Modelos de Computación (2015-2016)

Grado en Ingeniería Informática Universidad de Granada

Práctica 3

José Carlos Martínez Velázquez

4 de noviembre de 2015

1. Construir un AFND capaz de aceptar una cadena u $\in \{0,1\}^*$

a) que comience con la subcadena 011.

b) que contenga la subcadena 011.

c) que contenga, simultáneamente, las subcadenas 011 y 100. Este AFND también acepta cadenas en la que estas subcadenas están solapadas (por ejemplo, la cadena "01100").

Aquí vamos a definir algunos casos para no perdernos. Tendremos cuatro casos posibles: dos donde las cadenas son independientes y otros dos donde las cadenas están solapadas.

- Caso A: u011v100w. Cualquier palabra que contenga primero 011 y luego 100 sin solapar. u,v,w pueden ser ε
- Caso B: u100v011w. Cualquier palabra que contenga primero 100 y luego 011 sin solapar. u,v,w pueden ser ε
- Caso C: u
10011v. Cualquier palabra que contenga primero a 100 y luego a 011 solapando el 0. u,
v pueden ser ε
- Caso D: u
01100v. Cualquier palabra que contenga primero a 011 y luego a 100 solapando el 1. u,
v pueden ser ε

2. Obtener un AFD equivalente al AFND siguiente:

- 3. Construir un AFD a partir de las siguientes expresiones regulares. El problema se puede resolver bien diseñando directamente el AFD, o resolverlo partiendo del AFND y posteriormente obtener el AFD equivalente.
 - a) $(ab)^*b^*$

a.1) b^*

a.2) $(ab)^*$

a.3) ε -AFND completo Dado que si aplicamos concatenacion pura tendríamos dos módulos de generación de símbolos b (b*), y que la palabra puede finalizar con 0 o más símbolos b, vamos a suprimir el último módulo b* y nos quedará los siguiente:

a.4) AFD puro:

 $\mathbf{b)} \ (\mathbf{b}\mathbf{b}^*\mathbf{a})^*\mathbf{b}$

b.1) b

b.2) $(bb^*a)^*$

b.3) ε -AFND completo:

b.4) AFD Puro:

c)
$$(a + b)^+(ab)^+b^+$$

c.1)
$$b^+$$

c.2) $(ab)^+$

c.3) $(a+b)^+$

c.4) ε -AFND completo

c.5) AFD Puro

Aunque sea tan tedioso de calcular, el AFD puro resultante es el siguiente:

