

3ème édition

Atelier:

Mieux vaut prévenir que guérir: anonymisation de données de santé

Présenté par: Louis Philippe SONDECK

• Pourquoi lorsqu'on naît, on nous attribut un nom?

Contexte Information sensible

Identification

Plan

- Données personnelles de santé et intérêts pour la recherche
 - Qu'est ce qu'une donnée personnelle de santé
 - Quels intérêts pour la recherche
- La législation encadrant la recherche en santé
 - Le RGPD: éléments essentiels
 - Le cadre juridique applicable
 - Les risques en cas de non respect
- L'anonymisation des données
 - Cas réels de ré-identification
 - Principes et modèles
 - Evaluation de l'anonymisation
- Demo: anonymisation des données avec ARX

Données personnelles de santé et intérêts pour la recherche

Données personnelles et données personnelles de santé?

Données personnelles

 Une donnée personnelle est toute information pouvant être rattachée directement ou indirectement à une personne physique

Données personnelles de santé

- Une donnée personnelle de santé est toute information permettant de tirer une conclusion au regard de la santé d'une personne. Elle doit être appréciée au cas par cas.
- On peut énumérer 3 catégories de données de santé:
 - **Par nature** (ex: prestations de soins, résultats d'examens...)
 - Par croisement (ex: poids avec d'autres données)
 - En raison de leur destination (nombre de pas...)

Quels intérêts pour la recherche

Usages de données personnelles en santé

Les données de santé peuvent être utilisées à différentes fins dans le domaine de la recherche:

- la prévention le diagnostique et les actes thérapeutiques
- l'amélioration de la santé au quotidien (par exemple via les objets connectés) :
 - Lentilles connectés (mesure la teneur en glucose dans les larmes...),
 - montre connectée (mesure de la qualité de sommeil le nombre de calories brulées...),
 - chaussures/chaussettes connectées (conseils pour bien courir, mesure du rythme cardiaque...)

Le cadre juridique applicable en matière de recherche en santé

Le cadre juridique applicable à la recherche utilisant des données de santé

Textes de référence

- Loi 78-17 modifiée Informatique, Fichiers et Libertés
- Règlement européen 2016-678 RGPD
- Le code de la santé publique

Procédures

- Engagement à respecter une MR + Inscription du traitement au registre des activités de traitement
 OU
- Demande d'autorisation (INDS, CEREES, CNIL)

Eléments d'appréciation

- Le périmètre des données considérées:
 - Recherche interne ou externe
 - Données personnelles de santé: Recherche Impliquant la Personne Humaine (RIPH)
 - Données non personnelles: Recherche N'Impliquant pas la Personne Humaine (RNIPH)
- La finalité du traitement:
 - Recherche interventionnelle à risques et contraintes importants (RIPH1)
 - Recherche interventionnelle à risques et contraintes minimes (RIPH2)
 - Recherche observationnelle (RIPH3)
- La méthodologie utilisée: les méthodologies de références (MR-00x)

Le RGPD: éléments essentiels

1. Le respect
des principes
juridiques

2. La gestion
des risques de
sécurité des
données

3. Conformité

Sanctions

1. La finalité (art. 5.1(b) du RGPD) :

- **1.** La finalité (art. 5.1(b) du RGPD) : explicite, légitime, déterminée
- 2. La base juridique (art. 6 du RGPD)
- 3. La minimisation de données (art.5.1 (c) du RGPD): adéquates, pertinentes et non excessives
- 4. L'information (art. 12, 13 et 14 du RGPD): claire et complète
- 5. La durée de conservation (art. 5.1 (e) du RGPD): limitée
- 6. Les droits (art. 15, 16, 17, 18, 20 et 21 du RGPD)

- Confidentialité: accès non autorisé
- Intégrité: modification non autorisée
- **Disponibilité**: disparition des données

4% du CA mondial ou 20 millions d'euros

 Recherche « interne »: données thérapeutiques/médicales recueillies par le personnel médical et exclusivement pour un usage thérapeutique/médical

