2 – Núcleo e imagem de transformações lineares

Dada uma transformação linear T : V → W, chama-se núcleo de T e denota-se por N(T) ou ker(T) o conjunto definido por N(T) = {v ∈ V | T(v) = 0}.

Dada uma transformação linear T : V \rightarrow W, chamamos **imagem** de T, e denotamos por Im(T) o conjunto definido por Im(T) = { $w \in W \mid T(v) = w$ }, para algum $v \in V$.

i) NUCLEO:
Encontrur os vetaes com magem 3
gu seja, T(v)=0

(ii) Imagem
Encontrur w=(a,o,c) EW/XX=(x,n,z) EV
T(v)=W.

3.11. Determinar o **núcleo** e a **imagem** do operador linear $T_1: \mathbb{R}^3 \to \mathbb{R}^3$ definido por

 $T_1(x, y, z) = (x + y - z, 2x + 4y - z, 3x + 2y + 2z)$

a)
$$NUCLEO$$
: Feren $T(N)=3$ com $V=(X_1,Y_1,Z_1)$
 $T_1(X_1,Y_1,Z_1)=(X_1+Y_1-Z_1, X_2+1+Y_1-Z_1, 3X_1+Y_1+Z_2)=(O_1,O_1,O_1)$
 $X+Y-Z=O$
 $3X+1Y+3Z=O$
 $3X+1Y+3Z$

In IMAGEM Fazel TIW=(a, e, c) W=(x1/12) (x+Y-Z, 2x+4Y-Z, 3X+1Y+JZ)=(a, 2, c) \ L1=11/2+13 13=23+62 / 1 1 -11 ac 0 2 11 = 2a+le 0 0 11 -8a+le+3c / 4=1161-13 11 11 0 1 30 + 10+3C \ 1=261-62 0 22 0 1-140 +100-3C \ 0 0 11 1-80 + 10+3C (22 0 0 1 20a - 8v +9c) 6= 1/2 (1) 0 12 0 1-146 + 1ex -3c 0 0 11 1-8c + 1 +3c) 6= 1/2 (1) L3= 1/63 1 0 0 1 20a-82-49C 0 1 0 -14a+102-3C 0 0 1 1 -22 -8a+2+36 / i. O S.L. Tem solução Y(xiYIZ) Basta towal (X, Y, Z) = (100 - 40+9c) i' Im (Ta) = |R3 (pois semple tem Solução).

3.12. Para determinar o **núcleo** e a **imagem** do operador linear $T_2: \mathbb{R}^3 \to \mathbb{R}^3$, definido por:

$$T_2(x, y, z) = (x + y - z, 2x - 3y + z, x - 4y + 2z),$$

IMAGEN 1 -1 | a | L1= L2-2(1 | 1 1 -1 | a) 2 -3 1 | e | -5 3 1-2c+b-1 -4 2 , C | L5= L3- L1 0 -5 3 1-a+c) x y Z W > 0 -5 3,-2ate) 50 ha Solga; 0 = a-l-+C Isolat una Variaveli a= l--C : (a, e, c) = (&-c, e, c) He, CER OU (a, e, c) = ()1-12, h, h) Hh, hER 1: Im(Ti)=2(L-C, D,C)/e,c (R)

100

3.13. Determine o **núcleo** e a **imagem** da transformação linear $T_3 : \mathbb{R}^2 \to \mathbb{R}$ definida por $T_3(x, y) = x + y$.

ONUCLEO:

Encentlet Vetores tal que
$$T(V)=0$$
 $R' \to R$
 $T(x_1y)=x_1y=0$
 $x=-y$ or $y=-x$

.. $Ker(T_3)=\frac{1}{2}(x_1-x)/x_1 \in R_3^2=\frac{1}{2}(-y_1,y)/y_1 \in R_3^2$

O Imagen

 $x_1+y=0$
 $(x_1y)\in R'$
 $x_1+y=0$
 $(x_1y)\in R'$
 $x_1+y=0$
 $(x_1y)\in R'$
 $x_1+y=0$
 $(x_1y)\in R'$
 $(x_1y)\in R'$

Teorema 3.2: Seja $T:V\to W$ uma transformação linear. O núcleo de T é um subespaço vetorial de V e a imagem de T é um subespaço vetorial de W.

