

College of Engineering School of Aeronautics and Astronautics

AAE 421 Flight Dynamics and Controls

HW 2 Aerodynamics, Longitudinal Stability, & Linearization

Author: Supervisor: Tomoki Koike Ran Dai

September 29th, 2020 Purdue University West Lafayette, Indiana

Problem 1. (15pts)

An aircraft is flying straight and level at a constant velocity of 337. 77 ft/sec, and then performs a symmetric pull up such that $\dot{\theta}=0.05$ rad/s=constant. Assume the aircraft's x-axis is aligned with the flight path throughout the motion and that at t=0, the aircraft's location in North-East-Altitude coordinate is $p_N=0$, $p_E=0$, and h=5000 ft. Find the position coordinates (p_N,p_E,h) at t=5 sec. Assume $\Psi=0$.

$$\overline{V_{8}} = \overline{V_{3}}, \quad \text{benk angle} = 0^{\circ} \quad \text{:-symmetric pull up}$$

$$\begin{array}{c} \overline{V_{8}} = \overline{V_{3}}, \quad \text{benk angle} = 0^{\circ} \\ \text{prich angle} = 0^{\circ} \\ \end{array}$$

$$\overline{V_{2}} = R_{3}(-1) R_{3}(-1) R_{3}(-1) R_{4}(-1) \overline{V_{8}} = R_{5}(0) R_{3}(-1) R_{4}(0) \overline{V_{8}} \\ \end{array}$$

$$\begin{array}{c} \overline{V_{2}} = R_{3}(-1) R_{3}(-1) R_{4}(-1) \overline{V_{8}} = R_{5}(0) R_{3}(-1) R_{4}(0) \overline{V_{8}} \\ \end{array}$$

$$\begin{array}{c} \overline{V_{2}} = R_{3}(-1) R_{3}(-1) R_{4}(-1) \overline{V_{8}} = R_{5}(0) R_{3}(-1) R_{4}(0) \overline{V_{8}} \\ \end{array}$$

$$\begin{array}{c} \overline{V_{2}} = R_{3}(-1) R_{3}(-1) R_{4}(-1) \overline{V_{8}} = R_{5}(0) R_{3}(-1) R_{4}(0) \overline{V_{8}} \\ \end{array}$$

$$\begin{array}{c} \overline{V_{2}} = R_{3}(-1) R_{3}(-1) R_{4}(-1) \overline{V_{8}} = R_{5}(0) R_{3}(-1) R_{4}(0) \overline{V_{8}} \\ \end{array}$$

$$\begin{array}{c} \overline{V_{2}} = R_{3}(-1) R_{3}(-1) R_{4}(-1) \overline{V_{8}} = R_{5}(0) R_{3}(-1) R_{4}(0) \overline{V_{8}} \\ \overline{V_{8}} = 0 R_{3}(-1) R_{4}(-1) R_{4}(-1) R_{4}(0) \overline{V_{8}} \\ \overline{V_{8}} = 0 R_{3}(-1) R_{4}(-1) R_{4$$

Problem 2. (10pts) The aircraft velocity vector expressed in the Earth-fixed reference frame is $\bar{V}_1 = UI + VJ + WK = 6.6637I + 289.1164J - 407.8815K$ (ft/sec) and in the aircraft fixed body reference frame it is given by $\bar{V}_b = ui + vj + wk = 497.7939i + 17.4497j + 43.5513k$ (ft/sec) Find the attitude of the aircraft in terms of its Euler angles (Ψ, Θ, Φ) . Is your answer unique?

From the lecture notes, we know that

Then using the following code implementing the Global Optimization Toolbox in MATLAB we can get the Euler Angles

```
clear all; close all; clc;

V_i = [6.6637; 289.1164; -407.8815]; % [ft/s]

V_b = [497.7939; 17.4497; 43.5513]; % [ft/s]

% Global optimization
start = [0,0,0];
lb = [0,0,0]; ub = [2*pi, 2*pi, 2*pi];
A = []; b = [];
Aeq = []; beq = [];
objective = @(param) objfunc(param, V_i, V_b);
[angles, fval] = patternsearch(objective, start, A, b, Aeq, beq, lb, ub);

psi_opt=angles(1)-2*pi
theta_opt=angles(2)
```

```
phi_opt=angles(3)-2*pi
rad2deg(psi_opt)
rad2deg(theta opt)
rad2deg(phi_opt)
% Objective function for the global optimization
function res = objfunc(param, V_i, V_b)
    psi = param(1); theta = param(2); phi = param(3);
    R_{psi} = [cos(psi), -sin(psi), 0;
                 sin(psi), cos(psi), 0;
                        0,
                                   0, 1];
    R_theta = [ cos(theta), 0, sin(theta);
                         0, 1,
               -sin(theta), 0, cos(theta)];
    R phi = [1,
                       0,
                                  0;
             0, cos(phi), -sin(phi);
             0, sin(phi), cos(phi)];
    temp = R psi * R theta * R phi * V b - V i;
    res = norm(temp);
end
```

This gives us the following angles

Euler Angle	radian	degree	
Ψ	-1.4667	-84.0359	
$oldsymbol{arTheta}$	2.1250	121.7535	
Φ	-1.8623	-106.7615	

Then validate that this is correct with the following code

```
function V_i = Vrot_BF2IF(psi, theta, phi, V_b)
   %{
       NAME:
                ROT BF2IF
               TOMOKI KOIKE
       AUTHOR:
       INPUTS:
               (1) psi:
                           THE YAW ANGLE (AROUND THE BODY Z-AXIS) IN
                           RADIANS
                (2) theta: THE PITCH ANGLE (AROUND THE BODY Y-AXIS) IN
                           RADIANS
                (3) phi:
                           THE ROLL/BANK ANGLE (AROUND THE BODY X-AXIS) IN
                           RADIANS
                (4) V b:
                           THE VELOCITY VECTOR IN THE BODY FRAME 3x1
       OUTPUTS: (1) V i:
                           THE VELOCITY VECTOR IN THE INERTIAL FRAME 3x1
       DESCRIPTION: CONVERTS THE VELOCITY WITH RESPECT TO THE BODY FRAME TO
                   THE VELOCITY WITH RESPECT TO THE INERTIAL FRAME.
   %}
    [rows, cols] = size(V_b);
    if rows == 3 && cols == 1
```

```
elseif rows == 1 && cols == 3
        V_b = reshape(V_b, [3, 1]);
        error('Incorrect dimensions for the velocity vector');
    end
    R_psi = [cos(psi), -sin(psi), 0;
             sin(psi), cos(psi), 0;
                    0,
                            0, 1];
    R_theta = [ cos(theta), 0, sin(theta);
                         0, 1,
               -sin(theta), 0, cos(theta)];
    R_{phi} = [1,
                                  0;
             0, cos(phi), -sin(phi);
             0, sin(phi), cos(phi)];
    V_i = R_psi * R_theta * R_phi * V_b;
end
% Validate optimization
V_i_validation = Vrot_BF2IF(psi_opt, theta_opt, phi_opt, V_b)
```

The validation gives us the following velocity vector for the inertial frame

```
V_i_validation = 3x1
6.6639
289.1167
-407.8812
```

This is approximately the same as the values given in the problem statement. Thus, we confirmed that our Euler angles are correct.

Now, for the Euler angles, we can add 360 degrees to all the angles, and we will still get the same outcome. Thus, the Euler angle that we have obtained are not unique.

Problem 3 (10pts)

For the C_L and C_m relationship shown in the following plots

- (1) Find the linear expressions of C_m in term of C_L for line A and B, respectively.
- (2) To obtain a trim condition, which line should be selected?
- (3) Assuming $\frac{x_{cg}}{\bar{c}}$ =0.6, how to relocate the a.c center $(\frac{x_{ac}}{\bar{c}})$ to obtain a new C_{L,trim}=0.8?

