First-principles Computational Material Research

Lecture Notes Calculations on Optical Properties

Lecturer: T. C. Leung (深 贊全)
Department of Physics
National Chung Cheng University

VASP Home Page

http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V_{eff}(\vec{r}) \right] \psi_i(\vec{r}) = \varepsilon_i \psi_i(\vec{r}) \qquad ; \quad \rho(\vec{r}) = \sum_i^{occ} \left| \psi_i(\vec{r}) \right|^2$$

$$V_{eff}(\vec{r}) = V_{ext}(\vec{r}) + V_{H}(\vec{r}) + V_{xc}(\vec{r}) + V_{ps}(\vec{r})$$

$$V_H(\vec{r}) = \int \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|} d^3r; \quad V_{xc}(\vec{r}) = V_{xc}(\rho(\vec{r})) \quad LDA$$

$$V_{eff}(\vec{r}+\vec{R}) = V_{eff}(\vec{r})$$

$$\psi_k(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u(\vec{r})$$

$$V_{eff}(\vec{r} + \vec{R}) = V_{eff}(\vec{r})$$

$$\psi_{k}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u(\vec{r})$$

$$u_{k}(\vec{r}) = \sum_{G_{n} < G_{\text{max}}} C_{n}e^{i\vec{G}_{n}\cdot\vec{r}}$$

$$\underbrace{\mu(\vec{k})C - \lambda SC = 0}_{\vec{k}} = 0$$

$$\underline{H}(\vec{k})\underline{C} - \lambda \underline{S}\underline{C} = 0$$

$$\overrightarrow{\mathcal{T}}_{i} \rightarrow \begin{matrix} \rho_{in} & \longrightarrow & V_{eff}(r) & \longrightarrow & \varepsilon_{i}; \psi_{i} & \longrightarrow & \rho_{out} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ &$$

$$oldsymbol{ar{ au}}_{_{i}}=oldsymbol{\eta}ar{F}_{_{i}}$$

Example: 2 D

IBZ (irreducible BZ)

Weight of the k points:

$$\omega_{k} = \frac{2A_{k}}{\sum_{k} A_{k}}$$

$$\sum_{n} \sum_{k} \omega_{k} = Z_{1} + Z_{2}$$

$$E_{nk} \leq E_{F}$$
charge density
$$\rho(\vec{r}) = \sum_{n} \sum_{k} \omega_{k} |\psi_{nk}|^{2}$$

 $E_{nk} \leq E_F$

Example: 3 D

Copper (Cu): fcc structure

$$\vec{a}_1 = \frac{a}{2} \left(\vec{j} + \vec{k} \right)$$

$$\vec{a}_2 = \frac{a}{2} \left(\vec{i} + \vec{k} \right)$$

$$\vec{a}_3 = \frac{a}{2} \left(\vec{i} + \vec{j} \right)$$

$$\vec{b}_1 = \frac{4\pi}{a} \frac{1}{2} \left(-\vec{i} + \vec{j} + \vec{k} \right)$$

$$\vec{b}_2 = \frac{4\pi}{a} \frac{1}{2} \left(\vec{i} - \vec{j} + \vec{k} \right)$$

$$\vec{b}_3 = \frac{4\pi}{a} \frac{1}{2} \left(\vec{i} + \vec{j} - \vec{k} \right)$$

Density of states

$$\Delta N = D(\varepsilon) \Delta \varepsilon$$

number of state from ε to $\varepsilon + \Delta \varepsilon$

 $D(\varepsilon)$: Density of states

$$D(\varepsilon_i)\Delta\varepsilon$$

Number of state within $\Delta \varepsilon$

$$\omega_k = \frac{2A_k}{\sum_k A_k}$$

$$\sum_{k} \omega_{k} = 2$$

$$D(\varepsilon_{i}) = \frac{1}{\Delta \varepsilon} \sum_{k} \omega_{k}$$

$$N = \frac{1}{\Lambda \varepsilon} \sum_{k} \omega_{k} f_{k}$$

where

$$f_k = \begin{cases} 1 & occupied \\ 0 & otherwise \end{cases}$$

They have the same area.

$$D_{nk}(\varepsilon) = \frac{\omega_k}{\sqrt{2\pi\alpha}} e^{-\frac{(\varepsilon - \varepsilon_{nk})^2}{2\alpha^2}}$$

T. C. Leung, National Chung Cheng University

How to calculate the absorption spectrum of a crystal?

