

Machine Learning For Natural Language Processing

Abdelhak Mahmoudi abdelhak.mahmoudi@um5.ac.ma

2020

Content

- 1. Introduction
- 2. Machine Learning
 - 1. Supervised Learning, 2. Unsupervised Learning
- 3. Natural Language Pr-Processing
 - 1. Regular Expressions, 2. Tokenization, 3. Character Encoding, 4. Part-of-Speech Tagging, 5. Chunking, 6. Stemming and Lemmatization, 7. Parsing, 8.
- 4. Vector Representation of Text
 - 1. One hot vector, Word Embeddings, Tf-Idf, Word2Vec, GloVe, ...
- 5. Introduction to Deep Learning for NLP
 - 1. Sequence models, 2. BERT models
- 6. NLP Applications
 - 1. Named Entity Recognition, 9. Topic Segmentation

Vector Representation of Text

- Our only representation of a word is as a string of letters, or perhaps as an index in a vocabulary list (one-hot vector)
- But, we have no information about
 - Meanings (mouse, and mouse (computer))
 - Antonyms (cold/hot)
 - Synonymy (car/automobile)
 - Similarity (cat/dog)
 - Relatedness or Association (coffee and cup)
 - Connotation or Sentiment (positive or negative)
 - Etc.

Vector Representation of Text

- Solution: Vector Semantics
 - Two words that occur in very similar distributions (context) are likely to have the same meaning.
 - Define the meaning of a word w as a vector (list of numbers, a point) in Ndimensional space-> Embeddings
 - Based on counts of neighboring words
 - Tf-Idf model,
 - Word2vec model
 - Similarity measure (cosine)

- La sémantique: étude du sense du mot ou de la phrase.
- La syntaxe: étude de la forme, de la langue, de la graphie et de la grammaire du mot.

Document Representation

- Represent a document as a count vector in the vocabulary space
 - Term-Document Cooccurrence matrix
 - Bag-of-Words
- N: number of documents in the Corpus
 - Big Data (all the web)
- Use case
 - Information retrieval: find similar documents
- Problem
 - sparse vectors: mostly zeros

Word Representation

- Represent a word as a count vector in the documents space.
 - Co-occurrence matrix called Term-Document matrix
- Represent a word as a count vector in the vocabulary space.
 - Co-occurrence matrix called term-term matrix, Wordword matrix or Termmatrix.
- |V| : vocabulary size
 - 10,000 50,000 words

N Documents (Corpus)

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Vocabulary

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Abdelhak Mahmoudi

word

Term Frequency – Inverse Document Frequency

- Simple frequency isn't the best measure of association between words.
- Terms like "the, it, or they" occurs frequently!
- TF = the frequency of the term (word) t in the document d
 - TF = count(w, d)
 - $TF_{t,d} = \text{count}(t, d)$
 - $TF_{t,d} = log_{10}(count(t, d) + 1)$
- IDF = is used to give a higher weight to words that occur only in a few documents
 - $IDF_t = log_{10}(\frac{N}{DF_t})$
 - DF_t = the number of documents in which term t occurs.
 - N the number of documents (in the example N = 37)

	Collection Frequency	Document Frequency
Romeo	113	1
action	113	31

WorddfidfRomeo11.57salad21.27			
	Word	df	idf
salad 2 1.27	Romeo	1	1.57
	salad	2	1.27
Falstaff 4 0.967	Falstaff	4	0.967
forest 12 0.489	forest	12	0.489
battle 21 0.246	battle	21	0.246
wit 34 0.037	wit	34	0.037
fool 36 0.012	fool	36	0.012
good 37 0	good	37	0

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Term Frequency – Inverse Document Frequency

- Other Alternative
 - PPMI: Positive Point wise Mutual Information
- Problem of TF-IDF
 - Ignore the order of words
 - Still Huge vector (50,000)
 - → need 10,000 weights in the network
 - May overfit
 - Still Sparse (mostly zeros)
 - May not capture synonymy
- Need
 - Short and dense vector representation -> word2vec

	Collection Frequency	Document Frequency
Romeo	113	1
action	113	31

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Word2vec Representation

Skip-gram with negative sampling (SGNS)

Word2vec Representation

- Skip-gram with negative sampling (SGNS)
- Intuition
 - Instead of counting how often each word w1 occurs near w2, we'll instead train a classifier (a simple logistic regression) on a binary prediction task: "Is w1 likely to show up near w2?" and take the learned classifier weights as the word embeddings.

- 1. w_t target word
- 2. w_{t-1} , w_{t} , w_{t+1} as positive examples.
- 3. other words as negative samples.
- 4. Use logistic regression to train a classifier to distinguish those two cases.
- 5. Use the regression weights as the embeddings.

Word2vec Representation

- Word Embedding (Word2Vec)
 - Map words to vectors
 - Take into account word's context and position
 - Cosine Similarity

$$sim(A, B) = cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|}$$

Contect Bag of Word (CBoW)

GloVe Representation

https://nlp.stanford.edu/projects/glove/

FastText Representation

https://fasttext.cc/