Introduction to Wireless and Mobile Networking

Lecture 4: Wireless MAC and Random Access

Hung-Yu Wei National Taiwan University

Wireless MAC

What's MAC

- Medium Access Control
 - Sharing the wireless medium
- · The MAC protocol defines
 - a set of rules for the orderly access of a shared media wireless channel by multiple mobile devices
 - a set of services that support real-time voice and video, and reliable delivery of data
 - plays a crucial role in the efficient and fair sharing of scarce wireless bandwidth

Issues in MAC

- Multiple devices need to share the "channel" efficiently
 - Problems: "interfere", contention, access control, channel quality varies over space and time
- · Different service requirements
 - Voice (real-time, reservation-based)
 - Data (best effort, reliable deliver)
- Different approaches and trade-offs
 - "Centralized vs. Distributed"
- Other challenges
 - Mobility, power conservation, security considerations
- It's a difficult problem
 - Near-far, hidden terminals, time-varying channel, burst, errors, etc.

Could We Apply MAC From Wired Networks?

· CSMA/CD

- Carrier Sense Multiple Access with Collision Detection
- send as soon as the medium is free, listen into the medium if a collision occurs (original method in IEEE 802.3)

Problems in wireless networks -> distributed

- Signal strength decreases proportional to the square of the distance
- The sender would apply CS and CD, but the collisions happen at the receiver
- Sender might not "hear" the collision
 - · CD does not work
- CS might not work if
 - · a terminal is "hidden"

Hidden Node

Exposed Node

Capture

- Capture occurs
 when a receiver can
 cleanly receive a
 transmission from
 one of two
 simultaneous
 transmissions.
 - Improve performance
 - But, result in unfairness

Near and far terminals

- · Terminals A and B send, C receives
 - signal strength decreases proportional to the square of the distance
 - the signal of terminal B therefore drowns out A's signal
 - C cannot receive A

Aloha

- · Mechanism
 - random, distributed (no central arbiter),
 time-multiplex
- The oldest random access protocol

Slotted Aloha

- Slotted Aloha
 - Time slots
 - Transmission at the beginning of slots
- · Performance
 - Channel efficiency only 18% for Aloha
 - 36% for Slotted Aloha
 - assuming Poisson distribution for packet arrival and packet length
 - Room for improvement!

CSMA

- Carrier Sense Multiple Access (CSMA)
- · Carrier Sense
 - Listen (sense carrier) before transmission
 - Improvement over Aloha
 - · Aloha doesn't consider what other users are doing
- Collision still occurs
 - Backoff when carrier is busy
 - Backoff when collision occurs
- · CSMA/CD
 - Collision Detection (CD)
 - · Listen for a collision with another node's transmission
 - Nodes are able to detect collision and stop transmission!
 - IEEE 802.3 standard
 - Ethernet

Different types of backoff

• 1-persistence

- After channel becomes idle, a node transmits its packet immediately

p-persistence

 After channel become idle, a node transmits its packet with probability p.

Non-persistence

- A node does not sense the channel until waiting for a random waiting period

Random MAC

Basic Components in Random MAC

- Some components
 - Contention
 - Basic for random access
 - Show your interest in
 - Reservation
 - Data transmission
- · Design principle
 - Reduce the cost of contention
 - Avoid unnecessary contention
 - Reduce the cost of each contention trial

DAMA(Demand Assigned Multiple Access)

- Reservation can increase efficiency to 80%
 - a sender reserves a future time-slot
 - sending within this reserved time-slot is possible without collision
 - reservation also causes higher delays
 - typical scheme for satellite links
- Examples for reservation algorithms:
 - Explicit Reservation
 - (Reservation-ALOHA)
 - Implicit Reservation (PRMA)
 - Reservation-TDMA

Explicit Reservation

·Reservation Aloha

- two modes:
 - ALOHA mode for reservation: competition for small reservation slots, collisions possible
 - reserved mode for data transmission within successful reserved slots (no collisions possible)
- Limitations
 - · all stations to keep the reservation list consistent
 - all stations have to synchronize from time to time

PRMA - Packet Reservation MA

Implicit reservation

- Several slots form a frame
- Slots are either reserved or empty
- Stations compete for empty slots according to the slotted aloha principle
- Once a station reserves a slot successfully, this slot is automatically assigned to this station in all following frames as long as the station has packets to send
- Competition for this slots starts again as soon as the slot was empty in the last frame

·Suitable for voice/video real-time reservation

- Might treat voice and data traffic differently

PRMA

BS notification (DL)

Slot usage (UL transmission)

PRMA: voice+data

- Voice (reservation)
 - Implicitly reservation for the future slots
- Data (random access)
 - Random access to idle slots for data transmission

Reservation-TDMA

·Reservation Time Division Multiple Access

- every frame consists of N mini-slots and x data-slots
- every station has its own mini-slot and can reserve up to k data-slots using this mini-slot (i.e. x = N * k).
- other stations can send data in unused data-slots according to a round-robin sending scheme (best-effort traffic)

MACA (Multiple Access with Collision Avoidance)

- · Using short signaling packets for collision avoidance
 - RTS (request to send): a sender request the right to send from a receiver with a short RTS packet before it sends a data packet
 - CTS (clear to send): the receiver grants the right to send as soon as it is ready to receive
- Signaling packets contain
 - sender address
 - receiver address
 - packet size
- Variants of this method can be found in IEEE802.11

MACA examples

- MACA avoids the problem of hidden terminals
 - A and C want to send to B
 - A sends RTS first
 - C waits after receiving CTS from B

MACA example

- MACA avoids the problem of exposed terminals (in some cases)
 - B wants to send to A, C to another terminal
 - now C does not have to wait for it cannot receive CTS from A
- In some MACA variant
 - It creates exposed terminal problem!

State Diagram: generalized MACA

ACK: positive acknowledgement NAK: negative acknowledgement

RxBusy: receiver busy

MAC: Polling

- MAC between TDMA and random access
- Master-slave architecture
 - E.g. BS (or AP) is the master
- · BS sends a "poll" to MS
 - "Poll" frame indicates MS's MAC address
 - Uplink transmission is controlled by AP's polling
- · 3 essential elements in polling
 - Request: MS request for uplink transmission
 - Poll: BS allocate bandwidth through polling
 - Data: Uplink data transmission

Polling Protocol Design

- Many polling mechanisms
- Design Space
 - Acknowledgement?
 - Combine uplink and downlink transmission?
 - Separate polling messages for
 - Bandwidth request
 - Actual data transmission
- 2 examples
 - Example 1:
 - · Separate polling for bandwidth request and data transmission
 - Example 2:
 - Integrated design for both uplink and downlink data transmission

Example 1: Polling

- Poll: BS polls MS to transmit bandwidth request
- Request: MS tells BS if MS has uplink data to send (Request) or not (Keep Alive)
- Tx Poll: BS tells MS to transmit uplink data
 - Response to the previous Request message
- Uplink Data: MS transmits data to BS

Example 2: Polling

- Poll no data
 - BS polls MS
 - BS has no downlink data to send
- · Poll data
 - BS polls MS
 - BS has downlink data to send
- Uplink data: MS sends data to BS
- Downlink data: BS sends data to MS
- · Ack data: Acknowledgement of received data

ISMA (Inhibit Sense Multiple Access)

- Current state of the medium is signaled via a "busy tone"
 - BS signals on the downlink (BS \rightarrow MS) if the medium is free or not
 - MS cannot send if the medium is busy
 - MS can access the medium as soon as the busy tone stops
 - BS signals collisions via busy tone
 - BS signals successful transmissions via ACK acknowledgements
- Used in CDPD
- Busy tone is used in some other systems

ISMA

- IS: Idle signal
- · ISA: Idle signal with acknowledgment

SAMA: Spread Aloha Multiple Access

- Aloha has only a very low efficiency, CDMA needs complex receivers to be able to receive different senders with individual codes at the same time
- Idea: use spread spectrum with only one single code (chipping sequence) for spreading for all senders accessing according to aloha
 - Code design
 - high autocorrelation
 - · Low correlation with delay-shift

SAMA: Spread Aloha Multiple Access

Summary: Types of wireless MAC

- · (1) Centralized allocation
 - TDMA, CDMA, FDMA
 - · Cellular downlink
 - Cellular uplink (dedicate allocation)
- · (2) Request/Allocation
 - Polling
 - · Cellular uplink
- · (3) Random Access
 - CSMA, Aloha, 802.11