

Core Curriculum in Clinical and Translational Research Seminar Series

Biomedical Informatics Series Part 3 of 4

Pain and Mental Health: A Case Study in Information-Driven Research

February 22, 2012 – Roswell Park Cancer Institute, Buffalo NY

Werner CEUSTERS, MD

Center of Excellence in Bioinformatics and Life Sciences, Ontology Research Group and Department of Psychiatry

University at Buffalo, NY, USA

http://www.org.buffalo.edu/RTU

Overview

- Principles of data collection
- Introduction to OPMQoL: an ontology for painrelated disablement, mental health and quality of life,
- Making individual data collections more useful for international research,
- Introduction to application ontology building in for OPMQoL.

Principles of Data Collection

Data generation and use

A crucial distinction: data and what they are about

Data must be unambiguous and faithful to reality ...

Referents

References organized in a data collection

... even when reality changes

- Are differences in data about the same entities in reality at different points in time due to:
 - changes in first-order reality ?
 - changes in our understanding of reality?
 - inaccurate observations?
 - registration mistakes ?

Methods to achieve faithfulness and data clarity

Sources	Data generation	Data organization
Data collection sheets		EM EN EO EP 653888 1156567 610523 749863
Instruction manuals	10 11 11 11 11	\$5567 56279 20612 41508 5304 195477 154154 164278 704844 1190775 657315 698007
Interpretation criteria	13 14 15	1603826 1361531 832081 904693 276244 57705 19186 33831 863722 200140 149491 140971
Diagnostic criteria	16 17 18	751525 1119467 647623 652226 1681491 1377312 816300 827028 2805 59338 17653 29537
Assessment instruments	19 20 21	65 3/9 204643 144988 125314 69619 1125006 642084 634132 1719536 1388987 804625 788983
Terminologies	23 24	284934 60612 16279 25141 682592 205449 144183 112101 810523 113672 630364 593228
Data validation procedures	25 26 27	1778049 1402788 250826 730470 287654 61405 15486 22421 691286 20666 142964 103407
Data dictionaries	Je 4	▶ N\SCTHistory/ ▼ B\AutoShapes ▼
Ontologies	- Inco	Juli-14,414007

If not used for data collection and organization, these sources can be used post hoc to document, and perhaps increase, the level of data clarity and faithfulness in and comparability of existing data collections.

Ontologies to make data collections comparable

Cases	Characte ristics Characte						
Cases	ch1	ch2	ch3	ch4	ch5	ch6	
case1							
case2							
case3							
case4							
case5							
case6							

ı	Cases	Characteristics						
	Ouoco	_ch1	ch2	ch3	ch4	ch5	ch6	
	case1							
ı	case2							
ı	case3							
	case4							
	case5							
	case6							

Cases	Characteristics						
Cast	ch1	ch2	oh3	ch4	eh5	ch6	
case1							
case2							
case3							
case4							
case5							
case6							

Linking the variables of distinct data collections to a realism-based ontology.

OPMQoL: an Ontology for painrelated disablement, mental health and quality of life

Acknowledgement

The work described is funded in part by grant 1R01DE021917-01A1

from the National Institute of Dental and Craniofacial Research (NIDCR). The content of this presentation is solely the responsibility of the author and does not necessarily represent the official views of the NIDCR or the National Institutes of Health.

New York State Center of Excellence in

Bioinformatics & Life Sciences

Collaborators

Werner Ceusters – Richard Ohrbach UB (PIs)

Mike T. John – Eric L. Schiffman University of Minnesota

Vishar Aggarwal Manchester, UK

Joanna Zakrzewska London, UK

Thomas List Malmö, Sweden

Rafael Benoliel Hadassah, Israel

Background (1)

- July 2008, Toronto:
 - the International RDC/TMD Consortium Network identified a need to incorporate the RDC/TMD diagnostic taxonomy into a comprehensive orofacial pain taxonomy.
- April, 2009, Miami:
 - 'The International Consensus Workshop: Convergence on an Orofacial Pain Taxonomy' participants decided that an adequate treatment of the <u>ontology</u> of pain in general, and orofacial pain in particular, together with an appropriate <u>terminology</u>, is mandatory to advance the state of the art in diagnosis, treatment and prevention.

Background (2)

- The following consecutive steps were proposed:
 - 1. study the terminology and ontology of pain as currently defined,
 - 2. find ways to make individual data collections more useful for international research,
 - 3. develop an ontology for integrating knowledge and data over all the known basic and clinical science domains concerning TMD and its relationship to complex disorders, and
 - 4. expand this ontology to cover all pain-related disorders.

