MAD-CB

Análise de Componentes Principais – Principal Components Analysis (PCA)

Redução em Número de Variáveis

- Para conjuntos de dados grandes com muitas variáveis
- Necessidade/desejo reduzir dimensões para um número menor coerente
 - Facilidade de manipulação do conjunto
 - ► Coerência de interpretação
- Adjunto útil para técnicas de análise genômicas
 - NGS, RNASeq, DNASeq
 - Número enorme de genes, mRNAs, etc.
- Poder de PCA para impôr um ordem aparante num grande corpo de variáveis

Historia de PCA

- Inventado por Karl Pearson em 1901
- Resumo de padrões de correlações entre variáveis observados
 - Com objetivo de reduzir o número das variáveis
- Componentes são combinações lineares das variáveis
- Semelhante com Análise de Fatores
 - Diferença:
 - Análise de Fatores: Quais processos subjacentes teóricos podiam ter criados essas correlações?
 - ▶ PCA: Simples aglomeração das variáveis correlacionadas
- PCA uma transformação ortogonal de dados correlacionados
 - Transformação ortogonal uma transformação que leva as variáveis a não ter correlação

O Que Faz PCA?

 Produz uma matriz de carregamentos (pesos) que são usadas para determinar pontuações (scores) para todos os casos combinando as variáveis que compõem o componente

Quando Usamos PCA?

• Quando queremos ter menos variáveis que colecionou originalmente para fazer análises subsequentes

Quantos componentes precisamos?

- Depende do ...
 - 1 número de variáveis
 - 2 grau de correlação entre elas
- Nós instruirmos o software sobre o número de componentes
 - Baseado num estudo preliminar e o "screeplot"
- Com dados altamente correlacionados, precisa menos componentes para enquadrar a variância no modelo
- Com dados menos correlacionados, precisa mais
- Procedimento de testar para um número "ideal" dos componentes

Componentes

- O algoritmo calcula o número desejado de componentes
- Começa com o componente que maximiza a variância explicada (PC1)
 - Por causa que minimiza a soma dos quadrados das distâncias entre os pontos e a linha que o componente descreve
- 2º componente é outra combinação linear que maximiza variância
 - ▶ MAS, a direção dele é perpendicular ao PC1, que quer dizer ...
 - é ortogonal a PC1 (rotação dos eixos do componente)
 - elimina a correlação incluído em PC1

Um Pouco Dentro de Caixa Preta de PCA

- PCA funciona como aplicação da técnica de álgebra linear SVD
- Decomposição em Valores Singulares
 - Singular Value Decomposition
 - Fatoração de uma matriz de números reais
- Uma matriz X pode ser fatorada em 3 submatrizes:

$$X = UDV^T$$

- ullet Se os dados foram normalizados, a matriz ${\cal T}$ têm os componentes principais
- T é uma matriz ortogonal

Matriz Ortogonal – 2 Caracteristicas

- Matriz sempre pode ser invertida $[X^{-1} = X^T]$
- ② Produto da matriz e sua transposta é a matriz de identidade $[XX^T = I]$

Matriz de Identidade (I)

- Matriz quadrada com 1's nos diagonais e 0's nas outras posições
- Matriz de Identidade 3 x 3:

$$I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Requisitos de Dados

- Dados devem ser numéricos
 - Variáveis categóricas não podem ser analisadas
- Normalidade
 - Não precisam ser normais
 - Se foram normais, resultado vai explicar mais da variância
- Outliers
 - Outliers podem exercer uma influência exagerada sobre o resultado
- Linearidade
 - Componentes são combinações lineares das variáveis
 - Baseado em correlação que é linear em si

Tamanho de Amostras

- Antigamente, a "regra de ouro" foi muitos casos por cada variável no PCA
 - Pelo menos 5 por variável
- Hoje estamos mais agnóstico sobre a quantidade; é a qualidade que conta
- Mas, mais é melhor
- Amostras pequenas estão menos estáveis

2 Algoritmos entre Muitos

- principal do pacote psych
- prcomp do base R
- Outros programas
 - corrplot visualização de matriz de correlação
 - screeplot visualização do impacto de cada componente (2 versões)
 - biplot de pacote psych visualização de carregamentos dos 1º dois componentes

Mergulhar Num Exemplo

- Dados de Câncer de Mama de Wisconsin de novo
- Características dos tumores de mama
- Variável dependente: diagnose (diag)
 - Que não nos interesse aqui
 - Só queremos estudar os covariáveis

