CS 4650/7650 Modern statistical parsers

Jacob Eisenstein

Feb 14, 2013

The Charniak parser

The Charniak (1997) parser gives a relatively straightforward way to lexicalize PCFGs.

- Compute the head probability: $P(s_i|t_i, s_{p(i)}, t_{p(i)})$.
 - s_i is the head of constituent i
 - ▶ *t_i* is the syntactic category
 - \triangleright p(i) is the parent of node i
- Compute the rule probability: $P(r_i|t_i, s_i, t_{p(i)})$.
- Score each production by the product of the rule probability and the head probabilities.
- Apply standard CKY bottom-up parsing.

Head probabilities

The head probabilities capture "bilexical" phenomena, like the PP attachment (*President of Mexico*) example.

- ightharpoonup P(prices|NNS) = .013
- ightharpoonup P(prices|NNS, NP) = .013
- ightharpoonup P(prices|NNS, NP, S) = .025
- ightharpoonup P(prices|NNS, NP, S, VBD) = .052
- ightharpoonup P(prices|NNS, NP, S, VBD, fell) = .146

Lexically conditioned rule probabilities

The rule probabilities capture phenomena like verb complement frames.

Local Tree	come	take	think	want
$VP \rightarrow V$	9.5%	2.6%	4.6%	5.7%
$VP \rightarrow V NP$	1.1%	32.1%	0.2%	13.9%
$VP \rightarrow V PP$	34.5%	3.1%	7.1%	0.3%
$VP \rightarrow V SBAR$	6.6%	0.3%	73.0%	0.2%
$VP \rightarrow VS$	2.2%	1.3%	4.8%	70.8%
$VP \rightarrow V NP S$	0.1%	5.7%	0.0%	0.3%
$VP \rightarrow V$ PRT NP	0.3%	5.8%	0.0%	0.0%
$VP \rightarrow V$ PRT PP	6.1%	1.5%	0.2%	0.0%

Data sparseness

- ► The Penn Treebank is still the main dataset for syntactic analysis of English.
- Yet 1M words is not nearly enough data to accurately estimate lexicalized models.
 - ▶ 965K constituents
 - ▶ 66 examples of WHADJP
 - only 6 of these aren't how much or how many
- Smoothing is absolutely critical for lexicalized parsers.

Head probability:

$$\begin{split} \hat{P}(s_i|t_i,s_{p(i)},t_{p(i)}) = & \lambda_1 P_{mle}(s_i|t_i,s_{p(i)},t_{p(i)}) \\ &+ \lambda_2 P_{mle}(s_i|t_i,\text{cluster}(s_{p(i)}),t_{p(i)}) \\ &+ \lambda_3 P_{mle}(s_i|t_i,t_{p(i)}) \\ &+ \lambda_4 P_{mle}(s_i|t_i) \end{split}$$

Head probability:

$$\begin{split} \hat{P}\big(s_i|t_i,s_{p(i)},t_{p(i)}\big) = & \lambda_1 P_{mle}\big(s_i|t_i,s_{p(i)},t_{p(i)}\big) \\ & + \lambda_2 P_{mle}\big(s_i|t_i,\text{cluster}\big(s_{p(i)}\big),t_{p(i)}\big) \\ & + \lambda_3 P_{mle}\big(s_i|t_i,t_{p(i)}\big) \\ & + \lambda_4 P_{mle}\big(s_i|t_i\big) \end{split}$$

For example:

'	P(profit NP, rose, S)	P(corp. JJ, profit, NP)
$P(s_i t_i,s_{p(i)},t_{p(i)})$	0	.245
$P(s_i t_i, \text{cluster}(s_{p(i)}), t_{p(i)})$.0035	.015
$P(s_i t_i,t_{p(i)})$.00063	.0053
$P(s_i t_i)$.00056	.0042

Head probability:

$$\begin{split} \hat{P}(s_i|t_i,s_{p(i)},t_{p(i)}) = & \lambda_1 P_{mle}(s_i|t_i,s_{p(i)},t_{p(i)}) \\ &+ \lambda_2 P_{mle}(s_i|t_i,\text{cluster}(s_{p(i)}),t_{p(i)}) \\ &+ \lambda_3 P_{mle}(s_i|t_i,t_{p(i)}) \\ &+ \lambda_4 P_{mle}(s_i|t_i) \end{split}$$

For example:

P(protit NP, rose, S)	P(corp. JJ, profit, NP)
0	.245
.0035	.015
.00063	.0053
.00056	.0042
	0 .0035 .00063

We have to tune $\lambda_1 \dots \lambda_4$, and an equivalent set of parameters for the rule probabilities.

- ► The Charniak parser suffers from acute sparsity problems because it estimates the probability of entire rules.
- ► Another extreme would be to generate the children independently from each other.

e.g.,
$$P(S \rightarrow NP \ VP) \approx P_L(S \rightarrow NP)P_R(S \rightarrow VP)$$

► The Collins (1999) and Charniak (2000) go for a compromise, conditioning on the parent and the head child.

The Collins Parser

- The Charniak parser focuses on lexical relationships between children and parents.
- ► The Collins (1999) parser focuses on relationships between adjacent children of the same parent. It decomposes each rule as,

$$X \rightarrow L_i L_{i-1} \dots L_1 H R_1 \dots R_{j-1} R_j$$

- ► Each *L* and *R* is a child constituent of *X*, and they are generated from the head *H* outwards.
- ▶ The outermost elements of *L* and *R* are special symbols.

▶ Here's the generative process:

- ► Here's the generative process:
 - ► Generate the head: P(H|LHS) = P(VBD(dumped, VBD)|VP(dumped, VBD))

- Here's the generative process:
 - ▶ Generate the head: P(H|LHS) = P(VBD(dumped, VBD)|VP(dumped, VBD))
 - ► Generate the left dependent: $P_L(\bullet|VP(dumped, VBD), VBD(dumped, VBD))$

- Here's the generative process:
 - ▶ Generate the head: P(H|LHS) = P(VBD(dumped, VBD)|VP(dumped, VBD))
 - Generate the left dependent: $P_L(\bullet|VP(dumped, VBD), VBD(dumped, VBD))$
 - ► Generate the right dependent: $P_R(NP(sacks, NNS)|VP(dumped, VBD), VBD(dumped, VBD))$

- Here's the generative process:
 - ▶ Generate the head: P(H|LHS) = P(VBD(dumped, VBD)|VP(dumped, VBD))
 - Generate the left dependent: $P_L(\bullet|VP(dumped, VBD), VBD(dumped, VBD))$
 - Generate the right dependent:
 P_R(NP(sacks, NNS)|VP(dumped, VBD), VBD(dumped, VBD))
 - ▶ Generate the right dependent: P_R(NP(into, PP)|VP(dumped, VBD), VBD(dumped, VBD))

- Here's the generative process:
 - Generate the head: P(H|LHS) = P(VBD(dumped, VBD)|VP(dumped, VBD))
 - Generate the left dependent: $P_L(\bullet|VP(dumped, VBD), VBD(dumped, VBD))$
 - Generate the right dependent:
 P_R(NP(sacks, NNS)|VP(dumped, VBD), VBD(dumped, VBD))
 - Generate the right dependent:
 P_R(NP(into, PP)|VP(dumped, VBD), VBD(dumped, VBD))
 - ▶ Generate the right dependent: P_R(•|VP(dumped, VBD), VBD(dumped, VBD))

- Here's the generative process:
 - Generate the head: P(H|LHS) = P(VBD(dumped, VBD)|VP(dumped, VBD))
 - Generate the left dependent: $P_L(\bullet|VP(dumped, VBD), VBD(dumped, VBD))$
 - Generate the right dependent:
 P_R(NP(sacks, NNS)|VP(dumped, VBD), VBD(dumped, VBD))
 - ▶ Generate the right dependent: P_R(NP(into, PP)|VP(dumped, VBD), VBD(dumped, VBD))
 - Generate the right dependent: $P_R(\bullet|VP(dumped, VBD), VBD(dumped, VBD))$
- ► The rule probability is the product of these generative probabilities.