(1) The 4 points A_1 , A_2 , B_1 , and B_2 have the following values

Point	C_L	\mathcal{C}_m
A_1	-0.50	0.35
A_2	0.34	0.60
B_1	-0.20	0.40
B_2	0.40	0.10

The slope for each line A and B becomes

$$\frac{dC_m^A}{dC_L} = \frac{0.60 - 0.35}{0.34 - (-0.50)} = 0.298$$

$$\frac{dC_m^B}{dC_L} = \frac{0.10 - 0.40}{0.40 - (-0.20)} = -0.500$$

The y-intercepts for each line A and B is (indicated as a cross in the graph) 0.50 and 0.30 respectively. Thus, the equations for line A and B are given by

Answers:

A:
$$C_m = 0.298C_L + 0.50$$

A:
$$C_m = 0.298C_L + 0.50$$

B: $C_m = -0.500C_L + 0.30$

(b) Since the condition for longitudinal static stability is

$$\frac{\partial C_m}{\partial \alpha} = C_{m_{\alpha}} < 0$$

Since $C_L = C_{L_{\alpha}}(\alpha - \alpha_0)$ with $C_{L_{\alpha}} > 0$, then an equivalent condition for longitudinal static stability is that

$$\frac{\partial C_m}{\partial C_L} < 0$$

Thus, line B is the line that should be selected to obtain a trim condition.

(c) From the relation

$$C_{m_{\alpha}} = -\frac{x_{cm} - x_{ac}}{\bar{c}} C_{L_{\alpha}}$$

$$\frac{\partial C_m}{\partial \alpha} = \left(\frac{-x_{cm}}{\bar{c}} + \frac{x_{ac}}{\bar{c}}\right) \frac{\partial C_L}{\partial \alpha}$$

Then we have,

$$\frac{\partial C_m}{\partial C_L} = \frac{-x_{cm}}{\bar{c}} + \frac{x_{ac}}{\bar{c}}$$

Hence, if we change x_{ac} then $\partial C_m/\partial C_L$ changes. This means that we want to change the slope of line B to have $C_{L.trim} = 0.8$. For this the new slope becomes

$$\frac{\partial C_m}{\partial C_L} = -\frac{C_{m0}}{C_{L,trim}} = -\frac{0.30}{0.80} = -0.375$$

Hence, where $x_{cq}/\bar{c} = 0.6$

$$-0.375 = -0.6 + \frac{x_{ac}}{\bar{c}}$$

$$\left(\frac{x_{ac}}{\bar{c}}\right)_{new} = 0.225$$

The original location of the aerodynamic center was

$$-0.500 = -0.6 + \frac{x_{ac}}{\bar{c}}$$

$$\left(\frac{x_{ac}}{\bar{c}}\right)_{original} = 0.1$$

Hence,

$$\Delta \left(\frac{x_{ac}}{\bar{c}}\right) = \left(\frac{x_{ac}}{\bar{c}}\right)_{new} - \left(\frac{x_{ac}}{\bar{c}}\right)_{original} = 0.125$$

We have to relocate the aerodynamic center by 0.125 from the original position for line B.

Problem 4. (15pts)

Wind tunnel test on a full-scale flying wing yielded the following database

Angle of Attack, deg	C _L	$C_{m_{cg}}$	
8.0	0.64	-0.014	
5.0	0.40	0.010	
2.0	0.16	0.034	
-3.0	-0.24	0.074	

The configuration c.g is located 0.58 ft from the leading edge of the chord and the chord length is 2.6 ft.

- (a) Estimate the configuration lift curve slope
- (b) Is the configuration, as tested, statically stable? Explain your answer.
- (c) Estimate values for C_m at the aerodynamic center and aerodynamic center location.
- (d) Can this configuration, as tested, be trimmed in a steady glide condition? Explain your answer
- (e) If the answer to part (d) is yes, then estimate values for trim angle of attack and trim lift coefficient

$$\alpha = [-0.0524, 0.0349, 0.0873, 0.1396]$$
 (rad)

(a).

$$\frac{\partial C_{i}}{\partial q}_{i} = \frac{0.16 - (-0.14)}{0.0349 - (-0.0524)} = \frac{0.40}{0.0673} \cong 4.5819$$

$$\frac{\partial C_{i}}{\partial q}_{2} = \frac{0.40 - 0.16}{0.0673 - 0.0349} = \frac{0.24}{0.0624} \cong 4.5802$$

$$\frac{\partial C_{i}}{\partial q}_{3} = \frac{0.64 - 0.40}{0.1396 - 0.0873} = \frac{0.24}{0.0523} \cong 4.5889$$
Then,
$$\operatorname{mean}\left(\left(\frac{\partial C_{i}}{\partial Q_{i}}\right)_{i}\right) = \frac{1}{3} \stackrel{?}{\underset{i=1}{\overset{?}{\longrightarrow}}} \left(\frac{\partial C_{i}}{\partial Q_{i}}\right)_{i}$$

$$= \frac{4.5819 + 4.5802 + 4.5889}{3}$$

$$\frac{\partial C_{i}}{\partial Q_{i}} \cong 4.5837$$

Next,

$$C_{L} = \frac{\partial C_{L}}{\partial Q} Q + b$$
 $b := \frac{4}{7} - intercept$
 $b_{1} = C_{L1} - \frac{\partial C_{L}}{\partial Q} Q_{1} = -0.24 - (4.5837)(-0.0524)$
 $= 0.1971 c - 5$
 $c_{1} = C_{12} - \frac{\partial C_{L}}{\partial Q} Q_{2} = -0.1314 e - 5$
 $c_{2} = C_{12} - \frac{\partial C_{L}}{\partial Q} Q_{3} = -0.3285 e - 5$
 $c_{3} = C_{13} - \frac{\partial C_{L}}{\partial Q} Q_{4} = -0.5225 e - 5$
 $c_{4} = C_{14} - \frac{\partial C_{L}}{\partial Q} Q_{4} = -0.5225 e - 5$
 $c_{5} = c_{6} =$

Verify this using MATLAB

```
clear all; close all; clc;
% (a)
alpha_deg = [-3.0, 2.0, 5.0, 8.0]; % angle of attack [deg]
alpha_rad = deg2rad(alpha_deg); % angle of attack array in radians [rad]
Cl = [-0.24, 0.16, 0.40, 0.64]; % lift coefficients
Cm_cg = [0.074, 0.034, 0.010, -0.014]; % pitch moment coefficients w.r.t the cg
x_{cg} = 0.58; % [ft] from the leading edge of the chord
% y-intercept estitmation
slope = 4.5837;
bs = []
for i = 1:numel(alpha_rad)
    b = Cl(i) - slope*alpha_rad(i);
    bs = [bs, b];
end
bs
b_mean = mean(bs)
```

```
% Linear fit for the lift coefficient over angle of attack (deg)
p = polyfit(alpha_deg, Cl, 1)
Cl_fit = polyval(p, alpha_deg)
Cl_resid = Cl - Cl_fit
SSresid = sum(Cl resid.^2)
SStotal = (length(Cl)-1) * var(Cl)
rsq = 1 - SSresid/SStotal
rsq_adj = 1 - SSresid/SStotal * (length(Cl)-1)/(length(Cl)-length(p))
% Linear fit for the lift coefficient over angle of attack (rad)
p = polyfit(alpha_rad, Cl, 1)
Cl_fit = polyval(p, alpha_rad)
Cl resid = Cl - Cl fit
SSresid = sum(Cl_resid.^2)
SStotal = (length(Cl)-1) * var(Cl)
rsq = 1 - SSresid/SStotal
rsq_adj = 1 - SSresid/SStotal * (length(Cl)-1)/(length(Cl)-length(p))
```

The result is identical to the calculations done by hand.

	slope	y-intercept
radians	4.5837	~0
degrees	0.0800	~0
		$R^2 \sim 1$

(b).

Compute the pitch moment gradient with respect to the angle of attack for the given data using MATLAB

```
dCm_da = [];
for i = 1:numel(alpha_rad)-1
         dCm_da_i = (Cm_cg(i+1) - Cm_cg(i)) / (alpha_rad(i+1) - alpha_rad(i));
         dCm_da = [dCm_da, dCm_da_i];
end
dCm_da
dCm_da
dCm_da_mean = mean(dCm_da)
```

$$\left(\frac{\Delta C_{m_{cg}}}{\Delta \alpha}\right)_{i} = \frac{C_{M_{cg,i+1}} - C_{M_{cg,i}}}{\alpha_{i+1} - \alpha_{i}} = [-0.4584, -0.4584, -0.4584]$$

Thus,

$$\frac{\Delta C_{M_{cg}}}{\Delta \alpha} = -0.4584 < 0$$

The pitch moment gradient with respect to the angle of attack is negative meaning that the configuration is statically stable.

(c).

From the equation of C_L that we have computed in part (a) we know that the lift coefficient is zero when the angle of attack, α is zero. Thus, we interpolate the pitching moment values for angle of attack of zero. This pitching moment is the moment at the aerodynamic center.

$$C_{\text{mac}} = \frac{0.034 - 0.074}{2.0 - (-3.0)} [0 - (-3.0)] + 0.074$$

$$C_{\text{mac}} = 0.0500$$

MATLAB also gives us the same value

Hence,

$$C_{m_{ac}}=0.0500$$

Then, to find x_{ac} we use the following two values

$$\begin{pmatrix} \frac{\Delta C_L}{\Delta \alpha} & = 4.5837 \\ \frac{\Delta C_{m_{cg}}}{\Delta \alpha} & = -0.4584 \end{pmatrix}$$

We are also given that

$$\frac{x_{cg}}{\bar{c}} = \frac{2.6 - 0.58}{2.6} \cong 0.7769$$

We can plug these values into the following equation

$$C_{M_{\alpha}} = -\frac{x_{cg} - x_{ac}}{\bar{c}} C_{L_{\alpha}}$$

$$x_{cg} - x_{ac} = -\frac{C_{M_{\alpha}}}{C_{L_{\alpha}}}\bar{c}$$

$$\frac{x_{ac}}{\bar{c}} = \frac{C_{M_{\alpha}}}{C_{L_{\alpha}}} + \frac{x_{cg}}{\bar{c}} = \frac{-0.4584}{4.5837} + 0.7769 = 0.6769$$

Hence,

$$x_{ac} = 0.6739 \times 2.6 \, ft = 1.7599 \, ft \, w.r.t \, the \, trailing \, edge$$

Thus, from the leading edge

$$x_{ac} = 2.6 - 1.7599 = 0.8401 ft$$

(d).

Since, $\, C_{m_{lpha}} < 0 \,$ and $\, C_{m_0} > 0$, the graph of the pitching moment becomes like the follow

Thus, we can tell that this configuration is possible to have a trim condition for a steady level flight.

(e).

From interpolation, we can find the angle where the pitching moment is zero.

$$\alpha_{trim} = \frac{8.0 - 5.0}{-0.014 - 0.010} (0 - 0.010) + 5.0 = 6.25 \, deg$$

This agrees with the MATLAB results

Then interpolate the lift coefficient based on this trim angle of attack

$$C_{L,trim} = \frac{0.64 - 0.40}{8.0 - 5.0} (6.25 - 5.0) + 0.40 = 0.50$$

This is congruent with the results computed by MATLAB

Problem 5. (10pts)

Consider the following nonlinear 2nd-order system

$$\ddot{y} + a_1 \dot{y}^2 + \frac{a_0}{y^2} = f$$

where a_0 and a_1 are constant, and $a_0 > 0$.

- (1) For a constant input $f=f_0>0$, determine the equilibrium points of the system
- (2) Obtain the linearized equations of the system at the equilibrium points
- (3) Express the linearized model in state equations, choosing $x_1 = \delta y$, $x_2 = \delta \dot{y}$, and $u = \delta f$

(1).

(2).

1 + 58	y = -	ů ců	
	, (de+04=	54
-	→ ÿ:	84	
the equation	a	a. d. 44a-	Tale
) = 1	g2 - a,y2	and use	lagior expansion
₹(₹, \$,∱) + ;;	2 + (4, 4);	f) Sig + 2	f(q,q,f) 8f
	·		
10 to			
	64 + 8	f = 2 fo	\ 4 24 + 94
= 2 fo \(\frac{f_0}{a_0} \)	f + &f		
He =	$-\sqrt{\frac{a_0}{f_0}}$		
	\$(\$,\$,\$) + \$\frac{1}{3}\$ \$\fra		$ \frac{1}{3} = \frac{1}{3} - \frac{a_0}{3} - a_1 \dot{y}^2 \text{ and use} $ $ \frac{1}{3} (\dot{y}, \dot{y}, f) + \frac{2}{3} \dot{y} f(\dot{y}, \dot{y}, f) \dot{s} \dot{y} + \frac{2}{3} \dot{s} \dot{y} f(\dot{y}, \dot{y}, f) \dot{s} \dot{y} + \frac{2}{3} \dot{s} \dot{y} f(\dot{y}, \dot{y}, f) \dot{s} \dot{y} + \frac{2}{3} \dot{s} \dot{y} f(\dot{y}, \dot{y}, f) \dot{s} \dot{y} + \frac{2}{3} \dot{s} \dot{y} f(\dot{y}, \dot{y}, f) \dot{s} \dot{y} + \frac{2}{3} \dot{s} \dot{y} f(\dot{y}, \dot{y}, f) \dot{s} \dot{s} \dot{s} + \frac{2}{3} \dot{s} \dot{s} \dot{s} + \frac{2}{3} \dot{s} \dot{s} \dot{s} + \frac{2}{3} \dot{s} \dot{s} \dot{s} \dot{s} + \frac{2}{3} \dot$

Plug
$$y_e = -\sqrt{\frac{a_o}{f_o}}$$
 into ①, then
$$\delta \ddot{y} = 2a_o \left(-\frac{f_o}{a_o}\sqrt{\frac{f_o}{a_o}}\right) \delta \dot{y} + \delta \dot{f}$$

$$\delta \ddot{y} = -2f_o \sqrt{\frac{f_o}{a_o}} \delta \dot{y} + \delta \dot{f}$$

(3).

if ,
$$\chi_1 := \delta \mathcal{A}$$
 $\chi_2 := \delta \mathcal{A}$ $\mathcal{A}_1 := \delta \mathcal{A}$ $\mathcal{A}_2 := \delta \mathcal{A}$ $\mathcal{A}_3 := \delta \mathcal{A}$ or $\delta \mathcal{A}_4 := -2 \cdot \sqrt{\frac{4}{\alpha_0}} \delta \mathcal{A}_4$ $\Rightarrow \dot{\chi}_2 := 2 \cdot \sqrt{\frac{4}{\alpha_0}} \delta \mathcal{A}_1 + \mathcal{U}$ $\dot{\chi}_1 := \chi_2$ $\dot{\chi}_1 := \chi_2$ $\dot{\chi}_1 := \chi_2$ Hence, the state space representation is given by,
$$\begin{pmatrix} \dot{\chi}_1 \\ \dot{\chi}_2 \end{pmatrix} := \begin{pmatrix} \chi_2 \\ 2 \cdot \sqrt{\frac{4}{\alpha_0}} \chi_1 + \mathcal{U} \end{pmatrix}$$
 or
$$\begin{pmatrix} \dot{\chi}_1 \\ \dot{\chi}_2 \end{pmatrix} := \begin{pmatrix} \chi_2 \\ -2 \cdot \sqrt{\frac{4}{\alpha_0}} \chi_1 + \mathcal{U} \end{pmatrix}$$

Problem 6. (10 pts)

consider an airplane in constant-altitude, straight-line flight. The velocity equation is

$$\dot{V} = T - \frac{1}{2}kV^2$$

where the second term represents aerodynamic drag, and assume k = constant, and T is the engine thrust acceleration. Treat T as the control (input). Let V^* be a given constant cruise speed. Obtain the linearized differential equation for the velocity around V^* .

$$i \frac{1}{3} V_{e} = V^{*} = \sqrt{\frac{27}{F}}$$

$$\delta \dot{V} = \delta T - \frac{1}{2} \cdot \frac{27}{F} = \delta V$$

$$\delta \dot{V} = \delta T - \sqrt{27} \cdot \delta V$$

$$i \frac{1}{3} V_{e} = V^{*} = -\sqrt{\frac{27}{F}}$$

$$\delta \dot{V} = T - \frac{1}{2} \cdot \frac{27}{F} + \sqrt{27} \cdot \delta V$$

$$\delta \dot{V} = \delta T + \sqrt{27} \cdot \delta V$$

Problem 7. (15pts)

From the nonlinear flight dynamics model, derive the following linear perturbation equations for Y force

$$m(\dot{v} + u_0 r) = \Delta Y + mgcos(\theta_0) \phi$$
.

And moments

$$\Delta L = I_{xx}\dot{p} - I_{xz}\dot{r}$$

$$\Delta M = I_{yy}\dot{q}$$

$$\Delta N = -I_{xz}\dot{p} + I_{zz}\dot{r}$$

Show all steps.

The equations we	need are			
		m (V. B)	D(1)	
) (+ n	ng costysing =	= m(V+RU-	rw)	
J L	= Ixx P -]	(Ř+PQ) -	(Igg-Izz)QR	
			·(I22 - I22)PR	
(N	= I32 R - I	[_{2x} (þ-QR) -	(Ixx-I88)PQ	
Trim conditions are	<u>.</u>			
Xo-masi	n0, =0	L0 = 0	Yo =0	
Y.	~ O	$M_0 = 0$	4. =0	
Z. +mgco	$s\theta_{o}=0$	No =0		
		Po = 0		
V.	=0	€0 = O		
W _o	÷0	r. = 0		

(i) Y+n	$nq \cos \theta \sin \overline{b} = m(\dot{v} + RV - PW)$
Y=	m(v+RU-pw) - mg cosp sin I
let, f	(v, R, U, P, w, 0, 4)
Use Tay	or expansion
14 =	(みず)が + (ます)ア + (まり)ル
	+ (2+1)p+ (2w1)w+ (201)0+ (201)4
y =	mi + mulor + mroù -musp - mpoù
	+ mg sind. sinf. 0 - mg asd. cosf. 4
4 =	m(v+uor) - mg cos(Oo)p
let D	Y= #
	m(i+u) = AIY + mgcos(00)9

(iii)
$$L = I_{\infty}\dot{p} - I_{\infty}(\dot{p} + PQ) - (I_{yy} - I_{yz})QR$$

$$-l_{a1} = (\frac{\partial}{\partial \dot{p}} + \frac{\partial}{\partial \dot{p}} + \frac{\partial}{$$

(iv)
$$N = I_{32}\dot{k} - I_{2x}(\dot{p} - OR) - (I_{xx} - I_{yy})PQ$$

let the $\dot{p}f(S)$ be $\dot{f}(\dot{p},\dot{p},\dot{p},Q,R)$, then Taylor expansion
$$AIN = (2\dot{p}f)\dot{r} + (2\dot{p}f)\dot{p} + (2\dot{q}f)Q + (2\dot{q}f)Q + (2\dot{q}f)r$$

$$= I_{22}\dot{r} - I_{2x}\dot{p} - (I_{xx} - I_{yy})Q\dot{p}^{2}$$

$$+ I_{2x}\dot{r}o\dot{q} - (I_{xx} - I_{yy})Q\dot{q} + I_{2x}\dot{r}o^{2}$$

$$\therefore AIN = -I_{2x}\dot{p} + I_{2x}\dot{r}$$
2.e.d

Problem 8. (15 pts)

Consider the 2-degree-of-freedom spring mass pendulum shown below (All motion is in the plane of the picture shown). The nonlinear equations of motion are given by

$$(1) \quad \ddot{X} + \frac{k}{m}(X - L) - g\cos(\Theta) - X\dot{\Theta}^2 = 0$$

(2)
$$X^2\ddot{\Theta} + gX\sin(\Theta) + 2\dot{\Theta}X\dot{X} = 0$$

where *L* is the original spring length.

Linearize the equations of motion for this system. Let the reference condition be the equilibrium (no motion) state for the pendulum mass. In particular

- (a) Define a set of perturbation variables
- (b) Substitute the results of Part (a) into the equations of motion
- (c) Expand the equations and discard appropriate terms (show the terms that are to be discarded)

First we will -look for the equification values

From equation (1)

$$\ddot{x} = -\frac{1}{m}(X-L) + g\cos\theta + X\dot{\theta}^{2}$$

$$- \Rightarrow 0 = -\frac{1}{m}(Xe-L) + g\cos\theta + X\dot{\theta}^{2}$$

$$- \Rightarrow 0 = -\frac{1}{m}(Xe-L) + g\cos\theta + 0$$

From equation (2)

$$X^{2}\ddot{\theta} = -gX\sin\theta - 2\dot{\theta}X\dot{X}$$

$$0 = -gX\sin\theta \dot{\theta}$$

$$\dot{\theta} = 0$$

Then, from above
$$\frac{1}{m}(Xe-L) = q$$

$$Xe = \frac{mq}{k} + L = \frac{mg+kL}{k}$$

$$X = Xe + x = \frac{mq+kL}{k} + x$$

$$\theta = \theta e + \theta = \theta$$

where
$$x = SX, x = Sx, x = Sx$$

$$\theta = S\theta, \dot{\theta} = \delta\theta, \ddot{\theta} := \delta\dot{\theta}$$

plug those into the original equations based as the equification state
$$(1) \quad \ddot{X}e + S\dot{X} = -\frac{1}{m}(Xe + SX-L) + g\cos(\theta e + \delta\theta) + (Xe + SX)(\dot{\theta}\dot{k} + \dot{\delta}\dot{\theta})^{2}$$

$$\frac{\ddot{x}}{\ddot{x}} = -\frac{1}{4} \left(\frac{Mg + kL}{k} + x - L \right) + g \cos \theta + \frac{1}{4} \left(\frac{Mg + kL}{k} + x \right) \frac{1}{4} \frac{1}{4} \cos \theta^{-1} + \frac{1}{4} \cos \theta^{-1} \right)$$

$$\frac{\ddot{x}}{\ddot{x}} = -\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} \cos \theta^{-1} + \frac{1}{4} \cos \theta^{-1} + \frac{1}{4} \cos \theta^{-1} + \frac{1}{4} \cos \theta^{-1} \right)$$

$$= -\frac{1}{4} \left(\frac{(Xe + \delta X)^{2}}{(Ne + \delta X)^{2}} \cos \left(\frac{(Ne + \delta X)^{2}}{(Ne + \delta X)^{2}} \cos \left$$