

## Úvod

- Grafická karta se stará o grafický výstup na monitor, TV obrazovku či jinou zobrazovací jednotku
  - v případě, že karta obsahuje tzv. VIVO (video-in a video-out), umožňuje naopak i vstup videosignálu např. z kamery, videopřehrávačů apod.

## INTEGROVANÉ vs. EXTERNÍ KARTY

- Grafická karta může být integrovaná na základní desce počítače (IGP), v procesoru (APU), nebo se prodává ve formě rozšiřující karty počítače
  - IGP bývaly typicky v low-end deskách a jejich výkon se výkonem externích grafických karet nedá srovnat

# SBĚRNICE GRAFICKÝCH KARET

- PC-BUS
- ISA
- EISA
- VL-Bus
- PCI
- AGP
- PCI-Express

- Rozlišení
  - Udává se jako počet bodů v ose X krát počet bodů v ose Y
- staré:

|                | Rok  | Text mód | Grafický mód | Barev  | Paměť  |
|----------------|------|----------|--------------|--------|--------|
| MDA            | 1981 | 80*25    | -            | 2      | 4 KB   |
| CGA            | 1981 | 80*25    | 640*200      | 4      | 16 KB  |
| HGC (Hercules) | 1982 | 80*25    | 720*348      | 2      | 64 KB  |
| EGA            | 1984 | 80*25    | 640*350      | 16     | 256 KB |
| EGC            | 1984 | 80*25    | 640*400      | 16     |        |
| IBM 8514       | 1987 | 80*25    | 1024*768     | 256    |        |
| MCGA           | 1987 | 80*25    | 320*200      | 256    |        |
| VGA            | 1987 | 80*25    | 640*480      | 256    | 256 KB |
| SVGA           | 1989 | 80*25    | 800*600      | 256    | 512 KB |
| XGA            | 1990 | 80*25    | 1024*768     | 65,536 | 2 MB   |

#### dnešní:

| 4:3              | 5:4             | 8:5 (16:10)     | 16:9                |
|------------------|-----------------|-----------------|---------------------|
| XGA 1024x768     | SXGA 1280x1024  | WXGA 1280x800   | WVGA 854x480        |
| SXGA- 1280x960   | QSXGA 2560x2048 | WXGA+ 1440x900  | HD720 1280x720      |
| SXGA+ 1400x1050  | SINS 3200x2560  | WSXGA 1680x1050 | WXGA 1366x768       |
| UXGA 1600x1200   |                 | WUXGA 1920x1200 | WXGA++ 1600x900     |
| QXGA 2048x1536   |                 | WQXGA 2500X1600 | HD1080 1920x1080    |
| QSXGA+ 2800x2100 |                 |                 | QFHD (4K) 3840x2160 |
| QUXGA 3200x2400  |                 |                 | QUHD (8K) 7680x4820 |

- Obnovovací frekvence
  - určuje, kolikrát za vteřinu je grafická karta schopna aktualizovat obraz
  - u CRT monitorů za ergonomickou považujeme hodnotu 72 Hz, nižší hodnoty jsou pro delší práci s počítačem nepřípustné
  - optimální je frekvence 75–85 Hz, nejlépe však 100 Hz a více

- Barevná hloubka
  - udává se jako jedno číslo a říká, kolik různých barev je karta schopna zpracovat
  - například může jít o 16,7 mil. barev či jen 256
     barev
  - barevná hloubka je udávána jako maximální počet bitů určených pro záznam barvy. Jde tedy o přepočet, kdy číslo udává mocninu dvojky

#### • 24 bit



#### • 32 bit



- Velikost paměti
  - patří k základním parametrům grafické karty
  - grafický čip tuto paměť využívá pro ukládání vytvořeného obrazu, mezivýsledků, doplňujících informací a textur
  - důležitou vlastností je také přístupová doba této paměti – čím menší, tím lepší

- GPU
- Paměť
- RAMDAC
- Výstupy



#### • GPU

- grafický procesor je výpočetní jádro grafické karty
- ve specifických výpočtech je výkonnější než CPU
- moderní GPU se v současné době využívají
   i k jiným výpočtům než jen pro zobrazování dat
- GPU obsahují stovky milionů tranzistorů, vyžadují intenzivní chlazení a výkonný elektrický zdroj

- Paměť
  - slouží k ukládání informací nutných pro grafické výpočty
  - pokud je grafická karta integrovaná na základní desce, používá operační paměť počítače, dedikovaná má vlastní paměť, nejčastěji nějaký typ GDDR

#### RAMDAC

 převodník digitálního signálu, se kterým pracuje grafická karta, na analogový nebo digitální, kterému rozumí zobrazovací zařízení



- VGA (Video Graphics Array)
  - analogový grafický výstup, používán starými monitory CRT a kompatibilními zařízeními
  - možno převést redukcí z digitálního výstupu
     DVI







- DVI (Digital Visual Interface)
  - digitální grafický výstup, používaný řadou LCD panelů, projektory a dalšími zobrazovacími zařízeními





- HDMI (High-Definition Multimedia Interface)
  - výstup na zařízení s vysokým rozlišením



- S-Video
- Composite Video
- Component Video
- Display Port
- DB13W3
  - Sun, SGI, IBM...



