```
In [4]: from sklearn.datasets import make moons
        from sklearn.cluster import DBSCAN
        from sklearn.neighbors import NearestNeighbors
        from scipy.spatial.distance import pdist, squareform
In [6]: # Generate sample data
        X, y = make_moons(n_samples=300, noise=0.1, random_state=0)
        # Function to plot data
        def plot_data(X, title, ax):
            ax.scatter(X[:, 0], X[:, 1], s=10)
            ax.set title(title)
            ax.set_xlabel('Feature 1')
            ax.set ylabel('Feature 2')
        # Plot initial data
        fig, axs = plt.subplots(2, 2, figsize=(12, 10))
        plot_data(X, 'Initial Data', axs[0, 0])
        # Compute the distance matrix
        dist matrix = squareform(pdist(X))
        # Plot distance matrix
        axs[0, 1].imshow(dist_matrix, cmap='hot', interpolation='nearest')
        axs[0, 1].set_title('Distance Matrix')
        axs[0, 1].set_xlabel('Point Index')
        axs[0, 1].set_ylabel('Point Index')
        # Apply DBSCAN
        eps = 0.2
        min samples = 2
        dbscan = DBSCAN(eps=eps, min_samples=min_samples)
        labels = dbscan.fit predict(X)
        # Plot clustering result
        axs[1, 0].scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=10)
        axs[1, 0].set_title('DBSCAN Clustering Result')
        axs[1, 0].set_xlabel('Feature 1')
        axs[1, 0].set_ylabel('Feature 2')
        # Highlight core samples
        core_samples_mask = np.zeros_like(labels, dtype=bool)
        core_samples_mask[dbscan.core_sample_indices_] = True
        axs[1, 1].scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=10)
        axs[1, 1].scatter(X[core_samples_mask, 0], X[core_samples_mask, 1], c='red',
        axs[1, 1].set_title('Core Samples Highlighted')
        axs[1, 1].set_xlabel('Feature 1')
        axs[1, 1].set_ylabel('Feature 2')
        axs[1, 1].legend()
```



```
import libraries
import os
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings

from scipy.integrate import odeint
from IPython.display import Image
from statistics import mode
from scipy.stats import pearsonr, spearmanr
from sklearn.feature_selection import mutual_info_regression
import statsmodels.api as sm
```

```
# Suppress warnings
         warnings.filterwarnings('ignore')
         # Set number of decimals for np print options
         np.set_printoptions(precision=3)
         # Set the current working directory
         os.chdir(sys.path[0])
 In [8]: # load the dataset
         df = pd.read_csv('moons_data.csv')
         # display the first few rows of the dt
         print(df)
                   x1
                             x2 y
             0.771744 - 0.548086 1
             0.189416 -0.261982 1
        2
             0.918359 0.443277 0
        3
             1.021213 -0.488523
        4
             1.178442 -0.369193 1
        295 1.531153 -0.275921
        296 0.184710 -0.243903 1
        297 -0.703622 0.458507 0
        298 0.592696 1.006177 0
        299 0.104182 0.134738
                                1
        [300 rows x 3 columns]
 In [9]: # Extract features and labels
         X1= df.iloc[:,0]
         X2= df.iloc[:,1]
         X = df.iloc[:, :2]
         y_{true} = df.iloc[:,-1]
In [10]: X1
Out[10]: 0
                 0.771744
          1
                 0.189416
          2
                 0.918359
          3
                 1.021213
          4
                 1.178442
          295
                 1.531153
          296
                0.184710
          297
               -0.703622
          298
                 0.592696
          299
                 0.104182
         Name: x1, Length: 300, dtype: float64
```

```
In [11]: X2
Out[11]:
                 -0.548086
                 -0.261982
          2
                 0.443277
          3
                 -0.488523
          4
                 -0.369193
                    . . .
          295
                 -0.275921
          296
                -0.243903
          297
                  0.458507
          298
                  1.006177
          299
                  0.134738
          Name: x2, Length: 300, dtype: float64
In [12]: y_true
Out[12]:
                  1
                  1
          1
          2
                  0
          3
                  1
          4
                  1
                 . .
