2	(2)	State Newton's second law of motion.
_	(a)	State Newton's Second law of motion.

(b) A constant resultant force *F* acts on an object A. The variation with time *t* of the velocity *v* for the motion of A is shown in Fig. 2.1.

Fig. 2.1

The mass of A is 840 g.

Calculate, for the time t = 0 to t = 4.0 s,

(i) the change in momentum of A,

change in momentum = $.....kg m s^{-1}$ [2]

(ii) the force F.

F =N [1]

(c) The force F is removed at $t = 4.0 \, \text{s}$. Object A continues at constant velocity before colliding with an object B, as illustrated in Fig. 2.2.

Fig. 2.2

Object B is initially at rest. The mass of B is 730 g. The objects A and B join together and have a velocity of $4.7\,\mathrm{m\,s^{-1}}$.

(i) By calculation, show that the changes in momentum of A and of B during the collision are equal and opposite.

(ii)	Explain how the answers obtained in (i) support Newton's third law.
	[2]
(iii)	By reference to the speeds of A and B, explain whether the collision is elastic.
	[1]

[2]

[Total: 9]