Firefox about:blank

 $t: \mathrm{time}$

 t_0 : starting time

r: radial distance from the beam's center

n: refractivity

T: temperature

 T_0 : Reference temperature of the atmosphere at the ground level

 $\frac{\partial^k n}{\partial T^k}$: kth derivative of the refractive index with respect to temperature

 $\frac{\partial T}{\partial t}$: Temperature change per unit time

 α : absorptivity (absorption per unit length)

 κ : thermal Diffusivity of the medium

I: laser irradiance

 $\alpha I(r,t)$: power absorbed by the medium per unit volume

S(r,t): heat source term, rate at which the laser's energy is absorbed and converted into heat

 ρ : mass density of the medium

 c_{ρ} : specific heat at constant pressure

w: laser beam waist radius

 τ : pulse duration

 I_0 : peak intensity at the beam's center

This proposed model incorporates a thermal blooming effect, and a "Feedback" mechanism the models how changes in temperature overtime worsens the index of refraction.

Firefox about:blank

2 of 2 2/19/24, 5:40 PM