#### 绝密★启用前

### 2015 年全国硕士研究生入学统一考试

## **数学一**(模拟 1)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

| 得分 | 评卷人 |
|----|-----|
|    |     |

一、选择题: (1)~(8)小题,每小题 4分,共 32分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后 \_\_\_\_\_\_的括号里.

- (1) 设 f(x) 为奇函数, f'(0) = 1,  $g(x) = \frac{f(x)}{|x|}$ ,则(

- (A)  $x = 0 \neq g(x)$  的可去间断点
   (B)  $x = 0 \neq g(x)$  的跳跃间断点

   (C)  $x = 0 \neq g(x)$  的无穷间断点
   (D)  $x = 0 \neq g(x)$  的第二类但非无穷间断点

【解】: 由题设有 f(0) = 0,  $g(0^+) = f'(0) = 1$ ,  $g(0^-) = -f'(0) = -1$ , 故答案 B。

- - (A)  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^2$  都收敛。 (B)  $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n^2$  都发散。
  - (C)  $\sum_{n=1}^{\infty} a_n$  收敛, $\sum_{n=1}^{\infty} a_n^2$  发散。 (D)  $\sum_{n=1}^{\infty} a_n$  发散, $\sum_{n=1}^{\infty} a_n^2$  收敛。

【答】(C)

- (3)  $\partial f(x) \triangleq x = 0$  的某个邻域内连续,且  $\lim_{x \to 0} \frac{\ln[1 + f(x) + e^{x^2}]}{2x^2} = 1$ ,则 x = 0 是 f(x) 的(
  - (A) 不可导点

(B) 可导点但不是驻点

(C) 驻点且为极小值点

(D) 驻点且为极大值点

【解】:方法一:由题设可知 $x \to 0$ 时

 $f(x) + e^{x^2} = 2x^2 + o(x^2)$ ,  $f(x) = 2x^2 - e^{x^2} + o(x^2) = -1 + x^2 + o(x^2)$ ,因此 x = 0 是 f(x) 的驻点且为 极小值点。答案为C。

方法二: (特殊值法) 取  $f(x) + e^{x^2} = 2x^2$ , 即  $f(x) = 2x^2 - e^{x^2}$ ,  $f'(x) = 4x - 2xe^{x^2}$ , f'(0) = 0, f''(0) = 2, 故 x = 0 是 f(x) 的驻点且为极小值点。

(4) 累次积分  $I = \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$  可写成 (

(A) 
$$I = \int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x, y) dx$$

(A) 
$$I = \int_0^1 dy \int_0^{\sqrt{y-y^2}} f(x, y) dx$$
 (B) B  $I = \int_0^1 dy \int_0^{\sqrt{1-y^2}} f(x, y) dx$ 

(C) 
$$I = \int_0^1 dx \int_0^1 f(x, y) dy$$

(C) 
$$I = \int_0^1 dx \int_0^1 f(x, y) dy$$
 (D)  $I = \int_0^1 dx \int_0^{\sqrt{x-x^2}} f(x, y) dy$ 

【答案】: 选 D

$$(5) \ |A_{n\times n}| = \begin{vmatrix} 0 & 0 & \cdots & 0 & -1 \\ -1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \end{vmatrix}, \ A_{ij} 为元素 \, a_{ij} 的代数余子式,则  $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$  等于( ) 
$$(A) \quad -n \qquad (B) \quad n \qquad (C) \quad -n^2 \qquad (D) \quad n^2$$
 【答案】: B$$

【答案】: B

【解】: 
$$A^* = \frac{A^{-1}}{|A|}$$
。由于 $|A| = (-1)^{\tau(n_{123\cdots(n-1)})}(-1)^n = -1$ , $A^{-1} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$ ,故

$$\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} = 1 + 1 + \dots + 1 = n$$

(6) 设矩阵 
$$A = \begin{pmatrix} 1 & 1 & -2 \\ 1 & -2 & 1 \\ -2 & 1 & 1 \end{pmatrix}$$
,则下列矩阵中与矩阵  $A$  等价、合同但不相似的是( )

$$(A) \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$
 (B) 
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(C) 
$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{pmatrix}$$
 (D) 
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

【答案】(C)

【分析】由
$$|\lambda E - A|$$
 =  $\begin{vmatrix} \lambda - 1 & -1 & 2 \\ -1 & \lambda + 2 & -1 \\ 2 & -1 & \lambda - 1 \end{vmatrix}$  =  $\lambda(\lambda - 3)(\lambda + 3)$ , 可知矩阵  $A$  的特征是  $3, -3, 0$ , 故秩

 $\gamma(A) = 2$ ,二次型  $x^T A x$  的正、负惯性指数均为1。

(A) 中矩阵的秩为1,不可能与矩阵A等阶; (C) 中矩阵的特征值为3,-3,0.与矩阵A不仅等价、 合同,而且也是相似的,不符合题意。对于(D),记其矩阵为D,由

$$\begin{vmatrix} \lambda E - D \end{vmatrix} = \begin{vmatrix} \lambda & 0 & -1 \\ 0 & \lambda & 0 \\ -1 & 0 & \lambda \end{vmatrix} = \lambda(\lambda - 1)(\lambda + 1), \text{ 可知 } D \text{ 的特征值为 } 1, -1, 0 \text{ } s^T Ax \text{ 与 } x^T Dx \text{ 的正、负惯}$$

性指数一样,所以它们合同但不相似(因为特征值不同),符合题意,故应选(D).

注意,(B)中矩阵的特征值为1,4,0,正惯性指数 p=2,负惯性指数 q=1,与 A即不合同也不相 似,但等阶(因为秩相等)

(7) 设随机变量 X与Y 相互独立,且X 的分布为 $X \sim P\{X = i\} = \frac{1}{2}, (i = 0,1); X 服从参数 <math>\lambda = 1$  的 指数分布,则概率 $P{X+Y \le 1} = ($ 

(A) 
$$\frac{1}{2}(1-e^{-1})$$

(B) 
$$1 - \frac{1}{2}e^{-1}$$

(A) 
$$\frac{1}{2}(1-e^{-1})$$
 (B)  $1-\frac{1}{2}e^{-1}$  (C)  $1-\frac{1}{2}(e^{-1}+e)$  (D)  $1-e^{-1}$ 

(D) 
$$1 - e^{-1}$$

【答案】: (A)

【解】 
$$P\{X+Y\leq 1\} = \frac{1}{2}(P\{Y\leq 1\} + P\{Y\leq 0\}) = \frac{1}{2}(1-e^{-1})$$

(8) 设随机变量 X 服从参数  $\lambda=1$  的指数分布,且对常数 a>0,且满足:  $E(X^2e^{-aX})=P\{X>1\}$ , 则 a = (

(A) 
$$\sqrt[3]{2e} - 1$$

(B) 
$$\frac{1}{2}\sqrt[3]{e}$$

(C) 
$$\sqrt{2e} - 1$$

(A) 
$$\sqrt[3]{2e} - 1$$
 (B)  $\frac{1}{2}\sqrt[3]{e}$  (C)  $\sqrt{2e} - 1$  (D)  $\frac{1}{2}(\sqrt[3]{e} - 1)$ 

【解】 
$$E(X^2e^{-aX}) = \int_0^{+\infty} x^2e^{-(a+1)x}dx = \frac{2}{(a+1)^3}, P\{X > 1\} = e^{-1},$$
所以  $\frac{2}{(a+1)^3} = e^{-1}$ ,

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、填空题: (9) ~(14) 小题, 每小题 4 分, 共 24 分. 把答案填在题中的横线上.
(9) 设曲线的方程为  $\begin{cases} x = \arctan 2t, \\ y-1+e^{y-1} = \ln(e+t), \end{cases}$ 则该曲线在 x=0 处的切线方程

【解】: 由题设知 
$$x = 0$$
 是  $t = 0$ , 因而  $y = 1$ ,  $\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\frac{1}{(1 + e^{y-1})(e+t)}}{\frac{2}{1 + 4t^2}}$ ,  $\frac{\mathrm{d} y}{\mathrm{d} x}\Big|_{x=0} = \frac{1}{4e}$ , 所求曲线方程为

$$y = \frac{1}{4e}x + 1 .$$

【答案】 
$$\frac{1}{x}e^{\frac{x^2}{2}}$$

【解】: 两边对 $^{x}$ 求导得 $f(x) + xf'(x) = x^{2}f(x)$ ,整理得

$$f'(x) = \left(x - \frac{1}{x}\right)f(x)$$

分离变量后积分得  $\ln f(x) = \frac{x^2}{2} - \ln x + \ln c$ ,即  $f(x) = \frac{c}{x} e^{\frac{x^2}{2}}, x \neq 0$ ;

又当 
$$x = 1$$
 时,  $f(1) = 1 + \int_0^1 t^2 \frac{c}{t} e^{\frac{t^2}{2}} dt = 1 + c(e^{\frac{1}{2}} - 1)$ ,即  $ce^{\frac{1}{2}} = 1 + ce^{\frac{1}{2}} - c$  故  $c = 1$ ,所以  $f(x) = \frac{1}{x}e^{\frac{x^2}{2}} - c$ 

(11) 设 f(x) 在 [0,2] ,且对任给的  $x \in (0,2)$  以及  $x + \Delta x \in (0,2)$  ,均有  $f(x + \Delta x) - f(x)$ 

$$= \frac{1-x}{\sqrt{2x-x^2}} \Delta x + o(\Delta x) , \quad \exists f(0) = 0 , \quad \exists f(0) = 0$$

【解】: 由题设 
$$x \in (0,2)$$
 时有  $f'(x) = \frac{1-x}{\sqrt{2x-x^2}}$ ,所以  $f(x) = f(0) + \int_0^x \frac{1-t}{\sqrt{2t-t^2}} dt = \sqrt{2x-x^2}$ ,
$$\int_0^2 f(x) dx = \int_0^2 \sqrt{2x-x^2} dx = \frac{\pi}{2}.$$

(12) 设 
$$f$$
 ,  $g$  均可微,  $z = f(xy, \ln x + g(xy))$  ,则  $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$ 

【解】:  $f_2'$ 

(13) 
$$\overset{\text{T}}{\otimes} \mathbf{A} = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix}, \quad \cancel{R} \left( \mathbf{A}^* \right)^{-1} = ( ).$$

【答案】: 
$$|A| = \begin{vmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{vmatrix} = \dots = 48 \Rightarrow (A^*)^{-1} = \frac{A}{|A|} = \frac{A}{48}$$

(14) 设随机变量 X 的密度函数是  $f(x) = \begin{cases} Axe^{-\lambda x}, & x>0\\ 0, & x\leq 0 \end{cases}$ ,且  $X_1,\ldots,X_n$  为简单随机样本,则参数  $\lambda$  的 矩估计为

【解】 
$$\mu = \int_0^{+\infty} x A x e^{-\lambda x} dx = \frac{A}{\lambda} \int_0^{+\infty} x^2 \lambda e^{-\lambda x} dx = \frac{A}{\lambda} (\frac{1}{\lambda^2} + (\frac{1}{\lambda})^2) = \frac{2A}{\lambda^3} = \frac{2}{\lambda} \quad (其中: \ A = \lambda^2)$$
 令  $\mu = \overline{X}$  ,  $\frac{2}{\lambda} = \overline{X}$ , 所以  $\frac{2}{\lambda} = \overline{X}$ ,  $\lambda = \frac{2}{\overline{X}}$ 

三、解答题: (15)~(23)小题,共 94分.解答应写出必要的文字说明、证明过程或演算步骤.

| 得分 | 评卷人 | $\left\{egin{array}{lll} oxed{(15)} (oxed{oxed} oxed{oxed} oxen oxed{oxed} oxen oxed{oxed} oxen oxed{oxed} oxen oxed{oxed} oxen oxed{oxed} oxed{oxed} oxen oxed{oxed} oxen oxed{oxed} oxen oxed{oxed} oxen oxen oxed{oxed} oxen ox oxen ox oxen ox oxen oxen ox oxen oxen oxen oxan ox oxen ox oxen ox oxen ox ox oxen ox ox ox ox ox ox ox ox ox ox$ |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |     | $\lim_{x \to 0} \frac{f(x)}{\sin x} = 1, \lim_{x \to 0} \left(\frac{f(x)}{e^x - 1}\right)^{\overline{f(x)}} = \sqrt{e},                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

【解】: 
$$\lim_{x\to 0} \frac{f[\ln(1+x)]}{\sin x} = 1$$
 可知  $f(0) = 0$ ,  $f'(0) = 1$ ,  $\lim_{x\to 0} \frac{f(x)}{e^x - 1} = \lim_{x\to 0} \frac{f(x)}{x} = 1$ ,

$$\mathbb{E} \lim_{x \to 0} \left( (1 + \frac{f(x) - e^x + 1}{e^x - 1})^{\frac{e^x - 1}{f(x) - e^x + 1}} \right)^{\frac{f(x) - e^x + 1}{(e^x - 1)f(x)}} = 3, \quad \text{If } \lim_{x \to 0} \frac{f(x) - e^x + 1}{(e^x - 1)f(x)} = \lim_{x \to 0} \frac{f(x) - e^x + 1}{x^2} \times \frac{x}{f(x)}$$

$$= \lim_{x \to 0} \frac{f'(x) - e^x}{2x} = \lim_{x \to 0} \left[ \frac{f'(x) - f'(0)}{2x} - \frac{e^x - 1}{2x} \right] = \frac{f''(0)}{2} - \frac{1}{2} = \frac{1}{2}, \quad \text{If } \text{If } f''(0) = 2.$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

**(16)**(**本题满分 10 分**) 已知曲面  $4x^2 + 4y^2 - z^2 = 1$  与平面 x + y - z = 0 的交线在 xoy 平面上的投影为一椭圆,求此椭圆的面积。

【解】:(方法 1)椭圆的方程为  $3x^2+3y^2-2xy=1$ ,椭圆的中心在原点,在椭圆上任取一点 (x,y),它到原点的距离  $d=\sqrt{x^2+y^2}$ ,令  $F=x^2+y^2+\lambda(3x^2+3y^2-2xy-1)$ ,则

$$\begin{cases} F_x' = 2(1+3\lambda)x - 2\lambda y = 0 \\ F_y' = 2(1+3\lambda)y - 2\lambda x = 0 \\ F_\lambda' = 3x^2 + 3y^2 - 2xy - 1 = 0 \end{cases}$$

由上一、二两式得y=x或y=-x,故驻点为

$$P_{1}\left(\frac{1}{2},\frac{1}{2}\right),P_{2}\left(-\frac{1}{2},-\frac{1}{2}\right),P_{3}\left(\frac{\sqrt{2}}{4},-\frac{\sqrt{2}}{4}\right),P_{1}\left(-\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{4}\right),$$

因此  $d(P_1)=d(P_2)=\frac{\sqrt{2}}{2}$ , $d(P_3)=d(P_4)=\frac{1}{2}$ ,分别为椭圆的长、短轴,于是椭圆的面积为  $S=\pi\frac{\sqrt{2}}{2}\cdot\frac{1}{2}=\frac{\sqrt{2}}{4}\pi$ 。(方法 2)椭圆的方程为  $3x^2+3y^2-2xy=1$ ,椭圆的中心在原点,作坐标系的旋转变换,令

$$\begin{cases} x = \frac{1}{\sqrt{2}}u - \frac{1}{\sqrt{2}}v \\ y = \frac{1}{\sqrt{2}}u + \frac{1}{\sqrt{2}}v \end{cases}$$
,代入椭圆方程得  $2u^2 + 4v^2 = 1$ ,因此  $a = \frac{\sqrt{2}}{2}$ , $b = \frac{1}{2}$ ,,分别为椭圆的长、短轴,于是椭

圆的面积为 $S = \pi \frac{\sqrt{2} \cdot 1}{2} = \frac{\sqrt{2}}{4} \pi$ 。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(17) (**本题满分 10 分**)设 f(x)连续可导,f(1)=1,G 为不包含原点的单连通域,任取  $M,N \in G$ ,在 G 内曲线积分  $\int_{M}^{N} \frac{1}{2x^{2} + f(y)} (ydx - xdy)$  与路径无关,

(I) 求 
$$f(x)$$
 ; (II) 求  $\int_{\Gamma} \frac{1}{2x^2 + f(y)} (ydx - xdy)$  , 其中  $\Gamma : x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$  , 取正向。

【解】: (I) 记  $P(x,y) = \frac{y}{2x^2 + f(y)}, Q(x,y) = \frac{-x}{2x^2 + f(y)}$ , 因为在 G 内曲线积分  $\int_{M}^{N} P dx + Q dy$  与路径无关,

所以  $\forall (x,y) \in G$ ,有  $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ ,即  $\frac{2x^2 - f(y)}{(2x^2 + f(y))^2} = \frac{2x^2 - f(y) - yf'(y)}{(2x^2 + f(y))^2}$ ,由此得出 yf'(y) = 2f(y),又 f(1) = 1,解此方程得  $f(y) = y^2$ ,于是  $f(x) = x^2$ 。

(II) 取小椭圆  $\Gamma_{\varepsilon}$ :  $2x^2 + y^2 = \varepsilon^2$ ,取正向, $\varepsilon$  为充分小的正数,使得  $\Gamma_{\varepsilon}$  位于  $\Gamma$  的内部。设  $\Gamma$  与  $\Gamma_{\varepsilon}$  所包围的区域为 D ,在 D 上,P ,Q 的一阶偏导数连续, $P'_{\varepsilon} = Q'_{\varepsilon}$ ,应用格林公式得

$$\int_{\Gamma+\Gamma_{\varepsilon}^{-}} Pdx + Qdy = \iint_{D} (Q'_{x} - P'_{y}) dx dy = 0$$

这里 $\Gamma$ 。为反向(即顺时针方向),于是:

$$\mathbb{R} \vec{\Xi} = \int_{\Gamma} P dx + Q dy = -\int_{\Gamma_{\varepsilon}} P dx + Q dy = \int_{\Gamma_{\varepsilon}} P dx + Q dy = \int_{0}^{2\pi} \frac{1}{\sqrt{2}} \left( \frac{-\varepsilon^{2} \sin^{2} \theta - \varepsilon^{2} \cos^{2} \theta}{\varepsilon^{2}} \right) d\theta = -\sqrt{2}\pi .$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(18) (**本题满分 10 分**) 设  $x \in (0, \frac{\pi}{4})$ , 证明  $(\sin x)^{\cos x} < (\cos x)^{\sin x}$ .

