Teoria Quântica

Gabriel Braun

Colégio e Curso Pensi, Coordenação de Química

1A04

1A05

Nível I

PROBLEMA 1.1

1A01

Assinale a alternativa que mais se aproxima da energia liberada por 5 g de sódio em uma lâmpada que produz luz amarela com comprimento de onda 590 nm.

- 100 kJ
- 200 kJ
- 300 kJ
- 400 kJ
- 500 kJ

10%

PROBLEMA 1.5

Assinale a alternativa correta.

PROBLEMA 1.4

30%

469 kJ por mol de oxigênio liberado.

A mensuração da eficiência quântica da fotossíntese em plantas revelou que 8 quanta de luz vermelha a 685 nm são ne-

cessários para liberar uma molécula de oxigênio. A quanti-

dade média de energia armazenada no processo fotoquímico é

Assinale a alternativa que mais se aproxima da eficiência da

50%

70%

fotossíntese.

90%

PROBLEMA 1.2

1A02

Assinale a alternativa que mais se aproxima do número de fótons emitidos em 2 s por uma lâmpada de 40 W que produz luz azul com comprimento de onda 470 nm.

- 2×10^{17}
- $2\times10^{18}\,$
- $2\times 10^{19}\,$
- 2×10^{20}
- 2×10^{11}

temperatura. Fótons de ondas de rádio são mais energéticos que fó-

- tons de radiação ultravioleta.
- Fótons radiação infravermelha são menos energéticos que fótons de radiação ultravioleta.

A intensidade total da radiação emitida por um corpo

O comprimento de onda emitido com maior intensi-

dade por um corpo negro aumenta com o aumento da

negro é diretamente proporcional à temperatura.

A energia de um fóton é diretamente proporcional ao comprimento de onda da radiação.

PROBLEMA 1.3

A exposição de uma amostra de iodo gasoso à luz com comprimentos de onda inferiores a 500 nm leva a formação de iodo atômico.

Assinale a alternativa que mais se aproxima da entalpia de ligação I—I.

- $120 \, \text{kJ} \, \text{mol}^{-1}$
- $160 \, \text{kJ} \, \text{mol}^{-1}$
- $200 \, \text{kJ} \, \text{mol}^{-1}$
- $240 \, \text{kJ} \, \text{mol}^{-1}$
- $280 \, \text{kI} \, \text{mol}^{-1}$

PROBLEMA 1.6

1A06

Cinco amostras idênticas de um mesmo metal são aquecidas a diferentes temperaturas até a incandescência.

Assinale a alternativa com a cor da amostra submetida a uma maior temperatura.

- Vermelho
- Laranja
- Amarelo
- Verde
- Branco

Considere o espectro de emissão da radiação solar.

Assinale a alternativa que mais se aproxima da temperatura do sol.

- A 3 kK
- **B** 4 kK
- **c** 5 kK

- D 6 kK
- **E** 7 kK

PROBLEMA 1.8

1A09

1A08

Considere o espectro de emissão da radiação de três estrelas.

Assinale a alternativa que relaciona as estrelas em ordem crescente de temperatura.

- **A** A, B, C
- **B** A, C, B
- **C** B, A, C
- **D C**, **A**, **B**
- **E C**, **B**, **A**

- **A** 130 nm
- **B** 260 nm

Assinale a alternativa que mais se aproxima do comprimento de onda correspondente à emissão de maior intensidade de

- **c** 390 nm
- **D** 520 nm
- **E** 650 nm

Dados

• $T_{fus}(Fe) = 1540 \, ^{\circ}C$

uma amostra de ferro em fusão.

PROBLEMA 1.10

1A10

Uma placa é feita de um metal, cuja função trabalho é menor que a energia dos fótons da luz visível, é exposta ao sol. **Assinale** a alternativa *correta*.

- A Os elétrons não são ejetados instantaneamente, já que precisam de um tempo mínimo para acúmulo de energia.
- B Os elétrons podem ser ejetados instantaneamente com uma mesma energia cinética para qualquer elétron.
- C Os elétrons não podem ser ejetados já que a placa metálica apenas reflete a radiação.
- Os elétrons podem ser ejetados instantaneamente, com energia que depende da frequência da radiação absorvida e da energia do elétron no metal.
- Os elétrons não podem ser ejetados instantaneamente e a energia cinética após a ejeção depende da frequência da radiação absorvida e da energia do elétron no metal.

