SPRAWOZDANIE

Monitoring przemieszczeń poziomych obiektu inżynierskiego z wykorzystaniem zautomatyzowanego tachimetru elektronicznego.

GI sem. 5 Julia Hryń (319269) Marta Jaworska (310878)

1. Cele ćwiczenia

Wizualizacja trajektorii ruchu punktów kontrolowanych zasymulowanego obiektu.

Rys.1 Rozmieszczenie stanowisk monitorowych punktów (P5, P6, P7, P8).

2. Wykorzystany sprzęt

Do wykonania przedstawionego zadania wykorzystany został automatyczny tachimetr LEICA TCRP 1201+ oraz cztery kompatybilne z nim reflektory. Za operacje automatyczne odpowiadało wewnętrzne oprogramowanie, które po nadaniu odpowiednich parametrów odnajdowało reflektor, a następnie system ATR wykonywał dokładne celowanie do pryzmatu. Do pomiaru temperatury oraz wilgotności powietrza użyty został termohigrometr Extech RH520. Dane pobrane po pomiarze zostały poddane analizie w programie MS Excel.

3. Przebieg ćwiczenia

- 1. Ustanowienie stanowiska pomiarowego oraz rozstawienie reflektorów (Rys.1), następnie spoziomowanie instrumentów.
- 2. Zmiana ustawień oprogramowania wewnętrznego tachimetru, podanie aktualne daty i czasu, ustawienie ATR, a następnie wybór opcji monitoringu.
- 3. Kolejny krok to inicjalny pomiar punktów, czyli zgrubne nacelowanie na każdy z punktów za pomocą kolimatora, które mają zostać uwzględnione w pomiarze automatycznym.
- 4. Ustawienie harmonogramu pomiaru (godzina rozpoczęcia i zakończenia oraz interwał czasu pomiędzy seriami).
- 5. Uruchomienie monitoringu instrument wykonuje pomiar w pełni automatycznie.
- 6. W międzyczasie należy odczytać temperaturę oraz wilgotność z termohigrometru.
- 7. Po zakończeniu wykonywania serii należy wyjąć z instrumentu kartę pamięci odczytać wyniki.

4. Opracowanie wyników

Wyniki pomiarów zaimportowane zostały do arkusza kalkulacyjnego, gdzie przeprowadzane były dalsze obliczenia:

- 1. Uśrednienie celów z poszczególnych serii w celu uzyskania wartości średnich.
- 2. Korekta błędów pomiarowych odległości wynikających z warunków atmosferycznych (temperatura, wilgotność i ciśnienie tego dnia wynosiły odpowiednio: 23.1 st. C, 44% oraz 1016hPa.)
- 3. Skorygowanie odległości skośnych na poziomie instrumentu.
- 4. Obliczenie współrzędnych punktów P1 do P4.
- 5.Obliczenie różnic współrzędnych X i Y względem serii referencyjnej.

Wykresy poniżej zostały wygenerowane za pomocą biblioteki matplotlib w języku Python.

5. Wnioski

Wzajemna stałość stanowiska i punktów stałych (punkty 5, 8) nie została zachowana, ponieważ wartości przemieszczeń poziomych są niezerowe. Średnia arytmetyczna wszystkich wartości przemieszczenia wynosi około -0,4 [mm]. Jest to wartość całkiem spora biorąc pod uwagę, że obiektem wykorzystanym do pomiaru był pryzmat.

Dla otrzymanych nieregularnych rozmieszczeń punktów na wykresie możemy przypuszczać, że jest to wina skrętu statywu. W zależności od tego, czy punkt był poruszany (punkty 6, 7) w wyniku otrzymane wartości przemieszczenia osiągały 5-20 [mm]. Mając na uwadze, że położenie punktów pomiarowych (punkty 5, 8) nie było w żaden sposób naruszane (oprócz ewentualnych drgań podłoża), a tachimetr wykonywał obrót wokół osi pionowej, a następnie poziomej w każdej z serii pomiarowych, możemy wnioskować złe spoziomowanie sprzętu. Tachimetr nie został ustawiony odpowiednio równolegle do powierzchni pomiarowej, a drgania otoczenia były kolejnym czynnikiem otrzymania mało precyzyjnych wyników. Na otrzymane wartości miał również wpływ temperatury, wilgotności oraz ciśnienia.