COVID-19 RECESS PAPERS

S6 PURE MATHEMATICS WEEK3

SECTION A

- **1.** Find x if $log_x^8 log_{x^3}^{64} = 1$
- **2.** Given that $A = tan^{-1}\left(\frac{1}{5}\right)$, $B = tan^{-1}\left(\frac{1}{3}\right)$. Prove that $2A + B = tan^{-1}\left(\frac{27}{31}\right)$
- **3.** Differentiate $\frac{\sqrt[3]{2x-1}}{\sqrt{x^2-2}}$ with respect to x
- **4.** Find a vector that is perpendicular to the two vectors $\mathbf{a} = \mathbf{i} + 3\mathbf{j} + 5\mathbf{k}$ and $\mathbf{b} = -\mathbf{i} + 4\mathbf{j} 2\mathbf{k}$.
- **5.** A polynomial has remainders 3 and -5 when divided by x-2 and x+3 respectively. Find the remainder when the polynomial is divided by x^2+x-6 .
- **6.** A spherical balloon is being filled with air at a rate of $54\pi cm^3 s^{-1}$. Find the rate at which the radius of the balloon increases when the volume is $36\pi \ cm^3$.
- **7.** The tangent to the parabola $y^2 = 8x$ at a point $M(2t^2, 4t)$ is perpendicular to the line whose equation is 3y + x 6 = 0. Determine the coordinates of M.
- **8.** Evaluate $\int_0^{0.5} 3\sin\theta \cos 3\theta \ d\theta$

SECTION B

- **9.** A curve is given by the equation $y = \frac{4x-3}{x^2-4x+3}$ Find the
 - (a) (i) intercepts of the curve (ii) asymptotes of the curve (iii) range of values of y within which the curve lies and hence find the turning points
 - (b) Sketch the curve
- **10.** (a) Find the binomial expansion of $\frac{1}{\sqrt[4]{(1-3x)}}$ in ascending powers of x up to the term in x^3 . Hence evaluate $\frac{1}{\sqrt[4]{13}}$ correct to 4 decimal places.
 - (**b**) Using the substitution $p = x + \frac{1}{x}$ solve the equation $2x^4 9x^3 + 14x^2 9x + 2 = 0$
- **11.** The points A(1, 2, -3), B(-1, 8, 0), C(-17, 15, 8) are in the same plane.
 - **a.** Prove that A, B, C are vertices of a triangle
 - **b.** If point P is the foot of the perpendicular from C to AB produced. Find the coordinates of P.

- **12.** (a) Find the area bounded by the curve $y = (x 2)^3$ and the lines
 - (i) y = 1, y = 8 and x = 0
 - (ii) y = 0, x = 4 and the y —axis
 - (b) If the area bounded by the curve in (a) and the lines x=2, x=4 and y=0 is rotated through one revolution about the x —axis, find the volume of the solid generated .
- **13.** Given that $y = tan^{-1}\sqrt{1-x}$
 - a. Show that

(i)
$$(2-x)\frac{dy}{dx} + \frac{1}{2}(1-x)^{\frac{-1}{2}} = 0$$

(ii)
$$(2-x)\frac{d^2y}{dx^2} - \frac{dy}{dx} + \frac{1}{4}(1-x)^{\frac{-3}{2}} = 0$$

- b. Hence determine the Maclaurin's expansion of y up to the term in x^3
- **14.** The points A(1, 2, -3), B(-1, 8, 0), C(-17, 15, 8) are in the same plane.
- a. Prove that A, B, C are vertices of a triangle
- b. If point P is the foot of the perpendicular from C to \boldsymbol{AB} produced. Find the coordinates of P.

END