Study the terminology of pain as currently defined

- Starting point the IASP definition for 'pain':
 - 'an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage';
- what asserts:
 - a common phenomenology ('unpleasant sensory and emotional experience') to all instances of pain,
 - the recognition of three distinct subtypes of pain involving, respectively:
 - 1. actual tissue damage,
 - 2. what is called 'potential tissue damage', and
 - 3. a description involving reference to tissue damage whether or not there is such damage.

Results of the ontological analysis

Smith B, Ceusters W, Goldberg LJ, Ohrbach R. Towards an Ontology of Pain. In: Mitsu Okada (ed.), Proceedings of the Conference on Logic and Ontology, Tokyo: Keio University Press, February 2011:23-32. For ontological definitions

http://www.referent-tracking.com/RTU/sendfile/?file=painTokyo1_27_2011.pdf

http://www.referent-tracking.com/RTU/sendfile/?file=201201PainProject.ppt

of these types, see:

Main topics for this lecture

- The following consecutive steps were proposed:
 - 1. study the terminology and ontology of pain as currently defined,
 - 2. find ways to make individual data collections more useful for international research,
 - 3. develop an ontology for integrating knowledge and data over all the known basic and clinical science domains concerning TMD and its relationship to complex disorders, and
 - expand this ontology to cover all pain-related disorders.

Find ways to make individual data collections more useful for international research

Methodology

- For data collections still to be generated:
 - express all study criteria, variables and possible values in terms of realism-based ontologies
- For existing data collections:
 - analyze data dictionaries, assessment instruments, study criteria and corresponding terminologies,
 - build realism-based application ontologies to link these sources to realism-based reference ontologies.

A data collection consists of at least 1 data item, each data item belonging to exactly 1 collection

Data dictionaries provide information about data items and data collections

Data dictionaries provide also information about terminologies and assessment instruments used for data generation, in addition to information about the collection's structure

Relation of Terminology component to Data component

Terminology component

Terminology links terms to 'concepts'

Not 'concepts' are of interest, but entities in reality

It is real entities that should be denoted in ontologies

Application ontologies cover the domains of the sources

Bridging axioms link data to ontologies and terminologies

Linking data collections using distinct assessment instruments

Detailed example of the ontology building procedure

Example: assessing TMJ Anatomy

Temporomandibular Joint (TMJ)

- Mandibular condyle
- 2. Articular disk
- 3. Superior joint cavity
- 4. Articular eminence
- 5. External ear

Panoramic X-ray of mouth

Radiology RDC/TMD Examination: data collection sheet

RDC/TMD: a collaborator's data dictionary

Hard Tis	ssue Assessment:
I. TMJ Fin	nding(s)
Right TM	1.J
A) Condy	lar Head
NY	Gross Hyperplasia Flattening Subcortical Sclerosis Subcortical Cyst Surface Erosion Osteophyte Generalized Sclerosis Loose Joint Bodies
NY	
B) Fossa/I	
(N)(Y)	Flattening Subcortical Sclerosis
(N) (Y)	Surface Erosion
	Surface Erosion
C) Diagno	osis
0	ormal
	determinant
	steoarthrosis
(4) Ot	ther (List):
D) Miscell	laneous
(N) (Y)	Ankylosis
	Alikylosis

I. TMJ Finding(s)

A. Right TMJ

PanRtIA1
PanRtIA2
PanRtIA3
PanRtIA4
PanRtIA5
PanRtIA6
PanRtIA7
PanRtIA8
PanRtIA9
PanRtIA10

Gross Hypoplasia
Gross Hyperplasia
Flattening
Subcortical Sclerosis
Sybcortical Cyst
Surface Erosion
Osteophyte
Generalized Sclerosis
Loose Joint Bodies
Deviation in Form

0 - No 1 - Yes

Fieldnames in Eric's data collection

Allowed values for the fields

Anybody sees something disturbing?

