

30 MAX

1장. 학습 내용

- 모델링과 렌더링
- 인간의 시각과 색
- 컬러 모델

1.1 컴퓨터 그래픽스 개요

- 컴퓨터 그래픽스 개요
 - 컴퓨터 그래픽스의 정의
 - 컴퓨터 그래픽스 관련 학문 분야
 - 컴퓨터 그래픽스의 응용분야
 - 컴퓨터 그래픽스의 발전 과정

컴퓨터 그래픽스의 정의

- 컴퓨터 그래픽스
 - _ "컴퓨터를 사용하여 그림을 생성하는 기술"
- 국제 표준화 기구(ISO/IEC JTC 1/SC 24)
 - Methods and techniques for converting data to and from a graphic display via computer.

프레젠테이션 그래픽스

- 막대 차트(Bar Chart), 선 그래프(Line Chart), 파이 차트(Pie Chart), 입체 그래프(Surface Graph)
- 백문(百聞)이 불여일견(不如一見)
- 시선을 붙잡을 것

가상, 증강현실

- Virtual Reality
 - "존재하지 않는 가상의 환경을 구성하되 그것이 마치 현실과 똑같이 느껴지도록 만드는 데 주안점"
- 사이버 클래스, 가상환경의 구축, 아바타 생성
- 현실에서 경험하지 못하는 것을 가능하게 하여 인간 경험의 폭을 크게 확장하는 데 기여할 수 있음.
- 교육, 의료,등에 다양하게 활용될 것으로 예상됨

[그림 1-5] 레이 트레이싱에 의한 렌더링

- 입체화면, 3차원 입체 음향, 데이터 장갑
- 장면 데이터베이스, 그래픽 소프트웨어
- 인지과학, 전자공학, 기계공학, 음향학

[그림 1-6] HMD 생세간부턴

[그림 1-7] 데이터 글로브

[그림 1-8] 데이터 글러브

미술

- 무선 스타일러스 펜
- 그래픽 소프트웨어

(b) 그래픽스로 재현한 고호의 그림

 프레임들의 빠른 연속적인 디스플레 이를 말하는데, 영화, 게임, 뮤직 비 디오, TV 프로그램 등에 활용됨

Ants

Ants의 제작에 소요된 재원

소요내역	양
총 프레임(정지화면) 수	119,592 개
주당렌더링에 소요된 시간	275,000 시간
평균 정지 프레임 크기	6 MB
렌더링에 사용된 실리콘 그래픽 서버 수	270 대
프로세싱에 사용된 데스크 탑 컴퓨터 수	166 대
프로세서 당 평균 메모리 용량	156MB
1개의 프로세서로 제작할 경우의 소요시간	약 54년
영화 저장을 위한 보조기억 장치 용량	3.2 TB
매 순간 온 라인으로 공유된 프레임 수	75,000 개

13

게임

- 캐릭터, 배경화면, 애니메이션
- 2차원 게임에서 3차원 게임으로 발전하고 있음
- 사용자와 프로그램 사이의 상호작용에 대한 설계가 매우 중요함
- 상호작용<mark>에 걸리는 시간을</mark> 최소화
- 시장성 면에서 볼 때 무한한 가능성

(a) 3차원 게임 "Dead or Alive"

그래픽스 기술의 발전과정

- 1950년대
 - 컴퓨터 그래픽스의 대동기로 <u>수동적인 컴퓨터 그래픽스</u>가 주류
 - 문자를 이용해 원하는 그림을 그리고 라인프린터와 같은 출력장 치를 이용하여 단순히 출력하는 수준
 - Line printer, Teletype
 - CRT Monitor (MIT의 Whirlwind 컴퓨터)

1960년대

1960	William Fetter	"컴퓨터 그래픽"이란 용어를 최초로 사용
1963	Ivan Sutherland	컴퓨터 그래픽의 제반개념을 확립
1963	Douglas Englebart	최초의 마우스 프로토타입
1965	Jack Bresenham	선분 그리기 <u>알고리즘</u> 을 개발

66년생 (১৫৫৯ এ৭৪)

- 그래픽스(산업의 태동기
- Ivan Sutherland의 drawing system (MIT, 1963)
 - CRT와 Light pen 사용했으며, 현대 대화형 그래픽스의 시초
- DVST(Divert View Storage Tube)를 이용한 CAD시스템 (1960년대 말)
- Tektronix 4010

21

1960년대

- 이반 서더런드(Ivan Sutherland)
 - 컴퓨터 그래픽의 창시자
 - 대화형 컴퓨터 그래픽 개념: 라이트 펜으로 의사전달
 - 최초의 상호대화식 그래픽스 시스템 스케치패드(1963년)
 - _ 직선, 원호 등 기본적 그래픽 요소를 사용하여 물체를 표현하는 방법
 - 기본물체를 조합하여 큰 물체를 모델링한다는 계층구조 모델링
 - 물체를 선택하여 이동하는 방법
 - 팝업 메뉴에 의한 사용자 입력

