DATA SCIENCE WORKFLOW

Data Science Workflow Overview

Data Exploration

- Exploratory analysis
- Visualization

Modelling

- Train an appropriate model
- Tune hyperparameters

Deployment

 Implement your model in a production system

Data pre-processing

- Feature (predictor) selection
- Outlier treatment
- Dimensionality reduction
- Model-specific processing

Validation

- Performance metrics
- Cross-validation
- Test model on an independent dataset

Han, Jiawei, Jian Pei, and Micheline Kamber. Data mining: concepts and techniques. Elsevier, 2011

Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science

https://archive.ics.uci.edu/ml/index.php

Exploratory Analysis Descriptive Statistics

Overall

- ► Missing values
 - Maximal share
 - ► Replacement
 - Average
 - Zero
 - Advanced
- Statistical tests for assumptions (for regression)

Quantitative		
	alcohol	
count	178.000000	
mean	13.000618	
std	0.811827	Std vs. Min/Max
min	11.030000	Plausible Ranges
25%	12.362500	
50%	13.050000	Median vs. Mean
75%	13.677500	
max	14.830000	

Exploratory Analysis Visualization

FEATURE SELECTION

Feature Selection

Data Pre-processing – Motivation

Dimensionality Reduction

<class 'pandas.core.frame.DataFrame'> RangeIndex: 499 entries, 0 to 498 Data columns (total 24 columns): Q INCA 499 non-null float.64 nEng 499 non-null float64 pRail 499 non-null int64 499 non-null float64 p verlauf 1 p verlauf 2 499 non-null float64 p verlauf 3 499 non-null float64 p verlauf 4 499 non-null float.64 p verlauf 5 499 non-null float64 p verlauf 6 499 non-null float64 p verlauf 7 499 non-null float.64 p verlauf 8 499 non-null float64 p verlauf 9 499 non-null float64 p verlauf 10 499 non-null float.64 p verlauf 11 499 non-null float64 p verlauf 12 499 non-null float64 p verlauf 13 499 non-null float64 p verlauf 14 499 non-null float64 p verlauf 15 499 non-null float64 p verlauf 16 499 non-null float64 p verlauf 17 499 non-null float64 p verlauf 18 499 non-null float64 p verlauf 19 499 non-null float64 p verlauf 20 499 non-null float64 phiMI 499 non-null float64 dtypes: float64(23), int64(1) memory usage: 93.6 KB

Correlated Variables

40.0 32.0 24.0 16.0 -8.0 0.0 8.0 16.0 24.0 40.0

Model Quality

Interpretation (Feature Importance)

Feature	Feature Importance
proline	0.250901
color_intensity	0.117607
alcohol	0.096448
flavanoids	0.088399
total_phenols	0.085046
hue	0.083909
malic_acid	0.062438
od_280_315	0.058619
proanthocyanins	0.039775
alcalinity_of_ash	0.036927
magnesium	0.036225

Feature Selection

Feature Selection vs. Feature Engineering

Feature Selection

► Given the current set, choose a certain number due to a threshold

► For example: best subset selection

Feature Engineering

Creation of new features based on existing ones

► For example: principal component analysis

DIMENSIONALITY REDUCTION

Dimensionality Reduction Principal Components Analysis – General Idea

- ► Idea:
 - ► Replace a set of correlated variables by a set of fewer orthogonal ones
- ► How (intuitively):
 - ▶ Define a new orthogonal coordinate system through the mean where the first axis captures the most variance

Dimensionality Reduction Transformation of the Input Data – Meaningful Case

▶ Data transformation achieved by multiplying the data by the matrix of eigenvectors

Dimensionality Reduction Transformation of the Input Data – Non-Meaningful Case

Dimensionality Reduction Non-Linear Dimensionality Reduction – t-SNE Example

► T-SNE captures the local structure of the data better given the same number of dimensions

PCA is not able to capture local high-dim dependencies

t-SNE puts points together, which are locally close

OUTLIER DETECTION

Outlier Detection

General Remarks and Application Areas

- ► Outlier (anomaly)
 - ► Significant deviation from the majority of points
 - Probably, generated by another process
 - Outlier vs. noise
- ► Application areas
 - ▶ Data pre-processing
 - Fraud detection/security
 - Medical care
 - ► System diagnosis

Aggarwal, Charu C. "Outlier analysis." Data mining. Springer, Cham, 2015

Link to Book Description

Outlier Detection Categories of Outliers

Point outlier/anomaly

When is a point considered an outlier (metrics)?

