Chapter 2 Supply and Demand

The Law of Demand

- Ceteris paribus, the amount of a good consumers want to buy will rise as price falls
- Quantity Demanded: the amount of a good consumer are willing to buy at a given price
- Demand Function: correspondence between quantity demanded, price, and other factors

Demand Function

$$Q = D(p, p_s, Y)$$

- Quantity of coffee demanded Q varies with the price of coffee p, the price of sugar p_s , and the consumer's income Y
- Above equation is a general functional form
- Example estimated demand function:

$$Q = 8.56 - p - 0.3p_s + 0.1Y$$

Demand Curve

Shifting Demand Curve

What Shifts Demand?

- Changes in:
 - 1. Tastes and preferences
 - 2. Prices of related goods (substitutes and complements)
 - 3. Incomes
 - 4. Government regulations
 - 5. Information

Supply

- Ceteris paribus, the amount of a good that producers want to produce and sell will rise as the price rises
- Difference between Supply and Quantity
 Supplied same as in demand case

Supply Function

$$Q = S(p, p_c)$$

- Quantity of coffee supplied Q varies with the price of coffee p and the price of sugar p_c
- Above equation is a general functional form
- Example estimated supply function:

$$Q = 9.6 + 0.5p - 0.2p_c$$

Supply Curve

Shifting Supply Curve

What Shifts Supply?

- Changes in:
 - 1. The cost of inputs of production
 - 2. Production technology
 - 3. Government policy (e.g. taxes, regulations)
- What about a change in the price of the good?

Demand and Supply Functions

- Mathematical representations of the demand and supply processes
- Use them to find the slope (derivative)
 - Tells us how changes in one variable lead to changes in quantity demanded or quantity supplied
- We don't see real world functions because they are much more complicated
- ullet Economists create linear models to help determine p and Q

Linear Demand and Supply Functions

Demand function:

 $Q_d = f(\text{price, price of related goods, income})$

$$Q_d = 171 - 20p + 20p_b + 3p_c + 2Y$$

- Notice the -20p term
- Supply function:

 $Q_s = f(\text{price, price of inputs})$

$$Q_s = 178 + 40p - 60p_h$$

• Notice the +40p term

Reduced Form

• If we know the variables other than "own price" p, we can simplify:

$$Q_d = 171 - 20p + 20p_b + 3p_c + 2Y$$

- What if $p_b = 4$, $p_c = 3.33$, and Y = 12.5?
- Similarly for supply:

$$Q_s = 178 + 40p - 60p_h$$

• What if $p_h = 1.5$?

Market Equilibrium

- The intersection of the demand and supply curves gives us the market price p and quantity sold q
- To find equilibrium, find where $Q_d = Q_s$
- We already found $Q_d = 286 20p$ and $Q_s = 88 + 40p$, now solve for p: 286 20p = 88 + 40p $198 = 60p \longrightarrow p = 3.30
- What about q?

Market Equilibrium

Comparative Statics

- Economists are often interested in how an equilibrium can change when outside factors change
 - Consumers and producers do not cause the change
- Want to compare one static equilibrium to another — only a change in market conditions has occurred between the two

Comparative Statics Example

• Using the previous Q_d and Q_s : $Q_d = 220 - 2p \quad \text{and} \quad Q_s = 20 + 3p - 20r$

- Solve for the equilibrium price p in terms of the value of r
- Use this equilibrium condition to show how the equilibrium quantity changes as the value of r changes

Why Do the Slopes of the Demand & Supply Curves Matter?

- The shape of each curve relays important information concerning the degree to which consumers and producers respond to changes in prices
- ullet This sensitivity to price is Elasticity $oldsymbol{arepsilon}$
- Elasticity (OF ANY TYPE) relates the percentage change in one variable in response to a corresponding percentage change in another variable

Formulas for Elasticity of Demand

$$\varepsilon = \frac{\% \text{ change in Quantity Demanded}}{\% \text{ change in price}}$$

$$\varepsilon = \frac{\Delta Q/Q}{\Delta p/p} = \frac{\Delta Q}{\Delta p} \times \frac{p}{Q} = \frac{\delta Q}{\delta p} \times \frac{p}{Q}$$

 In the special case of a linear demand function (e.g. $Q_d = a - bp$) we can simplify: $\varepsilon = -b \times \frac{p}{c}$

$$\varepsilon = -b \times \frac{p}{Q}$$

Formulas for Elasticity of Demand

- Suppose the demand function for a good is expressed as Q = 100 8p
 - If the price is \$10, then what is ε ?
 - Hint: is this a linear demand function?

