

DAVID W. TAYLOR MAVAL SI RESEARCH AND DEVELOPMENT (

Division 2000

A Marie Superior

BOOKERINGERAL DISTRADY AND THE AVER BLADES OF THE CALIFORNIA SERVICE FOR EARLY BLODES OF THE CALIFORNIA SERVICE FOR EARLY BLODES OF THE CALIFORNIA SERVICE FOR EARLY BLODES OF THE CALIFORNIA SERVICE FOR EARLY TO AVER A CALIFORNIA SERVICE FOR EARLY T

Control of Control of

WISUS 7950

व्यक्षिण्डमभक्षे

RESTAUST AND SERVERS WERE

AD A O 48385

387 682

63508N

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 77-0110 2. GOVT ACCESSION N	O. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Sublitte) Experimental Unsteady and Time Average Loads of the CP Propeller on a Model of the DD963 Class	5. TYPE OF REPORT & PERIOD COVERED Final
Destroyer for Simulated Modes of Operation	6. PERFORMING ORG. REPORT NUMBER 77-0110
7. AUTHOR(*) Stuart D. Jessup Robert J. Boswell John J. Nelka	8. CONTRACT OR GRANT NUMBER(*)
PERFORMING ORGANIZATION NAME AND ADDRESS David W. Taylor Naval Ship Research and Development Center Bethesda, Maryland 20084	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS TASK Area S0379-S1001 Task 19977 Work Unit No. 1544-296
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Sea Systems Command (0331G)	12. REPORT DATE December 1977
Energy Conversion & Explosive Devices Division Washington, D.C. 20362	13. NUMBER OF PAGES 310
14. MONITORING AGENCY NAME & ADDRESS(II dillorent from Controlling Office) Naval Ship Engineering Center (6148) Propeller, Shafting & Bearing Branch	Unclassified
Washington, D.C. 20362 16. DISTRIBUTION STATEMENT (of this Report)	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release: Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Marine Propeller

Controllable-Pitch Propeller

Loads

Propulsion

Model Experiments

Propeller Research Unsteady Loads DD963 Class Destroyer

20. ABSTRACT (Continue on reverse elde if necessary and identity by block number)

Experiments are described in which the mean and unsteady loads were measured on a single blade of a model of the controllable-pitch propeller on the DD-963 Class Destroyer. The experiments were conducted behind a model of the DD-963 hull under steady ahead operation, hull pitching motions, and simulated acceleration maneuvers. The experimental techniques are outlined and the dynamometer and data analysis system described.

The results show that all significant loads except radial force are predominantly of hydrodynamic origin. The circumferential variation of all

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

LECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

measured components of blade loading is primarily a once-per-revolution variation, with the variation following approximately the variation of the tangential wake velocity.

For sinusoidal pitching of the hull with maximum pitch angle of 1.85 degrees and a simulated full scale frequency of 0.16 hertz, the peak-to-peak circumferential variation of measured forces and moments increased by approximately 50 percent over the values without hull pitching.

For simulated operation during an acceleration maneuver, the circumferential variation of measured forces and moments varied approximately as the product of ship speed and propeller rotational speed. At no time during the simulated acceleration maneuvers were the circumferential variations of loads as large as during full power steady ahead operation.

For steady ahead operation, circumferential variation of loading determined from the model experiments agreed fairly well with full-scale data, but was substantially larger than the theoretically calculated values.

For all conditions evaluated, the results follow close to previously reported results of similar experiments on a model of the FF-1088.

TABLE OF CONTENTS

					Page
ABSTRACT					1
ADMINISTRATIVE INFORMATION					1
INTRODUCTION					2
BACKGROUND					3
EXPERIMENTAL TECHNIQUE					9
FACILITY AND DYNAMOMETRY					9
CALIBRATION	2 /			211	12
EXPERIMENTAL CONDITIONS AND PROCEDURES					14
DATA ACQUISITION AND ANALYSIS					17
ACCURACY					21
EXPERIMENTAL RESULTS					
					23
LOADING COMPONENTS					
CENTRIFUGAL AND GRAVITATIONAL LOADS					26
INFLUENCE OF DYNAMOMETER BOAT					29
STEADY-AHEAD OPERATION					31
HULL PITCH					34
ACCELERATION	•	•		•	38
CORRELATION WITH FULL-SCALE DATA AND THEORY	•				42
SUMMARY AND CONCLUSIONS					48
ACKNOWLEDGEMENTS					50
APPENDIX A - DETAILS OF WAKES					51
APPENDIX B - DETAILED EXPERIMENTAL RESULTS .				7,	53
REFERENCES	Ser	t1'01	1	1	285
ppc 8 ff					203
MAUNING D				1	
				-	
consist of the beautiful Court and the second				1	
DISTRIBUTION AND ALL PROPERTY AND ALL PR	E.F.	1111	52	L	
	1		-	1	
a					
111	1			1	

LIST OF FIGURES

						P	age
1	-	Components of Blade Loading					55
2	-	Schematic Drawing of CP Propellers on DD-963 Class Destroyer; DTNSRDC Model Propellers 4660 and 4661					56
3	-	Ship and Model Particulars					57
4	-	Experimental Arrangement of Hull and Dynamometer Boat					58
5	-	Typical Strain Gaged Flexure					60
6	-	Typical Arrangement of Flexures in Hub					61
7	-	Experimental Acceleration Conditions					62
8	-	Experimental Data Showing Plus and Minus Two Standard Deviations on Measured Values of $\mathbf{F_x}$					63
9	-	Correlation of Theory and Experiment for Time Average Centrifugal Spindle Torque			•	•	64
10	-	Distribution of Wake in Propeller Disk					65
11	-	Open-Water Characteristics of DTNSRDC Model Propellers 4660 and 4661				•	70
12	-	Influence of Extraneous Signals on Measured Loads					71
13	-	Experimental Data Showing Extraneous Higher Harmonics					77
14	-	Variation of Experimental Hydrodynamic Loads with Angular Position for Steady-Ahead Operation	•			•	83
15	-	Variation in Radial Center of Thrust F_{x_H} and Transverse Hydrodynamic Force F_{y_H} with Blade Angular Position for Steady-Ahead Operation				•	84
16	-	Variation of Experimental Total Loads with Angular Position for Steady-Ahead Operation					85
17	-	Harmonic Content of Experimental Hydrodynamic Loads for Stead-Ahead Operation				•	86
		Harmonic Content of Experimental Total Loads for					88

								Page
19 -	Variation of Components of Total Blade Loading with Hull Pitch Angle		•					90
20 -	Variation of Experimental Hydrodynamic Loads with Angular Position for Quasi-Steady Acceleration	•						96
21 -	Variation in Radial Center of Thrust F_{x_H} and Transverse Hydrodynamic Force F_{y_H} with Blade Angular Position for Quasi-Steady Acceleration					• 12		104
22 -	Variation of Experimental Total Loads with Angular Position for Quasi-Stead Acceleration			•	•	•		109
23 -	Harmonic Content of Experimental Hydrodynamic Loads for Quasi-Steady Acceleration		•			•	•	117
24 -	Harmonic Content of Experimental Total Loads for Quasi-Steady Acceleration	•				٠	•	133
25 -	Taylor Wake Fractions During Simulated Acceleration Maneuvers							149
26 -	Variation of First Harmonic of Experimental Hydrodynamic Loads with nV for Quasi-Steady Acceleration	•					•	150
27 -	Comparison of Time-Average Values Per Revolution and Peak Values of Various Components of Experimental Total Blade Loading for Quasi-Steady and Unsteady Simulated Acceleration		•					153
28 -	Variation of Hydrodynamic Bending Moment at 30 Percent and 40 percent Radii with Blade Angular Position, Theoretical Prediction With and Without Dynamometer Boat		•					159
29 -	Variation of Hydrodynamic Bending Moment at 30 Percent and 40 Percent Radii with Blade Angular Position, Comparison of Model Data with Theory	•	•		•	· STORY	•	161
30 -	Harmonic Content of Hydrodynamic Bending Moment at 30 Percent and 40 Percent Radii, Comparison of Model Data and Theory							162

LIST OF TABLES

							Page
1	-	Characteristics of Propellers on DD-963 Class Destroyer; DTNSRDC Model Propellers 4660 and 4661		•		•	164
2	-	Calibration Matrix			•		165
3	-	Model Experimental Conditions				•	166
4	-	Full-Scale Conditions Simulated by Model Experiment			•	•	166
5	-	Repeat Runs for F_{χ} for Steady-Ahead Operation				•	167
6	-	Centrifugal and Gravitational Loads			•		168
7	-	Summary of Circumferential Variation of Loads at the Self Propulsion Condition; V=6.52 knots, n=14.08 revolutions/second			*		169
8	-	Time-Average Loads for Steady-Ahead Operation at the Self Propulsion Condition; V=6.52 knots, n=14.08 revolutions/second		•	•		170
9	-	Wake Without Dynamometer Boat				•	171
10	-	Wake With Dynamometer Boat					206
11	-	Experimental Loads for Steady-Ahead Operation at V=6.52 knots, n=14.08 revolutions/second			•	•	240
12	-	Experimental Loads During Quasi-Steady Acceleration at V=2.65 knots, n=10.21 revolutions/second	1		•	•	253
13	-	Experimental Loads During Quasi-Steady Acceleration at V=3.55 knots, n=10.96 revolutions/second			•	•	261
14	-	Experimental Loads During Quasi-Steady Acceleration at V=5.36 knots, n=12.70 revolutions/second		•	•	•	269
		Experimental Loads During Quasi-Steady Acceleration					277

NOTATION

Expanded area, $\mathbf{Z} f_{\mathbf{r}_h}^{\mathbf{R}}$ cdr

A ₀	Propeller disk area, $\pi D^2/4$
A _r	Fourier cosine coefficient of radial component of wake velocity
A _t	Velocity cosine coefficient of tangential component of wake velocity
A _x	Fourier cosine coefficient of longitudinal component of wake velocity
B _r	Fourier sine coefficient of radial component of wake velocity
B _t	Fourier sine coefficient of tangential component of wake velocity
B _x	Fourier sine coefficient of longitudinal component of wake velocity
C _A	Correlation allowance
c _{i,j}	Elements of calibration matrix
C _{Th}	Thrust loading coefficient, $T/((\rho/2)V_A^2A_0)$)
c .	Blade section chord length
D	Propeller diameter
F _n	Froude number
(F) _n	nth harmonic amplitude of F
F _{x,y,z}	Force components on blade in x,y,z directions
f _M	Camber of propeller blade section
J	Advance coefficient, J=V _A /nD
J _T	Effective advance coefficient based on thrust identity
J_Q	Effective advance coefficient based on torque identity
$J_{\overline{V}}$	Ship speed advance coefficient, J=V/nD
K _F x,y,z	Force coefficient, F _{x,y,z} /(pn ² D ⁴)

K _M x,y,z	Moment coefficient, $M_{x,y,z}/(\rho n^2 D^5)$
K _Q	Torque coefficient, $Q/(\rho n^2 D^5)$
K _{SC}	Centrifugal blade spindle torque coefficient, M _Z /(p _p n ² D ⁵
KT	Thrust coefficient, T/(pn ² D ⁴)
M _{x,y,z}	Moment components about x,y,z axes from loading on one blade
$(M)_n$	nth harmonic amplitude of M
n	Propeller revolutions per unit time
P	Propeller blade section pitch
Q	Time average propeller torque arising from loading on all blades, $-ZM_{_{_{\mbox{\scriptsize X}}}}$
R	Radius of propeller
R _n	Reynolds number, c _{0.7} V _R */v
r	Radial coordinate from propeller axis
r _{Fx} H	Radial center of hydrodynamic component of axial force, $y_H^{\prime\prime}_{X_H}$
r _{FyH}	Radial center of hydrodynamic component of transverse force, $M_{\text{H}}/(F_{\text{H}})$.
S	Skew back of propeller blade section measured from the spindle axis to the midchord point of the blade section, positive towards trailing edge
T	Time average thrust of propeller, positive foward, $Z\overline{F}_{\chi}$
t	Maximum thickness of propeller blade section
v	Model speed
$\mathbf{v}_{\mathbf{A}}$	Propeller speed of advance
v _R *	Vector sum of speed of advance and rotational velocity at the 0.7 radius, $(v_A^2 + (0.7\pi nD)^2)^{1/2}$
$V_r(r, \theta_W)$	Radial component of wake velocity, positive towards hub
$(v_r)_n$	nth harmonic amplitude of V_r

V _t (r,θ _W)	Tangential component of wake velocity, positive clockwise looking upstream for starboard propeller (left hand rotation), positive counterclockwise looking upstream for port propeller (right hand rotation)
$(v_t)_n$	nth harmonic amplitude of v_t
$V_{\mathbf{x}}(\mathbf{r}, \boldsymbol{\theta}_{\mathbf{W}})$	Longitudinal component of wake velocity, positive forward
$(v_x)_n$	nth harmonic amplitude of $v_{\mathbf{x}}$
v _{vm}	Volume mean longitudinal velocity through propeller disk determined from wake survey
w _Q	Taylor wake fraction determined from torque identity
$w_{\overline{\mathbf{T}}}$	Taylor wake fraction determined from thrust identity
w _{VM}	Wake fraction determined from volume mean longitudinal velocity through propeller disk determined from a wake survey, $(V-V_{\mbox{VM}})/V$
x,y,z	Coordinate axes
Z	Number of blades
z _R	Rake of propeller blade section measured from the propeller plane to the generator line, positive aft
β*	Advance angle at 0.7 radius,
	$\tan^{-1} \left[V_{x} (r=0.07)/(0.7\pi n D) \right]$
ε	Blade strain
θ	Angular coordinate used to define location of blade and variation of loads, from vertical upward positive counter-clockwise looking upstream for starboard propeller (left hand rotation), positive clockwise looking upstream for port propeller (right hand rotation), $\theta=-\theta_W$
θS	Skew angle measured from spindle axis to projection of blade section midchord into propeller plane, positive toward trailing edge
θ _W	Angular coordinate of wake velocity, from upward vertical, positive clockwise looking upstream for starboard propeller (left hand rotation), positive counterclockwise looking upstream for port propeller (right hand rotation), $\theta_{\rm W}^{=-\theta}$

Kinematic viscosity of water Mass density of water Mass density of propeller blade $\rho_{\mathbf{P}}$ Pitch angle of propeller blade section, $\tan^{-1} (P/(2\pi r))$ $(\phi_{F,M})_n$ nth harmonic phase angles of F,M based on a cosine series $(F,M)=(\overline{F},\overline{M}) + \sum_{n=1}^{N} (F,M)_n \cos (n\theta - (\phi_{F,M})_n)$ nth harmonic phase angles of V_r based on a sine series, $V_r = (\overline{V}_r) + \sum_{n=1}^{N} (V_r)_n \sin (n\theta_W + (\phi_{Vr}^*)_n)$ nth harmonic phase angles of V_t based on a sine series, $V_t = (\overline{V}_t) + \sum_{n=1}^{N} (V_t)_n \sin (n\theta_W + (\phi_{Vt}^*)_n)$ (\$\psi_{Vx} *) nth harmonic phase angles of $V_{\mathbf{x}}$ based on a sine series, $(\nabla_{\mathbf{x}}) = (\overline{\nabla}_{\mathbf{x}}) + \sum_{n=1}^{N} (\nabla_{\mathbf{x}})_n \sin(n\theta_{\mathbf{W}}^{\mathbf{x}} + (\phi_{\mathbf{V}\mathbf{x}}^{\mathbf{x}})_n)$ Pitch angle of hull Subscripts: A Applied values of loads C Arising from centrifugal loading CW Value in calm water Arising from gravitational loading g H Arising from hydrodynamic loading Value of hub radius h Indicated values of loads before calibration matrix is I applied M Model value MAX Maximum value at any blade angular position MIN Minimum value at any blade angular position

Ship to model linear scale ratio

λ

Value of nth harmonic n Port propeller Peak value including variation of both time-average value PEAK per revolution and variation with blade angular position S Ship value SP Value at self-propulsion point Starboard propeller Total loading from hydrodynamic, centrifugal, and gravitational components Component in x,y,z direction x,y,z 0.3 Value at r=0.3R 0.4 Value at r=0.4R Value at r=0.7R 0.7 Superscripts:

~ Unsteady value

· Rate of change with time

ABSTRACT

Experiments are described in which the mean and unsteady loads were measured on a single blade of a model of the controllable-pitch propeller on the DD-963 Class Destroyer. The experiments were conducted behind a model of the DD-963 hull under steady ahead operation, hull pitching motions, and simulated acceleration maneuvers. The experimental techniques are outlined and the dynamometer and data analysis system described.

The results show that all significant loads except radial force are predominantly of hydrodynamic origin. The circumferential variation of all measured components of blade loading is primarily a once-per-revolution variation, with the variation following approximately the variation of the tangential wake velocity.

For sinusoidal pitching of the hull with maximum pitch angle of 1.85 degrees and a simulated full scale frequency of 0.16 hertz, the peak-to-peak circumferential variation of measured forces and moments increased by approximately 50 percent over the values without hull pitching.

For simulated operation during an acceleration maneuver, the circumferential variation of measured forces and moments varied approximately as the product of ship speed and propeller rotational speed. At no time during the simulated acceleration maneuvers were the circumferential variations of loads as large as during full power steady ahead operation.

For steady ahead operation, circumferential variation of loading determined from the model experiments agreed fairly well with full-scale data, but was substantially larger than the theoretically calculated values.

For all conditions evaluated, the results follow close to previously reported results of similar experiments on a model of the FF-1088.

ADMINISTRATIVE INFORMATION

The work reported herein was funded by the Naval Sea Systems Command (NAVSEA 033), Task Area S0379-SL001, Task 19977. The work was performed under David W. Taylor Naval Ship Research and Development Center (DTNSRDC) Work Unit No. 1544-296.

The English system of units was used in the original calculations presented in this report. Therefore, all data are presented in the English units. However, the International System (SI) of metric units are shown in the text in parentheses following the English units.

INTRODUCTION

Major naval ships powered with marine gas turbines and using controllable-pitch (CP) propellers for thrust reversal are currently being added to the Fleet. Ships with CP propellers include the DD-963 Class, the FFG-7 Class, and the DDG-47 Class.

Accordingly, the Navy has been conducting a research and development (R&D) program to establish the technology for producing reliable CP propellers with delivered power in the range of 35,000 to 40,000 horsepower (26,000 to 30,000 kW). As part of this program, CP propellers were installed on the U.S.S. PATTERSON (FF-1061) and U.S.S. BARBEY (FF-1088) with delivered power of 35,000 horsepower (26,100 kW). These installations were intended to demonstrate that CP propellers in this range of power had adequate reliability for application to ships with gas turbine prime movers.

Because of the structural failure of the crank rings to which the blades of the CP propeller on the FF-1088 were bolted, R&D efforts were intensified. The program undertaken at DTNSRDC included:

- 1. Blade Loading of CP Propellers
 - a. Model measurement and theoretical prediction of blade loading on CP propellers.
 - b. Model and full-scale wake measurements and theoretical predictions of wake.
 - c. Full-scale measurements of forces, pressures, and strains in CP propeller components.
- 2. Structural Design of CP Propeller Blade Attachments.
- 3. Development of Materials for CP Propeller Systems.

The current report presents the results of work conducted under Section 1a of the CP Propeller Research and Development Program, i.e., model

Angelo, J.J. et al, "U.S. Navy Controllable Pitch Propeller Programs," presented at a Joint Session of the Chesapeake Section of the Society of Naval Architects and Marine Engineers and the Flagship Section of the American Society of Naval Engineers, Bethesda, Maryland (19 April 1977).

measurement and theoretical prediction of blade loading of CP propellers. Work under the other sections of this program will be reported separately.

The present report presents experimental results obtained on a model of the CP propeller on the DD-963 Class Destroyer. The results of similar experiments on a model of the FF-1088 were reported in Reference 2.

BACKGROUND

Extreme care must be taken to design the blades and pitch-changing mechanisms of high power CP propellers so that they possess adequate strength including consideration of yield and fatigue stresses. This requires an accurate estimate of the maximum time-average and alternating loads under all operating conditions. High time-average and alternating loads occur at steady full-power ahead conditions and during high-speed maneuvers including full-power crash astern, full-power crash ahead, and full-power turns. In addition, the influence of the seaway may substantially increase the time-average and alternating loads. At present there appears to be no confirmed technique whereby the pertinent loads can be predicted to the desired accuracy. Schwanecke and Wereldsma reviewed the factors affecting blade loading for propellers in general, and Rusetskiy and Hawdon et al, discussed some of the factors peculiar to blade loading of CP propellers.

²Boswell, R.J. et al, "Experimental Determination of Mean and Unsteady Loads on a Model CP Propeller Blade for Various Simulated Modes of Ship Operation," The Eleventh Symposium on Naval Hydrodynamics sponsored Jointly by the Office of Naval Research and University College London, Mechanical Engineering Publications Limited, London and New York, pp 789-823, 832-834, (April 1976); also "Experimental Unsteady and Mean Loads on a CP Propeller Blade of the FF-1088 for Simulated Modes of Operation," David Taylor Naval Ship Research and Development Center Report 76-0125, October 1976.

³Schwanecke, H. and R. Wereldsma, "Strength of Propellers Considering Steady and Unsteady Shaft and Blade Forces, Stationary and Nonstationary Environmental Conditions," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2b, Vol. 2, pp 495-526 (1972).

⁴Rusetskiy, A.A., "Hydrodynamics of Controllable Pitch Propellers," Shipbuilding Publishing House, Leningrad (1968).

⁵Hawdon, L. et al, "The Analysis of Controllable-Pitch Propeller Characteristics at Off-Design Conditions," Transactions of the Institute of Marine Engineers, Vol. 88, Series A, Part 4, pp 162-184 (1976).

Near the self-propulsion point in calm water, the time-average loads can probably be calculated with reasonable accuracy. However, even at these conditions, the variation of loads with blade angular position apparently cannot be calculated with high accuracy. Various techniques, including quasi-steady procedures, stripwise unstead procedures, and methods based on unsteady lifting surface theory, have been proposed for calculating the unsteady loading arising from the circumferential variation in the inflow velocity. However, all of these procedures require knowledge of the flow patterns (wake profile) in the propeller disk. In current practice, the wake profile is measured in the plane of the propeller behind the model hull with the propeller removed. For high-speed displacement ships of the type under consideration in this report, these results are usually extrapolated to full scale without making allowance for

⁶Kerwin, J.E., "The Development of Numerical Methods for the Computation of Unsteady Propeller Forces," Presented to the Symposium on Hydrodynamics of Ship and Off-Shore Propulsion Systems, Oslo, Norway (March 1977).

⁷Ito, T. et al, "Calculation of Unsteady Propeller Forces by Lifting Surface Theory," Presented to the Symposium on Hydrodynamics of Ship and Off-Shore Propulsion Systems, Oslo, Norway (March 1977).

⁸Roddy, R.F., "A New Method for the Calculation of Unsteady Forces on a Marine Propeller," Presented to the Chesapeake Section of the Society of Naval Architects and Marine Engineers, Washington, D.C. (February 1977).

⁹van Gent, W., "Unsteady Lifting Surface Theory for Ships Screws: Derivation and Numerical Treatment of Integral Equations," Journal of Ship Research, Vol. 19, No. 4, pp 243-253 (December 1975).

¹⁰Schwanecke, H., "Comparative Calculations on Unsteady Propeller Blade Forces," Proceedings of the Fourteenth International Towing Tank Conference, Report of Propeller Committee, Appendix A, Vol. 3, pp 357-397 (1975).

¹¹Breslin, J.P., "Propeller Excitation Theory," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2c, Vol. 2, pp 527-540 (1972).

¹²Boswell, R.J. and M.L. Miller, "Unsteady Propeller Loading - Measurement, Correlation with Theory, and Parametric Study," Naval Ship Research and Development Center Report 2625 (October 1968).

(1) the change in Reynolds number and the corresponding reduction in relative boundary layer thickness and (2) the effect of the propeller suction on the boundary layer and thereby the wake pattern in propeller disk. Although these two factors may be important for full-form ships such as cargo ships, they are probably not important for high-speed transom stern ships of the type under consideration in this report.

Existing measurements which give information on unsteady blade loading include:

- 1. Measurements of strain on the blades of the model propellers or full-scale propellers. However, some calculations and assumptions are required to convert measured strains into loads. Published data of this type have been summarized by Meyne. 13
- 2. Measurement of bearing (shaft) forces and moments on model propellers operating in wakes generated by model hulls or wire grid screens. However, these experiments give information on only some components of blade loading and on only those harmonics of shaft rotational speed corresponding to nZ-1, nZ, and nZ+1, where n is an integer and Z is the number of blades. Measurements of this nature have been conducted by many investigators, as summarized by Breslin 11 and Wereldsma. 14
- 3. Measurements of forces and moments on individual blades of model propellers operating in wakes generated by model hulls or wire grid screens. Measurements behind model hulls have been made by Huse 15 and Blaurock, 16 measurements behind screens have been made by Hawdon et al, 5

¹³ Meyne, K., "Propeller Manufacture - Propeller Materials - Propeller Strength," International Shipbuilding Progress, Vol. 22, No. 247, pp 77-102 (March 1975).

Wereldsma, R., "Comparative Tests on Vibratory Propeller Forces," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2a, Vol. 2, pp 482-494 (1972).

¹⁵ Huse, E., "An Experimental Investigation of the Dynamic Forces and Moments on One Blade of a Ship Propeller," Proceedings of the Symposium on Testing Techniques in Ship Cavitation Research, The Norwegian Ship Model Experimental Tank, Trondheim, Norway, Publication No. 99, Vol II, pp 19-188 (December 1967).

¹⁶Blaurock, J., "Propeller Blade Loading in Nonuniform Flow," The Society of Naval Architects and Marine Engineers, Propellers 75 Technical and Research Symposium S-4, Paper No. 4, pp 4/1-4/17 (February 1976).

and Raestad, ¹⁷ measurements in inclined flow have been made by Albrecht and Suhrbier, ¹⁸ Bednarzik, ¹⁹ and Raestad, ¹⁷ and measurements on partially submerged propellers have been made by Dobay. ²⁰

Experiments in wakes generated by screens are advantageous for evaluating the ability of a procedure to calculate the loading for a given wake since for this case, the propeller apparently does not influence the wake pattern. Although some good correlation has apparently been obtained between analytical predictions and unsteady bearing forces measured behind wire grid screens, 11, 12 correlation has been rather inconsistent between analytically predicted unsteady blade loads, or resulting strains, and measured blade loads, or strains. 14, 21

The mechanism by which the seaway influences the mean and unsteady blade loads is complex. Factors include the increased mean propeller loading due to increased hull resistance and the increased unsteady loading resulting from the influence of the free surface and modification of the flow pattern into the propeller disk. This flow pattern is influenced by (1) direct trochoidal velocities from the ocean waves, (2) relative velocities of the propeller due to ship motions, and (3) modification of the hull wake pattern due to the seaway and ship motions. Procedures for calculating the loads in a seaway are much less refined than for steady

¹⁷ Raestad, A.E., "Hydrodynamic Propeller Loading in the Behind Condition," det Norske Veritas Research Department Report 74-31-M (1974).

¹⁸Albrecht, K. and K.R. Suhrbier, "Investigation of the Fluctuating Blade Forces of a Cavitating Propeller in Oblique Flow," International Shipbuilding Progress, Vol. 22, No. 248, pp 132-147 (April 1975).

Bednarzik, R., "Untersuchung uber die Belastungsschwankungen am Einzelflugel schrag angestromter Propeller," Schiffbauforschung, Vol. 8, No. 1/2, pp 57-80 (1969).

Dobay, G.F., "Time-Dependent Blade-Load Measurements on a Screw-Propeller," Presented to the Sixteenth American Towing Tank Conference, Instituto De Pesquisas Techologicas, Marinha Do Brasil (August 1971).

Wereldsma, R., "Last Remarks on the Comparative Model Tests on Vibratory Propeller Forces," Proceedings of the Fourteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 7, Vol. 3, pp 421-426 (1975).

operation in calm water. Tasaki²² gives a good review of the mechanisms and procedures for predicting the effect of the seaway on bearing forces which, in principle, also apply to unsteady loading on an individual blade. Keil et al,²³ and Watanabe et al,²⁴ present strain measurements on the blades of full-scale propellers in both calm and rough seas.

Apparently no rational analytical procedures are available for accurately calculating the time-average loads per revolution or the unsteady loads including variation with blade angular position during crashahead or crash-astern maneuvers. These loads may depend on many factors including the time rate of change of propeller pitch \dot{p} (for CP propellers), time rate of change of rotational speed \dot{n} , time rate of change of ship speed \dot{v} , propeller blade-section stall, cavitation, ventilation, flow separation from the hull, and large interactions between the propeller and the hull. Some of these factors are discussed and considered by Hawdon et al. \dot{v}

For turns, the factors affecting the time-average loads per revolution and the unsteady loads are somewhat the same as those affecting the loads under crash-ahead and crash-astern conditions except that for turns, there is a relatively large drift angle of the flow into the propeller. This drift angle tends to increase the circumferential nonuniformity of the flow into the propeller, thereby increasing the unsteady loading. However, this circumferential nonuniformity of the inflow tends to be offset by the lower values of ship speed and propeller rotational speed in turns compared to steady ahead operation.

Prior to the present R&D investigation, no experimental measurements existed to the authors' knowledge which showed the time-average loads and

²²Tasaki, R., "Propulsion Factors and Fluctuating Propeller Loads in Waves," Proceedings of the Fourteenth International Towing Tank Conference, Report of Seakeeping Committee, Appendix 7, Vol. 4, pp 224-236 (1975).

²³Keil, H.G. et al, "Stresses in the Blades of a Cargo Ship Propeller," Journal of Hydronautics, Vol. 6, No. 1, pp 2-7 (January 1972).

²⁴Watanabe, K. et al, "Propeller Stress Measurements on the Container Ship HAKONE MARU," Shipbuilding Research Association of Japan, Vol. 3, No. 3, pp 41-51 (1973).

circumferential variation of loads with blade angular position on CP propellers behind a hull under a wide range of operating conditions. An experimental program was therefore undertaken to measure the six components of loading (Figure 1)* on model CP propellers operating behind model hulls. The initial experiments were conducted on a single-screw ship, namely, a model of the FF-1088. These results were reported previously. The second set of experiments were conducted on a twin-screw ship, namely, a model of the DD-963 Class. These results are presented in the current report.

For the DD-963 Class, the experimental conditions included (1) steady-ahead operation near the self-propulsion point, (2) steady-ahead operation near the self-propulsion point with forced dynamic pitching of the model hull, and (3) simulated acceleration operation.

Results for the steady ahead operation were correlated with predictions based on unsteady lifting surface theory as developed by Tsakonas et al, 25 and with the quasi-steady method of McCarthy, 26 and with strains measured on the full-scale propeller.

Blade loading measurements were made on the propeller on the star-board shaft since this shaft had a larger rake angle than the port shaft. The propellers used in these experiments were DTNSRDC propellers 4660 (right hand rotation on port shaft) and 4661 (left hand rotation on star-board shaft), which were made of aluminum; see Figure 2 and Table 1.**

The hull of the DD-963 Class was represented by DTNSRDC model hull 5265-1B; see Figure 3.

^{*}Figures are presented following the section on acknowledgments.

^{**}The tables are presented following the figures.

²⁵Tsakonas, S. et al, "An Exact Linear Lifting Surface Theory for Marine Propeller in a Nonuniform Flow Field," Journal of Ship Research, Vol. 17, No. 4, pp 196-207 (December 1974).

²⁶McCarthy, J.H., "On the Calculation of Thrust and Torque Fluctuations of Propellers in Nonuniform Wake Flow," David Taylor Model Basin Report 1533 (October 1961).

EXPERIMENTAL TECHNIQUE

FACILITY AND DYNAMOMETRY

All experiments were conducted on DTNSRDC Carriage I using basically the same dynamometry and hardware as previously described in Reference 2.

The port propeller, on which blade loads were not measured was driven from inside the model hull as would be the case in a self propulsion experiment. The propeller rotational speed, which could be controlled independently of the starboard propeller, was measured via a toothed-pickup and recorded on a digital voltmeter. The time-averaged thrust and torque were measured for selected runs by a transmission dynamometer.

The starboard propeller, on which blade loads were measured, was located in its proper position relative to the model hull but was isolated from the hull and driven from downstream (see Figure 4). This downstream drive system was necessary in order to obtain the required characteristics of the system for measuring unsteady loading. The general criteria for the design of an unsteady force measuring system are:

- 1. The support structure of the force measuring system should be soft mounted and possess a large mass to eliminate transmission of extraneous vibration to the system.
- 2. The natural frequency of the system should be well above the highest frequency of the quantities to be measured (to avoid phase shift and amplification of the signal).
- 3. The system response in the force magnitude range should be sufficiently large to be measurable (sensitivity).
- 4. The system should be free of interaction, that is, each measuring element should respond only to that force or moment which it is intended to measure.

These four major aims are not complementary. The high natural frequency requires a stiff, rigid system whereas high sensitivity requires an elastic, soft system. The necessary compromise results in some interaction between the force-measuring elements.

Criterion 1 dictated that a massive flywheel be used, and Criterion 2 dictated that this flywheel be connected to the sensing elements (located inside the propeller hub) by a short thick shaft. Therefore, because

of the geometry of the hull and shafting of the configuration under evaluation, it was not feasible to achieve both these criteria with an upstream drive system from inside the model hull. Criteria 1 and 2 controlled the minimum allowable beam and draft of the downstream body and the maximum allowable clearance from the bow of the downstream body to the propeller. Although the downstream body may exert some influence on the flow into the propeller, that location was considered necessary in order to meet these measuring criteria. The influence of the downstream body on the flow into the propeller is discussed in the section on experimental results.

The drive and mounting system was basically the same as that used in the DTNSRDC BASS dynamometer which has been described by Brandau. 27 Utilized from this dynamometer were the propeller (tail) shaft, drive shaft with flywheel, belt-type (quiet) transmission, and sliprings. Power to rotate the propeller was supplied by a d-c permanent-magnet servomotor capable of delivering up to 33 foot-pounds (45 N-m) of torque. The electrical power to this motor was delivered through a precision solid-state motor controller so that the shaft revolution rate could be controlled very accurately and held over the wide range of propeller torque loadings required for some of the experimental conditions. Mounted on the propeller shaft was a digital encoder that generated electrical pulses as a function of shaft angular position. Two types of pulses were generated: a single pulse per revolution and a multipulse per revolution (90 equally spaced pulses for the current experiment). The single pulse was syncronized with the reference line of the instrumented propeller blade. The pulses generated by this encoder are accurate to within 0.01 degree.

The downstream body which housed the drive system was basically that used by Dobay 20 but modified to allow deeper submergence and an inclined shaft angle. Both the body housing (the drive system was soft mounted to this body) and the model hull were rigidly attached to a pitch-heave

²⁷Brandau, J.H., "Static and Dynamic Calibration of Propeller Model Fluctuating Force Balances," David Taylor Model Basin Report 2350 (March 1967); also Technologia Naval, Vol. 1, pp 48-74 (January 1968).

oscillator which, in turn, was rigidly mounted on the towing carriage. This arrangement enabled the model hull and the drive system to be dynamically pitched together while maintaining independent support from one another.

The sensing elements were flexures to which were bonded highsensitivity, semiconductor strain-gage bridges. The design of these flexures has been described by Dobay. There were three flexures, each of which measured two components of blade loading. Flexure 1 measured components $\mathbf{F}_{\mathbf{x}}$ and $\mathbf{M}_{\mathbf{y}}$, Flexure 2 measured components $\mathbf{F}_{\mathbf{y}}$ and $\mathbf{M}_{\mathbf{x}}$, and Flexure 3 measured components $\mathbf{F}_{\mathbf{z}}$ and $\mathbf{M}_{\mathbf{z}}$ (Figures 1, 5, and 6). An arrangement of three separate flexures rather than one to measure all components of blade loading was adopted because it appeared to result in higher natural frequencies (Criterion 1), higher sensitivities (Criterion 3), and lower interactions (Criterion 4), than would have resulted had a single flexure been used.

The flexures were mounted inside a propeller hub which was specifically designed for these experiments (Figure 6). Only one flexure could be mounted at a time, because of space limitations, and this necessitated duplicate runs, as discussed later in the section on experimental conditions and procedures.

The strain-gage bridges were excited by a common d.c. voltage source, transmitted through the sliprings on the propeller shaft. The constant-current excitation used by Dobay 20 was not employed in the present experiment because it appeared to be too sensitive to temperature.

The voltage output from the flexures (due to blade loading) was transmitted through the sliprings to individual amplifiers (NEFF 119-121). These amplifiers utilized field effect transistors to produce an extremely high input-impedance (100 megohms, minimum). This high impedance essentially eliminated slipring noise to the amplifier. The voltage signals were transferred across the sliprings in the presence of only a small amount of noise-producing current. The amplifiers used here had zero-phase shift qualities in the d.c. to 20 kilohertz range. They were chopper-stabilized to enable both the steady and unsteady signals to be recorded simultaneously. This signal-conditioning system was essentially the same as that used by Dobay. 20

The signals were then digitized and analyzed by using a Model 70 Interdata Digital Computer, and then stored in digital form on a nine-track magnetic tape. The on-line analysis of the data is discussed in the section on data acquisition and analysis.

CALIBRATION

Prior to the experiment, each flexure was statically calibrated in air to establish flexure sensitivities, interactions, and linearity over the loading range of interest. These calibrations were conducted with the flexures mounted in a calibration stand, with the flexure electrical cables connected through the flywheel and drive assembly as in the experiment. Each flexure was subjected to independently controlled forces in the axial, transverse, and radial directions (i.e., F_x , F_y , and F_z , respectively) and to independently controlled moments about the axial, transverse, and radial directions (i.e., M_x , M_y , and M_z , respectively); see Figure 1.

The static calibration showed that all flexures had a linear response over the load range of interest. Table 2 shows the interaction matrix. These calibrations indicated that all flexures had good sensitivity except \mathbf{F}_z whose sensitivity was slightly lower than desirable. The interactions were small except for the effect of \mathbf{M}_z on \mathbf{F}_z . The inferior characteristics of the \mathbf{F}_z flexure is not considered a serious shortcoming since \mathbf{F}_z arises primarily from centrifugal loading and can be analytically calculated. In addition, no significant variation of \mathbf{F}_z with blade angular position was anticipated. Flexure 3, which measured \mathbf{F}_z and \mathbf{M}_z , was further evaluated by correlation of air-spin experiments with analytically calculated results, as discussed later. The interactions were taken into consideration during data analysis.

The flexures used in this experiment had been dynamically calibrated by Dobay 20 to determine the frequency range over which unsteady forces and moments could be reliably measured. In this procedure, an electromagnetic shaker in air was used to apply a relatively constant, maximum amplitude, variable-frequency force or moment-excitation in all six-component directions to all six flexure elements. The force or moment amplitude imposed by the shaker was monitored through an extremely

light-weight, strain-gaged single flexure element. The measured lowest natural frequencies of the three flexures in air were as follows:

		Frequency (hertz)	Mode
Flexure	1	550	Mx
Flexure	2	450	M
Flexure	3	282	Mz

The measured amplification factor (ratio of output amplitude to input amplitude) and phase shift for all three flexures was as follows:

Frequency Range (hertz)	0 to 60	60 to 120
Phase Shift (degrees)	0 to 0.05	0.05 to 0.15
Amplification Factor	1.00	1.00 to 1.05

In the previous experiment 2 the natural frequency of the flexures was found to be reduced by 55 percent when submerged with blades attached. As a result, it was concluded that the flexures had a "true" dynamic response up to at least the third harmonic and no greater than a five percent amplification up to the sixth harmonic. Because the blades used on the present experiment were lighter and smaller than those used on the previous experiment, it was assumed that the natural frequency of the flexures would be reduced to a lesser extent when submerged with blades, so that the dynamic amplification would be less. This assumption was supported by the increase in frequency of the extraneous signals appearing in the unfiltered experimental data as discussed in the experimental results section.

The propeller shaft drive and soft-mount support system were dynamnamically loaded in the vertical, longitudinal, and transverse directions to obtain the lowest natural frequencies of the system. The natural frequencies of the system in air were found to be:

Mode	Natural Frequency (hertz)
Vertical bending	12.2
Horizontal bending	6.0
Axial	4.6

The support system had a low resonant range; however, the softmount system was specifically designed to prevent towing-carriage oscillation (with the resonance at 100 to 200 hertz) from being transmitted to the blade flexures. Based on the measured resonance, it is concluded that the soft-mount system should successfully meet this objective. Although some resonances were close to the propeller rotational speed for some experimental conditions, it was considered more desirable to isolate the system from towing-carriage vibration.

EXPERIMENTAL CONDITIONS AND PROCEDURES

Experiments were conducted at several conditions including steadyahead operation, simulated pitching of the hull, and simulated acceleration. All conditions were run with the model hull rigidly attached to its support, with no freedom to sink or trim, and with essentially equal rotational speed on the port and starboard propellers.

The steady-ahead condition is defined in Tables 3 and 4. The simulated full scale ship speed and propeller rotational speed for this condition were determined from model self-propulsion data* at simulated displacement of 7,800 tons (7,920 tonnes) including corrections for wind drag at zero true wind and a three-percent margin on effective power with $C_{\Delta} = 0.0005$.

The trim and draft at this speed were obtained from Reference 28. These had been determined by setting the specified still water trim (even keel) and draft (19.5 feet (6.40 m) full-scale equivalent), attaching the model to the carriage so that it was free to trim and sink, running at the specified speed, and locking the model at this equilibrium trim and draft. The equilibrium sinkage was 0.5 feet (15.4 cm) at the bow and 3.0 feet (98.4 cm) at the stern.

Runs simulating hull pitching were conducted at the same conditions as the steady-ahead run, except that the hull pitch was varied. Two types of runs were conducted: (1) quasi-steady simulation in which the hull pitch angle ψ was set at various fixed positions, and (2) unsteady

^{*}DTNSRDC experiments 21 and 22 on Model 5265-1B.

²⁸Day, W.G., "The Effect of Speed on the Wake in Way of the Propeller Plane for the DD-963 Class Destroyer Represented by Model 5265-1B," David Taylor Naval Ship Research and Development Center Report SPD-311-37 (July 1975).

simulation in which ψ was varied sinusoidally with time. For the quasisteady simulation, runs were conducted at five different values of ψ , from 1.85 degrees bow up from the calm water equilibrium $\psi(\psi=\psi_{CW})$ to 1.85 degrees, bow down from ψ_{CW} (Tables 3 and 4). For the unsteady pitch simulation, the value of ψ was varied sinusoidally about ψ_{CW} with an amplitude of 1.85 degrees and a frequency of 0.8 hertz.* The selected scaled amplitude and frequency were within the predicted response characteristics of the DD-963. All runs were conducted in calm water; therefore, the response of the hull to the seaway was simulated but the seaway was not simulated.

