

Contents lists available at ScienceDirect

Topology and its Applications

journal homepage: www.elsevier.com/locate/topol

The answers to two problems on maximal point spaces of domains **

Xiaoyong Xi^a, Chong Shen^{b,c,*}, Dongsheng Zhao^d

- ^a School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, Jiangsu, China
- ^b School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- ^c Key Laboratory of Mathematics and Information Networks, Beijing University of Posts and Telecommunications, Ministry of Education, China
- ^d Mathematics and Mathematics Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, 637616, Singapore

ARTICLE INFO

Article history: Received 26 December 2024 Received in revised form 6 March 2025 Accepted 7 March 2025

Available online 12 March 2025

MSC: 06B35 06B30

54A05

Keywords:
Continuous dcpo
Domain
Domain-representable space
Maximal point space
Scott topology

ABSTRACT

A topological space is domain-representable (or, has a domain model) if it is homeomorphic to the maximal point space $\operatorname{Max}(P)$ of a domain P (with the relative Scott topology). We first construct an example to show that the set of maximal points of an ideal domain P need not be a G_{δ} -set in the Scott space ΣP , thereby answering an open problem from Martin (2003). In addition, Bennett and Lutzer (2009) asked whether X and Y are domain-representable if their product space $X \times Y$ is domain-representable. This problem was first solved by Önal and Vural (2015). In this paper, we provide a new approach to Bennett and Lutzer's problem. © 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

1. Introduction

The Scott topology of posets, introduced by Dana Scott [15,16], is one of the core structures in domain theory. Spaces that are homeomorphic to the space of maximal elements of a domain (i.e., a continuous dcpo) with the relative Scott topology are referred to as domain-representable by Bennett and Lutzer in [2], whereas Martin, in several of his papers (e.g., [12]), refers to such spaces as having a domain model.

^{*} This work was supported by the National Natural Science Foundation of China (No. 12071188, 12101313, 12401607), and the Natural Science Foundation of Jiangsu Province (BK20241086, BK20241087).

^{*} Corresponding author at: School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China. E-mail address: shenchong0520@163.com (C. Shen).

The concept of representing a topological space as the set of maximal elements of a specific type of poset originates from theoretical computer science [10], which also proves to be highly valuable in the study of completeness properties of Baire spaces. Identifying domain-representable spaces has become one of the active areas in domain theory. Initially, these spaces were named by various terms such as "P-complete" or "FY-complete" by different authors, but the term "directed complete" was eventually introduced in [5]. Fleissner and Yengulalp provided a simplified definition of domain-representability in [6], proving its equivalence to the traditional definition.

One classical example is the poset $IR(\mathbb{R})$ of all closed intervals of reals, with the inverse set inclusion order, is a domain model of the Euclidean space \mathbb{R} . Lawson confirmed that a space is Polish if and only if it has an ω -domain model satisfying the Lawson condition [9]. K. Martin [13] proved that the space Max(P) of an ω -continuous dcpo P is regular if and only if it is Polish. The formal balls of a metric space, initially introduced by Weihrauch and Schreiber as a domain-theoretic representation of metric spaces [17], were further employed by Edalat and Heckmann to prove that every complete metric space is domain-representable [4]. The Sorgenfrey line, which is not metrizable, is also domain-representable [1]. A more general result is that every T_1 space is homeomorphic to the set of maximal points of some dcpo with the relative Scott topology [18].

As pointed out by Martin [11], knowing that the set of maximal points is a G_{δ} -subset is often useful in proofs. For instance, Edalat studied the connection between measure theory and the probabilistic powerdomain [4] assuming a separable metric space that embedded as a G_{δ} -subset of a countably based domain.

The following are some results on G_{δ} -subsets $E \subseteq \operatorname{Max}(P)$ obtained by Martin:

- (i) If P is an ω -domain and Max(P) is regular, then Max(P) is a G_{δ} -set [13].
- (ii) For any ω -ideal domain P (see Section 1 for the definition of ω -ideal domain), $\operatorname{Max}(P)$ is a G_{δ} -set [11].

Furthermore, Brecht, Goubault-Larrecq, Jia, and Lyu [3] showed that continuous valuations on G_{δ} -subsets of locally compact sober spaces can be extended to measures. They also demonstrated that each G_{δ} -subset of the maximal point space of an ω -ideal domain is a quasi-Polish space.

