CMIP6 Model Documentation

Institute: NOAA-GFDL Model: GFDL-ESM2M

Topic: atmos

Doc. Generated:2020-04-08Doc. Seeded From:Spreadsheet

Specialization Version: 1.1.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	7
3	Dynamical Core	9
4	Radiation	15
5	Turbulence Convection	28
6	Microphysics Precipitation	32
7	Cloud Scheme	34
8	Observation Simulation	38
9	Gravity Waves	41
10	Natural Forcing	45

1 Key Properties

 $Atmosphere\ key\ properties$

1.1	1	Top	level	properties
-----	---	-----	-------	------------

	Atmospi	here	keu	propert	ies
--	---------	------	-----	---------	-----

1.1.1.1 Name *

 $Name\ of\ atmos\ model\ code$

Gfdl atmospheric component: AM2p13

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ atmos\ model\ code$

Enter COMMA SEPARATED list:

1.1.1.3 Overview *

Overview of atmos model.

Enter TEXT:

1	1.1	4 N	Mode	1 Fa	mily	*
1		+ 1	mode	1 1 0		

Type of atmospheric model.				
	AGCM - Atmospheric General Circulation Model			
	ARCM - Atmospheric Regional Climate Model			
	Other - please specify:			

1.1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmosphere.$

\boxtimes	Primitive equations
	Non-hydrostatic
	Anelastic
	Boussinesq
\boxtimes	Hydrostatic
	Quasi-hydrostatic
П	Other - please specify:

1.2.1 Resolution

Characteristics of the model resolution

1.2.1.1 Horizontal Resolution Name *

This is a string usually used by the modelling group to describe the resolution of the model grid, e.g. T42, N48.

Enter TEXT:

1.2.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, e.g. 2.5 x 3.75 degrees lat-lon.

Enter TEXT:

1.2.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 1 deg (Equator) - 0.5 deg

Enter TEXT:

1.2.1.4 Number Of Vertical Levels *

Number of vertical levels resolved on the computational grid.

Enter INTEGER value:

1.2.1.5 High Top *

 $Does \ the \ atmosphere \ have \ a \ high-top? \ High-Top \ atmospheres \ have \ a \ fully \ resolved \ stratosphere \ with \ a \ model \ top \ above \ the \ stratopause.$

Select either	TRUE or	FALSE
True		False

1.3.1 Timestepping

Characteristics of the atmosphere model time stepping

1.3.1.1 Timestep Dynamics *

 $Timestep\ for\ the\ dynamics\ in\ seconds$

600

1.3.1.2 Timestep Shortwave Radiative Transfer

Timestep for the shortwave radiative transfer in seconds.

Enter INTEGER value:

1.3.1.3 Timestep Longwave Radiative Transfer

Timestep for the longwave radiative transfer in seconds.

Enter INTEGER value:

1.4.1 Orography

Characteristics of the model orography

1.4.1.1	Type *
Type of o	rographic representation.
	Fixed: present day
	Fixed: modified - Provide details of modification below
	Other - please specify:
1.4.1.2	Modified
If the oro	graphy type is modified describe the adaptation.
Selec	t MULTIPLE options:
	Related to ice sheets
	Related to tectonics
	Modified mean
	Modified variance if taken into account in model (cf gravity waves)
	Other - please specify:
1.4.1.3	Time-varying
Describe d	any time varying orographic change

1.5.1 Tuning Applied

Tuning methodology for atmospheric component

1.5.1.1 Description *

Enter TEXT:

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.5.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

Enter COMMA SEPARATED list:

1.5.1.3 Regional Metrics Used

 $List\ of\ regional\ metrics\ of\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPARATED list:

1.5.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

Enter COMMA SEPARATED list:

2 Grid

 $Atmosphere\ grid$

2.1.1 Top level properties

 $Atmosphere\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.1.2 Overview

 $Overview\ of\ grid\ in\ atmos\ model.$

Enter TEXT:

2.1.2 Horizontal

Atmosphere discretisation in the horizontal

2.1.2.1 Scheme Type \ast

 $Horizontal\ discretisation\ type$

	a
--	---

Other - please specify:

2.1.2.2 Scheme Method *

 $Horizontal\ discretisation\ method$

Finite difference

Centered finite difference

2.1.2.3 Scheme Order *

 $Horizontal\ discretisation\ function\ order$

Select SINGLE option:

Second

	Third				
	Fourth				
	Other - please specify:				
	Horizontal Pole				
	al discretisation pole singularity treatment				
	Filter				
	Pole rotation				
	Artificial island				
	Other - please specify:				
2.1.2.5	Grid Type *				
	al grid type				
Selec	et SINGLE option:				
	Gaussian				
	Latitude-Longitude				
	Cubed-Sphere				
	Icosahedral				
	Other - please specify:				
9 1 9 ⁻	Vertical				
Atmosp	here discretisation in the vertical				
2.1.3.1	Coordinate Type *				
Type of vertical coordinate system					
Select MULTIPLE options:					
	Isobaric - Vertical coordinate on pressure levels				
	Sigma - Allows vertical coordinate to follow model terrain				
	Hybrid sigma-pressure - Sigma system near terrain and isobaric above				
	Hybrid pressure				
	Vertically lagrangian				
	Other - please specify:				

