I A R E

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

COMPUTER SCIENCE AND ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ESSENTIALS OF PROBLEM SOLVING							
Course Code	ACSD05	ACSD05						
Program	B.Tech	B.Tech						
Semester	Two							
Course Type	Core	Core						
Regulation	BT 23							
		Theory	Practical					
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits			
	3	0	3		-			
Chief Coordinator	Dr. B Padmaja	, Associate Profes	ssor, CSE (AI	& ML)				

COURSE OBJECTIVES:

The stu	dents will try to learn:
I	The fundamental concepts of graph theory and its properties.
II	The basics related to paths and cycles using Eulerian and Hamiltonian cycles.
III	The applications of graph colouring and traversal algorithms for solving real-time problems.
IV	The numerical methods to solve algebraic equations.

COURSE OUTCOMES (COs):

At the end of the course the students should be able to:

	Course Outcomes	Knowledge Level (Bloom's Taxonomy)
CO 1	Outline the graph terminologies, graph representation techniques, and relate them to practical examples.	Understand
CO 2	Build efficient algorithms for various optimization problems on graphs.	Apply
CO 3	Use effective techniques from graph theory to solve problems in networking and telecommunication.	Apply
CO 4	Interpret the fundamental concepts of polynomials, roots of equations and solve corresponding problems using computer programs.	Understand
CO 5	Apply the knowledge of numerical methods to solve algebraic and transcendental equations arising in real-life situations.	Apply
CO 6	Solve numerical integrals and ordinary differential equations to simulate discrete time algorithms.	Apply

MAPPING OF TOPIC LEARNING OUTCOMES (TLO) TO COURSE OUTCOMES

TLO No	Topic(s)	Topic Learning Outcome	Course Outcome	Blooms Level
1	Introduction to graph terminology	Understand the graph terminologies to solve real-time problems.	CO 1	Understand
2	Diagraphs, weighted graphs, complete graphs	Understand the basics of graph theory and their various properties in various cutting-edge applications of such as traffic networks, navigable networks and optimal routing.	CO 1	Understand
3	Graph complements	Apply graph complements and graph combinations to solve real world	CO 1	Apply
4	Bipartite graphs	applications like routing, TSP/traffic		
5	Graph combinations	control.		
6	Isomorphisms			
7	Matrix representations of graphs	Show the matrix representations of graphs to know whether pairs of	CO 1	Understand
8	Degree sequence	vertices are adjacent or not in the graph.		
9	Eulerian circuits – Konigsberg bridge problem	Solve the Konigsberg bridge problem using Eulerian circuits to solve	CO 2	Apply
10	Touring a graph	problems for shortening any path.		
11	Eulerian graphs			
12	Hamiltonian cycles	Apply Hamiltonian cycles to solve the	CO 2	Apply
13	The traveling salesman problem	traveling salesman problem.		
14	Shortest paths – Dijkstra's algorithm	Use Dijkstra's algorithm to calculate shortest path from source to destination	CO 2	Apply
15	Walks using matrices	node.		
16	Four color theorem	Relate the concept of vertex coloring to assign colors to the vertices of a	CO 3	Understand
17	Vertex coloring	graph using four color theorem.		
18	Edge coloring	Understand proper edge coloring of a	CO 3	Understand
19	Coloring variations	graph to apply in scheduling problems.		
20	First-fit coloring algorithm			
21	Depth-first search	Apply breadth first or depth first	CO 3	Apply
22	Bread-first search	search technique in finding shortest paths and all possible paths.		
23	Minimum spanning trees: Kruskal's algorithms	Use minimum spanning tree concept in network design and optimization.	CO 3	Apply

24	Prim's algorithm			
25	Union-find structure			
26	Algebraic equations	Solve algebraic and transcendental	CO 5	Apply
27	Bisection method	equations to solve single variable function over the interval.		
28	Method of false position			
29	Iteration method			
30	Newton-Raphson method	Solve polynomials, logarithmic and	CO 4	Apply
31	Ramanujan's method	exponential functions to solve real- time applications.		
32	Secant method			
33	Muller's method			
34	Numerical integration	Solve problems using numerical	CO 6	Apply
35	Trapezoidal rule	integration to compute numerical approximations to the integral of the		
36	Simpson's 1/3 rule	function.		
37	Simpson's 3/8 rule			
38	Solution by Taylor's series			
39	Euler's method	Use Euler's method for approximating solutions to differential equations and curve with line segments.	CO 6	Apply
40	Runge-Kutta's method	Apply Runge-Kutta method for solving initial-value problems of differential equations.	CO 6	Apply

MAPPING OF EACH CO WITH PO(s), PSO(s):

Course		Program Outcomes							PSO's						
Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO 1	✓	-	-	-	✓	-	-	-	-	-	-	-	✓	-	-
CO 2	✓	✓	✓	-	✓	-	-	-	-	-	-	-	✓	-	✓
CO 3	✓	-	✓	-	✓	-	-	-	-	-	1	-	✓	-	✓
CO 4	✓	-	✓	-	✓	-	-	-	-	-	-	√	✓	-	✓
CO 5	✓	✓	✓	-	✓	-	-	-	-	-	-	-	✓	-	-
CO 6	✓	√	✓	-	✓	-	-	-	-	-	-	√	✓	-	✓

MODULE – I

GRAPH THEORY

PART - A (SHORT ANSWER QUESTIONS)

	PART - A (SHOR		QUESTIONS)	
S No	QUESTIONS	Blooms Taxonomy Level	How does this Subsume the level below	Course Outcomes
1	Define a graph?	Remember		
2	Define the conditions for two graphs G1 and G2 to be isomorphic with example?	Remember		
3	Define the following (a) Weighted Graph (b) Complete Graphs	Remember		
4	Draw the graph whose adjacency matrix is shown below? 0 1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0 3 0 1 0 0 3 0 1 1 0 0 0 1 0	Understand		
5	Find the complements of each graph shown below. $G_1 \qquad G_2 \qquad G_3$	Understand		
6	What distinguishes a weighted graph from an unweighted one?	Remember		
7	Define a bipartite graph and check the following graphs are complete bipartite graph or not. $ \begin{matrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ $			
8	Let G be a graph with vertex set V (G) = {a, b, c, d, e, f} and edge set E(G) = {ab, ae, bc, cc, de, ed}. (a) Draw G. (b) Is G simple? (c) List the degrees of every vertex. (d) Find all edges incident to b. (e) List all the neighbors of a. (f) Give the adjacency matrix for G.	Understand		
9	Let G be a graph with vertex set V (G) = {a, b, c, d} and edge set E(G) = {ab, ad}. (a) Draw G. (b) Is G simple? (c) List the degrees of every vertex. (d) Give the adjacency matrix for G.			
10	Let G be a graph with vertex set V (G) = {a, b, c, d, e, f} and edge set E(G) = {ad, ae, bd, bf, cd, ce, cf}. (a) Draw G. (b) Is G simple? (c) Is G bipartite? (d) List the degrees of every vertex.	Understand		

