5. Suppose that f(z) is a continuous complex valued function on a disc such that the integral $\int_{\gamma} f(z) dz$ is equal to zero for every contour γ that is the boundary of a square in the disc. Prove that f must be analytic.

Because we can patch together squares to make rectangles, e.g. first use squares to make a rectangle having side-length natio m:n where m,n are positive integers, then shrink grow those rectangles to make rectangles having side ratio p:q for p.q rational, then using density of the nationals to approximate irrational ratios, we can conclude that

 $\left(\int_{\text{squares}} = 0\right) \Rightarrow \left(\int_{\text{rectangles}} = 0\right)$

Now, given Z in our disk, (WLOG we'll work with D1(0), and can scale as shown in Nick's submission of needed) define

$$F(z) = \int_{\gamma_2} f(\omega) d\omega$$
, where

77 is the two line segments parallel to the axes, connecting 0, 2 as shown:

Taking h real, positive, we compute $\%_{x} F(\frac{1}{x})$.

Shown above we see F(z+h) - F(z), which our "lemma" about the rectangles lets us make the last equality.

Then
$$\partial_{x} F(z) = \lim_{h \to 0} \frac{1}{h} \left(F(z+h) - F(z) \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \int_{0}^{\infty} f(z+t) dt$$

$$= f(z) \quad \text{Fund. thm. calc.}$$

We repeat this process now in the y direction, $\partial_y F(z) = \lim_{h \to 0} \frac{1}{h} \left(F(z+ih) - F(z) \right)$ $= \lim_{h \to 0} \left(\frac{1}{h} \int_0^h f(z+it) dt \right)$ $= i f(z). \quad \text{(chain rule !)}$

So both $\partial_X F$ and $\partial_Y F$ exist, and are cont. since they are f(z) and i f(z), resp., and f is assumed continuous. Moreover, $\partial_X F = \frac{1}{i} \partial_Y F$, which is actually the Cauchy-Riemann condition for F, quickly we check it: F = u + iv $\partial_X F = u_X + iv_X$ $\partial_Y F = u_Y + iv_Y$, $\frac{1}{i} \partial_Y F = v_Y + iu_Y$.

Thus F(z) has continuous partial derivatives, those partials satisfy C-R, and so F is analytic! Then $f(z) = \partial_z F(z) = F'(z)$ (note $F'(z) \neq \partial_y F$, rather $F'(z) = \frac{1}{i} \partial_y F$), so f(z) is derivative of analytic \Rightarrow f analytic.