

Lecture 2. Deterministic Signal Analysis

- Time-Domain Analysis
- Frequency-Domain Analysis

Time-Domain Analysis

- Signal Representation in Time Domain
- Signal Energy and Signal Power
- Signal Transmission Through an LTI System

Signals in Time Domain

- A signal is a set of data or information, which can be represented as a function of time t: s(t)
- Deterministic Signal vs. Random Signal
 - ✓ Deterministic signal is a signal whose physical description is known completely, either in a mathematical form or a graphical form: Expression of s(t) is known.

 Lecture 2
 - ✓ Random signal is a signal that cannot be predicted precisely, but known in terms of probabilistic description: $\underline{s(t)}$ is a random process.

Lecture 5

- Other Classification of Signals:
 - ✓ Periodic signal vs. Aperiodic signal
 - ✓ Continuous-time vs. Discrete-time signal
 - ✓ Analog signal vs. Digital signal

Examples of Deterministic Signals

• Constant signal: s(t) = A

• Sinusoidal signal: $s(t) = \cos(2\pi f_0 t)$

Rectangular pulse:

$$s(t) = \begin{cases} A & -\tau/2 \le t \le \tau/2 \\ 0 & \text{otherwise} \end{cases}$$

• Unit impulse: $s(t) = \delta(t)$

$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases} \text{ and } \int_{-\infty}^{\infty} \delta(t) dt = 1$$

EE3008 Principles of Communications

Lecture 2

Linear Time Invariant (LTI) System

 System: A system is an entity that processes a set of signals (inputs) to yield another set of signals (outputs).

- Linear and Time Invariant:
 - ✓ Linear: If $s_1(t) \rightarrow y_1(t)$, and $s_2(t) \rightarrow y_2(t)$, then $a_1 s_1(t) + a_2 s_2(t) \rightarrow a_1 y_1(t) + a_2 y_2(t) \text{ for coefficients } a_1 \text{ and } a_2.$
 - ✓ Time Invariant : If $s(t) \rightarrow y(t)$, then $s(t-T) \rightarrow y(t-T)$ for delay T.
- Impulse response h(t): If the input signal is a unit impulse $\delta(t)$, then the output signal is called the impulse response of the system: $\delta(t) \rightarrow h(t)$

Linear Time Invariant (LTI) System

• For an LTI system: the output signal y(t) is the convolution of the input signal s(t) and the impulse response of the system h(t).

EE3008 Principles of Communications

Frequency-Domain Analysis

- Fourier Transform
- Energy Spectrum, Power Spectrum and Signal Bandwidth
- Signal Transmission Through an LTI System

Signals in Frequency Domain

Time domain

Frequency domain

• $\cos(2\pi f_0 t)$

•
$$\sum_{n=0}^{\infty} \cos(2\pi n f_0 t) \sum_{n=0}^{\infty} \cos(2\pi n f_0 t + \theta_n)$$

•
$$a_0 + \sum_{n=1}^{\infty} a_n \cos(2\pi n f_0 t) + \sum_{n=1}^{\infty} b_n \sin(2\pi n f_0 t)$$

$$=\sum_{n=-\infty}^{\infty} s_n e^{j2\pi n f_0 t}$$

$$s_0 = a_0$$
, $s_n = (a_n - j b_n)/2$, $s_{-n} = (a_n + j b_n)/2$.

$$\cos(2\pi f_0 t) = \frac{1}{2} (e^{j2\pi f_0 t} + e^{-j2\pi f_0 t})$$
$$\sin(2\pi f_0 t) = \frac{1}{2j} (e^{j2\pi f_0 t} - e^{-j2\pi f_0 t})$$

Fourier Series

• $s(t) = \sum_{n=-\infty}^{\infty} s_n e^{j2\pi n f_0 t}$. Let $T_0 = 1/f_0$.

$$s(t+T_0) = \sum_{n=-\infty}^{\infty} s_n e^{j2\pi n f_0(t+T_0)} = \sum_{n=-\infty}^{\infty} s_n e^{j2\pi n f_0 t + j2\pi n} = s(t)$$

s(t) is a periodic signal with period $T_0!$

- Fourier Series: $s(t) = \sum_{n=-\infty}^{\infty} s_n e^{j2\pi n f_0 t}$ $s_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} s(t) e^{-j2\pi n f_0 t} dt$
 - ✓ Any periodic signal with period T_0 can be expressed as a sum of sinusoidal signals, each with the frequency an integer number of $1/T_0$.
 - \checkmark To obtain s_n : $\int_{-T_0/2}^{T_0/2} s(t) e^{-j2\pi m f_0 t} dt = \sum_{n=-\infty}^{\infty} s_n \int_{-T_0/2}^{T_0/2} e^{j2\pi (n-m)f_0 t} dt$

$$= s_m T_0$$

$$\implies s_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} s(t) e^{-j2\pi n f_0 t} dt$$

$$\int_{-T_0/2}^{T_0/2} e^{j2\pi m f_0 t} dt = \begin{cases} T_0 & m = 0\\ 0 & m \neq 0 \end{cases}$$

From Fourier Series to Fourier Transform

For an aperiodic signal s(t), construct a periodic signal s'(t) by repeating the signal s(t) every T_0 seconds: $s(t) = \lim_{T_0 \to \infty} s'(t)$.

✓ Fourier Series:
$$s'(t) = \sum_{n=-\infty}^{\infty} s'_n e^{j2\pi n f_0 t}$$
, $s'_n = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} s'(t) e^{-j2\pi n f_0 t} dt$

✓ Let
$$S'(f) = \int_{-T_0/2}^{T_0/2} s'(t) e^{-j2\pi f t} dt$$
. Then $s'_n = \frac{S'(nf_0)}{T_0}$

$$s'(t) = \sum_{n = -\infty}^{\infty} \frac{S'(nf_0)}{T_0} e^{j2\pi nf_0 t} = \sum_{n = -\infty}^{\infty} S'(nf_0) f_0 e^{j2\pi nf_0 t}$$

$$\checkmark$$
 With $T_0 \to \infty$, $f_0 \to 0$.

$$s(t) = \lim_{T_0 \to \infty} s'(t) = \lim_{f_0 \to 0} \sum_{n = -\infty}^{\infty} S'(nf_0) f_0 e^{j2\pi n f_0 t} = \int_{-\infty}^{\infty} S(f) e^{j2\pi f t} df$$

$$S(f) = \lim_{T_0 \to \infty} S'(f) = \lim_{T_0 \to \infty} \int_{-T_0/2}^{T_0/2} s'(t)e^{-j2\pi ft}dt = \int_{-\infty}^{\infty} s(t)e^{-j2\pi ft}dt$$
 Fourier Transform

Fourier Transform

Given a time-domain signal s(t), its Fourier transform is defined as follows.

Fourier transform:

$$S(f) = \int_{-\infty}^{\infty} s(t)e^{-j2\pi ft}dt$$

The time-domain signal s(t) can be expressed by S(t) using an inverse transform.

Inverse Fourier transform:
$$s(t) = \int_{-\infty}^{\infty} S(f)e^{j2\pi ft}df$$

- (Fourier) spectrum of s(t): S(f)
- Magnitude spectrum of s(t): |S(f)|

$$s(t) \Leftrightarrow S(f)$$

Example 1: Spectrum of Unit Impulse $\delta(t)$

$$s(t) = \delta(t): \quad \delta(t) = \begin{cases} \infty & t = 0 \\ 0 & t \neq 0 \end{cases} \quad \text{and} \quad \int_{-\infty}^{\infty} \delta(t) dt = 1$$