【证明】: 原不等式等价于  $\cos x \ln \sin x - \sin x \ln \cos x < 0$  (0 <  $x < \frac{\pi}{4}$ ),

 $\Leftrightarrow f(x) = \cos x \ln \sin x - \sin x \ln \cos x, x \in (0, \frac{\pi}{4}],$ 

$$f'(x) = \frac{\cos^2 x}{\sin x} + \frac{\sin^2 x}{\cos x} - \sin x \ln \sin x - \cos x \ln \cos x , \quad \stackrel{\text{def}}{=} x \in (0, \frac{\pi}{4}) \text{ if }$$

$$0 < \cos x < \frac{\sqrt{2}}{2}, 0 < \sin x < \frac{\sqrt{2}}{2}, \ln \cos x < 0, \ln \sin x < 0, f'(x) > 0$$
,因而函数  $f(x)$  在区间  $(0, \frac{\pi}{4}]$  上

单增,即 $x \in (0, \frac{\pi}{4})$ 时有 $f(x) = \cos x \ln \sin x - \sin x \ln \cos x < f(\frac{\pi}{4}) = 0$ ,即  $\cos x \ln \sin x - \sin x \ln \cos x < 0$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

(19)(**本题满分 10 分**)求二重积分  $\iint [|x^2+y^2-2|+e^{\sqrt{x^2+y^2}}\sin(xy)]dxdy$ ,其中 D是以A(-3,0),B(3,0),C(0,3)为顶点的三角形区域。

【解】: 由对称性,  $\iint_D e^{\sqrt{x^2+y^2}} (\sin xy) dx dy = 0$ . 记  $D_1 = \{(x,y) | x^2 + y^2 \le 2 \pm y \ge 0\}$ ,  $D_2$ 为 D 的右半 部分,则有原式= $2\iint_{D_1}^{D}(x^2+y^2-2)dxdy+2$   $\iint_{D_2}(2-x^2-y^2)dxdy=2\iint_{D_1}(x^2+y^2)dxdy-18+2(2\pi-\pi)=4\iint_{D_1}x^2dxdy-18+2\pi=9+2\pi.$ 

$$\iint_{D_2} (2 - x^2 - y^2) dx dy = 2 \iint_{D_1} (x^2 + y^2) dx dy - 18 + 2(2\pi - \pi) = 4 \iint_{D_1} x^2 dx dy - 18 + 2\pi = 9 + 2\pi.$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(20) (**本题满分 11 分**) 已知齐次线性方程组 
$$(1) \begin{cases} x_1 + x_2 + ax_3 = 0 \\ 3x_1 - x_2 - x_3 = 0 \end{cases} 和 (2) \begin{cases} x_1 - 3x_2 + bx_3 + 4x_4 = 0 \\ x_1 + 5x_2 + x_3 + 4ax_4 = 0 \end{cases} 同解,求 a,b,c 的值,并求 
$$2x_1 - 2x_2 - x_3 + cx_4 = 0$$$$

【解】: 解方程组 (1) 
$$\begin{cases} x_1 + x_2 + ax_3 = 0 \\ 3x_1 - x_2 - x_3 = 0 \end{cases}$$

$$A = \begin{pmatrix} 1 & 1 & 0 & a \\ 3 & -1 & -1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & a \\ 0 & 4 & 1 & 3a \end{pmatrix}$$
, 得基础解系为

$$\eta_1 =$$
 (-), 1 (-), 0  $^{\mathrm{T}}$   $\eta_2 =$  -a 0 -3a 1  $^{\mathrm{T}}$ 

又对方程组(2),对B作初等行变换

$$B = \begin{pmatrix} 1 & -3 & b & 4 \\ 1 & 5 & 1 & 4a \\ 2 & -2 & -1 & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & b & 4 \\ 0 & 4 & -1 - 2b & c - 8 \\ 0 & 0 & 3 + 3b & 2a - c + 6 \end{pmatrix}$$

由于 (1) 与 (2) 同解, 
$$r(A) = r(B)$$
,知 $\begin{cases} 3+3b=0 \\ 2a-c+6=0 \end{cases}$ .有  $b=-1$ 

由于(1)与(2)同解, $\eta$ ,  $\eta$ , 也是(2)的基础解系,它应是

$$\begin{cases} x_1 - 3x_2 - x_3 + 4x_4 = 0 \\ 4x_2 + x_3 + (\partial - 8 - x_4 = 0) \end{cases} \text{ in } \mathbf{m}, \text{ } \mathbf{m} \begin{cases} -a + 3a + 4 = 0 \\ -3a + c - 8 = 0 \end{cases} \text{ } \mathbf{m} = -2, c = 2$$

因此 (1) 与 (2) 的通解为  $k_1(-1 \ 1 \ -4 \ 0)^T + k_2(2 \ 0 \ 6 \ 1)^T$ 

由  $x_1 = x_2$  即  $-k_1 + 2k_2 = k_1$  ,知  $k_1 = k_2$  ,所以满足  $x_1 = x_2$  的解为  $k(1 \ 1 \ 2 \ 1)^T$  ,k 为任意常数。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(21) (**本題满分 11 分**) 设  $\alpha_1$  ,  $\alpha_2$  ,  $\alpha_3$  为 3 维到向量。A 为 3 阶方阵。且  $A\alpha_1 = \alpha_1$  ,  $A\alpha_2 = \alpha_1 + \alpha_2$  ,  $A\alpha_3 = \alpha_2 + \alpha_3$  ,  $\alpha_1 \neq 0$  (I) 证明:  $\alpha_1$   $\alpha_2$   $\alpha_3$  线性无关;(II)求 A 特征值 及 特征向量。

$$A\alpha_2 = \alpha_1 + \alpha_2$$
,  $A\alpha_3 = \alpha_2 + \alpha_3$ ,  $\alpha_1 \neq 0$ 

【解】(I) 设
$$k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$$

$$\therefore A\alpha_1 = \alpha_1$$
,  $A\alpha_2 = \alpha_1 + \alpha_2$ ,  $A\alpha_3 = \alpha_2 + \alpha_3$ , 有

$$A\alpha_3 = \alpha_2 + \alpha_3$$
,  $\overline{A}$ 

$$k_1 A \alpha_1 + k_2 A \alpha_2 + k_3 A \alpha_3 = 0$$

$$k_1 A \alpha_1 + k_2 A \alpha_2 + k_3 A \alpha_3 = 0$$
  $k_1 \alpha_1 + k_2 (\alpha_1 + \alpha_2) + k_3 (\alpha_2 + \alpha_3) = 0$ 

$$\Rightarrow (k_1 + k_2)\alpha_1 + (k_2 + k_3)\alpha_2 + k_3\alpha_3$$

$$\therefore k_2 A \alpha_1 + k_3 A \alpha_2 = 0$$

$$\alpha_1 + k_3(\alpha_1 + \alpha_2) = 0 \tag{4}$$

$$\therefore k_2 A \alpha_1 + k_3 A \alpha_2 = 0$$

$$4 - 3: k_3 \alpha_1 = 0$$

$$k_2 \alpha_1 + k_3 (\alpha_1 + \alpha_2) = 0$$

$$\alpha_1 \neq 0$$

$$k_3 = 0$$

$$k_3 = 0$$

代入③① 得 
$$k_2 = 0$$

代入③① 得 
$$k_2 = 0$$
  $k_1 = 0$   $\therefore \alpha_1 \alpha_2 \alpha_3$ 线性无关。

$$\Rightarrow$$
 মে ধ্রে ধ্রে ধ্রে  $\alpha_3$ )  $AP = P \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \qquad P^{-1}AP = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = B \quad A \quad B$ 

又 B 特征值 
$$\lambda_1 = \lambda_2 = \lambda_3 = 1$$
  $\therefore P^{-1}(E - A)P = E - B$   $R(E - A) = R(E - B) = 2$ 

因此属于 $\lambda_1 = \lambda_2 = \lambda_3 = 1$  线性无关特征向量个数3 - R(E - A) = 1

所以属于 1 特征向量为  $k\alpha_1$   $(k \neq 0)$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

(22) (**本題满分 11 分**) 设随机变量
$$(X,Y)$$
的概率密度函数为 
$$f(x,y) = \left\{ \begin{array}{ll} 3x, & 0 \leq y < x \leq 1 \\ 0, & \text{其他} \end{array} \right.$$
, 试求:

(I) 概率  $P\{X+Y>1\}$ ; (II) 条件密度函数  $f_{Y|X}(y|x)$ ; (III) 随机变量函数 Z=2X-Y 的密度函 数。

【解】(I) 
$$P\{X+Y>1\} = \int_{\frac{1}{2}}^{1} 3x dx \int_{1-x}^{x} dy = 3\int_{\frac{1}{2}}^{1} x(2x-1) dx = \frac{5}{8};$$

由此条件密度函数 
$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{x}, & 0 \le y < x \le 1; \\ 0, & 其他 \end{cases}$$

(III) 
$$Z = 2X - Y$$
,利用卷积公式:  $f_Z(z) = \int_{-\infty}^{+\infty} f(x, 2x - z) dx$ ,

讨论 
$$\begin{cases} 0 \le x \le 1 \\ x < z < 2x \end{cases}, \quad f(x, 2x - z) = 3x,$$

1) 
$$0 \le z < 1$$
,  $f_z(z) = \int_{\frac{z}{2}}^{z} 3x dx = \frac{9}{8}z^2$ 

2) 
$$1 \le z < 2$$
,  $f_z(z) = \int_{\frac{z}{2}}^{1} 3x dx = \frac{3}{8} (4 - z^2)$ 

所以
$$Z = 2X - Y$$
的概率密度函数:  $f_Z(z) = \begin{cases} \frac{9}{8}z^2, & 0 \le z < 1 \\ \frac{3}{8}(4-z^2), & 1 \le z < 2 \\ 0, & 其他 \end{cases}$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

(23)(**本题满分11 分**)设随机变量 X与Y相互独立,且  $X \sim E(\lambda), Y \sim E(2\lambda)$ ,且 Z = X - Y,试求:(1)Z 的概率密度函数  $f_Z(z,\lambda)$ ;(II)对 Z 的正样本  $Z_1,\ldots,Z_n$ ( $Z_i > 0$ ),求参数  $\lambda$  的极大似然估计  $\hat{\lambda}$ ;(III)考察  $b = \frac{1}{\hat{\lambda}}$  是否为  $\frac{1}{\lambda}$  的无偏估计。

【解】 (I) 由X与Y独立,则联合密度函数为

$$f(x, y; \lambda) = f_X(x) f_Y(y) = \begin{cases} 2\lambda^2 e^{-\lambda(x+2y)}, & x > 0, y > 0 \\ 0, & \text{ 其他} \end{cases}$$

由卷积公式可知,Z = X - Y的密度函数:  $f_Z(z,\lambda) = \int_{-\infty}^{+\infty} f(x,x-z) dx$ 

$$f(x, x-z) = 2\lambda^2 e^{-\lambda(x+2(x-z))} = 2\lambda^2 e^{2\lambda z} e^{-3\lambda x}, \quad \begin{cases} x > 0 \\ z \le x \end{cases}$$

1) 
$$z > 0$$
,  $f_z(z, \lambda) = 2\lambda^2 e^{2\lambda z} \int_z^{+\infty} e^{-3\lambda x} dx = \frac{2}{3} \lambda e^{2\lambda z} \int_z^{+\infty} 3\lambda e^{-3\lambda x} dx = \frac{2}{3} \lambda e^{-\lambda z}$ 

2) 
$$z \le 0$$
,  $f_z(z,\lambda) = 2\lambda^2 e^{2\lambda z} \int_0^{+\infty} e^{-3\lambda x} dx = \frac{2}{3} \lambda e^{2\lambda z} \int_0^{+\infty} 3\lambda e^{-3\lambda x} dx = \frac{2}{3} \lambda e^{2\lambda z}$ 

所以: 
$$f_Z(z,\lambda) = \begin{cases} \frac{2}{3} \lambda e^{2\lambda z}, & z < 0 \\ \frac{2}{3} \lambda e^{-\lambda z}, & z \ge 0 \end{cases}$$

(II) 由于样本
$$Z_i > 0$$
,则 $L = \prod_{i=1}^n \frac{2}{3} \lambda e^{-\lambda z_i} = (\frac{2}{3})^n \lambda^n e^{-\lambda \sum_{i=1}^n z_i}$ ;

$$\ln L = n \ln(\frac{2}{3}) + n \ln \lambda - \lambda \sum_{i=1}^{n} z_i, \quad \frac{d \ln L}{d \lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} z_i = 0$$

所以 
$$\frac{n}{\lambda} = \sum_{i=1}^{n} z_{i}$$
 ,则  $\lambda$  的极大似然估计为  $\hat{\lambda} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} z_{i}} = \frac{1}{\overline{Z}}$  ;
$$(III) \quad \text{由于} \quad E(b) = E(\frac{1}{\hat{\lambda}}) = E(\overline{Z}) = E(Z) = \int_{-\infty}^{0} \frac{2}{3} \lambda z e^{2\lambda z} dz + \int_{0}^{+\infty} \frac{2}{3} \lambda z e^{-\lambda z} dz$$

$$= -\frac{1}{3} \int_{0}^{+\infty} t 2\lambda e^{-2\lambda t} dt + \frac{2}{3} \int_{0}^{+\infty} z\lambda e^{-\lambda z} dz = -\frac{1}{3} \frac{1}{2\lambda} + \frac{2}{3} \frac{1}{\lambda} = \frac{5}{6\lambda} ,$$
所以  $b = \frac{1}{\hat{\lambda}}$  不是  $\frac{1}{\lambda}$  的无偏估计。

绝密★启用前

2015年全国硕士研究生入学统一考试

## **数学—**(模拟 2)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时,

| 得分 | 评卷人 |
|----|-----|
|    |     |

一、选择题:(1)~(8)小题, 每小题 4 分, 共 32 分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后

(1) 函数 
$$f(x) = \frac{\ln |x^2 - 1| \sin(x+1)}{x^2} e^{-\frac{1}{|x|}}$$
 的可去间断点个数为( ).

