RSA

Creación de claves en el sistema RSA

Pero antes....

Se buscan dos primos lo suficientemente grandes: p y q, con p \neq q

En la realidad estos números tienen centenares de dígitos.

En nuestro ejemplo serán:

$$p = 11 y q = 23$$

A partir de estos números se obtiene:

$$n = p * q$$

 $\emptyset = (p-1)* (q-1)$

En nuestro ejemplo:

$$n = 11 * 23 = 253$$

 $\emptyset = (p-1) * (q-1) = 220$
donde: $(p-1) = 10 y (q-1) 22$

Se busca un número 'e' (impar) tal que no tenga múltiplos comunes con Ø.

Para esto se selecciona de forma aleatoria un entero 'e', tal que $1 < e < \emptyset$, MCD(\emptyset , e) = 1.

En nuestra ejemplo:

$$e = 3$$
 MCD (220, 3) = 1

Se calcula el exponente privado de RSA

$$d = inv (e, \emptyset)$$

$$d = inv (3, 220) = 147$$

Ver ejercicios del práctico.

Y hacer este también como ejercicio.

Clave pública:

$$(e,n) = (3,253)$$

Clave privada:

$$(d,n) = (147,253)$$

Cifrado:

 $C = M^e \mod n$

Descifrado:

 $C^d \mod n = M$

Asignemos a cada letra un número:

												М
0	1	2	3	4	5	6	7	8	9	10	11	12

N	0	Р	Q	R	S	Т	J	>	W	X	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Con las claves del ejemplo vamos a cifrar el mensaje M:

S	E	G	U	R	I	D	А	D
18	4	6	20	17	8	3	0	3

Cifrado con Clave Pública: (3,253) $M = 18 \ 4 \ 6 \ 20 \ 17 \ 8 \ 3 \ 0 \ 3$ $18^3 = 5832 \mod 253 = 13$ $4^3 = 64 \mod 253 = 64$ $6^3 = 216 \mod 253 = 216$ $20^3 = 8000 \mod 253 = 157$ $17^3 = 4913 \mod 253 = 106$ $8^3 = 512 \mod 253 = 6$ $3^3 = 27 \mod 253 = 27$ $0^3 = 0 \mod 253 = 0$ 33 $= 27 \mod 253 = 27$ C = 13 64 216 157 106 6 27 0 27

Descifrado con Clave Privada: (147,253)

$$C = 13 64 216 157 106 6 27 0 27$$

$$13^{147} \mod 253 = 18$$

$$64^{147} \mod 253 = 4$$

$$216^{147} \mod 253 = 6$$

$$157^{147} \mod 253 = 20$$

$$106^{147} \mod 253 = 17$$

$$6^{147}$$
 mod $253 = 8$

$$27^{147} \mod 253 = 3$$

$$0^{147} \mod 253 = 0$$

$$27^{147} \mod 253 = 3$$

 S
 E
 G
 U
 R
 I
 D
 A
 D

 18
 4
 6
 20
 17
 8
 3
 0
 3

 $M = 18 \ 4 \ 6 \ 20 \ 17 \ 8 \ 3 \ 0 \ 3$

FIN