IT Infrastructure Architecture

Infrastructure Building Blocks and Concepts

Availability Concepts (chapter 4)

Introduction

- Everyone expects their infrastructure to be available all the time
- A 100% guaranteed availability of an infrastructure is impossible

- Availability can neither be calculated, nor guaranteed upfront
 - It can only be reported on afterwards, when a system has run for some years
- Over the years, much knowledge and experience is gained on how to design high available systems
 - Failover
 - Redundancy
 - Structured programming
 - Avoiding Single Points of Failures (SPOFs)
 - Implementing systems management

- The availability of a system is usually expressed as a percentage of uptime in a given time period
 - Usually one year or one month
- Example for downtime expressed as a percentage per year:

Availability %	Downtime per year	Downtime per month	Downtime per week	
99.8%	17.5 hours	86.2 minutes	20.2 minutes	
99.9% ("three nines")	8.8 hours	43.2 minutes	10.1 minutes	
99.99% ("four nines")	52.6 minutes	4.3 minutes	1.0 minutes	
99.999% ("five nines")	5.3 minutes	25.9 seconds	6.1 seconds	

- Typical requirements used in service level agreements today are 99.8% or 99.9% availability per month for a full IT system
- The availability of the infrastructure must be much higher
 - Typically in the range of 99.99% or higher
- 99.999% uptime is also known as carrier grade availability
 - For one component
 - Higher availability levels for a complete system are very uncommon, as they are almost impossible to reach

 It is good practice to agree on the maximum frequency of unavailability

Unavailability (minutes)	Number of events (per year)	
0 - 5	<= 35	
5 - 10	<= 10	
10 - 20	<= 5	
20 - 30	<=2	
> 30	<= 1	

MTBF and MTTR

- Mean Time Between Failures (MTBF)
 - The average time that passes between failures

- Mean Time To Repair (MTTR)
 - -The time it takes to recover from a failure

MTBF and MTTR

· Some components have higher MTBF than others

· Some typical MTB's:

Component	MTBF (hours)	
Hard disk	750,000	
Power supply	100,000	
Fan	100,000	
Ethernet Network Switch	350,000	
RAM	1,000,000	

MTTR

- MTTR can be kept low by:
 - Having a service contract with the supplier
 - Having spare parts on-site
 - Automated redundancy and failover

MTTR

- Steps to complete repairs:
 - Notification of the fault (time before seeing an alarm message)
 - Processing the alarm
 - Finding the root cause of the error
 - Looking up repair information
 - Getting spare components from storage
 - Having technician come to the datacenter with the spare component
 - Physically repairing the fault
 - Restarting and testing the component

Calculation examples

Availability =
$$\frac{\text{MTBF}}{(\text{MTBF} + \text{MTTR})} \times 100\%$$

Component	MTBF (h)	MTTR (h)	Availability	in %
Power supply	100,000	8	0.9999200	99.99200
Fan	100,000	8	0.9999200	99.99200
System board	300,000	8	0.9999733	99.99733
Memory	1,000,000	8	0,9999920	99.99920
CPU	500,000	8	0.9999840	99.99840
Network Interface Controller (NIC)	250,000	8	0.9999680	99.99680

Calculation examples

Serial components: One defect leads to downtime

Example: the above system's availability is:

$$0.9999200 \times 0.9999200 \times 0.9999733$$

 $\times 0.9999920 \times 0.9999840 \times 0.9999680$
= $0.99977 = 99.977\%$

(each components' availability is at least 99.99%)

Calculation examples

- Parallel components: One defect: no downtime!
- But beware of SPOFs!

Calculate availability:

$$A = 1 - (1 - A_1)^n$$

• Total availability = $1 - (1 - 0.99)^2 = 99.99\%$

Sources of unavailability - human errors

- 80% of outages impacting mission-critical services is caused by people and process issues
- Examples:
 - Performing a test in the production environment
 - Switching off the wrong component for repair
 - Swapping a good working disk in a RAID set instead of the defective one
 - · Restoring the wrong backup tape to production
 - Accidentally removing files
 - Mail folders, configuration files
 - Accidentally removing database entries
 - Drop table x instead of drop table y

