# **Supervised Learning**

Prof. Rosa Paccotacya Yanque

## Recap - Tipos de ML



# **Recap: Reinforcement Learning**

El aprendizaje por refuerzo se ocupa de agentes que aprenden a tomar decisiones interactuando con un entorno. El agente recibe retroalimentación en forma de recompensas o sanciones.

Objetivo: el objetivo es que el agente aprenda una política que maximice la recompensa acumulada a lo largo del tiempo.

Ejemplos: Las aplicaciones incluyen juegos (por ejemplo, AlphaGo), control robótico y sistemas autónomos.



#### learning to walk to the right



Iteration 10

# **Recap: Unsupervised Learning**

El aprendizaje no supervisado implica algoritmos que trabajan con datos sin etiquetar, con el objetivo de descubrir patrones o estructuras inherentes dentro de los datos.

- Objetivo: El modelo identifica relaciones, grupos o asociaciones sin orientación explícita sobre los resultados correctos.
- Ejemplos: agrupación (agrupar puntos de datos similares), reducción de dimensionalidad (simplificar datos preservando la información esencial)

### supervised



## unsupervised



# Clustering



K-Means - Método del cubo

## Reducción de dimensionalidad

| ract  | T9_est1 | T9_est2 | T9_est3 | T9_est4 | T9_est5 | T9_est6 | T9_est7 | T9_est8 | T9_est9 | T9_est10 | T9_est11 | T9_est12 |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|
| 20100 | 690     | 500     | 470     | 415     | 40      | 15      | 0       | 25      | 25      | 0        | 0        | C        |
| 20200 | 795     | 500     | 225     | 200     | 4       | 20      | 0       | 240     | 165     | 50       | 25       | 0        |
| 20300 | 1210    | 905     | 695     | 605     | 30      | 60      | 0       | 170     | 140     | 25       | 4        | 0        |
| 20400 | 1705    | 1375    | 1235    | 1020    | 120     | 90      | 0       | 40      | 40      | 0        | 0        | 0        |
| 20500 | 4165    | 2395    | 2210    | 1870    | 210     | 130     | 0       | 145     | 85      | 60       | 0        | 0        |
| 20600 | 1255    | 935     | 845     | 695     | 90      | 60      | 0       | 40      | 15      | 0        | 20       | 0        |
| 20700 | 1015    | 715     | 635     | 575     | 15      | 50      | 0       | 55      | 15      | 10       | 30       | 0        |
| 20801 | 1180    | 995     | 810     | 720     | 75      | 0       | 15      | 70      | 55      | 0        | 10       | 4        |
| 20802 | 3715    | 3155    | 2815    | 2110    | 400     | 290     | 15      | 250     | 130     | 40       | 75       | 0        |
| 20900 | 2080    | 1680    | 1445    | 1000    | 205     | 225     | 15      | 235     | 65      | 100      | 65       | 0        |
| 21000 | 1200    | 1040    | 795     | 695     | 85      | 20      | 0       | 230     | 170     | 4        | 60       | 0        |
| 21100 | 1295    | 1050    | 465     | 420     | 10      | 35      | 0       | 585     | 365     | 155      | 60       | 0        |
| 10100 | 1280    | 1215    | 870     | 695     | 100     | 40      | 40      | 255     | 135     | 95       | 25       | 0        |
| 10200 | 1100    | 885     | 795     | 555     | 115     | 120     | 4       | 30      | 30      | 0        | 0        | 0        |
| 10300 | 2460    | 2030    | 1780    | 1460    | 220     | 55      | 50      | 240     | 50      | 140      | 50       | 0        |
| 10400 | 1665    | 1365    | 1335    | 1015    | 165     | 130     | 25      | 15      | 0       | 15       | 0        | 0        |
| 10500 | 1780    | 1165    | 1125    | 945     | 115     | 55      | 10      | 20      | 4       | 0        | 0        | 10       |
| 10600 | 1225    | 705     | 285     | 215     | 30      | 40      | 0       | 415     | 275     | 65       | 75       | 0        |
| 10701 | 3045    | 2330    | 2130    | 1745    | 140     | 230     | 15      | 90      | 40      | 50       | 0        | 0        |
| 10703 | 5660    | 4075    | 3745    | 3010    | 375     | 360     | 0       | 135     | 135     | 0        | 0        | 0        |
| 10704 | 1775    | 1375    | 1285    | 995     | 200     | 85      | 4       | 50      | 25      | 15       | 10       | 0        |
| 10705 | 3720    | 1985    | 1740    | 1260    | 240     | 210     | 30      | 155     | 120     | 20       | 20       | 0        |
| 10800 | 2705    | 1730    | 1250    | 1030    | 95      | 125     | 0       | 465     | 245     | 85       | 125      | 10       |
| 10903 | 1860    | 1235    | 1095    | 870     | 120     | 105     | 0       | 70      | 60      | 10       | 0        | 0        |
| 10904 | 2300    | 1995    | 1940    | 1560    | 215     | 120     | 45      | 4       | 4       | 0        | 0        | 0        |
| 10905 | 3085    | 1995    | 1805    | 1430    | 160     | 205     | 4       | 130     | 130     | 0        | 0        | 0        |
| 10906 | 1595    | 1235    | 1210    | 1050    | 140     | 20      | 0       | 0       | 0       | 0        | 0        | 0        |
| 11000 | 1660    | 1275    | 1150    | 760     | 190     | 195     | 4       | 65      | 25      | 40       | 4        | 0        |
| 11101 | 3600    | 2775    | 2710    | 2060    | 405     | 250     | 0       | 30      | 30      | 0        | 0        | 0        |

