

The Edge of Machine Learning

Resource-efficient ML in 2 KB RAM for the Internet of Things

Aditya Kusupati & Don Dennis <u>Microsoft Research India</u>

D. Dennis, S. Gopinath, P. Jain, A. Kusupati, N. Natarajan, S. Patil, R. Sharma, H. Simhadri & M. Varma

Resource-constrained IoT Devices

ARM Cortex M0+ at 48 MHz & 35 μ A/MHz with 2 KB RAM & 32 KB read only Flash

Edge Machine Learning - Objectives

- To build a library of machine learning algorithms
 - Which can be trained in the cloud
 - But which will run on tiny IoT devices

ARM Cortex M0+

Microsoft's EdgeML Library

• Compact tree, kNN and RNN algorithms for classification, regression, ranking, time series etc.,

EMI-RNN

FastGRNN

https://github.com/Microsoft/EdgeML

ProtoNN

Bonsai

Time Series

 Time series are the most frequently occurring types of signals found in the IoT domain

A Fast, Accurate, Stable & Tiny (Kilobyte Sized) Gated RNN

A. Kusupati (MSRI), M. Singh (IITD), K. Bhatia (Berkeley), A. Kumar (Berkeley), P. Jain (MSRI) & M. Varma (MSRI)

Recurrent Neural Networks (RNNs)

- State-of-the-art for analyzing sequences & time series
- Training is unstable due to exploding & vanishing gradients

$$\mathbf{h}_t = \sigma(\mathbf{W}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b})$$

Recurrent Neural Networks (RNNs)

- State-of-the-art for analyzing sequences & time series
- Training is unstable due to exploding & vanishing gradients

$$\nabla = f(\dots, \mathbf{U}^T = \mathbf{Q} \begin{bmatrix} 0.2^{100} & & \\ & \ddots & \\ & & 0.8^{100} \end{bmatrix} \mathbf{Q}^\mathsf{T}, \dots)$$

Unitary RNNs – uRNN, SpectralRNN, ...

- Unitary RNNs force all the eigenvalues of ${f U}$ to be pprox 1
- Unfortunately, they are expensive to train & lack accuracy

$$\nabla = f(\dots, \mathbf{U}^T = \mathbf{Q} \left[\begin{smallmatrix} 1^T & & \\ & \ddots & \\ & & 1^T \end{smallmatrix} \right] \mathbf{Q}^T, \dots)$$

Gated RNNs – LSTM, GRU, ...

- Add extra parameters to stabilize training
- Have increased prediction costs on IoT microcontrollers
- Have intuitive explanations but lack formal guarantees

- Provably stable training with 2 additional scalars
- Accuracy: RNN ≪ Unitary RNNs < FastRNN < Gated RNNs

$$\widetilde{\mathbf{h}_t} = \sigma(\mathbf{W}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b})$$

$$\mathbf{h}_t = \alpha \widetilde{\mathbf{h}_t} + \beta \mathbf{h}_{t-1}$$

RNN gradients

$$\mathbf{h}_t = \sigma(\mathbf{W}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b})$$

$$\frac{\partial L}{\partial \mathbf{U}} = \sum_{t=0}^{T} \mathbf{D}_{t} \left(\prod_{k=t}^{T-1} \mathbf{U}^{\mathsf{T}} \mathbf{D}_{k+1} \right) (\nabla_{\mathbf{h}_{T}} L) \mathbf{h}_{t-1}^{\mathsf{T}}$$

$$\frac{\partial L}{\partial \mathbf{W}} = \sum_{t=0}^{T} \mathbf{D}_{t} \left(\prod_{k=t}^{T-1} \mathbf{U}^{\mathsf{T}} \mathbf{D}_{k+1} \right) (\nabla_{\mathbf{h}_{\mathsf{T}}} L) \mathbf{x}_{\mathsf{t}}^{\mathsf{T}}$$

$$\mathbf{D}_k = \operatorname{grad}(\mathbf{h}_k)$$
 $\mathbf{D}_k = \operatorname{diag}(\sigma'(\mathbf{W}\mathbf{x}_k + \mathbf{U}\mathbf{h}_{k-1} + \mathbf{b}))$

FastRNN gradients

$$\tilde{\mathbf{h}}_t = \sigma(\mathbf{W}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b})$$

$$\mathbf{h}_t = \alpha \tilde{\mathbf{h}}_t + \beta \mathbf{h}_{t-1}$$

$$\frac{\partial L}{\partial \mathbf{U}} = \alpha \sum_{t=0}^{T} \mathbf{D}_{t} \left(\prod_{k=t}^{T-1} (\alpha \mathbf{U}^{\mathsf{T}} \mathbf{D}_{k+1} + \beta \mathbf{I}) \right) (\nabla_{\mathbf{h}_{T}} L) \mathbf{h}_{t-1}^{\mathsf{T}}$$

$$\frac{\partial L}{\partial \mathbf{W}} = \alpha \sum_{t=0}^{T} \mathbf{D}_{t} \left(\prod_{k=t}^{T-1} (\alpha \mathbf{U}^{\mathsf{T}} \mathbf{D}_{k+1} + \beta \mathbf{I}) \right) (\nabla_{\mathbf{h}_{T}} L) \mathbf{x}_{t}^{\mathsf{T}}$$

$$\mathbf{D}_k = \operatorname{grad}(\tilde{\mathbf{h}}_k) \qquad \mathbf{D}_k = \operatorname{diag}(\sigma'(\mathbf{W}\mathbf{x}_k + \mathbf{U}\mathbf{h}_{k-1} + \mathbf{b}))$$

- Provably stable training with 2 additional scalars
- Accuracy: RNN ≪ Unitary RNNs < FastRNN < Gated RNNs

$$\nabla = f(\dots, (\alpha \mathbf{UD} + \beta \mathbf{I})^T = \mathbf{Q} \begin{bmatrix} (\beta + \alpha \| \mathbf{UD} \|)^T \\ \vdots \\ (\beta - \alpha \| \mathbf{UD} \|)^T \end{bmatrix} \mathbf{Q}^T, \dots)$$

Theoretical Analysis of FastRNN

- Convergence & generalization error bounds
 - FastRNN is independent of T when $\alpha/\beta \approx O(1/T)$
 - ullet A similar analysis reveals that an RNN is exponential in T

• FastRNN converges to within ϵ of a stationary point in $O(^1/_{\epsilon^2})$ SGD iterations and its generalization error is bounded by $O(\frac{1}{\sqrt{n}})$

- Extend α & β from scalars to vector gates

$$\beta_{t} = \sigma_{\beta} (\mathbf{W} \mathbf{x}_{t} + \mathbf{U} \mathbf{h}_{t-1} + \mathbf{b}_{\beta}); \widetilde{\mathbf{h}_{t}} = \sigma_{h} (\mathbf{W} \mathbf{x}_{t} + \mathbf{U} \mathbf{h}_{t-1} + \mathbf{b}_{h})$$

$$\alpha_{t} \approx \mathbf{1} - \beta_{t}; \qquad \qquad \mathbf{h}_{t} = \alpha_{t} \odot \widetilde{\mathbf{h}_{t}} + \beta_{t} \odot \mathbf{h}_{t-1}$$

- Extend α & β from scalars to vector gates

$$\beta_t = \sigma_{\beta} (\mathbf{W} \mathbf{x}_t + \mathbf{U} \mathbf{h}_{t-1} + \mathbf{b}_{\beta}); \widetilde{\mathbf{h}}_t = \sigma_h (\mathbf{W} \mathbf{x}_t + \mathbf{U} \mathbf{h}_{t-1} + \mathbf{b}_h)
\alpha_t = \zeta (\mathbf{1} - \beta_t) + \nu; \qquad \mathbf{h}_t = \alpha_t \odot \widetilde{\mathbf{h}}_t + \beta_t \odot \mathbf{h}_{t-1}$$

- Make U and W low-rank (L), sparse (S) and quantized (Q)
- Model Size: FastGRNN ≪ RNN ≈ Unitary RNNs < Gated RNNs

Dataset Statistics

Dataset	# Train	# Features	# Time Steps	# Test
Google-12	22,246	3,168	99	3,081
Google-30	51,088	3,168	99	6,835
Wakeword-2	195,800	5,184	162	83,915
Yelp-5	500,000	38,400	300	500,000
PTB-10000	929,589		300	82,430
HAR-2	7,352	1,152	128	2,947
DSA-19	4,560	5,625	125	4,560
Pixel-MNIST-10	60,000	784	784	10,000

Activity NLP

Image

Comparison to Gated Architectures

- Uncompressed FastGRNN is as accurate as a GRU/LSTM
- FastGRNN is almost as accurate as a GRU/LSTM (within 1%)
- FastGRNN is 20-80x smaller than a GRU/LSTM

Comparison to Unitary Architectures

- FastRNN outperforms all unitary RNNs on most datasets
- FastGRNN can be 3-5% more accurate
- FastGRNN can be 45x-200x smaller

Recognizing "Hey, Cortana" in 1 KB

- Uncompressed FastGRNN outperforms state-of-the-art RNNs
- FastGRNN matches state-of-the-art RNN accuracies

Prediction on Edge Devices

- None of the other RNNs fit on an Arduino Uno
- FastGRNN can be 25-132x faster at prediction on the MKR1K

EMIRNN

Don Dennis (MSRI), Chirag P (MSRI), Harsha Simhadri (MSRI), P. Jain (MSRI)

Time-series Classification: Training

Time-series Analysis: Sliding Windows

Prediction Cost per Window: O(Window Size)

Time-series Analysis: Sliding Windows

Complicated RNN cell updates

Running time O(T)

Information reuse across windows

Coarse Training Data

Typically $k \ll T$, i.e., actual signature of event is tiny

- Audio clips: 2-5secs but "Hey Cortana" typically spoken in <1sec
- Unnecessarily large T --- longer prediction time, lag
- Predictors must recognize signatures with different offsets
 requires larger predictors.

Smaller Windows?

- Only a few true positives: several false positives!
- Issue: apriori location of true positives unknown

EMI-RNN: Approach

Exploit temporal locality with MIL/Robust learning techniques

Property 1: Positive instances are clustered together.

Property 2: Number of positive instances can be estimated.

EMI-RNN: Chicken & Egg Problem

Our Approach: be optimistic and iterate!

EMI-RNN: Algorithm

Iterate till convergence

EMI-RNN: Algorithm

Correct Labels: Unique to this class Incorrect Labels: Found in multiple classes

EMI-RNN: Analysis?

Optimizing:

$$\min_{W, \widehat{y_{ij}}} \sum_{i=1}^{n} \sum_{j=1}^{m} loss(\widehat{y_{ij}}, f(z_{ij}, W))$$

$$s.t. \sum_{j} \widehat{y}_{ij} = k, \quad i: positive$$

$$\widehat{y}_{ij} \ satisfies \ temporal \ locality$$

$$\widehat{y}_{ij} \in \{0,1\}, i: positive, \quad \widehat{y}_{ij} = 0, i: negative$$

- f: prediction function (LSTM/FastGRNN)
- Algorithm: alternating between $\widehat{y_{ij}}$ and W

EMI-RNN: Analysis?

Alternating minimization for Non-convex optimization problem

Need not converge in general!

Theorem: In $\log n$ iterations, the true positive set

$$S_* = \{(i,j), \hat{y}_{ij} = +1\}$$

will be recovered exactly, with high probability.

Positives need not be i.i.d.

Non-homogenous setting: first such result in literature

Early Prediction?

- Existing work:
 - Assumes pretrained classifier and uses secondary classifiers
 - Template matching approaches
 - Separate policy for early classification

Early Prediction?

Our Approach

Inference: Predict at each step – stop as soon as prediction confidence is high.

Training: Incentivize early prediction by rewarding correct and early detections.

Advantages

Obvious: Speed

Prediction accuracy

Early prediction

Dataset	Accuracy Gain (over Baseline LSTMs)	Prediction Time Reduction
HAR	0.8%	8x
Sports	2.0%	8x
Google	1.5%	8x
Interactive Cane	1.0%	45x

Dataset	Accuracy Gain (over Baseline LSTMs)	Prediction Time Reduction	Memory Savings
HAR	0.7%	11x	4x
Sports	2.0%	12x	4x
Google	1.5%	8x	4x
Interactive Cane	0.9%	72x	36x

Time-series Analysis: Conclusions

Complicated RNN cell updates: FastGRNN

Running time O(T): EMI-FastGRNN

Information reuse across windows:
 Shallow Recurrent Networks

EdgeML repository

- Code release
 - EdgeML: 70K page views, 1017 clones, 569 stars
 - Bonsai and ProtoNN released as TLC Beta
- Used extensively in MSR India IoT Summer School
 - Automated voice feedback system
 - Radar-based poacher detection and SONYC
 - Predictive maintenance for solar panels
- https://github.com/Microsoft/EdgeML

Thank You

Deployment on tiny-devices?

- Deployment on Pi0 device: audio keyword detection
 - Total prediction budget: 22.5ms
 - Baseline LSTM prediction time: 226ms (with 91% accuracy)
 - Our method: 14.9ms (with 94% accuracy)

Appendix

Demos: Algorithms in real-time

Interactive Cane / GesturePod:

- 5-class gesture recognition on M0+ microcontroller
- 6KB ProtoNN model

Wakeword detection

- Detect "Hey Cortana" on Raspberry Pi0
- Process 800millisecond audioframe in <10ms

Conclusions

- ML for IoT devices provides many high-impact opportunities
- Microsoft's Edge Machine Learning Library
 - https://github.com/Microsoft/EdgeML
- Bonsai, ProtoNN, FastGRNN & EMI-RNN
 - Fit into a few Kilobytes of memory
 - Make predictions in milliseconds
 - Are energy efficient & extend battery life
 - Have state-of-the-art prediction accuracies

The Internet of Things

Smart City

Edge Machine Learning – Objectives

- To build a library of machine learning algorithms
 - Which can be trained on the cloud
 - But which will run on tiny IoT devices

Arduino Uno

Intelligent IoT Devices

• Intelligent IoT devices can help deal with latency, bandwidth, privacy and energy concerns

Low latency brain implants

Smart agriculture for disconnected farms

Privacy preserving smart glasses

Energy efficient smart forks

The Arduino Uno

8 bit ATmega328P Processor at 16 MHz with 2 KB RAM & 32 KB read only Flash

The Arduino MKR1000

32 bit SAMD21 Cortex-M0+ Processor at 48 MHz with 32 KB RAM & 256 KB read only Flash

The Arduino Due

32 bit AT91SAM3X8E Processor at 84 MHz with 96 KB RAM & 512 KB read only Flash

Recurrent Neural Networks (RNNs)

- State-of-the-art for analyzing sequences & time series
- Training is unstable due to exploding & vanishing gradients

$$\nabla = f(\dots, \mathbf{U}^T = \mathbf{Q} \begin{bmatrix} \mathbf{Q}^{(1+\lambda)^T} & \mathbf{Q}^T \\ \mathbf{Q}^{(1-\gamma)^T} \end{bmatrix} \mathbf{Q}^T, \dots)$$

Theorems

Convergence Bound:

$$E\left[\left\|\nabla_{\boldsymbol{\theta}}L(\widehat{\boldsymbol{\theta}})\right\|_{2}^{2}\right] \leq \frac{O(\alpha T)L(\boldsymbol{\theta}_{0})}{N} + \left(\overline{D} + \frac{4R_{\mathbf{W}}R_{\mathbf{U}}R_{\mathbf{v}}}{\overline{D}}\right)\frac{O(\alpha T)}{\sqrt{N}}$$

Generalization Error Bound:

$$\varepsilon \le C \frac{O(\alpha T)}{\sqrt{n}} + B \sqrt{\frac{\ln\left(\frac{1}{\delta}\right)}{n}}$$

$$\alpha \approx O(1/T), \beta = 1 - \alpha$$

L is any 1-Lipschitz loss function bounded by [0, B].

N is # SGD iterations and n is # datapoints.

 $\overline{D} \geq 0$ helps in choosing right learning rate. $R_{\mathbf{X}} = max_{\mathbf{X}} \|\mathbf{X}\|_{\mathrm{F}}$.

FastRNN: $\alpha \& \beta \text{ vs } T$

Prediction Accuracy vs Model Size

FastGRNN-LSQ & FastGRNN dominate all other RNNs in 0-64 KB

Effects of Compression (LSQ)

FastGRNN - LSQ

Dataset	Accuracy Gain (over Baseline LSTMs)	Prediction Time Reduction
HAR	-1.0%	42x
Sports	2.0%	8x
Google	-1.0%	32x
Interactive Cane	0.9%	72x

Engagements

• MSRI IoT Summer School (11th June – 6th July)

Team	Project	Outcome
Gaia (Startup)	Automated voice feedback	FastGRNN deployed on device Product integration in progress
DataGlen (Startup)	Solar panel maintenance	Working on a paper Possible tech-transfer
OSU	Poacher detection & SONYC	Targeting UBICOMP 2019
Amrita University	IoT compiler	Exploring integration with Azure Sphere + Code for cane