Disasters Data Analysis

Group4:

35780959, 36497215

35621168, 36390968

Contents

1. Background

2. Agenda

3. Data Processing

4. Analysis

01

Background

Background

Find patterns from past data

- Improve people's ability to respond to disasters
- Improve the efficiency of resource allocation

Predict future data

- Provide effective disaster prediction methods
- Reduce casualties and losses caused by disasters
- Promote mutual assistance among countries

Death, Injured, Missing, Houses Destroyed, Houses Damaged, Directly affected, Indirectly affected, Relocated, **Evacuated**

Disaster Data from UNDRR DesInventar Sendai is analyzed

using PCA, Classification, and Regression methods.

02

Agenda

Agenda

Data cleaning

27st Nov. 35621168, 35780959

PCA and Regression Modelling

1st Dec. 35780959,35621168

PPT Preparing

3st Dec. 36390968, 36497215, 35621168, 35780959

Feature Engineering &

Data Visualization

29st Nov. 36497215, 36390968

Classification

1st Dec. 36390968, 36497215

Modifing

4st Dec. 36390968, 36497215, 35621168, 35780959

03

Data Processing

Purpose: Analyze and extract useful information for the analysis target.

Data Processing Steps

01

Standardize

02

Time Filtering

03

Missing Values
Imputation

04

Sort, merge columns

05

PCA

Continue of the Linear & Randon Forest Regression

07

Classification

Data Processing

Correlation Coefficient Matrix

logarithmic transformation

Column Descriptive Statistics

Column	Mean	Median	Variance
Country	NA	NA	NA
YearMonth	NA	NA	NA
Event	NA	NA	NA
DataCards	7.707979	2.0	6.000241e+02
Deaths	16.594033	3.0	1.248415e+05
Injured	182.794964	6.0	4.055905e+06
Missing	264.702760	3.0	8.869154e+07
Houses.Destroyed	255.687785	9.0	4.726256e+07
Houses.Damaged	981.697236	25.0	3.195978e+08
Directly.affected	4894.461261	130.0	2.205081e+09
Indirectly.Affected	21487.271648	292.0	2.351915e+10
Relocated	3284.429688	103.5	3.308388e+08
Evacuated	1581.893027	115.0	6.570118e+07

Scatter plot

Before

Logarithmic transformations reduce skewness, handle outliers, strengthen linear relationships, improve interpretability, and help model convergence.

After

We applied logarithmic transformation in feature engineering to normalize skewed data, reducing the impact of large outliers and improving subsequent classification and regression analysis.

04

Analysis

PCA

Purpose: Reduce dimensions affecting the dependent variable "DEATH" to simplify regression, while preserving as much variance (information) as possible.

PCA

Step1

Loadings Table

A matrix: 5×5 of type dbl						
	PC1	PC2	PC3	PC4	PC5	
DataCards	0.2949630	0.91159968	-0.1422123	0.2372822	-0.07386243	
Injured	0.4768959	-0.34335006	-0.1971656	0.3974797	-0.67662145	
Houses_Affected	0.4647159	0.06097482	0.7695872	-0.4016174	-0.16358552	
Affected	0.4761309	-0.06546760	-0.5800093	-0.6370584	0.16358229	
Relocation	0.4928545	-0.20758810	0.1105717	0.4675116	0.69513190	

Step2

Proportion of Variance and Cumulative Proportion

Importance of components:

PC1 PC2 PC3 PC4 PC5
Standard deviation 1.8144 0.9106 0.63209 0.5211 0.45585
Proportion of Variance 0.6584 0.1658 0.07991 0.0543 0.04156
Cumulative Proportion 0.6584 0.8242 0.90414 0.9584 1.00000

PC processing Result:

- 1. Data easy to regression
- 2. Reduce multicollinearity
- 3. Dimensionality reduction(13—>5): PCA reduces the dimensionality of the dataset, which can simplify the model during regression and improve computational efficiency.
- 4. The principal components are orthogonal

PCA

Step3

Reasons for pick the first 4 PC:

1. Data integrity:

Filtering by 0.8 rate selects the first two. However, but important structural information is lost. Choosing the first four can get enough information(96%).

2. Enough independent variables Choosing the first four provides sufficient information and enough independent variables for subsequent regression and classification models.

Regression with

Multiple linear regression

Random forest regression

Multiple Linear Regression

Step1

Deaths~PC1-PC4 Linear regression

```
Call:
lm(formula = Deaths ~ PC1 + PC2 + PC3 + PC4, data = trainData lm)
Residuals:
  Min
          1Q Median
-87.63 -2.08 -0.95 0.90 327.37
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.49347
                       0.09380 79.891 < 2e-16 ***
PC1
            5.40289
PC2
            3.01489
                      0.10496 28.725 < 2e-16
PC3
           -0.65986
                     0.14924 -4.422 9.88e-06 ***
PC4
           -2.18125
                      0.17977 -12.133 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Deaths== 7.49+5.403PC1+3.015PC2-0.660PC3-2.181PC4

Conclusion:

During data cleaning, we removed most of outliers and eliminated multicollinearity. Given sufficient data and information, we suspected a more obvious nonlinear relationship, so we applied a new regression method.

Step2

 $MSE\ \&\ R^2$ for Linear Regression with Principal Components: MSE: 128.2372 R-squared: 0.5043109

Step3

Result

Random ForestRegression

Random Forest with Top 4 Principal Components:

R-squared: 0.9101979

MSE: 20.78319

The Random Forest regression outperforms linear regression in R-squared and MSE for two main reasons:

1. Nonlinear Relationships:

Random Forest can capture nonlinear patterns, while linear regression makes it difficult to handle them, leading to poorer performance.

2.Noise:

Linear regression is more affected by noise, but Random Forest reduces noise impact through multiple samplings and independent training, improving accuracy and robustness.

Classification

We made three classifications based on continent, economy, and events, and applied three different model approaches to each classification.

