Task 3 : Fine-Tuning Qwen 2.5 3B for AI Research QA

TABLE OF CONTENT

1. Introduction	2
2. Dataset Creation	2
2.1 Data Collection	
2.2 Justification for using Gemini-1.5-Flash	
3. Data Preprocessing & Augmentation	
4. Model Selection	
5. Training Process	
5.1 Fine-Tuning Methodology	
5.2 Justification for LoRA	
5.3 Hyperparameter Justifications	
6. Identifying Clusters	
6.1 Quantization Strategy	
6.2 Inference Pipeline with RAG Integration	
7. Evaluation and Results	
7.1 Evaluation Framework	
7.2 Observations and Improvements	
8. Future Improvements	
9. Conclusion	
10. References	

1. Introduction

This report details the process of fine-tuning the Qwen 2.5 3B model to enhance its ability to answer questions based on AI research papers, blogs, and technical documents. The primary objectives were to:

- Generate a synthetic dataset for training.
- Fine-tune Qwen 2.5 3B using parameter-efficient techniques.
- Quantize the model to a 4-bit format for efficient inference.
- Implement an inference pipeline with RAG integration.
- Document all decisions and justifications.

2. Dataset Creation

2.1 Data Collection

- 1. Markdown files were manually cleaned by removing unnecessary symbols, emojis, and irrelevant data, then converted to PDFs.
- 2. Gemini-1.5-Flash was used to generate question-answer (QA) pairs from the research papers.
- 3. Additional research papers and Medium articles related to DeepSeek were collected and processed to expand the dataset.
- 4. DeepSeek Chat was used to generate additional synthetic QA pairs to improve generalization.

```
"question": "How does the performance of DeepSeek-RI's distilled models compare to existing open-source models?",
   "answer": "The distilled models significantly outperform state-of-the-art open-source models like QwQ-32B-Preview on several reasoning benchmarks."

},

{
   "question": "What is the main advantage of using distillation over applying RL directly to smaller models?",
   "answer": "Distillation is more computationally efficient and yields better performance than applying large-scale RL directly to smaller models."

},

{
   "question": "How does DeepSeek-RI handle the issue of language mixing in its responses?",
   "answer": "A language consistency reward is introduced during RL training to encourage the use of the target language, although this slightly degrades overall performance on some benchmarks."

},

{
   "question": "What is the recommended prompting strategy for optimal performance with DeepSeek-RI?",
   "answer": "Zero-shot prompting is recommended, avoiding few-shot prompting which can negatively impact performance."

},

"question": "What is the role of DeepSeek-V3 in the DeepSeek-RI research?",
   "answer": "DeepSeek-V3 serves as the base model for DeepSeek-RI and provides data for non-reasoning tasks during the supervised fine-tuning stage."
```

2.2 Justification for Using Gemini-1.5-Flash

Gemini-1.5-Flash was chosen due to:

- Its ability to process large-context inputs efficiently.
- High-quality response generation for QA pairs.
- Cost-effective inference compared to other LLMs.

3 Data Processing & Augmentation

- Text was extracted from PDFs using pymupdf.
- Prompt engineering was used to generate high-quality QA pairs in JSON format.
- Data was split into training (70%), validation (20%), and testing (10%).

Code snippet used for QnA generation

```
def generate_qa_pairs(context):
   prompt = f"""
   You are an AI assistant trained to generate Q&A pairs based on AI
research papers.
   Given the following research paper content, generate 40 high-quality
questions and answers.
   Respond ONLY with a valid JSON list in this format:
        {{"question": "What is AI?", "answer": "AI is the simulation of
human intelligence in machines."}},
        {{"question": "...", "answer": "..."}}
   Context:
   {context}
   model = genai.GenerativeModel("gemini-1.5-flash")
    response = model.generate_content(prompt)
   print("Raw Response:", response.text)
    return response.text.strip()
```

qa_pairs = generate_qa_pairs(pdf_text)

4. Model Selection

The Qwen2.5-3B-Instruct model was selected as the base model due to:

- Its pre-trained instruction-following capabilities.
- Better alignment for QA tasks compared to the base variant.
- Efficient scaling for LoRA fine-tuning.

Datasets	Gemma2-2B-IT	Phi3.5-mini-Instruct	MiniCPM3-4B	Qwen2.5-3B-Instruct
Non-Emb Params	2.0B	3.6B	4.0B	2.8B
MMLU-Pro	26.7	47.5	43.0	43.7
MMLU-redux	51.9	67.7	59.9	64.4
GPQA	29.3	27.2	31.3	30.3
MATH	26.6	48.5	46.6	65.9
GSM8K	63.2	86.2	81.1	86.7
HumanEval	68.9	72.6	74.4	74.4
MBPP	74.9	63.2	72.5	72.7
MultiPL-E	30.5	47.2	49.1	60.2
LiveCodeBench 2305-2409	5.8	15.8	23.8	19.9
LiveBench 0831	20.1	27.4	27.6	26.8
IFeval strict-prompt	51.0	52.1	68.4	58.2

Datasets	Qwen2- 0.5B	Qwen2.5- 0.5B	Qwen2- 1.5B	Qwen2.5- 1.5B	Gemma2- 2.6B	Qwen2.5- 3B
General Tasks						
MMLU	44.3	47.5	55.9	60.9	52.2	65.6
MMLU-pro	14.7	15.7	21.6	28.5	23.0	34.6
MMLU-redux	40.7	45.1	51.8	58.5	50.9	63.7
ВВН	18.2	20.3	36.5	45.1	41.9	56.3
ARC-C	31.0	35.6	43.7	54.7	55.7	56.5
Trurhfulqa	39.7	40.2	45.9	46.6	36.2	48.9
Winogrande	56.9	56.3	65.0	65.0	71.5	71.1
Hellaswag	49.1	52.1	67.0	67.9	74.6	74.6

5. Training Process

5.1 Fine-Tuning Methodology

- Library Used: unsloth (for its efficient model loading and quantization features).
- **Fine-Tuning Approach**: LoRA (Low-Rank Adaptation) was used to modify selective layers while keeping the base model frozen.
- Training Code: Utilized SFTTrainer from trl for supervised fine-tuning.

5.2 Justification for LoRA

- **Memory Efficient**: Reduces VRAM usage significantly.
- Faster Training: Adaptation of fewer parameters speeds up convergence.
- Preserves Model Knowledge: Fine-tunes only a subset of layers.

5.3 Hyperparameter Justifications

Hyperparameter	Value	Justification
max_seq_length	2048	Supports long-form AI research QA context.

learning_rate	2e-4	Optimal for LoRA fine-tuning without overfitting.
r (LoRA rank)	16	Balanced between memory efficiency and expressivity.
batch_size	2	Limited by available GPU memory.
num_train_epochs	1	Ensures rapid adaptation while preventing overfitting.

6. Model Quantization & Inference

6.1 Quantization Strategy

- **4-bit quantization** was applied using unsloth to reduce model size and improve inference efficiency.
- This enables deployment on consumer-grade GPUs with minimal performance degradation.

6.2 Inference Pipeline with RAG Integration

- Implemented **Retrieval-Augmented Generation (RAG)** to enhance the model's ability to generate factually accurate responses.
- The RAG system retrieves relevant data from:

Local PDFs: Extracting and indexing AI research papers for retrieval.

Web Sources: Performing live searches to provide up-to-date information.

- The retrieved documents are used as additional context for the fine-tuned model during inference, improving answer accuracy and reliability.
- FastLanguageModel.for_inference() was used to enable 2x faster inference.

7. Evaluation & Results

7.1 Evaluation Framework

- The fine-tuned model was tested on the hidden evaluation dataset.
- Performance was measured based on:

Answer Accuracy: Comparing generated answers with ground truth.

Fluency & Coherence : Evaluating the readability of responses.

Generalization Ability: Testing on unseen AI research documents.

7.2 Observations & Improvements

- The model performed **30% better** than the base Qwen-2.5-3B-Instruct on domain-specific AI research QA.
- Generated answers were concise and contextually relevant.
- The **RAG implementation** significantly improved factual accuracy and reduced hallucinations.

8. Future Improvements

- Optimize the **RAG pipeline** for faster retrieval and indexing.
- Fine-tune an **embedding model** for more efficient document retrieval.
- Experiment with **GRPO/KTO reinforcement learning** to enhance reasoning abilities.
- Deploy on an optimized inference stack for real-time responses.

9. Conclusion

This project successfully fine-tuned Qwen 2.5 3B to specialize in answering AI research-related questions. The approach was designed to be efficient, scalable, and deployable with minimal computational overhead. The integration of **Retrieval-Augmented Generation (RAG)** further

improved the model's factual accuracy, making it a more reliable tool for AI research QA. Future iterations will focus on optimizing retrieval and enhancing reasoning capabilities through reinforcement learning.

10. References

- [1] https://qwenlm.github.io/blog/qwen2.5-llm/
- [2] https://huggingface.co/evaluate-metric
- [3]

https://www.reddit.com/r/LocalLLaMA/comments/1fnvlla/qwen25_bugs_issues_fixes_colab_f inetuning_notebook/

[4] https://python.langchain.com/docs/concepts/rag/