	(e) Give the adjacency matrix for G.		
11	Draw the graph for each of the adjacency matrices given below. (a) 0 2 0 1 2 0 1 0 0 1 1 1 1 0 1 0 (b) 0 1 2 1 1 2 1 0 2 1 0 0 1 0 0 0	Understand	
12	Draw the digraph for each of the adjacency matrices given below. (a) 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 (b) 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0	Understand	
13	Find the adjacency matrix for each of the digraphs or tournaments given below. (a) (b) v_1 v_2 v_3 v_4 v_3	Understand	
14	For each of the problems below, determine if the given pair of graphs are isomorphic. For those that are isomorphic, explicitly give the vertex correspondence and check that edge relationships are maintained. Otherwise, provide reasoning for why the pair of graphs are not isomorphic. $ a b c c d c c c c c c c c c c c c c c c c$	Apply	
15	List the properties of complete graphs and identify the complete graphs from the following: K_1 K_2 K_3 K_4	Understand	

16	Define a degree sequence of a graph?	Remember		
17	Define the conditions for union of two graphs G and H?	Remember		
18	Why matrix representations of graphs are useful for computer programs. Also write the adjacency matrix for the following graph. v_1	Understand		
	v_3 e_2 e_3 e_4 v_2 e_5			
19	Define incidence matrix with an example?	Remember		
20	Write the adjacency matrix for the following digraph	Understand		
	PART - B (LONG	ANSWER (QUESTIONS)	
1	Write down the number of vertices, the number of edges, and the degree of each vertex, in: (i) the graph in Fig. (a) (ii) the tree in Fig. (b)	Understand		
	Q Q Q Q Q Q Q Q Q Q			
	$ \begin{array}{cccc} A & B & C \\ D & E & F \end{array} $ (b)			
2	Draw a digraph for the following: (a) Snakes eat frogs and birds eat spiders; birds and spiders both eat insects; frogs eat snails, spiders and insects. Draw a digraph representing this predatory behaviour. (b) John likes Joan, Jean and Jane; Joe likes Jane and Joan; Jean and Joan like each other. Draw a digraph illustrating these relationships between John, Joan, Jean, Jane and Joe.	Apply		
3	Define isomorphism of graphs? State the two labelled graphs are isomorphic or not with reasons.	Understand		

	<u> </u>		
4	Define a subgraph in a graph? Verify the graph in (a) is a subgraph of the graph in (b), but is not a subgraph of the graph in (c).	Apply	
	(a)		
	(b)		
	(c)		
5	Explain the following:	Understand	
	(a) Adjacency matrix(b) Incidence matrix		
	Write the adjacency and incidence matrix for the		
	following graph given below:		
	1 1 2 4 5 6 2 4 3 3		
6	Explain and draw the following graphs	Understand	
	(i) a simple graph,(ii) a non-simple graph with no loops,		
	(iii) a non-simple graph with no multiple edges,		
7	each with five vertices and eight edges.	Undonstan 1	
/	Show that the two graphs in Fig. (a) are isomorphic by suitably labelling the vertices, and	Understand	
	also explain why the two graphs in Fig. (b) are not		
	isomorphic.		

			T	1
	(b)			
8	Draw a graph on six vertices with degree sequence (3, 3, 5, 5, 5, 5); and verify does there exist a simple	Understand		
9	graph with these degrees? (i) Write down the adjacency and incidence matrices of the graph in Fig. (a) (ii) Draw the graph whose adjacency matrix is given in Fig. (b) (iii) Draw the graph whose incidence matrix is given in Fig. (c) 1 1 2 3 (a) (0 1 1 2 0 1 0 0 0 1 1 0 0 1 1 2 0 1 0 0 0 1 1 0 0 0 1 (b) (b) (0 0 1 1 1 1 1 0 0 0 1 1 0 1 0 1 0 0 0 1	Understand		
	0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 (c)			
10	Define bipartite graphs and complete bipartite graphs. Justify the graph in fig. (a) is a bipartite graph or not and also the graphs in fig. (b) are complete bipartite graphs or not. A (a) (b)			
	PART - C (PROBLEM SOLVING A	AND CRITI	CAL THINKING QUESTIONS)	
1	Determine which pairs of graphs below are isomorphic?	Apply		

			1
2	Determine whether the graphs below are bipartite and whether they are isomorphic.	Apply	
3	Draw the following graphs: (i) the null graph N ₅ (ii) the complete graph K ₆ (iii) the complete bipartite graph K _{7,4} (iv) the union of K _{1,3} and W ₄	Apply	
4	Define a directed graph or digraph? Let G5 be a digraph where V (G5) = {a, b, c, d} and A(G5) = {ab, ba, cc, dc, db, da}. Draw the digraph for G5?	Apply	
5	Consider the graph G below. Find two subgraphs of G, both of which have vertex set $V^* = \{a, b, c, f, g, i\}$.	Apply	
6	Find the clique-size of a graph, $\omega(G)$ for each of the graphs shown below. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Apply	
7	 A graph G with nine vertices is shown. v₀ v₂ v₃ v₈ (i) How many edges does G have? (ii) Write down N(v₁),N(v₅),d(v₁) and d(v₅), and δ(G) and (G). (iii) If X = {v₃,v₆}, how many edges does G - X have? (iv) How many components does G - {v₁, v₃, v₇} 	Apply	

	have?			l l
Ì	(v) Are K ₄ , K _{1,7} and K _{2,3} subgraphs of G?			
8	(i) Prove that the number of vertices of odd degree	Apply		
	in a graph is always even?	11 7		
	(ii) Show whether the following graphs are			
	isomorphic or not?			
9	Erom the incidence metric of a graph given heleve	A mm1++		
9	From the incidence matrix of a graph given below, find the degree of each vertex and the number of	Apply		
	parallel edges in the graph.			
	1 1 1 0 0 0 0 0			
	1 1 0 1 1 1 0 0			
	0 0 0 1 0 1 1 1			
	0 0 1 0 1 0 1 1			
10	Draw a graph corresponding to the family tree	Apply		
	John	11 3		
	Joe Jean Jane Jill			
	J J Jane Jii			
	Jenny Kenny Bill Ben			
		DULE – II		
		DOLL II		
	GRA	PH ROUTES	S	
		T	OVIDOTIONIC'	
	PART – A (SHOR'	T ANSWER	(OUESTIONS)	
	<u> </u>		<u> </u>	
1	Let G be a graph. Define the following terms:	Remember	,	
1	Let G be a graph. Define the following terms: (a) Walk	Remember		
1	Let G be a graph. Define the following terms: (a) Walk (b) Trail	Remember		
1	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path	Remember		
	Let G be a graph. Define the following terms: (a) Walk (b) Trail			
2	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path	Remember		
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path			
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path			
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path			
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path			
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path			
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path			
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk			
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a			
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that			
2	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a cycle starting at b.	Understand		
	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a cycle starting at			
3	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a cycle starting at b. Define an Eulerian circuit?	Understand		
2	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a cycle starting at b. Define an Eulerian circuit? Let G be a graph with vertex set V (G) = {a, b, c,	Understand		
3	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a cycle starting at b. Define an Eulerian circuit? Let G be a graph with vertex set V (G) = {a, b, c, d, e} and edge set E(G) = {ab, ae, bc, cd, de, ea,	Understand		
3	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a cycle starting at b. Define an Eulerian circuit? Let G be a graph with vertex set V (G) = {a, b, c, d, e} and edge set E(G) = {ab, ae, bc, cd, de, ea, eb}.	Understand		
3	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a cycle starting at b. Define an Eulerian circuit? Let G be a graph with vertex set V (G) = {a, b, c, d, e} and edge set E(G) = {ab, ae, bc, cd, de, ea, eb}. (a) Find a walk, trail, and path in G, each of which	Understand		
3 4	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a cycle starting at b. Define an Eulerian circuit? Let G be a graph with vertex set V (G) = {a, b, c, d, e} and edge set E(G) = {ab, ae, bc, cd, de, ea, eb}. (a) Find a walk, trail, and path in G, each of which has length 3.	Understand Remember Understand		
3	Let G be a graph. Define the following terms: (a) Walk (b) Trail (c) Path (d) Closed Walk Given the graph above, find a trail (that is not a path) from a to c, a path from a to c, a circuit (that is not a cycle) starting at b, and a cycle starting at b. Define an Eulerian circuit? Let G be a graph with vertex set V (G) = {a, b, c, d, e} and edge set E(G) = {ab, ae, bc, cd, de, ea, eb}. (a) Find a walk, trail, and path in G, each of which	Understand		

6	Write the properties of Hamiltonian Graphs?	Remember		
7	Define a walk using matrices?	Remember		
8	For each of the graphs below, determine if they have Hamiltonian cycles (and paths) and Eulerian circuits (and trails).	Understand		
	d c G_1 G_2			
9	Define the K¨onigsberg bridge problem with example?	Understand		
10	State the conditions for a graph G is to be Eulerian?	Remember		
11	Write at least 2 applications which uses an Eulerian circuit.	Remember		
12	Let G be a graph. Define the following terms with an example: (a) Hamiltonian cycle (b) Hamiltonian path	Understand		
13	Eulerian circuits focus on traversing edges exactly once, while Hamiltonian cycles focus on visiting vertices exactly once. Justify the statement with an example.	Understand		
14	Define the following for a graph G: (a) Cycle (b) Circuit (c) Length	Remember		
15	Define a connected graph with example?	Understand		
16	Define a Hamiltonian cycle? How does it differ from an Eulerian circuit?			
17	Define an Eulerian circuit? What condition must a graph satisfy for it to have an Eulerian circuit?			
18	State the goal of the Traveling Salesman Problem (TSP)?			
19	State the process for computing the number of walks of a certain length in a graph using matrices?			
20	What is the relationship between Eulerian graphs and vertices with even degree?			
	PART - B (LONG	ANSWER	QUESTIONS)	1
1	Let G be a graph with vertex set V (G) = {a, b, c, d, e} and edge set E(G) = {ab, ae, bc, cd, de, ea, eb}. (a) Draw G. (b) Is G connected? (c) Is G simple? (d) List the degrees of every vertex. (e) Find all edges incident to b. (f) List all the neighbors of a.	Apply		

	(g) Find a walk, trail, and path in G, each of which		
	has length 3.		
	(h) Find a closed walk, circuit, and cycle in G,		
	each of which starts at e.		
	(i) Is G eulerian, semi-eulerian, or neither?		
	Explain your answer.		
2	Which of the following scenarios could be	Apply	
	modeled using (i) an Eulerian circuit or trail? (ii)		
	Hamiltonian cycle or path? Explain your answer.		
	(a) A photographer wishes to visit each of the		
	seven bridges in a city, take photos, and then		
	return to his hotel. (b) Salem Public Works must repaye all the streets		
	in the downtown area.		
	(c) Frank's Flowers needs to deliver bouquets to		
	6 customers throughout the city, starting and		
	ending at the flower shop.		
3	8	Apply	
	(a) (b)		
	a a b ★ ★ ★		
	$f \downarrow g \downarrow i$		
	h \ \sum_j /		
	d e d		
	(c) (d) a		
	<u> </u>		
	a b		
	$f \setminus \int_{\overline{d}} \int_{d$		
	e d e		
	For each of the graphs above		
	(a) find the degree of each vertex		
	(b) use your results from (a) to determine if the		
	graph is Eulerian, semi-Eulerian, or neither, and		
	(c) find an Eulerian circuit or Eulerian trail if it		
	exists. Explain your answer.		

4	Write the properties of Hamiltonian Graphs? Use the properties of Hamiltonian graphs to show that the graphs below are not Hamiltonian.	Apply	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
5	G_5 G_6 Write the brute force algorithm for Travelling	Understand	
6	salesman problem? Sam is planning his next business trip from his home-town of Addison and has determined the	Apply	
	cost for travel between any of the five cities he must visit. This information is modeled in the		
	weighted complete graph on the next page, where the weight is given in terms of dollars. Use Brute Force to find all possible routes for his trip.		
	Porce to find an possible routes for his trip.		
	$\stackrel{\bf Addison}{\longleftarrow}$		
	225		
	Essex		
	Dover 600 Chelsea		
7	Find an Eulerian circuit or Eulerian trail for each of the graphs below.	Apply	

8 Explain Dijkstra's algorithm? Apply Dijkstra's Apply Salgorithm to the graph below where Start = g. Determine if each of the graphs below are Hamiltonian, cycle. Otherwise, provide a clear and concise argument as to why the graph is not Hamiltonian. (a) Explain with example the concept of an Eulerian circuit. How does it differ from a Hamiltonian cycle? 10 Explain with example the concept of an Eulerian circuit. How does it differ from a Hamiltonian cycle? 11 Consider the following weighted graph: Apply				
Algorithm to the graph below where Start = g. a 6 b 5 c c graph below are Hamiltonian. For those that are, find a Hamiltonian cycle. Otherwise, provide a clear and concise argument as to why the graph is not Hamiltonian. (a) (b) Explain with example the concept of an Eulerian circuit. How does it differ from a Hamiltonian cycle? Consider the following weighted graph: Apply Apply		e e e e e e e e e e		
Hamiltonian. For those that are, find a Hamiltonian cycle. Otherwise, provide a clear and concise argument as to why the graph is not Hamiltonian. (a) (b) Explain with example the concept of an Eulerian circuit. How does it differ from a Hamiltonian cycle? Consider the following weighted graph: Apply	8	Algorithm to the graph below where $Start = g$.	Apply	
circuit. How does it differ from a Hamiltonian cycle? 11 Consider the following weighted graph: A / 1 A /	9	Hamiltonian. For those that are, find a Hamiltonian cycle. Otherwise, provide a clear and concise argument as to why the graph is not Hamiltonian.	Apply	
Consider the following weighted graph: A /	10	circuit. How does it differ from a Hamiltonian	Understand	
Using Dijkstra's algorithm, find the shortest paths from vertex A to all other vertices in the graph. Show the step-by-step process including the intermediate distances and the selected vertices.		Consider the following weighted graph: A / I \ 2 5 3 / I \ BDC \ I / I 4 6 \ I I / E Using Dijkstra's algorithm, find the shortest paths from vertex A to all other vertices in the graph. Show the step-by-step process including the intermediate distances and the selected vertices.		
In the city of Königsberg, there are seven bridges connecting the four landmasses as shown below: Apply	12		Apply	