How to calculate the absorption spectrum of a crystal?

$$\psi(t=0) = \phi_{vi}$$

$$P_{cj}(t) = \left| \left\langle \phi_{cj} \left| \psi(t) \right\rangle \right|^2 = \left| c_{cj}(t) \right|^2$$

Transition probability per unit time:

$$\Gamma_{vi \to cj} = \frac{P_{vi,cj}(t)}{t}$$

Transition rate W:

$$W = \sum_{\substack{\text{valence conduction} \\ \textit{band}}} \sum_{\vec{k}} w_{\vec{k}} \Gamma_{\textit{vi} \rightarrow \textit{cj}}$$

Absorption Constant (α):

$$\frac{\hbar\omega \times \text{Transition rate (W)}}{\text{Incident flux (I)}}$$

Time-Dependence Perturbation Theory

$$i\hbar \frac{\partial \psi(t)}{\partial t} = \left[H_{_{0}} + \lambda V(t) \right] \psi(t) \qquad ; \quad H_{_{0}}\phi_{_{n}} = E_{_{n}}^{0}\phi_{_{n}} ; \quad \left\langle \phi_{_{m}} \middle| \phi_{_{n}} \right\rangle = \mathcal{S}_{mn}$$

$$\psi(t) = \sum_{n} c_{_{n}}(t) \exp(-iE_{_{n}}^{0}t/\hbar)\phi_{_{n}} \qquad (if \quad V(t) = 0 \quad \Rightarrow \quad C_{_{n}}(t) = const.)$$

$$i\hbar \frac{\partial}{\partial t} \left[\sum_{_{n}} c_{_{n}}(t) \exp(-iE_{_{n}}^{0}t/\hbar)\phi_{_{n}} \right] = \left[H_{_{0}} + \lambda V(t) \right] \left[\sum_{_{n}} c_{_{n}}(t) \exp(-iE_{_{n}}^{0}t/\hbar)\phi_{_{n}} \right]$$

$$\sum_{_{n}} \left[i\hbar \frac{dc_{_{n}}(t)}{dt} + E_{_{n}}^{0}c_{_{n}}(t) \right] \exp(-iE_{_{n}}^{0}t/\hbar) \phi_{_{n}} = \sum_{_{n}} \left[E_{_{n}}^{0} + \lambda V(t) \right] c_{_{n}}(t) \exp(-iE_{_{n}}^{0}t/\hbar) \phi_{_{n}}$$

$$i\hbar\sum_{n} \frac{dc_n(t)}{dt} \exp(-iE_n^0 t/\hbar)\phi_n = \lambda\sum_{n} c_n(t)V(t) \exp(-iE_n^0 t/\hbar) \phi_n \dots (1)$$

$$\langle \phi_m | \exp(iE_m^0 t/\hbar) \times (1)$$

$$i\hbar \frac{dc_m(t)}{dt} = \lambda \sum_n c_n(t) \exp \left[i(E_m^0 - E_n^0)t/\hbar\right] \langle \phi_m | V(t) | \phi_n \rangle$$

$$i\hbar \frac{dc_m(t)}{dt} = \lambda \sum_n c_n(t) \exp \left[i(E_m^0 - E_n^0)t/\hbar\right] \langle \phi_m | V(t) | \phi_n \rangle$$

initial condition at t = 0: $\psi(t = 0) = \phi_k \rightarrow c_n(0) = \delta_{nk}$

