Atividade: pavimentação com polígonos regulares

Aluno(a):	Turma:
Professor(a):	

PARTE 1

- [01] Qual é o nome do polígono regular de 11 lados? E o de 27 lados?
- [02] Um *quiliógono* é um polígono com 1000 lados. Calcule a medida dos ângulos internos e ângulos centrais de um quiliógono regular.
- [03] Ative as opções "Exibir ângulos internos" e "Exibir ângulos centrais" do aplicativo. Por que cada ângulo central tem medida

$$\theta = \frac{360^{\circ}}{n}$$

e cada ângulo interno tem medida

$$a = \frac{(n-2) \cdot 180^{\circ}}{n}$$
?

[04] Se R é a medida do raio do círculo circunscrito ao polígono regular, qual é a medida do raio r do círculo inscrito em função de R, θ e α ?

PARTE 2

[01] Usando o software, verifique que é possível construir uma pavimentação lado-lado do plano usando triângulos equiláteros. Qual é a soma dos ângulos dos triângulos equiláteros com vértice em um nó da pavimentação?

[02] Usando o software, verifique que é possível construir uma pavimentação lado-lado do plano usando quadrados. Qual é a soma dos ângulos dos quadrados com vértice em um nó da pavimentação?

- [03] É possível construir uma pavimentação lado-lado do plano usando pentágonos regulares? Justifique sua resposta!
- [04] Usando o software, verifique que é possível construir uma pavimentação lado-lado do plano usando hexágonos regulares. Qual é a soma dos ângulos dos hexágonos regulares com vértice em um nó da pavimentação?

[05] O objetivo deste exercício é provar que as únicas pavimentações lado-lado do plano com polígonos regulares de um só tipo são aquelas obtidas com triângulos equiláteros, quadrados e hexágonos regulares. Para isto, seja

$$\alpha = (n - 2) 180^{\circ}/n$$

a medida dos ângulos internos de um polígono regular com n lados (veja o Exercício [03] da Parte 1) e seja k o número de polígonos da pavimentação com um vértice comum. Note que

$$k \alpha = 360^{\circ}$$
.

Verifique que k=2n/(n-2). Por que k deve ser maior do que ou igual a 3? Conclua que $2n/(n-2) \ge 3$ e que, portanto, $n \le 6$. Assim, os únicos valores possíveis de n são 3, 4, 5 e 6. Mas pentágonos regulares não pavimentam o plano (Exercício [03]), portanto, as únicas pavimentações lado-lado do plano com polígonos regulares se um só tipo são aquelas com n=3, n=4 e n=6.

PARTE 3

- [01] Seja k o número de polígonos incidindo em cada nó da pavimentação. Mostre que $3 \le k \le 6$. Dica: o ângulo interno de qualquer polígono regular é maior do que ou igual a 60° .
- [02] (Caso k = 3: três polígonos regulares incidindo em cada vértice) Sejam n_1 , n_2 e n_3 o número de lados de cada um dos três polígonos regulares incidindo em um vértice da pavimentação. Podemos supor, sem perda de generalidade, que $n_1 \le n_2 \le n_3$.
- (a) Verifique que $1/n_1 + 1/n_2 + 1/n_3 = 1/2$. Em particular, segue-se que $1/n_2 + 1/n_3 = (n_1 2)/(2 n_1)$.
- (b) Verifique que $3 \le n_1 \le 6$.
- (c) Verifique que $1/n_2 + 1/n_2 \ge (n_1 2)/(2 n_1)$. Em particular, conclua que $n_2 \le 4n_1/(n_1 2)$.
- (d) (Subcaso $n_1 = 3$) De (a) segue-se que $1/n_2 + 1/n_3 = 1/6$, ou ainda, que $1/n_3 = (n_2 6)/(6 n_2)$. Como $n_3 > 0$, segue-se que $n_2 > 6$. De (c), segue-se que $n_2 \le 12$. Logo, $7 \le n_2 \le 12$. Temos então as seguintes possibilidades para este subcaso:

$$(n_1, n_2, n_3) = (3, 7, 42), (n_1, n_2, n_3) = (3, 8, 24), (n_1, n_2, n_3) = (3, 9, 18), (n_1, n_2, n_3) = (3, 10, 15), (n_1, n_2, n_3) = (3, 12, 12).$$