		ı		1
	AB			
	/\ /\			
	/ \ / \			
	/ \/ \			
	DE			
	Can you traverse each bridge exactly once and			
	return to your starting point? Explain your			
	reasoning.			
13	Consider the following directed graph:	Apply		
	A> B			
	1 1			
	V V			
	D < C			
	Represent this graph using an adjacency matrix.			
	Then, compute the matrix representation of a walk			
	of length 2 starting from vertex A. Finally,			
	determine the number of walks of length 3 from			
14	vertex A to vertex C. Given an undirected graph with the following	Apply		
17	adjacency matrix:	търгу		
	0 1 1 0 1			
	1 0 1 1 1			
	1 1 0 1 0			
	Determine whether the graph has an Eulerian			
	circuit. If it does, provide an example of such a			
	circuit. If not, explain why an Eulerian circuit does not exist.			
15	Explain the following methods to tour a graph:	Understand		
	(a) Eulerian Tours			
	(b) Hamiltonian Paths/Cycles			
	(c) Dijkstra's Algorithm			
16	Explain the shortest path problem and its variations, such as single-source and all-pairs	Understand		
	shortest paths with a suitable graph?			
17	Explain Dijkstra's algorithm for finding the	Understand		
	shortest path in a graph from a single source vertex,			
	including its implementation and time complexity			
10	analysis?	II. 1		
18	State Hamiltonian cycles and paths. Differentiate between Hamiltonian and Eulerian cycles with	Understand		
	example graphs.			
19	Explain how matrices can be used to represent and	Understand		
	analyze walks in graphs. Discuss the adjacency			
2.5	matrix and its properties?	**		
20	Explore the relationship between Eulerian circuits	Understand		
	and graph traversal algorithms, such as depth-first search and breadth-first search?			
		VINC AND	ODUTICAL THINKING	<u> </u>
	PART – C (PROBLEM SOL	VING AND	CKITICAL THINKING)	
1	The Traveling Salesman Problem (TSP) is a classic	Apply		
	optimization problem in which a salesman is			
	tasked with visiting a set of cities exactly once and returning to the starting city, all while minimizing			
	the total distance traveled.			
	Consider a salesman needs to visit four cities (A,			
	B, C, D) and return to the starting city (A). The			
	distances between the cities are as follows:			

			1
	Distance from A to B: 10 units Distance from A to C: 15 units Distance from A to D: 20 units Distance from B to C: 35 units Distance from B to D: 30 units Distance from C to D: 40 units Find the shortest possible route that visits each city exactly once and returns to the starting city.		
2	Explain Dijkstra's algorithm to find the shortest path between a starting vertex and all other vertices in a weighted graph. Consider the following weighted graph:	Apply	
	$e \xrightarrow{5} b$		
	Find the shortest path from a starting vertex 'a' to all other vertices.		
3	Determine if each of the graphs below are Hamiltonian. For those that are, find a Hamiltonian cycle.	Apply	
4	A salesman needs to visit 5 cities (A, B, C, D, E) exactly once and return to the starting city. The distances between the cities are as follows:	Apply	
	A to B: 10 units A to C: 15 units A to D: 20 units A to E: 25 units B to C: 35 units B to D: 30 units B to E: 35 units C to D: 40 units C to E: 45 units D to E: 50 units		
	Using the brute-force approach, find the shortest possible route for the salesman to visit all cities and return to the starting city. Show the step-by-step		

	process including all permutations and calculations		
	of total distances.		
5	Consider the following undirected graph: AB /	Apply	
6	Show that the graph below is Hamiltonian?	Apply	
7	Prove that, if G is a bipartite graph with an odd	Apply	
	number of vertices, then G is non-Hamiltonian. Deduce that the graph below is non-Hamiltonian.		
8	Use the Dijkstra's shortest path algorithm to find a shortest path from A to G in the weighted graph B 40 B 40 B 40 C 10 F	Apply	
9	Find the shortest path from S to each other vertex	Apply	
	in the weighted graph		

	$S = \begin{bmatrix} A & 2 & D \\ 5 & 4 & 1 \\ 5 & 4 & 2 \\ C & 6 & F \end{bmatrix}$
10	Solve the travelling salesman problem for the weighted graph given below Apply Apply Apply Apply Apply Apply Apply
	MODULE – III
	GRAPH COLORING AND GRAPH ALGORITHMS

PART - A (SHORT ANSWER QUESTIONS) 1 Define k-coloring of a graph G with an example? Remember 2 What is independence number of a graph G? Remember 3 Define chromatic number of a graph? Remember Consider a graph G, a cycle on n vertices is 4 Understand denoted C_n. Find the optimal colorings graphs given below. 5 Define a clique in a graph? Remember Define an equitable coloring of a graph with an 6 Remember 7 Define a perfect graph? Determine if either of the Understand two graphs below are perfect. Define the following for a graph G. Understand 8 (a) Edge coloring

	(b) Chromatic Index			
9	State the real-world applications of graph coloring?	Remember		
10	Define the chromatic index of a graph?	Remember		
		CIE-II		
11	Define a spanning tree of the graph given below? 1 / \ 2 3 \ \ 4 5	Understand		
12	Define minimum spanning tree or MST of a graph G?	Remember		
13	Perform a breadth first search and a depth first search on the tree.	Apply		
14	Find a minimum-weight spanning tree in the graph using Kruskal's algorithm?	Apply		
15	Find a minimum-weight spanning tree in the graph using Prim's algorithm?	Apply		
16	What are some practical applications of depth-first search (DFS) in real-world scenarios?	Understand		
17	What are the key steps of Prim's algorithm for finding a minimum spanning tree?	Remember		
18	In what scenarios would you prefer to use Prim's algorithm over Kruskal's algorithm, and vice versa?	Understand		
19	Explain the difference between DFS and Breadth-First Search (BFS)?	Understand		
20	What is the role of a union-find structure in Kruskal's algorithm?	Understand		
_	PART – B (LONG	ANSWER	QUESTIONS)	
1	 For each of the graphs below, complete the following. (a) Find the chromatic number χ(G). Include an argument why fewer colors will not sufficient. (b) Find the chromatic index χ'(G). (c) Determine which graphs are perfect. Explain 	Apply		

