

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002668

International filing date: 15 February 2005 (15.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-041381
Filing date: 18 February 2004 (18.02.2004)

Date of receipt at the International Bureau: 26 May 2005 (26.05.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 2月 18日

出願番号 Application Number: 特願 2004-041381

パリ条約による外国への出願に用いる優先権の主張の基礎となる出願の国コードと出願番号

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出願人 Applicant(s): 大塚製薬株式会社

J P 2004-041381

特許庁長官
Commissioner,
Japan Patent Office

2005年 5月 11日

小川

【書類名】 特許願
【整理番号】 952004JP
【提出日】 平成16年 2月18日
【あて先】 特許庁長官殿
【国際特許分類】 C07D233/54
【発明者】
【住所又は居所】 徳島県徳島市北常三島町3丁目9番地の15
【氏名】 新濱 光一
【特許出願人】
【識別番号】 000206956
【氏名又は名称】 大塚製薬株式会社
【代理人】
【識別番号】 100065215
【弁理士】
【氏名又は名称】 三枝 英二
【電話番号】 06-6203-0941
【選任した代理人】
【識別番号】 100076510
【弁理士】
【氏名又は名称】 掛樋 悠路
【選任した代理人】
【識別番号】 100086427
【弁理士】
【氏名又は名称】 小原 健志
【選任した代理人】
【識別番号】 100099988
【弁理士】
【氏名又は名称】 斎藤 健治
【選任した代理人】
【識別番号】 100105821
【弁理士】
【氏名又は名称】 藤井 淳
【選任した代理人】
【識別番号】 100099911
【弁理士】
【氏名又は名称】 関 仁士
【選任した代理人】
【識別番号】 100108084
【弁理士】
【氏名又は名称】 中野 瞳子
【手数料の表示】
【予納台帳番号】 001616
【納付金額】 21,000円
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 要約書 1
【包括委任状番号】 0313039

【書類名】特許請求の範囲

【請求項 1】

一般式（2）

【化1】

【式中、X¹及びX²は、それぞれ塩素原子又は臭素原子を示す。】

で表される4-ニトロイミダゾール化合物をヨウ素化し、次いで得られる一般式（3）

【化2】

【式中、X²は前記に同じ。】

で表される5-ヨード-4-ニトロイミダゾール化合物を還元する、一般式（1）

【化3】

【式中X²は前記に同じ。】

で表される4-ニトロイミダゾール化合物の製造法。

【書類名】明細書

【発明の名称】4-ニトロイミダゾール化合物の製造法

【技術分野】

【0001】

本発明は、4-ニトロイミダゾール化合物の製造法に関する。

【背景技術】

【0002】

一般式(1)

【0003】

【化1】

【式中、X²は、塩素原子又は臭素原子を示す。】

で表される4-ニトロイミダゾール化合物は、種々の医薬、農薬等の合成中間体、殊に抗結核薬を製造するための中間体として有用な化合物である。

【0004】

従来、一般式(1)の4-ニトロイミダゾール化合物の製造法としては、例えば、下記反応式-1及び反応式-2に示す方法が知られている（非特許文献1参照）。

【0005】

【化2】

反応式-1

【0006】

【化 3】

反應式 – 2

[式中、 X^A は、ハロゲン原子を示す。]

しかしながら、これらの方には、種々の欠点があり、工業的製造方法として不適である。

[0 0 0 7]

例えは、反応式-1に示す方法では、反応中間体である化合物(6)及び化合物(7)が、化学的に不安定な化合物であり、落下、摩擦等の衝撃により爆発する危険がある。また、この方法では、化合物(6)を加熱して化合物(7)に導く反応(130°C付近)において化合物(6)のTNR温度(Temperature of No Return: 化学プロセス内の装置で安全に取り扱うことができる最大温度60~70°C付近)を超えていること等から、目的化合物を工業的に大量生産するには、非常な危険が伴っていた。

[0 0 0 8]

反応式-2に示す方法は、化合物(8)をニトロ化する反応であるが、このニトロ化では、化合物(1a)が低収率で得られるに過ぎず、工業的に不利である。

【非特許文献1】スヴィンスキーラ、ポリツシュー・ジャーナル・オブ・ケミストリー、第56巻、第1261-1272頁(1982年) (Jerzy SUWINSKI, Ewa SALWINSKA, Jan WATRAS and Maria WIDEL, Polish Journal of Chemistry, 56, 1261-1272 (1982))

【発明の開示】

【発明が解決しようとする課題】

[0 0 0 9]

本発明は、爆発等の危険の少ないより安全な方法で、高収率、高純度で一般式（1）で表される4-ニトロイミダゾール化合物を製造する方法を提供することを課題とする。

【課題を解決するための手段】

$$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$$

本発明者は、上記課題を解決するために一般式(1)で表される4-ニトロイミダゾール化合物の製造方法について鋭意研究を重ねた結果、下記一般式(2)で表される4-ニトロイミダゾール化合物の5位の塩素原子又は臭素原子を選択的にヨウ素原子に置換し、次いで得られる一般式(3)で表される5-ヨード-4-ニトロイミダゾール化合物の5位を選択的に還元することにより、上記課題を解決できることを見い出した。即ち、本発明者は、下記一般式(2)で表される4-ニトロイミダゾール化合物の5位の塩素原子又は臭素原子を選択的にヨウ素化し、次いで得られる一般式(3)で表される5-ヨード-4-ニトロイミダゾール化合物の5位を選択的に還元することにより、一般式(1)で表される4-ニトロイミダゾール化合物を、爆発等の危険の少ないより安全な方法で、しかも高収率、高純度で製造できることを見い出した。

$\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}$

本発明は、このような知見に基づき完成されたものである。

1. 本発明は、一般式（2）

[0 0 1 2]

【化4】

(2)

【式中、X¹及びX²は、それぞれ塩素原子又は臭素原子を示す。】
で表される4-ニトロイミダゾール化合物をヨウ素化し、次いで得られる一般式（3）

【0013】

【化5】

(3)

【式中、X²は前記に同じ。】
で表される5-ヨード-4-ニトロイミダゾール化合物を還元する、一般式（1）

【0014】

【化6】

(1)

【式中X²は前記に同じ。】
で表される4-ニトロイミダゾール化合物の製造法を提供する。

本発明の一般式（1）の4-ニトロイミダゾール化合物の製造法について、以下に説明する。

【0015】

【化7】

反応式-3

【式中、X¹及びX²は前記に同じ。】

上記反応式-3において、化合物（2）を化合物（3）に導く反応は、適当な溶媒中、ヨウ素化剤の存在下に行うことができる。

【0016】

ヨウ素化剤としては、例えば、ヨウ素等のハロゲン分子、ヨウ化水素酸、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化リチウム、ヨウ化亜鉛、ヨウ化マグネシウム、ヨウ化アルミニウム等のヨウ化水素酸の金属塩等の公知のヨウ素化剤を広く使用できる。これらの中

でも、ヨウ化ナトリウムが好ましい。斯かるヨウ素化剤は、化合物(2)に対して、通常過剰量、好ましくは5倍モル～15倍モル量使用される。

【0017】

溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン等のケトン類、アセトニトリル、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、酢酸メチル、酢酸エチル等のエステル類、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジメトキシエタン、tert-ブチルメチルエーテル等のエーテル類、ジメチルホルムアミド又はこれらの混合溶媒等を例示できる。好ましい溶媒は、水である。

【0018】

該反応の反応系内には、ヨウ化水素酸等の酸及び／又は相間移動触媒等の触媒を添加することができる。

【0019】

相間移動触媒としては、例えば、第4級アンモニウム塩、ホスホニウム塩、ピリジニウム塩等が挙げられる。

【0020】

第4級アンモニウム塩としては、例えば、炭素数1～18の直鎖又は分枝鎖状のアルキル基、アルキル部分が炭素数1～6の直鎖又は分枝鎖状アルキル基であるフェニルアルキル基及びフェニル基なる群より選ばれた基が置換した第4級アンモニウム塩を挙げることができる。斯かる第4級アンモニウム塩の具体例として、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムフルオリド、テトラブチルアンモニウムアイオダイド、テトラブチルアンモニウムヒドロキシド、亜硫酸水素テトラブチルアンモニウム、トリブチルメチルアンモニウムクロリド、トリブチルベンジルアンモニウムクロリド、テトラベンチルアンモニウムクロリド、テトラベンチルアンモニウムブロミド、テトラヘキシルアンモニウムクロリド、ベンジルジメチルオクチルアンモニウムクロリド、メチルトリヘキシルアンモニウムクロリド、ベンジルジメチルオクタデカニルアンモニウムクロリド、メチルトリデカニルアンモニウムクロリド、ベンジルトリプロピルアンモニウムクロリド、ベンジルトリエチルアンモニウムクロリド、フェニルトリエチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、テトラメチルアンモニウムクロリド等が挙げられる。

【0021】

ホスホニウム塩としては、例えば、炭素数1～18の直鎖又は分枝鎖状のアルキル基が置換したホスホニウム塩を挙げることができる。斯かるホスホニウム塩の具体例として、テトラブチルホスホニウムクロリド等が挙げられる。

【0022】

ピリジニウム塩としては、例えば、炭素数1～18の直鎖又は分枝鎖状のアルキル基が置換したピリジニウム塩を挙げることができる。斯かるピリジニウム塩の具体例として、1-ドデカニルピリジニウムクロリド等が挙げられる。

【0023】

上記相間移動触媒は、1種単独で又は2種以上混合して使用される。

【0024】

相間移動触媒の使用量は、化合物(2)1モルに対して、通常0.01～1モル、好ましくは0.01～0.5モルである。

【0025】

ヨウ化水素酸の使用量は、化合物(2)1モルに対して、通常0.1～10モル、好ましくは1～7モルである。

【0026】

上記反応は、通常0～150°C付近、好ましくは0～120°C付近にて行われ、通常1～80時間にて終了する。

【0027】

上記反応によれば、イミダゾール環の5位の塩素原子又は臭素原子のみが選択的にヨウ素化され、化合物(3)が収率よく製造される。

【0028】

化合物(3)を化合物(1)に導く反応は、適当な溶媒中、還元剤の存在下に行われる。

【0029】

還元剤としては、公知の水素化還元剤、接触水素還元剤等が使用される。

【0030】

水素化還元剤としては、例えば、亜硫酸水素ナトリウム、亜硫酸ナトリウム等の金属亜硫酸物；水素化硼素テトラメチルアンモニウム、水素化硼素テトラエチルアンモニウム、水素化硼素テトラ-*n*-ブチルアンモニウム、水素化シアノ硼素テトラ-*n*-ブチルアンモニウム等の水素化硼素テトラ低級アルキルアンモニウム類；シアノ水素化硼素ナトリウム、シアノ水素化硼素リチウム、水素化硼素ナトリウム、ジボラン等が挙げられる。これら水素化還元剤は、1種単独で又は2種以上混合して使用される。