```
data$continent <- case_when(</pre>
  data$country %in% c("Angola", "Burkina Faso", "Egypt", "Kenya", "Madagascar", "Malawi") ~ "Africa",
  data$country %in% c("Argentina", "Bolivia", "Chile", "Colombia", "Ecuador", "Peru", "Venezuela") ~ "South America",
  TRUE ~ "Other")
data$economic_status <- case_when(
  data$country %in% c("Argentina", "Chile", "Colombia", "Peru") ~ "High Developeing",
  data$country %in% c("Bolivia", "Ecuador", "Egypt", "Venezuela") ~ "Medium Developing",
  data$country %in% c("Angola", "Burkina Faso", "Kenya" ,"Madagascar", "Malawi") ~ "Lower Developing",
  TRUE ~ "Other")
data$disaster_type <- case_when(</pre>
  data$event %in% c("DROUGHT", "FLOOD", "RIVERINE FLOOD", "EARTHQUAKE", "LANDSLIDE",
                    "HAILSTORM", "TORNADO", "LIGHTNING", "CYCLONE", "AVALANCHE",
                    "SNOWSTORM", "FOREST FIRE", "HEATWAVE", "MUDSLIDE", "TSUNAMI",
                    "SURGE", "STRONG WIND", "STORM", "RAINS", "ELECTRICSTORM",
                    "FLASH FLOOD", "HEAVY RAIN", "STORMY RAIN") ~ "Natural",
  data$event %in% c("FIRE", "AVIATION ACCIDENT", "PLANE CRASH", "ROAD ACCIDENT",
                    "TRAINS ACCEDNTS", "NAVIGATION ACCIDENT", "CONSTRUCTION COLLAPSE",
                    "STRUCTURAL COLLAPSE", "POLLUTION", "POLLUTION MARINE", "EXPLOSION",
                    "MATERIALS PELIGROSOS", "TERROR ATTACK", "INDUSTRIAL ACCIDENT") ~ "Human-made",
  TRUE ~ "Other"
```


Model Construction


```
run_models <- function(target_var, train_data, test_data, task_name) {</pre>
 # Random Forest
 rf_model <- randomForest(as.formula(paste(target_var, "~ deaths + injured + houses_affected ")),</pre>
                            data = train_data, ntree = 500, mtry = 2
 rf_pred <- predict(rf_model, newdata = test_data)</pre>
 rf_cm <- confusionMatrix(rf_pred, test_data[[target_var]])</pre>
 # SVM
 svm_model <- svm(as.formula(paste(target_var, "~ deaths + injured + houses_affected")),</pre>
                    data = train_data, kernel = "radial", cost = 1, gamma = 0.1)
 svm_pred <- predict(svm_model, newdata = test_data)</pre>
 svm_cm <- confusionMatrix(svm_pred, test_data[[target_var]])</pre>
 # Neural Network
 nn_model <- nnet(as.formula(paste(target_var, "~ deaths + injured + houses_affected ")),</pre>
                    data = train_data, size = 5, decay = 0.1, maxit = 200)
 nn_pred <- predict(nn_model, newdata = test_data, type = "class")</pre>
 nn_cm <- confusionMatrix(as.factor(nn_pred), test_data[[target_var]])</pre>
```

Performance and Task Difficulty

Performance of different models

- The Random Forest model has the highest accuracy in predicting the disaster type task.
- In the prediction of disaster types, the accuracy of all three models was not very high, indicating that the task may be challenging and the relationship between data features and disaster types may be complex.
- From the chart, it can be seen that the task of predicting economic status is relatively difficult.

Model Performance Comparison

Random Forest, SVM and Neural Network

Model Performance Comparison

Task	Model	Accuracy
Disaster Type	Random Forest	0.452277657266811
Disaster Type	SVM	0.418655097613883
Disaster Type	Neural Network	0.496746203904555
Economic Status	Random Forest	0.598698481561822
Economic Status	SVM	0.609544468546638
Economic Status	Neural Network	0.608459869848156
Continent	Random Forest	0.942578548212351
Continent	SVM	0.794149512459372
Continent	Neural Network	0.739978331527627

We compared the performance of three algorithms by using confusion matrices and relevant statistics.

- 1.For the "continent", the Random Forest model performed best with an accuracy of 0.9426, indicating strong classification ability.
- 2.For the "economic status", the SVM led with 0.6095 accuracy, slightly ahead of the neural network (0.6085), suggesting that complex morphologies can be better handled.
- 3. For the "disaster type", the accuracy of all models was low, with the neural network at 0.4967, indicating difficulty in classification or possible dataset issues.

Confusion matrix

The confusion matrix, by showing the relationship between the model's predictions and the actual labels, helps us intuitively understand which categories the model performs well in and which categories it tends to make errors in.

Conclusion

- 1. **Disaster type and death**: Prediction models should be tailored to different disaster types, with enhanced monitoring of high-risk areas.
- **2. Economic status and death**: Wealthier countries tend to have lower disaster mortality rates, while poorer ones face higher rates. Improving economic conditions can reduce disaster impact.
- **3. Regional variation in deaths**: The death toll varies by region. Strengthening international cooperation can help reduce casualties.
- **4. Machine learning in disaster management**: Technologies like random forest, SVM, and neural networks can improve disaster prediction and early warning, reducing casualties.
- **5. Analysis of key influencing factors:** Although we did not focus on temporal characteristics in the current analysis, the impact of seasonality on disaster types is also a potentially critical factor. For example, hazards such as floods and droughts are often seasonal and prone to occur in certain specific months.

Thanks!