Carregar Dados e Eliminar NA's

- 699 casos de 9 (co)variáveis
- Em bare_nuclei, valor imputado no lugar de "?" será a média da variável

Explorar a Matriz de Correlações

- Construa uma matriz (formato de tibble) de correlações entre as covariáveis
- Faça um gráfico que mostra elas

Matriz de Correlação

```
## # A tibble: 9 x 9
       clump uniform_size uniform_shape marg_adhes unit_cell_size
##
##
       <dbl>
                   <dbl>
                               dbl>
                                         <dbl>
                                                      dbl>
               0.6449125
                           0.6545891 0.4863562
                                                  0.5218162
## 1 1.0000000
  2 0.6449125 1.0000000
                           0.9068819 0.7055818 0.7517991
## 3 0.6545891
               0.9068819
                            1.0000000
                                     0.6830792
                                                  0.7196684
## 4 0.4863562 0.7055818
                           0.6830792 1.0000000
                                                  0.5995991
## 5 0.5218162 0.7517991
                           0.7196684 0.5995991 1.0000000
                                                  0.5812613
## 6 0.5872997 0.6868014
                           0.7096058
                                     0.6650492
## 7 0.5584282 0.7557210
                           0.7359485 0.6667153
                                                  0.6161018
## 8 0.5358345 0.7228648
                           0.7194463 0.6033524
                                                  0.6288807
## 9 0.3500339 0.4586931
                           0.4389109 0.4176328
                                                  0.4791015
## # ... with 4 more variables: bare nuclei <dbl>, bland chroma <dbl>,
## # normal nuc <dbl>, mitosis <dbl>
```

Média de Correlações

```
##
            rowname
                    meancors
       uniform_size 0.7370284
## 1
## 2
     uniform shape 0.7297922
## 3
      bland chroma 0.6687620
##
    unit cell size 0.6553587
## 5
         normal nuc 0.6535505
         marg adhes 0.6474851
## 6
## 7
        bare_nuclei 0.6468905
## 8
              clump 0.5932523
            mitosis 0.4728464
## 9
```

Gráfico de Correlações

Gráfico Alternativo - psych::pairs.panels

Construir PCA Inicial – Para Testar # de Componentes

```
set.seed(42)
bcpca1 <- principal(bcmod, nfactors = 8, rotate = "none", missing = TRUE)</pre>
```

• nfactors = 8 - máximo possível; = 1 a menos do número de variáveis

Screeplot do Primeiro Modelo – do Pacote psych

scree(bccorr, main = "Scree Plot de principal")

Scree Plot de principal

factor or component number

Screeplot do Primeiro Modelo – do base R

Scree Plot de base

Como Julgar o Número de Componentes do Modelo Inicial no "Scree plot"

- Primeiro número de componente com "Eigen value" abaixo de 1
 - scree do pacote psych
- Primeiro número de componente depois de "cotovelo" no gráfico
 - ▶ screeplot do base R
- Conclusão
 - Pode trabalhar com 2 componentes

1º Modelo em Números

bcpca1\$loadings

```
##
## Loadings:
##
                 PC1
                        PC2
                               PC3
                                      PC4
                                             PC5
                                                   PC6
                                                          PC7
                                                                 PC8
## clump
                  0.735 - 0.126
                                0.633
                                                   -0.152
                                                                  0.119
## uniform size
                 0.925
                                      -0.139
                                                          -0.108 -0.231
## uniform shape 0.917
                                      -0.117
                                                                 -0.302
## marg adhes
                  0.808
                               -0.312 0.316
                                                   -0.376
## unit_cell_size 0.816 0.146
                                     -0.267 - 0.413
                                                                  0.233
## bare nuclei
               0.809 -0.224 0.364
                                                    0.334 0.209
## bland chroma 0.840 -0.202 -0.143
                                             0.155 0.140 -0.383
                                                                  0.206
## normal nuc
                 0.815
                                      -0.304 0.400
                                                           0.264
                                      0.169
## mitosis
                  0.557 0.799
##
##
                   PC1
                         PC2
                               PC3
                                     PC4
                                          PC5
                                                PC6
                                                      PC7
                                                            PC8
                 5.890 0.777 0.539 0.463 0.380 0.306 0.295 0.262
## SS loadings
## Proportion Var 0.654 0.086 0.060 0.051 0.042 0.034 0.033 0.029
## Cumulative Var 0.654 0.741 0.801 0.852 0.894 0.928 0.961 0.990
```

