## 합성곱신경망(CNN. Convolutional Neural Network)

변환 불변성에 기초하여 이미지를 분석에 사용하는 깊은 인공신경망의 한 종류 필터 역할을 스스로 학습하여 상대적으로 전처리를 거의 사용하지 않는다

Convolution: filter 연산에서 사용되어 영상에서 feature를 추출할 때 사용



| Convolution의 과정 | 1 1 1 0 0<br>0 1 1 1 0<br>0 0 1 1 1<br>0 0 1 1 0<br>0 1 1 0 0 * 1 0 1 (Fi                          | ilter, Kernel, Weight)                         |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|--|
|                 | Image Convolved Feature                                                                            |                                                |  |  |  |
|                 | 1 x1 1 x0 1 x1 0 0       0 x0 1 x1 1 x0 1 0       0 x1 0 x0 1 x1 1 1       0 0 1 1 0       0 1 1 0 | <b>⇒</b> 4   1   1   1   1   1   1   1   1   1 |  |  |  |
|                 | 1  1 x1 1 x0 0 x1 0 0 0 0 1 x0 1 x1 1 x0 0 0 0                                                     | 4 3                                            |  |  |  |
|                 | <b>.</b>                                                                                           |                                                |  |  |  |
|                 | Green: 영상 이미지<br>Yellow: Convolution이 일어나는 영역<br>Red: Convolution Kernel                           |                                                |  |  |  |

Convolution + NN : Convolution을 사용하는 신경망 연산 2개 이상의 CNN layer

& 입력 영상뿐만 아니라 중간 Feature map에도 Convolution 적용



## Receptive Field(수용 영역)

: 출력 layer의 뉴런 하나에 영향을 미치는 입력 뉴런들의 공간 크기 외부 자극이 일부 영역에만 영향을 미친다(전체에 영향 X) 영상에서 특정 위치에 있는 픽셀들은 주변에 있는 일부 픽셀들과만 correlation이 높다 → 거리가 멀수록 영향이 감소한다



### CNN의 장점

영상을 2D에서 1D로 평탄화하지 않으므로, 형상을 유지한다

∴ 입출력 모두 3차원 데이터로 처리하기 때문에 공간적 정보를 유지할 수 있다









Stride: Filter가 움직이는 정보

stride = n : n칸씩 움직인다

### Output size 구하기



$$(N - F) / stride + 1$$

ex) 
$$N = 7$$
,  $F = 3$ 

stride = 1 : (7-3)/1+1 = 5 (ok)

stride = 2 : (7-3)/2+1 = 3 (ok)

stride = 3 : (7-3)/3+1 = 2.33 (X)

stride = 4 : (7-3)/4+1 = 2 (ok)

### Padding: 영상 사이즈 유지하기

ex) input 7x7 image pad with 1 pixel border(회색)

if. pad의 값 = 0 : zero pad

 $\leftarrow$  zero pad with 1

ex)

Kernel에 따른 Padding의 크기 = (F / 2)의 소수점 첫째 자리 올림

F = 3 : zero pad with 1 F = 5 : zero pad with 2 F = 7 : zero pad with 3

## Convolution 결과의 Size 구하기

|                                                                                              | Parameter                          |  |
|----------------------------------------------------------------------------------------------|------------------------------------|--|
| Input: $W_1 	imes H_1 	imes D_1$                                                             | Filter의 개수: $K_1$                  |  |
|                                                                                              | Filter의 한 변 크기: $F_1$              |  |
|                                                                                              | Stride: $F$                        |  |
|                                                                                              | Zero Pad의 개수: $S$                  |  |
|                                                                                              | $W_2 = (W_1 - F + 2P)/S + 1$       |  |
| Output: $W_2 \times H_2 \times D_2$                                                          | $H_2 = (H_1 - F + 2P)/S + 1$       |  |
|                                                                                              | $D_2 = K$                          |  |
|                                                                                              | → filter 개수로 output의 depth 정할 수 있다 |  |
| with parameter sharing, $F ullet F ullet D_1$ weight per filter                              |                                    |  |
| $total  \Rightarrow  (F  \bullet  F  \bullet  D_1)  \bullet  K   weights   and   K   biases$ |                                    |  |

## 1. Visualization of Activation Map(Feature Map)



### 2. Pooling Layer(Sampling)

: resizing Conv layer



### Max Pooling

Filter 내에서 가장 큰 값 선택 ⇒ 더 강한 특징만 남는다

|   | () | Sing | gle d | epth | slice |                           |   |   | 빨강색 네모에서 가장 큰 값: 6 |
|---|----|------|-------|------|-------|---------------------------|---|---|--------------------|
| x |    | 1    | 1     | 2    | 4     | max pool with 2x2 filters |   |   |                    |
|   |    | 5    | 6     | 7    | 8     | and stride 2              | 6 | 8 | 초록색 네모에서 가장 큰 값: 8 |
|   |    | 3    | 2     | 1    | 0     |                           | 3 | 4 |                    |
|   |    | 1    | 2     | 3    | 4     |                           |   |   | 노랑색 네모에서 가장 큰 값: 3 |
|   |    |      | ë 3   |      | y     |                           |   |   | 파랑색 네모에서 가장 큰 값: 4 |

