Collision in Seattle

Table of Contents

Introduction	1
Data Preparation	2
Data Cleaning	2
Data after removal	3
Handle Null Value	3
Methodology	3
Correct Data Types	4
Data to Predict	4
Data Exploration	5
Convert Categorical Data to Numeric	13
Spit Testing and Training Data	14
Data Analysis	14
Pearson Correlation	14
Decision Tree	14
K-Nearest Neighbor (KNN)	15
Logistic Regression	15
Support Vector Machine (SVM)	16
Conclusion	17

Introduction

There are many accidents occur in Seattle. Each incident has different severity level, such as prop damage, injury, serious injury, or even fatality. Since we have raw data for each accident, one way to reduce it is to learn from the accident that was occurred. To see what behavioral reflects the severity of an accident. This can help us understand the nature of the accident and we can precede preventive action to change on the properties that lead to high severity accident.

Data Preparation

Data Cleaning

There are 37 attribute and 194,673 rows in the raw data that we can use to learn. However, some data is not useful for the analysis which is:

- 1. no meaning and duplicated data from the data set (a key data, description data)
 - a. 'X', 'Y', 'OBJECTID', 'INCKEY', 'COLDETKEY', 'REPORTNO', 'STATUS', 'LOCATION', 'EXCEPTRSNDESC', 'SEVERITYDESC', 'SDOTCOLNUM', 'ST_COLDESC', 'SEGLANEKEY', 'CROSSWALKKEY', 'INTKEY', 'SEVERITYCODE.1', 'INCDTTM', 'INCDATE', 'SDOT COLDESC', 'INCDTTM'
- 2. data contain too many null value which is easily lead to incorrect prediction (more than 50% of the data)
 - a. 'EXCEPTRSNCODE', 'INATTENTIONIND', 'PEDROWNOTGRNT', 'SPEEDING'

Data that is interesting to be a feature to solve the problem is listed as the following.

- 1. ADDRTYPE Collision address type
 - a. Sample data = {Alley, Block, Intersection}
- 2. COLLISIONTYPE Collision type
 - a. Sample data = {Parked car, Angles, Rear Ended, Sidewipe, Left Turn, RightTurn, Pedestrian, Cycles, Head On, Other}
- 3. PERSONCOUNT The total number of people involved in the collision
- 4. PEDCOUNT The number of pedestrians involved in the collision
- 5. PEDCYLCOUNT The number of bicycles involved in the collision
- 6. VEHCOUNT The number of vehicles involved in the collision
- 7. JUNCTIONTYPE Category of junction at which collision took place
 - a. Sample data = {'At Intersection (intersection related)', 'Mid-Block (not related to intersection)', 'Driveway Junction', 'Mid-Block (but intersection related)', 'At Intersection (but not related to intersection)', 'Unknown', 'Ramp Junction'}
- 8. SDOT COLCODE A code given to the collision by SDOT
 - a. Sample data = 11 means MOTOR VEHICLE STRUCK MOTOR VEHICLE, FRONT END AT ANGLE, 16 means MOTOR VEHICLE STRUCK MOTOR VEHICLE, LEFT SIDE SIDESWIPE
- 9. UNDERINFL Whether or not a driver involved was under the influence of drugs or alcohol.
- 10. WEATHER A description of the weather conditions during the time of the collision
 - a. Sample data = {Clear, Raining, Overcast, Snowing, Fog/Smog/Smoke, Sleet/Hail/Freezing Rain, Blowing Sand/Dirt, Severe Crosswind, Partly Cloudy, Other, Unknown}
- 11. ROADCOND The condition of the road during the collision
 - a. Sample data = {Dry, Wet, Unknown, Ice, Snow/Slush, Standing Water, Sand/Mud/Dirt, Oil, Other}
- 12. LIGHTCOND The light conditions during the collision
 - a. Sample data = {Daylight, Dark Street Lights On, Dark No Street Lights, Unknown, Dusk, Dawn, Dark - Street Lights Off, Other, Dark - Unknown Lighting}
- 13. ST_COLCODE A code provided by the state that describes the collision

- a. Sample data = 0 means 'Vehicle Going Straight Hits Pedestrian', 11 means 'From Same Direction -Both Going Straight-Both Moving- Sideswipe'
- 14. HITPARKEDCAR Whether or not the collision involved hitting a parked car. (Y/N)

These columns have below data type.

