CLAIMS

We claim:

1	1.	A method for administering hydro-acoustic therapy to a patient, said		
2	method comp	method comprising:		
3		providing a chamber, said chamber having a volume of liquid;		
4		placing the patient in said chamber such that a portion of the patient is		
5	immersed in	the liquid; and		
6		propagating low frequency acoustic waves through the liquid, such that		
7	said acoustic	waves mobilize respiratory secretions in lungs of said patient.		
1	2.	The method of claim 1, wherein liquid comprises water.		
1	3.	The method of claim 2, wherein the step of placing comprises immersing		
2	the patient in	said water such that a lung of the patient is fully submersed in said water.		
1	4.	The method of claim 2, wherein the step of propagating further comprises		
2	causing said	frequency and an amplitude of said acoustic waves to vary as a function of		
3	time.			
1	5.	The method of claim 3, wherein said volume of water has a minimum		
2	mass of abou	at three times a displaced mass of said lung of the patient.		
1	6.	The method of claim 3, wherein said acoustic waves have a frequency		
2	below about	120 Hertz.		

1

13.

1	,	7.	The method of claim 6, wherein said introducing step comprises uniformly
2	stimulat	ting sa	id lung by causing said lung to oscillate at a resonant frequency of said
3	lung.		
1	;	8.	The method of claim 7, wherein said patient is afflicted with cystic
2	fibrosis	•	
1		9.	The method of claim 7, wherein said patient is afflicted with chronic
2	obstruct	tive lu	ng disease.
1		10.	The method of claim 7, wherein said patient is afflicted with lung cancer.
1		11.	The method of claim 7, wherein said patient is afflicted with pneumonia.
1		12.	A method for the medical treatment of a person, said method comprising:
2			providing a chamber containing a fluid;
3			placing a person in said chamber such that a body of the person is
4	immers	ed in s	said fluid; and
5			introducing acoustic vibrations into said fluid, said vibrations causing the
6	mobiliz	zation (of respiratory secretions in said person.

The method of claim 12, wherein said fluid comprises water.

1

2

1

1

2

1

2

1

2

3

4

1

2

3

l	14. The method of claim 13, wherein said placing step comprises immersing
2	the person in said fluid such that a body of the person is fully immersed in said fluid
3	below a neck area of the person.

- 15. The method of claim 13, wherein said acoustic vibrations are low frequency vibrations.
- 16. The method of claim 13, wherein the step of propagating further comprises causing said frequency and an amplitude of said acoustic waves to vary as a function of 2 3 time.
 - 17. The method of claim 15, wherein said acoustic vibrations are below 120 Hertz.
 - The method of claim 17, wherein said acoustic vibrations cause a lung of 18. the person to oscillate at the fundamental resonance frequency of said lung.
 - 19. The method of claim 14, further comprising the steps of: determining a resonance frequency of a lung of said person; and causing said acoustic vibrations to operate at said resonance frequency of said lung.
 - 20. The method of claim 14, further comprising the step of positioning a monitoring device near a chest area of the person such that an effect of said acoustic vibrations on the person is monitored.

- 1 21. The method of claim 20, wherein said monitoring device comprises a
- 2 hydrophone.

1	22. A method for determining a resonant frequency of lungs of a patient,	
2	comprising the steps of:	
3	providing a chamber containing a fluid;	
4	placing a hydrophone in said chamber;	
5	causing acoustic vibrations at a first frequency and changing a frequency	
6	of said acoustic vibrations to a second frequency;	
7	recording a first output of said hydrophone as said acoustic vibration	
8	frequency is increased;	
9	computing a first transfer function of said first output;	
10	placing a person in said chamber such that a body of the person is	
11	immersed in said fluid;	
12	positioning said hydrophone near a chest area of the person;	
13	causing acoustic vibrations at said first frequency and changing said	
14	frequency of said acoustic vibrations to said second frequency;	
15	recording a second output of said hydrophone as said acoustic vibration	
16	frequency is increased;	
17	computing a second transfer function of said second output;	
18	plotting a ratio of said first transfer function to said second transfer	
19	function versus said frequency of said acoustic vibrations; and	
20	identifying a maximum of said plot as a resonant frequency of said lung.	

1

2

29.

1	23. An apparatus for administering hydro-acoustic therapy for a patient, said		
2	device comprising:		
3	a chamber having walls, said chamber having a volume of a fluid; and		
4	an acoustic generator that generating acoustic waves in said fluid of said chamber,		
5	wherein said acoustic waves are low frequency vibrations.		
1 2	24. The apparatus of claim 23, further comprising a supporting structure for permitting a person to sit in the chamber, partially submersed in said fluid, during		
3	treatment.		
1	25. The apparatus of claim 24, further comprising a hydrophone positioned		
2	near a chest of said person in said fluid, said hydrophone for monitoring a response of		
3	said person to said acoustic waves.		
1	26. The apparatus of claim 23, wherein said fluid comprises water.		
1	27. The apparatus of claim 26, wherein said chamber walls are rigid and		
2	define a generally cylindrical chamber.		
1 2	28. The apparatus of claim 27, wherein said chamber further comprises an orifice in a wall, wherein said orifice is covered by a flexible membrane.		

means for causing said membrane to oscillate in periodic motion.

The apparatus of claim 28, wherein said acoustic generator comprises a

1 30. The apparatus of claim 29, wherein said causing means comprises a piston outside of said chamber and directed to press against said membrane in order to cause said periodic motion.