	your answer.		
	e G_1 G_2		
2	Explain with an example the minimum number of colors needed to properly color the vertices of any planar graph according to the rules of vertex	Understand	
3	coloring? Explain edge coloring and how does it differ from vertex coloring?	Understand	
4	Explain chromatic number in the context of vertex coloring with an example?	Understand	
5	Explain the procedure for First-Fit coloring algorithm with an example graph?	Understand	
6	Consider a simple graph with vertices A, B, C, and D connected as follows: A-B, A-C, A-D, B-C, and C-D. Explain first-fit vertex coloring algorithm?	Apply	
7	Describe with an example graph the first-fit coloring algorithm colors its vertices?	Understand	
8	Explain chromatic number of the following graphs: (a) Cycle graph (b) Wheel graph (c) Planar graph (d) Complete graph (e) Bipartite graph	Apply	
9	Explain the edge coloring process with the following graph given below. O 1 I I 2 3	Apply	
10	Explain the vertex coloring process with the following graph given below.	Apply	
		CIE-II	
11	For each of the graphs below, find a spanning tree and a subgraph that does not span. a b c d	Understand	
12	Find the minimum spanning tree of the graph G below using Kruskal's Algorithm.	Apply	

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
13	Use Prim's algorithm to find a minimum spanning tree for the graph given below? To b 2 c c d d d d d d d d d d d d d d d d d	Apply	
14	Find the depth-first search tree for the graph below with the root a. $ a $ $ a $ $ b $ $ c $ $ d $	Apply	
15	Consider the following undirected graph. A / \ BC / \ / \ DEF In the above graph, vertices are labeled from A to F, and edges connect the vertices. Find a spanning tree for this graph using Prim's algorithm?	Understand	
16	Find the breadth-first search tree for the graph below with the root a. $\begin{matrix} a & & & \\ & & & \\ & & & \\ & & & \\ \end{matrix}$	Apply	
17	Explain the procedure for union-find structure with an example?	Apply	
18	Find a minimum spanning tree for the graph given below using Kruskal's Algorithm?	Apply	

	e 0 0 0 0 0 0 0 0 0 0			
19	Write Python implementation of the Union-Find data structure?			
20	Find a minimum spanning tree for the graph represented by the table below using Kruskal's algorithm?	Apply		
	PART – C (PROBLEM SOL)	VING AND	CRITICAL THINKING)	
1	Find a coloring of the map of the counties of Vermont and explain why three colors will not suffice. Caledonia Chittenden Washington Orange Rutland Windsor Windham	Apply		
2	Every year on Christmas Eve, the Petrie family compete in a friendly game of Trivial Pursuit. Unfortunately, due to longstanding	Understand		

disagreements and the oute years' games, some family allowed on the same team. lists the ten family members year's Trivial Pursuit game, N in the table indicates incompatible. Model the graph and find the minimum needed to keep the peace the Betty Carl Dan Edith Frank He	members are not. The table below scompeting in this, where an entry of people who are information as a n number of teams is Christmas.		
years' games, some family allowed on the same team. lists the ten family members year's Trivial Pursuit game, N in the table indicates incompatible. Model the graph and find the minimum needed to keep the peace the Betty Carl Dan Edith Frank He	members are not. The table below scompeting in this, where an entry of people who are information as a n number of teams is Christmas.		
allowed on the same team. lists the ten family members year's Trivial Pursuit game, N in the table indicates incompatible. Model the graph and find the minimum needed to keep the peace th	The table below scompeting in this where an entry of people who are information as an number of teams is Christmas.		
lists the ten family members year's Trivial Pursuit game, N in the table indicates incompatible. Model the graph and find the minimum needed to keep the peace the Betty Carl Dan Edith Frank He	s competing in this where an entry of people who are information as a number of teams is Christmas.		
year's Trivial Pursuit game, N in the table indicates incompatible. Model the graph and find the minimum needed to keep the peace th	where an entry of people who are information as a n number of teams is Christmas.		
N in the table indicates incompatible. Model the graph and find the minimum needed to keep the peace th Betty Carl Dan Edith Frank He	people who are information as a n number of teams is Christmas. enry Judy Marie Nell Pete N N N N N N N N N N N N N N N		
N in the table indicates incompatible. Model the graph and find the minimum needed to keep the peace th Betty Carl Dan Edith Frank He	people who are information as a n number of teams is Christmas. enry Judy Marie Nell Pete N N N N N N N N N N N N N N N		
incompatible. Model the graph and find the minimum needed to keep the peace the Betty Carl Dan Edith Frank He	information as a n number of teams is Christmas.		
graph and find the minimum needed to keep the peace the Betty Carl Dan Edith Frank He	n number of teams is Christmas.		
needed to keep the peace the Betty Carl Dan Edith Frank Hee Betty Oracle Normal	enry Judy Marie Nell Pete No.		
Betty Carl Dan Edith Frank He	enry Judy Marie Nell Pete		
Betty Carl Dan Edith Frank He	enry Judy Marie Nell Pete		
Betty N Carl N N Dan N N Edith Frank <	N N N		
Betty N Carl N N Dan N N Edith Frank <	N N N		
Carl N N Dan N N Edith N N Frank . Henry N N	· · N · · · · · · · · · · · · · · · · ·		
Carl	· · N N N		
Dan N N N . Edith . N N . . Frank Henry N N	· · N N N		
Edith . N N . <th></th> <th></th> <th></th>			
Frank Henry	N		
Henry · · · · N			
*	N N · · N		
T 1	· · · · N		
Judy · · · · ·	N · · N N		
Marie N N N N ·	· · · · N N		
Nell N · N · ·	. N N . N		
	N N N N ·		
		A 1	
3 Due to the nature of radio si		Apply	
can use the same frequency	if they are at least		
70 miles apart. An edge in	the graph below		
indicates two cities that are			
apart, necessitating differe			
Determine the fewest number	ber of frequencies		
need for each city shown be	elow (not drawn to		
scale) to have its own munic			
scale) to have its own munic	cipai radio station.		
	**		
	Harrisonburg		
	lacktriangle		
Lexington	Charlottesville		
Dexington	Charlottesvine		
Salem			
Roanoke	Bedford		
Radford			
Floyd			
· ·	1 1 1		
4 Determine if either of the tw	o graphs below are	Apply	
perfect.			
d e			
	$e \longrightarrow b$		
b	•		
g f	d c		
G_2	G_3		
		Α 1	
5 Five student groups are meeting	ng on Saturday, with	Apply	
varying			
time requirements. The staff at	t the Campus Center		
need to determine how	-		
to place the groups into room	ms while using the		
fewest rooms possible. The	ins while using the		
rewest rooms possible. The			

	times required for these table below. Model this as a graph and determine throoms needed. Student Group Agora Counterpoint Spectrum				
	Tupelos Upstage	11:00–12:00 11:15–15:00			
6	Find the chromatic indebelow	x of each graph given	Apply		
7	A graph G is k-colo colourable) if its edges of colours so that no two a same colour. Find the c graph G shown below	can be coloured with k djacent edges have the	Apply		
8	Explain four-colour theor index of each graph shown		Apply		
9	Consider the graph G4 be in the order ac, fg, de, ef, bc, cousing a greedy algorithm.		Apply		

