Statistical Testing I - Classical testing

Daniel Lawson University of Bristol

Lecture 02.2.1 (v1.1.0)

Signposting

- Last session we covered **regression**.
 - ► This is something of a pre-requisite for a useful analysis of **testing**.
- We'll cover testing in three sections:
 - 1. Classical testing (recap)
 - 2. Resampling methods
 - 3. Model selection

Intended Learning Outcomes

- ► ILO2 Be able to use and apply basic machine learning tools
- ► ILO3 Be able to make and report appropriate inferences from the results of applying basic tools to data

Null hypothesis test

- Given some data {y}:
 - ▶ Null Hypothesis **H0**: A statement is true about $\{y\}$.
 - ► Alternative Hypothesis HI: The statement is not true.
- ▶ We then compute a **test statistic** $T(\{y\})$ whose distribution is **computable under H0**.
 - lacktriangle By convention, large T is evidence against the null.
- ▶ Then compute p-value $p(T \ge T(\{y\}))$, the probability of observing a test statistic at least as large as that observed given H0 is true.
 - Example: H0: $\mathbb{E}(y) = \mu$ with $\mu = 0$. H1: $\mu \neq 0$.
 - ► This is **not model selection**. We favour H0 and must find evidence against it to accept H1.

Null hypothesis significance testing

- Hypothesis testing is asking: are my data consistent with this hypothesis when using this measure?
 - If you choose a silly hypothesis, testing will dutifully say "no"
 - If you use a weak measure, testing will dutifully say "yes"
 - Nothing is learned by this!
- ► The correct use of statistical testing is where:
 - 1. the null hypothesis might plausibly be true, or
 - it might not be true, but you care how much power the data has to reject the null

When to use hypothesis testing

- Some valid use cases include:
 - ► To rank hypotheses by how much evidence there is against them
 - ► To obtain a **standardised scale** (0-1) for combining evidence
 - When data are scarce
- Also when testing plausible nulls, such as:
 - validating simulations with a known simulator;
 - ▶ independence or other non-parametric tests.
 - broad null hypotheses, such as testing a range of parameters.

Types of error

- ► The **p-value** defines the probability that H0 is true, but is rejected.
- The power of the test is the probability that H0 is false but is accepted anyway.
 - Low power situations are to be avoided: see e.g. Andrew Gelman's blog¹.
- Power is a surprisingly important problem because there are many researcher degrees of freedom.
 - so if power is low, we tend to find significant results anyway, through the (often unintentional) use of the data to choose the test.

¹https://andrewgelman.com/2018/02/18/low-power-replication-crisis-learned-since-2004-1984-1964/

Types of error

Error notation

	H0 true	H0 false
H0 accepted G H0 rejected		Type II error Correct

Types of error

Error notation

	H0 true	H0 false
H0 accepted	Correct	Type II error
H0 rejected	Type I error	Correct

▶ Under the convention that H0=0= "negative" case and H1=1= "positive case":

Alternative notation

	H0 holds	HI holds
H0 accepted H0 rejected	True Negative False Positive	False Negative True Positive

▶ To test if the mean of $\{x\}$ is μ_0 , we calculate the **test statistic**:

$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}},$$

lacktriangle where s is the standard deviation and n the sample size. Under H0:

$$t \sim t(t; \nu = n - 1)$$

lacktriangle where u is the degrees of freedom. (See Student's t-distribution).

0/21

```
## Extract TCP and UDP packet sizes
tcpsize=conndata[conndata[,"proto"]=="tcp","orig_bytes"]
udpsize=conndata[conndata[,"proto"]=="udp","orig_bytes"]
ftpsize=conndata[conndata[,"service"]=="ftp","orig_bytes"]
```

```
## Extract TCP and UDP packet sizes
tcpsize=conndata[conndata[,"proto"]=="tcp","orig_bytes"]
udpsize=conndata[conndata[,"proto"]=="udp","orig_bytes"]
ftpsize=conndata[conndata[,"service"]=="ftp","orig_bytes"]
## Convert and omit missing data
tcpsize=as.numeric(tcpsize[tcpsize!="-"])
udpsize=as.numeric(udpsize[udpsize!="-"])
ftpsize=as.numeric(ftpsize[ftpsize!="-"])
tcpsize=tcpsize[tcpsize>0]
udpsize=udpsize[udpsize>0]
ftpsize=ftpsize[ftpsize]
```

```
mu=mean(log(tcpsize))
t.test(log(udpsize),mu=mu)%p.value
t.test(log(ftpsize),mu=mu)%p.value
```

```
mu=mean(log(tcpsize))
t.test(log(udpsize),mu=mu)$p.value
t.test(log(ftpsize),mu=mu)$p.value
> t.test(log(udpsize),mu=mu)$p.value
[1] 2.733874e-182
> t.test(log(ftpsize),mu=mu)$p.value
[1] 8.334782e-08
```


t-tests

- lacktriangle Can be one-tailed (H0: $\mu \leq \mu_0$) or two-tailed (H0: $\mu = \mu_0$)
- Assumes:
 - independence (note: paired tests are possible) and identically distributed
 - the data are Normal
 - ▶ the standard deviation is either known (t is then Normal) or estimated from the data (t is then t distributed).
- ▶ Used in regression, paired tests, etc.
- ▶ NB Incomplete notes as this is a prerequisite!

Chi squared test

- lacktriangle The χ^2 test is for categorical data comparing two variables.
- ► H0: No relationship between the variables; H1 Some relationship between them.
- ▶ The **test statistic** for N datapoints from k classes, with x_i observations of type i, with expected value $m_i = Np_i$ where p_i is the expected probabilities, is (under the null):

$$X^{2} = \sum_{i=1}^{k} \frac{(x_{i} - m_{i})^{2}}{m_{i}} \sim \chi^{2}(k-1)$$

- ➤ This is most often used for contingency tables though appears elsewhere.
- See also Fishers exact test for small samples.
- ▶ NB Incomplete notes as this is a prerequisite!

Other important tests

- Nonparametric tests:
 - ► Mann-Whitney U or Wilcoxon rank sum test: are two samples are drawn from the same distribution? by comparing their ranks.
 - ▶ Wilcoxon signed-rank test as rank sum test, for paired data.
 - Kolmogorov-Smirnov test are two samples from the same distribution? by comparing the empirical cumulative distribution function.
- ➤ There are many online cookbooks which state exactly which circumstances each test should be used in. You should be able to use them.
- NB Incomplete notes as this is a prerequisite!

Statistical testing overview

► The tests we have discussed are classic statistics, that is, before computers (indeed pre-1950s). The most important types of test for data science are yet to come.

Reflection

- You must be able to:
 - Define and use a null hypothesis significance test,
 - Contrast classical and resampling tests, and judge appropriate uses,
 - Use statistical testing appropriately in projects.
- ▶ In Science, why does statistical testing have a bad reputation?
- Does statistical testing have a place in large-scale data science for applied domains?

Signposting

- Further reading:
 - Chapter 4 of Statistical Data Analysis by Glen Cowan
 - ► Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations by Greenland et al
 - Andrew Gelman's blog has many examples of statistical testing failures in social science and medicine
- Next up: Resampling approaches to testing