

3W 单声道 AB 类音频功率放大器

概述

LM4871 是一款 3W、单声道 AB 类音频功率放大器。工作电压 2.5-5.5V,以 BTL 桥接方式,在 5V 电源供电情况下,可以给 4Ω 负载提供 THD 小于 10%、平均 3.0W 的输出功率。在关断模式下,电流典型值小于 0.5μ A。

LM4871 是为提供足功率、高保真音频输出而专门设计的,它仅需少量的外围器件,输出不需要外接耦合电容或上举电容,采用 SOP-8 和 MSOP-8 封装,节约电路面积,非常适合移动电话及各种移动设备等使用低电压、低功耗应用方案上使用。

特征

- 工作电压: 2.5 5.5V
- 创新的"开关/切换噪声"抑制技术, 杜绝了上电、掉电出现的噪声
- 10% THD+N, VDD=5V, 4Ω 负载下, 提供高达 2.9W 的输出功率
- 10% THD+N, VDD=5V, 8Ω 负载下, 提供高达 1.8W 的输出功率
- 美断电流< 0.5µA
- 过温保护
- 提供 SOP-8 和 MSOP-8 封装

应用

- 移动电话 (手机等)
- 扩音器,蓝牙音响等
- 收音机

- GPS, 电子狗, 行车记录仪
- 语音玩具等

产品订购信息

产品名称	封装	打印名称	包装	包装数量
LM4871M/TR	SOP8	LM4871	编带	2500 只/盘
LM4871MM/TR	MSOP8	LM4871	编带	3000 只/盘

封装及引脚配置

SOP8/MSOP8 Shutdown 1 O 8 VO2 Bypass 2 7 GND +IN 3 6 VDD -IN 4 5 VO1

图 1. LM4871 的管脚定义图

管脚号	符号	描述
1	Shutdown	掉电控制管脚 (高电平关功放)
2	Bypass	内部共模电压脚,需要外接 1µF 旁路电容
3	+IN	音频输入端,正相
4	-IN	音频输入端,负相
5	VO1	音频输出端 1
6	VDD	电源正极
7	GND	电源 <mark>地</mark>
8	VO2	音频輸出端 2

典型应用电路

图 2. LM4871 单端输入模式电路图

图 3. LM4871 差分输入模式电路图

最大额定值

参数名称	符号	数值	单位
工作电压	V _{DD}	6.0	V
存储温度	T _{stg}	-65 - 150	${\mathbb C}$
输入电压		-0.3 to + (0.3+V _{CC})	V
功率消耗	P _D	见附注 1	W
结温度		160	$^{\circ}$

最大功耗取决于三个因素: T_{JMAX}, T_A, θ_{JA}, 它的计算公式 P_{DMAX}=(T_{JMAX}-T_A)/θ_{JA}, LM4871 的 T_{JMAX}=150℃。
 T_A 为外部环境的温度, θ_{JA} 取决于不同的封装形式。(SOP 封装形式为 140℃/W)

电气参数

VDD=5V, TA=25℃

符号	参数	测试条件		最小值	典型值	最大值	单位	
VDD	供电电压			2.5		5.5	V	
Vos	输出失调电压				2		mV	
IQ	静态电流	VDD=5V, IO=0			2		mA	
ISD	关断电流	VDD=2.5 – 5.5V			0.1		μΑ	
	Po 輸出功率		VDD=5V		2.9			
		f=1kHz,RL=4Ω,THD=10%	VDD=4.2V		2			
			VDD=3.7V		1.6			
			VDD=5V		2.3			
		f=1kHz,RL=4Ω,THD=1%	VDD=4.2V		1.6			
D.			VDD=3.7V		1.3		W	
го			VDD=5V		1.72			
		f=1kHz,RL=8Ω,THD=10%	VDD=4.2V		1.2			
			VDD=3.7V		0.93			
			VDD=5V		1.39			
		f=1kHz,RL=8Ω,THD=1%	VDD=4.2V	c, c	0.97			
			VDD=3.7V	4010	0.75			
THD+N	 总谐波失真加噪声	VDD=5V,RL=4Ω,PO=1.8W		Ollo	0.23		%	
וחטדוו	心伯似大具加噪円	VDD=5V,RL=8Ω,PO=1W	nic		0.08		70	
PSRR	 电源电压抑制比	Input ac-grounded with	f=217Hz		80			
FORK	中原中国 中原 中原 中原 中原 中原 中原 中	Cin=0.47µF, VDD=5V	f=20kHz		70		dB	
Vn	输出噪声电压	Input ac-grounded with Cin=0	.47µF,VDD=5V		35		μV	
SNR	信噪比	VDD=5V,f=1kHz,THD=1%	9		98		dB	
VSD_H	关断脚高电平	VDD=5V		0.8				
VSD_L	关断脚低电平	VDD=5V				0.5	V	
TWU	唤醒时间				200		ms	

