Schemes and Varieties

No Cover Image

Use $\coverimage{filename}$ to add an image

Contents

1	Def	inition and First Properties of Schemes	2
	1.1	Locally Ringed Space	2
	1.2	Schemes	3
	1.3	Integral, reduced and irreducible	4
	1.4	Fiber product	4
	1.5	Dimension	4
	1.6	Noetherian and finite type	4
	1.7	Separated and proper	4
2	Cat	egory of sheaves of modules	4
	2.1	Sheaves of modules, quasi-coherent and coherent sheaves	4
	2.2	As abelian categories	5
	2.3	Relevant functors	5
	2.4	Locally free sheaves and vector bundles	5
	2.5	Cohomological theory	6
3	Nor	emal, Cohen-Macaulay, and regular schemes	6
4	Line	e Bundles and Divisors	6
	4.1	Cartier Divisors	6
	4.2	Line Bundles and Picard Group	6
	4.3	Weil Divisors and Reflexive Sheaves	6
5	Line	e bundles induce morphisms	6
	5.1	Ample and basepoint free line bundles	6
	5.2	Linear systems	9
	5.3	Asymptotic behavior	9
6	Diff	Ferentials and duality	10
7	Flat	t, smooth and étale morphisms	10
8	Rela	ative objects	10
	8.1	Relative schemes	10
	8.2	Blowing up	11
	8.3	Relative ampleness and relative morphisms	11
9	Fin	ite morphisms and fibrations	11

10 Varieties in more general settings	11
10.1 Varieties	 11
10.2 Geometric properties	 11
10.3 Points in varieties	11

1 Definition and First Properties of Schemes

1.1 Locally Ringed Space

Definition 1.1. Let X be a topological space. A *presheaf* of sets (resp. abelian groups, rings, etc.) on X is a contravariant functor \mathcal{F} : **Open**(X) \rightarrow **Set** (resp. **Ab**, **Ring**, etc.), where **Open**(X) is the category of open subsets of X with inclusions as morphisms.

A presheaf \mathcal{F} is a *sheaf* if sections can be glued uniquely. More precisely, for every open covering $\{U_i\}_{i\in I}$ of an open set $U\subset X$ and every family of sections $s_i\in\mathcal{F}(U_i)$ such that $s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}$ for all $i,j\in I$, there exists a unique section $s\in\mathcal{F}(U)$ such that $s|_{U_i}=s_i$ for all $i\in I$.

Example 1.2. Let X be a real (resp. complex) manifold. The assignment $U \mapsto C^{\infty}(U, \mathbb{R})$ (resp. $U \mapsto \{\text{holomorphic functions on } U\}$) defines a sheaf of rings on X.

Example 1.3. Let X be a non-connected topological space. The assignment

 $U \mapsto \{\text{constant functions on } U\}$

defines a presheaf \mathcal{C} of rings on X but not a sheaf.

For a concrete example, let $X = (0,1) \cup (2,3)$ with the subspace topology from \mathbb{R} . Consider the open covering $\{(0,1),(2,3)\}$ of X. The sections $s_1 = 1 \in \mathcal{C}((0,1))$ and $s_2 = 2 \in \mathcal{C}((2,3))$ agree on the intersection (which is empty), but there is no global section $s \in \mathcal{C}(X)$ such that $s|_{(0,1)} = s_1$ and $s|_{(2,3)} = s_2$.

Definition 1.4. A locally ringed space is a pair (X, \mathcal{O}_X) where X is a topological space and \mathcal{O}_X is a sheaf of rings on X such that for every $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring.

A morphism of locally ringed spaces $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ consists of a continuous map $f:X\to Y$ and a morphism of sheaves of rings $f^{\sharp}:\mathcal{O}_Y\to f_*\mathcal{O}_X$ such that for every $x\in X$, the induced map on stalks $f_x^{\sharp}:\mathcal{O}_{Y,f(x)}\to\mathcal{O}_{X,x}$ is a local homomorphism, i.e., it maps the maximal ideal of $\mathcal{O}_{Y,f(x)}$ to the maximal ideal of $\mathcal{O}_{X,x}$.

