

REPRESENTAÇÃO DA
GERAÇÃO FOTOVOLTAICA DO
SIN NAS ANÁLISES DE
TRANSITÓRIOS
ELETROMECÂNICOS INSTRUÇÕES E DADOS PARA
SIMULAÇÃO - REVISÃO 2

JULHO / 2020

© 2020/ONS Todos os direitos reservados. Qualquer alteração é proibida sem autorização.

ONS DPL REL 0111-2020

REPRESENTAÇÃO DA
GERAÇÃO FOTOVOLTAICA DO
SIN NAS ANÁLISES DE
TRANSITÓRIOS
ELETROMECÂNICOS INSTRUÇÕES E DADOS PARA
SIMULAÇÃO - REVISÃO 2

JULHO / 2020

Sumário

1	INTRODUÇÃO E OBJETIVO	4
2	DADOS E PROGRAMAS UTILIZADOS	5
3	MODELAGEM DA GERAÇÃO FOTOVOLTAICA, INSTRUÇÕES E ARQUIVOS PARA SIMULAÇÃO	6
	3.1 Análise de Transitórios Eletromecânicos	6
4	MODOS DE OPERAÇÃO DAS INSTALAÇÕES PRESENTES NA BA DE DADOS	SE 13
5	REPRESENTAÇÃO DAS USINAS FOTOVOLTAICAS NOS CASOS REFERÊNCIA – PADRONIZAÇÃO	DE 15
6	REFERÊNCIAS	17
7	EQUIPE TÉCNICA	18

1 INTRODUÇÃO E OBJETIVO

A partir de 2016, com a entrada em operação das primeiras usinas fotovoltaicas de grande porte no SIN, a matriz energética solar brasileira vem crescendo de forma acentuada, com previsão de atingir cerca de 3,055 GW ao final de 2020, o que representará cerca de 1,8 % da capacidade de geração instalada no SIN.

Nesse contexto, sua consideração nos estudos elétricos do SIN, com ênfase para a regiões Nordeste e Sudeste e suas interligações com os demais subsistemas, se reveste de importância crescente.

Assim, o objetivo deste trabalho consiste em:

- Fornecer ao usuário as informações e orientações básicas para viabilizar a simulação das usinas fotovoltaicas existentes no SIN, a partir do uso de arquivos específicos criados para essa atividade;
- Apresentar, de forma detalhada, as usinas fotovoltaicas do SIN em operação até o final do 2° Quadrimestre de 2020 e as usinas fotovoltaicas futuras, existentes no horizonte do PAR 2021-2025, os pontos de conexão, fabricantes, tipos e modelos de inversores e modos de operação, considerando todos os modelos presentes na Base de Dados de Usinas Fotovoltaicas do SIN; e
- Apresentar a nova organização dos modelos dinâmicos dos inversores utilizando as Topologias Definidas pelo Usuário DTDU, disponível no programa Anatem.

2 DADOS E PROGRAMAS UTILIZADOS

A versão BD0720R0 utilizou como ponto de partida a versão vigente da base de dados para estudos de transitórios eletromecânicos do SIN, relativa a março de 2020 – revisão 1 (BD0320R1).

As versões (compatíveis) dos programas do Cepel utilizados foram as seguintes:

- ANATEM versão 11.10.00 agosto/2020 Eletrobras Cepel;
- ANAREDE versão 11.04.00 agosto/2020 Eletrobras Cepel;
- PacDyn versão 9.9.1 agosto/2020 Eletrobras Cepel.

Nota: É obrigatória a atualização da versão dos programas ANAREDE, ANATEM e PacDyn para a utilização da nova base de dados de transitórios eletromecânicos. A nova versão do programa dos programas do Cepel encontra-se disponível para atualização no site do Departamento de Redes Elétricas do Cepel em: dre.cepel.br.

Arquivos com os casos de referência de fluxo de potência utilizados nos casos exemplo distribuídos:

 Arquivo 3Q2020_R2.sav – caso do terceiro quadrimestre de 2020 – revisão 2, mês de setembro 2020, carga média.

Com base nesse cenário de regime permanente, é disponibilizado um arquivo STB (ANATEM), com um caso exemplo, visando facilitar ao usuário a montagem do caso de seu interesse:

Arquivo Caso_PEL_0720.stb – utiliza o cenário 3Q2020_R2.sav.

