Prova 1 - Estatística Matemática - 2025/1

Dados de Identificação		
Professor:	Roberto Vila	
Aluno(a):		
Matrícula:		

Escreva sua resposta com letra legível. Argumente!

- 1. **(2,0) Questão.**
 - (a) (1.0) Construa a menor σ -álgebra em [0,1], contendo o subconjunto [1/4,3/4].
 - (b) (1.0) Verifique que um evento $A \operatorname{com} \mathbb{P}(A) = 1$ é independente a qualquer outro evento B.
- 2. **(2,0) Questão.** Seja $(\Omega, \mathscr{F}, \mathbb{P})$ um espaço de probabilidade e suponha que A_n e B pertençam a \mathscr{F} . Se os eventos A_n são disjuntos com $\mathbb{P}(A_n) > 0$, e $\mathbb{P}(B|A_n) \geqslant c$ para todo n e alguma constante c > 0, verifique que:

$$\mathbb{P}\bigg(B \,\bigg| \, \bigcup_{n=1}^{\infty} A_n \bigg) \geqslant c.$$

3. **(3,0) Questão.** Sejam $X \sim U[0,1]$ e

$$Y = \max\left\{X, \frac{1}{2}\right\} = \begin{cases} X, & X \geqslant \frac{1}{2}, \\ \frac{1}{2}, & X < \frac{1}{2}. \end{cases}$$

Decomponha a distribuição acumulada F_Y nas partes discreta e absolutamente contínua.

4. (3,0) Questão. A seguinte função:

$$F(x,y) = \begin{cases} 0, & \text{caso contrário;} \\ 1 - e^{-x} - e^{-2y} + e^{-(x+2y)}, & \text{se } x \geqslant 0 \text{ e } y \geqslant 0; \end{cases}$$

é função de distribuição (conjunta) de algum vetor aleatório (X,Y)? Justifique!

Dica. Lembre que, $\forall a_1, b_1, a_2, b_2 \in \mathbb{R}$ tal que $a_1 < b_1$ e $a_2 < b_2$:

$$\mathbb{P}(a_1 < X \leqslant b_1, a_2 < Y \leqslant b_2) = F(b_1, b_2) - F(b_1, a_2) - F(a_1, b_2) + F(a_1, a_2).$$