Linear Algebra

```
In [1]:
```

```
import numpy as np
import matplotlib.pyplot as plt
```

Basic linear algebra with Numpy

To create arrays of random elements, you can use np.random.randn() for example. This is convenient to get arrays full of values just to check how operations work.

NOTE: It can be useful to set the seed for the pseudorandom number generator. This allows you to reproduce resuls involving a random number generator. For example, if you and your neighbour do both execute the following code:

```
np.random.seed(1234)
np.random.rand()
```

you will see exactly the same result: 0.1915194503788923

Set the random seed as 1337 and use np.random.randn() to create 3 objects:

- two numpy vectors, v and w, with 10 elements
- and a square numpy array M of 10x10 elements.

In [2]:

```
# Set a random seed and create v, w, and M
# "seed" the random number generator => everyone gets the same results
np.random.seed(1337)
# create vectors and matrices to test things out
v = np.random.randn(10)
w = np.random.randn(10)
M = np.random.randn(10, 10)
v, w, M
```

Out[2]:

```
(array([-0.70318731, -0.49028236, -0.32181433, -1.75507872, 0.20666447,
        -2.01126457, -0.55725071, 0.33721701, 1.54883597, -1.37073656]),
array([ 1.4252914 , -0.27946391, -0.55962791, 1.18638337, 1.69851891,
       -1.69122016, -0.69952284, 0.58296284, 0.97822263, -1.21737211),
array([[-1.32939545e+00, -1.45474227e-03, -1.31465268e+00,
        -3.79611743e-01, 1.26521065e+00, 1.20667744e-01,
         1.47941778e-01, -2.75372579e+00, -3.56896324e-01,
         7.71783656e-03],
        [ 1.47827716e+00, -9.57614629e-01, 1.32900811e+00,
         -9.85849630e-01, 4.71557202e-01, -8.74652950e-03,
         3.67018689e-01, 1.11855474e+00, -8.38993512e-03,
         4.66315379e-01],
        [ 1.26326870e+00, -9.01654654e-01, -1.02884269e+00,
         5.69678421e-01, 6.41664780e-01, 2.59811930e-01,
         1.19317814e+00, -1.04630036e+00, 1.39888921e-01,
         -1.73065584e+00],
        [-1.30623116e-01, -1.31026002e+00, -2.17131242e+00,
         -1.06618141e+00, -3.31618443e-02, 1.46639575e+00,
         8.76643096e-01, 6.69989580e-01, 6.97449511e-01,
         -2.52785434e-01],
        [ 5.67987107e-01, 3.04387858e-01, -1.00002960e+00,
        -2.45641783e+00, 2.52307022e-01, 7.63120424e-01,
        -1.58345465e+00, 1.98042282e-01, 8.52522298e-02,
         6.40507750e-01],
        [-7.90658155e-01, 7.71182395e-01, -1.95067777e+00,
         -1.29401021e+00, -1.07352377e+00, 3.06910919e-02,
         7.74109345e-01, -8.71396303e-01, 1.66344014e-01,
         6.35789777e-01],
        [ 1.08167197e+00, -2.82773662e-01, 1.55478794e+00,
         -8.58308135e-01, -2.79650432e-01, -8.54234325e-02,
         -2.19597647e-01, -2.17359887e+00, 9.06332427e-01,
         7.50338575e-01],
        [-5.75259737e-01, -3.68953224e-01, 7.65748246e-01,
         -1.10066159e+00, 7.33829660e-01, -3.15740222e-02,
        -1.27394186e+00, 3.30358651e-01, -5.42515179e-01,
         -1.05202857e+00],
        [-7.75720653e-01, -1.23228165e-01, -5.36931271e-01,
         1.65373406e-01, 8.99855721e-01, 1.25719599e+00,
         1.15406861e+00, -6.74225801e-01, 8.83266671e-01,
         -1.80074100e+00],
        [ 3.15524021e-01, -2.98942433e-01, 9.23266706e-01,
         -8.64610423e-01, 9.06323896e-01, 1.43665365e-01,
        -4.28784038e-01, 4.36334858e-02, -1.15963013e+00,
        -1.44581716e-01]]))
```

Norms and inner products

- compute the (0,1 and 2) norm of v using np.linalg.norm
- compute these norms 'manually' (i.e. use the formula as opposed to np.linalg.norm) and check that you get the same results
- compute $\langle v,w \rangle$ using a sum (like the mathematical formula) and check against <code>np.dot</code>
- compute $\langle v, v \rangle$ using np.dot, compare it with $||v||_2^2$ (the L2 norm squared)

N.B. There are different ways to do dot products using numpy:

```
np.dot(v, w) # using a function
v@w # an operator
v.dot(w) # or a method
```

In [3]:

```
# add your code here to compute the norms of v using linalg
for ii in range(3):
    print("{0}-norm: {1:.2f}".format(ii, np.linalg.norm(v, ii)))
# add your code here to compute the norms manually and check
print("\n-- manually --")
\# (v != 0) is a vector of trues/falses, sum counts the number of trues.
print("0-norm: {0:.2f}".format((v != 0).sum()))
print("1-norm: {0:.2f}".format((np.abs(v)).sum()))
# **2 means "squared", on a numpy array it squares all entries
print("2-norm: {0:.2f}".format(np.sqrt(((v**2).sum()))))
# add your code here to compute <v, w> and compare with np.dot
print("\n-- dot prod --")
lhs = np.dot(v, w) # \langle v, w \rangle
rhs = sum(v[ii]*w[ii] for ii in range(len(v))) # explicit computation of <v, w>
# the difference should be tiny
e1 = np.abs(lhs - rhs)
print("error1: {0:.2e}".format(e1))
print("effectively equal? {}".format(np.allclose(lhs, rhs)))
# add your code here to compute <v,v> and compare with the norm
lhs = np.dot(v, v) # \langle v, v \rangle
rhs = np.linalg.norm(v)**2 # sum of squared entries
# the difference should be tiny
e2 = np.abs(1hs - rhs)
print("error2: {0:.2e}".format(e2))
print("effectively equal? {}".format(np.allclose(lhs, rhs)))
```

```
0-norm: 10.00
1-norm: 9.30
2-norm: 3.56
-- manually --
0-norm: 10.00
1-norm: 9.30
2-norm: 3.56
-- dot prod --
error1: 8.88e-16
effectively equal? True
error2: 0.00e+00
effectively equal? True
```