3 MODELAGEM DA GERAÇÃO FOTOVOLTAICA, INSTRUÇÕES E **ARQUIVOS PARA SIMULAÇÃO**

3.1 Análise de Transitórios Eletromecânicos

A tabela a seguir apresenta os montantes máximos de geração Fotovoltaica que estão modelados na Base de dados para análises de transitórios eletromecânicos.

Tabela 3-1: Máxima geração fotovoltaica no SIN - fator de potência unitário

Geração Fotovoltaica modelada	Capacidade (MW)	% do total
Região Sudeste em operação ¹	902,9	29,0
Região Nordeste em operação ¹	2209,7	71,0
Total	3112,6	100
Região Sudeste futuras ²	2501,5	68,2
Região Nordeste futuras ²	1168,5	31,8
Total	3670,0	100

Notas: 1. Instalações em operação comercial até o segundo quadrimestre de 2020 (inclusive).

A forma de consideração da geração fotovoltaica nas análises de transitórios eletromecânicos encontra-se resumida a seguir.

ARQUIVOS NECESSÁRIOS E PROCEDIMENTOS PARA SIMULAÇÃO

Os dados das usinas fotovoltaicas contidos nesta versão da Base de Dados de Transitórios Eletromecânicos do programa ANATEM foram organizados por topologia de forma a minimizar o número de modelos CDU nos arquivos de dados. Dessa forma, existem quatro arquivos para simulação das usinas fotovoltaicas, a saber:

1. UFV_PEL_0720.dat

Contém os dados do código DFNT das usinas fotovoltaicas existentes até o horizonte do 2° Quadrimestre de 2020.

2. UFV_DADOS.cdu

Contém os dados das topologias (DTDU), das localizações remotas (DLOC) e de associação (ACDU) dos CDU das usinas fotovoltaicas às topologias.

^{2.} Instalações previstas para entrar em operação no horizonte do PAR 2021-2025.

3. PLT_UFV_0720.dat.

Contém plotagem das principias grandezas associadas às usinas fotovoltaicas declaradas no cartão DPLT.

O arquivo de dados **UFV_PEL_0720.dat** necessita ser editado para definição das usinas e do número de inversores (cartão DFNT) que serão considerados no caso, ou seja, que possuem geração no fluxo de potência e, adicionalmente, se deseja simular sua dinâmica, devendo-se comentar aquelas que serão desconsideradas. Ressalte-se que, os cartões DFNT contidos na base de dados sempre consideram que todos os inversores estão em operação na usina.

Nota: Em caráter excepcional, e em função dos casos no horizonte do PAR 2025/2026 ainda não terem sido unificados em relação aos caos de fluxo de potência e curto-circuito, a BD0720R0 não contempla os dados referentes ao horizonte do PAR. Caso seja necessário simular casos no horizonte do PAR, deve ser utilizada a base de dados BD0320R0, também disponível para download no SINtegre.

Importante: em uma determinada simulação a modificação do número de inversores em operação na usina deve ser feita de maneira criteriosa, pois durante a operação normal todos os inversores estão em operação, sendo a potência gerada estabelecida em função da irradiação solar considerada no cenário analisado. A edição do número de inversores deve somente ser feita em estudos específicos, quando por exemplo, um ou mais grupos de inversores se encontram em manutenção.

O arquivo de topologia **UFV_DADOS.cdu** consolida no cartão DTDU todos os modelos CDU das usinas fotovoltaicas até o horizonte do PAR 2021-2025 em 12 topologias com modelos de inversores de 7 fabricantes (FIMER, GE, INGECOM, SMA Sunny Solar, SunGrow, WEG e Huawei). Ainda no mesmo arquivo, o cartão ACDU faz a associação entre os números dos CDU com os números das topologias do cartão DTDU, e a alteração de alguns parâmetros da topologia, de acordo com as informações fornecidas pelos agentes.

Quanto a plotagem, a simples inclusão do arquivo **PLT_UFV_0720.dat** plotará as principias grandezas associadas a todas as usinas fotovoltaicas que estiverem em operação, sem necessidade de edição, dado que é utilizada a opção IERR. A seguir, outro comando "DPLT" pode ser incluído na simulação para plotagem de outras grandezas desejadas.