Acceleration runs were conducted based on analytical dynamic simulation studies of the DD-963. 29 The experimental conditions followed run 7501061 of Reference 29, which was an acceleration from 8.7 knots to full power (see Tables 3 and 4 and Figure 7). Trim and displacement were fixed at the values corresponding to the self-propulsion condition (Condition 1 of Table 3). Two types of runs were conducted: (1) quasi-steady runs in which all quantities including model speed V, rotational speed n, and propeller pitch P were held constant (V=n=P=0), and (2) unsteady runs in which V was varied with time but n and P were held constant ($\dot{V}>0$, $\dot{n}=\dot{P}=0$). For the quasi-steady simulation, runs were conducted at five different combinations of V, n, and P. The conditions for each run represent the conditions at one instant of time during a "true" acceleration in which V, n, and P vary with time. Thus, one "true" acceleration run is represented by five steady runs which do not simulate the time rate of change of V, n, and P. For the unsteady simulation, runs were conducted at the same five combinations of fixed n and P as used for the quasi-steady simulation, and V was varied with time (the same variation was used for each run) representing an acceleration of the model hull (Figure 7). For each of these runs, data are of interest only near that value of V which occurred concurrently with the fixed values of n and P during the "true"

 $^{^{\}star}$ Full scale equivalent frequency is 0.16 hertz.

²⁹Rubis, C.J. and T.R. Harper, "Propulsion Dynamics Simulation of the DD-963 Class Destroyer," Propulsion Dynamics, Inc., Report 74RlB (January 1975).

acceleration ($\dot{V}>0$, $\dot{n}\neq0$, $\dot{P}\neq0$). Thus, one "true" acceleration run is represented by five runs which simulate the proper time rate of change of V but not the proper time rate of change of n and P. The quasi-steady and unsteady acceleration simulations were for the same conditions, the only difference being that $\dot{V}=0$ for the quasi-steady simulation whereas $\dot{V}>0$ for the unsteady simulation. In general, P varies with time during a "true" acceleration run; however, for the acceleration run under simulation here, P was constant throughout the portion of the run simulated.

For the unsteady acceleration runs, the carriage speed was manually varied with time in a carefully controlled manner. This was achieved with the aid of an inked pen on a two-dimensional Cartesian plotter. In one direction, the pen was controlled so that it moved linearly with time, and in the orthogonal direction, it was controlled so that it varied with the instantaneous carriage speed. When an acceleration maneuver was to be executed, the switch moving the pen with time was turned on and the carriage operator manually varied the carriage speed so that the inked pen followed a prescribed velocity versus time curve.

As discussed earlier, each of the three load-sensing flexures measured only two components of blade loading. Therefore, each of the experimental conditions described in Table 3 was run with each of the three blade loading flexures.

The blade pitch was set by using a Sheffield Cordax 300 measuring machine. In order to change either the blade pitch or the flexure, the propeller had to be removed from the drive system.

Air-spin experiments were conducted with all three flexures over a range of rotational speeds in order to isolate the effects of centrifugal and gravitational loading from hydrodynamic loading. Supplemental experiments were conducted to assess the influence of the downstream dynamometer boat on the flow in the propeller plane. These supplemental experiments consisted of wake surveys in the propeller plane at the self-propulsion point (Condition 1 in Table 3) with and without the downstream body, but without the propeller. These wake surveys yielded a direct measure of the change in the velocity distribution through the propeller

disk attributable to the downstream body. The details of these wake surveys will be reported in a future DTNSRDC report.*

DATA ACQUISITION AND ANALYSIS

Data were collected, stored, and analyzed on-line by using a Model 70 Interdata Digital Computer. A special-purpose computer program was written with options for analyzing each of the three basic types of runs:

(1) steady ahead, (2) dynamic hull pitching, and (3) unsteady acceleration. These types of runs have already been discussed in detail.

The program allowed the propeller blade force and moment data to be sampled and stored on magnetic tape as a function of shaft position. Sampling was triggered by external pulses generated by a Baldwin Digital Encoder mounted on the propeller shaft, as discussed earlier. Pulses were generated as a function of shaft angular position; hence, the sampling of blade force and moment data was related to shaft position. There were two outputs from the shaft encoder; a single pulse per revolution and multipulse (90 pulses per revolution for the current experiments).

When the experimental condition was achieved, the computer operator initiated the data collection cycle. The program "waited" until the single pulse occurred; when the single pulse occurred, the computer again "waited" for the occurrence of the first following pulse of the 90 pulses; date were then sampled for all channels through an analog-to-digital converter and stored in computer memory. This process was repeated for 180 pulses, or two shaft revolutions. At the same time, the program "read" two frequency counters into core memory which measured model velocity V and propeller rotational speed n. The values of V and n were measured by counting the pulses from geared wheels attached to the towing carriage drive system and to the propeller shaft, respectively. The values of V and n were averaged over two shaft revolutions. Thus, there was an average V and n corresponding to each pair of two consecutive revolutions.

After two revolutions of data were sampled and stored in core memory, the data were transmitted from core to a nine-track digital tape recorder. The transfer time was small and no pulses were missed during the transfer.

^{*}These wake surveys were conducted by R.F. Roddy, DTNSRDC Code 1524.

The data collection cycle proceeded continuously until the operator disengaged the computer. The sampling procedure was the same for all types of experimental conditions, and at the completion of an experimental run, all data were stored on magnetic tape and were available for analysis immediately or at any later time. For the analysis, the computer operator selected the appropriate option of the program depending on the type of run, i.e., (1) steady ahead, (2) dynamic hull pitching, or (3) unsteady acceleration.

The appropriate calibration factors were stored in the computer and considered in the analysis. However, since only two of the six components of blade loading were measured during a given run, the interactions between the various loading components could not be considered during the on-line analysis. The interactions were taken into account later after measurements were completed with all three flexures for a given condition.

For the steady ahead condition, blade force and moment data at each 4-degree increment of blade angular position were averaged over the number of cycles recorded (usually over more than 200 cycles). Spurious data not related to shaft position are averaged out by this method. An harmonic analysis was then performed on the average wave forms of the blade loading components. This gave the amplitude and phase of the first 16 harmonics.

For the dynamic pitch runs, the hull pitch angle varied sinusoidally with a frequency of 0.8 hertz. A position potentiometer translated bow vertical displacement into hull pitch angle, and this was read into the computer in the same manner as blade loading components. During dynamic pitching, the shaft rotated independent of the pitch oscillator. During a single propeller revolution, 90 pitch positions were measured. Thus, to correlate pitch angle position and revolution, an average pitch must be taken over each revolution.

Fourteen dynamic pitch angle positions were selected for analysis. These were characterized by pitch angle ψ and the sign of the time rate of change of pitch angle $\dot{\psi}$. The computer calculated the average ψ and sign of $\dot{\psi}$ corresponding to each propeller revolution. Based on these calculated average values of ψ and sign of $\dot{\psi}$, each propeller revolution was either placed in a suitable hull-pitch angle category or discarded if its average ψ fell outside the tolerance band of all the 14 specified values

of ψ . Several passes down the towing tank were required in order to obtain a sufficient number of samples. After all the data had been sorted based on ψ , sign of $\dot{\psi}$, and tolerance, the cycles for each combination of ψ , and sign of $\dot{\psi}$ were analyzed in exactly the same manner as the data for the steady-ahead condition at fixed ψ .

For unsteady-acceleration runs, the model speed V varied with time t. During an acceleration run, data, including a measure of V, were sampled and stored in the same manner as for the steady-ahead runs.

Five values of V were specified for analysis. For each acceleration run and for each specified V, the computer selected the propeller revolution which had the average value of measured V nearest to the specified V. However, because only one revolution at each specified velocity was obtained for a single acceleration run, each such run was repeated five times. This yielded five revolutions at each specified velocity. All the cycles for each specified V were then analyzed in exactly the same manner as the data for the steady-ahead conditions.

Thus, the on-line analysis system yielded average wave forms and harmonic analyses of the average wave forms for steady-ahead conditions, for specified conditions of ψ , sign of $\dot{\psi}$ during the dynamic pitch cycle, and for specified velocities V during the acceleration operation. However, these on-line results are preliminary because:

- 1. They do not consider the interactions between the various load components. These interactions were determined during the static calibration of the flexures.
- 2. They include the complete measured signals with no filtering. As discussed in the section on experimental results, some extraneous signals near the natural frequency of the flexure being used appeared to be superimposed on the signals generated by blade loading.
- 3. They include the effect of centrifugal and gravitational loading on the aluminum model propeller. The centrifugal and gravitational components of loading were measured separately during air-spin experiments, as discussed earlier.
- 4. They do not have any corrections for the influence of the dynamometer boat. These corrections are discussed later.

5. The bending moments were calculated about the radial location of the strain gages on the flexures, rather than about the shaft axis or some desired radius on the blade.

Final analyses were conducted after completion of the experiment to consider interactions, to filter out extraneous high frequency noise, to isolate hydrodynamic loading from centrifugal and gravitational loading, to correct for the dynamometer boat, and to resolve bending moments as desired. These analyses were conducted using a Control Data Corporation (CDC) 6700 Computer.

For each condition, the average wave form for each of the six loading components was multiplied by the inverse of the calibration matrix given in Table 2.

$$\begin{bmatrix} F_{xA} \\ M_{yA} \\ F_{yA} \\ M_{xA} \\ F_{zA} \\ M_{zA} \end{bmatrix} = \begin{bmatrix} F_{xI} \\ M_{yI} \\ F_{yI} \\ M_{xI} \\ F_{zI} \\ M_{zI} \end{bmatrix} = \begin{bmatrix} C_{i,j} \end{bmatrix}^{-1}$$

This matrix multiplication was performed at 4-degree increments of blade angular position.

An harmonic analysis was then performed on the signals corrected for the interactions. Based on an harmonic analysis of the wake in the propeller plane, ³⁰ it was judged that there should be no significant loading of hydrodynamic origin at frequencies above ten times shaft frequency. Therefore, the wave form was then reconstructed by using the first ten harmonics of shaft frequency. This reconstruction using only the first ten harmonics had the same effect as filtering out all frequencies above ten times shaft frequency.

³⁰ Cummings, D.E., "Numerical Prediction of Propeller Characteristics," Journal of Ship Research, Vol. 17, No. 1, pp 12-18 (March 1973)

Corrections were made to the mean values of the measured loading components to account for centrifugal loads and the influence of the dynamometer boat, and to the first harmonic of the measured loading components to account for gravitational loads. The derivation of these corrections is discussed later.

From the known values of the three measured force components and three measured moment components, the values of the bending moments about the shaft centerline and bending moments normal to the nose-tail line at the 0.3 and 0.4 radii were calculated. These bending moments were calculated at every 4 degrees of blade angular position, and harmonically analysed. The wave form was reconstructed by using the first 10 harmonics of blade angular position, in exactly the same manner as was used for the other components of blade loading.

Plots of the data were generated by the CDC computer system using a Calcomp Plotter.

ACCURACY

During the experiments for steady operation, V=0, and dynamic pitching, $\psi\neq 0$, where many revolutions of data were averaged during a single run, the standard deviations of speed V, rotational speed n, forces, and moments were computed, assuming the distribution in these variables at a given condition follows the normal probability distribution. For forces and moments, the standard deviation was calculated at every increment of blade angular position at which forces and moments were recorded. An error band around the data mean was then represented using the standard deviation multiplied by a factor dependent on the confidence level chosen. For the present analysis, the factor of 1.96 was selected which corresponds to a confidendence level of 95 percent. A confidence level of 95 percent indicates a confidence (or probability) that 95 percent of the data considered falls within the error band. For a given run the average error (95 percent confidence band) in model speed V was approximately ± 0.005 foot per second (1.6 mm/s), while the error in rotational speed n was less than 0.001 revolution per second. The very low error in n resulted from the use of a precision solid-state motor controller as discussed in the section on facility and dynamometry.

For a given steady run ($\dot{V}=0$, $\dot{\psi}\neq0$) the error (95 percent confidence band) in measured forces and moments, fluctuated from ±5 to ±10 percent of the mean signal, depending on the circumferential blade position. Figure 8 demonstrates the variation in error in one revolution of the uncorrected, raw F_{χ} signal at the full power condition. This figure represents the general trend of all the force and moment components measured.

Besides the fluctuation in signals occurring in a given run, the overall accuracy of the data is dependent on the repeatability from one run to the next. An effort was made to set experimental conditions identically on repeat runs; however, the propeller rotational speed and model velocity were set by hand, so some variation was unavoidable. Table 5 demonstrates the variation in the measured experimental conditions and the raw data for the $F_{\rm x}$ component for 11 repeat runs. The variation in the mean force was ± 4 percent over all the runs, but on a given day the variation averaged ± 2 percent. The same trend can be observed in rotational speed, model velocity and the harmonic force components. This day-to-day variation could be due to different operators setting the experimental conditions, slight variations in the draft of the model, and variations in the gain of the sensing electronics. The variations shown for $F_{\rm x}$ are typical of all the measured force and moment components.

For all experimental conditions the rotational speed of the port and starboard propellers were intended to be equal. However, some exploratory runs were conducted to determine whether the mean or unsteady loads, which were measured on the starboard propeller, were influenced by the rotational speed of the port propeller. At a fixed value of rotational speed on the starboard propeller $n_{\rm g}$, the rotational speed on the port propeller $n_{\rm p}$ was varied. The results showed that there was no measurable effect of $n_{\rm p}$ on the mean or unsteady loads in the region 0.95 $n_{\rm g} \leq n_{\rm p} \leq 1.05~n_{\rm g}$. For all runs for which data are presented, 0.99 $n_{\rm g} \leq n_{\rm p} \leq 1.01~n_{\rm g}$; therefore, the results presented are not measurably influenced by inaccuracies in $n_{\rm g}$.

For the unsteady acceleration ($\mathring{v}>0$), the average of the five values of V and n for which data are presented during the unsteady runs was generally within ± 0.2 foot per second (6.5 cm/s) and ± 0.2 revolution per second of the target values respectively.

For runs with fixed hull pitch angle ψ , $(\dot{\psi}=0)$, the value of ψ could be controlled to within ± 0.005 degree. For dynamic pitch runs $\dot{\psi}\pm 0$, the selection of a propeller revolution at a specified ψ necessitated a tolerance of 0.1 degree to ψ ; however, the average value of ψ for which data are presented during the unsteady runs was generally within 0.02 degree of the target ψ .

Considering all sources of error including deviations during a run and inaccuracies in setting conditions, the model scale forces and moments presented in this report are generally considered to be accurate to within (plus or minus) the following variations:

	F		F _{MAX}		M		M _{MAX}	
	1b	(N)	1b	(N)	in-1b	(N-m)	in-1b	(N-m)
Steady ahead V=0, v=0	0.1	(0.4)	0.2	(0.9)	0.2	(0.02)	0.4	(0.06)
Dynamic pitch V=0, ψ≠0	0.2	(0.9)	0.3	(1.3)	0.4	(0.04)	0.6	(0.07)
Acceleration Ϋ>0,ψ=0	0.3	(1.3)	0.4	(1.8)	0.6	(0.07)	0.8	(0.09)

The values are somewhat more accurate for the steady-ahead runs than for the time-dependent runs, because the experimental conditions could be controlled more precisely for the steady runs and the measured forces and moments were averaged over many more revolutions of the propelier. The time-average values per revolution (based on 90 samples per revelolution) are slightly more accurate than the maximum values (based on one sample per revolution) which took into account the variation with blade angular position. Further, the peak values may have been slightly influenced by the dynamic response of the flexures, as discussed in the section on calibration.

EXPERIMENTAL RESULTS

LOADING COMPONENTS

The basic loading components are shown in Figure 1. For a right-hand propeller the sign convention follows the conventional right-hand rule with a right-hand Cartesian coordinate system. For a left-hand propeller all the loads are the same, but for this case the sign convention follows a left-hand rule with a left-hand Cartesian coordinate system.

The sign conventions for both right-hand and left-hand propellers are shown in Figure 1. In all pertinent figures and tables throughout this report the blade loading components are listed in the following order:

- 1. Components measured by Flexure 1:
 - a. F, axial force, or thrust per blade.
- b. M_y bending moment about the axis normal to the shaft axis at r=0. This moment is generated primarily by the F_x component of force.
- 2. Components measured by Flexure 2:
- a. F_y tangential force, or force normal to the propeller axis and the spindle axis.
- b. M_x moment about the propeller axis, (r=0), or torque per blade. This moment is generated primarily by the F_y component of force.
- 3. Components measured by Flexure 3:
- a. F_z radial force, or force parallel to the blade spindle axis.
 - b. M moment about the spindle axis, or spindle torque.
- Supplemental components which were derived from the components listed above (not derived for all conditions).
 - a. $M_{0.3} = F_x (r_{F_x} 0.3R) \cos \phi_{0.3} + F_y (r_{F_y} 0.3R) \sin \phi_{0.3}$
- bending moment applied on the spindle axis about the axis intersecting the spindle axis at r=0.3R and parallel to the expanded pitch line at r=0.3R. The $\rm M_{0.3}$ vector as defined by the conventional right-hand rule for a right-hand propeller (left-hand rule for left-hand propeller) intersects the plane normal to the propeller axis at the angle $\phi_{0.3}$ = $\tan^{-1}(\rm P_{0.3}/0.3\,\pi D)$ and is directed so that a positive $\rm M_{0.3}$ puts the face (pressure side) of the blade in tension.
 - b. $M_{0.4} = F_x (0.97r_{F_x} 0.4R) \cos \phi_{0.4} + F_y (0.97r_{F_y} 0.4R) \sin \phi_{0.4}$
- bending moment applied on the spindle axis about the axis intersecting the spindle axis at r=0.4R and parallel to the expanded pitch line at r=0.4R. The $M_{0.4}$ vector as defined by the conventional right-hand rule for a right-hand propeller (left-hand rule

for the left-hand propeller) intersects the plane normal to the propeller axis at the angle $\phi_{0.4}$ = $\tan^{-1}(P_{0.4}/(0.4\pi D))$ and is directed so that a positive $M_{0.4}$ puts the face (pressure side) of the blade in tension. In calculating $M_{0.4}$ from the experimental values of the three measured forces and three measured moments, an adjustment was necessary to allow for the contribution of loading in the region $0.4R > r > r_h = 0.3R$ where r_h is the hub radius. It was estimated that for all harmonics including the time average values, 3 percent of M_x and M_y was contributed by the loading in the region $0.4R > r > r_h$. These estimates were based on a refinement of the method of Cummings of the time-average values, and the method of Tsakonas et al for the unsteady values.

Hydrodynamic, centrifugal, and gravitational loads may contribute to each of these components of loading; however, for some components the centrifugal loads and/or gravitational loads are zero, as discussed in the section on centrifugal and gravitational loads.

Each component of loading is generally presented as a variation of the instantaneous value with blade angular position θ and as a Fourier series in blade angular position in the following form:

$$F,M(\theta) = (\overline{F},\overline{M}) + \sum_{n=1}^{N} (F,M)_n \cos (n\theta - (\phi_{F,M})_n)$$

where $\overline{F}, \overline{M}$ = circumferential average value of F,M

 $(F,M)_n$ = amplitude of the nth harmonic of F,M

θ = angular position about the propeller axis, positive counterclockwise from the vertical upward looking upstream for starboard propeller (left-hand rotation) positive clockwise looking upstream for port propeller (right-hand rotation)

 $(\phi_{F,M})_n$ = phase angle of nth harmonic of F,M where the reference line of the blade is the spindle axis; see Figure 2 and Table 1.

The components M_y and M_x are the most important for determination of the time-average and unsteady stresses in the hub mechanism of an actual

controllable pitch propeller. The components $\rm M_{0.3}$ and $\rm M_{0.4}$ are the most important for determination of the time-average and unsteady stresses in the blades of a propeller.

CENTRIFUGAL AND GRAVITATIONAL LOADS

The results of the air-spin experiments, corrected for interactions, are presented in Table 6. The time-average values arise from centrifugal force whereas the first harmonic arises from gravitational force. Therefore, the mean values should vary as n^2 where n is the propeller rotational speed, and the first harmonic should be independent of n.

For the mean values, which arise from centrifugal force, signficant nonzero values were obtained only for the F_y , F_z , M_y , and M_z components. Any realistic propeller would have nonzero values of centrifugal loading components $(\overline{F}_z)_c$ and $(\overline{M}_z)_c$. Nonzero values of $(\overline{F}_y)_c$ and $(\overline{M}_y)_c$ are produced by the nonzero values of skew and rake of the propeller evaluated. The components $(\overline{F}_x)_c$ and $(\overline{M}_x)_c$ should be zero for any geometry, however, a small value of $(\overline{F}_x)_c$ was measured. This small nonzero $(\overline{F}_x)_c$ probably arises from inaccuracies in the air-spin experiment and interaction matrix. For all components the experimentally determined mean value varies essentially as n^2 . The experimental air-spin results were faired so that the values of the mean loading components used for separating hydrodynamic loads from total loads varied exactly as n^2 .

For the first harmonic loads, which arise from acceleration due to gravity, nonzero values were obtained only for the F_y , M_x and F_z flexures. For $(M_x)_{1g}$ and $(F_y)_{1g}$ the phase angles are +96 degrees and -96 degrees, respectively; therefore the maximum and minimum values of these components occur when the blade is approximately horizontal. This would be expected from the geometry. The phase angle for $(F_x)_{1g}$ is -159 degrees; therefore

³¹Boswell, R.J., "A Method of Calculating the Spindle Torque of a Controllable-Pitch Propeller at Design Conditions," David Taylor Model Basin Report 1529 (August 1961).

maximum value occurs when the blade is nearly vertical downward (6 o'clock position). This is again as would be expected from geometry. The phase angles would not be expected to be precisely +90 degrees or 180 degrees since the propeller has 22 degrees of skew. The amplitudes of $(F_y)_{1g}$ and $(F_z)_{1g}$ each should be equal to the combined weight of the blade and that portion of the appropriate flexure at radii greater than the radius of the appropriate strain gage. The values of $(F_{\mathbf{v}})_{1g}$ and $(F_z)_{1g}$ were confirmed by weighing the blade and appropriate flexures. The values of $(M_y)_{1g}$ and $(M_z)_{1g}$ are essentially zero because the blade is skewed and raked so that mass of the blade is balanced about the spindle axis in both the plane containing the spindle axis and the propeller axis, and the plane normal to the propeller axis which contains the spindle axis (see Figure 2 and Table 1). The value of $(F_x)_{1g}$ is nearly zero since F, is always in a nearly horizontal direction. For all components the experimentally determined amplitude and phase of the first harmonic were essentially independent of rotational speed n. The experimental air-spin results were faired so that values of the amplitude and phase of the first harmonic of the loading components used for separating hydrodynamic loads from total loads were constant, independent of n.

Approximate scaling parameters for centrifugal loads are $(F/\rho_p n^2 D^4)$ and $(M/\rho_p n^2 D^5)$, whereas appropriate scaling parameters for gravitational loads are $(F/\rho_p g D^3)$ and $(M/\rho_p g D^4)$. The model experiments presented in this report were conducted at full scale values of Froude number $F_n = (V/\sqrt{g}L)$ and advance coefficient J = (V/nD). Constant Froude number implies that

$$V \sim (gL)^{\frac{1}{2}} \sim (gD)^{\frac{1}{2}}$$

$$V^{2} \sim gD$$

Constant advance coefficient implies that

$$v \sim nD$$
 $v^2 \sim n^2 D^2$

Therefore,

$$g \sim n^2 D$$
 $\rho_p g D^3 \sim \rho_p n^2 D^4$
 $\rho_p g D^4 \sim \rho_p n^2 D^5$

Thus, for the results presented in this report gravitational loads and centrifugal loads scale the same. Furthermore, if proper allowance is made for the difference in density between the model propeller and the full scale propeller,* the gravitational and centrifugal loads scale the same as the hydrodynamic loads.

Therefore, in addition to the components of loading arising from hydrodynamic effects alone, for many experimental conditions the components of loading arising from the sum of hydrodynamic, centrifugal, and gravitational effects are presented. The components of loading arising from the sum of the hydrodynamic, centrifugal and gravitational effects are designated components of total loading. The centrifugal and gravitational loads presented are equivalent values for a nickel-aluminum-bronze propeller blade. These combined, or total, loading results are discussed in later sections.

The time-average centrifugal spindle torque results, \overline{M}_z are compared in Figure 9 with calculated values using the method of Boswell. 31 Previous measurements of spindle torque by Boswell et all 32 and by Hawdon et al 5 have correlated well with values calculated by this procedure. The calculated value of \overline{M}_z is 33 percent lower than the experimental value at design pitch (see Figure 9); however, this is within experimental accuracy. The largest measured value of \overline{M}_z is 0.5 inch-pounds (0.07 N-m) as shown in Table 6 whereas the accuracy of this measurement is plus or minus 0.2 inch-pounds (0.02 N-m) as discussed in the section on accuracy. The large experimental inaccuracy as a percent of the measured \overline{M}_z value results from a combination of (1) the small value of the measured \overline{M}_z , and (2) the inferior characteristics of flexure number 3, which measures

^{*}The model propeller used in these experiments was made of aluminum, density ρ_P =5.44 lbf-s²/ft⁴ (2.80 g/cm³). The full scale propeller on the DD-963 is made of nickel-aluminum-bronze, density ρ_P =14.48 lbf-s²/ft⁴ (7.46 g/cm³).

³²Boswell, R.J. et al, "Experimental Spindle Torque and Open-Water Performance of Two Skewed Controllable-Pitch Propellers," David Taylor Naval Ship Research and Development Center Report 4753 (December 1975).

 $\mathbf{F}_{\mathbf{Z}}$ and $\mathbf{M}_{\mathbf{Z}}$, relative to the other two flexures as discussed in the section on calibration.

INFLUENCE OF DYNAMOMETER BOAT

The results of the wake surveys with and without the downstream body (dynamomemter boat) are presented in Figure 10, and in Appendix A. These data indicate that the downstream body had only a small effect on the circumferential and radial variation in the flow and only a small effect on the harmonic content of the flow. However, they also indicate that the downstream body reduced the volume mean velocity through the propeller disk by approximately 12 percent; i.e., without the downstream body the volume mean wake $(1-w_{VM})=1.06$ and with the downstream body $(1-w_{VM})=0.93$. These results are, of course, without the propeller in place.

The change in effective velocity through the propeller due to the downstream body was deducted from thrust and torque identities between the mean thrust and torque measured during the blade loading experiments at the self propulsion point (Condition 1 in Table 3), and mean thrust and torque measured during a previous self propulsion model experiment.* These results, which include the effect of the propeller, indicate that the downstream body reduced the effective velocity through the propeller disk by approximately 5 percent; i.e., without the body, $(1-w_T)=1.02$ and $(1-w_Q)=1.00$, whereas, with the body, $(1-w_T)=0.97$ and $(1-w_Q)=0.95$.

The difference between the effect of the downstream body on volume mean wake and effective wake is probably due to a combination of the following:

- 1. The effect of the propeller action; $(1-w_T)$ and $(1-w_Q)$ include the effect of the propeller but $(1-w_{VM})$ does not.
- Experimental inaccuracies; both methods for calculating the change in velocity are based on a small difference of two much larger nearly equal experimental results.

^{*}DTNSRDC experiments 21 and 22 on Model 5265-1B, in which the mean thrust and torque was measured using transmission dynamometers mounted inside the model hull.

It is judged that the dominant cause of the discrepancy is the effect of the propeller.

Based on these results it was concluded that the downstream body reduced the mean velocity into the propeller by 5 percent at the selfpropulsion condition. This is somewhat smaller than the 10 to 14 percent reduction in effective wake that was obtained in Reference 2 in which the same dynamometer boat was used behind a single screw model hull. It was assumed that the 5 percent reduction in the present experiment occurred at all conditions at which experiments were conducted. Therefore, after the effects of centrifugal force were subtracted from the measured loading components as discussed previously, the time-average value per revolution of each hydrodynamic loading component was corrected for the effect of the downstream body as follows: From the measured hydrodynamic blade thrust (\overline{F}_{x_u}) and hydrodynamic blade torque (\overline{M}_{x_u}) , effective advance coefficients based on thrust identity (J_T) and torque identity (J_0) were deduced from the open-water data (Figure 11). These values were multiplied by (1/0.95) to obtain corrected values of J_T and J_0 , i.e., without the downsteam body. The corrected values of \overline{F}_{x_H} and \overline{M}_{x_H} were then obtained from the open-water data at the corrected advance coefficients J_T and J_q , respectively. It was assumed that the downstream body did not affect the radial center of thrust \overline{F}_{x_u} and tangential force \overline{F}_{y_u} . Therefore,

$$\overline{M}_{y_H}$$
 corrected = $(\overline{F}_{x_H} \text{ corrected}/\overline{F}_{x_H} \text{ measured})$ $(\overline{M}_{y_H} \text{ measured})$
 \overline{F}_{y_H} corrected = $(\overline{M}_{x_H} \text{ corrected}/\overline{M}_{x_H} \text{ measured})$ $(\overline{F}_{y_H} \text{ measured})$

The spindle torque (\overline{M}_{Z_H}) was corrected by the same procedure as used for \overline{F}_{X_H} and \overline{M}_{X_H} , using unpublished hydrodynamic spindle torque data for the DD-963 propeller. No corrections were made to \overline{F}_{Z_H} for the effect of the downstream body; however, \overline{F}_{Z_H} is very small for all experimental conditions, as discussed later.

No correction for the effect of the downstream dynamometer boat was made to the measured circumferential variation of the loading components.

Calculations made by the methods of Tsakonas et al²⁵ and McCarthy²⁶ indicated that the influence of the downstream body alters the peak-to-peak circumferential variation of the loads by no more than 2 percent. However, these methods did not agree well with the experimental results, as discussed in the section on correlation with full-scale data and theory.

STEADY-AHEAD OPERATION

For operation near the self-propulsion point (Condition 1 in Table 3), Figure 12 presents the variation of the various components of total blade loading with blade angular position and Figure 13 presents the amplitude of the first 25 harmonics of the various components of total blade loading.

Based on the dynamic calibration, as discussed in the section on calibration, it was judged that for all loading components the data are valid for the first 10 harmonics. In addition, the wake data shows no significant amplitudes for harmonics greater than the tenth; see Appendix A. Therefore, all data and analysis except Figures 12 and 13 are based on reconstructed signals using the first 10 harmonics. The symbols shown in Figure 12 indicate unfiltered values determined from the experiment; each represents the average value at the indicated blade angular position for over 200 propeller revolutions. The variation in measured values at a given angular position is discussed in the section on accuracy; see Figure 8. The lines on Figure 12 are the signals reconstructed from the first 10 harmonics. Figure 12 indicates that the variation of the signals with blade angular position are adequately represented by the number of harmonics retained.

Figure 13 shows that there are no significant resonances for any of the loading components below the 23rd harmonic, which corresponds to $(23)\times(14.08)=324$ hertz. This is higher than the lowest frequency resonance obtained in the results presented in Reference 2; i.e., 247 hertz. As discussed in the section on calibration, the higher frequency of the fundamental significant resonance obtained in the present experiment was anticipated because smaller and lighter blades were used in this experiment than were used in Reference 2.

The variation of all measured loading components with blade angular position for the self propulsion condition (Condition 1 in Table 3) is shown in Figures 14 and 15 for the hydrodynamic loads, and is shown in Figure 16 for the total (hydrodynamic, centrifugal and gravitational) loads. The amplitudes and phases of the harmonics of these loading components are presented in Figure 17 for the hydrodynamic loads and in Figure 18 for the total loads. Appendix B presents tabulated values of all the data in Figures 14 through 18, and Table 7 presents a summary showing the maximum value, minimum value and first harmonic of each loading component. The values for each loading component are presented as decimal fractions of the time-average value of the corresponding loading component. These time-average values for both hydrodynamic loads and total loads are presented in Table 8.

These data show that for hydrodynamic loading the variation of all loading components was predominantly a once-per-revolution variation. The extreme values for all loading components, except \mathbf{F}_Z and \mathbf{M}_Z , occurred near the angular position of the spingle axis, θ =124 and 304 degrees; i.e., 34 degrees beyond the horizontal. At these positions the blade tip is approximately 12 degrees beyond the horizontal. This suggests that the tangential component of the wake is the primary driving force; see Figure 10. The extreme values of \mathbf{F}_Z and \mathbf{M}_Z occur at up to 120 degrees after the extreme values of the other components. The reason for this variation in location of extreme values is not clear; however, it may be partially due to experimental inaccuracy with the \mathbf{F}_Z - \mathbf{M}_Z flexure as discussed in the section on calibration.

For total loading, the variation of all components with blade angular position follows basically the same pattern as for hydrodynamic loading. This occurs because the unsteady loading dué to gravity, which is a pure first harmonic of blade angular position, is much smaller than that due to hydrodynamic force. Further for all components with a measurable gravitational load, except $\mathbf{F}_{\mathbf{Z}}$, the maximum value occurs near the angular position at which the spindle axis is horizontal; i.e., the gravitational load is nearly in phase or 180 degrees out of phase with the hydrodynamic load.

For hydrodynamic loading, F_{x_H} and M_{y_H} were the largest measured force and moment components; see Table 8. For these components the maximum values were approximately 1.43 times the time-average values, and the maximum value minus the minimum value (double amplitude) was approximately 0.91 times the time-average values; see Table 7. For F_{y_H} and M_{x_H} , the maximum values and range of values with blade angular position were slightly smaller fractions of the respective time-average values. For F_{z_H} , the maximum value and range of values with blade angular position were much greater fractions of its time-average. This large fractional variation in F_{z_H} occurs because $|F_{z_H}|$ was very small. For $|M_{z_H}|$ the maximum value and range of values were 1.30 and 0.67, respectively, times the time-average value. The radial point of application of F_{z_H} varies from 0.68R to 0.73R, and the radial point of application of F_{z_H} varies from 0.67R to 0.79R.

The maximum values of F_x and M_y were approximately 1.41 times the time-average values, and the range of values were approximately 0.88 times the time-average values for combined hydrodynamic, centrifugal and gravitational loading components, or total loading components. These results are nearly the same as the hydrodynamic results since the centrifugal and gravitational loads are small for these components; see Tables 6 and 8.

The centrifugal and gravitational loads are a significant portion of the total loads for other loading components; for total loads F $_{y_{MAX}}$ /F =1.14 whereas for hydrodynamic loads F $_{y_{H,MAX}}$ /F =1.40. This large difference $_{y_{H,MAX}}$ y results from the combination of centrifugal force adding to the time-average hydrodynamic force and gravitational force substracting from the circumferential variation of hydrodynamic force. Similarly, for total loads M /M =1.26 whereas for hydrodynamic loads M /M |=1.34. The x MAX x | =1.34 whereas for hydrodynamic loads M x | x | =1.34 whereas for hydrodynamic loads M x | x | =1.34 whereas for hydrodynamic loads M x | x | =1.34 whereas for hydrodynamic loads M x | x | =1.34 whereas for hydrodynamic loads M x | x | =1.34 whereas for hydrodynamic loads M x | x | =1.34 whereas for hydrodynamic loads M x | x | =1.34 whereas for hydrodynamic loads M x | x | =1.34 whereas for hydrodynamic loading is almost as large as the time-average hydrodynamic loading; see Table 8.

The results presented here follow trends similar to those in Reference 2 for the FF-1088 which is a single screw transom stern configuration. The component M_y , which is the largest moment component for both cases, yields M_y / M_y =1.40 for the present configuration (DD-963 Class) and M_y / M_x =1.38 for Reference 2 (FF-1088). The maximum and minimum values occur at approximately the same angular position of the blade midchord at the 70 percent radius for the two configurations.

HULL PITCH

Figure 19 presents the variation of the peak values and time-average values per revolution of the various components of blade total (hydrodynamic, centrifugal and gravitation) loading* with hull pitch angle ψ for both quasi-steady simulation (time rate of change of hull pitch angle $\dot{\psi}$ =0) and unsteady simulation ($\dot{\psi}$ ≠0). These data show that for the quasi-steady simulation the time-average value per revolution of each loading component remains within 6 percent of its value corresponding to self-propulsion in calm water. The time-average value per revolution for the unsteady simulation, deviates by up to 12 percent from its value corresponding to self propulsion in calm water.

Data at each specified value of hull pitch angle ψ for the quasisteady runs were recorded and averaged for a minimum of 200 propeller revolutions whereas data for the dynamic pitching runs at each specified ψ represented an average of from 10 to 35 propeller revolutions. As discussed earlier, the selection of a propeller revolution at a specified ψ during the dynamic pitch runs necessitated a tolerance of only 0.05 degree to ψ . Therefore, the differences between the results for the quasi-steady and unsteady simulations, including the time-average values per revolution, were significantly larger than any errors which may have arisen from inaccuracies in setting the experimental conditions.

For quasi-steady simulation, the absolute value of the time-average value per revolution of all loading components, except spindle torque M_,

^{*}No results are abown for F since the F loading arises primarily from centrifugal effects, as discussed previously, which are independent of hull pitch.

were larger for the stern-up condition than for the stern-down condition; the largest value occurs at $(\psi-\psi_{CW})=1.85$ degrees or time=0.31 seconds in the reference of Figure 19. This suggests that the effective speed of advance of the propeller increases slightly for the stern-down condition and decreases slightly for the stern-up condition. This appears reasonable since for stern-up the propeller tends to be further into the boundary layer of the hull. However, the time-average value per revolution did not monotonically increase with increasing ψ for all components.

For dynamic simulation the largest absolute value of the time-average value per revolution of all loading components, except spindle torque M_Z , occurs at approximately 0.15 second after the condition $(\psi-\psi_{CW})=0$, $\dot{\psi}>0$, which is the reference for time t=0 in Figure 19. This indicates that the maximum time-average value during dynamic simulation occurs at a value of hull pitch angle ψ which occurs 0.16 second or 0.1 cycle, before the ψ at which the maximum time-average value occurs during quasi-steady simulation.

There was a significant difference between the peak values for the quasi-steady simulation and the unsteady simulation. For the quasi-steady simulation, the variation of the peak values with hull pitch angle ψ followed approximately the same trends as the variation of time-average values per revolution. These quasi-steady results indicated that for $\psi-\psi_{CW}$ up to 1.85 degrees, the maximum increase in the peak value of any loading component above the corresponding value for $\psi-\psi_{CW}$ was 5 percent. For the dynamic simulation, however, the maximum value of the peak loads increased as much as 23 percent above the corresponding value for steady ahead at a fixed hull pitch $\psi=\psi_{CW}$.

The dynamic simulation exhibited a dramatically different trend of peak load with ψ than was indicated by the quasi-steady simulation. For the dynamic simulation, the largest value of the peak loading, for all components except spindle torque M_Z , occurred at approximately time t=0.8 second in the hull pitch cycle shown in Figure 19. This corresponds to ψ =1.5 degrees stern down during the portion of the cycle in which the stern is moving down; i.e., $(\psi-\psi_{CW})$ =-1.5 degrees, ψ <0. For dynamic

simulation, the smallest value of peak loading occurred near $\psi=\psi_{CW}$ as the hull passed from the stern-down to the stern-up portion of the cycle; i.e., $(\psi-\psi_{CW})=0$, $\dot{\psi}>0$.

This difference in the unsteady loading between the quasi-steady and unsteady simulations may be due to an additional relative velocity component arising from the motion of the hull during dynamic pitching. As the hull passes through $\psi=\psi_{CW}$, the vertical velocity of the hull (and propeller) is a maximum. As the hull goes from stern up to stern down through $\psi=\psi_{CW}$, the upward velocity component relative to the propeller in the plane of the propeller tends to increase above the values at fixed hull pitch at $\psi=\psi_{CW}$. This tends to increase the amplitude of the first harmonic of the tangential velocity, and thereby increase the unsteady loading (and increase the peak loading). The maximum vertical velocity of the propeller for sinusoidal pitching with $(\psi_{MAX}-\psi_{CW})=1.85$ degrees and frequency=0.8 hertz is approximately 1.47 feet per second (0.448 m/s). This is equivalent to an additional tangential velocity ratio (V_t/V) of 0.133. For ψ fixed at $\psi=\psi_{CW}$, $((V_t)_1/V)=0.130$ (see Appendix A). Therefore,

$$\frac{((v_t)_1/v)_{MAX,\dot{\psi}\neq 0}}{((v_t)_1/v)_{\dot{\psi}=0,\psi=\psi_{CW}}} = \frac{0.130 + 0.133}{0.130} = 2.02*$$

This maximum occurs at a model simulated time of approximately 0.2 second before the maximum measured loads. The measured increase in unsteady loads arising from dynamic pitching was somewhat smaller than this calculated increase in tangential velocity, for example:

$$\frac{F_{x_{\text{MAX}},\dot{\psi}\neq0} - \overline{F}_{x_{\psi=\psi_{\text{CW}}}}}{F_{x_{\text{MAX}},\dot{\psi}=0} - \overline{F}_{x_{\psi=\psi_{\text{CW}}}}} = \frac{0.62}{0.44} = 1.41$$

^{*}A numerical error was found in a similar calculation presented in Reference 2. With the numerical error corrected the results in Reference 2 are substantially the same as those presented here.

On the basis of two-dimensional quasi-steady theory, the increase unsteady loading should be approximately proportional to the increase in tangential velocity.*

The unsteady loading is important from consideration of fatigue of the propeller blades and hub mechanism. Since a ship may operate for an extended period in a seaway, the effect of the ship motions, such as dynamic hull pitching, on unsteady blade loads is significant. The difference between the peak load and the time-average load per revolution is a measure of the unsteady loading. With this difference as a measure of the unsteady loading, the quasi-steady simulation indicates that for hull pitch angles $\psi - \psi_{CU}$ up to 1.85 degrees, the unsteady loading for M_u, which is the largest moment component, increased by 8 percent above its corresponding value for $\psi=\psi_{CW}$. By contrast, the dynamic simulation showed the unsteady loading for the M component increased by 50 percent above its corresponding value for $\psi=\psi_{CW}$ without hull pitching. This indicates that the quasi-steady simulation is completely inadequate for estimating the effect of the seaway on unsteady loading. This also shows that the effect of the ship motions can dramatically increase the unsteady loading on the blades. Therefore, the effect of the ship motions due to operation in a seaway should be considered in any analysis of blade loading and in any fatigue analysis of the propeller blades or hub mechanism.

The results presented here for hull pitching generally agree with the same type of results presented in Reference 2 for a model of the FF-1088, which is a single screw transom stern configuration. For M_y, which is the largest measured moment component in both cases, the comparative results, presented as a fraction of the time-average value without hull pitching, are as follows:

^{*}This simple analysis provides an upper bound to the dynamic pitching load, since the hull boundary above the propeller would tend to reduce the dynamic pitching induced upward tangential velocity relative to the propeller.

