Índice general

	Topología de \mathbb{R}^n (Sección I)			
	1.1.	Compacidad	2	
	1.2.	Conexidad	4	

Capítulo 1

Topología de \mathbb{R}^n (Sección I)

En esta sección se estudian conceptos relacionados con la topología de \mathbb{R}^n , con particular énfasis en la definición de abiertos, vecindades, ...

1.1. Compacidad

Definición 1.1.1. Sea X un E.T. Se dice que X es compacto, si dado un cubrimiento de abiertos de X, i.e. una colección $\{\mathcal{U}_{\alpha}\}$ de abiertos de X t.q. $X \subseteq \bigcup \mathcal{U}_{\alpha}$, existe un subcubrimiento finito que también cubre a X, i.e. una subcolección $\{\mathcal{U}_{\alpha(i)}\}_{i=1}^n \subseteq \{\mathcal{U}_{\alpha}\}$ t.q. $X \subseteq \bigcup_{i=1}^n \mathcal{U}_{\alpha(i)}$. Adicionalmente, si $Y \subseteq X$, se dice que Y es compacto si es compacto con la topología relativa.

Observacion 1.1.2. Nótese que si una colección $\{\mathcal{U}_{\alpha}\}$ de conjuntos de X, recubre a X, i.e. que $X \subseteq \bigcup \mathcal{U}_{\alpha}$, entonces $X = \bigcup \mathcal{U}_{\alpha}$. Luego, en la definición anterior es indiferente decir si el recubrimiento de abiertos contiene al conjunto o es igual a éste.

Teorema 1.1.3. Sea X un E.T. compacto y $Y \subseteq X$ cerrado, entonces Y es compacto.

Demostración:

Sea $\{\mathcal{U}_{\alpha}\}$ un cubrimiento de abiertos para Y. Como Y es cerrado en X, por definición $Y^C = X - Y$ es abierto en X. Nótese que si $Y^C = \emptyset$, entonces Y = X y trivialmente sería compacto, así que supóngase $Y^C \neq \emptyset$. Nótese

que:

$$X = Y^{C} \cup Y$$

$$= Y^{C} \cup \bigcup_{\alpha} \mathcal{U}_{\alpha}$$

$$= Y^{C} \cup \bigcup_{\text{abiertos de } Y} (Y \cap \mathcal{V}_{\alpha})$$

$$= Y^{C} \cup (Y \cap \bigcup_{\alpha} \mathcal{V}_{\alpha})$$

$$= (Y^{C} \cup Y) \cap (Y^{C} \cup \bigcup_{\alpha} \mathcal{V}_{\alpha})$$

$$= X \cup (Y^{C} \cup \bigcup_{\alpha} \mathcal{V}_{\alpha}),$$

y nótese que el conjunto resultante en la igualdad de la última linea, es un abierto de X, i.e. que en particular $\{\mathcal{U}_{\alpha}\} \cup \{Y^{C}\}$ es un cubrimiento de abiertos de X, y por la compacidad de X nótese que existe un conjunto finito $\{\mathcal{U}_{1},\ldots,\mathcal{U}_{n}\}\subseteq \{\mathcal{U}_{\alpha}\}$ t.q. $X=\bigcup_{i=1}^{n}\mathcal{U}_{i}\cup Y^{C}$ (pues como $Y=\bigcup\mathcal{U}_{\alpha}$ y $Y^{C}\neq\emptyset$, hay que considerar este último conjunto en el cubrimiento por si existen elementos que no están en el otro), pero como $Y\subseteq X$, entonces $Y\subseteq\bigcup_{i=1}^{n}\mathcal{U}_{i}\cup Y^{C}$, i.e. que $Y\subseteq\bigcup_{i=1}^{n}\mathcal{U}_{i}$, mostrando que en efecto Y es compacto.

Teorema 1.1.4. Sean X y Y E.T. Si X es compacto y $f: X \to Y$ es una aplicación continua, entonces f(X) es compacto.

