Mohammad Norouzi

David Fleet

We need many clusters

Increasing number of clusters

Problem: Search time, storage cost

(subspace 1) (subspace 2)

(subspace 1)

(subspace 2)

Compositional representation

m subspaces h regions per subspace

Compositional representation

m subspaces h regions per subspace

 $k = h^m$ centers O(mh) parameters

Which subspaces?

Which subspaces? Learning

k-means

k cluster centers: $C = [c_1, ..., c_k]$

k-means

k cluster centers: $C = [c_1, ..., c_k]$

$$\ell_{k-means}(C) = \sum_{\mathbf{x} \in D} \min_{\mathbf{b} \in H_1^k} \|\mathbf{x} - C\mathbf{b}\|^2$$

k-means

k cluster centers: $C = [c_1, ..., c_k]$

$$\ell_{k-means}(C) = \sum_{x \in D} \min_{b \in H_1^k} \|x - Cb\|^2$$

 $H_1^k \equiv \{ b \in \{0,1\}^k | ||b|| = 1 \} \text{ is one-of-}k \text{ encoding}$

m center basis vecotrs: $C = [c_1, ..., c_m]$

$$\ell_{ok-means}(C) = \sum_{x \in D} \min_{b \in B^m} \|x - Cb\|^2$$

 $B^m \equiv \{-1,1\}^m$ is arbitrary m-bit encoding

m center basis vecotrs: $C = [c_1, ..., c_m]$

$$\ell_{ok-means}(C) = \sum_{x \in D} \min_{b \in B^m} \|x - Cb\|^2$$

 $B^m \equiv \{-1,1\}^m$ is arbitrary m-bit encoding

#centers: $k = 2^m$

m center basis vecotrs: $C = [c_1, ..., c_m]$

$$\ell_{ok-means}(C) = \sum_{x \in D} \min_{b \in B^m} \|x - Cb\|^2$$

 $B^m \equiv \{-1,1\}^m$ is arbitrary m-bit encoding

#centers: $k = 2^m$

m center basis vecotrs: $C = [c_1, ..., c_m]$

$$\ell_{ok-means}(C) = \sum_{x \in D} \min_{b \in B^m} \|x - Cb\|^2$$

Additional constraints: $\forall i \neq j, c_i \perp c_j$

$$\widehat{\boldsymbol{b}} = sgn(C^T\boldsymbol{x})$$

m center basis vecotrs: $C = [c_1, ..., c_m]$

$$\ell_{ok-means}(C) = \sum_{x \in D} \min_{b \in B^m} \|x - Cb\|^2$$

Additional constraints: $\forall i \neq j, c_i \perp c_j$

$$\widehat{\boldsymbol{b}} = sgn(C^T\boldsymbol{x})$$

C = identity

C = identity

Learned C

$$C = identity \qquad \text{Learned } C$$

$$\begin{bmatrix} -1 \\ +1 \end{bmatrix} \times \times \times \begin{bmatrix} -1 \\ +1 \end{bmatrix} \times \times \begin{bmatrix} -1 \\ -1 \end{bmatrix} \\ \times \times \times \begin{bmatrix} -1 \\ -1 \end{bmatrix} \\ \times \times \times \times \times \begin{bmatrix} -1 \\ -1 \end{bmatrix} \\ \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Iterative Quantization [Gong & Lazebnik, CVPR'11]

Product Quantization [Jegou, Douze, Schmid, PAMI'11]

$$\begin{bmatrix} x \end{bmatrix} \approx \begin{bmatrix} C^{(1)} & C^{(2)} \end{bmatrix} \begin{bmatrix} \boldsymbol{b}^{(1)} \\ \boldsymbol{b}^{(2)} \end{bmatrix}$$

$$C^{(1)} \perp C^{(2)}$$

$$\begin{bmatrix} x \\ x \end{bmatrix} \approx \begin{bmatrix} C^{(1)} & C^{(2)} \\ C^{(2)} \end{bmatrix} \begin{bmatrix} b^{(1)} \\ b^{(2)} \end{bmatrix}$$
 one-of-h one-of-h

$$C^{(1)} \perp C^{(2)}$$

$$b^{(1)}, b^{(2)} \in H_1^h$$

$$\begin{bmatrix} x \end{bmatrix} \approx \begin{bmatrix} C^{(1)} & C^{(2)} \end{bmatrix} \begin{bmatrix} b^{(1)} \\ b^{(2)} \end{bmatrix}$$
 one-of- h one-of- h

$$C^{(1)} \perp C^{(2)}$$

#centers:
$$k = h^2$$

$$b^{(1)}, b^{(2)} \in H_1^h$$

$$\begin{bmatrix} x \end{bmatrix} \approx \begin{bmatrix} C^{(1)} & C^{(2)} \end{bmatrix} \begin{bmatrix} b^{(1)} \\ b^{(2)} \end{bmatrix}$$
 one-of- h one-of- h

$$\longrightarrow C^{(1)} \perp C^{(2)}$$

$$b^{(1)}, b^{(2)} \in H_1^h$$

#centers: $k = h^2$ Storage cost: $O(\sqrt{k})$ Search time: $O(\sqrt{k})$

$$\sum_{\mathbf{x} \in D} \min_{\mathbf{b}^{(1)}, \mathbf{b}^{(2)}} \left\| \mathbf{x} - \begin{bmatrix} C^{(1)} & C^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{b}^{(1)} \\ \mathbf{b}^{(2)} \end{bmatrix} \right\|^{2}$$

$$C^{(1)} \perp C^{(2)}$$

$$b^{(1)}, b^{(2)} \in H_1^h$$

$$\sum_{\mathbf{x} \in D} \min_{\mathbf{b}^{(1)}, \mathbf{b}^{(2)}} \left\| \mathbf{x} - \begin{bmatrix} R^{(1)} & R^{(2)} \end{bmatrix} \begin{bmatrix} D^{(1)} & 0 \\ 0 & D^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{b}^{(1)} \\ \mathbf{b}^{(2)} \end{bmatrix} \right\|^{2}$$

$$R^{(1)} \perp R^{(2)}$$

$$b^{(1)}, b^{(2)} \in H_1^h$$

$$\sum_{\boldsymbol{x} \in D} \min_{\boldsymbol{b}^{(1)}, \boldsymbol{b}^{(2)}} \left\| \boldsymbol{x} - \begin{bmatrix} R^{(1)} & R^{(2)} \end{bmatrix} \begin{bmatrix} D^{(1)} & 0 \\ 0 & D^{(2)} \end{bmatrix} \begin{bmatrix} \boldsymbol{b}^{(1)} \\ \boldsymbol{b}^{(2)} \end{bmatrix} \right\|^{2}$$

$$R^{(1)} \perp R^{(2)}$$

$${m b}^{(1)}$$
 , ${m b}^{(2)} \in H_1^h$

Finding optimal *b* by two Independent NNS

$$\sum_{\mathbf{x} \in D} \min_{\mathbf{b}^{(1)}, \mathbf{b}^{(2)}} \left\| \mathbf{x} - \begin{bmatrix} R^{(1)} & R^{(2)} \end{bmatrix} \begin{bmatrix} D^{(1)} & 0 \\ 0 & D^{(2)} \end{bmatrix} \begin{bmatrix} \mathbf{b}^{(1)} \\ \mathbf{b}^{(2)} \end{bmatrix} \right\|^{2}$$

$$R^{(1)} \perp R^{(2)}$$

$$m{b}^{(1)}, m{b}^{(2)} \in H_1^h$$

Update *D* by one step of k-means in each subspace

Learning Cartesian k-means

$$\sum_{\boldsymbol{x} \in D} \min_{\boldsymbol{b}^{(1)}, \boldsymbol{b}^{(2)}} \left\| \boldsymbol{x} - \begin{bmatrix} R^{(1)} & R^{(2)} \end{bmatrix} \begin{bmatrix} D^{(1)} & 0 \\ 0 & D^{(2)} \end{bmatrix} \begin{bmatrix} \boldsymbol{b}^{(1)} \\ \boldsymbol{b}^{(2)} \end{bmatrix} \right\|^{2}$$

$$R^{(1)} \perp R^{(2)}$$

$$b^{(1)}, b^{(2)} \in H_1^h$$

Update *R* by *SVD* to solve Orthogonal procrustes

Cartesian k-means

$$\begin{bmatrix} x \end{bmatrix} \approx \begin{bmatrix} C^{(1)} & \dots & C^{(m)} \end{bmatrix} \begin{bmatrix} \boldsymbol{b}^{(1)} \\ \vdots \\ \boldsymbol{b}^{(m)} \end{bmatrix}$$
 one-of- h

$$\forall i \neq j \ C^{(i)} \perp C^{(j)}$$

$$oldsymbol{b}^{(1)}$$
, ..., $oldsymbol{b}^{(m)} \in H_1^h$

 $\forall i \neq j \ C^{(i)} \perp C^{(j)}$ #centers: $k = h^m$ $\mathbf{b}^{(1)}, \dots, \mathbf{b}^{(m)} \in H_1^h$ Storage cost: $0(\sqrt[m]{k})$ Search time: $0(\sqrt[m]{k})$

Cartesian k-means

m subspaces, h regions per subspace

ok-means

$$h = 2$$

$$k = 2^{m}$$

m = 1 k-means

compositionality

Codebook learning (CIFAR-10)

Codebook	Accuracy
k-means ($k = 1600$)	77.9%
k-means ($k = 4000$)	79.6%

Codebook learning (CIFAR-10)

Codebook	Accuracy
k-means ($k = 1600$) ck-means ($k = 40^2$)	77.9% 78.2%
k-means ($k = 4000$) ck-means ($k = 64^2$)	79.6% 79.7%

Codebook learning (CIFAR-10)

Codebook	Accuracy
k-means ($k = 1600$)	77.9%
ck-means ($k = 40^2$)	78.2%
PQ ($k = 40^2$)	75.9%
k-means ($k = 4000$)	79.6%
ck-means ($k = 64^2$)	79.7%
PQ ($k = 64^2$)	78.2%

Summary

Summary

Thank you for your attention!

Please ask questions :-)

Cartesian k-means

C = identity

Learn C