Example 1.5. Let p be a prime number. Then the inclusion $\mathbb{Z}_{(p)} \to \mathbb{Q}$ is a homomorphism of local rings but not a local homomorphism. Here $\mathbb{Z}_{(p)}$ is the localization of \mathbb{Z} at the prime ideal (p).

Example 1.6 (Glue morphisms). Let $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ be a morphism of locally ringed spaces. If $U\subset X$ and $V\subset Y$ are open subsets such that $f(U)\subset V$, then the restriction $f|_U:(U,\mathcal{O}_X|_U)\to (V,\mathcal{O}_Y|_V)$ is a morphism of locally ringed spaces. Conversely, if $\{U_i\}_{i\in I}$ is an open covering of X and

for each $i \in I$, we have a morphism $f_i : (U_i, \mathcal{O}_X|_{U_i}) \to (Y, \mathcal{O}_Y)$ such that $f_i|_{U_i \cap U_i} = f_j|_{U_i \cap U_i}$ for all $i, j \in I$, then there exists a unique morphism $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ such that $f|_{U_i} = f_i$ for all $i \in I$.

Example 1.7 (Glue locally ringed space). We construct a locally ringed space by gluing open subspaces. Let (X_i, \mathcal{O}_{X_i}) be locally ringed spaces for $i \in I$ and $(U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}})$ be open subspaces for $i,j\in I.$ Suppose we have isomorphisms φ_{ij} : $(U_{ij},\mathcal{O}_{X_i}|_{U_{ij}})\to (U_{ji},\mathcal{O}_{X_j}|_{U_{ji}})$ such that

- (a) $\varphi_{ii} = \mathrm{id}_{X_i}$ for all $i \in I$;
- $$\begin{split} \text{(b)} \ \ \varphi_{ij}(U_{ij}\cap U_{ik}) &= U_{ji}\cap U_{jk} \ \text{for all} \ i,j\in I; \\ \\ \text{(c)} \ \ \varphi_{jk}\circ\varphi_{ij} &= \varphi_{ik} \ \text{on} \ U_{ij}\cap U_{ik} \ \text{for all} \ i,j,k\in I. \end{split}$$

Then there exists a locally ringed space (X, \mathcal{O}_X) and open immersions ψ_i : $(X_i, \mathcal{O}_{X_i}) \to (X, \mathcal{O}_X)$ uniquely up to isomorphism such that

- (a) $\varphi_i(U_{ij}) = \psi_i(X_i) \cap \psi_i(X_j)$ for all $i, j \in I$;
- (b) the following diagram

commutes for all $i, j \in I$;

(c)
$$X = \bigcup_{i \in I} \psi_i(X_i)$$
.

Such (X, \mathcal{O}_X) is called the locally ringed space obtained by gluing the (X_i, \mathcal{O}_{X_i}) along the φ_{ij} .

First φ_{ij} induces an equivalence relation \sim on the disjoint union $\coprod_{i\in I} X_i$. By taking the quotient space, we can glue the underlying topological spaces to get a topological space X. The structure sheaf \mathcal{O}_X is given by

$$\mathcal{O}_X(V) := \left\{ (s_i)_{i \in I} \in \prod_{i \in I} \mathcal{O}_{X_i}(\psi_i^{-1}(V)) \, \middle| \, s_i|_{U_{ij}} = \varphi_{ij}^{\sharp}(s_j|_{U_{ji}}) \text{ for all } i, j \in I \right\}.$$

Easy to check that (X, \mathcal{O}_X) is a locally ringed space and satisfies the required properties. If there is another locally ringed space $(X', \mathcal{O}_{X'})$ with ψ'_i satisfying the same properties, then by gluing $\psi'_i \circ \psi_i^{-1}$ we get an isomorphism $(X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$.

