Doctor Visits

Charles Costanzo, Afia Fosu, Logan Loftus, Mason Rocco

DoctorVisits from AER package

Australian Health Service Utilization Data

- Cross-section data originating from the 1977–1978 Australian Health Survey.
- A data frame containing 5,190 observations on 12 variables.
- Source: Journal of Applied Econometrics Data Archive

Variable	Description
visits	Number of doctor visits in past 2 weeks.
gender	Factor indicating gender.
age	Age in years divided by 100.
income	Annual income in tens of thousands of dollars.
illness	Number of illnesses in past 2 weeks.
reduced	Number of days of reduced activity in past 2 weeks due to illness or injury.
health	General health questionnaire score using Goldberg's method.
private	Factor. Does the individual have private health insurance?
freepoor	Factor. Does the individual have free government health insurance due to low income?
freerepat	Factor. Does the individual have free government health insurance due to old age, disability or veteran status?
nchronic	Factor. Is there a chronic condition not limiting activity?
lchronic	Factor. Is there a chronic condition limiting activity?

^{*}Note: this data restricts "gender" to a binary "male" or "female" variable.

A more appropriate (but still imperfect) variable name may be "sex", as the use of "gender" does not consider other genders. However, to avoid overcomplicating our analysis, we will keep the variable as is.

What we will investigate

Is there an association between gender and the number of doctor visits?

Is there an association between income and number of doctor visits?

Is there an association between insurance type and number of doctor visits?

What we will investigate

Is there an association between income and the probability of having free government insurance due to low income?

Q5

Is there an association between overall health and the probability of having free government insurance due to low income?

Q6

Is there an association between age and the probability of having free government insurance due to low income?

Density of Doctor Visits

Poisson

Discrete distribution.

Models counts of "rare" events.

Zero Inflated?

Large probability when number of visits is 0.

Modeling

A count outcome suggests a Poisson General Linear Model may be appropriate.

Mean Number of Doctor Visits by Sex

Sex	Sex Mean Doctor Visits (past 2 weeks					
Male	0.2363344					
Female	0.3619541					

Mean Number of Doctor Visits by Insurance Type

Insurance Type	Mean Doctor Visits (past 2 weeks)
Private	0.295
Free Government Insurance due to Low Income	0.158
Free Government Insurance due to Old Age, Disability, or Veteran Status	0.467
No Insurance	0.218

Free Government Insurance due to Low Income and Income

Income

It appears that those with free insurance tend to have a lower mean annual income than those without free insurance.

\$10,000 Australian dollars in 1977 is roughly equal to \$45,000 U.S. dollars in 2023.

Outliers

There are a few outliers (very high income) in the no private insurance group.

Generalized Linear Model for Poisson Data

Model Description

Let Y be our vector of data containing the number of doctor visits within the past two weeks, visits.

Assume
$$\{Y_1, \dots, Y_{n=5190}\} \stackrel{ind}{\sim} Poisson(\lambda_i)$$

We will use the log link.

Poisson GLM:

$$\eta_i = g(\lambda_i) = log(\lambda_i) = \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\beta}, \quad i = 1, \dots, n = 5190$$

where

- η_i is the estimated log mean number of doctor visits in the past two weeks for individual i (according to their specific covariate values \mathbf{x}_i)
- $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,p=12})^\intercal$ are the p covariates (including an intercept) for individual i
- $\beta = (\beta_0, \beta_1, \dots, \beta_{p=12})$ is our unknown coefficient vector.

