Worksheet-1 in R

NAME: Kirby Clarence Alegoria

COURSE, YEAR & SECTION: BSIT 2-A

Worksheet for R Programming

Instructions:

- Use RStudio or the RStudio Cloud accomplish this worksheet. + Save the R script as RWorksheet lastname#1.R.
- Create your own *GitHub repository* and push the R script as well as this pdf worksheet to your own repo.

Accomplish this worksheet by answering the questions being asked and writing the code manually.

Using functions:

```
seq(), assign(), min(), max(), c(), sort(), sum(), filter()
```

- 1. Set up a vector named age, consisting of 34, 28, 22, 36, 27, 18, 52, 39, 42, 29, 35, 31, 27, 22, 37, 34, 19, 20, 57, 49, 50, 37, 46, 25, 17, 37, 42, 53, 41, 51, 35, 24, 33, 41.
 - a. How many data points?34 data points (age)
 - b. Write the R code and its output.

R code:

```
age <- c(34, 28, 22, 36, 27, 18, 52, 39, 42, 29, 35, 31, 27, 22, 37, 34, 19, 20, 57, 49, 50, 37, 46, 25, 17, 37, 42, 53, 41, 51, 35, 24, 33, 41) age
```

Output:

```
[1] 34 28 22 36 27 18 52 39 42 29 35 31 27 22 37 34 19 [18] 20 57 49 50 37 46 25 17 37 42 53 41 51 35 24 33 41
```

2. Find the reciprocal of the values for age.

Write the R code and its output.

```
R code:
```

```
recip_num <- 1/age recip_num
```

Output:

- [1] 0.02941176 0.03571429 0.04545455 0.02777778
- [5] 0.03703704 0.05555556 0.01923077 0.02564103
- [9] 0.02380952 0.03448276 0.02857143 0.03225806
- [13] 0.03703704 0.04545455 0.02702703 0.02941176
- [17] 0.05263158 0.05000000 0.01754386 0.02040816
- [21] 0.02000000 0.02702703 0.02173913 0.04000000
- [25] 0.05882353 0.02702703 0.02380952 0.01886792
- [29] 0.02439024 0.01960784 0.02857143 0.04166667
- [33] 0.03030303 0.02439024
- 3. Assign also new_age <- c(age, 0, age).

What happen to the new_age?

Answer: It will display random numbers of the object age and 0 at its center.

4. Sort the values for age.

Write the R code and its output.

R code:

sort(age)

Output:

[1] 17 18 19 20 22 22 24 25 27 27 28 29 31 33 34 34 35

[18] 35 36 37 37 37 39 41 41 42 42 46 49 50 51 52 53 57

5. Find the minimum and maximum value for age.

Write the R code and its output.

R code:

min(age) max(age)

Output:

Minimum: 17 Maximum: 57

- 6. Set up a vector named data, consisting of 2.4, 2.8, 2.1, 2.5, 2.4, 2.2, 2.5, 2.3, 2.5, 2.3, 2.4, and 2.7.
 - a. How many data points?

Answer: 12

b. Write the R code and its output.

R code:

data <- c(2.4, 2.8, 2.1, 2.5, 2.4, 2.2, 2.5, 2.3, 2.5, 2.3, 2.4, 2.7) data

Output:

[1] 2.4 2.8 2.1 2.5 2.4 2.2 2.5 2.3 2.5 2.3 2.4 2.7

7. Generates a new vector for data where you double every value of the data. | What happen to the data?

 $data <- c(2.4,\, 2.8,\, 2.1,\, 2.5,\, 2.4,\, 2.2,\, 2.5,\, 2.3,\, 2.5,\, 2.3,\, 2.4,\, 2.7)$

Answer:

I generate a vector for data and use 2* data to double every value in the given vector. The output is $4.8\,5.6\,4.2\,5.0\,4.8\,4.4\,5.0\,4.6\,5.0\,4.6\,4.8\,5.4$

- 8. Generate a sequence for the following scenario:
 - 8.1 Integers from 1 to 100.

R code: seq(1:100)

8.2 Numbers from 20 to 60

R code: seq(20:60)

8.3 Mean of numbers from 20 to 60 R code: mean(20:60)

8.4 Sum of numbers from 51 to 91

R code: sum(51:91)

8.5 Integers from 1 to 1,000

R code: seq(1:1000)

- a. How many data points from 8.1 to 8.4?