1.2 Schemes

Example 1.8 (Glue open subschemes). The construction in Example 1.7 allows us to glue open subschemes to get a scheme. More precisely, let (X_i, \mathcal{O}_{X_i}) be schemes for $i \in I$ and $(U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}})$ be open subschemes for $i, j \in I$. Suppose we have isomorphisms $\varphi_{ij}: (U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}}) \to (U_{ji}, \mathcal{O}_{X_i}|_{U_{ji}})$ satisfying the cocycle condition as in Example 1.7. Then the locally ringed space (X, \mathcal{O}_X) obtained

by gluing the (X_i, \mathcal{O}_{X_i}) along the φ_{ij} is a scheme.

1.3 Integral, reduced and irreducible

- 1.4 Fiber product
- 1.5 Dimension
- 1.6 Noetherian and finite type
- 1.7 Separated and proper
- 2 Category of sheaves of modules

2.1 Sheaves of modules, quasi-coherent and coherent sheaves

Definition 2.1. Let X be a ringed space with structure sheaf \mathcal{O}_X . A **sheaf of (left)** \mathcal{O}_X -modules is a sheaf \mathcal{F} on X such that for every open set $U \subseteq X$, $\mathcal{F}(U)$ is an $\mathcal{O}_X(U)$ -module, and for every inclusion of open sets $V \subseteq U$, the restriction map $\rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ is compatible with the restriction map $\rho_{UV} : \mathcal{O}_X(U) \to \mathcal{O}_X(V)$ in the sense that for every $s \in \mathcal{O}_X(U)$ and $m \in \mathcal{F}(U)$, we have

$$\rho_{UV}(s \cdot m) = \rho_{UV}(s) \cdot \rho_{UV}(m).$$

Yang: To be continued...

Example 2.2. Let X be a scheme. The structure sheaf \mathcal{O}_X is a sheaf of \mathcal{O}_X -modules. More generally, any quasi-coherent sheaf (to be defined later) is a sheaf of \mathcal{O}_X -modules. In particular, if $X = \operatorname{Spec} A$ is an affine scheme, then for any A-module M, the associated sheaf \widetilde{M} is a sheaf of \mathcal{O}_X -modules. Yang: To be continued...

Definition 2.3. Let X be a scheme. A sheaf of \mathcal{O}_X -modules \mathcal{F} is called **quasi-coherent** if for every point $x \in X$, there exists an open neighborhood U of x such that $\mathcal{F}|_U$ is isomorphic to the cokernel of a morphism of free \mathcal{O}_U -modules, i.e., there exists an exact sequence of sheaves of \mathcal{O}_U -modules

$$\mathcal{O}_U^{(I)} \to \mathcal{O}_U^{(J)} \to \mathcal{F}|_U \to 0,$$

where I,J are (possibly infinite) index sets. Yang: To be continued...

Definition 2.4. Let X be a scheme. A sheaf of \mathcal{O}_X -modules \mathcal{F} is called **coherent** if it is quasicoherent and for every point $x \in X$, there exists an open neighborhood U of x such that $\mathcal{F}|_U$ is isomorphic to the cokernel of a morphism of finite free \mathcal{O}_U -modules, i.e., there exists an exact sequence of sheaves of \mathcal{O}_U -modules

$$\mathcal{O}_{II}^m \to \mathcal{O}_{II}^n \to \mathcal{F}|_{II} \to 0,$$

where m, n are finite integers. Yang: To be continued...

2.2 As abelian categories

Theorem 2.5. Let X be a ringed space. The category of sheaves of \mathcal{O}_X -modules is an abelian category. Yang: To be continued...

Theorem 2.6. Let X be a scheme. The category of quasi-coherent sheaves on X is an abelian category. Yang: To be continued...