This paper focuses on two problems related to maximal point spaces of domains. The first problem was posed by Martin ([11, Section 8, Ideas (iv)]):

• Is there an ideal domain whose maximal points do not form a G_{δ} -set?

In Section 3, we construct an ideal domain P such that Max(P) is not G_{δ} -set, thereby providing a positive answer.

The second problem was posed by Bennett and Lutzer in [1]:

• Suppose the product space $X \times Y$ is domain-representable, where $Y \neq \emptyset$. Must X be domain-representable?

In [14], Önal and Vural proved that domain-representability is hereditary with respect to retracts, meaning that retracts of a domain-representable space are also domain-representable. Consequently, if the product of two spaces is domain-representable, the factor spaces must also be domain-representable; thus gives a positive answer to Bennett and Lutzer's problem. In Section 4, we provide a new proof for the above problem, which is distinct from that of [14] in that it relies directly on the original definition of domain-representable spaces proposed by Martin in [12]. Our method may help one solve the corresponding product problem of Scott-domain-representable spaces.

2. Preliminaries

We first review some basic concepts and notations that will be used later. For more details, we refer the reader to [7,8].

Let P be a poset. For a subset A of P, we shall adopt the following standard notations:

$$\uparrow A = \{ y \in P : \exists x \in A, x \le y \}, \ \downarrow A = \{ y \in P : \exists x \in A, y \le x \}.$$

For each $x \in X$, we simply write $\uparrow x$ and $\downarrow x$ for $\uparrow \{x\}$ and $\downarrow \{x\}$, respectively. A subset A of P is called a lower (upper, resp.) set if $A = \downarrow A$ ($A = \uparrow A$, resp.). An element x is maximal in P, if $P \cap \uparrow x = \{x\}$. The set of all maximal elements of P is denoted by Max(P).

A nonempty subset D of P is directed if every two elements in D have an upper bound in D. For $x, y \in P$, x is way-below y, denoted by $x \ll y$, if for each directed subset D of P with $\bigvee D$ existing, $y \leq \bigvee D$ implies $x \leq d$ for some $d \in D$. Denote $\uparrow x = \{y \in P : x \ll y\}$ and $\downarrow x = \{y \in P : y \ll x\}$. A poset P is continuous, if for each $x \in P$, the set $\downarrow x$ is directed and $x = \bigvee \downarrow x$.

An element $a \in P$ is called compact, if $a \ll a$. The set of all compact elements of P will be denoted by K(P). Then, P is called algebraic if for each $x \in P$, the set $\{a \in K(P) : a \leq x\}$ is directed and $x = \bigvee \{a \in K(P) : a \leq x\}$. A continuous (algebraic, resp.) dcpo is also called a domain (an algebraic domain, resp.). A subset $B \subseteq P$ is a base of P if for each $x \in P$, $B \cap \downarrow x$ is directed and $\bigvee (B \cap \downarrow x) = x$. If P has a countable base, then P is called an ω -continuous dcpo or ω -domain.

A subset U of P is $Scott\ open$ if (i) $U = \uparrow U$ and (ii) for each directed subset D of P for which $\bigvee D$ exists, $\bigvee D \in U$ implies $D \cap U \neq \emptyset$. All Scott open subsets of P form a topology on P, called the $Scott\ topology$ and denoted by $\sigma(P)$. The space $\Sigma P = (P, \sigma(P))$ is called the $Scott\ space$ of P.

Let X be a topological space. A subset $G \subseteq X$ is called a G_{δ} -set, if there exists a countable family $\{U_n : n \in \mathbb{N}\}$ of open sets such that $G = \bigcap_{n \in \mathbb{N}} U_n$.

Definition 2.1 ([11]). A domain is called *ideal* if every element is either compact or maximal.

A poset model of a space X is a poset P such that X is homeomorphic to Max(P) with the relative Scott topology on P. If P is a poset model of X such that P is an (ideal) domain, then we say that X has an (ideal) domain model, or equivalently, X is (ideal) domain-representable.

3. The set of maximal points of an ideal domain need not be a G_{δ} -set

In [11, Section 8, Ideas (iv)], Martin asks:

• Is there an ideal domain whose maximal elements do not form a G_{δ} -set?

