FGS2J_Calibration Python Tool

Full solution using multiple data points

FGS to STA Calibration Algorithms

From NGAS Document "JWST FGS to STA Calibration Tool - User Guide"

The unit vector of the line of sight of the Guide Star in the FGS Guide 1 ICS frame is given by

$$u_{FGS} = R_{J \to FGS} R_{ECI \to J} R_{GS \to ECI} (RA, DEC, PA) R_{GS_Apparent \to GS} u_{GS}$$

Where

 u_{FGS} – Guide Star LOS unit vector in FGS Guide 1 ICS frame

 $R_{J\rightarrow FGS}$ – J - frame to FGS alignment matrix

 $R_{ECI \rightarrow J}$ – Rotation matrix from ECI frame to J - frame

 $R_{GS\to ECI}(RA, DEC, PA)$ – Guide Star Attitude Matrix defined by (RA, DEC, PA)

 $R_{GS_Apparent o GS}$ - Guide Star Apparent Attitude resulting from velocity aberration computed spacecraft velocity relative to the sun

 u_{GS} – Unit vector of X ax is

FGS to STA Calibration Algorithms

From NGAS Document "JWST FGS to STA Calibration Tool - User Guide"

$$u_{FGS} = R_{J \to FGS} R_{ECI \to J} R_{GS \to ECI} (RA, DEC, PA) R_{GS_Apparent \to GS} u_{GS}$$

- **u**fgs is a 3-element vector for a single star
- This matrix equation can not be solved with a single star
- Current code assumes single star input, so uses a workaround:
 - Use old $R_{J \to FGS}$ to calculate $u_{FGS,old}$
 - Calculate the angular offset θ = difference b/w $u_{\text{FGS,measured}}$ and $u_{\text{FGS,old}}$
 - Apply this θ to the old $R_{J\to FGS}$ matrix and obtain updated $R_{J\to FGS}$
 - The clocking angle is fixed and does NOT get constrained

New Python Tool for Full Matrix Solution

$$u_{FGS} = R_{J \to FGS} R_{ECI \to J} R_{GS \to ECI} (RA, DEC, PA) R_{GS_Apparent \to GS} u_{GS}$$

- With multiple stars, we can solve the full matrix equation:
 - Build a matrix with multiple entires of **UFGS**
 - For each case, calculate the right hand side (except for $R_{J\rightarrow FGS}$) = A
 - Matrix equation becomes in the form: $R_{J\rightarrow FGS}\cdot A=u_{FGS}$
 - Transpose both sides: $(R_{J \to FGS} \cdot A)^{\mathsf{T}} = A^{\mathsf{T}} \cdot R_{FGS \to J} = u_{\mathsf{FGS}}^{\mathsf{T}}$
 - Overdetermined system with >3 stars
 - Solve using least-squares minimization (scipy.linalg.lstsq)
 - As with the case of original script, input PA does not affect outcome