

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2002-063989
(43)Date of publication of application : 28.02.2002

(51)Int.Cl. H05B 33/14
C09K 11/06
H05B 33/22

(21)Application number : 2001-167809 (71)Applicant : TORAY IND INC
(22)Date of filing : 04.06.2001 (72)Inventor : KOHAMA TORU
KITAZAWA DAISUKE
MURASE SEIICHIRO

(30)Priority
Priority number : 2000171720 Priority date : 08.06.2000 Priority country : JP

(54) LIGHT EMITTING ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a light emitting element having high luminous efficiency, high brightness, and excellent color purity.

SOLUTION: The element is the light emitting element characterized in including an organic phosphor which has a phosphor skeleton substituted with a phosphorus oxide group.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-63989

(P2002-63989A)

(43)公開日 平成14年2月28日(2002.2.28)

(51)Int.Cl. ⁷	識別記号	F I	テ-マコ-ト(参考)
H 05 B 33/14		H 05 B 33/14	B 3 K 0 0 7
C 09 K 11/06	6 6 0	C 09 K 11/06	6 6 0
H 05 B 33/22		H 05 B 33/22	B D

審査請求 未請求 請求項の数7 O L (全10頁)

(21)出願番号	特願2001-167809(P2001-167809)	(71)出願人	000003159 東レ株式会社 東京都中央区日本橋室町2丁目2番1号
(22)出願日	平成13年6月4日(2001.6.4)	(72)発明者	小濱 亨 滋賀県大津市園山1丁目1番1号 東レ株式会社滋賀事業場内
(31)優先権主張番号	特願2000-171720(P2000-171720)	(72)発明者	北澤 大輔 滋賀県大津市園山1丁目1番1号 東レ株式会社滋賀事業場内
(32)優先日	平成12年6月8日(2000.6.8)	(72)発明者	村瀬 清一郎 滋賀県大津市園山1丁目1番1号 東レ株式会社滋賀事業場内
(33)優先権主張国	日本 (J P)	Fターム(参考)	3K007 AB02 AB04 AB11 BA06 CA01 CB01 DA01 DB03 EB00

(54)【発明の名称】 発光素子

(57)【要約】

【課題】発光効率が高く、高輝度で色純度に優れた、発光素子を提供する。

【解決手段】陽極と陰極の間に発光物質が存在し、電気エネルギーにより発光する素子であって、該素子がリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体を含むことを特徴とする発光素子である。

【特許請求の範囲】

【請求項1】陽極と陰極の間に発光物質が存在し、電気エネルギーにより発光する素子であって、該素子がリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体を含むことを特徴とする発光素子。

【請求項2】リンオキサイド基で置換された蛍光性骨格を有する有機蛍光体が下記一般式(1)で表されることを特徴とする請求項1記載の発光素子。

【化1】

(ここでR¹～R³はそれぞれ、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカブト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハログン、ハロアルカン、ハロアルケン、ハロアルキシ、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサン基の中から選ばれる。また、R¹～R³の少なくとも1つは蛍光性骨格である。)

【請求項3】リンオキサイド基で置換された蛍光性骨格を有する有機蛍光体が下記一般式(2)で表されることを特徴とする請求項1記載の発光素子。

【化2】

(ここでR⁴～R⁵はそれぞれ、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカブト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハログン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサン基の中から選ばれる。Xは蛍光性骨格を表す。nは2以上の自然数を表す。)

【請求項4】蛍光性骨格が結合芳香環であることを特徴とする請求項1記載の発光素子。

【請求項5】該有機蛍光体が発光材料であることを特徴とする請求項1記載の発光素子。

【請求項6】該有機蛍光体が電子輸送材料であることを特徴とする請求項1記載の発光素子。

【請求項7】マトリクスおよび/またはセグメント方式によって表示するディスプレイであることを特徴とする

請求項1記載の発光素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、電気エネルギーを光に変換できる素子であって、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機、光信号発生器などの分野に利用可能な発光素子に関する。

