Assignment-07-DBSCAN Clustering (Crimes)

```
In [33]: # Import Libraries
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.cluster import DBSCAN
    from sklearn.preprocessing import StandardScaler
In [34]: crim=pd.read_csv('crime_data.csv')
    crim
```

Out[34]:		Unnamed: 0	Murder	Assault	UrbanPop	Rape
	0	Alabama	13.2	236	58	21.2
	1	Alaska	10.0	263	48	44.5
	2	Arizona	8.1	294	80	31.0
	3	Arkansas	8.8	190	50	19.5
	4	California	9.0	276	91	40.6
	5	Colorado	7.9	204	78	38.7
	6	Connecticut	3.3	110	77	11.1
	7	Delaware	5.9	238	72	15.8
	8	Florida	15.4	335	80	31.9
	9	Georgia	17.4	211	60	25.8
	10	Hawaii	5.3	46	83	20.2
	11	Idaho	2.6	120	54	14.2
	12	Illinois	10.4	249	83	24.0
	13	Indiana	7.2	113	65	21.0
	14	Iowa	2.2	56	57	11.3
	15	Kansas	6.0	115	66	18.0
	16	Kentucky	9.7	109	52	16.3
	17	Louisiana	15.4	249	66	22.2
	18	Maine	2.1	83	51	7.8
	19	Maryland	11.3	300	67	27.8
	20	Massachusetts	4.4	149	85	16.3
	21	Michigan	12.1	255	74	35.1
	22	Minnesota	2.7	72	66	14.9
	23	Mississippi	16.1	259	44	17.1
	24	Missouri	9.0	178	70	28.2
	25	Montana	6.0	109	53	16.4
	26	Nebraska	4.3	102	62	16.5
	27	Nevada	12.2	252	81	46.0
	28	New Hampshire	2.1	57	56	9.5
	29	New Jersey	7.4	159	89	18.8
	30	New Mexico	11.4	285	70	32.1
	31	New York	11.1	254	86	26.1
	32	North Carolina	13.0	337	45	16.1
	33	North Dakota	8.0	45	44	7.3
	34	Ohio	7.3	120	75	21.4
	35	Oklahoma	6.6	151	68	20.0
	36	Oregon	4.9	159	67	29.3
	37	Pennsylvania	6.3	106	72	14.9
Loading [MathJax]	38	Rhode Island	3.4	174	87	8.3
Loading [ivialisax]	, exte	naionaradic.ja				

	Unnamed: 0	Murder	Assault	UrbanPop	Rape
39	South Carolina	14.4	279	48	22.5
40	South Dakota	3.8	86	45	12.8
41	Tennessee	13.2	188	59	26.9
42	Texas	12.7	201	80	25.5
43	Utah	3.2	120	80	22.9
44	Vermont	2.2	48	32	11.2
45	Virginia	8.5	156	63	20.7
46	Washington	4.0	145	73	26.2
47	West Virginia	5.7	81	39	9.3
48	Wisconsin	2.6	53	66	10.8
49	Wyoming	6.8	161	60	15.6

```
In [36]: #Normalized data fuction
def norm_func(i):
    x=(i-i.min())/(i.max()-i.min())
    return(x)

In [37]: df_norm=norm_func(crim.iloc[:,1:])
    df_norm
```

Out[37]:		Murder	Assault	UrbanPop	Rape
	0	0.746988	0.654110	0.440678	0.359173
	1	0.554217	0.746575	0.271186	0.961240
	2	0.439759	0.852740	0.813559	0.612403
	3	0.481928	0.496575	0.305085	0.315245
	4	0.493976	0.791096	1.000000	0.860465
	5	0.427711	0.544521	0.779661	0.811370
	6	0.150602	0.222603	0.762712	0.098191
	7	0.307229	0.660959	0.677966	0.219638
	8	0.879518	0.993151	0.813559	0.635659
	9	1.000000	0.568493	0.474576	0.478036
	10	0.271084	0.003425	0.864407	0.333333
	11	0.108434	0.256849	0.372881	0.178295
	12	0.578313	0.698630	0.864407	0.431525
	13	0.385542	0.232877	0.559322	0.354005
	14	0.084337	0.037671	0.423729	0.103359
	15	0.313253	0.239726	0.576271	0.276486
	16	0.536145	0.219178	0.338983	0.232558
	17	0.879518	0.698630	0.576271	0.385013
	18	0.078313	0.130137	0.322034	0.012920
	19	0.632530	0.873288	0.593220	0.529716
	20	0.216867	0.356164	0.898305	0.232558
	21	0.680723	0.719178	0.711864	0.718346
	22	0.114458	0.092466	0.576271	0.196382
	23	0.921687	0.732877	0.203390	0.253230
	24	0.493976	0.455479	0.644068	0.540052
	25	0.313253	0.219178	0.355932	0.235142
	26	0.210843	0.195205	0.508475	0.237726
	27	0.686747	0.708904	0.830508	1.000000
	28	0.078313	0.041096	0.406780	0.056848
	29	0.397590	0.390411	0.966102	0.297158
	30	0.638554	0.821918	0.644068	0.640827
	31	0.620482	0.715753	0.915254	0.485788
	32	0.734940	1.000000	0.220339	0.227390
	33	0.000000	0.000000	0.203390	0.000000
	34	0.391566	0.256849	0.728814	0.364341
	35	0.349398	0.363014	0.610169	0.328165
	36	0.246988	0.390411	0.593220	0.568475
	37	0.331325	0.208904	0.677966	0.196382
ading [MathJax	38 1/ovto	0.156627	0.441781	0.932203	0.025840
auriy [ivialiiJdX	J/EXIE	11310113/3816.	Jo		

Loading [MathJax]

	Murder	Assault	UrbanPop	Rape
39	0.819277	0.801370	0.271186	0.392765
40	0.180723	0.140411	0.220339	0.142119
41	0.746988	0.489726	0.457627	0.506460
42	0.716867	0.534247	0.813559	0.470284
43	0.144578	0.256849	0.813559	0.403101
44	0.084337	0.010274	0.000000	0.100775
45	0.463855	0.380137	0.525424	0.346253
46	0.192771	0.342466	0.694915	0.488372
47	0.295181	0.123288	0.118644	0.051680
48	0.108434	0.027397	0.576271	0.090439
49	0.361446	0.397260	0.474576	0.214470

```
In [38]: dendrogram=sch.dendrogram(sch.linkage(df_norm, method='average'))
```



```
In [39]: # create clusters
hc=AgglomerativeClustering(n_clusters=3, affinity='euclidean', linkage='complete')
hc
Out[39]: AgglomerativeClustering(linkage='complete', n_clusters=3)
```

```
In [40]: y_hc=hc.fit_predict(df_norm)
y_hc
```

```
Out[40]: array([0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 1, 2, 1, 1, 0, 2, 0, 1, 0, 1, 0, 0, 2, 2, 0, 2, 1, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 0, 2, 0, 0, 1, 2, 1, 1, 2, 1, 1], dtype=int64)
```

```
In [41]: crim['h_clusterid']=hc.labels_
    crim
```

Out[41]:		Unnamed: 0	Murder	Assault	UrbanPop	Rape	h_clusterid
	0	Alabama	13.2	236	58	21.2	0
	1	Alaska	10.0	263	48	44.5	0
	2	Arizona	8.1	294	80	31.0	0
	3	Arkansas	8.8	190	50	19.5	1
	4	California	9.0	276	91	40.6	0
	5	Colorado	7.9	204	78	38.7	0
	6	Connecticut	3.3	110	77	11.1	1
	7	Delaware	5.9	238	72	15.8	1
	8	Florida	15.4	335	80	31.9	0
	9	Georgia	17.4	211	60	25.8	0
	10	Hawaii	5.3	46	83	20.2	1
	11	Idaho	2.6	120	54	14.2	2
	12	Illinois	10.4	249	83	24.0	0
	13	Indiana	7.2	113	65	21.0	1
	14	Iowa	2.2	56	57	11.3	2
	15	Kansas	6.0	115	66	18.0	1
	16	Kentucky	9.7	109	52	16.3	1
	17	Louisiana	15.4	249	66	22.2	0
	18	Maine	2.1	83	51	7.8	2
	19	Maryland	11.3	300	67	27.8	0
	20	Massachusetts	4.4	149	85	16.3	1
	21	Michigan	12.1	255	74	35.1	0
	22	Minnesota	2.7	72	66	14.9	1
	23	Mississippi	16.1	259	44	17.1	0
	24	Missouri	9.0	178	70	28.2	0
	25	Montana	6.0	109	53	16.4	2
	26	Nebraska	4.3	102	62	16.5	2
	27	Nevada	12.2	252	81	46.0	0
	28	New Hampshire	2.1	57	56	9.5	2
	29	New Jersey	7.4	159	89	18.8	1
	30	New Mexico	11.4	285	70	32.1	0
	31	New York	11.1	254	86	26.1	0
	32	North Carolina	13.0	337	45	16.1	0
	33	North Dakota	0.8	45	44	7.3	2
	34	Ohio	7.3	120	75	21.4	1
	35	Oklahoma	6.6	151	68	20.0	1
	36	Oregon	4.9	159	67	29.3	1
	37	Pennsylvania	6.3	106	72	14.9	1
Looding [Masth 7	38	Rhode Island	3.4	174	87	8.3	1
Loading [MathJax	J/exte	nsions/Sale.JS					

	Unnamed: 0	Murder	Assault	UrbanPop	Rape	h_clusterid
39	South Carolina	14.4	279	48	22.5	0
40	South Dakota	3.8	86	45	12.8	2
41	Tennessee	13.2	188	59	26.9	0
42	Texas	12.7	201	80	25.5	0
43	Utah	3.2	120	80	22.9	1
44	Vermont	2.2	48	32	11.2	2
45	Virginia	8.5	156	63	20.7	1
46	Washington	4.0	145	73	26.2	1
47	West Virginia	5.7	81	39	9.3	2
48	Wisconsin	2.6	53	66	10.8	1
49	Wyoming	6.8	161	60	15.6	1

Kmeans

```
In [42]:
         from sklearn.cluster import KMeans
         from scipy.spatial.distance import cdist
         crim1=pd.read_csv('crime_data.csv')
In [43]:
         #Normalized data fuction
In [44]:
         def norm_func(i):
             x=(i-i.min())/(i.max()-i.min())
             return(x)
         df_norm=norm_func(crim.iloc[:,1:])
In [45]:
In [46]:
         # Elbow curv
         wcss=[]
         for i in range(1,11):
             kmeans=KMeans(n_clusters=i)
             kmeans.fit(df_norm)
             wcss.append(kmeans.inertia_)
         plt.plot(range(1,11),wcss)
         plt.title('Elbow curv')
         plt.xlabel('number of clusters')
         plt.ylabel('WCSS')
         plt.show()
         C:\Users\HP\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:1036: UserWarning: KM
         eans is known to have a memory leak on Windows with MKL, when there are less chunks than
         available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=
         1.
           warnings.warn(
```


Out[48]:		Unnamed: 0	Murder	Assault	UrbanPop	Rape	Clust
	0	Alabama	13.2	236	58	21.2	3
	1	Alaska	10.0	263	48	44.5	0
	2	Arizona	8.1	294	80	31.0	0
	3	Arkansas	8.8	190	50	19.5	2
	4	California	9.0	276	91	40.6	0
	5	Colorado	7.9	204	78	38.7	0
	6	Connecticut	3.3	110	77	11.1	2
	7	Delaware	5.9	238	72	15.8	2
	8	Florida	15.4	335	80	31.9	0
	9	Georgia	17.4	211	60	25.8	3
	10	Hawaii	5.3	46	83	20.2	2
	11	Idaho	2.6	120	54	14.2	1
	12	Illinois	10.4	249	83	24.0	0
	13	Indiana	7.2	113	65	21.0	2
	14	Iowa	2.2	56	57	11.3	1
	15	Kansas	6.0	115	66	18.0	2
	16	Kentucky	9.7	109	52	16.3	2
	17	Louisiana	15.4	249	66	22.2	3
	18	Maine	2.1	83	51	7.8	1
	19	Maryland	11.3	300	67	27.8	0
	20	Massachusetts	4.4	149	85	16.3	2
	21	Michigan	12.1	255	74	35.1	0
	22	Minnesota	2.7	72	66	14.9	2
	23	Mississippi	16.1	259	44	17.1	3
	24	Missouri	9.0	178	70	28.2	0
	25	Montana	6.0	109	53	16.4	1
	26	Nebraska	4.3	102	62	16.5	1
	27	Nevada	12.2	252	81	46.0	0
	28	New Hampshire	2.1	57	56	9.5	1
	29	New Jersey	7.4	159	89	18.8	2
	30	New Mexico	11.4	285	70	32.1	0
	31	New York	11.1	254	86	26.1	0
	32	North Carolina	13.0	337	45	16.1	3
	33	North Dakota	0.8	45	44	7.3	1
	34	Ohio	7.3	120	75	21.4	2
	35	Oklahoma	6.6	151	68	20.0	2
	36	Oregon	4.9	159	67	29.3	2
	37	Pennsylvania	6.3	106	72	14.9	2
ading [MathJax	38 l/exte	Rhode Island	3.4	174	87	8.3	2
		,					

Loading [MathJax]/

	Unnamed: 0	Murder	Assault	UrbanPop	Rape	Clust
39	South Carolina	14.4	279	48	22.5	3
40	South Dakota	3.8	86	45	12.8	1
41	Tennessee	13.2	188	59	26.9	3
42	Texas	12.7	201	80	25.5	0
43	Utah	3.2	120	80	22.9	2
44	Vermont	2.2	48	32	11.2	1
45	Virginia	8.5	156	63	20.7	2
46	Washington	4.0	145	73	26.2	2
47	West Virginia	5.7	81	39	9.3	1
48	Wisconsin	2.6	53	66	10.8	2
49	Wyoming	6.8	161	60	15.6	2

DBSCAN

```
from sklearn.cluster import DBSCAN
In [50]:
         from sklearn.preprocessing import StandardScaler
         crim3=pd.read_csv('crime_data.csv')
In [51]:
         crim3.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 50 entries, 0 to 49
         Data columns (total 5 columns):
                          Non-Null Count Dtype
          #
              Column
              Unnamed: 0 50 non-null
                                          object
          0
          1
              Murder
                          50 non-null
                                          float64
          2
              Assault
                          50 non-null
                                          int64
          3
              UrbanPop
                          50 non-null
                                          int64
              Rape
                          50 non-null
                                          float64
         dtypes: float64(2), int64(2), object(1)
         memory usage: 2.1+ KB
         df=crim3.iloc[:,1:5]
In [52]:
         df.values
```

```
array([[ 13.2, 236. ,
                                 58.,
                                        21.2],
Out[52]:
                 [ 10. , 263. ,
                                 48.,
                                        44.5],
                    8.1, 294.,
                                 80.,
                                        31.],
                    8.8, 190.,
                                 50.,
                                        19.5],
                    9., 276.,
                                 91.,
                                        40.6],
                    7.9, 204.,
                                 78.,
                                        38.7],
                    3.3, 110.
                                 77.,
                                        11.1],
                    5.9, 238.,
                                 72.,
                                        15.8],
                  15.4, 335. ,
                                 80.,
                                        31.9],
                   17.4, 211.,
                                 60.,
                                        25.8],
                    5.3,
                         46.,
                                 83.,
                                        20.2],
                                 54.,
                    2.6, 120. ,
                                        14.2],
                   10.4, 249. ,
                                 83.,
                                        24.],
                                 65.,
                    7.2, 113.,
                                        21.],
                                 57.,
                    2.2, 56.,
                                        11.3],
                    6., 115.,
                                 66.,
                                        18.],
                    9.7, 109. ,
                                 52.,
                                        16.3],
                  15.4, 249. ,
                                 66.,
                                        22.2],
                    2.1, 83.,
                                 51.,
                                         7.8],
                   11.3, 300. ,
                                 67.,
                                        27.8],
                    4.4, 149. ,
                                 85.,
                                        16.3],
                                 74.,
                                        35.1],
                  12.1, 255. ,
                    2.7, 72.,
                                 66.,
                                        14.9],
                  16.1, 259. ,
                                 44.,
                                        17.1],
                    9., 178.,
                                 70.,
                                        28.2],
                    6. , 109. ,
                                 53.,
                                        16.4],
                    4.3, 102.,
                                 62.,
                                        16.5],
                   12.2, 252. ,
                                 81.,
                                        46.],
                    2.1, 57.,
                                 56.,
                                         9.5],
                   7.4, 159.,
                                 89.,
                                        18.8],
                  11.4, 285. ,
                                 70.,
                                        32.1],
                                 86.,
                  11.1, 254. ,
                                        26.1],
                                 45.,
                   13. , 337. ,
                                        16.1],
                                 44.,
                    0.8, 45.
                                         7.3],
                    7.3, 120. ,
                                 75.,
                                        21.4],
                    6.6, 151.,
                                 68.,
                                        20.],
                    4.9, 159.,
                                 67.,
                                        29.3],
                    6.3, 106. ,
                                 72.,
                                        14.9],
                    3.4, 174.,
                                 87.,
                                         8.3],
                                 48.,
                   14.4, 279. ,
                                        22.5],
                                 45.,
                    3.8, 86.,
                                        12.8],
                   13.2, 188. ,
                                 59.,
                                        26.9],
                                 80.,
                   12.7, 201. ,
                                        25.5],
                                 80.,
                    3.2, 120. ,
                                        22.9],
                    2.2, 48.,
                                 32.,
                                        11.2],
                    8.5, 156. ,
                                 63.,
                                        20.7],
                    4., 145.,
                                 73.,
                                        26.2],
                         81.,
                                 39.,
                    5.7,
                                         9.3],
                          53.,
                                 66.,
                    2.6,
                                        10.8],
                    6.8, 161.,
                                 60.,
                                        15.6]])
         stscaler=StandardScaler().fit(df.values)
In [53]:
         x=stscaler.transform(df.values)
         Χ
```

```
array([[ 1.25517927,
                             0.79078716, -0.52619514, -0.00345116],
Out[53]:
                [ 0.51301858, 1.11805959, -1.22406668, 2.50942392],
                [ 0.07236067, 1.49381682, 1.00912225, 1.05346626],
                  0.23470832, 0.23321191, -1.08449238, -0.18679398],
                [ 0.28109336, 1.2756352 , 1.77678094, 2.08881393],
                [ 0.02597562, 0.40290872, 0.86954794, 1.88390137],
                [-1.04088037, -0.73648418, 0.79976079, -1.09272319],
                [-0.43787481, 0.81502956, 0.45082502, -0.58583422],
                [ 1.76541475, 1.99078607, 1.00912225, 1.1505301 ],
                [ 2.22926518, 0.48775713, -0.38662083, 0.49265293],
                [-0.57702994, -1.51224105, 1.21848371, -0.11129987],
                [-1.20322802, -0.61527217, -0.80534376, -0.75839217],
                [ 0.60578867, 0.94836277, 1.21848371, 0.29852525],
                [-0.13637203, -0.70012057, -0.03768506, -0.0250209],
                [-1.29599811, -1.39102904, -0.5959823 , -1.07115345],
                [-0.41468229, -0.67587817, 0.03210209, -0.34856705],
                [ 0.44344101, -0.74860538, -0.94491807, -0.53190987],
                [ 1.76541475, 0.94836277, 0.03210209, 0.10439756],
                [-1.31919063, -1.06375661, -1.01470522, -1.44862395],
                [ 0.81452136, 1.56654403, 0.10188925, 0.70835037],
                [-0.78576263, -0.26375734, 1.35805802, -0.53190987],
                [ 1.00006153, 1.02108998, 0.59039932, 1.49564599],
                [-1.1800355 , -1.19708982, 0.03210209, -0.68289807],
                [ 1.9277624 , 1.06957478, -1.5032153 , -0.44563089],
                [ 0.28109336, 0.0877575 , 0.31125071, 0.75148985],
                [-0.41468229, -0.74860538, -0.87513091, -0.521125],
                [-0.80895515, -0.83345379, -0.24704653, -0.51034012],
                [ 1.02325405, 0.98472638, 1.0789094 , 2.671197 ],
                [-1.31919063, -1.37890783, -0.66576945, -1.26528114],
                [-0.08998698, -0.14254532, 1.63720664, -0.26228808],
                [0.83771388, 1.38472601, 0.31125071, 1.17209984],
                [ 0.76813632, 1.00896878, 1.42784517, 0.52500755],
                [ 1.20879423, 2.01502847, -1.43342815, -0.55347961],
                [-1.62069341, -1.52436225, -1.5032153 , -1.50254831],
                [-0.11317951, -0.61527217, 0.66018648, 0.01811858],
                [-0.27552716, -0.23951493, 0.1716764 , -0.13286962],
                [-0.66980002, -0.14254532, 0.10188925, 0.87012344],
                [-0.34510472, -0.78496898, 0.45082502, -0.68289807],
                [-1.01768785, 0.03927269, 1.49763233, -1.39469959],
                [ 1.53348953, 1.3119988 , -1.22406668, 0.13675217],
                [-0.92491776, -1.027393 , -1.43342815, -0.90938037],
                [ 1.25517927, 0.20896951, -0.45640799, 0.61128652],
                [\ 1.13921666, \ 0.36654512, \ 1.00912225, \ 0.46029832],
                [-1.06407289, -0.61527217, 1.00912225, 0.17989166],
                [-1.29599811, -1.48799864, -2.34066115, -1.08193832],
                [ 0.16513075, -0.17890893, -0.17725937, -0.05737552],
                [-0.87853272, -0.31224214, 0.52061217, 0.53579242],
                [-0.48425985, -1.08799901, -1.85215107, -1.28685088],
                [-1.20322802, -1.42739264, 0.03210209, -1.1250778],
                [-0.22914211, -0.11830292, -0.38662083, -0.60740397]])
         dbscan=DBSCAN(eps=2,min_samples=5)
In [54]:
         dbscan.fit(x)
         DBSCAN(eps=2)
Out[54]:
In [55]:
         dbscan.labels_
                                     Θ,
         array([ 0, -1,
                                                                             Θ,
                                                                                 Θ,
                         Θ,
                             Θ,
                                 Θ,
                                         Θ,
                                             Θ,
                                                 Θ,
                                                     Θ,
                                                         Θ,
                                                             Θ,
                                                                 Θ,
                                                                     Θ,
                                                                         Θ,
Out[55]:
                                                        Θ,
                                                             Θ,
                                                                 Θ,
                                                                     Θ,
                                                                         Θ,
                 0, 0, 0,
                             Ο,
                                 Θ,
                                     0, 0,
                                             Θ,
                                                 Ο,
                                                     Ο,
                                                                             Θ,
                                                                                 Θ,
                 0, 0,
                                 0, 0, 0, 0, 0, 0, 0,
                        Θ,
                             Θ,
                                                            Θ,
                                                                Θ,
                                                                    Θ,
                                                                         Θ,
               dtype=int64)
```

Loading [MathJax]/extensions/Safe.js | Loading [MathJax]/extensions/Safe.js |

Out[56]:		cluster
	0	0
	1	-1
	2	0
	3	0
	4	0
	5	0
	6	0
	7	0
	8	0
	9	0
	10	0
	11	0
	12	0
	13	0
	14	0
	15	0
	16	0
	17	0
	18	0
	19	0
	20	0
	21	0
	22	0
	23	0
	24	0
	25	0
	26	0
	27	0
	28	0
	29	0
	30	0
	31	0
	32	0
	33	0
	34	0
	35	0
	36	0
	37	0
_oading [MathJax]	38 Vovto	0

	cluster
39	0
40	0
41	0
42	0
43	0
44	0
45	0
46	0
47	0
48	0
49	0

In [57]: pd.concat([crim3,cl],axis=1)

Out[57]:		Unnamed: 0	Murder	Assault	UrbanPop	Rape	cluster
	0	Alabama	13.2	236	58	21.2	0
	1	Alaska	10.0	263	48	44.5	-1
	2	Arizona	8.1	294	80	31.0	0
	3	Arkansas	8.8	190	50	19.5	0
	4	California	9.0	276	91	40.6	0
	5	Colorado	7.9	204	78	38.7	0
	6	Connecticut	3.3	110	77	11.1	0
	7	Delaware	5.9	238	72	15.8	0
	8	Florida	15.4	335	80	31.9	0
	9	Georgia	17.4	211	60	25.8	0
	10	Hawaii	5.3	46	83	20.2	0
	11	Idaho	2.6	120	54	14.2	0
	12	Illinois	10.4	249	83	24.0	0
	13	Indiana	7.2	113	65	21.0	0
	14	Iowa	2.2	56	57	11.3	0
	15	Kansas	6.0	115	66	18.0	0
	16	Kentucky	9.7	109	52	16.3	0
	17	Louisiana	15.4	249	66	22.2	0
	18	Maine	2.1	83	51	7.8	0
	19	Maryland	11.3	300	67	27.8	0
	20	Massachusetts	4.4	149	85	16.3	0
	21	Michigan	12.1	255	74	35.1	0
	22	Minnesota	2.7	72	66	14.9	0
	23	Mississippi	16.1	259	44	17.1	0
	24	Missouri	9.0	178	70	28.2	0
	25	Montana	6.0	109	53	16.4	0
	26	Nebraska	4.3	102	62	16.5	0
	27	Nevada	12.2	252	81	46.0	0
	28	New Hampshire	2.1	57	56	9.5	0
	29	New Jersey	7.4	159	89	18.8	0
	30	New Mexico	11.4	285	70	32.1	0
	31	New York	11.1	254	86	26.1	0
	32	North Carolina	13.0	337	45	16.1	0
	33	North Dakota	0.8	45	44	7.3	0
	34	Ohio	7.3	120	75	21.4	0
	35	Oklahoma	6.6	151	68	20.0	0
	36	Oregon	4.9	159	67	29.3	0
	37	Pennsylvania	6.3	106	72	14.9	0
ading [MathJax	38]/exte	Rhode Island	3.4	174	87	8.3	0
J		,					

Loading [MathJax]/

	Unnamed: 0	Murder	Assault	UrbanPop	Rape	cluster
39	South Carolina	14.4	279	48	22.5	0
40	South Dakota	3.8	86	45	12.8	0
41	Tennessee	13.2	188	59	26.9	0
42	Texas	12.7	201	80	25.5	0
43	Utah	3.2	120	80	22.9	0
44	Vermont	2.2	48	32	11.2	0
45	Virginia	8.5	156	63	20.7	0
46	Washington	4.0	145	73	26.2	0
47	West Virginia	5.7	81	39	9.3	0
48	Wisconsin	2.6	53	66	10.8	0
49	Wyoming	6.8	161	60	15.6	0

In [58]: # Adding clusters to dataset
 crim3['clusters']=dbscan.labels_

Out[58]:		Unnamed: 0	Murder	Assault	UrbanPop	Rape	clusters
	0	Alabama	13.2	236	58	21.2	0
	1	Alaska	10.0	263	48	44.5	-1
	2	Arizona	8.1	294	80	31.0	0
	3	Arkansas	8.8	190	50	19.5	0
	4	California	9.0	276	91	40.6	0
	5	Colorado	7.9	204	78	38.7	0
	6	Connecticut	3.3	110	77	11.1	0
	7	Delaware	5.9	238	72	15.8	0
	8	Florida	15.4	335	80	31.9	0
	9	Georgia	17.4	211	60	25.8	0
	10	Hawaii	5.3	46	83	20.2	0
	11	Idaho	2.6	120	54	14.2	0
	12	Illinois	10.4	249	83	24.0	0
	13	Indiana	7.2	113	65	21.0	0
	14	Iowa	2.2	56	57	11.3	0
	15	Kansas	6.0	115	66	18.0	0
	16	Kentucky	9.7	109	52	16.3	0
	17	Louisiana	15.4	249	66	22.2	0
	18	Maine	2.1	83	51	7.8	0
	19	Maryland	11.3	300	67	27.8	0
	20	Massachusetts	4.4	149	85	16.3	0
	21	Michigan	12.1	255	74	35.1	0
	22	Minnesota	2.7	72	66	14.9	0
	23	Mississippi	16.1	259	44	17.1	0
	24	Missouri	9.0	178	70	28.2	0
	25	Montana	6.0	109	53	16.4	0
	26	Nebraska	4.3	102	62	16.5	0
	27	Nevada	12.2	252	81	46.0	0
	28	New Hampshire	2.1	57	56	9.5	0
	29	New Jersey	7.4	159	89	18.8	0
	30	New Mexico	11.4	285	70	32.1	0
	31	New York	11.1	254	86	26.1	0
	32	North Carolina	13.0	337	45	16.1	0
	33	North Dakota	0.8	45	44	7.3	0
	34	Ohio	7.3	120	75	21.4	0
	35	Oklahoma	6.6	151	68	20.0	0
	36	Oregon	4.9	159	67	29.3	0
	37	Pennsylvania	6.3	106	72	14.9	0
	38	Rhode Island	3.4	174	87	8.3	0
ading [MathJax]	J/exte	nsions/Safe.js					

	Unnamed: 0	Murder	Assault	UrbanPop	Rape	clusters
39	South Carolina	14.4	279	48	22.5	0
40	South Dakota	3.8	86	45	12.8	0
41	Tennessee	13.2	188	59	26.9	0
42	Texas	12.7	201	80	25.5	0
43	Utah	3.2	120	80	22.9	0
44	Vermont	2.2	48	32	11.2	0
45	Virginia	8.5	156	63	20.7	0
46	Washington	4.0	145	73	26.2	0
47	West Virginia	5.7	81	39	9.3	0
48	Wisconsin	2.6	53	66	10.8	0
49	Wyoming	6.8	161	60	15.6	0

In [59]: crim3.groupby('clusters').agg(['mean']).reset_index()

C:\Users\HP\AppData\Local\Temp\ipykernel_22220\3983941485.py:1: FutureWarning: ['Unname
d: 0'] did not aggregate successfully. If any error is raised this will raise in a futur
e version of pandas. Drop these columns/ops to avoid this warning.
 crim3.groupby('clusters').agg(['mean']).reset_index()

 Out[59]:
 clusters
 Murder
 Assault mean
 UrbanPop mean
 Rape

 0
 -1
 10.000000
 263.000000
 48.000000
 44.500000

 1
 0
 7.742857
 168.877551
 65.897959
 20.757143

```
In [60]: # Plot Clusters
plt.figure(figsize=(10, 7))
plt.scatter(crim3['clusters'],crim3['UrbanPop'], c=dbscan.labels_)
```

Out[60]: <matplotlib.collections.PathCollection at 0x2b3274a2d00>

Assignment-07-Clustering-Hierarchical (Airlines)

Using Normalize Function

```
In [77]: # Import Libraries
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.cluster.hierarchy as sch
    from sklearn.cluster import AgglomerativeClustering
    from sklearn.preprocessing import normalize
In [78]: # Import Dataset
    airline=pd.read_csv('Airlines.csv')
    airline
```

Out[78]:		ID#	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_miles_12				
	0	1	28143	0	1	1	1	174	1					
	1	2	19244	0	1	1	1	215	2					
	2	3	41354	0	1	1	1	4123	4					
	3	4	14776	0	1	1	1	500	1					
	4	5	97752	0	4	1	1	43300	26	20				
	3994	4017	18476	0	1	1	1	8525	4	:				
	3995	4018	64385	0	1	1	1	981	5					
	3996	4019	73597	0	3	1	1	25447	8					
	3997	4020	54899	0	1	1	1	500	1	į				
	3998	4021	3016	0	1	1	1	0	0					
In [79]:	3999 rows × 12 columns airline.info()													
	<pre><cla: #="" 0="" 1="" 10="" 11="" 2="" 3="" 4="" 5="" 6="" 7="" 8="" 9="" data="" dtype<="" pre="" range=""></cla:></pre>	ss 'pa eIndex colur Colur ID# Balar Qual cc1_r cc2_r Bonus Bonus Fligh Days_ Awarces: ir	andas.co x: 3999 mns (tot mn nce _miles miles miles s_miles s_trans nt_miles nt_trans _since_e	399 399 399 399 399 399 12mo 399 _12 399 nroll 399	to 3998	nt Dtype l int64								

In [80]: airline2=airline.drop(['ID#'],axis=1)

airline2

Out[80]:		Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_miles_12mo	Fl
	0	28143	0	1	1	1	174	1	0	
	1	19244	0	1	1	1	215	2	0	
	2	41354	0	1	1	1	4123	4	0	
	3	14776	0	1	1	1	500	1	0	
	4	97752	0	4	1	1	43300	26	2077	
	3994	18476	0	1	1	1	8525	4	200	
	3995	64385	0	1	1	1	981	5	0	
	3996	73597	0	3	1	1	25447	8	0	
	3997	54899	0	1	1	1	500	1	500	
	3998	3016	0	1	1	1	0	0	0	

3999 rows × 11 columns

```
In [81]: # Normalize heterogenous numerical data
    airline2_norm=pd.DataFrame(normalize(airline2), columns=airline2.columns)
    airline2_norm
```

Out[81]:		Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_miles_12mo	F
	0	0.970414	0.0	0.000034	0.000034	0.000034	0.006000	0.000034	0.000000	_
	1	0.940209	0.0	0.000049	0.000049	0.000049	0.010504	0.000098	0.000000	
	2	0.981113	0.0	0.000024	0.000024	0.000024	0.097817	0.000095	0.000000	
	3	0.904428	0.0	0.000061	0.000061	0.000061	0.030605	0.000061	0.000000	
	4	0.912226	0.0	0.000037	0.000009	0.000009	0.404078	0.000243	0.019383	
	3994	0.905810	0.0	0.000049	0.000049	0.000049	0.417949	0.000196	0.009805	
	3995	0.999649	0.0	0.000016	0.000016	0.000016	0.015231	0.000078	0.000000	
	3996	0.944948	0.0	0.000039	0.000013	0.000013	0.326726	0.000103	0.000000	
	3997	0.999592	0.0	0.000018	0.000018	0.000018	0.009104	0.000018	0.009104	
	3998	0.907271	0.0	0.000301	0.000301	0.000301	0.000000	0.000000	0.000000	

3999 rows × 11 columns

```
In [89]: # Create Dendrograms
plt.figure(figsize=(10, 7))
dendograms=sch.dendrogram(sch.linkage(airline2_norm, 'complete'))
```



```
In [86]:
         # Create Clusters (y)
         hclusters=AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')
         hclusters
         AgglomerativeClustering(n_clusters=5)
Out[86]:
In [87]:
         y=pd.DataFrame(hclusters.fit_predict(airline2_norm),columns=['clustersid'])
         y['clustersid'].value_counts()
              1547
Out[87]:
              1191
         3
               579
               453
         1
               229
         Name: clustersid, dtype: int64
In [93]:
         # Adding clusters to dataset
         airline2['clustersid']=hclusters.labels_
         airline2
```

Out[93]:		Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_miles_12mo	Fl
	0	28143	0	1	1	1	174	1	0	
	1	19244	0	1	1	1	215	2	0	
	2	41354	0	1	1	1	4123	4	0	
	3	14776	0	1	1	1	500	1	0	
	4	97752	0	4	1	1	43300	26	2077	
	3994	18476	0	1	1	1	8525	4	200	
	3995	64385	0	1	1	1	981	5	0	
	3996	73597	0	3	1	1	25447	8	0	
	3997	54899	0	1	1	1	500	1	500	
	3998	3016	0	1	1	1	0	0	0	

3999 rows × 12 columns

In [94]: airline2.groupby('clustersid').agg(['mean']).reset_index()

Out[94]:		clustersid	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trans	Flight_m
			mean	mean	mean	mean	mean	mean	mean	
	0	0	5524.222707	8.755459	1.000000	1.000000	1.000000	584.532751	2.401747	
	1	1	31066.514349	111.415011	3.200883	1.026490	1.070640	40266.935982	17.289183	•
	2	2	81201.080802	136.521008	2.115061	1.013575	1.000646	16350.149968	13.574014	۷
	3	3	69569.894646	97.257340	3.326425	1.032815	1.022453	35743.675302	17.784111	۷
	4	4	94957.590260	215.220823	1.141058	1.005038	1.002519	3524.928631	5.640638	۷

```
In [95]: # Plot Clusters
plt.figure(figsize=(10, 7))
plt.scatter(airline2['clustersid'], airline2['Balance'], c=hclusters.labels_)
```

Out[95]: <matplotlib.collections.PathCollection at 0x2b329d06400>

In []: