P, NP, NP-Completeness

P, NP, NP-Completeness, and Reductions

Introduction

- Some problems can be solved in polynomial time.
 - as most of the problems we have seen in the previous lectures
- You've heard some other problems are "NP-hard" or "NP-complete".
- This lecture:
 - Learn what exactly do we mean by NP-hardness, or NP-completeness.
 - Understand why people believe these problems are hard.

Let's first see some famous NP-hard problems

- SAT
- Vertex Cover
- Independent Set
- Subset Sum
- Hamiltonian Path

SAT (Boolean Satisfiability Problem)

- A Boolean formula is built from variables, operators AND (∧), OR (∨), NOT (¬), and parentheses.
 - Example: $(x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2)$
- A Boolean formula is in conjunctive normal form (CNF) if it is an "AND" of many clauses:
 - Each clause contains "OR" of literals:
 - A literal is a variable x_i or its negation $\neg x_i$
 - The example is in CNF; it has three clauses: $(x_1 \lor x_3 \lor \neg x_4)$, $(x_2 \lor \neg x_3)$ and $(\neg x_1 \lor \neg x_2)$
- [SAT Problem] Given a CNF formula ϕ , decide if there is a value assignment to the variables to make ϕ true.
 - This is true for the example above: $x_1 = \text{true}, x_2 = \text{false}, x_3 = \text{false}$.

Vertex Cover

• Given an undirected graph G = (V, E), a subset of vertices $S \subseteq V$ is a vertex cover if S contains at least one endpoint of every vertex.

Vertex Cover Problem

• [Vertex Cover Problem] Given an undirected graph G = (V, E) and $k \in \mathbb{Z}^+$, decide if the graph has a vertex cover of size k.

For this graph and k = 4, the output should be yes.

Independent Set

• Given an undirected graph G = (V, E), a subset of vertices $S \subseteq V$ is an independent set if there is no edge between any two vertices in S.

an independent set

not an independent set

Independent Set Problem

• [Independent Set Problem] Given an undirected graph G = (V, E) and $k \in \mathbb{Z}^+$, decide if the graph has an independent set of size k.

For this graph and k = 4, the output should be yes.

Subset Sum Problem

- [Subset Sum Problem] Given a collection of integers $S = \{a_1, ..., a_n\}$ and $k \in \mathbb{Z}^+$, decide if there is a sub-collection $T \subseteq S$ such that $\sum_{a_i \in T} a_i = k$.
- The output should be yes for $S = \{1,1,6,13,27\}$ and k = 21, as 1+1+6+13=21.
- The output should be no for $S = \{1,1,6,13,27\}$ and k = 22.

Hamiltonian Path Problem

- Given an undirected graph G = (V, E), a Hamiltonian path is a path containing each vertex exactly once.
- [Hamiltonian Path Problem] Given an undirected graph G = (V, E), decide if it contains a Hamiltonian path.

In this lecture, we will only focus on...

- Decision Problems: those with output yes or no.
- Polynomial Time vs Not Polynomial Time
 - E.g., we will not care about O(n) or $O(n^2)$
 - "Easy" Problems: those can be solved in polynomial time
 - "Hard" problems: those for which people believe cannot be solved in polynomial time

Decision Problem – Formal Definition

- A decision problem is a function $f: \Sigma^* \to \{0, 1\}$
- Σ set of alphabets: for example, binary alphabets $\Sigma = \{0, 1\}$
- Σ^n set of strings using alphabets in Σ with length n
- $\Sigma^* = \bigcup_{n=0}^{\infty} \Sigma^n$ set of all strings with any lengths
- $x \in \Sigma^*$ an instance
- f(x) = 1: x is a yes instance
 - E.g., x encodes G and k where G has a k-vertex cover
- f(x) = 0: x is a no instance
 - E.g., x encodes G and k where G does not have a k-vertex cover
 - Or x is not a valid encoding of G and k

Problems That Are "Easy"

- A decision problem $f: \Sigma^* \to \{0, 1\}$ is "easy" if there is a polynomial time algorithm \mathcal{A} that computes it.
- That is, A(x) = f(x) always holds.
- Polynomial time: $\mathcal{A}(x)$ terminates in $|x|^{O(1)}$ steps.
- But wait! What exactly is an algorithm??

Turing Machine (TM)

- An abstract machine that is a prototype of modern computers.
- A Turing Machine is a triple (Q, Σ, δ)
 - one tape: contains infinitely many cells
 - Each cell can store an alphabet
 - A moving head pointing at a cell of the tape
 - Σ: set of alphabets
 - Q: set of states, each state specifying "the current step"
 - Transition function $\delta: Q \times \Sigma \to Q \times \Sigma \times \{L, R\}$
 - instructions on how to move to the next step
 - Input: current state, current alphabet the head is reading
 - Output: next state, new alphabet written on the current position of the head, move to left (L) or right (R) by one cell

Turing Machine: Start and Terminate

Start:

- At a special state called starting state: $q_{\text{start}} \in Q$
- Input is loaded to the tape
- Moving Head is pointing at the first cell

Terminate:

- Two special state called halting states: $q_{\rm acc}$ and $q_{\rm rej}$
- TM terminates when reaching a halting state
- TM accepts a string if q_{acc} is reached
- TM rejects a string if q_{rej} is reached
- TM's output is the content on the tape when TM terminates

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

- Input: a string of format x # y where $x, y \in \{0, 1\}^n$ and $\# \in \Sigma$ is a special separating alphabet
- Decide if the binary strings x and y is identical

Turing Machine

- If you do not appreciate a Turing machine, in this course, just treat it as a computer program or an algorithm (that outputs "accept" or "reject" as well as an output string)...
- Turing machine has the same power as a computer program or an algorithm, in the following sense:
- Whatever can be computed in polynomial time by a computer program or an algorithm can also be computed in polynomial time by a Turing machine.

Polynomial Time TM

• **Definition.** A Turing Machine \mathcal{A} is a polynomial time TM if there exists a polynomial p such that \mathcal{A} always terminates within p(|x|) steps on input x.

The Complexity Class P

- A decision problem $f: \Sigma^* \to \{0, 1\}$ is in **P**, if there exists a polynomial time TM \mathcal{A} such that
 - \mathcal{A} accepts x if f(x) = 1
 - $-\mathcal{A}$ rejects x if f(x) = 0
- Problems in P are those "easy" problems that can be solved in polynomial time.

Examples for Problems in P

- [PATH] Given a graph G = (V, E) and $s, t \in V$, decide if there is a path from s to t.
 - Build a TM that runs BFS or DFS at s; accept if t is reached; reject if the search terminates without reaching t.
 - PATH $\in \mathbf{P}$
- [k-FLOW] Given a directed graph G = (V, E), $s, t \in V$, a capacity function $c: E \to \mathbb{R}^+$, and $k \in \mathbb{R}^+$, decide if there is a flow with value at least k.
 - Build a TM that implements Edmonds-Karp, Dinic's, or other algorithms.
 - k-FLOW ∈ P
- [PRIME] Given $k \in \mathbb{Z}^+$ encoded in binary string, decide if k is a prime number.
 - [Agrawal, Kayal & Saxena, 2004] PRIME ∈ P

What does P mean?

The Problem Set we can solve efficiently.

The Problems We Care

- Recall lots of problems we learns in the lecture.
- They are all searching problems.
 - We have a problem, and an instance x.
 - We have many possible solution y of the instance x.
 - If one of the solution y is correct, then we answer "yes" for x.
 - If all solutions y is not correct, then we answer "no".
- Remark
 - Some of decision problems do not need searching.
 - Optimizing problem has a decision version.

Reasonable Searching Problems

- They are all searching problems.
 - We have a problem, and an instance x.
 - We have many possible solution y of the instance x.
 - If one of the solution y is correct, then we answer "yes" for x.
 - If all solutions y is not correct, then we answer "no".
- We have two challenge for searching problems
 - Search: go through every possible solution.
 - Verify: check the correctness of the solution.
- Reasonable searching problem
 - Search: hard
 - Verify: easy

Searching Problems

- Some of them are easy (in P)
 - Matching
 - Shortest Path
- Some of them are not so "easy"
 - Hamiltonian Path
 - Vertex Cover

Complexity Class NP

- Let us make a complexity class for reasonable searching problems.
- NP: verifier definition
 - We have a polynomial time verifier for the problem.