Point Elasticity vs. Interval Elasticity

- Both are useful and can be applied to different situations
- Classroom group exercise for Interval Elasticity

Post Activity Questions

- Does the interval elasticity take the same value if we consider both "directions" of a pair of prices?
- Should elasticity always be the same value or can it change?
- What sign (+ / −) can the elasticity of demand take?
- What value(s) are important cut-offs for discussing the nature of elasticity of demand?

Elasticity Along the Coffee Demand Curve

Special Cases: Vertical and Horizontal Demand Curves

Perfectly Elastic Demand

Perfectly Inelastic Demand

Special Elasticity Cases

- Perfectly Elastic (Horizontal) Demand
 - $\varepsilon = -\infty$ (Q_d responds infinitely to price changes)
 - May indicate a perfect substitute is present
- Perfectly Inelastic (Vertical) Demand
 - $\varepsilon = 0$ (Q_d does not respond to price changes at all)
 - May indicate a true "essential" good
- Unitary Elasticity
 - $\varepsilon = -1$ (Q_d responds to price changes at exactly the same rate)
 - Occurs at only one point on a linear demand curve

Other Demand-Related Elasticities

• Q_d was also a function of income, so we can define the income elasticity of demand ξ

$$\xi = \frac{\Delta Q/Q}{\Delta Y/Y} = \frac{\Delta Q}{\Delta Y} \times \frac{Y}{Q} = \frac{\delta Q}{\delta Y} \times \frac{Y}{Q}$$

- Some points:
 - The same rule for linear coefficients applies!
 - Notice that the position of the Q's all stayed the same and we made a clean swap of Y for p
- What values (+ / —) can this take?

Other Demand-Related Elasticities

• Q_d was also a function of the price of related goods, so we can define the cross price elasticity of demand ε_{cp}

$$\varepsilon_{cp} = \frac{\Delta Q/Q}{\Delta p_o/p_o} = \frac{\Delta Q}{\Delta p_o} \times \frac{p_o}{Q} = \frac{\delta Q}{\delta p_o} \times \frac{p_o}{Q}$$

- Some points:
 - The same rule for linear coefficients applies!
 - Again the Q's all stayed the same and we made a clean swap of the price of the related good p_o for p
- What values (+ / —) can this take?

Formulas for Elasticity of Supply

$$\eta = \frac{\% \text{ change in Quantity Supplied}}{\% \text{ change in price}}$$

$$\eta = \frac{\Delta Q/Q}{\Delta p/p} = \frac{\Delta Q}{\Delta p} \times \frac{p}{Q} = \frac{\delta Q}{\delta p} \times \frac{p}{Q}$$

- ε was always negative. Also true for η ?
- The same rule about linear coefficients applies
- Same use of "elastic" and "inelastic"
- Draw a number line showing the relevant distinctions for both types!

Long vs. Short-Run Elasticities

- What determines long vs. short run?
- Demand elasticities over time
 - Sometimes it is easier to substitute away from a good in the long run (gas cars)
 - Sometimes the opposite is true, higher short run elasticities (frozen foods)
- Supply elasticities over time
 - Generally will be much more elastic in the long run why?

Effect of a Sales Tax

- Two types of sales taxes:
 - Ad valorem tax is in percentage terms
 - California's state tax rate is 8.25%
 - Specific (unit) tax is in dollar terms
 - U.S. gasoline tax is \$0.18 per gallon
- The effect of a sales tax on price and quantity depends on elasticities of demand and supply
- With price p, producers receive $p \tau$ where τ is tax amount

Must Quantity Supplied and Quantity Demanded be Equal?

- In a supply-and-demand model, prices will fluctuate until $Q_d^* = Q_s^*$
- This doesn't necessarily hold if policy interventions prohibit the free fluctuation of prices
 - Price ceilings, price floors are examples of price controls
- Can you think of examples?

Price Control Examples

- Price Ceilings: rent control, maximum legal interest rates, gas prices in the 70s, price gauging laws
- Price Floors: minimum wages, certain agricultural products

Gas Price Ceiling

Minimum Wage

Summary of Price Controls

- The supply-demand model predicts that:
 - Binding price ceilings will lead to a shortage in the market
 - Binding price floors will lead to a surplus
- What does the supply-demand model predict will happen if a non-binding price control is implemented?

When to Use the Supply-Demand Model

- When firms sell identical products, many buyers and sellers
- Buyers have perfect information about price and quality of goods
- Costs of trading are low and no barriers to entry
- Taken together, we say a market is perfectly competitive when all these conditions are met