【0031】

接触水素還元剤としては、例えば、パラジウム、パラジウム-炭素、水酸化パラジウム-炭素、ロジウム-アルミナ、白金、酸化白金、亜クロム酸銅、酢酸パラジウム、白金-アルミナ、白金-炭素、パラジウム-アルミナ、白金黒、ラネーニッケル等が挙げられる。これら接触水素還元剤は、1種単独で又は2種以上混合して使用される。

【0032】

これらの還元剤の中では、接触水素還元剤、特に酸化白金、パラジウム-アルミナ等が好ましい。

【0033】

本発明では、上記水素化還元剤及び接触水素還元剤を併用することができる。

【0034】

使用される溶媒としては、例えば、水；酢酸等の脂肪酸；メタノール、エタノール、イソプロパノール等の低級アルコール類；*n*-ヘキサン、シクロヘキサン等の脂肪族炭化水素類；アセトン、メチルエチルケトン等のケトン類；ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、モノグライム、ジグライム、1,4-ジオキサン、ジメトキシエタン等のエーテル類；ベンゼン、トルエン、キシレン等の芳香族炭化水素類；酢酸エチル、酢酸メチル、酢酸-*n*-ブチル等のエステル類；ジメチルスルホキシド、N,N-ジメチルホルムアミド、N,N-ジメチルアセタミド、1-メチル-2-ピロリジノン(NMP)等の非プロトン性極性溶媒又はこれらの混合溶媒等を挙げることができる。

【0035】

尚、水素化還元剤としてジボラン等を用いた場合は、無水の溶媒を用いるのがよい。

【0036】

水素化還元剤の使用量は、化合物(3)1モルに対して、通常少なくとも1モル、好ましくは1~10モル程度である。

【0037】

水素化還元剤を用いる反応は、通常0~150°C付近、好ましくは0~120°C付近にて行われ、一般に1~30時間程度にて終了する。

【0038】

接触還元触媒を用いる場合は、通常常圧~20気圧程度、好ましくは常圧~10気圧程度の水素雰囲気中で、通常-30~100°C程度、好ましくは0~80°C程度の温度で反応を行なうのがよく、通常1~90時間程度で反応は終了する。

【0039】

接触水素還元剤は、化合物(3)に対して、通常0.1~40重量%、好ましくは0.1~20重量%程度使用する。

【0040】

接触水素還元剤を用いる反応の反応系内には、反応促進のために、トリメチルアミン、トリエチルアミン、N-エチルジイソプロピルアミン等のアミン類を添加してもよい。

【0041】

上記還元反応により、イミダゾール環の5位に置換しているヨウ素原子が選択的に脱離され、所望の一般式(1)の化合物を収率よく得ることができる。これは、本発明者が初めて見つけた事実である。

【0042】

本発明の一般式(1)で表される4-ニトロイミダゾール化合物は、例えば下記反応式-4及び反応式-5に示す方法に従い、抗結核薬として有用な化合物(10a)又は(10b)に導くことができる。

【0043】

【化8】

反応式-4

〔式中、X²は前記に同じ。R^Aは、水素原子又は低級アルキル基を示す。R^Bは、基

【0044】

【化9】

を示す。ここで、R^Cは、ニトロ基を示す。R^Dは、ハロゲン原子又は低級アルキル基を示す。aは、0、1又は2を示す。aが2を示す場合、2つのR^Dは、同一であってもよいし、異なっていてもよい。〕

一般式(1)で表される4-ニトロイミダゾール化合物と化合物(9a)又は(9b)との反応は、適当な溶媒中、塩基性化合物の存在下で行われる。

【0045】

用いられる溶媒としては、例えばベンゼン、トルエン、キシレン等の芳香族炭化水素類

; ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル等のエーテル類；ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類；メタノール、エタノール、イソプロパノール、ブタノール、tert-ブタノール等の低級アルコール類；酢酸；酢酸エチル、酢酸メチル等のエステル類；アセトン、メチルエチルケトン等のケトン類；アセトニトリル；ピリジン；2, 4, 6-コルイジン；ジメチルスルホキシド；ジメチルホルムアミド；ヘキサメチルリン酸トリアミド又はこれらの混合溶媒等を挙げることができる。

【0046】

塩基性化合物としては、公知の無機塩基及び有機塩基を広く使用できる。

【0047】

無機塩基としては、例えは、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩；炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩；水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物；磷酸ナトリウム、磷酸カリウム等のアルカリ金属磷酸塩；水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物；カリウム、ナトリウム等のアルカリ金属；ナトリウムアミド等のアルカリ金属アミド化物；ナトリウムメチラート、ナトリウムエチラート等のアルカリ金属アルコラート等が挙げられる。

【0048】

有機塩基としては、例えは、ピリジン、トリメチルアミン、トリエチルアミン、N-エチルジイソプロピルアミン、2, 4, 6-コルイジン、ジメチルアニリン、ジメチルアミノピリジン、1-メチル-2-ピロリジノン(NMP)、N-メチルモルホリン、N, N-ジメチル-4-アミノピリジン、1, 5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1, 8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1, 4-ジアザビシクロ[2.2.2]オクタン(DABCO)等を挙げることができる。

【0049】

これらの塩基性化合物は、1種単独で又は2種以上混合して使用される。

【0050】

化合物(1)の使用量は、化合物(9a)又は(9b)1モルに対して、通常少なくとも1モル程度、好ましくは1~3モル程度である。塩基性化合物の使用量は、化合物(9a)又は(9b)1モルに対して、通常1~10モル程度、好ましくは等モル~5モルである。

【0051】

化合物(1)と化合物(9a)又は(9b)との反応は、通常室温~150°C程度、好ましくは室温~100°C程度にて行われ、一般に1~100時間程度で該反応は終了する。

【0052】

上記反応においては、弗化セシウム等のハロゲン化物を反応系内に添加してもよい。

【0053】

反応式－5

〔式中、 R^A 及び X^2 は前記に同じ。 R は、下記一般式（A）、（B）、（C）、（D）、（E）、（F）、又は（G）で表される基を示す。

一般式 (A) で表される基：

(式中、 R^3 は、

A1) 水素原子；

A2) C 1 ~ 6 アルキル基;

A3) C₁～6アルコキシ-C₁～6アルキル基；

A4) フェニル C 1～6 アルキル基（フェニル環上には、フェニル C 1～6 アルコキシ基；ハロゲン置換もしくは未置換の C 1～6 アルキル基；ハロゲン置換もしくは未置換の C 1～6 アルコキシ基及びフェノキシ基【フェニル環上には、ハロゲン置換もしくは未置換の C 1～6 アルコキシ基が少なくとも 1 個置換していてもよい】からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

A5) ビフェニリル C 1~6 アルキル基；

A6) フェニル C₂～6 アルケニル基；

A7) C 1～6 アルキルスルホニル基；

A8) C 1～6 アルキル基が置換していてもよいベンゼンスルホニル基；

A9) C 1～6 アルカノイル基；

A10) 一般式 (Aa) で表される基：

【0 0 5 4】

【化 1 1】

(ここで R⁴ は、C 1～6 アルコキシカルボニル基；フェニル C 1～6 アルコキシカルボニル基 [フェニル環上には、フェニル C 1～6 アルコキシ基、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい] 又はフェニル C 1～6 アルキル基 [フェニル環上には、フェニル C 1～6 アルコキシ基、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい] を示す。)；

A11) ビフェニリル C 1～6 アルコキシカルボニル基；

A12) ベンゾオキサゾリル C 1～6 アルキル基 (ベンゾオキサゾール環上には、少なくとも 1 個のオキソ基が置換していてもよい)；

A13) ベンゾオキサゾリル基；

又は

A14) オキサゾリル C 1～6 アルキル基 (オキサゾール環上には、フェニル基及び C 1～6 アルキル基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい) を示す。

一般式 (B) で表される基：

—S R⁵ (B)

(式中、R⁵ は、テトラゾリル基 [テトラゾール環上には、C 1～6 アルキル基又はハロゲン原子を有することのあるフェニル基が置換していてもよい] 又はベンゾオキサゾリル基を示す)、

一般式 (C) で表される基：

—C O O R⁶ (C)

(式中、R⁶ は C 1～6 アルキル基を示す。)

一般式 (D) で表されるカルバモイルオキシ基：

—O O C N R⁷ R⁸ (D)

(式中、R⁷ 及び R⁸ は、同一又は異なって、

D1) 水素原子；

D2) C 1～8 アルキル基；

D3) ハロゲン置換 C 1～6 アルキル基；

D4) C 1～6 アルコキシカルボニル—C 1～6 アルキル基；

D5) C 3～8 のシクロアルキル基；

D6) フェニル C 1～6 アルキル基 (フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい)；

D7) フェニル基 (フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1

～6アルキル基、ハロゲン置換もしくは未置換のC1～6アルコキシ基、C1～6アルカノイル基、カルボキシル基、C1～6アルコキシカルボニル基、フェニルC1～6アルコキシカルボニル基、カルバモイル基、C1～6アルキルカルバモイル基、アミノスルホニル基及びモルホリノ基からなる群より選ばれた基が1～3個置換してもよい)；
D8) ナフチル基；

又は

D9) ピリジル基

を示す。

D10) R⁷及びR⁸は、これらが隣接する窒素原子と共に、他のヘテロ原子もしくは炭素原子を介し又は介することなく互いに結合して下記(D10-1)～(D10-3)に示す飽和複素環基又は下記(D10-4)～(D10-7)に示すベンゼン縮合複素環基を形成してもよい。

【0055】

(D10-1) 一般式(Da)で示されるピペラジニル基：

【0056】

【化12】

(ここでR⁹は、

(Da1) 水素原子；

(Da2) C1～6アルキル基；

(Da3) フェニルC1～6アルキル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換してもよい)；

(Da4) フェニル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換してもよい)；

(Da5) C1～6アルコキシカルボニル基；

(Da6) フェニルC1～6アルコキシカルボニル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換してもよい)；

(Da7) フェニルC3～6アルケニルオキシカルボニル基(フェニル環上には、ハロゲン置換もしくは未置換のC1～6アルキル基が少なくとも1個置換してもよい)；

又は

(Da8) フェニルC1～6アルキリデン置換アミノ基(フェニル環上には、ハロゲン置換もしくは未置換のC1～6アルキル基が少なくとも1個置換してもよい)

を示す。)；

(D10-2) 一般式(Db)で示される基：

【0057】

【化13】

(式中、点線は二重結合であってもよいことを示す。R¹⁰は、

- (Db1) 水素原子；
 (Db2) フェニル基（フェニル環上には、ハロゲン、ハロゲン置換もしくは未置換のC 1～6アルキル基及びハロゲン置換もしくは未置換のC 1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい）；
 (Db3) フェノキシ基（フェニル環上には、ハロゲン置換もしくは未置換のC 1～6アルキル基が少なくとも1個置換していてもよい）；
 又は
 (Db4) フェニルアミノ基（フェニル環上には、ハロゲン置換もしくは未置換のC 1～6アルキル基が少なくとも1個置換していてもよい）
 を示す。）；
 (D10-3) モルホリノ基；
 (D10-4) インドリニル基（インドリン環上には、少なくとも1個のハロゲン原子が置換していてもよい）；
 (D10-5) イソインドリニル基（イソインドリン環上には、少なくとも1個のハロゲン原子が置換していてもよい）；
 (D10-6) 1, 2, 3, 4-テトラヒドロキノリル基（1, 2, 3, 4-テトラヒドロキノリン環上には、少なくとも1個のハロゲン原子が置換していてもよい）；
 又は
 (D10-7) 1, 2, 3, 4-テトラヒドロイソキノリニル基（1, 2, 3, 4-テトラヒドロイソキノリン環上には、少なくとも1個のハロゲン原子が置換していてもよい）
 を示す。）