Theorem 2.7. Let X be a noetherian scheme. The category of coherent sheaves on X is an abelian category. Yang: To be continued...

2.3 Relevant functors

Theorem 2.8. Let X be a ringed space. The global sections functor

 $\Gamma(X,-)$: (Sheaves of \mathcal{O}_X -modules) \to ($\mathcal{O}_X(X)$ -modules)

is left exact. Yang: To be continued...

Theorem 2.9. Let $f: X \to Y$ be a morphism of ringed spaces. The direct image functor

 f_* : (Sheaves of \mathcal{O}_X -modules) \to (Sheaves of \mathcal{O}_Y -modules)

is left exact. Yang: To be continued...

Theorem 2.10. Let $f: X \to Y$ be a morphism of ringed spaces. The inverse image functor

 f^* : (Sheaves of $\mathcal{O}_{Y}\text{-modules}) \to (\text{Sheaves of }\mathcal{O}_{X}\text{-modules})$

is right exact. Yang: To be continued...

2.4 Locally free sheaves and vector bundles

Definition 2.11. Let X be a scheme. A sheaf of \mathcal{O}_X -modules \mathcal{F} is called **locally free** if for every point $x \in X$, there exists an open neighborhood U of x such that $\mathcal{F}|_U$ is isomorphic to a finite free \mathcal{O}_U -module, i.e., there exists an isomorphism of sheaves of \mathcal{O}_U -modules

$$\mathcal{F}|_{U}\cong\mathcal{O}_{U}^{n},$$

where n is a finite integer called the rank of \mathcal{F} at x. Yang: To be continued...

Example 2.12. A line bundle on a scheme X is a locally free sheaf of rank 1. The sheaf of differentials $\Omega_{X/k}$ on a smooth variety X over a field k is a locally free sheaf of rank equal to the dimension of X. Yang: To be continued...

Theorem 2.13. Let X be a scheme. There is an equivalence of categories between the category of locally free sheaves of finite rank on X and the category of vector bundles on X. Yang: To be continued...

2.5 Cohomological theory

Theorem 2.14. Let X be a ringed space and \mathcal{F} a sheaf of \mathcal{O}_X -modules. Then the cohomology groups $H^i(X,\mathcal{F})$ are $\mathcal{O}_X(X)$ -modules for all $i \geq 0$. Yang: To be continued...

Theorem 2.15. Let X be a scheme and \mathcal{F} a quasi-coherent sheaf on X. Then the cohomology groups $H^i(X,\mathcal{F})$ are $\mathcal{O}_X(X)$ -modules for all $i \geq 0$. Yang: To be continued...

Theorem 2.16. Let X be a noetherian scheme and \mathcal{F} a coherent sheaf on X. Then the cohomology groups $H^i(X,\mathcal{F})$ are $\mathcal{O}_X(X)$ -modules for all $i \geq 0$. Yang: To be continued...

3 Normal, Cohen-Macaulay, and regular schemes

4 Line Bundles and Divisors

- 4.1 Cartier Divisors
- 4.2 Line Bundles and Picard Group
- 4.3 Weil Divisors and Reflexive Sheaves

5 Line bundles induce morphisms

5.1 Ample and basepoint free line bundles

The story begins with the following theorem, which uses global sections of a line bundle to construct a morphism to projective space.

Theorem 5.1. Let A be a ring and X an A-scheme. Let \mathcal{L} be a line bundle on X and $s_0, \ldots, s_n \in \Gamma(X, \mathcal{L})$. Suppose that $\{s_i\}$ generate \mathcal{L} , i.e., $\bigoplus_i \mathcal{O}_X \cdot s_i \to \mathcal{L}$ is surjective. Then there is a unique

6

morphism $f: X \to \mathbb{P}_A^n$ such that $\mathcal{L} \cong f^*\mathcal{O}(1)$ and $s_i = f^*x_i$, where x_i are the standard coordinates on \mathbb{P}_A^n .

