

# Chap. 9 – Cinétique chimique macroscopique

# 1. Contexte

• Réaction très rapide :





# 1. Contexte

- Réaction elle-même très rapide (échange d'électrons) :
- La croissance de cristaux d'argent est lente

https://youtu.be/j6vWJipXees





# 1. Contexte



CsBr + PbBr<sub>2</sub> → CsPbBr<sub>3</sub>



# 1. Contexte



## 2. Cas concret

Un médicament contre l'hypertension (bétabloquant) est injecté à un patient.

On souhaite savoir au bout de combien de temps, le médicament est complètement éliminé du corps.

| Dosage du bétabloquant dans le plasma sanguin (source : Atkins' Physical Chemistry) |                                                  |    |    |    |     |     |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------|----|----|----|-----|-----|--|--|
| t (min)                                                                             | 15                                               | 30 | 60 | 80 | 120 | 150 |  |  |
| c (ng.mL <sup>-1</sup> )                                                            | c (ng.mL <sup>-1</sup> ) 850 699 622 518 413 292 |    |    |    |     |     |  |  |

- Peut-on prévoir quand c atteint 1% de sa valeur initiale ?
- Cette évolution dans le temps peut-elle être modélisée ?



# 3. Définitions

Nos hypothèses sur le système sont :

 Les réactions ont lieu dans un réacteur fermé (pas d'échange de matière avec l'extérieur),

- Le réacteur est isochore (à volume V constant),
- Le réacteur a une composition uniforme.





# 3. Définitions

Soit la réaction :  $A \rightarrow B$ [A] (mol.L-1)

15

Temps (h)

La vitesse de disparition de A

- est plus grande à t = 0 qu'à t = 10 h ?
- est plus grande pour les conditions 1 ou pour les conditions 3 ?



# 3. Définitions



La vitesse volumique de disparition d'un réactif (ou d'apparition d'un produit) à l'instant t est donné par la dérivée de la courbe  $[A]_t = f(t)$  à cet instant.

C'est une grandeur qui varie au cours de la réaction.

C'est une grandeur toujours positive (signe –pour les réactifs).



# <u>3. Définitions</u>

Soit la réaction :  $A \rightarrow B$ [A] (mol.L-1)

[B] (mol.L-1)

Produit :  $V_{app}(B) = \frac{d[B]}{dt}$  0Réactif :  $V_{disp}(A) = -\frac{d[A]}{dt}$ Temps (h)

La vitesse volumique de disparition d'un réactif (ou d'apparition d'un produit) à l'instant t est donné par la dérivée de la courbe  $[A]_t = f(t)$  à cet instant.

C'est une grandeur qui varie au cours de la réaction.

C'est une grandeur toujours positive (signe –pour les réactifs).



# <u>3. Définitions</u>

Soit la réaction :  $A \rightarrow B$   $[A] \ (mol.L^{-1}) \ [B] \ (mol.L^{-1}) \ Produit : V_{app}(B) = \frac{d[B]}{dt}$   $V_{Réaction} = V_{app}(produit) = \frac{d[B]}{dt} = V_{disp}(réactif) = -\frac{d[A]}{dt}$   $Unit\'e : mol.L-1h-1 \ ou \ mol.L-1min-1...$   $Réactif : V_{disp}(A) = -\frac{d[A]}{dt}$   $Temps \ (h)$ 

La vitesse volumique de disparition d'un réactif (ou d'apparition d'un produit) à l'instant t est donné par la dérivée de la courbe  $[A]_t = f(t)$  à cet instant.

C'est une grandeur qui varie au cours de la réaction.

C'est une grandeur toujours positive (signe –pour les réactifs).



# 3. Définitions

En généralisant :

$$A_1 \rightarrow A_2$$

$$V = V_{app}(produit) = \frac{d[Produit]}{dt} = V_{disp}(réactif) = -\frac{d[réactif]}{dt}$$

$$V = \frac{1}{v_i} \frac{d[A_i]_t}{dt}$$

v<sub>i</sub> étant le nombre stœchiométrique algébrique:

- $v_i > 0$  pour un produit
- $v_i < 0$  pour un réactif



# 3. Définitions

Exemple 1: 14C  $\rightarrow$  14N + particule β<sup>-</sup> La vitesse de disparition du 14C est égale à la vitesse d'apparition du 14N Donc v =  $v_{disp}(14C) = v_{app}(14N)$ 

Exemple 2: 
$$2 I^{-} + S_{2}O_{8}^{2-} \rightarrow I_{2} + 2 SO_{4}^{2-}$$

I<sup>-</sup> disparaît deux fois plus vite que S<sub>2</sub>O<sub>8</sub><sup>2-</sup> et SO<sub>4</sub><sup>2-</sup> apparaît deux fois plus vite que I<sub>2</sub>.