3 Dynamical Core

Characteristics of the dynamical core

3.	1	.1	Top	level	pro	perties

 $Characteristics\ of\ the\ dynamical\ core$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ dynamical\ core\ in\ atmos\ model.$

Enter TEXT:

3.1.1.3	Timestepping	Type	*
0.1.1.0	Timescopping	- ., pc	

Timestepping framework type			
	Adams-Bashforth		
	Explicit		
	Implicit		
	Semi-implicit		
	Leap frog		
\boxtimes	Multi-step		
	Runge Kutta fifth order		
	Runge Kutta second order		
	Runge Kutta third order		
	Other - please specify:		
3.1.1.4	Prognostic Variables *		
List of the	$model\ prognostic\ variables$		
\boxtimes	Surface pressure		
\boxtimes	Wind components		
	Divergence/curl		

Temperature

\bowtie	Potential temperature
	Total water
\boxtimes	Water vapour
\boxtimes	Water liquid
\boxtimes	Water ice
	Total water moments
\boxtimes	Clouds
	Radiation
	Other - please specify:
3.2.1 T	Гор Boundary
$Type\ of$	boundary layer at the top of the model
3.2.1.1	Top Boundary Condition *
	dary condition
\boxtimes	Sponge layer
	Radiation boundary condition
	Other - please specify:
3.2.1.2	Top Heat *
Top bound	dary heat treatment
\mathbf{Zero}	flux
3.2.1.3	Top Wind *
Top bound	dary wind treatment
Dam	p zonal mean winds to zero
3.3.1 I	Lateral Boundary
$Type\ of$	lateral boundary condition (if the model is a regional model)
3.3.1.1	Condition
Type of la	teral boundary condition
Selec	t SINGLE option:
	Sponge layer
	Radiation boundary condition

Other - please specify:			
3.4.1 Diffusion Horizontal Horizontal diffusion scheme			
3.4.1.1 Scheme Name Horizontal diffusion scheme name GFDL FV core			
3.4.1.2 Scheme Method * Horizontal diffusion scheme method Select SINGLE option: Literated Laplacian Bi-harmonic Other - please specify:			
3.4.2 Tracers Tracer advection scheme			
3.4.2.1 Scheme Name Tracer advection scheme name			
Select SINGLE option: Heun Roe and VanLeer Roe and Superbee Prather UTOPIA Other - please specify:			
3.4.2.2 Scheme Characteristics * Tracer advection scheme characteristics Eulerian Modified Euler			

	Semi-Lagrangian
	Cubic semi-Lagrangian
	Quintic semi-Lagrangian
	Mass-conserving
\boxtimes	Finite volume
	Flux-corrected
	Linear
	Quadratic
	Quartic
	Other - please specify:
	Conserved Quantities *
Tracer ac	lvection scheme conserved quantities
	Dry mass
	Tracer mass
	Other - please specify:
3 1 2 1	Conservation Method *
	Conservation Method * lvection scheme conservation method
Tracer ac	$lvection \ scheme \ conservation \ method$
Tracer ac	
Tracer ac	lvection scheme conservation method
Tracer ac	lvection scheme conservation method et SINGLE option: Conservation fixer
Tracer ac	dvection scheme conservation method et SINGLE option: Conservation fixer Priestley algorithm
Tracer ac	dvection scheme conservation method et SINGLE option: Conservation fixer Priestley algorithm
Selection	dvection scheme conservation method et SINGLE option: Conservation fixer Priestley algorithm Other - please specify:
Selection Select	tvection scheme conservation method et SINGLE option: Conservation fixer Priestley algorithm Other - please specify: Momentum
3.4.3 Moments 3.4.3.1	tet SINGLE option: Conservation fixer Priestley algorithm Other - please specify: Momentum tum advection scheme
Tracer at Selection Selection 3.4.3 Momentum Momentum	tet SINGLE option: Conservation fixer Priestley algorithm Other - please specify: Momentum tum advection scheme Scheme Name
Tracer at Selection Selection 3.4.3 Momentum Momentum	the transfer of the structure of the transfer of transfer
Tracer at Selection Selection 3.4.3 Momentum Momentum	the transfer of the conservation method et SINGLE option: Conservation fixer Priestley algorithm Other - please specify: Momentum tum advection scheme Scheme Name um advection schemes name et SINGLE option:

3.4.3.2 Scheme Characteristics * Momentum advection scheme characteristics	
Momentum advection echeme characteristics	
Momentum datection scheme characteristics	
2nd order	
X 4th order	
Cell-centred	
Staggered grid	
Semi-staggered grid	
Other - please specify:	
3.4.3.3 Scheme Staggering Type *	
Momentum advection scheme staggering type	
Select SINGLE option:	
Arakawa B-grid	
Arakawa C-grid	
Arakawa D-grid	
Arakawa E-grid	
Other - please specify:	
3.4.3.4 Conserved Quantities *	
$Momentum\ advection\ scheme\ conserved\ quantities$	
Angular momentum	
Horizontal momentum	
Enstrophy	
Mass	
Total energy	
☐ Vorticity	
Other - please specify:	
3.4.3.5 Conservation Method *	
Momentum advection scheme conservation method	

Select SINGLE option:

13

Conservation fixer
Other - please specify:

4 Radiation

Characteristics of the atmosphere radiation process

4.1.1 Top level properties

Characteristics of the atmosphere radiation process

4.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ radiation\ in\ atmos\ model.$

Enter TEXT:

4.1.1.2 Overview

Overview of characteristics of the atmosphere radiation process in atmos model.

