

Работа на биполярен транзистор като усилвател

1

Какво е усилвател?

Усилвател е електронна схема, която увеличава амплитудата на сигнала.

Транзисторът работи като усилвател, ако при осигурен подходящ постоянно токов режим, към входа му е свързан източник на променлив сигнал, а в изхода — товар, върху който се получава усиленият променлив сигнал.

Режими на работа на биполярен транзистор lc насищатне saturation $I_{B} = 400 \mu A$ ключ $I_{B} = 350 \mu A$ активна област $I_{B} = 300 \mu A$ усилвател $I_{B} = 250 \mu A$ $I_{R} = 200 \mu A$ $I_{B} = 150 \mu A$ $I_{\rm B} = 100 \mu A$ $I_B = 50 \mu A$ отсечка / cutoff ключ Uce Изходна характеристика

Товарна права lc насищатне saturation $I_{\rm B} = 400 \mu A$ активна област $I_{B} = 350 \mu A$ $I_{B} = 300 \mu A$ Ic(sat) = Ucc/Rc $I_{B} = 250 \mu A$ $Ib(sat) = Ic(sat)/\beta$ $I_{B} = 200 \mu A$ Q = 150µA $I_{C(Q)}$ $I_{\rm B} = 100 \mu A$ $I_B = 50 \mu A$ отсечка / cutoff $\mathsf{U}_{\mathsf{CE}(\mathsf{Q})}$ Uce Uce(cutoff) = Ucc Пресечната точка на товарната права с характеристика на транзистора определя постояннотоковата работна точка със стойности I_{BQ} , I_{CQ} , U_{CEQ} . При промяна на потояннотоковия режим (нови стойности на I_B , I_C , U_{CE}) работната точка се движи само по товарната права.

Влияние на работната точка

Основно изискване на усилвателите е да осигуряват линейност на усилването, т.е. да не променят формата на сигнала, а само амплитудата му.

Изкривявания се получават, когато работната точка се избере в близост до областта на насищане или на отсечка.

За максимално неизкривена амплитуда на сигнала работната точка се избира в средата на товарната права по постоянен ток между насищане и запушване.

9

Установяване на работна точка – фиксиран базов ток

$$I_{B} = \frac{U_{BB} - U_{BE}}{R_{B}} = \frac{5 - 0.7}{20.10^{3}} = 215 \text{ uA}$$

$$I_C = \beta$$
. I_B

hFE values are calssified as follows:

rank	Q	R	S	
h _{FE}	120-270	180-390	270-560	

$$I_{Cmin}$$
 = 180 . 215.10⁻⁶ = 38,7 mA

$$I_{Cmax} = 390 . 215.10^{-6} = 70,2 \text{ mA}$$

Недостатък на схемата – силна зависимост на $I_{\mathcal{C}}$ от параметъра β , който има големи производствени толеранси и също така зависи от температурата и режима на транзистора.

В зависимост от конкретната стойност на β , транзисторът може да е както в активен режим, така и в режим на насищане.

Установяване на работна точка – фиксиран емитерен ток

$$U_{BB} = U_{BE} + U_E = U_{BE} + I_E R_E$$

$$I_E = \frac{U_{BB} - U_{BE}}{R_E}$$

 $I_C \approx I_E$

 $U_{CE} = U_{CC} - I_C(R_C + R_E)$

Стойността на I_C в работната точка не зависи от β , което гарантира стабилност на работната точка.

11

Пример - фиксиран емитерен ток

$$U_{BB} = U_{BE} + U_E = U_{BE} + I_E R_E$$

$$I_E = \frac{U_{BB} - U_{BE}}{R_E} = \frac{5 - 0.7}{2,2.10^3} = 1,95 \text{mA}$$

 $I_C \approx I_E = 1.95 mA$

 $U_{CE} = U_{CC} - I_C R_C - U_E = 15V - 1,95mA.1k\Omega - 4.3V = 8,8V$

Стойността на I_C в работната точка не зависи от β , поради което не е нужно да се определя режима на транзистора (насищане или активен).

Установяване на работна точка – делител на напрежение

$$I = \frac{U_{CC}}{R_1 + R_2}$$

$$U_{mid} = I \cdot R_2$$

$$= \frac{U_{CC} \cdot R_2}{R_1 + R_2}$$

13

Установяване на работна точка – делител на напрежение

Когато
$$I_2 \gg I_B$$
:.
$$I_1 \approx I_2 = \frac{U_{CC}}{I_{CC}}$$

$$I_1 \approx I_2 = \frac{U_{CC}}{R_1 + R_2}$$

$$\begin{split} U_{BB} &= I_2 \cdot R_2 \\ &= \frac{U_{CC} \cdot R_2}{R_1 + R_2} \end{split}$$