The Complexity Class NP

- Nondeterministic Polynomial Time
- Computational Model
 - Non-deterministic Turing Machine
- NP definition: Polynomial Solvable by Non-deterministic Turing Machine
- We only talk about some ideas

Formal definition

- Formal Definition. A decision problem $f: \Sigma^* \to \{0,1\}$ is in **NP** if there exist a polynomial time TM $\mathcal{A}(verifier)$ such that
 - If x is a yes instance (f(x) = 1), there exists poly size $y \in \Sigma^*$ such that \mathcal{A} accepts the input (x, y)
 - If x is a no instance (f(x) = 0), for all poly size $y \in \Sigma^*$, \mathcal{A} rejects the input (x, y)
- The string y is called a certificate.
- SAT, VertexCover, IndependentSet, SubsetSum, HamiltonianPath are all in NP.

Verifier of Vertex Cover

- x is (G, k).
- y is a vertex subset.
- $(x,y) \rightarrow \text{Verifier } \mathcal{A}$
 - Accept: y is size k and y cover all edges in G.
 - Reject: Otherwise.
 - It can be done in poly time.

$P \subseteq NP$

- Proof. If a decision problem $f: \Sigma^* \to \{0,1\}$ is in **P**, we will show it is in **NP**.
- By definition of **P**, there exists a polynomial time TM \mathcal{A} such that \mathcal{A} accepts x if and only if f(x) = 1.
- Let \mathcal{A}' be a TM such that it outputs $\mathcal{A}(x)$ on input (x, y). That is, \mathcal{A}' implements \mathcal{A} and ignore y.
- If f(x) = 1, there exists y, say, $y = \emptyset$, such that \mathcal{A}' accepts (x, y).
- If f(x) = 0, for all y, \mathcal{A}' rejects (x, y).
- Thus, $f \in \mathbf{NP}$.

Central Open Problem: P vs. NP

- Central Open Problem: Does P equals NP?
 - Math Question: If a search problem is easy to verify, is it easy to solve?
- Most research believes no...
 - If P = NP, we do not need the certificate: we can just "guess" it correctly and efficiently... This doesn't seem possible.
 - Given an exam question, do you believe solving the question is much harder than checking if someone's solution to the question is correct? P = NP would suggest they are equally easy...

NP Problems

- We have seen many NP problems not known in P
 - SAT
 - VertexCover
 - IndependentSet
 - SubsetSum
 - HamiltonianPath
- Are some of these problems "more difficult" than the others?
- Which one is the hardest?

Hard or Easy? The Reduction!

3SAT

- A 3-CNF formula is a CNF formula where each clause contains at most three literals:
 - a 3-CNF formula: $(x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2)$
 - Not a 3-CNF formula: $(x_1 \lor x_3 \lor \neg x_4) \land (x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4)$
- [3SAT] Given a 3-CNF formula, decide if there is a value assignment to the variables to make the formula true.
- Clearly, 3SAT is at most as hard as SAT, as it is a special case.
- We will prove 3SAT is also at least as hard as SAT.
 - so that SAT and 3SAT are "equally hard"

- What we have:
 - A 3-SAT solver.
 - A CNF instance.
- Idea: given a CNF formula ϕ , construct a 3-CNF formula ϕ' such that ϕ is a yes SAT instance if and only if ϕ' is a yes 3SAT instance.
- If converting ϕ to ϕ' can be done in polynomial time, being able to solve 3SAT in polynomial time implies being able to solve SAT in polynomial time.
 - That is, 3SAT is weakly harder than SAT.

The Big Picture

- Remark: This is called Karp Reduction
 - Yes → Yes, No \rightarrow No.
 - Yes→ No, No → Yes, not allowed!
 - Understanding "weakly harder".
 - 3-SAT is in NP (has "yes" verifier) → SAT is in NP (has "yes" verifier).

Understand "hard"

- Understanding "weakly harder".
 - 3-SAT is in NP (has "yes" verifier) → SAT is in NP (has "yes" verifier).
 - SAT is in NP (has "yes" verifier) → 3-SAT is in NP (has "yes" verifier).
 - 3-SAT is in P (has poly solver) → SAT is in P (has poly solver).
 - SAT is in P (has poly solver) \rightarrow 3-SAT is in P (has poly solver).
- Understanding "equally hard"
 - 3-SAT is in P (has poly solver) = SAT is in P (has poly solver).
 - 3-SAT is in NP (has "yes" verifier)= SAT is in NP (has "yes" verifier).

- We can "break" a long clause in ϕ to shorter clauses by introducing new variables:
- $(x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4) = (x_1 \lor x_2 \lor y_1) \land (\neg y_1 \lor \neg x_3 \lor \neg x_4)$
 - For example, if $x_2 = \text{true}$ is the one making LHS true, we can set $x_2 = \text{true}$, $y_1 = \text{false}$ to make RHS true.
 - If $x_1 = x_2$ = false and $x_3 = x_4$ = true so that LHS is false, at least one of the two clauses on RHS is false.
- We can "break" an even longer clause to clauses with at most three literals:
- $(x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4 \lor x_5 \lor x_6) = (x_1 \lor x_2 \lor y_1) \land (\neg y_1 \lor \neg x_3 \lor y_2) \land (\neg y_2 \lor \neg x_4 \lor y_3) \land (\neg y_3 \lor x_5 \lor x_6)$
 - For example, if x_4 = false is the one making LHS true, we can set y_3 = false, y_2 = true, y_1 = true to guarantee RHS is true.

In general:

- $\bullet \ (\ell_1 \vee \dots \vee \ell_k) = (\ell_1 \vee \ell_2 \vee y_1) \wedge (\neg y_1 \vee \ell_3 \vee y_2) \wedge \dots \wedge (\neg y_{k-2} \vee \ell_{k-1} \vee \ell_k)$
- If a literal ℓ_i is true, we can make all RHS clauses true by properly setting y_i 's

$$(\ell_1 \vee \ell_2 \vee y_1) \wedge \cdots \wedge (\neg y_{i-3} \vee \ell_{i-1} \vee y_{i-2}) \wedge (\neg y_{i-2} \vee \ell_i \vee y_{i-1}) \wedge (\neg y_{i-1} \vee \ell_{i+1} \vee y_i) \wedge \cdots \wedge (\neg y_{k-2} \vee \ell_{k-1} \vee \ell_k)$$
true false true false true false true

- If all of ℓ_i 's are false, we cannot make all RHS clauses true:
 - We have to set $y_1 = \text{true}$ to make the first clause true
 - After that, we have to make $y_2 = \text{true}$ to make the second clause true
 -
 - We have to make $y_{k-2} = \text{true}$; however, this will make the last clause false

- We have described how to convert a CNF formula ϕ to a 3-CNF formula ϕ' .
- The conversion can clearly be done in polynomial time.
- We have shown that ϕ is a yes SAT instance if and only if ϕ' is a yes 3SAT instance.
- If we have a polynomial time algorithm for 3SAT, we have a polynomial time algorithm for SAT:
 - Given input ϕ , compute ϕ'
 - Solve 3SAT instance ϕ' and obtain answer yes or no
 - Output the same answer for ϕ

Reduction

- A decision problem f Karp reduce to (or simply, reduce to) a decision problem g if there is a polynomial time TM $\mathcal A$ such that
 - \mathcal{A} outputs a yes instance of g if a yes instance of f is input
 - \mathcal{A} outputs a no instance of g if a no instance of f is input
- Denoted as $f \leq_k g$
 - Very intuitive: the difficulty level of f is weakly less than that of g
- We have just proved:
 - SAT \leq_k 3SAT

Reduction

- In the reduction, $f \leq_k g$, the TM \mathcal{A} defines a mapping.
- The mapping needs not to be one-to-one.
- The mapping needs not to be onto.

Transitivity of Reduction

- Theorem. If $f \leq_k g$ and $g \leq_k h$, then $f \leq_k h$.
- If g is (weakly) harder than f and h is (weakly) harder than g, then h is (weakly) harder than f.
- Proof. Let \mathcal{A}_1 be the polynomial time TM doing $f \leq_k g$ and \mathcal{A}_2 be the polynomial time TM doing $g \leq_k h$.
- Let $A = A_1 \circ A_1$ be the TM that first executes A_1 and then executes A_2 (using the output of A_1 as input of A_2).
- Then \mathcal{A} does the job of $f \leq_k h$.
- \mathcal{A} runs in polynomial time: the time complexity of \mathcal{A} is the sum of the time complexities of \mathcal{A}_1 and \mathcal{A}_2 , and \mathcal{A}_1 and \mathcal{A}_2 are polynomial time TMs.

More Results in Reduction

IndependentSet is "weakly harder" than 3SAT

Same Idea before:

- Given a 3SAT instance ϕ ,
- Construct a IndependentSet instance (G = (V, E), k),
- Such that ϕ is a yes instance if and only if (G = (V, E), k) is a yes instance.
- Polynomial time construction.