#### Average Pooling Filter 내에서 평균값 선택

У

⇒ Spatial Structure만 보존하여 이미지가 smooth 해진다 빨강색 네모에서 평균값: Single depth slice (1+1+5+6)/42 4 Χ 초록색 네모에서 평균값: Average Pool with 2x2 filters 13/4 21/4 7 and stride 2 (2+4+7+8)/48/4 8/4 1 노랑색 네모에서 평균값: (3+2+1+2)/41 3 4

파랑색 네모에서 평균값:

(1+0+3+4)/4

- (2x2 filter의 경우) 전체 데이터의 75%를 버리고 25%만 선택
  - → Computatioinal Complexity 감소한다
- Depth를 줄이지 않고 Spatially하게만 줄인다(Height & Width) 32x32x3 → 16x16x3
- Q) Stride와 Pooling 모두 down-sampling인데 어느 것 사용?
  A) 최근 CNN 아키텍쳐는 stride를 사용하는 경우가 많다(stride 추천)
- 3. FC layer(Fully Connected Layer)
  마지막 Pooling layer를 통과한 데이터가 1x1024 feature를 갖는다면
  FC layer with W=1024x5를 통과하여 1x5의 Output이 나온다



# CNN 영상 분류기

## MNIST: Image Classification

|                    | Descline Linear |                 | One-Hidden-Layer |                 | Two-Hidden-Layer |         |
|--------------------|-----------------|-----------------|------------------|-----------------|------------------|---------|
| DNN Baseline Linea | ur              | Fully Connected |                  | Fully Connected |                  |         |
|                    | Classifer       |                 | Multi-layer NN   |                 | Multi-layer NN   |         |
| Error              | 8.4%            |                 | 3.6% to 3.8%     |                 | 2.95% to 3.05%   |         |
| CNINI              | LoNet 1         |                 | a Nat 4          | LaNat           | E                | Boosted |
| CNN LeNet-1 L      |                 | .eNet-4 LeNet-9 |                  | 5               | LeNet-4          |         |
| Error              | 1.7%            | 1,1%            |                  | 0.95%           |                  | 0.7%    |

| Baseline Linear         | One-Hidden-Layer               | Two-Hidden-Layer                                    |  |
|-------------------------|--------------------------------|-----------------------------------------------------|--|
| Classifer               | Fully Connected                | Fully Connected                                     |  |
| Classiler               | Multi-layer NN                 | Multi-layer NN                                      |  |
|                         | 20x20 → 1000 → 10:             | 28x28 →300→100→10:                                  |  |
| 20,420 . 10: 0,550 8 4% | error 3.8%                     | error 3.05%                                         |  |
| 20x20 → 10: error 8.4%  | 20x20 → 300 → 10:              | 28x28 →1000→150→10:                                 |  |
|                         | error 3.6%                     | error 2.95%                                         |  |
| 20×20<br>: :            | 400 300/1000<br>20×20<br>: : : | 784 300/ 100/<br>784 1000 150 10<br>28×28 i i i i i |  |

#### LeNet-1



C1: Conv(in = 1, out = 4, kernel = 5, stride = 1, padding = 0) +X1: tanh()

S2: AvgPooling(in = 4, out = 4, kernel = 2, stride = 2) +X2: tanh()

C3: Conv(in = 4, out = 12, kernel = 5, stride = 1, padding = 0) +X3: tanh()

S4: AvgPooling(in = 12, out = 12, kernel = 2, stride = 2) +X4: tanh()

Output: Conv(in = 12, out = 10, kernel = 3) + Sigmoid()

• Conv(in = 12, out = 10, kernel = 3) + Sigmoid() == FC Layer

#### LeNet-4



C1: Conv(in = 1, out = 4, kernel = 5, stride = 1, padding = 0) +X1: tanh()

S2: AvgPooling(in = 4, out = 4, kernel = 2, stride = 2) +X2: tanh()

C3: Conv(in = 4, out = 16, kernel = 5, stride = 1, padding = 0) +X3: tanh()

S4: AvgPooling(in = 16, out = 16, kernel = 2, stride = 2) +X4: tanh()

C5: Conv(in = 16, out = 120, kernel = 5, stride = 1, padding = 0)

Output: Conv(in = 120, out = 10) + sigmoid()

※ FC Layer 2개: C5, Output

#### LeNet-5



C1: Conv(in = 1, out = 6, kernel = 5, stride = 1, padding = 0) +X1: tanh()