	DD-963 (Present	FF-1088 (Reference 2)	
	Report)		
Daylon; to milderholly a gert consume ;			
Peak value, ψ≠0	1.60	1.57	
Peak value, ψ=0	1.43	1.40	
Peak value without pitching $\dot{\psi}$ =0, ψ = ψ CW	1.40	1.36	
Maximum time-average value, ↓≠0	1.10	1.03	
Maximum time-average value, ψ =0	1.05	1.04	

The variation of the loading components with simulated time during the pitch cycle are also somewhat similar for these two configurations. The comparative results for M_y, presented as time in seconds following the point $\psi-\psi_{CW}=0$, $\dot{\psi}>0$ are as follows:

	DD-963 (Present Report)	FF-1088 (Reference 2)
Peak value, ψ≠0	0.77	0.62
Peak value, ψ=0	0.31	0.31
Maximum time-average values, ψ≠0	0.20	0.72
Maximum time-average value, $\dot{\psi}$ =0	0.31	0.31

ACCELERATION

The variation of all measured loading components with blade angular position for the quasi-steady simulated acceleration condition $\dot{V}=\dot{P}=\dot{n}=0$ (Conditions 7 through 11 in Table 3) is shown in Figures 20 and 21 for the hydrodynamic loads, and is shown in Figure 22 for the total (hydrodynamic, centrifugal, and gravitational) loads. The amplitudes and phases of the harmonics of these loading components are presented in Figure 23 for the hydrodynamic loads and in Figure 24 for the total loads. Appendix B presents tabulated values of the data in Figures 20 through 24. The values for each loading component are presented as decimal fractions of the time-average value of the corresponding loading component at the self propulsion condition (Condition 1 in Table 3). These average values for both hydrodynamic loads and total loads are presented in Table 8.

Figure 25 presents the Taylor wake fraction based on thrust $1-w_{\mathrm{T}}$ and the Taylor wake fraction based on torque $1-w_{\mathrm{Q}}$ as derived from the measured values of $\overline{\mathbb{F}}_{\mathbf{x}_{\mathrm{H}}}$ and $\overline{\mathbb{F}}_{\mathbf{x}_{\mathrm{H}}}$ and the open-water characteristics of the propeller (Figure 11). These data indicate that $(1-w_{\mathrm{T}})$ varies by only approximately 3 percent during the simulated acceleration. The value of $(1-w_{\mathrm{Q}})$ varies by only 1 percent for simulated time t>40 seconds; however, the value of $(1-w_{\mathrm{Q}})$ varies substantially during the initial portion of the simulated acceleration (t<40 seconds).

Figures 20 and 22 show that for all measured hydrodynamic and total loading components, except \mathbf{F}_{Z_H} which is small, the peak values, including variation with blade angular position occurred at the self propulsion condition. That is, for the acceleration condition simulated (see Figure 7 and Table 3), the propeller is not exposed to higher peak loads than those to which it is exposed during full-power steady-ahead operation.

Higher time-average and peak loads than those shown in Figures 20 and 22 could, of course, be developed during acceleration maneuvers, depending on values of $\dot{\mathbf{v}}$, $\dot{\mathbf{n}}$, and $\dot{\mathbf{P}}$.

Figure 21 shows the variation in the radial center of longitudinal force, $\mathbf{r}_{\mathbf{F}}$ and radial center of tangential force, $\mathbf{r}_{\mathbf{F}}$. These results show that the time-average radial centers of these force components vary

monotonically with advance coefficient over the range evaluated. As the advance coefficient based on thrust effective wake, $J_T = J_V (1-w_T)$ increases from 0.63 (at V=2.65 knots) to its design value of 1.14 (at V=6.52 knots), \bar{r}_F decreases from 0.76R to 0.71R whereas \bar{r}_F increases from 0.66R to \bar{r}_K \bar{r}_H \bar{r}_K \bar{r}_K

For all loading components, the variation with blade angular position tended to be dominated by the first harmonic for all conditions throughout the simulated acceleration maneuver. For all conditions at which there was significant variation in loading with blade angular position, the maximum and minimum values for all components except F_z and M_z occurred for the blade spindle axis near θ =135 or 315 degrees (blade tip near θ =115 or 195 degrees). This suggests that the variation in loading with blade angular position is produced primarily by the circumferential variation of the tangential velocity in the propeller plane (see Figure 10). The angular variation of each loading component retained basically the same shape independent of speed and advance coefficient.

There was a dramatic reduction in the circumferential variation of all measured loading components with decreasing speed V and decreasing rotational speed n. Previous data have shown that for a given propeller in a given flow field, the circumferential variation in the hydrodynamic loading varies approximately as the product of ship speed V and rotational speed n; see Wereldsma. Figure 26 presents results in a form which allows evaluation of how closely the measured unsteady loading varies with nV. The ordinate is the first harmonic of the components of hydrodynamic blade loading except F_{Z_H} , which is very small, and the abscissa is nV. The data shown in Figure 26 indicate that the first harmonic of each of the presented hydrodynamic loading components is approximately proportional to nV.

Wereldsma, R., "Tendencies of Marine Propeller Shaft Excitation," International Shipbuilding Progress, Vol. 19, No. 218, pp 328-332 (October 1972).

Figure 27 presents the variation of the time-average values per revolution and peak values of the various components of total blade loading for both quasi-steady simulated acceleration (V=n=P=0) and unsteady simulated acceleration (V>0, n=P=0).

There was only a small variation in the measured loading components between the quasi-steady simulated acceleration and the unsteady simulated acceleration. For all components except M_{Z} , the largest variation between the results from the two types of simulation expressed as a decimal fraction of the corresponding time-average value at the self-propulsion point was 0.05 for the peak values and 0.02 for the time-average value per revolution. The corresponding variations for M_{Z} were no greater than 0.06 for the peak values and 0.05 for the time-average value per revolution.

The variation in the results between the two types of simulation appeared to be essentially random. This suggests that these deviations are some measure of the experimental accuracy and do not represent any systematic trends arising from the difference in \dot{V} between the two types of simulation.

Data for the quasi-steady simulation were recorded and averaged for a minimum of 200 propeller revolutions, whereas data presented for the unsteady runs represent an average of only five revolutions. Further, the steady experimental conditions which were set during the quasi-steady simulation allow the values of V and n to be controlled more precisely than during the unsteady runs; however, the average of the five values of V and n during the unsteady runs for which data are presented was generally within one percent of the target values.

The results presented in this section for a simulated acceleration maneuver follow trends similar to those in Reference 2 for a simulated crash-forward maneuver on a model of the FF-1088. Both sets of data show the following:

- 1. The values of $(1-w_T)$ and $(1-w_Q)$ do not vary substantially except during the initial stages of the acceleration or crash-forward maneuver.
- 2. The variation of all loading components with blade angular position was dominated by the first harmonic throughout the simulated maneuver.

- The amplitude of the first harmonic of all loading components varied essentially as nV.
- 4. The acceleration of the hull did not have a significant effect on the loads; i.e., the loads for quasi-steady acceleration V=0 and unsteady acceleration V>0 were not significantly different.

 The ratios of either the peak or time-average loads during the acceleration (or crash-forward) maneuver to the time-average loads at the self-propulsion point do not agree closely for the results in the present report (DD-963 Class) and Reference 2 (FF-1088). This difference is to be expected since these ratios are very sensitive to the value of V, n, and P for the simulated maneuvers, which are quite different for these two cases. The largest moment component for both cases M, gives

 M /M = 1.40 from the present report and 1.51 from Reference 2. The yeak year years years

CORRELATION WITH FULL-SCALE DATA AND THEORY

For operation near the self-propulsion point (Condition 1 in Table 3), correlation was made between the model experimental loads obtained in the present investigation, bending moments deduced from strains measured on the corresponding full-scale propeller, and analytical calculations.

These comparisons were made for $\rm M_{0.3}$ and $\rm M_{0.4}$ which were calculated from the three measured forces and three measured moments. As discussed in the section on experimental results, $\rm M_{0.3}$ is defined as the bending moment applied on the spindle axis about the axis intersecting the spindle axis at r=0.3R and parallel to the expanded pitch line at r=0.3R. The $\rm M_{0.3}$ vector as defined by the conventional right-hand rule for a right-hand propeller (left-hand rule for a left-hand propeller) intersects the plane normal to the propeller axis at the angle $\phi_{0.3} = \tan^{-1}(\rm P_{0.3}/(0.3\pi D))$ and is directed so that a positive $\rm M_{0.3}$ puts the face (pressure side) of the blade in tension. The component $\rm M_{0.4}$ is defined in a manner analogous to $\rm M_{0.3}$, except it is referred to r=0.4R.

The full-scale data used for correlation are preliminary values of strains ε measured* at several chordwise stations at r=0.35R and r=0.45R on both sides of the blade on the DD-963 CP propeller. Both time-average strains per revolution and variation of strain with blade angular position were recorded during full-power stready-ahead operation. By interpolation, values of radial strain at the spindle axis at r=0.4R were obtained. Assuming that the variation in radial strain is proportional to the variation in total (hydrodynamic, centrifugal, and gravitational) bending moment; i.e., that $(\varepsilon_{\text{TO.4}_{\text{MAX}}}/\overline{\varepsilon}_{\text{TO.4}}) = (M_{\text{O.4}_{\text{MAX}}}/\overline{M}_{\text{O.4}})$, these full-scale data indicate that $(M_{\text{O.4}_{\text{MAX}}}/\overline{M}_{\text{O.4}}) = 1.48$. From the model data $(M_{\text{O.4}_{\text{MAX}}}/\overline{M}_{\text{O.4}}) = 1.48$. From the model data

of the variation of the full scale strain with blade angular position indicates that it follows trends similar to the bending moment determined from the model experiments. The correlation with full scale data presented here is preliminary; a more thorough correlation with the full scale data will be undertaken when analysis of the full scale data is complete.

Theoretical calculations of hydrodynamic loads were made by using the method of Tsakonas et al, 25,34 which is based on unsteady lifting—surface theory and the method of McCarthy, 26 a quasi-steady technique which utilizes the open-water characteristics of the propeller. Although the method of McCarthy is a simple quasi-steady technique, it was judged that this method should be suitable to the cases under consideration in this report because the dominant unsteady loading occurs at a low reduced frequency and the dominant first harmonic of the wake is in phase radially

^{*}The full-scale measurements were conducted by personnel in DTNSRDC Code 1962 under the direction of G.P. Antonides. The results presented here are preliminary, and thorough analysis of the data is continuing. The details of this full-scale trial will be reported in a future DTNSRDC report.

³⁴Tsakonas, S. et al, "Documentation of a Computer Program for the Pressure Distribution, Forces and Moments on Ship Propellers in Hull Wakes," (In Four Volumes), Stevens Institute of Technology, Davidson Laboratory Report SIT-DL-76-1863 (January 1976). Revised April 1977.

(see Figure 10 and Appendix A). These calculations were made for Condition 1 in Table 3 using the wake measured in the plane of the propeller both with and without the downstream dynamometer boat in place (Figure 10 and Appendix A), and with the mean velocity through the propeller determined from thrust identity used as the reference velocity.

The use of the speed of advance based on thrust effective wake, $V_A^{=V}(1-w_T)$, as the reference speed in these calculations is consistent with the use of this velocity to correct the time-average loads for the effect of the dynamometer boat as discussed in the section on experimental results. Tsakonas et al recommend using the ship speed as the reference velocity, which is equivalent to using $(1-w_T)=1.0$; however, this recommendation was not followed here because the flow does not pass through the propeller at the ship speed. To evaluate the sensitivity of the procedure of Tsaknoas et al, 25,34 to the reference speed, calculations were performed for the first harmonic using the thrust effective wake $(1-w_T)$ and the volume mean wake determined from the wake surveys $(1-w_{VM})$. These calculations showed the following:

Wake without dynamometer boat

$$\frac{M_{0.3_1}}{M_{0.3_1}} \frac{\text{(using } (1-w_T) = 1.02)}{\text{(using } (1-w_{VM}) = 1.06)} = 0.99$$

$$\phi_{M0.3_1} \frac{\text{(1-w_T)}}{\text{(1-w_T)}} - \phi_{M0.3_1} \frac{\text{(1-w_{VM})}}{\text{(1-w_V)}} = -0.3 \text{ degrees}$$

Wake with dynamometer boat

$$\frac{M_{0.3_1}}{M_{0.3_1}} \frac{\text{(using } (1-w_T) = 0.97)}{\text{(using } (1-w_{VM}) = 0.93)} = 1.02$$

$$\phi_{M0.3_1} \frac{\text{(1-w_T)} - \phi_{M0.3_1} (1-w_{VM})}{\text{(1-w_V)}} = 0.5 \text{ degrees}$$

Therefore, the calculated unsteady loads using the method of Tsakonas et al, 25,34 are not sensitive to the reference speed over the range of concern in the present case.

For the method of Tsakonas et al, 25,34 calculations were conducted for the first ten harmonics of the wake. The "normal" components of wake harmonics, as required by this method, were defined as the wake harmonics normal to the chord line of the blade section at the local radius rather than normal to the advance angle at the local radius as recommended by Tsakonas et al. With the wake harmonics resolved normal to the blade chord, this method apparently considers both the unsteady flow normal to the resultant inflow and an approximation to the unsteady flow parallel to the resultant inflow.

The quasi-steady calculations are based on the circumferential variation of the wakes measured at the 0.7 radial station. These calculations were made at 10-degree increments of blade angular position θ . It is assumed that the radial centers of the unsteady thrust and tangential force are at r/R=0.70 for all blade angular positions.

Figure 28 presents values of $^{\rm M}_{0.3_{\rm H}}$ and $^{\rm M}_{0.4_{\rm H}}$ with and without the downstream dynamometer boat, calculated with the methods of Tsakonas et al 25,34 and McCarthy. 26 Based on these calculated results it appears that the dynamometer boat does not have a significant influence on the circumferential variation of the blade loads.

Figures 29 and 30 present the variation with blade angular position and the first ten harmonics of $\rm M_{0.3}_{H}$ and $\rm M_{0.4}_{H}$ from the model experiments and analytical calculations. All data are nondimensionalized on the same quantity, i.e., the time-average bending moment determined from the model experiments and corrected for the downstream body as discussed in the section on experimental results. This comparison indicated that the experimental unsteady hydrodynamic bending moments were substantially higher than the calculated results. A typical comparison is as follows:

^{*}These calculations were made by using the computer program developed by the Davidson Laboratory including refinements made through April 1977. None of the refinements made since December 1975 influence the calculated unsteady loads presented in this report. Therefore, this calculation procedure is the same as that used in Reference 2 for calculating the unsteady bending moments on the propeller on the FF-1088.

³⁵ Tsakonas, S. et al, "Correlation and Application of an Unsteady Flow Theory for Propeller Forces," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 75, pp 158-193 (1967).

Prediction Method

Mo.3 _F	- M _{0.3H}	$M_{0.4_{\rm H,MAX}} - \overline{M}_{0.4_{\rm H}}$		
	M _{0.3_H (experiment)}			
Model Experiment	0.36	0.36		
Quasi-Steady Procedure ²⁶	0.25	0.24		
Unsteady Procedure 25	0.20	0.19		

For this typical comparison the experimental result is approximately 47 percent higher than the quasi-steady prediction and approximately 85 percent higher than the unsteady prediction.

The circumferential variations in the model experimental results of other components of blade loading F_{x_H} , F_{y_H} , M_{x_H} , and M_{y_H} were larger than the values calculated by the two indicated procedures by approximately the same ratio as shown for $M_{0.3_H}$ and $M_{0.4_H}$. These comparisons are not shown.

Previous investigators have compared experimental unsteady forces and moments on a single blade of various propellers in inclined flow with forces and moments calculated by a quasi-steady procedure similar to that described by McCarthy. These experimental loads were obtained by direct measurement of unsteady forces and moments on a single blade (References 2, 3, 17, 18, and 19) or were deduced from measured steady transverse forces and moments along axes fixed relative to the flow, i.e., not rotating with the propeller (Reference 36). References 2, 3, 17, 18, 19, and 36 all show that for noncavitating conditions, the experimental unsteady blade loading was from 1.5 to 2.0 times as large as the values calculated by the quasi-steady method. This agrees with the results of the present investigation; see Figures 29 and 30.

³⁶Gutsche, F., "The Study of Ships' Propellers in Oblique Flow," Defence Research Information Centre Translation No. 4306, Copyright Controller: Her Majesties Stationary Office, London, England, October 1975; English Translation of "Untersuchung von Schiffsschrauben in schrager Anstromung," Schiffbauforschung, Vol. 3, No. 3/4, pp 97-102 (1964).

Preliminary results from blade loading experiments 37 conducted in idealized flows indicate that:

- 1. The unsteady blade loads in either axial or tangential wakes are not influenced by the presence of a nearby boundary above the propeller.
- 2. In inclined flow without an upstream hull, the experimental unsteady loading near the design advance coefficient is nearly two times as large as that calculated by the method of Tsakonas et al, 25,34 and approximately 80 percent larger than that calculated by the method of McCarthy. 26
- 3. In an axial wake with a dominant first harmonic of blade angular position which was generated by upstream wire grid screens with zero shaft angle, the unsteady loading near the design advance coefficient is within approximately 15 percent of the values calculated by the methods of Tsakonas et al, 25,34 and McCarthy. This is in agreement with previous correlations with the method of Tsakonas et al for unsteady shaft (bearing) forces and moments for operation in axial wakes. *,12

These results indicate that the large discrepancy between the experimental and calculated unsteady bending moments presented in the current report appear to be due to the inability of the present theories to properly account for all important characteristics of the flow field for operation in inclined flow. All available procedures, including the unsteady theory of Tsakonas et al 25,34 and the quasi-steady procedure of McCarthy, 6 implicitly assumed that the propeller slipstream follows the propeller axis rather than the direction of the effective velocity into the propeller which is at an angle to the propeller axis in inclined riow. It is speculated that this failure to consider the true direction of the slipstream is the major factor in the analytical underprediction of the

^{*}The results in Reference 12 were at substantially higher reduced frequency than the results in the present study; therefore, the quasi-steady procedure of McCarthy over-predicted the unsteady loads in Reference 12.

³⁷Boswell, R.J. and S.D. Jessup, "Experimental Determination of Periodic Propeller Blade Loads in a Towing Tank," Presented to the 18th American Towing Tank Conference, U.S. Naval Academy, Annapolis, Maryland (August 1977).

unsteady blade loads in inclined flow. Numerical computations to check this hypothesis are planned.

SUMMARY AND CONCLUSIONS

Experiments were described in which the mean and unsteady loads, including hydrodynamic, centrifugal, and gravitational loads, were measured on a single blade of a model of a CP propeller on the DD-963 Class Destroyer. The experiments were conducted behind a model of the DD-963 hull under steady-ahead operation, hull pitching motions, and simulated acceleration maneuvers. The discussion of experimental techniques includes a description of the dynamometer and data analysis system. The results are summarized as follows:

- 1. For all significant loading components, except for radial force, the loads are predominantly of hydrodynamic origin.
- 2. The circumferential variations of all measured components of hydrodynamic and total blade loading are primarily a first harmonic, with maximum and minimum values occurring near the blade angular position which is 25 degrees past the position at which a radial line from the propeller axis to the tip is horizontal.
 - 3. For steady-ahead operation:
 - a. The maximum values and peak-to-peak circumferential variations for measured hydrodynamic forces and bending moments were up to approximately 1.43 and 0.91 of the time-average values, respectively.
 - b. The maximum values and the peak-to-peak circumferential variations for measured total forces and bending moments were up to approximately 1.41 and 0.88 of the time-average values, respectively.
 - c. The model results for circumferential variation of bending moments about the nose-tail lines of the 0.3 and 0.4 radii agreed fairly well with loads deduced from strain measurements on the full-scale propeller, but they were larger than theoretically calculated values.

- 4. For simulated hull pitching (maximum pitch angle of 1.85 degrees):
 - a. The maximum values of measured total forces and bending moments increased over the corresponding values without hull pitch by 5 percent for quasi-steady simulation and by 23 percent for unsteady simulation with model pitching frequency equal to 0.8 hertz (full scale equivalent frequency is 0.16 hertz).
 - b. The peak-to-peak circumferential variation of the measured total forces and bending moments increased over the corresponding values without hull pitch by approximately 5 percent for quasisteady simulation and by approximately 50 percent for unsteady simulation with model pitching frequency equal to 0.8 hertz. Therefore, any quasi-steady simulation of ship motions is completely inadequate for estimating the effect of ship motions on unsteady propeller blade loading.
 - 5. For the simulated acceleration maneuver:
 - a. The dominant first harmonic of the measured hydrodynamic forces and bending moments varied in a nearly linear manner with the product of ship speed and propeller rotational speed.
 - b. The acceleration of the hull did not have a significant effect on the measured loads. Therefore, propeller blade loading during an acceleration maneuver can be adequately estimated by quasi-steady experiments.
 - c. The maximum time-average values of measured forces and bending moments per revolution were in the range of 1.21 to 1.29 of the time-average values during full-power steady-ahead operation for hydrodynamic loads, and in the range 1.16 to 1.21 of the time-average values during full-power steady-ahead operation for total loads.
 - d. The simulated acceleration condition did not expose the propeller to higher peak loads than those to which it is exposed during full power steady-ahead operation. However, these loads are very sensitive to the maneuver simulated and substantially higher peak loads could be developed during other acceleration maneuvers.

e. Except for the initial portion of the simulated acceleration maneuver, the Taylor wake fractions were within three percent of their values at the self propulsion point.

All of the results presented here on a model of the DD-963 Class Destroyer follow close to previously reported results of similar experiments on a model of the FF-1088.

ACKNOWLEDGEMENTS

The authors are indebted to many members of the staff of the David W. Taylor Naval Ship Research and Development Center. Special appreciation is extended to Mr. George Gilbert for the design modifications of the experimental apparatus, to Mr. Michael Jeffers for development of the online data analysis system, to Mr. John Gordon for development of electronic and mechanical systems for the experiment, and to Mr. Jack Diskin for assistance in data analysis and analytical calculations.

APPENDIX A

DETAILS OF WAKES*

Tables 9 and 10 present the velocity component ratios and the harmonic content of the wakes in the plane of the propeller, both with and without the downstream dynamometer boat. The data at even radial stations were obtained by interpolation and extrapolation of the measured data as described in Reference 38.

^{*}All data presented in Appendix A were obtained from wake surveys conducted by R.F. Roddy, DTNSRDC Code 1524. Further details of these wake surveys will be presented in a future DTNSRDC report.

³⁸ Cheng, H.M., "Analysis of Wake Survey of Ship Models - Computer Program AML Problem No. 840-219F," David Taylor Model Basin Report 1804, March 1964.

Preceding Page BLANK - NOT FILMED

APPENDIX B

DETAILED EXPERIMENTAL RESULTS

Table 11 presents detailed experimental results, including variation with blade angular position and harmonic analyses, for steady-ahead operation at V=6.52 knots, n=14.08 rev/sec. The data in Table 11 are tabulated values of the data presented in Figures 12, 13, 14, 16, 17, and 18.

Tables 12 to 15 present detailed experimental results including variation with blade angular position and harmonic analyses, for the quasi-steady acceleration conditions. The data in Tables 12 to 15 are tabulated values of the data presented in Figures 20, 22, 23, and 24.

Preceding Page BLANK - FILMED

Figure la - Equivalent Coordinate System for Right Hand Propeller

Figure 1b - Coordinate System for Left Hand Propeller as Used in Experiment

Figure 1 - Components of Blade Loading

Figure 2 - Schematic Drawing of CP Propellers on DD-963 Class Destroyer; DTNSRDC Model Propellers 4660 and 4661

Figure 3 - Ship and Model Particulars

Figure 4 - Experimental Arrangement of Hull and Dynamometer Boat

Figure 4 (Continued)

Figure 4b - Closeup of Propellers

Figure 5 - Typical Strain-Gaged Flexure

FLEXURE 2 (TO MEASURE F_y AND M_x COMPONENTS) IS SHOWN

Figure 6 - Arrangement of Typical Flexure in Hub

Figure 7 - Experimental Acceleration Conditions

Figure 8 - Experimental Data Showing Plus and Minus Two Standard Deviations on Measured Values of $\mathbf{F}_{\mathbf{x}}$

Figure 9 - Correlation of Theory and Experiment for Time Average Centrifugal Spindle Torque

Figure 10 - Distribution of Wake in Propeller Disk

Figure 10a - Circumferential Distributions

Figure 10b - Harmonic Content at r/R = 0.80

Figure 10b (Continued)

Figure 10 (Continued)

Figure 10b (Continued)

Figure 11 - Open-Water Characteristics of DTNSRDC Model Propellers 4660 and 4661

Figure 12 - Influence of Extraneous Signals on Measured Loads

Figure 12a - F_x

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12 (Continued)

Figure 12d - M_X

Figure 12 (Continued)

Figure 12e - F_z

Figure 12 (Continued)

Figure 12f - M_z

Figure 13 - Experimental Data Showing Extraneous Higher Harmonics

Figure 13a - F_x

Figure 13 (Continued)

Figure 13b - My

Figure 13 (Continued)

Figure 13c - Fy

Figure 13 (Continued)

Figure 13d - Mx

Figure 13 (Continued)

Figure 13e - F_z

Figure 13 (Continued)

Figure 13f - M_z

Figure 14 - Variation of Experimental Hydrodynamic Loads with Angular Position for Steady-Ahead Operation

Figure 15 - Variation in Radial Center of Thrust $\mathbf{F}_{\mathbf{x}_{H}}$ and Transverse Hydrodynamic Force $\mathbf{F}_{\mathbf{y}_{H}}$ with Blade Angular Position for Steady-Ahead Operation

Figure 16 - Variation of Experimental Total Loads with Angular Position for Steady-Ahead Operation

DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/G 13/10 EXPERIMENTAL UNSTEADY AND TIME AVERAGE LOADS ON THE BLADES OF T--ETC(U) DEC 77 S D JESSUP, R J BOSWELL, J J NELKA DTNSRDC-77-0110 NL AD-A048 385 UNCLASSIFIED 2 OF # ADI # AO48385 1.44 1444 11 1994 Hamille 11 m initial Lad Laid I Land 1 Ŋ) d projekt stander. A Links ||-----| |----| Lak 運動 Indata.

Figure 17 - Harmonic Content of Expe Loads for Steady-Ahead

Figure 17a - Amplitu

Figure 17b - Phases

Figure 18 - Harmonic Content of Experimental Total Loads for Steady-Ahead Operation

Figure 18a - Amplitudes

Figure 18 (Continued)

Figure 18b - Phases

Figure 20 - Variation of Experimental Hydrodynamic Loads with Angular Position for Quasi-Steady Acceleration

Figure 20 (Continued)

Figure 20 (Continued)

Figure 20 (Continued)

Figure 20d - M_{xH}

Figure 20 (Continued)

Figure 20e - F_zH

Figure 20 (Continued)

Figure 20f - M_zH

Figure 20 (Continued)

Figure 20g - M_{0.3</sup>_H}

Figure 20 (Continued)

Figure 20h - M_{0.4</sup>H}

Figure 21 - Variation in Radial Center of Thrust F and Transverse Hydrodynamic Force F with Blade Angular Position \mathbf{y}_{H} for Quasi-Steady Acceleration

Figure 21a - V = 2.65 Knots, n = 10.21 Revolutions per Second, $J_v = 0.64$

Figure 21 (Continued)

Figure 21b - V = 3.55 Knots, n = 10.96 Revolutions per Second, J_{V} = 0.80

Figure 21 (Continued)

Figure 21c - V = 5.36 Knots, n = 12.70 Revolutions per Second, $J_v = 1.04$

Figure 21 (Continued)

Figure 21d - V = 6.26 Knots, n = 13.78 Revolutions per Second, $J_v = 1.12$

Figure 21 (Continued)

Figure 21e - V = 6.52 Knots, n = 14.08 Revolutions per Second, $J_V = 1.14$

Figure 22 - Variation of Experimental Total Loads with Angular Position for Quasi-Steady Acceleration

Figure 22a - F_x

Figure 22 (Continued)

Figure 22b - My

Figure 22 (Continued)

Figure 22c - F_y

Figure 22 (Continued)

Figure 22d - Mx

Figure 22 (Continued)

Figure 22e - F_z

Figure 22 (Continued)

Figure 22 (Continued)

Figure 22g - M_{0.3}

Figure 22 (Continued)

Figure 22h - M_{0.4}

Figure 23 - Harmonic Content of Experimental Hydrodynamic Loads for Quasi-Steady Acceleration

Figure 23a - F_xH

Figure 23 (Continued)

Figure 23a (Continued)

Figure 23 (Continued)

Figure 23b - M

Figure 23 (Continued)

Figure 23b (Continued)

Figure 23 (Continued)

Figure 23c - FyH

Figure 23 (Continued)

Figure 23c (Continued)

Figure 23 (Continued)

Figure 23d - M_x

Figure 23 (Continued)

Figure 23d (Continued)

Figure 23 (Continued)

Figure 23e - F_z

Figure 23 (Continued)

Figure 23e (Continued)

Figure 23 (Continued)

Figure 23f - M_zH

Figure 23 (Continued)

Figure 23f (Continued)

Figure 23 (Continued)

Figure 23g - M_{0.3</sup>_H}

Figure 23 (Continued)

Figure 23g (Continued)

Figure 23 (Continued)

Figure 23h - M_{0.4</sup>H}

Figure 23 (Continued)

Figure 23h (Continued)

Figure 24 - Harmonic Content of Experimental Total Loads for Quasi-Steady Acceleration

Figure 24a - F_x

Figure 24a (Continued)

Figure 24 (Continued)

Figure 24b - My

Figure 24 (Continued)

Figure 24b (Continued)

Figure 24 (Continued)

Figure 24c - My

Figure 24 (Continued)

Figure 24c (Continued)

Figure 24 (Continued)

Figure 24d - M_x

Figure 24 (Continued)

Figure 24d (Continued)

Figure 24 (Continued)

Figure 24e - F_z

Figure 24 (Continued)

Figure 24e (Continued)

Figure 24 (Continued)

Figure 24f - M_z

Figure 24 (Continued)

Figure 24f (Continued)

Figure 24 (Continued)

Figure 24g - M_{0.3}

Figure 24 (Continued)

Figure 24g (Continued)

Figure 24 (Continued)

Figure 24h - M_{0.4}

Figure 24 (Continued)

Figure 24h (Continued)

Figure 25 - Taylor Wake Fractions during Simulated Acceleration Maneuvers

Figure 26 - Variation of First Harmonic of Experimental Hydrodynamic Loads with nV for Quasi-Steady Acceleration

Figure 26a - F_xH

Figure 26b - MyH

Figure 26c - FyH

Figure 26d - M_xH

Figure 26f - M_{0.3</sup>_H}

Figure 27 - Comparison of Time-Average Values per Revolution and Peak Values of Various Components of Experimental Total Blade Loading for Quasi-Steady

Figure 27a - F_x

Figure 28 - Variation of Hydrodynamic Bending Moment at 30 Percent and 40 Percent Radii with Blade Angular Position, Theoretical Prediction With and Without Dynamometer Boat

Figure 28a - Unsteady Theory

Figure 28b - Quasi-Steady Theory

Figure 29a - 30 Percent Radius

Figure 29b - 40 Percent Radius

Figure 29 - Variation of Hydrodynamic Bending Moment at 30 Percent and 40 Percent Radii with Blade Angular Position,
Comparison of Model Data with Theory

Figure 30 - Harmonic Content of Hydrodynamic Bending Moment at 30 Percent and 40 Percent Radii, Comparison of Model Data and Theory

Figure 30a - 30 Percent Radius

Figure 30b - 40 Percent Radius

TABLE 1 - CHARACTERISTICS OF PROPELLERS ON DD-963 CLASS DESTROYER; DTNSRDC MODEL PROPELLERS 4660 AND 4661

Diameter, D: 17.0 feet (5.577 m)+	Speed at Full Power, V: 32.5 knots
Rotation: Inward Turning*	Hub-Diameter Ratio, D _h /D: 0.30
Number of Blades, Z: 5	Expanded Area Ratio: 0.73
Maximum Rotational Speed (Rated), n:	Blade Thickness Fraction: 0.054
168 r/min	Section Meanline: NACA a = 0.8
Full Power (Rated), PD:	

40,000 hp (29,800 kW)

r/R	c/D	P/D	A ** (deal	/7 MI**	t/D	4 10
1711	40	770	θ ** (deg)	(Z _R /D)**	UU	f _M /c
0.3	0.178	1.165	2.985	-0.0006	0.0420	0
0.35	0.210	1.296	3.481	-0.0022	0.0372	0.0050
0.45	0.271	1.480	4.810	-0.0095	0.0290	0.0209
0.55	0.327	1.566	6.631	-0.0185	0.0226	0.0267
0.65	0.374	1.566	8.978	-0.0288	0.0178	0.0256
0.75	0.406	1.498	11.895	-0.0392	0.0146	0.0209
0.85	0.409	1.381	15.410	-0.0488	0.0122	0.0151
0.90	0.387	1.306	17.403	-0.0529	0.0110	0.0122
0.95	0.326	1.222	19.557	-0.0561	0.0091	0.0094
1.0	0	1.128	21.876	-0.0583	0	0

^{*}For model propeller, D = 0.6848 feet (22.47 cm)

^{*}The blade loads were measured on the starboard propeller (left-hand rotation); DTNSRDC Model Propeller 4661

^{**}The spindle axis is the blade reference line.

TABLE 2 - CALIBRATION MATRIX

	-3.33	-0.099	0.058	-0.002	-0.090	-0.066
	-0.008	5.00	-0.002	0.084	-0.168	-0.196
	-0.071	0.048	-3.34	0.070	-0.014	0.058
Calibration Matrix = $(C_{i,j})$ =	0.009	-0.033	0.103	4.99	-0.071	0.297
	-0.234	-0.367	0.291	-0.861	-9.99	-1.87
	0.079	-0.103	0.223	0.020	-0.034	-5.02

where

$$\begin{bmatrix} F_{x_1} \\ M_{y_1} \\ F_{y_1} \\ M_{x_1} \\ F_{z_1} \\ M_{z_1} \end{bmatrix} = \begin{bmatrix} F_{x_A} \\ M_{y_A} \\ F_{y_A} \\ M_{x_A} \\ F_{z_A} \\ M_{z_A} \end{bmatrix} \cdot (C_{i,j}) = \begin{bmatrix} F_{x_1}, F_{y_1}, F_{z_1} & \text{are indicated forces in volts} \\ M_{x_1}, M_{y_1}, M_{z_1} & \text{are indicated moments in volts} \\ F_{x_A}, F_{y_A}, F_{z_A} & \text{are applied forces in pounds} \\ M_{x_A}, M_{y_A}, M_{z_A} & \text{are applied moments in inch-pound} \\ C_{ij} & \text{for } j = 1, 3, 5 & \text{are in volts per pound} \\ C_{ij} & \text{for } j = 2, 4, 6 & \text{are in volts per inch-pound} \end{bmatrix}$$

The arrays are arranged by the coupling of the force and moment pairs of the three flexures; i.e., Flexure 1 measures F_x and M_y , Flexure 2 measures F_y and M_x , and Flexure 3 measures F_z and M_z .

TABLE 3 - MODEL EXPERIMENTAL CONDITIONS

	Condition Number	knot	M/s	n r/s	٧.	(P/D) _{0.7}	ψ-ψ _{CW} degree	knot/s	M/s ²	t-t _o
Self Propulsion	1	6.52	(3.61)	14.08	1.14	1.54	0	0	(0)	N/A
Quasi-Steady	2	6.52	(3.61)	14.08	1.14	1.54	-1.85	0	(0)	N/A
Hull Pitch	3	6.52	(3.61)	14.08	1.14	1.54	-0.92	0	(0)	N/A
	4	6.52	(3.61)	14.08	1.14	1.54	0.92	0	(0)	N/A
	5	6.52	(3.61)	14.08	1.14	1.54	1.85	0	(0)	N/A
Unsteady Hull Pitch	6	6.52	(3.61)	14.08	1.14	1.54	variable*	0	(0)	N/A
Quasi-Steady	7	2.65	(1.47)	10.21	0.64	1.54	0	0	(0)	N/A
Acceleration	8	3.55	(1.96)	10.96	0.80	1.54	0	0	(0)	N/A
	9	5.36	(2.97)	12.70	1.04	1.54	0	0	(0)	N/A
	10	6.26	(3.47)	13.78	1.12	1.54	0	0	(0)	N/A
	11	6.52	(3.61)	14.08	1.14	1.54	0	0	(0)	N/A
Unsteady	12	2.65**	(1.47)**	10.21	0.64	1.54	0	0.56**	(0.31)**	2.41
Acceleration	13	3.55**	(1.96)**	10.96	0.80	1.54	0	0.56**	(0.31)**	4.01
	14	5.36**	(2.97)**	12.70	1.04	1.54	0	0.32**	(0.18)**	8.03
	15	6.26**	(3.47)**	13.78	1.12	1.54	0	0.08**	(0.04)**	12.04
	16	6.52**	(3.61)**	14.08	1.14	1.54	0	0**	(0) **	16.05

^{*}Sinusoidal with amplitude equal to 1.85 degrees, frequency equal to 0.8 Hz.

TABLE 4 - FULL-SCALE CONDITIONS SIMULATED BY MODEL EXPERIMENTS

	Condition Number	knot	V M/s	n r/min	J,	(P/D) _{0.7}	ψ-ψ _{CW} degree	knot/s	M/s ²	t-t _o
Self Propulsion	1	32.5	(18.0)	169	1.14	1.54	0	0	(0)	N/A
Quasi-Steady	2	32.5	(18.0)	169	1.14	1.54	-1.85	0	(0)	N/A
Hull Pitch	3	32.5	(18.0)	169	1.14	1.54	-0.92	0	(0)	N/A
10000000	4	32.5	(18.0)	169	T.14	1.54	0.92	0	(0)	N/A
	5	32.5	(18.0)	169	1.14	1.54	1.85	0	(0)	N/A
Unsteady Hull Pitch	6	32.5	(18.0)	169	1.14	1.54	variable*	0	(0)	N/A
Quasi-Steady	7	13.2	(7.3)	123	0.64	1.54	0	0	(0)	N/A
Acceleration	8	17.7	(9.8)	132	0.80	1.54	0	0	(0)	N/A
	9	26.7	(14.8)	153	1.04	1.54	0	0	(0)	N/A
	10	31.2	(17.3)	166	1.12	1.54	0	0	(0)	N/A
	11	32.5	(18.0)	169	1.14	1.54	0	0	(0)	N/A
Unsteady	12	13.2	(7.3)	123	0.64	1.54	0	0.56**	(0.31)**	12.0
Acceleration	13	17.7	(9.8)	132	0.80	1.54	0	0.56**	(0.31)**	20.0
	14	26.7	(14.8)	153	1.04	1.54	0	0.32**	(0.18)**	40.0
	15	31.2	(17.3)	166	1.12	1.54	0	0.08**	(0.04)**	60.0
	16	32.5	(18.0)	169	1.14	1.54	0	0**	(0)**	80.0

^{*}Sinusoidal with amplitude equal to 1.85 degrees, frequency equal to 0.16 Hz.

^{**}Varies with time (Figure 7); value shown is at time of interest.

^{**} Varies with time (Figure 7); value shown is at time of interest.

TABLE 5 - REPEAT RUNS FOR $F_{\mathbf{x}}$ FOR STEADY-AHEAD OPERATION

Date of Run:		- 18 Dec 7	6	ı —	- 21 Dec 76	·—	ı —	28 C	Dec 76		30 Dec 76
Time of Run:	1100	1300	1410	1740	1052	1613	1120	1310	1315	1335	1000
Run No.:	45	50	55	57	65	92	114	115*	116	117	128
Propeller Speed, n (r/s)	14.08	14.08	14.08	14.08	14.08	14.01	14.08	14.08	14.02	14.08	14.00
Velocity, V (ft/s)	11.04	11.04	11.03	11.07	11.05	11.04	10.97	10.97	10.97	10.97	10.97
n					Ampli	tudes (F _X)** (Ib)				
0	4.380	4.392	4.408	4.520	4.635	4.528	4.321	4.495	4.434	4.457	4.528
•	1.628	1.631	1.632	1.532	1.631	1.622	1.563	1.608	1.594	1.588	1.610
2	0.306	0.303	0.305	0.340	0.335	0.330	0.255	0.257	0.261	0.255	0.292
3	0.215	0.210	0.211	0.221	0.228	0.234	0.201	0.203	0.204	0.201	0.229
4	0.115	0.117	0.117	0.110	0.118	0.123	0.119	0.123	0.123	0.121	0.127
5	0.060	0.061	0.059	0.054	0.063	0.069	0.054	0.055	0.051	0.052	0.056
6	0.028	0.027	0.024	0.028	0.031	0.033	0.021	0.025	0.022	0.021	0.027
7	0.008	0.010	0.008	0.007	0.003	0.002	0.003	0.002	0.002	0.003	0.005
8	0.015	0.016	0.017	0.008	0.010	0.008	0.010	0.010	0.011	0.011	0.013
9	0.009	0.009	0.011	0.010	0.002	0.004	0.003	0.003	0.004	0.005	0.008
10	0.008	0.007	0.009	0.009	0.010	0.011	0.010	0.009	0.009	0.010	0.010
11	0.008	0.009	0.009	0.012	0.010	0.011	0.012	0.014	0.014	0.016	0.012
12	0.013	0.013	0.014	0.015	0.014	0.015	0.017	0.016	0.017	0.019	0.012
13	0.009	0.009	0.010	0.012	0.010	0.013	0.012	0.011	0.011	0.014	0.014
14	0.006	0.006	0.007	0.008	0.007	0.007	0.008	0.006	0.005	0.008	0.008
15	0.005	0.004	0.006	0.003	0.002	0.004	0.005	0.006	0.005	0.005	0.006
16	0.007	0.006	0.008	0.005	0.003	0.003	0.005	0.005	0.006	0.006	0.006
					Phas	es (φ _x)**	(deg)				
1	118.8	118.6	119.0	115.3	116.8	116.5	1 116.7	116.5	116.3	116.2	118.7
2	12.0	11.2	11.6	3.5	-0.0	-0.2	1.2	1.3	3.4	3.2	-2.7
3	38.2	37.3	37.9	19.1	24.1	23.8	21.6	21.4	21.7	20.7	26.0
4	37.7	36.8	36.6	17.6	20.9	19.2	24.8	23.6	26.5	23.7	30.3
5	31.9	30.4	30.4	-0.6	10.5	9.5	13.5	12.6	15.5	12.2	18.7
6	49.7	46.5	39.8	4.6	13.5	16.4	11.2	5.8	6.2	3.0	35.5
7	167.9	-169.0	-166.5	107.7	113.7	116.5	-159.1	-92.1	161.0	-168.8	101.7
8	-126.4	-125.5	-121.0	-171.6	-155.3	179.3	-137.8	-123.6	-127.9	-140.6	-147.2
9	-135.2	-126.3	-133.4	140.1	171.2	136.1	-157.9	-113.9	-120.8	127.9	172.0
10	172.9	-178.3	-176.1	107.8	128.3	125.0	130.7	123.6	119.1	120.3	143.5
11	25.3	161.8	176.2	106.7	130.6	111.9	127.5	118.4	122.3	121.3	146.1
12	141.7	140.9	143.8	91.5	112.1	100.1	114.5	115.0	114.3	122.1	143.7
13	133.7	135.6	143.2	95.4	114.5	108.3	123.8	121.2	119.7	123.2	132.1
14	116.9	112.7	117.6	75.5	113.2	97.0	84.3	78.3	85.8	85.0	90.6
15	90.6	98.8	113.7	110.8	96.1	74.4	60.3	58.2	36.6	56.8	26.1
16	77.9	78.4	88.6	55.1	74.6	61.0	83.8	47.7	68.3	85.6	92.8
	77.5	70.4	00.0		,4.0	01.0		71.1	00.0	00.0	, 02.0

^{*}Run 115 used for detailed analysis
**Raw data without corrections for interactions or downstream body

TABLE 6 - CENTRIFUGAL AND GRAVITATIONAL LOADS*

	F _X (Ib)	M _Y (inlb)	F _Y (lb)	M _X (inlb)	F _Z (lb)	M _Z (inlb)	n (r/s)
Mean, (F, M)	0.036	0.191	0.774	0.0	7.300	-0.510	14.08
First Harmonic Amplitude, (F, M) ₁	0.0	0.0	0.194	0.314	0.244	0.0	
First Harmonic Phase, $(\phi_{F, M})_1$, (deg)	0.0	0.0	-96.0	96.0	-159.0	0.0	
Mean, (F, M)	0.035	0.184	0.744	0.0	6.930	-0.485	13.76
First Harmonic Amplitude, (F, M)	0.0	0.0	0.194	0.314	0.244	0.0	
First Harmonic Phase, $(\phi_{F, M})_1$, (deg)	0.0	0.0	-96.0	96.0	-159.0	0.0	
Mean, (F, M)	0.030	0.161	0.642	0.0	5.860	-0.410	12.65
First Harmonic Amplitude, (F, M) ₁	0.0	0.0	0.194	0.314	0.244	0.0	
First Harmonic Phase, $(\phi_{F, M})_1$, (deg)	0.0	0.0	-96.0	96.0	-159.0	0.0	
Mean, (F, M)	0.024	U.127	0.493	0.0	4.400	-0.308	10.96
First Harmonic Amplitude, (F, M) ₁	0.0	0.0	0.194	0.314	0.244	0.0	
First Harmonic Phase, $(\phi_{F, M})_1$, (deg)	0.0	0.0	-96.0	96.0	-159.0	0.0	
Mean, (F, M)	0.016	0.108	0.434	0.0	3.820	-0.207	10.21
First Harmonic Amplitude, (F, M)	0.0	0.0	0.194	0.314	0.244	0.0	
First Harmonic Phase, $(\phi_{F, M})_1$, (deg)	0.0	0.0	-96.0	96.0	-159.0	0.0	

^{*}The results shown here are for an Aluminum model propeller, $\rho_{\rm p}=5.44~{\rm lb}f{\rm -s}^2/{\rm ft}^4$ and were obtained by fairing the experimental air-spin data using the following restraints:

$$(\overline{F}, M)/n^2 = constant$$

$$(F_1, M_1) = constant$$

$$\phi_1$$
 = constant

Except where indicated in Table 8, all other centrifugal and gravitational loads presented in this report are for a Bronze propeller, $\rho_p = 14.48 \text{ lb} f - \text{s}^2/\text{ft}^4$

TABLE 7 - SUMMARY OF CIRCUMFERENTIAL VARIATION OF LOADS AT THE SELF PROPULSION CONDITION; V=6.52 KNOTS, n=14.08 REVOLUTIONS PER SECOND

	Maximum	Values	Minimum	Values	First Harmo	nic Values
	(F, M) _{MAX}	ϕ_{MAX}	(F, M) _{MIN}	ϕ_{MIN}	(F, M) ₁ (F, M)	ϕ_1
F _{×H}	1.43	124	0.51	308	0.42	116
M _{VH}	1.42	128	0.52	312	0.41	120
УН	1.40	120	0.54	292	0.38	105
1 _{×H}	-1.34*	124	-0.61	300	0.32	294
z _H	-7.88*	252	6.30	68	6.87	54
I _{zH}	-1.30*	204	-0.63	64	0.31	41
l _{0.3H}	1.37	132	0.59	312	0.35	124
1 _{0.4H}	1.36	132	0.60	312	0.34	128
×	1.42	124	0.53	308	0.41	116
y	1.40	128	0.54	312	0.39	120
v	1.14	132	0.83	304	0.12	123
×	-1.26*	136	-0.70	308	0.23	304
z	1.04	76	0.96	264	0.03	89
l _z	-1.18*	204	-0.77	64	0.19	41
0.3	1.45	136	0.48	312	0.43	124
0.4	1.60	140	0.33	312	0.56	126

^{*}The maximum values shown are the values which have the largest absolute value. For maximum values shown with negative sign, the corresponding time average values are negative using the adopted convention shown in Figure 1.

