LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." *arXiv preprint arXiv:2106.09685* (2021).

Background

다운스트림 태스크는 일반적으로 사전 학습된 모델의 모든 파라미터를 업데이트하는 fine-tuning을 통해 수행된다.

추가되는 어댑터에 대해서만 **학습**-> 어댑터 레이어들은 latency가 증가한다

prompt 최적화

adaptation을 위해 시퀀스 길이의 일부를 사용하면 다운스트림 task를 처리하는 데 사용할수 있는 시퀀스 길이가 필연적으로 줄어들어 다른 방법에 비해 프롬프트 튜닝 성능이 떨어진다.

LLM Tuning Methods

Prompt Engineering

PEFT

(Parameter Efficient Fine-Tuning)

RAG

(Retrieval Augmented Generation)

Cost ~ Complexity ~ Quality

1. Adapter Layers

pre-trained model 사이사이에 feed-forward networks(학습 가능한 작은 신경망 층)를 **삽입**

2. Prompt Tuning

프롬프트의 일부를 학습 가능한 매개변수로 변환하여 훈련할 수 있도록 한 것 (입력 프롬프트에 대하여)

Hard Prompt vs. Soft Prompt (Senadeera & Ive, 2022)

3. LoRA / QLoRA (Low-Rank Adaptation)

pre-trained model의 원래 가중치는 유지하면서 학습 가능한 저차원 행렬인 lank decomposition 행렬을 삽입하여 소수의 파라미터만 조 정하는 기법

Figure 1: Our reparametrization. We only train A and B.

LoRA

행렬에서의 Rank

: 행렬에서 선형적으로 독립적인 벡터의 개수

랭크가 낮을 수록 행렬의 정보가 중복되거나 불필요하다는 것을 의미 즉, 랭크가 낮다면 **행렬의 차원을 줄일 수 있다**

LoRA(Low-Rank Adaptation)

모델의 파라미터를 낮은 랭크로 근사하여, 원래 고차원 공간에서의 변화를 낮은 랭크의 행렬로 표현해서 비슷한 결과를 낼 수 있도록 하는 것

Fine tuning과정에서 원래 모델의 파라미터는 freeze, low-rank decomposition 행렬 쌍을 추가로 주입하여 훈련

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

Figure 1: Our reparametrization. We only train A and B.

Applying LoRA to Transformer

학습 가능한 파라미터의 수를 줄이기 위해 신경망에서 가중치 행렬의 모든 부분집합에 LoRA를 적용할 수 있다.

	# of Trainable Parameters = 18M					1	
Weight Type Rank r	$\left \begin{array}{c}W_q\\8\end{array}\right $	W_k 8	$W_v \\ 8$	W_o	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o
WikiSQL ($\pm 0.5\%$) MultiNLI ($\pm 0.1\%$)	1	70.0 90.8			71.4 91.3	73.7 91.3	73.7 91.7

LoRA 기법을 사용해 적은 수의 파라미터로도 높은 성능을 유지할 수 있음을 시사

Result

Model & Method	# Trainable									
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
$RoB_{base} (Adpt^{D})^*$	0.3M	$87.1_{\pm .0}$	$94.2_{\pm .1}$	$88.5_{\pm 1.1}$	$60.8_{\pm.4}$	$93.1_{\pm .1}$	$90.2_{\pm .0}$	$71.5_{\pm 2.7}$	$89.7_{\pm .3}$	84.4
$RoB_{base} (Adpt^{D})^*$	0.9M	$87.3_{\pm .1}$	$94.7 \scriptstyle{\pm .3}$	$88.4_{\pm.1}$	$62.6_{\pm .9}$	$93.0_{\pm.2}$	$90.6 \scriptstyle{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm .1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm.7}$	$63.4_{\pm1.2}$	$\textbf{93.3}_{\pm .3}$	$90.8_{\pm.1}$	$\pmb{86.6}_{\pm.7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	$90.6_{\pm .2}$	$96.2 \scriptstyle{\pm .5}$	90.9 $_{\pm 1.2}$	68.2 $_{\pm 1.9}$	94.9 _{±.3}	$91.6 \scriptstyle{\pm .1}$	87.4 ± 2.5	92.6 $_{\pm .2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2±.3	96.1±.3	90.2±.7	68.3 ±1.0	94.8 ±.2	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
$RoB_{large} (Adpt^{P})^{\dagger}$	0.8M	90.5 _{±.3}	96.6 \pm .2	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	94.8 ±.3	$91.7_{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm .4}$	87.9
RoB _{large} (Adpt ^H)†	6.0M	89.9 _{±.5}	$96.2 \scriptstyle{\pm .3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm .2}$	$92.1_{\pm .1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
$RoB_{large} (Adpt^{H})^{\dagger}$	0.8M	$90.3_{\pm .3}$	$96.3_{\pm .5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm .2}$	$91.5_{\pm .1}$	$72.9_{\pm 2.9}$	$91.5_{\pm .5}$	86.4
RoB _{large} (LoRA)†	0.8M	90.6 ±.2	$96.2 \scriptstyle{\pm .5}$	90.2 $_{\pm 1.0}$	$68.2 \scriptstyle{\pm 1.9}$	94.8 ±.3	$91.6 \scriptstyle{\pm .2}$	$85.2_{\pm 1.1}$	92.3 $_{\pm .5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB_{XXL} (LoRA)	4.7M	91.9 _{±.2}	$96.9_{\pm.2}$	92.6 $_{\pm .6}$	72.4 $_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	$94.9_{\pm .4}$	93.0 $_{\pm .2}$	91.3

Model & Method	# Trainable	E2E NLG Challenge						
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr		
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47		
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40		
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47		
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm .6}$	$8.50_{\pm .07}$	$46.0_{\pm.2}$	$70.7_{\pm .2}$	$2.44_{\pm .01}$		
GPT-2 M (FT ^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41		
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49		
GPT-2 M (LoRA)	0.35M	$70.4_{\pm.1}$	$\pmb{8.85}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{71.8}_{\pm.1}$	$\pmb{2.53}_{\pm .02}$		
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45		
GPT-2 L (Adapter ^L)	0.88M	69.1 _{±.1}	$8.68_{\pm.03}$	$46.3_{\pm .0}$	$71.4_{\pm .2}$	$\pmb{2.49}_{\pm.0}$		
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm .3}$	$8.70_{\pm .04}$	$46.1_{\pm .1}$	$71.3_{\pm .2}$	$2.45_{\pm .02}$		
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47		
GPT-2 L (LoRA)	0.77M	$70.4_{\pm .1}$	$\pmb{8.89}_{\pm.02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{72.0}_{\pm.2}$	$2.47_{\pm .02}$		

이점

- 메모리와 스토리지 사용량 감소
- 모든 파라미터가 아닌 LoRA 가중치만 교환함으로써 훨씬 저렴한 비용으로 배포 중에 task 사이를 전환