

Новые сечения фотонейтронных реакций, оцененные с использованием физических критериев достоверности

По материалам кандидатской диссертации

Аспирант: Давыдов А.И.

Научный руководитель: Варламов В.В.

Цели и задачи

Диссертационная работа посвящена проблемам получения достоверной информации о сечениях фотонейтронных реакций, свободных от систематических погрешностей экспериментов.

Основные цели и задачи работы:

- анализ с использованием объективных физических критериев достоверности сечений парциальных реакций, полученных в разных экспериментах;
- определение содержащихся в сечениях систематических погрешностей и их учет;
- получение с использованием экспериментально-теоретического метода оценки новых сечений реакций, удовлетворяющих физическим критериям достоверности.

Актуальность

Абсолютное большинство сечений таких реакций получено экспериментально в двух лабораториях (США и Франция) на пучках квазимоноэнергетических аннигиляционных фотонов с помощью метода разделения фотонейтронов по множественности.

Такие данные были получены в конце прошлого века (новые данные практически отсутствуют), включены в различные обзоры и атласы, а также в международную электронную базу данных по ядерным реакциям, поддерживаемую Сетью Центров данных по ядерным реакциям МАГАТЭ.

Характеристики фотоядерных (прежде всего - фотонейтронных) реакций широко востребованы в исследованиях в самых разных областях, таких как ядерная физика, ядерная энергетика, астрофизика, физика высоких энергий, а также в разнообразных приложениях в ядерных разделах химии, биологии, геологии, медицины и многих других.

Соотношение парциальных реакций

В первую очередь востребованы сечения парциальных фотонейтронных реакций с образованием конкретного количества нейтронов - (γ, 1n), (γ, 2n), (γ, 3n), ...

Баланс сечений реакций с образованием, прежде всего, 1 и 2 нейтронов – важная характеристика процесса фоторасщепления ядра:

- конкуренция каналов распада;
- конкуренция прямых и статистических процессов;
- эффекты конфигурационного расщепления ГДР;
- эффекты изоспинового расщепления ГДР;
- многие другие.

Систематика экспериментальных данных

Большинство данных о сечениях парциальных фотонейтронных реакций получено в Ливерморе (США) и Сакле (Франция) на пучках квазимоноэнергетических аннигиляционных фотонов с помощью метода разделения нейтронов по множественности, опубликовано в полном атласе S.S.Dietrich, B.L.Berman. Atomic Data and Nuclear Data Tables, 38 (1988) 199 и включено в международную электронную базу данных МАГАТЭ

Для каждого ядра — сечения реакций: $(\gamma, xn) = (\gamma, 1n) + 2(\gamma, 2n) + 3(\gamma, 3n) + \dots$ $(\gamma, Sn) = (\gamma, 1n) + (\gamma, 2n) + (\gamma, 3n) + \dots$ $(\gamma, 1n)$ $(\gamma, 2n)$ $(\gamma, 3n)$

Систематические расхождения экспериментальных данных

В обеих лабораториях использовался один и тот же метод разделения фотонейтронов по множественности, основанный на предположении о том, что единственный нейтрон из реакции (γ , 1n) имеет энергию, большую по сравнению с энергиями обоих нейтронов из реакции (γ , 2n), однако методы измерения энергии нейтронов различались:

- в Сакле в качестве детектора использовался обогащенный ядрами ¹⁶⁰Gd жидкий сцинтиллятор, в котором энергия нейтронов определялась по времени их замедления перед захватом ядрами ¹⁶⁰ Gd;
- в Ливерморе использовались газоразрядные BF3 счетчики, располагавшиеся несколькими концентрическими кольцами в парафиновом замедлителе; низкоэнергетичные нейтроны (предположительно из реакции (γ , 2n) регистрировались преимущественно счетчиками внутренних колец, высокоэнергетичные нейтроны (из реакции (γ , 1n) счетчиками внешних колец.