- Here's the generative process:
 - Generate the head: P(H|LHS) = P(VBD(dumped, VBD)|VP(dumped, VBD))
 - Generate the left dependent: $P_L(\bullet|VP(dumped, VBD), VBD(dumped, VBD))$
 - Generate the right dependent:
 P_R(NP(sacks, NNS)|VP(dumped, VBD), VBD(dumped, VBD))
 - ▶ Generate the right dependent: P_R(NP(into, PP)|VP(dumped, VBD), VBD(dumped, VBD))
 - ▶ Generate the right dependent: P_R(•|VP(dumped, VBD), VBD(dumped, VBD))
- ► The rule probability is the product of these generative probabilities.
- ► Horizontal Markovization: we condition only on the head

- Here's the generative process:
 - Generate the head: P(H|LHS) = P(VBD(dumped, VBD)|VP(dumped, VBD))
 - Generate the left dependent: $P_L(\bullet|VP(dumped, VBD), VBD(dumped, VBD))$
 - Generate the right dependent:
 P_R(NP(sacks, NNS)|VP(dumped, VBD), VBD(dumped, VBD))
 - ▶ Generate the right dependent: P_R(NP(into, PP)|VP(dumped, VBD), VBD(dumped, VBD))
 - Generate the right dependent: $P_R(\bullet|VP(dumped, VBD), VBD(dumped, VBD))$
- ► The rule probability is the product of these generative probabilities.
- Horizontal Markovization: we condition only on the head
- Collins parser also conditions on a "distance" of each constituent from the head.

Smoothing the Collins Parser

Estimation is eased by factoring the rule probabilities, but smoothing is still needed.

$$\hat{P}(R_i(rw_i, rt_i)|p(i), hw, ht) = \lambda_1 P_{mle}(R_i(rw_i, rt_i)|p(i), hw, ht) + \lambda_2 P_{mle}(R_i(rw_i, rt_i)|p(i), ht) + \lambda_3 P_{mle}(R_i(rw_i, rt_i)|p(i))$$

- We set λ using Witten-Bell smoothing.
- Is it worth modeling bilexical dependencies?

The importance of bilexical dependencies

Back-off level	Number of accesses	Percentage
0	3,257,309	1.49
1	24,294,084	11.0
2	191,527,387	87.4
Total	219,078,780	100.0

▶ In general, bilexical probabilites are rarely available...

The importance of bilexical dependencies

Back-off level	Number of accesses	Percentage
0	3,257,309	1.49
1	24,294,084	11.0
2	191,527,387	87.4
Total	219,078,780	100.0

- ▶ In general, bilexical probabilites are rarely available...
- ▶ ...but they are active in 29% of the rules in **top-scoring** parses.

The importance of bilexical dependencies

Back-off level	Number of accesses	Percentage
0	3,257,309	1.49
1	24,294,084	11.0
2	191,527,387	87.4
Total	219,078,780	100.0

- ▶ In general, bilexical probabilites are rarely available...
- ▶ ...but they are active in 29% of the rules in **top-scoring** parses.
- ▶ Still, they don't seem to play a big role in accuracy (Bikel 2004).

The complexity of lexicalized parsing

- ▶ Straightforward lexicalized parsing is $\mathcal{O}(N^5G)$, where
 - N is the length of the sentence
 - ▶ G is the state space, equal to g^3 (cubic in the number of original non-terminals, because we condition on the head and the parent), times V^3 (cubic in the vocabulary size, for the same reason)
- ► Exhaustive search is totally infeasible; Collins and Charniak both use beam search to eliminate unpromising nodes from the chart.
- ▶ Eisner and Satta (2000, etc) give ways to parse more restricted classes of bilexical grammars in $O(N^4)$ or $O(N^3)$

Summary of lexicalized parsing

► Lexicalized parsing resulted in substantial accuracy gains from our original PCFG:

Vanilla PCFG	72%
Parent-annotations	80%
Charniak (1997)	86%
Collins (1999)	87%

Summary of lexicalized parsing

Lexicalized parsing resulted in substantial accuracy gains from our original PCFG:

Vanilla PCFG	72%
Parent-annotations	80%
Charniak (1997)	86%
Collins (1999)	87%

- But the explosion in the size of the grammar required elaborate smoothing techniques and made parsing slow.
- ► Treebank syntactic categories are too coarse, but lexicalized categories may be too fine. Is there a middle ground?

Accurate unlexicalized parsing (Klein and Manning 2003)

- Key idea is that the right level of linguistic detail is somewhere between treebank categories and individual words.
- ► For example, on/PP behaves differently from of /PP, but cat/N and dog/N do not.
- ► Approach: horizontal and vertical markovization, plus a series of linguistically-motivated splits to the Treebank categories.

Markovization

		Horizontal Markov Order				
Ve	rtical Order	h = 0	h = 1	$h \leq 2$	h = 2	$h = \infty$
v = 1	No annotation	71.27	72.5	73.46	72.96	72.62
		(854)	(3119)	(3863)	(6207)	(9657)
$v \leq 2$	Sel. Parents	74.75	77.42	77.77	77.50	76.91
		(2285)	(6564)	(7619)	(11398)	(14247)
v=2	All Parents	74.68	77.42	77.81	77.50	76.81
		(2984)	(7312)	(8367)	(12132)	(14666)
$v \leq 3$	Sel. GParents	76.50	78.59	79.07	78.97	78.54
		(4943)	(12374)	(13627)	(19545)	(20123)
v = 3	All GParents	76.74	79.18	79.74	79.07	78.72
		(7797)	(15740)	(16994)	(22886)	(22002)

Annotating the IN tag with its parent causes it to prefer SBAR complements, resolving this error.

State-splitting

	Cı	Cumulative		
Annotation	Size	F_1	ΔF_1	ΔF_1
Baseline $(v \le 2, h \le 2)$	7619	77.77	_	-
UNARY-INTERNAL	8065	78.32	0.55	0.55
UNARY-DT	8066	78.48	0.71	0.17
UNARY-RB	8069	78.86	1.09	0.43
TAG-PA	8520	80.62	2.85	2.52
SPLIT-IN	8541	81.19	3.42	2.12
SPLIT-AUX	9034	81.66	3.89	0.57
SPLIT-CC	9190	81.69	3.92	0.12
SPLIT-%	9255	81.81	4.04	0.15
TMP-NP	9594	82.25	4.48	1.07
GAPPED-S	9741	82.28	4.51	0.17
POSS-NP	9820	83.06	5.29	0.28
SPLIT-VP	10499	85.72	7.95	1.36
BASE-NP	11660	86.04	8.27	0.73
DOMINATES-V	14097	86.91	9.14	1.42
RIGHT-REC-NP	15276	87.04	9.27	1.94

Examples:

- ► BASE-NP: non-recursive NPs
- ➤ SPLIT-CC: distintinguish and and but from other CCs

The original parse assigned a VP complement to a finite verb (is). Splitting the VP tag into finite and infinitival categories resolves this error.

Automatic state-splitting

- ► The Klein and Manning unlexicalized parser requires substantial engineering.
- ▶ It would be a lot of work to apply this to a new language.
- ► Can we split the Treebank syntactic categories automatically?

State splitting through hidden variables (Petrov and Klein, 2007)

Can you automatically find good symbols?

- Brackets are known
- Base categories are known
- Induce subcategories
- Clever split/merge category refinement

EM algorithm, like Forward-Backward for HMMs, but constrained by tree.

