

SEQUENCE LISTING

	PATENT 8	SEQUENCE LISTING		
	<110> Small, Kersten M Liggett, Stephen			
	<120> Alpha-2A-adrenerg	gic receptor polymo	rphisms	
, work	<130> 13092			RECEIVED
) /	<140> 09/636,259			
•	<141> 2000-08-10			APR 1 9 2นิยว
	<160> 16			TECH CENTER 1600/290
	<170> PatentIn version	3.1		
	<210> 1 <211> 1170 <212> DNA <213> Homo sapiens			
	<400> 1 agccgcgcgc tcaaggcgcc co	raaaacete theeteete	t etetageete ageegaea	tc 60
1 7	>			
	ctggtggcca cgctcgtcat co			
XI	ttcggcaagg cttggtgcga ga	atctacctg gcdctcgac	g tgctcttctg cacgtcgt	cc 180
	atcgtgcacc tgtgcgccat ca	agcctggac cgctactgg	t ccatcacaca ggccatcg	ag 240
	tacaacctga agcgcacgcc go	gccgcatc aaggccatc	a tcatcaccgt gtgggtca	tc 300
	teggeegtea teteetteee ge	egeteate tecategag	a agaagggcgg cggcggcg	gc 360
	ccgcagccgg ccgagccgcg ct	gcgagatc aacgaccag	a agtggtacgt catctcgt	cg 420
	tgcatcggct ccttcttcgc to	cctgcctc atcatgato	c tggtctacgt gcgcatct	ac 480
•	cagategeca agegtegeae ee	cgcgtgcca cccagdcgc	c ggggtccgga cgccgtcg	cc 540
	gcgccgccgg ggggcaccga go	gcaggccc aacggtetg	g gccccgagcg cagcgcgg	gc 600
	ccggggggcg cagaggccga ac	ccgctgccc acccagoto	a acggcgcccc tggcgagc	cc 660
	gcgccggccg ggccgcgcga ca	accgacgcg ctggacctg	g aggagagete gtetteeg	ac 720
	cacgccgagc ggcctccagg go	cccgcaga cccgagcg	g gtccccgggg caaaggca	ag 780
	gcccgagcga gccaggtgaa g	ccgggcgac agcctgcc	c ggcgcgggcc gggggcga	cg 840
	gggatcggga cgccggctgc ag	gggccgggg gaggagcgc	g tcggggctgc caaggcgt	cg 900
	cgctggcgcg ggcggcagaa c	cgcgagaag cgcttcacg	tcgtgctggc cgtggtca	tc 960
	ggagtgttcg tggtgtgctg g	ttccccttc ttcttcacc	acacgeteae ggeegteg	gg 1020
	tgctccgtgc cacgcacgct c	ttcaaattc ttcttctgg	ttcggctactg caacagct	cg 1080
			1	

Page 1

1140

ttgaacccgg tcatctacac catcttcaac cacgatttcc gccgcgcctt caagaagatc

ctctgtcggg gggacaggaa gcggatcgtg	1170
<210> 2 <211> 1350 <212> DNA <213> Homo sapiens	
<400> 2 atgggctccc tgcagccgga cgcgggcaac gcgagctgga acgggaccga ggcgccggg	gg 60
ggcggcgccc gggccacccc ttactccctg caggtgacgc tgacgctggt gtgcctgg	
ggcctgctca tgctgctcac cgtgttcggc aacgtgctcg tcatcatcgc cgtgttca	cg 180
agccgcgcgc tcaaggcgcc ccaaaacctc ttcctggtgt ctctggcctc ggccgaca	tc 240
ctggtggcca cgctcgtcat ccctttctcg ctggccaacg aggtcatggg ctactggt	ac 300
ttcggcaagg cttggtgcga gatctacctg gcgctcgacg tgctcttctg cacgtcgt	cc 360
atcgtgcacc tgtgcgccat cagcctggac cgctactggt ccatcacaca ggccatcg	ag 420
tacaacctga agcgcacgcc gcgccgcatc aaggccatca tcatcaccgt gtgggtca	tc 480
teggeegtea teteetteee geegeteate teeategaga agaagggegg eggeggeg	gc 540
ccgcagccgg ccgagccgcg ctgcgagatc aacgaccaga agtggtacgt catctcgt	cg 600
tgcatcggct ccttcttcgc tccctgcctc atcatgatcc tggtctacgt gcgcatct	ac 660
cagategeca agegtegeae eegegtgeea eecageegee ggggteegga egeegteg	cc 720
gcgccgccgg ggggcaccga gcgcaggccc aagggtctgg gccccgagcg cagcgcgg	gc 780
ccggggggcg cagaggccga accgctgccc acccagctca acggcgcccc tggcgagc	cc 840
gegeeggeeg ggeegega caeegaegeg etggaeetgg aggagagete gtetteeg	ac 900
cacgccgagc ggcctccagg gccccgcaga cccgagcgcg gtccccgggg caaaggca	ag 960
gcccgagcga gccaggtgaa gccgggcgac agcctgccgc ggcgcgggcc gggggcga	.cg 1020
gggatcggga cgccggctgc agggccgggg gaggagcgcg tcggggctgc caaggcgt	.cg 1080
cgctggcgcg ggcggcagaa ccgcgagaag cgcttcacgt tcgtgctggc cgtggtca	tc 1140
ggagtgttcg tggtgtgctg gttccccttc ttcttcacct acacgctcac ggccgtcg	ıgg 1200
tgctccgtgc cacgcacgct cttcaaattc ttcttctggt tcggctactg caacagct	cg 1260
ttgaacccgg tcatctacac catcttcaac cacgatttcc gccgcgcctt caagaaga	itc 1320
ctctgtcggg gggacaggaa gcggatcgtg	1350