3.14. Determine as dimensões do núcleo e da imagem das transformações lineares apresentadas no exemplo 3.11:

$$T_1: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T_1(x, y, z) = (x + y - z, 2x + 4y - z, 3x + 2y + 2z)$

 $N(T_1) = \{(0, 0, 0, 0)\}$ como nesse conjunto está contido um único ponto sua dimensão é zero, ou seja, dim $N(T_1) = 0$ e $Im(T_1) = R^3$, então dim $Im(T_1) = 3$.

3.15. Determine as dimensões do núcleo e da imagem das transformações lineares apresentadas no exemplo 3.12.

$$T_2: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T_2(x, y, z) = (x + y - z, 2x - 3y + z, x - 4y + 2z)$

 $N(T_2)=(\frac{2}{5}z,\frac{3}{5}z,z)$, como o vetor que representa os elementos do núcleo apresenta apenas uma variável livre, dim $N(T_2)$ =1.

 $Im(T_2) = \{(x, y, y - x)\}$, o vetor que representa os elementos do conjunto imagem possui duas variáveis, então dim $Im(T_2) = 2$.

3.16. Determine as dimensões do núcleo e da imagem das trans formações lineares apresentadas no exemplo 3.13.

$$T_3: \mathbb{R}^2 \to \mathbb{R}, T_3(x, y) = x + y$$

 $N(T_3) = \{(x, -x)\}$, observe aqui que o vetor que representa o núcleo possui apenas uma variável, assim dim $N(T_3) = 1$.

 $Im(T_3) = x$, $x \in \mathbb{R}$, ou seja é uma reta, apresenta uma variável livre, dim $Im(T_3) = 1$.

O teorema 3.3 é chamado de teorema das dimensões.

Teorema 3.3: Seja $T:V\to W$ uma transformação linear. Então $\dim N(T)+\dim Im(T)=\dim V.$

3.17. Verifique o teorema das dimensões para a transformação linear do exemplo 3.14.

$$T_1: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T_1(x, y, z) = (x + y - z, 2x + 4y - z, 3x + 2y + 2z)$

Como dim $N(T_1) = 0$, dim $Im(T_1) = 3$ e dim $V = dim R^3 = 3$ dim $V = dim N(T_1) + dim Im(T_1) = 0 + 3 = 3$.

3.18. Verifique o teorema das dimensões para a transformação linear do exemplo 3.15.

$$T_2: R^3 \to R^3$$
, $T_2(x, y, z) = (x + y - z, 2x - 3y + z, x - 4y + 2z)$

Como dim $N(T_2) = 1$, dim $Im(T_2) = 2$ e dim $V = \dim R^3 = 3$ dim $V = \dim N(T_2) + \dim Im(T_2) = 1 + 2 = 3$.

3.19. Verifique o teorema das dimensões para a transformação linear do exemplo 3.16.

$$T_3: \mathbb{R}^2 \to \mathbb{R}, T_3(x, y) = x + y$$

Como dim $N(T_3) = 1$, dim $Im(T_3) = 1$ e dim $V = \dim R^3 = 2$ dim $V = \dim N(T_3) + \dim Im(T_3) = 1 + 1 = 2$.

Transformação linear injetora e sobrejetora

Como em funções bijetoras, é importante sabermos se uma transformação linear é bijetora. Esse fato auxilia a determinação de novas transformações lineares.

Uma transformação linear T : V \rightarrow W é **injetora** se $\forall v_1, v_2 \in V$, $T(v_1) = T(v_2)$ implica que $v_1 = v_2$, de modo análogo, se $\forall v_1, v_2 \in V$ se $v_1 \neq v_2$ implica que $T(v_1) \neq T(v_2)$.

Em outras palavras, dizemos que uma transformação linear é injetora se, dados dois vetores distintos do domínio, suas respectivas imagens também são distintas. Você pode observar que essa definição tem uma consequência importante para o núcleo da transformação.

Propriedade 1: Uma transformação linear $T: V \to W$ é injetora se, e somente se, $N(T) = \{0\}$.

Uma transformação linear T : V \rightarrow W é **sobrejetora** se $\forall w \in W$ existir pelo menos um $v \in V$ tal que T(v) = w.

Propriedade 2: Uma transformação T : V \rightarrow W é sobrejetora se $\forall w \in W$, $\exists v \in V$ tal que T(v) = w. Ou seja, Im(T) = W. Isto é, se o contradomínio é igual à imagem da transformação linear.