Construir Modelo com 2 Componentes

Resumo do Modelo

```
summary(bcpca2)
```

```
##
## Factor analysis with Call: principal(r = bcmod, nfactors = 2, rotate = "none", missing = TRUE)
##
## Test of the hypothesis that 2 factors are sufficient.
## The degrees of freedom for the model is 19 and the objective function was 0.5
## The number of observations was 699 with Chi Square = 346.31 with prob < 5.9e-62
##
##
##
## Toot mean square of the residuals (RMSA) is 0.05</pre>
```

Carregamentos das Variáveis sobre os Componentes – bcpca2

```
bcpca2$loadings
```

```
##
## Loadings:
##
                 PC1
                        PC2
## clump
                  0.735 - 0.126
## uniform_size
                 0.925
## uniform shape
                 0.917
## marg adhes
                 0.808
## unit cell size 0.816 0.146
## bare nuclei 0.809 -0.224
## bland_chroma 0.840 -0.202
## normal nuc
               0.815
## mitosis
                  0.557 0.799
##
##
                   PC1
                         PC2
  SS loadings
                 5.890 0.777
## Proportion Var 0.654 0.086
## Cumulative Var 0.654 0.741
```

Modelo Suficiente Bom?

- Descreve 74.1% da variância
 - ▶ OK, mas não muito bom
- Se aumentamos até 3 componentes Pode aumentar proporção da variância descrita até 80%
- Porém vou continuar com 2 componentes para facilitar a apresentação

Construir Modelo Final - 2 Componentes com Rotação

- Agora, testar o modelo sem e com a rotação varimax
 - varimax: rotação que maximiza a diferença entre os componentes
 - Facilita interpretação dos componentes
- Conseguimos reduzir o número de variáveis de 9 até 2 (ou 3)

Modelo 2 – com Rotatção

Modelo 3 – sem Rotatção – Carregamentos

bcpca2r\$loadings

```
##
## Loadings:
##
                 RC1
                       RC2
## clump
                 0.725 0.172
## uniform size 0.868 0.323
## uniform shape 0.873 0.290
## marg_adhes
                 0.758 0.281
## unit cell size 0.694 0.454
## bare nuclei 0.832 0.110
## bland chroma 0.852 0.143
## normal nuc 0.742 0.339
                 0.200 0.954
## mitosis
##
##
                   RC1
                         RC2
  SS loadings
                 5.106 1.560
## Proportion Var 0.567 0.173
## Cumulative Var 0.567 0.741
```

Leitura do Biplot

- Eixos a esquerda, fundo (ticks em preto)
 - Pontuações no cada componente para os casos
- Eixos a direta, acima (ticks em vermelho)
 - Carregamentos das variáveis

Biplot dos Componentes

```
biplot(bcpca2r, main = "Biplot -- Câncer de Mama -- v.2r", pch = 19)
```


Como Usamos os Resultados da PCA?

Sistema calcula pontuação para cada caso (paciente) para cada componente

$$P_{caso,pc} = L_{v1,pc} * V_{v1,pc} + L_{v2,pc} * V_{v2,pc} + ... + L_{vn,pc} * V_{vn,pc}$$

- onde P= pontuação, pc= componente, L= Carregamento, v1...vn= variáveis, V= valor da variável
- Cada caso terá uma pontuação para cada componente
 - Como o componente funcionou como uma variável
- Carregado no elemento \$scores do modelo (neste caso, bcpca2r)
- Precisa lembrar que os valores da PCA são normalizados