A configuração $(n_1, n_2, n_3) = (3, 7, 42)$ não é válida. Para ver isto, usaremos o argumento das "pétalas": na figura abaixo, suponha que a ordem dos polígonos em torno do vértice C seja 3 (triângulo equilátero), a = 7 e b = 42. Então, a ordem dos polígonos em torno do vértice A deve ser, obrigatoriamente, 3 (triângulo equilátero), b = 42 e c = 7. Por outro lado, se considerarmos os polígonos em torno do vértice B, veremos que a = 7 e c = 42, uma contradição. De fato, este raciocínio mostra que a = b = c. Por este motivo, as configurações (3, 8, 24), (3, 9, 18), e (3, 10, 15) também não são válidas. Logo, para este caso, apenas a configuração (3, 12, 12) sobrou.

 (e) (Subcaso n1 = 4) Verifique que, neste subcaso, 5 ≤ n₂ ≤ 8 e, como n3 deve ser um número inteiro, os únicos candidatos são

$$(n_1, n_2, n_3) = (4, 5, 20), (n_1, n_2, n_3) = (4, 6, 12), (n_1, n_2, n_3) = (4, 8, 8).$$

O argumento das "pétalas" exclui o caso (4, 5, 20). Sobram, portanto, as configurações (4, 6, 12) e (4, 8, 8).

- (f) (Subcaso n1 = 5) Verifique que, neste subcaso, $5 \le n_2 \le 6$ e, como n_3 deve ser um número inteiro, a única configuração canditata é (5, 5, 10). Use o argumento das pétalas para mostrar que esta configuração não é válida.
- (g) (Subcaso n1 = 6) Verifique que, neste subcaso, n2 = 6 e, portanto, n3 = 6. A configuração (6, 6, 6) usa apenas um tipo de polígono regular e ela foi estudada na Parte 2.

Observação. Para o caso k = 3 (três polígonos regulares incidindo em cada vértice), uma vez fixada para todos os nós da pavimentação, a ordem em que os polígonos são colocados é irrelevante. Por exemplo, a escolha (4, 6, 12) gera a mesma pavimentação que (4, 12, 6). Para os casos k > 3, escolhas diferentes podem gerar pavimentações diferentes.

- [03] (Caso k = 4: quatro polígonos regulares incidindo em cada vértice) Sejam n_1 , n_2 , n_3 e n_4 o número de lados de cada um dos quatro polígonos regulares incidindo em um vértice da pavimentação. Podemos supor, sem perda de generalidade, que $n_1 \le n_2 \le n_3 \le n_4$.
- (a) Verifique que $1/n_1 + 1/n_2 + 1/n_3 + 1/n_4 = 1$. Em particular, segue-se que $1/n_2 + 1/n_3 + 1/n_4 = (n_1 1)/n_1$.
- (b) Verifique que $3 \le n_1 \le 4$.
- (c) Verifique que $1/n_2 + 1/n_2 + 1/n_2 \ge (n_1 1)/n_1$. Em particular, conclua que $n_2 \le 3$ $n_1/(n_1 1)$. Portanto, se $n_1 = 3$, então $n_2 \le 4$ mas, como $n_2 \ge n_1$, segue-se que $n_2 = 3$ ou $n_2 = 4$. Também, se $n_1 = 4$, então $n_2 \le 4$ mas, como $n_2 \ge n_1$, segue-se que $n_2 = 4$.
- (d) (Subcaso $n_1 = 3$ e $n_2 = 3$) Use o item (a) para mostrar que $n_3 \ge 4$. Lembrando que $n_3 \le n_4$, use (a) para mostrar que $n_3 \le 6$. Assim, $4 \le n_3 \le 6$. Usando mais uma vez o item (a) e lembrando que n_4 é um número inteiro, temos então as seguintes possibilidades para este subcaso:

Também precisamos considerar as seguintes permutações na ordem em que os polígonos são colocados em torno de cada nó da pavimentação:

As configurações (3, 3, 4, 12) e (3, 3, 6, 6) não são válidas: use o software desta atividade para verificar que estas configurações implicam na existência de outro vértice do tipo (3, 3, 3, ..., ...), o que viola a condição de que a distribuição de polígonos ao redor de cada vértice é a mesma. A configuração (3, 4, 3, 12) também não é válida: use o software desta atividade para verificar que a existência de um nó (3, 4, 3, 12) implica na existência de um nó (3, 12, 12), o que viola a condição de que a distribuição de polígonos ao redor de cada vértice é a mesma. Sobra, portanto, a configuração (3, 6, 3, 6).

