Mathematics for Machine Learning

— Vector Calculus: Gradients of Vector-Valued Functions and Matrices

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2025

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

Gradients of Vector-Valued Functions

② Gradients of Matrices

Outline

Gradients of Vector-Valued Functions

2 Gradients of Matrices

Our Focus

• Partial derivatives and gradients of functions $f : \mathbb{R}^n \mapsto \mathbb{R}^m$, for $n \ge 1, m > 1$.

Vector of Functions

Given

- $\mathbf{f}: \mathbb{R}^n \mapsto \mathbb{R}^m$.
- $\bullet \mathbf{x} = [x_1, \dots, x_n]^\top \in \mathbb{R}^n.$

The corresponding vector of functions:

$$\mathbf{f}[\mathbf{x}] = \left[egin{array}{c} f_1(\mathbf{x}) \ dots \ f_m(\mathbf{x}) \end{array}
ight] \in \mathbb{R}^m.$$

Vector of Functions

Given

- $\mathbf{f}: \mathbb{R}^n \mapsto \mathbb{R}^m$.
- $\bullet \mathbf{x} = [x_1, \dots, x_n]^\top \in \mathbb{R}^n.$

The corresponding vector of functions:

$$\mathbf{f}[\mathbf{x}] = \left[egin{array}{c} f_1(\mathbf{x}) \ dots \ f_m(\mathbf{x}) \end{array}
ight] \in \mathbb{R}^m.$$

We can view **f** as $[f_1, \ldots, f_m]^{\top}$, such that $f_i : \mathbb{R}^n \mapsto \mathbb{R}$.

◆□ > ◆□ > ◆豆 > ◆豆 > 豆 り Q @

Therefore,

$$\frac{\partial \mathbf{f}}{\partial x_i} = \begin{bmatrix} \frac{\partial f_1}{\partial x_i} \\ \vdots \\ \frac{\partial f_m}{\partial x_i} \end{bmatrix} = \begin{bmatrix} \lim_{h \to 0} \frac{f_1(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f_1(\mathbf{x})}{h} \\ \vdots \\ \lim_{h \to 0} \frac{f_m(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f_m(\mathbf{x})}{h} \end{bmatrix} \in \mathbb{R}^m.$$

So,

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

So,

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

• We call this collection of all first-order partial derivatives of a vector-valued function **f** the Jacobian.

So,

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}(\mathbf{x})}{\partial x_n} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m(\mathbf{x})}{\partial x_1} & \cdots & \frac{\partial f_m(\mathbf{x})}{\partial x_n} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

- We call this collection of all first-order partial derivatives of a vector-valued function f the Jacobian.
- * Denote by $\mathbf{J} = \nabla_{\mathbf{x}} \mathbf{f} = \frac{\mathrm{d} \mathbf{f}(\mathbf{x})}{\mathrm{d} \mathbf{x}}$
 - $J(i,j) = \frac{\partial f_i}{\partial x_j}$.

Derivative of a Polynomial

Given
$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
, $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, and $\mathbf{x} \in \mathbb{R}^N$. Compute

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = ?$$

- $\mathbf{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$, so $\frac{d\mathbf{f}}{d\mathbf{x}} \in \mathbb{R}^{M \times N}$.
- $f_i(\mathbf{x}) =$

Derivative of a Polynomial

Given
$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
, $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, and $\mathbf{x} \in \mathbb{R}^N$. Compute

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = ?$$

- $\mathbf{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$, so $\frac{d\mathbf{f}}{d\mathbf{x}} \in \mathbb{R}^{M \times N}$.
- $f_i(\mathbf{x}) = \sum_{j=1}^N A_{ij} x_j$

Derivative of a Polynomial

Given
$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
, $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, and $\mathbf{x} \in \mathbb{R}^N$. Compute

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = ?$$

- $\mathbf{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$, so $\frac{d\mathbf{f}}{d\mathbf{x}} \in \mathbb{R}^{M \times N}$.
- $f_i(\mathbf{x}) = \sum_{j=1}^N A_{ij} x_j \implies \frac{\partial f_i}{\partial x_i} = A_{ij}$.