一般式(E)で表されるフェノキシ基：

【0058】
 【化14】

〔式中、Xはハロゲン原子又は置換基としてC 1～6アルキル基を有することのあるアミノ置換C 1～6アルキル基を示す。mは0～3の整数を示す。R¹¹は、

- E1) 水素原子；
 E2) ハロゲン置換もしくは未置換のC 1～6アルキル基；
 E3) ハロゲン置換もしくは未置換のC 1～6アルコキシ基；
 E4) 一般式(Ea)で表される基：

〔式中、Wは基—CO—又はC 1～6アルキレン基を示す。oは0又は1を示す。R¹²及びR¹³は同一又は異なって、

- (Ea1) 水素原子；
 (Ea2) C 1～6アルキル基；
 (Ea3) C 1～6アルカノイル基；
 (Ea4) C 1～6アルコキシカルボニル基；
 (Ea5) フェニルC 1～6アルキル基（フェニル環上には、ハロゲン原子；ハロゲン置換もしくは未置換のC 1～6アルキル基；ハロゲン置換もしくは未置換のC 1～6アルコキシ基及びフェノキシ基〔フェニル環上には、置換基としてハロゲン原子、ハロゲン置換もしくは未置換のC 1～6アルキル基及びハロゲン置換もしくは未置換のC 1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい〕からなる群より選ばれた基の少なくとも1種が置換していてもよい。また、C 1～6アルキル部分には、C

1～6 アルコキシイミノ基が置換していてもよい。)；

(Ea6) フェニル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

(Ea7) ベンゾイル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

(Ea8) ピリジル基(ピリジン環上には、少なくとも1個のハロゲン原子が置換していてもよい)；

(Ea9) フェニルC1～6アルキル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

(Ea10) フエノキシC1～6アルキル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

又は

(Ea11) ベンゾイルC1～6アルキル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい)

を示す。)；

E5) イミダゾリル基；

E6) トリアゾリル基；

E7) モルホリノ基；

E8) チオモルホリノ基；

E9) s-オキシドチオモルホリノ基；

E10) 一般式(Eaa)で示されるピペリジル基：

【0059】

【化15】

(式中、W及び○は前記に同じ。R^{14A}は、水素原子、水酸基、C1～6アルコキシ基又はフェニル基【フェニル環上には、ハロゲン原子が置換していてもよい。】を示す。点線は二重結合であってもよいことを示す。点線が二重結合を示すときは、R¹⁴のみが置換しているものとする。R¹⁴及びR^{14A}は、これらが隣接する炭素原子と共に互いに結合してC1～4アルキレンジオキシ基を形成してもよい。R¹⁴は、

(Eaa1) 水素原子；

(Eaa2) C1～6アルコキシカルボニル基；

(Eaa3) フエノキシ基(フェニル環上には、ハロゲン原子；ハロゲン置換もしくは未置換のC1～6アルキル基；ハロゲン置換もしくは未置換のC1～6アルコキシ基；C1～4アルキレンジオキシ基；C1～6アルコキシカルボニル基；シアノ基；C2～6アルケニル基；ニトロ基；フェニル基；置換基としてフェニル基、C1～6アルキル基、カルバモイル基及びC1～6アルカノイル基からなる群より選ばれた基を有することのあるアミノ基；C1～6アルカノイル置換C1～6アルキル基；水酸基；C1～6アルコキシカルボニル置換C1～6アルキル基；フェニルC1～6アルキル基；C1～6アルカノイル基；C1～6アルキルチオ基；1，2，4-トリアゾリル基；イソオキサゾリル基；イミダゾリル基；ベンゾチアゾリル基；2H-ベンゾトリアゾリル基；ピロリル基；ベンゾオキサ

ゾリル基；ピペラジニル基【ピペラジン環上には、置換基としてC1～6アルコキシカルボニル基及びフェニルC1～6アルキル基（フェニル環上には、ハロゲン原子、ハロゲン置換又は未置換のC1～6アルキル基及びハロゲン置換又は未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）からなる群より選ばれた基の少なくとも1種が置換していくてもよい】；ピペリジル基【ピペリジン環上には、少なくとも1個のアミノ基が置換していくてもよい。該アミノ基上には置換基としてC1～6アルキル基及びフェニル基（フェニル環上には、ハロゲン原子、ハロゲン置換又は未置換のC1～6アルキル基及びハロゲン置換又は未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）からなる群より選ばれた基の少なくとも1種が置換していくてもよい。】及びカルバモイル基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eaa4) 水酸基；

(Eaa5) カルボキシ基；

(Eaa6) フェニル基（フェニル環上には、置換基としてフェノキシ基【フェニル環上には、置換基としてハロゲン原子、ハロゲン置換又は未置換のC1～6アルキル基及びハロゲン置換又は未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい】、ハロゲン原子、ハロゲン置換又は未置換のC1～6アルキル基及びハロゲン置換又は未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eaa7) C1～6アルコキシ基；

(Eaa8) C3～8シクロアルキル-C1～6アルコキシ基；

(Eaa9) フェニルカルバモイル基（フェニル環上には、ハロゲン原子、ハロゲン置換又は未置換のC1～6アルキル基及びハロゲン置換又は未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eaa10) テトラヒドロピラニルオキシ基；

(Eaa11) 1, 3-ジオキソラニル基；

(Eaa12) オキソ基；

(Eaa13) ナフチルオキシ基（ナフタレン環上には、少なくとも1個のC1～6アルキル基が置換していくてもよい）；

(Eaa14) 2, 3-ジヒドロベンゾフリルオキシ基（2, 3-ジヒドロベンゾフラン環上には、C1～6アルキル基及びオキソ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eaa15) ベンゾチアゾリルオキシ基（ベンゾチアゾール環上には、少なくとも1個のC1～6アルキル基が置換していくてもよい）；

(Eaa16) 1, 2, 3, 4-テトラヒドロナフチルオキシ基（1, 2, 3, 4-テトラヒドロナフタレン環上には、少なくとも1個のオキソ基が置換していくてもよい）；

(Eaa17) 1, 3-ベンゾオキサチオラニルオキシ基（1, 3-ベンゾオキサチオラン環上には、少なくとも1個のオキソ基が置換していくてもよい）；

(Eaa18) イソキノリルオキシ基；

(Eaa19) ピリジルオキシ基；

(Eaa20) キノリルオキシ基（キノリン環上には、少なくとも1個のC1～6アルキル基が置換していくてもよい）；

(Eaa21) ジベンゾフリルオキシ基；

(Eaa22) 2H-クロメニルオキシ基（2H-クロメン環上には、少なくとも1個のオキソ基が置換していくてもよい）；

(Eaa23) ベンゾイソオキサゾリルオキシ基；

(Eaa24) キノキサリルオキシ基；

(Eaa25) 2, 3-ジヒドロ-1H-インデニルオキシ基（2, 3-ジヒドロ-1H-インデン環上には、少なくとも1個のオキソ基が置換していくてもよい）；

(Eaa26) ベンゾフラザニルオキシ基；

又は

(Eaa27) フェニル C 2～6 アルケニル基（フェニル環上には、ハロゲン原子、ハロゲン置換又は未置換の C 1～6 アルキル基及びハロゲン置換又は未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）
を示す。】；

E11) 一般式 (Eab) で表される基：

【0060】

【化16】

（式中、○は前記に同じ。W₁は、低級アルキレン基を示す。R¹⁵は、

(Eab1) 水素原子；

(Eab2) C 1～6 アルキル基（アルキル基上には、モルホリノ基、ベンゾイル基、置換基として C 1～6 アルキル基を有することのあるカルバモイル基又はシアノ基が置換していてもよい）；

(Eab3) C 3～8 シクロアルキル基；

(Eab4) フェニル C 1～6 アルキル基（フェニル環上には、ハロゲン原子、シアノ基、フェニル基、ニトロ基、C 1～6 アルキルチオ基、C 1～6 アルキルスルホニル基、フェニル C 1～6 アルコキシ基、C 2～6 アルカノイルオキシ基、ハロゲン置換もしくは未置換の C 1～6 アルキル基、ハロゲン置換もしくは未置換の C 1～6 アルコキシ基及び 1, 2, 3-チアジアゾール基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Eab5) C 2～6 アルケニル基；

(Eab6) フェニル基（フェニル環上にハロゲン原子、シアノ基、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Eab7) C 1～6 アルカノイル基；

(Eab8) フェニル C 2～6 アルカノイル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Eab9) ベンゾイル基（ベンゼン環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Eab10) C 1～20 アルコキシカルボニル基（アルコキシ基上には、ハロゲン原子、置換基として C 1～6 アルキル基を有することのあるアミノ基及び C 1～6 アルコキシ置換 C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Eab11) フェニル C 1～6 アルコキシカルボニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基、ハロゲン置換もしくは未置換の C 1～6 アルコキシ基、ニトロ基、ハロゲン置換もしくは未置換の C 1～6 アルキルチオ基、C 1～6 アルカノイル基を有することのあるアミノ基、フェニル C 1～6 アルコキシ基、C 1～6 アルコキシカルボニル基及び 1, 2, 3-チアジアゾリル基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Eab12) フェニル C 3～6 アルケニルオキシカルボニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよ

い) ;

(Eab13) フェノキシカルボニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C 1～6アルキル基及びハロゲン置換もしくは未置換のC 1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eab14) フェニルC 1～6アルキルカルバモイル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C 1～6アルキル基及びハロゲン置換もしくは未置換のC 1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eab15) フェニルカルバモイル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C 1～6アルキル基及びハロゲン置換もしくは未置換のC 1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eab16) ベンゾフリル置換C 1～6アルコキシカルボニル基（ベンゾフラン環上には、少なくとも1個のハロゲン原子が置換していくてもよい。）；

(Eab17) ベンゾチエニルC 1～6アルコキシカルボニル基（ベンゾチオフェン環上には、ハロゲン原子及びハロゲン置換もしくは未置換のC 1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eab18) ナフチル置換C 1～6アルコキシカルボニル基；