(A) 0

【解】: 函数 f(x) 在  $x = 0, \pm 1$  处无定义,因而间断。

$$\lim_{x \to -1} \frac{\ln \left| x^2 - 1 \right| \sin(x+1)}{x^2} e^{\frac{-1}{|x|}} = 0, \lim_{x \to 0} \frac{\ln \left| x^2 - 1 \right| \sin(x+1)}{x^2} e^{\frac{-1}{|x|}} = 0, \lim_{x \to 1} \frac{\ln \left| x^2 - 1 \right| \sin(x+1)}{x^2} e^{\frac{-1}{|x|}} = \infty, \quad \text{iff } x = 0, -1$$

为 f(x) 的可去间断点,答案 C。

(2) 
$$\Im \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n \sin^{2n} x}{n} \triangleq |x - n\pi| < \frac{\pi}{4}$$

(A) 发散 (B) 条件收敛

(C) 绝对收敛 (D) 敛散性不定

【解】: 当
$$|x-n\pi| < \frac{\pi}{4}$$
时 $|\sin x| < \frac{1}{\sqrt{2}}$ ,因而有 $\lim_{n \to \infty} \left| (-1)^{n-1} \frac{2^n \sin^{2n} x}{n} \right|^{\frac{1}{n}} = 2 |\sin x| < 1$ ,故该级数绝对收

(3) 
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{i}{n^2 + n + i^2} = ( ).$$

(A)  $\frac{1}{2} \ln 2$  (B)  $\ln 2$  (C)  $\frac{\pi}{4}$  (D)  $\frac{\pi}{8}$ 

【解】: 因为
$$\frac{n}{1+n}\sum_{i=1}^{n}\frac{i}{n^2+i^2} \le \sum_{i=1}^{n}\frac{i}{n^2+n+i^2} \le \sum_{i=1}^{n}\frac{i}{n^2+i^2}$$
,而

$$\lim_{n\to\infty} \sum_{i=1}^{n} \frac{i}{n^2 + i^2} = \lim_{n\to\infty} \sum_{i=1}^{n} \frac{\frac{i}{n}}{1 + (\frac{i}{n})^2} \frac{1}{n} = \int_0^1 \frac{x}{1 + x^2} dx = \frac{1}{2} \ln 2, \text{ the proof } x \in \mathbb{R}$$

(4) 设平面区域 
$$D$$
 由  $x = 0, x = 1, x - y = \frac{1}{2}$  及  $x - y = 1$  围成,  $I_1 = \iint_D \sin^3(x - y) d\sigma$ ,

$$I_2 = \iint_D \ln^3(x-y) d\sigma$$
,  $I_3 = \iint_D (x-y)^3 d\sigma$ ,则  $I_1, I_2, I_3$ 的大小关系是( )。

(A)  $I_1 < I_2 < I_3$  (B)  $I_3 < I_2 < I_1$  (C)  $I_2 < I_1 < I_3$  (D)  $I_3 < I_1 < I_2$ 

【解】: 因为 $(x,y) \in D$ 时有 $\ln(x-y)^3 < \sin(x-y)^3 < (x-y)^3$ , 答案为 (C)。

(5) 已知 
$$5 \times 4$$
 矩阵  $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ ,若  $\eta_1 = (3 \ 1 \ -2 \ 1)^T$ ,  $\eta_2 = (0 \ 1 \ 0 \ 1)^T$  是齐次线性方程组  $Ax = 0$  的基础解系,那么下列命题

(1)  $\alpha_1,\alpha_3$  线性无关; (2)  $\alpha_1$  可由 $\alpha_2,\alpha_3$  线性表出; (3)  $\alpha_3,\alpha_4$  线性无关;

(4) 秩 $r(\alpha_1,\alpha_1,+\alpha_2,\alpha_3-\alpha_4)=3$ 中正确的是

- (A) (1) (3) (B) (2) (4) (C) (2) (3) (D) (1) (4)

答案: C

(6) 对三阶矩阵 A 的伴随矩阵  $A^*$  先交换第一行与第三行,然后将第二列的 -2 倍加到第三列得 -E,且 |A| > 0 ,则 A 等于(

$$\begin{array}{ccc}
(A) & -\begin{pmatrix} 0 & 0 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\
& \begin{pmatrix} 1 & 0 & 0 \\ \end{pmatrix}$$

(B) 
$$-\begin{pmatrix} & 1\\ & 1 & -2\\ 1 & & \end{pmatrix}$$

$$\begin{array}{ccc}
(1 & 0 & 0) \\
(1 & 0 & 0) \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}$$

$$\begin{array}{ccc}
(D) & \begin{pmatrix} & & 1 \\
-2 & 1 & \\
1 & & 
\end{pmatrix}$$

【解】由 $-E = E_{13}A^*E_{23}(-2)$ 得 $A^* = -E_{13}^{-1}E_{23}^{-1}(-2)$ ,因为 $\left|A^*\right| = \left|A\right|^2 = 1$ 且 $\left|A\right| > 0$ ,所以 $\left|A\right| = 1$ ,于是 $A^* = A^{-1}$ ,故

$$A = (A^*)^{-1} = -E_{23}^{-1}(2)E_{13}^{-1} = -E_{23}(-2)E_{13} = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = -\begin{pmatrix} 0 & 0 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \mbox{\ensuremath{\mbox{\it id}}} \quad \mbox{\ensuremath{\m$$

(7)、设A与B 是两事件,且 $P(B) = 0.6, P(A | B) = 0.5, 则 <math>P(A \cup \overline{B}) = 0.6$ 

- (A) 0.1

- (B) 0.7 (C) 0.3 (D) 0.5

【答案】: B

【解】由于P(A|B) = 0.5,  $\frac{P(AB)}{P(B)} = 0.5$ , 所以P(AB) = 0.3,又

$$P(A \cup \overline{B}) = 1 - P(\overline{A}B) = 1 - P(B) + P(AB) = 0.7$$
.

(8)、设X与Y 是两个随机变量, $f_1(x)$ 、 $f_2(y)$  与 $F_1(x)$ 、 $F_2(y)$  分别是对应的概率密度函数与分布函数, 且  $f_1(x)$ 、 $f_2(y)$  连续,则以下函数中仍是概率密度函数的是().

- $\begin{array}{lll} \text{(A)} & f_1(x) + f_2(x) & \text{(B)} & f_1(x) F_2(x) f_2(x) F_1(x) \\ \text{(C)} & f_1(x) f_2(x) & \text{(D)} & f_1(x) F_1(x) + f_2(x) F_2(x) \end{array}$

答案: D

【解】检验两个基本条件是否满足即可,对(D)

- 1)  $f_1(x)F_1(x) + f_2(x)F_2(x) \ge 0$
- 2)  $\int_{-\infty}^{+\infty} (f_1(x)F_1(x) + f_2(x)F_2(x))dx = \int_{-\infty}^{+\infty} F_1(x)dF_1(x) + \int_{-\infty}^{+\infty} F_2(x)dF_2(x) = 1$

所以是概率密度函数。

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、填空题: (9)~(14)小题,每小题 4分,共 24分. 把答案填在题中的横线上.

(9) 设  $f(x) = \lim_{n \to \infty} (1 - \frac{x^2}{2n} + \frac{x}{n^2})^n$ ,则曲线 y = f(x) 在 x = 1 处的切线方程

(10) 方程 
$$\frac{dy}{dx} = \frac{1}{2x + e^{2y}}$$
 的通解是\_\_\_\_\_\_.

【解】: 方程可变形为 
$$\frac{dx}{dy} = 2x + e^{2y}, x = e^{2y}(y+C), \, \text{应填} \, x = e^{2y}(y+C).$$

(11) 设 f(x) 在  $[0,+\infty)$  上单调可导, f(0)=1,  $f^{-1}$  为 f 的反函数,若  $\int_{x^2}^{x^2+f(x)} f^{-1}(t-x^2) dt = x^2 e^x$ ,则 f(x)=\_\_\_\_\_\_.

【解】: 原等式可化为
$$\int_0^{f(x)} f^{-1}(t) du = x^2 e^x$$
, 对 $x$ 求导可得 $xf'(x) = (x^2 + 2x)e^2$ ,

所以 
$$f'(x) = (x+2)e^x$$
,  $f(x) = f(0) + \int_0^x f'(t) dt = (x+1)e^x$ , 应填  $f(x) = (x+1)e^x$ .

(12) 
$$\mbox{if } D = \left\{ (x,y) \middle| (x-2)^2 + (y-2)^2 \le 1 \right\}, \ \mbox{if } \mbox{if } \left( e^{\frac{x}{y}} - e^{\frac{y}{x}} + 2 \right) \mbox{d} \ \sigma = \underline{\qquad}.$$

【解】: 由对称性可知 
$$\iint_D (e^{\frac{x}{y}} - e^{\frac{y}{x}} + 2) d\sigma = \iint_D (e^{\frac{y}{x}} - e^{\frac{x}{y}} + 2) d\sigma = \frac{1}{2} \iint_D 4 d\sigma = 2\pi$$

(13) 设 3 阶方阵 A 有 3 个线性无关的特征向量, $\lambda = 3$  是 A 的二重特征值,则  $R(A - 3E) = _____$ .

【解】:由题设可知方程 $(A-\lambda E)x=0$ 有两个线性无关的解向量,因此必有R(A-3E)=1.答案为 1.

(14) 设总体  $X \sim N(\mu, \sigma^2)$  ,  $X_1, \ldots, X_n, X_{n+1}$  是 X 的简单随机样本 , 且  $\overline{X}$ 与 $S^2$ 分别是样本  $X_1, \ldots, X_n$  的样本均值与样本方差 , 对统计量 :  $\theta = C \frac{(\overline{X} - X_{n+1})^2}{S^2} \sim F(1, n-1)$  , 则常数  $C = \underline{\qquad}$  .

【解】:由题设有
$$\bar{X} - X_{n+1} \sim N(0, \frac{n+1}{n}\sigma^2), \sqrt{\frac{n}{(n+1)\sigma}}(\bar{X} - X_{n+1}) \sim N(0,1), \frac{(n-1)}{\sigma^2}S^2 \sim \chi^2(n-1)$$
,

因此 
$$\frac{\frac{n}{(n+1)\sigma^2}(\overline{X}-X_{n+1})^2}{\frac{S^2}{\sigma^2}} = \frac{n}{n+1} \frac{(\overline{X}-X_{n+1})^2}{S^2} \sim F(1,n-1)$$
,因填 $\theta = \frac{n}{n+1}$ .

三、解答题: (15)~(23)小题,共94分.解答应写出必要的文字说明、证明过程或演算步骤.

| 得分 | 评卷人 | (15)( <b>本题满分 10 分</b> ) 1.设函数 $f(x)$ 在 $x = 0$ 的某个邻域内二阶可导,且                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |     | $\lim_{x\to 0} \frac{f(x)}{x} = 0,  \text{if } x\to 0 \text{ if } \int_0^x f(t)  \mathrm{d}t \sim x^k - \sin x,  \text{if } x \neq 0 \text{ if } x \neq 0  i$ |

【解】: 由 
$$\lim_{x\to 0} \frac{f(x)}{x} = 0$$
 知  $f(0) = f'(0) = 0$  ,由题设有

$$\lim_{x \to 0} \frac{\int_0^x f(t) dt}{x^k - \sin x} = \lim_{x \to 0} \frac{f(x)}{kx^{k-1} - \cos x} = 1, \quad \text{因此必有} \lim_{x \to 0} (kx^{k-1} - \cos x) = 0, \quad \text{故 } k = 1, \quad \text{由此可得}$$

$$\lim_{x \to 0} \frac{f(x)}{1 - \cos x} = \lim_{x \to 0} \frac{f'(x)}{\sin x} = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = f''(0) = 1.$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(16) (**本题满分 10 分**) 求函数  $z = x^2 + y^2 - xy$  在区域  $D: |x| + |y| \le 1$  上的最大值与最小值。

【解】:  $z_x^{'}=2x-y=0, z_y^{'}=2y-x=0$ 解得函数 z 在区域 D 的内部有唯一的驻点  $P_1(0,0)$  。 在边界 x+y=1(0< x<1) 上,令  $F=x^2+y^2-xy+\lambda(x+y-1)$ ,由  $F_x^{'}=2x-y+\lambda=0$ ,  $F_y^{'}=2y-x+\lambda=0$  及 x+y=1解得 Lagrange 函数 F 的驻点为  $P_2(\frac{1}{2},\frac{1}{2})$ ,同理在边界 x-y=1(0< x<1) 上可求得 Lagrange 函数的驻点为  $P_3(\frac{1}{2},-\frac{1}{2})$ ,在边界 -x-y=1(-1< x<0) 与 -x+y=1(-1< x<0) 相应的 Lagrange 函数的驻点为分别为  $P_4(-\frac{1}{2},-\frac{1}{2})$  与  $P_5(-\frac{1}{2},\frac{1}{2})$ ,又记 D 的边界四个顶点分别为  $P_6(1,0)$ ,  $P_7(0,1)$ ,  $P_8(-1,0)$  及  $P_9(0,-1)$ 。函数 z 在上述 y 个点处的值分别为  $0,\frac{1}{4},\frac{3}{4},\frac{1}{4},\frac{3}{4},1,1,1,1$ 。由此可得  $z_{\max}=1,z_{\min}=0$ 。

| 得分 | 评卷人 |
|----|-----|
|    |     |

**(17)(本题满分 10 分**)设曲面  $\Sigma: x^2 + y^2 = 5z (0 \le z \le 1)$ ,其法向量与 z 轴正向成钝角,已知连续函数 f(x,y,z) 满足

$$f(x, y, z) = (x + y + z)^2 + \iint_{\Sigma} f(x, y, z) dy dz + x^2 dx dy$$

求 f(x, y, z) 的表达式.

$$\text{ I } \text{ if } \text{ I: } \iint\limits_{\Sigma} x^2 \, \mathrm{d} x \, \mathrm{d} y = - \iint\limits_{D_m} x^2 \, \mathrm{d} x \, \mathrm{d} y = - \int_0^{2\pi} \mathrm{d} \theta \int_0^{\sqrt{5}} r^2 \cos^2 \theta \cdot r \, \mathrm{d} r = - \frac{25}{4} \int_0^{2\pi} \cos^2 \theta \, \mathrm{d} \theta = - \frac{25}{4} \pi \, ,$$

其中 
$$D_{xy} = \{(x,y) | x^2 + y^2 \le 5\}$$
,记  $A = \iint_{\Sigma} f(x,y,z) dy dz$ ,则题设的等式成为

$$f(x,y,z) = (x+y+z)^2 + A - \frac{25}{4}\pi$$
,于是又两边作积分,得  $\iint_{\Sigma} f(x,y,z) dy dz = \iint_{\Sigma} [(x+y+z)^2 + A - \frac{25}{4}\pi] dy dz$ 

$$\mathbb{H} A = \iint\limits_{\Sigma} [(x+y+z)^2 + A - \frac{25}{4}\pi] dy dz$$

$$= \iint_{\Sigma+S} [(x+y+z)^2 + A - \frac{25}{4}\pi] dy dz - \iint_{S} [(x+y+z)^2 + A - \frac{25}{4}\pi] dy dz$$

其中 $S: z=1, x^2+y^2 \le 5$ , S取上侧,由高斯公式有

$$\iint_{\Sigma+S} [(x+y+z)^2 + A - \frac{25}{4}\pi] dy dz = \iint_{\Omega} \frac{\partial [(x+y+z)^2 + A - \frac{25}{4}\pi]}{\partial x} dV \quad 其中 \Omega 是由外侧闭曲面 \Sigma + S 围成的立$$

体,而 
$$\iint_{S} [(x+y+z)^{2} + A - \frac{25}{4}\pi] dydz = 0$$
,因此有  $A = \iint_{\Omega} 2(x+y+z) dV = \iint_{\Omega} 2z dV = \iint_{D_{xy}} d\sigma \int_{\frac{1}{5}(x^{2}+y^{2})}^{1} 2z dz$ 

$$= \int_0^{2\pi} d\theta \int_0^{\sqrt{5}} (1 - \frac{1}{25} r^4) r dr = \frac{10}{3} \pi , \quad \text{iff } f(x, y, z) = (x + y + z)^2 - \frac{35}{12} \pi .$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(18) (**本题满分 10 分**) 设函数 f(x) 在[0,1] 上连续,f(0) = 0,且  $\int_0^1 f(x) dx = 0$ ,

证明:  $\exists \xi \in (0,1)$ ,使得  $\int_0^{\xi} f(x) dx = \xi f(\xi)$ 。

【证明】: 令 
$$F(x) = \begin{cases} \frac{1}{x} \int_0^x f(t) dt, & x \in (0,1], \\ 0, & x = 0, \end{cases}$$
 由于  $\lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} \frac{1}{x} \int_0^x f(t) dt = \lim_{x \to 0^+} f(x) = 0$ , 因而  $F(x)$ 

在[0,1]上连续,在(0,1)内可导,由 Rolle 定理知  $\exists \xi \in (0,1)$  使得

$$F'(\xi) = \frac{\xi f(\xi) - \int_0^{\xi} f(x) \, \mathrm{d}x}{\xi^2} = 0, \quad \text{ID} \int_0^{\xi} f(x) \, \mathrm{d}x = \xi f(\xi), \quad \text{this in the proof of the p$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(19) (**本題满分 10 分**) 求  $f(x) = x \arctan x - \ln \sqrt{2 + x^2}$  的麦克劳林级数,并求级数  $\sum_{i=1}^{\infty} (-1)^{n-1} \frac{n2^{n+1} - 2n - 1}{n(2n-1)2^{n+1}}$ 的和.