# 3. Définitions

$$2 I^{-} + S_{2}O_{8}^{2-} \rightarrow I_{2} + 2 SO_{4}^{2-}$$



$$2 \text{ MnO}_4^- + 5 \text{ H}_2\text{C}_2\text{O}_4 + 6 \text{ H}^+ \rightarrow 2 \text{ Mn}^{2+} + 10 \text{ CO}_2 + 8 \text{ H}_2\text{O}$$



Exprimer la vitesse volumique v de ces 2 réactions en fonction des concentrations des réactifs et produits.



## Liste des primitive à connaître

$$\int k \, dx = kx + C$$

$$\int \frac{1}{x} dx = \ln(x) + C$$

$$\int \frac{1}{x^2} dx = \frac{-1}{x} + C$$

## A connaître parfaitement

•



# 1. Généralités

Dans la plupart des cas, la vitesse de réaction varie quand la concentrations des réactifs varie.

On définit peut écrire une relation, appelée loi de vitesse :

$$v = k[A]^{\alpha}[B]^{\beta}[C]^{\gamma}$$

#### Dans ce cas,

on dit que la relation admet un ordre

 $\alpha$ ,  $\beta$ ,  $\gamma$  sont appelés **ordres partiels** par rapport à A, B, C etc..

**L'ordre global** correspond à  $\alpha + \beta + \gamma$ 

k est appelée constante de vitesse, son unité dépend de l'ordre global



# 1. Généralités

Dans la plupart des cas, la vitesse de réaction varie quand la concentrations des réactifs varie.

On définit peut écrire une relation, appelée loi de vitesse :

$$v = k[A]^{\alpha}[B]^{\beta}[C]^{\gamma}$$

#### Par exemple:

$$2 I^{-} + S_{2}O_{8}^{2-} \rightarrow I_{2} + 2 SO_{4}^{2-}$$

loi de vitesse 
$$v = k [S_2O_8^{2-}][I^-]$$

$$2 N_2 O_5 \rightarrow 4 NO_2 + O_2$$

$$v = k [N_2O_5]$$



# 1. Généralités



Que vaut l'ordre partiel par rapport à 1-?

Que vaut l'ordre global?

Peut-on prévoir la loi de vitesse à partir du bilan?

#### Par exemple:

$$2 I^{-} + S_{2}O_{8}^{2-} \rightarrow I_{2} + 2 SO_{4}^{2-}$$

loi de vitesse 
$$v = k[S_2O_8^{2-}][I^-]$$

$$2 N_2 O_5 \rightarrow 4 NO_2 + O_2$$

$$v = k [N_2O_5]$$



# 2. Ordres de vitesse

Nous allons nous intéresser à 3 cas simples :

• 
$$v = k[A]^0$$
 Ordre 0

• 
$$v = k[A]^1$$
 Ordre 1

• 
$$v = k[A]^2$$
 Ordre 2



# 2. Ordres de vitesse

#### Méthode:

#### démonstration

1) Définition de v



- 2) Loi de vitesse
- 3) Équation différentielle
- 4) Loi de vitesse intégrée



# 2. Ordres de vitesse : ordre 0

1) Définition de v :

$$v = k[A]^0 = k$$

2) Loi de vitesse

$$V = -\frac{1}{v_A} \frac{d[A]}{dt} = k$$

3) Loi de vitesse intégrée :

$$[A] = [A]_0 - v_A kt$$

[A] = f(t) est une droite de pente -k k en mol.L<sup>-1</sup>.h<sup>-1</sup>



ordre 0

Temps de demie vie :

$$t_{1/2} = \frac{[A]0}{2v_A k}$$



# 2. Ordres de vitesse : ordre 0

1) Définition de v :

$$v = k[A]^0 = k$$

2) Loi de vitesse

$$V = -\frac{1}{v_A} \frac{d[A]}{dt} = k$$

3) Loi de vitesse intégrée :

$$[A] = [A]_0 - v_A kt$$

[A] = f(t) est une droite de pente -k k en mol.L<sup>-1</sup>.h<sup>-1</sup>



Temps de demie vie :

$$\mathsf{t}_{1/2} = \frac{[\mathsf{A}]0}{2\mathsf{v}_A k}$$



# 2. Ordres de vitesse : ordre 0

**Activité Ethylotest** : Une personne présente une alcoolémie de 0,5 g.L<sup>-1</sup> (taux légal maximal pour conduire en France).

