GAUSSIAN (NOFMAL) DISTRIBUTION

$$f(x) = \frac{1}{\sqrt{1\pi}6^2} e^{-(x-M)^2/(26^2)} \qquad E(x) = M$$

$$Var(x) = 6^2$$

the standard normal is denoted by N(0,1)4 any Gaussian RV can be expressed as X = 67 + M, $7 \sim N(0,1)$

a linear combination of independent Gaussians:

$$\times \sim \mathcal{N}(M_{\times}, 6_{\times}^{2})$$
, $Y \sim \mathcal{N}(M_{Y}, 6_{Y}^{2})$, $Z = a \times + b \times$
 $Z \sim \mathcal{N}(aM_{\times} + bM_{Y}, a^{2}6_{\times}^{2} + b^{2}6_{Y}^{2})$

CENTRAL LIMIT THEOREM

for i.i.d. RVs $x_1, x_2, ... x_n$ with $E(x_i) = M$, $Var(x_i) = 6$, define $s_n = \sum_{i=1}^n x_i$, then,

equivalently, $\frac{5n}{n} \rightarrow \mathcal{N}(M, \frac{6^2}{n})$ as $n \rightarrow \infty$