TABLE OF CONTENTS

1.7 (Optional) Making the Informal a Little More Formal

Now that we've seen the limits of functions as *x* goes to positive and negative infinity, let's look at limits as *x* approaches a real number.

$$\lim_{x \to a} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

$$\lim_{x \to a} f(x) = L$$

$$Let f(x) = \begin{cases} 2x & \text{if } x < 1 \\ 4 - 2x & \text{if } x > 1 \end{cases}. \quad Then \lim_{x \to 1} |x| = 2.$$

Let
$$f(x) = \begin{cases} 2x & \text{if } x < 1 \\ 4 - 2x & \text{if } x > 1 \end{cases}$$
. Then $\lim_{x \to 1} |x| = 2$.

Find a positive number δ such that $|f(x)-2|<\frac{1}{2}$ for all x in the interval $(1-\delta,1+\delta)$, except possibly x=1.

$$Let f(x) = \begin{cases} 2x & \text{if } x < 1\\ 4 - 2x & \text{if } x > 1 \end{cases}.$$

Find a positive number δ such that $|f(x)-2|<\frac{1}{2}$ for all x in the interval $(1-\delta,1+\delta)$, except possibly x=1.

$$Let f(x) = \begin{cases} 2x & \text{if } x < 1 \\ 4 - 2x & \text{if } x > 1 \end{cases}. \quad Then \lim_{x \to 1} |x| = 2.$$

Find a positive number δ such that $|f(x) - 2| < \frac{1}{2}$ for all x in the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

$$Let f(x) = \begin{cases} 2x & \text{if } x < 1 \\ 4 - 2x & \text{if } x > 1 \end{cases}. \quad Then \lim_{x \to 1} |x| = 2.$$

Find a positive number δ such that $|f(x) - 2| < \frac{1}{2}$ for all x in the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

$$\delta = \frac{1}{4}$$

$$Let f(x) = \begin{cases} 2x & \text{if } x < 1 \\ 4 - 2x & \text{if } x > 1 \end{cases}. \quad Then \lim_{x \to 1} |x| = 2.$$

Find a positive number δ such that $|f(x)-2|<\frac{1}{2}$ for all x in the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

$$\delta = \frac{1}{4}$$

Find a positive number δ such that $|f(x) - 2| < \frac{1}{4}$ for all x in the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

$$Let f(x) = \begin{cases} 2x & \text{if } x < 1 \\ 4 - 2x & \text{if } x > 1 \end{cases}. \quad Then \lim_{x \to 1} |x| = 2.$$

Find a positive number δ such that $|f(x)-2|<\frac{1}{2}$ for all x in the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

$$\delta = \frac{1}{4}$$

Find a positive number δ such that $|f(x) - 2| < \frac{1}{4}$ for all x in the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

$$Let f(x) = \begin{cases} 2x & \text{if } x < 1 \\ 4 - 2x & \text{if } x > 1 \end{cases}. \quad Then \lim_{x \to 1} |x| = 2.$$

Find a positive number δ such that $|f(x)-2|<\frac{1}{2}$ for all x in the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

$$\delta = \frac{1}{4}$$

Find a positive number δ such that $|f(x)-2|<\frac{1}{4}$ for all x in the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

$$\delta = \frac{1}{8}$$

$$Let f(x) = \begin{cases} 2x & \text{if } x < 1\\ 4 - 2x & \text{if } x > 1 \end{cases}.$$

Let $\epsilon > 0$. Find a positive number δ such that $|f(x) - 2| < \epsilon$ for all x in the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

Let
$$f(x) = \begin{cases} 2x & \text{if } x < 1 \\ 4 - 2x & \text{if } x > 1 \end{cases}$$
. Then $\lim_{x \to 1} |x| = 2$.

Let $\epsilon > 0$. Find a positive number δ such that $|f(x) - 2| < \epsilon$ for all xin the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

Let
$$f(x) = \begin{cases} 2x & \text{if } x < 1 \\ 4 - 2x & \text{if } x > 1 \end{cases}$$
. Then $\lim_{x \to 1} |x| = 2$.

Then
$$\lim_{x\to 1} |x| = 2$$

Let $\epsilon > 0$. Find a positive number δ such that $|f(x) - 2| < \epsilon$ for all xin the interval $(1 - \delta, 1 + \delta)$, except possibly x = 1.

$$\delta = \frac{\epsilon}{2}$$

Definition 1.7.1

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We say that the limit as x approaches a of f(x) is L

and write

$$\lim_{x \to a} f(x) = L$$

if and only if for every $\epsilon > 0$ there exists $\delta > 0$ so that

$$|f(x) - L| < \epsilon \text{ whenever } 0 < |x - a| < \delta$$

Note that an equivalent way of writing this very last statement is

if
$$0 < |x - a| < \delta$$
 then $|f(x) - L| < \epsilon$.

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a.

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We write

$$\lim_{x \to a} f(x) = L$$

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We write

$$\lim_{x \to a} f(x) = L$$

if and only if for every $\epsilon > 0$

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a.

We write

$$\lim_{x \to a} f(x) = L$$

if and only if for every $\epsilon > 0$ there exists $\delta > 0$

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We write

$$\lim_{x \to a} f(x) = L$$

if and only if for every $\epsilon > 0$ there exists $\delta > 0$ so that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We write

$$\lim_{x \to a} f(x) = L$$

if and only if for every $\epsilon > 0$ there exists $\delta > 0$ so that

$$|f(x) - L| < \epsilon$$
 whenever $0 < |x - a| < \delta$

Definition 1.7.1

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We say that $\lim_{x \to a} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $\delta > 0$ so that if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

Using Definition 1.7.1, prove that $\lim_{x\to -1} |x+1| = 0$.

Using Definition 1.7.1, prove that $\lim_{x \to -1} |x+1| = 0$.

By inspection (look at the graph of y = |x + 1|), we should use $\delta = \epsilon$.

Proof: Let f(x) = |x + 1| and for any positive ϵ , let $\delta = \epsilon$.

If
$$-1 < x < -1 + \delta$$
:

$$|f(x) - 0| = ||x + 1| - 0| = |x + 1| = x + 1 < (-1 + \delta) + 1 = \delta = \epsilon$$

If
$$-1 - \delta < x < -1$$
:

$$|f(x) - 0| = ||x + 1| - 0| = |x + 1| = -x - 1 < -(-1 - \delta) - 1 = \delta = \epsilon$$

So if
$$0 < |x - (-1)| < \delta$$
, then $|f(x) - 0| < \epsilon$. That is, $\lim_{x \to -1} f(x) = 0$.

Definition 1.7.1

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We say that $\lim_{x \to a} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $\delta > 0$ so that if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

Let
$$f(x) = \begin{cases} x+1 & x < 0 \\ 1-x^2 & x > 0 \end{cases}$$
.

Using Definition 1.7.1, prove that $\lim_{x\to 0} f(x) = 1$.

First, we need to find δ for any given ϵ . Suppose x > 0 and $|f(x)-1|<\epsilon$:

$$|f(x) - 1| < \epsilon$$

$$|1 - x^2 - 1| < \epsilon$$

$$x^2 < \epsilon$$

$$0 < x < \sqrt{\epsilon}$$

Now, suppose x < 0 and $|f(x) - 1| < \epsilon$:

$$|f(x) - 1| < \epsilon$$

$$|x + 1 - 1| < \epsilon$$

$$|x| < \epsilon$$

$$-x < \epsilon$$

$$0 > x > -\epsilon$$

Now we know the interval over which $|f(x)-1| < \epsilon$, but it's actually more information than we need. We don't need the exact interval; we just need some value of δ such that $0 < |x-1| < \delta$ guarantees $|f(x)-1| < \epsilon$.

