WYCENA I ANALIZA OPCJI W MODELU DWUMIANOWYM

Wstęp do Inżynierii Finansowej

Magda Kozajda, Jakub Miłosz Uniwersytet Wrocławski

15.05.2024

Spis treści

1	$\mathbf{W}\mathbf{s}$ 1	tęp	1			
2	Wstęp teoretyczny					
	2.1	Opcje	1			
	2.2	Payoff	2			
	2.3	Arbitraż	2			
	2.4	Model dwumianowy	3			
		2.4.1 Drzewo dwumianowe	3			
		2.4.2 Drzewo dwumianowe jedno-okresowe	3			
		2.4.3 Drzewo dwumianowe dwu-okresowe	4			
	2.5	Opcje amerykańskie	5			
3	Opi	s projektu	5			
4	$\mathbf{W}\mathbf{y}$	cena opcji	6			
	4.1	Wycena opcji europejskich	6			
	4.2	Wycena opcji amerykańskich	9			
	4.3	Porównanie opcji europejskich i amerykańskich	12			
5	Analiza wrażliwości 1					
	5.1	Cena wykonania	12			
	5.2	Zapadalność	13			
	5.3	Wartość początkowa aktywa bazowego	14			
	5.4	Stopa procentowa	15			
	5.5	Parametr σ	16			
	5.6	Liczba kroków w modelu	17			
6	Mapy ciepła 18					
	6.1	Zapadalność i cena spot	18			
	6.2	Zapadalność i stopa procentowa	20			
	6.3	Zapadalność i zmienność	21			
	6.4	Cena spot i cena wykonania	23			
7	Por	tfel zabezpieczający	24			
	7.1	Opcja europejska	25			
		7.1.1 Opcja call	25			
		7.1.2 Opcja put	25			
	7.2	Opcja amerykańska	28			
		7.2.1 Opcja call	28			
		7.2.2 Opcja put	28			
8	Pod	lsumowanie	31			
9	Doc	datek - czas działania funkcji	32			

1 Wstęp

Głównym celem wykonanego przez nas projektu była wycena i analiza opcji w modelu dwumianowym. Ważne dla nas było nie tylko teoretyczne przedstawienie zasad działania modelu ale również jego praktyczne zastosowanie i analiza efektywności w rzeczywistych warunkach rynkowych. W niniejszym raporcie opiszemy sposób wykonania zadania i przedstawimy osiągnięte rezultaty. Zaczniemy od przypomnienia definicji opcji i związanych z nimi pojęć. Następnie omówimy strukturę modelu dwumianowego i jego sposób działania. W kolejnych rozdziałach przedstawimy otrzymane wyniki na wykresach i dokonamy ich analizy. Ostatnim z zadań będzie stworzenie portfela replikującego opcje.

2 Wstęp teoretyczny

We wstępnie teoretycznym przypomnimy pojęcia, którymi będziemy posługiwać się w kolejnych rozdziałach raportu. Zajmiemy się głównie ideą opcji oraz modelem drzewa dwumianowego. Źródłami definicji są notatki z wykładu oraz literatura [1].

2.1 Opcje

Na rynku finansowym **opcją** nazywamy umowę, którą można kupić i sprzedać, w ramach której właściciel ma prawo do zdecydowania, czy kupić (lub sprzedać) aktywo bazowe jak akcja czy obligacja, po ustalonej z góry cenie w określonym przedziałe czasowym lub w określonym momencie.

Decyzję o kupnie lub sprzedaży aktywa bazowego nazywamy **wykonaniem opcji**. Cena, po której aktywo bazowe zostanie kupione/sprzedane w momencie wykonania opcji to **cena wykonania**. Opcję możemy wykonać do lub w **dacie wygaśnięcia**, czyli do ustalonego momentu, po którym opcja jest już nieważna.

Istnieją dwa rodzaje opcji: **opcje call** oraz **opcje put**. Opcje call są opcjami kupna - dają właścicielowi prawo do zakupu aktywa bazowego. Opcje put to opcje sprzedaży - ich właściciel może sprzedać aktywo bazowe.

Na rynku opcji mamy zatem czterech uczestników:

- kupujący opcje call
- sprzedający opcje call
- kupujący opcje put
- sprzedający opcje put

Kupujący są określani jako posiadający **pozycje długie** (long position); sprzedający są określani jako posiadający **pozycje krótkie** (short position).

Innym kryterium podziału opcji jest moment wykonania. W tym przypadku rozróżniamy **opcje europejskie** i **opcje amerykańskie**. Opcje europejskie można wykonać jedynie w dniu wygaśnięcia. Opcje amerykańskie mogą być wykonane w dowolnym momencie do daty wygaśnięcia.

2.2 Payoff

Warto podkreślić, że opcja daje właścicielowi prawo ale nie obowiązek do wykonania umowy. Jednym z narzędzi umożliwiających analizę zwrotu z inwestycji jest **payoff**, czyli funkcja wypłaty instrumentu finansowego. Wartość tej funkcji zależy między innymi od przyszłej wartości aktywa bazowego i ceny wykonania opcji. W zależności od warunków rynkowych payoff może przyjmować wartości dodatnie, ujemne lub zerowe. Payoff opcji europejskiej wyliczany jest w chwili jej wygaśnięcia; payoff opcji amerykańskiej można rozważać w dowolnym momencie jej trwania.

