	Cys	Lys	Pro	Leu	Leu	Arg	Asp	Glu	Val	
15							20					25	
ACG	TTC	CAG	GTC	GGG	CTC	AAC	CAA	TAC	CCG	GTT	GGA	TCA	117
Thr	Phe	Gln	Val	Gly	Leu	Asn	Gln	Tyr	Pro	Val	Gly	Ser	
30							35						
CAG	CTC	CCA	TGC	GAG	CCC	GAA	CCG	GAT	GTG	GCG	GTG	CTC	156
Gln	Leu	Pro	Cys	Glu	Pro	Glu	Pro	Asp	Val	Ala	Val	Leu	
40					45					50			
ACT	TCC	ATG	CTC	ACC	GAC	CCC	ACC	CAC	ATT	ACA	GCA	GAA	195
Thr	Ser	Met	Leu	Thr	Asp	Pro	Thr	His	Ile	Thr	Ala	Glu	
55						60				65			
GCG	GCT	AGG	CGC	AGG	CTG	GCC	AGA	GGG	TCT	CCT	CCT	TCC	234
Ala	Ala	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Pro	Ser	
70						75							
TTG	GCC	AGC	TCT	TCA	GCT	AGT	CAG	TTG	TCT	GCG	CCC	TCC	273
Leu	Ala	Ser	Ser	Ser	Ala	Ser	Gln	Leu	Ser	Ala	Pro	Ser	
80						85				90			
TTG	AAG	GCG	ACA	TGC	ACT	ACC	CAT	CAT	GAC	TCC	CCA	GAC	312
Leu	Lys	Ala	Thr	Cys	Thr	Thr	His	His	Asp	Ser	Pro	Asp	
95							100						

GCT GAC CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu 105 110 115	351
ATG GGC GGA AAC ATC ACC CGC GTG GAG TCA GAG AAT AAG Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys 120 125 130	390
GTA GTA ATT CTA GAC TCT TTT GAA CCG CTT CGA GCG GAA Val Val Ile Leu Asp Ser Phe Glu Pro Leu Arg Ala Glu 135 140	429
GAG GAT GAG AGG GAA GTA TCC GTT GCG GCA GAG ATC CTG Glu Asp Glu Arg Glu Val Ser Val Ala Ala Glu Ile Leu 145 150 155	468
CGG AAA ACC AGG AGA TTC CCC GCA GCG ATG CCC ATA TGG Arg Lys Thr Arg Arg Phe Pro Ala Ala Met Pro Ile Trp 160 165	507
GCA CGT CCG GAC TAC AAC CCA CCA TTA CTA CAG TCC TGG Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Gln Ser Trp 170 175 180	546
AAG GAC CCG GAC TAC GTC CCT CCG GTG GTG CAC GGG TGC Lys Asp Pro Asp Tyr Val Pro Pro Val Val His Gly Cys 185 190 195	585
CCA TTG CCA CCT GC Pro Leu Pro Pro	599

SEQ ID NO.: 9

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 1184 base pairs

STRANNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific antigenic protein coding gene

GAA TTC TTC ACA GAG TTG GAT GGG GTG CGG CTG CAC AGG 39
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg
 5 10

TAC GCT CCG GCG TGC AAA CCT CTC CTG CGG GAT GAG GTC 78
 Tyr Ala Pro Ala Cys Lys Pro Leu Leu Arg Asp Glu Val
 15 20 25

ACG TTC CAG GTC GGG CTC AAC CAA TAC CCG GTT GGA TCA 117
 Thr Phe Gln Val Gly Leu Asn Gln Tyr Pro Val Gly Ser
 30 35

CAG CTC CCA TGC GAG CCC GAA CCG GAT GTG GCG GTG CTC 156
 Gln Leu Pro Cys Glu Pro Glu Pro Asp Val Ala Val Leu
 40 45 50

ACT TCC ATG CTC ACC GAC CCC ACC CAC ATT ACA GCA GAA 195
 Thr Ser Met Leu Thr Asp Pro Thr His Ile Thr Ala Glu
 55 60 65

GCG GCT AGG CGC AGG CTG GCC AGA GGG TCT CCT CCT TCC 234
 Ala Ala Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser
 70 75

TTG GCC AGC TCT TCA GCT AGT CAG TTG TCT GCG CCC TCC 273
 Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser
 28 29 30 31 32 33 34 35 36 37 38 39 40

TTG AAG GCG ACA TGC ACT ACC CAT CAT GAC TCC CCA GAC 312
 Leu Lys Ala Thr Cys Thr Thr His His Asp Ser Pro Asp

GCT GAC CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu 105 110 115	351
ATG GGC GGA AAC ATC ACC CGC GTG GAG TCA GAG AAT AAG Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys 120 125 130	390
GTA GTA ATT CTA GAC TCT TTT GAA CCG CTT CGA GCG GAA Val Val Ile Leu Asp Ser Phe Glu Pro Leu Arg Ala Glu 135 140	429
GAG GAT GAG AGG GAA GTA TCC GTT GCG GCA GAG ATC CTG Glu Asp Glu Arg Glu Val Ser Val Ala Ala Glu Ile Leu 145 150 155	468
CGG AAA ACC AGG AGA TTC CCC GCA GCG ATG CCC ATA TGG Arg Lys Thr Arg Arg Phe Pro Ala Ala Met Pro Ile Trp 160 165	507
GCA CGT CCG GAC TAC AAC CCA CCA TTA CTA CAG TCC TGG Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Gln Ser Trp 170 175 180	546
AAG GAC CCG GAC TAC GTC CCT CCG GTG GTG CAC GGG TGC Lys Asp Pro Asp Tyr Val Pro Pro Val Val His Gly Cys 185 190 195	585
CCA TTG CCA CCT GCC AAG GCC CCT CCA GTA CCA CCT CCA Pro Leu Pro Pro Ala Lys Ala Pro Pro Val Pro Pro Pro 200 205	624
AGG AGA AAG AGG ACG GTT GTC CTG ACA GAA TCC ACC GTG Arg Arg Lys Arg Thr Val Val Leu Thr Glu Ser Thr Val 210 215 220	663
TCT TCC GCC TTG GCG GAG CTT GCT ACA AAG ACC TTC GGC Ser Ser Ala Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly 225 230	702
GGG TCC GGA TCA TCG GCC GCC GAC AGC GGC ACA GCA AGC Gly Ser Gly Ser Ser Ala Ala Asp Ser Gly Thr Ala Ser 235 240 245	741
GGC CCT CCT GGC CAG GCC TCC GAC GAT GGA GAT ACA GGA Gly Pro Pro Gly Gln Ala Ser Asp Asp Gly Asp Thr Gly 250 255 260	780
TCC GAC GTT GAG TCG TAC TCC TCC ATG CCC CCC CTT GAG Ser Asp Val Glu Ser Tyr Ser Ser Met Pro Pro Leu Glu 265 270	819

GGA GAG CCG GGG GAC CCC GAC CTC AGC GAC GGG TCT TGG Gly Glu Pro Gly Asp Pro Asp Leu Ser Asp Gly Ser Trp 275 280 285	858
TCT ACT GTG AGT GAG GAG GCT GGT GAG GAT GTC GTC TGC Ser Thr Val Ser Glu Glu Ala Gly Glu Asp Val Val Cys 290 295	897
TGC TCG ATG TCC TAC ACA TGG ACA GGC GCC TTA ATC ACA Cys Ser Met Ser Tyr Thr Trp Thr Gly Ala Leu Ile Thr 300 305 310	936
CCA TGC ACC GCG GAG GAG AGC AAG CTG CCC ATC AAC CCG Pro Cys Thr Ala Glu Glu Ser Lys Leu Pro Ile Asn Pro 315 320 325	975
TTG AGC AAC TCT TTG CTG CGG GCA TCT GCT CGG GCG TAT Leu Ser Asn Ser Leu Leu Arg Ala Ser Ala Arg Ala Tyr 330 335	1014
CAT CAA CTG ATG AGC AAG AAG GAT ATA ATT CCT ACG CCC His Gln Leu Met Ser Lys Lys Asp Ile Ile Pro Thr Pro 340 345 350	1053
TCT CAG CCG ATG AAC AGT TGG AAT AGG TTG TTA GCG GTA Ser Gln Pro Met Asn Ser Trp Asn Arg Leu Leu Ala Val 355 360	1092
ACT AAG ATT AGT ATG GTA ATT AGG AAA ATG AGT AGA TAT Thr Lys Ile Ser Met Val Ile Arg Lys Met Ser Arg Tyr 365 370 375	1131
TTG AAG AAC TGATTAATGT TTGGGTCTGA GTTTATATAT Leu Lys Asn 380	1170
CACAGTGAGA ATTC	1184

SEQ ID NO.: 10

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 255 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GGG CAT GTC AAA AAT GGC TCC ATG AGG ATC GTT GGG CCT	39
Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly Pro	
5 10	
AGA ACC TGT AGC AAC ACG TGG CAC GGA ACG TTC CCT ATC	78
Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile	
15 20 25	
AAC GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCG GCG	117
Asn Ala Tyr Thr Gly Pro Cys Thr Pro Ser Pro Ala	
30 35	
CCC AAC TAC TCT AGG GCG TTG TGG CGG GTG GCT GCT GAG	156
Pro Asn Tyr Ser Arg Ala Leu Trp Arg Val Ala Ala Glu	
40 45 50	
GAG TAC GTG GAG GTC ACG CGG GTG GGG GAT TTC CAC TAC	195
Glu Tyr Val Glu Val Thr Arg Val Gly Asp Phe His Tyr	
55 60 65	
GTG ACG GGC ATG ACC ACT GAC AAC GTA AGA TGC CCA TGC	234
Val Thr Gly Met Thr Thr Asp Asn Val Arg Cys Pro Cys	
70 75	
CAG GTT CCG GCC CCC GAA TTC	255
Gln Val Pro Ala Pro Glu Phe	
80 85	

