Targeted Advertising in Elections

by

Maria (Masha) Titova

UC SAN DIEGO

October 26, 2019

Motivation

Targeted Advertising was an important part of winning campaigns in recent U.S. Presidential Elections:

- 2016 Trump: used voter data from Cambridge Analytica
- 2008, 2012 Obama: the first social media campaign
- 2000, 2004 Bush: targeting voters by mail

Can Targeted Advertising Swing Elections?

Approach

I consider a communication model

- ▶ <u>sender</u>: political candidate who <u>challenges</u> the status quo
 - privately knows his position on relevant issues
 - sends targeted message about his position to the voters
 - his message must contain a grain of truth
- receivers: voters who expressively vote for the candidate (incumbent or challenger) whose position is closest to their own

Approach

- ▶ The winner of the election is decided by *majority rule*
- ► I compare two cases
 - **Public Disclosure (PD)**: challenger sends the same **public message** to every voter
 - Targeted Advertising (TA): a private message is sent to each voter, based on the voter's position

1

1

Preview of the Results

- ▶ Under **Public Disclosure**, an election is **unwinnable** for the challenger if and only if it is polarized:
 - no majority of voters agrees on at least one issue
- Under Targeted Advertising, unwinnable elections become winnable:
 - the challenger only advertises his position on issues that he and the voter agree on

The Model

- ► A communication model:
 - (one) sender: challenger
 - (multiple) receivers: voters
- ► This is **not** a model of **spatial competition**:
 - challenger's position is his private information
 - incumbent's position is known to everyone

Spatial Model: Policy Space

- ▶ The **policy space** is $\Theta = \times_{k=1}^{K} \{1, ..., N_k\}$:
 - $\mathbb{K} \equiv \{1, ..., K\}$ is the set of **issues**:
 - health care, education, LGBT rights, immigration, race, global warming, gun control, abortion rights, etc
 - N_k is the number of **positions** on issue $k \in \mathbb{K}$
- ► Representative element $\theta = (\theta_1, ..., \theta_K)$ reflects the **(policy) position** on each of the *K* issues

Receivers: Expressive Voters

- ▶ Voter v_{θ} has ideal position (type) $\theta \in \Theta$
 - she votes **expressively** for candidate closest to θ , i.e. challenger is chosen if

$$d(\theta, \theta^{ch}) < d(\theta, \theta^{inc})$$

(ties are broken in favor of the incumbent)

• she measures distance using the Manhattan metric:

$$d(\theta, \theta') = \sum_{k=1}^{K} |\theta_k - \theta'_k|$$

Sender: the Challenger

- ▶ **Simple majority**: challenger gets 1 if he wins the election
- ► To <u>convince</u> voter v_{θ} , challenger sends her message m_{θ} about his position:
 - (Grain of Truth): each message $m_{\theta} \in 2^{|\Theta|} \setminus \emptyset$ is
 - truthful: $\theta^{ch} \in m_{\theta}$
 - not necessarily fully revealing: $m_{\theta} \subseteq \Theta$

lies of omission but not commission

Analysis

Definition: an **election** is a triple $\mathcal{E} = (\theta^{inc}, g^v(\cdot), p(\cdot))$:

- \triangleright θ^{inc} position of the incumbent
- \triangleright $g^v(\cdot)$ over Θ distribution of voters' positions
- $p(\cdot) > 0$ over Θ common prior belief about θ^{ch}
- ► I look for **PBE** that <u>maximize</u> the <u>challenger's</u> ex-ante utility (*odds of winning*)
- ▶ if he loses in every equilibrium, I say the election is unwinnable (for the challenger)

Special Case: Public Disclosure

- ▶ Under **PD**, the challenger is restricted to sending the same message *publicly* to all voters
 - this makes PD a special case of TA
 - common prior + public message = common posterior

Public Disclosure: Preliminaries

Definition: voters $v_{\tilde{\theta}}$ and $v_{\hat{\theta}}$ are compatible if they agree on some issue $\kappa \in \mathbb{K}$, i.e.

$$\theta_{\kappa}^{inc} < \tilde{\theta}_{\kappa}, \hat{\theta}_{\kappa}$$
 to the right or $\tilde{\theta}_{\kappa}, \hat{\theta}_{\kappa} < \theta_{\kappa}^{inc}$ to the left

and incompatible otherwise

Lemma: incompatible voters never vote for the challenger at the same time under <u>common belief</u>:

- complete information
- public disclosure

Public Disclosure: Unwinnable Elections

Theorem: election \mathcal{E} is **unwinnable** for the challenger under **PD** if and only if no group of compatible voters constitutes a majority

- ▶ the population of voters is *polarized*
- ightharpoonup if K = 1, we get a version of the **median voter theorem**:

challenger cannot win under public disclosure if and only if the incumbent occupies position of a median voter

Public Disclosure: Winnable Elections

Theorem: type θ^{ch} of challenger wins the election under **PD** if and only if

- ▶ he is elected under complete information κ
- ▶ he is adjacent to someone who does ←

As a result:

- the outcome is very close to complete information
- public messages are extremely informative
 - each message on the path contains a winner + neighbor

Targeted Advertising

- ► Consider elections that are "decided by" a pair of incompatible voters:
 - challenger wins if and only if he convinces both voters
 - trivially unwinnable under PD

challenger can swing such elections by targeting

Targeted Advertising: the Main Result

<u>Theorem</u>: consider elections in which incompatible voters $v_{\tilde{\theta}}$ and $v_{\hat{\theta}}$ are jointly pivotal. Then, any θ^{ch} s.t.

$$d(\tilde{\theta}, \theta^{ch}) = d(\tilde{\theta}, \theta^{inc})$$
 and $d(\hat{\theta}, \theta^{ch}) = d(\hat{\theta}, \theta^{inc})$

wins this election by sending

$$\tilde{m}=conv(\tilde{\theta},\theta^{ch})$$
 to $v_{\tilde{\theta}}$ and $\hat{m}=conv(\hat{\theta},\theta^{ch})$ to $v_{\hat{\theta}}$

Corollary: the more polarized $v_{\tilde{\theta}}$ and $v_{\hat{\theta}}$

- ▶ the larger the range of positions $|\tilde{\theta}_k \hat{\theta}_k|$ on all issues $k \in \mathbb{K}$
- ightharpoonup the larger the total number of issues *K*

the higher the challenger's ex-ante utility

Targeted Advertising: Discussion

- ▶ The proposed equilibrium has desirable properties:
 - equilibrium strategy profiles are <u>robust to changes in</u> prior beliefs
 - the messages on the path are convex:
 - the challenger does not mention the issues that he and the voter disagree on
 - the more they agree, the more specific the message

Conclusion

Some elections are too polarized to be won under PD

- ▶ the positions of pivotal voters are on the opposite sides of the incumbent on *all issues*
- these voters would never both vote for the challenger after hearing the same public message
- ▶ whatever **public message** the challenger sends, he **loses**

The challenger can swing these elections using targeted ads

- ▶ in private messages, the challenger focuses on issues that he and the voter have in common
- ► the odds of the challenger swinging these elections grow as voter polarization increases

Thank You!