Cosine similarity

Write a short function (or lambda) taking two vectors and returning the cosine similarity. It is computed as

$$c_{\text{sim}}(x, y) := \frac{\langle x, y \rangle}{\|x\|_2 \|y\|_2}$$

This is also defined as $c_{sim}(x, y) = cos(\theta)$ where θ is the angle between the vectors. Given this information, what is the range of possible values?

In [4]:

```
# add your code here to define the cossim function
def cossim(x, y):
    numerator = np.dot(x, y)
    denominator = np.linalg.norm(x) * np.linalg.norm(y)
    return numerator / denominator
```

Then consider the four points $\{(5,7),(3,8),(-2,1.5),(0,-3)\}$ and the corresponding vectors (from the origin). Display those points with a large marker and display a line connecting them to the origin (0, 0). Call them x_1, \ldots, x_4 using the label option of plt.plot.

- · add a legend
- make the axes have the same scale ("axis equal")

In [5]:

```
# define the points, display them, add a legend and equalise the axes
x1 = np.array([5, 7])
x2 = np.array([3, 8])
   = np.array([-2, 1.5])
х3
x4 = np.array([0, -3])
# make one matrix out of these points, the first point being the origin
pts = np.vstack((np.zeros(2), x1, x2, x3, x4))
print(pts)
# display the vectors, for each point, they go from (0, 0) to the point
for ii in range(1, 5):
    plt.plot(
        pts[[0, ii], 0],
        pts[[0, ii], 1],
        marker='o', label="x{}".format(ii))
plt.legend()
plt.axis('equal')
plt.show()
```

```
[[ 0.
        0. ]
  5.
        7. ]
[ 3.
        8.]
 [-2.
        1.5]
 [ 0.
       -3.]]
```


Finally, compute the cosine similarity between x_1 and all the other vectors:

- $c_{sim}(x_1, x_2)$
- $c_{sim}(x_1, x_3)$
- $c_{sim}(x_1, x_4)$

Look at the plot above and verify that these numbers make sense. Think about the the angle between the vectors θ (check the definition above if stuck).

In [6]:

```
# add your code here to display the cosine similarities
print("Cosine similarity between x1 and x2: {0:.2f} (~ aligned)".format(cossim(x1,x2)))
print("Cosine similarity between x1 and x3: {0:.2f} (~ orthogonal)".format(cossim(x1,x3)))
print("Cosine similarity between x1 and x4: {0:.2f} (~ anti-aligned)".format(cossim(x1,x4)
```

```
Cosine similarity between x1 and x2: 0.97 (~ aligned)
Cosine similarity between x1 and x3: 0.02 (~ orthogonal)
Cosine similarity between x1 and x4: -0.81 (~ anti-aligned)
```

Basic matrix vector operations

- Compute $M^t v$ explicitly using a sum and compare using .T (transpose) and np.dot
- Show that the i^{th} value of product Mv equals the dot product of the i^{th} row of M with v
 - in other words that $(Mv)_i = \langle M_{i:}, v \rangle$ for some i (use np.random.randint to generate an index)
- Similarly show that $(M^t v)_i = \langle M_{:i}, v \rangle$ for some i

The aim of this exercise is to familiarise yourself with the links between linear algebra formulas and how they are coded. If you struggle a bit through these exercises, don't worry and come back to them in your own time. We strongly recommend you do them by hand first.

Note: remember that to check if two vectors x and z are close, you can compute ||x-z|| and it should be small!

In [7]:

```
# add your code to compute M^tv explicitly and compare
r = np.zeros(len(v))
for col in range(len(v)):
    for row in range(len(v)):
        # whatch the ordering due to transpose
        r[col] += M[row, col] * v[row]
r_direct = np.dot(M.T, v)
# r and r_direct should be identical. So the norm of their difference
# should be tiny (~ the zero vector).
e1 = np.linalg.norm(r_direct - r)
print("error1: {0:.2e}".format(e1))
# add your code to compare (Mv)_i with <M_i:, v> for some i
# let's pick an i at random
i = np.random.randint(len(v))
lhs = np.dot(M[i,:], v) # \langle M_i:, v \rangle
rhs = np.dot(M, v)[i]
                      # (Mv)_i
e2 = np.abs(1hs - rhs)
print("error2: {0:.2e}".format(e2))
# add your code to compare (M^tv)_i with <M_:i, v> for some i
# pick an i at random
i = np.random.randint(len(v))
lhs = np.dot(M[:,i], v) # <M_:i, v>
rhs = np.dot(M.T, v)[i] # (M^tv)_i
e2 = np.abs(1hs - rhs)
print("error3: {0:.2e}".format(e2))
```

error1: 1.03e-15 error2: 4.44e-16 error3: 1.11e-16