$$S(f) = \int_{-\infty}^{\infty} \delta(t) e^{-j2\pi ft} dt = 1$$

Example 2: Spectrum of Constant Signal

$$s(t) = A$$

$$S(f) = A \int_{-\infty}^{\infty} e^{-j2\pi f t} dt$$

$$S(0) = A \int_{-\infty}^{\infty} e^{-j2\pi 0t} dt = A \int_{-\infty}^{\infty} 1 dt = \infty$$

$$S(f) = A \int_{-\infty}^{\infty} e^{-j2\pi ft} dt = 0 \quad \text{for } f \neq 0$$

$$S(f) = A\delta(f)$$

Example 3: Spectrum of Sinusoidal Signal

$$s(t) = \cos(2\pi f_0 t)$$

$$S(f) = \int_{-\infty}^{\infty} \cos 2\pi f_0 t \cdot e^{-j2\pi f_0 t} dt$$

$$= \int_{-\infty}^{\infty} \frac{1}{2} (e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}) \cdot e^{-j2\pi f_0 t} dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} e^{-j2\pi (f - f_0) t} dt + \frac{1}{2} \int_{-\infty}^{\infty} e^{-j2\pi (f + f_0) t} dt$$

$$= \frac{1}{2} (\delta(f - f_0) + \delta(f + f_0))$$

Example 4: Spectrum of $s(t)\cos(2\pi f_0 t)$

$$x(t) = s(t)\cos(2\pi f_0 t)$$

$$X(f) = \int_{-\infty}^{\infty} s(t)\cos(2\pi f_0 t) \cdot e^{-j2\pi f t} dt = \int_{-\infty}^{\infty} s(t) \cdot \frac{1}{2} (e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}) \cdot e^{-j2\pi f t} dt$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} s(t) \cdot e^{-j2\pi (f - f_0)t} dt + \frac{1}{2} \int_{-\infty}^{\infty} s(t) \cdot e^{-j2\pi (f + f_0)t} dt = \frac{1}{2} [S(f - f_0) + S(f + f_0)]$$

Example 5: Spectrum of Single Rectangular Pulse

$$s(t) = \begin{cases} A & -\tau/2 \le t \le \tau/2 \\ 0 & \text{otherwise} \end{cases}$$

 $\lim(x\rightarrow 0) \sin x/x = 1$

$$S(f) = A \int_{-\tau/2}^{\tau/2} e^{-j2\pi f t} dt = A \cdot \frac{e^{-j\pi f \tau} - e^{+j\pi f \tau}}{-j2\pi f}$$
$$= A\tau \cdot \frac{\sin(\pi f \tau)}{\pi f \tau} = A\tau \operatorname{sinc}(f \tau)$$

$$\operatorname{sinc}(x) \triangleq \frac{\sin(\pi x)}{\pi x}$$

- sinc function is an even, oscillating function with a decreasing magnitude.
- It has unit peak at x=0, and zero crossing points at x= non-zero integers.

Properties of Fourier Transform

$$\alpha s_1(t) + \beta s_2(t)$$

$$\Leftrightarrow$$

$$\alpha S_1(f) + \beta S_2(f)$$

Linearity

$$s_1(t)s_2(t)$$

$$\Leftrightarrow$$

$$S_1(f) * S_2(f)$$

$$s_1(t) * s_2(t)$$

$$\Leftrightarrow$$

$$S_1(f) \cdot S_2(f)$$

Convolution

S(t)

$$\Leftrightarrow$$

$$s(-f)$$

Duality

$$s(t-\tau)$$

$$\Leftrightarrow$$

$$S(f)e^{-j2\pi f\tau}$$

Time shift

$$s(t)e^{-j2\pi f_0 t}$$

$$\Leftrightarrow$$

$$S(f+f_0)$$

Frequency shift

$$s(t)\cos(2\pi f_0 t)$$

$$\Leftrightarrow$$

$$\frac{1}{2}[S(f-f_0)+S(f+f_0)]$$

Modulation

$$\Leftrightarrow$$

$$\frac{1}{|a|}S\left(\frac{f}{a}\right)$$

Time scale

(for any real $a \neq 0$)

