Esercizi aggiuntivi Tutorato 0

Riccardo Marchesin & Cesare Straffelini

21 Settembre 2022

Tabelle di verità ed un nuovo connettivo

- 1. Esprimere la tabella di verità delle proposizioni $p \lor q, p \land q, p \Rightarrow q$.
- 2. Esprimere la tabella di verità delle proposizioni $p \lor (q \land r), (p \Rightarrow q) \Rightarrow r, p \Rightarrow (q \Rightarrow r)$. Vale l'equivalenza tra $(p \Rightarrow q) \Rightarrow r$ e $p \Rightarrow (q \Rightarrow r)$?
- 3. In queste tabelle diamo il valore di 0 a proposizioni false, e di 1 a quelle vere. Trovare un'espressione delle formule F_i la cui tabella di verità è data da:

			p	q	r	$F_2(p,q,r)$		
			0	0	0	0		
p	q	$F_1(p,q)$	0	1	0	1		
0	0	0	1	0	0	1	p	$F_3(p)$
0	1	1	1	1	0	0	0	1
1	0	1	0	0	1	0	1	0
1	1	0	0	1	1	1		
			1	0	1	1		
			1	1	1	0		

 F_1 ed F_2 sono equivalenti? Ci sono altri modi equivalenti di esprimere F_3 ?

4. L'operazione definita dalla tabella di verità F_1 nell'esercizio precedente, è chiamata xor (dall'inglese exclusive or, o "o esclusivo"). E' indicata con $p \oplus q$, o con $p \nleftrightarrow q$ (ma anche con altri simboli, vedi wikipedia). Dare una formula equivalente a $p \lor q$ che usi solo le operazioni \land (and) $e \oplus$ (xor)

Tautologie o teoremi?

- 5. Esprimere la tabella di verità della proposizione $(\neg p \lor \neg q) \to \neg (p \land q)$.
- 6. Dimostrare, usando le regole di introduzione e di eliminazione, che

$$(\neg p \vee \neg q) \to \neg (p \wedge q).$$

7. Notiamo che, nel'esercizio 5, abbiamo mostrato che la proposizione $(\neg p \lor \neg q) \to \neg (p \land q)$, che d'ora in poi chiameremo per brevità ψ , è sempre vera, cioè la sua tabella di verità è formata da una colonna di tutti 1. Una proposizione sempre vera è detta anche TAUTOLOGIA. Il concetto di essere una tautologia è un concetto semantico, cioè legato al significato della formula. Nel 6 invece, abbiamo dimostrato ψ , e dunque abbiamo provato che ψ è un TEOREMA. Il concetto di teorema è sintattico: abbiamo usato dei passaggi logici formali per dimostrare ψ .

La domanda di questo esercizio è: secondo voi, c'è un legame tra sintassi e semantica? Possiamo dire che ogni teorema è una tautologia, cioè che tutto ciò che si può dimostrare è vero? Viceversa, possiamo dire che ogni tautologia è un teorema, cioè che tutto ciò che è vero si può dimostrare?

Le leggi di de Morgan

- 8. Sia Ω un insieme, A e B sottoinsiemi di Ω . Provare le leggi di De Morgan:
 - (a) $\Omega \setminus (A \cap B) = (\Omega \setminus A) \cup (\Omega \setminus B)$.
 - (b) $\Omega \setminus (A \cup B) = (\Omega \setminus A) \cap (\Omega \setminus B)$.
- 9. Dimostrare (con tabelle di verità o intro/elim, a scelta):
 - (a) $\neg (p \land q) = (\neg p) \lor (\neg q)$.
 - (b) $\neg (p \lor q) = (\neg p) \land (\neg q).$
- 10. Come si spiega la somiglianza tra l'esercizio 8 e l'esercizio 9?

Innumerevoli formule

11. Quante sono le possibili formule logiche non equivalenti con 2 variabili? Quante con 3? Quante con n?

Insiemistica

12. Sia $\mathcal{P}(X)$ l'insieme delle parti di X. Mostrare che $\bigcup \mathcal{P}(X) = X$ e che $\bigcap \mathcal{P}(X) = \emptyset$

Ridurre il numero di connettivi

14. A lezione avete visto sei connettivi $(\lor, \land, \rightarrow, \leftrightarrow, \neg, falso)$. Tuttavia non tutti questi connettivi sono necessari: ad esempio sapete già dalle slides che $\neg p$ si può esprimere come $p \rightarrow falso$. Un altro esempio che già conoscete è che $p \leftrightarrow q$ è equivalente a $(p \rightarrow q) \land (q \rightarrow p)$.

Spiegate cosa significa "è equivalente" in questo contesto, e dimostrate che bastano due connettivi (l'implicazione \rightarrow , ed il falso) per esprimere tutti gli altri sei.

Suggerimento: iniziate con il dimostrare che $(p \to q)$ equivale a $(\neg p \lor q)$.

15. In realtà si può fare di meglio: basta UN connettivo, la barra di Sheffer, indicata con | e definita da $p|q:=\neg(p\wedge q)$. Se volete, provate a provarlo.