Statistics
Semester 4

Contents

Chapter 1

Revision of Probability

I'm simply gonna list rules.

$$\begin{split} \mathbb{E}(X) &= \mu = \sum_{i \in \Omega} X_i \mathrm{Pr}\left(X_i\right) \\ \mathbb{E}(g(X)) &= \sum_{i \in \Omega} g(X_i) \mathrm{Pr}\left(X_i\right) \\ \mathbb{E}(aX + b) &= a\mathbb{E}(X) + b \\ \mathbb{E}(X + Y) &= \mathbb{E}(X) + \mathbb{E}(Y) \quad \text{if both variables are independent} \end{split}$$

$$\begin{aligned} \operatorname{Var}(X) &= \sigma^2 = \mathbb{E}(X^2) - \mu^2 \\ \operatorname{Var}(aX + bY) &= a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y) + 2ab \operatorname{cov}(X, Y) \end{aligned}$$

where

$$cov(X,Y) = \mathbb{E}(XY) - \mathbb{E}(X) \cdot \mathbb{E}(Y).$$

1.1 Discrete Distributions

1. Uniform discrete law

$$X(\Omega) = \{1, 2, 3, \dots, n\}$$

$$\Pr(X = k) = \frac{1}{n} \quad \forall k = 1, 2, 3, \dots, n$$

$$\begin{cases} \mathbb{E}(X) = \frac{n+1}{2} \\ \text{Var}(X) = \frac{n^2 - 1}{12} \end{cases}$$

2. Bernoulli law of parameters p (0 < p < 1)

$$\begin{split} X \sim \mathrm{B}(p) \\ X(\Omega) &= \{0,1\} \\ \Pr\left(X = 1\right) &= p \quad \Pr\left(X = 0\right) = 1 - p \\ \left\{\mathbb{E}(X) &= p \\ \mathrm{Var}\left(X\right) &= p(1-p) \right. \end{split}$$

3. Binomial law of parameters n and p

$$\begin{split} & X \sim \operatorname{Bin}(n,p) \\ & X(\Omega) = \{1,2,\ldots,n\} \\ & \operatorname{Pr}(X=1) = C_n^k p^k q^{n-k} \quad \forall k \in \{0,1,2,\ldots,n\} \\ & \begin{cases} \mathbb{E}(X) = np \\ \operatorname{Var}(X) = np(1-p) \end{cases} \end{split}$$

4. Hypergeometric law

$$\begin{split} &X \sim \mathcal{H}(N,n,p) \\ &X(\Omega) = \left[\max\{0,n-N+M\}, \min\{M,n\} \right] \\ &\Pr\left(X = k \right) = \frac{C_M^k \cdot C_{N-M}^{n-k}}{C_N^n} \quad \forall k \in X(\Omega) \\ &\left\{ \mathbb{E}(X) = np \\ &\operatorname{Var}(X) = np(1-p) \left(\frac{N-n}{N-1} \right) \right. \end{split}$$

5. Geometric law

$$\begin{split} & X \sim \mathrm{G}(p) \\ & X(\Omega) = \mathbb{N}^* \\ & \Pr\left(X = k\right) = p(1-p)^{k-1} \quad \forall k \in \mathbb{N}^* \\ & \begin{cases} \mathbb{E}(X) = \frac{1}{p} \\ \mathrm{Var}\left(X\right) = \frac{1-p}{p^2} \end{cases} \end{split}$$

6. Poisson's law of parameter λ ($\lambda \in \mathbb{R}_+^*$)

$$\begin{split} X &\sim \mathcal{P}(\lambda) \\ X(\Omega) &= \mathbb{N} \\ \Pr\left(X = k\right) = e^{-\lambda} \frac{\lambda^k}{k!} \quad \forall k \in \mathbb{N} \\ \left\{ \mathbb{E}(X) = \lambda \right. \\ \operatorname{Var}(X) &= \lambda \end{split}$$

1.2 Continuous Distributions

1. Uniform law

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a, b] \\ 0 & \text{else} \end{cases}$$
$$\begin{cases} \mathbb{E}(x) = \frac{a+b}{2} \\ \text{Var}(x) = \frac{(b-a)^2}{12} \end{cases}$$

2. Continuous law

$$x \sim \xi(\lambda)$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0\\ 0 & \text{else} \end{cases}$$

$$\begin{cases} \mathbb{E}(x) = \frac{1}{\lambda} \\ \text{Var}(x) = \frac{1}{\lambda^2} \end{cases}$$

3. Normal law

$$x \sim \mathcal{N}(\mu, \sigma)$$
$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$\begin{cases} \mathbb{E}(x) = \mu \\ \text{Var}(x) = \sigma^2 \end{cases}$$

For $\mathcal{N}(0,1)$

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

$$\pi(z) = \Phi(z) - 0.5 = \int_{0}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

1.3 Convergence

Theorem 1.3.1 Chebyshev's inequality

Let X be a random variable of expectation $\mathbb{E}(X)$ and variance $\mathrm{Var}(X)$. Then $\forall \varepsilon$

$$\Pr\left(\left|X-\mathbb{E}(X)\right| \geq \varepsilon\right) \leq \frac{\mathrm{Var}\left(X\right)}{\varepsilon^2}.$$

it can also be stated as

$$\Pr(|X - \mathbb{E}(X)| < \varepsilon) \ge 1 - \frac{\operatorname{Var}(X)}{\varepsilon^2}.$$

We say a sequence of random variables X_n converges to $a(X_n) \xrightarrow{\Pr} a$ if $\forall \varepsilon$

$$\lim_{n \to +\infty} \Pr(|X_n - a| > \varepsilon) = 0.$$

or

$$\lim_{n \to +\infty} \Pr\left(|X_n - a| \le \varepsilon\right) = 1.$$

Theorem 1.3.2 Weak law of large numbers

Consider a random variable (X_n) of mean μ and variance σ^2 . Consider the random variable $\tilde{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$. It can be shown that \tilde{X}_n converges to μ meaning $\forall \varepsilon$

$$\lim_{n \to +\infty} \Pr\left(|\tilde{X}_n - \mu| > \varepsilon\right) = 0.$$

1.4 Approximations

Theorem 1.4.1 Binomial by a Poisson

$$\mathrm{Bin}(n,p) \sim \mathcal{P}(np) \quad \mathrm{if} \, \begin{cases} n \geq 30 \\ p \leq 0.1 \\ np < 15 \end{cases} \, .$$

Theorem 1.4.2 Hypergeometric by a Binomial

$$\mathcal{H}(N, n, p) \sim \text{Bin}(n, p)$$
 if $n \leq 0.05N$.

Theorem 1.4.3 De Moivre-Laplace theorem

$$\mathrm{Bin}(n,p) \sim \mathcal{N}\left(np,\sqrt{np(1-p)}\right) \quad \mathrm{if} \ \begin{cases} n \geq 30 \\ np \geq 5 \\ n(1-p) \geq 5 \end{cases} .$$

In this case the event X = k can be replaced by k - 0.5 < X < l + 0.5

Theorem 1.4.4 Central limit theorem

Let (X_n) be a sequence of independent random variables following the same law of expectation μ and of standard deviation σ . Let $S_n = \sum_{i=1}^n X_i$ and $S_n^* = \frac{S_n - n\mu}{\sigma\sqrt{n}}$. It can be shown that S_n^* converges in law to $\mathcal{N}(0,1)$.

$$\mathbb{E}(S_n) = n\mu$$
$$\operatorname{Var}(S_n) = n\sigma^2$$

1.5 Further laws

Theorem 1.5.1 Chi square law

Let X_1, X_2, \ldots, X_n be n independent random variables following the standard normal law $\mathcal{N}(0,1)$. Let $Y = X_1^2 + X_2^2 + \cdots + X_n^2$. We say that Y follows a chi-square law with n degrees of freedom. $Y \sim \chi_n^2$.

$$\mathbb{E}(Y) = n$$
$$Var(Y) = 2n$$

It can be shown that the density function of Y is

$$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}} & \text{if } x > 0\\ 0 & \text{else} \end{cases}.$$

where Γ is the gamma function

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt \quad \forall x > 0.$$

Theorem 1.5.2 Student law(t-distribution)

Let X, Z be two independent random variables such that $X \sim \mathcal{N}(0,1)$ and $Z \sim \chi_n^2$. Hence the random variable

$$T = \frac{X}{\sqrt{\frac{Z}{n}}}.$$

is said to be following a student law. $T \sim \mathcal{T}_n$

$$f(t) = \frac{1}{\sqrt{n\pi}} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}.$$