L9: Stream and Block Ciphers

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

Acknowledgement

- Many slides are from or are revised from the slides of the author of the textbook
 - Matt Bishop, Introduction to Computer Security, Addison-Wesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. <u>Introduction to Computer Security @ VSU's Safari Book Online subscription</u>
 - http://nob.cs.ucdavis.edu/book/book-intro/slides/

Outline

- Block ciphers
 - Examples
 - Attacks against direct use of block ciphers
 - Cipher Block Chaining (CBC)
 - Multiple encryption
- Stream ciphers
 - One-time pad: proven secure
 - Synchronous Stream Ciphers
 - Self-Synchronous Stream Cipher

Block Ciphers

- Block ciphers divide a message into a sequence of parts, or blocks, and encipher each block with the same key
- *E* encipherment function
 - $E_k(b)$ encipherment of message b with key k
 - In what follows, $m = b_1 b_2 ...$, each b_i of fixed length
- □ Block cipher
 - $E_k(m) = E_k(b_1)E_k(b_2) \dots$

Block Cipher: Example

- □ DES is a block cipher
 - $b_i = 64 \text{ bits}, k = 56 \text{ bits}$
 - Each b_i enciphered separately using k
- □ AES is a block cipher
 - $b_i = 128 \text{ bits}, k = 128, \text{ or } 192, \text{ or } 256 \text{ bits}$
 - Each b_i enciphered separately using k

Block Ciphers

- Encipher and decipher multiple bits at once
- Each block enciphered independently
- Problem: identical plaintext blocks produce identical ciphertext blocks
 - Example: two database records
 - MEMBER: HOLLY INCOME \$100,000
 - MEMBER: HEIDI INCOME \$100,000
 - Encipherment:
 - □ ABCQZRME GHQMRSIB CTXUVYSS RMGRPFQN
 - ABCQZRME ORMPABRZ CTXUVYSS RMGRPFQN

Solutions

- Use additional information
- □ Use Cipher Block Chaining (CBC mode)

Additional Information

- □ Insert *additional varying* information into the plaintext block, then encipher
 - Information about block's position
 - Example:
 - □ Bits from the preceding ciphertext block (Feistel, 1973)
 - Sequence number on each block (Kent, 1976)
- Disadvantage
 - Effective block size is reduced because a block is in effect {additional bits | | bits from plaintext}

Cipher Block Chaining

- □ Cipher block chaining (CBC)
- Exclusive-or current plaintext block with previous ciphertext block:
 - $c_0 = E_k(m_0 \oplus I)$
 - $c_i = E_k(m_i \oplus c_{i-1})$ for i > 0

where *I* is the initialization vector

Recap on DES

- Electronic Code Book (ECB): directly use DES, a block cipher
- □ Cipher Feedback (CFB): generate pseudo one-time pad
- Output Feedback (OFB): generate pseudo one-time pad
- □ Cipher Block Chaining (CBC): commonly used mode

DES Recap: CBC Mode Encryption

DES Recap: CBC Mode Encryption

Multiple Encryption

- **D** Double encipherment: $c = E_k (E_k(m))$
 - Effective key length is 2n, if k, k'are length n
 - Problem: breaking it requires 2^{n+1} encryptions, not 2^{2n} encryptions
- □ Triple encipherment:
 - EDE mode: $c = E_k(D_k(E_k(m)))$
 - □ Problem: chosen plaintext attack takes $O(2^n)$ time using 2^n ciphertexts
 - Triple encryption mode: $c = E_k(E_k \setminus E_{k'} \setminus m)$
 - Best attack requires $O(2^{2n})$ time, $O(2^n)$ memory

Stream Ciphers

- Stream ciphers use a nonrepeating stream of key elements to encipher characters of a message
- *E* encipherment function
 - $E_k(b)$ encipherment of message b with key k
 - In what follows, $m = b_1 b_2 ...$, each b_i of fixed length
- Stream cipher
 - $k = k_1 k_2 \dots$
 - $E_k(m) = E_{k1}(b_1)E_{k2}(b_2) \dots$
 - If k_1k_2 ... repeats itself, cipher is *periodic* and the kength of its period is one cycle of k_1k_2 ...

Examples

- Vigenère cipher
 - $b_i = 1$ character, $k = k_1 k_2$... where $k_i = 1$ character
 - Each b_i enciphered using $k_{i \text{ mod length}(k)}$
 - Stream cipher
- □ One-time pad
 - A stream cipher
 - Not periodic because the key stream never repeats
 - Proven secure

Bit-Oriented Stream Ciphers

- ☐ Bit-oriented stream ciphers: each "character" is a bit
- Often (try to) implement one-time pad by xor'ing each bit of key with one bit of message
 - Example:

m = 00101

k = 10010

c = 10111

■ But how to generate a good key?

Synchronous Stream Ciphers

- To simulate a random, infinitely long key, synchronous stream ciphers generate key bits from a course other than the message itself
- ☐ Simplest approach: extracts bits from a register to use as the key
- Example: n-stage Linear Feedback Shift Register (LFSR)

n-stage Linear Feedback Shift Register

- \square *n* bit register $r = r_0 ... r_{n-1}$
- \square *n* bit tap sequence $t = t_0...t_{n-1}$
- Operation
 - Use r_{n-1} as key bit
 - Compute $x = r_0 t_0 \oplus ... \oplus r_{n-1} t_{n-1}$
 - Shift r one bit to right, dropping r_{n-1} , x becomes r_0

Operation

9/16/2016

Example

- □ The least significant bit is the right-most bit
- **□** 4-stage LFSR; *t* = 1001

r	k_{i}	new bit computation	new r
0010	0	$01 \oplus 00 \oplus 10 \oplus 01 = 0$	0001
0001	1	$01 \oplus 00 \oplus 00 \oplus 11 = 1$	1000
1000	0	$11 \oplus 00 \oplus 00 \oplus 01 = 1$	1100
1100	0	$11 \oplus 10 \oplus 00 \oplus 01 = 1$	1110
1110	0	$11 \oplus 10 \oplus 10 \oplus 01 = 1$	1111
1111	1	$11 \oplus 10 \oplus 10 \oplus 11 = 0$	0111
0111	0	$11 \oplus 10 \oplus 10 \oplus 11 = 1$	1011

Key sequence has period of 15 (010001111010110)

Notes on n-stage LFSR

- □ A known plaintext attack can reveal parts of the key sequence
- ☐ If the known plaintext is of length 2n, the tap sequence of an n-stage LFSR can be determined completely

n-stage Non-Linear Feedback Shift Register

- Do not use tap sequences. New key bit is any function of the current register bits
- \square *n* bit register $r = r_0 ... r_{n-1}$
- □ Use:
 - Use r_{n-1} as key bit
 - Compute $x = f(r_0, ..., r_{n-1})$; f is any function
 - Shift r one bit to right, dropping r_{n-1} , x becomes r_0

Note same operation as LFSR but more general bit replacement function

Example

- ☐ The least significant bit is the right-most bit
- **4**-stage NLFSR; $f(r_0, r_1, r_2, r_3) = (r_0 \& r_2) | r_3$

r	k_{i}	new bit computation	new r
1100	0	(1 & 0) 0 = 0	0110
0110	0	(0 & 1) 0 = 0	0011
0011	1	(0 & 1) 1 = 1	1001
1001	1	(1 & 0) 1 = 1	1100
1100	0	(1 & 0) 0 = 0	0110
0110	0	(0 & 1) 0 = 0	0011
0011	1	(0 & 1) 1 = 1	1001

Key sequence has period of 4 (0011)

Eliminating Linearity

- NLFSRs not common
 - No body of theory about how to design them to have long period
- □ Alternate approach: *output feedback mode*
 - For *E* encipherment function, *k* key, *r* register:
 - □ Compute $r' = E_k(r)$; key bit is rightmost bit of r'
 - \square Set r to r' and iterate, repeatedly enciphering register and extracting key bits, until message enciphered
 - Variant: use a counter that is incremented for each encipherment rather than a register
 - \blacksquare Take rightmost bit of $E_k(i)$, where i is number of encipherment

Self-Synchronous Stream Cipher

- □ Take key from message itself (*autokey*)
- Example: Vigenère, key drawn from plaintext
 - key
 XTHEBOYHASTHEBA
 - plaintext THEBOYHASTHEBAG
 - ciphertext QALFPNFHSLALFCT
- □ Problem:
 - Statistical regularities in plaintext show in key
 - Once you get any part of the message, you can decipher more

Another Example

- □ Take key from ciphertext (*autokey*)
- Example: Vigenère, key drawn from ciphertext
 - key
 XQXBCQOVVNGNRTT
 - plaintext THEBOYHASTHEBAG
 - ciphertext QXBCQOVVNGNRTTM
- □ Problem:
 - Attacker gets key along with ciphertext, so deciphering is trivial

Variant

- □ Cipher feedback mode: 1 bit of ciphertext fed into *n* bit register
 - Self-healing property: if ciphertext bit received incorrectly, it and next n bits decipher incorrectly; but after that, the ciphertext bits decipher correctly
 - Need to know k, E to decipher ciphertext

Summary

- Block ciphers
 - Examples: DES, AES
 - Attacks against direct use of block ciphers
 - Cipher Block Chaining (CBC)
 - Multiple encryption
- Stream ciphers
 - Examples: Vigenère cipher, One-time pad
 - One-time pad: proven secure
 - Synchronous Stream Ciphers (LFSR, NLFSR)
 - Self-Synchronous Stream Cipher