The Fractal Dimension of SAT Formulas

C. Ansótegui¹ M.L. Bonet² J. Giráldez-Cru³ J. Levy³

¹DIEI - Univ. de Lleida

²LSI - UPC

3IIIA-CSIC

July 19, 2014

Known Facts from SAT Community

- Random and industrial formulas: distinct nature.
 - SAT competitions: different tracks.

- SAT solvers specialize.
- Many very large industrial instances solved efficiently by modern SAT solvers (CDCL).
 - Good performance: ability to exploit some hidden structure.

SAT Instances

Random k-CNF:

- Its definition is clear.
- Generate k-CNF of n vars and m clauses:

```
for i in 1..m Select randomly k literals among n with random polarity
```

Theoretical point of view.

Industrial CNF:

- Problems encodings from real-world applications.
- No precise definition: crypto, bmc, scheduling, planning, ...
- Heterogeneity.

SAT Instances

Random k-CNF:

- Its definition is clear.
- Generate k-CNF of n vars and m clauses:

```
for i in 1..m Select randomly k literals among n with random polarity
```

Theoretical point of view.

Industrial CNF:

- Problems encodings from real-world applications.
- No precise definition: crypto, bmc, scheduling, planning, ...
- Heterogeneity.

[Some] Open Questions in SAT

Open Question #1: What is exactly the structure of industrial formulas?

Open Question #2: How SAT solvers (can) exploit this structure?

Complex Networks

- The classical Erdös-Rényi model:
 - Generate a graph of *n* nodes and *m* edges:

```
for i in 1..m
```

Select randomly 2 nodes among n

- These networks cannot be used for representing many real-world networks.
- Real-world networks
 - **Features**: Clustering coefficient, Modularity, ...
 - Models: Small-world, Scale-free, ...
 - Methods of generation: Preferential attachment, ...

Complex Networks

The classical Erdös-Rényi model:

■ Generate a graph of *n* nodes and *m* edges:

```
for i in 1..m Select randomly 2 nodes among n
```

These networks cannot be used for representing many real-world networks.

Real-world networks:

- Features: Clustering coefficient, Modularity, ...
- Models: Small-world, Scale-free, ...
- Methods of generation: Preferential attachment, ...

Complex Networks vs SAT

Erdös-Rényi graphs:

```
for i in 1..m
Select randomly 2 nodes among n
```

Random k-CNF:

```
for i in 1..m
Select randomly k literals among n
with random polarity
```

- Real-world networks: features, models, methods of generation.
- Industrial CNF: ?

Complex Networks vs SAT

Erdös-Rényi graphs:

```
for i in 1..m
   Select randomly 2 nodes among n
```

Random k-CNF:

```
for i in 1..m
Select randomly k literals among n
with random polarity
```

- Real-world networks: features, models, methods of generation.
- Industrial CNF: ?

[Some] Open Questions in SAT

- Open Question #1: What is exactly the structure of industrial formulas?
- Open Question #2: How SAT solvers (can) exploit this structure?

Many works in terms of complex networks trying to answer these questions.

Previous Work (I)

Open Question #1: What is exactly the structure of industrial formulas?

Scale-free Structure [Ansótegui, Bonet, Levy. CP2009]

Previous Work (II)

Open Question #1: What is exactly the structure of industrial formulas?

Community Structure [Ansótegui, Giráldez-Cru, Levy. SAT2012]

Previous Work (III)

- Open Question #1: What is exactly the structure of industrial formulas?
- Open Question #2: How SAT solvers (can) exploit this structure?
 - Centrality & Branching vars [Katsirelos, Simon. CP2012]
 - Parallel SAT Solving [Sonobe, Kondoh, Inaba. SAT2014]
 - LBD & Runtime Prediction [Newsham, Ganesh, Fischmesiter, Audemard, Simon. SAT2014] Best Paper Award
 - ..

Motivations

- Analysis of the structure of industrial SAT instances.
- Generators of more realistic industrial-like SAT formulas.
- (Possible) **improvements** in SAT solving techniques.

Outline

- 1 Introduction
- 2 The Fractal Dimension of Graphs
- 3 The Fractal Dimension of SAT Formulas
- 4 Conclusions

Intuition

A graph has **fractal dimension** (it is self-similar) if it keeps the same shape after *rescaling*.

Intuition

A graph has **fractal dimension** (it is self-similar) if it keeps the same shape after *rescaling*.