【0002】

【従来の技術】陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機積層薄膜発光素子の研究が近年活発に行われている。この素子は、薄型、低駆動電圧下での高輝度発光、蛍光材料を選ぶことによる多色発光が特徴であり注目を集めている。

【0003】この研究は、コダック社のC. W. Tangらが有機積層薄膜素子が高輝度に発光することを示して以来(A pp l. P hys. Lett. 51 (12) 21, p. 913, 1987)、多くの研究機関が検討を行っている。コダック社の研究グループが提示した有機積層薄膜発光素子の代表的な構成は、ITOガラス基板上に正孔輸送性のジアミン化合物、発光層である8-ヒドロキシキノリンアルミニウム、そして陰極としてMg:Agを順次設けたものであり、10V程度の駆動電圧で10000cd/m²の緑色発光が可能であった。現在の有機積層薄膜発光素子は、上記の素子構成要素の他に電子輸送層を設けているものなど構成を変えているものもあるが、基本的にはコダック社の構成を踏襲している。

【0004】発光層はホスト材料のみで構成されたり、ホスト材料にゲスト材料をドーピングして構成される。発光材料は三原色揃うことが求められているが、これまで緑色発光材料の研究が最も進んでいる。現在は赤色発光材料と青色発光材料において、特性向上を目指して鋭意研究がなされている。特に青色発光材料において高輝度で色純度の良い発光の得られるものが望まれている。

【0005】ホスト材料としては、前述のトリス(8-キノリノラト)アルミニウムを始めとするキノリノール誘導体の金属錯体、ベンズオキソゾール誘導体、スチルベン誘導体、ベンズチアゾール誘導体、チアジアゾール誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、オキサジアゾール誘導体金属錯体、ベンズアゾール誘導体金属錯体などがあげられる。

【0006】青色発光ホスト材料においては、比較的良い性能が得られている例として、キノリノール誘導体と異なる配位子を組み合わせた金属錯体(特開平5-214332号公報)や、ビススチリルベンゼン誘導体(特開平4-117485号公報)などがあげられるが、特

に色純度が充分ではない。

【0007】一方、ゲスト材料としてのドーパント材料には、レーザー色素として有用であることが知られている、7-ジメチルアミノ-4-メチルクマリンを始めとするクマリン誘導体、ペリレン、ビレン、アントラセンなどの縮合芳香環誘導体、スチルベン誘導体、オリゴフェニレン誘導体、フラン誘導体、キノロン誘導体、オキサゾール誘導体、オキサジアゾール誘導体などが知られている。

【0008】

【発明が解決しようとする課題】しかし、従来技術に用いられる発光材料（ホスト材料、ドーパント材料）には、発光効率が低く消費電力が高いものや、耐久性が低く素子寿命の短いものが多くあった。また、フルカラーディスプレイとして赤色、緑色、青色の三原色発光が求められているが、赤色、青色発光においては、発光波長を満足させるものは少なく、発光ピークの幅も広く色純度が良いものは少ない。中でも青色発光において、耐久性に優れ十分な輝度と色純度特性を示すものが必要とされている。

【0009】また従来、数少ない既存材料を用いても、発光材料と相互作用を起こす、もしくは電子輸送材料自身の発光が混在する等の理由で所望の発光色が得られなかったり、高効率発光が得られるものの耐久性が短い等の問題があった。例えば、特開平5-331459号公報には特定のフェナントロリン誘導体を電子輸送材料に用いているが、高効率発光を示すものの、長時間の通電により結晶化し、耐久性が著しく短い問題があった。また、発光効率および耐久性に比較的良い特性を示すものとして、キノリノール金属錯体やベンゾキノリノール金属錯体があるが、これらはこの材料自身に高い青緑～黄色での発光能力があるために、電子輸送材料として用いた際に、これらの材料自身の発光が混在して色純度が悪化する恐れがある。

【0010】本発明は、かかる従来技術の問題を解決し、発光効率が高く、高輝度で色純度に優れた発光素子を提供することを目的とするものである。

【0011】

【課題を解決するための手段】本発明は、陽極と陰極の間に発光物質が存在し、電気エネルギーにより発光する素子であって、該素子がリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体を含むことを特徴とする発光素子である。