Pode Pôr as Pontuações na Estrutura de Dados para Usar nas Análises Subsequentes

• Mais, restorar os identificadores ao tibble

```
bcid <- as_tibble(bc$sample_code_number)
colnames(bcid) <- 'id'
compscores <- as_tibble(bcpca2r$scores)
bcpcdados <- bind_cols(bcid, bcmod, compscores)
glimpse(bcpcdados)</pre>
```

```
## Observations: 699
## Variables: 12
## $ id
                    <int> 1000025, 1002945, 1015425, 1016277, 1017023, 10...
                    <dbl> 5, 5, 3, 6, 4, 8, 1, 2, 2, 4, 1, 2, 5, 1, 8, 7,...
## $ clump
## $ uniform size
                    <dbl> 1, 4, 1, 8, 1, 10, 1, 1, 1, 2, 1, 1, 3, 1, 7, 4...
## $ uniform_shape
                   <dbl> 1, 4, 1, 8, 1, 10, 1, 2, 1, 1, 1, 1, 3, 1, 5, 6...
                    <dbl> 1, 5, 1, 1, 3, 8, 1, 1, 1, 1, 1, 1, 3, 1, 10, 4...
## $ marg adhes
## $ unit_cell_size <dbl> 2, 7, 2, 3, 2, 7, 2, 2, 2, 2, 1, 2, 2, 2, 7, 6,...
## $ bare_nuclei
                    <dbl> 1.000000, 10.000000, 2.000000, 4.000000, 1.0000...
## $ bland_chroma
                    <dbl> 3, 3, 3, 3, 3, 9, 3, 3, 1, 2, 3, 2, 4, 3, 5, 4,...
                    <dbl> 1, 2, 1, 7, 1, 7, 1, 1, 1, 1, 1, 1, 4, 1, 5, 3,...
## $ normal nuc
                    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1,...
## $ mitosis
## $ RC1
                    <dbl> -0.5090005, 0.7988633, -0.5689635, 0.8134106, -...
## $ RC2
                    <dbl> -0.34231373, -0.33805006, -0.33023349, -0.33338...
```

Exemplo 2

Verdadeiro Projeto de Mestrado

- Medidas de habilidades cognitivas numa amostra de pacientes
- 74 testes psicológicos administrados aos pacientes
- Para fazer parte de uma análise ANOVA com outras variáveis não-neurocientíficas
- Com PCA, reduzimos os 74 testes em 6 componentes.

Carregar os Dados

load("excog.RData")
glimpse(cogtest)

\$ qi_verbal

\$ qi_exec ## \$ ravlt_a1

 Dados já reduzidos aos numéricas que mostram valores "raw" dos testes (33 vars + id)

<dbl> 64, 63, 81, 78, 80, 91, 74, 95, 82, 74, 116...<dbl> 75, 63, 83, 66, 67, 97, 73, 92, 89, 66, 120...

<dbl> 6, 6, 4, 6, 7, 3, 6, 7, 4, 3, 9, 6, 2, 3, 5...

```
## Observations: 21
## Variables: 34
## $ codigo
                        <fctr> SAA25, SAA34, SAA38, SAA24, SAA29, SAA04, ...
                        <dbl> 1, 1, 1, 2, 2, 3, 3, 3, 6, 6, 7, 7, 7, 8, 1...
## $ srq
## $ time sec tmt a
                        <dbl> 43, 34, 55, 38, 52, 71, 72, 37, 42, 53, 15,...
## $ time sec tmt b
                        <dbl> 144, 66, 207, 254, 409, 275, 290, 74, 135, ...
## $ time_stroop_a
                        <dbl> 16, 22, 17, 22, 14, 15, 34, 13, 21, 17, 11,...
                        <dbl> 22, 23, 43, 26, 17, 20, 35, 18, 22, 27, 12,...
## $ time_stroop_b
## $ time stroop c
                        <dbl> 31, 35, 51, 63, 40, 30, 49, 22, 44, 33, 20,...
## $ total fig rev imed <dbl> 31.0, 27.0, 26.0, 26.0, 28.0, 34.5, 23.5, 3...
                        <dbl> 17.5, 10.5, 9.0, 13.0, 9.5, 19.0, 7.0, 20.5...
## $ total_fig_rev_mem
## $ dod total
                        <dbl> 7, 8, 8, 4, 6, 6, 6, 4, 10, 4, 11, 8, 5, 8,...
                        <dbl> 7, 3, 4, 4, 3, 3, 3, 5, 6, 4, 5, 7, 4, 3, 5...
## $ doi total
## $ digit_total
                        <dbl> 14, 11, 12, 8, 9, 9, 9, 9, 16, 8, 16, 15, 9...
## $ cod total
                        <dbl> 30, 38, 19, 44, 32, 38, 26, 56, 29, 40, 64,...
## $ proc simb total
                        <dbl> 15, 19, 11, 17, 14, 21, 17, 28, 18, 18, 39,...
## $ ivp
                        <dbl> 92, 100, 97, 108, 97, 116, 105, 124, 100, 1...
                        <dbl> 22, 17, 36, 32, 27, 44, 27, 38, 35, 31, 68,...
## $ vocab_total
## $ cubos total
                        <dbl> 14, 10, 6, 6, 6, 16, 3, 20, 22, 12, 47, 52,...
                        <dbl> 14, 16, 16, 19, 26, 22, 16, 35, 22, 18, 35,...
## $ semelh_total
```

