Name	Param	Def	Dom	u	$\mathbb{E}[X]$	$\mathbb{E}[X] \text{Var}[X] fgm$	fgm
Bernoulli	d	$P(X = k) = p_X(k) = \begin{cases} p & \text{si } k = 1 \\ q & \text{si } k = 0 \end{cases}$	p si k = 1 $q si k = 0$	1,	d	bd	$e^t + q$
Binomial	n; p	$P(X = k) = p_X(k) = \binom{n}{k} p^k q^{n-k}$	$^{k}q^{n-k}$ $k=0,1,,n$, n	du	bdu	$(e^t + q)^n$
Geométrica	d	$P(X = n) = p_X(n) = q^{n-1}p$	$n = 1, 2, \dots$	2,	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^t}{1-qe^t}$
Pascal	k; p	$P(X = n) = p_X(n) = \binom{n-1}{k-1} q^{n-k} p^k$	$n^{n-k}p^k$ $n=k, k+1, k+2, \dots$, k + 2,	p k	$\frac{kq}{p^2}$	$\left(\frac{pe^t}{1 - qe^t}\right)^k$
Poisson	$\lambda > 0$	$P(X = k) = p_X(k) = \frac{e^{-\lambda \lambda k}}{k!}$	$\frac{\lambda^k}{!!} \qquad \qquad k = 0, 1, \dots$		~	~	$e^{\lambda(e^t-1)}$
$oldsymbol{Hipergeom\'etrica} oldsymbol{n}, r, N$	n, r, N	$P(X = k) = p_X(k) = \frac{\binom{N-r}{n-k}\binom{r}{k}}{\binom{N}{n}}$	$\frac{\binom{N-r}{n-k}\binom{r}{k}}{\binom{N}{n}} \qquad k = 0, 1,, n, r \ge n n\left(\frac{r}{N}\right)$	$n, r \ge n$	$n\left(\frac{r}{N}\right)$	σ^2	

Donde

$$\sigma^2 = n \left(\frac{r}{N} \right) \left(1 - \frac{r}{N} \right) \left(\frac{N-n}{N-1} \right)$$

¹Profesor: Vladimir Moreno G.