정수론 (INTEGER THEORY)

野 피타고라스 정리 증명

$$a^2 + b^2 = c^2$$

✔ 가장 이해하기 쉬운 증명 2가지

$$(a + b)^2 = 2ab + c^2 \longrightarrow a^2 + b^2 + 2ab = 2ab + c^2$$

$$c^{2} = 2ab + (a - b)^{2}$$
$$= 2ab + a^{2} + b^{2} - 2ab$$

野 피타고라스 수

- $a^2 + b^2 = c^2$
- ✔ Pythagorean triple: 위 식을 만족하는 세 양의 정수
 - ✗ '피타고라스 수' 또는 '피타고라스 삼조'라 부름
 - **★** Ex: (3,4,5), (6,8,10), ...
- ✔ Primitive Pythagorean triple: a,b,c가 서로소일 때 즉, gcd(a,b,c)=1
 - ※ '원시 피타고라스 수' 또는 '원시 피타고라스 삼조'라 부름
 - **★** Ex: (3,4,5), (5,12,13), ...
- ✔ 임의의 홀수 m에 대해: $\left(m, \frac{m^2-1}{2}, \frac{m^2+1}{2}\right)$ 은 피타고라스 수
 - **Ex:** (3,4,5), (5,12,13), (7,24,25), (9,40,41), (11,60,61), ...

沙 피타고라스 수

✔ 임의의 자연수 m(>1)에 대해: $(2m, m^2 - 1, m^2 + 1)$ 은 피타고라스수

♣ 증명: $(2m)^2 + (m^2 - 1)^2 = (m^2 + 1)^2$

★ Ex: (4,3,5), (6,8,10), (8,15,17), (10,24,26)

✔ 위의 방법으로 피타고라스 수를 구하면 (4,3,5), (6,8,10) 등이 나와 원 시 피타고라수 수가 아닌 것이 있다.

✔ 어떻게 원시 피타고라스 수를 구할까?

野 피타고라스 수

✔ (a, b, c)가 **원시 피타고라스 수**일 필요충분조건

 $m^2 (m^2 - n^2, 2mn, m^2 + n^2)$

♠ 여기서 m n은 자연수이고 m > n 이며 둘 중 하나는 짝수, 하나는 홀수이

	а	b	С
m n	m^2 - n^2	2mn	m^2 +n^2
2 1	3	4	5
3 2	5	12	13
4 1	15	8	17
43	7	24	25
5 2	21	20	29
5 4	9	40	41
6 1	35	12	37
6.5	11	60	61
7 2	45	28	53
7 4	33	56	65
7 6	13	84	85

② 피타고라스 수

(a, b, c)가 **원시 피타고라스 수**일 때:

- ✔ 따름정리 1: a,c 는 항상 홀수이고 b는 4의 배수이다.
- ✔ 따름정리 2: a 또는 b 중 적어도 하나는 3의 배수이다.
- ✔ 따름정리 3: a, b, c 중 적어도 하 나는 5의 배수이다.
- ✔ 따름정리 4: ab는 12의 배수이고 abc는 60의 배수이다.

m	a	b	С
n	m^2 - n^2	2mn	m^2 +n^2
2 1	3	4	5
3 2	5	12	13
4 1	15	8	17
43	7	24	25
5 2	21	20	29
5 4	9	40	41
6 1	35	12	37
65	11	60	61
7 2	45	28	53
7 4	33	56	65
76	13	84	85

野 피타고라스 수

♥ (a, b, c)가 **원시 피타고라스 수**일 필요충분조건

- $(m^2 n^2, 2mn, m^2 + n^2)$
- **№** 여기서, m,n은 자연수이고, m>n 이며, 둘 중 하나는 짝수, 하나는 홀수이다
- **✔** 따름정리 1: *a, c* 는 항상 홀수이고 *b*는 4의 배수이다.
 - # 증명:

m, n 중 하나만이 홀수 이므로 $a = m^2 - n^2$ 이 홀수이다.

또한 $c = m^2 + n^2$ 홀수이다.

b = 2mn 이 4의 배수임은 쉽게 알 수 있다.