PROBLEMA 1.11

1A11

A superfície de uma amostra de potássio é irradiada, emitindo elétrons a 668 km $\rm s^{-1}.$

Assinale a alternativa que mais se aproxima do comprimento de onda da radiação incidente.

- **A** 300 nm
- **B** 350 nm
- **c** 400 nm
- **D** 450 nm
- **E** 500 nm

Dados

 \bullet $\Phi(K) = 2,20 \, eV$

Assinale a alternativa que mais se aproxima da energia cinética máxima para os elétrons emitidos quando luz de comprimento de onda 140 nm atinge a superfície do zinco.

A
$$1,40 \times 10^{-19} \, \text{J}$$

B
$$8,40 \times 10^{-19} \, \text{J}$$

$$1,40 \times 10^{-18} \, \text{J}$$

D
$$8,40 \times 10^{-18} \, \text{J}$$

E
$$1,40 \times 10^{-17} \, \text{J}$$

Dados

•
$$\Phi(Zn) = 4.30 \, eV$$

PROBLEMA 1.13

1A13

A superfície de um metal é irradiada com luz de dois comprimentos de onda, λ_1 e λ_2 . As velocidades máximas dos fotoelétrons emitidos são, respectivamente, v_1 e v_2 , sendo $v_1 = 2v_2$. **Assinale** a alternativa com a função trabalho desse metal.

$$\mathbf{A} \quad \frac{(2\lambda_1 - \lambda_2)hc}{\lambda_1\lambda_2}$$

B
$$\frac{(\lambda_2 - 2\lambda_1)hc}{\lambda_1\lambda_2}$$

$$\begin{array}{c} \textbf{C} & \frac{(\lambda_2 - 4\lambda_1)hc}{3\lambda_1\lambda_2} \end{array}$$

$$= \frac{(2\lambda_1 - \lambda_2)hc}{3\lambda_1\lambda_2}$$

PROBLEMA 1.14

1A14

O comprimento de onda crítico para a verificação do efeito fotoelétrico no tungstênio é 260 nm.

Assinale a alternativa que mais se aproxima do comprimento de onda necessário para produzir fotoelétrons do tungstênio com o dobro da energia cinética daqueles produzidos a 220 nm.

- 110 nm
- 130 nm
- 150 nm
- 170 nm
- 190 nm

PROBLEMA 1.15

Assinale a alternativa que mais se aproxima do comprimento de onda de uma partícula de 1 g viajando a 1 m s^{-1} .

- 7×10^{-34}
- 7×10^{-33}
- 7×10^{-32}
- D 7×10^{-31}
- **E** 7×10^{-30}

PROBLEMA 1.16

Assinale a alternativa com a identidade do átomo que possui comprimento de onda 3,30 fm quando viaja a 1% da velocidade da luz.

- Be
- Mg
- Ca

- Sr
- Ba

PROBLEMA 1.17

1A17

Assinale a alternativa com o momento angular do elétron na quinta órbita do átomo de hidrogênio, considerando o modelo atômico de Bohr.

- **A** $1 \times 10^{-34} \, \text{J s}$
- **B** $2 \times 10^{-34} \, \text{J s}$
- c $5 \times 10^{-34} \, \text{J s}$
- $7 \times 10^{-34} \, \text{J s}$
- $1 \times 10^{-33} \, \text{I s}$

PROBLEMA 1.18

1A18

Considere a excitação de um átomo de hidrogênio do estado fundamental até o segundo estado excitado.

Assinale a alternativa *correta*.

- Esse estado excitado é o primeiro permitido para o átomo de hidrogênio.
- A distância média do elétron ao núcleo será menor no estado excitado do que no estado fundamental.
- Será necessário fornecer mais energia para ionizar o átomo a partir desse estado excitado do que do estado fundamental.
- A energia de excitação é a mesma do que a necessária para excitar um elétron do segundo para o quarto estado excitado.
- O comprimento de onda da radiação emitida quando o elétron retornar para o estado fundamental será igual ao comprimento de onda da radiação absorvida para a excitação.

PROBLEMA 1.19

1A19

Assinale a alternativa que mais se aproxima do comprimento de onda da radiação emitida quando um átomo de hidrogênio decai do segundo para o primeiro estado excitado.

- 460 nm
- 560 nm
- 660 nm
- 760 nm
- 860 nm

Assinale a alternativa com o decaimento para o átomo de hidrogênio que leva à emissão de um fóton com maior comprimento de onda.

