浙江理工大学 2020-2021 学年第 2 学期 《高等数学 A2》期中试卷 参考答案与评分标准

	사무 수도 모모	/ + 85 ++	ᆲ	与小时 4	\wedge	进八	04 /	. \
一、	匹件巡	(0 小戏。	每小题 4	ж.	/内'刀	44 Ɗ	ľ

٠,	远洋巡(本巡共 6 小巡,母小巡 4 万,满	ת 24 <i>א</i> ו	
1.	设 $\vec{a} = (1, 2, 1), \vec{b} = (-2, 3, 2)$ 为 \mathbb{R}^3 中的两(A) \vec{a} 与 \vec{b} 垂直。	个向量,则下列说法中正确的是: (B) \vec{a} 与 \vec{b} 平行。 (D) \vec{a} 与 \vec{b} 夹角小于 90 度。	(D)
	(C) \vec{a} 与 \vec{b} 夹角大于 90 度。	(D) \vec{a} 与 b 夹角小于 90 度。	
2.	设 f 为一个一元函数,假设下面各选项中的程决定的点集具有绕 y 轴的旋转对称性:	的方程决定的 №3 中的点集均非空,问	可哪个方 (A)
	(A) $f(x^2 + z^2) + y = 0$	(B) $f(y^2 + x^2) + z = 0$	
	(C) f(y) + z = 0	(D) f(z) + x = 0	
3.	设 $z = f(x,y)$ 为定义在点 (x_0,y_0) 的一个开	邻域上的函数,下列说法中正确的是:	(D)
	(A) 若 f 在 (x_0, y_0) 处偏导数均存在,则 f (B) 若 f 在 (x_0, y_0) 处偏导数均存在,则 f (C) 若 f 在 (x_0, y_0) 处偏导数均存在,则 f (D) 以上说法都不对。	在 (x_0,y_0) 处连续。	
4.	设 $z = f(x,y)$ 为定义在点 (x_0,y_0) 的一个设设 $f_x(x_0,y_0) = f_y(x_0,y_0) = 0$, $f_{xy}(x_0,y_0) = 0$ 中正确的是:		
		(B) (x_0, y_0) 可能为极小值点。 (D) 以上说法都不对。	
5.	设 $\Omega = \{(x, y, z) \in \mathbb{R}^3 \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \leqslant 1 \}$,问 (A) $\iiint_{\Omega} (xe^y + ye^x) dx dy dz$	下面哪个积分必为零: $(B) \iiint 1 dx dy dz$	(A)
	(C) $\iiint_{\Omega} \cos x dx dy dz$	(D) $\iiint_{\Omega} (x^2 - y^2) dx dy dz$	
6.	设 $\Omega = \{(x, y, z) x + y + z \leq 1, x \geq 0, y \geq 0\}$ 式子计算了 $\iint_{\Omega} f(x, y, z) dx dy dz$:	$\{z\geqslant 0\},f$ 为 Ω 上的连续函数,问下	下面哪个 (C)
	(A) $\int_0^1 dx \int_0^x dy \int_0^{x+y} f(x, y, z) dz$		
	(C) $\int_0^1 dy \int_0^{1-y} dx \int_0^{1-x-y} f(x, y, z) dz$	(D) $\int_0^1 dy \int_{1-y}^1 dx \int_{1-x-y}^1 f(x,y,z) dz$	
- \	填空题(本题共 6 小题,每小题 4 分,满	分 24 分)	

- 1. 设直线 L 的方程为 $\begin{cases} 2x + 3y + 4z = 1 \\ -2x + y z = 0 \end{cases}$,则一个与 L 的方向平行的向量为: __(-7, -6, 8)
- 2. 设平面 Γ 的方程为 2x 3y 4z = 5,则 Γ 与 xOy 坐标平面的夹角的余弦为: $\frac{4}{\sqrt{29}}$.
- 3. 求函数 $f(x,y) = x^y$ 在点 (2,1) 处的微分为: $dx + 2 \ln 2 dy$.

- 4. 求函数 $f(x,y) = x^y$ 在点 (2,1) 处变化率为零的方向: $\frac{1}{\sqrt{4(\ln 2)^2+1}}(-2\ln 2,1)$.
- 5. 设函数 x = g(y), 是在点 (-1, -1) 附近由方程 $x^4 + 2y^4 = 3$ 所决定的隐函数,则 g'(-1) = -2.
- 6. 设 f(x,y) 是定义在 $[0,1] \times [0,1]$ 上的连续函数,交换 $\int_0^1 dy \int_0^y f(x,y) dx$ 的积分顺序得到: $\int_0^1 dx \int_x^1 f(x,y) dy$.
- 三、 计算题(本题共 6 小题,每小题 8 分,满分 48 分,应写出必要的演算过程及文字说明,直接写答案零分)
 - 1. 求由方程组 $\begin{cases} x^2 + y^4 + 2z^2 4x = 0 \\ 2x 3y + 5z 4 = 0 \end{cases}$ 所决定的曲线在点 (1,1,1) 处的切线方程与法平面方程。

解. 切线方程:

$$\begin{cases} (-2)(x-1) + 4(y-1) + 4(z-1) = 0\\ 2(x-1) - 3(y-1) + 5(z-1) = 0 \end{cases}$$

即:

$$\begin{cases}
-x + 2y + 2z = 3 \\
2x - 3y + 5z = 4
\end{cases}$$

切线方向为 $(-1,2,2) \times (2,-3,5) = (16,9,-1)$,

故法平面为:

$$16(x-1) + 9(y-1) - (z-1) = 0.$$

2. 设 z = z(x,y) 为由方程 $F(x + y + z, x^2 + y^2 + z^2) = 0$ 所局部决定的隐函数,其中 F 为连续可微函数,试求: $\frac{\partial z}{\partial x}$.

解. 令 $G(x,y,z) = F(x+y+z,x^2+y^2+z^2)$,由隐函数定理, $z_x = -\frac{G_x}{G_z}$,又由复合函数求导法则, $G_x = F_1 + 2F_2x$, $G_z = F_1 + 2F_2z$.故

$$z_x = -\frac{F_1 + 2F_2x}{F_1 + 2F_2z}.$$

3. 用 Lagrange 乘数法求函数 f(x, y, z) = x - 2y + 2z 在条件 $x^2 + y^2 + z^2 = 1$ 下的极大值 与极小值。

解. 考虑 Lagrange 函数 $L(x, y, z, \lambda) = x - 2y + 2z + \lambda(x^2 + y^2 + z^2 - 1)$. L 的临界点由下面的方程组决定:

$$\begin{cases} \frac{\partial L}{\partial x} = 1 + 2\lambda x = 0\\ \frac{\partial L}{\partial y} = -2 + 2\lambda y = 0\\ \frac{\partial L}{\partial z} = 2 + 2\lambda z = 0\\ \frac{\partial L}{\partial \lambda} = x^2 + y^2 + z^2 - 1 = 0. \end{cases}$$

由前三个方程得: $x=-\frac{1}{2\lambda}, y=\frac{1}{\lambda}, z=-\frac{1}{\lambda}$. 代入最后一个方程得: $\frac{9}{4}\frac{1}{\lambda^2}=1$. 所以 $\lambda=\pm\frac{3}{2}$. 所以可能的极值点为: $(-\frac{1}{3},\frac{2}{3},-\frac{2}{3})$, $(\frac{1}{3},-\frac{2}{3},\frac{2}{3})$. f 在这两点的取值分别为: -3 和 3. 注意该问题的几何意义是求使平面 x-2y+2z=C 与单位球面相交的 C 的极值,由该几何意义知 C 有一个极大值,一个极小值,所以该条件极值问题的极大值为 3,极小值为 -3.

4. 设 D 为 xOy 平面上由 $y = \pi - x, x = \pi, y = \pi$ 所围成的区域,试求 $\iint_D \frac{\sin x}{x} dx dy$. 解.

$$\iint_{D} \frac{\sin x}{x} dx dy = \int_{0}^{\pi} \left(\int_{\pi-x}^{\pi} \frac{\sin x}{x} dy \right) dx$$
$$= \int_{0}^{\pi} \sin x dx$$
$$= 2.$$

5. 设 Ω 是以点 (0,0,1),(0,1,1),(1,1,1),(0,0,2),(0,2,2),(2,2,2) 为顶点的棱台,试求 Ω 的 体积 V 。

解. 用平行于 xOy 平面的平面截 Ω , 可知:

$$V = \iiint_{\Omega} 1 dx dy dz$$

$$= \int_{1}^{2} (直角边边长为z 的 直角三角形的面积) dz$$

$$= \int_{1}^{2} \frac{1}{2} z^{2} dz$$

$$= \frac{7}{6}$$

6. 设 a > 0, 试求锥面 $z = \sqrt{x^2 + y^2}$ 被圆柱面 $x^2 + y^2 = ax$ 所截下的部分的曲面的面积。解. 记 $D = \{(x, y) \mid x^2 + y^2 - ax \le 0\}$, 则所求面积为:

$$\begin{split} S &= \iint\limits_{D} \sqrt{1 + z_x^2 + z_y^2} dx dy \\ &= \iint\limits_{D} \sqrt{1 + \frac{x^2}{x^2 + y^2} + \frac{y^2}{x^2 + y^2}} dx dy \\ &= \sqrt{2} \iint\limits_{D} dx dy \\ &= \sqrt{2} \pi \cdot \frac{a^2}{4}. \end{split}$$

四、(本题 4 分) 考虑函数 $f(x,y) = \begin{cases} \frac{x^3}{x^2+y^2}, & \ddot{a}(x,y) \neq (0,0) \\ 0, & \ddot{a}(x,y) = (0,0). \end{cases}$ 证明: f 在 (0,0) 处不可微。

证明. 对于任意一个方向 (u,v),极限 $\lim_{t\to 0} \frac{f(tu,tv)-f(0,0)}{t} = \lim_{t\to 0} \frac{u^3}{u^2+v^2} = \frac{u^3}{u^2+v^2}$ 存在,故沿 (u,v) 的方向导数存在,第一个结论得证。特别地,分别令 (u,v)=(1,0),(u,v)=(0,1) 得 $f_x(0,0)=1,f_y(0,0)=0$. 下证 f 在 (0,0) 处不可微,若可微,由定义,必有 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f_x(0,0)x-f_y(0,0)y}{\sqrt{x^2+y^2}} = 0$. 代入 f,f_x,f_y 表达式,得:

$$\lim_{(x,y)\to(0,0)} \frac{x^3/(x^2+y^2)-x}{\sqrt{x^2+y^2}} = \lim_{(x,y)\to(0,0)} \frac{-xy^2}{(x^2+y^2)^{3/2}} = 0$$

又当 (x,y) 沿 $l = \{(x,y)|y = kx\}$ 趋近零时,有:

$$\lim_{l\ni(x,y)\to(0,0)}\frac{-xy^2}{(x^2+y^2)^{3/2}}=\lim_{x\to0}\frac{-k^2x^3}{(1+k^2)^{3/2}|x|^3},$$

该极限当 $k \neq 0$ 时显然不存在 (左右极限不等),故矛盾,故 f 在 (0,0) 处不可微。 \square