

s/869/62/000/000/007/012
B102/B186

Thermal neutron spectrum...

$$T_0 = \frac{\sum_k [T_k \frac{1}{m_k} \Sigma_{s_k}]}{\sum_k [\frac{1}{m_k} \Sigma_{s_k}]}, \quad \frac{1}{m_0} = \frac{\sum_k [\frac{1}{m_k} \Sigma_{s_k}]}{\sum_k [\Sigma_{s_k}]}, \quad \Sigma_{s_0} = \sum_k [\Sigma_{s_k}]$$

The expressions thereby obtained for temperature, mass and capture cross section are

$$T = \frac{\sum_k [T_k \frac{1}{m_k} \Sigma_{s_k}]}{\sum_k [\frac{1}{m_k} \Sigma_{s_k}]} \quad (4); \quad m = \frac{\sum_k [\Sigma_{s_k}]}{\sum_k [\frac{1}{m_k} \Sigma_{s_k}]} \quad (5); \quad \Sigma_s = \sum_k [\Sigma_{s_k}] \quad (6).$$

In the case where the energies are large ($E \gg T_0$), where $\Sigma_0 \sim 1/E$ and where the source is at infinity, the solution of (3) is a Fermi spectrum. 2) The moderator is a two-temperature hydrogen mixture, $\Sigma_0 = 0$. It is shown that (1) can be brought down to the differential form

Card 3/6

S/869/62/000/000/007/012

B102/B186

Thermal neutron spectrum...

$$\varepsilon_1 T_1 e^{-\frac{E}{T_2}} \left\{ e^{\frac{E}{T_2}} - \frac{E}{T_1} K\left(\frac{E}{T_1}\right) [e^{\frac{E}{T_1}} \varphi] \right\}' + \varepsilon_2 T_2 e^{-\frac{E}{T_1}} \left\{ e^{\frac{E}{T_1}} - \frac{E}{T_2} K\left(\frac{E}{T_2}\right) [e^{\frac{E}{T_2}} \varphi] \right\}' = 0 \quad (14),$$

where

$$K(x) = \sqrt{\frac{x}{\pi}} e^{-x} + (x + \frac{1}{2}) \operatorname{erf}(\sqrt{x}) \quad (11), \quad \varphi(E) = \sum_{E'}^{\infty} N(E') \frac{dE'}{\gamma E'}$$

ε_k is the volume fraction of hydrogen at temperature T_k . Assuming

$$K(x) = \begin{cases} \frac{2}{\sqrt{\pi}} \sqrt{x} & \text{when } x \leq 0.4 \\ x + \frac{1}{2} & \text{when } x \geq 0.4 \end{cases}, \quad \text{two analogous differential equations are}$$

obtained for $\varphi(E)$ for small or large E/T . If $E/T \ll 1$, then

$$\varphi(E) = \exp(-E/T) \left\{ 1 + \left[\frac{1}{3} \beta^2 - \frac{1}{6} \left(\frac{4}{9} \frac{T}{T_0} - 1 \right) \right] \frac{E^2}{T^2} \right\} \text{ is a solution. Furthermore} \quad X$$

Card 4/6

S/869/62/000/000/007/012
B102/B186

Thermal neutron spectrum...

$$\frac{r_0}{T_0} = \frac{\frac{\varepsilon_1}{T_1^{3/2}} + \frac{\varepsilon_2}{T_2^{3/2}}}{\frac{\varepsilon_1}{T_1^{1/2}} + \frac{\varepsilon_2}{T_2^{1/2}}}, \quad B^2 = -\left(\frac{T}{T_1} - 1\right)\left(\frac{T}{T_2} - 1\right), \quad T = \frac{\varepsilon_1 \sqrt{T_1} + \varepsilon_2 \sqrt{T_2}}{\frac{\varepsilon_1}{\sqrt{T_1}} + \frac{\varepsilon_2}{\sqrt{T_2}}}$$

If $T_1 \gg T_2$, $T_2 = 0$, and $T_1 = T \neq 0$, then (14) reads

$$\varepsilon_1 T K\left(\frac{E}{T}\right) \left[e^{\frac{E}{T}} \varphi(E) \right] + \varepsilon_2 \left[E e^{\frac{E}{T}} \varphi(E) \right], \quad (20)$$

and has the solution

$$\varphi(E) = \text{const.} \exp \left\{ -\frac{E}{T} - \int_0^{\frac{E}{T}} \frac{\varepsilon_2 dx}{\varepsilon_2 x + \varepsilon_1 K(x)} \right\}$$

The neutron spectrum is then given by

Card 5/6

Thermal neutron spectrum...

S/869/62/000/000/007/012
B102/B186

$$N(E) = \text{const} \sqrt{E} \left[1 + \frac{\epsilon_2}{\epsilon_2 \frac{E}{T} + \epsilon_1 K(\frac{E}{T})} \right] \cdot \exp \left\{ - \frac{E}{T} - \int_0^{\frac{E}{T}} \frac{\epsilon_2 dx}{\epsilon_2 x + \epsilon_1 K(x)} \right\} \quad (21).$$

If $E/T \ll 1$, then $N(E) \approx \sqrt{E} + \frac{\pi}{2} \frac{\epsilon_2}{\epsilon_1} \sqrt{T}$. 3) The moderator consists of a mixture of heavy nuclei and hydrogen. It is once more assumed that $\Sigma_c = 0$, and some simplifications of the kinetic equation that hold to a first approximation are given. Each individual moderator exhibits Maxwell distribution; the energy distribution of the neutrons is different to that of the moderator. There are 3 figures.

Card 6/6

MAYOROV, L.V.; YUDKEVICH, M.S.

Three-group method for calculating the thermalization in the cell
of a heterogeneous reactor. Atom.energ. 13 no.6:563-567 D '62.

(MIRA 15:12)

(Nuclear reactors)

SOV/137-59-1-1375
Translation from: Referativnyy zhurnal. Metallurgiya, 1959, Nr 1, p 183 (USSR)

AUTHORS: Solov'yeva, N. A., Yudkevich, N. I.

TITLE: Alloys for Bonding to Glass (Splavy dlya spayki so steklom)

PERIODICAL: Sb. tr. Tsentr. n.-i. in-t chernoy metallurgii, 1956, Nr 15, pp 345-359

ABSTRACT: A survey of work performed at the TsNIIChM (Central Scientific Research Institute of Ferrous Metallurgy) in a search for new alloys and for improvements of existing alloys. The authors adduce data on the properties of a number of alloys and tips on the heat treatment and fabrication of parts to be bonded with glass.

P. N.

Card 1/1

ANUCHIN, V.A.; YUDKEVICH, O.Yu., red.

[Criticism on the comprehensiveness of geography] O kritike
edinstva geografii. Predisl. N.N. Paranskogo. Moskva, Mosk.
gos. univ. im. M.V. Lomonosova, 1961. 32 p. (MIRA 15:2)
(Geography--Study and teaching)

YUDKEVICH, P. V.
YUDKEVICH, P. V.

"Radionactive Survey and Radicactive Isotopes in the Petroleum Industry of the Lower Volga Region," Utilization of Radicactive Isotopes & Emanations in the Petroleum Industry (Symposium), Min. Petroleum Industry USSR, 1957.

Results of the Joint Session of the Technical Council of Min of the Petroleum Industry USSR and Soviet Sci and Technical Association, Moscow 14-19 Mar 1956.

YUDKEVICH, R.

7

M.A.

The Lead Electrode. II.—The Capacity of the Double Layer and the Measurement of the True Surface. B. Kabanov and R. Yudkevich (Zhur. Fizich. Khimii (J. Phys. Chem.), 1939, 12, 813-817; Chem. Zeits., 1940, 111, (11), 18).—[In Russian.] A simple method is described for determining the true surface of lead electrodes by measuring the capacity of the double layer of the metal by means of d.c. A relationship is shown to exist between the capacity of the lead electrode and their potential. The absolute value of the capacity of a smooth lead electrode, in the region of minimum capacity, was found to be $18 \mu F/cm^2$, i.e. of the same order of magnitude as in the case of mercury. It may be assumed that every negatively-charged pure metallic surface has a capacity of the same order of magnitude, which is independent of the nature of the metal. The presence of surface-active organic substances effects a decrease in the capacity of the double layer of the lead electrode surface, similar to the decrease in the case of mercury. Thus, the capacity of a spongy lead electrode in a 0.005-mol. β -naphthoquinoline solution is only $220 \mu F/cm^2$, as against $750 \mu F/cm^2$ in pure H_2SO_4 solution.

19/13

YUDKEVICH, R.V.

Valuation of oil-bearing potential of reservoirs having low specific resistivity. Prikl. geofiz. no. 11:63-71 '54. (MIRA 8:10)
(Oil fields--Valuation)

YUDKEVICH, R.V.

PHASE I BOOK EXPLOITATION

SOV/5282

Florov, Vasiliy Arkad'yevich, and Rozaliya Veniaminovna Yudkevich

Metally budushchego (Metals of the Future) Moscow, Izd-vo "Sovetskaya Rossiya",
1960. 182 p. 15,000 copies printed.

Ed.: Yu. E. Berenson; Tech. Ed.: P.P. Marakasova.

PURPOSE: This book is intended for the general reader.

COVERAGE: The book, written in a popular style, tells the story of the discovery
of the elements. Particular attention is given to the newer elements, which are
described from the standpoint of their characteristics and uses in technology,
especially metallurgy. Academician A.Ye. Fersman is mentioned as having a great
interest in problems concerning new materials. There are no references.

TABLE OF CONTENTS:

Introduction by Academician A.N. Frumkin

5

Card 1/2

DAKHNOV, V.N., doktor geol.-miner. nauk; KHOLIN, A.I., kand. geol.-miner.nauk; PESTRIKOV, A.S.; GALUZO, Yu.V.; AFRIKYAN, AM.; YUDKEVICH, R.V.; POPOV, V.K.; POZIN, L.Z.; LARIONOV, V.V.; VENDEL'SHTEYN, B.Yu.; GORBUNOVA, V.I.; DZYURAK, M.D.; YEVDOKIMVA, V.A.; ZHOKHOVA, R.G.; LATYSHEVA, M.G.; MAREN'KO, N.N.; MANCHEVA, N.V.; MOROZOVICH, Ya.R.; OREKHOVSKAYA, Ye.P.; POKLONCV, M.S.; ROMANOVA, T.F.; SEVOST'YANOV, M.M.; TANASEVICH, N.I.; FARMANOVA, N.V.; FEDOROVICH, G.P.; SHGHERBININ, V.A.; ELLANSKIY, M.M.; YANUSH, Ye.F.; YUNGANS, S.M., ved. red.; YAKOVLEVA, Z.I., tekhn. red.

[Using methods of field geophysics in studying gas-bearing reservoirs] Primenenie metodov promyslovoi geofiziki pri izuchenii gazonosnykh kollektorov. Moskva, Gostoptekhizdat, 1962. 279 p.

(MIRA 16:2)

(Gas, Natural--Geology)
(Prospecting--Geophysical methods)

YUDKEVICH S. M.
PARYGINA, Natal'ya Diomidovna; YUDKEVICH, S.M., red.; PULIN, L.I., tekhn.
red.

[Novo-Tul'ski metallurgical...; a history of the plant] Novotul'skii
metallurgicheskii...; iz istorii zavoda. [Tula] Tul'skoe knizhnoe
izd-vo, 1957. 53 p.
(Novo-Tul'skiy--Metallurgical plants) (MIRA 11:4)

YUDKEVICH, S.M.

KOCHETOV, Vasiliy Ivanovich; YUDKEVICH, S.M., redaktor; PULIN, L.I.,
tekhnicheskiy redaktor

[Cutting 1252 meters a month] 1252 metra prokhodki shtreka v mesiac. [Tula] Tul'skoe knizhnoe izd-vo, 1957. 19 p. (MLRA 10:9)

1. Brigadir kombaynovoy prokhodcheskoy brigady shakty No.66 tresta
"Kalininygol'" (for Kochetov)
(Coal mines and mining)

BEZMOZGIN, E. S.; YUDKEVICH, Yu.D.

Production of gas from liquid fuels. Trudy VNIIT no. 9:195-228 '60.
(MIL 1:1).

(Gas) (Liquid fuels)

BEZMOZGIN, E.S.; NEMCHENKO, A.G.; SINEL'NIKOV, A.S.; YUDKEVICH, Yu.D.

Contact pyrolysis of shale tar as a method for increasing
the yield of low-boiling phenols. Trudy VNIIT no.12:97-101
'63. (MIRA 18:11)

"APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963110016-3

APPROVED FOR RELEASE: 03/15/2001

CIA-RDP86-00513R001963110016-3"

YUDKEVICH, Yu.D.; NEMCHENKO, A.G.; BARSHCHEVSKIY, M.M.; BILYKOV, V.P.

Investigating the thermal contact processing of wood wastes.
Trudy VNIIT no.13:162-170 '64.
(MIRA 18:2)

BEZMOZGIN, E.S.; NEMCHENKO, A.G.; YUDKEVICH, Yu.D.

Pilot plant testing of a newly designed reactor for the contact
pyrolysis of petroleum products and tars. Trudy VNIIT no.10:49-
58 '61. (MIRA 15:3)
(Petroleum products) (Pyrolysis) (Chemical reactors)

BEZMOZGIN, E.S.; UVAROV, I.P.; KIPRIANOV, A.I.; NEMCHENKO, A.G.; YUDKEVICH,
Yu.D.

Vapor phase thermal demethylation of wood-tar oils in a contact
pyrolysis reactor. Trudy VNIIT no.10:59-63 '61. (MIRA 15:3)
(Wood tar)(Methyl group)(Pyrolysis)

UVAROV, I.P.; PARSHUTKIN, Yu.A.; BALASHOV, N.N.; BOGDANOV, G.A.; BEZMOZGIN, E.S.;
NEMCHENKO, A.G.; YUDKEVICH, Yu.D.; KIPRIANOV, A.I.

Vapor-phase pyrolysis of wood-tar oils. Gidroliz. i lesokhim.
prom. 14 no.8:5-6 '61. (MIRA 16:11)

1. Tsentral'nyy nauchno-issledovatel'skiy lesokhimicheskiy institut
(for Uvarov, Parshutkin, Balashov, Bogdanov).
2. Vsesoyuznyy
nauchno-issledovatel'skiy institut po pererabotke i ispol'-
zovaniyu topliva (for Bezmoygin, Nemchenko, Yudkevich).
3. Leningradskaya lesotekhnicheskaya akademiya im. S.M. Kirova
(for Kiprianov).

BEZMOZGIN, E. S.; NEMCHENKO, A. G.; SHAPIRO, R. N.; YUDKEVICH, Yu. D.

Increasing the yield and heating capacity of Shale producer gas.
Trudy VNIIIT no. 11:97-101 '62. (MIRA 17:5)

SUKHANOVSKIY, S.I.; AKHMINA, Ye.J.; PODGORNAYA, T.A.; BEZMOZGIN, E.S.; NEMCHENKO, A.G.; YUDKEVICH, Yu.D.

Contact pyrolysis of the settled tar from the thermalysis of hydrolyzed lignin. Gidroliz. i lesokhim. prom. 17 no.5:17-18 '64.

(MIRA 17:10)

1. Gosudarstvennyy nauchno-issledovatel'skiy institut gidroliznay i sul'fitno-spirtovoy promyshlennosti (for Sukhanovskiy, Akhmina, Podgornay).
2. Vsesoyuznyy nauchno-issledovatel'skiy institut topliva (for Bezmozgin, Nemchenko, Yudkevich).

TITLE: A method for thermal decomposition of fuel. Class 1

SOURCE: Byulleten' izobreteniy i novyykh sredstv, no. 11, 1963.

TOPIC TAGS: fuel thermal decomposition, infrared radiation

ABSTRACT: This Author's Certificate introduces a method for thermal decomposition of fuel. In order to intensify the process, the decomposition is carried out under infrared radiation.

SUBMITTED: 04Dec63

ENCL: 00

NO REP BOV: 060

OTHER: 000

Cards 1/1

YUDKIN, A.
ASTAKHOV, V.; VOZRESENSKII, L.; VOLKOV, P.; YUDKIN, A.

Commodity production and the operation of the law of value under
socialism. Vop. ekon. no.4:109-122 Ap '58. (MIRA 11:5)
(Economics)

ATIAS, Z.; YUDKIN, A.

Necessity of money in the expanding development of
communism. Den. i kred. 18 no.8:14-24 Ag '60.
(MIRA 13:7)
(Money)

AUTHORS: Bogdanovskiy, S.S., Yudkin, A.K. SOV-128-58-9-2/16

TITLE: Concerning the Article of N.A. Barinov (Po povodu stat -
N.A. Barinova)

PERIODICAL: Liteynoye proizvodstvo, 1958, Nr 9, pp 4-6 (USSR)

ABSTRACT: In "Liteynoye proizvodstvo", 1958, Nr 4, an article on the use of low-silicon iron in casting was published by the Candidate of Technical Sciences, N.A. Barinov. The authors of the present article are commenting on the results attained by Barinov. The value of the graphite enclosures in blast furnace iron is not the only condition for the production of quality iron. The opinion of Barinov that the graphite separates the principal mass of the iron, contradicts the results obtained in the graphitization of cast iron. The important role of manganese is not recognized by Barinov. The influence of manganese on the mechanical properties is slight at a content of 0.75%, but at higher values this influence increases considerably. The transition to low-silicon iron by using ferrosilicon can not be recommended.

Card 1/2

Concerning the Article of N.A. Barinov

SOV-128-58-9-2/16

There are 2 graphs, 1 table, 1 photo, and 12 references,
11 of which are Soviet and 1 English.

1. Iron--Casting
2. Cast iron--Properties
3. Cast iron--Metallurgical effects
4. Silicon--Metallurgical effects

Card 2/2

YUDKIN, B.I.; KULEV, L.P. [deceased]; SHCHEKOCHIMKHIN, Yu.M.

Production of some esters of diphenic acid, their properties
and spectral characteristics. Izv. Sib. otd. AN SSSR no.12:
134-137 '62. (MIRA 17:8)

1. Novosibirskiy filial nauchno-issledovatel'skogo instituta
polimerizatsionnykh plastmass.

1. YUDKIN, P. M.

2. USSR (600)

4. Onions

7. Ways of storing seed onions in the northern zone. Sad i og. no. 11, 1952

9. Monthly List of Russian Accessions. Library of Congress. March 1953. Unclassified.

YUL'KIN, F. L.

Sadovodstvo v Molotovskoi oblasti [Horticulture in Molotov Province]. Molotov,
Obl. izd-vo, 1953. 240 p.

SO: Monthly List of Russian Accessions, Vol. 6, No. 5, August 1953.

YUDKIN, F. M., Doc Agric Sci—(Russ) "Vegetable raising in the Western Ural Region."
K. A.
Moscow, 1957, 21 pp (Moscow Agric Acad im. Timiryazev), 100 copies.
(Xb, No 59, 1957, 96)

YUDKIN, Fedor Mikhaylovich

[Fruit culture in Perm Province] Sadovodstvo v Permskoj oblasti.
Izd. 2., ispr. i dop. Perm', Permskoe knizhnoe izd-vo, 1958. 302 p.
(Pomology) (MRA 12:1)

YUDKIN, Fedor Mikhaylovich, prof., doktor sel'khoz. nauk; DIKUSAR, V.V.,
red.; FILIPPOVA, K.G., tekhn. red.

[Practices of Perm Province vegetable growers] Opyt ovoshchеводов
Permskoi oblasti; zhurnal statei. Perm', Permskoe knizhnoe izd-vo,
1960. 89 p. (MIRA 14:10)

1. Permskiy sel'skokhozyaystvennyy institut imeni D.N.Pryanishnikova
(Fedor Yudkin).
(Perm Province--Vegetable gardening)

YUDIN, I. I.

~~SECRET//COMINT~~

"Penetration of the Herring into the Kara Sea and into Other Arctic Regions
Because of Climatic Fluctuations," Dok. A N, 58, No. 9, 1947

YUDKIN, Iosif Isaakovich, kandidat biologicheskikh nauk; KHLATINA, Ye.S.,
redaktor; OTLIB, E.N., tekhnicheskiy redaktor.

[Ichthyology] Ikhtioziia. Moskva, Pishchepromisdat, 1955. 322 p.
(Fishes)
(MLRA 8:12)

YUDKIN, Iosif Isaakovich; MOROZOVA, I.I., red.; ZARSHCHIKOVA, L.N.,
tekhn. red.

[Ichthyology] Ikhtiologija. Izd.4., perer. i dop. Moskva,
Pishchepromizdat, 1962. 351 p. (MIRA 15:10)
(Ichthyology)

YUDKIN, M.M.

Purification of water in aquariums. Priroda 44 no.8:128 Ag '55.
(Aquariums) (MIRA 8:10)

KHODORKOVSKIY, I.Ya., inzh.; YUDKIN, V.P., inzh.; KONEV, L.L., inzh.;
ZERNIK, P.I., otv. za vypnuk; SEMCHENKO, G.V., red.izd-va;
SIKMANOVA, K.G., tekhn.red.

[Recommendations for the improvement of harvesting machinery]
Rekomendatsii po usovershenstvovaniu tekhniki, ispol'zuemoi
na uborke urozhaiia. Perm', Permskoe knizhnoe izd-vo, 1960.
82 p. (MIRA 14:1)

1. Perm (Province). Upravleniye sel'skogo khozyaystva.
(Harvesting machinery)

YUDKINA, B.F., otvetstvennyy redaktor; GUSEV, N.P., tekhnicheskiy redaktor

[Abridged telephone directory] Kratkii telefonnyi spravochnik.
[Moskva] 1957. 232 p. (MIRA 10:10)

1. Moscow. Gorodskaya telefonnaya set'.
(Moscow—Telephone directories)

YUDKINA, L. N.

"Certain Aspects of Pavlovian Physiology in the Understanding of Eczema.

Vestnik vercerologii i dermatologii (Bulletin of Venereology Dermatology),
No 1, January-February 1954, (biomper), Moscow.

VOKINA, L. V.

"New Materials on the Problem of the Mechanism of Action of Air, Containing Added Radon, on the Sick and Healthy Skin of Experimental Animals."

Vestnik venerologii i dermatologii (Bulletin of Venereology Dermatology),
No 1, January-February 1954, (Biomed), Moscow.

YUDKINA, L.N., kandidat meditsinskikh nauk.

Experiment with the use of Hyppophae rhamnoides oil in certain skin diseases. Vest.van.i derm. no.2:20-24 Mr-ap '54. (MLRA 7:4)

1. Iz kafedry kozhnykh i venericheskikh bolezney (zaveduyushchiy N.I. Khaas) Novosibirskogo meditsinskogo instituta.
(Skin--Diseases) (Botany, Medical)

YUDKINA, O. N., kandidat meditsinskikh nauk

Simple method of determining vitamin A deficiency in skin diseases.
Vest.ven. i derm. no.2:53 Mr-Ap '55. (MIRA 8:5)

1. Iz kliniki Novosibirskogo meditsinskogo instituta.
(SKIN -- DISEASES)
(DEFICIENCY DISEASES)

YUDKINA, L.N., kandidat meditsinskikh nauk

Treating dermatosis at the Belokurikha health resort in the Altai Territory. Vest.derm. i ven. 31 no.1:51 Ja-F '57. (MIRA 10:7)

1. Iz kliniki kozhnykh i venericheskikh bolezney Novosibirskogo meditsinskogo instituta
(SKIN--DISEASES)
(BELOKURIKHA (ALTAI TERRITORY)--RADON--THERAPEUTIC USE)

YAKUBSON, A. K.; YUDKINA, L. N.

Local treatment of alopecia areata and totalis with corticosteroid preparations. Vest. derm. i ven. no.4:39-43 '62.
(MIRA 15:4)

1. Iz kliniki kozhnykh i venericheskikh bolezney (zav. - prof. A. K. Yakubson) Novosibirskogo meditsinskogo instituta (dir. - zasluzhennyy deyatel' nauki prof. G. D. Zalesskiy)

(BALDNESS) (ADRENOCORTICAL HORMONES)

YUDKINA, L.N., kand.med.nauk

Hypertrophic neurodermatitis of the genitalia. Vest. derm.
i ven. 27 no.1:37-39 Ja'63. (MIRA 16:10)

1. Iz kafedry kozhnykh i venericheskikh bolezney (zav. -
prof. A.K.Yakubson) Novosibirskogo meditsinskogo instituta.
(LICHEN PLAVUS)
(GENERATIVE ORGANS, FEMALE—DISEASES)

YUDKINA, T.P.

USSR/Chemistry - Catalytic conversion

Card 1/2 Pub. 40 - 17/27

Authors : Minachev, Kh. M.; Obuydin, N. I.; Fesakov, V. V.
Yudkina, T. P.

Title : Conversions of n-heptane in presence of met
temperatures and hydrogen pressures

Periodical : Izv. Akad. SSSR. Otd. khim. nauk 6, 1067-1074, 1954

Abstract : The conversions of n-heptane over Rh, Mn, Pt, and
silica gel was investigated at hydrogen pressures and tem
peratures of 460°. It was found that the n-heptane under
described conditions, experiences several stages, without
it undergoing complete dehydrocyclization.

Institution : Acad. of Sc.; USSR, The N. D. Zelinsky Institute

Submitted : February 17, 1954

SHUYKIN, N. I.; MINACHEV, Kh. N.; FEDOANOVA, L. M.; TRESHCHOOVA, Ye. G.; YUDKINA,
T. P.; AGRONOMOV, A. Ye.

Conversions of methylcyclohexane in contact with metals of the
palladium group in flow and at increased temperature and in-
creased hydrogen pressure. Izv. AN SSSR. Otd. Khim. nauk no. 3:
501-511 My-Je '55. (MIRA 8:9)

1. Institut organicheskoy khimii im. N.D.Zelinskogo Akademii
nauk SSSR.

(Cyclohexane) (Catalysts, Platinum metals)

5(3)

AUTHORS: Sosnina, I.Ye., Slovokhotova, T.A., Yudkina, T.P. SOV/55-58-5-23/34

TITLE: Synthesis of Dicyclopentylmethane (Sintéz ditsiklopentilmetana)

PERIODICAL: Vestnik Moskovskogo universiteta, Seriya matematiki, mehaniki, astronomii, fiziki, khimii, 1958, Nr 5, pp 145 - 150 (USSR)

ABSTRACT: Starting from chlorocyclopentane and ethylformate the authors synthetically produced a 99.60 % pure dicyclopentylmethane (according to a method deviating from A.F. Plate and V.I. Stanko [Ref 2]). The degree of cleanliness was determined according to the method of A.G. Anikin, Ya.I. Gerasimov, G.M. Dugacheva and N.N. Kozhevnikov [Ref 7]. The spectrum was recorded. Furthermore it was stated: The dehydration of dicyclopentylcarbinol by pyrolysis of its acetate or by means of magnesium sulphate can be recommended as a method for dehydation of bicyclic alcohols.

Card 1/2

20

Synthesis of Dicyclopentylmethane

SOV/55-58-5-23/34

There are 14 references, 8 of which are Soviet, 2 American,
2 German, and 2 Roumanian.

ASSOCIATION: Kafedra organicheskogo kataliza (Chair of Organic Catalysis)

SUBMITTED: October 20, 1957

Card 2/2

AUTHORS: Turova-Polyak, N. B., Sosnina, I. Ye., Sov/79-29-1-22/74
Voznesenskaya, I. I., Yudkina, T. P.

TITLE: Isomerization of the Polymethylene Hydrocarbons Under the Influence of Aluminum Chloride (Izomerizatsiya polimetilenovykh uglevodorodov pod vliyaniyem khloristogo alyuminiya)
XXII. Isomerization of the Dicyclopentyl Methane (XXII. Izomerizatsiya ditsiklopentilmetana)

PERIODICAL: Zhurnal obshchey khimii, 1959, Vol 29, Nr 1, pp 97-101 (USSR)

ABSTRACT: In this paper the behavior of dicyclopentyl methane (a hydrocarbon which may belong to the constituents of the petroleum fraction of mineral oil, as far as its constants are concerned) was investigated on its reaction with AlCl_3 and the influence was clarified that is exerted by the methylene group which separates the two five-membered rings, upon the direction of isomerization. On the basis of the experimental results of the present paper it may be regarded as being proved that dicyclopentyl methane, like dicyclopentyl, is subjected to skeleton isomerization under the influence of aluminum chloride and is transformed into the trans- β -methyl decahydro naphthalene.

Card 1/2

Isomerization of the Polymethylene Hydrocarbons Under SOV/79-29-1-22/74
the Influence of Aluminum Chloride.

XXII. Isomerization of the Dicyclopentyl Methane

At 23-27° isomerization takes place in a 96-98 % yield, at 0° in a smaller yield and at -5° there is no isomerization any longer. The presence of β -methyl decahydronaphthalene was found by catalytic dehydrogenation and confirmed spectroscopically. On the dehydrogenation the β -methyl naphthalene was separated and identified as picrate. According to the results obtained it is proved that the methylene group which is situated between the two rings in dicyclopentyl methane does not appreciably influence the direction of isomerization. An attempt was made to establish the isomerization mechanism of dicyclopentyl methane into the trans- β -methyl decahydronaphthalene (see both schemes). There are 1 table and 14 references, 9 of which are Soviet.

ASSOCIATION: Moskovskiy gosudarstvennyy universitet (Moscow State University)

SUBMITTED: November 21, 1957

Card 2/2

5(3)

SOV/79-29-4-7/77

AUTHORS:

Turova-Polyak, N. B., Sosnina, I. Ye., Golutvina, I. G.,
Yudkina, T. P.

TITLE:

Isomerization of Polymethylene Hydrocarbons Under the Influence
of Aluminum Chloride (Izomerizatsiya polimetilenovykh
uglevodorodov pod vliyaniyem khloristogo alyuminiya). XXIII. Iso-
merization of 2-Methyl-bicyclo-(1,2,2)-heptane (XXIII. Iso-
merizatsiya 2-metil-bitsiklo-(1,2,2)-geptana)

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 4, pp 1078-1083 (USSR)

ABSTRACT:

Apart from the paper by P. R. Schlever (Ref 1), the contact
transformations of bicyclic bridge hydrocarbons in the presence
of AlCl_3 have so far not been dealt with. As the basis of many
natural products the skeleton of bicyclo-(1,2,2)-heptane is of
great interest. 2-methyl-bicyclo-(1,2,2)-heptane is obtained by
condensation of cyclopentadiene with acrolein and by hydrogenation
of 2-methyl-bicyclo-(1,2,2)-heptene-5 in the presence of
the skeleton-nickel catalyst. Theoretically two endo- and exo-
isomers are possible for this heptane which, however, could hi-
therto not be separated (Scheme 1). Such configurations of the
spatial arrangement of hydrocarbons were observed by Schlever

Card 1/2

SOV/79-29-4-7/77

Isomerization of Polymethylene Hydrocarbons Under the Influence of Aluminum Chloride. XXIII. Isomerization of 2-Methyl-bicyclo-(1,2,2)-heptane

(Ref 1). The authors found that 2-methyl-bicyclo-(1,2,2)-heptane practically completely isomerizes to bicyclo-(1,2,3)-octane by reaction with AlCl_3 at 75° , i.e. to a system consisting of five- and six-membered rings on the basis of a seven-membered ring. At 100° this reaction is accompanied by the formation of condensation products. At $21-28^\circ$ a transition from one steric configuration of 2-methyl-bicyclo-(1,2,2)-heptane into the other takes place which was proved by spectrum analysis and the physical constants. On the strength of the results obtained it may be concluded that the part of the molecule of the above heptane which corresponds to methyl cyclopentane reacts in the presence of AlCl_3 in the same way as in isolated state, i.e. it expands to a six-membered ring. On the hydrogenolysis of bicyclo-(1,2,3)-octane the m-xylene is formed. There are 1 figure, 3 tables, and 15 references, 6 of which are Soviet.

ASSOCIATION: Moskovskiy gosudarstvennyy universitet (Moscow State University)

SUBMITTED: February 11, 1958
Card 2/2

TUROVA-POLYAK, M.B.; BALEKOVA, Ye.S.; SOSNINA, I.Ye.; KHIROMOV, S.I.;
YUDKINA, T.P.

Isomerization of polymethylene hydrocarbons under the effect of
aluminum chloride. Part 24: Isomerization of cyclononane and
cyclodecane. Zhur. ob. khim. 31 no.6:1970-1981 Je 'th.
KHA

1. Moskovskiy gosudarstvennyy universitet imeni M.V.Lomonosova.
(Cyclodecane) (Cyclononane) (Isomerization)

TUROVA-POLYAK, M.B.; SOSNINA, I.Ye.; YUDKINA, T.P.

Isomerization of polymethylene hydrocarbons under the effect of
aluminum chloride. Part 25: Isomerization of cyclopentylcycloheptane.
Zhur. ob. khim. 31 no.10:3187-3190 O '61. (MIRA 14:10.

1. Moskovskiy gosudarstvennyy universitet.
(Cycloheptane)

YUDKINA, V.P.

Determining the luminosity of AF Cygni-type variable stars.
Per.zvezdy 6 no.5:278-281 Mr '48. (MIRA 12:7)

1.Gosudarstvennyy astronomicheskiy institut im. Shternberga, Moskva.
(Stars, Variable)

YUDKINA, V. P.

"Determining the Absolute Magnitude of a Star According to the Parallactic Component
of its Natural Motion", Asten. Zhur. 26, No. 5, 1949,
Mbr., Rostov-on-Don State Univ. im. V. M. Molotov, -c1949-.

1. YUDKINA, V. P.
2. USSR (600)
4. Ursa Major
7. RV Ursae Majoris. Per. zvezdy, 8, No. 4, 1951.

9. Monthly List of Russian Accessions, Library of Congress, May 1953, Uncl.

YUDKINA, V. P.

Stars, Variable

SW Andromedae. Per. zvezdy 8, No. 4, 1951.

9. Monthly List of Russian Accessions, Library of Congress, May 1953. Unclassified.

YUDKINA, V. P.

Five Short-Period Cepheids. Peremennyye Zvezdy, No 5, 1953, 3L4-333.

Reference stars, maps of surroundings, and luminosity curves are presented for the following stars: RS, TV, TW Tauri, RV Ursae Majoris.
(ZhAstr, No 9, 1954)

SO: W-31128, 11 Jan 55

YUDKINA, V.P.

Five short-period Cepheids. Per.zvezdy 9 no.5:314-323 Ja '54.
(MLRA 7:8)

1. Astronomicheskaya observatoriya Rostovskogo gosudarstvennogo
universiteta imeni V.M.Molotova.
(Stars, Variable)

YUDKOVICH, G.M.

Distribution of the constituents of wood-chemical creosote in a
system of immiscible organic solvents. Gidroliz i lisokhim.prom.
13 no.2:13 '60. (MIRA 13:6)

1. Ukrainskiy nauchno-issledovatel'skiy institut mekhanicheskoy
obrabotki drevesiny.
(Wood--Chemistry) (Creosote)

YUDKOVICH, Ya.S. (Pinsk).

Some results of competitive examinations in mathematics at the
White Russian Electrotechnical Institute of Telecommunications
in 1953. Mat.v shkole no.2:40-44 Mr-Ap '54. (MLRA 7:3)
(White Russia--Mathematics--Competitions)
(Competitions--Mathematics--White Russia)
(Mathematics--Problems, exercises, etc.)

YUDKOVSKAYA, I. L., Cand Bio Sci -- (diss) "Mucous membrane of the stomach during an ulcer and during cancer resulting from an ulcer," Leningrad, 1960, 16 pp (Institute of Experimental Medicine, AMS USSR)
(KL, 35-60, 124)

SMIRNOV, N.M.; YUDKOVSKAYA, I.L.

State of the gastric mucosa in cancer of the fundal region.
Vop. onk. 11 no.2:26-30 '65. (MIRA 18:7)

1. Iz patologomorfologicheskoy laboratorii (zav. - doktor med. nauk S.F. Serov; nauchnyy rukovoditel' - deystvitel'nyy chlen AMN SSSR prof. M.F. Glazunov) Instituta onkologii AMN SSSR (direktor - deystvitel'nyy chlen AMN SSSR prof. A.I. Serebrov).

YUDKOVSKAYA, I.L.

Phagocytic properties of the mesothelium in tissue cultures.
Arkh.anat., gist. i embr. 49 no.10:53-61 O '65. (MIRA 18:12)

1. Laboratoriya eksperimental'noy morfologii (zav. - doktor
med. nauk M.P.Ftukhov) Instituta onkologii AMN SSSR. Submitted
Febr. 20, 1964.

YUDKOVSKAYA, T.I.

ISAYENKO, Lyudmila Alekseyevna; YUDKOVSKAYA, Tamara Isailevna; NOVIKOV,
Ya.A., redaktor; SAMAROV, N.V., tekhnicheskiy redaktor

[Natural history; textbook for class-5 in schools for the deaf-mute] Estestvoznanie; uchebnik dlja 5-go klassa shkol glukhonemykh.
Izd. 2-eo. Moskva, Gos. uchebno-pedagog. izd-vo Ministerstva pro-sveshchenija RSFSR, 1955. 173 p.

(MIRA 8:5)

(Natural history—Study and teaching)
(Deaf—Asylums and education)

YUDKOVSKIY, A.G.
LEVITSKIY, Yury Il'ich; YUDKOVSKIY, A.G., red.; DOVGOROD, O.O., tekhn.
red.

[Donets Basin during the 40 years of the Soviet regime] Donetskii
bassein za 40 let sovetskoi vlasti. Stalino, Stalinskii ekon.
administrativnyi raion, 1957. 23 p. (MIRA 11:6)
(Donets Basin--Coal mines and mining)

YUDKOVSKIY, A.G., inzh.

Industrial tests of various types of slope linings. Energ. stroi.
no.20:65-67 '61. (MIN. 15:1)

1. Gidroenergoprojekt.
(Taburishche--Precast concrete--Testing)

SOV/122-59-4-12/28

AUTHORS: Nartsov, L.N., and Yudkovskiy, L.A., Engineers

TITLE: On the Strength of Cast Angles (O prochnosti litykh ugolkov)

PERIODICAL: Vestnik Mashinostroyeniya, 1959, Nr 4, pp 47-48 (USSR)

ABSTRACT: Referring to a paper by Komissarov, P.A., Engineer "On the Design of Cast Components" (Vestnik Mashinostroyeniya, 1958, Nr 1), it is found that recommendations for the design of corners in cast components differ. A sharp edge on the outside with a small fillet on the inside are contrasted with a large radius on the outside and a relatively large fillet cutting into the cross-section and reducing the corner cross-section compared with that of the adjoining wall. Tests are reported wherein cast angles with corner designs of different type made of grey iron of 15, 18 and 24 kg/mm² ultimate tensile strength were loaded by a) pressing along the bisecting line against the external edge of the corner while supporting the two end edges; b) pressing along one leg while supporting the other leg on a foundation; and c) pulling one leg in cantilever bending whilst the end of the other leg is clamped. All three types of tests

Card 1/2

SOV/122-59-4-12/28

On the Strength of Cast Angles

and the examination of the fracture surface combine to show that the first variant (a sharp outside corner and an inside fillet radius equal to one-third of the mean thickness of the adjoining walls) yields a better strength and a better cast grain structure than the second variant (with a diminished corner cross-section). In the pure bending test, the strength of the first variant may reach 7 times that of the second.

There are 2 figures and 2 Soviet references.

Card 2/2

YUDKOVSKIY, M. (L'vov): KOVTUN, N. (L'vov)

Seminar-workshop for physics teachers. Fiz. v shkole 20 no.4:
100-102 Jl-Lg '60. (MIRA 13:8)
(Physics--Study and teaching)

YUDKOVSKIY, P.A.; BULANOV, V.Ya.; ZHURAVKOV, Yu.N.; SHEVEL', A.P.

Effect of heat treatment on the strength of drills. Stan. i instr.
34 no.12:27-28 D '63.

(MIRA 17:11)

YUDKOVSKIY, S.I.

82635

S/126/60/010/02/005/020

E111/E352

18.12.30 18.8.100

AUTHORS Funke, V.F., Shurshakov, A.N., Yudkovskiy, S.I.
Kuznetsova, K.F., Shulepov, V.I. and Turkevich

TITLE: Electrical Resistance and Structure of WC-Co Alloys

PERIODICAL: Fizika metallov i metallovedeniye. 1960 Vol 10
No. 2, pp 207 - 215

TEXT: Two-phase WC-Co alloys consist of hard, brittle tungsten-carbide grains and a cobalt-base plastic phase. Some workers consider that a continuous carbide "skeleton" exists (Ref. 1) and others (Ref. 2) that there is a continuous film of cobalt in alloys with over 2% weight Co. In the present work measurements of electrical conductivity were made to settle this point. Two-phase alloys with 0-100% were prepared by powder metallurgy methods. Specimens were heated at 1 200 °C for 1.5 hours in hydrogen. Some were then cooled at 80 °C/hour to room temperature; others were quenched in oil at 20 °C. Fig. 1 shows specific conductivity as a function of cobalt concentration for quenched (Curve 1) and annealed (Curve 2) specimens. Plots of resistivity against temperature are shown in Fig. 2. X-ray examination was carried out (with type RKD and

Card 1/3

82635

S/126/60/010/02/005/020
E111/E552**Electrical Resistance and Structure of WC-Co Alloys**

URS-50 cameras) with cobalt radiation to find the alloy structure and the cobalt lattice dimension (the latter is shown as a function of WC weight % in Fig. 3). Another series of alloys with the same cobalt content (6% by weight) but different tungsten-carbide grain size (about 0.8 - 2.2 μ) was prepared and tested. Fig. 4 shows resistivity for annealed alloys as functions of coercive force (Curve 1) and of grain size (Curve 2) the relations obtained confirmed the conclusions from the other work, that there is a continuous layer of cobalt in alloys of this composition. The work showed that 0.5% Co is sufficient to break continuity of contact between carbide grains. No solubility of cobalt in carbide up to the eutectic melting point eutectic transformation occurred at 1250 °C. solubility of carbide in cobalt was 12-13 weight % at 1200 °C. The reported (Ref. 11) loss in plasticity of the cobalt layer the authors attribute to lattice distortion at the cobalt/tungsten-carbide boundary surface.

There are 4 figures, 2 tables and 11 references: 6 Soviet,
4 English and 1 German.
Card 2/3

82635

S/126/60/010/02/005/020
E111/E352

Electrical Resistance and Structure of WC-Co Alloys

ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'skiy institut
tverdykh splavov
(All-Union Cermets Scientific-Research Institute)

SUBMITTED: January 6, 1960

✓

Card 3/3

YELYUTIN, V.P.; NATANSON, A.N.; SHULEPOV, V.I.; YUDKOVSKIY, S.I.

Instrument for measuring the electric resistance of alloys at high
temperatures. Zav.lab. 26 no.3:344-346 '60. (MIRA 13:6)

1. Moskovskiy institut stali im. I.V.Stalina.
(Alloys--Electric properties)

5.2100

80102

S/080/60/033/04/13/045

AUTHORS: Funke, V.F., Yudkovskiy, S.I., Samsonov, G.V.TITLE: Some Feculiarities of the Vacuum-Thermal Manufacture of Titanium Boride ¹

PERIODICAL: Zhurnal prikladnoy khimii, 1960, Vol 33, Nr 4, pp 831 - 835

TEXT: The effect of a charge increase on the condition of obtaining titanium diboride and also the content of impurities in the initial materials on the purity and the composition of boride is investigated here. Titanium diboride is formed by the reaction $2\text{TiO}_2 + \text{B}_4\text{C} + 3\text{C} \rightarrow 2\text{TiB}_2 + 4\text{CO}$. The initial materials were commercial titanium dioxide which contained (%) 59.65 Ti, 0.11 Fe_2O_3 , 0.16 Al_2O_3 , calcium, magnesium and boron carbide powder with 220 mesh. The reaction was carried out in a TVV-2 furnace with a graphite heater. It has been shown that the temperature and the holding time must be increased in order to obtain titanium boride of stoichiometric composition. At a low content of carbon, if the charge is increased from 10 - 20 g to 100 - 120 g at 1,400 - 1,500°C and a holding time of 2 - 3 hours titanium boride contains up to 1% carbon. At a temperature of 1,700°C and a holding time of 3 hours the titanium boride has a stoichiometric composition and the carbon content is only 0.26%. The higher is the content of carbon in the form of carbide, the less carbon must be introduced.

Card 1/2

80102

S/080/60/033/04/13/045

Some Peculiarities of the Vacuum-Thermal Manufacture of Titanium Boride

form of carbon black, which furthers the reaction of titanium boride formation to proceed more completely. Under the conditions of high temperatures and vacuum, evaporation of the impurities and intensive purification of boride takes place. Iron, silicon, aluminum, manganese and calcium are eliminated almost completely, the remaining impurities partially.

There are: 3 tables and 11 references, 6 of which are Soviet and 5 English.

ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'skiy institut tverdykh splavov (All-Union Scientific Research Institute of Hard Alloys)

SUBMITTED: October 15, 1959

Card 2/2

YUDKOVSKY, S. I.

AUTHORS: Tolyatina, V. V., Matanich, A. I.
Shul'gen, V. I. [Signature] 9/03/42/0356/03/0356/014
B010/B117

TITLE: A Device Used to Measure the Electric Resistances of Alloys at High Temperatures

PERIODICAL: Zavodskaya Laboratoriya, 1960, Vol 36, No 3, pp 344-346 (USSR)

TEXT: A special device has been designed (Fig 1) for measuring the electric resistance of samples 1 x 6 x 20 mm to 10 x 13 x 40 mm in size and used in powder metallurgy, at 2000 to 2500°, with a standard furnace of the type TTV-4 used to heat the samples. The sample is attached to molybdenum- or tantalum electrodes by spot welding. The electric resistance is measured by the compensation method (Fig 2, circuit diagram), and calibration resistors are used which were calculated by the following equation: $R_2 = R_1 \cdot \frac{T_2}{T_1}$ (R_1 and R_2 = electric resistance of the sample and the calibration sample; T_1 = voltage drop in the sample; T_2 = voltage drop in the calibration sample). Phase transformations occurring in Ni-Al-20 alloy were investigated, and it was found that the electric resistance ranging between 0.1 and 0.5 ohm has to be measured at

Part 3/2

ASSOCIATION: Mezhdunarodnyi sotrudnichestvo po Chernomu metallu (Russian Institute of Steel Industry, V. Stalin)

15 2240

30453
S/126/61/012/003/008/021
E073/E535**AUTHORS:** Funke, V.F., Panov, V.S. and Yudkovskiy, S.I.**TITLE:** Structure and the physical and mechanical properties of TiC-WC-Co carbides**PERIODICAL:** Fizika metallov i metallovedeniye, 1961, Vol.12, No.3,
pp.382-388

TEXT: The results are given of investigations of the structure of TiC-WC-Co carbides and of their properties as a function of the composition and heat treatment. Two series of carbides with cobalt contents between 0 and 30 wt.% and a constant content of the carbide phase in each of the series were investigated. (Yu. A. Skudin and K. F. Kuznetsova participated in the experiments). In the first series the content of titanium carbide was about 16%, in the second about 64% of the carbide phase. In the first case the carbide phase consisted of structurally free tungsten carbide and a saturated solution of WC and TiC; in the second, the carbide phase consisted of a solid solution of WC and TiC. The carbides were prepared by current methods; carbides with up to 1% Co were produced by hot pressing. The sintered specimens did not have any

Card 1/5

Structure and the physical ...

30453
S/126/61/012/003/008/021
E073/E535

pores and did not contain structurally free carbon. The carbides were homogenization annealed for two hours at 1200°C in a hydrogen atmosphere and cooled jointly with the furnace at a rate of 40 to 50°C/hour down to room temperature. Following that, the specimens were heated to 1200°C, held at that temperature for two hours, and quenched in oil at 20°C. The grain size of the WC phase and of the solid solution of WC in TiC remained practically unchanged on changing the cobalt content and during heat treatment. The average grain size of the WC phase was 2.28 μ , that of the TiC phase was 2.5 μ in the first series and 3.0 μ in the second series. The sintered, annealed and quenched specimens were subjected to metallographic and X-ray analyses and, in addition, the electric resistance, the microhardness and the bending strength were determined. Particular attention was paid to obtaining data on the relation between the specific electric resistance of two and three-phase TiC-WC-Co carbides on the one hand, and the Co content and the heat treatment conditions on the other hand. These data indicate that cobalt is soluble in the titanium carbide phase, which, in the case of the ratio TiC/WC = 0.19, is about 2% at 1200°C. If structurally free tungsten carbide is present, the

Card 2/B4

Structure and the physical ...

30453

S/126/61/012/003/008/021
E073/E535

titanium phase will be subjected to tensile stresses. Fig.1 shows a plot of the specific electric resistance, ρ , ohm·cm, of Ti-WC-Co carbides as a function of the cobalt content (wt.%). Two sets of materials were used with the following heat treatments: TiC/WC = 1.765: 1 - sintered; 2 - annealed; 3 - quenched. TiC/WC = 0.19: 4 - sintered; 5 - quenched, 6 - annealed. A sharp drop in the electric resistance caused by an increase of the Co content from 0 to 4% is attributed to the relief of the thermal stresses of the carbide phase as a result of increasing the content of the ductile component, which leads to a stress relaxation and to a reduction of the concentration of tungsten carbide in the solid solution TiC-WC on increasing the cobalt content from 0 to 1%. An increase in the electric resistance for carbides containing over 4% Co is attributed to the fact that the specific electric resistance of the carbide phase is lower than that of the bonding phase and, consequently, an increase in the quantity of the latter is accompanied by an increase of the electric resistance of the carbide as a whole. Data on the dependence of the bending strength, σ , kg/mm², on the composition,

Card 3/54

X

30453

Structure and the physical ...

S/126/61/012/003/008/021
E073/E535

Co, vol.%, are plotted in Fig.3 (1 - tungsten-cobalt carbides, 2 - titanium-tungsten-cobalt carbides ($TiC/WC = 0.19$), 3 - titanium-tungsten-cobalt carbides ($TiC/WC = 1.765$)). Fig.4 is a plot of the dependence of the hardness, H_V , kg/mm^2 on the cobalt content, wt.% (1 - $TiC/WC = 1.765$; 2 - $TiC/WC = 0.19$; Δ - sintered, X - annealed, O - quenched). It can be seen that for both two-phase and three-phase WC-TiC-Co carbides the hardness increases almost linearly with increasing cobalt content and is almost independent of the heat treatment and the composition of the bonding phase. There are 4 figures and 12 references: 6 Soviet and 6 non-Soviet. The English-language references read as follows: Ref.2: Gurland, I., Norton, I., J.Metals, 1952, 4, No.10, 1054; Ref.11: Gangler, I., J. Am.Cer.Soc., 1950, 33, 367.

ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'skiy institut tverdykh splavov (All Union Scientific-Research Institute for Carbides)

SUBMITTED: November 28, 1960 (initially)
May 25, 1961 (after revision)

Card 4/54

AUTHORS:

TITLE:

PERIODICAL:

TEXT:

The authors describe a series of experiments conducted in order to establish the physical, mechanical and cutting properties of TiB₂ alloys. Specimens of 15 alloys containing various percentages of TiB₂ and bounding metals (Fe, Cr, Ni) were tested for bending, hardness, and coefficient of friction. Their cutting properties under various working conditions were also investigated and the results of the experiments recorded in form of tables and graphs, and analyzed. TiB₂ alloys (obtained by powder pressing and baking process) possess many advantages

Card 1/2

S/122/62/000/CCS/CO3/004
D262/D306

Yudkovskiy, S.I., Ezhmans, E.F., Guseva,
A.N., Engineers, Funke, V.P., Rozanov, Yu.
F., and Smirnov, F.Y., Candidates of Technical Sciences

Alloys on the TiB₂ basis for cutting tools
Vestnik mashinostroyeniya #7
44 - 47 no. 8, 1962.

APPROVED FOR RELEASE

CIA-RDP86-00513R001963110016-3

Alloys on the TiB₂ basis ... S/122/62/000/008/003/004
D262/D308
over the existing cutting materials (greater hardness, better
scale-resistance, absence of adhesion to worked materials, lower
coefficient of friction) but their strength is comparatively low.
There are 5 figures and 5 tables.

Card 2/2

FUNKE, V.F.; SHULEPOV, V.I.; YUDKOVSKIY, S.I.

Dependence of the electric resistance of WC-Co alloys on their
structure. Fiz. met. i metalloved. 13 no.5:794-795 My '62.

1. Vsesoyuznyy nauchno-issledovatel'skiy institut tverdykh
splatov. (MIRA 15:6)

(Tungsten-cobalt alloys--Electric properties)

FUNKE, V.P. (Moskva); YUDKOVSKIY, S.I. (Moskva); Prinimala uchastiye
VODYANAYA, T.A.

Structure and properties of alloys of zirconium diboride with
iron, cobalt, and nickel. Izv.AN SSSR. Otd.tekh.nauk. Mat.i
topl. no.4:126-132 J1-Ag '62. (MIRA 15:8)
(Zirconium alloys--Metallography) (Powder metallurgy)

15258

18.11.52

S/226/62/000/006/009/016
E193/8383

AUTHORS: Funke, V.P., Yudkovskiy, S.I. and Panov, V.S.