We want to find $C_n(t)$

for $m \neq k$

$$i\hbar \frac{dc_m(t)}{dt} = \lambda \exp\left[i(E_m^0 - E_k^0)t/\hbar\right] \langle \phi_m | V(t) | \phi_k \rangle$$

$$c_{m}(t) = \frac{\lambda}{i\hbar} \int dt \exp \left[i(E_{m}^{0} - E_{k}^{0})t'/\hbar\right] \langle \phi_{m} | V(t') | \phi_{k} \rangle$$

the probability $P_n(t) = \left| \left\langle \phi_n \left| \psi(t) \right\rangle \right|^2 = \left| c_n(t) \right|^2$

Absorption of Light

$$H = \frac{\left[\overrightarrow{p} + e\overrightarrow{A}(\overrightarrow{r}, t)\right]^{2}}{2m} + V(r)$$

(1) Choose Coulomb gauge

$$\vec{p}, \vec{A} = 0 \Rightarrow \vec{p} \cdot \vec{A} = \vec{A} \cdot \vec{p}$$

(2) Neglect A² term

$$A(r,t) = A_0 \vec{\mathcal{E}} \cos(\vec{k} \cdot \vec{r} - \omega t)$$

$$= \frac{1}{2} A_0 \vec{\mathcal{E}} \exp(i\vec{k} \cdot \vec{r}) \exp(-i\omega t) + c.c.$$

$$c_n(t) = \frac{eA_0}{2m} \langle \phi_n | e^{i\vec{k}\cdot\vec{r}}\vec{\varepsilon}\cdot\vec{p} | \phi_k \rangle \int_0^t dt' e^{i(E_n^0 - E_k^0 - \hbar\omega)t'/\hbar}$$

$$+rac{eA_{0}}{2m}\langle\phi_{n}\left|e^{-i\vec{k}\cdot\vec{r}}\vec{\varepsilon}\cdot\overrightarrow{p}\left|\phi_{k}
ight
angle\int_{0}^{t}dt'e^{i(E_{n}^{0}-E_{k}^{0}+\hbar\omega)t'/\hbar}$$

$$\left|\int_{0}^{t} dt' e^{i(E_{n}^{0} - E_{k}^{0} \pm \hbar\omega)t'/\hbar}\right|^{2} = \left|\int_{0}^{t} dt' e^{i\Omega t'}\right|^{2} = \left|\frac{2}{\Omega} e^{i\Omega t/2} \sin\frac{\Omega t}{2}\right|^{2} = \frac{4}{\Omega^{2}} \sin^{2}\frac{\Omega t}{2}$$

where
$$\Omega = \frac{E_n^0 - E_k^0 \pm \hbar \omega}{\hbar}$$

$$\int_{-\infty}^{\infty} f(\Omega) \frac{4}{\Omega^2} \sin^2 \frac{\Omega t}{2} d\Omega$$

$$= f(0) \int_{-\infty}^{\infty} d\Omega \frac{4}{\Omega^2} \sin^2 \frac{\Omega t}{2}$$

$$=2tf(0)\int_{-\infty}^{\infty}dy\frac{1}{y^2}\sin^2y$$

$$=2\pi tf(0)$$

For large t

$$\frac{4}{\Omega^2}\sin^2\frac{\Omega t}{2} \to 2\pi t \delta(\Omega) = 2\pi t \hbar \delta(E_n^0 - E_k^0 \pm \hbar \omega)$$

$$P_{n}(t) = |C_{n}(t)|^{2}$$

$$= \frac{2\pi}{\hbar} t \left(\frac{eA_{0}}{m}\right)^{2} \left| \left\langle \phi_{n} \left| \exp(\pm i\vec{k} \cdot \vec{r})\vec{\varepsilon} \cdot \vec{p} \right| \phi_{k} \right\rangle \right|^{2} \delta(E_{n}^{0} - E_{k}^{0} \pm \hbar \omega)$$

Optical properties : energy of photon 0.1 eV - 20 eV;

 $\exp(\pm i\vec{k}\cdot\vec{r}) \sim 1$

Transition probability per unit time:

$$\Gamma_{k\to n} = \frac{2\pi}{\hbar} \left(\frac{eA_0}{m}\right)^2 \left| \left\langle \phi_n \left| \vec{\varepsilon} \cdot \vec{p} \right| \phi_k \right\rangle \right|^2 \delta(E_n^0 - E_k^o \pm \hbar \omega)$$

For absorption process:

$$\Gamma_{k\to n} = \frac{2\pi}{\hbar} \left(\frac{eA_0}{m}\right)^2 \left| \left\langle \phi_n \left| \vec{\varepsilon} \cdot \vec{p} \right| \phi_k \right\rangle \right|^2 \delta(E_n^0 - E_k^o - \hbar\omega)$$

Transition rate W:

$$\vec{M}_{cv} = \left\langle \phi_c \mid \overrightarrow{p} \mid \phi_v \right\rangle$$

$$W(\omega) = \frac{2\pi}{\hbar} \left(\frac{eA_0}{m}\right)^2 \frac{V}{\left(2\pi\right)^3} \sum_{v} \sum_{c} \int_{B_z} d^3k \left| \vec{\varepsilon} \cdot \overrightarrow{M}_{cv}(\vec{k}) \right|^2 \delta \left[E_c(\vec{k}) - E_v(\vec{k}) - \hbar\omega \right]$$

Absorption constant $(\alpha) =$

$$\hbar\omega \times \text{Transition rate (W)}$$

Incident flux (I)

$$I = v\overline{u} = \frac{c}{n} \frac{1}{2} \varepsilon \omega^2 A_0^2 = \frac{1}{2} nc\varepsilon_0 \omega^2 A_0^2$$

$$\alpha(\omega) = \frac{4\pi e^2}{m^2 n c \varepsilon_0 \omega} \frac{V}{(2\pi)^3} \sum_{v} \sum_{c} \int_{B_z} d^3k \left| \vec{\varepsilon} \cdot \overrightarrow{M}_{cv}(\vec{k}) \right|^2 \delta \left[E_c(\vec{k}) - E_v(\vec{k}) - \hbar \omega \right]$$

$$G_{cv}(\omega) = \frac{V}{(2\pi)^3} \int_{R_c} d^3k \delta \left[E_c(\vec{k}) - E_v(\vec{k}) - \hbar \omega \right]$$
 Joint Density of States

$$= \frac{V}{\left(2\pi\right)^{3}} \int_{Bz} \frac{dS_{E}}{\vec{\nabla}_{\vec{k}} \left[E_{c}(\vec{k}) - E_{v}(\vec{k}) - \hbar\omega \right]} = \sum_{T_{i}} G_{cv}^{i}(\omega)$$

$$\alpha(\omega) = \frac{4\pi e^2}{m^2 n c \varepsilon_0 \omega} \sum_{T_c} \sum_{v} \sum_{c} \left| \vec{\varepsilon} \cdot \overrightarrow{M}_{cv}(\vec{k}) \right|^2 G^i_{cv}(\omega)$$

Calculation of Dielectric Constant

$$\nabla^{2}\vec{E} - \frac{\mu\varepsilon}{c^{2}} \frac{\partial^{2}\vec{E}}{\partial t^{2}} = 0 \qquad assume \qquad \mu = 1 \qquad \text{(Jackson P297)}$$

$$\vec{E} = \vec{E}_{0}e^{i(kz-\omega t)} \quad ; \quad k^{2} = \varepsilon \frac{\omega^{2}}{c^{2}} \qquad \begin{vmatrix} \vec{E} = \vec{E}_{0}e^{i(k_{1}z-\omega t)-\frac{1}{2}\alpha z} \\ I \sim E^{2} \sim I_{0}e^{-\alpha z} \end{vmatrix}$$

$$\varepsilon = \varepsilon_{1} + i\varepsilon_{2} \qquad \qquad \begin{cases} k_{1}^{2} - \frac{\alpha^{2}}{4} = \frac{\omega^{2}}{c^{2}}\varepsilon_{1} \\ k_{1}\alpha = \frac{\omega^{2}}{c^{2}}\varepsilon_{2} \end{cases}$$

$$\alpha = \sqrt{2}\frac{\omega}{c} \left[-\varepsilon_{1} \pm \sqrt{\varepsilon_{1}^{2} + \varepsilon_{2}^{2}} \right]^{\frac{1}{2}} \qquad \qquad \alpha = \frac{\omega^{2}}{c^{2}k_{1}}\varepsilon_{2} = \frac{\omega}{nc}\varepsilon_{2}$$

$$\varepsilon_{2}(\omega) = \frac{4\pi e^{2}}{m^{2}\omega^{2}} \sum_{v} \sum_{c} \left| \vec{\varepsilon} \cdot \overrightarrow{M}_{cv}(\vec{k}) \right|^{2} G_{cv}(\hbar \omega)$$

