AIDEBLE EMBEDDED AI

KU LEUVEN @ eavise

WORKSHOP TEAM

Tanguy Ophoff

Maarten Vandersteegen

Kristof Van Beeck

Toon Goedemé

ESP - EYE

ESP32 MCU

Xtensa Dual-Core 32-bit LX6
240 MHz Clock
512 kB RAM
36 GPIO
WIFI stack
Bluetooth stack

2 MP color camera
Microphone
4 MB External SPI Flash
8 MB External SPI PSRAM
€ 20 - 25

OPTIMIZATION PIPELINE

AGENDA

09:30	Introduction
09:45	Project I - XOR Model
10:30	Coffee Break
10:45	Project II - Car Classifier
12:30	Lunch & Networking

FOLDER STRUCTURE

AIDEBL XOR MODEL

KU LEUVEN @ eavise

XOR MODEL

We will **create**, **train** and **test** a simple deep learning network that models an XOR gate. Afterwards we will **export** the model to TFLite and **run** it on the ESP-EYE.

INPUT 1	INPUT 2	OUTPUT
0	0	0
0	1	1
1	0	1
1	1	0

NOTEBOOK

- Open a terminal
- 2. Go to the workshop folder: cd ~/aiedge
- 3. Start notebook for the XOR model: ./start-notebook.sh xormodel
- 4. Open the notebook in the browser and complete the TODOs

VS CODE

- 1. Open a new terminal
- Go to the correct folder: cd ~/aiedge/xormodel
- 3. Copy the generated cpp file: cp notebook/xormodel.cpp vscode/main/xormodel.cpp
- 4. Start visual studio code: code vscode
- 5. Open main.cpp and complete the TODOs
- 6. OPTIONAL: Modify the code to run the model 4 times and complete the XOR truth table
- 7. OPTIONAL: What happens when we add noise to the input data?

AIDEBL CAR CLASSIFIER

KU LEUVEN @ eavise

CAR CLASSIFIER

We will **test** and **quantize** a deep learning network that detects cars.

Afterwards we will **export** the model to TFLite and **run** it on the ESP-EYE.

Finally, we run a **benchmark** with the test dataset on the ESP-EYE.

MOBILENET V1

	FLOAT	INT8
Alpha	0.25	0.25
Parameters	213 329	213 329
Operations	8.9 Million	8.9 Million
Model Size	840 kB	320 kB
Inference Time	3.1 sec	0.8 sec

The float model does **not** fit into **Internal RAM**Placing the model into **External RAM** is **cumbersome**

QUANTIZATION BENEFITS

Model Weights

4x less storage reduced loading times from FLASH

Output Activations

4x less RAM reduced loading times from RAM no floating ops needed

Quantization allows us to **reduce** the **memory** requirements and **increase** the inference **speed** without sacrificing accuracy.

HOW TO QUANTIZE

$$q = round(x)$$

This **naive** approach results in a severe **degradation** of the model **accuracy**.

QUANTIZE WEIGHTS

PER CHANNEL QUANTIZATION

$$w \approx sq$$

- $w \rightarrow float weight$
- $q \rightarrow int8$ weight
- s \rightarrow float scale or int32 scale + bit-shift

Compute a separate scale s for each filter within a convolution and use it to quantize the kernel weights.

$$s = \frac{max(|w|)}{127}$$

$$q = round\left(\frac{w}{s}\right)$$

QUANTIZE ACTIVATIONS

PER AXIS QUANTIZATION

$$a \approx s(q-z)$$

- a \rightarrow float activation
- $q \rightarrow int8$ activation
- s → float scale or int32 + bit-shift
 - → int8 zero point

Compute a separate scale s and zero point z for each layer and use it to quantize the output feature map activations.

$$s = \frac{max(a) - min(a)}{255}$$
 $z = -128 - \frac{min(a)}{s}$

CALIBRATION

Run some **image** samples through the network and **record** the **minimal** and **maximal** activation values for **every layer**.

These can then be used to **compute** the quantization **values**.

$$s = \frac{max(a) - min(a)}{255}$$
 $z = -128 - \frac{min(a)}{s}$

QUANTIZED INFERENCE

$$x = \sum_{i}^{N} a_i w_i$$

$$s_x(q_x - z_x) = \sum_{i=1}^{N} (s_a(q_a^i - z_a)) (s_w q_w^i)$$

Additional multiplication

$$q_x = \underbrace{z_x} + \underbrace{\frac{s_a s_w}{s_x}}_{i} \underbrace{\sum_i (q_a^i - z_a) q_w^i}_{i}$$

Additional summations

NOTEBOOK

- Open a terminal
- Go to the workshop folder: cd ~/aiedge
- 3. Start notebook for the car classifier model:
 - ./start-notebook.sh carclassifier_easy ./start-notebook.sh carclassifier_hard
- 4. Open the notebook in the browser and complete the TODOs

VS CODE

- Open a new terminal
- 2. Go to the correct folder:

```
cd ~/aiedge/carclassifier_easy
cd ~/aiedge/carclassifier_hard
```

- 3. Copy the generated cpp file: cp notebook/carclassifier.cpp vscode/main/carclassifier.cpp
- 4. Start visual studio code: code vscode
- 5. Open main.cpp and complete the TODOs

COMPILER OPTIMIZATIONS

Click on the configure button (cogwheel) and **enable** some compiler **optimizations**. Run your code again to verify that the **inference** is indeed **faster**.

- 1. Set the CPU Frequency to "240 MHz"
- 2. Set the Optimization Level to "Optimize for performance"
- 3. Set the Bootloader Optimization Level to "Optimize for performance"
- Set the Assertion Level to "disabled"

OPTIONAL BENCHMARK

- 1. Replace the CameralmageProvider with the SeriallmageProvider Look at the header files for the correct arguments You can use a baud rate of 115200
- 2. Enable the debug assertions again.
 Reading from UART does not work without the debug assertions.
- Send the output and inference time back
 You can use the EspSerialPort::write_result method
 The output should be 1 if there is a car and 0 otherwise
- 4. Compile and flash your program on the ESP-EYE, but do not open the monitoring terminal Afterwards, run the following commands in a terminal to start sending images:

cd ~/aiedge source /opt/venv/embeddedai/bin/activate ./run_serial.py /dev/ttyUSB0

Questions

KU LEUVEN @ eavise