W tabelach 1 oraz 2 przedstawiono sposoby wyliczania wartości wypłaty opcji. Przyjęte oznaczenia to: T - moment wygaśnięcia opcji, t - moment czasu przed wygaśnięciem opcji, S_T lub S_t - rynkowa cena aktywa bazowego w danym momencie, K - cena wykonania opcji.

Opcja europejska		
	Pozycja długa (long)	Pozycja krótka (short)
Opcja call	$max(S_T - K, 0)$	$min(K - S_T, 0)$
Opcja put	$max(K - S_T, 0)$	$min(S_T - K, 0)$

Tabela 1: Payoff opcji europejskiej

Opcja amerykańska		
	Pozycja długa (long)	Pozycja krótka (short)
Opcja call	$max(S_t - K, 0)$	$min(K - S_t, 0)$
Opcja put	$max(K - S_t, 0)$	$min(S_t - K, 0)$

Tabela 2: Payoff opcji amerykańskiej

2.3 Arbitraż

Arbitraż to strategia inwestycyjna polegająca na jednoczesnym kupnie i sprzedaży tego samego lub podobnego instrumentu finansowego na różnych rynkach w celu osiągnięcia zysku bez ponoszenia ryzyka. Arbitraż jest możliwy dzięki różnicom w cenach tego samego aktywa na różnych rynkach. Inwestorzy wykorzystują te różnice, aby zarobić na zmianach cen, zanim rynki zdążą się wyrównać.

Na rynku możliwy jest arbitraż, jeżeli możemy zbudować taki portfel, że:

- w chwili t = 0 jego wartość jest równa 0;
- w pewnej chwili t > 0 jego payoff jest nieujemny z prawdopodobieństwem równym 1 a z dodatnim prawdopodobieństwem payoff jest większy niż zero.

2.4 Model dwumianowy

Model dwumianowy jest jednym z bardziej przydatnych i intuicyjnych sposobów wyceny opcji. Pozwala on na obserwowanie zmiany wartości aktywa bazowego w czasie.

2.4.1 Drzewo dwumianowe

Model dwumianowy to diagram reprezentujący możliwe ścieżki dla ceny aktywa w czasie ważności opcji. Głównym założeniem modelu jest, że cena aktywa porusza się spacerem losowym, czyli w każdym kolejnym kroku istnieje pewne prawdopodobieństwo, że cena zwiększy się lub zmniejszy o pewien procent. Kolejnymi założeniami są brak arbitrażu i stała zmienność aktywa w czasie.

Przeanalizujmy sposób działania modelu dwumianowego na przykładach dla opcji europejskich.

2.4.2 Drzewo dwumianowe jedno-okresowe

Rozważmy aktywo o cenie S_0 i opcję na to aktywo, której obecna cena wynosi f. Zakładamy, że opcja trwa przez czas T. W czasie trwania opcji cena aktywa może wzrosnąć z S_0 do nowego poziomu S_0u dla u > 1 lub spaść z S_0 do poziomu S_0d dla d < 1. Przy wzroście ceny aktywa do S_0u zakładamy, że wypłata z opcji wynosi f_u ; jeżeli cena spadnie do S_0d wypłata to f_d . Rysunek 2.4.2 obrazuje opisaną sytuację.

Rysunek 1: Drzewo dwumianowe jedno-okresowe

Wartości f_u i f_d to payoff analizowanej opcji w przypadku, kiedy cena aktywa w chwili T równa jest odpowiednio S_0u lub S_0d . Czyli zakładając, że zajmujemy pozycję długą mamy:

- $f_u = max(S_0u K, 0)$ dla opcji call lub $f_u = max(K S_0u, 0)$ dla opcji put,
- $f_d = max(S_0d K, 0)$ dla opcji call lub $f_u = max(K S_0d, 0)$ dla opcji put,

Konstruując odpowiedni portfel i zakładając brak arbitrażu możemy pokazać, że cena opcji f jest równa:

$$f = e^{-rT} [pf_u + (1-p)f_d]$$

przy

$$p = \frac{e^{rT} - d}{u - d},$$

gdzie r jest nominalną stopą procentową wolną od ryzyka.

2.4.3 Drzewo dwumianowe dwu-okresowe

Powyższą analizę możemy rozszerzyć na model dwumianowy dwu-okresowy pokazany na rysunku 2.

Rysunek 2: Drzewo dwumianowe dwu-okresowe

Ponownie rozważamy aktywo o wartości S_0 . W każdym kroku czasowym jego cena wzrasta do u razy swojej początkowej wartości lub spada do d razy swojej początkowej wartości. Zakładamy, że stopa procentowa wolna od ryzyka wynosi r a długość kroku czasowego to Δt .

