Math 71: Algebra Fall 2022

PSET 3 — October 7, 2022

Prof. Voight Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

- (a) Abstract Algebra by David S. Dummit & Richard M. Foote.
- (b) Algebra by Jacob K. Goldhaber & Gertrude Ehrlich

Problems

1. (sorta DF 1.7.18)

Let G be a group, let X be a set with an action by $G \circlearrowright X$.

- (a) Prove that the relation $x \sim y$ if $x = g \cdot y$ for some $g \in G$ defines an equivalence relation on X. The set of equivalence classes are called the emphorbits of X under G.
 - (a) Reflexivity: $x \sim x$ for all $x \in X$.

We can show this trivially from the definition of group actions. The identity should map each element to itself.

$$e \cdot x = x \implies x \sim x$$

(b) Symmetry: $x \sim y$ implies $y \sim x$.

$$x \sim y \iff x = g \cdot y \quad \text{for some } g \in G$$

$$\implies y = g^{-1} \cdot x \quad \text{for some } g \in G$$

$$\implies y \sim x$$

(c) Transitivity: $x \sim y$ and $y \sim z$ implies $x \sim z$.

$$\begin{array}{ll} x \sim y \iff x = g \cdot y & \text{for some } g \in G \\ y \sim z \iff y = h \cdot z & \text{for some } h \in G \\ \implies x = g \cdot y = g \cdot (h \cdot z) = (gh) \cdot z & \text{for some } g, h \in G \\ \implies x \sim z \end{array}$$

- (b) Show that the multiplicative group $G = \mathbb{R}^{\times}$ acts on the xy-plane $X = \mathbb{R}^2$ by $r \cdot (x, y) = (rx, y)$. What are the orbits of G acting on X? Compute the stabilizers of G on the points (1, 1) and (0, 0).
 - (a) The action is well defined by $r \cdot (x, y) = (rx, y)$.

$$1 \cdot (x, y) = (1 \cdot x, y) = (x, y)$$

$$r_1 r_2 \cdot (x, y) = (r_1 r_2 x, y) = r_1 \cdot (r_2 x, y) = r_1 \cdot (r_2 \cdot (x, y))$$

(b) The orbits for any point $(a, b) \in X$ are the lines y = b.

$$G \cdot X(a,b) = \{(ra,b) : r \in G\}$$

(c) The stabilizer of (1, 1) and (0, 0).

$$G_s(1,1) = \{r \in G : r \cdot (1,1) = (1,1)\}$$

 $\implies r \cdot 1 = 1$
 $\implies G_s(1,1) = \{1\}$

$$G_s(0,0) = \{r \in G : r \cdot (0,0) = (0,0)\}$$

$$\implies r \cdot 0 = 0$$

$$\implies G_s(0,0) = R^{\times}$$

2. (sorta DF 1.7.18)

Let F be a field, let $G = GL_2(F)$, and let

$$H:=\left\{\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in G: a,d \in F^{\times},\ b \in F \right\}.$$

(a) Show that H is a subgroup of G, and show H is nonabelian whenever #F > 2. What happens when #F = 2 (so $F \simeq \mathbb{Z}/2\mathbb{Z}$)?

For H to be a subgroup of G, it must:

(a) contain the identity element $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in G$.

We see that $a=1 \in F^{\times}$, $d=1 \in F^{\times}$. and $b=0 \in F$, so $e \in H$.

(b) be closed under multiplication.

Let $A, B \in H$. Suppose $A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in H$ and $B = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in H$. Then $AB = \begin{pmatrix} ax & ay + bz \\ 0 & dz \end{pmatrix}$. For AB to be in H, its elements must satisfy the conditions of H. Particularly:

- (i) $a \in F^{\times} \land x \in F^{\times} \implies ax \in F^{\times}$.
- (ii) $d \in F^{\times} \land z \in F^{\times} \implies dz \in F^{\times}$.
- (iii) $ay + bz \in F$ since:
 - $\bullet \ a \in F^{\times} \ \land \ y \in F^{\times} \implies ay \in F^{\times} \subset F.$
 - $b \in F^{\times} \land z \in F^{\times} \implies bz \in F^{\times} \subset F$.
 - $ay \in F \land bz \in F \implies ay + bz \in F$.

Therefore, we can infer that H is closed under multiplication.

(c) be closed under inversion.

Let $A \in H$, such that $A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$. Then $A^{-1} = \begin{pmatrix} a^{-1} & -(ad)^{-1}b \\ 0 & d^{-1} \end{pmatrix}$.

We see that $A^{-1} \in H$ since its elements fit the specified domains. Particularly: (i) $a \in F^{\times} \implies a^{-1} \in F^{\times}$.

- (ii) $d \in F^{\times} \implies d^{-1} \in F^{\times}$.
- (iii) $a \in F^{\times} \land d \in F \implies ad \in F^{\times} \implies (ad)^{-1} \in F^{\times} \subset F \implies -(ad)^{-1}b \in F$.

Therefore, we can infer that G is closed under inversion.

(b) Show that the map

$$\phi \colon H \to F^{\times}$$

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto a$$

is a surjective group homomorphism that is not an isomorphism.

To prove homomorphism:

(a) We need to prove that ϕ maps the identity element in H to the identity element in F^{\times} . Indeed, we see that:

$$e_H = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies \phi(e) = 1 = e_{F^{\times}}$$

(b) We need to show that $\phi(x \cdot y) = \phi(x) \cdot \phi(y)$. Suppose that:

$$A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in H \ \land \ B = \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \in H$$

Then:

$$AB = \begin{pmatrix} ax & ay + bz \\ 0 & dz \end{pmatrix} \in H$$

and:

$$\phi(A) = a \in F^{\times}$$

$$\phi(B) = x \in F^{\times}$$

$$\phi(AB) = ax = \phi(A) \cdot \phi(B) \in F^{\times}$$

To prove isomorphism, we would have to prove that ϕ is bijective.

- (a) It is trivial to prove that ϕ is surjective, since it maps a single matrix member $a \in F^{\times}$ of matrices in H back to F^{\times} , and the map does not change a.
- (b) However, ϕ is not injective, since it multiple different matrices in H to the same element in F^{\times} . For example, we can take:

$$A = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in H \land B = \begin{pmatrix} a & x \\ 0 & y \end{pmatrix} \in H : b \neq x \land d \neq y$$
$$A \neq B$$
$$\phi(A) = \phi(B) = a$$

Therefore, ϕ cannot be an isomorphism because it is not injective.

3. (DF 1.3.1, sorta 1.3.7)

Let G be a group and let $A \subseteq G$ be a subset. For $g \in G$, write

$$gAg^{-1} := \{gag^{-1} : a \in A\}.$$

The *normalizer* of A in G is defined to be:

$$N_G(A) := \{ g \in G : gAg^{-1} = A \}.$$

(a) Let $g \in G$. Show that the map

$$\phi_g \colon G \to G$$

$$x \mapsto qxq^{-1}$$

is an isomorphism of groups. (We call an isomorphism from a group to itself an emphautomorphism.)

(a) ϕ_q is a homomorphism.

Let $x, y \in A, g \in G$. Then:

$$\begin{split} \phi_g(x) &= gxg^{-1} \\ \phi_g(y) &= gyg^{-1} \\ \phi_g(xy) &= gxyg^{-1} = (gxg^{-1}) \cdot (gyg^{-1}) = \phi_g(x) \cdot \phi_g(y) \end{split}$$

(b) ϕ_g is injective.

Suppose that $\phi_q(x) = \phi_q(y)$.

Then, $gxg^{-1} = gyg^{-1}$, which implies that x = y.

(c) ϕ_q is surjective.

Suppose $a \in A$ is some element acted on by ϕ_g , such that $a = \phi_g(a_0) = ga_0g^{-1}$ for some a_0 , but $a \neq \phi_g(a_1)$ for all $a_1 \in A$.

