Heurísticas Greedy: Localización de Servicios

García Prado, Sergio sergio@garciparedes.me

29 de marzo de 2017

Resumen

[TODO]

1. Introducción

[TODO]

6. Set-Covering Problem

El problema de Set Covering o Cubrimiento de Conjuntos consiste en la asignación de un conjunto de recursos n recursos x_j cuyo uso tiene un coste de c_j para cumplir m necesidades. Las necesidades que cubre cada recurso se representan a través de a_{ij} . La modelización matemática de este problema se muestra en la ecuación (1).

Minimizar
$$\sum_{j=1}^{n} c_j x_j$$
sujeto a
$$\sum_{j=1}^{n} a_{ij} x_j \ge 1, \qquad i = 1, ..., m$$
$$x_j \in \{0, 1\}, \quad j = 1, ..., n$$

Ecuación 1: Formulación de Set-Covering Problem.

```
nfilcub := 0
while(nfilcub < m) do</pre>
    forall(j in servicios | fijada(j) = 0) do
        d(j) := 0
         forall(i in demandas) do
             if(cubierta(i) = 0 \text{ and } a(i,j) = 1) \text{ then}
                 d(j) := d(j) + 1
             end-if
         end-do
         if(d(j) = 0) then
             fijada(j):= 1
             solu(j) := 0
         end-if
    end-do
    aux := -99
    forall(j in servicios | fijada(j) = 0) do
         if(d(j) > aux) then
             aux := d(j)
             jmax := j
         end-if
    end-do
    solu(jmax) := 1
    fijada(jmax) := 1
    forall(i in demandas) do
         if(cubierta(i) = 0 \text{ and } a(i, jmax) = 1) \text{ then}
             cubierta(i) := 1
             nfilcub := nfilcub +1
         end-if
    end-do
end-do
```

Figura 1: *|TODO|*

```
forall(i in demandas) do
    w(i) := 0
    forall(j in servicios) do
        if (solu(j)=1 \text{ and } a(i,j)=1) then
             w(i) := w(i) + 1
        end-if
    end-do
end-do
forall(k in servicios | solu(k)=1) do
    elimin := 1
    forall(i in demandas) do
        if(w(i) < 1+a(i,k))then
             elimin :=0
        end-if
    end-do
    if(elimin=1) then
        solu(k) := 0
        forall(i in demandas)w(i):=w(i)-a(i,k)
    end-if
end-do
```

Figura 2: |TODO|

```
forall(j in servicios) k_marca(j):=0
forall(k in k_iter) do
    aux := -99
    forall(j in servicios | (solu(j) = 0 and k_marca(j) = 0)) do
        if(aux < partial_sums(j)) then
            aux := partial_sums(j)
            jmax := j
        end-if
    end-do
    k_marca(jmax):=1
    k_list(k):=jmax
end-do
k_win := ceil(random*k_max)
selected := k_list(k_win)</pre>
```

Figura 3: [TODO]

6.1 Ejercicio Nueva York

En este caso, se ha propuesto resolver el problema de $Cubrimiento\ de\ Conjuntos$ sobre un conjunto de datos de entrada referidos a las distancias entre 30 distritos de la ciudad de Nueva York. Se considera que un distrito ha sido cubierto si la distancia a un punto de servicio es menor o igual que un determinado valor dc denominado distancia de cubrimiento. En este caso se ha resuelto para valores enteros comprendidos en el intervalo [70,120] mediante la estrategia Greedy y la de $Soluci\'on\ \'Optima$. Los resultados obtenidos se muestran gráficamente en la figura 4 y de manera tabular en la tabla 1

Figura 4: Resultados del problema de Set Covering aplicado a los datos de los distritos de la ciudad de Nueva York

6.2 Ejercicio aint1

En este caso, se ha propuesto resolver el problema de Cubrimiento de Conjuntos sobre un conjunto de datos de entrada de tamaño relativamente elevado, con m=356 puntos de demanda y n=22 puntos de servicio . Se considera que un distrito ha sido cubierto si la distancia a un punto de servicio es menor o igual que un determinado valor dc denominado distancia de cubrimiento. En este caso se ha resuelto para valores enteros comprendidos en el intervalo [250,400] mediante la estrategia Greedy, la estrategia Greedy Aleatorizada (con parámetros k=5 y n=100) y la de Solución Optima. Los resultados obtenidos se muestran gráficamente en la figura 5 y de manera tabular en las tablas 2, 3 y 4.

Figura 5: Resultados del problema de Set Covering aplicado a los datos aint1

6.3 Ejercicio aint5

En este caso, se ha propuesto resolver el problema de Cubrimiento de Conjuntos sobre un conjunto de datos de entrada de tamaño relativamente elevado, con m=328 puntos de demanda y n=19 puntos de servicio . Se considera que un distrito ha sido cubierto si la distancia a un punto de servicio es menor o igual que un determinado valor dc denominado distancia de cubrimiento. En este caso se ha resuelto para valores enteros comprendidos en el intervalo [250,400] mediante la estrategia Greedy, la estrategia Greedy Aleatorizada (con parámetros k=5 y n=100) y la de Solución Optima. Los resultados obtenidos se muestran gráficamente en la figura 6 y de manera tabular en las tablas 5, 6 y 7.

 ${\bf Figura~6:}~Resultados~del~problema~de~{\bf Set~Covering~}aplicado~a~los~datos~{\bf aint5}$

$\overline{\mathrm{DC}}$	Greedy	Greedy Opened	Xpress	Xpress opened
70	9	1 4 5 7 9 12 13 16 18	8	3 4 5 9 12 13 26 27
71	8	1 5 7 9 13 14 16 18	7	1 3 5 9 13 14 27
72	8	1 5 7 9 13 14 16 18	7	1 3 5 9 13 14 27
73	8	1 5 7 9 13 14 16 18	7	1 3 5 9 13 14 27
74	7	1 5 7 13 14 16 18	7	$1\ 2\ 3\ 5\ 13\ 14\ 27$
75	7	1 5 7 13 14 16 18	6	5 6 13 14 26 27
76	7	1 5 7 13 16 18 23	6	$5\ 6\ 13\ 23\ 26\ 27$
77	7	1 5 7 13 16 18 23	6	5 6 13 23 26 30
78	6	1 5 7 13 14 27	6	5 6 13 23 26 27
79	6	1 5 7 13 14 27	6	$5\ 6\ 13\ 23\ 26\ 27$
80	6	1 5 7 13 14 27	6	$5\ 6\ 13\ 23\ 26\ 27$
81	6	1 5 7 13 14 27	6	$5\ 6\ 13\ 23\ 26\ 27$
82	6	1 5 7 13 14 27	6	$5\ 6\ 13\ 23\ 26\ 27$
83	6	1 5 7 13 14 27	6	5 6 13 23 26 27
84	6	1 5 7 13 14 27	6	5 7 13 23 26 27
85	6	1 5 7 13 14 27	6	5 6 13 23 26 27
86	7	1 5 7 13 16 18 23	6	5 6 13 23 26 27
87	7	1 5 7 13 16 18 23	6	5 10 13 16 23 26
88	7	1 5 7 13 16 18 23	6	5 7 13 23 26 27
89	7	1 5 7 13 16 18 23	6	5 7 13 23 26 27
90	7	1 3 5 13 14 16 24	6	1 5 7 13 23 27
91	6	1 5 13 14 24 27	6	1 2 5 13 23 27
92	6	1 5 7 13 14 16	5	1 5 13 23 27
93	6	1 5 7 13 14 16	5	1 5 13 23 27
94	6	1 5 10 13 16 23	5	1 5 13 23 27
95	6	1 5 10 12 13 16	5	1 5 12 13 27
96	6	1 5 10 12 13 16	5	1 5 12 13 27
97	6	1 5 10 12 13 16	5	1 5 12 13 27
98	6	1 5 10 12 13 16	5	1 5 12 13 27
99	6	1 5 10 12 13 16	5	1 5 12 13 27
100	6	1 5 10 12 13 16	5	5 12 13 20 27
101	6	1 2 3 12 13 29	5	2 12 13 20 27
102	6	1 2 7 12 13 16	5	2 12 13 27 28
103	6	1 2 7 12 13 16	5	2 12 13 27 28
104	6	1 2 7 12 13 16	5	12 13 17 20 27
105	5	2 7 12 13 16	4	2 12 13 27
106	5	2 7 12 13 16	4	2 12 25 27
107	4	4 13 17 29	4	2 12 25 27
108	4	4 13 17 29	4	2 10 12 13
109	$\overline{4}$	4 13 17 29	4	2 10 12 13
110	4	4 13 17 29	$\frac{1}{4}$	2 10 12 13
111	$\overline{4}$	2 4 13 29	4	2 12 13 27
112	4	2 3 12 13	4	2 12 13 27
113	$\overline{4}$	2 3 12 13	4	2 12 13 27
114	4	2 3 12 13	4	2 12 13 27
115	4	2 3 12 13	4	2 12 13 27
116	4	2 3 12 13	4	2 12 13 27
117	4	2 7 12 13	4	2 12 13 27
118	4	2 7 12 13	4	2 12 13 21
119	4	2 7 12 13	4	2 12 13 18
120	4	2 7 12 13	4	2 8 22 30
	-	1_ 10		_ = = == ==

6

Tabla 1: Resultados del problema de Set Covering aplicado a los datos de los distritos de la ciudad de Nueva York

dc	Greedy	Greedy Opened	R. Greedy	Xpress	Xpress Opened
250	11	1 2 5 8 9 11 13 14 15 17 18	11	11	1 2 3 8 9 11 13 14 15 17 18
251	11	1 2 5 8 9 11 13 14 15 17 18	11	11	1 2 3 8 9 11 13 14 15 17 18
252	11	1 2 5 8 9 11 14 15 16 17 18	11	11	1 2 3 8 9 11 14 15 16 17 18
253	11	1 2 5 8 9 11 14 15 16 17 18	11	11	1 2 3 8 9 11 14 15 16 17 18
254	11	1 2 5 8 9 11 14 15 16 17 18	11	11	1 2 3 8 9 11 14 15 16 17 18
255	11	1 2 5 8 9 11 14 15 16 17 18	11	11	1 2 3 8 9 11 14 15 16 17 18
256	11	1 2 5 8 9 11 14 15 16 17 18	11	11	1 2 3 8 9 11 14 15 16 17 18
257	11	1 2 8 9 11 14 15 16 17 18 22	11	11	1 2 3 8 9 11 14 15 16 17 18
258	11	1 2 8 9 11 14 15 16 17 18 22	11	11	1 2 3 8 9 11 14 15 16 17 18
259	11	1 2 8 9 11 14 15 16 17 18 22	11	11	1 2 3 8 9 11 14 15 16 17 18
260	10	1 2 8 9 11 14 16 17 18 22	10	10	1 2 3 8 9 11 14 16 17 18
261	10	1 2 8 9 11 14 16 17 18 22	10	10	1 2 3 8 9 11 14 16 17 18
262	10	1 2 8 9 11 14 16 17 18 22	10	10	1 2 3 8 9 11 14 16 17 18
263	10	1 2 8 9 11 14 16 17 18 22	10	10	1 2 3 8 9 11 14 16 17 18
264	10	1 2 8 9 11 14 16 17 18 22	10	10	1 2 3 8 9 11 14 16 17 18
265	9	1 2 3 8 9 11 14 17 18	9	9	1 2 3 8 9 11 14 17 18
266	9	1 2 3 8 9 11 14 17 18	9	9	1 2 3 8 9 11 14 17 18
267	9	1 2 3 8 9 11 14 17 18	9	9	1 2 3 8 9 11 14 17 18
268	9	1 2 3 8 9 11 14 17 18	9	9	1 2 7 8 9 11 14 17 18
269	9	1 2 3 8 9 11 14 17 18	9	9	1 2 7 8 9 11 14 17 18
270	9	1 2 3 8 9 11 14 17 18	9	9	1 2 4 8 9 11 14 17 18
271	9	1 2 3 8 9 11 14 17 18	9	9	1 2 4 8 9 11 14 17 18
272	9	1 2 3 8 9 11 14 17 18	9	9	1 2 4 8 9 11 14 17 18
273	9	1 2 3 9 11 14 16 17 18	9	9	1 2 4 9 11 14 16 17 18
274	9	1 2 3 9 11 14 16 17 18	9	9	1 2 4 9 11 14 16 17 18
275	8	1 2 7 9 11 14 17 18	8	8	1 2 5 9 11 14 17 18
276	8	1 2 3 9 11 14 17 18	8	8	1 2 5 9 11 14 17 18
277	8	1 2 3 9 11 14 17 18	8	8	1 2 5 9 11 14 17 18
278	8	1 2 3 9 11 14 17 18	8	8	1 2 5 9 11 14 17 18
279	8	1 2 3 9 11 14 17 18	8	8	1 2 5 9 11 14 17 18
280	8	1 2 3 9 11 14 17 18	8	8	1 2 5 9 11 14 17 18
281	8	1 2 3 9 11 14 17 18	8	8	1 2 5 9 11 14 17 18
282	8	1 2 3 9 11 14 17 18	8	8	1 2 7 9 14 17 18 19
283	8	1 2 3 9 11 14 17 18	8	8	1 2 7 9 14 17 18 19
284	8	1 2 3 9 11 14 17 18	8	8	1 2 7 9 14 17 18 19
285	8	1 2 3 9 11 14 17 18	8	8	1 3 9 12 14 17 18 19
286	8	1 2 3 9 11 14 17 18	8	8	1 3 9 12 14 17 18 19
287	8	1 2 3 9 11 14 17 18	8	8	1 9 12 14 17 18 19 20
288	8	1 2 3 9 11 14 17 18	8	8	1 9 12 14 17 18 19 20
289	8	1 2 3 9 11 14 17 18	8	8	1 9 12 14 17 18 19 20
290	8	1 2 3 9 11 14 17 18	8	8	1 9 12 14 17 18 19 20
291	8	2 3 9 11 14 16 17 18	8	8	9 10 12 14 17 18 19 20
292	8	1 2 9 11 14 17 18 22	8	8	1 9 11 12 14 17 18 20
293	8	1 2 9 11 14 17 18 20	8	8	1 9 11 12 14 17 18 20
294	8	1 2 9 11 14 17 18 20	8	8	1 9 11 12 14 17 18 20
295	8	1 2 9 11 14 17 18 22	8	8	1 9 11 12 14 17 18 20
296	8	1 2 9 11 14 17 18 22	8	8	1 2 9 11 14 17 18 20
297	8	1 2 9 11 14 17 18 22 1 2 9 11 14 17 18 22	8	8	1 9 11 12 14 17 18 20 9 11 12 14 16 17 18 20
298	8	1 2 9 11 14 17 18 22	8	8	2 9 11 14 16 17 18 20
299	8	1 4 9 11 14 17 10 44	8	8	2 9 11 14 10 17 18 20

7

dc	Greedy	Greedy Opened	R. Greedy	Xpress	Xpress Opened
300	8	1 2 7 9 11 14 17 18	8	8	2 7 9 11 14 16 17 18
301	8	1 2 7 9 11 14 17 18	8	8	2 7 9 11 14 16 17 18
302	8	1 2 3 6 11 13 17 18	7	7	2 7 9 11 16 17 18
303	7	1 2 3 9 11 17 18	7	7	2 5 9 11 16 17 18
304	7	1 2 3 9 11 17 18	7	7	2 9 11 13 16 17 18
305	7	1 2 3 9 11 17 18	7	7	2 9 11 13 16 17 18
306	7	1 2 3 9 11 17 18	7	7	2 9 11 13 16 17 18
307	7	1 2 3 9 11 17 18	7	7	2 9 11 13 16 17 18
308	7	1 2 3 9 11 17 18	7	7	2 9 11 13 16 17 18
309	7	1 2 3 9 11 17 18	7	7	2 9 11 13 16 17 18
310	7	1 2 3 9 11 17 18	7	7	9 11 12 13 16 17 18
311	7	1 2 3 9 11 17 18	7	7	2 9 11 13 16 17 18
312	7	1 2 3 9 11 17 18	6	6	2 11 13 16 17 18
313	7	1 2 3 9 11 17 18	6	6	2 11 13 16 17 18
314	7	1 2 3 9 11 17 18	6	6	2 11 13 16 17 18
315	6	2 6 11 13 17 18	6	6	2 6 9 14 17 21
316	6	2 6 11 13 17 18	6	6	2 9 11 16 17 18
317	6	2 6 11 13 17 18	6	6	2 6 11 13 17 18
318	6	2 6 11 13 17 18	6	6	2 6 11 13 17 18
319	6	2 6 9 11 17 18	6	6	2 9 11 16 17 18
320	6	2 6 9 11 17 18	5	5	2 11 16 17 18
321	6	2 6 9 11 17 18	5	5	2 11 16 17 18
322	6	2 6 9 11 17 18	5	5	2 11 16 17 18
323	6	2 6 9 11 17 18	5	5	2 11 16 17 18
324	6	2 6 9 11 17 18	5	5	2 11 16 17 18
325	6	2 3 6 9 17 18	5	5	2 11 16 17 18
326	6	2 3 6 9 17 18	5	5	2 11 16 17 18
327	6	2 6 9 11 17 18	5	5	2 11 16 17 18
328	6	2 6 9 11 17 18	5	5	11 12 16 17 18
329	6	2 6 9 11 17 18	5	5	11 12 16 17 18
330	6	2 6 9 11 17 18	5	5	11 12 16 17 18
331	6	2 6 9 11 17 18	5	5	2 11 16 17 18
332	6	2 6 9 11 17 18	5	5	2 11 16 17 18
333	6	2 6 9 11 17 18	5	5	2 11 16 17 18
334	6	2 6 9 11 17 18	5	5	2 11 16 17 18
335	6	2 6 9 11 17 18	5	5	2 11 16 17 18
336	6	2 6 9 11 17 18	5	5	2 11 16 17 18
337	6	2 6 9 11 17 18	5	5	2 11 16 17 18
338	6	2 6 9 11 17 18	5	5	2 11 16 17 18
339	6	2 6 9 11 17 18	5	5	11 12 16 17 18
340	6	2 6 9 11 17 18	5	5	11 12 16 17 18
341	6	2 6 9 11 17 18	5	5	11 12 16 17 18
342	5	3 6 9 17 18	4	4	11 16 17 18
343	5	3 6 9 17 18	4	4	11 16 17 18
344	5	3 6 9 17 18	4	4	11 16 17 18
345	5	3 6 9 17 18	4	4	11 16 17 18
346	5	3 6 9 17 18	4	4	11 16 17 18
347	5	3 6 9 17 18	4	4	11 16 17 18
348	5	3 6 9 17 18	4	4	11 16 17 18
349	5	3 6 9 17 18	4	4	11 16 17 18

Tabla 3: Resultados del problema de Set Covering aplicado a los datos aint1

dc	Greedy	Greedy Opened	R. Greedy	Xpress	Xpress Opened
350	5	1 11 13 17 18	4	4	11 16 17 18
351	5	1 11 13 17 18	4	4	11 16 17 18
352	4	1 11 17 18	4	4	11 16 17 18
353	4	1 11 17 18	4	4	11 16 17 18
354	4	1 11 17 18	4	4	11 16 17 18
355	4	1 11 17 18	4	4	11 16 17 18
356	4	1 11 17 18	4	4	6 11 17 18
357	4	1 11 17 18	4	4	6 11 17 18
358	4	1 11 17 18	4	4	6 11 17 18
359	4	6 11 17 18	4	4	6 11 17 18
360	5	6 8 11 18 20	4	4	6 11 17 18
361	5	6 8 11 18 20	4	4	6 11 17 18
362	5	6 8 11 18 20	4	4	6 11 17 18
363	5	6 8 11 18 20	4	4	6 11 17 18
364	5	6 8 11 18 20	4	4	6 11 17 18
365	5	6 8 11 18 20	4	4	6 11 17 18
366	5	6 8 11 18 20	4	4	6 11 17 18
367	5	6 8 11 18 20	4	4	6 11 17 18
368	5	6 8 11 18 20	4	4	6 11 17 18
369	5	6 8 11 18 20	$\frac{1}{4}$	$\frac{1}{4}$	6 11 17 18
370	5	6 8 11 18 20	4	$\frac{1}{4}$	6 11 17 18
371	5	6 8 11 18 20	4	$\frac{1}{4}$	6 11 17 18
372	4	1 8 11 18	4	$\frac{1}{4}$	6 11 17 18
373	4	1 8 11 18	4	$\frac{1}{4}$	6 11 17 18
374	4	1 8 11 18	4	$\frac{1}{4}$	6 11 17 18
375	5	6 8 11 18 20	4	$\frac{1}{4}$	6 11 17 18
376	5	6 8 11 18 20	4	$\frac{1}{4}$	6 11 17 18
377	4	6 8 11 18	4	$\frac{1}{4}$	6 11 17 18
378	4	6 8 11 18	4	$\frac{1}{4}$	6 11 17 18
379	4	6 8 11 18	4	$\frac{1}{4}$	6 11 17 18
380	4	1 8 11 18	4	4	6 11 17 18
381	4	1 8 11 18	4	4	6 11 17 18
382	4	1 8 11 18	4	4	6 11 17 18
383	4	1 8 11 18	4	4	6 11 17 18
384	4	1 8 11 18	4	4	6 11 17 18
385	4	1 8 11 18	4	4	6 11 17 18
386	4	1 8 11 18	4	4	6 11 17 18
387	4	1 8 11 18	4	4	6 11 17 18
388	4	1 8 11 18	4	4	6 11 17 18
389	4	1 8 11 18	4	4	6 11 17 18
390	4	1 8 11 18	4	4	6 11 17 18
391	4	1 8 11 18	4	4	6 11 17 18
392	4	1 8 11 18	4	4	1 11 17 18
393	4	1 8 11 18	4	4	1 11 17 18
394	4	1 8 11 18	4	4	1 11 17 18
395	4	1 8 11 18	4	4	1 11 17 18
396	4	1 8 11 18	4	4	1 11 17 18
397	4	1 8 11 18	4	4	1 11 17 18
398	4	1 8 11 18	4	$\frac{1}{4}$	1 11 17 18
399	4	1 8 11 18	$\frac{1}{4}$	$\frac{1}{4}$	1 8 11 18
400	4	1 8 11 18	$\frac{1}{4}$	$\frac{1}{4}$	1 8 11 18

