Ejercicio 2

Considerar el alfabeto V = $\{a, b\}$ y el lenguaje $L = \{ba^{2n+1} / n \ge 0\}$

- 2.1. Hallar una gramática tipo 3 que lo genere.
- **2.2**. Definir formalmente un autómata finito que lo reconozca e indicar si es un autómata finito determinístico.

Considerar el alfabeto V = $\{a, b\}$ y el lenguaje $L = \{ba^{2n+1} / n \ge 0\}$

2.1. Hallar una gramática tipo 3 que lo genere.

$$G = (\{S, A, B\}, \{a, b\}, P, S)$$

$$P \begin{cases} S \to bA \\ A \to aB \\ B \to aA / \lambda \end{cases}$$

2.2. Definir formalmente un autómata finito que lo reconozca e indicar si es un autómata finito determinístico.

$$AF = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$$

δ	a	b
q_0		q_1
q_1	q_2	
\overline{q}_2	$q_{_1}$	

Ejercicio 3

- **3.1**-.7, 3, 3, 3, 3, 2 la secuencia anterior corresponde a los vértices de un grafo conexo sin ciclos. ¿Es un árbol?
- **3.2** Para el árbol cuyo recorrido en orden previo es $/ \uparrow -abc + d * ef$, se pide:
- a) recuperarlo b) Dar el recorrido en orden posterior. c) Dar el valor de la expresión si a = 2, b = 1, c = 0, d = 3 y e = 5 = f

3.1-.7, 3, 3, 3, 3, 2 la secuencia anterior corresponde a los vértices de un grafo conexo sin ciclos. ¿Es un árbol?

$$\sum_{i} g(V_i) = 2 \cdot |A| \qquad |V| = |A| + 1$$

$$7 + 5 \cdot 3 + 2 = 2 \cdot |A| \qquad |V| = 12 + 1$$

$$12 = |A| \qquad |V| = 13$$

 $13 \neq 7$ No es árbol

3.2- Para el árbol cuyo recorrido en orden previo es $/ \uparrow -abc + d*ef$, se pide: **a)** recuperarlo **b)** Dar el recorrido en orden posterior. **c)** Dar el valor de la expresión si a = 2, b = 1, c = 0, d = 3 y e = 5 = f

Orden Posterior

$$ab-c \uparrow de f *+/$$

$$\frac{(a-b)^{c}}{d+(e*f)} = \frac{(2-1)^{0}}{3+(5*5)} = \frac{1}{28}$$

Ejercicio 4

- **4.1**.- Sea G el siguiente grafo.
- a) Hallar de ser posible un camino y/o circuito de Euler.
- b) ¿Es G completo? ¿Es Bipartito? Justificar.

4.2.- Determinar si los grafos $\,G_{\!\scriptscriptstyle 1}\,$ y $\,G_{\!\scriptscriptstyle 2}\,$ son isomorfos. Justificar

$$G_1 = (\{A, B, C, D\}; \{a, b, c, d, e\}; \varphi_1)$$

()		, ,			
Χ	а	b	С	d	e
$arphi_1$	{A, B}	{B, D}	{A, C}	{A, D}	{D, C}

$$Ma_{(G_2)} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

a) Hallar de ser posible un camino y/o circuito de Euler.

Tiene circuito de Euler, todos los vértices son de grado par

b) ¿Es G completo? ¿Es Bipartito? Justificar.

No es completo, F y B no tienen una arista en común. No es bipartito

4.2.- Determinar si los grafos G_1 y G_2 son isomorfos.

Justificar

$$G_1 = (\{A, B, C, D\}; \{a, b, c, d, e\}; \varphi_1)$$

. ((, ()		
X	а	b	С	d	е	
$\varphi_{\rm l}$	{A, B}	{B, D}	{A, C}	{A, D}	{D, C}	

		V_{1}	V_2			4
$Ma_{(G_2)}$ =	V_1	0	1	1	1)	
	V_2	1	0	1	0	
	V_3	1	1	0	1	
	V_4	1	0	1	0	

$$Ma_{(G_1)} = \begin{pmatrix} A & C & D & B \\ A & 0 & 1 & 1 & 1 \\ C & 1 & 0 & 1 & 0 \\ D & 1 & 1 & 0 & 1 \\ B & 1 & 0 & 1 & 0 \end{pmatrix} \qquad f(V_1) = A$$

$$f(V_2) = C$$

$$f(V_3) = D$$

$$f(V_4) = B$$

Como $Ma(G_1) = Ma(G_2)$ G_1 y G_2 son isomorfos.