Principes de Finance: Évaluation des actions

Loïc Maréchal

Institut d'Analyse Financière, UniNe

12 Avril 2018

1/25

Loïc Maréchal (IAF) Principes de Finance 12 Avril 2018

Sommaire

- Relation de Fisher
- Modèle de Gordon-Shapiro
- Price Earnings Ratio (PER)
- Analyse Fondamentale

Objectifs

- Appliquer le calcul actuariel à l'évaluation des actions
- Etablir le lien "analyse financière-évaluation"
- Comprendre le lien entre la valeur de l'action et l'environnement économique

Introduction (1)

Définition

Titre de propriété délivré par une entreprise (société de capitaux). Donne à son détenteur la propriété d'une partie du capital de cette entreprise avec des droits : intervenir dans la gestion de l'entreprise (assemblée générale) et droit de toucher un dividende

Introduction (2)

- Différences avec les obligations
 - Permet de détenir une part de l'entreprise et non une dette, avec un droit de regard ou de décision sur l'entreprise
 - Le dividende est variable et non prévisible (vs coupon fixe)
 - La valeur de l'action change au cours du temps (vs nominal fixe)
 - En théorie pas de période de fin (rente perpétuelle)

Relation de Fisher (1)

• The theory of interest, 1930

6/25

Relation de Fisher (2)

- Notations
 - Valeur en 0, prix en n, flux à recevoir en t, $1 \le t \le n$
 - R, taux d'actualisation constant pour toute la période
- Principe général
 - Valeur d'un capital = valeur actuelle des revenus futurs

$$V_0 = \sum_{t=1}^n \frac{F_t}{(1+R)^t} + \frac{V_n}{(1+R)^n}$$

Relation de Fisher (3)

- Difficultés supplémentaires par rapport aux obligations
 - Dividendes imprévisibles
 - Valeur finale imprévisible
 - Horizon (théoriquement infini)
- Hypothèses fortes nécessaires et analyse fondamentale pour prévoir les dividendes futurs

Modèle de Gordon-Shapiro (1)

- Gordon, M.J., and Shapiro E., 1956. Capital equipment analysis: The required rate of profit
- Gordon, M.J., 1959. Dividends, earnings and stock prices

◆ロト ◆個ト ◆ 差ト ◆ 差ト を 多くで

Modèle de Gordon-Shapiro (2)

- Hypothèses
 - Flux de liquidité = dividendes
 - Taux de croissance des dividendes g constant
 - Les flux générés s'étendent à l'infini

$$D_t = (1+g)D_{t-1} = (1+g)^{t-1}D_1$$

$$V_0 = \sum_{t=1}^n \frac{D_t}{(1+R)^t} + \frac{V_n}{(1+R)^n} = \sum_{t=1}^n \frac{(1+g)^{t-1}D_1}{(1+R)^t} + \frac{V_n}{(1+R)^n}$$

$$V_0 = \frac{D_1}{1+R} \sum_{t=1}^n \frac{(1+g)^{t-1}}{(1+R)^{t-1}} + \frac{V_n}{(1+R)^n}$$

Modèle de Gordon-Shapiro (3)

$$\begin{split} V_0 &= \frac{D_1}{1+R} \frac{1 - \left(\frac{1+g}{1+R}\right)^n}{1 - \frac{1+g}{1+R}} + \frac{V_n}{(1+R)^n} \\ V_0 &= D_1 \frac{1 - \left(\frac{1+g}{1+R}\right)^n}{R-g} + \frac{V_n}{(1+R)^n} \\ \lim_{n \to \infty} \left(\frac{1+g}{1+R}\right)^n &= 0 \text{ si } R > g \text{ et } \lim_{n \to \infty} \frac{V_n}{(1+R)^n} = 0 \\ V_0 &= \frac{D_1}{R-g} \end{split}$$

Modèle de Gordon-Shapiro (4)

Limites

- g constant à l'infini, g < R
- Choix de R pour prendre en compte le risque
- Ce n'est pas un modèle d'équilibre
- Certaines entreprises ne payent pas de dividendes (startup). On peut remplacer g par le taux de croissance du bénéfice par action
- ullet Très sensible au taux g choisi

Variantes

- Réviser le taux de croissance des dividendes
- Versements de dividendes semestriels
- Prise en compte de la date de versement

Modèle de Gordon-Shapiro (5)

Exemple

 Le dividende de l'entreprise MBI informatique vient d'être versé. Il était de 5 CHF. Les analystes estiment que le taux de croissance des dividendes est de 20%. Calculer la valeur intrinsèque du titre en sachant que le taux de rentabilité exigé par les actionnaires de MBI est de 22%?