          295
                  1
          296
                  1
          297
                  0
          298
                  0
          299
                  1
          Name: y, Length: 300, dtype: int64
In [13]: X
```

```
Out[13]:
                        x1
                                   x2
             0
                  0.771744
                           -0.548086
                 0.189416
                            -0.261982
             2
                 0.918359
                            0.443277
             3
                  1.021213
                            -0.488523
                  1.178442
                            -0.369193
           295
                  1.531153
                            -0.275921
           296
                  0.184710
                           -0.243903
           297
                -0.703622
                            0.458507
           298
                 0.592696
                             1.006177
           299
                 0.104182
                             0.134738
          300 rows × 2 columns
```

```
In [14]: # Perform agglomerative clustering
         from sklearn.cluster import AgglomerativeClustering
In [15]: clustering = AgglomerativeClustering(n_clusters = 7).fit(X)
In [16]: #print labels
         clustering.labels_
Out[16]: array([0, 1, 6, 0, 0, 5, 0, 0, 4, 2, 3, 6, 1, 0, 6, 2, 3, 2, 0, 1, 1, 2,
                 5, 5, 0, 5, 1, 3, 0, 3, 2, 4, 6, 5, 0, 1, 1, 1, 3, 6, 0, 2, 2, 4,
                 4, 5, 0, 4, 6, 4, 2, 0, 1, 2, 4, 3, 1, 6, 3, 1, 5, 5, 4, 3, 3, 0,
                 3, 5, 6, 4, 1, 0, 3, 6, 5, 0, 4, 2, 1, 5, 5, 1, 3, 0, 0, 2, 0, 0,
                 0, 0, 3, 4, 3, 1, 1, 1, 2, 4, 1, 6, 3, 0, 5, 1, 4, 0, 0, 0, 3, 0,
                 1, 1, 4, 2, 0, 4, 1, 3, 5, 6, 4, 5, 6, 4, 2, 2, 1, 1, 1, 6, 2, 1,
                 4, 2, 5, 0, 3, 3, 4, 3, 6, 2, 0, 6, 1, 5, 6, 4, 2, 3, 0, 6, 0, 0,
                 3, 2, 4, 6, 0, 2, 1, 2, 6, 1, 4, 4, 6, 1, 4, 3, 0, 5, 0, 4, 1,
                 5, 0, 0, 4, 2, 5, 3, 0, 5, 2, 0, 2, 0, 2, 0, 1, 4, 1, 5, 0, 2,
                 2, 3, 0, 0, 4, 4, 4, 2, 3, 5, 0, 6, 0, 5, 5, 2, 1, 2, 0, 5, 3, 3,
                 1, 6, 2, 1, 2, 1, 5, 5, 3, 3, 5, 0, 2, 2, 3, 6, 5, 2, 4, 4, 1, 0,
                 4, 6, 5, 3, 1, 4, 2, 5, 2, 6, 3, 0, 4, 5, 4, 0, 5, 4, 1, 1, 1, 0,
                 0, 6, 4, 5, 1, 3, 3, 5, 3, 1, 2, 0, 0, 5, 3, 4, 6, 1, 3, 1, 3, 4,
                 1, 2, 2, 2, 0, 3, 0, 6, 1, 0, 1, 5, 4, 1])
In [17]: # Compare true labels with the ones from clustering
```

y_pred = clustering.labels_

result = pd.DataFrame(np.transpose(np.vstack((y_true, y_pred))), columns= ['
result.iloc[:20,:]

Out[17]:		y_true	y_label
	0	1	0
	1	1	1
	2	0	6
	3	1	0
	4	1	0
	5	0	5
	6	1	0
	7	1	0
	8	0	4
	9	0	2
	10	1	3
	11	0	6
	12	1	1
	13	1	0
	14	0	6
	15	0	2
	16	1	3
	17	0	2
	18	1	0
	19	1	1

```
In [18]: from sklearn.datasets import make_moons
   from sklearn.cluster import DBSCAN
   from sklearn.neighbors import NearestNeighbors
   from scipy.spatial.distance import pdist, squareform
```

```
In [19]: dbscan = DBSCAN(eps=0.3, min_samples=5)
    cluster = dbscan.fit_predict(X)
```

In [20]: # Add the predicted cluster labels to the DataFrame for comparison

```
result_dbscan = pd.DataFrame({
    'X1': X1,
    'X2': X2,
    'y_true': y_true,
    'y_label_dbscan': y_pred
})
```

```
In [21]: # Show the first 20 rows of the results
    print(result_dbscan.iloc[:20, :])

# Visualize the clustering results
    plt.scatter(X1, X2, c=y_pred, cmap='viridis', edgecolor = 'k', s = 50)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.title('DBSCAN Clustering')
    plt.show()
```

```
X1
                    X2
                       y_true y_label_dbscan
    0.771744 - 0.548086
                             1
                                              0
1
    0.189416 -0.261982
                             1
                                              1
2
    0.918359 0.443277
                             0
                                              6
3
    1.021213 -0.488523
                             1
                                              0
4
    1.178442 -0.369193
                             1
                                              0
5 -1.062691 0.116202
                                              5
                             0
6
    1.234508 -0.461589
                             1
                                              0
7
   0.711839 -0.393012
                             1
                                              0
8
   0.542489 0.824464
                             0
                                              4
9 -0.752471 0.828908
                             0
                                              2
                                              3
                             1
10 1.901708 0.242421
                             0
11 0.904850 0.312769
                                              6
                             1
12 0.210737 -0.294526
                                              1
13 1.411097 -0.602078
                             1
                                              0
14 0.956856 0.287197
                             0
                                              6
15 -0.099896 1.005161
                             0
                                              2
16 1.744860 0.080245
                             1
                                              3
                                              2
17 -0.450309 0.973776
                             0
                             1
                                              0
   1.090810 -0.612312
                             1
19 0.095579 0.191930
                                              1
```



```
In [22]: # Import KMeans from sklearn
         from sklearn.cluster import KMeans
In [23]: kmeans = KMeans(n_clusters=7, random_state=42)
In [24]: y_pred_kmeans = kmeans.fit_predict(X)
In [25]: print(y_pred_kmeans)
        [5 4 1 5 5 6 5 5 3 0 2 1 4 5 1 0 2 0 5 4 4 0 6 6 5 6 4 2 5 2 0 3 1 6 5 0 4
         4 2 1 5 0 0 1 3 6 5 3 1 3 0 5 4 0 3 2 4 1 2 4 6 6 3 2 2 5 2 6 1
         6 2 1 0 4 6 6 4 2 5 5 0 5 5 2 5 2 3 2 4 4 4 0 3 4 1 2 2 6 4 3 5 5 5 2 5 4
         4 3 0 5 3 4 2 6 1 1 6 1 3 0 0 4 4 4 1 0 4 3 0 6 5 2 2 3 2 1 0 5 1 4
         0 2 5 1 2 5 2 0 3 1 5 0 4 0 1 4 3 3 1 4 3 2 5 6 5 3 4 5 6 5 2 3 0 6 2 5 6
         0 5 0 5 0 5 4 1 4 6 5 0 2 0 2 2 5 3 3 3 0 2 6 5 1 5 6 6 0 4 0 5 6 2 2 4 1
         0 4 0 4 6 6 2 2 6 2 0 0 2 1 6 0 1 3 4 5 3 5 6 2 4 1 0 6 0 1 2 5 3 6 3 2 6
         1 4 4 0 2 5 1 3 6 4 2 2 6 2 4 0 5 2 6 2 3 1 4 2 4 2 3 4 0 0 0 5 2 5 1 4 2
         4 6 3 4]
In [26]: # Add the predicted cluster labels to the DataFrame for comparison
         result kmeans = pd.DataFrame({
              'X1': X1,
```

```
'X2': X2,
              'y_true': y_true,
              'y_label_kmeans': y_pred_kmeans
         })