IndependentSet is "weakly harder" than 3SAT

Here is how we do it:

- For each clause, construct a triangle where three vertices represent three literals.
- Connect two vertices if one represents the negation of the other.
- Set k in IndependentSet instance to the number of clauses

$$\phi = (x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

3SAT Yes → Independent Set Yes

- If ϕ is a yes instance, each clause must have a literal with value true.
- For each triangle in G, pick exactly one vertex representing a true literal in S.
- S is an independent set and |S| = k. So (G, k) is a yes instance.

3SAT Yes → Independent Set Yes

$$\phi = (x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3)$$

- Example: $x_1 = x_2 = x_3 = x_4 = \text{true makes } \phi = \text{true}$
- We choose exactly one true literal in each clause, for example,
 - $(x_1 \vee x_3 \vee \neg x_4)$
 - $-(x_2 \vee \neg x_3 \vee x_4)$
 - $(\neg x_1 \lor \neg x_2 \lor x_3)$

3SAT No → Independent Set No

- If (G, k) is a yes instance $\rightarrow \phi$ is yes.
- Let S with |S| = k be the independent set.
- S must contain exactly one vertex in each triangle.
 - because any two vertices in a triangle is connected
- Assign true to the literals representing the chosen vertices.
 - We will not assign both true and false to a same literal, as x_i and $\neg x_i$ is connected.
- For variables not yet assigned a value, assign values to them arbitrarily.
- The resultant assignment makes ϕ true.

Now we know what is "hard" means.

The Hardest Problem in NP

- We have built difficulty relations between many problems in NP.
- Does there exist a problem in NP that is the hardest?
- **Definition.** A decision problem f is NP-hard if $g ≤_k f$ for any problem g ∈ NP.
- **Definition.** A decision problem f is NP-complete if f ∈ NP and $g ≤_k f$ for any problem g ∈ NP.
- [Cook-Levin Theorem] SAT is NP-complete.

More NP-Complete Problems

- Cook-Levin Theorem implies the yellow arrows, since all the problems below are in NP.
- Each problem is NP-complete
 - By transitivity: any NP problem reduce to SAT, and SAT reduce to each of these problems.
- These problems are "equally hard" and are the hardest problems in NP.

Proof Sketch of Cook-Levin Theorem

- We have seen SAT is in NP.
- Consider an arbitrary **NP** problem f. We will show $f \leq_k SAT$.

Proof Sketch of Cook-Levin Theorem

- For a yes instance x, there exist a polynomial time TM \mathcal{A} and a polynomial length certificate y such that \mathcal{A} accepts (x,y).
- Consider a computation tableau that records the tape at every step of \mathcal{A} 's execution.

					27							
			$\boldsymbol{\mathcal{X}}$					у				
			<u> </u>									
Step o	x_0	x_1	x_2		x_n	y_0	y_1	y_2		y_m	S	р
Step 1	1	1	0	0	0	1	1	1	1	0	1	0
Step 2	0	1	0	0	0	1	1	1	1	0	2	1
	:		:	:				:	:		3	2
Final Step	0	1	1	0	0	0	1	1	0	0	9(a/r)	100

What does it mean?

- If x is a yes instance.
- Put x in step 0, we can find a y in step 0, so that the final step go into an accept status.
- Put x in step 0, we can not find a y in step 0, so that the final step go into an accept status.

			x					y				
	_											
Step o	x_0	x_1	x_2		x_n	y_0	y_1	y_2		y_m	S	р
Step 1	1	1	0	0	0	1	1	1	1	0	1	0
Step 2	0	1	0	0	0	1	1	1	1	0	2	1
	:		:	:		:	:	:	=:		3	2
Final Step	0	1	1	0	0	0	1	1	0	0	9(a/r)	100

Proof Sketch of Cook-Levin Theorem

Transform

→ CNF

	\boldsymbol{x}											
Step o	x_0	x_1	x_2		x_n	y_0	y_1	y_2		y_m	S	р
Step 1	1	1.	0	0	0	1	1	1	1	0	1	0
Step 2	0	1	0	0	0	1	1	1	1	0	2	1
			:	:					:		3	2
Final Step	0	1	1	0	0	0	1	1	0	0	9(a/r)	100

- View each cell as a variable in CNF.
 - Restrict $x_0 \sim x_n$ is the input x in step 0. (We do not need to restrict y)
 - Restrict s to be a accept status at the final step.
 - Restrict step i to step i + 1 to be a feasible transform of A.
- Make a CNF formula to complete these tasks!