【解】  $x \arctan x - \ln \sqrt{2 + x^2} = x \int_0^x \frac{1}{1 + t^2} dt = x \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$ 

$$=x\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}x^{2n+1}=\sum_{n=1}^{\infty}\frac{(-1)^n}{2n-1}x^{2n}, \quad |x| \le 1$$

$$\ln \sqrt{2+x^2} = \frac{1}{2}\ln 2 + \frac{1}{2}\ln(1+\frac{x^2}{2}) = \frac{1}{2}\ln 2 + \frac{1}{2}\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot \frac{1}{2^n}x^{2n}, \quad |x| < 1$$

合并上面两级数,得到

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n} - \frac{1}{2} \ln 2 - \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \cdot \frac{1}{2^n} x^{2n} = -\frac{1}{2} \ln 2 + \sum_{n=1}^{\infty} (-1)^{n-1} \left( \frac{1}{2n-1} - \frac{1}{n \cdot 2^{n+1}} \right) x^{2n}$$

收敛域为[-1.1], 令 x = 1, 得

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n2^{n+1} - 2n - 1}{n(2n-1)2^{n+1}} = f(1) + \frac{1}{2} \ln 2 = \frac{\pi}{4} - \ln \sqrt{3} + \frac{1}{2} \ln 2 = \frac{\pi}{4} + \frac{1}{2} \ln \frac{2}{3}$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

人 (20) (**本题满分 11 分**)设 $\alpha$ 是线性方程组AX = b的解, $\beta_{1,}\beta_{2}, \dots, \beta_{t}$ 是其导出组的基础解系,令

$$\gamma_1 = \alpha + \beta_1, \gamma_2 = \alpha + \beta_2, \dots, \gamma_t = \alpha + \beta_t$$

试证: (I)  $\alpha \gamma_1, \gamma_2, \cdots, \gamma_t$  线性无关;

(II) 方程组**的任意**一解可表示为

$$\gamma = l_0 \alpha + l_1 \gamma_1 + l_2 \gamma_2 + \dots + l_t \gamma_t, + p$$

$$l_0 + l_1 + \dots + l_t = 1.$$

【证明】: 设 $x, x_1, \dots, x_t$ 是一组数,使

$$x\alpha + x_1\gamma_1 + x_2\gamma_2 + \cdots + x_t\gamma_t = 0$$
,代入整理得

$$(x + x_1 + x_2 + \cdots + x_t)\boldsymbol{\alpha} + x_1\boldsymbol{\beta}_1 + x_2\boldsymbol{\beta}_2 + \cdots + x_t\boldsymbol{\beta}_t = \mathbf{0}, \qquad (1)$$

用矩阵 A 左乘上式,由于  $\boldsymbol{\beta}_i$  是 AX = 0 的解,  $A\boldsymbol{\beta}_i = \mathbf{0}$  ,于是得

$$(x+x_1+x_2+\cdots x_t)$$
**A** $\boldsymbol{\alpha}=(x_1+x_2+\cdots +x_t)\boldsymbol{b}=\boldsymbol{0}$ ,但 $\boldsymbol{b}\neq \boldsymbol{0}$ ,所以

$$x + x_1 + x_2 + \dots + x_t = 0 \tag{2}$$

将(2)代入(1)得  $x_1 \boldsymbol{\beta}_1 + x_2 \boldsymbol{\beta}_2 + \dots + x_t \boldsymbol{\beta}_t = \boldsymbol{0}$ ,由于  $\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_t$  是  $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$  的基础解系,故线性无 关,得 $x_1=x_2=\cdots=x_t=0$ ,代入(2)得知x=0,于是 $\alpha,\gamma_1,\gamma_2,\cdots,\gamma_t$ 线性无关。

(2) 由非齐次方程组解得结构知若 $\gamma$ 是 Ax=b的解,其解 $\gamma$ 可表示为  $\gamma = \alpha + k_1 \beta_1 + k_2 \beta_2 + \dots + k_t \beta_t = \alpha + k_1 (\gamma_1 - \alpha) + k_2 (\gamma_2 - \alpha) + \dots + k_t (\gamma_t - \alpha)$ 

$$= (1 - k_1 - k_2 - \dots - k_t)\boldsymbol{\alpha} + k_1 \boldsymbol{\gamma}_1 + \dots + k_t \boldsymbol{\gamma}_t$$

令  $l_0 = 1 - k_1 - k_2 - \dots - k_t, l_1 = k_1, \dots, l_t = k_t$ ,上式可表示为  $\gamma = l_0 \alpha + l_1 \gamma_1 + l_2 \gamma_2 + \dots + l_t \gamma_t$ 

得分 评卷人 (21) (**本题满分 11 分**) 已知矩阵 
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 8 & 2 & 0 \\ 0 & a & 6 \end{pmatrix}$$
能相似对角化,

(1) 求参数 a; (2) 求正交变换  $\mathbf{x} = \mathbf{Q}\mathbf{y}$  化二次型  $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A}\mathbf{x}$  化为标准形。

【解】① 
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -2 & 0 \\ -8 & \lambda - 2 & 0 \\ 0 & -a & \lambda - 6 \end{vmatrix} = (\lambda - 6)^2 (\lambda + 2)$$
  
 $\lambda_1 = \lambda_2 = 6$   $\lambda_2 = -2$ 

 $\lambda_1 = \lambda_2 = 6$   $\lambda_3 = -2$  由已知 A 可对角化,故  $\lambda = 6$  必有 2 个线性无关的特征向量,由  $R(6E - A) = R \begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & -a & 0 \end{pmatrix} = 1$ 

得 
$$a = 0$$
 因此  $\mathbf{x}^T A \mathbf{x} = 2x_1^2 + 2x_2^2 + 6x_3^2 + 10x_1x_2$ , 二次型矩阵  $\mathbf{A}_1 = \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$ 

$$\pm |\lambda \mathbf{E} - \mathbf{A}_1| = \cdots = (\lambda - 6)(\lambda - 7)(\lambda + 3)$$

知二次型 
$$x^T A x = x^T A_1 x$$
 特征值 6,7,-3,

对 
$$\lambda = 6$$
 由  $(6E - A_1)x = 0$  得  $\alpha_1 = (0,0,1)^T$ 

对 
$$\lambda = 7$$
 由  $(7E - A_1)x = 0$  得  $\boldsymbol{\alpha}_2 = (1, 1, 0)^T$ 

对 
$$\lambda = -3$$
 由  $(-3E - A_1)x = 0$  得  $\alpha_3 = (1, -1, 0)^T$ 

单位化 
$$\boldsymbol{\beta}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
  $\boldsymbol{\beta}_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$   $\boldsymbol{\beta}_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ 

$$\diamondsuit \mathbf{Q} = (\boldsymbol{\beta}_1 \ \boldsymbol{\beta}_2 \ \boldsymbol{\beta}_3) = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix}$$

又 A, 特征值为 6, 7, -3; 经过 x = Qy 有  $x^T A x = 6y_1^2 + 7y_2^2 - 3y_3^2$ .

| 得分 | 评卷人 |
|----|-----|
|    |     |

(22) (**本题满分 11 分**) 设随机变量 X 与 Y 相互独立,且  $X \sim U[0,1], Y$  服从 为 1 的指数分布,(I) 求 Z = 2X + Y 的密度函数; (II) 求 Cov(Y, Z); (III) 判断 X与Z 是否独立。

【解】由于 
$$X \sim U[0,1]$$
,即  $X \sim f_X(x) = \begin{cases} 1, \ 0 < x < 1 \\ 0, \ \text{其他} \end{cases}$ ,  $Y$  的密度函数为  $f_Y(x) = \begin{cases} e^{-y}, \ y > o \\ 0, \ \text{其他} \end{cases}$ 

(I) 
$$Z=2X+Y$$
, 由卷积公式为  $f_Z(z)=\int_{-\infty}^{+\infty}f(x,z-2x)dx$ , 由  $X$  与  $Y$  相互独立,则

$$f(x,z-2x) = e^{-z}e^{2x}$$
, 对应区域为 
$$\begin{cases} 0 < x < 1 \\ z > 2x \end{cases}$$
, 则分别积分为:

1) 
$$0 \le z < 2$$
,  $f_z(z) = e^{-z} \int_0^{\frac{z}{2}} e^{2x} dx = \frac{1}{2} (1 - e^{-z})$ ;

2) 
$$z \ge 2$$
,  $f_z(z) = e^{-z} \int_0^1 e^{2x} dx = \frac{1}{2} e^{-z} (e^2 - 1)$ 

则 
$$f_{z}(z) = \begin{cases} \frac{1}{2}(1-e^{-z}), & 0 \le z < 2 \\ \frac{1}{2}e^{-z}(e^{2}-1), & z \ge 2 \end{cases}$$
;

(II) 由于X与Y相互独立,则

$$Cov(Y, Z) = Cov(Y, 2X + Y) = 2Cov(Y, X) + D(Y) = D(Y) = 1$$

(III) 又因为 $Cov(X,Z) = Cov(X,2X+Y) = 2D(X) + Cov(X,Y) = \frac{1}{6}$ ,所以 X 与 Z 相关,可知 X与Z不独立。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(23) (本题满分 11 分) 设随机变量 X 的概率密度函数为

$$f(x,\theta) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$
,  $X_1, ..., X_n$  为  $X$  的简单随机样本,试求: (I)

参数 $\theta$ 的矩估计 $\hat{\theta}$ ;(II) $\theta$ 的极大似然估计 $\hat{\theta}_L$ ;(III) $\hat{\theta}_L^2$ 是否为 $\theta^2$ 的无偏估计.

【解】: (I) 求 $\theta$ 的矩估计,

$$\mu = E(X) = \int_0^{+\infty} x \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}} dx = -\int_0^{+\infty} x d(e^{-\frac{x^2}{2\theta^2}}) = -xe^{-\frac{x^2}{2\theta^2}} \Big|_0^{+\infty} + \int_0^{+\infty} e^{-\frac{x^2}{2\theta^2}} dx = \sqrt{\frac{\pi}{2}} \theta,$$

$$\Rightarrow \mu = \overline{X}, \ \sqrt{\frac{\pi}{2}}\theta = \overline{X} \ \text{所以} \theta$$
的矩估计 $\hat{\theta} = \sqrt{\frac{2}{\pi}}\overline{X};$ 

$$L = \prod_{i=1}^{n} \frac{x_i}{\theta^2} e^{\frac{-x_i^2}{2\theta^2}} = \frac{x_1 x_2 \cdots x_n}{\theta^{2n}} e^{\frac{-\frac{1}{2\theta^2} \sum_{i=1}^{n} X_i^2}{\theta^{2n}}}, \quad \ln L = \ln(x_1 x_2 \cdots x_n) - 2n \ln \theta - \frac{1}{2\theta^2} \sum_{i=1}^{n} X_i^2,$$

$$\frac{d \ln L}{d \theta} = -\frac{2n}{\theta} + \frac{1}{\theta^3} \sum_{i=1}^n X_i^2 = 0 \; , \quad \frac{1}{\theta^2} \sum_{i=1}^n X_i^2 = 2n , \; \text{所以$\theta$ 的极大似然估计为:} \qquad \hat{\theta}_L = \sqrt{\frac{1}{2n} \sum_{i=1}^n X_i^2} \; ;$$

(III) 
$$E(\hat{\theta}_L^2) = \frac{1}{2n} \sum_{i=1}^n E(X_i^2) = \frac{1}{2} E(X^2)$$
,而  $E(X^2) = \int_0^{+\infty} x^2 \frac{x}{\theta^2} e^{-\frac{x^2}{2\theta^2}} dx = \frac{x^2}{2\theta^2} = 2\theta^2 \int_0^{+\infty} t e^{-t} dt = 2\theta^2$ ,因此  $E(\hat{\theta}_L^2) = \theta^2$ ,即  $\hat{\theta}_L^2 \neq \theta^2$ 的无偏估计.

绝密★启用前

2015 年全国硕士研究生入学统一考试

## **数学一**(模拟 3)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

| 得分 | 评卷人 |
|----|-----|
|    |     |

一、选择题: (1)~(8)小题,每小题 4分,共 32分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后 的括号里.

- (1) 曲线  $y = \frac{x^2 + 1}{x + 1} e^{\frac{1}{x 1}}$  的渐近线有( (A) 1条 (B) 2条 (C) 3条

【解】:  $\lim_{x \to -1} y = \infty$  ,  $\lim_{x \to 1^+} y = \infty$  ,  $\lim_{x \to \infty} \frac{y}{x} = 1$  ,  $\lim_{x \to \infty} (y - x) = \lim_{x \to \infty} [x(e^{\frac{1}{x - 1}} - 1) - 1] = 0$  , 所以 y = x 是它的 斜渐近线, 故共有3条, 答案 C。

- (2) 设 f(x), f'(x) 为已知的连续函数,则方程 y' + f'(x)y = f(x)f'(x) 的解是(

  - (A)  $y = f(x) 1 + ce^{-f(x)}$ ; (B)  $y = f(x) + 1 + ce^{-f(x)}$ ;
  - (C)  $y = f(x) c + ce^{-f(x)}$ ;
- (D)  $y = f(x) + ce^{-f(x)}$

【答案】 A

- ( ).

- (A)  $c = \frac{1}{2}, k = 2$  (B)  $c = \frac{1}{3}, k = 2$  (C)  $c = \frac{1}{3}, k = 3$  (D)  $c = \frac{1}{6}, k = 3$

【解】:由题设有  $\lim_{x\to 0} \frac{\int_0^x f(t) \, \mathrm{d} t}{cx^k} = \lim_{x\to 0} \frac{f(x)}{ckx^{k-1}} = \lim_{x\to 0} \frac{f'(x)}{ck(k-1)x^{k-2}} = \frac{f''(0)}{ck(k-1)}$ ,故  $c = \frac{1}{6}$ ,答案 D。

- (4) 若  $f(x,x^2) = x^3$ ,  $f'_x(x,x^2) = x^2 2x^4$ , 则  $f'_y(x,x^2) =$  ( )

  (A)  $x + x^3$  (B)  $2x^2 + 2x^4$  (C)  $x^2 + x^5$  (D)  $2x + 2x^2$

【答案】: 选 A

- (5) 设 A.B.C 是 n 阶矩阵, 并满足 ABAC=E.则下列结论中不正确的是
  - (A)  $A^T B^T A^T C^T = E$ . (B) BAC = CAB

(C)  $BA^2C = E$ 

(D) ACAB = CABA

【答案】C

【分析】这一类型题目要注意的是矩阵乘法没有交换律、有零因子、没有消去律等法则,由ABAC = E知 矩阵 A, B, C 均可逆, 那么由

 $ABAC = E \Rightarrow ABA = C^{-1} \Rightarrow CABA = E$ 。 从而  $(CABA)^T = E$ ,即  $A^TB^TA^TC^T = E$ , 故 (A) 正 确。

由 ABAC = E 知  $A^{-1} = BAC$  ,由 CABA = E 知  $A^{-1} = CBA$  ,从而 BAC = CAB ,故 (B) 正确。

由排除法可知,(C)不正确,故选(C).

(6) 设 $A \in m \times n$  矩阵, r(A) = n,则下列结论不正确的是( )

- (A) 若 AB = O,则 B = O (B) 对任意矩阵 B,有 r(AB) = r(B) (C) 存在 B,使得 BA = E (E) 对任意矩阵 B,有 r(BA) = r(B)

【解】 因为r(A) = n, 所以方程组 AX = 0 只有零解,而由 AB = O 得 B 的列向量为方程组 AX = 0 的解,故若 AB = O .则 B = O:

令 BX = O, ABX = 0 为两个方程组,显然若 BX = O,则 ABX = O,反之,若 ABX = O,因为 r(A) = n,所以方 程组 AX = 0 只有零解,于是 BX = O,即方程组 BX = O 与 ABX = 0 为同解方程组,故 r(AB) = r(B);

因为r(A) = n, 所以 A 经过有限初等行变换化为 $\begin{pmatrix} E_n \\ O \end{pmatrix}$ , 即存在可逆矩阵 P 使得  $PA = \begin{pmatrix} E_n \\ O \end{pmatrix}$ , 令

 $B = (E_n \quad O)P$ , 则 BA = E;

令 
$$A = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$$
,  $B = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ ,  $r(A) = 0$ , 但  $r(BA) = 0 \neq r(B) = 1$ , 选(D).

(7) 设随机变量  $X \sim E(1)$ , 记  $Y = \max\{X,1\}$ , 则 E(Y) = ((A) 1 (B)  $1+e^{-1}$  (C)  $1-e^{-1}$  (D)  $e^{-1}$  【解】: 应选(B) .

由于指数分布的概率密度函数  $f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x < 0. \end{cases}$ 

$$E(Y) = E(\max\{x,1\}) = \int_{+\infty}^{-\infty} \max\{x,1\} f(x) d(-x) = \int_{0}^{+\infty} \max\{x,1\} e^{-x} dx$$
$$= \int_{0}^{1} e^{-x} dx + \int_{1}^{+\infty} x e^{-x} dx = 1 + e^{-1}.$$

(8)、设 $X_1, X_2, \dots, X_n$  是来自总体 $X \sim N(\mu, \sigma^2)$  的样本,为使 $Y = k \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$  成为总体方差的

无偏估计,则应选k为( ). (A) (B) (C)

$$(A) \frac{1}{n-1}$$

- (A)  $\frac{1}{n-1}$  (B)  $\frac{1}{n}$  (C)  $\frac{1}{2(n-1)}$  (D)  $\frac{1}{2n}$

【解】: 应选(C).

$$X_{i+1} - X_i \sim N(0, 2\sigma^2) \;, \;\; \text{$\not$ $\uparrow$} \\ \mathcal{E}(X_{i+1} - X_i)^2 = D(X_{i+1} - X_i) + [E(X_{i+1} - X_i)]^2 = 2\sigma^2 \;,$$

$$E(Y) = k \sum_{i=1}^{n-1} E(X_{i+1} - X_i)^2 = 2(n-1)\sigma^2 k$$
,要使 $Y$ 为总体方差 $\sigma^2$ 的无偏估计,

即 
$$E(Y) = \sigma^2$$
,故  $k = \frac{1}{2(n-1)}$ .

| 得分 | 评卷人 |
|----|-----|
|    |     |

二、填空题: (9) ~ (14) 小题, 每小题 4分, 共 24分. 把答案填在题中的横线上.

(9) 
$$\lim_{n\to\infty} \left(\frac{n-2\ln n}{n+3\ln n}\right)^{\frac{n}{\ln n}} = \underline{\qquad}$$

【解】原式=
$$\lim_{n\to\infty} \left[ \left( 1 + \frac{-5\ln n}{n+3\ln n} \right)^{\frac{n+3\ln n}{-5\ln n}} \right]^{\frac{n}{\ln n} \cdot \frac{-5\ln n}{n+3\ln n}} = e^{-5}$$

(10) 己知方程 y''-y=0 的积分曲线在点 O(0,0) 处与直线 y=x 相切,则该积分曲线的方程为

【答案】 
$$y = \frac{1}{2}(e^x - e^{-x}) = shx$$

(11) 设 f(x) 在[0,1] 上有连续的导数, f(1) = 1, 且有  $xf'(x) - f(x) = x\sqrt{1-x^2}$ ,则  $\int_0^1 f(x) dx = \underline{\qquad}.$ 

【解】:由题设有 
$$\int_0^1 [xf'(x) - f(x)] dx = xf(x) \Big|_0^1 - 2 \int_0^1 f(x) dx = \int_0^1 x \sqrt{1 - x^2} dx = \frac{2}{3}$$
.