Proof. Let $U_i := \{ \xi \in X : s_i(\xi) \notin \mathfrak{m}_{\xi} \mathcal{L}_{\xi} \}$ be the open subset where s_i does not vanish. Since $\{s_i\}$ generate \mathcal{L} , we have $X = \bigcup_i U_i$. Let V_i be given by $x_i \neq 0$ in \mathbb{P}_A^n . On U_i , let $f_i : U_i \to V_i \subseteq \mathbb{P}_A^n$ be the morphism induced by the ring homomorphism

$$A\left[\frac{x_0}{x_i}, \dots, \frac{x_n}{x_i}\right] \to \Gamma(U_i, \mathcal{O}_X), \quad \frac{x_j}{x_i} \mapsto \frac{s_j}{s_i}.$$

Easy to check that on $U_i \cap U_j$, f_i and f_j agree. Thus we can glue them to get a morphism $f: X \to \mathbb{P}_A^n$. By construction, we have $s_i = f^*x_i$ and $\mathcal{L} \cong f^*\mathcal{O}(1)$. If there is another morphism $g: X \to \mathbb{P}_A^n$ satisfying the same properties, then on each U_i , g must agree with f_i by the same construction. Thus g = f.

Proposition 5.2. Let X be a **k**-scheme for some field **k** and \mathcal{L} is a line bundle on X. Suppose that $\{s_0, \ldots, s_n\}$ and $\{t_0, \ldots, t_m\}$ span the same subspace $V \subseteq \Gamma(X, \mathcal{L})$ and both generate \mathcal{L} . Let $f: X \to \mathbb{P}^n_{\mathbf{k}}$ and $g: X \to \mathbb{P}^m_{\mathbf{k}}$ be the morphisms induced by $\{s_i\}$ and $\{t_j\}$ respectively. Then there exists a linear transformation $\phi: \mathbb{P}^n_{\mathbf{k}} \dashrightarrow \mathbb{P}^m_{\mathbf{k}}$ which is well defined near image of f and satisfies $g = \phi \circ f$.

Proof. Yang: To be continued.

Example 5.3. Let $X = \mathbb{P}_A^n$ with A a ring and $\mathcal{L} = \mathcal{O}_{\mathbb{P}^n}(d)$ for some d > 0. Then $\Gamma(X, \mathcal{L})$ is generated by the global sections $S_{i_0, \dots, i_n} = T_0^{i_0} T_1^{i_1} \cdots T_n^{i_n}$ for all (i_0, \dots, i_n) with $i_0 + \dots + i_n = d$, where T_i are the standard coordinates on \mathbb{P}^n . The they induce a morphism $f: X \to \mathbb{P}_A^N$ where $N = \binom{n+d}{d} - 1$. If $A = \mathbf{k}$ is a field, on \mathbf{k} -point level, it is given by

$$[x_0 : \cdots : x_n] \mapsto [\ldots : x_0^{i_0} x_1^{i_1} \cdots x_n^{i_n} : \ldots],$$

where the coordinates on the right-hand side are indexed by all $(i_0, ..., i_n)$ with $i_0 + \cdots + i_n = d$. This is called the *d-uple embedding* or *Veronese embedding* of \mathbb{P}^n into \mathbb{P}^N .

Example 5.4. Let $X = \mathbb{P}_A^m \times_A \mathbb{P}_A^n$ with A a ring and $\mathcal{L} = \pi_1^* \mathcal{O}_{\mathbb{P}^m}(1) \otimes \pi_2^* \mathcal{O}_{\mathbb{P}^n}(1)$, where π_1 and π_2 are the projections. Let T_0, \ldots, T_m and S_0, \ldots, S_n be the standard coordinates on \mathbb{P}^m and \mathbb{P}^n respectively. Then $\Gamma(X, \mathcal{L})$ is generated by the global sections $T_i S_j = \pi_1^* T_i \otimes \pi_2^* S_j$ for $0 \le i \le m$ and $0 \le j \le n$. They induce a morphism $f: X \to \mathbb{P}_A^{(m+1)(n+1)-1}$. If $A = \mathbf{k}$ is a field, on \mathbf{k} -point level, it is given by

$$([x_0:\cdots:x_m],[y_0:\cdots:y_n])\mapsto [\ldots:x_iy_j:\ldots],$$

where the coordinates on the right-hand side are indexed by all (i, j) with $0 \le i \le m$ and $0 \le j \le n$. This is called the Segre embedding of $\mathbb{P}^m \times \mathbb{P}^n$ into $\mathbb{P}^{(m+1)(n+1)-1}$.

Definition 5.5. A line bundle \mathcal{L} on a scheme X is globally generated if $\Gamma(X,\mathcal{L})$ generates \mathcal{L} , i.e., the natural map $\Gamma(X,\mathcal{L}) \otimes \mathcal{O}_X \to \mathcal{L}$ is surjective. Yang: To be continued.

Example 5.6. Let

Example 5.7.

Definition 5.9. A line bundle \mathcal{L} on a scheme X is *ample* if for every coherent sheaf \mathcal{F} on X, there exists $n_0 > 0$ such that for all $n \geq n_0$, $\mathcal{F} \otimes \mathcal{L}^{\otimes n}$ is globally generated. Yang: To be continued.

Definition 5.10. A line bundle \mathcal{L} on a scheme X is *very ample* if there exists a closed embedding $i: X \to \mathbb{P}^n_A$ such that $\mathcal{L} \cong i^*\mathcal{O}(1)$. Yang: To be continued.

Theorem 5.11. Let X be a scheme of finite type over a noetherian ring A and \mathcal{L} a line bundle on X. Then the following are equivalent:

- (a) \mathcal{L} is ample;
- (b) for some n > 0, $\mathcal{L}^{\otimes n}$ is very ample;
- (c) for all $n \gg 0$, $\mathcal{L}^{\otimes n}$ is very ample.

Yang: To be continued.

Proposition 5.12. Let X be a scheme of finite type over a noetherian ring A and \mathcal{L} , \mathcal{M} line bundles on X. Then we have the following:

- (a) if \mathcal{L} is ample and \mathcal{M} is globally generated, then $\mathcal{L} \otimes \mathcal{M}$ is ample;
- (b) if \mathcal{L} is very ample and \mathcal{M} is globally generated, then $\mathcal{L} \otimes \mathcal{M}$ is very ample;
- (c) if both \mathcal{L} and \mathcal{M} are ample, then so is $\mathcal{L} \otimes \mathcal{M}$;
- (d) if both \mathcal{L} and \mathcal{M} are globally generated, then so $\mathcal{L} \otimes \mathcal{M}$;
- (e) if \mathcal{L} is ample and \mathcal{M} is arbitrary, then for some n > 0, $\mathcal{L}^{\otimes n} \otimes \mathcal{M}$ is ample;

Yang: To be continued.

Proof. Yang: To be continued.

Proposition 5.13. Let X be a scheme of finite type over a noetherian ring A and \mathcal{L} a line bundle on X. Then \mathcal{L} is very ample if and only if the following two conditions hold:

- (a) (separate points) for any two distinct points $x, y \in X$, there exists $s \in \Gamma(X, \mathcal{L})$ such that s(x) = 0 but $s(y) \neq 0$;
- (b) (separate tangent vectors) for any point $x \in X$ and non-zero tangent vector $v \in T_x X$, there exists $s \in \Gamma(X, \mathcal{L})$ such that s(x) = 0 but $v(s) \neq 0$.

Yang: To be continued.

5.2 Linear systems

In this subsection, when work over a field, we give a more geometric interpretation of last subsection using the language of linear systems.

