Bases de Datos I

Álgebra Relacional y de Bolsas

ÁLGEBRA RELACIONAL

Lenguajes de consulta en BD Relacionales:

- Álgebra Relacional: consulta procedimental
 - Conjunto de operaciones que permiten describir cómo obtener una respuesta sobre relaciones definidas en el modelo relacional
 - Se utilizan como representación para traducir y optimizar consultas SQL
- Cálculo Relacional: consulta no procedimental
 - Describe la información deseada sin dar un procedimiento específico para obtenerla.
 - Poder expresivo similar al álgebra relacional, pero declarativo.
- Lenguajes de Usuario: SQL (Structured Query Language), basado en álgebra relacional pero su interpretación es mediante álgebra de bolsas)

OPERADORES

El Algebra Relacional define un conjunto de **operadores estándar** para consultas en BD relacionales. Son **símbolos** que denotan procedimientos para construir nuevas relaciones a partir de otras relaciones (propiedad de clausura)

- Operadores tradicionales sobre conjuntos de tuplas:

Unión, Diferencia, Producto Cartesiano, Intersección

- Operadores específicos para BD relacionales:

Selección, Proyección, Ensamble o reunión (Join), División

Las relaciones no admiten tuplas repetidas, **NO** hay operación del álgebra relacional que genere **tuplas repetidas**

TABLAS EN SQL

- SQL no trata a las relaciones como conjuntos sino que, en general, permite tuplas repetidas en los resultados de las consultas (a menos que se indique explícitamente que deben ser removidos)
 - La eliminación de duplicados es una operación costosa (requiere ordenar y luego eliminar repeticiones)
 - Es posible que se requiera conocer todos los resultados de una consulta, incluso si están duplicados
- Los motores de BD relacionales no trabajan con relaciones, trabajan con <u>bolsas</u>
- Las operaciones del álgebra relacional se redefinen para el álgebra de bolsas

OPERADORES ALGEBRAICOS

Cada operador del algebraico **acepta** <u>una o dos</u> <u>relaciones</u> (o expresiones relacionales) y retorna una relación como resultado

Operadores Unarios: (interviene una sola relación)

Selección y Proyección (σ π)

Operadores Binarios: (intervienen dos relaciones)

Unión, Diferencia, Producto Cartesiano

U - X

Intersección, Ensamble, División

OPERADORES ALGEBRAICOS

Algunas operaciones son **fundamentales** y otras pueden ser expresadas como una combinación o **derivación** de las anteriores

- Operadores básicos o fundamentales:

Unión, Diferencia, Producto Cartesiano, Selección, Proyección

 Operadores derivados: se pueden expresar en función de operadores básicos; expresan operaciones importantes y se usan habitualmente

Intersección, Ensamble, División

SECUENCIA DE OPERACIONES y RENOMBRADO

Para resolver algunas consultas sobre la BD frecuentemente se necesita aplicar varios operadores relacionales. Es necesario utilizar **expresiones relacionales. Opciones:**

Anidar expresiones

- Las operaciones unarias tienen prioridad sobre las binarias
- Las expresiones se evalúan de izquierda a derecha
- Para alterar el orden implícito de las expresiones se usan paréntesis

Aplicar los operadores individualmente y generar resultados intermedios

Se pueden <u>re-nombrar</u> las relaciones intermedias: T ← Expresión algebr.

También: **Renombrado de atributos**: ρ_{Atrtb1→Alias1,..., Atrtbn→Aliasn} (R)

ALGEBRA RELACIONAL: SELECCIÓN

Permite obtener las tuplas de una relación R que cumplen una condición

condición es una expresión booleana que puede utilizar operadores de comparación $(<,>,=,\leq,\geq,\neq)$, en la que aparece al menos un atributo de R

Puede ser una combinación booleana de varias de estas comparaciones mediante OR o AND (V \acute{o} Λ) o una negación (\lnot)

Ejemplo

ALUMNO		
Id_alum	Apellido	Nombre
158	Alonso	Martin
250	García	Juan
438	Alonso	Laura

O id_alum	id_alum > 200 (ALUMNO)	
Id_alum	Apellido	Nombre
250	García	Juan
438	Alonso	Laura