Examinar Correlações entre as Variáveis

Tabela das Médias das Correlações entre as Variáveis

kable(meancorsp)

rowname	meancors
ravlt_a5	0.2668321
cod_total	0.2527272
ravlt_a4	0.2518546
semelh_total	0.2467428
ravlt_a6	0.2465416
ravlt_a3	0.2434324
qi_verbal	0.2341593
ravlt_a2	0.2341515
time_stroop_b	-0.2325217
rec_total	0.2271888
ravlt_a7	0.2230976
ivp	0.2148754
total_fig_rey_imed	0.2147870
qi_exec	0.2094449
cubos_total	0.2045991
lot	0.2020018
total_fig_rey_mem	0.1990659
vocab_total	0.1943698
ravlt_b1	0.1923398
time_stroop_a	-0.1764982
proc_simb_total	0.1752442
doi_total	0.1748589
time_sec_tmt_a	-0.1651310
time_sec_tmt_b	-0.1644411
ravlt_a1	0.1583766
itr_a6/a5	0.1540949
digit_total	0.1468896
time stroop c	-0.1329364

```
corrplot(cor(cogtest[,-1], method = "spearman"),
    method = "square", type = "lower",
    tl.cex = .5, tl.col = "black")
```


Resultados de Correlação

- Fora de alguns grupos pequenos de variáveis, elas não têm correlações muito altas
- Com correlações mais baixos, pode esperar a necessidade de mais componentes
- NB o uso de quadrados invés de elipses espaços muito menores
- Usar algoritmo prcomp de base R para fazer os calculos
 - Precisamos especificar a normalização dos dados
 - ▶ center = TRUE, scale = TRUE

Construir um Modelo Inicial para Testar o Número de PCs

```
pcacalc <- cogtest[,2:ncol(cogtest)] ## criar dados sem o id (factor, não número)
set.seed(42)
pcafit1 <- prcomp(pcacalc, rank = 10, scale = TRUE, center = TRUE)</pre>
```

Resumo do Modelo

```
summary(pcafit1)
```

```
## Importance of first k=10 (out of 21) components:
##
                             PC1
                                    PC2
                                            PC3
                                                    PC4
                                                            PC5
                                                                    PC6
## Standard deviation
                         3.5106 2.5304 1.72474 1.43068 1.38330 1.15220
## Proportion of Variance 0.3735 0.1940 0.09014 0.06203 0.05799 0.04023
## Cumulative Proportion 0.3735 0.5675 0.65764 0.71967 0.77765 0.81788
##
                              PC7
                                      PC8
                                              PC9
                                                     PC10
## Standard deviation
                          1.04030 0.98876 0.90057 0.86275
## Proportion of Variance 0.03279 0.02963 0.02458 0.02256
## Cumulative Proportion 0.85068 0.88030 0.90488 0.92744
```

Screeplot

```
screeplot(pcafit1, type = "l", ylim = c(1,6), main = "Screeplot - pcafit1")
abline(v = 4, col = "cornflowerblue")
abline(v = 6, col = "cornflowerblue")
```

Screeplot - pcafit1

Quantos Componentes?

- Cotovelos ocorrem aos 4 e aos 6 componentes (linhas azuis)
- Pode usar um ou outro
- Porém, por causa de baixo número de casos (21), prefiro usar 6 componentes
- 6 toma em conta 82% da variância invés de 72%

Construir Modelo Final

PC	std.dev	percent	cumulative
1	3.510645	0.37347	0.37347
2	2.530382	0.19403	0.56750
3	1.724741	0.09014	0.65764
4	1.430684	0.06203	0.71967
5	1.383305	0.05799	0.77765
6	1.152200	0.04023	0.81788

Criar Pontuação e Carregamentos

PC Pontuação para os Pacientes

kable(cogpca)

