Computer Networks (01)

An Introduction

lijt@fudan.edu.cn

Some slides from Jim Kurose

Introduction

Our goal:

- get "feel" and terminology
- more depth, detail later in course
- □ approach:
 - use Internet as example

Overview:

- what's the Internet
- what's a protocol?
- network edge
- network core
- access net, physical media
- □ Internet/ISP structure
- performance: loss, delay
- protocol layers, service models
- network modeling

Course Non-goals

Learn how to configure a Router

- That requires a class all by itself
- Huawei/Cisco teaches those classes
- Our perspective will be broader

□ Become "Internet Experts"

- The Internet will be our frequent motivating example
- Our perspective will be broader
- Focus on Internet, but understand important common issues and challenges

Why not an "Internet class"?

☐ Is there anything other than the Internet?

Give two examples?

Course Goals

- □ Think "the network way"
 - Distributed coordination is hard
- Learn how computer networks work
 - Problems, approaches, protocols, software
- Learn how to write network applications
- Hands-on understanding of network internals
 - Course Projects

What Is a Network?

- Collection of nodes and links that connect them
- □ This is vague. Why? Consider different networks:
 - Internet
 - Social networks
 - * Telephone
 - * Others
 - transport nets, sensor nets, cellular nets, ...

What is a Computer Network

- □ Interconnected;
- Autonomous;
- Collection.

```
Abstraction:
End system +Link +Switching node
Host + Link + Router (for Internet)
```

How to Draw a Computer Network

Building block: The Links

- □ Electrical questions
 - * Voltage, frequency, ...
 - Wired or wireless?
- □ Link-layer issues: How to send data?
 - When to talk can everyone talk at once?
 - What to say low-level format?
 - Stay tuned for Chapter 5
- Okay... what about more nodes?

□ ... But what if we want more hosts?

Wires for everybody!

Scalability?!

Scalability: how to solve?

□ ... But what if we want more hosts?

Multiplexing!

Need to share network resources

- □ How? Switched network
 - Party "A" gets resources sometimes
 - Party "B" gets them sometimes
- □ Interior nodes act as "Routers" or "Switches"
- What mechanisms can share resources?

Review:

- Layering
 - Abstraction
 - * OSI vs. TCP/IP
- □ Control plane and Data Plane
 - * Design considerations
- Basic Model for computer networks

End system +Link +Switching node

Networks Juggle Many Goals

- □ Efficiency resource use; cost
- ☐ The "ilities":
 - Evolvability
 - Managability
 - Security (securability, if you must)
 - * Ease of:
 - Creation
 - Deployment
 - · Management
 - Creating useful applications
 - Scalability

A Protocol for Packet Network Interconnection. Vinton Cerf and Bob Kahn The Design Philosophy of the DARPA Internet Protocols. David D. Clark

Roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network access and physical media
- 1.5 Internet structure and ISPs
- 1.6 Delay & loss in packet-switched networks
- 1.7 Protocol layers, service models
- 1.8 History

What's the Internet: "nuts and bolts" view

millions of connected computing devices:
hosts

running network apps

- fiber, copper, radio, satellite
- transmission rate: bandwidth

* routers: forward packets (chunks of data)

What's the Internet: "nuts and bolts" view

- protocols control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, Ethernet
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - * RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- communication
 infrastructure enables
 distributed applications:
 - Web, VoIP, email, games, e-commerce, file sharing
- communication services provided to apps:
 - reliable data delivery from source to destination
 - "best effort" (unreliable) data delivery

Introduction

What's the Internet: a service view

What's a protocol?

a human protocol and a computer network protocol:

Q: Other human protocols?

What's a protocol?