SEQ ID NO.: 11

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 553 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA	TTC	TTC	ACA	GAG	TTG	GAT	GGG	GTG	CGG	TTG	CAC	AGG	39	
Glu	Phe	Phe	Thr	Glu	Leu	Asp	Gly	Val	Arg	Leu	Arg			
												5	10	
TAC	GCT	CCG	GCG	TGC	AAA	CCT	CTC	CTA	CGG	GAT	GAG	GTC	78	
Tyr	Ala	Pro	Ala	Cys	Lys	Pro	Leu	Leu	Arg	Asp	Glu	Val		
												15	20	25
ACA	TTT	CAG	GTC	GGG	CTC	AAC	CAA	TTC	CCG	GTT	GGG	TCA	117	
Thr	Phe	Gln	Val	Gly	Leu	Asn	Gln	Phe	Pro	Val	Gly	Ser		
												30	35	
CAG	CTC	CCA	TGT	GAG	CCC	GAA	CCG	GAT	GTA	ACA	GTG	ATC	156	
Gln	Leu	Pro	Cys	Glu	Pro	Glu	Pro	Asp	Val	Thr	Val	Ile		
												40	45	50
ACC	TCC	ATG	CTC	ACC	GAC	CCC	TCC	CAC	ATT	ACA	GCA	GAG	195	
Thr	Ser	Met	Leu	Thr	Asp	Pro	Ser	His	Ile	Thr	Ala	Glu		
												55	60	65
ACG	GCT	GGG	CGT	AGG	CTG	GCC	AGA	GGG	TCT	CCC	CCT	TCC	234	
Thr	Ala	Gly	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser		
												70	75	
TTG	GCC	AGC	TCT	TCG	GCT	AGT	CAG	TTG	TCT	GCG	CCT	TCC	273	
Leu	Ala	Ser	Ser	Ser	Ala	Ser	Gln	Leu	Ser	Ala	Pro	Ser		
												80	85	90
TTG	AAG	GCG	ACA	TGC	ACT	ACC	CGT	CAT	GAC	TCC	CCA	GAC	312	
Leu	Lys	Ala	Thr	Cys	Thr	Thr	Arg	His	Asp	Ser	Pro	Asp		
												95	100	

GCT GAC CTC ATC GAG GCC AAT CTC CTG TGG CGG CAG GAG Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu 105 110 115	351
ATG GGA GGG AAC ATC ACC CGC GTG GAG TCA GAG AAC AAG Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys 120 125 130	390
GTA GTA ATC CTA GAC TCT TTT GAC CCG CTC CGA GCG GAG Val Val Ile Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu 135 140	429
GAG GAT GAG AGG GAG ATA TCT GTT GCG GCG GAG ATC CTA Glu Asp Glu Arg Glu Ile Ser Val Ala Ala Glu Ile Leu 145 150 155	468
CGG AAA TCT AGG AAA TTC CCC CCA GCA TTA CCC ATA TGG Arg Lys Ser Arg Lys Phe Pro Pro Ala Leu Pro Ile Trp 160 165	507
GCG CGC CCG GAC TAC AAC CCA CCA CTG CTA GAG TCT TGG Ala Arg Pro Asp Tyr Asn Pro Pro Leu Leu Glu Ser Trp 170 175 180	546
CCA GCT G Pro Ala	553

SEQ ID NO.: 12

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 884 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

CG GCT TTC GTG GGC GCC GGC ATA GCC GGC GCG GCT GTT	38
Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val	
5 10	
Gly Ser Ile Gly Leu Gly Lys Val Leu Val Asp Ile Leu	77
15 20 25	
GCG GGT TAT GGA GCA GGG GTG GCA GGC GCA CTC GTG GTC	116
Ala Gly Tyr Gly Ala Gly Val Ala Gly Ala Leu Val Val	
30 35	
TTT AAG GTT ATG AGT GGC GAC ATG CCC TCC ACC GAG GAC	155
Phe Lys Val Met Ser Gly Asp Met Pro Ser Thr Glu Asp	
40 45 50	
CTG GTC AAC TTA CTC CCT GCC ATC CTT TCC CCT GGC GCC	194
Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro Gly Ala	
55 60	
CTG GTC GTC GGG GTC GTG TGC GCA CAG ATA CTG CGT CGA	233
Leu Val Val Gly Val Val Cys Ala Gln Ile Leu Arg Arg	
65 70 75	
CAT GTC GGC CCA GGG GAG GGA GCT GTG CAG TGG ATG AAC	272
His Val Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn	
80 85 90	
CGG CTG ATA GCG TTC GCT TCG CGG GGT AAC CAC GTC TCC	311
Arg Leu Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser	
95 100	

CCC ACG CAT TAT GTG CCT GAA AGC GAC GCT GCG AGT CGT	350
Pro Thr His Tyr Val Pro Glu Ser Asp Ala Ala Ser Arg	
105 110 115	
GTC ACC CAG ATC CTC TCC AGC CTT ACC ATC ACT CAG CTG	389
Val Thr Gln Ile Leu Ser Ser Leu Thr Ile Thr Gln Leu	
120 125	
TTG AAG AGG CTC CAC CAG TGG ATT AAT GAG GAC TGC TCC	428
Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp Cys Ser	
130 135 140	
ACG CCA TGC TCC GGC ACG TGG CTC AGG GAT GTT TGG GAC	467
Thr Pro Cys Ser Gly Thr Trp Leu Arg Asp Val Trp Asp	
145 150 155	
TGG ATA TGC ACG GTG TTG GCT GAC TTC AAG ACC TGG CTC	506
Trp Ile Cys Thr Val Leu Ala Asp Phe Lys Thr Trp Leu	
160 165	
CAG TCC AAG CTC CTG CCG CGG TTA CCG GGG GTC CCT TTC	545
Gln Ser Lys Leu Leu Pro Arg Leu Pro Gly Val Pro Phe	
170 175 180	
CTC TCA TGT CAG CGT GGG TAC AAG GGA GTT TGG CGG GGA	584
Leu Ser Cys Gln Arg Gly Tyr Lys Gly Val Trp Arg Gly	
185 190	
GAT GGC ATC ATG CAC ACC ACC TGC CCA TGC GGA GCC CAA	623
Asp Gly Ile Met His Thr Thr Cys Pro Cys Gly Ala Gln	
195 200 205	
ATC ACC GGA CAT GTC AAA AAC GGG TCC ATG AGG ATC GCC	662
Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Ala	
210 215 220	
GGG CCT AAA ACC TGC AGC AAC ACG TGG CAC GGA ACG TTC	701
Gly Pro Lys Thr Cys Ser Asn Thr Trp His Gly Thr Phe	
225 230	
CCC ATT AAC GCA TAC ACC ACA GGC CCC TGC ACA CCC TCT	740
Pro Ile Asn Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser	
235 240 245	
CCG GCG CCA AAC TAC TCC AGG GCG TTG TGG CGG GTG GCT	779
Pro Ala Pro Asn Tyr Ser Arg Ala Leu Trp Arg Val Ala	
250 255	
GCG GAG GAG TAC GTG GAG GTC ACG CGG GTG GGG GAT TTC	818
Ala Glu Glu Tyr Val Glu Val Thr Arg Val Gly Asp Phe	
260 265 270	

EP 0 416 725 A2

CAC TAC GTG ACG GGC ATG ACC ACT GAC AAT GTA AAA TGC 857
His Tyr Val Thr Gly Met Thr Thr Asp Asn Val Lys Cys
275 280 285

CCA TGC CAG GTT CCG GCC CCC GAA TTC 884
Pro Cys Gln Val Pro Ala Pro Glu Phe
290

SEQ ID NO.: 13

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 524 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific antigenic protein coding gene

GAA TTC TTC ACA GAG TTG GAC GGG GTG CGG CTG CAC AGG 39
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg
 5 10

TAC GCT CCG GCG TGC AGA CCT CTC CTG CGG GAT GAG GTC 78
 Tyr Ala Pro Ala Cys Arg Pro Leu Leu Arg Asp Glu Val
 15 20 25

ACA TTC CAG GTC GGG CTC AAC CAA TAC CCG GTT GGG TCA 117
 Thr Phe Gln Val Gly Leu Asn Gln Tyr Pro Val Gly Ser
 30 35

CAG CTC CCA TGT GAG CCC GAA CCG GAT GTA ACA GTG GTC 156
 Gln Leu Pro Cys Glu Pro Glu Pro Asp Val Thr Val Val
 40 45 50

ACT TCC ATG CTC ACC GAC CCC TCC CAC ATT ACA GCG GAA 195
 Thr Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala Glu
 55 60 65

ACT GCC AGG CGT AGG TTG GCC AGG GGG AGT CCC CCT TCC 234
 Thr Ala Arg Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser
 70 75

TTG GCC AGC TCT TCA GCT AGT CAG TTG TCT GCA CCT TCC 273
 Leu Ala Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser
 80 85 90

TTG AAG GCG ACA TGT ACT ACC CAT CAT GAC TCT CCA GAC 312
 Leu Lys Ala Thr Cys Thr Thr His His Asp Ser Pro Asp
 95 100

GCT GAT CTC ATC GAG GCC AAC CTT CTA TGG CGG CAG GAG Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu 105 110 115	351
ATG GGC GGG AAC ATC ACC CGT GTG GAG TCA GAG AAT AAG Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys 120 125 130	390
GTA GTA ATC CTA GAC TCT TTT GAC CCG CTT CGA GCG GAG Val Val Ile Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu 135 140	429
GAG GAT GAG AGG GAA GTA TCC GTT GCG GCG GAG ATC CTG Glu Asp Glu Arg Glu Val Ser Val Ala Ala Glu Ile Leu 145 150 155	468
CGG AGA ACC AGG AGA TTC CCC CCG GCG ATA CCT GTA TGG Arg Arg Thr Arg Arg Phe Pro Pro Ala Ile Pro Val Trp 160 165	507
GCG CGC CCG GAC CAG CT Ala Arg Pro Asp Gln 170	524

SEQ ID NO.: 14

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 174 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA TTC AGC AAA GTT TCC AGA TAC AAG ATT AAT GGA CAC 39
Glu Phe Ser Lys Val Ser Arg Tyr Lys Ile Asn Gly His
5 10

AAA TCA GTA GCT CTT CCA TAC ATC AAC AGC TAC CAA GCA 78
Lys Ser Val Ala Leu Pro Tyr Ile Asn Ser Tyr Gln Ala
15 20 25

GAG AAT CAC ATC AAG AAC TCA ACC CCT TTT ACA ATA GCT 117
Glu Asn His Ile Lys Asn Ser Thr Pro Phe Thr Ile Ala
30 35

GCG ACA AAC AAC AAC AAA AAA ACA AAA CTT AGG AAT 156
Ala Thr Asn Asn Asn Lys Lys Thr Lys Leu Arg Asn
40 45 50

ATA CCT AGC AAA GAA TTC 174
Ile Pro Ser Lys Glu Phe
55

SEQ ID NO.: 15

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 135 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA	TTC	CCT	AGC	CTG	GGC	AAC	AGA	GTG	AGA	GTC	CGT	CTC	39
Glu	Phe	Pro	Ser	Leu	Gly	Asn	Arg	Val	Arg	Val	Arg	Leu	
				5				10					

AAA	AAA	AAA	AAA	ACA	ACA	ACA	AAA	AAA	ACA	AAC	CCA	CAA	78
Lys	Lys	Lys	Lys	Thr	Thr	Thr	Lys	Lys	Thr	Asn	Pro	Gln	
15				20					25				

AAC	TGC	AGC	CAC	CTA	TGT	CCC	TAC	CTC	CCC	AGC	CTC	CAG	117
Asn	Cys	Ser	His	Leu	Cys	Pro	Tyr	Leu	Pro	Ser	Leu	Gln	
			30				35						

