Switching

G54ACC

Lecture 7

richard.mortier@nottingham.ac.uk

What is it all about?

- How do we move traffic from one part of the network to another?
- Connect end-systems to switches, and switches to each other
- Data arriving to an input port of a switch have to be moved to one or more of the output ports

- Types of Switching Element
- Requirements
- Multistage Networks

- Types of Switching Element
 - Classification
 - Functions
- Requirements
- Multistage Networks

Types of Switching Elements

- Telephone switches
 - ...switch samples
- Datagram routers
 - ...switch datagrams
- ATM switches
 - ...switch ATM cells

Classification

- Packet vs. circuit switches
 - Packets have headers and samples don't
- Connectionless vs. connection oriented
 - Connection oriented switches need a call setup
 - Setup is handled in control plane by switch controller
 - Connectionless switches deal with self-contained datagrams

	Connectionless (router)	Connection-oriented (switching system)
Packet switch	Internet router	ATM switching system
Circuit switch		Telephone switching system

Other Switching Element Functions

- Participate in routing algorithms
 - ...to build routing tables
- Resolve contention for output trunks
 - ...scheduling
- Admission control
 - ...to guarantee resources to certain streams

- Types of Switching Element
- Requirements
 - First generation
 - Second generation
 - Third generation
 - Crossbar
- Multistage Networks

Requirements

- Capacity of switch
 - The maximum rate at which it can move information, assuming all data paths are simultaneously active
- Primary goal: Maximize capacity
 - ...subject to cost and reliability constraints
- Secondary:
 - Circuit switch must reject call if can't find a path for samples from input to output
 - Minimize call blocking
 - Packet switch must reject a packet if it can't find a buffer to store it awaiting access to output trunk
 - Minimize packet loss and reordering

A Generic Switch

- Input buffers
- Output buffers
- Line-card has
 - Input and output buffers, and
 - Transmission interfaces
- Switch fabric or Interconnect
- A processor for control functions (routing, etc.)

First Generation

- All buffers in one simple memory system
- CPU makes forwarding decision and copies packets/manipulates queues
- Most simple Ethernet switches and cheap packet routers
 - e.g. home routers
- Bottlenecks:
 - CPU, host-adaptor or I/O bus
 - First Cisco routers were built using 200MHz SPARC boards

Second Generation

- Line cards contain
 - Input & output buffers
 - Forwarding intelligence
- Simple bus interconnect
- CPU populates forwarding tables from
 - Routing protocol, or
 - Connection set up
- Bottleneck is bus
 - FORE ATM switches used 2.4Gbps bus

Third Generation

- Simple bus does not scale well
- Need parallel paths
- Introduce interconnection networks

Crossbar

Simplest possible spacedivision switch

X-Y based crossbar

• Scalability: **N**²

• Speed: limited by capacity at input and output lines

• Control: N² bits

Mux based crossbar

Scalability: N²

Speed: limited by capacity only at input line

• Control: **N*log₂N bits**

- Types of Switching Element
- Requirements
- Multistage Networks
 - Buffering
 - CIOQ
 - VOQ
 - Blocking

Multistage Networks

- Build large fabrics from smaller crossbar
- What might be some problems here?
- Number of crosspoints?
- Input and output capacity depends on buffering strategy

Input Buffering

- One queue per input
- Input and output capacity equals transmission line rate
- Needs arbitration to decide who wins
- Problem: head of line blocking
 - with uniformly randomly distributed packets, utilization ≈ 58.6%
 - Worse with hot spots

As N grows large, HoL limits utilization to $(2 - \sqrt{2}) \approx 58.6\%$

Aggregate fabric capacity 2N

Output Buffering

- One queue per output
 - No queues at input
- Input capacity is same as transmission line rate
- Output capacity is N times line rate
- Switch fabric output grows as N²
- Can achieve 100% throughput

100% throughput

Aggregate fabric capacity is N(N+1)

CIOQ

- Combined input and output queues
- Apply speed up S_i at input and S_o at output

Apply speed ups S_i and S_o

Aggregate fabric $N(S_o + S_i)$

VOQ

- Virtual output queues
- All magic and complexity in the arbitration

As output queued
Aggregate fabric 2N

Blocking

- We have come across HoL. Where else?
 - Internal blocking in complex switch fabrics
 - Two packets need same internal link

Dealing with Blocking

- Overprovisioning
 - Internal links much faster than inputs
- Buffers at input or output
- Backpressure
 - Prevent packet from entering until path is available
- Parallel switch fabrics
 - Increases effective switching capacity

- Types of Switching Element
 - Classification
 - Functions
- Requirements
 - First generation
 - Second generation
 - Third generation
 - Crossbar
- Multistage networks
 - Buffering
 - CIOQ
 - VOQ
 - Blocking

Quiz (1)

- 1. What is the key difference between a packet switch and a circuit switch? Give an example of each.
- 2. What is the key difference between a connection-oriented and a connection-less switch? Give an example of each.
- 3. Why are input and output buffers required in a line card?
- 4. Why is admission control required to guarantee resource to streams? Can you think of an alternative?
- 5. Describe the evolution from first to third generation switches. What are the costs of increasing performance?

Quiz (2)

- 6. What is the trade-off between X-Y and mux based crossbar switches?
- 7. Give two factors that impact scaling a multistage crossbar switch.
- 8. When does HoL blocking occur, and why is it a problem?
- One solution to HoL blocking is output buffering

 why is it not always used? (What cost does it incur?)
- 10. What other situations can cause blocking inside the switch, and how can they be alleviated?