10	Apply the First-Fit Algorithm to the graph given below if the vertices are ordered alphabetically.	Apply	
		CIE-II	
6	Complete each of the following on the two graphs shown below. (a) Find the breadth-first search tree with root a. (b) Find the breadth-first search tree with root i. (c) Find the depth-first search tree with root a. (d) Find the depth-first search tree with root i. $ a $	Apply	
7	Find a minimum spanning tree for each of the graphs below using (i) Kruskal's Algorithm and (ii) Prim's Algorithm.	Apply	
8	Nour must visit clients in six cities next month and needs to minimize her driving mileage. The table below lists the distances between these cities. Use	Apply	

	the minimum spanning tree Algorithm to find a good plan for her travels if she must start and end her trip in Dallas. Include the total distance.		
9	Write Python program for Breadth First Search or BFS for the graph given below:	Apply	
10	Write Python program for Depth First Search or DFS for a Graph Input: $n = 4$, $e = 6$ $0 -> 1$, $0 -> 2$, $1 -> 2$, $2 -> 0$, $2 -> 3$, $3 -> 3$ Output: DFS from vertex $1 : 1 2 0 3$ Input: $n = 4$, $e = 6$ $2 -> 0$, $0 -> 2$, $1 -> 2$, $0 -> 1$, $3 -> 3$, $1 -> 3$ Output: DFS from vertex $2 : 2 0 1 3$	Apply	
		DULE -IV	

ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

PART – A (SHORT ANSWER QUESTIONS)

1	Define an algebraic equation and what are the different types of algebraic equations?	Apply	
2	State the advantages and limitations of the method of false position?	Apply	
3	State the conditions must be satisfied for the bisection method to converge?	Apply	
4	Describe the bisection method for finding roots of equations?	Apply	
5	Describe the Newton-Raphson method for finding roots of equations?	Apply	
6	Differentiate secant method from the Newton-Raphson method?	Apply	
7	Explain Ramanujan's method for approximating roots of equations?	Apply	
8	State how does Muller's method handle complex roots?	Apply	
9	Discuss the convergence properties of Ramanujan's method compared to other iterative methods?	Apply	
10	Explain the principle of secant approximation in the secant method?	Apply	
11	Find the real root of the equation $f(x) = x^3 - x - 1$ = 0 using bisection method.	Apply	
12	Find a real root of the equation $f(x) = x^3 - 2x - 5 = 0$ using bisection method.	Apply	
13	Find a root, correct to three decimal places and lying between 0 and 0.5, of the equation $4e^{-x} \sin x - 1 = 0$ using bisection method.	Apply	

	<u> </u>		<u> </u>	
14	Find a real root of the equation $f(x) = x^3 - 2x - 5 = 0$ using false position method.	Apply		
15	Given that the equation $x^{2.2} = 69$ has a root between 5 and 8. Use the method of regula-falsi to determine it.	Apply		
16	Find a real root of the equation $x^3 = 1 - x^2$ on the interval [0, 1] with an accuracy of 10^{-4} using iteration method.	Apply		
17	Find a real root, correct to three decimal places, of the equation $2x - 3 = \cos x$ lying in the interval [3/2, $\pi/2$] using iteration method.	Apply		
18	Use the Newton-Raphson method to find a root of the equation $x^3 - 2x - 5 = 0$.	Apply		
19	Find a root of the equation xsinx + cosx = 0 using Newton-Raphson method.	Apply		
20	Find the smallest root of the equation $f(x) = x^3 - 9x^2 + 26x - 24 = 0$ using Ramanujan's method.	Apply		
	PART – B (LONG	S ANSWER (QUESTIONS)	
1	Find a real root of the equation $f(x) = x^3 + x^2 + x + 1$	Apply		
1	7 = 0 correct to three decimal places using bisection method.	1 thhi		
2	Find the positive root, between 0 and 1, of the equation $x = e^{-x}$ to a tolerance of 0.05% using bisection method.	Apply		
3	The equation $2x = log_{10}x + 7$ has a root between 3 and 4. Find this root, correct to three decimal places, by regula-falsi method.	Apply		
4	Find the root of the equation $4e^{-x} \sin x - 1 = 0$ by regular-falsi method given that the root lies between 0 and 0.5.	Apply		
5	Use the method of iteration to find a positive root of the equation $xe^x = 1$, given that a root lies between 0 and 1.	Apply		
6	Use the iterative method to find a real root of the equation $\sin x = 10(x - 1)$. Give your answer correct to three decimal places.	Apply		
7	Find a real root of the equation $x = e^{-x}$ Newton-Raphson method.	Apply		
8	Use Newton-Raphson method, find a real root, correct to 3 decimal places, of the equation $\sin x = x/2$ given that the root lies between $\pi/2$ and π .	Apply		
9	Given the equation $4e^{-x} \sin x - 1 = 0$, find the root between 0 and 0.5 correct to three decimal places.	Apply		
10	Find a root of the equation $xe^x = 1$ using Ramanujan's method.	Apply		
11	Find a double root of the equation $f(x) = x^3 - x^2 - x + 1 = 0$ using Newton-Raphson method.	Apply		
12	Find the smallest root, correct to 4 decimal places, of the equation $f(x) = 3x - \cos x - 1 = 0$ using Ramanujan's method.	Apply		
13	Using Ramanujan's method, find a real root of the equation $1 - x + x^2 / (2!)^2 - x^3 / (3!)^2 + x^4 / (4!)^2 - \dots = 0$	Apply		
14	$1 - x + x^2 / (2!)^2 - x^3 / (3!)^2 + x^4 / (4!)^2 = 0$ Find a real root of the equation $x^3 - 2x - 5 = 0$ using secant method.	Apply		
15	Using the secant method, find a real root of the equation $f(x) = xe^x - 1 = 0$	Apply		
16	Using Muller's method, find the root of the equation $f(x) = x^3 - x - 1 = 0$ with the initial approximations $x_{i-2} = 0$, $x_{i-1} = 1$, $x_i = 2$	Apply		
17	Apply the Newton-Raphson method to find a root of the equation $(x) = x^3 - 6x^2 + 11x - 6 = 0$ with an	Apply		

