IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

13.08.2025

Hoy...

Lógica proposicional: tautologías y consecuencias lógicas.

Definición

Una fórmula proposicional ϕ se llama **tautología** si para cada posible asignación de sus variables a 0s y 1s, el valor de ϕ es 1.

Definición

Una fórmula proposicional ϕ se llama **tautología** si para cada posible asignación de sus variables a 0s y 1s, el valor de ϕ es 1.

Lema (relación con equivalencias y satisfacibilidad)

lackbox Dos fórmulas proposicionales ϕ y ψ son equivalentes si y sólo si

Definición

Una fórmula proposicional ϕ se llama **tautología** si para cada posible asignación de sus variables a 0s y 1s, el valor de ϕ es 1.

Lema (relación con equivalencias y satisfacibilidad)

▶ Dos fórmulas proposicionales ϕ y ψ son equivalentes si y sólo si $(\phi \to \psi) \land (\psi \to \phi)$ es una tautología.

Definición

Una fórmula proposicional ϕ se llama **tautología** si para cada posible asignación de sus variables a 0s y 1s, el valor de ϕ es 1.

Lema (relación con equivalencias y satisfacibilidad)

- Dos fórmulas proposicionales ϕ y ψ son equivalentes si y sólo si $(\phi \to \psi) \land (\psi \to \phi)$ es una tautología.
- lacktriangle Una fórmula proposicional ϕ es una tautología (si y sólo si)

Definición

Una fórmula proposicional ϕ se llama **tautología** si para cada posible asignación de sus variables a 0s y 1s, el valor de ϕ es 1.

Lema (relación con equivalencias y satisfacibilidad)

- Dos fórmulas proposicionales ϕ y ψ son equivalentes si y sólo si $(\phi \to \psi) \land (\psi \to \phi)$ es una tautología.
- ▶ Una fórmula proposicional ϕ es una tautología (si y sólo si) ϕ y 1 son equivalentes (si y sólo si) $\neg \phi$ no es satisfacible.

Pregunta tautología

¿Es una tautología?

$$(A \vee B) \to ((A \wedge B) \vee A)$$

Pregunta tautología

¿Es una tautología?

$$(A \lor B) \to ((A \land B) \lor A)$$

¿Es una tautología?

$$(B \rightarrow A) \lor (A \rightarrow B)$$

Las formulas

$$A \rightarrow (B \rightarrow A) \qquad (1)$$

$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \qquad (2)$$

$$(A \land B) \rightarrow A \qquad (3)$$

$$(A \land B) \rightarrow B \qquad (4)$$

$$A \rightarrow (B \rightarrow (A \land B)) \qquad (5)$$

$$A \rightarrow (A \lor B) \qquad (6)$$

$$B \rightarrow (A \lor B) \qquad (7)$$

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)) \qquad (8)$$

$$(\neg A) \rightarrow (A \rightarrow B) \qquad (9)$$

$$(A \rightarrow B) \rightarrow ((A \rightarrow (\neg B)) \rightarrow (\neg A)) \qquad (10)$$

$$A \lor \neg A \qquad (11)$$

son tautologías que se llaman axiomas del sistema de Frege.

¿Cómo generar más tautologías? – Sustitución

Lema (Sustitución)

Si ϕ es una tautología, X_1, X_2, \ldots, X_n son sus variables, y ψ_1, \ldots, ψ_n son fórmulas proposicionales, entonces la fórmula, donde en ϕ , para cada $i=1,\ldots,n$, sustituimos cada ocurrencia de X_i por ψ_i , también es una tautología.

¿Cómo generar más tautologías? - Sustitución

Lema (Sustitución)

Si ϕ es una tautología, X_1, X_2, \ldots, X_n son sus variables, y ψ_1, \ldots, ψ_n son fórmulas proposicionales, entonces la fórmula, donde en ϕ , para cada $i=1,\ldots,n$, sustituimos cada ocurrencia de X_i por ψ_i , también es una tautología.

$$A \rightarrow (B \rightarrow A) \implies (x \land \neg y) \rightarrow ((x \lor z)) \rightarrow (x \land \neg y))$$

Lema (Modus ponens)

Si ϕ y ψ son dos fórmulas proposicionales tal que ϕ y $\phi \to \psi$ son tautologías, entonces ψ también es una tautología.

