Firefly Neural Architecture Descent: a General Approach for Growing Neural Networks

Model selection problem

$$\underset{f}{\operatorname{arg\,min}}\{L(f)\quad\text{ s.t. }\quad f\in\Omega,\quad C(f)\leq\eta\}$$

 Ω – family of models

C(f) – complexity of model

Model selection problem

$$f_{t+1} = \underset{f}{\operatorname{arg min}} \{L(f) \quad \text{s.t.} \quad f \in \partial (f_t, \epsilon), \quad C(f) \leq C(f_t) + \eta_t\}$$

$$\partial (f_t, \epsilon)$$
 – neighbourhood of f_t

Algorithm 1 Firefly Neural Architecture Descent

Input: Loss function L(f); initial small network f_0 ; search neighborhood $\partial(f, \epsilon)$; maximum increase of size $\{\eta_t\}$.

- **Repeat:** At the t-th growing phase: 1. Optimize the parameter of f_t with fixed structure using a typical optimizer for several epochs.
- **2.** Minimize L(f) in $f \in \partial(f, \epsilon)$ without the complexity constraint (see e.g., (4)) to get a large
- "over-grown" network \tilde{f}_{t+1} by performing gradient descent.
- 3. Select the top η_t neurons in \tilde{f}_{t+1} with the highest importance measures to get f_{t+1} (see (5)).

Neighbourhood

Figure 1: An illustration of three different growing methods within firefly neural architecture descent. Both δ and h are trainable perturbations.

Splitting and Growing Neuron

$$f_{\varepsilon,\delta}(x) = \sum_{i=1}^{m} \frac{1}{2} \left(\sigma \left(x, \theta_i + \varepsilon_i \delta_i \right) + \sigma \left(x, \theta_i - \varepsilon_i \delta_i \right) \right) + \sum_{i=m+1}^{m+m'} \varepsilon_i \sigma \left(x, \delta_i \right)$$

Optimization

$$\min_{\varepsilon, \boldsymbol{\delta}} \left\{ L\left(f_{\varepsilon, \boldsymbol{\delta}}\right) \quad \text{s.t.} \quad \|\varepsilon\|_{0} \leq \eta_{t}, \quad \|\varepsilon\|_{\infty} \leq \epsilon, \quad \|\boldsymbol{\delta}\|_{2, \infty} \leq 1 \right\}$$

Step 1

$$[\tilde{\boldsymbol{\varepsilon}}, \tilde{\boldsymbol{\delta}}] = \underset{\boldsymbol{\varepsilon}, \boldsymbol{\delta}}{\operatorname{arg\,min}} \{ L\left(f_{\boldsymbol{\varepsilon}, \boldsymbol{\delta}}\right) \quad \text{s.t.} \quad \|\boldsymbol{\varepsilon}\|_{\infty} \leq \epsilon, \quad \|\boldsymbol{\delta}\|_{2, \infty} \leq 1 \}$$

Optimization

$$[\tilde{\boldsymbol{\varepsilon}}, \tilde{\boldsymbol{\delta}}] = \underset{\boldsymbol{\varepsilon}, \boldsymbol{\delta}}{\operatorname{arg\,min}} \{ L\left(f_{\boldsymbol{\varepsilon}, \boldsymbol{\delta}}\right) \quad \text{s.t.} \quad \|\boldsymbol{\varepsilon}\|_{\infty} \le \epsilon, \quad \|\boldsymbol{\delta}\|_{2, \infty} \le 1 \}$$

Step 2

$$L\left(f_{\varepsilon,\tilde{\delta}}\right) = L(f) + \sum_{i=1}^{m+m'} \varepsilon_{i} s_{i} + O\left(\epsilon^{2}\right), \quad s_{i} = \frac{1}{\tilde{\varepsilon}_{i}} \int_{0}^{\tilde{\varepsilon}_{i}} \nabla_{\zeta_{i}} L\left(f_{\left[\tilde{\varepsilon}_{\neg i},\zeta_{i}\right],\tilde{\delta}}\right) d\zeta_{i},$$

$$\hat{\varepsilon} = \operatorname*{arg\,min}_{\varepsilon} \left\{ \sum_{i=1}^{m+m'} \varepsilon_{i} s_{i} \quad \text{s.t.} \quad \|\varepsilon\|_{0} \leq \eta_{t}, \quad \|\varepsilon\|_{\infty} \leq \epsilon \right\}$$

Growing new layer

New layer representation

$$f_{\varepsilon,\delta} = g_d \circ (I + h_{d-1}) \cdots (I + h_2) \circ g_2 \circ (I + h_1) \circ g_1, \quad \text{with} \quad h_{\ell}(\cdot) = \sum_{\ell} f_{\ell} \sigma(\cdot, \delta_{\ell})$$

Optimization problem to solve

$$\min_{\varepsilon, \boldsymbol{\delta}} \left\{ L\left(f_{\varepsilon, \delta}\right) \text{ s.t. } \|\varepsilon\|_{0} \leq \eta_{t, 0}, \quad \|\varepsilon\|_{\infty, 0} \leq \eta_{t, 1}, \quad \|\varepsilon\|_{\infty} \leq \epsilon, \quad \|\boldsymbol{\delta}\|_{2, \infty} \leq 1 \right\},$$

Continual learning

Continual learning

Figure 2: Illustration of how Firefly grows networks in continual learning.

Firefly vs Random

Figure 3: (a) Average training loss of different growing methods versus the number of grown neurons. (b) Firefly descent with different numbers of new neuron candidates.

Comparison with other methods

Figure 4: (a) Results of growing increasingly wider networks on CIFAR-10; VGG-19 is used as the backbone. (b) Computation time spent on growing for different methods.