$$I_C \approx I_E = \frac{U_{BB} - U_{BE}}{R_E}$$

$$U_{CE} = U_{CC} - I_C(R_C + R_E)$$

Предимство на схемата – не е необходим отделен източник за Ubb

Пример – Определяне на постоянно-токов режим на усилвател

$$U_{CC}=9V, R_C=10k\Omega, R_E=1k\Omega$$

$$R_1=195k\Omega, R_2=30k\Omega$$

$$I_C = ?, U_{CE} = ?$$

$$\begin{split} U_{BB} &= U_{CC} \frac{R_2}{R_1 + R_2} \\ &= 9V \cdot \frac{30k\Omega}{195k\Omega + 30k\Omega} \\ &= 9 \cdot \frac{30}{225} = 1, 2V \end{split}$$

$$\begin{split} I_C \approx I_E &= \frac{U_{BB} - U_{BE}}{R_E} \\ &= \frac{1, 2V - 0, 7V}{1k\Omega} \\ &= 0, 5mA \end{split}$$

$$\begin{split} U_{CE} &= U_{CC} - I_C (R_C + R_E) \\ &= 9V - 0, 5mA (10k\Omega + 1k\Omega) \\ &= 9V - 0, 5mA \cdot 11k\Omega \\ &= 9V - 5, 5V = 3, 5V \end{split}$$

15

Резултати от приблизителните изчисления

voltage

Ubb = 1,2V Ic = 0.5mAUce = 3,5V

--- Operating Point ---3.69657

V(c):

V(b): 1.15318 voltage 0.532144 voltage V(e): V(n001): voltage Ic(Q1): 0.000530343 device_current Ib(Q1): 1.80065e-006 device current device_current Ie(Q1): -0.000532144 I(R2): 3.84394e-005 device_current I(Re): 0.000532144 device_current I(Rc): 0.000530343 device_current I(R1): 4.02401e-005 device_current I(Vcc): -0.000570584 device_current

Пример - Схема общ колектор

$$U_{CC} = 10V, R_E = 1k\Omega$$

$$R_1 = 100k\Omega, R_2 = 150k\Omega$$

$$I_C = ?, U_{CE} = ?$$

$$U_{BB} = U_{CC} \frac{R_2}{R_1 + R_2}$$

$$= 10V \cdot \frac{150k\Omega}{100k\Omega + 150k\Omega}$$

$$= 10 \cdot \frac{150}{250} = 6V$$

$$I_C \approx I_E = \frac{U_{BB} - U_{BE}}{R_E}$$
$$= \frac{6V - 0.7V}{1k\Omega}$$
$$= 6.3mA$$

$$\begin{split} U_{CE} &= U_{CC} - I_C \cdot R_E \\ &= 10V - 6, 3mA \cdot 1k\Omega \\ &= 10V - 6, 3V = 3, 7V \end{split}$$

17

Динамични параметри

Динамичните параметри характеризират поведението на транзисторните усилватели по променлив ток.

$$A_U = \frac{u_{out}}{u_{in}} \qquad A_I = \frac{i_{out}}{i_{in}} \qquad A_P = A_U A_I \qquad r_{in} = \frac{u_{in}}{i_{in}} \qquad r_{out} = \frac{u_{out}}{i_{out}}$$

За изчислението им се използват еквивалентни схеми на транзисторите по променлив ток.

Работа при високи честоти

При високи честоти върху поведението на транзистора започват да оказват влияние:

- инерционността на процесите на пренасяне на токоносителите от емитерния до колекторния преход
- капацитетите на преходите
- паразитните капацитети на корпуса и индуктивности на изводите

В резултат се наблюдава намаляване на амплитудата на изходния сигнал и изоставането му по фаза (закъсняване) спрямо входния.

За оценка на усилвателните свойства на транзистора при високи честоти се използват граничните честоти.

Транзитна честота

Произведението на модула на диференциалния коефициент на усилване β и текущата честота се нарича транзитна честота f_{T} .

 $\beta . f = f_T$

Ако $f = f_T$, $\beta \approx 1$

Транзитната честота $f_{\scriptscriptstyle T}$ може да се дефинира и като честотата, при която модулът на коефициента β става приблизително единица.

23

Транзитна честота (gain bandwidth product) и Noise Figure

	fτ	150 150 150	300 300 300	-	MHz
Output Capacitance (V _{CB} = 10 V, I _C = 0, f = 1.0 MHz)	Cobo	-	1.7	4.5	pF
Input Capacitance (V _{EB} = 0.5 V, I _C = 0, f = 1.0 MHz)	C _{ibo}	-	10	18	pF
Small – Signal Current Gain (I _O = 2.0 mA, V _{GE} = 5.0 V, f = 1.0 kHz) BC547/543 BC547/543 BC547/543 BC547/548/C BC547/548/C		125 125 125 126 240 450	220 330 600	500 900 260 500 900	-
Noise Figure (I _C = 0.2 mA, V _{CE} = 5.0 V, R _S = 2 kΩ, f = 1.0 kHz, Δf = 200 Hz) BC546 BC547 BC548	NF	ē	2.0 2.0 2.0	10 10 10	dB

 $NF = SNR_{in,dB} - SNR_{out,dB}$

Figure 12. Current-Gain - Bandwidth Product

BC546