Lema (Modus ponens)

Si ϕ y ψ son dos fórmulas proposicionales tal que ϕ y $\phi \to \psi$ son tautologías, entonces ψ también es una tautología.

$$ightharpoonup A
ightarrow (B
ightarrow A)$$
 (axioma 1)

Lema (Modus ponens)

Si ϕ y ψ son dos fórmulas proposicionales tal que ϕ y $\phi \to \psi$ son tautologías, entonces ψ también es una tautología.

- ightharpoonup A
 ightarrow (B
 ightarrow A) (axioma 1)
- $ightharpoonup A \lor \neg A \text{ (axioma 11)}$

Lema (Modus ponens)

Si ϕ y ψ son dos fórmulas proposicionales tal que ϕ y $\phi \to \psi$ son tautologías, entonces ψ también es una tautología.

- ightharpoonup A
 ightharpoonup (B
 ightharpoonup A) (axioma 1)
- $ightharpoonup A \lor \neg A \text{ (axioma 11)}$
- $(A \lor \neg A) \to (\psi \to (A \lor \neg A)) \text{ (sustitución)}$

Lema (Modus ponens)

Si ϕ y ψ son dos fórmulas proposicionales tal que ϕ y $\phi \to \psi$ son tautologías, entonces ψ también es una tautología.

- ightharpoonup A
 ightharpoonup (B
 ightarrow A) (axioma 1)
- $ightharpoonup A \lor \neg A$ (axioma 11)
- $(A \lor \neg A) \to (\psi \to (A \lor \neg A)) \text{ (sustitución)}$
- $\psi \rightarrow (A \lor \neg A)$ (modus ponens)

completitud del sistema Frege

Teorema

Cada tautología ϕ se puede obtener a partir de

$$A \rightarrow (B \rightarrow A) \qquad (1)$$

$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \qquad (2)$$

$$(A \land B) \rightarrow A \qquad (3)$$

$$(A \land B) \rightarrow B \qquad (4)$$

$$A \rightarrow (B \rightarrow (A \land B)) \qquad (5)$$

$$A \rightarrow (A \lor B) \qquad (6)$$

$$B \rightarrow (A \lor B) \qquad (7)$$

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C)) \qquad (8)$$

$$(\neg A) \rightarrow (A \rightarrow B) \qquad (9)$$

$$(A \rightarrow B) \rightarrow ((A \rightarrow (\neg B)) \rightarrow (\neg A)) \qquad (10)$$

$$A \lor \neg A \qquad (11)$$

a través de un finito número de aplicaciones de sustitución y modus ponens.

Ejemplo Frege

Cómo mostrar $A \rightarrow A$ en sistema Frege?

$$A \to (B \to A) \tag{1}$$

$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$
 (2)

$$(A \land B) \to A \tag{3}$$

$$(A \land B) \to B \tag{4}$$

$$A \to (B \to (A \land B)) \tag{5}$$

$$A \to (A \lor B) \tag{6}$$

$$A \to (A \lor B) \tag{0}$$

$$B \to (A \lor B) \tag{7}$$

$$(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow ((A \lor B) \rightarrow C))$$
 (8)

$$(\neg A) \to (A \to B) \tag{9}$$

$$(A \rightarrow B) \rightarrow ((A \rightarrow (\neg B)) \rightarrow (\neg A))$$
 (10)

$$A \vee \neg A$$
 (11)

Ejemplo Frege

Cómo mostrar $A \rightarrow A$ en sistema Frege?

$$A \to (B \to A) \tag{1}$$

¿Cómo probar que una fórmula es tautología?

¿Cómo probar que una fórmula es tautología?

▶ Probar todas las asignaciones...

¿Cómo probar que una fórmula es tautología?

▶ Probar todas las asignaciones... método exponencial

¿Cómo probar que una fórmula es tautología?

- ▶ Probar todas las asignaciones... método exponencial
- ▶ ¿Sistema Frege?

Problema

¿Existe una constante C>0 tal que cada tautología ϕ puede ser mostrada en sistema Frege en no más que m^C pasos, donde m es el largo de ϕ ?

¿Cómo probar que una fórmula es tautología?

- ▶ Probar todas las asignaciones... método exponencial
- ▶ ¿Sistema Frege?

Problema

¿Existe una constante C>0 tal que cada tautología ϕ puede ser mostrada en sistema Frege en no más que m^C pasos, donde m es el largo de ϕ ?

¿Tienen todas las leyes lógicas demostraciones cortas? (NP = coNP).

