COMPLETE PROOFS OF GÖDEL'S INCOMPLETENESS **THEOREMS**

LECTURES BY B. KIM

Step 0: Preliminary Remarks

We define recursive and recursively enumerable functions and relations, enumerate several of their properties, prove Gödel's β -Function Lemma, and demonstrate its first applications to coding techniques.

Definition. For $R \subset \omega^n$ a relation, $\chi_R : \omega^n \to \omega$, the *characteristic function* on R, is given by

$$\chi_R(\overline{a}) = \begin{cases} 1 & \text{if } \neg R(\overline{a}), \\ 0 & \text{if } R(\overline{a}). \end{cases}$$

Definition. A function from ω^m to ω $(m \ge 0)$ is called **recursive** (or **com**putable) if it is obtained by finitely many applications of the following rules:

- $I_i^n : \omega^n \to \omega$, $1 \le i \le n$, defined by $(x_1, \dots, x_n) \mapsto x_i$ is recursive; $+ : \omega \times \omega \to \omega$ and $\cdot : \omega \times \omega \to \omega$ are recursive;

 - $\chi_{<}: \omega \times \omega \to \omega$ is recursive.
- R2. (Composition) For recursive functions G, H_1, \ldots, H_k such that $H_i : \omega^n \to \omega$ and $G: \omega^k \to \omega$, $F: \omega^n \to \omega$, defined by

$$F(\overline{a}) = G(H_1(\overline{a}), \dots, H_k(\overline{a})).$$

is recursive.

R3. (Minimization) For $G: \omega^{n+1} \to \omega$ recursive, such that for all $\overline{a} \in \omega^n$ there exists some $x \in \omega$ such that $G(\overline{a}, x) = 0, F : \omega^n \to \omega$, defined by

$$F(\overline{a}) = \mu x (G(\overline{a}, x) = 0)$$

is recursive. (Recall that $\mu x P(x)$ for a relation P is the minimal $x \in \omega$ such that $x \in P$ obtains.)

Definition. $R(\subseteq \omega^k)$ is called **recursive**, or **computable** (R is a recursive relation) if χ_R is a recursive function.

Proofs in this note are adaptation of those in [Sh] into the deduction system described in [E]. Many thanks to Peter Ahumada and Michael Brewer who wrote up this note.

Properties of Recursive Functions and Relations:

P0. Assume $\sigma: \{1,...,k\} \to \{1,...,n\}$ is given. If $G: \omega^k \to \omega$ is recursive, then $F: \omega^n \to \omega$ defined by, for $\overline{a} = (a_1,...,a_n)$,

$$F(\overline{a}) = G(a_{\sigma(1)}, ..., a_{\sigma(k)}) = G(I_{\sigma(1)}^{n}(\overline{a}), ..., I_{\sigma(k)}^{n}(\overline{a})),$$

is recursive. Similarly, if $P(x_1,...,x_k)$ is recursive, then so is

$$R(x_1, ..., x_n) \equiv P(x_{\sigma(1)}, ..., x_{\sigma(k)}).$$

P1. For $Q \subset \omega^k$ a recursive relation, and $H_1, \ldots, H_k : \omega^n \to \omega$ recursive functions,

$$P = \{ \overline{a} \in \omega^n \mid Q(H_1(\overline{a}), \dots, H_k(\overline{a})) \}$$

is a recursive relation.

Proof. $\chi_P(\overline{a}) = \chi_Q(H_1(\overline{a}), \dots, H_k(\overline{a}))$ is a recursive function by R2.

P2. For $P \subset \omega^{n+1}$, a recursive relation such that for all $\overline{a} \in \omega^n$ there exists some $x \in \omega$ such that $P(\overline{a}, x)$, then $F : \omega^n \to \omega$, defined by

$$F(\overline{a}) = \mu x P(\overline{a}, x)$$

is recursive.

Proof. $F(\overline{a}) = \mu x(\chi_P(\overline{a}, x) = 0)$, so we may apply R3.

P3. Constant functions, $C_{n,k}:\omega^n\to\omega$ such that $C_{n,k}(\overline{a})=k$, are recursive. (Hence for recursive $F:\omega^{m+n}\to\omega$ or $P\subseteq\omega^{m+n}$, and $\overline{b}\in\omega^n$, both the map $(x_1,...,x_m)\mapsto F(x_1,...,x_m;\overline{b})$ and $P(x_1,...,x_m;\overline{b})\subseteq\omega^m$ are recursive.)