AR - PROYECCIÓN

Permite obtener las tuplas con un sub-conjunto de atributos de R

$$\pi_{\mathsf{lista_atributos}}(\mathsf{R})$$

lista_atributos es una lista de atributos de R que aparecen en el resultado

Se **eliminan tuplas repetidas** en el resultado (podrían quedar menos tuplas que en R)

Ejemplo	ALOIVIIIO		
(ALI		Apellido	Nombre
	158	Alonso	Martin
	250	García	Juan
	438	Alonso	Laura

TABLAS EN SQL

SQL no trata a las relaciones como conjuntos sino que, en general, permite tuplas repetidas en los resultados de las consultas (a menos que se indique explícitamente que deben ser removidos)

- La eliminación de duplicados es una operación costosa (requiere ordenar y luego eliminar repeticiones)
- Es posible que se requiera conocer todos los resultados de una consulta, incluso si están duplicados

Los motores de BD relacionales no trabajan con relaciones, trabajan con <u>BOLSAS</u>

Las operaciones del álgebra relacional se <u>redefinen</u> para el **álgebra de bolsas**

ÁLGEBRA DE BOLSAS - OPERACIONES

Selección: σ_{cond} (B): filtra las tuplas **preservando duplicados**

Proyección: Π_A (B): proyecta B sobre las columnas del conjunto de atributos A, **preservando los duplicados**

Eliminación de duplicados: $\varepsilon(B) \to \text{indicación explícita para eliminar los duplicados en B$

(ALUMM		
Id_alum	Apellido	Nombre
158	Alonso	Martin
250	García	Juan
438	Alonso	Laura

ALGEBRA RELACIONAL: UNIÓN

Genera la unión de dos relaciones tomadas como conjuntos de tuplas

$$\mathbf{R_1} \cup \mathbf{R_2}$$

- → Las tuplas en el resultado son las que se encuentran en R₁, o en R₂, o en ambas relaciones a la vez (pero sin repeticiones)
- → Para poder realizar esta operación: R₁ y R₂ deben ser compatibles para la unión (poseer el mismo esquema y dominio de definición: cada atributo de R₁ debe tener igual nombre y dominio que el correspondiente atributo de R₂)

EjempioListar los alumnos y los ayudantes

ALUMNO)	
Id_alum	Apellido	Nombre
158	Alonso	Martin
250	García	Juan
438	Alonso	Laura

AYUDANTE		
Id_alum	Apellido	Nombre
108	Pérez	José
250	García	Juan

ALUMNO U AYUDANTE		
ld_alum	Apellido	Nombre
158	Alonso	Martin
250	García	Juan
438	Alonso	Laura
108	Pérez	José

ALGEBRA RELACIONAL: DIFERENCIA

Obtiene la diferencia de dos relaciones tomadas como conjuntos de tuplas

$$R_1 - R_2$$

- → Las tuplas en el resultado son las que se están en R₁ y que no están en R₂
- \rightarrow el esquema resultante es igual al de R₁ (y de R₂)
- → Para poder realizar esta operación: R₁ y R₂ deben ser compatibles para la unión

Ejemplo Listar los alumnos que no son ayudantes

ALUMNO		
Apellido	Nombre	
Alonso	Martin	
García	Juan	
Alonso	Laura	
	Apellido Alonso García	

AYUDANTE		
Id_alum	Apellido	Nombre
108	Pérez	José
250	García	Juan

ALUMNO – AYUDAN IE		INIE
Id_alum	Apellido	Nombre
158	Alonso	Martin
438	Alonso	Laura

ALGEBRA RELACIONAL: INTERSECCIÓN

Obtiene la intersección de 2 relaciones tomadas como conjuntos de tuplas

$$\mathbf{R_1} \cap \mathbf{R_2}$$

- → Las tuplas en el resultado son las que se encuentran en R₁ y también en R₂
- → Para poder realizar esta operación: R₁ y R₂ deben ser compatibles para la unión
- \rightarrow Se puede expresar como: $R_1 \cap R_2 = R_1 (R_1 R_2)$

Listar los alumnos que son ayudantes

)	
Apellido	Nombre
Alonso	Martin
García	Juan
Alonso	Laura
	Apellido Alonso García

AYUDANTE		
Apellido	Nombre	
Pérez	José	
García	Juan	
	Apellido Pérez	

ALUMNO ∩ AYUDANTE		
Id_alum Apellido N		Nombre
250	García	Juan

ALGEBRA RELACIONAL: PRODUCTO CARTESIANO

 Obtiene una relación cuyas tuplas están formadas por la concatenación de todas las tuplas de R₁ con todas las tuplas de R₂

$$R_1 \times R_2$$

 → Las tuplas en el resultado son todas las combinaciones posibles de las tuplas de R₁ y de R₂ (no suele usarse como operación significativa por sí sola)

Ejemplo

ALUMNO		
Id_alum	Apellido	Nombre
158	Alonso	Martin
250	García	Juan
438	Alonso	Laura

MATERIA		
Id_m	Nom_mat	
C1	Materia 1	
C2	Materia 2	

ALUMNO x MATERIA				
Id_alum	Apellido	Nombre	ld_m	Nom_mat
158	Alonso	Martin	C1	Materia 1
250	García	Juan	C1	Materia 1
438	Alonso	Laura	C1	Materia 1
158	Alonso	Martin	C2	Materia 2
250	García	Juan	C2	Materia 2
438	Alonso	Laura	C2	Materia 2

ÁLGEBRA DE BOLSAS: UNIÓN

• Unión máxima: $B_1 \cup_{max} B_2 \rightarrow$ devuelve las tuplas que aparecen en B_1 o en B_2 , incluyendo tantas ocurrencias como la cantidad máxima de repeticiones entre las bolsas

$$contar(x, B_1 \cup_{max} B_2) = max(contar(x, B_1), contar(x, B_2))$$

• Unión aditiva: $B_1 \uplus B_2 \to \text{devuelve las tuplas que aparecen en } B_1 \text{ o en } B_2$, incluyendo tantas ocurrencias como la suma de apariciones en ambas bolsas

$$contar(x, B_1 \uplus B_2) = contar(x, B_1) + contar(x, B_2)$$

ÁLGEBRA DE BOLSAS: OTRAS OPERACIONES

• **Diferencia (minus):** $B_1 cdots B_2 o$ un elemento duplicado aparece tantas veces como la diferencia de apariciones de B_1 menos las de B_2 , pero no menos de cero

$$contar(x, B_1 - B_2) = max((contar(x, B_1)-contar(x, B_2)), 0)$$

• Intersección mínima: $B_1 \cap_{min} B_2 \rightarrow$ un elemento duplicado aparece tantas veces como el mínimo de apariciones entre las bolsas $B_1 y B_2$

```
contar(x, B_1 \cap_{min} B_2) = min(contar(x, B_1), contar(x, B_2))
```

 Producto cartesiano: B₁ × B₂ → obtiene todos los posibles pares de tuplas entre B₁ y B₂, preservando las repeticiones

$$contar((x, s), B_1 \times B_2) = contar(x, B_1) * contar(s, B_2)$$

ALGEBRA: EJEMPLOS

Eje!	Considerando la <i>BD de Voluntarios</i> (TP2): Listar apellido y e-mail de los voluntarios que llevan apor horas	tadas más de		
		(1200-200	NTARIO	
		nro_voluntario nombre apellido	int varchar(20) varchar(25)	PK N
0	Listar los distintos códigos de tareas que realizan los	e_mail telefono fecha_nacimiento	varchar(25) varchar(20) date	N
 	voluntarios	id_tarea horas_aportadas porcentaje	varchar(10) decimal(8,2) decimal(2,2)	N
 		id_institucion id_coordinador	int int	N F
0	Listar nombre y teléfono de todos los voluntarios de las		117	

instituciones 20 y 50

ALGEBRA: EJEMPLOS

Ejemplos

Considerando la *BD de Voluntarios* (TP2):

 Listar apellido y e-mail de los voluntarios que llevan aportadas más de 1000 horas

$$\pi$$
 nombre, e_mail (σ horas_aportadas > 1000 (VOLUNTARIO))

 Listar los distintos códigos de tareas que realizan los voluntarios

$$oldsymbol{\pi}_{ ext{id tarea}}$$
 (VOLUNTARIO)

 Listar nombre y teléfono de todos los voluntarios de las instituciones 20 y 50

$$\pi$$
 nombre, telefono (σ id_institucion= 20 OR id_institucion= 50

o también:

- $\pi_{\text{nombre, telefono}}(\sigma_{\text{id_institucion}=20}(\text{VOLUNTARIO}) \cup$
- $\pi_{\text{nombre, telefono}}(\sigma_{\text{id, institucion}=50}^{-}(\text{VOLUNTARIO})$

PostgreSQL y ALGEBRA DE BOLSAS

Considerando las siguientes tablas y sus tuplas:

```
CREATE TABLE R (a int, b int); CREATE TABLE S (a int, b int);
```

```
INSERT INTO R (a, b) VALUES INSERT INTO S (a, b) VALUES (1,2), (1,2), (1,2), (3,4), (1,2), (3,4); (3,4), (5,6);
```

Si una tupla t aparece n veces en R y m veces en S, entonces aparecerá:

- n + m veces en R ∪ S
- min (n, m) veces en R 🕦 S
- max (0, n-m) veces en R S

PostgreSQL y ALGEBRA DE BOLSAS

Cuál es el resultado de las siguientes consultas:

SELECT * FROM R UNION [ALL] SELECT * FROM S ORDER BY a;

SELECT * FROM R INTERSECT [ALL] SELECT * FROM S ORDER BY a;

SELECT * FROM R EXCEPT [ALL] SELECT * FROM S ORDER BY a;

ALGEBRA RELACIONAL: JOIN

Join General

$$R_1 \bowtie_{cond} R_2$$

Equijoin

$$R_1 \bowtie_{R1.A=R2.B} R_2 = \sigma_{R1.A=R2.B} (R_1 \times R_2)$$

Ensamble Natural

$$R1 \bowtie R2 = \pi_{esq(R1)} \cup_{esq(R2) - (esq(R1))} \cap_{esq(R2)} (\sigma_{R1.A=R2.A} (R_1 \times R_2))$$

→La selección chequea la igualdad de los atributos comunes y la proyección elimina los duplicados

LEFT OUTER JOIN - R₁ ™ R₂

RIGHT OUTER JOIN - $R_1 \bowtie R_2$

FULL OUTER JOIN - R1M R2

ALGEBRA RELACIONAL: DIVISIÓN

Si R_1 es una relación con esquema $(A_1,, A_n, B_1,, B_m)$ y R_2 es una relación con esquema $(B_1,, B_m)$, la operación

$$\mathbf{R_1} \div \mathbf{R_2}$$

da como resultado otra relación con esquema $(A_1,, A_n)$ que contiene las correspondientes ocurrencias de las tuplas de R_1 que están acompañadas por **todas** las tuplas de R_2

NOTA: no existe un operador explícito para esta operación en el standard SQL, sino que hay que "simularlo" (en algunos sistemas relacionales aparece el operador contains que es similar a la operación división del álgebra relacional)

Ejemplo Listar los identificadores de los alumnos inscriptos en todas las materias

INSCRIPCIONES		
Id_alum	ld_m	
158	C1	
158	C2	
250	C2	

MATERIAS		
Id_m Nom_mat		
C1	Materia 1	
C2	Materia 2	

INSCRIPCIONES $\div \pi_{id_m}$ (MATERIAS)		
ld_alum		
158		

AR – FUNCIONES DE AGREGACIÓN y AGRUPAMIENTO

- Algunas consultas no se pueden responder con las operaciones anteriores
- Funciones de agregación: amplían el poder expresivo del AR Toman un conjunto de valores y devuelven un valor único:

avg: valor promedio sum: suma de valores

min: valor mínimo count: número de valores

max: valor máximo

 Extensión del álgebra relacional para incorporar operadores de agrupamiento de tuplas:

$\delta_{ATR,AGR}(R)$

ATR → atributo o conjunto de atributos de agrupamiento

AGR → función/es de agrupamiento

OPERACIONES del ÁLGEBRA y SQL

- Eliminación de duplicados: se usa DISTINCT
- Operaciones del álgebra relacional: algunas operaciones de conjuntos se incorporaron directamente en SQL
 - Unión de conjuntos: R₁ UNION R₂
 - Intersección de conjuntos: R₁ INTERSECT R₂
 - Diferencia entre conjuntos: R₁ EXCEPT R₂

- R₁ y R₂ son resultado de expresiones SELECT
- -Las relaciones resultantes son conjuntos de tuplas ightarrow las repetidas son eliminadas del resultado, a menos que se anexe **ALL** a la operación
- -Estas operaciones se aplican sobre relaciones **compatibles con la unión** (puede ser necesario renombrar atributos)

OPERACIONES del ÁLGEBRA y SQL

Operaciones en conjuntos

ÁLG. RELACIONAL	SQL
U	UNION
Λ	INTERSECT
_	EXCEPT

Operaciones en bolsas

ÁLG. BOLSAS	SQL
⊎	UNION ALL
∩ _{min}	INTERSECT ALL
÷	EXCEPT ALL
ε(Β)	DISTINCT
$\pi_{A1,,An}(B)$	SELECT A1,, An FROM B

ALGEBRA RELACIONAL: SELECCIÓN

Algunas **propiedades** de la selección:

Conmutativa:

$$\sigma_{c2} (\sigma_{c1}(R)) = \sigma_{c1} (\sigma_{c2}(R))$$

• Idempotente:

$$\sigma_{\rm C}(\sigma_{\rm C}({\rm R})) = \sigma_{\rm C}({\rm R})$$

 Se pueden combinar múltiples selecciones en una única selección:

$$\sigma_{C1} (\sigma_{C2} (... \sigma_{Cn} (R)...)) = \sigma_{C1 \text{ AND } C2 \text{ AND } ... \text{ Cn}} (R)$$

ALGEBRA RELACIONAL: OTRAS PROPIEDADES

• La Unión y la Intersección son operaciones conmutativas:

$$R_1 \cup R_2 = R_2 \cup R_1 \quad y \quad R_1 \cap R_2 = R_2 \cap R_1$$

• también son asociativas:

$$R_1 \cup (R_2 \cup R_3) = (R_1 \cup R_2) \cup R_3$$

 $y R_1 \cap (R_2 \cap R_3) = (R_1 \cap R_2) \cap R_3$

• la Diferencia no es conmutativa, en general:

$$R_1 - R_2 \neq R_2 - R_1$$

OPERACIONES del ÁLGEBRA y SQL: DIVISIÓN

Listar los identificadores de los alumnos inscriptos en todas las materias

ALUMNO		
Id_alum	Apellido	Nombre
158	Alonso	Martin
250	García	Juan
438	Alonso	Laura

SELECT A.ld_alum FROM alumno A

WHERE **NOT EXISTS**

((SELECT M.Id_m FROM materia M)

EXCEPT

(SELECT I.Id_m FROM inscripcion I

WHERE I.Id alum=A.Id alum));

INSCRIPCION		
Id_alum Id_m		
158	C1	
158	C2	
250	C2	

MATERIA	
ld_m	Nom_mat
C1	Materia 1
C2	Materia 2

SELECT A.ld_alum
FROM alumno A
WHERE **NOT EXISTS**

(SELECT M.ld_m FROM materia M

WHERE **NOT EXISTS**

(SELECT I.Id_m

FROM inscripcion I

WHERE I.Id_alum=A.Id_alum

AND I.id_m=M.Id_m));

→ Otra opción utilizando COUNT (en este caso chequeando que la cantidad de materias en las que se inscribió cada alumno (Inscripciones) coincida con la cantidad de materias (en Materias)

BIBLIOGRAFÍA

Date, C., "An Introduction to Database Systems". 7º ed., Addison Wesley, 2000

Elmasri, R., Navathe, S., "Fundamentals of Database Systems", Addison Wesley, 2011

Ramakrishnan R., Gehrke J., "Database Management Systems", 3° ed., McGraw-Hill, 2003

Silberschatz, A., Korth, H, Sudarshan, S., "Database System Concepts", McGraw Hill, 2001