УНИВЕРЗИТЕТ У БЕОГРАДУ МАТЕМАТИЧКИ ФАКУЛТЕТ

Геометрија И-смер део 4: Афине трансформације равни

Тијана Шукиловић

22. октобар 2023.

Дефиниција афиног пресликавања

Дефиниција 1.1

Нека је $f: \mathbb{V} \to \mathbb{V}$ линеарно пресликавање векторског простора који је придружен простору тачака \mathbb{E} . Афино пресликавање $f: \mathbb{E} \to \mathbb{E}$ је пресликавање тачака које је индуковано пресликавањем \bar{f} вектора у смислу да је:

$$f(M) = M', \ \ f(N) = N' \quad \Longleftrightarrow \quad \bar{f}(\overrightarrow{MN}) = \overrightarrow{M'N'}.$$

Пасивно и активно гледиште

Слика 1: Пасивно гледиште

Пасивно и активно гледиште

Слика 1: Активно гледиште

Афина пресликавања равни

Дефиниција 2.1

Афино пресликавање равни \mathbb{E}^2 :

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \right) \begin{pmatrix} x \\ y \end{pmatrix} + \left(\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \right), \quad \det(a_{ij}) \neq 0.$$

слике базних вектора

слика координатног почетка

Афина пресликавања равни

Дефиниција 2.1

Афино пресликавање равни \mathbb{E}^2 :

$$\begin{pmatrix} x'\\y'\end{pmatrix} = \boxed{\begin{pmatrix} a_{11} & a_{12}\\a_{21} & a_{22}\end{pmatrix}\begin{pmatrix} x\\y\end{pmatrix} + \boxed{\begin{pmatrix} b_1\\b_2\end{pmatrix}}, \quad \det(a_{ij}) \neq 0.}$$
 слике базних вектора

почетка

Пример 1

Одредити формуле афиног пресликавања f равни које тачке $O(0,0),\,A(1,0),\,B(0,1)$ пресликава редом у тачке O'(2,2),A'(4,5),B'(3,1).

Теорема 2.1

Постоји јединствено афино пресликавање равни које пресликава три неколинеарне тачке P, Q, R у три неколинеарне тачке P', Q', R', редом.

Теорема 2.2 (Особине афиних пресликавања равни)

• Пресликавају праве у праве;

- Пресликавају праве у праве;
- Чувају размеру колинеарних дужи;

- Пресликавају праве у праве;
- Чувају размеру колинеарних дужи;
- Чувају паралелност правих;

- Пресликавају праве у праве;
- Чувају размеру колинеарних дужи;
- Чувају паралелност правих;
- Однос површина слике и оригинала једнак је $\frac{P(\mathcal{F}')}{P(\mathcal{F})} = |\det(a_{ij})|;$

- Пресликавају праве у праве;
- Чувају размеру колинеарних дужи;
- Чувају паралелност правих;
- Однос површина слике и оригинала једнак је $\frac{P(\mathcal{F}')}{P(\mathcal{F})} = |\det(a_{ij})|;$
- Пресликавања за која је $\det(a_{ij}) > 0$ чувају оријентацију, а за која је $\det(a_{ij}) < 0$ мењају оријентацију равни;

- Пресликавају праве у праве;
- Чувају размеру колинеарних дужи;
- Чувају паралелност правих;
- Однос површина слике и оригинала једнак је $\frac{P(\mathcal{F}')}{P(\mathcal{F})} = |\det(a_{ij})|;$
- Пресликавања за која је $\det(a_{ij}) > 0$ чувају оријентацију, а за која је $\det(a_{ij}) < 0$ мењају оријентацију равни;
- Чувају центар масе и барицентричке координате.

Пример 2

Дате су тачке A(-1,-1), B(1,-1), C(1,1), D(-1,1); A'(4,5), B'(8,7), C'(6,9), D'(2,7).

- а) Одредити једначине афиног пресликавања које пресликава квадрат ABCD у паралелограм A'B'C'D'.
- б) Одредити једначину слике круга уписаног у квадрат. Која је то крива?
- в) Колика је површина слике круга?
- г) Да ли пресликавање чува оријентацију?

Представљање афиних пресликавања матрицама

Представљање афиних пресликавања матрицама

Теорема 2.3

Производ матрица A_b одговара композицији афиних пресликавања.

