

Calibrazione di uno spettrometro $LaBr_3(Ce)$ per misure di attivazione neutronica in ambito BNCT

Candidata: Valentina Barletta

Relatore: prof. Marco Costa

BNCT: Boron Neutron Capture Therapy

Usa **neutroni** nel range epitermico (1 eV - 100 keV)

La qualifica dello spettro richiede uno **strumento** in grado di misurare <u>energie su 5 ordini di grandezza</u>

Sviluppo di uno spettrometro ad attivazione

Attivazione neutronica

 Il processo di attivazione neutronica consiste nella produzione di un isotopo instabile attraverso l'assorbimento di neutroni da parte dei nuclei presenti nel materiale da analizzare.

$$^{197}Au + n \rightarrow ^{198}Au \rightarrow ^{198}Hg + \beta^- + \bar{\nu} + \gamma$$

• L'*Attività* di una lamina dopo essere stata irraggiata è:

$$A(t_{irr}) = R \cdot \left(1 - 2^{-\frac{t_{irr}}{t_{1/2}}}\right)$$

Picco di risonanza che si trova nel range epitermico

dove t_{irr} è il tempo di irraggiamento, $t_{1/2}$ è il tempo di dimezzamento e R è il rate di cattura per i neutroni.

Come funziona?

Questa tesi Spettrometria y $n_{\gamma}(E) \propto n_n(E)$ Calibrazione in: • Energia Efficienza ·-->

Misurare l'attività

Lamine attivate

Spessore:

Setup

Posizione:

- $2.0 \pm 0.1 \,\mathrm{mm}$ (a contatto)
- $20.0 \pm 0.1 \,\mathrm{cm}$ (a distanza)

- Dimensioni e densità
 - Tempo di risposta

Diametro: 10 - 12.5 mm

- Risoluzione energetica
- Efficienza nominale

Attivazione

Spettroscopia y

HPGe **vs** $LaBr_3(Ce)$

HPGe

 $\sim 700 \, \text{kg}$

	HPGe	LaBr ₃ (Ce)
Dimensioni	2" × 2"	1.5" × 1.5"
Densità [g/cm³]	5.35	5.29
Tempo di risposta [ns]	8 -10	26
Risoluzione energetica [% @ 662keV]	<0.3	<3
Efficienza rispetto a NaI[%]	20	40

STEP

Calibrazione con sorgenti ad attività nota

Calibrazione in energia

• La calibrazione in energia è stata ricavata utilizzando sorgenti di attività nota poste a 20 cm dal rivelatore: ¹³³Ba, ¹³⁷Cs, ⁶⁰Co, ¹⁵²Eu, ²²Na.

	CHN	Energia [keV]
¹⁵² Eu	276.0 ± 5.4	245
¹³³ Ba	339.0 ± 5.8	303
¹⁵² Eu	387.0 ± 6.6	344
¹³³ Ba	397.0 ± 6.5	356
¹⁵² Eu	462.0 ± 6.4	411
¹⁵² Eu	498.0 ± 7.3	444
²² Na	572.0 ± 8.3	511
¹³⁷ Cs	736.0 ± 9.6	667
¹⁵² Eu	$(106.2 \pm 1.2) \cdot 10^1$	964
⁶⁰ Co	$(127.9 \pm 1.4) \cdot 10^{1}$	1170
²² Na	$(138.9 \pm 1.5) \cdot 10^{1}$	1273
⁶⁰ Co	$(143.9 \pm 1.5) \cdot 10^1$	1330

$$CHN = a \cdot E + b$$

$$a = (1.081 \pm 0.008) \, keV^{-1}$$

$$b = (14.2 \pm 4.4)$$

Calibrazione in efficienza

• L'efficienza ε del detector si stima a partire dall'efficienza $\varepsilon_{20\mathrm{cm}}$ moltiplicata per un fattore di scala F_{scala} : $\varepsilon = \varepsilon_{20\mathrm{cm}} \cdot F_{scala}$

• L'efficienza ε_{20cm} è:

$$\varepsilon_{20cm} = \frac{cps}{A \cdot BR}$$

 ${\tt dove}\, cps\, {\tt sono}\, {\tt i}\, {\tt conteggi}\, {\tt al}\, {\tt secondo}, A\, {\tt si}\, {\tt riferisce}\, {\tt all'attivit} {\tt attivit} {\tt$

misura e BR è il Branching Ratio.

	Attività nota A ₀ [kBq]	t½ [anni]	
¹³³ Ba	37.00 ± 0.01 @ 15/04/2004	10.51	
⁶⁰ Co	18.50 ± 0.01 @ 30/01/2018	5.27	
¹³⁷ Cs	19.80 ± 0.01 @ 01/07/2017	30.07	
¹⁵² Eu	6.34 ± 0.10@ 05/07/2022	13.54	
²² Na	120.99 ± 0.01 @ 08/02/2018	2.60	

Attivazione delle lamine

Attivazione delle lamine

- Le lamine Au, Cu, In, Mn, NaCl, V sono state irraggiate al **reattore** del **LENA** di Pavia;
- Il tempo di irraggiamento (30 160 s) è stato regolato in modo da evitare un alto *dead time* del rivelatore (<3%);
- Grazie all'elevata attività delle lamine è stato possibile acquisire le misure a distanza di 20 cm dal detector (vale l'approssimazione sorgente puntiforme), oltre che a contatto.

Analisi dati

Step 1: Si utilizza l'algoritmo SNIP per ricavare la Baseline partendo dallo spettro totale.

Step 2: Da (Spettro totale -Baseline) si ricavano i conteggi su cui applicare il fit gaussiano.

Spettro del Cu in seguito all'applicazione di SNIP

Analisi dati

Step 1: Si utilizza l'algoritmo SNIP per ricavare la Baseline partendo dallo spettro totale.

Step 2: Da (Spettro totale -Baseline) si ricavano i conteggi su cui applicare il fit gaussiano.

Spettro del Cu in seguito all'applicazione di SNIP

Analisi dati: fit gaussiano

7

Step 1

Da (Spettro totale – Baseline) si ricavano i valori del picchi su cui applicare il fit Gaussiano. Il test del χ^2 è superato con un livello di significatività del 5%.

Lamina posta a contatto

Analisi dati: tutti i plot

Lamine poste a contatto

Lamine poste a 20 cm

Analisi dati: tutti i plot

Lamine poste a contatto

Lamine poste a 20 cm

Il picco del V si sovrappone al picco intrinseco del La. Per questo motivo dal fit gaussiano è stato eliminato il picco intrinseco del La

Stima dell'efficienza

Fattore Geometrico ed Efficienza

• Dalle misure dell'attività di saturazione delle lamine si ricava il *Fattore di scala*, F_{scala}, come il rapporto tra quella ricavata a contatto e quella a 20 cm.

	$\mathbf{F}_{ ext{scala}}$	Incertezza	
Au	126.2	5.0	
Cu	104.8	3.3	
In	87.2	3.2	
Mn	97.4	4.3	
Na	98.4	1.0	
v	106.6	2.3	

Dalla relazione:

$$\varepsilon = \varepsilon_{20cm} \cdot F_{scala}$$

si può determinare l'efficienza del detector a contatto.

Ricavata precedentemente con la calibrazione in efficienza del LaBr₃

La conoscenza di questa efficienza sarà determinante per future misure di attivazione.

Conclusioni

- ✓ <u>Calibrazione in Energia</u> a partire da sorgenti di attività nota posizionate a distanza;
- ✓ <u>Calibrazione in Efficienza</u> ricavata come prodotto di ε_{20cm} e F_{scala} , stimato attraverso l'analisi di lamine attivate;
- ✓ Il <u>LaBr₃(Ce)</u> è un <u>detector adeguato</u> con un'accuratezza entro il 5% per le misure d'interesse;

Lo **strumento** è, quindi, **pronto** ad essere usato per ottenere lo spettro di neutroni epitermici per BNCT.

Grazie per l'attenzione

Applica l'operatore LLS ai conteggi del canale i-esimo:

$$\nu(i) = \log\left\{\log\left[\sqrt{y(i) + 1} + 1\right] + 1\right\}$$

dove y(i) rappresenta il valore dei conteggi del canale i-esimo.

Questo operatore consente di lavorare con dati che spazzano vari ordini di grandezza e la radice quadrata permette di esaltare anche i picchi più bassi

SNIP

Sensitive Non-linear Iterative Peak

Da $\nu(i)$ calcola **step by step** $\nu_1(i)$, $\nu_2(i)$, ..., $\nu_m(i)$, dove m è scelta a partire da 2m+1=w, ovvero dalla dimensione della finestra su cui agisce SNIP. Il nuovo valore del canale i alla p-esima iterazione è:

$$\nu_p(i) = \min \left\{ \nu_{p-1}(i), \frac{1}{2} \left[\nu_{p-1}(i+p) + \nu_{p-1}(i-p) \right] \right\}$$

Infine dopo aver stimato $\nu_m(i)$ applica l'**operatore LLS inverso** e in questo modo si ricava lo spettro della baseline

Confronto Attività

• Dall'efficienza a contatto del LaBr₃(Ce) è stato possibile ricavate misure di *Attività* per alcune lamine irraggiate al **LINAC** di Torino.

	Attività HPGe [Bq/g]	Attività LaBr ₃ (Ce) [Bq/g]	Incertezza	Differenza[%]
Au	$2.67 \cdot 10^{4}$	$2.43 \cdot 10^4$	9%	9%
In	$7.47\cdot 10^4$	$5.92 \cdot 10^4$	9%	21%
Cu	$5.62\cdot 10^2$	$4.57 \cdot 10^{2}$	11%	19%
Mn	$2.94\cdot 10^3$	$2.58 \cdot 10^{3}$	10%	12%
V	$9.9\cdot 10^2$	$1.19 \cdot 10^3$	9%	20%

• Tenendo conto delle differenti condizioni di misura e di irraggiamento tra i due set di dati sperimentali, si ritiene che ci sia un **buon accordo tra i** due rivelatori.

Cos'è la BNCT?

La terapia si compone di due fasi:

- 1. Al paziente viene somministrato del ¹⁰B che tenderà a concentrarsi nelle cellule tumorali;
- 2. Il tumore viene irradiato con un fascio di neutroni epitermici:

$$^{10}B + n \rightarrow ^{11}B \rightarrow ^{7}Li + ^{4}He + 2.38MeV$$

Perderanno energia entro il diametro della cellula tumorale danni irreversibili alla struttura.

La terapia è altamente **selettiva** e permette di risparmiare i tessuti sani