The following example shows that the set of maximal points of an ideal domain need not be a G_{δ} -set.

Example 3.1. Let \mathbb{N} be the set of all natural numbers equipped with the usual order. Let $E = \mathbb{N} \times (\mathbb{N} \cup \{\infty\})$, and $F = \prod_{i \in \mathbb{N}} C_i$ be the Cartesian product of all C_j , where $C_i = \{i\} \times \mathbb{N}$ for each $i \in \mathbb{N}$. For each $\varphi \in F$, $\varphi(i) \in C_i$ denotes the *i*-th coordinate of φ . It is clear that F is uncountable and $\bigcup_{i \in \mathbb{N}} C_i \subseteq E$.

Let $L = E \cup (F \times \{0,1\})$ and define a binary relation \leq on L as follows:

- (i) $\forall i \in \mathbb{N}, (i, m) \leq (i, n) \leq (i, \infty)$ whenever $m \leq n$ in \mathbb{N} ;
- (ii) $\forall \varphi \in F, \forall i \in \mathbb{N}, \varphi(i) \leq (\varphi, 0) \leq (\varphi, 1).$

Then, one can easily verify that (L, \leq) is an ideal domain, as shown in Fig. 1.

Fig. 1. The ideal domain L.

Fig. 2. The ideal domain \widehat{L} .

Claim: Max(L) is not a G_{δ} -set.

Suppose that $\operatorname{Max}(L)$ is a G_{δ} -set. Then there is a countable family $\{U_i : i \in \mathbb{N}\}$ of Scott open subsets of L such that $\operatorname{Max}(L) = \bigcap_{i \in \mathbb{N}} U_i$. For each $j \in \mathbb{N}$, since

$$\bigvee \{(j,n): n \in \mathbb{N}\} = (j,\infty) \in \bigcap_{i=0}^{\infty} U_i \subseteq U_j,$$

there exists $n_j \in \mathbb{N}$ such that $(j, n_j) \in U_j$ (clearly $(j, n_j) \in C_j$). Define $\varphi \in F$ by $\varphi(j) = (j, n_j) \in U_j$ for each $j \in \mathbb{N}$. Then, since $(\varphi, 0) \geq \varphi(j) \in U_j$ for any $j \in \mathbb{N}$, we have that $(\varphi, 0) \in \bigcap_{j \in \mathbb{N}} U_j = \text{Max}(L)$, but $(\varphi, 0) \notin \text{Max}(L)$, which is a contradiction. Therefore, Max(L) is not a G_{δ} -set.

It is worth noting that though the above maximal point space $\operatorname{Max}(L)$ is not a G_{δ} -set in ΣL , but it is homeomorphic to a G_{δ} -subspace of another ideal domain \widehat{L} , where \widehat{L} is a slight modification of L. This is demonstrated in the following example.

Example 3.2. Let $\widehat{L} = L \setminus \{(\varphi, 1) : \varphi \in F\}$ with the inherited order from L, where F and L are sets defined in Example 3.1. Then, \widehat{L} is an ideal domain, as can be seen in Fig. 2.

Claim: $Max(\widehat{L})$ is a G_{δ} -set.

For each $k \in \mathbb{N}$, define

$$U_k := \widehat{L} \setminus \bigcup \{ \downarrow (i, k) : i \le k \}.$$

Then, it is clear that $\{U_k : k \in \mathbb{N}\}$ is a collection of Scott open sets and $\bigcap_{k \in \mathbb{N}} U_k = \operatorname{Max}(\widehat{L})$. Therefore, $\operatorname{Max}(\widehat{L})$ is a G_{δ} -set.

Fig. 3. The model of $\mathbb{N} \times \{0,1\}$ with the discrete topology.

4. The productivity of domain-representable spaces

In this section, we provide a direct construction of domain models for the factor spaces X and Y, assuming that the product space $X \times Y$ is domain-representable. This offers another proof to the problem posed by Bennett and Lutzer in [1], as mentioned in the Introduction. It should be noted that this construction is not straightforward and cannot be derived directly, as the following example demonstrates:

Example 4.1. Let $P = (\mathbb{N} \times \{0,1\}) \cup \mathbb{N} \cup \{\infty\}$ equipped with the partial order given by

- (i) $\infty < (0,1)$;
- (ii) $\forall n \in \mathbb{N}, n \leq n+1 \leq \infty$.