GGC	CCC	TTC	CGG	AAT	TCC								135
Gly	Pro	Phe	Arg	Asn	Ser								
40				45									

SEQ ID NO.: 16

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 306 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA	TTC	GCG	GGG	ACC	CGG	GAG	GCG	GAC	GTT	GCA	GTG	AGC	39
Glu	Phe	Ala	Gly	Thr	Arg	Glu	Ala	Asp	Val	Ala	Val	Ser	
				5					10				
CGA	GAT	CGC	GCC	ACT	GCA	CTC	CAG	CCT	GGG	CGA	CAG	AGC	78
Arg	Asp	Arg	Ala	Thr	Ala	Leu	Gln	Pro	Gly	Arg	Gln	Ser	
				15		20			25				
AAG	ACT	CTG	TCT	CAA	AAA	AAA	AAA	AAC	AAA	AAC	AAA	AAG	117
Lys	Thr	Leu	Ser	Gln	Lys	Lys	Lys	Asn	Lys	Asn	Lys	Lys	
				30			35						
AAG	GAC	TGG	GAG	GGT	CGG	CAG	TAATCGAGGA	CCACCTGGCA					158
Lys	Asp	Trp	Glu	Gly	Arg	Gln							
	40			45									
GTGACAGAGG	GTGACCCAGG	GCTGGGAGGA	TACCCCAGGG										198
GAGACCCAG	GCTCTGAAA	GTGCCCTGCC	ATTCAATCTA										238
CTTCAGTAAT	AGCATGTGTC	ATGGGATAGA	TAATAAAATC										278
CGGAGGGAA	AAAATGCTCG	CGGAATTG											306

SEQ ID NO.: 17

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 174 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA	TTC	AGC	ACA	GTT	TCC	AGA	TAC	AAG	ATT	AAT	GGA	CAC	39
Glu	Phe	Ser	Thr	Val	Ser	Arg	Tyr	Lys	Ile	Asn	Gly	His	
									5	10			
AAA	TCA	GTA	GCT	CTT	CCA	TAC	ATC	AAC	AGC	TAC	CAA	GCA	78
Lys	Ser	Val	Ala	Leu	Pro	Tyr	Ile	Asn	Ser	Tyr	Gln	Ala	
					15		20		25				
GAG	AAT	CAC	ATC	AAG	AAC	TCA	ACC	CCT	TTT	ACA	ATA	GCT	117
Glu	Asn	His	Ile	Lys	Asn	Ser	Thr	Pro	Phe	Thr	Ile	Ala	
					30		35						
GCG	ACA	AAC	AAC	AAC	AAA	AAA	ACA	AAA	CTT	AGG	AAT	156	
Ala	Thr	Asn	Asn	Asn	Lys	Lys	Thr	Lys	Leu	Arg	Asn		
					40		45		50				
ATA	CCT	AGC	AAA	GAA	TTC								174
Ile	Pro	Ser	Lys	Glu	Phe								
				55									

SEQ ID NO.: 18

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 95 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA	TTC	CCT	AAA	AAA	GAA	AAA	AAA	AAA	AAA	AGA	CTT	CAG	39
Glu	Phe	Pro	Lys	Lys	Glu	Lys	Lys	Lys	Lys	Arg	Leu	Gln	
													5
													10

CCA	ACA	GAT	CAG	AAC	GCA	GAA	AAT	GCA	TTT	GCC	TCA	GTA	78
Pro	Thr	Asp	Gln	Asn	Ala	Glu	Asn	Ala	Phe	Ala	Ser	Val	
													15
													20
													25

GTG	AGT	CGG	CAG	AAT	TC	95
Val	Ser	Arg	Gln	Asn		
						30

SEQ ID NO.: 19

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 668 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA	TTC	TTC	ACG	GAA	TTG	GAT	GGG	GTG	CGG	CTA	CAC	AGG	39
Glu	Phe	Phe	Thr	Glu	Leu	Asp	Gly	Val	Arg	Leu	Arg	His	
5									10				
TAC	GCT	CCG	GCG	TGC	AAG	CCT	CTC	CTA	CGG	GAT	GAG	GTC	78
Tyr	Ala	Pro	Ala	Cys	Lys	Pro	Leu	Leu	Arg	Asp	Glu	Val	
15						20			25				
ACA	TTC	CAG	GTC	GGG	CTC	AAC	CAA	TTC	CCG	GTT	GGG	TCA	117
Thr	Phe	Gln	Val	Gly	Leu	Asn	Gln	Phe	Pro	Val	Gly	Ser	
30							35						
CAG	CTC	CCA	TGT	GAA	CCC	GAA	CCG	GAT	GTA	ATG	GTG	GTC	156
Gln	Leu	Pro	Cys	Glu	Pro	Glu	Pro	Asp	Val	Met	Val	Val	
40					45				50				
ACC	TCT	ATG	CTC	ACC	GAC	CCC	TCC	CAT	ATT	ACA	GCA	GAG	195
Thr	Ser	Met	Leu	Thr	Asp	Pro	Ser	His	Ile	Thr	Ala	Glu	
55					60				65				
ACG	GCT	AAG	CGT	AGG	CTG	GCC	AGA	GGG	TCT	CCC	CCT	TCT	234
Thr	Ala	Lys	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser	
70						75							
TTG	GCC	AGC	TCT	TCA	GCT	AGT	CAG	TTG	TCT	GCG	CCC	TCC	273
Leu	Ala	Ser	Ser	Ser	Ala	Ser	Gln	Leu	Ser	Ala	Pro	Ser	
80						85			90				
TTG	AAG	GCG	ACA	TGC	ACC	ACC	CGT	CAT	GAC	TCC	CCG	GAC	312
Leu	Lys	Ala	Thr	Cys	Thr	Thr	Arg	His	Asp	Ser	Pro	Asp	
95						100							

GCT GAC CTC ATA GAG GCC AAC CTC CTG TGG CGG CAG GAG Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu 105 110 115	351
ATG GGC GGG AAC ATC ACC CGT GTG GAG TCA GAG AAT AAG Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys 120 125 130	390
GTA GTG ATT TTG GAC TCT TTT GAA CCG CTT CGG GTG GAG Val Val Ile Leu Asp Ser Phe Glu Pro Leu Arg Val Glu 135 140	429
GAG GAT GAG AGG GAA GTA TCC GTA GCG GCG GAT TTC AGT Glu Asp Glu Arg Glu Val Ser Val Ala Ala Asp Phe Ser 145 150 155	468
GAC TTG AAT GCA GAA TGAATCCCGT GGCTCACTTC Asp Leu Asn Ala Glu 160	503
CTAGACTATT TGCCAAAGAA GATGTTGCCCGT GGCCATGAT	543
CAAGATGACA CAAACGGTGG CCTTTGCAG GGAGAACCGC	583
CGTGGAGGCC TGTGTCTGTG GCACTGGTAG CTTCTCTCTG	623
CAGGCAAAGA CCCCCATGGCT TAGTTCTTCA TCAGAGTGAG AATTC	668

SEQ ID NO.: 20

SEQUENCE TYPE: Nucleotide with corresponding peptide

SEQUENCE LENGTH: 479 base pairs

STRANDNESS: single

TOPOLOGY: linear

MOLECULE TYPE: cDNA

ORIGINAL SOURCE

ORGANISM: human

PROPERTIES: blood-borne non-A, non-B hepatitis specific
antigenic protein coding gene

GAA	TTC	TTC	ACG	GAG	TTG	GAT	GGG	GTA	CGG	CTG	CAC	AGG	39	
Glu	Phe	Phe	Thr	Glu	Leu	Asp	Gly	Val	Arg	Leu	Arg	Leu	His	Arg
5										10				
TAC	GCT	CCG	GCG	TGC	AAG	CCA	CTC	CTA	CGG	GAT	GAG	GTC	78	
Tyr	Ala	Pro	Ala	Cys	Lys	Pro	Leu	Leu	Arg	Asp	Glu	Val		
15						20					25			
ACA	TTC	CAG	GTC	GGG	CTC	AAC	CAA	TTT	CCA	GTT	GGA	TCA	117	
Thr	Phe	Gln	Val	Gly	Leu	Asn	Gln	Phe	Pro	Val	Gly	Ser		
30								35						
CAG	CTC	CCA	TGT	GAG	CCC	GAG	CCG	GAT	GTA	GCG	GTG	CTC	156	
Gln	Leu	Pro	Cys	Glu	Pro	Glu	Pro	Asp	Val	Ala	Val	Leu		
40					45					50				
ACT	TCC	ATG	CTC	ACC	GAC	CCC	TCC	CAC	ATT	ACA	GCA	GAG	195	
Thr	Ser	Met	Leu	Thr	Asp	Pro	Ser	His	Ile	Thr	Ala	Glu		
55						60					65			
ACG	GCT	AAG	CGT	AGG	CTG	GCC	AGG	GGG	TCC	CCC	CCC	TCC	234	
Thr	Ala	Lys	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser		
70								75						
TTG	GCC	AGC	TCT	TCA	GCT	AGT	CAG	TTG	TCT	GCG	CCC	TCC	273	
Leu	Ala	Ser	Ser	Ser	Ala	Ser	Gln	Leu	Ser	Ala	Pro	Ser		
80						85				90				
TTG	AAG	GCG	ACA	TGC	ACT	ACC	CAC	CAT	GAC	TCC	CCG	GAC	312	
Leu	Lys	Ala	Thr	Cys	Thr	Thr	His	His	Asp	Ser	Pro	Asp		
95									100					

GCT GAC CTC ATC GAG GCC AAC CTC CTG TGG CGG CAG GAG	351
Ala Asp Leu Ile Glu Ala Asn Leu Leu Trp Arg Gln Glu	
105 110 115	
ATG GGA GGA AAC ATC ACC CGC GTG GAG TCA GAG AAT AAG	390
Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu Asn Lys	
120 125 130	
GTA GTA ATT CTA GAC TCT TTT GAC CCG CTC CGA GCG GAG	429
Val Val Ile Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu	
135 140	
GAG GAT GAG AGG GAA GTG TCC GTT GCG GCG GAG ATC CTG	468
Glu Asp Glu Arg Glu Val Ser Val Ala Ala Glu Ile Leu	
145 150 155	
CGG AAG ACC AG	479
Arg Lys Thr	

