Circular Técnica & 12

Londrina, PR agosto, 2015

Autores

Cláudia V. Godoy, D.Sc.
Engª Agrônoma,
Embrapa Soja, Londrina, PR,
claudia.godoy@embrapa.br

Carlos M. Utiamada, Eng. Agrônomo, TAGRO, Londrina, PR, carlos.utiamada@tagro.com.br

Maurício C. Meyer, D.Sc. Eng. Agrônomo, Embrapa Soja, Santo Antônio de Goiás, GO, mauricio.meyer@embrapa.br

Hercules D. Campos, D.Sc. Eng. Agrônomo, UniRV, Rio Verde, GO, campos@unirv.edu.br

Carlos A. Forcelini, Ph.D. Eng. Agrônomo, Universidade de Passo Fundo, Passo Fundo, RS, forcelini@upf.br

Cláudia B. Pimenta, M.Sc. Engª Agrônoma, Emater-GO, Goiânia, GO, claudiabpimenta@hotmail.com

Eficiência de fungicidas multissítios e fertilizantes no controle da ferrugemasiática da soja, *Phakopsora pachyrhizi*, na safra 2014/15: resultados sumarizados dos ensaios cooperativos

As doenças que incidem na cultura da soja representam uma das principais ameaças à produtividade e competitividade nacional. As perdas anuais de produção por doenças são estimadas em cerca de 15% a 20% (TECNOLOGIAS, 2013). A utilização de fungicidas para o controle de doenças na cultura iniciou com o surto epidêmico de oídio (*Microsphaera diffusa*), na safra 1996/97. Posteriormente, o aumento da incidência das doenças de final de ciclo (*Septoria glycines* e *Cercospora kikuchii*), principalmente em função do cultivo intensivo e da ausência de rotação de culturas, também demandaram o registro de fungicidas (TECNOLOGIAS, 2013). Com o surgimento da ferrugem-asiática (*Phakopsora pachyrhizi*), no Brasil, em 2001 (YORINORI et al., 2005), novos produtos foram registrados. Entre outras doenças também controladas por fungicidas, podese citar a mancha-alvo (*Corynespora cassiicola*), a antracnose (*Colletotrichum truncatum*), o mofo-branco (*Sclerotinia sclerotiorum*) e a mela (*Rhizoctonia solani* AG1).

Dentre os principais modos de ação utilizados no controle de doenças na cultura da soja destacam-se os Metil Benzimidazol Carbamato (MBCs), os Inibidores de Desmetilação (DMIs), os Inibidores de Quinona Oxidase (QoIs) e, mais recentemente, a nova geração de moléculas Inibidoras da Succinato Desidrogenase (SDHIs). Apesar da grande contribuição que os fungicidas sistêmicos, sítio-específicos, proporcionam no controle de doenças, seu uso intensivo pode ter como consequência a seleção de isolados de fungos menos sensíveis ou resistentes. Populações do fungo *C. cassiicola* resistentes a MBC e de *P. pachyrhizi* menos sensíveis a DMI têm sido relatadas (XAVIER et al., 2013; SCHMITZ et al., 2014).

O número limitado de modos de ação de fungicidas disponíveis para controle de doenças na cultura da soja, associado a populações menos sensíveis de fungos já observadas no campo, e a baixa eficiência de ingredientes ativos isolados, dificultam a utilização de estratégias de manejo de resistência como a rotação de modos de ação. A avaliação da eficiência de fungicidas com diferentes modos de ação é essencial para aumentar as opções de controle de doenças na cultura da soja. O objetivo deste trabalho é apresentar os resultados sumarizados dos ensaios cooperativos com fungicidas multissítios e fertilizantes, realizados na safra 2014/15, para controle de doença na cultura da soja.

Material e Métodos

Com o objetivo de avaliar a eficiência dos fungicidas multissítios e fertilizantes, isolados e associados, foram realizados dois protocolos, na safra 2014/15, por 18 instituições em 19 locais (Tabela 1).

Tabela 1. Instituições, locais e datas de semeadura da soja.

