Group 3: Regression

Content:

- 1. Introduction
- 2. Our Dataset
- 3. Comparison of Regression Models
 - i. Least Squares
 - ii. Least Angle
 - iii. Partial Least Squares
 - iv. Ridge Regression
 - v. Lasso

1. Introduction

- Our data set and model selection are based on the book "The elements of statistical Learning"
- Our group focuses on linear regression problems
- ullet A linear regression model is denoted function as E(Y|X)
 - $\circ \; Y$ is the continuous output space on R
 - $\circ X$ is the input space where an instance is a vector ${f x}$ containing multiple measurements
- Benefits:
 - The trained models are interpretable
 - Reasonable performance on problems with sparse or low signal-to-noise data

1.i Basic idea behind regression

- S(a): Sum of squared residuals
- $egin{aligned} ullet S(a) &= \Sigma_{i=1}^N (y_i a^T x_i)^2 \ &= (y Xa)^t (y Xa) \end{aligned}$
- Optimal line be reducing S(a)
- $a^* = arg \min_a S(a) \Rightarrow \nabla S(a) = 0$
- Problems:
 - Heavily influcened by outlies
 - Tends to overfit

2. Our Dataset

- Generate data set
- TODO: Jonny

3. Comparison of Regression Models

- 1. Implement models using python libraries
- 2. Implement selected models from scratch
- 3. Evaluate and compare the implemented models

3.i Least Angle

3.ii Partial Least Squares

3.iii Ridge Regression

• TODO: Jerome

3.iv Lasso

• TODO: Jerome

3.v Locally Weighted Regression (LWR)

- Linear regression: $S(a) = (y Xa)^T (y Xa)^T$
- weighted regression:
 - certain data points get more weight than others

$$\circ S(a) = (y - Xa)^T W(y - Xa)^T$$

- Locally weighted regression:
 - Idea: local points weight points in proximity higher
 - in total E independent weighted regressions

$$\circ \ S(a) = (y-Xa)^T W_E(y-Xa)^T$$

$$\circ$$
 e.g. $w_i = e^{rac{-(x_i-x)^2}{2 au^2}}$

3.vi Radial Basis Function Regression (RBFR)

- Idea: transform data into a higher dimension and then perform linear regression
- basis function: depends on distance to centre
- radial basis function: $\phi(x) = \phi(||x||)$
- linearly combine set of linear basis functions
- $S(a) = (y \Phi(X)w)^T(y \Phi(X)w)$

4. Evaluation

- TODO: Jerome
- Scores
- Performance test

5. Literature