Notazione asintotica per costo computazionale

Come faccio a dire se un algoritmo è più efficiente di un altro (per risolvere uno stesso problema). Per definire il <u>costo computazionale</u> ci basta una stima, questa stima è data da:

- Tempo: # operazioni nel caso peggiore
- Spazio

A partire da un certo n io dovrò sapere esattamente cosa farà il mio algoritmo La notazione asintotica è comoda per descrivere la funzione tempo di esecuzione nel caso peggiore; a volte però possiamo estendere la notazione al dominio dei numeri reali o limitarla ad un sottoinsieme dei naturali.

Utilizzeremo la n.a. soprattutto per descrivere i tempi di esecuzione degli algoritmi ma può essere applicata anche a funzioni che descrivono qualche altro aspetto degli algoritmi.

Stima:

- ▶ Upper Bound (limite superiore): non capiterà che l'algoritmo abbia bisogno di più di questo numero di operazioni $\rightarrow O(\cdot)$
- **Lower Bound** (limite inferiore): # minimo di operazioni per ogni nel caso peggiore $\rightarrow \Omega(\cdot)$
- ➤ **Tight Bound**: U.B. e L.B. si equivalgono $\rightarrow \bigcirc$ (·)

La prima cosa da fare è cercare un U.B. più preciso possibile, di questa funzione ci interessa l'ordine di grandezza.

Date 2 funzioni:

$$f(n): N \to \mathbb{R}$$

 $g(n): N \to \mathbb{R}$

Diremo che $f(n) \in O(g(n))$

Se e solo se

$$\exists$$
 2 valori: $c > 0$, $n_0 > 0$ tali che:
 $f(n) \le c \cdot g(n)$ per ogni $n \ge n_0$

ESEMPIO

stima del tempo
$$\rightarrow T(n) \le f(n) = 2n^2 + 3n + 6$$

 $g(n) = n^2$

 $f(n) \in O(n^2)$ nel caso peggiore il tempo si comporta circa come una parabola

$$2n^2 + 3n + 6 \le 2n^2 + 3n^2 + 6 \le 2n^2 + 3n^2 + n^2 = 6n^2 = cn^2$$

f(n) si comporterà come una parabola.

Ci concentriamo sul termine di ordine più grande ignorando le costanti, ci interessa il comportamento.

Esempi:

1. Ciclo semplice:

for
$$i = 0$$
 to $n - 1$
 $c := c + 1$
 $d := d + c$
 $c := c + d$

All'interno del ciclo for sono presenti 2 operazioni, il ciclo for esegue n iterazioni, quindi:

$$\#op. = 2 \cdot iterazioni$$

2. Ciclo annidato

for
$$i = 0$$
 to $n - 1$
for $j = i$ to $n - 1$
 $x := x + 1$
 $y := y + 1$

$$I\!\!I(n)=n+rac{n(n+1)}{2}\in O(n^2)$$

$$n
ightarrow$$
y := y+ 1

i	j	# iterazioni ciclo interno
0	0 - n-1	n
1	1 n-1	n-1
2	2 n-1	n-2
k	k n-1	n-k
n - 1	n-1 n-1	1

$$\hookrightarrow n+(n-1)+(n-2)+...+2+1$$

Sto sommando i primi n numeri naturali

$$= \frac{n(n+1)}{2}$$

Upper Bound

Diremo che:

$$f(n) \in O(g(n))$$
 se esistono delle costanti positive c
 e $n_0: 0 \leq f(n) \leq c \cdot g(n) \; \forall n \geq n_0$

Notiamo che la notazione $f(n) \in \Theta(g(n))$ implica f(n) = O(g(n)), in quanto la notazione Θ è più forte della notazione O. Qualsiasi funzione quadratica $an^2 + bn + c$, con a > 0, è in $\Theta(n^2)$ implica anche che tali funzioni quadratiche siano tutte in $O(n^2)$.

Espressione O()	Nome
O(1)	Costante
O(loglogn)	loglog

Espressione O()	Nome
$O(\sqrt[c]{n}, c > 1)$	sublineare
O(n)	lineare
O(nlogn)	nlogn
$\overline{O(n^2)}$	quadratica
$O(n^3)$	cubica
$O(n^k)$, k > 1	polinomiale
$O(a^n)$, a > 1	esponenziale
O(n!)	fattoriale

Più siamo in alto nella tabella più il nostro algoritmo sarà efficente.

Esempio

Vediamo un esempio. $Siaf(n)=2n^2+3n+6, g(n)=n^2$, e tentiamo di mostrare che $2n^2+3n+6=O(n^2)$. Occorrerà quindi provare che esistono costanti c>0 e $n_0\in\mathbb{N}$ per cui $2n^2+3n+6\leq cn^2$, per ogni n $\geq n_0$. A tal fine osserviamo che $2n^2+3n+6\leq 2n^2+3n^2+6\leq 2n^2+3n^2+n^2=6n^2$, per ogni valore di n ≥ 3 .

