Тема 1. Электромагнитные волны

Лекция 3. Плоские электромагнитные волны.

- 1. Основные понятия, характеризующие волну
- 2. Решение задачи распространения плоской волны в однородной изотропной среде
- 3. Свойства плоской волны в однородной среде

1. Основные понятия, характеризующие волну

Электромагнитное поле, как форма материи, существует в движении, которое проявляется в виде электромагнитных волн (ЭМВ).

Электромагнитной волной называется процесс распространения в пространстве изменений электромагнитного поля. В практике радиолокации и связи чаще всего используются поля, изменяющиеся во времени по гармоническому закону, поэтому применительно к ним электромагнитной волной можно назвать процесс распространения в пространстве переменного электромагнитного поля.

Сформулируем основные понятия, характеризующие процесс распространения ЭМВ.

Поверхностью равных фаз называется воображаемая поверхность в пространстве, во всех точках которой начальные фазы напряженностей поля одинаковы.

Электромагнитная волна (волновой процесс) характеризуется тем свойством, что поверхности равных фаз перемещаются в пространстве с фазовой скоростью, близкой к скорости света.

В зависимости от формы поверхности равных фаз волны бывают: плоские, сферические и цилиндрические.

Плоской называется такая электромагнитная волна, у которой поверхности равных фаз образуют семейство параллельных плоскостей (рис. 1).

Рис. 1

Сферической называют волну, у которой поверхности равных фаз образуют семейство концентрических сфер (рис. 2).

Рис. 2

Цилиндрическая ЭМВ имеет поверхности равных фаз в виде семейства коаксиальных цилиндров (рис. 3).

Для наглядной иллюстрации распространения ЭМВ вводится понятие лучей, которые представляют собой линии, нормальные к семейству поверхностей равных фаз. Направление лучей совпадает с направлением распространения волны (рис. 1 - 3).

Электромагнитная волна характеризуется векторами напряженностей электрического и магнитного полей, каждый из которых может быть представлен с помощью трех проекций на оси выбранной системы координат. В зависимости от наличия (отсутствия) каких-либо составляющих векторов поля ЭМВ делятся на следующие типы: волны типа E, волны типа H и волны типа TEM.

Волной типа Е (поперечно-магнитной волной) называется такая волна, у которой в любой точке наблюдения составляющая вектора магнитного поля, параллельная направлению распространения (лучу), равна нулю, а такая же составляющая электрического поля не равна нулю (рис. 4).

Рис. 4

Волной типа Н (поперечно-электрической волной) называется волна, у которой в любой точке наблюдения составляющая вектора электрического поля, параллельная лучу, равна нулю, а такая же составляющая магнитного поля не равна нулю (рис. 5).

Рис. 5

Волна типа ТЕМ (поперечная волна) имеет только составляющие векторов \vec{E} и \vec{H} , перпендикулярные направлению распространения.

Задача нахождения напряженностей поля ЭМВ при ее распространении в пространстве формулируется следующим образом.

В неограниченной электрически однородной среде с заданными параметрами \mathcal{E}_a , μ_a и σ возбуждено гармоническое электромагнитное поле с частотой и известным признаком (заранее заданным свойством). Найти векторные функции $\vec{E}(M)$ и $\vec{H}(M)$.

Как правило, такие задачи решаются по универсальному алгоритму, включающему следующие операции.

- 1. Выбор подходящей системы координат.
- 2. Описание известного признака поля ЭМВ в виде математических соотношений в выбранной системе координат.
- 3. Выбор уравнения для нахождения одной из неизвестных функций $\vec{E}(M)$, и $\vec{\Pi}^e(M)$ т. д. и упрощение этого уравнения с помощью соотношений, упомянутых во втором пункте.
 - 4. Решение уравнения для выбранной неизвестной функции.
 - 5. Нахождение остальных неизвестных функций по найденной. Этот алгоритм будет в дальнейшем использоваться при решении задач распространения радиоволн различных типов.

Выволы:

- 1). По виду поверхности равных фаз различают плоские, сферические и цилиндрические волны;
- 2). Все волны имеют поперечные составляющие поля. Наличие или отсутствие продольных составляющих поля определяет тип волны (Е, Н и ТЕМ).

2. Решение задачи распространения плоской волны в однородной изотропной среде

Рассмотрим гармоническое электромагнитное поле, которое обладает следующим наперед заданным свойством: в нем можно провести бесчисленное множество параллельных плоскостей $S_1, S_2, ...,$ в каждой из которых напряженности \vec{E} и \vec{H} постоянны для фиксированного момента времени, а плотности свободных зарядов $\rho(M)$ и сторонних токов $\dot{\vec{j}}^{cm}(M)$ равны нулю (рис. 6).