典型特性曲线

Audio Precision

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment
1	1	Cyan	Solid	3	Analyzer.THD+N Ratio A	Left	3.3V,4ohm
2	1	Green	Solid	3	Analyzer.THD+N Ratio A	Left	3.7V,4ohm
3	1	Yellow	Solid	3	Analyzer.THD+N Ratio A	Left	4.2V,40hm
4	1	Red	Solid	3	Analyzer.THD+N Ratio A	Left	5V,4ohm
5	1	Magenta	Solid	3	Analyzer.THD+N Ratio A	Left	5.5V,4ohm

图 4. Po VS THD, R_L=4Ω

Audio Precision

Sweep	Trace	Color	Line Style	Thick	Data	Axis	Comment	
1	1	Cyan	Solid	3	Analyzer.THD+N Ratio A	Left	3.3V,8ohm	
2	1	Green	Solid	3	Analyzer.THD+N Ratio A	Left	3.7V,80hm	
3	1	Yellow	Solid	3	Analyzer.THD+N Ratio A	Left	4.2V,8ohm	
4	1	Red	Solid	3	Analyzer.THD+N Ratio A	Left	5V,8ohm	
5	1	Magenta	Solid	3	Analyzer.THD+N Ratio A	Left	5.5V,8ohm	

图 5. Po VS THD, $R_L=8\Omega$

Audio Precision

Sweep	Trace	Color	Line Style	Thick	Data	Seilli	Axis	Comment
1	1	Cyan	Solid	3	Analyze	r.THD+N Ratio A	Left	5V,8ohm,1W

图 6. VDD=5V, RL=8Ω, PO=1W 时的 THD+N

应用说明

LM4871 内部集成两个运算放大器,第一个放大器的增益可以调整反馈电阻来设置,后一个为电压反相跟随,从而形成增益可以配置的差分输出的放大驱动电路。

外部电阻配置

如 LM4871 典型应用电路,运算放大器的增益由外部电阻 Rf、Ri 决定,其增益为 Av=2×Rf/Ri,芯片通过 Vo1、Vo2 输出至负载,桥式接法。

桥式接法比单端输出有几个优点:其一是,省去外部隔直滤波电容。单端输出时,如不接隔直电容,则在输出端有一直流电压,导致上电后有直流电流输出,这样即浪费了功耗,也容易损坏音响。其二是,双端输出,实际上是推挽输出,在同样输出电压情况下,驱动功率增加为单端的4倍,功率输出大。

芯片功耗

功耗对于放大器来讲是一个关键指标之一,差分输出的放大器的最大自功耗为:

 $P_{DMAX} = 4 \times (VDD)^2 / (2 \times \Pi^2 \times R_L)$

必须注意,自功耗是输出功率的函数。

在进行电路设计时,不能够使得芯片内部的节温高于 T_{JMAX} (150℃),根据芯片的热阻O_{JA} 来设计,可以通过自己散热铜铂来增加散热性能。

如果芯片仍然达不到要求,则需要增大负载电阻、降低电源电压或降低环境温度来解决。

电源旁路

在放大器的应用中, 电源的旁路设计很重要, 特别是对应用方案的噪声性能及电源电压抑制性能。设计中要求旁路电容尽量靠近芯片、电源脚。典型的电容为 10µF 的电解电容并上 0.1µF 的陶瓷电容。

在 LM4871 应用电路中,另一电容 CB (接 BYP 管脚) 也是非常关键,影响 PSRR、 开关/切换噪声性能。一般选择 0.1μF ~ 1μF 的陶瓷电容。

Shutdown 脚工作模式选择

为了省电,在不使用放大器时,可以关闭放大器,LM4871 有掉电控制管脚 Shutdown,可以控制放大器是否工作。该控制管脚的电平必须要接满足接口要求的控制信号,否则芯片可能进入不定状态。 暨 Shutdown 脚通过施加以下三种不同电平状态,芯片则分别进入三种不同工作模式:

低电平:芯片处于正常工作模式。因此,在使用过程中,务必让此引脚保持低电平。

高电平: 芯片进入掉电工作模式,关闭放大器,无输出信号,通过选择进入此状态,能有效减少能耗,达到省电目的。

空 置: 芯片处于不定状态,不仅不能够进入掉电模式,其自功耗没有降低,达不到节电目的;而且易对芯片造成不良影响,因此在芯片长期工作时,切忌勿让其处于悬空状态。

外围元件的选择

正确选择外围元器件才能够确保芯片的性能,尽管 LM4871 能够有很大的余量保证性能,但为了确保整个性能, 也要求正确选择外围元器件。

LM4871 在单位增益稳定,因此使用的范围广。通常应用单位增益放大来降低 THD + N, 使信噪比最大化。但这要求输入的电压最大化,通常的 CODEC 能够有 1Vrms 的电压输出。另外,闭环带宽必须保证,输入耦合电容 Ci (形成一阶高通) 决定了低频响应,

选择输入耦合电容

过大的输入电容,增加成本、增加面积,这对于成本、面积紧张的应用来讲,非常不利。显然,确定使用多大的电容来完成耦合很重要。实际上,在很多应用中,扬声器(Speaker)不能够再现低于 100Hz - 150Hz 的低频语音,因此采用大的电容并不能够改善系统的性能。

除了考虑系统的性能,开关/切换噪声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,导致 pop 噪声出现,因此,小的耦合电容可以减少该噪声。

另外, 必须考虑 CB 电容的大小, 选择 CB=1 μ F, Ci = 0.1 μ F ~ 0.39 μ F, 可以满足系统的性能。

设计参考实例

设计规格

输出功率 2.9W

负载阻抗 4欧姆

输入电平 1Vrms

输入电阻 20k

带宽 100Hz~20KHz+/-0.25dB

首先确定最小工作电压

根据 LM4871 的输出功率与电源电压的关系,可以确定电源电压应选择 5.0V。电源电压的裕量可以保证输出可以高于 1W 的功率而不失真。

选择电压后,然后考虑功耗的问题。

确定电压增益

要求 AvD 大于 SQRT(Po×RL) /V_{IN}, 即 V_{orms}/V_{inrms}, 而 Rf/Ri=A_{VD}/2, 在该设计中, 可以计算得出 A_{VD} 最小为 2.83, 选择 A_{VD} = 3, 可以计算得到 Ri = 20K, Rf = 30K。

最后根据带宽要求来确定输入电容

输入低频的 - 3dB 带宽为 100Hz, 1/5 低频点低于 - 3dB 约 0.17dB 及 5 倍高频点, 在规格要求以内, 取 $f_L = 20$ Hz, $f_H = 100$ KHz, 因此可得 Ci 约 0.39 μ F。

高频点 f_H 由放大器的 GBW 决定,至少要求 GBW 大于 A_{VD}×f_H = 300KHz,远小于 LM4871F 的 2.5MHz。

其它注意事项

LM4871 单位增益稳定,但如果增益超过 10 倍(20dB)时,额外的反馈电容 C_f 需要并联在电阻 R_f 上,避免高频的振荡现象。但必须要求与 R_f 组成的极点频率高于 f_H (在实例中为 300KHz),如本例中选择 C_f 为 25pF 时,转折频率为 320KHz。可以满足要求。

封装外型尺寸

SOP-8L 150mil

Dimensions In Millimeters(SOP8L)											
Symbol:	Α	A1	В	С	C1	D	Q	а	b		
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1 27 DSC		
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 BSC		

MSOP8

Dimensions In Millimeters(MSOP8L)											
Symbol:	Α	A1	В	C	C1	D	Q	а	b		
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65.000		
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.65 BSC		

重要说明:

华冠半导体保留未经通知更改所提供的产品和服务。客户在订货前应获取最新的相关信息,并核实这些信息是否最新且完整的。

客户在使用华冠半导体产品进行系统设计和整机制造时有责任遵守安全标准并采取安全措施,以避免潜在风险可能导致人身伤害或财产损失情况的发生。

华冠半导体产品未获得生命支持、军事、航空航天等领域应用之许可,华冠半导体将不承担产品在这些领域应用造成的后果。

华冠半导体保证公司所生产半导体产品的性能达到在销售时可应用的性能指标。测试和其他质量控制技术的使用只限于华冠半导体的质量保证范围内。每个器件并非所有参数均需要检测。以上文档资料仅供参考,一切以实物参数为准。

华冠半导体的文档资料,仅在没有对内容进行任何篡改且带有相关授权的情况下才允许进行复制。华冠半导体对篡改过的文件不承担任何责任或义务。