② 피타고라스 수

✔ (a,b,c)가 **원시 피타고라스 수**일 필요충분조건

- $(m^2 n^2, 2mn, m^2 + n^2)$
- **№** 여기서, m,n은 자연수이고, m>n 이며, 둘 중 하나는 짝수, 하나는 홀수이다

✔ 따름정리 2: a 또는 b 중 적어도 하나는 3의 배수이다.

₩ 증명:

만약 m 또는 n 이 3의 배수이면 b=2mn 는 3의 배수이다.

만약 m 또는 n 이 3의 배수가 아니면

m = 3k + 1, n = 3k - 1

따라서 $a = m^2 - n^2 = (3k + 1)^2 - (3k - 1)^2 = 12k$ 는 3의 배수이다.

野 피타고라스 수

- **∀** (a, b, c)가 원시 피타고라스 수일 필요충분조건
 - $(m^2 n^2, 2mn, m^2 + n^2)$
 - **※** 여기서, m,n은 자연수이고, m>n 이며, 둘 중 하나는 짝수, 하나는 홀수이 다
- **✔** 따름정리 3: *a*, *b*, *c* 중 적어도 하나는 5의 배수이다.
 - ₩ 증명:

만약 m 또는 n 이 5의 배수이면 b=2mn 는 5의 배수이다.

만약 m 또는 n 이 5의 배수가 아니면

5의 배수가 아닌 4가지 수 5k + 4, 5k + 3, 5k + 2, 5k + 1 에서 m > n 이 만족되고, 둘 중 하나는 짝수, 하나는 홀수가 되도록 m,n을 설정한 후, 각 경우에 대해 a,c 값을 따져 보면 a,c 둘 중 하나는 5의 배수가 됨을 쉽게 알 수 있다. (참고로, 위 조건을 만족하도록 m,n을 설정하는 경우는 총 4가지임)

예를 들어, m = 8, n = 7로 두면 a가 5의 배수가 된다. m = 9, n = 8로 두면 c가 5의 배수가 된다.

野 피타고라스 수

(a, b, c)가 **원시 피타고라스 수**일 때:

- ✔ 따름정리 1: a,c 는 항상 홀수이고 b는 4의 배수이다.
- ✔ 따름정리 2: a 또는 b 중 적어도 하나는 3의 배수이다.
- ✔ 따름정리 3: a, b, c 중 적어도 하나는 5의 배수이다.
- ✔ 따름정리 4: ab는 12의 배수이고 abc는 60의 배수이다.
 - ₩ 증명:

따름정리 1에 의해 b는 4의 배수, 따름정리 2에 의해 a 또는 b 중 적어도 하나는 3의 배수이다. 따라서 ab는 12의 배수이다.

따름정리 1,2,3에 의하면 abc는 60의 배수임 알 수 있다.

翻 정수론-서론

- 🎤 정리 1
 - ✔ m, n, c가 정수일 때,
 - (a) 만약 c가 m, n의 공약수이면 cl(m+n)
 - (b) 만약 c가 m, n의 공약수이면 cl(m-n)
 - (c) 만약 c|m 이면 c|m·n

🎤 정리 2

✓ 두 정수 a(≥0)와 b(>0) 가 있을 때,
 a = b·q+r (0 ≤r<b) 이면 gcd(a,b) = gcd(b,r) 이다

野유클리드 알고리즘

🎤 유클리드 알고리즘(Euclid algorithm)

- ✔ 정리 2에 근거하여 gcd를 빠르게 찾는 알고리즘
- \checkmark gcd(a,b) = gcd(b, a mod b)
- ✔ a mod b: a를 b로 나눈 나머지 (a%b)

```
gcd(a,b)
if(b==0) return a;
return gcd(a, a%b);
```

♪ 실행 예

- \checkmark gcd(385, 175) = gcd(175, 35) = gcd(35, 0) = 35
- \checkmark gcd(15, 8) = gcd(8, 7) = gcd(7, 1) = gcd(1, 0) = 1

配 유클리드 알고리즘

▶ 처리 과정 및 알고리즘 (non-recursion)

a. Process

$$r_1 \leftarrow a; \quad r_2 \leftarrow b;$$
 (Initialization) while $(r_2 > 0)$ { $q \leftarrow r_1 / r_2;$ $r \leftarrow r_1 - q \times r_2;$ $r_1 \leftarrow r_2; \quad r_2 \leftarrow r;$ } gcd $(a, b) \leftarrow r_1$

b. Algorithm

확장된 유클리드 알고리즘

🎤 정리 3

✔ a, b가 양의 정수이면 gcd(a,b) = a·s + b·t 를 만족하는 정수 s, t가 존재한다.

