Inteligência Artificial Aula 8 - vídeo 3 - CSP - Constraint Satisfaction Problem

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

6 de outubro de 2020

Ideia: Podar os domínios o máximo possível antes de selecionar valores.

Ideia: Podar os domínios o máximo possível antes de selecionar valores.

Exemplo

Considere as variáveis A e B com domínios $D_A = D_B = \{1, 2, 3, 4\}$ e relacionadas através da restrição A < B.

O que ocorre quando temos o valor A = 4?

Ideia: Podar os domínios o máximo possível antes de selecionar valores.

Exemplo

Considere as variáveis A e B com domínios $D_A = D_B = \{1, 2, 3, 4\}$ e relacionadas através da restrição A < B.

O que ocorre quando temos o valor A = 4?

Para este valor A é inconsistente com os valores de B.

 Quando uma restrição possui apenas uma variável no seu escopo, dizemos que o arco é domínio consistente se todo valor da variável satisfaz a restrição.

 Quando uma restrição possui apenas uma variável no seu escopo, dizemos que o arco é domínio consistente se todo valor da variável satisfaz a restrição.

Exemplo

$$B \neq 3$$

$$\mathsf{scope}(B \neq 3) = \{B\}.$$

Caso $D_B = \{1, 2, 3, 4\}$, o arco $\langle B, B \neq 3 \rangle$ não é domínio consistente.

 Quando uma restrição possui apenas uma variável no seu escopo, dizemos que o arco é domínio consistente se todo valor da variável satisfaz a restrição.

Exemplo

$$B \neq 3$$

$$\mathsf{scope}(B \neq 3) = \{B\}.$$

Caso $D_B = \{1, 2, 3, 4\}$, o arco $\langle B, B \neq 3 \rangle$ não é domínio consistente.

Caso $D_B' = \{1, 2, 4\}$, o arco $\langle B, B \neq 3 \rangle$ é domínio consistente.

- Restrição r com escopo $\{X, Y_1, \dots, Y_k\}$.
- $\langle X, r \rangle$ é arco-consistente se, $\forall x \in D_X$, $\exists y_1, \dots, y_k$ onde $y_i \in D_{Y_i}$, tal que $r(X = x, Y_1 = y_1, \dots, Y_k = y_k)$ é satisfeita.

- Restrição r com escopo $\{X, Y_1, \dots, Y_k\}$.
- $\langle X, r \rangle$ é arco-consistente se, $\forall x \in D_X$, $\exists y_1, \dots, y_k$ onde $y_i \in D_{Y_i}$, tal que $r(X = x, Y_1 = y_1, \dots, Y_k = y_k)$ é satisfeita.

Ou em um caso mais simples. quando temos somente 2 variáveis:

- Restrição r com escopo $\{X, Y_1, \dots, Y_k\}$.
- $\langle X, r \rangle$ é arco-consistente se, $\forall x \in D_X$, $\exists y_1, \dots, y_k$ onde $y_i \in D_{Y_i}$, tal que $r(X = x, Y_1 = y_1, \dots, Y_k = y_k)$ é satisfeita.

Ou em um caso mais simples. quando temos somente 2 variáveis:

- Restrição r com escopo $\{X, Y\}$.
- $\langle X, r \rangle$ é arco-consistente se, $\forall x \in D_X$, $\exists y \in D_Y$, tal que r(X = x, Y = y) é satisfeita.

A rede é arco-consistente se todos os seus arcos são arco-consistentes.

Exemplo

- Variáveis: A, B, C
- **Domínio**: $D_A = D_B = D_C = \{1, 2, 3, 4\}$
- Restrições: A < B, B < C

$$scope(A < B) = \{A, B\} e scope(B < C) = \{B, C\}$$

Arcos

$$\langle A, A < B \rangle, \langle B, A < B \rangle, \langle B, B < C \rangle, \langle C, B < C \rangle$$

Exemplo

Variável	Domínio
Α	{1,2,3,4}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

• Selecionar um arco:

Exemplo

Variável	Domínio
Α	{1,2,3,4}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

• Selecionar um arco: $\langle A, A \langle B \rangle$

Exemplo

Variável	Domínio
Α	{1,2,3,4}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	X
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

• Selecionar um arco: $\langle A, A \langle B \rangle$

Variável	Domínio
Α	{1,2,3,4}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	×
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle A, A \langle B \rangle$
- Verificar se < A, A < B > é arco-consistente:

Variável	Domínio
Α	{1,2,3,4}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	×
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle A, A \langle B \rangle$
- Verificar se < A, A < B > é arco-consistente: Não é para A = 4

Variável	Domínio
Α	{1,2,3,4}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	X
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle A, A \langle B \rangle$
- Verificar se < A, A < B > é arco-consistente: Não é para A = 4
- Obter novo domínio da variável:

Variável	Domínio
Α	{1,2,3,4}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	×
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle A, A \langle B \rangle$
- Verificar se < A, A < B > é arco-consistente: Não é para A = 4
- Obter novo domínio da variável: $A = \{1, 2, 3\}$

Variável	Domínio
Α	{1,2,3}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	X
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle A, A \langle B \rangle$
- Verificar se < A, A < B > é arco-consistente: Não é para A = 4
- Obter novo domínio da variável: $A = \{1, 2, 3\}$
- Reavaliar restrições que podem ter sido afetadas pela mudança no domínio da variável:

Variável	Domínio
Α	{1,2,3}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	X
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle A, A \langle B \rangle$
- Verificar se < A, A < B > é arco-consistente: Não é para A = 4
- Obter novo domínio da variável: $A = \{1, 2, 3\}$
- Reavaliar restrições que podem ter sido afetadas pela mudança no domínio da variável:
 Procure por restrições que envolvam A, mas que sejam diferentes de A < B e que tenham no primeiro argumento do arco uma variável diferente de A.

Variável	Domínio
Α	{1,2,3}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	×
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle A, A \langle B \rangle$
- Verificar se < A, A < B > é arco-consistente: Não é para A = 4
- Obter novo domínio da variável: $A = \{1, 2, 3\}$
- Reavaliar restrições que podem ter sido afetadas pela mudança no domínio da variável:
 Não existe.

Exemplo

Variável	Domínio
Α	{1,2,3}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	×
< B , <i>A</i> < <i>B</i> >	
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

• Selecionar um arco: $\langle B, A \langle B \rangle$

Exemplo

Variável	Domínio
Α	{1,2,3}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	X
< B , <i>A</i> < <i>B</i> >	X
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

• Selecionar um arco: $\langle B, A \langle B \rangle$

Variável	Domínio
Α	{1,2,3}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	X
< B , <i>A</i> < <i>B</i> >	X
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle B, A \langle B \rangle$
- Verificar se < B, A < B > é arco-consistente:

Variável	Domínio
Α	{1,2,3}
В	{1,2,3,4}
С	{1,2,3,4}

- Selecionar um arco: $\langle B, A \langle B \rangle$
- Verificar se < B, A < B > é arco-consistente: Não é para B = 1

Variável	Domínio
Α	{1,2,3}
В	{1,2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	×
< B , <i>A</i> < <i>B</i> >	×
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle B, A \langle B \rangle$
- Verificar se < B, A < B > é arco-consistente: Não é para B = 1
- Obter novo domínio da variável:

Variável	Domínio
Α	{1,2,3}
В	{1,2,3,4}
C	{1,2,3,4}

Arcos	Examinado
< A , A < B>	×
< B , <i>A</i> < <i>B</i> >	×
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle B, A \langle B \rangle$
- Verificar se < B, A < B > é arco-consistente: Não é para B = 1
- Obter novo domínio da variável: $B = \{2, 3, 4\}$

Variável	Domínio
Α	{1,2,3}
В	{2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	×
< B , <i>A</i> < <i>B</i> >	×
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle B, A \langle B \rangle$
- Verificar se < B, A < B > é arco-consistente: Não é para B = 1
- Obter novo domínio da variável: $B = \{2, 3, 4\}$
- Reavaliar restrições que podem ter sido afetadas pela mudança no domínio da variável:
 Procure por restrições que envolvam B, mas que sejam diferentes de A < B e que tenham no primeiro argumento do arco uma variável diferente de B.

Variável	Domínio
Α	{1,2,3}
В	{2,3,4}
С	{1,2,3,4}

Arcos	Examinado
< A , A < B>	×
< B , <i>A</i> < <i>B</i> >	×
< B , <i>B</i> < <i>C</i> >	
< C , <i>B</i> < <i>C</i> >	

- Selecionar um arco: $\langle B, A \langle B \rangle$
- Verificar se < B, A < B > é arco-consistente: Não é para B = 1
- Obter novo domínio da variável: $B = \{2, 3, 4\}$
- Reavaliar restrições que podem ter sido afetadas pela mudança no domínio da variável: reavaliar < C, B < C >

Exemplo

Variável	Domínio
Α	{1,2,3}
В	{2,3,4}
С	{1,2,3,4}

Arcos	Examinados
< A , A < B>	X
< B , <i>A</i> < <i>B</i> >	X
< B , <i>B</i> < <i>C</i> >	X
< B , <i>B</i> < <i>C</i> >	X

• Após a execução do algoritmo de arco-consistência, obtemos:

$$A = \{1, 2\}, B = \{2, 3\} \in C = \{3, 4\}$$

- Se, ao final da execução do algoritmo de arco-consistência:
 - os domínios de todas as variáveis são não-vazios e
 - existe alguma variável X com domínio com mais de um elemento
 - então divida o domínio em dois e reexecute o algoritmo de arco-consistência para cada um dos novos domínios.
- Quando o domínio de alguma variável fica vazio, o problema não possui solução