0.5, 0.151.5, 1.152.5, 0.152.5, 2.153.5, 3.154.5, 2.154.5, 0.155.5, 1.156.5,

Intuition

A graph has **fractal dimension** (it is self-similar) if it keeps the same shape after *rescaling*.

1.5, 0.553.5, 2.555.5, 0.550.5, 0.151.5, 1.152.5, 0.152.5, 2.153.5, 3.154.5,

■ **[Def.]** A **circle** of radius *r* and center *c* is a subset of nodes of the graph such that the distance between any of them and the node *c* is strictly smaller than *r*.

- [Def.] Let N(r) be the minimum number of circles of radius r required to cover a graph.
 - N(1) = n
 - $N(d^{max} + 1) = 1$

r	N(r)	
1	27	#nodes
2	8	
3	5	
4	3	
2 3 4 5 6	2	
6	2	
7		
8	1	$d^{max} = 7$

r	N(r)	
1	27	#nodes
2	8	
3	5	
2 3 4 5	3	
5	2	
6	2	
7		
8	1	$d^{max} = 7$

r	N(r)	
1	27	#nodes
2	8	
3	5	
4	3	
5	2	
6	2	
7	2	
8	1	$d^{max}=7$

- **Def.**] (Hausdorff) A graph has the **self-similarity** property if the function N(r) decreases polynomially.
- I.e. $N(r) \sim r^{-d}$, for some value d.
- In the case, we call *d* the **dimension** of the graph.

r	N(r)
1	27
2	
	5
4	
5	2
6	2
7	2
	1

- **Def.**] (Hausdorff) A graph has the **self-similarity** property if the function N(r) decreases polynomially.
- I.e. $N(r) \sim r^{-d}$, for some value d.
- In the case, we call *d* the **dimension** of the graph.

r	N(r)
1	27
2	8
3	5
4	3
5	2
6	2
7	2
8	1

- **Def.**] (Hausdorff) A graph has the **self-similarity** property if the function N(r) decreases polynomially.
- I.e. $N(r) \sim r^{-d}$, for some value d.
- In the case, we call *d* the **dimension** of the graph.

r	<i>N</i> (<i>r</i>)
1	27
2	8
2 3 4	5
4	3
5	2
6	2
7	2
8	1

- **Lemma**] Computing the function N(r) is NP-hard.
 - Reducing *GraphCOL* to *N*(2).
- Burning algorithms:
 - More efficient algorithms (greedy).
 - Approximate upper bounds of N(r).
 - Select the circle that covers (burns) the maximal number of uncovered (unburned) nodes.
 - Further approximations needed to make the algorithms of practical use in very large graphs.
- The Burning by Node Degree (BND) algorithm.

- **Lemma** Computing the function N(r) is NP-hard.
 - Reducing *GraphCOL* to N(2).
- Burning algorithms:
 - More efficient algorithms (greedy).
 - \blacksquare Approximate upper bounds of N(r).
 - Select the circle that covers (burns) the maximal number of uncovered (unburned) nodes.
 - Further approximations needed to make the algorithms of practical use in very large graphs.
- The Burning by Node Degree (BND) algorithm.

- **Lemma**] Computing the function N(r) is NP-hard.
 - Reducing GraphCOL to N(2).
- Burning algorithms:
 - More efficient algorithms (greedy).
 - Approximate upper bounds of N(r).
 - Select the circle that covers (burns) the maximal number of uncovered (unburned) nodes.
 - Further approximations needed to make the algorithms of practical use in very large graphs.
- The Burning by Node Degree (BND) algorithm.

The Burning by Node Degree (BND) Algorithm

Algorithm 1 Burning by Node Degree (BND)

```
1: Input: Graph G = (V, E)
2: Output: vector[int] N
3: N[1] := |V|
4: int i = 2
5: while N[i-1] > connectedComponents(G) do
6:
      vector[bool] burned(|V|)
7:
      N[i] := 0
8:
      burned :={false, ..., false}
9:
      while existsUnburnedNode(burned) do
10:
          c := highestDegreeUnburnedNode(G, burned)
11:
          S := circle(c, i)
12:
          for all x \in S do
13:
             burned[x] := true
14:
          end for
15:
      end while
16:
     i := i + 1
17: end while
```