Hard Tissue Assessment	: Panoramic X-ray
I. TMJ Finding(s)	
Right TMJ	
A) Condylar Head	
(N) (Y) Gross Hypoplasia	
(N) (Y) Gross Hyperplasia	
N Y Flattening	
N Y Subcortical Scleros	is
N Y Subcortical Cyst	
N Y Surface Erosion	
N Y Osteophyte	
N Y Generalized Sclero	sis
N Y Loose Joint Bodies	
N Y Deviation in Form	
B) Fossa/Eminence	
N Y Flattening	
N Y Subcortical Scleros	is
N Y Surface Erosion	
C) Diagnosis	
1 Normal	
2 Indeterminant	
3 Osteoarthrosis	
4 Other (List):	
D) Miscellaneous	
N Y Ankylosis	

I. TMJ Fir		
Α.	Right TMJ	
PanRtIA1		
PanRtIA2		
PanRtIA3		
PanRtIA4		
PanRtIA5		
PanRtIA6		
PanRtIA7		
PanRtIA8		
PanRtIA9		
PanRtIA10		

9 - missing

Gross Hypoplasia
Gross Hyperplasia
Flattening
Subcortical Sclerosis
Sybcortical Cyst
Surface Erosion
Osteophyte
Generalized Sclerosis
Loose Joint Bodies
Deviation in Form

0 - No 1 - Yes

This data dictionary alone is not reliable!

1	Hard Tissue Assessment: Panoramic X-ray
(1	TMJ Finding(s)
	Right TMJ
	A) Condylar Head
	N Y Gross Hypoplasia
	N Y Gross Hyperplasia
	N Y Flattening
	N Y Subcortical Sclerosis
	N Y Subcortical Cyst
	(N) (Y) Surface Erosion
	N Y Osteophyte
	(N) (Y) Generalized Sclerosis
	N Y Loose Joint Bodies
	N Y Deviation in Form
	B) Fossa/Eminence
	N Y Flattening
	N Y Subcortical Sclerosis
	N Y Surface Erosion
	C) Diagnosis
	1 Normal
	2 Indeterminant
	3 Osteoarthrosis
	4 Other (List):
	D) Miscellaneous
	(N) (Y) Ankylosis

<u>I. TMJ Fir</u> A.	<u>nding(s)</u> Right TMJ	
PanRtIA1		
PanRtIA2		
PanRtIA3		
PanRtIA4		
PanRtIA5		
PanRtIA6		
PanRtIA7		
PanRtIA8		
PanRtIA9		
PanRtIA10		

Gross Hypoplasia
Gross Hyperplasia
Flattening
Subcortical Sclerosis
Sybcortical Cyst
Surface Erosion
Osteophyte
Generalized Sclerosis
Loose Joint Bodies

Deviation in Form

0 - No 1 - Yes

9 - missing

That these variables are about the *condylar head* of the TMJ is 'lost in translation'!

'meaning' of values in data collections

<u>I. TMJ Fir</u> A.	nding(s) Right TMJ	0 - No 1 - Yes 9 - missing
PanRtIA1		Gross Hypoplasia
PanRtIA2		Gross Hyperplasia
PanRtIA3		Flattening
PanRtIA4		Subcortical Sclerosis
PanRtIA5		Sybcortical Cyst
PanRtIA6		Surface Erosion
PanRtIA7		Osteophyte
PanRtIA8		Generalized Sclerosis
PanRtIA9		Loose Joint Bodies
PanRtIA10		Deviation in Form

'The patient with patient identifier 'PtID4' is stated to have had a panoramic X-ray of the mouth which is interpreted to show subcortical sclerosis of that patient's condylar head of the right temporomandibular joint'

-	J 🚽 🤊	* (° * <u>1</u>	₹					n	near	ning	Pa	in Analysis Exar	mple
	Home	Insert	Page Lay	out Fo	rmulas	Data Re	view	ïew	Acro	bat			
A1 ▼ PtID													
4	А	В	С	D	Е	F	G		Н	I	J	K	
1	PtID	PanRtIA1	PanRtIA2	PanRtIA3	PanRtIA4	PanRtIA5	PanRt/A	6 Pa	nRtIA7	PanRtIA8	PanRtIA9	PanRtIA10	
2	PtID1	0	0	0	1	9		0	0	0	0	0	
3	PtID2	0	1	0	1	0		0	0	0	0	0	
4	PtID3	0	0	0	9	0		0	0	0	0	0	
5	PtID4	0	0	0	1	1		0	9	0	1	1	
6	PtID5	0	1	9	1	0		0	0	1	0	0	
7	PtID6	0	0	0	1	2		0	0	0	0	0	
8	PtID7	0	0	0	1	0		0	0	0	0	0	
9													

Objectives of the 'sources' analysis

- Find for each value V in the data collections all possible configurations of entities (according to our best scientific understanding) for which the following can be true:
 - V
 - 'it is stated that V'
- Describe these possible configurations by means of sentences from a formal language that mimic the structure of reality.

