Parameter estimation as a filtering problem. Consider the following model: $X = \theta$ is an unknown constant, $W_n, n \ge 1$, is a sequence of i.i.d. Assume that

$$Y_{n+1} = f(X) Y_n + \sigma W_{n+1}, n \ge 0,$$

where σ is a constant and f is a function, $Y_0 = 0$. We do not know θ exactly but we usually have some idea about the area where it might be. Let us interpret this knowledge by assuming that $X_n = X = \theta$, $n \ge 0$, is a homogeneous Markov chain independent of W_n , $n \ge 1$, and a given initial distribution π_0 . For example, assume that X takes values in A = (0, 1, 2, 3, 4, 5) with probabilities 1/6 (it is the so called prior distribution for X).

a) Assume $\sigma = 2, f(\theta) = \theta$, and $\mathbf{P}(W_1 = \pm 1) = 0.5$. Select any of fixed $a_0 \in S$. Simulate $Y_n, 0 \le n \le 10$. Compute, in a form of a table, the posterior distribution

$$\mathbf{P}(X_0 = a | Y_{[0,n]}) = \mathbf{P}(X_n = a | Y_{[0,n]}) = \pi_n^a, a \in A, 0 \le n \le 10.$$

b) Assume $\sigma = 1, f(\theta) = \theta, W_1 \sim N(0, 1)$. Select any of fixed $a_0 \in S$. Simulate $Y_n, 0 \le n \le 10$. Compute, in a form of a table, the posterior distribution

$$\mathbf{P}(X_0 = a | Y_{[0,n]}) = \mathbf{P}(X_n = a | Y_{[0,n]}) = \pi_n^a, a \in A, 0 \le n \le 10.$$

Hint. $\mathbf{P}(X_0 = \theta | Y_0) = P(X = \theta), \theta \in A : \text{in other words, } \mathbf{P}(X = \theta | Y_0) \text{ coincides with the prior distribution of } X.$

In the case b), show that the joint density functions $\phi_n^a(b_{[0,n]})$ of $Y_{[0,n]}$ and X_n satisfy the recursive equations

$$\phi_{n+1}^{a}\left(b_{[0,n+1]}\right) = \rho\left(b_{n+1} - f(a)\,Y_{n}\right)\phi_{n}^{a}\left(b_{[0,n]}\right),$$

where ρ is the pdf of a standard normal.