Consequencias lógicas

A veces, nos interesa que las proposiciones salen de proposiciones que ya sabemos que son verdaderas.

Definición (Consecuencia lógica)

Sea Φ un conjunto de fórmulas. La fórmula ψ es una consecuencia lógica de Φ (se denota eso $\Phi \models \psi$) si para cada asignación de las variables a 0s y 1s que hace tal que todas las fórmulas en Φ toman valor 1, la fórmula ψ también toma valor 1..

Definición (Satisfacibilidad)

Sea Φ un conjunto de fórmulas. Entonces, Φ es satisfacible si existe una asignación de las variables a 0s y 1s tal que todas las fórmulas en Φ toma valor 1.

¿Es consequencia lógica? $\{\neg A \rightarrow B, \neg A \rightarrow \neg B\} \models A$

¿Es consequencia lógica?
$$\{\neg A \rightarrow B, \neg A \rightarrow \neg B\} \models A$$

¿Es consequencia lógica?
$$\{A \rightarrow B, \neg A \rightarrow B\} \models B$$

¿Es consequencia lógica?
$$\{\neg A \rightarrow B, \neg A \rightarrow \neg B\} \models A$$

¿Es consequencia lógica?
$$\{A \rightarrow B, \neg A \rightarrow B\} \models B$$

¿Es consequencia lógica?
$$\{A \rightarrow B, \neg A \rightarrow B\} \models A$$

¿Es consequencia lógica?
$$\{\neg A \rightarrow B, \neg A \rightarrow \neg B\} \models A$$

$$\{\neg A \to B, \neg A \to \neg B\} \models A$$

¿Es consequencia lógica?
$$\{A \rightarrow B, \neg A \rightarrow B\} \models B$$

$$\{A \rightarrow B, \neg A \rightarrow B\} \models B$$

¿Es consequencia lógica?
$$\{A \rightarrow B, \neg A \rightarrow B\} \models A$$

¿Es consequencia lógica?
$$\{\neg A \rightarrow \neg B\} \models A \rightarrow B$$

$$\{\neg A \rightarrow \neg B\} \models A \rightarrow B$$

¿Es consequencia lógica?
$$\{\neg A \rightarrow B, \neg A \rightarrow \neg B\} \models A$$

¿Es consequencia lógica?
$$\{A \rightarrow B, \neg A \rightarrow B\} \models B$$

¿Es consequencia lógica?
$$\{A \rightarrow B, \neg A \rightarrow B\} \models A$$

¿Es consequencia lógica?
$$\{\neg A \rightarrow \neg B\} \models A \rightarrow B$$

¿Es consequencia lógica?
$$\{\neg B \rightarrow \neg A\} \models A \rightarrow B$$

Métodos de demostración

Ejercicio: dar ejemplos de demostraciones matemáticas que usan estas consecuencias lógicas.

$$\{\neg A \to B, \neg A \to \neg B\} \models A$$

$${A \rightarrow B, \neg A \rightarrow B} \models B$$

$$\{\neg B \rightarrow \neg A\} \models A \rightarrow B$$

Tautologías, consequencias, satisfacibilidad

Teorema

Sea Φ un conjunto de fórmulas proposicionales y ψ una fórmula proposicional. Entonces, la siguientes condiciones son equivalentes:

- $ightharpoonup \Phi \models \psi$
- ▶ $\Phi \cup \{\neg \psi\}$ no es satisfacible.

Tautologías, consequencias, satisfacibilidad

Teorema

Sea Φ un conjunto de fórmulas proposicionales y ψ una fórmula proposicional. Entonces, la siguientes condiciones son equivalentes:

- $\blacktriangleright \Phi \models \psi$
- $\blacktriangleright \Phi \cup \{\neg \psi\}$ no es satisfacible.

 $Si \Phi$ es **finito**, estes dos condiciones son equivalentes a este:

• $(\bigwedge_{\phi \in \Phi} \phi) \to \psi$ es una tautología.

compacidad

compacidad

¿Qué hacer cuando Φ es *infinito*? ¿Se puede reducir a las tautologías?

Teorema (Compacidad)

Sean Φ un conjunto de fórmulas proposicionales (posiblemente, **infinito**) y ψ una fórmula proposicional tal que $\Sigma \models \phi$. Entonces, existe un **subconjunto finito** $\Sigma' \subseteq \Sigma$ tal que $\Sigma' \models \phi$.

iGracias!