State splitting through hidden variables

- We'll talk more about latent variables next week.
- For now, think of it as structured clustering:
 - Assign a random subcategory to each node.
 - Learn a PCFG.
 - Apply the PCFG to relabel the nodes
 - subject to constraints of original annotations:
 VP3 can be relabeled as VP7, but not as an NP
 - Repeat

Number of phrasal subcategories

Examples

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	Ĺ.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	lt	He	1
PRP-1	it	he	they
PRP-2	it	them	him

Accuracy

Vanilla PCFG	72%
Parent-annotations	80%
Lexicalized (Charniak 1997)	86%
Lexicalized (Collins 1999)	87%
Lexicalized (Charniak 2000)	90.1%
State-splitting (Petrov and Klein 2007)	90.6%

Discriminative parsing

- ► Generative parsers assume observations are conditionally independent given the label.
- This prohibits redundant features like morphology and word clusters
- ► This made a big difference in sequence labeling (25% error reduction).
- Can it help in parsing?

Reranking

- Key idea: generate an N-best list of parses, learn a ranking function to score them (Collins, 2002)
- Advantage: can include arbitrary features.
- Can be as simple as perceptron
 - Learning

$$w_n \leftarrow w_{n-1} + \eta(f(t,s) - f(\hat{t},s)) \tag{1}$$

where f(t, s) are the features of the correct parse and $f(\hat{t}, s)$ are the features of the best-scoring parse.

▶ **Decoding**: produce K parses from the generative model, return $\arg \max_k \mathbf{w}^T f(t_k, s)$

Features

- ► Conjoined subtrees should have similar depth and length.
- English (and many other languages) have right-branching structure.
- Bigrams of horizontally neighboring tags
- ► Head-to-head dependencies, which can capture agreement
- "Heaviness" of non-terminals, and their proximity to the end of the sentence.

Accuracy

Vanilla PCFG	72%
Parent-annotations	80%
Lexicalized (Charniak 1997)	86%
Lexicalized (Collins 1999)	87%
Lexicalized (Charniak 2000)	90.1%
State-splitting (Petrov and Klein 2007)	90.6%
Reranking (Charniak and Johnson 2005)	91.0%

Globally-normalized conditional models for parsing

The CFG-CRF model (Finkel et al., 2008):

$$P(t|s;\theta) = \frac{1}{Z_s} \prod_{r \in t} \phi(r|s;\theta)$$
$$Z_s = \sum_{t' \in \tau(s)} \prod_{r \in t'} \phi(r|s;\theta)$$

- ▶ Each parse t is a collection of productions $\{r\}$.
- ► Each production has a non-negative potential $\phi(r|s;\theta) = e^{\theta^T f(r,s)}$.
- ► The unnormalized score for a parse is the product of its potentials.
- ▶ The partition function Z_s is the sum of the scores for all possible parses for a sentence s.

Decoding

- ▶ If the features are local in t, we can use CKY to decode.
- Features need not be local in s.
 (just like in discriminative sequence models)
- ▶ Just like CKY, but you multiply potentials ϕ rather than probabilities.
- ▶ We need only the unnormalized score $\prod_{r \in t} \phi(r|s; \theta)$.

Features

- standard PCFG stuff, with and without parent annotation (no need for complicated smoothing!)
- lexicon features over words and tags (including prev word and next word, and unknown word classes)
- bigrams and trigrams of word classes under each subtree

Learning

Just like logistic regression:

$$\mathcal{L} = \left[\sum_{(t,s) \in \mathcal{D}} \left(\sum_{r \in t} \sum_{i} \theta_{i} f_{i}(r,s) \right) - Z_{s} \right] + \sum_{i} \frac{\theta_{i}^{2}}{2\sigma^{2}}$$

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \left[\sum_{(t,s) \in \mathcal{D}} \left(\sum_{r \in t} \sum_{i} f_{i}(r,s) \right) - E_{\theta}[f_{i}|s] \right] + \frac{\theta_{i}}{\sigma^{2}}$$

