

Initiation HPC cluster

www.southgreen.fr

https://southgreenplatform.github.io/trainings

Présentation i-Trop

Ndomassi TANDO, Ingénieur systèmes Animateur plateau, RMQ

Christine TRANCHANT-DUBREUIL, Bioinformaticienne

Aurore COMTE, Bioinformaticienne

Julie ORJUELA-BOUNIOL, Bioinformaticienne

Valérie NOEL, Bioinformaticienne

Bruno GRANOUILLAC, Systèmes d'information

outh Green Présentation i-Trop

Demandes/incidents/Howtos

- Formulaires de demandes
 - https://bioinfo.ird.fr/index.php/cluster-fr/
 - Comptes
 - Installation logiciels
 - Projets
- Incidents: contacter bioinfo@ird.fr
- Howtos:
 - https://bioinfo.ird.fr/index.php/tutorials-fr/howtosfor-hpc-cluster-itrop/
- Tutorials Slurm:
 - https://bioinfo.ird.fr/index.php/tutorials-fr/slurm/
- FAQ:
 - https://bioinfo.ird.fr/index.php/faq-fr/

ARCHITECTURE

Qu'est ce qu'un cluster?

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources

Qu'est ce qu'un cluster?

- une unité logique de plusieurs serveurs
- une unique machine puissante
- •une puissance de calcul élevée
- Une plus grande capacité de stockage
- Une fiabilité supérieure
- Une plus grande disponibilité des ressources

outh Green Composants d'un cluster

- Noeud maître Gère les ressources et les priorités des jobs
- Noeuds de calcul Ressources (CPU ou mémoire RAM)

South Green Composants d'un cluster

- Noeud maître Gère les ressources et les priorités des jobs
- Noeuds de calcul Ressources (CPU ou mémoire RAM)

Serveur(s) NAS Stockage

Architecture: rôle des éléments

1 Noeud Maître

bioinfo-master.ird.fr

Rôle:

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet
- Connexion:

ssh login@bioinfo-master.ird.fr

Architecture: rôle des éléments

1 Noeud Maître

bioinfo-master.ird.fr

Rôle:

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet
- Connexion :

ssh login@bioinfo-master.ird.fr

32 Noeuds de Calcul

nodeX X: 0..31

Rôle:

- Utilisés par le maître pour exécuter les jobs/calculs
- Pas accessibles depuis Internet
- node0 à node31

Practice

Etape 1: Connexion, srun

Aller sur le Practice 1 du github

Etapes d'une analyse sur le cluster

Connexion
à bioinfomaster.ird.f
r et
réservation
de
ressources

Etape 1 srun ou sbatch

Partitions	Utilisation	Caractéristiques RAM noeuds	Caractéristiques coeurs noeuds
short	Jobs courts < 1 jour	48 à 64 Go	12 coeurs
normal	Jobs courts max 7 jours	64 Go à 96 Go	12 à 24 coeurs
long	45 jours >Jobs longs > 7 jours	48 Go	12 à 24 coeurs
highmem	Jobs avec besoin de plus de mémoire	144 Go à 256Go	12 à 24 coeurs
highmemplus	Jobs avec besoin de plus de mémoire	512Go	88 coeurs
highmemdell	Jobs avec besoin de plus de mémoire	512Go	112 coeurs
supermem	Jobs avec besoin de beaucoup de mémoire	1To	40 coeurs
gpu	Besoin d'analyses sur des gpus	192Go	24 cpus et 8 coeurs GPUs

Cas particulier: partition gpu

- Partition pour effectuer des travaux sur des processeurs GPUs: basecalling,
 MiniOn etc...
- Accès restreint au groupe gpu_account
- Demande d'accès avec argumentaire à faire sur

https://itrop.ird.fr/glpi/plugins/formcreator/front/formdisplay.php?id=15

Quelle partition choisir?

outh Green Quelle partition choisir?

outh Green Quelle partition choisir?

Quelle partition choisir?

outh Green Quelle partition choisir?

Quelle partition choisir?

Quelle partition choisir?

South Green Quelle partition choisir?

Règles	Partition	example outils	commentaire
basecalling, demultiplexing,		medaka, guppy, machine learning	
correction	gpu	tools	demande d'acces
			génome cible > 400 Mb (Un génome
assemblages >100G RAM	supermem	miniasm, flye, raven, smartdenovo	comme le riz ne consomme pas 100Go)
genomicsbd (gatk) > 100G RAM	supermem	GATK genomicsDB	genome cible de plus de 400 Mb (>10 samples)
	highmemplus,h		
assemblages => 35G et < 120G RAM	igmemdell	miniasm, flye, raven, smartdenovo	génome cible entre 100 et 400 Mb
assemblages => 35G et < 100G RAM	highmem	miniasm, flye, raven, smartdenovo	génome cible entre 100 et 400 Mb
structure de pops	long		
simulations	long		
metagenomic	normal	quiime2, frogs	
mapping	normal	bwa, minimap2, hisat2	besoin de bcp des coeurs pas bcp de RAM nb de coeurs tool = nb de coeurs à réserver
			besoin de bcp des coeurs pas bcp de RAM
		GATK haplotypecaller, samtools	nb de coeurs tool = nb de coeurs à
genotypage	normal	mpileup, bcftools	réserver
stats	normal	R	
test de scripts	short	bash, python, R	

