On stratification diagrams, algorithmic spectrum estimates and vector-like pairs in F-theory

Martin Bies

Oxford University

June 16, 2020

With M. Cvetič, R. Donagi, L. Lin, M. Liu, F. Rühle – 2020.06***

Martin Bies 1 / 17

Motivation

Obtain (MS)SM from String theory construction ...

- $E_8 \times E_8$ [Candelas Horowitz Strominger Witten '85], [Greene Kirklin Miron Ross '86], [Braun He Ovrut Pantev '05], [Bouchard Donagi '05], [Anderson Gray He Lukas '10], ...
- Type II [Berkooz Douglas Leigh '96], [Aldazabal Franco Ibanez Rabadan Uranga '00], [Ibanez Marchesano Rabadan '00], [Blumenhagen Kors Lust Ott '01], [Cvetič Shiu Uranga '01],
- F-theory [Krause Mayrhofer Weigand '12], [Cvetič Klevers Pena Oehlmann Reuter '15], [Lin Weigand '16], [Cvetič Lin Liu Oehlmann '18], [Cvetič Halverson Lin Liu Tian '19], ...

... including vector-like spectra

- Why vector-like spectra? Higgs fields matter & are characteristic feature of QFTs
- \bullet $E_8 imes E_8$: [Bouchard Donagi '05], [Braun He Ovrut Pantev '05], [Anderson Gray Lukas Palti '10 & '11], ...
- F-theory: [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

Martin Bies 2 / 17

Outline

In this talk

- Recent progress to understand vector-like spectra in F-theory
- Based on
 - Machine learning (c.f. L. Lin at String pheno 2020)
 - Analytic insights (Brill Noether theory, stratifications ...)
- Today: Focus on analytics

Outline

- Revision: How to count vector-like spectra in F-theory?
- Analytics of jumps

Martin Bies

Vector-like spectra in F-theory [M.B. Mayrhofer Pehle Weigand '14], [M.B. Mayrhofer Weigand '17], [M.B. '18]

- Gauge degrees **localized** on 7-branes $S \subset \mathcal{B}_3$
- Zero modes **localized** on matter curves $C_{\mathbf{R}} \subset S$
- G_4 -flux and matter surface S_R define line bundle \mathcal{L}_R on C_R
- Vector-like pairs:

massless chiral modes
$$\leftrightarrow h^0(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}})$$
 massless anti-chiral modes $\leftrightarrow h^1(C_{\mathbf{R}}, \mathcal{L}_{\mathbf{R}})$

- Typically, $h^i(C_R, \mathcal{L}_R)$ hard to determine:
 - By definition non-topological data
 - Oftentimes, L_R not pullback from B₃
 Coherent sheaves on B₃ ↔ Freyd categories [S. Posur '17], [M.B., S. Posur '19]
 - Deformation $C_{\mathbf{R}} \to C'_{\mathbf{R}}$ can lead to jumps

$$h^{i}(C_{R}, \mathcal{L}_{R}) = (h^{0}, h^{1}) \rightarrow h^{i}(C'_{R}, \mathcal{L}'_{R}) = (h^{0} + a, h^{1} + a)$$

Martin Bies 4 / 17

Strategy

Geometric setup

- Realistic F-theory geometries computationally too involved
- ⇒ Learn from simpler geometries first
 - Choice of geometry:

Curve
$$\leftrightarrow C(\mathbf{c}) = V(P(\mathbf{c}))$$
 hypersurface in dP_3

Line bundle
$$\leftrightarrow \mathcal{L}(\mathbf{c}) = \left. \mathcal{O}_{dP_3}(D_L) \right|_{\mathcal{C}(\mathbf{c})}$$

Challenge

Find $h^0(C(\mathbf{c}), \mathcal{L}(\mathbf{c})) \equiv h^0(\mathbf{c})$ as function of the complex structure \mathbf{c}

How to find $h^0(C(\mathbf{c}), \mathcal{L}) \equiv h^0(\mathbf{c})$?

• Pullback line bundle admits Koszul resolution:

$$0 \to \mathcal{O}_{dP_3}(D_L - D_C) \xrightarrow{P(\mathbf{c})} \mathcal{O}_{dP_3}(D_L) \to \mathcal{L} \to 0$$

Obtain long exact sequence in sheaf cohomology:

$$0 \longrightarrow H^{0}(D_{L} - D_{C}) \longrightarrow H^{0}(D_{L}) \longrightarrow H^{0}(\mathcal{L})$$

$$\downarrow H^{1}(D_{L} - D_{C}) \longrightarrow H^{1}(D_{L}) \longrightarrow H^{1}(\mathcal{L})$$

$$\downarrow H^{2}(D_{L} - D_{C}) \longrightarrow H^{2}(D_{L}) \longrightarrow 0 \longrightarrow 0$$

- ullet By exactness: $h^0(\mathcal{L}) = \ker(M_{\varphi}(\mathbf{c}))$
 - \Rightarrow Study ker $(M_{\varphi}(\mathbf{c}))$ as function of complex structure \mathbf{c}

Example: g = 3, $\chi = 1$ (d = 3)

•
$$C(\mathbf{c}) = V(P(\mathbf{c}))$$
 and $P(\mathbf{c}) = c_1 x_1^3 x_2^3 x_3^2 x_4 + \dots + c_{12} x_3^2 x_4 x_5^3 x_6^3$

• For $D_L = H + 2E_1 - 2E_2 - E_3$ find

$$0 \to H^0(\mathcal{L}) \to \mathbb{C}^3 \xrightarrow{M_{\varphi}(\mathbf{c})} \mathbb{C}^2 \to H^1(\mathcal{L}) \to 0 \,, \quad M_{\varphi} = \left(\begin{smallmatrix} c_3 & c_2 & c_1 \\ 0 & c_{12} & c_{11} \end{smallmatrix} \right)$$

• $h^0(\mathcal{L}) = 3 - \text{rk}(M_{\varphi}(\mathbf{c}))$ & stratification of curve geometries:

$\mathrm{rk}(M_\varphi)$	explicit condition	curve splitting
2	$(c_3c_{11}, c_3c_{12}, c_2c_{11} - c_1c_{12}) \neq 0$	C^1
1	$c_3 = 0$, $c_2 c_{11} - c_1 c_{12} = 0$	C ²
1	$c_1 = c_2 = c_3 = 0$	$B_2 \cup \mathbb{P}^1_b$
1	$c_{11}=c_{12}=0$	$\mathbb{P}^1_a \cup B_1$
0	$c_1 = c_2 = c_3 = c_{11} = c_{12} = 0$	$\mathbb{P}^1_a \cup A \cup \mathbb{P}^1_b$

Stratification diagram

Types of jumps

- ullet Brill-Noether theory: C^2 smooth, irreducible but line bundle divisor special
- ullet Curve splittings: Factoring off \mathbb{P}^1_a , \mathbb{P}^1_b leads to jump

Example 2: g = 5, $\chi = 0$ (d = 4)

•
$$P(\mathbf{c}) = c_1 x_1^3 x_2^4 x_3^2 x_4^2 + \dots + c_{16} x_3^3 x_4 x_5^4 x_6^3$$

$$D_1 = H + E_1 - 4E_2 + E_3$$

Koszul resolution gives

$$M_{\varphi} = \begin{pmatrix} c_{15} & c_{11} & c_{7} & 0 & 0 & 0 & 0 \\ 0 & c_{10} & c_{6} & c_{3} & c_{11} & c_{7} & 0 & 0 \\ 0 & c_{10} & c_{6} & c_{3} & c_{11} & c_{7} & 0 & 0 \\ c_{12} & c_{6} & c_{3} & 0 & c_{7} & 0 & 0 & 0 \\ 0 & c_{5} & c_{2} & 0 & c_{6} & c_{3} & c_{7} \\ c_{8} & c_{2} & 0 & 0 & c_{3} & 0 & 0 \\ 0 & c_{14} & c_{11} & c_{7} & 0 & 0 & 0 & 0 \\ 0 & c_{1} & 0 & 0 & c_{2} & 0 & c_{3} \end{pmatrix}$$

 \Rightarrow Study rk $(M_{\varphi}(\mathbf{c}))$ as function of \mathbf{c}

Example on torus $C_1\cong \mathbb{C}/\Lambda=\operatorname{Jac}(C_1)$

Example on torus $C_1 \cong \mathbb{C}/\Lambda = \operatorname{Jac}(C_1)$

$$G_0^0 = \{ \mathcal{L} , d = n = 0 \}$$

$$\cong \{ q \in \mathbb{C}/\Lambda , q \neq 0 \}$$

Example on torus $C_1 \cong \mathbb{C}/\Lambda = \operatorname{Jac}(C_1)$

$$(\mathcal{O}_{C_1}(p-q))=0$$
 \rightarrow

$$G_0^0 = \{ \mathcal{L} , d = n = 0 \}$$

 $\cong \{ q \in \mathbb{C}/\Lambda , q \neq 0 \}$
 $G_0^1 = \{ \mathcal{L} , d = 0, n = 1 \}$

$$G_0 \equiv \{\mathcal{L}, a \equiv 0, n \equiv 0\}$$

 $\cong \{q = 0 \in \mathbb{C}/\Lambda\}$

Example on torus $C_1 \cong \mathbb{C}/\Lambda = \operatorname{Jac}(C_1)$

$$G_0^0 = \{ \mathcal{L} , d = n = 0 \}$$

 $\cong \{ q \in \mathbb{C}/\Lambda , q \neq 0 \}$
 $G_0^1 = \{ \mathcal{L} , d = 0, n = 1 \}$
 $\cong \{ q = 0 \in \mathbb{C}/\Lambda \}$

General picture

- Abel-Jacobi map gives $\varphi_d \colon \mathrm{Div}_d(C) \to \mathrm{Jac}(C) \cong \mathbb{C}^g/\Lambda$
- $G_d^n = \{ \varphi_d(\mathcal{L}), h^0(\mathcal{C}, \mathcal{L}) = n \} \subseteq \operatorname{Jac}(\mathcal{C})$
- $\dim G_d^n \ge \rho(d, n, g) = g n \cdot (n + \chi)$
- ullet $\dim \mathcal{G}_d^n=
 ho$ for **generic** curves [1980 Griffiths, Harris]