If $0 < |x-1| < \min\{\epsilon, \sqrt{\epsilon}\}$, then $0 < |x-1| < \epsilon$ and $0 < |x-1| < \sqrt{\epsilon}$ are both true. So we set $\delta = \min\{\epsilon, \sqrt{\epsilon}\}$. (For $\epsilon < 1$, that is $\delta = \epsilon$.)

Proof:
$$f(x) = \begin{cases} x+1 & x < 0 \\ 1-x^2 & x > 0 \end{cases}$$
.

For any $\epsilon > 0$, let $\delta = \min\{\epsilon, \sqrt{\epsilon}\}$. Suppose $0 < |x - 0| < \delta$.

► If x > 0, then

$$|f(x) - 1| = |(1 - x^2) - 1| = |-x^2| = x^2$$

 $< \delta^2 \le \sqrt{\epsilon^2} = \epsilon$

▶ If x < 0, then

$$|f(x) - 1| = |(x + 1) - 1| = |x|$$

 $< \delta < \epsilon$

So whenever $0 < |x - 0| < \delta$, then $|f(x) - 1| < \epsilon$. So $\lim_{x \to 0} f(x) = 1$.

GENERAL PRINCIPLES

Suppose $|f(x) - L| < \epsilon$ whenever $a - \delta_1 < x < a$ and whenever $a < x < a + \delta_2$.

Suppose $|f(x) - L| < \epsilon$ whenever $a - \delta_1 < x < a$ and whenever $a < x < a + \delta_2$.

Consider values of x such that $0 < |x - a| < \min\{\delta_1, \delta_2\}$.

Suppose $|f(x) - L| < \epsilon$ whenever $a - \delta_1 < x < a$ and whenever $a < x < a + \delta_2$.

Consider values of x such that $0 < |x - a| < \min\{\delta_1, \delta_2\}$.

Suppose $|f(x) - L| < \epsilon$ whenever $a - \delta_1 < x < a$ and whenever $a < x < a + \delta_2$.

Consider values of x such that $0 < |x - a| < \min\{\delta_1, \delta_2\}$. For these values, it is (still) the case that $|f(x) - L| < \epsilon$.

Suppose $|f(x) - L| < \frac{1}{10}$ for all x such that $0 < |x - a| < \delta$.

Suppose $|f(x) - L| < \frac{1}{10}$ for all x such that $0 < |x - a| < \delta$.

Can you give values of *x* where $|f(x) - L| < \frac{1}{5}$?

Suppose $|f(x) - L| < \frac{1}{10}$ for all x such that $0 < |x - a| < \delta$.

Can you give values of *x* where $|f(x) - L| < \frac{1}{5}$?

Suppose $|f(x) - L| < \frac{1}{10}$ for all x such that $0 < |x - a| < \delta$. Then also $|f(x) - L| < \frac{1}{5}$ for all x such that $0 < |x - a| < \delta$.

Can you give values of *x* where $|f(x) - L| < \frac{1}{5}$?

Suppose $|f(x) - L| < \frac{1}{10}$ for all x such that $0 < |x - a| < \delta$. Then also $|f(x) - L| < \frac{1}{2}$ for all x such that $0 < |x - a| < \delta$.

Suppose $|f(x) - L| < \frac{1}{10}$ for all x such that $0 < |x - a| < \delta$. Then also |f(x) - L| < 1 for all x such that $0 < |x - a| < \delta$.

Suppose $|f(x) - L| < \frac{1}{10}$ for all x such that $0 < |x - a| < \delta$. Then also |f(x) - L| < 100 for all x such that $0 < |x - a| < \delta$.

Definition 1.7.1

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We say that $\lim_{x \to a} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $\delta > 0$ so that if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

Definition 1.7.1

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We say that $\lim_{x \to a} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $\delta > 0$ so that if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

It is enough to show that for every ϵ such that $0 < \epsilon < c$ (where c is some constant) there exists $\delta > 0$ so that if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

That means it doesn't hurt your proof if you say something like "we assume $\epsilon < 1$ ".

