Clase 7 - Análisis Matemático 1 - LC: Funciones IV

Eugenia Díaz-Giménez¹

eugenia.diaz@unc.edu.ar

1 de Abril de 2020

Índice

- 1 Repaso clase anterior...
 - Parábolas, Circunferencias, Elipses. Funciones trigonométricas
- 2 Funciones trigonométricas inversas
 - Ecuaciones trigonométricas
- 3 Función Exponencial y Logaritmo
 - Exponencial
 - Función inversa
 - Logaritmo
 - Ecuaciones

Parábolas

- Forma polinómica $f(x) = ax^2 + bx + c$
- Forma factorizada $f(x) = a(x x_1)(x x_2)$ $x_1 + x_2 = -\frac{b}{a}$ y $x_1x_2 = \frac{c}{a}$
- Forma canónica $f(x) = a(x x_v)^2 + y_v$ $x_v = -\frac{b}{2a}$

Circunferencia y Elipse

- Ecuación de la circunferencia: $(x x_0)^2 + (y y_0)^2 = r^2$ Centro en (x_0, y_0) y radio r
- Ecuación de la elipse: $\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$ Centro en (x_0, y_0) con semieje a lo largo del eje x = a, y semieje a lo largo del eje y = b

Ejemplo: Encontrar el centro y semiejes de la siguiente elipse
$$x^2 + 4y^2 - 8x = -16y - 28$$
 $\Rightarrow (x^2 - 8x) + (4y^2 + 16y) = -28$ $\Rightarrow (x^2 - 8x) + (4y^2 + 16y) = -28$ $\Rightarrow (x^2 - 8x) + (4y^2 + 16y) = 4(y^2 + 2.2.y)$ $\Rightarrow (x^2 - 2.4.x + 4^2 - 4^2) = (x - 4)^2 - 16$ $\Rightarrow (x^2 - 8x) + (4y^2 + 16y) = 4(y^2 + 2.2.y)$ $\Rightarrow (x^2 - 8x) + (4y^2 + 16y) = 4(y^2 + 2.2.y)$ $\Rightarrow (x^2 - 8x) + (4y^2 + 16y) = -28$

$$(x-4)^2 - 16 + 4(y+2)^2 - 16 = -28 \Rightarrow (x-4)^2 + 4(y+2)^2 = -28 + 32 = 4$$

$$\frac{(x-4)^2}{4} + \frac{4(y+2)^2}{4} = 1 \qquad \frac{(x-4)^2}{2^2} + \frac{(y+2)^2}{1} = 1 \qquad x_0 = 4, y_0 = -2, a = 2, b = 1$$

Funciones trigonométricas

■ Partiendo de la circunferencia unitaria, se definen $x = cos(\alpha)$ y $y = sen(\alpha)$

- Identidad trigonométrica: $cos^2(\alpha) + sen^2(\alpha) = 1$
- Otras funciones trigonométricas:

$$\blacksquare$$
 $tan(\alpha) = \frac{sen(\alpha)}{cos(\alpha)}$

$$\sec(\alpha) = \frac{1}{\cos(\alpha)}$$

$$cosec(\alpha) = \frac{1}{sen(\alpha)}$$

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$sen(\alpha)$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos(lpha)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

Fórmulas para suma de ángulos:

$$cos(x + y) = cos(x)cos(y) - sen(x)sen(y)$$

$$sen(x + y) = sen(x)cos(y) + cos(x)sen(y)$$

cos(x) es una función par: cos(-x) = cos(x)sen(x) es una función impar: sen(-x) = -sen(x)

Ecuaciones trigonométricas

Función inversa:

$$f(x) = y$$
$$f^{-1}(f(x)) = f^{-1}(y)$$
$$x = f^{-1}(y)$$

Las funciones trigonométricas tienen inversa si restringimos su dominio/imagen

Los nombres de las funciones inversas de las trigonométricas son: "arco[nombre]" y se denotan:

$$arcsen(x)$$
 $arccos(x)$ $arctan(x)$ etc

$$arcsen(x): [-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 $arccos(x): [-1,1] \rightarrow [0,\pi]$

Ecuaciones trigonométricas

$$cos(\alpha) = p$$

Cuál es el valor de α ?

$$arccos(cos(\alpha)) = arccos(p) \Rightarrow \alpha = arccos(p)$$

Es la única solución?

Ecuaciones trigonométricas

$$cos(\alpha) = p$$

Cuál es el valor de α ?

$$arccos(cos(\alpha)) = arccos(p) \Rightarrow \alpha = arccos(p)$$

Es la única solución?