Au bout de combien de temps son alcoolémie est elle divisée par 2 sachant que la vitesse de métabolisation de l'alcool est constante et égale à 0,15 g.L<sup>-1</sup>.h<sup>-1</sup> ?



# 2. Ordres de vitesse : ordre 1

- 1) Définition de v :  $v = k[A]^1$
- 2) Loi de vitesse  $v = -\frac{1}{v_A} \frac{d[A]}{dt} = k [A]$
- 3) Loi de vitesse intégrée :

$$ln[A] = ln[A]_0 - v_A kt$$

$$[A] = [A]_0.\exp(-v_A kt)$$

k en h<sup>-1</sup>

Temps <u>de demie vie</u> :

$$t_{1/2} = \frac{\ln 2}{k}$$





# 2. Ordres de vitesse : ordre 1

**Activité Archéo**: La période  $(t_{1/2})$  de décomposition du carbone 14 est 5730 ans. Un échantillon de bois mort archéologique contient 74 % du carbone 14 présent dans les organismes vivants. En déduire depuis quand est mort cet arbre.





# 2. Ordres de vitesse : ordre 2

1) Définition de v :

$$v = k[A]^2$$

2) Loi de vitesse

$$v = -\frac{1}{v_A} \frac{d[A]}{dt} = k [A]^2$$

3) Loi de vitesse intégrée :

$$\frac{1}{[A]} - \frac{1}{[A]_0} = v_A kt$$

k en mol<sup>-1</sup>.L.h<sup>-1</sup>



Temps de demie vie :

$$\mathsf{t}_{1/2} = \frac{1}{\mathsf{v}_A k[A]_0}$$



## 2. Cas concret

Un médicament contre l'hypertension (bétabloquant) est injecté à un patient.

On souhaite savoir au bout de combien de temps, le médicament est complètement éliminé du corps.

| Dosage du bétabloquant dans le plasma sanguin (source : Atkins' Physical Chemistry) |                                                  |    |    |    |     |     |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------|----|----|----|-----|-----|--|--|
| t (min)                                                                             | 15                                               | 30 | 60 | 80 | 120 | 150 |  |  |
| c (ng.mL <sup>-1</sup> )                                                            | c (ng.mL <sup>-1</sup> ) 850 699 622 518 413 292 |    |    |    |     |     |  |  |

- Peut-on prévoir quand c atteint 1% de sa valeur initiale ?
- Cette évolution dans le temps peut-elle être modélisée ?



# 2. Cas concret

Un médicament contre l'hypertension (bétabloquant) est injecté à un patient.

On souhaite savoir au bout de combien de temps, le médicament est complètement éliminé du corps.

| Dosage du bétabloquant dans le plasma sanguin (source : Atkins' Physical Chemistry) |                                                  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|--|--|
| t (min) 15 30 60 80 120 150                                                         |                                                  |  |  |  |  |  |  |  |
| c (ng.mL <sup>-1</sup> )                                                            | c (ng.mL <sup>-1</sup> ) 850 699 622 518 413 292 |  |  |  |  |  |  |  |

$$c = f(t)$$



# 2. Cas concret

| Dosage du bétabloquant dans le plasma sanguin (source : Atkins' Physical Chemistry) |                                                  |    |    |    |     |     |  |  |
|-------------------------------------------------------------------------------------|--------------------------------------------------|----|----|----|-----|-----|--|--|
| t (min)                                                                             | 15                                               | 30 | 60 | 80 | 120 | 150 |  |  |
| c (ng.mL <sup>-1</sup> )                                                            | c (ng.mL <sup>-1</sup> ) 850 699 622 518 413 292 |    |    |    |     |     |  |  |

si ordre 0

$$[A] = [A]_0 - kt$$

$$c = f(t)$$



si ordre 1

$$\operatorname{Ln}\frac{[A]}{[A]_0} = -k.t$$

In c = f(t)



si ordre 2

$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$$

1/c = f(t)

0,004
0,0035
0,003
0,0025
0,002
0,0015
0,0001
0,0005
0
0
50
100
150
200

y = 2E-05x + 0,0008

 $R^2 = 0.9374$ 

# 2. Cas concret

| Dosage du bétabloquant dans le plasma sanguin (source : Atkins' Physical Chemistry) |     |     |     |     |     |     |  |
|-------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|--|
| t (min)                                                                             | 15  | 30  | 60  | 80  | 120 | 150 |  |
| c (ng.mL <sup>-1</sup> )                                                            | 850 | 699 | 622 | 518 | 413 | 292 |  |

#### si ordre 1

$$\operatorname{Ln}\frac{[A]}{[A]_0} = -k.t$$



 $R^2 = 0,9807$ 

L'ordre 1 présente le meilleur coefficient de corrélation (98 %)