Proof. By induction:

$$C_{n,0}(\overline{a}) = \mu x (I_{n+1}^{n+1}(\overline{a}, x) = 0)$$

$$C_{n,k+1}(\overline{a}) = \mu x (C_{n,k}(\overline{a}) < x)$$

are recursive by R3 and P2, respectively.

P4. For $Q, P \subset \omega^n$, recursive relations, $\neg P, P \vee Q$, and $P \wedge Q$ are recursive.

Proof. We have that

$$\chi_{\neg P}(\overline{a}) = \chi_{<}(0, \chi_{P}(\overline{a})),$$
$$\chi_{P \vee Q}(\overline{a}) = \chi_{P}(\overline{a}) \cdot \chi_{Q}(\overline{a}),$$
$$P \wedge Q = \neg(\neg P \vee \neg Q).$$

P5. The predicates =, \leq , >, and \geq are recursive. (Hence each finite set is recursive.)

Proof. For $a, b \in \omega$,

$$a = b \text{ iff } \neg(a < b) \land \neg(b < a),$$

 $a \ge b \text{ iff } \neg(a < b),$
 $a > b \text{ iff } (a \ge b) \land \neg(a = b), \text{ and}$
 $a \le b \text{ iff } \neg(a > b),$

hence these are recursive by P4.

Notation. We write, for $\overline{a} \in \omega^n$, $f : \omega^n \to \omega$ a function and $P \subset \omega^{m+1}$ a relation,

$$\mu x < f(\overline{a}) P(x, \overline{b}) \equiv \mu x (P(x, \overline{b}) \lor x = f(\overline{a})).$$

In particular, $\mu x < f(\overline{a}) P(x, \overline{b})$ is the smallest integer less than $f(\overline{a})$ which satisfies P, if such exists, or $f(\overline{a})$, otherwise.

We also write

$$\exists x < f(\overline{a}) P(x) \equiv (\mu x < f(\overline{a}) P(x)) < f(\overline{a}), \text{ and}$$
$$\forall x < f(\overline{a}) P(x) \equiv \neg (\exists x < f(\overline{a}) (\neg P(x))).$$

The first is clearly satisfied if some $x < f(\overline{a})$ satisfies P(x), while the second is satisfied if all $x < f(\overline{a})$ satisfy P(x).

P6. For $P \subset \omega^{n+1}$ a recursive relation, $F : \omega^{n+1} \to \omega$, defined by

$$F(a, \bar{b}) = \mu x < a P(x, \bar{b}),$$

is recursive.

Proof. $F(a, \overline{b}) = \mu x(P(x, \overline{b}) \vee x = a)$, and thus F is recursive by P2, since for all \overline{b} , a satisfies $P(x, \overline{b}) \vee x = a$.

P7. For $R \subset \omega^{n+1}$ a recursive relation, $P, Q \subset \omega^{n+1}$ such that

$$P(a, \overline{b}) \equiv \exists x < a R(x, \overline{b}); Q(a, \overline{b}) \equiv \forall x < a R(x, \overline{b})$$

are recursive. (Hence, with P1, it follows both

$$Div(y, z) (\equiv y|z) = \exists x < z + 1(z = x \cdot y),$$

and PN, the set of all prime numbers, are recursive.)

Proof. Note that P is defined by composition of recursive functions and predicates, hence recursive by P1, and Q is defined by composition of recursive functions, recursive predicates, and negation, hence recursive by P1 and P4.

P8. $\dot{-}: \omega \times \omega \to \omega$, defined by

$$a \dot{-} b = \begin{cases} a - b & \text{if } a \ge b, \\ 0 & \text{otherwise,} \end{cases}$$

is recursive.

Proof. Note that

$$a \dot{-} b = \mu x (b + x = a \lor a < b).$$

P9. If $G_1, \ldots, G_k : \omega^n \to \omega$ are recursive functions, and $R_1, \ldots, R_k \subset \omega^n$ are recursive relations partitioning ω^n (i.e., for each $\overline{a} \in \omega^n$, there exists a unique i such that $R_i(\overline{a})$, then $F : \omega^n \to \omega$, defined by

$$F(\overline{a}) = \begin{cases} G_1(\overline{a}) & \text{if } R_1(\overline{a}), \\ G_2(\overline{a}) & \text{if } R_2(\overline{a}), \\ \vdots & \vdots \\ G_k(\overline{a}) & \text{if } R_k(\overline{a}), \end{cases}$$

is recursive.

Proof. Note that

$$F = G_1 \chi_{\neg R_1} + \dots + G_k \chi_{\neg R_k}.$$

P10. If $Q_1, \ldots, Q_k \subset \omega^n$ are recursive relations, and $R_1, \ldots, R_k \subset \omega^n$ are recursive relations partitioning ω^n , then $P \subset \omega^n$, defined by

$$P(\overline{a}) \text{ iff } \begin{cases} Q_1(\overline{a}) & \text{if } R_1(\overline{a}), \\ \vdots & \vdots \\ Q_k(\overline{a}) & \text{if } R_k(\overline{a}), \end{cases}$$

is recursive.

Proof. Note that

$$\chi_P(\overline{a}) = \begin{cases} \chi_{Q_1}(\overline{a}) & \text{if } R_1(\overline{a}), \\ \vdots & \vdots \\ \chi_{Q_k}(\overline{a}) & \text{if } R_k(\overline{a}), \end{cases}$$

is recursive by P9.

Definition. A relation $P \subset \omega^n$ is **recursively enumerable (r.e.)** if there exists some recursive relation $Q \subset \omega^{n+1}$ such that

$$P(\overline{a})$$
 iff $\exists x Q(\overline{a}, x)$.

Remark If a relation $R \subset \omega^n$ is recursive, then it is recursively enumerable, since $R(\overline{a})$ iff $\exists x (R(\overline{a}) \land x = x)$.

Negation Theorem. A relation $R \subset \omega^n$ is recursive if and only if R and $\neg R$ are recursively enumerable.

Proof. If R is recursive, then $\neg R$ is recursive. Hence by above remark, both are r.e. Now, let P and Q be recursive relations such that for $\overline{a} \in \omega^n$, $R(\overline{a})$ iff $\exists x Q(\overline{a}, x)$ and $\neg R(\overline{a})$ iff $\exists x P(\overline{a}, x)$.

Define $F:\omega^n\to\omega$ by

$$F(\overline{a}) = \mu x(Q(\overline{a}, x) \vee P(\overline{a}, x)),$$

recursive by P2, since either $R(\overline{a})$ or $\neg R(\overline{a})$ must hold.

We show that

$$R(\overline{a})$$
 iff $Q(\overline{a}, F(\overline{a}))$.

In particular, $Q(\overline{a}, F(\overline{a}))$ implies there exists x (namely, $F(\overline{a})$) such that $Q(\overline{a}, x)$, thus $R(\overline{a})$ holds. Further, if $\neg Q(\overline{a}, F(\overline{a}))$, then $P(\overline{a}, F(\overline{a}))$, since $F(\overline{a})$ satisfies $Q(\overline{a}, x) \vee P(\overline{a}, x)$. Thus $\neg R(\overline{a})$ holds.

The β -Function Lemma.

 β -Function Lemma (Gödel). There is a recursive function $\beta: \omega^2 \to \omega$ such that $\beta(a,i) \leq a-1$ for all $a,i \in \omega$, and for any $a_0,a_1,\ldots,a_{n-1} \in \omega$, there is an $a \in \omega$ such that $\beta(a,i) = a_i$ for all i < n.

Remark 1. Let $A = \{a_1, ... a_n\} \subseteq \omega \setminus \{0, 1\}$ $(n \ge 2)$ be a set such that any two distinct elements of A are realtively prime. Then given non-empty subset B of A, there is $y \in \omega$ such that for any $a \in A$, a|y iff $a \in B$. (y is a product of elements in B.)

Lemma 2. If k|z for $z \neq 0$, then (1+(j+k)z, 1+jz) are relatively prime for any $j \in \omega$.

Proof. Note that for p prime, p|z implies that p/(1+jz). But if p|1+(j+k)z and p|1+jz, then p|kz, implying p|k|z or p|z, and thus p|z, a contradiction.

Lemma 3. $J:\omega^2\to\omega$, defined by $J(a,b)=(a+b)^2+(a+1)$, is one-to-one.

Proof. If a + b < a' + b', then

$$J(a,b) = (a+b)^2 + a + 1 \le (a+b)^2 + 2(a+b) + 1 = (a+b+1)^2 \le (a'+b')^2 < J(a',b').$$

Thus if J(a,b) = J(a',b'), then a+b=a'+b', and

$$0 = J(a', b') - J(a, b) = a' - a,$$

implying that a = a' and b = b', as desired.

Proof of β -Function Lemma. Define

$$\beta(a, i) = \mu x < a - 1 (\exists y < a (\exists z < a (a = J(y, z) \land Div(1 + (J(x, i) + 1) \cdot z, y)))),$$

It is clear that β is recursive, and that $\beta(a, i) \leq a - 1$.

Given $a_1, \ldots, a_{n-1} \in \omega$, we want to find $a \in \omega$ such that $\beta(a, i) = a_i$ for all i < n. Let

$$c = \max_{i < n} \{ J(a_i, i) + 1 \},$$

and choose $z \in \omega$, nonzero, such that for all j < c nonzero, j|z.

By Lemma 2, for all j, l such that $1 \le j < l \le c$, (1 + jz, 1 + lz) are relatively prime, since 0 < l - j < c implies that (l - j)|z. By Remark 1, there exists $y \in \omega$ such that for all j < c,

$$1 + (j+1)z \mid y \text{ iff } j = J(a_i, i) \text{ for some } i < n.$$
 (*)

Let a = J(y, z).

We note the following, for each a_i :

- (i) $a_i < y < a$ and z < a;
 - In particular, y, z < a by the definition of J, and that $a_i < y$ by (*).
- (ii) Div $(1 + (J(a_i, i) + 1) \cdot z, y)$; From (*).

(iii) For all $x < a_i$, 1 + (J(x, i) + 1)z/y;

Since J is one-to-one, $x < a_i$ implies $J(x,i) \neq J(a_i,i)$, and for $j \neq i$, $J(x,i) \neq J(a_j,j)$. Thus, by (*), x does not satisfy the required predicate for y and z as chosen above.

Since for any other y' and z', $a = J(y, z) \neq J(y', z')$, we have that a_i is in fact the minimal integer satisfying the predicate defining β , and thus $\beta(a, i) = a_i$, as desired.

The β -function will be the basis for various systems of coding. Our first use will be in encoding sequences of numbers:

Definition. The **sequence number** of a sequence of natural numbers a_1, \ldots, a_n , is given by

$$\langle a_1, \ldots, a_n \rangle = \mu x(\beta(x, 0)) = n \wedge \beta(x, 1) = a_1 \wedge \cdots \wedge \beta(x, n) = a_n).$$

Note that the map <> is defined on all sequences due to the properties of β proved above. Further, since β is recursive, <> is recursive, and <> is one-to-one, since

$$\langle a_1, \ldots, a_n \rangle = \langle b_1, \ldots, b_m \rangle$$

implies that n=m and $a_i=b_i$ for each i. Note, too, that the sequence number of the empty sequence is

$$<>= \mu x(\beta(x,0) = 0) = 0.$$

An important feature of our coding is that we can recover a given sequence from its sequence number:

Definition. For each $i \in \omega$, we have a function $()_i : \omega \to \omega$, given by

$$(a)_i = \beta(a, i).$$

Clearly $()_i$ is recursive for each i. $()_0$ will be called the **length** and denoted lh.

As intended, it follows from these definitions that $(\langle a_1 \dots a_n \rangle)_i = a_i$ and $lh(\langle a_1 \dots a_n \rangle) = n$.

Note also that whenever a > 0, we have lh(a) < a and $(a)_i < a$.

Definition. The relation $Seq \subset \omega$ is given by

$$Seq(a)$$
 iff $\forall x < a(lh(x) \neq lh(a) \lor \exists i < lh(a)((x)_{i+1} \neq (a)_{i+1}).$

That Seq is recursive is evident from properties enumerated above. From our definition, it is clear that Seq(a) if and only if a is the sequence number for some sequence (in particular, $a = \langle (a)_1, \ldots, (a)_{lh(a)} \rangle$). Note that

$$\neg Seq(a) \text{ iff } \exists x < a(lh(x) = lh(a) \land \forall i < lh(a)((x)_{i+1} = (a)_{i+1}).$$

Definition. The **initial sequence** function $Init: \omega^2 \to \omega$ is given by

$$Init(a, i) = \mu x(lh(x) = i \land \forall j < i((x)_{j+1} = (a)_{j+1}).$$

Again, *Init* is evidently recursive. Note that for $1 \le i \le n$,

$$Init(\langle a_1, \dots, a_n \rangle, i) = \langle a_1, \dots, a_i \rangle,$$

as intended.

