

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

⑯ Offenlegungsschrift
⑯ DE 199 42 281 A 1

⑯ Int. Cl.⁷:
G 02 B 13/18
G 02 B 13/24
G 02 B 13/14
G 03 F 7/20

⑯ Innere Priorität:
199 22 209. 6 14. 05. 1999

⑯ Erfinder:
Schuster, Karl-Heinz, 89551 Königsbronn, DE

⑯ Anmelder:
Fa. Carl Zeiss, 89518 Heidenheim, DE

DE 199 42 281 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

⑯ Projektionsobjektiv
⑯ Projektionsobjektiv mit einer mindestens eine erste Taille des Lichtbündels aufweisenden Linsenanordnung, wobei eine Linse (L205, L305, L405, L505, L605) mit einer asphärischen Oberfläche (29) vor und/oder eine Linse (L210, L310, L409, L509, L609) mit einer asphärischen Oberfläche (27) nach der ersten Taille (23) angeordnet ist.

DE 199 42 281 A 1

DE 199 42 281 A 1

Beschreibung

Die Erfindung betrifft ein Projektionsobjektiv mit einer Linsenanordnung, die in sechs Linsengruppen unterteilbar ist. Die erste, dritte, fünfte und sechste Linsengruppe weisen positive Brechkraft auf und die zweite und vierte Linsengruppe weisen jeweils negative Brechkraft auf. Im folgenden wird die Unterteilung des Linsensystems in Linsengruppen näher ausgeführt, wobei die Ausbreitungsrichtung der Strahlung zugrunde gelegt worden ist.

5 Die erste Linsengruppe ist positiv und endet mit einer Linse positiver Brechkraft. Durch die erste Linsengruppe wird ein Bauch gebildet, wobei es unerheblich ist, wenn in dem Bauch auch Negativlinsen angeordnet sind.

10 Die zweite Linsengruppe ist in ihrer Gesamtbrechkraft negativ. Diese zweite Linsengruppe weist als erste Linse eine bildseitig mit einer konkaven Linsenoberfläche ausgebildete Linse auf. Diese zweite Linsengruppe beschreibt im wesentlichen eine Taille. Auch hier ist es nicht maßgeblich, wenn einzelne positive Linsen in der zweiten Linsengruppe enthalten sind, solange die Taille erhalten bleibt.

15 Die dritte Linsengruppe beginnt mit einer Linse positiver Brechkraft, die bildseitig eine konvexe Linsenoberfläche aufweist und ein Meniskus sein kann. Ist als erste Linse eine dicke Meniskulinse vorgesehen, so kann innerhalb der Linse die Trennung der Linsengruppen gedacht sein.

20 Die vierte Linsengruppe ist von negativer Brechkraft. Diese vierte Linsengruppe beginnt mit einer Linse negativer Brechkraft, auf die mehrere Linsen mit negativer Brechkraft folgen. Durch diese Linsengruppe wird eine Taille gebildet. Es ist unerheblich, ob innerhalb dieser Linsengruppe auch Linsen positiver Brechkraft angeordnet sind, solange diese 25 Strahlenverlauf nur auf einer kurzen Distanz beeinflußt und somit die Taillenform der vierten Linsengruppe erhalten bleibt.

Die fünfte Linsengruppe ist in ihrer Gesamtheit von positiver Brechkraft. Die erste Linse dieser fünften Linsengruppe weist bildseitig eine konvexe Linsenfläche auf. Durch die fünfte Linsengruppe wird ein Bauch gebildet.

Nach der Linse mit dem maximalen Durchmesser (der Bauch) folgen noch mindestens zwei positive Linsen in der 30 fünften Linsengruppe, wobei auch noch negative Linsen zugelassen sind.

25 Die sechste Linsengruppe ist ebenfalls positiv in ihrer Gesamtbrechkraft. Die erste Linse der sechsten Linsengruppe ist negativ und weist bildseitig eine konkave Linsenfläche auf. Diese erste Linse der sechsten Linsengruppe weist im Vergleich zum maximalen Durchmesser des Bauches einen wesentlich kleineren Durchmesser auf.

30 Solche Projektionsobjektive werden insbesondere in der Mikrolithographie eingesetzt. Sie sind z. B. aus dem unter Beteiligung des Erfinders entstandenen DE 198 55 108 A, DE 198 55 157 A, DE 198 55 158 A der Anmelderin und dem dort zitierten Stand der Technik bekannt. Diese Schriften sollen auch Inhalt dieser Anmeldung sein.

35 Herkömmlich werden diese Projektionsobjektive aus rein sphärischen Linsen aufgebaut, da die Herstell- und Prüftechnik für sphären vorteilhaft ist.

Aus der DE 198 18 444 A1 sind Projektionsobjektive bekannt, die Linsen mit asphärischen Oberflächen zumindest in der vierten oder fünften Linsengruppe aufweisen. Durch die asphärischen Oberflächen konnte eine Erhöhung der Apertur 40 sowie der Bildqualität erreicht werden. Die dargestellten Projektionsobjektive weisen eine Längenerstreckung von Mas- kenebene zur Bildebene von 1200 mm bis 1500 mm auf. Mit dieser Länge ist ein erheblicher Materialeinsatz verbunden. Mit diesem Materialeinsatz gehen hohe Herstellkosten einher, da aufgrund der geforderten hohen Bildqualität nur hoch- 45 qualitative Werkstoffe eingesetzt werden können. Es werden asphärischen Linsen bis zu einem Durchmesser von ca. 300 mm benötigt, womit ihre Bereitstellung besonders aufwendig ist. Es ist in der Fachwelt überhaupt nicht klar, ob asphärische Linsen mit derart großen Linsendurchmessern in der erforderlichen Qualität bereitgestellt werden können. Unter asphärischen Flächen sind alle nicht kugelförmigen Oberflächen zu verstehen, die rotationssymmetrisch sind. Ins- 50 besondere können als asphärische Linsenflächen auch rotationssymmetrische Splines vorgesehen sein.

Der Erfundung lag die Aufgabe zu Grunde, ein Projektionsobjektiv zu schaffen, das bei verminderter Materialeinsatz möglichst wenige Linsen aufweist, wobei möglichst wenige, kleine und geringe Asphäritäten aufweisende asphärische 55 Linsenflächen eingesetzt werden. Es soll so ein kurzbauendes hochaperturiges Projektionsobjektiv kostengünstig bereit- gestellt werden.

Die Aufgabe der Erfindung wird insbesondere durch die im Patentanspruch 1 oder 3 gegebenen Merkmale gelöst.

Durch die Maßnahme, in einem Projektionsobjektiv mit einer Linsenanordnung in der vorderen Hälfte dieser Linsen- 60 anordnung mindestens eine mit einer asphärischen Linsenfläche versehene Linse vorzusehen, wurde die Möglichkeit ge- schaffen, ein kompakt bauendes Projektionsobjektiv, das eine hohe Bildqualität aufweist, bereitzustellen.

Bei Unterteilung dieser Linsenanordnung in sechs Linsengruppen, wobei eine erste Linsengruppe eine positive Brechkraft, eine zweite Linsengruppe eine negative Brechkraft, eine dritte Linsengruppe eine positive Brechkraft, eine vierte Linsengruppe eine negative Brechkraft und eine fünfte und sechste Linsengruppe jeweils eine positive Brechkraft aufweisen, ist eine bevorzugte Position der asphärischen Oberfläche am Ende der zweiten Linsengruppe. Dabei ist sie insbesondere auf der letzten Linse der zweiten Linsengruppe oder am Anfang der dritten Linsengruppe angeordnet, und zwar vorzugsweise auf der ersten Linse der dritten Linsengruppe. Mittels dieser asphärischen Linsenoberfläche ist insbesondere eine Korrektur von Bildfehlern im Bereich zwischen Bildfeldzone und Bildfeldrand möglich. Insbesondere können die Bildfehler höherer Ordnung, die bei Betrachtung von Sagittalschnitten deutlich werden, korrigiert werden. Da sich diese im Sagittalschnitt ersichtlichen Bildfehler besonders schwer korrigieren lassen, ist dies ein besonders wertvoller Beitrag.

65 In einem vorteilhaften Ausführungsbeispiel gemäß Anspruch 2 ist vorgesehen, daß nur eine Linse eine asphärische Oberfläche aufweist. Dies hat einen positiven Einfluß auf die Herstellungskosten, da gerade die Herstellung von asphärischen Oberflächen hoher Genauigkeit mit erheblichem technologischen Aufwand und demzufolge mit Kosten verbunden ist. Erst mit dem Einsatz genau einer Asphäre wurde es möglich ein sehr kompaktes Projektionsobjektiv zu schaffen, bei dem die Mehrkosten für die Asphäre nicht ins Gewicht fallen, da mit der Verringerung des erforderlichen Materials und der zu bearbeitenden und zu prüfenden Flächen erhebliche Kosteneinsparungen verbunden sind.

