

proof of Bernoulli's inequality

Canonical name ProofOfBernoullisInequality

Date of creation 2013-03-22 12:38:14 Last modified on 2013-03-22 12:38:14

Owner danielm (240) Last modified by danielm (240)

Numerical id 6

Author danielm (240)

Entry type Proof

Classification msc 26D99

Let I be the interval $(-1, \infty)$ and $f: I \to \mathbb{R}$ the function defined as:

$$f(x) = (1+x)^{\alpha} - 1 - \alpha x$$

with $\alpha \in \mathbb{R} \setminus \{0,1\}$ fixed. Then f is differentiable and its derivative is

$$f'(x) = \alpha(1+x)^{\alpha-1} - \alpha$$
, for all $x \in I$,

from which it follows that $f'(x) = 0 \Leftrightarrow x = 0$.

- 1. If $0 < \alpha < 1$ then f'(x) < 0 for all $x \in (0, \infty)$ and f'(x) > 0 for all $x \in (-1,0)$ which means that 0 is a global maximum point for f. Therefore f(x) < f(0) for all $x \in I \setminus \{0\}$ which means that $(1+x)^{\alpha} < 1 + \alpha x$ for all $x \in (-1,0)$.
- 2. If $\alpha \notin [0,1]$ then f'(x) > 0 for all $x \in (0,\infty)$ and f'(x) < 0 for all $x \in (-1,0)$ meaning that 0 is a global minimum point for f. This implies that f(x) > f(0) for all $x \in I \setminus \{0\}$ which means that $(1+x)^{\alpha} > 1 + \alpha x$ for all $x \in (-1,0)$.

Checking that the equality is satisfied for x=0 or for $\alpha\in\{0,1\}$ ends the proof.