🎤 확장된 유클리드 알고리즘(Extended Euclid Algorithm)

✔ gcd(a,b) = a·s + b·t 를 만족하는 정수 s, t를 찾아 준다. 처리과정

擊擊 확장된 유클리드 알고리즘

```
r_1 \leftarrow a; \qquad r_2 \leftarrow b;
 s_1 \leftarrow 1; \qquad s_2 \leftarrow 0;
                                            (Initialization)
 t_1 \leftarrow 0; \qquad t_2 \leftarrow 1;
while (r_2 > 0)
   q \leftarrow r_1 / r_2;
     r \leftarrow r_1 - q \times r_2;
                                                         (Updating r's)
     r_1 \leftarrow r_2; r_2 \leftarrow r;
     s \leftarrow s_1 - q \times s_2;
                                                         (Updating s's)
     s_1 \leftarrow s_2; s_2 \leftarrow s;
     t \leftarrow t_1 - q \times t_2;
                                                         (Updating t's)
    t_1 \leftarrow t_2; t_2 \leftarrow t;
   \gcd(a, b) \leftarrow r_1; \ s \leftarrow s_1; \ t \leftarrow t_1
```


q	r ₁	r ₂	r	s ₁	S ₂	S	t ₁	t ₂	t
	375	275		1	0		0	1	

- P gcd(375, 275) = P
 - √ r₁ = 375, r₂ = 275, s₁ = 1, s₂ = 0, t₁ = 0, t₂ = 1 ← 초기화
 - ✔ r₁ (375)을 r₂ (275)로 나눈 몫 q (1)를 구한다.

q	r ₁	r ₂	r	s ₁	S ₂	S	t ₁	t ₂	t
1	375	275		1	0		0	1	

- √ r₁ = 375, r₂ = 275, s₁ = 1, s₂ = 0, t₁ = 0, t₂ = 1 ← 초기화
- ✔ r₁ (375)을 r₂ (275)로 나눈 몫 q (1)를 구한다.
- \checkmark r = r₁ \bigcirc x r₂;

q	r ₁	r ₂	r	S ₁	S ₂	S	t ₁	t ₂	t
1	375	275	100	1	0		0	1	

ρ gcd(375, 275) = ρ

- ✔ $r_1 = 375$, $r_2 = 275$, $s_1 = 1$, $s_2 = 0$, $t_1 = 0$, $t_2 = 1$ ← 초기화
- ✔ r₁ (375)을 r₂ (275)로 나눈 몫 q (1)를 구한다.
- \checkmark r = r₁ \bigcirc x r₂; s = s₁ \bigcirc x s₂;

q	r ₁	r ₂	r	S ₁	S ₂	S	t ₁	t ₂	t
1	375	275	100	1	0	1	0	1	

- **▼** r₁ = 375, r₂ = 275, s₁ = 1, s₂ = 0, t₁ = 0, t₂ = 1 ← 초기화
- ✔ r₁ (375)을 r₂ (275)로 나눈 몫 q (1)를 구한다.
- \checkmark r = r₁ q x r₂; s = s₁ q x s₂; t = t₁ q x t₂;

q	r ₁	r ₂	r	S ₁	S ₂	S	t ₁	t ₂	t
1	375	275	100	1	0	1	0	1	-1

- **▼** r₁ = 375, r₂ = 275, s₁ = 1, s₂ = 0, t₁ = 0, t₂ = 1 ← 초기화
- ✔ r₁ (375)을 r₂ (275)로 나눈 몫 q (1)를 구한다.
- \checkmark r = r₁ q x r₂; s = s₁ q x s₂; t = t₁ q x t₂;
- ✔ r 이 0 이 아니므로 반복 계속