=> hypothèse ordre 1 retenue

=> pente  $= -k = -0,0073 \text{ min}^{-1}$ 

## 2. Cas concret

| Dosage du bétabloquant dans le plasma sanguin (source : Atkins' Physical Chemistry) |     |     |     |     |     |     |  |
|-------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|--|
| t (min)                                                                             | 15  | 30  | 60  | 80  | 120 | 150 |  |
| c (ng.mL <sup>-1</sup> )                                                            | 850 | 699 | 622 | 518 | 413 | 292 |  |

si ordre 1

$$\operatorname{Ln}\frac{[A]}{[A]_0} = -k.t$$

In c = f(t)



 $R^2 = 0.9807$ 

L'ordre 1 présente le meilleur coefficient de corrélation (98 %)

=> hypothèse ordre 1 retenue

=> pente  $= -k = -0,0073 \text{ min}^{-1}$ 

Avec k = 0,0073 min<sup>-1</sup>, on calcule le temps  $t_{1\%}$  pour avoir c/  $c_0$  = 0,01 (1 % de la concentration initiale)

-k. 
$$t_{1\%} = \ln(0.01)$$
  $\rightarrow$   $t_{1\%} = -\ln(10^{-2})/k = \ln(100)/k$ 

$$\rightarrow$$
  $t_{1\%}$  = 630 min = 10,5 h



Nous venons de voir un exemple de méthode expérimentale pour le suivi cinétique

#### Cette méthode consiste en :

- -un suivi par dosage réalisé à différents instants
- -l'exploitation des données par la <u>méthode intégrale</u> on compare les données aux différentes lois de vitesses intégrées et on retient l'ordre qui donne la meilleure corrélation
- III. Méthodes expérimentales pour l'étude cinétique
- 1. Suivi. Méthodes chimiques / Méthodes physiques
- 2. Dégénérescence de l'ordre
- 3. Méthode intégrale / Méthode différentielle
- Méthode des vitesses initiales



# 1. Suivi de la cinétique de réaction

#### a. Suivi par une méthode chimique



On peut doser le milieu réactionnel à différents instants

Condition temps (dosage) << temps caractéristique de la réaction

#### Inconvénients:

- -mauvaise précision sur t
- -erreurs subjectives (dues à l'expérimentateur) sur chaque mesure

Par une méthode physique bien choisie -la mesure est instantanée

- -précision dépend de la précision de
- l'appareil



# 1. Suivi de la cinétique de réaction

#### b. Suivi par une méthode physique

$$2 I^{-} + S_2 O_8^{2-} \rightarrow I_2 + 2 SO_4^{2-}$$

$$CH_3-CH_2-OH_{(l)} \xrightarrow{Cu_{(s)}} CH_3-CHO_{(g)} + H_{2(g)}$$

$$R - Br + H_2O \rightarrow R - OH + H^+ + Br^-$$

#### Quelle méthode physique utiliser pour le suivi de chacune de ces réactions?



pression







conductivité

absorbance

pouvoir rotatoire



## 2. Méthode de détermination des ordres

#### a. Dégénérescence de l'ordre

• Il s'agit d'une méthode pour déterminer les ordres partiels (appelé aussi méthode d'isolement d'Ostwald)

Soit la réaction avec plusieurs réactifs :  $A+B \rightarrow C$ 

Pour déterminer l'ordre partiel par rapport à un réactif A, il suffit de mettre un large excès de tous les autres réactifs qui auront alors des concentrations quasi constantes.

Si 
$$[A]_0 >> [B]_0$$
; la loi de vitesse  $\mathbf{v} = \mathbf{k}[A]^a[B]^b$  devient  $\mathbf{v} = \mathbf{k}_{app}.[B]^b$  avec  $\mathbf{k}_{app} = \mathbf{k}.[A]_0^a$ 

• **Exemple**: 
$$2l^{-} + S_{2}O_{8}^{2-} \rightarrow l_{2} + 2SO_{4}^{2-}$$

Si on travaille en large excès d'ions iodure :

$$v=k.[I^{-}].[S_{2}O_{8}^{2-}] \approx k.[I^{-}]_{0}.[S_{2}O_{8}^{2-}] = k_{app}.[S_{2}O_{8}^{2-}]$$

On revient à une loi d'ordre 1 : on parle d'ordre 1 apparent



## 2. Méthode de détermination des ordres

#### b. Méthode intégrale / méthode différentielle

 Tout d'abord si on cherche à déterminer l'ordre global d'une réaction, on peut utiliser un mélange de réactif en quantités stœchiométriques.

$$A+B \rightarrow C$$

- Si  $[B]_0 = [A]_0$ , on aura [B] = [A] à tout instant (un simple tableau d'avancement le démontre)
- La loi de vitesse  $\mathbf{v} = \mathbf{k}[\mathbf{A}]^a[\mathbf{B}]^b$  devient  $\mathbf{v} = \mathbf{k}[\mathbf{A}]^{a+b}$
- Il nous reste à déterminer **n** = a+b

  Pour cela, plusieurs méthodes peuvent être utilisées.