Definition 1.7.1

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We say that $\lim_{x \to a} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $\delta > 0$ so that if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

It is enough to show that for every ϵ such that $0 < \epsilon < c$ (where c is some constant) there exists $\delta > 0$ so that if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

That means it doesn't hurt your proof if you say something like "we assume $\epsilon < 1$ ".

In a previous example, we chose

$$\delta = \min\{\epsilon, \sqrt{\epsilon}\}\$$

It would be OK to say "we can assume $\epsilon < 1$; set $\delta = \epsilon$."

Definition 1.7.1

Let $a \in \mathbb{R}$ and let f(x) be a function defined everywhere in a neighbourhood of a, except possibly at a. We say that $\lim_{x \to a} f(x) = L$ if and only if for every $\epsilon > 0$ there exists $\delta > 0$ so that if $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$.

Using Definition 1.7.1, prove that
$$\lim_{x\to 2} \frac{x-2}{x^2-4} = \frac{1}{4}$$
.

We start, as usual, by finding δ . Note

$$\frac{x-2}{x^2-4} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2}$$

whenever $x \neq 2$.

$$\begin{split} \left| \frac{1}{x+2} - \frac{1}{4} \right| &< \epsilon \\ -\epsilon &< \frac{1}{x+2} - \frac{1}{4} < \epsilon \\ \frac{1}{4} - \epsilon &< \frac{1}{x+2} < \frac{1}{4} + \epsilon \\ \frac{1-4\epsilon}{4} &< \frac{1}{x+2} < \frac{1+4\epsilon}{4} \\ \frac{4}{1-4\epsilon} > x+2 > \frac{4}{1+4\epsilon} \\ \frac{4}{1-4\epsilon} - 2 > x > \frac{4}{1+4\epsilon} - 2 \end{split}$$

$$\frac{2+8\epsilon}{1-4\epsilon} > x > \frac{2-8\epsilon}{1+4\epsilon}$$

We want our bounds to look like $2 - \delta_1$ and $2 + \delta_2$.

$$\frac{2 - 8\epsilon + 16\epsilon}{1 - 4\epsilon} > x > \frac{2 + 8\epsilon - 16\epsilon}{1 + 4\epsilon}$$
$$2 + \frac{16\epsilon}{1 - 4\epsilon} > x > 2 - \frac{16\epsilon}{1 + 4\epsilon}$$

For x in the interval found, $|f(x) - \frac{1}{4}| < \epsilon$. The interval is not exactly in the form $2 - \delta < x < 2 + \delta$, but it's close. Remember a smaller interval will also have the property $|f(x) - \frac{1}{4}| < \epsilon$. So, set

$$\delta = \min\left\{\frac{16\epsilon}{1-4\epsilon}, \frac{16\epsilon}{1+4\epsilon}\right\} = \frac{16\epsilon}{1+4\epsilon}.$$

Proof: For any $\epsilon > 0$, let $\delta = \frac{16\epsilon}{1+4\epsilon}$. Suppose $0 < |x-2| < \delta$. Note that since $x \neq 2$, we have $f(x) = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2}$.

► If x > 2, then $2 < x < 2 + \delta$:

$$\left| f(x) - \frac{1}{4} \right| = \left| \frac{1}{(x+2)} - \frac{1}{4} \right| = \frac{1}{4} - \frac{1}{(x+2)}$$

$$< \frac{1}{4} - \frac{1}{(2+\delta) + 2} = \frac{1}{4} - \frac{1}{4+\delta}$$

$$= \frac{1}{4} - \frac{1}{4 + \frac{16\epsilon}{1 + 4\epsilon}} < \frac{1}{4} - \frac{1}{4 + \frac{16\epsilon}{1 - 4\epsilon}}$$

(using the fact that
$$\delta = \frac{16\epsilon}{1+4\epsilon} < \frac{16\epsilon}{1-4\epsilon}$$
)

$$= \frac{1}{4} - \frac{1}{\frac{4 - 16\epsilon + 16\epsilon}{1 - 4\epsilon}} = \frac{1}{4} - \frac{1 - 4\epsilon}{4} = \frac{4\epsilon}{4} = \epsilon$$