(Eab19) ピリジル置換C 1～6アルコキシカルボニル基（ピリジン環上には、少なくとも1個のハロゲン原子が置換していくてもよい）；

(Eab20) フリル置換C 1～6アルコキシカルボニル基（フラン環上には、少なくとも1個のニトロ基が置換していくてもよい）；

(Eab21) チエニル置換C 1～6アルコキシカルボニル基（チオフェン環上には、少なくとも1個のハロゲン原子が置換していくてもよい）；

(Eab22) チアゾリル置換C 1～6アルコキシカルボニル基（チアゾール環上には、C 1～6アルキル基及びフェニル基【フェニル環上には、ハロゲン置換もしくは未置換のC 1～6アルキル基が少なくとも1個置換していくてもよい】からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eab23) テトラゾリル置換C 1～6アルコキシカルボニル基（テトラゾール環上には、C 1～6アルキル基及びフェニル基【フェニル環上には、少なくとも1個のハロゲン原子が置換していくてもよい】からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Eab24) 2, 3-ジヒドロー-1H-インデニルオキシカルボニル基；

(Eab25) アダマンタン置換C 1～6アルコキシカルボニル基；

(Eab26) フェニルC 3～6アルキニルオキシカルボニル基；

(Eab27) フェニルチオC 1～6アルコキシカルボニル基；

(Eab28) フェニルC 1～6アルコキシ置換C 1～6アルコキシカルボニル基；

(Eab29) C 2～6アルケニルオキシカルボニル基；

(Eab30) C 2～6アルキニルオキシカルボニル基；

(Eab31) C 3～8シクロアルキル置換C 1～6アルコキシカルボニル基；

又は

(Eab32) ベンゾイル置換C 1～6アルコキシカルボニル基

を示す。）；

E12) 一般式(E b)で表される基：

【0 0 6 1】

【化17】

(式中、点線は二重結合であってもよいことを示す。R¹⁶は、R¹⁵と同一の基を示す。)

E13) 一般式(Ec)で示される基：

【0062】

【化18】

(式中、R¹⁷は、

(Ec1) フェニル C 1～6 アルキル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

(Ec2) C 1～6 アルコキシカルボニル基；

又は

(Ec3) フェニル C 1～6 アルコキシカルボニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）を示す。）；

E14) ピリジル基；

E15) 一般式(Ee)で示される基：

【0063】

【化19】

(式中、R⁴⁶は、フェニル基【フェニル環上には、置換基としてハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい】；フェニル C 1～6 アルキル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい】；フェニル C 1～6 アルコキシカルボニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい】又は C 1～6 アルコキシカルボニル基を示す。）；

E16) フエノキシ基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

E17) ベンゾイル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

E18) 8-アザビシクロ[3,2,1]オクチル基（8-アザビシクロ[3,2,1]オクタン環上には、少なくとも 1 個のフェノキシ基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）が置

換していてもよい) ;

E19) 一般式 (E f) で示される基:

(式中、 R^{47} 及び R^{48} は、同一又は異なって、水素原子；C 1～6 アルキル基；フェニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい】又はピリジル基【ピリジン環上には、置換基としてハロゲン置換もしくは未置換 C 1～6 アルキル基を少なくとも 1 個が置換していくてもよい】を示す。また、この R^{47} 及び R^{48} は、これらが隣接する窒素原子と共に、他のヘテロ原子を介し又は介することなく互いに結合して 5～7 頁環の飽和複素環を形成してもよい。該複素環上には、置換基として少なくとも 1 個のフェニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい】が置換していくてもよい。) ;

E20) フェニル C 1～6 アルコキシ基 (フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい) ;

E21) アミノ置換 C 2～6 アルケニル基 (該アミノ基上には、C 1～6 アルキル基及びフェニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい】からなる群より選ばれる基の少なくとも 1 種が置換していくてもよい) ;

又は

E22) オキサゾリジニル基 (オキサゾリジン環上には、少なくとも 1 個のオキソ基が置換していくてもよい)

を示す。]

一般式 (F) で表される基:

〔式中、 R^{19} 及び R^{20} は、同一又は異なって、

F1) 水素原子；

F2) C 1～6 アルキル基；

F3) フェニル C 1～6 アルキル基 (フェニル環上には、フェノキシ基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい】；ハロゲン原子；ハロゲン置換もしくは未置換の C 1～6 アルコキシ基；アミノ基 (アミノ基上には、C 1～6 アルキル基及びフェニル C 1～6 アルキル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい) からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい)；ピペラジニル基【ピペラジン環上には、少なくとも 1 個のフェニル C 1～6 アルキル基 (フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい) が置換していくてもよい】及びピペリジル基【ピペリジン環上には、少なくとも 1 個のアミノ基が置換していくてもよい。該アミノ基上には、フェニル基 (フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい) 及び C 1～6 アルキル基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい。】なる群より選ばれた基の少なくとも 1 種が置換していくてもよい)；

F4) フエノキシ C 1～6 アルキル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

F5) アミノ C 1～6 アルキル基（アミノ基上には、C 1～6 アルキル基、C 1～6 アルコキシカルボニル基及びフェニル基【フェニル環上には、ハロゲン原子もしくはハロゲン置換もしくは未置換の C 1～6 アルキル基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい】からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

F6) フェニル基（フェニル環上には、ハロゲン原子、フェノキシ基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい】及び C 1～6 アルコキシカルボニル基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

F7) C 1～6 アルコキシカルボニル基；

F8) フェニル C 1～6 アルコキシカルボニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

F9) 一般式 (F a) で表される基：

【0064】

【化20】

（ここで、R²¹は、C 1～6 アルコキシカルボニル基；フェニル C 1～6 アルコキシカルボニル基（フェニル環上には、ハロゲン原子、シアノ基、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；フェニル C 1～6 アルキル基（フェニル環上には、ハロゲン原子及びハロゲン置換もしくは未置換の C 1～6 アルキル基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）又はフェニル基（フェニル環上には、ハロゲン原子、シアノ基、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）を示す。）；

F10) 一般式 (F b) で表される 1-置換-4-ピペリジル基：

【0065】

【化21】

（ここで、R²²は、C 1～6 アルコキシカルボニル基；フェニル C 1～6 アルコキシカルボニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）又はフェニル基（フェニル環上には、ハロゲン原子、シアノ基、ハロゲン置換もしくは未置換の C 1～6 アルキル基又はハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が

置換していくてもよい)を示す。); 又は

F11) ピペリジル C 1 ~ 6 アルキル基(ピペリジン環上には、少なくとも 1 個のフェノキシ基(フェニル環上には、ハロゲン置換又は未置換の C 1 ~ 6 アルキル基が少なくとも 1 個置換していくてもよい)が置換していくてもよい)

を示す。;

F12) 更に、R¹⁹及びR²⁰は、これらが隣接する窒素原子と共に、他のヘテロ原子もしくは炭素原子を介し又は介することなく互いに結合して下記(F12-1)~(F12-10)に示す複素環を形成していくてもよい。;

(F12-1) 一般式(Fc)で表される基:

【0066】

【化22】

[ここで、点線は二重結合であってもよいことを示す。R²³は、

(Fc1) C 1 ~ 6 アルキル基;

(Fc2) フェニル C 1 ~ 6 アルキル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1 ~ 6 アルキル基及びハロゲン置換もしくは未置換の C 1 ~ 6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい);

(Fc3) フェニル基(フェニル環上には、ハロゲン原子; ハロゲン置換もしくは未置換の C 1 ~ 6 アルキル基; ハロゲン置換もしくは未置換の C 1 ~ 6 アルコキシ基; 置換基として C 1 ~ 6 アルキル基及びフェニル C 1 ~ 6 アルキル基 [フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1 ~ 6 アルキル基及びハロゲン置換もしくは未置換の C 1 ~ 6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい] からなる群より選ばれる基を有することのあるアミノ基; フェノキシ基 [フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1 ~ 6 アルキル基及びハロゲン置換もしくは未置換の C 1 ~ 6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい]; フェニル C 1 ~ 6 アルコキシ基 [フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1 ~ 6 アルキル基及びハロゲン置換もしくは未置換の C 1 ~ 6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい] 及びピペリジル基 [ピペリジン環上には、少なくとも 1 個のアミノ基が置換していくてもよい。該アミノ基上には、フェニル C 1 ~ 6 アルキル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1 ~ 6 アルキル基及びハロゲン置換もしくは未置換の C 1 ~ 6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい)及び C 1 ~ 6 アルキル基なる群より選ばれる基の少なくとも 1 種が置換していくてもよい。] からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい);

(Fc4) フェニル C 1 ~ 6 アルコキシ基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1 ~ 6 アルキル基及びハロゲン置換もしくは未置換の C 1 ~ 6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい);

(Fc5) ビフェニリル C 1 ~ 6 アルコキシ基;

(Fc6) フェニル環上に少なくとも 1 個のハロゲン原子が置換していくてもよいフェニル C 3 ~ 6 アルケニルオキシ基;

(Fc7) フェノキシ基(フェニル環上には、ハロゲン原子、シアノ基、ハロゲン置換もしくは未置換の C 1 ~ 6 アルキル基及びハロゲン置換もしくは未置換の C 1 ~ 6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい);

(Fc8) ベンゾイル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1 ~ 6 アルキル基及びハロゲン置換もしくは未置換の C 1 ~ 6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい);

(Fc9) C 1～6 アルコキシカルボニル基；

(Fc10) フェニル C 1～6 アルコキシカルボニル基（フェニル環上には、ハロゲン置換もしくは未置換の C 1～6 アルコキシ基が少なくとも 1 個置換していてもよい）；

(Fc11) フェニル環上に少なくとも 1 個のハロゲン原子が置換していてもよいフェニル C 1～6 アルキルカルバモイル基；

(Fc12) フェニルカルバモイル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Fc13) フェニルチオ基（フェニル環上には、ハロゲン置換もしくは未置換の C 1～6 アルコキシ基が少なくとも 1 個置換していてもよい）；

(Fc14) フェニルスルホキシド（フェニル環上には、ハロゲン置換もしくは未置換の C 1～6 アルコキシ基が少なくとも 1 個置換していてもよい）；

(Fc15) ピリジル C 1～6 アルコキシ基；

又は

(Fc16) 一般式 (Fc a) で表される基：

(式中、o は前記に同じ。R²⁴ 及び R²⁵ は、各々

(Fc a1) 水素原子；

(Fc a2) C 1～6 アルキル基；

(Fc a3) フェニル C 1～6 アルキル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Fc a4) フェニル基（フェニル環上には、ハロゲン原子、シアノ基、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Fc a5) C 1～6 アルカノイル基；

(Fc a6) フェニル環上に少なくとも 1 個のハロゲン原子が置換していてもよいフェニル C 2～6 アルカノイル基；

(Fc a7) ベンゾイル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Fc a8) C 1～6 アルコキシカルボニル基；

(Fc a9) フェニル C 1～6 アルコキシカルボニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Fc a10) フェニルカルバモイル基（フェニル環上には、ハロゲン置換もしくは未置換の C 1～6 アルキル基が少なくとも 1 個置換していてもよい）；