Objectives of the 'sources' analysis (2)

- For example,
 - for the value stating that 'The patient with patient identifier 'PtID4' has had a panoramic X-ray of the mouth which is interpreted to show subcortical sclerosis of that patient's condylar head of the right temporomandibular joint' to be true,
 - this statement must have been made,
 - for the statement to be true, there must have been that patient, an X-ray, etc, ...
 - BUT! It is not necessarily true that that patient has indeed the sclerosis as diagnosed.

Methodology

- 1. Formulate for each variable in the data collection a sentence explaining as accurately as possible what the variable stands for,
- 2. list the entities in reality that the terms in the sentence denote,
- 3. list recursively for all entities listed further entities that ontologically must exist for the entity under scrutiny to exist,
- 4. classify all entities in terms of realism-based ontologies (RBO),
- 5. specify all obtaining relationships between these entities,
- 6. outline all possible configurations of such entities for the sentence to be true.

RBO (1): Ontology of General Medical Science

Scheuermann R, Ceusters W, Smith B. Toward an Ontological Treatment of Disease and Diagnosis. 2009 AMIA Summit on Translational Bioinformatics, San Francisco, California, March 15-17, 2009;: 116-120.

No conflation of <u>diagnosis</u>, <u>disease</u>, and <u>disorder</u>

The diagnosis is here

OGMS: Disorder

- <u>Disorder</u> =def. A causally linked combination of physical components that is
 - (a) clinically abnormal and
 - (b) maximal, in the sense that it is not a part of some larger such combination.
- - something is clinically abnormal if:
 - (1) is not part of the life plan for an organism of the relevant type (unlike aging or pregnancy),
 - (2) is causally linked to an elevated risk either of pain or other feelings of illness, or of death or dysfunction, and
 - (3) is such that the elevated risk exceeds a certain threshold level.

OGMS: Diagnosis

- <u>Clinical Picture</u> = def. A representation of a clinical phenotype that is inferred from the combination of laboratory, image and clinical findings about a given patient.
- Diagnosis = def. -
 - A conclusion of an interpretive process that has as input a clinical picture of a given patient and as output an assertion to the effect that the patient has a disease of such and such a type.

R T U New York State Center of Excellence in Bioinformatics & Life Sciences

RBO (2): (cleaned up) Ontology of Biomedical Investigations

Step 1: formulate a statement

<u>I. TMJ Fir</u> A.	nding(s) Right TMJ	0 - No 1 - Yes 9 - missing
PanRtIA1		Gross Hypoplasia
PanRtIA2		Gross Hyperplasia
PanRtIA3		Flattening
PanRtIA4		Subcortical Sclerosis
PanRtIA5		Sybcortical Cyst
PanRtIA6		Surface Erosion
PanRtIA7		Osteophyte
PanRtIA8		Generalized Sclerosis
PanRtIA9		Loose Joint Bodies
PanRtIA10		Deviation in Form

'The patient with patient identifier 'PtID4' is stated to have had a panoramic X-ray of the mouth which is interpreted to show subcortical sclerosis of that patient's condylar head of the right temporomandibular joint'

•	n 🖪 יין	· (° · 📆	₹					mea	ning	Pa	inAnalysisExa	mple
	Home	Insert	Page Lay	out For	mulas I	Data Re	view	iew Acro	obat			
A1 ▼ PtID												
	А	В	С	D	Е	F	G	Н	1	J	K	
1	PtID	PanRtIA1	PanRtIA2	PanRtIA3	PanRtIA4	PanRtIA5	PanRt/A	6 PanRtIA7	PanRtIA8	PanRtIA9	PanRtIA10	
2	PtID1	0	0	0	1	9		0 0	0	0	0)
3	PtID2	0	1	0	1	0		0 0	0	0	0)
4	PtID3	0	0	0	9	0		0 0	0	0	0)
5	PtID4	0	0	0	1	1		0 9	0	1	1	
6	PtID5	0	1	9	1	0		0 0	1	0	0)
7	PtID6	0	0	0	1	2		0 0	0	0	0	
8	PtID7	0	0	0	1	0		0 0	0	0	0	
9												

Step 2 (1): list the entities denoted

• 1(The patient) with 2(patient identifier 'PtID4') 3(is stated) 4(have had) a 5(panoramic X-ray) of 6(the mouth) which 7(is interpreted) to 8(show) 9(subcortical sclerosis of 10(that patient's condylar head of the 11 (right temporomandibular joint)))