Then:

$$ga_0g^{-1} \neq ga_1g^{-a} \quad \forall \quad a_1 \in A$$
$$\implies a_0 \neq a_1 \quad \forall \quad a_1 \in A$$
$$\implies a_0 \notin A$$

We see that any such element must be the result of ϕ_g acting on an element not contained in A, yet we defined ϕ_g to act on elements in A.

(b) Show that $N_G(A)$ is a subgroup of G that contains the centralizer $C_G(A)$. [Hint: if $gAg^{-1} = A$ then $h(gAg^{-1})h^{-1} = hAh^{-1}$, we just took two equal sets and conjugated their elements by h.]

```
(a) N_G(A) is a subgroup of G.

Let g,h\in N_G(A).

Then, gAg^{-1}=A and hAh^{-1}=A.

Therefore, ghAg^{-1}h^{-1}=A and hAg^{-1}h^{-1}=A.

Thus, ghAh^{-1}g^{-1}=g(hAh^{-1})g^{-1}=gAg^{-1}=A, which implies that gh\in N_G(A).

Similarly, hg\in N_G(A).

(b) C_G(A)\subseteq N_G(A).

Let g\in C_G(A).

Then, gA=Ag.

Therefore, gAg^{-1}=Agg^{-1}=A. Thus, g\in N_G(A).
```

(c) Let $G = Q_8$ and let $A = \{\pm i\}$. Compute $C_G(A)$ and $N_G(A)$.

Cayley Table for Q_8 :									
		1	i	j	k	-1	-i	-j	-k
	1	1	i	j	k	-1	-i	-j	-k
	i	i	-1	k	-j		1	-k	j
	j	j	-k	-1	i	j	k	1	-i
	k	k	j	-i	-1	k	-j		1
	-1	-1	-i	-j	-k	1	i	j	k
	-i	-i	1	-k	j	-i	-1	k	-j
	-j	-j	k	1	-i	-j	-k	-1	i
	-k	-k	-j	i	1	-k	j	-i	-1

(a) $C_G(A) = \{\pm 1\}.$

$$gA = Ag$$

$$1 \cdot A = A \cdot 1$$
$$-1 \cdot A = A \cdot -1$$

All other elements do not satisfy this property. For instance, $i \cdot j = k$ but $j \cdot i = -k$.

(b)
$$N_G(A) = \{\pm 1, \pm i, \pm j, \pm k\}.$$

$$gAg^{-1} = A$$

$$1^{-1} = 1$$

$$1 \cdot A \cdot 1 = A$$

$$-1^{-1} = -1$$

$$-1 \cdot A \cdot -1 = A$$

$$i^{-1} = -i$$

$$i \cdot j = k, k \cdot -j = i$$

$$-i \cdot j = -k, -k \cdot -j = -i$$

$$j^{-1} = -j$$

$$j \cdot k = i, -j \cdot i = k$$

$$-j \cdot k = -i, j \cdot -i = -k$$

$$k^{-1} = -k$$

$$k \cdot i = j, -k \cdot j = i$$

$$-k \cdot i = -j, k \cdot -j = i$$

(d) Show that if $H \leq G$ is a subgroup, then $H \leq N_G(H)$. [Hint: use (a), with G = H.]

Let $g \in H$.

Then, $ghg^{-1} = h$ for all $h \in H$ (by definition of the group operation).

However, this implies that $g \in N_G(H)$.

Therefore, it must hold that $H \leq N_G(H)$.