【0012】

【発明の実施の形態】本発明において陽極は、光を取り出すために透明であれば酸化錫、酸化インジウム、酸化錫インジウム（ITO）などの導電性金属酸化物、あるいは金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマなど特に限定されるもの

でないが、ITOガラスやネサガラスを用いることが特に望ましい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100～300nmの間で用いられることが多い。また、ガラス基板はソーダライムガラス、無アルカリガラスなどが用いられ、また厚みも機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiO₂などのバリアコートを施したソーダライムガラスも市販されているのでこれを使用できる。ITO膜形成方法は、電子線ビーム法、スパッタリング法、化学反応法など特に制限を受けるものではない。

【0013】本発明において陰極は、電子を本有機物層に効率よく注入できる物質であれ特に限定されないが、一般に白金、金、銀、銅、鉄、錫、亜鉛、アルミニウム、インジウム、クロム、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどがあげられるが、電子注入効率をあげて素子特性を向上させるためにはリチウム、ナトリウム、カリウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかし、これらの低仕事関数金属は、一般に大気中で不安定であることが多く、例えば、有機層に微量のリチウムやセシウム、マグネシウム（真空蒸着の膜厚計表示で1nm以下）をドーピングして安定性の高い電極を使用する方法が好ましい例として挙げができるが、フッ化リチウムのような無機塩の使用も可能であることから特にこれらに限定されるものではない。更に電極保護のために白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニア、窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子などを積層することが好ましい例として挙げられる。これらの電極の作製法も抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティング、コーティングなど導通を取ることができれば特に制限されない。

【0014】本発明において発光物質とは、1) 正孔輸送層/発光層、2) 正孔輸送層/発光層/電子輸送層、3) 発光層/電子輸送層、そして、4) 以上の組合せ物質を一層に混合した形態のいずれであってもよい。即ち、素子構成としては、上記1)～3)の多層積層構造の他に4)のように発光材料単独または発光材料と正孔輸送材料や電子輸送材料を含む層を一層設けるだけでもよい。さらに、本発明における発光物質は自ら発光する

もの、その発光を助けるもののいずれにも該当し、発光に関与している化合物、層などを指すものである。

【0015】本発明において正孔輸送層は正孔輸送性物質単独または二種類以上の物質を積層、混合するか正孔輸送性物質と高分子結合剤の混合物により形成される。正孔輸送性物質としては電界を与えた電極間において陽極からの正孔を効率良く輸送することが必要で、正孔注入効率が高く、注入された正孔を効率良く輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トランプとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、特に限定されるものではないが、N, N'-ジフェニル-N, N'-ジ(3-メチルフェニル)-4, 4'-ジフェニル-1, 1'-ジアミン、N, N'-ジナフチル-N, N'-ジフェニル-4, 4'-ジフェニル-1, 1'-ジアミンなどのトリフェニルアミン類、ビス(N-アリルカルバゾール)またはビス(N-アルキルカルバゾール)類、ピラゾリン誘導体、スチルベン系化合物、ヒドロゾン系化合物、オキサジアゾール誘導体やフタロシアニン誘導体、ポルフィリン誘導体に代表される複素環化合物、ポリマー系では前記单量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾール、ポリシランなどが好ましいが、素子作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。

【0016】本発明における発光材料はホスト材料のみでも、ホスト材料とドーパント材料の組み合わせでも、いずれであってもよい。また、ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパント材料は積層されていても、分散されていても、いずれであってもよい。

【0017】本発明において発光材料は、リンオキサイド基で置換された蛍光性骨格を有する有機蛍光体を含む。また、本発明におけるリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体としては、具体的には下記一般式(1)または(2)で表される化合物があげられる。

【0018】

【化3】

【0019】ここでR¹～R³はそれぞれ、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカブト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素

環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサン基の中から選ばれる。また、R¹～R³の少なくとも1つは蛍光性骨格である。

【0020】

【化4】

【0021】ここでR⁴～R⁵はそれぞれ、水素、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、メルカブト基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、複素環基、ハロゲン、ハロアルカン、ハロアルケン、ハロアルキン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、エステル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサン基の中から選ばれる。Xは蛍光性骨格を表す。nは2以上の自然数を表す。