RECHERCHE IMPLIQUANT LA PERSONNE HUMAINE (AVIS FAVORABLE DU CPP REQUIS)			RECHERCHE N'IMPLIQUANT PAS LA PERSONNE HUMAINE
Recherche interventionnelle (RIPH1)	Recherche interventionnelle à risques et contraintes minimes (RIPH2)	Recherche non interventionnelle (RIPH3)	(RNIPH)
Sans objet Ces recherches nécessitent de recueillir des données spécifiques et supplémentaires par rapport à la prise en charge habituelle du patient. Ces recherches doivent donc être réalisées dans le cadre du chapitre IX de la loi Informatique et Libertés.		Aucune formalité Inscription au registre des activités de traitement	

• Recherche multicentrique et/ou accès aux données en dehors de l'équipe de soins

RECHERCHE IMPLIQUANT LA PERSONNE HUMAINE (RIPH) (AVIS FAVORABLE DU CPP REQUIS)			RECHERCHE N'IMPLIQUANT PAS LA PERSONNE HUMAINE (RNIPH)
Recherche interventionnelle (RIPH1)	Recherche interventionnelle à risques et contraintes minimes (RIPH2)	Recherche non interventionnelle (RIPH3)	(RNIPH)
Demande d'autorisation de recherche ou Engagement de conformité MR- 001 + Inscription au registre des activités	Demande d'autorisation de recherche ou Engagement de conformité MR- 001 + Inscription au registre des activités	Demande d'autorisation de recherche ou Engagement de conformité MR- 002 ou MR-003 + Inscription au registre des activités	Dépôt auprès de l'INDS de la demande d'autorisation de recherche (avis CEREES puis avis CNIL) ou Engagement de conformité MR- 002 ou MR-003 + Inscription au registre des activités

Contraintes liées à l'utilisation des données personnelles de santé (RIPH & RNIPH)

Intérêt de l'anonymisation

RGPD (MR, CPP...)

Données personnelles

Anonymisation

Données anonymisées = Données non personnelles

Anonymisation des données: principes et modèles

• En 2001, une chercheuse du nom de L. Sweeney a pu ré-identifier des personnes en croisant des données « anonymisées » publiées par une société d'assurance, avec des données d'un fichier électorale en clair, ceci, en se basant uniquement sur 3 attributs: le code postal, la date de naissance, le genre

• Elle a ainsi déduit des *informations médicales* du gouverneur de l'Etat du Massachussets (William Weld).

Données de santé« anonymisées » publiées par le

GIC (Group Insurance Company),
l'organisme chargé de l'achat des

contrats d'assurance des

employés de l'Etat

Nombre de personnes ayant pour information:

1. Date de naissance: 31/07/1945

Nombre de personnes ayant pour information:

1. Date de naissance: 31/07/1945

2. Genre: Masculin

Nombre de personnes ayant pour information:

1. Date de naissance: 31/07/1945

2. Genre: Masculin

3. Code postal: 02152

Id	Age	Sexe	Code Postal	Maladie
#1234	56	M	75013	VIH
#2345	56	M	02152	Cancer
#3456	27	F	02152	Malaria

 La ré-identification s'est faite en croisant 2 jeux de données

Fichier Assurance (« anonymisé »)

Noms	Age	Sexe	Code Postal	Nbr Electeurs
J.Sparraw	26	M	75013	200
W.Weld	56	M	02152	450
J.Doe	27	F	75013	300

Fichier Electoral

Id	Age	Sexe	Code Postal	Maladie
#1234	56	M	75013	VIH
#2345 <	56	M	02152	Cancer
#3456	27	F	02152	Malaria

Fichier Assurance (« anonymisé »)

Noms	Age	Sexe	Code Postal	Nbr Electeurs
J.Sparraw	26	M	75013	200
W.Weld <	56	M	02152	450
J.Doe	27	F	75013	300