SEVERITYCODE	int64
ADDRTYPE	object
COLLISIONTYPE	object
PERSONCOUNT	int64
PEDCOUNT	int64
PEDCYLCOUNT	int64
VEHCOUNT	int64
JUNCTIONTYPE	object
SDOT_COLCODE	int64
UNDERINFL	object
WEATHER	object
ROADCOND	object
LIGHTCOND	object
ST_COLCODE	object
HITPARKEDCAR	object

Data after removal

There are 15 columns of data and 194,673 rows

Handle Null Value

The data has null value as below.

SEVERITYCODE	0
ADDRTYPE	1926
COLLISIONTYPE	4904
PERSONCOUNT	0
PEDCOUNT	0
PEDCYLCOUNT	0
VEHCOUNT	0
JUNCTIONTYPE	6329
SDOT_COLCODE	0
UNDERINFL	4884
WEATHER	5081
ROADCOND	5012
LIGHTCOND	5170
ST_COLCODE	18
HITPARKEDCAR	0

Methodology

Data field	Method
ST_COLCODE	Replace blank value (' ') as NaN and replace NaN with maximum frequency data
JUNCTIONTYPE	Replace 'Unknown' value as NaN and replace NaN with maximum frequency data
UNDERINFL	Replace 'Y' as 1 and 'N' as 0 and replace NaN with maximum frequency data
HITPARKEDCAR	Replace 'Y' as 1 and 'N' as 0

ADDRTYPE	Replace NaN with maximum frequency data
COLLISIONTYPE	Replace NaN with maximum frequency data
WEATHER	Replace NaN with maximum frequency data
ROADCOND	Replace NaN with maximum frequency data
LIGHTCOND	Replace NaN with maximum frequency data

Correct Data Types

Change ST_COLCODE, UNDERINFL, and HITPARKEDCAR to integer. After changing, the data types is as below.

SEVERITYCODE	int64
ADDRTYPE	object
COLLISIONTYPE	object
PERSONCOUNT	int64
PEDCOUNT	int64
PEDCYLCOUNT	int64
VEHCOUNT	int64
JUNCTIONTYPE	object
SDOT_COLCODE	int64
UNDERINFL	int64
WEATHER	object
ROADCOND	object
LIGHTCOND	object
ST_COLCODE	int64
HITPARKEDCAR	int64

Data to Predict

Data to predict is SEVERITYCODE. The data in this data set contain only 2 values as below.

Severity Code	Description	Amount of data
1	Prop damage	136,485
2	Injury	58,188

Data Exploration

ADDRTYPE data group by severity code

_			
	ADDRTYPE	SEVERITYCODE	COUNT
0	Alley	1	669
1	Alley	2	82
2	Block	1	98565
3	Block	2	30287
4	Intersection	1	37251
5	Intersection	2	27819

COLLISIONTYPE data group by severity code

COL	LISIONTYPE	SEVERITYCODE	COUNT	
0	Angles	1	21050	
1	Angles	2	13624	
2	Cycles	1	671	
3	Cycles	2	4744	
4	Head On	1	1152	
5	Head On	2	872	
6	Left Turn	1	8292	
7	Left Turn	2	5411	
8	Other	1	17591	
9	Other	2	6112	
10	Parked Car	1	49188	
11	Parked Car	2	3703	
12	Pedestrian	1	672	
13	Pedestrian	2	5936	
14	Rear Ended	1	19419	
15	Rear Ended	2	14671	
16	Right Turn	1	2347	
17	Right Turn	2	609	
18	Sideswipe	1	16103	
19	Sideswipe	2	2506	

PERSONCOUNT data group by severity code

PERSONCOUNT 0				
0		SEVERITYCODE	COUNT	
_	0	1	3782	
1	0	2	1762	
2	1	1	9858	
3	1	2	3296	
4	2	1	86420	
5 6	2	2	27811	
6	3 3 4	1	22092	
7	3	2	13461	
8		1	8365	
9	4	2	6295	
10	5	1	3615	
11	5	2	2969	
12	6	1	1345	
13	6	2	1357	
14	7	1	494	
15	7	2	637	
16	8	1	249	
17	8	2	284	
18	9 9	1	87	
19		2	129	
20	10	1	54	
21	10	2	74	
22	11	1	23	
23	11	2	33	
24	12	1	13	
25	12	2	20	
26	13	1	9	
27	13	2	12	
28	14	1	12	
29	14	2	7	
61	32	1	2	
62	32	2	1	
63	34	1	1	
64	34	2	2	
65	35	1	1	

