Claims:

- 1. A combinatorial library of indolinone compounds, comprising at least ten indolinones that can be formed by reacting oxindoles with aldehydes.
- 2. The combinatorial library of claim 1 wherein said oxindoles are type A oxindoles.
- 3. The combinatorial library of claim 1 wherein said aldehydes are type B aldehydes.
- 4. A method of making an indolinone comprising the steps of
- (a) creating a combinatorial library of indolinones by reacting a series of oxindoles with a series of aldehydes,
 - (b) testing said indolinones in biological assays,
- (c) selecting one or more indolinones with favorable activity; and
- (d) synthesizing one or more of said indolinones selected in step (c).
- 5. A 3-[(indole-3-yl)methylene]-2-indolinone compound having a substituent at the 1' position of the indole, where the substituent at the 1' position is selected from the group consisting of,
- (a) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;
- (b) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is

optionally substituted with one or more halogen or trihalomethyl substituents;

- (c) an aldehyde or ketone of formula -CO- R_{12} , where R_{12} is selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (d) a carboxylic acid of formula $-(R_{13})_n$ -COOH or ester of formula $-(R_{14})_m$ -COO- R_{15} , where R_{13} , R_{14} , and R_{15} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (e) a sulfone of formula $-(SO_2)-R_{16}$, where R_{16} is selected from the group consisting of alkyl and a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;

(f) $-(R_{17})_n$ -(indole-1-yl) or

- $-\left(R_{18}\right)_{m}\text{-CHOH-}\left(R_{19}\right)_{p}\text{-}\left(\text{indole-1-yl}\right),\quad\text{where the indole}$ moiety is optionally substituted with an aldehyde and $R_{17},\ R_{18},$ and R_{19} are alkyl and m, n, and p are independently 0 or 1; and
- (g) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring.

6. The compound, salt, isomer, metabolite, ester, amide, or prodrug of claim 5, wherein said compound has the formula,

$$R_{5}$$
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{4}
 R_{5}
 R_{1}
 R_{1}
 R_{2}
 R_{2}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}

where (a) R_1 is selected from the group consisting of,

- (i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- $\mbox{(iii)} \qquad \mbox{an aldehyde or ketone of formula -CO-} \\ R_{12}, \quad \mbox{where} \quad R_{12} \mbox{ is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;}$

- (iv) a carboxylic acid of formula $-(R_{13})_n$ -COOH or ester of formula $-(R_{14})_m$ -COO- R_{15} , where R_{13} , R_{14} , and R_{15} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- (v) a sulfone of formula $-(SO_2)-R_{16}$, where R_{16} is selected from the group consisting of alkyl or a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;
 - $(vi) (R_{17})_n (indole-1-yl)$ or
- $-(R_{18})_m$ -CHOH- $(R_{19})_p$ -(indole-1-yl), where the indole moiety is optionally substituted with an aldehyde and R_{17} , R_{18} , and R_{19} are alkyl and n, m, and p are independently 0 or 1;
- (vii) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring;
- (b) R_2 , R_3 , R_4 , R_5 , and R_6 are selected from the group consisting of,
- (i) hydrogen or alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
 - (iii) an aldehyde or ketone of formula

 $_{\text{-CO-R}_{20}},$ where R_{20} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;

- (iv) a carboxylic acid of formula $-(R_{21})_n$ -COOH or ester of formula $-(R_{22})_m$ -COO- R_{23} , where R_{21} , R_{22} , and R_{23} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (v) halogen or an alcohol of formula $-(R_{24})_m$ -OH or an ether of formula $-(R_{24})_n$ -O- R_{25} , where R_{24} and R_{25} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vi) $-NR_{26}R_{27}$, where R_{26} and R_{27} are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring; or $-NHCOR_{28}$, where R_{28} is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- $(\text{vii}) \quad -\text{SO}_2\text{NR}_{29}\text{R}_{30}, \quad \text{where} \quad \text{R}_{29} \quad \text{and} \quad \text{R}_{30} \quad \text{are}$ selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (viii) any two of R_3 , R_4 , R_5 , or R_6 taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
- (c) $R_{7},\ R_{8},\ R_{9},\ \mbox{and}\ R_{10}$ are independently selected from the group consisting of,
- (i) hydrogen or alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight,

nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, aldehyde, or trihalomethyl substituents;

- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
 - (iii) an aldehyde or ketone of formula
- $_{\mbox{\scriptsize -CO-R}_{31}},$ where R_{31} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{32})_n$ -COOH or ester of formula $-(R_{33})_m$ -COO- R_{34} , where R_{32} , R_{33} , and R_{34} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- (v) halogen or an alcohol of formula $-(R_{35})_m$ -OH or an ether of formula $-(R_{35})_n$ -O- R_{36} , where R_{35} and R_{36} are independently chosen from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vi) -NR₃₇R₃₈, where R₃₇ and R₃₈ are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring; or -NHCOR₃₉, where R₃₉ is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- $(\text{vii}) \quad -\text{SO}_2\text{NR}_{40}\text{R}_{41}, \quad \text{where} \quad \text{R}_{40} \quad \text{and} \quad \text{R}_{41} \quad \text{are}$ selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;

- (viii) any two of R_7 , R_8 , R_9 , or R_{10} taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring; and
- (d) R_{11} is hydrogen or alkyl; provided that at least one of R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_8 , R_9 , or R_{10} is alkyl or provided that at least four of R_1 , R_2 , R_3 , R_4 , R_5 , or R_6 are not hydrogen.
- 7. An optionally substituted 3-[(tetrahydroindole-2-yl)methylene]-2-indolinone or 3-[(cyclopentano-b-pyrrol-2-yl)methylene)-2-indolinone compound.

8. The indolinone compound of claim 7 of formula XIX or XX,

XIX

$$\begin{array}{c|c} R_4 & R_6 & R_5 \\ \hline R_1 & R_2 & R_3 \\ \hline R_2 & R_4 \\ \hline R_3 & R_4 \\ \hline R_4 & R_5 \\ \hline R_1 & R_2 \\ \hline R_4 & R_4 \\ \hline R_5 & R_5 \\ \hline R_6 & R_5 \\ \hline R_6 & R_5 \\ \hline R_7 & R_7 \\ \hline R_8 & R_9 \\ \hline R_9 & R_9 \\ \hline R_{10} & R_{10} \\ \hline \end{array}$$

XX

$$R_3$$
 R_4
 R_4
 R_4
 R_5
 R_4
 R_4
 R_5
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_8

or a pharmaceutically acceptable salt, isomer, metabolite, ester, amide, or prodrug thereof

where (a) R_{l} is selected from the group consisting of,

(i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally

substituted with one or more halogen, or trihalomethyl substituents;

- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) ketone of formula $-CO-R_{12}$, where R_{12} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{13})_n$ -COOH or ester of formula $-(R_{14})_m$ -COO- R_{15} , where R_{13} , R_{14} , and R_{15} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- (v) a sulfone of formula $-(SO_2)-R_{16}$, where R_{16} is selected from the group consisting of alkyl or a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;

$$(vi) - (R_{12})_n - (indole-1-yl)$$
 or

- $-\left(R_{18}\right)_{m}\text{-CHOH-}\left(R_{19}\right)_{p}\text{-}\left(\text{indole-l-yl}\right), \quad \text{where } \quad \text{the } \\ \text{indole moiety is optionally substituted with an aldehyde and} \\ R_{17}, \; R_{18}, \; \text{and} \; R_{19} \; \text{are alkyl and n, m, and p are independently 0} \\ \text{or 1;} \\$
- (vii) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring;
- (b) R_2 , R_3 , R_3 ', R_4 , R_4 ', R_5 , R_5 ', R_6 and R_6 ' are selected from the group consisting of,

(i) hydrogen;

- (ii) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (iii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iv) ketone of formula $-\text{CO-R}_{20}$, where R_{20} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (v) a carboxylic acid of formula $-(R_{21})_n$ -COOH or ester of formula $-(R_{22})_m$ -COO- R_{23} , where R_{21} , R_{22} , and R_{23} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;

(vi) halogen;

- (vii) an alcohol of formula $-(R_{24})_m$ -OH or an ether of formula $-(R_{24})_n$ -O- R_{25} , where R_{24} and R_{25} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (viii) $-NR_{26}R_{27}$, where R_{26} and R_{27} are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (ix) -NHCOR₂₈, where R₂₈ is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;

- $(x) SO_2NR_{29}R_{30}, \ \ where \ R_{29} \ \ and \ R_{30} \ \ are \ \ selected$ from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (xi) any two of R_3 , R_3 ', R_4 , R_4 ', R_5 , R_5 ', R_6 , or R_6 ' taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
- (c) R_7 , R_8 , R_9 , and R_{10} are independently selected from the group consisting of,
 - (i) hydrogen;
- (ii) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (iii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iv) ketone of formula -CO- R_{31} , where R_{31} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (v) a carboxylic acid of formula $-(R_{32})_n$ -COOH or ester of formula $-(R_{33})_m$ -COO- R_{34} , where R_{32} , R_{33} , and R_{34} are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and n and m are independently 0 or 1;
 - (vi) halogen;
- (vii) an alcohol of formula $-(R_{35})_{\mathfrak{m}}$ -OH or an ether of formula $-(R_{35})_{\mathfrak{n}}$ -O-R₃₆, where R₃₅ and R₃₆ are

independently chosen from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;