Kramers-Kronig relations $\varepsilon_1(\omega) = 1 + \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\varepsilon_2(\omega') - 1}{\omega' - \omega} d\omega'$

Joint Density of State

$$G_{cv}(\omega) = \frac{V}{(2\pi)^3} \int_{Bz} d^3k \delta \left[E_c(\vec{k}) - E_v(\vec{k}) - \hbar \omega \right]$$

$$\varepsilon_{2}(\omega) = \frac{4\pi e^{2}}{m^{2}\omega^{2}} \sum_{v} \sum_{c} \left| \vec{\varepsilon} \cdot \overrightarrow{M}_{cv}(\vec{k}) \right|^{2} G_{cv}(\hbar\omega)$$

$$\vec{M}_{cv} = \left\langle \phi_c \mid \overrightarrow{p} \mid \phi_v \right\rangle$$

The fermi dirac function

$$f(\varepsilon) = \frac{1}{1 + e^{(\varepsilon - \mu)/kT}}$$

$$\mathbf{At} \; \mathbf{T} = \mathbf{0}$$

$$-\frac{df(\varepsilon)}{d\varepsilon} = \delta(\varepsilon - \mu)$$

For small T, it behaves like Gaussian function

$$f(\varepsilon) = \frac{1}{\alpha \sqrt{\pi}} e^{-(\frac{\varepsilon - \mu}{\alpha})^2}$$

$$\varepsilon_{2}^{\text{int } ra}(\omega) = \frac{4\pi e^{2}}{m^{2}\omega^{2}} \sum_{nk} \left| \vec{\varepsilon} \cdot \overrightarrow{M}_{nn}(\vec{k}) \right|^{2} \left(-\frac{\partial f_{0}}{\partial \varepsilon} \right)_{\varepsilon_{nk}} D_{n}(\hbar \omega)$$

Figure 6. Optical properties of molybdenum: full curves, calculations; broken curves, measurements (from Mayevskii *et al* 1981); chain curve, measurements of $L(\omega)$ (from Weaver *et al* 1974) (arbitrary units).

J.Phys.F:Met.Phys.18(1988) 833-849

Figure 4. Optical properties of palladium: full curves, calculations; broken curves, measurements of $\varepsilon_2(\omega)$ (from Weaver 1973), $R(\omega)$ (from Vehse *et al* 1970) and $L(\omega)$ (from Daniels 1969); chain curve, measurements of $\varepsilon_2(\omega)$ (from Vehse *et al* 1970) (arbitrary units).

J.Phys.F:Met.Phys.18(1988) 833-849

Step by Step Tutorial

Calculations on Optical Properties

講師:中正大學物理系梁贊全教授

協助人員: 姚華凱同學

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + V_{eff}(\vec{r}) \right] \psi_i(\vec{r}) = \varepsilon_i \psi_i(\vec{r}) \qquad ; \quad \rho(\vec{r}) = \sum_i^{occ} \left| \psi_i(\vec{r}) \right|^2$$

$$V_{eff}(\vec{r}) = V_{ext}(\vec{r}) + V_{H}(\vec{r}) + V_{xc}(\vec{r}) + V_{ps}(\vec{r})$$

$$V_H(\vec{r}) = \int \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|} d^3r; \quad V_{xc}(\vec{r}) = V_{xc}(\rho(\vec{r})) \quad LDA$$

$$V_{eff}(\vec{r}+\vec{R}) = V_{eff}(\vec{r})$$

$$\psi_k(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u(\vec{r})$$

$$V_{eff}(\vec{r} + \vec{R}) = V_{eff}(\vec{r})$$

$$\psi_{k}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}}u(\vec{r})$$

$$u_{k}(\vec{r}) = \sum_{G_{n} < G_{\text{max}}} C_{n}e^{i\vec{G}_{n}\cdot\vec{r}}$$