Fichier Electoral

 La ré-identification s'est appuyée sur une combinaison bien précise d'informations (Age = 56, Sexe = M et Code postal = 02152)

Id	Age	Sexe	Code Postal	Maladie
#1234	56	M	75013	VIH
#2345	56	M	02152	Cancer
#3456	27	F	02152	Malaria

Fichier Assurance (« anonymisé »)

Noms	Age	Sexe	Code Postal	Nbr Electeurs
J.Sparraw	26	M	75013	200
W.Weld <	56	M	02152	450
J.Doe	27	F	75013	300

Fichier Electoral

- Pour la ré-identification:
 - Contexte: 2 jeux de données (d'assurance et de vote)
 - Information sensible:« Cancer »
 - Quasi-identifiants: Age = 56,
 Sexe = M et Code postal = 02152
 - Identifiant: Nom = W.Weld
- Dans ce contexte le nom W.Weld et l'ensemble: {Age = 56, Sexe = M, Code postal = 02152} sont équivalent

• 87% des américains peuvent être identifiés à partir du triplet: date de naissance, sexe, code postal

Définitions

 Anonymisation: « Processus par lequel des informations personnellement identifiables sont altérées de façon irréversible de sorte que la personne à laquelle se rapporte l'information ne peut plus être identifiée directement ou indirectement »

 L'anonymisation est le seul procédé permettant de transformer des données personnelles en données qui ne sont plus personnelles et donc qui sortent du champs d'application du RGPD

Terminologie

<u>Identifiant</u>: attribut permettant de *caractériser de manière unique* un individu dans un *groupe d'individus*. On distingue 2 types d'identifiants:

- Identifiant direct nom, prénom
- Identifiant indirect: adresse, numéro de téléphone, NIR, empreinte digitale...

Quasi-identifiant: attribut pouvant être combiner avec d'autres attributs pour identifier un individu (ex: code postal, vêtements, genre...)

Attribut sensible: attribut pouvant révéler des informations compromettantes sur un individu (ex: maladie, salaire, données de géolocalisation...)

Terminologie

Identifiant	QI	QI	QI	Att Sensible
Noms	Age	Sexe	Code Postal	Maladie
J.Sparraw	26	M	75013	VIH
W.Weld <	26	M	75002	Cancer
J.Doe	27	F	75013	Corona Virus

Identifiant indirect

Les objectifs de l'anonymisation

- L'anonymisation vise à résoudre le compromis entre:
 - Confidentialité: empêcher la ré-identification des personnes
 - Viabilité des données: assurer la cohérence des données anonymisées par rapport au besoin cible

Confidentialité des données

Le G29 (groupe des CNILs Européens) publie un avis sur les techniques d'anonymisation qui défini 3 risques pour la confidentialité des données:

- 1. <u>L'individualisation</u>: Est-il toujours possible **d'isoler** une partie ou la totalité des enregistrements identifiant d'un individu ?
- 2. <u>La corrélation</u>: Est-il possible de **relier entre eux des enregistrements** relatifs à **un individu** ou à **un groupe d'individu** ?
- 3. <u>L'inférence</u>: Est-il possible de déduire la valeur d'un attribut à partir des valeurs d'un ensemble d'autres attributs?

Le risque de ré-identification s'évalue selon ces 3 critères

Le risque d'individualisation

• Le risque d'individualisation évalue la capacité à isoler une personne à partir d'une valeur ou une combinaison de valeurs

Données auxiliaires

Noms	Age	Sexe	Code Postal	Nbr Electeurs
J.Doe	27	F	75013	300
W.Weld <	26	M	75002	450

Données pseudonymisées

Noms	Age	Sexe	Code Postal	Maladie
12489	26	M	75013	Cancer
13245	26	M	75002	Cancer
12345	27	F	75013	Malaria