	initial guess x_0 =2. Show your iteration steps and determine the approximate value of the root accurate to within 10^{-4}			
18	Solve the equation $(x)=x^3-6x^2+11x-6=0$ using the bisection method over the interval [1,3]. Show your iteration steps and determine the approximate value of the root accurate to within 10^{-4}	Apply		
19	Consider the equation $(x) = x^3 - 6x^2 + 11x - 6 = 0$. Apply the method of false position to find a root accurate to within 10^{-4} . Show your iteration steps and determine the approximate value of the root after five iterations.	Apply		
20	Use the secant method to find a root of the equation $(x) = x^3 - 6x^2 + 11x - 6 = 0$ with initial guesses x_0 =2 and x_1 =3. Show your iteration steps and determine the approximate value of the root accurate to within 10^{-4} .	Apply		
	PART – C (PROBLEM SOLVING A	AND CRITI	CAL THINKING QUESTIONS)	
1	Explain the bisection method for finding a real root of the equation $f(x) = 0$ and write an algorithm for its implementation with a test for relative accuracy of the approximation. Obtain a root, correct to three decimal places, of each of the following equations using the bisection method. (a) $x3 - 4x - 9 = 0$ (b) $x3 + x2 - 1 = 0$ (c) $5x \log 10x - 6 = 0$ (d) $x2 + x - \cos x = 0$	Apply		
2	Give the sequence of steps in the regula-falsi method for determining a real root of the equation $f(x) = 0$. Use the method of false position to find a real root, correct to three decimal places, of the following equations. (a) $x3 + x2 + x + 7 = 0$ (b) $x3 - x - 4 = 0$ (c) $x = 3e - x$ (d) $x \tan x + 1 = 0$	Apply		
3	Find the real root, which lies between 2 and 3, of the equation $x \log_{10} x - 1.2 = 0$ using the methods of bisection and false–position to a tolerance of 0.5%.	Apply		
4	Explain briefly the method of iteration to compute a real root of the equation $f(x) = 0$, stating the condition of convergence of the sequence of approximations. Use the method of iteration to find, correct to four significant figures, a real root of each of the following equations. (a) $e^x = 3x$ (b) $x = 1 / (x+1)^2$ (c) $1 + x^2 = x^3$ (d) $x - \sin x = 1/2$	Apply		
5	Establish an iteration formula to find the reciprocal of a positive number N by Newton-Raphson method. Hence find the reciprocal of 154 to four significant figures.	Apply		
6	Explain Newton–Raphson method to compute a real root of the equation $f(x) = 0$ and find the condition of convergence. Hence, find a non-zero root of the equation $x^2 + 4\sin x = 0$.	Apply		

	III N A D 1 A 1 1 1 C 1	A 7	I	
7	Using Newton–Raphson method, derive a formula	Apply		
	for finding the kth root of a positive number N and			
	hence compute the value of $(25)^{1/4}$.			
	Use the Newton–Raphson method to obtain a root,			
	correct to three decimal places, of each of the			
	following equations:			
	(a) $e^x = 4x$			
	(b) $x^3 - 5x + 3 = 0$			
	$(c) x e^{x} = \cos x$			
8	Compute, to four decimal places, the root between	Apply		
	1 and 2 of the equation $x^3 - 2x^2 + 3x - 5 = 0$			
	by (a) Method of False Position and (b)			
	Newton-Raphson method.			
	Using Ramanujan's method, find the smallest root			
	of each of the following equations: (a) $x^3 - 6x^2 + 11x - 6 = 0$			
	(a) $x^2 - 6x^2 + 11x - 6 = 0$ (b) $x + x^3 - 1 = 0$			
	(c) $\sin x + x - 1 = 0$			
9	Determine the real root of the equation $x = e^{-x}$,	Apply		
7	betermine the real root of the equation $x = e^x$, using the secant method.	Apply		
10	Describe briefly Muller's method and use it to find	Apply		
10	(a) the root, between 2 and 3, of the equation x^3	rippiy		
	2x - 5 = 0 and (b) the root, between 0 and 1, of the			
	equation $x = e^{-x} \cos x$.			
	Mo	ODULE –V		
	NUMERICAL INTECRATION AND O	DDINADY		
	NUMERICAL INTEGRATION AND O	RDINARY	DIFFERENTIATIAL EQUATIONS	
	PART – A (SHOR'	TANSWER	OUESTIONS)	
			QCESTIONS)	
1	State the main principle behind Simpson's 1/3 rule?	Understand		
2	What is the basic idea behind Simpson's 3/8 rule?	Remember		
3	State the key differences between Simpson's 1/3	Understand		
	rule and Simpson's 3/8 rule?			
4	Describe the limitations of both Simpson's 1/3 rule	Understand		
	and Simpson's 3/8 rule?	TT 1 . 1		
5	Describe the basic idea behind Euler's Method?	Understand		
	William de la companya Conferencia Dilata	TT. 1		
6	What are the key steps in implementing Euler's	Understand		
7	Method? State the formula for the Transgoidal Pule?	Domont-		
/	State the formula for the Trapezoidal Rule?	Remember		
8	Describe the basic principle behind the	Understand		
0	Describe the basic principle behind the Trapezoidal Rule.	Onderstand		
9	Describe the basic idea behind the Runge-Kutta	Understand		
9	method?	Onderstand		
10	What is the most commonly used order of the	Remember		
10	Runge-Kutta method?	Kemember		
11	Apply the trapezoidal rule to approximate the	Apply		
	integral of $(x)=x^2$ over the interval [0,2]. Show the	1 ippiy		
1	formula used and the approximation result.			
12	Use Simpson's 1/3 rule to approximate the integral	Apply		
12	of $f(x) = \sin(x)$ over the interval $[0, \pi]$. Show the	1 - PP-1		
1	formula applied and the approximation result.			
13	Apply Simpson's 3/8 rule to approximate the	Apply		
	integral of $(x) = x$ over the interval [0,4]. Show the	PP-J		
1	formula used and the approximation result.			
14	State the advantages and limitations of Simpson's	Understand		
	3/8 rule compared to Simpson's 1/3 rule and the	Silatiballa		
	trapezoidal rule.			
	· ·			