q	r ₁	r ₂	r	s ₁	S ₂	S	t ₁	t ₂	t
1	375	275	100	1	0	1	0	1	-1

$$✓$$
 $r_1 = 275$, $r_2 = 100$, $s_1 = 0$, $s_2 = 1$, $t_1 = 1$, $t_2 = -1$

q	r ₁	r ₂	r	s ₁	S ₂	S	t ₁	t ₂	t
1		275		1	0	1	0	1	-1
	275	100		0	1		1	-1	

- ✓ $r_1 = 275$, $r_2 = 100$, $s_1 = 0$, $s_2 = 1$, $t_1 = 1$, $t_2 = -1$
- ✔ r₁ (275)을 r₂ (100)로 나눈 몫 q (2)를 구한다.
- \checkmark r = r₁ q x r₂; s = s₁ q x s₂; t = t₁ q x t₂;
- ✔ r 이 0 이 아니므로 반복 계속

q	r ₁	r ₂	r	S ₁	S ₂	S	t ₁	t ₂	t
1		275	,	1	0	1	0	1	-1
2	275	100	75	0	1	-2	1	-1	3

q	r ₁	r ₂	r	S ₁	s ₂	S	t ₁	t ₂	t
	375					1			
_	275					-2	-		
	100 💆				-2		-	3	,
3	75 [×]	25	0	-2	3	-11	3 4	-4	13
	25	0		3	-11		-4	13	

✓
$$gcd(375, 275) = 25 = 375 \cdot (3) + 275 \cdot (-4)$$

▶ 다음 식을 만족하는 정수 x, y가 존재하는가?

✓
$$2x + y = 7$$

$$✓$$
 2x + 4y = 9

🎤 정리 4 (디오판토스 방정식)

✔ a, b, c가 정수일 때,

a·x + b·y = c 를 만족하는 정수 x, y가 존재 ↔gcd(a,b)|c

- ✔ 예: 85·x + 34·y = 51 을 만족하는 x, y를 구하라.

 - ◆ 확장된 유클리드 알고리즘을 이용하여gcd(85, 34) = 17 = (85)·(1) + 34·(-2)
 - **✓** 즉, (85)·(1) + 34·(-2) = 17 ------ 식 (2)
 - ✔ 17|51 이다. 정리 4에 의해 해가 존재
 - **▼** 51/17 = 3 이다.
 - ✓ 식(2) 양변에 x3(85)·(1)·(3) + 34·(-2)·(3) = (17)·(3) <--- 이는 식 (1)과 일치
 - ✔ 따라서 x = (1)·(3) = 3, y = (-2)·(3) = -6

❷ 일반화: a·x + b·y = c 를 만족하는 x, y를 구하라.

- \checkmark a·x + b·y = c
- ▼ 확장된 유클리드 알고리즘을 이용하여 gcd(a, b) = g = a·s + b·t
- ✔ 즉, a·s + b·t = g
- ✔ 여기서, glc 인지를 검사하여 해의 존재 여부를 판단
- **У** g|c 이면 k = c/g → c = k·g
- ✔ a·s + b·t = g 이므로 a·s·k + b·t·k = g·k = c
- ✔ 따라서, x = s·k, y = t·k

- ✔ 예: 85·x + 34·y = 51 을 만족하는 x, y를 구하라.
 - ♥ gcd(85, 34) = 17 = (85)·(1) + 34·(-2) ◆ 확장된 유클리드 알고리즘
 - \checkmark = (85)·(-1) + 34·(3) = (85)·(1) + 34·(-2) = (85)·(3) + 34·(-7) ...
 - \checkmark 17 = (85)·(1) + 34·(-2)

$$\rightarrow$$
 1 = (5)·(1) + 2·(-2)

$$\rightarrow$$
 1 = (5)·(3) + 2·(-7)

$$\rightarrow$$
 1 = (5)·(5) + 2·(-12)

$$\rightarrow$$
 1 = (5)·(7) + 2·(-17)

▶모듈러 연산(Modular Operations)

✔ 모듈러 연산(modular operation)

- ✔ a (mod n) 은 a를 n으로 나누었을 때 나머지를 의미한다.
 - $4 11 \pmod{7} = 4$
 - $4 11 \pmod{7} = 3$
 - $# 10 \pmod{5} = 0$
- ✓ a (mod n) = b (mod n) 을 만족하면 a와 b는 'congruent modulo n' 이라고 함

🎤 모듈러 연산의 표기

- 1) n|(a-b)라면
- 2) $a \pmod{n} \equiv b \pmod{n}$
- 3) $a \equiv b \pmod{n}$
- 4) a ≡ b (mod n) 그리고 b ≡ c (mod n) → a ≡ c (mod n)