TITLE: A study of the structure and physical properties of alloys of the TiC-WC-Co system

PERIODICAL: Poroshkovaya metallurgiya, no. 6, 1962, 61 - 66

TEXT: The effect of the Co content and heat-treatment on the structure and properties of three series of WC-base alloys was studied. The W content of each series varied between 0 and 30%; alloys of the first series contained WC only, those of the second and third series containing 16 and 64% TiC, respectively. Conventional methods were used for the preparation of experimental specimens, hot pressing being used in the preparation of Co-free compacts. The specimens were free from pores and did not contain structurally-free carbon. X-ray diffraction analysis and measurements of hardness and electrical resistance were conducted on specimens a) as sintered, b) annealed for 2 h at 1 200 °C and furnace-cooled to room temperature and c) oil-quenched from 1 200 °C after 2-h holding at the temperature. X-ray diffraction analysis has shown that the carbide phase in the WC-Co alloys is under

Card 1/3

RDP86-00513R001963110016-3

S/226/62/000/006/009/016
E193/E383

A study of

compressive stresses, whereas TiC in the ternary alloys containing structurally-free WC is under tensile stresses. Other results are reproduced graphically in Fig. 1; the electrical resistivity (ρ , $\Omega \text{ cm}$) is plotted against the Co content (vol. %) in WC-Co alloys (bottom graph) and ternary alloys with 16 and 64% TiC (T15 and T60, respectively, top graph); the curves marked 'закалка', 'чеканка' and 'оковы' relate, respectively, to quenched, sintered and annealed specimens. In Fig. 2, the bending strength (σ_{b} , kg/mm^2 - continuous curves) and Vickers hardness (H_v , kg/mm^2 - broken curves) are plotted against the Co content (vol. %) in sintered alloys, containing no titanium carbide (EK) or with a titanium carbide of 16 and 64% (curves T15 and T60, respectively). There are 2 figures and 1 table.

"ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'skiy institut tvordykh splavov (All-Union Scientific Research Institute of Hard Alloys)

SUBMITTED: April 14, 1962

Card 2/3

A study of

Fig. 1:

Card 3/3

S/226/62/000/006/009/016
E193/E383

Fig. 2:

FUNKE, V.F.; YUDKOVSKIY, S.I.

Preparing zirconium boride. Porosh. met. 3 no.4:49-53 Jl-Ag '63.
(MIRA 16:10)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut tverdykh
splavov. (Zirconium boride)

FUNKE, V.F.; YUDKOVSKIY, S.I.

Conditions of preparation and phase composition of molybdenum boride. Zhur. prikl. khim. 36 no.11:2379-2385 (N '63).
(MIRA 17:1)

1. Vsesoyuznyy nauchno-issledovatel'skiy institut tverdykh splavov.

L13610003

EXP(g)/EXT(m)/216 LEFT PAGE 36

CLASSIFICATION NR: AP7004054

BY NAME: Razum, V. P.; Yudkovskiy, I. I.

TITLE: High-temperature oxidation of titanium and its metals

SOURCE: Journal fizicheskoy khimii, v. 77, no. 11, 1973

TOPIC TAGS: refractory compound, transition-metal, alloy,
titanium boride-iron, titanium boride-nickel, titanium
boride-iron oxidation, titanium boride-nickel oxidation,
oxidation, titanium oxide, MnO₂, TiO₂

ABSTRACT: The kinetics of the atmospheric oxidation of various alloys has been studied with the following results: The weight loss over a period of 100 h. The alloy Mn-Ti-Fe-
C (intermetallic) oxidation was carried out in air at 1000°C.
Temperature remained for the pre-test and the test temperature

Cord 13

L 3676-63

PRECISION NR: AP3004064

patterns of the scales were obtained in an EMI, Laby-type thermocouple furnace. The experimental kinetic data are plotted in Fig. 1. The calculated oxidation rate constants (A) are plotted in Fig. 2. The rate versus the percentage of Fe, Ni, or Co. It was observed that the rate at 900C and 750C is approximately of the same magnitude for all compositions studied. A difference in this rate is seen, however, at 1000C increased from 750 to 1000C. In this range the diffusion coefficient of Fe in TiB₂-Fe is larger than in TiB₂-Ni or TiB₂-Co alloys. The diffusion coefficient with the increased temperature is associated with the increase of the oxide film. The film on TiB₂-Fe alloy is composed of two unequally thick layers, while a single-layer film is formed on TiB₂ or 750C or 900C and on TiB₂-Ni or TiB₂-Co alloy. At 750C, an increase in Fe, Ni, or Co content in the TiB₂ alloy increases the oxidation rate, which remains about the same for the pure TiB₂. At 900C the oxidation rate of the TiB₂-Fe alloy is higher than that of the pure TiB₂, or for TiB₂-Ni or TiB₂-Co alloys. At 1000C the oxidation rate decreases with an increase in Ni or Co content, but it is still higher than that of the pure TiB₂.

Card 1/2

L 13676-63

ACCESSION NR: AP3004064

further increased to 25%. The assumption that ox. valence of Ti in the scale is dependent on the composition of the oxide films was confirmed by analysis. The scale for all the alloys contained TiO_2 and $Ti_{2}O_3$, presumably the complex oxide $Mg_2B_2O_5$ or a salt of a borate. In addition, the scale on certain TiB_2 -Fe, -Ni, or -Co alloys contained $FeTiO_3$, $NiTiO_3$, or $CoTiO_3$. The proportions of the different oxides depend on composition and temperature. Orig. art. has: "Influence of..."

ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'styi institut po (All-Union Scientific Research Institute of Metal Alloys)

SURVEYOR: K/106/1

PAGE A/R: 1/1

CUT SCIN: MA, MC

NO REP SCIN: N/A

Card 1A3

ACCESSION NR: AP4039622

S/0076/64/038/005/1280/1283

AUTHOR: Funke, V. F.; Yudkovskiy, S. I.

TITLE: High-temperature oxidation of boride-base alloys with iron-group metals

SOURCE: Zhurnal fizicheskoy khimii, v. 38, no. 5, 1964, 1280-1283

TOPIC TAGS: zirconium boride, zirconium boride alloy, iron containing alloy, cobalt containing alloy, alloy oxidation, high temperature oxidation

ABSTRACT: The oxidation of zirconium boride-base alloys with iron-group metals in the 500—1000°C range was investigated. The oxidation behavior of unalloyed zirconium boride at 500—750°C differs from that of zirconium boride alloys; in the former a weight loss is observed and in the latter, a weight gain. The phenomenon is explained by the difference in the nature of oxide films formed at high temperatures. The film formed on zirconium boride is porous and does not prevent the escape of volatile components; on alloys, a glass-like dense film, adhering tightly to the base is formed. With an

Card 1/3

ACCESSION NR: AP4039622

increase in oxidation temperature to above 750°C, the oxidation follows a parabolic rate and is accompanied by a weight increase in both cases (see Fig. 1 of the Enclosure). X-ray diffraction patterns of oxide films on zirconium boride formed at 1000°C contain primarily lines of monoclinic zirconium dioxide. Components of film on the alloys could not be positively identified. With increasing oxidation temperature, the content of metals in the film increases. The oxidation resistance of zirconium boride base alloys is 2-3 times higher than that of titanium boride-base alloys.

ASSOCIATION: Vsesoyuznyy nauchno-issledovatel'skiy institut
tverdykh splavov (All-Union Scientific Research Institute of Hard
Alloys)

SUBMITTED: 13Mar63

ATD PRESS: 3049

ENCL: 01

SUB CODE: MM

NO REF Sov: 004

OTHER: 001

Cord: 2/3