Demostración:

Si $\{\mathcal{U}_{\alpha}\}$ es un cubrimiento de abiertos para f(X), entonces $f(X) \subseteq \bigcup \mathcal{U}_{\alpha}$, y por propiedades conjuntistas¹ se tiene que esto último es equivalente a decir que $X \subseteq f^{-1}(\bigcup \mathcal{U}_{\alpha}) = \bigcup f^{-1}(\mathcal{U}_{\alpha})$, pero como f es continua, devuelve abiertos en abiertos, por tanto $\{f^{-1}(\mathcal{U}_{\alpha})\}$ es un cubrimiento de abiertos para X, y por la compacidad de tal conjunto, existe un subconjunto $\{f^{-1}(\mathcal{U}_{\alpha(i)}): i=1,\ldots,n\} \subseteq \{f^{-1}(\mathcal{U}_{\alpha})\}$ t.q. $X \subseteq \bigcup_{i=1}^n f^{-1}(\mathcal{U}_{\alpha(i)}) = f^{-1}(\bigcup_{i=1}^n \mathcal{U}_{\alpha(i)})$, y esto último es equivalente a que $f(X) \subseteq \bigcup_{i=1}^n \mathcal{U}_{\alpha(i)}$.

$$f(A) := \{ y \in Y : \exists x \in A f(x) = y \} \ \text{y} \ f^{-1}(B) := \{ x \in X : f(x) \in B \}.$$

Además, $f(A) \subseteq B$ syss $A \subseteq f^{-1}(B)$. Finalmente, si $\{\mathcal{U}_{\alpha}\} \subseteq Y$, entonces $f^{-1}(\bigcup \mathcal{U}_{\alpha}) = \bigcup f^{-1}(\mathcal{U}_{\alpha})$.

¹Recordar de teoría de conjunto que dada la función $f:X\to Y$, la imagen directa de $A\subseteq X$ y la imagen inversa de $B\subseteq Y$ se definen respectivamente como:

Teorema 1.1.5. El espacio producto $S \times T$ es compacto syss S y T son compactos.

Demostración:

Ver [AMR12, pp. 24, 25].

1.2. Conexidad

El concepto de conexidad tiene un significado relacionado con el hecho de no poder "separar" un conjunto en dos partes.

Definición 1.2.1. $A \subset \mathbb{R}^n$ se dice conexo cuando para cualquier pareja de abiertos disjuntos $U_1, U_2 \subset \mathbb{R}^n$ tales que $A \subset U_1 \cup U_2$, necesariamente uno de estos dos no intercepta a A.

Equivalentemente podríamos definir este concepto diciendo que una separación de un conjunto es una escogencia de dos abiertos de este conjunto, que son disjuntos y que unen al conjunto. Recuerde que un abierto de un conjunto es la intersección de un abierto en \mathbb{R}^n con el mismo conjunto. El siguiente teorema es una caracterización bien conocida de los subconjuntos conexos de la recta (en la topología estándar).

Teorema 1.2.2. Los únicos subconjuntos conexos de la recta son los intervalos.

Bibliografía

- [AMR12] Ralph Abraham, Jerrold E. Marsden y Tudor Ratiu. *Manifolds, tensor analysis, and applications*. Vol. 75. Springer Science & Business Media, 2012.
- [Awo10] Steve Awodey. Category theory. Second. Vol. 52. Oxford Logic Guides. Oxford University Press, Oxford, 2010, págs. xvi+311.
- [FST19] Brendan Fong, David Spivak y Rémy Tuyéras. «Backprop as functor: a compositional perspective on supervised learning». En: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, [Piscataway], NJ, 2019, [13 pp.]
- [JS91] André Joyal y Ross Street. «The geometry of tensor calculus, I». En: Advances in Mathematics 88.1 (jul. de 1991), págs. 55-112. DOI: 10.1016/0001-8708(91)90003-p. URL: https://doi.org/10.1016/0001-8708(91)90003-p.
- [Lur21] Jacob Lurie. Kerodon. 2021. URL: https://kerodon.net.
- [Mac10] Saunders Mac Lane. Categories for the working mathematician. eng. 2nd. ed., Softcover version of original hardcover edition 1998. Graduate texts in mathematics 5. New York, NY: Springer, 2010. ISBN: 9781441931238.
- [Per21] Paolo Perrone. Notes on Category Theory with examples from basic mathematics. 2021. arXiv: 1912.10642 [math.CT].
- [Sel10] P. Selinger. «A Survey of Graphical Languages for Monoidal Categories». En: New Structures for Physics. Springer Berlin Heidelberg, 2010, págs. 289-355. DOI: 10.1007/978-3-642-12821-9_4. URL: https://doi.org/10.1007%2F978-3-642-12821-9_4.