- \rightarrow a = b (mod n)
- \rightarrow a = b (mod n)
- \rightarrow b = a (mod n)

모듈러 연산(Modular Operations)

🎤 모듈러 산술연산

- 1) $[a \pmod{n} + b \pmod{n}] \pmod{n} = (a+b) \pmod{n}$
- 2) $[a \pmod{n} b \pmod{n}] \pmod{n} = (a-b) \pmod{n}$
- 3) [a (mod n) \times b (mod n)] (mod n) = (a \times b) (mod n)

Ex: $3^{100} (mod \ 10) = ?$

```
3^{100} (mod \ 10) = [3^{50} (mod \ 10) \times 3^{50} (mod \ 10)] (mod \ 10)

3^{50} (mod \ 10) = [3^{25} (mod \ 10) \times 3^{25} (mod \ 10)] (mod \ 10)

3^{25} (mod \ 10) = [3^{12} (mod \ 10) \times 3^{12} (mod \ 10) \times 3] (mod \ 10)

3^{12} (mod \ 10) = [3^{6} (mod \ 10) \times 3^{6} (mod \ 10)] (mod \ 10)

3^{6} (mod \ 10) = [3^{3} (mod \ 10) \times 3^{3} (mod \ 10)] (mod \ 10)

3^{3} (mod \ 10) = 7
```

Professional 양성 과정

▶모듈러 연산(Modular Operations)

🎤 모듈러 산술연산

- 1) $[a \pmod{n} + b \pmod{n}] \pmod{n} = (a+b) \pmod{n}$
- 2) $[a \pmod{n} b \pmod{n}] \pmod{n} = (a-b) \pmod{n}$
- 3) [a (mod n) \times b (mod n)] (mod n) = (a \times b) (mod n)

Ex: $3^{100} (mod \ 10) = ?$

```
3^{100} (mod\ 10) = [3^{50} (mod\ 10) \times 3^{50} (mod\ 10)] (mod\ 10) \rightarrow 1

3^{50} (mod\ 10) = [3^{25} (mod\ 10) \times 3^{25} (mod\ 10)] (mod\ 10) \rightarrow 9

3^{25} (mod\ 10) = [3^{12} (mod\ 10) \times 3^{12} (mod\ 10) \times 3] (mod\ 10) \rightarrow 3

3^{12} (mod\ 10) = [3^{6} (mod\ 10) \times 3^{6} (mod\ 10)] (mod\ 10) \rightarrow 1

3^{6} (mod\ 10) = [3^{3} (mod\ 10) \times 3^{3} (mod\ 10)] (mod\ 10) \rightarrow 9

3^{3} (mod\ 10) = 7
```

野 모듈러 연산(Modular Operations)

- $P Z_n = \{0,1,2,3, \cdots, (n-1)\}$
 - ✔ 임의의 Z(정수)를 n으로 나누었을 때의 나머지 집합

🎤 덧셈의 역원

- ✔ 두 정수 a, b가 다음을 만족하면 Z_n 상에서 서로가 덧셈에 대한 역원이다.
- \checkmark a + b \equiv 0 (mod n)

🎤 곱셈의 역원

- ✔ 두 정수 a, b가 다음을 만족하면 Z_n 상에서 서로가 곱셈에 대한 역원이다.
- \checkmark a x b \equiv 1 (mod n)

+

2 3

5

6

☑ 모듈러 연산(Modular Operations)

₹ Z₇ 에서의 덧셈, 곱셈 그리고 역원

+	0	1	2	3	4	5	6	
0	0	1	2	3	4	5	6	
1)	-	2	ന	4	5	6	0 K	
2	2	ന	4	5	6	0	1	
3	3	4	5	6	0	1	2	
4	4	5	6	0	1	2	3	
5	5	6	2	ന	4			
6	6	0	1	2	3	4	5	
		(4X2)(Mogy):	= \				

((a)	7진	범	덧섣	ļ
	\sim	' ' _		\sim $-$,

0	1	2	3	4	/5	6
0	0	0	0	0	0	0
0	1	2	ന	4/	5	6
0	2	4	6	1	ന	5
0	3	6	2	5	1	4
0	4	1	5	2	6	3
0	5	ന	1	6	4	2
0	6	5	4	3	2	1

(b) 7진법 곱셈

(6+1)(nod97=0
--------	---------

W	-W	W^{-1}
0	0	1
1	6	1
2	5	4
3	4	5
4	3	2
5	2	3
6	1	6

(c) 7진법 덧셈과 곱셈의 역원

☑ 모듈러 연산(Modular Operations)

₹ Z₈ 에서의 덧셈, 곱셈 그리고 역원

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	თ	4	5	6	7	0	1
3	ფ	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

*	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

W	-W	1/w
0	0	
1	7	1
2	6	
3	5	3
4	4	
5	3	5
6	2	
7	1	7
5	3	

🏲 합동식(congruence equation)

🎤 합동식

- ✔ 정수 a, b, n이 주어질 때, a·x = b (mod n) 을 만족하는 x는?
- ✔ 즉, a·x 를 n 으로 나눌 때 나머지가 b가 되는 x 값은?
- ✔ 예를 들어, 3x = 1 (mod 5) 를 만족하는 x는 { ... 2, 7, 12, ...}이다.
- ✔ 즉, x = 2 (mod 5) 로 쓸 수 있다.
- ✔ 참고: 18x = 16(mod 7) → 4x = 2(mod 7)

📝 정리 5

- **✓** ax = b (mod n) 을 만족하는 x가 존재 ↔ gcd(a,n) | b
- ✔ 이는 정리 4와 같은 의미

$$0ix = b(mod n)$$

$$\Rightarrow an = n \cdot g + b, \quad ax - ng = b, \quad ax + ny = b \Rightarrow gcd(a, n)$$

$$(y = -g)$$

② 합동식

P 예:

- 3x = 2 (mod 5) 를 만족하는 x를 구하자. → x = ?? (mod 5)
- ✔ gcd(3,5)|2 이므로 해가 존재
- ✓ (mod 5) 에서 3의 곱에 대한 역원 3⁻¹ 을 구하자.
- ✔ 그러면 3·3⁻¹·x = 2·3⁻¹(mod 5) → x = 2·3⁻¹(mod 5) 이 된다.
- ✓ (mod 5) 에서 3의 곱에 대한 역원 3⁻¹ 을 어떻게 구하나?
- ✔ 3⁻¹는 3·a = 1(mod 5) 를 만족하는 a 이다.
- ✔ 이는 3·a + 5·b = 1 을 만족하는 일차디오판토스 식의 해를 구하는 것과 같다.
- ✔ 이는 확장된 유클리드 알고리즘을 사용하여 구할 수 있다.
- ✔ a = 2, b = -1 이 3·a + 5·b = 1 을 만족시킨다.
- ✔ 즉 (mod 5)에서 곱에 대한 3의 역원 3⁻¹ = 2 이다.
- **v** $x = 2 \cdot 3^{-1} \pmod{5}$ **→** $x = 2 \cdot 2 \pmod{5}$ **→** $x = 4 \pmod{5}$

중국인 나머지 정리(Chinese Remainder Theorem)

CRT 기원: '3으로 나누면 10 남고 5로 나누면 20 남고 7로 나누면 30 남는 수 중에서 제일 작은 수는?'

- \checkmark $x \equiv a_1 \pmod{m_1}$
- \checkmark $x \equiv a_2 \pmod{m_2}$
 -
- \checkmark $x \equiv a_r \pmod{m_r}$

중국인의 나머지 정리: m_1 , m_2 , ..., m_r 이 양의 정수이면서 서로 소라고 하자. 임의의 정수 a_1 , a_1 , ..., a_r 에 대하여 다음 r 개의 합동식 $x=a_i$ (mod m_i) (i=1,2,...,r) 은 공통해를 같고 서로 다른 두 해의 차이는 $m_1*m_2*...*m_r$ 로 나누어 떨어진다.