Fig.1

10	20	30	40	50	60
GAATTCTTCA	CGGAATTGGA	TGGGGTGC GG	CTACACAGGT	ACGCTCCGGC	GTGCAAGCCT
70	80	90	100	110	120
CTCCTACGGG	ATGAGGTAC	ATTCCAGGTC	GGGCTCAACC	AATTCCCGGT	TGGGTACACAG
130	140	150	160	170	180
CTCCCATGTG	AACCCGAACC	GGATGTAATG	GTGGTCACCT	CTATGCTCAC	CGACCCCTCC
190	200	210	220	230	240
CATATTACAG	CAGAGACGGC	TAAGCGTAGG	CTGGCCAGAG	GGTCTCCCCC	TTCTTTGGCC
250	260	270	280	290	300
AGCTCTTCAG	CTAGTCAGTT	GTCTGCC CCC	TCCTTGAAGG	CGACATGCAC	CACCCGTCA
310	320	330	340	350	360
GACTCCCCGG	ACGCTGACCT	CATAGAGGCC	AACCTCCTGT	GGCGGCAGGA	GATGGGCGGG
370	380	390	400	410	420
AACATCACCC	GTGTGGAGTC	AGAGAATAAG	GTAGTGATTT	TGGACTCTTT	TGAACCGCTT
430	440	450	460	470	480
CGGGTGGAGG	AGGATGAGAG	GGAAGTATCC	GTAGCGGC GG	ATTCAGTGA	CTTGAATGCA
490	500	510	520	530	540
GAATGAATCC	CGTGGCTCAC	TTCCTAGACT	ATTTGCCAAA	GAAGATGTTG	CCCTGGCCAT
550	560	570	580	590	600
GATCAAGATG	ACACAAACGG	TGGCCTTTG	CAGGGAGAAC	CGCCGTGGAG	GCCTGTGTCT
610	620	630	640	650	660
GTGGCACTGG	TAGCTTCTCT	CTGCAGGCCAA	AGACCCCATG	GCTTAGTTCT	TCATCAGAGT
670					
GAGAATTC					

Fig.2

10	20	30	40	50	60
GAATTCTTCA	CGGAGTTGGA	TGGGGTACGG	CTGCACAGGT	ACGCTCCGGC	GTGCAAGCCA
70	80	90	100	110	120
CTCCTACGGG	ATGAGGTCAC	ATTCCAGGTC	GGGCTCAACC	AATTTCCAGT	TGGATCACAG
130	140	150	160	170	180
CTCCCATGTG	AGCCCGAGCC	GGATGTAGCG	GTGCTCACCT	CCATGCTCAC	CGACCCCTCC
190	200	210	220	230	240
CACATTACAG	CAGAGACGGC	TAAGCGTAGG	CTGGCCAGGG	GGTCCCCCCC	CTCCTTGGCC
250	260	270	280	290	300
AGCTCTTCAG	CTAGTCAGTT	GTCTGCGCCC	TCCTTGAAGG	CGACATGCAC	TACCCACCAT
310	320	330	340	350	360
GACTCCCCGG	ACGCTGACCT	CATCGAGGCC	AACCTCCTGT	GGCGGCAGGA	GATGGGAGGA
370	380	390	400	410	420
AACATCACCC	GCGTGGAGTC	AGAGAATAAG	GTAGTAATTC	TAGACTCTTT	TGACCCGCTC
430	440	450	460	470	480
CGAGCGGAGG	AGGATGAGAG	GGAAGTGTCC	GTTGCGGCCGG	AGATCCTGCG	GAAGACCAG

Fig.3

10	20	30	40												
TCA	CTC	AAT	CCT	CGA	CGG	TGC	TGC	CGG	TGC	GAA	CGA	TAC			
Ser	Leu	Asn	Pro	Arg	Arg	Cys	Arg	Cys	Gly	Asn	Pro	Glu	Arg	Tyr	
50	60	70	80	90											
CGA	CGC	CGG	ATC	GCC	CTG	CTG	CCC	CCA	CGC	ATT	TAC	CGC	CCG	GAC	TGT
Arg	Arg	Arg	Ile	Leu	Leu	Pro	Pro	Arg	Ile	Tyr	Arg	Arg	Pro	Asp	Cys
100	110	120	130	140											
CAG	CCT	GTA	GTT	CCC	CAG	CGC	CAG	TTG	CGT	GAA	GCG	GTA	TGT	GGT	TTC
Gln	Pro	Val	Val	Pro	Gln	Arg	Gln	Leu	Arg	Glu	Ala	Val	Cys	Gly	Phe
150	160	170	180	190											
CGT	CGT	CCG	GGC	CGT	GCT	GAC	CAG	CCG	CTC	ACT	GCC	GTC	GTC	CGT	GTT
Arg	Arg	Pro	Gly	Arg	Ala	Asp	Gln	Pro	Leu	Thr	Ala	Val	Val	Arg	Val
200	210	220	230	240											
ACG	GTC	AGA	CGG	AGC	AGG	AAA	CTC	ACG	CCT	TCA	CAC	TTC	GGT	GTG	TCC
Thr	Val	Arg	Arg	Ser	Arg	Lys	Leu	Thr	Pro	Ser	His	Phe	Gly	Val	Ser
250	260	270	280	290											
CAT	CGC	GCC	AGC	ACC	TGATATTCCC	CGCTGTCTGC	AGTGACTTCT	GCGGTCAGGT							
His	Arg	Ala	Ser	Thr											
300	310	320	330	340											
GCTGCACCGC	TCGTGACACC	ATTCACCGTG	CCACTCTGTT	CGCCGTCAAA											
350	360	370	380	390											
GTGGCGCCCG	TTATCCACGA	TGGCCTCTTT	TTCCGGCACA	TGCTGCACGG											
400	410	420	430	440											
CGGTGATGGC	ATACGTGCCG	TCGTCGTTCT	CACGGATACTC	ACGCAGCGG											
450	460	470	480	490											
AACAGTCCTG	GCGCAGCGTC	GGCAGCTTCA	GCTCCCATAAC	GCTGTATTCA	GCT										

Fig.4(1)

10 20 30 40
 GAA TTC TTC ACA GAG TTG GAC GGG GTG CGG CTG CAC AGG TAC GCT CCG
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg Tyr Ala Pro

50 60 70 80 90
 GCG TGC AGA CCT CTC CTG CGG GAT GAG GTC ACA TTC CAG GTC GGG CTC
 Ala Cys Arg Pro Leu Leu Arg Asp Glu Val Thr Phe Gln Val Gly Leu

100 110 120 130 140
 AAC CAA TAC CCG GTT GGG TCA CCG CTC CCA TGT GAG CCC GAA CCG GAT
 Asn Gln Tyr Pro Val Gly Ser Pro Leu Pro Cys Glu Pro Glu Pro Asp

150 160 170 180 190
 GTA ACA GTG GTC ACT TCC ATG CTC ACC GAC CCC TCC CAC ATT ACA GCG
 Val Thr Val Val Thr Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala

200 210 220 230 240
 GAA ACT GCC AGG CGT AGG TTG GCC AGG GGG AGT CCC CCT TCC TTG GCC
 Glu Thr Ala Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser Leu Ala

250 260 270 280
 AGC TCT TCA GCT AGT CAG TTG TCT GCA CCT TCC TTG AAG GCG ACA TGT
 Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser Leu Lys Ala Thr Cys

290 300 310 320 330
 ACT ACC CAT CAT GAC TCT CCA GAC GCT GAT CTC ATC GAG GCC AAC CTT
 Thr Thr His His Asp Ser Pro Asp Ala Asp Leu Ile Glu Ala Asn Leu

340 350 360 370 380
 CTA TGG CGG CAG GAG ATG GGC GGG AAC ATC ACC CGT GTG GAG TCA GAG
 Leu Trp Arg Gln Glu Met Gly Asn Ile Thr Arg Val Glu Ser Glu

390 400 410 420 430
 AAT AAG GTA GTA ATC CTA GAC TCT TTT GAC CCG CTT CGA GCG GAG GAG
 Asn Lys Val Val Ile Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu Glu

440 450 460 470 480
 GAT GAG AGG GAA GTA TCC GTT GCG GCG GAG ATC CTG CGG AGA ACC AGG
 Asp Glu Arg Glu Val Ser Val Ala Ala Glu Ile Leu Arg Arg Thr Arg

490 500 510 520
 AGA TTC CCC CCG GCG ATA CCT GTA TGG GCG CGC CCG GAC TAC AAC CCG
 Arg Phe Pro Pro Ala Ile Pro Val Trp Ala Arg Pro Asp Tyr Asn Pro

530 540 550 560 570
 CCA CTG ATA GAA TCT TGG AAG GAC CCA GAC TAC GTC CCA CCG GTG GTA
 Pro Leu Ile Glu Ser Trp Lys Asp Pro Asp Tyr Val Pro Pro Val Val

580 590 600 610 620
 CAC GGG TGT CCA TTG CCA CCT GCC AAG ACC CCT CAA GTG GAT ATT CAG
 His Gly Cys Pro Leu Pro Pro Ala Lys Thr Pro Gln Val Asp Ile Gln

630 640 650 660 670
 ACC TCT TTG AGG CTT TCG TTG GAA ACG GGA TTT CTT CAT ACT ATG CTA
 Thr Ser Leu Arg Leu Ser Leu Glu Thr Gly Phe Leu His Thr Met Leu

EP 0 416 725 A2

Fig.4(2)

680
GAC AGA AGA ATT C
Asp Arg Arg Ile

Fig.5

10 20 30 40
 TG ATA GCG TTC GCT TCG CGG GGA AAC CAC GTC TCC CCC ACG CAC TAT
 Ile Ala Phe Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr

50 60 70 80 90
 GTG CCT GAA AGC GAC GCT GCA GCG CGT GTC ACC CAG ATC CTC TCC AGC
 Val Pro Glu Ser Asp Ala Ala Arg Val Thr Gln Ile Leu Ser Ser

100 110 120 130 140
 CTT ACC ATC ACT CAG CTG TTG AAG AGG CTC CAC CAG TGG ATC AAT GAG
 Leu Thr Ile Thr Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu

150 160 170 180 190
 GAC TGC TCC ACG CCA TGC TCC GGT TCG TGG CTT AGG GAT GTT TGG GAC
 Asp Cys Ser Thr Pro Cys Ser Gly Ser Trp Leu Arg Asp Val Trp Asp

200 210 220 230
 TGG ATA TGC ACG GTG TTG ACT GAC TTC AAA ACC TGG CTC CAG TCC AAG
 Trp Ile Cys Thr Val Leu Thr Asp Phe Lys Thr Trp Leu Gln Ser Lys

240 250 260 270 280
 CTC CTG CCG CGA TTG CCG GGA GTC CCT TTC CTT TCA TGC CAA CGA GGG
 Leu Leu Pro Arg Leu Pro Gly Val Pro Phe Leu Ser Cys Gln Arg Gly

290 300 310 320 330
 TAC AAG GGA GTC TGG CGG GGA GAT GGT GTC ATG CAA ACC ACC TGC CCA
 Tyr Lys Gly Val Trp Arg Gly Asp Gly Val Met Gln Thr Cys Pro

340 350 360 370 380
 TGT GGA GCA CAG ATC AGT GGG CAT GTC AAA AAT GGC TCC ATG AGG ATC
 Cys Gly Ala Gln Ile Ser Gly His Val Lys Asn Gly Ser Met Arg Ile