## 2. Méthode de détermination des ordres

#### b. Méthode intégrale / méthode différentielle

#### Méthode intégrale

On compare les données aux différentes lois de vitesses intégrées et on retient l'ordre qui donne la meilleure corrélation voir exemple sur le médicament bétabloquant



## 2. Méthode de détermination des ordres

#### b. Méthode intégrale / méthode différentielle

#### Méthode intégrale si ordre 0

$$[A] = [A]_0 - kt$$







 $R^2 = 0.9374$ 

## 2. Méthode de détermination des ordres

#### b. Méthode intégrale / méthode différentielle

#### Méthode différentielle

Si  $\mathbf{v} = k[\mathbf{A}]^n$  on peut écrire :  $\ln \mathbf{v} = \ln k + \mathbf{n} \cdot \ln[\mathbf{A}]$ 

On mesure [A] en fonction de t, puis on calcule v = -d[A]/dt et on trace Inv= f(In [A]), la pente de la droite obtenue donne n.





# 1. Observations expérimentales

Quelques exemples de réactions chimiques accélérées par la température :

- -dégradation des aliments (congélateur)
- -dissolution de sels (NaCl...)
- -saponification
- etc .....





# 1. Observations expérimentales

La dépendance de la vitesse avec la température s'explique par le fait que k varie avec T selon la loi d'Arrhénius :

$$k = A \exp(-\frac{E_a}{RT})$$

avec

A: appelé facteur pré-exponentiel (même unité que k)

E<sub>a</sub>: énergie d'activation de la réaction en J.mol<sup>-1</sup>

R: constante de gaz parfaits (8,314 J.K<sup>-1</sup>.mol<sup>-1</sup>)

T : température exprimée en KELVIN (K)

L'expression linéarisée : In  $k = In A - (E_a/R).T^{-1}$  permet de trouver  $E_a$  après avoir mesuré k pour plusieurs T de réaction.



# 1. Observations expérimentales

Exemple: Décoloration spiropyrane

Connaissant le temps de décoloration (t<sub>d</sub>) à 50 °C, 40 °C et 30 °C Peut-on prévoir le temps de décoloration à 20 °C ?



Mérocyanine (coloré)



Spiropyrane (incolore)



# 1. Observations expérimentales

Exemple: Décoloration spiropyrane

Connaissant le temps de décoloration ( $t_d$ ) à 50 °C, 40 °C et 30 °C Peut-on prévoir le temps de décoloration à 20 °C ?

$$\operatorname{Ln}\frac{\left[A\right]}{\left[A\right]_{0}} = -k.t$$

| Température<br>(°C) | 20 | 30  | 40 | 50 |
|---------------------|----|-----|----|----|
| t <sub>d</sub> (s)  | ?  | 230 | 75 | 13 |

**Hypothèse** : même concentration en espèce colorée au départ pour toutes les expériences donc  $t_d$  correspond au même rapport  $[A]/[A]_0$  pour chaque expérience.

Donc 
$$t_d = p/k$$



# 1. Observations expérimentales

Exemple: Décoloration spiropyrane

$$k = A \exp(-\frac{E_a}{RT})$$

$$Ln (1/td) = ln (k/p) = - ln p + ln k = -ln p + ln A - (Ea/R). T-1$$



$$=> t_d = \exp(-6.51) = 676 s = environ 11 min$$

In(1/td) en fontion de 1/T



Pente = 
$$-(E_a/R)$$
  
donc Ea = 14067 \* R = 14607\*8,314 = 118 kJ.mol<sup>-1</sup>

# 2. Profil énergétique et énergie d'activation

Si l'on pouvait mesurer l'énergie potentielle du système en fonction de l'avancement de la réaction on obtiendrait une courbe de ce type :





## 2. Profil énergétique et énergie d'activation

Si l'on pouvait mesurer l'énergie potentielle du système en fonction de l'avancement de la réaction on obtiendrait une courbe de ce type :



Le facteur RT donne l'énergie d'agitation des molécules du système à une température donnée. Plus T augmente, plus il y aura d'agitation des molécules, plus il y aura de chocs susceptibles de conduire à une réaction