60 Durch die Maßnahme gemäß Anspruch 3, eine Linsenanordnung vorzusehen, die zumindest eine erste Taille, eine asphärische Oberfläche vor und eine asphärische Oberfläche nach der Taille aufweist, ist eine Linsenanordnung geschaf-

DE 199 42 281 A 1

fen, die die Bereitstellung einer hohen Apertur bei hoher Bildqualität insbesondere für den DUV Bereich ermöglicht. Insbesondere ist es durch den Einsatz dieser asphärischen Oberflächen möglich, ein kurzbauendes Projektionsobjektiv mit einer hohen Bildqualität bereitzustellen. In der Mikrolithographie eingesetzte Objektive weisen im allgemeinen über ihre gesamte Erstreckung eine hohe Materialdichte auf, so daß mit der Reduzierung der Längenerstreckung eine erhebliche Materialeinsparung verbunden ist. Da bei Projektionsobjektiven insbesondere für die Mikrolithographie nur sehr hochwertige Materialien eingesetzt werden können, hat der erforderliche Materialeinsatz einen massiven Einfluß auf die Herstellungskosten.

Die vor der ersten Taille angeordnete asphärische Oberfläche kann am Ende der ersten Linsengruppe oder am Anfang der zweiten Linsengruppe angeordnet sein. Weiterhin hat es sich als vorteilhaft herausgestellt, eine nach der ersten Taille angeordnete asphärische Oberfläche auf der letzten Linse der zweiten Linsengruppe oder auf der ersten Linse der dritten Linsengruppe anzuordnen.

Durch die vor der ersten Taille vorgesehene asphärische Oberfläche ist insbesondere eine gezielte Korrektur der Koma im Bereich der Bildfeldzone möglich. Diese asphärische Linsenoberfläche hat auf die schiefe sphärische Aberration im Tangentialschnitt und im Sagittalschnitt nur einen geringen Einfluß. Dahingegen kann durch die asphärische Linsenoberfläche nach der Taille die schiefe sagittale Aberration, insbesondere im Bereich zwischen Bildfeldzone und Bildfeldrand, korrigiert werden.

So ist das Vorsehen einer zweiten asphärischen Linsenoberfläche eine wertvolle Maßnahme, um bei erhöhter Apertur einer durch Koma begründeten Verringerung der Bildqualität entgegenzuwirken.

In einigen Anwendungsfällen, insbesondere mit sehr hoher Apertur, gemäß den Ansprüchen 7, 10 hat es sich als günstig herausgestellt, eine dritte asphärische Linsenoberfläche in der dritten Linsengruppe vorzusehen.

Es hat sich gemäß Anspruch 9 als vorteilhaft herausgestellt, in der sechsten Linsengruppe eine Linse mit einer asphärischen Fläche für eine weitergehende Korrektur der Koma, insbesondere auch im Bereich des Bildfeldrandes, bereitzustellen. Als prädestinierte Position hat sich für diese asphärische Linsenfläche insbesondere die erste Linse der sechsten Linsengruppe herausgestellt.

Weiterhin ist durch Vorsehen einer weiteren asphärischen Oberfläche auf der letzten Linse der dritten Linsengruppe eine Erhöhung der Apertur gemäß Anspruch 10 bei gleichbleibender Bildqualität möglich.

Es ist ein Vorteil der Erfindung gemäß Anspruch 17, daß asphärische Flächen auf langen Radien vorgesehen sind, da die Herstellung und Prüfung von Linsenflächen mit langen Radien einfacher ist. Diese Oberflächen sind für Bearbeitungsgeräte auf Grund der geringen Krümmung leicht zugänglich. Insbesondere sind Oberflächen mit langen Radien für taktile Meßverfahren mit kartesischen Koordinaten zugänglich.

Es hat sich gemäß Anspruch 13 als vorteilhaft herausgestellt, bei Projektionsobjektiven, die für eine Beleuchtungswellenlänge von kleiner als 200 nm ausgelegt sind, aufgrund der stärkeren Dispersion der Linsen auch bei Einsatz schmalbandiger Lichtquellen für eine Achromatisierung mindestens 2 verschiedene Materialien für die Linsen zu verwenden.

Neben Quarzglas sind insbesondere die Fluoride, insbesondere CaF_2 , als geeignetes Material bekannt.

Es hat sich gemäß Anspruch 14 als vorteilhaft herausgestellt, mindestens zwei Linsen, die vor einer Aperturblende in der fünften Linsengruppe angeordnet sind, zur Korrektur des Farbquerfehlers aus CaF_2 vorzusehen.

Zur weiteren Korrektur von Farbfehlern hat es sich gemäß Anspruch 15 als vorteilhaft herausgestellt, nach der Aperturblende mittels einer positiven CaF_2 Linse und einer folgenden negativen Quarzlinse einen Alt-Achromaten zu integrieren. Diese Anordnung wirkt sich günstig zur Korrektur der sphärischen Anteile aus. Durch die Linsen nach der Aperturblende sind insbesondere Farblängsfehler korrigierbar.

Schon allein aus der Verkürzung der Längenerstreckung des Projektionsobjektives resultiert im allgemeinen eine Reduzierung des Farblängsfehlers. Somit kann bei den erfindungsgemäßen Objektiven eine gute Achromatisierung bei einem reduzierten Einsatz von CaF_2 Linsen erreicht werden.

Weitere vorteilhafte Maßnahmen sind in den weiteren Unteransprüchen angegeben.

Anhand einiger Ausführungsbeispiele wird die Erfindung im folgenden näher beschrieben. Es zeigt:

Fig. 1 schematische Darstellung einer Projektionsbelichtungsanlage;

Fig. 2 Linsenschnitt durch eine erste Linsenanordnung eines Projektionsobjektives mit einer asphärischen Linsenoberfläche;

Fig. 3 Linsenschnitt durch eine zweite Linsenanordnung, die zwei asphärische Linsenoberflächen aufweist;

Fig. 4 Linsenschnitt durch eine dritte Linsenanordnung, die drei asphärische Oberflächen aufweist;

Fig. 5a bis 5g Darstellung der tangentialem Queraberrationen;

Fig. 6a bis 6g Darstellung der sagittalen Queraberrationen;

Fig. 7a bis 7f Darstellung des Rinnenfehlers der dritten Linsenanordnung anhand von Schnitten;

Fig. 8 Linsenschnitt durch eine vierte Linsenanordnung, die drei asphärische Oberflächen aufweist;

Fig. 9 Linsenschnitt durch eine fünfte Linsenanordnung, die vier asphärische Linsenoberflächen aufweist; und

Fig. 10 Linsenschnitt durch eine sechste Linsenanordnung, die vier asphärische Oberflächen aufweist.

Anhand von Fig. 1 wird zunächst der prinzipielle Aufbau einer Projektionslichtungsanlage beschrieben. Die Projektionsbelichtungsanlage 1 weist eine Beleuchtungseinrichtung 3 und ein Projektionsobjektiv 5 auf. Das Projektionsobjektiv umfaßt eine Linsenanordnung 19 mit einer Aperturblende AP, wobei durch die Linsenanordnung 19 eine optische Achse 7 definiert wird. Zwischen Beleuchtungseinrichtung 3 und Projektionsobjektiv 5 ist eine Maske 9 angeordnet, die mittels eines Maskenhalters 11 im Strahlengang gehalten wird. Solche in der Mikrolithographie verwendeten Masken 9 weisen eine Mikrometer- bis Nanometerstruktur auf, die mittels des Projektionsobjektives 5 bis zu einem Faktor von 10, insbesondere um den Faktor vier, verkleinert auf eine Bildebene 13 abgebildet wird. In der Bildebene 13 wird ein durch einen Substrathalter 17 positioniertes Substrat bzw. ein Wafer 15 gehalten. Die noch auflösbareren minimalen Strukturen hängen von der Wellenlänge λ des für die Beleuchtung verwendeten Lichtes sowie von der Apertur des Projektionsobjektives 5 ab, wobei die maximal erreichbare Auflösung der Projektionsbelichtungsanlage 1 mit abnehmender Wellenlänge der Beleuchtungseinrichtung 3 und mit zunehmender Apertur des Projektionsobjektives 5 steigt.

Das Projektionsobjektiv 5 enthält erfindungsgemäß mindestens eine asphärische Fläche zur Bereitstellung einer hohen

DE 199 42 281 A 1

Auflösung.

Verschiedene Ausführungsformen von Linsenanordnungen 19 sind in den Fig. 2-4 und 8-10 gezeigt.

Im folgenden werden diese für gehobene Ansprüche an die Bildqualität sowie an die Auflösung ausgelegten Projektionsobjektive 3, insbesondere deren Linsenanordnung 19, näher beschrieben. Die Daten der einzelnen Linsen L101-L130, L201-L230, L301-L330, L401-L429, L501-L529, L601-L629 sind den zugeordneten Tabellen im einzelnen zu entnehmen. Alle Linsenanordnungen 19 weisen zumindest eine asphärische Linsenfläche 27 auf.

