

HCB

BSG 电机控制器及配电总成

维修手册

目录

目录		2
第一章 B	SG 电机控制器及配电总成	3
第一节	系统概述	3
第二节	组件位置	3
第三节	电气原理图及接插件定义	4
第四节	故障代码	7
第五节	诊断流程	8
第六节	拆卸与安装	

第一章 BSG 电机控制器及配电总成

第一节 系统概述

BSG电机控制器及配电总成是控制BSG电机的装置,其由输入输出接口电路、驱动电机控制电路和驱动电路组成,主要功能是控制BSG电机来给整车发电、启停、稳压,同时包括CAN通讯、故障处理、在线CAN烧写、与其他模块配合完成整车的工作要求以及自检等功能。

BSG电机控制器及配电总成包含BSG电机控制器、空调压缩机(AC)、电池加热器、空调PTC、DC/OBC模块的高压配电,配电部分集成BSG电机保险、AC/电池加热器保险,空调PTC保险、DC/OBC保险。

第二节 组件位置

BSG 电机控制器及配电总成安装在左悬置上方,左纵梁内,如下图所示。

第三节 电气原理图及接插件定义

3.1 电气原理图 (高低压输入接口定义)

BSG 电机控制器及配电总成电气原理图如下图。

BSG 电机控制器及配电总成外部电气接口示意图,各接口的作用与名称如下表所示。

图 4.2 BSG 电机控制器及配电总成外部电器接口示意图

表 4-2 BSG 电机控制器及配电总成电气接口

编号	部件	编号	部件
1	直流母线接口	2	DC/OBC 总成配电线接口
1	且侧中线按口	2	空调 PTC 接口
3	电池加热接口(选装不带电池加热为堵盖)	4	空调压缩机配电接线口
5	低压接插件	6	BSG 电机控制器交流三相接线(线鼻子)
7	进水口(直管)及标识	8	出水口(直管)及标识

3.2 23PIN 控制器低压接插件

产品端(公端)接插件投影图:

(注:标注端为接插件前端,为接插件公端。接插件引脚定义 1^8 、 9^15 、 16^2 3为从右向左数)线端接插件定义(仅供参考)

BSG 电机控制器及配电总成低压接插件引脚分配见下表。

电机控制器及配电总成低压接插件引脚定义

引 脚 号	端口名 称	端口定义	信号类型	稳态工 作电流 /A	电源性质 (比如:常 电)	备注(可否 共用保险 等)
1	+12VO	外部提供 的+12V 电 源	IG4 电	≤1.5A	15A 2ms	17/
2	/	/				
3	COS-	余弦-	接 BSG 电机余弦-	PWM	≤0.5A	
4	EXCOUT+	励磁+	接 BSG 电机励 磁+	PWM	≤0.5A	
5	/					
6	CANL	CAN 信号 低	接 ECM 网	PWM		
7	KEY-HX	钥匙唤醒				预留
8		/				
9	+12V0	外部提供 的+12V 电 源	IG4 电	≤1.5A	15A 2ms	
10	/	/				
11	COS+	余弦+	接 BSG 电机余 弦+	PWM	≤0.5A	
12	EXCOUT-	励磁-	接 BSG 电机励 磁-	PWM	≤0.5A	
13	CANH	CAN 信号 高	接 ECM 网	PWM		
14	OBC-HX	OBC 唤醒				预留
15	STATOR_ T_IN	电机绕组 温度	接 BSG 电机绕 组温度+	电压		

16	GND	12V 电源 地				
17	GND	12V 电源 地				
18	GND	旋变屏蔽 地				
19	SIN+	正弦+	接 BSG 电机正 弦+	PWM	≤0.5A	
20	SIN-	正弦-	接 BSG 电机正 弦-	PWM	≤0.5A	
21	HV- LOCK1	高压互锁 1	33PIN-7		<	
22	HV- LOCK2	高压互锁 2	33PIN-13			~
23	STATOR- GND	电机绕组 温度地	接 BSG 电机绕 组温度地)	

第四节 故障代码

序号	故障码 (ISO 15031-6)	故障定义	备注
1	U014787	BSG 无法接收到发动机控制器报文	
2	U014187	BSG 无法接收到整车控制器报文	
3	P180100	BSG IPM 保护	
4	P180219	BSG 过流	
5	P180396	BSG 缺 A 相	
6	P180496	BSG 缺 B 相	
7	P180596	BSG 缺 C 相	
8	P180617	高压过压	
9	P180616	高压欠压	
10	P180717	12V 过压	预留
11	P180716	12V 欠压	预留
12	P180896	A 相电流霍尔故障	
13	P180996	B 相电流霍尔故障	
14	P180A96	C相电流霍尔故障	
15	P180B00	旋变故障	
16	P180C00	旋变 DOS	
17	P180D00	旋变 LOT	

18	P180E00	CPLD 故障	
19	P180F19	硬件过流	
20	P181017	硬件过压	
21	P181100	上桥故障	
22	P181200	下桥故障	
23	P18134B	箱体温度过温报警或故障	
24	P18144B	电机温度过温报警或故障	
25	P18154B	IPM 或 IGBT 温度过温报警或故障	
26	P181600	电机超速	
27	P181700	DSP 死机	预留
28	P18194B	电容温度过温报警	预留
29	P181A00	EEPROM 错误	预留

第五节 诊断流程

1 把车开进维修间

下一步

2 检查低压蓄电池电压

标准电压值:

 $11 \sim 14V$

如果电压值低于 11V, 在进行下一步之前请 充电或更换低压蓄电池。

下一步

3 参考故障诊断表

结果	进入步骤
现象不在故障诊断表中	A
现象在故障诊断表中	В

封到第5步

Α

4 全面诊断

下一步

5 调整,维修或更换

下一步

6 确认测试

下一步

7 结束

具体如下:

5.1 终端故障码诊断

(a) 将 VDS2000 连接 DLC3 诊断口。

提示: 将 VDS2000 连接 DLC3 诊断口,如果提示通讯错误,则可能是车辆 DLC3 诊断口问题,也可能是 VDS2000 问题。

将 VDS2000 连接另一辆车的 DLC3 诊断口,如果可以显示,则原车 DLC3 诊断口有问题,需更换。若不可显示则 VDS2000 问题。

OK: 有故障码

U014787

BSG 电机控制器无法接收到发动机控制器报文

- 1 检查模块数据流
- a、整车上 OK 档
- b、用 VDS2000 读取模块数据流是否正常

NG

检查 12V 供电源(蓄电池、DC/DC)及 BSG 电机控制器-发动机 CAN 线

OK

2 更换 BSG 电机控制器后恢复正常

U014187

BSG 电机控制器无法接收到整车控制器报文

- 1 检查模块数据流
- a、整车上 OK 档
- b、用 VDS2000 读取模块数据流是否正常

NG

检查 12V 供电源(蓄电池、 DC/DC)及 BSG 电机控制器-整车控制器 CAN 线

OK

2 更换 BSG 电机控制器后恢复正常

P180100

BSG 电机控制器 IPM 保护

- 1 尝试清除故障码,若无法清除则更换 BSG 驱动电机控制器
- a、检测直流母线到三相线的阻值是否正常,若检测异常,则为 BSG 电机控制器 IGBT 模块上 桥或下桥故障(测试参考值);

端子	子 万用表连接		备注
三相线A/B/C→直流母线 正极	正极表头→负极表头	无穷大	万用表档位打到
直流母线负极→三相线 A/B/C	正极表头→负极表头	无穷大	电阻档
三相线与车身地阻抗	正极表头→负极表头	兆欧级	参照绝缘阻值

P180219

BSG 电机过流

1 检查电机是否正常

a、检查电机是否正常,通过测试电机三相阻值两两差值不超过1欧,同时可尝试测量正常 车辆对应阻值差值进行确认。

NG 电机故障

OK

2 更换 BSG 电机控制器及配电总成后 BSG 驱动电机正常

P180396

P180496

BSG 电机缺 A/B/C 相

P180596

1 低压接插件

a、检查 23pin 低压接插件是否松动、损坏

NG

插紧或更换接插件

ОК

2 检测动力总成

a、拔掉BSG电机控制器三相线,测量线束端两两端子之间阻值,正常值165±10mΩ, 所需测试仪器: (电阻测试仪)

NG

动力总成故障(BSG 电机故障)

OK

3 测量电机控制器直流端到三相交流输出端阻值,一般为无穷大,若不正常,更换 BSG 电机控制器 (测量参考值如下)

测量参考值:

端子	万用表连接	正常值	备注
三相线A/B/C→直流母线	 正极表头→负极表头	无穷大	万用表档位打到电阻
正极	业似农大 ^一 贝似农关	儿力人	档

直流母线负极→三相线 A/B/C	正极表头→负极表头	无穷大	
三相线与车身地阻抗	正极表头→负极表头	兆欧级	参照绝缘阻值

P180617

BSG 电机控制器高压侧过压

1 检查动力电池电压

a、用 VDS2000 读取电池管理器电压,正常值 HCB 约 320~537.6V

NG

检查 BMS、电池包、高压配电箱

OK

- 2 检测 BSG 电机控制器母线电压
- a、整车上 OK 档
- b、用 VDS2000 读取 BSG 电机控制器母线电压是否正常

1. 1 1.5. 1. 1		→ Nr. +1.
BSG 电机控制器总成		正常值
母线电压	~ ()	约 320~537.6V

NG

检查高压配电盒及高压线路

ОК

3 更换 BSG 电机控制器及配电总成

P180616

BSG 电机控制器高压侧欠压

- 1 检查动力电池电压
- a、用 VDS2000 读取电池管理器电压,正常值为 HCB 约 320~537.6V

NG

检查 BMS、电池包、高压配电箱

OK

2	检测电机控制器母线电压
---	-------------

- a、整车上 OK 档
- b、用 VDS2000 读取 BSG 电机控制器母线电压是否正常

2.7/4 - 1 - 1 - 1 - 2 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 /		
BSG 电机控制器总成	正常值	
母线电压	约 320~537.6V	

NG

检查高压配电盒及高压线

OK

3 更换 BSG 电机控制器及配电总成

P180717

12V 过压

- 1 检测 DC/DC 输出端电压
- a、整车上 OK 档
- b、用 VDS2000 读取 DC/DC 输出端电压是否正常

31.1	
DC/DC 输出端	正常值
电压	约 11~14V

NG

更换 DC/DC 后恢复正常

OK

2 更换 BSG 电机控制器及配电总成后恢复正常

P180716

12V 欠压

- 1 检测 DC/DC 输出端电压
- a、整车上 OK 档
- b、用 VDS2000 读取 DC/DC 输出端电压是否正常

DC/DC 输出端	正常值
电压	约 11~14V

NG

更换 DC/DC 后恢复正常

OK

2 更换 BSG 电机控制器及配电总成后恢复正常

P180896 P180996

BSG 电机 A/B/C 相电流霍尔故障

P180A96

尝试清除故障码,若无法清除则更换 BSG 电机控制器及配电总成

P180B00	BSG 电机旋变故障
P180C00	BSG 电机旋变 DOS
P180D00	BSG 电机旋变 LOT

- 1 检查低压接插件
- a、退电 OFF 档,检查 23pin 接插件是否松动,若无则拔掉 23pin 接插件;
- b、测量线束端: 23 pin-19 (sin+) 和 23 pin -20 (sin-) 电阻是否 52.9~64.7 欧;

测量 23 pin -11 (cos+) 和 23 pin -3 (cos-) 电阻是否 50.2~61.4 欧;

测量 23 pin -4(励磁+)和 23 pin -12(励磁-)电阻是否 16.9~20.7 欧;

若正常,更换BSG 电机控制器及配电总成,若不正常,进行步骤 c;

c、 拔掉 BSG 电机 8pin 接插件测量电机端:

测量 8 pin-8 和 8 pin -7 电阻是否 52.9~64.7 欧;

测量 8 pin -6 和 8 pin -5 电阻是否 50.2~61.4 欧;

测量 8 pin -4 和 8 pin -3 电阻是否 16.9~20.7 欧;

若正常,更换线束;若不正常,更换BSG电机。

P180E00

CPLD 故障

1 尝试清除故障码,若无法清除则更换 BSG 电机控制器及配电总成

P181100 P181200

上桥/下桥故障

a、检测 BSG 电机控制器直流母线到三相线的阻值是否正常;

端子	万用表连接	正常值	备注
三相线A/B/C→直流母 线正极	正极表头→负极表头	无穷大	万用表档位打到电
直流母线负极→三相线 A/B/C	正极表头→负极表头	无穷大	阻档
三相线与车身地阻抗	正极表头→负极表头	兆欧级	参照绝缘阻值

P18134B

箱体温度过温报警或故障

1 检查高压冷却回路及水泵

NG

冷却回路故障、水泵故障

ОК

2 更换 BSG 驱动电机控制器及配电总成

P18144B

BSG 电机温度过温报警或故障

- 1 检查高压冷却回路及水泵低压回路
- a、VDS2000 读取数据流确认相关温度数值。检查电机冷却回路,重点检查电机水泵及各接
- 口(即冷却系统)的运行情况,确认管路和电机状态

NG

冷却回路故障、水泵故障

OK

2 检查 BSG 电机

a、测量 BSG 电机低压接插件端 8pin-1、 2^{\sim} 温控线阻值,正常阻值为 $45.04\sim242.8k\Omega$;若阻值异常,请确认电机实际温度是否在 $10\sim40^{\circ}$ C温度范围内;若电机为常温,且阻值异常,请更换电机。

NG

电机故障

OK

3 更换 BSG 电机控制器及配电总成

P18154B

IPM 或 IGBT 温度过温报警或故障

- a、先查询 BSG 电机控制器的程序版本信息,确认故障码是否能清除
 - 1 检查高压冷却回路及水泵

NG

冷却回路故障、水泵故障

OK

2 更换 BSG 电机控制器及配电总成

P181700

DSP 死机

1 重新启动车辆

NG

BSG 电控故障

ОК

2 重启后恢复正常

P181A00

BSG 电机控制器 EEPROM 错误

1 更换 BSG 电机控制器及配电总成

5.2 全面诊断

连接端子	引脚名称/功能	条件	正常值
23pin-21	高压互锁1	1	/
23pin-22	高压互锁2	/	/
23pin-4~12	励磁+、励磁-	OFF 档	16. 9 \sim 20. 7 Ω
23pin-12~4	励磁-、励磁+	OFF 档	16. 9 \sim 20. 7 Ω
23pin-19~20	正弦+、正弦-	OFF 档	52. 9 \sim 64. 7 Ω
23pin-20~19	正弦-、正弦+	OFF 档	52. 9 \sim 64. 7 Ω
23pin-11~3	余弦+、余弦-	OFF 档	50. 2∼61. 4 Ω
23pin-3~11	余弦-、余弦+	OFF 档	50.2~ 61.4 Ω
23pin-13~6	CANH, CANL	OFF 档	54~69 Ω
23pin-6~13	CANL 、CANH	OFF 档	54~69 Ω
23pin-23	电机温度地	OFF 档	
23pin-18	GND 旋变屏蔽地	OFF 档	
23pin-15	电机绕组温度	ON 档	
23pin-16	GND(VCC) 外部电源地	OFF 档	小于1Ω
23pin-1	VCC 外部12V电源	ON 档	10~14V
23pin-17	GND(VCC) 外部电源地	OFF 档	小于1Ω
23pin-9	VCC 外部12V电源	ON 档	10~14V

第六节 拆卸与安装

备注: 拆卸维修前需:

- 1. 点火开关 OFF 档;
- 2. 低压蓄电池断电(手动拔出蓄电池正极或负极);
- 3. 万用表检测 BSG 电机控制器及配电总成正负端子电压(高压);

6.1 拆卸

- 1. 将 BSG 电机控制器及配电总成上的 BSG 电机三相线支架拆掉;
- 2. 拆掉 BSG 电机控制器及配电总成直流母线及配电小线;
- 3. 拆卸 BSG 电机控制器及配电总成连接 BSG 电机的三相线;
- 4. 拔掉 BSG 电机控制器及配电总成低压线束;
- 5. 拆卸 BSG 电机控制器及配电总成搭铁线;
- 6. 拔掉 BSG 电机控制器及配电总成进出水管路;
- 7. 将 BSG 电机控制器及配电总成与支架连接的 3 个螺栓拧松 , 取下来;

步骤 1. 将 BSG 电机控制器及配电总成上的 BSG 电机三相线支架拆掉;

步骤 2. 拆掉 BSG 电机控制器及配电总成直流母线及配电小线;

步骤 3. 拆卸 BSG 电机控制器及配电总成连接 BSG 电机的三相线,先将密封盖打开,然后线鼻子紧固螺栓、连接器紧固螺栓拧开,三相线拔出;

步骤 4. 拔掉 BSG 电机控制器及配电总成低压线束;

步骤 5. 拆卸 BSG 电机控制器及配电总成搭铁线;

步骤 6. 拔掉 BSG 电机控制器及配电总成进出水管路;

步骤 7. 将 BSG 电机控制器及配电总成与支架连接的 3 个螺栓拧松 , 取下来;

步骤 8.将 BSG 电机控制器及配电总成从支架上取下来。

6.2 安装

步骤 1. BSG 电控通过三个固定点安装在电控支架上;

步骤 2. BSG 电控进出口水管安装,将 BSG 电控与软管连接,按照卡箍标识固定;

步骤 3. 搭铁和低压线接插件安装,将搭铁线端子通过螺栓固定在 BSG 电控总成上,低压线束接插件卡接在 BSG 电控总成上;

步骤 4. BSG 三相线和压缩机直流线,将 BSG 电机三相线、压缩机线束连接器和三相线端子通过螺栓固定在 BSG 电控总成上;接完 BSG 电机三相线和压缩机线束后,通过定位销定位,按照①(预紧)→②→①(打紧)→③→④的顺序通过螺栓将密封盖锁紧;

步骤 5. 直流母线接插件和负载接插件安装;

