#### Midterm Report

ECE 437 : Computer Design and Prototyping

Name: Chongjin Chua

Michael Malachowski

TAs: Mengchi Zhang

Noah Chesnut

Due Date: Thursday 13 Oct, 2016

#### 4.2 Overview

The performance of each design is determined by analyzing the maximum frequency, average IPC, latency, performance in MIPS, and FPGA resources. These parameters are obtained from various log files which are detailed in the results sections. The benefits of the single cycle design are that it has a lower instruction latency, higher performance, and is a simpler design. The benefits of the pipelined design are that it can run at a higher frequency than the single cycle design, with a higher throughput. While the pipelined design has a higher clock frequency, it still has lower performance (measured in MIPS) than the single cycle design. In addition, the pipelined design has a higher instruction latency and requires more FPGA resources.

In order to test the designs, the program Mergesort.asm is used because it not only covers a wide variety of MIPS instructions, but also contains a fair amount of dependencies between R-type and I-type instructions. This program structure turns out to be a good test program in validating the functionality of hazard unit and forwarding unit of the pipeline design. As a conclusion, pipelining the processor improves its throughput, allowing a higher number of instructions to be executed at a time. This would result in a shorter duration needed to execute a test program. Besides, multiple pipeline stages reduces the length of critical path, which in turn increases the clock speed of the design.

# 4.3 Processor Design



Figure 1: Pipeline design



Figure 2: Single Cycle design

### 4.4 Results

The following results are obtained by running both designs on 'mergesort.asm' test program with a RAM latency of 0. The total number of instructions executed are obtained from the assembler; The time to run the test program is obtained from the simulator; and the FPGA resources used are obtained from Fitter Report. Both designs are run at their full capacity, which is a clock period of 20ns for single cycle and 10ns for pipeline design.

Formula for Instruction Latency:

$$Instruction \ Latency = \frac{Number \ of \ Stages}{Maximum \ Frequency}$$

Formula for Average Instructions Per Cycle:

Average Instructions 
$$Per\ Cycle = \frac{Number\ of\ Instructions\ in\ Program}{Number\ of\ CPU\ Clock\ Cycles}$$

| Maximum Theoretical CPUCLK Frequency (MHz)  | 34.665      |
|---------------------------------------------|-------------|
| Maximum Testbench CPUCLK (MHz)              | 25          |
| Instruction Latency (ns)                    | 40          |
| Average Instructions Per CPUCLK Clock Cycle | .7828       |
| MIPS                                        | 19.750      |
| Total Logic Elements                        | 3187/114480 |
| Total Combinational Functions               | 2923/114480 |
| Logic Registers                             | 1279/114480 |
| Total Registers                             | 1279        |
| Memory Bits                                 | 524288      |

Figure 3: Single Cycle Table

| Maximum Theoretical CPUCLK Frequency (MHz)  | 50.32       |
|---------------------------------------------|-------------|
| Maximum Testbench CPUCLK (MHz)              | 50          |
| Instruction Latency (ns)                    | 20          |
| Average Instructions Per CPUCLK Clock Cycle | .3462       |
| MIPS                                        | 17.309      |
| Total Logic Elements                        | 3643/114480 |
| Total Combinational Functions               | 3316/114480 |
| Logic Registers                             | 1788/114480 |
| Total Registers                             | 1789        |
| Memory Bits                                 | 524288      |

Figure 4: Pipeline Table

#### 4.5 Conclusions

Many of the metrics of the pipeline design show an improvement over those of the single cycle design's. However, the pipelined design has lower performance than the latter design. Due to the fact that the pipelined design is broken up into several stages, the critical path is shorter, and thus, it can be run at a higher frequency. However, the instruction latency of the pipeline design is longer, owing to the fact that it takes five clock cycles for an instruction to traverse through the entire pipeline, but the frequency of the pipeline design is not at least five times faster. In addition, the pipeline design requires slightly more FPGA resources due to the additional logic required for the stage latches, forwarding unit, hazard unit, and additional logic that is not present in the single cycle design.