| CL101 | CL102 | CL103 | CL104 |
|-------|-------|-------|-------|
| 343   | 4556  | 243   | 9766  |
| 7676  | 7567  | 4676  | 4443  |
| 686   | 8766  | 6656  | 6777  |
| 4768  | 3445  | 76876 | 2445  |
| 9809  | 4556  | 785   | 3456  |
| 9806  | 4577  | 588   | 3566  |
| 3889  | 243   | 443   | 6776  |
| 9766  | 24344 | 2567  | 3356  |
| 887   | 356   | 7889  | 7555  |
| 5633  | 6678  | 7894  | 899   |
| 45667 | 8655  | 865   | 6546  |
| 2343  | 47899 | 5688  | 2344  |
| 4556  | 57899 | 54336 | 2656  |
| 3567  | 90887 | 36740 | 14631 |
| 96556 | 99776 | 20625 | 11892 |
| 4677  | 97335 | 7676  | 97878 |
| 4663  | 4567  | 30347 | 15305 |
| 235   | 4578  | 54505 | 19670 |
| 456   | 5466  | 356   | 44967 |
| 79799 | 4567  | 90808 | 9909  |
| 9877  | 8986  | 7987  | 8990  |
| 8667  | 9809  | 6980  | 4677  |
| 24980 | 19318 | 16600 | 8184  |
| 18409 | 16818 | 11277 | 7033  |
| 9756  | 60980 | 7090  | 98654 |
| 26424 | 14511 | 14891 | 9111  |
| 29054 | 26944 | 24868 | 10722 |

# **Supervised Learning**

En el aprendizaje supervisado, el algoritmo se entrena en un conjunto de datos etiquetados, donde cada entrada tiene una salida correspondiente.

Objetivo: el modelo aprende la relación entre las características de entrada y las etiquetas de destino correspondientes, lo que le permite hacer predicciones sobre datos nuevos e invisibles.

Ejemplos: La clasificación (asignar entradas a clases predefinidas) y la regresión (predecir valores continuos) son tareas comunes en el aprendizaje supervisado.

# **Supervised Learning**









# **Linear Regression**







\$ 70 000 \$ 160 000 ???

#### **Housing Prices**



$$y_1 = w_0 + w_1x_{11} + w_2x_{12} + w_3x_{13} + ...$$

$$y_2 = w_0 + w_1x_{21} + w_2x_{22} + w_3x_{23} + ...$$

$$y_3 = w_0 + w_1x_{31} + w_2x_{32} + w_3x_{33} + ...$$

$$y_4 = w_0 + w_1x_{41} + w_2x_{42} + w_3x_{43} + ...$$

$$y_5 = w_0 + w_1x_{51} + w_2x_{52} + w_3x_{53} + ...$$

$$\vdots$$

$$X = \begin{bmatrix} x_{11} & x_{12} & x_{13} & \dots \\ x_{21} & x_{22} & x_{23} & \dots \\ x_{31} & x_{32} & x_{33} & \dots \\ x_{41} & x_{42} & x_{43} & \dots \\ x_{51} & x_{52} & x_{53} & \dots \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}$$

$$Y = XW$$

$$\mathbf{W} = \begin{bmatrix} \mathbf{w}_0 & \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 \end{bmatrix}$$

# Mínimos cuadrados ordinarios (Ordinary Least Squares)



#### **Housing Prices**



#### Supervised Learning

Given the "right answer" for each example in the data.