Derivative of a Polynomial

Given
$$\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x}$$
, $\mathbf{f}(\mathbf{x}) \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, and $\mathbf{x} \in \mathbb{R}^N$. Compute

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{x}} = \mathbf{A}$$

- $\mathbf{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$, so $\frac{d\mathbf{f}}{d\mathbf{x}} \in \mathbb{R}^{M \times N}$.
- $f_i(\mathbf{x}) = \sum_{j=1}^N A_{ij} x_j \implies \frac{\partial f_i}{\partial x_i} = A_{ij}$.

Example: Gradient of a Least-Squared Loss in a Linear Model

Consider the linear model

$$\mathbf{y} = \mathbf{\Phi} \boldsymbol{\theta},$$

where

- $oldsymbol{ heta} oldsymbol{ heta} \in \mathbb{R}^D$: a parameter vector
- $\Phi \in \mathbb{R}^{N \times D}$: input features
- $\mathbf{y} \in \mathbb{R}^N$: the corresponding observations.

We define that

$$L(e) := ||e||^2.$$

$$e(\theta) := y - \Phi \theta.$$

Compute $\frac{\partial L}{\partial \theta}$ (using the chain rule).

Example (2/3)

Note that

•
$$\frac{\partial L}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{1 \times D} \quad (:: L : \mathbb{R}^D \mapsto \mathbb{R}).$$

•
$$\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}} \in \mathbb{R}^{N \times D}$$
 (: $\boldsymbol{e} : \mathbb{R}^D \mapsto \mathbb{R}^N$).

•
$$\frac{\partial L}{\partial \boldsymbol{e}} \in \mathbb{R}^{1 \times N} \quad (:: L : \mathbb{R}^N \mapsto \mathbb{R}).$$

•
$$\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial \theta}$$
 (chain rule).

The dth element:

$$\frac{\partial L}{\partial \boldsymbol{\theta}}[1,d] = \sum_{i=1}^{N} \frac{\partial L}{\partial \boldsymbol{e}}[1,i] \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}}[i,d].$$

•
$$L = \|\mathbf{e}\|^2 = \mathbf{e}^{\top}\mathbf{e}$$
 and $\frac{\partial L}{\partial \mathbf{e}} = 2\mathbf{e}^{\top} \in \mathbb{R}^{1 \times N}$.

$$\bullet \ \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{\theta}} = -\boldsymbol{\Phi} \in \mathbb{R}^{N \times D}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ □ りゅ○

Example (3/3)

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = -2\boldsymbol{e}^{\top}\boldsymbol{\Phi} = -2(\boldsymbol{y}^{\top} - \boldsymbol{\theta}^{\top}\boldsymbol{\Phi}^{\top})\boldsymbol{\Phi} \in \mathbb{R}^{1 \times D}$$

Example (3/3)

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = -2\boldsymbol{e}^{\top}\boldsymbol{\Phi} = -2(\boldsymbol{y}^{\top} - \boldsymbol{\theta}^{\top}\boldsymbol{\Phi}^{\top})\boldsymbol{\Phi} \in \mathbb{R}^{1 \times D}$$

By the way, we can obtain the same result without using the chain rule:

$$L_2(\boldsymbol{\theta}) := \|\mathbf{y} - \mathbf{\Phi}\boldsymbol{\theta}\|^2 = (\mathbf{y} - \mathbf{\Phi}\boldsymbol{\theta})^{\top}(\mathbf{y} - \mathbf{\Phi}\boldsymbol{\theta}).$$

Example (3/3)

$$\frac{\partial L}{\partial \boldsymbol{\theta}} = -2\boldsymbol{e}^{\top}\boldsymbol{\Phi} = -2(\boldsymbol{y}^{\top} - \boldsymbol{\theta}^{\top}\boldsymbol{\Phi}^{\top})\boldsymbol{\Phi} \in \mathbb{R}^{1 \times D}$$

By the way, we can obtain the same result without using the chain rule:

$$L_2(\boldsymbol{\theta}) := \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta} \|^2 = (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta})^{\top} (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{\theta}).$$

• It becomes impractical for deep function compositions.