22

컴퓨터그래픽스및실습

1장. 컴퓨터 그래픽스 개요

1970년대

• 그래픽 알고리즘의 시기

[표 1-3] 1970년대 사건

1971	Gouraud	구로 셰이딩 알고리즘
1973	John Whitney Jr.	컴퓨터 그래픽에 의한 최초의 영화 "West World"
1974	Edwin Catmuff	텍스쳐 매핑, 지-버퍼 알고리즘
1974	Bui-Tong Phong	전반사에 의한 하이라이트 알고리즘
1975	Martin Newell	베지어 표면 메쉬를 사용한 차 주전자 모델
1975	Benoit Mandelbrot	프랙탈이론
1976	Jim Blinn	주변 매핑, 범프 매핑 이론
1977	Steve Wozniak	컬러 그래픽 PC: Apple II
1977	Frank Crow	앤티 에일리어싱 알고리즘
1979	Kay, Greenberg	최초로 투명한 물체 면을 그려냄

- 벡터 그래픽스 장치가 주종인 시기
- CAD 시스템이 사용되기 시작 : 예) 비행기 제조회사
- Raster Display Monitor(Raster-Scan Monitor)의 개발

23

1980년대

[그림 1-24] Luxo Junior

[그림 1-25] Tin Toy

1980	Turner, Whitted	광선 추적 알고리즘
1982	Steven Lisberger	3차원 그래픽 애니메이션 "Tron"
1982	John Walkner, Dan Drake	"AutoCAD"
1983	Jaron Lanier	데이터 장갑을 사용한 가상현실 영화
1985	Pixar	"Luxo Junior"
1985	NES	가정용게임 "Nintendo"
1986	Steve Jobs	Lucasfilm사의 Pixar 그래픽 그룹을 인수
1987	IBM	VGA 그래픽 카드
1989	IBM	SVGA 그래픽 카드
1989	Pixar	"Tin Toy" 아카데미상 수상

[표 1-4] 1980년대 사건

24

- 레스터 그래픽스가 일반화 됨 (Raster-Scan Monitor)
 - Mac, GKS(1985), PHIGS(1988)
- Special purpose hardware 개발
 - Silicon Graphics geometry engine
 - VLSI implementation of graphics pipeline
- Color Graphics와 광선 추적법(Ray Tracing)이 제안됨
- 다양한 HCl(Human-Computer Interaction) 기술이 발전
 - Window, Menu, Icon, Mouse, 등
- Graphics Art가 나타남.
- 출판업에 WYSIWYG (What You See Is What You Get) 개념이 나타남

25

1990년대

• <u>사실적(Photo-realistic) 그래픽</u> 영상에 주력

[그림 1-26] NVIDIA GeForce 256

1990	Pixar: Hanrahan, Lawson	렌더링 소프트웨어 "Renderman" 개발
1990	Gary Yost	3-D Studio 개발
1991	Disney and Pixar	"Beauty and the Beast"
1992	Silicon Graphics	openGL 사양 발표
1993	Steven Spielberg	"Jurassic Park"
1995	Pixar	"Toy Story"
1995	Microsoft	DirectX API 사양 발표
1996	John Carmack, Michael Abrash	Quake 그래픽 엔진 개발
1999	NVIDIA	GeForce 256 GPU

[표 1-5] 1990년대 사건

26

- 영화, 광고, 게임, 시뮬레이션 등 다양한 분야에 활발히 활용됨
- 3차원 그래픽 가속기(Graphics Accelerator)
 - - Texture mapping, Blending, Accumulation, stencil buffers등
 - - Parallel Processor, Pipe-line Architecture
- 3D 그래픽스가 발전하고 <u>3D UI 기술</u>에 발전함
- 가상현실의 등장 및 인터넷 시대의 시작(VRML)

[그림 1-26] NVIDIA GeForce 256

27

2000년대

- 고속, 고품질의 <u>렌더링</u>이 가능해 지며, 실시간 <u>렌더링기</u> 술이 발전함
- 물체의 사실감과 자연스러움을 증가시키는 그래픽스 기술이 발전
- <u>비사실적 렌더링(Non-Photorealistic rendering)</u> 기술이 활용됨
- 모바일 환경 및 무선 환경: PDA, 휴대폰, 스마트폰 등
- 가상환경에서의 3차원 아바타 활용이 활발해 짐
- 증강현실 기술의 활용

1.2 모델링과 렌더링

- 모델링과 렌더링 3차원
 - 그래픽스를 이용해 영상을 만드는 과정
 - 다양한 모델링 기법들
 - 3D 그래픽 파이프라인과 영상이 만들어지는 과정
 - 2차원 그래픽스

31

3D 그래픽스를 이용해 영상을 만드는 과정

- 모델링(Modeling)
 - 물체의 형태를 3차원 좌표계에서 표현하는 과정
 - 일반적으로 고도로 대화적이며, 상세한 이미지 작업 필요하지 않으며, 보통 그래픽 워크스테이션에서 실행됨 선택성
 - 3차원 스캔에 의해서도 모델링이 가능함
 - Wireframe 모델, Polygon(Surface) 모델, Solid 모델 등 + 스캐너
- 렌더링(Rendering)
 - 3차원 객체를 2차원 화면에 투영하고 투영된 물체의 면에 색상과 명암의 변화와 같은 <u>3차원적인 질감을 더해 현실감을</u> 추가하는 과정
 - 방대한 계산 과정이 필요. 계산 전용 컴퓨터에서 실행됨
 - Hidden Surface Removal, Shading, Texture Mapping, Shadow, Ray Tracing 등

(3) Solid Model

- 솔리드 모델은 물체의 내부와 외부의 구분이 가능
- CSG(Constructive Solid Geometry)
- 체적을 가진 기본 원소들을 더하거나 빼는 등의 연산을 통해 모델을 표현 + -
- 표면 모델로 변환해야 최종적으로 렌더링할 수 있다.