9

Tabla 4: Resultados del problema de Set Covering aplicado a los datos aint1

dc	Greedy	Greedy Opened	R. Greedy	R. Greedy Opened	Xpress	Xpress Opened
250	8	1 2 4 5 6 9 13 17	8	1 2 4 5 6 9 13 17	8	1 2 4 5 6 9 13 17
251	8	1 2 4 5 6 9 13 17	8	1 2 4 5 6 7 13 17	8	1 2 4 5 6 7 13 17
252	8	1 2 4 5 6 9 13 17	8	1 2 4 5 6 9 13 17	8	1 2 4 5 6 7 13 17
253	8	1 2 4 5 6 9 13 17	8	1 2 4 5 6 9 13 17	8	1 2 4 5 6 9 13 17
254	7	1 2 5 6 7 13 17	7	1 2 6 9 13 15 17	7	1 2 5 6 9 13 17
255	7	1 2 5 6 7 13 17	7	1 2 6 9 13 15 17	7	1 2 5 6 9 13 17
256	7	1 2 5 6 7 13 17	7	1 2 6 9 13 15 17	7	1 2 5 6 9 13 17
257	7	1 2 5 6 7 13 17	7	1 2 5 6 7 13 17	7	1 2 5 6 9 13 17
258	7	1 2 5 6 7 13 17	7	1 2 6 9 13 15 17	7	1 2 5 6 9 13 17
259	7	1 2 5 6 7 13 17	7	1 2 5 6 9 13 17	7	1 2 5 6 9 13 17
260	7	1 2 3 5 6 13 17	7	1 2 5 6 9 13 17	7	1 2 5 6 9 13 17
261	7	1 2 3 5 6 13 17	6	1 2 6 9 13 17	6	1 2 6 9 13 17
262	7	1 2 3 5 6 13 17	6	1 2 6 9 13 17	6	1 2 6 9 13 17
263	6	1 2 3 6 13 17	6	1 2 6 9 13 17	6	1 2 3 6 13 17
264	6	1 2 3 6 13 17	6	1 2 3 6 13 17	6	1 2 3 6 13 17
265	6	1 2 3 6 13 17	6	1 2 6 9 13 17	6	1 2 3 6 13 17
266	6	1 2 3 6 13 17	6	1 2 6 9 13 17	6	1 2 3 6 13 17
267	6	1 2 3 6 13 17	6	1 2 3 6 13 17	6	1 2 3 6 13 17
268	6	1 2 3 6 13 17	6	1 2 3 6 13 17	6	1 2 3 6 13 17
269	6	1 2 3 6 13 17	6	1 2 6 9 13 17	6	1 2 3 6 13 17
270	6	1 2 3 6 13 17	6	1 2 3 6 13 17	6	1 2 3 6 13 17
271	6	1 2 3 6 8 13	6	1 2 6 9 13 17	6	1 2 3 6 13 17
272	6	1 2 3 6 8 13	6	1 2 6 9 11 13	6	1 2 3 6 8 13
273	6	1 2 3 6 8 13	6	1 2 3 6 8 13	6	1 2 3 6 8 13
274	6	1 2 3 6 8 13	6	1 2 3 6 8 13	6	1 2 3 6 8 13
275	6	1 2 3 6 8 13	6	1 2 6 9 11 13	6	1 2 3 6 8 13
276	6	1 2 3 6 8 13	6	1 2 3 6 8 13	6	1 2 3 6 8 13
277	6	1 2 3 6 8 13	6	1 2 3 6 8 13	6	1 2 3 6 8 13
278	6	1 2 3 6 8 13	6	1 2 6 9 13 17	6	1 2 3 6 8 13
279	6	1 2 3 6 8 13	6	1 2 3 6 8 13	6	1 2 3 6 8 13
280	6	1 2 3 6 8 13	6	1 2 3 6 8 13	6	1 2 3 6 8 13
281	6	1 2 3 6 8 13	6	1 2 3 6 8 13	6	1 2 3 6 8 13
282	6	1 2 3 4 8 13	6	1 2 3 6 8 13	6	1 2 3 4 8 13
283	6	1 2 3 4 8 13	6	1 2 4 9 11 13	6	1 2 4 5 11 13
284	6	1 2 3 4 8 13	6	1 2 6 9 11 13	6	1 2 4 5 11 13
285	6	1 2 3 4 8 13	6	1 2 3 6 8 13	6	1 2 3 4 8 13
286	6	1 2 3 4 8 13	6	1 2 3 6 11 13	6	1 2 3 4 8 13
287	6	1 2 3 4 8 13	6	1 2 3 6 8 13	6	1 2 3 4 8 13
288	6	1 2 3 4 13 14	6	1 2 3 6 8 13	6	1 2 3 4 8 13
289	6	1 2 3 4 13 14	6	1 2 3 6 13 14	6	1 2 3 4 8 13
290	6	1 2 3 4 13 14	6	1 2 3 4 13 14	6	1 2 3 4 8 13
291	6	1 2 3 4 13 14	6	1 2 3 6 13 17	6	1 2 3 4 8 13
292	6	1 2 3 4 13 14	6	1 2 3 6 13 14	6	1 2 3 4 11 13
293	6	1 2 3 4 13 14	6	1 2 3 6 8 13	6	1 2 3 4 11 13
294	6	1 2 3 4 13 14	6	1 2 3 6 11 13	6	1 2 3 4 11 13
295	6	1 2 3 4 13 14	6	1 2 6 9 11 13	6	1 2 3 4 11 13
296	6	1 2 3 4 13 14	6	1 2 3 6 13 14	6	1 2 3 4 11 13
297	6	1 2 3 4 13 14	6	1 2 3 6 13 14	6	1 2 3 4 11 13
298	6	1 2 3 4 13 14	6	1 2 3 6 13 14	6	1 2 3 4 11 13
299	6	1 2 3 4 13 14	6	1 2 3 6 13 14	6	1 2 3 4 11 13

dc	Greedy	Greedy Opened	R. Greedy	R. Greedy Opened	Xpress	Xpress Opened
300	6	1 2 3 4 13 14	6	1 2 3 6 8 13	6	1 2 3 4 11 13
301	5	1 2 3 6 14	5	1 2 3 6 17	5	1 2 3 6 11
302	5	1 2 3 6 14	5	1 2 3 6 17	5	1 2 3 6 11
303	5	1 2 3 6 14	5	1 2 3 6 8	5	1 2 3 6 11
304	5	1 2 3 6 14	5	1 2 3 6 11	5	1 2 3 6 11
305	5	1 2 3 6 14	5	1 2 3 6 8	5	1 2 3 6 11
306	5	1 2 3 6 14	5	1 2 3 6 14	5	1 2 3 6 11
307	5	1 2 3 6 14	5	1 2 3 6 11	5	1 2 3 6 11
308	5	1 2 3 6 14	5	1 2 3 6 14	5	1 2 3 6 11
309	5	1 2 3 6 14	5	1 2 3 6 14	5	1 2 3 6 11
310	5	1 2 3 6 14	5	1 2 3 6 8	5	1 2 3 6 11
311	5	1 2 3 6 14	5	1 2 3 6 11	5	1 2 3 6 11
312	5	1 2 3 6 12	5	1 2 3 6 12	5	1 2 3 6 11
313	5	1 2 3 6 12	5	1 2 3 6 14	5	1 2 3 6 11
314	5	1 2 3 6 12	5	1 2 3 6 11	5	1 2 3 6 11
315	5	1 2 3 6 12	5	1 2 3 6 14	5	1 2 3 6 11
316	5	1 2 3 6 12	5	1 2 3 6 12	5	1 2 3 6 11
317	5	1 2 3 6 12	5	1 2 3 6 12	5	1 2 3 6 11
318	5	1 2 3 6 12	5	1 2 3 6 14	5	1 2 3 6 11
319	5	1 2 3 6 8	5	1 2 3 6 12	5	1 2 3 6 11
320	5	1 2 3 6 8	5	1 2 5 6 11	5	1 2 3 6 11
321	5	1 3 6 8 16	5	1 5 6 11 16	5	1 3 6 11 16
322	5	1 3 6 8 16	5	1 2 5 6 11	5	1 3 6 11 16
323	5	1 3 6 8 16	5	1 6 9 16 18	5	1 3 6 11 16
324	5	1 3 6 8 16	5	1 3 6 8 16	5	1 3 6 11 16
325	5	1 2 3 6 14	5	1 3 6 14 16	5	1 3 6 11 16
326	5	1 3 6 8 19	5	1 6 7 11 19	5	1 3 6 11 19
327	5	1 3 6 8 19	5	1 6 9 11 16	5	1 3 6 11 19
328	5	1 3 6 8 19	5	1 3 6 14 19	5	1 3 6 11 19
329	5	1 3 6 8 19	5	1 3 6 8 19	5	1 3 6 11 19
330	4	1 3 6 19	4	1 3 6 19	4	1 3 6 19
331	$\frac{1}{4}$	1 3 6 19	4	1 3 6 19	4	1 3 6 19
332	$\frac{1}{4}$	1 3 4 19	4	1 3 4 19	$\frac{1}{4}$	1 3 6 19
333	4	1 3 4 19	4	1 3 6 19	4	1 3 6 19
334	4	1 3 4 19	4	1 3 4 19	4	1 3 6 19
335	4	1 3 4 19	4	1 3 4 19	4	1 3 6 19
336	4	1 3 4 19	4	1 3 4 19	4	1 3 6 19
337	4	1 3 4 19	4	1 3 4 19	4	1 3 6 19
338	4	1 3 4 19	4	1 3 6 19	4	1 3 6 19
339	4	1 3 4 19	4	1 3 6 19	4	1 3 6 19
340	4	1 3 4 19	4	1 3 6 19	4	1 3 6 19
341	3	3 4 19	3	3 4 19	3	3 4 19
342	3	3 4 19	3	3 4 19	3	3 4 19
343	3	3 4 19	3	3 4 19	3	3 4 19
344	3	3 4 19	3	3 4 19	3	3 4 19
345	3	3 4 14	3	4 13 14	3	1 13 14
346	3	3 4 14	3	4 13 14	3	1 13 14
347	3	3 4 14	3	1 13 14	3	1 13 14
348	3	3 4 14	3	3 4 14	3	1 13 14
349	3	3 4 14	3	4 13 14	3	3 4 14

