SCHEMAT PUNKTOWANIA ZADAŃ ARKUSZ I – POZIOM PODSTAWOWY

Nr zadania	Etapy rozwiązania zadania	Maksymalna liczba punktów za dany etap
1. (3 pkt)	1. Zapisanie równania, wynikającego z treści zadania, np.: $x \cdot (x+9) = 1540$, gdzie x i $x+9$ są długościami boków prostokąta.	1p.
	2. Przekształcenie równania do postaci $x^2 + 9x - 1540 = 0$ i rozwiązanie tego równania.	1p.
	3. Wybranie rozwiązania spełniającego warunki zadania i podanie wymiarów działki: 35 m oraz 44 m.	1p.
2. (4 pkt)	4. Obliczenie, ile procent kwoty 3200 złotych stanowi kwota przeznaczona na czynsz – 400 złotych: 12,5%.	1p.
	5. Obliczenie, ile procent kwoty 3200 złotych stanowi kwota przeznaczona na wyżywienie: 56,5%.	1p.
	6. Obliczenie kwoty pieniędzy, jaką państwo Kowalscy wydają miesięcznie na gaz i energię: 448 złotych.	1p.
	7. Obliczenie łącznej kwoty, jaką państwo Kowalscy wydają miesięcznie na gaz i energię oraz czynsz: 848 złotych.	1p.
3. (3 pkt)	8. Zapisanie liczby $\sqrt{11+6\sqrt{2}}$ w postaci $\sqrt{9+6\sqrt{2}+2}$.	1p.
	9. Zapisanie liczby $\sqrt{9+6\sqrt{2}+2}$ w postaci $\sqrt{(3)^2+2\cdot 3\cdot \sqrt{2}+(\sqrt{2})^2}$.	1p.
	10. Zapisanie liczby $\sqrt{(3)^2 + 2 \cdot 3 \cdot \sqrt{2} + (\sqrt{2})^2}$ w postaci $\sqrt{(3 + \sqrt{2})^2}$, a w konsekwencji w postaci uproszczonej: $3 + \sqrt{2}$.	1p.
4. (4 pkt)	11. Wstawienie wartości $C = 100$ do danego równania.	1p.
	12. Rozwiązanie równania z niewiadomą $F: F = 212$.	1p.
	13. Zapisanie równania z jedną niewiadomą, np. $F = \frac{5}{9} \cdot F - \frac{160}{9}$.	1p.
	14. Rozwiązanie równania: $F = -40$ (lub $C = -40$).	1p.
5. (4 pkt)	15. Wykorzystanie twierdzenia cosinusów do obliczenia długości trzeciego boku danego trójkąta np. $a^2 = 12^2 + 8^2 - 2 \cdot 12 \cdot 8 \cdot \left(\frac{-1}{2}\right)$.	1p.
	16. Obliczenie długości trzeciego boku: $a = 4\sqrt{19} \ cm$.	1p.
	17. Wykorzystanie np. twierdzenia sinusów do obliczenia długości promienia okręgu opisanego na tym trójkącie i zapisanie, że: $\frac{a}{\sin 120^{\circ}} = 2R.$	1p.
	18. Obliczenie długości promienia: $R = \frac{4\sqrt{57}}{3} cm$.	1p.

6. (5 pkt)	19. Obliczenie objętości pierwszej szklanki: $V_1 = \pi \cdot 3^2 \cdot 10 \approx 282,6 cm^3$.	1p.
	20. Obliczenie objętości drugiej szklanki: $V_2 = \pi \cdot (2,9)^2 \cdot 9,5 \approx 250,9 \text{ cm}^3$	1p.
	21. Obliczenie objętości trzeciej szklanki: $V_3 = \pi \cdot 3^2 \cdot 9 \approx 254,3cm^3$.	1p.
	22. Zamiana jednostek objętości: np. $0.25l = 250 cm^3$.	1p.
	23. Wskazanie szklanki, której objętość jest najbliższa 0,25l.	1p.
7. (6 pkt)	24. Zapisanie podanej nierówności w postaci: $x^2 - 6x - 7 > 0$ i obliczenie wyróżnika trójmianu: $\Delta = 64$.	1p.
	25. Obliczenie pierwiastków trójmianu: $x = -1$ lub $x = 7$	1p.
	26. Zapisanie zbioru rozwiązań danej nierówności: $x \in (-\infty; -1) \cup (7; \infty)$.	1p.
	27. Obliczenie współrzędnych wierzchołka paraboli, będącej wykresem funkcji $f: W(3,3)$.	1p.
	28. Wykorzystanie postaci kanonicznej trójmianu $y = (x-9)^2 + 6$ do odczytania współrzędnych wierzchołka wykresu trójmianu: $W_1(9,6)$.	1p.
	29. Zapisanie, że obrazem paraboli o równaniu $y = x^2 - 6x + 12$ nie jest wykres funkcji $y = (x-9)^2 + 6$ ponieważ: np. obrazem punktu W w danej symetrii jest punkt $W'(9,3)$.	1p.
8. (3 pkt)	30. Obliczenie liczby wszystkich zdarzeń elementarnych danego doświadczenia: $\frac{=}{\Omega} = \binom{8}{3} = 56$.	1p.
	31. Podanie liczby zdarzeń sprzyjających: $\overline{A} = 8$.	1p.
	32. Obliczenie prawdopodobieństwa szukanego zdarzenia: $P(A) = \frac{1}{7}$.	1p.
9. (3 pkt)	33. Zapisanie sumy kwadratów sinusów miar wszystkich kątów wewnętrznych danego trójkąta np. $\sin^2 \alpha + \sin^2 \beta + \sin^2 90^\circ$ (1).	1p.
	34. Przekształcenie wyrażenia (1) do postaci: $\sin^2 \alpha + \cos^2 \alpha + 1$.	1p.
	35. Wykorzystanie równości: $\sin^2 \alpha + \cos^2 \alpha = 1$ do uzyskania tezy twierdzenia.	1p.
10. (5 pkt)	36. Zauważenie, że pierwszy wyraz ciągu jest równy12, zaś różnica równa się 6.	1p.
	37. Zapisanie wzoru na $n-ty$ wyrazu tego ciągu: $a_n = 12 + (n-1) \cdot 6 = 6n + 6$.	1p.
	38. Wyznaczenie największej liczby dwucyfrowej podzielnej przez 6: 96.	1p.
	39. Rozwiązanie równania liniowego: $6n + 6 = 96 \Rightarrow n = 15$.	1p.
	40. Obliczenie sumy: $S_{15} = \frac{12+96}{2} \cdot 15 = 810$.	1p.

Uwaga:

Za prawidłowe rozwiązanie każdego z zadań inną metodą (zgodną z poleceniem) od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.