Outline

Gradients of Vector-Valued Functions

Gradients of Matrices

Motivations

- There are scenarios that we need to take gradients of matrices w.r.t. vectors (or other matrices).
 - ⇒ This results in a multidimensional tensor.
 - Multidimensional array.
- Compute the gradient of an $m \times n$ matrix **A** w.r.t. a $p \times q$ matrix **B**:
 - The Jacobian **J** would be $(m \times n) \times (p \times q)$ (4-dimensional tensor).

$$J_{ijk\ell} = \frac{\partial A_{ij}}{\partial B_{k\ell}}.$$

Matrices ⇔ linear mappings, so

Motivations

- There are scenarios that we need to take gradients of matrices w.r.t. vectors (or other matrices).
 - ⇒ This results in a multidimensional tensor.
 - Multidimensional array.
- Compute the gradient of an $m \times n$ matrix **A** w.r.t. a $p \times q$ matrix **B**:
 - The Jacobian **J** would be $(m \times n) \times (p \times q)$ (4-dimensional tensor).

$$J_{ijk\ell} = \frac{\partial A_{ij}}{\partial B_{k\ell}}.$$

Matrices ⇔ linear mappings, so

There is a vector-space isomorphism (i.e., linear, invertible mapping) between the space $\mathbb{R}^{m\times n}$ of $m\times n$ matrices and the space \mathbb{R}^{mn} of mn vectors.

4D + 4D + 4B + B + 99

Visualization of Two Approaches for the Isomorphism

Partial derivatives:

Visualization of Two Approaches for the Isomorphism

Example: Gradient of Vectors w.r.t. Matrices

Consider

$$\mathbf{f} = \mathbf{A}\mathbf{x}$$
, where $\mathbf{f} \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, $\mathbf{x} \in \mathbb{R}^N$.

Goal: Compute the gradient $\frac{d\mathbf{f}}{d\mathbf{A}}$.

$$ullet rac{\mathrm{d} \mathbf{f}}{\mathrm{d} oldsymbol{A}} \in$$

Example: Gradient of Vectors w.r.t. Matrices

Consider

$$\mathbf{f} = \mathbf{A}\mathbf{x}$$
, where $\mathbf{f} \in \mathbb{R}^M$, $\mathbf{A} \in \mathbb{R}^{M \times N}$, $\mathbf{x} \in \mathbb{R}^N$.

Goal: Compute the gradient $\frac{d\mathbf{f}}{d\mathbf{A}}$.

•
$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{A}} \in \mathbb{R}^{M \times (M \times N)}$$
.

ML Math - Vector Calculus Gradients of Matrices

$$\frac{\mathrm{d} \boldsymbol{f}}{\mathrm{d} \boldsymbol{\mathcal{A}}} =$$

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\mathbf{A}} = \begin{bmatrix} \frac{\partial f_1}{\partial \mathbf{A}} \\ \vdots \\ \frac{\partial f_M}{\partial \mathbf{A}} \end{bmatrix}$$

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{A}} = \begin{bmatrix} \frac{\partial f_1}{\partial \boldsymbol{A}} \\ \vdots \\ \frac{\partial f_M}{\partial \boldsymbol{A}} \end{bmatrix}, \, \frac{\partial f_i}{\partial \boldsymbol{A}} \in \mathbb{R}^{1 \times (M \times N)}.$$

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{A}} = \begin{bmatrix} \frac{\partial f_i}{\partial \boldsymbol{A}} \\ \vdots \\ \frac{\partial f_M}{\partial \boldsymbol{A}} \end{bmatrix}, \, \frac{\partial f_i}{\partial \boldsymbol{A}} \in \mathbb{R}^{1 \times (M \times N)}.$$

• We can explicitly expand $f_i = \sum_{j=1}^N A_{ij} x_j$, for i = 1, ..., M.

Hence,

$$\frac{\partial f_i}{\partial A_{ia}} = x_q.$$

So we can derive

$$\frac{\partial f_i}{\partial A_{i,\cdot}} = \mathbf{x}^{\top}$$

(□) (□) (□) (□) (□) (□) (□)

ML Math - Vector Calculus Gradients of Matrices

$$\frac{\mathrm{d}\mathbf{f}}{\mathrm{d}\boldsymbol{A}} = \left[\begin{array}{c} \frac{\partial f_i}{\partial \boldsymbol{A}} \\ \vdots \\ \frac{\partial f_M}{\partial \boldsymbol{A}} \end{array}\right], \, \frac{\partial f_i}{\partial \boldsymbol{A}} \in \mathbb{R}^{1 \times (M \times N)}.$$

• We can explicitly expand $f_i = \sum_{j=1}^N A_{ij} x_j$, for i = 1, ..., M.

