

CREDITEDA CASE STUDY

Laxmi Sahu Sushant Yadav

PROBLEM STATEMENT

This case study aims to identify patterns which indicate if a client has difficulty paying their installments which may be used for taking actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc. This will ensure that the consumers capable of repaying the loan are not rejected. Identification of such applicants using EDA is the aim of this case study.

SOLUTION APPROACH

We have used the below approach for deriving the insights:

- The required libraries needed for data cleansing and visualisation are imported.
- We have done the data cleansing for columns wherever necessary and dropped the columns with majority of data as NA. Outliers are identified and handled wherever possible. Data imbalance is checked.
- Created new columns as per the requirements
- Univariate/Bivariate Analysis of the relevant
 Categorical/numerical is done and insights are derived
- Current and Previous application data is done to derive insights based on bank Approval loan status

DATA IMBALANCE

DATA IMBALANCE

Inference:- There are 8% out of total client population has problem in repaying loan.

UNIVARIATE ANALYSIS

DISTRIBUTION OF CONTRACT TYPE - CURRENT APPLICATION

distribution of contract types in current_application

INFERENCE:- 2 types of contracts are there, out of which 90% are cash loans.

GENDER DISTRIBUTION IN CURRENT APPLICATION

INFERENCES:- Female clients form 66% part of current application data.

DISTRIBUTION OF INCOME

POPULAR GOODS FOR APPLYING LOANS

Inference:- Mobiles ,Computers and consumer electronics are popular goods for applying loans

DISTRIBUTION IN CONTRACT TYPE - PREVIOUS APPLICATION

upGrad

distribution of contract types in previous_application

DISTRIBUTION OF SUITE TYPE

INFERENCE:-Mostly clients unaccompanied when they were applying for the loan. Out of the total unaccompanied clients, female clients were more in number.

DISTRIBUTION OF HOUSING TYPE BY LOAN REPAYMENT STATUS

INFERENCE:- Defaulters are more from the clients who are living with parents than repayers.

BIVARIATE ANALYSIS

DISTRIBUTION OF CONTRACT TYPE BY GENDER

Inference:- Both genders prefer cash over revolving loans. Female clients are more than male clients.

SCATTER PLOT BETWEEN CREDIT AMOUNT AND ANNUITY AMOUNT

DISTRIBUTION OF CLIENT'S AGE BY REPAYMENTS STATUS

Inference:- Client's of age group 30-40 years get the loon in maximum numbers, also they are the one who are become major part of defaulters.

DISTRIBUTION OF CLIENT OWNING A CAR OR NOT BY GENDER

Inference:- Only 34% out of total clients own a car and out of this 34% clients, 57% are males and 43% females.

DISTRIBUTION OF CLIENT OWNING A FLAT BY GENDER

Distribution of client owning a house or flat by gender

Inference:- only 31% out of total clients own house or flat and in these 31% clients 67% are female owners while 33% are male owners.

Inference:- Most of the clients having no children whether they are defaulter or not. But majority of clients are having 2 member in the family who are getting loan, also these are the one who make large chunk of defaulter as well.

DISTRIBUTION OF SUITE TYPE

INFERENCE:- Mostly clients unaccompanied when they were applying for the loan. Out of the total unaccompanied clients, female clients were more in number.

COMPARING SUMMARY STATISTICS BETWEEN DEFAULTER AND NONDEFAULTER FOR LOAN AMOUNT

Inference

Income of client:- 1. Average income of clients who default and who do not are almost same.

- 2. Standard deviation in income of client who default is very high compared to who do not default that, means defaulter divert his/her income into many other things as well.
- 3. Clients who default also has maximum income earnings than who repay the loan.

Credit amount of the loan ,Loan annuity, Amount goods price :- 1. Statistics between credit amounts, Loan annuity and Amount goods price given to clients who default and who don't are almost similar.

DISTRIBUTION OF CLIENT INCOME TYPE

INFERENCE:- clients applied for loan are highest from working class than commercial associate and others. also female clients are more in number than males in every income type.

DISTRIBUTION OF EDUCATION TYPE BY LOAN REPAYMENT STATUS

INFERENCE:- Clients who default have proportionally 9% less higher education compared to clients who do not default.

DISTRIBUTION OF FAMILY STATUS TYPE BY LOAN REPAYMENT STATUS

Distribution of Family status for Defaulters

INFERENCE:-Percentage of single people and Civil marriage are more in defaulters than others.

