Property of Lite-On Only

LTR-501ALS-01 2-in-1 Digital Light Sensor and Proximity Sensor **Technical Data Sheet** SPEC NO: CREATED: 18th January 2012 REV. NO: 1.0 Part No.: LTR-501ALS-01 DATA SHEET Page: 1 of 42

Property of Lite-On Only

Revision Table

Version	Change Description	Issue Date		
1.0	As created	18-Jan-12		

Part No.: LTR-501ALS-01 DATA SHEET Page: 2 of 42

Property of Lite-On Only

1. Description

The LTR-501ALS-01 is an integrated I2C digital light sensor [ALS] and proximity sensor [PS] with built-in LED driver, in a miniature chipled lead-free surface mount package. This device converts light intensity to a digital output signal capable of direct I²C interface. It provides a linear response over a wide dynamic range from 0.01 lux to 64k lux and is well suited to applications under high ambient brightness. With built-in proximity sensor, LTR-501ALS-01 offers the feature to detect object at a user configurable distance up to 10cm.

The device supports an interrupt feature that removes the need to poll the sensor for a reading which improves system efficiency. The device also supports several features that help to minimize the occurrence of false triggering. This CMOS design and factory-set one time trimming capability ensure minimal device-to-device variations for ease of manufacturability to the end customers.

2. Features

- I²C interface (Fast Mode @ 400kbit/s)
- Ultra-small ChipLED package
- Built-in temperature compensation circuit
- Low active power consumption with standby mode
- Supply voltage range from 2.4V to 3.6V capable of 1.7V logic voltage
- Operating temperature range from -30°C to +70°C
- RoHS and Halogen free compliant
- Light Sensor
 - Close to human eye spectral response
 - Immunity to IR / UV Light Source
 - Automatically rejects 50 / 60 Hz lightings flicker
 - Full dynamic range from 2 lux to 64k lux
 - High resolution range from 0.01 lux to 320 lux
 - 16-bit effective resolution
- Proximity Sensor
 - · Built-in LED driver, emitter and detector
 - Programmable LED drive settings
 - 11-bit effective resolution
 - High ambient light suppression

Part No.: LTR-501ALS-01 DATA SHEET Page: 3 of 42

Property of Lite-On Only

3. Applications

To control display backlight and/or object detection in

- Mobile Devices: Mobile phone, PDA
- Computing Devices: Notebook PC, Desktop Monitor
- Consumer Devices: LCD/PDP TV backlight systems, Cameras, Personal Navigation Device,
 Digital Photo Frame
- Dashboard

4. Ordering Information

Part Number	Packaging Type	Package	Quantity		
LTR-501ALS-01	Tape and Reel	8-pin chipled package	2500		

Part No.: LTR-501ALS-01 DATA SHEET Page: 4 of 42

Property of Lite-On Only

5. Outline Dimensions

Notes:

- 1. All dimensions are in millimeters
- 2. Tolerances: ±0.2mm
- 3. LTC reserves the right to change the drawing till final datasheet release

Part No.: LTR-501ALS-01 DATA SHEET

Page: 5

of

42

Property of Lite-On Only

Property of Lite-On Only

I/O Pins Configuration Table

Pin	I/O Type	Symbol	Description
1		VDD	Supply Voltage
2		GND	Ground
3		NC	No Connect
4		NC	No Connect
5	I	LDR	To connect to LED Cathode.
6	0	INT*	Level Interrupt pin. Active LOW for interrupt. This pin is an open drain.
7	1	SCL*	I ² C serial clock
8	I/O	SDA*	I ² C serial data

*Note: For noisy environment, add 10pF capacitor from signal to GND for additional noise filtering.

Recommended Application Circuit Components

Component	Recommended Value	Condition
Rp1, Rp2, Rp3 [1]	1 k Ω to 10 k Ω	
C1	0.1uF	
C2	4.7uF	

[1] Selection of pull-up resistors value is dependent on bus capacitance values. For more details, please refer to I2C Specifications: http://www.nxp.com/documents/user_manual/UM10204.pdf

[2] IR LED = LTE-C216R-14, LTE-C246 or LTE-C248

Part No.: LTR-501ALS-01 DATA SHEET Page: 7 of 42

Property of Lite-On Only

8. Rating and Specification

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Rating	Unit
Supply Voltage	VDD	3.8	V
Digital Voltage Range	SCL, SDA, INT	-0.5 to 3.8	V
Digital Output Current	SCL, SDA, INT	-1 to 20	mA
Storage Temperature	T_{stg}	-40 to 85	°C

Note: Exceeding these ratings could cause damage to the sensor. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

Recommended Operating Conditions

Description	Symbol	Min.	Тур.	Max.	Unit	Condition
Supply Voltage	VDD	2.4		3.6	V	
LED Supply Voltage	VLED	2.5		4.0	V	
Interface Bus Power Supply Voltage	V _{IO}	1.7		3.6	V	
I ² C Bus Input Pin High	V _{IH} SCL,	1.2			V	
Voltage	$V_{IH}SDA$	1.2			V	
I ² C Bus Input Pin Low	$V_{IL}SCL$,			0.6	V	
Voltage	$V_{IL}SDA$			0.0	V	
Operating Temperature	T _{ope}	-30		70	°C	

Part No.: LTR-501ALS-01 DATA SHEET Page: 8 of 42

Property of Lite-On Only

Electrical & Optical Specifications

All specifications are at VDD = 3.0V, T_{ope} = 25°C, unless otherwise noted.

