1. ค่าคลาดเคลื่อนสัมบูรณ์ (E_{abs}) :

$$E_{abs} = |$$
 ค่าจริง $-$ ค่าประมาณ $|$

2. ค่าคลาดเคลื่อนสัมพัทธ์ (E_{rel}) :

$$E_{rel} = rac{\mid$$
 ค่าจริง $-$ ค่าประมาณ \mid ค่าจริง \mid

3. ร้อยละของค่าความคลาดเคลื่อนสัมพัทธ์ $(arepsilon_t)$:

$$arepsilon_t = rac{\mid$$
 ค่าจริง $-$ ค่าประมาณ \mid $\times~100\%$

4. ร้อยละของค่าคลาดเคลื่อนเปรียบเทียบกับค่าประมาณ (ε_a) :

$$\varepsilon_a = \frac{\mid$$
 ค่าประมาณสุดท้าย \mid ค่าประมาณก่อนสุดท้าย \mid \mid ค่าประมาณสุดท้าย \mid

5. ร้อยละของค่าความคลาดเคลื่อนสัมพัทธ์ $(arepsilon_t)$:

$$arepsilon_t = rac{\mid$$
 ค่าจริง $-$ ค่าประมาณ \mid $imes 100\%$

6. ร้อยละของค่าคลาดเคลื่อนเปรียบเทียบกับค่าประมาณ (ε_a) :

$$arepsilon_a = rac{\mid$$
 ค่าประมาณสุดท้าย $-\mid$ ค่าประมาณก่อนสุดท้าย \mid $\times~100\%$

7. Bisection method:

$$x_r = \frac{x_l + x_u}{2}$$

8. False position method:

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

9. Fixed point Iteration Method

$$x_{i+1} = g(x_i)$$

10. Newton Raphson Method:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

11. Secant Method:

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

12. Modified Newton-Raphson Method:

$$x_{i+1} = x_i - \frac{f(x_i)f'(x_i)}{[f'(x_i)]^2 - f(x_i)f''(x_i)}$$

13. Cramer's Rule:

$$x_i = \frac{\det(A_i)}{\det(A)}$$

14. Matrix Inversion:

$$AX = B \iff X = A^{-1}B$$

15. Scoop Installation (via Windows PowerShell):

```
Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
Invoke-RestMethod -Uri https://get.scoop.sh | Invoke-Expression
```

16. Python Installation (via Scoop):

```
scoop install python
```

17. Python Versions

```
python --version
```

18. Installation of Python Packages

python -m notebook

```
pip install jupyter numpy matplotlib
```

19. Running Jupyter

```
jupyter lab
```

20. Defined Numpy Function for Matrix Row Swap:

21. Defined Numpy Function for Matrix Row Scale:

22. Defined Numpy Function for Matrix Row Add: