АКЦИЯ: РЕШИ ЗАДАЧУ — ПОЛУЧИ +50%

Если не сказано обратного, вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$ считается заданным.

К Лекции 1

Задача 1.1 (Охватить сосну; за скучное решение 0,7 получены, ХОРОШЕЕ РЕШЕНИЕ рассказано на паре).

На миллиметровку бросают сосновую иголку длиной 1 см. Найдите среднее число пересечений с линиями сетки (да, сосновая иголка прямой быть не обязана).

Задача 1.2 (О круглых кирпичах; РЕШЕНА ДВУМЯ СПОСОБАМИ).

Летит кирпич размером $3 \times 4 \times 5$. И так волшебно вращается, что все его положения относительно своего центра масс равновероятны. Солнце в зените, найдите среднюю площадь тени.

К Лекции 2

Задача 2.1 (РЕШЕНА).

Если Ω не более чем счетно, и $\mathcal{F} \subset 2^{\Omega}$, то найдется некоторое не более чем счетное разбиение H_1, \ldots, H_i, \ldots $(i \in I_0)$ множества Ω , что

$$\mathcal{F} = \sigma(\{H_1, \dots, H_i, \dots\}) = \{\bigcup_{i \in I} H_i | I \subset I_0\} \cong 2^{\{H_1, \dots, H_i, \dots\}}.$$

Задача 2.2 (РЕШЕНА).

Пусть дана возрастающая последовательность σ -алгебр \mathcal{F}_i . Будет ли их объединение алгеброй? σ -алгеброй?

Задача 2.3 (К спору о первородстве; РЕШЕНА).

Пусть \mathcal{A} — абстрактная булева алгебра. Его непустое подмножество \mathcal{F} называют фильтром, если $\varnothing \notin \mathcal{F}$, для всех $A \in \mathcal{A}, B \in \mathcal{F}$ из $B \subset A$ следует $A \in \mathcal{F}$ а кроме того для всех $A, B \in \mathcal{F}$ следует $A \cap B \in \mathcal{F}$. Фильтр назовем максимальным, если для всех $A \in \mathcal{A}$ или $A \in \mathcal{F}$, или $\overline{A} \in \mathcal{F}$. Показать, что на множестве всех максимальных фильтров можно построить булеву алгебру, изоморфную исходной булевой алгебре \mathcal{A} .

Задача 2.4 (РЕШЕНА).

Доказать, что для любой последовательности событий $A_k \in \mathcal{F}$, для всех $k \in \mathbb{N}$ выполнено

$$\mathbb{P}(\cup_{i=1}^k A_i) = \sum_{i=1}^k \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < l} \mathbb{P}(A_i \cap A_j \cap A_l) + \dots + (-1)^{k+1} \mathbb{P}(A_1 \cap A_2 \cap \dots A_k).$$

Верно ли это для объединения счетного числа событий? А доказать?

Задача 2.5 (РЕШЕНА).

Для любых двух σ -алгебр $\mathcal{F}_1, \mathcal{F}_2$, содержащихся в \mathcal{F} , рассмотрим

$$d(\mathcal{F}_1, \mathcal{F}_2) = 4 \sup_{A_1 \in \mathcal{F}_1, A_2 \in \mathcal{F}_2} \Big| \mathbb{P}(A_1) \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2) \Big|.$$

Докажите, что $0 \le d(\mathcal{F}_1, \mathcal{F}_2) \le 1$. Найдите условия, при которых $d(\mathcal{F}_1, \mathcal{F}_2)$ равно 0 или 1.

Задача 2.6. Перенесена в следующий листок, см. задачу 3.3.

Задача 2.7. Перенесена в следующий листок, см. задачу 3.4.

Задача 2.8 (Об индуктивном переходе; РЕШЕНА).

Пусть \mathcal{F}_1 — некоторая подалгебра, определим для всех n множество \mathcal{F}_{n+1} как класс множеств, представимых в виде счетного пересечения и счетного объединения множеств из \mathcal{F}_n . Докажите, что $\bigcup_{n\in\mathbb{N}}\mathcal{F}_n$ не обязано быть даже σ -алгеброй.

Задача 2.9 (О почти расстояниях; РЕШЕНА).

Введем неотрицательную функцию на $\mathcal{F} \times \mathcal{F}$ правилом:

$$d(A,B) = \frac{\mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A)}{\mathbb{P}(A \cup B)}$$

в случае $\mathbb{P}(A \cup B) > 0$, и 0 — в противном случае. Покажите, что d является квазиметрикой, то есть удовлетворяет неравенству треугольника:

$$d(A, B) \le d(A, C) + d(C, B) \quad \forall A, B, C \in \mathcal{F}.$$

Задача 2.10 (О приближении алгеброй; РЕШЕНА).

Введем на элементах σ -алгебры \mathcal{F} квазиметрику (неотрицательную функцию на $\mathcal{F} \times \mathcal{F}$, удовлетворяющую неравенству треугольника) по правилу:

$$d(A, B) = \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A) \quad \forall A, B \in \mathcal{F}.$$

Покажите, что для всякой алгебры \mathcal{G} для любого элемента $G \in \sigma(\mathcal{G})$ найдется такая последовательность $G_n \in \mathcal{G}$, что $d(G_n, G) \to 0$.

Задача 2.11 (Равномерно к натуральным; РЕШЕНА).

Для какой-нибудь алгебры \mathcal{A} над \mathbb{N} приведите пример не равной нулю конечно-аддитивной меры μ на этой алгебре, имеющей счетно-аддитивное продолжение на σ -алгебру, порожденной этой алгеброй, причем при сдвиге любого множества $A \in \mathcal{F}$ на целое число n, для так полученного множества A+n было выполнено: $A+n \in \mathcal{A}, \ \mu(A+n)=\mu(A)$.

Задача 2.12 (Об обещаниях Каратеодори; РЕШЕНА).

Для какой-нибудь алгебры \mathcal{A} над \mathbb{N} приведите пример заданной на \mathcal{A} конечно-аддитивной меры, не имеющей счетно-аддитивного продолжения на σ -алгебру, порожденную \mathcal{A} .

Задача 2.13 (О цепях без Каратеодори; РЕШЕНА).

Докажите, что для любой алгебры \mathcal{A} , у всякой конечно-аддитивной меры, заданной на \mathcal{A} , найдется некоторое конечно-аддитивное продолжение на σ -алгебру, порожденную \mathcal{A} .

К Лекции 3

Задача 3.1 (И Бернулли из алгебры вышел...; СНЯТА, поскольку ответ имеется в задаче 4.3).

В схеме бесконечного числа испытаний Бернулли с $p \in (0,1)$ укажите Ω , и хотя бы полукольцо Π над ним, чтобы "успех пришел на четном испытании" оказалось в $\sigma(\Pi)$ и для всех натуральных n Ω_n вкладывалось в Ω ($\Omega_n \hookrightarrow \Omega$), а \mathbb{P}_n имело σ -аддитивное продолжение на $\sigma(\Pi)$.

Задача 3.2 (Все умрут; РЕШЕНА).

Пусть дана некоторая последовательность событий $A_n \in \mathcal{F}$, для которых

$$\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) < +\infty.$$

Доказать, что вероятность события "из событий A_n произошло лишь конечное число" равна 1.

Задача 3.3 (О тривиальности горизонта (формулировка была уточнена); РЕШЕНА).

Пусть на одном и том же вероятностном пространстве дана последовательность событий A_n со свойством $\mathbb{P}(A_i)\mathbb{P}(A_j)=\mathbb{P}(A_i\cap A_j)$ для всех натуральных i,j $(i\neq j)$. Назовем событие A далеким, если для всех $k\in\mathbb{N}$, по событиям A_n начиная с k-го, можно определить выполнено ли событие A. Докажите, что вероятность любого далекого события равна или нулю, или единице.

Другой вариант формулировки той же задачи: Пусть имеется последовательность событий A_n со свойством $\mathbb{P}(A_i)\mathbb{P}(A_j)=\mathbb{P}(A_i\cap A_j)$ для всех натуральных i,j $(i\neq j)$; введем минимальные σ -алгебры $\mathcal{A}_n=\sigma(A_n,A_{n+1},\dots),\ \mathcal{A}_\infty=\cap_{k\in\mathbb{N}}\mathcal{A}_k$. Докажите, что для любого $A\in\mathcal{A}_\infty$ или $\mathbb{P}(A)=1$, или $\mathbb{P}(A)=0$.

Задача 3.4 (Предел должен быть; 1 балл).

Докажите, опираясь на задачу 3.3, что в схеме Бернулли с бесконечным числом независимых испытаний

$$\mathbb{P}\Big(rac{\mbox{число успехов за первые } n \mbox{ испытаний}}{n}$$
 имеет предел при $n\uparrow\infty\Big)=1.$

К Лекции 4

Задача 4.1 (О распространении независимости; ФОРМУЛИРОВКА БЫЛА ИЗМЕНЕНА; РЕШЕНА). Если A, B_i независимы для любого натурального i, и независимы в совокупности $A \cap B_1$, $A \cap B_2$, ..., $A \cap B_k$, ..., то для любого $B \in \sigma\{B_1, \ldots, B_k, \ldots\}$ множества A и B не всегда независимы.

Задача 4.2 (Об единственности на произведении 2; РЕШЕНА).

Даны Ω', Ω'' , их σ -алгебры $\mathcal{F}', \mathcal{F}''$ и вероятности $\mathbb{P}_1: \mathcal{F}' \to [0,1]$, $\mathbb{P}_2: \mathcal{F}'' \to [0,1]$. Докажите, что над $\Omega' \times \Omega''$, на σ -алгебре

$$\sigma\{A \times B \mid A \in \mathcal{F}', B \in \mathcal{F}''\}.$$

существует единственная вероятность \mathbb{P} , удовлетворяющая условиям: 1) $\mathbb{P}(A \times \Omega'') = \mathbb{P}_1(A)$ для каждого $A \in \mathcal{F}'$, 2) $\mathbb{P}(\Omega' \times B) = \mathbb{P}_2(B)$ для каждого $B \in \mathcal{F}''$, 3) σ -алгебры $\mathcal{F}' \otimes \{\Omega''\}$ и $\{\Omega'\} \otimes \mathcal{F}''$ независимы.

Задача 4.3 (Об единственности на произведении \aleph_0 ; 1 балл).

Дано счетное число вероятностных пространств $(\Omega_k, \mathcal{F}_k, \mathbb{P}_k)$. Рассмотрим над $\bar{\Omega} \stackrel{\triangle}{=} \Omega_1 \times \Omega_2 \times \cdots \times \Omega_k \times \ldots$ σ -алгебру $\bar{\mathcal{F}} \stackrel{\triangle}{=} \sigma \Big(\cup_{k \in \mathbb{N}} \bar{\mathcal{F}}_k \Big)$, где

$$\bar{\mathcal{F}}_k \stackrel{\triangle}{=} \{\Omega_1 \times \dots \times \Omega_{k-1} \times A \times \Omega_{k+1} \times \Omega_{k+2} \times \dots \mid A \in \mathcal{F}_k\} \quad \forall k \in \mathbb{N}.$$

Докажите, что для однозначного задания вероятности $\mathbb{P}: \bar{\mathcal{F}} \to [0,1]$ достаточно определить вероятность на σ -алгебрах $\bar{\mathcal{F}}_k$ правилами

$$\mathbb{P}(\Omega_1 \times \cdots \times \Omega_{k-1} \times A \times \Omega_{k+1} \times \Omega_{k+2} \times \dots) = \mathbb{P}_k(A) \quad \forall k \in \mathbb{N}, A \in \mathcal{F}_k$$

и потребовать независимость этих σ -алгебр.

Задача 4.4 (Жизнь вечна; РЕШЕНА).

Пусть дана некоторая последовательность независимых событий $A_n \in \mathcal{F}$, для которых

$$\sum_{n\in\mathbb{N}} \mathbb{P}(A_n) = +\infty.$$

Тогда вероятность события "из событий A_n произошло лишь конечное число" равна $\,0\,.$

Задача 4.5 (Не без Римана...; РЕШЕНА).

Пусть \mathcal{P} — множество простых чисел, s>1 . Докажите формулу Эйлера

$$\sum_{n \in \mathbb{N}} n^{-s} = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s} \right)^{-1},$$

с помощью вероятности над \mathbb{N} , введенной по правилу:

$$\mathbb{P}(A) \stackrel{\triangle}{=} \frac{\sum_{n \in A} n^{-s}}{\sum_{n \in \mathbb{N}} n^{-s}} \qquad \forall A \subset \mathbb{N}.$$

К Лекции 5

Задача 5.1 (О собственности; РЕШЕНА).

Докажите, что всякая стохастическая матрица имеет собственное число, равное 1.

Задача 5.2 (Об ограниченной собственности; РЕШЕНА).

Докажите, что собственные числа стохастической матрицы не превосходят по модулю 1; отметим, что компллексные числа никто не отменял.

Задача 5.3 (О дальнодействии; РЕШЕНА).

Пусть дана некоторая цепь Маркова, через τ обозначим первый момент, когда цепь Маркова перешла в четное состояние. Докажите, что $\mathbb{P}(\tau=100|X_3=1)=\mathbb{P}(\tau=100|X_1=1,X_2=3,X_3=1)$ (для простоты предполагаем, что правая часть равенства определена).

Задача 5.4 (О конечной памяти; РЕШЕНА).

Пусть для некоторого процесса с конечным числом состояний выполнено

$$\mathbb{P}(X_{k+1}|X_k, X_{k-1}) \equiv \mathbb{P}(X_{k+1}|X_k, X_{k-1}, \dots, X_0) \qquad \forall k \in \mathbb{N},$$

то есть вероятность перехода зависит фактически лишь от состояний в данный и предыдущий моменты времени. Опишите этот процесс марковской цепью.

Задача 5.5 (Все было, все будет; РЕШЕНА трижды).

Докажите, что для стационарной цепи Маркова с матрицей перехода Q состояние k возвратно тогда и только тогда, когда $\sum_{n=1}^{\infty}q_{kk}^{(n)}=+\infty$ (здесь $Q^n=(q_{ij}^{(n)})_{n\times n}$).

Задача 5.6 (Битва претендентов; РЕШЕНА).

Буш и Гор играют в Техасе с помощью правильной монетки. Буш дает доллар Гору, если выпадает решка, Гор дает доллар Бушу, если выпадает орел. Известно, что они играли 200 раз и остались при своих (выиграли и проиграли одинаково). Докажите, что вероятность того, что по ходу игры Гор обыгрывал Буша хотя бы на k долларов, равна

$$\frac{k!(100-k)!}{100!100!}.$$

Задача 5.7 (Распределения вместе, а вероятности — врозь; РЕШЕНА).

Приведите пример таких дискретных случайных величин $\,\xi,\eta\,,\,$ что $\,F_{\xi}\equiv F_{\eta}\,,\,$ но

$$\mathbb{P}\{\omega \in \Omega | \xi(\omega) \neq \eta(\omega)\} > 1/2.$$

Задача 5.8 (Несложение распределений; РЕШЕНА).

Приведите пример таких дискретных случайных величин ξ, η, ζ , что $F_{\xi} \equiv F_{\eta}$, но

$$F_{\xi+\zeta} \neq F_{\eta+\zeta}$$
.

Задача 5.9 (Линейная замена; РЕШЕНА).

Верно ли, что для любой дискретной случайной величины ξ выполнено равенство:

$$F_{a\xi+b}(x) = F_{\xi}\left(\frac{x-b}{a}\right) \quad \forall x, a, b \in \mathbb{R}.$$

Задача 5.10 (Квадратичная замена; РЕШЕНА).

Верно ли, что для любой дискретной случайной величины ξ выполнено равенство:

$$F_{\xi^2}(x^2) = F_{\xi}(x) - F_{\xi}(-x) \quad \forall x \in \mathbb{R}.$$

Задача 5.11 (Про идеальный газ; РЕШЕНА).

Пусть n частиц размещены по M ячейкам, и частицы различимы. Пусть $\xi_{n,M}$ — число частиц в первой ячейке. Докажите, что, если $n/M \to \lambda > 0$ при $M,n \to \infty$, то $\mathbb{P}(\xi_{n,M} = k) \to \frac{e^{-\lambda}\lambda^k}{k!}$ (к распределению Пуассона).

Задача 5.12 (Про бозон Хиггса; РЕШЕНА).

Пусть n частиц размещены по M ячейкам, и частицы неразличимы. Пусть $\xi_{n,M}$ — число частиц в первой ячейке. Докажите, что если $\frac{M}{n+M} \to p>0$ при $M,n \to \infty$, то $\mathbb{P}(\xi_{n,M}=k) \to p(1-p)^k$ (к геометрическому распределению).

К Лекции 6

Задача 6.1 (Медиана — логистам; РЕШЕНА).

Показать, что для любой дискретной случайной величины ξ и любой её медианы μ выполнено

$$\inf_{a \in \mathbb{R}} \mathbb{E}|\xi - a| = \mathbb{E}|\xi - \mu|.$$

Задача 6.2 (Матожидание — физикам; РЕШЕНА).

Показать, что для любой дискретной случайной величины ξ , для которой существует $\mathbb{E}(\xi^2)$, выполнено

$$\inf_{a \in \mathbb{R}} \mathbb{E}|\xi - a|^2 = \mathbb{E}(\xi - \mathbb{E}\xi)^2.$$

Задача 6.3 (Все вместе — statistam; РЕШЕНА).

Показать, что для любой дискретной случайной величины $\,\xi\,,$ для которой существует $\,\mathbb{E}(\xi^2)\,,$ и любой её медианы μ выполнено

$$|\mathbb{E}\xi - \mu|^2 < \mathbb{E}(\xi - \mathbb{E}\xi)^2$$
.

Задача 6.4 (Слагаемых до фига...; РЕШЕНА на пятиминутке). Докажите, что $\mathbb{E}(\sum_{i=1}^{\infty} \xi_i)$ существует и равно $\sum_{i=1}^{\infty} \mathbb{E}\xi_i$, если конечен ряд $\sum_{i=1}^{\infty} \mathbb{E}|\xi_i|$.

Задача 6.5 (Любителям пирожков и французской квартили; РЕШЕНА).

Пусть даны принимающая натуральные значения, дискретная случайная величина ξ и положительные числа A,B. Определим для всех целых x,a потери $U(x,a)=A\max(x-a,0)-B\min(x-a,0)$. Выразите, в терминах ξ , все такие a_0 , что

$$\inf_{a \in \mathbb{R}} \mathbb{E}U(\xi, a) = \mathbb{E}U(\xi, a_0).$$

К Лекции 7

Задача 7.1 (Если число слагаемых случайно; РЕШЕНА).

Докажите, что для независимых случайных величин $\xi_1, \xi_2, \dots, \xi_k$ (принимающих лишь целые неотрицательные значения) и независящей от них случайной величины η , принимающей натуральные значения, выполнено $\phi_{\xi_1+\xi_2+\cdots+\xi_n} = \phi_{\eta}(\phi_{\xi_1})$.

К Лекции 8

Задача 8.1 (неотрицая общее; РЕШЕНА).

Докажите, что для $\vec{\xi}=(X,Y)$ выполнено $H(\vec{\xi})\leq H(X)+H(Y)$, причем $H(\vec{\xi})=H(X)+H(Y)$ в точности для независимых X,Y.

Задача 8.2 (Марков — Канторовичу; от 1,5 баллов).

Дана цепь Маркова с матрицей переходов Q и длинами ребер $c_{ij}=c_{ji}\geq 0\,,\;c_{ii}=0\,.$ Пусть также

$$q \stackrel{\triangle}{=} \max_{i \neq j} \frac{d_1(e_i Q, e_j Q)}{c_{ij}} < 1,$$

где d_1 — расстояние в метрике Канторовича.

Докажите, что 1) инвариантное распределение π единственно;

2) $d_1(\mu Q^n, \pi) \leq q^n d_1(\mu, \pi)$ для любого начального распределения μ и $n \in \mathbb{N}$.

Задача 8.3 (Произведение независимых; РЕШЕНА).

Пусть ξ_1,ξ_2 — дискретные случайные величины, $\vec{\xi}=(\xi_1,\xi_2)$. Докажите, что $F_{\vec{\xi}}(a_1,a_2)=F_{\xi_1}(a_1)F_{\xi_1}(a_2)$ для всех $a_1,a_2\in\mathbb{R}$ тогда и только тогда, когда ξ_1,ξ_2 независимы.

К Лекции 9

Задача 9.1 (Главное — красиво; РЕШЕНА).

 $X-\sigma(Y)$ -измеримая дискретная случайная величина тогда и только тогда, когда X=f(Y) для некоторой функции $f:\mathbb{R} \to \mathbb{R}$.

Задача 9.2 (Чем не скалярное произведение...; РЕШЕНА).

Докажите для дискретных случайных величин (в предположении, что обе части существуют) следующее тождество: $\mathbb{E}(\xi \mathbb{E}(\eta|\mathcal{G})) = \mathbb{E}(\eta \mathbb{E}(\xi|\mathcal{G}))$.

Задача 9.3 (Если число слагаемых случайно-2; РЕШЕНА).

Для независимых случайных величин $\xi_1, \xi_2, \dots, \xi_k$ и независящей от них случайной величины η , принимающей натуральные значения, найти $\mathbb{E}(\xi_1 + \xi_2 + \dots + \xi_\eta | \eta), \mathbb{D}(\xi_1 + \xi_2 + \dots + \xi_\eta | \eta), \mathbb{D}(\xi_1 + \xi_2 + \dots + \xi_\eta | \eta)$.

Задача 9.4 (О совпадениях; РЕШЕНА).

Пусть ξ, η — дискретные случайные величины, причем $\mathbb{E}|\xi|, \mathbb{E}|\eta| < +\infty$, и каждое свое значение эти величины принимают с ненулевой вероятностью. Докажите, что из $\mathbb{E}(\xi|\eta) \geq \eta, \mathbb{E}(\eta|\xi) \geq \xi$ следует $\xi = \eta$.

К Лекции 10

Задача 10.1 (Иначе это бы не было геометрической вероятностью...; РЕШЕНА).

Покажите, что мера Лебега над \mathbb{R}^m является мерой Хаара относительно группы движений: при любом отображении, сохраняющем расстояние, борелевское множество переходит в борелевское, а его мера Лебега не меняется. [да, решая эту задачу, лучше за кубы в качестве базы даже не браться, это уж точно не вариант]

Задача 10.2 (Для решения уравнений; РЕШЕНА).

Докажите, что для любых двух случайных величин ξ, η множество $\{\omega | \xi(\omega) = \eta(\omega)\}$ борелевское.

Задача 10.3 (Про истинно дискретные случайные величины; РЕШЕНА).

Пусть $\xi:\Omega\to\mathbb{R}$ принимает не более чем счетное число значений. Докажите, что следующие утверждения: эквивалентны: 1) ξ — случайная величина;

- 2) ξ дискретная случайная величина;
- 3) для всех $x \in \mathbb{R}$ $\xi^{-1}(x) = \{\omega \mid \xi(\omega) = x\}$ является борелевским множеством.

Задача 10.4 (Про не вполне случайные величины; РЕШЕНА).

Докажите, что существует такая $\xi: \Omega \to \mathbb{R}$, не являющаяся случайной величиной, что для всех $x \in \mathbb{R}$ $\xi^{-1}(x) = \{\omega \mid \xi(\omega) = x\}$ является борелевским множеством.

Задача 10.5 (Иначе это бы не было геометрической вероятностью-2...; РЕШЕНА).

Покажите, что если некоторая вероятность \mathbb{P} , заданная на всех борелевских подмножествах $[0,1]^m$, инвариантна относительно движений (мера Лебега не меняется при любом отображении, сохраняющем расстояние); а кроме того, $\mathbb{P}\{\alpha z\,|\,z\in B\}=\alpha^m\mathbb{P}(B)$ для любых $B\in\mathfrak{B}$, $\alpha\in[0,1]$, то \mathbb{P} совпадает с мерой Лебега.

К Лекции 11

Задача 11.1 (Для экзамена в самый раз...; РЕШЕНА).

Найдите распределение модуля скорости для одноатомного газа, если средняя кинетическая энергия каждого атома известна.

Задача 11.2 (Стандартная нормальная задача; РЕШЕНА).

Среди всевозможных распределений абсолютно непрерывных случайных величин с нулевым матожиданием и единичной дисперсией найдите то, что максимизирует дифференциальную энтропию.

Задача 11.3 (Не стареет даже с бородой; РЕШЕНА).

Дана случайная величина ξ , $\mathbb{E}\xi=1$. Известно, что $\mathbb{P}(\xi>2T\,|\,\xi>T)=\mathbb{P}(\xi>T)$ для всех T>0. Найдите $F_{\mathcal{E}}$.

Задача 11.4 (Теорема Дуба; РЕШЕНА).

Пусть задана случайная величина $f:\Omega\to\mathbb{R}$. Докажите, что случайная величина $g:\Omega\to\mathbb{R}$ является $\sigma(f)$ -измеримой тогда и только тогда, когда для некоторой измеримой $h:\mathbb{R}\to\mathbb{R}$ выполнено $g(\omega)=h(f(\omega))$ для всех $\omega\in\Omega$.

Задача 11.5 (Легкий выбор; РЕШЕНА).

У абсолютно непрерывной случайной величины плотность всегда можно выбрать так, чтобы эта плотность была непрерывной всюду, кроме, быть может, множества любой наперед заданной положительной меры Лебега

Задача 11.6 (Гладкая задача; РЕШЕНА).

Хотя бы для гладких $g:\mathbb{R} \to \mathbb{R}$ докажите, что для всякой абсолютно непрерывной случайной величины ξ

$$\mathbb{E}g(\xi) = \int_{-\infty}^{+\infty} g(x) f_{\xi}(x) \, dx.$$

Задача 11.7 (Трехмерное машинное обучение; РЕШЕНА).

Задайте на отрезке [0,1] непрерывные скалярные функции X_j,Y_j,Z_j $(i\in\{1,2,3,\ldots,10\})$ так, чтобы любая непрерывная на кубе $[0,1]^3$ скалярная функция f могла быть представлена в виде

$$f(x, y, z) = \sum_{j=1}^{10} H_j(X_j(x) + Y_j(y) + Z_j(z)) \qquad \forall x, y, z \in [0, 1]$$

при некотором выборе десяти непрерывных функций $H_i: \mathbb{R} \to \mathbb{R}$.

Tаким образом для подбора функции на кубе нужно обучить лишь десять функций на отрезке... Φ игня — вопрос!

Задача 11.8 (А был ли предел?; РЕШЕНА).

Дана последовательность случайных величин ξ_n . Верно ли, что для некоторой ее подпоследовательности $\xi_{n(k)}$ найдется такая случайная величина ξ , что $F_{\xi_{n(k)}}(t) \to F_{\xi}(t)$ для всех $t \in \mathbb{R}$.

К Лекции 12

Задача 12.1 ($\infty - \infty = 10\,$ или "И немедленно повернул!"; РЕШЕНА).

Пусть ξ — произвольная случайная величина. Найдите интеграл

$$\int_{-\infty}^{+\infty} F_{\xi}(x) - F_{\xi}(x - 10) \, dx.$$

К Лекции 13

Задача 13.1 (А Леви пофигу...; РЕШЕНА, формулировка леммы давно поправлена...).

В лекциях, перед доказательством теоремы Леви, в формулировке

Лемма 3'. Пусть $\mu(\Omega) < \infty$, g — суммируемая функция, а f — предел монотонно неубывающей последовательности измеримых функций f_n . Тогда из $0 \le g \le f$ следует

$$\int_{\Omega} g(\omega) \, \mu(d\omega) \le \lim_{n \to \infty} \int_{\Omega} f_n(\omega) \, \mu(d\omega).$$

было пропущено одно слово. Приведите контрпример к этой формулировке, ну и восстановите пропущенное слово.

К Лекции 14

Задача 14.1 (Об эквивалентности непрерывности; РЕШЕНА).

Для вероятностей S и P следующие условия эквивалентны:

- 1. для всякого $A \in \mathcal{F}$ из P(A) = 0 следует S(A) = 0;
- 2. для всякого $\varepsilon > 0$ найдется такое $\delta > 0$, что из $P(A) < \delta$ следует $S(A) < \varepsilon$.

К Лекшии 15

Задача 15.1 (О бесполезности Коши; РЕШЕНА).

Докажите, что среднее арифметическое двух независимых случайных величин, распределенных по Коши, также распределено по Коши.

Задача 15.2 (О среднем для объединения алгебр; 1,4 балла).

Даны три σ -подалгебры $\mathcal{F}_1, \mathcal{F}_2, \mathcal{H}$. Докажите, что два следующих утверждения эквивалентны:

1. для любых ограниченных \mathcal{F}_1 -измеримой случайной величины $\xi_1, \ \mathcal{F}_2$ -измеримой случайной величины ξ_2 выполнено

$$\mathbb{E}(\xi_1 \xi_2 | \mathcal{H}) = \mathbb{E}(\xi_1 | \mathcal{H}) \mathbb{E}(\xi_2 | \mathcal{H});$$

2. для любой ограниченной \mathcal{H} -измеримой случайной величины ξ выполнено

$$\mathbb{E}(\xi|\mathcal{F}_1) = \mathbb{E}(\xi|\sigma(\mathcal{F}_1 \cup \mathcal{F}_2)).$$

Задача 15.3 (еще не двоечникам; РЕШЕНА).

Пусть X,Y — случайные величины с конечной дисперсией. Докажите следующую формулу для их ковариации $cov\left(X,Y\right)=\mathbb{E}(X-\mathbb{E}X)(Y-\mathbb{E}Y)$

$$cov(X,Y) = \int_{\mathbb{R}} \int_{\mathbb{R}} F_{X,Y}(x,y) - F_X(x)F_Y(y) dx dy$$

К Лекции 16

Задача 16.1 (почти конунгово; РЕШЕНА).

Для одинаково распределенных независимых случайных величин X_1, \ldots, X_n, \ldots , принимающих значения из некоторого отрезка длины d, докажите неравенства Хёфдинга: для $S_n = \frac{X_1 + \cdots + X_n}{n}$

$$\mathbb{P}(|S_n - \mathbb{E}X_1| \ge c) \le 2e^{-2nc^2/d^2}, \quad \mathbb{P}(S_n - \mathbb{E}X_1 \ge c) \le e^{-2nc^2/d^2} \quad \forall c > 0.$$

Задача 16.2 (теорема Вейершрасса об аппроксимации многочленами; РЕШЕНА).

Пусть дана некоторая непрерывная функция $f:[0,1]\to\mathbb{R}$. Используя неравенство Чебышева для случайной величины $Y_n^{(x)}\in Binom(n,x)$, докажите, что

$$\lim_{n \to \infty} \inf_{P \ - \ \text{полином}, deg \ P = n} \sup_{x \in [0,1]} |f(x) - P(x)| = 0.$$

К Лекции 17

Задача 17.1 (сильный=слабый+экономия матожидания; РЕШЕНА).

Пусть $\mathbb{E} X$ существует, и неотрицательные X_n сходятся по вероятности к X . Доказать, что $\mathbb{E} X_n \to \mathbb{E} X$ тогда и только тогда, когда $\mathbb{E} |X_n - X| \to 0$.

Задача 17.2 (Рисс и даже больше; РЕШЕНА).

 ξ_n сходится по вероятности, тогда и только тогда, когда из всякой ее подпоследовательности можно выделить подподпоследовательность, которая сходится почти наверное.

Задача 17.3 (полиномы гарантируют независимость; РЕШЕНА, формулировка была изменена). Доказать, что из $\mathbb{E} X^n Y^m = \mathbb{E} X^n \mathbb{E} Y^m$ для всех натуральных n,m следует независимость случайных величин X и Y в случае аналитичности их характеристических функций.

Задача 17.4 (независимость ведет к постоянству; РЕШЕНА).

Доказать, что если X_n сходится по вероятности к X и X_n независимы, то X — константа.

Задача 17.5 (разрывы пусты; РЕШЕНА).

Если ξ_n сходятся к ξ по вероятности, и для некоторой борелевской функции ϕ $\mathbb{P}\{\omega \in \Omega \mid \phi$ разрывна в точке $\xi(\omega)\} = 0$, то $\phi(\xi_n)$ также сходится по вероятности к $\phi(\xi)$.

Задача 17.6 (ослабление второй; РЕШЕНА).

Докажите, что во второй лемме Бореля-Кантелли условие независимости в совокупности можно ослабить до попарной.

Задача 17.7 (Не Семен, так Вы...; РЕШЕНА).

Пусть ξ_n сходится по вероятности к ξ ; докажите, что для всякой непрерывной функции $\phi: \mathbb{R} \to \mathbb{R}$ $\phi(\xi_n)$ также сходится по вероятности к $\phi(\xi)$.

К Лекции 18

Задача 18.1 (Подарок на 8 марта не запрещен; РЕШЕНА).

Д-во в Ширяеве найдено, кто найдет лучше

Найдите более-менее общую формулировку закона повторного логарифма с не слишком большим доказательством.

Задача 18.2 (От перемены мест слагаемых; РЕШЕНА).

Пусть борелевская функция f от координат x_1, \ldots, x_n, \ldots такова, что для всех $i \in \mathbb{N}$ $f(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, x_{i+2}, \ldots) = f(x_1, \ldots, x_{i-1}, x_{i+1}, x_i, x_{i+2}, \ldots)$. Пусть X_1, \ldots, X_n, \ldots — независимые в совокупности одинаково распределенные случайные величины. Докажите, что случайная величина $f(X_1, \ldots, X_n, \ldots)$ с вероятностью 1 — константа.

Задача 18.3 (Максвелл найдет пружинки для своих уравнений ...; РЕШЕНА).

Если ξ_n сходится по распределению к ξ , то существуют случайные величины η_n и η такие, что η_n сходится почти всюду к η , а кроме того $F_{\xi_n} = F_{\eta_n}$, $F_{\xi} = F_{\eta}$.

К Лекции 19

Задача 19.1 (от матожидания к производной; РЕШЕНА).

Если конечен интеграл $\int_{\mathbb{R}} |x|^k \mu(dx)$, то характеристическая функция $\tilde{\mu}$ имеет k-ю производную; в частности $\mathbb{E}\xi = i \frac{d\xi(0)}{dt}$.

Задача 19.2 (хорошая вторая; РЕШЕНА).

Доказать, что если характеристическая функция $\tilde{\mu}$ имеет вторую производную, то $\int_{\mathbb{R}} |x|^2 \mu(dx) < +\infty$

Задача 19.3 (плохая первая; РЕШЕНА).

Доказать, что из существования у характеристической функции $\tilde{\mu}$ первой производной не следует $\int_{\mathbb{R}} |x| \mu(dx) < +\infty$.

Задача 19.4 (от независимости к нормальности; РЕШЕНА).

Пусть ξ, η — независимы, одинаково распределены и имеют дисперсию. Пусть также $\xi + \eta, \xi - \eta$ также независимы. Докажите, что ξ, η нормально распределены.

Задача 19.5 (значит нормально; РЕШЕНА).

Пусть случайные величины ξ, η одинаково распределены, их матожидание равно нулю, а дисперсия конечна. Докажите, что если $(\xi+\eta)/\sqrt{2}$ имеет то же распределение, что и ξ , то все эти распределения нормальны.

Задача 19.6 (от преобразования к рядам; РЕШЕНА).

Пусть ξ — случайная величина, принимающая лишь целые значения. Докажите, что

$$\mathbb{P}(\xi = k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikt} \tilde{\xi}(t) dt.$$

К Лекции 20

Задача 20.1 (Сфера-1; РЕШЕНА).

Пусть $\xi_1, \xi_2, \ldots, \xi_n$ одинаково распределены и независимы. Известно, что распределение вектора $(\xi_1, \xi_2, \ldots, \xi_n)$ симметрично (инвариантно к повороту вокруг центра координат). Докажите, что все $\xi_1, \xi_2, \ldots, \xi_n$ нормально распределены.

Задача 20.2 (Сфера-2; РЕШЕНА).

Пусть ξ_1, ξ_2 независимы и имеют стандартное нормальное распределение. Докажите, что $\xi_1^2 + \xi_2^2$ и независимы.

Задача 20.3 (Сфера-3; РЕШЕНА).

Пусть для каждого n>2 вектор $(\xi_1^{(n)},\xi_2^{(n)},\dots,\xi_n^{(n)})$ равномерно распределен на (n-1)-мерной единичной сфере с началом в центре координат, а все такие вектора независимы. Найдите для всякого x предел

$$\lim_{n \to \infty} \mathbb{P}(\sqrt{n}\xi_1^{(n)} \le x).$$

Задача 20.4 (и при чем тут углы; РЕШЕНА).

Пусть ξ_1, ξ_2 независимы и имеют стандартное нормальное распределение. Докажите, что $\frac{\xi_1^2 - \xi_2^2}{\sqrt{\xi_1^2 + \xi_2^2}}$ и $\frac{2\xi_1 \xi_2}{\sqrt{\xi_1^2 + \xi_2^2}}$ независимы.

Задача 20.5 (и при чем тут тангенс; РЕШЕНА).

Пусть ξ_1, ξ_2 независимы и имеют стандартное нормальное распределение. Докажите, что $\frac{\xi_1}{\xi_2} - \pi \frac{\xi_2}{\xi_1}$ распределено по Коши.

Задача 20.6 (Снова ЦПТ; РЕШЕНА).

Пусть $\xi_1, \xi_2, \dots, \xi_n, \dots$ имеют стандартное нормальное распределение и независимы. Найдите пределы по распределению у

$$\sqrt{n} \frac{\xi_1 + \xi_2 + \dots + \xi_n}{\xi_1^2 + \xi_2^2 + \dots + \xi_n^2}$$

И

$$\frac{\xi_1 + \xi_2 + \dots + \xi_n}{\sqrt{\xi_1^2 + \xi_2^2 + \dots + \xi_n^2}}.$$

Задача 20.7 (Снова ЦПТ-максимум; РЕШЕНА).

Пусть $\xi_1, \xi_2, \dots, \xi_n, \dots$ одинаково распределены, независимы, имеют единичное маожидание и единичную дисперсию. Пусть $M_n = \max(\xi_1, \xi_1 + \xi_2, \dots, \xi_1 + \xi_2 + \dots + \xi_n)$. Найдите для всякого x предел

$$\lim_{n \to \infty} \mathbb{P}(M_n \le n + x\sqrt{n}).$$

Задача 20.8 (Усиление для Колмогорова; 2 балла (ОПЕЧАТКА ПОПРАВЛЕНА)).

Пусть $\xi_1, \xi_2, \dots, \xi_n, \dots$ одинаково распределены и независимы. Пусть также $n\mathbb{P}(|\xi_1|>n)\to 0$ и $a_n=\mathbb{E}(\xi_1 1_{|\xi_1|< n})$. Тогда

$$\frac{\xi_1 + \xi_2 + \dots + \xi_n}{n} - a_n \xrightarrow{P} 0.$$

Задача 20.9 (из слабой еще слабее; РЕШЕНА).

Пусть ξ_n сходится по распределению к ξ , все эти случайные величины неотрицательны и имеют конечное матожидание Можно ли утверждать, что $\mathbb{E}\xi \leq \liminf_{n\to\infty} \mathbb{E}\xi_n$?

Задача 20.10 (не Вассерштайн; 2 балла).

Пусть F,G — две функции распределения случайных величин, имеющих дисперсию. Как монотонные отображения можно ввести почти всюду корректно обратные отображения $F^{-1}:(0,1)\to\mathbb{R}$, $G^{-1}:(0,1)\to\mathbb{R}$ (например правилом $F^{-1}(t)=\inf_{F(x)>t}x$). Тогда расстояние между распределениями можно задать формулой

$$d_2(F,G) = \left(\int_0^1 |F^{-1}(t) - G^{-1}(t)|^2 dt\right)^{1/2}.$$

Докажите, что тогда

$$d_2^2(F,G) = \min_{\xi,\eta,F_{\xi}=F,F_{\eta}=G} \mathbb{E}(\xi-\eta)^2,$$

(здесь перебор происходит по всем случайным величинам имеющим распределения F,G).

Задача 20.11 (скорее не Добрушин; РЕШЕНА).

Пусть F,G — две функции распределения случайных величин, имеющих матожидание. Как монотонные отображения можно ввести почти всюду корректно обратные отображения $F^{-1}:(0,1)\to\mathbb{R}$, $G^{-1}:(0,1)\to\mathbb{R}$ (например правилом $F^{-1}(t)=\inf_{F(x)>t}x$). Тогда расстояние между распределениями можно задать формулой

$$d_1(F,G) = \int_0^1 |F^{-1}(t) - G^{-1}(t)| dt.$$

Докажите, что тогда

$$d_1(F, G) = \min_{\xi, \eta, F_{\xi} = F, F_{\eta} = G} \mathbb{E}|\xi - \eta|,$$

(здесь перебор происходит по всем случайным величинам имеющим распределения F,G).

Задача 20.12 (ЦПТ — Стирлингу; СНЯТА).

Рассмотрим n независимых, распределенных по Пуассону с параметром 1 случайных величин ξ_n , их сумму S_n и $\zeta_n = \frac{(S_n - n)^-}{\sqrt{n}}$. Докажите, что

$$\mathbb{E}\zeta_n = \frac{n^n e^{-n} \sqrt{n}}{n!},$$

но ζ_n сходится к некоторому нормальному распределению ζ , в силу чего $n! \sim \sqrt{2\pi n} n^n e^{-n}$.

К Лекции 21

Задача 21.1 (неоднозначная медиана; 1 балл).

Пусть F_n — эмпирическая функция распределения. Пусть x_n таково, что $F_n(x_n) = 1/2$. Докажите, что если у распределения F медиана μ единственна, то оценка x_n состоятельна в сильном смысле $(x_n \xrightarrow{\text{п.в.}} \mu)$, верно ли, что эта оценка является несмещенной.

К Лекции 22

Задача 22.1 (метод складного ножа; РЕШЕНА).

Пусть для каждого n дана некоторая смещенная оценка $\hat{\theta}(x_1,\dots,x_n)$ параметра θ , причем известно $\mathbb{E}\hat{\theta}-\theta=\frac{a_1}{n}-\frac{a_2}{n^2}+\dots$ Докажите, что оценка

$$\check{\theta} = n\hat{\theta}(x_1, \dots, x_n) - \frac{n-1}{n} \sum_{i=1}^n \hat{\theta}(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

асимптотически несмещенная, ее матожидание $\mathbb{E}\hat{\theta} - \theta = o(\frac{1}{n})$.

[чтобы сместить оценку обратно знать коэффициенты a_1, a_2 не требуются!!]

К Лекции 23

Задача 23.1 (дело статиста-1; РЕШЕНА).

Три продавца-консультанта в фирме "Солнце высоко"набрали заказов на суммы $S=10,20,30\,$ тугриков, потратив соответственно $T=20,30,40\,$ минут. Статист Петя априори знает лишь, что как S, так и T положительны. Докажите, что подходящим выбором взаимнооднозначной непрерывно дифференцируемой функции g в методе моментов статист Петя сможет получить для $\mathbb{E} S$ этим методом оценку, равную 15.

Задача 23.2 (дело статиста-2; 1 балл).

Докажите, что в задаче 23.1 подходящим выбором взаимнооднозначной непрерывно дифференцируемой функции g в методе моментов статист Петя сможет получить для ($\mathbb{E}S, \mathbb{E}T$) этим методом оценку, равную (100, 1).

Задача 23.3 (дело статиста-3; 1 балл).

Докажите, что в задаче 23.1, оценивая лишь $\mathbb{E}T$, статисту Пете, никаким выбором взаимнооднозначной непрерывно дифференцируемой функции g, не получить методом моментов оценку для $\mathbb{E}T$, равную 45.

Задача 23.4 (дело статиста-4; 1 балл).

Докажите, что в задаче 23.1, оценивая лишь $\mathbb{E}S$, статисту Пете, никаким выбором взаимнооднозначной непрерывно дифференцируемой функции g, не получить методом моментов оценку для $\mathbb{E}S$, равную 10.

К Лекции 24

Задача 24.1 (переходы vs привалы; РЕШЕНА).

Однозначно ли определяются матрицы переходов $P^{(k)}$ по распределениям X_k ?

К Лекции 25

Задача 25.1 (мало непрерывна; РЕШЕНА).

Может ли матрица переходов у однородной марковской цепи с непрерывным временем оказаться разрывной по t?

Задача 25.2 (мало дифференцируема; РЕШЕНА).

Может ли матрица переходов у однородной марковской цепи с непрерывным временем оказаться непрерывной, но не дифференцируемой по t?

Задача 25.3 (неподвижная точка как собственный вектор; 2 балла).

Доказать без опоры на топологические результаты существование стационарного распределения у однородной марковской цепи с непрерывным временем и конечным числом состояний по следующей схеме: заметить, что сумма элементов матрицы P(t)-I равна нулю, она вырождена, то есть для собственного числа, равного 1, матрица P(t) имеет собственный вектор-строку $\pi(t)$; убедиться, что эта строка — распределение, и устремить $t=1/n\downarrow 0$.

Задача 25.4 (простой дифур; РЕШЕНА).

Для однородной марковской цепи с непрерывным временем доказать в случае дифференцируемой в нуле матрицы P, что распределение π стационарно тогда и только тогда, когда $\pi Q = 0$.

К Лекции 26

Задача 26.1 (сам себе судья; РЕШЕНА).

Для любых двух моментов остановки σ, τ докажите, что события $\{\sigma < \tau\}$, $\{\sigma = \tau\}$, $\{\sigma > \tau\}$ лежат и в \mathcal{F}_{σ} , и в \mathcal{F}_{τ} .

Задача 26.2 (предел остановок; РЕШЕНА).

Для любой последовательности моментов остановки $\tau_n:\Omega\to\mathbb{R}_+\cup\{+\infty\}$ докажите, что ее нижний и верхний пределы

$$\liminf_{n \to \infty} \tau_n, \ \limsup_{n \to \infty} \tau_n$$

также являются моментами остановки.

К Лекции 27

Задача 27.1 (в одну; РЕШЕНА).

Докажите, что супермартингал X_t является мартингалом только если $\mathbb{E} X_t$ не зависит от времени.

Задача 27.2 (и в другую; РЕШЕНА).

Докажите, что у мартингала X_t $\mathbb{E}X_t$ не зависит от времени.

Задача 27.3 (не на максимум; РЕШЕНА).

Докажите, что если X_t, Y_t — супермартингалы относительно одной и той же фильтрации, то $X_t \wedge Y_t$ — тоже супермартингал.

Задача 27.4 (бактерии против; РЕШЕНА).

Пусть X_n — число бактерий в момент времени n, в каждый момент времени каждая бактерия дает распределенное по Пуассону с параметром 1,5 число потомков. Найдите такое число K, что K^{-X_n} — мартингал. Найдите вероятность того, что популяция в конце концов погибнет, если в начальный момент было ровно 5 бактерий.

Задача 27.5 (любителям интегрировать; РЕШЕНА).

Пусть $(X_t)_{t \geq 0}$ — мартингал с непрерывными траекториями. Найдите для всяких $t, s \geq 0$ (s < t) значение

$$\mathbb{E}\Big(\int_0^t X_u \, du \, \Big| \, \mathcal{F}_s\Big)$$

в терминах \mathcal{F}_s .

Задача 27.6 (просто мартингал; РЕШЕНА).

Пусть $\xi_1, \dots, \xi_n, \dots$ — суммируемые случайные величины, для всех натуральных n $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ и $\frac{\xi_1 + \dots + \xi_n}{n} = \mathbb{E}(\xi_{n+1}|\mathcal{F}_n)$. Докажите, что последовательность $X_n \stackrel{\triangle}{=} \frac{\xi_1 + \dots + \xi_n}{n}$ — мартингал.

Задача 27.7 (еще просто мартингал; 0,7 балла).

Пусть $\xi_1, \dots, \xi_n, \dots$ — независимые одинаково распределенные случайные величины с симметричным распределением. Пусть для всех натуральных n $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ и $S_n = \xi_1 + \dots + \xi_n$, $S_0 = 0$. Докажите, что для всех a набор $X_k \stackrel{\triangle}{=} \mathbb{P}(S_{n-k} + S_k \leq a)$ $k \in \{0, 1, 2, \dots, n\}$ — мартингал.

Задача 27.8 (большой квадрат как сумма маленьких; РЕШЕНА).

Пусть последовательность X_n — мартингал, и $\mathbb{E}X_n^2 < \infty$.

Докажите, что

$$\sup_{n\in\mathbb{N}} \mathbb{E}X_n^2 < \infty \Leftrightarrow \sum_{n\in\mathbb{N}} \mathbb{E}(X_n - X_{n+1})^2 < \infty$$

Задача 27.9 (субвыпуклая задача; РЕШЕНА).

Верно ли, что для всякой выпуклой (вниз) функции g и субмартингала X_n , если все $g(X_n)$ — суммируемы, то $g(X_n)$ — тоже субмартингал?

Задача 27.10 (один на пару; РЕШЕНА).

Докажите, что всякий мартингал X_n является разностью двух неотрицательных мартингалов в случае ограниченности последовательности $\mathbb{E}|X_n|$. Время считать дискретным.

Задача 27.11 (от Хеффдинга к Азуме; РЕШЕНА).

Доказать, что если последовательность X_n — мартингал, $X_1=0$, $X_{n+1}-X_n$ входит в отрезок длины d_n , то для всех положительных x

$$\mathbb{P}\{X_{n+1} \le -x\} \le e^{-\frac{x^2}{2\sum_{k=1}^n d_k^2}}.$$

При этом автоматически получится также

$$\mathbb{P}\{X_{n+1} \ge x\} \le e^{-\frac{x^2}{2\sum_{k=1}^n d_k^2}},$$

$$\mathbb{P}\{|X_{n+1}| \ge x\} \le 2e^{-\frac{x^2}{2\sum_{k=1}^n d_k^2}}.$$

Задача 27.12 (мартингалы — NP-трудным-1; 1 балл).

Предполагая, что задача 27.11 решена, докажите следующую оценку для случайных графов. Рассмотрим случайный граф из n вершин, все ребра-события в нем имеют общее распределение и независимы в совокупности. Пусть χ — случайная величина, равная хроматическому числу реализовавшегося графа. Докажите, что

$$\mathbb{P}\{|\chi - \mathbb{E}\chi| \ge x\} \le 2e^{-\frac{x^2}{2n}}.$$

Tаким образом решать одну NP -трудную задачу — NP -трудно, но если Bы их решили достаточно много, то ответ скорее всего Bы уже знаете.

Задача 27.13 (мартингалы — NP-трудным-2; 1 балл).

Предполагая, что задача 27.11 решена, докажите следующую оценку для задачи о рюкзаке. Пусть имеются перечень из n потенциально интересных таможне предметов, ценность каждого из них — X_i , вес каждого — Y_i . Волшебный рюкзак таможне недоступен, но имеет ограничение по весу C>0, поэтому Вы желаете максимизировать общую суммарную ценность предметов без нарушения этого ограничения и умеете на Вашей не менее волшебной машине считать (!) эту оптимальную стоимость W. Трактуя вес и ценность i-того потенциально интересного таможне предмета как случайные величины, считая, что все эти сл.в. независимы в совокупности и принимают значения из промежутка [0,M], Вы можете надеяться посчитать $\mathbb{E}W$ (ну или прикинуть, собрав статистику). Докажите, что

$$\mathbb{P}\{|W - \mathbb{E}W| \geq x\} \leq 2e^{-\frac{x^2}{2nM^2}}$$

Tаким образом решать одну NP -трудную задачу — NP -трудно, но если Bы ux решили достаточно много, то ответ скорее всего Bы уже знаете.

Задача 27.14 (мартингалы — айфонам; 1 балл).

Если в очереди за айфонами стоит $i \ge 1$ страждущих, то явление следующего страждущего (и увеличение очереди на 1) распределено по Пуассону с параметром $\lambda_i > 0$, а получение айфона первым страждущим (и уменьшение очереди на 1) распределено по Пуассону с параметром $\mu_i > 0$.

Докажите, что отображение h(0)=0, h(1)=1, $h(i+1)=\frac{\mu_i}{\lambda_i}(h(i)-1)+1$ является мартингалом (предполагая его суммируемость), а вероятность того, что очередь рассосется раньше, чем в ней будет 1000 страждущих, если сейчас в ней 100 страждущих, равна $1-\frac{h(100)}{h(1000)}$.

Задача 27.15 (мартингалы — медвежатникам; 1 балл).

Пусть опытный медвежатник заработает на i-м взломе случайную величину X_i , а не попадется при этом с вероятностью p_i . Будем для простоты считать, что обучения нет, а вероятность попасться, равно как размер добычи никак не зависят от всех предыдущих взломов. Тогда, если медвежатник не попался за τ шагов, то заработает

$$p_1p_2\dots p_{\tau}(X_1+\dots+X_{\tau}),$$

если же попадется, то потеряет 1000000. Найдите медвежатнику оптимальный момент остановки.

Задача 27.16 (еще не Вальд; РЕШЕНА).

Пусть дана последовательность независимых одинаково распределенных случайных величин ξ_n с нулевым матожиданием. Докажите, что последовательности

$$\left(\sum_{k=1}^{n} \xi_k\right)^2 - n\mathbb{E}\xi_1^2, \ \frac{e^{\lambda(\xi_1 + \dots + \xi_n)}}{\mathbb{E}e^{k\lambda\xi_1}}$$

для любого $\lambda > 0$ — мартингалы.

К Лекшии 28

Задача 28.1 (оптимальность так близка; РЕШЕНА).

Привести пример задачи об оптимальной остановке на марковской цепи со счетным числом состояний и дискретным временем, в которой оптимального момента остановки в классе не существует. Естественно ограничения сверху на оптимальный момент при этом быть не должно.

Задача 28.2 (тригонометрией для поиска лучшего сидра; РЕШЕНА).

Пусть в каждой точке (x,y) 2-мерной целочисленной решетки имеется по цистерне сидра качества $g(x,y)=\sin(x+y)\in[-1,1]$. Каждый момент времени любителя сидра случайно сносит ветром равновероятно (с вероятностью 1/4) в соседнюю точку. Качество сидра в каждой цистерне он заведомо знает, но поскольку летать бесконечно ему не так интересно, в момент времени n его радость от встречи с цистерной равна $\cos^n(1)g(x,y)$. Найдите оптимальный с точки зрения радости встречи момент его остановки, если $(X_0,Y_0)=(0,0)$.

Задача 28.3 (тригонометрией для поиска лучшего сидра-2; 1,5 балла). Предыдущая задача для $g(x,y) = \sin(x)\sin(y)$.

Задача 28.4 (задача о невесте-1; РЕШЕНА).

В задаче о невесте из лекций предполагалось, что кандидаты приходят в случайном порядке, то есть все N перестановок равновероятны. Предположим, что кандидаты приходят в силу некоторой циклической перестановки, (таких N штук), которая впрочем нам по прежнему полностью неизвестна. Как изменится ответ (оптимальное правило и наибольшая вероятность) в этой задаче?

Задача 28.5 (задача о невесте-2; 1,5 балла).

В задаче о невесте из лекций требовалось максимизировать вероятность выбора лучшего среди всех кандидатов. Пусть нужно максимизировать вероятность выбора одной из двух лучших кандидатур. Как изменится ответ (оптимальное правило и наибольшая вероятность) в этой задаче?

АКЦИЯ: РЕШИ ЗАДАЧУ — ПОЛУЧИ +50%...

Остались нерешенными: 3.4, 4.3, 8.2, 15.2, 20.8, 20.10, 20.12, 21.1, 23.2, 23.3, 23.4, 25.3, 27.7, 27.12, 27.13, 27.14, 27.15, 28.1, 28.2, 28.3, 28.5

пока есть что решать: смотрите два десятка задач выше, когда закончатся — обращайтесь

К Лекции 29

Задача 29.1 (по определению; РЕШЕНА).

Пусть X_n , Y_n — мартингалы относительно некоторой фильтрации. Когда и при каких условиях мартингалами будут $X_n \wedge Y_n, X_n + Y_n, X_n Y_n$.

Задача 29.2 (по примеру; РЕШЕНА).

Докажите или опровергните, что в "важном примере" средний выигрыш $\frac{\omega_1 + \dots + \omega_n}{n}$ является мартингалом, субмартингалом, субмартингалом.