 Total of 223 data points from 8.1 to 8.4
- b. Write the R code and its output from 8.1 to 8.4.

8.1 R code:

seq(1:100)

Output:

[13] 13 14 15 16 17 18 19 20 21 22 23 24

[25] 25 26 27 28 29 30 31 32 33 34 35 36

[37] 37 38 39 40 41 42 43 44 45 46 47 48

[49] 49 50 51 52 53 54 55 56 57 58 59 60

[61] 61 62 63 64 65 66 67 68 69 70 71 72

[73] 73 74 75 76 77 78 79 80 81 82 83 84

[85] 85 86 87 88 89 90 91 92 93 94 95 96

[97] 97 98 99 100

8.2 R code:

seq(20:60)

Output:

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

[18] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

[35] 35 36 37 38 39 40 41

8.3 R code: mean(20:60)

Output: 40

8.4 R code: sum(51:91)

Output: 2911

c. For 8.5 find only maximum data points until 10.

R code: max(1:10)

Output: 10

9. Print a vector with the integers between 1 and 100 that are not divisible by 3, 5 and 7 using filter option.

filter(function(i) { all(i %% c(3,5,7) != 0) }, seq(100))

Write the R code and its output.

R code: Filter(function(i) { all(i %% c(3,5,7) != 0) }, seq(100))

Output: [1] 1 2 4 8 11 13 16 17 19 22 23 26 29 31 32 34 37

[18] 38 41 43 44 46 47 52 53 58 59 61 62 64 67 68 71 73

[35] 74 76 79 82 83 86 88 89 92 94 97

10. Generate a sequence backwards of the integers from 1 to 100. Write the R code and its output.

R code: sort(1:100, decreasing = TRUE)

Output: [1] 100 99 98 97 96 95 94 93 92 91 90 89

[13] 88 87 86 85 84 83 82 81 80 79 78 77

[25] 76 75 74 73 72 71 70 69 68 67 66 65

[37] 64 63 62 61 60 59 58 57 56 55 54 53

[49] 52 51 50 49 48 47 46 45 44 43 42 41

[61] 40 39 38 37 36 35 34 33 32 31 30 29

[73] 28 27 26 25 24 23 22 21 20 19 18 17

[85] 16 15 14 13 12 11 10 9 8 7 6 5

[97] 4 3 2 1

- 11. List all the natural numbers below 25 that are multiples of 3 or 5. Find the sum of these multiples.
 - a. How many data points from 10 to 11?

125 total data points from 10 to 11.

b. Write the R code and its output from 10 and 11.

```
R code: naturalnums <- (1:25)

naturalnums

sum((naturalnums)[((1:25)%%3 == 0) | ((1:25)%%5 == 0)
```

Output: 168

12. Statements can be grouped together using braces '{' and '}'. A group of statements is sometimes called a **block**. Single statements are evaluated when a new line is typed at the end of the syntactically complete statement. Blocks are not evaluated until a new line is entered after the closing brace.

Enter this statement:

$$\{x < -0 + x + 5 + \}$$

Describe the output.

Answer: The output is an error for the reason that no value is assigned to object x and there is no object x after the operator plus.

13. Set up a vector named score, consisting of 72, 86, 92, 63, 88, 89, 91, 92, 75, 75 and 77. To access individual elements of an atomic vector, one generally uses the x[i] construction.

Find x[2] and x[3]. Write the R code and its output.

- 14. Create a vector a = c(1,2,NA,4,NA,6,7).
 - a. Change the NA to 999 using the codes print(a,na.print="-999"). a = c(1,2,NA,4,NA,6,7)print(a,na.print="-999")
 - b. Write the R code and its output. Describe the output.

```
R code: a = c(1,2,NA,4,NA,6,7)
print(a,na.print="-999")
```

Output: [1] 1 2-999 4-999 6 7

15. A special type of function calls can appear on the left hand side of the assignment operator as in > class(x) <- "foo".

Follow the codes below:

What is the output of the above code?

Output:

"My name is Kirby Clarence Alegoria and I am 20 years old."

Based on the code above, when the user runs the code, the program asks questions and for every answer that the user enters into the program on the console pane, the result is also shown in the environment pane.