Considerare l'automa A definito dal diagramma di stato in figura.

Determinare in dettaglio tutti gli elementi della quintupla che lo definisce.

A accetta o meno le stringhe 1101, 1021, ε? Giustificare la risposta, risposte non giustificate non sono valutate.

i) Determinare la 5-tupla che lo descrive (specificandone ognuna delle componenti)

ii) Per ognuna delle seguenti stringhe determinare se essa appartiene o meno a L(N)

bb :

abaa:

abb:

a) Descrivere la 5-tupla che definisce un Automa Finito NON Deterministico (NFA).

b) Disegnare l'automa avente: $Q = \{q_0, q_1, q_2, q_3\}$, stato iniziale $q_0, F = \{q_3\}, \Sigma = \{a, b\}$, e funzione di transizione

	a	b	€
q_0	$\{q_1\}$	$\{q_0, q_2\}$	Ø
q_1	$\{q_2\}$	$\{q_1\}$	$\{q_1\}$
q_2	$\{q_1\}$	$\{q_2, q_3\}$	$\{q_2\}$
q_3	$\{q_3\}$	Ø	$\{q_3\}$

Accetta o meno le stringhe aaa, bb e bbbb??

Definire un automa deterministico A con alfabeto $\Sigma = \{0,1\}$ il cui linguaggio sia

 $L(A) = \{w \in \Sigma^{\bullet} \mid w \text{ contiene la sottostringa 000 ma non la sottostringa 111}\}$

Vedere L(A) come intersezione di L' e L"

Creare gli automi per le due condizioni ed utilizzare la costruzione per l'intersezione

- a) Dati i linguaggi L' e L'' definirne la concatenazione L = L'L''.
- b)Illustrare la dimostrazione che la classe dei linguaggi regolari é chiusa per l'operazione di concatenazione utilizzando come esempio guida l'automa C che riconosce la concatenazione dei linguaggi dei due automi A e B descritti sotto. Non sono accettate né dimostrazioni generiche, né il diagramma di C senza giustificazioni.

A)
$$Q = \{q_0, q_1, q_2\}$$
, state iniziale $q_0, F = \{q_0, q_1\}$, $\Sigma = \{0, 1, 2\}$, e funzione di transizione
$$\begin{vmatrix} 0 & 1 & 2 \\ q_0 & q_0 & q_1 & q_0 \\ q_1 & q_1 & q_2 & q_2 \\ q_2 & q_0 & q_2 & q_1 \end{vmatrix}$$
B) $Q' = \{r_0, r_1, r_2\}$, state iniziale $r_0, F' = \{r_0, r_3\}$, $\Sigma = \{0, 1, 2\}$, e funzione di transizione
$$\begin{vmatrix} 0 & 1 & 2 \\ r_0 & r_1 & r_2 & r_3 \\ r_1 & r_2 & r_0 & r_1 \\ r_2 & r_2 & r_0 & r_1 \\ r_3 & r_1 & r_0 & r_0 \end{vmatrix}$$

Si deve fornire e giustificare la quintupla che definisce l'automa C.

Determinare, utilizzando il metodo studiato, le espressioni regolari corrispondenti ai DFA dell'esercizio precedente

- Sintetizzare la dimostrazione che per ogni espressione regolare esiste un NFA equivalente.
- · Determinare (illustrando il metodo studiato) l'espressione regolare equivalente all'automa in figura

Sintetizzare la dimostrazione che per ogni espressione regolare esiste un NFA equivalente. Applicare il metodo descritto all'espressione regolare $((a \cup bb)a)^* \cup \epsilon$.

- a) Descrivere la 5-tupla che definisce un Automa Finito NON Deterministico (NFA) e dare la definizione (formale e rigorosa) di stringa riconosciuta da un NFA.
- b) Determinare il DFA relativa al NFA avente: $Q = \{q_0, q_1, q_2, q_3\}$, stato iniziale $q_0, F = \{q_3\}, \Sigma = \{0, 1\}$, e funzione di transizione

	0	1	€
q_0	$\{q_0, q_2\}$	q_1	Ø
q_1	q_1	q_2	$\emptyset q_2$
q_2	q_1	$\{q_2, q_3\}$	q_3
q_3	q_3	Ø	q_2

Giustificare la risposta, risposte non giustificate non sono valutate.

b) Data l'espressione regolare $E=(01\cup 100)^{\bullet}$, applicare le regole studiate per costruire un automa A tale che L(A)=L(E).

Fornire 2 stringhe in L(E) e 2 non in L(E)

b) Definire un automa finito deterministico A il cui linguaggio sia L(E) con $E=((0\cup 1)00)^{\bullet}\cup (0\cup 1)^{\bullet}$ Bisogna mostrare tutti i passaggi.

Fornire 2 stringhe in L(E) e 2 non in L(E)

Mostrare che $L = \{a^i b^j a^{i+j} | i, j \ge 0\} \subseteq \{a, b\}^*$ non é regolare.

Enunciare il Pumping Lemma.

Sia $L = \{w \mid w = xx^R, x \in \{0,1\}^*\}$. Mostrare che L non appartiene alla classe dei linguaggi regolari. Applicare il Pumping Lemma. (Nota: x^R rappresenta il reverse della stringa x)

- (a) Fornire la definizione formale di Macchina di Turing deterministica multinastro.
- (b) Per la macchina in figura, fornire l'albero delle computazioni su input 110;

Transizioni non indicate portano in q_{Rej} .

- Fornire la definizione di Macchina di Turing M.
- 2) Sia M una Macchina di Turing con alfabeto input $\Sigma = \{a, b\}$. Per ognuna delle seguenti stringhe w, fornire la sequenza di configurazioni della computazione di M su input w.

(a)
$$w = 01$$
, $(b)w = 01101$

0=Stato iniziale, 3=Stato accept, 4=Stato Reject

Fornire uno stayer M a due nastri che avendo in input una stringa binaria copia il primo carattere e lo scrive dopo l'ultimo carattere dell'input. Per esempio: sull'input vuoto, la macchina deve fermarsi nello stato accept con blank sul primo nastro (ignorare la posizione della testine al termine dalla computazione); su input 0, la macchina deve fermarsi nello stato accept con 00 sul primo nastro; su input 0110, la macchina deve fermarsi nello stato accept con 01100 sul primo nastro Fornire:

- la descrizione ad alto livello (cioé l'idea di funzionamento) di M
- l'implementazione (cioé il diagramma degli stati) di M giustificando il passaggio dal punto 1) al punto 2).