Bayesian inference of causal effects with incorrectly measured interference network

Bar Weinstein Daniel Nevo

Department of Statistics and Operations Research, Tel Aviv University

Introduction

- Interference occurs when the potential outcomes of a unit depend on treatments assigned to other units.
- The interference structure can be represented by a network. Nodes are units and edges indicate whether interference is possible between pairs of units.
- An observed network is often assumed to correctly specify the interference structure, and analysis is conditioned on it [4].
- However, accurately measuring the interference network is challenging.
- A misspecified network leads to biased estimation [5].
- Observing an incorrect network may result from:
- Constraints in data acquisition methods (e.g., measurement errors, edge censoring).
- Sampling a sub-network from the population network.

Setup and assumptions

- $Z \in \{0,1\}^n$ binary treatments; $Y_i(z)$ potential outcomes; Y observed outcomes; X covariates; A observed network.
- Interference via true network A^* . Assumed to be undirected and unweighted.
- A.1 (Consistency) If Z = z, then $Y_i = Y_i(z)$.
- Exposure mapping $f(\boldsymbol{Z}_{-i}, \boldsymbol{A}_i^*)$ with image space $\mathcal{C} \subseteq \mathbb{R}$.
- A.2 (Neighborhood interference) For any z, z', if $z_i = z_i'$ and $f(z_{-i}, A_i^*) = f(z_{-i}', A_i^*)$, then $Y_i(z) = Y_i(z')$ w.p.1.
- A.3 (Positivity) $0 < \Pr(\boldsymbol{Z}_i = z, f(\boldsymbol{Z}_{-i}, \boldsymbol{A}_i^*) = c | \boldsymbol{X} = \boldsymbol{x}) < 1$, $\forall z \in \{0, 1\}, c \in \mathcal{C}, \forall \boldsymbol{x}$.

Figure 1. DAG representing the assumed causal structure. Red arrows are deterministic.

Estimands and identification

 $\widetilde{Y}_i(z,c), z \in \{0,1\}, c \in \mathcal{C}$ potential outcomes expressed in term of exposure values. From A.2, $\widetilde{Y}_i(z,c)$ is equivalent to all $Y_i(z)$ with the same effective treatments.

Causal estimands

Comparisons of the following.

- 1. Exposure levels. $\mathbb{E}[\widetilde{Y}_i(z,c)]$.
- 2. Treatment intervention. $\mathbb{E}[Y_i(z)]$.

The first estimand reveals how changes in treatment and exposure values influence outcomes, while the second depicts the effect of setting \boldsymbol{Z} to \boldsymbol{z} . Alternatively, conditional estimands, e.g., $\mathbb{E}[Y_i(\boldsymbol{z})|\boldsymbol{A}^*]$, can be used instead.

Identification

- 1. $\mathbb{E}\left[\widetilde{Y}_{i}(z,c)\right] = \mathbb{E}_{\boldsymbol{X}}\mathbb{E}_{\boldsymbol{A}^{*}|\boldsymbol{X}}\mathbb{E}\left[Y_{i}|\boldsymbol{Z}_{i}=z, f(\boldsymbol{Z}_{-i}, \boldsymbol{A}_{i}^{*})=c, \boldsymbol{A}^{*}, \boldsymbol{X}\right].$ 2. $\mathbb{E}\left[Y_{i}(\boldsymbol{z})\right] = \mathbb{E}_{\boldsymbol{X}}\mathbb{E}_{\boldsymbol{A}^{*}|\boldsymbol{X}}\mathbb{E}\left[Y_{i}|\boldsymbol{Z}=\boldsymbol{z}, \boldsymbol{A}^{*}, \boldsymbol{X}\right]$
- Both requires obtaining $m{A}^*|m{X}$ distribution.
- Can be extended to stochastic and network interventions [4].

Generative model and posterior distribution

- True network generation $p(\mathbf{A}^*|\mathbf{X},\theta)$.
- Observed network (network misspecification model) $p(\mathbf{A}|\mathbf{A}^*, \mathbf{X}, \gamma)$.
- Outcome model $p(Y|Z, X, A^*, \eta)$.
- Possible to augment outcome model with propensity scores.
- Parameters space can be finite or infinite.
- Assume prior independence $\pi(\eta, \theta, \gamma) = \pi(\eta)\pi(\theta)\pi(\gamma)$.
- Denote observed data by O = (Y, Z, X, A).

Posterior distribution

$$\pi(\eta, \theta, \gamma, \mathbf{A}^* | \mathbf{O}) \propto p(\mathbf{Y} | \mathbf{Z}, \mathbf{X}, \mathbf{A}^*, \eta) \pi(\eta)$$

$$\cdot p(\mathbf{A} | \mathbf{X}, \mathbf{A}^*, \gamma) \pi(\gamma)$$

$$\cdot p(\mathbf{A}^* | \mathbf{X}, \theta) \pi(\theta)$$

Examples of network misspecification models

Measurement error

 $p(\boldsymbol{A}|\boldsymbol{A}^*,\boldsymbol{X},\gamma)$ can be differential or non-differential measurement error model. For instance,

- Random noise. Edges in $\bf A$ are observed with true positive rate $1-\gamma_1$ and false positive rate γ_0 .
- Censoring. Edges between units with degrees larger than a censoring threshold are missing w.p. γ .

Sampled network

- Study on a sample from a population n < N.
- **A** is obtained via a network sampling procedure, such as random node, egocentric, or link-tracing sampling.
- Write A_o, A_m , as the observed and missing parts, respectively.
- Posterior can be written as

$$\pi(\eta, \theta, \mathbf{A}_m | \mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A}_o) \propto \pi(\eta) p(\mathbf{Y} | \mathbf{Z}, \mathbf{X}, \mathbf{A}_o, \mathbf{A}_m, \eta) \cdot \pi(\theta) p(\mathbf{A}_o, \mathbf{A}_m | \mathbf{X}, \theta)$$

- In this scenario, further restrictions are required:
- Missingness mechanism of the network sampling design (ignorability).
- Interference between recruited and non-recruited units. RCTs are possible with further restrictions on exposure mappings. Observational studies are tricky.
- Projective network models [2].

Figure 2. Reconstructing A^* from A. Degrees $d_i = \sum_{j \neq i} A_{ij}$ in the observed network (right) and the posterior mean degrees (left) versus the true degrees.

Sampling from the posterior

- The full posterior is a mixed space of continuous (η, θ, γ) and discrete (A^*) latent variables. The discrete space has $\mathcal{O}(2^{n^2})$ terms.
- MCMC methods such as MH or modified $\stackrel{\frown}{HMC/NUTS}$ [6, 7] do not scale well. Marginalizing over A^* is problematic since Y_i depends on A_i^* .

Bayesian modularization

The posterior can be written as a composition of modules

$$\pi(\eta, \theta, \gamma, \boldsymbol{A}^* | \boldsymbol{O}) \propto \underbrace{\pi(\eta | \boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{X}, \boldsymbol{A}^*)}_{\text{Outcome module}} \underbrace{\pi(\theta, \gamma, \boldsymbol{A}^* | \boldsymbol{X}, \boldsymbol{A})}_{\text{Network module}} \underbrace{p(\boldsymbol{Y} | \boldsymbol{Z}, \boldsymbol{X}, \boldsymbol{A}^*)}_{\text{Feedback term}}$$

Consequently, sampling from the 'cut' posterior [1, 3]

$$\pi_{cut}(\eta, \theta, \gamma, \mathbf{A}^* | \mathbf{O}) \propto \pi(\eta | \mathbf{Y}, \mathbf{Z}, \mathbf{X}, \mathbf{A}^*) \pi(\theta, \gamma, \mathbf{A}^* | \mathbf{X}, \mathbf{A}),$$

is attractive since

$$\pi(\theta, \gamma, \mathbf{A}^* | \mathbf{X}, \mathbf{A}) = \pi(\mathbf{A}^* | \mathbf{X}, \mathbf{A}, \theta, \gamma) \sum_{\mathbf{A}^*} \pi(\theta, \gamma, \mathbf{A}^* | \mathbf{X}, \mathbf{A}),$$

can be simplified tremendously. Sampling from the 'cut' posterior by [1, 3]:

- 1. Generate (θ_m, γ_m) samples. Then, sample multiple A_m^* . For each A_m^* , sample η from the outcome module. Networks can be sampled via either i. "Three-stage". For each (θ_m, γ_m) sample one network from $A_m^* \sim \pi(A^*|X, A, \theta_m, \gamma_m)$.
- ii. "Two-stage". Compute $\mathbb{E}[\theta,\gamma|\cdot]$ and sample $\boldsymbol{A}_m^* \sim \pi(\boldsymbol{A}^*|\boldsymbol{X},\boldsymbol{A},\mathbb{E}[\theta,\gamma|\cdot])$.
- 2. "Plug-in". Sample multiple A^* , estimate sufficient statistics of $p(Y|\cdot)$ (e.g., exposure values), and sample η from the outcome module.

Numerical illustration

- 1. Outcome model $Y_i = \eta_0 + \eta_1 Z_i + \eta_2 \sum_{j \neq i} Z_j A_{ij}^* + \eta_3 X_i + \varepsilon_i$
- 2. Network generation $logit(\Pr(A_{ij}^*=1)) = \theta_0 + \theta_1 |X_i X_j|$.
- 3. Observed network from a random noise measurement error model.
- Implemented in the probabilistic programming language *NumPyro*. Accelerated cut-posterior sampling with *JAX JIT* compilation.
- MCMC sampling via NUTS.

Figure 3. Distribution of η_2 RMSE and 95% credible intervals (coverage) for n=300 and 300 replications. 'Oracle' and 'Obs.' display results using \mathbf{A}^* , \mathbf{A} , respectively. 'Cut-2S' is "Two-stage" sampling, and similarly for "Cut-3S".

References

- [1] M. J. Bayarri, J. O. Berger, and F. Liu. Modularization in Bayesian analysis, with emphasis on analysis of computer models. *Bayesian Analysis*, 4(1):119–150, Mar.
- 2009. Publisher: International Society for Bayesian Analysis.
- [2] H. Crane and W. Dempsey. A Statistical Framework for Modern Network Science. Statistical Science, 36(1), 2021.
 [3] P. E. Jacob, L. M. Murray, C. C. Holmes, and C. P. Robert. Better together? Statistical learning in models made of modules. Aug. 2017. arXiv:1708.08719 [stat].
- [4] E. L. Ogburn, O. Sofrygin, I. Díaz, and M. J. van der Laan. Causal inference for social network data. *Journal of the American Statistical Association*, 2022.
- [5] B. Weinstein and D. Nevo. Causal inference with misspecified network interference structure. arXiv preprint arXiv:2302.11322, 2024.
- [6] Y. Zhang, Z. Ghahramani, A. J. Storkey, and C. Sutton. Continuous Relaxations for Discrete Hamiltonian Monte Carlo. In *Advances in Neural Information Processing Systems*, volume 25. Curran Associates, Inc., 2012.
- [7] G. Zhou. Mixed Hamiltonian Monte Carlo for Mixed Discrete and Continuous Variables. In Advances in Neural Information Processing Systems, volume 33, pages 17094–17104. Curran Associates, Inc., 2020.