MAT1830 - Discrete Mathematics for Computer Science Tutorial Sheet #10 Solutions

- 1. (a) Note that $a_0 = 2^0 = 1$. Also, $a_n = 2^n = 2(2^{n-1}) = 2a_{n-1}$ for $n \ge 1$. So " $a_0 = 1$ and $a_n = 2a_{n-1}$ for all integers $n \ge 1$ " is a recursive definition for the sequence.
 - (b) Note that $b_0 = 0^2 = 0$. Also, $b_n = n^2 = (n-1)^2 + 2n - 1 = b_{n-1} + 2n - 1$ for $n \ge 1$. So " $b_0 = 0$ and $b_n = b_{n-1} + 2n - 1$ for all integers $n \ge 1$ " is a recursive definition the sequence.
- 2. (a) Vertices: P, Q, R, SEdges: PQ, PR, PS
 - (b) Vertices: P, Q, R, S, TEdges: PQ, PR, PS, QR, QS, RS
 - (c) Vertices: P, Q, R, S, T Edges: PS, QS, QT, RS, ST
- 3. (a) $\frac{1}{13} + \frac{1}{15} + \frac{1}{17} + \frac{1}{19} + \frac{1}{21}$ (b) $(\frac{x^4}{8} + 4)(\frac{x^5}{10} + 5)(\frac{x^6}{12} + 6)$
- 4. There is only one way of writing 1 in this form: "1".

There are two ways of writing 2: "1 + 1" and "2".

So
$$s_1 = 1$$
 and $s_2 = 2$.

If the first term in such a sum is a 1, then there are s_{n-1} ways to finish it so that it adds to n. If the first term in such a sum is a 2, then there are s_{n-2} ways to finish it so that it adds to n. These two cases account for every possible sum.

So
$$s_1 = 1$$
, $s_2 = 2$ and $s_n = s_{n-1} + s_{n-2}$ for all integers $n \ge 3$.

5. One line creates two regions, so $r_1 = 2$.

The nth line added intersects each of the n-1 previous lines exactly once because it is not parallel to any of them. The n-1 intersection points created are all different because no three lines meet at a point. These n-1 intersection points divide the nth line into n segments and each of these segments splits a region in two. So the new number of regions is n more than the previous number.

Thus $r_1 = 2$ and $r_n = r_{n-1} + n$ for all integers $n \ge 2$.