Систематические расхождения экспериментальных данных

Главная проблема – существенные систематические расхождения : для 19 ядер, исследованных в обеих лабораториях: в то время как сечения выхода нейтронов (γ, xn) = (γ, 1n) + 2(γ, 2n) + 3(γ, 3n) + ...) близки, сечения реакций (γ, 1n) имеют заметно большие величины в Сакле, (γ, 2n) – в Ливерморе.

Среднее отношение для реакций $(\gamma, 1n) -$ < R > = 1.07.

Среднее отношение для реакции $(\gamma, 2n) - < R > = 0.84$.

Критерии достоверности данных

Переходные F-функции получены для данных рассчитанных с помощью комбинированной модели фотонуклонных реакций

Главные критерии достоверности - универсальны:

$$F_1 < 1.00,$$

$$F_2 < 0.50$$
,

$$F_3 < 0.33$$
,

$$F_4 < 0.25$$
,

$$F_5 < 0.20$$
,

. . .

B2n

Теоретическая модель

Предравновесная экситонная модель основывается на использовании плотностей уровней ядра, рассчитанных в модели Ферми-газа, и учете влияния на процессы формирования и распада гигантского дипольного резонанса (ГДР) эффектов, обусловленных деформацией ядра и изоспиновым расщеплениями ГДР.

Модель развита в нашем институте (В.Н.Орлин, Б.С.Ишханов), составляет предмет докторской диссертации В.Н.Орлина.

Модель была успешно протестирована на экспериментальных данных по сечениям реакции выхода нейтронов для большого числа средних и тяжелых ядер и позволяет рассчитать сечения парциальных реакций безотносительно проблем экспериментального разделения нейтронов по множественности.

Объективные физические критерии достоверности

Типичный пример - ¹¹⁶Sn.

Очевидные признаки недостоверности данных:

- физически запрещенные отрицательные значения F₁;
- значения, превышающие физически достоверный пределы 0.50;
- уменьшение F_2 при энергиях на 2.5 МэВ меньших порога B3n, для которого нет физических обоснований

$$F_2 = \frac{\sigma(\gamma, 2n)}{\sigma(\gamma, 1n) + 2\sigma(\gamma, 2n) + 3\sigma(\gamma, 3n) + \dots} < 0.50 \text{ (!)}$$

Типичные примеры недостоверных данных

Экспериментально-теоретический метод оценки

Предложен новый экспериментально-теоретический метод оценки сечений парциальных фотонейтронных реакций, удовлетворяющих физическим критериям достоверности:

$$σ^{\text{οιμeH}}(\gamma, 1n) = F_1^{\text{теор}} * σ^{\text{эксп}}(\gamma, xn),$$
 $σ^{\text{οιμeH}}(\gamma, 2n) = F_2^{\text{τεορ}} * σ^{\text{эксп}}(\gamma, xn),$
 $σ^{\text{οιμeH}}(\gamma, 3n) = F_3^{\text{τεορ}} * σ^{\text{эксп}}(\gamma, xn)$

- только экспериментальное сечение реакции полного выхода нейтронов $\sigma^{\text{эксп}}(\gamma, xn) = \sigma^{\text{эксп}}(\gamma, 1n) + 2\sigma^{\text{эксп}}(\gamma, 2n) + 3\sigma^{\text{эксп}}(\gamma, 3n) + ...$ априори свободное от ограничений метода разделения нейтронов по множественности, поскольку включает в себя вклады нейтронов из всех парциальных реакций, используется как исходное;
- для определения вкладов в сечение выхода нейтронов $\sigma^{\text{эксп}}(\gamma, xn)$ сечений парциальных реакций $\sigma^{\text{оцен}}(\gamma, 1n)$, $\sigma^{\text{оцен}}(\gamma, 2n)$, $\sigma^{\text{оцен}}(\gamma, 3n)$ используются переходные функции множественности отношения $F_{1,2,3},...$, рассчитанные в рамках комбинированной модели фотоядерных реакций.

