打通人与结构化数据间壁垒

首届中文NL2SQL挑战赛

团队:国双科技-BugCreater

7

任务介绍

- 輸入:question、表格信息(列名、 列类型、内容)
- 目标:预测需要的SQL语句多个字 段对应元素的内容
 - sel:与agg结合后做多分类
 - agg:同上
 - cond_conn_op 多分类
 - conds:抽取问题

辅助预测内容

- sel_num 多分类
- conds_num: 多分类

数据分析

- 评价指标: Score_{lf} + Score_{ex} (样本粒度的指标)
- 与WikiSQL四点不同:可以利用表的内容信息,存在conds value不能从question提取的样本;sel、agg存在多个;无conds为空的样本
- 同上train中有1w左右样本的conds value不能直接从question中匹配得到(不确定数目的样本存在错误匹配例如哪个股票2019年价格在二十块 cond value为20)

	训练集	验证集	测试集
Num	41522	4396	4000(~5000)
Question length(max)	112	88	103
Header num(max)	23	22	24
Header length(0.99)	123	136	123
Sel num(max) Cond num(max)	3 4	2 3	

相关工作

- · WikiSQL数据集:相关领域代表数据集
- 对问句和header联合建模方法(BERT & MTDNN + Multi-task Prediction):
 - SQLova (Hwang et. al. 2019)
 - X-SQL (He et. al. 2019)
- · 候选集合通过SQL检索结果校验:
 - Execution guided (Wang et.al 2018)

https://github.com/salesforce/WikiSQL

难点分析

- 测试集存在训练集完全未见过的表格(10%->20~30%)
 - 模型需要具备header向量表达的泛化能力(header embedding)
- conds待抽取词语重叠、同一column的opt可能不一致(例如: 大于5且小于10)
 - 需要针对每个column的每个条件分别建模
- · Label中词语有25%不在问句中出现
 - 需要在训练和测试中建立抽取短语向Column短语的映射
- 训练集部分不匹配以及完全不匹配的样本如何利用
 - 类似lic2019信息抽取(克服一定漏标注问题、label匹配可能出现 错误)

预处理

- 汉字转数字
 - 按照特定规则,将Question中的年份、价格等汉字表达 转换为数字
 - 处理总样本量5%
- 标注校正(蒸馏)
 - 训练数据中,有许多条件的值不在Question中。通过半 监督学习的方法,对这数据进行校正
 - 处理总样本量的20%

模型1:X-SQL

X-SQL网络变体

- 增加sel_num:准确率达到99.5%
- cond_conn_op:通过CLS预测
- sel-agg:通过rcs同时预测
- column-opt:通过rcs同时预测

补充数据

• 标注校正(蒸馏)

【问句】

MF381航班10点起飞, 11:20降落,该航班飞 的是哪条线路

【原始标注】

[2, 2, "1000-1120"]

[0, 2, "MF381"]

可抽取样本

训练抽取模型

预测【无法抽取的样本

【可抽取样本】加入训练

10000+样本存 在这样的问题

【问句】

MF381航班10点起飞, 11:20降落,该航班飞 的是哪条线路

【处理后】

[2, 2, "10点起飞,

11:20降落"]

[0, 2, "MF381"]

V

模型3: X-SQL v2

• X-SQL v2

Auxiliary loss

模型融合

- 基于概率平均和投票的模型融合算法
 - sel_num:x-SQL概率平均
 - select-agg: 三个模型按sel-agg组合投票(选票数最多的select_num个)
 - cond_conn_op:三个模型的投票
 - 一 conds:两个模型按column-opt-column组合投票

模型	sel-agg	sel_num	cond_conn_op	conds
X-SQL	6	6	6	0
Condition-proposal	4	0	4	4
X-SQL v2	1	0	1	1
阈值	6	(概率融合)	6	2
score	sel=0.9795 agg=0.9838	0.9956	0.9741	column=0,9472 opt=0.9561 value=0.9231

后处理

- 对cond的处理
 - 根据列的类型,过滤抽取得到的值;
 - 剔除相互冲突的条件;
 - 针对cond[1]等于2的条件,从table找到最接近的值
 - real类型:在数值上做比较
 - text类型:使用Levenshtein Distance度量序列之间差异
 - 当cond[1]等于2时,修正条件值不同行的情况
- 根据cond的情况,对冲突的cond_conn_op的重置
- 对cond数目大于2的情况,进行execute guide