 α es solución, y en este caso $-\alpha$ también es solución (la función coseno es par!!!). Son las únicas soluciones? Función periódica con período $2\pi \Rightarrow$

$$\alpha + n.2\pi$$
 $n \in \mathbb{Z}$

$$\vee$$
 $-\alpha + n.2\pi \ n \in \mathbb{Z}$

$$sen(\alpha) = \frac{1}{2}$$

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$sen(\alpha)$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

$$sen(\alpha) = \frac{1}{2}$$

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$sen(\alpha)$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$cos(\alpha)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

$$\alpha_0 = \frac{\pi}{6}$$

$$\alpha_1 = 5\frac{\pi}{6}$$

$$\alpha = \frac{\pi}{6} + n.2\pi$$

$$\alpha = 5\frac{\pi}{6} + n.2\pi$$

$$cos(\alpha) = -\frac{\sqrt{3}}{2}$$

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$sen(\alpha)$	0	<u>1</u>	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos(lpha)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

$$cos(\alpha) = -\frac{\sqrt{3}}{2}$$

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
sen(lpha)	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos(lpha)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1/2	0

$$\alpha_0 = 5\frac{\pi}{6}$$

$$\alpha = 5\frac{\pi}{6} + n.2\pi$$

$$\alpha_1 = 7\frac{\pi}{6}$$

$$\alpha = 5\frac{\pi}{2} +$$

$$\alpha = 7\frac{\pi}{6} + n.2\pi$$

Id. trigo.:

Ejemplo3 (forma analítica - la forma gráfica en la próxima clase)

$$sen(x) = cos(2x)$$

$$cos(2x) = cos(x + x) = cos^{2}(x) - sen^{2}(x)$$

$$cos^{2}(x) + sen^{2}(x) = 1 \Rightarrow cos^{2}(x) = 1 - sen^{2}(x)$$

$$cos(2x) = 1 - sen^{2}(x) - sen^{2}(x) = 1 - 2sen^{2}(x)$$

$$sen(x) = 1 - 2sen^{2}(x)$$

$$sen(x) + 2sen^{2}(x) - 1 = 0$$

$$z = sen(x) \rightarrow 2z^{2} + z - 1 = 0$$

$$\rightarrow Bsk : z_{1,2} = \frac{-1 \pm \sqrt{1 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \rightarrow z_{1} = \frac{1}{2} z_{2} = -1$$

$$sen(x) = cos(2x)$$

$$z = sen(x)$$

$$z = \frac{1}{2}$$

$$sen(x) = \frac{1}{2}$$

$$x = \frac{\pi}{6} + n.2\pi \lor x = 5\frac{\pi}{6} + n.2\pi$$

Solución=
$$\{x \in \mathbb{R} \ / \ x = \frac{\pi}{6} + n.2\pi \ \lor \ x = 5\frac{\pi}{6} + n.2\pi \ \lor \ x = 3\frac{\pi}{2} + n.2\pi \}$$

$$z = -1$$

$$sen(x) = -1$$

$$x=3\frac{\pi}{2}+n.2\pi$$

Función exponencial

Sea a > 0, $x \in \mathbb{R}$

$$f(x) = a^x$$

-2 -1

$$a^0 = 1$$
 $Dom f(x) = \mathbb{R}$
 $Im f(x) = (0, +\infty)$

Propiedades: Sean a > 0, b > 0, $x e y \in \mathbb{R}$

$$a^{x+y} = a^x . a^y$$

$$a^{x-y} = \frac{a^x}{a^y}$$

$$(a^{x})^{y} = a^{xy}$$

$$(ab)^x = a^x b^x$$

La base más usada es la base a=e, y a la función $f(x)=e^x$ se le llama función exponencial¹, mientras que si la base $a\neq e$ a la función $f(x)=a^x$ se le llama función exponencial de base a.