Sources of unavailability - software bugs

- Because of the complexity of most software it is nearly impossible (and very costly) to create bug-free software
- Application software bugs can stop an entire system
- Operating systems are software too
 - Operating systems containing bugs can lead to corrupted file systems, network failures, or other sources of unavailability

Sources of unavailability - planned maintenance

- Sometimes needed to perform systems management tasks:
 - Upgrading hardware or software
 - Implementing software changes
 - Migrating data
 - Creation of backups
- Should only be performed on parts of the infrastructure where other parts keep serving clients
- During planned maintenance the system is more vulnerable to downtime than under normal circumstances
 - A temporary SPOF could be introduced
 - Systems managers could make mistakes

Sources of unavailability - physical defects

- Everything breaks down eventually
- Mechanical parts are most likely to break first
- Examples:
 - Fans for cooling equipment usually break because of dust in the bearings
 - Disk drives contain moving parts
 - Tapes are very vulnerable to defects as the tape is spun on and off the reels all the time
 - Tape drives contain very sensitive pieces of mechanics that can break easily

Sources of unavailability - bathtub curve

- A component failure is most likely when the component is new
- When a component still works after the first month, it is likely that it will continue working without failure until the end of its life

Sources of unavailability environmental issues

- Environmental issues can cause downtime:
 - Failing facilities
 - Power
 - Cooling
 - Disasters
 - Fire
 - Earthquakes
 - Flooding

Sources of unavailability - complexity of the infrastructure

- Adding more components to an overall system design can undermine high availability
 - Even if the extra components are implemented to achieve high availability
- Complex systems
 - Have more potential points of failure
 - Are more difficult to implement correctly
 - Are harder to manage
- Sometimes it is better to just have an extra spare system in the closet than to use complex redundant systems

Redundancy

- Redundancy is the duplication of critical components in a single system, to avoid a single point of failure (SPOF)
- Examples:
 - A single component having two power supplies; if one fails, the other takes over
 - Dual networking interfaces
 - Redundant cabling

Failover

- Failover is the (semi)automatic switch-over to a standby system or component
- Examples:
 - Windows Server failover clustering
 - VMware High Availability
 - Oracle Real Application Cluster (RAC) database

Fallback

- Fallback is the manual switchover to an identical standby computer system in a different location
- Typically used for disaster recovery
- Three basic forms of fallback solutions:
 - Hot site
 - Cold site
 - Warm site

Fallback – hot site

- A hot site is
 - A fully configured fallback datacentre
 - Fully equipped with power and cooling
 - Applications are installed on the servers
 - Data is kept up-to-date to fully mirror the production system
- Requires constant maintenance of the hardware, software, data, and applications to be sure the site accurately mirrors the state of the production site at all times

Fallback - cold site

- Is ready for equipment to be brought in during an emergency, but no computer hardware is available at the site
- Applications will need to be installed and current data fully restored from backups
- If an organization has very little budget for a fallback site, a cold site may be better than nothing

Fallback - warm site

- A computer facility readily available with power, cooling, and computers, but the applications may not be installed or configured
- A mix between a hot site and cold site
- Applications and data must be restored from backup media and tested
 - This typically takes a day

Business Continuity

- An IT disaster is defined as an irreparable problem in a datacenter, making the datacenter unusable
- Natural disasters:
 - Floods
 - Hurricanes
 - Tornadoes
 - Earthquakes
- Manmade disasters:
 - Hazardous material spills
 - Infrastructure failure
 - Bio-terrorism

Business Continuity

- In case of a disaster, the infrastructure could become unavailable, in some cases for a longer period of time
- Business Continuity Management includes:
 - -IT
 - Managing business processes
 - Availability of people and work places in disaster situations
- Disaster recovery planning (DRP) contains a set of measures to take in case of a disaster, when (parts of) the IT infrastructure must be accommodated in an alternative location

RTO and RPO

- RTO and RPO are objectives in case of a disaster
- Recovery Time Objective (RTO)
 - The maximum duration of time within which a business process must be restored after a disaster, in order to avoid unacceptable consequences (like bankruptcy)

RTO and RPO

- Recovery Point Objective (RPO)
 - The point in time to which data must be recovered considering some "acceptable loss" in a disaster situation
- RTO and RPO are individual objectives
 - They are not related

