

Vishay Semiconductors

GREEN (5-2008)

High Efficiency LED in Ø 3 mm Tinted Diffused Package

DESCRIPTION

The TLH.44.. series was developed for standard applications like general indicating and lighting purposes.

It is housed in a 3 mm tinted diffused plastic package. The wide viewing angle of these devices provides a high on-off contrast.

Several selection types with different luminous intensities are offered. All LEDs are categorized in luminous intensity groups. The green and yellow LEDs are categorized additionally in wavelength groups.

That allows users to assemble LEDs with uniform appearance.

PRODUCT GROUP AND PACKAGE DATA

• Product group: LED · Package: 3 mm

· Product series: standard Angle of half intensity: ± 30°

FEATURES

- Standard Ø 3 mm (T-1) package
- Small mechanical tolerances
- Suitable for DC and high peak current
- · Wide viewing angle
- · Luminous intensity categorized
- · Yellow and green color categorized

· Material categorization: definitions compliance

please www.vishay.com/doc?99912

- Status lights
- · Off/on indicator
- Background illumination
- · Readout lights
- Maintenance lights
- · Legend light

PARTS TABLE													
PART	COLOR	LUMIN	OUS INT (mcd)	ENSITY	at I _F	WA	VELEN (nm)	GTH	FORW	ARD VO (V)	LTAGE	at I _F	TECHNOLOGY
		MIN.	TYP.	MAX.	(IIIA)	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	(IIIA)	
TLHP4401	Pure green	1	4	-	10	555	-	565	-	2.4	3	20	GaP on GaP
TLHP4401-AS12Z	Pure green	1	4	-	10	555	-	565	-	2.4	3	20	GaP on GaP
TLHG4400	Green	2.5	13	-	10	562	-	575	-	2.4	3	20	GaP on GaP
TLHG4400-MS12	Green	2.5	13	-	10	562	-	575	-	2.4	3	20	GaP on GaP
TLHG4401	Green	4	14	-	10	562	-	575	-	2.4	3	20	GaP on GaP
TLHG4405	Green	6.3	15		10	562	-	575	-	2.4	3	20	GaP on GaP
TLHY4400	Yellow	1.6	10	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4400-AS12Z	Yellow	1.6	10	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4400-AS21	Yellow	1.6	10	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4400-AS21Z	Yellow	1.6	10	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4400-BT12	Yellow	1.6	10	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4400-CS12	Yellow	1.6	10	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4400-MS12	Yellow	1.6	10	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4401	Yellow	2.5	10.5	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4401-AS12	Yellow	2.5	10.5	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4401-AS12Z	Yellow	2.5	10.5	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4401-AS21	Yellow	2.5	10.5	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4405	Yellow	6.3	11	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4405-AS12	Yellow	6.3	11	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4405-AS12Z	Yellow	6.3	11	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP

Rev. 2.3, 17-Apr-12 Document Number: 83006

www.vishay.com

Vishay Semiconductors

PARTS TABLE													
PART	COLOR	LUMIN	OUS INT (mcd)	ENSITY	at I _F	WA	VELEN (nm)	GTH	FORW	ARD VO (V)	LTAGE	at I _F	TECHNOLOGY
		MIN.	TYP.	MAX.	(IIIA)	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	(IIIA)	
TLHY4405-BT12Z	Yellow	6.3	11	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4405-MS12	Yellow	6.3	11	-	10	581	-	594	-	2.4	3	20	GaAsP on GaP
TLHY4438	Yellow	6.3	11	20	10	583	-	586	-	2.4	3	20	GaAsP on GaP
TLHY4442-MS12	Yellow	6.3	11	20	10	585	-	590	-	2.4	3	20	GaAsP on GaP
TLHO4400	Soft orange	1.6	13	-	10	598	-	611	-	2.4	3	20	GaAsP on GaP
TLHO4400-AS12Z	Soft orange	1.6	13	-	10	598	-	611	-	2.4	3	20	GaAsP on GaP
TLHO4400-MS12Z	Soft orange	1.6	13	-	10	598	-	611	-	2.4	3	20	GaAsP on GaP
TLHR4400	Red	1.6	13	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4400-AS12	Red	1.6	13	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4400-AS21	Red	1.6	13	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4400-AS12Z	Red	1.6	13	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4400-AS21Z	Red	1.6	13	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4400-MS12Z	Red	1.6	13	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4401	Red	2.5	14	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4401-AS12Z	Red	2.5	14	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4401-LS12Z	Red	2.5	14	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4405	Red	6.3	15	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4405-AS12	Red	6.3	15	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4405-AS21	Red	6.3	15	-	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4407	Red	4	-	12.5	10	612	-	625	-	2	3	20	GaAsP on GaP
TLHR4407-MS12Z	Red	4	=.	12.5	10	612	-	625	-	2	3	20	GaAsP on GaP