TABLE 8 - TIME AVERAGE LOADS FOR STEADY-AHEAD OPERATION AT THE SELF PROPULSION CONDITION; V = 6.52 KNOTS, n = 14.08 REVOLUTIONS PER SECOND

		Total with Aluminum Blades	Total with Bronze Blades	Hydrodynamic Loads Only		Total with Bronze Blades	Hydrodynamic Loads Only
F _x	(Ib)	3.722	3.781	3.686	K _F x	0.0448	0.0437
\overline{M}_{y}	(in lb)	10.903	11.220	10.712	K _{My}	0.0161	0.0154
F _y	(lb)	3.456	4.742	2.682	K _F	0.0562	0.0318
$\overline{\mathbf{M}}_{\mathbf{x}}$	(in lb)	-7.765	-7.765.	-7.765	K _M ∗	-0.0112	-0.0112
F _z	(lb)	7.145	19.279	-0.154	K _{Fz}	0.2253	-0.0018
$\overline{\mathbf{M}}_{\mathbf{z}}$	(in lb)	-2.608	-3.456	-2.098	\bar{K}_{M_z}	-0.0049	-0.0030
M̄ _{0.3}	(in lb)	6.659	5.563	7.322	K _{M0.3}	0.0080	0.0106
M _{0.4}	(in lb)	4.653	3.314	5.609	K _{M0.4}	0.0048	0.0081
™ _{0.5}	(in lb)	2.790	1.079	3.820			0.0055

For Aluminum blades $\rho_p = 5.44 \text{ lb} f - s^2/\text{ft}^4$ For Bronze blades $\rho_p = 14.48 \text{ lb} f - s^2/\text{ft}^4$

 $\overline{K}_F = \overline{F}/(\rho n^2 D^4)$ and $\overline{K}_M = \overline{M}/(\rho n^2 D^5)$ are based on the density of water

TABLE 9 - WAKE WITHOUT DYNAMOMETER BOAT

TABLE 9A - MEASURED DATA

	٧,٧	059	146	940	136	326	318	008	333	.007	.016	.115	.322	.327	.032	.334	.038	.343	.039	.139	
	V _t V	151	163	165	172	183	180	176	172	161	148	151	133	113	195	373	690	124	+00.	. 116	
	/x × >	1.398	1.111	1.101	1.123	1.109	1.116	1.124	1.117	1.131	1.130	1.119	1.123	1.128	1.111	1.121	1.127	1.117	1.133	1.119	
	om of the second	45.3	54.1	54.1	63.1	72.1	80.0	90.2	2.66	137.3	117.2	117.2	126.3	135.3	144.2	153.1	162.3	171.3	180.3	184.1	
	V _r V	011	314	017	018	018	318	314	011	.331	.119	.311	.015	039	048	158	365	068	068	169	164
	N ² N	.031	.327	.319	.025	.016	. 115	119	032	364	117	166	165	167	147	143	135	131	133	136	142
r/R = 0.370	×× ×	906.	.917	.917	906.	.918	468.	.912	466.	.933	626.	1.128	1.023	1.120	1.132	1.135	1.112	1.117	1.116	1.193	1.133
	φ _w	0.0	1.6	3.3	7.0	5.5	5.5	6.3	8.8	11.6	14.3	17.9	17.9	21.5	25.1	26.9	28.9	32.4	35.3	35.9	39.1

TABLE 9A (Continued)

	N'N	041	018	018	015	013	011	013	337	. 000	. 336	.012	. 309	. 012	.006	- 002	003	037	600	338	
	N3N	.114	.133	.134	.138	.138	.126	.124	.139	. 355	.022	.019	. 021	. 126	.027	. 331	. 032	. 333	.031	. 329	
	×× ×	1.110	1. 388	1.086	1.063	1.010	1.333	.974	.933	606.	.922	.936	046.	.939	126.	.931	.911	.909	.916	.923	
	6 3	315.0	324.0	324.2	327.8	331.4	333.0	333.1	335.3	338.6	342.0	345.8	349.0	351.1	353.0	354.8	356.0	358.3	358.0	359.3	
	٧,٧	.039	.337	.038	. 338	.036	. 031	.027	.020	.012	.035	.034	002	013	123	329	037	041	240	346	051
	N'A	. 116	. 128	. 0 32	. 339	.061	.385	.138	.130	.144	.154	.157	.163	.165	.166	.158	.146	.141	.132	.132	.118
r/R = 0.370	×× ×	1.119	1.122	1.119	1.107	1.106	1.111	1.124	1.118	1.125	1.137	1.123	1.119	1.114	1.108	1.139	1.113	1.132	1.097	1.098	1.089
	6 3	184.1	187.7	189.0	191.3	198.3	207.2	216.2	255.2	234.3	243.0	243.4	252.2	261.3	270.0	279.1	2883	291.8	297.0	297.1	335.3

N2N	.110	.104	. 196	. 087	.084	. 055	. 028	015	7.00-	358	061	362	056	369	069	375	072	046	046	032	318	013	318	023
V _t N	.334	.038	. 146	.057	.064	.088	. 196	.132	.083	. 164	.060	.363	.063	.367	.065	.353	.017	028	327	343	146	060	371	159
××	1.129	1.128	1.125	1.125	.1.126	1.124	1.128	1.135	1.096	1.100	1.101	1.132	1.083	1. 164	1.053	866.	166.	1.007	1,009	1.017	1.323	1.034	1. 323	1.027
**************************************	189.1	199.9	238.8	217.0	219.6	239.5	255.7	279.3	298.0	309.0	317.0	318.9	320.0	322.5	324.3	328.0	331.5	338.7	338.8	342.3	347.7	353.1	358.3	358.5
V,V	023	055	383	178	093	196	960-	198	091	386	081	977	690-	063	062	029	.007	.039	.372	760.	.136	.111	.111	.110
N3N	059	399	115	127	130	122	118	198	119	120	119	123	128	132	128	143	146	136	109	074	346	026	003	+00·
∧ ×∧	1.027	.987	1.126	1.123	1.051	1.387	1.078	1.185	1.078	1.081	1.090	1.385	1.086	1.086	1, 199	1.196	1,113	1,115	1.114	1.126	1.141	1.128	1.142	1.129
9	-1.5	4.3	7.3	7.3	11.1	14.8	18.3	18.3	21.3	25.4	29.1	32.3	36.2	39.8	39.9/	59.7	79.4	99.1	123.3	2.041	161.1	4.691	0.621	189.1

TABLE 9A (Continued)

. 962 - 963 . 973 - 061 . 943 - 068 . 962 - 133	V ₁ ∨ V	θ	~ ~	NN	
	117 115 136		*/*	A/3A	V, V
	115 106 104		1.036	-045	.103
	136		1.061	.078	. 084
• • •	104		1.348	.113	.052
• •			1.063	.117	. 021
•	105		1.059	.119	. 021
	116	259.0	1.062	.123	.011
•	115		1.061	.124	.011
023 096	112		1.034	.125	039
•	i		1.031	.117	362
•	·		1.045	102	
'	i		1.043	. 383	132
•	i		1.041	. 077	108
•	i		1.036	.077	105
•	:		1.039	.084	112
•	•		866.	.074	111
			.989	.321	116
•	•		1.001	.010	124
•	•		1.017	.318	128
•	•	•		.024	128
•	•		1.332	.133	124
•	•			. 927	117
•	•		.968	. 322	118
•	•		046.	017	104
	•		156.	362	119
	•		.962	063	117

TABLE 9A (Continued)

	٧,٧	.111	. 088	. 157	.015	328	375	092	102	110	116	116	125	136	136	132	131	125	113	104	393	102	135	
	٨,٧	.328	• 054	.378	.103	.131	.081	920.	.063	.351	.063	• 056	.038	.010	.116	.015	.313	.005	.007	001	029	640	374	
	>××	1.375	1.072	1.367	1.083	1.179	1.064	1.043	1.034	1.027	966.	026.	.955	1.006	1.011	1.015	1.304	866.	.982	.917	006.	.903	.925	
	m _o	199.9	219.6	239.0	259.0	279.2	299.0	304.0	339.9	315.2	323.9	322.0	324.3	326.0	327.8	329.6	333.2	336.0	343.4	346.1	351.0	356.6	360.0	
	٧,٧	115	109	116	119	113	105	111	138	397	191	082	374	069	132	-005	.037	.073	.199	.118	.117	•119	.117	
	∧ ²^	+200	620	083	0.00-	975	135	112	079	103	137	115	122	119	128	133	131	103	086	345	037	316	003	
r/R = 1.022	N _x N	.925	446.	• 965	1.000	.983	1.339	1.024	1.166	1.060	1.161	1.064	1.057	1.067	1.072	1.079	1.059	1.065	1.164	1.176	1.080	1.385	1.183	
	· · ·	0.0	1.0	3.0	7.4	9.5	12.8	14.6	20.3	21.9	27.1	32.6	37.0	39.8	59.3	19.4	99.1	120.0	140.4	162.1	169.2	181.9	189.1	

TABLE 9B - INTERPOLATED VALUES OF $_{\rm x}/_{\rm v}$

m _w	r/R = 0.3	0.4	0.5	9.0	0.7	9.0	6.0	1.0
	. 85	. 925	~	.988	.975	- 962	846.	M
S.	10.	. 328	9	426.	196.	.961	. 958	.958
0	. 45	. 925	97	66	.987	.983	.983	0
2	.80	. 923	9	.01	.991	.978		5
0.0	1200	956	1.022	1.025	696.	- 942	776.	426.
5	. 00	. 587	70	40·	766	.968	96	3
5.0	•	. 01	.07	.07	1.024	1.000	666.	. 02
7.5	96.	1.036	.07	.07	1.034	0.1	1.021	+
0.0	1.	. 08	.08	• 06	1.936	1.023	1.031	
2.5	1.15	1.124	60	1.068	1.040	1.028	1.032	5
5.0	1.15	112	.09	.07	1.043	03	1.034	.05
7.5	1.	. 10	.09	1.076	1.045	1.031	1.033	.05
0.0	1.	1.113	0	.07	•	02	1.033	5
2.5	:	.11	. 19	07	1.040	02	1.032	.05
5.0	1.10	110	.09	.07		02	0.	. 05
7.5	-1	. 10	.09	1.075		1.020	-	. 05
0.0	1.	110	.10	.07		01		. 05
2.	1.664	16	.10	.08		02		.06
2:	1.083	10	.10	.08		1.024	0.	.06
1.	1.065	10	.10	1.084	1.043	1.027	1.035	.06
0	1.089	. 10	10	.08		02		• 06
2.	1.094	. 10	. 10	.08		1.031	0.	• 06
2	1.100	110	. 10	.08		1.031	0	.06
7.	1.108	.11	. 10	.08		1.032		• 06
	1.115	.11	.10	.08		1.032	1.037	9

TABLE 9B (Continued)

φ _w	r/R = 0.3	0.4	9.0	9.0	0.7	8.0	0.0	1.0
60.0	1.115		.10	.08		3	.03	. 06
62.5	.11	11	.11	.08		03	.03	. 16
2	1.115		.11	.08	· 04	03	. 93	.06
7.	.10	.11	.11	.08	.04	.02	. 13	. 16
70.0	1.101	1.114	1.113	0	1.046	1.028	1.035	1.067
2.	60.	. 11	.11	.08	*0.	.02	.03	.06
5	. 09	.11	.11	. 09	. D4	.02	.03	. 06
7.	.09	.11	.11	.09	.04	.02	.03	.06
	.10	.11	. 12	.09	· 04	.02	.03	.06
2	.10	. 12	.12	.09	.04	.02	.03	. 06
3	.10	.12	.12	.09	*0 •	.02	.03	.06
7.	.11	. 12	.12	60.	.04	.02	.93	.06
	.11	. 12	.12	.09	.05	.02	.03	. 05
2.	.10	. 12	.12	.09	. 05	.03	.03	.05
2	.10	. 12	.12	• 05	. 05	.03	.03	. 05
1.	. 10	. 12	.12	.09	.05	.03	.03	. 95
	.10	. 12	.12	.09	. 05	.02	.02	. 05
2.	.10	. 12	.12	.09	.04	.02	.02	. 05
5.	.11	.13	.12	• 09	+O.	2	.02	.04
1.	.12	.13	.12	.09	· 04	.01	.01	.94
	.11	.13	.12	• 0 9	.03	.01	.01	+0·
2	.11	.13	.12	•09	.03	.00	.01	+0·
.0	.11	.13	.12	•09	.03	8	. 01	. 05
117.5	.10	. 12	.12	• 0 9	. 03	00	.01	. 05
-	110	112	.12	90.	- 03	0	. 01	- 15

TABLE 9B (Continued)

1.0	.05	.05	.05	.05	.05	. 15	1.054	. 05	. 05	. 05	.05	. 05	.05	.05	. 06	.06	.06	• 06	.06	. 07	.07	-07	. 97	.07	.07
6.0	.01	.02	.02	.02	.02	.02	1.026	.02	. 02	. 02	.02	.02	.02	.02	.02	.02	.03	.03	.03	+0°	.04	· 04	50.		· 0 4
0.8		-	-	-	-		1.026	0.		0.	0.				-	0.	-	0.	0.	0.	0	•	.0		0.
0.7	. 03	.04	.04	. 05	• 05	. 05	1.051	. 05	. 05	. 05	. 05	. 05	. 05	. 05	. 05	.05	. 05	. 06	• 06	• 06	• 06	• 06	.07	.07	• 06
9.0	.09	.09	.09	.10	.10	.10	1.104	.10	.10	.10	.11	.11	.11	.11	.11	.12	.12	.11	.11	.11	.11	.11	.11	.12	.12
0.5	.12	.12	.12	.12	.13	.13	1.134	.13	.13	.13	.13	.14	.14	.14	.14	.14	.14	.14	. 14	.13	.13	.13	.14	.14	.1
0.4	.12	.12	.12	. 12	. 12	. 13	1.132	.13	. 12	.12	. 12	. 12	. 12	.13	.13	.13	.13	.13	.13	.12	. 12	. 12	.13	.13	• 14
r/R = 0.3	0	0	.10	. 10	.11	.11	1.112	.10	60.	. 08	. 07	.07	. 03	. 08	· 09	. 09	.09	. 10	60.	.09	.09	• 03	.10	. 10	• 11
» «	20.	22.	25.	2	30.	32.	135.0	37.	+10.	45.	45.	47.	20.	52.	55.	57.	.09	62.	165.0	.19	70.	72.	75.	77.	80.

TABLE 9B (Continued)

1.0	1.975	1.075				•	•		•				1.067	•	•	•	•	•	•	•	•	•	•	•		
6.0	1.046	1.043	1.041	1.041	1.041	1.041	1.042	1.044	1.046	1.047	1.049	1.051	1.052	1.054	1.055	1.056	1.057	1.055	1.053	1.051	1.049	1.048	1.046	1.045	1.045	
0.8	1.044	1.040	1.038	1.037	1.037	1.039	1.041	1.043	1.046	1.048	1.051	1.053	1.055	1.057	1.058	1.060	1.061	1.059	1.057	1.055	1.053	1.051		1.049	1.048	
0.7													1.075												•	
9.0	1.123		•	•	•	•		•	•		•	•	1.112	•	•		•	•	•		•		•		•	
0.5	1.149	1.145	1.141	1.138	1.134	1.131	1.130	1.131	1.131	1.130	1.130	1.129	1-130	1.130	1.130	1.131	1:132	1.132	1.132	1.133	1.133	1.133	1.133	1.133	1.133	
0.4	1.140	1.132	1.128	1.128	1.121	1.114	1.113	1.114	1.115	1.116	1.117	1.118	1-121	1.124	1.127	1.127	1.127	1.125	1.124	1.125	1.126	1.128	1.130	1.131	1.132	
r/R = 0.3	1.110	1.096	1.092	1.097	1.087	1.073	1.071	1.074	•	1.080		1.089	1.096	1.103	1.109	1.110	1.106	1.102	1.099	1.100	1.103	1.106	1.110	1.114	1.117	
		.5	0.		0.				0.			.5	0.	5	0.	5	0	5					0		0 '	
9	180.	2	185	187.	190.	192.	15	~	0	202	5	207.	210.	212.	215	217.	220.	222	225.	227.	230.	2	235	237.	240.	

TABLE 9B (Continued)

r/R = 0.3	0.4	9.0	9.0	0.7	0.8	6.0	1.0
-	.13	.13	.11	.07	.04	-	
-	.13	.13	.11	. 07	. 05	-	
-	.13	.13	.11	. 07	.05		-
-	.13	.13	.11	.07	.05	0	0.
C	.12	.13	.11	.07	.05	-	-
0	.12	.13	.11	. 07	• 06	-	
S	.12	.13	.11	. 08	• 06	-	
1.097	1.122	1.130	1.115	1.079	1.061	1.060	1.076
9	. 12	.12	.11	.07	• 06	-	
3	.11	.12	.11	. 07	. 05	-	0.
9	.11	.12	10	.07	. 05	-	0.
g	.11	.12	.10	• 06	.05	-	-
9	.11	.11	.10	.06	10.	-	-
3	.11	.11	60.	. 06	.04	-	
3	.11	.11	• 09	. 05	P. F.	-	
5	.11	.11	• 0 9	• 05	. 4.3	-	-
3	.11	.11	.09	. 05	.03	-	0.
(3	.11	.11	.08	.04	.03	-	
0	.11	.11	.08	. 04	.03		
0	11.	.10	. 08	· 04	. 03	-	
9	. 10	.10	.08	+0.	.03	-	-
9	. 10	.10	.08	.04	.03	-	
3	. 10	.10	.08	. 05	.03	-	0.
8	1.099	10	8	. 05	.04		0.
3	00	110	AU	106	70	5	-

TABLE 9B (Continued)

.097 1.101	•				
1-1	-	1.060	1.046	1.044	1.055
	0.	1.062		1.041	1.046
1.1	0.	1.063	•	1.038	1.039
1.1	0	1.063	1.044	1.035	1.036
1.1	0.	1.063	1.043	1.033	1.033
.109 1.110		1.070	1.050	1.038	1.033
1.1		1.072	1.052	1.038	1.029
1.1	0	1.066	1.044	1.028	1.016
104 1.0	0.	1.044	1.019	1.003	966.
1.0	0.	1.021	.995	926.	.963
1.0		1.006	.987	926.	.975
0	-	1.000	1.000	1.003	1.010
1.0	665.	1.016	1.024	1.025	1.017
5.	0.	1.011	1.015	1.015	1.009
	0.	1.003	1.003	1.002	1.001
•	0.	1.002	1.000	166.	. 995
6.	0.	. 986	926.	426.	.981
6 1.0	1.008	926.	.957	056.	.956
5 1.0	1.008	- 972	246.	.932	.928
0 1.0		026.	.941	.921	.910
3 1.9	-	.971	. 939	.916	.903
6 1.0		.975	076.	.915	.899
7 1.0	0	926.	946.	.920	-902
8 1.0	0	.980	.952	.929	. 311
5.	.988	.975	.962	846.	.933
* * * * * * * * * * * * * * * * * * * *	1.005 1.005 1.006 1.008 1.008 1.008 1.020 1.020 1.013		1.002 986 976 976 970 970 976	976 976 977 970 971 975 976	986 976 976 976 976 977 977 971 939 940 975 940 975 980 975 975 9875 9875 9875

TABLE 9C - INTERPOLATED VALUES OF V_t/V

1.0	971			065	077	102	110						109						116					125	
6.0	065	690		050	070	•	110	•	•		•	•	•	•	108	•			113			117	118	•	121
0.8	063	•			075	•	•				•				•			113		•	117	•	119		125
0.7	063	•	•	•	092	111	•	109	•	•	•		•	108		114	•		120			•	125	•	128
9.0	067		0.	-	120	-	7	110		-		1.	.1	-	123	-	126	128	130	131	133	135	136		139
0.5	770	061	٠.	7	116	122	*	4	130	7.	129		4	7	131	133	135	-	139		144	146	148	7.	152
4.0	.010	001			072					154	•		131			138		145			155	158	161		165
r/R = 0.3	.088	060.	.100	.042	• 001	490	129	190	198	175	158	149	135	130	134	140	147	152	157	162	167	171	175	178	180
03	0.0	5.5	2.0	1.5	10.0	5.	2	7.		2.	3	2	30.0	2	3	7.	0	5.	3	2		5.	2	7.	0.

TABLE 9C (Continued)

1.0	126	127	128	129	130	130	131	131	1 32	132	132	132	131	131	130	129	128	125	122	119	116	113	110	106	-c 103
0.9	121	122	123	124	125	126	126	126	126	126	126	125	125	124	123	122	121	119	118	116	113	111	108	105	102
0.8	122	123	124	125	126	126	126	126	126	126	125	125	124	123	122	121	119	118	117	115	113	111	109	106	103
0.7	128	129	130	131	131	132	132	132	132	131	130	130	129	127	126	125	123	122	120	118	116	114	111	108	105
9.0	139	140	141	145	145	143	143	143	142	145	141	140	139	138	136	134	132	130	128	125	122	119	116	112	108
0.5	152	153	154	156	156	157	157	157	157	156	155	154	153	152	150	148	146	143	140	137	134	130	127	123	119
0.4	165	167	169	171	173	174	175	175	174	174	173	171	170	169	168	167	164	161	158	155	152	149	146	142	138
r/R = 0.3	180	183	186	190	193	195	196	196	196	195	194	192	191	191	190	159	188	184	181	177	175	173	171	168	164
φ *	60.0	62.5	65.0	2	70.3	2.	5	1		2.	3	7.		2.	5	-		2.	3	107.5		•	115.0	•	120.0

TABLE 9C (Continued)

1.0	10	10	60	60	0	60	. 08	. 08	.08	08	.07	.07	• 06	• 06	.05	055	.04	10.	70	03	03	.02	02	02	5
0.0	-			0	0	-	-	0							-	048	0.		-		0.	0		0	0
0.8	103	0	0	091	0	-		•	-	•		0.	0	•	0	240	0	-	-	0	0	0	0	0	0
0.7	0		• 09	60	8	08	. 08	.07	07	• 07	• 06	. 06	• 05	• 05	• 05	047	10.	.03	. 03	. 02	.01	.01	8	.00	8
9.0	1 08	-	-	095	0.	0.	0	0.	0	0		0		•	-	640	0.		0		0	0	-	0 05	-
0.5	-	-	-	10	.10	• 09	• 09	.08	. 08	.07	07	.07	• 06	• 06	.05	053	.04	+ O ·	03	.03	.02	.01	.01	00	.00
0.4	M	M	12	N	. 11	.11	. 16	.10	. 09	. 09	. 08	.68	.07	. 07	• 06	059	. 05	. 04	.04	.03	. 02	02	. 01	. 00	00
r/R = 0.3	164	S	In	14	.14	M	M	2	.12	-	10	9	60	90	1	067	S	5	3	M	2	N	01	0	00
м _θ	20.	22.	25.	27.	30.	32.	35.	37.	.04	42.	45.	47.	50.	52.	55.	157.5	.09	62.	65.	67.	73.	72.	75.	77.	80.

TABLE 9C (Continued)

1.0	017	013	009	+000-	- 002	.008	.016	.023	.030	.035	070.	**0	240.	.050	.053	• 056	• 059	90	• 065	• 069	-072	-075	.078	.082	. 085
6.0	008	005	001	+00	.010	.016	• 022	• 029	• 036	-045	240.	.052	• 056	.061	. 165	.068	.072	920.	.080	.084	. 088	-092	960.	.100	.103
0.8	.00	00	*00 •	. 008	.013	.019	• 026	.033	040 •	.045	.050	.055	090.	• 1064	690.	.073	.078	.083	.087	- 092	960 •	.100	.104	.107	.110
0.7	00000	- 002	700	. 008	.013	• 019	.027	. 034	.041	• 045	.050	• 054	• 058	. 062	990•	.071	.077	. 082	.086	. 091	• 095	660.	.102	.105	.107
9.0	-	0.000	0	*00°	.008	.016	.024	.032	.039	-045	0	240.	0	.053	.057	-062	. 168	.073	.078	.082	.085	.088	060.	- 092	760
0.5	0	0	0	0	.013	N	M	M	+	#	0.5	0.5	0	9	.065	~	~	8	8	9	0	9	9	. 100	0
0.4	. 003	600.	. 015	. 022	. 029	.037	.045	. 053	. 060	990.	. 672	.077	. 082	. 088	. 093	660.	• 106	.112	.117	.122	. 125	.129	.132	.135	.137
r/R = 0.3	.007	.017	• 029	• 045	.053	090•	. 168	.075	. 182	-092	.101	.111	.120	•129	•136	.143	.150	•156	.153	.160	.173	.176	.183	.187	• 192
•		2	5	2	190.0	2.	5	2		2.	5	7		2.	5	2		2.	5	7		2.	5	1.	

1.0		0	0	-	760.	-	-	.105	.107	. 108	.109	10	10	10	10	10	10	-102	.100	860.	. 195	-092	.089	. 086	.084
6.0	.103	•105	-107	.108	.110	.113	.115	.118	.121	.122	.123	.124	.124	.123	.122	.121	.120	.118	.116	.113	.111	.108	.104	.100	960.
0.8	.110	.112	.113	.114	.115	.117	.119	.122	.124	.126	.127	.128	.128	.128	.127	.126	.125	.124	.122	.119	.117	.113	.109	.105	.100
0.7	.107	.108	.109	.110	.111	.112	.114	.117	.119	.120	.122	.123	.123	.123	. 123	. 122	.121	.119	.118	.115	.113	.109	• 106	.101	960.
9.0	0	.095	960.	960.	660.	.100	.101	.102	.104	.105	.106	.107	.108	.108	.108	.108	.107	.105	.104	.101	660.	960.	.093	690.	.084
0.5	0	.104	•106	0	.109	-	.111	-	-	.114	-	-	-	_	-	-	-	.111	0	0	0	0	m	1	-
0.4	.137	.140	-142	.145	.146	. 148	.149	.149	.150	.151	.151	.152	5	2	.149	#	.144	.141	.138	3	m	2	.125	N	-
r/R = 0.3	0	•195	9	.201	-204	0	.207	0	0	0	0	0	.268	0	0	O	0	.189	0	8	~	.172	0	.162	.157
m _m		2	2	2	250.0	5	2	1.		2	21	2			2	2.			2	2		·	0		•

	r/R = 0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
	157	-	8	0		-	9	
	161	1 -	0	070	5	9		0
:	1	1:	9 6	9 6	3	00	2	-
2	14	9		9			0	0.43
2	+		0		. 081	2	0	7/0.
	+	10	07	0	07	90	0	0
2	14	10	07	0	• 075	07	~	.060
2	3	10	-	0	07	07	07	9
1	5		07	0	07	07	07	0
	0	10	~	.067	07	08	07	07
2	16	-	08	0	.072	90	S	0
2	16	12	08	0	70	m	02	01
7	1	12	07	0	02	01	01	10
	0	12	9	0	. 023	-	01	0
2	20	10	03	0	02	02	02	11
5	0	08	0.1	0	02	02	02	.012
7	M	05	00	0	01	02	02	0
-	6	02	02	0	00	02	05	0
2	9	0	031	031	001	.016	.020	.010
3	90	00	.03	-	8	00	5	0
7	9	00	03	0	5	8	8	0
	~	00	.03	0	8	10	2	021
2	07	00	. 04	0	50	03	03	
r.	0	00	.05		9	20	3	0
1	6	8	.05	0	065	n	05	054
360.0	.088	01	70		063	O	9	0

TABLE 9D - INTERPOLATED VALUES OF V I

1.0	111	-	121	-	109	105	113	115	109	097	093	092	088	084	079	075	071	067	062	058	053	048	043	038	033
6.0	124	126	120	113	107	107	116	117	113	105	101	860	560	060	087	083	080	076	072	067	063	057	052	2.047	045
0.8	117	118		106	104	106	114	115	•	108	102	860	095	092	088		082	078		169	•	•		050	•
0.7	060			960	660	103	109	110	•			•		088					•		•			940	•
9.0	043		071	085	093	097	660	100	•	•	•	086	•	079	075		166	062	•	•	640	•		036	•
0.5	014	•	240	062	068		•	067		070	•	•	075	072	690	•		056	•		440	0+0	037	•	029
0.4	010			025		014	010	308	016	033		065	690		068		062			053				(39	•
r/R = 0.3	020	016	602	.023				.072												+90	061	057	054	051	640
*	0.0	2.5	5.0	7.5	.0	2.	3	17.5	.0	2.	3	7.		2.	2	7.		2.	2	7.		2.	5.	7.	0.09

TABLE 9D (Continued)

1.0	033	029	925	021	016	012	008		0.000	0	0	0	.018	0	0	-	0	0	0	.050	.055	• 050	.063	. 068	.071
0.9	0	038	0	030	0	0	0	0	0	-	0	0	600.	0	0	0	0	0	040.	0	0	0	0	-062	990•
0.8	045	0	037	033	0	024	0		011	0		0	• 000	0	.016	0	0	.032	.038	0	840.	0	0	090.	• 1064
0.7	041	. 03	033	029	02	020	10	01	.00	8	00	00	.010	10	10	02	02	03	50	. 045	35	9	05	90	• 065
9.0	0	•	0	018	0	0			0	0	0	0	.021	0	.029	.033	.037	0	0	0	.055	0	.063	0	.070
0.5	2	2	2	-	-	00	.00	.00	0	00	01	0.1	.018	02	2	2	M	M	03	10	4	10	5	05	5
0.4	036	133	. 03	. 02	023	020	017	014	. 01	600	. 00	003	001	.002	+00 •	200.	600.	.012	.015	.017	02	. 022	.025	02	• 029
r/R = 0.3	640	2+00-	045	770	042	041	- 039	038	036	035	033	032	031	029	028	027	025	023	022	020	015	018	017	016	015
°	60.0		2			2		2	:				0.06	2	2					107.5	110.0	112.5	115.3	117.5	120.0

TABLE 9D (Continued)

°м	r/R = 0.3	0.4	9.0	9.0	0.7	8.0	6.0	1.0
20.	015	N	S	.070	. 065	*90*	• 166	~
22.	014	M	0	0	690.	.067		~
25.	013	03	w	0				~
27.		m	0	0	.075	* 10°	920.	.082
30.	011	M	~	.082	.078	.077	.080	8
32.		m	~	.085	. 081	.080	.083	80
35.	600*-	1	~	.088	. 084	.083	• 086	160.
137.5	008	-045	920.	060.	.086	.086	.088	760.
40.	007	+	1	.092	690.	.089		.097
42.	.00	3	0	760.	- 092	.092	760	0
45.	005	#	8	960.	*60 •	500	260.	0
47.	005	+	8	860.	960•	260.	. 100	0
50.	005	+	8	.100	860.	660.	.102	0
52.	+000-	4	8	.101	.100	.101	.105	-
55.	003	#	8	.103	.102	.103	.107	-
57.	.00	2	8	.104	.103	.105	.108	.114
.09	002	2	8	.105	.105	.106	.110	-
62.	•	S	9	.107	• 105	•106	.110	-
. 59	001	2	6	.108	• 106	.107	.110	-
.19	001	2	6	•109	.107	.107	.110	.115
70.		5	9	.110	.107	.107	.110	.115
72.	001	2	9	.110	.108	.108	.110	.116
75.	001	S	9	.110	.108	.108	.111	.117
17.	001	2	9	.110	•109	.110	.112	.117
80.	001	5	9	.110	.110	.111	.114	.118

TABLE 9D (Continued)

1,0	.118	.119	.118	.118	.117	.115	.114	.112	.110	.108	.105	.103	.100	160.	760.	.091	.087	. 084	.080	• 076	-072	.068	• 064	.059	•055
6.0	.114	.116	.116	.116	.115	.114	.111	.109	.106	.104	.102	.100	260.	+60 •	.091	.088	.085	- 082	.078	+10.	020.	• 066	• 062	.057	.053
0.8	.111	.114	.115	.115	.114	.112	.110	.107	.104	.102	.100	260.	560.	.093	060 •	.087	.084	.081	.077	.073	• 0 69	• 065	. 061	• 056	-052
0.7	.110	.112	.113	.113	-112	.110	.108	• 106	.103	.101	660 •	260.	760	. 092	690 •	.086	. 083	.080	.077	.073	690 •	• 065	. 061	• 056	• 052
9.0	.110	.111	.111	.110	.110	•109	.107	.105	.103	.101	660.	260.	760	-092	680.	.086	.083	.080	.077	.073	.070	990•	• 062	.058	•024
0.5	.093	260.	.092	.091	160.	060.	.089	.088	.086	.084	.082	.080	.078	• 076	, 074	.071	.069	990.	.063	• 059	• 056	.053	.050	940.	• 043
4.0	• 054	• 054	.053	.052	. 052	.053	. 052	0 50 •	640 •	. 048	940 .	• 045	.043	. 042	. 041	. (39	.037	. 034	. 032	• 629	. 027	.025	. 022	.020	.017
r/R = 0.3	001	0.000	601	002	001	00000	001	002	+000	+000-	- 0002	900	-• 00 6	006	007	200	- 00 A	011	012	013	015	016	017	016	020
om om	.0	2.	5	2		2.	5	1	.0	2	10	1	0.	2.	5.	1.	0	5.	5	7		2.	5	237.5	

TABLE 9D (Continued)

1.0		10		m	m	01	N	-	.012	0	.001	0	010	-	021	027	M	038	t	t	2	9	9	-	80
6.0	0.5	10	+	03	-	01	01	-	00	0	003	00	-	N	2	M	M	t	051	0.5	0	90	.07	079	.08
0.8	.052	0	.041	0	0	.025	0	.014	0	0	003	0	015	022	028	034	-	940	051	057		068	073	078	083
0.7	. 052	04	70	03	.032	.027	.022	.017	01	00	.001	00	011	017	022	. 02	034	039	045	050	055	090	190	690	073
9.0	.054	0	0	.041	0	.032	0	0	.018	0	600.	*00°	0	0	011	016	-	-		036	-	770	840	0	
9.0	10	M	03	M	02	02	N	01	-	0.1	.006	0 0	00	0 0	01	0.1	0.1	0 2	0 2	03	M	.03	40.	0	. 04
0.4	.017	01	10	10	00	00	.003	00	. 00	305	008	011	. 01	. 11	62	. 02	02	02	0.3	034	037	• 04	042	040	
r/R = 0.3	020	021	02	023	024	025	026	112	02	63		0.3	03	. 03	03	7	10	04		10		10	051	053	055
9	0	2	2	1		2	55	1	0		15	1	-	2	5	77		32.	5.	37	0	32	25	7	300.0

TABLE 9D (Continued)

1.0		089	095		104		1111		-	-	2	3	133	3		123	117	113	110	105	100			110	1111
6.0	8	092	. 09	103	107	109	-	113	116	119	124	-	7	135	-	124	-	7	-	114	-	117	123	126	124
0.8	083	0	093	950	102	103	7	106	109	112	114	-	.1	126	-	7	-		-			110	115	118	117
0.7	073	0	081	-	088	0	-	0	095	0	•	-	-	-	-	760	0	-	0	0	-	-	-	087	060
9.0	055	059	0	+90	066	•	-	690	072	0		081	0	0	0	0	052	-		-	0	0	0	033	043
0.5	4	*0.	05	5	5	2	2	2	2	2	.05	.05	2	2	+	m	02	-	00	.00	0	0	0	002	
0.4	2+0	• 04	020	. 05	8 +0 *-	940	. 04	037	. 03	029	025	025	023	021	015	600	005	+00 •	600.	600.	• 011	600 •	+ 00 ·	003	010
r/R = 0.3	5	056	• 02	• 05	. 05	+	• 04	.02	.01	00	00.	00.	00.	00.	.01	.014	.01	.01	.01	00.	00.	.00	-	024	2
Φ*		2	2	1		2	2.	1.		5	2.	1.		2.	2	1.	0	2	2		.0	5	2	357.5	•

TABLE 9E - HARMONICS OF V /V

	(φ*, μ)	0.0	279.3	281.7	286.4	289.3	296.0	294.4	298.1	246.3	157.2	152.7				(φ*)	0.0	279.1	-284.2	295.1	594.4	306.3	307.7	303.7	199.8	172.7	166.8
	ν _α (χ)	0.0000	.0577	.0583	.0412	.0383	.0324	.0161	.0159	.0035	• 0045	.0165				ν, (v)	0.000	.0539	.0390	.0286	.0228	.0203	2600.	.0063	.0019	• 0056	9600*
	(B _x) _n V	0.0000	2600	.0118	.0116	.0127	.0142	2900.	• 0075	0014	0041	0147				(B _x),/V	0.0000	.0085	9600*	.0121	7600	.0120	-0057	• 0035	0018	0056	-
r/R = 0.3	(A _x) _n /V.	1.0697	6950*-	0571	0395	0361	0291	0147	0140	0632	-0017	9200.			r/R = 0.4	(A _x) _n /V	1.0963	0532	0378	0259	0208	0164	+ 200	0052	0006	2000	.0022
r/R:		0	+	2	m	4	S	9	7	80	6	10			r/R	c	0		2	8	+	2	9	7	20	۳.	10

	υ(<u>*</u> φ)		2	289.1	2	3	2	1.		2	185.3	m				υ(<u>*</u> φ)	0.0	569.6	596.4	305.8	304.4	331.4	342.7	75.8	147.0	208.9	217.7
	$N_n(x)$	0.000	.0483	.0255	.0201	012	.0127	.0057	. 0012	002	• 0056	• 0058				V _n (xV)	0.000	.0387	.0185	.0146	.0081	2600.	.0051	• 0056	.0030	7700.	. 0045
	√, (8x)	0.000	-	.0083	0	0	0	0	0	0	0	9				(B _x),/V	00000	0	8	0	8	_		_	_	0039	.00
r/R = 0.5	V,(A)	1-1051	6270-	0241	0164	0104	0077	0027	0000	6000	0005	0014			r/R = 0.6	(A _x), V	1.0866	3	0166	0118	-	-		0	_	0021	0
r/R	c	•			ım		· v		, ~	. *	. 0	, 01			r/R	c				m				1	. «		10

TABLE 9E (Continued)

	(φ*) _n	0.0	252.3	301.5	288.4	288.3	319.3	326.6	30.9	154.2	260.4	216.4			(φ*)	0.0	243.4	304.3	283.9	287.2	310.8	316.9	345.0	176.3	289.7	236.3
	ν', (x)	0.000	.0283	.0174	.0123	.0091	9600*	.0061	.0024	.0031	.0041	.0037			V, (V,)	0.000	.0247	.0189	.0136	6600	• 0095	6900•	.0032	.0022	• 00 55	.0024
	(B _x) _n \	0	.00	0	0	0	.0073		0			0			(B _x) _n ∕∨	0.0000		.0107	.0033	•0029	-0062	.0050	.0031	0022	.0019	0013
	(A _x), N	1.0466	120.	14	11	.008	0063	03	01	01	10	• 0 02			(A _x), N	1.0265	.022	0156	.013	0095	0072	+00.	.000	.0001	0052	0020
r/R = 0.7	-	o	-	2	2	t	ıc	9	7	89	٦	10		r/R = 0.8	•	0	-	2	3	4	5	9	7	8	6	10

