Задание 1. Описание структур данных.

1. Иерархическая модель данных

Предметная область: Система управления файлами в операционной системе.

Описание:

- Объекты: Каталоги и файлы.
- Взаимоотношения: Один каталог может содержать подкаталоги и файлы (один-ко-многим). Каждый файл принадлежит только одному каталогу.
 - Структура: Дерево (иерархия) родитель → потомки.

Пример:

Корень

| - Папка_Документы | - Файл1.docx

| - Файл2.pdf

| - Папка_Изображения

| - Фото1.jpg

2. Сетевая модель данных

Предметная область: Управление поставками в производственной компании.

Описание:

- Объекты: Поставщики, компоненты, заказы.
- Взаимоотношения: Компонент может поставляться несколькими поставщиками, и один поставщик может поставлять множество компонентов.
 - Структура: Граф с произвольными связями между узлами.

Пример:

- Поставщик А поставляет Компонент 1 и Компонент 2.
- Компонент 2 поставляется также Поставшиком В.

3. Реляционная модель данных

Предметная область: Интернет-магазин.

Описание:

- Объекты: Клиенты, заказы, товары.
- Взаимоотношения:
 - Один клиент может сделать много заказов.
 - Один заказ может содержать множество товаров, и каждый товар может входить в разные заказы.

Таблины:

- Клиенты(id, имя, email)
- Товары(id, название, цена)
- Заказы(id, клиент id, дата)
- Состав_заказа(заказ_id, товар_id, количество)

4. Объектно-ориентированная модель

Предметная область: Система автоматизации библиотек.

Описание:

- Объекты: Книга, Автор, Читатель, Библиотекарь (представлены как классы с методами).
- Взаимоотношения: Наследование (например, Пользователь базовый класс для Читатель и Библиотекарь), ассоциации (Книга связана с Автором, Читатель может брать Книгу).
 - Модель включает не только данные, но и методы для работы с ними.

5. Документо-ориентированная модель (NoSQL)

Предметная область: Хранение профилей пользователей в социальной сети.

Описание:

- Объекты: Пользователи.
- Взаимоотношения: Каждый пользователь хранится как самостоятельный документ со всеми вложенными данными (имя, возраст,

список друзей, посты и т.д.).

• Структура: JSON-документы, вложенные структуры.

Пример документа:

```
"id": 123,

"имя": "Анна",

"друзья": [456, 789],

"посты": [

{"текст": "Привет!", "дата": "2025-06-01"},

{"текст": "Как дела?", "дата": "2025-06-03"}

]
```

6. Графовая модель данных (NoSQL)

Предметная область: Социальная сеть.

Описание:

- Объекты: Пользователи (вершины), Дружба или Подписка (ребра).
- Взаимоотношения: Много-много каждый пользователь может быть связан с любым другим (напр., друзья, подписки, лайки).
- Используется для анализа взаимосвязей, рекомендаций, поиска путей.

Пример:

Задание 2. Таблица недостатков и преимуществ.

N₂	Модель данных	Преимущества	Недостатки
		 Простая структура 	— Жесткая структура
1	Иерархическая	— Быстрый доступ при	— Трудно реализовать
2	Сетевая	фиксированной иерархии — Гибче иерархической	связи многие-ко-многим — Сложная навигация
		— Поддержка сложных	— Сложность
		связей (многие-ко-многим)	модификации схемы

№	Модель данных	Преимущества	Недостатки
3	Реляционная	— Простота и гибкость—Стандарты SQL— Теоретическая основа(РКНФ)	при больших объемах — Ограничения при вложенности
4	Объектно- ориентированная	Прямая связь с ООП-языкамиНаследование иинкапсуляция	— Сложность вреализации— Отсутствиеуниверсального языказапросов
5	Документо- ориентированная (NoSQL)	— Гибкая структура— Высокаяпроизводительность при работе с JSON/XML	Отсутствие строгойсхемыСложности при связяхмежду документами
6	Графовая (NoSQL)	Идеальна для хранения связейЭффективна для поиска путей и связей	— Нетрадиционнаямодель— Требуетспецифических знаний и инструментов