Uma transformação linear $T: V \rightarrow W$ é bijetora se T é injetora e sobrejetora.

Das propriedades 1 e 2, podemos mostrar que $T: V \to W$ é bijetora se, e somente se, $N(T) = \{0\}$ e Im(T) = W.

Verifique se as seguintes transformações lineares são bijetoras:

3.20.
$$T_1: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T_1(x, y, z) = (x + y - z, 2x + 4y - z, 3x + 2y + 2z)$

3.21. $T_2: \mathbb{R}^3 \to \mathbb{R}^3$, $T_2(x, y, z) = (x + y - z, 2x - 3y + z, x - 4y + 2z)$

Vet 3.12

Ti é injetora? L=>
$$N(T)$$
= ${\vec{to}}$ }

Vinos que

Vinos em 3.12 que $Ket(T_1)$ = ${\vec{to}}$ 22, ${\vec{z}}$ 2, ${\vec{z}}$ 2, ${\vec{z}}$ 2)/ ${\vec{z}}$ 685

i. $N(T)$ ${\vec{to}}$ 3 ${\vec{z}}$ 72 mão é injetora ${\vec{z}}$ 72 mão é bijetora.

Ou cainda i dim $N(T_1)$ =1 ${\vec{t}}$ 0 ${\vec{z}}$ 72 mão bijetora.

3.22. $T_3: \mathbb{R}^2 \to \mathbb{R}$, $T_3(x, y) = x + y$

Corolário 3.1: Seja a transformação linear $T: V \rightarrow W$:

- I. Se dim V = dim W, então T é injetora se, e somente se, é sobrejetora.
- II. Se dim V = dim W e T é **injetora**, então T transforma base em base, isto é, se $\beta = \{v_1, v_2, ..., v_n\}$ é base de V, então $\{T(v_1), T(v_2), ..., T(v_n)\}$ é base de W.
- Uma transformação linear T : V → W bijetora também é chamada de **isomorfismo**, e seu domínio V e contradomínio W são chamados espaços vetoriais isomorfos.

Observação:

- 1) Sob o ponto de vista da álgebra, espaços vetoriais isomorfos são ditos **idênticos**.
- Espaços isomorfos devem ter a mesma dimensão (devido aos teoremas anteriores), portanto, um isomorfismo leva base em base.
- 3) Um isomorfismo $T: V \to W$ tem uma aplicação inversa $T^{-1}: W \to V$, que é linear e, também, um isomorfismo.
- 4) Um operador linear $T: V \to V$ também pode ser chamado de endomorfismo.
- 5) Quando o operador linear $T: \mathbb{R}^n \to \mathbb{R}^n$ for um isomorfismo, a matriz da transformação [T] é invertível e, assim, existe o operador linear inverso $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$:

Figura 3.11 - Representação gráfica da inversa de uma transformação linear

A todo operador linear está associada uma matriz que representa esse operador. Seja $[T]_{(n \times n)}$ a matriz canônica que representa $T: \mathbb{R}^n \to \mathbb{R}^n$ e $[T^{-1}]_{(n \times n)}$ a matriz canônica que representa $T^{-1}: \mathbb{R}^n \to \mathbb{R}^n$. Já que uma transformação é inversa da outra, então uma matriz canônica também será inversa de outra, assim:

$$\begin{bmatrix}\mathbf{T}^{-1}\end{bmatrix}_{(n\times n)} = \begin{bmatrix}\mathbf{T}\end{bmatrix}_{(n\times n)}^{-1}$$

Mas não esqueça que uma matriz [T] somente possui inversa se $det[T] \neq 0$.

3.23. Verifique se o operador linear $T_1: \mathbb{R}^3 \to \mathbb{R}^3$, definido por $T_1(x, y, z) = (x + y - z, 2x + 4y - z, 3x + 2y + 2z)$, é um isomorfismo.

NO EXEMPLO 3.20, VIMOS QUE É BIJETORA, PORTANTO É ISOMORFISMO.

OU PODERIAMOS PENSAR DA SEGUINTE FORMA:

Como dim $V = \dim R^3 = \dim W$, basta verificar se T_1 é injetora, pois pelo corolário 3.1 (I), essa condição é suficiente para mostrar que T_1 é sobrejetora e, consequentemente, bijetora e isomorfismo.