Суть экспериментально-теоретического метода оценки сечений парциальных реакций: соотношение между ними соответствует представлениям модели, а соответствующая сумма сечений парциальных реакций $\sigma^{\text{оцен}}(\gamma, xn)$ равна сечению выхода нейтронов $\sigma^{\text{эксп}}(\gamma, xn)$, практически не зависящему от проблем экспериментального разделения нейтронов по множественности.

Примеры оцененных данных

Примеры оцененных данных

Типичный пример расхождений

Типичный пример применения экспериментальнотеоретического метода оценки.

Данные Ливермора:

определенное количество нейтронов извлекается из реакции (γ , 2n) и перемещается в реакцию (γ , 1n).

Данные Сакле:

определенное количество нейтронов извлекается из реакции (γ , 1n) и перемещается в реакцию (γ , 2n).

Существенные расхождения оцененных и экспериментальных данных

Реакция	Интегральное сечение σ^{int} , МэВ*мб				
	Ливермор	Оценка	Сакле		
(γ, Sn)	3187	3200	3194		
(γ, tot)	2300	2383	2557	Увеличение на 5 %!	Уменьшение на 10 %!
(γ, 1n)	1413	1642	1936	Увеличение на 16 %!	Уменьшение на 20 %!
(γ, 2n)	887	714	605	Уменьшение на 25 %!	Увеличение на 15 %!
(γ, 3n)	46	26	16	σ ^{int} (γ, 2n)/σ ^{int} (γ, 1n)	σ ^{int} (γ, 2n)/σ ^{int} (γ, 1n) Увеличение на <mark>27</mark> %.

Индивидуальный характер расхождений

Основные задачи работы

В связи со сказанным основными задачами работы были:

развитие экспериментально-теоретического метода оценки достоверных сечений реакций, дополнение его детальным анализом разностей между экспериментальными и оцененными сечениями реакций, как инструментом определения причин расхождений;

- определение с помощью этого инструмента причин содержащихся в сечения реакций систематических погрешностей;
- получение с помощью экспериментально-теоретического метода оценки новых данных о сечениях парциальных и полных фотонейтронных реакций, свободных от систематических погрешностей экспериментов, выполненных ранее с помощью метода разделения нейтронов по множественности; новые данные получены по сечениям для ядер ⁵¹V, ⁵⁹Co, ^{58,60}Ni, ^{63,65}Cu, ⁷⁵As, ^{76,78,80,82}Se, ⁸⁹Y, ^{90,91,92,94}Zr, ¹⁹³Rh, ¹²⁷I, ¹⁶⁵Ho, ¹⁸¹Ta, ^{206,207}Pb;
- включение оцененных сечений фотонейтронных реакций в фонд международной электронной базы данных по ядерным реакциям, поддерживаемую Сетью центров ядерных данных под эгидой МАГАТЭ

Типичные примеры систематических расхождений первого типа

Типичные примеры систематических расхождений первого типа

⁹⁸Mo: Mos. Univ. Phys. Bull., 73, 68 (2018)

Сакле:
Основная причина таких разностей – недостоверное (ошибочное) перемещение многих нейтронов из канала "2n" в канал "1n".

¹⁸⁸Os: Phys. Atom. Nucl., 78, 746 (2015)

Ливермор:
Основная причина разностей – недостоверное (ошибочное) перемещение многих нейтронов из канала "1n" в канал "2n".

Типичные примеры систематических расхождений первого типа

Основной причиной расхождений является недостоверная (ошибочная) сортировка нейтронов по множественности, основанная на измерении их энергии, поскольку спектры нейтронов из реакций (γ , 1n) и (γ , 2n) оказываются близкими.