15	State the general form of Taylor's series	Understand		
1.0	expansion?	TT 1 . 1		
16	Describe the formula for approximating integrals using Simpson's 3/8 rule?	Understand		
17	Discuss the advantages of Runge-Kutta's second-	Understand		
	order method over Euler's method in terms of accuracy and stability?			
18	State why Simpson's 1/3 rule is considered a more	Understand		
	accurate method than the trapezoidal rule.			
19	What is the error associated with the trapezoidal rule, and how does it change with the number of	Understand		
	intervals?			
20	Describe the process of using Taylor's series to	Understand		
	approximate a function?	ANGWED C	NIESTIONS)	
	PART - B (LONG		(UESTIONS)	
1	Using Simpson's $1/3$ rule with $h = 1$, evaluate the integral	Apply		
	7			
	$I = \int x^2 \log x dx.$			
_	3			
2	Determine the maximum error in evaluating the integral	Apply		
	$\pi/2$			
	$I = \int_{0}^{\infty} \sin x dx$			
	By both the trapezoidal and Simpson's 1/3 rules			
	using four subintervals.			
3	Use the trapezoidal rule to evaluate the double integral	Apply		
	$\int_{2}^{2} \int_{0}^{4} (x^{2} - xy + y^{2}) dx dy.$			
4	From the Taylor series for $y(x)$, find $y(0.1)$ correct	Apply		
	to four decimal places if $y(x)$ satisfies	PP-J		
	$y' = x - y^2$ and $y(0) = 1$	A1		
5	Given the differential equation $y'' - xy' - y = 0$	Apply		
	with the conditions $y(0) = 1$ and $y'(0) = 0$, use			
	Taylor's series method to determine the value of $y(0.1)$.			
6	Given $dy/dx = y-x$ where $y(0) = 2$, find $y(0.1)$ and	Apply		
	y(0.2) correct to four decimal places using Runge-			
7	Kutta method. Given $dy/dx = 1 + y2$, where $y = 0$ when $x = 0$, find	Apply		
	y(0.2), $y(0.4)$ and $y(0.6)$ using Runge-Kutta	-rr*/		
8	method.	Annler		
0	Find, by Taylor's series method, the value of $y(0.1)$ given that	Apply		
	y'' - xy' - y = 0, $y(0) = 1$ and $y'(0) = 0$. Using Taylor's series, find $y(0.1)$, $y(0.2)$ and			
9		Apply		
	y(0.3) given that $\frac{dy}{dx} = xy + y^2, y(0) = 1.$			
	u.i			
10	Use Runge-Kutta fourth order formula for solving an initial value problem. Find y(0.1), y(0.2) and	Apply		
	y(0.3) given that			
	$y'=1+\frac{2xy}{1+x^2}, y(0)=0$			
11	$1+x^2$ Use Runge-Kutta's second-order method to solve	Apply		
11	the ordinary differential equation $y'=x-y$ with the	Appry		
	initial condition (0)=1 over the interval [0,1] using			

	a step size of $h=0.1$. Show the iterative formula and			
	the numerical solution obtained.			
12	Apply Euler's method to solve the ordinary	Apply		
	differential equation $y'=x-y$ with the initial			
	condition (0)=1 over the interval [0,1] using a step			
	size of $h=0.1$. Show the iterative formula and the			
12	numerical solution obtained.	A		
13	Apply Simpson's $3/8$ rule to approximate the integral of $(x)=x$ over the interval [0,4]. Show the	Apply		
	formula used and the approximation result.			
14	Use Runge-Kutta's second-order method to solve	Apply		
	the ordinary differential equation $y'=\sin(x) + y$	11991		
	with the initial condition $(0)=0$ over the interval			
	$[0,\pi]$ using a step size of $h=0.1$. Show the iterative			
	formula and the numerical solution obtained.			
15	Apply Euler's method to solve the ordinary	Apply		
	differential equation $y'=x^2+y$ with the initial			
	condition (0)=1 over the interval [0,1] using a step			
	size of h =0.1. Show the iterative formula and the			
1.0	numerical solution obtained.	A 7		
16	Apply Simpson's $3/8$ rule to approximate the integral of $f(x)=\ln(x)$ over the interval [1,3]. Show	Apply		
	the formula used and the approximation result.			
17	Use Taylor's series expansion to approximate	Apply		
	$\cos(x)$ up to the third-degree term centered at $x=0$.	rr J		
	Show the expansion and the resulting			
	approximation.			
18	Apply Euler's method to solve the ordinary	Apply		
	differential equation $y'=x^2+y$ with the initial			
	condition (0)=1 over the interval [0,1] using a step			
	size of h =0.1. Show the iterative formula and the numerical solution obtained.			
19	Apply the trapezoidal rule to approximate the	Apply		
17	integral of $(x)=1/1+x^2$ over the interval [0,1].	пррц		
	Show the formula used and the approximation			
	result.			
20	Use Runge-Kutta's second-order method to solve	Apply		
	the ordinary differential equation $y'=-2xy$ with the			
	initial condition (0)=1 over the interval [0,1] using			
	a step size of $h=0.1$. Show the iterative formula and			
	the numerical solution obtained.			
	PART – C (PROBLEM SOLVING A	AND CRITI	CAL THINKING QUESTIONS)	
1	Write an algorithm to evaluate	Apply		
	x _{2,n}	11 7		
	$\int y dx$			
	x_0			
	using Simpson's 1/3 rule when $y(x)$ is given at x_0 ,			
	$x_0 + h$,, $x_0 + 2nh$. Evaluate			
	$\int_{0}^{1} e^{-x^2} \sin x dx$			
	Je siii x ux			
	Haing Simpson's 1/2 mile with h = 0.1			
2	Using Simpson's 1/3 rule with h = 0.1 Estimate the value of the integral	Annly		
2		Apply		
	$I = \int_{-\infty}^{\infty} \frac{dx}{x}$			
	$I = \int_{0}^{1/2} \frac{dx}{\sqrt{x} \sqrt{1 - x}}$			
	Using the trapezoidal rule, What is its exact			
	value?			
3	Compute the values of	Apply		
		11 7		
				

	T		 1
	$I = \int_0^1 \frac{dx}{1+x^2}$		
	Using the trapezoidal rule with $h = 0.5$, 0.25 and 0.125.		
4	Derive Simpson's 3/8 rule $\int_{x_0}^{x_3} y dx = \frac{3}{8} h \left(y_0 + 3y_1 + 3y_2 + y_3 \right)$	Apply	
	Using this rule, evaluate $\int_{0}^{1} \frac{1}{1+x} dx$		
	With h = 1/6. Evaluate the integral by Simpson's 1/3 rule and compare the results.		
5	Evaluate $\int_{0}^{2} \frac{dx}{x^3 + x + 1}$	Apply	
	By Simpson's $1/3$ rule with $h = 0.25$.		
6	Given $\frac{dy}{dx} = 1 + xy, \ y(0) = 1,$	Apply	
	Obtain the Taylor series for $y(x)$ and compute $y(0.1)$, correct to four decimal places.		
7	Using Euler's method, solve the following problems: (a) $\frac{dy}{dx} = \frac{3}{5}x^3y$, $y(0) = 1$ (b) $\frac{dy}{dx} = 1 + y^2$, $y(0) = 0$	Apply	
8	Use Runge-Kutta fourth order formula to find y(0.2) and y(0.4) given that $y' = \frac{y^2 - x^2}{y^2 + x^2}, y(0) = 1.$	Apply	
9	Solve the initial value problem defined by $\frac{dy}{dx} = \frac{3x + y}{x + 2y}, y(1) = 1$ And find y(1.2) and y(1.4) by Runge-Kutta fourth order formula.	Apply	
10	Given the initial value problem defined by $\frac{dy}{dx} = y(1+x^2), y(0) = 1$ Find the values of y for x = 0.2, 0.4, 0.6, 0.8 and 1.0 using the Euler and fourth order Runge-Kutta methods. Compare the computed values with the exact values.	Apply	

Prepared By: Dr. B Padmaja, Associate Professor and Dean CDC