Architecture: rôle des éléments

1 Noeud Maître

bioinfo-master.ird.fr

Rôle:

- Lancer et prioriser les jobs sur les nœuds de calcul
- Accessible depuis Internet

32 Noeuds de Calcul

nodeX

X: 0..31

Rôle:

- Utilisés par le maître pour exécuter les jobs/calculs
- Pas accessibles depuis Internet

3 serveurs NAS

bioinfo-nas.ird.fr (nas)

bioinfo-nas2.ird.fr (nas2)

bioinfo-nas3.ird.fr (nas3)

Rôle:

- Stocker les données utilisateurs
- Accessibles depuis Internet
- Pour transférer les données : via filezilla ou scp

Partitions disques sur le cluster i-Trop

bioinfo-nas.ird.fr

bioinfo-nas2.ird.fr

bioinfo-nas3.ird.fr

Légende:

Disques durs locaux en cylindres pleins

Liens virtuels vers disques durs physiques (cylindres vides)

Etapes d'une analyse sur le cluster

Etape 1 Etape 2 mkdir

Practice

Etape 2:srun, partition

Aller sur le Practice2 du github

Transferts de données sur le cluster itrop

Ordinateur personnel

Transfert direct via filezilla interdit

bioinfo-master.ird.fr

Transferts de données sur le cluster itrop

/home and/or /teams or /data2

Hostname: bioinfonas.ird.fr

Login: cluster account

bioinfo-nas.ird.fr

Password : cluster

password Port : **22** /data

Hostname : bioinfo-nas2.ird.fr

Login : cluster account

Password : bioinfo-nas2.ird.frcluster password Port : 22

/data3

Hostname: bioinfo-nas3.ird.fr

Login : cluster account

Password : cluster password

Port : 22

Etapes d'une analyse sur le cluster

Copier les données depuis son ordinateur personnel vers les serveurs nas si les données à analyser ne sont pas sur le cluster

Practice

Etape3: filezilla

Aller sur le Practice3 du github

La copie avec scp

Copie entre 2 serveurs distants :

scp -r source destination

Syntaxe si la source est distante :

scp -r nom_serveur:/chemin/fichier_a_copier répertoire_local

• Syntaxe si la destination est distante :

scp -r /chemin/fichier_a_copier nomserveur:/chemin/répertoire_distant

Ex: scp -r nas:/home/tando/repertoire/scratch/tando/

Etapes d'une analyse sur le cluster

Practice

Etape4: scp vers noeuds

Aller sur le Practice4 du github

Module Environment

- Permet de choisir la version du logiciel que l'on veut utiliser
- > 2 types de logiciels :

bioinfo: désigne les logiciels de bioinformatique

(exemple BEAST)

system : désigne tous les logiciels systèmes(exemple JAVA)

Surpassent les variables d'environnement

Module Environment

- 5 types de commandes :
- Voir les modules disponibles :

module avail

• Obtenir une info sur un module en particulier :

module whatis + module name

Charger un module :

module load + modulename

Lister les modules chargés :

module list

Décharger un module :

module unload + modulename

• Décharger tous les modules :

module purge

Etapes d'une analyse sur le cluster

Charger ses logiciels avec modules environment

Etape 5 module

Practice

Etape5: module environment

Aller sur le Practice5 du github

Etapes d'une analyse sur le cluster

Etape 5 Etape 6

Lancer une commande depuis le prompt

- Charger la version du logiciel à lancer
- Lancer l'analyse des données

\$~ commande <options> <arguments>

Avec commande: la commande à lancer

Practice

Etape6: lancer l'analyse

Aller sur le <u>Practice6</u> du github

Le transfert des résultats vers les nas

Copie entre 2 serveurs distants :

scp -r source destination

Syntaxe si la source est distante :

scp -r nom_serveur:/chemin/fichier_a_copier répertoire_local

• Syntaxe si la destination est distante :

scp -r /chemin/fichier_a_copier nomserveur:/chemin/répertoire_distant

Etapes d'une analyse sur le cluster

Etape 5 Etape 6 Etape 7

Practice

Etape7: Récupérer les résultats

Aller sur le <u>Practice7</u> du github

Supprimer les résultats des scratchs

- Scratch = espaces temporaires
- Vérifier la copie des résultats avant
- Utiliser la commande rm

cd /scratch rm -rf nom_rep

Etapes d'une analyse sur le cluster

rm

Practice

Etape8: suppression des données

Aller sur le Practice8 du github

Scripts pour visualiser/supprimer données temporaires

- Emplacement des scripts: /opt/scripts/scratch-scripts
- Visualiser ses données sur les scratchs: scratch_use.sh