	· · ·	•	
Ins	tituição	Município, Estado	Semeadura
1.	Universidade Estadual de Ponta Grossa	Ponta Grossa, PR	26-nov-14
2.	IMAmt / UFMT	Primavera do Leste, MT	8-dez-14
3.	Fundação Chapadão	Chapadão do Sul, MS	28-nov-14
4.	CWR Pesquisas Agrícola Ltda.	Palmeira, PR	5-nov-14
5.	UniRV	Rio Verde, GO	1-dez-14
6.	Agrodinâmica	Deciolândia, MT	16-nov-14
7.	Embrapa Soja	Londrina, PR	6-dez-14
8.	Agro Carregal Pesquisa e Proteção de Plantas	Rio Verde, GO	10-dez-14
9.	Fundação Mato Grosso	Campo Novo do Parecis, MT	11-nov-14
10	. Fundação Mato Grosso	Campo Verde, MT	13-nov-14
11	. Fundação Mato Grosso	Pedra Preta, MT	7-dez-14
12	. Fundação Mato Grosso	Primavera do Leste, MT	11-nov-14
13	. Círculo Verde	Luís Eduardo Magalhães, BA	3-dez-14
14	. Tagro	Mauá da Serra, PR	1-dez-14
15	. Universidade Federal de Uberlândia	Uberlândia, MG	3-dez-14
16	. Instituto Phytus	Santa Maria, RS	6-dez-14
17	. Instituto Biológico	Paulínia, SP	9-dez-14
18	. CTPA/ Emater	Senador Canedo, GO	24-nov-14
19	. Universidade de Passo Fundo	Passo Fundo, RS	26-nov-14

O primeiro protocolo foi realizado com os fungicidas multissítios e fertilizantes isolados (Tabela 2) e o segundo com os produtos utilizados em associação aos fungicidas piraclostrobina + epoxiconazol 66,5 + 25 g i.a. ha-1 (Opera®, BASF) e piraclostrobina + fluxapiroxade 116,55 + 58,45 g i.a. ha-1 (Orkestra SC®, BASF) (Tabela 3).

A lista de tratamentos (Tabelas 2 e 3), o delineamento experimental e as avaliações foram definidos com protocolo único, para a realização da sumarização conjunta dos resultados dos ensaios. Os fungicidas dos tratamentos 2 a 5, 8, 9, 12 a 14 (Tabela 2) apresentam registro no MAPA para controle de *Cercospora kikuchii* (tratamentos 2 a 5, 13 e 14), *Septoria glycines* (tratamentos 4, 5, 9, 13 e 14), *Corynespora cassiicola* (tratamentos 4, 5 e 14), *Phakopsora pachyrhizi* (tratamentos 12 a 14), *Sclerotinia sclerotiorum* (tratamentos 8 e 12), *Microsphaera diffusa* (tratamento 14), *Colletotrichum truncatum* (tratamento 14), *Rhizoctonia solani* (tratamento 14) e *Peronospora manshurica* (tratamento 9).

Daniel Cassetari Neto, D.Sc.

Eng. Agrônomo, Univ. Federal do Mato Grosso, Cuiabá, MT, cassetari@terra.com.br

David S. Jaccoud Filho, Ph.D.

Biólogo, Eng. Agrônomo, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, dj1002@uepg.br

Edson P. Borges, M.Sc.

Eng. Agrônomo, Fundação Chapadão, Chapadão do Sul, MS, edsonborges@fundacaochapadao.com.br

Edson R. de Andrade Junior, M.Sc.

Eng. Agrônomo, Instituto Mato-Grossense do Algodão, Cuiabá, MT, edsonjunior@imamt.com.br

Fabiano V. Siqueri,

Eng. Agrônomo, Fundação Mato Grosso, Rondonópolis, MT, fabianosiqueri@fundacaomt.com.br

Fernando C. Juliatti, D.Sc.

Eng. Agrônomo, Universidade Federal de Uberlândia, Uberlândia, MG, juliatti@ufu.br

José Nunes Junior D Sc

Eng. Agrônomo, Centro Tecnológico para Pesquisas Agropecuárias - CTPA, Goiânia, GO, nunes@ctpa.com.br

Luis Henrique C. P. da Silva, M.Sc.

Eng. Agrônomo, UniRV, Rio Verde, GO, lhcarregal@uol.com.br

Luiz Nobuo Sato,

Eng. Agrônomo, TAGRO, Londrina, PR, luiz.sato@tagro.com.br

Marcelo Madalosso, D.Sc.

Eng. Agrônomo, Instituto Phytus, Santa Maria, RS, marcelo.madalosso@iphytus.com

Mônica C. Martins, D.Sc, Engª Agrônoma,

Círculo Verde Assessoria Agronômica e Pesquisa, Luís Eduardo Magalhães, BA, monica.martins@circuloverde.com.br

Ricardo S. Balardin, Ph.D.

Eng. Agrônomo, Universidade Federal de Santa Maria, Santa Maria, RS, balardin@balardin.com

Silvânia H. Furlan, D.Sc., Engª Agrônoma,

Instituto Biológico, Campinas, SP, silvania@biologico.sp.gov.br

Valtemir J. Carlin,

Eng. Agrônomo, Agrodinâmica, Tangará da Serra, MT, valtemir@agrodinamica.net.br

Wilson Story Venâncio, D.Sc.

Eng. Agrônomo, CWR Pesquisa Agrícola Ltda/ Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, wsvenanc@uepg.br Os fungicidas dos tratamentos 7 e 10 apresentam Registro Especial Temporário (RET) III. Os produtos dos tratamentos 6 e 11 são registrados no MAPA como fertilizantes na cultura da soja.

O delineamento experimental foi blocos ao acaso com quatro repetições. Cada repetição foi constituída de parcelas com, no mínimo, seis linhas de cinco metros. As aplicações iniciaram-se no pré-fechamento das linhas de semeadura e os dois protocolos foram conduzidos na mesma área em cada local.

No primeiro protocolo (Tabela 2) foram realizadas cinco aplicações, com intervalo médio de 11 dias entre a primeira e a segunda aplicação, 11 dias entre a segunda e a terceira, 10 dias entre a terceira e a quarta e 9 dias entre a quarta e a quinta aplicação. No tratamento 14 (trifloxistrobina + protioconazol) foram realizadas três aplicações com intervalos médios de 23 e 14 dias após a primeira e a segunda aplicação, respectivamente.

No segundo protocolo (Tabela 3) foram realizadas três aplicações com intervalos médios de 21 e 15 dias após a primeira e a segunda aplicação, respectivamente.

Para a aplicação dos produtos foi utilizado pulverizador costal pressurizado com CO₂ e volume de aplicação mínimo de 120 L ha¹.

Foram realizadas avaliações da severidade e/ou incidência das doenças no momento da aplicação dos produtos; da severidade periodicamente e após a última aplicação; da desfolha quando a testemunha apresentou ao redor de 80% de desfolha; da produtividade em área mínima de 5 m² centrais de cada parcela e do peso de 1000 grãos.

Para a análise conjunta, foram utilizadas as avaliações da severidade, realizadas entre os estádios fenológicos R5 (início de enchimento de grãos) e R6 (vagens com 100% de granação) e da produtividade.

Foram realizadas análises de variância exploratória, para cada local. Nas análises individuais foram observados o quadrado médio residual, o coeficiente de variação, o coeficiente de assimetria, o coeficiente de curtose, a normalidade da distribuição de resíduos (SHAPIRO; WILK, 1965), a aditividade do modelo estatístico (TUKEY, 1949) e a homogeneidade de variâncias dos tratamentos (BURR; FOSTER, 1972). O teste de comparações múltiplas de médias de Tukey (p=0,05) foi aplicado à análise conjunta, a fim de se obter grupos de tratamentos com efeitos semelhantes. Todas as análises foram realizadas em rotinas geradas no programa SAS® versão 9.1.3. (SAS/ STAT, 1999).

Tabela 2. Ingrediente ativo (i.a.), produto comercial (p.c.) e dose dos fungicidas e fertilizantes nos tratamentos isolados para o controle de doenças na cultura da soja, safra 2014/15.

Tratamentos:		Dose	Produto comercial	Dose	
Ingrediente ativo (i.a.)		g i.a. ha ⁻¹	(p.c.)	l-kg p.c. ha ⁻¹	
1	testemunha	-		-	
2	oxicloreto de cobre	294	Difere®, Oxiquímica	0,5	
3	oxicloreto de cobre	588	Difere®, Oxiquímica	1	
4	mancozebe ¹	1125	Unizeb Gold®, UPL	1,5	
5	mancozebe ¹	1500	Unizeb Gold®, UPL	2	
6	sulfato de cobre ⁵	113,85	Cuproquart, Nortox	0,75	
7	propinebe ^{1,4}	1400	PNR, Bayer	2	
8	fluazinam ¹	500	Frowncide®, ISK	1)	
9	clorotalonil	1000	Bravonil 500®, Syngenta	2	
10	metiram ⁴	1050	PNR, BASF	1,5	
11	fosfonatos orgânicos/ác. carboxílicos/ fosfitos/Mn ^{2,5}	n.a.	Aminotec, Spraytec	0,2	
12	cloretos de etilbenzalcônio	50	Fegatex®, BR3	0,5	
13	azoxistrobina ³	50	Priori®, Syngenta	0,2	
14	trifloxistrobina + protioconazol ¹	60 + 70	Fox®, Bayer	0,4	

¹Adicionado Áureo 0,25%; ²adicionado Fulltec 50 mL ha¹; ³adicionado Nimbus 0,5% v/v; ⁴RET III. ⁵Registrado como fertilizantes. PNR - produto não registrado. n.a. - não se aplica.

Tabela 3. Ingredientes ativos (i.a.), produto comercial (p.c.) e dose dos fungicidas e fertilizantes avaliados em tratamentos associados para o controle de doenças na cultura da soja, safra 2014/15.

Ingrediente ativo (i.a.)		Dose	Produto comercial (p.c.)	Dose
		g i.a. ha ^{.1}		l-kg p.c. ha ⁻¹
1	testemunha	-	-	-
2	piraclostrobina + epoxiconazol ¹	66,5 + 25	Opera [®]	0,5
3	piraclostrobina + epoxiconazol¹ e oxicloreto de cobre	66,5 + 25 e 294	Opera® e Difere®	0,5 e 0,5
4	piraclostrobina + epoxiconazol ¹ e mancozebe	66,5 + 25 e 1125	Opera® e Unizeb Gold®	0,5 e 1,5
5	piraclostrobina + epoxiconazol¹ e sulfato de cobre⁴	66,5 + 25 e 113,85	Opera e Cuproquart	0,5 e 0,75
6	piraclostrobina + epoxiconazol¹ e propinebe³	66,5 + 25 e 1400	Opera® e PNR	0,5 e 2,0
7	piraclostrobina + epoxiconazol¹ e fluazinam	66,5 + 25 e 500	Opera® e Frowncide®	0,5 e 1,0
8	piraclostrobina + epoxiconazol ¹ e clorotalonil	66,5 + 25 e 1000	Opera® e Bravonil 500®	0,5 e 2,0
9	piraclostrobina + epoxiconazol¹ e metiram³	66,5 + 25 e 1050	Opera® e PNR	0,5 e 1,5
10	piraclostrobina + epoxiconazol² e fosfitos⁴	66,5 + 25 e n.a.	Opera® e Aminotec	0,5 e 0,33
11	piraclostrobina + epoxiconazol¹ e cloretos de etilbenzalcônio	66,5 + 25 e 50	Opera® e Fegatex®	0,5 e 0,5
12	piraclostrobina + fluxapiroxade ¹	116,55 + 58,45	Orkestra SC®	0,35
13	piraclostrobina + fluxapiroxade¹ e oxicloreto de cobre	116,55 + 58,45 e 294	Orkestra SC [®] e Difere [®]	0,35 e 0,5
14	piraclostrobina + fluxapiroxade ¹ e mancozebe	116,55 + 58,45 e 1125	Orkestra SC® e Unizeb Gold®	0,35 e 1,5
15	piraclostrobina + fluxapiroxade¹ e sulfato de cobre⁴	116,55 + 58,45 e 113,85	Orkestra SC® e Cuproquart	0,35 e 0,75
16	piraclostrobina + fluxapiroxade ¹ e propinebe ³	116,55 + 58,45 e 1400	Orkestra SC® e PNR	0,35 e 2,0
17	piraclostrobina + fluxapiroxade¹ e fluazinam	116,55 + 58,45 e 500	Orkestra SC® e Frowncide®	0,35 e 1,0
18	piraclostrobina + fluxapiroxade¹ e clorotalonil	116,55 + 58,45 e 1000	Orkestra SC® e Bravonil 500®	0,35 e 2,0
19	piraclostrobina + fluxapiroxade¹ e metiram³	116,55 + 58,45 e 1050	Orkestra SC® e PNR	0,35 e 1,5
20	piraclostrobina + fluxapiroxade² e fosfitos⁴	116,55 + 58,45 e n.a.	Orkestra SC® e Aminotec	0,35 e 0,33
21	piraclostrobina + fluxapiroxade¹ e cloretos de etilbenzalcônio	116,55 + 58,45 e 50	Orkestra SC® e Fegatex®	0,35 e 0,5

¹Adicionado Assist 0,5 I ha⁻¹; ²adicionado Fulltec 50 mL ha⁻¹ antes do Aminotec; ³RET III. ⁴Registrado como fertilizante. PNR – produto não registrado. n.a. – não se aplica.

Resultados e Discussão

A doença comum nos ensaios e que foi possível realizar a sumarização conjunta foi a ferrugem (*Phakopsora pachyrhizi*). No momento da primeira aplicação dos tratamentos, em 16 ensaios não havia sintomas de ferrugem e em três havia traços de ferrugem.

No protocolo com aplicação dos produtos isolados, as menores severidades foram observadas para o tratamento com três aplicações de trifloxistrobina + protioconazol 60 + 70 g i.a. ha-1 (T14 - 20,6%) (Tabela 4). Entre os multissítios, a menor severidade foi observada para o tratamento com mancozebe 1500 g i.a. ha-1 (T5 - 24,9%), seguido dos tratamentos com mancozebe 1125 g i.a. ha-1 (T4 - 31,2%), oxicloreto de cobre 588 g i.a. ha-1 (T3 - 32,7%), clorotalonil 1000 g i.a. ha-1 (T9 - 32,5%) e fluazinam 500 g i.a. ha-1 (T8 - 33%).

A correlação (r) da variável severidade com produtividade foi de -0,98 (p<0,001). A maior produtividade foi observada para o tratamento com três aplicações de trifloxistrobina + protioconazol 60 + 70 g i.a. ha-1 (T14 - 3363 kg ha-1). Entre os multissítios, a maior produtividade foi observada para os tratamentos com mancozebe 1500 g i.a. ha-1 (T5 - 3104 kg ha-1), mancozebe 1125 g i.a. ha-1 (T4 - 3016 kg ha-1), fluazinam 500 g i.a. ha-1 (T8 - 3020 kg ha-1) e clorotalonil 1000 g i.a. ha-1 (T9 - 3012 kg ha-1).

Na análise conjunta dos ensaios do protocolo dois, com associação dos protetores, foram eliminados os locais 1 e 5 para a variável severidade e local 1 para a variável produtividade, por não atenderem os pressupostos para realização da ANOVA. A severidade de todos os tratamentos foi inferior à da testemunha sem controle (T1 - 80,4%) (Tabela 5).

Tabela 4. Severidade da ferrugem, porcentagem de controle (C) em relação à testemunha sem fungicida, produtividade e porcentagem de redução de produtividade (RP) em relação ao tratamento com a maior produtividade, para os diferentes tratamentos. Média de 19 ensaios. Safra 2014/15.

Tratamento		Dose	Severidade	С	Produtividade	RP
Ingrediente ativo (i.a.)		g i.a. ha ⁻¹	(%)	(%)	kg ha ⁻¹	(%)
1	testemunha	-	80,1 A	-	2306 H	31
2	oxicloreto de cobre	294	42,8 F	47	2838 E	16
3	oxicloreto de cobre	588	32,7 IJ	59	2985 CD	11
4	mancozebe ¹	1125	31,2 J	61	3016 BC	10
5	mancozebe ¹	1500	24,9 K	69	3104 B	8
6	sulfato de cobre ⁵	113,85	44,8 E	44	2840 E	16
7	propinebe ^{1,4}	1400	37,9 H	53	2863 E	15
8	fluazinam ¹	500	33,0	59	3020 BC	10
9	clorotalonil	1000	32,5 IJ	59	3012 BCD	10
10	metiram ⁴	1050	40,5 G	49	2905 DE	14
11	fosfonatos orgânicos/ác. carboxílicos/fosfitos/Mn ^{2,5}	n.a.	71,1 B	11	2420 G	28
12	cloretos de etilbenzalcônio	50	68,6 C	14	2434 FG	28
13	azoxistrobina ³	50	62,5 D	22	2530 F	25
14	trifloxistrobina + protioconazol¹	60 + 70	20,6 L	74	3363 A	0
	C.V. %		7,4		6,8	

Médias seguidas de mesma letra, na coluna, não diferem entre si pelo teste de Tukey (p=0,05).¹Adicionado Áureo 0,25%; ²adicionado Fulltec 50 mL ha¹; ³adicionado Nimbus 0,5% v/v; ⁴RET III. ⁵Registrado como fertilizantes. PNR – produto não registrado. n.a. – não se aplica.

Tabela 5. Severidade da ferrugem, porcentagem de controle (C) em relação à testemunha sem fungicida, produtividade e porcentagem de redução de produtividade (RP) em relação ao tratamento com a maior produtividade, para os diferentes tratamentos. Média de 17 ensaios para severidade e 18 para produtividade. Safra 2014/15.

Tratamento	Dose	Severidade	С	Produtividade	RP
Ingrediente ativo (i.a.)	g i.a. ha ^{.1}	(%)	(%)	kg ha ⁻¹	(%)
1 testemunha	-	80,4 A	-	2268 J	32
2 piraclostrobina + epoxiconazol ¹	66,5 + 25	62,4 BC	22	2497 I	25
3 piraclostrobina + epoxiconazol ¹ e oxicloreto de cobre	66,5 + 25 e 294	44,1 F	45	2827 FG	15
4 piraclostrobina + epoxiconazol ¹ e mancozebe	66,5 + 25 e 1125	37,3 G	54	2920 EF	12
5 piraclostrobina + epoxiconazol ¹ e sulfato de cobre ⁴	66,5 + 25 e 113,85	46,6 EF	42	2780 GH	17
6 piraclostrobina + epoxiconazol ¹ e propinebe ³	66,5 + 25 e 1400	47,5 DE	41	2774 GH	17
7 piraclostrobina + epoxiconazol ¹ e fluazinam	66,5 + 25 e 500	49,1 D	39	2695 H	19
8 piraclostrobina + epoxiconazol ¹ e clorotalonil	66,5 + 25 e 1000	45,6 EF	43	2800 FGH	16
9 piraclostrobina + epoxiconazol ¹ e metiram ³	66,5 + 25 e 1050	44,2 F	45	2802 FGH	16
10 piraclostrobina + epoxiconazol ² e fosfitos ⁴	66,5 + 25 e n.a.	63,3 B	21	2549 I	23
11 piraclostrobina + epoxiconazol¹ e cloretos de etilbenzalcônio	66,5 + 25 e 50	60,7 C	24	2545 I	24
12 piraclostrobina + fluxapiroxade ¹	116,55 + 58,45	34,7 H	57	3079 CD	8
13 piraclostrobina + fluxapiroxade¹ e oxicloreto de cobre	116,55 + 58,45 e 294	29,1 I	64	3243 AB	3
14 piraclostrobina + fluxapiroxade ¹ e mancozebe	116,55 + 58,45 e 1125	25,7 J	68	3289 AB	1
15 piraclostrobina + fluxapiroxade ¹ e sulfato de cobre ⁴	116,55 + 58,45 e 113,85	30,2 I	62	3220 AB	3
16 piraclostrobina + fluxapiroxade ¹ e propinebe ³	116,55 + 58,45 e 1400	29,7 I	63	3224 AB	3
17 piraclostrobina + fluxapiroxade ¹ e fluazinam	116,55 + 58,45 e 500	26,1 J	68	3331 A	0
18 piraclostrobina + fluxapiroxade ¹ e clorotalonil	116,55 + 58,45 e 1000	28,2 IJ	65	3166 BC	5
19 piraclostrobina + fluxapiroxade ¹ e metiram ³	116,55 + 58,45 e 1050	28,1 IJ	65	3190 BC	4
21 piraclostrobina + fluxapiroxade ² e fosfitos ⁴	116,55 + 58,45 e n.a.	36,5 GH	55	2995 DE	10
20 piraclostrobina + fluxapiroxade¹ e cloretos de etilbenzalcônio	116,55 + 58,45 e 50	34,3 H	57	3040 DE	9
C.V. %		9,6		7,1	

Médias seguidas de mesma letra, na coluna, não diferem entre si pelo teste de Tukey (p = 0,05).¹Adicionado Assist 0,5 l ha⁻¹; ²adicionado Fulltec 50 mL ha⁻¹ antes do Aminotec; ³RET III. 4Registrado como fertilizante. PNR – produto não registrado. n.a. – não se aplica.