Arquivo Anatem *.stb

O arquivo *.stb, em formato ANATEM, para simulação deve considerar os arquivos acima, conforme apresentado na Figura 3-1:

Figura 3-1: Arquivo de simulação ANATEM (arquivo *.stb)

O arquivo de topologias é associado automaticamente pelo arquivo de entrada de dados **UFV_PEL_0320.dat**, pois nesse arquivo já está incluído o código DARQ, conforme apresentado na Figura 3-2:

Figura 3-2: Associação do arquivo de topologias à simulação Anatem

```
DARQ
(Tipo) (C) ( Nome do Arquivo
CDU .\BDados\Fotovoltaicas\UFV_DADOS.cdu
9999999
```

As informações detalhadas para simulação de cada usina, os dados para sua representação, com indicação dos CDU e topologias a serem utilizados, estão incluídos nas Tabela 3-2 e Tabela 3-3 a seguir.

Em relação à representação das conexões das usinas fotovoltaicas ao sistema nos casos de referência, é imprescindível que sua representação seja implementada de forma padronizada, desde a integração da usina ao PAR, de forma a evitar discrepâncias quanto a representação entre os casos de referência. Esta ação possibilitará o uso de uma base de dados única, e permitirá considerar todas as usinas fotovoltaicas presentes na base nos estudos elétricos.

Tabela 3-2: Usinas fotovoltaicas do SIN com modelagem para estudos dinâmicos – em operação¹

n.º CDU	n.º DTDU (Topologia)	Barra	Ponto de Conexão	UF	Conjunto	Usinas Fotovoltaicas (n.º inversores)	INVERSOR Fabricante/Modelo (MW)				
	SUDESTE										
00004		7440				Pirapora 2 a 4	GE LV5 1.05 1510-SLR				
92601		7446				93 inversores	0,9677 MW				
02600	05040	4200	SE 138 kV	MO	Dironoro	Pirapora 5, 6, 7, 9 e 10	GE LV5 1.05 1510-SLR				
92600	95012	4366	Pirapora 2	MG	Pirapora	155 inversores	0,9677 MW				
02606		40.40				Vazante 1, 2 e 3	GE LV5 1.05 1510-SLR				
92606		4348				81 inversores	1,0 MW				
02605	05024	400	SE 138 kV	SP	Guaimbê	Guaimbê 1 a 5	INGECON SUN 1165TL B420				
92605	95021	409	Getulina	5P	Guaimbe	110 inversores	1,364 MW				
00007	05044	4070	SE 138 kV		Danasatu	Paracatu 1 a 4	GE LV5 1.05 1510-SLR				
92607	95011	4370	Paracatu 4	MG	Paracatu	132 inversores	1,0 MW				
92614	95020	7630	SE 138 kV	SP	Água Vermelha	Água Vermelha 4 a 6	INGECON SUN 1690TL B650				
92014	93020	7630	Água Vermelha	SF	Agua verillellia	50 inversores	1,52 MW				
92602	95035		7614	SE 138 kV	SP	Dragana	Dracena 1, 2 e 4	SUNGROW SG 3125HV			
92002	95055	7614	Dracena	or_	Dracena	24 inversores	3,375 MW				
92615	95000	7629	SE 138 kV	SP	Boa Hora	Boa Hora 1 a 3	HUAWAI – String SUN200060KTL-HV-D1-00				
			Água Vermelha			1152 inversores	0,06 MW				
					NORDES	TE					
91267						Nova Olinda 8 a 11	FIMER R11015TL				
91267		6746	6/46	6/46	0740	0740	SE 500 kV	D.	Nova Oliada	112 inversores	0,9375 MW
91268		07.15	S. J. do Piauí	PI	Nova Olinda	Nova Olinda 11 a 14	FIMER R11015TL				
91200		6747				112 inversores	0,9375 MW				
00404	05000	6577	SE 230 kV	ВΛ	Long	Lapa 2 e 3	FIMER R11015TL				
90401	95000	6577	B. J. da Lapa	BA	Lapa	64 inversores	0,9375 MW				
90400		6090	SE 230 kV	ВА	Bom Jesus	Bom Jesus da Lapa I e II	FIMER R11015TL				
90400	6090		B. J. da Lapa	DA	Dom Jesus	64 inversores	0,9375 MW				
04044	1	7151	SE 230 kV Tacaratu	PE	Tasaratu	Fonte Solar I e II	FIMER R11015TL				
91011					Tacaratu	10 inversores	1,0 MW				
91280	95020	5957	SE 500 kV São João do	PI	São João do Piauí	São João do Piauí 1 a 6	INGECON SUN 1690TL B650				
			Piauí			128 inversores	1,462 MW				

