Lecture 23: Regular and rational functions 24 March 2021
Lecture 23: Regular and rational functions 24 March 2021 14:30 Definition: Let X be a variety over an algorised field k. The elements of the coordinate oring are called regular functions on X. Let X be a variety over an algorised field k.
It is at the coordinate ging are called regular
The Elements of Grand
purchions the function on X is a function from
Another way: Tregular I believe and
X to k given by polyton
A X is some as morphisms, from X to A k
i.e. reg functions on 1
k-alg homo k(x) -> O(x)
functions on X. Another way: regular function on X is a function from Another way: regular function on X is a function from X to k given by polynomials A is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is same as morphisms, from X to A k i.e. reg functions on X is also called ring of regular functions of O(X)
VI WA
they define a morphism ((P))
they define a morphism A: X -> (P)
Because $f^{\sharp}: k[y_1, y_m] \longrightarrow O(x)$ defines a
Because $f^*: k[y_1, y_m] \longrightarrow O(x)$ defines a $y_i \longmapsto f_i$ $1 \le i \le m$
y; Fi siem
y; Fi siem
kalg homo. Let PEX i.e. Mp is a max ideal of O(X)
kalg homo. Let $P \in X$ i.e. M_P is a max ideal of $O(X)$ Claim: $f^{\#^-}(M_P) = (J_1 - J_1(P),, J_m - J_m(P))$
kealg homo. Let $P \in X$ i.e. M_p is a max ideal of $O(X)$ Claim: $f^{\#'}(M_p) = (y_1 - y_1 - y_2 - y_1 - y_2 - y_1 - y_2 - y_2 - y_2 - y_3 - y_4 - y_4 - y_5 - y_5 - y_5 - y_6 $
kalg homo. Let PEX i.e. Mp is a max ideal of O(X)
kealg homo- Let PEX i.e. Mp is a max ideal of O(X) Claim: $f^{\#'}(m_{P}) = (y_{1} - f_{1}(P), -y_{2} - f_{2}(P))$ $f^{\#}(x_{1}, y_{2}, y_{3}) \longrightarrow f_{1}(x_{2}, y_{3}, y_{4})$ $f^{\#}(x_{2}, y_{3}, y_{4}) \longrightarrow f_{2}(x_{3}, y_{4}, y_{5}, y_{5}, y_{5}, y_{6}, $
kalg homo. Let PEX i.e. Mp is a max ideal of O(X) Claim: $f^{\#'}(M_{P}) = (y_{1} - f_{1}(P), -1, y_{m} - f_{m}(P))$ $f^{\#}: k[y_{1}, y_{m}] \longrightarrow O'(X) \longrightarrow O(X)/M_{P} = k$ $f^{\#}: k[y_{1}, y_{m}] \longrightarrow f_{1}(mod m_{P})$ $f^{\#}: k[y_{1}, y_{m}] \longrightarrow f_{2}(mod m_{P})$
kealg homo- Let PEX i.e. Mp is a max ideal of O(X) Claim: $f^{\#'}(m_{P}) = (y_{1} - f_{1}(P), -y_{2} - f_{2}(P))$ $f^{\#}(x_{1}, y_{2}, y_{3}) \longrightarrow f_{1}(x_{2}, y_{3}, y_{4})$ $f^{\#}(x_{2}, y_{3}, y_{4}) \longrightarrow f_{2}(x_{3}, y_{4}, y_{5}, y_{5}, y_{5}, y_{6}, $

Def: A rational faction on an affine variety X is an element of the field of fractions of $O(X)$. This fraction field is also called the function field of X and is denoted by $k(X)$.
The function from $f(x) = k(x_1, x_2)$, $k(x) = k(x_1, x_2)$ Eg: $X = A^2$, $O(X) = k(x_1, x_2)$, $k(X) = k(x_1, x_2)$ $f: \frac{x_1}{x_2} \in k(X)$. Note f is not a function on X
$1: A \setminus \{x = 0\} \longrightarrow k$ is a f
B) So a retional function on X is a regular function on a nonempty open affine variety of X.
Note $A^2 \setminus \{x_2 = 0\}$ is on affine variety with countries $k[x_1, x_2, x_3] = k[x_1, x_2, \frac{1}{x_2}]$
More generally, a rational map from an affine variety / wo an affine variety Y is a morphism from a nonempty affine open subset of X to Y and it is denoted by f: X> Y.
They define a rational map from X to A.
(B) Every nonempty open subset of an affine variety is dense.
X is isseed. Then US D = X then
X is isseed. Then US U = X then is closed & X = X · U U U & X · U is closed & X = X · U U U diff from X contradicting X is isseed.

PI we think of X = mspec (R) for some k-algebra
R. Then for $f \in R$, the function defined
by f from X to k is given by $f: X \longrightarrow k$ $M \longmapsto f \pmod{m} \quad i.e. R \rightarrow Rm$ $f \mapsto f \pmod{m}$

Def': Let f be a sath function on a variety X. f is said to be regular at a point $P \in X$ if $\exists g, h \in O(X)$ sit. $f = \frac{g}{h}$ and $h(P) \neq 0$.

Domain of $f := \{P \in X | f \text{ is signlar at } P\}$

'trop: Let X be an affine variety and fek(X). i) Domain of of is an open dense subset of X. 2) domain(f) = $X \iff f \in O(X)$. (3) domain (f) $\supseteq X_h := \{P \in X \mid h(P) \neq \emptyset\}$ for $h \notin O(X)$ iff fe O(x)[h] = k(x) 4: fek(x), let I= (k[x]:f)= {9 = k[x]/9 + = k[x]} I is a nonzoro ideal of O(X) (= k[X]) if $f = \frac{f_1}{f_2}$ where then $f_1 \in I$ then $f_2 \in I$ then $f_3 \in I$ Claim: PEV(I) iff f is not regular at P.

Suppose f= 9 with 9, h + k[x] & hPHD. But h EI (: h + HX) (:;PEVII) h(P) = 0. So f is not regular af P. Conversely, if f is not regular at P and heT then hif $\in k[X]$, Hence h(P) = 0 (if $= \frac{q}{h}$)

A lisurt siece A (is not neg at P) $=) \qquad P \in V(I).$ clain = 1 Since I to => V(I) & X,

Domain (b)=X, let I=(k[x]: b) then $V(I) = \phi \qquad \exists = k[X]$ $X = V(P) P \subseteq k[X_1,...,X_n], k = \overline{k}$ $|X[X] = |X[X_1, -1, X_n]/p$ $I \subseteq k(X) \Longrightarrow \widehat{I} \subseteq k[X_{17}-x_{17}]$ containing P ideal $V(I) = V(\tilde{I})$ \mathcal{L} J= K[x]

(3) Exc