Diese asphärischen Flächen werden durch die Gleichung:

$$P(h) = \frac{\delta * h^2}{1 + \sqrt{1 - (1 - EX) * \delta^2 * h^2}} + C_1 h^4 + \dots + C_n h^{2n+2} \quad \delta = 1/R$$

beschrieben, wobei P die Pfeilhöhe als Funktion des Radius h (Höhe zur optischen Achse 7) mit den in den Tabellen angegebenen asphärischen Konstanten C_1 bis C_n ist. R ist der in den Tabellen angegebene Scheitelradius.

Die in Fig. 2 gezeigte Linsenanordnung 19 weist 29 Linsen und eine Planparallelplatte auf, die mit L101-L130 bezeichnet sind. Diese Linsenanordnung 19 ist in sechs Linsengruppen unterteilbar, die mit LG1 für die erste Linsengruppe bis LG6 für die sechste Linsengruppe bezeichnet sind. Die erste, dritte, fünfte und sechste Linsengruppe weisen positive Brechkraft auf, wohingegen die zweite Linsengruppe LG2 und die vierte Linsengruppe LG4, durch die eine erste Taille 23 und eine zweite Taille 25 gebildet werden, negative Brechkraft aufweisen. Diese Linsenanordnung 19 ist für die Wellenlänge $\lambda = 193,3$ nm, welche durch einen KrF-Excimerlaser erzeugt wird, ausgelegt und weist eine asphärische Linsenfläche 27 auf. Mit dieser Linsenanordnung 19 ist bei einer Apertur von 0,75 eine Strukturbreite von 0,10 μm auflösbar. Objektseitig breitet sich das durch die Linsenanordnung transmittierte Licht in Form einer kugelförmigen Wellenfront aus. Bei diesem Objektiv beträgt die größte Abweichung von der idealen Wellenfront, auch mit RMS-Faktor bezeichnet, $10,4 \text{ m}\lambda$ bezogen auf die Wellenlänge von $\lambda = 193,3$ nm. Die Bildfelddiagonale beträgt 28 mm. Die Baulänge von Maskenebene zu Objektivebene beträgt nur 1000 mm, und der maximale Durchmesser einer Linse beträgt 235 mm.

In diesem Ausführungsbeispiel ist diese asphärische Linsenoberfläche 27 auf der der Beleuchtungseinrichtung abgewandten Seite der Linse L110 angeordnet.

Mit dieser asphärischen Linsenoberfläche 27 wurde es erst möglich, ein die zuvor genannten guten Leistungsdaten aufweisendes Projektionsobjektiv bereitzustellen. Diese asphärische Linsenfläche 27 dient dazu, Bildfehler zu korrigieren, sowie die erforderliche Baulänge bei gleichbleibender Bildqualität zu verringern. Hier werden durch diese Asphäre 27 insbesondere Bildfehler höherer Ordnung im Bereich zwischen Bildzone und Bildfeldrand korrigiert. Diese Korrektur bewirkt insbesondere eine Erhöhung der Bildqualität in sagittaler Richtung.

Mit kürzerer Wellenlänge wächst die Dispersion der verfügbaren Linsenmaterialien an. Dernzufolge treten verstärkt chromatische Bildfehler bei Projektionsobjektiven für kurze Wellenlängen wie 193 nm oder 157 nm auf. Die übliche

Ausführung für 193 nm weist daher Quarzglas als Flint und CaF_2 als Kron als Linsenmaterial zur Achromatisierung auf.

Bei insgesamt minimalem Einsatz des problematischen CaF_2 ist zu beachten, daß die eine CaF_2 Linse L114 in der dritten Linsengruppe LG3 eine erhöhte Anforderung an die Homogenität des Materials stellt, da sie fern der Aperturblende AP angeordnet ist. Dafür hat sie aber mäßigen Durchmesser, was die Verfügbarkeit von CaF_2 mit erhöhter Anforderung wesentlich verbessert.

Zur Korrektur des Farbquerfehlers sind drei CaF_2 Linsen L119, L120, L121 vor der Aperturblende AP in der fünften Linsengruppe LG5 angeordnet worden. Direkt hinter der Aperturblende AP ist ein Achromat 37, bestehend aus einer konvexen CaF_2 Linse L122 und der nachfolgenden Meniskuslinse L123 aus Quarzglas, angeordnet. Diese CaF_2 Linsen können aufgrund des Strahlenverlaufes von geringerer Qualität als die CaF_2 Linse L114 sein, da Qualitätsabweichungen im Mittenbereich gleichzeitig für alle Bildfeldbereiche leichter korrigiert werden können (durch Linsendrehung bei der Justage).

Eine weitere CaF_2 Linse L129 ist in der sechsten Linsengruppe angeordnet. Durch diese Linse aus CaF_2 ist es möglich die Einflüsse von Linsenerwärmung und Brechzahländerungen infolge von Bestrahlung (Compaction) zu verringern.

Die einzelnen Daten zu den Linsen L101-L130 sind der Tabelle 1 zu entnehmen. Der optisch genutzte Durchmesser aller CaF_2 Linsen ist kleiner als 235 mm. Da die Verfügbarkeit von CaF_2 in Abhängigkeit vom geforderten Durchmesser noch begrenzt ist, ist der erforderliche Durchmesser der eingesetzten CaF_2 Linsen von zentraler Bedeutung.

In Fig. 3 ist eine für die Wellenlänge $\lambda = 248$ nm ausgelegte Linsenanordnung 19 im Schnitt gezeigt. Diese Linsenanordnung 19 weist zwei asphärische Linsenflächen 27, 29 auf. Die erste asphärische Linsenfläche 27 ist auf der Linse L210 bildseitig angeordnet. Es könnte auch vorgesehen sein, diese zweite asphärische Linsenoberfläche 27 auf der der Beleuchtungseinrichtung zugewandten Seite der Linse L211 anzurordnen. Die beiden Linsen L210 und L211 sind für die Aufnahme der asphärischen Linsenoberfläche 27 prädestiniert. Es kann auch vorgesehen sein, anstelle der Linsen L210 und L211 eine Meniskuslinse vorzusehen, die eine asphärische Linsenoberfläche aufweist. Die zweite asphärische Linsenoberfläche 29 ist im Endbereich der ersten Linsengruppe, auf der der Beleuchtungseinrichtung 3 abgewandten Seite der Linse L205, angeordnet. Es kann auch vorgesehen sein, diese asphärische Linsenoberfläche 29 auf der darauf folgenden Linse L206 in dem Beginn der zweiten Linsengruppe anzurordnen.

Eine besonders große Wirkung erhält man bei der Anordnung der Asphären 27, 29 auf Linsenoberflächen, bei denen die auftreffenden Strahlen zur jeweiligen Oberflächennormalen einen großen Winkel einschließen. Dabei ist besonders die große Variation der Auftreffwinkel bedeutsam. In Fig. 10 erreicht der Wert von $\sin i$ bei der asphärischen Linsenoberfläche 31 einen Wert bis zu 0,82. Infolgedessen haben in diesem Ausführungsbeispiel die einander zugewandten Linsenoberflächen der Linsen L210, L211 einen größeren Einfluß auf den Strahlenverlauf im Vergleich zu der jeweils anderen Linsenoberfläche der entsprechenden Linse L210, L211.

Bei einer Länge von 1000 mm und einem maximalen Linsendurchmesser von 237,3 mm weist diese Linsenanordnung bei einer Wellenlänge von 248,38 nm eine numerische Apertur von 0,75 auf. Die Bildfelddiagonale beträgt 27,21 mm. Es ist eine Strukturbreite von 0,15 μm auflösbar. Die größte Abweichung von der idealen Wellenfront beträgt 13,0 $\text{m}\lambda$. Die

DE 199 42 281 A 1

genauen Linsendaten, bei denen diese Leistungsdaten erreicht werden, sind der Tabelle 2 zu entnehmen.

Eine weitere Ausführungsform einer Linsenanordnung 19 für die Wellenlänge 248,38 nm ist in Fig. 4 gezeigt. Diese Linsenanordnung 19 weist drei Linsen L305, L310, L328 auf, die jeweils eine asphärische Linsenoberfläche 27, 29, 31 aufweisen. Die asphärischen Linsenoberflächen 27, 29 sind an den aus Fig. 3 bekannten Positionen belassen worden. Durch die asphärische Linsenoberfläche 27 ist die Koma mittleren Ordnung für die Bildfeldzone einstellbar. Dabei sind die Rückwirkungen auf Schnitte in tangentialer Richtung sowie sagittaler Richtung gering. 5

Die zusätzliche dritte asphärische Linsenoberfläche 31 ist maskenseitig auf der Linse L328 angeordnet. Diese asphärische Linsenoberfläche 31 unterstützt die Komakorrektur zum Bildfeldrand hin.