Para os tratamentos em aplicação associadas à piraclostrobina + epoxiconazol 66,5 + 25 g i.a. ha-1, somente a severidade dos tratamentos com fosfonatos orgânicos/ ácido carboxílicos/ fosfitos/ Mn (T10 - 63,3%) e cloretos de etilbenzalcônio (T11 - 60,7%) não diferiram significativamente do tratamento com piraclostrobina + epoxiconazol 66,5 + 25 g i.a. ha-1 sem associação (T2 -62,4%). A menor severidade foi observada para a associação com mancozebe 1125 g i.a. ha-1 (T4 - 37,3%), seguido de oxicloreto de cobre 294 g i.a. ha-1 (T3 - 44,1%), metiram 1050 g i.a. ha-1 (T9 - 44,2%), clorotalonil 1000 g i.a. ha⁻¹ (T8 - 45,6%) e sulfato de cobre 113,85 g i.a. ha⁻¹ (T5 - 46,6%). Apesar da redução significativa da severidade com a aplicação associada, nenhum tratamento com piraclostrobina + epoxiconazol 66,5 + 25 g i.a. ha-1 se igualou ao tratamento com piraclostrobina + fluxapiroxade 116,55 + 58,45 g i.a. ha⁻¹ isolado (T12 - 34,7%).

Para as aplicações associadas ao fungicida piraclostrobina + fluxapiroxade 116,55 + 58,45 g i.a. ha⁻¹, de forma semelhante ao tratamento com piraclostrobina + epoxiconazol 66,5 + 25 g. i.a. ha-1, a severidade dos tratamentos com associações de fosfonatos orgânicos/ ácido carboxílicos/ fosfitos/ Mn (T20 - 36,5%) e cloretos de etilbenzalcônio (T21 - 34,3%) não diferiram significativamente do tratamento sem associação (T12 - 34,7%). As menores severidades foram observadas para os tratamentos com mancozebe 1125 g i.a. ha⁻¹ (T14 - 25,7%), fluazinam 500 g i.a. ha⁻¹ (T17 - 26,1%), clorotalonil 1000 g i.a. ha⁻¹ (T18 - 28,2%) e metiram 1050 g i.a. ha-1 (T19 -28,1%) seguido de oxicloreto de cobre 294 g i.a. ha-1 (T13 - 29,1%), sulfato de cobre 113,85 g i.a. ha⁻¹ (T55 - 30,2 %) e propinebe 1400 g i.a. ha⁻¹ (T16 - 29,7%).

A correlação (r) da variável severidade com produtividade foi de -0,98 (p<0,001). Todos os tratamentos apresentaram produtividade estatisticamente superior à testemunha sem controle (Tabela 5). Para as aplicações associadas ao fungicida piraclostrobina + epoxiconazol 66,5 + 25 g i.a. ha⁻¹, somente a produtividade dos tratamentos com fosfonatos orgânicos/ ácido carboxílicos/ fosfitos/ Mn (T10 - 2549 kg ha⁻¹) e cloretos de etilbenzalcônio (T11 - 2545 kg ha⁻¹) não diferiram significativamente do tratamento com piraclostrobina + epoxiconazol 66,5 + 25 g i.a.

ha-1 sem associação (T2 - 2497 kg ha-1). A maior produtividade foi observada para a associação com mancozebe 1125 g i.a. ha-1 (T4 - 2920 kg ha-1), seguido de oxicloreto de cobre 294 g i.a. ha-1 (T3 - 2827 kg ha-1), clorotalonil 1000 g i.a. ha-1 (T8 - 2800 kg ha-1) e metiram 1050 g i.a. ha-1 (T9 - 2802 kg ha-1). Apesar do aumento significativo de produtividade com a aplicação associada, nenhum tratamento com piraclostrobina + epoxiconazol 66,5 + 25 g i.a. ha-1 se igualou ao tratamento com piraclostrobina + fluxapiroxade 116,55 + 58, 45 g i.a. ha-1 isolado (T12 - 3079 kg ha-1).

Para as aplicações associadas ao fungicida piraclostrobina + fluxapiroxade 116,55 + 58,45 g i.a. ha-1, a produtividade dos tratamentos com associações de fosfonatos orgânicos/ ácido carboxílicos/ fosfitos/ Mn (T20 - 2995 kg ha-1), cloretos de etilbenzalcônio 50 g i.a. ha-1 (T21 -3040 kg ha⁻¹), clorotalonil 1000 g i.a. ha⁻¹ (T18 - 3166 kg ha⁻¹) e metiram 1050 g i.a. ha⁻¹ (T19 -3190 kg ha⁻¹) não diferiram significativamente do tratamento sem associação (T12 - 3079 kg ha-1). As maiores produtividades foram observadas para os tratamentos com associações de fluazinam 500 g i.a. ha⁻¹ (T17 - 3331 kg ha⁻¹), oxicloreto de cobre 500 g i.a. ha⁻¹ (T13 - 3243 kg ha⁻¹), mancozebe 1125 g i.a. ha⁻¹ (T14 - 3289 kg ha⁻¹), sulfato de cobre 113,85 g i.a. ha⁻¹ (T15 3220 kg ha⁻¹) e propinebe 1400 g i.a. ha-1 (T16 - 3224 kg ha-1).

