STD130N6F7

N-channel 60 V, 4.2 mΩ typ., 80 A STripFET™ F7 Power MOSFET in a DPAK package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD	Ртот
STD130N6F7	60 V	5.0 mΩ	80 A	134 W

- Among the lowest R_{DS(on)} on the market
- Excellent FoM (figure of merit)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking Package		Packing	
STD130N6F7	130N6F7	DPAK Tape and reel		

Contents STD130N6F7

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	5
3	Test cir	cuits	7
4	Packag	e information	8
	4.1	DPAK package information	9
5	Revisio	on history	12

STD130N6F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V _{GS}	Gate-source voltage	±20	V
Ip ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	80	^
ID ^(*)	Drain current (continuous) at T _{case} = 100 °C	80	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	320	Α
Ртот	Total dissipation at T _{case} = 25 °C	134	W
E _{AS} ⁽³⁾	Single pulse avalanche energy	200	mJ
dV/dt ⁽⁴⁾	Drain-body diode dynamic dV/dt ruggedness	5.0	V/ns
T _{stg}	Storage temperature range	FF to 17F	°C
Tj	Operating junction temperature range	-55 to 175	30

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	50	۰۵۸۸
R _{thj-amb}	Thermal resistance junction-ambient		°C/W

Notes:

⁽¹⁾ Current is limited by package.

⁽²⁾ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ starting T_j = 25 °C, I_D = 20 A, V_{DD} = 30 V.

 $^{^{(4)}}I_{SD}$ = 80 A; di/dt = 600 A/ μ s; V_{DD} = 48 V; T_{j} < T_{jmax}

 $^{^{(1)}}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 sec

Electrical characteristics STD130N6F7

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 4: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	60			V
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 60 V			1	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = 20 \text{ V}$			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 40 A		4.2	5.0	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	2600	1	
Coss	Output capacitance	$V_{DS} = 30 \text{ V, f} = 1 \text{ MHz,}$ $V_{GS} = 0 \text{ V}$	-	1200	ı	pF
Crss	Reverse transfer capacitance		-	115	ı	
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, I_{D} = 80 \text{ A},$	-	42	1	
Q_{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 14: "Test circuit for gate	-	13.6	ı	nC
Q_{gd}	Gate-drain charge	charge behavior")	-	13	-	

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 30 \text{ V}, I_D = 40 \text{ A},$	-	24	-	
tr	Rise time	R _G = 4.7 Ω , V _{GS} = 10 V (see Figure 13: "Test circuit"	ı	44	-	
t _{d(off)}	Turn-off delay time	for resistive load switching	-	62	-	ns
t _f	Fall time	times" and Figure 18: "Switching time waveform")	-	24	-	

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 80 \text{ A}$	ı		1.2	V
t _{rr}	Reverse recovery time	$I_{SD} = 80 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	50		ns
Qrr	Reverse recovery charge	V _{DD} = 48 V (see Figure 15: "Test circuit for inductive	-	56		nC
I _{RRM}	Reverse recovery current	load switching and diode recovery times")	-	2.2		А

Notes:

 $^{^{(1)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area I_D GIPD221220151023SOA (A) Operation in this area is limited by $R_{DS(on)}$ t_p = 100 μ s t_p = 10ms t_p = 10ms

single pulse

10¹

 $\overline{V}_{DS}(V)$

10°

10⁰

10-1

Figure 3: Thermal impedance GIPD221220151024ZTH δ=0.5 0.2 10⁻¹ 0.05 0.02 $Z_{th}=k^*R_{thj-c}$ $\delta=tp/T$ 0.01 Single pulse 10⁻² $\bar{t_p}$ (s) 10⁻⁵ 10-4 10⁻³ 10⁻² 10⁻¹

Figure 4: Output characteristics

GIPD181220151035OCH

V GS=9, 10V

V GS=7V

V GS=6V

V GS=5V

V GS=5V

O 2 4 6 8 V DS(V)

Figure 8: Capacitance variations

C
(pF)

10⁴

10²

f = 1 MHz

C_{RSS}

10¹

10⁻¹

10⁰

10¹

V_{DS} (V)

Figure 10: Normalized on-resistance vs temperature R_{DS(on)} (norm.) GIPG160615OD6DPRON V_{GS} = 10 V2.2 1.8 1.4 1.0 0.6 25 75 125 175 T_i (°C) -25

STD130N6F7 Test circuits

3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 15: Test circuit for inductive load switching and diode recovery times

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STD130N6F7 Package information

4.1 DPAK package information

Figure 19: DPAK (TO-252) type A2 package outline

Table 8: DPAK (TO-252) type A2 mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
A	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
Е	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

6.3 6.5 1.8 MIN

Figure 20: DPAK (TO-252) type A2 recommended footprint (dimensions are in mm)

FP_0068772_21

Revision history STD130N6F7

5 Revision history

Table 9: Document revision history

Date	Revision	Changes	
17-Dec-2015	1	First release.	
10-Oct-2016	2	Document status changed from preliminary to production data. Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

