KRACH CHCE NAM COS POWIEDZIEC

HIERARCHIA R_{α}

czemu to sie nazywa hierarchia R_{lpha} ? Krach nie wie, ale w anglo jest V_{lpha} .

Jest to hierarchia zbiorow i definiujemy ja przez

$$\begin{cases} R_0 = \emptyset \\ r_{\alpha+1} = \mathcal{P}R_{\alpha} \\ R_{\gamma} = \bigcup_{\zeta < \gamma} R_{\zeta} \ gdyLim(\gamma) \end{cases}$$

Jakies wlasnosci:

- 1. $\forall \alpha \operatorname{Tran}(R_{\alpha})$ 2. $\alpha \leq \beta \implies R_{\alpha} \subseteq R_{\beta}$
- 3. $R_{\alpha} \cap ON = \alpha \ \alpha = \{x \in R_{\alpha} : On(x)\}$
- 2. i 3. sa na liscie 3, wiec pokazemy tylko 1:

DOWOD:

1. Indukcja po α . Dla $\alpha=0$ nam smiga, bo \emptyset jest tranzytywny.

krok indukcyjny

 $lpha\implies lpha+1$ zalozmy, ze $Tran(R_lpha)$, ale wtedy $Tran(\mathcal{P}R_lpha)$, czyli $Tran(R_{lpha+1})$

krok graniczny. Zalozmy, ze $Tran(R_\zeta)$ dla $\zeta < \alpha$. Ustalmy dowolne $x \in R_\alpha$ i $y \in x$. Skoro $x \in R_\alpha = \bigcup R_\zeta$, to $x\in R_{\zeta_0}$ dla pewnego $\zeta_0<lpha$. Ale $Tran(R_{\zeta_0})$ wiec skoro $y\in x$, to $y\in R_{\zeta_0}$, czyli $y\in \bigcup_{i=1}^n R_{\zeta_i}$

Hierarchia R_{α} jest wazna ze wzgledu na twierdzenie:

$$\bigcup_{\alpha \in ON} R_{\alpha} = V$$

czyli kazdy zbior jest w ktorejs hierarchii.

Wersja skrotowa: $\forall x \exists \alpha \quad x \in R_{\alpha}$.

Tranzytywne domkniecie zbioru X nazywamy najmniejszy zbior tranzytywny zawierajacy zbior X. Bedziemy to oznaczeli tcl(X)

pewien szczegolny przyklad pewnej ogolnej sytuajci (to jest dygresja btw). W matmie czesto domykamy zbior ze wzgledu na pewna sytuacje i to sie robi na dwa sposoby: od gory i od dolu. Tak samo jak w topologii

elementy elementow x sa w $\bigcup x$, czyli mozemy dodac sobie do x dodac $x \cup \bigcup x$. Ale moze cos nie smigac bo pojawimy sie nowe elementy, wiec znowu musimy dodac $x \cup \bigcup x \cup \bigcup \bigcup x$ i tak dalej <3

Na liscie bedziemy to pisac porzadnie rekurencyjnie i sprawdzac

DOWOD:

tego z V

Przypuscmy nie wprost, ze istnieje x taki, ze

$$\forall \alpha \quad x \notin R_{\alpha}$$

Rozwazmy zbior

$$Y = \{ y \in tcl(x) \cup \{x\} : y \notin \bigcup_{\alpha \in ON} R_{\alpha} \} \neq \emptyset$$

Z aksjomatu regularnosci w Y istnieje element \in -minimalny, czyli istnieje $y_0 \in Y$ takie, ze

$$\forall t \in Y \quad t \notin y_0$$

To znaczy, ze dla kazdego $z\in y_0$ mamy $z\notin Y$, czyli $z\in \bigcup R_{\alpha}$. Zatem

$$\forall z \in y_0 \; \exists \; \alpha \in ON \quad z \in R_\alpha$$

Mamy zatem "funkcje" $f: y_0 \to ON \ f(z) = \min\{\alpha : z \in R_\alpha\}$.

Na mocy aksjomatu zastepowania istnieje rng(f).

Czyli udalo mi sie zlapac wszystkie liczby porzadkowe, ktore mielismy dane. rng(f) to zbior liczb porzadkowych, a suma liczb porzadkowych jest liczba porzadkowa, wiec niech

$$\beta = \bigcup rng(f) \in ON$$

Mamy $\forall \ z \in y_0 \quad z \in R_{\beta}$, czyli $y_0 \subseteq R_{\beta}$. W takim razie $y_0 \in R_{\beta+1} = \mathcal{P}(R_{\beta})$. y_0 mial byckontrprzykladem, a mamy $sprzecznosc z y_0 \in Y$

WNIOSKI

PRZYJEMNOSCI

JAK WYGLADA SWIAT? zasadniczo, to to jest takie cos

gdyby niebylo aksjomatu regularnosci

$$ZF_0 \models (A_x Reg \iff V = \bigcup_{\alpha} R_{\alpha})$$

 R_ω $\omega\in R_\omega$ Zeby dodawac liczby naturalne potrzebujemy funkcji, czyli $\mathbb{N} imes\mathbb{N}\in R_{\omega+3}$

Cos bylo o naturalnych, ale ja rysowalam patologie

 $\mathbb{Z}=\mathbb{N}^2\setminus R$ - czyli to \mathbb{N} na pewnej relacji.

Co to jest klasa abstrakcji? to jest podzbior \mathbb{N}^2 . Gole calkowite saw $R_{\omega+5}$, a calkowite z dzialaniami algebraicznymi to gdzies w $R_{\omega+14}$

Jestesmy bardzo na pcozateczku, a $R_{\omega+\omega}$ to dopiero druga liczba graniczna i to mozna zrobic $R_{\omega+\omega}\models ZF\setminus aksjomazastepowania$