3D Perception with ROS and PCL

Dipl.-Ing. Georg Arbeiter

Technology Seminar – ROS in Industrial Applications

3D Perception with ROS and PCL Goals

- Introduction to 3D perception
 - Processing chain
 - Typical task
- Learn about Point Cloud Library (PCL)
 - Capabilities
 - Modules
- Learn how to use ROS for 3D perception
 - Use PCL algorithms in ROS nodes
 - Configure parameters
 - Visualize results in RVIZ
- Accomplish the task to detect an obstacle on the ground

Introduction to 3D Perception

Processing Chain

- Goal: Gain knowledge from sensor data
- Process data in order to
 - Improve data quality ⇒ filter noise
 - Enhance succeeding processing steps > reduce amount of data
 - Create a consistent environment model
 Combine data from different view points
 - Simplify detection problem ⇒ segment interesting regions
 - Gain knowledge about environment > classify surfaces

Introduction to 3D Perception Processing Chain

- Knowledge is used for
 - Navigation and Manipulation
 - Collision-free movements
 - Recognition of objects
 - Visualization
 - Feedback to human operator
 - Planning and Reasoning
 - Recognition of objects
 - Relationship between objects

Introduction to 3D Perception

Task: Identify obstacles on the ground

- A 3D camera is mounted on a robot or AGV
- For collision-avoidance, an obstacle on the ground should be detected
- Detection should be done using ROS and PCL

Work flow

3D Cameras

RGBD cameras, TOF cameras, stereo vision, 3D laser scanner

- Produce (colored) point cloud data
- 2.5D data (view point)
- Huge data volume
 - Over 300,000 points per cloud
 - 30 Hz frame rate
- Driver for Asus Xtion camera is in the package openni_launch

Introduction

- Large scale, open project for 2D/3D image and point cloud processing
- Contains numerous state of the art algorithms
 - Filters
 - Feature estimation
 - Registration
 - Segmentation
 - Surface reconstruction
- Released in BSD license
- Huge developer community
- ROS package: pcl

- Base
 - Point cloud definition
 - Point types
- Filters
 - Geometric Filters (Passthrough, Crop Box)
 - Downsampling (Voxel Grid)
 - Noise Filters (Statistical Outlier Removal, Median, Shadow Points)

- Features
 - Normals
 - Point descriptors (PC, RSD, FPFH)
 - Global features (VFH)
- Registration
 - Aligning point clouds
 - Generic framework
 - ICP, GICP, NDT
 - Support for features

- Segmentation
 - Region Growing: grow regions with similar properties (e.g. normals, colors)
 - RANSAC: fit parametric models (e.g. planes, cylinders)
- Surface reconstruction
 - Meshing: organized mesh, ear clipping
 - Hulls: concave or convex, 2D or 3D

- Visualization
 - PCD Viewer
 - API
- I/O
 - Point clouds as PCD
 - Meshes (PLY, VTK)

Visualization in RVIZ

Visualization in RVIZ

Visualization in RVIZ

- ROS package: visualization_msgs
- Marker Types

Dynamic Reconfigure

- Change parameters of nodes dynamically
- Easy setup in config file
- GUI to check and alter parameters
- Can be combined with parameters in launch file
- Implemented using a config server in the node
- ROS package: rqt_reconfigure

Dynamic Reconfigure

Processing Chain for Perception Task

ROS nodes used for processing

3D Perception with ROS and PCL

Your perception expert

Dipl. -Ing. Georg Arbeiter

E-Mail: georg.arbeiter@ipa.fraunhofer.de

Phone: +49 711 970-1299