Требуется найти функции распределения напряженностей электрического и магнитного полей в пространстве.

Решение задачи

- 1. Выберем прямоугольную декартову систему координат (рис. 6).
- 2. Опишем математически заданные свойства поля в выбранной системе координат.

В нашем случае в пределах поверхностей параллельных плоскости YOZ величины \vec{E} и \vec{H} постоянны, следовательно,

$$\frac{\partial \vec{E}}{\partial y} = \frac{\partial \vec{E}}{\partial z} = \frac{\partial \vec{H}}{\partial y} = \frac{\partial \vec{H}}{\partial z} = 0. \tag{1}$$

Кроме того, $\rho = 0$, $\dot{\vec{j}}^{cm} = 0$

3. В данном случае для решения задачи целесообразно воспользоваться волновым уравнением и выражением , учитывая, что $\rho=0$ и $\dot{\vec{j}}^{cm}=0$.

$$\nabla^{2} \dot{\vec{E}} + k^{2} \dot{\vec{E}} = 0;$$

$$div \dot{\vec{E}} = 0.$$
(2)

В декартовой системе координат уравнения (2) принимают вид

$$\frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2} + k^2 \vec{E} = 0, \tag{3}$$

$$\frac{\partial \dot{\vec{E}}_x}{\partial x} + \frac{\partial \dot{\vec{E}}_y}{\partial y} + \frac{\partial \dot{\vec{E}}_z}{\partial z} = 0. \tag{4}$$

С учетом заранее заданных свойств выражения (3) и (4) можно записать в виде

$$\frac{\partial^{2} \vec{E}}{\partial x^{2}} + k^{2} \vec{E} = 0;$$

$$\frac{\partial \vec{E}_{x}}{\partial x} = 0.$$
(5)

4. Решение уравнений (5) начинается с перехода от векторного уравнения для $\dot{\vec{E}}$ к уравнениям для составляющих этого вектора $\dot{\vec{E}}_x$, $\dot{\vec{E}}_y$, $\dot{\vec{E}}_z$. Представим вектор $\dot{\vec{E}}$ в проекциях на оси декартовой системы координат

$$\dot{\vec{E}} = \dot{E}_x \vec{x}_o + \dot{E}_y \vec{y}_o + \dot{E}_z \vec{z}_o,$$

где \vec{x}_o , \vec{y}_o , \vec{z}_o - единичные орты.

Подставляя это выражение для вектора $\dot{\vec{E}}$ в (5), приведем первое уравнение системы к виду

$$\left(\frac{\partial^2 \vec{E}_x}{\partial x^2} + k^2 \dot{\vec{E}}_x\right) \vec{x}_o + \left(\frac{\partial^2 \dot{\vec{E}}_y}{\partial x^2} + k^2 \dot{\vec{E}}_y\right) \vec{y}_o + \left(\frac{\partial^2 \dot{\vec{E}}_z}{\partial x^2} + k^2 \dot{\vec{E}}_z\right) \vec{z}_o = 0$$

Приравнивая нулю, множители при ортах \vec{x}_o , \vec{y}_o , \vec{z}_o получаем три скалярных уравнения для составляющих искомого вектора

$$\frac{\partial^{2} \dot{E}_{x}}{\partial x^{2}} + k^{2} \dot{E}_{x} = 0;$$

$$\frac{\partial^{2} \dot{E}_{y}}{\partial x^{2}} + k^{2} \dot{E}_{y} = 0;$$

$$\frac{\partial^{2} \dot{E}_{z}}{\partial x^{2}} + k^{2} \dot{E}_{z} = 0;$$

$$\frac{\partial^{2} \dot{E}_{z}}{\partial x^{2}} + k^{2} \dot{E}_{z} = 0;$$

$$\frac{\partial \dot{E}_{x}}{\partial x} = 0.$$
(6)

Подставим последнее уравнение системы (6) в первое и сразу получим его решение

$$k^2 \dot{E}_x = 0, \quad \dot{E}_x = 0.$$
 (7)

Интегралы второго и третьего уравнений (6) известны, они имеют вид

$$\dot{E}_{y} = A_{1}e^{ikx} + B_{1}e^{-ikx};$$

 $\dot{E}_{z} = A_{2}e^{ikx} + B_{2}e^{-ikx}.$

где A_1 , A_2 , B_1 и B_2 - произвольные постоянные интегрирования.

