M53 - Partie 1

septembre 2016

- b Un ensemble \mathcal{P} peut être considéré comme un plan s'il est « naturellement » isomorphe à \mathbb{R}^2 . Dans ce cas, les éléments de \mathcal{P} sont appelés des points ou des vecteurs en fonction du contexte.
- Si on fixe un isomorphisme entre un plan P et R², à tout point (vecteur) M ∈ P on fait correspondre un couple de nombres (x, y) appelé coordonnées (cartésiennes) de M.
- Ainsi toute notion de R² peut être « transportée » à P : droites, cercles, distances, produit scalaire, angles, ...
- L'application $(\rho, \theta) \mapsto (\rho \cos(\theta), \rho \sin(\theta))$ est une surjection de $\mathbb{R}_+ \times \mathbb{R}$ sur \mathbb{R}^2 . Ainsi la donnée d'un couple (ρ, θ) , appelé *coordonnées polaires*, détermine un unique point de \mathbb{R}^2 (et ainsi éventuellement de \mathcal{P}).

- ► Un ensemble P peut être considéré comme un plan s'il est « naturellement » isomorphe à R². Dans ce cas, les éléments de P sont appelés des points ou des vecteurs en fonction du contexte.
- ▶ Si on fixe un isomorphisme entre un plan \mathcal{P} et \mathbb{R}^2 , à toute point (vecteur) $M \in \mathcal{P}$ on fait correspondre un couple de nombres (x, y) appelé coordonnées (cartésiennes) de M.
- Ainsi toute notion de \mathbb{R}^2 peut être « transportée » à \mathcal{P} : droites, cercles, distances, produit scalaire, angles, ...
- L'application $(\rho, \theta) \mapsto (\rho \cos(\theta), \rho \sin(\theta))$ est une surjection de $\mathbb{R}_+ \times \mathbb{R}$ sur \mathbb{R}^2 . Ainsi la donnée d'un couple (ρ, θ) , appelé *coordonnées polaires*, détermine un unique point de \mathbb{R}^2 (et ainsi éventuellement de \mathcal{P}).

- ▶ Un ensemble \mathcal{P} peut être considéré comme un *plan* s'il est « naturellement » isomorphe à \mathbb{R}^2 . Dans ce cas, les éléments de \mathcal{P} sont appelés des *points* ou des *vecteurs* en fonction du contexte.
- Si on fixe un isomorphisme entre un plan \mathcal{P} et \mathbb{R}^2 , à tout point (vecteur) $M \in \mathcal{P}$ on fait correspondre un couple de nombres (x, y) appelé *coordonnées* (*cartésiennes*) de M.
- Ainsi toute notion de \mathbb{R}^2 peut être « transportée » à \mathcal{P} : droites, cercles, distances, produit scalaire, angles, ...
- L'application $(\rho, \theta) \mapsto (\rho \cos(\theta), \rho \sin(\theta))$ est une surjection de $\mathbb{R}_+ \times \mathbb{R}$ sur \mathbb{R}^2 . Ainsi la donnée d'un couple (ρ, θ) , appelé *coordonnées polaires*, détermine un unique point de \mathbb{R}^2 (et ainsi éventuellement de \mathcal{P}).

- ▶ Un ensemble \mathcal{P} peut être considéré comme un *plan* s'il est « naturellement » isomorphe à \mathbb{R}^2 . Dans ce cas, les éléments de \mathcal{P} sont appelés des *points* ou des *vecteurs* en fonction du contexte.
- Si on fixe un isomorphisme entre un plan \mathcal{P} et \mathbb{R}^2 , à tout point (vecteur) $M \in \mathcal{P}$ on fait correspondre un couple de nombres (x, y) appelé *coordonnées* (*cartésiennes*) de M.
- Ainsi toute notion de \mathbb{R}^2 peut être « transportée » à \mathcal{P} : droites, cercles, distances, produit scalaire, angles, ...
- L'application $(\rho, \theta) \mapsto (\rho \cos(\theta), \rho \sin(\theta))$ est une surjection de $\mathbb{R}_+ \times \mathbb{R}$ sur \mathbb{R}^2 . Ainsi la donnée d'un couple (ρ, θ) , appelé *coordonnées polaires*, détermine un unique point de \mathbb{R}^2 (et ainsi éventuellement de \mathcal{P}).

- ▶ Un ensemble \mathcal{P} peut être considéré comme un *plan* s'il est « naturellement » isomorphe à \mathbb{R}^2 . Dans ce cas, les éléments de \mathcal{P} sont appelés des *points* ou des *vecteurs* en fonction du contexte.
- Si on fixe un isomorphisme entre un plan \mathcal{P} et \mathbb{R}^2 , à tout point (vecteur) $M \in \mathcal{P}$ on fait correspondre un couple de nombres (x, y) appelé *coordonnées* (*cartésiennes*) de M.
- ▶ Ainsi toute notion de \mathbb{R}^2 peut être « transportée » à \mathcal{P} : droites, cercles, distances, produit scalaire, angles, ...
- L'application $(\rho, \theta) \mapsto (\rho \cos(\theta), \rho \sin(\theta))$ est une surjection de $\mathbb{R}_+ \times \mathbb{R}$ sur \mathbb{R}^2 . Ainsi la donnée d'un couple (ρ, θ) , appelé *coordonnées polaires*, détermine un unique point de \mathbb{R}^2 (et ainsi éventuellement de \mathcal{P}).

- ▶ Un ensemble \mathcal{P} peut être considéré comme un *plan* s'il est « naturellement » isomorphe à \mathbb{R}^2 . Dans ce cas, les éléments de \mathcal{P} sont appelés des *points* ou des *vecteurs* en fonction du contexte.
- Si on fixe un isomorphisme entre un plan \mathcal{P} et \mathbb{R}^2 , à tout point (vecteur) $M \in \mathcal{P}$ on fait correspondre un couple de nombres (x, y) appelé *coordonnées* (*cartésiennes*) de M.
- Ainsi toute notion de \mathbb{R}^2 peut être « transportée » à \mathcal{P} : droites, cercles, distances, produit scalaire, angles, ...
- ▶ L'application $(\rho, \theta) \mapsto (\rho \cos(\theta), \rho \sin(\theta))$ est une surjection de $\mathbb{R}_+ \times \mathbb{R}$ sur \mathbb{R}^2 . Ainsi la donnée d'un couple (ρ, θ) , appelé *coordonnées polaires*, détermine un unique point de \mathbb{R}^2 (et ainsi éventuellement de \mathcal{P}).

- ▶ Un ensemble \mathcal{P} peut être considéré comme un *plan* s'il est « naturellement » isomorphe à \mathbb{R}^2 . Dans ce cas, les éléments de \mathcal{P} sont appelés des *points* ou des *vecteurs* en fonction du contexte.
- ▶ Si on fixe un isomorphisme entre un plan \mathcal{P} et \mathbb{R}^2 , à tout point (vecteur) $M \in \mathcal{P}$ on fait correspondre un couple de nombres (x, y) appelé *coordonnées* (*cartésiennes*) de M.
- Ainsi toute notion de \mathbb{R}^2 peut être « transportée » à \mathcal{P} : droites, cercles, distances, produit scalaire, angles, ...
- ▶ L'application $(\rho, \theta) \mapsto (\rho \cos(\theta), \rho \sin(\theta))$ est une surjection de $\mathbb{R}_+ \times \mathbb{R}$ sur \mathbb{R}^2 . Ainsi la donnée d'un couple (ρ, θ) , appelé *coordonnées polaires*, détermine un unique point de \mathbb{R}^2 (et ainsi éventuellement de \mathcal{P}).

- ▶ Une droite (affine) de \mathbb{R}^2 est un ensemble défini par une équation de la forme ax + by = d avec $(a, b) \neq (0, 0)$.
- ▶ Une telle droite est vectorielle ssi d = 0.
- Une droite n'a pas une équation unique : toutes les équations qui définissent la même droite que ax + by = d sont de la forme $\lambda ax + \lambda by = \lambda d$ avec $\lambda \neq 0$
- Le vecteur (a, b) est normal à la droite définie par ax + by = d.
- On dit que l'équation ax + by = d est normalisée si ||(a,b)|| = 1. La droite définie par une telle équation normalisée est à distance |d| de 0.
- Deux droites définies par a₁x + b₁y = d₁ et a₂x + b₂y = d₂ sont parallèles ssi les vecteurs (a₁, b₁) et (a₂, b₂) sont colinéaires.
- ► Toutes les droites parallèles à une droite ax + by = d admettent une équation de la forme $ax + by = \delta$ ($\delta \in \mathbb{R}$)

- ▶ Une droite (affine) de \mathbb{R}^2 est un ensemble défini par une équation de la forme ax + by = d avec $(a, b) \neq (0, 0)$.
- Une telle droite est vectorielle ssi d = 0.
- ▶ Une droite n'a pas une équation unique : toutes les équations qui définissent la même droite que ax + by = d sont de la forme $\lambda ax + \lambda by = \lambda d$ avec $\lambda \neq 0$.
- ▶ Le vecteur (a, b) est normal à la droite définie par ax + by = d.
- On dit que l'équation ax + by = d est normalisée si ||(a,b)|| = 1. La droite définie par une telle équation normalisée est à distance |d| de 0.
- Deux droites définies par a₁x + b₁y = d₁ et a₂x + b₂y = d₂ sont parallèles ssi les vecteurs (a₁, b₁) et (a₂, b₂) sont colinéaires.
- ► Toutes les droites parallèles à une droite ax + by = d admettent une équation de la forme $ax + by = \delta$ ($\delta \in \mathbb{R}$)

- ▶ Une droite (affine) de \mathbb{R}^2 est un ensemble défini par une équation de la forme ax + by = d avec $(a, b) \neq (0, 0)$.
- ▶ Une telle droite est vectorielle ssi d = 0.
- ▶ Une droite n'a pas une équation unique : toutes les équations qui définissent la même droite que ax + by = d sont de la forme $\lambda ax + \lambda by = \lambda d$ avec $\lambda \neq 0$.
- ► Le vecteur (a, b) est normal à la droite définie par ax + by = d.
- On dit que l'équation ax + by = d est normalisée si ||(a, b)|| = 1. La droite définie par une telle équation normalisée est à distance |d| de 0.
- Deux droites définies par a₁x + b₁y = d₁ et a₂x + b₂y = d₂ sont parallèles ssi les vecteurs (a₁, b₁) et (a₂, b₂) sont colinéaires.
- ► Toutes les droites parallèles à une droite ax + by = d admettent une équation de la forme $ax + by = \delta$ ($\delta \in \mathbb{R}$)

- ▶ Une droite (affine) de \mathbb{R}^2 est un ensemble défini par une équation de la forme ax + by = d avec $(a, b) \neq (0, 0)$.
- ▶ Une telle droite est vectorielle ssi d = 0.
- ▶ Une droite n'a pas une équation unique : toutes les équations qui définissent la même droite que ax + by = d sont de la forme $\lambda ax + \lambda by = \lambda d$ avec $\lambda \neq 0$.
- Le vecteur (a, b) est normal à la droite définie par ax + by = d.
- ➤ On dit que l'équation ax + by = d est normalisée si ||(a, b)|| = 1. La droite définie par une telle équation normalisée est à distance |d| de 0.
- Deux droites définies par a₁x + b₁y = d₁ et a₂x + b₂y = d₂ sont parallèles ssi les vecteurs (a₁, b₁) et (a₂, b₂) sont colinéaires.
- ► Toutes les droites parallèles à une droite ax + by = d admettent une équation de la forme $ax + by = \delta$ ($\delta \in \mathbb{R}$)

- ▶ Une droite (affine) de \mathbb{R}^2 est un ensemble défini par une équation de la forme ax + by = d avec $(a, b) \neq (0, 0)$.
- ▶ Une telle droite est vectorielle ssi d = 0.
- ▶ Une droite n'a pas une équation unique : toutes les équations qui définissent la même droite que ax + by = d sont de la forme $\lambda ax + \lambda by = \lambda d$ avec $\lambda \neq 0$.
- Le vecteur (a, b) est normal à la droite définie par ax + by = d.
- ➤ On dit que l'équation ax + by = d est normalisée si ||(a, b)|| = 1. La droite définie par une telle équation normalisée est à distance |d| de 0.
- ▶ Deux droites définies par $a_1x + b_1y = d_1$ et $a_2x + b_2y = d_2$ sont parallèles ssi les vecteurs (a_1, b_1) et (a_2, b_2) sont colinéaires.
- ► Toutes les droites parallèles à une droite ax + by = d admettent une équation de la forme $ax + by = \delta$ ($\delta \in \mathbb{R}$)

- ▶ Une droite (affine) de \mathbb{R}^2 est un ensemble défini par une équation de la forme ax + by = d avec $(a, b) \neq (0, 0)$.
- ▶ Une telle droite est vectorielle ssi d = 0.
- ▶ Une droite n'a pas une équation unique : toutes les équations qui définissent la même droite que ax + by = d sont de la forme $\lambda ax + \lambda by = \lambda d$ avec $\lambda \neq 0$.
- Le vecteur (a, b) est normal à la droite définie par ax + by = d.
- ➤ On dit que l'équation ax + by = d est normalisée si ||(a, b)|| = 1. La droite définie par une telle équation normalisée est à distance |d| de 0.
- ▶ Deux droites définies par $a_1x + b_1y = d_1$ et $a_2x + b_2y = d_2$ sont parallèles ssi les vecteurs (a_1, b_1) et (a_2, b_2) sont colinéaires.
- ► Toutes les droites parallèles à une droite ax + by = d admettent une équation de la forme $ax + by = \delta$ $(\delta \in \mathbb{R})$