ABSOLUTE MAXIMUM RATING TLHG440., TLHO440., TLHO440		rwise specified	d)	
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Reverse voltage		V _R	6	V
DC forward current		I _F	30	mA
Surge forward current	t _p ≤ 10 μs	I _{FSM}	1	А
Power dissipation	T _{amb} ≤ 60 °C	P _V	100	mW
Junction temperature		Tj	100	°C
Operating temperature range		T _{amb}	- 40 to + 100	°C
Storage temperature range		T _{stg}	- 55 to + 100	°C
Soldering temperature	t ≤ 5 s, 2 mm from body	T _{sd}	260	°C
Thermal resistance junction/ambient		R _{thJA}	400	K/W

OPTICAL AND ELECTION	OPTICAL AND ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 ^{\circ}\text{C}$, unless otherwise specified) TLHR440. , RED								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT		
		TLHR4400	I _V	1.6	13	-	mcd		
1	10 4	TLHR4401	I _V	2.5	14	-	mcd		
Luminous intensity (1)	$I_F = 10 \text{ mA}$	TLHR4405	I _V	6.3	15	-	mcd		
		TLHR4407	I _V	4	-	12.5	mcd		
Dominant wavelength	I _F = 10 mA		λ_d	612	-	625	nm		
Peak wavelength	I _F = 10 mA		λ_{p}	-	635	-	nm		
Angle of half intensity	I _F = 10 mA		φ	-	± 30	-	deg		
Forward voltage	I _F = 20 mA		V _F	-	2	3	V		
Reverse voltage	I _R = 10 μA		V_R	6	15	-	V		
Junction capacitance	V _R = 0 V, f = 1 MHz		Cj	-	50	-	pF		

Note

 $^{(1)}~$ In one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5$

www.vishay.com

Vishay Semiconductors

	OPTICAL AND ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified) TLHO440., SOFT ORANGE								
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Luminous intensity (1)	I _F = 10 mA	TLHO4400	I _V	1.6	13	-	mcd		
Dominant wavelength	I _F = 10 mA		λ_{d}	598	-	611	nm		
Peak wavelength	I _F = 10 mA		λ_{p}	-	605	-	nm		
Angle of half intensity	I _F = 10 mA		φ	-	± 30	-	deg		
Forward voltage	I _F = 20 mA		V_{F}	-	2.4	3	V		
Reverse voltage	I _R = 10 μA		V_R	6	15	-	V		
Junction capacitance	$V_R = 0 V, f = 1 MHz$		Cj	-	15	-	pF		

Note

 $^{^{(1)}~}$ In one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5$

PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
		TLHY4400	Ι _V	1.6	10	=	mcd
		TLHY4401	Ι _V	2.5	10.5	-	mcd
Luminous intensity (1)	$I_F = 10 \text{ mA}$	TLHY4405	Ι _V	6.3	11	=	mcd
		TLHY4438	Ι _V	6.3	-	20	mcd
		TLHY4442	Ι _V	6.3	-	20	mcd
		TLHY4400	λ_{d}	581	-	594	nm
		TLHY4401	λ_{d}	581	-	594	nm
Dominant wavelength	$I_F = 10 \text{ mA}$	TLHY4405	λ_{d}	581	-	594	nm
		TLHY4438	λ_{d}	583	-	590	nm
		TLHY4442	λ_{d}	585	-	592	nm
Peak wavelength	I _F = 10 mA		λ_{p}	=	585	-	nm
Angle of half intensity	I _F = 10 mA		φ	-	± 30	=	deg
Forward voltage	I _F = 20 mA		V_{F}	-	2.4	3	V
Reverse voltage	I _R = 10 μA		V_R	6	15	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		Ci	-	50	-	pF

Note

 $^{^{(1)}~}$ In one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5$

OPTICAL AND ELECTION OF THE STATE OF THE STA	· · · · · · · · · · · · · · · · · · ·									
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT			
		TLHG4400	Ι _V	2.5	13	-	mcd			
Luminous intensity (1)	$I_F = 10 \text{ mA}$	TLHG4401	Ι _V	4	14	-	mcd			
		TLHG4405	Ι _V	6.3	15	-	mcd			
Dominant wavelength	I _F = 10 mA		λ_{d}	562	-	575	nm			
Peak wavelength	I _F = 10 mA		λ_{p}	-	565	-	nm			
Angle of half intensity	I _F = 10 mA		φ	-	± 30	-	deg			
Forward voltage	I _F = 20 mA		V_{F}	=	2.4	3	V			
Reverse voltage	I _R = 10 μA		V_R	6	15	-	V			
Junction capacitance	V _R = 0 V, f = 1 MHz		C _i	-	50	-	pF			