Mittels dieser drei asphärischen Linsenoberflächen 27, 29, 31 wird bei einer Wellenlänge von 248,38 nm bei einer Länge von nur 1000 mm und einem maximalen Linsendurchmesser von 247,2 mm die weiter gesteigerte numerische Apertur von 0,77 und eine im gesamten Bildfeld gut auflösbare Strukturbreite von 0,14 μm erreicht. Die maximale Abweichung von der idealen Wellenfront beträgt 12,0 $\text{m}\lambda$. 10

Um die Durchmesser der Linsen in LG5 klein zu halten und um eine für das System vorteilhafte Petzvalsumme, die nahezu null sein sollte beizubehalten, sind die drei Linsen L312, L313, L314 in der dritten Linsengruppe LG3 vergrößert. Für die Bereitstellung des erforderlichen axialen Bauraumes für diese drei Linsen L312-L314 sind die Dicken anderer Linsen und damit die Durchmesser, insbesondere der Linsen der ersten Gruppe LG1, reduziert worden. Dies ist ein aus- 15 gezeichneter Weg, um in einem begrenzten Bauraum sehr große Bildfelder und Aperturen unterzubringen.

Die hohe Bildqualität, die durch diese Linsenanordnung erreicht wird, ist aus den Fig. 5a-5g, Fig. 6a-6g und Fig. 7a-7f zu ersehen. 20

Fig. 5a-5g geben für die Bildhöhen Y' (in mm) die meridionale Queraberration DYM an. Alle zeigen bis zu den höchsten DW' hervorragenden Verlauf. 25

Fig. 6a-6g geben für die gleichen Bildhöhen die sagittalen Queraberrationen DZS als Funktion des halben Aperturwinkels DW' an.

Fig. 7a-7f geben für die gleichen Bildhöhen den Rinnenfehler DYS an, der durchgängig nahezu null ist.

Die genauen Linsendaten sind der Tabelle 3 zu entnehmen, wobei die asphärischen Linsenoberflächen 27, 29, 31 an 25 der gewährleistbaren hohen Bildqualität einen erheblichen Anteil haben.

Eine weitere Linsenanordnung für die Wellenlänge $\lambda = 248,38 \text{ nm}$ ist in Fig. 8 gezeigt. Bei einer Länge von nur 1000 mm weist diese Linsenanordnung 19 bei nur 3 asphärischen Linsenoberflächen 27, 29, 33 eine numerische Apertur von 0,8 und im gesamten Bildfeld, dessen Diagonale 27,21 mm beträgt, eine gut auflösbare Strukturbreite von 0,13 μm auf. Der maximale Linsendurchmesser beträgt 255 mm und tritt im Bereich der fünften Linsengruppe LG5 auf. Dieser Linsendurchmesser ist ungewöhnlich klein für die Apertur 0,8 bei einem Bildfeld mit Diagonale 27,21 mm. Alle drei asphärischen Linsenoberflächen 27, 29, 33 sind in den vorderen Linsengruppen LG1-LG3 der Linsenanordnung 19 angeordnet. Die Abweichung von der idealen Wellenfront beträgt bei dieser Linsenanordnung nur 9,2 $\text{m}\lambda$. 30

Die genauen Linsendaten dieser Linsenanordnung 19 sind der Tabelle 4 zu entnehmen.

Mit Vorsehen einer weiteren vierten Asphäre 33 auf der der Beleuchtungseinrichtung abgewandten Seite der Linse L513 konnte eine weitere Steigerung der numerischen Apertur von 0,8 auf 0,85 erreicht werden. Diese hohe Apertur, aus der bildseitig ein Öffnungswinkel von 116,4° gegenüber einem Winkel von 88,8° bei einer Apertur von 0,70 resultiert, ist bei dem Bildfeld mit Diagonale 27,21 mm einzigartig. Die gut auflösbare Strukturbreite beträgt 0,12 μm und die maximale Abweichung von der idealen Wellenfront beträgt nur 7,0 $\text{m}\lambda$. Solch eine Linsenanordnung 19 ist in Fig. 9 dargestellt, wobei die genauen Linsendaten der Tabelle 5 zu entnehmen sind. 40

Im Vergleich zu den vorangegangenen Ausführungsbeispielen Fig. 1-Fig. 3 und zum St.d.T. DE 198 18 444 A sind bei dieser Linsenanordnung 19 die letzten beiden Linsen zu einer Linse vereint. Durch diese Maßnahme kann neben der Ersparnis bei der Linsenherstellung im Endbereich eine Linsenfassung gespart werden, wodurch Bauraum für Zusatzgeräte, insbesondere für einen Fokusensor, geschaffen wird.

In Fig. 10 ist eine Linsenanordnung 19 gezeigt, die für die Wellenlänge $\lambda = 157,63 \text{ nm}$ ausgelegt ist. Das mittels dieser Linsenanordnung beleuchtbare Bildfeld ist auf $6 \times 13 \text{ mm}$ mit einer Bildfelddiagonalen von 14,3 mm verkleinert worden und ist für das Stiching-Verfahren angepaßt. 45

Bei einer Länge von nur 579,5 mm und einem maximalen Durchmesser von 167 mm konnte durch vier asphärischen Linsenoberflächen 27, 29, 31, 33 eine numerische Apertur von 0,85 und eine gut auflösbare Strukturbreite von 0,07 μm erreicht werden. Die Abweichung von der idealen Wellenfront beträgt 9,5 $\text{m}\lambda$ bei der Wellenlänge $\lambda = 157,63 \text{ nm}$. 50

Aufgrund der kurzen Wellenlänge ist die Absorption von Quarzlinnen recht hoch, so daß vermehrt auf CaF_2 als Linsenmaterial zugegriffen worden ist. Im Bereich der Taillen 23, 25, d. h. in der zweiten und der vierten Linsengruppe LG2 und LG4, sind einzelne Quarzglaslinnen vorgesehen. Diese Quarzglaslinnen sollten höchstmögliche Transmission aufweisen. Eine weitere Linse aus Quarzglas in Form einer Meniskelinse L625 ist in der Linsengruppe LG5 zur Bildung eines Achromaten vorgesehen worden. Weiterhin ist die asphärische Linsenoberfläche aufweisende Linse L628 der Linsengruppe LG6 aus Quarzglas. Damit ist die Asphäre 33 auf dem leichter zu bearbeitenden Material ausgebildet. 55

Dadurch ist der Farblängsfehler dieser Linsenanordnung 19 auch bei dieser extrem hohen Apertur sehr klein.

Die gezeigten Ausführungsbeispiele zeigen, daß gute Leistungsdaten erreichbar sind, ohne daß asphärische Flächen (27, 29, 31, 33) mit großen Durchmessern, insbesondere in der fünften Linsengruppe. Die eingesetzten kleinen asphärischen Linsenflächen lassen sich gut fertigen und prüfen. 60

Diese in den Ausführungsbeispielen erläuterten Linsenanordnung 19 zeigen lediglich den durch die Ansprüche festgelegten Designraum auf. Selbstverständlich sind die anhand der Ausführungsbeispiele konkretisierten Merkmale gemäß den Ansprüchen und deren Kombinationen miteinander kombinierbar.

DE 199 42 281 A 1

Tabelle 1

	m709a Linsen	RADIEN	DICKEN	GLAESER	1/2 * Linsendurchmesser
5					
		UNENDL	17.2885		62.436
10	L101	-143.20731	6.0000	SiO2	62.972
		599.77254	7.6370	He	70.359
	L102	-3259.25331	17.8056	SiO2	72.015
		-215.68976	.7500	He	74.027
15	L103	6352.48088	21.0301	SiO2	79.278
		-222.97760	.7500	He	80.492
	L104	375.05253	22.1160	SiO2	83.813
		-496.09705	.7500	He	83.813
	L105	191.46102	26.2629	SiO2	81.276
20		-1207.32624	.7500	He	80.032
	L106	180.94629	15.5881	SiO2	72.339
		100.48825	25.3787	He	62.801
	L107	-3031.88082	6.0000	SiO2	62.147
25		122.14071	23.8679	He	58.984
	L108	-295.91467	9.3246	SiO2	59.196
		-187.69352	.7500	He	59.874
	L109	-199.96963	6.0000	SiO2	59.882
30		184.23629	33.9482	He	62.911
	L110	-112.01095	6.0000	SiO2	64.128
		-684.63799 A	12.5079	He	75.868
	L111	-225.51622	18.6069	SiO2	78.258
35		-137.30628	.7500	He	81.928
	L112	5312.93388	38.3345	SiO2	99.979
		-178.79712	.7500	He	101.920
	L113	344.71979	39.8511	SiO2	111.294
40		-397.29552	.7500	He	111.237
	L114	165.51327	39.6778	CAF2	101.552
		7755.09540	.7500	He	99.535
	L115	195.28524	23.8921	SiO2	87.267
45		119.99272	32.2730	He	72.012
	L116	-452.93918	6.0000	SiO2	70.763
		287.33119	20.7820	He	66.677
	L117	-218.82578	6.0000	SiO2	66.150
50		166.44429	40.5757	He	66.003
	L118	-103.90786	6.4932	SiO2	66.694
		5916.68891	13.3336	He	80.535
	L119	-344.93456	19.8584	CAF2	82.790
55		-165.11801	.7500	He	86.174
	L120	-11871.72431	38.5095	CAF2	100.670
		-174.34079	.7500	He	102.666
	L121	586.98079	31.6915	CAF2	111.739
60		-414.20537	.7500	He	112.097
		UNENDL	3.6849	He	111.399
		BLENDE	.0000	He	111.399
		UNENDL	1.2566	He	111.830
65	L122	284.64742	45.7670	CAF2	114.801
		-414.78783	17.9539	He	114.410
	L123	-234.72451	14.5097	SiO2	113.062