Definition 5.14. Let X be a normal proper variety over a field \mathbf{k} , D a (Cartier) divisor on X and $\mathcal{L} = \mathcal{O}_X(D)$ the associated line bundle. The *complete linear system* associated to D is the set

$$|D| = \{D' \in \operatorname{CaDiv}(X) : D' \sim D, D' \ge 0\}.$$

There is a natural bijection between the complete linear system |D| and the projective space $\mathbb{P}(\Gamma(X,\mathcal{L}))$. Here the elements in $\mathbb{P}(\Gamma(X,\mathcal{L}))$ are one-dimensional subspaces of $\Gamma(X,\mathcal{L})$. Consider the vector subspace $V \subseteq \Gamma(X,\mathcal{L})$, we can define the generate linear system |V| as the image of $V \setminus \{0\}$ in $\mathbb{P}(\Gamma(X,\mathcal{L}))$.

Definition 5.15. A linear system on a scheme X is a pair (\mathcal{L}, V) where \mathcal{L} is a line bundle on X and $V \subseteq \Gamma(X, \mathcal{L})$ is a subspace. The dimension of the linear system is $\dim V - 1$. A linear system is base-point free if V is base-point free. A linear system is complete if $V = \Gamma(X, \mathcal{L})$. Yang: To be continued.

Definition 5.16. Let \mathcal{L} be a line bundle on a scheme X and $V \subseteq \Gamma(X, \mathcal{L})$ a subspace. The base locus of V is the closed subset

$$Bs(V) = \{x \in X : s(x) = 0, \forall s \in V\}.$$

If $Bs(V) = \emptyset$, we say that V is base-point free. Yang: To be continued.

5.3 Asymptotic behavior

Definition 5.17. Let X be a scheme and \mathcal{L} a line bundle on X. The section ring of \mathcal{L} is the graded ring

$$R(X,\mathcal{L}) = \bigoplus_{n \geq 0} \Gamma(X,\mathcal{L}^{\otimes n}),$$

with multiplication induced by the tensor product of sections. Yang: To be continued.

Definition 5.18. A line bundle \mathcal{L} on a scheme X is *semiample* if for some n > 0, $\mathcal{L}^{\otimes n}$ is base-point free. Yang: To be continued.

Theorem 5.19. Let X be a scheme over a ring A and \mathcal{L} a semiample line bundle on X. Then there exists a morphism $f: X \to Y$ over A such that $\mathcal{L} \cong f^*\mathcal{O}_Y(1)$ for some very ample line bundle $\mathcal{O}_Y(1)$ on Y. Moreover, $Y = \operatorname{Proj} R(X, \mathcal{L})$ and f is induced by the natural map $R(X, \mathcal{L}) \to \Gamma(X, \mathcal{L}^{\otimes n})$. Yang: To be continued.

Schemes and Varieties

Definition 5.20. A line bundle \mathcal{L} on a scheme X is big if the section ring $R(X,\mathcal{L})$ has maximal

growth, i.e., there exists C>0 such that

$$\dim \Gamma(X, \mathcal{L}^{\otimes n}) \ge C n^{\dim X}$$

for all sufficiently large n. Yang: To be continued.

Example 5.21. Let $X = \mathbb{F}_2$ be the second Hirzebruch surface, i.e., the projective bundle $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(2))$ over \mathbb{P}^1 . Let $\pi: X \to \mathbb{P}^1$ be the projection and E the unique section of π with self-intersection -2. Yang: To be continued.

6 Differentials and duality

7 Flat, smooth and étale morphisms

8 Relative objects

8.1 Relative schemes

Definition 8.1. Let X be a scheme. An \mathcal{O}_X -algebra is a sheaf . Yang: To be continued...

Definition 8.2. Let X be a scheme and \mathcal{A} be a quasi-coherent \mathcal{O}_X -algebra. The relative Spec of \mathcal{A} , denoted by $\operatorname{Spec}_X \mathcal{A}$, is the scheme obtained by gluing the affine schemes $\operatorname{Spec} \mathcal{A}(U)$ for all affine open subsets $U \subset X$. Yang: To be continued...