n.º CDU	n.º DTDU (Topologia)	Barra	Ponto de Conexão	UF	Conjunto	Usinas Fotovoltaicas (n.º inversores)	INVERSOR Fabricante/Modelo (MW)
04504						São Gonçalo A	(TÍPICO) FIMER R11015TL
91501		5818				144 inversores ²	1,0 MW
04500		0000				São Gonçalo B	(TÍPICO) FIMER R11015TL
91502	95000	8329	SE 500 kV	DI	São Concolo	144 inversores ²	1,0 MW
91503	95000	8372	Gilbués	PI	Sau Gunçalu	São Gonçalo C	(TÍPICO) FIMER R11015TL
91503		03/2				144 inversores²	1,0 MW
91504		8373				São Gonçalo D	(TÍPICO) FIMER R11015TL
91304		03/3				144 inversores²	1,0 MW
90144	95001	6102	SE 230 kV	RΔ	Horizonte	Horizonte MP1, MP2 e MP11	FIMER R11015TL
30144	93001	0102	T. Brejo Velho	BA Horizonte RN Floresta		76 inversores	1,025 MW e 1,0 MW
91554		5000	SE 230 kV	DN	Floresta	Floresta I, II e III	GE LV5 1.05 1510-SLR
91004		5299	Mossoró	KIN		86 inversores	1,0 MW
90143	95010	6084	SE 230 kV	RΑ	Bom Jesus da	Bom Jesus da Lapa 4 e 11	GE LV5 1.05 1510-SLR
00110	00010		B. J. da Lapa		Lapa	40 inversores	1,0 MW
90150		6786	SE 69 kV	DΛ	A São Pedro	São Pedro II e IV	GE LV5 1.05 1510-SLR
30130		0700	B. J. da Lapa	DA		54 inversores	1,0 MW
90530	95011	5702 St. 230 KV CF Steelcons		Steelcons Sol do Futuro I a III	GE LV5 1511-SLR 1.125		
30000	33011	3702	Aquiraz II	OL	Sol do Futuro	72 inversores	1,125 MW
91559		5805	SE 138 kV	DNI	RN Floresta BA Bom Jesus da Lapa BA São Pedro CE Steelcons Sol do Futuro RN Assú V CE Calcário BA Juazeiro Solar	Assú V	GE LV5 1.05 1510-SLR
91009		3603	Açu II	IXIN		30 inversores	1,0 MW
90529		5170	SE 230 kV	CE	Calcário	Apodi I a IV	GE LV5 1511-SLR 1.1
90329	95012	3170	Quixeré	CE	Calcallo	136 inversores	0,971 MW
00400			SE 230 kV			Juazeiro Solar I a IV	GE LV5 1510-SLR 1.05
90133		6269	Juazeiro da Bahia	ВА	Juazeiro Solar	120 inversores	1,0 MW
00044	05000		SE 69 kV		ъ.	Sertão Solar Barreiras I a IV	INGECON SUN 1690TL B650
92611	95020	95020 6750 Barreiras BA		ВА	Barreiras	56 inversores	1.690 MW
00400	05000	0000	SE 230 kV	D.		ltuverava 1 a 7	SMA SUNNY SC2200
90402	95030	6686	T. Brejo Velho	BA	ituverava	98 inversores	2,0 MW
04000	SE 230 kV		SE 230 kV		D	Coremas 1 a 3	WEG SIW700
91200	95040	5315	Coremas	РВ	Rio Alto	48 inversores	1,6875 MW

ONS

Notas: 1. Usinas fotovoltaicas em operação ou com previsão de integração até o final do 2º Quadrimestre de 2020.

