Magno Severino

Projeto de Pesquisa

Inference and Model Selection for Continuous and Infinite Markov Random Fields on Graphs

Área: 1.a. Inferência para Processos Estocásticos.

Área correlata: 3.a. Aprendizagem Estatística e Ciência de Dados.

Agenda

- Introduction
- Theorethical Background
- Research Proposal
- Viability

Introduction

- Previous research (Severino, 2025):
 - Focus on discrete vector-valued stochastic processes,
 - Model selection criteria for graphs under mixing conditions,
 - Graphs with fixed number of nodes.

- Research proposals:
 - Proposal 1: Extending models to countably infinite vertex sets,
 - Proposal 2: Adapting the methodology for continuous data.

Background and Definitions

Vector-Valued Stochastic Processes

- $\mathbf{X}^{(i)} = (\mathbf{X}_1^{(i)}, \mathbf{X}_2^{(i)}, \dots, \mathbf{X}_d^{(i)}).$
- $ullet X_v^{(i)} \in A, A$ a finite alphabet.
- Process $\mathbf{X} = {\mathbf{X^{(i)} : -\infty < i < \infty}}.$
- ullet We assume the process ${f X}$ has an underlying graph $G^*=(V,E^*)$.

Mixing Condition

- ullet $X^{(i:j)}$ denote the sequence of vectors $X^{(i)}, X^{(i+1)}, \dots, X^{(j)}$.
- $\mathbf{X}=\{\mathbf{X^{(i)}}: -\infty < \mathbf{i} < \infty\}$ satisfies a mixing condition with rate $\{\psi(\ell)\}_{\ell \in \mathbb{R}}$ if

$$igg| \mathbb{P}ig(X^{(n:(n+k-1))} = x^{(1:k)} \, | \, X^{(1:m)} = x^{(1:m)}ig) - \mathbb{P}ig(X^{(n:(n+k-1))} = x^{(1:k)}ig) igg| \ \le \psi(n-m)\mathbb{P}ig(X^{(n:(n+k-1))} = x^{(1:k)}ig),$$

 $\text{for } n \geq m+\ell \text{ and for each } k,m \in \mathbb{N} \text{ and each } x^{(1:k)} \in (A^d)^k, x^{(1:m)} \in (A^d)^m \text{ with } \mathbb{P}(X^{(1:m)} = x^{(1:m)}) > 0.$

Empirical Probabilities

Given a process $\mathbf{X} \in \{a,b\}^3$ and the sample of size 5 below. Then

X_1	X_2	X_3
b	a	a
\overline{a}	b	b
b	b	\overline{a}
\overline{a}	\overline{a}	a
b	\overline{a}	a

$$\widehat{\pi}ig(\{X_1=a\}ig)=rac{2}{5}, \qquad \widehat{\pi}ig(\{X_1=a,X_3=a\}ig)=rac{1}{5},$$
 $\widehat{\pi}ig(\{X_1=b\}ig|\{X_2=a,X_3=a\}ig)=rac{2}{3}.$ as $\widehat{\pi}(\{X_2=a,X_3=a\})>0.$

Formally, assume we observe a sample of size n of the process, denoted by $\{x^{(i)}: i=1,\ldots,n\}$. Then, for any $W\subset V$ and any $a_W\in A^W$,

$$\widehat{\pi}(a_W) = rac{N(a_W)}{n}; \qquad \widehat{\pi}(a_{W'}|a_W) = rac{\widehat{\pi}(a_{W'\cup W})}{\widehat{\pi}(a_W)}\,,$$

for $\widehat{\pi}(a_W)>0$, two disjoint subsets $W,W'\subset V$, and configurations $a_W\in A^W,a_{W'}\in A^{W'}$.

Empirical Probabilities

Given a graph G=(V,E) and $v\in V,$ define

$$G(v)=ig\{u\in V:(u,v)\in Eig\},$$

the set of neighbors of v in graph G.

For
$$v=X_1$$
 , then $G(v)=\{X_2,X_3\}$.

Then

$$\widehat{\pi}(a_v|a_{G(v)}) = rac{\widehat{\pi}(a_{\{v\}\cup G(v)})}{\widehat{\pi}(a_{G(v)})}.$$

Graph Estimator

Given any graph G=(V,E) and a sample of the process, we define the log-pseudo-likelihood function by

$$\log \widehat{L}(G) \ = \ \sum_{v \in V} \ \sum_{(a_v \in A)} \ \sum_{a_{G(v)} \in A^{|G(v)|}} N(a_v, a_{G(v)}) \log \widehat{\pi}(a_v | a_{G(v)}).$$

Theorem (Severino, 2025): Let $\{X^{(i)}:i\in\mathbb{Z}\}$ be a process that satisfies the mixing condition presented before with $\psi(\ell)=O(1/\ell^{1+\epsilon})$ for some $\epsilon>0$. Then, by taking $\lambda_n=c\log n$, we have that

$$\widehat{G} = rg \max_{G} \Bigl\{ \log \widehat{L}(G) - \lambda_n \sum_{v \in V} |A|^{|G(v)|} \Bigr\}$$

satisfies $\widehat{G}=G^*$ eventually almost surely as $n o \infty$.