Full Poisson Model

- Assumes the mean is equal to the variance.
- Takes the dispersion parameter to be 1.

```
##
## Call:
## glm(formula = visits ~ ., family = "poisson", data = doctor)
##
## Deviance Residuals:
      Min
                10
                    Median
                                         Max
  -2.9502 -0.6858 -0.5747 -0.4852
                                      5.7055
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -2.097821
                          0.101554 -20.657 < 2e-16 ***
                          0.056139
## genderfemale 0.156490
                                     2.788
                                            0.00531 **
## age
                0.279123
                          0.165981 1.682 0.09264 .
               -0.187416
                        0.085478 -2.193 0.02834 *
## income
## illness
                0.186156
                          0.018263
                                   10.193 < 2e-16 ***
## reduced
               0.126690
                          0.005031 25.184 < 2e-16 ***
## health
              0.030683
                          0.010074 3.046
                                            0.00232 **
## privateyes
              0.126498
                          0.071552
                                   1.768 0.07707 .
## freepooryes
               -0.438462
                          0.179799
                                   -2.439
                                            0.01474 *
## freerepatyes 0.083640
                          0.092070
                                     0.908
                                            0.36365
## nchronicyes 0.117300
                          0.066545
                                     1.763
                                            0.07795 .
## lchronicyes 0.150717
                          0.082260
                                     1.832 0.06692 .
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 5634.8 on 5189 degrees of freedom
## Residual deviance: 4380.1 on 5178 degrees of freedom
## AIC: 6735.7
##
## Number of Fisher Scoring iterations: 6
```

Analysis of Deviance Table

*Used the anova() function in R

```
## Analysis of Deviance Table
##
## Model: poisson, link: log
##
## Response: visits
##
## Terms added sequentially (first to last)
##
##
##
           Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                           5189
                                   5634.8
## gender
               68.64
                           5188
                                   5566.2 < 2.2e-16 ***
                           5187
## age
            1 118.90
                                   5447.3 < 2.2e-16 ***
## income
            1 12.42
                           5186
                                   5434.9 0.0004239 ***
            1 354.29
                           5185
                                   5080.6 < 2.2e-16 ***
## illness
## reduced
          1 673.63
                           5184
                                   4406.9 < 2.2e-16 ***
                 9.57
                           5183
                                   4397.4 0.0019818 **
## health
## private
                 3.95
                           5182
                                   4393.4 0.0468745 *
                 7.96
## freepoor
                           5181
                                   4385.5 0.0047840 **
## freerepat 1
                 1.25
                           5180
                                   4384.2 0.2644339
                 0.74
                           5179
## nchronic 1
                                   4383.5 0.3897203
## lchronic 1
                  3.34
                           5178
                                   4380.1 0.0676851 .
## ---
## Signif. codes:
                0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' 1
```

Test Whether the Full Model is Needed

Conduct a Chi-Square Test at the $\alpha=0.05$ level to demonstrate that the freerepat, nchronic, and lchronic variables should be removed from the model.

 H_0 : Reduced Model (without freerepat, nchronic, and lchronic) is good enough vs.

 H_1 : Full Model (including all predictor variables) is Needed

- $D_{full} = 4380.1$
- $D_{reduced} = 4385.5$

Test Statistic:

$$\Delta D = D_{reduced} - D_{full} = 4385.5 - 4380.1$$

$$\Rightarrow \Delta D = 5.4$$

Under $H_0, \Delta D \sim \chi^2_{pFull-pReduced=12-9}$

$$\Rightarrow \Delta D \sim \chi_3^2$$

Rejection Rule: Reject if $\Delta D > \text{qchisq(1-0.05,3)} = 7.814728$

Since our Test Statistic $\Delta D = 5.4 < 7.8$, we fail to reject the null hypothesis at the $\alpha = 0.05$ significance level.

p value: pchisq(5.4, 3, lower.tail = FALSE) = 0.1447436

Conclusion:

The reduced model is good enough!

- The model that does not include freerepat, nchronic, and lchronic provides a better fit to the data set than the full model that includes those three covariates.
- We will now drop those covariates and fit a reduced model.

Check for Overdispersion

```
##
## Overdispersion test
##
## data: model1
## z = 6.5386, p-value = 3.105e-11
## alternative hypothesis: true dispersion is greater than 1
## sample estimates:
## dispersion
## 1.415602
```

There is indeed overdispersion, so run a quasipoisson model

*Used the dispersiontest() function from the AER package in R.