How to make the CNF? Easy Examples

- Restrict $x_1^0 \sim x_0^0$ to be exactly x.
 - If $x_1 = 0$, we add ... $\wedge \neg x_1^0 \wedge \cdots$
 - If $x_1 = 1$, we add ... $\wedge x_1^0 \wedge \cdots$
- Restrict the final status is accepted.
 - $s^{last} = accept$
- Restrict step i to step i + 1 to be a feasible transform of A.
 - For example, maybe some x_j^i should not change.
 - We add ... $\wedge (x_j^i \vee z) \wedge (\neg x_j^{i+1} \vee \neg z) \wedge \cdots$.

What do we have?

- We have a CNF formula, such that
 - If SAT answer "yes", we have a "y" such that \mathcal{A} accepts (x, y).
 - If SAT answer "yes", we do not have "y" such that \mathcal{A} accepts (x, y).
- So
 - If SAT answer "yes", x is "yes".
 - If SAT answer "no", x is "no".
- High-level Intuition: a CNF formula is sufficient to simulate the execution of a Turing Machine!

Solving a NP-complete problem implies **P** = **NP**

- Theorem. If f is NP-complete and $f \in P$, then P = NP.
- Proof. Suppose there is a polynomial time TM \mathcal{A} that decides f. We will show $g \in \mathbf{P}$ for any $g \in \mathbf{NP}$.
- Since f is NP-hard, $g \leq_k f$, and let \mathcal{A}' be the polynomial time TM that does the reduction.
- Then $\mathcal{A} \circ \mathcal{A}'$ is the polynomial time TM that decides g.
- Thus, $g \in \mathbf{P}$.
- If you solve any of SAT, 3SAT, IndependentSet, VertexCover, SubsetSum, HamiltionianPath, you will be the greatest person in the 21st century!

P vs NP

P = NP

 $P \subsetneq NP$

NP-Intermediate

- [Ladner's Theorem] If P ≠ NP, then there exist decision problems that are neither in P nor NP-complete.
- Such problems are called NP-intermediate.
- Candidates:
 - graph isomorphism problem
 - factoring

P = NP

NP-Hard vs NP-Complete

Difference between NP-hardness and NP-completeness:

- For decision problems: NP-complete = NP-hard + (in NP)
 - There are NP-hard problems that are not in NP; these problems are even harder than NP-complete problems.
- NP-hardness can describe optimization problems:
 - Maximum Independent Set is NP-hard
 - Minimum Vertex Cover is NP-hard
 - Max-3SAT is NP-hard
 - Finding a longest simple path is NP-hard
 - Etc.

The Reduction Graph (on Book)

Our Reduction Graph

Independent Set

Vertex Cover?

- Key Observation
- S is an Independent Set of G, if and only if V S is a Vertex Cover.
- So, if we have a Vertex Cover Solver, how to solve Independent Set?
- Vertex Cover Solver, input (G, k)
 - Answer "yes" if there is a vertex cover with size k.
 - Answer "no" if there does not exist a vertex cover with size k.

- When we receive an Independent Set Input (G, k).
- How to use the Vertex Cover solver?

- When we receive an Independent Set Input (G, k).
- How to use the Vertex Cover solver?
- Just input (G, |V| k) to the Vertex Cover solver!
 - If G has a |V| k size vertex cover, we have |S| = k, where S is an independent set.
 - If G has a size k independent set, we should have a |V|-k size vertex cover.

NP-completeness

- Does it mean Vertex Cover is NP-Complete?
- One more step:
 - Show Vertex Cover is in NP.

Independent Set \leq_k Clique

- *k* –Clique Problem
 - Is there a size k clique inside G?

Independent Set

Clique

Key Observation

• S is an Indecent Set in G if and only if S is a clique in \bar{G} .

Independent Set (G)

Clique (\bar{G})

Independent Set \leq_k Clique

- When we receive an Independent Set Input (G, k).
- How to use the Clique solver?
- Just input (\bar{G}, k) to the Clique solver!
 - If G has a k size independent set, we have |S| = k, where S is a clique of \bar{G} .
 - If \bar{G} has a size k clique, we should have a k size independent set in G.

Our Reduction Graph

This Lecture

- Learn what are P and NP
- Cook-Levin Theorem and NP-complete problems
- Reduction

Take Home Messages

- SAT (3SAT), VertexCover, IndependentSet, SubsetSum, HamiltonianPath are the hardest problems in NP, and they are NP-complete.
- Reduction is an effective tool to show one problem is "weakly harder" than another.