Review Examples 2 & 4

$$s(t) = \delta(t) \iff S(f) = 1$$

s(t) = 1 \Leftrightarrow $S(f) = \mathcal{S}(f)$

$$x(t) = s(t)\cos(2\pi f_0 t)$$

 \Leftrightarrow

$$X(f) = S(f) * \left[\frac{1}{2} (\delta(f - f_0) + \delta(f + f_0)) \right]$$
$$= \frac{1}{2} [S(f - f_0) + S(f + f_0)]$$

Duality: $S(t) \Leftrightarrow s(-f)$

Modulation:

$$s_1(t)\cos(2\pi f_0 t)$$

$$\Leftrightarrow$$

$$\frac{1}{2}[S(f-f_0) + S(f+f_0)]$$

Convolution:

$$S_1(t)S_2(t) \Leftrightarrow S_1(f) * S_2(f)$$

Example 6: Spectrum of Impulse Train

$$S(f) = \sum_{n=-\infty}^{\infty} s_n \delta(f - nf_0)$$

$$s_n = \frac{1}{T_0} \int_0^{T_0} s(t) e^{-j2\pi n f_0 t} dt = f_0 \int_0^{1/f_0} \delta(t) e^{-j2\pi n f_0 t} dt = f_0$$

Example 7: Spectrum of Periodic Signal

• For periodic signal s(t) with period T_0 , define $s_{T_0}(t)$ as

$$s_{T_0}(t) = \begin{cases} s(t) & -T_0/2 < t < T_0/2 \\ 0 & otherwise \end{cases}$$

•
$$s(t) = \sum_{n=-\infty}^{\infty} s_{T_0}(t - nT_0) = s_{T_0}(t) * \sum_{n=-\infty}^{\infty} \delta(t - nT_0)$$

•
$$S(f) = S_{T_0}(f) \cdot f_0 \sum_{n=-\infty}^{\infty} \delta(f - nf_0) = f_0 \sum_{n=-\infty}^{\infty} S_{T_0}(nf_0) \delta(f - nf_0)$$

Example 8: Spectrum of Sampled Signal

$$x(t) = s(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t - nT_0)$$

$$X(f) = S(f) * f_0 \sum_{n=-\infty}^{\infty} \delta(f - nf_0) = f_0 \sum_{n=-\infty}^{\infty} S(f - nf_0)$$

Signal Transmission through an LTI System

Signal Transmission over an LTI System

Time Domain:

Frequency Domain:

Transfer Function
$$H(f)$$

$$S(t) \Leftrightarrow S(f)$$

$$h(t) \Leftrightarrow H(f)$$

$$y(t) \Leftrightarrow Y(f)$$

$$Y(f) = S(f) \cdot H(f)$$

Ideal Lowpass System

• Transfer Function H(f) of an ideal lowpass system:

For a baseband input signal with bandwidth B_s:

Ideal Bandpass System

• Transfer Function H(f) of an ideal bandpass system:

For a baseband input signal with bandwidth B_s:

Baseband Channel and Bandpass Channel

- Baseband channel
- A baseband channel
 efficiently passes frequency
 components from dc (zero)
 to the cutoff frequency B_h Hz.
- Examples: coaxial cable

- Bandpass channel
- A bandpass channel efficiently passes frequency components within a certain band, say, between $f_c \frac{1}{2}B_h$ and $f_c + \frac{1}{2}B_h$ Hz.
- Examples: EM wave, fibre

In this course, a baseband channel and a bandpass channel are modeled as an ideal low-pass LTI system and an ideal bandpass LTI system, respectively.

Energy Spectrum, Power Spectrum

Energy-type Signal and Power-type Signal

- Energy-type Signal: A signal is an energy-type signal if and only if its energy is positive and finite.
 - \checkmark s(t) is an energy-type signal if and only if $0 < E_s = \int_{-\infty}^{\infty} |s(t)|^2 dt < \infty$.
- Power-type Signal: A signal is a power-type signal if and only if its power is positive and finite.
 - \checkmark s(t) is a power-type signal if and only if $0 < P_s = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |s(t)|^2 dt < \infty$.

How to determine if a signal is an energy-type signal or a power-type signal from the frequency domain?

Energy and Energy Spectrum

Energy of energy-type signal s(t):

$$E_{s} = \int_{-\infty}^{\infty} |s(t)|^{2} dt = \int_{-\infty}^{\infty} s(t)s^{*}(t)dt = \int_{-\infty}^{\infty} s(t) \left[\int_{-\infty}^{\infty} S^{*}(f)e^{-j2\pi ft}df \right]dt$$
$$= \int_{-\infty}^{\infty} S^{*}(f) \left[\int_{-\infty}^{\infty} s(t)e^{-j2\pi ft}dt \right]df = \int_{-\infty}^{\infty} S^{*}(f)S(f)df = \int_{-\infty}^{\infty} |S(f)|^{2} df$$
$$= \int_{-\infty}^{\infty} U_{s}(f)df$$

Parseval's Theorem:
$$E_s = \int_{-\infty}^{\infty} |s(t)|^2 dt = \int_{-\infty}^{\infty} |S(f)|^2 df$$

• Energy spectrum: $U_s(f) \triangleq |S(f)|^2$

Example 9: Energy Spectrum of Single Rectangular Pulse

$$s(t) = \begin{cases} A & -\tau/2 \le t \le \tau/2 \\ 0 & \text{otherwise} \end{cases}$$

Fourier spectrum:

$$S(f) = A\tau \operatorname{sinc}(f\tau)$$

• Energy spectrum:

$$U_s(f) = |S(f)|^2 = A^2 \tau^2 \text{sinc}^2(f\tau)$$

Power and Power Spectrum

Power of power-type signal s(t):

$$\left\{ s_T(t) \triangleq \begin{cases} s(t) & -T/2 < t < T/2 \\ 0 & otherwise \end{cases} \right.$$

$$P_{s} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |s(t)|^{2} dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |s_{T}(t)|^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} |S_{T}(f)|^{2} df = \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{1}{T} |S_{T}(f)|^{2} df = \int_{-\infty}^{\infty} G_{s}(f) df$$

Power spectrum:

when
$$S(t) = A \cos(2 \text{ pi f0 t})$$

Power = $A^2/2$

$$G_s(f) \triangleq \lim_{T \to \infty} \frac{1}{T} |S_T(f)|^2$$

$$G_s(f) \Leftrightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} s(t+\tau) s^*(t) dt$$

Example 10: Power Spectrum of Periodic Signal

For periodic signal s(t) with period T_0 : $s(t) = \sum_{n=-\infty}^{\infty} s_n e^{j2\pi n f_0 t}$ $f_0 = 1/T_0$

Fourier spectrum:

$$S(f) = \sum_{n=-\infty}^{\infty} s_n \delta(f - nf_0)$$

Power spectrum:

$$G_{s}(f) \Leftrightarrow \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} s(t+\tau) s^{*}(t) dt = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} s(t+\tau) s^{*}(t) dt = \sum_{n=-\infty}^{\infty} \left| s_{n} \right|^{2} e^{j2\pi n f_{0} \tau}$$

$$G_s(f) = \sum_{n=-\infty}^{\infty} \left| s_n \right|^2 \delta(f - nf_0)$$

Signal Bandwidth

• Bandwidth of signal s(t): the amount of **positive** frequency spectrum that signal s(t) occupies. $\uparrow S(t)$

• Effective Bandwidth: x% of the signal's power (energy) are included.