Аналогичные данные получены для ядер 76,78,80,83 Se, 89 Y, 90,91,92,94 Zr, 103 Rh, 127 I, 165 Ho, 181 Ta, 206,207 Pb

Типичные примеры систематических расхождений первого типа

Возможные причины очевидных обсуждаемых систематических расхождений:

- в Сакле при использовании обогащенного ядрами гадолиния жидкого сцинтиллятора были возможны необоснованные завышения количества 1n-случаев ("suffered from a high background rate, made up largely of 1n-events, which introduced larger uncertainties in the background subtraction and pile-up corrections" citation from B.L.Berman and S.C.Fultz, Rev.Mod.Phys., 47, 713 (1975)) по сравнению с количеством 2n-случаев;
- в Ливерморе даже при использовании «метода кольцевых отношений» расположение счетчиков нейтронов концентрическими кольцами в парафиновом замедлителе создавало возможность для завышения количества 2n-случаев по сравнению с количеством 1n-случаев: низкоэнергетичные нейтроны (из реакции (γ, 2n) замедляются на пути к внутреннему кольцу, тогда как высокоэнергетичные нейтроны (из реакции (γ, 1n)), минуя внутреннее кольцо, чтобы достигнуть внешнее, вследствие многократного рассеяния имеют определенную вероятность возвращения к внутреннему кольцу.

Типичные примеры систематических расхождений второго типа

Типичные примеры систематических расхождений второго типа

Сравнение экспериментальных сечений выхода нейтронов $\sigma^{\text{эксп}}(\gamma, xn) = \sigma^{\text{эксп}}(\gamma, 1n) + \sigma^{\text{эксп}}(\gamma, 1n1p) + 2\sigma^{\text{эксп}}(\gamma, 2n)$ с теоретическими сечениями реакций, рассчитанными в КМФЯР ((γ, xn) – сплошная линия, (γ, xn) – пунктирная линия, (γ, xn) – точечная линия), $\sigma^{\text{теор}}(\gamma, xn)$ – штрих-пунктирная линия).

Причина недостоверности экспериментальных данных – систематическая погрешность разделения вкладов двухнуклонных реакций (γ ,2n) и (γ ,1n1p). В случае изотопа ⁵⁸Ni сечение реакции (γ ,1n1p).превышает в 20 раз сечение реакции (γ ,2n). Хорошо видно, что экспериментальное сечение, ошибочно декларируемое как сечение реакции ⁵⁸Ni(γ , 2n)⁵⁶Ni, практически полностью представляет собой сечение реакции ⁵⁸Ni(γ , 1n1p)⁵⁶Co.

Третий – технический тип систематических погрешностей

Для большинства исследованных ядер в области энергий до порога B2n реакции (ү, 2n), в которой проблемы множественности нейтронов отсутствуют, сечения реакций (ү, xn), (ү, sn) и (ү, 1n) должны быть идентичны. Конкуренции реакций (ү, 1n) и (ү, 2n) проявляется при энергиях, больших B2n.

Типичный пример для большинства ядер

при малых энергиях практически совпадают (отличаются очень мало)

при больших энергиях расхождения увеличиваются.

⁷⁵As, ¹²⁷I, ¹⁸¹Ta и ²⁰⁸Pb

Третий тип систематических погрешностей

Расхождения между оцененными и экспериментальными сечениями (γ, 1n) реакции оказываются значительно большими по сравнению с расхождениями сечений реакции (γ, xn). В то же время расхождения между сечениями реакции (γ, 2n) оказываются значительно меньшими (практически отсутствуют).

Третий тип систематических погрешностей

	$\sigma^{ ext{uht}}_{ ext{oqeh}}/\sigma^{ ext{uht}}_{ ext{J}}$						
	⁷⁵ As	127	¹⁸¹ Ta	²⁰⁸ Pb	²⁰⁷ Pb	²⁰⁶ Pb	
(γ, xn)	1.27	1.20	1.24	1.28	1.21	1.13	
(γ, sn)	1.30	1.25	1.30	1.37	1.24	1.15	
(γ, 1n)	1.34	1.33	1.46	1.42	1.30	1.19	
(γ, 2n)	1.14	0.98	1.05	0.83	1.02	1.02	