- ▶ Une droite (affine) de \mathbb{R}^2 est un ensemble défini par une équation de la forme ax + by = d avec $(a, b) \neq (0, 0)$.
- ▶ Une telle droite est vectorielle ssi d = 0.
- ▶ Une droite n'a pas une équation unique : toutes les équations qui définissent la même droite que ax + by = d sont de la forme $\lambda ax + \lambda by = \lambda d$ avec $\lambda \neq 0$.
- Le vecteur (a, b) est normal à la droite définie par ax + by = d.
- ▶ On dit que l'équation ax + by = d est normalisée si ||(a, b)|| = 1. La droite définie par une telle équation normalisée est à distance |d| de 0.
- ▶ Deux droites définies par $a_1x + b_1y = d_1$ et $a_2x + b_2y = d_2$ sont parallèles ssi les vecteurs (a_1, b_1) et (a_2, b_2) sont colinéaires.
- ► Toutes les droites parallèles à une droite ax + by = d admettent une équation de la forme $ax + by = \delta$ ($\delta \in \mathbb{R}$)

- ▶ Une droite (affine) de \mathbb{R}^2 est un ensemble défini par une équation de la forme ax + by = d avec $(a, b) \neq (0, 0)$.
- ▶ Une telle droite est vectorielle ssi d = 0.
- ▶ Une droite n'a pas une équation unique : toutes les équations qui définissent la même droite que ax + by = d sont de la forme $\lambda ax + \lambda by = \lambda d$ avec $\lambda \neq 0$.
- Le vecteur (a, b) est normal à la droite définie par ax + by = d.
- On dit que l'équation ax + by = d est normalisée si ||(a,b)|| = 1. La droite définie par une telle équation normalisée est à distance |d| de 0.
- ▶ Deux droites définies par $a_1x + b_1y = d_1$ et $a_2x + b_2y = d_2$ sont parallèles ssi les vecteurs (a_1, b_1) et (a_2, b_2) sont colinéaires.
- ▶ Toutes les droites parallèles à une droite ax + by = d admettent une équation de la forme $ax + by = \delta$ ($\delta \in \mathbb{R}$).

- ▶ Comme \mathbb{C} est « naturellement » isomorphe à \mathbb{R}^2 on peut le considérer comme un plan (appelé *le plan complexe*).
- ► Ainsi à tout point (vecteur) de R² on peut faire correspondre un nombre complexe appelé son affixe.
- La formule d'Euler $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ nous permet d'identifier les coordonnées polaires (ρ, θ) d'un point avec le module et l'argument de son affixe.
- Le produit scalaire de deux vecteurs $\vec{v_1}$ et $\vec{v_2}$ d'affixes respectives z_1 et z_2 s'écrit

$$\langle v_1 | v_2 \rangle = \frac{z_1 \overline{z_2} + \overline{z_1} z_2}{2}$$

- ▶ Comme \mathbb{C} est « naturellement » isomorphe à \mathbb{R}^2 on peut le considérer comme un plan (appelé *le plan complexe*).
- ► Ainsi à tout point (vecteur) de R² on peut faire correspondre un nombre complexe appelé son affixe.
- La formule d'Euler $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ nous permet d'identifier les coordonnées polaires (ρ, θ) d'un point avec le module et l'argument de son affixe.
- Le produit scalaire de deux vecteurs $\vec{v_1}$ et $\vec{v_2}$ d'affixes respectives z_1 et z_2 s'écrit

$$\langle v_1 | v_2 \rangle = \frac{z_1 \overline{z_2} + \overline{z_1} z_2}{2}$$

- ▶ Comme \mathbb{C} est « naturellement » isomorphe à \mathbb{R}^2 on peut le considérer comme un plan (appelé *le plan complexe*).
- Ainsi à tout point (vecteur) de \mathbb{R}^2 on peut faire correspondre un nombre complexe appelé son *affixe*.
- La formule d'Euler $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ nous permet d'identifier les coordonnées polaires (ρ, θ) d'un point avec le module et l'argument de son affixe.
- Le produit scalaire de deux vecteurs $\vec{v_1}$ et $\vec{v_2}$ d'affixes respectives z_1 et z_2 s'écrit

$$\langle v_1 | v_2 \rangle = \frac{z_1 \overline{z_2} + \overline{z_1} z_2}{2}$$

- ▶ Comme \mathbb{C} est « naturellement » isomorphe à \mathbb{R}^2 on peut le considérer comme un plan (appelé *le plan complexe*).
- Ainsi à tout point (vecteur) de \mathbb{R}^2 on peut faire correspondre un nombre complexe appelé son *affixe*.
- La formule d'Euler $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ nous permet d'identifier les coordonnées polaires (ρ, θ) d'un point avec le module et l'argument de son affixe.
- Le produit scalaire de deux vecteurs $\vec{v_1}$ et $\vec{v_2}$ d'affixes respectives z_1 et z_2 s'écrit

$$\langle v_1 | v_2 \rangle = \frac{z_1 \overline{z_2} + \overline{z_1} z_2}{2}$$

- ▶ Comme \mathbb{C} est « naturellement » isomorphe à \mathbb{R}^2 on peut le considérer comme un plan (appelé *le plan complexe*).
- Ainsi à tout point (vecteur) de \mathbb{R}^2 on peut faire correspondre un nombre complexe appelé son *affixe*.
- La formule d'Euler $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ nous permet d'identifier les coordonnées polaires (ρ, θ) d'un point avec le module et l'argument de son affixe.
- Le produit scalaire de deux vecteurs $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ d'affixes respectives z_1 et z_2 s'écrit

$$\langle v_1 | v_2 \rangle = \frac{z_1 \overline{z_2} + \overline{z_1} z_2}{2} .$$

- ▶ Comme \mathbb{C} est « naturellement » isomorphe à \mathbb{R}^2 on peut le considérer comme un plan (appelé *le plan complexe*).
- Ainsi à tout point (vecteur) de \mathbb{R}^2 on peut faire correspondre un nombre complexe appelé son *affixe*.
- La formule d'Euler $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ nous permet d'identifier les coordonnées polaires (ρ, θ) d'un point avec le module et l'argument de son affixe.
- Le produit scalaire de deux vecteurs $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ d'affixes respectives z_1 et z_2 s'écrit

$$\langle v_1 | v_2 \rangle = \frac{z_1 \overline{z_2} + \overline{z_1} z_2}{2}.$$

Définition (heuristique)

« Un espace affine est un espace vectoriel dont on a oublié l'origine. »

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}).

Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction \mathcal{E} par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \vec{\mathcal{E}}$$

- 1. $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles)
- 2. $\forall A \in \mathcal{E}, \overrightarrow{v} \in \overrightarrow{\mathcal{E}}, \exists ! B \in \mathcal{E} \text{ t.q. } AB = \overrightarrow{v} \ (B = A + \overrightarrow{v})$

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

qui satisfait les deux conditions

1. $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles)

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

- 1. $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles)
- 2. $\forall A \in \mathcal{E}, \overrightarrow{v} \in \overrightarrow{\mathcal{E}}, \exists |B \in \mathcal{E} \text{ t.q. } \overrightarrow{AB} = \overrightarrow{v} \ (B = A + \overrightarrow{v})$

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

1.
$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$
 (relation de Chasles)

2.
$$\forall A \in \mathcal{E}, \vec{v} \in \overline{\mathcal{E}}$$

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

- 1. $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles)
- 2. $\forall A \in \mathcal{E}, \vec{v} \in \vec{\mathcal{E}}, \exists ! B \in \mathcal{E} \text{ t.q. } \overrightarrow{AB} = \vec{v} \ (B = A + \vec{v})$

Définition

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel (si non précisé, sur \mathbb{R}). Un ensemble (non vide) \mathcal{E} est muni de la structure d'espace affine de direction $\overrightarrow{\mathcal{E}}$ par la donnée d'une application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB}$$

- 1. $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ (relation de Chasles)
- 2. $\forall A \in \mathcal{E}, \vec{v} \in \vec{\mathcal{E}}, \exists ! B \in \mathcal{E} \text{ t.q. } \overrightarrow{AB} = \vec{v} \ (B = A + \vec{v})$

La dimension d'un espace affine

Si $\mathcal E$ est un espace affine sur $\overrightarrow{\mathcal E}$ et $\phi: \overrightarrow{\mathcal E} \xrightarrow{\sim} \overrightarrow{\mathcal F}$ un isomorphisme d'espaces vectoriels, alors la composition

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}} \xrightarrow{\sim} \overrightarrow{\mathcal{F}}$$
$$(A, B) \mapsto \phi(\overrightarrow{AB})$$

définit une structure d'espace affine sur $\mathcal E$ de direction $\overline{\mathcal F}$. On parle dans ce cas de *changement de direction* de $\mathcal E$.

Définition

L'espace affine \mathcal{E} est de dimension n si sa direction, l'espace vectoriel $\overrightarrow{\mathcal{E}}$, est de dimension n.

La dimension d'un espace affine

Si $\mathcal E$ est un espace affine sur $\overrightarrow{\mathcal E}$ et $\phi: \overrightarrow{\mathcal E} \xrightarrow{\sim} \overrightarrow{\mathcal F}$ un isomorphisme d'espaces vectoriels, alors la composition

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}} \xrightarrow{\sim} \overrightarrow{\mathcal{F}}$$
$$(A, B) \mapsto \phi(\overrightarrow{AB})$$

définit une structure d'espace affine sur $\mathcal E$ de direction $\overline{\mathcal F}$. On parle dans ce cas de *changement de direction* de $\mathcal E$.

Définition

L'espace affine \mathcal{E} est de dimension n si sa direction, l'espace vectoriel $\overrightarrow{\mathcal{E}}$, est de dimension n.

La dimension d'un espace affine

Si $\mathcal E$ est un espace affine sur $\overrightarrow{\mathcal E}$ et $\phi: \overrightarrow{\mathcal E} \xrightarrow{\sim} \overrightarrow{\mathcal F}$ un isomorphisme d'espaces vectoriels, alors la composition

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}} \xrightarrow{\sim} \overrightarrow{\mathcal{F}}$$
$$(A, B) \mapsto \phi(\overrightarrow{AB})$$

définit une structure d'espace affine sur $\mathcal E$ de direction $\overline{\mathcal F}$. On parle dans ce cas de *changement de direction* de $\mathcal E$.

Définition

L'espace affine \mathcal{E} est de dimension n si sa direction, l'espace vectoriel $\overrightarrow{\mathcal{E}}$, est de dimension n.

Les espaces vectoriels

Tout espace vectoriel $\overrightarrow{\mathcal{E}}$ peut être muni naturellement d'une structure d'espace affine, avec direction lui-même, via l'application :

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(\overrightarrow{A}, \overrightarrow{B}) \mapsto \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

Convention

Dans la suite, tous les espaces vectoriels vont être considérés munis de cette structure naturelle d'espace affine.

Les espaces vectoriels

Tout espace vectoriel $\overrightarrow{\mathcal{E}}$ peut être muni naturellement d'une structure d'espace affine, avec direction lui-même, via l'application :

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(\overrightarrow{A}, \overrightarrow{B}) \mapsto \overrightarrow{AB} = \overrightarrow{B} - \overrightarrow{A}$$

Convention

Dans la suite, tous les espaces vectoriels vont être considérés munis de cette structure naturelle d'espace affine.

Les droites (sous-espaces) affines

Le sous-ensemble de \mathbb{R}^2 , $\mathcal{E} = \{(x,y) \mid x+y=1\}$ est un espace affine de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$, via l'application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB} = B - A$$

Question

Comment peut-on généraliser cet exemple?

Les droites (sous-espaces) affines

Le sous-ensemble de \mathbb{R}^2 , $\mathcal{E} = \{(x,y) \mid x+y=1\}$ est un espace affine de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$, via l'application

$$\mathcal{E} \times \mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$(A, B) \mapsto \overrightarrow{AB} = B - A$$

Question

Comment peut-on généraliser cet exemple?

Les solutions des équations différentiels linéaires

L'ensemble des solutions S de l'équation différentielle $y'+y=\sin(x)$ est un espace affine avec direction S^* , l'ensemble des solutions de l'équation homogène (y'+y=0) via :

$$S \times S \longrightarrow S^*$$

 $(f_1, f_2) \mapsto f_2 - f_1$

Question

Comment peut-on généraliser cet exemple?

Les solutions des équations différentiels linéaires

L'ensemble des solutions S de l'équation différentielle $y'+y=\sin(x)$ est un espace affine avec direction S^* , l'ensemble des solutions de l'équation homogène (y'+y=0) via :

$$S \times S \longrightarrow S^*$$
$$(f_1, f_2) \mapsto f_2 - f_1$$

Question

Comment peut-on généraliser cet exemple?