### VÝROBCI GRAFICKÝCH ČIPŮ

- nVidia Corp. (3dfx)
- AMD (ATI Technologies)
- VIA Technologies (S3)
- Intel (>50 %)

- Matrox
- 3DLabs
- Fujitsu
- XGI (SiS + Trident)
- ARM (Falanx)









### VÝROBCI GRAFICKÝCH KARET

- ASUS
- Club3D
- EVGA
- Hewlett-Packard
- Leadtek
- MSI

- Gainward
- GigaByte
- PowerColor
- Sapphire
- Zotac
- a další...

Voodoo 3dfx



- 3dfx Interactive byla firma zabývající se výrobou 3D grafických procesorů a karet
  - v roce 1996 představila slavný čip Voodoo 1
  - akcelerátory založené na Voodoo 1 a 2 potřebovaly ke spolupráci běžnou VGA kartu, protože neměly podporu pro 2D grafiku
  - později byla představena kombinovaná 2D/3D grafická karta s označením Banshee
  - firma byla v roce 2000 odkoupena společností nVidia, která tak získala intelektuální vlastnictví i řadu kvalitních zaměstnanců







### Současnost

 V dnešní době jsou na trhu již velice výkonné grafické adaptéry, které bez problému zvládají vysoká rozlišení při barevné hloubce 32 bitů



# ZÁKLADNÍ POJMY: TEXEL

 Texel (texture element nebo texture pixel) je základní jednotkou textury (tapety) používané v počítačové grafice. Stejně jako obraz je tvořen polem pixelů, tak textura je tvořena polem texelů

# ZÁKLADNÍ POJMY: TEXEL

#### Texturování 3D povrchu:

- renderer mapuje texely do odpovídajících pixelů výsledného obrazu (tzv. proces mapování textur)
- u moderních počítačů tuto operaci provádí grafická karta

## ZÁKLADNÍ POJMY: SHADER

- Shader je počítačový program sloužící k řízení jednotlivých částí programovatelného grafického řetězce grafické karty (přesněji GPU).
  - shadery se rozdělují na několik základních typů podle toho, pro kterou jednotku grafického řetězce jsou určeny.

## ZÁKLADNÍ POJMY: SHADER

V současnosti patří mezi nejdůležitější:

- Vertex shader
- Pixel shader
- Geometry shader
- Shadery pro teselaci

## ZÁKLADNÍ POJMY: SHADER

- Shadery jsou plně programovatelné součásti grafického čipu, které se společně s několika dalšími jednotkami (například ROP – Render Output Unit) starají o zpracování obrazu
  - jako hotový jej posílají do grafické paměti a vidíme jej na monitoru.
  - jedná se o záležitost posledních let, objevují se od rozhraní DirectX 8

### **NEUNIFIKOVANÝ SHADER**

- VERTEX SHADER
- PIXEL SHADER
- GEOMETRY SHADER
- TESSELLATION SHADER
- COMPUTE SHADER

#### **NEUNIFIKOVANÝ SHADER**

- Každá část čipu byla určena pro daný shader.
   Typicky: část čipu byla vyhrazena pro pixel a část pro vertex shader (geometry shader v té době ještě nebyl)
  - pokud byl potřeba vertex shader, aktivovala se jen daná část čipu a zbytek "nic nedělal". Tyto případy však nastávají výjimečně, většinou je zapotřebí část pixel, část vertex a nově část geometry současně

#### **VERTEX SHADER**

- Program, který se provede na každém vrcholu (vertexu) vstupní geometrie scény. Mezi nejčastější operace patří transformace vrcholu
  - pomocí transformací lze dosáhnout různých grafických efektů — např. simulace pohybu vodní hladiny. Do programu vstoupí vždy jen jeden vrchol, je upraven, a zase vystoupí.
- Vrcholy nelze přidávat či odebírat

#### **PIXEL SHADER**

- Pixel (fragment) shader je prováděn na každém pixelu rasterizované scény — pracuje tedy s jejím 2D obrazem
  - mezi nejčastější operace patří aplikace textur,
     případně další modifikace barvy pixelu

#### **GEOMETRY SHADER**

- Geometry shader na rozdíl od vertex shaderu umožňuje přidávat nebo odebírat vrcholy a tím ovlivňovat výslednou geometrii
  - lze jej využít například pro generování jednoduché vegetace (trávy) na povrchu nějakého objektu či k doplnění detailů existujícího modelu (např. vytvoření ostnů na modelu dinosaura) v reálném čase

### SHADERY PRO TESELACI

- S příchodem Direct3D 11 a OpenGL 3.2 byl vykreslovací řetězec rozšířen o nové stupně realizující teselaci
  - teselace je proces, pomocí kterého se obecný polygon převádí na nepravidelnou trojúhelníkovou síť TIN – triangular irregular network
  - dva z těchto tří stupňů jsou programovatelné

