Diskrete Wahrscheinlichkeitstheorie (SS 2013)

Hin. Ti's zu HA Blatt 8

Die folgenden Hinweise und Tipps zu Hausaufgaben sind für die Bearbeitung nicht notwendig, möglicherweise aber hilfreich. Man sollte zunächst versuchen, die Hausaufgaben ohne Hilfestellung zu lösen.

ad HA 8.1:

Überlegen Sie zunächst, inwiefern man f als Wahrscheinlichkeitsdichte gemäß Definition 12 in Teil II der Vorlesung auffassen kann. Welchen Wahrscheinlichkeitsraum $(\Omega, \mathcal{B}(\Omega), Pr)$ kann man mit Hilfe von f nach Satz 13 in Teil II definieren?

Beachten Sie, dass f hier nicht als Dichtefunktion einer Zufallsvariablen betrachtet wird. Wie könnte eine Zufallsvariable X definiert werden, so dass $f = f_X$ gilt?

ad HA 8.2: Wenn Φ und Θ unabhängige Zufallsvariable sind, dann müssen beide Abbildungen auf einer gemeinsamen Ergebnismenge Ω eines Wahrscheinlichkeitsraums $(\Omega, \mathcal{A}, \Pr)$ definiert sein, mithin die Funktionalität $\Omega \to \mathbb{R}$ haben. Für Ω kommt $[-\pi, \pi) \times [0, 1]$ in Frage mit $\Phi((x, y)) = x$ und $\Theta((x, y)) = y$.

Pr kann man aufgrund der genannten Unabhängigkeit aus den gegebenen Randdichten von Φ bzw. Θ herleiten.

- (a) Man bestimme zunächst die Menge $A = \{(\phi, \vartheta) \mid G(\phi, \vartheta) \cap K_r \neq \emptyset\}$. In welcher Beziehung steht die Fläche von A zu der gesuchten Wahrscheinlichkeit?
- (b) Der prinzipielle Zugang zur Lösung ist gleich wie in (a).

ad HA 8.3:

(a) Ω hat als Fläche die Gestalt eines gleichseitigen Dreiecks mit Kantenlänge $\sqrt{2}$. Welche Stücke davon überdeckt A? Flächenmäßiger Anteil?

ad HA 8.4:

Siehe TA 7.3.