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- 1. L'origine de \mathcal{E}_{Ω} est le point Ω
- 2. Avec l'écriture $\Omega + \vec{v}$, les opérations sont

Remarque

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- 1. L'origine de \mathcal{E}_{Ω} est le point Ω .
- 2. Avec l'écriture $\Omega + \overrightarrow{v}$, les opérations sont
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$

Remarque

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- 1. L'origine de \mathcal{E}_{Ω} est le point Ω .
- 2. Avec l'écriture $\Omega + \overrightarrow{v}$, les opérations sont :
 - $(\Omega + \dot{v}) + (\Omega + \dot{w}) = (\Omega + \dot{v} + \dot{w}).$

Remarque

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- 1. L'origine de \mathcal{E}_{Ω} est le point Ω .
- 2. Avec l'écriture $\Omega + \overrightarrow{v}$, les opérations sont :
 - $\qquad \qquad \bullet \ \, (\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$
 - $\lambda(\Omega + \overrightarrow{v}) = \Omega + \lambda \overrightarrow{v}.$

Remarque

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- 1. L'origine de \mathcal{E}_{Ω} est le point Ω .
- 2. Avec l'écriture $\Omega + \vec{v}$, les opérations sont :
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$
 - $\lambda(\Omega + \overrightarrow{v}) = \Omega + \lambda \overrightarrow{v}.$

Remarque

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- 1. L'origine de \mathcal{E}_{Ω} est le point Ω .
- 2. Avec l'écriture $\Omega + \vec{v}$, les opérations sont :
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$
 - $\lambda(\Omega + \vec{v}) = \Omega + \lambda \vec{v}.$

Remarque

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- 1. L'origine de \mathcal{E}_{Ω} est le point Ω .
- 2. Avec l'écriture $\Omega + \overrightarrow{v}$, les opérations sont :
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$
 - $\lambda(\Omega + \vec{v}) = \Omega + \lambda \vec{v}.$

Remarque

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- 1. L'origine de \mathcal{E}_{Ω} est le point Ω .
- 2. Avec l'écriture $\Omega + \overrightarrow{v}$, les opérations sont :
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$
 - $\lambda(\Omega + \vec{v}) = \Omega + \lambda \vec{v}.$

Remarque

En fixant un point Ω d'un espace affine \mathcal{E} , on peut définir sur celui-ci une structure d'espace vectoriel via la bijection :

$$\mathcal{E} \longrightarrow \overrightarrow{\mathcal{E}}$$
$$B \mapsto \overrightarrow{\Omega B}$$

Cet espace vectoriel est noté \mathcal{E}_{Ω} et est isomorphe (par définition) à $\overrightarrow{\mathcal{E}}$.

- 1. L'origine de \mathcal{E}_{Ω} est le point Ω .
- 2. Avec l'écriture $\Omega + \vec{v}$, les opérations sont :
 - $(\Omega + \overrightarrow{v}) + (\Omega + \overrightarrow{w}) = (\Omega + \overrightarrow{v} + \overrightarrow{w}).$
 - $\lambda(\Omega + \vec{v}) = \Omega + \lambda \vec{v}.$

Remarque

Produit d'espaces affines

Soient $\mathcal E$ et $\mathcal F$ deux espaces affines, sur le même corps, de directions respectives $\overrightarrow{\mathcal E}$ et $\overrightarrow{\mathcal F}$.

On définit la structure d'espace affine *produit* sur $\mathcal{E} \times \mathcal{F}$ de direction $\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{F}}$ par :

$$\overrightarrow{(A,B)(C,D)} := (\overrightarrow{AC},\overrightarrow{BD}).$$

- 1. $A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$
- 2. $A, B \in \mathcal{E} \Rightarrow AB = -BA$.
- 3. $A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- 4. $(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\overrightarrow{\mathcal{E}} \text{ agit sur } \mathcal{E}).$
- 5. $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$ (ABCD est un parallélogramme).
- 6. $(A + \vec{v})(B + \vec{w}) = \overrightarrow{AB} \vec{v} + \vec{w}$.
- 7. Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$
 - ▶ Si $\sum_{i=1}^{k} \lambda_i = 0$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie (AB = B A).
 - ▶ Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - ▶ Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ « n'est pas bien définie ».

1.
$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A$$
.

2.
$$A, B \in \mathcal{E} \implies A\hat{B} = -B\hat{A}$$
.

3.
$$A + \overrightarrow{v} = B \quad \Leftrightarrow \quad \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

4.
$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) \ (\mathcal{E} \text{ agit sur } \mathcal{E}).$$

5.
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

6.
$$(A + \overrightarrow{v})(B + \overrightarrow{w}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}$$
.

7. Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

- ▶ Si $\sum_{i=1}^{k} \lambda_i = 0$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie $(\overrightarrow{AB} = B A)$.
- ▶ Si $\sum_{i=1}^{k} \lambda_i = 1$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie.
- ▶ Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ « n'est pas bien définie ».

1.
$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

2.
$$A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$$
.

3.
$$A + \vec{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \vec{v} = \overrightarrow{CB}.$$

4.
$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) \ (\mathcal{E} \ agit \ sur \ \mathcal{E}).$$

5.
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

6.
$$(A + \overrightarrow{v})(B + \overrightarrow{w}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}$$
.

7. Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

- ▶ Si $\sum_{i=1}^{\kappa} \lambda_i = 0$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie $(\overrightarrow{AB} = B A)$.
- ▶ Si $\sum_{i=1}^{k} \lambda_i = 1$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \mathcal{E}$ est bien définie
- ▶ Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ « n'est pas bien définie ».

1.
$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A$$
.

2.
$$A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$$
.

3.
$$A + \overrightarrow{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

4.
$$(A + \overrightarrow{v}) + \overrightarrow{w} = A + (\overrightarrow{v} + \overrightarrow{w}) (\mathcal{E} \text{ agit sur } \mathcal{E}).$$

5.
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

6.
$$(A + \overrightarrow{v})(B + \overrightarrow{w}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}$$
.

7. Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

- ▶ Si $\sum_{i=1}^{n} \lambda_i = 0$ alors $\sum_{i=1}^{n} \lambda_i A_i \in \mathcal{E}$ est bien définie $(\overrightarrow{AB} = B A)$.
- ▶ Si $\sum_{i=1}^{\kappa} \lambda_i = 1$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie
- ▶ Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ « n'est pas bien définie ».

1.
$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A$$
.

2.
$$A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$$
.

3.
$$A + \overrightarrow{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

4.
$$(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) \ (\vec{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

5.
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

6.
$$(A + \overrightarrow{v})(B + \overrightarrow{w}) = AB - \overrightarrow{v} + \overrightarrow{w}$$
.

7. Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

- ▶ Si $\sum_{i=1}^{n} \lambda_i = 0$ alors $\sum_{i=1}^{n} \lambda_i A_i \in \mathcal{E}$ est bien définie $(\overline{AB} = B A)$.
- \blacktriangleright Si $\sum_{i=1}^{\kappa} \lambda_i = 1$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie
- Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ « n'est pas bien définie ».

1.
$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

2.
$$A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$$
.

3.
$$A + \vec{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \vec{v} = \overrightarrow{CB}.$$

4.
$$(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) \ (\vec{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

5.
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

6.
$$(A + \overrightarrow{v})(B + \overrightarrow{w}) = A\overrightarrow{B} - \overrightarrow{v} + \overrightarrow{w}$$
.

7. Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

- ▶ Si $\sum_{i=1}^{n} \lambda_i = 0$ alors $\sum_{i=1}^{n} \lambda_i A_i \in \mathcal{E}$ est bien définie $(\overrightarrow{AB} = B A)$.
- \blacktriangleright Si $\sum_{i=1}^{\kappa} \lambda_i = 1$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie
- ▶ Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ « n'est pas bien définie ».

1.
$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A.$$

2.
$$A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$$
.

3.
$$A + \vec{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \vec{v} = \overrightarrow{CB}.$$

4.
$$(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) (\vec{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

5.
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

6.
$$(\overrightarrow{A+\overrightarrow{v})}(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}$$
.

7. Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

- ▶ Si $\sum_{i=1}^n \lambda_i = 0$ alors $\sum_{i=1}^n \lambda_i A_i \in \mathcal{E}$ est bien definie (AB = B A).
- \blacktriangleright Si $\sum_{i=1}^{\kappa} \lambda_i = 1$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i \in \mathcal{E}$ est bien définie
- ▶ Si $\sum_{i=1}^{\kappa} \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^{\kappa} \lambda_i A_i$ « n'est pas bien définie ».

1.
$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A$$
.

2.
$$A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$$
.

3.
$$A + \overrightarrow{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

4.
$$(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) (\vec{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

5.
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

6.
$$(\overrightarrow{A+\overrightarrow{v}})(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}$$
.

7. Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

- ▶ Si $\sum_{i=1}^k \lambda_i = 0$ alors $\sum_{i=1}^k \lambda_i A_i \in \overrightarrow{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
- ▶ Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
- ▶ Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ « n'est pas bien définie ».

1.
$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A$$
.

2.
$$A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$$
.

3.
$$A + \vec{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \vec{v} = \overrightarrow{CB}.$$

4.
$$(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) \ (\vec{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

5.
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

6.
$$(\overrightarrow{A+\overrightarrow{v}})(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}$$
.

7. Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

- Si $\sum_{i=1}^k \lambda_i = 0$ alors $\sum_{i=1}^k \lambda_i A_i \in \vec{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
- ▶ Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
- ▶ Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ « n'est pas bien définie ».

1.
$$A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A$$
.

2.
$$A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$$
.

3.
$$A + \overrightarrow{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$$

4.
$$(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) (\vec{\mathcal{E}} \text{ agit sur } \mathcal{E}).$$

5.
$$\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$$
 (ABCD est un parallélogramme).

6.
$$(\overrightarrow{A+\overrightarrow{v}})(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} - \overrightarrow{v} + \overrightarrow{w}$$
.

7. Soient
$$A_1, \ldots, A_k \in \mathcal{E}$$
 et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$

- Si $\sum_{i=1}^{k} \lambda_i = 0$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \vec{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
- ▶ Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
- Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ « n'est pas bien définie ».

- 1. $A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A$.
- 2. $A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$.
- 3. $A + \overrightarrow{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- 4. $(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) (\vec{\mathcal{E}} \text{ agit sur } \mathcal{E}).$
- 5. $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$ (ABCD est un parallélogramme).
- 6. $(\overrightarrow{A+\overrightarrow{v})}(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} \overrightarrow{v} + \overrightarrow{w}$.
- 7. Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$
 - Si $\sum_{i=1}^{k} \lambda_i = 0$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \vec{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
 - ▶ Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - ▶ Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ « n'est pas bien définie ».

- 1. $A \in \mathcal{E} \implies \overrightarrow{AA} = \overrightarrow{0} \text{ et } A + \overrightarrow{0} = A$.
- 2. $A, B \in \mathcal{E} \implies \overrightarrow{AB} = -\overrightarrow{BA}$.
- 3. $A + \overrightarrow{v} = B \Leftrightarrow \forall (\exists) C \in \mathcal{E}, \overrightarrow{CA} + \overrightarrow{v} = \overrightarrow{CB}.$
- 4. $(A + \vec{v}) + \vec{w} = A + (\vec{v} + \vec{w}) (\vec{\mathcal{E}} \text{ agit sur } \mathcal{E}).$
- 5. $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow \overrightarrow{AD} = \overrightarrow{BC}$ (ABCD est un parallélogramme).
- 6. $(\overrightarrow{A+\overrightarrow{v})}(\overrightarrow{B+\overrightarrow{w}}) = \overrightarrow{AB} \overrightarrow{v} + \overrightarrow{w}$.
- 7. Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\lambda_1, \ldots, \lambda_k \in \mathbb{K}$
 - Si $\sum_{i=1}^{k} \lambda_i = 0$ alors $\sum_{i=1}^{k} \lambda_i A_i \in \vec{\mathcal{E}}$ est bien définie $(\overrightarrow{AB} = B A)$.
 - ▶ Si $\sum_{i=1}^k \lambda_i = 1$ alors $\sum_{i=1}^k \lambda_i A_i \in \mathcal{E}$ est bien définie.
 - ▶ Si $\sum_{i=1}^k \lambda_i \notin \{0,1\}$ alors $\sum_{i=1}^k \lambda_i A_i$ « n'est pas bien définie ».

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

1.
$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i$$
.

2.
$$\forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA}_i.$$

$$3. \sum_{i=1}^k \mu_i \overrightarrow{GA_i} = 0.$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul *(qui peut être pris égal à* $\frac{1}{4}$, ou à 1).

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

1.
$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i$$
.

2.
$$\forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA_i}.$$

$$3. \sum_{i=1}^k \mu_i \overrightarrow{GA_i} = 0.$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{4}$, ou à 1).

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

1.
$$G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i$$
.

2.
$$\forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA_i}.$$

$$3. \sum_{i=1}^k \mu_i \overrightarrow{GA_i} = 0.$$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul *(qui peut être pris égal à* $\frac{1}{4}$, ou à 1).

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

- 1. $G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i$.
- 2. $\forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA_i}.$
- 3. $\sum_{i=1}^{k} \mu_i \overrightarrow{GA_i} = 0.$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul *(qui peut être pris égal à* $\frac{1}{L}$, ou à 1).

