USTC-AD/2024 课程作业 实验报告

实验 3 威斯康辛州乳腺癌数据集探索与分析

马天开 PB21000030

Due: 2024.04.28 Submitted: 2024.04.25

Pt1: pandas

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import scipy
```

In []: df = pd.read_csv("data.csv", encoding="utf-8")
 df.head(10)

Out[]:		id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	sn
	0	842302	М	17.99	10.38	122.80	1001.0	
	1	842517	М	20.57	17.77	132.90	1326.0	
	2	84300903	М	19.69	21.25	130.00	1203.0	
	3	84348301	М	11.42	20.38	77.58	386.1	
	4	84358402	М	20.29	14.34	135.10	1297.0	
	5	843786	М	12.45	15.70	82.57	477.1	
	6	844359	М	18.25	19.98	119.60	1040.0	
	7	84458202	М	13.71	20.83	90.20	577.9	
	8	844981	М	13.00	21.82	87.50	519.8	
	9	84501001	М	12.46	24.04	83.97	475.9	

10 rows × 32 columns

```
In [ ]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):

#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	568 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	<pre>fractal_dimension_mean</pre>	567 non-null	float64
12	radius_se	569 non-null	float6
13	texture_se	567 non-null	float6
14	perimeter_se	569 non-null	float6
15	area_se	569 non-null	float6
16	smoothness_se	569 non-null	float6
17	compactness_se	568 non-null	float6
18	concavity_se	568 non-null	float6
19	concave points_se	569 non-null	float6
20	symmetry_se	569 non-null	float6
21	<pre>fractal_dimension_se</pre>	568 non-null	float6
22	radius_worst	568 non-null	float6
23	texture_worst	569 non-null	float6
24	perimeter_worst	569 non-null	float6
25	area_worst	569 non-null	float6
26	smoothness_worst	568 non-null	float6
27	compactness_worst	569 non-null	float6
28	concavity_worst	569 non-null	float6
29	concave points_worst	569 non-null	float6
30	symmetry_worst	569 non-null	float6
31	<pre>fractal_dimension_worst</pre>	569 non-null	float6
	es: float64(30), int64(1) ry usage: 142.4+ KB	, object(1)	

```
In []: # removing all rows with empty values in it:
    df = df.dropna()
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 560 entries, 0 to 568
Data columns (total 32 columns):

```
Column
                           Non-Null Count Dtype
____
                            _____
                                          ____
0
                            560 non-null
                                          int64
    id
 1
                            560 non-null
                                          object
    diagnosis
2
    radius mean
                            560 non-null
                                          float64
 3
                                          float64
    texture mean
                           560 non-null
4
    perimeter_mean
                           560 non-null
                                          float64
 5
    area_mean
                           560 non-null
                                          float64
6
    smoothness mean
                           560 non-null
                                          float64
7
    compactness mean
                           560 non-null
                                          float64
8
    concavity_mean
                           560 non-null
                                          float64
9
    concave points mean
                           560 non-null
                                          float64
 10 symmetry mean
                           560 non-null
                                          float64
 11 fractal_dimension_mean
                           560 non-null
                                          float64
 12 radius_se
                            560 non-null
                                          float64
 13 texture se
                            560 non-null
                                          float64
 14 perimeter se
                            560 non-null
                                          float64
 15 area se
                            560 non-null
                                          float64
                                          float64
 16 smoothness se
                            560 non-null
 17 compactness_se
                           560 non-null
                                          float64
                                          float64
 18 concavity_se
                           560 non-null
 19 concave points se
                            560 non-null
                                          float64
20 symmetry se
                           560 non-null
                                          float64
21 fractal_dimension_se 560 non-null
                                          float64
22 radius worst
                            560 non-null
                                          float64
23 texture_worst
                           560 non-null
                                          float64
 24 perimeter_worst
                            560 non-null
                                          float64
25 area worst
                           560 non-null
                                          float64
26 smoothness_worst
                           560 non-null
                                          float64
27 compactness_worst
                           560 non-null
                                          float64
28 concavity worst
                          560 non-null
                                          float64
29 concave points_worst 560 non-null 30 symmetry_worst 560 non-null
                                          float64
                                          float64
31 fractal dimension worst 560 non-null
                                          float64
dtypes: float64(30), int64(1), object(1)
memory usage: 144.4+ KB
```

```
In []: # reset df index:
    df = df.reset_index(drop=True)

In []: # dropping id column:
    df = df.drop(columns=["id"])
    df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 560 entries, 0 to 559 Data columns (total 31 columns):

#	Column		-Null Count	Dtype		
0	diagnosis	560	non-null	object		
1	radius_mean	560	non-null	float64		
2	texture_mean	560	non-null	float64		
3	perimeter_mean	560	non-null	float64		
4	area_mean	560	non-null	float64		
5	smoothness_mean	560	non-null	float64		
6	compactness_mean	560	non-null	float64		
7	concavity_mean	560	non-null	float64		
8	concave points_mean	560	non-null	float64		
9	symmetry_mean	560	non-null	float64		
10	fractal_dimension_mean	560	non-null	float64		
11	radius_se	560	non-null	float64		
12	texture_se	560	non-null	float64		
13	perimeter_se	560		float64		
14	area_se	560		float64		
15	smoothness_se	560		float64		
16	compactness_se		non-null	float64		
17	concavity_se		non-null	float64		
18	concave points_se	560		float64		
19	symmetry_se	560		float64		
20	fractal_dimension_se	560		float64		
21	radius_worst	560		float64		
22	texture_worst		non-null	float64		
23	perimeter_worst		non-null	float64		
24	area_worst	560		float64		
25	smoothness_worst	560		float64		
26	compactness_worst	560		float64		
27	concavity_worst	560		float64		
28	concave points_worst		non-null	float64		
29	symmetry_worst		non-null	float64		
30	fractal_dimension_worst	560	non-null	float64		
dtypes: float64(30), object(1)						

memory usage: 135.8+ KB

Out[]:	diagnosis	radius mean	texture mean	perimeter_mean	area mean	smoothnes:
0	M	17.99	10.38	122.80	1001.0	
1	М	20.57	17.77	132.90	1326.0	(
2	. M	19.69	21.25	130.00	1203.0	(
3	M	11.42	20.38	77.58	386.1	1
4	М	20.29	14.34	135.10	1297.0	1
•••	• •••					
555	M	21.56	22.39	142.00	1479.0	
556	M	20.13	28.25	131.20	1261.0	(
557	M	16.60	28.08	108.30	858.1	(
558	M M	20.60	29.33	140.10	1265.0	
559	В	7.76	24.54	47.92	181.0	(

560 rows × 31 columns

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothnes
0	1	17.99	10.38	122.80	1001.0	
1	1	20.57	17.77	132.90	1326.0	(
2	1	19.69	21.25	130.00	1203.0	(
3	1	11.42	20.38	77.58	386.1	I
4	1	20.29	14.34	135.10	1297.0	-
•••						
555	1	21.56	22.39	142.00	1479.0	
556	1	20.13	28.25	131.20	1261.0	(
557	1	16.60	28.08	108.30	858.1	(
558	1	20.60	29.33	140.10	1265.0	
559	0	7.76	24.54	47.92	181.0	(

560 rows × 31 columns

Out[]:

```
In [ ]: def handle(column: str) -> None:
    # for each colum, print mid, var, q1 q3, min, max, mean, median etc...:
    print(f"Column: {column}")
    print(f"Mean: {df[column].mean()}")
    # print(f"Median: {df[column].var()}")
    print(f"Variance: {df[column].var()}")
    print(f"Standard Deviation: {df[column].std()}")
    print(f"Minimum: {df[column].min()}")
    print(f"Maximum: {df[column].max()}")
    print(f"Q1: {df[column].quantile(0.25)}")
    print(f"Q3: {df[column].quantile(0.75)}")
    print()
```

Column: radius_mean Mean: 14.074301785714287

Standard Deviation: 3.491064449570111

Minimum: 6.981 Maximum: 28.11 Q1: 11.6775 03: 15.75

Column: texture_mean

Mean: 19.27175

Standard Deviation: 4.319014680293036

Minimum: 9.71 Maximum: 39.28 01: 16.1575

Q3: 21.8025000000000002

Column: perimeter_mean Mean: 91.59585714285713

Standard Deviation: 24.048328628379842

Minimum: 43.79 Maximum: 188.5 Q1: 74.9675 Q3: 103.725

Column: area_mean Mean: 649.6439285714287

Standard Deviation: 347.45128727529766

Minimum: 143.5 Maximum: 2501.0 Q1: 418.325 Q3: 775.775

Column: smoothness_mean Mean: 0.09628135714285714

Standard Deviation: 0.014087910812849068

Minimum: 0.05263 Maximum: 0.1634 Q1: 0.08629 Q3: 0.1051

```
In []: # group by diagnosis, calculate CV for each column:
    df_grouped = df.groupby("diagnosis")
    df_grouped.std() / df_grouped.mean()
```

Out []: radius_mean texture_mean perimeter_mean area_mean smoothness_mea

0 0.146810 0.223512 0.151502 0.290776 0.14549 1 0.182084 0.175314 0.187713 0.373423 0.12403

Pt2: matplotlib

```
In []: _ = plt.hist(df["texture_mean"], bins=10, color="green", edgecolor="black")
    _ = plt.title("Texture Mean Histogram")
```

Texture Mean Histogram 140 120 100 80 40 20 0

```
In []: df_0 = df[df["diagnosis"] == 0]
    df_1 = df[df["diagnosis"] == 1]
    _ = plt.scatter(df_0["texture_mean"], df_0["perimeter_mean"], c="red", label
    _ = plt.scatter(df_1["texture_mean"], df_1["perimeter_mean"], c="blue", labe
    plt.legend()
    _ = plt.title("Texture Mean vs Perimeter Mean")
```