Чем больше вклад сечения σ(γ, 1n) простой реакции в сечение более сложной реакции, тем больше степень недостоверного (ошибочного) занижения экспериментального сечения по сравнению с оцененным:

$$(\gamma, xn) = (\gamma, 1n) + [2(\gamma, 2n) + 3(\gamma, 3n) + ...]$$
 некоторый вклад реакции $(\gamma, 1n)$;

$$(\gamma, sn) = (\gamma, 1n) + [(\gamma, 2n) + (\gamma, 3n) + ...]$$
 бОльший вклад реакции $(\gamma, 1n)$;

$$(\gamma, 1n) = (\gamma, 1n) + [0]$$
 максимальный 100%-вклад реакции $(\gamma, 1n)$;

$$(\gamma, 2n) [0]$$
 минимальный (0-й) вклад реакции $(\gamma, 1n)$.

Установленные соотношения означают, что именно очень большие (34, 33, 46, 42, 30 и 19%) занижения сечения реакции (γ, 1n) обуславливают значительные (27, 20, 24, 28, 21 и 13%) занижения сечений реакции (γ, xn).

Расхождения не могут быть убраны простой перенормировкой.

Это означает, что в экспериментах Ливермора для исследуемых ядер большое количество нейтронов из реакции (γ, 1n) было потеряно (вследствие технических проблем).

Сравнение оцененных сечений с данными, полученными с помощью альтернативных методов

¹⁸¹Та (активационный метод)

Идентификация парциальных реакций не по нейтронам, а по конечным ядрам

Распады конечных ядер реакций 181 Ta(γ , 1n) and 181 Ta(γ , 2n) значительно различаются:

¹⁸¹Ta(γ, 1n)¹⁸⁰Ta,
$$T_{1/2} = 8.154$$
 час

¹⁸¹Та(
$$\gamma$$
, 2n)¹⁷⁹Та, $T_{1/2} = 1.82$ год

Сравнение отношений выходов реакций Y и интегральных сечений σ^{int}

Полученные по экспериментальным и оцененным данным для ¹⁸¹Та и E^{int} = 65 МэВ.

	Сакле	Ливермор	Активационный метод	Оценка
сечений σ(γ, 2n)/σ(γ, 1n)	0.36 (797/2190)	0.67 (887/1316)		0.49 (958/1956)
выходов Y(ү, 2n)/Y(ү, 1n)	0.24	0.42	0.34 ± 0.07	0.33
сечений σ(γ, 3n)/σ(γ, 1n)	0.063 (137/2190)			0.055 (107/1956)

Аналогичное согласие было получено для 209 Ві при $E^{int} = 55$ МэВ.

Сравнение оцененных сечений с данными, полученными с

Сравнение оцененных сечений с данными, полученными с помощью альтернативных методов

Данные, оцененные с помощью экспериментальнотеоретического метода, расходятся с результатами Ливермора и Сакле, но согласуются с результатами эксперимента с ОКР фотонами (Japan, NewSUBARU)

Ядро	Е ^{инт} (МэВ)	Реакция					
		(γ, xn)	(γ, sn)	(γ, 1n)	(γ, 2n)	(γ, 3n)	
51 V	27.3	651.6 (8.0)	587.2 (7.5)	522.7 (7.4)	64.5 (1.5)		
⁵⁹ Co	36.5	967.2 (10.2)	804.1 (9.0)	655.2 (8.0)	138.1 (4.1)	0.8 (0.1)	
⁶³ Cu	28.0	679.9 (7.5)	664.2 (14.1)	605.2 (14.0)	39.0 (1.6)		
⁶⁵ Cu	28.0	824.8 (15.0)	702.9 (14.3)	581.0 (13.4)	121.9 (4.9)		
⁵⁸ Ni	33.5	293.4(14.8)	290.8 (14.8)	288.3 (14.8)	2.6 (0.1)		
⁶⁰ Ni	30.0	704.9 (5.8)	628.4 (5.6)	551.9 (5.5)	76.5 (1.2)		
⁷⁵ As	26.2	1290.7 (12.0)	1090.4 (11.6)	890.1 (11.0)	200.3 (3.7)		
⁷⁶ Se	26.5	1165.5 (14.3)	1022.9 (12.8)	880.4 (12.3)	142.5 (3.6)		
⁷⁸ Se	26.5	1315.5 (15.1)	1076.7 (12.7)	838.0 (11.8)	238.8(4.7)		
⁸⁰ Se	28.0	1527.2 (16.2)	1191.1 (16.0)	862.6 (13.6)	328.5 (8.4)		
⁸² Se	26.5	1494.2 (17.6)	1190.1 (13.1)	723.7 (11.3)	385.4 (6.7)		