(Reduced) quasipoisson Model

- Same coefficient estimates as before
- But no longer assumes the mean is equal to the variance
- Dispersion parameter now 1.32

```
## Call:
## glm(formula = visits ~ gender + age + income + illness + reduced +
      health + private + freepoor, family = "quasipoisson", data = doctor)
## Deviance Residuals:
      Min
                10 Median
                                        Max
  -3.0180 -0.6811 -0.5772 -0.4916
                                     5.6590
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.072446  0.115325 -17.970  < 2e-16 ***
## genderfemale 0.167591
                          0.064003
                                    2.618 0.00886 **
               0.437894
                          0.157775
## age
                                    2.775 0.00553 **
## income
              -0.203978
                          0.096926 -2.104 0.03539 *
## illness 0.196366
                          0.020262
                                    9.692 < 2e-16 ***
## reduced
               0.127994
                          0.005645 22.672 < 2e-16 ***
## health
               0.032854
                          0.011465 2.865 0.00418 **
## privateyes
               0.087156
                          0.061583 1.415 0.15705
## freepooryes
               -0.465788
                          0.203005 -2.294 0.02180 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for quasipoisson family taken to be 1.324931)
##
      Null deviance: 5634.8 on 5189 degrees of freedom
## Residual deviance: 4385.5 on 5181 degrees of freedom
## ATC: NA
## Number of Fisher Scoring iterations: 6
```

Count Model Summaries

Pois (1) 0.156*** (0.056) 0.279* (0.166) -0.187** (0.085) 0.186*** (0.018) 0.127***	visitsson (2) 0.168*** (0.056) 0.438*** (0.137) -0.204** (0.084) 0.196***	glm: quasipoiss link = log (3) 0.168*** (0.064) 0.438*** (0.158) -0.204** (0.097)
(1) 0.156*** (0.056) 0.279* (0.166) -0.187** (0.085) 0.186*** (0.018)	(2) 0.168*** (0.056) 0.438*** (0.137) -0.204** (0.084) 0.196***	link = log (3) 0.168*** (0.064) 0.438*** (0.158) -0.204** (0.097)
0.156*** (0.056) 0.279* (0.166) -0.187** (0.085) 0.186*** (0.018)	0.168*** (0.056) 0.438*** (0.137) -0.204** (0.084) 0.196***	(3) 0.168*** (0.064) 0.438*** (0.158) -0.204** (0.097)
(0.056) 0.279* (0.166) -0.187** (0.085) 0.186*** (0.018)	(0.056) 0.438*** (0.137) -0.204** (0.084) 0.196***	(0.064) 0.438*** (0.158) -0.204** (0.097)
(0.056) 0.279* (0.166) -0.187** (0.085) 0.186*** (0.018)	0.438*** (0.137) -0.204** (0.084) 0.196***	0.438*** (0.158) -0.204** (0.097)
(0.166) -0.187** (0.085) 0.186*** (0.018)	(0.137) -0.204** (0.084) 0.196***	(0.158) -0.204** (0.097)
-0.187** (0.085) 0.186*** (0.018)	-0.204** (0.084) 0.196***	-0.204** (0.097)
(0.085) 0.186*** (0.018)	(0.084) 0.196***	(0.097)
0.186*** (0.018)	0.196***	
(0.018)		ند ند به
		0.196^{***}
0.127***	(0.018)	(0.020)
0.127	0.128***	0.128***
(0.005)	(0.005)	(0.006)
0.031***	0.033***	0.033***
(0.010)	(0.010)	(0.011)
0.126*	0.087	0.087
(0.072)	(0.054)	(0.062)
-0.438**	-0.466***	-0.466**
(0.180)	(0.176)	(0.203)
0.084		
(0.092)		
0.117^{*}		
(0.067)		
0.151*		
(0.082)		
-2.098***	-2.072***	-2.072***
(0.102)	(0.100)	(0.115)
5,190	5,190	5,190
-3,355.850	-3,358.512	
6,735.701	6,735.024	
	*p<0.1; **	*p<0.05; ****p<0
	-0.438** (0.180) 0.084 (0.092) 0.117* (0.067) 0.151* (0.082) -2.098*** (0.102) 5,190 -3,355.850	-0.438** -0.466*** (0.180) (0.176) 0.084 (0.092) 0.117* (0.067) 0.151* (0.082) -2.098*** -2.072*** (0.102) (0.100) 5,190 5,190 -3,355.850 -3,358.512 6,735.701 6,735.024