DE 199 42 281 A 1

L124	-593.08647	14.7730	He	114.454	
	-323.13567	42.1874	SiO ₂	114.235	
	-229.06128	.7500	He	117.505	5
L125	180.27184	31.4105	SiO ₂	105.659	
	652.02194	.7500	He	103.698	
L126	143.20049	28.2444	SiO ₂	91.476	
	383.51531	14.7177	He	88.206	10
L127	-2122.47818	14.1140	SiO ₂	85.843	
	312.60012	1.3119	He	74.816	
L128	111.92162	46.5147	SiO ₂	66.708	
	53.69539	2.2604	He	40.084	15
L129	51.14657	27.3776	CaF ₂	39.074	
	492.53747	3.7815	He	32.621	
	UNENDL	3.0000	SiO ₂	29.508	
	UNENDL	12.0000		27.848	20
	UNENDL			14.021	

Asphärische Konstanten

Koeffizienten der asphärischen Oberfläche 21:

$$EX = 0.0000$$

$$C1 = 0,61839643 \cdot 10^{-8}$$

$$C2 = -0,11347761 \cdot 10^{-11}$$

$$C3 = 0,32783915 \cdot 10^{-16}$$

$$C4 = -0,22000186 \cdot 10^{-20}$$

25

30

35

40

45

50

55

60

65

DE 199 42 281 A 1

Tabelle 2

	m736a Linsen	RADIEN	DICKEN	GLAESER	1/2 * Linsendurchmesser
5					
		UNENDL	16.6148		
10	L201	-140.92104	7.0000	SIO2	60.752
		-4944.48962	4.5190		61.267
	L202	-985.90856	16.4036	SIO2	67.230
		-191.79393	.7500		68.409
15	L203	18376.81346	16.5880	SIO2	70.127
		-262.28779	.7500		73.993
	L204	417.82018	21.1310	SIO2	74.959
		-356.76055	.7500		77.129
	L205	185.38468	23.3034	SIO2	77.193
20		-1198.61550	A 7500		74.782
	L206	192.13950	11.8744	SIO2	73.634
		101.15610	27.6353		68.213
	L207	-404.17514	7.0000	SIO2	61.022
25		129.70591	24.1893		60.533
	L208	-235.98146	7.0584	SIO2	58.732
		-203.88450	.7500		59.144
	L209	-241.72595	7.0000	SIO2	60.201
30		196.25453	33.3115		60.490
	L210	-122.14995	7.0000	SIO2	65.017
		-454.65265	A 10.8840		66.412
	L211	-263.01247	22.6024	SIO2	77.783
35		-149.71102	1.6818		81.685
	L212	-23862.31899	43.2680	SIO2	86.708
		-166.87798	.7500		104.023
	L213	340.37670	44.9408	SIO2	106.012
40		-355.50943	.7500		115.503
	L214	160.11879	41.8646	SIO2	115.398
		4450.50491	.7500		102.982
	L215	172.51429	14.8261	SIO2	100.763
45		116.88490	35.9100		85.869
	L216	-395.46894	7.0000	SIO2	74.187
		178.01469	28.0010		72.771
	L217	-176.03301	7.0000	SIO2	66.083
50		188.41213	36.7224		65.613
	L218	-112.43820	7.0059	SIO2	66.293
		683.42330	17.1440		66.917
	L219	-350.01763	19.1569	SIO2	80.240
55		-194.58551	.7514		82.329
	L220	-8249.50149	35.3656	SIO2	87.159
		-213.88820	.7500		99.995
	L221	657.56358	31.3375	SIO2	103.494
60		-428.74102	.0000		114.555
		UNENDL	2.8420		115.245
		BLENDE	.0000		116.016
	L222	820.30582	27.7457	SIO2	116.016
		-520.84842	18.4284		118.196
65	L223	330.19065	37.7586	SIO2	118.605
		-672.92481	23.8692		118.273
					117.550

DE 199 42 281 A 1

L224	-233.67936	10.0000	SIO2	116.625	
	-538.42627	10.4141		117.109	
L225	-340.26626	21.8583	SIO2	116.879	5
	-224.85666	.7500		117.492	
L226	146.87143	34.5675	SIO2	100.303	
	436.70958	.7500		97.643	
L227	135.52861	29.8244	SIO2	86.066	
	284.57463	18.9234		79.427	10
L228	-7197.04545	11.8089	SIO2	72.964	
	268.01973	.7500		63.351	
L229	100.56453	27.8623	SIO2	56.628	
	43.02551	2.0994		36.612	15
L230	42.30652	30.9541	SIO2	36.023	
	262.65551	1.9528		28.009	
	UNENDL	12.0000		27.482	
	UNENDL			13.602	20

Asphärische Konstanten

Koeffizienten der asphärischen Oberfläche 29:		25
EX	$= -0,17337407 \cdot 10^3$	
C1	$= 0,15292522 \cdot 10^{-7}$	
C2	$= 0,18756271 \cdot 10^{-11}$	
C3	$= -0,40702661 \cdot 10^{-16}$	
C4	$= 0,26176919 \cdot 10^{-19}$	30
C5	$= -0,36300252 \cdot 10^{-23}$	
C6	$= 0,42405765 \cdot 10^{-27}$	
Koeffizienten der asphärischen Oberfläche 27:		
EX	$= -0,36949981 \cdot 10^1$	
C1	$= 0,20355563 \cdot 10^{-7}$	
C2	$= -0,22884234 \cdot 10^{-11}$	35
C3	$= -0,23852614 \cdot 10^{-16}$	
C4	$= -0,19091022 \cdot 10^{-19}$	
C5	$= 0,27737562 \cdot 10^{-23}$	
C6	$= -0,29709625 \cdot 10^{-27}$	40

45

50

55

60

65

DE 199 42 281 A 1

Tabelle 3

m745a	Linsen	RADIEN	DICKEN	GLAESER	1/2 * Linsendurchmesser
5					
		UNENDL	17.8520		60.958
10	L301	-131.57692	7.0000	SIO2	61.490
		-195.66940	.7500		64.933
	L302	-254.66366	8.4334	SIO2	65.844
		-201.64480	.7500		67.386
15	L303	-775.65764	14.0058	SIO2	69.629
		-220.44596	.7500		70.678
	L304	569.58638	18.8956	SIO2	72.689
		-308.25184	.7500		72.876
20	L305	202.68033	20.7802	SIO2	71.232
		-1120.20883	A7500		70.282
	L306	203.03395	12.1137	SIO2	65.974
		102.61512	26.3989		59.566
	L307	-372.05336	7.0000	SIO2	59.203
25		144.40889	23.3866		58.326
	L308	-207.93626	7.0303	SIO2	58.790
		-184.65938	.7500		59.985
	L309	-201.97720	7.0000	SIO2	60.229
30		214.57715	33.1495		65.721
	L310	-121.80702	7.0411	SIO2	67.235
		-398.26353	A 9.7571		79.043
	L311	-242.40314	22.4966	SIO2	81.995
35		-146.76339	.7553		87.352
	L312	-2729.19964	45.3237	SIO2	104.995
		-158.37001	.7762		107.211
	L313	356.37642	52.1448	SIO2	118.570
40		-341.95165	1.1921		118.519
	L314	159.83842	44.6278	SIO2	105.627
		2234.73586	.7698		102.722
	L315	172.14697	16.8360	SIO2	88.037
45		119.53455	36.6804		75.665
	L316	-392.62196	7.0000	SIO2	74.246
		171.18767	29.4986		67.272
	L317	-176.75022	7.0000	SIO2	66.843
50		186.50720	38.4360		67.938
	L318	-113.94008	7.0213	SIO2	68.650
		893.30270	17.7406		82.870
	L319	-327.77804	18.9809	SIO2	85.090
55		-192.72640	.7513		89.918
	L320	-3571.89972	34.3608	SIO2	103.882
		-209.35555	.7500		106.573
	L321	676.38083	32.6220	SIO2	119.191
60		-449.16650	.0000		119.960
		UNENDL	2.8420		120.991
		BLENDE	.0000		120.991
	L322	771.53843	30.6490	SIO2	123.568
		-525.59771	13.4504		124.005
65	L323	330.53202	40.0766	SIO2	123.477
		-712.47666	23.6787		122.707