It is clear that P is a domain model of $\mathbb{N} \times \{0,1\}$ with the discrete topology. Now, if we want to construct a domain model for $\mathbb{N} \times \{0\}$, which is homeomorphic to the factor space \mathbb{N} (which is also the discrete space), a natural candidate would be $Q = \downarrow(\mathbb{N} \times \{0\})$ with the inherited order, which indeed is its poset model in this example. However, this is not a dcpo. Therefore, Q is not a domain model of \mathbb{N} with the discrete order. (See Fig. 3.)

In Example 4.1, one can easily observe that $\downarrow(\mathbb{N}\times\{1\})$ is a domain model of \mathbb{N} with the discrete topology. As a supplementary conclusion to the example, we add the following propositions.

Proposition 4.2. Let P be a (Scott-) domain model of the product $X \times Y$ of two spaces X and Y. If there exists $y \in Y$ such that $\downarrow(X \times \{y\})$ is a Scott closed subset (or equivalently, a subdcpo) of P, then, with the inherited order, it is a (Scott-) domain model of X.

Proof. The proof is clear by using the following facts:

- (i) The Scott topology on $\downarrow (X \times \{y\})$ agrees with the relative Scott topology from P (see Exercise II-1.26 on page 151 in [7]).
- (ii) Every Scott subset of a domain is a closure system, hence is a domain (see Corollary I-2.5 in [7]).
- (iii) It is easy to check that every lower subset of a bounded complete dcpo is also bounded complete. \qed

Lemma 4.3. Let P be an ideal domain. If $X \subseteq Max(P)$ is closed in the maximal point space, then $\downarrow X$ is a Scott closed subset of P, and hence is an ideal domain.

Proof. We first show that $\downarrow X$ is a Scott closed subset of P. Suppose D is a directed subset of $\downarrow X$. Then, since P is an ideal domain, there are two cases:

Fig. 4. The elements in Q.

- (c1) $\bigvee D$ is compact. This means $\bigvee D \in D \subseteq \downarrow X$.
- (c2) $\bigvee D$ is a maximal point of P. Since X is closed in $\operatorname{Max}(P)$, there exists a Scott closed subset C of P such that $X = C \cap \operatorname{Max}(P)$, which means $\downarrow X = \downarrow (C \cap \operatorname{Max}(P))$. Then, $D \subseteq \downarrow X = \downarrow (C \cap \operatorname{Max}(P)) \subseteq \downarrow C = C$, which follows that $\bigvee D \in C \cap \operatorname{Max}(P) = X$.

Thus, $\downarrow X$ is Scott closed. It is trivial to check that every Scott closed subset of an ideal domain is an ideal domain. \Box

From Lemma 4.3, one can deduce the following corollary.

Corollary 4.4. Let P be an ideal domain model of the product $X \times Y$ of two spaces X and Y. Then, for each $y \in Y$, $\downarrow (X \times \{y\})$ is a domain model of X.

Note that the above corollary does not hold for Scott domains. For example, consider the P in Example 4.1, which serves as a Scott domain model for $\mathbb{N} \times \{0,1\}$ with the discrete topology, but $\downarrow(\mathbb{N} \times \{0\})$ is not a Scott domain model of \mathbb{N} with the discrete topology.

Next, we provide a new construction method for the domain model of factor spaces. Before doing so, we state a lemma, which is well-known, will be used in our proof.

Lemma 4.5 ([1]). If X has a domain model, then it has an algebraic domain model.

Theorem 4.6. If the product $X \times Y$ of two spaces X and Y is domain-representable, then X and Y are domain-representable.

Proof. According to Lemma 4.5, we can assume that (P, \leq) is an algebraic domain model of $X \times Y$. Without loss of generality, we may assume that the maximal point space Max(P) equals $X \times Y$, that is,

$$\operatorname{Max}(P) = X \times Y \text{ and } \mathcal{O}(X \times Y) = \{U \cap \operatorname{Max}(P) : U \in \sigma(P)\}.$$

Let y_0 be a fixed element of Y. To construct a domain model of X, it suffices to construct a domain model of the subspace $X \times \{y_0\}$ of $X \times Y$. We do this in three steps.

