

Parcours Data Scientist

Projet 9 : Compétition Kaggle

Sommaire

- Présentation de la compétition
- Exploration
- Pré-processing
- Modèles
 - Classique
 - U-net
 - U-net extended (multi arm)
- Post-Processing
- Résultats
- Améliorations
- Conclusion

Présentation

- Objectif
 - Détection de noyaux de cellules
 - Fournir 1 masque par cellule
 - N masques par images
- Dataset
 - 3 types d'images
 - 670 images d'entrainement
 - 65 images de test

Présentation

- Evaluation
 - 1 masque par cellule
 - 1 résultat de loU/cellule
 - Moyenne du nombrede cellules IoU > T (appelé Score)
 - -T:0,5=>0,95 (step 0,05)
 - Encodage Run Length Encoded
 - Overlap interdit

Exploration

- Types d'images
 - 3 types selon la méthode d'acquisition

Exploration

MINE Nicolas

Taille des images

- Mini: 256x256

- Maxi: 1388x1040

- 80 % < 360x360

- 97 % < 700x520

- Masques
 - Fusionnement
- Images
 - Plusieurs idées testées
 - Saturation
 - Canny Edge Detection
 - Laplacien
 - Adaptative Threshold
 - Simple Binarisation
 - Histogram Equalization
 - Redimensionnement

Fusion des Masques

- Saturation
 - 1. Conversion en N&B
 - 2. Inverser N&B selon moyenne

3. Booster Contrastes

Saturation

Adaptative Threshold

- Redimensionnement
 - √ Classique
 - Sans déformation
 - Si img < objectif
 - Complétion en noir
 - Si img > objectif
 - Scaling constant
 - Complétion en noir

12/02/2018

- Classique
 - Images pré-processées
 - Filtrage binaire
 - Seuil déterminé en fct du score sur le dataset
 - Fait sur le masque complet
 - Pas d'entrainement
 - Meilleur score: t=40

Classique

Image de base

Vrai masque

12/02/2018

MINE Nicolas

- CNN (version 1)
 - Basé sur U-net
 - Vainqueur
 - ISBI 2015
 - Entrée
 - 572 x 572
 - 94px bordure
 - Sortie
 - 388 x 388
 - Cause
 - Padding Valid
 - Image non 2ⁿ

- CNN (version 1)
 - Entrée = Sortie

• 256 x 256

- CNN (version 1)
 - Test avec et sans data augmentation
 - Apprentissage très mauvais
 - Test avec images de base
 - Apprentissage correct mais cellules peu séparées
 - Test avec images pré-processées
 - Apprentissage correct mais cellules peu séparées
 - Enregistrement par Epoch de 4 test images

12/02/2018

Aparté sur la data augmentation

Création de zones blanches => casse l'apprentissage

- CNN (version 1)
 - Redimensionnement classique (faible facteur)
 - Images pré-processées en 256x256

- CNN (version 2)
 - Postulat
 - Images pré-processées aide mais perte d'infos
 - Images de base un peu complexe?
 - Adaptative Threshold aidera a splitter les cellules

- CNN (version 2)
 - Idée : U-net extended (multi arm)
 - Entrée = Sortie = 256 x 256

12/02/2018

MINE Nicolas

- CNN (version 2)
 - Training semble meilleur
 - Score inférieur (intersection faible, union correcte?)

CNN (version 2)

- Recherche du meilleur Threshold
 - Chaque pixel est issue d'une sigmoïde
 - Regarde évolution du Score en fonction du seuil
 - Modèle Classique
 - T = 40/255
 - CNN V1
 - T = 0,9999
 - CNN V2
 - T = 0,4

- Essai de suppression du bruit
 - cv2.morphologyEx
 - Erode et Dilate
- Essai de séparation des cellules « collées »
 - Watershed
 - Filtre oval

Filtre ovale = Off

Filtre ovale = On

Résultat visuels corrects

Résultats

- Score sur masque complet:
 - Modèle Classique: 60,2 %
 - CNN V1: 42,1% (très variable)
 - CNN V2: 71,9%
- Score Kaggle
 - Modèle Classique : 0,226
 - CNN V1:0,189 à 0,301
 - CNN V2: 0,208 à 0,243

Résultats

- Explications:
 - Privilégier débordement sans overlap
 - Intersection : Linéaire
 - Union: inversement proportionnel
 - Evaluation sur certains masques uniquement
 - Images plus complexes
 - Mauvaise décompositions des cellules en contact
 - IoU < 0,5 très rapidement

Améliorations possibles

- Utiliser le modèle Extended en 512 x 512
- Retester Watershed sur images plus précises
- Elastic Transformation sur la data augmentation
 - Utilisé sur U-net 2015
 - Non implémenté sur Keras
- Ensemble de U-net
 - Prédiction variable d'une epoch à l'autre
- U-net de 2015 avec images de 388 x 388 au centre d'une image de 572 x 572

12/02/2018

Conclusion

- Découverte : Image Segmentation
- Approfondissement des techniques de traitement d'images par rapport au P7
- Bon résultats avec une méthode simpliste
- CNN un peu au dessus (sauf parfois au score)
- Découverte « auto-encoder » pour images
 - U-net
- Résultats moyen sur Kaggle
 - Evaluation complexe à comprendre/debugger

12/02/2018