DE 199 42 281 A 1

L324	-250.00950	10.0000	SIO2	121.877	
	-513.10270	14.8392		121.995	
L325	-344.63359	20.3738	SIO2	121.081	
	-239.53067	.7500		121.530	5
L326	146.13385	34.7977	SIO2	102.544	
	399.32557	.7510		99.992	
L327	132.97289	29.7786	SIO2	87.699	
	294.53397	18.8859		82.024	10
L328	-3521.27938	A11.4951	SIO2	75.848	
	287.11066	.7814		65.798	
L329	103.24804	27.8602	SIO2	58.287	
	41.64286	1.9089		36.734	15
L330	41.28081	31.0202	SIO2	36.281	
	279.03201	1.9528		28.934	
	UNENDL	12.0000		28.382	
	UNENDL			13.603	20

Asphärische Konstanten

Koeffizienten der asphärischen Oberfläche 29:		25
EX = $-0,16784093 \cdot 10^3$		
C1 = $0,49600479 \cdot 10^{-9}$		
C2 = $0,31354487 \cdot 10^{-11}$		
C3 = $-0,65827200 \cdot 10^{-16}$		
C4 = $0,44673095 \cdot 10^{-19}$		30
C5 = $-0,73057048 \cdot 10^{-23}$		
C6 = $0,91524489 \cdot 10^{-27}$		
Koeffizienten der asphärischen Oberfläche 27:		
EX = $-0,22247325 \cdot 10^1$		
C1 = $0,24479896 \cdot 10^{-7}$		35
C2 = $-0,22713172 \cdot 10^{-11}$		
C3 = $0,36324126 \cdot 10^{-16}$		
C4 = $-0,17823969 \cdot 10^{-19}$		
C5 = $0,26799048 \cdot 10^{-23}$		
C6 = $-0,27403392 \cdot 10^{-27}$		40
Koeffizienten der asphärischen Oberfläche 31:		
EX = 0		
C1 = $-0,45136584 \cdot 10^{-09}$		
C2 = $0,34745936 \cdot 10^{-12}$		45
C3 = $0,11805250 \cdot 10^{-17}$		
C4 = $-0,87762405 \cdot 10^{-21}$		

50

55

60

65

DE 199 42 281 A 1

Tabelle 4

m791a	Linsen	RADIEN	DICKEN	GLAESER	1/2* Linsendurchmesser
5		UNENDL	11.4557		
10	L401	-273.19566	7.0000	SIO2	61.339
		-277.09708	.7000		62.263
10	L402	-861.38886	8.9922	SIO2	63.765
		-339.26281	.7000		64.989
15	L403	118124.1371911.2867		SIO2	65.826
		-365.70154	.7000		66.916
15	L404	685.10936	13.1651	SIO2	67.416
		-485.98278	.7000		67.995
20	L405	387.56973	17.2335	SIO2	68.012
		-473.09537 A	.7000		67.247
20	L406	268.03965	9.9216	SIO2	66.728
		149.12863	23.8122		62.508
25	L407	-184.82383	7.0000	SIO2	58.531
		176.80719	21.4194		58.029
25	L408	-186.59114	7.0000	SIO2	57.646
		218.73570	29.5024		58.045
30	L409	-129.31068	7.0000	SIO2	63.566
		-531.44773 A	17.2306		65.030
30	L410	-307.52016	22.4527	SIO2	76.481
		-148.36184	.7000		85.643
35	L411	-1302.18676	.41.0516	SIO2	88.946
		-162.48723	.7000		105.065
35	L412	621.16978	41.1387	SIO2	107.106
		-294.49119	.7000		118.007
40	L413	160.06951	49.7378	SIO2	118.347
		-2770.71439 A	7000		109.803
40	L414	152.16529	16.7403	SIO2	107.961
		106.43165	39.9369		89.160
45	L415	-530.55958	7.0000	SIO2	76.189
		170.63853	31.4993		74.955
45	L416	-164.61084	7.0000	SIO2	68.381
		262.65931	36.2904		67.993
50	L417	-113.57141	8.4328	SIO2	69.679
		772.56149	21.7682		70.272
50	L418	-278.33295	16.4890	SIO2	85.377
		-198.24799	.8689		87.710
55	L419	-3464.64038	37.5900	SIO2	92.554
		-214.63481	1.1929		107.590
55	L420	2970.07848	32.3261	SIO2	111.045
		-350.93217	2.5303		122.434
60	L421	1499.34256	25.8265	SIO2	123.849
		-561.19644	.0000		127.128
60		UNENDL	.7510		127.371
		BLENDE	.0000		126.559
65	L422	821.09016	39.5191	SIO2	126.559
		-1995.20557	.7000		127.453
65	L423	337.02437	41.8147	SIO2	127.499
		-659.23025	25.0233		126.619
					125.851

DE 199 42 281 A 1

L424	-242.66564	7.0000	SIO2	124.960	
	-891.19390	9.7905		125.057	
L425	-492.17516	41.0678	SIO2	124.887	5
	-242.55195	.7000		125.845	
L426	145.04614	37.2406	SIO2	104.033	
	406.88892	.7008		101.079	
L427	119.31280	31.5532	SIO2	85.742	
	249.69473	15.2917		79.561	10
L428	1411.93157	7.8700	SIO2	74.994	
	281.90273	.7011		66.830	
L429	143.95136	55.0835	SIO2	61.517	
	404.13980	15.0000		32.177	15
	UNENDL	.0001		13.603	
	UNENDL			13.603	

20

Asphärische Konstanten

Koeffizienten der asphärischen Oberfläche 27:

EX = 0,45321787 · 10 ²					
C1 = 0,12027601 · 10 ⁻⁷					25
C2 = -0,16206398 · 10 ⁻¹¹					
C3 = -0,41686011 · 10 ⁻¹⁵					
C4 = 0,38440137 · 10 ⁻¹⁹					
C5 = -0,15095918 · 10 ⁻²³					
C6 = -0,84812561 · 10 ⁻²⁸					30

Koeffizienten der asphärischen Oberfläche 29:

EX = 0					
C1 = -0,97452539 · 10 ⁻⁷					
C2 = 0,32591079 · 10 ⁻¹¹					
C3 = 0,97426255 · 10 ⁻¹⁶					35
C4 = -0,846124 · 10 ⁻²⁰					
C5 = -0,12332031 · 10 ⁻²³					
C6 = 0,14443713 · 10 ⁻²⁷					

Koeffizienten der asphärischen Oberfläche 33:

EX = 0					
C1 = 0,53144137 · 10 ⁻⁸					40
C2 = 0,21837618 · 10 ⁻¹²					
C3 = 0,22801998 · 10 ⁻¹⁸					
C4 = -0,87807963 · 10 ⁻²¹					
C5 = 0,42592446 · 10 ⁻²⁵					45
C6 = -0,85709164 · 10 ⁻³⁰					

50

55

60

65

DE 199 42 281 A 1

Tabelle 5

j430a Linsen		RADIEN	DICKEN	GLAESER	1/2 * Linsendurchmesser
5					
		UNENDL	9.9853		61.649
	L501	-265.92659	6.0000	SIO2	62.237
10		857.92226	5.9813		65.916
	L502	-2654.69270	14.4343	SIO2	66.990
		-244.65690	.7500		68.482
	L503	1038.40194	15.9955	SIO2	71.883
15		-333.95446	.7500		72.680
	L504	359.47552	18.5128	SIO2	74.430
		-532.67816	.7500		74.416
	L505	213.38035	21.4562	SIO2	72.985
20		-1441.22634	A7500		72.045
	L506	261.90156	6.5306	SIO2	67.809
		115.92184	28.4856		62.818
	L507	-267.21040	6.0000	SIO2	62.411
25		175.09702	23.2443		61.923
	L508	-213.08557	6.0000	SIO2	62.365
		199.61141	30.8791		68.251
	L509	-158.73046	6.0337	SIO2	69.962
30		-1108.92217	A10.9048		81.119
	L510	-314.37706	20.6413	SIO2	84.163
		-169.59197	.8014		88.902
	L511	-3239.97175	43.6396	SIO2	106.289
35		-168.44726	.7500		108.724
	L512	495.41910	48.8975	SIO2	123.274
		-288.85737	.7500		123.687
	L513	153.24868	48.7613	SIO2	113.393
40		920.32139	A .7500		111.134
	L514	163.02602	15.7110	SIO2	96.188
		124.97610	44.2664		84.961
	L515	-422.99493	6.0000	SIO2	83.633
45		184.60620	31.4986		76.498
	L516	-241.93022	6.0000	SIO2	76.180
		168.30899	51.3978		77.396
	L517	-117.43130	6.5332	SIO2	78.345
50		2476.47953	21.4666		98.469
	L518	-311.36041	15.2223	SIO2	101.209
		-221.58556	.7500		105.324
	L519	-934.37047	37.6761	SIO2	122.239
55		-216.75809	.7500		125.425
	L520	3623.94786	39.6266	SIO2	146.583
		-370.69232	1.1289		148.219
	L521	1209.82944	39.1543	SIO2	157.194
60		-613.71745	.0000		157.954
		UNENDL	.7500		158.061
		BLENDE	.0000		158.061
	L522	709.88915	36.2662	SIO2	160.170
		-1035.75796	.7500		160.137
65	L523	313.44889	58.8000	SIO2	155.263
		-1046.56219	28.7484		153.730

DE 199 42 281 A 1

L524	-328.67790	15.0000	SIO2	152.447	
	-1283.32936	14.7084		148.826	
L525	-540.24577	23.9839	SIO2	148.336	5
	-305.19883	.7510		148.189	
L526	152.28321	42.3546	SIO2	114.055	
	384.50964	.7531		109.924	
L527	124.66784	31.8554	SIO2	91.106	10
	279.60513	16.6796		86.038	
L528	-28987.53974	7.4387	SIO2	82.126	
	316.02224	.8631		72.044	
L529	180.51161	54.1269	SIO2	67.036	15
	1341.25511	15.0000		37.374	
	UNENDL	.0001		13.604	
	UNENDL			13.604	

20

Asphärische Konstanten

Koeffizienten der asphärischen Oberfläche 29:

$$\begin{aligned} \text{EX} &= -0,27012883 \cdot 10^3 \\ \text{C1} &= -0,48014089 \cdot 10^{-7} \\ \text{C2} &= 0,30075830 \cdot 10^{-11} \\ \text{C3} &= 0,34922943 \cdot 10^{-16} \\ \text{C4} &= 0,26946301 \cdot 10^{-19} \\ \text{C5} &= -0,58250631 \cdot 10^{-23} \\ \text{C6} &= 0,68991391 \cdot 10^{-27} \end{aligned}$$

25

Koeffizienten der asphärischen Oberfläche 27:

$$\begin{aligned} \text{EX} &= 0,41249481 \cdot 10^1 \\ \text{C1} &= -0,38239182 \cdot 10^{-8} \\ \text{C2} &= -0,14976009 \cdot 10^{-11} \\ \text{C3} &= -0,25206193 \cdot 10^{-16} \\ \text{C4} &= -0,78282128 \cdot 10^{-20} \\ \text{C5} &= 0,13017800 \cdot 10^{-23} \\ \text{C6} &= -0,14205614 \cdot 10^{-27} \end{aligned}$$

30

Koeffizienten der asphärischen Oberfläche 33:

$$\begin{aligned} \text{EX} &= 0,26320110 \cdot 10^1 \\ \text{C1} &= 0,27448935 \cdot 10^{-8} \\ \text{C2} &= -0,18100074 \cdot 10^{-12} \\ \text{C3} &= 0,58696756 \cdot 10^{-17} \\ \text{C4} &= -0,58955753 \cdot 10^{-21} \\ \text{C5} &= 0,16526308 \cdot 10^{-25} \\ \text{C6} &= -0,25708759 \cdot 10^{-30} \end{aligned}$$

40

Koeffizienten der asphärischen Oberfläche 31:

$$\begin{aligned} \text{EX} &= -0,96865859 \cdot 10^5 \\ \text{C1} &= -0,42411179 \cdot 10^{-8} \\ \text{C2} &= 0,12306068 \cdot 10^{-12} \\ \text{C3} &= 0,69229786 \cdot 10^{-17} \\ \text{C4} &= 0,80135737 \cdot 10^{-20} \\ \text{C5} &= -0,14022540 \cdot 10^{-23} \\ \text{C6} &= 0,79827308 \cdot 10^{-28} \end{aligned}$$

45

55

60

65

DE 199 42 281 A 1

Tabelle 6

m767a	Linsen	RADIEN	DICKEN	GLAESER	1/2 * Linsendurchmesser
5					
		UNENDL	5.9005	N2	32.429
10	L601	-125.95821	3.6410	CAF2	32.780
		243.24465	5.2309	He	35.323
15	L602	2472.77263	9.2265	CAF2	36.826
		-132.46523	.3958	He	37.854
20	L603	544.60759	8.6087	CAF2	40.080
		-188.98512	.6007	He	40.516
25	L604	180.26444	10.3984	CAF2	41.764
		-394.70139	.4244	He	41.743
30	L605	101.06312	12.8236	CAF2	40.955
		-691.58627 A	.5111	He	40.455
35	L606	135.75849	3.1245	CAF2	37.553
		57.03094	16.2396	He	34.284
40	L607	-268.26919	5.9149	CAF2	33.871
		116.53669	10.9654	He	33.188
45	L608	-142.54676	3.2195	SIO2	33.372
		100.09171	16.1921	He	35.360
50	L609	-83.03185	3.2311	SIO2	36.264
		-453.73264 A	5.1711	He	41.718
55	L610	-167.92924	12.0560	CAF2	43.453
		-93.29791	.4204	He	47.010
60	L611	-1270.46545	24.2891	CAF2	56.224
		-90.89540	1.1471	He	58.224
65	L612	266.81271	25.6379	CAF2	66.498
		-171.23687	.3519	He	66.755
70	L613	82.41217	26.8409	CAF2	61.351
		529.17259 A	.5132	He	60.098
75	L614	81.87977	8.2278	CAF2	50.462
		64.06536	22.9801	He	44.346
80	L615	-259.83061	3.3437	SIO2	43.473
		124.29419	13.5357	He	40.266
85	L616	-197.29109	3.0000	SIO2	39.809
		87.83707	24.5613	He	39.571
90	L617	-64.97274	4.6170	SIO2	40.050
		1947.71288	9.3909	He	49.830
95	L618	-182.16003	7.8052	CAF2	51.480
		-118.82950	.3753	He	53.449
100	L619	-633.93522	19.7976	CAF2	63.119
		-115.14087	.3706	He	64.793
105	L620	2647.04517	19.8039	CAF2	75.458
		-197.41705	2.7167	He	76.413
110	L621	668.45083	30.1057	CAF2	81.369
		-322.45899	.0001	He	82.659
115	L622	UNENDL	.3948	He	82.583
		BLENDE	.0000		82.583
120	L623	395.84774	16.8734	CAF2	83.488
		-635.79877	.3500	He	83.449
125	L624	165.28880	28.1341	CAF2	80.761
		-698.21798	.15.6657	He	80.133

DE 199 42 281 A 1

L624	-175.54365	7.9803	SiO ₂	79.485	
	-571.27581	9.7972	He	78.592	
L625	-265.73712	11.6714	CAF2	78.015	5
	-156.05301	.3500	He	78.036	
L626	79.45912	22.6348	CAF2	60.151	
	199.26460	.3500	He	57.925	
L627	67.01872	15.8836	CAF2	48.063	10
	140.01631	8.6050	He	45.305	
L628	2265.71693	A4.0939	SiO ₂	43.177	
	167.06050	2.0915	He	38.352	
L629	102.24013	24.5664	CAF2	34.878	15
	662.00756	9.4740	N ₂	22.044	
	UNENDL	.0001	N ₂	7.166	
	UNENDL			7.166	

20

Asphärische Konstanten

Koeffizienten der asphärischen Oberfläche 29:

EX = -0,7980946 · 10 ²					25
C1 = -0,21353640 · 10 ⁻⁶					
C2 = 0,56257 · 10 ¹⁰					
C3 = -0,39122939 · 10 ⁻¹⁴					
C4 = -0,24089766 · 10 ⁻¹⁸					
C5 = 0,30268982 · 10 ⁻²²					
C6 = 0,1437923 · 10 ⁻²⁵					30

Koeffizienten der asphärischen Oberfläche 27:

EX = 0,1660595 · 10 ¹					35
C1 = -0,12449719 · 10 ⁻⁷					
C2 = -0,39565 · 10 ⁻¹⁰					
C3 = -0,10241741 · 10 ⁻¹⁴					
C4 = -0,19631485 · 10 ⁻¹⁷					
C5 = 0,11604236 · 10 ⁻²⁰					
C6 = -0,4669584 · 10 ⁻²⁴					

Koeffizienten der asphärischen Oberfläche 33:

EX = 0,1614147 · 10 ⁰					40
C1 = 0,14130608 · 10 ⁻⁷					
C2 = -0,9747553 · 10 ⁻¹¹					
C3 = 0,20478684 · 10 ⁻¹⁵					
C4 = -0,17732262 · 10 ⁻¹⁸					
C5 = 0,29715991 · 10 ⁻²²					45
C6 = -0,19032581 · 10 ⁻²⁶					