Step 1. Construct a poset Q.

Let

$$Q = \{(U, V, k) \in \mathcal{O}^*(X) \times \mathcal{U}(y_0) \times K(P) : U \times V \subseteq \uparrow k \cap \text{Max}(P)\},\$$

where $\mathcal{U}(y_0)$ is the set of all open neighborhoods of y_0 . The elements of Q are illustrated by Fig. 4. Define a binary relation \sqsubseteq on Q by $(U_1, V_1, k_1) \sqsubseteq (U_2, V_2, k_2)$ iff it satisfies the following two conditions:

Fig. 5. The poset Q.

- (i) $k_1 \leq k_2$;
- (ii) $\uparrow k_2 \cap \operatorname{Max}(P) \subseteq U_1 \times V_1$,

as illustrated in Fig. 5.

Claim 1. \sqsubseteq is a partial order on Q.

Reflexivity is clear. To show the antisymmetry, suppose $(U_1, V_1, k_1) \sqsubseteq (U_2, V_2, k_2)$ and $(U_2, V_2, k_2) \sqsubseteq (U_1, V_1, k_1)$. Then, on the one hand, it follows that $k_1 \leq k_2$ and $k_2 \leq k_1$, so $k_1 = k_2$. On the other hand, by the definition of Q and the relation \sqsubseteq , we have that

$$\uparrow k_2 \cap \operatorname{Max}(P) \subseteq U_1 \times V_1 \subseteq \uparrow k_1 \cap \operatorname{Max}(P) \subseteq U_2 \times V_2 \subseteq \uparrow k_2 \cap \operatorname{Max}(P),$$

which follows that $U_1 \times V_1 = U_2 \times V_2$, that is, $U_1 = U_2$ and $V_1 = V_2$. Therefore, $(U_1, V_1, k_1) = (U_2, V_2, k_2)$. Now we verify the transitivity. Suppose $(U_1, V_1, k_1) \sqsubseteq (U_2, V_2, k_2) \sqsubseteq (U_3, V_3, k_3)$. On the one hand, we have that $k_1 \leq k_2 \leq k_3$, so $k_1 \leq k_3$. On the other hand, it follows that

$$\uparrow k_3 \cap \operatorname{Max}(P) \subseteq U_2 \times V_2 \subseteq \uparrow k_2 \cap \operatorname{Max}(P) \subseteq U_1 \times V_1$$

and consequently, $(U_1, V_1, k_1) \sqsubseteq (U_3, V_3, k_3)$. Therefore, \sqsubseteq is a partial order.

Step 2. Let $P_X = (Idl(Q), \subseteq)$, where Idl(Q) denotes the set of all ideals of Q. Then, P_X is an algebraic domain whose compact elements are the principal ideals (see [7, Proposition I-4.10]). Next, we show that $Max(P_X) = \{\mathcal{J}(x) : x \in X\}$, where

$$\mathcal{J}(x) \triangleq \{(U, V, k) \in Q : x \in U\}.$$

Claim 2. For any $x \in X$, $\mathcal{J}(x) \in P_X$.

We first show that $\mathcal{J}(x)$ is a lower set. Suppose $(U,V,k) \sqsubseteq (U_0,V_0,k_0) \in \mathcal{J}(x)$. Then, we have that

$$(x, y_0) \in U_0 \times V_0 \subseteq \uparrow k_0 \cap \operatorname{Max}(P) \subseteq U \times V$$

which follows that $x \in U$. This means that $(U, V, k) \in \mathcal{J}(x)$.

Now we show that $\mathcal{J}(x)$ is directed. That $\mathcal{J}(x) \neq \emptyset$ is clear. Suppose $(U_1, V_1, k_1), (U_2, V_2, k_2) \in \mathcal{J}(x)$. By the definition of $\mathcal{J}(x)$ and Q, we have that

$$(x, y_0) \in (U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2) \in \mathcal{O}(X \times Y) = \mathcal{O}(\text{Max}(P)),$$

so there exists $k_3 \in K(P)$ such that

$$(x, y_0) \in \uparrow k_3 \cap \operatorname{Max}(P) \subseteq (U_1 \times V_1) \cap (U_2 \times V_2) \subseteq \uparrow k_1 \cap \uparrow k_2 \cap \operatorname{Max}(P).$$