Proposal 1: model selection for Markov random fields with countable infinite set of vertices on graphs under a mixing condition

Proposal 1

- Extending model selection in Markov Random Fields (MRFs)
 - Focus on graphs with countably infinite vertices.
 - Applications in neural networks and social networks.
- Motivation and existing methods
 - Leonardi et al. (2023): Penalized pseudo-likelihood for discrete MRFs.
 - Graph estimated based on local neighborhood estimation.
 - Severino (2025): Developed theoretical results for global estimation of discrete MRFs over finite graphs.
- Research goal
 - Generalize the results from finite to countably infinite graphs.
 - Improve global estimation, possibly reducing errors from local neighborhood estimation.

Proposal 1: Estimation Approach and Applications

- Proposed estimation framework
 - Let V be infinite and $V_n, n \in \mathbb{N}$ be a sequence of finite subsets of V.
 - lacksquare Assume $V_n\uparrow V$ as $n o\infty$.
 - lacksquare Sample: $\{\mathbf{X}=\{X_v:v\in V_n\}\}$, assuming that $\mathrm{ne}(v)$ is finite.
 - Adaptation of key theorems to handle countably infinite vertex sets.
- Algorithm development and evaluation
 - Implement graph estimator in R package.
 - Performance assessed through extensive simulation studies.
- Real-world applications
 - Social interaction networks: Capturing dependencies in large-scale social systems.
 - Online social networks: Understanding information diffusion & social influence.

Proposal 2: Model selection for continuous Markov random fields on graphs under a mixing condition

Proposal 2

- Extending previous work on MRFs
 - Severino (2025): Applied MRF model to São Francisco River water flow data.
 - Discretization was required, introducing potential limitations.
 - Goal: Generalize the approach to continuous stochastic processes.
- Theoretical adaptations needed
 - Modify key results from discrete to continuous random variables.
 - Replace summations with integrals in penalized pseudo-likelihood function.
 - Adapt consistency and convergence proofs for continuous measurements.
- Key benefits
 - Expands applicability to environmental monitoring, finance, and signal processing.
 - Enables more accurate inference from continuous data sources.

Proposal 2: Implementation & Applications

- Algorithm development and valuation
 - Implement adapted algorithms in R package.
 - Assess performance through extensive simulation studies.
 - Validate robustness and accuracy using real-world datasets.
- Broader applications
 - Bioinformatics: Model gene regulatory networks and protein interactions.
 - Economics: Capture dependencies in financial markets and economic indicators.
 - Expands to various fields beyond traditional MRF applications.

Tuture Research Direction

- Combine Proposal 1 (countable infinite graphs) and Proposal 2 (continuous data).
- Develop a unified method for estimating MRFs with continuous variables and countable infinite vertices.
- Provide a versatile tool for modeling complex stochastic processes.

Viability

- Growing Importance of Data Science
 - Essential for innovation and decision-making across industries.
 - Need for advanced statistical methodologies to handle complex datasets.
- Unsupervised Learning & Graphical Models
 - Graphical model estimation enables the discovery of hidden structures in data.
 - Adaptations of methods for continuous and dependent data processes and large-scale networks.

© Expected Outcomes

Theoretical Contributions

- Extension of Markov Random Fields (MRFs) theory under mixing conditions.
- Application to graphs with countably infinite vertices and continuous data.
- Submission to leading international journals.

Algorithm Development

- Robust, scalable algorithms for complex graphical models.
- R packages with open-source access.
- Comprehensive documentation with practical examples for ease of adoption.

Broader Scientific Impact

- Increased applicability in domains like neuromathematics, finance, and ecology.
- Potential for interdisciplinary collaborations (UFRJ, UFRN, UBA, Neuromat researches).

१८ Timeline

\$ Budget

- Minimal financial costs.
- Theoretical development does not require any additional resources.
- Simulation and real data application of the developed algorithms will be conducted using existing computer server resources at the department.
- Anticipated expenses: presenting the research at international scientific conferences.

References

- **Severino**, **M. T. F.**, & Leonardi, F. (2025). *Model selection for Markov random fields on graphs under a mixing condition*. Stochastic Processes and their Applications.
- Leonardi, F., Lopez-Rosenfeld, M., Rodriguez, D., **Severino, M. T. F.**, & Sued, M. (2021). *Independent block identification in multivariate time series*. Journal of Time Series Analysis.
- Leonardi, F., Carvalho, R., & Frondana, I. (2023). Structure recovery for partially observed discrete Markov random fields on graphs under not necessarily positive distributions. Scandinavian Journal of Statistics.
- Lauritzen, S. L. (1996). Graphical models (Vol. 17). Clarendon Press.
- Oodaira, H., & Yoshihara, K. I. (1971). The law of the iterated logarithm for stationary processes satisfying mixing conditions. Kodai Mathematical Seminar Reports.