#### Regression Problem

Predict real-valued output

| housing prices | 2104 | 460 |
|----------------|------|-----|
| <b>.</b>       | 1416 | 232 |
|                | 1534 | 315 |
|                | 852  | 178 |
|                | •••  |     |
| Notation:      |      |     |

Size in feet<sup>2</sup> (x)

Price (\$) in 1000's (y)

m = Number of training examplesx's = "input" variable / features y's = "output" variable / "target" variable

Training set of

#### How do we represent h?



h maps x's to y's

### How do we represent h?



h maps x's to y's



Linear regression with one variable.

Univariate linear regression.

Training Set

Hypothesis:  $h_{\theta}(x) = \theta_0 + \theta_1 x$ 

 $\theta i$ 's: Parameters How to choose  $\theta i$ 's? 315 178



Price (\$) in 1000's (y)

460

232

Size in feet $^2(x)$ 

2104

1416

1534

852

...

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$





Idea: Choose  $\theta_0$ ,  $\theta_1$  so that  $h_{\theta}(x)$  close to y for our training examples (x,y)



dea: Choose 
$$\theta_0$$
,  $\theta_1$  so that  $h_{\theta}(x)$  close to  $y$  for our training examples  $(x,y)$ 

 $\theta_0,\theta_1$ 



xChoose  $\theta_0$ ,  $\theta_1$  so that  $h_{\theta}(x)$  close to y for our training examples (x,y)

minimize  $J(\theta_0, \theta_1)$ 

 $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$ 

 $\theta_0,\theta_1$ 





Cost function

 $h_{\theta}(x) = \theta_0 + \theta_1 x$ 

(Squared error function)

#### **Gradient Descent**

Have some function  $J(\theta_0, \theta_1)$ 

Want minimize 
$$J(\theta_0, \theta_1)$$

#### **Outline:**

- Start with some  $\theta_0$ ,  $\theta_1$
- Keep changing  $\theta_0$ ,  $\theta_1$  to reduce  $J(\theta_0, \theta_1)$  until we hopefully end up at a minimum











#### **Gradient Descent algorithm**

repeat until convergence {

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$
   
 Learning rate

(simultaneously update j = 0 and j = 1)

Derivative term

# Gradient Descent algorithm

repeat until convergence {

 $\theta_0 := \text{temp0}$ 

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad (\text{for } j = 0 \text{ and } j = 1)$$
 }

Correct: Simultaneous update
$$temp0 := \theta - \alpha - \frac{\partial}{\partial x} I(\theta, \theta_0)$$

Correct: Simultaneous update 
$$emp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

Correct: Simultaneous update 
$$emp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

Correct: Simultaneous update 
$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$mp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$mp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$mp1 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$mp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$mp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

temp1 := 
$$\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

If 
$$\alpha$$
 is too small, gradient descent can be slow.

 $\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$ 

If  $\alpha$  is too large, gradient descent can be overshoot the minimum. It may fail to converge, or even diverge.



#### **Gradient Descent algorithm**

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$
 
$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 update  $\theta_0$  and  $\theta_1$  simultaneously

# "Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

- Stochastic Gradient Descent
- Mini-batch Gradient Descent

# "Batch" Gradient Descent

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
update  $\theta_0$  and  $\theta_1$  simultaneously

# Stochastic Gradient Descent

Each step of gradient descent uses one training example.

```
repeat until convergence {
     for i = 1, ..., m {
           \theta_0 := \theta_0 - \alpha(h_{\theta}(x^{(i)}) - y^{(i)})
           \theta_1 := \theta_1 - \alpha(h_{\theta}(x^{(i)}) - y^{(i)})x^{(i)}
```

# Mini-batch Gradient Descent

Each step of gradient descent uses b training examples.