<u>human protocols:</u>

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

<u>network protocols:</u>

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

Introduction: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network access and physical media
- 1.5 Internet structure and ISPs
- 1.6 Delay & loss in packet-switched networks
- 1.7 Protocol layers, service models
- 1.8 History

A closer look at network structure:

- network edge: applications and hosts
- □ network core:
 - * routers
 - network of routers
- access networks, physical media:
 - communication links
 - * routers

The network edge:

end systems (hosts):

- run application programs
- * e.g. Web, email
- * at "edge of network"

client/server model

- client host requests, receives service from always-on server
- e.g. Web browser/server;email client/server

peer-peer model:

- minimal (or no) use of dedicated servers
- e.g. Skype, BitTorrent, KaZaA

Network edge: connection-oriented service

- *Goal:* data transfer between end systems
- handshaking: setup (prepare for) data transfer ahead of time
 - Hello, hello back human protocol
 - * set up "state" in two
 communicating hosts
- TCP TransmissionControl Protocol
 - Internet's connectionoriented service

TCP service [RFC 793]

- reliable, in-order bytestream data transfer
 - loss: acknowledgements and retransmissions
- flow control:
 - sender won't overwhelm receiver
- congestion control:
 - senders "slow down sending rate" when network congested

Network edge: connectionless service

Goal: data transfer between end systems

- * same as before!
- UDP User Datagram Protocol [RFC 768]:
 - connectionless
 - unreliable data transfer
 - * no flow control
 - no congestion control

App's using TCP:

□ HTTP (Web), FTP (file transfer), Telnet (remote login), SMTP (email)

App's using UDP:

 streaming media, QQ, teleconferencing, DNS, Internet telephony

Introduction: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network access and physical media
- 1.5 Internet structure and ISPs
- 1.6 Delay & loss in packet-switched networks
- 1.7 Protocol layers, service models
- 1.8 History

The Network Core

- mesh of interconnected routers
- the fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

Network Core: Circuit Switching

- network resources (e.g., bandwidth) divided into "pieces"
- pieces allocated to calls
- resource piece idle if not used by owning call (no sharing)

- dividing link bandwidth into "pieces"
 - frequency division
 - * time division

Circuit Switching: FDM and TDM

More Examples

GSM (a single cell)

□ 4 Carriers

--FDM

■ 8 time slots for each carrier --TDM

	0	1	2	3	4	5	6	7
TRX 1	CCH*	SDCCH/8	тсн	тсн	тсн	тсн	тсн	тсн
TRX 2	тсн	тсн	тсн	тсн	тсн	тсн	тсн	тсн
TRX 3	тсн	тсн	тсн	тсн	тсн	тсн	тсн	тсн
TRX 4	тсн	тсн	тсн	тсн	тсн	тсн	тсн	тсн

T1/DS1 (Digital Signal Designator)

- □ In the T1 system, voice or other analog signals are sampled 8,000 times a second and each sample is digitized into an 8-bit word.
- With 24 channels being digitized at the same time, a 192-bit/slot frame (24 channels each with an 8bit word) is thus being transmitted 8,000 times a second.
- Each frame is separated from the next by a single bit, making a 193-bit block. The 192 bit frame multiplied by 8,000 and the additional 8,000 framing bits make up the T1's 1.544 Mbps data rate.

T1 Frame Format

1 bit	8 bits	8 bits	8 bits		8 bits
F	DS0 #1	DS0 #2	DS0 #3	* * *	DS0 #24

- Each DS0 called a time slot
- 8000 frames/sec * 8 bits/slot = 64 Kbps
- 24 * 8 + 1 = 193 bits/frame
- 8000 frames/sec * 193 bits/frame = 1.544 Mbps
- 8000 Framing bits sent per second

Transmission Rates

Digital Signal Designator	Data Rate	DS0 Multiple	T-Carrier
DS0	64 Kbps	1	-
DS1	1.544 Mbps	24	T1
DS3	44.736 Mbps	672	Т3
OC3	155.52 Mbps		Optical Carrier
OC12	622.08 Mbps		
OC192	10 Gbps		
OC256	13.271 Gbps		
OC768	40 Gbps		

Numerical example

- □ How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
 - All links are 1.536 Mbps
 - Each link uses TDM with 24 slots/sec
 - 500 msec to establish end-to-end circuit

Let's work it out!

Numerical example

- □ How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
 - All links are 1.536 Mbps
 - Each link uses TDM with 24 slots/sec
 - 500 msec to establish end-to-end circuit

Let's work it out! (10.5sec)

Network Core: Packet Switching

each end-end data stream divided into *packets*

- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed

Bandwidth division into "pieces"

Dedicated allocation

Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packetsqueue, wait for link use
- store and forward: packets move one hop at a time
 - Node receives complete packet before forwarding

Packet Switching: Statistical Multiplexing

Sequence of A & B packets does not have fixed pattern, shared on demand \Rightarrow statistical multiplexing.