Enter TEXT:

4.1.1.3 Aerosols *

Aerosols	whose	radiative	effect	is	taken	into	account	in	the	atmosphere	model
\square	~ .										

\triangle	Sul	lphate

	Nitrate

us

ı	l	Ice

\bowtie	Organic

L	BC -	Black	carbon	/ soot
---	------	-------	--------	--------

L	SOA -	Secondary	organic	aerosols
---	-------	-----------	---------	----------

L	J POM	-	Particul	late	organic	matter
---	-------	---	----------	------	---------	--------

l	Polar	stratospheric	ice
ᆫ	1 Olai	stratospheric	ICE

Ш	NAT ·	- Nitric	acid	trihydrate
---	-------	----------	------	------------

	NAD -	Nitric	acid	dihydrate
--	-------	--------	-----------------------	-----------

L	STS -	Supercooled	ternary	solution	aerosol	particl
---	-------	-------------	---------	----------	---------	---------

4.2.1 Shortwave Radiation

 $Properties \ of \ the \ shortwave \ radiation \ scheme$

Other - please specify:

4.2.1.1	Name
Commonl	y used name for the shortwave radiation scheme
Ente	r TEXT:
4.2.1.2	Spectral Integration *
Shortwave	e radiation scheme spectral integration
\boxtimes	Wide-band model
	Correlated-k
	Exponential sum fitting
	Other - please specify:
	Transport Calculation *
Shortwave	e radiation transport calculation methods
Selec	t MULTIPLE options:
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
4214	Spectral Intervals *
	e radiation scheme number of spectral intervals
18	
1915	General Interactions *
	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
Ш	Scattering
	Other - please specify:

4.3.1 Shortwave GHG

Representation of greenhouse gases in the shortwave radiation scheme

4.3.1.1 Greenhouse Gas Complexity *

 $Complexity\ of\ greenhouse\ gases\ whose\ shortwave\ radiative\ effects\ are\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	et MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentra	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11
 equivalen	${ m CFC-12\ eq}$ - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 ce concentration
concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ equivalence ition
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	$ Explicit \ other \ fluorinated \ gases \ - \ Explicit \ representation \ of \ other \ fluorinated \ gases \ e.g. \ HFCs \ and \ PFCs $
	O3
	H2O
	Other - please specify:
4.3.1.2 Ozone de model	ODS pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere
Ozone de model	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere
Ozone de model	
Ozone de model	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options:
Ozone de model	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC
Ozone de model Selec	pleting substances whose shortwave radiative effects are explicitly taken into account in the atmosphere et MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC
Ozone de model Selec	ct MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-22 - HCFC
Ozone de model Selec	t MULTIPLE options: CFC-12 - CFC CFC-11 - CFC CFC-113 - CFC CFC-114 - CFC CFC-115 - CFC HCFC-12 - HCFC HCFC-141b - HCFC

	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:
Other flow	Other Flourinated Gases urinated gases whose shortwave radiative effects are explicitly taken into account in the atmosphere model et MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-CAES - PEC

	NF3
	SF6
	SO2F2
	Other - please specify:
4.4.1 S	hortwave Cloud Ice
Shortwar	ve radiative properties of ice crystals in clouds
4.4.1.1 l	Physical Representation *
Physical re	epresentation of cloud ice crystals in the shortwave radiation scheme
Select	MULTIPLE options:
typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area ees
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4 4 1 0 4	O-4:1 M-41 d- *
	Optical Methods * ethods applicable to cloud ice crystals in the shortwave radiation scheme
	: MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:

4.5.1 Shortwave Cloud Liquid

 $Shortwave\ radiative\ properties\ of\ liquid\ droplets\ in\ clouds$

Physical representation of cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Cloud droplet number concentration - CDNC Effective cloud droplet radii Droplet size distribution Liquid water path - Integrated liquid water path through the cloud kg m-2 Other - please specify: 4.5.1.2 Optical Methods * Optical methods applicable to cloud liquid droplets in the shortwave radiation scheme Select MULTIPLE options: Geometric optics - For non-spherical particles Mie theory - For spherical particles Other - please specify: 4.6.1 Shortwave Cloud Inhomogeneity Cloud inhomogeneity in the shortwave radiation scheme 4.6.1.1 Cloud Inhomogeneity * Method for taking into account horizontal cloud inhomogeneity Select SINGLE option: Monte Carlo Independent Column Approximation - McICA Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010 Analytic Other - please specify: 4.7.1 Shortwave Aerosols Shortwave radiative properties of aerosols 4.7.1.1 Physical Representation * Physical representation of aerosols in the shortwave radiation scheme

4.5.1.1 Physical Representation *

Select MULTIPLE options:

	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:
4.7.1.2	Optical Methods *
	ethods applicable to aerosols in the shortwave radiation scheme
Select	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.8.1 L	ongwave Radiation
	es of the longwave radiation scheme
4.8.1.1	Name
Commonly	y used name for the longwave radiation scheme.
Enter	TEXT:
4.8.1.2	Spectral Integration *
Longwave	radiation scheme spectral integration
\boxtimes	Wide-band model
	Correlated-k
	Exponential sum fitting
	Other - please specify:

4.8.1.3	Transport Calculation *
Longwave	radiation transport calculation methods
Selec	t MULTIPLE options:
	Two-stream
	Layer interaction
	Bulk - Highly parameterised methods that use bulk expressions
	Adaptive - Exploits spatial and temporal correlations in optical characteristics
	Multi-stream
	Other - please specify:
4.8.1.4	Spectral Intervals *
Longwave	radiation scheme number of spectral intervals
10	
4.8.1.5	General Interactions *
General re	adiative interactions e.g. with aerosols, cloud ice and cloud water
Selec	t MULTIPLE options:
	Emission/absorption,
	Scattering
	Other - please specify:
4.9.1 I	Longwave GHG
Represer	ntation of greenhouse gases in the longwave radiation scheme
4.9.1.1	Greenhouse Gas Complexity *
Complexit	ty of greenhouse gases whose longwave radiative effects are taken into account in the atmosphere model
Selec	t MULTIPLE options:
	CO2 - Carbon Dioxide
	CH4 - Methane
	N2O - Nitrous Oxide
concentrat	CFC-11 eq - Summarize the effect of non CO2, CH4, N2O and CFC-12 gases with an equivalence tion of CFC-11

 $\hfill\Box$ CFC-12 eq - Summarize the radiative effect of the Ozone Depleating Substances, ODSs, with a CFC-12 equivalence concentration

concentra	${ m HFC} ext{-}134a~{ m eq}$ - Summarize the radiative effect of other fluorinated gases with a ${ m HFC} ext{-}134a~{ m equivalence}$ equivalence ation
	Explicit ODSs - Explicit representation of Ozone Depleting Substances e.g. CFCs, HCFCs and Halons
	Explicit other fluorinated gases - Explicit representation of other fluorinated gases e.g. HFCs and PFCs
	O3
	H2O
	Other - please specify:
4.9.1.2	
Ozone de model	pleting substances whose longwave radiative effects are explicitly taken into account in the atmosphere
Selec	et MULTIPLE options:
	CFC-12 - CFC
	CFC-11 - CFC
	CFC-113 - CFC
	CFC-114 - CFC
	CFC-115 - CFC
	HCFC-22 - HCFC
	HCFC-141b - HCFC
	HCFC-142b - HCFC
	Halon-1211 - Halon
	Halon-1301 - Halon
	Halon-2402 - Halon
	Methyl chloroform - CH3CCl3
	Carbon tetrachloride - CCl4
	Methyl chloride - CH3Cl
	Methylene chloride - CH2Cl2
	Chloroform - CHCl3
	Methyl bromide - Ch3Br
	Other - please specify:

4.9.1.3 Other Flourinated Gases

 $Other\ flour in ated\ gases\ whose\ longwave\ radiative\ effects\ are\ explicitly\ taken\ into\ account\ in\ the\ atmosphere\ model$

Selec	t MULTIPLE options:
	HFC-134a - HFC
	HFC-23 - HFC
	HFC-32 - HFC
	HFC-125 - HFC
	HFC-143a - HFC
	HFC-152a - HFC
	HFC-227ea - HFC
	HFC-236fa - HFC
	HFC-245fa - HFC
	HFC-365mfc - HFC
	HFC-43-10mee - HFC
	CF4 - PFC
	C2F6 - PFC
	C3F8 - PFC
	C4F10 - PFC
	C5F12 - PFC
	C6F14 - PFC
	C7F16 - PFC
	C8F18 - PFC
	C-C4F8 - PFC
	NF3
	SF6
	SO2F2
	Other - please specify:
4.10.1	Longwave Cloud Ice
-	

Longwave radiative properties of ice crystals in clouds

4.10.1.1 Physical Reprenstation *

Physical representation of cloud ice crystals in the longwave radiation scheme

Select MULTIPLE options:

typically h	Bi-modal size distribution - Small mode diameters: a few tens of microns, large mode diameters: aundreds of microns
	Ensemble of ice crystals - Complex shapes represented with an ensemble of symmetric shapes
than spher	Mean projected area - Randomly oriented irregular ice crystals present a greater mean projected area res
	Ice water path - Integrated ice water path through the cloud kg m-2 $$
	Crystal asymmetry
	Crystal aspect ratio
	Effective crystal radius
	Other - please specify:
4.10.1.2	Optical Methods *
$Optical\ m$	ethods applicable to cloud ice crystals in the longwave radiation scheme
Select	t MULTIPLE options:
	T-matrix - For non-spherical particles
	Geometric optics - For non-spherical particles
	Finite difference time domain (FDTD) - For non-spherical particles
	Mie theory - For spherical particles
	Anomalous diffraction approximation
	Other - please specify:
4.11.1	Longwave Cloud Liquid
Longwav	e radiative properties of liquid droplets in clouds
4.11.1.1	Physical Representation *
Physical r	epresentation of cloud liquid droplets in the longwave radiation scheme
Select	t MULTIPLE options:
	Cloud droplet number concentration - CDNC
	Effective cloud droplet radii
	Droplet size distribution
	Liquid water path - Integrated liquid water path through the cloud kg m-2
	Other - please specify:

4.11.1.2	2 Optical Methods *
$Optical\ m$	ethods applicable to cloud liquid droplets in the longwave radiation scheme
Selec	t MULTIPLE options:
	Geometric optics - For non-spherical particles
	Mie theory - For spherical particles
	Other - please specify:
4.12.1	Longwave Cloud Inhomogeneity
Cloud in	chomogeneity in the longwave radiation scheme
4.12.1.1	Cloud Inhomogeneity *
	r taking into account horizontal cloud inhomogeneity
Selec	t SINGLE option:
	Monte Carlo Independent Column Approximation - McICA
	Triplecloud - Regions of clear sky, optically thin cloud and optically thick cloud, Shonk et al 2010
	Analytic
	Other - please specify:
4.13.1	Longwave Aerosols
Longway	ve radiative properties of aerosols
4.13.1.1	Physical Representation *
Physical r	representation of aerosols in the longwave radiation scheme
Selec	t MULTIPLE options:
	Number concentration
	Effective radii
	Size distribution
	Asymmetry
	Aspect ratio
	Mixing state - For shortwave radiative interaction
	Other - please specify:

4.13.1.2	Optical	Methods	*
----------	---------	---------	---

 $Optical\ methods\ applicable\ to\ aerosols\ in\ the\ longwave\ radiation\ scheme$

Select MULTIPLE options:		
	T-matrix - For non-spherical particles	
	Geometric optics - For non-spherical particles	
	Finite difference time domain (FDTD) - For non-spherical particles $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left$	
	Mie theory - For spherical particles	
	Anomalous diffraction approximation	
	Other - please specify:	

5 Turbulence Convection

Atmosphere Convective Turbulence and Clouds

5.1.1 Top level properties

Atmosphere Convective Turbulence and Clouds

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ turbulence\ convection\ in\ atmos\ model.$

 ${f Enter\ TEXT}:$

5.1.1.2 Overview

Overview of atmosphere convective turbulence and clouds in atmos model.

Enter TEXT:

5.2.1 Boundary Layer Turbulence

Properties of the boundary layer turbulence scheme

5.2.1.1 Scheme Name

Boundary layer turbulence scheme name

Select	t SINGLE option:
	Mellor-Yamada
	Holtslag-Boville
	EDMF - Combined Eddy Diffusivity Mass-Flux
	Other - please specify:
5.2.1.2	Scheme Type *
Boundary	layer turbulence scheme type
	TKE prognostic
	TKE diagnostic
	TKE coupled with water
\boxtimes	Vertical profile of Kz
	Non-local diffusion
	Monin-Obukhov similarity
	Coastal Buddy Scheme - Separate components for coastal near surface winds over ocean and land

	Coupled with convection
	Coupled with gravity waves
	Depth capped at cloud base - Boundary layer capped at cloud base when convection is diagnosed
	Other - please specify:
5.2.1.3	Closure Order *
Boundary	y layer turbulence scheme closure order
Ente	r INTEGER value:
5.2.1.4	Counter Gradient *
Uses boun	ndary layer turbulence scheme counter gradient
\boxtimes	True False
5.3.1	Deep Convection
Propert	ies of the deep convection scheme
5.3.1.1	Scheme Name
Deep con	vection scheme name
RAS	
5.3.1.2	Scheme Type *
Deep con	vection scheme type
\boxtimes	Mass-flux
	Adjustment
	Plume ensemble - Zhang-McFarlane
	Other - please specify:
5.3.1.3	Scheme Method *
Deep con	vection scheme method
Selec	et MULTIPLE options:
	CAPE - Mass flux determined by CAPE, convectively available potential energy.
	Bulk - A bulk mass flux scheme is used
	Ensemble - Summation over an ensemble of convective clouds with differing characteristics

sphere	CAPE/WFN based - CAPE-Cloud Work Function: Based on the quasi-equilibrium of the free tropo-
	TKE/CIN based - TKE-Convective Inhibition: Based on the quasi-equilibrium of the boundary layer
	Other - please specify:
5.3.1.4	Processes *
Physical p	processes taken into account in the parameterisation of deep convection
	Vertical momentum transport
\boxtimes	Convective momentum transport
\boxtimes	Entrainment
\boxtimes	Detrainment
	Penetrative convection
	Updrafts
	Downdrafts
	Radiative effect of anvils
	Re-evaporation of convective precipitation
	Other - please specify:
5.3.1.5	Microphysics
	sics scheme for deep convection. Microphysical processes directly control the amount of detrainment of rometeor and water vapor from updrafts
Selec	t MULTIPLE options:
	Tuning parameter based
	Single moment
	Two moment
	Other - please specify:
5.4.1 S	Shallow Convection
Propertie	es of the shallow convection scheme
5.4.1.1	Scheme Name
Shallow co	onvection scheme name
Enter	· TEXT:

5.4.1.2	5.4.1.2 Scheme Type *		
Shallow	convection scheme type		
Selec	et MULTIPLE options:		
	Mass-flux		
	Cumulus-capped boundary layer		
	Other - please specify:		
5.4.1.3	Scheme Method *		
Shallow o	convection scheme method		
\boxtimes	Same as deep (unified)		
	Included in boundary layer turbulence		
	Separate diagnosis - Deep and Shallow convection schemes use different thermodynamic closure criteria		
	Other - please specify:		
5.4.1.4	Processes *		
Physical	processes taken into account in the parameterisation of shallow convection		
Selec	Select MULTIPLE options:		
	Convective momentum transport		
	Entrainment		
	Detrainment		
	Penetrative convection		
	Re-evaporation of convective precipitation		
	Other - please specify:		
5.4.1.5	Microphysics		
Microphysics scheme for shallow convection			
Select MULTIPLE options:			
	Tuning parameter based		
	Single moment		
	Two moment		
	Other - please specify:		

6 Microphysics Precipitation

Large Scale Cloud Microphysics and Precipitation

6.1.1 Top level properties

Large Scale Cloud Microphysics and Precipitation

6.1.1.1 Name

Commonly used name for the microphysics precipitation in atmos model.

Enter TEXT:

6.1.1.2 Overview

Overview of large scale cloud microphysics and precipitation in atmos model.

Enter TEXT:

6.2.1 Large Scale Precipitation

Properties of the large scale precipitation scheme

6.2.1.1 Scheme Name

Commonly used name of the large scale precipitation parameterisation scheme

RAS

6.2.1.2 Hydrometeors *

Precipitating hydrometeors taken into account in the large scale precipitation scheme

\bowtie	Liquid rain
\boxtimes	Snow
	Hail
	Graupel
	Other - please specify:

6.3.1 Large Scale Cloud Microphysics

Properties of the large scale cloud microphysics scheme

6.3.1.1 Scheme Name

Commonly used name of the microphysics parameterisation scheme used for large scale clouds.

RAS

Large scale cloud microphysics processes				
Selec	Select MULTIPLE options:			
	Mixed phase			
	Cloud droplets			
	Cloud ice			
	Ice nucleation			
	Water vapour deposition			
	Effect of raindrops			
	Effect of snow			
	Effect of graupel			

Other - please specify:

6.3.1.2 Processes *

7 Cloud Scheme

Characteristics of the cloud scheme

7	.1.1	Top	level	pro	perties

Characteristics of the cloud scheme

7	7 1	1 1	1 1	1	N	· 2	m	6

 $Commonly\ used\ name\ for\ the\ cloud\ scheme\ in\ atmos\ model.$

Enter TEXT:

7.1.1.2 Overview

Overview of characteristics of the cloud scheme in atmos model.

Enter TEXT:

7.1.1.3	Scheme	Type	×
---------	--------	-------------	---

 $Describes\ the\ type(s)\ of\ cloud\ scheme:\ prognostic,\ diagnostic,\ other.$

Select MULTIPLE options:			
	Prognostic		
	Diagnostic		
	Other - please specify:		

7.1.1.4 Uses Separate Treatment *

 $Description \ for \ when \ different \ cloud \ schemes \ are \ used \ for \ different \ types \ of \ clouds \ e.g. \ convective, \ stratiform \ and \ boundary \ layer)$

Yes

7.1.1.5 Processes *

Processes included in the cloud scheme

Ш	Entrainment
	Detrainment
	Bulk cloud
	Other - please specify:

7.1.1.6 Prognostic Variables

List the prognostic variables used by the cloud scheme, if applicable.

Selec	t MULTIPLE options:		
	Cloud amount		
	Liquid		
	Ice		
	Rain		
	Snow		
	Cloud droplet number concentration - To document the use of two-moment cloud microphysics schemes		
	Ice crystal number concentration - To document the use of two-moment cloud microphysics schemes		
	Other - please specify:		
	Atmos Coupling re components that are linked to the cloud scheme		
Selec	t MULTIPLE options:		
	Atmosphere_radiation		
	Atmosphere_microphysics_precipitation		
	$Atmosphere_turbulence_convection$		
	Atmosphere_gravity_waves		
	Atmosphere_natural_forcing		
	Atmosphere_observation_simulation		
7.2.1 Optical Cloud Properties Optical cloud properties			
7.2.1.1	Cloud Overlap Method		
	r taking into account overlapping of cloud layers		
Selec	t SINGLE option:		
	Random		
	Maximum		
	Maximum-random - Combination of maximum and random overlap between clouds		
	Exponential		
	Other - please specify:		

7	.2.1	.2	Cloud	Inhomog	$\mathbf{reneitv}$

 $Method\ for\ taking\ into\ account\ cloud\ inhomogeneity$

Enter TEXT:

7.3.1 Sub Grid Scale Water Distribution

Sub-grid scale water distribution		
7.3.1.1	Гуре *	
Sub-grid s	cale water distribution type	
	Prognostic	
\boxtimes	Diagnostic	

7.3.1.2 Function Name *

 $Sub\mbox{-}grid\ scale\ water\ distribution\ function\ name$

 \mathbf{Klein}

7.3.1.3 Function Order *

 $Sub\mbox{-}grid\ scale\ water\ distribution\ function\ type$

Enter INTEGER value:

7.3.1.4 Convection Coupling *

Sub-grid scale water distribution coupling with convection \boxtimes Coupled with deep \boxtimes Coupled with shallow

☐ Not coupled with convection

7.4.1 Sub Grid Scale Ice Distribution

 $Sub\mbox{-}grid\ scale\ ice\ distribution$

7.4.1.1 Type *

 $Sub\mbox{-}grid\ scale\ ice\ distribution\ type$

Selec	t SINGLE option:
	Prognostic
	Diagnostic

Sub-grid scale ice distribution function name
Enter TEXT:
7.4.1.3 Function Order *
Sub-grid scale ice distribution function type
Enter INTEGER value:
7.4.1.4 Convection Coupling *
7.4.1.4 Convection Coupling *
7.4.1.4 Convection Coupling * Sub-grid scale ice distribution coupling with convection
• 0
Sub-grid scale ice distribution coupling with convection
Sub-grid scale ice distribution coupling with convection Select MULTIPLE options:
Sub-grid scale ice distribution coupling with convection Select MULTIPLE options: Coupled with deep

7.4.1.2 Function Name \ast

8 Observation Simulation

Characteristics of observation simulation

8.1.1 Top level properties

 $Characteristics\ of\ observation\ simulation$

8.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ observation\ simulation\ in\ atmos\ model.$

Enter TEXT:

8.2.1 Isscp Attributes

ISSCP Characteristics

8.2.1.1 Top Height Estimation Method

 $Cloud\ simulator\ ISSCP\ top\ height\ estimation\ method\ Uo$

Select MULTIPLE options:			
	No adjustment		
	IR brightness		
	Visible optical depth		
	Other - please specify:		

8.2.1.2 Top Height Direction

Cloud simulator ISSCP top height direction

Select SINGLE option:			
	Lowest altitude level		
	Highest altitude level		
	Other - please specify:		

8.3.1 Cosp Attributes

 $CFMIP\ Observational\ Simulator\ Package\ attributes$

8.3.1.1 Run Configuration
Cloud simulator COSP run configuration
Select SINGLE option:
Inline
Offline
Other - please specify:
8.3.1.2 Number Of Grid Points
Cloud simulator COSP number of grid points
Enter INTEGER value:
8.3.1.3 Number Of Sub Columns
Cloud simulator COSP number of sub-cloumns used to simulate sub-grid variability
Enter INTEGER value:
8.3.1.4 Number Of Levels
Cloud simulator COSP number of levels
Enter INTEGER value:
9 4 1 Dadan Inputs
8.4.1 Radar Inputs Characteristics of the cloud maken simulator
Characteristics of the cloud radar simulator
8.4.1.1 Frequency
Cloud simulator radar frequency (Hz)
Enter FLOAT value:
8.4.1.2 Type
Cloud simulator radar type
Select SINGLE option:
Surface
Space borne
Other - please specify:

	Gas Absor	_	
	t either TRU		-
	True		False
	Effective R		
	t either TRU		
	True		False
	Lidar Inpu		ud lidar simulator
	Ice Types	e type	
	t SINGLE o		
	Ice spheres		
	Ice non-spher	ical	
	Other - pleas	e spec	ify:
8.5.1.2	Overlap		
Cloud sin	nulator lidar on	verlap	
Selec	t MULTIPL	E opt	ions:
	Max		
	Random		
	Other - pleas	e snec	ify:

9 Gravity Waves

Characteristics of the parameterised gravity waves in the atmosphere, whether from orography or other sources

9.1.1 Top level properties

 $Characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources$

9.1.1.1 Name

Commonly used name for the gravity waves in atmos model.

Enter TEXT:

9.1.1.2 Overview

 $Overview\ of\ characteristics\ of\ the\ parameterised\ gravity\ waves\ in\ the\ atmosphere,\ whether\ from\ orography\ or\ other\ sources\ in\ atmos\ model.$

Enter TEXT:

9.1.1.3 Sponge I	ayer *
------------------	--------

Effect on lifting

Sponge layer in the upper levels in order to avoid gravity wave reflection at the top.