- $\boxed{\textbf{A}} \quad \mathfrak{n}=2 \to \mathfrak{n}=1$

- **E** $n=6 \rightarrow n=5$

PROBLEMA 1.21

1A21

1A20

Um elétron em um estado excitado do átomo de hidrogênio decai para o estado fundamental emitindo dois fótons cujos comprimentos de onda são λ_1 e λ_2 .

Assinale a alternativa com o comprimento de onda do fóton emitido caso o decaimento ocorresse em uma única etapa.

- $\lambda_1 + \lambda_2$
- \mathbf{B} $\lambda_1 \lambda_2$
- $\lambda_1 \lambda_2$ $\lambda_1 + \lambda_2$

PROBLEMA 1.22

1A22

Assinale a alternativa que mais se aproxima da energia de ionização do hidrogênio.

- **A** $1,30 \, \text{MJ mol}^{-1}$
- **B** $2,60 \, \text{MJ} \, \text{mol}^{-1}$
- **c** $3,90 \, \text{MJ mol}^{-1}$
- **D** $4,20\,\mathrm{MJ}\,\mathrm{mol}^{-1}$
- **E** $6.50 \, \text{MJ} \, \text{mol}^{-1}$

PROBLEMA 1.23

1A23

A energia de ionização um átomo com apenas um elétron é $412\,\mathrm{kJ}\,\mathrm{mol}^{-1}$. Quando os átomos desse elemento estão no primeiro estado excitado, a energia de ionização é $126\,\mathrm{kJ}\,\mathrm{mol}^{-1}$. **Assinale** a alternativa que mais se aproxima do comprimento de onda emitido por esse átomo em uma transição do primeiro estado excitado para o estado fundamental.

- **A** 210 nm
- **B** 420 nm
- **c** 340 nm
- **D** 450 nm
- **E** 560 nm

PROBLEMA 1.24

1A24

Assinale a alternativa com o átomo cuja última energia de ionização é 122 eV.

- A He
- B Li
- C Be

- **D** B
- E C

Lasers funcionam pela colisão de átomos excitados com espécies no estado fundamental. A transferência de energia é mais eficiente quando as diferenças energéticas dos níveis são próximas

Assinale a alternativa com a transição do cátion He⁺ que pode ser excitada por colisão com átomos de hidrogênio no primeiro estado excitado.

- $n=2 \rightarrow n=3$

PROBLEMA 2.1 1A38

Considere os dados obtidos em um experimento de efeito fotoelétrico com três metais, A, B, e C.

- a. Determine a função trabalho dos metais A, B, e C.
- b. **Determine** o valor da constante de Planck.

PROBLEMA 2.2 1A26

Determine a identidade de um átomo que, movendo se com sua velocidade média quadrática a $100\,^{\circ}$ C, possui comprimento de onda $23\,\mathrm{pm}$.

PROBLEMA 2.3 1A27

Quando átomos colidem, parte de sua energia cinética pode ser convertida em energia eletrônica. O processo é mais eficiente quando a energia cinética é próxima da energia necessária para a excitação.

Determine a temperatura onde a excitação de átomos de hidrogênio ao primeiro estado excitado é mais eficiente

PROBLEMA 2.4 1A28

Uma amostra com 586 g de água, inicialmente a 25 °C, é colocada em um forno de micro-ondas que emite radiação eletromagnética com frequência de 2,45 GHz e aquecida até 91 °C. **Assinale** a alternativa que mais se aproxima do número de fótons absorvidos pela água.

A
$$3 \times 10^{27}$$

B
$$4 \times 10^{28}$$

c
$$1 \times 10^{29}$$

D
$$5 \times 10^{30}$$

$$\mathbf{E}$$
 2×10^{31}

Dados

 $\bullet \ \ C_P(H_2O, l) = 75,3 \, J \, K^{-1} \, mol^{-1}$

PROBLEMA 2.5 1A29

Radiação de comprimento de onda 427 nm é utilizada no processo de fotossíntese para a produção de glicose ($C_6H_{12}O_6$) a partir do CO_2 .

- a. **Determine** a entalpia da reação de fotossíntese.
- Determine o número de fótons necessários para produzir uma molécula de glicose.