DISTRIBUTION OF DAYS EMPLOYED FOR TARGET VARIABLE

INFERENCE:- Highest number of clients are from the first 5 years of their career and second highest are from the last years of their career.

DISTRIBUTION IN ORGANIZATION TYPES FOR REPAYERS AND DEFAULTERS

INFERENCE:- Business Entity Type 3 organization grab highest percentage of loans after that self-employed and then others.

TARGET

INFERENCE:- People after becoming defaulter tend to get less social than they were earlier used to.

TARGET

INFERENCE:- Total as well as Average Amount of credit is more than the Amount of application in Cash loan contracts and revolving loan contracts while they are less in consumer loan contracts.

COUNT OF APPLICATION STATUS BY APPLICATION TYPE

Inference:- Consumer loan applications are most approved loans and cash loans are most cancelled and refused loans.

CLIENT PAYMENT METHODS & REASONS FOR APPLICATION REJECTIONS

0.6

0.8

Top as percentage & Bottom as Count

1.0

Inference:- Around 81% of rejected applications the reason is XAP.
62% of chose to pay through cash by bank for previous applications.

0.0

0.2

DISTRIBUTION IN CLIENT SUITE TYPE & CLIENT TYPE

Inference:- About 60% clients are un-accompained when applying for loans. 73% clients are old clients

MULTIVARIATE ANALYSIS

Inference:-

- 1. Average income is highest for male and least for female.
- 2. Amount of credit, annuity and Amount of goods price all are again highest for male but least for XNA.

DISTRIBUTION OF CONTRACT TYPE, GENDER, OWN CAR, OWN HOUSE WITH RESPECT TO REPAYMENT STATUS(TARGET VARIABLE)

- 2. Percentage of males is 10% more in defaulters category than repayers.
- 3. Percentage of car owners is less in defaulter than repayers.
- 4. Percentage of house owners is less in defaulter than repayers.

A VERAGE EARNINGS BY DIFFERENT PROFESSIONS AND EDUCATION TYPES

INFERENCE:- Businessman clients are having higher education only, while in other categories of income type clients with academic degrees are more. But Students mainly apply for loan for higher education.

PAIR PLOT BETWEEN AMOUNT VARIABLE

CORRELATION BETWEEN VARIABLES

SK_ID_CURR CNT CHILDREN AMT_CREDIT AMT_GOODS_PRICE DAYS_BIRTH DAYS_REGISTRATION FLAG_MOBIL FLAG_WORK_PHONE FLAG_PHONE CNT_FAM_MEMBERS REGION_RATING_CLIENT_W_CITY REG_REGION_NOT_LIVE_REGION LIVE_REGION_NOT_WORK_REGION REG_CITY_NOT_WORK_CITY EXT_SOURCE_2 OBS_30_CNT_SOCIAL_CIRCLE OBS 60 CNT SOCIAL CIRCLE DAYS_LAST_PHONE_CHANGE FLAG_DOCUMENT_3 FLAG_DOCUMENT_5 FLAG DOCUMENT_7 FLAG_DOCUMENT_9 FLAG_DOCUMENT_11 FLAG_DOCUMENT_13 FLAG_DOCUMENT_15 FLAG_DOCUMENT_17 FLAG_DOCUMENT_19 FLAG_DOCUMENT_21 AMT REQ CREDIT BUREAU DAY AMT_REQ_CREDIT_BUREAU_MON AMT_REQ_CREDIT_BUREAU_YEAR

08S_30_CNT 08S_60_CNT_

REG CITY

- 1.00

- 0.75

-0.50

- 0.25

- 0.00

- -0.25

- -0.50

- -0.75

AMT_REQ_CREDIT_ AMT_REQ_CREDIT_E AMT_REQ_CREDIT_E

CONCLUSION

- Banks should focus on small family sized clients, as there will be less diversion of funds and more chances of repayment.
- Banks should be more careful while approving loans for business entities, self-employed, industry and trade sector, as their percentage of default is higher than repayment. on the other hand sectors like medicine, government, schools etc have higher percentage of repayment.
- Banks need to avoid income type of 'Working' clients as they have high percentage of paying difficulties. Instead focus on Commercial associate, pensioner and State servant.
- Banks should focus more on education type 'Higher education' and avoid Secondary/secondary special, incomplete higher or lower secondary as they face paying difficulties.
- □ People with high income status have more deviation in income and also are maximum defaulters than the corresponding low and middle income clients.

THANK YOU