390 400 410 420 430
 GTT GGG CCT AGA ACC TGT AGC AAC ACG TGG CAC GGA ACG TTC CCT ATC
 Val Gly Pro Arg Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile

440 450 460 470
 AAC GCG TAC ACC ACA GGC CCC TGC ACA CCC TCC CCG GCG CCC AAC TAC
 Asn Ala Tyr Thr Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr

480 490 500 510 520
 TCT AGG GCG TTG TGG CGG GTG GCT GAG GAG TAC GTG GAG GTC ACG
 Ser Arg Ala Leu Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr

530 540 550 560 570
 CGG GTG GGG GAT TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAC GTA
 Arg Val Gly Asp Phe His Tyr Val Thr Gly Met Thr Thr Asp Asn Val

580 590 600
 AGA TGC CCA TGC CAG GTT CCG GCC CCC GAA TTC
 Arg Cys Pro Cys Gln Val Pro Ala Pro Glu Phe

Fig.6

10 20 30 40
 GAA TTC TTC ACA GAG TTG GAT GGG GTG CGG TTG CAC AGG TAC GCT CCG
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg Tyr Ala Pro

 50 60 70 80 90
 GCT GCA AAG CCT CTC CTA CGG GAT GAG GTC ACA TTT CAG GTC GGG CTC
 Ala Ala Lys Pro Leu Leu Arg Asp Glu Val Thr Phe Gln Val Gly Leu

 100 110 120 130 140
 AAC CAA TTC CCG GTT GGG TCA CAG CTC CCA TGT GAG CCC GAA CCG GAT
 Asn Gln Phe Pro Val Gly Ser Gln Leu Pro Cys Glu Pro Glu Pro Asp

 150 160 170 180 190
 GTA ACA GTG ATC ACC TCC ATG CTC ACC GAC CCC TCC CAC ATT ACA GCA
 Val Thr Val Ile Thr Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala

 200 210 220 230 240
 GAG GCG GCT GGG CGT AGG CTG GCC AGA GGG TCT CCC CCT TCC TTG GCC
 Glu Ala Ala Gly Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser Leu Ala

 250 260 270 280
 AGC TCT TCG GCT AGT CAG TTG TCT GCG CCC TTC CCT GTT GAA GGC CGA
 Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Phe Pro Val Glu Gly Arg

 290 300 310 320 330
 CAT GCA CTA CCC GTC ATG ACT CCC CAG ACG CTG ACC TCA TCG AGG CCA
 His Ala Leu Pro Val Met Thr Pro Gln Thr Leu Thr Ser Ser Arg Pro

 340 350 360 370 380
 ATC TCC TGT GGC GGC AGG AGA TGG GAG GGA ACA TCA CCC GCG TGG AGT
 Ile Ser Cys Gly Gly Arg Arg Trp Glu Gly Thr Ser Pro Ala Trp Ser

 390 400 410 420
 CAG AGA ACA AGG TAC TAATCCTAGA CTCTTTGAC CCGCTCCGAG
 Gln Arg Thr Arg Tyr

 430 440 450 460 470
 CGGAGGAGGA TGAGAGGGAG ATATCTGTTG CGGCCAGCT GAGC

Fig.7

10 20 30 40
 GAA TTC TTC ACA GAG CTG GAT GGG GTG CGG TTG CAC AGG TAC GCT CCG
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg Tyr Ala Pro

 50 60 70 80 90
 GCG TGC AAG CCT CTC CTA CGG GAT GAG GTC ACA TTT CAG GTC GGG CTC
 Ala Cys Pro Leu Leu Arg Asp Glu Val Thr Phe Gln Val Gly Leu

 100 110 120 130 140
 AAC CAA TTC CCG GTT GGG TCA CAG CTC CCG TGT GAG CCC GAA CCG GAT
 Asn Gln Phe Pro Val Gly Ser Gln Leu Pro Cys Glu Pro Glu Pro Asp

 150 160 170 180 190
 GTA ACG GTG ATC ACT TCC ATG CTC ACC GAC CCC TCC CAC ATT ACA GCA
 Val Thr Val Ile Thr Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala

 200 210 220 230 240
 GAG ACG GCT GGG CGT AGG CTG GCC AGA GGG TCT CCC CCT TCC TTG GCC
 Glu Thr Ala Gly Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser Leu Ala

 250 260 270 280
 AGC TCT TCG GCT AGT CAG TTG TCT GCG CCC TCC TTG AAG GCA ACA TGC
 Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser Leu Lys Ala Thr Cys

 290 300 310 320 330
 ACT ACC CGT CAT GAC TCC CCA GAC GCT GAC CTC ATC GAG GCC AAT CTC
 Thr Thr Arg His Asp Ser Pro Asp Ala Asp Leu Ile Glu Ala Asn Leu

 340 350 360 370 380
 CTG TGG CGG CAG GAG ATG GGA GGG AAC ATC ACC CGC GTG GAG TCA GAG
 Leu Trp Arg Gln Glu Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu

 390 400 410 420 430
 AAC AAG GTA GTA ATC CTA GAC TCT TTT GAC CCG CTC CGA GCG GAG GAG
 Asn Lys Val Val Ile Leu Asp Ser Phe Asp Pro Leu Arg Ala Glu Glu

 440 450 460 470 480
 GAT GAG AGG GAG ATA TCT GTT GCG GCG GAG ATC CTA CGG AAA TCT AGG
 Asp Glu Arg Glu Ile Ser Val Ala Ala Glu Ile Leu Arg Lys Ser Arg

 490 500 510 520
 AAA TTC CCC CCA GCA TTA CCC ATA TGG GCG CGC CCG GAC TAC AAC
 Lys Phe Pro Pro Ala Leu Pro Ile Trp Ala Arg Pro Asp Tyr Asn

Fig.8

10 20 30 40
 GAA TTC TTC ACA GAG TTG GAT GGG GTG CGG CTG CAC AGG TAC GCT CCG
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg Tyr Ala Pro

50 60 70 80 90
 GCG TGC AAA CCT CTC CTG CGG GAT GAG GTC ACG TTC CAG GTC GGG CTC
 Ala Cys Lys Pro Leu Leu Arg Asp Glu Val Thr Phe Gln Val Gly Leu

100 110 120 130 140
 AAC CAA TAC CCG GTT GGA TCA CAG CTC CCA TGC GAG CCC GAA CCG GAT
 Asn Gln Tyr Pro Val Gly Ser Gln Leu Pro Cys Glu Pro Glu Pro Asp

150 160 170 180 190
 GTG GCG GTG CTC ACT TCC ATG CTC ACC GAC CCC ACC CAC ATT ACA GCA
 Val Ala Val Leu Thr Ser Met Leu Thr Asp Pro Thr His Ile Thr Ala

200 210 220 230 240
 GAA GCG GCT AGG CGC AGG CTG GCC AGA GGG TCT CCT CCT TCC TTG GCC
 Glu Ala Ala Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser Leu Ala

250 260 270 280
 AGC TCT TCA GCT AGT CAG TTG TCT GCG CCC TCC TTG AAG GCG ACA TGC
 Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser Leu Lys Ala Thr Cys

290 300 310 320 330
 ACT ACC CAT CAT GAC TCC CCA GAC GCT GAC CTC ATC GAG GCC AAC CTC
 Thr Thr His His Asp Ser Pro Asp Ala Asp Leu Ile Glu Ala Asn Leu

340 350 360 370 380
 CTG TGG CGG CAG GAG ATG GGC GGA AAC ATC ACC CGC GTG GAG TCA GAG
 Leu Trp Arg Gln Glu Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu

390 400 410 420 430
 AAT AAG GTA GTA ATT CTA GAC TCT TTT GAA CCG CTT CGA GCG GAA GAG
 Asn Lys Val Val Ile Leu Asp Ser Phe Glu Pro Leu Arg Ala Glu Glu

440 450 460 470 480
 GAT GAG AGG GAA GTA TCC GTT GCG GCA GAG ATC CTG CGG AAA ACC AGG
 Asp Glu Arg Glu Val Ser Val Ala Ala Glu Ile Leu Arg Lys Thr Arg

490 500 510 520
 AGA TTC CCC GCA GCG ATG CCC ATA TGG GCA CGT CCG GAC TAC AAC CCA
 Arg Phe Pro Ala Ala Met Pro Ile Trp Ala Arg Pro Asp Tyr Asn Pro

530 540 550 560 570
 CCA TTA CTA CAG TCC TGG AAG GAC CCG GAC TAC GTC CCT CCG GTG GTG
 Pro Leu Leu Gln Ser Trp Lys Asp Pro Asp Tyr Val Pro Pro Val Val

580 590
 CAC GGG TGC CCA TTG CCA CCT GC
 His Gly Cys Pro Leu Pro Pro

Fig.9(1)

10 20 30 40
 GAA TTC TTC ACA GAG TTG GAT GGG GTG CGG CTG CAC AGG TAC GCT CCG
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg Tyr Ala Pro

50 60 70 80 90
 GCG TGC AAA CCT CTC CTG CGG GAT GAG GTC ACG TTC CAG GTC GGG CTC
 Ala Cys Lys Pro Leu Leu Arg Asp Glu Val Thr Phe Gln Val Gly Leu

100 110 120 130 140
 AAC CAA TAC CCG GTT GGA TCA CAG CTC CCA TGC GAG CCC GAA CCG GAT
 Asn Gln Tyr Pro Val Gly Ser Gln Leu Pro Cys Glu Pro Glu Pro Asp

150 160 170 180 190
 GTG GCG GTG CTC ACT TCC ATG CTC ACC GAC CCC ACC CAC ATT ACA GCA
 Val Ala Val Leu Thr Ser Met Leu Thr Asp Pro Thr His Ile Thr Ala

200 210 220 230 240
 GAA GCG GCT AGG CGC AGG CTG GCC AGA GGG TCT CCT TCC TTG GCC
 Glu Ala Ala Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser Leu Ala

250 260 270 280
 AGC TCT TCA GCT AGT CAG TTG TCT GCG CCC TCC TTG AAG GCG ACA TGC
 Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser Leu Lys Ala Thr Cys

290 300 310 320 330
 ACT ACC CAT CAT GAC TCC CCA GAC GCT GAC CTC ATC GAG GCC AAC CTC
 Thr Thr His His Asp Ser Pro Asp Ala Asp Leu Ile Glu Ala Asn Leu

340 350 360 370 380
 CTG TGG CGG CAG GAG ATG GGC GGA AAC ATC ACC CGC GTG GAG TCA GAG
 Leu Trp Arg Gln Glu Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu

390 400 410 420 430
 AAT AAG GTA GTA ATT CTA GAC TCT TTT GAA CCG CTT CGA GCG GAA GAG
 Asn Lys Val Val Ile Leu Asp Ser Phe Glu Pro Leu Arg Ala Glu Glu