$$\underbrace{\mu(\vec{k})C - \lambda SC = 0}_{\vec{k}} = 0$$

$$\underline{H}(\vec{k})\underline{C} - \lambda \underline{S}\underline{C} = 0$$

$$\vec{\overline{\tau}}_{i} \rightarrow \begin{matrix} \rho_{in} & \longrightarrow & V_{eff}(r) & \longrightarrow & \mathcal{E}_{i}; \psi_{i} & \longrightarrow & \rho_{out} \\ \rho_{in}^{n+1} = (1-\alpha)\rho_{in}^{n} + \alpha\rho_{out}^{n} & \longrightarrow & \vec{F}_{i} \\ \Delta \vec{\tau}_{i} = \eta \vec{F}_{i} \end{matrix}$$

Structure of the system (R, τ): **POSCAR**

Pseudopotential of the atoms : **POTCAR**

Number of K- points in the IBZ : **KPOINTS**

$$\psi_{\vec{k}}(\vec{r}) = e^{i\vec{k}\cdot\vec{r}} \sum_{G_n < G_{\text{max}}} C_n e^{i\vec{G}_n\cdot\vec{r}}$$

$$\rho(\vec{r}) = \sum_{\vec{G}} \rho(\vec{G}) e^{i\vec{G}\cdot\vec{r}}$$

$$V(\vec{r}) = \sum_{\vec{G}} V(\vec{G}) e^{i\vec{G}\cdot\vec{r}}$$

$$G_{\text{max}}, \text{NGX}, \text{NGY}, \text{NGZ}$$

NGX,NGY,NGZ: controls the number of grid-points in the FFT-mesh into the direction of the three lattice-vectors.

Break condition for electronic SC-loop and ionic relaxation loop.

Max. number of electronic step and ionic step.

How the ions are updated and moved (conjugate-gradient method).

How the partial occupancies f_{nk} are set for each wavefunction.

INPUT FILES

POSCAR POTCAR KPOINTS INCAR

Stop VASP during the program execution

STOPCAR

LSTOP = .TRUE. (Ionic step)
LABORT = .TRUE. (Electronic step)

VASP will check the existence of STOPCAR for every electronic step and ionic step.
Print out WAVECAR and CHGCAR before stop.

OUTPUT FILES

OUTCAR
OSZICAR
CONTCAR
CHGCAR
WAVECAR
EIGENVAL
PROCAR
MME
MME

vsub_opitcs name bkill jobid

The unusual purple color in AuAl₂

Acta Mat. 61, 2874 (2013)

Lattice structure of AuAl₂

POSCAR

AuAl2 6.500000 0.000000 0.500000 0.500000 0.500000 0.000000 0.500000 0.500000 0.500000 0.000000 1 2 Direct

Direct 0.000000 0.000000 0.000000 0.250000 0.250000 0.250000 0.750000 0.750000 0.750000

Set up the environment in optics calculaiton

 $cd \\ cp /home/s11gyg00/cp-1218.sh . \\ ./cp-1218.sh \\$

How to run optics

1. Calculate the lattice constant of AuAl2

cdw cd Hands-on-1218 Hands-on-1218> ls 1-Au 2-W 3-AuAl2 4-AuGa2 5-AuAl2-results cd 3-AuAl2 mkdir 1-stress mkdir 2-optics cd 1-stress cat ~/pot/POTCAR.Au.LDA > POTCAR cat ~/pot/POTCAR.Al.LDA >> POTCAR vi INCAR / POSCAR / KPOINTS 1-stress> ls 1-stress> vsub_optics 3-stress JOBID = 7344 JOB = 3-stress This script is for running a single VASP job How manyf CPUs do you want to run your job? 1сри, 4сри, 8сри, 12сри, 24сри, 48сри, 96сри, 192сри? [1сри] 12cpu If more than 48 cpus were selected, specify the number of cores per node:

6, 12, 24, or 48?

