Objetivos

- Asignar procesos al procesador
- Rendimiento / Productividad
- Optimizar algún aspecto del comportamiento del sistema

wait for I/O

<u>Planificación</u>

Ciclo de ráfagas

- CPU → E/S → CPU → ...
- Limitados por CPU (CPU Bound)
- Limitados por E/S (IO Bound)

load store add store CPU burst read from file I/O burst wait for I/O store increment index CPU burst write to file ≻ I/O burst wait for I/O load store CPU burst add store read from file

I/O burst

Tipos de Planificación

Tipos de Planificación

(b) With two suspend states

Tipos de Planificación

Planificador de corto plazo

Decide cuál es el próximo proceso que se debe ejecutar

 Decide dónde ubicar el PCB del proceso que estaba ejecutando

Criterios de Planificación

	Prestaciones (cuantitativos)	Otros (cualitativos)
Orientados al usuario/ proceso	 Tiempo de ejecución (o turnaround time) Tiempo de respuesta Tiempo de espera 	 Previsibilidad
Orientados al sistema	 Tasa de procesamiento (rendimiento o throughput) Utilización de CPU [%] 	 Equidad Imposición de prioridades Equilibrado de recursos

<u>Planificación</u>

Criterios de Planificación

T.Espera de A = 0

T.Espera de B = 2

T.Espera de C = 4

T.Espera de A = 12

T.Espera de B = 0

T.Espera de C = 2

<u>Planificación</u>

Algoritmos de Planificación

- A cada proceso se le asigna una prioridad.
- La prioridad de un proceso puede variar en cada decisión.
- El planificador selecciona el proceso de prioridad más alta.

Algoritmos de Planificación

Decisión del próximo proceso para ejecutar

<u>Planificación</u>

Algoritmos de Planificación: First Come First Served (FCFS)

	LL	CPU	ES	CPU
P1	0	4	2	1
P2	1	2	2	3
Р3	2	1	3	2

P	1		CF	٦٢	J			S	(CPU			 		 		
P	2						CF	U		/S	(CPL	J	 	 		
P	3						 		Pl			E/S		CF	U		
	0	1	2		3	4	5	6	-	7 8	9	10	11	12	13	14	15
	P1	P2	2 P		P2 P3	P2 P3		3 P	-	P1 F	2		Р	3			

CPU: CPU

¹³Planificación de CPU

<u>Planificación</u>

Algoritmos de Planificación: Short Job First (SJF sin desalojo o SPN)

	LL	CPU	ES	CPU
P1	0	4	2	1
P2	1	2	2	3
Р3	2	1	1	2

CPU: CPU E/S: E/S

Algoritmos de Planificación: Inanición (Starvation)

Situación en la que a un proceso se le niega la posibilidad de utilizar un recurso (en este caso el procesador) por la constante aparición de otros procesos de mayor prioridad.

SJF	LL	CPU
P1	0	2
P2	1	6
Р3	2	2
P4	3	2
P5	4	2
P6	5	2

Algoritmos de Planificación: Estimación de ráfaga

- Estadísticas
- Fórmula del promedio exponencial

$$EST_{n+1} = \alpha * TE_n + (1 - \alpha) * EST_n$$

 TE_n = Tiempo de ejecución de la ráfaga actual EST_n = Tiempo estimado para la ráfaga actual EST_{n+1} = Tiempo estimado para la próxima ráfaga α = Constante entre 0 y 1

<u>Planificación</u>

Algoritmos de Planificación: Estimación de ráfaga

$$EST_{n+1} = \alpha * TE_n + (1 - \alpha) * EST_n$$

 $0 \le \alpha \le 1$

 TE_n = Tiempo de ejecución de la ráfaga actual EST_n = Tiempo estimado para la ráfaga actual EST_{n+1} = Tiempo estimado para la próxima ráfaga α = Constante entre 0 y 1

Algoritmos de Planificación: Estimación de ráfaga

$$EST_{n+1} = \alpha * TE_n + (1 - \alpha) * EST_n$$

<u>Planificación</u>

Algoritmos de Planificación: Categorías de Algoritmos

Sin desalojo (sin expulsión o nonpreemptive)

Con desalojo o con expulsión (con expulsión o preemptive)

<u>Planificación</u>

Algoritmos de Planificación: SJF con desalojo (SRT)

	LL	CPU	ES	CPU
P1	0	4	2	1
P2	1	2	2	3
Р3	2	1	3	1

CPU: (

E/S:

Algoritmos de Planificación: Round Robin

- Con desalojo
- Cuanto o rodaja de tiempo (quantum)
- Cola de procesos listos es FIFO

Algoritmos de Planificación: Round Robin (q = 3)

	LL	CPU	ES	CPU
P1	0	4	2	4
P2	1	4	2	3
P3	2	3	2	3

Algoritmos de Planificación: Round Robin (q = 1)

Algoritmos de Planificación: Round Robin (q = 4 ó más)

Algoritmos de Planificación: Virtual Round Robin (VRR)

- Con desalojo
- Quantum de tiempo
- Interrupción de reloj
- Dos colas de procesos listos para ejecutar
- Mejora rendimiento para procesos I/O Bound ante los CPU Bound

Algoritmos de Planificación: Virtual Round Robin (VRR)

Algoritmos de Planificación: Virtual Round Robin (VRR)

Algoritmos de Planificación: Simultaneidad de eventos en Ready

Algoritmos de Planificación: Higuest Ratio Response Next (HRRN): Primero el de mayor tasa de respuesta

- Sin desalojo
- Aging (Envejecimiento)

$$R = \frac{w+s}{s}$$

w = Tiempo esperando en ready

s = Tiempo de CPU esperado

R = Tasa de respuesta

Algoritmos de Planificación: HRRN

	LL	CPU	ES	CPU
P1	0	3	2	4
P2	1	4	2	3
Р3	2	3	1	1

T=3 T=7

$$R_2=(2+4)/4=1,5$$
 $R_1=(2+4)/4=1,5$
 $R_3=(1+3)/3=1,33 \longrightarrow R_3=(5+3)/3=2,66$

T=10 T=14

$$R_1 = (5+4)/4 = 2,25$$
 $R_2 = (5+3)/3 = 2,66$
 $R_2 = (1+3)/3 = 1,33$ $R_3 = (3+1)/1 = 4$

Algoritmos de Planificación: Colas Multinivel

Se clasifican los procesos por tipos

Cada cola usa su propio algoritmo de planificación

Algoritmos de Planificación: Colas Multinivel Realimentado (Feedback Multinivel)

Si hay desalojo por interrupción de reloj baja su prioridad

Colas de Listos

Cada cola usa su propio algoritmo de planificación

Algoritmos de Planificación: Colas Multinivel Realimentado (Feedback Multinivel)