<210> 3 <211> 450 <212> PRT

<213> Homo sapiens

<400> 3

Met Gly Ser Leu Gln Pro Asp Ala Gly Asn Ala Ser Trp Asn Gly Thr 1 5 10 15

Glu Ala Pro Gly Gly Gly Ala Arg Ala Thr Pro Tyr Ser Leu Gln Val 20 25 30

Thr Leu Thr Leu Val Cys Leu Ala Gly Leu Leu Met Leu Leu Thr Val
35 40 45

Phe Gly Asn Val Leu Val Ile Ile Ala Val Phe Thr Ser Arg Ala Leu 50 60

Lys Ala Pro Gln Asn Leu Phe Leu Val Ser Leu Ala Ser Ala Asp Ile 70 75 80

Leu Val Ala Thr Leu Val Ile Pro Phe Ser Leu Ala Asn Glu Val Met 85 90 95

Gly Tyr Trp Tyr Phe Gly Lys Ala Trp Cys Glu Ile Tyr Leu Ala Leu 100 105 110

Asp Val Leu Phe Cys Thr Ser Ser Ile Val His Leu Cys Ala Ile Ser 115 120 125

Leu Asp Arg Tyr Trp Ser Ile Thr Gln Ala Ile Glu Tyr Asn Leu Lys 130 135 140

Arg Thr Pro Arg Arg Ile Lys Ala Ile Ile Ile Thr Val Trp Val Ile 145 150 150

Ser Ala Val Ile Ser Phe Pro Pro Leu Ile Ser Ile Glu Lys Lys Gly 165 170 175

Gly Gly Gly Pro Gln Pro Ala Glu Pro Arg Cys Glu Ile Asn Asp 180 185 190

Gln Lys Trp Tyr Val Ile Ser Ser Cys Ile Gly Ser Phe Phe Ala Pro 195 200 205

Cys Leu Ile Met Ile Leu Val Tyr Val Arg Ile Tyr Gln Ile Ala Lys 210 215 220

Sequences in 3.1.ST25

Arg Arg Thr Arg Val Pro Pro Ser Arg Arg Gly Pro Asp Ala Val Ala Ala Pro Pro Gly Gly Thr Glu Arg Arg Pro Asn Gly Leu Gly Pro Glu Arg Ser Ala Gly Pro Gly Gly Ala Glu Ala Glu Pro Leu Pro Thr Gln Leu Asn Gly Ala Pro Gly Glu Pro Ala Pro Ala Gly Pro Arg Asp Thr Asp Ala Leu Asp Leu Glu Glu Ser Ser Ser Ser Asp His Ala Glu Arg Pro Pro Gly Pro Arg Arg Pro Glu Arg Gly Pro Arg Gly Lys Ala Arg Ala Ser Gln Val Lys Pro Gly Asp Ser Leu Pro Arg Arg Gly Pro Gly Ala Thr Gly Ile Gly Thr Pro Ala Ala Gly Pro Gly Glu Glu Arg Val Gly Ala Ala Lys Ala Ser Arg Trp Arg Gly Arg Gln Asn Arg Glu Lys Arg Phe Thr Phe Val Leu Ala Val Val Ile Gly Val Phe Val Val Cys Trp Phe Pro Phe Phe Phe Thr Tyr Thr Leu Thr Ala Val Gly Cys Ser Val Pro Arg Thr Leu Phe Lys Phe Phe Phe Trp Phe Gly Tyr Cys Asn Ser Ser Leu Asn Pro Val Ile Tyr Thr Ile Phe Asn His Asp Phe Arg Arg Ala Phe Lys Lys Ile Leu Cys Arg Gly Asp Arg Lys Arg