Example

r	$N^{real}(r)$	$N^{BND}(r)$
1	27	27
2	8	9
2 3 4 5 6	5	6
4	5 3 2 2 2	3
5	2	2
6	2	2
7		2
0	4	4

Example

r	$N^{real}(r)$	$N^{BND}(r)$
1	27	27
2	8	9
3	5	6
4	3	3
2 3 4 5 6 7	2	2
6	2	2
7	2	2
R	1	1

Example

Fractal Dimension vs Diameter

- Determines the maximal radius r^{max}.
- Related to the diameter: $r^{max} \le d^{max} \le 2r^{max}$
- Diameter
 - **Dependent** on the size of the graph.
 - Quite expensive to compute in practice.
- The fractal dimension:
 - Independent on the size. Families with similar N(r) function shape.
 - It can be **computed more efficiently** than the diameter.

Fractal Dimension vs Diameter

- Determines the maximal radius r^{max}.
- Related to the diameter: $r^{max} < d^{max} < 2r^{max}$
- Diameter:
 - Dependent on the size of the graph.
 - Quite expensive to compute in practice.
- The fractal dimension:
 - Independent on the size. Families with similar N(r) function shape.
 - It can be computed more efficiently than the diameter.

Fractal Dimension vs Diameter

- Determines the maximal radius r^{max}.
- Related to the diameter: $r^{max} < d^{max} < 2r^{max}$
- Diameter:
 - Dependent on the size of the graph.
 - Quite expensive to compute in practice.
- The fractal dimension:
 - Independent on the size. Families with similar N(r) function shape.
 - It can be computed more efficiently than the diameter.

We propose the use of the Fractal Dimension

Outline

- 1 Introduction
- 2 The Fractal Dimension of Graphs
- 3 The Fractal Dimension of SAT Formulas
- 4 Conclusions

SAT Formulas as Graphs

$$\sigma = (\mathbf{a} \vee \mathbf{b}) \wedge (\mathbf{a} \vee \neg \mathbf{c})$$

Clause-Variable Incidence Graph (CVIG)

Variable Incidence Graph (VIG)

The Relation between VIG and CVIG

The Accuracy of the BND Algorithm (I)

	BND	MEMB ¹
#solved	300	17
av. of runtime	0.11sec	10min 7.2sec
$N^b(r)$	Very similar values	

Set: 300 industrial instances of the SAT Competition 2013

¹[Song et al. Journal of Statical Mechanics (2007)]

The Accuracy of the BND Algorithm (II)

Known Results for Random 2CNF Formulas

- Phase transition point at m/n = 1.
- VIG's of random 2CNF formulas = Erdös-Rényi graphs.
- Percolation threshold at m/n = 0.5.
 - In this point, self-similar (d = 2).
 - Above this point N(r) decays exponentially.
- To the best of our knowledge, there is no known result for random 3CNF instances.

Known Results for Random 2CNF Formulas

- Phase transition point at m/n = 1.
- VIG's of random 2CNF formulas = Erdös-Rényi graphs.
- Percolation threshold at m/n = 0.5.
 - In this point, self-similar (d = 2).
 - Above this point N(r) decays exponentially.
- To the best of our knowledge, there is no known result for random 3CNF instances.

Known Results for Random 2CNF Formulas

- Phase transition point at m/n = 1.
- VIG's of random 2CNF formulas = Erdös-Rényi graphs.
- Percolation threshold at m/n = 0.5.
 - In this point, self-similar (d = 2).
 - Above this point N(r) decays exponentially.
- To the best of our knowledge, there is no known result for random 3CNF instances.

Random 3CNF Formulas

- **Experimentally,** N(r) (and $N^b(r)$) only depends on the clause/variable ratio m/n (and not on the number of variables n).
- Phase transition point $(m/n \approx 4.25)$: $N(r) \sim e^{-2.3r}$ and $N^b(r) \sim e^{-1.16r}$

 - Hence, the decay of CVIG is just half of the decay of VIG (as expected)
- (Experimentally) Percolation threshold at $m/n \approx 0.17$, d = 2

Industrial SAT Formulas (I)

Analysis of the SAT Competition 2013 (300 instances).

■ Most industrial SAT instances are **self-similar**: $2 \le d \le 4$.

- Most families have homogeneous behaviors
- The size of the formulas does not affect the value of the dimension of the family (same slope for all instances).

Industrial SAT Formulas (I)

Analysis of the SAT Competition 2013 (300 instances).