sh /opt/scripts/scratch-scripts/scratch_use.sh

Supprimer ses données sur les scratchs: clean_scratch.sh

sh /opt/scripts/scratch-scripts/clean_scratch.sh

South Green Principales commandes Slurm

Commande	Description	Exemple
sruntime=0X:00pty bash -i	Se connecter de manière interactive à un noeud pendant X minutes	sruntime=02:00:00pty bash -i Connexion pendant 2 heures
sbatch	Lancer une analyse via script en arrière plan	sbatch script.sh
sinfo	Informations sur les partitions	sinfo
scancel	Suppression des jobs <job_id></job_id>	scancel 1029
squeue	Infos sur tous les jobs	squeue -u tando
scontrol show job <job_id></job_id>	Infos sur le job actif <job_id></job_id>	scontrol show job 1029
sacct -j <job_id></job_id>	Infos sur le job terminé <job_id></job_id>	sacct -j 1029

Plus d'infos sur Slurm ici: https://bioinfo.ird.fr/index.php/tutorials-fr/slurm/#part-2

South Green Options des commandes sbatch, srun, salloc

Options	Description	Exemple
job-name= <name></name>	Donner un nom au job	sbatchjob-name=tando_blast
-p <partition></partition>	Choisir une partition	sbatch -p highmem
nodelist= <nodex></nodex>	Choisir un noeud en particulier	sbatch -p normalnodelist=node14
-n <nbre_taches></nbre_taches>	Lancer plusieurs instance d'une commande	srun -n 4 hostname
-c <nb_cpu_par_tache></nb_cpu_par_tache>	Allouer le nombre de cpus par tâche	srun -n 4 -c 2 hostname
mail-user= <emailaddress></emailaddress>	Envoyer un mail	sbatchmail- user=ndomassi.tando@ird.fr
mail-type= <event></event>	Envoyer un mail quand: END: fin du job FAIL: abandon BEGIN: début du job ALL: tout	sbatchmail-type=BEGIN

BONUS

LANCER UN JOB

Avantages

- Le scheduler choisit les ressources automatiquement
- Lancer des jobs utilisant jusqu'à 24 coeurs
- Possibilité de paramétrer ce choix
- Jobs lancés en arrière plan
 - → possibilité d'éteindre son ordinateur
 - → récupération des résultats automatique

Lancer un job en mode batch

- C'est le fait d'exécuter un script bash via slurm
- On utilise la commande:

\$~ sbatch script.sh

Avec script.sh : le nom du script

South Green Options des commandes sbatch, srun, salloc

Options	Description	Exemple
job-name= <name></name>	Donner un nom au job	sbatchjob-name=tando_blast
-p <partition></partition>	Choisir une partition	sbatch -p highmem
nodelist= <nodex></nodex>	Choisir un noeud en particulier	sbatch -p normalnodelist=node14
-n <nbre_taches></nbre_taches>	Lancer plusieurs instance d'une commande	srun -n 4 hostname
-c <nb_cpu_par_tache></nb_cpu_par_tache>	Allouer le nombre de cpus par tâche	srun -n 4 -c 2 hostname
mail-user= <emailaddress></emailaddress>	Envoyer un mail	sbatchmail-user=ndomassi@ird.fr
mail-type= <event></event>	Envoyer un mail quand: END: fin du job FAIL: abandon BEGIN: début du job ALL: tout	sbatchmail-type=BEGIN

Syntaxe des scripts bash

Dans la première partie du script on renseigne les options d'exécution de slurm avec le mot clé #SBATCH (partie en vert)

```
#!/bin/bash
## On définit le nom du job
#SBATCH --job-name=test
## On définit le nom du fichier de sortie
#SBATCH --output=res.txt
## On définit le nombre de tâches
#SBATCH --ntasks=1
## On définit le temps limite d'éxécution
#SBATCH --time=10:00
```


Syntaxe des scripts bash

Dans la 2e partie du script on renseigne les actions à effectuer

Practice

Lancer un script avec sbatch

Aller sur le <u>Practice9</u> du github

Enquête de satisfaction

La réponse à l'enquête suivante est **obligatoire** pour avoir **votre compte prolongé**:

http://itrop-survey.ird.fr/index.php/417115?lang=fr

Citations

Si vous utilisez les ressources du plateau i-Trop.

Merci de nous citer avec:

"The authors acknowledge the IRD itrop HPC (South Green Platform) at IRD montpellier

for providing HPC resources that have contributed to the research results reported within this paper.

URL: https://bioinfo.ird.fr/- http://www.southgreen.fr"

Projets

 Pensez à inclure un budget ressources de calcul dans vos réponses à projets

- Besoin en disques dur, renouvellement de machines etc...
- Devis disponibles

 Contactez <u>bioinfo@ird.fr</u>: aide, définition de besoins, devis...

Merci pour votre attention!

Le matériel pédagogique utilisé pour ces enseignements est mis à disposition selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Partage dans les Mêmes Conditions (BY-NC-SA) 4.0 International:

http://creativecommons.org/licenses/by-nc-sa/4.0/