Le risque d'inférence

• Le risque d'inférence évalue la possibilité de déduire les valeurs d'un attribute à partir d'un autre. Par exemple, être âgé de 26 ans et être masculin permet de déduire la maladie Cancer

Données auxiliaires

Noms	Age	Sexe	Nbr Electeurs
W.Weld <	26	M	450

Données pseudonymisées

Noms	Age	Sexe	Code Postal	Maladie
12489	26	M	75013	Cancer
13245	26	M	75002	Cancer
12345	27	F	75013	Malaria

Le risque de corrélation

• Le risque de corrélation concerne la capacité à corréler deux jeux de données pour enrichir la connaissance sur les personnes concernées. Par exemple, être agé de 26 ans et être masculin implique que l'on reside soit dans le 75013 soit dans le 75002.

Données auxiliaires

Noms	Age	Sexe	Code Postal
J.Sparraw <	26	M	75013

Données pseudonymisées

Noms	Age	Sexe	Code Postal
12489	26	M	75013
13245	26	M	75002
12345	27	F	75013

Viabilité des données

Hierarchies de valeurs de l'attribut Age

Age	Age*	Age**
22	2*	2*
22	2*	2*
22	2*	2*
45	>= 40	>= 30
63	>= 40	>= 30
40	>= 40	>= 30
35	3*	>= 30
35	3*	>= 30
32	3*	>= 30

• Est-il possible d'utiliser les données anonymisées pour répondre à des besoins identifiés ?

• Le besoin doit être caractériser au préalable, et pris en compte pendant le processus d'anonymisation

 La viabilité dépend de la manière dont les valeurs des attributs sont hiérarchisées

Les modèles d'anonymisation

Les modèles d'anonymisation

- La généralisation: dilution des attributs en modifiant leur échelle ou leur ordre de grandeur. Par exemple:
 - le k-anonymat qui assure qu'une *information sensible* ne puisse être associée à moins de *k personnes* dans un jeu de données.

- La randomisation: altération de la véracité des données afin d'affaiblir le lien entre les données et l'individu. Par exemple:
 - La confidentialité différentielle: qui protège les données en y ajoutant du bruit

Généralisation vs Randomisation

- Généralisation (k-anonymat):
 - Avantage: permet un meilleur contrôle de la viabilité des données
 - **Inconvénient**: confidentialité difficile à maitriser lorsque la volumétrie des données est importante
- Randomisation (Confidentialité différentielle):
 - Avantage: fournit des garanties de confidentialité formelles
 - Inconvénient: viabilité des données difficile à maîtriser

Les techniques de la généralisation

- La généralisation se décline en 3 principales techniques:
 - le k-anonymat,
 - la **l-diversité** (qui améliore la k-anonymat)
 - la t-proximité (qui « améliore » la l-diversité)

• Les améliorations font référence à la capacité de résister aux attaques sur la confidentialité (individualisation, corrélation, inférence)

La k-anonymisation réduit le risque d'individualisation

• Le **k-anonymat** assure qu'une *information sensible* ne puisse être associée à moins de *k personnes* dans un jeu de données

Original

	Age	Disease
1	22	lung cancer
2	22	lung cancer
3	22	lung cancer
4	45	stomach cancer
5	63	diabetes
6	40	aids
7	35	aids
8	35	flu
9	32	diabetes

Generalization Table

3-anonymous

	Age*	Disease
1	2*	lung cancer
2	2*	lung cancer
3	2*	lung cancer
4	≥ 40	stomach cancer
5	≥ 40	diabetes
6	≥ 40	flu
7	3*	aids
8	3*	aids
9	3*	diabetes

L'attaque d'inférence

• Le **k-anonymat** est vulnérable à l'attaque d'inference. Par exemple, on déduit dans que toutes les personnes âgées d'une vingtaine d'année ont le cancer du poumon

Table 3-anonymisée

	Age*	Disease
1	2*	lung cancer
2	2*	lung cancer
3	2*	lung cancer
4	≥ 40	stomach cancer
5	≥ 40	diabetes
6	≥ 40	flu
7	3*	aids
8	3*	aids
9	3*	diabetes

