network *mining*

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2020/21

mining overview

how to *mine* different *graphs/networks*?

how to *mine* network *nodes/links*?

 $node/link\ clustering
ightarrow revealing\ similarity\ clusters$ $node/link\ classification
ightarrow predicting\ discrete\ labels$ $node/link\ regression
ightarrow predicting\ numerical\ values$

mining clustering

how to *cluster* network *nodes/links*?

- graph partitioning and community detection methods for connected assortative clusters based on homophily
- (stochastic) blockmodeling and role discovery methods also disconnected disassortative clusters based on equivalence

for survey/user guide see [For10, FH16]

mining classification

how to *classify* network *nodes/links*?

- relational learning and link mining methods machine learning methods using network structure
- node/link structure used as classification features centrality, bridging, fragments, egonets, clusters etc. node features from local random walk exploration \rightarrow

DeepWalk [PARS14] node2vec [GL16] only homophily

also equivalence

struc2vec [FRS17] only structure

for *survey* see [BCM11, ZPS⁺16]

mining classification

— classification by clustering in APS citation network [Šub15b]

		7 journals		91 sections	
class	method	NMI	CA	NMI	CA
clusters	spectrum	0.361	59.8%	0.380	38.6%
	modularity	0.339	68.1%	0.426	37.1%
	map equation	0.232	71.3%	0.416	48.1%
	block model	0.243	69.6%	0.392	45.3%
baselines	neighbors	-	63.9%	-	46.5%
	2-neighbors	-	71.5%	-	50.4%
	network	-	27.6%	-	17.9%

— ... by clustering in WikiLeaks reference network [Šub15a]

		3 privacies		246 embassies	
class	method	NMI	CA	NMI	CA
clusters	spectrum	0.003	49.1%	0.658	47.9%
		0.048		0.699	
	map equation	0.088	33.1%	0.654	37.1%
	block model	0.035	56.5%	0.625	37.6%
baselines	neighbors	-	14.2%	-	15.0%
	2-neighbors	-	27.7%	-	31.6%
	network	-	49.1%	-	1.4%

mining regression

how to regress/rank network nodes/links?

- relational learning and link mining methods machine learning methods using network structure
- node/link structure used as regression features centrality, bridging, fragments, egonets, clusters etc. node features from local random walk exploration \rightarrow

DeepWalk [PARS14] node2vec [GL16] struc2vec [FRS17] only homophily

also equivalence

only structure

for *survey* see [BCM11, ZPS⁺16]

mining regression

— regression by centrality in Slovenian highways network [HW1]

		traffic loads		
class	centrality	Pearson	Spearman	
	degree	0.278	0.275	
spectral	eigenvector	0.010	0.241	
	PageRank	0.121	-0.149	
distance	closeness	0.623	0.634	
distance		0.628	0.651	
clustering	standard	0.000	0.000	
	μ -corrected	0.000	0.230	

— ... by centrality in Wikipedia web of trust network [MAC11]

		users trust		
class	centrality	Pearson	Spearman	
	degree	0.013	0.316	
spectral	eigenvector	0.026	0.118	
	PageRank	0.001	0.182	
clustering	standard	0.134	0.115	
	μ -corrected	0.127	0.199	

mining references

A.-L. Barabási.

Network Science.

Cambridge University Press, Cambridge, 2016.

Smriti Bhagat, Graham Cormode, and S. Muthukrishnan.

Node classification in social networks.

In Social Network Data Analytics. Springer, 2011.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition. Cambridge University Press, Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory.

Oxford University Press, 2015.

Santo Fortunato and Darko Hric.

Community detection in networks: A user guide.

Phys. Rep., 659:1-44, 2016.

Santo Fortunato.

Community detection in graphs.

Phys. Rep., 486(3-5):75-174, 2010.

mining references

Daniel R. Figueiredo, Leonardo F. R. Ribeiro, and Pedro H. P. Saverese.

struc2vec: Learning node representations from structural identity.

In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1–9, 2017.

Aditya Grover and Jure Leskovec.

node2vec: Scalable feature learning for networks.

In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 855–864, 2016.

Silviu Maniu, Talel Abdessalem, and Bogdan Cautis.

Casting a web of trust over Wikipedia: An Interaction-based approach.

In Proceedings of the International Conference on World Wide Web, pages 87–88, New York, NY, USA, 2011.

Mark E. J. Newman.

Networks.

Oxford University Press, Oxford, 2nd edition edition, 2018.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.

DeepWalk: Online learning of social representations.

In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 701–710, 2014.

Lovro Šubelj.

Exploratory and predictive tasks of network community detection.

In Proceedings of the International Conference on Network Science, page 1, Zaragoza, Spain, 2015.

Lovro Šubelj.

Large network community detection in practical scenarios.

In Proceedings of the International Workshop on Social Network Analysis, page 78, Capri, Italy, 2015.

mining references

M. Zanin, D. Papo, P. A. Sousa, E. Menasalvas, A. Nicchi, E. Kubik, and S. Boccaletti. Combining complex networks and data mining: Why and how. *Phys. Rep.*, 635:1–44, 2016.