Przeanalizujmy ceny aktywa bazowego w poszczególnych etapach:

- 1. Po pierwszym kroku czasowym Analogicznie jak w modelu jedno-okresowym cena aktywa wynosi S_0u w przypadku wzrostu albo S_0d w przypadku spadku.
- Po drugim kroku czasowym Możemy rozważyć następujące sytuacje:
 - Jeżeli cena aktywa wzrasta dwukrotnie wynosi S_0u^2 . Wartość opcji oznaczamy wtedy jako f_{uu} i jest ona równa: $f_{uu} = max(S_0u^2 K, 0)$ dla opcji call i $f_{uu} = max(K S_0u^2, 0)$ dla opcji put.
 - Jeżeli cena aktywa najpierw wzrasta a później spada, wynosi S_0ud . Cena opcji f_{ud} to: $f_{ud} = max(S_0ud K, 0)$ dla opcji call i $f_{ud} = max(K S_0ud, 0)$ dla opcji put.
 - \bullet Jeśli cena aktywa najpierw spada, a potem wzrasta, wynosi $S_0 du.$ Cena opcji $f_{du}=f_{ud}$
 - Jeśli cena akcji spada dwukrotnie, wynosi S_0d^2 . Wartość opcji oznaczamy wtedy jako f_{dd} i jest ona równa: $f_{dd} = max(S_0d^2 K, 0)$ dla opcji call i $f_{dd} = max(K S_0d^2, 0)$ dla opcji put.

Konstruując odpowiedni portfel ponownie możemy pokazać, że cena opcji f to:

$$f = e^{-r\Delta t} [pf_u + (1-p)f_d],$$

przy prawdopodobieństwie p równym:

$$p = \frac{e^{r\Delta t} - d}{u - d},$$

Zastosowanie powyższych równań dla f_u , f_d i f daje:

$$f_u = e^{-r\Delta t} [pf_{uu} + (1-p)f_{ud}]$$

$$f_d = e^{-r\Delta t} [pf_{du} + (1-p)f_{dd}]$$

$$f = e^{-r\Delta t} [pf_u + (1-p)f_d].$$

Po podstawieniu odpowiednich wartości otrzymujemy:

$$f = e^{-2r\Delta t} \left[p^2 f_{uu} + 2p(1-p) f_{ud} + (1-p)^2 f_{dd} \right],$$

gdzie zmienne p^2 , 2p(1-p), $(1-p)^2$ są prawdopodobieństwami osiągnięcia odpowiednio skrajnego górnego, środkowego i dolnego wierzchołka.

Zauważmy, że cena opcji f równa jest zdyskontowanej wartości oczekiwanej payoff-u tej opcji w sytuacji wolnej od ryzyka. Własność ta pozwala łatwo wyliczać f dla drzew dwumianowych rozbudowanych o kolejne okresy.

2.5 Opcje amerykańskie

Przypomnijmy, że opcje amerykańskie mogą być wykonane w dowolnym momencie do daty wygaśnięcia. Procedura wyceny opcji amerykańskiej polega na przejściu drzewa dwumianowego od końca: od ostatnich wierzchołków do początkowego. W każdym z wierzchołków sprawdzamy, czy wcześniejsze wykonanie opcji jest optymalne. Wartość opcji w końcowych węzłach jest taka sama jak dla opcji europejskich. W wcześniejszych węzłach wartość opcji jest większą z dwóch wartości:

- 1. Wartość opcji wyliczona jak w przypadku opcji europejskich
- 2. Payoff uzyskany ze wcześniejszego wykonania.

3 Opis projektu

Po przypomnieniu niezbędnych pojęć możemy przejść do treści projektu. Celem projektu jest wycena i analiza opcji w modelu dwumianowym. Szczególnie interesować nas będzie wrażliwość wyceny na poszczególne parametry jak czas, cena aktywa czy stopa procentowa. Ważną częścią będzie także porównanie opcji europejskich i amerykańskich.

W projekcie zakładamy dwumianowy model rynku, w którym akcja warta S_t w chwili t może w kolejnym kroku być warta uS_t albo dS_t , gdzie u i d są zadanymi parametrami. Zakładamy, że akcja ta nie wypłaca dywidend. Oprócz akcji dysponujemy również możliwością inwestycji (lub pożyczki) ze stałą stopą wolną od ryzyka r w każdym okresie (przyjmujemy oprocentowanie ciągłe). Czas mijający podczas jednego kroku w drzewie dwumianowym będziemy oznaczać Δt .

Rozważamy cztery opcje:

 \bullet opcje europejskie call i put z ceną wykonania K i zapadalnością T lat,

 \bullet opcje amerykańskie call i put z ceną wykonania K i zapadalnością T lat.

Poczatkowe parametry to:

- $\Delta t = 1/12, \ u = e^{\sigma\sqrt{\Delta t}}, \ d = e^{-\sigma\sqrt{\Delta t}}, \ \sigma = 0.3,$
- $S_0 = 50, r = 0.02,$
- K = 48, T = 2.

Każde z zadań do wykonania w projekcie omówione zostanie w odpowiednim rozdziale. Rozwiązania zadań zaimplementowane są w języku Python - kod źródłowy znajduje się w osobnym pliku.

