Subcortical brain structure segmentation using FCNNs

Stavros Tsogkas¹, Mahsa Shakeri^{2,3}, Enzo Ferrante¹, Sarah Lippe^{3,4}, Samuel Kadoury^{2,3}, Nikos Paragios¹, Iasonas Kokkinos¹

Diseases and their relation to subcortical structures

Alzheimer's: structure degeneration

Schizophrenia: volume abnormalities [Shenton M.E. et al., Psychiatry Res. 2002]

Tumors: avoid radiation on sensitive regions [Hoehn D. et al., Journal of Medical Cases, 2012]

3D Segmentation

Why automatic segmentation?

No need for manual annotation (time consuming, need experts, limited reproducibility)

Non-invasive diagnosis and treatment

Segmentation using MRI

- Intensity is not enough
- Spatial arrangement patterns

Goal

- Classify every pixel as one of L possible structures.
- Exploit context.
- Enforce volumetric homogeneity.

Fully convolutional neural networks (FCNNs) + Graphical models (MRFs)

Outline

Semantic segmentation of MRI slices

[1] Long et al., CVPR 2015

Our CNN architecture

MRF for volume homogeneity

$$S^* = \operatorname{argmin} E(S) = \sum_{i \in \mathcal{V}} V_i(l_i) + \lambda \sum_{(i,j) \in \mathcal{E}} V_{ij}(l_i, l_j)$$
$$f(P_i^{\text{CNN}}(l_i)) \qquad d(I_i, I_j)[l_i \neq l_j]$$

Experiments

- Two datasets:
 - Internet Brain Segmentation Repository (IBSR).
 - Roland Epilepsy (RE).
- Train CNN on 2D slices from axial view.
- Data augmentation: ~100K training images.

Results (Dice coefficient)

Dice: 1 = perfect overlap with ground truth.

Average Dice (IBSR)

• Thalamus: 0.87

• Putamen: 0.83

• Caudate: 0.78

• Pallidum: 0.75

Comparison with other methods

Dice coefficient

	Freesurfer ¹	FSL ²	Ours
IBSR - Thalamus	0.86	0.85	0.87
IBSR - Caudate	0.82	0.68	0.78
IBSR - Putamen	0.81	0.81	0.83
IBSR - Pallidum	0.71	0.73	0.75
RE - Putamen	0.74	0.88	0.89
Running time (1 vol.)	~hours	~minutes	~1 minute

^[1] Fischl et al., Neuron 2002.

^[2] Patenaude et al., Neurolmage 2011.

The type of unaries matters

Dice coefficient (IBSR dataset)

- 1. Thalamus left
- 2. Caudate left
- 3. Putamen left
- 4. Pallidum left
- 5. Thalamus right
- 6. Caudate right
- 7. Putamen right
- 8. Pallidum right

The type of unaries matters

MRF removes spurious responses

Limitations and future directions

Small structures are challenging

Left hemisphere Right hemisphere

Does not work for sagittal view because of symmetry

3D CNNs

Summary

- FCNNs + MRFs:
 - accurate, dense labelling using 2D image data.
 - volumetric homogeneity
- Efficient segmentation of 3D volumes: (~1 min)
- No need for expensive GPUs (~4GB GPU RAM)

Code, CNN probability maps: https://github.com/tsogkas/brainseg

IBSR dataset: Hausdorff distance

- 1. Thalamus left
- 2. Caudate left
- 3. Putamen left
- 4. Pallidum left
- 5. Thalamus right
- 6. Caudate right
- 7. Putamen right
- 8. Pallidum right

IBSR dataset: contour mean distance

- 1. Thalamus left
- 2. Caudate left
- 3. Putamen left
- 4. Pallidum left
- 5. Thalamus right
- 6. Caudate right
- 7. Putamen right
- 8. Pallidum right

RE dataset: HD and CMD

