Type Systems

Question 1. Consider the following language definition based on WHILE:

```
(statements) s::= x := e | s1; s2 (expression) e::= c | x | e1 + e2 | e1 * e2 (integer constant) c (integer variable) x (parity) p::= even | odd
```

Develop a type system for tracking the parity (even vs. odd) of integer expressions in this language. Assume that environment A is a map from each variable to even, odd, or top. Add the eight missing rules, each of which has judgments of the form $A \mid - e : p$, meaning that "under environment A, expression e has parity p." You may assume the following statements:

In your answer, write each rule in the following form, where each [] is filled in with an appropriate statement.

```
[ ] [ ]
-----
```

a. Four rules for 'e1 + e2':

Answer:

A
$$|-e1 + e2 : even$$

b. Four rules for 'e1 * e2':

Answer:

A |- e1 * e2 : even

A |- e1 * e2 : even

A |- e1 * e2 : even

A |- e1 * e2 : odd