Part1

1 Using ADT Device Xplore, plot the following design charts vs $\frac{GM}{ID}$ for both PMOS and NMOS. Set VDS = VDD/3 and L = 0.18u, 0.5u: 0.5u:

1.1 GM/GDS NMOS

1.2 ID/W NMOS

1.3 GM/CGG

NMOS

1.4 VGS

Nmos

PART2: OTA Design

1 DETAILED DESIGN PROCEDURE AND HAND ANALYSIS. JUSTIFY WHY YOU USED NMOS OR PMOS INPUT PAIR FOR EACH STAGE

1.1 INPUT PAIR

rominnize the evier w hoiced the 2nd Stue to e NMOS InPut 4-Vin We will nellect body effect 1 = VDD = C< 31,875 1 = 32,4 m Vad/s

ASSUMING CCZ SLZZSPF GM 7 31,4M GM > 78,5US JM = 80 i, Slewlate = 5, [] = 5 x 2,5 Ib2260-12,5=47,54) (9m) 2 80 2 12,8) 2 9ctual- Iseal x100 = 0,05 IDEAL 1 25X207

1.2 2ND STAGE INPUT

1.3 MIRROR LOAD

1.4 THE TAIL

CMRR == 74 db, CMV= 36 - Aven Aven = < 0,125 = 0,0125 VDS = 0,6, VSR=0 1692 0+07 Deal seat 18

1.5 VERIFY THAT YOUR GM/ID CHOICES DO NOT VIOLATE THE CMIR AND THE PEAK-TO-PEAK OUTPUT SWING.

RZ=1/gm2input(from sa) = 1/630.7u

2 A TABLE SHOWING W, L, gm,ID, gm/ID, vdsat, Vov = VGS - VTH, and V*=2ID/gm of all transistors (as calculated from SA).

TRANS	W	L	GM	ID	GM/ID	VDSsat	VOV	VSTAR
Input	8.22u	890n	78.39u	6.25u	12.54	127m	152m	159.5m
pair								
MIRROR	1.63u	1.22u	61.85u	6.25u	9.911	157.4m	209.7m	201.8m
LOAD								
TAIL	6.13u	590n	125.3u	12.5u	10.02	160m	195.6m	199.5m
CURRENT								
SOURCE								
2 nd stage	4.8u	280n	630.7u	47.5u	13.28	114.8m	141m	150.6m
input								

PART 3: Open-Loop OTA Simulation:

THERE IS schematic offset made vout=1.313, so we swept w(mirror load) to make vout=vdd/2.

But Current consumption range is violated.

To make sure we don't violate the range we should see the current at the min value 0.2v:

So by doing cross multiplication (under same bias voltage there is a direct relation between width and current):

$$W6 = \frac{47.5 * 3.8W3}{53.28} = 3.387W3$$

1 SCHEMATIC OF THE OTA AND BIAS CIRCUIT WITH DC NODE VOLTAGES CLEARLY ANNOTATED.

1.1 IS THE CURRENT (AND GM) IN THE INPUT PAIR EXACTLY EQUAL? YES, $id=6.162u\ gm=78.42u$

- 1.2 WHAT IS DC VOLTAGE AT THE OUTPUT OF THE FIRST STAGE? WHY?613.3 mv, as VOUT=VGS(M3) and M5 follow M3 and it is diode connected so VGS(0)=VGS(1)=VDS=607.8 mV
- 1.3 What is DC voltage at the output of the second stage? Why? VDD/2=0.9, as vgs(m5)=vgs(M8) so there is no schematic offset between the two transistors and as we know $verr=\frac{\Delta Vout}{AV}$ so $\Delta Vout=0$

2 DIFF SMALL SIGNAL CCS:

2.1 USE AC ANALYSIS (1Hz:10Gz, LOGARITHMIC, 10 POINTS/DECADE).

2.2 CALCULATE CIRCUIT PARAMETERS (AO, AO IN DB, BW, GBW, UGF)

lab8_part3_1	A0	3.189K		
lab8_part3_1	A0_db	70.07		
lab8_part3_1	BW	1.507K		
lab8_part3_1	fu	4.718M		
lab8_part3_1	GBW	4.805M		

2.3 PLOT DIFF GAIN (IN DB) VS FREQUENCY

2.4 Compare simulation results with hand calculations in a table.

	Simulated	Analytical
A0	3189	3200
A0_DB	70.07 db	70.10 db
BW	1507	1559
GBW	4.805M	5.104 M
Fu	4.718M	5.104 M

3 CM SMALL SIGNAL CCS:

$$AVcm = \frac{1}{2gm_{mirror} * RSS} = \frac{1}{2 * \frac{gm_{mirror}}{gds_{Tail}}} = 0.0134 = -37.41db$$

	SIMULATOR	ANALYTICAL
AVcm	-39.68 db	-37.41 db

4 CM LARGE SIGNAL CCS (REGION VS VICM):

We uses PMOS input pair, body effect caused CMIR to extend till GND.

	Sim	Hand analysis
CMIR	1.03-0=1.03	1-0.2=0.8

PART 4: Closed-Loop OTA Simulation

1 SCHEMATIC OF THE OTA AND THE BIAS CIRCUIT WITH DC OP POINT CLEARLY ANNOTATED IN UNITY GAIN BUFFER CONFIGURATION.

- 1.1 Are the DC voltages at the input terminals of the op-amp exactly equal? Why? NO, as $\frac{\Delta V}{Aol}=\frac{0.9-0.6}{3189}=0.094mv\sim 1mv$
- 1.2 IS THE DC VOLTAGE AT THE OUTPUT OF THE FIRST STAGE EXACTLY EQUAL TO THE VALUE IN THE OPEN-LOOP SIMULATION? WHY?

NO, as we made unity buffer feedback, so vout=vin=0.6v not 0.9v.

1.3 IS THE CURRENT (AND GM) IN THE INPUT PAIR EXACTLY EQUAL? WHY?

No as there is a mismatch between the two inputs, as the output voltage deviates from its CM level and the gain is finite.

2 LOOP GAIN:

2.1 PLOT LOOP GAIN IN DB AND PHASE VS FREQUENCY

2.2 COMPARE DC GAIN, FU, AND GBW WITH THOSE OBTAINED FROM OPEN-LOOP SIMULATION. COMMENT

lab8_part4_1	A	3.071K		
lab8_part4_1	A_DB	69.75		
lab8_part4_1	BW	1.562K		
lab8_part4_1	FU	4.715M		
lab8_part4_1	GBW	4.795M		

	Open loop	Loop gain
A0	3189	3071
A0_DB	70.07 db	69.75 db
BW	1507	1562
GBW	4.805M	4.795 M
Fu	4.718M	4.715 M

The values are too close as expected, as $\beta=1$

2.3 REPORT PM. COMPARE WITH HAND CALCULATIONS. COMMENT.

Phase margin is too close to the analytical calculation, we made gm of the 2nd stage input is 8 times the gm of input stage and we expected a critical response (PM=76) but some variations happened made the pm a little less.

2.4 Compare simulation results with hand calculations in a table.

	Loop gain	Analytical
A0	3071	3200
A0_DB	69.75 db	70.10 db
BW	1562	1559
GBW	4.795 M	5.104 M
Fu	4.715 M	5.104 M

For analytical calculations loopgain= β Aol, and β =1 so loopgain=Aol that we calculated above.

3 SLEW RATE:

3.1 APPLY A STEP INPUT WITH THE FOLLOWING PARAMETERS (DELAY = 1US, INITIAL VALUE = CMIR-LOW + 50MV, FINAL VALUE = CMIR-HIGH - 50MV, RISE TIME = 1NS, PERIOD = 1S, WIDTH = 1s). NOTE THAT WE WANT A SINGLE STEP INPUT, WHICH IS WHY WE SELECTED VERY LARGE PERIOD AND WIDTH FOR THE PULSE.

3.2 REPORT VIN AND VOUT OVERLAID

3.3 Report the slew rate.

3.4 COMPARE SIMULATION RESULTS WITH HAND CALCULATIONS IN A TABLE

It is less than the expected value 5 but we can decrease cc to get slew rate >5 But we should make sure the new value of cc doesn't violate the PM specs which is happened successfully.

Сс	Sim	Analytical
2.5p	4.41	(12.5/2.5) = 5
2.15p	5.07	(12.5/2.15) = 5.814

4 APPLY A SMALL SIGNAL STEP INPUT WITH THE FOLLOWING PARAMETERS

(DELAY = 1US, INITIAL VALUE = THE MIDDLE OF THE CMIR, FINAL VALUE =
THE MIDDLE OF THE CMIR + 5mV, RISE TIME = 1NS, PERIOD = 1S, WIDTH = 1S). NOTE THAT WE WANT A SINGLE STEP INPUT, WHICH IS WHY WE SELECTED VERY LARGE PERIOD AND WIDTH FOR THE PULSE. NOTE THAT WE APPLY A SMALL SIGNAL PULSE (5mV STEP) TO MEASURE THE SMALL SIGNAL SETTLING TIME.

4.1 CALCULATE THE OUTPUT RISE TIME FROM SIMULATION.

4.2 COMPARE SIMULATION RESULTS WITH HAND CALCULATIONS IN A TABLE

HAND CALCULATION			Simulation
= 2.2 = 2.2 = 68.6n			50.1n
$\frac{1}{2\pi * UGF(in \ hz)} = \frac{1}{2\pi * 5.104 * 10^6} = 68.6$			33.2

As written in the hint, using trise = 2.2τ is based on first-order model, and first-order model is an approximation to the overdamping system which is too slow, but as we showed above the phase margin is 75.7 which is second order under damping system which is too close to critical damping.

4.3 Do you see any ringing? Why?

yes, there is an over shoot as the phase margin is 75.7 which is second order underdamped system, and if we increased the PM to be more 76 (critical) we wouldn't see any, and there is also no oscillations as PM is not too small.

If we used the new cc=2.15p:

lab8_part4_1	A0	3.071K		
lab8_part4_1	A0_DB	69.75		
lab8_part4_1	BW	1.819K		
lab8_part4_1	FU	5.432M		
lab8_part4_1	GBW	5.585M		
lab8_part4_1	/phaseMargin_stb_margin	73.6		

lab8_part4_1	slewRate(VT("/V	5.07M		

Expression	Value
riseTime(leafVal	43.62E-9

[Trise (analytical)=
$$\frac{2.2}{2\pi * UGF(in \ hz)} = \frac{2.2}{2\pi * 5.432*10^6} = 64.46 \text{ns}$$
]

ALL THE SPECS ARE NOT VIOLATED