安徽大学 20 10 —20 11 学年第 1 学期

《离散数学 (上)》(A卷)考试试题参考答案及评分标准

- 一、单项选择题(每小题2分,共20分)
- 1, B, 2, C, 3, D, 4, D, 5, D, 6, C, 7, C, 8, D, 9, D, 10, D
- 二、判断题(每空2分,共10分)
- $1, \times, 2, \sqrt{3}, \times, 4, \times, 5, \sqrt{3}$
- 三、填空题(每小空2分,共20分)
- 1. $\exists x (P(x) \land E(x^2))$, $\forall x \forall y (I(x) \land I(y) \rightarrow \neg N(x-y) \lor \neg N(y-x))$.
- 2, $\{\{c\},\{a,c\},\{b,c\},\{a,b,c\}\}\}$, $\{\phi,\{\{c\}\},\{\phi\},\{\phi,\{c\}\}\}\}$;

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix};$$

4.
$$\psi_{A \cap B}(x) = \begin{cases} 1 & x \in (\frac{1}{2}, \frac{3}{4}) \\ 0 & x \in [0,1] - (\frac{1}{2}, \frac{3}{4}) \end{cases}$$
, $\psi_{A \otimes B}(x) = \begin{cases} 1 & x \in [0, \frac{1}{4}) \cup (\frac{1}{2}, \frac{3}{4}) \\ 0 & x \in [\frac{1}{4}, \frac{1}{2}) \cup [\frac{3}{4}, 1] \end{cases}$;

5, =, >;

四、解答题(每小题10分,共20分)

- 1、(1)哈斯图如右图(2分)
- (2) (3), 下表每空 2分

集合	最大元	最小元	极大元	极小元
$B = \{2,3,10\}$	不存在	不存在	3, 10	2, 3
集合	上界	下界	上确界	下确界
$C = \{2,3,5\}$	30	1	30	1

- 2. $(P \lor \neg Q \to R) \lor (\neg P \lor Q \to \neg R)$
 - $\Leftrightarrow \neg (P \lor \neg Q) \lor R \lor (\neg (\neg P \lor Q) \lor \neg R \tag{2 } \cancel{?})$
 - $\Leftrightarrow (\neg P \land Q) \lor R \lor (P \land \neg Q) \lor \neg R$
 - $\Leftrightarrow (\neg P \land Q) \lor (P \land \neg Q) \lor (R \lor \neg R)$
 - $\Leftrightarrow (\neg P \land Q) \lor (P \land \neg Q) \lor T$
 - $\Leftrightarrow T$,
 - 于是, 主合取范式为: T,

(7分)

(4分)

主析取范式为: $\Sigma(0,1,2,3,4,5,6,7)$

- $\Leftrightarrow (\neg P \land \neg Q \land \neg R) \lor (\neg P \land \neg Q \land R) \lor (\neg P \land Q \land \neg R) \lor (\neg P \land \neg Q \land \neg R)$
- $\vee (P \wedge \neg Q \wedge \neg R) \vee (P \wedge \neg Q \wedge R) \vee (P \wedge Q \wedge \neg R) \vee (P \wedge Q \wedge R) \tag{10 }$

五、证明题(每小题10分,共30分)

1,
$$\bigcirc$$
 $\forall x(P(x) \rightarrow Q(x))$

②
$$\forall x(R(x) \rightarrow \neg Q(x))$$
 P (附加前提), (2分)

③
$$\forall x((P(x) \rightarrow Q(x)) \land (R(x) \rightarrow \neg Q(x)))$$
 Q_{10} , ①, ② (4 \Re)

④
$$\forall x((R(x) \rightarrow \neg Q(x)) \land (\neg Q(x) \rightarrow \neg P(x))) \quad E_5, E_{24}, \quad \textcircled{3} \quad (6 \ \text{$\%$})$$

(5)
$$(R(x) \rightarrow \neg Q(x)) \land (\neg Q(x) \rightarrow \neg P(x))$$
 $Q_1, \textcircled{4}$ (8 $\textcircled{2}$)

$$\bigcirc$$
 $R(x) \rightarrow \neg P(x)$

$$I_6$$
, ⑤

(10分)

2、要证明 S 为 A 上的等价关系,只需要证明 S 具有自反性、对称性和传递性。

① 自反性

只需证明对 $\forall x \in A$,有 $< x, x > \in S$ 。

由于 R 为等价关系,故对 $\forall x \in A$,有 $< x, x > \in R$ 。

于是,对 $\forall x \in A$,都 $\exists x \in A$,使 $< x, x > \in R$,

由 S 的定义,可得 $\langle x, x \rangle \in S$ 。自反性得证。 (3分)

② 对称性

只需证明对 $\forall < x, y > \in S$, 必有 $< y, x > \in S$ 。

由 S 的定义, 必存在 $z \in A$, 使 $\langle x, z \rangle \in R$ 且 $\langle z, v \rangle \in R$,

因为 R 为等价关系, 故具有对称性, 从而有 $< z, x > \in R$ 且 $< y, z > \in R$,

由 S 的定义, 必有 $\langle y, x \rangle \in S$ 。 对称性得证。 (3分)

③ 传递性

只需证明对 $\forall < x, y > \in S$, $\forall < y, z > \in S$, 必有 $< x, z > \in S$ 。

对于 $< x,y> \in S$,由 S 的定义,必存在 $z_1 \in A$,使 $< x,z_1> \in R$ 且 $< z_1,y> \in R$,由 R 为等价关系,从而 R 具有传递性,于是 $< x,y> \in R$;

对于 < y,z > \in S ,由 S 的定义,必存在 z_2 \in A ,使 < y,z_2 > \in R 且 < z_2,z > \in R ,由 R 为 等价关系,从而 R 具有传递性,于是 < y,z > \in R 。

3、① 证明 f 不是单射的,

$$<3,1>∈ I×I$$
, 有 $f(<3,1>)=<2,3>$,

$$<-1,-3>∈ I×I$$
, $f(<-1,-3>)=<2,3>$,

<3,1>≠<-1,-3>,有 f(<3,1>)=f(<-1,-3>),从而 f 不是单射。 (5分)

② 证明 *f* 不是满射的,

对<1,1> $\in I \times I$,不存在< $x,y>\in I \times I$,使 f(< x,y>)=<1,1>。

反之,有下列式子成立:
$$\begin{cases} x-y=1\\ xy=1 \end{cases}$$
, $\forall x,y\in I$, 此方程无解。

从而 f 不是满射的。

(5分)