User Repurchase Prediction

Sean Matthews

github/sean-io/market-basket-analysis

Objective & Context

Predict which previously purchased products a user will order next.

Kaggle Instacart Challenge Data

Available information: user order count, order products were added to a user's cart, day of week, hour of day, reordered indicator, product department, product aisle.

Feature Selection

Product Features

Prod order count: product order count (by all users)

<u>Prod reorders</u>: product reorder count (by all users)

<u>Prod reorder rate</u>: frequency product is reordered (by all users)

User Features

User orders: user order count

Avq basket size: average number of products per order

Avg days between orders: average number of days between a user's orders

User Product Features

Avg add to cart order: average order user adds product to their cart (order)

<u>User prod reorders</u>: user reorder count of product

<u>User prod reorder rate</u>: user frequency of reordering product

Feature Selection

- → Reduced training (prior order) data set to 1% of its original record count. 32M > 300K
- → Utilized Random Forest Classifier to evaluate feature importance.
- → 'Avg days between orders' was left out of features included in predictive models.

user_prod_reorders	0.295
user_prod_reorder_rate	0.279
prod_reorder_rate 0.048	
user_orders	0.043
avg_days_between_orders	0.035

Products reordered in the training (prior order) data set.

Products were reordered in the validation (test order) data set.

Baseline performance (Using SK Learn LR evaluation)

Accuracy 69.6%

Precision 100%

Recall 49.2%

F1 0.689

AUCROC 87.8%

Other SK Learn Models' AUROC

SK Learn Calibration Plots

Logistic:

Precision: 1.000

Recall: 0.526

F1: 0.689

Naive Bayes + Isotonic:

Precision: 0.965

Recall: 0.560

F1: 0.709

Naive Bayes:

Precision: 0.995

Recall: 0.315

F1: 0.478

Naive Bayes + Sigmoid:

Precision: 0.985

Recall: 0.439

F1: 0.607

SK Learn Calibration Plots

Logistic:

Precision: 1.000

Recall: 0.526

F1: 0.689

SVC:

Precision: 0.665

Recall: 0.934

F1: 0.777

SVC + Isotonic:

Precision: 0.994

Recall: 0.636

F1: 0.776

SVC + Sigmoid:

Precision: 0.931

Recall: 0.418

F1: 0.577

Reflections

- → Deciding on features to create and developing them was the most challenging aspect.
- → Given that the top F1 scores in the competition are 0.40XX, my model would likely score far less predicting the test orders.
- → Additional questions to explore:
 - Which product is a customer likely to try for the first time during their next order?
 - ♦ When will a customer make their next order?
 - What customer segments can be derived from purchasing behavior?
 - What products are commonly purchased together?

Thank You

Sean Matthews

github/sean-io/market-basket-analysis