Contextual outlier

Contextual attributes -28° in Spain on the 1st of July

Behavioural attributes 15° in Spain on the 1st of July

Adding a context, e.g. using an additional dimension

Collective outlier

Graph data Time series

Chandola, Varun, Arindam Banerjee, and Vipin Kumar. "Anomaly detection: A survey." ACM computing surveys (CSUR) 41.3 (2009): 15

Outlier Detection Methodical Overview

Supervised Methods

- Any classification method
- Lack of labelled outlier data
- Imbalanced class distribution

Semi-Supervised Methods

- ► Also called novelty detection
- Semi-supervised clustering

See Chapter 6.3-6.4 of Aggarwal, Charu C. "Outlier analysis."

Unsupervised Methods

Statistical

Non-parametric

Proximity-based

Clustering-based

MODELING – CLUSTERING

Clustering Motivation - Typical Clustering Applications

Data Analysis

Presence of data structure and distribution

Knowledge Discovery

► Finding and interpreting patterns and dependencies

Data Segmentation

Partitioning and profiling of the segments

Outlier Detection

- ► Filtering for "abnormal" data
- ► Anomaly detection

Data Reduction/Pre-Processing

 Replacing high-dimensional data by representatives

Classification

Mapping to known groups (clusters)

Overview of Clustering Approaches

Partitioning Methods

Hierarchical Methods

Density-Based Methods

Advanced Methods

K-Means - General Idea

- ▶ Distance-based representation clustering
- ► Result: set of centroids
- Advantages
 - Simple (understanding and implementation)
 - ► Relatively scalable
- ▶ Disadvantages
 - Sensitive to outliers
 - ► Is not guaranteed to converge

K-Means - Algorithm

- ▶ **Input:** *N* data points, *K* centroids (cluster centers)
- ► Initialize: several possibilities
 - ▶ random centroids
 - ► *K* points from data
- **▶** Iterate
 - ▶ **Assign** each point from *N* to the closest centroid in *K*

$$k = \arg\min_{k} ||x_n - c_k||^2$$

▶ Recompute new centroids based on the new assignments

$$c_k = \frac{1}{|\mathcal{C}_k|} \sum_{n \in \mathcal{C}_k} x_n$$

► Repeat until convergence

Karanveer Mohan, MIT License

http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

K-Means - Evaluation Criteria - Elbow Method

- ► A good clustering is given by
 - ► High within-cluster similarity
 - ► Low inter-cluster similarity
- ► Optimization criteria minimize squared sum of distances to centroids (distortion)

$$J(c, r_{nk}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - c_k||^2$$

Binary variable If a point belongs to a cluster

K-Means – What Can Go Wrong

- ▶ Issues to address
 - ▶ Centroid initialization
 - Outlier
 - ► Normalization/standardization
 - Similarity measures (categorical data)
 - Number of clusters

► Know your data!

Link to the Source with Python Code

MODELING – CLASSIFICATION-DECISION TREES

Linear Classifier vs. Decision Tree

► Different "cutting" technique

Basic Idea - Tree Visualization

General Remarks

- ► Greedy rule-based prediction mechanism:
 - Divide predictor space into regions
 - ► For each observation of a region make the same prediction
- ▶ Pro:
 - Interpretability, as close to peoples decision making
 - Handles categorical variables and missing values
- ► Contra:
 - Not the most accurate
 - Sensitive to variation in data high variance

Basic Idea - Tree Visualization

Tree Pruning Against Overfitting

- ▶ Decision trees are likely to overfit
- ► Two strategies
 - ► Prepruning fit until
 - Reduction in error above threshold
 - Minimal number of leaves
 - Postpruning more computationally intensive