又は

(Fc a11) ピペリジルオキシカルボニル基（ピペリジン環上には、置換基としてフェニル基【フェニル環上には、ハロゲン置換もしくは未置換 C 1～6 アルキル基が少なくとも 1 個置換していてもよい】が少なくとも 1 個置換していてもよい。）

を示す。；

(Fc a12) R²⁴ 及び R²⁵ は、これらが隣接する窒素原子を介して 5～6 頁環の飽和複素環を形成してもよい。該複素環上には、C 1～6 アルコキシカルボニル基；ベンゾイル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；フェノキシ基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；フ

エニル C 1～6 アルキル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；フェニル C 1～6 アルコキシカルボニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；フェニル C 2～6 アルケニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）及びフェニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）を示す。】；

F12-2) 一般式 (Fd) で表される 4-置換-1-ピペラジニル基：

【0067】

【化23】

(式中、R²⁶ は、

(Fd1) 水素原子；

(Fd2) C 1～6 アルキル基；

(Fd3) C 3～8 シクロアルキル基；

(Fd4) C 3～8 シクロアルキル C 1～6 アルキル基；

(Fd5) C 1～6 アルコキシカルボニル C 1～6 アルキル基；

(Fd6) フェニル C 2～6 アルケニル基；

(Fd7) フェニル C 1～6 アルキル基（フェニル環上には、ハロゲン原子；シアノ基；ハロゲン置換もしくは未置換の C 1～6 アルキル基；C 3～8 シクロアルキル基；ハロゲン置換もしくは未置換の C 1～6 アルコキシ基；置換基として C 1～6 アルキル基を有することのあるアミノ基；C 1～6 アルコキシカルボニル基；フェノキシ基；フェニル C 1～6 アルキル基；フェニル C 2～6 アルケニル基；ピリジル基；イミダゾリル基及びピペリジル基からなる群より選ばれた基が 1～3 個置換していてもよい）；

(Fd8) ビフェニリル C 1～6 アルキル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基、ハロゲン置換もしくは未置換の C 1～6 アルコキシ基及び置換基として C 1～6 アルキル基を有することのあるアミノ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい）；

(Fd9) ナフチル C 1～6 アルキル基；

(Fd10) フェニル基（フェニル環上には、ハロゲン原子；シアノ基；置換基として C 1～6 アルキル基を有することのあるアミノ基；ハロゲン置換もしくは未置換の C 1～6 アルキル基；ハロゲン置換もしくは未置換の C 1～6 アルコキシ基；C 1～6 アルコキシカルボニル基；カルボキシル基；フェノキシ基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい】；アミノ C 1～6 アルキル基【アミノ基上にはフェニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換 C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していてもよい】及び C 1～6 アルキル基からなる群より選ばれた基を少なくとも 1 種が置換していてもよい】及

びフェニルC1～6アルコキシ基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい】からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

(Fd11) ビフェニリル基(フェニル環上には、ハロゲン置換もしくは未置換のC1～6アルキル基が少なくとも1個置換していてもよい)；

(Fd12) アミノ基、C1～6アルコキシカルボニル基が置換したアミノ基、フェニルC1～6アルキルアミノ基(フェニル環上には、ハロゲン置換もしくは未置換C1～6アルキル基が少なくとも1個置換していてもよい)又はフェニルアミノ基(フェニル環上には、ハロゲン原子及びハロゲン置換もしくは未置換のC1～6アルキル基からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

(Fd13) ベンゾイルC1～6アルキル基(フェニル環上には、少なくとも1個のハロゲン原子が置換していてもよい)；

(Fd14) フェニルカルバモイルC1～6アルキル基(フェニル環上には、ハロゲン置換もしくは未置換のC1～6アルキル基が少なくとも1個置換していてもよい)；

(Fd15) チアゾリルC1～6アルキル基(チアゾール環上には、ハロゲン置換もしくは未置換のフェニル基及びC1～6アルキル基からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

(Fd16) オキサゾリルC1～6アルキル基(オキサゾール環上には、ハロゲン置換もしくは未置換のフェニル基及びC1～6アルキル基からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

(Fd17) インドリルC1～6アルキル基；

(Fd18) フリルC1～6アルキル基(フラン環上には、ハロゲン置換もしくは未置換のフェニル基が少なくとも1個置換していてもよい)；

(Fd19) イミダゾリルC1～6アルキル基(イミダゾール環上には、フェニル基が置換していてもよい)；

(Fd20) キノリルC1～6アルキル基；

(Fd21) テトラゾリル基(テトラゾール環上には、フェニル基が置換していてもよい)；

(Fd22) フェニル基が置換していてもよいピリミジル基；

(Fd23) ピリジル基；

(Fd24) ベンゾオキサゾリル基；

(Fd25) ベンゾチアゾリル基；

(Fd26) ベンゾオキサゾリルC1～6アルキル基(ベンゾオキサゾール環上には、少なくとも1個のオキソ基が置換していてもよい)；

(Fd27) フェニル環上にハロゲン原子が置換していてもよいフェノキシC2～6アルカノイル基；

(Fd28) フェニル環上にハロゲン原子が置換していてもよいフェニルチオC2～6アルカノイル基；

(Fd29) フェニルC2～6アルカノイル基(フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

(Fd30) ベンゾイル基(フェニル環上にはハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基、ハロゲン置換もしくは未置換のC1～6アルコキシ基及び置換基としてC1～6アルキル基を有することのあるアミノ基からなる群より選ばれた基の少なくとも1種が置換していてもよい)；

(Fd31) ビフェニリルカルボニル基；

(Fd32) ピリジルカルボニル基；

(Fd33) フェニル環上にハロゲン原子が置換していてもよいフェニルC2～6アルケニルカルボニル基；

(Fd34) フェニル環上にハロゲン原子が置換していてもよいフェニルC1～6アルキルス

ルホニル基；

(Fd35) ベンゼンスルホニル基（ベンゼン環上には、ハロゲン原子及びC 1～6 アルキル基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Fd36) 一般式（F d a）で表される基：

（式中、R²⁷は、

(Fd a1) ハロゲン置換もしくは未置換のC 1～8 アルキル基；

(Fd a2) C 3～C 8 シクロアルキル基；

(Fd a3) C 3～C 8 シクロアルキル-C 1～6 アルキル基；

(Fd a4) C 1～6 アルコキシ-C 1～6 アルキル基；

(Fd a5) C 1～6 アルキル基を有することのあるアミノ-C 1～6 アルキル基；

(Fd a6) 一般式（F d b）で表される基

【0068】

【化24】

（ここで R²⁸、R²⁹及びR³⁰は、各々水素原子；C 1～6 アルキル基；フェニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC 1～6 アルキル基及びハロゲン置換もしくは未置換のC 1～6 アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい】を示す。）；

(Fd a7) フェニル C 1～6 アルキル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC 1～6 アルキル基、ハロゲン置換もしくは未置換のC 1～6 アルコキシ基、ハロゲン置換もしくは未置換のC 1～6 アルキルチオ基、フェニル C 1～6 アルコキシ基、ヒドロキシ基、C 1～6 アルキルスルフィニル基、C 1～6 アルキルスルホニル基、C 1～6 アルキルスルホニルオキシ基、シアノ基、C 1～6 アルカノイル基、ベンゾイル基、アルキル部分にC 1～6 アルコキシ基を有することのあるフェニル C 1～6 アルキル基、アミノ基、ニトロ基、カルバモイル基、C 1～6 アルカノイルアミノ基、C 1～6 アルコキシカルボニル基、C 1～6 アルキルアミノカルボニル基、C 1～6 アルコキシカルボニルアミノ基、トリC 1～6 アルキルシロキシ基、ピロリル基、テトラヒドロピラニルオキシ基及びイミダゾリル基からなる群より選ばれた基が1～5 個置換していくてもよい）；

(Fd a8) ピフェニリル C 1～6 アルキル基；

(Fd a9) ベンズヒドリル基（ベンゼン環上には、ハロゲン原子、トリフルオロメチル基及びトリフルオロメトキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Fd a10) フェノキシ C 1～6 アルキル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC 1～6 アルキル基及びハロゲン置換もしくは未置換のC 1～6 アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Fd a11) フェニル C 2～6 アルキニル基（フェニル環上には、ハロゲン置換もしくは未置換のC 1～6 アルキル基が少なくとも1個置換していくてもよい）；

(Fd a12) ピリジル C 1～6 アルキル基；

(Fd a13) 一般式（F d c）で表される基

【0069】

(ここで、R³¹は、フェニル基【フェニル環上には、ハロゲン原子、シアノ基、ハロゲン置換もしくは未置換のC1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい】；フェニルC1～6アルキル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい】又はベンゾイル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい】を示す。)；

(Fdal4) ピペリジノC1～6アルキル基（ピペリジン環上には、フェニル環上に置換基としてハロゲン置換もしくは未置換のアルキル基を少なくとも1個有することのあるフェノキシ基が置換していくてもよい）；

(Fdal5) アミノC1～6アルキル基（アミノ基上には、C1～6アルキル基及びフェニル環上に置換基としてハロゲン置換もしくは未置換のC1～6アルコキシ基を有することのあるフェニル基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Fdal6) 1, 2, 3, 6-テトラヒドロピリジルC1～6アルキル基（1, 2, 3, 6-テトラヒドロピリジン環上には、少なくとも1個のフェニル基【フェニル環上には、ハロゲン置換もしくは未置換のC1～6アルコキシ基が少なくとも1個置換していくてもよい】が置換していくてもよい）；

(Fdal7) ナフチルC1～6アルキル基；

(Fdal8) フルオレニルC1～6アルキル基；

(Fdal9) ピリジルC1～6アルキル基；

(Fdal10) フリルC1～6アルキル基（フラン環上には、ハロゲン置換もしくは未置換のフェニル基が置換していくてもよい）；

(Fdal11) チエニルC1～6アルキル基；

(Fdal12) オキサゾリルC1～6アルキル基（オキサゾール環上には、ハロゲン原子又はハロゲン置換もしくは未置換のフェニル基が置換していくてもよい）；

(Fdal13) オキサジアゾリルC1～6アルキル基（オキサジアゾール環上には、ハロゲン置換もしくは未置換のフェニル基が置換していくてもよい）；

(Fdal14) ピラゾリルC1～6アルキル基（ピラゾール環上には、ハロゲン置換もしくは未置換のフェニル基が置換していくてもよい）；

(Fdal15) ベンゾチエニルC1～6アルキル基（ベンゾチオフェン環上には、ハロゲン原子及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Fdal16) チオフェン環上にハロゲン原子が置換していくてもよいチエニルC1～6アルキル基；

(Fdal17) ベンゾチアゾリルC1～6アルキル基；

(Fdal18) ベンゾフラン環上にハロゲン原子が置換していくてもよいベンゾフリルC1～6アルキル基；

(Fdal19) インドリニルC1～6アルキル基（インドリン環上には、C1～6アルキル基及びオキソ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Fdal20) ベンゾオキサゾリルC1～6アルキル基（ベンゾオキサゾール環上には、ハロゲン原子、C1～6アルキル基及びオキソ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい）；

(Fd a31) クロメニル C 1～6 アルキル基；

(Fd a32) 1, 2, 3, 4-テトラヒドロキノリル C 1～6 アルキル基（キノリン環上には、C 1～6 アルキル基及びオキソ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

(Fd a33) チアゾリル C 1～6 アルキル基（チアゾール環上には、ハロゲン原子、ハロゲン置換もしくは未置換のフェニル基及び C 1～6 アルキル基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

又は

(Fd a34) テトラゾリル C 1～6 アルキル基（テトラゾール環上には、ハロゲン置換もしくは未置換のフェニル基及び C 1～6 アルキル基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）

を示す。）；

(Fd 37) 一般式 (F e) であらわされる基：

（式中、Z は $-\text{C}=\text{O}$ 又は $-\text{C}=\text{S}$ を示す。 R^{32} 及び R^{33} は、同一又は異なって、

(Fe 1) 水素原子；

(Fe 2) C 1～6 アルキル基；

(Fe 3) C 3～8 シクロアルキル基；

(Fe 4) フェニル C 1～6 アルキル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

(Fe 5) フェニル C 2～6 アルケニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）；

又は

(Fe 6) フェニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換の C 1～6 アルキル基及びハロゲン置換もしくは未置換の C 1～6 アルコキシ基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい）

を示す。；

(Fe 7) 或いは、 R^{32} 及び R^{33} は、これらが隣接する窒素原子と共に他の炭素原子を介して互いに結合してピペリジン環又は 1, 2, 3, 6-テトラヒドロピペリジン環を形成してもよい。該ピペリジン環及び 1, 2, 3, 6-テトラヒドロピペリジン環上には、フェニル基が置換してもよく、該フェニル基にはハロゲン原子及びハロゲン置換もしくは未置換の C 1～6 アルキル基からなる群より選ばれた基の少なくとも 1 種が置換していくてもよい。）；

(Fd 38) 一般式 (F f) で表される基：

【0070】

【化26】

（式中、 R^{34} は水素原子又は C 1～6 低級アルキル基を示す。 R^{35} は、

(Ff 1) C 3～8 シクロアルキル基；

(Ff 2) C 3～8 シクロアルケニル基；

(Ff 3) 一般式 (F f a) で表される基：

【0071】

(ここで、R³⁶、R³⁷及びR³⁸は、各々水素原子；C1～6アルキル基；フェニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基、ハロゲン置換もしくは未置換のC1～6アルコキシ基、C1～4アルキレンジオキシ基、C1～6アルキルスルホニル基、ハロゲン置換もしくは未置換のC1～6アルキルチオ基、ニトロ基及び置換基としてC1～6アルカノイル基を有することのあるアミノ基からなる群より選ばれた基の少なくとも1種が1～5個置換していてもよい】；ベンゾフリル基【ベンゾフラン環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい】；ビフェニリル基、フリル基【フラン環上には、置換基としてハロゲン原子を有することのあるフェニル基が置換していてもよい】又はチアゾリル基【チアゾール環上には、ハロゲン原子を有することのあるフェニル基が少なくとも1個置換していてもよい】を示す。)；

(F14) フェニル基（フェニル環上には、ハロゲン原子；ハロゲン置換もしくは未置換のC1～6のアルキル基；C3～8シクロアルキル基；ヒドロキシル基；ハロゲン置換もしくは未置換のC1～8のアルコキシ基；C3～8シクロアルコキシ基；C1～4アルキレンジオキシ基；シアノ基；ニトロ基；フェニルC2～6アルケニル基；C2～6アルカノイルオキシ基；置換基としてC1～6アルカノイル基を有することのあるアミノ基；C1～6アルキルスルホニルアミノ基；フェニルC1～6アルコキシ基；フェノキシ基；C1～6アルキル基が少なくとも1個置換したアミノ基；フェニル基が少なくとも1個置換したアミノ基；アミノC1～6アルコキシ基【アミノ基上には、C1～6アルキル基が少なくとも1個置換していてもよい】；C1～6アルコキカルボニル基；C1～6アルコキシカルボニルC1～6アルコキシ基；C1～6アルキルチオ基；ピロリル基；イミダゾリル基；ピペリジル基；モルホリノ基；ピロリジニル基；チエニル基；ベンゾフリル基；ピペラジニル基【ピペラジン環上には、置換基としてC1～6アルキル基、フェニルC1～6アルキル基及びC1～6アルキル基を少なくとも1種有することのあるベンゾイル基からなる群より選ばれた基の少なくとも1種が置換していてもよい】；キノリル基【キノリン環上にC1～6アルコキシ基及びオキソ基からなる群より選ばれた基の少なくとも1種が置換していてもよい】；ピペリジン環上にカルボスチリル基が置換していてもよいピペリジルカルボニル基及びトリアゾリル基からなる群より選ばれた基の少なくとも1種が置換していてもよい）；

(F15) ナフチル基（ナフタレン環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルコキシ基及び置換基としてC1～6アルキル基を有することのあるアミノ基からなる群より選ばれた基の少なくとも1種が置換していてもよい）；

(F16) ビフェニリル基（ビフェニリル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～9アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい）；

(F17) フルオレニル基；ピレニル基；

(F18) ベンゾフリル基（ベンゾフラン環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい）；

(F19) ベンゾチエニル基（ベンゾチオフェン環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していてもよい）；

(F110) ピリジル基（ピリジン環上には、ハロゲン原子、ハロゲン置換もしくは未置換

のC1～6アルキル基、フェニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基及びハロゲン置換もしくは未置換のC1～6アルコキシ基からなる群より選ばれた基が少なくとも1種が置換していくてもよい】、フリル基及びチエニル基からなる群より選ばれた基の少なくとも1種が置換していくてもよい) ;

(F111) フリル基(フラン環上には、C1～6のアルキル基、ニトロ基及びフェニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基、ハロゲン置換もしくは未置換のC1～6のアルコキシ基及びニトロ基からなる群より選ばれた基が少なくとも1種が置換していくてもよい】からなる群より選ばれた基が1～3個置換していくてもよい) ;

(F112) ベンゾチアゾール基(ベンゾチアゾール環上には、置換基としてフェニル環上にC1～6のアルコキシ基を有することのあるフェニル基が少なくとも1個置換していくてもよい) ;

(F113) チエニル基(チオフェン環上には、ハロゲン原子、ニトロ基、C1～6アルキル基、ピラゾール環上にハロゲン置換もしくは未置換のC1～6アルキル基が少なくとも1個置換していくてもよいピラゾリル基及びチオフェン環上にハロゲン原子が置換していくてもよいチエニル基からなる群より選ばれた基の少なくとも1種が置換していくてもよい) ;

(F114) インドリル基(インドール環上には、置換基としてC1～6アルキル基を有することのあるフェニルスルホニル基、フェニルC1～6アルキル基、C1～6アルコキシカルボニル基及びフェニル基からなる群より選ばれた基の少なくとも1種が置換していくてもよい) ;

(F115) ピロリル基(ピロール環上には、ハロゲン置換もしくは未置換のC1～6アルキル基が少なくとも1個置換していくてもよいフェニル基及びC1～6アルキル基からなる群より選ばれた基の少なくとも1種が置換していくてもよい) ;

(F116) クマリル基;

(F117) ベンゾイミダゾリル基(ベンゾイミダゾール環上には、少なくとも1個のチエニル基が置換していくてもよい) ;

(F118) オキサゾリル基(オキサゾール環上には、ハロゲン原子を有することのあるフェニル基が少なくとも1個置換していくてもよい) ;

(F119) チアゾリル基(チアゾール環上には、少なくとも1個のフェニル基が置換していくてもよい。該フェニル環上には、ハロゲン原子、ニトロ基及びフェニル基からなる群より選ばれた基の少なくとも1種が置換していくてもよい。) ;

(F121) キノリル基;

(F122) 3, 4-ジヒドロカルボスチリル基(3, 4-ジヒドロカルボスチリル環上には、C1～6アルコキシ基、C1～6アルキル基及びフェニルC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい)、カルボスチリル基(カルボスチリル環上には、C1～6アルコキシ基、C1～6アルキル基及びフェニルC1～6アルコキシ基からなる群より選ばれた基の少なくとも1種が置換していくてもよい) ;

(F123) イミダゾ[2, 1-b]チアゾリル基;

(F124) イミダゾ[2, 1-a]ピリジル基;

(F125) クロマニル基(クロマン環上には、少なくとも1個のC1～6アルキル基が置換していくてもよい) ;

又は

(F126) 2, 3-ジヒドロベンゾフリル基
を示す。) ;

又は

(Fd39) 一般式(F_fb)で表される基:

【0072】

(式中、R⁴⁵は、C 1～6 アルコキシカルボニル基；フェニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C 1～6 アルキル基及びハロゲン置換もしくは未置換のC 1～6 アルコキシ基からなる群より選ばれた基の少なくとも1種が置換してもよい】；アミノ置換C 1～6 アルキル基【アミノ基上には、フェニル基（フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C 1～6 アルキル基及びハロゲン置換もしくは未置換のC 1～6 アルコキシ基からなる群より選ばれた基の少なくとも1種が置換してもよい）及びC 1～6 アルキル基なる群より選ばれた基の少なくとも1種が置換してもよい】；ベンゾイル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C 1～6 アルキル基及びハロゲン置換もしくは未置換のC 1～6 アルコキシ基からなる群より選ばれた基の少なくとも1種が置換してもよい】；フェニルC 1～6 アルキル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C 1～6 アルキル基及びハロゲン置換もしくは未置換のC 1～6 アルコキシ基からなる群より選ばれた基の少なくとも1種が置換してもよい】；フェニルC 1～6 アルコキシカルボニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C 1～6 アルキル基及びハロゲン置換もしくは未置換のC 1～6 アルコキシ基からなる群より選ばれた基の少なくとも1種が置換してもよい】又はフェニルC 2～6 アルケニル基【フェニル環上には、ハロゲン原子、ハロゲン置換もしくは未置換C 1～6 アルキル基及びハロゲン置換もしくは未置換のC 1～6 アルコキシ基からなる群より選ばれた基の少なくとも1種が置換してもよい】を示す。) を示す。)

F12-3) モルホリノ基；

F12-4) イミダゾリル基；

F12-5) 1, 4-ジオキサアザスピロ【4, 5】デシリ基（1, 4-ジオキサアザスピロ【4, 5】デカン環上には、少なくとも1個のオキソ基が置換してもよい）；

F12-6) ホモピペラジニル基（ホモピペラジン環上には、C 1～6 アルコキシカルボニル基、フェニルC 1～6 アルコキシカルボニル基及びフェニル置換もしくは未置換のフェニル基からなる群より選ばれた基の少なくとも1種が置換してもよい）；

F12-7) ピペラジニル基（ピペラジン環上には、オキソ基、C 1～6 アルキル基、フェニルC 1～6 アルキル基【フェニル環上には、ハロゲン置換もしくは未置換のC 1～6 アルキル基の少なくとも1個が置換してもよい】からなる群より選ばれた基の少なくとも1種が置換してもよい）；

