

AKADEMIA GÓRNICZO-HUTNICZA
IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF KRAKOW

Przeszukiwanie obszarów ortogonalnych

Autorzy: Dariusz Marecik, Piotr Sękulski

Temat i cel projektu

Dane: Zbiór punktów P na płaszczyźnie.

Zapytanie: Dla zadanych współrzędnych punktów lewego dolnego rogu (x_1, y_1) i oraz prawego górnego rogu (x_2, y_2) , należy znaleźć punkty q ze zbioru P, takie że spełniają one warunki: $x_1 \le q_x \le x_2$ oraz $y_1 \le q_y \le y_2$.

UCZELNIA QuadTree MCATYMA DOSKONALOŚCI

Quadtree jest to strukturą danych będąca drzewem, które służy do podziału przestrzeni dwuwymiarowej na mniejsze części, dzieląc ją na równe ćwiartki, a następnie dzieląc je na kolejne ćwiartki itd.

Jest to struktura szczególnie przydatna do:

- przetwarzania obrazu
- generowania siatki
- skutecznego wykrywania kolizji

Budowa Quadtree

```
def init (self, rectangle, max points = 1, depth = 0):
    self.nw = None # lewy górny czworokąt
    self.ne = None # prawy górny czworokąt
    self.sw = None # lewy donly czworokat
    self.se = None # prawy dolny czworokąt
    self.rectangle = rectangle # czworokąt ograniczający dany węzeł
    self.max points = max points # maksymalna liczba punktów w węźle
    self.points = [] # punkty w węźle
    self.depth = depth # głęgokość wezła
    self.divided = False # flaga mówiąca o tym czy węzeł ma dzieci
```


Wstawianie punktu

```
def insert(self, point):
    if point.amount of dimensions != 2:
       raise ValueError("Niepoprawny wymiar puntktów! \nQuadtree obsługuje tylko punkty dwueymiarowe!")
    if not self.rectangle.is point in rectangle(point):
        return False
    if len(self.points) < self.max points:</pre>
        self.points.append(point)
        return True
    if not self.divided:
        self.divide()
    return self.se.insert(point) or self.ne.insert(point) or self.sw.insert(point) or self.nw.insert(point)
def divide(self):
   x 1, y 1 = self.rectangle.lower left.cords
   x_2, y_2 = self.rectangle.upper right.cords
   c x = (x 1 + x 2) / 2
   c y = (y 1 + y 2) / 2
    center = Point((c x, c y))
    bounds = (Point((x 1, y 1)), Point((x 2, y 2)), Point((x 2, y 1)), Point((x 1, y 2)))
    self.sw = QuadTree(Rectangle(bounds[0].lower left(center), bounds[0].upper right(center)), elf.max points, self.depth + 1)
    self.ne = QuadTree(Rectangle(bounds[1].lower left(center), bounds[1].upper right(center)), self.max points, self.depth + 1)
    self.se = QuadTree(Rectangle(bounds[2].lower left(center), bounds[2].upper right(center)), self.max points, self.depth + 1)
    self.nw = QuadTree(Rectangle(bounds[3].lower_left(center), bounds[3].upper_right(center)), self.max_points, self.depth + 1)
    self.divided = True
```


Przeszukiwanie struktury

```
def search(self, boundary, found points):
    if not self.rectangle.is intersect(boundary):
        return []
    for point in self.points:
        if boundary.is point_in_rectangle(point):
            found points.append(point.cords)
    if self.divided:
        self.se.search(boundary, found points)
        self.ne.search(boundary, found points)
        self.sw.search(boundary, found_points)
        self.nw.search(boundary, found points)
    return found points
```

- 1. Sprawdzenie czy prostokąt węzeła ma jakąś część wspólną z przeszukiwanym obszarem jeśli nie to zwracamy pustą tablice
- 2. Sprawdzenie czy punkty zapisane w węźle zawierają się w szukanym prostokącie, jeśli tak to dodanie jego współrzędnych do listy found_points
- 3. Przeszukanie węzłów dzieci
- 4. Zwrócenie znaleźnych do tej pory punktów

KDTree

Opis

Struktura ta organizuje punkty w formie binarnego drzewa, gdzie każdy węzeł reprezentuje podział przestrzeni wzdłuż jednej z osi. Przy każdej iteracji podział odbywa się na przemian względem kolejnych wymiarów.

Najbardziej popularnym zastosowaniem drzewa jest algorytm kNN (k nearest neighbours) - podstawowy algorytm klasyfikacji uczenia maszynowego.

Także bardzo przydatnym jest wydajne filtrowanie danych. Jeśli mamy zbiór obiektów z pewnymi cechami i chcemy wybrać takie, wartości cech których mieszczą się w pewnych przedziałach, to możemy potraktować ich jak wielowymiarowe punkty.

Struktura drzewa

```
class KdTree:
   def init (self, points, dimensions amount, begining axis=0, is points in vertix = True):
       for point in points:
           if len(point)!= dimensions amount:
               raise ValueError("zbiór punktów nie zgadza się z deklarowaną ilością wymiarów")
       points = [Point(point) for point in points]
       self.begining axis = begining axis
       self.root = KdTreeNode(points, dimensions amount, begining axis,
                             Rectangle(list_of_Point=points), is points in vertix)
       self.dimensions amount = dimensions amount
class KdTreeNode:
    def init (self,points, dimensions amount,depth,rectangle, is points in vertix=True):
        if is points in vertix or len(points)==1:
            self.points = points
        else:
            self.points = []
        self.dimensions amount = dimensions amount
        self.depth = depth
        self.dimension number = self.depth%self.dimensions amount
        self.left = None
        self.right = None
        self.is points in vertix = is points in vertix
        self.rectangle = rectangle
        if len(points)>1:
            self.build(points)
```


Budowa drzewa

```
class KdTreeNode:
   def build(self,points):
       for in range(self.dimensions amount):
           points.sort(key = lambda x: x.cords[self.dimension number])
           median = math.ceil(len(points)/2)
           median-=1
           median = self.bsearch right(points, self.dimension number, points[median].cords[self.dimension number])
           left median = self.bsearch left(points, self.dimension number, points[median].cords[self.dimension number])
           median+=1
           if median - left median > 3*len(points)//4 or median == len(points):
               self.depth +=1
               self.dimension number = (self.dimension number+1)%self.dimensions amount
           else:
               break
       self.axis = points[median-1].cords[self.dimension number]
       left rec, right rec = self. split region(self.rectangle, self.dimension number, self.axis)
       self.left = KdTreeNode(points[0:median], self.dimensions amount, self.depth+1, left rec, self.is points in vertix )
       self.right = KdTreeNode(points[median:], self.dimensions amount, self.depth+1, right rec, self.is points in vertix )
```


Przeszukiwanie struktury

```
class KdTree:
   def check contains(self,point):
       if not isinstance(point, Point):
            if len(point) != self.dimensions amount:
                raise ValueError("Podano nieprawidołowy punkt do znalezienia")
            point = Point(point)
       return self.root.check contains(point)
class KdTreeNode:
       def find points in region(self,region):
       if self.is leaf():
            is in = region.is point in rectangle(self.points[0])
            return self.points if is in else []
       if region.is contained(self.rectangle):
            return self.get points()
       if region.is intersect(self.rectangle):
            return self.left.find points in region(region) + self.right.find points in region(region)
       return []
```


Rozkład normalny

Jest to rozkład statystycznie najczęściej występujący w naturze, jeżeli chcemy, więc przyjrzeć się naszemu problemowi dla najbardziej powszechnych przypadków, powinniśmy wziąć pod lupę właśnie tak wygenerowany zbiór punktów. Jak wychodzi z wykresu KdTree poradziło sobie lepiej niż Quadtree.

Rozkład krzyżowy

Punkty w tym zbiorze są rozmieszczone w sposób zbliżony do równomiernego na osiach układu współrzędnych, co wpływa na charakter podziału przestrzeni przez struktury danych. W przypadku takiego rozmieszczenia, duża liczba punktów współliniowych może prowadzić do nieoptymalnego dzielenia obszarów, w wyniku czego struktura danych może nieefektywnie zarządzać przestrzenią. Jak widać na wykresie QuadTree poradziło sobie troche lepiej.

Zbiór siatka

Zbiór składa się z punktów ułożonych w równych odległościach od siebie. Takie rozmieszczenie przypomina rozkład jednostajny, lecz dokłada problem współliniowych punktów względem osi ukladu współrzędnych. Jak widać po wykresie lepiej sprawdza do tegozbioru drzewo kd

Ciekawostki

Quadtree znajduje szerokie zastosowanie przede wszystkim w kompresji obrazu, im głębsze drzewo, tym jakość będzie lepsza, lecz w tym tkwi zaleta quadtree, nie w każdym miejscu musimy kopać tak samo głęboko.

Strukturę tą wykorzystuje się także w grach komputerowych do wykrywania kolizji. Dzięki budowie quadtree możemy uwzględnić daną kolizję nie zmieniając całości drzewa, a tylko jego fragment.

Ciekawostki

Jednym z najczęstszych zastosowań drzew kd jest wyszukiwanie najbliższego sąsiada, gdzie są używane do szybkiego znalezienia najbliższego punktu do zadanego punktu. Dzięki temu są one użytecznym elementem wielu podejść w uczeniu maszynowym, takich jak metoda k-najbliższych sąsiadów (KNN) zeroka gama algorytmów klastrowania opartych na odległości.

Innym zastosowaniem drzew kd jest wyszukiwanie w zakresie (ang. range search), gdzie służą do znajdowania wszystkich punktów w określonej odległości od punktu zapytania. Jest to przydatne w analizie danych przestrzennych, systemach informacji geograficznej (GIS) i innych zastosowaniach wymagających identyfikacji punktów w określonym zakresie.

Podsumowanie Podsumowanie

Jak widzimy, każde drzewo ma swoje zastosowania, które są spowodowane pewnymi własnościami:

QuadTree jest zazwyczaj bardzo szybki dla zbalansowanych zbiorów i nie ma pewnych wyjątkowych sytuacji przy których jest bardzo niewydajny.

KDTree ma największą zaletę w wielowymiarowości i dodatkowych operacjach (np. szukanie najbliższego sąsiada), które zapewniają popularność tej struktury. Przedziałowe przeszukiwanie w 2D przestrzeni jest bardzo wydajne na obu strukturach, ale wymaga dodatkowego zastanowienia się nad postacią zbioru punktów jak pokazaliśmy ciut wcześniej, żeby uwzględnić własności drzew, i odpowiednio wybrać najbardziej odpowiednie.