非级.

杭州师范大学国际服务工程学院(信息科学与工程学院) 2016-2017 学年第一学期期末考试

《操作系统》 试卷(B)

一、填空题。(共10分,每小题1分)

- 1. (FIFO 页面置换) 算法会产生 Belady 奇异现象。
- 2. Linux 是(多用户多任务)类型的操作系统。
- 3. 用户可以通过命令方式和(系统调用)两种方式使用计算机。
- 4. 进程是一种(正在执行)的程序。
- 5. 银行家算法实质上是(死锁避免) 算法。
- 6. Windows95 和 Unix 都是 (单用户多任务) 类型的操作系统。
- 7. 在先到先服务 (FCFS)、最短任务优先 (SJF) 和基于优先级调度 (Priority) 三种算法中, (最短任务优先)被证明在平均等待时间指标上是最优的。
- 8. 文件的路径可分为绝对路径和(相对
-) 路径。
- 9. 如果某个信号量的值为-2,表示(正在等待的进程)数目为 2。
- 10. 处于(运行)状态的进程已经获得了 CPU 资源。

二、单项选择题(共20分,每小题2分)

得分

得分

- 1. 操作系统(D)。
 - A. 只能管理软件
 - C. 既不能管理软件,又不能管理硬件
- B. 只能管理硬件
 - D. 既能管理软件, 又能管理硬件
- 2. 计算机操作系统中有 3 个用户进程, 若 Wait (P)、Signal (V) 操作的信号量 S 初值为 2, 当前值为 -2, 则表示当前有(B)个进程在等待。
 - A. 1 B. 2 C. 3 D. 0
- 3. 显示当前目录所在的位置命令是(C)
 - A. 1s B. 1s R C. pwd D. 1s F
- 4. 下列哪种方法不能实现客户端-服务器(Client-Server)模式的进程间通信(A)。
 - A. 远程方法调用 (Remote Method Invocation)
 - B. 远程过程调用 (Remote Procedure Calls)
 - C. 套接字编程(Sockets)
 - D. 消息传递系统 (Message Passing Systems)
- 5. 进程从运行状态(Running)进入就绪状态(Ready)的原因可能是(A)。
 - A. 被选中占有 CPU
 - B. 等待某一事件
 - C. 等待的事件已发生
 - D. 时间片用完
- 6. 假设共享变量 a=2,两个进程分别同时对 a 进行操作,其中一个进程进行 a+=2,另一个进程进行 a-=2,最后得到的 a 的值不可能是(D)。
 - A. 0
 - B. 2
 - C. 4
 - D. 6
- 7. 下面哪种调度算法可能会导致进程饿死 (Starvation) (A)。
 - A. 先到先服务(FCFS) B. 最短任务优先(SJF) C. Round Robin 算法(RR)
 - D. 多层反馈队列 (Multilevel Feedback Queue)
- 8. 某系统采用分页存储管理 (Paging), 页长 (Page Size) 为 1K (1024), 该进程分页后 0、1、2

三页分别装入到主存的 1、2、4 帧 (Frame)。现有一逻辑地址 (Logical Address) 为 2048,页 内地址 (Page Offset) 为 (B)。 C. 1024 D. 2 A. 2048 B. 0 9. 上述第8题条件中,如果逻辑地址(Logical Address)为2048,则它的物理地址(Physical

Address) 为(C)。 D. 0

A. 1024 B. 2048 C. 4096

10. 进程和程序的本质区别是(D)。

A. 前者分时使用 CPU, 后者独占 CPU

B. 前者是执行程序,后者是源代码

C. 前者在一个文件中,后者在多个文件中

D. 前者为动态的,后者为静态的

三、简答题(共20分,每题10分)

1. 利用信号量操作 (PV) 简述生产者—消费者问题。

得分

```
1.
//Produce Process
semaphore
mutex = 1, // To protect the buffer pool
full = 0, // To count the number of full buffers
empty = n; // To count the number of empty buffers (能写出上述三个信号量初始化定义得 2 分)
do {
        // produce an item in nextp
        wait(empty);
        wait(mutex);
        add nextp to buffer;
        signal(mutex);
        signal(full);
                                                        (能写出生产者过程的 PV 操作得 4 分)
    } while(True);
// Consumer Process
do {
        wait(full);
        wait(mutex);
        remove one buffer to nextc;
        signal(mutex);
        signal(empty);
```

2. 某系统有同类资源 M 个供 N 个进程使用, 如果每个进程对资源的最大需求数为 X, ①为使系统不 发生死锁, X 的最大值为多少?②按的结果,当 N=3,M 分别取3,4,7 时,对应的 X 值为多少就可使 系统不发生死锁。

答: ① 系统不发生死锁,则应使下列不等式成立:

M-N(X-1)≥1,解不等式得: X≤1+(M-1)/N

consume the item in nextc

(能列出不等式并计算正确得4

得分

(1)M≤N时, X的是大值为1;

分)

} while(True);

(能正确计算出第一问得2分)

(2)M>N 时, X 的是大值为 1+[(M-1)/N] []:表示取整

② 根据①的结论,当 N=3, M 分别取 3, 4, 7 时,对应的 X 值是 1, 2, 3,则系统不发生死锁。

(能写出消费者过程的 PV 操作得 4 分)

四、计算题(每小题10分,共40分)

1. 根据最高响应比算法填完下表

		<u> </u>					
作	W/T	提交时	运行时	开始时	完成时	周转时	带权周转
业		间	间	刻	刻	间	时间
A		8	2				
В		8.5	0.5				

	С	9	0.1		
Ī	D	9.5	0.2		

1. (填对一空得 0.5 分)

作	W/T	提交时	运行时	开始时	完成时	周转时	带权周转
业		间	间	刻	刻	间	时间
A		8	2	8	10	2	1
В	(10-8.5)/0.5=3	8.5	0.5	10.1	10.6	2.1	4.2
С	(10-9)/0.1=10	9	0.1	10	10.1	1.1	11
D	(10-9.5)/0.2=2.5	9.5	0.2	10.6	10.8	1.3	6.5

- 2. 某操作系统采用可变分区管理内存空间,用户区存储 512KB, 空闲区由空闲区分区管理。分配时采用从低地址部分开始,并假定初始时全为空。对于下述申请次序: req(300KB), req(100KB),
 - release(300KB), req(150KB), req(30KB), req(40KB), req(30KB) (10 分)
 - (1)采用 FF 算法,空闲区中有哪些空块(大小,起始地址);
- (2) 采用 BF 算法,空闲区中有哪些空块(大小,起始地址);
- 答: (1)两个空闲块: 大小 50KB, 起始地址 250KB; 大小 112KB, 起始地址 400KB;
 - (2) 两个空闲块: 大小 90KB, 起始地址 210KB; 大小 12KB, 起始地址 500KB;
 - 3.请求页式存储管理系统给每个进程最多分配 3 块内存。已知页面足迹为 6, 3, 2, 1, 6, 3, 7, 6, 3, 2, 1, 7。在下表中填写页面置换算法过程,出现缺页中断进行页面置换时给出标记,最后给出缺页中断次数。

FIFO 算法(M=3)

	FIFO 异伝(M-3)											
页面足迹	6	3	2	1	6	3	7	6	3	2	1	7
缺页中断												
					•							
被置换的页												
缺页次数		•		•								•
OPT 算法	OPT 算法(M=3)											
页面足迹	6	3	2	1	6	3	7	6	3	2	1	7
缺页中断												
					•							
被置换的页												
缺页次数												

FIFO 算法(M=3)

	,, ,,,,											
页面足迹	6	3	2	1	6	3	7	6	3	2	1	7
缺页中断	√	√	√	√	√	√	√	×	×	√	√	×
												•
被置换的页				6	3	2	1			6	3	
缺页次数	9											

OPT 算法(M=3)

页面足迹	6	3	2	1	6	3	7	6	3	2	1	7
缺页中断	√	√	√	√	×	×	√	×	×	√	√	×
被置换的页				2			1			6	3	
缺页次数	7											

4.某虚拟存储器的用户编程空间共 32 个页面,每个页面大小为 1KB,内存大小为 16KB,假设某一时刻用户页表中已调入内存的页面对应的物理块号如下表,求逻辑地址为 0A6DH 所对应的物理地址。

页号	物理块号
0	5
1	10
2	4
3	7

4. 页号占 5 位(2^5 =32),偏移占 10 位(2^{10} =1024) (2 分)

0A6D = 0000, 1010, 0110, 1101

页号为2,对应块号为4,(2分)

物理地址: 0001, 0010,0110,1101 (4分)

即: 126DH (2分)

五、程序题(每小空1分,共10分)

1. 学校图书馆有 500 个座位,只有 1 张登记表,每位进入图书馆的读者要在登记表上登记,退出时要在登记表上注销。当图书馆中没有空座位时,后到的读者在图书馆外等待(阻塞)。拟采用信号量(Semaphores)实现上述功能。

1. Semaphore Sempty=500(空座位数), M=1 (1 张登记表) (3 分)。

P (Sempty) (1分)

P(M) (1分)

登记

V(M) (1分)

阅读

P(M) (1分)

注销 (1分)

V(M) (1分)

P (Sempty) (1分)