西安交通大学考试题

程 高等数学 1 课

成

 学 院 _____
 5

 专业班号 _____
 考试日期 2020 年 11 月 15 日

一、填空题(每小题4分,共20分)

1.
$$\lim_{x\to 0} (1+2xe^x)^{\frac{1}{x}} = \underline{\hspace{1cm}}$$

2.
$$\lim_{n \to \infty} \left(\frac{n+1}{n^2+1} + \frac{n+2}{n^2+2} + \dots + \frac{n+n}{n^2+n} \right) = \underline{\hspace{1cm}}$$

3. 设
$$y = \left(x + e^{-\frac{x}{2}}\right)^{\frac{2}{3}}$$
,则 $y'(0) =$ ______.

4. 设函数
$$y = y(x)$$
 由方程 $x = y^y$ 确定,则 $dy = ______$

5. 函数
$$y = x + 2\cos x$$
 在 $[0, \pi/2]$ 上的最大值为______.

1. 求极限
$$\lim_{x \to x} \frac{\tan^2(3x)}{1 - \cos(\sin x)}$$
.

2. 设
$$y = e^{\sin\frac{1}{x}} \cdot \tan\frac{1}{x}$$
, 求 $y'\left(\frac{4}{\pi}\right)$.

3. 己知曲线 $\begin{cases} x = f(t) - 1 \\ y = f(e^{2t} - 1) \end{cases}$, 其中 f 可导,且 f(0) = 2, $f'(0) \neq 0$,求 t = 0处 曲线的切线方程.

4. 设 $F(x) = \lim_{t \to \infty} t^2 \left[f\left(x + \frac{\pi}{t}\right) - f(x) \right] \sin\frac{x}{t}$, 其中 f 二阶可导, 求 F(x), F'(x).

5. 当 $x \to 0^+$ 时, $\alpha(x) = \sqrt{a} - \sqrt{a + x^3}$ $(a \ge 0)$ 是x 的几阶无穷小?说明理由.

6. 设
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0, \text{ 证明其导函数 } f'(x) 在 x = 0 处连续. \\ 0, & x = 0 \end{cases}$$

7. 求曲线 $y = x^4(12 \ln x - 7)$ 的凹凸区间及拐点.

三、 (本题 9 分) 讨论函数
$$f(x) = \begin{cases} \sin \frac{1}{x^2 - 1}, & x < 0 \\ \frac{x^2 - 1}{\cos \frac{\pi x}{2}}, & x \ge 0 \end{cases}$$
 的连续性; 若有间断点,

说明间断点的类型.

四、证明题

1. (本题 8 分) 设 f(x) 在 $[0,+\infty)$ 上二阶可导,且 f(0)=0, $f^*(x)<0$,证 叨: 对任意两点 $x_1>0$ 和 $x_2>0$,有 $f(x_1+x_2)< f(x_1)+f(x_2)$.

2. (本题 7 分)设 f(x) 在[0,1]上有三阶连续导数,且 f(0)=1, f(1)=2, $f'\left(\frac{1}{2}\right)=0$,证明:至少存在一点 $\xi \in (0,1)$,使得 $\left|f^{(3)}(\xi)\right| \ge 24$.

西安交通大学本科生课程考试试题标准答案与评分标准

课程名称:
$$\frac{3}{3}\frac{1}\frac{1}{3}\frac{1$$

6.
$$f(0) = \lim_{t \to 0} \frac{f(t) - f(0)}{x} = \lim_{t \to 0} \frac{e^{-\frac{t}{x}}}{e^{\frac{t}{x}}} = \lim_{t \to 0} \frac{t}{e^{\frac{t}{x}}} = \lim_{t \to 0} \frac{t}{e^{\frac{t}{x}}}$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{x}}} = 0. \quad (4)$$

$$= \lim_{t \to \infty} \frac{1}{2t + e^{\frac{t}{$$