Coefficients from (reduced) quasipoisson Model

$$\hat{\beta}_{female} = 0.168 = > e^{0.168} = 1.183$$

For a female, vs. male, the estimated mean number of doctor visits within the past two weeks increases 1.183 times (18.3% increase), keeping all other variables constant.

$$\hat{\beta}_{income} = -0.204 = > e^{0.204} = 0.816$$

For an increase of annual income by ten thousand dollars, the estimated mean number of doctor visits within the past two weeks decreases 0.816 times (18.4% decrease), keeping all other variables constant.

$$\hat{\beta}_{privateyes} = 0.087 = > e^{0.087} = 1.091$$

For an individual with private health insurance, vs. no insurance, the estimated mean number of doctor visits within the past two weeks increases 1.091 times (9.1% increase), keeping all other variables constant.

$$\hat{\beta}_{free pooryes} = -0.466 = > e^{0.466} = 0.628$$

For an individual with free government health insurance due to low income, vs. no insurance, the estimated mean number of doctor visits within the past two weeks decreases 0.628 times (37.2% decrease), keeping all other variables constant.

$$\hat{\beta}_{age} = 0.438 = > e^{0.438} = 1.55$$

For an increase in age by one year, the estimated mean number of doctor visits within the past two weeks increases 1.55 times (55% increase), keeping all other variables constant.

$$\hat{\beta}_{illness} = 0.196 = > e^{0.196} = 1.217$$

For an increase of one illness within the past two weeks, the estimated mean number of doctor visits within the past two weeks increases 1.217 times (21.7% increase), keeping all other variables constant.

Reference categories: Gender = male. Insurance type = No insurance $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$

	Dependent variable:							
		visits						
	Poi.	sson	glm: quasipoisson					
			link = log					
	(1)	(2)	(3)					
genderfemale	0.156***	0.168**	0.168***					
	(0.056)	(0.056	(0.064)					
age	0.279^*	0.438**	0.438***					
	(0.166)	(0.137)	(0.158)					
income	-0.187**	-0.204*	* -0.204 ^{**}					
	(0.085)	(0.084)	(0.097)					
illness	0.186^{***}	0.196**	0.196***					
	(0.018)	(0.018)	(0.020)					
reduced	0.127***	0.128**	0.128***					
	(0.005)	(0.005)	(0.006)					
health	0.031***	0.033**	0.033***					
	(0.010)	(0.010)	(0.011)					
privateyes	0.126^{*}	0.087	0.087					
	(0.072)	(0.054)	(0.062)					
freepooryes	-0.438**	-0.466*	* -0.466**					
	(0.180)	(0.176)	(0.203)					
freerepatyes	0.084							
	(0.092)							
nchronicyes	0.117^{*}							
	(0.067)							
lchronicyes	0.151*							
	(0.082)							
Constant	-2.098***	-2.072**	* -2.072***					
	(0.102)	(0.100)	(0.115)					
Observations	5,190	5,190	5,190					
Log Likelihood	-3,355.850	-3,358.51	12					
Akaike Inf. Cri	t. 6,735.701	6,735.02	4					
Note:		*p<0.1;	**p<0.05; ***p<0.01					

Poisson Model

Reduced Poisson Model

Reduced quasipoisson Model


```
Call:
glm(formula = freepoor ~ income, family = "binomial", data = DoctorVisits)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.6052 -0.3977 -0.2357 -0.1268 3.3281
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.6045 0.1233 -13.01 <2e-16 ***
income -3.5725 0.3282 -10.88 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1833.8 on 5189 degrees of freedom
Residual deviance: 1652.7 on 5188 degrees of freedom
AIC: 1656.7
Number of Fisher Scoring iterations: 7
```


