On the distribution of the largest connected component size in random graphs with fixed edges set size

Robin Petit

March-April 2017

Contents

1	Intr	uction	1
	1.1	Definitions and preliminary results	1
		Objectives	
2	Res	ns ·	3
	2.1	xamples	3
		$11^{-1} \Lambda_{1-1}(V_{\cdot}) $	3
		.1.2 Upper boundary of m for $ \Lambda_{\nu}^{m}(V,\cdot) $	4
		1.2 Upper boundary of m for $\left \Lambda_k^m(V,\cdot)\right $	5
3	Proc	ssing on examples	5

1 Introduction

1.1 Definitions and preliminary results

Let's consider $V = \{v_1, \dots, v_{|V|}\}$ a set of vertices. We denote by |V| the cardinality of the set V. Let's define the function:

$$X:\mathbb{N}\to\mathbb{N}:n\mapsto\frac{n(n-1)}{2}.$$

Definition 1.1. An undirected graph Γ is denoted $\Gamma(V,E)$ for V its vertices set, and E its edges set, with $E = \{e_1, \ldots, e_{|E|}\}$ and $\forall i \in [\![1,\!|E|]\!] : e_i = \{v_{i1}, v_{i2}\}$ for $1 \le i_1, i_2 \le |V|$ with $i_1 \ne i_2$ (i.e. loops are not tolerated). *Remark.* |E| is usually denoted as m, and |V| is sometimes denoted as n. Both these numbers are (non-strictly) positive integers.

Definition 1.2. The set of all the existing graphs having given vertices set V is denoted by $\Gamma(V, \cdot)$. We denote $\Gamma_{\mathfrak{m}}(V, \cdot)$ the subset of $\Gamma(V, \cdot)$ such that $|E| = \mathfrak{m}$. *Remark.* We observe that:

$$\Gamma(V,\cdot) = \bigsqcup_{m \in \mathbb{N}} \Gamma_m(V,\cdot).$$

Definition 1.3. For every $n \in \mathbb{N}$, we define \mathfrak{K}_n as the *complete graph* of size n.

Lemma 1.4. For a graph $\Gamma(V, E)$, we have $|E| \leq X(V)$.

Proof. We know that $\Gamma(V, E) \leq \mathcal{K}_{|V|}$, and $\mathcal{K}_{|V|}$ has exactly X(V) edges (vertex v_i is connected to vertices v_{i+1} to $v_{|V|}$, so the number of edges is equal to $\sum_{i=1}^{|V|} (|V| - i) = \sum_{i=0}^{|V|-1} i = X(|V|)$.

Lemma 1.5. For given vertices set V and fixed number of edges $m \in \mathbb{N}$, we have:

$$\left|\Gamma_{\mathfrak{m}}(V,\cdot)\right| = \begin{cases} \binom{X(|V|)}{\mathfrak{m}} & \text{if } \mathfrak{m} \leqslant X(|V|) \\ 0 & \text{else} \end{cases}.$$

Corollary 1.6. For given vertices set V, we have $|\Gamma(V, \cdot)| = 2^{X(|V|)}$.

Proof. Since $\Gamma(V, \cdot)$ is given by a disjoint union over m, its cardinality is equal to the sum of the individual cardinalities:

$$\left|\Gamma(V,\cdot)\right| = \sum_{m\in\mathbb{N}} \left|\Gamma_m(V,\cdot)\right| = \sum_{k=0}^{X(|V|)} \left|\Gamma_m(V,\cdot)\right| = \sum_{k=0}^{X(|V|)} \binom{X(|V|)}{m} = 2^{X(|V|)}.$$

Definition 1.7. A graph $\Gamma(V, E)$ is said to be connected if for each $v, w \in V$, there exists a path between v and w. We denote by $\chi(V, \cdot)$ the set of all connected graphs having vertices set V. Again, for $\mathfrak{m} \in \mathbb{N}$, we denote by $\chi_{\mathfrak{m}}(V, \cdot) \subset \chi(V, \cdot)$ the set of connected graphs having \mathfrak{m} edges. *Remark.* $\chi(V, \cdot) \subset \Gamma(V, \cdot)$, and:

$$\chi(V,\cdot) = \bigsqcup_{m \in \mathbb{N}} \chi_m(V,\cdot).$$

Lemma 1.8. For m < |V| or m > X(V), we have $|\chi_m(V, \cdot)| = 0$.