2. Será usado modelo FIMER R11015TL de 1,0 MW como modelo típico de Usina Fotovoltaica, sendo o número de inversores alterado na Base de Dados, para adequação da capacidade ao modelo padrão.

Tabela 3-3: Usinas fotovoltaicas do SIN com modelagem para estudos dinâmicos – futuras

n.º CDU	n.º DTDU (Topologia)	Barra	Ponto de Conexão	UF	Conjunto	Usinas Fotovoltaicas (n.º inversores)	INVERSOR Fabricante/Modelo (MW)			
	SUDESTE									
			LT 138 kV			Jaíba 3, 4, 9, SE1	(TÍPICO) FIMER R11015TL			
92702	95000	7441	Manga 3 - Janaúba 1	MG	Jaíba	129 inversores ¹	1,0 MW			
92701		7678	SE 138 kV	MG	Jaíba 2	Jaíba O, NO1, N, NE1	INGECON SUN 1690TL B650			
92701		1010	Jaíba	IVIG	Jaiba Z	80 inversores	1,579 MW			
92703		7450	SE 345 kV			Léo Silveira 1 a 5	INGECON SUN 1690TL B650			
92703		7450	Pirapora 2	MG	Léo Silveira	160 inversores	1,547 MW			
92704		7583	SE 345 kV	IVIG	Leo Silveila	Léo Silveira 6 a 10	INGECON SUN 1690TL B650			
92704		7505	Pirapora 2			160 inversores	1,547 MW			
02700		7740				Janaúba 1 a 4	INGECON SUN 1690TL B650			
92709	05020	7719			a Janaúba	132 inversores	1,520 MW			
02740	95020	7721				Janaúba 5 a 8	INGECON SUN 1690TL B650			
92710						132 inversores	1,520 MW			
00744		7700	SE 500 kV			Janaúba 9 a 12	INGECON SUN 1690TL B650			
92711		7723	Janaúba 3	MG		132 inversores	1,520 MW			
92712		7725	725			Janaúba 13 a 16	INGECON SUN 1690TL B650			
92712		7725				132 inversores	1,520 MW			
00740		7707				Janaúba 17 a 20	INGECON SUN 1690TL B650			
92713		7727				132 inversores	1,520 MW			
00705		7500				Aurora 7 a 10, 23	GE LV5 1.05 1510			
92705		7588				170 inversores	1,1 MW			
00700		7500				Aurora 3 a 6, 13	GE LV5 1.05 1510			
92706	05042	7590	SE 230 kV	МС		170 inversores	1,1 MW			
02707	95013	95013	Jaíba	MG	Aurora	Aurora 21 a 23, 26, 28	GE LV5 1.05 1510			
92707		7671				170 inversores	1,1 MW			
92708		7673				Aurora 15, 17, 19, 20, 23	GE LV5 1.05 1510			
92700		7073				170 inversores	1,1 MW			
	NORDESTE									
92610		5840	SE 138 kV	PE	Bom Nome	Brígida I e II	(TÍPICO) FIMER R11015TL			
32010	0.505.5	5040	Bom Nome	1° E	DOIL MOILE	84 inversores ¹	1,0 MW			
0000	95000		SE 138 kV			Milagres 1 a 5	(TÍPICO) FIMER R11015TL			
90600		8347	Bom Nome - Milagres	RN	Milagres	164 inversores ¹	1,0 MW			

n.º CDU	n.º DTDU (Topologia)	Barra	Ponto de Conexão	UF	Conjunto	Usinas Fotovoltaicas (n.º inversores)	INVERSOR Fabricante/Modelo (MW)			
90601		8395	SE 230 kV CE Gameleira		Gameleira 1 a 4	(TÍPICO) FIMER R11015TL				
			Milagres - Icó			120 inversores ¹	1,0 MW			
91300	95000	05000	8411	0444	0444	SE 230 kV São João do	PI	Graviola	Graviola 1 a 4	(TÍPICO) FIMER R11015TL
91300		0411	Piauí	FI	Giaviola	300 inversores ¹	1,0 MW			
91600		8414	SE 500 kV	RN	Serra do Mel	Serra do Mel 1 e 2	(TÍPICO) FIMER R11015TL			
			Açu III			80 inversores ¹	1,0 MW			
			SE 230 kV			Alex 1, 3 a 10	SUNGROW SG 3125HV			
90519	95035	5935	Banabuiú - Mossoró 2	CE	Alex	81 inversores	3,437 MW			
00520	05020	95020 5938	SE 230 kV Cauípe CE		CE Lavras	Lavras 1 a 5	INGECON SUN 1690TL B650			
90520	95020			CE		90 inversores	1,579 MW			

