

Administrative Notes-Jan 24, 2023

- If you haven't already, please <u>register your clicker on</u> Canvas
 - If you do not do this, then we will not be able to sync your iClicker grades to Canvas
- Don't forget to refer to the tentative schedule for assignment deadlines and tutorial information
- Jan 24: In-class assignment 1 due
 - Submit your own work for in-class exercises (i.e., don't submit the lecture slide with the answer)
- Jan 27: Assignment 1 due
- Assignment 2 available on Canvas
- You will need a physical student card for the class so please get one

Sample solution

That's all there is to it

- Some ER models differ in expressiveness
- They model most concepts people want
- They don't model all of them, e.g.,
 - Functional dependencies some attributes determine some other attributes, e.g., postal code determines (only) city and province

Conceptual Design Using the ER Model

Design choices:

- Should a concept be modeled as an entity or an attribute?
- Should a concept be modeled as an entity or a relationship?
- Identifying relationships: Binary or ternary? Aggregation?

Constraints in the ER Model:

- A lot of data semantics can (and should) be captured.
- But some constraints cannot be captured in ER diagrams.
 - i.e. domain constraints
 - dependencies

Entity vs. Attribute

- Should an address be an attribute of MoviePeople or an entity (connected to MoviePeople by a relationship)?
- Depends upon
 - the use we want to make of address information
 - the semantics of the data:
 - If we have several addresses per person, address must be an entity (since attributes cannot be set-valued).
 - If a person has only one street address, one city, one province, one postal code, etc. then these should simply be attributes.

Entity vs. Attribute (Cont.)

- WorkOn2 does not allow a person to have more than one role in the same movie.
- We want to associate the same pair (MoviePerson, Movie) with more than one set of values for the descriptive attributes?
- Solution: change descriptive attributes into entities.

Entity vs. Relationship

 How are the two ER models different?

 Director can get a separate assistant for each movie.

 All director must direct a movie and have the same assistant for all movies

Assistant

Binary vs. Ternary Relationships

Name pname age BirthDate ID If each policy is Covers MoviePeople Dependents (one) (one) owned by just 1 Bad design person: **Policies** (many) Key constraint policyID cost on Policies would mean Name Age <u>pName</u> policy can only ____ BirthDate cover 1 MoviePeople Dependents dependent! Purchaser Beneficiary Better design **Policies** Cost 103

Key constraints on non-binary relationships Note: no guarantee this diagram makes sense

Ternary relation Drinks relates entity sets Person, Bar and Drink, and has descriptive attribute *date*.

- A. If I know drink, then I know both the person and the bar
- B. If I know drink I only know the person
- C. If I know drink, I only know the bar
- D. Other. I don't know. My head hurts. Make it stop.

Binary vs. Ternary Relationships

 An example in the other direction: a ternary relation Drinks relates entity sets Person, Bar and Drink, and has descriptive attribute date.

Can we use two of binary relationships instead?

25c 368

Binary vs. Ternary Relationships vs. Aggregation

- No combination of binary relationships is an adequate substitute:
 - P "likes" D, P "visits" B, and B "provides" D does not imply that P drinks D in B.
 - Also, how would we record date?

(Sc 368)

Binary vs. Ternary Relationships vs. Aggregation

- Aggregation can be used instead of a ternary relation if need to impose additional constraints:
 - I.e., If you know the person and the drink, you know the bar they drank it at.

Binary vs. Ternary Relationships vs. Aggregation

- Aggregation can be used instead of a ternary relation if need to impose additional constraints:
 - I.e. A person cannot have more than one drink ever. A person only drinks that one drink at any bar.

Summary of Conceptual Design

- Conceptual design follows requirements analysis,
 - Yields a high-level description of data to be stored
- ER model popular for conceptual design
 - Constructs are expressive, close to the way people think about their applications.
- Basic constructs: entities, relationships, and attributes (of entities and relationships).
- Some additional constructs: weak entities, ISA relationships, and aggregation.
- Note: There are many variations on ER model.

Summary of ER (Cont.)

- Several kinds of integrity constraints can be expressed in the ER model: key constraints, participation constraints, and overlap/covering constraints for ISA relationships. Some foreign key constraints are also implicit in the definition of a relationship set.
 - Some constraints (notably, functional dependencies) cannot be expressed in the ER model.
 - Constraints play an important role in determining the best database design for an enterprise.

Summary of ER (Cont.)

- ER design is *subjective*. There are often many ways to model a given scenario! Analyzing alternatives can be tricky, especially for a large enterprise. Common choices include:
 - entity vs. attribute
 - entity vs. relationship
 - binary or n-ary relationship
 - whether or not to use ISA hierarchies
 - whether or not to use aggregation
- Ensuring good database design: resulting relational schema should be analyzed and refined further.

Learning Goals revisited

- Explain the purpose of an ER diagram, and list the major components.
- Given a problem description, create an ER diagram given a specification. Justify the decisions you make for entities, relationships, keys, key constraints, participation constraints, weak entities, is-a relationships, and aggregations.
- given a problem description, identify alternative representations of the problem concepts and evaluate the choices
- compare alternative ER models for the same domain and identify their strengths and weaknesses