Hence,

$$\frac{\partial f_i}{\partial A_{ia}} = x_q.$$

So we can derive

$$\frac{\partial f_i}{\partial A_{i,:}} = \mathbf{x}^\top \in \mathbb{R}^{1 \times (1 \times N)} \ \text{and} \ \frac{\partial f_i}{\partial A_{k \neq i,:}} = \mathbf{0}^\top \in \mathbb{R}^{1 \times (1 \times N)}.$$

Stack the partial derivatives:

$$\frac{\partial f_i}{\partial \mathbf{A}} = \begin{bmatrix} \mathbf{0}^\top \\ \vdots \\ \mathbf{0}^\top \\ \mathbf{x}^\top \\ \mathbf{0}^\top \\ \vdots \\ \mathbf{0}^\top \end{bmatrix} \in \mathbb{R}^{1 \times (M \times N)}$$

Example: Gradient of Matrices w.r.t. Matrices

Consider a matrix $\mathbf{R} \in \mathbb{R}^{M \times N}$ and $\mathbf{f} : \mathbb{R}^{M \times N} \mapsto \mathbb{R}^{N \times N}$ with

$$f(R) = R^{\top}R := K \in \mathbb{R}^{N \times N}$$

Goal: Compute the gradient $\frac{d\mathbf{K}}{d\mathbf{R}}$.

•
$$\frac{\mathrm{d}\boldsymbol{K}}{\mathrm{d}\boldsymbol{R}} \in$$

Example: Gradient of Matrices w.r.t. Matrices

Consider a matrix $\mathbf{R} \in \mathbb{R}^{M \times N}$ and $\mathbf{f} : \mathbb{R}^{M \times N} \mapsto \mathbb{R}^{N \times N}$ with

$$f(R) = R^{\top}R := K \in \mathbb{R}^{N \times N}$$

Goal: Compute the gradient $\frac{d\mathbf{K}}{d\mathbf{R}}$.

Note:

- $\bullet \ \frac{\mathrm{d} \mathbf{K}}{\mathrm{d} \mathbf{R}} \in \mathbb{R}^{(N \times N) \times (M \times N)}.$
- ullet $rac{\mathrm{d} \mathcal{K}_{pq}}{\mathrm{d} oldsymbol{R}} \in \mathbb{R}^{1 imes (M imes N)}$, for $p,q=1,\ldots,N$, \mathcal{K}_{pq} : the (p,q)th entry of $oldsymbol{K}$.

$$K_{pq} = \mathbf{r}_p^{\top} \mathbf{r}_q = \sum_{t=1}^{M} R_{tp} R_{tq}.$$

 \mathbf{r}_i : the *i*th column of \mathbf{R} .

Example (2/2)

Compute $\frac{\partial K_{pq}}{\partial R_{ii}}$: (sum rule)

$$\frac{\partial K_{pq}}{\partial R_{ij}} = \sum_{t=1}^{M} \frac{\partial}{\partial R_{ij}} R_{tp} R_{tq} = \delta_{pqij},$$

where

$$\delta_{pqij} = \begin{cases} R_{iq} & \text{if } j = p, p \neq q \\ R_{ip} & \text{if } j = q, p \neq q \\ 2R_{iq} & \text{if } j = p, p = q \\ 0 & \text{otherwise} \end{cases}$$

Example (2/2)

Compute $\frac{\partial K_{pq}}{\partial R_{ii}}$: (sum rule)

$$\frac{\partial K_{pq}}{\partial R_{ij}} = \sum_{t=1}^{M} \frac{\partial}{\partial R_{ij}} R_{tp} R_{tq} = \delta_{pqij},$$

where

$$\delta_{pqij} = \begin{cases} R_{iq} & \text{if } j = p, p \neq q \\ R_{ip} & \text{if } j = q, p \neq q \\ 2R_{iq} & \text{if } j = p, p = q \\ 0 & \text{otherwise} \end{cases}$$

Hence, each entry of the desired gradient $\frac{d\mathbf{K}}{d\mathbf{R}} \in \mathbb{R}^{(N \times N) \times (M \times N)}$ is δ_{pqij} , for $p, q, j = 1, \ldots, N$ and $i = 1, \ldots, M$.

