

Data Project from Airbnb - Solution

Table of Contents

- Assignment
- Data Exploration
- searches Dataset
 - Distributions
- · contacts Dataset

Assignment

Airbnb wants to understand

- What guests are searching in Dublin
- Which inquiries do hosts tend to accept
- · What gaps exist between guest demand and host supply
- Any other information that deepens the understanding of the data

The goal is to analyze, understand, visualize, and communicate the demand/supply of the market in Dublin

```
Data Exploration
In [1]: #Import libraries/dataset
             import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
             contacts_file = ("contacts.tsv")
             contacts = pd.read_csv(contacts_file, sep="\t")
             searches_file = ("searches.tsv")
             searches = pd.read_csv(searches_file, sep="\t")
In [2]: #Find % of null values in datasets
print('Contacts')
             print(contacts.isna().sum()/len(contacts), '\n')
             print('Searches')
print(searches.isna().sum()/len(searches))
             Contacts
             id_guest
id_host
id_listing
                                          0.000000
0.000000
0.000000
             ts_contact_at
ts_reply_at
ts_accepted_at
ts_booking_at
                                          0.000000
                                          0.077208
0.536367
0.722101
             ds_checkin
ds_checkout
n_guests
n_messages
dtype: float64
                                          0.000000
                                          0.000000
             Searches
             id_user
                                                    0.000000
             ds_checkin
ds_checkout
n_searches
                                                    0.331561
                                                   0.331561
0.000000
0.331561
             n_nights
             n_guests_min
                                                    0.000000
             n_guests_min
n_guests_max
origin_country
filter_price_min
filter_price_max
filter_room_types
filter_neighborhoods
dtype: float64
                                                    0.000000
                                                   0.000000
                                                    0.627221
                                                    0.546940
                                                   0.962336
```

The neighborhood column in searches has 96.2336% of null values. This could lead to inaccurate assumptions about the demand from people. When looking through the column, 'City Centre' was a common choice, so this should be investigated further with more data.

searches Dataset

```
In [3]: #Drop filter_neighborhoods column

searches = searches.drop(columns=['filter_neighborhoods'])

In [4]: #Manipulation of searches dataset

#Convert date column to datetime data type for easier analysis
searches['ds_checkin'] = pd.to_datetime(searches'\ds'])
searches['ds_checkin'] = pd.to_datetime(searches'\ds_checkin'])
searches['ds_checkun'] = pd.to_datetime(searches'\ds_checkon'])

#How soon they want the room
searches['length_preperation'] = searches['ds_checkin'] - searches['ds']

In [5]: #Describe searches dataset

#Helps understand the dataset and its distribution of values within columns better
display(searches.describe())
```

	ii_acui ciica	n_mgms	n_guests_mm	II_guests_IIIux	ci_bi.icc_iiiiii	III.ci_piicc_iiiux	iength_preperation
count	35737.000000	23888.000000	35737.000000	35737.000000	13322.000000	1.332200e+04	23888
mean	9.206565	7.672765	1.742955	2.105857	8.470200	9.019063e+07	51 days 08:11:53.730743469
std	17.348746	21.557614	1.460440	1.817358	53.987679	2.978482e+08	65 days 18:56:19.491940518
min	1.000000	0.000000	1.000000	1.000000	0.000000	9.000000e+00	-1 days +00:00:00
25%	1.000000	2.000000	1.000000	1.000000	0.000000	8.600000e+01	10 days 00:00:00
50%	4.000000	3.000000	1.000000	2.000000	0.000000	1.390000e+02	26 days 00:00:00
75%	10.000000	5.000000	2.000000	2.000000	0.000000	3.010000e+02	67 days 00:00:00
max	448.000000	399.000000	16.000000	16.000000	1250.000000	1.073742e+09	604 days 00:00:00

This shows that the number of guests is usually 1 or 2. This can be understood since even at 75% the n_guests_min and n_guests_max are 2 and at 25% is 1. Leads to believe that smaller accommodations are preferred.

```
In [6]: #Calculate skewness in searches dataset
```

All numeric columns have a Fisher-Pearson coefficient value greater than 1. This results in a positive skewness. With more time, I would have used a transformation method such as log transformation to reduce the skewness

Distributions

```
In [7]: #Distribution plot of n_guests_min and n_guests_max
sns.displot(searches, x = 'n_guests_min', color = 'brown')
sns.displot(searches, x = 'n_guests_max', color = 'black')
plt.show()
```


