LABORATORIO EXPERIMENTAL Nº 5

OSCILACIONES

Experiencia 1: Péndulo simple

A – Objetivo de la experiencia

- Determinación experimental del valor acotado de la aceleración gravitacional con un péndulo simple.

B - Material necesario

- Péndulo simple.
- Cronómetro.
- Video "péndulo simple"

C – Fundamentos teóricos

Expuestos con detalle en el capítulo de Movimiento Periódico del texto recomendado por la Cátedra.

D - Desarrollo de la Práctica

Analizar el comportamiento de un péndulo simple verificando las leyes de isocronismo y de las masas.

Determinar los parámetros que rigen el comportamiento oscilatorio y diga cómo influyen en el movimiento resultante.

- Longitud del péndulo 1,05 metro: (hasta el centro geométrico de la esfera de metal)
- Encontrar experimentalmente el período T de oscilación del péndulo simple, tomando 5 datos distintos (el tiempo de diez oscilaciones dividida en 10), calculando el error y el valor acotado del mismo (use el mismo video tomando distintas oscilaciones)

N°	T_i	T	$T_i - \overline{T}$	$(T_i - \overline{T})^2$
1				
2				
3				
4				
5				
Σ				

- Con los datos obtenidos, calcule el **valor acotado** de la aceleración de la gravedad del lugar.

$$g = 4\pi^2 \frac{L}{T^2}$$

$$[g] = \frac{m}{s^2}$$

Experiencia 2: Péndulo físico (en sistema CGS)

A – Objetivo de la experiencia

- Análisis del movimiento de un péndulo físico.
- Determinar el valor medio del momento de inercia I del péndulo físico.
- Determinar una longitud reducida Lr.

B - Material necesario

- Barra rígida
- Cronómetro.
- Video "péndulo_físico_d_10cm"
- Video "péndulo_físico_d_20cm"
- Video "péndulo_físico_d_30cm"

C - Fundamentos teóricos

Expuestos con detalle en el capítulo de Movimiento Periódico del texto recomendado por la Cátedra.

D - Desarrollo de la práctica

Analice el equilibrio de cuerpos suspendidos.

Analizar el comportamiento de un péndulo físico, colgando la barra de ejes horizontales que pasan por el clavo ubicados a distintas distancias del centro de gravedad.

Observar y concluir qué ocurre para distancias simétricas al centro de gravedad.

- 1- Encontrar experimentalmente el período de oscilación T_i del péndulo (el tiempo de diez oscilaciones dividida en 10) usando cronómetro.
- 2- Encontrar para cada eje horizontal el momento de inercia de la barra I_i ; además, usando el teorema de los ejes paralelos, calcular el momento de inercia de la barra respecto de su centro de masa Icm. Longitud de la barra L=80cm (ancho 2,5 cm). $g=979\ cm/s^2$. Masa de la barra: $m=510\ g$.

$$I_i = \frac{mg}{4\pi^2} d_i T_i^2$$

3- Calcular analíticamente el momento de inercia *Icm* de la barra.

Punto	d _i [cm]	<i>T_i</i> [s]	I _{i (experim)} [g cm²]	$I_{cm (experim)} = I_i - md^2$ [g cm ²]	$\overline{I}_{\it cm (experim)} \ [g \ cm^2]$
1	10				
2	20				
3	30				
				$I_{cm (teórico)} = \frac{1}{12} mL^2 =$	

4- Con los valores de la tabla, realizar el gráfico de *T* en función de *d*. Agregar a la gráfica 3 puntos más correspondiente a los valores de *T* para puntos ubicados simétricamente al otro lado de centro de masa a una distancia igual a *d_i*.

5- Calcular el valor de la longitud reducida para solamente "d" que corresponda al de menor periodo de oscilación. $L_r=\frac{I}{md}$