F12-8) ピペリジル基（ピペリジン環上には、少なくとも1個のオキソ基が置換してもよい）；

F12-9) ピロリジニル基（ピロリジン環上には、置換基としてハロゲン置換もしくは未置換のC 1～6 アルコキシ基を有することのあるフェノキシC 1～6 アルキル基が少なくとも1個置換してもよい）；

又は

F12-10) イソインドリニル基

を示す。；

F13) 更に、R¹⁹及びR²⁰は、これらが隣接する窒素原子と共にヘテロ原子を介しもしくは介することなく互いに結合して、下記(F13-1)～(F13-11)に示す環状イミド又はアミドを形成してもよい。

【0073】

(F13-1) スクシンイミド基；

(F13-2) オキサゾリジニル基（オキサゾリジン環上には、少なくとも1個のオキソ基が置換していてもよい）；

(F13-3) ベンゾー1, 3-オキサゾリジニル基（ベンゾー1, 3-オキサゾリジン環上には、オキソ基、ハロゲン原子及びフェニル基からなる群より選ばれた基の少なくとも1種が置換していてもよい）；

(F13-4) イミダゾリジニル基（イミダゾリジン環上には、オキソ基、フェニルC1～6アルキル基【フェニル環上には、ハロゲン原子及びC1～6アルコキシ基からなる群より選ばれた基が1～3個置換していてもよい】及びフェニル基からなる群より選ばれた基の少なくとも1種が置換していてもよい）；

(F13-5) ベンゾイミダゾリジニル基（ベンゾイミダゾリジン環上には、オキソ基、ハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基、置換基としてC1～6アルキル基を有することのあるアミノ基、C1～6アルコキシカルボニル基及びピペリジル基【ピペリジン環上には、C1～6アルキル基、フェニル環上にハロゲン原子が1～3個置換していてもよいフェニル基、C1～6アルコキシカルボニル基及びフェニルC1～6アルコキシカルボニル基からなる群より選ばれた基の少なくとも1種が置換していてもよい】からなる群より選ばれた基を少なくとも1種が置換していてもよい）；

(F13-6) フタルイミド基；

(F13-7) インドリニル基（インドリン環上には、C1～6アルキル基、ハロゲン原子及びオキソ基からなる群より選ばれた基の少なくとも1種が置換していてもよい）；

(F13-8) 2, 3-ジヒドロベンゾチアゾリル基（2, 3-ジヒドロベンゾチアゾール環上には、少なくとも1個のオキソ基が置換していてもよい）；

(F13-9) 1H-2, 4-ベンゾオキサジニル基（1H-2, 4-ベンゾオキサジン環上には、少なくとも1個のオキソ基が置換していてもよい）；

(F13-10) 一般式(Fga)で表される基：

【0074】

【化29】

（式中、R³⁹は、水素原子；フェニル環上に置換基としてハロゲン原子を有することのあるフェニルC1～6アルキル基；フェニル環上に置換基としてハロゲン原子を有することのあるフェノキシC1～6アルキル基；フェニル環上に置換基としてハロゲン原子を有することのあるフェニルC2～6アルケニル基；フェニル環上に置換基としてハロゲン原子、ハロゲン置換もしくは未置換のC1～6アルキル基、ハロゲン置換もしくは未置換のC1～6アルコキシ基及びフェニル基からなる群より選ばれた基の少なくとも1種が置換していてもよいフェニル基；ピリジル基又はピラジニル基を示す。）

(F13-11) 1, 3-チアゾリジニル基（1, 3-チアゾリジン環上には、置換基としてオキソ基及びフェニル環上にハロゲン置換又は未置換のC1～6アルキル基を有していてもよいフェニルC1～6アルキリデン基からなる群より選ばれる基の少なくとも1種が置換していてもよい）

一般式(G)で表される基：

【0075】

(式中、R⁴⁰は、C 1～6 アルキル基又はハロゲン置換もしくは未置換のフェニル基を示す。)

化合物(10a)又は化合物(10b)と化合物(11)との反応は、適当な溶媒中又は無溶媒下、塩基性化合物の存在下又は非存在下に行われる。

【0076】

ここで使用される溶媒としては、例えは、水、メタノール、エタノール、イソブロパノール、n-ブタノール、tert-ブタノール等のアルコール類、ベンゼン、トルエン、キシレン、テトラリン、o-クロロベンゼン、m-クロロベンゼン、2,3-ジクロロベンゼン等の芳香族炭化水素類、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、ジエチルエーテル、ジメトキシエタン、ジオキサン、テトラヒドロフラン、ジグライム、ジプロピルエーテル等のエーテル類、n-ヘキサン、n-ブタン、シクロヘキサン、流動パラフィン等の飽和炭化水素類、アセトン、メチルエチルケトン等のケトン類、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルリン酸トリアミド、アセトニトリル、N,N-ジメチルアセトアミド、NMP等の極性溶媒、又はこれらの混合溶媒等を挙げることができる。

【0077】

塩基性化合物としては、公知の無機塩基及び有機塩基を広く使用できる。

【0078】

無機塩基としては、例えは炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、磷酸ナトリウム、磷酸カリウム等のアルカリ金属金属磷酸塩、水素化ナトリウム、水素化カリウム等のアルカリ金属水素化物、カリウム、ナトリウム等のアルカリ金属、ナトリウムアミド等のアルカリ金属アミド化物、ナトリウムメチラート、ナトリウムエチラート、ナトリウムtert-ブロトキシド等のアルカリ金属アルコラート等が挙げられる。

【0079】

有機塩基としては、例えは、酢酸ナトリウム、酢酸カリウム等の酢酸塩、ピリジン、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ジメチルアニリン、1-メチルピロリジン、N-メチルモルホリン、N,N-ジメチル-4-アミノピリジン、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)等が挙げられる。

【0080】

化合物(11)の使用量は、化合物(10a)又は化合物(10b)1モルに対して、通常少なくとも1モル程度、好ましくは1～5モル程度である。

【0081】

塩基性化合物の使用量は、化合物(10a)又は化合物(10b)1モルに対して、通常0.1～1モル程度、好ましくは0.1～0.5モル程度である。

【0082】

化合物(10a)又は化合物(10b)と化合物(11)との反応は、通常室温～150℃、好ましくは室温～120℃付近にて行われ、一般に10分～24時間程度で終了する。

【0083】

化合物(12a)を化合物(13a)に導く反応及び化合物(12b)を化合物(13b)に導く反応は、適当な溶媒中又は無溶媒下、塩基性化合物の存在下で行われる。

【0084】

ここで使用される溶媒及び塩基性化合物は、前記化合物(10a)又は化合物(10b)と化合物(11)との反応で用いられる溶媒及び塩基性化合物をいずれも使用することができる。

【0085】

塩基性化合物の使用量は、化合物(12a)又は(12b)1モルに対して、通常少なくとも1モル程度、好ましくは1~2モル程度である。

【0086】

該反応は、通常0~150°C、好ましくは0~120°C付近にて行われ、一般に10分~48時間程度にて終了する。

【0087】

本発明の一般式(1)で表される4-ニトロイミダゾール化合物中、塩基性基を有する化合物は、通常の薬理的に許容される酸と容易に塩を形成し得る。斯かる酸としては、例えば、硫酸、硝酸、塩酸、磷酸、臭化水素酸等の無機酸、酢酸、p-トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸、シュウ酸、マレイン酸、フマル酸、クエン酸、コハク酸、リンゴ酸、酒石酸、マロン酸、乳酸、安息香酸等の有機酸を例示できる。

【0088】

上記各々の反応で得られる目的化合物は、通常の分離手段により反応混合物から分離され、更に精製することができる。斯かる分離及び精製手段としては、例えば、蒸留法、再結晶法、カラムクロマトグラフィー、イオン交換クロマトグラフィー、ゲルクロマトグラフィー、親和クロマトグラフィー、プレバラティヴ薄層クロマトグラフィー、溶媒抽出法等を挙げることができる。

【発明の効果】

【0089】

本発明によれば、爆発の危険性のある中間体を経ないで、目的とする一般式(1)の4-ニトロイミダゾール化合物を製造することができる。

【0090】

本発明の製造方法は、操作が簡便であり、煩雑な精製工程を必要としない。

【0091】

本発明の製造方法によれば、安価に、高収率、高純度にて、目的とする一般式(1)の4-ニトロイミダゾール化合物を製造し得る。

【0092】

従って、本発明の方法は、工業的に極めて有利である。

【発明を実施するための最良の形態】

【0093】

以下に実施例を掲げて、本発明をより一層明らかにする。

【0094】

参考例1

2, 5-ジブロム-4-ニトロイミダゾールの製造

4-ニトロイミダゾール(100g, 884ミリモル)、炭酸水素ナトリウム(164g, 1.94モル)及び水(500ml)の混合物を激しく攪拌し、臭素(106ml, 2.07モル)を室温(23~25°C)下、6時間を要して滴下した(滴下中激しく発泡)。更に、この混合物を加熱攪拌(50~55°C, 4時間)した後、氷冷下(10°C以下)に水(400ml)及び濃塩酸(80ml)を加えて1時間攪拌した。濾取した結晶を、水洗(濾紙上、水400ml)し、分散洗浄(水800ml, 2回)し、送風乾燥した(50°C, 16時間)。

収量213g(収率88.9%)、淡黄色結晶

I R (KBr) : 3 0 7 4 , 1 5 4 8 , 1 4 6 8 , 1 3 9 2 , 1 3 6 1 , 1 3 4 5 , 1 3
1 0 , 1 2 5 9 , 1 1 7 2 , 1 0 6 6 , 9 7 5 , 8 3 0 , 6 6 7 cm⁻¹。

【0095】

参考例2

2, 5-ジクロロ-4-ニトロイミダゾールの製造

2, 5-ジブロム-4-ニトロイミダゾール (27.1 g, 100ミリモル) 及び濃塩酸 (434 ml) の混合物を加熱攪拌した (77~80°C, 16時間)。反応混合物を放冷、氷冷攪拌 (5~10°C, 2時間) した後に、析出した結晶を濾取して送風乾燥した (50°C, 5時間)。乾燥物の収量は 8.26 g であった。更に、濾液を酢酸エチル (300 ml) で抽出し、乾燥 (MgSO₄) し、減圧濃縮乾固した。乾固物の収量 9.63 g であった。斯くして収量 (計) 17.9 g (収率 98.3%) の 2, 5-ジクロロ-4-ニトロイミダゾールが得られた。

I R (KBr) : 1 5 6 6 , 1 4 7 5 , 1 4 0 3 , 1 3 6 6 , 1 3 3 2 , 1 2 7 2 , 1 1
9 0 , 1 0 9 1 , 9 9 6 , 8 3 4 , 6 7 9 cm⁻¹

M S (70 eV) m/z (相対強度) : 183 (15, M⁺) , 181 (25) , 108
(28) , 74 (42) , 62 (100) 。

