SECOND DEGRÉ, ÉTUDE DU SIGNE

Résumé

Précédemment, nous avons étudié algébriquement les polynômes du second degré et particulièrement leur factorisation à partir de la recherche de racines. Nous nous intéressons ici au signe de ces expressions ainsi qu'à la résolution d'inéquations de degré 2 qui nous sont facilement accessibles maintenant.

1 Signe dune fonction du second degré

Théorème

Un polynôme du second degré $ax^2 + bx + c$ ($a \ne 0$) est du signe de a, sauf entre les racines quand elles existent.

Démonstration. Soit f une fonction du second degré, définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \neq 0$. On sait que le nombre de racines de cette fonction (le nombre de zéros dans le tableau de signes) dépend du signe de $\Delta = b^2 - 4ac$.

 1^{er} cas $\Delta < 0$: On sait que le polynôme possède deux racines x_1 et x_2 et qu'on peut le factoriser sous la forme $f(x) = a(x - x_1)(x - x_2)$.

x	-∞	x_1		x_2		+∞
a			signe de <i>a</i>			
$x-x_1$	_	0		+		
$x-x_2$		_		0	+	
f(x)	signe de <i>a</i>	0	signe de – a	0	signe de <i>a</i>	

 2^e cas $\Delta = 0$: f possède une unique racine α donc on peut factoriser sous la forme $f(x) = a(x - \alpha)^2$. Le signe de f peut alors aussi être déterminé grâce à la règle des signes.

x	$-\infty$		α		+∞	
a	a		signe de a			
$x - \alpha$		_	0	+		
$x - \alpha$		_	0	+		
produit $f(x)$		signe de <i>a</i>	0	signe de <i>a</i>		

 3^e cas $\Delta < 0$: Pas de racine, on ne peut pas le factoriser. La courbe de la fonction ne coupe jamais l'axe des abscisses, donc elle est toujours de même signe, celui de a.

x	$-\infty$		+∞
f(x)		signe de <i>a</i>	

Remarque En pratique, il suffit de connaître les éventuelles racines du polynôme et de regarder le signe de *a* pour visualiser la parabole et donc obtenir le tableau de signes. En effet, si *a* est strictement positif, la parabole est ouverte (fermée sinon).

2 Résolution d'inéquations du second degré

On souhaite des inéquations du type $ax^2 + bx + c < 0$, $ax^2 + bx + c0$, $ax^2 + bx + c > 0$ ou $ax^2 + bx + c0$.

🌣 Méthode

Pour résoudre des inéquations de ce type, il suffit de construire le tableau de signes sur $\mathbb R$ de l'expression ax^2+bx+c . Faisons le pour $-2x^2+4x+60$ et $-2x^2+4x+6<0$.

Calcul du discriminant : $\Delta = 4^2 - 4 \times (-2) \times 6 = 16 + 48 = 64$

Le discriminant est strictement positif donc il y a deux racines distinctes qui sont -1 et 3.

Le tableau de signes est immédiat car a = -7 < 0.

х	$-\infty$		-1		3		+∞
$-2x^2 + 4x + 6$		-	0	+	0	_	

On peut conclure:

$$-2x^2 + 4x + 60 \Leftrightarrow x \in [-1;3]$$

et

$$-2x^2+4x+6<0 \Leftrightarrow x\in]-\infty;-1[\cup]3;+\infty[.$$

3 Position relative de deux courbes

Définition

Soient f et g deux fonctions définies sur un intervalle I.

Étudier les positions relatives de \mathscr{C}_f et \mathscr{C}_g , les courbes respectives de f et g, c'est dire laquelle est graphiquement au dessus de l'autre sur I.

Propriété

 \mathcal{C}_f est au dessus de \mathcal{C}_g sur I si, et seulement si, pour tout $x \in I$, f(x)g(x).

Remarque Pour comparer les deux courbes, il suffit d'étudier le signe de f - g.

Exemple Soient f et g définies sur \mathbb{R} par $f(x) = -2x^2 + 12x - 8$ et g(x) = 8x - 14.

Pour tout $x \in \mathbb{R}$, $f(x) - g(x) = (-2x^2 + 12x - 8) - (8x - 14) = -2x^2 + 4x + 6$.

À l'aide du tableau de signes établi précédemment, on va pouvoir conclure.

x	$-\infty$		-1		3		+∞
$-2x^2 + 4x + 6$		_	0	+	0	_	

Sur [-1;3], \mathscr{C}_f est au dessus de \mathscr{C}_g mais sur $]-\infty;-1] \cup [3;+\infty[$, c'est l'inverse : \mathscr{C}_g est au dessus de \mathscr{C}_f .

Nous le vérifions graphiquement pour terminer.

