

Physics I: Introduction to Wave Theory SDU Course Number: sd01232810 (Fall 2024)

Course Review (II)

Outline

- L6. Reflection and Transmission
- L7. Wave Guidance

L6. Reflection and Transmission

Fresnel Equations - Summary

TE-polarization

$$R^{TE} = \frac{\mu_2 k_{ix} - \mu_1 k_{tx}}{\mu_2 k_{ix} + \mu_1 k_{tx}} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$

$$T^{TE} = \frac{2\mu_2 k_{ix}}{\mu_2 k_{ix} + \mu_1 k_{tx}} = \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t}$$

TM-polarization

$$R^{TM} = \frac{\varepsilon_2 k_{ix} - \varepsilon_1 k_{tx}}{\varepsilon_2 k_{ix} + \varepsilon_1 k_{tx}} = \frac{\eta_1 \cos \theta_i - \eta_2 \cos \theta_t}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_t}$$
$$T^{TM} = \frac{2\varepsilon_2 k_{ix}}{\varepsilon_2 k_{ix} + \varepsilon_1 k_{tx}} = \frac{2\eta_1 \cos \theta_i}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_t}$$

Energy Transport

$$\vec{S}_r(t) = \vec{E}(t) \times \vec{H}(t)$$

r: reflectivity

t: transmission

TE-polarization

$$r = \frac{-\hat{x} \cdot \left\langle \vec{S}_r \right\rangle}{\hat{x} \cdot \left\langle \vec{S}_i \right\rangle} = \left| R^{TE} \right|^2$$

$$R^{TM} = H_r/H_i$$
$$T^{TM} = H_t/H_i$$

$$t = \frac{\hat{x} \cdot \left\langle \overrightarrow{S}_{t} \right\rangle}{\hat{x} \cdot \left\langle \overrightarrow{S}_{i} \right\rangle} = \frac{\eta_{1} \cos \theta_{t}}{\eta_{2} \cos \theta_{i}} \left| T^{TE} \right|^{2}$$

TM-polarization

$$r = \frac{-\hat{x} \cdot \left\langle \vec{S}_r \right\rangle}{\hat{x} \cdot \left\langle \vec{S}_i \right\rangle} = \left| R^{TM} \right|^2$$

$$R^{TE} = E_r/E_i$$
 $T^{TE} = E_t/E_i$

$$t = \frac{\hat{x} \cdot \left\langle \overrightarrow{S}_{t} \right\rangle}{\hat{x} \cdot \left\langle \overrightarrow{S}_{i} \right\rangle} = \frac{\eta_{2} \cos \theta_{t}}{\eta_{1} \cos \theta_{i}} \left| T^{TM} \right|^{2}$$

Energy Conservation

TE-polarization

$$r + t = \left| \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_t}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t} \right|^2 + \frac{\eta_1 \cos \theta_t}{\eta_2 \cos \theta_i} \left| \frac{2\eta_2 \cos \theta_i}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_t} \right|^2 = 1$$

TM-polarization

$$r + t = \left| \frac{\eta_1 \cos \theta_i - \eta_2 \cos \theta_t}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_t} \right|^2 + \frac{\eta_2 \cos \theta_t}{\eta_1 \cos \theta_i} \left| \frac{2\eta_1 \cos \theta_i}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_t} \right|^2 = 1$$

Phase Matching

Phase matching condition: $\left|k_{iz}=k_{rz}=k_{tz}\right|$

$$k_{iz} = k_{rz} = k_{tz}$$

k surface:
$$k_x^2 + k_y^2 + k_z^2 = \omega^2 \mu \varepsilon = n^2 k_0^2$$

$$\begin{cases} k_{iz} = k_{rz} \\ k_{ix} = -k_{rx} \end{cases} => \theta_i = \theta_r$$

Snell's law:
$$\begin{cases} k_{iz} = k_{rz} \\ k_{ix} = -k_{rx} \end{cases} => \theta_i = \theta_r \qquad \frac{\sin \theta_i}{\sin \theta_t} = \frac{k_{iz}/k_i}{k_{tz}/k_t} = \frac{k_t}{k_i} = \frac{n_2}{n_1}$$