Слика 3: Афина пресликавања не комутирају!

Транслација $\mathcal{T}_{\overrightarrow{b}}$ за вектор $\overrightarrow{b}(b_1,b_2)$ дата је формулама:

$$x' = x + b_1,$$

$$y' = y + b_2,$$

или у матричном облику:

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{cc} 1 & 0\\ 0 & 1\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right) + \left(\begin{array}{c} b_1\\ b_2\end{array}\right).$$

Транслација $\mathcal{T}_{\overrightarrow{b}}$ за вектор $\overrightarrow{b}(b_1,b_2)$ дата је формулама:

$$x' = x + b_1,$$

$$y' = y + b_2,$$

или у матричном облику:

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{cc} 1 & 0\\ 0 & 1\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right) + \left(\begin{array}{c} b_1\\ b_2\end{array}\right).$$

• Како се представља линеарни део транслације?

Транслација $\mathcal{T}_{\overrightarrow{b}}$ за вектор $\overrightarrow{b}(b_1,b_2)$ дата је формулама:

$$x' = x + b_1,$$

$$y' = y + b_2,$$

или у матричном облику:

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{cc} 1 & 0\\ 0 & 1\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right) + \left(\begin{array}{c} b_1\\ b_2\end{array}\right).$$

- Како се представља линеарни део транслације?
- Шта је композиција транслација?

Транслација $\mathcal{T}_{\overrightarrow{b}}$ за вектор $\overrightarrow{b}(b_1,b_2)$ дата је формулама:

$$x' = x + b_1,$$

$$y' = y + b_2,$$

или у матричном облику:

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left(\begin{array}{cc} 1 & 0\\ 0 & 1\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right) + \left(\begin{array}{c} b_1\\ b_2\end{array}\right).$$

- Како се представља линеарни део транслације?
- Шта је композиција транслација?
- Да ли транслације комутирају?

Слика 4: "Рап" алатка

Пример 3

Представити као афину трансформацију "pan" алатку: Ако је миш притиснут у $P(x_0,y_0)$, а отпуштен у тачки $Q(x_1,y_1)$, слика се транслира из P у Q.

Ротација

Ротација око координатног почетка, за угао $\phi \in [0, 2\pi)$:

$$\mathcal{R}_{\phi}: \left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

Ротација

Ротација око координатног почетка, за угао $\phi \in [0, 2\pi)$:

$$\mathcal{R}_{\phi}: \left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

Ротација око произвољне тачке $Q(q_1, q_2)$ за угао ϕ :

$$\mathcal{R}_{Q,\phi} = \mathcal{T}_{\overrightarrow{OQ}} \circ \mathcal{R}_{\phi} \circ \mathcal{T}_{\overrightarrow{QO}}.$$

Ротација

Ротација око координатног почетка, за угао $\phi \in [0, 2\pi)$:

$$\mathcal{R}_{\phi}: \left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

Ротација око произвољне тачке $Q(q_1, q_2)$ за угао ϕ :

$$\mathcal{R}_{Q,\phi} = \mathcal{T}_{\overrightarrow{OQ}} \circ \mathcal{R}_{\phi} \circ \mathcal{T}_{\overrightarrow{QO}}.$$

Пример 4

Одредити 3×3 матрицу ротације око тачке S(1,-2) за угао од $\frac{2\pi}{3}$, као и формуле тог пресликавања. У коју тачку се пресликава координатни почетак при овој ротацији?

Матрица ротације

$$R_{\phi} := \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$$
 — матрица ротације за угао ϕ .

Теорема 2.4

Особине матрице ротације:

- $(R_{\phi})^{-1} = R_{-\phi} = (R_{\phi})^T$;
- $\det R_{\phi} = 1$;
- $\bullet \ R_{\phi}R_{\theta} = R_{\phi+\theta} = R_{\theta}R_{\phi}.$

Рефлексија у односу на праву

Рефлексија у односу на праву p_0 кроз координатни почетак, која гради угао $\frac{\phi}{2}$ са x-осом:

$$S_{p_0}: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & -\cos \phi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Рефлексија у односу на праву

