Machine Learning of NO2 emissions classification in Google Earth Engine

Overview

- Summarize the main plans:
 - Data set available
 - Methods used
 - Validation of result
- Explain the long-term course to follow
- Look for the best methods of Machine Learning

Study Area: US, Los Angeles

Sentinel-5P

Launched 13 October 2017 by the ESA to monitor air pollution The TROPOspheric Monitoring Instrument (TROPOMI) instrument.

Los Angeles, US

OFFL/L3_NO2: . FilterDate ('2019-12-01', '2019-12-31')

LANDSAT 8 and Power Plants Data Set

National Land Cover Database (NLCD)

Remote Sensing Interpretation

Machine Learning in Earth Engine

I. EE API Methods

Supervised
Classification
ee.Classifier

Unsupervised Classification ee.Clusterer

Regression
spectral
un-mixing
ee.Reducer

II. Export/Import functions for TFRecord files

ee.Model package

Classifiers Overview in this Project:

Machine learning techniques for Supervised classification

Machine learning techniques for Unsupervised classification

The advanced analysis: spectral Un-mixing

Supervised Classification

- 1) Creating an ROI from coordinates
- 2) Loading an ImageCollection and filtering to a single image
- 3) Collect Training Data
- 4) Sample Imagery at Training Points to Create Training datasets
- 5) Train the classifier
- 6) Classify the Image & Display the Results
- 7) Assess the Accuracy (confusionMatrix)

Supervised Classification


```
Validation error matrix: JSON

*List (12 elements) JSON

*0: [10,3,0,0,0,0,0,1,0,1,0,0]

*1: [0,15,0,0,0,0,0,0,0,0,0,0]

*2: [0,0,14,0,0,0,0,0,0,0,0]

*3: [0,0,0,14,1,0,0,0,0,0,0,0]

*4: [0,1,0,2,10,0,0,0,2,0,0,0]

*5: [0,0,0,0,2,10,1,3,0,0,0,0]

*6: [0,0,0,0,0,3,12,0,0,0,0,0]

*7: [0,0,0,3,0,0,12,0,0,0,0]

*8: [0,0,0,0,0,1,1,0,7,0,5,1]

*9: [0,0,0,0,0,0,0,0,0,15,0,0]

*10: [0,0,0,0,0,0,0,0,0,15,0,0]

*11: [0,0,0,9,4,2,0,1,0,0,0,0]
```

Validation overal accuracy: JSC 0.7142857142857143

Unsupervised Classification (clustering)

- 1. Assemble features with numeric properties in which to find clusters.
- 2. Create a clusterer. Set its parameters if necessary.
- 3. Train the clusterer using the training data.
- 4. Apply the clusterer to an image or feature collection.
- 5. Label the clusters.

Unsupervised Classification (clustering)

The advanced analysis: Spectral Un-mixing

Result of Un-mixing on Denver Area

Development in the future

- 1) Consider 1 Year Time Frame for Landsat / Tropi Data in EE.
- 2) Set a Training Data Set from NAIP imagery (high resolution)
- 3) Work on Deep Machine Learning TensorFlow model

Long-term goal

Build Machine Deep Learning Project:

 Creating a TensorFlow Deep Learning VM Instance

- Accuracy validation the TensorFlow compared to Supervised/ Unsupervised Classification