Dados

• $\Delta H_c^{\circ}(glicose, s) = -2810 \, kJ \, mol^{-1}$

PROBLEMA 2.6

1A30

Cristais de cloreto de prata podem ser incorporados em lentes. Quando expostos à luz ocorre a reação:

$$AgCl \longrightarrow Ag + Cl$$

- a. **Determine** a entalpia de decomposição do cloreto de prata.
- b. **Determine** o comprimento de onda máximo para esse processo

Dados

- $\Delta H_{L}^{\circ}(Cl_{2}) = 242 \text{ kJ mol}^{-1}$
- $\Delta H_f^{\circ}(AgCl, s) = -127 \text{ kJ mol}^{-1}$

PROBLEMA 2.7

1A31

A superfície de um metal é irradiada com luz proveniente de uma amostra de gás de hidrogênio cujos átomos sofrem transições do estado n para o estado fundamental. A função trabalho do metal é metade da energia de ionização do átomo de hidrogênio.

- 1. A energia cinética máxima dos elétrons emitidos pelo metal é $E_K = \frac{E_1}{n^2} \frac{E_1}{2}$
- **2.** A função trabalho do metal é $\Phi = \frac{E_1}{2}$
- A energia cinética máxima dos elétrons emitidos aumenta com o aumento da frequência da luz incidente no metal a partir da frequência mínima de emissão.
- **4.** A energia cinética máxima dos elétrons emitidos aumenta com o aumento da pressão da amostra de hidrogênio.

Assinale a alternativa que relaciona as proposições corretas.

Uma linha violeta é observada em 434 nm no espectro de emissão do átomo de hidrogênio.

- a. Determine a energia do fóton dessa emissão.
- b. **Determine** a transição eletrônica correspondente a essa emissão.

PROBLEMA 2.9

1A33

1A32

Um feixe de luz solar passa atravessar um filtro de radiação ultravioleta, o qual não permite passar fótons de comprimento de onda menor que 300 nm, sendo direcionado para uma amostra de hidrogênio atômico gasoso. A amostra é mantida em um recipiente transparente à luz visível e opaco ao infravermelho (com comprimento de onda superior a 663 nm). Após passarem pela amostra, os fótons são detectados por sensores posicionados ortogonalmente ao feixe de luz.

Assinale a alternativa que mais se aproxima das energias dos fótons detectados.

- 0,700 eV, 1,90 eV, 3,30 eV, 10,2 eV
- 0,900 eV, 1,40 eV, 1,90 eV, 3,30 eV
- 1 eV, 1,50 eV, 3,40 eV, 13,6 eV
- 1,90 eV, 2,60 eV, 2,90 eV, 3 eV
- 2,10 eV, 2,40 eV, 3,40 eV, 3,80 eV

PROBLEMA 2.10

1A34

Considere o modelo de Bohr para o átomo de hidrogênio. O raio da órbita do estado fundamental é 53 pm, sendo $2\overline{2}00\,\mathrm{kms}^{-1}$ a velocidade do elétron nessa órbita. O tempo de vida médio de um elétron no primeiro estado excitado é de 10 ns.

Assinale a alternativa que mais se aproxima do número médio de revoluções efetuadas por um elétron no primeiro estado excitado do átomo de hidrogênio.

A
$$1 \times 10^6$$

$$8 \times 10^6$$

$$\mathbf{D} \quad 4 \times 10^7$$

$$\mathsf{E} \quad 5 \times 10^{\circ}$$

PROBLEMA 2.11

1A35

Considere o modelo de Bohr para o átomo de hidrogênio. Seja a₀ o raio da órbita do estado fundamental, m a massa do elétron, e a carga do elétron e ε_0 a permissividade do vácuo. Assinale a alternativa com o período orbital para do n.

$$\begin{array}{cc} & e \\ & \frac{e}{4\pi a_0 n^3 \sqrt{\varepsilon_0 m a_0}} \end{array}$$

$$\mathbf{B} \quad \frac{4\pi a_0 n^3 \sqrt{\varepsilon_0 m a_0}}{e}$$

$$\frac{\pi a_0 n^3 \sqrt{\pi \epsilon_0 m a_0}}{e}$$

$$\frac{4\pi a_0 n^3 \sqrt{\pi \epsilon_0 m a_0}}{e}$$

$$\frac{e}{4\pi a_0 n^3 \sqrt{\pi \epsilon_0 m a_0}}$$

 $4\pi a_0 n^3 \sqrt{\pi \epsilon_0 m a_0}$

Um átomo de hidrogênio emite um fóton de energia 2,55 eV na transição entre dois estados estacionários. A razão entre as velocidades do elétron nesses estados é 1/2.