11

dc	Greedy	Greedy Opened	R. Greedy	R. Greedy Opened	Xpress	Xpress Opened
350	3	3 4 10	3	3 4 10	3	3 4 14
351	3	3 4 10	3	1 13 19	3	3 4 14
352	3	3 4 10	3	1 13 19	3	3 4 14
353	3	3 4 10	3	3 4 14	3	3 4 14
354	3	3 4 10	3	3 4 19	3	3 4 14
355	3	3 4 10	3	3 4 19	3	3 4 14
356	3	3 4 10	3	4 13 19	3	3 4 14
357	3	3 4 10	3	3 4 10	3	3 4 14
358	3	3 4 10	3	4 12 13	3	3 4 14
359	3	3 4 14	3	4 13 14	3	3 4 14
360	3	3 4 10	3	1 12 13	3	3 4 14
361	3	3 4 10	3	3 4 12	3	3 4 14
362	3	3 4 14	3	3 4 14	$\begin{vmatrix} 3 \end{vmatrix}$	3 4 14
363	3	3 4 14	3	4 12 13	$\begin{vmatrix} 3 \end{vmatrix}$	3 4 14
364	3	3 4 14	3	1 10 13	$\begin{vmatrix} 3 \end{vmatrix}$	1 13 14
365	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	3 4 14	3	3 4 10	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	1 13 14
366	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	3 4 14	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	4 12 13	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	1 13 14
367	3	3 4 14	3	3 4 16	$\begin{vmatrix} 3 \end{vmatrix}$	1 13 14
368	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	3 4 14	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	1 12 13	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	1 13 14
369	3	3 4 14	3	3 4 14	$\begin{vmatrix} 3 \end{vmatrix}$	1 13 14
370	3	3 4 14	3	1 13 19	$\begin{vmatrix} 3 \end{vmatrix}$	1 13 14
371	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	3 4 14	3	4 13 14	3	1 13 14
372	3	3 4 14	3	4 10 13	$\begin{vmatrix} 3 \end{vmatrix}$	1 13 14
373	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	3 4 12	3	1 12 13	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	1 13 14
374	3	3 4 12	3	1 13 14	$\begin{vmatrix} 3 \end{vmatrix}$	1 13 14
375	3	3 4 12	3	4 10 13	3	1 13 14
376	3	3 4 12	3	4 10 13	3	1 13 14
377	3	3 4 12	3	3 4 19	3	1 13 14
378	3	3 4 8	3	4 8 13	3	1 8 13
379	3	3 4 8	3	4 13 16	3	1 8 13
380	3	3 4 8	3	4 10 18	3	1 8 13
381	3	3 4 8	3	1 12 13	3	1 8 13
382	3	3 4 8	3	1 10 13	3	1 8 13
383	3	3 4 8	3	3 4 14	3	1 8 13
384	3	3 4 8	3	3 4 8	3	1 8 13
385	3	3 4 8	3	7 8 13	3	3 4 8
386	3	3 4 8	3	1 8 13	3	3 4 8
387	3	3 4 8	3	1 12 13	3	3 4 8
388	3	3 4 8	3	3 4 12	3	3 4 8
389	3	3 4 8	3	7 12 13	$\begin{vmatrix} 3 \end{vmatrix}$	3 4 8
390	3	3 4 8	3	1 8 13	3	3 4 8
391	3	3 4 8	3	4 12 13	3	3 4 8
392	3	3 4 8	3	4 12 13	3	3 4 8
393	3	3 4 8	3	4 12 13	3	3 4 8
394	3	3 4 8	3	7 13 16	3	3 4 8
395	3	489	3	489	3	3 4 8
396	3	489	3	1 8 13	3	3 4 8
397	3	489	3	489	3	7 13 14
398	3	489	3	4 13 16	3	7 13 14
399	3	4 8 9	3	7 13 14	3	7 13 14
400	3	4 8 9	3	7 8 13	3	7 13 14
		1	_			1

12

7. Max-Covering Problem

En esta sección se trata el problema de cubrimiento máximo o max covering problem. El problema consiste en lo siguiente: Sea m el número de puntos de demandas y n el de puntos de servicio. El objetivo se trata de maximizar el beneficio h_i obtenido de cubrir el í-esimo punto de demanda. Para modelizar dicho cubrimiento se utiliza la variable binaria z_i . Para representar los puntos de servicio utilizados se utiliza la variable de tipo binario x_j . La motivación del problema consiste en encontrar el conjunto de variables x_j con cardinalidad máxima denominada por p y prefijada previamente, que máximize la ganancia debida al cubrimiento de los puntos de servicio z_i . El modelo formal se muestra en la ecuación (2).

Maximizar
$$\sum_{i=1}^{m} h_i z_i$$

sujeto a $\sum_{j \in N_i}^{j \in N_i} x_j \ge z_i$, $i = 1, ..., m$
 $\sum_{j=1}^{n} x_j \le p$,
 $x_j \in \{0, 1\}, \quad j = 1, ..., n$
 $z_i \in \{0, 1\}, \quad i = 1, ..., m$ (2)

Ecuación 2: Formulación de Max-Covering Problem.

```
nfilcub := 0
while(nfilcub < m) do</pre>
    forall(j in servicios | fijada(j) = 0) do
        d(j) := 0
        forall(i in demandas) do
             if(cubierta(i) = 0 \text{ and } a(i,j) = 1) \text{ then}
                 d(j) := d(j) + 1
             end-if
        end-do
        if(d(j) = 0) then
             fijada(j):= 1
             solu(j) := 0
        end-if
    end-do
    aux := -99
    forall(j in servicios | fijada(j) = 0) do
        if(d(j) > aux) then
             aux := d(j)
             jmax := j
        end-if
    end-do
    solu(jmax) := 1
    fijada(jmax) := 1
    forall(i in demandas) do
        if(cubierta(i) = 0 and a(i, jmax) = 1) then
             cubierta(i) := 1
             nfilcub := nfilcub +1
        end-if
    end-do
end-do
```

Figura 7: *[TODO]*

```
forall(j in servicios) k_marca(j):=0
forall(k in k_iter) do
    aux := -99
    forall(j in servicios | (solu(j) = 0 and k_marca(j) = 0)) do
        if(aux < partial_sums(j)) then
            aux := partial_sums(j)
            jmax := j
        end-if
    end-do
    k_marca(jmax):=1
    k_list(k):=jmax
end-do
k_win := ceil(random*k_max)
selected := k_list(k_win)</pre>
```

Figura 8: *[TODO]*

7.1 Ejercicio aint1

En este caso, se ha propuesto resolver el problema de Cubrimiento Máximo sobre un conjunto de datos de entrada de tamaño relativamente elevado, con m=356 puntos de demanda y n=22 puntos de servicio . Se considera que un distrito ha sido cubierto si la distancia a un punto de servicio es menor o igual que un determinado valor dc denominado distancia de cubrimiento. En este caso se ha resuelto para dc=200 y un número de puntos de servicios restringido a p=[1,6], mediante la estrategia Greedy, la estrategia Greedy Aleatorizada (con parámetros k=5 y n=100) y la de Solución Óptima. Los resultados obtenidos se muestran gráficamente en la figura 9 y de manera tabular en las tablas 8.

Figura 9: Resultados del problema de Max Covering aplicado a los datos aint1

p	Greedy	Greedy Opened	R. Greedy	R. Greedy Opened	Xpress	Xpress Opened
1	41.1322	18	41.1322	18	41.1322	18
2	53.2281	11 18	53.2281	11 18	53.2281	11 18
3	65.1815	6 11 18	65.1815	6 11 18	65.1815	6 11 18
4	75.0729	2 6 11 18	76.6026	1 2 19 22	76.6026	1 2 19 22
5	81.1139	$2\; 6\; 8\; 11\; 18$	82.6436	1 2 8 19 22	82.6436	1 2 8 19 22
6	84.665	2 6 8 9 11 18	88.3181	1 2 8 14 19 22	88.3181	1 2 8 14 19 22

Tabla 8: Resultados del problema de Max Covering aplicado a los datos aint1

7.2 Ejercicio aint5

En este caso, se ha propuesto resolver el problema de *Cubrimiento Máximo* sobre un conjunto de datos de entrada de tamaño relativamente elevado, con m = 328 puntos de demanda y n = 19 puntos de servicio . Se considera que un distrito ha sido cubierto si la distancia a un punto de servicio es menor o igual que un determinado valor dc denominado distancia de cubrimiento. En este caso se ha resuelto para dc = 200 y un número de puntos de servicios restringido a p = [1, 6], mediante la estrategia Greedy, la estrategia Greedy Aleatorizada (con parámetros k = 5 y n = 100)

y la de *Solución Óptima*. Los resultados obtenidos se muestran gráficamente en la figura 10 y de manera tabular en las tablas 9.

Figura 10: Resultados del problema de Max Covering aplicado a los datos aint5

p	Greedy	Greedy Opened	R. Greedy	R. Greedy Opened	Xpress	Xpress Opened
1	51.9056	17	51.9056	17	51.9056	17
2	68.8971	17 18	68.8971	17 18	68.8971	17 18
3	77.9532	2 17 18	77.9532	2 17 18	77.9532	2 17 18
4	85.5581	2 4 17 18	85.5581	2 4 17 18	85.5581	2 4 17 18
5	90.7717	$2\ 4\ 10\ 17\ 18$	90.7717	2 4 10 17 18	90.7717	2 4 10 17 18
6	92.7893	$2\ 4\ 9\ 10\ 17\ 18$	93.5694	4 11 12 17 18 19	93.5694	4 11 12 17 18 19

Tabla 9: Resultados del problema de Max Covering aplicado a los datos aint5

8. P-MEDIAN PROBLEM

En el caso del problema de la p-mediana, modelizado matemáticamente en la ecuación 3, el objetivo es minimizar la distancia global de cada uno de los p puntos de servicio abiertos al conjunto globla de puntos de demanda, de manera que los j puntos de servicio abierto mantengan la menor distancia en promedio a los i puntos de demanda.

En este problema, al igual que en los anteriores, se utiliza un vector de demanda denominado h, que en la componente h_i almacena la demanda necesaria por el punto de demanda i. También existe una matriz de distancias de d, que en la posición d_{ij} recoge la distancia del punto de demanda i al punto de servicio j.

Para resolver este problema, además de las variables de decisión x_j utilizadas en casos anteriores, que representan que el punto de servicio j está activo, se añaden las variables $y_i j$, que representan que el punto de demanda i es servido por el punto de servicio j, lo que conlleva que en esta modelización cada punto de demanda sea servido únicamente por un único servicio.

Minimizar
$$\sum_{i=1}^{m} \sum_{j=1}^{n} h_{i} d_{ij} y_{ij}$$
sujeto a
$$\sum_{j=1}^{n} y_{ij} = 1, \qquad i = 1, ..., m$$
$$y_{ij} \leq x_{j}, \qquad i = 1, ..., m, j = 1, ..., n$$
$$\sum_{j=1}^{n} x_{j} = p,$$
$$x_{j} \in \{0, 1\}, \quad j = 1, ..., n$$
$$y_{ij} \in \{0, 1\}, \quad i = 1, ..., m, j = 1, ..., n$$

Ecuación 3: Formulación de P-Median Problem.

```
n_cub := 0
while(n_cub < p) do
    best := MAX_INT
    ndx := n
    forall(i in nodes | fijada(i) = 0) do
        val := 0
        forall(j in nodes) do
            fijada(i) := 1
            temp\_best := MAX\_INT
            forall(k in nodes | fijada(k) = 1 and d(k,j) < temp_best) do</pre>
                temp_best := d(k,j)
            end-do
            fijada(i) := 0
            val := val + temp_best
        end-do
        if (val < best) then
            best := val
            ndx := i
        end-if
    end-do
    fijada(ndx) := 1
    solu(ndx) := 1
    n_cub := n_cub + 1
end-do
```

Figura 11: [TODO]

```
final := 0
while(final = 0) do
    d_total_final := sum(i in nodes) min(j in nodes | solu(j) =1) d(i,j)
    mejora_max := 0
    forall(j,k in nodes | solu(j) = 1 and solu(k) = 0) do
        solu(j) := 0
        solu(k) := 1
        d_total_parcial := sum(ii in nodes) min(jj in nodes |solu(jj) =1) d(ii,jj)
        mejora := d_total_final - d_total_parcial
        if(mejora > mejora_max) then
            mejora_max := mejora
            j_{max} := j
            k_max := k
        end-if
        solu(j) := 1
        solu(k) := 0
    end-do
    if (mejora_max = 0) then
        final := 1
    else
        solu(j_max) := 0
        solu(k_max) := 1
    end-if
end-do
```

Figura 12: /*TODO*/

8.1 Ejercicio coordenadas 15

Este ejercicio tiene como novedad respecto de los anteriores la siguiente cateracterística: En este caso los datos de entrada no se presentan a partir de la matriz de distancias, tal y como sucedia en el resto, sino que se suministran las coordenadas x e y de cada localización. Esto hace que el problema permita una mayor versatilidad en el sentido de calcular un mayor número de resultados, pero a la vez añade la complicación de requerir el cálculo de las distancias entre puntos.

Para la tarea de calcular las distancias se ha utilizado la distancia euclidea para espacios de 2 dimensiones (x, y), que se define matemáticamente como $d(p, q) = \sqrt{(p_x - q_x)^2 + (p_y - q_y)^2}$. Por lo tanto, para la modelización del problema de la p-mediana, es necesario calcular dicha medida para todas las posibles combinaciones de localizaciones, de tal manera que la matriz d sea construida siguiendo la expresión $d_{ij} = d(l_i, l_j)$ donde l_i y l_j representan las coordenadas de las localizaciones i y j respectivamente.

En esta sección se resuelve el problema de la P Mediana mediante la estrategia Greedy, la estrategia de Búsqueda Local y la de Solución Optima. El conjunto de datos está compuesto por n=m=15 poblaciones, para las cuales se pide resolver el problema para $p=[1,10] \in N$. Dichos resultados se muestran graficamente en la figura 13 y de manera tabular en la tabla 11. Además, se proporciona la solución gráfica en la figura 14.

Figura 13: Resultados del problema P-Median aplicado a los datos de 15 poblaciones

Tabla 10: Resultados del problema P-Median aplicado a los datos de 15 poblaciones

Tabla 11: |TODO |

8.2 Ejercicio coordenadas 30

En esta sección se resuelve el problema de la P Mediana mediante la estrategia Greedy, la estrategia de Búsqueda Local y la de Solución Optima. El conjunto de datos está compuesto por n=m=30 poblaciones, para las cuales se pide resolver el problema para $p=[1,10] \in N$. Dichos resultados se muestran graficamente en la figura 15 y de manera tabular en la tabla 12. Además, se proporciona la solución gráfica en la figura 16.

p	Greedy	Greedy Opened	L. S.	Xpress	Xpress Opened
1	2178	18	2178	2178	18
2	1733	5 18	1592	1592	23 28
3	1365	5 8 18	1295	1300	5 12 14
4	1143	5 8 11 18	1143	1076	12 14 26 27
5	982	5 6 8 11 18	922	923	8 11 13 23 26
6	847	5 6 8 11 18 28	790	790	8 11 26 27 28 30
7	757	5 6 8 11 18 27 28	692	697	1 10 11 17 26 27 30
8	672	5 6 8 11 18 25 27 28	601	601	1 10 11 17 25 26 27 30
9	593	$1\ 5\ 6\ 8\ 11\ 18\ 25\ 27\ 28$	536	536	1 10 11 16 17 21 26 27 30
10	528	1 5 6 8 11 18 21 25 27 28	492	485	2 10 11 16 17 21 22 26 27 30

Tabla 12: Resultados del problema P-Median aplicado a los datos de 30 poblaciones

Figura 14: Representación gráfica del problema P-Median aplicado a los datos de 15 poblaciones

8.3 Ejercicio coordenadas_100

En esta sección se resuelve el problema de la P Mediana mediante la estrategia Greedy, la estrategia de Búsqueda Local y la de Solución Optima. El conjunto de datos está compuesto por n=m=100 poblaciones, para las cuales se pide resolver el problema para $p=[1,10] \in N$. Dichos resultados se muestran graficamente en la figura 17 y de manera tabular en la tabla 13. Además, se proporciona la solución gráfica en la figura 18.

p	Greedy	Greedy Opened	L. S.	Xpress	Xpress Opened
1	7416	71	7416	7416	71
2	5744	71 95	5211	5211	63 77
3	4593	30 71 95	4243	4243	57 77 84
4	3845	28 30 71 95	3478	3500	6 14 55 57
5	3320	6 28 30 71 95	3053	3053	4 6 18 55 56
6	2907	6 28 30 58 71 95	2777	2745	4 18 20 49 56 69
7	2600	6 28 30 37 58 71 95	2495	2509	4 6 28 42 49 60 90
8	2364	$6\ 28\ 30\ 37\ 58\ 71\ 89\ 95$	2274	2287	4 6 28 41 42 89 90 92
9	2212	6 28 30 37 58 71 89 95 98	2110	2118	4 6 28 41 42 66 86 89 92
10	2072	6 28 30 37 58 66 71 89 95 98	1952	1952	4 15 21 28 41 42 66 86 89 92

Tabla 13: Resultados del problema P-Median aplicado a los datos de 100 poblaciones

Figura 15: Resultados del problema P-Median aplicado a los datos de 30 poblaciones

Figura 16: Representación gráfica del problema P-Median aplicado a los datos de 30 poblaciones

Figura 17: Resultados del problema P-Median aplicado a los datos de 100 poblaciones

Figura 18: Representación gráfica del problema P-Median aplicado a los datos de 100 poblaciones

REFERENCIAS

- $[1]\,$ Aguado, J. S. Modelos de Investigación Operativa, 2016/17.
- $[2] \ \ GARC\'IA\ \ PRADO,\ S.\ \ Mosel\ Examples.\ \ \texttt{https://github.com/garciparedes/mosel-examples}.$