440 450 460 470 480
 GAT GAG AGG GAA GTA TCC GTT GCG GCA GAG ATC CTG CGG AAA ACC AGG
 Asp Glu Arg Glu Val Ser Val Ala Ala Glu Ile Leu Arg Lys Thr Arg

490 500 510 520
 AGA TTC CCC GCA GCG ATG CCC ATA TGG GCA CGT CCG GAC TAC AAC CCA
 Arg Phe Pro Ala Ala Met Pro Ile Trp Ala Arg Pro Asp Tyr Asn Pro

530 540 550 560 570
 CCA TTA CTA CAG TCC TGG AAG GAC CCG GAC TAC GTC CCT CCG GTG GTG
 Pro Leu Leu Gln Ser Trp Lys Asp Pro Asp Tyr Val Pro Pro Val Val

580 590 600 610 620
 CAC GGG TGC CCA TTG CCA CCT GCC AAG GCC CCT CCA GTA CCA CCT CCA
 His Gly Cys Pro Leu Pro Ala Lys Ala Pro Pro Val Pro Pro Pro

630 640 650 660 670
 AGG AGA AAG AGG ACG GTT GTC CTG ACA GAA TCC ACC GTG TCT TCC GCC
 Arg Arg Lys Arg Thr Val Val Leu Thr Glu Ser Thr Val Ser Ser Ala

Fig.9(2)

680	690	700	710	720
TTG GCG GAG CTT GCT ACA AAG ACC TTC GGC GGG TCC GGA TCA TCG GCC				
Leu Ala Glu Leu Ala Thr Lys Thr Phe Gly Gly Ser Gly Ser Ser Ala				
730	740	750	760	
GCC GAC AGC GGC ACA GCA AGC GGC CCT CCT GGC CAG GCC TCC GAC GAT				
Ala Asp Ser Gly Thr Ala Ser Gly Pro Pro Gly Gln Ala Ser Asp Asp				
770	780	790	800	810
GGA GAT ACA GGA TCC GAC GTT GAG TCG TAC TCC TCC ATG CCC CCC CTT				
Gly Asp Thr Gly Ser Asp Val Glu Ser Tyr Ser Ser Met Pro Pro Leu				
820	830	840	850	860
GAG GGA GAG CCG GGG GAC CCC GAC CTC AGC GAC GGG TCT TGG TCT ACT				
Glu Gly Glu Pro Gly Asp Pro Asp Leu Ser Asp Gly Ser Trp Ser Thr				
870	880	890	900	910
GTG AGT GAG GAG GCT GGT GAG GAT GTC GTC TGC TGC TCG ATG TCC TAC				
Val Ser Glu Glu Ala Gly Glu Asp Val Val Cys Cys Ser Met Ser Tyr				
920	930	940	950	960
ACA TGG ACA GGC GCC TTA ATC ACA CCA TGC ACC GCG GAG GAG AGC AAG				
Thr Trp Thr Gly Ala Leu Ile Thr Pro Cys Thr Ala Glu Glu Ser Lys				
970	980	990	1000	
CTG CCC ATC AAC CCG TTG AGC AAC TCT TTG CTG CGG GCA TCT GCT CGG				
Leu Pro Ile Asn Pro Leu Ser Asn Ser Leu Leu Arg Ala Ser Ala Arg				
1010	1020	1030	1040	1050
GCG TAT CAT CAA CTG ATG AGC AAG AAG GAT ATA ATT CCT ACG CCC TCT				
Ala Tyr His Gln Leu Met Ser Lys Lys Asp Ile Ile Pro Thr Pro Ser				
1060	1070	1080	1090	1100
CAG CCG ATG AAC AGT TGG AAT AGG TTG TTA GCG GTA ACT AAG ATT AGT				
Gln Pro Met Asn Ser Trp Asn Arg Leu Leu Ala Val Thr Lys Ile Ser				
1110	1120	1130	1140	1150
ATG GTA ATT AGG AAA ATG AGT AGA TAT TTG AAG AAC TGATTAATGT				
Met Val Ile Arg Lys Met Ser Arg Tyr Leu Lys Asn				
1160	1170	1180		
TTGGGTCTGA GTTTATATAT CACAGTGAGA ATT				

Fig.10

10 20 30 40
GGG CAT GTC AAA AAT GGC TCC ATG AGG ATC GTT GGG CCT AGA ACC ACC TGT
Gly His Val Lys Asn Gly Ser Met Arg Ile Val Gly Pro Arg Thr Cys

50 60 70 80 90
AGC AAC ACG TGG CAC GGA ACG TTC CCT ATC AAC GCG TAC ACC ACA GGC
Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn Ala Tyr Thr Thr Gly

100 110 120 130 140
CCC TGC ACA CCC TCC CCG GCG CCC AAC TAC TCT AGG GCG TTG TGG CGG
Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg Ala Leu Trp Arg

150 160 170 180 190
GTG GCT GCT GAG GAG TAC GTG GAG GTC ACG CGG GTG GGG GAT TTC CAC
Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val Gly Asp Phe His

200 210 220 230 240
TAC GTG ACG GGC ATG ACC ACT GAC AAC GTA AGA TGC CCA TGC CAG GTT
Tyr Val Thr Gly Met Thr Thr Asp Asn Val Arg Cys Pro Cys Gln Val

250
CCG GCC CCC GAA TTC
Pro Ala Pro Glu Phe

Fig.11

10	20	30	40													
GAA	TTC	ACA	GAG	TTG	GAT	GGG	GTG	CGG	TTG	CAC	AGG	TAC	GCT	CCG		
Glu	Phe	Phe	Thr	Glu	Leu	Asp	Gly	Val	Arg	Leu	His	Arg	Tyr	Ala	Pro	
50	60	70	80	90												
GCG	TGC	AAA	CCT	CTC	CTA	CGG	GAT	GAG	GTC	ACA	TTT	CAG	GTC	GGG	CTC	
Ala	Cys	Lys	Pro	Leu	Leu	Arg	Asp	Glu	Val	Thr	Phe	Gln	Val	Gly	Leu	
100	110	120	130	140												
AAC	CAA	TTC	CCG	GTT	GGG	TCA	CAG	CTC	CCA	TGT	GAG	CCC	GAA	CCG	GAT	
Asn	Gln	Phe	Pro	Val	Gly	Ser	Gln	Leu	Pro	Cys	Glu	Pro	Glu	Pro	Asp	
150	160	170	180	190												
GTA	ACA	GTG	ATC	ACC	TCC	ATG	CTC	ACC	GAC	CCC	TCC	CAC	ATT	ACA	GCA	
Val	Thr	Val	Ile	Thr	Ser	Met	Leu	Thr	Asp	Pro	Ser	His	Ile	Thr	Ala	
200	210	220	230	240												
GAG	ACG	GCT	GGG	CGT	AGG	CTG	GCC	AGA	GGG	TCT	CCC	CCT	TCC	TTG	GCC	
Glu	Thr	Ala	Gly	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser	Leu	Ala	
250	260	270	280													
AGC	TCT	TCG	GCT	AGT	CAG	TTG	TCT	GCG	CCT	TCC	TTG	AAG	GCG	ACA	TGC	
Ser	Ser	Ser	Ala	Ser	Gln	Leu	Ser	Ala	Pro	Ser	Leu	Lys	Ala	Thr	Cys	
290	300	310	320	330												
ACT	ACC	CGT	CAT	GAC	TCC	CCA	GAC	GCT	GAC	CTC	ATC	GAG	GCC	AAT	CTC	
Thr	Thr	Arg	His	Asp	Ser	Pro	Asp	Ala	Asp	Leu	Ile	Glu	Ala	Asn	Leu	
340	350	360	370	380												
CTG	TGG	CGG	CAG	GAG	ATG	GGA	GGG	AAC	ATC	ACC	CGC	GTG	GAG	TCA	GAG	
Leu	Trp	Arg	Gln	Glu	Met	Gly	Gly	Asn	Ile	Thr	Arg	Val	Glu	Ser	Glu	
390	400	416	420	430												
AAC	AAG	GTA	GTA	ATC	CTA	GAC	TCT	TTT	GAC	CCG	CTC	CGA	GCG	GAG	GAG	
Asn	Lys	Val	Val	Ile	Leu	Asp	Ser	Phe	Asp	Pro	Leu	Arg	Ala	Glu	Glu	
440	450	460	470	480												
GAT	GAG	AGG	GAG	ATA	TCT	GTT	GCG	GCG	GAG	ATC	CTA	CGG	AAA	TCT	AGG	
Asp	Glu	Arg	Glu	Ile	Ser	Val	Ala	Ala	Glu	Ile	Leu	Arg	Lys	Ser	Arg	
490	500	510	520													
AAA	TTC	CCC	CCA	GCA	TTA	CCC	ATA	TGG	GCG	CGC	CCG	GAC	TAC	AAC	CCA	
Lys	Phe	Pro	Pro	Ala	Leu	Pro	Ile	Trp	Ala	Arg	Pro	Asp	Tyr	Asn	Pro	
530	540	550														
CCA	CTG	CTA	GAG	TCT	TGG	CCA	GCT	G								
Pro	Leu	Leu	Glu	Ser	Trp	Pro	Ala									

Fig.12(1)

10 20 30 40
 CG GCT TTC GTG GGC GCC GGC ATA GCC GGC GCG GCT GTT GGC AGC ATA
 Ala Phe Val Gly Ala Gly Ile Ala Gly Ala Ala Val Gly Ser Ile

 50 60 70 80 90
 GGC CTT GGG AAG GTG CTT GTG GAC ATC CTG GCG GGT TAT GGA GCA GGG
 Gly Leu Gly Lys Val Leu Val Asp Ile Leu Ala Gly Tyr Gly Ala Gly

 100 110 120 130 140
 GTG GCA GGC GCA CTC GTG GTC TTT AAG GTT ATG AGT GGC GAC ATG CCC
 Val Ala Gly Ala Leu Val Val Phe Lys Val Met Ser Gly Asp Met Pro

 150 160 170 180 190
 TCC ACC GAG GAC CTG GTC AAC TTA CTC CCT GCC ATC CTT TCC CCT GGC
 Ser Thr Glu Asp Leu Val Asn Leu Leu Pro Ala Ile Leu Ser Pro Gly

 200 210 220 230
 GCC CTG GTC GTC GGG GTC GTG TGC GCA CAG ATA CTG CGT CGA CAT GTC
 Ala Leu Val Val Gly Val Val Cys Ala Gln Ile Leu Arg Arg His Val

 240 250 260 270 280
 GGC CCA GGG GAG GGA GCT GTG CAG TGG ATG AAC CGG CTG ATA GCG TTC
 Gly Pro Gly Glu Gly Ala Val Gln Trp Met Asn Arg Leu Ile Ala Phe

