Consider the group $\mathbb{Z}/6\mathbb{Z}$. Recall that if gcl(m,6)=1 for some $0 \le m \le 6$, then $\langle (m)_6 \rangle = \mathbb{Z}/6\mathbb{Z}$. Thus the subgroups of $\mathbb{Z}/6\mathbb{Z}$ are:

$$\langle [0]_6 \rangle = \{ [0]_6 \}$$

 $\langle [2]_6 \rangle = \{ [0]_6, [2]_6, [4]_6 \}$
 $\langle [3]_6 \rangle = \{ [0]_6, [3]_6 \}$

Note that Z1/671 = G/N, where G=Z1 and N=671. Observe that:

$$GZ \subseteq \lambda Z \subseteq Z \longrightarrow \lambda Z L / GZ = \{2m + GZ : m \in Z \}$$

$$= \{[0]_{6}, [2]_{6}, [u]_{6} \}.$$

$$67L \subseteq 37L \subseteq 7L \longrightarrow 37L/67L = \{2m + 67L : m \in 7L\}$$

= \{ [0]_6, [3]_6\}

If we want subgroups of G/N, we should look at subgroups H of G so that $N \subseteq H \subseteq G$, where we can then form $H/N \subseteq G/N$.

Proposition: Let N=G and N=H=G. Then H/N is a subgroup of G/N. Proof. Verify this!

Theorem: (3rd Isomorphism Theorem) Let K,N be normal subgroups of G with $N \subseteq K \subseteq G$. Then $K/N \subseteq G/N$ and $(G/N)/(K/N) \cong G/K$.

Proof. Let $\psi: G/N \longrightarrow G/K$ defined by $gN \longmapsto gK$. We must show ψ is well-defined. Let $g_1N = g_2N$. Then $g_2^-|g_1=n$ for some $n\in N$; i.e., $g_1=g_2n$. Observe that:

Thus 4 is well-defined. Let g, N, g = N & G/N. We have:

Thus 4 is a homomorphism. Let gKEG/K. Then 4(gN) = gK, hence 4 is surjective.

It only remains to show that Keru = K/N. Let RNE K/N. Then U(RN) = RK = K; i.e., RNE Keru. Hence RNE Keru.

Let gNE Keru; i.e., u(gN) = K. So u(gN) = K. Which means u(gN) = K since u(gN) = K for some u(gN) = K. Hence u(gN) = K and u(gN) = K. Hence u(gN) = K and u(gN) = K is morphism theorem u(gN) = K.

Corollary: Let N=G and K any subgroup of G w/ N&K. Then K=G iff K/N=G/N.

Proof. If K=G, then the third isomorphism theorem gives K/N=G/N.

Assume K/N=G/N. WTS gKg-=K ygeG. Let geG, ReK. Observe that:

Thus gkg' EK. Hence gKg' EK.

Let KEK. Then R = g(g' kg)g' Eg' Kg EK. Thus K EgKg', so gKg' = K for

all geG; i.e., K = G.

Theorem: Let T be a subgroup of G/N. Then T = H/N for some subgroup $H \not = G$ with $N \not = H \not = G$.

Proof. Define $H = \{g \in G : gN \in T\}$. We will show that H is a subgroup. Since $T \subseteq G/N$, we have that T contains eN. Thus $e \in H$. Let $g_1, g_2 \in H$; i.e., $g_1N \in T$ and $g_2N \in T$. But since $T \subseteq G/N$, we have that $g_2^* \cap ET$, and similarly $g_1Ng_2^* \cap ET$. So $g_1g_2^* \cap ET$; i.e., $g_1g_2^* \in H$. Thus H is a subgroup.

Let neN. We have nN = NET b/c T is a subgroup. Thus neH, hence N=H) we have H/N = {hN: heH} = T.

Exercise: List all the subgroups $(\mathbb{Z}/122)/H$ where $H = \langle [6]_{12} \rangle$. We have that $\langle [6]_{12} \rangle \in \mathbb{N} \subseteq \mathbb{Z}/122$. So $\mathbb{N} = \langle [2]_{12} \rangle$ or $\langle [3]_{12} \rangle$. Hence $\langle [2]_{12} \rangle / \langle [6]_{12} \rangle$ and $\langle [3]_{12} \rangle / \langle [6]_{12} \rangle$ are normal to $(\mathbb{Z}/|22)/\langle [6]_{12} \rangle$.

Example: What are all of the homomorphic images of S_3 ? Let $\varphi:S_3 \rightarrow G$ for some group G. Recall that $\psi:S_3 \rightarrow \operatorname{im}(\psi) \subseteq G$, so $S_3/\ker \varphi \cong \operatorname{im} \psi$. Thus, no matter what ψ is, $\ker \Psi \supseteq S_3$. Thus $\ker \Psi$ can equal $\{e_G\}, S_3, \text{ or } L^{(123)}$? Hence $S_3/L(123)$ = $\{L(123)\}$, (12)(123)? $\cong \mathbb{Z}/2\mathbb{Z}$.