Job <544761> is submitted to queue <12cpu>j

(Enter)

INCAR

System=AuAl2
PREC=high
ISIF=3
IBRION=2
NSW=100
EDIFF=0.000001
EDIFFG = -0.01
RWIGS=1.503 1.402

KPOINTS

POSCAR

AuAl2
6.500000
0.000000 0.500000 0.500000
0.500000 0.000000 0.500000
0.500000 0.500000 0.000000
1 2
Direct
0.000000 0.000000 0.000000
0.250000 0.250000 0.250000
0.750000 0.750000 0.750000

2. Calculate the matrix element of AuAl2

1-stress> cd ../2-optics

2-optics> mkdir 10k

2-optics> cd 10k

cp ../../1-stress/CONTCAR POSCAR

cp ../../1-stress/POTCAR .

cp ../../1-stress/INCAR .

cp ../../1-stress/KPOINTS .

cp ../../1-stress/CHGCAR .

System=AuAl2 RWIGS=1.503 1.402 NPAR=1 ISMEAR=0 SIGMA = 0.2 LOPTICS=.TRUE. NBANDS=30

System=AuAl2 with spin-orbit coupling
RWIGS=1.503 1.402
NPAR=1
ISMEAR=0
SIGMA = 0.2
MAGMOM=0 0 0.0000001 0 0 0.000001 0 0
0.000001
LSORBIT=.TRUE.
SAXIS=0 0 1
GGA_COMPAT=.FALSE.
LOPTICS=.TRUE.
NBANDS=60

AuAl2

6.50000

 $\begin{array}{ccccc} 0.0000000000000000 & 0.4583121851601681 & 0.4583121851601681 \\ 0.4583121851601681 & 0.00000000000000 & 0.4583121851601681 \\ 0.4583121851601681 & 0.4583121851601681 & -0.0000000000000000 \end{array}$

Au Al

2

Direct

0.0000000E+00 0.0000000E+00 0.0000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

2-optics> ls

CHGCAR INCAR KPOINTS POSCAR POTCAR

2-optics> vsub_optics optics

3. Calculate the optical properties of AuAl2

```
2-optics > ls (only important output are shown in the following)
        OUTCAR EPSIM.dat
MME
                          PROCAR
                                      WAVEDER
MME2
        OUTCAR EPSRE.dat OPTIC
                                      STRUC
s11gyg00@alps6:/work/s11gyg00/Hands-on-1218/3-AuAl2/2-optics> grep fermi OU*
OUTCAR: ISMEAR = 0; SIGMA = 0.20 broadening in eV -4-tet -1-fermi 0-gaus
OUTCAR: E-fermi: 7.8818 XC(G=0): -10.8076 alpha+bet:-13.7653
2-optics > optics.sh AuAl2
2-optics > cd optics
optics> ls
AuAl2.mme AuAl2.mme2 AuAl2.opticin AuAl2.procar AuAl2.strucin opticpack.def
```

```
2, 1
                        ! intra (1/2 no/yes), imme (1/2)
2, 2, 0.1
                       ! islot,ikk,kkshift (for interband transition)
             ! idrude,drude_damping,wpshift (not use for intra =1)
2, 0.07, 0
1, 7.8818, 1, 1, 0, 0 ! ival, ef, imetal, ispin, iso, itr
                                                                                    AuAl2.opticin
0.0, 20.0, 0.02, 0.2, 30 ! emin, erange, de, sigma, nbcal0
                        ! isci
1
0.0
                        ! eshift
3
                        ! itot
1
                        ! icom(1~itot 1:xx, 2:yy 3:zz)
3
```

optics> optics-2017.x

AuAl2.opticin

```
2, 1
                         ! intra (1/2 no/yes), imme (1/2)
2, 2, 0.1
                        ! islot,ikk,kkshift (for interband transition)
2, 0.07, 0
                        ! idrude,drude_damping,wpshift (not use for intra =1)
1, 7.8818, 1, 1, 0, 0
                    ! ival,ef,imetal,ispin,iso,itr
0.0, 20.0, 0.02, 0.2, 30 ! emin, erange, de, sigma, nbcal0
                         ! isci
1
0.0
                         ! eshift
3
                         ! itot
                        ! icom(1~itot 1:xx, 2:yy 3:zz)
3
```