С целью упрощения решения ограничимся частным случаем, когда $A_1=B_1=A_2=0$, т. е. предположим, что в пространстве распространяется только прямая волна (отраженная отсутствует), а вектор параллелен оси Z. Учитывая, что $\dot{E}_{_X}=0$, получим

$$\dot{E}_{x} = \dot{E}_{y} = 0,
\dot{E}_{z} = B_{2}e^{-ikx}.$$
(8)

Для нахождения постоянной интегрирования в последнем равенстве (8) будем считать x=0.

$$\dot{E}_z/_{x=0}=B_2.$$

Отсюда следует, что постоянная B_2 равна значению составляющей \dot{E}_z поля в точках координатной плоскости YOZ. Обозначив его через E_{0z} из выражений (3,8), получим частное решение уравнения (2)

$$\dot{E}_{x} = \dot{E}_{y} = 0,
\dot{E}_{z} = E_{0z}e^{-ikx}.$$
(9)

Для упрощения будем полагать, что величина E_{0z} - вещественная (начальная фаза E_z в точках плоскости YOZ равна нулю).

5. Найдем составляющие магнитного поля по уже известным составляющим электрического поля, используя второе уравнение Максвелла

$$rot \dot{\vec{E}} = -i\omega \mu_a \dot{\vec{H}}$$
.

Решая это уравнение относительно вектора $\dot{\vec{H}}$ и представляя его в проекциях на оси координат, получим

$$\dot{H}_{x} = -\frac{1}{i\omega\mu_{a}} \left(\frac{\partial \dot{E}_{z}}{\partial y} - \frac{\partial \dot{E}_{y}}{\partial z} \right) = 0, \tag{10}$$

так как в соответствии с условием (1)

$$\frac{\partial \dot{E}_{z}}{\partial y} = \frac{\partial \dot{E}_{y}}{\partial z} = 0;$$

$$\dot{H}_{z} = -\frac{1}{i\omega\mu_{a}} \left(\frac{\partial \dot{E}_{y}}{\partial x} - \frac{\partial \dot{E}_{x}}{\partial y} \right) = 0.$$
(11)

поскольку $\dot{E}_{x}=\dot{E}_{y}=0$

$$\dot{H}_{y} = -\frac{1}{i\omega\mu_{a}} \left(\frac{\partial \dot{E}_{x}}{\partial z} - \frac{\partial \dot{E}_{z}}{\partial x} \right) = \frac{1}{i\omega\mu_{a}} \frac{\partial \dot{E}_{z}}{\partial x}.$$

Подставляя значение из выражения (9), получим

$$\dot{H}_{y} = \frac{1}{i\omega\mu_{a}} \frac{\partial}{\partial x} \left(E_{0z} e^{-ikx} \right) = \frac{-k}{\omega\mu_{a}} E_{0z} e^{-ikx}. \tag{12}$$

Таким образом, уравнения (9)-(12) представляют собой решение поставленной задачи.

Для перехода от комплексных к мгновенным значениям составляющих поля необходимо определить волновое число для среды, состоящей из реального диэлектрика. С этой целью введем новое обозначение

$$\dot{\varepsilon}_k = \varepsilon_a \left(1 + \frac{\sigma}{i\omega \varepsilon_a} \right). \tag{3.13}$$

Величину $\dot{\mathcal{E}}_k$ принято называть комплексной диэлектрической проницаемостью.

С учетом формулы (13) выражение для волнового числа примет вид

$$\dot{k} = \omega \sqrt{\dot{\varepsilon}_k \mu_a} \,. \tag{14}$$

Из этого уравнения следует, что для среды с потерями (реальной среды) величина является комплексной и ее можно представить в виде

$$\dot{k} = \beta - i\alpha, \tag{15}$$

где β - действительная часть \dot{k} ;

lpha - мнимая часть \dot{k} .

Подставляя формулу (15) в выражение (9) получим:

$$\dot{E}_z = E_{0z} e^{-\alpha x} e^{-i\beta x} \tag{16}$$

Множитель $E_{0z}e^{-\alpha x}$ описывает амплитуду волны, а произведение βx -изменение фазы при увеличении расстояния вдоль оси x.

После перехода от комплексных величин к мгновенным значениям напряженности электрического поля уравнение (3.16) примет вид

$$E_z(t) = E_{0z}e^{-\alpha x}\cos(\omega t - \beta x). \tag{17}$$

Теперь необходимо проанализировать полученное решение и сформулировать свойства плоской электромагнитной волны.