- $(viii) \quad -NR_{37}R_{38}, \quad \text{where} \quad R_{37} \quad \text{and} \quad R_{38} \quad \text{are}$ independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (ix) -NHCOR₃₉, where R₃₉ is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (x) -SO₂NR₄₀R₄₁, where R₄₀ and R₄₁ are selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (xi) any two of R_7 , R_8 , R_9 , or R_{10} taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring; and
 - (d) R_{11} is hydrogen or alkyl
- 9. An indolinone compound having a substituent at the 5 position of the oxindole ring, where the substituent at the 5 position of the oxindole ring is selected from the group consisting of
- (a) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (b) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;

- (c) a ketone of formula -CO- R_{10} , where R_{10} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (d) a carboxylic acid of formula $-(R_{11})_n$ -COOH or ester of formula $-(R_{12})_m$ -COO- R_{13} , where R_{11} , R_{12} , and R_{13} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (e) halogen;
- (f) an alcohol of formula $-(R_{14})_m$ -OH or an ether of formula $-(R_{14})_n$ -O- R_{15} , where R_{14} and R_{15} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (g) $-NR_{16}R_{17}$, where R_{16} and R_{17} are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (h) $-NHCOR_{18}$, where R_{18} is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (i) $-SO_2NR_{19}R_{20}$, where R_{19} and R_{20} are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (j) any two of R_4 , R_5 , R_6 , or R_7 taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the oxindole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring.

10. The compound of claim 9 of the following formula,

where (a) R_5 is selected from the group consisting of,

- (i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula -CO- R_{10} , where R_{10} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{11})_n$ -COOH or ester of formula $-(R_{12})_m$ -COO- R_{13} , where R_{11} , R_{12} , and R_{13} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;

- (v) halogen;
- (vi) an alcohol of formula $-(R_{14})_m$ -OH or an ether of formula $-(R_{14})_n$ -O- R_{15} , where R_{14} and R_{15} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- $(vii) \quad -NR_{16}R_{17}, \quad \text{where} \quad R_{16} \quad \text{and} \quad R_{17} \quad \text{are}$ independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) -NHCOR $_{18}$, where R_{18} is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (ix) -SO₂NR₁₉R₂₀, where R₁₉ and R₂₀ are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (x) any two of R_4 , R_5 , R_6 , or R_7 taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the oxindole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
- (b) R_1 is selected from the group consisting of a five, six, eight, nine, and ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more substituents selected from the group consisting of
- (i) hydrogen and alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;

- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula -CO- R_{21} , where R_{21} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{22})_n$ -COOH or ester of formula $-(R_{23})_m$ -COO- R_{24} , where R_{22} , R_{23} , and R_{24} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (v) halogen;
- (vi) an alcohol of formula $-(R_{25})_m$ -OH or an ether of formula $-(R_{25})_n$ -O- R_{26} , where R_{25} and R_{26} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- $(\text{vii}) \quad -NR_{27}R_{28}, \quad \text{where} \quad R_{27} \quad \text{and} \quad R_{28} \quad \text{are}$ independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) $-NHCOR_{29}$, where R_{29} is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- $\mbox{(ix) -SO$_2NR_{30}R_{31}, where R_{30}$ and R_{31}$ are selected} \\ \mbox{from the group consisting of hydrogen, alkyl, and a five or} \\ \mbox{six membered heterocyclic ring}; \\ \mbox{}$
- (c) $\mbox{R}_{4}\,,$ $\mbox{R}_{6}\,,$ and \mbox{R}_{7} are independently selected from the group consisting of,

- (i) hydrogen and alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula -CO- R_{32} , where R_{32} is selected from the group consisting of hydrogen, alkyl, or a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{33})_n$ -COOH or ester of formula $-(R_{34})_m$ -COO- R_{35} , where R_{33} R_{34} and R_{35} and are independently selected from the group consisting of alkyl or a five or six membered heterocyclic ring and m and n are independently 0 or 1;
 - (v) halogen;
- (vi) an alcohol of formula $-(R_{36})_m$ -OH or an ether of formula $-(R_{36})_n$ -O- R_{37} , where R_{36} and R_{37} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- $(\text{vii}) \quad -NR_{38}R_{39}, \quad \text{where} \quad R_{38} \quad \text{and} \quad R_{39} \quad \text{are}$ independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) -NHCOR $_{40}$, where R_{40} is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;

- $\mbox{(ix)} \ -\text{SO}_2 NR_{41}R_{42}, \ \mbox{where} \ R_{41} \ \mbox{and} \ R_{42} \ \mbox{are selected}$ from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring; and
 - (d) R_2 is hydrogen or alkyl.

