Здесь будет титульник, листай ниже

# СОДЕРЖАНИЕ

| 1 ПОСТАНОВКА ЗАДАЧИ                     | 5  |
|-----------------------------------------|----|
| 1.1 Описание входных данных             | 6  |
| 1.2 Описание выходных данных            | 7  |
| 2 МЕТОД РЕШЕНИЯ                         | 8  |
| 3 ОПИСАНИЕ АЛГОРИТМОВ                   | 10 |
| 3.1 Алгоритм конструктора класса Fryend | 10 |
| 3.2 Алгоритм деструктора класса Fryend  | 11 |
| 3.3 Алгоритм метода summ класса Fryend  | 11 |
| 3.4 Алгоритм функции method             | 12 |
| 3.5 Алгоритм функции main               | 12 |
| 4 БЛОК-СХЕМЫ АЛГОРИТМОВ                 | 15 |
| 5 КОД ПРОГРАММЫ                         | 23 |
| 5.1 Файл Fryend.cpp                     | 23 |
| 5.2 Файл Fryend.h                       | 24 |
| 5.3 Файл main.cpp                       | 24 |
| 6 ТЕСТИРОВАНИЕ                          | 26 |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ        | 27 |

## 1 ПОСТАНОВКА ЗАДАЧИ

Разработать систему, которая демонстрирует возможность использования дружественной функции.

Спроектировать объект, с свойствами в закрытом доступе:

- целого типа, для хранения размерности массива;
- указатель на объект целого типа;
- строкового типа, для хранения наименования объекта.

С параметризированным конструктором. У конструктора есть параметр целого типа. Параметр передает (содержит) значение размерности целочисленного массива. В конструкторе создается целочисленный массив заданной размерности. Вводится и выводиться значение наименования объекта. Вводится и выводится значения элементов.

Объект имеет метод, который возвращает сумму элементов целочисленного массива.

В деструкторе, первоначально выводится значение наименования объекта, а далее значения элементов целочисленного массива и освобождается память, выделенная для массива.

Спроектировать функцию, которая значения элементов массива одного объекта присвоит к элементам массива другого объекта.

Алгоритм конструирования и отработки системы:

- 1. Объявляется целочисленная переменная, для хранения значения количества объектов.
- 2. Объявляется целочисленная переменная, для хранения значения размерности массива.
- 3. Объявляется строковая переменная, для хранения наименования объекта.
- 4. Могут быть другие объявления.

- 5. Вводится значение количества объектов.
- 6. Вводится значение размерности массива.
- 7. В цикле создаются объекты, согласно введенному количеству.
- 8. Определяется значение суммы элементов для каждого объекта. Фиксируется объект, с первой минимальной суммой. Этот объект принимается за эталон.
- 9. В цикле, посредством последовательного вызова дружественной функции значения элементов массива эталонного объекта присваиваются элементам всех остальных объектов.
- 10. После завершения цикла, созданные объекты удаляются (уничтожаются).

#### 1.1 Описание входных данных

#### Первая строка:

«целое число, количество объектов»

#### Вторая строка:

«целое число, размерность массива»

Начиная с третей строки, имя очередного объекта и значения элементов массивов, согласно количеству объектов:

```
«строка» «целое число» «целое число» . . . «целое число»
```

Количество целых чисел в этих строках больше или равно количеству размерности массива.

#### Пример ввода.

```
5
5
obj_2 2 2 2 2 2 2 2
```

```
obj_3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 obj_1 1 1 1 1 1 1 obj_4 4 4 4 4 4 4 4 4 4 4 4 4 0bj_5 5 5 5 5 5 5
```

#### 1.2 Описание выходных данных

С первой строки, построчно, для каждого объекта:

```
«строка» «целое число» «целое число» . . . «целое число»
```

Имя объекта и значения элементов массива, согласно последовательности создания объектов.

Далее, построчно, для каждого объекта:

```
«имя объекта»: «целое число» «целое число» . . . «целое число»
```

Имя объекта и значения элементов массива, согласно последовательности создания объектов.

#### Пример вывода.

```
obj_2  2  2  2  2  2
obj_3  3  3  3  3  3
obj_1  1  1  1  1  1  1
obj_4  4  4  4  4  4
obj_5  5  5  5  5  5
obj_2:  1  1  1  1  1
obj_3:  1  1  1  1  1
obj_1:  1  1  1  1
obj_4:  1  1  1  1
obj_5:  1  1  1  1
```

## 2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект standart класса Fryend\* предназначен для хранения указателя на объект, который будет являться стандартом для всех остальных;
- объект one\_friend класса Fryend\* предназначен для хранения указателя на один из объектов массива;
- функция merge для присваивания значений элементов одного объекта к значениям другого;
- библиотека iostream;
- библиотека vector;
- библиотека limits;
- объекты стандартного потока ввода/вывода данных cin/cout;
- оператор присваивания;
- условный оператор >;
- условная конструкция ветвления if...else;
- оператор цикла со счетчиком for;
- оператор указателя \*;
- оператор получения адреса/ссылки &;
- операторы выделения и освобождения динамической памяти new/delete;
- оператор .;
- оператор ->;
- оператор инкремента;
- арифметический оператор суммы.

#### Класс Fryend:

- свойства/поля:
  - о поле массив введенных чисел:

- наименование elems;
- тип \*int;
- модификатор доступа private;
- о поле размерность массива:
  - наименование dim\_of\_elems;
  - тип int;
  - модификатор доступа private;

#### • функционал:

- о метод Fryend параметризированный конструктор;
- о метод ~Fryend измененный деструктор;
- о метод summ метод, показывающий сумму элементов в поле elems.

### 3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

## 3.1 Алгоритм конструктора класса Fryend

Функционал: параметризированный конструктор.

Параметры: целый, dim, размерность массива.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса Fryend

| N₂ | Предикат | Действия                                     |          |
|----|----------|----------------------------------------------|----------|
|    |          |                                              | перехода |
| 1  |          | присвоение поля dim_of_elems значение        | 2        |
|    |          | параметра dim                                |          |
| 2  |          | ввод значения поля name                      | 3        |
| 3  |          | вывод значения поля name                     | 4        |
| 4  |          | выделение памяти для поля elems под dim      | 5        |
|    |          | символов целого типа                         |          |
| 5  |          | инициализация переменной і со значением 0    | 6        |
| 6  | i < dim? | ввод знаения для і элемента массива elems    | 7        |
|    |          | 8                                            |          |
| 7  |          | вызов оператора инкремента для і             |          |
| 8  |          | игнорирование будущих введенных до перехода  |          |
|    |          | на новую строку                              |          |
| 9  |          | инициализация переменной і со значением 0 10 |          |
| 10 | i < dim? | вывод " ", і элемент массива elems 1         |          |
|    |          | переход на новую строку                      |          |
| 11 |          | вызов оператор инкремента для і 1            |          |

### 3.2 Алгоритм деструктора класса Fryend

Функционал: измененный деструктор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 2.

Таблица 2 – Алгоритм деструктора класса Fryend

| No | Предикат          | Действия                                  | No       |
|----|-------------------|-------------------------------------------|----------|
|    |                   |                                           | перехода |
| 1  |                   | вывод name, ":"                           | 2        |
| 2  |                   | инициализация переменной і со значением 0 | 3        |
| 3  | i < dim_of_elems? | вывод " ", і элемент массива elems        |          |
|    |                   | переход на новую строку                   | 5        |
| 4  |                   | вызов оператора инкремента для і          | 3        |
| 5  |                   | освобождение выделенной под массив elems  | Ø        |
|    |                   | памяти                                    |          |

### 3.3 Алгоритм метода summ класса Fryend

Функционал: метод, показывающий сумму элементов в поле elems.

Параметры: нет.

Возвращаемое значение: целое, сумма элементов поля elems.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода summ класса Fryend

| N₂ | Предикат          | Действия №                                       |          |
|----|-------------------|--------------------------------------------------|----------|
|    |                   |                                                  | перехода |
| 1  |                   | инициализация переменной sum со значением 0      | 2        |
| 2  |                   | инициализация переменной і со значением 0        | 3        |
| 3  | i < dim_of_elems? | добавление значения і элемента массива elems к 4 |          |
|    |                   | значению переменной sum                          |          |
|    |                   | возвращение значения переменной sum              | Ø        |

| N₂ | Предикат | Действия                         | N₂       |
|----|----------|----------------------------------|----------|
|    |          |                                  | перехода |
| 4  |          | вызов оператора инкремента для і | 3        |

## 3.4 Алгоритм функции method

Функционал: присваивает значения элементов одного объекта к значениям другого.

Параметры: Fryend&, obj1, объект, чьи значения присваивают, Fryend&, obj2, объект, которому присваивают значения.

Возвращаемое значение: нет.

Алгоритм функции представлен в таблице 4.

Таблица 4 – Алгоритм функции method

| N₂ | Предикат          | Действия                                       |          |
|----|-------------------|------------------------------------------------|----------|
|    |                   |                                                | перехода |
| 1  |                   | инициализация переменной і со значением 0      | 2        |
| 2  | i < dim_of_elems? | присваивание значения і элемента массива elems | 3        |
|    |                   | объекта obj2 значение і элемента массива elems |          |
|    |                   | obj1                                           |          |
|    |                   |                                                | Ø        |
| 3  |                   | вызов оператора инкремента для і               | 2        |

### 3.5 Алгоритм функции main

Функционал: главная функция программы.

Параметры: нет.

Возвращаемое значение: целое число, идентификатор работоспособности программы.

Алгоритм функции представлен в таблице 5.

Таблица 5 – Алгоритм функции таіп

| Nº | Предикат                      | Действия                                        | №<br>перехода |
|----|-------------------------------|-------------------------------------------------|---------------|
| 1  |                               | объявление целочисленной переменной             |               |
|    |                               | amm_of_objects                                  |               |
| 2  |                               | объявление целочиселенной переменной dim        | 3             |
| 3  |                               | объявление строковой переменной пате            | 4             |
| 4  |                               | объявление указателя на объект standart класса  | 5             |
|    |                               | Fryend                                          |               |
| 5  |                               | ввод значений для переменных amm_of_objects,    | 6             |
|    |                               | dim                                             |               |
| 6  |                               | создание последовательного контейнера vector c  | 7             |
|    |                               | объектами типа Fryend* и именем mass_of_friends |               |
| 7  |                               | инициализация целочисленной переменной i со     | 8             |
|    |                               | значением 0                                     |               |
| 8  | i < amm_of_objects?           | динамическое выделение памяти под объект        | 9             |
|    |                               | one_friend класса Fryend, инициализированного с |               |
|    |                               | помощью параметризированного конструктора с     |               |
|    |                               | параметром dim                                  |               |
|    |                               | 11                                              |               |
| 9  |                               | добавление указателя на объект one_friend в     | 10            |
|    |                               | mass_of_friends с помощью вызова метода         |               |
|    |                               | push_back                                       |               |
| 10 |                               | вызов оператора инкремента для і                |               |
| 11 |                               | инициализация целочисленной переменной 12       |               |
|    |                               | standasrt со значением 0                        |               |
| 12 | прохождение it по коллекции   |                                                 | 13            |
|    | mass_of_friend                |                                                 |               |
|    |                               |                                                 | 15            |
| 13 | standart != 0? it > standart? |                                                 | 12            |
|    |                               | объекту standart присваивается объект it        | 14            |

| N₂ | Предикат            | Действия                                       |    |
|----|---------------------|------------------------------------------------|----|
|    |                     | пе                                             |    |
| 14 |                     | значению standart присваивается значение,      | 12 |
|    |                     | полученное при вызове метода sum() для объекта |    |
|    |                     | it                                             |    |
| 15 |                     | инициализация целочисленные переменной i со    | 16 |
|    |                     | значением 0                                    |    |
| 16 | i < amm_of_objects? | вызов функции merge с переданными параметрами  | 17 |
|    |                     | *standart, i объект mass_of_friends            |    |
|    |                     |                                                | 18 |
| 17 |                     | вызов оператора инкремента для і 16            |    |
| 18 |                     | инициализация целочисленной переменной і со 19 |    |
|    |                     | значением 0                                    |    |
| 19 | i < amm_of_objects? | освобождение выделенной под і элемент          | 20 |
|    |                     | mass_of_friends памяти                         |    |
|    |                     |                                                | Ø  |
| 20 |                     | вызов оператора инкремента для і 19            |    |

### 4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-8.



Рисунок 1 – Блок-схема алгоритма



Рисунок 2 – Блок-схема алгоритма



Рисунок 3 – Блок-схема алгоритма



Рисунок 4 – Блок-схема алгоритма



Рисунок 5 – Блок-схема алгоритма



Рисунок 6 – Блок-схема алгоритма



Рисунок 7 – Блок-схема алгоритма



Рисунок 8 – Блок-схема алгоритма

## 5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

#### **5.1** Файл Fryend.cpp

Листинг 1 – Fryend.cpp

```
#include "Fryend.h"
Fryend::Fryend(int dim){
  dim_of_elems = dim;
  cin >> name;
  cout << name;
  elems = new int[dim];
  for (int i = 0; i < dim; i++){
      cin >> elems[i];
  cin.ignore(numeric_limits<streamsize>::max(), '\n');
  for (int i = 0; i < dim; i++){
   cout << " " << elems[i];</pre>
  cout << endl;
}
int Fryend::summ(){
  int sum = 0;
  for (int i = 0; i < dim_of_elems; i++){
      sum += elems[i];
  return sum;
}
Fryend::~Fryend(){
  cout << name << ":";
  for (int i = 0; i < dim_of_elems; i++){</pre>
      cout << " " << elems[i];
  cout << endl;
  delete elems;
}
```

### 5.2 Файл Fryend.h

Листинг 2 – Fryend.h

```
#ifndef ___FRYEND___H
#define ___FRYEND___H
#include <memory>
#include <iostream>
#include <limits>
#include <string>
using namespace std;
class Fryend{
  friend void merge(Fryend& obj1, Fryend& obj2);
  int dim_of_elems;
  int* elems;
  string name;
public:
  Fryend(int dim);
  int summ();
  ~Fryend();
};
#endif
```

### 5.3 Файл таіп.срр

```
#include <vector>
#include <string>
#include "Fryend.h"

using namespace std;

void merge(Fryend& obj1, Fryend& obj2){
   for (int i = 0; i < obj1.dim_of_elems; i++){
      obj2.elems[i] = obj1.elems[i];
   }
}

int main()
{
   int amm_of_objects;
   int dim;
   string name;</pre>
```

```
Fryend* standart;
  cin >> amm_of_objects >> dim;
  vector<Fryend*> mass_of_friends;
  for (int i = 0; i < amm_of_objects; i++){
     Fryend* one_friend = new Fryend(dim);
     mass_of_friends.push_back(one_friend);
  }
  int standard = 0;
  for (auto it : mass_of_friends){
     if (standart != 0 && it->summ() > standard){
     } else {
        standart = it;
        standard = it->summ();
     }
  }
*/
  int standard = numeric_limits<int>::max();
  for (auto it : mass_of_friends){
     int current_sum = it->summ();
     if (current_sum < standard){</pre>
        standart = it;
        standard = current_sum;
     }
  }
  for (int i = 0; i < amm_of_objects; i++){
     merge(*standart, *mass_of_friends[i]);
  }
  for (int i = 0; i < amm_of_objects; i++){
     delete mass_of_friends[i];
  }
  return(0);
}
```

## 6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 6.

Таблица 6 – Результат тестирования программы

| Входные данные                                                                                            | Ожидаемые выходные<br>данные                                | Фактические выходные<br>данные                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 5 0bj_2 2 2 2 2 2 2 2 2 2 0bj_3 3 3 3 3 3 3 3 3 3 0bj_1 1 1 1 1 1 1 0bj_4 4 4 4 4 4 4 4 0bj_5 5 5 5 5 5 | obj_2 2 2 2 2 2 2 obj_3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | <pre>obj_2 2 2 2 2 2 2 obj_3 3 3 3 3 3 obj_1 1 1 1 1 1 1 obj_4 4 4 4 4 4 obj_5 5 5 5 5 5 obj_2: 1 1 1 1 1 obj_3: 1 1 1 1 1 obj_1: 1 1 1 1 1 obj_4: 1 1 1 1 1 obj_5: 1 1 1 1 1</pre> |

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe\_posobie\_dlya\_laboratornyh\_ra bot\_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye\_k\_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).