Nota: 1. Para as UFV futuras será usado modelo FIMER R11015TL de 1,0 MW quando não houver informações consistentes na documentação enviada ao ONS como requisito dos Estudos de Acesso ao SIN. Nesse caso, o número de inversores será alterado na Base de Dados para adequação da capacidade do conjunto fotovoltaico ao modelo padrão.

ONS

4 MODOS DE OPERAÇÃO DAS INSTALAÇÕES PRESENTES NA BASE DE DADOS

Considerando o requisito "Modo de Controle de Tensão", associado ao controle de tensão, potência reativa ou fator de potência, para conexão de instalações de geração eólica ou fotovoltaica ao SIN, conforme definido nos Procedimentos de Rede do ONS, será incluída a seguir, uma listagem dos modos de operação possíveis de cada modelo presente na base de dados atual.

Tabela 4-1: Modo de Controle de Tensão das usinas fotovoltaicas da base de dados

Fabricante	Modo de Operação selecionado nos modelos	Opções	(parâmetros)	
		KQM		
		1 – FP (V)		
FIMER	Controle de Mvar fixo	2 – Q (V) – Iq fixa		
		3 – Q fixo		
		4 – TgPHI (Q/P)		
		VARFL	PFAFL	
GE	Controle de tensão (local / remoto) e Controle de Mvar	0 – Q (PFAFL)	0 – Q cte	
	,	1 – Tensão	1 – FP cte	
		ICMOD		
WEG	Controle de tensão local	1 – Tensão terminal		
WLG	Controle de tensão local	2 – Q		
		3 – FP		
		MODO		
SMA Solar	Controle de tensão local	1 – Q cte		
SIVIA SUIAI	Controle de tensão local	2 – FP cte		
		3 – Tensão terminal		
		MODO	M4	
		1 – Q cte	0 - Local	
INGECOM	Controle de Q (V) ²	2 – FP cte	1 - Remoto	
		3 – Q (P)		
		4 – Q (V) (M4)		
		MODO		
SUNGROW	Controle de Mvar fixo	0 - Q cte		
		1 - FP cte		

Adicionalmente, para cada fabricante, existem outras ações de controle presentes no campo que foram incorporadas aos modelos, as quais podem ser definidas através de ajustes pelo usuário, tais como:

- Prioridade entre a injeção de P ou Q em situações de variações de tensão na rede (GE, Ingecon e FIMER);
- Injeção de Q ou não em situações de grandes variações de tensão na rede V (L ou H) HT (GE); e
- Controle de Potência constante ou frequência constante (GE).

5 REPRESENTAÇÃO DAS USINAS FOTOVOLTAICAS NOS CASOS DE REFERÊNCIA – PADRONIZAÇÃO

Visando evitar discrepâncias na representação das usinas fotovoltaicas entre casos de referência dos diversos horizontes de estudos elétricos (PAR e planejamento de médio e curto prazos), apresenta-se a seguir proposta para inclusão dessas instalações, cuja configuração deverá ser mantida inalterada (sempre que possível), exceto a atualização de parâmetros quando necessário em todos os casos de referência do ONS, desde sua entrada no horizonte do PAR até os casos do curto prazo.

Destacamos que, a existência dessas discrepâncias torna inviável a utilização de uma base de dados única para representação destas fontes (ou em caso de sua utilização, a impossibilidade da consideração nas simulações de todas as usinas eólicas e fotovoltaicas existentes).

De um modo geral, as instalações de geração eólica e fotovoltaica são integradas ao SIN de acordo com a topologia equivalente apresentada na Figura 5-1.

Figura 5-1: Forma usual

onde:

A: impedância equivalente das conexões em baixa tensão da usina eólica ou fotovoltaica;

B: filtros ou bancos de capacitores eventualmente existentes;

C: transformador elevador; e

D: impedância da linha de conexão entre a subestação coletora e a barra de conexão com a rede básica.