11. A compound having formula XXI, wherein:

$$(OR_1)_m$$
 A
 R_3
 A
 R_4
 R_4
 R_5
 R_7
 R_8
 R_8
 R_9
 R_9

XXI

- (a) A is a five or six membered ring comprised of atoms selected from the group consisting of oxygen, carbon, sulfur and nitrogen;
 - (b) m is zero, 1, or 2;
 - (c) R₁ is hydrogen, C₁-C6 alkyl or C2-C6 alkanoyl;
- (d) one of R_2 and R_3 independently is hydrogen and the other is a substituent selected from:
- (1) a C_1 - C_6 alkyl group substituted by 1, 2 or 3 hydroxy groups;
- (2) SO_3R_4 in which R_4 is hydrogen or C_1 - C_6 alkyl unsubstituted or substituted by 1, 2 or 3 hydroxy groups;

- (3) SO_2NHR_5 in which R_5 is as R_4 defined above or $a-(CH_2)_n-N(C_1-C_6$ alkyl) $_2$ group in which n is 2 or 3;
- (4) $COOR_6$ in which R_6 is C_1 - C_6 alkyl unsubstituted or substituted by phenyl or by 1, 2 or 3 hydroxy groups or phenyl;
- (5) CONHR $_7$, in which R $_7$ is hydrogen, phenyl or C $_1$ -C $_6$ alkyl substituted by 1, 2 or 3 hydroxy groups or by phenyl;
- (6) NHSO₂R₈ in which R₈ is C_1 - C_6 alkyl or phenyl unsubstituted or substituted by halogen or by C_1 - C_4 alkyl;
- (7) $N(R_9)_2$, NHR₉ or OR₉ wherein R₉ is C₂-C₆ alkyl substituted by 1, 2 or 3 hydroxy groups;
- (8) NHCOR₁₀, OOCR₁₀ or CH_2OOCR_{10} in which R_{10} is C_1 - C_6 alkyl substituted by 1, 2 or 3 hydroxy groups;
- (9) NHCONH₂; NH-C(NH₂)=NH; C(NH₂)=NH; C(NH₂)=NH; CH₂NHC(NH₂)=NH; CH₂NHC(OH)₂; CH₂OPO(OH)₂; PO(OH)₂; or a

wherein X is selected from the group consisting of CH_2 , SO_2 , CO, or $NHCO(CH_2)_p$ in which p is 1, 2, or 3 and Z is CH_2 , O or $N-R_{11}$ in which R_{11} is hydrogen or is as R_9 defined above.

12. A method of making an indolinone compound of any one of claims 5-11 comprising the steps of reaching an appropriate aldehyde and oxindole and separating the indolinone from the aldehyde and oxindole reactants.

- 13. A pharmaceutical composition comprising (i) a pharmaceutically acceptable carrier or excipient and (ii) a compound according to any one of claims 5-11.
- 14. A method for treating a disease related to unregulated tyrosine kinase signal transduction, the method comprising the step of administering to a subject in need thereof a therapeutically effective amount of a compound according to anyone of claims 5-11.
- 15. A method for regulating tyrosine kinase signal transduction comprising administering to a subject a therapeutically effective amount of a compound according to any one of claims 5-11.
- 16. A method of preventing or treating an abnormal condition in an organism, where the abnormal condition is associated with an aberration in a signal transduction pathway characterized by an interaction between a protein kinase and a natural binding partner, where the method comprises the following steps:
- (a) administering a compound of any one-of claims 5-11 to an organism; and
- (b) promoting or disrupting the abnormal interaction.
- 17. A method of preventing or treating an abnormal condition in an organism, where the abnormal condition is associated with an aberration in a signal transduction pathway characterized by an interaction between a protein kinase and a natural binding partner, where the method comprises the following steps:
- (a) administering a compound of any one of claims 5-11 to an organism; and

Attorney Docket No. 034536-1150

(b) promoting or disrupting the abnormal interaction.

259