Artificial Intelligence in Smart Cities (EV Load Prediction and V2G Decision Making)

Yitong SHANG

Research Assistant Professor
The Hong Kong University of Science and Technology

11.2024

Personal profile

Awards & Honors

DAAD (Germany)Alnet Fellow, 2023

SPPIES (Conference)
Best Paper, 2022

Tencent Technology Rhino Bird Elite, 2022

Education

Harbin Institute of Technology
PhD, Information Engineering, 2022

Southern University of Sci & Tech

Joint PhD, Excellent Graduate of Dept.

China Agricultural UniversityBachelor, Electrical engineering, 2017

Positions

Hong Kong University of Sci & Tech Postdoc Researcher, 01.2023-07.2024 Research Assistant Prof., 07.2024-now

Technical University of Munich Visiting Scholar, 09.2023

Tencent Technology Internship, 05.2022-08.2022

Contents

- 1. Introduction of EV & V2G
- 2. Artificial Intelligence in EV Load Prediction

- 3. Artificial Intelligence in V2G Decision Making
- 4. Conclusion

Contents

- 1. Introduction of EV & V2G
- 2. Artificial Intelligence in EV Load Prediction
- 3. Artificial Intelligence in V2G Decision Making
- 4. Conclusion

CO2 Emissions of Automobiles is Very Huge

CO2 Emissions by Economic Sector

CO2 Emissions by the Transport Sector

Many Conturies and Regisions Promote EVs

The Development of EV in Hong Kong has 3 Milestones

Private Charging Facilities

≥150 000

Public Charging Facilities

≥5000

(Plan to double in the future)

No new registration of fuel-propelled private cars including different types of hybrids in Hong Kong in 2035 or earlier

Increasing rate of load peak

Oct. 2023: 46,664 kW / 9,861,000 kW = 0.47%

2025: 90, 000kW / 9,861,000 kW = **9.13%**

2050: 1,833,964 kW / 9,861,000 kW = **18.60%**

Many EVs Randomly Charging Cause Impact

Calculation of load peak with unmanaged charging

Max conventional electricity load in 2021

CLP Power: 7,477,000 kW

HKE: 2,384,000 kW

Total: 9,861,000 kW, assume that the total load peak will not change in the future

Amount of charging in HK

- Sept. 2023: 7,085 EV chargers for public use, including 3,950 medium chargers, 1,092 quick chargers and other 2,043 chargers are not specified, we assume they are medium chargers.
- 2025: 150,000 for private charger and 5,000 for public charger
- 2050: By Oct. 2023, the total number of EVs is 70,701, 7.7% of the total number of vehicles. So, total EVs in 2050 can be assumpted as 70,701 / 7.7% = 918,195. Let's assume that 3 vehicles share one private charger, which is 918,195 / 3 = 306,065. Let's assume that the public chargers are 10,000

Max EV charging load .

- Average charging power for private charger: 220 V * 16 A = 7 kW
- Average charging power for public charger: 380 V * 32 A = 12 kW
- Charging simultaneity factor for private charger: 0.8
- Charging simultaneity factor for public charger: 1.0
- Oct. 2023: (3,950 + 2,043) * 7 kW * 0.8 + 1,092 * 12 kW * 1.0 = 33,560 kW + 13,104 kW = 46,664 kW
- 2025: 150,000 * 7 kW * 0.8 + 5,000 * 12 kW * 1.0 = 840,000 kW + 60,000 kW = **900,000kW**
- 2050: 306,065 * 7 kW * 0.8 + 10,000 * 12 kW * 1.0 = 1,713,964 kW + 120,000 kW = **1,833,964 kW**

Load peak lift rate

- Oct. 2023: 46,664 kW / 9,861,000 kW = 0.47%
- 2025: 90, 000kW / 9,861,000 kW = 9.13%
- 2050: 1,833,964 kW / 9,861,000 kW = 18.60%

How will the existing power grid cope with the impact of mass access to EVs?

Vehicle-to-grid (V2G) technology

Kempton, Willett, and Jasna Tomić. "Vehicle-to-grid power fundamentals: Calculating capacity and net revenue." *Journal of power sources* 144.1 (2005): 268-279.

Contents

- 1. Introduction of EV & V2G
- 2. Artificial Intelligence in EV Load Prediction Jupyter
- 3. Artificial Intelligence in V2G Decision Making
- 4. Conclusion

Why should AI be applied in EV load prediction?

How should AI be applied in EV load prediction? - Dataset

Input features

maybe included:

- privious EV load
- weathers
- weekday or weekend
- privious occupancy
- and so on.