Existe também uma forma de representação semelhante à forma apresentada na Figura 5-1. Nessa forma a impedância **D** não é utilizada pois a barra de alta do transformador elevador já é a barra da rede básica.

Assim sendo, no momento de sua inclusão nos casos do PAR (instante em que as novas instalações são incluídas nos casos de referência do ONS), pode-se escolher (conforme o caso), utilizar uma das configurações propostas, inicialmente com parâmetros típicos, os quais serão atualizados e validados em um tempo mais próximo da elaboração dos estudos pré-operacionais e entrada em operação da usina, similar ao que é feito para uma fonte de geração convencional.

Este procedimento, sem alterações na forma da conexão, permitirá o uso da mesma base de dados para todos os âmbitos e horizontes de estudo, sem perdas na representação deste tipo de fonte, como ocorreria caso existissem divergências de representação, conforme tem sido observado em algumas situações.

Cumpre destacar que a proposta sugerida não pretende atender a totalidade dos casos, uma vez que, certamente, existirão exceções em termos de configuração. Contudo, a experiência atual demonstra que sua utilização atenderá um grande percentual das instalações, minimizando eventuais discrepâncias.

De fato, outros aspectos podem gerar diferenças entre as informações iniciais e aquelas que efetivamente serão integradas, tais como, parques com inversores de diferentes fabricantes ou de mesmo fabricante com modelo ou potências distintas, entre outros. Contudo, tais situações são menos usuais, devendo ser tratadas como exceções.

Por fim, cabe destacar a necessidade das usinas fotovoltaicas do SIN serem integralmente representadas da forma padronizada nos casos de referência.

Para detalhamento, e outros aspectos referentes a esse assunto, a referência [6] é uma excelente fonte de consulta.

6 REFERÊNCIAS

ONS

- [1] Relatório ONS 0130/2016 Geração Fotovoltaica Aspectos gerais da conexão e representação em estudos de transitórios eletromecânicos.
- [2] Programa ANATEM Análise de Transitórios Eletromecânicos Manual do Usuário V11.10.00 Eletrobras CEPEL agosto/2020.
- [3] Programa ANAREDE Análise de Análise de Elétricas V11.04.00 Manual do Usuário Eletrobras CEPEL agosto/2020.
- [4] Casos de referência do Planejamento da Operação Elétrica com horizonte Quadrimestral 2° Quadrimestre de 2020.
- [5] Casos de referência do PAR 2021-2025.
- [6] Relatório ONS 3-140/2018 Representação equivalente dos Parques Eólicos da região Sul nos programas de Fluxo de potência e Curto-circuito.

7 EQUIPE TÉCNICA

Este trabalho foi realizado no âmbito da Gerência Executiva de Engenharia, com participação dos seguintes profissionais:

Gerência	Leandro Dehon Penna	DPL/EGE
	André Della Rocca Medeiros	DPL/EGS
	Arlindo Lins de Araújo Junior	DPL/EGN
Elaboração	Thiago Lopes da Silva Barros	DPL/EGE
	Paulo Eduardo Martins Quintão	DPL/EGE
	Neyl Hamilton M Soares	DPL/EGE
	André N. Cavalcanti de Albuquerque	DPL/EGS
	Rafael Bertolini de Paiva	DPL/EGS
	Felipe Rodrigues Sobral	DPL/EGN
	Luiz Frederico Borges Vasconcelos	DPL/EGN
	Rodolfo Guilherme De Souza Leite	DPL/EGN

Lista de figuras e tabelas

Figuras

Figura 3-1: Arquivo de simulação ANATEM (arquivo *.stb) 8 Figura 3-2: Associação do arquivo de topologias à simulação Anatem 8 Figura 5-1: Forma usual 15 **Tabelas** Tabela 3-1: Máxima geração fotovoltaica no SIN – fator de potência unitário 6 Tabela 3-2: Usinas fotovoltaicas do SIN com modelagem para

estudos dinâmicos - em operação1

estudos dinâmicos - futuras

da base de dados

Tabela 3-3: Usinas fotovoltaicas do SIN com modelagem para

Tabela 4-1: Modo de Controle de Tensão das usinas fotovoltaicas

9

11

13