A eficiência de controle com os melhores fungicidas multissítios, com cinco aplicações, variou de 59% a 69% (Tabela 4). Na aplicação associadas aos fungicidas sítio-específicos Opera® e Orkestra SC®, com exceção dos fosfonatos orgânicos/ácido carboxílicos/ fosfitos/ Mn e cloretos de etilbenzalcônio, os tratamentos proporcionaram redução na severidade da ferrugem (Tabela 5).

Os resultados desse trabalho são de pesquisa e não devem ser utilizados como recomendação no campo. Com exceção dos fungicidas dos tratamentos 12 a 14 (Tabela 2), os demais não possuem registro no MAPA para controle de *P. pachyrhizi* e os produtos dos tratamentos 6 e 11 (Tabela 2) não possuem registro como agrotóxico.

Os fungicidas multissítios podem ser uma ferramenta importante em programas de manejo da ferrugem-asiática na soja, sendo necessário o registro no MAPA para a sua utilização.

REFERÊNCIAS

BURR, I.W.; FOSTER, L.A. A test for equality of variances. West Lafayette: University of Purdue, 1972. 26p. (Mimeo Series, 282).

SAS/STAT®. Versão 9.1.3 do sistema SAS para Windows, copyright© 1999-2001. SAS Institute Inc., Cary, NC, USA.

SCHMITZ, H.K., MEDEIROS, C.A., CRAIG, I.R., STAMMLER, G. Sensitivity of *Phakopsora pachyrhizi* towards quinone-outside-inhibitors and demethylation-inhibitors, and corresponding resistance mechanisms. **Pest Management Science**, v. 70, p. 378–388, 2014.

SHAPIRO, S.S.; WILK, M.B. An analysis of variance test for normality. **Biometrika**, v. 52, p. 591-611, 1965.

TECNOLOGIAS de produção de soja - Região Central do Brasil 2014. Londrina: Embrapa Soja, 2013. 265 p. (Embrapa Soja. Sistemas de Produção, 16).

TUKEY, J. W. One degree of freedom for non-additivity. **Biometrics**, v.5, p. 232-242, 1949.

XAVIER, S.A.; CANTERI, M.G.; BARROS, D.C.M.; GODOY, C.V. Sensitivity of *Corynespora cassiicola* from soybean to carbendazim and prothioconazole. **Tropical Plant Pathology**, v.38, p. 431-435. 2013,

YORINORI, J.T.; PAIVA, W.M.; FREDERICK, R.D.; COSTAMILAN, L.M.; BERTAGNOLLI, P.F.; HARTMAN, G.L.; GODOY, C.V.; NUNES JUNIOR, J. Epidemics of soybean rust (*Phakopsora pachyrhizi*) in Brazil and Paraguay. **Plant Disease**, v. 89, p. 675-677, 2005.

Apoio:

Circular Técnica, 113

Embrapa Soja

Rod. Carlos João Strass, s/n, acesso Orlando Amaral, C.P. 231, CEP 86001-970, Distrito de Warta, Londrina, PR

Fone: (43) 3371 6000 Fax: (43) 3371 6100 https://www.embrapa.br/fale-conosco/sac/

1ª edição Versão Online (2015)

Comitê de publicações

Presidente: Ricardo Villela Abdelnoor

Secretário-Executivo: Regina Maria Villas Bôas de Campos Leite

Membros: Alvadi Antonio Balbinot Junior, Claudine Dinali Santos Seixas, Fernando Augusto Henning, Eliseu Binneck, Liliane Márcia Mertz-Henning, Maria Cristina Neves de Oliveira, Norman Neumaier e Vera de Toledo Benassi.

Expediente

Supervisão editorial: Vanessa Fuzinatto Dall'Agnol Normalização bibliográfica: Ademir Benedito Alves de Lima

Editoração eletrônica: Vladimir H. Moreira Silva