7. Trigonometrische Funktionen

## Rechtwinklige Dreiecke

#### Bezeichnungen in rechtwinklingen Dreiecken

Allgemein:



Figure 1: Dreieck

### Im Bezug auf die Winkel:



Figure 2: Dreieck

## Beobachtung





AB =

#### Definition: Sinus

Gegeben: – rechtwinkliges Dreieck ABC – Winkel  $\alpha,\beta,\gamma=90^\circ$  Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Hyopthenuse

$$\sin(\alpha) = \frac{\text{Gegenkathete zu } \alpha}{\text{Hypothenuse}}$$

### Definition: Sinus

Gegeben: – rechtwinkliges Dreieck ABC – Winkel  $\alpha,\beta,\gamma=90^\circ$  Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Hyopthenuse

$$\sin(\alpha) = \frac{\text{Gegenkathete zu } \alpha}{\text{Hypothenuse}}$$

#### Definition: Kosinus

Gegeben: - rechtwinkliges Dreieck ABC - Winkel  $\alpha,\beta,\gamma=90^\circ$  Der Sinus eines Winkels ist das Verhältnis der Länge der Ankathete zur Länge der Hyopthenuse

$$\cos(\alpha) = \frac{\mathsf{Ankathete} \ \mathsf{zu} \ \alpha}{\mathsf{Hypothenuse}}$$

## Definition: Tanges

Gegeben: - rechtwinkliges Dreieck ABC - Winkel  $\alpha,\beta,\gamma=90^\circ$  Der Sinus eines Winkels ist das Verhältnis der Länge der Gegenkathete zur Länge der Ankathete

$$\tan(\alpha) = \frac{\mathsf{Gegenkathete} \ \mathsf{zu} \ \alpha}{\mathsf{Ankathete} \ \mathsf{zu} \ \alpha}$$

### Sinus, Kosinus und Tangens am Einheitskreis

- Einheitskreis := Kreis um den Ursprung mit Radius 1
- ullet Zu jedem Punkt P auf dem Kreis gibt es ein rechtwinkliges Dreieck
- Länge der Hypothenus ist 1.



## Sinus, Kosiunsfunktion und Tangensfunktion im Dreieck



#### Definition: Sinusfunktion im Dreieck

### Gegeben:

-rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Sinus zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Sinusfunktion** 

### Funktionsgraph der Sinus-Funktion:

 $sin(\alpha)$  in Grad



#### Definition: Kosinusfunktion im Dreieck

#### Gegeben:

-rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Kosinus zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Kosinusfunktion** 

### Funktionsgraph der Kosinus-Funktion:



### Definition: Tangensfunktion im Dreieck

Gegeben:

-rechtwinkliges Dreieck ABC

Die Abbildung, die jeder Winkelgröße den Tangens zum Winkel im zugehörigen rechtwinkligen Dreieck zuordnet, heißt **Tangensfunktion** 

### Funktionsgraph der Tangens-Funktion:



# Bogenmaß



## Folgerung

Damit lässt sich wie folgt auch zu jeder reelen Zahl x ein Wert  $\sin(x), \cos(x)$  bzw.  $\tan(x)$  zuordnen:

$$\begin{array}{ccc}
\alpha & \rightarrow \sin(\alpha) \\
\downarrow & = \\
x & \rightarrow \sin(x)
\end{array}$$

### Winkelfunktionen

### Sinus-Funktion

- Defintionsmenge:  $\mathbb{R}$
- Wertemenge:  $W = \{f(x) | -1 \le f(x) \le 1\}$
- periodisch
- Periode  $2\pi$
- punktsymmetrisch zum Ursprung





### Kosinus-Funktion

- Defintionsmenge: ℝ
- Wertemenge:  $W = \{f(x) | -1 \le f(x) \le 1\}$
- periosisch
- Periode  $2\pi$
- achsensymmetrisch zur y-Achse





## Verschieben der Sinusfunktion entlang der y-Achse

Funktionsgleichung:

$$f(x) = \sin(x) + d$$

## Verschieben der Sinusfunktion entlang der y-Achse

### Funktionsgleichung:

$$f(x) = \sin(x) + d$$

### Beipsiel

$$f(x) = \sin(x) - 2$$



## Verschieben entlang der x-Achse

Funktionsgleichung:

$$f(x) = \sin(x - c)$$

Man nennt c auch Phase.

## Verschieben entlang der x-Achse

Funktionsgleichung:

$$f(x) = \sin(x - c)$$

Man nennt c auch Phase.

## Beipsiel

$$f(x) = \sin(x-1)$$



## Beobachtung

$$f(x) = \sin(x - 2 \cdot \pi) = \sin(x + 2 \cdot \pi) = \cos(x)$$

## Beobachtung

$$f(x) = \sin(x - 2 \cdot \pi) = \sin(x + 2 \cdot \pi) = \cos(x)$$



## Strecken / Stauchen

Funktionsgleichung:

$$f(x) = a \cdot \sin(x)$$

a nennt man Amplitude (= Ausschlag)

### Strecken / Stauchen

Funktionsgleichung:

$$f(x) = a \cdot \sin(x)$$

a nennt man Amplitude (= Ausschlag)

## Beipsiel

$$f(x) = 3 \cdot \sin(x)$$



### Periode verändern

Funktionsgleichung:

$$f(x) = \sin(b \cdot x)$$

Das Verhältnis

$$p = \frac{2\pi}{b}$$

nennt man Periode.

#### Periode verändern

Funktionsgleichung:

$$f(x) = \sin(b \cdot x)$$

Das Verhältnis

$$p = \frac{2\pi}{b}$$

nennt man Periode.

## Beispiel

$$f(x) = \sin(2 \cdot x)$$



## Beipsiel

$$f(x) = \sin\left(\frac{1}{3} \cdot x\right)$$

## Beipsiel

$$f(x) = \sin\left(\frac{1}{3} \cdot x\right)$$



## Spiegeln an der x-Achse

## Funktionsgleichung:

$$f(x) = -\sin(x) = \sin(-x)$$





### Allgemeine Sinus-Funktion

Definition:  $a,b,c,d\in\mathbb{R}$  Der Graph der Funktion

$$g(x) = a \cdot \sin(b(x - c)) + d$$

geht aus der Funktion

$$f(x) = \sin(x)$$

hervor, indem - f um |a| in y-Richtung gestreckt wird. Die Amplitude ist: A=|a| - f um Faktor  $\frac{1}{b}$  in x-Richtung gestreckt wird. - f um c in x-Richtung und um d in y-Richtung verschoben wird.

### Bemerkung

Analoge Aussagen gelten auch für die Kosinus-Funktion.

Der Graph der Kosinus-Funktion geht aus dem Graph der Sinus-Funktion durch Verschiebung in x-Richtung um  $-\frac{\pi}{2}$  hervor.