アクセント潜在変数の予測と制御が可能な TTSモデルによる方言音声合成の検討

☆山内一輝, 齋藤 佑樹, 猿渡洋(東京大学)

概要:方言音声合成の課題&提案手法

■方言音声合成

■標準語と異なる韻律体系をもつ方言の音声合成を目指す

■課題1:話者数が限られた方言のアクセント辞書不足

■課題2:十分な品質の方言音声収録は困難

■ 提案手法

■テキストのみからのアクセント潜在変数(ALV)予測

■音声からのALV自動抽出による合成音声の韻律制御

関連研究&提案手法のコンセプト

- ■アクセント潜在変数(Accent Latent Variable; ALV)[1]
 - ■音声から自動でアクセント情報を抽出
 - ■VQ-VAEで音声のF0を量子化された潜在変数(ALV)にエンコード
 - 参照音声入力による韻律制御(Prosody Transfer)に利用
- ■テキストのみからのアクセント予測
 - ■十分な語彙を含む学習データが必要
 - ■現状の方言音声コーパスのサイズは限定的
 - 事前学習モデル(Phoneme-Level BERT[2])を活用

提案手法

■提案モデル

■概要

- ■FastSpeech2[3]をベースモデルに採用
- ■Reference Encoder, ALV Predictorを導入
- ■Reference Encoder
 - ■参照音声からALVを抽出
 - ■VQ-VAEを利用
- ■ALV Predictor
 - ■テキストのみからALVを予測
 - ■事前学習済みのPhoneme-Level BERTを利用

主観評価実験&今後の展望

- ■データセット
 - ■JSUT[4]: 単一女性話者による標準語音声コーパス(約7700発話)
 - ■JMD[5]: **多方言**音声コーパス(各1300発話)(大阪方言のみ用いる)
- ■比較モデル
 - ■FS2 w/o Acc: FastSpeech2にアクセント情報を与えず学習
 - ■FS2 w/ AP: ALV PredictorでテキストからALVを予測
 - ■FS2 w/ PT: Reference Encoderで音声からALVを抽出
- ■主観評価実験
 - ■音声の自然性MOS(5段階)と大阪方言らしさMOS(3段階)を評価
 - ■受聴者数は40人, 1人あたりの評価回数は24
 - ■テキストから予測したALVを使うと音声の自然性と方言らしさが低下
 - ■参照音声から抽出したALVを使うと音声の自然性と方言らしさが向上
- ■今後の展望:
 - ■未知話者によるProsody Transfer
 - ■多話者音声コーパスを使って学習, 話者埋め込みを利用など
 - ■ユーザーによるフィードバッグを用いてALV Predictorを継続学習
 - ■アクセント誤り訂正可能なTTSモデル[6]の枠組みをALVに応用
 - ■ALV Predictorを模倣学習やReinforcement Learning from Human Feedbackなどの強化学習手法を用いて継続学習

手法	自然性MOS	方言性MOS
JMD	4.57 ± 0.071	2.75 ± 0.065
FS2 w/o Acc	2.95 ± 0.117	2.08 ± 0.081
FS2 w/ AP	2.71 ± 0.102	1.75 ± 0.079
FS2 w/ PT	3.19 ± 0.118	2.28 ± 0.077

合成音声の**自然性**および**大阪方言らしさ**に関する MOS スコア (±95% 信頼区間)

■謝辞

本研究は公益財団法人立石科学技術振興財団2023 年度研究助成(S)による支援を受けたものです.

参考文献

[1] K. Yufune et al., in Proc. SSW, 2021. [2] Y. A. Li et al., arXiv:2301.08810, 2023. [3] Y. Ren et al., in Proc. ICLR, 2021. [4] S. Takamichi et al., Acoustical Science and Technology, vol. 41, no. 5, 2020. [5] S. Takamichi et al., Available: https://sites.google.com/site/shinnosuketakamichi/, 2021 [6] K. Fujii et al., in Proc. APSIPA ASC, 2022.