In [27]: # Show the first 20 rows of the results
         print(result_kmeans.iloc[:20, :])
                  X1
                             X2 y_true y_label_kmeans
                                                      5
            0.771744 - 0.548086
        1
            0.189416 -0.261982
                                      1
                                                      4
        2
                                                      1
            0.918359 0.443277
                                      0
                                                      5
        3
            1.021213 -0.488523
                                      1
            1.178442 -0.369193
                                      1
                                                      5
        5 -1.062691 0.116202
                                      0
                                                      6
        6
                                      1
                                                      5
            1.234508 -0.461589
                                                      5
        7
            0.711839 - 0.393012
                                      1
                                      0
                                                      3
        8
            0.542489 0.824464
        9 -0.752471 0.828908
                                      0
                                                      0
        10 1.901708 0.242421
                                      1
                                                      2
        11 0.904850 0.312769
                                      0
                                                      1
                                                      4
        12 0.210737 -0.294526
                                      1
                                                      5
                                      1
        13
           1.411097 -0.602078
        14 0.956856 0.287197
                                      0
                                                      1
        15 -0.099896 1.005161
                                      0
                                                      0
        16 1.744860 0.080245
                                      1
                                                      2
        17 -0.450309 0.973776
                                      0
                                                      0
        18 1.090810 -0.612312
                                                      5
                                      1
        19 0.095579 0.191930
                                      1
                                                      4
In [75]: plt.scatter(X1, X2, c=y_pred_kmeans, cmap='viridis')
         plt.xlabel('X1')
         plt.ylabel('X2')
         plt.title('K-Means Clustering')
         plt.show()
```


Q1: How differnt with DBScan and K-Means? Both are clustering algorithm. However, DBScan is a density-based algorithm which doesn't require the number of clusters and identifies clusters based on the density of points, and also excludes the outliers. In contrast, K-Means requires us to set the number of clusters (K) in advance, and is sensitive to outliers.

Q2:Why I choose n_clusters=7?

```
In [29]: kmeans = KMeans(n_clusters=5, random_state=42)
y_pred_kmeans = kmeans.fit_predict(X)
print(y_pred_kmeans)

[2  2  4  2  2  3  2  2  4  3  1  4  2  1  4  0  1  0  2  0  2  0  3  3  2  3  2  1  2  1  0  0  4  3  2  0  2
2  1  4  2  0  0  4  0  3  2  0  4  4  0  2  0  3  0  1  0  4  1  0  3  3  0  1  1  2  1  3  4  4  0  2  1  4
3  1  4  0  2  3  3  0  1  2  2  0  2  2  1  2  1  4  1  2  0  0  0  0  0  2  4  1  1  3  0  0  2  1  2  1  2  0
0  4  0  1  0  0  1  3  4  4  3  4  0  0  3  2  2  0  4  0  0  0  0  3  2  1  1  4  1  4  3  2  4  0  3  4  4
0  1  2  4  1  1  1  0  0  2  2  0  2  0  4  2  4  4  4  0  4  1  2  3  2  0  2  2  3  2  1  4  3  3  1  2  3
3  2  3  2  0  2  0  4  0  3  2  0  1  0  1  1  2  0  4  4  0  1  3  2  4  1  3  3  0  2  0  2  3  1  1  2  4
0  2  0  2  3  3  1  1  3  1  0  0  1  4  3  3  4  0  0  2  0  2  3  1  2  4  3  3  0  4  1  2  4  2  1
2  3  4  0]
```

```
In [30]: # Add the predicted cluster labels to the DataFrame for comparison
          result kmeans = pd.DataFrame({
             'X1': X1,
              'X2': X2,
             'y_true': y_true,
              'y_label_kmeans': y_pred_kmeans
         })
In [31]: # Show the first 20 rows of the results
         print(result_kmeans.iloc[:20, :])
                                         y_label_kmeans
                             X2
                  X1
                                 y_true
        0
            0.771744 - 0.548086
                                      1
                                                       2
                                                       2
        1
            0.189416 -0.261982
                                      1
        2
            0.918359 0.443277
                                      0
                                                       4
        3
            1.021213 -0.488523
                                      1
                                                       2
        4
            1.178442 -0.369193
                                      1
                                                       2
        5 -1.062691 0.116202
                                      0
                                                       3
                                                       2
        6
            1.234508 -0.461589
                                      1
                                                       2
        7
                                      1
            0.711839 - 0.393012
        8
            0.542489 0.824464
                                      0
                                                       4
                                                       3
        9 -0.752471 0.828908
                                      0
        10 1.901708 0.242421
                                      1
                                                       1
        11 0.904850 0.312769
                                      0
                                                       4
        12 0.210737 -0.294526
                                      1
                                                       2
                                      1
                                                       1
        13 1.411097 -0.602078
           0.956856 0.287197
                                      0
                                                       4
        15 -0.099896 1.005161
                                      0
                                                       0
        16 1.744860 0.080245
                                      1
                                                       1
        17 -0.450309 0.973776
                                      0
                                                       0
                                                       2
        18 1.090810 -0.612312
                                      1
        19 0.095579 0.191930
                                      1
                                                       0
In [32]: plt.scatter(X1, X2, c=y_pred_kmeans, cmap='viridis')
         plt.xlabel('X1')
         plt.ylabel('X2')
         plt.title('K-Means Clustering')
         plt.show()
```



```
In [34]: # Add the predicted cluster labels to the DataFrame for comparison
    result_kmeans = pd.DataFrame({
        'X1': X1,
        'X2': X2,
        'y_true': y_true,
        'y_label_kmeans': y_pred_kmeans
})
# Show the first 20 rows of the results
print(result_kmeans.iloc[:20, :])
```

```
X2 y_true y_label_kmeans
                  X1
        0
            0.771744 -0.548086
                                      1
                                                       1
        1
            0.189416 - 0.261982
        2
                                      0
                                                       1
            0.918359 0.443277
        3
                                                       2
            1.021213 -0.488523
                                      1
                                                       2
        4
            1.178442 -0.369193
                                      1
        5
           -1.062691 0.116202
                                      0
                                                       0
                                      1
                                                       2
        6
            1.234508 -0.461589
        7
                                      1
                                                       1
            0.711839 - 0.393012
        8
            0.542489 0.824464
                                      0
                                                       1
        9 -0.752471 0.828908
                                      0
                                                       0
                                                       2
           1.901708 0.242421
                                      1
        10
                                      0
                                                       1
        11
           0.904850 0.312769
                                                       1
                                      1
        12
           0.210737 -0.294526
                                                       2
        13
            1.411097 -0.602078
                                      1
                                                       1
        14 0.956856 0.287197
                                      0
        15 -0.099896
                      1.005161
                                      0
                                                       0
        16 1.744860
                      0.080245
                                      1
                                                       2
        17 -0.450309 0.973776
                                      0
                                                       0
                                      1
                                                       2
        18
            1.090810 -0.612312
                                                       1
        19 0.095579 0.191930
                                      1
In [35]: plt.scatter(X1, X2, c=y_pred_kmeans, cmap='viridis')
         plt.xlabel('X1')
         plt.ylabel('X2')
         plt.title('K-Means Clustering')
         plt.show()
```



```
X1
In [39]: kmeans = KMeans(n_clusters=12, random_state=42)
           y_pred_kmeans = kmeans.fit_predict(X)
           print(y_pred_kmeans)
          [ 9 10
                   6
                       1
                           1
                                  1
                                      9
                                         0
                                             2
                                                8
                                                    6 10
                                                           1
                                                               6
                                                                   5
                                                                      8 11
                                                                             1
                                                                                 4 10
                                                                                       11
                                                                                            2
                                                                                                2
                2
                                             2
            1
                  10
                              8 11
                                     5
                                         6
                                                      10 10
                                                               8
                                                                   6
                                                                      1 11 11
                                                                                 0
                                                                                     0
                                                                                        7
                                                                                            1
                                                                                                5
                           1
                                                9
            6
                0
                       9
                              2
                                  5
                                             6
                                                8
                                                           7
                                                               5
                                                                   8
                                                                      8
                                                                          9
                                                                             3
                                                                                 2
                                                                                     6
                                                                                                1
                                                                                            4
            8
                6
                   7
                       3
                           0 11 10
                                     7
                                         2
                                             4
                                                3
                                                    9
                                                        1
                                                           5
                                                               9
                                                                   1
                                                                      3
                                                                          1
                                                                             8
                                                                                     3
                                                                                       10
                                                                                            4
                                         5
                                                           9
           11
                0
                  10
                       6
                           8
                              3
                                  2
                                     4
                                             1
                                                1
                                                    9
                                                        8
                                                               4
                                                                      0
                                                                        11
                                                                              1
                                                                                 5
                                                                                     4
                                                                                        8
                                                                                            2
                                                                                                6
                7
                       0 11 11 10 10
                                         4
                                             6 11
                                                    4
                                                        5
                                                           5
                                                               7
                                                                   9
                                                                      3
                                                                          3
                                                                              0
                                                                                 3
                                                                                            9
            0
                   6
                                                                                     6 11
                                                                                                6
                                                        5
                                                           6
            4
                2
                   6
                       0
                           5
                              8
                                  9
                                     6
                                         3
                                             1
                                                8
                                                   11
                                                               1
                                                                 11 10
                                                                          5
                                                                             6 10
                                                                                     0
                                                                                            6
                                                                                                4
                   1
                       2
                           9
                              5 10
                                      9
                                         2
                                             9
                                                 3
                                                        2
                                                           2
                                                               8
                                                                   9
                                                                      7
                                                                                                4
            0
                8
                                                    0
                                                                        11
                                                                             1 11
                                                                                     1
                                                                                       11
                   2
                       1 11
                              8 11
                                         3
                                                        0 11
                                                               8
                                                                   7
                                                                      9
                                                                                     7 11
                4
                                             1
                                                5
                                                    0
                                                                          6
                                                                              1
                                                                                 7
                                                                                           10 11
            9
                2
                   3
                       8 10
                                     9 11 10
                                                2
                                                    7
                                                        3
                                                           8
                                                               7
                                                                   3 11 11
                                                                             8
                                                                                     2 11
                                  5
                                                                                 6
                                                                                                5
            4
                1
                   5
                                                5
                                                        3
                                                           1
                                                                   2
                                                                                                3
                       6
                              3 10
                                     0
                                        11
                                             2
                                                    6
                                                               0
                                                                      5
                                                                          3
                                                                             7
                                                                                 0
                                                                                   10
                                                                                            4
            9
                6
                   0
                       2 10
                              8
                                  3
                                      7
                                         3
                                             4 11
                                                    9
                                                        3
                                                           2
                                                               3
                                                                   5
                                                                      6
                                                                              8 10
                                                                                     8
                                                                                         0 10 11
            5
                5
                                             2
                                                    4]
                   1
                       3
                           9
                              6 10
                                      3 10
                                                0
In [40]:
           # Add the predicted cluster labels to the DataFrame for comparison
           result_kmeans = pd.DataFrame({
                'X1': X1,
                'X2': X2,
                'y_true': y_true,
```

```
'y_label_kmeans': y_pred_kmeans
         })
         # Show the first 20 rows of the results
         print(result_kmeans.iloc[:20, :])
                                 y_true y_label_kmeans
                  X1
                             X2
            0.771744 -0.548086
                                                       9
        1
            0.189416 - 0.261982
                                      1
                                                      10
        2
            0.918359 0.443277
                                      0
                                                       6
        3
            1.021213 -0.488523
                                      1
                                                       1
        4
            1.178442 -0.369193
                                      1
                                                       1
        5
                                      0
                                                       7
          -1.062691 0.116202
                                                       1
        6
            1.234508 -0.461589
                                      1
        7
            0.711839 - 0.393012
                                      1
                                                       9
        8
                                      0
                                                       0
            0.542489 0.824464
        9 -0.752471 0.828908
                                      0
                                                       2
        10
           1.901708 0.242421
                                      1
                                                       8
                                      0
                                                       6
        11 0.904850 0.312769
                                      1
        12 0.210737 -0.294526
                                                      10
                                      1
        13 1.411097 -0.602078
                                                       1
                                      0
                                                       6
           0.956856 0.287197
        15 -0.099896
                      1.005161
                                      0
                                                       5
        16 1.744860 0.080245
                                      1
                                                       8
        17 -0.450309 0.973776
                                      0
                                                      11
        18
           1.090810 -0.612312
                                      1
                                                       1
        19 0.095579 0.191930
                                      1
                                                       4
In [41]: plt.scatter(X1, X2, c=y_pred_kmeans, cmap='viridis')
         plt.xlabel('X1')
         plt.ylabel('X2')
         plt.title('K-Means Clustering')
         plt.show()
```


As the result of my tests, we could know if n_clusters<7, the algorithm may underfit the data, grouping distinct clusters into a single cluster and doesn't refluct the truth and important detail of our data. If n_clusters>7, the algorithm may overfit the data by creating many small clusters. This can lead to unmeaningful clusters.