Both have similar distributions with 1 being the most popular option and 2 being the next popular option

```
In [8]: #When were searches conducted

ax = sns.displot(searches, x = 'ds', color = 'brown')
  [plt.setp(ax.get_xticklabels(), rotation=90) for ax in ax.axes.flat]
```


₽

```
· -----
       2014-10-05

$2014-10-07

2014-10-09
```

```
Noticed all date searches were between October 1st to October 14th. No major variation in when search was conducted between these dates
 In [9]: #Percentage of dataset with a filter_price_max above 600
             print(len(searches[searches['filter_price_max'] > 600])/len(searches['filter_price_max'])*100, '%')
In [10]: #Distribution of filter_price_max of searches
            #Removing the set upper limit
searches_maxprice_removed = searches[searches['filter_price_max'] <= 600]</pre>
            #Distribution plot of filter_price_max column
sns.displot(x=searches_maxprice_removed["filter_price_max"], color = 'blue')
plt.show()
                800
                700
                600
                500
             tung
400
                300
                200
                            100
                                    200
                                           300
                                                  400
                                       filter price max
             Filter_price_max was chosen instead of filter_price_min due to the min usually being set at $0
             To further help better visualize the trend we set the filter price max as less or equal to 600. 600 was chosen as the limit since only 14.25% of the dataset has values greater than 600
In [11]: #Distribution of length_preparation of searches
            #Percentage of dataset beyond 100 days
distribution = searches["length_preperation"] / np.timedelta64(1, 'D')
print(len(distribution[distribution > 100])/len(distribution)*100, '% \n')
            #Remove values beyond 100 days
distribution = distribution[distribution < 100]</pre>
            #Distribution plot of length_preparation column
sns.displot(x=distribution, color = 'green')
plt.show()
             9.396423874415872 %
                1400
               1200
                1000
             008 Count
```


100 days was chosen as the limit since only 14.06% of the dataset exists beyond that

```
In [12]: #Distribution of n_nights of searches
            #Percentage of dataset beyond 20 nights
            print(len(searches['n\_nights'] > 20])/len(searches['n\_nights'])*100, \ '% \ \ 'n')
            #Remove n_nights beyond 20 days
searches_within_twenty = searches[searches['n_nights'] < 20]</pre>
            #Distribution plot of length_preperation column
sns.displot(searches_within_twenty, x='n_nights', color = 'red')
plt.show()
```

4.737387021854101 %

Removing n_nights beyond 20 days since only 7.3% of the dataset exists beyond 20 days

```
In [13]: #Distribution of months of ds_checkin of searches
           checkin month = pd.DatetimeIndex(searches['ds checkin']).month
           #Distribution plot of length_preparation column
sns.displot(checkin_month, color = 'yellow')
           plt.show()
```


Used only the check-in month, cause checkout is usually within 5/6 days. The mean of n_nights after removing the upper outlier limit is 5.6, so assumed 5 or 6 days after the check-in date people usually checkout

```
In [14]: #Types of rooms searched for
                         searches['filter_room_types'].unique()[0:15] #Display first 15 unique values
Out[14]: array([',Entire home/apt,Entire home/apt,Private room,Private room', nan,
                                            ',Entire home/apt',
'Entire home/apt,Entire home/apt,Private room,Private room',
'Entire home/apt,Entire home/apt,Private room',
'Entire home/apt,Private room,Shared room,Private room,Shared room',
'Private room', 'Entire home/apt,Private room', ',Private room',
',Entire home/apt,Private room,Private room',
',Entire home/apt,Private room,Private room',
',Entire home/apt,Entire home/apt,Private room',
',Entire home/apt,Entire home/apt,Private room',
',Entire home/apt,Entire home/apt,Shared room',
',Entire home/apt,Entire home/apt,Shared room,Shared room'],
ttype=object)
                                                ,Entire home/apt',
                                         dtype=object)
```

Most of the room types requested were entire home/apt and private rooms sometimes shared rooms. If given more time, I would have cleaned this column since most filter values are repeated within the same cell. On the Airbnb website, there are only 4 values in the type of place:

- · Entire Place
- · Private Room
- Hotel Room
- · Shared Room

So searching how often these 4 strings occur would be how I go about it

```
In [15]: #Find top 15 countries where searches originate from
            #Group by origin country and finding the count of each country
            search_origin = searches.groupby("origin_country").agg({'origin_country' : 'count'})
search_origin.columns = ['count']
            search_origin = search_origin.sort_values('count', ascending = False) #Sort count in descending order
search_origin.nlargest(15, 'count') #Find the 15 largest values
```

```
Out[15]:
         origin_country
                  IE 6608
                 US 5811
                 GB 4832
                 FR 3444
                  IT 2333
                 DE
                      2170
                  FS
                      1759
                 CA
                      1085
```

```
ΑU
```

NL 843 BR 636 СН 535 BE 386

AT 320 RU 274

contacts Dataset

```
In [16]: #Manipulation of contacts dataset
                        #Convert date columns to datetime data type
contacts['ts_contact_at'] = pd.to_datetime(contacts['ts_contact_at'])
contacts['ts_reply_at'] = pd.to_datetime(contacts['ts_reply_at'])
contacts['ts_accepted_at'] = pd.to_datetime(contacts['ts_accepted_at'])
contacts['ts_booking_at'] = pd.to_datetime(contacts['ts_booking_at'])
contacts['ds_checkin'] = pd.to_datetime(contacts['ds_checkin'])
contacts['ds_checkout'] = pd.to_datetime(contacts['ds_checkout'])
contacts['ds_checkout'] = pd.to_datetime(contacts['ts_checkout'])
contacts['ds_checkout'] = pd.to_datetime(contacts['ts_checkout'])
                          contacts['length_stay'] = contacts['ds_checkout'] - contacts['ds_checkin']
                          #Understand dataset
                          display(contacts.dtypes)
                          display(contacts.describe())
                          id quest
                                                                                                  object
                          id host
```

```
ts_reply_at
                            datetime64[ns]
ts_accepted_at
ts_booking_at
ds_checkin
                            datetime64[ns]
                             datetime64[ns]
datetime64[ns]
ds checkout
                            datetime64[ns]
n_guests
n_messages
accepted
length_stay
                                           int64
                                           int64
                           bool
timedelta64[ns]
dtype: object
```


length_stay	n_messages	n_guests	
7823	7823.000000	7823.000000	count
5 days 19:25:32.864629937	6.319954	2.422600	mean
14 days 23:45:24.447710564	6.472827	1.617347	std
1 days 00:00:00	1.000000	1.000000	min
2 days 00:00:00	2.000000	1.000000	25%
3 days 00:00:00	4.000000	2.000000	50%
5 days 00:00:00	8.000000	3.000000	75%
334 days 00:00:00	102.000000	16.000000	max

```
In [17]: #Calculate skewness in contacts dataset
```

```
display(contacts.skew(axis = 0, numeric_only = True, skipna = True))
```

n quests 2.441468 n_messages 3
accepted 0
dtype: float64 3.696440 0.145883

All columns have a Fisher-Pearson coefficient value greater than 1. Except for accepted, which could be due to it being derived from an existing column. With more time, I would have used a transformation method such as box-cox to reduce the skewness.

```
In [18]: #Number of guests stayed
             contacts\_less8 = contacts [contacts['n\_guests'] < 8] \\ sns.displot(contacts\_less8, x = 'n\_guests', hue = 'accepted', multiple="dodge")
```


Choosing less than 8 guests, since only 1.46% (114 values) of the contacts dataset has 8 or more guests. To better visualize the majority distribution we removed rows with 8 or more guests.

2 guests is the most popular option to book, but 1 guest is the most popularly searched option. This leads me to believe there is a lack of supply of viable single guest rooms.

```
In [19]: #Conversion rate from accepting to booking
         contacts['ts_booking_at'].count()/contacts['ts_accepted_at'].count()
        0.5993934381031155
Out[19]:
```

In [20]: #Timeframe of when guests or accepted vs rejected contacts['month_checkin'] = contacts['ds_checkin'].dt.month #Extract month from checkin date
contacts_checkin = contacts[contacts['month_checkin'] > 9] #Use only peak season months (Oct, Nov, Dec) #Distribution of checkin among October, November, and December and split by acceptance
sns.displot(contacts_checkin, x='month_checkin', hue = 'accepted', multiple="dodge")
plt.xticks([10, 11, 12]) plt.show()


```
In [21]: #Merge datasets for more analysis
```

merged_datasets = contacts.merge(searches, left_on='id_guest', right_on='id_user')

In [22]: #Check difference between prices searched between accepted/rejected applicants merged_pricemax_filter = merged_datasets.loc[(merged_datasets['filter_price_max'] <= 600)]</pre> sns.displot(merged_pricemax_filter, x="filter_price_max", hue="accepted", multiple="dodge")

```
500 accepted accepted
```