TABLE 9E (Continued)

	"(×φ)		252.9		2	2	2		2	2	3.				υ(*φ)	0.0	274.0					305.0				
	√, (, √)	0	.0252	0	~	0	9	~	5	N	9	005			٧, (۷×)	0.000	.0330	. 6293	.0257	.0110	• 0084	.0075	. 0080	• 0055	.0073	• 0058
	(B _x) _n /V	000	7200	012	900	50	009	10	03	00	03	001			(8 _x) _n √	00	.0023	15	17	03	10	0.4	03	01	05	0.2
6'0	(A _x), \(\text{A}\)	26	0241	18	16	38	07	90	63	02	90	02		0'1	(A _x), \	1.0463	0329	54	.021	07	-007	• 0 0 6	07	05	0.2	62
r/R = 0.9	c	0	1	2	3	t	2	9	7	8	G.	10		r/R = 1.0	c	0	1	2	8	4	2	9	7	90	5	10

TABLE 9F - HARMONICS OF V_t/V

	υ(¹ φ)				146.9					9-69	3	6				(¢φ)	0.0	186.1	~	170.0	0	9	2	8		9.99	=
	√"(³√)	0.0000	.2094	.0138	. 0233	.0170	.0119	0900.	.0077	.0112	.0132	.0142				(V _t) _n /V	0.0000	.1674	.0112	.0114	.0068	.0062	. 0019	.0030	. 3068	.0082	, 0084
	(B _t) N	0.000	2094	0112	0195	0161	0114	0048	• 0005	9,00.	6500.	.0072				(B _t),/V	0.0000	1665	0111	0112	0086	0062	0019	.0011	.0034	.0033	.0027
0.3	V,(,A)	90	02	90	.0127	90	53	03	10	10	11	12		,	.0.4	V, (A,), V	0116	0178	.001	.0020	01	00	00	02	05	10	07
r/R = 0.3	-		1	2	M	*	2	9	7	20	6	.01			r/R = 0.4	c	0	1	2	м	3	2	9	1	10	5	10

	υ(‡φ)	0.0	1:	6	+	6	231.0	2	2	-	2	5				υ(¿φ)	0.0	193.1	;	253.3	2	2	:		3	2	
	(V _t) _n /V	0.000	•1394	.0134	.0073	.0070	- 0042	.0020	.0013	.0035	7700	9400.				٧٠,١٠٧)	0	.1275	-	0	0	0	0	0	0		0
	$(B_t)_n \wedge$	0.000	35	.010	0.5	03	0026	00	01	02	0.1	00				√u(,48)		1242	O	N	-	-					_
r/R = 0.5	(A _t , √	23	27	08	0 0 2	90	0633	02	00	02	70	50		· · · · · · · · · · · · · · · · · · ·	r/R = 0.6	√ _n (_A ¢)	0241	0269	0	0074	0006	0034	0	0019	.0011	.0019	.0020
	c	0	-	7	2	4	2	0	1	80	o	10				-	0	-	2	8	t	2	9	1	œ	57	10

	υ(¹ φ)			;	:	3.	233.0		2	9	-				υ(² φ)	0.0	189.3	48.	64	26.	97.	98.	21.	172.5	87.	07.	
	(\(^{1}\)	60	128	15	9	70	.0022	02	001	00	00	01			(\(^{t}\))	0.000	.1278	.0154	• 0045	.0033	. 0019	• 0026	.0014	.0016	.0008	.0020	
	(B _t) ,//	00	.126	.006	.001	02	6013	.001	.000	.000	0 0	0.1			(B _t),/V	000	1261	005	001	.002	001	.002	001	01	000	001	
r/R = 0.7	(A _t) _n /V	0147	0241	.014	.095	+000	0418	.001	.001	.0007	.0000	• 0 00 3		r/8 = 0.8	(A,) N	0112	0207	0144	•		0006	-	•	.0002	0061	6000	
,,	•	0	-	2	2	3	s	9	1	æ	5	10		,	_	0	1	2	8	4	2	9	1	œ	5	10	

	(φ* ₁),	0.0			247.5	2		3	3	2						υ(¿φ)	0.0	88.	42.	246.2	21.	77.	04.	17.	08.	.68	45.
	\(\sigma^{\alpha}(^{3}\Lambda)\)	0.000	.1248	.0146	-0037	.0027	• 0026	• 0025	. 0011	.0023	. 0011	.0023				(V ₁ , V)	0.0000	.1196	.0132	.0035	.0023	.0035	.0017	.0012	.0028	. 0011	• 0025
	(B _t) _n /V		-	-	0014	-	-	0	-	•		0				(B _t) _n /V	0.0000	1133	0062	0014	-	0	-	0	0.	0	-
r/R = 0.9	√"(٫۸)	0135	018	.013	003	.001	000	00	CO	000	000	01			r/R = 1.0	(A _t) _n /V	0218	0179		0032	•	0	7300	.0011	0013	0002	0022
2	c	0	-	2	m	+	S.	9	1	۰	5	1.0			7	-	0	1	2	3	t	2	9	2	20	6	10

TABLE 9G - HARMONICS OF V_r/V

	(φ* _r),	0.0		3	9	8	;	2	328.5	2	;	6			(φ*) _n		3.	1:		1.	5	3	6	6	289.5	;
	(V _r) _n /V	0.0000	. 0063	• 0226	016	. 0089	.0032	.0073	.0101	.0100	.0081	• 0026			(V _r) _n V	0.000	. 0441	.0170	.0147	.0100	.0051	.0012	.0014	.0016	.0019	• 0050
	(B _r) _n √	0.000	.001	05	500	01	02	90	0.8	07	05	02			(B _r) _n /V	0.000	• 0025	0062	7200	0052	0030	0001	.0013	.0010	9000	0005
r/R = 0.3	√"(مح)	0192	0062	.0220	.0158	.3688	.0018	003	0053	0061	0058	0051		r/R = 0.4	√ _n (♣)	.0015	0440	.0158	.0127	-0085	.0042	.0012	0005	0012	0018	0019
	-			2	~	+	2	9	7	80	6	10		7	c	0	1	2	2	t	2	9	7	80	5	10

	r/R = 0.5				
•		W (A)	74.19		
		, u, ı,	10r/n/v	(\rangle r) \rangle (\rang	(φ,) (φ,)
0		.0134	0.000	0.0000	0.0
		0741	.0057	. 6743	
2		.0107	0055	.0120	117.4
~		6600.	0083	.0129	
+		.0077	0071	.0105	
S.		•0052	0062	.0091	
9		.0038	0042	9500	٠.
^		•0025	0033	.004	• _
20		.0018	0033	100.	
5		6000	0027	0000	•
10		.0001	0026	1026	•
				0390	•
-	1/R = 0.6				
-		۷,(۴)	(B _r) _n /V	(\r', \r')	(6 °),
•		.0128	0.000	0.000	
-		0952	.0083	950	275.0
2		•0066	0024	0200	110 2
m .		.0073	00067	6600	132.3
3 1		.0057	0063	. 0085	137.7
· v		7700.	0062	.0076	145.0
9		0700-	0046	.0061	138.8
,		•0030	0041	.0051	166.3
20 (32	0039	9400.	148.3
6		.0015	0034	.0037	155.6
10		00	0025	.0026	163.8

	(¢φ)	0.0	275.6	51.8	120.5	136.7	150.2	129.9	143.0	148.4	165.7	169.9				(ø,),	0.0	276.3	8.8	2		154.2		146.6	2		
	V,,(,V)	0.000	.1087	. 0043	6500	- 0042	.0041	.0031	*0054	.0018	.0022	.0008				(V,), V	0.0000	.1172	. 0062	.0034	.0018	.0023	.0017	.0010	.0003	. 0015	.0002
	(B _r) _n /V	0.0000	.0106	.0027	0030	0031	0036	0020	0019	0015	0021	0008				(B _r) _n /V	0.0000	.0129	.0061	0003	0011	0021	0008	0008	0003	0015	00000-
r/R = 0.7	(A,) N	. 4 420	-	0	0	0	0	0	0	0	C	.0001			r/R = 0.8	(A,),/V	0035	-	00	063	0 01	0 01	001	000	000	000	.000
-	c	U	1	2	100	t	r	9	~	00	6	10			72	c	0	1	2	120	4	2	9	7	•	7	10

	(φ*)	0.0	•	•	•		144.6	•	•	•	•	241.0		η(φ*)	0.0	278.2	348.6	40.3	109.6	133.0	144.2	161.1	186.4	172.3	187.7
	(V _r) _n /V	00	21	08	02	01	.0022	01	01	00	01	00		(V _r) _n /V	0	(2)	8	.0028	002	M	M	N	-	-	-
	(B _r) _n /V	00	15	008	01	000	0018	01	000	8	01	00		(B _r) _n /v	00	17	008	.0021	000	002	.002	005	.001	01	.001
r/R = 0.9	(A _r) _n /V	03	120	.000	0 02	001	.0013	361	000	00	00	00	r/R = 1.0	(A,) N	.0017	1191	0017	.0016	.0025	0 02	.0019	.0008	0002	000	0002
r/R	_	0	1	2	2	4	2	9	7	٥	6	10	r/R	c	0	1	2	2	\$	2	و	2	20	6	10

TABLE 10 - WAKE WITH DYNAMOMETER BOAT

TABLE 10A - MEASURED DATA

	V,V	314	+00	*00	.010	. 012	. 009	. 001	036	020	031	770	033	032	928	025	025	129	015	019	013	002	. 003	.001	001	
	N ² N	166	150	103	057	011	.357	.102	.129	.154	.147	.128	.122	.122	.128	.129	.133	.147	. 345	. 161	.024	. 311	.007	. 324	.034	
	>× >	616.	-965	.950	.930	. 932	.934	.936	.959	696.	.972	.978	.973	.973	.968	196.	.945	.822	.798	.761	642.	.761	.771	.775	.772	
	» θ	132.6	122.6	142.0	162.1	182.3	231.8	221.0	241.3	260.0	281.8	300.0	318.7	320.4	322.1	325.7	331.1	334.9	339.0	343.2	343.8	347.4	351.1	356.0	359.0	
	V _r V	001	000	011	336	315	314	014	005	200.	.008	.015	.021	•119	.011	117	051	373	+200-	374	071	064	058	151	031	
	N ² N	.034	.336	640.	240.	.051	. 328	0 40 *	151	102	105	156	165	157	171	165	140	127	124	127	132	140	146	163	171	
r/R = 0.370	۸× >	.772	.762	.750	.755	042.	•726	.738	-682	769	.721	.816	.806	. 848	.861	956	966	.980	026.	196.	496	• 965	.971	.963	.983	
	· M	-1.3	1.1	5.5	5.5	8.8	12.4	12.4	17.8	19.0	21.5	23.3	23.3	2	2	8	32.3	2	6	ä	9	N	7	62.3	85.8	

	VrN	940.	440.	.040	. 927	.006	322	342	153	065	382	085	189	092	095	760	194	092	081	364	352	138	028	129
	N ² N	332	*00°	. 132	.068	.104	.139	.113	.139	.101	. 189	620.	.374	. 383	.078	· 1064	. 344	.125	.010	. 333	600	118	322	125
	× ×	.952	.957	.950	956.	.956	.961	.959	.962	.965	.952	646.	646.	776.	.922	.884	.865	.859	.846	.855	.872	.871	.882	.876
	θ*	180.3	189.1	199.9	219.3	239.4	259.2	269.0	278.3	289.8	300.8	309.7	315.5	320.5	324.1	327.8	331.5	334.1	338.0	342.2	345.9	351.3	356.7	360.3
	٧,٧	029	133	041	153	+20	189	103	134	119	126	128	131	127	124	122	385	155	022	.010	.029	.037	-045	•046
	V _t V	025	133	131	139	072	392	860	136	104	091	108	103	136	108	109	136	141	141	118	091	169	057	036
r/R = 0.574	×× >	.876	.867	.841	.829	.833	.841	.891	168.	-902	.918	.923	.952	.952	646.	446.	.943	.963	626.	196.	.957	.935	046.	246*
	θ ^M	.3	1.3	3.0	5.7	9.0	11.1	14.7	14.7	18.3	19.0	21.9	27.3	32.1	37.0	39.8	59.0	79.3	98.9	120.6	140.0	149.6	159.1	169.0

TABLE 10A (Continued)

	٧,٧	440.	. 128	.001	332	067	107	123	122	123	123	123	130	133	136	134	130	120	123	113	110	112	117	116
	N ² N	.032	. 168	.101	.112	.110	• 194	.076	.067	.373	.352	.325	.016	. 323	.019	.026	• 339	027	.025	.001	312	037	346	343
	^ × ^	.921	.916	• 925	.927	.934	. 921	.929	.928	.932	.892	. 885	.880	888.	.918	.933	.902	.893	.876	948.	.836	.826	.821	.831
	» o	199.9	219.6	239.0	259.1	278.0	330.0	313.3	315.0	319.3	321.0	323.6	325.2	327.0	328.8	332.5	336.2	340.0	341.0	346.0	352.0	358.0	359.8	359.9
	V,V	116	123	117	118	921	124	132	140	153	671	151	147	541	142	138	133	660	990	033	118	031	346	020
		i	•	•	•	i	•	•	;	;	•	;	•	•	•	•	i	•	:	;	•	•	•	•
	V _t /V	0 +0 *-	042	048	050	354	157	169	385	393	086	183	075	077	081	186	191	114	124	125	132	080	05 0	001
r/R = 0.798	> ××	.831	.825	.842	.843	.845	.853	748.	.891	.895	.917	.917	.920	.925	.927	.923	.923	.923	.916	.912	.921	-905	.910	.916
	o w	1	3.3	5.5	6.0	8.8	8.8	13.6	12.4	14.2	16.0	1.	19.6	1	9	33.4		59.3	6			140.0	160.3	180.1

TABLE 10A (Continued)

~~
V. V
θ
N,V
٧,٧
V.V
9

TABLE 10B - INTERPOLATED VALUES OF $v_{\rm x}/v$

1.0	0	2	84	5	9	9	.915	t	~	~	9	5	9	~	8	8	8	8	8	8	8	8	8	8	80
6.0	.815	.822	.842	.852	.853	968.	806.	.931	.941	946.	.941	.934	.936	046.	-945	.943	.943	.943	116.	116.	946	946	946.	946.	.945
0.8	2	2	3	4	4	9	-902	-	2	2	2	2	2	2	2	2	2	2	3	2	2	2	2	2	2
0.7	S	2	83	4	M	8	. 899	-	-	2	2	M	2	2	2	-	-	-	-	-	-	-	-	-	2
9.0	~	3	m	m	3	O	168.	0	-	~	5	3	4	3	4	3	3	3	3	3	m	3	M	3	3
0.5	9	2	-	0	0	2	.845	5	5	8	2	t	9	9	9	2	5	4	4	t	t	t	t	5	5
4.0	+62.	.777	. 768	. 762	.754	144.	.737	.732	.737	+98.	.872	. 933	.975	. 988	626.	.571	.965	. 962	096.	656.	. 959	995.	* 96 *	996.	796
r/R = 0.3	•69	.70	.71	.70	.67	•9	.585	• 56	• 56	. 68	. 80	06.	96.	1.01	66.	35.	16.	16.	16.	.97	26.	16.	85.	786	. 978
θ ⁸							15.0																	57.5	0.09

TABLE 10B (Continued)

r/R = 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 965 946 966 967 946 968 968 968 968 968 968 968 968 969 968 971 972 971 972 973 977 978 972 971 978 972 974 978 972 974 978 9								
.964 .952 .936 .921 .923 .944 .960 .952 .938 .921 .923 .944 .960 .953 .941 .921 .922 .944 .960 .943 .921 .921 .941 .965 .944 .921 .921 .941 .965 .946 .921 .919 .941 .968 .969 .946 .921 .919 .937 .971 .963 .946 .921 .919 .937 .972 .969 .976 .921 .916 .934 .973 .969 .960 .921 .916 .934 .974 .952 .921 .916 .934 .980 .974 .952 .921 .914 .933 .981 .975 .954 .920 .912 .934 .982 .976 .956 .920 .912 .933 .978 .976 .956 .922 .916 .934 .978	r/R = 0.3	0.4	0.5	9.0	0.7	8.0	6.0	1.0
960 .952 .938 .920 .943 .960 .953 .921 .922 .943 .960 .953 .941 .921 .943 .960 .956 .944 .921 .940 .965 .966 .946 .921 .919 .938 .965 .966 .946 .921 .919 .937 .971 .966 .946 .921 .919 .937 .972 .966 .946 .921 .916 .937 .973 .966 .946 .921 .917 .935 .974 .956 .921 .916 .934 .975 .951 .921 .914 .933 .981 .976 .956 .921 .914 .933 .982 .977 .956 .920 .912 .932 .982 .978 .956 .921 .912 .933 .978 .977 .956 .922 .912 .912 .934 .978 .977	876.	*96	.952	.936	.920	.923	946	. 986
.960 .953 .921 .922 .943 .960 .941 .921 .941 .921 .941 .962 .958 .944 .921 .920 .940 .963 .946 .921 .918 .938 .968 .946 .921 .918 .938 .971 .966 .946 .921 .918 .937 .973 .969 .951 .921 .916 .934 .973 .952 .921 .916 .934 .980 .972 .953 .921 .916 .934 .981 .976 .953 .921 .914 .933 .982 .976 .956 .920 .912 .933 .982 .978 .956 .920 .912 .933 .981 .976 .956 .920 .912 .933 .981 .976 .956 .920 .912 .933 .978 .978 .927 .916 .933 .978 .979	. 968	. 960	.952	.938	.920	.923	446.	.985
.960 .955 .941 .921 .921 .941 .962 .958 .944 .921 .920 .940 .965 .966 .946 .921 .919 .938 .968 .966 .946 .921 .918 .937 .971 .966 .946 .921 .917 .935 .973 .969 .951 .917 .935 .980 .972 .951 .916 .934 .981 .975 .952 .921 .914 .933 .982 .976 .953 .920 .914 .933 .982 .977 .955 .920 .912 .933 .982 .978 .956 .920 .912 .933 .981 .976 .956 .920 .912 .933 .981 .976 .956 .920 .915 .933 .978 .976 .956 .922 .916 .934 .978 .977 .957 .918 .934	+9F ·	096.	.953	.939	.921	.922	.943	. 984
.962 .943 .921 .940 .965 .960 .944 .921 .919 .936 .968 .963 .946 .921 .918 .937 .971 .966 .946 .921 .916 .937 .975 .969 .951 .917 .935 .979 .972 .951 .916 .934 .980 .974 .952 .921 .914 .933 .981 .975 .952 .921 .914 .933 .982 .976 .954 .920 .914 .933 .982 .977 .956 .920 .912 .933 .982 .977 .956 .920 .912 .932 .982 .978 .956 .920 .912 .933 .983 .974 .956 .920 .912 .933 .976 .956 .920 .913 .933 .977 .954 .922 .916 .934 .969 .965 .949	- 962	0 36 •	.955	.941	.921	.921	.941	.982
965 .964 .921 .919 .938 968 .963 .946 .921 .918 .937 971 .966 .948 .921 .917 .935 975 .969 .951 .921 .916 .934 979 .972 .951 .921 .916 .934 980 .974 .952 .921 .914 .933 981 .976 .954 .920 .914 .933 982 .977 .955 .920 .912 .933 982 .978 .956 .920 .912 .933 981 .978 .956 .920 .912 .933 981 .978 .956 .920 .912 .933 976 .956 .920 .912 .933 977 .956 .920 .913 .933 978 .978 .956 .922 .916 .933 979 .957 .957 .916 .934 960 .965 </td <td>- 962</td> <td>- 962</td> <td>. 958</td> <td>.943</td> <td>. 921</td> <td>.920</td> <td>046.</td> <td>.980</td>	- 962	- 962	. 958	.943	. 921	.920	046.	.980
968 .963 .946 .921 .918 .937 .971 .966 .948 .921 .917 .935 .975 .969 .951 .921 .916 .934 .980 .972 .951 .921 .916 .934 .981 .974 .952 .921 .914 .933 .981 .975 .954 .920 .912 .933 .982 .977 .955 .920 .912 .933 .982 .978 .956 .920 .912 .933 .981 .978 .956 .920 .912 .932 .981 .978 .956 .920 .912 .933 .978 .978 .956 .920 .913 .933 .978 .974 .956 .922 .916 .933 .978 .972 .918 .934 .934 .979 .967 .922 .918 .934 .969 .965 .949 .922 .918 .934	196.	• 965	096.	116.	.921	.919	.938	.979
971 .966 .948 .921 .917 .935 .975 .969 .951 .921 .916 .934 .979 .972 .951 .921 .916 .934 .980 .974 .952 .921 .914 .933 .981 .975 .952 .921 .914 .933 .982 .977 .956 .920 .912 .933 .982 .978 .956 .920 .912 .933 .982 .978 .956 .920 .912 .933 .981 .978 .956 .920 .912 .933 .981 .976 .956 .920 .912 .933 .978 .976 .956 .922 .915 .933 .978 .971 .957 .922 .916 .934 .971 .967 .953 .916 .934 .969 .965 .924 .919 .935 .966 .966 .967 .924 .919 .936	196.	896.	. 963	946.	. 921	.918	.937	.977
.975 .969 .951 .916 .934 .972 .951 .921 .915 .934 .980 .974 .952 .921 .914 .933 .981 .975 .953 .921 .914 .933 .981 .975 .954 .920 .912 .933 .982 .977 .956 .920 .912 .932 .982 .978 .956 .920 .912 .932 .981 .978 .956 .920 .912 .932 .981 .978 .956 .920 .912 .932 .978 .956 .956 .921 .913 .933 .978 .976 .957 .922 .915 .933 .978 .957 .922 .916 .934 .971 .957 .953 .916 .934 .969 .965 .969 .967 .924 .919 .935 .964 .966 .966 .967 .924 .919 .935	.971	.971	996.	946.	.921	.917	.935	.376
979 .972 .951 .915 .934 980 .974 .952 .921 .914 .933 981 .975 .953 .920 .914 .933 982 .976 .954 .920 .914 .933 982 .977 .956 .920 .912 .933 982 .978 .956 .920 .912 .932 981 .978 .956 .920 .912 .932 980 .978 .956 .920 .912 .932 978 .976 .956 .922 .913 .933 978 .977 .954 .922 .915 .933 978 .970 .951 .916 .934 971 .967 .961 .916 .934 969 .965 .969 .967 .924 .919 .935 964 .966 .966 .924 .919 .935	.975	: 975	696.	.950	. 921	.916	.934	.977
.980 .974 .952 .921 .914 .933 .981 .975 .953 .920 .914 .933 .982 .976 .954 .920 .913 .933 .982 .977 .955 .920 .912 .932 .982 .978 .956 .920 .912 .932 .981 .978 .956 .920 .912 .932 .980 .976 .956 .920 .913 .932 .978 .976 .955 .922 .913 .933 .978 .977 .954 .922 .915 .933 .971 .957 .952 .916 .933 .971 .967 .951 .922 .916 .934 .971 .967 .951 .923 .916 .934 .966 .965 .949 .924 .919 .935 .964 .966 .966 .926 .926 .935	626.	626.	.972	.951	.921	.915	.934	.977
.981 .975 .953 .920 .914 .933 .982 .976 .954 .920 .913 .933 .982 .977 .955 .920 .912 .932 .982 .978 .956 .920 .912 .932 .982 .978 .956 .920 .912 .932 .980 .976 .955 .921 .912 .932 .978 .976 .955 .922 .913 .933 .978 .977 .954 .922 .915 .933 .978 .971 .951 .922 .916 .933 .971 .967 .951 .922 .916 .934 .971 .967 .951 .923 .916 .934 .966 .965 .949 .924 .919 .935 .964 .960 .966 .926 .926 .935	086.	. 980	+16.	.952	.921	.914	.933	.978
.981 .976 .954 .920 .913 .933 .982 .977 .955 .920 .912 .932 .982 .978 .956 .920 .912 .932 .981 .978 .956 .920 .912 .932 .981 .976 .956 .920 .912 .932 .978 .976 .955 .922 .913 .932 .978 .976 .954 .922 .915 .933 .978 .970 .951 .922 .916 .933 .971 .967 .951 .922 .916 .934 .971 .967 .951 .923 .916 .934 .969 .965 .949 .924 .919 .935 .964 .966 .966 .926 .929 .935	626.	. 981	.975	.953	. 920	.914	.933	.979
.982 .977 .955 .920 .912 .932 .982 .978 .956 .920 .912 .932 .982 .978 .956 .920 .912 .932 .981 .976 .956 .920 .912 .932 .978 .976 .955 .922 .913 .933 .978 .977 .954 .922 .915 .933 .973 .970 .951 .922 .916 .933 .971 .967 .951 .922 .916 .934 .971 .967 .951 .922 .916 .934 .971 .967 .951 .923 .918 .934 .966 .965 .949 .924 .919 .935 .964 .960 .966 .922 .919 .935	976.	. 981	926.	*66	.920	.913	.933	.979
.982 .978 .956 .920 .912 .932 .982 .978 .956 .920 .912 .932 .981 .976 .956 .920 .912 .932 .978 .976 .954 .922 .913 .933 .978 .974 .954 .922 .915 .933 .973 .970 .951 .922 .916 .933 .971 .967 .951 .922 .916 .934 .971 .967 .950 .923 .918 .934 .969 .965 .949 .924 .919 .935 .964 .960 .966 .924 .920 .935	.977	- 982	.977	.955	.920	.912	.932	. 980
.982 .978 .956 .920 .912 .932 .981 .978 .956 .920 .912 .932 .980 .976 .954 .922 .913 .933 .978 .974 .954 .922 .915 .933 .976 .972 .953 .916 .933 .973 .967 .951 .922 .916 .934 .971 .967 .950 .923 .918 .934 .969 .965 .949 .924 .919 .935 .964 .960 .966 .924 .920 .935	926.	- 982	. 978	956.	.920	.912	.932	.980
.981 .978 .956 .920 .912 .932 .980 .976 .955 .921 .913 .933 .978 .974 .954 .922 .915 .933 .976 .972 .953 .916 .933 .973 .970 .951 .922 .916 .934 .971 .967 .950 .923 .918 .934 .969 .965 .949 .924 .919 .935 .964 .960 .966 .924 .920 .935	.975	- 982	. 978	.956	. 920	.912	.932	.980
.980 .976 .955 .921 .913 .933 .978 .974 .954 .922 .915 .933 .976 .972 .953 .916 .933 .973 .970 .951 .922 .916 .933 .971 .967 .950 .923 .918 .934 .969 .965 .949 .924 .919 .935 .966 .966 .966 .924 .920 .935 .964 .960 .946 .924 .921 .934	+16.	.981	. 978	.356	.920	.912	.932	.980
.978 .974 .954 .922 .915 .933 .976 .972 .953 .922 .916 .933 .973 .970 .951 .923 .917 .934 .971 .967 .950 .923 .918 .934 .969 .965 .949 .924 .919 .935 .964 .960 .946 .924 .921 .934	+16.	086.	926.	.955	.921	.913	.933	.978
.976 .972 .953 .922 .916 .933 .973 .970 .951 .923 .917 .934 .971 .967 .950 .923 .918 .934 .969 .965 .949 .924 .919 .935 .966 .962 .946 .924 .921 .934	.973	.978	.974	.954	. 922	.915	.933	.977
.973 .970 .951 .923 .917 .934 .971 .967 .950 .923 .918 .934 .969 .965 .949 .924 .919 .935 .966 .962 .947 .924 .920 .935 .964 .960 .946 .924 .921 .934	.972	926.	.972	.953	. 922	.916	.933	.975
.971 .967 .950 .923 .918 .934 .969 .965 .949 .924 .919 .935 .966 .962 .947 .924 .920 .935 .964 .960 .946 .924 .921 .934	.970	.973	.970	.951	. 923	.917	.934	.973
.969 .965 .949 .924 .919 .935 .966 .962 .947 .924 .920 .935 .964 .960 .946 .924 .921 .934	696.	. 971	196.	.950	.923	.918	.934	.972
.966 .962 .947 .924 .920 .935 .964 .960 .946 .924 .921 .934	.967	696.	• 965	646.	.924	.919	.935	.970
. 964 . 960 . 946 . 921 . 934	• 965	996.	-965	246.	.924	.920	.935	. 968
	.963	• 96 •	.960	946.	.924	.921	.934	996

TABLE 10B (Continued)

1.0	946	1963	960	196.	.955	.953	196.	.950	646	676	876	876	946	846	946	846	846	846.	.948	846	646	.950	.951	.951	1961
6.0	934	932	.930	.927	.924	.922	.920	.918	.917	-917	.918	.919	.919	.920	.920	.921	.921	.922	.922	.923	.924	.924	.925	.926	926
0.8	.921	919	.918	.916	.913	.911	606.	206.	- 905	-905	-905	906	906.	206.	906	606.	.910	.911	.911	.912	.913	.914	.915	.915	916
0.7	.924	. 924	.924	. 923	. 922	.920	.919	.917	.915	.913	.911	. 910	606.	.910	.911	-912	.914	.915	.915	.916	.917	.918	.920	.921	. 922
9.0	946.	246.	.948	646.	676.	.950	676.	846.	946.	046.	.935	.930	.927	.927	.929	.931	.932	.933	.934	.935	.936	.938	076.	-945	446.
0.5	.960	.961	-962	• 963	*96	*96	*96	.963	.961	.955	8 75 .	.943	.939	.938	. 939	046.	.941	.941	.941	-942	.943	776.	946.	846	.950
4.0	*96	. 963	. 962	. 961	096	650.	. 958	. 957	. 955	.952	8 76 .	446.	.941	. 939	. 938	.936	. 935	.934	.934	.934	.934	. 935	.936	.937	. 938
r/R = 0.3	.963	6 36 6	*66.	056.	246.	. 543	.941	.938	.937	.939	046.	046.	.939	.935	. 931	926.	. 921	.918	. 517	.917	• 916	• 915	.914	.913	.913
9		N	5	127.5		ò	0		•	· N	21	2	:		:		:	•			:		•		•

TABLE 10B (Continued)

1.0	.951	056.	.952	*36*	.956	.958	.959	.359	096.	.360	.360	656.	096.	096.	.360	.960	096.	.961	196.	.961	196.	- 362	-962	196.	
6.0	N	2	2	2	.930	3	m	m	M	m	M	m	M	m	M	2	2	m	m	M	m	M	M	M	1
8.0	.916	.917	.518	.919	.919	.920	.921	.921	.921	.921	.920	.919	.918	.918	.917	.916	.916	9	0,	.919	.921	. 922	.923	.924	
0.7	.922	. 924	. 925	.925	.926	. 926	.925	. 925	. 925	.924	.924	. 923	. 923	. 922	. 922	. 922	. 922	. 923	92	. 925	.926	. 926	.927	.928	
9.0	4	3		t	846.	4	4	J	3		4	16		4	4	4	4	4	94	4	+		3	4	
0.5	5	5	5	.954	196.	S	5	5	4	4	5	5	σ	5	5	5	5	5	5	5	5	5	5	5	
0.4	. 338	. 939	. 939	046.	046.	046.	0 46 .	. 939	. 939	. 939	. 439	. 939	94	046.	.941	.941	. 342	446.	946.	8 46 .	. 950	256.	. 955	. 957	
r/R = 0.3					.912								.917						.924	• 52€	. 933	. 536	776.	646.	
9	180.0	182.5	185.6	187.5	190.0	192.5	195.0	197.5	200.0	202.5	205.0	207.5	210.0	212.5	215.0	217.5	220.0	222.5	225.0	227.5	230.0	232.5	235.0	237.5	

TABLE 10B (Continued)

1.0	5	9	.967	.968	696.	~	.971	.971	.970	~	9	9	196.	9	9	9	9	9	5	5	5	2	5	+	246.
6.0	M	3	m	.939	4	t	3	.941	3	4	4	3	3	4	4	3	3	M	3	3	3	m	2	2	2
8.0	.925	.926	926.	.926	.927	.927	.927	.927	.928	.929	.930	.931	.932	.933	.934	.934	.933	.931	.929	.927	.925	. 923	.922	.921	.921
0.7	N	N	.930	.930	M	M	.931	M	M	M	M	M	.935	m	M	M	m	M	M	3	M	M	N	N	. 927
9.0	3	t	1	.950	n	5	5	5	5	5	5	5	5	5	5	5	5	3	S	5	5	5	5	t	4
0.5	S	9	9	.962	9	2	9	9	9	9	9	9	9	9	0	9	0	1	~	1	1	~	9	9	9
0.4	. 959	.961	.963	. 964	. 565	996.	296.	. 968	696.	696.	696.	696.	0.26.	970	. 971	. 971	.972	.973	426.	.975	976.	926.	.976	~	.975
r/R = 0.3	. 953	• 956	656.	096.	.962	. 563	• 965	996.	196.	696.	926.		.972			.972			~	.973	1	1	996.	8	. 936
_м	.0	2.	0.	247.5		. ,	5.			5.	2.	1.	. 0	2.	3	2	-	2.	5.	1.	0	2.	5	1.	300.0

TABLE 10B (Continued)

TABLE 10C - INTERPOLATED VALUES OF $V_{\rm c}/V$

1.0		9	9		.06		101	100	987	8	093	9	960	9	0	.10	0	-	114	116	117	119	.12	121	125
6.0							092	086	077	0	082		0	0		095	0		102	104	107	-	7	-,113	
8.0	t.	4	3	5	9	8	089	0	075	~	8	8	8	8	8	9	9	9	160	0	.10	10	.10	112	-
0.7	034	034	041	051	069		091	084	082	086	086	-	089	091	0	760	095	260		103	106	110	114	117	
9.0	028	0	037	055	C	097	660	760	C	1 02	660	0.	660	7.	103	104	105	107		113	117		-:	129	
0.5	-	-	.01	2	5	90	081	9	0	-	2	-		-	-	-	-	-		2	2	3	M	m	4
0.4	2	N	3	N	2	0	031	. 07	9	M	2	2	*	3	126	2	2	126	2	3	3	3	7	144	5
r/R = 0.3	0	07	5	-	N	.10	.041	03	67	15	19	20	.18	.15	.13	.13	.13	.13		.14	.14	.14		.14	157
9	0.0	2.5	5.0	2	0	2.5	15.0	7.5	9. C	2.5	5.0	7.5	. 0	2.	5	1.	0.	5.	2.	-	. 7	2.	5	2	

TABLE 10C (Continued)

1.0	122		7	130	.1	134	135			-	-	-	135	-	-	132	-	-	-	-	-	125	-	120	117
6.0	115	117	119	121	123	-	126	1.	-	-	.1	7	-	7	7	126	7	7	-	-	-	115	113	110	107
8.0	-	-	-	119	2	.12	12	.12	.12	.12	.12	.12	12	.12	.12	.12	.12	.12	12	11	-	11	0	10	C
0.7	N	2	12	124	12	12	12	12	12	N	12	.12	13	.13	13	12	.12	.12	2	2	-	-	.11	-	0
9.0	133		-	136	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	119	116
0.5	3	4	71	150	15	15	.15	15	15	15	.15	15	.15	.15	15	.15	.14	14	.14	14	14	13	13	13	12
0.4	S	15	16	165	16	9	9	16	16	16	16	.16	.16	16	16	9	16	16	9	15	3	15	15	15	+
r/R = 0.3	157	170	177	183	106	.18	189	.18	186	.18	.18	183	.18	. 18	. 18	161	.18	.17	.17	.17	.17	176	.17	172	170
9		2	3	67.5		2.	5	1		2.	5	7		2	5	2.	0	2.	5	7.		2.	5	7.	

TABLE 10C (Continued)

0.4
7 12
4 12
9 12
11
9 11
311
8 10
1 10
60 9
60 6
308
7 07
1 0
90 9
106
90 9
.06105
5 05
70 0
70 6
9 03
3 02
7 02
02001
00 - 5

TABLE 10C (Continued)

1.0	914	-	006	001	*00	.008	.010	.012	-	.018	2	2	.035	+	5	5	9	9	.068	1	.071	-072	~	920.	~
6.0	006	002	• 003	.008	.013	.016	.019	.022	• 025	.029	.033	.038	440.	.051	• 056	. 061	• 066	.070	*10°	.078	.081	.084	.087	060.	.093
0.8	002	.003	. 008	.012	.016	.020	.024	.028	• 032	.036	.041	940.	S	• 055	• 059	• 064	. 068	.073	~	10	8	a	9	660.	
0.7	0	*00	0	.011	.015	.019	. 024	. 029	. 035	040.	770.	640.	.053	. 057	.061	• 065	.070	.075	.080	. 085	060•	• 095	660.	.103	• 106
9.0	0	.001	0	0	0	-	.020	2	3	M	J	4	5	5	9	9	~	1	8	8	9	6	9	.103	0
0.5	0	.00	0		0		2	2	M	t	t	5		9	9	~	~	8	8	9	6	0	0	.108	
4.0	014	- 00 8	00	900.	.013	.022	.030	.039	.047	.055	. 061	. 068	• 074	620.	.084	680.	760	660.	.103	. 107	.110	.114	.117	.120	.123
r/R = 0.3	024	-	001	-	2	.035	+	S	0	1	~	0	760.		0	-	-	2	.125	N	3	3	M	.138	.141
0*			3	2			.0												.0	2			.0	237.5	:

TABLE 10C (Continued)

1.0	. n78		. 980	. 182	. 084	.085	. 086	.088	.089	060.	. 091	.092	. 1193	160 •	*60	760 •	760	.092	.091	. 089	.087	.084	.082	.079	.076	.073
0.9	200		• 095	260.	660.	.100	.102	.103	.103	.104	.105	.105	.105	.105	.105	.105	.104	.103	.102	.101	• 0 6 6	260.	.095	.093	060.	.087
0.8	1102		•105	.107	.108	.109	.110	.111	.112	.112	.112	.113	.113	.112	.112	.111	.110	.110	.109	.108	.106	.105	.103	.100	860.	160
0.7			.109	.110	.111	.112	.113	.114	.114	.115	.115	.115	.116	.115	.115	.114	.113	.112	.111	.110	. 108	.106	.104	.102	660.	960•
9.0	-		.107	.108	.109	.109	.110	.110	.111	.111	.112	.113	.114	.114	.113	.112	.111	.109	.108	•106	.104	.102	.100	260.	• 0 9 5	.092
0.5		****	.112	.114	.115	.116	.117	.118	.119	.120	.122	.123	.123	.123	.123	.121	.120	.118	.116	.114	.112	.109	.107	.104	.101	650.
0.4	123	0 1 1 .	• 126	.129	.132	.135	.138	. 140	.143	.144	.145	.146	.146	.145	.144	.143	.141	.139	.137	.135	.132	.130	. 127	. 125	.122	.120
r/R = 0.3	141	****	.146	.151	.157	.163	.168	.172	.176	.179	.179	•179	.178	.176	.175	.174	.172	.170	.168	.165	.163	.160	.157	.155	.153	.151
θ	3 6		2	2			01	5	257.5	.0	2	5	2		2.	5	1.	.0	2.	3	7.		5	5	1	.0

TABLE 10C (Continued)

1.0	. 973	90	90	.063	9	5	2	05	04	3	00	90	91	01	5	-	11	-	.011	00	0	0	~	0	J
6.0	0.8	08	07	.073	90	90	90	90	5	03	00	01	-	02	03	03	02	01	0	00	00	01	02	03	10
8.0	760.	60	03		07	07	0	07	2	03	-	02	01	0.2	03	M	02	-	00	0	00	10	02	M	0
0.7	0	9	9	. 083	07	~	07	07	90	+	03	03	03	03	03	M	02	0.1	00	00	01	-	. 02	03	03
9.0	0	8	0	0.8	0.7	~	07	07	07	~	90	05	10	03	02	-	0.1	00	0	0.1	01	0.1	02	02	02
0.5	C	0.9	9	0.5	00	8	08	0.8	60	60	0.9	08	07	90	S	03	01	0 0	0.0	00	-	01	-	00	01
0.4	.120	.118	. 116	.115	.114	11	11	7	11	12	12	11	11	.121	#	07	03	02	.613	00	00	00	.011	01	. 022
r/R = 0.3	.151	.149	.149	.146	1	7	+	+	+	3	*	S	9	0	-	15	-	5	.635	N	N	N	3	95	O
				307.5	-			2							10	1		2	S	-		2	5	1	360.9

TABLE 10D - INTERPOLATED VALUES OF $v_{\rm r}/v$

1.0	-	-	-	123	-	-	-	-	-	-	140	-	135	-	-	-	-	-	106	-			C		0
0.0	124		-	128	-	-		150	7	-	7	-	-		.1	-	-	-	-	113	7	7	٦.	100	-
0.8	-	-	-	121	.1	140	-	-	.1	144		7	139			-		-	122	-	-	-	٠.	-	0
0.7	060	0	0	-	-	128	~	-	-	-	7	7	7	7		-	-	7	-	-	7	7	-	7	0
9.0	0	0	0	073	0	-	-	-	-	-	-	-	4	-	-	-	-	-	-	-	-	-	0	0	0
0.5	1	02	.03	0.	.06	. 07	07	.08	• 00	. 09	.09	• 0 9	.10	.10	0	. 11	0	. 10		60.	60.	0.3	.08	.07	07
0.4	001	• 00	. 01	021	027	. 02	026	. 02	022	. 01	018	033	. 05	90.	. 07	. 03	063	. 03	081	. 07	. 07	071	99.	063	• 05
r/R = 0.3	0	0	0.0	+00°	-	2	M	2	1	5	20	9	2	. 91	. 93	. 04	.04	. 05		. 34	. 04	. 04	.04		+
om of				7.5	0	2	3	2	•	5.	5	1.	0.	2.	2	1.		3			0	2.		7	0

TABLE 10D (Continued)

1.0	089	085	081	920	071	067		357	053	048	5	070	-	031	-	023	-	0	010	0	002	0	. 007	.111	.015
0.9	960	-	0	083	-	-	-	-	061	-	-	0	043	0	•	0	025	021	-	0	007	0	-002	900.	.010
9.0	860	760	060	086	081	077	073	069	0		0		940	042	7500-			0	019	014	010	- 0005	001	• 003	200.
0.7	9	C	08	8	-	~	071	S	O	B	r	3	045	3	m	.03	N	~	-	-	0	0	0	. 003	0
9.0	086	0	.0	075	071	068	064	050	0	052	950	770	0.	035	0	026	022	018	014	010		0 02	.002	• 005	600.
0.5	1.	1	9	9	9	.05	5	5	+	3	t	2	M	2	2	2	-	-	-	0	0.0	0	0	+00	0
0.4	in	S	5	5	.04	.04	. 04	+0.	.03	.03	03	2	. 02	2	. 02	. 31	. 01	01	. 01	-	(3	0	0	0	002
r/R = 0.3	+	.03	. 03	.03	.03	. 02	. 02	.02	. 02	. 02	. 02	.02	.01	.01	.01	.01	. 01	.01	.01	.01	.01	.01	.01	013	013
9		2	3	2	0	2				2	5	2	. 3	2	3	2		2	iv	-	0	2	3	7	120.0