Assinale a alternativa que mais se aproxima da energia potencial do elétron no estado final.

$$-13,6 \, eV$$

$$-6,80\,\mathrm{eV}$$

$$-4,50 \, \text{eV}$$

$$-3.40\,\mathrm{eV}$$

$$-1,50 \, \text{eV}$$

PROBLEMA 2.13

1A37

Considere um semicondutor com uma impureza de carga +1 atraindo um elétron. Devido a interações com os átomos da rede cristalina, o elétron no semicondutor possui massa igual a $m_r m_e$ sendo m_e é a massa de repouso do elétron e m_r uma constante adimensional. A permissividade relativa no meio semicondutor é ϵ_r .

Assinale a alternativa com a razão entre a energia de ionização da impureza e a energia de ionização do átomo de hidrogênio.

$$\mathbf{B} = \frac{\mathbf{m}}{c}$$

$$\frac{\epsilon_r}{m_r}$$

$$\mathbf{D} = \frac{\mathbf{m}_{r}}{\epsilon_{r}^{2}}$$

$$\frac{m\epsilon}{m_r}$$

PROBLEMA 2.14

1A39

Considere parte do espectro de emissão para um íon monoeletrônico em fase gasosa. Todas as linhas resultam de transições eletrônicas para o segundo estado excitado.

Comprimento de onda, λ/nm

Determine o comprimento de onda para a linha de menor ener-

PROBLEMA 3.1

1A41

Um recipiente de $10\,L$ contendo gás cloro e gás hidrogênio é irradiado durante 2,50 s com luz UV ($\lambda=250\,\mathrm{nm}$) proveniente de uma lâmpada de mercúrio com potência de $10\,W$. A mistura gasosa absorve 2% da energia fornecida, levando à formação de $65\,\mathrm{mmol}$ de ácido clorídrico.

- a. Determine os possíveis valores de comprimento de onda da luz em que se espera que ocorra a dissociação do cloro molecular.
- b. Determine o rendimento quântico para a formação de ácido clorídrico.
- c. **Explique**, qualitativamente, o valor obtido para o rendimento quântico.

Dados

• $\Delta H_L^{\circ}(Cl_2) = 242 \text{ kJ mol}^{-1}$

PROBLEMA 3.2

Um recipiente de quartzo é irradiado por um *laser* de 1,50 mW que emite luz UV ($\lambda=330\,\mathrm{nm}$). O recipiente contem propanal gasoso que absorve 6% da radiação incidente decompondo-se em etano e monóxido de carbono. São formados 56 µg de monóxido de carbono por segundo.

- a. **Determine** a taxa de incidência de fótons no recipiente.
- b. **Determine** o rendimento quântico para a decomposição do propanal.
- c. **Explique**, qualitativamente, o valor obtido para o rendimento quântico.

PROBLEMA 3.3

Um tubo contendo átomos de hidrogênio no estado fundamental é irradiado com luz monocromática e o espectro de emissão é analisado.

- a. Determine o comprimento de onda da radiação incidente para serem observadas dez linhas espectrais de emissão.
- b. **Determine** o comprimento de onda da radiação incidente serem observadas duas linhas espectrais de emissão no visível (400 nm a 750 nm).

PROBLEMA 3.4 1A44

Considere a estrutura da porfirina.

O sistema eletrônico π desse composto, com 26 elétrons, pode ser modelado como uma caixa bidimensional quadrada, com L = 1000 pm de comprimento. Nesse sistema os orbitais têm energia dada por:

$$E(n_1,n_2) = \frac{h^2}{8m_eL^2} \left(n_1^2 + n_2^2\right)$$

Em que dois elétrons ocupam um mesmo nível de energia. **Assinale** a alternativa que apresenta a transição eletrônica de menor energia da porfirina, em termos dos números quânticos (n_1, n_2) .

- **A** $(1,1) \to (1,2)$
- **B** $(2,1) \to (2,2)$
- **c** $(3,3) \to (4,3)$
- D $(3,2) \to (4,2)$
- **E** $(4,2) \rightarrow (4,3)$

PROBLEMA 3.5

A transição do terceiro para o primeiro estado excitado de um átomo constituído de um núcleo de hidrogênio e um múon foi observada em um comprimento de onda de 2,62 nm. **Determine** a massa do múon.

PROBLEMA 3.6

1A46

7

O positrônio é um sistema em que um elétron e um pósitron orbitam em torno de seu centro de massa.