For intraband transitions

idrude=1 (formula from exciting code) :

$$\varepsilon_{ab,a=b} = \delta_{aa} + \frac{4\pi i\sigma(\omega)}{\omega + i\eta(\omega)} = 1 - \frac{\omega_p^2}{(\omega + i\eta(\omega))^2} = 1 - \frac{\omega_p^2(\omega^2 - \eta^2)}{(\omega^2 + \eta^2)^2} + i(\frac{2\omega_p^2\omega\eta}{(\omega^2 + \eta^2)^2})$$

Where η is sigma, the Gaussian smear factor.

(Don't use the damping term)

idrude= else (formula from drude-model (default)) :

$$\varepsilon_{ab,a=b} = \varepsilon_1(\omega) + i\varepsilon_2(\omega) = 1 - \frac{\omega_p^2}{\omega^2 + i\Gamma\omega} = (1 - \frac{\omega_p^2}{\omega^2 + \Gamma^2}) + i\frac{\omega_p^2\Gamma}{\omega(\omega^2 + \Gamma^2)}$$

where Γ is the damping term (unit in eV)

wpshift: Shift the calculated plasma energy (unit in eV),

```
intra : 1= false, otherwise = true (include the intraband transition)
imme: 1-read mme file(case.mme), otherwise-read mme2 file (case.mme2 : vasp's mme)
ifstatic: if calculate static value only ( default = 0 )
islot: 1 is closed, other: open
ikk: 1 is closed, other: open
kkshift : useful for ikk \neq 1 ( default : 0.1 )
ival: number of valence bands (not used for metal)
ef: fermi energy (eV) ( not used for a non-metal)
imetal: 1 for metal, otherwise for a non-metal)
ispin: 1 or 2 ( 2 for spin-polarized)
iso: 1 for spin-orbit coupling (default=0)
itr: 1 without symmetry ( default = 0)
emin: minimum energy
erange: maximum energy=emin+erange
de: ∧energy
sigma: Gaussian smear factor (unit in eV)
nbcal0: number of bands to be considered, could be determined by mme file
       ( equal to NBANDS from INCAR)
isci: 0 - do not use
       1 – native form, only shift energy
       2 – also renormalize momentum matrix
       (default:1)
eshift: energy shift (default : 0.0)
itot: 1~6
1 - xx 2 - yy 3—zz 4—yz(zy) 5—zx(xz) 6—xy(yx)
icom: icom=icom(itot)
```

P.33

output of optics-2017.x

AuAl2.opticout	AuAl2.jdos	AuAl2.alpha1
AuAl2.epsre_intra	AuAl2.epsim_intra	
AuAl2.epsre_inter	AuAl2.epsim_inter	
AuAl2.epsre	AuAl2.epsim	AuAl2.epsabs
AuAl2.refrare	AuAl2.refraim	
AuAl2.sigre	AuAl2.sigim	
AuAl2.eels_intra	AuAl2.eels_inter	AuAl2.eels
AuAl2.wplas		

optics.sh name

```
mkdir optics
cd optics
cp ../MME $1.mme
cp ../MME2 $1.mme2
cp ../STRUC $1.strucin
cp ../PROCAR $1.procar
cp ~/bin/X.opticin $1.opticin
cat >opticpack.def<<!
$1
!
```


interband contribution only

interband contribution only

interband + intraband

Homework in Optics Properties

- 1. Find the joint density of states, dielectric function, energy loss function and absorption constant of Au and W (see example) . Find the spin-orbit interaction effect and strain effect on the optical properties. (4%, -2%, 0%, 2%, 4%)
- 2. Find the joint density of states, dielectric function, energy loss function and absorption constant of $AuAl_2$ and $AuGa_2$. Find the spin-orbit interaction effect and strain effect on the optical properties. (-4%, -2%, 0%, 2%, 4%)

END