TABLE 10D (Continued)

0.4 0.5
002
.001
• 003
+00.
. 005
2000
.008
600.
. 010
.011
.012
.013
.014
.015
• 015
.016
. 017
.017
.017
.018
.318
. 018
.018
.018

TABLE 10D (Continued)

1.0	10	5	05	5	5	05	5	.053	5	5	3	20	50	30	M	3	3	3	2	2	2	-	-	-	0
6.0	750.	• 054	.053	.053	.052	.051	.050	0	240.	940.	0	0	040.	.038	.035	.033	.030	.027	.024	0	.017	.013	0	900.	- 002
8.0	10	2	5	50	3	•	0	• 045	4	3	0	03	M	M	m	M	2	N	N	-	-	01	0	0	
0.7	240.	240.	240.	940.	940.	0	0	. 042	. 041	50	03	.037	.035	03	03	02	02	.023	.020	.017	01	01	200.	*00·	0.000
9.0	940.	970.	.045	0	0	.043	0	.041	040.	0	.037	0	• 034	0	0	.028	.026	.023	.021	0	.016	0	0	2000	700
0.5	M	3	m	3	m		M	.033	03	03	02	2	2	02	02	02	-	01	0.1	01	-	-	C	0	
0.4	.018	.018	. 018	.018	.018	.017	.017	.016	.016	01	01	01	. 011	0.1	00	00	900 •	• 005	+00.	. 003	. 002	.001	0.000	. 90	003
r/R = 0.3	007	006	006	006	.00	200	. 00	007	007	.06	008	. 00	. 01	01	.01	.01	.01	. 01	.01	012	. 61	012		.01	013
6 3			2.	2	.0	2.	5.	197.5		2.	5	1.		2.	5.	1.		2.	5.	1.		2.	5.	1.	9

TABLE 10D (Continued)

· M	r/R = 0.3	0.4	0.5	9.0	0.7	0.8	6.0	1.0
	-	0	0	*00°	0	0	.002	0
	01	0	00	0	0	.00	002	00
5	0.1	. 00	00	0 02	. 00	0	0	00
247.5	016	600	005		011	012	010	+000
	. 01	-	.00	600	.01	-	014	00
2	-	. 01	0.1	0	10	3	0	.01
2.	. 01	. 01	0.1		02	2	023	0.1
1.	. 02	-	-	021	. 02	02	0.	2
•	2	N	02	0	03	3	032	92
2.	.02	. 02	.02		.03	m	0	.03
5	.01	. 02	03		50	04	0	03
1.	.01	. 62	.03		*0.	10	-	90
•	.01	. 02	.03	0.	.05	.05	0.	+ O .
-	-	.03	*O.	0.	. 05	.05		.05
2.	.01	.03	04		. 05	90	-	. 05
2	. 01	M	.04		• 06	.06	-	. 16
.0	2	5	10		• 06	.07		.96
0	.02	.03	. 05	0	.07	0	-	07
2.	2	M	.05	0	1	08	0	08
1.	.02	40	.05		. 97	08	0	8
	.02	3	5	-	. 08	69	0	9
2	2	+	9	0	8	60	0	9
	. 02	3	9	0	9	S	102	10
1.	628	+	9	0	9	70	~	10
	2	in	9	0	9	0	110	O

TABLE 10D (Continued)

1.0	107	110	113	115	117	118	-119	120	123	132	134	137	137	138	138	136	131	126	119	113	106	103	104	105	1111
6.0	110	114	118	121	123	124	124	124	124	128	135	139	141	140	139	136	131	126	120	117	115	115	116	118	124
0.8	107	111	115	118	121	121	122	121	120	121	129	134	136	134	132	128	123	117	111	109	110	110	110	1111	117
0.7	660			108	110	111	112	111	111	111	118	122	123	121	118	113	106	660	093	089	089	088	086	086	060
9.0	085	087	089	060	091	093	095	095	960	960	101	103	102	100	097	060	081	072	+90	058	053	970	770	045	043
0.5		070	0.00-	070	0.00	071	072	073	074	074	074	075	073	072	071	063	054	045	037	030	023	018	014	012	012
0.4	050	050	640	840	2 +0	940	045	++0	043	039	038	038	037	039	139	033	025	020	014	008	003	0.000	0.000	001	001
r/R = 0.3	028	027	025	023	021	017	013	009	005	• 005	.008	600.	900.	.002	002	.002	900.	• 005	.008	.011	.013	.010	*00°	001	005
03		2.	5	7.	.0	2.	3	2		2.	5	1.		2.	5	7.		342.5	5	1.		2.	5	2	

TABLE 10E - HARMONICS OF V /V

	(φ*)	0.0	269.6	263.1	264.8	261.1	258.2	244.9	157.1	103.5	93.7	86.5		(φ*)	0.0	272.3	267.2	268.7	274.5	566.9	251.0	169.2	117.0	110.4	107.9
	ν' _n (_x ν)	0.000	.0501	.0874	.0582	• 0465	.0341	.0153	.0084	.0121	.0205	.0215		۷۷, (۷۷)	0.000	.0407	7650.	.0359	.0264	.0192	.0080	0000	8600.	.0122	.0139
	(B _x),/V	0.0000	0003	0105	0053	0072	0070	0065	6077	0028	0013	.0013		(B _x), \(\text{\(A_x\)}\)	0.0000	.0016	0029	0008	.0021	0010	0026	6900	7700	0043	0043
r/R = 0.3	V, (x)	.9175	0501	0668	0580	0459	0334	0139	.0633	.0118	.0205	.0215	.0.4	(A _x), N	.9330	0407	1596	0359	1263	0192	9200	.0013	.0087	.0114	.0132
r/R=	c	0	-	2	8	1	S	9	2	0	n	10	r/R = 0.4	c	0	1	2	3	1	2	9	7	0	6	10

	(φ*)	0.0	274.2	273.7	277.0	301.7	286.2	274.9	187.3	131.7	141.1	137.9		(φ*)	0.0	270.6	260.2	268.1	322.0	300.7	308.2	230.0	158.9	179.9	169.3
	\\'\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.0000	.0323	.0393	.0206	.0153	.0102	.0037	• 0054	, 0074	.0071	9600*		/ _v (x)	0.0000	.0238	.0262	.0437	. 0119	.0075	.0035	0,00.	.0038	5400.	.0062
	(8 _x) _n /√	5	102	12	2	3	2	.0003	5	500	15	7		(B _x) _n /V	0.000	.0002	9700	.0043	7600.	.0038	.0022	0026	0035	0043	0061
r/R = 0.5	(A _x) _n /V	9336	0322	0392	0204	0130	009A	0037	0007	.0055	• 1645	7900	r/R = 0.6	(Ax), V	.9326	0238	0258	0130	0673	0064	3028	0031	.0014	0000	.3012
r/R:	c	0	-	2	8	3	25	9	1	*	5	10	r/R	c	0	+	2	8	*	2	9	2	0	6	10

TABLE 10E (Continued)

	(φ*),	0.0									233.8				υ(*φ)		57.	88.	95.	01.	80.	66	. 46	280.3	74.	78.
	ν _n (ν _x)	0.000	.0164	.0196	.0137	.0110	.0087	• 6054	.0057	. 0034	.0027	.0032			V, (, v)	0.000	.0140	• 0195	.0152	.0118	.0105	0.000	• 0075	.0062	.0038	6400.
	(B _x), \	0.0000	0037	.0041	9,00.	0.000	.0024	.0031	.0011	0007	0016	0619			(B _x) _n /V	000	.003	0.5	05	90	02	03	03	.0011	00	00
r/R = 0.7	V,(xA)	.9144	0160	0192	0128	0085	0084	0045	0056	0033	0022	0026		r/R = 0.8	(Ax),\V	. 3107	0137	0164	3140	0101	0103	3061	0068	0061	0038	0048
1,	_	0	-	2	2	t	5	0	1	Ø	7	01		-	_	0	-	2	~	t	2	9	1	o	ת	10

	υ(*φ)	0.0	78.	.56	. 46	.66	281.8	93.	96	84.	83.	86.				υ(×φ)				•		•		•		280.7	
	V _n (x)	0.000	0	.0262	.0182	.0138	.0123	. 0084	.0077	, 000 t	.0050	.0057				ν''(×ν)	0.0000	.0291	.0396	.0227	.0169	.0143	9600•	.0000	• 0065	• 00 22	2400*
	(B _x) _n /V	0	.002	011	000	000	.0025	1	003	001	001	001				√ _n (8)	0.0000	0	.0190	.0098	.0091	.0041	.0027	.0021	.0016	.0010	6000
= 0.9	(A _x),/V	. 1216	0171	.023	.016	.012	0120	. 307	.360	0072	6400	.005			r/R = 1.0	(Ax), (V	0246.	26	34	20	14	13	60	05	90	0024	70
r/R = 0.9	c	.0	, -	. ~	m	1	, ru	9	. ~	. 0	, ,	10			r/R:	c	•		2	m	1	r.	9	7	ဘ	5	10

TABLE 10F - HARMONICS OF $V_{\rm t}/V$

	υ(¹ φ)	0.0							38.0						υ(, φ)	0.0		-	150.8							
	√u(³√)	0.000	.1887	.0172	.0165	7600	.0087	.0071	.0163	.0180	.0193	.0174			(V _t), /V	0.000	.1611	9600.	9600 •	6500.	.0034	.0034	2600•	.0110	.0110	5600*
	(B _t) √	0.0000	1880	•	0119	0067	0016	.0068	.0128	.0172	.0191	.0174			(B _t),//	0.0000	1611	0085	0034	0057	0012	.0033	.0071	2600.	.0102	0600.
r/R = 0.3	√, (A,)	02	15	13	11	36	90	001	.0100	05	35	00		r/R = 0.4	(At), N	0001	.0614	• 0045	2400.	.0014	.0032	6000.	6500*	.0052	.0042	.0031
	-	9	-	2	m	4	'n	9	7	0	6	10			_	0	-	2	2	4	S	٥.	7	œ	2	10

	υ(³ φ)		83.	98.		02.	01.		46.8							(4;)		a	0 0	219.8	22	34.	42.	32.			
	(\(^{t}\)^n\(\times\)	0.000	_	.0	10	10	_	-	• 0038		10	10				V, (V)) d	777	.0038	40	002	10	00	33	33	33
	(B _t) //	-	1408	-	-	-		. 9000*	.0026	• 0039	.0036	•0030				(B _t)_/V		•		6000-	00.	0	.00	0	0	0	0
r/R = 0.5	(A _t) _n /V	0162	0084	0020	0001	0020	1000-	70n0.	•0028	• 0 0 4 5	9,00.	-0042			r/R = 0.6	/_(A_t)_\	# U - U	- 1130	0510	7200	0031	00020	.0007	.000	.0031	•0035	.0033
•	_		-	2	2	4	2	9	~	a	6	0			-	_	-		10	, M	t	2	9	7	o	o	9

TABLE 10F (Continued)

	υ(¹ φ)		2	8	1.	8	9	130.7	8.	6	3.	7			υ([‡] φ)	0.0	185.9	266.2	566.6	229.0	203.4	135.8	195.9	176.3	204.5	230.4
	(۸۰ ^۱ ,۰۷۷	00	23	08	02	03	02	.0022	02	01	01	00			√, (√, √)	0.000	.1195	.0086	.0027	.0020	• 0026	.0030	• 0034	.0023	.0016	9000•
	$(B_t)_n N$	0	.122	001	.000	002	.002	0014	002	001	.000	0			(B _t) _n /V	000	11	000	00	001	002	005	.003	002	001	.000
/R = 0.7	√ _n , √ _N	0124	0127	-	-	-		0	0004	.0011	.0010	• 0000		r/R = 0.8	(A _t) _n /V	0123		-	0	3	0010	0	6000	.0001	0007	-
	c	0	1	7	2	4	S	9	7	80	σ	10			c	0	-	7	8	+	2	9	7	10	6	10

	υ(¹ φ)		185.8	54.	11.	.06	47.	98.	74.	16.	23.				υ(¹ φ)		2	6	6	2.	;	2	+	-	211.6	+
	N"(3N)	0.0000	.1170	.0026	001	.0026	.0037	.0032	.0028	• 0026	.0015	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			(\^t)u \/	0	2	5	M	N	N	+	-	M	.0032	2
	(B _t) , \	.00	1104	. 00	00	.00	00	.00	.00	0	.00				(B _t) _n /V	.00	-	00	0	.00	00		00	0		00.
r/R = 0.9	N,(1,4)	16	0118	.002	00	.000	02	01	00	01	01			r/B = 1.0	(A _t),/V	25	11	10	02	00	00	01	00	01	0017	00
•	-	0	+1	u m	4	2	9	7	80	6	10				c	0	7	2	2	4	2	9	7	80	6	10

TABLE 10G - HARMONICS OF v_r/V

	(φ [*] _r)	0.0	105.0	95.5	82.1	45.2	345.6	316.4	5-662	281.9	541.6	215.6			(φ [*]) _n	0.0	264.1	110.1	104.0	6.06	4.49	35.3	336.6	271.7	207.0	189.4
	(\rangle_r)_n \V	0.000	- 00 52	.0160	.0117	6200.	. 0077	7600	.0091	0.000	.0057	.0061			(V _r) _n /V	0.000	.0294	.0165	.0143	0600.	2400-	.0028	.0014	. 0016	.0022	.0032
	(B _r) _n ∕∨	00000.	0013	.001	.0016	• 0029	.0073	.0058	\$400.	.0014	0027	00020			(B _r) _n /v	0	0030	0057	0035	0001	.0020	.0023	.0013	0000	0020	0032
r/R = 0.3	(A,) N	0107	0.000	.0159	.0116	.0053	0023	.006	.007	0068	0050	.003		r/R = 0.4	(A _r) _n /V	18	53	.0155	13	60	10	01	00	01	01	0005
	c	9	-	2	8	t	S	9	7	0	5	10			c	0	-	2	8	4	2	9	1	10	5	10

	, (φ, (φ, φ, φ	0.0	566.4	118.8	114.0	110.5	101.9	6.96	101.7	115.1	129.0	141.1			, (φ°,)	0.0	268.2	2	-	117.9	2	.0				
	(V _r) _n /V	00	96	16	.0159	11	98	96	7	32	32	32			٧٧,١,٧٧	0.000	.0758	.0137	.0145	.0109	.0088	.0075	.0053	.0033	.0027	• 0023
	(B _r) _n /V	00	.003	07	-	70	.001	.000	0.0	.000	01	01			(B _r) _n /V	00	0024	10	• 000	0.2	.003	02	.001	01	.001	.001
r/R = 0.5	(A _r), N	0260	56	14	. 1145	10	0.8	90	40	02	01	01		r/R = 0.6	(A _r) _n \	1342	0758	.0116	.0129	9600.	.0082	.0072	0 0 0 0 0 0 0	.0030	.0025	.0020
r/n	c	0	-	2	m	t	S	9	7	10	ת	10		r/R	c	O	1	2	3	J 1	ın	9	7	o	5	10

TABLE 10G (Continued)

	(φ* _r)	0			1.		5	2.		3.				(φ*),		-		3	•	-	2		3	8	m
	(V _r) _n /V	0.000	200	010	007	90	70	03	02	005	01			ار ^د ر، ۷۷	0.000	1960.	. 0060	. 0076	.0053	7700.	.0031	.0023	-0022	. 0017	.0014
	(B _r) _n /V	0	0000-	000	03	.003	.002	.001	001	001	001			(B _r) _n /V	00	.0023	.002	.003	003	.002	001	.001	001	.001	01
r/R = 0.7	٧٧"(۲٧)	7	100	0.09	90	0 0 5	700	03	02	001	01		r/R = 0.8	(Ar) _n /V	94	0954	60	07	70	03	02	02	01	01	0.1
	_	ο.	H (1	, w	t	ın	9	2	70	6	10			_	0	1	2	~	t	2	9	7	0	5	1.0

	(φ*) _n	0.0	272.5	95.0	108.9	128.8	136.7	126.6	116.7	121.9	125.2	134.9		(**)	U,JAI	0.0	273.5	2.92	104.8	126.2	131.4	114.6	111.4	115.4	115.6	127.9
	۷۰ _۲ ,۷۷	0.000	. 1991	• 0043	.0063	2400.	.0038	.0028	.0025	.0025	. 9018	.0012		N (N)	,,,,,,	0.0000	. 1986	7700.	*900*	• 00 54	0400.	.0035	0490.	• 0036	.0023	.0013
	(B _r) _n ∕∨	0.0000	.0043	+0000-	0020	0029	0028	0017	0011	0013	0010	0008		(B.) N	, u.d.,	0.000	.0000	.0010	0016	0032	0026	0015	0015	0015	0010	0008
6.0	(A,) \	0456	0660*-	.1643	0900.	.0037	.0026	.0022	.0022	.0021	.0015	6000.	1.0	(A.) W	, u, t,	0402	0984	.0043	-0062	*****	.0030	.0032	.0037	.0033	.0021	.0010
r/R = 0.9	-	0	1	2	20	t	2	9	7	20	6	10	r/R = 1.0	-		0	+1	2	3	t	5	9	2	20	6	10

TABLE 11 - EXPERIMENTAL LOADS FOR STEADY-AHEAD OPERATION AT V = 6.52 KNJTS, n = 14.08 REVOLUTIONS PER SECOND

TABLE 11A - VARIATION OF TOTAL LOADS WITH BLADE ANGULAR POSITION (UNFILTERED)

MZ/IMZ	10	.877	-	860	9017	903	40	80	907	868	-	8	N	818	765	793	0	806	757	768	762	-	807	785	838	10	905		959		-
F _z /F̄ _z	.008	.014	.010	. 006	1.0125	.017	.009	.008	.010	.013	. 011	.015	. 021	.027	.026	. 025	.032	.030	.041	.034	.042	.031	.035	.032	.036	.029	.031	.039	.033	.031	. 021
M _x /IM _x I	.035	52	.057	.014	-1.0475	.042	04	916	15	166	19	63	28	987	29	066	.023	038	.023	040	.071	66	.092	.111	1.159	.176	.161	1.180	542	1.250	-
Fy/Fy	.035	.058	.052	.020	1.0277	.022	.002	978	00	986	975	65	978	983	10	86	.005	.016	90	.016	.027	.051	.043	.058	. 081	093	.089	. 100	.136	137	~
My/My	6496.	116	. 028	.058	1.0302	.018	.050	. 056	. 019	. 019	. 051	. 051	.034	640.	.086	. 195	.111	.149	.182	.196	.215	.243	.267	.284	.307	.330	.370	. 355	. 373	. 384	. 401
F/x	TU.	46	.049	.079	1.0515	.034	.068	.078	.046	.051	.085	. 088	.068	.083	.117	.130	.148	.187	.221	.234	.252	.277	.296	. 312	. 334	.354	.369	.387	. 395	.406	9
θ (deg)	0	4	•	12	16	20	54	28	32	36	04	55	48	25	95	9	99	68	72	92	80	98	88	95	96	0	0	0	112	-	2

(deg)	F _x /F	M,/M	F _V /F	Mx/IMx	F _z /F̄ _z	$M_z/ \overline{M}_z $
N	1.4097	1.4010	.127	-1.2213	21	9978
2	3	1.4108		-1.2215	.026	9475
2	•		.157	-1.2821	.019	-1.0352
m	4.		.149	-1.2756	.018	1.043
m	•		.133	-1.2314	.014	.038
3	3		.132	-1.2431	.017	-1.0298
3			.152	-1.2827	.016	. 087
3	1.3658		.142	-1.2644	9 8	.120
S			. 120	~	.010	1.078
5			.131	-1.2482	.010	.112
8			.138	-1.2729	.004	-1.1422
9			.132	4	66	.166
9			.091	-1-1708	.003	1.108
~	.2		. 120	-1.2207	20	1.152
-	2		.111	-1.2179	66	.186
	.2		.097	-1.1679	26	1.181
0	.2		.064	-1.1254	94	.147
0	7		.078	-1.1468	97	1.159
6	7		.076	-1.1430	35	.214
6	7		.053	-1.0853	66	.166
0	-		.036	-1.0666	87	1.180
204	-	1.0570	1.0395	-1.0787	8966	
0	0766.		.040	-1.0651	35	1.219
-	.9814		.000	9952	95	1.157
-	.9471	.9784	.005	-1.0024	93	-1.1689
2	.8985	. 9306	990	9928	84	1.175
2	.8735	.9051	.9879	6696	28	. 188
2	.8589	4268.	.9511	9131	82	1.163
M	.8233	.8579	6646.	9102	28	-1.1331
-	.7857	.8167	-9502	9188	11	1.175
4	.7657	. 8005	.9365	6810	15	1.136

Mz/IMz	.136	. 163	1.089	1.152	1.103	-	1.078	-	1.099	1.088	1.073	1.0	1.102	.040	1.054	1.028	1.092	. 018	.018	1.016	1.042	- 982	59	924	908	83	833	879	80	8597	8358
F _z /F̄ _z	.9758	*196*	.9714	.9614	.9673	.9634	.9633	6956.	.9688	.9645	.9695	6696	.9631	. 9685	.9681	. 9685	.9675	0696.	.9629	.9724	.9711	.9735	.9813	.9861	.9951	0466.	6866.				1.0084
$M_x/ \overline{M}_x $	8810	8467	8400	8364	8117	7978	7791	7747	7553	7472	7372	7285	7286	7046	6989	7123	7331	7013	6869	7283	7537	7468	7698	8671	8951	8906	9095	9895	9939	9783	-1.0351
F _v /F _v		.9129	9206.	.9075	8968.	. 8893	.8729	.8782	.8610	.8597	8648.	.8479	.8427	. 8295	.8276	.8326	.8475	.8292	.8284	.8447	.8656	.8677	.8840	.9380	.9601	*196.	. 9680	013	1.0140	1.0359	1.0357
M,/M	. 8005	. 7799	. 7477	.7142	.7014	- 6845	. 6615	.6381	6429	.6124	. 5976	.5798	.5710	. 5663	565	.5422	. 5392	.5496	.5478	.5384	.5456	.5729	. 5931	.6151	. 6834	.7652	. 7860	. 8071	*8694	.9277	6496.
F,/×	.7657	.7466	.7134	•6924	.6702	.6546	.6350	.6142	.6007	. 5907	.5759	.5595	.5479	.5456	.5379	.5238	.5222	.5367	. 5371	.5299	.5396	.5754	.6022	.6340	.7109	.7859	.8169	.8325	.8934	.9376	.9856
(deb)	240	244	248	252	952	260	564	268	272	276	280	284	288	262	962	300	304	308	312	316	320	324	328	332	336	340	344	348	352	356	360

TABLE 11B - VARIATION OF TOTAL LOADS WITH BLADE ANGULAR POSITION (RECONSTRUCTED FROM FIRST TEN HARMONICS)

3 Mo.4/Mo.4	5.	.965	1.032	1.027	1.040	1.042	1.0	1.024	1.010	666.	.993	*66	1.002	1.018	1.039	1.066	1.096	1.129	1.165	1.202	1.242	1.283	1.323	1.363	1.401	1.437	1.470	1.500	1.526	-	1.565
M _{0.3} /M _{0.3}	.96	166.	•	•		•	•		•	•			•	•		•		•			•	•	•		•			•		1. 4235	•
Mz/IMz I	8621		8765	8860	8958	9042	9089	6	8986	8824	8606		8133	-		7746			7742	~	7796	7856	7959	8116	8326		8846	9114	9362		9775
F _z /F̄ _z	0	-	-		-	-	-		-		-				-	-	-	-		-	-		-	•	-	-	-	•	-	1.0298	
Mx/IMx	0	42	47	9 4	6	29	1.016	32	06	81	92	7	22	62	86	95	07	20	35	52	69	86	1.104	1.122	17	1.161	1.181	1.200	18	-1.2325	£ 34
F,/F					-		-	o	*9854	a	.9755	g	•9756	σ	O	g	σ		-	-		-		-	-	-	-	7		1.1297	7
MVM	.9609	.9921	1.0159	1.1323	1.0415	1.0446	1.0431	1.0390	1.0345	1.0317	1.0322	1.0370	1.0463	1.0600	1.0776	1.1981	1.1210	1.1452	1-1703	1.1955	1.2203	1.2444	1.2675	1.2896	1.3105	1.3392	1.3485	1.3650	1.3791	1.3902	1.3980
× ×	.9798	1.0100	. 33	. 95	. 05	. 36	. 06	• 36	• 06	. 06	• 06	. 07	. 98	• 09	.11	.13	.15	. 18	.20	.23	.25	.27	.29	. 31	. 33	. 35	. 36	. 38	.39	1.4090	. 41
θ (deg)	•	4	•	12	16	20	42	82	32	36	0.4	**	8.8	25	95	60	49	89	72	92	80	48	88	92	96		0	-	-	116	N

M0.4/M0.4	1.5654	1.5786	1.5878	1.5937	1.5968	1.5977	1.5964	1.5925	1.5851	1.5733	1.5564	1.5341	1.5068	1.4755	1.4412	1.4049	1.3673	1.3284	1.2880	1.2457	1.2014	1.1552	1.1078	1.0599	1-0124	.9657	.9202	.8757	.8320	.7891	.7471
M _{0.3} /M̄ _{0.3}	1.4366	1.4456	1.4511	1.4536	1.4540	1.4528	1.4503	1.4459	1.4390	1.4289	1.4148	1.3969	1.3754	1.3510	1.3247	1.2969	1.2682	1.2383	1.2072	1.1746	1.1435	1.1053	1.0693	1.0331	.9972	.9617	.9267	.8922	. 8583	.8251	.7930
Mz/IMzI	9775	9966	-1.0111	-1.0273	-1.0436	-1.0600	-1.0760	-1.0912	-1-1053	-1.1181	-1-1297	-1-1400	-1.1491	-1-1568	-1.1632	-1.1682	-1-1721	-1-1752	-1.1777	-1.1798	-1.1814	-1.1823	-1.1821	-1.1806	-1-1778	-1-1739	-1.1692	-1.1641	-1.1588	-1.1530	-1-1468
F _z /F _z	1.0271	1.0240	1.0211	1.0185	1.0164	1.0147	1.0134	1.0123	1.0104	1.0084	1.0060	1.0035	1.0011	0666.	.9975	• 9965	.9959	9366.	8366.	1966.	.9953	9466.	.9934	.9918	9686.	.9872	****	.9815	.9786	.9758	.9731
Mx/IMx	.24	.25	.25	.25				-1.2541	•	•	•	•	•		•	•	•			•		-	•			9816	9597	m		+968*-	
F _v /F̄ _v	.13	.13	.14	.14	1.1414	1.1407	1-1397	1.1382	1.1359	1.1327	1.1284	1.1230	1.1167	1.1095	1.1017	1.0933	1.0844	1.0751	1.0655	1.0557	1.0458	1.0357	1.0254	1.0147	1.0032	6066*	.9780	6496*	.9521	.9403	9626.
M,/M		7.	~	1.4322	1.3988	1.3940	1.3877	1.3799	1.3791	1.3577	1.3426	1.3247	1.3045	1.2826	1.2595	1.2356	1.2108	1.1849	1.1576	1.1286	1.0981	1.0665	1.0346	1.0030	.9721	.9419	.9125	.8835	.8547	.8262	.7983
F _x /F̄ _x	. 41	. 41	. 41	.40	040	. 39	. 38	1.3739	. 36	.34	. 32	. 30	.28	• 26	.23	.21	.18	.15	.12	• 09	. 16	.03	.00	1696.	.9392	1606.	.8806	. 8513	.8218	. 7927	. 7646
(deg)	120	124	128	132	136	140	144	148	152	156	163	154	168	172	176	180	184	188	192	196	230	504	208	212	216	223	422	822	282	236	240

	M,/M	F,/F	Mx/IMx	F _/F	Mz/IMz	M _{0.3} /M _{0.3}	MOA MOA
9+	.7983	9626.	8764	.9731	-1.1468	.7930	.7471
83	.7716	.9232	8593	.9705		.7621	.7062
45	.7465	.9118	8436	.9682		.7328	9999•
33	.7231	.9339	8288	2996.		.7050	.6287
35	.7013	.8960	8141	9496.	-1.1172	.6784	.5924
545	.6838	.8878	7992	.9636		.6529	.5578
191	. 6613	.8795	7841	.9631		.6284	.5251
180	.6427	.8712	7693	.9634	•	. 6052	4464.
900	.6250	.8634	7559	.9643		.5838	*4994
145	.6087	.8566	7445	.9655	•	. 5648	.4415
112	2465.	.8508	7355	6996.		.5487	.4203
593	.5820	.8458	7285	.9681		.5354	.4028
519	.5720	.8415	•	.9687	•	. 5247	.3885
150	.5638	.8375	•	.9687		. 5155	.3764
388	• 5566	.8338	•	.9682		.5071	.3653
328	.5500	.8339	•	.9673		6864.	.3544
272	.5443	.8296	7339	9996.		.4914	.3437
236	.5393	.8310	7035	1996.		.4859	.3347
243	.5376	.8363	7085	.9672		. 4845	.3296
317	.5408	.8455	7204	.9691		.4898	.3317
483	.5511	.8595	7403	.9722	•	.5338	.3439
742	.5701	.8775	7665	.9762		.5280	.3685
100	.5984	.8985	7984	.9813	9521	. 5622	.4065
536	.6355	.9213	8334	.9860	9238	.6054	.4569
926	.6798	7776.	8693	.9913	8985	• 6555	.5175
245	.7289	6996.	9041	1966.	8785	1607.	.5852
850	.7803	.9878	9365	8666.	8651	. 7654	•6566
555	.8311	1.0063	9658	1.0033	8580	. 8202	.7281
017	.8793	1.0218	9916	1.0061	8561	.8720	1797.
434	.9233	1.1336	•	1.0082	8577	. 9192	.8610
86	60 96 •	1.0412	-1.0306	1.0097	8621	+096 •	.9177

TABLE 11C - VARIATION OF HYDRODYNAMIC LOADS WITH BLADE ANGULAR POSITION (RECONSTRUCTED FROM FIRST TEN HARMONICS)

M _{0.4} _H	.9359	985	000	.008	010	.006	666	992	985	982	486	989	666	013	929	.048	.068	.090	114	.138	.163	.188	.213	.237	259	.279	.298	.314	328	343
M _{0.3} H	.9598		1.0210									•				•													1.3447	•
M _{zH}	7728	-	8122	8284	8423	8499	8475	8330	8063	-	-	6926	9	9	9	9	9	9	6316	9	6469	6639	9	7242	-	8099	8541	8950	9312	9630
F Hz Hz	4.1503	4	S.	5	.5	5		e.	9.		6.	7	7.		-	2	2	7	6	•		6			-			6	.3	
M _{xH}	-1.0268	. 05	1.36	1.06	1.06	1.05	1.34	1.04	1.04	.04	1.04	1.05	1.06	1.07	1.08	1.13	.11	.13	1.15	1.17	.19	1.21	.22	.24	1.26	.28	1.30	.31	. 32	.33
", ",	1.0929	.121	.124	.120	.113	.104	. 197	.092	.091	.095	.102	.112	.125	.143	.156	.174	.192	.210	.228	.246	.264	-282	.300	.319	.337	.356	.372	.384	.392	.395
M M	.9591	.016	M	.043	. 346	.045	.040	.036	.033	.033	.138	. 148	.062	.381	.132	.126	.152	.178	.204	.233	.256	.280	.303	.325	.345	.365	.382	.39	00	.416
" <u>*</u> "*	.9793	M	. 35	• 10	• 36	• 06	. 16	• 19	. 06	. 06	. 97	. 38	• 09	.11	. 13	• 16	.18	. 21	.23	. 26	.28	.30	. 32	. 34	. 35	.37	. 39	04.	. 41	. 42
0	0 +	•	12	16	20	54	28	32	35	04	24	\$	25	55	9	99	68	72	92	80	3 &	88	26	96	-		-	112	-	N

Mo.4 _H	1.3401	1.3553	1.3597	362		.363	.362	358	.352	.342	329	314	.296	275	254	32	209	185	160	.134	.106	378	676.	.320	35	55	38	=	85	20
M _{0.3} _H	1.3546	1.3652	.3	.366	.3	. 362	.358	. 352	. 343	. 331	.316	.299	.279	.258	.235	.212	.188	.163	.136	.109	.080	051	. 022	993	696	37	60	82	.8557	53
M _{zH}	.963	-1.0184	.045	.071	.098	.125	.150	.173	.194	.213	.233	.245	.258	.258	.277	1.283	.288	1.292	1.296	.298	.300	599	162.	.292	286	.278	1.270	1.261	1.252	.241
F _H 2	1.7316	.4352	19	.73	19	1.62	2.03	2.46	2.93	.42	3.92	4.39	4.83	5.13	5.37	.53	5.63	5.69	5.74	5.79	5.88	.00	6.16	6.36	69.9	6.83	7.06	7.29	7.48	79
M X H	.336	-1.3396	1,336	.331	.326	.320	.312	.304	1.292	1.279	1.262	.243	1.221	1.199	.175	1.151	.126	1.101	.075	. 348	.022	966.	696	943	915	888	0	+	9	786
~		388	.379	.368	.356	.343	.328	.312	162.	.273	.251	.226	.200	.173	.145	.115	.086	. 156	. 126	96	29	937	07	16	845	13	82	52	54	66
MI M	416	1.4227	421	417	415	406	398	387	374	58	340	319	96	271	546	23	193	165	134	132	690	36	003	970	39	08	11	47	.8179	88
	545	1. 4258	.41	.41	. 40	. 39	. 38	. 37	. 35	. 33	. 31	. 29	• 26	.24	.21	. 19	. 16	.13	. 10	• 16	. 33	. 00	6896 •	.9377	4206.	.8775	.8475	.8173	.7873	. 7585
0	120	128	1.32	136	140	144	148	152	156	160	164	158	172	176	180	184	188	192	196	233	234	208	212	216	220	422	822	232	236	240

TABLE 11C (Continued)

M0.4 H0.4	.8500	.8106	7647	.7433	.7229	.7037	. 5861	6567	.6453	.6357	627	.6199	.6124	.6052	.5989	.5950	.5953	.6017	.6155	.6372	. 6663	.7016	.7411	.7828	.8246	.8651	.9026	.9359
Mo.3 _H	.8052	.7817	.7381	.7177	2869.	.6798	. 6528	6359	. 6246	.6161	0609.	.6025	1965.	.5908	. 5869	.5863	. 5918	.6020	.6211	6449	.6816	.7236	.7629	.8364	2648.	.8899	.9271	.9598
$\frac{M_{z_H}}{ \overline{M}_{z_H} }$	1.241	•	1.193	.182	.172	1.164	1.155	433		.106	1.094	085	1.080	1.076	071	-1.0596	.039	-1.0079	9674	9212	8745	8328	7999	~	9	2	7657	
F _{2H}	-7.6477	00 0			r.	2.2	9	•	5.5	5.1	4.8	9	7	2	9	.S	-3.0882	7	9	8473	0	80	.6			4	8	7
M N N N N N N N N N N N N N N N N N N N	7861	7465	7120	6953	6789	6635	86498	200	6249	6211	618	615	6141	6143	6181	6277	9449	*699*-	7015	7394	7806	8229	8644	9037	9401	9732	92	• 026
~	.6997	.6590	25	9	76	83	567	554	46	543	542	545	45	51	29	81	98	43	87	36	88	42	76	44	06	.031	990	• 092
M WY H	.7888	.7345	.6871	.6657	.6453	.6257	56972	5750	.5622	.5517	.5430	.5355	.5287	.5224	.5175	.5156	.5190	.5298	2645.	.5793	.6182	9499*	.7161	.7698	.8231	.8736	.9194	.9591
	.7585	. 7071	99	. 5456	62	69	50	25.40	. 5493	.5403	53	. 5269	.5237	.5153	.5114	.5120	.5196	.5364	. 5633	6665.	. 6447	6469 •	62420	.8008	. 8518	. 8992	.9423	.9793
θ	240	3 U	1 10	10	C	9	-	- 4		00	6	•				-	-	W.	N	N	10	1	3	3	3	S	R	C

TABLE 11D - HARMONIC CONTENT OF TOTAL LOADS

(φ _{Mx}) _n (deg)	-55.7 169.0 -168.6	169.9 169.9 153.3 -110.9	-55.7 -82.4 -104.9	-119.9 -116.9 -136.8 87.6		24-1 24-1 97-3 -93-2 5-8 -108-5
$\frac{(M_x)_n}{ \overline{M}_x }$.0733	. 00227 . 00999 . 00100	.0014	.0034	.0011 .0023 .0015	.0008 .0025 .0016 .0212 .0073
(φ _{Fy}) _n (deg)	123.4	3.8 -26.4 -27.3 52.6				
الم در الحر	.1204	.0156 .0082 .0037 .0013	.0010	.0019	. 0011 . 0012 . 0011	.0016 .0016 .0013 .0100
$(\phi_{My})_n$	-			116.2 130.4 56.4		-101.0 -90.6 -111.9 -109.4 -72.2
(M _V)	.3919	.0322 .0152 .0071 .0018	.0013	.0031	.0009 .0012 .0014	.0011 .0015 .0013 .0113 .0018
(φ _{Fx}) _n (deg)	115.8 1.7 21.0	23.0 11.5 4.7 -101.1	-114.5 123.0 119.3	115.7 121.3 79.5 57.2	49.2 30.9 60.9	
(x)	.0637		.0010	.0042		.0004 .0019 .0015 .0101 .0013
	400	3 V W K &	00-	N to M to	. o ~ ∞ ō	5 4 3 2 1 0

TABLE 11D (Continued)

φM0.4	(deg)	126.1	-1.6	28.7	33.6	39:1	16.1	6.7	-162.3	-163.5	168.7	94.5	94.5	129.9	40.5	58.6	76.5	68.8	27.1	150.0	-114.2	-145.2	-103.3	105.1	-162.8	38.5
(M _{0.4}) _n	M _{0.4}	.5642	.1173	.0785	.0473	.0230	7600.	.0036	.0030	.0014	.0019	.0030	.0036	.0026	.0028	.0023	.0010	.0015	.0034	.0015	.0016	.0015	.0014	.0077	.0056	.0085
фмо.3	(deg)								•	•							47.4	71.3	18.9	157.1	-121.7	-138.9	-99.5	103.2	-162.2	0.04
(M _{0.3})	M _{0.3}	.4288	. 0931	.0625	.0364	.0166	.0074	.0021	.0025	.0010	.0016	.0029	. 9033	.0022	.0020	.0013	. 9007	.0014	.0020	.0008	.0011	.0017	.0014	.0066	9400.	• 0024
φMz	(deg)	41.4	164.0	-82.3	-51.1	-41.9	-57.4	-71.0	4.69	126.6	141.8	131.2	142.3	-33.7	-6.8	-5.6	60.3	-64.5	178.7	153.3	87.1	98.0	9.99	4.94-	63.0	-98.1
(M _z)	Z W	.1857	.0354	.0263	.0268	.0150	.0068	.0850	.0015	* 100 *	.0027	.0019	.0011	.0014	.0016	.0023	. 0008	.0010	.0018	.0005	.0014	.0024	.0024	.0197	.0056	.0071
φ _{F2}	(deg)	88.9	9.59	-58.2	7.1	-17.9	-60.1	80.4	167.7	-83.9	28.2	141.9	-89.2	9.24-	.5	7.04-	166.1	41.9	-109.1	-25.8	-55.4	93.9	175.6	57.5	123.8	-175.9
(F _z) _n	IL ²	.0324	• 00 59	.0050	.0023	.0035	.0012	2000	.0012	-0002	.0002	. 0011	*000	.0008	*000°	.0006	.0005	6000.	.0010	• 0000	.0003	.0010	.0003	.0008	.0015	.0003
		1	2	2	4	2	9	7	80	6	0.	1	2	2	3	5	9	1	80	6	0.	1	2	3	4	2

TABLE 11E - HARMONIC CONTENT OF HYDRODYNAMIC LOADS

(WxH)	(deg)	-66.0	169.0	-168.6	-168.2	169.9	153.3	-110.9	23.7	-55.7	-82.4	-104.9	-119.9	-116.9	-136.8	87.6	148.3	-79.3	131.2	73.3	7.8	24:1	97.3	-93.2	5.8	-108.5
(MxH)	H _x H _H	.3202	0620.	.0473	.0227	8600.	.0048	.0010	.0027	.0014	.0019	.0031	.0034	.0024	6000.	.0016	.0011	.0023	.0015	.0005	.0008	.0025	.0016	.0211	.0073	.0109
	(deg)								•												•				•	
(F _{YH})	IT,	.3818	.0892	.0575	.0276	.0145	.0066	.0023	.0020	. 0012	.0017	.0040	.0039	.0033	.0010	.0024	.0019	.0021	.0019	.0013	.0014	.0029	.0024	.0177	.0061	.0069
	(geb)								•												•		•	•		
(MAH)	MyH	.4105	. 0685	.0530	.0337	.0159	.0074	.0019	.0015	.0012	.0014	.0029	.0033	.0025	.0013	.0024	6000	.0013	.0015	.0005	.0012	.0016	. 0013	.0118	.0019	. 0069
	(geb)																									
(F _{xH})	T _x	.4158	.0654	.0521	.0319	.0145	.0065	.0007	.0028	.0010	.0025	00000	** 00 *	.0031	.0018	.0015	.0014	.0010	.0005	.0003	*000°	.0019	. 0015	.0103	.0013	.0073
		1	2	2	4	2	9	1	8	6	0	1	2	2	+	2	9	1	8	6	0	1	2	3	5	2

TABLE 11E (Continued)

									2.2						22											
(\$0.4H)	(deg)	128.4	-1.6	28.7	33.6	39.1	16.1	6.7	-162.3	-163.5	168.7	64.5	94.5	129.9	40.5	58.6	76.5	68.8	27.1	150.0	-114.2	-145.2	-103.3	105.1	-162.8	38.5
(M _{0.4} H)	M _{0.4} H	.3412	.0693	.0464	.0280	.0136	.0057	.0021	.0017	.0008	.0011	. 0018	.0021	.0015	.0017	.0014	.0006	6000 .	.0020	6000.	.0010	6000.	.0008	9400.	.0033	.0050
(\$0.3H)	(deg)	123.7	-3.1	24.2	28.7	28.5	8.4	10.1	-154.4	-170.5	143.8	8.46	91.3	113.9	45.6	47.3	47.4	71.3	18.9	157.1	-121.7	-138.9	-99.5	103.2	-162.2	0.04
(Mo.3H)	M _{0.3_H}	.3485	.0708	.0475	.0276	.0126	.0056	.0016	.0019	. 0007	. 0012	.0022	.0025	. 0017	.0015	.0010	9000	.0010	.0015	. 0006	.0008	.0013	.0011	.0050	.0035	.0041
(\$\phi_MzH\phi)	(deb)	41.4	164.0	-82.3	-51.1	-41.9	-57.4	-71.0	4.69	126.6	141.8	131.2	142.3	-33.7	-6.8	-5.6	60.3	-64.5	178.7	153.3	87.1	98.0	9.99	4.94-	63.0	-98.1
(MzH)	IM _{zH}	.3059	.0583	.0432	.0442	. 0243	.0112	.0083	.0025	.0072	. 0045	. 0032	.0017	.0023	.0026	.0037	.0014	.0017	.0030	.0008	.0022	.0039	. 0040	.0324	.0091	.0117
	(deg)																		-							
(FzH)	H _Z H	6.3652	.3644	.6294	.2870	.4368	.1550	.0244	.1560	.0230	.0295	.1356	.0519	.0985	.0492	.080	.0629	.1114	.1287	.0570	.0383	.1257	.0414	.1052	.1932	.0387
	c	1	2	2	4	2	ç	1	9	6	1.0	11	12	13	14	15	16	17	13	19	20	21	22	23	42	52

