IL PROBLEMA DEULA HOLTIPLICAZIONE DI SEQUENZE DI MATRICI

- A MATRICE Px9
- B MATRICE 9x1

(E QUINDI A E B SOND COMPATIBILI)

```
PRODOTTO DI MATRICI "RIGHE-PER-COLONNE"
MATRIX - HULTIPLY (A,B)
  P := rowsta)
  q := columns [A]
   ri= columns [B)
  for i = 1 to p do
     for ju= 1 to r do
         C[i]) i=>
         for ki= 1 to 9 do
           Ctij)=: C[ij]+A[i,k]. B[k,j]
                          COMPLESSITA' O(P.9.1)
```

MOLTIPLICAZIONE DI SEQUENZE DI MATRICI

$$A_1$$
 A_2
 $P_1 \times P_2$
 \vdots
 A_n
 $P_{n-1} \times P_n$

SEQUENZA DI HATRICI COMPATIBILI

- A NOI INTERESSA CALCOLARE A. Az' ... 'An
- IL PRODOTTO DI MATRICI E' ASSOCIATIVO, CIOE' A·(B·C) = (A·B)·C

ESEMP10

$$\#((A_1 \cdot A_2) \cdot A_3) = 10.100 \cdot 5 + 10.5 \cdot 50 = 5000 + 2500 = 3500$$

$$\#((A_1 \cdot (A_2 \cdot A_3)) = 100.5 \cdot 50 + 10.100 \cdot 50$$

$$= 25000 + 50000 = 75.000$$

ESEMPIO (DIVERSE PARENTESIZZAZIOMI)

$$A_1 \ A_2 \ A_3 \ A_4$$

$$((A_1 \ A_2)(A_3 \ A_4))$$

$$(A_1 \ (A_2 \ A_3) \ A_4))$$

$$((A_1 \ (A_2 \ A_3) \ A_4))$$

$$(((A_1 \ A_2) \ A_3) \ A_4)$$

$$((A_1 \ (A_2 \ A_3) \ A_4))$$

DET. PARENTESIZZAZIONI COMPLETE DI UNA SEQUENZA DI MATRICI

SI DICE CHE UN'ESPRESSIONE E E' COMPLETAMENTE PARENTESIZZATA SE VALE UNA DELLE SEGUENTI CONDIZIONI:

- E E' UNA SINGOLA MATRICE
- _ E HA LA FORMA (E1'E2), DOVE
 - E, ED E, SOND ESPRESSIONI COMPLETAMENTE PARENTESIZZATE,

METODO ESAUSTIVO

LA COMPLESSITA DEL METODO ESAUSTIVO E'
DOMINATA DAL NUMERO DI DIVERSE PARENTESIZZAZIONI

P(n) = # DIVERSE PARENTESIZZAZIONI DI UNA SEQUENZA DI M MATRICI

$$\begin{cases} P(1) = 1 & m-1 \\ P(n) = \sum_{i=1}^{m-1} P(i) \cdot P(n-i) \end{cases}$$

P(4)=1 P(3)=1 $P(3)=P(1)P(2)+P(2)\cdot P(1)=2$ $P(4)=P(1)\cdot P(3)+P(2)\cdot P(2)+P(3)\cdot P(1)=2+1+2=5$ n73,

$$-P(n) = \sum_{i=1}^{m-1} P(i) \cdot P(n-i) =$$

$$= 2P(i) \cdot P(m-1) + \sum_{i=2}^{m-2} P(i) \cdot P(m-i) \ge 2 P(m-1)$$

$$P(m) > 2P(m-1) > 2 \cdot 2P(m-2) = 2^{2}P(m-2)$$

> $2^{n-2}P(2) = 2^{n-2}$

$$\Rightarrow P(n) = \int 2^{n}$$

CARATTERIZZAZIONE DI UNA SOLUZIONE OTTIMA
SIA E UNA PARENTESIZZAZIONE OTTIMA
PER LA SERUENZA DI MATRICI (AI, A2,..., Am) DI
DIMENSIONI (PO, PI, P2,..., Pn).

Supposition CHE $n \ge 2$, $E = (E_1 \cdot E_2)$,

CON E_1 parentesizzazione di $(A_1, ..., A_k)$ E_2 parentesizzazione di $(A_{k+1}, ..., A_m)$ $1 \le k \le m-1$

POICHE'

$$\#(E) = \#(E_1) + \#(E_2) + P_0 P_0 P_0$$

NE SEQUE CHE

- EI PARENTESIZZAZIONE OTTIMA DI (AI, ..., AL)
- EZ PARENTESIZZAZIONE OTTIMA DI (AKHI)", AM)

PERTANTO LA CLASSE DEI SOTTOPROBLEMI DA RISOLVERE E' DATA DA:

$$\{(A_{i},...,A_{j}): 1 \leq i \leq j \leq m\}$$

m(i,j) = COSTO DI UMA SOLUZIONE OTTIMA
DI (Ai, m, Aj)

DEFINIZIONE RICORSIVA DEL COSTO DI UNA PARENTESIZZAZIONE OTTINA

$$m[i,j] = \begin{cases} 0 \\ min \\ (m[i,k] + m[k+1,j] + Pi-PkPj) \end{cases} i \neq j$$

$$i \neq k \neq j$$

MATRIX_CHAIN_ORDER(P) for i =1 to n do m[i,i) = = for A != 1 to m-1 do for i = 1 to m- A do $j := \Delta + i$ m[ij] 1=+00 for ki=i to j-1 do 9:= m[i/k]+m[k+1)j]+Pi-PkPj if q< m[i/j] then m[i/j]:= 9 s cijj]:= 2 return m,s

MATRIX_CHAIN_NULTIPLY (A, S, i, i) if i=j then return Ai X:= MATRIX_CHAIN_MULTIPLY (A, S, i, SCij) Y := MATRIX_CHAIN_HULTHIPLY (A,S, S[ij]+1,j) return HATRIX_MULTIPLY (X,Y)

ESEMP10

$$A = (A_1, A_2, A_3, A_4, A_5, A_6)$$

 $p = (30, 35, 15, 5, 10, 20, 25)$

	1		1 :	3	4	. 5	6	
1	0	15750	787	15 937	3	118 7 5	15/25	5
2	-	0		1 ² 437	_	= 125 ³	3	
3	-	-	0	750	7-1	25003	0500	
4	-	-	_	0	+	1000	35005	/\ /\
5	_	+	<u>~</u>	_		0	5000	4. /\ /\ /\ Ac
6	~	-	-	-		_	0	A A A
$(A_1 \cdot (A_2 \cdot A_3)) \cdot ((A_4 \cdot A_5) \cdot A_6)$								