MemoTag AI/ML

Task Report – Voice-Based Cognitive Decline Pattern Detection

1. Objective

To design and implement a **proof-of-concept (POC) system** capable of detecting early signs of **cognitive decline** through the analysis of voice data. The system leverages **audio signal processing** and **natural language processing (NLP)** to extract indicative biomarkers from speech, with the long-term goal of enabling **non-invasive**, **early-stage cognitive screening** using everyday conversation or prompted tasks.

2. Problem Statement

Early detection of cognitive impairment, such as that associated with **mild cognitive impairment (MCI)** or early **Alzheimer's Disease**, remains a clinical challenge. Voice-based cues such as **speech disfluencies**, **prosodic changes**, **and lexical simplifications** are known to correlate with cognitive stress and decline.

MemoTag seeks to enrich its speech intelligence pipeline by analyzing **5–10 anonymized voice samples**, extracting both **acoustic** and **linguistic** features. The goal is to identify abnormal speech patterns using **unsupervised learning techniques**, thereby flagging potentially at-risk individuals for further clinical evaluation.

3. Methodology

3.1 Preprocessing Pipeline

- Audio Standardization:
 - Sample rate conversion to 16kHz

- Mono channel enforcement
- Voice activity detection (VAD) to segment active speech
- o Background noise reduction using spectral gating or Wiener filtering

• Speech-to-Text Conversion:

- Leveraged OpenAl's Whisper ASR, known for robust multilingual transcription and noise tolerance
- Transcripts aligned with audio timestamps for downstream analysis of pauses and hesitations

3.2 Feature Extraction

A. Acoustic Features:

Extracted using librosa and pyAudioAnalysis.

- Speech Rate (words per minute):
 - o Calculated using timestamped transcripts and duration of active speech
- Pitch Variability:
 - Standard deviation of the fundamental frequency (F0) using autocorrelation or YIN algorithm

• Pauses per Sentence:

- Silent segments (>300 ms) detected via energy thresholding
- Normalized by sentence length

B. Linguistic Features:

Processed using spaCy and custom NLP routines.

- Hesitation Markers:
 - o Frequency of filler words: "um," "uh," "like," etc.
- Lexical Substitution & Vagueness:

 Detection of unspecific terms ("thing," "stuff") and context-inappropriate substitutions using semantic similarity

• Sentence Completion Errors:

 Using cloze-style prompts; analyzed for syntactic correctness and semantic plausibility

• Naming/Association Accuracy:

 Accuracy in category-naming or association tasks, benchmarked using word embeddings (e.g., Word2Vec, BERT)

3.3 Unsupervised ML/NLP Techniques

• Clustering:

- K-Means, DBSCAN, and Hierarchical Clustering used to identify natural groupings of speaker profiles
- Dimensionality reduction via **PCA** or **t-SNE** for visualization

Anomaly Detection:

Isolation Forest trained on full feature vectors to flag anomalous samples

• Semantic Outlier Detection:

- Sentence embeddings (e.g., Sentence-BERT) generated for entire transcripts
- Cosine similarity matrix used to identify individuals deviating semantically from the cohort

Category	Tools / Libraries			
Audio Processing	librosa, pyAudioAnalysis, pydub, webrtcvad			
Transcription	Whisper (OpenAI)			
NLP	spaCy, NLTK, transformers, Sentence-BERT			
ML/Clustering	scikit-learn, xgboost, umap-learn			

Visualization matplotlib, seaborn, plotly,

yellowbrick

Environment Python 3.10+, Jupyter Notebook

Feature Cognitive Decline Indicator

High **pause-to-word** ratio Suggests word-finding difficulty

Increased **filler frequency** Points to working memory stress

Reduced **pitch variation** Indicates emotional flattening

Sentence completion Reflect syntactic/semantic

errors disorganization

Clustering Outcome:

• Three distinct clusters were identified:

• Cluster A: Fluent, high-pitch variability, low pauses (control group)

• Cluster B: Mild hesitation, moderate disfluency

• Cluster C: High cognitive stress indicators (potentially at-risk)

Outliers:

- Two samples flagged by **Isolation Forest** aligned with **Cluster C**, showing:
 - ≥30% of sentences with filler starts
 - o 2.5 SD above average pause ratio
 - o Below-threshold lexical richness (measured via Type-Token Ratio)

6. Next Steps

1. Dataset Expansion:

o Source more diverse voice clips across age, gender, and dialects

2. Temporal Modeling:

Track speaker metrics over time to detect progressive decline

3. Clinical Validation:

Collaborate with neurologists to validate biomarkers

4. Supervised Model Training:

 Use labeled clinical data to build a classification model (e.g., cognitive decline vs control)

5. Deployable API:

 Wrap model in a REST API (predict_risk(audio_path)) returning normalized risk score and feature insights

7. Deliverables

- Clean, modular **Python notebook** with end-to-end pipeline
- **Feature plots** (e.g., speech rate vs pause ratio, pitch spread histograms)
- Clustering visualizations (2D projection of speaker embeddings)
- In-progress: predict_risk() function for API integration

8. Ethical & Clinical Considerations

This tool is strictly a **research POC**. Deployment in real-world or clinical settings **requires thorough validation** by qualified medical professionals. The system does not diagnose or replace neurological assessments.

Prepared For: MemoTag Al Team Prepared By: Harshit Bansal