It follows that $k_1, k_2, k_3 \leq (x, y_0)$, and since P is algebraic, there exists $k_0 \in K(P)$ such that $k_1, k_2, k_3 \leq k_0 \leq (x, y_0)$. We have that

$$(x, y_0) \in \uparrow k_0 \cap \operatorname{Max}(P) \subseteq (U_1 \times V_1) \cap (U_2 \times V_2) \subseteq \uparrow k_1 \cap \uparrow k_2 \cap \operatorname{Max}(P).$$

On the other hand, since $(x, y_0) \in \uparrow k_0 \cap \text{Max}(P) \in \mathcal{O}(X \times Y)$ and $\mathcal{O}(X) \times \mathcal{O}(Y)$ forms a basis of $\mathcal{O}(X \times Y)$, there exist $U_0 \in (X)$ and $V_0 \in \mathcal{O}(Y)$ (we may assume $U_0 \subseteq U_1 \cap U_2$ and $V_0 \subseteq V_1 \cap V_2$) such that

$$(x, y_0) \in U_0 \times V_0 \subseteq \uparrow k_0 \cap \operatorname{Max}(P).$$

It follows that $(U_1, V_1, k_1), (U_2, V_2, k_2) \sqsubseteq (U_0, V_0, k_0) \in \mathcal{J}(x)$. Therefore, $\mathcal{J}(x)$ is an ideal of Q, i.e., $\mathcal{J}(x) \in P_X$.

Claim 3. $Max(P_X) \subseteq \{\mathcal{J}(x) : x \in X\}$. Suppose $\mathcal{I} \in Max(P_X)$. Let

$$W_1 \triangleq \bigcap \{U \times V : (U, V, k) \in \mathcal{I}\}\$$
and $W_2 \triangleq \bigcap \{\uparrow k \cap \operatorname{Max}(P) : (U, V, k) \in \mathcal{I}\}.$

We show that $W_1 = W_2$. First, by the definition of Q, it is clear that $W_1 \subseteq W_2$. Conversely, suppose $(U, V, k) \in \mathcal{I}$, i.e., $U \times V \in W_1$. Since \mathcal{I} is a lower set, there is $(U_0, V_0, k_0) \in \mathcal{I}$ such that $(U, V, k) \sqsubseteq (U_0, V_0, k_0)$, which follows that $U \times V \supseteq \uparrow k_0 \cap \operatorname{Max}(P) \in W_2$. From this fact it follows that $W_2 \subseteq W_1$. Therefore, $W_1 = W_2$.

Now let $D = \{k : (U, V, k) \in \mathcal{I}\}$. By using the directedness of \mathcal{I} , one can easily deduce that D is a directed subset of P. Let $k_0 = \bigvee D$ as P is a domain. We have that

$$W_1 = W_2 = \bigcap \{ \uparrow k \cap \operatorname{Max}(P) : (U, V, k) \in \mathcal{I} \}$$

=
$$\bigcap \{ \uparrow k : (U, V, k) \in \mathcal{I} \} \cap \operatorname{Max}(P)$$

=
$$\uparrow k_0 \cap \operatorname{Max}(P) \neq \emptyset.$$

Taking $(x, y) \in W_1$. Then, for any $(U, V, k) \in \mathcal{I}$, we have that $x \in U$, which implies that $(U, V, k) \in \mathcal{J}(x)$. We then have that $\mathcal{I} \subseteq \mathcal{J}(x)$. By the maximality of \mathcal{I} , we obtain that $\mathcal{I} = \mathcal{J}(x)$. Therefore, $\operatorname{Max}(P) \subseteq \{\mathcal{J}(x) : x \in X\}$.