Выводы:

- 1). В уравнения поля множитель $e^{-\alpha x}$ говорит о затухании электромагнитной волны при ее распространении вдоль координаты X;
- 2). Множитель $e^{-i\beta x}$ говорит о распространении электромагнитной вдоль координаты X;
- 3). Множитель $\cos(\omega t \beta x)$ говорит о колебании поля во времени и о распространении электромагнитной вдоль координаты X.

3. Свойства плоской волны в однородной среде

Проанализируем уравнение (17), описывающее электрическое поле плоской волны, и сформулируем ее свойства.

Первый и второй сомножители уравнения описывают амплитуду волны. Из них следует, что в реальной среде амплитуда убывает по экспоненциальному закону при распространении волны вдоль оси \mathcal{X} . Причиной затухания является отличие проводимости среды от нуля, т. е. тепловые потери электромагнитной энергии, связанные с волной. Таким образом, величина α может быть истолкована как коэффициент затухания. В идеальной среде, где отсутствуют потери, $\alpha = 0$, амплитуда поля не убывает.

Рассмотрим фазу колебания в некоторой точке пространства. С этой целью введем обозначение

$$\psi = \omega t - \beta x, \tag{18}$$

где ψ - фаза волны.

Из уравнения (18) выразим x.

$$x = \frac{\omega t}{\beta} - \frac{\psi}{\beta}.\tag{19}$$

Считая $\psi = \psi_o = 0, \ t = t_o$, и учитывая, что ω и β также величины постоянные, получим выражение

$$x = \frac{\omega t_o}{\beta} - \frac{\psi_o}{\beta} = const ,$$

которое является уравнением семейства плоскостей (поверхностей равных фаз), параллельных плоскости YOZ. Следовательно, изучаемая нами волна плоская.

Если в уравнении (19) увеличивать время t, (при $\psi = \psi_o = const$, то будет расти величина x, которая соответствует положению поверхности равных фаз с начальной фазой ψ_o . Это означает, что поверхности равных фаз перемещаются и интересующее нас поле представляет собой волну.

Определим скорость распространения этой волны. Путь, пройденный точкой с заданной фазой ψ_o , равен x, следовательно, фазовая скорость V_ϕ равна производной dx/dt. Дифференцируя выражение (19) по t, получим

$$V_{\phi} = \frac{dx}{dt} = \frac{d}{dt} \left(\frac{\omega}{\beta} t - \frac{\psi}{\beta} \right) = \frac{\omega}{\beta}.$$
 (20)

Величина β , входящая в последнюю формулу, выполняет функцию волнового числа k (при $\sigma=0,\ \alpha=0$). Она зависит от $\mathcal{E}_a,\ \mu_a,\ \sigma$ и ω .

Следовательно, фазовая скорость плоской волны зависит от свойств среды и частоты колебаний.

В частном случае идеальной электрической среды (σ = 0), α = 0, а β = $\omega\sqrt{\varepsilon_a\mu_a}$. Тогда из уравнения (20) получим

$$V_{\phi} = \frac{\omega}{\beta} = \frac{\omega}{\omega \sqrt{\varepsilon_a \mu_a}} = \frac{1}{\sqrt{\varepsilon_o \mu_o}} \frac{1}{\sqrt{\varepsilon \mu}},$$

$$V_{\phi} = \frac{C}{\sqrt{\varepsilon \mu}}.$$
(21)

где
$$C = \frac{1}{\sqrt{\varepsilon_o \mu_o}}$$
 - скорость света.

Для свободного пространства $\mathcal{E}=\mu=1$ и $V_{\phi}=C$, т. е. фазовая скорость волны равна скорости света. В диэлектрике, для которого относительная диэлектрическая проницаемость $\mathcal{E}>1$, фазовая скорость всегда меньше скорости света.

Если зафиксировать некоторый момент времени, на основании выражений (11) и (17) можно построить распределение векторов напряженности поля в пространстве (рис. 7). Для плоской волны векторы \vec{E} и \vec{H} взаимно перпендикулярны и лежат в плоскости, перпендикулярной направлению распространения.

Рис. 7

В том случае, когда $\alpha \neq 0$, вдоль оси x величина каждого вектора будет убывать

Выводы:

- 1). Фазовая скорость электромагнитной волны зависит от параметров среды \mathcal{E}_a , μ_a ,;
- 2). Если коэффициент затухания равен нулю $\alpha = 0$, то амплитуда плоской волны не изменяется. Если коэффициент затухания не равен нулю $\alpha \neq 0$, то амплитуда плоской волны убывает по экспоненциальному закону $e^{-\alpha x}$.