	ST	UDE	NT]	$\mathbf{D}\mathbf{N}$	O		

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018

BMR3174 - SUPPLY CHAIN MANAGEMENT

(All sections / Groups)

14 MARCH 2018 2.30 p.m - 4.30 p.m (2 Hours)

INSTRUCTIONS TO STUDENTS:

- 1. This Question paper consists of 7 pages only.
- 2. Section A: Answer all TWO (2) questions.

Section B: Answer any TWO (2) of THREE (3) questions.

- 3. The distribution of the marks for each question is given at the end of each question.
- 4. Please write all your answers in the Answer Booklet provided.

SECTION A:

INSTRUCTION: ANSWER ALL TWO (2) QUESTIONS (50 MARKS)

QUESTION 1

GGG has two retail outlets, namely AAA and BBB. GGG has a plan to build a new third retail outlet in either Merlimau Mall (MM) or Anggun Mall (AM). Transportation costs for the locations and costs, demands and supplies for the existing warehouses – Alpha (A), Beta (B) and Gamma (G) are shown below (Table 1.1).

While maintaining the existing AAA and BBB outlets, use the following table to find the total shipping costs for the potential new retail outlet.

Students are required to

a) use the NORTHWEST method to build the initial solution for each combination (Combination 1 – AAA, BBB and AM; Combination 2 – AAA, BBB and MM).

(8 marks)

b) and proceed with STEPPING STONE method for optimization for each combination. Students are required to show all the improvement indexes leading to lowest transportation cost and then calculate the transportation cost.

(16 marks)

c) which combination is better?

(1 marks)

[Total: 25 marks]

Table 1.1: Projection of Travelling Cost for two proposed locations

	Warehouses							
From	Alpha (A)	(A) Beta (B) Gamma (G)						
	· E	xisting Outle	ts					
AAA	15	10	14	400				
BBB	9	9 7 18		500				
			· ·					
	Prop	oosed New Or	ıtlet	-				
AM	4	11	. 5	300				
MM	7	6	5	300				
Demand	660	340	200;					

QUESTION 2

The figure 2.1 and table 2.1 below illustrates the floor layout of FOB building at level four. The management decides to improve students' movement in the faculty, using the layout strategy. Assume all lecture halls are equal-sized. Currently, FOB assigns each lecture hall with a subject, for instance, MAMR 4001 with subject A, MAMR 4002 with subject B and so on.

Figure 2.1: Floor Plan of FOB

Table 2.1: Closeness Matrix

	N	Number of Students Movements (Trips)									
		Between Subjects									
Subjects	Α	В	С	D	E	F	G	H			
A	-	100	100	-	-	-	-	-			
В		-	-	50-	20	_	-	-			
, C			-	30	30			-			
D				in-	20	-	-	20			
Е					-	20	·-	10			
F						-	30	-			
G .											
H					X			-			

Develop

1) A weighted-distance score for initial layout.

(10 marks)

2) Reassign all the subjects to improve students' movement. What is its total weighted-distance score of the new layout? The total weighted-distance SHOULD NOT EXCEED 6300m.

(15 marks)

[Total: 25 marks]

SECTION B:

INSTRUCTION: ANSWER ANY TWO (2) QUESTIONS (50 MARKS)

QUESTION 3

Based on the forecast information (Table 3.1 and 3.2) for the product A, identify which plan yields the lowest production cost.

Table 3.1: Forecast Aggregate Demand for Product A

Month	Demand
Jan	250
February	160
March	150
April	190
May	320
June	290

Table 3.2: Operating Cost

Stockout cost	RM100 per unit
Inventory holding cost	RM15 per unit at end of month
Hiring workers	RM800 per worker
Firing workers	RM200 per worker
Unit cost (Material)	RM35 per unit
Overtime	RM20 per hour (No change in
	production rate per unit regardless
	of regular time and overtime)

The company currently has 9 workers. Each worker can produce 20 units of product A on regular time (160 hours) capacity per month. Each worker on the payroll costs RM2000 per month. Beginning stock indicates a balance of 240 units.

Which production plans is better:

a) Plan I, using level strategy with overtime when is required. However, overtime must not exceed more than 2 units per worker per month. Stockout is not allowed. Excessive inventory will be stored in the warehouse.

(12 marks)

b) Plan II, using level for first three months without overtime then switches to chase strategy. The warehouse now constraints the maximum allowable inventory on hand at the end of each month to 100 units or less.

