Lenguaje SQL: Parte III

Base de Datos

Mónica Caniupán mcaniupan@ubiobio.cl

Universidad del Bío-Bío

2020

Contenidos

- Valores Nulos
- Reuniones Externas

Valores Nulos

- En la práctica los valores de las columnas pueden ser desconocidos
- Ejemplo: Consideremos la siguiente relación:

PERSONAS					
ID NOMBRE EDAD NOMBRECONYUGE					
11 Pedro 21 Maria					
12 Luis 22 Sandra					
13	Juan	20	Paola		

- Se desea insertar una tupla en la relación pero:
 - No conocemos la edad de una persona. ¿Qué valor le asignamos al atributo EDAD?
 - ¿Qué valor le asignamos al atributo NOMBRECONYUGE si la nueva persona es soltera?

Valores Nulos

- SQL ofrece un valor especial para las columnas denominado NULL (nulo) para emplearlo en estas situaciones
- El valor *NULL* significa *desconocido* o *no aplicable*
- La siguiente operación es válida: INSERT INTO PERSONAS VALUES(14, 'Enrique', NULL, NULL)
- Sin embargo, los valores nulos en las bases de datos producen un impacto en la evaluación de consultas

Comparaciones que Emplean Valores Nulos

Consideremos una comparación como Edad = 20 evaluada sobre la siguiente relación:

PERSONAS							
ID	NOMBRE EDAD NOMBRECONYUGE						
11	Pedro	21	Maria				
12	Luis	22	Sandra				
13	Juan	20	Paola				
14	Enrique	NULL	NULL				

■ ¿Es la condición *Edad* = 20 verdadera o falsa en la fila de *Enrique*?

Comparaciones que Emplean Valores Nulos

- El resultado debería ser desconocido
- De hecho éste es el caso para cualquier comparación con operadores $\{<,>,=,\neq\}$, que involucre valores nulos
- Más aún, si comparamos dos valores nulos con $\{<,>,=,\neq\}$ el resultado siempre es *desconocido*
- SQL ofrece el operador de comparación especial IS NULL para verificar si el valor de un atributo es NULL
- Por ejemplo, EDAD IS NULL evaluado en la fila de Enrique es verdadero
- También se puede usar IS NOT NULL, e.g. EDAD IS NOT NULL evaluado en la fila de Enrique es falso

Operaciones Booleanas con Nulos

- Consideremos la tupla con nulos PERSONA(14,Enrique,NULL,NULL)
 - EDAD > 20 OR NOMBRE =' Enrique'
 es verdadero, porque NOMBRE =' Enrique' es verdad
 - EDAD > 20 OR NOMBRE = 'Pedro'
 es desconocido porque la primera comparación es desconocido y la segunda es falsa
- En la presencia de valores nulos, hay que definir los operadores lógicos AND,OR y NOT mediante una lógica de tres valores en la que las expresiones toman el valor de verdadero, falso o desconocido

Operaciones Booleanas con Nulos

- NOT desconocido es desconocido
- OR de dos argumentos es:
 - verdadero si uno de los argumentos es verdadero
 - desconocido si uno de los argumentos es falso y el otro es desconocido
 - falso si los dos argumentos son falsos
- AND de dos argumentos es:
 - falso si uno de los argumentos es falso
 - desconocido si uno de los argumentos es desconocido y el otro es verdadero o desconocido
 - verdadero si los dos argumentos son verdaderos

Consecuencias para las Estructuras de SQL

- Duplicidad de tuplas: Dos tuplas de una relación se consideran iguales si sus atributos tienen el mismo valor o ambas contienen nulos
 - Sin embargo, si comparamos dos valores nulos usando el símbolo de igualdad obtenemos desconocido (NULL = NULL es siempre desconocido)
- Los operadores aritméticos $\{+,-,*,/\}$ retornan *NULL* si uno de los argumentos es *NULL*
- Comportamientos inesperados de las operaciones de agregación:
 - COUNT(*) maneja el valor NULL como cualquier otro valor
 - Todas las demás operaciones de agregación COUNT, SUM, AVG, MIN MAX y las variaciones usando DISTINCT descartan los valores nulos
 - Como caso especial, si uno de estos operadores, que no sea COUNT, se aplica sólo a valores nulos, el resultado es NULL

Ejemplo: Operaciones con NULL

Consideremos la siguiente relación:

PERSONAS					
ID	ID NOMBRE EDAD NOMBRECONYUGE				
11	Pedro	21	Maria		
12	Luis	22	Sandra		
13	Juan	20	Paola		
14	NULL	NULL	NULL		

La respuesta a:

SELECT COUNT (*) FROM PERSONAS es 4

La respuesta a:

SELECT SUM(EDAD) FROM PERSONAS es 63

Evitando los Valores Nulos

- SQL nos permite prohibir que ciertos atributos tomen valores nulos
- Esta restricción se especifica en la definición de atributos:

CREATE TABLE
EDAD INTEGER NOT NULL

...

■ Para cada atributo clave existe una restricción NOT NULL implícita

Contenidos

- √ Valores Nulos
- Reuniones Externas

Variantes de Joins

- SQL soporta algunas variedades interesantes de la operación join que aprovechan los valores nulos, las que se denominan Outer Joins
- Considere la siguiente operación: Navegantes ⋈_{idn=idn} Reservas

Navegantes					
idn	nombre	edad	categoria		
22	Pedro	45	4		
23	Andres	35	6		
33	Loreto	31	6		
29	Natalia	40	7		
30	Esteban	50	8		

Reservas						
idn	idb	fecha				
23	102	10.11.00				
22	102	10.11.00				
33 101 05.01.02						

El resultado es:

idn	nombre	edad	categoria	idn	idb	fecha
22	Pedro	45	4	22	102	10.11.00
23	andres	35	6	23	102	10.11.00
33	Ioreto	31	6	33	101	05.01.02

Variantes de Joins

- Sin embargo, podría ser interesante mantener las tuplas de *Navegantes* que no tienen reservas en el resultado. Para esto usamos el Outer Join
- Con Outer Join, las tuplas que no tienen reservas aparecen en el resultado del join y los atributos correspondientes a reservas toman valores nulos
- Existen tres variantes de Outer Join:
 - 1 Left outer join
 - 2 Right outer join
 - 3 Full outer join

LEFT OUTER JOIN

Consideremos la consulta:

SELECT *
FROM Navegantes NATURAL LEFT OUTER JOIN RESERVAS

■ El resultado es:

idn	nombre	edad	categoria	idn	idb	fecha
22	Pedro	45	4	22	102	10.11.00
23	andres	35	6	23	102	10.11.00
33	Ioreto	31	6	33	101	05.01.02
29	natalia	40	7	NULL	NULL	NULL
30	esteban	50	8	NULL	NULL	NULL

RIGHT OUTER JOIN

■ Consideremos las siguientes relaciones:

Reservas				
idn idb fecha				
23	102	10.11.00		
22	102	10.11.00		
33	101	05.01.02		

	Botes					
idb	nombreb	color				
101	marino	azul				
102	inter-lagos	rojo				
103	clipper	verde				
104	inter-lagos	rojo				

SELECT *
 FROM Reservas NATURAL RIGHT OUTER JOIN Botes

idn	idb	fecha	idb	nombreb	color
23	102	10.11.00	102	inter-lagos	rojo
22	102	10.11.00	102	inter-lagos	rojo
33	101	05.01.02	101	marino	azul
NULL	NULL	NULL	103	clipper	verde
NULL	NULL	NULL	104	inter-lagos	roio

FULL OUTER JOIN

■ Consideremos las siguientes relaciones:

	Reservas				
idn	idn idb fecha				
23	102	10.11.00			
22	102	10.11.00			
33	101	05.01.02			
33	106	06.01.02			

Botes					
101	marino	azul			
102	inter-lagos	rojo			
103	clipper	verde			
104	inter-lagos	rojo			

SELECT *
 FROM Reservas NATURAL FULL OUTER JOIN Botes

idn	idb	fecha	idb	nombreb	color
23	102	10.11.00	102	inter-lagos	rojo
22	102	10.11.00	102	inter-lagos	rojo
33	101	05.01.02	101	marino	azul
NULL	NULL	NULL	103	clipper	verde
NULL	NULL	NULL	104	inter-lagos	rojo
33	106	06.01.02	NULL	NULL	NULL