所以  $\int_0^1 f(x) dx = \frac{1}{6}$ .

(12) 累次积分 
$$I = \int_0^{\frac{1}{2}} dy \int_{\frac{\sqrt{3}y}{3}}^{\frac{\sqrt{3}y}{3}} e^{-(x^2+y^2)} dx + \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} dy \int_{\frac{\sqrt{3}y}{3}}^{\frac{\sqrt{1-y^2}}{3}} e^{-(x^2+y^2)} dx = \underline{\qquad}$$

【解】原式=
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} d\theta \int_{0}^{1} e^{-r^{2}} r dr = \frac{\pi}{12} (1 - e^{-1})$$
.

(13) 向量组  $\boldsymbol{a}_1 = (1,2,3,4)^T$  ,  $\boldsymbol{a}_2 = (1,3,4,5)^T$  ,  $\boldsymbol{a}_3 = (2,4,6,8)^T$  ,  $\boldsymbol{a}_4 = (2,6,7,7)^T$  的一个极大无关组为\_\_\_\_\_\_.

### 【答案】: $\alpha_1, \alpha_4, \alpha$ 或 $\alpha_2, \alpha_3, \alpha$

(14) 设随机变量 X 服从 [-1,2] 上的均匀分布,则随机变量的函数  $Y = X^2$  的概率密度函数  $f_Y(y) =$ \_\_\_\_\_。

【解】: 由于 X 的密度函数  $f(x) = \frac{1}{3}$ , -1 < x < 2.,则  $Y = X^2$  的密度

$$f_{Y}(y) = \begin{cases} \frac{1}{3\sqrt{y}}, & 0 < y < 1 \\ \frac{1}{6\sqrt{y}}, & 1 < y < 2 \\ 0, & \text{其他} \end{cases}$$

三、解答题: (15)~(23)小题,共 94分.解答应写出必要的文字说明、证明过程或演算步骤.

| 得分 | 评卷人 | (15) ( <b>本题满分 10 分</b> ) 设 $x_0 = 25, x_n = \arctan x_{n-1} (n = 1, 2, \cdots)$ 。( I ) 证明 $\lim_{n \to \infty} x_n$ |
|----|-----|----------------------------------------------------------------------------------------------------------------------|
|    |     | 存在,并求它的值;(II) 求 $\lim_{n\to\infty} \frac{x_n - x_{n-1}}{x_n^3}$ 。                                                    |

【证明】:( I )令  $f(x) = x - \arctan x$ ,则  $f'(x) = \frac{1}{1+x^2} > 0$ ,因而函数 f(x) 在  $[0,+\infty)$  上单增,当 x > 0

时有  $f(x) = x - \arctan x > f(0) = 0$ ,由此可得数列 $\{x_n\}$  是单调递减的,又  $x_n > 0$ ,由单调有界收敛原 理知  $\lim_{n\to\infty} x_n$  存在,设  $\lim_{n\to\infty} x_n = a$  ,对等式  $x_n = \arctan x_{n-1}$  两边同时取极限可得  $a = \arctan a$  ,解得  $\lim_{n\to\infty} x_n = a = 0;$ 

(II) 
$$\lim_{x \to 0} \frac{\arctan x - x}{x^3} = \lim_{x \to 0} \frac{-\frac{x^2}{1 + x^2}}{3x^2} = -\frac{1}{3}, \quad \text{由} \lim_{n \to \infty} x_n = 0, \quad \text{可得}$$

$$\lim_{n \to \infty} \frac{\arctan x_{n-1} - x_{n-1}}{\left(\arctan x_{n-1}\right)^3} = \lim_{x \to 0} \frac{\arctan x - x}{x^3} = -\frac{1}{3}.$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(16) (**本题满分 10 分**) 设函数 f(x, y, z) 连续,

 $\int_0^1 dx \int_0^1 dy \int_0^{x^2+y^2} f(x,y,z) dz = \iiint\limits_\Omega f(x,y,z) dV \ , \ \partial \Omega \times xOz \ \Psi$ 面上的投影区域为  $D_{xz}$  ,

求二重积分 
$$I = \iint_{D_r} \sqrt{|z-x^2|} d\sigma$$
。

【解】 由所给的积分等式知  $\Omega = \{(x,y,z) \mid 0 \le z \le x^2 + y^2, 0 \le y \le 1, 0 \le x \le 1\}$ ,即  $\Omega$  是由抛物面  $z = x^2 + y^2$ , 平面 x=1,y=1 及三坐标平面围成立体,它在 xOz 平面上的投影区域为  $D_{xz}$  为图中曲边梯形 0ABC,其中 曲边  $\stackrel{\circ}{BC}: z=x^2+1$  (它是曲线  $\begin{cases} z=x^2+y^2\\ y=1 \end{cases}$  在 xOz 平面的投影),其余三条为直线 x=0, x=1 以及 z=0 。 下面计算二重积分  $I = \iint_{D} \sqrt{|z-x^2|} d\sigma$ ,为了去掉绝对值,如图将  $D_{xz}$  划分为  $D_1$  与  $D_2$  两部分,如图所示,

其中
$$D_{1} = \{(x,z) | 0 \le z \le x^{2}, 0 \le x \le 1\}$$

$$D_{2} = \{(x,z) | 0 \le z \le x^{2} + 1, 0 \le x \le 1\}$$
于是  $I = \iint_{D_{xz}} \sqrt{|z-x^{2}|} d\sigma = \iint_{D_{1}} \sqrt{x^{2} - z} d\sigma + \iint_{D_{2}} \sqrt{z-x^{2}} d\sigma$ 

$$= \int_{0}^{1} dx \int_{0}^{x^{2}} \sqrt{x^{2} - z} dz + \int_{0}^{1} dx \int_{x^{2}}^{x^{2} + 1} \sqrt{z-x^{2}} dz$$

$$= \int_{0}^{1} \frac{2}{3} x^{3} dx + \int_{0}^{1} \frac{2}{3} x dx = \frac{1}{6} + \frac{2}{3} = \frac{5}{6}$$



| 得分 | 评卷人 |
|----|-----|
|    |     |

(17) (**本题满分 10 分**) 计算曲面积分 
$$I = \iint\limits_{\Sigma} yz(y-z)dydz + zx(z-x)dzdx + xy(x-y)dxdy$$

其中  $\Sigma$  是上半球面  $z = \sqrt{4Rx - x^2 - y^2} (R \ge 1)$  在柱面  $\left(x - \frac{3}{2}\right)^2 + y^2 = 1$  之内部分的上侧。

【解】记 
$$F(x,y,z) = x^2 + y^2 + z^2 - 4Rx = 0$$
( $z \ge 0$ ),则曲面  $\Sigma$  的法向量为 $\overset{\rightarrow}{n} = (x - 2R, y, z)$ ,于是
$$\frac{dydz}{x - 2R} = \frac{dzdx}{y} = \frac{dxdy}{z}$$

$$I = \iint_{\Sigma} [yz(y-z)\frac{1}{z}(x-2R) + zx(z-x)\frac{y}{z} + xy(x-y)]dxdy = 2R\iint_{\Sigma} y(z-y)dxdy$$
 记曲面  $\Sigma$  在  $xOy$  平面上的投影区域为  $D: \left(x-\frac{3}{2}\right)^2 + y^2 \le 1$ ,则 
$$I = 2R\iint_{\Sigma} y(\sqrt{4Rx-x^2-y^2}-y)dxdy$$
 
$$= 2R\iint_{\Sigma} y\sqrt{4Rx-x^2-y^2} dxdy - 2R\iint_{\Sigma} y^2dxdy$$
 
$$= 0 - 2R\iint_{D} y^2dxdy$$
 令  $x = \frac{3}{2} + u, y = v$ , 记  $D_1: u^2 + v^2 \le 1$ ,则  $I = 0 - 2R\iint_{D} v^2dudv = -2R\int_{0}^{2\pi} d\theta \int_{0}^{1} \rho^3 \sin^2\theta d\rho = -\frac{1}{2}\pi R$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

(18) (**本题满分 10 分**) 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导, f(a) = a ,且  $\int_a^b f(x) dx = \frac{1}{2} (b^2 - a^2) .$ 证明: ( I )  $\exists \xi \in (a,b)$  内,使  $\xi = f(\xi)$ ; ( II ) 在 (a,b)

内存在与(I)中的 $\xi$ 相异的点 $\eta$ 使得 $f'(\eta) = f(\eta) - \eta + 1$ 。

【证明】:( I )由  $\int_a^b f(x) dx = \frac{1}{2} (b^2 - a^2)$  可知  $\int_a^b [f(x) - x] dx = 0$ ,记 F(x) = f(x) - x,那么函数 F(x) 在 [a,b] 上连续,若 F(x) 在 (a,b) 无零点,那么  $x \in (a,b)$  时恒有 F(x) > 0 (或者 F(x) < 0 )相 应的必有  $\int_a^b F(x) dx > 0$  (或 < 0 )与  $\int_a^b [f(x) - x] dx = 0$  矛盾,故 F(x) 在 (a,b) 内必有零点,即 日  $\xi \in (a,b)$  内,使  $\xi = f(\xi)$ ;

( II ) 令  $G(x) = e^{-x}[f(x) - x]$  , 则有  $G(a) = G(\xi) = 0$  , 由 Rolle 定理知  $\exists \eta \in (a, \xi)$  使得  $G'(\eta) = e^{-\eta}[f'(\eta) - 1] - e^{-\eta}[f(\eta) - \eta] = 0$  , 即有  $f'(\eta) = f(\eta) - \eta + 1$  。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(19) (**本題满分 10 分**) 已知函数 y = y(x)满足等式 y' = x + y,且 y(0) = 1,试讨论级数  $\sum_{n=1}^{\infty} \left[ y(\frac{1}{n}) - 1 - \frac{1}{n} \right]$ 的收敛性。

【解】因为 y'=x+y, 所以 y''=1+y'。由 y(0)=1,得 y'(0)=1,y''(0)=2。根据泰勒公式,得

$$y(\frac{1}{n}) = y(0) + y'(0)\frac{1}{n} + \frac{1}{2}y''(0)(\frac{1}{n})^2 + o(\frac{1}{n^2})$$
$$= 1 + \frac{1}{n} + \frac{1}{n^2} + o(\frac{1}{n^2}),$$

所以  $\left| y(\frac{1}{n}) - 1 - \frac{1}{n} \right|$  在  $n \to \infty$  时与  $\frac{1}{n^2}$  等价,且级数  $\sum_{n=1}^{\infty} \frac{1}{n^2}$  收敛,因此级数

$$\sum_{n=1}^{\infty} \left[ y(\frac{1}{n}) - 1 - \frac{1}{n} \right]$$

绝对收敛。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(20) (**本题满分 11 分**) 已知齐次方程组(I) 
$$\begin{cases} x_1 + x_2 + x_4 = 0 \\ ax_1 + a^2x_3 = 0 \text{ 的解全是} \\ ax_2 + a^2x_4 = 0 \end{cases}$$

4元方程(II)  $x_1 + x_2 + x_3 = 0$ 的解。(1) 求a; (2) 求齐次方程组(I)的解。

【解】 (1) 因为方程组(I)的解全是(II)的解,所以(I)与方程组(III) 
$$\begin{cases} x_1 + x_2 + x_4 = 0 \\ ax_1 + a^2x_3 = 0 \\ ax_2 + a^2x_4 = 0 \end{cases}$$
解,那么(I)与(III)的系数矩阵  $A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ a & 0 & a^2 & 0 \\ 0 & a & 0 & a^2 \end{pmatrix}$ 与  $B = \begin{pmatrix} 1 & 1 & 0 & 1 \\ a & 0 & a^2 & 0 \\ 0 & a & 0 & a^2 \\ 1 & 1 & 1 & 0 \end{pmatrix}$ 有相同的秩。 如  $a = 0$  则  $r(A) = 1$ 而  $r(B) = 2$ ,所以假设  $a \neq 0$ 

解,那么(I)与(III)的系数矩阵 
$$A = \begin{pmatrix} 1 & 1 & 0 & 1 \\ a & 0 & a^2 & 0 \\ 0 & a & 0 & a^2 \end{pmatrix}$$
与  $B = \begin{pmatrix} 1 & 1 & 0 & 1 \\ a & 0 & a^2 & 0 \\ 0 & a & 0 & a^2 \\ 1 & 1 & 1 & 0 \end{pmatrix}$ 有相同的秩。

(II) 由于 
$$A \longrightarrow \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$
 基础解系  $\eta = \left(-\frac{1}{2}, -\frac{1}{2}, 1, 1\right)^T$ ,则通解为  $k\eta$ 。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(21) (**本题满分 11 分**) 设二次型 
$$f(x_1,x_2,x_3,x_4) = \sum_{i=1}^4 x_i^2 + \sum_{1 \le i < j \le 4} 2bx_i x_j$$
 ,其中 b 为

非零的实数(I)用正交变换,将该二次型化为标准形,并写出所用的正交变换和所 得的标准形; (II) 求出该二次型正定的充要条件。

【解】:(I) 
$$f=x^{T}Ax$$
, 其中:  $A = \begin{pmatrix} 1 & b & b & b \\ b & 1 & b & b \\ b & b & 1 & b \\ b & b & b & 1 \end{pmatrix}$ 

$$|\lambda E-A| = (\lambda - (1+3b))[\lambda - (1-b)]^3$$
  $\lambda_1 = 1+3b$   $\lambda_2 = \lambda_3 = \lambda_4 = 1-b$ 

解方程  $(\lambda_1 \mathbf{E} - \mathbf{A})x = 0$  得特征向量  $\xi_1 = (1,1,1,1)^T$ 

解方程 
$$(\lambda_2 \mathbf{E} - \mathbf{A}) x = 0$$
 得特征向量  $\alpha_1 = (-1,1,0,0)^T$  ,  $\alpha_2 = (-1,0,1,0)^T$  ,  $\alpha_3 = (-1,0,0,1)^T$ 

正交化 
$$\xi_2 = \alpha_1$$
  $\xi_3 = (-1,-1,2,0)^T$   $\xi_4 = (-1,-1,-1,3)^T$  单位化 得

$$\eta_{1} = \frac{1}{2} (11.11.^{T}) \eta_{2} = \frac{1}{\sqrt{2}} -1.1.0.0^{T} \quad \eta_{3} = \frac{1}{\sqrt{6}} -1.-12.0^{T} \quad \eta_{1} = \frac{1}{\sqrt{12}} (-1.-1.-1.3)^{T}$$

令
$$U = (\eta_1 \eta_2 \eta_3 \eta_4)$$
,则 U 为正交阵,且  $U^{-1}AU = U^TAU = \begin{pmatrix} 1+3b & & & \\ & 1-b & & \\ & & 1-b & \\ & & & 1-b \end{pmatrix}$ 

校准形  $f = (1+3b)y_1^2 + (1-b)y_2^2 + (1-b)y_3^2 + (1-b)y_4^2$ 

(II) 
$$f(x_1, x_2, x_3, x_4) = x^T A x$$
  $\mathbb{E} \mathbb{E} \Leftrightarrow 1 + 3b > 0$   $\mathbb{E} 1 - b > 0 \Leftrightarrow -\frac{1}{3} < b < 1$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

**(22)** (**本题满分 11 分**) 设随机变量 X 的概率密度函数为

$$f_X(x) = egin{cases} Ae^{-ax+b}, & x > 0 \ 0, & x \le 0 \end{cases}$$
,其中 $b$ 是任意常数,若 $E(X) = 2$ ,且  $Y = egin{cases} 4, & X \le 1 \ 2X, 1 < X < 2$ ,试求:  $2, & X \ge 2 \end{cases}$ 

$$Y =$$
  $\begin{cases} 4, & X \le 1 \\ 2X, 1 < X < 2, & 试求: \\ 2, & X \ge 2 \end{cases}$ 

(I) 常数 A 与 a; (II) 概率  $P\{Y > 3\}$ ; (III) Y 的分布函数。

【解】 (I) 由于1=
$$\int_0^{+\infty} Ae^{-ax+b} dx = \frac{Ae^b}{a} \int_0^{+\infty} ae^{-ax} dx = \frac{Ae^b}{a}$$
,  $A = ae^{-b}$ ,

又 
$$E(X) = 2$$
, 所以  $2 = \frac{1}{a}$ , 即  $a = \frac{1}{2}$ , 所以有  $f_X(x) = \begin{cases} \frac{1}{2}e^{-\frac{1}{2}x}, & x > 0 \\ 0, & x \le 0 \end{cases}$ 

(II) 
$$P{Y > 3} = 1 - P{Y \le 3} = 1 - (P{Y = 2} + P{2 < Y \le 3})$$

$$=1-(P\{X\geq 2\}+P\{2<2X\leq 3\})=1-e^{-1}-P\{1< X\leq \frac{3}{2}\}=1-e^{-1}-e^{-\frac{3}{4}}+e^{-\frac{1}{2}};$$

(III) 由于 $2 \le y \le 4$ , Y的分布函数为:  $F_y(y) = P\{Y \le y\}$ 

1) 
$$y < 2, F_Y(y) = 0$$

2) 
$$2 \le y < 4$$
,  $F_Y(y) = P\{Y \le y\} = P\{Y = 2\} + P\{2 < Y \le y\}$   
 $= P\{X \ge 2\} + P\{2 < 2X \le y\} = P\{X \ge 2\} + P\{1 < X \le \frac{y}{2}\}$   
 $= e^{-1} + \int_{1}^{\frac{y}{2}} \frac{1}{2} e^{-\frac{x}{2}} dx = e^{-1} + e^{-\frac{1}{2}} - e^{-\frac{y}{4}}$ 

3) 
$$y \ge 4$$
,  $F_Y(y) = 1$ 

所以
$$Y$$
的分布函数为:  $F_Y(y) = \begin{cases} 0, & y < 2 \\ e^{-1} + e^{-\frac{1}{2}} - e^{-\frac{y}{4}}, & 2 \le y < 4 \\ 1, & y \ge 4 \end{cases}$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

(23) (**本题满分 11 分**) 设随机变量  $X \sim U(\alpha, \alpha + \beta)$  ( $\beta > 0$ ),  $X_1, ..., X_n$  是总 体 X 的简单随机样本,试求:(I)参数  $\alpha$ 、 $\beta$  的矩估计;(II)  $\alpha$ 、 $\beta$  的极大似然 估计。

【解】:(I)由于 
$$E(X) = \alpha + \frac{\beta}{2}$$
,  $D(X) = \frac{\beta^2}{12}$ , 令  $\mu = \overline{X}$ , $\sigma^2 = S_n^2$ ;  $\overline{X} = \alpha + \frac{\beta}{2}$ ,  $S_n^2 = \frac{\beta^2}{12}$ , 可知  $\alpha$ 、  $\beta$  的矩估计分别是  $\hat{\alpha} = \overline{X} - \frac{\sqrt{3}}{2} S_n^2$ 、  $\hat{\beta} = \sqrt{3} S_n$ 

(II)似然函数为  $L = \prod_{i=1}^n \frac{1}{\beta} = \frac{1}{\beta^n}$  ,  $\alpha < x_i < \alpha + \beta$ 

 $L=rac{1}{eta^n}$  是参数 eta 的减函数,由极大似然估计定义,在  $lpha < x_i < lpha + eta$  时,要使 L 达到最大,参数 lpha 要大, eta 要小,由此可知:

 $\alpha$ 、 $\beta$  的极大似然估计为:  $\hat{\alpha} = \min\{X_i\}$ 、 $\hat{\beta} = \max\{X_i\} - \alpha$ 。

#### 绝密★启用前

### 2015 年全国硕士研究生入学统一考试

## **数学一**(模拟 4)

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

| 得分 | 评卷人 | 一、选择题: (1) ~ (8) 小题, 每小题 4 分, 共 32 分.         |
|----|-----|-----------------------------------------------|
|    |     | 在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后<br>的括号里. |

(1) 设
$$f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^n + e^{nx}}$$
,则 $f(x)$ 不可导点个数为().

- (2) 微分方程  $y'' + y = x \cos 2x$  的一个特解应具有形式 ( )
  - (A)  $(Ax + B)\cos 2x + (Cx + D)\sin 2x$  (B)  $(Ax^2 + Bx)\cos 2x$

(C)  $A\cos 2x + B\sin 2x$ 

(D)  $(Ax + B)\cos 2x$ 

#### 【答案】: A

【解】: 因为
$$x \in (0, \frac{\pi}{2})$$
时,  $\frac{2}{\pi} < \frac{\sin x}{x} < 1$ ,因而有 $I_1 > 1$ ,又 $1 < \frac{x}{\sin x} < \frac{\pi}{2}$ ,因而有 $I_2 < 1$ ,答案是D.

(4) 设 
$$z = f(x, y)$$
 具有连续偏导数,且  $\lim_{\substack{x \to 0 \ y \to 0}} \frac{f(x, y)}{\sqrt{x^2 + y^2}} = 0$ ,则下列判断不正确的是( )

- (A)  $f'_x(0,0) = f'_y(0,0) = 0$  (B) f(0,0) = 0
- (C) f(x,y)在(0,0)处连续 (D) f(x,y)在(0,0)处不可微

#### 【答案】: D

(5) 
$$a = -5$$
 是齐次方程组 
$$\begin{cases} 3x_1 + (a+2)x_2 + 4x_3 = 0 \\ 5x_1 + ax_2 + (a+5)x_3 = 0 \text{ 有非零解的 (} \end{cases}$$
  $x_1 - x_2 + 2x_3 = 0$ 

- (A)充分必要条件
   (B) 充分而非必要条件

   (C)必要而非充分条件
   (D) 既非充分又非必要条件

#### 【答案】: B

- (6) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关,向量 $\beta_1$ 能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出,向量 $\beta_2$ 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出, 则必有().
  - (A)  $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1$  线性无关 (B)  $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_1$  线性相关
  - (C)  $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_2$ 线性无关 (D)  $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\beta}_2$ 线性相关

### 【答案】: C

(7) 设随机变量 X与Y 具有相同分布:  $P\{X = k\} = \frac{e^{-1}}{k!} (k = 0, 1, 2, \cdots)$ ,且

$$D(X-Y) = 2$$
,  $\bigcup E(XY) = ($  )

(A) 0 (B) 1

 $(\mathbf{A}) \quad 0$ 

(C) 2 (D) 3

【答案】: B

【解】由于 
$$D(X-Y)=2$$
,即  $2=D(X-Y)=D(X)+D(Y)-2(E(XY)-E(X)E(Y))$   
=  $2\lambda-2(E(XY)-\lambda^2)=2\{1+1-E(XY)\}$ ,所以  $E(XY)=1$ 

- (8) 设随机变量 X 服从标准正态分布,且  $Y = X^2$ ,则 X 与 Y (
  - (A) 相互独立且相关
- (B) 相互独立且不相关
- (C) 不独立且相关
- (D) 不独立但不相关

【答案】: D

【解】 由于 $E(XY) = E(X^3) = \int_{-\pi}^{+\infty} x^3 \varphi(x) dx = 0$ ; 又E(X) = 0,可知

E(XY) = E(X)E(Y); 所以Cov(X,Y) = 0,即不相关;

概率  $P\{X \le 1, Y \le 1\} = P\{X \le 1, X^2 \le 1\} = P\{|X| \le 1\} = 2\Phi(1) - 1$ ,

 $P\{X \le 1\} = \Phi(1)$ ,  $P\{Y \le 1\} = P\{X^2 \le 1\} = 2\Phi(1) - 1$ ,  $P\{X \le 1, Y \le 1\} \ne P\{X \le 1\}$ 所以X与Y不相互独立。

| 得分 | 评卷人 |
|----|-----|
|    |     |

|: 由题设知 x=0 时 y=1, 对方程式两边关于 x 同时求导可得  $1-e^{-(x+y)^2}(1+y')=0$ ,对上述方程关于 x 再求导可得  $2(x+y)e^{-(x+y)^2}(1+y')^2-e^{-(x+y)^2}y''=0$ ,把 x = 0, y = 1代人到上述两个方程式中可解得 $\frac{d^2 y}{d x^2}$  =  $2e^2$ .

(10) 微分方程  $xdy - ydx = y^2 e^y dy$  的通解为\_\_\_

【答案】  $x = y(c - e^y)$ 

(11) 由曲线  $y = x^{\frac{3}{2}}$ , y = 2 - x 及 y 轴围成的平面图形边界曲线周长是\_\_\_\_

【解】: 
$$s = 2 + \int_0^1 \sqrt{1+1} \, dx + \int_0^1 \sqrt{1+\frac{9}{4}x} \, dx = 2 + \sqrt{2} + \frac{8}{27} (1+\frac{9}{4}x)^{\frac{3}{2}} \Big|_0^1 = 2 + \sqrt{2} + \frac{13\sqrt{13} - 8}{27}$$

【答案】 : 
$$\frac{\partial^2 z}{\partial x \partial y} = x(f + xf_1')(f_1' + 2f_2')g'' + [f_1' + 2f_2' + x(f_{11}'' + 2f_{12}'')]g'$$
.

(13) 
$$\exists \exists A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \exists \mathbf{X} (\mathbf{E} - \mathbf{B}^{-1} \mathbf{A})^T \mathbf{B}^T = \mathbf{E}, \quad \vec{x} \mathbf{X} = \underline{\qquad}.$$

【答案】: 解:  $X(E - B^{-1}A)^T B^T = E \Rightarrow X[B(E - B^{-1}A)]^T = E \Rightarrow X(B - A)^T = E$ 

$$| (\mathbf{B} - \mathbf{A})^T | = \begin{vmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & -1 \end{vmatrix} = -1 \neq 0, \quad | \mathbf{X} = [(\mathbf{B} - \mathbf{A})^T]^{-1} = -\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$

(14) 设总体  $X\sim N(\mu,0.5)$  ,  $X_1,X_2,\ldots,X_n$  ,是 X 的简单随机样本,且  $\overline{X}$  是样本  $X_1,\ldots,X_n$  的样本均 值,若要至少使得 99.7%的概率保证  $|\bar{X} - \mu| < 0.1$ ,则样本容量  $n = \underline{\hspace{1cm}}$ 

【答案】:利用中心极限定理,n = 1513 .

### 三、解答题: (15)~(23)小题,共94分.解答应写出必要的文字说明、证明过程或演算步骤.

| 得分 | 评卷人 |
|----|-----|
|    |     |

(本题满分 10 分)选择常数 a,b,c 的值,使得当  $x \to 0$  时函数

$$a+bx-(1+c\sin x)e^{x}$$
 是  $x^{3}$  的高阶无穷小。

【解】 方法一: 由题设有  $\lim_{x\to 0} \frac{a+bx-(1+c\sin x)e^{x}}{x^{3}}=0$ ,所以有

$$\lim_{x \to 0} [a + bx - (1 + c\sin x)e^x] = a - 1 = 0, a = 1$$

$$= a - 1 + (b - c - 1)x - (c + \frac{1}{2})x^2 - (\frac{1}{6} + \frac{1}{2}c - \frac{1}{6}c)x^3 + o(x^3),$$
 所以有
$$a = 1, b - c - 1 = 0, c + \frac{1}{2} = 0, \frac{1}{6} + \frac{1}{2}c - \frac{1}{6}c = 0,$$
 即  $a = 1, b = \frac{1}{2}, c = -\frac{1}{2}$ .

| 得分 | 评卷人 |
|----|-----|
|    |     |

(16)(**本题满分 10 分**)设抛物面  $\Sigma_1$ :  $z=1+x^2+y^2$ , 圆柱面  $\Sigma_2$ :  $(x-1)^2+y^2=1$ 。 在  $\Sigma_1$ 上求一点( $x_0,y_0$ )使得过( $x_0,y_0$ )的  $\Sigma_1$ 的切平面与  $\Sigma_1$ 和  $\Sigma_2$  围成的体积

【解】: 曲面  $x^2 + y^2 - z + 1 = 0$  上点  $(x_0, y_0)$  处有法向量  $(2x_0, 2y_0, -1)$  ,因而过此点的切平面方程为  $2x_0(x-x_0)+2y_0(y-y_0)-(z-z_0)=0$ ,化简得  $z=2x_0x+2y_0y-{x_0}^2-{y_0}^2+1$ ,此切平面与  $\Sigma_1$ 和  $\Sigma_2$ 所围空间区域体积 v 为

$$\iint_{D} x dx dy = \iint_{D} (x-1) dx dy + \iint_{D} dx dy = 0 + \pi = \pi, \iint_{D} y dx dy = 0$$
故 v=  $\iint_{D} (x^{2} + y^{2}) dx dy + \pi (x_{0}^{2} - 2x_{0} + y_{0}^{2})$ , 易知, 当  $x_{0} = 1$ ,  $y_{0} = 0$  时 v 最小。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(17) (**本题满分 10 分**) 设 
$$\Sigma$$
 为  $x^2 + y^2 + z^2 = 1$ ( $z \ge 0$ ) 的外侧,连续函数  $f(x, y)$  满足 
$$f(x, y) = 2(x - y)^2 + \iint_{\Sigma} x(z^2 + e^z) dy dz + y(z^2 + e^z) dz dx + (zf(x, y) - 2e^z) dx dy$$

求 f(x,y)。

【解】: 设 
$$\iint_{\Sigma} x(z^2 + e^z) dy dz + y(z^2 + e^z) dz dx + (zf(x, y) - 2e^z) dx dy = \alpha$$
 ,则  $f(x, y) = 2(x - y)^2 + \alpha$  。设  $D$  为  $xOy$  平面上的圆  $x^2 + y^2 \le 1$  ,  $\sum_1$  为  $D$  的下侧,  $\Omega$  为  $\sum_i$  与  $\sum_1$  包围的区域,应用高斯公式,有  $\alpha = \iint_{\Sigma_1} x(z^2 + e^z) dy dz + y(z^2 + e^z) dz dx + (zf(x, y) - 2e^z) dx dy$  
$$-\iint_{\Sigma_1} x(z^2 + e^z) dy dz + y(z^2 + e^z) dz dx + (zf(x, y) - 2e^z) dx dy$$
 
$$= \iiint_{\Omega} [2z^2 + 2(x - y)^2 + \alpha] dV + \iint_{D} (-2) dx dy$$
 
$$= \iiint_{\Omega} [2(x^2 + y^2 + z^2) - 4xy + \alpha] dV - 2\pi$$
 
$$= 2\int_0^{2\pi} d\theta \int_0^{\pi} \sin \varphi d\varphi \int_0^1 r^4 dr - 0 + \frac{2}{3}\pi\alpha - 2\pi$$
 
$$= -\frac{6}{5}\pi + \frac{2}{3}\pi\alpha$$

(18) (**本题满分 10 分**) 设函数 f(x) 在 (a,b) 内可导,且  $x \in (a,b)$  时,  $f(x) + f'(x) \neq 0$ ,证明: f(x) 在 (a,b) 内最多只有一个零点。

【证明】: (反证法) 若 f(x) 在 (a,b) 内有两个或更多的零点,则  $\exists x_1 \in (a,b), x_2 \in (a,b)$ ,  $x_1 < x_2, f(x_1) = f(x_2) = 0$  。 令  $F(x) = e^x f(x)$  , 则 有  $F(x_1) = F(x_2) = 0$  , 由 Rolle 定 理 知  $\exists \xi \in (x_1, x_2) \subset (a,b)$  使 得  $F'(\xi) = e^{\xi} [f(\xi) + f'(\xi)] = 0$  , 因 而 有  $f(\xi) + f'(\xi) = 0$  , 与  $f(x) + f'(x) \neq 0$ 矛盾。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(19) (**本题满分 10 分**) 求  $\sum_{n=0}^{\infty} \frac{n^2+1}{2^n n!} x^n$  的和函数。

【解】: 
$$S(x) = \sum_{n=0}^{\infty} \frac{n^2}{2^n n!} x^n + \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{x}{2}\right)^n$$

故  $\alpha = \frac{18\pi}{5(2\pi - 3)}$ ,于是  $f(x, y) = 2(x - y)^2 + \frac{18\pi}{5(2\pi - 3)}$ 。

$$\sum_{n=0}^{\infty} \frac{n^2}{2^n n!} x^n = x \sum_{n=0}^{\infty} \frac{n^2}{2^n n!} x^{n-1} = x \left( \sum_{n=0}^{\infty} \frac{n}{2^n n!} x^n \right)' = x \left[ x \left( \sum_{n=1}^{\infty} \frac{1}{2^n n!} x^n \right)' \right]'$$

$$= x \left[ x \left( \sum_{n=0}^{\infty} \frac{1}{n!} \left( \frac{x}{2} \right)^n \right)' \right]' = x \left[ x \left( e^{\frac{x}{2}} - 1 \right)' \right]' = \frac{1}{4} x (x+2) e^{\frac{x}{2}}$$
$$\sum_{n=0}^{\infty} \frac{1}{n!} \left( \frac{x}{2} \right)^n = e^{\frac{x}{2}}$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

**(20)**(**本题满分 11 分**)已设 A 是三阶矩阵, $b = (9,18,-18)^T$ ,方程组 Ax = b 有通解  $k_1(-2,1,0)^T + k_2(2,0,1)^T + (1,2,-2)^T$ ,其中  $k_1,k_2$  是任意常数。
(I) 求 A。 (II) 求 A<sup>100</sup>。

【解】: (I) 由题设知  $\xi_1 = (-2,1,0)^T$   $\xi_2 = (2,0,1)^T$  是 Ax = 0 的基础解系,即特征值  $\lambda = 0$  对应线性无关特征向量。 又  $\eta = (1 \ 2 \ -2)^T$  是 Ax = b 的特解

$$A \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = b = \begin{pmatrix} 9 \\ 18 \\ -18 \end{pmatrix} = 9 \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
, 知  $\xi_3 = (1 \ 2 \ -2)^T = \eta$  是 A 对应于  $\lambda = 9$  特征向量。

取可逆阵 
$$P = (\xi_1 \ \xi_2 \ \xi_3)$$
 则  $P^{-1}AP = \Lambda = \begin{pmatrix} 0 \\ 0 \\ 9 \end{pmatrix}$ ,  $A = P\Lambda P^{-1} = \dots = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix}$ 

(II) 
$$A^{100} = (P\Lambda P^{-1})^{100} = P\Lambda^{100}P^{-1} = 9^{99}A$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(21) (**本题满分 11 分**) 设二次型  $f(x_1, x_2, x_3) = 5x_1^2 + ax_2^2 + 3x_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$ 

的矩阵合同于  $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ . (I)求常数 a; (II)用正交变换法化二次型  $f(x_1, x_2, x_3)$  为标

准形.

【解】 (I) 
$$\diamondsuit$$
  $A = \begin{pmatrix} 5 & -1 & 3 \\ -1 & a & -3 \\ 3 & -3 & 3 \end{pmatrix}$ ,  $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ ,  $\emptyset$   $f(x_1, x_2, x_3) = X^T A X$ .

因为
$$A$$
与 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 合同,所以 $r(A) = 2 < 3$ ,故 $|A| = 0$ .

(II) 
$$|\pm|\lambda E - A| = \begin{vmatrix} \lambda - 5 & 1 & -3 \\ 1 & \lambda - 5 & 3 \\ -3 & 3 & \lambda - 3 \end{vmatrix} = \lambda(\lambda - 4) (\lambda - 9) = 0 \ \# \ \lambda_1 = 0, \ \lambda_2 = 4 \ \lambda_3 = 9.$$

曲 
$$(0E - A)X = O$$
. 得  $\xi_1 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$ . 又由  $(4E - A)X = O$ . 得  $\xi_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ . 由  $(9E - A)X = O$ . 得: 
$$\xi_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad \mathring{\text{P}} \mathring{\text{CD}} \mathcal{H} \mathcal{H} \gamma_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \quad \gamma_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \quad \gamma_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}.$$

$$\mathring{\text{P}} Q = (\gamma_1, \gamma_2, \gamma_3) = \begin{pmatrix} -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix}, Q^T A Q = \begin{pmatrix} 0 & 4 & 0 \\ 4 & 0 & 0 \end{pmatrix},$$

$$\mathring{\text{P}} f(x_1, x_2, x_3) = X^T A X \qquad X = Q^Y \qquad Y^T (Q^T A Q) Y = 4 y_2^2 + 9 y_3^2.$$

得分评卷人

(22)(本题满分 11 分)设二维随机变量(X,Y)联合密度函数为

$$f(x,y) = \begin{cases} Ay, & x^2 \le y \le 1\\ 0, & 其他 \end{cases}$$

试求: (I) 常数 A; (II) 边缘密度函数  $f_{Y}(y)$ ; (III) 条件密度函数  $f_{X/Y}(x/y)$ ;

(IV) 概率 
$$P{Y \le X}$$
; 概率  $P(X > 0/Y = \frac{1}{4})$ 

【解】: (I) 由于 
$$1 = 2A \int_0^1 dx \int_{x^2}^1 y dy = A \int_0^1 (1 - x^4) dx = \frac{4A}{5}$$
, 所以  $A = \frac{5}{4}$ ;

(II) 
$$f_{Y}(y) = 2 \int_{0}^{\sqrt{y}} \frac{5}{4} y dx = \frac{5}{2} y^{\frac{3}{2}} \quad 0 \le y \le 1$$

(III) 对 
$$0 < y \le 1$$
,  $f_{X/Y}(x/y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{2\sqrt{y}}, & |x| \le \sqrt{y} \\ 0, & 其他 \end{cases}$ 

(IV) 
$$P{Y \le X} = \frac{5}{4} \int_0^1 dx \int_{x^2}^1 y dy = \frac{5}{8} \int_0^1 (1 - x^4) dx = \frac{1}{2};$$

$$Y = \frac{1}{4}$$
,  $f_{X/Y = \frac{1}{4}}(x) = \begin{cases} 1, & |x| \le \frac{1}{2} \\ 0, & 其他 \end{cases}$ 

则条件概率  $P(X > 0/Y = \frac{1}{4}) = \int_0^{\frac{1}{2}} dx = 0.5$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

(23) (**本题满分** 11 **分**) 设总体 X 的均值与方差分别是  $E(X) = \mu$ 、 $D(X) = \sigma^2$ ,从 X 中分别抽取二组相互独立且容量为  $n_1$ 、 $n_2$  的简单随机样本,样本均值分别  $\overline{X}_1$ 、 $\overline{X}_2$ ,若常数  $\lambda_1$ 、 $\lambda_2$  满足  $\lambda_1 + \lambda_2 = 1$  时,(I)求证: $T = \lambda_1 \overline{X}_1 + \lambda_2 \overline{X}_2$  是  $\mu$  的无

偏估计;(II)且确定  $\lambda_1$ 、 $\lambda_2$  多少时,方差 D(T) 达到最小;(III) $\lambda_1$ 、 $\lambda_2$  多少时, $T=\lambda_1\overline{X}_1+\lambda_2\overline{X}_2$  依

概率收敛 $\mu$ ,即对任意 $\varepsilon > 0$ ,满足 $\varepsilon > 0$ ,  $\lim_{n \to \infty} P\{|T - \mu| < \varepsilon\} = 1$ 

【解】:(I) $E(T)=\lambda_1 E(\overline{X}_1)+\lambda_2 E(\overline{X}_2)=(\lambda_1+\lambda_2)\mu=\mu$ ,所以对任何满足 $\lambda_1+\lambda_2=1$ 的 $\lambda_1$ 、 $\lambda_2$ ,T均为 $\mu$ 的无偏估计;

(II) 由于 
$$D(T) = \lambda_1^2 D(\overline{X}_1) + \lambda_2^2 D(\overline{X}_2) = \lambda_1^2 \frac{\sigma^2}{n_1} + \lambda_2^2 \frac{\sigma^2}{n_2} = (\lambda_1^2 \frac{1}{n_1} + \lambda_2^2 \frac{1}{n_2}) \sigma^2$$
, 在条件  $\lambda_1 + \lambda_2 = 1$ 

下求D(T)的最小值,由拉格朗日乘数法,作函数

$$\begin{split} \mathbb{L} &= (\lambda_1^2 \frac{1}{n_1} + \lambda_2^2 \frac{1}{n_2}) + \mu(\lambda_1 + \lambda_2 - 1) \\ \mathbb{L}'_{\lambda_1} &= 2\lambda_1 \frac{1}{n_1} + \mu = 0, \ \mathbb{L}'_{\lambda_2} = 2\lambda_2 \frac{1}{n_2} + \mu = 0, \ \lambda_1 + \lambda_2 = 1, \ \text{解得:} \\ \lambda_1 \frac{1}{n_1} &= \lambda_2 \frac{1}{n_2} \Rightarrow \lambda_1 = \frac{n_1}{n_1 + n_1} \ , \lambda_2 = \frac{n_2}{n_1 + n_1} \\ &\text{(III)} \ \text{由于} \ n = n_1 + n_2, \ \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i = \frac{n_1}{n_1 + n_2} \ \overline{X}_1 + \frac{n_1}{n_1 + n_2} \ \overline{X}_2, \ \text{由辛钦大数定理可知,} \\ &\varepsilon > 0, \ \lim_{n \to \infty} P\{ \left| \overline{X} - \mu \right| < \varepsilon \} = 1, \ \mathbb{P} \lim_{n \to \infty} P\{ \left| T - \mu \right| < \varepsilon \} = 1, \ \text{所以在} \\ \lambda_1 &= \frac{n_1}{n_1 + n_1} \ , \lambda_2 = \frac{n_2}{n_1 + n_1} \ \text{时,} \quad T = \lambda_1 \overline{X}_1 + \lambda_2 \overline{X}_2 \ \text{依概率收敛与} \ \mu \ . \end{split}$$

### 绝密★启用前

### 2015 年全国硕士研究生入学统一考试

## 数学一(模拟5)

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

得分 评卷人

一、选择题: (1)~(8)小题,每小题 4分,共 32分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后 的括号里.

- (1) 设  $\lim f(x) = A$ ,则下列结论正确的是(
  - (A) 若 A > 0,则  $\exists M > 0$ ,当 x > M 时有 f(x) > 0
  - (B) 若 *A* ≥ 0,则∃*M* ≥ 0,当 *x* > *M* 时有 f(x) ≥ 0
  - (C) 若 $\exists M > 0, \exists x > M$  时有 $f(x) > 0, \cup A > 0$
  - (D) 若 $\exists M > 0$ , 当x > M 时有 f(x) < 0,则A < 0

【解】: 由极限的保号性知答案应该是 A

- (2) 设 f(x,y) 在 (0,0) 的某一邻域内有定义,  $f_x'(0,0)=3, f_y'(0.0)=-1$ ,则下列结论正确的是 (
  - (A)  $dz|_{(0,0)} = 3dx dy;$
  - (B) 曲面 z = f(x, y) 在 (0.0.f(0,0)) 处有一法向量 (3,-1,1);

  - (C) 曲线  $\begin{cases} z = f(x, y) \\ y = 0 \end{cases}$  在点 (0, 0, f(0, 0)) 有一切向量 (1, 0, 3);  $(D) 曲线 \begin{cases} z = f(x, y) \\ y = 0 \end{cases}$  在点 (0, 0, f(0, 0)) 处有一切向量 (3, 0, 1)

【答案】 C

(3) 设函数 g(x) 在 x=0 的某个邻域内连续,且  $\lim_{x\to 0}\frac{g(x)}{x}=0$  , f(x) 在 x=0 的某个邻域内可导,且

满足  $f'(x) = \sin x^2 + \int_0^x g(x-t) dt$ ,则在 x = 0 处 f(x) 取得(

(A) 极小值

- (C) (0, f(0)) 是曲线的拐点 (D) 不是极值,且点(0, f(0)) 也不是曲线的拐点

【解】: 由题设知 g(0) = g'(0) = 0, f'(0) = 0,  $f''(x) = 2x\cos x^2 + g(x)$ , f''(0) = 0,

$$f'''(0) = \lim_{x \to 0} \left[ \frac{2}{1+x^2} + \frac{g(x)}{x} \right] = 2$$
,故点 $(0, f(0))$ 是曲线  $y = f(x)$ 的拐点。答案 C。

(4)  $I = \int_{1}^{e} dx \int_{0}^{\ln x} f(x, y) dy$  交换积分次序得(其中 f(x, y) 连续) ( )

- (A)  $I = \int_{1}^{e} dy \int_{0}^{\ln x} f(x, y) dx$  (B)  $I = \int_{e^{y}}^{e} dy \int_{0}^{1} f(x, y) dx$
- (C)  $I = \int_0^{\ln x} dy \int_1^e f(x, y) dx$  (D)  $I = \int_0^1 dy \int_{e^y}^e f(x, y) dx$

【答案】: 选 D

(5) 设n阶方阵A的伴随矩阵 $A^* \neq 0$ ,若 $\xi_1, \xi_2, \xi_3$ 是线性方程组Ax = b的三个互不相等的解,则Ax = 0的

基础解系为()。

(A) 
$$\xi_1 - \xi_2$$

(B) 
$$\xi_1 - \xi_2, \xi_2 - \xi_3$$

$$\begin{array}{ll} \text{(A)} & \xi_1 - \xi_3 \\ \text{(C)} & \xi_1 - \xi_2, \xi_2 - \xi_3, \xi_3 - \xi_1 \\ \end{array} \qquad \begin{array}{ll} \text{(B)} \ \xi_1 - \xi_2, \xi_2 - \xi_3 \\ \text{(D)} & \xi_1 + \xi_2, \xi_2 + \xi_3, \xi_3 + \xi_1 \\ \end{array}$$

(D) 
$$\xi_1 + \xi_2, \xi_2 + \xi_3, \xi_3 + \xi_4$$

【答案】(A)

【解】: 
$$Ax = 0$$
 三个数 
$$\begin{cases} r = r(A) \\ n \quad \text{未知量个数} \\ n-1 \end{cases}$$

- ①  $:: \xi_1, \xi_2, \xi_3$ 为 Ax = b 的三个相异解, :: Ax = b 有无穷多解,  $:: r(A) = r(A,b) \le n$  … … (i)
- ② $:: A^*$ 为非零。 $r(A^*) \ge 1$ 从而r(A) = n-1, n.....(ii) 由(i),(ii)可得r(A) = n-1  $\therefore n-r(A) = 1$
- (6) 二次型 $x^T A x = (x_1 + 2x_2 + a_3x_3)(x_1 + 5x_2 + b_3x_3)$ 的正惯性指数p 与负惯性指数q 分别是

$$(A) p = 2, q = 1$$

(B) 
$$p = 2, q = 0$$

$$(C) p = 1, q = 1$$

(D) 与 $a_3$ , $b_3$ 有关,不能确定。

【答案】: C.

令  $y_1 = z_1 + z_2 \cdot y_2 = z_1 - z_2 \cdot y_3 = z_3$ , 变换矩阵仍然可逆,二次型接着变为  $z_1^2 - z_2^2$ .

(7) 设随机变量 X 的概率密度函数为 f(x) ,则随机变量 |X| 的概率密度函数为 ( ) .

(A) 
$$f_1(x) = \frac{f(x) + f(-x)}{2}$$

(B) 
$$f_1(x) = f(x) + f(-x)$$

(C) 
$$f_1(x) = \begin{cases} \frac{f(x) + f(-x)}{2}, & x > 0, \\ 0, & x \le 0 \end{cases}$$
 (D)  $f_1(x) = \begin{cases} f(x) + f(-x), & x > 0, \\ 0, & x \le 0 \end{cases}$ 

(D) 
$$f_1(x) = \begin{cases} f(x) + f(-x), x > 0, \\ 0, & x \le 0 \end{cases}$$

设|X|的分布密度函数为 $F_1(x)$ ,

则当 $x \le 0$ 时, $F_1(x) = P(|X| \le x) = 0$ ,即 $f_1(x) = 0$ ;

则当 
$$x > 0$$
 时,  $F_1(x) = P(|X| \le x) = P(-x \le X \le x) = \int_{-x}^{+x} f(x) dx = F(x) - F(-x)$ ,即  $f_1(x) = f(x) + f(-x)$ .

此题也可采用排除法.

(8) 设随机事件 A 和 B 互不相容,且 0 < P(A) < 1, 0 < P(B) < 1, 令

$$X = \begin{cases} 1, & A$$
发生,  $0, & A$ 不发生,  $Y = \begin{cases} 1, & B$ 发生,  $0, & B$ 不发生,

X与Y的相关系数为 $\rho$ ,则( 的相天系数为 $\rho$ ,则( ). (A) $\rho$ =0 (B) $\rho$ =1 (C) $\rho$ <0 (D) $\rho$ >0

(A) 
$$\rho = 0$$

(B) 
$$\rho = 1$$

(C) 
$$\rho < 0$$

(D) 
$$\rho > 0$$

【解】: 应选(C).

因为A和B互不相容,于是P(X=1,Y=1)=P(AB)=0,

共创(合肥工业大学)考研辅导中心

$$P(X = 1, Y = 0) = P(A\overline{B}) = P(A)$$
,

$$P(X = 0, Y = 1) = P(\overline{AB}) = P(B)$$
,

$$P(X = 0, Y = 0) = P(\overline{AB}) = 1 - P(A) - P(B)$$
.

因此 
$$Cov(X,Y) = E(XY) - E(X)E(Y) = -P(A)P(B)$$
,

$$D(X) = P(A)(1 - P(A)), \quad D(Y) = P(B)(1 - P(B)), \quad \rho = \frac{Cov(X, Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}} < 0.$$

得分

二、填空题: (9) ~ (14) 小题, 每小题 4分, 共 24分. 把答案填在题中的横线上.

评卷人 (9) 已知  $f(x) = x^2 \ln(1+x)$ , 当 n 为大于 2 的正整数时,则

$$f^{(n)}(0) = \underline{\hspace{1cm}}$$

【解】: 
$$f^{(n)}(x) = x^2 \frac{(-1)^{n-1}(n-1)!}{(1+x)^n} + 2nx \frac{(-1)^{n-2}(n-2)!}{(1+x)^{n-1}} + n(n-1) \frac{(-1)^{n-3}(n-3)!}{(1+x)^{n-2}},$$
 所以

$$f^{(n)}(0) = \frac{(-1)^{n-3} n!}{(n-2)}$$

(10) 以  $y_1 = e^{2x}$ ,  $y_2 = xe^{2x}$  为特解的二阶常系数线性齐次微分方程为\_\_\_\_\_

【答案】 
$$y'' - 4y' + 4y = 0$$

【解】:对应特征方程的有二重特征根 2,故特征方程  $r^2-4r+4=0$  为从而原方程为 y''-4y'+4y=0。

(11) 
$$\int_{2}^{+\infty} \frac{1}{(x-1)^{3} \sqrt{x^{2}-2x}} \, \mathrm{d}x = \underline{\hspace{1cm}}$$

【解】: 原式 
$$=$$
  $\int_0^{\frac{\pi}{2}} \frac{\sec t \tan t}{\sec^3 t \tan t} dt = \int_0^{\frac{\pi}{2}} \cos^2 t dt = \frac{\pi}{4}$ .

(12) 若  $\Gamma$  是以 A(0,1), B(-1,0), C(0,-1), D(1,0) 为顶点的四边形的边,则  $\oint_{\Gamma} \frac{x^2}{|x|+|y|} ds = \underline{\hspace{1cm}}$ 

【解】: 由对称性可知: 原式 = 
$$4\int_{L_1} \frac{x^2}{|x|+|y|} ds = 4\sqrt{2} \int_0^1 x^2 dx = \frac{4}{3}\sqrt{2}$$
. 其中:  $L_1: y = x \ (0 \le x \le 1)$ 。

(13) 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\alpha_1 + 2\alpha_2, \alpha_2 - \alpha_3, \alpha_1 + \alpha_2 + t\alpha_3$ 线性相关,则t =\_\_\_\_

【答案】:

【解】将向量看成列向量,则有
$$(\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + t\boldsymbol{\alpha}_3) = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & -1 & t \end{pmatrix}$$

$$\boldsymbol{\alpha}_1 + 2\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + t\boldsymbol{\alpha}_3$$
 线性相关的充要条件是 $\begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & -1 & t \end{vmatrix} = 0 \Leftrightarrow t = 1.$ 

(14) 设 $X_1, X_2, \cdots, X_n$ 是来自标准正态总体N(0,1)的简单随机样本, $\overline{X}$ 与 $S^2$ 分别为样本均值与样本方 差,则 $E[(\overline{X}+S^2)^2]=$ 

【答案】 
$$\frac{n^2+2n+1}{n(n-1)}.$$

【解】: 
$$E[(\overline{X} + S^2)^2] = D(\overline{X} + S^2) + [E(\overline{X} + S^2)]^2$$
.

由  $\overline{X}$  与  $S^2$  的性质知,  $\overline{X}$  与  $S^2$  独立, 这里有  $E(\overline{X}) = 0$  ,  $D(\overline{X}) = \frac{1}{n}$  ,  $E(S^2) = 1$  ,  $(n-1)S^2 \sim \chi^2(n-1) \, , \, D[(n-1)S^2] = 2(n-1) \, , \, \text{从而 } D(S^2) = \frac{1}{(n-1)^2} D[(n-1)S^2] = \frac{2(n-1)}{(n-1)^2} = \frac{2}{n-1} \, ,$   $E[(\overline{X} + S^2)^2] = D(\overline{X} + S^2) + [E(\overline{X} + S^2)]^2 = D(\overline{X}) + D(S^2) + [E(\overline{X}) + E(S^2)]^2$   $= \frac{1}{n} + \frac{2}{n-1} + (0+1)^2 = \frac{n^2 + 2n + 1}{n(n-1)} \, .$ 

三、解答题: (15)~(23)小题, 共94分. 解答应写出必要的文字说明、证明过程或演算步骤.

| 得分 | 评卷人 |
|----|-----|
|    |     |

(15)(**本题满分 10 分**)过点 (1,5) 作曲线  $C: y = x^3$  的切线,设切线为 l 。( I )求 l 的方程;( II )求 l 与曲线 C 所围成的图形 D 的面积;( III )求图形 D 位于 y 轴右侧部分绕 y 轴旋转一周所形成的旋转体的体积。

【解】:(I)设切点为 $(x_0, x_0^3)$ ,则有 $\frac{5-x_0^3}{1-x_0}=3x_0^2$ ,解得 $x_0=-1$ ,相应的切线l的方程为y=3x+2;

(II) 
$$l$$
与 $C$ 的交点满足方程 
$$\begin{cases} y=x^3\\ y=3x+2 \end{cases}$$
,解得 $x=-1$ 与 $x=2$ ,因而 $D$ 的面积为

$$A = \int_{-1}^{2} (3x + 2 - x^3) \, dx = \left[ \frac{3}{2} x^2 + 2x - \frac{1}{4} x^4 \right]_{-1}^{2} = \frac{51}{4};$$

(III) 所求体积 
$$V = 2\pi \int_0^2 x(3x+2-x^3) dx = 2\pi \left[x^3+x^2-\frac{1}{5}x^5\right]_0^2 = \frac{56\pi}{5}$$
。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(16) (**本题满分 10 分**) 设 $u = \sqrt{x^2 + y^2 + z^2}$ , 求函数u 在点 M (1,1,1) 处沿曲面  $2z = x^2 + y^2$  在点 M 处的外法线方向n 的方向导数 $\frac{\partial u}{\partial n}_M$ .

【解】:曲面  $2z-x^2-y^2=0$  上任意点(x,y,z) 处外法线方向向量在 z 轴方向的分量(即投影)为负数,故此曲面在任意点(x,y,z) 处外法线有方向向量(x,y,-1),故在(1,1,1) 点处外法线有方向向量(1,1,-1) 其方向余弦为  $\frac{1}{\sqrt{3}}$ , $\frac{1}{\sqrt{3}}$ 和  $-\frac{1}{\sqrt{3}}$ ,  $u=\sqrt{x^2+y^2+z^2}$  在(1,1,1) 处的三个偏导数皆为  $\frac{1}{\sqrt{3}}$ ,故所求方向导数为  $\frac{\partial u}{\partial r}\cos\alpha+\frac{\partial u}{\partial r}\cos\beta+\frac{\partial u}{\partial r}\cos\gamma=\frac{1}{3}$ .

| 得分 | 评卷人 |
|----|-----|
|    |     |

(17) (**本题满分 10 分**) 计算  $I = \int_L (x^2 + y^2) dx + (x^2 - y^2) dy$ , 其中 L 为从原点 O(0,0) 经圆周  $y = \sqrt{2x - x^2}$  至点 B(2,0) 的路径.

共创(合肥工业大学)考研辅导中心

【解】记从(0,0)到(2,0)的有向线段为 $L_1$ ,则由格林公式得:

$$\begin{split} -I &= \oint_{L_1 - L} (x^2 + y^2) dx + (x^2 - y^2) dy - \int_{L_1} (x^2 + y^2) dx + (x^2 - y^2) dy \\ &= \iint_D 2(x - y) dx dy - \int_0^2 x^2 dx = \int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} 2r^2 (\cos\theta - \sin\theta) dr - \frac{8}{3} = \pi - \frac{4}{3} - \frac{8}{3} = \pi - 4. \\ & \& I = 4 - \pi. \qquad (其中: 计算中可以利用公式 \int_0^{\frac{\pi}{2}} \cos^n \theta d\theta = \frac{n-1}{n} \frac{n-3}{n-2} .... \frac{1}{2} \frac{\pi}{2}). \end{split}$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(18) (**本题满分 10 分**)设a > 1, b > 0,讨论方程 $\log_a^x = x^b$ 有实根时,a, b所满足的条件。

【解】: 方程可等价变形为 
$$\frac{\ln x}{x^b} = \ln a$$
, 令  $f(x) = \frac{\ln x}{x^b} - \ln a$ ,  $f'(x) = \frac{1-b\ln x}{x^{b+1}}$ ,  $f'(x) = 0$ , 解得  $x = e^{\frac{1}{b}}$ ,  $f(x$  在  $(0, e^{\frac{1}{b}}]$  上单增, 在  $[e^{\frac{1}{b}}, +\infty)$  上单减, 又  $\lim_{x \to 0^+} (\frac{\ln x}{x^b} - \ln a) = -\infty$ ,  $\lim_{x \to +\infty} (\frac{\ln x}{x^b} - \ln a) = -\ln a < 0$ ,  $f(e^{\frac{1}{b}}) = \frac{1}{be} - \ln a$ , 因而当  $\frac{1}{be} - \ln a \ge 0$ , 即  $a, b$  满足条件  $b \ln a \le \frac{1}{e}$  时,该方程有实根。

| 得分 | 评卷人 |
|----|-----|
|    |     |

(19) (**本题满分 10 分**) 设 
$$f(x) = \sum_{n=0}^{\infty} a_n x^n \ (x \in R)$$
 , 满足 
$$\sum_{n=0}^{\infty} [(n+1)a_{n+1} + a_n] x^n = e^x , \ \text{求} \ f(x) \not \! D \ a_n$$

【解】 
$$f'(x) = \sum_{n=1}^{\infty} na_n x^{n-1} = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$$
 ,  $x \in (-\infty, +\infty)$  , 代入方程得 
$$f'(x) + f(x) = e^x \quad \Rightarrow \quad f(x) = Ce^{-x} + \frac{1}{2}e^x$$
 由  $f(0) = 0$  , 得  $C = -\frac{1}{2}$  ,故  $f(x) = \frac{1}{2}e^x + \frac{1}{2}e^{-x}$  
$$f(x) = \frac{1}{2} \left[ \sum_{n=0}^{\infty} \frac{1}{n!} x^n + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n \right] = \sum_{n=0}^{\infty} \frac{1 + (-1)^n}{2(n!)} x^n$$
 ,  $a_n = \frac{1 + (-1)^n}{2(n!)}$ 

| 得分 | 评卷人 |
|----|-----|
|    |     |

(20) (**本题满分 11 分**) 已知三元二次型  $f(x_1, x_2, x_3) = x^T A x$  经过正交变换 x = P y 化为标准形  $y_1^2 - y_2^2 + 2 y_3^2$ . ( I )求行列式  $\left| A^* - 2 A^{-1} \right|$ ; ( II )求  $A^3 - 2 A^2 - A + 4 E$  。

【解】(I) A的特征值为 1, -1,2. |A| = -2,

$$|A^* - 2A^{-1}| = ||A|A^{-1} - 2A^{-1}| = |-4A^{-1}| = (-4)^3 |A^{-1}| = 32$$

(II) 由題意 
$$p^TAp = \Lambda = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
,  $A = P\Lambda P^T \Rightarrow A^n = P\Lambda^n P^T = P \begin{pmatrix} 1^n \\ (-1)^n \\ 2^n \end{pmatrix} P^T$ 

共创(合肥工业大学)考研辅导中心

$$A^{3} - 2A^{2} - A + 4E = P \begin{bmatrix} 1^{3} & & \\ & (-1^{3}) & \\ & & 2^{3} \end{bmatrix} - 2 \begin{bmatrix} 1^{2} & & \\ & & (-1)^{2} & \\ & & & 2^{2} \end{bmatrix} - \begin{bmatrix} 1 & & \\ & -1 & \\ & & 2 \end{bmatrix} + 4 \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 & \end{bmatrix} \end{bmatrix} P^{T}$$

$$= P(2E)P^{T} = 2E$$

| 得分 | 评卷人 |
|----|-----|
|    |     |

(21) (**本题满分 11 分**) 设 n 阶矩阵  $A = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}, \alpha_n)$  的前 n-1 个列向量线性相关,后 n-1 个列向量线性无关,  $\beta = \alpha_1 + \alpha_2 + \dots + \alpha_n$ 。

(I) 证明:方程组  $Ax = \beta$  必有无穷多个解。(II) 若 $(k_1, \dots, k_n)^T$  是  $Ax = \beta$  的任意一个解,则必有  $k_n = 1$ 。

【解】:(I)由题设 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1}$ 线性无关,可推得 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1},\alpha_n$ 线性相关,又据题设 $\alpha_2,\cdots,\alpha_n$ 是向量组 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1},\alpha_n$ 的一个极大线性无关组,故 $\alpha_1,\alpha_2,\cdots,\alpha_{n-1}$ 的秩为 n-1,所以 r(A)=n-1

又由  $\beta = \alpha_1 + \alpha_2 + \cdots + \alpha_n$  知  $\beta$  可由  $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$  线性表示,故  $\alpha_1, \cdots, \alpha_{n-1}, \alpha_n, \beta$  与  $\alpha_1, \cdots, \alpha_{n-1}, \alpha_n$  等价从而秩相同。据此增广矩阵  $\overline{A} = (A\beta)$  的秩 = r(A) = n - 1 < n 因此方程组  $Ax = \beta$  必有无穷多解。

(II)  $: \alpha_1, \alpha_2, \dots, \alpha_{n-1}$  线性相关,故存在不全为 0,数  $l_1, l_2, \dots, l_{n-1}$  使  $l_1\alpha_1 + l_2\alpha_2 + \dots + l_{n-1}\alpha_{n-1} = 0$ 

故 
$$A$$
  $\begin{pmatrix} l_1 \\ \vdots \\ l_{n-1} \\ 0 \end{pmatrix} = (\alpha_1 \cdots \alpha_{n-1} \alpha_n) \begin{pmatrix} l_1 \\ \vdots \\ l_{n-1} \\ 0 \end{pmatrix} = 0$  又  $: r(A) = n-1$   $: (l_1, \cdots, l_{n-1}, 0)^T$  是  $Ax = 0$  一个基础解系

由 
$$A$$
  $\begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} x = \alpha_1 + \cdots + \alpha_n = \beta$  知  $(1, 1, \cdots, 1)^T$  是  $Ax = \beta$  特解。

于是  $Ax = \beta$  通解是:  $(1,1,\dots,1)^T + k(l_1,\dots,l_{n-1},0)^T = (1+kl_1,\dots 1+kl^{n-1},1)^T$  因此若  $(k_1,\dots,k_n)^T$  是  $Ax = \beta$  解时,必有  $k_n = 1$ 。

| 得分 | 评卷人 |  |  |
|----|-----|--|--|
|    |     |  |  |

**(22)**(本题满分 11 分)设口袋中有红球 2 个白球 1 个黑球 2 个,连续取 2 个球(每次取一个不返回),令 X、Y、Z 分别表示其中红球、白球与黑球的个数,试求: (I) 概率  $P\{Y=1/X=0\}$ ; (II) (X,Y) 的联合分布律; (III) Z=X+2Y 分布律;

(IV) 协方差 Cov(X+2Y,X)。

【解】(I) 
$$P{Y=1/X=0} = \frac{P{Y=1,X=0}}{P{X=0}} = \frac{P{Y=1,Z=1}}{P{X=0}} = \frac{2}{3}$$

(II) (*X*,*Y*)的联合分布律;

(III) Z = X + 2Y 的分布律

| Z = X + 2Y | 0    | 1   | 2    | 3   |
|------------|------|-----|------|-----|
| $p_i$      | 1/10 | 2/5 | 3/10 | 1/5 |

| X | 0    | 1   |
|---|------|-----|
| 0 | 1/10 | 1/5 |
| 1 | 2/5  | 1/5 |
| 2 | 1/10 | 0   |

共创(合肥工业大学)考研辅导中心

(IV) 由于 X 的分布律为

| X       | 0    | 1   | 2    |
|---------|------|-----|------|
| $p_{i}$ | 3/10 | 3/5 | 1/10 |

协方差: 
$$Cov(X+2Y,X)$$
  
=  $D(X) + 2Cov(X,Y) = \frac{9}{25} + 2 \times \frac{1}{5} = \frac{19}{25}$ .

(其中: 
$$E(X) = 4/5$$
  $D(X) = 1 - (\frac{4}{5})^2 = \frac{9}{25}$ )

| 得分 | 评卷人 |
|----|-----|
|    |     |

(23) (**本題满分 11 分**) 设总体  $X \sim N(\mu, \sigma^2)$  ,  $X_1, \dots, X_{2n} (n \ge 2)$  是 X 的简单随机样本,且  $\overline{X} = \frac{1}{2n} \sum_{i=1}^{2n} X_i$  及统计量  $Y = \sum_{i=1}^{n} (X_i + X_{n+i} - 2\overline{X})^2$  ,(I)考察统计量 Y

关于 $\sigma^2$ 的无偏性;(II) $\mu = 0$ 时,求 $D(\overline{X}^2)$ 。

【解】:由于样本的独立同分布,考察 $X_1 + X_{n+1}, X_2 + X_{n+2}, \dots, X_n + X_{2n}$ ,

(I) 
$$X_i + X_{n+i} (i = 1, 2, \dots, n)$$
 为  $N(2\mu, 2\sigma^2)$  的简单随机样本,可知

样本均值: 
$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}+X_{n+i})=2\overline{X}$$
,样本方差:  $\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}+X_{n+i}-2\overline{X})^{2}=\frac{1}{n-1}Y=S^{2}$ 

由于
$$E(S^2)=2\sigma^2$$
,所以 $E(\frac{1}{n-1}Y)=2\sigma^2$ ,即 $E(Y)=2(n-1)\sigma^2$ , $Y$ 不是 $\sigma^2$ 的无偏估计;

(II) 在 
$$\mu = 0$$
时, $X_i + X_{n+i} \sim N(0, 2\sigma^2), (i = 1, 2, \dots, n)$ ,所以  $2\overline{X} = \frac{1}{n} \sum_{i=1}^{n} (X_i + X_{n+i}) \sim N(0, \frac{2\sigma^2}{n})$ 

则 
$$\frac{2\overline{X}}{\sqrt{2}\sigma/\sqrt{n}} \sim N(0,1)$$
,即 $\frac{\sqrt{2n}\overline{X}}{\sigma} \sim N(0,1)$ ,由此可知 $(\frac{\sqrt{2n}\overline{X}}{\sigma})^2 \sim \chi^2(1)$ ,

又可得
$$D(\frac{\sqrt{2n}\overline{X}}{\sigma})^2 = 2 \times 1 = 2,$$
  $\therefore D(\overline{X}^2) = \frac{\sigma^4}{2n^2}.$ 

## 合肥工业大学 考研辅导中心

试卷密号:

# 2015 年全国硕士 研究生入学同一考试试卷

### 考试科目 数学(一)(模拟5)

| 题号   | 分数 | 阅卷人 |
|------|----|-----|
| 1-8  |    |     |
| 9-14 |    |     |
| 15   |    |     |
| 16   |    |     |
| 17   |    |     |
| 18   |    |     |
| 19   |    |     |
| 20   |    |     |
| 21   |    |     |
| 22   |    |     |
| 23   |    |     |
| 总分   |    |     |

注意: 此半页考生不得填写

| 准  | 老 | 证 | 编    | 믁 |  |  |
|----|---|---|------|---|--|--|
| /压 | 7 |   | 7111 | 7 |  |  |

考 试 科 目\_\_\_\_\_

报考学科、专业\_\_\_\_\_

报考研究方向

报 考 单 位

#### 注意事项

- 1、以上各项除试卷密号之外必须填写清楚;
- 2、答案必须写在试卷上;
- 3、字迹要清楚,卷面要整洁;
- 4、草稿纸另发,考试结束,同一收回。

第8页共8页