(13 marks)

[Total: 25 marks]

QUESTION 4

3V Chair Manufacturer has just received orders for finished chairs (Figure 4.1, Table 4.1 and 4.2). Each chair consists of front legs assembly, seat and back supports assembly. 3V is a chairs assembly plant and all the items are supplied from the suppliers across Malaysia.

Figure 4.1: Assembly diagram of chair

Table 4.1: Summary of orders received for chair

Month 2018	Jan	Feb	Mar	Apr	May	Jun
Forecast	10	0	50	20	0	50
Customer Orders	0	0	80	20	0	30
(booked)						

Table 4.2: Inventory Record Data

		1 4010 7.2.	. Hiveinory ice	COIG Data		
Data	Finished	Front legs	Cross bar	Seat ·	Side rails	Back
Category	chair					supports
Lot sizing	100	POQ	FOQ=300	FOQ=20	POQ	L4L
rule		·(P=3)	units	units	(P=4)	
Lead time	1 month	2 months	1 month	1 month	3 months	2 months
(LT)				,		
Scheduled	0 .	20 (in	0	0	50 (in	0
Receipts		month			month	
		March)			January)	
Beginning	20	0	0	15	37	10
inventory						

Based on the information in figure 4.1, solve the following

a) Product Structure Tree (with Lead Time and quantity).

(5marks).

b) Master Production Schedule for finished chair, using the Table A. When and what quantity should 3V start production of finished chairs.

(5 marks)

c) Material Requirement Planning for i) side rails, ii) back supports and iii) cross bar using Table B. When and what quantity should 3V order from suppliers?

(15 marks)

(Students are required to apply the Table A and B provided in the question booklet, and attach them together with the answer booklet for submission)

[Total: 25 marks]

QUESTION 5

A project has the following activities, times and precedence relationships.

Activity	Normal	Crash	Normal Cost	Crash Cost	Immediate
	Time	Time	(RM)	(RM)	Predecessor (s)
	(Days)	(Days)			
Α	3	2	1000	1600	None
В	2	1	2000	2700	None
С	1	_ 1	300	300	None
D	7	3	1300	1600	A, C
Е	6	3	850	1000	В
F	2	1	4000	5000	C
G	4	2	1500	2000	D, E

Solve the following problems

a) Draw a precedence diagram for the project. How many days are required to complete the project?

(5 marks)

b) Compute the earliest start times, earliest finish times, latest start times, latest finish times and slack times. Write these values in the precedence diagram.

(10 marks)

c) Crash the project to 10 days at the least cost and estimate the project cost.

(5 marks)

d) Crash the project to lowest possible days and estimate the project cost.

(5 marks)

[Total: 25 marks]

TABLE A & B

Table A: Master Production Schedule for

. Table A. N	iaster Fround	cuon Sch	leuule i	UI				
Lot size:	Month							
Lead Time:								
Forecast								
Customer Orders								
On-hand Inventory			160					
MPS quantity								
MPS start								
Available to promise (ATP)								

Table A: Master Production Schedule for

Lot size:	Month						
Lead Time:							
Forecast							
Customer Orders							
On-hand Inventory							
MPS quantity							
MPS start							
Available to promise (ATP)							

Table B: Material Requirement Planning for

Lot Size:	Month							
Lead Time:								
Gross requirements								· -
Scheduled receipts								
On-hand Inventory	1		1					
Planned order receipts								
Planned order releases	1							

Table B: Material Requirement Planning for

Lot Size:	101		Month		
Lead Time:		ĺ			
Gross requirements					
Scheduled receipts		0.7			
On-hand Inventory					
Planned order receipts					
Planned order releases					

Table B: Material Requirement Planning for

Lot Size:	Month			
Lead Time:				
Gross requirements				
Scheduled receipts				
On-hand Inventory				
Planned order receipts				
Planned order releases				

Table B: Material Requirement Planning for

I dole Di	1.XW44X 1M		AL CALLOIS					_	
Lot Size:		Month							
Lead Time:									
Gross requirements									
Scheduled receipts									
On-hand Inventory	1								
Planned order receipts		100							
Planned order releases									

Table B: Material Requirement Planning for

Tuble Bi Material Account Thamming 101					
Lot Size:	Month				
Lead Time:					
Gross requirements					
Scheduled receipts					
On-hand Inventory					
Planned order receipts					
Planned order releases					

Table B: Material Requirement Planning for

Lot Size:	Month			
Lead Time:				
Gross requirements				
Scheduled receipts				
On-hand Inventory				
Planned order receipts				
Planned order releases				

En	Ы	of	Pa	σe
	61	131	1 4	20.