– עץ חיפוש בינארי <u>B</u> inary- <u>S</u> earch <u>T</u> ree (BST)	
מה נלמד? - הנדרת עץ חיפוש בינארי - ייצוג של עץ חיפוש בינארי - פעולות על עץ חיפוש בינארי - פעולות על איפוש בינארי	
Ordered Dictionary Search(k) Min() Insert(x) Max() Delete(x) Successor(x) Predecessor(x)	

זמן ריצה במקרה הגרוע של פעולת Search בעץ חיפוש בינארי בעל n במתים וגובה h הוא:	
$\Theta(n)$.1 $\Theta(1)$.2 $\Theta(h)$.3 $\Theta(\log n)$.4	
פעולת חיפוש זמן ריצה 37 37 32 32	
ארודו קוד $Search(x,k)$ Search (x,k) I if $x = NULL$ or $k = x$. key return x I if $k < x$. key return x search (x,k) I if $k < x$ if $k $	

מחפשים את 52 בעץ חיפוש בינארי. איזה מבין הסדרות הבאות <u>אינה</u> יכולה להיות סדרת מספרים בה נתקל במהלך החיפוש?	
9,10,20,34,52 .1	
9,100,30,42,52 .2	
9,42,32,40,523	
<u>=</u>	
9,80,15,70,52	
כל הסדרות אפשריות.	
_	
Ordered Dictionary	
Search(k) Min()	
Insert(x) $Max()$	
Delete(x) Successor(x)	
Predecessor(x)	
_	
פעולת הכנסה	
Insert 35	
10 37	
8 20 32	
15 21 35	

זמן ריצה במקרה הגרוע של פעולת Insert בעץ חיפוש בינארי בעל n צמתים וגובה h הוא:	
Θ(n) .1 Θ(1) .2 Θ(h) .3	
$\Theta(\log n)$.4	
Insert (T, z) 1 $y \leftarrow NULL$ 2 $x \leftarrow T.root$ 3 while ($x \neq NULL$) 4 $y \leftarrow x$ 5 if (z.key < x.key) 6 $x \leftarrow x.left$ 7 else $x \leftarrow x.right$ 8 $z.p \leftarrow y$ 9 if ($y = NULL$) // T was empty 10 $T.root \leftarrow z$ 11 elseif (z.key < y.key) $y.left \leftarrow z$ 12 else $y.right \leftarrow z$	
מפתחות הבאים הוכנסו לעץ חיפוש בינארי ריק מהתחלה: 11, 2, 4 , 6, 14, 13, 20 (משמאל לימין). מה הוא גובה העץ שהתקבל?	
2 .1 3 .2 4 .3 6 .4	

מציאות עוקב לצומת הגדרה

אם כל המפתחות שונים זה מזה, העוקב (Successor) לצומת x הוא הצומת בעל מפתח הקטן ביותר הגדול מ-x.key-

במידה והמפתחות יכולים לחזור על עצמם, העוקב לצומת x הוא צומת הבא בסדרinorder הממויו הנקבע על ידי סריקת inorder של העע

מציאות עוקב לצומת

- מקרה פשוט
- . איש תת עץ ימניx יש תת עץ ימני

מציאות עוקב לצומת

- מקרה פשוט
- לצומת x יש תת עץ ימני x החזר מינימאלי בתת העץ הימני

• אחרת:

יש לעלות במסלול לשורש עד • לפנייה ראשונה ימינה"

מציאת עוקב לצומת פסאודו קוד

מציאת עוקב לצומת פסאודו קוד

השלימו את המשפט: זמן ריצה במקרה הגרוע של פעולת Successor בעץ חיפוש בינארי בעל ת צמתים וגובה h הוא:

מציאת עוקב לצומת פסאודו קוד	
Successor (x)	
1 if x.right \neq NULL	
2 return Min(x.right)	
3 $y \leftarrow x.parent$ 4 while $y \neq NULL$ and $x = y.right$	
5 x ← y	
6 y ← y.parent	
7 Tecurity	
זמן ריצה הוא $\Theta(h)$, כאשר הוא גובה העץ	
קודם לצומת הגדרה	
אם כל המפתחות שונים זה מזה, הקודם ($Predecessor$) לצומת x הוא הצומת בעל מפתח הגדול ביותר הקטן מ- $x.key$	-
במידה והמפתחות יכולים לחזור על עצמם, הקודם לצומת x הוא צומת הקודם בסדר	
של העץ inorder של ידי סריקת	
3 20 20	
סיכום	
Predecessor, Successor, Min, Max פעולות המילון	
$\mathit{O}(h)$ ניתנות למימוש על עץ חיפוש בינארי בגובה h בזמן	

Ordered Dictionary מחיקה בעץ חיפוש בינארי T נתון: עץ חיפוש בינארי מצביע לצומת z בעץ שיש למחוק מחיקה בעץ חיפוש בינארי ישנם שלושה מקרים: ל-z אין בנים:z בנים: z בים אביו רבים את אביו z בים אריש אביו z בים את אביו

מחיקה בעץ חיפוש בינארי ישנם שלושה מקרים: 7 ל-2 אין בנים: 2 מעדכנים את אביו z.parent לא בנים: 37 מעדכנים את אביו 37 32 32 32 32 32 32 32 32 32 32 32 32 32	
מחיקה בעץ חיפוש בינארי ישנם שלושה מקרעם: ל-z ישרק בן אחד: ב-garent ל-z הופך להיות בן של בהופך להיות בן של 2 בחפר ב 2 ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	
מחיקה בעץ חיפוש בינארי ישנם שלושה מקרים: ישנם שלושה מקרים: ל-2 יש רק בן אחד: ב-2 מבן להיות בן של 2 הופך להיות בן של 2 הופך להיות בן של 2 מבן	

מחיקה בעץ חיפוש בינארי ישנם שלושה מקרים: ל־2 יש שני בנים: לעוקב של־2, נסמן ב-ע, אין בן שמאלי נסיר את ע (מקרה 1 או 2) המפתח והנתונים נלווים של־2 מוחלפים באלו של ע	
מחיקה בעץ חיפוש בינארי ישנם שלושה מקרים: ישנם שלושה מקרים:	
ל-z יש שני בנים: לעוקב של z, וכמ: לעוקב של z, וכמ: לעוקב של z, וכמ: לעוקב של z, וכמ: נסיל את y (מקרה 1 או 2) 32 32 32 32 32 32 32 32 32	
מחיקה בעץ חיפוש בינארי ישנם שלושה מקרים	
ל-2 אין בנים: z משנים את אביו z משנים את אביו z בין בנים: z משנים את אביו z בין יהיה	
ל- z יש רק בן אחד: z בו אחד: z הופך להיות בן של z הופך להיות בן של z	
ל- z יש שני בנים: לעקב של z , נסמן ב- z , אין בן שמאלי ניסיר את z (מקרה 1 אוב) נסיר את z (מקרה 1 אוב) המפתח והנתונים נלווים של z מוחלפים באלו של z	

השלימו את המשפט: זמן ריצה במקרה הגרוע של פעולת $Delete$ בעץ חיפוש בינארי בעל n בעל n בעץ חיפוש בינארי בעל n בערים וגובה n הוא	
נתון עץ חיפש בינארי מייד אחרי שבוצעה עליו פעולה אחת - הכנסה או הוצאה. מה יכולה להיות הפעולה שבוצעה על העץ? Oncid את בל התשובות האפשריות	
– סיכום	

Search(k) Min() Insert(x) Max() Delete(x) Successor(x) Predecessor(x)	
מה למדנו? ${\overline{\mathbb{Z}}}$ 2	
פה למדנו? 37 32 32 32 33 31 31	

