КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

Факультет комп'ютерних наук та кібернетики Кафедра інтелектуальних програмних систем

Контрольна робота

Підготував:

Грищенко Юрій, ІПС-42

1. Частотна характеристика мови. Частотний метод криптоаналізу та методи боротьби з ним.

Важливе місце в характеристиці природної мови займає частота появи літер в її словах. Не всі літери алфавіту тієї, чи іншої природної мови появляються в словах з однаковою частотою. Одна літера появляється частіше за інші літери, а друга літера рідко появляється в тексті повідомлення.

Аналогічна ситуація має місце і для частоти появи двознаків, тризнаків і т. д.

Якщо текст зашифрований у відомому алфавіті, то частота появи символів в зашифрованому тексті несе певну інформацію про відкритий текст. Маючи в розпорядженні частоту появи символів алфавіту даної мови, криптоаналітик має можливість відтворити відкритий текст.

Короткий приклад частотного методу криптоаналізу: нехай зашифровано текст англійської мови.

Обчислюємо відносну частоту появи літер — для достатньо довгого тексту отримуємо розподіл, наближений до розподілу символів природної мови. Тоді зможемо зробити припущення, наприклад: літері, що зустрічається в шифрованому тексті найчастіше, відповідає літера Е, а двознаку, що зустрічається найчастіше, скоріше за все відповідає "th".

Карл Гаус запропонував метод боротьби: *гомофони* - відображенням однієї літери в декілька її образів. Кількість гомофонів для кожної літери повинна бути пропорціональна частоті появи цієї літери в явному тексті. Якщо гомофони використати ротаційно, то можна сподіватися, що частота появи літер не буде ідентична і це призведе до неможливості використання частотного криптоаналізу. Проте частота появи комбінацій сусідніх літер дає можливість застосувати цей тип аналізу.

Роторова машина Enigma, яка з кожним натисканням клавіші переходить на новий алфавіт підстановки, до того ж маючи більше 10000 алфавітів (з додаванням кожного ротора кількість збільшується в 26 разів), знеможливлює частотний криптоаналіз. На основі цього принципу створено багато сучасніших шифрів.

2. Довести, що бієктивна функція має обернену і що обернена функція теж буде бієкцією.

Доведемо, що коли $f:A\to B$ і $g:B\to A$ — довільні відображення, які задовольняють умову $f*g=\epsilon_A$, то f — ін'єкція, а g — сюр'єкція. Дійсно, якщо $a,a'\in A$ і f(a)=f(a'), то $a=\epsilon_A(a)=f*g(a)=g(f(a))=g(f(a'))=f*g(a')=\epsilon_A(a')=a'$. Отже, відображення f — ін'єкція. Якщо $a\in A$ — довільний елемент, то $a=\epsilon_A(a)=f*g(a)=g(f(a))$, а це доводить сюр'єктивність відображення g.

Припустимо, що відображення f має обернене f^{-1} . Тоді із $f*f^{-1}=\epsilon_A$ і $f^{-1}*f=\epsilon_B$ випливає, що f сюр'єкція і ін'єкція, тобто f — бієкція.

Навпаки, припустимо, що f- бієкція. Тоді для довільного $b\in B$ знайдеться єдиний елемент $a\in A$, який є прообразом елемента b, тобто f(a)=b. Покладаючи g(b)=a, визначаємо відображення $g:B\to A$, яке задовольняє умові $f*g=\epsilon_A$ і $g*f=\epsilon_B$ Отже, $g=f^{-1}$.

Припустимо, що існує два відображення g і g', які обернені до відображення f, тобто f $*g = \varepsilon_A$ і g $*f = \varepsilon_B$ та f $*g' = \varepsilon_A$ і g' $*f = \varepsilon_B$. Тоді отримуємо g' = ε_B *g' = (g *f) $*g' = g *(f *g') = g *\varepsilon_A = g$.

Ми довели, що якщо f бієкція, то існує єдине f^{-1} . На тій же підставі відображення f^{-1} теж буде бієкцією. Із симетричності умов $f*f^{-1}=\epsilon_A$ і $f^{-1}*f=\epsilon_B$ випливає $(f^{-1})^{-1}=f$.

3. Абсолютно стійка криптосистема за Шенноном. Приклад такої системи.

Шеннон сформулював наступні припущення:

- 1. Криптоаналітику відомий тільки шифрований текст, тобто атака здійснюється на основі шифротексту.
- 2. Ключ і рандомізатор (засіб зрівнювання частотних характеристик тексту) використовуються для шифрування тільки один раз (тобто криптоаналіз здійснюється тільки по одній криптограмі).
 - 3. На декартовому добутку задано ймовірнісний розподіл.

Позначимо m – повідомлення, с – криптограма. Тоді *абсолютно стійкою* (цілком таємною) криптосистемою S називається така криптосистема, для якої виконується одна з умов:

- 1. $(\forall (m,c))$ p(m|c) = p(m); відкритий текст і шифрований текст статистично незалежні.
- 2. H(m|c) = H(m); де H(m) і H(m|c) ентропія і умовна ентропії відповідно; відсутність в ШТ інформації відносно ВТ.

Для ключів $k \in K$ та перетворення (шифрування) E_k сумісний розподіл ймовірностей криптограм і відкритих текстів на $C \times M$ індукується наступними співвідношеннями:

$$(\forall c, m) p(c, m) = p(m, c) = \sum_{\forall k, E_k(m) = c} p(m, k)$$

Тоді
$$p(m|c) = p(m, c) / p(c)$$
.

Прикладом абсолютно стійкої криптосистеми є шифр Вернама, який використовується дотепер, і який покладено в основу сучасніших шифрів. Обирається ключ такої самої довжини, як і довжина відкритого тексту. Ключ

Соирається ключ такої самої довжини, як ї довжина відкритого тексту. Ключ генерується як випадкова послідовність п незалежних рівноймовірних випадкових бітів з ймовірністю 2⁻ⁿ незалежно від ВТ. Цей шифр краще всього служить для шифрування бінарних даних і описується таким чином:

 $c_i = p_i XOR k_i$

де

рі – і-та бінарна цифра відкритого тексту

 $k_{\rm i}$ – i-та бінарна цифра ключа

сі – і-та бінарна цифра криптограми

Дешифрація ґрунтується на тій самій операції:

 $p_i = c_i XOR k_i$.

Головним недоліком шифру Вернама є велика довжина ключа, який потрібно попередньо передавати закритим каналом. В якості ключа береться "ідеальна" випадкова послідовність незалежних рівноймовірних випадкових бітів, тобто кожна реалізація довжини п з'являється з ймовірністю 2^{-n} незалежно від ВТ.

Якщо шифрується слово m, то ймовірність появи будь-якої ключової послідовності, а також будь-якої криптограми дорівнюватиме 2^{-n} .

$$p(c|m) = p(m) \frac{2^{-n}}{p(m)} = \frac{\sum_{(\forall k) E_k(m) = c} p(m,k)}{p(m)} = \frac{p(m)2^{-n}}{p(m)} = 2^{-n}$$

p(c) = p(c|m) = p(m,c)/p(m), звідси p(m|c) = p(m,c)/p(c) = p(m), отже система цілком таємна.

4. Означення одосторонньої функції з секретом. Основна властивість таких функцій.

Одностороння функція з секретом fk(x) = y називається функція, складність обчислення якої для всіх значень х належить до класу P, але обчислення $x = f^{-1}{}_k(y)$ майже для всіх значень у належить класу NP. Але, якщо скористатися секретною інформацією k, то для всіх значень у обчислення значення х такого, що $f_k(x) = y$ належить класу P.

В іноземній літературі такі функції називають функціями з "потайним ходом" (trapdoor function). Це поняття ϵ основним в криптографії з відкритим ключем.

Гарантією існування односторонніх функцій служить гіпотеза, що $P \mathrel{!=} NP$. Оскільки ми не можемо строго довести існування односторонніх функцій, їх *основну властивість* можна описати так: ефективне обчислення значень функції нам відоме, тоді як жодні ефективні алгоритми обчислення значень обернених функцій невідомі.