R^2 for the training set

n ioi alo adiling oot											
	1.0 -	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91		
Depth	2.0 -	0.98	0.98	0.98	0.98	0.98	0.98	0.97	0.97		- 0.99
	3.0 -	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99		- 0.98
	4.0 -	1	1	1	1	1	1	1	1		- 0.97
	5.0 -	1	1	1	1	1	1	1	1		- 0.96
	6.0 -	1	1	1	1	1	1	1	1		- 0.95
	7.0 -	1	1	1	1	1	1	1	1		- 0.94
	8.0 -	1	1	1	1	1	1	1	1		- 0.93
	9.0 -	1	1	1	1	1	1	1	1		- 0.92
	10.0 -	1	1	1	1	1	1	1	1		- 0.92
		0.0	1e-06	1e-05	0.0001 <i>)</i>		0.01	0.1	1.0	•	<u> </u>

 R^2 for the test set

Depth	1.0 -	0.72	0.72	0.72	0.72	0.72	0.72	0.7	0.71		- 0.95
	2.0 -	0.87	0.87	0.87	0.87	0.87	0.87	0.87	0.85		
	3.0 -	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94		- 0.90
	4.0 -	0.95	0.95	0.95	0.95	0.95	0.94	0.95	0.96		
	5.0 -	0.94	0.94	0.94	0.94	0.94	0.94	0.96	0.95		- 0.85
	6.0 -	0.94	0.94	0.94	0.94	0.94	0.94	0.96	0.95		
	7.0 -	0.94	0.94	0.94	0.94	0.94	0.95	0.96	0.95		- 0.80
	8.0 -	0.94	0.94	0.94	0.94	0.94	0.94	0.96	0.94		
	9.0 -	0.94	0.94	0.94	0.94	0.94	0.94	0.95	0.95		- 0.75
	10.0 -	0.94	0.94	0.94	0.94	0.94	0.94	0.95	0.95		
0.0 1e-06 1e-05 0.0001 0.001 0.01 λ								1.0	_		