As far as performance, the pipelined design processes fewer MIPS than the single cycle design. Ideally, splitting the critical path into five identical length stages in the pipelined design would allow for about a five-fold increase in clock speed and MIPS. However, the critical path in our pipelined design is not evenly split, and pipeline stalls due to hazards introduce increases in CPI, which together lower the MIPS of our pipelined design below that of the single cycle. In order to increase the MIPS of our pipelined design, it would be necessary to further decrease the length of the critical path.

## 4.6 Contributions

| •        | Michael Malac | 688add7   | syn works                                                                | 2016-09-2 |
|----------|---------------|-----------|--------------------------------------------------------------------------|-----------|
| <b>3</b> | Michael Malac | 949103b   | fix hazard unit bug and write HU TB                                      | 2016-09-2 |
|          | Chongjin Chua | e43c4c1   | working for real                                                         | 2016-09-2 |
|          | Chongjin Chua | 3eeeb70   | working?                                                                 | 2016-09-2 |
|          | Chongjin Chua | 3b43b08   | organized waveforms                                                      | 2016-09-2 |
|          | Chongjin Chua | 5f56017   | pop followed by pop not working                                          | 2016-09-2 |
|          | Chongjin Chua | 0bc8727   | jumps still screwing us up                                               | 2016-09-2 |
| •        | Michael Malac | 3722954   | jump sometimes works                                                     | 2016-09-2 |
| •        | Michael Malac | 9bed3d1   | fixed load use bug                                                       | 2016-09-2 |
| •        | Michael Malac | c5c5fbb   | ok SW working for really                                                 | 2016-09-2 |
| •        | Michael Malac | 898451f   | branch and SW works?                                                     | 2016-09-2 |
|          | Chongjin Chua | f3618c1   | forwarding unit seems to be working                                      | 2016-09-2 |
| <b>a</b> | Michael Malac | 677d3e7   | begin adding itype to FU                                                 | 2016-09-2 |
| •        | Michael Malac | c6079f6   | forwarding works                                                         | 2016-09-2 |
|          | Chongjin Chua | 95224f4   | updated cpu diagram                                                      | 2016-09-2 |
|          | Chongjin Chua | a1aae7a   | working hazard unit                                                      | 2016-09-2 |
| •        | Michael Malac | 4809808   | begin hazard unit                                                        | 2016-09-2 |
|          | Chongjin Chua | a16178c   | lab5 working                                                             | 2016-09-2 |
|          | Chongjin Chua | 4013e8f   | first draft                                                              | 2016-09-2 |
|          | Chongjin Chua | d2ad8df M | Merge branch 'dev' of https://bitbucket.org/ChongjinChua/ece437 into dev | 2016-09-2 |
|          | Chongjin Chua | c51907e   | halfway done                                                             | 2016-09-2 |
| <b>3</b> | Michael Malac | 5661332   | fix latch imports                                                        | 2016-09-2 |
|          | Chongjin Chua | 55f6248   | added cu interface and modified control unit                             | 2016-09-2 |
| <b>3</b> | Michael Malac | 61e5bcf   | remove ff latch blocks                                                   | 2016-09-2 |
| •        | Michael Malac | c90a536   | get back id_ex                                                           | 2016-09-2 |
| (4)      | Michael Malac | 9038daf M | merge                                                                    | 2016-09-2 |
|          | Chongjin Chua | 714c0c8   | last two latches done                                                    | 2016-09-2 |
| <b>a</b> | Michael Malac | 40a1579   | delete uppercase                                                         | 2016-09-2 |
| •        | Michael Malac | 144aecc   | to lowercase?                                                            | 2016-09-2 |
| <b>3</b> | Michael Malac | 9f0264b   | gotta rebase                                                             | 2016-09-2 |

Fig 5: Partial List of git commit history

Both team members contributed starting from 2016-9-21 to 2016-9-29. 45 git commits were made throughout this period. Some of the commits consist of contributions from both team members.