Bagging - Random Forests -Boosting

$$F(x) = \sum_{m} \gamma_m f_m(x)$$

Bagging - reduces the variance component of error using average of complex models

► Random forest – bagging with sampling of data and predictors

 Boosting – reduces bias with simple models and reweighting of errors

MODELING-CLASSIFICATION-SUPPORT VECTOR MACHINES (SVM)

Support Vector Machines Example of the Linear Case – Margin and Support Vectors

- ► Support vectors
 - ► (Very small) set of training samples
 - ► Only support vectors define decision function

Support Vector Machines Meaning of Support Vectors

- ► Support vectors constitute the classification decision boundary
- ► Sign of overfitting: too many support vectors

Support Vector Machines Non-Linear Case

► Problem: some cases are linearly non-separable

Support Vector Machines

Non-Linear Case

- ▶ Idea: Non-linear transformation into an alternative input space
- ► Result: points are linearly separable

$$k(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2l}\right)$$

Support Vector Machines Some Typical Kernel Functions

Linear (Dot Product)

$$k(x_i, x_j) = x_i \cdot x_j$$

Polynomial

$$k(x_i, x_j) = (x_i \cdot x_j + 1)^p$$

Radial-basis Function

$$k(x_i, x_j) = \exp\left(-\frac{||x_i - x_j||^2}{2l}\right)$$

Neural Network

$$k(x_i, x_j) = tanh(\beta_0 x_i \cdot x_j + \beta_1)$$

MODEL-SPECIFIC PRE-PROCESSING AND VALIDATION

Model-Specific Pre-processing and Validation Confusion Matrix and Derived Performance Metrics

True Class

Predicted Class

	Class="Yes"	Class="No"
Class="Yes	True Positive (TP)	False Positive (FP)
Class="No"	False Negative (FN)	True Negative (TN)

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

Model-Specific Pre-processing and Validation Confusion Matrix and ROC Curve

True Class

Predicted Class

	Class="Yes"	Class="No"
Class="Yes	True Positive (TP)	False Positive (FP)
Class="No"	False Negative (FN)	True Negative (TN)

Model-Specific Pre-processing and Validation Model Selection and Validation

Training Set

► In-sample training and interpretation

	OLS Regre	ssion Results		
Dep. Variable:	mpg	R-squared:		0.693
Model:	OLS	Adj. R-squared:		0.692
Method:	Least Squares	F-statistic:		878.8
Date:	Thu, 18 Oct 2018	Prob (F-statistic)	:	6.02e-102
Time:	08:18:58	Log-Likelihood:		-1130.0
No. Observations:	392	AIC:		2264.
Df Residuals:	390	BIC:		2272.
Df Model:	1			
Covariance Type:	nonrobust			
coe	f std err	t P> t	[0.025	0.975]
Intercept 46.216	5 0.799	57.867 0.000	44.646	47.787
weight -0.007	6 0.000 -2	29.645 0.000	-0.008	-0.007

How well is the model learning data by heart?

Validation Set

► Cross-validation

Which model type and hyperparameters are best?

Test Set

► Model assessment

How well do models perform on unseen data?

Model-Specific Pre-processing and Validation Hyperparameter Tuning

Example: Regression ▶ Polynomial degree Hyperparameters Model **Parameters** ► Resulting coefficients for a specific polynomial degree

Purpose of the Validation Set – Find Best Performing Parameters

- ► Typical strategies see on the next slide
- ► Advanced strategies
 - Gradient-based optimization
 - ► Evolutionary Algorithm

Model-Specific Pre-processing and Validation Hyperparameter Tuning – Overview of Common Strategies

► Testing different parameter combinations

Model-Specific Pre-processing and Validation Model Selection – Cross-Validation

- ► Estimation of prediction error on validation data
- \blacktriangleright Splitting N data points into k folds and rotating the validation data set \rightarrow average performance

Data Science Workflow Summary So Far

Data Exploration

Modelling

Deployment

Data pre-processing

Validation

		True Class	
		Class="Yes"	Class="No"
CIGSS	Class="Yes	True Positive (TP)	False Positive (FP)
	Class="No"	False Negative (FN)	True Negative (TN)

K-fold CV (here 5-fold)