Рефлексија у односу на праву p_0 кроз координатни почетак, која гради угао $\frac{\phi}{2}$ са x-осом:

$$S_{p_0}: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & -\cos \phi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Рефлексија у односу на произвољу праву $p \parallel p_0$:

$$S_p = \mathcal{T}_{\overrightarrow{OQ}} \circ S_{p_0} \circ \mathcal{T}_{\overrightarrow{QO}}.$$

Рефлексија у односу на праву

Рефлексија у односу на праву p_0 кроз координатни почетак, која гради угао $\frac{\phi}{2}$ са x-осом:

$$S_{p_0}: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \phi & \sin \phi \\ \sin \phi & -\cos \phi \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Рефлексија у односу на произвољу праву $p \parallel p_0$:

$$S_p = \mathcal{T}_{\overrightarrow{OQ}} \circ S_{p_0} \circ \mathcal{T}_{\overrightarrow{QO}}.$$

Пример 5

Одредити формуле рефлексије у односу на праву:

a)
$$x = -1$$
;

6)
$$y = 3$$
;

a)
$$x = -1$$
; b) $y = 3$; b) $4x - 3y + 6 = 0$.

Матрица рефлексије

$$S_{\phi} := \left(egin{array}{cc} \cos \phi & \sin \phi \ \sin \phi & -\cos \phi \end{array}
ight)$$
 — матрица рефлексије.

Теорема 2.5

Особине матрице рефлексије:

- $(S_{\phi})^{-1} = (S_{\phi})^T$;
- $S_{\phi}^2 = Id;$
- $\det S_{\phi} = -1;$
- $S_{\phi}S_{\theta}=R_{\phi-\theta}$.

Скалирање

Скалирање у правцу координатних оса, са центром у координатном почетку и коефицијентима $\lambda_1, \lambda_2 \neq 0$:

$$\mathcal{H}_{\lambda_1,\lambda_2}: \left(\begin{array}{c} x' \\ y' \end{array}\right) = \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right).$$

Скалирање

Скалирање у правцу координатних оса, са центром у координатном почетку и коефицијентима $\lambda_1, \lambda_2 \neq 0$:

$$\mathcal{H}_{\lambda_1,\lambda_2}: \left(\begin{array}{c} x' \\ y' \end{array} \right) = \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right).$$

Скалирање са центром у произвољној тачки:

$$\mathcal{H}_{Q,\lambda_1,\lambda_2} = \mathcal{T}_{\overrightarrow{OQ}} \circ \mathcal{H}_{\lambda_1,\lambda_2} \circ \mathcal{T}_{\overrightarrow{QO}}.$$

• За које вредности λ_1 и λ_2 је скалирање $\mathcal{H}_{\lambda_1,\lambda_2}$ рефлексија у односу на x-осу (y-осу)?

- За које вредности λ_1 и λ_2 је скалирање $\mathcal{H}_{\lambda_1,\lambda_2}$ рефлексија у односу на x-осу (y-осу)?
- За које вредности λ_1 и λ_2 је скалирање $\mathcal{H}_{Q,\lambda_1,\lambda_2}$ централна рефлексија у односу на тачку Q?

- За које вредности λ_1 и λ_2 је скалирање $\mathcal{H}_{\lambda_1,\lambda_2}$ рефлексија у односу на x-осу (y-осу)?
- За које вредности λ_1 и λ_2 је скалирање $\mathcal{H}_{Q,\lambda_1,\lambda_2}$ централна рефлексија у односу на тачку Q?
- За које вредности λ_1 и λ_2 је скалирање хомотетија?

- За које вредности λ_1 и λ_2 је скалирање $\mathcal{H}_{\lambda_1,\lambda_2}$ рефлексија у односу на *x*-осу (*y*-осу)?
- За које вредности λ_1 и λ_2 је скалирање $\mathcal{H}_{Q,\lambda_1,\lambda_2}$ централна рефлексија у односу на тачку Q?
- За које вредности λ_1 и λ_2 је скалирање хомотетија?
- Да ли скалирање чува однос дужине и ширине, углове?
 А хомотетија?

Пример 6

Представити као афине трансформације следеће догађаје:

• "Zoom~in": Кликом миша у тачку $P(x_0, y_0)$, слика се увећава λ пута, а тачка P постаје центар екрана резолуције $w \times h$.

Слика 5: "Zoom in" алатка

Примери

Пример 6

Представити као афине трансформације следеће догађаје:

• "Zoom to window": Миш је притиснут у тачки $P(x_0, y_0)$, а отпуштен у тачки $Q(x_1, y_1)$. Увећати прозор са дијагоналом PQ преко целог екрана. При томе водити рачуна да се увећана слика уклопи у екран или по ширини, или по висини – у зависности од пропорција прозора. Сматрати да је екран резолуције 1920:1080=16:9.

Слика 5: "Zoom to window" алатка

Примери

Пример 6

Представити као афине трансформације следеће догађаје:

• Пресликати прозор чије су лево-доње теме $A(a_1, a_2)$ и горње-десно теме $C(c_1, c_2)$ у прозор одређен дијагоналним теменима $P(p_1, p_2)$ и $R(r_1, r_2)$.

Слика 5: Прозор

Примери

Пример 6

Представити као афине трансформације следеће догађаје:

• " $Pinch\ to\ zoom$ ": У почетном тренутку додир једног прста је регистрован у тачки P_0 , а другог у тачки Q_0 . У следећем тренутку први прст се налази у тачки P_1 , а други у тачки Q_1 . Увећати слику за однос дужина $\lambda = P_1Q_1: P_0Q_0$, при чему се средиште дужи P_0Q_0 пресликава у средиште дужи P_1Q_1 .

Слика 5: "Pinch to zoom" алатка

Смицање

Смицање са коефицијентом λ у правцу x-осе:

$$S_x(\lambda): \left(\begin{array}{c} x'\\ y' \end{array}\right) = \left(\begin{array}{cc} 1 & \lambda\\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right)$$

Смицање

Смицање са коефицијентом λ у правцу x-осе:

$$S_x(\lambda): \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Смицање са коефицијентом λ у правцу y-осе:

$$S_y(\lambda): \left(\begin{array}{c} x'\\ y' \end{array}\right) = \left(\begin{array}{cc} 1 & 0\\ \lambda & 1 \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right)$$

$$\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} = \begin{pmatrix} 1 & \frac{\cos \phi - 1}{\sin \phi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sin \phi & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{\cos \phi - 1}{\sin \phi} \\ 0 & 1 \end{pmatrix}$$

Слика 6: Реализација ротације помоћу три смицања

$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} = \begin{pmatrix} 1 & \frac{\cos\phi - 1}{\sin\phi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sin\phi & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{\cos\phi - 1}{\sin\phi} \\ 0 & 1 \end{pmatrix}$$

Слика 6: Реализација ротације помоћу три смицања

$$\left(\begin{array}{cc} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{array}\right) = \left(\begin{array}{cc} 1 & \frac{\cos\phi-1}{\sin\phi} \\ 0 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ \sin\phi & 1 \end{array}\right) \left(\begin{array}{cc} 1 & \frac{\cos\phi-1}{\sin\phi} \\ 0 & 1 \end{array}\right)$$

Слика 6: Реализација ротације помоћу три смицања

$$\begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} = \begin{pmatrix} 1 & \frac{\cos\phi - 1}{\sin\phi} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \sin\phi & 1 \end{pmatrix} \begin{pmatrix} 1 & \frac{\cos\phi - 1}{\sin\phi} \\ 0 & 1 \end{pmatrix}$$

Слика 6: Реализација ротације помоћу три смицања

Дефиниција 2.2

Пресликавања која чувају дужину у еуклидском простору $\mathbb E$ произвољне димензије називају се изометрије.

Дефиниција 2.2

Пресликавања која чувају дужину у еуклидском простору \mathbb{E} произвољне димензије називају се изометрије. Изометрије које чувају оријентацију зову се кретања.

Дефиниција 2.2

Пресликавања која чувају дужину у еуклидском простору \mathbb{E} произвољне димензије називају се изометрије. Изометрије које чувају оријентацију зову се кретања.

Теорема 2.6

Транслација, ротација око произвољне тачке и рефлексија у односу на произвољну праву су изометрије равни.

Дефиниција 2.2

Пресликавања која чувају дужину у еуклидском простору \mathbb{E} произвољне димензије називају се изометрије. Изометрије које чувају оријентацију зову се кретања.

Теорема 2.6

Транслација, ротација око произвољне тачке и рефлексија у односу на произвољну праву су изометрије равни.

Које трансформације равни су кретања?