Ядро	Е ^{инт} (МэВ)	Реакция					
		(γ, xn)	(γ, sn)	(γ, 1n)	(γ, 2n)	(γ, 3n)	
89 Y	27.0	1413.4 (19.7)	1301.3 (16.1)	1189.0 (11.5)	112.2 (11.3)		
⁹⁰ Zr	27.6	1308.8 (3.2)	1228.8 (12.5)	1158.2 (12.2)	70.9 (1.7)		
⁹¹ Zr	28.5	1276.0 (17.2)	1091.6 (27.5)	947.5(24.2)	143.4(6.0)		
⁹² Zr	27.8	1548.3 (8.5)	1144.8 (14.6)	748.2 (8.5)	379.5 (8.5)		
⁹⁴ Zr	31.0	2067.2 (40.0)	1311.4 (8.0)	694.9 (14.3)	539.4(10.7)	56.1 (12.3)	
¹⁰³ Rh	26.0	1949.9(51.9)	1594.4(60.2)	1233.1 (48.3)	361.3 (15.9)		
127	31.2	2661.3 (31.4)	2146.7 (29.1)	1650.2 (26.7)	478.4 (11.5)	18.0 (2.1)	
¹⁶⁵ Ho	28.5	3722.8(36.8)	2822.4 (44.6)	1961.0 (34.2)	822.9(18.0)	37.8 (6.0)	
¹⁸¹ Ta	35.0	4078.2 (9.3)	3021.9 (36.1)	1956.3(31.0)	958.3 (17.4)	107.3 (6.3)	
²⁰⁶ Pb	26.4	3930.6 (30.8)	3368.4 (36.2)	2816.6 (32.6)	541.8 (15.6)	10.0 (1.9)	
²⁰⁷ Pb	26.4	3945.0 (36.6)	3281.4(38.4)	2648.9 (32.7)	599.6 (19.7)	32.8 (3.8)	

Основные результаты

- с использованием объективных физических критериев исследована достоверность экспериментальных сечений парциальных фотонейтронных реакций (γ, 1n) и (γ, 2n), а отдельных случаях и (м, 3n), полученных на пучках квазимоноэнергетических аннигиляционных фотонов на ядрах ⁵¹V, ⁵⁹Co, ^{58,60}Ni, ⁷⁵As, ^{76,78,80,83}Se, ⁸⁹Y, ^{90,91,92,94}Zr, ¹⁰³Rh, ¹²⁷I, ¹⁶⁵Ho, ¹⁸¹Ta, ^{206,207}Pb;
- установлено, что во многих случаях экспериментальные сечения не являются достоверными вследствие присутствия в них существенных систематических погрешностей использованного метода разделения фотонейтронов по множественности;
- с помощью экспериментально-теоретического метода для указанных ядер оценены сечения парциальных реакций, удовлетворяющие физическим критериям достоверности