- a. **Determine** a energia de seu estado fundamental.
- b. **Determine** o menor comprimento de onda emitido por uma transição entre estados eletrônicos adjacentes.

Considere uma cadeia linear conjugada de carbono, modelada como uma caixa unidimensional onde os elétrons π estão distribuídos. O comprimento da ligação entre os átomos de carbono é $a=140\,\mathrm{pm}$. Dois elétrons podem ocupar um mesmo nível de energia.

- a. Determine os possíveis comprimentos de onda para os elétrons nesse sistema.
- b. **Determine** os possíveis valores de energia para os elétrons nesse sistema.
- c. Determine o maior comprimento de onda que esse sistema pode emitir, em função do número de carbonos.
- d. **Determine** o número de átomos de carbono que esse sistema deve possuir para emitir radiação no visível (400 nm a 750 nm).

PROBLEMA 3.8

1₄7

Em sistemas contendo um grande número de elétrons, não existe um único estado ocupado mais energético, já que vários estados possuem a mesma energia. O nível de Fermi corresponde aos estados ocupados que possuem maior energia. Considere uma folha quadrada, de lado L = 25 nm, de grafeno. Os elétrons π desse sistema podem ser modelados como partículas em uma caixa bidimensional, cujos níveis de energia são dados por:

$$E(n_1,n_2) = \frac{h^2}{8m_eL^2} \left(n_1^2 + n_2^2\right)$$

Em que dois elétrons ocupam um mesmo nível de energia.

- a. **Determine** o número de elétrons π nesse sistema.
- b. **Determine** a energia do nível de Fermi desse sistema.
- c. Correlacione a condutividade e o tamanho da folha de gra-

PROBLEMA 3.9

1A48

Os elétrons π em hidrocarbonetos cíclicos conjugados podem ser modelados como partículas em um anel que circunscreve os átomos de carbono.

a. **Prove** que os níveis de energia para esse sistema são dados

$$E(n) = \frac{n^2 \hbar^2}{2m_e R^2}$$

onde $n = 0, \pm 1, \pm 2, \pm 3, ...$

b. **Prove** que esse sistema é mais estável quando o número de elétrons é

$$N = 4k + 2$$

onde $k = 0, 1, 2, 3 \dots$ Esse resultado é conhecido como Regra de Hückel.

Gabarito

Nível I

1. E	2. B	3. D	4. B	5. D
6. E	7. D	8. E	9. A	10. D
11. B	12. B	13. D	14. E	15. D
16. C	17. C	18. E	19. C	20. E
21. C	22. A	23. B	24. B	25. D

Nível II

- **1.** a. 2,48 eV, 2,25 eV, 2,30 eV b. $6,62 \times 10^{-34} \, \text{J s}$
- 2. Enxofre
- **3.** 79 kK
- 4. C
- **5.** a. $2080 \,\mathrm{kJmol}^{-1}$
 - b. 10 fótons
- **6.** a. $248 \, \text{kJ mol}^{-1}$
 - b. 480 nm
- 7. D
- 8. a. 2,85 eV
 - b. $n=5 \rightarrow n=2$

- 11. D

- **14.** 122 nm

Nível III

- 1. a. 491 nm
 - b. 6×10^4
 - c. Reação em cadeia.
- **2.** a. $2,50 \times 10^{15}$ fótons por segundo
 - b. 8000
 - c. Reação em cadeia

3. a.
$$\lambda = \frac{25}{24R} = 45 \, \text{nm}$$

b.
$$\lambda = \frac{16}{15R} = 97 \, \text{nm}$$

- 5. $1,90 \times 10^{-28} \,\mathrm{kg}$
- **6.** a. $-6,80 \, \text{eV}$
 - b. 136 nm

7. a.
$$\lambda = \frac{2\alpha(N-1)}{n}$$
, $n = 1, 2, 3, ...$

7. a.
$$\lambda=\frac{2\alpha(N-1)}{n},\quad n=1,2,3,\ldots$$
 b. $E=\frac{h^2n^2}{8m_e\,\alpha^2(N-1)^2},\quad n=1,2,3,\ldots$

c.
$$\lambda_{max} = \frac{8m_e c \alpha^2 (N-1)^2}{h(N+1)}$$

- d. 10 átomos de carbono
- **8.** a. 24000
 - b. $1,50 \times 10^{-18} \, \text{J}$
 - c. Diretamente proporcionais
- 9. Demostração.