TDM: each host gets same slot in revolving TDM frame.

Packet switching versus circuit switching

Is packet switching a "winner?"

- Great for bursty data
 - * resource sharing
 - * simpler, no call setup
- □ Excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (known as "QoS")

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?

Packet-switching: store-and-forward

- Takes L/R seconds to transmit (push out) packet of L bits on to link at R bps
- □ Entire packet must arrive at router before it can be transmitted on next link: store and forward
- delay = 3L/R (assuming zero propagation delay)

Example:

- □ L = 7.5 Mbits
- □ R = 1.5 Mbps
- delay = 15 sec

more on delay shortly ...

Packet-switched networks: forwarding

- Goal: move packets through routers from source to destination
 - we'll study several path selection (i.e. routing) algorithms (chapter 4)
- datagram network:
 - destination address in packet determines next hop
 - routes may change during session
 - analogy: driving, asking directions
- virtual circuit network:
 - each packet carries tag (virtual circuit ID), tag determines next hop
 - fixed path determined at call setup time, remains fixed thru call
 - * routers maintain per-call state

Network Taxonomy

- Datagram network is <u>not</u> either connection-oriented or connectionless.
- Internet provides both connection-oriented (TCP) and connectionless services (UDP) to apps.

Introduction: roadmap

- 1.1 What is the Internet?
- 1.2 Network edge
- 1.3 Network core
- 1.4 Network access and physical media
- 1.5 Internet structure and ISPs
- 1.6 Delay & loss in packet-switched networks
- 1.7 Protocol layers, service models
- 1.8 History

Access networks and physical media

- Q: How to connect end systems to edge router?
- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Residential access: point to point access

- Dialup via modem
 - up to 56Kbps direct access to router (often less)
 - Can't surf and phone at same time: can't be "always on"

- ADSL: asymmetric digital subscriber line
 - * FDM: 50 kHz 1 MHz for downstream
 - 4 kHz 50 kHz for upstream
 - 0 kHz 4 kHz for ordinary telephone

Access net: digital subscriber line (DSL)

- * use existing telephone line to central office DSLAM
 - · data over DSL phone line goes to Internet
 - · voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)</p>
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)</p>

Access net: cable network

frequency division multiplexing: different channels transmitted in different frequency bands

Residential access: cable modems

- □ HFC: hybrid fiber coax
 - asymmetric: up to 30Mbps downstream, 2
 Mbps upstream
- network of cable and fiber attaches homes to ISP router
 - homes share access to router
- deployment: available via cable TV companies

Enterprise access nets: local area networks

- company/univ local area network (LAN) connects end system to edge router
- □ Ethernet:
 - shared or dedicated link connects end system and router
 - 10 Mbps, 100Mbps, Gigabit Ethernet

Enterprise access networks

- 10 Mbps, 100Mbps, 1Gbps, 10Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (50 m)
- 802.11b/g/n (WiFi): 11, 54, 540Mbps transmission rate

wide-area wireless access

- provided by telco (cellular) operator, 10's Km
- between I and X00 Mbps
- 3G, 4G, LTE, WiMax

Home networks

- router/firewall/NAT
- Ethernet

Typical home network components:

- wireless access point
- ADSL, cable modem, or FTTH (eg. EPON)

Physical Media

Physical Media

- Bit: propagates between transmitter/rcvr pairs
- physical link: what lies
 between transmitter &
 receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps
 Ethernet
 - Category 5:100Mbps Ethernet1 Gpbs Ethernet
 - Category 6: 10Gbps

Physical Media: coax, fiber

Coaxial cable:

- two concentric copper conductors
- bidirectional
- baseband:
 - * single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - * HFC

Fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10's-100's Gps)
- □ low error rate: repeaters spaced far apart; immune to electromagnetic noise

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - * reflection
 - obstruction by objects
 - * interference

Radio link types:

- □ terrestrial microwave
 - e.g. up to 45 Mbps channels
- □ LAN (e.g., Wifi)
 - 11Mbps, 54 Mbps, 540Mbps...
- wide-area (e.g., cellular)
 - e.g. 3G: ~2Mbps; 4G: 1xxMbps
- satellite
 - Kbps to 45Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude