实验零: pow_a

openmp_pow.cpp 函数 pow_a

```
1
    void pow_a(int *a, int *b, int n, int m) {
2
        // TODO: 使用 omp parallel for 并行这个循环
        #pragma omp parallel for
        for (int i = 0; i < n; i++) {
            int x = 1;
5
 6
            for (int j = 0; j < m; j++)
7
               x *= a[i];
            b[i] = x;
8
9
        }
10
   }
```

mpi pow.cpp 函数 pow a

```
1
   void pow_a(int *a, int *b, int n, int m, int comm_sz /* 总进程数 */) {
       // TODO: 对这个进程拥有的数据计算 b[i] = a[i]^m
2
3
       for (int i = 0; i < n / comm sz; ++i) {
4
           int x = 1;
           for (int j = 0; j < m; ++j)
6
               x *= a[i];
7
           b[i] = x;
8
       }
   }
```

openmp 版本

运行时间及相对单线程加速比如下表:

线程数	运行时间	加速比
1	$7757402\mu s$	1.00
7	$1308056\mu s$	5.93
14	$686286\mu s$	11.30
28	$339929\mu s$	22.82

MPI 版本

运行时间及相对单进程加速比如下表:

进程数	运行时间	加速比
1 × 1	$7671707\mu s$	1.00
1 imes 7	$1350002\mu s$	5.68
1×14	$742070\mu s$	10.34
1 imes 28	$387416~\mu s$	19.80
2 imes28	$238340\mu s$	32.19
4 imes28	$138241\mu s$	55.50