

01

Problem & Motivation

02

Demonstration

03

Approach

04

Results

05

Future Developments

06 Wrap Up

Problem

Current Transcription Services

- Largely manual
- Limited libraries
- Focus on classical music

Piano Sheet sample for Alan Walker's Faded

Motivation

People should be able to take any song they like and obtain its Sheet Music. This ensures that they don't have to wait for a song to get popular and get transcribed by someone on the internet.

Key Product Features

 Handles standard issue .mp3 files (having .wav is not necessary)

 Custom Encoder that allows model to be retrained with any dataset

Provides Sheet Music in simple PNG Format

 Trained on pop and rock music, so it can transcribe modern music well

Demo

Sheet generated from Calvin Harris - My Way

Technical Approach Summary

Model Input

- MIDIs and their respective mp3s from Cprato.com
- Split data into Train and Validation
- Transform Audio to CQT Spectrum
- Encode MIDIs as framewise
 One-Hot-Encoded Notes

Model

Multi-Out Random Forest

Model Output

Encoded Midi -> Decoder -> MIDI
 Stream -> Sheet Music (PNG)

Technical Approach Summary

Audio Transformation and Model Input

Audio Sample

CQT (Constant Q-Transform) Spectrogram

Audio Transformation and Model Input

DataFrame of **252 features** and (1*60 + 18)/(0.032) = **2443 approx rows**

	0	1	2	3	4	5	6	
0	0.000733	0.003213	0.005608	0.005022	0.003947	0.002346	0.000042	0.0023
1	0.000765	0.003195	0.005601	0.004983	0.003936	0.002343	0.000182	0.0023
2	0.000844	0.003146	0.005584	0.004881	0.003906	0.002331	0.000332	0.0023
3	0.000948	0.003069	0.005557	0.004721	0.003855	0.002312	0.000460	0.0023
4	0.001068	0.002968	0.005516	0.004503	0.003784	0.002288	0.000556	0.0023

MIDI Encoding and Decoding

0.0

tempo

C3 C#3

D3

0.0 1.0

duration velocity

start_time

C1	C#1	D1	E- 1	E1	F1	F#1	G1	G#1	A1	B- 1	B1	C2	C#2	D2	E - 2	E2	F2	F#2	G2	G#2	A2	B- 2	B2
															Ţ								
							1.3	200		F	#4		11	L1.5		1.	000		10	90	90	.0	
								199		G	#4		11	L1.0		0.	500		10	90	90	.0	
								198		F	#4		11	10.0		1.	000		10	90	90	.0	
							:	197			F4		16	9.5		0.	417		10	90	90	.0	
								196			F4		T	09.0		0.	41/		T	00	90	.0	

0.0

0.0

0.0

0.0

note_name

Model Output and Postprocessing

β- 1	B1	C2	C#2	D2	E- 2	E2	F2	F#2	G2	G#2	A2	B- 2	В2	С3	C#3	D3	E-
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0

		4			
[note_name	start_time	duration	velocity	tempo
0	F#4	0.0	0.500	100	90.0
1	E-3	0.0	4.000	100	90.0
2	F#4	1.0	0.500	100	90.0
3	F#4	2.0	0.500	100	90.0
4	B-4	3.0	0.500	100	90.0
196	F4	109.0	0.417	100	90.0
197	F4	109.5	0.417	100	90.0
198	F#4	110.0	1.000	100	90.0
199	G#4	111.0	0.500	100	90.0
200	F#4	111.5	1,000	100	90.0

- 1. Multilabel Binary Classification output
- 2. Decoding of predictions back to MIDI Stream
- 3. Conversion of MIDI Stream into Sheet Music

Evaluation Comparison

Accuracy Scores

Although existing methods do perform better, clearly our model belongs in the same ballpark and has the ability to one day be competitive.

Diversity

Instead of the standard piano (MAPS and MAESTRO) datasets, we created our own Dataset from Cprato.com to train using pop, EDM and rock music.

Custom Encoder

Using a "home-made" encoder and decoder, our model can be trained on any dataset, including ones without premade labels

Key Takeaways

Decision Trees

Using Random Forest models instead of LSTM makes for a much speedier prediction and training time, compensating for the long preprocessing times.

Future Work

Reinforcement

Feedback loop from user input to improve sheet music generation

Ensembles

Transcribing music requires many different tasks. With more time and resources we hope to create additional models which can infer tempo, measures, genres, note durations, etc.

Drums

Separating drum tracks (if present) and creating separate sheet(s) for them, as they muddle the normal sheets with a lot of low notes

Note Velocity

Additional data points give more insight into the 'style' of how a note is played

Refining

Training on a larger and even more diverse set of data for better accuracy scores with varied music

THANKS!

ANNA-T

By Keshav Nath

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