Useful Identities for Computing Gradients (1/2)

Reference: The Matrix Cookbook by Petersen and Pedersen, 2012.

$$\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{\top} = \left(\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}\right)^{\top}.$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(f(\mathbf{X})) = \operatorname{tr}\left(\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}\right).$$

$$\frac{\partial}{\partial \mathbf{X}} \det(f(\mathbf{X})) = \det(f(\mathbf{X})) \operatorname{tr}\left(f(\mathbf{X})^{-1} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}\right)$$

Useful Identities for Computing Gradients (1/2)

Reference: The Matrix Cookbook by Petersen and Pedersen, 2012.

$$\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{\top} = \left(\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}\right)^{\top}.$$

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(f(\mathbf{X})) = \operatorname{tr}\left(\frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}\right).$$

$$\frac{\partial}{\partial \mathbf{X}} \det(f(\mathbf{X})) = \det(f(\mathbf{X})) \operatorname{tr}\left(f(\mathbf{X})^{-1} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}}\right) \implies \operatorname{Jacobi's formula}$$

$$\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{-1} = -f(\mathbf{X})^{-1} \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} f(\mathbf{X})^{-1}$$

$$\frac{\partial \mathbf{a}^{\top} \mathbf{X}^{-1} \mathbf{b}}{\partial \mathbf{Y}} = -(\mathbf{X}^{-1})^{\top} \mathbf{a} \mathbf{b}^{\top} (\mathbf{X}^{-1})^{\top}$$

Useful Identities for Computing Gradients (2/2)

$$\begin{split} \frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} &= \mathbf{a}^{\top} \\ \frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} &= \mathbf{a}^{\top} \\ \frac{\partial \mathbf{a}^{\top} \mathbf{X} \mathbf{b}}{\partial \mathbf{X}} &= \mathbf{a} \mathbf{b}^{\top} \\ \frac{\partial \mathbf{x}^{\top} \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} &= \mathbf{x}^{\top} (\mathbf{B} + \mathbf{B}^{\top}) \\ \frac{\partial}{\partial \mathbf{s}} (\mathbf{x} - \mathbf{A} \mathbf{s})^{\top} \mathbf{W} (\mathbf{x} - \mathbf{A} \mathbf{s}) &= -2(\mathbf{x} - \mathbf{A} \mathbf{s})^{\top} \mathbf{W} \mathbf{A} \text{ for symmetric } \mathbf{W}. \end{split}$$

Clarification of some identities

$$\mathbf{0} = \frac{\partial}{\partial \mathbf{X}} \mathbf{1}$$

Clarification of some identities

$$\mathbf{0} = \frac{\partial}{\partial \mathbf{X}} \mathbf{I} = \frac{\partial}{\partial \mathbf{X}} \left(f(\mathbf{X})^{-1} f(\mathbf{X}) \right)$$

Clarification of some identities

$$\mathbf{0} = \frac{\partial}{\partial \mathbf{X}} \mathbf{I} = \frac{\partial}{\partial \mathbf{X}} \left(f(\mathbf{X})^{-1} f(\mathbf{X}) \right) = \left(\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X})^{-1} \right) f(\mathbf{X}) + f(\mathbf{X})^{-1} \left(\frac{\partial}{\partial \mathbf{X}} f(\mathbf{X}) \right).$$

About the last formula

For symmetric W,

$$\frac{\partial}{\partial s}(x - As)^{\top}W(x - As) = -2(x - As)^{\top}WA.$$

About the last formula

For symmetric W,

$$\frac{\partial}{\partial s}(x - As)^{\top}W(x - As) = -2(x - As)^{\top}WA.$$

Let $\mathbf{z} = \mathbf{x} - \mathbf{A}\mathbf{s}$ and use

$$\frac{\partial \mathbf{z}^{\top} \mathbf{W} \mathbf{z}}{\partial \mathbf{z}} = \mathbf{z}^{\top} (\mathbf{W} + \mathbf{W}^{\top})$$