 $^{1}e = 2.7182818284...$

Función inversa de la Exponencial: Logaritmo

$$f(x) = a^x$$

 $f: \mathbb{R} \to (0, +\infty)$

Es biyectiva ⇒ tiene inversa

$$f^{-1}(f(x)) = x$$

A la función inversa de la función exponencial de base a le llamaremos logaritmo en base a

$$f(x) = a^x \Rightarrow f^{-1}(x) = log_a(x)$$

$$f^{-1}(f(x)) = x = f(f^{-1}(x)) \to log_a(a^x) = x = a^{log_a(x)}$$

A la función inversa de la función exponencial (de base e) le llamaremos logaritmo natural

$$f(x) = e^x \Rightarrow f^{-1}(x) = ln(x)$$

$$f^{-1}(f(x)) = x = f(f^{-1}(x)) \rightarrow ln(e^x) = x = e^{ln(x)}$$

Propiedades del logaritmo

Sea *a* > 1

$$\log_a(xy) = \log_a(x) + \log_a(y)$$

$$\log_a(x^y) = y \log_a(x)$$

$$\log_a\left(\frac{x}{y}\right) = \log_a(x) - \log_a(y) = \log_a(x) + \log_a(y^{-1})$$

Podemos escribir las funciones exponenciales y los logaritmos en cualquier base utilizando sólo la base e:

$$a^{x} = e^{x \ln(a)}$$

$$log_a(x) = \frac{ln(x)}{ln(a)}$$

(En general, trabajaremos con el logaritmo natural y la función exponencial)

Ecuaciones - Ej.24a

$$(e^{x})^{\frac{1}{2}} = e^{\sqrt{x}} \quad \text{Pot de pot :}$$

$$e^{\frac{1}{2}x} = e^{\sqrt{x}} \quad \text{aplico inversa :}$$

$$\ln\left(e^{\frac{1}{2}x}\right) = \ln\left(e^{\sqrt{x}}\right)$$

$$\frac{1}{2}x = \sqrt{x} \quad \text{elevo cuadrado :}$$

$$\frac{1}{4}x^{2} = x \quad \Rightarrow \frac{1}{4}x^{2} - x = 0 \quad \Rightarrow x\left(\frac{1}{4}x - 1\right) = 0$$

$$x = 0 \qquad \forall \qquad \frac{1}{4}x - 1 = 0 \quad \Rightarrow \frac{1}{4}x = 1$$

$$x = 0 \qquad \forall \qquad x = 4$$

 $\sqrt{e^x} = e^{\sqrt{x}} \rightarrow e^x > 0 \forall x \in \mathbb{R} \land x > 0$

Resolver

$$\sqrt[3]{\ln(x)} = \ln\left(\sqrt[3]{x}\right) \qquad x > 0$$

$$ln\left(\sqrt[3]{x}\right) = ln\left(x^{\frac{1}{3}}\right) = \frac{1}{3}ln(x)$$
 Reemplazando

$$\Rightarrow \sqrt[3]{\ln(x)} = \frac{1}{3}\ln(x)$$

Elevo al cubo

$$ln(x) = \left(\frac{1}{3}ln(x)\right)^3 = \frac{1}{27}ln^3(x)$$

$$ln(x) - \frac{1}{27}ln^3(x) = 0 \Rightarrow ln(x)\left(1 - \frac{1}{27}ln^2(x)\right) = 0$$

$$ln(x) = 0 \qquad \forall \qquad 1 - \frac{1}{27}ln^2(x) = 0$$

$$x = 1$$
 \forall $27 = ln^2(x) \rightarrow \sqrt{27} = |ln(x)| \rightarrow ln(x) = \sqrt{27} \lor ln(x) = -\sqrt{27}$

$$x = 1$$
 \forall $ln(x) = \pm \sqrt{27} \rightarrow e^{ln(x)} = e^{\pm \sqrt{27}}$

$$x = 1$$
 \forall $x = e^{\pm\sqrt{27}}$

Solución=
$$x = 1 \lor x = e^{\sqrt{27}} \lor x = e^{-\sqrt{27}}$$

Ej 24d

$$\ln(x+2) + \ln(x+4) = \ln(2x+5) \rightarrow (x+2>0) \land (x+4>0) \land (2x+5>0)$$

$$(x>-2) \land (x>-4) \land (x>-\frac{5}{2}) \Rightarrow x>-2$$

$$\ln((x+2)(x+4)) = \ln(2x+5)$$

$$e^{\ln((x+2)(x+4))} = e^{\ln(2x+5)}$$

$$(x+2)(x+4) = 2x+5 \Rightarrow x^2+4x+2x+8=2x+5$$

$$x^2+6x+8-2x-5=0 \Rightarrow x^2+4x+3=0$$

$$\text{Bsk} \quad x_{1,2} = \frac{-4\pm\sqrt{16-12}}{2} = \frac{-4\pm\sqrt{4}}{2} = \frac{-4\pm2}{2}$$

$$x_1 = -1 \qquad \forall \qquad x_2 = -3$$

Ver intervalo de definición:

Solución: $x_1 = -1$

FIN

23 / 23