4 Wycena opcji

Pierwszym krokiem jest wycena opcji europejskich i amerykańskich. Wycenę przeprowadzamy zgodnie ze wcześniejszym teoretycznym opisem wyceny opcji w modelu dwumianowym. Początkowo rozważamy czas życia opcji równy dwa lata. Krok czasowy $\Delta t=1/12$ odpowiada jednemu miesiącowi. Rozważamy zatem model o 24 okresach, gdzie każdy z okresów oznacza jeden miesiąc.

Wyniki przedstawimy na grafikach przedstawiających modele drzew dwumianowych dla odpowiednich opcji. Kolorem czerwonym oznaczymy momenty, w których opłaca się wykonać opcje. Przypomnijmy, że wykonanie opcji call jest opłacalne, gdy cena aktywa bazowego jest większa niż cena wykonania, czyli:

$$S_T > K$$
.

Opcję pull opłaca się wykonać w przeciwnym wypadku, czyli dla:

$$S_T < K$$
.

4.1 Wycena opcji europejskich

Na rysunkach numer 3 i 4 widzimy modele drzew dwumianowych opcji europejskich. Opcje europejskie mogą być wykonane jedynie w momencie zapadalności, czyli w ostatnich węzłach drzewa (przy T=2).

Na wykresie 3 widzimy, że istnieje 13 sytuacji, w których opłaca się wykonać opcję call. Wyliczona wartość europejskiej opcji call to:

$$V_0 = 10.191185$$

Wykres 4 pokazuje 12 sytuacji, kiedy wykonanie opcji put jest opłacalne. Wartość europejskiej opcji put to:

$$V_0 = 6.309078$$

Rysunek 3: Wycena europejskiej opcji call

Rysunek 4: Wycena europejskiej opcji put

4.2 Wycena opcji amerykańskich

Opcje amerykańskie mogą być wykonane w dowolnym momencie życia opcji. Przeanalizujmy opłacalność wykonania opcji tego rodzaju. Wartość opcji w danym węźle jest większą z wartości payoff'u uzyskanego ze wcześniejszego wykonania i z wartości opcji wyliczonej według teoretycznego wzoru.

W przypadku opcji call payoff wyliczany jest jako:

$$\max(S_T - K, 0).$$

Wartość opcji S_T w jednej z gałęzi poddrzewa wyliczona jest jako $S_{T-1}u$, gdzie u>1. Oznacza to, że dla niezerowej S_{T-1} wartość opcji będzie funkcją rosnącą. Przy stałym K payoff $\max(S_T-K,0)$ także będzie rosnący i dodatni dla $S_T>K$. Amerykańską opcję call opłaca się zatem wykonać przy możliwie największym T, czyli w momencie zapadalności opcji. Momenty, w których wykonanie opcji call jest opłacalne są zatem takie same dla opcji amerykańskich i europejskich. Drzewo dwumianowe dla amerykańskiej opcji call zobrazowane jest na rysunku numer 5. Cena opcji amerykańskiej jest równa cenie europejskiej ze względu na te same momenty wykonania. Stąd cena amerykańskiej opcji call wynosi:

$$V_0 = 10.191184$$

Wartość w końcowych węzłach drzewa dwumianowego opcji put (rys. 6) jest taka sama dla opcji amerykańskich i europejskich. Oznacza to, że w momencie zapadalności T oba typy opcji mają taką samą opłacalność wykonania.

Dla t < T musimy sprawdzić, czy opłaca się wcześniej wykonać opcję. W tym celu liczymy payoff opcji w momencie t. Payoff opcji put to:

$$\max(K - S_t, 0)$$
.

W jednej z gałęzi poddrzewa wartość $S_t = S_{t-1}d$, gdzie d < 1. Oznacza to, że wartość funkcji S_t może być funkcją malejącą. W takich przypadkach (dla $K > S_t$) payoff będzie dodatni a wykonanie funkcji będzie opłacalne.

Na grafice numer 6 przedstawiony jest model drzewa dwumianowego dla amerykańskiej opcji put. Czerwonym kolorem zaznaczone są węzły, w których wykonanie funkcji było opłacalne. Wyliczona cena amerykańskiej opcji put to:

$$V_0 = 6.470605$$

Rysunek 5: Wycena amerykańskiej opcji call

Rysunek 6: Wycena amerykańskiej opcji put

4.3 Porównanie opcji europejskich i amerykańskich

W tej sekcji chcemy porównać własności opcji europejskich i amerykańskich.

Amerykańską opcje call opłaca się wykonać w końcowych węzłach drzewa, kiedy payoff jest dodatni. Europejskie opcje call wykonywane są w tych samych momentach. Stąd drzewa binarne dla obu typów opcji call są identyczne, co implikuje tę samą początkową cenę opcji.

Wartość w końcowych węzłach drzewa dwumianowego opcji put jest taka sama dla opcji amerykańskich i europejskich. Wartości w poprzednich węzłach mogą się różnić, ponieważ dla typu amerykańskiego musimy uwzględnić możliwość wcześniejszego wykonania opcji. Wartość węzła dla opcji amerykańskiej to maksimum z payoff'u uzyskanego ze wcześniejszego wykonania i z wartości wyliczonej jak dla opcji europejskiej. Oznacza to, że wartości węzłów opcji amerykańskich mogą być większe niż dla opcji europejskich. Wyliczając rekurencyjnie cenę opcji put otrzymujemy własność:

$$P_A \geqslant P_E$$
.

Zatem cena amerykańskiej opcji put zawsze jest większa lub równa cenie akcji europejskiej.

W tabeli 3 przedstawiona jest wycena wszystkich typów opcji. Widzimy, że omawiane wyżej własności zachodzą w praktyce.

	Opcja call	Opcja put
Opcja europejska	10.191185	6.309078
Opcja amerykańska	10.191185	6.470605

Tabela 3: Wycena opcji call i put

5 Analiza wrażliwości

W tym rozdziale przeanalizujemy wrażliwość ceny opcji ze względu na parametry takie jak: cena wykonania K, zapadalność T, wartość początkowa aktywa bazowego S_0 , stopa procentowa wolna od ryzyka r i parametr σ . Zbadamy też wrażliwość wyników wyceny tych opcji ze względu na liczbę kroków w modelu, czyli ze względu na Δt .

5.1 Cena wykonania

Na grafice numer 7 zaprezentowane są dwa wykresy obrazujące wrażliwość analizowanych opcji na cenę wykonania, czyli parametr K.

Na wykresie opcji call krzywe opcji europejskich i amerykańskich pokrywają się, ponieważ wartość opcji call jest taka sama dla obu typów opcji. We wzorze na cenę opcji call rozważamy payoff równy:

payoff =
$$max(S_T - K, 0)$$
.

Dla ustalonego S_T wartość opcji jest zatem funkcją malejącą i zbiegającą do 0 wraz ze wzrostem K.

Rysunek 7: Wrażliwość opcji na cenę wykonania

W przypadku opcji put cena opcji amerykańskiej jest większa niż opcji europejskiej. Payoff opcji put to:

payoff =
$$max(K - S_T, 0)$$
.

Przy ustalonym S_T payoff jest funkcją rosnącą, zatem wartość opcji także będzie rosnąć.

5.2 Zapadalność

Obrazek numer 8 pokazuje wpływ zapadalności opcji na jej wycenę.

W modelu drzewa dwumianowego wartość opcji call rośnie wraz ze wzrostem T. Ceny opcji europejskich i amerykańskich są sobie równe, ponieważ wykonanie opcji wcześniej nie jest opłacalne. Dłuższy czas do wygaśnięcia oznacza więcej możliwych scenariuszy, kiedy cena aktywa bazowego idzie w górę, co implikuje rosnący payoff. W takiej sytuacji wartość oczekiwana ceny opcji także rośnie.

Zapadalność ma znaczny wpływ także na cenę opcji put. Wartość opcji amerykańskiej put jest funkcją rosnącą ale ograniczoną z góry przez K. Aby nie wystąpił arbitraż cena opcji europejskiej put P_E musi być mniejsza niż Ke^{-rT} . Funkcja Ke^{-rT} jest malejąca zatem wartość P_E rośnie do pewnego momentu - na wykresie osiąga maksimum w okolicach T=20, po czym maleje. Wartość opcji amerykańskiej jest większa niż opcji europejskiej ze względu na możliwość wykonania w opłacalnym momencie.

Rysunek 8: Wrażliwość opcji na zapadalność

5.3 Wartość początkowa aktywa bazowego

Wykresy z grafiki numer 9 jednoznacznie wskazują na duży wpływ ceny spot na wycenę opcji. Tę zależność można wytłumaczyć analizując model drzewa dwumianowego.

W pierwszym okresie drzewa dwumianowego cena aktywa bazowego rośnie do S_0u lub spada do S_0d . Po kolejnych n–krokach drzewa dwumianowego cena może wynosić: S_0u^n , $S_0u^{n-1}d,...,S_0ud^{n-1}$, S_0d^n . Przy ustalonych wartościach u oraz d cena aktywa jest monotoniczną funkcją parametru S_0 . Zatem przy rosnącym S_0 cena aktywa bazowego w chwili S_t rośnie, co implikuje rosnący payoff funkcji call i zwiększanie się jej wartości. W tym przypadku wcześniejsze wykonanie opcji amerykańskiej także nie jest opłacalne, więc jej cena pokrywa się z ceną europejskiej opcji call. Analogicznie wzrost ceny aktywa bazowego zmniejsza payoff opcji put. Z tego powodu wartości opcji put są funkcjami malejącymi. Cena opcji amerykańskiej jest większa ze względu na możliwość wcześniejszego wykonania.

Rysunek 9: Wrażliwość opcji na wartość początkową aktywa bazowego

5.4 Stopa procentowa

Przypomnijmy wzór na wycenę opcji w drzewie dwumianowym:

$$f = e^{-rT} [pf_u + (1-p)f_d]$$

Parametr r pojawia się tutaj jako element czynnika dyskontującego e^{-rT} . Wielkość stopy procentowej r ma także wpływ na prawdopodobieństwo wzrostu ceny opcji, czyli na:

$$p = \frac{e^{rT} - d}{u - d}.$$

Przy ustalonych wartościach T, d, u wartość p jest rosnącą funkcją parametru r. Wiemy, że prawdopodobieństwo p jest mniejsze lub równe jeden. Cena opcji jest zatem funkcją rosnącą i ograniczoną.

Cena opcji call jest taka sama dla opcji amerykańskich i europejskich. Wraz ze wzrostem r zwiększa się prawdopodobieństwo, że cena aktywa bazowego wzrośnie. Stąd cena opcji call jest funkcją rosnącą i ograniczoną przez S_0 .

Zwiększanie się wartości aktywa bazowego powoduje, że opcja put jest mniej warta. Na wykresie 10 widzimy, że wartość opcji put jest funkcją malejącą dla obu typów opcji. Opcja amerykańska jest więcej warta ze względu na możliwość wykonania w opłacalnym dla posiadacza momencie.

Rysunek 10: Wrażliwość opcji na stopę procentową

5.5 Parametr σ

Parametr σ wpływa na prawdopodobieństwo wzrostu (u) i spadku (d) wartości aktywa bazowego. Prowadzi to do większych wahań cen aktywa bazowego w modelu dwumianowym. Niepewność dotycząca cen aktywa wpływa na wartość opcji, jako że istnieje większa szansa na dodatni payoff dla obu typów opcji. Na rysunku numer 12 widzimy, że wartość opcji w zależności od parametru σ jest funkcją rosnącą.

Rysunek 11: Wrażliwość opcji na parametr σ

5.6 Liczba kroków w modelu

Liczba kroków w modelu wpływa na dokładność otrzymanych wyników. Dzięki zmniejszaniu kroku czasowego Δt parametry $d=e^{-\sigma\Delta t}$ oraz $u=e^{\sigma\Delta t}$ przyjmują mniejsze wartości, które są bardziej podobne do tych występujących na rynku. Jednocześnie model dwumianowy staje się bardziej rozbudowany i szczegółowy przez większą ilość kroków. Zwiększenie liczby kroków powoduje zbliżenie schematu drzewa dwumianowego do schematu Blacka-Scholesa.

Na rysunku 8 widzimy, że wartości wartości funkcji zawierają się w pewnym przedziale. Dla opcji call jest to otoczenie liczby 10 a dla opcji put - otoczenie liczby 6. Przy zwiększonym kroku czasowym wartości funkcji coraz bardziej odbiegają od wyliczonych przez nas 10.19 dla opcji call, 6.31 dla europejskiej opcji put i 6.47 dla amerykańskiej opcji put. Świadczy to o mniejszej dokładności modelu.

Rysunek 12: Wrażliwość opcji na liczbę kroków w modelu

6 Mapy ciepła

W tym rozdziale omówimy wpływ poszczególnych par parametrów na wycenę opcji. Wyniki przedstawimy na wykresach w postaci map ciepła.

6.1 Zapadalność i cena spot

W poprzednim rozdziale pokazaliśmy, że cena opcji call jest rosnącą funkcją zapadalności T oraz ceny spot S_0 . Funkcja dwóch zmiennych dla tej ceny opcji call także jest rosnąca. Wykresy opcji amerykańskiej i europejskiej ponownie są identyczne.

Cena opcji put jest funkcją rosnącą parametru T i funkcją malejącą parametru S_0 . Funkcja dwóch zmiennych osiąga minimum przy maksymalnych wartościach S_0 i przy jak najmniejszym T. Wykresy opcji amerykańskiej i europejskiej różnią się w dolnej części. Cena amerykańskiej opcji put osiąga maksimum przy $S_0 = 0$ niezależnie od wartości T. Jest to spowodowane możliwością wykonania opcji w dowolnym momencie. Wartość europejskiej opcji put osiąga maksimum przy S_0 i T bliskim 0.

Wrażliwość opcji na na zapadalność i cenę spot przedstawione są na rysunkach numer 13 oraz 14.

Rysunek 13: Wrażliwość opcji na zapadalność i cenę spot

Rysunek 14: Wrażliwość opcji na zapadalność i cenę spot

6.2 Zapadalność i stopa procentowa

Rysunek 15: Wrażliwość opcji na zapadalność i stopę procentową

Rysunek 16: Wrażliwość opcji na zapadalność i stopę procentową

Grafiki o numerach 15 i 16 obrazują wrażliwość opcji na zapadalność i stopę procentową.

Wykresy opcji call dla obu typów opcji są identyczne. Moment zapadalności T zdaje się mieć większy wpływ na cenę opcji. Dla małych wartości T funkcja osiąga minimum niezależnie od parametru r. Dopiero przy wartościach T bliskim 5 stopa procentowa r zaczyna bardziej znacząco zmieniać cenę opcji. Funkcja ceny opcji call osiąga maksimum przy maksymalnych wartościach obu parametrów, co jest zgodne z rozumowaniem dla funkcji jednej zmiennej z poprzednich podrozdziałów.