【0022】これらの置換基の内、アルキル基とは例えばメチル基、エチル基、プロピル基、ブチル基などの飽和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、シクロアルキル基とは例えばシクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、アラルキル基とは例えばベンジル基、フェニルエチル基などの脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪族炭化水素と芳香族炭化水素はいずれも無置換でも置換されていてもかまわない。また、アルケニル基とは例えばビニル基、アリル基、ブタジエニル基などの二重結合を含む不饱和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、シクロアルケニル基とは例えばシクロペンテニル基、シクロペンタジエニル基、シクロヘキセン基などの二重結合を含む不饱和脂環式炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、アルキニル基とは例えばアセチレン基などの三重結合を含む不饱和脂肪族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、アルコキシ基とは例えばメトキシ基などのエーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭化水素基は無置換でも置換されていてもかまわない。また、アルキルチオ基とはアルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。また、アリールエーテル基とは例えばフェノキシ基などのエーテ

ル結合を介した芳香族炭化水素基を示し、芳香族炭化水素基は無置換でも置換されていてもかまわない。また、アリールチオエーテル基とはアリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。また、アリール基とは例えばフェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基などの芳香族炭化水素基を示し、これは無置換でも置換されていてもかまわない。また、複素環基とは例えばフリル基、チエニル基、オキサソリル基、ピリジル基、キノリル基、カルバゾリル基などの炭素以外の原子を有する環状構造基を示し、これは無置換でも置換されていてもかまわない。ハロゲンとはフッ素、塩素、臭素、ヨウ素を示す。ハロアルカン、ハロアルケン、ハロアルキンとは例えばトリフルオロメチルなどの、前述のアルキル基、アルケニル基、アルキニル基の一部あるいは全部が、前述のハロゲンで置換されたものを示し、残りの部分は無置換でも置換されていてもかまわない。アルデヒド基、カルボニル基、エステル基、カルバモイル基、アミノ基には脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、複素環などで置換されたものも含み、さらに脂肪族炭化水素、脂環式炭化水素、芳香

族炭化水素、複素環は無置換でも置換されていてもかまわない。シリル基とは例えばトリメチルシリル基などのケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。シロキサン基とは例えばトリメチルシロキサン基などのエーテル結合を介したケイ素化合物基を示し、これは無置換でも置換されていてもかまわない。また、隣接置換基との間に環構造を形成しても構わない。形成される環構造は無置換でも置換されていてもかまわない。

【0023】蛍光性骨格としては、後述の既知ホスト材料や従来から知られているドーバント材料の骨格が挙げられる。これらの蛍光性骨格がリンオキサイド基で置換されることで、電荷輸送性、薄膜形成性等が向上し、高輝度・高耐久性の発光素子を得ることが出来る。蛍光性骨格の中では、フェナントリル、アントラニル、ピレニル、ペリレニル等の縮合芳香環が好適に用いられる。

【0024】上記のリシオキサイド基で置換された蛍光性骨格を有する有機蛍光体として、具体的には下記のような構造があげられる。

【0025】

【化5】

【0026】

【0027】

【化7】

【0028】料として用いてもかまわないが、優れた電子輸送能を有することから、ホスト材料として好適に用いられる。

【0029】発光材料のホスト材料はリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体一種のみに限る必要はなく、複数のリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体を混合して用いたり、既知のホスト材料の一種類以上をリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体と混合して用いてもよい。既知のホスト材料としては特に限定されるものではないが、以前から発光体として知られていたアントラゼン、フェナ NSレン、ピレン、ペリレン、クリセンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムを始めとするキノリノール誘導体の金属錯体、ベンズオキサゾール誘導体、スチルベン誘導体、ベンズチアゾール誘導体、チアジアゾール誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペニタジエン誘導体、オキサジアゾール誘導体、ビススチリルアントラゼン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、キノリノール誘導体と異なる配位子を組み合わせた金属錯体、オキサジアゾール誘導体金属錯体、ベンズチアゾール誘導体金属錯体、クマリン誘導体、ピロロピリジン誘導体、ペリノン誘導体、チアジ

アゾロピリジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリバラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できる。

【0030】発光材料に添加するドーパント材料は、特に限定されるものではないが、具体的には従来から知られている、フェナ NSレン、アントラゼン、ピレン、テトラゼン、ペニタゼン、ペリレン、ナフトピレン、ジベンゾピレン、ルブレンなどの縮合環誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、ベンズイミダゾール誘導体、ベンズトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペニタジエン誘導体、ビススチリルアントラゼン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメチルイソベンゾフラン、ジ(2-メチルフェニル)イソベンゾフラン、ジ(2-トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7-ジアルキルアミノクマリン誘導体、7-ビペリジノク

マリン誘導体、7-ヒドロキシクマリン誘導体、7-メトキシクマリン誘導体、7-アセトキシクマリン誘導体、3-ベンズチアゾリルクマリン誘導体、3-ベンズイミダゾリルクマリン誘導体、3-ベンズオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンズアヌラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1, 2, 5-チアジアゾロピレン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体、ジアザフラビン誘導体などがそのまま使用できるが、特にイソベンゾフラン誘導体が好適に用いられる。

【0031】また、ドーパント材料として上記蛍光性（一重項発光）材料だけでなく、燐光性（三重項発光）材料も好ましく用いられる。具体的には、ポルフィリン白金錯体やトリス（2-フェニルピリジル）イリジウム錯体、トリス{2-(2-チオフェニル)ピリジル}イリジウム錯体、トリス{2-(2-ベンゾチオフェニル)ピリジル}イリジウム錯体、トリス(2-フェニルベンゾチアゾール)イリジウム錯体、トリス(2-フェニルベンゾオキサゾール)イリジウム錯体、ベンゾキノリンイリジウム錯体などが挙げられるが、これらに限定されるものではない。

【0032】本発明において電子輸送性材料は、電界を与えられた電極間において陰極からの電子を効率良く輸送することが必要で、電子注入効率が高く、注入された電子を効率良く輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。しかしながら、正孔と電子のバランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本発明における電子輸送層は、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。

【0033】このような条件を満たす物質として、本発明におけるリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体が挙げられる。電子輸送材料はリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体一種のみに限る必要ではなく、複数のリンオキサイド基で置換された蛍光性骨格を有する有機蛍光体を混合して用いたり、既知の電子輸送材料の一種類以上をリンオキサ-

イド基で置換された蛍光性骨格を有する有機蛍光体と混合して用いててもよい。既知の電子輸送材料としては、8-ヒドロキシキノリンアルミニウムに代表されるキノリノール誘導体金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリレン誘導体、ペリノン誘導体、ナフトレン、クマリン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体などがあるが特に限定されるものではない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と積層または混合して使用しても構わない。

【0034】以上の正孔輸送層、発光層、電子輸送層に用いられる材料は単独で各層を形成することができるが、高分子結合剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルフォン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリサルファン、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ニリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。

【0035】本発明において発光物質の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されるものではないが、通常は、抵抗加熱蒸着、電子ビーム蒸着が特性面で好ましい。層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1~1000 nmの間から選ばれる。

【0036】本発明において電気エネルギーとは主に直流電流を指すが、パルス電流や交流電流を用いること也可能である。電流値および電圧値は特に制限はないが、素子の消費電力、寿命を考慮するとできるだけ低いエネルギーで最大の輝度が得られるようにするべきである。

【0037】本発明においてマトリクスとは、表示のための画素が格子状に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状、サイズは用途によって決まる。例えばパソコン、モニター、テレビの画像および文字表示には、通常一辺が300 μm以下の四角形の画素が用いられるし、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブラミトリクスのどちらでもよい。線順次駆動の方が構

造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。

【0038】本発明においてセグメントタイプとは、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示、自動車のパネル表示などがあげられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてよい。

【0039】本発明においてバックライトとは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ機器、自動車パネル、表示板、標識などに使用される。特に液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると本発明におけるバックライトは、薄型、軽量が特徴になる。

