Da	te: 13/10/202	CSC 212	Midter	n Exam - Fall 2020	
Guidelines	-7-0/202	U	Duratio	n: 90 minutes	
• No calcula	ators or any of	hon al			
Student ID:		mer electronic	devices are all	owed in this exam.	
Section:				ame:	
1	2	Instructor:			
		3	4	Total	
Question 1			••••		
Clearly mark	one answer for	each of the fo	ollowing:		15 points
1. For $f(n)$:	$=2n^{\frac{7}{2}}+6n^2-$	$-n^3$, which of	the fall-	is $true? f(n)$ is:	
\bigcirc $O(n^{\frac{7}{2}})$) \bigcirc	\bigcirc	A and	is true? $f(n)$ is:	
2. For $f(n)$ =	$= 14n \pm 2n \log n$		D A and	B (E) None	
\bigcirc	$\mathbb{R} O(n^{1/2})$	$(n-6n^2, \text{ whi})$	ch is the most	appropriate? $f(n)$ is:	
0. F. (1)	(m)	$O(n^2)$	$\bigcirc O(n \log n)$	n) \bigcirc None	
3. For $f(n) =$	$= \log(n+1)^2,$	which is the 7	nost approprie	ate? $f(n)$ is:	
(A) $O(\log n)$	n) (B) $O((1$	$(\log n)^2$) \bigcirc	$O(\log(n^2))$	$\bigcirc O(n^2)$ \bigcirc None	
4. Suppose yo	ou had an alg	orithm \mathcal{A} . W	hen it runs or	a list l of size n , A	calls algorithm $\mathcal B$ on each of
the first th	ree iterations	On the rema	aining iteratio	ns, it calls algorithm	C. Suppose \mathcal{B} is $O(n)$ and C
is $O(1)$. W	hich running	time best desc	cribes algorith	m Α :	
\bigcirc $O(n)$	\bigcirc $O(n^2)$	$\bigcirc O(2^n)$	(D) O(1) (E	None	
. Suppose th	at an algorith	m \mathcal{A} iterates	over a list l	of size n. For each ele	ement in the first half of l A
executes so	me $O(\log n)$ o	peration. For	elements in th	e second half of l , A ex	xecutes some $O(1)$ operation
Which runn	ning time best	describes algo	orithm \mathcal{A} ?		
\bigcirc $O(n)$	\bigcirc $O(n \log n)$	\bigcirc \bigcirc $O(n-1)$	$+\log n$) \bigcirc	$O(n^2 \log n)$	one
For two fun	ctions $f(n)$ as	and $q(n)$, suppose	ose $f(n)$ is $O(n)$	(q(n)). What is the b	est big-O for $f(n) + g(n)$?
		the will be a head and		$\bigcirc O(f(n)/g(n))$	
Suppose $f(r)$	$O(g_1(n))$	and $h(n)$ is C	$O(g_2(n))$. Wh	at is the best big-O o	f $f(n) \cdot h(n)$?
\bigcirc $O(g_1(n)$	$+ g_2(n)$) (I	$O(g_1(n))$	\bigcirc $O(g_1(n)$	$g_2(n)$ $\bigcirc O(g_2(n))$	n)) E None

```
age 2 of 1
   In a real estate management application, information about properties (e.g., homes, farms, and land) and
   their owners are stored in the two classes Property and Comer shown below. Notice that a property may have
   multiple owners, and an owner may participate in owning several properties.
   public class Property {
     public String id;
    public String propertyName;
     public double value;
    public List (Owner) owners; // Owners of this property
    public Property(String id, String propertyName, List (Owner) owners) (
      this.propertyName= propertyName;
      this.owners= owners;}
 public class Owner {
   public String firstName;
   public String lastName;
   public Owner(String firstName, String lastName) {
     this.firstName= firstName;
     this.lastName= lastName;}
Write the method ownersOf that takes as input a list of properties and a particular property's ID, and checks
if that property is included in the list. The method should return a list containing all the owners of this
property if it exists; otherwise it should return an empty list. The method signature is: static List<Owner>
ownersOf(List<Property> properties, String id).
 1. Line 1:
                                                           (E) None
    (A) if (!properties.empty()){
                                                        4. Line 4:
    (B) while (!properties.last()){
                                                           (A) properties.findNext(); }
    (C) properties.findFirst();
                                                           (B) if (properties.retrieve().id.equals(id))
   (D) if (properties.head != null){
                                                           (C) if (properties.retrieve().id == id)
   (E) None
                                                           (D) if (properties.data.id.equals(id))
2. Line 2:
                                                           (E) None
   (A) if (!properties.empty()){
                                                        5. Line 5:
   (B) if (properties.retrieve().id.equals(id))
                                                           (A) if (properties.retrieve().id.equals(id))
   (C) properties.current = head;
                                                           (B) return properties.data.owners;
  (D) properties.findFirst();
                                                           (C) return properties.owners;
  (E) None
```

3. Line 3:

(A) return properties.retrieve().owners;

while (properties.current.next != null) {

(B) while (properties.last()){

(C) while (!properties.last()){

Scanned with CamScanner

properties.current = current.next; }

(D) return properties.retrieve().owners;

(A) properties.findNext(); }

(E) None

6. Line 6:

- data[2] through data[11]. The capacity (that is maxSize) is 42. Where does the enqueue method place the new entry in the array?
 - (A) data[1] (B) data[11] (C) data[12] (D) data[0]
- 4. The function g below is member of ArrayQueue. What does it do?

```
public T g() {
  if (size == 0)
    return null;
   T e = data[head];
```

```
return e;
```

- A Return the front element.
- B Enqueue.
- © Serve.
- (D) Return the last element.
- 5. In the linked implementation of a queue, which of the pointers head and tail will change during an enqueue into a non-empty queue?
 - A Only head.
- B Only tail.
- © Both head and tail.
- (D) Depends on the size of the queue.

E None.

(E) None.

6. What is the content of q at the end of the following code:

```
Queue < Integer > q = new LinkedQueue < Integer > ()
q.enqueue (5);
q.serve();
q.enqueue (2);
q.enqueue (4);
q.serve();
q.serve();
q.serve();
q.enqueue (2);
```

```
(A) 5, 3, 2 (B) 5, 3, 2, 4 (C) 4, 2, 3 (D) 2, 4, 2, 3 (E) None
```

We want to write a linked implementation of the ADT uqueue which is a linear structure that stores elements without repetition and allows to serve from both ends.

```
public interface UQueue<T> {
  int length();
  boolean full();
  // Insert e at the end if it does not already exist and return true, otherwise return false.
  boolean enqueue(T e);
  // Remove and return the first element (the oldest)
  T serveFirst();
  // Remove and return the last element (the newest)
  T servLast();
}
```

Complete the class LinkedUQueue below.

```
class Node<T> {
   public T data;
   public Node<T> next, prev;
   public Node(T data) {
      this.data = data;
      prev = next = null;
   }
}
public class LinkedUQueue<T> implements UQueue<T> {
   private Node<T> head, tail;
   private int size;
   public LinkedUQueue() {
      tail = head = null;
      size = 0;
   }
   public int length() {
      return size;
   }
}
```

```
public boolean full() {
  return false;
}
```

1. Method enqueue.

```
public boolean enqueue(T e) {
 2
       if (size == 0) {
 3
 4
      } else {
        Node < T > p = ...
 5
 6
         while (...)
 7
 8
         if (...)
 9
10
11
12
13
14
15
16
```

- Line 3:
 - (A) tail = new Node<T>(e);
 - B tail = head = new Node<T>(e);
 - C tail = head = null;
 - D head = new Node<T>(e);
 - (E) None
- Line 5:
 - (A) Node<T> p = head;
 - (B) Node<T> p = null;
 - (C) Node<T> p = tail.prev;
 - (D) Node<T> p = head.next;
 - (E) None
- Line 6:
 - A while (p.next != null && !e.equals(p.data)

)

- (B) while (p != tail & !e.equals(p.data))
- (C) while (e.equals(p.data))
- (D) while (p != null && !e.equals(p.data))
- (E) None
- . Line 7:
 - (A) p = head.next;

- B p.next = p;
- C p = p.next;
- D p = p.prev.next;
- (E) None
- · Line 8:
 - (A) If (p == e)
 - (B) if (p.equals(e))
 - (C) if (p == head)
 - (D) if (p != null)
 - (E) None
- · Line 9:
 - A return p != tail;
 - B return false;
 - C return true;
 - D return p != null;
 - (E) None
- · Line 10:
 - (A) tail.next = new Node<T>(e);
 - (B) tail.prev = new Node<T>(e);
 - C tail = new Node<T>(e);
 - (D) head.next = new Node<T>(e);
 - (E) None
- Line 11:
 - A tail.prev.next = tail;
 - B head.prev.next = tail;
 - C tail.next = tail;
 - D tail.next.prev = tail;
 - (E) None
- Line 12:
 - A head = head.prev;
 - B head.next.prev = tail;

- C tail = tail.next;
- D tail tail.prev;
- E None
- . Line 14:
 - A if (head.next != null)size++;
 - B size++;
 - C size--;
 - (D) if (tail.prev != null)size++;

- (E) None
- Line 15:
 - A return head.next != null;
 - B return e != null;
 - C return true;
 - D return e;
 - (E) None

2. Method serveFist.

- Line 2:
 - A T e = new Node<T>(head.data);
 - B T e = tail.data;
 - C T e = head;
 - D T e = head.data;
 - (E) None
 - Line 3:
 - A tail = tail.next;
 - B head = head.prev;
 - C head = head.next;
 - D tail = tail.prev;
 - E None
 - . Line 4:
 - A if (tail == head)
 - B if (tail = null)
 - (C) if (head == null)
 - ① if (size == 0)
 - ® None

- Line 5:
 - A head.prev = null;
 - (B) head null;
 - C tail null;
 - (D) head = tail;
 - E None
- . Line 7:
 - A head.next = null;
 - B tail.next = null;
 - C tail.prev = null;
 - D head.prev = null;
 - (E) None
 - . Line 8:
 - A size = 0;
 - (B) size--;
 - C) size++;
 - D if (head !=null)size--;
 - (E) None
 - . Line 9:
 - A return head.data;
 - B return tail.data;
 - C return e.data;
 - D return e;
 - (E) None

```
public T serveLast() {
   T = = ...
   if (...)
        ...
   else
        ...
   ...
}
```

- Line 2:
 - A T e head.data;
 - B T e = new Node<T>(head.data);
 - C T e = tail.data;
 - D T e head;
 - (E) None
 - Line 3:
 - (A) head head.prev;
 - (B) tail tail.next;
 - (C) head = head.next;
 - (D) tail = tail.prev;
 - E None
 - Line 4:
 - A if (tail -- head)
 - B if (size -- 0)
 - (C) if (head -- null)
 - D if (tail -- null)
 - (E) None

- Line 5:
 - A head = tail;
 - B head.prev = null;
 - C head = null;
 - (D) tail null;
 - (E) None
- Line 7:
 - (A) tail.next = null;
 - (B) tail.prev = null;
 - C head.prev null;
 - (D) head.next = null;
 - (E) None
- Line 8:
 - (A) size++;
 - (B) size--;
 - C if (head !=null) size--;
 - D size 0;
 - ® None
- Line 9:
 - A return head.data;
 - B return e.data;
 - C return e;
 - D return tail.data;
 - E None