Definition 1.9. For every $W \in \mathcal{P}(V)$, we define $\Delta_W : \Gamma(V, \cdot) \to \Gamma(W, \cdot) : \Gamma(V, E) \mapsto \Gamma'(W, E')$ such that:

$$\mathsf{E}' = \left\{ \{v_{\mathfrak{i}}, v_{\mathfrak{j}}\} \in \mathsf{E} \text{ s.t.} v_{\mathfrak{i}}, v_{\mathfrak{j}} \in W \right\}.$$

Definition 1.10. We define the *connected component of vertex* $v_i \in V$ *in graph* $\Gamma(V, E)$ by the biggest subset (in the sense of inclusion) W of V such that $v_i \in W$ and $\Delta_W(\Gamma(V, E)) \in \chi(W, \cdot)$.

For graph $\Gamma(V, E) \in \Gamma(V, \cdot)$, we define $|LCC(\Gamma(V, E))|$ by:

$$|LCC(\Gamma(V, E)| := \max_{W \in \mathcal{P}(V)} |W| \mathbb{I}_{[\Delta_W(\Gamma(V, E) \in \chi(V, \cdot)]}.$$

We then define the *largest connected component of the graph* $\Gamma(V, E)$ as:

$$LCC(\Gamma(V,E)) \coloneqq \mathop{\arg\min}_{\substack{W \in \mathcal{P}(V) \\ |W| = \left|LCC(\Gamma(V,E))\right|}} \mathop{\min}_{i \in \llbracket 1 J V | \rrbracket} i \times \mathbb{I}_{[\nu_i \in W]}.$$

The set $\Lambda_k^m(V,\cdot)$ is then the set of all graphs $\Gamma(V,E)\in\Gamma(V,\cdot)$, such that |E|=m and $\left|LCC(\Gamma(V,E))\right|=k$. *Remark.* The notations here are consistent since $\left|LCC(\Gamma(V,E))\right|$ corresponds indeed to the cardinality of $LCC(\Gamma(V,E))$.

Furthermore, this definition of largest connected component allows to define uniquely the LCC, even though a graph $\Gamma(V, E)$ has several connected component of same size. For example, following graph has two connected component of size 2, i.e. $\{1,2\}$ (in red) and $\{3,4\}$ (in blue).

Figure 1: Graph $\Gamma(\{1,2,3,4\},\{\{1,2\},\{3,4\}\})$

Nevertheless, the LCC operator yields {1,2} since it minimizes the lowest id of element in connected component (1 for this graph).

Remark. Since $\Lambda_k(V,\cdot) = \bigsqcup_{m=0}^{X(|V|)} \Lambda_k^m(V,\cdot)$ and:

$$\Gamma(V,\cdot) = \bigsqcup_{k=1}^{|V|} \bigsqcup_{m=0}^{X(|V|)} \Lambda_k^m(V,\cdot),$$

we want to know what is $|\Lambda_k^{\mathfrak{m}}(V,\cdot)|$ equal to.

Definition 1.11. Let's declare a new random variable $\mathcal{G}(V)$, a graph uniformly distributed in $\Gamma(V, \cdot)$, thus such that:

$$\forall \Gamma(V,E) \in \Gamma(V,\cdot): \mathbb{P}[\mathscr{G}(V) = \Gamma(V,E)] = \frac{1}{\left|\Gamma(V,\cdot)\right|} = 2^{-X(|V|)}.$$

1.2 Objectives

The objective now is to find an expression for $|\Lambda_k(V,\cdot)|$ since we are looking for:

$$\mathbb{P}\left[LCC(\mathscr{G}(V)) = k\right] = \frac{\left|\Lambda_k(V,\cdot)\right|}{\left|\Gamma(V,\cdot)\right|} = \frac{1}{\left|\Gamma(V,E)\right|} \sum_{m=0}^{X(|V|)} \left|\Lambda_k^m(V,\cdot)\right|.$$

Let's denote this value $\mathfrak{p}_k \coloneqq \mathbb{P}\left[\left|LCC(\mathscr{G}(V))\right| = k\right].$

2 Results

The general idea in order to determine $|\Lambda_k^m(V,\cdot)|$ is to insert a connected component of size k on vertices set V, and then to tally the configurations placing m-k vertices without making a bigger connected component than the first one.

2.1 Examples

2.1.1
$$\left| \Lambda_{k=1}(V, \cdot) \right|$$

It is trivial to tell $|\Lambda_1^{\mathfrak{m}}(V,\cdot)| = \delta_0^{\mathfrak{m}}$, i.e. equals one if $\mathfrak{m} = 0$ and equals zero if $\mathfrak{m} > 0$: a graph having at least one edge, cannot have a largest connected component of size 1.