CLASS	INSTANCE IDENTIFIE
person	
patient identifier	
assertion	IUI-3
technically investigating	IUI-4
panoramic X-ray	IUI-5
mouth	IUI-6
interpreting	IUI-7
seeing	IUI-8
diagnosis	IUI-9
condylar head of right TMJ	IUI-10
right TMJ	IUI-11

notes:

colors have no meaning here, just provide easy reference, this first list can be different, any such differences being resolved in step 3

Step 2 (2): provide directly referential descriptions

	INSTANCE	
CLASS	IDENTIFIER	DIRECTLY REFERENTIAL DESCRIPTIONS
person	IUI-1	the person to whom IUI-2 is assigned
patient identifier	IUI-2	the patient identifier of IUI-1
assertion	IUI-3	'the patient with patient identifier PtID4 has
		had a panoramic X-ray of the mouth which is
		interpreted to show subcortical sclerosis of
		that patient's right temporomandibular joint'
technically investigating	IUI-4	the technically investigating of IUI-6
panoramic X-ray	IUI-5	the panoramic X-ray that resulted from IUI-4
mouth	IUI-6	the mouth of IUI-1
interpreting	IUI-7	the interpreting of the signs exhibited by IUI-5
seeing	IUI-8	the seeing of IUI-5 which led to IUI-7
diagnosis	IUI-9	the diagnosis expressed by means of IUI-3
condylar head of right TMJ	IUI-10	the condylar head of the right TMJ of IUI-1
right TMJ	IUI-11	the right TMJ of IUI-1

Step 3: identify further entities that ontologically must exist for each entity under scrutiny to exist.

assigner role	IUI-12	the assigner role played by the entity while it performed IUI-21
assigning	IUI-21	the assigning of IUI-2 to IUI-1 by the entity with role IUI-12
asserting	IUI-20	the asserting of IUI-3 by the entity with asserter role IUI-13
asserter role	IUI-13	the asserter role played by the entity while it performed IUI-20
investigator role	IUI-14	the investigator role played by the entity while it performed IUI-4
panoramic X-ray machine	IUI-15	the panoramic X-ray machine used for performing IUI-4
image bearer	IUI-16	the image bearer in which IUI-5 is concretized and that participated in IUI-8
interpreter role	IUI-17	the interpreter role played by the entity while it performed IUI-7
perceptor role	IUI-18	the perceptor role played by the entity while it performed IUI-8
diagnostic criteria	IUI-19	the diagnostic criteria used by the entity that performed IUI-7 to come to IUI-9
study subject role	IUI-22	the study subject role which inheres in IUI-1

Step 3: some remarks

- interpreter role, perceptor role, ...
 - reference to roles rather than the entity in which the roles inhere because it may be the same entity and one should not assign several IUIs to the same entity
- each description follows similar principles as Aristotelian definitions but is about particulars rather than universals

Step 4: classify all entities in terms of realism-based ontologies

CLASS HIGHER CLASS

person BFO: Object

patient identifier IAO: Information Content Entity

assertion IAO: Information Content Entity

technically OBI: Assay

investigating

panoramic X-ray IAO: Image

mouth FMA: Mouth

interpreting MFO: Assessing

seeing BFO: Process

diagnosis IAO: Information Content Entity

condylar head of FMA: Right condylar process of mandible

right TMJ

right TMJ FMA: Right temporomandibular joint

assigner role BFO: Role

assigning BFO: Process

study subject role OBI: Study subject role

- requires more
 ontological and
 philosophical
 skills than
 domain expertise
 or expertise with
 Protégé,
- not just term matching

Step 5: specify relationships between these entities

- For instance:
 - at least during the taking of the X-ray the study subject role inheres in the patient being investigated:
 - IUI-23 inheres-in IUI-1 during t1
 - the patient participates at that time in the investigation
 - IUI-4 has-participant IUI-1 during t1
- These relations need to follow the principles of the Relation Ontology.

Step 6: outline all possible configurations of such entities for the sentence to be true (a one semester course on its own)

- Such outlines are collections of relational expressions of the sort just described,
- Variant configurations for the example:
 - perceptor and interpreter are the same or distinct human beings,
 - the X-ray machine is unreliable and produced artifacts which the interpreter thought to be signs motivating his diagnosis, while the patient has indeed the disorder specified by the diagnosis (the clinician was lucky)

Conclusion

- Realism-based ontology has a lot to offer to make data collections comparable and unambiguously understandable.
- It is hard!
- How far one needs to go depends on the purposes.
 - ideally: an analysis should be such that it can accommodate ALL purposes, i.e. the analysis should be independent of any purpose;
 - distinction between reference ontologies and application ontologies.