Using RNNs to learn a quantum many-body wavefunction

Mary Letey

Supervised by Professor Roger Melko and Schuyler Moss Perimeter Institute Quantum Intelligence Lab

Quantum Many-Body Problems

- Emergent macroscopic behavior from microscopic interactions
- Typical example: Ising model

Phase transition between **disorder** (no magnetisation) and **order**

Realistic hamiltonians – computations are hard

Applying ML

- Quantum State tomography
- Curse of dimensionality
- Efficiently extract physical quantities
 - + noisy experimental datasets
- Neural Networks: learn the underlying probability distribution?

Background Setup

- Array of Rydberg atoms near-criticality
- Ground state | 0> or excited state | 1>

$$\hat{H} = -\frac{\Omega}{2} \sum_{i=1}^{N} \hat{\sigma}_{i}^{x} - \delta \sum_{i=1}^{N} \hat{n}_{i} + \sum_{i,j} V_{ij} \hat{n}_{i} \hat{n}_{j}$$

Use RNN to approximate wavefunction

$$\Psi_{\mathcal{W}}(oldsymbol{\sigma}) = \sqrt{\prod_i p_{\mathcal{W}}(\sigma_i)}$$

Why RNNs?

Can also represent complex wavefunctions

$$|\Psi\rangle = \sum_{\sigma} \exp(\mathrm{i}\phi(\sigma)) \sqrt{P(\sigma)} |\sigma\rangle$$

$$\phi(oldsymbol{\sigma}) \equiv \sum_{n=1}^N \phi_n$$

$$P(\boldsymbol{\sigma}) \equiv \Pi_{n=1}^N P_n$$

- Long-range correlations
- Autoregressive property

Loss Function: Hamiltonian Driven

Adjust weights according to "energy" of spin configuration

$$H_{RNN} pprox rac{1}{N_s} \sum_{m{\sigma} \sim p_{RNN}(m{\sigma}; \mathcal{W})} H_{loc}(m{\sigma})$$

where
$$H_{ ext{loc}}\left(oldsymbol{\sigma}
ight)=rac{\left\langle oldsymbol{\sigma}
ight|\hat{H}\left|\Psi_{\mathcal{W}}
ight
angle }{\left\langle oldsymbol{\sigma}\left|\Psi_{\mathcal{W}}
ight
angle }$$

Loss Function: Hamiltonian Driven

Loss Function: Data Driven

$$\mathcal{L}_{KL}(\mathcal{W}) = \sum_{\{\boldsymbol{\sigma}\}} p_{\mathcal{D}}(\boldsymbol{\sigma}) \log \frac{p_{\mathcal{D}}(\boldsymbol{\sigma})}{p_{RNN}(\boldsymbol{\sigma}; \mathcal{W})}$$

Performs well given enough data

Loss Function: Data Driven

- However, real measurement data is expensive to generate.
- Likely sample sizes are only 1000

Hybrid training

Initialise on KL loss, then train variationally using Hamiltonian loss

Data

VMC

hybrid

Exact

5000

Hybrid Training

Much better convergence time

Final results agree

Noisy Data

Real-world measurement data will have some noise.

$$p(1|0) \sim 1\%, \ p(0|1) \sim 4\%$$

How does this affect convergence?

How does this affect accuracy?

Preliminary Results – 4x4 lattice

Extensions

- Torlai et. al. Integrating Neural Networks with a Quantum Simulator for State Reconstruction
 - Uses RBM with a noise layer
 - Our implementation: encoder-decoder mechanism for learning error distribution and de-noising
- Better loss schedule?
- What value does data provide? What is happening during Hamiltonian training?