Texture Mean vs Perimeter Mean


```
In []: columns = ["radius_mean", "texture_mean", "perimeter_mean", "area_mean", "sm
    corr = df[columns].corr()
    _ = plt.imshow(corr, cmap="coolwarm", interpolation="nearest")
    _ = plt.colorbar(format="%.3f")
    _ = plt.xticks(range(len(columns)), columns)
    _ = plt.yticks(range(len(columns)), columns)
    _ = plt.title("Correlation Heatmap")
```


Pt3:线性回归

```
In [ ]: X = df["radius_mean"]
        Y = df["area_mean"]
        X2 = X ** 2
        X = np.column_stack((X, X2))
        X = np.column_stack((np.ones(X.shape[0]), X))
        W1 = np.linalg.inv(X.T @ X) @ X.T @ Y
        W1
Out[]: array([-4.70867951, -0.44260792, 3.14186228])
In []: W2 = np.polyfit(df["radius_mean"], df["area_mean"], 2)
        W2
Out[]: array([3.14186228, -0.44260792, -4.70867951])
In [ ]: | X = df["radius_mean"]
        Y = df["area mean"]
        X = np.sort(X)
        Y = np.sort(Y)
        _ = plt.scatter(X, Y, s=10, color="red")
        _{-} = plt.plot(X, W1[0] + W1[1] * X + W1[2] * X ** 2, color="blue")
        _ = plt.label("Linear Regression")
```

AttributeError: module 'matplotlib.pyplot' has no attribute 'label'

从散点图可以看出 radius_mean 与 area_mean 之间有较强的相关性,线性回归能很好的拟合这两者之间的关系

Pt4:数据降维

我们在下面简要讨论 PCA Principle component analysis 主成分分析的简要思路.

因为没读懂 exp3.pdf 中提示的思路, 我们直接提供从 X 到 new_X (Z)的代码

```
In []: X = df[["perimeter_mean", "radius_mean"]].to_numpy()
    mean_vec= np.mean(X, axis=0)
    cov_mat = np.cov(X - mean_vec, rowvar=False)
    fvalue, fvec = np.linalg.eig(cov_mat)
    fvalue_sort = np.argsort(fvalue)[::-1]
    fvalue = fvalue[fvalue_sort]
    fvec = fvec[:, fvalue_sort]
    new_X = X @ fvec
    print(new_X)
```

```
[[124.11059852    0.19858123]
    [134.47614923    1.30391313]
    [131.47994405    0.84877078]
    ...
    [109.5611099    0.90177456]
    [141.60607044    0.30135467]
    [ 48.53749552    0.8096475 ]]

In []: _ = plt.scatter(X[:, 0], X[:, 1], s=3, color="red")
    _ = plt.scatter(new_X[:, 0], new_X[:, 1], s=3, color="blue")
```


从图中可以看到 new_X 的 y 的分布集中在 0 附近, 我们可以舍弃 new_X 中的 y 以降 低数据维度

```
In []: X_pca = new_X[:, 0]
    _ = plt.scatter(X_pca, np.ones(X_pca.shape[0]), s=10, color="red")
```


Pt5: T检验

```
In []: df_grouped = df.groupby("diagnosis")
    concavity_worst = df_grouped["concavity_worst"].apply(list)
    print(concavity_worst)

diagnosis
    0    [0.239, 0.189, 0.08867, 0.04833, 0.0688, 0.305...
    1    [0.7119, 0.2416, 0.4504, 0.6869, 0.4, 0.5355, ...
Name: concavity_worst, dtype: object
```

Q1: 简述本情境下应使用成组检验还是成对检验?

A1: 本情境下应使用成对检验, 因为我们要比较的是两个不同的数据集的均值, 而不是同一个数据集的两个不同的样本的均值

Q2: 计算两组数据的平均值, 写出探测检验原假设:

```
In []: B = concavity_worst[0]
    M = concavity_worst[1]
    B_mean = np.mean(B)
    M_mean = np.mean(M)
    print(B_mean, M_mean)
```

0.1663615971830986 0.44671356097560977

```
单侧检验: H_0: \mu_1 - \mu_2 = 0 vs H_1: \mu_1 - \mu_2 > 0
```

Q3: 使用 scipy.stats 中的相关方法, 执行量样本单侧T检验:

```
In []: t, p = scipy.stats.ttest_ind(B, M)
print(t, p)
```

-20.346631967479436 2.928169352602799e-69

Q4: 简述你从以上两样本 T 检验的结果中能得出什么结论?

A4: t=-20.3, p=2.92e-69, 因为 p<0.05, 我们拒绝原假设, 即两组数据的均值不相等