Claim 4. $Max(P_X) = \{ \mathcal{J}(x) : x \in X \}.$

We need to show that every $\mathcal{J}(x)$ is maximal. Note that P_X is a dcpo, so $\mathcal{J}(x) \in P_X \subseteq \downarrow_{P_X} \operatorname{Max}(P_X)$. Then, there exists $\mathcal{I} \in \operatorname{Max}(P_X)$ such that $\mathcal{J}(x) \subseteq \mathcal{I}$. From Claim 3, there exists $x_0 \in X$ such that $\mathcal{I} = \mathcal{J}(x_0) \supseteq \mathcal{J}(x)$. From the T_1 -separation of X, it follows that

$$\{x_0\} = \bigcap \{U : (U, V, k) \in \mathcal{J}(x_0)\} \subseteq \bigcap \{U : (U, V, k) \in \mathcal{J}(x)\} = \{x\},\$$

which implies that $x = x_0$. Thus, $\mathcal{J}(x) = \mathcal{J}(x_0) \in \text{Max}(P_X)$. This means that $\{\mathcal{J}(x) : x \in X\} \subseteq \text{Max}(P_X)$. Therefore, $\text{Max}(P_X) = \{\mathcal{J}(x) : x \in X\}$.

Step 4. P_X is an algebraic domain model of X.

Define a mapping $f: X \mapsto P_X$ as follows: $\forall x \in X$,

$$f(x) = \mathcal{J}(x).$$

By Step 3, f is well-defined, and one can easily check that it is bijective by using the T_1 -separation of X.

Claim 5. f is continuous.

Note that $K(P_X) = \{ \downarrow_Q(U, V, k) : (U, V, k) \in Q \}$, and thus $\{ \uparrow_{P_X}(\downarrow_Q(U, V, k)) \cap \operatorname{Max}(P_X) : (U, V, k) \in Q \}$ forms a basis for $\operatorname{Max}(P_X)$. We have that for any $(U, V, k) \in Q$,

$$\begin{split} x &\in f^{-1}(\uparrow_{P_X}(\downarrow_Q(U,V,k)) \cap \operatorname{Max}(Q)) \\ \Leftrightarrow & f(x) = \mathcal{J}(x) \in \uparrow_{P_X}(\downarrow_Q(U,V,k)) \\ \Rightarrow & \downarrow_Q(U,V,k) \subseteq \mathcal{J}(x) = \downarrow \mathcal{J}(x) \\ \Leftrightarrow & (U,V,k) \in \mathcal{J}(x) \\ \Leftrightarrow & x \in U, \end{split}$$

which deduces that $f^{-1}(\uparrow_{P_X}(\downarrow_Q(U,V,k))\cap \operatorname{Max}(Q))=U\in\mathcal{O}(X)$. Therefore, f is continuous.

Claim 6. f is open.

Suppose $U \in \mathcal{O}(X)$ and $x_0 \in X$ such that $f(x_0) = \mathcal{J}(x_0) \in f(U)$. Since $(x_0, y_0) \in X \times Y = \text{Max}(P)$ and P is algebraic, there exists $k_0 \in K(P)$ such that $(x_0, y_0) \in \uparrow k_0 \cap \text{Max}(P) \in \mathcal{O}(X \times Y)$. Then, there exists $U_0 \in \mathcal{O}(X)$ (we may require that $U_0 \subseteq U$) and $V_0 \in \mathcal{O}(Y)$ such that

$$(x_0, y_0) \in U_0 \times V_0 \subseteq \uparrow k_0 \cap \operatorname{Max}(P).$$

Clearly, $(U_0, V_0, k_0) \in \mathcal{J}(x_0)$, and then $f(x_0) = \mathcal{J}(x_0) \in \uparrow_{P_X}(\downarrow_Q(U_0, V_0, k_0)) \cap \operatorname{Max}(P_X)$. Furthermore, for each $x \in X$, if $f(x) = \mathcal{J}(x) \in \uparrow_{P_X}(\downarrow_Q(U_0, V_0, k_0)) \cap \operatorname{Max}(P_X)$, then $(U_0, V_0, k_0) \in \mathcal{J}(x)$. This implies that $x \in U_0 \subseteq U$, and consequently $f(x) \in f(U_0) \subseteq f(U)$. Thus, we conclude that f(U) is an open subset of $\operatorname{Max}(P_X)$. Therefore, f is an open mapping.