About the last formula

For symmetric W,

$$\frac{\partial}{\partial s}(x - As)^{\top}W(x - As) = -2(x - As)^{\top}WA.$$

Let $\mathbf{z} = \mathbf{x} - \mathbf{A}\mathbf{s}$ and use

$$\frac{\partial \mathbf{z}^{\top} \mathbf{W} \mathbf{z}}{\partial \mathbf{z}} = \mathbf{z}^{\top} (\mathbf{W} + \mathbf{W}^{\top})$$

Then compute

$$\frac{\partial \mathbf{z}^{\top} \mathbf{W} \mathbf{z}}{\partial \mathbf{z}} \frac{\partial \mathbf{z}}{\partial \mathbf{s}}.$$

A sketch of Jacobi's formula

Reference: Wikipedia page.

$$\frac{\partial}{\partial \boldsymbol{X}} \det(f(\boldsymbol{X})) = \det(f(\boldsymbol{X})) \operatorname{tr} \left(f(\boldsymbol{X})^{-1} \frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \right)$$

• To simplify the discussion, let $\mathbf{M} := f(\mathbf{X})$ and denote the differential of \mathbf{M} by $d\mathbf{M}$. We omit the sizes of matrices if the context is clear.

A sketch of Jacobi's formula

Reference: Wikipedia page.

$$\frac{\partial}{\partial \boldsymbol{X}} \det(f(\boldsymbol{X})) = \det(f(\boldsymbol{X})) \operatorname{tr} \left(f(\boldsymbol{X})^{-1} \frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \right)$$

• To simplify the discussion, let M := f(X) and denote the differential of M by dM. We omit the sizes of matrices if the context is clear.

That is,

$$d \det(\mathbf{M}) = \det(\mathbf{M}) \operatorname{tr}(\mathbf{M}^{-1} d\mathbf{M}).$$

Fact

$$\sum_i \sum_i m{A}_{ij} m{B}_{ij} = \mathsf{tr}(m{A}^ op m{B})$$
 for any square matrices $m{A}, m{B}$.

A sketch of Jacobi's formula (2/4)

By the cofactor expansion, we have

$$\det(oldsymbol{M}) = \sum_j oldsymbol{M}_{ij} \operatorname{\mathsf{adj}}^ op (oldsymbol{M})_{ij}$$

and recall that

$$\mathbf{M} \operatorname{\mathsf{adj}}^{\top}(\mathbf{M}) = \det(\mathbf{M})\mathbf{I},$$

A sketch of Jacobi's formula (2/4)

By the cofactor expansion, we have

$$\det(oldsymbol{M}) = \sum_j oldsymbol{M}_{ij} \operatorname{\mathsf{adj}}^ op (oldsymbol{M})_{ij}$$

and recall that

$$\mathbf{M} \operatorname{\mathsf{adj}}^{\top}(\mathbf{M}) = \det(\mathbf{M})\mathbf{I},$$

which means

$$oldsymbol{M}^{-1} = rac{1}{\det(oldsymbol{M})} \mathrm{adj}^{ op}(oldsymbol{M}).$$

A sketch of Jacobi's formula (2/4)

By the cofactor expansion, we have

$$\det(oldsymbol{M}) = \sum_j oldsymbol{M}_{ij} \operatorname{\mathsf{adj}}^ op (oldsymbol{M})_{ij}$$

and recall that

$$\mathbf{M} \operatorname{\mathsf{adj}}^{\top}(\mathbf{M}) = \det(\mathbf{M})\mathbf{I},$$

which means

$$oldsymbol{M}^{-1} = rac{1}{\det(oldsymbol{M})} \mathrm{adj}^{ op}(oldsymbol{M}).$$

Thus, we are actually proving

$$\mathrm{d}\det(\boldsymbol{M}) = \det(\boldsymbol{M})\operatorname{tr}(\boldsymbol{M}^{-1}\mathrm{d}\boldsymbol{M}) = \operatorname{tr}(\operatorname{adj}^{\top}(\boldsymbol{M})\mathrm{d}\boldsymbol{M}).$$