Note

 $^{^{(1)}~}$ In one packing unit $I_{Vmin.}/I_{Vmax.} \leq 0.5$

www.vishay.com

Vishay Semiconductors

OPTICAL AND ELE TLHP440., PURE (ECTRICAL CHARACTER GREEN	ISTICS (T _{ami}	o = 25 °C, ı	unless oth	erwise spe	ecified)	
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Luminous intensity (1)	I _F = 10 mA	TLHP4401	I _V	1	4	-	mcd
Dominant wavelength	I _F = 10 mA		λ_{d}	555	-	565	nm
Peak wavelength	I _F = 10 mA		λ_{p}	-	555	-	nm
Angle of half intensity	I _F = 10 mA		φ	-	± 30	-	deg
Forward voltage	I _F = 20 mA		V_{F}	-	2.4	3	V
Reverse voltage	I _R = 10 μA		V_R	6	15	-	V
Junction capacitance	V _R = 0 V, f = 1 MHz		Cj	-	50	-	pF

Note

⁽¹⁾ In one packing unit $I_{Vmin.}/I_{Vmax.} \le 0.5$

LUMINOUS	NTENSITY CLA	CCIEICATION
GROUP	LIGHT INT	ENSITY (mcd)
STANDARD	MIN.	MAX.
L	1	2
М	1.6	3.2
N	2.5	5
Р	4	8
Q	6.3	12.5
R	10	20
S	16	32
Т	25	50
U	40	80

Note

Luminous intensity is tested at a current pulse duration of 25 ms. The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each bag (there will be no mixing of two groups on each bag).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one bag.

In order to ensure availability, single wavelength groups will not be orderable.

			DOM. WAVE	WAVELENGTH (nm)				
GROUP	YEL	LOW	GRI	EEN	PURE (GREEN		
	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
0	-	-	-	-	555	559		
1	581	584	-	-	558	561		
2	583	586	-	-	560	563		
3	585	588	562	565	562	565		
4	587	590	564	567	=	-		
5	589	592	566	569	=	-		
6	591	594	568	571	=	-		
7	-	-	570	573	=	-		
8	-	-	572	575	-	-		

Note

Wavelengths are tested at a current pulse duration of 25 ms.

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 1 - Forward Current vs. Ambient Temperature for InGaN

Fig. 2 - Forward Current vs. Pulse Length

Fig. 3 - Relative Luminous Intensity vs. Angular Displacement

Fig. 4 - Forward Current vs. Forward Voltage

Fig. 5 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 6 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

2.0

www.vishay.com

Fig. 7 - Relative Luminous Intensity vs. Forward Current

Fig. 10 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 8 - Relative Intensity vs. Wavelength

Fig. 11 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

Fig. 9 - Forward Current vs. Forward Voltage

Fig. 12 - Relative Luminous Intensity vs. Forward Current

www.vishay.com

Fig. 13 - Relative Intensity vs. Wavelength

Fig. 14 - Forward Current vs. Forward Voltage

Fig. 15 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 16 - Relative Luminous Intensity vs. Forward Current/Duty Cycle

Fig. 17 - Relative Luminous Intensity vs. Forward Current

Fig. 18 - Relative Intensity vs. Wavelength

www.vishay.com

Fig. 19 - Forward Current vs. Forward Voltage

Fig. 20 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 21 - Specific Luminous Intensity vs. Forward Current

Fig. 22 - Relative Luminous Intensity vs. Forward Current

Fig. 23 - Relative Intensity vs. Wavelength

Fig. 24 - Forward Current vs. Forward Voltage

www.vishay.com

Fig. 25 - Relative Luminous Intensity vs. Ambient Temperature

Fig. 28 - Relative Intensity vs. Wavelength

Fig. 26 - Specific Luminous Intensity vs. Forward Current

Fig. 27 - Relative Luminous Intensity vs. Forward Current

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.544-5255.01-4 Issue: 7; 25.09.08 95 10913

REEL DIMENSIONS in millimeters

Fig. 29 - Reel

TAPE

Fig. 30 - LED in Tape

AMMOPACK

TLHG440., TLHO440., TLHP440., TLHR440., TLHY440.

Vishay Semiconductors

Fig. 31 - Tape Direction

Note

• AS12Z and AS21Z still valid for already existing types BUT NOT FOR NEW DESIGN

TAPE DIMENSIONS in millimeters

Quantity per:	Reel (Matno. 1764)
Quantity per.	2000
21885	

OPTION	DIMENSION "H" ± 0.5 mm	DIMENSION "X" ± 0.5 mm
AS	17.3	-
MS	25.5	-
CS	22.0	-
LS	21.0	-
ВТ	20.0	16.0

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.