66	36	1	2
67	37	1	2
68	37	2	1
69	39	2	1
70	41	1	1
71	43	1	1
72	44	1	6
73	47	1	3
74	48	2	1
75	53	1	1
76	54	2	1
77	57	1	1
78	81	2	1

Number of Incident by Serverity with PERSONCOUNT

80000

40000

20000

10 20 30 40 50 60 70 80

PEDCOUNT data group by severity code

PEDCOUNT	<u> </u>	SEVERITYCODE	COUNT
0	0	1	135787
1	0	2	51947
2	1	1	678
3	1	2	6007
4	2	1	19
5	2	2	207
6	3	1	1
7	3	2	21
8	4	2	4
9	5	2	1
10	6	2	1

PEDCYLCOUNT data group by severity code

PEDCYLCOUNT		SEVERITYCODE	COUNT
0	0	1	135806
1	0	2	53383
2	1	1	679
3	1	2	4762
4	2	2	43

VEHCOUNT data group by severity code

VEHCOUNT		SEVERITYCODE	COUNT
0	0	1	3858
1	0	2	1227
2	1	1	11643
3	1	2	14105
4	2	1	111701
5	2	2	35949
6	3	1	7540

7	3	2	5470	
8	4	1	1348	
9	4	2	1078	
10	5	1	268	
11	5	2	261	
12	6	1	86	
13	6	2	60	
14	7	1	24	
15	7	2	22	
16	8	1	10	
17	8	2	5	
18	9	1	3	
19	9	2	6	
20	10	2	2	
21	11	1	3	
22	11	2	3	
23	12	1	1	

JUNCTIONTYPE data group by severity code

JUNCTIONTYPE SEVERITYCO	DDE	COUNT	
0 At Intersection (but not related to intersection)	_		
1 At Intersection (but not related to intersection)	_	623	
	_		
2 At Intersection (intersection related)	1	35636	
3 At Intersection (intersection related)	2	27174	
4 Driveway Junction	1	7437	
5 Driveway Junction	2	3234	
6 Mid-Block (but intersection related)	1	15493	
7 Mid-Block (but intersection related)	2	7297	
8 Mid-Block (not related to intersection)	1	76332	
9 Mid-Block (not related to intersection)	2	19806	
10 Ramp Junction	1	112	
11 Ramp Junction	2	54	

UNDERINFL data group by severity code

UNDERINFL		SEVERITYCODE	COUNT
0	0	1	130926
1	0	2	54626
2	1	1	5559
3	1	2	3562

WEATHER data group by severity code

WEATHER		SEVERITYCODE	COUNT	
0	Blowing Sand/Dirt	1	41	
1	Blowing Sand/Dirt	2	15	
2	Clear	1	79292	
3	Clear	2	36924	
4	Fog/Smog/Smoke	1	382	
5	Fog/Smog/Smoke	2	187	
6	Other	1	716	
7	Other	2	116	
8	Overcast	1	18969	

9	Overcast	2	8745	
10	Partly Cloudy	1	2	
11	Partly Cloudy	2	3	
12	Raining	1	21969	
13	Raining	2	11176	
14	Severe Crosswind	1	18	
15	Severe Crosswind	2	7	
16	Sleet/Hail/Freezing Rain	1	85	
17	Sleet/Hail/Freezing Rain	2	28	
18	Snowing	1	736	
19	Snowing	2	171	
20	Unknown	1	14275	
21	Unknown	2	816	

ROADCOND data group by severity code

ROA	DCOND	SEVERITYCODE	COUNT	
0	Dry	1	88398	
1	Dry	2	41124	
2	Ice	1	936	
3	Ice	2	273	
4	Oil	1	40	
5	Oil	2	24	
6	Other	1	89	
7	Other	2	43	
8	Sand/Mud/Dirt	1	52	
9	Sand/Mud/Dirt	2	23	
10	Snow/Slush	1	837	
11	Snow/Slush	2	167	
12	Standing Water	1	85	
13	Standing Water	2	30	
14	Unknown	1	14329	
15	Unknown	2	749	
16	Wet	1	31719	
17	Wet	2	15755	