Exemplo

Variável	Domínio
Α	{1,2,3}
В	{2,3,4}
С	{1,2,3,4}

Arcos	Examinados
< A , $A < B >$	X
< B , <i>A</i> < <i>B</i> >	X
< B , <i>B</i> < <i>C</i> >	×
< B , <i>B</i> < <i>C</i> >	X

• Após a execução do algoritmo de arco-consistência, obtemos:

$$A = \{1, 2\}, B = \{2, 3\} \in C = \{3, 4\}$$

Exemplo

Variável	Domínio
Α	{1,2,3}
В	{2,3,4}
С	{1,2,3,4}

Arcos	Examinados
< A , <i>A</i> < <i>B</i> >	×
< B , <i>A</i> < <i>B</i> >	X
< B , <i>B</i> < <i>C</i> >	X
< B , <i>B</i> < <i>C</i> >	X

• Após a execução do algoritmo de arco-consistência, obtemos:

$$A = \{1, 2\}, B = \{2, 3\} \in C = \{3, 4\}$$

 Escolha uma das variáveis e reexecute o algorimto. Por exemplo, se você escolher a variável B:

$$A = \{1, 2\}, B = \{2\} e C = \{3, 4\}$$

$$A = \{1, 2\}, B = \{3\} \text{ e } C = \{3, 4\}$$


```
    procedure GAC(V, dom, C)

         Inputs
 2:
              V: a set of variables
 3:
              dom: a function such that dom(X) is the domain of variable X
              C: set of constraints to be satisfied
 5.
 6:
         Output
              arc-consistent domains for each variable
 8:
         Local
              D_X is a set of values for each variable X
 9:
              TDA is a set of arcs
10:
11:
         for each variable X do
              D_{\mathbf{Y}} \leftarrow dom(\mathbf{X})
12.
              TDA \leftarrow \{\langle X, c \rangle | c \in C \text{ and } X \in scope(c)\}
13:
         while TDA \neq \{\} do
14:
              select \langle X, c \rangle \in TDA;
15:
              TDA \leftarrow TDA \setminus \{\langle X, c \rangle\};
16:
              ND_X \leftarrow \{x | x \in D_X \text{ and some } \{X = x, Y_1 = y_1, \dots, Y_k = y_k\} \in c
17:
    where y_i \in D_{Y_i} for all i}
              if ND_X \neq D_X then
18:
                   TDA \leftarrow TDA \cup \{\langle Z, c' \rangle | X \in scope(c'), c' \text{ is not } c, Z \in scope(c') \setminus A \}
19:
     \{X\}\}
                   D_{\mathbf{Y}} \leftarrow ND_{\mathbf{Y}}
20:
         return \{D_X | X \text{ is a variable} \}
21:
```

Inteligência Artificial Aula 8 - vídeo 3 - CSP - Constraint Satisfaction Problem

João C. P. da Silva

Dept. Ciência da Computação - UFRJ

6 de outubro de 2020

- Variáveis : A, B, C, D, E
- Domínios

$$D_A = \{1, 2, 3, 4\}, D_B = \{1, 2, 3, 4\}, D_C = \{1, 2, 3, 4\}, D_D = \{1, 2, 3, 4\}, D_E = \{1, 2, 3, 4\}.$$

Restrições

$$(B \neq 3), (C \neq 2), (A \neq B), (B \neq C),$$

 $(C < D), (A = D), (E < A), (E < B), (E < C),$
 $(E < D), (B \neq D).$

Alguma variável não é domínio consistente?

- Variáveis : A, B, C, D, E
- Domínios

$$D_A = \{1, 2, 3, 4\}, D_B = \{1, 2, 3, 4\}, D_C = \{1, 2, 3, 4\}, D_D = \{1, 2, 3, 4\}, D_E = \{1, 2, 3, 4\}.$$

Restrições

$$(B \neq 3), (C \neq 2), (A \neq B), (B \neq C),$$

 $(C < D), (A = D), (E < A), (E < B), (E < C),$
 $(E < D), (B \neq D).$

Alguma variável não é domínio consistente? B e C

- **V**ariáveis : *A*, *B*, *C*, *D*, *E*
- Domínios

$$D_A = \{1, 2, 3, 4\}, D_B = \{1, 2, 4\}, D_C = \{1, 3, 4\}, D_D = \{1, 2, 3, 4\}, D_E = \{1, 2, 3, 4\}.$$

Restrições

$$(B \neq 3), (C \neq 2), (A \neq B), (B \neq C),$$

 $(C < D), (A = D), (E < A), (E < B), (E < C),$
 $(E < D), (B \neq D).$

Todas as variáveis são domínio consistentes