【0096】

実施例1

2-クロロ-5-ヨード-4-ニトロイミダゾールの製造

2, 5-ジクロロ-4-ニトロイミダゾール (7.66 g, 42.1ミリモル)、ヨウ化ナトリウム (75.7 g, 505ミリモル) 及び水 (77 ml) の懸濁液を加熱還流した (102°C, 35時間)。反応混合物を室温に放冷した後に、結晶を濾取し、水洗 (濾紙上, 77 ml) し、送風乾燥した (50°C, 20時間)。

収量 9.36 g (収率 81.3%)、淡黄色結晶

I R (KBr) : 3 1 9 9 , 1 5 3 8 . 1 4 6 8 , 1 3 9 4 , 1 3 4 6 , 1 3 0 0 , 1 2
6 2 , 1 1 6 6 , 1 0 4 9 , 9 8 6 , 8 3 1 , 7 5 6 , 7 3 4 , 6 7 4 cm⁻¹

M S (70 eV) m/z (相対強度) : 274 (34, M⁺) , 273 (100) , 16
6 (35) , 154 (80) 。

【0097】

実施例2

2-ブロム-5-ヨード-4-ニトロイミダゾールの製造

2, 5-ジブロム-4-ニトロイミダゾール (27.1 g, 100ミリモル)、ヨウ化ナトリウム (150 g, 1.00モル) 及び水 (271 ml) の懸濁液を加熱還流した (102°C, 15時間)。反応混合物を室温に放冷した後に、結晶を濾取し、水洗 (濾紙上, 270 ml) し、送風乾燥した (50°C, 20時間)。

収量 29.0 g (収率 91.2%)、淡黄色結晶

I R (KBr) : 3 2 1 8 , 1 5 3 7 , 1 4 5 6 , 1 3 8 6 , 1 3 3 6 , 1 2 8 8 , 1 2
5 0 , 1 1 5 6 , 1 0 4 8 , 9 6 9 , 8 2 9 , 7 5 6 , 7 3 1 , 6 6 5 cm⁻¹

M S (70 eV) m/z (相対強度) : 319 (80, M⁺) , 317 (82) , 154
(100) , 106 (78) 。

【0098】

実施例3

2-ブロム-5-ヨード-4-ニトロイミダゾールの製造

2, 5-ジブロム-4-ニトロイミダゾール (2.71 g, 10.0ミリモル)、ヨウ化ナトリウム (15.0 g, 100ミリモル)、ヨウ化テトラブチルアンモニウム (18.5 mg, 0.50ミリモル) 及び水 (27 ml) の懸濁液を加熱攪拌した (80~85°C, 27時間)。反応混合物を室温に放冷した後に、結晶を濾取し、水洗 (濾紙上, 27 ml)、送風乾燥した (50°C, 18時間)。

収量 2.71 g (収率 85.3%)、淡黄色結晶

I R (KBr) : 3 2 1 8 , 1 5 3 7 , 1 4 5 6 , 1 3 8 6 , 1 3 3 6 , 1 2 8 8 , 1 2

50, 1156, 1048, 969, 829, 756, 731, 665 cm⁻¹
MS (70 eV) m/z (相対強度) : 319 (80, M⁺), 317 (82), 154
(100), 106 (78)。

【0099】

実施例4

2-ブロム-5-ヨード-4-ニトロイミダゾールの製造

2, 5-ジブロム-4-ニトロイミダゾール (2.71 g, 10.0 ミリモル)、ヨウ化ナトリウム (15.0 g, 100 ミリモル)、水 (27 ml) 及び 5.7% ヨウ化水素酸水溶液 (5.4 ml) の懸濁液を加熱攪拌した (50~60°C, 5.6 時間)。反応混合物を室温に放冷した後に、結晶を濾取し、水洗 (濾紙上、27 ml) し、送風乾燥した (50°C, 1.5 時間)。

収量 2.43 g (収率 76.4%)、淡黄色結晶

IR (KBr) : 3218, 1537, 1456, 1386, 1336, 1288, 1250, 1156, 1048, 969, 829, 756, 731, 665 cm⁻¹

MS (70 eV) m/z (相対強度) : 319 (80, M⁺), 317 (82), 154 (100), 106 (78)。

【0100】

実施例5

2-ブロム-5-ヨード-4-ニトロイミダゾールの製造

2, 5-ジブロム-4-ニトロイミダゾール (2.71 g, 10.0 ミリモル)、水 (13.6 ml) 及び 5.7% ヨウ化水素酸水溶液 (13.6 ml) の懸濁液を加熱攪拌した (50~60°C, 3.6 時間)。反応混合物を室温に放冷した後に、結晶を濾取し、水洗 (濾紙上、27 ml) し、送風乾燥した (50°C, 1.5 時間)。

収量 1.11 g (収率 34.9%)、淡黄色結晶

IR (KBr) : 3218, 1537, 1456, 1386, 1336, 1288, 1250, 1156, 1048, 969, 829, 756, 731, 665 cm⁻¹

MS (70 eV) m/z (相対強度) : 319 (80, M⁺), 317 (82), 154 (100), 106 (78)。

【0101】

実施例6

2-クロロ-4-ニトロイミダゾールの製造

2-クロロ-5-ヨード-4-ニトロイミダゾール (273 mg, 1.00 ミリモル)、エタノール (2.7 ml)、トリエチルアミン (443 mg, 3.00 ミリモル) 及び 酸化白金 (2.9 mg, 1.1 wt %) の混合物を常圧水素気流中、室温条件で 2 時間攪拌した。濾液を減圧で濃縮乾固した後に、残渣を酢酸エチル (30 ml) に溶解した。有機層を 3% 希塩酸 (10 ml) と飽和食塩水で洗浄 (5 ml, 2 回) し、乾燥 (MgSO₄) し、減圧濃縮乾固した。

収量 1.44 mg (収率 97.6%)

IR (KBr) : 1556, 1510, 1472, 1404, 1375, 1358, 1193, 1093, 998, 979, 822, 753, 679, 595, 523 cm⁻¹

NMR (DMSO-d₆) δ ppm : 8.40 (s, 1H), 14.2 (br, s, 1H)。

【0102】

実施例7

2-ブロム-4-ニトロイミダゾールの製造

2-ブロム-5-ヨード-4-ニトロイミダゾール (607 mg, 2.00 ミリモル)、エタノール (6.4 ml)、トリエチルアミン (607 mg, 6.00 ミリモル) 及び 酸化白金 (3.4 mg, 0.53 wt %) の混合物を常圧水素気流中、室温条件で 3 時間攪拌した。濾液を減圧で濃縮乾固した後に、残渣を酢酸エチル (50 ml) に溶解した。有機層を 3% 希塩酸 (10 ml) と飽和食塩水で洗浄 (10 ml, 2 回) し、乾燥 (MgSO₄) し、減圧濃縮乾固した。

SO_4) し、減圧濃縮乾固した。

収量 365 mg (収率 95.1%)

IR (KBr) : 1548, 1514, 1453, 1392, 1373, 1258, 1168, 1085, 968, 823, 799, 751, 668 cm⁻¹

NMR (DMSO-d₆) δ ppm : 8.45 (s, 1H), 14.1 (br, s, 1H)。

【0103】

実施例 8

2-ブロム-4-ニトロイミダゾールの製造

2-ブロム-5-ヨード-4-ニトロイミダゾール (636 mg, 2.00 ミリモル)、エタノール (6.4 ml)、トリエチルアミン (607 mg, 6.00 ミリモル) 及び 2% Pd アルミナ (95.4 mg, 15 wt %) の混合物を常圧水素気流中、50~60 °Cで 15 時間攪拌した。濾液を減圧で濃縮乾固した後に、残渣を酢酸エチル (50 ml) に溶解した。有機層を 3% 希塩酸 (10 ml) と飽和食塩水で洗浄 (10 ml, 2 回) し、乾燥 (MgSO_4) し、減圧濃縮乾固した。

収量 364 mg (収率 94.8%)

IR (KBr) : 1548, 1514, 1453, 1392, 1373, 1258, 1168, 1085, 968, 823, 799, 751, 668 cm⁻¹

NMR (DMSO-d₆) δ ppm : 8.45 (s, 1H), 14.1 (br, s, 1H)。

【0104】

実施例 9

2-ブロム-4-ニトロイミダゾールの製造

2-ブロム-5-ヨード-4-ニトロイミダゾール (1.27 g, 4.00 ミリモル)、エタノール (13 ml)、トリエチルアミン (1.21 g, 12.0 ミリモル) 及び 2% Pd アルミナ (191 mg, 15 wt %) の混合物を加圧水素 (3~4 気圧) 気流中、室温条件で 14 時間攪拌した。濾液を減圧で濃縮乾固した後に、残渣を酢酸エチル (100 ml) に溶解した。有機層を 3% 希塩酸 (30 ml) と飽和食塩水で洗浄 (20 ml, 2 回) し、乾燥 (MgSO_4) し、減圧濃縮乾固した。

収量 761 mg (収率 99.1%)

IR (KBr) : 1548, 1514, 1453, 1392, 1373, 1258, 1168, 1085, 968, 823, 799, 751, 668 cm⁻¹

NMR (DMSO-d₆) δ ppm : 8.45 (s, 1H), 14.1 (br, s, 1H)。

【0105】

実施例 10

2-ブロム-4-ニトロイミダゾールの製造

2-ブロム-5-ヨード-4-ニトロイミダゾール (186 mg, 0.585 ミリモル) を乾燥ジオキサン (2.8 ml) に溶かした溶液に、テトラ-n-ブチルアンモニウムボロヒドリド (602 mg, 2.34 ミリモル) を加え、60 °Cで 28 時間攪拌した。反応混合物を室温に放冷した後に、10% 希塩酸 (10 ml) 中へ投入した。反応生成物を酢酸エチルで抽出し、酢酸エチル抽出溶液 (40 ml) を乾燥 (MgSO_4) し、減圧濃縮乾固した。

収量 86 mg (収率 76.6%)

IR (KBr) : 1548, 1514, 1453, 1392, 1373, 1258, 1168, 1085, 968, 823, 799, 751, 668 cm⁻¹

NMR (DMSO-d₆) δ ppm : 8.45 (s, 1H), 14.1 (br, s, 1H)。

【書類名】要約書

【要約】

【課題】 本発明は、爆発等の危険の少ないより安全な方法で、高収率、高純度で一般式（1）で表される4-ニトロイミダゾール化合物を製造する方法を提供することを課題とする。

【解決手段】 本発明の製造方法は、一般式（2）

【化1】

【式中、X¹及びX²は、それぞれ塩素原子又は臭素原子を示す。】

で表される4-ニトロイミダゾール化合物をヨウ素化し、次いで得られる一般式（3）

【化2】

【式中、X²は前記に同じ。】

で表される5-ヨード-4-ニトロイミダゾール化合物を還元する。

【選択図】 なし

出願人履歴

0 0 0 2 0 6 9 5 6

19900827

新規登録

東京都千代田区神田司町2丁目9番地
大塚製薬株式会社