중국인 나머지 정리(Chinese Remainder Theorem)

- \checkmark x = a₁ (mod m₁)
- \checkmark x = a₂ (mod m₂)
- \checkmark x = a_r (mod m_r)

▶ 문제를 해결하는 큰 흐름

- ▼ 첫 두 식을 동시에 만족하는 x 를 구해 x ≡ A(mod [m₁ m₂]) 로 둠
- ✔ 앞에서 구한 식과 세번째 식을 동시에 만족하는 식을 구해 $x = B(mod [m_1, m_2, m_3]) 둠$

이 과정을 반복

多국인 나머지 정리

♪ 다음 연립방정식의 해를 구하라.

$$x \equiv 5 \pmod{6}$$
 $4(1)$
 $x \equiv 3 \pmod{10}$
 $4(2)$
 $x \equiv 8 \pmod{15}$
 $4(3)$
 $4(1) \Rightarrow x = 6s + 5$
 $4(4)$
 $4(4) \otimes 4(2) \Rightarrow 6s + 5 \equiv 3 \pmod{10} \Rightarrow 6s \equiv 8 \pmod{10}/2$
 $3s \equiv 4 \pmod{5} \Rightarrow s \equiv 3 \pmod{5}$
 $4(5) \Rightarrow 3s \equiv 4 \pmod{5} \Rightarrow s \equiv 3 \pmod{5}$
 $4(5) \Rightarrow 3s \equiv 3 \pmod{5}$
 $4(5) \Rightarrow 3s \equiv 3s \pmod{5}$
 $4(5)$

多국인 나머지 정리

♪ 다음 연립방정식의 해를 구하라.

$x \equiv 9 \pmod{12}$	식(1)
$x \equiv 0 \pmod{9}$	식(2)
$x \equiv 3 \pmod{15}$	식(3)
$x \equiv 13 \pmod{16}$	식(3)
식(1) ⇒ x = 12s + 9	식(5)
식(5) & 식(2) \Rightarrow 12s + 9 \equiv 0 (mod 9) \Rightarrow 4s \equiv 0 (mod 3) \Rightarrow s \equiv 3t	식(6)
식(6)을 식(5)에 대입 ⇒ x = 36t + 9	식(7)
식(7) & 식(3) \Rightarrow 36t + 9 = 3 (mod 15) \Rightarrow t = 4 (mod 5)	
\Rightarrow t = 5u + 4	식(8)
식(8)을 식(7)에 대입 ⇒ x = 180u + 153	식(9)
식(9) & 식(4) ⇒ 180u + 153 = 13 (mod 16)	` '
\Rightarrow u = 1 (mod 4) \Rightarrow u = 4v + 1	식(10)
· ,	•

4(10)을 4(9)에 대입 $\Rightarrow x = 720v + 333 \Rightarrow x = 333 \pmod{720}$

🖍 오일러 함수(Euler Function)

- P 오일러 함수 Φ(n) (Euler Φ function)
 - ✔ n 보다 작고 n과 서로소인 양의 정수의 개수. Φ(1) = 1로 정의됨

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
φ(n)	1	1	2	2	4	2	6	4	6	4	10	4	12	6	8
n	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
φ(n)	8	16	6	18	8	12	10	22	8	20	12	18	12	28	8

🥬 정리 7

✓ n과 m이 서로소라면 Φ(nm) = Φ(n)Φ(m)

🎤 정리 8

✔ p가 소수이면 Φ(p^k) = p^k - p^{k-1}

🎤 정리 9(정리 8의 따름 정리)

🗱 오일러 함수(Euler Function)

✓ 정리 10

일반적으로,
$$a=p_1^{m_1}p_2^{m_2}...p_k^{m_k}$$
이라 하면,
$$\Phi(a)=a\Big(1-\frac{1}{p_1}\Big)\Big(1-\frac{1}{p_2}\Big)...\Big(1-\frac{1}{p_k}\Big)$$
가 된다.

- ▼ 정리 11(오일러 정리)
 - ✔ 양수 m에 대해 gcd(a, m) = 1 이면 a^{Φ(m)} = 1 (mod m)
- ▼ 정리 12(페르마의 소정리)
 - ✓ p가 소수이면, (0 < a < p) 인 모든 a에 대해 a^{p-1} = 1 (mod p)

野RSA 알고리즘

♠ RSA 알고리즘 개요

- ✔ 1978년 발표된 공개키 암호 알고리즘
- ✔ Ron Rivest, Adi Shamir, Leonard Adleman 의 이름 첫 글자를 모음