L'attaque d'inférence

• Le **k-anonymat** est vulnérable à l'attaque d'inference. On déduit avec une probabilité de 2/3 que toutes les personnes âgées d'une trentaine d'années ont le SIDA

Table 3-anonymisée

	Age*	Disease
1	2*	lung cancer
2	2*	lung cancer
3	2*	lung cancer
4	≥ 40	stomach cancer
5	≥ 40	diabetes
6	≥ 40	flu
7	3*	aids
8	3*	aids
9	3*	diabetes

La l-diversité réduit le risque d'inférence (Homogeneity Attack)

• La l-diversité **améliore** la k-anonymisation: diversification des valeurs de l'attribut sensible; diminue le risque d'inférence

Table 3-anonymisée

	Age*	Disease
1	2*	lung cancer
2	2*	lung cancer
3	2*	lung cancer
4	≥ 40	stomach cancer
5	≥ 40	diabetes
6	≥ 40	flu
7	3*	aids
8	3*	aids
9	3*	diabetes

Table 3-diversifiée

	Age**	Disease
1/	< 40	lung cancer
12	< 40	lung cancer
3	< 40	Jung cancer
4	≥40	stomach cancer
5	≥ 40	diabetes
6	≥ 40	flu
7	< 40	aids
8	< 40	aids
8	< 40	diabetes

L'attaque d'inférence sémantique (similarity attack)

• La l-diversité est vulnérable à l'attaque d'inférence sémantique

Table 3-diversifiée

	ZIP Code*	Age*	Salary	Disease
1	355**	2*	4K	colon cancer
2	355**	2*	5K	stomach cancer
3	355**	2*	6K	lung cancer
4	3581*	≥ 40	7K	stomach cancer
5	3581*	≥ 40	12K	diabetes
6	3581*	≥ 40	9K	aids
7	355**	3*	8K	aids
8	355**	3*	10K	flu
9	355**	3*	11K	lung cancer

L'attaque d'inférence sémantique (similarity attack)

Considérations sémantiques:

- low => {4K, 5K, 6K},
- medium => {7K, 8K, 9K},
- high => {10K, 11K, 12K}

Table 3-diversifiée

	ZIP Code*	Age*	Salary	Disease
1	355**	2*	4K	colon cancer
2	355**	2*	5K	stomach cancer
3	355**	2*	6K	lung cancer
4	3581*	≥ 40	7K	stomach cancer
5	3581*	≥ 40	12K	diabetes
6	3581*	≥ 40	9K	aids
7	355**	3*	8K	aids
8	355** 355**	3*	10K	flu
9	355**	3*	11K	lung cancer

La t-closeness réduit le risque d'inférence sémantique

• La *t-proximité* améliore la *l-diversité*: diversification des valeurs sensibles en prenant en compte la sémantique des données

Table 3-diversifiée

	ZIP Code*	Age*	Salary	Disease
1	355**	2*	4K	colon cancer
2	355**	2*	5K	stomach cancer
3	355**	2*	6K	lung cancer
4	3581*	≥ 40	7K	stomach cancer
5	3581*	≥ 40	12K	diabetes
6	3581*	≥ 40	9K	aids
7	355**	3*	8K	aids
8	355**	3*	10K	flu
9	355**	3*	11K	lung cancer

0.167-proximité par rapport à Salary

	ZIP Code*	Age**	Salary	Disease
1	3556*	≤ 40	4K	colon cancer
3	3556*	≤ 40 /	6K	lung cancer
8	3556*	≤ 40	10K	flu
4	3581*	≥ 40	7K	stomach cancer
5	3581*	≥ 40	12K	diabetes
6	3581*	≥ 40	9K	aids
2	3550*	≤ 40\	5K	stomach cancer
7	3550*	≤ 40 \	8K /	aids
9	3550*	≤ 40	11K/	lung cancer