Основные результаты

- с привлечением полученных ранее данных для большого количества ядер на основании детального сравнения разностей между оцененными и экспериментальными сечениями установлено, что известные существенные расхождения сечений парциальных фотонейтронных реакций из разных экспериментов обусловлены присутствием в них систематических погрешностей 3 типов:
 - 1) погрешности распределения нейтронов между парциальными реакциями на основании данных об их энергиях, которые могут быть близки в разных реакциях;
 - 2) погрешности отсутствия в относительно легких ядрах (⁵¹V, ⁵⁹Co, ^{58,60}Ni, ⁷⁵As) учета вклада нейтронно-протонной реакции (ү, 1n1p) с множественностью 1, величина и энергетическое положение сечений которой близки к соответствующим характеристикам реакции (ү, 2n) с множественностью 2;
 - 3) погрешности технического характера в случаях ядер ⁷⁵As, ¹²⁷I, ¹⁸¹Ta и ^{206,207}Pb, обусловленные потерей существенного количества нейтронов из реакции (γ, 1n);
- оцененные сечения парциальных и полных фотонейтронных реакций для более ~ 50 ядер (⁵¹V, ⁵⁹Co, ^{63,65}Cu, ⁷⁵As, ^{58,60}Ni, ^{76,78,80,82}Se, ⁸⁹Y, ^{90,91,92,94}Zr, ¹⁰³Rh, ¹¹⁵In, ^{116,117,118,120,124}Sn, ¹²⁷I, ¹²⁹Xe, ¹³³Cs, ¹³⁸Ba, ¹³⁹La, ^{140,142}Ce, ¹⁴¹Pr, ^{145,148}Nd, ¹⁵³Eu, ¹⁶⁰Gd, ¹⁵⁹Tb, ¹⁶⁵Ho, ¹⁸¹Ta, ¹⁸⁶W, ^{186,188,190,192}Os, ¹⁹⁷Au, ^{206,207,208}Pb, ²⁰⁹Bi) включены в международную электронную базу данных по ядерным реакциям МАГАТЭ.

Положения, выносимые на защиту

- физические критерии достоверности данных дают простое и наглядное представление о присутствии (или отсутствии) в экспериментальных сечениях парциальных фотонейтронных реакций систематических погрешностей;
- расхождения результатов разных фотоядерных экспериментов обусловлены присутствием в них систематических погрешностей трех разных типов;
- экспериментальные сечения парциальных фотонейтронных реакций, полученные на пучках квазимоноэнергетических аннигиляционных фотонов с помощью метода разделения нейтронов по множественности для более, чем 50 ядер, в большинстве своем физическим критериям достоверности не соответствуют;
- экспериментально-теоретический метод оценки сечений парциальных реакций позволяет получить достоверные сечения реакций;
- полученные новые оцененные сечения реакций для ядер ⁵¹V, ⁵⁹Co, ^{58,60}Ni, ⁷⁵As, ^{76,78,80,83}Se, ⁸⁹Y, ^{90,91,92,94}Zr, ¹⁰³Rh, ¹²⁷I, ¹⁶⁵Ho, ¹⁸¹Ta, ^{206,207}Pb вместе с полученными ранее (всего для ~ 50 ядер) удовлетворяют физическим критериям;
- новые оцененные достоверные сечения фотонейтронных реакций дополняют и актуализируют международную электронную базу данных по ядерным реакциям МАГАТЭ.

Апробация

Опубликованы 23 (3 – в печати) статьи в журналах:

- Physical Review C 1;
- European Physical Journal A 4;
- EPJ Web of Conferences 2;
- American Journal of Physics and Applications 1
- Ядерная физика 8 (в печати 1);
- Известия РАН, серия физическая 3 (в печати 2);
- Ученые записки физического факультета МГУ 4.

Сделаны доклады на конференциях:

- International seminar on electromagnetic interactions EMIN–2015 (October 05-08, 2015), Moscow, Russia.
- 65-я, 66-я, 68–72-ые ежегодные международные конференции по ядерной спектроскопии и структуре атомного ядра «Ядро 2015, 2016, 2018–2022», Россия.
- International Conference on Nuclear Data for Science and Technology, May 19–24, 2019, Beijing, China.
- Международная научная конференция студентов, аспирантов и молодых ученых «Ломоносов».
- Межвузовская научная школа-конференция молодых специалистов «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине».
- Ежегодная конференция «Ломоносовские чтения».