Koeffizienten der asphärischen Oberfläche 31:

EX = 0					50
C1 = -0,18139679 · 10 ⁻⁷					
C2 = 0,26109069 · 10 ⁻¹¹					
C3 = 0,23340548 · 10 ⁻¹⁴					
C4 = 0,29943791 · 10 ⁻¹⁷					
C5 = -0,13596787 · 10 ⁻²⁰					
C6 = 0,21788235 · 10 ⁻²⁴					

55

Patentansprüche

1. Projektionsobjektiv für die Mikrolithographie mit einer Linsenanordnung, bestehend aus einer ersten Linsengruppe (LG1) positiver Brechkraft, einer zweiten Linsengruppe (LG2) negativer Brechkraft, einer dritten Linsengruppe (LG3) positiver Brechkraft, einer vierten Linsengruppe (LG4) negativer Brechkraft, einer fünften Linsengruppe (LG5) positiver Brechkraft und einer sechsten Linsengruppe (LG6) positiver Brechkraft, dadurch gekennzeichnet, daß eine Linse am Ende der zweiten Linsengruppe (LG2), insbesondere die letzten Linse der zweiten Linsengruppe, oder eine Linse am Anfang der dritten Linsengruppe (LG3), insbesondere die erste Linse der dritten Linsengruppe, eine asphärische Oberfläche (27) aufweist. 60
2. Projektionsobjektiv nach Anspruch 1, dadurch gekennzeichnet, daß das Linsensystem (19) insgesamt nur eine 65

DE 199 42 281 A 1

Linse (L110) mit einer asphärischen Oberfläche (27) aufweist.

3. Projektionsobjektiv mit einer mindestens eine erste Taille des Lichtbündels aufweisenden Linsenanordnung, dadurch gekennzeichnet, daß eine Linse (L205, L305, L405, L505, L605) mit einer asphärischen Oberfläche (29) vor und/oder eine Linse (L210, L310, L409, L509, L609) mit einer asphärischen Oberfläche (27) nach der ersten Taille (23) angeordnet ist.

5 4. Projektionsobjektiv nach Anspruch 3, dadurch gekennzeichnet, daß zwischen den die asphärischen Oberflächen (27, 29) tragenden Linsen (L205 und L210, L305 und L310, L405 und L409, L505 und L509, L605 und L609) zu-
mindest zwei sphärische Linsen (L206–L209; L306–L309, L406–L408, L506–L508, L606–L608), angeordnet sind.

10 5. Projektionsobjektiv nach Anspruch 3, wobei die Linsenanordnung eine erste Linsengruppe (LG1) positiver Brechkraft, eine zweite Linsengruppe (LG2) negativer Brechkraft, eine dritte Linsengruppe (LG3) negativer Brechkraft, eine vierte Linsengruppe (LG4) negativer Brechkraft und eine fünfte und sechste Linsengruppe (LG5, LG6) mit jeweils positiver Brechkraft aufweist, dadurch gekennzeichnet, daß die erste Linsengruppe (LG1) eine Linse (L205, L305, L405, L505, L605) mit einer asphärischen Oberfläche (29) aufweist.

15 6. Projektionsobjektiv und nach dem Oberbegriff des Anspruchs 4, dadurch gekennzeichnet, daß in einer zweiten Linsengruppe (LG2) vor der Taille (23) eine asphärische Linse (29) angeordnet ist.

7. Projektionsobjektiv nach zumindestens einem der Ansprüche 3–6, dadurch gekennzeichnet, daß die dritte Linsengruppe (LG3) eine asphärische Fläche (27, 33) aufweist.

8. Projektionsobjektiv nach zumindestens einem der Ansprüche 3–6, dadurch gekennzeichnet, daß eine zweite Linsengruppe (LG2) eine nach der Taille (23) angeordnete asphärische Oberfläche (27) aufweist.

9. Projektionsobjektiv nach Anspruch 1, dadurch gekennzeichnet, daß die sechste Linsengruppe (LG6) als erste Linse eine bildseitig mit einer asphärischen Oberfläche (31) versehenen Linse (L328, L528, L628) aufweist.

10. Projektionsobjektiv nach Anspruch 1, 2, 4 oder 9, dadurch gekennzeichnet, daß eine letzte Linse (L513) der dritten Linsengruppe (LG3) eine asphärische Oberfläche (33) aufweist.

15 11. Projektionsobjektiv nach zumindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Linsenanordnung (Fig. 1, Fig. 3, Fig. 6) einen maximalen Linsendurchmesser von 280, vorzugsweise 250 nun nicht überschreitet.

12. Projektionsobjektiv nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Linsenanordnung (19) bildseitig eine numerische Apertur von mindestens 0,75, vorzugsweise 0,8, aufweist.

13. Projektionsobjektiv nach zumindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Linsenanordnung (19) mindestens 2 verschiedene Materialien, insbesondere Quarzglas und ein Fluorid oder 2 Fluoride, aufweist.

14. Projektionsobjektiv nach Anspruch 6, dadurch gekennzeichnet, daß zumindest die letzten zwei positiven Linsen (L120 und L121, L619–L621) vor der Aperturblende aus CaF₂ sind.

15. Projektionsobjektiv nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß die Linsenanordnung (19) zur Bildung eines Achromaten (37) eine positive Linse (39) aus CaF₂ aufweist, auf die eine Negativlinse (41) aus Quarzglas folgt.

16. Projektionsobjektiv nach zumindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die sechste Linsengruppe (LG6) eine Linse (L129, L629), vorzugsweise die letzte Linse (L629) der Linsenanordnung (19), aus CaF₂ aufweist.

17. Refraktives mikrolithographisches Projektionsobjektiv mit einer Linsenanordnung, mit zumindestens einer Linse mit einer asphärischen Linsenoberfläche, dadurch gekennzeichnet, daß alle asphärischen Linsenoberflächen (27, 29, 31, 33) einen Scheitelradius (R) von mindestens 300 mm, vorzugsweise von 350 bis 1000 mm und nach oben unbeschränkt, aufweisen.

18. Projektionsobjektiv für die Mikrolithographie nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Durchmesser der asphärischen Linsenoberflächen (27, 29, 31, 33) kleiner als 90%, insbesondere kleiner als 80%, des maximalen Durchmessers der Linsenanordnung (19) ist.

19. Projektionsbelichtungsanlage der Mikrolithographie, dadurch gekennzeichnet, daß sie ein Projektionsobjektiv (5) nach zumindestens einem der Ansprüche 1 bis 16 enthält.

20. Projektionsbelichtungsanlage der Mikrolithographie mit einem Excimerlaser als Lichtquelle, der Strahlung von kürzerer Wellenlänge als 250 nm abgibt, dadurch gekennzeichnet, daß sie ein Projektionsobjektiv (5) nach zumindestens einem der Ansprüche 14 bis 16 umfaßt.

21. Projektionsobjektiv mit einer Linsenanordnung nach vorzugsweise mindestens einem der Ansprüche 1–18, dadurch gekennzeichnet, daß die Linsenanordnung (19) objektivausgangsseitig eine hohe numerische Apertur aufweist, die vorzugsweise im Bereich 0,85 liegt, wobei bei allen Linsen (L501–L529) der Linsenanordnung (19) die Sinus-Werte aller Inzidenzwinkel der auf die jeweilige Linse (L501–L529) auftreffenden Strahlung immer kleiner sind als die numerische Apertur der Linsenanordnung (19).

22. Projektionsobjektiv mit einer Linsenanordnung nach vorzugsweise mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß mindestens eine asphärische Linsenoberfläche (27, 29, 31, 33) mit einer Winkelbelastung von mindestens $\sin i = 0,75$ beaufschlagt wird.

23. Verfahren zur Herstellung mikrostrukturierter Bauteile, bei dem ein mit einer lichtempfindlichen Schicht versehenes Substrat mittels einer Maske und einer Projektionsbelichtungsanlage mit einer Linsenanordnung (19) nach mindestens einem der Ansprüche 1 bis 18 durch ultraviolettes Laserlicht belichtet wird und gegebenenfalls nach Entwickeln der lichtempfindlichen Schicht entsprechend einem auf der Maske enthaltenen Muster strukturiert wird.

FIG. 1

FIG. 2

19

FIG. 3

19

FIG. 4

19

FIG. 5aDYM (μ)
TAN DW'FIG. 5bFIG. 5c

FIG. 5d

DYM (μ)
TAN DW'

FIG. 5eFIG. 5fFIG. 5g

DZS (μ)
↑
→ TAN DW'

FIG. 6a

FIG. 6b

FIG. 6c

DZS (μ)
↑
→ TAN DW¹

FIG. 6d

FIG. 6e

FIG. 6f

FIG. 6g

FIG. 7a

DYS (μ)
TAN DW'

FIG. 7b

FIG. 7c

FIG. 7dFIG. 7eFIG. 7f

FIG. 8

FIG. 9

19

FIG. 10

19