(e) (Subcaso $n_1 = 3$ e $n_2 = 4$) Use o item (a) para mostrar que $n_3 \ge 3$. Entretanto, como $n_3 \ge n_2$, segue-se que $n_3 \ge 4$. Lembrando que $n_3 \le n_4$, use (a) para mostrar que $n_3 \le 4$. Assim, $n_3 = 4$. Usando mais uma vez o item (a), temos então a seguinte possibilidade para este subcaso:

Também precisamos considerar a seguinte permutação na ordem em que os polígonos são colocados em torno de cada nó da pavimentação:

A configuração (3, 4, 4, 6) não é válida: use o software desta atividade para verificar que a existência de um vértice (3, 4, 4 6) implica na existência de um vértice do tipo (3, 4, 6, 4), o que viola a condição de que a distribuição de polígonos ao redor de cada vértice é a mesma. Sobra, portanto, a configuração (3, 4, 6, 4).

(f) (Subcaso $n_1 = 4$ e $n_2 = 4$) Lembrando que $n_3 \le n_4$, use (a) para mostrar que $n_3 \le 4$. Como $n_3 \ge n_2 = 4$, segue-se que $n_3 = 4$. Logo, por (a), $n_4 = 4$. A configuração (4, 4, 4, 4) usa apenas um tipo de polígono regular e ela foi estudada na Parte 2.

- [04] (Caso k = 5: cinco polígonos regulares incidindo em cada vértice) Sejam n_1 , n_2 , n_3 , n_4 e n_5 o número de lados de cada um dos cinco polígonos regulares incidindo em um vértice da pavimentação. Podemos supor, sem perda de generalidade, que $n_1 \le n_2 \le n_3 \le n_4 \le n_5$.
- (a) Verifique que $1/n_1 + 1/n_2 + 1/n_3 + 1/n_4 + 1/n_5 = 3/2$. Em particular, segue-se que $1/n_2 + 1/n_3 + 1/n_4 + 1/n_5 = (3 n_1 2)/(2 n_1)$.
- (b) Verifique que $n_1 = 3$.
- (c) Verifique que $1/n_2 + 1/n_2 + 1/n_2 + 1/n_2 \ge (3 \ n_1 2)/(2 \ n_1)$. Em particular, conclua que $n_2 \le 8 \ n_1/(3 \ n_1 2) = 24/7$. Como $n_2 \ge n_1 = 3$, segue-se que $n_2 = 3$.
- (d) Verifique que $1/n_3 + 1/n_4 + 1/n_5 = 5/6$. Conclua que $1/n_3 + 1/n_3 + 1/n_3 \ge 5/6$. Logo, $n_3 \le 18/5$. Como $n_3 \ge n_2 = 3$, segue-se que $n_3 = 3$.
- (e) Verifique que $1/n_4 + 1/n_5 = 1/2$. Conclua que $1/n_4 + 1/n_4 \ge 1/2$. Logo, $n_4 \le 4$. Como $n_4 \ge n_3 = 3$, segue-se que $n_4 = 3$ ou $n_4 = 4$. Se $n_4 = 3$, então $n_5 = 6$ e, se $n_4 = 4$, então $n_4 = 4$. Temos então as seguintes possibilidades para o caso k = 5:

Também precisamos considerar a seguinte permutação na ordem em que os polígonos são colocados em torno de cada nó da pavimentação:

Todas estas configurações são válidas.

[05] (Caso $\mathbf{k} = \mathbf{6}$: seis polígonos regulares incidindo em cada vértice) Sejam n_1 , n_2 , n_3 , n_4 , n_5 e n_6 o número de lados de cada um dos cinco polígonos regulares incidindo em um vértice da pavimentação. Verifique que $1/n_1 + 1/n_2 + 1/n_3 + 1/n_4 + 1/n_5 + 1/n_6 = 2$. Conclua que $n_1 = n_2 = n_3 = n_4 = n_5 = n_6 = 3$. A configuração (3, 3, 3, 3, 3, 3, 3) usa apenas um tipo de polígono regular e ela foi estudada na Parte 2.

Moral: existem 8 pavimentações arquimedianas. São elas: (3, 12, 12), (4, 6, 12), (4, 8, 8), (3, 6, 3, 6), (3, 4, 6, 4), (3, 3, 3, 3, 6), (3, 3, 3, 4, 4) e (3, 3, 4, 3, 4).