Example on torus $C_1 \cong \mathbb{C}/\Lambda = \operatorname{Jac}(C_1)$

$$G_0^0 = \{ \mathcal{L} , d = n = 0 \}$$

 $\cong \{ q \in \mathbb{C}/\Lambda , q \neq 0 \}$
 $G_0^1 = \{ \mathcal{L} , d = 0, n = 1 \}$
 $\cong \{ q = 0 \in \mathbb{C}/\Lambda \}$

General picture

- Abel-Jacobi map gives $\varphi_d \colon \mathrm{Div}_d(C) \to \mathrm{Jac}(C) \cong \mathbb{C}^g/\Lambda$
- $G_d^n = \{ \varphi_d(\mathcal{L}), h^0(\mathcal{C}, \mathcal{L}) = n \} \subseteq \operatorname{Jac}(\mathcal{C})$
- $\bullet \ \dim \mathcal{G}_d^n \ge \rho(d, n, g) = g n \cdot (n + \chi)$
- \bullet $\dim \mathcal{G}_d^n =
 ho$ for **generic** curves [1980 Griffiths, Harris]

h ⁰	h^1	ρ
0	0	1
1	1	0
2	2	-3

Example on torus $C_1 \cong \mathbb{C}/\Lambda = \operatorname{Jac}(C_1)$

$$G_0^0 = \{ \mathcal{L} , d = n = 0 \}$$

 $\cong \{ q \in \mathbb{C}/\Lambda , q \neq 0 \}$
 $G_0^1 = \{ \mathcal{L} , d = 0, n = 1 \}$
 $\cong \{ q = 0 \in \mathbb{C}/\Lambda \}$

General picture

- ullet Abel-Jacobi map gives $arphi_d\colon \mathrm{Div}_d(\mathcal{C}) o \mathrm{Jac}(\mathcal{C})\cong \mathbb{C}^g/\Lambda$
- $G_d^n = \{ \varphi_d(\mathcal{L}), h^0(\mathcal{C}, \mathcal{L}) = n \} \subseteq \operatorname{Jac}(\mathcal{C})$
- $\dim G_d^n \ge \rho(d, n, g) = g n \cdot (n + \chi)$
- ullet dim $\mathcal{G}_d^n=
 ho$ for **generic** curves [1980 Griffiths, Harris]
- \Rightarrow Upper bound for h^0 on generic curves [Watari, 16]

h^0	h^1	ρ
0	0	1
1	1	0
2	2	-3

Gluing *local* sections

Gluing *local* sections

Gluing local sections

Martin Bies

Gluing *local* sections II

Gluing *local* sections II

Gluing *local* sections II

Martin Bies

Quality assessment of counting procedure

- Quick: Uses only topological data (genus, chiral index)
- But: Relative position of bundle divisor and intersections of curve components matters [Cayley 1889, Bacharach 1886]
- ⇒ Systematically **over**estimates # of independent conditions
- ⇒ Obtain underestimate # of global sections
 - Application to our data base:
 - 83 pairs (D_C,D_L) with complex structure deformations: $\sim 1.8 \times 10^6$ data sets
 - ullet Counting procedure can be applied to $\sim 38\%$
 - Accuracy \sim 98.5%
 - Lead-offs:
 - Sufficient conditions for jump
 - 2 Algorithmic h^0 -spectrum estimate

https://github.com/homalg-project/SheafCohomologyOnToricVarieties

- Estimate h^0 -spectrum from lower bounds at subset of nodes
- Implemented in package H0Approximator

Martin Bies

https://github.com/homalg-project/SheafCohomologyOnToricVarieties

- Estimate h^0 -spectrum from lower bounds at subset of nodes
- Implemented in package H0Approximator
- Caveat: Check that \widetilde{C} is irreducible

Martin Bies

Summary

- Computing vector-like spectra in global F-theory models is hard
- We study how vector-like spectrum changes over moduli space of curve (→ qualitatively different from prevous bundle cohomology studies)
- Insights from interplay between
 - Machine learning techniques (decision trees)
 - Analytic insights (Brill-Noether theory, stratification diagrams)
- Finding in dP_3 : Factor off (rigid) \mathbb{P}^1 s \leftrightarrow jumps
- Results:
 - Formulate sufficient condition for jump
 - 2 Implement quick (mostly based on topological data) h^0 -spectrum approximator

H0Approximator: https://github.com/homalg-project/SheafCohomologyOnToricVarieties/

Martin Bies

Outlook

- Technical extensions:
 - non-pullback bundle and "fractional" bundles
 - stratification for several curves in one global F-theory model
- Conceptual:
 - Vector-like spectra for pseudo-real representations
 - Non-vertical G₄ (flux moduli dependence!)
 - (Geometric) symmetries protecting vector-like pairs
- Practical:
 - model building
 - (S)CFTs
 - swampland program

Thank you for your attention!

Martin Bies