Price Earnings Ratio - PER (1)

- Hypothèses
 - Bénéfice B, actuel ou anticipé, constant par périodes
 - Flux de bénéfices s'étendant à l'infini
- Price Earnings Ratio (PER) ou cours sur bénéfice (C/B)

$$PER = \frac{Prix = V_0}{B \acute{e}n\acute{e}fice = B}$$

$$V_0 = \frac{B}{PER}$$

- Différences avec Gordon-Shapiro
 - Les mettre en évidence (exercice)

Price Earnings Ratio - PER (2)

Limites

- Prend en compte le bénéfice et non les dividendes (tout le bénéfice n'est pas reversé en dividende)
- Doit-être comparé avec les PER des entreprises similaires (même industrie / secteur, âge, taille)
- Le bénéfice peut-être « manipulé » de manière comptable / n'est pas strictement comparable d'une entreprise à l'autre

Alternatives

- Price Dividend Ratio
- PE Schiller ratio : prend en compte la moyenne sur 10 ans des bénéfices passés, ajustés pour l'inflation

Analyse fondamentale (1)

NESTLÉ

Switzerland/Food

	Sales	Operating profit	Net profit	Cash	EPS	CF/S	P/E	P/CF	Divi- dend	gross	ratio	
	CHF m	CHF m	CHF m	CHF m	CHF	CHF	Χ	Χ	CHF	%	%	EPS réalisés
1997	69,998	6,880	4,005	7,401	101.6	177.9	30.3	17.3	35	1.1	34.5	LI 5 Teamses
1998E	72,308	7,028	4,074	7,339	103.3	186.2	29.8	16.5	37	1.2	35.8	1998: 109
1999E	76,936	7,578	4,544	7,998	115.3	202.9	26.7	15.2	40	1.3	34.7	
2000E	82,167	8,095	4,978	8,737	126.3	221.6	24.3	13.9	43	1.4	34.8	1999: 114

ullet Les prévisions sont compilées dans des bases de données (I/B/E/S/)

◆ロト ◆個ト ◆差ト ◆差ト 差 めるぐ

Analyse fondamentale (2)

- Prévoir le prix d'une action : prix-cible (target price)
- Diagnostic stratégique
- Diagnostic financier
 - Structure des coûts
 - Prévision des ventes
 - Prévision de la chaîne des résultats futurs

Analyse fondamentale (3)

- Actualisation de la chaîne des résultats
- Choix d'un taux d'actualisation
 - Propre à chaque période
 - Commun à toutes les périodes
- Ce taux peut être calculé à l'aide de modèles ou estimé de manière ad hoc (par ex. 10%)

La prévision des bénéfices

Analyse du modèle

- Actualisation des bénéfices prévus entre 1 et 3 ans
- Actualisation avec la croissance prévue pour les années 4, 5, 6 et 7
- Actualisation avec la croissance économique au-delà
- Le prix du titre est la somme de ces 3 composantes
- Ecrire l'équation actuarielle

Exercice

• Le dividende de l'entreprise MBI informatique vient d'être versé. Il était de 5 CHF. Les analystes estiment que le taux de croissance des dividendes sera de 20% au cours des 5 prochaines années. Par la suite, ce taux de croissance baissera pour se situer à la moyenne du secteur, soit 7%. Dessinez le schéma des flux. Calculer la valeur intrinsèque du titre en sachant que le taux de rentabilité exigé par les actionnaires de MBI est de 22%?

Exemple d'analyse : Kudelski

- Plusieurs rapports sur Thomson Reuters
- Rapports réguliers (1 à 2 par an)
 - Prévision des bénéfices
 - Cible de prix
 - Recommandation (acheter, vendre, conserver, accumuler)
- Rapports particuliers (morning news, event report)

Références

- https://www.sixswissexchange.com/knowhow/products/shares/types/registered_fr.html
- https://fr.wikipedia.org/wiki/Histoire_des_bourses_de_valeurs
- http://pages.stern.nyu.edu/ adamodar/New_Home_Page/webcastvalonline.htm

loic.marechal@unine.ch