Total Reflection and Critical angle

Phase matching condition: $|k_{iz} = k_{rz} = k_{tz}|$ $n_1 > n_2, k_{ix} > k_t$ $(\theta_i > \theta_c)$

$$k_{iz} = k_{rz} = k_{tz}$$

$$n_1 > n_2, k_{ix} > k_t \left(\theta_i > \theta_c\right)$$

k surface: $k_x^2 + k_y^2 + k_z^2 = \omega^2 \mu \varepsilon = n^2 k_0^2$

$$k_x^2 + k_y^2 + k_z^2 = \omega^2 \mu \varepsilon = n^2 k_0^2$$

$$k_{tx} = \sqrt{k_t^2 - k_z^2} = -jk_{tx}''$$

(purely imaginary)

$$\langle \overline{S}_t \rangle = \hat{z} \frac{k_z}{2\omega\varepsilon_t} |T^{TM}|^2 e^{-2k_{tx}''x}$$
 (TM waves)

$$\Rightarrow k_x \qquad \langle \overline{S}_t \rangle = \hat{z} \frac{k_z}{2\omega u} |T^{TE}|^2 e^{-2k''_{tx}x} \quad \text{(TE waves)}$$

No power transmitted in the x direction into the region t

k surface for medium 1

Critical angle:
$$\theta_c = \sin^{-1} \frac{k_t}{k_i} = \sin^{-1} \frac{n_2}{n_1}$$

Polarization by reflection

Different polarization of light get reflected and refracted with different amplitudes.

At one particular angle, the parallel polarization is NOT reflected at all! This is the "Brewster angle" θ_B , and $\theta_B + \theta_t = 90^\circ$.

$$n_1 \sin \theta_{\rm B} = n_2 \sin(90^\circ - \theta_{\rm B}) = n_2 \cos \theta_{\rm B}$$

$$\tan \theta_{\rm B} = \frac{n_2}{n_1}$$

Component perpendicular to the page

Component parallel to the page

Total Transmission and Brewster Angle

(TM waves)

If
$$\eta_1 \cos \theta_i = \eta_2 \cos \theta_t$$

$$R^{TM} = \frac{\eta_1 \cos \theta_i - \eta_2 \cos \theta_t}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_t} = 0$$

$$T^{TM} = \frac{2\eta_1 \cos \theta_i}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_t} = 1$$

$$\frac{\cos \theta_i}{\cos \theta_t} = \frac{n_1}{n_2}$$

$$\frac{\sin \theta_i}{\sin \theta_t} = \frac{n_2}{n_1}$$
(Snell Law)

$$\theta_i + \theta_t = \frac{\pi}{2}$$

 $\left| \theta_i + \theta_t = \frac{\pi}{2} \right|$ Brewster Angle: θ_B

L7. Wave Guidance

TE Waveguide Modes

$$\vec{E} = \hat{y} \left(A e^{-jk_x x} + B e^{jk_x x} \right) e^{-jk_z z}$$

$$m\lambda_x/2 = d$$

Boundary Conditions:
$$E_y(0,z) = E_y(d,z) = 0$$

$$k_{x}d = m\pi$$

(Guidance Condition)

$$E_{y}(x,z) = E_{0} \sin(k_{x}x)e^{-jk_{z}z}$$

$$E_{y}(x,z) = E_{0} \sin(k_{x}x)e^{-jk_{z}z}$$

$$H_{x}(x,z) = -\frac{k_{z}}{\omega\mu}E_{0} \sin(k_{x}x)e^{-jk_{z}z}$$

$$H_z(x,z) = -\frac{k_x}{j\omega\mu} E_0 \cos(k_x x) e^{-jk_z z}$$

TM Waveguide Modes

$$\nabla \times \overrightarrow{H} = j\omega\varepsilon \overrightarrow{E}$$

$$\nabla \times \overrightarrow{E} = -j\omega\mu \overrightarrow{H}$$

$$\overrightarrow{H} = \hat{y} \left(A e^{-jk_x x} + B e^{jk_x x} \right) e^{-jk_z z}$$

Boundary Conditions:

$$E_z(0,z) = E_z(d,z) = 0$$

$$k_{x}d = m\pi$$

(Guidance Condition)

$$H_{y}(x,z) = H_{0}\cos(k_{x}x)e^{-jk_{z}z}$$

$$E_{x}(x,z) = \frac{k_{z}}{\omega\varepsilon}H_{0}\cos(k_{x}x)e^{-jk_{z}z}$$

$$E_{z}(x,z) = -\frac{k_{x}}{j\omega\varepsilon}H_{0}\sin(k_{x}x)e^{-jk_{z}z}$$

Cutoff Frequency

$$k_x d = m\pi$$
 \Rightarrow $k_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{m\pi}{d}\right)^2}$ (Dispersion Relation)

$$\omega = \frac{m\pi c}{d}$$

- Cutoff Frequencies of the TE_m and TM_m modes (m>0)
- $\omega = \frac{m\pi c}{d}$ > No cutoff frequency and TM₀ (TEM mode) > TF mode does not exist.

TEM mode:
$$\overrightarrow{H} = \hat{y}H_0 \exp(-jkz)$$

 $\overrightarrow{E} = \hat{x}E_0 \exp(-jkz)$

Rectangular Waveguide

(a) Parallel-plate waveguide (Two PEC boundaries)

TE mode:

$$H_z(x,z) = H_0 \cos(k_x x) e^{-jk_z z}$$

TM mode:

$$E_z(x,z) = E_0 \sin(k_x x) e^{-jk_z z}$$

(a) Rectangular waveguide (Four PEC boundaries)

TE mode:

$$H_z(x, y, z) = H_0 \cos(k_x x) \cos(k_y y) e^{-jk_z z}$$

TM mode:

$$E_z(x, y, z) = E_0 \sin(k_x x) \sin(k_y y) e^{-jk_z z}$$

Rectangular Waveguide - TE_{mn} Mode

Boundary Conditions:

- (1) Ex = 0 at y = 0 and b
- (2) Ey = 0 at x = 0 and a

$$k_{x}a = m\pi$$
$$k_{y}b = n\pi$$

(Guidance Condition)

TE₀₁, TE₁₀, TE₁₁, TE₀₂, ...

$$H_z = \cos(k_x x)\cos(k_y y)e^{-jk_z z}$$

$$H_{x} = \frac{jk_{x}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)e^{-jk_{z}z}$$

$$H_{y} = \frac{jk_{y}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)e^{-jk_{z}z}$$

$$E_{x} = \frac{j\omega\mu k_{y}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)e^{-jk_{z}z}$$

$$E_{y} = \frac{-j\omega\mu k_{x}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)e^{-jk_{z}z}$$

$$k_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

Rectangular Waveguide - TM_{mn} Mode

Boundary Conditions:

- (1) Ex = 0 at y = 0 and b
- (2) Ey = 0 at x = 0 and a

$$k_{x}a = m\pi$$
$$k_{y}b = n\pi$$

(Guidance Condition)

TM₁₁, TM₁₂, TM₂₁, TM₂₂, ...

$$E_z(x, y, z) = \sin(k_x x) \sin(k_y y) e^{-jk_z z}$$

$$E_{x} = \frac{-jk_{x}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)e^{-jk_{z}z}$$

$$E_{y} = \frac{-jk_{y}k_{z}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)e^{-jk_{z}z}$$

$$H_{x} = \frac{j\omega\varepsilon k_{y}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\sin(k_{x}x)\cos(k_{y}y)e^{-jk_{z}z}$$

$$H_{y} = \frac{-j\omega\varepsilon k_{x}}{\omega^{2}\mu\varepsilon - k_{z}^{2}}\cos(k_{x}x)\sin(k_{y}y)e^{-jk_{z}z}$$

$$k_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

TE_{mn} Mode vs. TM_{mn} Mode

No TEM mode

 $\mathsf{TE}_{\mathsf{mn}}$ Mode ($\mathsf{TE}_{\mathsf{01}}$, $\mathsf{TE}_{\mathsf{10}}$, $\mathsf{TE}_{\mathsf{11}}$, $\mathsf{TE}_{\mathsf{02}}$, ...)

$$H_z = \cos(k_x x)\cos(k_y y)e^{-jk_z z}$$

TM_{mn} Mode (TM₁₁, TM₁₂, TM₂₁, TM₂₂, ...)

$$E_z = \sin(k_x x) \sin(k_y y) e^{-jk_z z}$$

(Guidance Condition)

$$k_{x}a = m\pi$$
$$k_{y}b = n\pi$$

(propagation constant)

$$k_z = \sqrt{\left(\frac{\omega}{c}\right)^2 - \left(\frac{m\pi}{a}\right)^2 - \left(\frac{n\pi}{b}\right)^2}$$

(the cutoff frequency)

$$k_{cmn} = \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2}$$

$$= \sqrt{\left(\frac{m\pi}{a}\right)^2 + \left(\frac{n\pi}{b}\right)^2} \left| f_{cmn} = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2} \right|$$