Experiment 3

Combinational Circuits: Structural Modeling Simulation

In this lab, we are going to simulate a simple combinational circuit (Fig. 3.1) using QuestaSim and Xcelium as our simulators.

Fig. 3.1: Simple logic circuit implementing y = a.b + c

Codes

Make a folder containing System Verilog RTL (Listing 2) and test bench files (Listing 3). Use code editor to write the codes provided.

- 1. Remember to keep the file name and module name same.
- 2. Simulation depends upon how time is defined as the simulator needs to know how to interpret the delay provided as #number.

```
`timescale <time_unit>/<time_percision>
`timescale 1ns/10ps
// time unit = 1 ns, time precision = 10 ps
```

Listing 1: Timescale

The 'timescale directive specifies the timescale and precision for the modules.

- Time unit and time precision can be thought of like the scale along axis in graphs where 1 big square = time_unit and 1 small square = time_precision.
- It can either be skipped and the simulator will refer to its default or should be added as the first line of both RTL and testbench codes.

```
module lab3(
    output logic y,
    input logic a,b,c
    );

assign y = a & b | c;

endmodule
```

Listing 2: System Verilog Code.

Overview of QuestaSim

Following steps are used to create a project in QuestaSim.

1. Click on File then select New and then Project. (Fig. 3.2).

Fig. 3.2: Creating a new project.

2. When prompted, enter the project name and browse the *Project Location* to the folder containing RTL code and the test bench code. Then click on OK (Fig. 3.3).

Fig. 3.3: Create Project window.

The instruction manual is for the exclusive use of the students of University of Engineering and Technology, Lahore. ©2025 UET Lahore.

```
module lab2_tb;
logic a1;
logic b1;
logic c1;
logic y1;
localparam period = 10;
lab2 UUT(
.a(a1),
.b(b1),
.c(c1),
.y(y1)
);
initial //initial block executes only once
begin
        // Provide different combinations of the inputs to check validity of code
        a1 = 0; b1 = 0; c1 = 0;
        #period;
        a1 = 0; b1 = 0; c1 = 1;
        #period;
        a1 = 0; b1 = 1; c1 = 0;
        #period;
        a1 = 0; b1 = 1; c1 = 1;
        #period;
        a1 = 1; b1 = 0; c1 = 0;
        #period;
        a1 = 1; b1 = 0; c1 = 1;
        #period;
        a1 = 1; b1 = 1; c1 = 0;
        #period;
        a1 = 1; b1 = 1; c1 = 1;
        #period;
        $stop;
end
initial
begin
        /*the following system task will print out the signal values
        every time they change on the Transcript Window */
        $monitor("y=%b, a=%b, b=%b, c=%b", y1,a1,b1,c1);
end
endmodule
```

Listing 3: Test bench simulation Code

3. A new window will open (Fig. 3.4) select Add Existing File.

Fig. 3.4: Add items to the Project window.

4. Next click on Browse (Fig. 3.5) and select the System Verilog RTL and test bench code file (Fig. 3.6), click Open and then click OK.

Fig. 3.5: Add File to the Project window.

Fig. 3.6: Adding RTL and test bench files to project.

5. The two files will be added to QuestaSim project (Fig. 3.7).

The instruction manual is for the exclusive use of the students of University of Engineering and Technology, Lahore. ©2025 UET Lahore.

Fig. 3.7: QuestaSim project created.

6. Click on *compile all* (Fig. 3.8). If there are no errors the transcript will show no errors (Fig. 3.9). Otherwise the Transcript window will show the number of errors, and can be viewed by clicking on the line in the transcript which provides information about the number of errors, written in red.

Fig. 3.8: Compiling on QuestaSim.

The instruction manual is for the exclusive use of the students of University of Engineering and Technology, Lahore. ©2025 UET Lahore.

Fig. 3.9: QuestaSim project created.

7. Then go to *Library* tab. Expand the *work* tab and click the test bench file (in our case lab2_tb). And select *Simulate*. (Fig. 3.10).

Fig. 3.10: Start Simulation.

- 8. QuestaSim will load the simulation on the window.
- 9. Check if the *Objects* dark blue box is appearing in the window. If this box does not appear click on *View* and select *Objects*. Select any of the objects that were inputs and outputs of the code written and then click on *Add to* then select *Wave* and select *Signals in Region*. (Fig. 3.11).

The instruction manual is for the exclusive use of the students of University of Engineering and Technology, Lahore. ©2025 UET Lahore.

Fig. 3.11: Adding waves to the Signals in Objects box (dark blue box) in the upper right corner.

- 10. For viewing local signals of your design along-with inputs and outputs, instead of the previous step, click on the instance name of your design module (in this case *UUT*). Now the object window will show all the signals present in your design file. Select any of the objects and then click on *Add to* then select *Wave* and select *Signals in Region*.
- 11. The Wave window will appear. Select the run length (80 ns) as shown in Fig. 3.12.

Fig. 3.12: Selecting Run Length (80ns).