Comparaison des techniques en fonction des risques

Méthodes	Risque d'individualisation	Risque de corrélation	Risque d'inférence
Pseudonymisation	OUI	OUI	OUI
K-anonymisation	NON	OUI	Peut-être pas
L-diversité	NON	OUI	Peut-être pas
T-closeness	NON	OUI	Peut-être pas

Evaluation de l'anonymisation

Evaluation de la viabilité des données

Evaluation de la viabilité

- Il existe plusieurs manières d'évaluer la viabilité:
 - De manière générique:
 - Evaluation de la perte de données: certaines techniques engendrent des pertes de données l'une de méthodes d'évaluation de la viabilité consiste à évaluer cette perte de données
 - Evaluation de la quantité d'information: celle perdue lors de l'anonymisation. Se base sur l'entropie, qui est proportionnelle à la viabilité des données
 - De manière spécifique: en exécutant le test directement sur les données anonymisées

Evaluation générique de la viabilité des données

• Evaluation de la perte de données: les suppressions peuvent être globales (toute la ligne) ou locales (certaines colonnes).

• Evaluation de l'incertitude: basée sur le calcul d e l'entropie

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log(p(x))$$

Calculation of entropy to assess data viability

Hiérarchies des valeurs de l'attribut Age

Age	Age*	Age**
22	2*	2*
22	2*	2*
22	2*	2*
45	>= 40	>= 30
63	>= 40	>= 30
40	>= 40	>= 30
35	3*	>= 30
35	3*	>= 30
32	3*	>= 30

• L'entropie est proportionnelle à la viabilité des données

Calcul de l'entropie des hiérarchies des valeurs de l'attribut Age

QI	H()
Age	2,41
Age*	1,58
Age**	0,91

Evaluation de la confidentialité des données

Calcul d'un CDR

Example Table

	ZIP Code	Age	Salary	Disease
/1	35000	/ 22	\ 4K	cancer
2	35000 /	35	\ 5K	diabetes
3	35000	63	\ 3K	malaria
4	35000	22	13K	cancer
5	35000	22	8K	cancer
6	35000	35	15K	malaria
7	35000 \	45	/ 9K	\mathbb{Z}
8	35000	35	/ 7K	diabetes
9	35000	40	11K	dabetes

Calcul d'un CDR

Example Table

	ZIP Code	Age	Salary	Disease
1	35000	/ 22	4K	cancer
2	35000 /	35	\ 5K	diabetes
3	35000	63	3K	malaria
4	35000	22	13K	cancer
5	35000	22	8K	cancer
6	35000	35	15K	malaria
7	35000 \	45	9K	\mathbb{L}
8	35000	35	/ 7K	diabetes
9/	35000	40	11K	diabetes

Evaluation de l'attaque d'individualisation

Original

	Age	Disease
1	22	lung cancer
2	22	lung cancer
3	22	lung cancer
4	45	stomach cancer
5	63	diabetes
6	40	aids
7	35	aids
8	35	flu
9	32	diabetes

	Age	Age*
1	/ 22	/2*\
2	22	2* \ 2* \
3	22	2*
4	45	≥ 40
4 5 6	63	≥ 40
6	40	≥ 40
7	35	3*
8	35	3*/
9	32	3*

3-anonymous

	Age*	Disease
1	2*	lung cancer
2	2*	lung cancer
3	2*	lung cancer
4	≥ 40	stomach cancer
5	≥ 40	diabetes
6	≥ 40	flu
7	3*	aids
8	3*	aids
9	3*	diabetes

Evaluation de l'attaque d'individualisation

X	Y	$DR_X(Y)$
Age	2*	1
Age	≥ 40	0.78
Age	3*	0.87
Age	Age*	0.66

Evaluation de l'attaque d'inférence

3-anonymous Table

	Age*	Disease	
1	2*\	lang cancer	
$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	2*	lung cancer	
3	2*	lung cancer	
4	≥ 40	stomach cancer	
5	≥ 40	diabetes	
6	≥ 40	flu	
7	3*	aids	
8	3* /	aids	
9	3*	diabetes	