Say 
$$b = 10$$
,  $m = 1000$ .  
repeat until convergence {
 for  $i = 1, 11, 21..., 991$  {
  $\theta_0 := \theta_0 - \alpha \frac{1}{10} \sum_{\substack{i=k \ i+9}}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)})$ 
 $\theta_1 := \theta_1 - \alpha \frac{1}{10} \sum_{\substack{i=k \ i+9}}^{i+9} (h_{\theta}(x^{(k)}) - y^{(k)}) x^{(k)}$ 
}

#### Batch us. Stochastic us. Mini-batch



# http://ruder.io/optimizing-gradient-descent





An overview of gradient descent optimization algorithms

#### Referencias

#### Machine Learning Books

- Python for Data Science, Yuli Vasiliev, Chap 12
- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 2 & 4
- Pattern Recognition and Machine Learning, Chap. 3

#### Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 1 & 2
- https://ml-cheatsheet.readthedocs.io/en/latest/linear\_regression.html
- https://serrano.academy/espanol/ Minicurso de ML en español

Las diapositivas están basadas parcialmente en el curso de Machine Learning de la Prof. Sandra Ávila

# Linear Regression with Multiple Variables

Prof. Rosa Paccotacya Yanque

## "Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

- Stochastic Gradient Descent
- Mini-batch Gradient Descent

**Epochs:** One epoch is usually defined to be **ONE** complete run through **ALL** of the training data.

**Batch Size:** Total number of training examples present in a **SINGLE** batch.

**Iterations:** The number of batches needed to complete **ONE** epoch.

## **Epochs & Batch size & Iterations**

Let's say we have 10,000 training examples that we are going to use.

We can divide the dataset of 10,000 examples into batches of 16 then it will take 625 iterations to complete 1 epoch.

Multiple Linear Regression



## Multiple <del>Variables</del> Features

| Size in feet <sup>2</sup> | Number of bedrooms | Number of floors | Age of home (years) | Price (\$) in<br>1000's |
|---------------------------|--------------------|------------------|---------------------|-------------------------|
| $x_{I}$                   | $x_2$              | $x_3$            | $x_4$               | У                       |
| 2104                      | 5                  | 1                | 45                  | 460                     |
| 1416                      | 3                  | 2                | 40                  | 232                     |
| 1534                      | 3                  | 2                | 30                  | 315                     |
| 852                       | 2                  | 2                | 36                  | 178                     |
|                           |                    |                  |                     |                         |

#### Notation:

n = number of features  $x^{(i)}$  = input (features) of  $i^{th}$  training example  $x_i^{(i)}$  = value of features j in  $i^{th}$  training example

#### **Hypothesis**

Previously: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

#### **Hypothesis**

Previously: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

$$h_{\theta}(x) = 80 + 0.1x_1 + 10x_2 + 3x_3 - 2x_4$$

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define  $x_0 = 1$ .

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1} \quad \begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Hypothesis: 
$$h_{\theta}(x) = \theta^T x = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Parameters:  $\theta_0, \theta_1, ..., \theta_n$ 

Cost Function: 
$$J(\theta_0, \theta_1, ..., \theta_n) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

#### **Gradient Descent:**

repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta_0, \theta_1, ..., \theta_n)$$

(simultaneously update for every j = 0, 1, ..., n)

## **Feature Scaling**

Idea: Make sure features are on similar scale.

E.g. 
$$x_1$$
= size (0-2000 feet²)  
 $x_2$ = number of bedrooms (1-5)



## Feature Scaling

Idea: Make sure features are on similar scale.

E.g. 
$$x_1$$
= size (0-2000 feet²)  
 $x_2$ = number of bedrooms (1-5)







## **Learning rate** Gradient Descent

$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

- If  $\alpha$  is too small: slow convergence.
- If  $\alpha$  is too large:  $J(\theta)$  may not decrease on every iteration; may not converge.

To choose  $\alpha$ , try ..., 0.001, ..., 0.1, ..., 1, ...

# **Polynomial Regression**



$$\theta_0 + \theta_1 x + \theta_2 x^2$$

# **Polynomial Regression**



$$\theta_0 + \theta_1 x + \theta_2 x^2$$
  
$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

#### **Other Regression Algorithms**

Decision Tree Regressor:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor



## **Other Regression Algorithms**

Random Forest Regressor:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomFo

restRegressor.html



## **Other Regression Algorithms**

Gradient Boosting Regressor:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html





$$y(pred) = y1 + (eta * r1) + (eta * r2) + ..... + (eta * rN)$$

#### Notebook:

Regresion.ipynb



#### References

#### Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Geron,
   3rd-edition, Chap. 4, 6 & 7
- Pattern Recognition and Machine Learning, Bishop, Chap. 3, 14.3, 14.4, 14.5

#### Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 1 & 2
- https://ml-cheatsheet.readthedocs.io/en/latest/linear\_regression.html

Slides are partially based on Prof. Sandra Ávila's Machine Learning course