- ightharpoonup compute Z_s using the inside algorithm
- compute $E_{\theta}[f_i|s]$ using inside-outside

Learning

Just like logistic regression:

$$\mathcal{L} = \left[\sum_{(t,s) \in \mathcal{D}} \left(\sum_{r \in t} \sum_{i} \theta_{i} f_{i}(r,s) \right) - Z_{s} \right] + \sum_{i} \frac{\theta_{i}^{2}}{2\sigma^{2}}$$

$$\frac{\partial \mathcal{L}}{\partial \theta_{i}} = \left[\sum_{(t,s) \in \mathcal{D}} \left(\sum_{r \in t} \sum_{i} f_{i}(r,s) \right) - E_{\theta}[f_{i}|s] \right] + \frac{\theta_{i}}{\sigma^{2}}$$

- ightharpoonup compute Z_s using the inside algorithm
- compute $E_{\theta}[f_i|s]$ using inside-outside
- ▶ But unfortunately, $\mathcal{O}(N^3G)$ is still too slow.

Tricks

Chart prefiltering:

- Run a non-probabilistic CFG to prune away productions which do not lead to any valid parse.
- ▶ This saves time during inside-outside.

Tricks

Chart prefiltering:

- Run a non-probabilistic CFG to prune away productions which do not lead to any valid parse.
- ► This saves time during inside-outside.

Parallelization via stochastic gradient descent:

- Let $\hat{\mathcal{L}}(\mathcal{D}_b^{(i)}; \boldsymbol{\theta})$ equal the likelihood computed from a "minibatch" of b examples.
- ► Then we can approximate the gradient, $\nabla \mathcal{L}(\mathcal{D}; \boldsymbol{\theta}) \approx \sum_{i} \nabla \mathcal{L}(\mathcal{D}_{h}^{(i)}; \boldsymbol{\theta}).$
- We can then parallelize the minibatches, and make stochastic gradient updates,

$$\theta_{k+1} = \theta_k - \eta_k \nabla \mathcal{L}(\mathcal{D}_b^{(i)}; \boldsymbol{\theta}),$$

where η_k is the learning rate after the k^{th} update.

Stochastic gradient

Results

0/
72%
80%
86%
87%
90.6%
91.0%
89.0

Results

Vanilla PCFG	72%
Parent-annotations	80%
Lexicalized (Charniak 1997)	86%
Lexicalized (Collins 1999)	87%
State-splitting (Petrov and Klein 2007)	90.6%
Reranking (Charniak and Johnson 2005)	91.0%
CFG-CRF (Finkel et al 2008)	89.0

- better than basic generative parsers, worse than reranking
- The key advantage of this approach is the simplicity: no need for complicated smoothing or backoff, just throw redundant information at the learner and let it sort things out
- Room for better features?

Results

Vanilla PCFG	72%
Parent-annotations	80%
Lexicalized (Charniak 1997)	86%
Lexicalized (Collins 1999)	87%
State-splitting (Petrov and Klein 2007)	90.6%
Reranking (Charniak and Johnson 2005)	91.0%
CFG-CRF (Finkel et al 2008)	89.0

- better than basic generative parsers, worse than reranking
- The key advantage of this approach is the simplicity: no need for complicated smoothing or backoff, just throw redundant information at the learner and let it sort things out
- Room for better features?
- ... or better models? An alternative CRF based on tree-adjoining grammar, scored 91.1 (Carreras et al, 2008)

Recap

- ▶ A big part of parsing research has been figuring out the right level of description:
 - Unlexicalized PCFGs on treebank categories are too coarse.
 - Lexicalized parsers start with very rich probability models, and then apply smoothing for tractability.
 - State-splitting approaches start with the treebank categories and split as needed.
- Reranking approaches can learn rich feature representations, but can only apply them to a limited set of possible parses.
- Globally-normalized conditional parsers learn feature-based models and apply them to decode over the entire space of possible parses.