3-diverse Table

	Age*	Disease	
1	< 40	lung cancer	
2 3	/ < 40 \	lung cancer	
3	< 40	lung cancer	
4	≥ 40	stomach cancer	
5	≥ 40	diabetes	
6	≥ 40	flu	
7	< 40	aids	
8	< 40	aids	
9	40	diabetes	

Evaluation de l'attaque d'inférence

X	Y	$DR_X(Y)$
3-anonymous Table		
Disease	2*	1
Disease	≥ 40	0.70
Disease	3*	0.83
Disease	Age*	0.52
3-diverse Table		
Disease	< 40	0.40
Disease	≥ 40	0.78
Disease	Age*	0.18

Evaluation de l'attaque d'inférence sémantique

0,167-closeness Table w.r.t. Salary

			/ \	
	ZIP Code*	Age**	Salary	Disease
1	3556*	₹ 40\	4K	colon cancer
3	3556*	 ≤ 40 \	6K	lung cancer
8	3556*	≤ 40	10K	flu
4	3581*	≥ 40	//K	stomach cancer
5	3581*	≥ 40	12K	diabetes
6	3581*	≥ 40	9K	aids
2	3550*	\\\ \\ \\ \\ \	SK\	stomach cancer
7	\3550* /	≤ 40/	8K	aids
9	3550*	₹ 40	11K	lung cancer

3-diverse Table

	ZIP_Code*	Age*	Salary	Disease
1	355**	/ 2*\	4K	colon cancer
2	355**	/ 2* \	5K	stomach cancer
3	355**	2*	6K	lung cancer
4	3581*	≥ 40	7K	stomach cancer
5	3581*	≥ 40	12K	diabetes
6	3581*	≥ 40	9K	aids
7	355**	3*	8K	aids
8	355**	3*/	10K	flu
9	355**	3*/	11K	lung cancer

• SP3 = {{4K, 6K, 10K}, {7K, 12K, 9K}, {5K, 8K, 11K}}

Evaluation de l'attaque d'inference sémantique

X	Y	$sDR_X(Y)$
3-diverse Table		
SP_3	2*	0.81
SP_3	≥ 40	1
SP_3	3*	0.81
SP_3	Age*	0.61
SP_3	355**	0.58
SP_3	3581*	1
SP_3	ZIP Code*	0.58
t-closeness Table		
SP_3	≤ 40	0.58
SP_3	≥ 40	1
SP_3	Age**	0.58
SP_3	3550*	1
SP_3	3581*	1
SP_3	3556*	1
SP_3	ZIP Code*	1

Démo: anonymisation des données avec ARX

Louis Philippe SONDECK louissondeck.com

Consultant expert RGPD et sécurité des donnés

Tel: 06 45 07 54 56

Annexes

Exemples de données longitudinales

Table originale

Subjects	ZIP Code	Age	Visit Date	Disease
1	75018	22	21/01/2019	cancer
2	75002	35	13/03/2019	diabetes
3	75001	63	02/02/2019	flu
1	75018	22	27/01/2019	aids
1	75018	22	13/01/2019	cancer
2	75002	35	01/04/2019	malaria
3	75001	63	01/01/2019	malaria
4	75007	35	24/01/2019	diabetes
5	75015	40	12/07/2019	malaria

Table données stables

Subjects	ZIP Code	Age
1	75018	22
2	75002	35
3	75001	63
4	75007	35
5	75015	40

Table données variables

Subjects	Visit Date	Disease
1	21/01/2019	cancer
2	13/03/2019	diabetes
3	02/02/2019	flu
1	27/01/2019	aids
1	13/01/2019	cancer
2	01/04/2019	malaria
3	01/01/2019	malaria
4	24/01/2019	diabetes
5	12/07/2019	malaria