Note

• Assume det $M = F(M_{11}, M_{12}, \dots, M_{nn})$ is a function of $M_{11}, M_{12}, \dots, M_{nn}$ and $M_{ii} := M_{ii}(t)$. Then,

$$\frac{\mathrm{d}}{\mathrm{d}t}\det(\mathbf{M}) = \sum_{i} \sum_{j} \frac{\partial F}{\partial \mathbf{M}_{ij}} \frac{\mathrm{d}\mathbf{M}_{ij}}{\mathrm{d}t}.$$

That is,

$$d \det(\mathbf{M}) = \sum_{i} \sum_{j} \frac{\partial F}{\partial \mathbf{M}_{ij}} d\mathbf{M}_{ij}.$$

A sketch of Jacobi's formula (3/4)

Differential of the cofactor expansion:

A sketch of Jacobi's formula (3/4)

Differential of the cofactor expansion:

$$\frac{\partial \det(\boldsymbol{M})}{\partial \boldsymbol{M}_{ij}} = \frac{\partial \sum_{k} \boldsymbol{M}_{ik} \operatorname{adj}^{\top}(\boldsymbol{M})_{ik}}{\partial \boldsymbol{M}_{ij}} = \sum_{k} \frac{\partial \boldsymbol{M}_{ik} \operatorname{adj}^{\top}(\boldsymbol{M})_{ik}}{\partial \boldsymbol{M}_{ij}}$$

Applying the product rule we can derive

A sketch of Jacobi's formula (3/4)

Differential of the cofactor expansion:

$$\frac{\partial \det(\boldsymbol{M})}{\partial \boldsymbol{M}_{ij}} = \frac{\partial \sum_{k} \boldsymbol{M}_{ik} \operatorname{adj}^{\top}(\boldsymbol{M})_{ik}}{\partial \boldsymbol{M}_{ij}} = \sum_{k} \frac{\partial \boldsymbol{M}_{ik} \operatorname{adj}^{\top}(\boldsymbol{M})_{ik}}{\partial \boldsymbol{M}_{ij}}$$

Applying the product rule we can derive

$$\frac{\partial \det(\mathbf{M})}{\partial \mathbf{M}_{ij}} = \sum_{k} \frac{\partial \mathbf{M}_{ik}}{\partial \mathbf{M}_{ij}} \operatorname{adj}^{\top}(\mathbf{M})_{ik} + \sum_{k} \mathbf{M}_{ik} \frac{\partial \operatorname{adj}^{\top}(\mathbf{M})_{ik}}{\partial \mathbf{M}_{ij}}$$

$$= \sum_{k} \frac{\partial \mathbf{M}_{ik}}{\partial \mathbf{M}_{ij}} \operatorname{adj}^{\top}(\mathbf{M})_{ik}.$$

A sketch of Jacobi's formula (4/4)

Note that

$$\frac{\partial \mathbf{M}_{ik}}{\partial \mathbf{M}_{ij}} = \delta_{jk}$$

where $\delta_{jk}=1$ if j=k and 0 otherwise. So,

A sketch of Jacobi's formula (4/4)

Note that

$$\frac{\partial \mathbf{M}_{ik}}{\partial \mathbf{M}_{ii}} = \delta_{jk}$$

where $\delta_{ik} = 1$ if j = k and 0 otherwise. So,

$$\frac{\partial \det(\boldsymbol{M})}{\partial \boldsymbol{M}_{ij}} = \sum_{k} \delta_{jk} \operatorname{adj}^{\top}(\boldsymbol{M})_{ik} = \operatorname{adj}^{\top}(\boldsymbol{M})_{ij}.$$

Thus,

$$\mathrm{d}\det(\boldsymbol{M}) = \sum_{i} \sum_{j} \mathrm{adj}^{\top}(\boldsymbol{M})_{ij} \, \mathrm{d}\boldsymbol{M}_{ij} = \mathrm{tr}(\mathrm{adj}(\boldsymbol{M}) \, \mathrm{d}\boldsymbol{M}).$$

Discussions