Опубликованные статьи

- 1. В.В.Варламов, А.И.Давыдов, М.А.Макаров, В.Н.Орлин, Н.Н.Песков. Известия РАН, серия физическая, 80, №3 (2016) 351–359.
- 2. V.V.Varlamov, A.I.Davydov, B.S.Ishkhanov. Eur. Phys. J. A, 53 (2017) 180.
- 3. В.В.Варламов, А.И.Давыдов, В.Н.Орлин, Н.Н.Песков. Известия РАН, серия физическая, 81, №6 (2017) 738–743.
- 4. V.V.Varlamov, A.I.Davydov, B.S.Ishkhanov, V.N.Orlin. Eur. Phys. J. A 54 (2018) 74 (10 pages).
- 5. V. Varlamov, A. Davydov, V. Kaidarova, V. Orlin. Phys. Rev. C 99, N 2 (2019) 024608-1-9.
- 6. В.В.Варламов, А.И.Давыдов, Б.С.Ишханов. Ядерная физика, 82, N1 (2019) 1–11.
- 7. B.B.Варламов, А.И.Давыдов, В.Д.Кайдарова. Ядерная физика, 82, N3 (2019) 212–223.
- 8. С.С.Белышев, В.В.Варламов, Б.С.Ишханов, А.А.Кузнецов, А.Б.Приселкова, А.А.Просняков, А.Д.Федорова, В.В.Ханкин. Ученые записки физического факультета Московского университета, № 2, 2019, 1920106-1-6.
- 9. А.И.Давыдов, В.В. Варламов, С.С.Белышев, В.Н.Орлин, Б.С.Ишханов. Ученые записки физического факультета Московского университета, № 3, 2019, 1930413 1 3.
- 10. С.С.Белышев, В.В.Варламов, С.А.Гунин, А.И.Давыдов, Б.С.Ишханов, И.А.Пшеничнов, В.Н.Орлин. Ядерная физика, 83, N1 (2020) 2–9. DOI: 10.31857/S0044002719060047.
- 11. Vladimir V. Varlamov, Aleksandr I. Davydov, Vadim N. Orlin. American Journal of Physics and Applications, 8, N5, 2020, 64–72.

- 12. Sergei Belyshev, Aleksandr Davydov, Dan Filipescu, Ioana Gheorghe, Boris Ishkhanov, Aleksandr Kuznetsov, Vadim Orlin, Konstantin Stopani, Hiroaki Utsunomiya, Vladimir Varlamov. EPJ Web of Conferences, 239 (2020) 01031-1 4.
- 13. Vladimir Varlamov, Aleksander Davydov, Boris Ishkhanov, Valeriya Kaidarova, Vadim Orlin. EPJ Web of Conferences, 239 (2020) 01035-1 4.
- 14. B.B.Варламов, А.И.Давыдов, В.Н.Орлин. Ядерная физика, 84, N4 (2021) 278–289.
- 15. B.B.Варламов, А.И.Давыдов. Ядерная физика, 84, N5 (2021) 370–381.
- 16. V.V.Varlamov, A.I.Davydov, V.N.Orlin. Eur. Phys. J. A, 57 (2021) 287 (12 pages).
- 17. B.B.Варламов, А.И.Давыдов. Ядерная физика, 85, N1 (2022) 2–13.
- 18. В.В.Варламов, А.И.Давыдов, В.Н.Орлин. Известия РАН, серия физическая, 86, № 4 (2022) 563–570.
- 19. В.В.Варламов, А.И.Давыдов, В.Н.Орлин. Ядерная физика, 85, N4 (2022) 237–248.
- 20. В.В.Варламов, А.И.Давыдов, В.Н.Орлин. Ядерная физика, 85, N5 (2022) 316-329.
- 21. V.V.Varlamov, A.I.Davydov, V.N.Orlin. Eur. Phys. J. A, 58 (2022) 123 (10 pages).
- 22. В. В. Варламов, А. И. Давыдов, В. Н. Орлин. Ученые записки физического факультета Московского университета, № 3, 2022, 2230501 1 11.
- 23. В. В. Варламов, А. И. Давыдов, В. Н. Орлин. Ученые записки физического факультета Московского университета, № 3, 2022, 2230503-1 8.

Спасибо за внимание!