Parameter	Min.	Тур.	Max.	Unit	Condition
Active Supply Current		200	300	uA	Active Mode, $T_{ope} = 25^{\circ}C$
Standby Current			5	uA	Standby / Sleep Mode
Initial Startup Time	100			ms	(Note 1)
Wakeup Time from Standby			10	ms	(Note 1)

Light Sensor							
Parameter	Min.	Тур.	Max.	Unit	Condition		
Full Scale ADC Count			65535	count			
Dark ADC Count	0	0 6		count	Ch0, Lux = 0		
Dark ADC Count	0		6	count	Ch1, Lux = 0		
ADC Count (Coin – 1)		95		count	Ch0, Lux = 200		
ADC Count (Gain = 1)		40		count	Ch1, Lux = 200		
Dynamic Range 1	0.01		320	lux	0.005 lux / count		
Dynamic Range 2	2		64k	lux	1 lux / count		

Proximity Sensor							
Parameter	Min.	Тур.	Max.	Unit	Condition		
Full Scale ADC Count			2047	count			
Peak Sensitivity		850		nm			
Detection Distance			100	mm			
Ambient Light Suppression			50k	lux	Direct sunlight		
LED Pulse Count	1		255	pulses			
LED Pulse Frequency	30k		100k	Hz	Increment of 10k Hz		
LED Duty Cycle	25		100	%	Increment of 25%		
		5		mA	LED Peak Current = 000		
		10		mA	LED Peak Current = 001		
LED Peak Current		20		mA	LED Peak Current = 010		
225 Foak Garron		50		mA	LED Peak Current = 011		
		100		mA	LED Peak Current = 100/101/110/111		
Optical Rise / Fall Time	100			ns			

Part No.: LTR-501ALS-01 DATA SHEET	Page:	9	of	42	
------------------------------------	-------	---	----	----	--

Property of Lite-On Only

Property of Lite-On Only

AC Electrical Characteristics

All specifications are at VBus = 1.8V, T_{ope} = 25°C, unless otherwise noted.

Parameter	Symbol	Min.	Max.	Unit
SCL clock frequency	$f_{\it SCL}$	1	400	kHz
Bus free time between a STOP and START condition	$t_{\it BUF}$	1.3		uS
Hold time (repeated) START condition. After this period, the first clock pulse is generated	$t_{HD;STA}$	0.6		us
LOW period of the SCL clock	t_{LOW}	1.3		us
HIGH period of the SCL clock	t_{HIGH}	0.6		uS
Set-up time for a repeated START condition	$t_{SU;STA}$	0.6		uS
Set-up time for STOP condition	$t_{SU;STO}$	0.6		uS
Rise time of both SDA and SCL signals	t_r	30	300	ns
Fall time of both SDA and SCL signals	t_f	30	300	ns
Data hold time	$t_{HD;DAT}$	0.3	0.9	uS
Data setup time	$t_{SU;DAT}$	100		ns
Pulse width of spikes which must be suppressed by the input filter	t_{SP}	0	50	ns

Definition of timing for I²C bus

Part No.: LTR-501ALS-01 DATA SHEET Page: 11 of 42

Property of Lite-On Only

Property of Lite-On Only

Property of Lite-On Only

I2C Slave Address

The 7 bits slave address for this sensor is 0x23H. A read/write bit should be appended to the slave address by the master device to properly communicate with the sensor.

I2C Slave Address										
Command	(0x23H)							W/R	velve	
Туре	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	value	
Write	0	1	0	0	0	1	1	0	0x46H	
Read	0	1	0	0	0	1	1	1	0x47H	

Part No.: LTR-501ALS-01 DATA SHEET Page: 14 of 42

Property of Lite-On Only

Register Set

Addr	R/W	Register Name	Description	Reset Value
0x80	R/W	ALS_CONTR	ALS operation mode control SW reset	0x00
0x81	R/W	PS_CONTR	PS operation mode control	0x00
0x82	R/W	PS_LED	PS LED setting	0x6B
0x83	R/W	PS_N_PULSES	PS number of pulses	0x7F
0x84	R/W	PS_MEAS_RATE	PS measurement rate in active mode	0x02
0x85	R/W	ALS_MEAS_RATE	ALS measurement rate in active mode	0x03
0x86	R	PART_ID	Part Number ID and Revision ID	0x80
0x87	R	MANUFAC_ID	Manufacturer ID	0x05
0x88	R	ALS_DATA_CH1_0	ALS measurement CH1 data, lower byte	0x00
0x89	R	ALS_DATA_CH1_1	ALS measurement CH1 data, upper byte	0x00
0x8A	R	ALS_DATA_CH0_0	ALS measurement CH0 data, lower byte	0x00
0x8B	R	ALS_DATA_CH0_1	ALS measurement CH0 data, upper byte	0x00
0x8C	R	ALS_PS_STATUS	ALS and PS new data status	0x00
0x8D	R	PS_DATA_0	PS measurement data, lower byte	0x00
0x8E	R	PS_DATA_1	PS measurement data, upper byte	0x00
0x8F	R/W	INTERRUPT	Interrupt settings	0x08
0x90	R/W	PS_THRES_UP_0	PS interrupt upper threshold, lower byte	0xFF
0x91	R/W	PS_THRES_UP_1	PS interrupt upper threshold, upper byte	0x07
0x92	R/W	PS_THRES_LOW_0	PS interrupt lower threshold, lower byte	0x00
0x93	R/W	PS_THRES_LOW_1	PS interrupt lower threshold, upper byte	0x00
0x97	R/W	ALS_THRES_UP_0	ALS interrupt upper threshold, lower byte	0xFF
0x98	R/W	ALS_THRES_UP_1	ALS interrupt upper threshold, upper byte	0xFF
0x99	R/W	ALS_THRES_LOW_0	ALS interrupt lower threshold, lower byte	0x00
0x9A	R/W	ALS_THRES_LOW_1	ALS interrupt lower threshold, upper byte	0x00
0x9E	R/W	INTERRUPT PERSIST	ALS / PS Interrupt persist setting	0x00

Notes:

- 1) When reading ALS/PS data registers, read sequence should always be from lower address to higher address (E.g. For ALS data, Ch1 data should be read first followed by Ch0 data. Read sequence should be 0x88, 0x89, 0x8A, 0x8B. When 0x8B is read, all four ALS data registers will be populated with new set of data).
- When setting of INTERRUPT register (addr 0x8F) is necessary, it should be done before the device is in Active mode.

Part No.: LTR-501ALS-01 DATA SHEET Page: 15 of 42

Property of Lite-On Only

ALS_CONTR Register (0x80)

The ALS_CONTR register controls the ALS operation modes and software (SW) reset for the sensor. The ALS sensor can be set to either standby mode or active mode. At either of these modes, the I²C circuitry is always active. The default mode after power up is standby mode. During standby mode, there is no ALS measurement performed but I²C communication is allowed to enable read/write to all the registers.

0x80		ALS_CONTR (default = 0x00)									
	В7	B7 B6 B5 B4 B3 B2 B1 B0									
		Rese	erved		ALS Gain	SW Reset	ALS	Mode			

Field	BITS	Description			
Reserved	7:4	Must write as 0			
ALS Gain	2	0: Dynamic Range 2 (2 lux to 64k lux) (default)			
ALS Gain	3	1: Dynamic Range 1 (0.01 lux to 320 lux)			
SW Reset	2	0: Software reset is NOT started (default)			
SW Reset	2	1: Software reset is started, default value after reset is 0			
ALS Mode	1.0	00 / 01: Standby Mode (default)			
ALS Mode	1:0	10 / 11: Active Mode			

Part No.: LTR-501ALS-01 DATA SHEET Page: 16 of 42

Property of Lite-On Only

PS_CONTR Register (0x81)

The PS_CONTR register controls the PS operation modes. The PS sensor can be set to either standby mode or active mode. At either of these modes, the I²C circuitry is always active. The default mode after power up is standby mode. During standby mode, there is no PS measurement performed but I²C communication is allowed to enable read/write to all the registers.

0x81		PS_CONTR (default = 0x00)								
	В7	В6	B5	B4	В3	B2	B1	В0		
		Rese	erved		PS	Gain	PS I	Mode		

Field	BITS	Description		
Reserved	7:4	Must write as 0		
		00: x1 Gain (default)		
DS Coin	3:2	01: x4 Gain		
PS Gain	3.2	10: x8 Gain		
		11: x16 Gain		
PS Mode	1:0	00 / 01: Standby Mode (default)		
PS Wode		10 / 11: Active Mode		

Part No.: LTR-501ALS-01 DATA SHEET Page: 17 of 42

Property of Lite-On Only

PS_LED Register (0x82)

The PS_LED register controls the LED pulse modulation frequency, LED current duty cycle and LED peak current.

0x82		PS_LED (default = 0x6B)								
	В7	В6	B5	B4	В3	B2	B1	В0		
	LED Pulse Frequency			LED Du	ty Cycle	LEI	D Peak Curi	rent		

Field	BITS	Description
		000: 30k Hz
		001: 40k Hz
		010: 50k Hz
LED Pulse	7:5	011: 60k Hz (default)
Frequency	7.5	100: 70k Hz
		101: 80k Hz
		110: 90k Hz
		111: 100k Hz
		00: 25%
LED Duty Cycle	4:3	01: 50% (default)
LED Duty Cycle	4.3	10: 75%
		11: 100%
		000: 5mA
		001: 10mA
LED Peak Current	2:0	010: 20mA
		011: 50mA (default)
		Others: 100mA

Part No.: LTR-501ALS-01 DATA SHEET	Page:	18	of	42	
	1				

Property of Lite-On Only

PS_N_Pulses Register (0x83)

The PS_N_Pulses register controls the number of LED pulses to be emitted.

0x83		PS_N_Pulses (default = 0x7F)								
	В7	В6	B5	B4	В3	B2	B1	В0		
				LED Puls	se Count					

Field	BITS	Description
		0000 0000: Number of pulses = 0
		0000 0001: Number of pulses = 1
		0000 0010: Number of pulses = 2
LED Pulse Count	7:0	
LED I disc Count	7.0	0111 1111: Number of pulses = 127 (default)
		1111 1110: Number of pulses = 254
		1111 1111: Number of pulses = 255

Part No.: LTR-501ALS-01 DATA SHEET Page: 19 of 42

Property of Lite-On Only

PS_MEAS_RATE Register (0x84)

The PS_MEAS_RATE register controls the timing of the periodic measurements of the PS in active mode. PS Measurement Repeat Rate is the interval between PS_DATA registers update.

0x84		PS_MEAS_RATE (default = 0x02)									
	В7	В6	B5	B4	В3	B2	B1	В0			
		Rese	erved		PS	Measureme	ent Repeat I	Rate			

Field	BITS	Description			
Reserved	7:4	Must write as 0			
		0000: 50ms			
		0001: 70ms			
		0010: 100ms (default)			
PS Measurement	2.0	0011: 200ms			
Repeat Rate	3:0	0100: 500ms			
		0101: 1000ms			
		0110 / 0111: 2000ms			
		1XXX: Reserved			

Part No.: LTR-501ALS-01 DATA SHEET Page: 20 of 42

Property of Lite-On Only

ALS_MEAS_RATE Register (0x85)

The ALS_MEAS_RATE register controls the integration time and timing of the periodic measurement of the ALS in active mode. ALS Measurement Repeat Rate is the interval between ALS_DATA registers update. ALS Integration Time is the measurement time for each ALS cycle.

ALS Measurement Repeat Rate must be set to be equal or larger than the ALS Integration Time. If ALS Measurement Repeat Rate is set to be smaller than ALS Integration Time, it will automatically be reset to be equal to ALS Integration Time by the IC internally.

0x85		ALS_MEAS_RATE (default = 0x03)							
	В7	B7 B6 B5 B4 B3 B2 B1 B0							
	Reserved				egration me	ALS Me	easurement Rate	Repeat	

Field	BITS	Description				
Reserved	7:5	Must write as 0				
		00: 100ms (default)				
ALS Integration Time	4:3	01: 50ms (can only be used in Dynamic Range 2, effective resolution is 15-bit @ 2 lux / count)				
		10: 200ms (can only be used in Dynamic Range 1)				
		11: 400ms (can only be used in Dynamic Range 1)				
		000: 50ms				
		001: 100ms				
ALS Measurement	2:0	010: 200ms				
Repeat Rate	2.0	011: 500ms (default)				
		100: 1000ms				
		101 / 110 / 111: 2000ms				

Part No.: LTR-501ALS-01 DATA SHEET Page: 21 of 42

Property of Lite-On Only

PART_ID Register (0x86) (Read Only)

The PART_ID register defines the part number and revision identification of the sensor.

0x86	5		PART_ID (default = 0x80)							
		В7	B7 B6 B5 B4 B3 B2 B1 B0						В0	
			Part Nu	mber ID			Revis	ion ID		

Field BITS		Description
Part Number ID	7:4	0x08H
Revision ID	3:0	0x00H

MANUFAC_ID Register (0x87) (Read Only)

The MANUFAC_ID register defines the manufacturer identification of the sensor.

0x87		MANUFAC_ID (default = 0x05)							
	В7	B7 B6 B5 B4 B3 B2 B1 B0							
		Manufacturer ID							

Field	BITS	Description
Manufacturer ID	7:0	0x05H

Part No.: LTR-501ALS-01 DATA SHEET Page: 22 of 42

Property of Lite-On Only

ALS_DATA_CH1 Register (0x88 / 0x89) (Read Only)

The ALS_DATA registers should be read as a group, with the lower address read back first (i.e. read 0x88 first, then read 0x89). These two registers should also be read before reading channel-0 data (from registers 0x8A, 0x8B).

When the I²C read operation starts, all four ALS data registers are locked until the I²C read operation of register 0x8B is completed. This will ensure that the data in the registers is from the same measurement even if an additional integration cycle ends during the read operation. New measurement data is stored into temporary registers and the ALS_DATA registers are updated as soon as there is no on-going I²C read operation.

The ALS ADC channel-1 data is expressed as a 16-bit data spread over two registers. The ALS_DATA_CH1_0 and ALS_DATA_CH1_1 registers provide the lower and upper byte respectively.

0x88		ALS_DATA_CH1_0 (default = 0x00)							
	В7	B7 B6 B5 B4 B3 B2 B1 B0							
				ALS Data	Ch1 Low				

0x89		ALS_DATA_CH1_1 (default = 0x00)							
	В7	B7 B6 B5 B4 B3 B2 B1 B0							
				ALS Data	Ch1 High				

Field	Addr	BITS	Description			
ALS Data Ch1 Low	0x88	7:0	ALS ADC channel 1 lower byte data			
ALS Data Ch1 High	0x89	7:0	ALS ADC channel 1 upper byte data			

Part No.: LTR-501ALS-01 DATA SHEET Page: 23 of 42

Property of Lite-On Only

ALS_DATA_CH0 Register (0x8A / 0x8B) (Read Only)

These two registers should be read after reading channel-1 data (from registers 0x88, 0x89). Lower address register should be read first (i.e read 0x8A first, then read 0x8B). See ALS_DATA_CH1 register information above.

The ALS ADC channel-0 data is expressed as a 16-bit data spread over two registers. The ALS_DATA_CH0_0 and ALS_DATA_CH0_1 registers provide the lower and upper byte respectively.

0x8A		ALS_DATA_CH0_0 (default = 0x00)							
	В7	B7 B6 B5 B4 B3 B2 B1 B0							
		ALS Data Ch0 Low							

0x8B		ALS_DATA_CH0_1 (default = 0x00)							
	В7	B7 B6 B5 B4 B3 B2 B1 B0							
				ALS Data	Ch0 High				

Field	Addr	BITS	Description		
ALS Data Ch0 Low	0x8A	7:0	ALS ADC channel 0 lower byte data		
ALS Data Ch0 High	0x8B	7:0	ALS ADC channel 0 upper byte data		

Part No.: LTR-501ALS-01 DATA SHEET Page: 24 of 42

Property of Lite-On Only

ALS_PS_STATUS Register (0x8C) (Read Only)

The ALS_PS_STATUS register stores the information about interrupt status and ALS and PS data status. New data means data has not been read yet. When the measurement is completed and data is written to the data register, the data status bit will be set to logic 1. When the data register is read, the data status bit will be set to logic 0.

Interrupt status determines if the ALS and PS interrupt criteria are met. It will check if the ALS or PS measurement data is outside of the range defined by the upper and lower threshold limits.

0x8C		ALS_PS_STATUS (default = 0x00)							
	В7	В6	B5	B4	В3	B2	B1	В0	
		Reserved			ALS Interrupt Status	ALS Data Status	PS Interrupt Status	PS Data Status	

Field	BITS	Description
Reserved	7:5	Do not care
ALC Coin	4	0: ALS measurement data is in dynamic range 2 (2 to 64k lux)
ALS Gain	4	1: ALS measurement data is in dynamic range 1 (0.01 to 320 lux)
ALS Interrupt	3	0: ALS interrupt is clear or not yet triggered
Status		1: ALS interrupt is triggered
ALS Data Status	0	0: ALS measurement data is old data (Data has been read)
ALS Data Status	2	1: ALS measurement data is new data (Data has not been read)
DC Interrupt Status	1	0: PS interrupt is clear or not yet triggered
PS Interrupt Status	I	1: PS interrupt is triggered
PS Data Status	0	0: PS measurement data is old data (Data has been read)
PS Data Status		1: PS measurement data is new data (Data has not been read)

Part No.: LTR-501ALS-01 DATA SHEET Page: 25 of 42

Property of Lite-On Only

PS_DATA_0 Register (0x8D / 0x8E) (Read Only)

The PS ADC channel data are expressed as a 11-bit data spread over two registers. The PS_DATA_0 and PS_DATA_1 registers provide the lower and upper byte respectively. When the I²C read operation starts, both the registers are locked until the I²C read operation is completed. Lower address register should be read first. This will ensure that the data in the registers is from the same measurement even if an additional integration cycle ends during the read operation. New measurement data is stored into temporary registers and the PS_DATA registers are updated as soon as there is no on-going I²C read operation.

0x8D		PS_DATA_0 (default = 0x00)							
	В7	В6	B5	B4	В3	B2	B1	В0	
		PS Data Low							

0x8E		PS_DATA_1 (default = 0x00)								
	В7	В6	B5	B4	В3	B2	B1	В0		
			Reserved	F	PS Data Hig	h				

Field	Addr	BITS	Description
PS Data Low	0x8D	7:0	PS ADC lower byte data
Reserved	0x8E	7:3	Do not care
PS Data High	0x8E	2:0	PS ADC upper byte data

Part No.: LTR-501ALS-01 DATA SHEET Page: 26 of 42

Property of Lite-On Only

INTERRUPT Register (0x8F)

The INTERRUPT register controls the operation of the interrupt pin and functions. When the Interrupt Mode is set to 00, the INT output pin 2 is inactive / disabled and will not trigger any interrupt. However at this condition, the ALS_PS_STATUS register will still be updated.

Note that when this register is to be set with values other than its default values, it should be set before device is in Active mode.

0x8F		INTERRUPT (default = 0x08)								
	В7	В6	B5	B4	В3	B2	B1	В0		
			Reserved	Interrupt Polarity	Interruj	ot Mode				

Field	BITS	Description
Reserved	7:4	Must write as 0
Reserved	_	Don't Care.
Reserved	3	Value of this bit does not affect functionality/performance.
Interrupt Polarity	2	0: INT output pin 2 is considered active when it is a logic 0 (default)
Interrupt Polarity	2	1: INT output pin 2 is considered active when it is a logic 1
		00: INT output pin 2 is inactive / high impedance state (default)
Interrupt Mode	1:0	01: Only PS measurement can trigger interrupt
interrupt wode	1.0	10: Only ALS measurement can trigger interrupt
		11: Both ALS and PS measurement can trigger interrupt

Part No.: LTR-501ALS-01 DATA SHEET Page: 27 of 42

Property of Lite-On Only

PS_THRES Register (0x90 / 0x91 / 0x92 / 0x93)

The PS_THRES_UP and PS_THRES_LOW registers determines the upper and lower limit of the interrupt threshold value respectively. These two values form a range and the interrupt function compares if the measurement value in PS_DATA registers is inside or outside the range. The interrupt function is active if the measurement data is outside the range defined by the upper and lower limits. The data format for PS_THRES must be the same as PS_DATA registers.

C	0x90		PS_THRES_UP_0 (default = 0xFF)							
		В7	В6	B5	B4	В3	B2	B1	В0	
			PS Upper Threshold Low							

0x91		PS_THRES_UP_1 (default = 0x07)								
	В7	В6	B5	B4	В3	B2	B1	В0		
			Reserved	PS Upp	er Thresho	old High				

0x92		PS_THRES_LOW _0 (default = 0x00)								
	В7	В6	B5	B4	В3	B2	B1	В0		
		PS Lower Threshold Low								

0x93		PS_THRES_LOW_1 (default = 0x00)								
	В7	В6	B5	B4	В3	B2	B1	В0		
			Reserved	PS Low	er Thresho	ld High				

Part No.: LTR-501ALS-01 DATA SHEET Page: 28 of 42

Property of Lite-On Only

Field	Addr	BITS	Description
PS Upper Threshold Low	0x90	7:0	PS upper threshold lower byte
Reserved	0x91	7:3	Must write as 0
PS Upper Threshold High	0x91	2:0	PS upper threshold upper byte
PS Lower Threshold Low	0x92	7:0	PS lower threshold lower byte
Reserved 0x93 7:3 Must write as 0		Must write as 0	
PS Lower Threshold High 0x9.		2:0	PS lower threshold upper byte

Part No.: LTR-501ALS-01 DATA SHEET Page: 29 of 42

Property of Lite-On Only

ALS_THRES Register (0x97 / 0x98 / 0x99 / 0x9A)

The ALS_THRES_UP and ALS_THRES_LOW registers determines the upper and lower limit of the interrupt threshold value respectively. These two values form a range and the interrupt function compares if the measurement value in ALS_DATA registers is inside or outside the range. The interrupt function is active if the measurement data is outside the range defined by the upper and lower limits. The data format for ALS_THRES must be the same as ALS_DATA registers.

0x97	ALS_THRES_UP_0 (default = 0xFF)							
	В7	В6	B5	B4	В3	B2	B1	В0
	ALS Upper Threshold Low							

0x98	ALS_THRES_UP_1 (default = 0xFF)							
	В7	В6	В5	B4	В3	B2	B1	В0
	ALS Upper Threshold High							

0x99	ALS_THRES_LOW _0 (default = 0x00)							
	В7	В6	B5	B4	В3	B2	B1	В0
	ALS Lower Threshold Low							

0x9A		ALS_THRES_LOW_1 (default = 0x00)						
	В7	В6	B5	B4	В3	B2	B1	В0
	ALS Lower Threshold High							

Part No.: LTR-501ALS-01 DATA SHEET Page: 30 of 42

Property of Lite-On Only

Field	Addr	BITS	Description
ALS Upper Threshold Low	0x97	7:0	ALS upper threshold lower byte
ALS Upper Threshold High	0x98	7:0	ALS upper threshold upper byte
ALS Lower Threshold Low	0x99	7:0	ALS lower threshold lower byte
ALS Lower Threshold High	0x9A	7:0	ALS lower threshold upper byte

Part No.: LTR-501ALS-01 DATA SHEET Page: 31 of 42

Property of Lite-On Only

INTERRUPT PERSIST Register (0x9E)

The INTERRUPT PERSIST register controls the N number of times the measurement data is outside the range defined by the upper and lower threshold limits before asserting the INT output pin 2.

0x9E	INTERRUPT PERSIST (default = 0x00)							
	В7	В6	B5	B4	В3	B2	B1	В0
	PS Persist					ALS F	Persist	

Field	BITS	Description
		0000: Every PS measurement data will generate an interrupt (default)
		0001: 1 consecutive PS measurement data outside the range
PS Persist	7:4	0010: 2 consecutive PS measurement data outside the range
		1111: 15 consecutive PS measurement data outside the range
		0000: Every ALS measurement data will generate an interrupt (default)
		0001: 1 consecutive ALS measurement data outside the range
ALS Persist	3:0	0010: 2 consecutive ALS measurement data outside the range
		1111: 15 consecutive ALS measurement data outside the range

Part No.: LTR-501ALS-01 DATA SHEET Page: 32 of 42

Property of Lite-On Only

10. Device Operation (using Interrupt)

Below flow diagram illustrates the LTR-501ALS operation involving the use of Thresholds and Interrupts.

Part No.: LTR-501ALS-01 DATA SHEET Page: 33 of 42

Property of Lite-On Only

11. Pseudo Codes Examples

```
Control Registers
// The Control Registers define the operating modes and gain settings of the ALS and PS of LTR-501.
// Default settings are 0x00 for both registers (both in Standby mode).
Slave\_Addr = 0x23
                                                 // Slave address of LTR-501 device
// Enable ALS (Dynamic Range 2)
Register_Addr = 0x80
                                                 // ALS_CONTR register
Command = 0x03
                                                 // Dynamic Range 2
                                                 // For Dynamic Range 1, Command = 0x0B
WriteByte(Slave_Addr, Register_Addr, Command)
// Enable PS (Gain = 1)
Register Addr = 0x81
                                                 // PS CONTR register
Command = 0x03
                                                 // Gain = 1
                                                 // For Gain = 4. Command = 0x07
                                                 // For Gain = 8. Command = 0x0B
                                                 // For Gain = 16, Command = 0x0F
WriteByte(Slave_Addr, Register_Addr, Command)
PS LED Registers
// The PS LED Registers define the LED pulse modulation frequency, duty cycle and peak current.
// Default setting is 0x6B (60kHz, 50%, 50mA).
Slave Addr = 0x23
                                                 // Slave address of LTR-501 device
// Set LED Pulse Freq 30kHz (duty cycle 50%, peak curr 50mA)
Register_Addr = 0x82
                                                 // PS LED register
Command = 0x0B
                                                 // Pulse Freq = 30kHz, (duty cyc 50%, peak curr 50mA)
                                                 // For Pulse Freq = 40kHz, (50%, 50mA), Command = 0x2B
                                                 // For Pulse Freq = 50kHz, (50%, 50mA), Command = 0x4B
                                                 // For Pulse Freq = 60kHz, (50\%, 50mA), Command = 0x6B
                                                 // For Pulse Freg = 70kHz, (50%, 50mA), Command = 0x8B
                                                 // For Pulse Freq = 80kHz, (50%, 50mA), Command = 0xAB
                                                 // For Pulse Freq = 90kHz, (50%, 50mA), Command = 0xCB
                                                 // For Pulse Freq = 100kHz, (50%, 50mA), Command = 0xEB
WriteByte(Slave_Addr, Register_Addr, Command)
// Set LED Duty Cycle 25% (pulse freq 60kHz, peak curr 50mA)
Register_Addr = 0x82
                                                 // PS_LED register
Command = 0x63
                                                 // Duty Cycle = 25%, (pulse freq 60kHz, peak curr 50mA)
                                                 // For Duty Cycle = 50%, (60kHz, 50mA), Command = 0x6B
                                                 // For Duty Cycle = 75%, (60kHz, 50mA), Command = 0x73
                                                 // For Duty Cycle = 100%, (60kHz, 50mA), Command = 0x7B
WriteByte(Slave_Addr, Register_Addr, Command)
```

Part No.: LTR-501ALS-01 DATA SHEET Page: 34 of 42

Property of Lite-On Only

```
// Set LED Peak Current 5mA (pulse freq 60kHz, duty cycle 50%)
Register Addr = 0x82
                                                // PS LED register
Command = 0x68
                                                // Peak Current = 5mA, (pulse freq 60kHz, duty cyc 50%)
                                                // For Peak Current = 10mA, (60kHz, 50%), Command = 0x69
                                                // For Peak Current = 20mA, (60kHz, 50%), Command = 0x6A
                                                // For Peak Current = 50mA, (60kHz, 50%), Command = 0x6C
WriteByte(Slave_Addr, Register_Addr, Command)
PS Measurement Rate
// The PS_MEAS_RATE register controls the PS measurement rate.
// Default setting of the register is 0x02 (repeat rate 100ms)
Slave Addr = 0x23
                                                // Slave address of LTR-501 device
// Set PS Repeat Rate 50ms
Register_Addr = 0x84
                                                // PS_MEAS_RATE register
Command = 0x00
                                                // Meas rate = 50ms
                                                // For Meas rate = 500ms, Command = 0x04
WriteByte(Slave_Addr, Register_Addr, Command)
ALS Measurement Rate
// The ALS_MEAS_RATE register controls the ALS integration time and measurement rate.
// Default setting of the register is 0x03 (integration time 100ms, repeat rate 500ms)
                                                // Slave address of LTR-501 device
Slave\_Addr = 0x23
// Set ALS Integration Time 200ms, Repeat Rate 200ms
Register_Addr = 0x85
                                                // ALS_MEAS_RATE register
Command = 0x12
                                                // Int time = 200ms, Meas rate = 200ms
                                                // For Int time = 400ms, Meas rate = 500ms, Command = 0x1B
WriteByte(Slave_Addr, Register_Addr, Command)
ALS Data Registers (Read Only)
// The ALS Data Registers contain the ADC output data for the respective channel.
// These registers should be read as a group, with the lower address being read first.
Slave Addr = 0x23
                                                // Slave address of LTR-501 device
// Read back ALS_DATA_CH1
Register_Addr = 0x88
                                                // ALS_DATA_CH1 low byte address
ReadByte(Slave_Addr, Register_Addr, Data0)
Register_Addr = 0x89
                                                // ALS_DATA_CH1 high byte address
ReadByte(Slave_Addr, Register_Addr, Data1)
// Read back ALS_DATA_CH0
Register_Addr = 0x8A
                                                // ALS_DATA_CH0 low byte address
ReadByte(Slave_Addr, Register_Addr, Data2)
                                                // ALS_DATA_CH0 high byte address
Register Addr = 0x8B
ReadByte(Slave_Addr, Register_Addr, Data3)
ALS_CH1_ADC_Data = (Data1 << 8) | Data0
                                                // Combining lower and upper bytes to give 16-bit Ch1 data
ALS_CH0_ADC_Data = (Data3 << 8) | Data2
                                                // Combining lower and upper bytes to give 16-bit Ch0 data
ALS / PS Status Register (Read Only)
Part No.: LTR-501ALS-01 DATA SHEET
                                                                                                   of
                                                                                                         42
                                                                                  Page:
                                                                                           35
```

Property of Lite-On Only

```
// The ALS_PS_STATUS Register contains the information on Interrupt, ALS and PS data availability status.
// This register is read only.
                                                   // Slave address of LTR-501 device
Slave\_Addr = 0x23
// Read back Register
Register_Addr = 0x8C
                                                   // ALS_PS_STATUS register address
ReadByte(Slave_Addr, Register_Addr, Data)
Interrupt_Status = Data & 0x0A
                                                   // Interrupt_Status = 8(decimal) → ALS Interrupt
                                                   // Interrupt_Status = 2(decimal) → PS Interrupt
                                                   // Interrupt Status = 10(decimal) → Both Interrupt
NewData_Status = Data & 0x05
                                                   // NewData_Status = 4(decimal) → ALS New Data
                                                   // NewData_Status = 1(decimal) → PS New Data
                                                   // NewData_Status = 5(decimal) → Both New Data
PS Data Registers (Read Only)
// The PS Data Registers contain the ADC output data.
// These registers should be read as a group, with the lower address being read first.
Slave Addr = 0x23
                                                   // Slave address of LTR-501 device
// Read back PS_DATA registers
Register_Addr = 0x8D
                                                   // PS_DATA low byte address
ReadByte(Slave Addr, Register Addr, Data0)
Register_Addr = 0x8E
                                                   // PS_DATA high byte address
ReadByte(Slave_Addr, Register_Addr, Data1)
PS_ADC_Data = (Data1 << 8) | Data0
                                                   // Combining lower and upper bytes to give 16-bit PS data
Interrupt Registers
// The Interrupt register controls the operation of the interrupt pins and function.
// The default value for this register is 0x08 (Interrupt inactive)
Slave\_Addr = 0x23
                                                   // Slave address of LTR-501 device
// Set Interrupt Polarity for Active Low, both ALS and PS trigger
                                                   // Interrupt Register address
Register_Addr = 0x8F
                                                   // Interrupt is Active Low and both ALS and PS can trigger
Command = 0x03
                                                   // For Active High Interrupt, both trigger, Command = 0x07
                                                   // For Active High Interrupt, ONLY ALS trigger, Command = 0x06
                                                   // For Active High Interrupt, ONLY PS trigger, Command = 0x05
WriteByte(Slave_Addr, Register_Addr, Command)
```

