

Yessica H. Bogado S.

yessica.bogado@ucap.edu.py Centro de investigación en Ciencias, Tecnología e Innovación Avanzada (CICTIA)

Gregorio A. Guerrero M.

ariel.guerrero@pti.org.py
Centro de Innovación en
Automatización y Control (CIAC)

Walter R. Benítez D.

walter.benitez@ucap.edu.py
Centro de investigación en Ciencias,
Tecnología e Innovación Avanzada
(CICTIA)

Mario E. Arzamendia L.

marzamendia@ing.una.py
Laboratorio de Sistemas Distribuidos
(LSD)

Tabla de contenido

	Introducción
	Desarrollo
3	Resultados
4	Conclusiones

Tabla de contenido

	T 4 T	• /
1	Introduc	cción
	Inti out	

- 2 Desarrollo
- 3 Resultados
 - **Conclusiones**

Las inspecciones de líneas eléctricas juegan un papel de suma importancia en el compromiso de mantener la calidad en la transmisión y distribución de la energía eléctrica entregada al estar totalmente relacionada con el mantenimiento preventivo.

Tipos de inspección

Patrullaje a Pie

Vehículos Aéreos Tripulados

Robot Escalador

Ventajas

- Menor tiempo.
- Es económico.
- Menor uso de recursos.
- Bajo riesgo.

Desventajas

Poca autonomía

Inspecciones con Vehículos Aéreos No Tripulados en el mundo.

www.aibotix.com

www.endesa.com

Tabla de contenido

	Introducción
	Desarrollo
3	Resultados
4	Conclusiones

Tabla de contenido

Introducción

2 Desarrollo

Resultados

Conclusiones

Hardware

Software

Hardware

Software

Elementos del hardware

Estación Terrestre

Cuadricóptero

Elementos del hardware

Cuadricóptero

www.quadrocopter.com

Armazón

Batería

Motores y hélices

ESC

Sensores

Microcontrolador

Transmisor de video

Elementos del hardware

Cuadricóptero

www.gensaceusa.com

Armazón

Batería

Motores y hélices

ESC

Sensores

Microcontrolado

Transmisor de video

Elementos del hardware

Cuadricóptero

Armazór

Batería

Motores y hélices

ESC

Sensores

Microcontrolador

Transmisor de video

Elementos del hardware

Cuadricóptero

www.hobbyking.com

Armazór

Batería

Motores y hélices

ESC

Sensores

Microcontrolador

Transmisor de video

Elementos del hardware

Cuadricóptero: ESC (Electronic Speed Control).

Elementos del hardware

- Acelerómetro
- Giroscopio
- Magnetómetro
- Barómetro
- GPS (Global Positioning System)

Cuadricóptero

Armazón

Batería

Motores y hélices

ESC

Sensores

Microcontrolador

Transmisor de video

Elementos del hardware

www.atmel.com

Frecuencia de operación máxima: 16 MHz

Tamaño de memoria: 256 kB

Bus de datos: 8 bits

Numero de temporizadores: 6

Cuadricóptero

Armazón

Batería

Motores y hélices

ESC

Sensores

Microcontrolador

Transmisor de video

Elementos del hardware

Estación Terrestre

PC

Receptor de video

Módulo Xbee

www.hobbyking.com

Cuadricóptero

Armazón

Batería

Motores y hélices

ESC

Sensores

Microcontrolador

Transmisor de video

Elementos del hardware

Estación Terrestre

PC

Receptor de video

Módulo Xbee

Cuadricóptero

Armazón

Batería

Motores y hélices

ESC

Sensores

Microcontrolador

Transmisor de video

Elementos del hardware

Estación Terrestre

PC

Receptor de video

Módulo Xbee

Piloto

Radio Control

Elementos del hardware

Estación Terrestre: Radio control.

- Roll
- Pitch
- Sustentación
- Yaw
 - controlador

Micro

- 5. Control de altura
- 6. Control de posición

Señal de salida PWM del receptor

Mínimo valor (1000µs)

Máximo valor (2000µs)

Controlador de vuelo empleado

CRIUS AIOP V2.1

Hardware

Software

Hardware

Software

Modelado de la planta

Un modelado es la representación abstracta, conceptual, y física de fenómenos, sistemas o procesos a fin de analizar, describir, explicar o simular esos fenómenos o procesos.

Sustentación Fuerza de sustentación

Roll Torque del Roll

Pitch Torque del Pitch

Yaw Torque del Yaw

Modelado de la planta

Modelo de Newton-Euler

Los agentes que influyen en la aerodinámica del cuadricóptero son:

Modelado de la planta

Rotación por ángulos de Euler

Fuente: The Aerospace Euler Angles Greg Horn - YouTube

Modelado de la planta

Rotación por ángulos de Euler

Fuente: The Aerospace Euler Angles Greg Horn - YouTube

Modelado de la planta

Modelo de Newton-Euler

$$\dot{\zeta} = \begin{cases} \dot{x} = \frac{U_1}{m} (s_{\psi} s_{\phi} + c_{\psi} s_{\theta} c_{\phi}) \\ \dot{y} = \frac{U_1}{m} (-c_{\psi} s_{\phi} + s_{\psi} s_{\theta} c_{\phi}) \\ \dot{z} = c_{\theta} c_{\phi} \frac{U_1}{m} - g \\ \dot{p} = \frac{I_{YY} - I_{ZZ}}{I_{XX}} q r - \frac{I_{TA}}{I_{XX}} q \Omega + \frac{U_2}{I_{XX}} \\ \dot{q} = \frac{I_{ZZ} - I_{XX}}{I_{YY}} p r - \frac{I_{TA}}{I_{YY}} p \Omega + \frac{U_3}{I_{YY}} \\ \dot{r} = \frac{I_{XX} - I_{YY}}{I_{ZZ}} p q + \frac{U_4}{I_{ZZ}} \end{cases}$$

$$\theta, \phi, \psi: \text{ Angulos de Euler } \dot{x}, \dot{y}, \dot{z} : \text{ Velocidad lineal } \dot{p}, \dot{q}, \dot{r} : \text{ Acceleración angular } I_{XX}, I_{YY}, I_{ZZ} : \text{ Inercia del cuadricóptero } I_{TA} : \text{ Inercia de los actuadores } \Omega : \text{ Velocidad de los rotores } m : \text{ Masa } g : \text{ Gravedad } g : \text{ Gravedad } \end{cases}$$

 θ , Φ , Ψ : Ángulos de Euler

 I_{TA} : Inercia de los actuadores

g: Gravedad

Modelado de la planta

Bloqueo de ejes (Gimbal Lock)

Se define como la pérdida de un grado de libertad al alinearse dos de los

tres ejes de rotación.

Fuente: Euler (gimbal lock) Explained - The Guerrilla CG Project- YouTube

Modelado de la planta

Bloqueo de ejes (Gimbal Lock)

Se define como la pérdida de un grado de libertad al alinearse dos de los

tres ejes de rotación.

Fuente: Euler (gimbal lock) Explained - The Guerrilla CG Project- YouTube

Modelado de la planta

Cuaterniones

Los cuaterniones son números hipercomplejos de cuatro dimensiones que pueden ser empleados para representar la orientación de un cuerpo rígido o marco de coordenadas en el espacio 3D.

$$Q = q_0 + q_1 i + q_2 j + q_3 k$$
$$i^2 = j^2 = k^2 = ijk = -1$$

Ventajas

- Permite obtener la mínima trayectoria de rotación .
- Evita el problema del bloqueo de ejes.

Modelado de la planta

Rotación con cuaterniones

$$Qp' = Q \cdot Qp \cdot Q*$$

$$Q=(cos\frac{\alpha}{2}\,,sin\frac{\alpha}{2}\,\hat{r})$$

$$Qp = (0, \vec{p})$$

$$Qp' = (0, \overrightarrow{p'})$$

p = punto a ser rotado

$$p' = punto rotado$$

Control

Sistema de control

CAS: Control Augmentation System

SAS: Stability Augmentation System

Simulación

Simulación

Inicialización

Interrupciones

Bucle Principal (100 Hz)

Dinámica

Bucle Secundario 1 (50 Hz)

Control Principal

Bucle Secundario 2 (50 Hz)

	Introducción
	Desarrollo
3	Resultados
4	Conclusiones

- Introducción
- 2 Desarrollo
- 3 Resultados
 - Conclusiones

ESTACION TERRESTRE

	Introducción
	Desarrollo
3	Resultados
4	Conclusiones

- Introducción
- 2 Desarrollo
- 3 Resultados
- 4 Conclusiones

Conclusión

- Los resultados satisfactorios de aplicar un control PID directamente sobre el cuaternión estimado, sin necesidad de utilizar la matriz de rotación o los ángulos de Euler en la estabilización del roll y pitch.
- Se pudo observar las ventajas de los cuaterniones con relación a los ángulos de Euler.
- Se comprobó la reducción del lapso requerido para realizar una inspección aérea.
- El ahorro económico al utilizar VANT para realizar inspecciones aéreas semejantes al de una inspección pedestre pero con mejores resultados.

Continuación del trabajo

- Utilizar un filtro Kalman extendido con un microcontrolador de mayor capacidad de computo de manera a realizar una mejor estimación de las velocidades y posiciones, obteniendo con ello un mejor control de posición y altitud.
- Aplicar un sistema de seguimiento de trayectoria para realizar inspecciones automáticas.
- Estudiar y aplicar el uso de una cámara térmica de manera a identificar puntos calientes en las líneas.

Continuación del trabajo

- Implementar un filtro de orientación paralelo
- Tomar en cuenta el efecto electromagnético que producen las altas tensiones y proteger correctamente la electrónica del VANT.

Muchas Gracias

Yessica H. Bogado S.

yessica.bogado@ucap.edu.py
Centro de investigación en Ciencias,
Tecnología e Innovación Avanzada
(CICTIA)

Gregorio A. Guerrero M.

ariel.guerrero@pti.org.py
Centro de Innovación en
Automatización y Control (CIAC)

Walter R. Benítez D.

walter.benitez@ucap.edu.py
Centro de investigación en Ciencias,
Tecnología e Innovación Avanzada
(CICTIA)

Mario E. Arzamendia L.

marzamendia@ing.una.py
Laboratorio de Sistemas Distribuidos
(LSD)