To further help better visualize the trend we set the filter price max as less or equal to 600. 600 was chosen as the limit since only 14.25% of the dataset has values greater than 600.

```
As seen, more people are rejected compared than accepted with an average acceptance rate of 43\%
```

```
In [23]: #Classify dataset based on filter_price_max

def label_price (row):
    if (row['filter_price_max'] >= 0) & (row['filter_price_max'] < 100):
        return '0-100'

    elif (row['filter_price_max'] >= 100) & (row['filter_price_max'] < 200):
        return '100-200'

    elif (row['filter_price_max'] >= 200) & (row['filter_price_max'] < 300):
        return '200-300'

    elif (row['filter_price_max'] >= 300) & (row['filter_price_max'] < 400):
        return '300-400'

    elif (row['filter_price_max'] >= 400) & (row['filter_price_max'] < 500):
        return '400-500'

    elif (row['filter_price_max'] >= 500) & (row['filter_price_max'] < 600):
        return '500-600'

    else:
        return '600+'

merged_datasets['classification_max_price'] = merged_datasets.apply(lambda row: label_price(row), axis=1)
merged_datasets.groupby('classification_max_price').agg(('accepted': 'mean'))</pre>
```

```
[23]: accep
```

```
        classification_max_price

        0-100
        0.411160

        100-200
        0.430308

        200-300
        0.431149

        300-400
        0.450488

        400-500
        0.485549

        500-600
        0.422297

        600+
        0.433122
```

Based on this table, it can be seen that regardless of max_filter_price, people are rejected at similar rates

```
dataset_country = merged_datasets[['origin_country', 'accepted']]

#Find acceptance count by country and accepted
accepted_count = dataset_country.groupby(['origin_country', 'accepted']).agg({'origin_country':'count'})
accepted_count.columns = ['count_accepted']

#Find acceptance count by country
country_count = dataset_country.groupby(['origin_country']).agg({'origin_country':'count'})
country_count = dataset_country.groupby(['origin_country']).agg({'origin_country':'count'})
country_count.columns = ['count_country']

#Merge datasets for easier manipulation
acceptance_country = pd.merge(dataset_country, accepted_count, how='left', on=['origin_country', 'accepted']) #Merge accepted count
acceptance_country = acceptance_country.drop_duplicates()

acceptance_country = pd.merge(acceptance_country, country_count, how='left', on=['origin_country']) #Merge total country count
acceptance_country = acceptance_country(scort_count_country', 'accepted'), ascending = [False, True])
acceptance_country = acceptance_country[acceptance_country'] = 180! #180 is used so there is a good amount of data to make assumptions
acceptance_country = acceptance_country[acceptance_country] = True]

#Divide count_accepted column by count_country column to find acceptance rate by country
acceptance_country['acceptance_rate'] = acceptance_country['count_acceptance country['count_acceptance country['count_acceptance_country]'acceptance_country['acceptance_rate'] = acceptance_country['acceptance_country['count_acceptance_country['count_country]'acceptance_country['acceptance_rate'], ascending = True)
```

Out[24]:		origin_country	accepted	count_accepted	count_country	acceptance_rate
	73	IN	True	138	874	0.157895
	55	HR	True	159	530	0.300000
	72	AT	True	83	239	0.347280
	54	RU	True	83	239	0.347280
	11	IT	True	1183	3137	0.377112
	100	AE	True	59	154	0.383117
	0	CA	True	407	993	0.409869
	13	IE	True	1217	2951	0.412403
	24	ES	True	794	1914	0.414838
	49	RO	True	50	118	0.423729
	78	CR	True	82	188	0.436170
	6	GB	True	1610	3667	0.439051
	25	BE	True	134	304	0.440789
	38	BR	True	215	482	0.446058
	27	AU	True	268	590	0.454237
	17	FR	True	1526	3232	0.472153
	12	CH	True	279	585	0.476923
	7	US	True	2050	4298	0.476966
	14	DE	True	745	1535	0.485342

31	NL	True	212	433	0.489607
46	SG	True	115	232	0.495690
65	PT	True	101	203	0.497537
1	DK	True	86	125	0.688000

An interesting point is that India only has the lowest acceptance rate of 15%, which is half of the acceptance rate compared to the second lowest accepted country. Needs to be investigated further