Part No.: LTR-501ALS-01 DATA SHEET Page: 36 of 42

Property of Lite-On Only

```
ALS Threshold Registers
// The ALS_THRES_UP and ALS_THRES_LOW registers determines the upper and
// lower limit of the interrupt threshold value.
// Following example illustrates the setting of the ALS threshold window of
// decimal values of 200 (lower threshold) and 1000 (upper threshold)
Slave Addr = 0x23
                                                 // Slave address of LTR-501 device
// Upper Threshold Setting (decimal 1000)
ALS_Upp_Threshold_Reg_0 = 0x97
                                                 // ALS Upper Threshold Low Byte Register address
ALS_Upp_Threshold_Reg_1 = 0x98
                                                 // ALS Upper Threshold High Byte Register address
Data1 = 1000 >> 8
                                                 // To convert decimal 1000 into two eight bytes register values
Data0 = 1000 & 0xFF
WriteByte(Slave_Addr, ALS_Upp_Threshold_Reg_0, Data0)
WriteByte(Slave_Addr, ALS_Upp_Threshold_Reg_1, Data1)
// Lower Threshold Setting (decimal 200)
ALS_Low_Threshold_Reg_0 = 0x99
                                                 // ALS Lower Threshold Low Byte Register address
ALS_Low_Threshold_Reg_1 = 0x9A
                                                 // ALS Lower Threshold High Byte Register address
Data1 = 200 >> 8
                                                 // To convert decimal 200 into two eight bytes register values
Data0 = 200 & 0xFF
WriteByte(Slave_Addr, ALS_Low_Threshold_Reg_0, Data0)
WriteByte(Slave Addr, ALS Low Threshold Reg 1, Data1)
PS Threshold Registers
// The PS_THRES_UP and ALS_THRES_LOW registers determines the upper and
// lower limit of the interrupt threshold value.
// Following example illustrates the setting of the PS threshold window of
// decimal values of 200 (lower threshold) and 1000 (upper threshold)
Slave\_Addr = 0x23
                                                  // Slave address of LTR-501 device
// Upper Threshold Setting (decimal 1000)
PS_Upp_Threshold_Reg_0 = 0x90
                                                 // PS Upper Threshold Low Byte Register address
PS_Upp_Threshold_Reg_1 = 0x91
                                                 // PS Upper Threshold High Byte Register address
Data1 = 1000 >> 8
                                                 // To convert decimal 1000 into two eight bytes register values
Data0 = 1000 & 0xFF
WriteByte(Slave_Addr, PS_Upp_Threshold_Reg_0, Data0)
WriteByte(Slave_Addr, PS_Upp_Threshold_Reg_1, Data1)
// Lower Threshold Setting (decimal 200)
PS Low Threshold Reg 0 = 0x92
                                                 // PS Lower Threshold Low Byte Register address
PS_Low_Threshold_Reg_1 = 0x93
                                                 // PS Lower Threshold High Byte Register address
Data1 = 200 >> 8
                                                 // To convert decimal 200 into two eight bytes register values
Data0 = 200 & 0xFF
WriteByte(Slave_Addr, PS_Low_Threshold_Reg_0, Data0)
WriteByte(Slave_Addr, PS_Low_Threshold_Reg_1, Data1)
```

Part No.: LTR-501ALS-01 DATA SHEET Page: 37 of 42

Property of Lite-On Only

12. Recommended Leadfree Reflow Profile

Process Zone	Symbol	ΔΤ	Maximum ΔT/Δtime or Duration
Heat Up	at Up P1, R1		3°C/s
Solder Paste Dry	Solder Paste Dry P2, R2		100s to 180s
P3, R3		200°C to 260°C	3°C/s
Solder Reflow P3, R4		260°C to 200°C	-6°C/s
Cool Down	Cool Down P4, R5		-6°C/s
Time maintained above liqu	idus point , 217°C	> 217°C	60s to 90s
Peak Temperature		260°C	-
Time within 5°C of actual Pe	eak Temperature	> 255°C	20s
Time 25°C to Peak Temper	ature	25°C to 260°C	8mins

It is recommended to perform reflow soldering no more than twice.

Part No.: LTR-501ALS-01 DATA SHEET Page: 38 of 42

Property of Lite-On Only

13. Moisture Proof Packaging

All LTR-501ALS-01 are shipped in moisture proof package. Once opened, moisture absorption begins. This part is compliant to JEDEC J-STD-033A Level 3.

Time from Unsealing to Soldering

After removal from the moisture barrier bag, the parts should be stored at the recommended storage conditions and soldered within seven days. When the moisture barrier bag is opened and the parts are exposed to the recommended storage conditions for more than seven days, the parts must be baked before reflow to prevent damage to the parts.

Recommended Storage Conditions

Storage Temperature	10°C to 30°C
Relative Humidity	Below 60% RH

Baking Conditions

Package	Temperature	Time
In Reels	60°C	48 hours
In Bulk	100°C	4 hours

Baking should only be done once.

Part No.: LTR-501ALS-01 DATA SHEET Page: 39 of 42

Property of Lite-On Only

14. Recommended Land Pattern and Metal Stencil Aperture

Recommended Land Pattern

Note:

1. All dimensions are in millimeters

Part No.: LTR-501ALS-01 DATA SHEET Page: 40 of 42

Property of Lite-On Only

Recommended Metal Stencil Aperture

It is recommended that the metal stencil used for solder paste printing has a thickness (t) of 0.11mm (0.004 inches / 4 mils) or 0.127mm (0.005 inches / 5 mils).

The stencil aperture opening is recommended to be 0.3mm x 0.65mm which has the same dimension as the land pattern. This is to ensure adequate printed solder paste volume and yet no shorting.

Note:

1. All dimensions are in millimeters

Part No.: LTR-501ALS-01 DATA SHEET Page: 41 of 42

Property of Lite-On Only

15. Package Dimension for Tape and Reel

Note:

1. All dimensions are in millimeters

Package Dimension of Reel

Notes:

- 1. All dimensions are in millimeters (inches)
- 2. Empty component pockets sealed with top cover tape
- 3. 7 inch reel 2500 pieces per reel
- 4. In accordance with ANSI/EIA 481-1-A-1994 specifications

Part No.: LTR-501ALS-01 DATA SHEET Page: 42 of 42