✔ RSA 알고리즘

- 1. 서로 다른 두 개의 소수 p, q를 선택한다.
- 2. $n = p \cdot q$
- 3. Φ(n)=Φ(p) Φ(q)=(p-1)(q-1)을 계산
- 4. gcd(e, Φ(n))=1 (1 < e < Φ(n)인 e를 선택한다.
- 5. d ≡ e⁻¹ (mod Φ(n)) 을 계산. 즉, d·e ≡ 1 (mod Φ(n)) 인 d를 찾음
- ☞ (n, e)를 공개키로, (n, d)를 개인키로 저장함
- ☞ 전송할 message가 m 이면, 암호문 c = me (mod n), m = cd (mod n) 로 계산
- ☞ 단계 1의 소수 p, q는 밀러-라빈(Miller-Rabin) 알고리즘을 이용하여 구한다.
- ☞ 단계 4의 e는 유클리드 알고리즘을 이용하여 구한다.
- ☞ 단계 5의 d는 확장된 유클리드 알고리즘을 이용하여 구한다.

Professional 양성 과정 43

配 RSA 알고리즘 실행 예

- 1. p = 61, q = 53
- 2. $n = 61 \times 53 = 3233$
- 3. $\Phi(3233) = \Phi(61) \times \Phi(53) = 62 \times 52 = 3120$
- 4. 3120과 서로소인 17을 e 선택 (1 < e < 3120)
- 5. d = 2753 을 얻음(확장된 유클리드 알고리즘 이용하여 가능)

즉, 공개키: (3233, 17) 개인키: (3233, 2753)

만약 m = 65 라면, 암호문 c = 65¹⁷ (mod 3233) = 2790 을 얻음

암호문 2790으로부터 원문 복원은 2790²⁷⁵³ (mod 3233) = 65 = m

♪ RSA 알고리즘

- 1. 서로 다른 소수 p, q를 선택한다.
- 2. $n = p \cdot q$
- 3. $\Phi(n)=\Phi(p)$ $\Phi(q)=(p-1)(q=1)$ 을 계산
- 4. gcd(e, Φ(n))=1 (1 < e < Φ(n))인 e 를 선택한다.
- 5. d = e⁻¹ (mod Φ(n)) 을 계산. 즉, d·e = 1 (mod Φ(n) 인 d를 찾음

(n, e)를 공개키로, (n, d)를 개인키로 저장함

 $c = m^e \pmod{n}$ $m = c^d \pmod{n}$

野RSA 알고리즘

▶ RSA 알고리즘 정확성 증명

- ✔ 이 알고리즘의 정확성은 페르마의 소정리(정리 12)에 근거한다.
- ✓ m^{ed} ≡ m (mod pq)을 보이고자 한다.(여기서 p, q는 서로 다른 소수이며 ed ≡ 1 (mod Φ(pq))
- ✔ Φ(pq) = (p-1)(q-1) 이므로 ed 1 = h(p-1)(q-1) (h > 0) 로 쓸 수 있다.
- ✓ m^{ed} = m (mod pq) 가 참임을 보이기 위해 m^{ed} = m (mod p)이 참이고 m^{ed} = m (mod q)이 참임을 각각 보이고자 한다. (정리 5(f) 참조)
- ✓ m^{ed} = m (mod p) 이 참임을 보이자. 이는 두 경우로 나누어 생각: 경우 (1) m = 0 (mod p), 경우 (2) m ≠ 0 (mod p)
- ✔ 경우 (1): m은 p의 배수이고, med = 0 = m (mod p) 이 되어 참이다.
- ◀ 경우 (2): $m^{ed} = m^{(ed-1)} \cdot m = m^{h(p-1)(q-1)} \cdot m = (m^{p-1})^{h(q-1)} \cdot m = (1)^{h(q-1)} \cdot m = m \pmod{p}$
- ✔ (m^{p-1}) 를 1 로 바꾸기 위해 페르마의 소정리를 사용했다.
- ✔ 같은 방법으로 med = m (mod q) 가 참임을 보일 수 있다.
- \checkmark m^{ed} = m (mod p), m^{ed} = m (mod q) \rightarrow m^{ed} = m (mod pq) (정리 5(f))
- \checkmark $\stackrel{\triangle}{\neg}$, $(m^e)^d \equiv m \pmod{n}$

Professional 양성 과정 45