From Claims 5 and 6, it follows that f is a homeomorphism. Therefore, P_X is an algebraic domain model of X. \square

5. Conclusions

- (1) Regarding Martin's problem, which asks whether there exists an ideal domain whose maximal elements do not form a G_{δ} -set, we provide a positive answer. Specifically, Example 3.1 demonstrates that $\operatorname{Max}(L)$ is not a G_{δ} -set for the ideal domain L. However, $\operatorname{Max}(L)$ is (up to homeomorphism) a G_{δ} -set in some other ideal domain \widehat{L} . This raises the following questions:
 - (i) Is there an ideal domain M such that Max(M) is not homeomorphic to a G_{δ} -subset of any ideal domain?
 - (ii) How can we characterize the maximal point spaces of ideal domains?
 - In [3], Brecht, Goubault-Larrecq, Jia, and Lyu asked whether every sober convergence Choquet-complete space is domain-complete (see Question (iii) in the Conclusion of [3]). Since we know that every ideal domain is sober convergence Choquet-complete, a negative answer to question (i) would imply that the answer to the question in [3] is also negative. We leave these problems for future study.
- (2) In this paper, we provided a new approach to Bennett and Lutzer's problem: If $X \times Y$ is domain-representable, must X and Y be domain-representable? There is another similar open problem posed in [1]:
 - (iii) If $X \times Y$ has a Scott domain model, must X and Y have a Scott domain model?

Here a Scott domain is a bounded complete (every upper bounded subset has a supremum) continuous dcpo. Currently, we are still not able to solve this problem. However, the approach taken in Section 4, due to its direct construction feature, may help to find a method to answer this problem.

Acknowledgements

We would like to express our gratitude to the reviewer who pointed out the reference [14], which addressed the second problem in our paper. Additionally, the reviewer provided insightful historical context on the concept of domain-representability. These contributions have significantly enriched our research and offered new perspectives. Moreover, we would like to express our sincere gratitude to Dr. Hualin Miao, a postdoctoral researcher at Hunan University, for his careful review of the initial draft.

References

- [1] H. Bennett, D. Lutzer, Domain-representable spaces and completeness, Topol. Proc. 34 (2009) 223–244.
- [2] H. Bennett, D. Lutzer, Strong completeness properties in topology, Quest. Answ. Gen. Topol. 27 (2009) 107–124.
- [3] M. de Brecht, J. Goubault-Larrecq, X. Jia, Z. Lyu, Domain-complete and LCS-complete spaces, Electron. Notes Theor. Comput. Sci. 345 (2019) 3–35.
- [4] A. Edalat, When Scott is weak on the top, Math. Struct. Comput. Sci. 7 (1997) 401-417.
- [5] W. Fleissner, L. Yengulalp, Baire spaces, G_{δ} 's and directed complete spaces, Topol. Proc. 59 (2022) 111–151.
- [6] W. Fleissner, L. Yengulalp, From subcompact to domain-representable, Topol. Appl. 195 (2015) 174–195.
- [7] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and Its Applications, vol. 93, Cambridge University Press, 2003.
- [8] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology, Cambridge University Press, 2013.
- [9] J. Lawson, Spaces of maximal points, Math. Struct. Comput. Sci. 7 (5) (1997) 543-555.
- [10] K. Martin, M. Mislove, G.M. Reed, Topology and domain theory, in: M. Husek, J. van Mill (Eds.), Recent Progress in General Topology II, Elsevier, Amsterdam, 2002, pp. 371–391.
- [11] K. Martin, Ideal models of spaces, Theor. Comput. Sci. 305 (1-3) (2003) 277-297.
- [12] K. Martin, Topological games in domain theory, Topol. Appl. 129 (2003) 177–186.
- [13] K. Martin, The regular spaces with countably based model, Theor. Comput. Sci. 305 (1-3) (2003) 299-310.
- [14] S. Önal, C. Vural, Domain representability of retracts, Topol. Appl. 194 (2015) 1–3.
- [15] D. Scott, Outline of a mathematical theory of computation, in: Proceedings of the 4th Annual Princeton Conference on Information Science and Systems, Princeton University Press, Princeton, NJ, 1970.
- [16] D. Scott, Continuous Lattices, Topos, Algebraic Geometry and Logic, Lecture Notes in Mathematics, vol. 274, Springer-Verlag, Berlin, 1972.
- [17] K. Weihrauch, U. Schreiber, Embedding metric spaces into cpo's, Theor. Comput. Sci. 16 (1981) 5-24.
- [18] D. Zhao, X. Xi, Directed complete poset models of T_1 spaces, Math. Proc. Camb. Philos. Soc. 164 (1) (2018) 125–134.