How should AI be applied in EV load prediction? - AI Model

AI Application in EV Load Prediction: MLP

How should AI be applied in EV load prediction? - Loss Function/Forward Propagation

Al Application in EV Load Prediction: MLP

How should AI be applied in EV load prediction? - Backword Propagation

Al Application in EV Load Prediction: MLP

How should AI be applied in EV load prediction? - Backword Propagation

How should AI be applied in EV load prediction? - Weight Parameter Updation

Al Application in EV Load Prediction: RNN

Motivation of time-sequence data and Issue

$$\begin{array}{cccc} \underline{\partial y_{t-1}} & \underline{\partial \textbf{0}_{t-2}} & \underline{\partial \textbf{u}_{t-2}} \\ \underline{\partial \textbf{0}}_{t-} & \underline{\partial \textbf{u}}_{t-2} & \underline{\partial W_{w,t-2}} \\ \\ \underline{2} \end{array}$$

Layer 2

Layer

Layer 3

Output

Input

Al Application in EV Load Prediction: RNN

How to utilize time-sequence data

Al Application in EV Load Prediction: GCN

Motivation of spatial data

Graph input - adjacent matrix

GCN model forward propogation

Input layer to hidden layer

$$Y_1 = f([X, G(N, A)]; W_1)$$

= $f(AXW_1)$ (247×247) (247×1) (1×8) = (247×8)
= $f(D^{-1/2}AD^{-1/2}XW_1)$

A)

Hidden layer to output layer

$$\mathbf{y} = f(\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}\mathbf{Y}_1\mathbf{W}_2) (247 \times 247) (247 \times 8) (8 \times 1) = (247 \times 1)$$

Al Application in EV Load Prediction: Brief Summary

Algorithm perspective

Model perspective

Туре	Method	Pons	Cons
N.A.	MLP		
Temporal (T)	RNN		
	LSTM		
	GRU		
Spatial (S)	GCN		
	CNN		
ST	Transformer*		

Contents

- 1. Introduction of EV & V2G
- 2. Artificial Intelligence in EV Load Prediction
- 3. Artificial Intelligence in V2G Decision Making
- 4. Conclusion

V2G Problem of Minimizing Load Variance

$$\min \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{n=1}^{N} p_{n,t}^{EV} + p_{t}^{con} - p^{ave} \right)^{2}$$

s.t.

$$SoC_n^{min} \leq SoC_{n,t} \leq SoC_n^{max}$$

$$p_n^{\text{dis,max}} \leq p_n^{\text{EV}} \leq p_n^{\text{ch,max}}$$

$$\eta_n^{ch} \Delta t \sum_{t=t_n^{arr}}^{t_n^{dep}} p_{n,t}^{EV} = \left(SoC_n^{dep} - SoC_n^{arr} \right) B_n = E_n$$

Solving time of minimizing load variance (quadratic programming)

Average solving time (s)

Offline Learning and Online Dispatching

Shang, Yitong, et al. "Computational performance analysis for centralized coordinated charging methods of plug-in electric vehicles: From the grid operator perspective." *International Transactions on Electrical Energy Systems* 30.2 (2020): e12229.

Utilizing LSTM (a Variant of Recurrent Neural Network) and Attention Mechanism for Time Sequence Data

Artificial Intelligence in V2G Decision Making: Results

Comparison with state of art in test process

Comparison with other methods in conventional load

Comparison with other methods in PV output

Qualitative analysis for different methods

Method	Computation time (s)		Handle	Privacy-	Scenarios
	80 EVs	1000 EVs	uncertainties	preserving	adaptability
Con1	96.3064		×	×	×
Con2	0.7408	12.9258	×	٧	×
LSTM	0.0161	1.9784	٧	٧	٧

Shang, Y., et al. "Achieving efficient and adaptable dispatching for vehicle-to-grid using distributed edge computing and attention-based LSTM." *IEEE Transactions on Industrial Informatics* 18.10 (2021): 6915-6926.

Artificial Intelligence in V2G Decision Making: Extend and Brief Summary

Other method about learning to optimize

Model perspective

Туре	Method	Pons	Cons
Learning to Optimize	Imitation Learning		
	Two-Stage Predict-then-Optimize		
	End-to-End Predict-then-Optimize		
	Reinforcement Learning		

Contents

- 1. Introduction of EV & V2G
- 2. Artificial Intelligence in EV Load Prediction
- 3. Artificial Intelligence in V2G Decision Making
- 4. Conclusion

Thank You!

Yitong SHANG ytshang@ust.hk