W przypadku opcji put zapadalność także ma większy wpływ na cenę opcji. Dla $r \in (0,0.03)$ różnice między wykresami dla opcji amerykańskiej i europejskiej są niezauważalne. Wartości obu opcji są największe przy r bliskim 0 i T=10. Dla r>0.05 wzrost r ma wpływ na wycenę opcji europejskiej, podczas gdy cena opcji amerykańskiej utrzymuje się na podobnym poziomie.

6.3 Zapadalność i zmienność

Na wykresach numer 17 i 18 widzimy wpływ zapadalności i parametru σ na wycenę opcji.

W analizie funkcji jednej zmiennej pokazaliśmy, że ceny opcji call i put są funkcjami rosnącymi parametru T oraz σ . Z wykresów poniżej możemy wnioskować, że oba te czynniki mają podobny wpływ na wycenę opcji. Wartości opcji call obu typów oraz amerykańskiej opcji put rosną wraz ze wzrostem T i σ . Europejska opcja put osiąga maksimum dla mniejszych wartości T, bliskich 5. Spowodowane jest to tym, że cena tej opcji jest ograniczona i zaczyna spadać po osiągnięciu maksimum dla pewnej wartości T.

Rysunek 17: Wrażliwość opcji na zapadalność i zmienność

Rysunek 18: Wrażliwość opcji na zapadalność i zmienność

6.4 Cena spot i cena wykonania

Rysunki numer 19 i 20 obrazują wpływ ceny spot i ceny wykonania na wycenę opcji.

Wycena opcji zależy bezpośrednio od funkcji payoff'u, która w przypadku opcji call wygląda następująco:

payoff =
$$max(S_T - K, 0)$$
.

W poprzednich rozważaniach pokazaliśmy, że cena aktywa S_T zwiększa się wraz ze wzrostem S_0 . Stąd payoff opcji call będzie największy dla dużych wartości S_0 i małych wartości parametru K. Wtedy też cena opcji osiągnie największe wartości.

Analogiczne rozumowanie możemy przeprowadzić dla opcji put. Payoff opcji tego typu wynosi:

payoff =
$$max(K - S_T, 0)$$
.

Widzimy, że payoff będzie największy dla dużych wartości K i małych S_0 . Na wykresie ceny opcji put widzimy, że jej wartość osiąga maksimum dla $S_0=0$ i K=100.

Wykresy opcji amerykańskich i europejskich są takie same, ponieważ rozważamy ustalone T a opcji amerykańskiej w tym przypadku nie opłacało się wykonać szybciej.

Rysunek 19: Wrażliwość opcji na cenę spot i cenę wykonania

Rysunek 20: Wrażliwość opcji na zapadalność i cenę wykonania

7 Portfel zabezpieczający

W tym rozdziale chcemy skonstruować portfel zabezpieczający wyceniane opcje, który składać się będzie z Δ akcji i z odpowiedniej ilości gotówki (α).

Portfel zabezpieczający (lub replikujący) jest konstruowany tak, by jego wartość dokładnie naśladowała wartość opcji w danym momencie. Portfel złożony jest z odpowiedniej ilości akcji oraz z gotówki, które maja replikować analizowana opcje.

W celu skonstruowania odpowiedniego portfela zabezpieczającego opcję musimy określić liczbę akcji Δ i ilość gotówki α . Korzystamy przy tym z następujących wzorów:

$$\Delta = \frac{V_u - V_d}{S_u - S_d},$$

$$\alpha = e^{-r\Delta t}(V_u - \Delta S_u),$$

gdzie V_u i V_d to wartości opcji w drzewie dwumianowym po odpowiednio wzroście i spadku ceny aktywa bazowego a S_u i S_d to ceny aktywa bazowego po wzroście albo spadku jego ceny.

W ten sposób możemy wyznaczyć skład portfela replikującego dla każdego z wierzchołków niezależnie od rozmiaru drzewa.

7.1 Opcja europejska

7.1.1 Opcja call

Rysunek numer 21 przedstawia skład portfela replikującego dla każdego z wierzchołków modelu drzewa dla europejskiej opcji call.

Czytając wartości Δ i α z wykresu widzimy, że α zawsze przyjmuje wartości ujemne a Δ dodatnie. Porównując skład portfela replikującego (wykres 21) z wykresem wartości opcji (wykres 3) widzimy, że liczba akcji w portfelu zwiększa się razem z wartością opcji. Analogicznie, w gałęziach drzewa, w których wartość opcji malała obserwujemy zmniejszanie się parametru Δ i wzrost parametru α .

7.1.2 Opcja put

W przypadku opcji put parametr Δ przyjmuje ujemne wartości, podczas gdy α jest dodatnia. Jest to sytuacja odwrotna niż w przypadku opcji call. Przy porównaniu wykresu wartości europejskiej opcji put (rysunek 4) ze schematem portfela replikującego tę opcję (rysunek 22) możemy zaobserwować związek ceny opcji z parametrem Δ . Wzrost ceny opcji implikuje zmniejszanie się ilości akcji i jednoczesny wzrost ilości gotówki.

Rysunek 21: Portfel replikujący dla europejskiej opcji call

Rysunek 22: Portfel replikujący dla europejskiej opcji put

7.2 Opcja amerykańska

Na wykresach numer 23 i 24 przedstawiony jest skład portfela replikującego dla amerykańskich opcji typu call i pull.

7.2.1 Opcja call

Wartości parametrów amerykańskiej opcji call są takie same jak w przypadku opcji europejskiej. Spowodowane jest to identycznymi wartościami w wierzchołkach drzewa dla wyceny opcji obu typów opcji call (wykres 3 i wykres 5).

7.2.2 Opcja put

Parametry Δ i α zachowują się analogicznie do tych dla europejskiej opcji put. Ich wartości są większe ze względu na większe wartości opcji.

Rysunek 23: Portfel replikujący dla amerykańskiej opcji call

Rysunek 24: Portfel replikujący dla amerykańskiej opcji put

8 Podsumowanie

W projekcie dokonaliśmy wyceny opcji z użyciem dwumianowego modelu rynku. Model dwumianowy jest skutecznym narzędziem wyceny opcji, pozwalającym na wiarygodne odwzorowywanie sytuacji rynkowych przy uwzględnieniu wielu możliwych scenariuszy zachowania się ceny aktywa bazowego. Na dokładność wyceny w tym modelu wpływa wiele czynników, z których głównym jest odpowiednie dobranie kroku czasowego Δt . Przy małych wartościach parametru możemy dokładniej odwzorować wzrost i spadek ceny aktywa, co wpływa na wiarygodniejszą wycenę opcji.

Ważną częścią projektu była też analiza wrażliwości ceny opcji na zmianę parametrów jak: zapadalność, cena spot, cena wykonania, zmienność czy stopa procentowa. Udało nam się ustalić które z parametrów (i w jakim stopniu) wpływają na wycenę opcji.

Dokonaliśmy także porównania opcji europejskich i amerykańskich i ustaliliśmy, które z nich i w jakich sytuacjach przynoszą większy dochód.

Ostatnim etapem naszej pracy było stworzenie portfeli replikujących opcje, które dzięki posiadaniu odpowiedniej ilości akcji i gotówki mogą naśladować wartość opcji w odpowiednich wezłach drzewa.

9 Dodatek - czas działania funkcji

Nazwa funkcji:	Czas w sekundach:
european_option_evaluation	0.001163
american_option_evaluation	0.000852
draw_option_binary_tree	2.827456
european_option_evaluation_for_drawing	0.000084
option_evaluation_relative_to_arg_and_option_type	0.121435
draw_plot_option_evaluation_relative_to_arg	5.172985
option_evaluation_relative_to_arg1_and_arg2_and_option_type	2.334492
draw_plot_option_evaluation_relative_to_arg1_and_arg2	5.63679
delta_alpha_hedging_portfolio	0.002054
draw_hedging_portfolio	2.000264

Tabela 4: Czasy wykonywania funkcji napisanych w języku Python wykorzystanych w projekcie

Spis rysunków

1	Drzewo dwumianowe jedno-okresowe	3
2	Drzewo dwumianowe dwu-okresowe	4
3	Wycena europejskiej opcji call	7
4	Wycena europejskiej opcji put	8
5	Wycena amerykańskiej opcji call	10
6	Wycena amerykańskiej opcji put	11
7	Wrażliwość opcji na cenę wykonania	13
8	Wrażliwość opcji na zapadalność	14
9	Wrażliwość opcji na wartość początkową aktywa bazowego	15
10	Wrażliwość opcji na stopę procentową	16
11	Wrażliwość opcji na parametr σ	17
12	Wrażliwość opcji na liczbę kroków w modelu	18
13	Wrażliwość opcji na zapadalność i cenę spot	19
14	Wrażliwość opcji na zapadalność i cenę spot	19
15	Wrażliwość opcji na zapadalność i stopę procentową	20
16	Wrażliwość opcji na zapadalność i stopę procentową	20
17	Wrażliwość opcji na zapadalność i zmienność	22
18	Wrażliwość opcji na zapadalność i zmienność	22
19	Wrażliwość opcji na cenę spot i cenę wykonania	23
20	Wrażliwość opcji na zapadalność i cenę wykonania	24
21	Portfel replikujący dla europejskiej opcji call	26
22	Portfel replikujący dla europejskiej opcji put	27
23	Portfel replikujący dla amerykańskiej opcji call	29
24	Portfel replikujacy dla amerykańskiej opcij put	30

Spis tabel

1	Payoff opcji europejskiej	2
2	Payoff opcji amerykańskiej	2
3	Wycena opcji call i put	12
4	Czasy wykonywania funkcji napisanych w języku Python wykorzystanych	
	w projekcie	32

Bibliografia

 $[1] \quad \text{John C. Hull. } Options, \, futures, \, and \, other \, derivatives. \, 2012.$