【0040】

【実施例】以下、実施例および比較例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。

【0041】実施例1

I T O透明導電膜を150 nm堆積させたガラス基板(旭硝子(株)製、15 Ω/□、電子ビーム蒸着品)を30×40 mmに切断、エッティングを行った。得られた基板をアセトン、"セミコクリン56"(フルウチ化学(株)製)で各々15分間超音波洗浄してから、超純水で洗浄した。続いてイソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が 5×10^{-5} Pa以下になるまで排気した。抵抗加熱法によって、まず正孔輸送材料として4, 4'-ビス(N-(m-トリル)-N-フェニルアミノ)ビフェニルを100 nm蒸着した。次に発光材料として、ジフェニル-2-ビニルリンオキサイドを50 nmの厚さに積層した。次に電子輸送材料として、2, 9-ジメチル-4, 7-ジフェニル-1, 10-フェナントリン(BTCPN)を100 nmの厚さに積層した。次にリチウムを0, 5 nm有機層にドーピングした後、アルミニウムを200 nm蒸着して陰極とし、5×5 mm角の素子を作製した。ここで言う膜厚は水晶発振式膜厚モニター表示値である。この発光素子からは、発光波長528 nm、輝度5650カンデラ/平方メートルの高輝度青緑色発光が得られた。

【0042】比較例1

発光材料としてビレンを用いた他は実施例1と全く同様にして発光素子を作製した。この発光素子は短絡してしまい、発光を得ることができなかった。

【0043】実施例2

発光材料としてジフェニル-5-フェナンスレニルリンオキサイドを用いた他は実施例1と全く同様にして発光素子を作製した。この発光素子からは発光波長486 nm、輝度401カンデラ/平方メートルの高色純度青色発光が得られた。

【0044】実施例3

発光材料として、ホスト材料として実施例1で用いたジフェニル-2-ビニルリンオキサイドを、ドーパント材料としてペリレンを用いて、ドーパントが3 wt %になるように50 nmの厚さに共蒸着した他は実施例1と全く同様にして発光素子を作製した。この発光素子からは発光波長462, 490 nm(ダブルピーク)、輝度3150カンデラ/平方メートルの高輝度高色純度青色発光が得られた。

【0045】実施例4

電子輸送材料として、ジフェニル-2-ビニルリンオキサイドを用いた他は実施例1と全く同様にして発光素子を作製した。実施例1に比べて、電子輸送性が向上し、同じ電流を流すのに必要な駆動電圧が3 V低下した。

【0046】実施例5

発光材料として、ホスト材料として(8-キノリノラト)アルミニウム(III)(A1q3)を、ドーパント材料として9-ベンゾチアゾール-2-イル-1, 1, 6, 6-テトラメチル-2, 3, 5, 6-テトラヒドロ-1H, 4H-1, 1-オキサ-3a-アザ-ベンゾ[d-e]アントラセン-10-オン(クマリン545T)を用いた他は実施例4と全く同様にして発光素子を作製した。この発光素子からは発光波長520 nm、輝度30000カンデラ/平方メートルの高輝度高色純度緑色発光が得られた。この発光素子の通電後500時間経過後の初期輝度保持率は80%以上であり、均質な発光面を維持していた。

【0047】比較例3

電子輸送材料としてBTCPNを用いた他は実施例5と全く同様にして発光素子を作製した。この発光素子の通電後500時間経過後の初期輝度保持率は50%以下であり、発光面にはムラが見られた。

【0048】実施例6

発光材料として、4, 4'-ビス(2, 2-ジフェニルビニル)ビフェニル(DPVBi)を用いた他は実施例4と全く同様にして発光素子を作製した。この発光素子からは発光波長468 nm、輝度10000カンデラ/平方メートルの高輝度高色純度青色発光が得られた。

