μΑ741A • μΑ741E

FREQUENCY COMPENSATED OPERATIONAL AMPLIFIER

FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION — The μ A741A and E are high performance monolithic Operational Amplifiers constructed using the Fairchild Planar* epitaxial process. They are intended for a wide range of analog applications. High common mode voltage range and absence of "latch-up" tendencies make the μ A741A and E ideal for use as voltage followers. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications. Electrical characteristics are identical to MIL-M-38510/10101.

- NO FREQUENCY COMPENSATION REQUIRED
- SHORT-CIRCUIT PROTECTION
- OFFSET VOLTAGE NULL CAPABILITY
- LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
- LOW POWER CONSUMPTION
- NO LATCH UP

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ±22V Internal Power Dissipation (Note 1) Metal Can 500 mW DIP 670 mW Flatpak 570 mW Differential Input Voltage ±30V Input Voltage (Note 2) ±15V Storage Temperature Range -65°C to +150°C Operating Temperature Range Military (741A) -55°C to +125°C Commercial (741E) 0°C to +70°C Lead Temperature (Soldering, 60 seconds) 300°C **Output Short Circuit Duration (Note 3)** Indefinite

Notes on following pages.

^{*}Planar is a patented Fairchild process.

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ741Α • μΑ741Ε

741A

ELECTRICAL CHARACTERISTICS ($V_S = \pm 15V$, $T_A = 25^{\circ}C$ unless otherwise specified)

PARAMETERS (see definitions)		CONDITIONS		MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		$R_S \le 50\Omega$			0.8	3.0	mV
Average Input Offset Voltage Drift						15	μV/°C
Input Offset Current					3.0	30	nA
Average Input Offset Current Drift						0.5	nA/∘C
Input Bias Current					30	80	nA
Power Supply Rejection Ratio		$V_S = +10, -20; V_S = +20, -10V, R_S = 50\Omega$			15	50	μV/V
Output Short Circuit Current				10	25	35	mA
Power Dissipation		V _S = ±20V			80	150	mW
Input Impedance		V _S = ±20V		1.0	6.0		МΩ
Large Signal Voltage Gain		$V_S = \pm 20V$, $R_L = 2k\Omega$, $V_{OUT} = \pm 15V$		50			V/mV
Transient Response	Rise Time				0.25	0.8	μs
(Unity Gain)	Overshoot				6.0	20	%
Bandwidth (Note 4)				.437	1.5		MHz
Slew Rate (Unity Gain)		V _{IN} = ±10V		0.3	0.7		V/μs
The following	specifications apply	for –55°C ≤ T _A ≤	≨ +125° C				
Input Offset Voltage		-				4.0	mV
Input Offset Current						70	nA
Input Bias Current						210	nA
Common Mode Rejection Ratio		$V_S = \pm 20V$, $V_{IN} = \pm 15V$, $R_S = 50\Omega$		80	95		dB
Adjustment For Input Offset Voltage		V _S = ±20V		10			mV
Output Short Circuit Current				10		40	mA
Power Dissipation		V _S = ±20V	_55°C			165	mW
			+125°C			135	mW
Input Impedance		V _S = ±20V		0.5	}		MΩ
Output Voltage Swing		V _S = ±20V,	R _L = 10kΩ	±16			V
			R _L = 2kΩ	±15			V
Large Signal Voltage Gain		$V_S = \pm 20V, R_L = 2k\Omega, V_{OUT} = \pm 15V$		32			V/mV
		$V_S = \pm 5V, R_L = 2k\Omega, V_{OUT} = \pm 2 V$		10			V/mV

NOTES

- 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3mW/°C for the Metal Can, 8.3mW/°C for the DIP and 7.1mW/°C for the Flatpak.

 2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

 3. Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or 75°C ambient temperature.

- 4. Calculated value from: BW(MHz) = $\frac{0.35}{\text{Rise Time (}\mu\text{s})}$

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μ A741A • μ A741E

741E

ELECTRICAL CHARACTERISTICS ($V_S = \pm 15V$, $T_A = 25^{\circ}C$ unless otherwise specified)

PARAMETERS (see definitions)		CONDITIONS	MIN.	TYP.	MAX.	UNITS
Input Offset Voltage		R _S ≤ 50Ω		0.8	3.0	mV
Average Input Offset Voltage Drift					15	μV/°C
Input Offset Current				3.0	30	nA
Average Input Offset Current Drift					0.5	nA/°C
Input Bias Current				30	80	nA
Power Supply Rejection Ratio		$V_S = +10, -20; V_S = +20, -10V, R_S = 50\Omega$		15	50	μV/V
Output Short Circuit Current			10	25	35	mA
Power Dissipation		V _S = ±20V		80	150	mW
Input Impedance		V _S = ±20V	1.0	6.0		MΩ
Large Signal Voltage Gain		$V_S = \pm 20V$, $R_L = 2k\Omega$, $V_{OUT} = \pm 15V$	50			V/mV
Transient Response	Rise Time			0.25	0.8	μs
(Unity Gain)	Overshoot			6.0	20	%
Bandwidth (Note 4)			.437	1.5		MHz
Slew Rate (Unity Gain)		V _{IN} = ±10V	0.3	0.7		V/μs
The following	specifications apply	for 0°C ≤ T _A ≤ 70°C				
Input Offset Voltage					4.0	mV
Input Offset Current					70	nA
Input Bias Current					210	nA
Common Mode Rejection Ratio		$V_S = \pm 20V$, $V_{IN} = \pm 15V$, $R_S = 50\Omega$	80	95		dB
Adjustment For Input Offset Voltage		V _S = ±20V	10			mV
Output Short Circuit Current			10		40	mA
Power Dissipation		V _S = ±20V			150	mW
Input Impedance		V _S = ±20V	0.5			MΩ
Output Voltage Swing		R _L = 10kΩ	±16			V
		$V_S = \pm 20V$, $R_L = 10k\Omega$ $R_L = 2k\Omega$	±15			V
Large Signal Voltage Gain		$V_S = \pm 20V$, $R_L = 2k\Omega$, $V_{OUT} = \pm 15V$	32			V/mV
		$V_S = \pm 5V$, $R_1 = 2k\Omega$, $V_{OUT} = \pm 2V$	10			V/mV

VOLTAGE OFFSET NULL CIRCUIT

TRANSIENT RESPONSE TEST CIRCUIT

って

TYPICAL PERFORMANCE CURVES FOR 741A AND 741E

ABSOLUTE MAXIMUM POWER

FAIRCHILD LINEAR INTEGRATED CIRCUITS • μΑ741Α • μΑ741Ε

TYPICAL PERFORMANCE CURVES FOR 741A

INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT RESISTANCE AS A FUNCTION OF

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

INPUT OFFSET CURRENT AS A FUNCTION OF

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE

TYPICAL PERFORMANCE CURVES FOR 741E

INPUT BIAS CURRENT AS A FUNCTION OF

INPUT RESISTANCE AS A FUNCTION OF

INPUT OFFSET CURRENT AS A FUNCTION OF

POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE

OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE

FREQUENCY CHARACTERISTICS
AS A FUNCTION OF AMBIENT TEMPERATURE