 290 300 310 320 330
 GCT TCG CGG GGT AAC CAC GTC TCC CCC ACG CAT TAT GTG CCT GAA AGC
 Ala Ser Arg Gly Asn His Val Ser Pro Thr His Tyr Val Pro Glu Ser

 340 350 360 370 380
 GAC GCT GCG AGT CGT GTC ACC CAG ATC CTC TCC AGC CTT ACC ATC ACT
 Asp Ala Ala Ser Arg Val Thr Gln Ile Leu Ser Ser Leu Thr Ile Thr

 390 400 410 420 430
 CAG CTG TTG AAG AGG CTC CAC CAG TGG ATT AAT GAG GAC TGC TCC ACG
 Gln Leu Leu Lys Arg Leu His Gln Trp Ile Asn Glu Asp Cys Ser Thr

 440 450 460 470
 CCA TGC TCC GGC ACG TGG CTC AGG GAT GTT TGG GAC TGG ATA TGC ACG
 Pro Cys Ser Gly Thr Trp Leu Arg Asp Val Trp Asp Trp Ile Cys Thr

 480 490 500 510 520
 GTG TTG GCT GAC TTC AAG ACC TGG CTC CAG TCC AAG CTC CTG CCG CGG
 Val Leu Ala Asp Phe Lys Thr Trp Leu Gln Ser Lys Leu Leu Pro Arg

 530 540 550 560 570
 TTA CCG GGG GTC CCT TTC CTC TCA TGT CAG CGT GGG TAC AAG GGA GTT
 Leu Pro Gly Val Pro Phe Leu Ser Cys Gln Arg Gly Tyr Lys Gly Val

 580 590 600 610 620
 TGG CGG GGA GAT GGC ATC ATG CAC ACC ACC TGC CCA TGC GGA GCC CAA
 Trp Arg Gly Asp Gly Ile Met His Thr Thr Cys Pro Cys Gly Ala Gln

 630 640 650 660 670
 ATC ACC GGA CAT GTC AAA AAC GGG TCC ATG AGG ATC GGC GGG CCT AAA
 Ile Thr Gly His Val Lys Asn Gly Ser Met Arg Ile Ala Gly Pro Lys

Fig.12(2)

680 690 700 710
ACC TGC AGC AAC ACG TGG CAC GGA ACG TTC CCC ATT AAC GCA TAC ACC
Thr Cys Ser Asn Thr Trp His Gly Thr Phe Pro Ile Asn Ala Tyr Thr

720 730 740 750 760
ACA GGC CCC TGC ACA CCC TCT CCG GCG CCA AAC TAC TCC AGG GCG TTG
Thr Gly Pro Cys Thr Pro Ser Pro Ala Pro Asn Tyr Ser Arg Ala Leu

770 780 790 800 810
TGG CGG GTG GCT GCG GAG GAG TAC GTG GAG GTC ACG CGG GTG GGG GAT
Trp Arg Val Ala Ala Glu Glu Tyr Val Glu Val Thr Arg Val Gly Asp

820 830 840 850 860
TTC CAC TAC GTG ACG GGC ATG ACC ACT GAC AAT GTA AAA TGC CCA TGC
Phe His Tyr Val Thr Gly Met Thr Asp Asn Val Lys Cys Pro Cys

870 880
CAG GTT CCG GCC CCC GAA TTC
Gln Val Pro Ala Pro Glu Phe

Fig.13

10	20	30	40												
GAA	TTC	TTC	ACA	GAG	TTG	GAC	GGG	GTG	CGG	CTG	CAC	AGG	TAC	GCT	CCG
Glu	Phe	Phe	Thr	Glu	Leu	Asp	Gly	Val	Arg	Leu	His	Arg	Tyr	Ala	Pro
50	60	70	80	90											
GCG	TGC	AGA	CCT	CTC	CTG	CGG	GAT	GAG	GTC	ACA	TTC	CAG	GTC	GGG	CTC
Ala	Cys	Arg	Pro	Leu	Leu	Arg	Asp	Glu	Val	Thr	Phe	Gln	Val	Gly	Leu
100	110	120	130	140											
AAC	CAA	TAC	CCG	GTT	GGG	TCA	CAG	CTC	CCA	TGT	GAG	CCC	GAA	CCG	GAT
Asn	Gln	Tyr	Pro	Val	Gly	Ser	Gln	Leu	Pro	Cys	Glu	Pro	Glu	Pro	Asp
150	160	170	180	190											
GTA	ACA	GTG	GTC	ACT	TCC	ATG	CTC	ACC	GAC	CCC	TCC	CAC	ATT	ACA	GCG
Val	Thr	Val	Val	Thr	Ser	Met	Leu	Thr	Asp	Pro	Ser	His	Ile	Thr	Ala
200	210	220	230	240											
GAA	ACT	GCC	AGG	CGT	AGG	TTG	GCC	AGG	GGG	AGT	CCC	CCT	TCC	TTG	GCC
Glu	Thr	Ala	Arg	Arg	Leu	Ala	Arg	Leu	Ala	Gly	Ser	Pro	Pro	Ser	Leu
250	260	270	280												
AGC	TCT	TCA	GCT	AGT	CAG	TTG	TCT	GCA	CCT	TCC	TTG	AAG	GGC	ACA	TGT
Ser	Ser	Ser	Ala	Ser	Gln	Leu	Ser	Ala	Pro	Ser	Leu	Lys	Ala	Thr	Cys
290	300	310	320	330											
ACT	ACC	CAT	CAT	GAC	TCT	CCA	GAC	GCT	GAT	CTC	ATC	GAG	GCC	AAC	CTT
Thr	Thr	His	His	Asp	Ser	Pro	Asp	Ala	Asp	Leu	Ile	Glu	Ala	Asn	Leu
340	350	360	370	380											
CTA	TGG	CGG	CAG	GAG	ATG	GGC	GGG	AAC	ATC	ACC	CGT	GTC	GAG	TCA	GAG
Leu	Trp	Arg	Gln	Glu	Met	Gly	Gly	Asn	Ile	Thr	Arg	Val	Glu	Ser	Glu
390	400	410	420	430											
AAT	AAG	GTA	GTA	ATC	CTA	GAC	TCT	TTT	GAC	CCG	CTT	CGA	GCG	GAG	GAG
Asn	Lys	Val	Val	Ile	Leu	Asp	Ser	Phe	Asp	Pro	Leu	Arg	Ala	Glu	Glu
440	450	460	470	480											
GAT	GAG	AGG	GAA	GTA	TCC	GTT	GCG	GCG	GAG	ATC	CTG	CGG	AGA	ACC	AGG
Asp	Glu	Arg	Glu	Val	Ser	Val	Ala	Ala	Glu	Ile	Leu	Arg	Arg	Thr	Arg
490	500	510	520												
AGA	TTC	CCC	CCG	GCG	ATA	CCT	GTA	TGG	GCG	CGC	CCG	GAC	CAG	CT	
Arg	Phe	Pro	Pro	Ala	Ile	Pro	Val	Trp	Ala	Arg	Pro	Asp	Gln		

Fig.14

10 20 30 40
GAA TTC AGC AAA GTT TCC AGA TAC AAG ATT AAT GGA CAC AAA TCA GTC
Glu Phe Ser Lys Val Ser Arg Tyr Lys Ile Asn Gly His Ser Val

50 60 70 80 90
GCT CTT CCA TAC ATC AAC AGC TAC CAA GCA GAG AAT CAC ATC AAG AAC
Ala Leu Pro Tyr Ile Asn Ser Tyr Gln Ala Glu Asn His Ile Lys Asn

100 110 120 130 140
TCA ACC CCT TTT ACA ATA GCT GCG ACA AAC AAC AAC AAA AAA ACA
Ser Thr Pro Phe Thr Ile Ala Ala Thr Asn Asn Asn Lys Lys Thr

150 160 170
AAA CTT AGG AAT ATA CCT AGC AAA GAA TTC
Lys Leu Arg Asn Ile Pro Ser Lys Glu Phe

Fig.15

10 20 30 40
GAA TTC CCT AGC CTG GGC AAC AGA GTG AGA GTC CGT CTC AAA AAA AAA
Glu Phe Pro Ser Leu Gly Asn Arg Val Arg Val Arg Leu Lys Lys Lys
50 60 70 80 90
AAA ACA ACA ACA AAA AAA ACA AAC CCA CAA AAC TGC AGC CAC CTA TGT
Lys Thr Thr Thr Lys Lys Thr Asn Pro Gln Asn Cys Ser His Leu Cys
100 110 120 130
CCC TAC CTC CCC AGC CTC CAG GGC CCC TTC CGG AAT TCC
Pro Tyr Leu Pro Ser Leu Gln Gly Pro Phe Arg Asn Ser

Fig.16

10 20 30 40
GAA TTC GCG GGA ACC CGG GAG GCG GAC GTT GCA GTG AGC CGA GAT CGC
Glu Phe Ala Gly Thr Arg Glu Ala Asp Val Ala Val Ser Arg Asp Arg

50 60 70 80 90
GCC ACT GCA CTC CAG CCT GGG CGA CAG AGC AAG ACT CTG TCT CAA AAA
Ala Thr Ala Leu Gln Pro Gly Arg Gln Ser Lys Thr Leu Ser Gln Lys

100 110 120 130
AAA AAA AAC AAA AAC AAA AAG AAG GAC TGG GAG GGT CGG CAG
Lys Lys Asn Lys Lys Lys Lys Asp Trp Glu Gly Arg Gln

140 150 160 170 180
TAATCGAGGA CCACCTGGCA GTGACAGAGG GTGACCCAGG GCTGGGAGGA

190 200 210 220 230
TACCCCAGGG GAGACCCCAG GCTCTGAAAA GTGCCTTGCC ATTCAATCTA

240 250 260 270 280
CTTCAGTAAT AGCATGTGTC ATGGGATAGA TAATAAAATC CGGAGGGAA

290 300
AAAATGCTCG CGGAATTC

Fig.17

10	20	30	40												
GAA	TTC	AGC	ACA	GTC	TCC	AGA	TAC	AAG	ATT	AAT	GGA	CAC	AAA	TCA	GTA
Glu	Phe	Ser	Thr	Val	Ser	Arg	Tyr	Lys	Ile	Asn	Gly	His	Lys	Ser	Val
50	60	70	80	90											
GCT	CTT	CCA	TAC	ATC	AAC	AGC	TAC	CAA	GCA	GAG	AAT	CAC	ATC	AAG	AAC
Ala	Leu	Pro	Tyr	Ile	Asn	Ser	Tyr	Gln	Ala	Glu	Asn	His	Ile	Lys	Asn
100	110	120	130	140											
TCA	ACC	CCT	TTT	ACA	ATA	GCT	GCG	ACA	AAC	AAC	AAC	AAA	AAA	ACA	
Ser	Thr	Pro	Phe	Thr	Ile	Ala	Ala	Thr	Asn	Asn	Asn	Lys	Lys	Thr	
150	160	170													
AAA	CTT	AGG	AAT	ATA	CCT	AGC	AAA	GAA	TTC						
Lys	Leu	Arg	Asn	Ile	Pro	Ser	Lys	Glu	Phe						