■ Most industrial SAT instances are self-similar: $2 \le d \le 4$.

- Most families have homogeneous behaviors
- The size of the formulas does not affect the value of the dimension of the family (same slope for all instances).

Industrial SAT Formulas (II)

- Family *diagnosis*: $d \approx 2.84$ (26 instances)
- Family crypto-sha: d ≈ 3.91 (30 instances)

Industrial SAT Formulas (III)

- Family scheduling-pesp: d ≈ 2.65 (30 instances)
- Family *crypto-gos*: $d \approx 3.00$ (30 instances)

Industrial SAT Formulas (IV)

■ In some families, all instances have a N(r) function with exponential decay, i.e. they are **not self-similar**.

Analyzing the Fractal Dimension (I)

We identify **two phenomena** (only in some cases):

Abrupt decay (but no exponential function).

Analyzing the Fractal Dimension (II)

- Family *hardware-cec*: *d* ≈ 2.25 (30 instances)
- Family *termination*: $d \approx 2.37$ (5 instances)

Analyzing the Fractal Dimension (III)

We identify **two phenomena** (only in some cases):

- **Abrupt decay** (but no exponential function).
 - Small number of edges connecting distant areas of the graph.
 - No effect for small values of r.
 - They may drop down the number of circles for big values of *r*.
 - Existence of non-local dependencies.
- 2 Long tail

Analyzing the Fractal Dimension (III)

We identify **two phenomena** (only in some cases):

- **Abrupt decay** (but no exponential function).
 - Small number of edges connecting distant areas of the graph.
 - No effect for small values of r.
 - They may drop down the number of circles for big values of *r*.
 - Existence of non-local dependencies.
- 2 Long tail.

Analyzing the Fractal Dimension (IV)

- Family *hardware-bmc-ibm*: $d \approx 2.18$ (4 instances)
- Family hardware-bmc: d ≈ 2.29 (3 instances)

Analyzing the Fractal Dimension (V)

We identify **two phenomena** (only in some cases):

- **Abrupt decay** (but no exponential function).
 - Small number of edges connecting distant areas of the graph.
 - No effect for small values of r.
 - They may drop down the number of circles for big values of *r*.
 - Existence of non-local dependencies.
- 2 Long tail.
 - Existence of (small) unconnected components.
 - Removed after preprocessing.

Outline

- 1 Introduction
- 2 The Fractal Dimension of Graphs
- 3 The Fractal Dimension of SAT Formulas
- 4 Conclusions

- FD related to diameter, but more stable (independent on the size).
- BND: efficient computation of FD in very large graphs (as SAT instances).
- Most industrial SAT instances are **self-similar**: $2 \le d \le 4$.
- Random SAT formulas are clearly not self-similar.
- Learning does not contribute to connect distant parts of the formula (as one could think) [See details in Section 5].
- Future work: Generators of more realistic industrial-like SAT instances take into account the fractal dimension.

- FD related to diameter, but more stable (independent on the size).
- BND: efficient computation of FD in very large graphs (as SAT instances).
- Most industrial SAT instances are **self-similar**: $2 \le d \le 4$.
- Random SAT formulas are clearly not self-similar.
- Learning does not contribute to connect distant parts of the formula (as one could think) [See details in Section 5].
- Future work: Generators of more realistic industrial-like SAT instances take into account the fractal dimension.

- FD related to diameter, but more stable (independent on the size).
- BND: efficient computation of FD in very large graphs (as SAT instances).
- Most industrial SAT instances are self-similar: 2 < d < 4.</p>
- Random SAT formulas are clearly not self-similar.
- Learning does not contribute to connect distant parts of the formula (as one could think) [See details in Section 5].
- Future work: Generators of more realistic

- FD related to diameter, but more stable (independent on the size).
- BND: efficient computation of FD in very large graphs (as SAT instances).
- Most industrial SAT instances are **self-similar**: $2 \le d \le 4$.
- Random SAT formulas are clearly not self-similar.
- Learning does not contribute to connect distant parts of the formula (as one could think) [See details in Section 5].
- Future work: Generators of more realistic industrial-like SAT instances take into account the fractal dimension.

Thank you for your attention!

The Fractal Dimension of SAT Formulas

C. Ansótegui¹ M.L. Bonet² J. Giráldez-Cru³ J. Levy³

¹DIEI - Univ. de Lleida

²LSI - UPC

3IIIA-CSIC

July 19, 2014