2.1.2 Upper boundary of m for $|\Lambda_k^m(V, \cdot)|$

Lemma 2.1 (Upper boundary of edges amount for k=2). For $m>\frac{|V|}{2}$, we have $\Lambda_2^m(V,\cdot)=\emptyset$.

Proof. To have a largest connected component of size 2, each vertex must have degree 0 or 1. Take $m \in \mathbb{N}$ such that $m > \frac{V}{2}$. Take $\Gamma(V, E)$ such that |E| = m, and take $\mathcal{V}_1 := \{v \in V \text{ s.t. deg}(v) \leqslant 1\} \subset V$. Take the restriction $\Gamma'(\mathcal{V}_1, E') = \Delta_{\mathcal{V}_1}(\Gamma(V, E))$.

Since in a graph, the sum of the degree of each vertex is equal to twice the amount of edges, when applied on Γ' , it follows that:

$$2\big|\mathsf{E}'\big| = \sum_{\nu \in \mathcal{V}_1} \mathsf{deg}(\nu) \leqslant \sum_{\nu \in \mathcal{V}_1} 1 = |\mathcal{V}_1|\,.$$

We then deduce that $|E'| \le \frac{|V_1|}{2} \le \frac{|V|}{2}$. Thus V_1 must be *strictly* included in V, and then there must exist $v \in V$ such that $deg(v) \ge 2$. Thus:

$$\forall m > \frac{|V|}{2} : \forall \Gamma(V, E) \in \Gamma_{m}(V, \cdot) : \Gamma(V, E) \not\in \Lambda_{2}^{m}(V, \cdot).$$

Lemma 2.2. For $\Gamma(V,E) \in \Gamma(V,\cdot)$ a graph and $k \in [\![1,\!|V|]\!]$, if there exists a vertex $v \in V$ such that deg(v) = k, then $\big|LCC(\Gamma(V,E))\big| \geqslant k+1$.

Proof. Take $v \in V$ such that deg(v) = k. There exist $\{v_{i_1}, \dots, v_{i_k}\} \subset V$ such that:

$$\forall j \in \llbracket 1, k \rrbracket : \{\nu, \nu_{\mathfrak{i}_{\mathfrak{j}}}\} \in E.$$

Thus $\{v, v_{i_1}, \dots, v_{i_k}\}$ is a connected component of size k+1. Thus the largest connected component must have size at least that big.

Proposition 2.3 (Upper boundary of edges amount generalized). For $k \in [1,|V|]$, and $m > \frac{|V|(k-1)}{2}$, we have $\Lambda_k^m(V,\cdot) = \emptyset$.

Proof. Take $m > \frac{(k-1)|V|}{2}$, and $\Gamma(V,E) \in \Gamma_m(V,\cdot)$. Take $\mathcal{V}_k \coloneqq \{ \nu \in V \text{ s.t. deg}(\nu) \leqslant k-1 \}$. Let $\Gamma'(\mathcal{V}_k,E')$ be defined by $\Delta_{\mathcal{V}_k}(\Gamma(V,E))$. We know that:

$$2\big|\mathsf{E}'\big| = \sum_{\nu \in \mathcal{V}_k} deg(\nu) \leqslant (k-1)|\mathcal{V}_k| \leqslant (k-1)|V|\,.$$

We deduce that $|E'| \leqslant \frac{(k-1)|V|}{2} < m = |E|$. Thus $|E| \ngeq |E'|$, and this implies that there exists $v \in V$ such that $deg(v) \geqslant k$. By previous lemma, largest connected component size must be at least k+1.

Remark. We can understand this upper boundary as $m > \frac{|V|(k-1)}{2} = \frac{|V|}{k} \frac{k(k-1)}{2} = \frac{|V|}{k} \cdot X(k)$. So in order to have a LCC of size k, edges can be distributed to make $\left\lfloor \frac{|V|}{k} \right\rfloor$ complete graphs having each X(k) edges. The maximum amount of edges is then given by $\frac{|V|(k-1)}{2}$.

2.1.3
$$|\Lambda_{k=2}(V,\cdot)|$$

Example of size 2 is a bit more complicated:

$$\forall m \in \left[\!\left[1, \left\lfloor \frac{|V|}{2} \right\rfloor \right]\!\right] : \left|\Lambda_2^m(V, \cdot)\right| = \begin{cases} \frac{1}{m!} \prod_{k=0}^{m-1} \binom{|V|-2k}{2} & \text{if } m \leqslant \frac{|V|}{2} \\ 0 & \text{else} \end{cases}.$$

Proof. For $m > \frac{|V|}{2}$, result is shown in Lemma 2.1. The part $\prod_{k=0}^{m-1} {|V|-2k \choose 2}$ corresponds to the choice of m edges without making a connected component of size $\geqslant 3$.