• 물체의 기하학적인 형상을 모델링(Modeling)

- 3차원 물체를 2차원 평면에 투영(Projection)
 평형 투영법과 원근 투영법
- 생성된 3차원 물체에 색상과 명암을 부여(Rendering)

41

- 색상과 명암의 변화와 같은 3차원적인 질감을 더하여 현실감을 추 가하는 과정
- 은면의 제거(Hidden Surface Removal)
- 쉐이딩(Shading), 텍스쳐 매핑 (Texture Mapping), 그림자(Shadow)
- 광선추적법(Ray Tracing)

(a) 3차원 물체의 모델링

(b) 은면의 제거

(c) 쉐이딩 격괴

(a) 와이어프레임 모

적법의 결과

2차원 그래픽스

- 점, 선, 원, 곡선 등과 같은 기본 도형을 이용하여 <u>2차원</u> 평면상에 그림
- 결과물을 픽셀의 형태로 표현: 각 픽셀은 <u>적색(Red)</u>, 녹색 (Green), 청색(Blue)의 농도 값을 배합
- '• 벡터 그래픽(Vector Graphics)
- 래스터 그래픽(Raster Graphics)

43

벡터 그래픽(Vector Graphics)

- 그래픽에 사용된 객체들을 수학적 함수로 표현하여 기억 공간에 저 장하는 방식
- 파일의 크기가 래스터 그래픽 방식으로 저장한 것보다(작음)
- 기하적 객체를 수식의 형태로 표현하므로 화면 확대시에도 화질의 변화가 없음 (X) 등에 행동

SVG로 작성된 그래픽스 명령문과 그 수행결과

44

1.3 인간의 시각과 색 • 인간의 시각 시스템 • 가시광선의 이해

망막 빛을 감지하기 세포

- Cones (원추세포)
 - - 원추형으로 생겼으며 (wicolor)에 민감하게 반응함(color vision)
 - 상대적으로 덜 민감하여 어두운 곳에서는 구분이 어려움 밝은 곳에서의 시각을 담당함
- Rods (막대세포) 4강은 막대세당) 생각에 본다 더 당하
 - 막대와 같이 생겼으며 밝기(intensity)에 민감하게 반응함(gray-vision)
 - 매우 민감하며 어두운 곳에서도 민감하게 반응하여 야간 시각을 담당함. 어두운 곳에서 물체의 색은 감지가 안되지만 형태는 잘 파악할 수 있음.

컴퓨터그래픽스및실습 1장. 컴퓨터 그래픽스 개요

・ 색상(Hue) - 전자기파 에너지의(평균(mean)을 나타내는 주파수 - 왼쪽 그림은 blue, green, yellow의 에너지 분포의 예 채도 - 에너지 분포의(분산(variation)) - 분산이 달면 채도가 낮고, 분산이 작으면 채도가 높아진다. 명도(Brightness) - 에너지 분포의 면적이 넓으면 밝은 및 제도(Baturation) 제도 (Saturation) Wavelength(nm) Wavelength(nm)

1.4 컬러 모델

- CIE, 색범주
- RGB, CMY, CMYK, YUV, ...
- RGB 컬러모드/인덱스 컬러모드
- 하프 토우닝, 디더링

55

컬러 매칭• 580nm 황색 = 적색(0.25) + 녹색(0.13) + 청색광원(0.0) • 500nm 근처: 적색은(음의 값?? - G, B를 합성한 색상에서 전색 성분을 빼야 함. - 현실적으로 불가능 → RGB로 모든 자연색 표현 불가 정색광원 지원 전체 경원 지원 전체 경원 지원 경우 지원 경우

컴퓨터그래픽스및실습 1장. 컴퓨터 그래픽스 개요

Color lookup table CLUT

- 한 화면에 보일 수 있는 컬러는 여전히 8가지
- 그 컬러가 어디서 왔는가의 문제

프레임버퍼 (RGB)	보기표 (R)	보기표(G)	보기표(G)
000(0)	00011100	11000000	10010011
001(1)	11001001	00010100	01011100
010(2)	10010000	10010011	00010101
011(3)	00110001	00111001	00110000
100(4)	11110101	01010011	11001111
101(5)	01011000	10110100	10110101
110(6)	00100011	01010101	01011100
111(7)	10111100	11111100	11111001

[표 3-3] 컬러 보기표의 예

