<u>Corollary</u> 2.11. Let A be the generator of a lattice semigroup on $C(K,\mathbb{C})$ (K compact). Assume that $m \in C(K)$ is strictly positive. Then $m \cdot A$ with domain $D(m \cdot A) = D(A)$ generates a lattice semigroup.

<u>Proof.</u> By Theorem 1.20 m·A is the generator of a strongly continuous semigroup. It remains to show that it is a lattice semigroup. We use Theorem 2.10. Let $f \in D(m \cdot A) = D(A)$ such that $f(x) \neq 0$ for all $x \in K$. Then Re[(sign \overline{f})m·Af] = m·Re[(sign \overline{f})Af] = m·A|f|.

Example 2.12. The operator A_{max} on the (real or complex space) C[-1,0] given by $A_{max}f = f'$ with domain $D(A_{max}) = C^{1}[-1,0]$ satisfies Kato's equality; i.e.,

(2.16)
$$\langle \text{Re}[(\text{si\hat{g}n } \overline{f}) (A_{\text{max}} f)], \phi \rangle = \langle |f|, A_{\text{max}}^{\dagger} \phi \rangle$$

$$(f \in D(A_{\text{max}}), \phi \in D(A_{\text{max}}^{\dagger})).$$

Moreover, $(\lambda - A_{max})$ is surjective for $\lambda \ge 0$ (cf. Ex. 1.22). Thus, since $\ker(\lambda - A_{max}) = \mathbb{C}e_{\lambda}$ ($e_{\lambda}(x) = e^{\lambda x}$), Kato's equality does not have as strong consequences as the positive minimum principle (which by Thm. 1.13 would imply that A_{max} is a generator).

 $\underline{\text{Proof}}$. It is not difficult to prove that the adjoint A'_{max} of A_{max} is given by

(2.17)
$$A_{\text{max}}' \phi = \phi(0) \delta_{0} - \phi(-1) \delta_{-1} - d\phi$$