Você já viu, nos exemplos anteriores, que $N(T_1) = \{(0, 0, 0)\}$. Logo, T_1 é injetora, então, sobrejetora.

$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por $T(x, y, z) = (x - 2y, z, x + y)$.

^{3.24.} Mostre que o seguinte operador linear T é um isomorfismo e determine o operador inverso T⁻¹.

Essa é nova. Então, temos que definit Ker(T) Para 15to, Igualas a o e achas a solução Papa (XIXIZ) ER3 T(x, Y, Z) = (x-27, Z, x+y) = (0,0,0) X+Y=0 2=9 X-17=0 2=0 =7 X-12=0 => X+Y=0 · ((x, x, z) = (0,0,0) * Ker(T) = 2(0,0,0) Como Ker(T) = 0 => Injetola. e como Té mjetau e dim V = dimW=3, or seig, T é um operada linear, entas Té seble jetolle. " To bretom = Té 150 mottre e T tem T-1

Agora, Calcular T-1 1 mais facil, em 183, e' vsar a base conomica (2, 5, x) do 183. T(x, y, 2) = (x-24, 2, 8+4) T(1,0,0)=(1,0,1) T(0,110) = (-2,0,1) T(0,0,1) = (0,1,0) T-1 tem dominio e imagens investidas om pelagão o T. i. T-1(1,0,1) = (1,0,0) T-1(-2,0,1)=(0,1,0) T-1 (0,110) = (0,0,1) Fazer C.L. da B=?(1,0,1), (-2,0,1), (0,1,0)} e Isolar aitec em Evnquo de XiYez. (x17,2)= a(10,11)+e(-2,0,1)+c(0,1,0) a-28=X [C=Y] a+z=Z X+16+9=2 C= X-426 3/= -x+2 |2= 3-x a=x+2(3=x) a=X-2x+37 a= X+27

Vamos verificat se esta correto: (x1412) = a(11011) +e(-21011)+c(01119) = (X+23)(1,0,1) + (Z-x)(-2,0,1) + y(0,1,0) = (多+等-等+等) ×,等+等+等-等) =(x1Y12) ox!!! Agon, T-1, T-1(x, x, z) = a(1,0,0) + e(0,1,0) + c(0,0,1) T-1(x, Y/2) = (a, e, c) T-1(x1/12) = (x+22 1 = x, y) / De fato T(1,2,3)=(-3,3,3) $T^{-1}(-3,3,3) = (1,2,3)$

OUTRA FORMA DE FAZER A MESMA QUESTÃO:

3.24. Mostre que o seguinte operador linear T é um isomorfismo e determine o operador inverso T⁻¹.

 $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x - 2y, z, x + y).

Té 150 motfice
$$L=$$
 Té bisetore $L=$ Té 1 migetar e soblejetar $L=$ Existe T-1.

A inversa de mateir canônice de Té a mateir Canônice de Te a mateir Canônice de T-1.

Bu sega [T] é metriz canônice de Te entre [T-1] é 11 11 de T-1.

 $T(x_1y_1z) = (x-2y_1z_1x+y)$
 $[T] = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

Se $\det[T] = 0$, entre [T] max possui inversa.

 $|A = 2 = 0| = |0-0| 1-0| = |0| 1| = -3$
 $|A = 1| 0| = |1+2| 0+0| = |3| 0| = -3$
 $|A = 1| 0| = |1+2| 0+0| = |3| 0| = -3$
 $|A = 1| 0| = |1+2| 0+0| = |3| 0| = -3$
 $|A = 1| 0| = |1+2| 0+0| = |3| 0| = -3$
 $|A = 1| 0| = |1+2| 0+0| = |3| 0| = -3$

Calculo de [T-1]
$$\begin{pmatrix}
1 & -2 & 0 & | & 1 & 0 & 0 \\
0 & 1 & | & 0 & | & 1 \\
0 & 1 & | & 0 & | & 1 \\
0 & 1 & | & 0 & | & 1 \\
0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | & 1 \\
0 & 0 & 1 & | & 0 & | &$$

Como I T-1=> Té bijetau => Té 150 mob fismo.

ESTUDAR OS EXERCÍCIOS 10 A 16 DO MATERIAL COMPLETO (RESOLUÇÕES NO FINAL)