 $\binom{|V|-2\cdot 0}{2}$ is the choice of the first edge (two vertices) among |V| vertices, $\binom{|V|-2}{2}$ is the choice of the second edge (two vertices) among the |V|-2 vertices left, etc. At step ℓ , only $|V|-2(\ell-1)$ vertices are available because two are selected per step, and a selected vertex cannot be used again, otherwise its degree would be $\geqslant 2$, and then the largest component size would be $\geqslant 3$.

The $\frac{1}{m!}$ comes from the fact that the order the edges are selected doesn't matter (so for each choice of m edges, there are m! permutations of these).

Remark. This can also be expressed as:

$$\left|\Lambda_2^{\mathfrak{m}}(V,\cdot)\right| = \frac{1}{\mathfrak{m}!} \frac{|V|!}{2^{\mathfrak{m}} \left(V | - 2\mathfrak{m} \right)!},$$

by simplification of the product.

3 Processing on examples

$$\begin{split} \left| \Lambda_3^0(V, \cdot) \right| &= \left| \Lambda_3^1(V, \cdot) \right| = 0 \\ \left| \Lambda_3^2(V, \cdot) \right| &= \binom{|V|}{3} \binom{3}{2} \\ \left| \Lambda_3^3(V, \cdot) \right| &= \binom{|V|}{3} \binom{3}{3} + \binom{|V|}{3} \binom{3}{2} \binom{|V| - 3}{2} \\ \left| \Lambda_3^4(V, \cdot) \right| &= \binom{|V|}{3} \binom{3}{3} \binom{|V| - 3}{2} + \binom{|V|}{3} \binom{3}{2} \binom{|V| - 3}{3} \binom{3}{2} + \binom{|V|}{3} \binom{3}{2} \binom{|V| - 3}{2} \binom{|V| - 5}{2}. \end{split}$$

Definition 3.1. Let's denote equally $|\Lambda_k^m(n)| = \Lambda_k^m(n) \equiv |\Lambda_k^m(V, \cdot)|$ for V such that |V| = n.

This notation allows to lighten the expressions.

Conjecture 3.2.

$$\left|\Lambda_k^{\mathfrak{m}}(|V|)\right| = \binom{|V|}{k} \sum_{\ell=k-1}^{\min\left(\mathfrak{m},X(k)\right)} \left|\Lambda_k^{\ell}(k)\right| \sum_{\mathfrak{p}=1}^{k} \left|\Lambda_{\mathfrak{p}}^{\mathfrak{m}-\ell}(|V|-k)\right| \beta_{\mathfrak{p}\,\ell}(\mathfrak{m},k,|V|),$$

with $\beta_{p\ell}(m, k, |V|)$, a coefficient.

Remark. The idea behind this formula is explained in introduction of Section 2: to find the amount of graphs having n vertices, m edges and a largest connected component of size k, let's place a connected component of size k somewhere in the graph (so choose k in |V| vertices), and then multiply this by the amount of possible graphs of largest connected component of size $p \in \{1, ..., k\}$ (so lower or equal to k).

Idea of proof of conjecture. In order to prove the equality of the cardinalities, let's find a bijective function Ω between $\Lambda_k^m(V,\cdot)$ and a set like:

$$\mathfrak{Q}_k^m(V) \coloneqq \bigsqcup_{\substack{W \in \mathcal{P}(V) \\ |W| = k}} \bigsqcup_{\ell = k-1}^{min\left(m, X(k)\right)} \Lambda_k^\ell(W, \cdot) \times \left(\bigsqcup_{p=1}^k \Lambda_p^{m-\ell}(V \setminus W, \cdot)\right).$$

Lemma 3.3. The sets
$$\chi_\ell(V,\cdot)$$
 and $\Lambda_{|V|}^\ell(V,\cdot)$ are equal.

Proof. A graph $\Gamma(V, E)$ is connected if and only if its largest connected component contains all its vertices, i.e. $LCC(\Gamma(V, E)) = V$.

This is equivalent to say that $|LCC(\Gamma(V, E))| = |V|$ since $\forall W \in \mathcal{P}(V) : |W| = |V| \Rightarrow V = W$:

$$\forall W \in \mathcal{P}(V) : \left| \left\{ \widetilde{W} \in \mathcal{P}(V) \text{ s.t.} |W| = \left| \widetilde{W} \right| \right\} \right| = {|V| \choose |W|},$$

and
$$\binom{|V|}{|V|} = 1$$
, thus $\left\{ W \in \mathcal{P}(V) \text{ s.t.} |W| = |V| \right\} = \{V\}$.