▶ If x < 2, then $2 - \delta < x < 2$:

$$\left| f(x) - \frac{1}{4} \right| = \left| \frac{1}{(x+2)} - \frac{1}{4} \right| = \frac{1}{(x+2)} - \frac{1}{4}$$

$$< \frac{1}{(2-\delta)+2} - \frac{1}{4} = \frac{1}{4-\delta} - \frac{1}{4}$$

$$= \frac{1}{4 - \frac{16\epsilon}{1+4\epsilon}} - \frac{1}{4} = \frac{1}{\frac{4+16\epsilon-16\epsilon}{1+4\epsilon}} - \frac{1}{4}$$

$$= \frac{1+4\epsilon}{4} - \frac{1}{4} = \epsilon$$

We have shown that whenever $0 < |x - 2| < \delta$, then

$$|f(x) - \frac{1}{4}| < \epsilon$$
. So, $\lim_{x \to 2} \frac{x - 2}{x^2 - 4} = \frac{1}{4}$.

Definition 1.8.1 (b)

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

Definition 1.8.1 (b)

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

Definition 1.8.1 (b)

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

Definition 1.8.1 (b)

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

if and only if for every P > 0 there exists $\delta > 0$ so that f(x) > P whenever $0 < |x - a| < \delta$.

Let $f(x) = \frac{1}{(x-3)^2}$. Using Definition 1.8.1, prove or disprove that

$$\lim_{x \to 3} f(x) = \infty$$

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

if and only if for every P > 0 there exists $\delta > 0$ so that f(x) > P whenever $0 < |x - a| < \delta$.

First, we find δ . Let P > 0.

So we choose
$$\delta = \frac{1}{\sqrt{P}}$$
.

$$f(x) > P$$

$$\frac{1}{(x-3)^2} > P$$

$$(x-3)^2 < \frac{1}{p}$$

$$|x-3| < \frac{1}{\sqrt{p}}$$

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

if and only if for every P > 0 there exists $\delta > 0$ so that f(x) > P whenever $0 < |x - a| < \delta$.

Proof: For any P > 0, set $\delta = \frac{1}{\sqrt{p}}$. So, $\lim_{x \to 3} \frac{1}{(x-3)^2} = \infty$. If 0 < |x-3|, then $x \ne 3$, so f(x) exists. If, furthermore, $|x-3| < \delta$, then:

$$f(x) = \frac{1}{(x-3)^2}$$
$$> \frac{1}{\delta^2} = \frac{1}{\left(\frac{1}{\sqrt{P}}\right)^2} = P$$

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

if and only if for every P > 0 there exists $\delta > 0$ so that f(x) > P whenever $0 < |x - a| < \delta$.

Let $f(x) = \frac{1}{x-2}$. Using Definition 1.8.1, prove or disprove that

$$\lim_{x\to 2} f(x) = \infty$$

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

if and only if for every P > 0 there exists $\delta > 0$ so that f(x) > P whenever $0 < |x - a| < \delta$.

Note that x - 2 < 0 when x < 2. So for any P > 0, whenever x < 2, we have f(x) < P. That tells us that $\lim_{x \to 2} f(x) \neq \infty$. **Proof:** Let P=1. For any $\delta>0$, set $x_0=2-\frac{\delta}{2}$. Then $0<|x_0-2|<\delta$, but since x<2, we have $\frac{1}{x-2}<0< P$. That is, there does not exist any $\delta>0$ such that f(x)>P whenever $0<|x-2|<\delta$. Therefore $\lim_{x\to 2}f(x)\neq\infty$.

Let *a* be a real number and f(x) be a function defined for all $x \neq a$. We write

$$\lim_{x \to a} f(x) = \infty$$

Included Work

'Notebook' by Iconic is licensed under CC BY 3.0 (accessed 9 June 2021), 58, 62