Topology

K

December 20, 2022

Contents

1	Rings	5
	1.1 Definition and Theorems	5
	1.2 Exercises and Notes	5

4 CONTENTS

Chapter 1

Rings

1.1 Definition and Theorems

Definition 1 (Ring). A ring is a set A equipped with two binary operations + (addition) and \cdot (multiplication) satisfying the following three sets of axioms, called the ring axioms.

- 1. (A, +) is an abelian group.
- 2. (A, \cdot) is a semigroup.
- 3. Multiplication is distributive with respect to addition, meaning that
 - $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in A$ (left distributivity).
 - $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in A$ (right distributivity).

A ring is called unitary if it contains the multiplicative identity and commutative if multiplication is commutative.

Definition 2 (Ideal).

Definition 3 (Nilpotent Element and Nilradical). An element x of a ring A is called nilpotent if there exists some positive integer $n \in \mathbb{N}^+$, called the index or the degree, such that $x^n = 0$.

The set of all nilpotent elements is called the nilradical of the ring and is denoted by Nil(A).

1.2 Exercises and Notes

Example 3.1. Let *K* be a field and $A = K[X,Y]/(X - XY^2, Y^3)$.

1. Compute the nilradical Nil(A).

Solution. Denote $(X - XY^2, Y^3) =: \mathfrak{a}$.

$$2X + \mathfrak{a} = XY^2 + \mathfrak{a}$$
 because $X - XY^2 \Rightarrow X \sim XY^2$.
 $= XY^2Y^2 + \mathfrak{a}$ because $XY^2 - XY^2Y^2 = Y^2(X - XY^2) = 0 \Rightarrow XY^2 \sim XY^2Y^2$