Quindi, le costanti c e n_0 che cercavamo per provare che $2n^2+3n+6\leq cn^2$, per ogni $n\geq n_0$, possono essere scelte come c = 6 e n_0 = 3. Ovviamente, possono esistere anche altri valori di c e n_0 per cui la diseguaglianza $2n^2+3n+6\leq cn^2$, per ogni $n\geq n_0$, sia soddisfatta. Tuttavia, al fine di provare che $2n^2+3n+6=O(n^2)$ ci basta aver provato che c=2 e $n_0=3$ vanno bene.

L'esempio descritto ammette una semplice generalizzazione, ovvero per ogni k costante

Generico polinomio di grado k:

$$f(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n^1 + a_0 n^0 \in O(n^k)$$

Questa proprietà vale per tutti i polinomi La difficoltà sta nel definire f(n)

$$0 \le i \le k$$

$$a_i n^i \leq |a_i| n^i \leq |a_i| n^k \ldots \leq |a_k| n^k + |a_{k-1}| n^k + \ldots + |a_1| n^k + |a_0| n^k = (|a_k| + |a_{k-1}| + \ldots + |a_0|) n^k = c n^k$$

Alcune proprietà:

1. Se
$$f(n) \in O(g(n)) allora: a \cdot f(n) \in O(g(n)) \ orall a > 0$$
 costante Esempio: $7logn \in O(n)$

2.

$$Se egin{cases} f(n) \in O(g(n)), \ d(n) \in O(h(n)) \end{cases}
ightarrow rac{f(n) + d(n) \in O(g(n) + h(n))}{\in O(max(g(n), h(n)))}$$

3.

$$Se egin{cases} f(n) \in O(g(n)), \ d(n) \in O(h(n)) \end{cases}
ightarrow f(n) * d(n) \in O(g(n) * h(n))$$

$$Se egin{cases} f(n) \in O(g(n)), \ g(n) \in O(h(n)) \end{cases}
ightarrow f(n) \in O(h(n))$$

Lower Bound

Diremo che $f(n)\in\Omega(g(n))$ se e solo se $\exists c>0,n_0\geq 0$ per cui $f(n)\geq c\cdot g(n) orall n\geq n_0$

Espressione Ω ()	Nome
Ω (1)	Costante
$\Omega(loglogn)$	loglog
$\Omega(\sqrt[c]{n}, c > 1)$	sublineare
Ω (n)	lineare
Ω (nlogn)	nlogn
$\Omega(n^2)$	quadratica
$\Omega(n^3)$	cubica
$\Omega(n^k)$, k > 1	polinomiale
$\Omega(a^n)$, a > 1	esponenziale
$\Omega(n!)$	fattoriale

L'ordine consta ancora ma stavolta è il contrario di prima.

Tight Bound

Diremo che $f(n)\in\Theta(g(n))$ se e solo se: $\exists c1,c2>0,n_0\geq0 \text{ per cui}$ $\forall n\geq n_0 \quad c1\cdot g(n)\leq f(n)\leq c2\cdot g(n)$

La definizione di $\Theta(g(n))$ richiede che ogni membro $f(n) \in \Theta(g(n))$ sia **asintoticamente non negativo**, ovvero che f(n) sia non negativa quando n è sufficentemente grande.

Stessa tabella di prima ma con heta.

Problema

Un problema è trattabile se ha come U.B. un polinomiale ovvero: se \exists un algrotimo A di tempo polinomiale

$$T(n) \in O(n^k)$$

Un problema è *intrattabile* se ∄ un A polinomiale per risolverlo.

Un problema potrebbe anche essere non risolvibile.

Esiste anche una classe di problemi per cui non si è dimostrato se esiste o non esiste una soluzione, essi sono detti NP-compatibili.

Esempi

1. Input:

o Sequenza di numeri interi

$$\circ \ x \in N$$

Output: la posizione di c in A (se presente), altrimenti "non c'è"

```
Cerca(A, x)
    i:= 0
    while i < n and A[i] != x
        i:=i+1

if i=n
        then return "non c'è"
    else return i</pre>
```

2. Stesso problema ma stavolta la sequenza è ordinata in ordine non decrescente

$$A[0] <= A[1] <= ... <= A[n-1]$$

Output: posizione di x in A

Ricerca binaria (Dicotomica)

Quand'è che non lo trovo? Quando la sequenza rimane vuota senza che io lo abbia trovato

Pseudo codice:

Quindi, ricapitolando:

Se A non è ordinato \rightarrow O(n)

Se A è ordinato \rightarrow O(logn)

	Algoritmo	Problema
U.B.	Riesce a risolvere con $T_a(n) \in O(\cdot)$	Si può risolvere con $T_p(n) \in O(\cdot)$
L.B.	Non può fare meglio di $T_a(n)\in\Omega(\cdot)$	Non posso risolvere il problema $T_p(n)\in\Omega(\cdot)$