Définition-Proposition

Soient $A_1, \ldots, A_k \in \mathcal{E}$ et $\mu_1, \ldots, \mu_k \in \mathbb{K}$ tels que $\sum_{i=1}^k \mu_i \neq 0$, alors il existe un unique point G qui satisfait une des conditions équivalentes :

- 1. $G = \sum_{i=1}^{k} \frac{\mu_i}{\sum_{i=1}^{k} \mu_i} A_i$.
- 2. $\forall (\exists) M \in \mathcal{E}, \ (\sum_{i=1}^k \mu_i) \overrightarrow{MG} = \sum_{i=1}^k \mu_i \overrightarrow{MA}_i.$
- 3. $\sum_{i=1}^{k} \mu_i \overrightarrow{GA_i} = 0.$

Le point G est le barycentre des des points pondérées $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$, et les $\{\mu_i\}$ sont appelés les poids.

Définition

Soient $A_1, \ldots, A_k \in \mathcal{E}$, leur isobarycentre est le barycentre de ces points pondérés du même poids non nul (qui peut être pris égal à $\frac{1}{k}$, ou à 1).

- 1. Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- 3. Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F} .

- 1. Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- 3. Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F} .

- 1. Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- 2. Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- 3. Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{((A_1, B_1), \mu_1), \dots, ((A_k, B_k), \mu_k)\}$ est $G = (G_A, G_B)$, où G_A est le barycentre de $\{(A_1, \mu_1), \dots, (A_k, \mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1, \mu_1), \dots, (B_k, \mu_k)\}$ dans \mathcal{F} .

- 1. Si on remplace les poids μ_i par $\lambda \mu_i$ pour $\lambda \neq 0$, le barycentre ne change pas.
- 2. Si on rajoute un point pondéré par un poids nul, le barycentre ne change pas.
- 3. Soit $\mathcal{E} \times \mathcal{F}$ un espace affine produit. Le barycentre des points pondérés $\{\big((A_1,B_1),\mu_1\big),\dots,\big((A_k,B_k),\mu_k\big)\}$ est $G=(G_A,G_B)$, où G_A est le barycentre de $\{(A_1,\mu_1),\dots,(A_k,\mu_k)\}$ dans \mathcal{E} , et G_B est le barycentre de $\{(B_1,\mu_1),\dots,(B_k,\mu_k)\}$ dans \mathcal{F} .

Associativité du barycentre

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I.

```
Soit une partition I = J_1 \sqcup \cdots \sqcup J_r, telle que \nu_k := \sum_{i \in J_k} \mu_i \neq 0 pour chaque k \in \{1, \ldots, r\}. On note G_k le barycentre de \{(A_i, \mu_i)\}_{i \in J_k}.
```

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

Associativité du barycentre

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I. Soit une partition $I=J_1\sqcup\cdots\sqcup J_r$, telle que $\nu_k:=\sum_{i\in J_k}\mu_i\neq 0$ pour chaque $k\in\{1,\ldots,r\}$. On note G_k le barycentre de $\{(A_i,\mu_i)\}_{i\in J_k}$.

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

Associativité du barycentre

Soient $\{A_i\}_{i\in I}$ des points de \mathcal{E} et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I. Soit une partition $I=J_1\sqcup\cdots\sqcup J_r$, telle que $\nu_k:=\sum_{i\in J_k}\mu_i\neq 0$ pour chaque $k\in\{1,\ldots,r\}$. On note G_k le barycentre de $\{(A_i,\mu_i)\}_{i\in J_k}$.

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

Associativité du barycentre

Soient $\{A_i\}_{i\in I}$ des points de $\mathcal E$ et $\{\mu_i\}_{i\in I}$ des scalaires de somme non nulle, indexés par un ensemble I. Soit une partition $I=J_1\sqcup\cdots\sqcup J_r$, telle que $\nu_k:=\sum_{i\in J_k}\mu_i\neq 0$ pour chaque $k\in\{1,\ldots,r\}$. On note G_k le barycentre de $\{(A_i,\mu_i)\}_{i\in J_k}$.

Proposition

Le barycentre G des points pondérés $\{(A_i, \mu_i)\}_{i \in I}$ est aussi le barycentre des $\{(G_k, \nu_k)\}_{k \in \{1, ..., r\}}$.

Repère cartésien

Définition

Un repère cartésien d'un espace affine \mathcal{E} de dimension n est la donnée $\mathcal{C} = (\Omega, \overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ d'un point Ω de \mathcal{E} , l'origine du repère, et d'une base $(\overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ de la direction $\overrightarrow{\mathcal{E}}$.

Définition

Soit $C = (\Omega, \vec{v_1}, \dots, \vec{v_n})$ un repère cartésien de \mathcal{E} et M un point de \mathcal{E} . On dit que (x_1, \dots, x_n) sont les coordonnées cartésiennes de M dans le repère C, et on note $M = (x_1, \dots, x_n)_C$, si ce sont les coordonnées de $\overline{\Omega M}$ dans la base $(\vec{v_1}, \dots, \vec{v_n})$ de la direction $\overline{\mathcal{E}}$. Autrement dit $M = (x_1, \dots, x_n)_C$ si et seulement si $M = \Omega + \sum_{i=1}^n x_i \vec{v_i}$.

Repère cartésien

Définition

Un repère cartésien d'un espace affine \mathcal{E} de dimension n est la donnée $\mathcal{C}=(\Omega,\overrightarrow{v_1},\ldots,\overrightarrow{v_n})$ d'un point Ω de \mathcal{E} , l'origine du repère, et d'une base $(\overrightarrow{v_1},\ldots,\overrightarrow{v_n})$ de la direction $\overrightarrow{\mathcal{E}}$.

Définition

Soit $\mathcal{C} = (\Omega, \overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ un repère cartésien de \mathcal{E} et M un point de \mathcal{E} . On dit que (x_1, \dots, x_n) sont les coordonnées cartésiennes de M dans le repère \mathcal{C} , et on note $M = (x_1, \dots, x_n)_{\mathcal{C}}$, si ce sont les coordonnées de $\overrightarrow{\Omega M}$ dans la base $(\overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ de la direction $\overrightarrow{\mathcal{E}}$. Autrement dit $M = (x_1, \dots, x_n)_{\mathcal{C}}$ si et seulement si $M = \Omega + \sum_{i=1}^n x_i \overrightarrow{v_i}$.

Repère cartésien

Définition

Un repère cartésien d'un espace affine \mathcal{E} de dimension n est la donnée $\mathcal{C} = (\Omega, \overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ d'un point Ω de \mathcal{E} , l'origine du repère, et d'une base $(\overrightarrow{v_1}, \dots, \overrightarrow{v_n})$ de la direction $\overrightarrow{\mathcal{E}}$.

Définition

Soit $\mathcal{C}=(\Omega,\overrightarrow{v_1},\ldots,\overrightarrow{v_n})$ un repère cartésien de \mathcal{E} et M un point de \mathcal{E} . On dit que (x_1,\ldots,x_n) sont les coordonnées cartésiennes de M dans le repère \mathcal{C} , et on note $M=(x_1,\ldots,x_n)_{\mathcal{C}}$, si ce sont les coordonnées de $\overrightarrow{\Omega M}$ dans la base $(\overrightarrow{v_1},\ldots,\overrightarrow{v_n})$ de la direction $\overrightarrow{\mathcal{E}}$. Autrement dit $M=(x_1,\ldots,x_n)_{\mathcal{C}}$ si et seulement si $M=\Omega+\sum_{i=1}^n x_i\overrightarrow{v_i}$.

Repère affine

Définition

On dit que le (n+1)-uplet (A_0,\ldots,A_n) est un repère affine de $\mathcal E$ si pour tout point M de $\mathcal E$ il existe un unique (n+1)-uplet de poids (μ_0,\ldots,μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $M = \sum_{i=1}^n \mu_i A_i$.

Définition

Soit $\mathcal{A}=(A_0,\ldots,A_n)$ est un repère affine de \mathcal{E} . On dit que (μ_0,\ldots,μ_n) sont les coordonnées barycentriques dans le repère \mathcal{A} d'un point M de \mathcal{E} , et on note $M=[\mu_0,\ldots,\mu_n]_{\mathcal{A}}$, si $\sum_{i=0}^n \mu_i = 1$ et $M=\sum_{i=0}^n \mu_i A_i$.

Remarque

Si $\mathcal{A} = (A_0, \dots, A_n)$ est un repère affine de \mathcal{E} , alors toute permutation $\mathcal{A} = (A_{\sigma(0)}, \dots, A_{\sigma(n)})$ l'est aussi.

Repère affine

Définition

On dit que le (n+1)-uplet (A_0, \ldots, A_n) est un repère affine de $\mathcal E$ si pour tout point M de $\mathcal E$ il existe un unique (n+1)-uplet de poids (μ_0, \ldots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $M = \sum_{i=1}^n \mu_i A_i$.

Définition

Soit $\mathcal{A}=(A_0,\ldots,A_n)$ est un repère affine de \mathcal{E} . On dit que (μ_0,\ldots,μ_n) sont les coordonnées barycentriques dans le repère \mathcal{A} d'un point M de \mathcal{E} , et on note $M=[\mu_0,\ldots,\mu_n]_{\mathcal{A}}$, si $\sum_{i=0}^n \mu_i = 1$ et $M=\sum_{i=0}^n \mu_i A_i$.

Remarque

Si $\mathcal{A} = (A_0, \dots, A_n)$ est un repère affine de \mathcal{E} , alors toute permutation $\mathcal{A} = (A_{\sigma(0)}, \dots, A_{\sigma(n)})$ l'est aussi.

Repère affine

Définition

On dit que le (n+1)-uplet (A_0, \ldots, A_n) est un repère affine de $\mathcal E$ si pour tout point M de $\mathcal E$ il existe un unique (n+1)-uplet de poids (μ_0, \ldots, μ_n) , avec $\sum_{i=0}^n \mu_i = 1$ et $M = \sum_{i=1}^n \mu_i A_i$.

Définition

Soit $\mathcal{A}=(A_0,\ldots,A_n)$ est un repère affine de \mathcal{E} . On dit que (μ_0,\ldots,μ_n) sont les coordonnées barycentriques dans le repère \mathcal{A} d'un point M de \mathcal{E} , et on note $M=[\mu_0,\ldots,\mu_n]_{\mathcal{A}}$, si $\sum_{i=0}^n \mu_i = 1$ et $M=\sum_{i=0}^n \mu_i A_i$.

Remarque

Si $\mathcal{A}=(A_0,\ldots,A_n)$ est un repère affine de \mathcal{E} , alors toute permutation $\mathcal{A}=(A_{\sigma(0)},\ldots,A_{\sigma(n)})$ l'est aussi.

Relations entre repères cartésiens et affines

Proposition

Le (n+1)-uplet $\mathcal{A}=(A_0,\ldots,A_n)$ est un repère affine de \mathcal{E} si et seulement si $\mathcal{C}=(A_0,\overline{A_0A_1}\ldots,\overline{A_0A_n})$ est un repère cartésien de \mathcal{E} .

De plus si $M = (x_1, ..., x_n)_C$ et $M = [\mu_0, ..., \mu_n]_A$ alors la relation entre ces deux systèmes de coordonnées est : $\mu_i = x_i, \forall i = 1, ..., n$ et $\mu_0 = 1 - \sum_{i=1}^n x_i$.

Proposition

Le (n+1)-uplet $\mathcal{A}=(A_0,\ldots,A_n)$ est un repère affine de \mathcal{E} si et seulement si $\mathcal{C} = (A_0, A_0 A_1, \dots, A_0 A_n)$ est un repère cartésien de \mathcal{E} .

De plus si $M = (x_1, \dots, x_n)_C$ et $M = [\mu_0, \dots, \mu_n]_A$ alors la relation entre ces deux systèmes de coordonnées est :

$$\mu_i = x_i, \forall i = 1, ..., n \text{ et } \mu_0 = 1 - \sum_{i=1}^n x_i.$$

Définition d'un sous-espace affine

Soit ${\mathcal E}$ un espace affine.

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1. Il existe un sous-espace vectoriel $\vec{\mathcal{F}}$ de $\hat{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \vec{\mathcal{F}}$.
- 2. $\exists (\forall) \Omega \in \mathcal{F}$, \mathcal{F} est un sous-espace vectoriel de \mathcal{E}_{Ω} .
- 3. F est stable par barycentres

Un sous-espace affine $\mathcal{F} = \Omega + \overline{\mathcal{F}}$ est un espace affine de direction $\overline{\mathcal{F}}$, via la restriction de l'application $(A, B) \mapsto \overline{AB}$

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1. Il existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- 2. $\exists (orall)\Omega \in \mathcal{F}$, \mathcal{F} est un sous-espace vectoriel de \mathcal{E}_{Ω} .
- 3. F est stable par barycentres

Un sous-espace affine $\mathcal{F} = \Omega + \overline{\mathcal{F}}$ est un espace affine de direction $\overline{\mathcal{F}}$, via la restriction de l'application $(A, B) \mapsto \overline{AB}$.

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1. Il existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- 2. $\exists (\forall) \Omega \in \mathcal{F}$, \mathcal{F} est un sous-espace vectoriel de \mathcal{E}_{Ω} .
- 3. F est stable par barycentres

Un sous-espace affine $\mathcal{F} = \Omega + \overline{\mathcal{F}}$ est un espace affine de direction $\overline{\mathcal{F}}$, via la restriction de l'application $(A, B) \mapsto \overline{AB}$

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1. Il existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- 2. $\exists (\forall) \Omega \in \mathcal{F}$, \mathcal{F} est un sous-espace vectoriel de \mathcal{E}_{Ω} .
- 3. \mathcal{F} est stable par barycentres.

Un sous-espace affine $\mathcal{F} = \Omega + \overline{\mathcal{F}}$ est un espace affine de direction $\overline{\mathcal{F}}$, via la restriction de l'application $(A, B) \mapsto \overline{AB}$.

Définition-Proposition

Un sous-ensemble non vide $\mathcal{F} \subset \mathcal{E}$ est dit sous-espace affine s'il satisfait une des conditions équivalentes :

- 1. Il existe un sous-espace vectoriel $\overrightarrow{\mathcal{F}}$ de $\overrightarrow{\mathcal{E}}$ et $\Omega \in \mathcal{E}$ tels que $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$.
- 2. $\exists (\forall) \Omega \in \mathcal{F}$, \mathcal{F} est un sous-espace vectoriel de \mathcal{E}_{Ω} .
- 3. \mathcal{F} est stable par barycentres.

Un sous-espace affine $\mathcal{F} = \Omega + \overrightarrow{\mathcal{F}}$ est un espace affine de direction $\overrightarrow{\mathcal{F}}$, via la restriction de l'application $(A, B) \mapsto \overrightarrow{AB}$.

Sous-espaces affines et dimensions

Soit \mathcal{E} un espace affine de dimension n.

- 1. Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces attines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- 4. Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

- 1. Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- 4. Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

- 1. Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- 2. Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- Les sous-espaces affines de dimension n − 1 sont appelés des hyperplans affines.

- 1. Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- 2. Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- 3. Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- 4. Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

- 1. Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- 2. Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- 3. Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- 4. Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

- 1. Les sous-espaces affines de dimension 0 sont les points $\{M\}$ de \mathcal{E} .
- 2. Les sous-espaces affines de dimension 1 sont appelés des droites affines.
- 3. Les sous-espaces affines de dimension 2 sont appelés des plans affines.
- 4. Les sous-espaces affines de dimension n-1 sont appelés des hyperplans affines.

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{G}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{G}})$ une application linéaire.

Proposition

Pour tout $\overrightarrow{v} \in \operatorname{Im} \overrightarrow{\phi} \subset \overrightarrow{\mathcal{G}}$, l'image réciproque $\overrightarrow{\phi}^{-1}(\overrightarrow{v})$ est un sous-espace affine de $\overrightarrow{\mathcal{E}}$ de direction $\operatorname{Ker} \overrightarrow{\phi}$.

- 1. En particulier, en prenant $\phi(x,y)=x+y$ de \mathbb{R}^2 dans \mathbb{R} et $\overrightarrow{v}=1$, on retrouve le sous-espace affine $\mathcal{E}=\{(x,y)\mid x+y=1\}$ de direction $\overrightarrow{\mathcal{E}}=\{(x,y)\mid x+y=0\}.$
- 2. L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S^* des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{G}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{G}})$ une application linéaire.

Proposition

Pour tout $\overrightarrow{v} \in \operatorname{Im} \overrightarrow{\phi} \subset \overrightarrow{\mathcal{G}}$, l'image réciproque $\overrightarrow{\phi}^{-1}(\overrightarrow{v})$ est un sous-espace affine de $\overrightarrow{\mathcal{E}}$ de direction $\operatorname{Ker} \overrightarrow{\phi}$.

- 1. En particulier, en prenant $\phi(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\overrightarrow{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- 2. L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S^* des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{G}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{G}})$ une application linéaire.

Proposition

Pour tout $\overrightarrow{v} \in \operatorname{Im} \overrightarrow{\phi} \subset \overrightarrow{\mathcal{G}}$, l'image réciproque $\overrightarrow{\phi}^{-1}(\overrightarrow{v})$ est un sous-espace affine de $\overrightarrow{\mathcal{E}}$ de direction $\operatorname{Ker} \overrightarrow{\phi}$.

- 1. En particulier, en prenant $\overrightarrow{\phi}(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\overrightarrow{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- 2. L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S^* des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{G}}$ deux espaces vectoriels, et $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{G}})$ une application linéaire.

Proposition

Pour tout $\vec{v} \in \text{Im } \vec{\phi} \subset \vec{\mathcal{G}}$, l'image réciproque $\vec{\phi}^{-1}(\vec{v})$ est un sous-espace affine de $\vec{\mathcal{E}}$ de direction $\text{Ker } \vec{\phi}$.

- 1. En particulier, en prenant $\overrightarrow{\phi}(x,y) = x + y$ de \mathbb{R}^2 dans \mathbb{R} et $\overrightarrow{v} = 1$, on retrouve le sous-espace affine $\mathcal{E} = \{(x,y) \mid x+y=1\}$ de direction $\overrightarrow{\mathcal{E}} = \{(x,y) \mid x+y=0\}$.
- 2. L'ensemble S des solutions d'un système linéaire AX = B est vide ou est un sous-espace affine de direction l'ensemble S^* des solutions homogènes AX = 0. Et $S = X_0 + S'$, où X_0 est une solution particulière.

- 1. \mathcal{F} est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- 2. \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- 3. Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

- 1. \mathcal{F} est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- 2. \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- 3. Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

- 1. \mathcal{F} est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- 2. \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- 3. Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

- 1. \mathcal{F} est un sous-espace vectoriel ssi $0 \in \mathcal{F}$.
- 2. \mathcal{F} est un hyperplan affine ssi il existe une forme linéaire non nulle $\overrightarrow{\phi} \in \overrightarrow{\mathcal{E}}^*$ et $a \in \mathbb{R}$, tels que $\mathcal{F} = \overrightarrow{\phi}^{-1}(a)$.
- 3. Tous les sous-espaces affines de \mathbb{R}^n sont des ensembles de solutions de systèmes linéaires.

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

Attention : « disjoints » ⇒ « parallèles ».

- 1. Deux sous-espaces parallèles sont disjoints ou confondus
- Par tout point d'un espace affine, il passe une unique droite (sous espace) parallèle à une droite (sous espace) donnée

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

Attention: « disjoints » ⇒ « parallèles ».

- 1. Deux sous-espaces parallèles sont disjoints ou confondus
- Par tout point d'un espace affine, il passe une unique droite (sous espace) parallèle à une droite (sous espace) donnée.

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

Attention : « disjoints » ≠ « parallèles ».

- 1. Deux sous-espaces parallèles sont disjoints ou confondus
- Par tout point d'un espace affine, il passe une unique droite (sous espace) parallèle à une droite (sous espace) donnée.

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

Attention : « disjoints » \Rightarrow « parallèles ».

- 1. Deux sous-espaces parallèles sont disjoints ou confondus.
- Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

Attention : « disjoints » ≠ « parallèles ».

- 1. Deux sous-espaces parallèles sont disjoints ou confondus.
- 2. Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Définition

On dit que deux (plusieurs) sous-espaces affines d'un même espace affine sont parallèles s'ils ont la même direction. (C'est une relation d'équivalence.)

Attention : « disjoints » ≠ « parallèles ».

- 1. Deux sous-espaces parallèles sont disjoints ou confondus.
- 2. Par tout point d'un espace affine, il passe une unique droite (sous-espace) parallèle à une droite (sous-espace) donnée.

Intersection de sous-espaces affines

Proposition

L'intersection de deux sous-espaces affines ${\mathcal F}$ et ${\mathcal G}$ est :

- ▶ vide, ou
- ightharpoonup un sous-espace affine de direction $\overline{\mathcal{F}}\cap\overline{\mathcal{G}}$.

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G}$,

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$
.

Intersection de sous-espaces affines

Proposition

L'intersection de deux sous-espaces affines $\mathcal F$ et $\mathcal G$ est :

- vide, ou
- un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G}$,

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$
.

Intersection de sous-espaces affines

Proposition

L'intersection de deux sous-espaces affines $\mathcal F$ et $\mathcal G$ est :

- vide, ou
- un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G}$,

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$
.

Intersection de sous-espaces affines

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est :

- ▶ vide, ou
- un sous-espace affine de direction $\overrightarrow{\mathcal{F}} \cap \overrightarrow{\mathcal{G}}$.

Proposition

L'intersection de deux sous-espaces affines \mathcal{F} et \mathcal{G} est vide si et seulement si $\exists (\forall) A \in \mathcal{F}, B \in \mathcal{G}$,

$$\overrightarrow{AB} \notin \overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$$
.

Sous-espace engendré

Définition-Proposition

- 1. $\langle A \rangle$ est le plus petit sous-espace affine contenant A.
- \(\mathcal{A}\)\) est l'intersection de tous les sous-espaces affines contenant \(\mathcal{A}\).
- 3. $\langle A \rangle$ est l'ensemble des barycentres de points de A.
- 4. $\forall (\exists) \Omega \in \mathcal{A}$, $\langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Sous-espace engendré

Définition-Proposition

- 1. $\langle \mathcal{A} \rangle$ est le plus petit sous-espace affine contenant \mathcal{A} .
- 2. $\langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- 3. $\langle A \rangle$ est l'ensemble des barycentres de points de A.
- 4. $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Définition-Proposition

- 1. $\langle \mathcal{A} \rangle$ est le plus petit sous-espace affine contenant \mathcal{A} .
- 2. $\langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- 3. $\langle A \rangle$ est l'ensemble des barycentres de points de A
- 4. $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Sous-espace engendré

Définition-Proposition

- 1. $\langle \mathcal{A} \rangle$ est le plus petit sous-espace affine contenant \mathcal{A} .
- 2. $\langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- 3. $\langle A \rangle$ est l'ensemble des barycentres de points de A.
- 4. $\forall (\exists) \Omega \in \mathcal{A}, \langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Sous-espace engendré

Définition-Proposition

- 1. $\langle A \rangle$ est le plus petit sous-espace affine contenant A.
- 2. $\langle A \rangle$ est l'intersection de tous les sous-espaces affines contenant A.
- 3. $\langle A \rangle$ est l'ensemble des barycentres de points de A.
- 4. $\forall (\exists) \Omega \in \mathcal{A}$, $\langle \mathcal{A} \rangle$ est le sous-espace vectoriel engendré par \mathcal{A} dans \mathcal{E}_{Ω} .

Proposition

- 1. Si $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, expression $\overrightarrow{\mathcal{F}} = \overrightarrow{\mathcal{F}}$
- $\dim(\mathcal{F}, \mathcal{G}) = \dim(\mathcal{F} + \mathcal{G})$
- 2. Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $(\mathcal{F}, \mathcal{G})$ est de direction $\mathcal{F} + \mathcal{G} + \mathcal{L}$ où D est une droite engendrée par \overline{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et
 - $\dim\langle\mathcal{F},\mathcal{G}
 angle=\dim\left(\overrightarrow{\mathcal{F}}+\overrightarrow{\mathcal{G}}
 ight)+1.$

Proposition

- 1. Si $\mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et $\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right)$.
- 2. Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\widehat{\mathcal{F}} + \widehat{\mathcal{G}} + \widehat{D}$ où \widehat{D} est une droite engendrée par \widehat{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et
 - $\dim\langle\mathcal{F},\mathcal{G}
 angle=\dim\left(\overrightarrow{\mathcal{F}}+\overrightarrow{\mathcal{G}}
 ight)+1.$

Proposition

- 1. $Si \ \mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et $\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right)$.
- 2. Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\hat{\mathcal{F}} + \hat{\mathcal{G}} + \hat{\mathcal{D}}$ où $\hat{\mathcal{D}}$ est une droite engendrée par \widehat{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim\langle\mathcal{F},\mathcal{G}
angle=\dim\left(\overrightarrow{\mathcal{F}}+\overrightarrow{\mathcal{G}}
ight)+1.$$

Somme de sous-espaces affines

Proposition

- 1. $Si \ \mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et $\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right)$.
- 2. Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim\langle\mathcal{F},\mathcal{G}\rangle = \dim\left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}\right) + 1$$

Somme de sous-espaces affines

Proposition

- 1. $Si \mathcal{F} \cap \mathcal{G} \neq \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}$, et $\dim \langle \mathcal{F}, \mathcal{G} \rangle = \dim \left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} \right)$.
- 2. Si $\mathcal{F} \cap \mathcal{G} = \emptyset$, alors $\langle \mathcal{F}, \mathcal{G} \rangle$ est de direction $\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}} + \overrightarrow{D}$, où \overrightarrow{D} est une droite engendrée par \overrightarrow{AB} avec $A \in \mathcal{F}$ et $B \in \mathcal{G}$, et

$$\dim\langle\mathcal{F},\mathcal{G}\rangle = \dim\left(\overrightarrow{\mathcal{F}} + \overrightarrow{\mathcal{G}}\right) + 1.$$

Familles affinement libres et génératrices

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Définition

Soient $\{A_0, \ldots, A_k\}$ des points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

Définition

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement libre si dim $\langle A_0, \ldots, A_k \rangle = k$.

Familles affinement libres et génératrices

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Définition

Soient $\{A_0, \ldots, A_k\}$ des points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

Définition

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement libre si dim $\langle A_0, \ldots, A_k \rangle = k$.

Familles affinement libres et génératrices

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Définition

Soient $\{A_0, \ldots, A_k\}$ des points de \mathcal{F} . On dit que cette famille est affinement génératrice pour \mathcal{F} si $\langle A_0, \ldots, A_k \rangle = \mathcal{F}$.

Définition

Soient (k+1) points $\{A_0, \ldots, A_k\}$ de \mathcal{E} . On dit que cette famille est affinement libre si dim $\langle A_0, \ldots, A_k \rangle = k$.

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

- 1. $\{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- 2. $\{A_0, \ldots, A_k\}$ est une famille génératrice minimale pour \mathcal{F}
- 3. $\{A_0, \ldots, A_k\}$ est une famille libre maximale de \mathcal{F} .

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

- 1. $\{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- 2. $\{A_0, \ldots, A_k\}$ est une famille génératrice minimale pour \mathcal{F}
- 3. $\{A_0, \ldots, A_k\}$ est une famille libre maximale de \mathcal{F} .

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

- 1. $\{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- 2. $\{A_0, \ldots, A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- 3. $\{A_0, \ldots, A_k\}$ est une famille libre maximale de \mathcal{F} .

Soit ${\mathcal F}$ un sous-espace affine d'un espace affine ${\mathcal E}.$

Proposition

- 1. $\{A_0, \ldots, A_k\}$ est affinement libre et génératrice pour \mathcal{F} .
- 2. $\{A_0, \ldots, A_k\}$ est une famille génératrice minimale pour \mathcal{F} .
- 3. $\{A_0, \ldots, A_k\}$ est une famille libre maximale de \mathcal{F} .

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- 1. $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- 2. $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ telle que $\forall A, B \in \mathcal{E}$, $\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)} \Leftrightarrow \phi(A + \overrightarrow{V}) = \phi(A) + \overrightarrow{\phi}(\overrightarrow{V})$
 - $(\overrightarrow{\phi}$ est unique et est appelée partie linéaire de ϕ .)
- 3. ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=0}^{\kappa} \mu_i = 1$

$$\phi(\sum_{i=0}^{k} \mu_i A_i) = \sum_{i=0}^{k} \mu_i \phi(A_i).$$

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- 1. $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- 2. $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ telle que $\forall A, B \in \mathcal{E}$, $\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi}(A)\overrightarrow{\phi}(B) \Leftrightarrow \phi(A + \overrightarrow{V}) = \phi(A) + \overrightarrow{\phi}(\overrightarrow{V})$

 $(\overline{\phi}$ est unique et est appelée partie linéaire de ϕ .)

3. ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=0}^k \mu_i = 1$

$$\phi(\sum_{i=0}^{k} \mu_i A_i) = \sum_{i=0}^{k} \mu_i \phi(A_i).$$

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- 1. $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- 2. $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ telle que $\forall A, B \in \mathcal{E}$, $\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)} \Leftrightarrow \phi(A + \overrightarrow{v}) = \phi(A) + \overrightarrow{\phi}(\overrightarrow{v})$. $(\overrightarrow{\phi} \text{ est unique et est appelée partie linéaire } de \phi.)$
- 3. ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=0}^{\kappa} \mu_i = 1$

$$\phi(\sum_{i=0}^k \mu_i A_i) = \sum_{i=0}^k \mu_i \phi(A_i).$$

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- 1. $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- 2. $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ telle que $\forall A, B \in \mathcal{E}$, $\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)} \Leftrightarrow \phi(A + \overrightarrow{v}) = \phi(A) + \overrightarrow{\phi}(\overrightarrow{v})$. $(\overrightarrow{\phi} \text{ est unique et est appelée partie linéaire } de \phi.)$
- 3. ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=0}^{\kappa} \mu_i = 1$

$$\phi(\sum_{i=0}^k \mu_i A_i) = \sum_{i=0}^k \mu_i \phi(A_i).$$

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- 1. $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- 2. $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ telle que $\forall A, B \in \mathcal{E}$, $\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)} \Leftrightarrow \phi(A + \overrightarrow{v}) = \phi(A) + \overrightarrow{\phi}(\overrightarrow{v})$. $(\overrightarrow{\phi} \text{ est unique et est appelée partie linéaire } de \phi.)$
- 3. ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=0}^k \mu_i = 1$

$$\phi(\sum_{i=0}^k \mu_i A_i) = \sum_{i=0}^k \mu_i \phi(A_i).$$

Soient \mathcal{E} et \mathcal{F} deux espaces affines de directions $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$.

Définition-Proposition

Une application $\phi: \mathcal{E} \to \mathcal{F}$ est dite affine si elle satisfait une des trois conditions équivalentes :

- 1. $\exists (\forall) \Omega \in \mathcal{E}, \ \phi \in \mathcal{L}(\mathcal{E}_{\Omega}, \mathcal{F}_{\phi(\Omega)}).$
- 2. $\exists \overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ telle que $\forall A, B \in \mathcal{E}$, $\overrightarrow{\phi}(\overrightarrow{AB}) = \overrightarrow{\phi(A)\phi(B)} \Leftrightarrow \phi(A + \overrightarrow{v}) = \phi(A) + \overrightarrow{\phi}(\overrightarrow{v})$. $(\overrightarrow{\phi} \text{ est unique et est appelée partie linéaire } de \phi.)$
- 3. ϕ préserve les barycentres, c.-à.-d. pour $\sum_{i=0}^{k} \mu_i = 1$

$$\phi(\sum_{i=0}^k \mu_i A_i) = \sum_{i=0}^k \mu_i \phi(A_i).$$

- 1. Les applications constantes sont affines, de partie vectorielle 0.
- 2. Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- 3. Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X\mapsto AX+B$, où $M\in\mathcal{M}_{m,n}$ et $B\in\mathbb{R}^m$.
- 4. Les applications affines de \mathbb{C} dans \mathbb{C} , vu comme \mathbb{R} -espace vectoriel, sont de la forme $z \mapsto az + b\overline{z} + c$, où $a, b, c \in \mathbb{C}$.
- 5. Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- 6. Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines de Aff $(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ sont toutes de la forme $\overrightarrow{x}\mapsto\overrightarrow{\phi}(\overrightarrow{x})+\overrightarrow{v}=T_{\overrightarrow{v}}\circ\overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}\in\mathcal{L}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ est linéaire

1. Les applications constantes sont affines, de partie vectorielle 0.

- 2. Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- 3. Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X\mapsto AX+B$, où $M\in\mathcal{M}_{m,n}$ et $B\in\mathbb{R}^m$.
- 4. Les applications affines de \mathbb{C} dans \mathbb{C} , vu comme \mathbb{R} -espace vectoriel, sont de la forme $z \mapsto az + b\overline{z} + c$, où $a, b, c \in \mathbb{C}$.
- 5. Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- 6. Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines de Aff $(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ sont toutes de la forme $\overrightarrow{x}\mapsto\overrightarrow{\phi}(\overrightarrow{x})+\overrightarrow{v}=T_{\overrightarrow{v}}\circ\overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}\in\mathcal{L}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ est linéaire

- 1. Les applications constantes sont affines, de partie vectorielle 0.
- 2. Les applications affines de $\mathbb R$ dans $\mathbb R$ sont de la forme $x\mapsto ax+b$.
- 3. Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X\mapsto AX+B$, où $M\in\mathcal{M}_{m,n}$ et $B\in\mathbb{R}^m$.
- 4. Les applications affines de \mathbb{C} dans \mathbb{C} , vu comme \mathbb{R} -espace vectoriel, sont de la forme $z \mapsto az + b\overline{z} + c$, où $a, b, c \in \mathbb{C}$.
- 5. Les translations $T_{\vec{v}}: M \mapsto M + \vec{v}$ (où $\vec{v} \in \vec{E}$) sont des automorphismes affines de \vec{E} .
- 6. Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines de $\mathrm{Aff}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ sont toutes de la forme $\overrightarrow{x}\mapsto\overrightarrow{\phi}(\overrightarrow{x})+\overrightarrow{v}=T_{\overrightarrow{v}}\circ\overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}\in\mathcal{L}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ est linéaire

- 1. Les applications constantes sont affines, de partie vectorielle 0.
- 2. Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- 3. Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X\mapsto AX+B$, où $M\in\mathcal{M}_{m,n}$ et $B\in\mathbb{R}^m$.
- 4. Les applications affines de \mathbb{C} dans \mathbb{C} , vu comme \mathbb{R} -espace vectoriel, sont de la forme $z \mapsto az + b\overline{z} + c$, où $a, b, c \in \mathbb{C}$.
- 5. Les translations $T_{\vec{v}}: M \mapsto M + \vec{v}$ (où $\vec{v} \in \vec{E}$) sont des automorphismes affines de \vec{E} .
- 6. Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines de $\mathrm{Aff}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ sont toutes de la forme $\overrightarrow{x}\mapsto\overrightarrow{\phi}(\overrightarrow{x})+\overrightarrow{v}=T_{\overrightarrow{v}}\circ\overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}\in\mathcal{L}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ est linéaire

- 1. Les applications constantes sont affines, de partie vectorielle 0.
- 2. Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- 3. Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X\mapsto AX+B$, où $M\in\mathcal{M}_{m,n}$ et $B\in\mathbb{R}^m$.
- 4. Les applications affines de $\mathbb C$ dans $\mathbb C$, vu comme $\mathbb R$ -espace vectoriel, sont de la forme $z\mapsto az+b\overline z+c$, où $a,b,c\in\mathbb C$.
- 5. Les translations $T_{\vec{v}}: M \mapsto M + \vec{v}$ (où $\vec{v} \in E$) sont des automorphismes affines de E.
- 6. Soient \mathcal{E} et \mathcal{F} deux espaces vectoriels. Les applications affines de $\mathrm{Aff}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ sont toutes de la forme $\overrightarrow{x}\mapsto\overrightarrow{\phi}(\overrightarrow{x})+\overrightarrow{v}=T_{\overrightarrow{v}}\circ\overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}\in\mathcal{L}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ est linéaire.

- 1. Les applications constantes sont affines, de partie vectorielle 0.
- 2. Les applications affines de \mathbb{R} dans \mathbb{R} sont de la forme $x \mapsto ax + b$.
- 3. Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X\mapsto AX+B$, où $M\in\mathcal{M}_{m,n}$ et $B\in\mathbb{R}^m$.
- 4. Les applications affines de $\mathbb C$ dans $\mathbb C$, vu comme $\mathbb R$ -espace vectoriel, sont de la forme $z\mapsto az+b\overline z+c$, où $a,b,c\in\mathbb C$.
- 5. Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- 6. Soient \mathcal{E} et \mathcal{F} deux espaces vectoriels. Les applications affines de $\mathrm{Aff}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ sont toutes de la forme $\overrightarrow{x}\mapsto\overrightarrow{\phi}(\overrightarrow{x})+\overrightarrow{v}=T_{\overrightarrow{v}}\circ\overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi}\in\mathcal{L}(\overrightarrow{\mathcal{E}},\overrightarrow{\mathcal{F}})$ est linéaire.

- 1. Les applications constantes sont affines, de partie vectorielle 0.
- 2. Les applications affines de $\mathbb R$ dans $\mathbb R$ sont de la forme $x\mapsto ax+b$.
- 3. Les applications affines de \mathbb{R}^n dans \mathbb{R}^m sont de la forme $X \mapsto AX + B$, où $M \in \mathcal{M}_{m,n}$ et $B \in \mathbb{R}^m$.
- 4. Les applications affines de $\mathbb C$ dans $\mathbb C$, vu comme $\mathbb R$ -espace vectoriel, sont de la forme $z\mapsto az+b\overline z+c$, où $a,b,c\in\mathbb C$.
- 5. Les translations $T_{\overrightarrow{v}}: M \mapsto M + \overrightarrow{v}$ (où $\overrightarrow{v} \in \overrightarrow{E}$) sont des automorphismes affines de E.
- 6. Soient $\overrightarrow{\mathcal{E}}$ et $\overrightarrow{\mathcal{F}}$ deux espaces vectoriels. Les applications affines de Aff $(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ sont toutes de la forme $\overrightarrow{x} \mapsto \overrightarrow{\phi}(\overrightarrow{x}) + \overrightarrow{v} = T_{\overrightarrow{v}} \circ \overrightarrow{\phi}(\overrightarrow{x})$, où $\overrightarrow{\phi} \in \mathcal{L}(\overrightarrow{\mathcal{E}}, \overrightarrow{\mathcal{F}})$ est linéaire.

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\psi \circ \phi$.

Proposition

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$, $\mathcal{A} \subset \mathcal{E}$ et $\mathcal{B} \subset \mathcal{F}$ deux s.e.a.

- 1. $\phi(A)$ est un s.e.a. de \mathcal{F} de direction $\overrightarrow{\phi}(\overrightarrow{A})$.
- 2. $\phi^{-1}(\mathcal{B})$ est vide ou un s.e.a. de \mathcal{E} de direction $\overrightarrow{\phi}^{-1}(\overrightarrow{\mathcal{B}})$

Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner.

- 1. la partie linéaire et l'image d'un point,
- 2 ou l'image d'un renère

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\psi \circ \phi$.

Proposition

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$, $\mathcal{A} \subset \mathcal{E}$ et $\mathcal{B} \subset \mathcal{F}$ deux s.e.a.

- 1. $\phi(A)$ est un s.e.a. de \mathcal{F} de direction $\overrightarrow{\phi}(\overrightarrow{A})$.
- 2. $\phi^{-1}(\mathcal{B})$ est vide ou un s.e.a. de \mathcal{E} de direction $\overrightarrow{\phi}^{-1}(\overrightarrow{\mathcal{B}})$.

Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner

- 1. la partie linéaire et l'image d'un point
- 2 ou l'image d'un renère

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E}, \mathcal{F})$, $\mathcal{A} \subset \mathcal{E}$ et $\mathcal{B} \subset \mathcal{F}$ deux s.e.a.

- 1. $\phi(A)$ est un s.e.a. de \mathcal{F} de direction $\overrightarrow{\phi}(\overrightarrow{A})$.
- 2. $\phi^{-1}(\mathcal{B})$ est vide ou un s.e.a. de \mathcal{E} de direction $\overrightarrow{\phi}^{-1}(\overrightarrow{\mathcal{B}})$.

Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner :

- 1. la partie linéaire et l'image d'un point,
- 2. ou l'image d'un repère

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E}, \mathcal{F})$, $\mathcal{A} \subset \mathcal{E}$ et $\mathcal{B} \subset \mathcal{F}$ deux s.e.a.

- 1. $\phi(A)$ est un s.e.a. de \mathcal{F} de direction $\overrightarrow{\phi}(\overrightarrow{A})$.
- 2. $\phi^{-1}(\mathcal{B})$ est vide ou un s.e.a. de \mathcal{E} de direction $\overrightarrow{\phi}^{-1}(\overrightarrow{\mathcal{B}})$.

Ainsi les images de trois points alignés sont alignées.

Proposition

Pour donner une application affine il suffit de donner :

- 1. la partie linéaire et l'image d'un point,
- 2. ou l'image d'un repère

Premières propriétés

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E},\mathcal{F})$ et $\psi \in \mathsf{Aff}(\mathcal{F},\mathcal{G})$, alors $\psi \circ \phi \in \mathsf{Aff}(\mathcal{E},\mathcal{G})$ et a pour partie linéaire $\overrightarrow{\psi} \circ \overrightarrow{\phi}$.

Proposition

Soit $\phi \in Aff(\mathcal{E}, \mathcal{F})$, $\mathcal{A} \subset \mathcal{E}$ et $\mathcal{B} \subset \mathcal{F}$ deux s.e.a.

1. $\phi(A)$ est un s.e.a. de \mathcal{F} de direction $\overline{\phi}(\overline{A})$.

Ainsi les images de trois points alignés sont alignées.

2. $\phi^{-1}(\mathcal{B})$ est vide ou un s.e.a. de \mathcal{E} de direction $\overrightarrow{\phi}^{-1}(\overrightarrow{\mathcal{B}})$.

Proposition

Pour donner une application affine il suffit de donner :

- 1. la partie linéaire et l'image d'un point,
- 2. ou l'image d'un repère.

Les translations (définition)

Définition-Proposition

Une translation est une application affine $T \in \mathsf{Aff}(\mathcal{E})$ qui satisfait une des conditions équivalentes :

- 1. elle est de la forme $T = T_{\vec{v}} : M \mapsto M + \vec{v}$, où $\vec{v} \in \vec{\mathcal{E}}$
- 2. sa partie linéaire est $\overline{\phi} = \operatorname{Id} \in \mathcal{L}(\overline{\mathcal{E}})$.

Les translations (définition)

Définition-Proposition

Une translation est une application affine $T \in \mathsf{Aff}(\mathcal{E})$ qui satisfait une des conditions équivalentes :

- 1. elle est de la forme $T = T_{\vec{v}} : M \mapsto M + \vec{v}$, où $\vec{v} \in \vec{\mathcal{E}}$,
- 2. sa partie linéaire est $\overrightarrow{\phi} = \operatorname{Id} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$.

Les translations (définition)

Définition-Proposition

Une translation est une application affine $T \in \mathsf{Aff}(\mathcal{E})$ qui satisfait une des conditions équivalentes :

- 1. elle est de la forme $T = T_{\vec{v}} : M \mapsto M + \vec{v}$, où $\vec{v} \in \vec{\mathcal{E}}$,
- 2. sa partie linéaire est $\overrightarrow{\phi} = \operatorname{Id} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$.

- 1. Une translation qui fixe un point est l'identité.
- 2. $T_{\overrightarrow{u}} \circ T_{\overrightarrow{v}} = T_{\overrightarrow{u}+\overrightarrow{v}}$: les translations forment un groupe abélien isomorphe à $\overrightarrow{\mathcal{E}}$.
- 3. Les translations de $\mathbb C$ sont de la forme $z\mapsto z+c$, pour $c\in\mathbb C.$
- 4. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

- 1. Une translation qui fixe un point est l'identité.
- 2. $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{u}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- 3. Les translations de $\mathbb C$ sont de la forme $z\mapsto z+c$, pour $c\in\mathbb C.$
- 4. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

- 1. Une translation qui fixe un point est l'identité.
- 2. $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{u}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- 3. Les translations de $\mathbb C$ sont de la forme $z\mapsto z+c$, pour $c\in\mathbb C$.
- 4. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

- 1. Une translation qui fixe un point est l'identité.
- 2. $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{u}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- 3. Les translations de $\mathbb C$ sont de la forme $z\mapsto z+c$, pour $c\in\mathbb C$.
- 4. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

- 1. Une translation qui fixe un point est l'identité.
- 2. $T_{\vec{u}} \circ T_{\vec{v}} = T_{\vec{u}+\vec{v}}$: les translations forment un groupe abélien isomorphe à $\vec{\mathcal{E}}$.
- 3. Les translations de $\mathbb C$ sont de la forme $z\mapsto z+c$, pour $c\in\mathbb C.$
- 4. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}$, alors $\phi \circ T_{\overrightarrow{v}} \circ \phi^{-1} = T_{\overrightarrow{\phi}(\overrightarrow{v})}$.

Définition-Proposition

- ▶ H est une homothétie vectorielle de \mathcal{E}_{Ω} de rapport λ ;
- ▶ H fixe Ω et $\overline{H} = \lambda \mathrm{Id} \in \mathcal{L}(\overline{\mathcal{E}})$;
- elle est de la forme $H = H_{\Omega,\lambda} : M \mapsto \lambda M + (1 \lambda)\Omega$.

Définition-Proposition

- H est une homothétie vectorielle de \mathcal{E}_{Ω} de rapport λ ;
- H fixe Ω et $\overrightarrow{H} = \lambda \mathrm{Id} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$;
- elle est de la forme $H = H_{\Omega,\lambda} : M \mapsto \lambda M + (1 \lambda)\Omega$.

Définition-Proposition

- ▶ H est une homothétie vectorielle de \mathcal{E}_{Ω} de rapport λ ;
- *H* fixe Ω et $\overrightarrow{H} = \lambda \mathrm{Id} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$;
- elle est de la forme $H = H_{\Omega,\lambda} : M \mapsto \lambda M + (1 \lambda)\Omega$.

Définition-Proposition

- H est une homothétie vectorielle de \mathcal{E}_{Ω} de rapport λ ;
- *H* fixe Ω et $\overrightarrow{H} = \lambda \mathrm{Id} \in \mathcal{L}(\overrightarrow{\mathcal{E}})$;
- elle est de la forme $H = H_{\Omega,\lambda} : M \mapsto \lambda M + (1 \lambda)\Omega$.

- Une homothétie qui fixe deux points est l'identité.
- 2. Si $\widetilde{H} = \lambda \mathrm{Id}$ avec $\lambda \neq 1$, alors H est une homothétie affine.
- 3. La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - ▶ Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - ▶ Une translation, si $\lambda \mu = 1$.
- 4. Les homothéties $h_{\omega,\lambda}$ du \mathbb{R} -espace vectoriel \mathbb{C} sont de la forme $z \mapsto \lambda z + (1-\lambda)\omega$, pour $\lambda \in \mathbb{R}, \omega \in \mathbb{C}$.
- 5. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

- 1. Une homothétie qui fixe deux points est l'identité.
- 2. Si $\widetilde{H} = \lambda \mathrm{Id}$ avec $\lambda \neq 1$, alors H est une homothétie affine.
- 3. La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - ▶ Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - ▶ Une translation, si $\lambda \mu = 1$.
- 4. Les homothéties $h_{\omega,\lambda}$ du \mathbb{R} -espace vectoriel \mathbb{C} sont de la forme $z \mapsto \lambda z + (1 \lambda)\omega$, pour $\lambda \in \mathbb{R}, \omega \in \mathbb{C}$.
- 5. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

- 1. Une homothétie qui fixe deux points est l'identité.
- 2. Si $\overrightarrow{H} = \lambda \operatorname{Id}$ avec $\lambda \neq 1$, alors H est une homothétie affine.
- 3. La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - ▶ Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$
 - ▶ Une translation, si $\lambda \mu = 1$
- 4. Les homothéties $h_{\omega,\lambda}$ du \mathbb{R} -espace vectoriel \mathbb{C} sont de la forme $z \mapsto \lambda z + (1-\lambda)\omega$, pour $\lambda \in \mathbb{R}, \omega \in \mathbb{C}$.
- 5. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

- 1. Une homothétie qui fixe deux points est l'identité.
- 2. Si $\widetilde{H} = \lambda \mathrm{Id}$ avec $\lambda \neq 1$, alors H est une homothétie affine.
- 3. La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - Une translation, si $\lambda \mu = 1$.
- 4. Les homothéties $h_{\omega,\lambda}$ du \mathbb{R} -espace vectoriel \mathbb{C} sont de la forme $z \mapsto \lambda z + (1-\lambda)\omega$, pour $\lambda \in \mathbb{R}, \omega \in \mathbb{C}$.
- 5. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

- 1. Une homothétie qui fixe deux points est l'identité.
- 2. Si $H = \lambda Id$ avec $\lambda \neq 1$, alors H est une homothétie affine.
- 3. La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - ▶ Une homothétie de rapport $\lambda\mu$, si $\lambda\mu \neq 1$.
 - Une translation, si $\lambda \mu = 1$.
- 4. Les homothéties $h_{\omega,\lambda}$ du \mathbb{R} -espace vectoriel \mathbb{C} sont de la forme $z \mapsto \lambda z + (1-\lambda)\omega$, pour $\lambda \in \mathbb{R}, \omega \in \mathbb{C}$.
- 5. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

- 1. Une homothétie qui fixe deux points est l'identité.
- 2. Si $H = \lambda Id$ avec $\lambda \neq 1$, alors H est une homothétie affine.
- 3. La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - ▶ Une homothétie de rapport $\lambda\mu$, si $\lambda\mu \neq 1$.
 - Une translation, si $\lambda \mu = 1$.
- 4. Les homothéties $h_{\omega,\lambda}$ du \mathbb{R} -espace vectoriel \mathbb{C} sont de la forme $z \mapsto \lambda z + (1-\lambda)\omega$, pour $\lambda \in \mathbb{R}, \omega \in \mathbb{C}$.
- 5. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

- 1. Une homothétie qui fixe deux points est l'identité.
- 2. Si $\overrightarrow{H} = \lambda \operatorname{Id}$ avec $\lambda \neq 1$, alors H est une homothétie affine.
- 3. La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - ▶ Une homothétie de rapport $\lambda\mu$, si $\lambda\mu \neq 1$.
 - Une translation, si $\lambda \mu = 1$.
- 4. Les homothéties $h_{\omega,\lambda}$ du \mathbb{R} -espace vectoriel \mathbb{C} sont de la forme $z \mapsto \lambda z + (1-\lambda)\omega$, pour $\lambda \in \mathbb{R}, \omega \in \mathbb{C}$.
- 5. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

- 1. Une homothétie qui fixe deux points est l'identité.
- 2. Si $\overrightarrow{H} = \lambda \operatorname{Id}$ avec $\lambda \neq 1$, alors H est une homothétie affine.
- 3. La composée de deux homothéties, l'une de rapport λ et l'autre de rapport μ , est :
 - Une homothétie de rapport $\lambda \mu$, si $\lambda \mu \neq 1$.
 - Une translation, si $\lambda \mu = 1$.
- 4. Les homothéties $h_{\omega,\lambda}$ du \mathbb{R} -espace vectoriel \mathbb{C} sont de la forme $z \mapsto \lambda z + (1-\lambda)\omega$, pour $\lambda \in \mathbb{R}, \omega \in \mathbb{C}$.
- 5. Soit $\phi \in \operatorname{Aut}(\mathcal{E})$ un automorphisme affine de \mathcal{E} et $h_{\Omega,\lambda}$ une homothétie de centre Ω et de rapport λ , alors $\phi \circ h_{\Omega,\lambda} \circ \phi^{-1} = h_{\phi(\Omega),\lambda}$.

Proposition

Soit $\dim \mathcal{E} < \infty$, alors $\phi \in \mathsf{Aff}(\mathcal{E})$ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\mathcal{E}_1 \neq 0$ l'ensemble de points fixes de ϕ , alors

- 1. si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overline{\mathcal{E}}_1$;
- 2. si ϕ n'a pas de points fixes, et

$$\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors il existe un unique $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}_1$ tel que $T_{\overrightarrow{v}} \circ \phi = \phi \circ T_{\overrightarrow{v}}$ et $T_{\overrightarrow{v}} \circ \phi$ possède (au moins) un point fixe.

Proposition

Soit $\dim \mathcal{E} < \infty$, alors $\phi \in \mathsf{Aff}(\mathcal{E})$ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\mathcal{E}_1 \neq 0$ l'ensemble de points fixes de ϕ , alors

- 1. si ϕ possède un point fixe Ω , l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2. $si \phi n'a pas de points fixes, et$

$$\operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \oplus \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id}) = \overrightarrow{\mathcal{E}}$$

alors II existe un unique $v \in \mathcal{E}_1$ tel que $I_{\nabla} \circ \phi = \phi \circ I_{\nabla}$ et $T_{\nabla} \circ \phi$ possède (au moins) un point fixe.

Proposition

Soit $\dim \mathcal{E} < \infty$, alors $\phi \in \mathsf{Aff}(\mathcal{E})$ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- 1. $si \phi possède un point fixe \Omega$, l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2. $si \phi n'a pas de points fixes, et$

alors il existe un unique $\overline{V} \in \overline{\mathcal{E}}_1$ tel que $T_{\overline{V}} \circ \phi = \phi \circ T_{\overline{V}}$ et $T_{\overline{V}} \circ \phi$ possède un point fixe.

Proposition

Soit $\dim \mathcal{E} < \infty$, alors $\phi \in \mathsf{Aff}(\mathcal{E})$ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- 1. $si \ \phi \ possède \ un \ point \ fixe \ \Omega$, l'ensemble de points fixes de $\phi \ est \ \Omega + \overrightarrow{\mathcal{E}}_1$;
- 2. $si \phi n'a pas de points fixes, el$

alors il existe un unique $\overline{v} \in \overline{\mathcal{E}}_1$ tel que $T_{\overline{v}} \circ \phi = \phi \circ T_{\overline{v}}$ et $T_{\overline{v}} \circ \phi$ possède un point fixe.

Proposition

Soit $\dim \mathcal{E} < \infty$, alors $\phi \in \mathsf{Aff}(\mathcal{E})$ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- 1. $si \phi possède un point fixe <math>\Omega$, l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2. $si \phi n'a pas de points fixes, et$

$$\mathsf{Ker}(\phi - \mathrm{Id}) \oplus \mathsf{Im}(\phi - \mathrm{Id}) = \mathcal{E}$$
 alors il existe un unique $\vec{v} \in \vec{\mathcal{E}}_1$ tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ et $T_{\vec{v}} \circ \phi$ possède (au moins) un point fixe.

Proposition

Soit $\dim \mathcal{E} < \infty$, alors $\phi \in \mathsf{Aff}(\mathcal{E})$ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- 1. $si \phi possède un point fixe <math>\Omega$, l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2. $si \phi n'a pas de points fixes, et$

$$\operatorname{\mathsf{Ker}}(\overrightarrow{\phi}-\operatorname{Id})\oplus\operatorname{\mathsf{Im}}(\overrightarrow{\phi}-\operatorname{Id})=\overrightarrow{\mathcal{E}}$$

alors il existe un unique $\vec{v} \in \mathcal{E}_1$ tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ et $T_{\vec{v}} \circ \phi$ possède (au moins) un point fixe.

Proposition

Soit $\dim \mathcal{E} < \infty$, alors $\phi \in \mathsf{Aff}(\mathcal{E})$ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- 1. $si \phi possède un point fixe <math>\Omega$, l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2. $si \phi n'a pas de points fixes, et$

$$\mathsf{Ker}(\overrightarrow{\phi} - \mathrm{Id}) \oplus \mathsf{Im}(\overrightarrow{\phi} - \mathrm{Id}) = \overrightarrow{\mathcal{E}}$$
 alors il existe un unique $\overrightarrow{v} \in \overrightarrow{\mathcal{E}}_1$ tel que $T_{\overrightarrow{v}} \circ \phi = \phi \circ T_{\overrightarrow{v}}$

Proposition

Soit $\dim \mathcal{E} < \infty$, alors $\phi \in \mathsf{Aff}(\mathcal{E})$ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- 1. $si \phi possède un point fixe <math>\Omega$, l'ensemble de points fixes de ϕ est $\Omega + \overrightarrow{\mathcal{E}}_1$;
- 2. $si \phi n'a pas de points fixes, et$

$$\operatorname{\mathsf{Ker}}(\overrightarrow{\phi}-\operatorname{Id})\oplus\operatorname{\mathsf{Im}}(\overrightarrow{\phi}-\operatorname{Id})=\overrightarrow{\mathcal{E}}$$

alors il existe un unique $\vec{v} \in \vec{\mathcal{E}}_1$ tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ et $T_{\vec{v}} \circ \phi$ possède (au moins) un point fixe.

Proposition

Soit $\dim \mathcal{E} < \infty$, alors $\phi \in \mathsf{Aff}(\mathcal{E})$ possède un unique point fixe ssi $\overrightarrow{\phi}$ possède un unique point fixe (forcément $0 \in \overrightarrow{\mathcal{E}}$), autrement dit, ssi $1 \notin \mathsf{Sp}(\overrightarrow{\phi})$.

Proposition

Soit $\vec{\mathcal{E}}_1 \neq 0$ l'ensemble de points fixes de $\vec{\phi}$, alors

- 1. $si \ \phi \ possède \ un \ point \ fixe \ \Omega$, l'ensemble de points fixes de $\phi \ est \ \Omega + \overrightarrow{\mathcal{E}}_1$;
- 2. $si \phi n'a pas de points fixes, et$

$$\operatorname{\mathsf{Ker}}(\overrightarrow{\phi}-\operatorname{Id})\oplus\operatorname{\mathsf{Im}}(\overrightarrow{\phi}-\operatorname{Id})=\overrightarrow{\mathcal{E}}$$

alors il existe un unique $\vec{v} \in \vec{\mathcal{E}}_1$ tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ et $T_{\vec{v}} \circ \phi$ possède (au moins) un point fixe.

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $(\overrightarrow{\phi})^{-1}$.

Proposition

Les bijections affines de \mathcal{E} dans lui-même forment un groupe, le groupe affine $GA(\mathcal{E})$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal{E}) \twoheadrightarrow GL(\overrightarrow{\mathcal{E}})$, de noyau le sous-groupe abélien des translations de \mathcal{E} .

Le groupe affine

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $(\overrightarrow{\phi})^{-1}$.

Proposition

Les bijections affines de $\mathcal E$ dans lui-même forment un groupe, le groupe affine $GA(\mathcal E)$. Et l'application $\phi \mapsto \overline{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal E) \twoheadrightarrow GL(\overline{\mathcal E})$, de noyau le sous-groupe abélien des translations de $\mathcal E$.

Le groupe affine

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $(\overrightarrow{\phi})^{-1}$.

Proposition

Les bijections affines de $\mathcal E$ dans lui-même forment un groupe, le groupe affine $GA(\mathcal E)$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal E) \twoheadrightarrow GL(\overrightarrow{\mathcal E})$, de noyau le sous-groupe abélien des translations de $\mathcal E$.

Le groupe affine

Proposition

Soit $\phi \in \mathsf{Aff}(\mathcal{E})$, alors ϕ est une bijection ssi $\overrightarrow{\phi}$ l'est, et dans ce cas ϕ^{-1} est une application affine avec partie linéaire $(\overrightarrow{\phi})^{-1}$.

Proposition

Les bijections affines de $\mathcal E$ dans lui-même forment un groupe, le groupe affine $GA(\mathcal E)$. Et l'application $\phi \mapsto \overrightarrow{\phi}$ est un morphisme surjectif de groupes $GA(\mathcal E) \twoheadrightarrow GL(\overrightarrow{\mathcal E})$, de noyau le sous-groupe abélien des translations de $\mathcal E$.

Définition d'un convexe

Définition

Soient A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \mid \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appelé le segment [AB].

Définition

On dit que C est un ensemble *convexe*, si pour tous deux points $A, B \in C$ le segment [AB] est entièrement contenu dans C.

Proposition

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

Définition d'un convexe

Définition

Soient A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \mid \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appelé le segment [AB].

Définition

On dit que \mathcal{C} est un ensemble *convexe*, si pour tous deux points $A, B \in \mathcal{C}$ le segment [AB] est entièrement contenu dans \mathcal{C} .

Proposition

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

Définition d'un convexe

Définition

Soient A et B deux points d'un espace affine. On note $[AB] = \{\lambda A + (1-\lambda)B \mid \lambda \in [0,1]\}$ l'ensemble des barycentres à poids positifs, appelé le segment [AB].

Définition

On dit que $\mathcal C$ est un ensemble *convexe*, si pour tous deux points $A,B\in\mathcal C$ le segment [AB] est entièrement contenu dans $\mathcal C$.

Proposition

Un ensemble C est convexe ssi tout barycentre de points de C à poids **positifs** est dans C.

- L'intersection d'ensembles convexes est convexe.
- L'ensemble vide et les ensembles à un point sont convexes.
- Un sous-espace affine est convexe.
- 4. Les demi-espaces (ouverts, fermés) sont convexes.
- L'image d'un convexe par une application affine est convexe.
- L'image réciproque d'un convexe par une application affine est convexe.
- 7. Une fonction réelle est convexe ssi la partie au-dessus du graphe est convexe.

1. L'intersection d'ensembles convexes est convexe.

- L'ensemble vide et les ensembles à un point sont convexes.
- 3. Un sous-espace affine est convexe.
- 4. Les demi-espaces (ouverts, fermés) sont convexes.
- 5. L'image d'un convexe par une application affine est convexe.
- L'image réciproque d'un convexe par une application affine est convexe.
- Une fonction réelle est convexe ssi la partie au-dessus du graphe est convexe.

- 1. L'intersection d'ensembles convexes est convexe.
- 2. L'ensemble vide et les ensembles à un point sont convexes.
- Un sous-espace affine est convexe.
- Les demi-espaces (ouverts, fermés) sont convexes.
- L'image d'un convexe par une application affine est convexe.
- L'image réciproque d'un convexe par une application affine est convexe.
- Une fonction réelle est convexe ssi la partie au-dessus du graphe est convexe.

- 1. L'intersection d'ensembles convexes est convexe.
- 2. L'ensemble vide et les ensembles à un point sont convexes.
- 3. Un sous-espace affine est convexe.
- Les demi-espaces (ouverts, fermés) sont convexes.
- L'image d'un convexe par une application affine est convexe.
- L'image réciproque d'un convexe par une application affine est convexe.
- Une fonction réelle est convexe ssi la partie au-dessus du graphe est convexe.

- 1. L'intersection d'ensembles convexes est convexe.
- 2. L'ensemble vide et les ensembles à un point sont convexes.
- 3. Un sous-espace affine est convexe.
- 4. Les demi-espaces (ouverts, fermés) sont convexes.
- L'image d'un convexe par une application affine est convexe.
- L'image réciproque d'un convexe par une application affine est convexe.
- 7. Une fonction réelle est convexe ssi la partie au-dessus du graphe est convexe.

- 1. L'intersection d'ensembles convexes est convexe.
- 2. L'ensemble vide et les ensembles à un point sont convexes.
- 3. Un sous-espace affine est convexe.
- 4. Les demi-espaces (ouverts, fermés) sont convexes.
- 5. L'image d'un convexe par une application affine est convexe.
- L'image réciproque d'un convexe par une application affine est convexe.
- 7. Une fonction réelle est convexe ssi la partie au-dessus du graphe est convexe.

- 1. L'intersection d'ensembles convexes est convexe.
- 2. L'ensemble vide et les ensembles à un point sont convexes.
- 3. Un sous-espace affine est convexe.
- 4. Les demi-espaces (ouverts, fermés) sont convexes.
- 5. L'image d'un convexe par une application affine est convexe.
- 6. L'image réciproque d'un convexe par une application affine est convexe.
- Une fonction réelle est convexe ssi la partie au-dessus du graphe est convexe.

- 1. L'intersection d'ensembles convexes est convexe.
- 2. L'ensemble vide et les ensembles à un point sont convexes.
- 3. Un sous-espace affine est convexe.
- 4. Les demi-espaces (ouverts, fermés) sont convexes.
- 5. L'image d'un convexe par une application affine est convexe.
- 6. L'image réciproque d'un convexe par une application affine est convexe.
- 7. Une fonction réelle est convexe ssi la partie au-dessus du graphe est convexe.

Définition-Proposition

Soit A une partie d'un espace affine. L'enveloppe convexe, noté [A], est :

- 1. Le plus petit convexe contenant A.
- 2. L'intersection de tous les convexes contenant ${\cal A}$.
- L'ensemble de barycentres de points de A de poids positifs.

Définition-Proposition

Soit \mathcal{A} une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal{A}]$, est :

- 1. Le plus petit convexe contenant A.
- 2. L'intersection de tous les convexes contenant $\mathcal{A}.$
- L'ensemble de barycentres de points de A de poids positifs.

Définition-Proposition

Soit \mathcal{A} une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal{A}]$, est :

- 1. Le plus petit convexe contenant A.
- 2. L'intersection de tous les convexes contenant A.
- L'ensemble de barycentres de points de A de poids positifs.

Définition-Proposition

Soit \mathcal{A} une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal{A}]$, est :

- 1. Le plus petit convexe contenant A.
- 2. L'intersection de tous les convexes contenant A.
- 3. L'ensemble de barycentres de points de A de poids positifs.

Définition-Proposition

Soit \mathcal{A} une partie d'un espace affine. L'enveloppe convexe, noté $[\mathcal{A}]$, est :

- 1. Le plus petit convexe contenant A.
- 2. L'intersection de tous les convexes contenant A.
- 3. L'ensemble de barycentres de points de $\mathcal A$ de poids positifs.