PC6	PC5	PC4	PC3	PC2	PC1	codigo
-1.1358213	-2.5786033	1.2861027	0.6569173	-4.1455409	1.0544568	SAA25
-0.2493921	0.9041903	2.7903071	2.1637158	-0.6707727	-2.0661819	SAA34
1.4519428	-0.4387162	-1.0530445	2.2870544	2.2266996	-4.8327795	SAA38
-0.5131524	1.1415258	1.2285155	-0.9984134	-4.1073200	-0.5270424	SAA24
-0.2419661	0.7498663	-1.8370149	0.8149807	-3.6122296	-0.9813072	SAA29
0.7588781	2.1874490	-1.0880352	0.0211974	2.8322995	-1.3506479	SAA04
1.3360876	0.9686787	0.0411406	1.8289886	-3.2584770	-3.5969929	SAA18
-1.2125381	2.0378401	-0.4052328	0.3856916	-2.9426444	4.3613602	SAA33
0.1782160	-3.6007890	0.0396129	0.4111294	0.5154849	0.1616059	SAA05
-2.4440400	0.0388574	-1.9582898	0.0443924	0.5572225	-3.1912523	SAA20
2.0914053	0.5114012	0.2731236	1.7929648	0.2522344	9.1355470	SAA31
-0.6438066	-1.3530647	-1.8709003	-0.2831348	1.0806992	6.8780283	SAA35
-0.2121997	-0.6415100	-0.4496959	-2.4734433	-1.0934636	-3.6384217	SAA36
0.2112906	-0.2287983	1.0449864	0.2086316	1.4461164	-2.9114709	SAA28
-0.7854365	0.3486266	-0.6805372	0.5896946	1.8587515	-0.2106229	SAA10
1.1917531	0.7759010	-0.1696474	-4.7698613	-1.2312153	0.4716043	SAA21
-1.3109261	0.4420199	0.5748899	1.7534238	2.8573070	2.5581398	SAA26
-1.1350858	0.7799330	0.7537838	-1.2696446	5.0935621	-0.5119386	SAA37
1.5331226	-1.1757901	-2.1174212	0.1393074	-0.3598593	-2.2888551	SAA15
0.6647815	-0.2623551	0.5527506	-2.3954186	0.9669637	2.5632073	SAA32
0.4668870	-0.6066626	3.0446061	-0.9081738	1.7341821	-1.0764362	SAA14

PC Carregamento para 1º 10 Variáveis

kable(cogloads[1:10,])

variavel	PC1	PC2	PC3	PC4	PC5	PC6
srq	0.0420233	0.2082761	-0.2695919	0.0947505	-0.1147054	0.0826684
time_sec_tmt_a	-0.1722165	-0.0869178	-0.2132684	-0.2124635	0.0609703	0.2764389
time_sec_tmt_b	-0.1538814	-0.1650981	-0.0063179	-0.3665132	0.0996178	0.1491159
time_stroop_a	-0.1761985	-0.1423664	0.1148217	0.1795451	-0.0302549	0.1911785
time_stroop_b	-0.2334415	-0.0107946	-0.0169558	0.0524373	-0.0558582	0.1894170
time_stroop_c	-0.1619489	-0.0976871	-0.0407716	0.1838451	-0.0488584	0.1696254
total fig rey imed	0.1877155	0.1794291	-0.0405482	0.0451687	-0.0912177	0.0096453
total_fig_rey_mem	0.2206826	0.0388711	0.0711343	-0.0427502	-0.0557209	-0.0417873
dod_total	0.0961479	0.1338473	0.1538545	0.1602330	-0.3570586	0.4770860
doi_total	0.1639769	0.0179340	0.0922253	0.0176002	-0.4311252	-0.2949030

Biplot de PC1 e PC2

Trabalho do Pesquisador Agora É Dar Nomes a Esses Componentes

- Examinar quais têm o mais positivos e negativos carregamentos
- PC tem relação conceitual com os positivos e é negativo para os outras.

Exemplo – PC1 – Carregamentos Altos

```
cogloads %>% group_by(variavel) %>% tally(PC1) %>% top_n(5)
## Selecting by n
## # A tibble: 5 x 2
##
           variavel
                             n
##
               <chr>>
                     <dbl>
           cod_total 0.2334268
## 1
##
         cubos total 0.2313506
  3 proc_simb_total 0.2339691
##
## 4
           qi_verbal 0.2248814
## 5
      semelh total 0.2292407
```

Exemplo – PC1 – Carregamentos Mais Negativos

```
cogloads %>% group_by(variavel) %>% tally(PC1) %>% top_n(-5)
## Selecting by n
## # A tibble: 5 × 2
##
         variavel
             <chr>
                        <dbl>
##
  1 time sec tmt a -0.1722165
  2 time_sec_tmt_b -0.1538814
##
## 3 time_stroop_a -0.1761985
## 4 time_stroop_b -0.2334415
## 5 time_stroop_c -0.1619489
```

Última Aula

- Empirical Bayes
- Dia para submissão dos relatórios