эронуе ш	yer in the upper levels in order to avoid gravity wave reflection at the top.
Selec	et SINGLE option:
	Rayleigh friction
	Diffusive sponge layer
	Other - please specify:
9.1.1.4	Background *
Backgrou	nd wave distribution
Selec	et SINGLE option:
	Continuous spectrum
	Discrete spectrum
	Other - please specify:
9.1.1.5	Subgrid Scale Orography *
Subgrid s	cale orography effects taken into account.
\boxtimes	Effect on drag

	Enhanced topography - To enhance the generation of long waves in the atmosphere $$
	Other - please specify:
9.2.1	Orographic Gravity Waves
Gravity	waves generated due to the presence of orography
9.2.1.1	Name
Commonl	y used name for the orographic gravity wave scheme
Enter	TEXT:
0212	Source Mechanisms *
	c gravity wave source mechanisms
	Linear mountain waves
	Hydraulic jump
	Envelope orography
	Low level flow blocking
\boxtimes	Statistical sub-grid scale variance
	Other - please specify:
9.2.1.3	Calculation Method *
	c gravity wave calculation method
\boxtimes	Non-linear calculation
	More than two cardinal directions
	Other - please specify:
9.2.1.4	Propagation Scheme *
Orographi	c gravity wave propogation scheme
\boxtimes	Linear theory
	Non-linear theory
	Includes boundary layer ducting
	Other - please specify:

9.2.1.5	Dissipation Scheme *
Orographi	c gravity wave dissipation scheme
	Total wave
\boxtimes	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:
9.3.1 N	Non Orographic Gravity Waves
Gravity	waves generated by non-orographic processes.
9.3.1.1	Name
Commonl	y used name for the non-orographic gravity wave scheme
Enter	· TEXT:
	Source Mechanisms *
Non-orogr	aphic gravity wave source mechanisms
Selec	t MULTIPLE options:
	Convection
	Precipitation
	Background spectrum
	Other - please specify:
9.3.1.3	Calculation Method *
Non-orogr	aphic gravity wave calculation method
Selec	t MULTIPLE options:
	Spatially dependent
	Temporally dependent
9.3.1.4	Propagation Scheme *
	aphic gravity wave propagation scheme

Select SINGLE option:

	Linear theory
	Non-linear theory
	Other - please specify:
9.3.1.5	Dissipation Scheme *
Non-oroga	raphic gravity wave dissipation scheme
Selec	t SINGLE option:
	Total wave
	Single wave
	Spectral
	Linear
	Wave saturation vs Richardson number
	Other - please specify:

10 Natural Forci	ng
------------------	----

7.7 , 7	· ·	7	7	
Natural	torcına:	solar	and voi	lcanic.

10.1.1 Top level properties

Natural forcing: solar and volcanic.

10.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ natural\ forcing\ in\ atmos\ model.$

 ${f Enter\ TEXT}:$

10.1.1.2 Overview

Overview of natural forcing: solar and volcanic. in atmos model.

Enter TEXT:

10.2.1 Solar Pathways

Pathways for solar forcing of the atmosphere

10.2.1.1 Pathways *

Pathways for the solar forcing of the atmosphere model domain

	SW radiation - Shortwave solar spectral irradiance.
,	Precipitating energetic particles - Precipitating energetic particles from the sun (predominantly prothe magnetosphere (predominantly electrons) affect the ionization levels in the polar middle and upper re, leading to significant changes of the chemical composition
	Cosmic rays - Cosmic rays are the main source of ionization in the troposphere and lower stratosphere.
	Other - please specify:

10.3.1 Solar Constant

Solar constant and top of atmosphere insolation characteristics

10.3.1.1 Type *

Time adaptation of the solar constant.

Fixed

Enter FLOAT value:		
10.0.1.0.17		
10.3.1.3 Transient Characteristics		
Solar constant transient characteristics (W m-2)		
Set by year value		
10.4.1 Orbital Parameters		
Orbital parameters and top of atmosphere insolation characteristics		
10.4.1.1 Type *		
Type of orbital parameter		
Transient		
10.4.1.2 Fixed Reference Date		
Reference date for fixed orbital parameters (yyyy)		
23		
20		
10.4.1.3 Transient Method		
Description of transient orbital parameters		
Enter TEXT:		
10.4.1.4 Computation Method		
Method used for computing orbital parameters.		
Berger 1978		
Laskar 2004		
Other - please specify:		
Other - please specify.		
10.5.1 Insolation Ozone		
Impact of solar insolation on stratospheric ozone		
10.5.1.1 Solar Ozone Impact *		
$Does\ top\ of\ atmosphere\ insolation\ impact\ on\ stratospheric\ ozone?$		
□ False		

If the solar constant is fixed, enter the value of the solar constant (W m-2).

10.3.1.2 Fixed Value

10.6.1 Volcanoes Treatment

 $Characteristics\ and\ treatment\ of\ volcanic\ forcing\ in\ the\ atmosphere$

10.6.1.1 Volcanoes Characteristics *

 $Description\ of\ how\ the\ volcanic\ forcing\ is\ taken\ into\ account\ in\ the\ atmosphere.$

Enter TEXT:

10.6.1.2 Volcanoes Implementation *

 $How\ volcanic\ effects\ are\ modeled\ in\ the\ atmosphere.$

Select SINGLE option:		
	High frequency solar constant anomaly	
	Stratospheric aerosols optical thickness	
	Other - please specify:	