Today

- Part-of-speech tagging
 - HMM's for p-o-s tagging

Sequence tagging assigns the set of tags for the input sequence rather than a single tag at a time

HMM p-o-s Tagger

Given $W = w_1, \ldots, w_n$, find $T = t_1, \ldots, t_n$ that maximizes

$$P(t_1,\ldots,t_n|w_1,\ldots,w_n)$$

HMM p-o-s Tagger

Given $W = w_1, \ldots, w_n$, find $T = t_1, \ldots, t_n$ that maximizes

$$P(t_1,\ldots,t_n|w_1,\ldots,w_n)$$

Restate using Bayes' rule:

$$(P(t_1,\ldots,t_n)*P(w_1,\ldots,w_n|t_1,\ldots,t_n))/P(w_1,\ldots,w_n)$$

Ignore denominator...

Make independence assumptions...

and Markov assumptions

Independence Assumptions (factor 1)

 $P(t_1,\ldots,t_n)$: approximate using **n-gram model**

bigram $\prod_{i=1,n} P(t_i \mid t_{i-1})$

trigram $\prod_{i=1,n} P(t_i \mid t_{i-2}t_{i-1})$

Independence Assumptions (factor 2)

$$P(w_1,\ldots,w_n\,|\,t_1,\ldots,t_n)$$
:

Independence Assumptions (factor 2)

 $P(w_1, \ldots, w_n | t_1, \ldots, t_n)$: approximate by assuming that a word appears in a category independent of its neighbors

$$\prod_{i=1,n} P(w_i \mid t_i)$$

Independence Assumptions (factor 2)

 $P(w_1, \ldots, w_n | t_1, \ldots, t_n)$: approximate by assuming that a word appears in a category independent of its neighbors

$$\prod_{i=1,n} P(w_i \mid t_i)$$

Assuming bigram model:

$$P(t_1, \dots, t_n) * P(w_1, \dots, w_n | t_1, \dots, t_n) \approx$$

$$\prod_{i=1,n} P(t_i | t_{i-1}) * P(w_i | t_i)$$
transition lexical generation probabilities probabilities

Still have a problem

How to <u>efficiently</u> find the sequence of tags that maximizes the product?????

Hidden Markov Models

Equation can be modeled by an HMM.

- states: represent a possible lexical category
- transition probabilities: bigram probabilities
- observation probabilities, lexical generation probabilities: indicate, for each word, how likely that word is to be selected if we randomly select the category associated with the node.

Hidden Markov Models

Equation can be modeled by an HMM.

- states: represent a possible lexical category
- transition probabilities: bigram probabilities
- observation probabilities, lexical generation probabilities: indicate, for each word, how likely that word is to be selected if we randomly select the category associated with the node.

$$\prod_{i=1,n} P(t_i|t_{i-1}) * P(w_i|t_i)$$

c: number of lexical categories

 $P(w_t|t_i)$: lexical generation probabilities

 $P(t_i|t_j)$: bigram probabilities

Find most likely sequence of lexical categories T_1, \ldots, T_n for word sequence.

Initialization

For i = 1 to c do

$$SCORE(i,1) = P(t_i|\phi) * P(w_1|t_i)$$

$$BPTR(i,1) = 0$$

Iteration

```
For t = 2 to n

For i = 1 to c

SCORE(i,t) = MAX_{j=1..c}(SCORE(j,t-1) * P(t_i|t_j)) * P(w_t|t_i)

SCORE(i,t) = index of j that gave max
```

Identify Sequence

$$\begin{split} T(n) &= i \text{ that maximizes SCORE}(i,n) \\ For i &= n\text{-}1 \text{ to } 1 \text{ do} \\ T(i) &= BPTR(\ T(i+1),\ i\text{+}1\) \end{split}$$