Proposition 8.3. Let X be a scheme and \mathcal{E} be a locally free sheaf of finite rank on X. Then the relative Spec of the symmetric algebra of \mathcal{E} , denoted by $\mathbb{V}(\mathcal{E}) = \operatorname{Spec}_X \operatorname{Sym}_{\mathcal{O}_X} \mathcal{E}$, is called the geometric vector bundle associated to \mathcal{E} . The projection morphism $\pi: \mathbb{V}(\mathcal{E}) \to X$ is affine and for any open subset $U \subset X$, we have $\pi^{-1}(U) \cong \operatorname{Spec} \operatorname{Sym}_{\mathcal{O}_X(U)} \mathcal{E}(U)$. Yang: To be continued...

Definition 8.4. Let X be a scheme and \mathcal{A} be a quasi-coherent graded \mathcal{O}_X -algebra such that $\mathcal{A}_0 = \mathcal{O}_X$ and \mathcal{A} is generated by \mathcal{A}_1 as an \mathcal{O}_X -algebra. The relative Proj of \mathcal{A} , denoted by $\operatorname{Proj}_X \mathcal{A}$, is the scheme obtained by gluing the affine schemes $\operatorname{Proj}_{\mathcal{A}}(U)$ for all affine open subsets $U \subset X$. The projection morphism π : $\operatorname{Proj}_X \mathcal{A} \to X$ is projective and for any open subset $U \subset X$, we have $\pi^{-1}(U) \cong \operatorname{Proj}_{\mathcal{A}}(U)$. Yang: To be continued...

8.2 Blowing up

Definition 8.5. Let X be a scheme and $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent sheaf of ideals. The blowing up of X along \mathcal{I} , denoted by $\mathrm{Bl}_{\mathcal{I}}X$, is defined to be the relative Proj of the Rees algebra of \mathcal{I} :

$$\mathrm{Bl}_{\mathcal{I}}X=\mathrm{Proj}_X\bigoplus_{n=0}^\infty\mathcal{I}^n.$$

The projection morphism $\pi: \operatorname{Bl}_{\mathcal{I}}X \to X$ is projective and for any open subset $U \subset X$, we have $\pi^{-1}(U) \cong \operatorname{Bl}_{\mathcal{I}(U)}U$. The exceptional divisor of the blowing up is defined to be the closed subscheme $E = \pi^{-1}(V(\mathcal{I}))$ of $\operatorname{Bl}_{\mathcal{I}}X$. Yang: To be continued...

8.3 Relative ampleness and relative morphisms

9 Finite morphisms and fibrations

10 Varieties in more general settings

10.1 Varieties

Definition 10.1. A variety over an algebraically closed field k is an integral separated scheme of finite type over Spec k.

Yang: Suppose that \mathbf{k} is not algebraically closed, let \mathbf{k}' be an algebraic extension of \mathbf{k} . What is the relation between X, $X_{\mathbf{k}'}$, $X(\mathbf{k}')$ and $X_{\mathbf{k}'}(\mathbf{k}')$?

10.2 Geometric properties

10.3 Points in varieties

Proposition 10.2. Let \mathcal{K} be a field and ℓ an extension of \mathcal{K} . Let X be a variety over \mathcal{K} . Then we have the following:

- (a) there is a natural bijection between $X(\ell)$ and $X_{\ell}(\ell)$;
- (b) let m/ℓ be an extension, then there is a natural inclusion $X(\ell) \subseteq X(m)$;
- (c) suppose that $X = \operatorname{Spec} \mathcal{k}[T_1, \dots, T_n]/I$ is an affine variety, then there is a natural bijection between $X(\ell)$ and the set $\{(x_1, \dots, x_n) \in \ell^n | f(x_1, \dots, x_n) = 0, \forall f \in I\}$.

11