CONTROL

Disturbances

Model:
relationship between inputs and outputs
for example:
differential equations
transfer functions

Open loop control

References

sensitive to model errors and disturbances

accuracy determined by control object model

Closed loop control

Stability

Accuracy determined by sensor accuracy

Classic Controllers

- P-controller
- I-controller
- D-controller
- PI-controller
- PD-controller
- PID-controller

DC-MOTOR

Linear DC-motor Model

V_a	armature voltage
R	armature resistance
L	armature inductance
kt	torque constant
J	rotor inertia
f	viscous friction
ke	back EMF constant

Open loop motor control

Step response open loop

P-control of motor

Step response P-control

PI-control of motor

Step response PI-control

Direction control of vehicle

Figure 1. Vehicle

(1)

The angle θ is calculated using odometry. The vehicle direction is controlled by a proportional controller:

 $\omega = k(\theta - \theta_r)$, where ω is the angular velocity of the vehicle

Line control of vehicle

Driving along the x axis with distance I and angle θ the line sensor value is given a

Figure 9. Line sensor kinematics

$$ls=-(dsin(\theta)+1)/cos(\theta)$$

for $-90^{\circ} < \theta < 90^{\circ}$

where d is the distance from the line sensor to the turning centre of the smr, ls is the the line sensor.

Test the validity of the expression by

- a) putting the vehicle on the line and
- b) setting θ to 0.

Line sensor control

 θ '=K*ls and constant forward speed