Online Contextual System Tuning with Bayesian Optimization and Workload Forecasting

Candidato: Luca Moroldo

Supervisore: Prof. Nicola Ferro Co-Supervisore: Stefano Cereda

21 Feb. 2022

Contesto

 Akamas ottimizza sistemi informatici, suggerendo configurazioni x che minimizzano/massimizzano una funzione obiettivo:

$$\boldsymbol{x}^{\star} = \operatorname*{argmax}_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x})$$

- La configurazione ottimale dipende dal carico di lavoro
- Esempi applicativi:
 - o minimizzare il tempo di risposta
 - massimizzare il throughput
 - o minimizzare i costi a parità di qualità dei servizi
- Akamas si basa su Ottimizzazione Bayesiana con Processi Gaussiani

Obiettivo

- Portare Akamas ad ottimizzare direttamente il sistema di produzione mentre viene utilizzato dai clienti
- Rimuovendo la necessità di replicare un contesto verosimile del sistema (replica e carico di lavoro)

Conseguenza: minore sforzo nell'applicare Akamas, che diventa più flessibile.

Rischi: sperimentare nuove configurazioni sul sistema mentre viene utilizzato può rovinare l'esperienza utente.

Approccio

La soluzione ha previsto lo sviluppo di 3 moduli che si integrano con l'ottimizzatore:

- Un modulo di **predizione del carico di lavoro**
- Un modulo di verifica della stabilità

 Un modulo di caratterizzazione del carico di lavoro

Predizione del carico e stabilità

Il carico di lavoro è descritto da una o più serie temporali (e.g. richieste al minuto).

Sono stati utilizzati due modelli di predizione, perfezionati per fare predizioni con un orizzonte di < 1 ora:

- **Prophet**: utilizza tecniche tradizionali (GAM e serie di Fuorier).
- **DeepAR**: utilizza reti neurali, è basato su Sequence to Sequence (S2S) con celle LSTM.

La verifica di stabilità è svolta con algoritmi deterministici parametrizzati da una soglia, i quali implementano la funzione di "stabilità":

$$s_{\Theta}(\tilde{Y}_{t_1:t_2}, Y_{t_0:t_1}) = \wedge_{i=1}^n s_{\Theta}(\tilde{\boldsymbol{y}}_{t_1:t_2}^i, \boldsymbol{y}_{t_0:t_1}^i)$$

Predizione richieste/min DeepAR (rosso)

Finestre stabili (verde)

Caratterizzazione del carico di lavoro

Il carico di lavoro è caratterizzato automaticamente tramite tecniche di clustering.

Due metodologie:

- K-means con punteggio Silhouette per determinare automaticamente il numero di cluster.
- Mean shift con k-nearest neighbors per determinare automaticamente la larghezza di banda.

Mean shift clustering delle richieste al minuto (un colore per cluster)

Esperimenti

La soluzione mira a:

- Massimizzare il Cumulative Reward (CR), che misura la capacità dell'ottimizzatore nel suggerire configurazioni in accordo con il carico di lavoro.
- Minimizzare il numero di Failures (F), causate da inabilità del sistema nel servire le richieste o da violazioni di vincoli (e.g. tempo di risposta superiore a 15ms).

La soluzione è stata verificata con 20 scenari che ottimizzano 2 modelli di DBMS (MongoDB e Cassandra).

Scenario: minimizzare l'utilizzo della memoria di MongoDB mantenendo il tempo di risposta < 10ms.

Nota: l'ottimizzazione inizia all'iterazione ~2000.

DBMS	F. obiettivo	Vincolo	Ottimizzatore	CR	F
MongoDB	min(memoria)	< 9ms latenza	Default cfg.	0	3.5%
			No predizione	71%	3%
	•		Prophet	61%	2.5%
			DeepAR	76%	2.4%
MongoDB	min(memoria)	< 10ms latenza	Default cfg.	0	6.0%
			No predizione	47%	2.7%
			Prophet	32%	2.9%
			DeepAR	45%	1.7%
Cassandra	min(latenza)	< 1.9 GB memoria	Default cfg.	0	0
			No predizione	24.4%	1.0%
			Prophet	21%	0.7%
			DeepAR	24%	0.8%
Cassandra	min(latenza)	< 1.9 GB memoria	Default cfg.	0	0
			No predizione	43%	0.6%
			Prophet	40%	<0.1%
			DeepAR	45%	0.1%

Conclusioni e sviluppi futuri

- Gli ottimizzatori sviluppati sono stati sempre capaci di **trovare buone configurazioni** che migliorano le performance rispetto alla configurazione di base.
- L'utilizzo di modelli predittivi ha reso il processo di ottimizzazione più sicuro in termini di fallimenti e violazione dei vincoli imposti sul sistema.

Sviluppi futuri:

- Usare i moduli di predizione per **applicare proattivamente la migliore configurazione** trovata per il futuro carico di lavoro.

Grazie per l'attenzione!