

SECOND SEMESTER 2021-2022

Course Handout (Part - II)

Date:15.01.2022

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

CHEM F329 Course No.

Analytical Chemistry Course Title

N. RAJESH Instructor-in-charge

- 1. **Course Description:** Data handling, sample preparation, unit operations, volumetric analysis, potentiometry, chromatography, solvent extraction, trace metal separation and estimation in biological and environmental samples with emphasis on green chemistry.
- **Scope & Objective of the Course:** The objective of this course is to provide a comprehensive survey of the basic concepts in analytical chemistry. The topics to be covered include a brief review of classical methods of analysis, data handling, instrumental methods of analysis and their applications. Separation methods in environmental analytical chemistry such as solvent extraction and chromatography will also be dealt with in detail. The course involves considerable classroom participation in the form of analyzing case studies, group discussions etc. Considerable emphasis would be given to greener methodologies for the detoxification of toxic metal ions, dyes, PCB's etc from industrial effluents. Lab component involving the above methods would form a part of the evaluation scheme.

Text Book: T1. Analytical Chemistry, GARY. D. CHRISTIAN, 6th ed. Wiley, 2003.

Reference Book: R1. Fundamentals of analytical chemistry, Skoog, West Holler, 7th Ed, Harcourt Pub, 2001.

3. Course Plan:

No.	Topics to be	Learning outcome	Learning Objectives	Chapter in the Text Book
of	Covered			•
Lec				
3	Data handling, sampling in	Relevance of statistics in handling data	Reliability of data, statistical test,	Chap. 1,2 (T1)
	analysis	in nanamig data	sampling of solids, liquids and gases.	
2	Complexometric titration's and redox	Importance of classical methods in	EDTA method to estimate total hardness	Chap. 8 (T1)
	titrations	environmental appln	in water , Redox titrations	
3	Chromatography basic concepts	Separation principles	Principal of all types of chromatography and their utility in analysis	Chap. 17 (T1)
4	Ion exchange and adsorption	Relevance in separation science and technology	Cation exchange and anion exchange separations emphasizing green chemistry	Chap. 17 (T1)
3	GC and HPLC	Sophisticated	Principles and	Chap. 17 (T1)

		instrumental separation in industry	application of GC and HPLC.	
3	Solvent Extraction	Importance in hydrometallurgy and nuclear industry	Extraction of metal chelates, ion-association complexes, applications emphasizing green chemistry	Chap. 16 (T1)
3	UV-visible and IR spectroscopy	Understand spectrophotometric principles in trace analysis	Beer's Law, Photometric estimation, selection rules in IR, interpretation of IR spectra	Chap. 14 (T1)
2	Atomic absorption spectroscopy	Importance in ppm and ppb analysis in diverse applications	Flame AAS, graphite furnace AAS, applications	Chap. 15 (T1)
2	Automation in analysis	Sophisticated automations in industry and its relevance today	Process control automation on line analyzers, computers in analytical chemistry	Chap. 19 (T1)
4	Potentiometry	Importance of electroanalytical techniques in trace analysis	Redox titrations, pHmetry, ion-selective electrodes and applications	Chap.11,12 (T1)
2	Polarography	Importance of electroanalytical techniques in trace analysis	DC polarography and its utility in chemical analysis	Chap. 21 (T1) (R1)
4	Trace metal estimations	Utility of distinct methods for trace metal analysis	Selected methods for analysis of toxic metal ions	P. 681-753 (T1)
4	Environmental analysis	Speciation and sub ppb level analysis of toxic contaminants	Analysis of air, water, pesticides and other trace metals in environment	Lecture notes
1	Radioanalytical methods	Relevance of analytical techniques in nuclear chemistry	Radiochemistry, gamma spectrometry beta counters isotope dilution analysis	Lecture notes

4. Evaluation scheme

S	Component	Duration	Weightage	Date and	Nature of
No.			(%)	Time	component
1	Mid semester test	90 min.	35	10/03 3.30pm to5.00pm	Closed book
2	Lab experiments		15	Continuous	Open book
*3	Assignments/Quiz		10	Take home	Open book
4.	Comprehensive. Exam.	2 hr	40	07/05 AN	Closed book

^{*}Home assignment topics would be given and each student is expected to submit a report on the assigned topic which will be evaluated.

5. **Make-up Policy:** Make-up will be granted for only very genuine and deserving cases.

- **6 Chamber Consultation hours:** To be announced in the class.
- **7 Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- 8. **Notices:** Relevant notices regarding the course will be displayed on Chemistry Notice Board/CMS.

Instructor-In charge N. RAJESH

