

M.Tech Digital Manufacturing

BITS Pilani
Pilani Campus

Jayakrishnan J Guest Faculty

DMZG521- Design for Additive Manufacturing Session 7 & Lecture 13-14

Material Complexity

Material is processed point to point in many of the AM technologies

Achieve different material properties in different regions

of the part

Multi-materials in AM

- Heterogeneous Materials or Functionally Graded Materials
- Meta materials

heterogeneous material

- Different composition of materials
- Heterogenous modelling

Heterogenous modelling

Medial Axis Transform

Rail Parameter

Variation of property

Case study

Case study

Example

Using Voronoi Polygon

Different Material Distribution

Functionally Graded Materials

- Characterized by the variation in composition and structure gradually over volume, resulting in corresponding changes in the properties of the material
- The materials can be designed for specific function and applications

FGM

Manufacturing of FGM

- Chemical vapour deposition
- Physical vapour deposition
- Thermal spray
- Surface reaction process
- Centrifugal casting
- Electrode deposition
- Ion beam assisted deposition
- Plasma spraying

AM methods

- Laser based process
- Stereolithography process
- Material Jetting process
- Fused deposition modelling

Challenges in heterogenous modelling

- CAD capability
- STL file doesn't contain the material information

Multi-Material Additive Manufacturing (MMAM)

- The emerging Multiple Material Additive Manufacturing (MMAM) technology can enhance the performance of AM parts by adding more complexity and functionality.
- Design Freedom
- Design protection
- Increased Functionality
- Elimination of assembly
- Efficient Manufacturing systems

Multi-Material Additive Manufacturing (MMAM)

- 1. Discrete Multiple materials
- 2. Composite materials
- 3. Porous materials

Material Types

- 1. Dry powder (SLS,LENS,SLM,3DP)
- 2. Semi-solid or colloidal paste (FDM)
- 3. Liquid material(VP,MJ)
- 4. Gaseous reactant(CVD)

MMAM Systems

9. a) MMAM main subsystems and b) different kinds of multiple-materials parts.

Suitable AM processes

- 1. Vat Photopolymerization
- 2. Material Jetting
- 3. Binder Jetting
- 4. Extrusion based system
- 5. Powder Bed Fusion Process
- 6. Sheet Lamination
- 7. Hybrid and Direct writing Process

VAT Photopolymerization

Multiple materials DMD²-based SL system

micro stereo-thermal-lithographic process

Material Jetting

Polyjet Process

Binder Jetting

Extrusion Based System

Extrusion-based AM Techniques

Techniques based on melting

- Fused Deposition modelling (FDM)
- Multiphase Jet Solidification (MJS)
- Precise Extrusion Manufacturing (PEM)
- Precision Extrusion Deposition (PED)
- 3D Fibre Deposition (3DFD)

Techniques without melting

- Robocasting
- 3D-Bioplotting
- Direct-write assembly
- Pressure-assisted microsyringe (PAM)
- Low-temperature deposition manufacturing (LDM)
- Solvent-based Extrusion Freeforming (SEF)

Example part in FDM

Dual Extruder Printers

Powder Bed Fusion Process

Directed Energy Deposition

Sheet Lamination

Ultrasonic Consolidation

Challenges

- Contamination
- Bonding
- Data Processing
- Process Interruption
- Hybrid and multi axis system
- Material development

Bonding Between Layers

Two types of bonding

- Thermal bonding (sintering/melting, ultrasonic welding or contact fusion)
- Non-thermal bonding (polymerisation or adhesive bonding)

Challenges in Powder based process

Application of Multi-materials

3D printed tooth brush using polyjet printer

3D printed phone case using Ultimaker 3.0 printer

3D printing of flexible soles and breathable elastics

Hybrid MMAM

Technology	Material	Institution
SLA + DW	Photopolymer, silver-based ink	University of Texas, USA
FDM + DW	Thermoplastic, silver-based ink	Stratasys and Optimec Inc., USA
UC + DW	Polymer, silver-based ink	Utah State University and University of Texas and
		Sandia National Laboratories, USA
FDM + UC	Thermoplastic, silver-based ink	Utah State University, USA
FDM + Robocasting	Thermoplastic, low-melting-point alloys and a variety of gels and slurries	Cornell University, USA
DW + Electrophoretic Deposition	Aluminium, copper oxide	Lawrence Livermore National Laboratory, USA

End of session 7