

Prediction of User Appreciation of Yelp's Businesses Based on Text Reviews Hidden Features

Author: Umberto Di Fabrizio

UIN: 651053197

Author: Vittorio Selo UIN: 657698682

CS 521 -Statistical Natural Language Processing

- Introduction
- Data Analyses
- Approach
- Experiment Results
- Conclusion

- Introduction
- Data Analyses
- Approach
- Experiment Results
- Conclusion

Introduction_(1/3)

Introduction_(2/3)

A key tool for the *Social Network Services* is a good <u>Recommendation System</u> But... what is a Recommendation System?

Introduction(3/3)

Most of the websites are based on *user-generated content*It means we have a lot of text information to exploit
The <u>goal</u> is to extract tastes of the users in order to enhance the performance of recommendation systems

not

- Introduction
- Data Analyses
- Approach
- Experiment Results
- Conclusion

Data Analyses (1/1)

We have used the Yelp Dataset Challenge[1] that is public available

- 1.6M reviews
- 500 Tips
- 366K Users
- 61K Business

Several cities across the world (Edinburgh, Karlsruhe, Montreal, Waterloo, Pittsburgh, Charlotte, Urbana-Champaign, Phoenix, Las Vegas, Madison)

Edinburgh:

- 23780 reviews
- 3150 users
- 4576 businesses

However...

In this way we can only access to reviews of businesses in Edinburgh

[1]:http://www.yelp.com/dataset_challenge

- Introduction
- Data Analyses
- Approach
 - Data Preprocessing
 - Algorithms
- Experiment Results
- Conclusion

Approach_(1/2)

Data Preprocessing – Hidden Features

I had a pretty good experience at the Doric. Yes, the restaurant is upstairs and you have to do a little exploring to find the staircase. The food was decently priced and the beer was pretty good. Service was fast and helpful.

POS(Penn Treebank) What is important?

I/PRP had/VBD a/DT pretty/RB good/JJ experience/NN at/IN the/DT Doric/NNP.
Yes/UH, the/DT restaurant/NN is/VBZ upstairs/JJ and/CC you/PRP have/VBP to/TO do/VB a/DT little/JJ exploring/NN to/TO find/VB the/DT staircase/NN.

The/DT food/NN was/VBD decently/RB priced/VBN and/CC the/DT beer/NN was/VBD pretty/RB good/JJ.

Service/NNP was/VBD fast/RB and/CC helpful/JJ.

Approach_(2/2)

Data Preprocessing – Hidden Features

Some parameters definition:

• r_m set of reviews of user *m*

- n_{xmz} the numer of times the word x appear in the review z
- X_m set of relevant words of the user m •
- s_{mz} the rank that user m gives to review z

For each extracted words we have defined the following features:

Frequency:
$$f(x,m) = rac{\sum_{i \in r_m} n_{xmi}}{\sum_{i \in r_m} \sum_{k \in X_m} n_{kmi}}$$

Regularity:
$$r(x,m) = rac{\sum_{i \in r_m} n_{xmi} rac{1}{\sum_{k \in X_m} n_{kmi}}}{|r_m|}$$

Relevance:
$$i(x,m) = rac{\sum_{i \in r_m} n_{xmi} rac{s_{mi}}{\sum_{k \in X_m} n_{kmi}}}{|r_m|}$$

- Introduction
- Data Analyses
- Approach
 - Data Preprocessing
 - Algorithms
- Experiment Results
- Conclusion

Approach_(1/2)

Algorithms - Method 1°

Approach_(2/2)

- Introduction
- Data Analyses
- Approach
- Experiment Results
- Conclusion

Experiment Results(1/3)

Baseline:

- Majority Class We have 9 classes, accuracy ≈11%
- Majority Class Actually only 5 classes appear, accuracy ≈20%
- Majority Class per user For each user we predict its majority class ≈ 44.9%

Experiment Results(2/3)

A big issue in Recommendation System is: *cold start problem*Since, we do not want to deal with it, we decide to consider user with at least a minimum number of reviews.

Min Reviews	20	25	50	75
Baseline	0.441	0.442	0.449	0.449
Method1	0.445	0.446	0.455	0.445
Method2	//	//	0.539*	//

Second Method Accuracy per class:

Class	[1-2]	[3]	[4-5]
Baseline	0.917	0.768	0.463
Method2	0.917	0.795*	0.587*

^{*}p-value ≈ 0

Experiment Results(3/3)

Error Analysis

True \Predicted	1	2	3	4	2
1	0	5	8	5	4
2	1	17	20	43	11
3	0	17	144	113	27
4	0	22	67	422	66
5	0	14	18	153	140

Method	Average Error
Baseline	-0.15
Method1	-0.10
Method2	-0.08

- Introduction
- Data Analyses
- Approach
- Experiment Results
- Conclusion

Conclusion

- It is possible to extract user related information only from text
- Flexible Approach
- Computational Attractive (100 ≈ 4 minutes)

Future Works:

- Add sentiment analysis
- Extend the considered words with synonyms and/or hyperym
- Integrate the proposed method with existing recommendation techniques
- Try the method on other social media and on stratified datasets

Questions?

Thank you!

Mark won.

Detailed Analysis - Input

- Restaurant{0.003, 0.031, 0.01}
- Beer {0.012, 0.01,0.09}
 - Bar{0, 0,0}

Top n:

Model1 ->
$$n = 30$$

Model2 -> n = 100

Model1:

 $30 \le k \le 60 \rightarrow 90 \le \# features \le 180$

Model2:

0≤ k ≤100 -> 0≤#features≤200