

Constructions Ex 11.2 Q6

Answer:

Given that

Construct a right triangle of sides $AB = AC = 4.5 \, \mathrm{cm}$, and $\angle A = 90^{\circ}$ and then a triangle similar to it whose sides are $\left(\frac{5}{4}\right)^{\mathrm{th}}$ of the corresponding sides of ΔABC .

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment $AB = 4.5 \, \mathrm{cm}$.

Step: II- With A as centre and draw an angle $\angle A = 90^{\circ}$

Step: III- With A as centre and radius $AC = 4.5 \, \mathrm{cm}$

Step: IV- Join BC to obtain $\triangle ABC$.

Step: V- Below AB, makes an acute angle $\angle BAX = 60^{\circ}$

Step: VI- Along AX, mark off five points A_1, A_2, A_3, A_4 and A_5 such that

 $AA_{\rm I}=A_{\rm I}A_2=A_2A_3=A_3A_4=A_4A_5$

Step: VII-Join $A_4 B$.

Step: VIII- Since we have to construct a triangle each of whose sides is $\left(\frac{5}{4}\right)^{\text{th}}$ of the corresponding

So, we draw a line A_5B' on AX from point A_5 which is $A_5B'\|A_4B$, and meeting AB at B'.

Step: IX- From B' point draw $B'C' \parallel BC$, and meeting AC at C'

Thus, $\Delta AB'C'$ is the required triangle, each of whose sides is $\binom{5}{4}^{\text{th}}$ of the corresponding sides of ΔABC .

Constructions Ex 11.2 Q7

Answer:

Given that

Construct a right triangle of sides let AB = 5 cm, AC = 4 cm, and $\angle A = 90^{\circ}$ and then a triangle similar to it whose sides are $\left(\frac{5}{3}\right)^{\text{th}}$ of the corresponding sides of $\triangle ABC$.

We follow the following steps to construct the given

Step of construction

Step: I- First of all we draw a line segment $AB = 5 \, \mathrm{cm}$.

Step: II- With A as centre and draw an angle $\angle A = 90^{\circ}$.

Step: III- With A as centre and radius $AC = 4 \, \mathrm{cm}$

Step: IV -Join BC to obtain ΔABC .

Step: V -Below AB, makes an acute angle $\angle BAX = 60^{\circ}$

Step: VI -Along AX, mark off five points $A_1,A_2,\,A_3,{\bf A}_4{\rm and}\,{\bf A}_5$ such that

$$AA_{1}=A_{1}A_{2}=A_{2}A_{3}=A_{3}A_{4}=A_{4}A_{5} \\$$

Step: VII -Join A_3B

Step: VIII -Since we have to construct a triangle each of whose sides is $\left(\frac{5}{3}\right)^{\text{th}}$ of the corresponding

So, we draw a line A_5B' on AX from point A_5 which is $A_5B' \| A_3B$, and meeting AB at B'.

Step: IX -From B' point draw $B'C' \parallel BC$, and meeting AC at C'

Thus, $\Delta AB'C'$ is the required triangle, each of whose sides is $\left(\frac{5}{3}\right)^{\text{th}}$ of the corresponding sides of ΔABC .

********* END ********