LIGHTCOND data group by severity code

LIG	HTCOND	SEVERITYCODE	COUNT	
0	Dark - No Street Lights	1	1203	
1	Dark - No Street Lights	2	334	
2	Dark - Street Lights Off	1	883	
3	Dark - Street Lights Off	2	316	
4	Dark - Street Lights On	1	34032	
5	Dark - Street Lights On	2	14475	
6	Dark - Unknown Lighting	1	7	
7	Dark - Unknown Lighting	2	4	
8	Dawn	1	1678	
9	Dawn	2	824	
10	Daylight	1	81673	
11	Daylight	2	39634	
12	Dusk	1	3958	
13	Dusk	2	1944	
14	Other	1	183	
15	Other	2	52	
16	Unknown	1	12868	
17	Unknown	2	605	

HITPARKEDCAR data group by severity code

HITPARKE	EDCAR	SEVERITYCODE	COUNT
0	0	1	129717
1	0	2	57740
2	1	1	6768
3	1	2	448

Convert Categorical Data to Numeric

Since many libraries do not support categorical data, we have to convert them to Numeric value. Then normalize it.

Spit Testing and Training Data

- X = 'ADDRTYPE', 'COLLISIONTYPE', 'PERSONCOUNT', 'PEDCOUNT', 'PEDCYLCOUNT', 'VEHCOUNT', 'JUNCTIONTYPE', 'SDOT_COLCODE', 'UNDERINFL', 'WEATHER', 'ROADCOND', 'LIGHTCOND', 'ST COLCODE', 'HITPARKEDCAR'
- y = 'SEVERITYCODE'

Data	Percentage of all data	Amount of data
Training	70%	136,271
Testing	30%	58,402

Data Analysis

Pearson Correlation

The Pearson Correlation measures the linear dependence between two variables X and Y.

The resulting coefficient is a value between -1 and 1 inclusive, where:

- 1: Total positive linear correlation.
- 0: No linear correlation, the two variables most likely do not affect each other.
- -1: Total negative linear correlation.

Result of the correlation with SEVERITYCODE shows as the following

Data	Pearson Correlation with SEVERITYCODE
SEVERITYCODE	1
PERSONCOUNT	0.130949
PEDCOUNT	0.246338
PEDCYLCOUNT	0.214218
VEHCOUNT	-0.054686
SDOT_COLCODE	0.188905
UNDERINFL	0.044377
ST_COLCODE	-0.165233
HITPARKEDCAR	-0.101498

There is no data that nearly -1 or 1 with SEVERITYCODE, all of them nearly to 0. Then there is no linear correlation to SEVERITYCODE. Linear regression should not be a good method to use to predict the severity code.

Decision Tree

- Max depth = 5
- Accuracy (the fraction of correctly classified samples) = 0.7537584329303791

K-Nearest Neighbor (KNN)

• From experiments, K is 1 to 10, the best K is 8.

• Accuracy (the fraction of correctly classified samples) = 0.7475771377692545

Logistic Regression

- Use Solver Liblinear
- Accuracy
 - Jaccard similarity score = 0.7547344269031883

 Note that this is equal to the fraction of correctly classified samples.

o Confusion matrix (F1 average) = 0.7173683103496501

Support Vector Machine (SVM)

- Kernel 'rbf'
- Accuracy
 - o The fraction of correctly classified samples = 0.7593404335467964

Confusion matrix (F1 average) = 0.7173683103496501

Conclusion

Collision in Seattle happens with many properties. In this study we use properties which are collision address type, collision type, number of people involved in the collision, number of pedestrians, number of bicycles, number of vehicles, category of junction, collision code by SDOT, driver was under influence of drug or alcohol, weather, road condition, light condition, a code that provided by the state, and whether or not the collision involved hitting a parked car, to predict severity level of the collision. The severity level can be prop damage, injury, serious injury, or even fatality.

From the source data, first, the study removed the data which has a duplicated meaning, and data that has null value more than 50%. Second, handle null value with the data that has the highest frequency. Third, change data type to a proper one. Fourth, did the data normalization. Finally, split this data to training set (70% of the data) and testing set (30% of the data).

From the study, Decision tree algorithm, K-Nearest Neighbor algorithm (KNN), Logistic Regression, and Support Vector Machine algorithm (SVM), shows similar ability to predict the severity level. Decision tree and SVM has accuracy score 76%, where KNN and Logistic Regression have accuracy score 75%.