模型改进和创新点

- 改进点1: Encoder端 Bert 12层transformer权重动态融合
- 改进点2:迁移知识抽取对漏标注抗干扰较强的模型进行训练以及半监督学习, 最大化的利用训练集的数据
- 改进点3:设计的模型可以处理cond_col与cond_value one-to-many(overlap)、 cond_col与cond_op one-to-many等情况

Question:单日熔量超过800吨或小于500吨的产品线是

Conditions : [2, 0, "800"] [2, 1, "500"]

Question:你好啊,那个广州越秀区的家衡社会工作服务中心有几个活动啊

Conditions: [3, 2, "广州市越秀区家衡社会工作服务中心"]

[1, 2, "越秀区"]

模型的泛化性

• 模型对于训练集未出现的表格的识别能力

ALL VALID

Execution: 0.9313 Logic Form: 0.8953

Score: 0.9133

UNSEEN VALID

Execution: 0.9339 Logic Form: 0.8869

Score: 0.9104

Question:铁旗门这部电影一共有多少集

Label: {'agg': [0], 'cond_conn_op': 0, 'sel': [4], 'conds': [[1, 2, '铁旗门']]}

Pred: {'sel': [4], 'agg': [0], 'cond_conn_op': 1, 'conds': [[1, 2, '铁旗门'], [3, 2, '电影']]}

Milestone

模型	Valid分数	TestA分数	TestB分数
Baseline	0.8030	0.8228	
12层transformer动态权重融合	0.8241	0.8365	
针对不能匹配的数据,采用预测数据作为label	0.8546	0.8582	
使用X-SQL的rcs与hidden states点乘作为 proposal	0.8703	0.8802	
shuffle columns	0.8872	0.8952	
模型融合	0.9027		0.9078
融合model1 (X-SQL)	0.9119		0.9132
融合model3 (X-SQL v2)	0.9133		0.9143

方案优势

- 模型创新性
 - 12层transformer动态权重融合;
 - 通过列的shuffle实现数据增强;
 - 迁移知识抽取领域基于proposal的模型,模型能够较强的抵抗漏标 注的噪声,并且利用半监督学习,召回10000+条数据。提高cond 值的抽取效果。
 - 在X-SQL的基础上,增加辅助任务,构建多任务联合学习的方案

方案优势

- 模型通用性:适用于多种信息抽取任务
 - 知识图谱的抽取:

查尔斯·阿兰基斯(Charles Aránguiz),1989年4月17日出生于智利圣地亚哥。智利职业足球运动员,司职中场,效力于德国足球甲级联赛勒沃库森足球俱乐部

」通用性:适用于多种信息抽取任务

知识图谱的抽取:

出生地

员, 司职中 Ra	nk Model	Precision	Recall	F1	部
t	[知识工场] BERT(ensemble) gdm 复旦大学	0.8975	0.8886	0.893	
T	[variant bert+multi head selection] (ensemble) littlebert 个人	0.8962	0.8886	0.8924	
ď	[ERNIE CTagging + MultiSub Reviewer] (ensemble) Kill_Thread Ecole X	0.8976	0.8852	0.8914	
4	good luck(ensemble) 格种政策 無双科技	0.8948	0.8858	0.8903	

台层中文NL2SQL挑战器

方案优势

- 模型通用性:适用于多种信息抽取任务
 - 电商评论观点的抽取:

这家店快递很快,就是大小不太合适,勉强用吧。

AspectTerms	OpinionTerms	Polarities	Categories
快递	很快	正面评价	物流
大小	不太合适	负面	尺寸

首屆中於NL2SOL挑战賽

方案优势

- 模型创新性
 - 提出condition proposal和X-SQL v2模型实现nl2sql端到端解析
- 模型通用性好
 - 适用于多种信息抽取任务(如nl2sql、三元组抽取、属性观 点词联合抽取)
 - 模型获得之江大赛"电商评论挖掘"复赛第一名
- 模型实用性
 - 单模型为端到端的pipeline, 10min时间内完成11个模型预测