S2: AvgPooling(in = 6, out = 6, kernel = 2, stride = 2) +X2: tanh()

C3: Conv(in = 6, out = 16, kernel = 5, stride = 1, padding = 0) +X3: tanh()

S4: AvgPooling(in = 16, out = 16, kernel = 2, stride = 2) +X4: tanh()

C5: Conv(in = 16, out = 120) +X5: tanh()

F6: FC(in = 120, out = 84) + X6: tanh()

Output: FC(in = 84, out = 10) + sigmoid()



## 전이 학습(Transfer Learning)

: 이미 학습된 신경망 능력을 유사하거나 전혀 새로운 분야의 신경망 학습에 사용 높은 정확도를 비교적 짧은 시간 내에 달성 가능



컴퓨터 비전에서의 전이 학습 = 사전 학습된 모델(pre-trained model) 이용

## 사전 학습된 모델(Pretrained Model)

: 풀고자 하는 문제와 비슷하고 사이즈가 큰 데이터로 이미 학습이 된 모델 오랜 시간과 연산량으로 학습되어 있다 어려운 문제를 잘 풀면, 쉬운 문제도 잘 풀 것으로 기대한다



※ Pretrained Model의 입력 사이즈에 맞게

입력 영상 사이즈를 Resize 해야 한다

#### VGG-16



```
C24: Conv2d(in = 512, out = 512, kernel = 3, stride = 1, padding 1)
    X25: ReLU(inplace = True)
     C26: Conv2d(in = 512, out = 512, kernel = 3, stride = 1, padding 1)
    X27: ReLU(inplace = True)
     C28: Conv2d(in = 512, out = 512, kernel = 3, stride = 1, padding 1)
    X29: ReLU(inplace = True)
     S30: MaxPool2d(kernel = 2, stride = 2, padding = 0, dilation = 1, ceil_mode = False)
   )
   (avgpool): AdaptiveAvgPool2d(output size = (7, 7)
   (classifier): Sequential(
      (0): Linear(in = 25088, out = 4096, bias = True)
      (1): ReLU(inplace = True)
      (2): Dropout(p = 0.5, inplace = False)
      (3): Linear(in = 4096, out = 4096, bias = True)
      (4): ReLU(inplace = True)
      (5): Dropout(p = 0.5, inplace = False)
      (6): Linear(in = 4096, out = 10000, bias = True)
  )
import torchvision, models as models
vgg16 = models.vgg16(pretrained = True).to(device)
```

### 영상 분류 데이터셋

#### 1. MNIST Dataset

클래스: 10개

학습데이터: 60,000장 테스트데이터: 10,000장

해상도: 28x28

### 2. Fashion-MNIST Dataset

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10개의 카테고리 범주    |             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70,000개의 흑백 이미지 |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28x28 이미지 해상도   |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 레이블             | 클래스         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0               | T-shirt/top |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1               | Trouser     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2               | Pullover    |  |
| and the same of th | 3               | Dress       |  |
| THEY AND A LONG TO THE TOTAL OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4               | Coat        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5               | Sandal      |  |
| ## # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6               | Shirt       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7               | Sneaker     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8               | Bag         |  |
| ng sababan nang ng sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9               | Ankie boat  |  |

### 3. CIFAR-10



클래스: 10개

클래스당: 6,000장

학습 데이터: 50,000장 테스트 데이터: 10,000장

해상도: 32x32

#### 4. CIFAR-100



클래스: 100개 클래스당: 600장

학습 데이터: 50,000장 테스트 데이터: 10,000장

해상도: 32x32

### 5. Caltech101, 2003년



클래스: 101개 + 배경 전체 이미지: 9144장 해상도: 300x200

### 6. Caltech256, 2006년



클래스: 256개 + 배경 전체 이미지: 30,608장 클래스별: 80~827장 해상도: 300x200

### 7. ImageNet, 2009년



클래스: 1000개

전체 이미지: 14백만장

학습 데이터: 138G 테스트 데이터: 6.3G

### Benchmark

### 1. CIFAR-10

| Model            | Accuracy |  |  |  |
|------------------|----------|--|--|--|
| VGG16            | 92.64%   |  |  |  |
| ResNet18         | 93.02%   |  |  |  |
| ResNet50         | 93.62%   |  |  |  |
| ResNet101        | 93.75%   |  |  |  |
| RegNetX 200MF    | 94.24%   |  |  |  |
| RegNetY 400MF    | 94.29%   |  |  |  |
| MobileNetV2      | 94.43%   |  |  |  |
| ResNeXt29(32x4d) | 94.73%   |  |  |  |
| ResNeXt29(2x64d) | 94.82%   |  |  |  |
| DenseNet121      | 95.04%   |  |  |  |
| PreActResNet18   | 95.11%   |  |  |  |
| DPN92            | 95.16%   |  |  |  |

## 2. ImageNet

