Capstone Project Template

March 26, 2020

1 Project Title

1.0.1 Data Engineering Capstone Project

Project Summary --describe your project at a high level--

The project follows the follow steps: * Step 1: Scope the Project and Gather Data * Step 2: Explore and Assess the Data * Step 3: Define the Data Model * Step 4: Run ETL to Model the Data * Step 5: Complete Project Write Up

1.0.2 Step 1: Scope the Project and Gather Data

Scope Explain what you plan to do in the project in more detail. What data do you use? What is your end solution look like? What tools did you use? etc>

Describe and Gather Data Describe the data sets you're using. Where did it come from? What type of information is included?

```
In [5]: # Read in the data here
In [6]: df.head()
Out[6]:
          cicid
                 i94yr i94mon i94cit
                                      i94res i94port arrdate i94mode i94addr
       0
           6.0 2016.0
                          4.0
                               692.0
                                      692.0
                                                 XXX 20573.0
                                                                 {\tt NaN}
                                                                         NaN
       1
           7.0 2016.0
                          4.0 254.0 276.0
                                                 ATL 20551.0
                                                                 1.0
                                                                          AL
         15.0 2016.0
                          4.0 101.0 101.0 WAS 20545.0
                                                                 1.0
                                                                          MΙ
```

```
16.0 2016.0
                               4.0
                                     101.0
                                              101.0
        3
                                                         NYC 20545.0
                                                                            1.0
                                                                                      MΑ
            17.0 2016.0
                                     101.0
        4
                               4.0
                                              101.0
                                                         NYC 20545.0
                                                                            1.0
                                                                                      MA
           depdate
                               entdepu matflag biryear
                                                             dtaddto gender insnum
        0
                NaN
                                     U
                                             NaN
                                                   1979.0
                                                            10282016
                                                                         NaN
                                                                                 NaN
                                     Y
        1
                NaN
                                             {\tt NaN}
                                                    1991.0
                                                                 D/S
                                                                           Μ
                                                                                 NaN
        2 20691.0
                                   {\tt NaN}
                                                   1961.0 09302016
                                                                           Μ
                                                                                 NaN
        3 20567.0
                                   {\tt NaN}
                                               Μ
                                                   1988.0 09302016
                                                                         {\tt NaN}
                                                                                 NaN
        4 20567.0
                                   {\tt NaN}
                                               М
                                                    2012.0 09302016
                                                                         {\tt NaN}
                                                                                 {\tt NaN}
                       . . .
          airline
                           admnum fltno visatype
        0
               NaN 1.897628e+09
                                     NaN
                                                B2
                                                F1
        1
                    3.736796e+09 00296
               {\tt NaN}
        2
                OS
                    6.666432e+08
                                       93
                                                B2
        3
                AA
                    9.246846e+10 00199
                                                B2
                    9.246846e+10 00199
                AΑ
                                                B2
        [5 rows x 28 columns]
In [8]: # save SAS dataset to parquet files
        if True:
            from pyspark.sql import SparkSession
            spark = SparkSession.builder.\
                 config("spark.jars.packages", "saurfang:spark-sas7bdat:2.0.0-s_2.10")\
                 .enableHiveSupport().getOrCreate()
            df_spark = spark.read.format('com.github.saurfang.sas.spark').load('../../data/18-83
             #write to parquet
               df_spark.write.parquet("sas_data")
               df\_spark=spark.read.parquet("sas\_data")
```

1.0.3 Step 2: Explore and Assess the Data

only showing top 2 rows

Explore the Data Identify data quality issues, like missing values, duplicate data, etc.

Cleaning Steps Document steps necessary to clean the data

```
In [7]: # Performing cleaning tasks here
    df_spark.show(2)
|cicid| i94yr|i94mon|i94cit|i94res|i94port|arrdate|i94mode|i94addr|depdate|i94bir|i94visa|count|
6.0|2016.0|
        4.0| 692.0| 692.0|
                   XXX|20573.0|
                           null
                               null
                                    null| 37.0|
                                            2.01
                                              1.0
 7.0|2016.0|
        4.0 | 254.0 | 276.0 |
                   ATL | 20551.0|
                            1.0
                                               1.0
                                AL
                                   null
                                       25.0
                                            3.0
```

1.0.4 Step 3: Define the Data Model

- **3.1 Conceptual Data Model** Map out the conceptual data model and explain why you chose that model
- **3.2 Mapping Out Data Pipelines** List the steps necessary to pipeline the data into the chosen data model

1.0.5 Step 4: Run Pipelines to Model the Data

4.1 Create the data model Build the data pipelines to create the data model.

```
In [ ]: # Write code here
```

4.2 Data Quality Checks Explain the data quality checks you'll perform to ensure the pipeline ran as expected. These could include: * Integrity constraints on the relational database (e.g., unique key, data type, etc.) * Unit tests for the scripts to ensure they are doing the right thing * Source/Count checks to ensure completeness

Run Quality Checks

```
In [ ]: # Perform quality checks here
```

4.3 Data dictionary Create a data dictionary for your data model. For each field, provide a brief description of what the data is and where it came from. You can include the data dictionary in the notebook or in a separate file.

Step 5: Complete Project Write Up

- Clearly state the rationale for the choice of tools and technologies for the project.
- Propose how often the data should be updated and why.
- Write a description of how you would approach the problem differently under the following scenarios:
- The data was increased by 100x.
- The data populates a dashboard that must be updated on a daily basis by 7am every day.
- The database needed to be accessed by 100+ people.

```
In [ ]:
```