【0049】比較例3

電子輸送材料としてA1q3を用いた他は実施例6と全

く同様にして発光素子を作製した。この発光素子からは発光材料だけでなく電子輸送材料も発光（緑色）し、色純度の悪い青色発光しか得られなかつた。

【0050】実施例7

発光材料のうち、ホスト材料として3, 6-ジビフェニル-2, 5-ジ（3, 5-ジt-ブチルベンジル）ピロロ[3, 4-c]ピロール-1, 4-ジオンを、ドーパント材料として、4, 4-ジフルオロー-1, 3, 5, 7-テトラトリル-4-ボラー-3a, 4a-ジアザ-インダセンを用いた他は実施例4と全く同様にして発光素子を作製した。この発光素子からは発光波長630nm、輝度8000カンデラ／平方メートルの高輝度高色純度赤色発光が得られた。

【0051】比較例4

電子輸送材料としてA1q3を用いた他は実施例7と全く同様にして発光素子を作製した。この発光素子からは発光材料だけでなく電子輸送材料も発光（緑色）し、色純度の悪い赤色発光しか得られなかつた。

【0052】実施例8

発光材料として、ホスト材料として4, 4' ピス（9-カルバゾリル）ビフェニル（CBP）を、ドーパント材料として、トリス（2-フェニルビリジル）イリジウム錯体を用いた他は実施例4と全く同様にして発光素子を作製した。この発光素子からは発光波長520nm、輝度50000カンデラ／平方メートルの高輝度高色純度緑色発光が得られた。

【0053】実施例9

各有機層を蒸着するまでの工程は実施例1と同様に行つた。抵抗加熱法によって、まず正孔輸送材料として4, 4' -ビス（N-（m-トリル）-N-フェニルアミノ）ビフェニルを150nm蒸着し、実施例1で用いたジフェニル-2-ピレニルリンオキサイドを50nmの厚さに蒸着した。次に電子輸送材料として、2, 9-ジメチル-4, 7-ジフェニル-1, 10-フェナントロリンを100nmの厚さに積層した。次にリチウムを0.5nm有機層にドーピングした後、アルミニウムを200nm蒸着して5×5mm角の素子を作製した。ここでいう膜厚は水晶発振式膜厚モニター表示値である。この発光素子を真空セル内で1mAパルス駆動（Dut

y比1/60、パルス時の電流値60mA）させたところ、良好な発光が確認された。

【0054】実施例10

ITO透明導電膜を150nm堆積させたガラス基板（旭硝子（株）製、15Ω/□、電子ビーム蒸着品）を30×40mmに切断、フォトリソグラフィ法によって300μmピッチ（残り幅270μm）×32本のストライプ状にパターン加工した。ITOストライプの長辺方向片側は外部との電気的接続を容易にするために1.27mmピッチ（開口部幅800μm）まで広げてある。得られた基板をアセトン、”セミクリン56”で各々15分間超音波洗浄してから、超純水で洗浄した。続いてイソプロピルアルコールで15分間超音波洗浄してから熱メタノールに15分間浸漬させて乾燥させた。この基板を素子を作製する直前に1時間UV-Oゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10⁻⁴Pa以下になるまで排気した。抵抗加熱法によって、まず正孔輸送材料として4, 4' -ビス（N-（m-トリル）-N-フェニルアミノ）ビフェニルを150nm蒸着し、実施例1で用いたジフェニル-2-ピレニルリンオキサイドを50nmの厚さに蒸着した。次に電子輸送材料として、2, 9-ジメチル-4, 7-ジフェニル-1, 10-フェナントロリンを100nmの厚さに積層した。ここで言う膜厚は水晶発振式膜厚モニター表示値である。次に厚さ50μmのコバルト板にウエットエッティングによって16本の250μmの開口部（残り幅50μm、300μmピッチに相当）を設けたマスクを、真空中でITOストライプに直交するようにマスク交換し、マスクとITO基板が密着するように裏面から30磁石で固定した。そしてリチウムを0.5nm有機層にドーピングした後、アルミニウムを200nm蒸着して32×16ドットマトリクス素子を作製した。本素子をマトリクス駆動させたところ、クロストークなく文字表示できた。

【0055】

【発明の効果】本発明は、発光効率が高く、色純度に優れた、発光素子を提供できるものである。特に青色発光にとって有効なものである。