12. Click on Run. The simulation waveform will appear on the screen. Go to the View tab, click Zoom and select Zoom Full (Fig. 3.13) (or you can press F key on your keyboard), to view the output of y for all the various inputs (Fig. 3.14). You can press H key to just see the names of the signals without the module name.

Fig. 3.13: Zoom to view entire waveform.

The instruction manual is for the exclusive use of the students of University of Engineering and Technology, Lahore. ©2025 UET Lahore.

Fig. 3.14: Output wave-forms of the logic circuit.

13. If you want to restart your simulation, then click on *Restart* icon (Fig. 3.12).

Overview of Xcelium

1. For running simulation on Xcelium, Open the Linux Terminal and enter the following command:

```
xrun filename.sv testbench.sv -access +rwc
```

For this lab.

```
xrun lab2.sv lab2_tb.sv -access +rwc
```

The result will be displayed on the terminal.

```
root@computer1:~/Desktop
File Edit View Search Terminal Help
        Loading native compiled code:
        Design hierarchy summary:
                                   Instances Unique
                Modules:
                Registers:
Scalar wires:
                 Initial blocks:
                Cont. assignments:
Pseudo assignments:
                Simulation timescale: 10ps
xcelium> source /mnt/Cadence/Xcelium/tools/xcelium/files/xmsimrc
xcelium> run
y=0,a=0,b=0,c=0
y=1,a=0,b=0,c=1
y=0,a=0,b=1,c=0
y=1,a=0,b=1,c=1
y=0,a=1,b=0,c=0
y=1,a=1,b=0,c=1
y=1,a=1,b=1,c=0
y=1,a=1,b=1,c=1
xmsim: *W,RNQUIE: Simulation is complete.
xcelium> exit
```

Fig. 3.15: Simulation Results displayed on the terminal

2. For viewing the waveforms, enter the following command:

The instruction manual is for the exclusive use of the students of University of Engineering and Technology, Lahore. ©2025 UET Lahore.

 ${\tt xrun \ filename.sv \ testbench.sv -} {\tt access \ +} {\tt rwc \ -} {\tt gui}$

For this lab,

SimVision GUI will open.

- 3. Click on the module name and select Add to Waveform Window.
- 4. Click run to view the simulation results.

Fig. 3.16: Simulation Waveforms on SimVision

Tasks

1. Implement the circuit shown in Fig. 3.17 on QuestaSim and verify it's truth table.

Fig. 3.17: Circuit to be implemented.

2. RTL and testbench codes of a full adder circuit are provided in Listings 4 and 5. Compile and simulate these in Questasim and correct the errors. The Equations for Sum and Carry are:

$$Sum = (A \otimes B) \otimes C$$
$$Carry = A.B + C(A \otimes B)$$

```
module full_adder(
           input logic a,
2
           input logic b,
3
           input logic c,
4
           output logic sum,
5
           output logic carry,
6
           );
           sum = (a \hat{b}) \hat{c};
           assign carry = (a \& b) | (c(a \hat{b}));
10
11
           endmodule
12
```

Listing 4: System Verilog Code.

The instruction manual is for the exclusive use of the students of University of Engineering and Technology, Lahore. ©2025 UET Lahore.

```
module full_adder_tb();
1
       logic a1;
2
        logic b1;
3
        logic c1;
4
        logic sum1;
5
6
       full_adder (
7
        .a(a1),
        .b(b1),
9
        .c(c1),
10
        .sum(sum1),
11
        .carry(carry1)
12
       );
13
14
        initial
15
        begin
16
        // Provide different combinations of the inputs to check validity of code
17
        a = 0; b = 0; c = 0;
18
        #10;
19
       a1 = 0; b1 = 0; c = 1;
20
        #10;
21
        a1 = 0; b1 = 1; c1 = 0;
22
        #10;
23
        a1 = 0; b = 1; c1 = 1;
24
       #10;
        a1 = 1; b1 = 0; c1 = 0;
26
       #10;
27
        a1 = 1; b1 = 0; c1 = 1;
28
        #10;
29
        a = 1; b1 = 1; c1 = 0;
30
31
        a1 = 1; b1 = 1; c1 = 1;
32
        #10;
33
        $stop;
34
35
36
        endmodule
37
```

Listing 5: System Verilog Code.

Deliverables

- 1. A report including:
 - (a) Truthtable of the circuit shown in Fig. 3.17.
 - (b) Errors found in the codes (Listing 4 and 5).
 - (c) Corrected codes.
- 2. System Verilog code of the given circuit in Fig. 3.17. You can use structural coding (using primitives such as AND, OR, etc., gates) or use assign statements or always_comb block.
- 3. Testbench code of the same.
- 4. Perform the simulation of the circuit Task1 and Task2 on QuestaSim. And show the results of that simulation to the Instructor.

The collaboration between students is encouraged, but blind code sharing/copying is not allowed. If you are unable to explain anything in your code, it will be assumed you have copied it. So make sure you know every thing you have written in your code. We are least concerned about how you have learnt something as long as you have learnt it well. Copied assignments will get ZERO marks.

Acknowledgments

The manual has been written by Mr. Ali Imran and Ms. Shehzeen Malik.