Ile Val

450

<210> 4

<211> 450

<212> PRT

<213> Homo sapiens

<400> 4

Met Gly Ser Leu Gln Pro Asp Ala Gly Asn Ala Ser Trp Asn Gly Thr 1 5 10 15

Glu Ala Pro Gly Gly Ala Arg Ala Thr Pro Tyr Ser Leu Gln Val 20 25 30

Thr Leu Thr Leu Val Cys Leu Ala Gly Leu Leu Met Leu Leu Thr Val 35 40 45

Phe Gly Asn Val Leu Val Ile Ile Ala Val Phe Thr Ser Arg Ala Leu 50 60

Lys Ala Pro Gln Asn Leu Phe Leu Val Ser Leu Ala Ser Ala Asp Ile 70 75 80

Leu Val Ala Thr Leu Val Ile Pro Phe Ser Leu Ala Asn Glu Val Met
85 90 95

Gly Tyr Trp Tyr Phe Gly Lys Ala Trp Cys Glu Ile Tyr Leu Ala Leu 100 105 110

Asp Val Leu Phe Cys Thr Ser Ser Ile Val His Leu Cys Ala Ile Ser 115 120 125

Leu Asp Arg Tyr Trp Ser Ile Thr Gln Ala Ile Glu Tyr Asn Leu Lys 130 135 140

Arg Thr Pro Arg Arg Ile Lys Ala Ile Ile Ile Thr Val Trp Val Ile 145 150 155 160

Ser Ala Val Ile Ser Phe Pro Pro Leu Ile Ser Ile Glu Lys Lys Gly
165 170 175

Gly Gly Gly Pro Gln Pro Ala Glu Pro Arg Cys Glu Ile Asn Asp 180 185 190

Gln Lys Trp Tyr Val Ile Ser Ser Cys Ile Gly Ser Phe Phe Ala Pro

Page 5

Cys Leu Ile Met Ile Leu Val Tyr Val Arg Ile Tyr Gln Ile Ala Lys Arg Arg Thr Arg Val Pro Pro Ser Arg Arg Gly Pro Asp Ala Val Ala Ala Pro Pro Gly Gly Thr Glu Arg Arg Pro Lys Gly Leu Gly Pro Glu Arg Ser Ala Gly Pro Gly Gly Ala Glu Ala Glu Pro Leu Pro Thr Gln Leu Asn Gly Ala Pro Gly Glu Pro Ala Pro Ala Gly Pro Arg Asp Thr Asp Ala Leu Asp Leu Glu Glu Ser Ser Ser Ser Asp His Ala Glu Arg Pro Pro Gly Pro Arg Arg Pro Glu Arg Gly Pro Arg Gly Lys Ala Arg Ala Ser Gln Val Lys Pro Gly Asp Ser Leu Pro Arg Arg Gly Pro Gly Ala Thr Gly Ile Gly Thr Pro Ala Ala Gly Pro Gly Glu Glu Arg Val Gly Ala Ala Lys Ala Ser Arg Trp Arg Gly Arg Gln Asn Arg

Cys Ser Val Pro Arg Thr Leu Phe Lys Phe Phe Phe Trp Phe Gly Tyr

Val Cys Trp Phe Pro Phe Phe Phe Thr Tyr Thr Leu Thr Ala Val Gly

Glu Lys Arg Phe Thr Phe Val Leu Ala Val Val Ile Gly Val Phe Val

Cys Asn Ser Ser Leu Asn Pro Val Ile Tyr Thr Ile Phe Asn His Asp

Sequences in 3.1.ST25

rne r	435 440 Cys Arg Gly Asp Arg Lys Arg	
	Val 450	
<210>	> 5	
<211>		
<212>		
<213>	Homo sapiens	
<400>	> 5	
	ccatc ggctctccct ac	2.0
		22
<210>	• 6	
<211>		
<212>		
<213>	Homo sapiens	
-100>		
<400>	accag gaagaggttt tgg	
5-5-0	acoug gaagaggeee egg	23
.010		
<210> <211>		
<211>		
	Homo sapiens	
<400>		
regrea	atcat cgccgtgttc	20
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>	8	
cgtacc	cactt ctggtcgttg atc	23
		23
<210>	9	
<211>		
<212>	DNA	
<213>	Homo sapiens	
<400>	9	
	atca tcaccgtgtg ggtc	
_		24
<210>	10	
<210>	23	
<212>	DNA	
<213>	Homo sapiens	
<400>	10	

Page 7

	1	
	ggctcgctcg ggccttgcct ttg	23
	<210> 11 <211> 22 <212> DNA <213> Homo sapiens	
	<400> 11 gacctggagg agagctcgtc tt	22
J. b.C.	<210> 12 <211> 23 <212> DNA <213> Homo sapiens	
•	<400> 12 tgaccgggtt caacgagctg ttg	23
TH.	<210> 13 <211> 23 <212> DNA <213> Homo sapiens	
•	<400> 13 gccacgcacg ctcttcaaat tct	23
	<210> 14 <211> 22 <212> DNA <213> Homo sapiens	
	<400> 14 ttcccttgta ggagcagcag ac	22
•	<210> 15 <211> 18 <212> DNA <213> Homo sapiens	
	<400> 15 tgtaaaacga cggccagt	18
	<210> 16 <211> 18 <212> DNA <213> Homo sapiens	
	<400> 16 caggaaacag ctatgacc	18

Page 8