Fig.18

10	20	30	40												
GAA	TTC	CCT	AAA	AAA	GAA	AAA	AAA	AAA	AAA	AGA	CTT	CAG	CCA	ACA	GAT
Glu	Phe	Pro	Lys	Lys	Glu	Lys	Lys	Lys	Lys	Arg	Leu	Gln	Pro	Thr	Asp
50	60	70	80	90											
CAG	AAC	GCA	GAA	AAT	GCA	TTT	GCC	TCA	GTA	GTG	AGT	CGG	CAG	AAT	TC
Gln	Asn	Ala	Glu	Asn	Ala	Phe	Ala	Ser	Val	Val	Ser	Arg	Gln	Asn	

Fig.19

10 20 30 40
 GAA TTC TTC ACG GAA TTG GAT GGG GTG CGG CTA CAC AGG TAC GCT CCG
 Glu Phe Phe Thr Glu Leu Asp Gly Val Arg Leu His Arg Tyr Ala Pro

50 60 70 80 90
 GCG TGC AAG CCT CTC CTA CGG GAT GAG GTC ACA TTC CAG GTC GGG CTC
 Ala Cys Lys Pro Leu Leu Arg Asp Glu Val Thr Phe Gln Val Gly Leu

100 110 120 130 140
 AAC CAA TTC CCG GTT GGG TCA CAG CTC CCA TGT GAA CCC GAA CCG GAT
 Asn Gln Phe Pro Val Gly Ser Gln Leu Pro Cys Glu Pro Glu Pro Asp

150 160 170 180 190
 GTA ATG GTG GTC ACC TCT ATG CTC ACC GAC CCC TCC CAT ATT ACA GCA
 Val Met Val Val Thr Ser Met Leu Thr Asp Pro Ser His Ile Thr Ala

200 210 220 230 240
 GAG ACG GCT AAG CGT AGG CTG GCC AGA GGG TCT CCC CCT TCT TTG GCC
 Glu Thr Ala Lys Arg Arg Leu Ala Arg Gly Ser Pro Pro Ser Leu Ala

250 260 270 280
 AGC TCT TCA GCT AGT CAG TTG TCT GCG CCC TCC TTG AAG GCG ACA TGC
 Ser Ser Ser Ala Ser Gln Leu Ser Ala Pro Ser Leu Lys Ala Thr Cys

290 300 310 320 330
 ACC ACC CGT CAT GAC TCC CCG GAC GCT GAC CTC ATA GAG GCC AAC CTC
 Thr Thr Arg His Asp Ser Pro Asp Ala Asp Leu Ile Glu Ala Asn Leu

340 350 360 370 380
 CTG TGG CGG CAG GAG ATG GGC GGG AAC ATC ACC CGT GTG GAG TCA GAG
 Leu Trp Arg Gln Glu Met Gly Gly Asn Ile Thr Arg Val Glu Ser Glu

390 400 410 420 430
 AAT AAG GTA GTG ATT TTG GAC TCT TTT GAA CCG CTT CGG GTG GAG GAG
 Asn Lys Val Val Ile Leu Asp Ser Phe Glu Pro Leu Arg Val Glu Glu

440 450 460 470 480
 GAT GAG AGG GAA GTA TCC GTA GCG GCG GAT TTC AGT GAC TTG AAT GCA
 Asp Glu Arg Glu Val Ser Val Ala Ala Asp Phe Ser Asp Leu Asn Ala

490 500 510 520 530
 GAA TGAATCCCGT GGCTCACTTC CTAGACTATT TGCCAAAGAA GATGTTGCC
 Glu

540 550 560 570 580
 TGGCCATGAT CAAGATGACA CAAACGGTGG CCTTTTGCGAG GGAGAACCGC

590 600 610 620 630
 CGTGGAGGCC TGTGTCTGTG GCACTGGTAG CTTCTCTCTG CAGGCAAAGA

640 650 660
 CCCCCATGGCT TAGTTCTTCA TCAGAGTGAG AATTC

Fig.20

10	20	30	40													
GAA	TTC	TTC	ACG	GAG	TTG	GAT	GGG	GTA	CGG	CTG	CAC	AGG	TAC	GCT	CCG	
Glu	Phe	Phe	Thr	Glu	Leu	Asp	Gly	Val	Arg	Leu	His	Arg	Tyr	Ala	Pro	
50	60	70	80	90												
GCG	TGC	AAG	CCA	CTA	CGG	GAT	GAG	GTC	ACA	TTC	CAG	GTC	GGG	CTC		
Ala	Cys	Lys	Pro	Leu	Leu	Arg	Asp	Glu	Val	Thr	Phe	Gln	Val	Gly	Leu	
100	110	120	130	140												
AAC	CAA	TTT	CCA	GTT	GGA	TCA	CAG	CTC	CCA	TGT	GAG	CCC	GAG	CCG	GAT	
Asn	Gln	Phe	Pro	Val	Gly	Ser	Gln	Leu	Pro	Cys	Glu	Pro	Glu	Pro	Asp	
150	160	170	180	190												
GTA	GCG	GTG	CTC	ACT	TCC	ATG	CTC	ACC	GAC	CCC	TCC	CAC	ATT	ACA	GCA	
Val	Ala	Val	Leu	Thr	Ser	Met	Leu	Thr	Asp	Pro	Ser	His	Ile	Thr	Ala	
200	210	220	230	240												
GAG	ACG	GCT	AAG	CGT	AGG	CTG	GCC	AGG	GGG	TCC	CCC	CCC	TCC	TTG	GCC	
Glu	Thr	Ala	Lys	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser	Leu	Ala		
250	260	270	280													
AGC	TCT	TCA	GCT	AGT	CAG	TTG	TCT	GCG	CCC	TCC	TTG	AAG	GCG	ACA	TGC	
Ser	Ser	Ser	Ala	Ser	Gln	Leu	Ser	Ala	Pro	Ser	Leu	Lys	Ala	Thr	Cys	
290	300	310	320	330												
ACT	ACC	CAC	CAT	GAC	TCC	CCG	GAC	GCT	GAC	CTC	ATC	GAG	GCC	AAC	CTC	
Thr	Thr	His	His	Asp	Ser	Pro	Asp	Ala	Asp	Ile	Glu	Ala	Asn	Leu		
340	350	360	370	380												
CTG	TGG	CGG	CAG	GAG	ATG	GGA	GGA	AAC	ATC	ACC	CGC	GTG	GAG	TCA	GAG	
Leu	Trp	Arg	Gln	Glu	Met	Gly	Gly	Asn	Ile	Thr	Arg	Val	Glu	Ser	Glu	
390	400	410	420	430												
AAT	AAG	GTA	GTA	ATT	CTA	GAC	TCT	TTT	GAC	CCG	CTC	CGA	GCG	GAG	GAG	
Asn	Lys	Val	Val	Ile	Leu	Asp	Ser	Phe	Asp	Pro	Leu	Arg	Ala	Glu	Glu	
440	450	460	470													
GAT	GAG	AGG	GAA	GTG	TCC	GTT	GCG	GCG	GAG	ATC	CTG	CGG	AAG	ACC	AG	
Asp	Glu	Arg	Glu	Val	Ser	Val	Ala	Ala	Glu	Ile	Leu	Arg	Lys	Thr		

Fig.21

Fig.22

Fig.23

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 416 725 A3

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 90307566.1

(51) Int. Cl.5: C12N 15/51, C07K 15/00,
//A61K39/29, G01N33/576

(22) Date of filing: 11.07.90

(33) Priority: 14.07.89 JP 182073/89
19.07.89 JP 184739/89
22.07.89 JP 189874/89
27.07.89 JP 192721/89
29.07.89 JP 195413/89
03.08.89 JP 200217/89
10.08.89 JP 205722/89
21.09.89 JP 243304/89
22.09.89 JP 245268/89
19.10.89 JP 270398/89

(35) Date of publication of application:
13.03.91 Bulletin 91/11

(44) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI NL SE

(54) Date of deferred publication of the search report:
20.03.91 Bulletin 91/12

(21) Applicant: Chugai Seiyaku Kabushiki Kaisha
5-1, 5-chome, Ukimido Kita-ku
Tokyo(JP)

Applicant: Arima, Terukatsu
5-13-1, Sakuragaoka
Kagoshima-shi, Kagoshima(JP)

(22) Inventor: Arima, Terukatsu
5-13-1, Sakuragaoka
Kagoshima-shi, Kagoshima(JP)
Inventor: Yamamoto, Osamu
3-30-304, Izumi-cho
Numazu-shi, Shizuoka(JP)
Inventor: Tsuchiya, Masayuki
5-3-301, Masago-cho
Numazu-shi, Shizuoka(JP)
Inventor: Oshima, Masanobu
1528-16, Nakashinden
Ebina-shi, Kanagawa(JP)

(24) Representative: Davies, Jonathan Mark et al
Reddie & Grose 16 Theobalds Road
London WC1X 8PL(GB)

(56) Blood-borne non-A, non-B hepatitis specific protein, DNA encoding it, and process for its production.

(57) A DNA coding for a blood-borne non-A, non-B hepatitis specific antigenic protein and corresponding to an RNA directly isolated from a human blood or liver tissue is disclosed. This antigenic protein can be produced by using the DNA, and the antigenic protein binds to an antibody in the serum of the patient with the non-A, non-B hepatitis. Therefore, the antigenic protein is useful for the diagnostic measurement of an antibody against the non-A, non-B hepatitis specific antigen.

EP 0 416 725 A3

European
Patent Office

EUROPEAN SEARCH
REPORT

Application Number

EP 20 30 7566

DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)		
X	EP-A-0 318 216 (CHIRON CORP.) " The whole document, especially figures 26,32 "	1-12	C 12 N 15/51 C 07 K 15/00 // A 61 K 39/29 G 01 N 33/576		
E	EP-A-0 388 232 (CHIRON CORP.) " Claims "	1-12			
TECHNICAL FIELDS SEARCHED (Int. Cl.5)					
C 07 K C 12 N A 61 K					
The present search report has been drawn up for all claims					
Place of search	Date of completion of search	Examiner			
The Hague	18 December 90	SKELLY J.M.			
CATEGORY OF CITED DOCUMENTS					
X: particularly relevant if taken alone					
Y: particularly relevant if combined with another document of the same category					
A: technological background					
O: non-written disclosure					
P: Intermediate document					
T: theory or principle underlying the invention					
E: earlier patent document, but published on, or after the filing date					
D: document cited in the application					
L: document cited for other reasons					
S: member of the same patent family, corresponding document					