4. (DF 2.1.8)

Let $H, K \leq G$ be subgroups of a group G. Prove that the union $H \cup K$ is a subgroup if and only if $H \supseteq K$ or $K \subseteq H$. [Hint: if there exists $h \in H$ with $h \notin K$, show that $K \subseteq H$ by consider hk for $k \in K$.]

```
Suppose H \not\subseteq K and K \not\subseteq H.
 Then, there exists h \in H, h \not\in K and k \in K, k \not\in H.
 hk \in H \cup K \implies hk \in H \lor hk \in K hk \in H \implies h^{-1} \cdot hk \in H \implies k \in H \quad \text{(contradiction)} hk \in K \implies hk \cdot k^{-1} \in K \implies h \in K \quad \text{(contradiction)} Therefore, for the union H \cup K to be a subgroup, H \subseteq K or K \subseteq H.
```

5. (DF 2.3.10)

(a) Let $G = \langle a \rangle$ be a cyclic group of order $n \in \mathbb{Z}_{\geq 1}$. For $k \in \mathbb{Z}$, show that a^k has order n/g where $g = \gcd(k, n)$. [Hint: what is $\#\langle a^k \rangle$?]

We can first observe that $\#\langle a \rangle = n \implies a^n = e$.

Suppose $m = \#\langle a^k \rangle$. Then $(a^k)^m = a^{km} = e$.

Since G is cyclic, this implies that $n \mid km$ (only powers of a that are multiples of n equal the identity).

$$\#\langle a \rangle = n \implies a^n = e$$

 $\#\langle a^k \rangle = m \implies (a^k)^m = a^{km} = e$

Since a has order n, only powers of a that are equal to e are multiples of n. Let's write km as $km=pn, p\in\mathbb{Z}$.

Then:

$$a^{km} = a^{pn}$$

(b) What is the order of $\overline{30}$ in $\mathbb{Z}/54\mathbb{Z}$? Write out all of the elements in $\langle \overline{30} \rangle$ and their orders.

We can first observe that gcd (30, 54) = 6. Then:

$$o(\overline{30}) = \frac{54}{6} = 9$$

We can then write out all of the elements in $\langle \overline{30} \rangle$:

$$\langle \overline{30} \rangle = \{\overline{0}, \overline{30}, \overline{30}, \overline{6}, \overline{36}, \overline{312}, \overline{42}, \overline{18}, \overline{48}, \overline{24}\}$$

(c) For which values of $n \in \{8, 9, 10, 11, 12\}$ is $(\mathbb{Z}/n\mathbb{Z})^{\times}$ a cyclic group?

$$(\mathbb{Z}/8\mathbb{Z})^{\times} = \{1, 3, 5, 7\}$$
$$(\mathbb{Z}/9\mathbb{Z})^{\times} = \{1, 2, 4, 5, 7, 8\}$$
$$(\mathbb{Z}/10\mathbb{Z})^{\times} = \{1, 3, 7, 9\}$$
$$(\mathbb{Z}/11\mathbb{Z})^{\times} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
$$(\mathbb{Z}/12\mathbb{Z})^{\times} = \{1, 5, 7, 11\}$$

Cyclic groups must have a generator g such that $\langle g \rangle = G$. If we check the groups, we see:

(a) $(\mathbb{Z}/8\mathbb{Z})^{\times}$ lacks a generator, therefore it cannot be cyclic.

$$\langle 1 \rangle = \{1\}$$

$$\langle 3 \rangle = \{3,1\}$$

$$\langle 5 \rangle = \{5,1\}$$

$$\langle 7 \rangle = \{7, 1\}$$

- (b) $(\mathbb{Z}/9\mathbb{Z})^{\times}$ is cyclic, since $\langle 2 \rangle = \{2, 4, 8, 7, 5, 1\}$.
- (c) $(\mathbb{Z}/10\mathbb{Z})^{\times}$ is cyclic because $\langle 3 \rangle = \{3, 9, 7, 1\}$.

$$\langle 1 \rangle = \{1\}$$

$$\langle 3 \rangle = \{3, 9, 7, 1\}$$

$$\langle 7 \rangle = \{7, 9, 3, 1\}$$

$$\langle 9 \rangle = \{9, 1\}$$

(d) $(\mathbb{Z}/11\mathbb{Z})^{\times}$ is cyclic because $\langle 2 \rangle = \{2,4,8,5,10,9,7,3,6,1\}.$