#### SHADERY PRO TESELACI

- umožňují měnit geometrii objektů (podobně jako geometry shader)
- díky podpoře teselace zakotvené přímo
   v hardware (GPU) je možné do scény přidat velmi
   velké množství detailů (a to tam, kde jsou potřeba,
   např. dle vzdálenosti od kamery)

#### SHADERY PRO TESELACI

- Názvy příslušných shaderů se u jednotlivých rozhraní liší:
  - pro Direct3D jsou to Hull-shader a Domain-shader
  - pro OpenGL Tessellation control shader (TC)
     a Tessellation evaluation shader (TE)

#### **COMPUTE SHADER**

- Compute shader slouží k realizaci a možnému urychlení obecných algoritmů na grafickém procesoru. Ve specifikaci OpenGL se poprvé objevil ve verzi 4.3 a Direct3D přidalo jeho podporu ve verzi 11
  - compute shader se používá k technice zvané
     GPGPU, což je General-purpose computing on graphics processing units

### **ZPRACOVÁNÍ OBRAZU**

- Jako první přijdou na řadu vertex shadery. Tyto shadery se používají na vytvoření samotné kostry obrazu tvořené z polygonů. Při použití vertex shaderu se na jednotlivých polygonech (vrcholech trojúhelníků) provedou dané efekty
  - pomocí vertex shaderů lze vytvořit osvětlení prohlubní v objektu, změny barev apod.
  - polygony nelze přidávat či ubírat, kostra objektu je stále stejná. Tento shader je součástí grafických karet od DirectX 8

## ZPRACOVÁNÍ OBRAZU

- Další v řadě jsou pixel shadery. Ty se provádějí během texturování, tedy potahování objektů texturou. Shader pracuje s pixely na celé textuře (odtud název) a provádí požadované úpravy (např. odrazy světla v zrcadle)
  - protože se efekt provádí na jednotlivých pixelech, je velmi náročný na výkon a obvykle je ze všech tří základních typů shaderů nejvytíženější. Je taktéž součástí specifikací od DirectX 8

## ZPRACOVÁNÍ OBRAZU

- Geometry shadery jsou specifické shadery, které přišly až s DirectX 10 a používají se hned po vytvoření kostry objektu z polygonů ještě před vertex shadery
  - geometry shadery pracují s celou kostrou objektu, jako jediné umí měnit počet polygonů a tvarovat objekt (např. růst stromů v reálném čase). To se dříve muselo řešit několika různými objekty, které se postupně objevovaly a mizely, což bylo velmi náročné na výkon

## UNIFIKOVANÉ SHADERY

- Jde opět o část grafického čipu vyhrazenou pro práci shaderů. Umí zpracovávat pixel, vertex i geometry shader úlohy, daná úloha je tak zpracována podstatně rychleji – dochází k optimálnímu využití shaderů
  - nevýhodou je, že při práci s pixel shader úlohami nejsou unifikované shadery tak efektivní jako primárně určené pixel shadery, ale tento nedostatek je nahrazen možností dynamicky měnit jejich využití

## ZVYŠOVÁNÍ VÝKONU

 Jednou z možností zvyšování výkonu grafického systému je spolupráce více grafických karet:

- CrossFireX (AMD, dříve ATI Technologies)
- SLI (NVIDIA, dříve 3dfx Interactive)
- 2-4 karty

# ZVYŠOVÁNÍ VÝKONU – CrossFireX



## ZVYŠOVÁNÍ VÝKONU – CrossFireX



# ZVYŠOVÁNÍ VÝKONU – CrossFireX





#### **CrossFireX MÓDY**

- SUPERTILING (dlaždice)
- AFR (Alternate Frame Rendering sudý/lichý snímek)
- SFR (Scissors Frame Rendering vodorovné půlsnímky)
- Hybrid CROSSFIRE (spolupráce integrované a dedikované grafické karty)

### **CrossFireX MÓDY**



#### HYBRID CROSSFIRE



# ZVYŠOVÁNÍ VÝKONU – SLI



### SLI MÓDY

- SFR (Split Frame Rendering vodorovné půlsnímky)
- AFR (Alternate Frame Rendering sudý/lichý snímek)
- SLI Antialiasing (vyhlazování)
- Hybrid SLI

## ANTIALIASING - princip

Aliased
Anti-aliased



### **HYBRID SLI**



#### **HYBRID SLI**



#### **GRAFICKÉ KARTY**

- nVidia RTX 4090:
  - 24 GB VRAM
  - ->16000 jader
  - zdroj 850-1200 W
  - zabírá až 4 sloty (existují i kompaktnější verze)
  - ideálně vodní chlazení
  - verze Ti pravděpodobně nebude, připravují se nové modely (2024)

## **GRAFICKÉ KARTY**

nVidia RTX 4090:



