Vishay Semiconductors

Fast Recovery Diodes (T-Modules), 40 A, 70 A, 85 A

D-55 (T-module)

PRIMARY CHARACTERISTICS						
I _{F(AV)}	40 A, 70 A, 85 A					
Type	Modules - diode, fast					
V _{RRM}	100 V to 1000 V					
Package	D-55 (T-module)					
Circuit configuration	Single					

FEATURES

- Fast recovery time characteristics
- · Electrically isolated base plate
- 3500 V_{RMS} isolating voltage
- Standard JEDEC® package
- Simplified mechanical designs, rapid assembly
- Large creepage distances
- UL E78996 approved
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION

The series of T-modules uses fast recovery power diodes in a single diode configuration. The semiconductors are electrically isolated from the metal base, allowing common heatsink and compact assemblies to be built.

These single diode modules can be used in conjunction with the thyristor modules as a freewheel diode. Application includes self-commutated inverters, DC choppers, motor control, inductive heating and electronic welders. These modules are intended for those applications where very fast recovery characteristics are required and for general power switching applications.

MAJOR R	MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS		UNITS					
STMBOL	CHARACTERISTICS	T40HFL	T70HFL	T85HFL	UNITS			
1		40	70	85	Α			
I _{F(AV)}	T _C	70	70	70	°C			
I _{F(RMS)}		63	110	133	A			
1	50 Hz	475	830	1300	Δ.			
I _{FSM}	60 Hz	500	870	1370	_ A			
l ² t	50 Hz	1130	3460	8550	A ² s			
1-1	60 Hz	1030	3160	7810	A-S			
V _{RRM}	Range		V					
t _{rr}	Range	200 to 1000 ns						
TJ	Range	-40 to +125 °C						

ELECTRICAL SPECIFICATIONS

VOLTAGE F	RATINGS				
TYPE NUMBER	VOLTAGE CODE	t _{rr} CODE	V _{RRM,} MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 25 °C μΑ
	10	S02, S05, S10	100	150	
	20	S02, S05, S10	200	300	
VS_T40HFL VS_T70HFL	40	S02, S05, S10	400	500	100
VS_T85HFL	60	S02, S05, S10	600	700	100
_	80	S05, S10	800	900	
	100	S05, S10	1000	1100	

Vishay Semiconductors

FORWARD CONDUCTION									
PARAMETER	SYMBOL	CVMPOL TEST COMPLTIONS			VALUES			LINUTO	
PARAMETER	STIVIBUL		TEST CONDITIONS		T40HFL	T70HFL	T85HFL	UNITS	
Maximum average forward current at case temperature	I _{F(AV)}	180° condu	uction, half sine	e wave	40	70 70	85	A °C	
Maximum RMS forward current	I _{F(RMS)}				63	110	133	Α	
	. ()	t = 10 ms	No voltage		475	830	1300		
Maximum pools and avalatement		t = 8.3 ms	reapplied		500	870	1370		
Maximum peak, one-cycle forward, non-repetitive surge current	I_{FSM}	t = 10 ms	100 %		400	700	1100	Α	
		t = 8.3 ms	V _{RRM} reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	420	730	1150		
	l ² t	t = 10 ms	No voltage		1130	3460	8550		
		t = 8.3 ms	reapplied		1030	3160	7810		
Maximum I ² t for fusing		t = 10 ms	100 %		800	2450	6050	A ² s	
		t = 8.3 ms	V _{RRM} reapplied		730	2230	5520		
Maximum I ² √t for fusing	l²√t	t = 0.1 ms	to 10 ms, no v	oltage reapplied	11 300	34 600	85 500	A²√s	
Low level value of threshold voltage	V _{F(TO)1}	T _J = 25 °C,	, (16.7 % x π x	$I_{F(AV)} < I < \pi \times I_{F(AV)}$	0.82	0.87	0.84		
High level value of threshold voltage	V _{F(TO)2}	T _J = 25 °C,	$T_{J} = 25 ^{\circ}\text{C}, (I > \pi \times I_{F(AV)})$			0.90	0.86	V	
Low level value of forward slope resistance	r _{f1}	$T_J = 25 \text{ °C}, (16.7 \% \text{ x } \pi \text{ x } I_{F(AV)} < I < \pi \text{ x } I_{F(AV)})$			7.0	2.77	2.15	0	
High level value of forward slope resistance	r _{f2}	$T_{J} = 25 {}^{\circ}\text{C}, (I > \pi \times I_{F(AV)})$			6.8	2.67	2.07	mΩ	
Maximum forward voltage drop	V_{FM}			, $t_p = 400 \mu s$ square wave $I_{F(AV)} + r_f x (I_{F(RMS)})^2$	1.60	1.73	1.55	V	

REVERSE RE	REVERSE RECOVERY CHARACTERISTICS											
PARAMETER	SYMBOL	TEST CONDITIONS (1)	T40HFL			T70HFL			T85HFL			UNITS
PANAMETEN	STIVIBUL	TEST CONDITIONS (7	S02	S05	S10	S02	S05	S10	S02	S05	S10	UNITS
Maximum reverse	+	$T_J = 25 ^{\circ}\text{C}$, $-dI_F/dt = 100 \text{A/}\mu\text{s}$ $I_F = 1 \text{A to V}_R = 30 \text{V}$	70	110	270	70	110	270	80	120	290	ne
recovery time t _{rr}	$T_J = 25$ °C, $-dI_F/dt = 25$ A/ μ s $I_{FM} = \pi$ x rated $I_{F(AV)}$, $V_R = -30$ V	200	500	1000	200	500	1000	200	500	1000	ns	
Maximum reverse		$T_J = 25 ^{\circ}\text{C}$, $-dI_F/dt = 100 \text{A/}\mu\text{s}$ $I_F = 1 \text{A to V}_R = 30 \text{V}$	0.25	0.4	1.35	0.25	0.4	1.35	0.3	0.6	1.6	
recovery charge Q _{rr}	$T_J = 25$ °C, $-dI_F/dt = 25$ A/ μ s $I_{FM} = \pi x$ rated $I_{F(AV)}$, $V_R = -30$ V	0.55	2.0	8.0	0.6	2.1	8.5	0.8	3.5	1.5	μC	

Note

⁽¹⁾ Tested on LEM 300 A diodemeter tester

BLOCKING						
PARAMETER	SYMBOL	TEST CONDITIONS	T40HFL	T70HFL	T85HFL	UNITS
Maximum peak reverse leakage current	I _{RRM}	T _J = 125 °C		20		mA
RMS isolation voltage	V _{ISOL}	50 Hz, circuit to base, all terminals shorted, $T_J = 25^{\circ}\text{C}$, $t = 1\text{s}$		3500		V

www.vishay.com Vishay Semiconductors

PARAMETER		SYMBOL	TE	ST CONDITIONS	VALUES	UNITS	
Junction operating temperatur	re range	TJ			-40 to +125	°C	
Storage temperature range		T _{Stg}			-40 to +150		
Maximum internal thermal	T40HFL				0.85		
resistance, junction to case per module	T70HFL	R_{thJC}		DC operation	0.53	K/W	
	T85HFL	1			0.46	1	
Thermal resistance, case to heatsink per module		R _{thCS}		Mounting surface, flat, smooth and greased	0.2		
Mounting torque : 10.0/	base to heatsink		Non-lubricated	M3.5 mounting screws (1)	1.3 ± 10 %	Nima	
Mounting torque ± 10 %	busbar to terminal		threads	M5 screws terminals	3 ± 10 %	Nm	
Approximate weight				See dimensions -	54	g	
Approximate weight				link at the end of datasheet	19	OZ.	
Case style					D-55 (T-mo	dule)	

Note

⁽¹⁾ A mounting compound is recommended and the torque should be rechecked after a period of about 3 hours to allow for the spread of the compound

△R CONDUCTION											
DEVICES	SINUS	OIDAL CO	NDUCTION	AT T _J MA	XIMUM	RECTAN	GULAR C	ONDUCTIO	N AT T _J M	AXIMUM	UNITS
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
T40HFL	0.06	0.08	0.10	0.14	0.24	0.05	0.08	0.10	0.15	0.24	
T70HFL	0.05	0.06	0.08	0.11	0.19	0.04	0.06	0.08	0.12	0.19	K/W
T85HFL	0.04	0.05	0.06	0.09	0.15	0.03	0.05	0.07	0.09	0.015	

Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics

Fig. 3 - Current Ratings Characteristics

Fig. 4 - Current Ratings Characteristics

Fig. 5 - Current Ratings Characteristics

Fig. 6 - Current Ratings Characteristics

Fig. 7 - Forward Power Loss Characteristics

Fig. 8 - Forward Power Loss Characteristics

Fig. 9 - Forward Power Loss Characteristics

Fig. 10 - Forward Power Loss Characteristics

Fig. 11 - Forward Power Loss Characteristics

Fig. 12 - Forward Power Loss Characteristics

Fig. 13 - Maximum Non-Repetitive Surge Current

Fig. 14 - Maximum Non-Repetitive Surge Current

Vishay Semiconductors

Fig. 15 - Maximum Non-Repetitive Surge Current

Fig. 16 - Maximum Non-Repetitive Surge Current

Fig. 17 - Maximum Non-Repetitive Surge Current

Fig. 18 - Maximum Non-Repetitive Surge Current

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 19 - Recovery Time Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 20 - Recovery Charge Characteristics

Vishay Semiconductors

Fig. 21 - Recovery Current Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 22 - Recovery Time Characteristics

Fig. 23 - Recovery Charge Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 24 - Recovery Current Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 25 - Recovery Time Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 26 - Recovery Charge Characteristics

Vishay Semiconductors

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 27 - Recovery Current Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 28 - Recovery Time Characteristics

Fig. 29 - Recovery Charge Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 30 - Recovery Current Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 31 - Recovery Time Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 32 - Recovery Charge Characteristics

Vishay Semiconductors

Pate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 33 - Recovery Current Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 34 - Recovery Time Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 35 - Recovery Charge Characteristics

Rate Of Fall Of Forward Current - di/dt (A/µs)

Fig. 36 - Recovery Current Characteristics

Fig. 37 - Frequency Characteristics

Fig. 38 - Frequency Characteristics

Fig. 39 - Maximum Forward Energy Power Loss Characteristics

Fig. 40 - Frequency Characteristics

Fig. 41 - Frequency Characteristics

Fig. 42 - Maximum Forward Energy Power Loss Characteristics

Fig. 43 - Frequency Characteristics

www.vishay.com Vishay Semiconductors

Fig. 44 - Frequency Characteristics

Fig. 45 - Maximum Forward Energy Power Loss Characteristics

Fig. 46 - Forward Voltage Drop Characteristics

Fig. 47 - Forward Voltage Drop Characteristics

Vishay Semiconductors

Fig. 48 - Forward Voltage Drop Characteristics

Fig. 49 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

www.vishay.com

CIRCUIT CONFIGURATION						
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
Single	HFL	20-01				

LINKS TO RELAT	ED DOCUMENTS
Dimensions	www.vishay.com/doc?95313

Vishay Semiconductors

D-55 T-Module Diode Standard and Fast Recovery

DIMENSIONS in millimeters (inches)

Note

• 1 = Anode 2 = Cathode

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.