TABLE 12 - EXPERIMENTAL LOADS DURING QUASI-STEADY ACCELERATION AT V = 2.65 KNOTS, n = 10.21 REVOLUTIONS PER SECOND

TABLE 12A - VARIATION OF HYDRODYNAMIC LOADS WITH BLADE ANGULAR POSITION

	T _x	M _V H	T,	M _x H	F _z	MzH	Mo.3 _H	M0.4H
0	F _x H,SP	M _{VH, SP}	YH, SP	M _x H, SP	F _{2H,SP}	M _{zH,SP}	Mo.3H, SP	Mo.4H, SP
0	.08	1.1794	39	78	. 06	4534	1.0515	1.0763
3	.11	9	53	95	.70	8	9	1.0841
•	.13	-	16	11	.29	49	97	1.0937
12	1,1635	1.2313	• 9925	9266	7.6844	4569	1.0909	1.1070
16	. 18	25	.005	38	.79	471		1.1234
20	. 21	27	.013	946	.63	91	12	1.1408
42	.23	30	.016	646	.28	12	13	1.1557
28	.24	31	1.3165	6 76	.87	30	14	1.1650
32	• 25	32	.014	94	.54	541	3	1.1665
36	. 25	.31	. 311	246	.39	r	14	1.1605
0+	.24	.30	.008	38	. 44	32	13	1.1488
44	.23	.29	.037	935	• 65	513	.12	1.1346
848	.22	28	.008	933	.93	68	1.1110	1.1211
25	.21	•26	.010	32	.19	.464	.10	1.1103
26	. 21	.25	.613	932	.38	439	• 09	1.1032
63	.23	.25	. 115	933	40	418	. 39	1.0992
49	.20	.25	.018	933	.50	00	• 09	1.0969
89	• 20	.24	.020	34	.50	. 386	. 08	1.0954
72	.20	.25	.024	936	.48	374	.08	1.0942
16	.23	.25	.028	39	.45	.364	• 00	1.1938
83	.21	.25	.034	446	04.	.357	• 09	1.0953
34	. 22	• 26	-042	951	.29	.352	• 09	. 199
38	. 22	• 26	.050	9595	.13	351	.10	1.1076
26	.23	.27	.158	.968	.93	.355	.11	1.1186
96	.24	• 29	.166	11	.7.	. 362	.12	1.1316
100	. 25	.30	.073	85	.61	.373	.14	1.1451
134	. 26	. 31	.078	93	.57	98	.15	1.1581
108	.27	.32	.084	00	.60	00	.16	1.1698
112	. 28	.33	. 388	. 116	• 65	4143	.17	1.1804
116	• 29	.34	. 193	.012	.65	4283	. 18	1.1905
120	.29	.35	160.	.017	.53	4427	19	.200

TABLE 12A (Continued)

Mo.4 _H	Mo.4H,SP	1.2004	1.2106	1.2237	30	238	44	1.2486	251	254	256	258	259	.259	.257	252	.246	240	233	226	1.2202	213	205	196	185	174	163	152	-	1.1327	-	-	
	Mo.3H, SP		66	10	. 215	. 222	.227	1.2313	.232	.233	.234	.235	.235	.233	.230	.225	.219	.212	.204	.197	.190	.182	.173	.164	.153	.142	.130	.120	.109	100	. 193	.079	
MzH	MzH, SP	4427	4582	1524	4934		5315	5495	5660	5807	5939	6057	6166	6266	6354	•	1619	6545	6587	6623	6654	6683	•	•	6701	6687	6667	6645	6625	6610	•	6572	
FzH	IF2H,SP	.536	.273	.888	4.	.042	.737	559	.478	.427	.330	.140	.858	.534	.243	.053	.993	. 041	.136	.203	7	.082	.920	• 766	.682	969.	. 792	.912	.984	.952	.833	.556	
M×H	IM _{×H,SP}	.017	.022	. 326	.030	.032	.032	-1.0321	.030	.027	.024	.021	.017	.013	.007	.001	.995	9874	.979	9704	.961	.952	9430	9338	9245	9152	9358	8965	8874	8784	8696	8612	
F,	F,H,SP	.397	.100	.103	.103	.102	.100	1.0962	. 191	.086	. 380	.374	.368	.060	.052	.044	.034	. 125	.015	.005	466	984	N	961	0	9	0	8	00	9	0	-	
MyH	MyH, SP	1.3562	.365	.375	.383	.390	.395	1.3999	.413	.405	.407	.408	.437	.405	.431	. 395	.388	.381	.373	.365	1.3575	. 348	.338	.326	. 314	.300	.287	.275	.263	251	.239	.227	
T _x	F _x H,SP	1.2996	.30	. 31	. 31	. 32	. 32	1.3322	. 33	. 33	. 33	.33	.33	. 32	. 32	.31	. 31	. 33	. 29	.28	.27	.26	.25	.24	.23	.22	.20	.19	.18	.17	1.1577	1.1444	
9		N	N	N	M	M	*	144	3	LC	5	0	9	0	-	-			8	0	9			0	-	-	N	N	61	1	~	3	

M _{0.4} H, SP	1.1130 1.1023 1.0912	1.0803 1.0703 1.0613			9698	.9582	.9474	.9523	.9918 1.0158 1.0378 1.0553	•
Mo.3 _H	1.0797 1.0690 1.0582	1.0477 1.0379 1.0289	1.0203	.9576	. 9394	. 9336 . 9314 . 9284	.9248	.9356	.9703 1.0103 1.0268 1.0268	1.0515
M _{zH}	657265416497	6443	6287	6129	5894		542253155196	507849734890	4828 4731 4672 4603	4534
F _{ZH}					200		0 m r	- 0 W	5.2724 5.1426 5.1791 5.1892 5.5272	-
M _{xH}	861285318531	837 830 823	815	786	7672	.762 .762	7660	783 792 802	8121 8229 8477 9624	8784
F _{VH} , SP	.8813	.8434	.8332 .8262 .8195	8073	.7953	7919	.8123	.8223 .8339 .8466	.8611 .8740 .8886 .9043	.9396
My H, SP	1.2270	1.1874 1.1756 1.1648	41.					• • •		
HX HX BP R	41.	.09	1.0738	33	99	98 98	.9724	96.	1.0149 1.0269 1.0394 1.0531	. 08
0	2 2 2	500	DION	- 0C 0C 0C	0000	000	MNN	M M M	341 344 348 352 356	9

TABLE 12B - VARIATION OF TOTAL LOADS WITH BLADE ANGULAR POSITION

M _{0.4} sp	1.4631	1.4764	1.4928	•	1.5427	•	.596	.611	.613	.602	.581	556	532	1.5132	1.4998	491	486	482	1.4784	476	1.4768	485	1.4941	510	533	552	572	1.5902	909	621	1.6367
M _{0.3}	21		.24	.26	2							.2	2.	1.2617	.2	.2	.2	.2	.2	.2	2.	.2	.2	2		.2					
$\frac{M_z}{ \overline{M}_z S_P }$		4782	4786	4831	4919	5039	5168	5278	5344	5348	5289	5176	5031	4874	4726	4597	4491	1011	4331	4271	4225	4196	4191	4212	4259	4325	46 34	4488	4572	4657	++44
F Sp	.5445	.5488	.5529	• 5556	. 5562	.5548	.5520	.5493	.5467	.5463	.5471	9645.	.5528	1955.	.5589	.5611	.5628	• 5644	.5661	.5677	. 5693	.5735	.5713	S	.5727	S	S	.5784	.5812	.5835	.5853
M N SP	8834	36	01	60	13	14	11	934	16	84	77	65	57	8519	847	843	0 7	838	.837	838	841	846	54	862	871	881	893	898	206	915	924
T, S	.7640	.7671	.7700	.7717	.7716	.7692	.7646	.7583	.7505	.7429	.7361	.7305	.7263	.7231	.7207	.7189	.7174	.7165	.7166	.7179	.7205	.7244	.7293	.7348	.7434	.7461	.7518	.7575	.7636	.7699	.7765
M NSP	.15	.16	.18	.20	.22	.24	• 26	.28	.28	.28	.27	• 26	.24	1.2368	.22	.22	.21	.21	.21	.22	.22	.22	.23	.24	.25	.26	.28	• 29	.30	.31	.32
"x "x g2	.372	. 194	.119	.145	.171	.194	.212	. 225	.231	.231	. 226	.218	.209	1.1998	.191	.185	.182	. 181	.184	.188	. 195	.202	.213	.218	.226	.234	.243	.252	. 261	.273	.278
θ	0	+	80	12	16	23	54	28	32	36	6.0	**	848	52	99	90	49	58	72	16	83	84	88	36	96	190	134	1 18	211	116	021

M _{0.4}	1.6367	1.6677				.709	.713	.716	.719	1.7218	722	1.7217	717	709	669	1.6880	1.6763	665	1.6545	643	630	1.6156	598	580	561	1.5447	528	513	1.4989	1.4833
M _{0.3}	1.3619	. 6	.3	*	3.	•		•	•		•		•	•		1.4082		•	•	•		•	•		•	•	•	•	1.2741	•
$\frac{M_z}{ \overline{M}_{SP} }$	4424	4941	5053	5168	5284	5393	E	5583	5662	5734	E	5861	n	S	9	6031	9	6078	9	W	w	6128	6125	w	9	1609*-	9	6070	6060	6047
F _z	. 5850	8	.5831	82	81	82	83	84	85	86	85	19	82	82	82	84	85	86	86	85	94	23	82	81	81	81	81	8.0	17	74
M × Sp	9245	9419	6646	g	9630	9680	9722	9760	9795	9829	σ	9889	9911	σ	9931	9929	o	o	0686	O,	8486	0,	9797	o	9734	8696	9660	9619	9578	9535
Ty Sy	.7765	.7895	.7953	.8006	-8052	.8095	.8135	.8174	.8214	.8253	.8290	.8325	.8355	.8382	.8405	.8426	***	.8463	.8473	.8482	.8486	.8487	.8484	.8479	.8473	.8467	.8459	6748.	.8435	.8418
MIN'SP	1.3205	1.3385	1.3463	1.3529	1.3581	1.3622	1.3554	1.3678	1.3695	1.3703	1.3697	1.3675	1.3634	1.3578	1.3511	1.3439	1.3367	1.3294	1.3217	1.3132	1.3035	1.2924	1.2803	1.2677	1.2553	1.2434	1,2321	1.2208	1.2093	1.1972
T _x g _s	1.2785	29	.29	. 30	.33	. 31	. 31	. 31	.31	. 31	. 31	. 30	. 33	.29	.28	. 28	.27	.26	. 25	.24	.23	. 22	.21	.20	.18	.17	.16	.15	.14	.12
0	021	128	132	136	14.0	557	847	152	951	160	191	891	172	921	180	184	861	261	961	5 30	787	238	212	917	022	722	822	272	236	040

M _{0.4 SP}	1.4833	1.4666	•				•	•	•	1.3214	1.2989	1.2787	•	•	•	1.2491	•	•	1.2353	1.2278	1.2246	1.2305	1.2486	1.2787	1.3173	1.3587	1.3966	1.4268	1.4481	1.4631
M _{0.3}	1.2623	1.2373	•																										1.2085	
M _z	6047	6001	5969	5934	5901	5874	5852	5831	5808	5778	5737	5688	5635	5583		•	5450	5404	5349	5283	5211	5140	5076	5025	9864	4959	6265	•	4851	•
Z Sp	.5741	.5668	.5637	.5614	.5595	.5579	.5561	. 5543	.5523	. 5505	.5493	.5479	.5479	.5463	• 5455	.5448	.5443	2445	1445.	.5458	.5479	.5478	.5477	• 5464	2445	.5417	.5398	.5395	.5411	. 5445
M _{xSp}	9535	9446-	•	•	•	9231	9164	9092	9017	8941	8866	8794	8725	8661		•	8501	8465	8440	8430	8433	8448	8471	8500	8533	8571	8617	•	8748	8834
y Sy	.8418	.8373	.8344	.8313	.8279	.8241	.8199	.8153	.8134	*8052	.8001	.7950	.7899	.7850	.7801	.7753	.7706	• 7663	•7626	.7598	.7579	.7568	• 1564	• 7565	.7568	.7572	.7580	.7593	.7613	.7649
M _{YSP}	1.1972	• •	•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•		•	•		•			•
r _× r _s	1.1272	19	• 39	. 97	• 96	• 02	• 94	. 03	. 32	. 01	. 00	99	99	98	97	.9722	96	. 9618	95	95	.9631	96	. 9789	9686.	. 00	• 01	. 32	1.0382	. 35	. 07
0	240	248	252	526	260	564	268	272	276	280	284	288	292	246	300	334	338	315	316	320	354	328	332	336	340	344	348	352	356	360

TABLE 12C - HARMONIC CONTENT OF HYDRODYNAMIC LOADS

(WxH)	(deg)	-55.0	159.9	125.6	104.1	-60.8	-58.7	48.8	-44-3	-10.5	35.1		(\$0.4H)	1400)	(Gen)	6.44	30.9	65.1	84.0	61.6	23.5	.77.	.83.7	.88.3	4.06
	M _x H, SP												(M _{0.4} H) (_							•				
(\phi_{YH})	(deg)	114.7	18.4	47.5	66.2	91.2	99.3	133.1	138.9	159.0	-157.9		(φ0.3H)	(neb)	(Ran)	139.2	31.5	9.69	86.5	150.0	.147.5	-94.3	-89.6	-93.5	9.46-
(F _{YH})	YH, SP	.1417	.0271	.0208	.0085	.0029	.0024	.0014	.0014	. 0015	.0011		(Mo.3H)								•				
(WANH)	(deg)	137.9	39.0	73.0	95.8	152.8	-143.6	-101.7	-92.3	-86.8	-102.2		(φ _{MzH})	(dea)	ì	55.5	143.5	-61.8	-20.6	10.0	47.4	78.5	92.1	124.9	140.4
	MyH, SP												(MzH)	IN IN	H, SP	.1257	- 0434 -	.0357	.0194	.0113	.0081	.0052	.0035	0400.	.0029
($\phi_{E_{X}H}$)	(deg)	133.4	44.1	7.08	107.9	146.5	-170.0	-141.9	-129.5	-130.5	164.0		($\phi_{F_{Z_H}}$)	(ded)		61.0	57.8	-45.6	143.4	4.99	75.8	115.6	126.6	6.07	135.4
(F _{xH})	TxH, SP	.1549	.0462	.0300	.0143	.0075	.0052	.0036	.0023	.0012	.0010		(F _Z H)	14	ds'H,	2.6859	.2230	.3734	.0912	.1312	.1671	.2640	.2188	.0593	.2018
		-	~	m .	•	S	9	1		6	9					-	2	2	*	2	9	_			

TABLE 12D - HARMONIC CONTENT OF TOTAL LOADS

(deg)	10.5 -125.6 -104.1 -58.7 -44.3 -10.4	(φ _{0.4}) _n (deg) 139.3 30.9 65.1 66.1 161.6 -123.5 -77.1 -88.3
(M _x)	O CO M A M C I M CO M	MO.4 SP 1 830 0.4 SP 1 830 0.4 SP 1 856 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
$\frac{(\phi_{FV})_n}{(deg)}$	141.6 133.2 139.0 159.1	(deg) 14 * 3 31 · 5 65 · 6 86 · 5 150 · 0 -94 · 3 -93 · 5
F, ysp	0	(Mo.3) 1350 1350 1461 1462 1142 1142 1064 1075 1075
$(\phi_{My})_n$	137.9 339.0 739.0 152.8 101.7 101.7 102.3	(φ _{Mz}) _n (deg) -143.5 -61.8 -20.6 10.6 47.4 78.5
Mysp	44000000000000000000000000000000000000	(M _Z) M _Z SP 0.0763 0.0217 0.0118 0.069 0.069 0.069
$(\phi_{Fx})_{n}$	133.4 0 44.1 20 80.4 107.9 1 107.9 1 107.9	(φ _{F2}) _n (deg) 162.4 57.8 -42.6 143.4 66.4 75.8 115.6 126.6
(F _x)	1510 1610 1610 1610 1610 1610 1610 1610	(F ₂) F ₂ SP 00221 0018 0010 0010 0021 00013
•	10031651	- H0W4W0F860

TABLE 13 - EXPERIMENTAL LOADS DURING QUASI-STEADY ACCELERATION AT V = 3.55 KNOTS, n = 10.96 REVOLUTIONS PER SECOND

TABLE 13A - VARIATION OF HYDRODYNAMIC LOADS WITH BLADE ANGULAR POSITION

M _{0.4_H, SP}	1.0696	1.1071 1.1197 1.1307 1.1378	1.1385 1.1319 1.1190 1.1023 1.0852	.070 .061 .056	000000000000000000000000000000000000000	1.0750 1.0856 1.0876 1.1099 1.1218 1.1331 1.1443 1.1561
M _{0.3H}	1.0535 1.0702 1.0857	1.1007	1.1278 1.1278 1.1164 1.1018 1.0871	0000	1.0627 1.0665 1.0666 1.0691 1.0728	1.0859 1.0859 1.1060 1.1169 1.1380 1.1591 1.1591
M _{ZH}	-5061	5167	5689 5615 5440 5231	93	1	45 T T T T T T T T T T T T T T T T T T T
F _{zH}	838	938	.151 .151 .139	.573 .866 .132	. 695 . 695 . 695 . 689 . 689	50000000000000000000000000000000000000
M _x H M _x H, SP	9280	98999	76778	956 956 956 956	8446644 646644	-1.9983 -1.9983 -1.9153 -1.0281 -1.0281 -1.0442
H, SP	.994	4600.	.058 .051 .046	.046	000000000000000000000000000000000000000	1.10944 1.1003 1.1180 1.1180 1.1239 1.1349
MyH, SP	1.1546 1.1763 1.1982	22.25	23.25	202.	222222	1.2245 1.2346 1.2545 1.2566 1.2574 1.29882 1.29882
H XH, SP	109	171 198 221 236	245	195	1172	1.2135 1.2212 1.2294 1.2294 1.2382 1.2477 1.2574 1.2574
0	0 4 0	2922	\$ 2 9 9 4 \$ 2 9 9 4	55 50 50 50 50 50 50 50 50 50 50 50 50 5	\$ 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 92 1190 1104 1112 120

TABLE 13A (Continued)

Mo.4 _H	Mo.4H, SP		1.1812		03	210	-	216	217	217	218	218	218	215	210	202	192	183	174	-	161	154	146	35	121	107	m	080	169	159	1.0498	037
Mo.3 _H	M0.3H, SP	1.1732	1.1812	1.1913	1.1997	205	1.2088	239	1.2096	1.2088	1.2079	1.2065	204	200	194	185	.176	166	157	149	141	132	1.1231	111	160.	1.0836	.069	920	1.0455	1.0349	1.0240	1.0116
MzH	MzH, SP	4744	2464	5142	5343	1455*	5732	-		1	~	-	M	674	+	692	9	705	-	9	-	5	0	9	9	~	+	-	9		7176	9
FzH	IF TH, SP	9	.18	.71				4		-	1.9686	9.	2	8	.5917	3	.5186	9	.8181	σ	.8877	.7674	.5989	.4489	.3658	.3580	.3914	.4085	.3571	.2157	•0039	2274
M x	M _{xH,SP}	. 051	.058	. 163	.067	.070	.070	.068	.065	.061	55	.049	.042	1.035	1.027	1.019	.010	.000	90	6	8	27	R	34	4	3	3	33	2	2	8618	7
η, Η	FVH, SP	.139	.143	.145	.146	.145	.143	.139	.133	.125	.117	.137	.097	.086	.075	.063	. 952	.040	.028	16	. 303	989	15	961	47	34	21	39	98	87	.8772	99
MyH	M _{vH,SP}	1.3097	1.3205	1.3304	1.3385	3	3	1.3492	M	1.3494	m	1.3479	3	m	1.3334	1.3243	1.3140	1.3037	2	1.2852	~	2	1.2538	2	0	1.2341	-	1.1711	-	-	1.1398	1.1160
T _X	F _x H,SP	.276	.284	. 293	• 296	. 300	. 332	. 303	.334	- 302	. 300	.296	. 291	.285	.278	.270	. 262	. 252	.242	.231	.218	.234	.189	.174	.159	.143	.128	.112	160.	. 381	1.1656	.050
•	,	1	2	N	M	1	3	4	3	5	5	8	9	9	-	-		9		6	6		-		-	-	N	01	N	m	536	*

Mo.4H	1.0375	.9861	9355	.9018 .9894 .8776	. 8681 . 8582 . 8582		.9046 .9355 .9692 1.0020 1.0303
Mo.3H	1.0116.	9645	. 9161 . 9087 . 9010	.8819 .8712 .8612	.8531 .8473 .8437	. 8396 . 8401 . 8455 . 8556 . 8723	.8954 .9237 .9543 .9843 1.0113 1.0343
M _{ZH}	7165	7045 6979 6913	-6811	- 6572	6394 631 6208 6114	6014 5914 5554 5530	5335 5270 5181 5139 5096
F _{ZH}	227442045361	55 12 55 12 5165	1.4939	3277	. 7905 . 8731 . 8727	.9762 1.2375 1.6663 2.1971 2.7156 3.1139	3.2917 3.2857 3.1170 3.2275 3.5829 4.1584
M _{xH}	8513 8410 8338	8206 8105 8005	7816	-,7561	7462 7434 7411 7400	- 7442 - 7508 - 7508 - 7503	46443 6006445 6006445 6006445 6006445 6006445 60064 60064 600645 600645 6006
F _{VH} , SP	.8566	.8349 .8246 .8147	. 7965 . 7886 . 7819	.7690	.7648 .7636 .7631	.7668 .7724 .7813 .7937 .8195	.8489 .8714 .9195 .9445
MyH SP	1.1163	0000		.9657 .9521 .9396	,0000	9113 9195 9198 9144 9256	.9716 1.0042 1.0394 1.0737 1.1346 1.1313
H N N N N N N N N N N N N N N N N N N N	1.0501	99	9600	.9127 .9131 .8947	888	. 8641 . 8659 . 8755 . 8893	. 9288 . 9520 . 9760 1. 0005 1. 0517 1. 0798
θ	2 2 2	10 10 10 16	CHNO	0000	6000	MANNER	3333 333 333 333 333 333 333 333 333 3

TABLE 13B - VARIATION OF TOTAL LOADS WITH BLADE ANGULAR POSITION

M _{0.4}	M _{0.4SP}	1.3966	1.4192	1.4396	1.4603	481	1.4996	1.5111	1.5117	1.4998	1.4771	1.4479	1.4180	1.3926	1.3749	1.3651	1.3615	1.3609	1.3611	1.3611	1.3617	1.3647	1.3719	1.3838	1.3999	1.4184	1.4374	455	473	1.4902	1.5083	1.5276
M _{0.3}	Mo.3sp				•		•	•	•	•	•	•	•				•	•		•	•	•	•			•			•		1.2949	•
M	M _{zSP}	5445	5439	5459	5510	5588	5682	5769	5826	5833	5782	5676	5530	5367	5207	5067	4952	4863	0624*-	4728	4672	4623	4588	4575	4589	4633	+0.45-	16140-	4064*-	5018	5135	5253
Ľ²	FzSP	.6093	.6143	.6183	.6211	.6215	.6196	.6161	.6124	.6095	.6082	.6088	.6119	.6141	.6176	.6210	.6242	.6272	.6301	.6328	. 6353	.6372	.6384	.6391	.6395	.6401	.6413	.6431	•6454	9249.	0649*	.6493
×	™ _{xSP}	32	45	9560	62	79	61	52	40	26	11	98	887	19	73	7.1	7.0	7.0	71	72	77	11	81	86	92	66	10	16	26	37	9478	50
т _у	r, SP	.8282	.8338	.8378	.8395	.8384	.8343	.8274	.8185	.8087	0662.	.7903	.7834	.7785	.7755	.7743	.7737	.7741	.7751	•7766	.7785	.7809	.7839	.7874	.7915	.7961	.8013	.8070	.8132	.8197	.8265	.8334
Ž,	Mysp	1.1323	1.1530	1.1739	1.1957	1.2176	1.2372	1.2514	1.2579	1.2555	1.2451	1.2294	1.2119	•	•	•	•	•		1.1766		•	1.1909	1.1990	1.2086	1.2191	1.2297	1.2400	1.2499	1.2598	1.2700	1.2834
u×	F, xSP	. 06	. 39	.12	.15	.18	. 20	.22	. 22	.22	. 22	.20	.19	.18	.17	.16	.15	.15	. 16	.16	.17	.17	.18	. 19	• 19	.23	.21	. 22	. 23	.24	1.2521	• 26
ď		0	+	•0	12	16	20	74	28	32	36	6.4	77	648	25	26	90	94	6.8	72	16	R.3	34	88	26	96	-	_	-	-	116	N

TABLE 13B (Continued)

M _{0.4 SP}	1.5276	.547	. 266	1.5926	.598	.600	.600	.599	.599	.599	.597	92	.582	.569	.552	.536	.521	.510	664.	.489	15	.457	.435	11	.388	.367	20	.335	.319	8	
M _{0.3}	1.3095			1.3578					.3									6.0	2	2	2				2	7	7	7	7	-	
M _z	. 525	37	4	5737	585	596	.606	15	54	32	43	949	652	657	61	65	68	72	75	77	79	80	80	78	11	675	74	73	6729	22	
F _z Sp	J .	1 0	4	9449	44	45	.6464	47	47	.6461	***	.6427	.6417	.6419	.6431	. 6451	6949*	.6481	.6482	.6474	.6469	9449 •	.6436	.6433	. 6425	.6418	*0 *9 *	.6382	.6352	.6319	
M _x	9586	.969	9 0	. 6	00	.004	.007	.009	.010	.010	.011	.011	.010	.009	.008	.006	.003	66	95	91	87	83	62	74	20	99	61	.955	64	43	
Ty gy	33	3	9 6	8579	62	99	7.3	73	15	11	78	62	81	82	83	84	85	85	85	84	83	81	19	78	92	15	73	71	69	99	
My SP	1.2804	2		1.3134			.3	.3		.3	.3	.3	.3	2	.2	2.	.2	2	0	~	.2	2		-			7	7	1.1396		
T _x g _s	1.2609	97.	200	0 00	. 28	.28	.28	.28	.28	. 28	.27	.27	• 26	. 25	.24	.23	. 22	.21	.20	.19	.17	. 16	.14	.13	.11	. 10	. 08	. 07	. 35	• 34	
θ	021	421	971	136	140	144	148	152	156	160	164	158	172	921	180	184	188	192	196	230	504	238	212	216	022	422	822	232	236	240	

TABLE 13 (Continued)

M _{0.4}	1.3304	.2	1.2479	1.2180	1.1901	1.1673	1.1508	.139	.130	.120	.107	. 389	.070	1.0523	.038	.029	.024	. 023	.021	. 020	.021	.027	.042	.071	.113	.166	.224	.280	.329	.36	.396
M _{0.3}		-	.11	• 09	•	•	- 042	•	1.0231	•	•	8686.	.9761	.9632	952	6446 •	939	936	.9343	.9330	.9338	. 9391	.9513	.9720	. 001	.037	. 075	1.1136	.147	.176	• 199
$\frac{M_z}{ \overline{M}_{zSP} }$	6723	6708	6684	6650	6610	6570	6535	6508	6486	6465	644n	6406	6363	6311	6255	6198	6142	6085	6024	5957	5883	5805	5730	5664	5611	5572	5543	5518	5493	5467	5445
Z SP	.6319	.6289	.6263	.6242	.6225	.6208	.6189	.6168	.6148	.6131	.6122	.6119	.6120	.6118	.6110	.6093	.6070	.6047	.6033	.6032	9409.	.6068	.6093	.6103	.6101	.6084	.6361	.6042	.6039	.6057	.6093
M N N N N N N N N N N N N N N N N N N N	9433	36	59	22	14	90	16	89	81	74	19	61	56	8516	44	38	32	27	23	21	23	27	34	43	24	65	78	91	05	19	32
T _y Sy	.8666	.8635	.8598	.8557	.8512	*8464	.8413	.8361	.8309	.8258	.8208	.8161	.8114	.8367	.8019	.7970	.7921	.7875	.7836	.7809	.7798	.7804	.7826	.7862	. 7939	.7963	.8322	.8085	.8151	.8218	.8282
M SP					1.0280	•			.9853		9496.	.9523	.9390	.9273	.9174	.9105	.9058	.9326	.9333	.8983	.8986	.9030	.9137	.9319	9256.	.9887	1.3223	1.0551	1.0846	1.1101	1.1323
"x "x gs	. 04	1.0259	.01	66	.9880	97	96	. 9531	16	. 9288	.9172	9906	89	. 8890	88	87	86	86	85	85	.8619	87	88	.9014	.9222	6446.	. 9683	.9921	.01	1.3421	• 16
0				5	5	9	9	9	~	-	•			262		0	-		-	-	N	N	2	M	~	3	3	3	5	5	S

TABLE 13C - HARMONIC CONTENT OF HYDRODYNAMIC LOADS

(φ _{M×H})	11633 11633 11363 11363 11363 1145 1165 133.7	(φ _{0.4H}) _n (deg)	132.9 25.6 50.4 64.2 112.5 113.4 113.4 -101.4 -59.5
(M _{xH})	00000000000000000000000000000000000000	(M _{0.4} H, N _{0.4} H, SP	.1376 .0674 .01153 .01153 .0028 .0028
(φ _{FνH}) _n (deg)	108.1 108.1 10.0 442.5 772.9 150.9 155.7	(φο.3 _H) (deg)	127.9 26.4 51.4 64.6 48.7 38.3 -112.0 -68.1
(F _{VH}) F _{VH, SP}	. 1758 . 0405 . 0298 . 0119 . 0013 . 0010	(M _{0.3} H)	. 1453 . 0 627 . 0 1449 . 0 0 67 . 0 0 25 . 0 0 26
(φων _H) (deg)	125.8 34.1 58.6 71.5 71.5 171.8 1172.1 107.5	(deg)	158.5 -171.6 -711.7 -711.7 -71.6 -14.5 -14.5 -130.6 -130.6 -130.6
(M _{VH})	.1779 .0733 .0443 .0194 .0018 .0039 .0035	(M _{ZH})	.1463 .0192 .0192 .0078 .0047
$(\phi_{Fx_H})_{n}$	122.6 538.5 658.5 1738.6 177.2 177.2	$\frac{(\phi_{Fz_{H}})}{(deg)}$	60.9 -466.1 59.5 33.8 1123.8 1143.4
F _x H, SP		(F _Z H)	3.0057 .1342 .4916 .1987 .2210 .2210 .21111 .2696 .2346
- C - C	40m4mara02	c	1064667669

TABLE 13D - HARMONIC CONTENT OF TOTAL LOADS

$(\phi_{Mx})_n$	(deg)	-16.3	-163.2	-136.4	-129.2	-132.5	-108.8	-23.2	-14.5	6.6-	-33.6			(\$0.4)	(deg)	127.3	25.6	50.4	64.2	41.5	-12.5	-113.4	-101-4	-59.5	-88.9	
(M _x)	W _{xSP}	•0625	• 6 425	.0290	.0101	1900.	0700.	.0620	•0015	.0014	700a-			(M _{0.4}) _n	Mo.4sp	.2185	.1140	0690.	.6229	.0123	.0028	2400.	2400.	.0058	.0091	
$(\phi_{FV})_n$	(geb)	•							155.8					(\$0.3)"	(geb)		56.4					•	•			
(F _y)	F YSP	.0445	.0229	.0168	.0068	.0041	• 0026	2000	. 0011	90000	.0003			(M _{0.3}) _n	M _{0.3SP}	.1618	.0825	.0509	.0196	.0088	.0013	.0032	.0031	.0032	.0051	
(pw)	(deg)	125.8	34.1	58.6	71.5	6.07	-171.8	-122.1	-107.5	-67.2	-96.3			$(\phi_{Mz})_n$	(deg)		-151.8									
(M _y)	Mysp	.1698	3020.	.0 423	.0186	.0057	.0017	.0038	.0035	.0034	.0041			(Mz)	Mzsp	.0888	.0299	.0225	.0116	2400.	.0029	.3028	.0027	.0019	.0016	
$(\phi_{Fx})_{r}$	(Bap)	122.6	38.5	65.8	78.6	106.8	158.4	-155.3	-128.1	-127.2	177.9	70 t		$(\phi_{Fz})_{n}$	(deg)		85.0									
(F _x) _n	FF X SP	.1824	.0623	.0389	181	.0063	8 400 .	.0042	.0030	.0018	.0000			(F _z) _n	Fzsp	.0217	.0011	. 1939	.7016	.0318	.0014	.0017	. 6622	.0006	.019	
	_	1	2	m	7	2	9	1	œ	6	01				_	1	2	m	t	2	9	7	•	6	9	

TABLE 14 - EXPERIMENTAL LOADS DURING QUASI-STEADY ACCELERATION AT V = 5.36 KNOTS, n = 12.70 REVOLUTIONS PER SECOND

TABLE 14A - VARIATION OF HYDRODYNAMIC LOADS WITH BLADE ANGULAR POSITION

M _{0.4} H	1.0278	.038	1.0368	1.0331	• 029	1.0212	.995	.9811	+016.	.9655	.9672	.9745	.9855	9466.	.009	. 119	.030	.041	1.0551	.071	.089	.108	.126	.142	.156	1.1686	.179
Mo.3 _H	1.0260	.053	1.0559	.055	.050	.042	.018	995	166	166	966	.004	014	.026	.038	640.	. 059	.071	1.0840	. 198	.114	131	.147	.162	175	187	197
M _{zH}	6839	693 692	6955	869	669	6853	6438	614	584	555	532	514	505	161	4888	787	481	480	484	161	512	536	567	600	632	6630	689
F _{ZH}	7.4278	. 953 . 683	13	0.110	.834	596	.628	.882	0.174	.403	0.510	0.503	0.443	104.0	0.438	0.543	0.672	0.747	0.706	0.524	0.224	.863	.501	.173	.876	.573	.218
M _{xH}	-1.0040	.043	1.045	1.034	. 324	.013	766	9939	9938	9968	.002	1.008	.016	1.025	-1.0345	1.044	1.053	1.064	1.074	1.086	1.098	1.110	1.123	.136	1.149	1.159	.168
H, SP	1.0619	.196	.110	.102	. 193	.083	.069	.067	.069	.074	. 081	.090	.199	.109	.118	.127	.137	.146	.156	.166	.177	.188	.199	.211	.221	.230	.236
Myh WH, SP	1.0539			•	. •			•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
H X H G	1.0130	.11	.14	• 16	• 16	-	13	. 12	.11	.11	.11	.12	.13	.14	.16	.17	•19	. 20	.21	. 22	.23	.24	. 25	• 26	.27	.28	• 30
0	0 4 0	12	16	42	82	32	9	**	£ 8	25	95	69	99	89	72	92	83	94	98	26	96				-	116	N

M _{0.4} H	MO.4H, SP	1.1793	1.1894	1.1989	1.2073	1.2140	1.2185	1.2205	1.2204	1.2190	216	213	210	204	1.1970	.186	1.1733	.158	142	127	112	160	082	1.0667	640	030	011	93	92	59	.9438	27
M _{0.3} _H	Mo.3H, SP	1.1977	1.2068	1.2147	1.2211	1.2256	1.2278	1.2279	1.2263	1.2234	1.2196	1.2151	1.2096	1.2024	1.1931	•				•	•	•	•	1.0553	•		\$666.	. 9811	.9633	-9462	. 9293	.9121
H ₂ W	M _{zh,SP}	6895	7122	7320	7505	7688	7880	8083	8294	8506	8710	8897	9163	9206	9325	9426	9512	9591	9663	9730	9787	9828	9849	9844	9816	9770	9717	9665	9621	9587	9558	9525
"z	F _{zH,SP}	2	7.7858	.2		.2			.2	6.	9		6.	e.				7.	e.	.6	·	3		7	-					7.	2.7636	
M _x H	M×H,SP	-1.1683	-1.1737	-1.1762	-1.1759	-1.1736	-1.1700	-1.1655	-1.1606	-1.1550	-1.1485	-1.1409	-1.1319	-1.1216	-1.1102	-1.0979	-1.0848	-1.0710	-1.0563	-1.0408	-1.0243	-1.0072	9897	9726	9560	9402	9251	9102	8952	8798	8640	8483
т, н	F _{VH,SP}	1.2363	1.2392	•	•	•	•	•	1.2019	•	•	•				•	•			•		8666.	2626.	.9591	00 46 *	.9223	6406.	.8883	.8709	.8532	.8351	.8174
M _{VH}	MyH, SP	1.2827	1.2929	•	1.3099	1.3152	1.3175	1.3170	1,3141	1.3096	1.3042	1.2981	1.2919	1.2820	1.2707	•	•	•.	•	•	•	. •	•	1.1104	•	•	•	•	.9983	.9773	1956.	.9359
r, ±	Tx H, SP	1.3005	1.3100	1.3173	1. 3219	•		•	1,3161		•		•	•			•	•		•	•	•	•	•	•	•	•	•	.9851	. 9632	.9411	. 9189
	D	120	124	128	132	136	140	144	148	152	156	150	164	158	172	176	180	184	188	192	196	233	234	238	212	216	220	422	822	232	236	240

Mo.4 _H	.9273	. 8919	.8735	.8557	.8394	.8247	.8110	. 7976	. 7833	.7681	.7524	.7376	.7253	.7165	.7110	.7077	.7047	.7008	6669.	.6921	.6934	.7040	.7274	9492.	.8133	.8684	.9229	.9702	1.0057	~
Mo.3H	.9121	.8764	.8587	.8418	. 8263	.8121	1861.	.7854	. 7716	. 7573	.7431	.7301	.7193	.7114	.7060	.7023	.6989	. 6953	1269.	.6914	.6963	.7104	.7358	.7729	.8194	.8737	.9213	1996.	1.0013	1.0260
M _{zH}	9525	9420	9344	9259	9174	9606*-	9031	0.68	8907	8834	8746	8644	8538	8437	6348	8269	8190	+608 *-	+964	7792	7581	7349	7124	6934	6802	6735	6724	6752	9629*-	6839
F _{zH}	2.3732	1.7991	1.7072	1.7243	1.7941	1.8663	1.9233	1.9910	2.1185	2.3476	2.6805	3.0681	3.4253	3.6688	3.7643	3.7517	3.7417	3.8760	4.2669	4.9416	5.8174	6.7211	7.4486	7.8426	7.8565	7.5780	7.2001	6.9583	7.0059	7.4278
Mx H. SP	8483	8184	8050	7926	7810	7698	7588	7480	7378	7286	7206	7140	7084	7035	6992	6957	6939	6950	7007	7122	7304	7550	7849	8186	8539	8891	9226	9534	9807	-1.0040
F _{VH} , SP	.8174	.7863	.7734	.7627	.7532	.7437	.7337	.7229	.7118	.7013	.6921	.6850	.6801	.6771	•6754	.6748	.6760	.6800	.5888	.7040	.7271	.7581	.7959	.8385	.8831	.9270	.9680	1.0045	1.0359	1.0619
MyH, SP	.9359	.8937	.8732	-8542	.8370	.8212	.8063	- 7905	.7740	.7566	.7395	.7240	.7117	.7030	.6972	•6925	.6872	-6802	•6725	6999*	.6681	.6806	.7076	1612.	.8033	.8636	.9237	4776.	•	1.0539
F _H SP	. 9189	.8762	.8566	.8385	.8218	. 8059	• 79 13	6477.	.7599	.7457	. 7331	.7224	.7136	. 7060	*869	.6903	. 6814	67	.6679	99	.6740	. 6913	.7187	. 7548	0767.	.8422	.8877	.9317	.9734	1.0130
0	240	248	252	526	260	564	268	272	575	280	284	288	262	296	330	394	308	312	316	320	324	328	332	336	340	344	348	352	356	360

TABLE 14B - VARIATION OF TOTAL LOADS WITH BLADE ANGULAR POSITION

M _{0.4}	1.1931	10	-	12	0	05	201	93	62	59	33	109	89	080	081	192	.109	.128	146	62	.178	196		.242	271	.301	.330			39	-
M _{0.3}	1.1027	-	7	7	7	-	1.1290	7	7	-		-	-			-	-	-		-	7.		1.1391		7.	7	2.	2	2		2
M _z	-	M	7348	.0	8	0	.740	-	-	-	10	0	670	653	638		629	616	612	609	607	209	6097	615	626	641	660	680	700	-	
Z SP	M	-	3	n.	S	S	S	ம	S	n	S	S	O	O	ø	ø	O	O	~			~	.8815	•	8	8	8	8	8	88	•
M _{SP}		.020	. 026	1.026	.021	.010	966	978	961	45	932	923	917	915	16	919	923	928	934	42	50	959	9693	80	992	.006	.020	35	.050	. 163	.075
", "Y	64	53	24	25	47	39	*626*	18	96	95	87	8 0	11	15	92	11	83	83	86	90	16	00	.9058	12	19	27	36	45	52	63	7.1
M N N N N N N N N N N N N N N N N N N N	1.0444	•	•	•	-	-	-	-	-	-	-	•	•	-		•	•	•	-	-	-	-		-	-						
"x "x	. 3	• 04	. 07	.10	.13	.15	• 16	.16	. 15	. 14	.12	.11	. 13	.10	. 10	.11	.12	. 14	.15	.16	. 18	• 19	20	.21	. 22	.23	.24	. 25	.26	.27	• 28
θ	0	4	•	12	16	20	42	82	32	36	10	*	48	25	95	9	49	89	72	16	83	94	88	26				1 38			

M0.4	10.4SP	1.4132	1.4286	+	5	1.4657	-		1.4726	1.4690	494	458	1.4515	1.4417	1.4280	604	1.3872	361	335	309	1.2843	1.2599	1.2349	1.2082	179	1:1490	1.1181	1.0881	650	1.0333	007	981	
M _{0.3}	M0.3SP	1.2852	~						1.3273						2			2			-	7		-	-	-	-	-	-	. 9975	.9771	.9562	
Z X	M _{zsp}	7344	7482	7603	7715	7826	7942	8166	8194	8323	9448	8560	8661	8747	8820	88	8934	86	20	9166	9100	9125	9138	9135	9118	0606*-	9058	9026	0006	8979	8961	2468*-	
<u>-</u>	T _{SP}	80	18	77	75	.8735	72	-	-	~	-	9	9	9	9	ဖ	9	9	~	-	~	-	9	9	9	9	9	စ	9	.8629	S	N	
×	- dS _x		.084	. 091	. 195	.098	.100	.101	12	.103	.103	.102	.100	.197	.093	1.088	.082	.176	.069	. 360	.051	. 041	.031	.020	.010	.001		M	m	9628	-	0	
۲-	r. YSP	71	.9779	.9827	.9861	.9885	.9901	.9913	.9924	.9932	.9938	0466*	.9938	.9931	2266.	6066.	.9895	.9876	.9852	.9821	.9781	.9736	.9686	.9637	0656.	1956.	.9535	0946.	.9413	.9353	.9289	.9221	
ž	M _{VSP}	1.2628	1.2725	1.2814	1.2888	1.2938	1.2961	1.2955	1.2927	1.2885	1.2834	1.2775	1.2707	1.2621	1.2513	1.2380	1.2226	1.2057	1.1883	1.1708	1.1536	1.1361	1.1178	1.0983	1.0774	1.0556	1.0336	1.0120	.9913	.9713	.9516	.9317	
<u>*</u>	Ax SP	. 28	• 29	• 30	. 30	. 31	. 31	. 30		. 29	. 29	. 28	.27	• 26	. 25	.23	. 22	.20	. 18	.17	.15	.13	. 11	• 09	• 06	. 04	. 32	.00	8	- 9602	M	-	
0		120	421	821	132	136	0+1	747	841	251	951	160	191	891	172	176	180	184	881	261	961	2 30	234	508	212	516	622	422	823	232	536	042	

M _{0.4} sp	.9811	. 9533	.9242	1468.	.8663	+048.	.8173	.7961	.7751	.7528	.7288	.7041	6089.	.6619	.6487	.6412	.6372	.6338	.6286	.6218	.6169	.6203	.6394	.6801	.7441	.8275	.9215	1.0144	1.0950	1.1555	1.1931
Mo.3	-9362	.9347	1416.	8969.	.8701	.8509	.8334	.8168	. 8003	.7829	. 7648	. 7466	.7298	.7159	. 7055	.6983	. 6932	.6884	.6831	.6783	• 6765	.6822	9669.	.7319	4611.	.8392	.9052	-9702	1.0274	1.0720	1.1027
$\frac{M_z}{ \overline{M}_{SSP} }$	8942	8915	8878	8831	8780	8728	8682	8641	8604	8566	8522	8468	8407	8342	8281	8226	8179	8131	8072	+661	7889	7761	7620	7483	7368	7288	7247	7241	7258	7284	7310
Z SP	.8543	.8500	.8465	.8449	.8423	.8409	.8394	.8377	.8361	.8348	.8344	.8347	.8355	.8360	.8356	.8340	.8316	.8292	.8281	.8290	.8323	.8373	.8426	.8466	.8480	.8465	.8428	. 8385	.8352	.8346	.8371
M _{xSP}	0046	9283	9171	9164	8963	8864	8765	8662	8556	8452	8351	8258	8173	+608*-	8317	7941	7868	7808	7773	7780	7842	7966	8153	8390	8662	8468	9231	9495	9731	9931	-1.0089
T SY	.9221	.9156	9606.	.9043	9668.	.8950	.8899	.8840	.8771	.8695	.8617	-8542	.8473	.8412	.8357	8	.8255	.8211	8	00	.8195	.8261	.8369	.8514	.8684	.8863	.9037	.9193	.9324	.9425	9646.
M _{VSP}	.9317	.9116	.8914	.8719	.8537	.8373	.8222	.8077	• 7929	.7772	• 7606	.7442	.7294	.7177	*5u2*	.7038	*669*	.6943	•6876	-6802	6449	.6761	.6880	.7137	.7537	.8051	.8627	.9201	.9714	1.0131	1.0444
T S	.9171	. 8958	87	. 8563	.8387	.8224	. 8069	. 7918	77	.7620	7	73	72	71	70	70	69	68	67	• 6715	67	.6783	. 6952	.7219	.7571	. 7982	.8423	.8866	• 9295	.9732	1.0088
0	240	544	248	252	526	250	564	268	272	576	280	284	288	262	296	300	334	308	312	316	320	324	328	332	336	340	344	348	352	356	360

TABLE 14C - HARMONIC CONTENT OF HYDRODYNAMIC LOADS

(der)	-64.4	-172.5 -170.6	24.6	(φ _{0.4_H}) _n (deg)	131.1	100 100 100 100 100 100 100 100 100 100
		00000		(M _{0.4} H)	.0749	
(ØFYH)	106.2	21.3	130.7 -109.9 -129.3 160.0	(φ _{0.3H}) _n (deg)	126.3	255.5 25.5 -265.5 -73.5 -73.5
(F,VH)	. 2491 . 0624	0236	.0015	(M _{0.3} H _n)	.0719	00000000000000000000000000000000000000
(dea)	124.) 25.1	37.6	1466.3	(φ _{MzH}) (deg)	52.6 -173.4 -88.6	-26.7 -90.3 -72.1 159.0
(MyH)	.2710 .0799	0319	.000.	(M _{zH})	.0597	00033
($\phi_{\text{Fx}_{\text{H}}}$)	120.6 32.3 51.7	54.2 53.7 78.5	1114 1118 1118 1118 1118 1118 1118 1118	($\phi_{\text{Fz}_{\text{H}}}$) (deg)	58.5 104.1 -65.8	116.6 69.3 172.7 137.6 146.6
(x) 17	. 2666 . 0723	0292		FE ZH D	4.2760	. 2599 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

TABLE 14D - HARMONIC CONTENT OF TOTAL LOADS

(øwx)	(deg)	-42.0	-173.1	-153.9	-154.8		-170.6				-24.7	(40.4)	(deg)	127.4	14.7	35.1	31.4	23.9	1.4	-23.8	-58.5	-64.4	-65.7
(M _x)	MxSP	.1131	.0598	.6433	.0207	8600.	.0059	.0010	.0014	6000	.0013	(M _{0.4}),	Mo.4sp	.3386	.1268	7680.	.0475	.0247	.0153	2600.	.0107	.0101	.0081
(φ _{Fy}) _n	(deb)	152.0	8.4	23.8	21.3	-4.7	8.6	130.8	-109.9	-129.3	168.1	(φ _{0.3}) _n	(deg)	127.5	16.0	35.6	33.05	25.5	7.3	-28.1	-65.9	-70.5	-73.1
(F _y) _n	YSP	.0575	.0353	.0273	.0133	.0068	.0035	*000.	.0008	.0011	.0010	(Ma.3)	Mo.3sp	.2580	9460.	.0673	.0355	.0181	.0100	27000	•0066	.0006	*****
(φ _M Λ)	(deg)	124.0	26.1	44.5	42.8	37.6	25.4	-46.3	6.69-	-77.2	-79.8	φ _{Mz})	(deg)	52.6	-173.4	-88.6	-56.1	-24.7	-90.3	-72.1	72.5	159.0	159.7
(M _y)	Mysp	.2587	.0763	.0543	.0304	.0161	.0061	.0039	.0066	.0059	.0043	(M _z) _n	Mzsp	.1280	.0362	.0227	.0154	.0060	.0024	.0020	.0021	.0034	.0015
$(\phi_{Fx})_{n}$	(deg)	120.6	32.3	51.7	54.5	53.7	78.5	-147.0	-110.8	-118.0	-140.6	(φ _{Fz}) _n	(deg)	128.6	104.1	-65.8	116.6	69.3	-167.9	172.7	137.6	146.6	129.3
(F _x) _n	F _x SP	.2796	+020.	-0492	.0285	.0152	.0051	.0029	. 1943	.0027	.0021	(F _z)	Fzsp	.0218	.0036	.0050	.0013	+0000	.0014	.0021	.0022	.0017	.0023
		-	2	m	*	S	9	~	&	6	10		-	1,	2	m		S	9	_	•	6	10

TABLE 15 - EXPERIMENTAL LOADS DURING QUASI-STEADY ACCELERATION AT V = 6.26 KNOTS, n = 13.78 REVOLUTIONS PER SECOND

TABLE 15A - VARIATION OF HYDRODYNAMIC LOADS WITH BLADE ANGULAR POSITION

M _{0.4} H	Mo.4H, SP		45	78	.005	. 322	.029	.027	1.0200	.010	.002	266	866	003	.010	.019	. 129	.041	. 055	.072	93	.117	.143	.167	.189	.207	. 221	.232	.243	55	.269	.285
M _{0.3H}	Mo.3H, SP		69	. 000	.024	. 040	.046	. 345	1.0396	.031	. 324	. 020	. 923	. 025	.033	043	. 054	.067	.082	. 100	23	.142	.166	88	.238	.226	.240	.253	.265	78	. 292	.306
MzH	M _{zH,SP}	~	07	22	39	58	7	84	7848	12	. 753	23	89	26	627	609	593	585	78	16	15	80	83	03	56	58	969	38	62	18	53	83
F _H	F _{zH,SP}	.350	.056	.837	.502	.901	.979	.803	6.5127	.294	.281	.523	.975	.524	. 139	.421	.632	.692	.652	.564	644.	.295	.069	.746	.328	.847	.357	.906	.511	.148	.769	317
× ×	Mx _{H,SP}	80	.038	.052	.061	.063	. 361	.356	-1.3534	440.	.041	.040	1.342	1.048	.056	1.066	1.078	1.092	1.106	1.121	.137	1.153	1.170	1.186	1.203	1.223	.238	1.255	1.271	1.285	.297	1.305
T,	F VH, SP	.083	.104	.117	.124	.124	.119	.112	1.1055	.100	.097	. 199	.134	.112	.124	.137	.151	.167	.183	.198	214	.233	942.	.262	.278	.295	.311	.327	.341	53	361	65
MVH	MyH, SP	.9231	9	. 93	.34	• 06	• 38	. 38	1.3845	.07	• 36	• 06	. 16	• 36	.07	.08	.13	.11	.13	.15	.18	.23	.22	.25	.27	.28	.30	. 31	. 32	.33	. 35	• 36
r _x	Tx H, SP	64	6686.	1.1262		-	8	. 107	1.1382	. 103	• 196	060.	. 387	. 388	960.	.109	.127	.148	. 170	. 192	.213	.232	.250	• 266	. 281	. 297	. 313	. 329	. 347	.36	.379	. 392
	0	0	4	•	12	16	20	54	28	32	16	0+	**	4.8	25	26	69	94	68	72	16	83	48	38	35	36	-	0	-	112	-	N

M _{0.4} H	1.2857 1.3029			1.3254	306	.277 .259 .239	1.2175 1.1953 1.1726	6 9 M	1.0551	1.0057 .9807 .9560 .9319
Mo.3H	1.3063	341	346	327	295	.262 .242 .221		1.1270	.002	.9770 .9517 .9268 .9026
M _{zH}	9833	9572	7 ~ ~ ~ ~	-1.1034		-1.1777 -1.1839 -1.1887	-1.1930 -1.1972 -1.2014	-1.2051 -1.2073 -1.2074	-1.1998 -1.1933	-1.1861 -1.1792 -1.1730 -1.1670 -1.1606
F _{ZH}	W	2.4610	900	040	4.1	57.00	2002	14 N B	3.6	
M _H	-1.3050 -1.3094 -1.3106	305	1.286	1.255	1.225	.188	-1.1214 -1.0974 -1.0732	.025	9786	9083 8850 8625 8413 8217
H, SP	ניו ניו ניו	א נא נא	ש נמו נאו נ	2000	100		• • •		9025	.8231 .7977 .7739
MyH, SP	1.3669 1.3819 1.3947	3 4 4	1.3996		, m m	1.2760	1.2275 1.2317 1.1746	1.1169	9000	.9692 .9407 .9124 .8843
HX HX GR	.40	40	38	35	31	22.	17.	1.1132	98	. 9289 . 9013 . 8739 . 8465
θ	120	132	144	156 150	168	130	138 132 196	234	216	235 235 240 240

Mo.4 _H , SP	9889	.8672	-8482	.8298	. 6113	.7924	.7729	.7533	.7346	.7177	.7934	.6919	.6827	.6750	6299.	.6611	1459.	1649.	.6478	.6502	.6580	.6713	1689.	.7124	.7383	.7671	.7988	.8333	.8702	0
M _{0.3H}	.8794	.8373	.8182	. 7999	.7817	.7634	.7448	. 7265	.7093	0769.	.6812	.6710	.6630	.6563	.6532	* 6444	•6395	. 6365	.6371	.6459	. 6547	.6728	*969	.7245	.7557	.7891	. 8242	. 86 17	6268.	.9349
M _{zH}	-1.1616	-1.1435	-1.1326	-1.1209	-1-1094		-1.3893	-1.0803	-1.0709	-1.0602	-1.3481	-1.0351	-1.0226	-1.0116	-1.9928	9955	9877	9765	9592	9339	8006	8618	8205	7839	7467	7204	7029	6939	+269	6973
F _{ZH}	-4.6113		-4.6798	.518	-4.3502	.220	-4.1304	-4.0370	3.873	-3.5868	.170	.678	-2.2087	.860	-1.6858	.655	-1.6597	-1.5425	-1.1657	4693	9964.	1.5781	2.5734	3.3058	.692	.775	.705	3.6833	.874	.350
M _x H, SP	8217	7869	7707	7548	7388	7230	7381	6469*-	6843	6764	6710	6673	6643	6614	6587	6570	6578	6630	6743	6926	7177	7488	7841	8217	8598	6268	9322	9647	9938	-1.0187
F _{VH}	.7522	15	98	82	67	51	37	56	17	11	9	98	.6075	07	96	08	13	54	43	73	90	48	95	43	92	39	82	21	955	.083
M _{yH}	.8568	.8360		.7630	.7434	.7239	.7341	.6838	. 5637	.6450	.6287	.6156	•6055	• 5976	.5907	.5843	.5773	.5715	.5686	.5713	.5805	.5984	. 6245	.6576	.6961	.7382	.7828	.8289	.8763	.9231
T X X S S S S S S S S S S S S S S S S S	. 8192	. 7675	. 7445	.7236	-	9	c	9	9	.6157	0	5	5	5	5	5	5	5	5	S	5	R	9	0	-	~	8	.8632	.9364	8646.
0	240	. 3	5	5	C	9	2	~	-	80	0		9	0	-		0	-	-	N	N	N	m	M	3	3	3	5	5	9

TABLE 15B - VARIATION OF TOTAL LOADS WITH BLADE ANGULAR POSITION

M _{0.4}	.8982	1.0177	1.0620	1.0905	.102	.09	1.0855	.06	.05	.04	.04	.05	. 16	.07	. 09	.11	.13	.16	.19	.23	.27	.31	.350	3	004.	.417	*	.451	474.	. 500
M _{0.3}	.9430			1.0705		•										•													•	•
$\frac{M_z}{ \overline{M}_{z_{SP}} }$	07970	6121	8228	8339	8436	9648	8531	8438	8310	8129	7923	7719	7544	7411	7324	7273	7248	7238	7239	7258	7306	-, 7398	7541	7734	7965	8218	8470	8707	8916	9099
F _z	. 9602	1076.	.9756	.9785	.9793	9226	.9755	1476.	9426.	.9772	9	9	. 9923	9966	1666.	0		1.0041	.00	. 03	.00	. 00	.00	.00	.00	.00	66	σ	σ	σ
M SP -	-1.0226	.041	1.342	.037	. 028	.016	.033	91	81	74	7.1	71	74	983	988	97	.009	21	.035	. 149	.064	. 080	. 097	1.114	1.133	.151	.169	.186	.200	.211
T _y Sy	1.0190	. 123	.319	.012	.003	366	82	72	65	60	58	58	61	9	69	75	82	89	966	. 115	13	.022	.032	.043	.054	.066	. 176	. 186	• 19	•10
M N SP	.9250	1.0077	63			0	200	-	-	-			-			-	7	-	-	-		1.2386	2	~	2	3	1.3078	1.3201	1.3339	1.3486
r _x r _g	9502	. 32	. 15	-	• 39	. 10	.13	. 10	• 00	. 08	. 38	. 38	• 00	.13	. 12	. 14	.16	. 18	.20	. 22	.24	. 25	.27	.28	. 33	. 32	. 33	. 35	.36	. 38
0	- 4	• •	12	16	62	54	28	32	36	C+	74	£ \$	25	26	9	94	68	72	92	80	34	88	35	96	-	0	138	-	-	U:

M _{0.4} sp	1.5002	1.5577	.574	.587	.593	.592	.586	.577	.567	.554	.539	.520	864.	.470	•	.405	.368	.331	.293	.254	.215	.176	.137	. 397	.056	.015	974	933	168	.8570
M _{0.3}	.385	1-4039	. 432	044.	. 442	.441	.436	624.	. 420	.410	.397	. 382	.363	.342	.318	.291	.264	.235	.206	.176	.145	.115	.084	. 053	. 022	91	60	59	66	20
M _z	6606*-	- 9435	54	69	84	66	. 014	.029	.043	.056	.067	92	1.083	1.088	92	1.195	160.	1.100	03	1.195	1.106	.106	.105	1.102	. 198	1.093	1.089	1.085	1.082	1.078
F Sp	96	. 9946	88	85	83	82	81	81	80	78	76	73	71	69	69	68	69	68	68	99	9	62	61	60	58	57	55	52	49	46
M _x SP	1.211	-1.2251	1.228	.229	1.229	1.229	.227	1.225	1.221	1.216	1.239	.200	1.190	1.178	1.164	1.149	.133	1.116	1.099	1.382	.065	640.	.032	.015	166.	980	.962	44	.927	12
T, SP	101	1-1102	112	113	114	114	113	111	109	105	101	396	091	.385	079	. 372	.064	.055	940	936	027	018	939	000	991	981	7.1	51	51	42
M. Sp		1.3553			1.3890	1.3858	3	3	1.3621	M	3	M	3	.2	1.2619	.2	.2	7	-	-	1.1100		-		†966	.9690	.9418	.9148	.8879	.8616
π _× س _ې	.38	1.3945	.39	. 39	. 38	. 38	.37	. 36	. 35	. 34	.32	.30	.28	. 26	.23	.21	. 19	.16	.13	.10	. 37	. 04	. 31	.98	. 9575	6626	.9329	.8762	. 8495	. 8229
0	02	3 8	32	36	04	**	48	25	95	9	99	88	72	94	90	94	88	26	96	30	34	9.0	12	16	20	52	28	32	36	0 4

M _{0.4}	.8570	.8220	.7895	.7590	.7295	.7000	1699.	.6385	.6072	.5773	.5506	.5282	.5105	8964.	.4855	.4753	.4653	.4561	.4493	.4475	.4529	+494.	.4912	.5235	.5628	9209.	.6572	.7114	.7703	.8332	.8982
M _{0.3}	.8705	.8436	. 8185	.7949	.7721	.7495	. 7265	.7032	.6800	.6582	.6387	.6224	.6093	.5990	.5902	.5821	.5743	.5674	.5630	. 5632	.5730	. 5846	.6073	.6373	.6729	.7126	.7551	1661.	.8459	.8931	00%6.
M _z	-1.0782	-1.0736	-1.0679	-1.0612	-1.0541	-1.0472	-1.0407	-1.0350	-1.0295	-1. 3238	-1.0173	-1.0099	-1.0021	4466	9878	9825	9780	9733	9665	9560	9436	9205	8968	8717	8477	8270	8110	8004	6461	7940	0.7970
r s	.9462	.9436	.9417	.9437	.9401	.9395	.9385	.9371	.9356	.9347	.9347	.9357	.9373	. 9387	.9391	.9382	.9361	.9338	.9325	.9334	.9368	.9425	.9493	.9554	• 9595	.9610	.9602	.9583	6956.	.9573	.9602
M X SP		~	+	8719	8572	8430	8284	8142	8013	7903	7817	6422-	7694	7641	7584	7523	7469	7435	7441	7505	7634	7829	8080	8371	8682	9668	9299	9580	9833	-1.0051	•
T, S	.9425	.9344	.9268	.9193	.9116	.9035	.8951	.8873	.8796	.8733	.8584	.8644	· 86 09	.8573	.8532	.8489	.8453	.8428	.8436	.8484	.8577	.8714	.8886	.9081	.9286	.9488	.9677	.9847	.9993	1.0108	•
M N SP	.8616	.8366	.8132	.7918	.7721	.7534	.7349	.7159	• 6965	*229	•6595	.6439	.6314	.6217	.6142	.6077	.6312	8765.	.5893	•5866	.5888	6265.	.6150	.6399	.6715	.7382	.7485	.7913	.8351	.8803	.9250
۳× سې	2	S	~	5	2	-	9	~	5	3	62	-	9	9	00	-	~	9	9	5	9	~	9	3	~	-	9	-	• 8629	-	5
0	240	*		5	5	9	9	9	-	-	0			0	0			1	-	-	V	U.	N	m	3	3	*	3	352	S	9

TABLE 15C - HARMONIC CONTENT OF HYDRODYNAMIC LOADS

(φ _{M×H})	-64.6 -171.9 -161.0 -177.9 -177.9 -110.1 -37.3	(deg) 132.5 47.3 47.3 45.6 146.5
(M _{xH})		Mo.4 _H .0 Mo.4 _H .0 Mo.4 Mo.4 _H .0 Mo.4
(φ _{FyH}) _n (deg)	106.0 11 11.0 112.3 150.9 80.9 80.9	(φ _{0.3H}) _n (deg) 127.3 7.4 41.9 53.7 81.4 910.7 61.1 151.1
F _{VH,SP}	.3451 .0767 .0130 .0130 .0072 .0005	(M _{0.3H}) M _{0.3H} , sp • 3135 • 0624 • 0624 • 0626 • 0127 • 0109 • 0005
(deg)	124.9 449.0 1736.0 1646.0 1646.0 0	(\$\rho_{Mz_H}\$) (deg) +2°+ 168°2 -77°1 -45°7 -45°3 -45°3 -43°6 -65°3 32°2 140°7
MyH, SP		(M ₂ H ₃) (M ₂ H ₃) (N ₂ H ₃ S) (N ₂ H ₃ S) (N ₂ H ₃ S) (N ₃
($\phi_{\text{Fx}_{\text{H}}}$)	119.9 44.7 44.7 46.2 59.0 171.6 173.2	(φ _{FZH}) (deg) 57.8 1111.0 -76.3 -20.8 -13.1 149.7 149.7 133.6
F _x H, SP	00000000000000000000000000000000000000	6.3673 6.3673 6.3673 6.232 1896 1239 1914 2192
	40m400re65	- 40m4m0reo

TABLE 15D - HARMONIC CONTENT OF TOTAL LOADS

(φ _{Mx}) _n (deg)	-52.0 -161.0 -162.2 -177.9 -110.2 -31.3 -83.1	(\$6.4) (130.1) 130.1 47.3 47.3 45.8 63.8 63.8 51.8 146.5
(M _x)		Mo.45p .5014 .1021 .0707 .0239 .0117 .0020
(\$\phi_n\) (deg)	129.4 11.8 11.3 -12.3 -16.6 150.9	(φ _{0.3}) _n (deg) 128.2 7.4 41.9 41.9 53.7 81.4 910.7 61.1
F VSP		(M _{0.3}) M _{0.3} sp .3831 .0821 .0566 .0300 .0167 .0012
(φ _{Mγ}) _n	124 124 124 124 134 134 16 16 16 16 16 16 16 16 16 16 16 16 16	(\$\delta_n\) (deg) \$\delta_2\) +2\) + -77\) - -77\) - -45\) 5 -65\) 3 -65\) 3 140\) 7
(M _V)	00000000000000000000000000000000000000	1750 0265 0147 0054 0054
$\frac{(\phi_{Fx})_{n}}{(deg)}$	119.9 17.1 44.7 44.2 42.2 59.0 171.6 -95.7	$\frac{(\phi_{F_2})_n}{(\deg)}$ 97.8 111.0 -75.3 -20.8 -13.1 149.7 162.3
(F _x)	000000000000000000000000000000000000000	(F ₂) T ₂ SP 00337 0015 0015 0015
0.56	# // w 4 r o v o v o o o o o o o o o o o o o o o	_ พีกพระกดะ๑๐๐

REFERENCES

- 1. Angelo, J.J. et al. "U.S. Navy Controllable Pitch Propeller Programs," presented at a Joint Session of the Chesapeake Section of the Society of Naval Architects and Marine Engineers and the Flagship Section of the American Society of Naval Engineers, Bethesda, Maryland (19 April 1977).
- 2. Boswell, R.J. et al, "Experimental Determination of Mean and Unsteady Loads on a Model CP Propeller Blade for Various Simulated Modes of Ship Operation," The Eleventh Symposium on Naval Hydrodynamics sponsored Jointly by the Office of Naval Research and University College London, Mechanical Engineering Publications Limited, London and New York, pp 789-823, 832-834, (April 1976); also "Experimental Unsteady and Mean Loads on a CP Propeller Blade of the FF-1088 for Simulated Modes of Operation," David Taylor Naval Ship Research and Development Center Report 76-0125, October 1976.
- 3. Schwanecke, H. and R. Wereldsma, "Strength of Propellers Considering Steady and Unsteady Shaft and Blade Forces, Stationary and Nonstationary Environmental Conditions," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2b, Vol. 2, pp 495-526 (1972).
- 4. Rusetskiy, A.A., "Hydrodynamics of Controllable Pitch Propellers," Shipbuilding Publishing House, Leningrad (1968).
- 5. Hawdon, L. et al, "The Analysis of Controllable-Pitch Propeller Characteristics at Off-Design Conditions," Transactions of the Institute of Marine Engineers, Vol. 88, Series A, Part 4, pp 162-184 (1976).
- 6. Kerwin, J.E., "The Development of Numerical Methods for the Computation of Unsteady Propeller Forces," Presented to the Symposium on Hydrodynamics of Ship and Off-Shore Propulsion Systems, Oslo, Norway (March 1977).
- 7. Ito, T. et al, "Calculation of Unsteady Propeller Forces by Lifting Surface Theory," Presented to the Symposium on Hydrodynamics of Ship and Off-Shore Propulsion Systems, Oslo, Norway (March 1977).
- 8. Roddy, R.F., "A New Method for the Calculation of Unsteady Forces on a Marine Propeller," Presented to the Chesapeake Section of the

Society of Naval Architects and Marine Engineers, Washington, D.C. (February 1977).

- 9. van Gent, W., "Unsteady Lifting Surface Theory for Ship Screws: Derivation and Numerical Treatment of Integral Equations," Journal of Ship Research, Vol. 19, No. 4, pp 243-253 (December 1975).
- 10. Schwanecke, H., "Comparative Calculations on Unsteady Propeller Blade Forces," Proceedings of the Fourteenth International Towing Tank Conference, Report of Propeller Committee, Appendix 4, Vol. 3, pp 357-397 (1975).
- 11. Breslin, J.P., "Propeller Excitation Theory," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2c, Vol. 2, pp 527-540 (1972).
- 12. Boswell, R.J. and M.L. Miller, "Unsteady Propeller Loading Measurement, Correlation with Theory, and Parametric Study," Naval Ship Research and Development Center Report 2625 (October 1968).
- 13. Meyne, K., "Propeller Manufacture Propeller Materials Propeller Strength," International Shipbuilding Progress, Vol. 22, No. 247, pp 77-102 (March 1975).
- 14. Wereldsma, R., "Comparative Tests on Vibratory Propeller Forces," Proceedings of the Thirteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 2a, Vol. 2, pp 482-494 (1972).
- 15. Huse, E., "An Experimental Investigation of the Dynamic Forces and Moments on One Blade of a Ship Propeller," Proceedings of the Symposium on Testing Techniques in Ship Cavitation Research, the Norwegian Ship Model Experimental Tank, Trondheim, Norway, Publication No. 99, Vol II, pp 19-188 (December 1967).
- 16. Blaurock, J., "Propeller Blade Loading in Nonuniform Flow," The Society of Naval Architects and Marine Engineers, Propellers 75 Technical and Research Symposium S-4, Paper No. 4, pp 4/1-4/17 (February 1976).

- 17. Raestad, A.E., "Hydrodynamic Propeller Loading in the Behind Condition," det Norske Veritas Research Department Report 74-31-M (1974).
- 18. Albrecht, K. and K.R. Suhrbier, "Investigation of the Fluctuating Blade Forces of a Cavitating Propeller in Oblique Flow," International Shipbuilding Progress, Vol. 22, No. 248, pp 132-147 (April 1975).
- 19. Bednarzik, R., "Untersuchung uber die Belastungsschwankungen am Einzelflugel schrag angestromter Propeller," Schiffbauforschung, Vol. 8, No. 1/2, pp 57-80 (1969).
- 20. Dobay, G.F., "Time-Dependent Blade-Load Measurements on a Screw-Propeller," Presented to the Sixteenth American Towing Tank Conference, Instituto De Pesquisas Technologicas, Marinha Do Brasil (August 1971).
- 21. Wereldsma, R., "Last Remarks on the Comparative Model Tests on Vibratory Propeller Forces," Proceedings of the Fourteenth International Towing Tank Conference, Report of the Propeller Committee, Appendix 7, Vol. 3, pp 421-426 (1975).
- 22. Tasaki, R., "Propulsion Factors and Fluctuating Propeller Loads in Waves," Proceedings of the Fourteenth International Towing Tank Conference, Report of Seakeeping Committee, Appendix 7, Vol. 4, pp 224-236 (1975).
- 23. Keil, H.G. et al, "Stresses in the Blades of a Cargo Ship Propeller," Journal of Hydronautics, Vol. 6, No. 1, pp 2-7 (January 1972).
- 24. Watanabe, K. et al, "Propeller Stress Measurements on the Container Ship HAKONE MARU," Shipbuilding Research Association of Japan, Vol. 3, No. 3, pp 41-51 (1973).
- 25. Tsakonas, S. et al, "An Exact Linear Lifting Surface Theory for Marine Propeller in a Nonuniform Flow Field," Journal of Ship Research, Vol. 17, No. 4, pp 196-207 (December 1974).
- 26. McCarthy, J.H., "On the Calculation of Thrust and Torque Fluctuations of Propellers in Nonuniform Wake Flow," David Taylor Model Basin Report 1533 (October 1961).

- 27. Brandau, J.H., "Static and Dynamic Calibration of Propeller Model Fluctuating Force Balances," David Taylor Model Basin Report 2350 (March 1967); also Technologia Naval, Vol. 1, pp 48-74 (January 1968).
- 28. Day, W.G., "The Effect of Speed on the Wake in Way of the Propeller Plane for the DD-963 Class Destroyer Represented by Model 5265-1B," David Taylor Naval Ship Research and Development Center Report SPD-311-37 (July 1975).
- 29. Rubis, C.J. and T.R. Harper, "Propulsion Dynamics Simulation of the DD-963 Class Destroyer," Propulsion Dynamics, Inc., Report 74R1B (January 1975).
- 30. Cummings, D.E., "Numerical Prediction of Propeller Characteristics," Journal of Ship Research, Vol. 17, No. 1, pp 12-18 (March 1973).
- 31. Boswell, R.J., "A Method of Calculating the Spindle Torque of a Controllable-Pitch Propeller at Design Conditions," David Taylor Model Basin Report 1529 (August 1961).
- 32. Boswell, R.J. et al, "Experimental Spindle Torque and Open-Water Performance of Two Skewed Controllable-Pitch Propellers," David W. Taylor Naval Ship Research and Development Center Report 4753 (December 1975).
- 33. Wereldsma, R., "Tendencies of Marine Propeller Shaft Excitations," International Shipbuilding Progress, Vol. 19, No. 218, pp 328-332 (October 1972).
- 34. Tsakonas, S. et al, "Documentation of a Computer Program for the Pressure Distribution, Forces and Moments on Ship Propellers in Hull Wakes," (In Four Volumes), Stevens Institute of Technology, Davidson Laboratory Report SIT-DL-76-1863 (January 1976) Revised April 1977.
- 35. Tsakonas, S. et al, "Correlation and Application of an Unsteady Flow Theory for Propeller Forces," Transactions of the Society of Naval Architects and Marine Engineers, Vol. 75, pp 158-193 (1967).

- 36. Gutsche, F., "The Study of Ships' Propellers in Oblique Flow," Defence Research Information Centre Translation No. 4306, Copyright Controller: Her Majesties Stationary Office, London, England, October 1975; English Translation of "Untersuchung von Schiffsschrauben in schrager Anstromung," Schiffbauforschung, Vol. 3, No. 3/4, pp 97-102 (1964).
- 37. Boswell, R.J. and S.D. Jessup, "Experimental Determination of Periodic Propeller Blade Loads in a Towing Tank," Presented to the 18th American Towing Tank Conference, U.S. Naval Academy, Annapolis, Maryland (August 1977).
- 38. Cheng, H.M., "Analysis of Wake Survey of Ship Models Computer Program AML Problem No. 840-219F," David Taylor Model Basin Report 1804 (March 1964).

Preceding Page BLANK - FILMED

INITIAL DISTRIBUTION

Copies		Copies	
1	ARMY CHIEF OF RES & DEV		1 NAVSEA 08
			2 NAVSEA 09G32
1	ARMY ENGR R&D LAB		1 PMS-378
•	GWAND		1 PMS-380
2	CHONR		1 PMS-381
	1 Code 438		1 PMS-383
	1 LIB		1 PMS-389 1 PMS-391
1	NRL		1 PMS-391
•	NKL		1 PMS-393
4	ONR BOSTON		1 PMS-397
4	ONE BOSTON		1 PMS-399
4	ONR CHICAGO		1 PM3-379
	ONK CHICAGO	1	FAC 032C
4	ONR LONDON, ENGLAND	•	TAC 0320
	ONK LONDON, ENGLAND	1	MILITARY SEALIFT COMMAND
4	ONR PASADENA		(M-4EX)
	ONE THORDER		(II 4DII)
2	USNA	1	NAVSHIPYD/PTSMH
_	1 LIB		
	1 JOHNSON	1	NAVSHIPYD/PHILA
	是是如果的 医神经性病 生		
1	NAVPGSCOL LIB	1	NAVSHIPYD/NORVA
1	NROTC & NAVADMINU, MIT	1	NAVSHIPYD/CHASN
1	NADC	1	NAVSHIPYD/LBEACH
5	NOSC	1	NAVSHIPYD/MARE
	1 1311 LIB		
	1 6005/FABULA	1	NAVSHIPYD/PUGET
	1 13111 LIB		MANGUEDO (DEADE
	1 2501/HOYT	1	NAVSHIPD/PEARL
	1 NELSON	10	NAUCEC
	NUC	19	NAVSEC
1	NWC		1 SEC 6100 1 SEC 6101A
23	NAVSEA		1 SEC 6101A
23			1 SEC 6110
	1 NAVSEA 0311G 5 NAVSEA 033		1 SEC 6114H
	1 NAVSEA 034		1 SEC 6120
	1 NAVSEA 034 1 NAVSEA 03412		1 SEC 6136
	1 NAVSEA 03412 1 NAVSEA 037		1 SEC 6140
	1 NAVSEA 037		1 SEC 6140B
	I MAVOER USIZ		2 SEC 6144
			2 000 0177

Copies		Copies	
	1 SEC 6144G	4	CIT
	1 SEC 6145B		1 AERO LIB
	2 SEC 6148		1 ACOSTA
	1 SEC 6152		1 PLESSET
	2 SEC 6334B		1 WU
			1 40
	1 SEC 6600 NORVA		04mmar 70 m
		1	CATHOLIC U
12	DDC		
		1	COLORADO STATE U/ALBERTSON
1	BUSTAND/KLEBANOFF		
		1	U CONNECTICUT/SCOTTRON
2	HQS COGARD		
		1	CORNELL U/SEARS
1	US COAST GUARD (G-ENE-4A)		
•	US COASI GUARD (G-ENE-4A)	1	FLORIDA ATLANTIC U OE LIB
	TO LOCAL C. MINOU. DATE	•	FLORIDA AILANIIC U UE LIB
1	LC/SCI & TECH DIV		
		3	HARVARD U
9	MARAD		1 MCKAY LIB
	1 DIV SHIP DES		1 BIRKHOFF
	1 COORD RES		1 CARRIER
	1 NACHTSHEIM		
	1 SCHUBERT	2	U HAWAII/BRETSCHNEIDER
	1 FALLS		o ministry backstoomsbedan
		1	U ILLINOIS/ROBERTSON
	1 DASHNAW	•	U ILLINOIS/ROBERISON
	1 HAMMER		
	1 LASKY	3	U IOWA
	1 SIEBOLD		1 ROUSE
			1 IHR/KENNEDY
2	MMA		1 IHR/LANDWEBER
	1 LIB		
	1 MARITIME RES CEN	2	JOHNS HOPKINS U
	I PARTITUE RED CEN		1 PHILLIPS
	NACA CETE		1 INST COOP RES
2	NASA STIF		I INST COOP RES
	1 DIR RES		
		1	U KANSAS CIV ENGR LIB
1	NSF ENGR DIV LIB		
		1	KANSAS ST U ENGR EXP/
1	DOT LIB		NESMITH
1	U BRIDGEPORT/URAM	1	LEHIGH U FRITZ ENGR LAB
	C BRIDGEI ORI/ CREET		LIB
	U CAL BERKELEY/DEPT NAME		
1	U CAL BERRELEI/DEFI NAME		LONG TOLAND II
		1	LONG ISLAND U
1	U CAL NAME/WEHAUSEN		
1	U CAL SAN DIEGO/ELLIS		
2	UC SCRIPPS		
	1 POLLACK		
	1 SILVERMAN		
	T OTH THEME		

Copies		Copies	
1	U MARYLAND/GLEN MARTIN		STANFORD U/ASHLEY
7	MIT	1 440	STANFORD RES INST LIB
	1 OCEAN ENGR/LIB		
	1 OCEAN ENGR/KERWIN	4	SIT DAVIDSON LAB
	1 OCEAN ENGR/LEEHEY		1 LIB
	1 OCEAN ENGR/LYON		1 BRESLIN
	1 OCEAN ENGR/MANDEL		1 TSAKONAS
	1 OCEAN ENGR/NEWMAN		1 VALENTINE
	1 PARSONS LAB/IPPEN		
		1	TEXAS U ARL LIB
6	U MICHIGAN		
	1 NAME LIB	1	UTAH STATE U/JEPPSON
	1 NAME/COUCH		
	1 DEPT/HAMMITT	1	U WASHINGTON APL LIB
	1 NAME/OGILVIE		
	1 WILLOW RUN LABS	2	WEBB INST
	1 NAME/VORUS		1 LEWIS
			1 WARD
3	U MINNESOTA SAFHL		
	1 KILLEN	1	WHOI OCEAN ENGR DEPT
	1 SONG		
	1 WETZEL	1	WPI ALDEN HYDR LAB LIB
2	STATE U MARITIME COLL	1	ASME/RES COMM INFO
	1 ENGR DEPT		
	1 INST MATH SCI	1	ASNE
1	NOTRE DAME ENGR LIB	1	SNAME
5	PENN STATE U ARL	1	AERO JET-GENERAL/BECKWITH
	1 LIB		
	1 HENDERSON	1	ALLIS CHALMERS, YORK, PA
	1 TSUCHIMA 1 PARKIN	5	ADOMDO TNO (NEL VA
	1 THOMPSON	,	ARCTEC, INC/NELKA
	1 THOMPSON	1	AUCO I VONTUC
1	PRINCETON U/MELLOR	_	AVCO LYCOMING
	PRINCEION U/MELLOR	1	BAKER MANUFACTURING
1	RENSSELAER/DEPT MATH		BAKER MANUFACTURING
•	RENSSELAER/DEFI MAIH	2	BATH IRON WORKS CORP
1	ST JOHNS U	2	1 HANSEN
	SI JOHNS 0		1 FFG PROJECT OFFICE
3	SWRI		I FFG FROJECT OFFICE
,	1 APPLIED MECH REVIEW	, 1	BETHLEHEM STEEL NY/DE LUCE
	1 ABRAMSON		BETHLEHEM SIEEL NI/DE LUCE
	1 BURNSIDE	1	BETHLEHEM STEEL SPARROWS
	A DOMINION		DELIMBRIEN STEEL STAROWS
		2	BIRD-JOHNSON CO
			1 CASE
			1 RIDLEY

Copies		Copies			
1	BOEING ADV MAR SYS DIV	2	DOUGLAS	AIRCRAFT	
			1 HES	S	
2	BOLT BERANEK AND NEWMAN		1 SMI	TH	
	1 BROWN				
	1 JACKSON	1	NATIONA	L STEEL & SHII	BLDG
1	BREWER ENGR LAB	1	MELIDODT	NEWS SHIPBLDO	TTR
	BREWER ENGR LAD	100	NEWFORI	NEWS SHIFBED	LIB
1	CAMBRIDGE ACOUS/JUNGER	1	NIELSEN ENGR/SPANGLER		
1	CALSPAN, INC/RITTER	1	OCEANICS/KAPLAN		
1	EASTERN RES GROUP	1	NAR SPACE/UJIHARA		
1	EXXON DES DIV	1	PROPULSION DYNAMICS, INC		
1	FRIEDE & GOLDMAN/MICHEL	1	V F SC	CHOENHERR	
	TRIEDE & GOLDHAN, HICHEL		K.D. De	MO ENHIDACK	
1	GEN DYN CONVAIR 1 ASW-MARINE SCIENCES	1	GEORGE	G. SHARP	
	1980 MAR DATE TOOK	1	SPERRY	SYS MGMT LIB/	
1	GEN DYN ELEC BOAT/		SHAPIRO		
	BOATWRIGHT				
		2		PBUILDING	
3	GIBBS & COX		1 PAV		
	1 TECH LIB		1 SIN	IGH	
	1 OLSON				
	1 CAPT. NELSON	1	ROBERT	TAGGART	
1	GRUMMAN AEROSPACE/CARL	1	TETRA T	ECH PASADENA/	
			CHAPK	CIS	
3	HYDRONAUTICS				
	1 DUNNE	1	TRACOR		
	1 SCHERER				
	1 LIBRARY	1	UA HAMI	LTON STANDARD	'
1	INGALLS SHIPBUILDING		CORNE	L	
	INGALLS SHIP BUILDING		CENTER	DISTRIBUTION	
1	INST FOR DEFENSE ANAL		OLNILA	DIDINIDOIION	
	INDI TON DUI DIVON INVIN	Copies	Code	all states.	
1	ITEK VIDYA	1	11	Ellsworth	
		1	1102.1		
1	LITTLETON R & ENGR CORP/REED	1	15	Cummins	
		1	1509	Pollard	
1	LITTON INDUSTRIES	1	152	Wermter	
		1	1524	Lin	
1	LOCKHEED M&S/WAID	1	1524	Hecker	
		1	1524	Day	
2	MARINE VIBRATION ASSOC	1	1524	Remmers	
	1 BRADSHOW	1	1524	Gordon	
	1 VASSILOPOULIS				

Copies	Code	
1	1524	Roddy
1	1532	Dobay
1	1532L	Denny
1	154	Morgan
1	1544	Cumming
30	1544	Boswell
10	1544	Jessup
1	156	Hagen
1	1556	Santore
1	1556	Wisler
1	1556	Jeffers
1	172	Krenzke
1	1720.6	Rockwell
1	19	Sevik
1	1962	Zaloumis
1	1962	Noonan
1	1962	Antonides
1	2723	Spargo
1	2731	Moken
1	2814	Czyryca
30	5214.1	Reports Distribution
1	5221	Library (C)
1	5222	Library (A)