Principal Component Analysis

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 Standard deviation 3.0549 2.0121 1.25296 0.7110 0.58733 0.53288 0.4685 0.33089 0.3105 0.25677 0.18186 0.13856 Proportion of Variance 0.5612 0.2435 0.09441 0.0304 0.02074 0.01708 0.0132 0.00658 0.0058 0.00396 0.00199 0.00115 Cumulative Proportion 0.5612 0.8047 0.89909 0.9295 0.95023 0.96731 0.9805 0.98709 0.9929 0.99686 0.99885 1.00000

- PC1 alone explains over 56% of the variation in the dataset
- PC1 through PC5 explain 95.02% of the variation in the dataset
- The scree plot does not show an explicit elbow as a cutoff point

Principal Component Analysis

			_		_		_					
	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12
visits	-0.1194663436	-0.0102635660	0.08760976	-0.981402194	0.091781669	0.06608277	0.032320845	-0.030056058	0.000107392	0.001817089	-0.0057854249	-0.0045957496
gender	-0.0106555384	0.0147818904	0.05881913	-0.076062110	-0.356031357	-0.62439551	-0.552787701	-0.356642964	-0.197357245	0.041858729	-0.0052280572	-0.0172316718
age											-0.1009330699	
income	0.0095807424	-0.0155973337	-0.04102244	0.041818673	0.373933302	0.03162882	0.120624497	-0.149256708	-0.882736275	-0.066516765	-0.1866945418	0.0087347933
illness	-0.1641574477	0.2710898654	0.92858799	0.115264848	0.103425274	0.08318614	-0.043507700	-0.047121948	0.008947543	-0.046619029	-0.0041684623	0.0002849057
reduced	-0.9063915583	-0.4039723925	-0.05432020	0.108676563	-0.005604531	-0.01492437	0.008548157	-0.007223474	0.005186363	-0.009491390	-0.0001624671	-0.0017208099
health	-0.3687111903	0.8728954755	-0.31805558	0.006082140	-0.002856182	-0.01997792	0.017221603	0.005629343	-0.004707777	-0.010897502	0.0032841970	0.0046853504
private	0.0072713088	-0.0103933043	-0.01350832	0.001279423	0.618668447	-0.51167991	-0.200009827	0.479395425	0.174534976	-0.145568816	-0.1347351933	-0.1243294226
freepoor	-0.0003916768	0.0053365898	-0.01063745	0.012169331	-0.028340279	0.06362150	0.006445899	-0.174180396	0.205723214	0.194846912	-0.9403044764	-0.0043617032
freerepat	-0.0149313396	0.0117931013	0.06961109	-0.053876314	-0.533850026	0.04749895	0.011092990	0.578602662	-0.258029391	-0.352627361	-0.2170507425	-0.3629011910
nchronic	-0.0038777872	0.0175076952	0.11582646	-0.016051215	-0.152427636	-0.53933529	0.736653231	0.038162957	-0.029534410	0.347432028	0.0305344535	-0.0725275961
1chronic	-0.0271590179	0.0148531756	0.02643808	-0.004767052	-0.010212177	0.17047557	-0.306053198	0.393508178	-0.185354337	0.824383730	0.0670761734	-0.0466116140

PC1: Income and private health insurance (wealth)

PC2: Gender, number of recent illnesses, health score, free health insurance, and chronic condition (general wellness)

PC3: Number of doctor visits, gender, age, number of recent illnesses, free health insurance, and chronic condition (general wellness)

PC4: Income, number of recent illnesses, number of reduced activity days, and free health insurance

PC5: Number of doctor visits, income, number of recent illnesses, and private health insurance

PC6-PC12: Not significant

Thank You!

Questions?

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, infographics & images by **Freepik**