Definition. The **concatenation** function $*: \omega^2 \to \omega$ is given by

$$a * b = \mu x(lh(x) = lh(a) + lh(b)$$

$$\wedge \forall i < lh(a)((x)_{i+1} = (a)_{i+1}) \wedge \forall j < lh(b)((x)_{lh(a)+j+1} = (b)_{j+1}).$$

Note that * is recursive, and that

$$< a_1 \dots a_n > * < b_1 \dots b_m > = < a_1 \dots a_n, b_1 \dots b_m >,$$

as desired.

Definition. For $F: \omega \times \omega^k \to \omega$, we define $\overline{F}: \omega \times \omega^k \to \omega$ by

$$\overline{F}(a,\overline{b}) = \langle F(0,\overline{b}), \dots, F(a-1,\overline{b}) \rangle,$$

or, equivalently,

$$\mu x(lh(x) = a \land \forall i < a((x)_{i+1} = F(i, \overline{b}))).$$

Note that $F(a, \overline{b}) = (\overline{F}(a+1, \overline{b}))_{a+1}$, thus we have that \overline{F} is recursive if and only if F is recursive.

Properties of Recursive Functions and Relations (continued):

P11. For $G: \omega \times \omega \times \omega^n \to \omega$ a recursive function, the function $F: \omega \times \omega^n \to \omega$, given by

$$F(a, \overline{b}) = G(\overline{F}(a, \overline{b}), a, \overline{b}),$$

is recursive. Because $\overline{F}(a, \overline{b})$ is defined in terms of values $F(x, \overline{b})$, for x strictly smaller than a, this inductive definition of F makes sense.

Proof. Note that

$$F(a, \overline{b}) = G(H(a, \overline{b}), a, \overline{b})$$

where

$$H(a, \overline{b}) = \mu x(Seq(x) \wedge lh(x) = a \wedge \forall i < a((x)_{i+1} = G(Init(x, i), i, \overline{b})).$$

According to this definition, $F(0, \bar{b}) = G(\langle \rangle, 0, \bar{b}) = G(0, 0, \bar{b}),$

$$F(1, \overline{b}) = G(\langle G(0, 0, \overline{b}) \rangle, 1, \overline{b}),$$

and

$$F(2, \bar{b}) = G(\langle G(0, 0, \bar{b}), G(\langle G(0, 0, \bar{b}) \rangle, 1, \bar{b}) \rangle, 2, \bar{b}),$$

showing that computation is cumbersome, but possible, for any particular value a.

P12. For $G: \omega \times \omega^n \to \omega$ and $H: \omega \times \omega^n \to \omega$ recursive functions, $F: \omega \times \omega^n \to \omega$ defined by

$$F(a, \overline{b}) = \begin{cases} F(G(a, \overline{b}), \overline{b}) & \text{if } G(a, \overline{b}) < a, \text{ and} \\ H(a, \overline{b}) & \text{otherwise,} \end{cases}$$

is recursive.

Proof. Note that when $G(a, \overline{b}) < a$, we have

$$F(G(a,\overline{b}),\overline{b}) = (\overline{F}(a,\overline{b}))_{G(a,\overline{b})+1} = \beta(\overline{F}(a,\overline{b}),G(a,\overline{b})+1) = G'(\overline{F}(a,\overline{b}),a,\overline{b})$$

with recursive $G'(x, y, \overline{z}) = \beta(x, G(y, \overline{z}) + 1)$. Thus F is recursive by P11.

For most purposes, when we define a function F inductively by cases, we must satisfy two requirements to guarantee that our function is well-defined. First, if $F(x, \bar{b})$ appears in a defining case involving a, we must show that x < a whenever this case is true. Second, we must show that our base case is not defined in terms of F. In particular, this means that we cannot use F in a defining case which is used to compute $F(0, \beta)$.

P13. Given recursive $G:\omega^n\to\omega$ and $H:\omega^2\times\omega^n\to\omega,\,F:\omega\times\omega^n\to\omega$ given by

$$F(a, \overline{b}) = \begin{cases} H(F(a-1, \overline{b}), a-1, \overline{b}) & \text{if } a > 0, \text{ and} \\ G(\overline{b}) & \text{otherwise,} \end{cases}$$

is recursive. (For example, the maps

$$n \mapsto n! = \begin{cases} (n-1)! \cdot n & \text{if } n > 0\\ 1 & n = 0, \end{cases}$$

$$(n,m) \mapsto m^n = \begin{cases} m^{(n-1)} \cdot m & \text{if } n > 0, \\ 1 & n = 0, \end{cases}$$

and

$$n \mapsto (n+1)^{\text{th}} \text{ prime} = \begin{cases} \mu x(x > n^{\text{th}} \text{ prime} \land \text{PN}(x)) & \text{if } n > 0\\ 2 & n = 0 \end{cases}$$

are all recursive.)

Proof. Note that $H(F(a-1, \overline{b}), a-1, \overline{b}) = H(\beta(\overline{F}(a, \overline{b}), a), a-1, \overline{b})$ has the form of P11.

P14. Given recursive relations $Q \subset \omega^{n+1}$ and $R \subset \omega^{n+1}$ and recursive $H: \omega \times \omega^n \to \omega$ such that $H(a, \overline{b}) < a$ whenever $Q(a, \overline{b})$ holds, the relation $P \subset \omega^{n+1}$, given by

$$P(a, \overline{b}) \quad \text{iff} \quad \begin{cases} P(H(a, \overline{b}), \overline{b}) & \text{if } Q(a, \overline{b}), \\ R(a, \overline{b}) & \text{otherwise,} \end{cases}$$

is recursive.

Proof. Define $H': \omega \times \omega^n \to \omega$ by

$$H'(a, \overline{b}) = \begin{cases} H(a, \overline{b}) & \text{if } Q(a, \overline{b}), \text{ and} \\ a & \text{otherwise.} \end{cases}$$

H' is clearly recursive. Note

$$\chi_P(a, \overline{b}) = \begin{cases} \chi_P(H'(a, \overline{b}), \overline{b}) & \text{if } H'(a, \overline{b}) < a, \text{ and} \\ \chi_R(a, \overline{b}) & \text{otherwise.} \end{cases}$$

The following example will prove useful:

Definition. Let $A \subset \omega^2$ be given by

$$A(a,c)$$
 iff $Seq(c) \wedge lh(c) = a \wedge \forall i < a((c)_{i+1} = 0 \vee (c)_{i+1} = 1),$

and let $F:\omega^2\to\omega$ be given by

$$F(a,i) = \begin{cases} \mu x(A(a,x)) & \text{if } i = 0, \\ \mu x(F(a,i-1) < x \land A(a,x)) & \text{if } 0 < i < 2^a, \text{ and } \\ 0 & \text{otherwise.} \end{cases}$$

Then the function $bd: \omega \to \omega$ is given by

$$bd(n) = F(n, 2^n - 1).$$

Evidently, A, F, and bd are all recursive. In fact,

$$bd(n) = max\{ \langle c_1c_2...c_n \rangle \mid c_i = 0 \text{ or } 1 \}.$$

Step 1: Representability of Recursive Functions in Q

We define Q, a subtheory of the natural numbers, and prove the Representability Theorem, stating that all recursive functions are representable in this subtheory.

Consider the language of natural numbers $\mathcal{L}_{\mathcal{N}} = \{+, \cdot, S, <, 0\}$. We specify the theory Q with the following axioms.

- Q1. $\forall x \ Sx \neq 0$.
- Q2. $\forall x \forall y \ Sx = Sy \rightarrow x = y$.
- Q3. $\forall x \ x + 0 = x$.
- Q4. $\forall x \forall y \ x + Sy = S(x+y)$.
- Q5. $\forall x \ x \cdot 0 = 0$.
- Q6. $\forall x \forall y \ x \cdot Sy = x \cdot y + x$. Q7. $\forall x \ \neg (x < 0)$.
- Q8. $\forall x \forall y \ x < Sy \longleftrightarrow x < y \lor x = y$.
- Q9. $\forall x \forall y \ x < y \lor x = y \lor y < x$.

Note that the natural numbers, \mathcal{N} , are a model of the theory Q. If we add to this theory the set of all generalizations of formulas of the form

$$(\varphi_0^x \wedge \forall x(\varphi \to \varphi_{Sx}^x)) \to \varphi,$$

providing the capability for induction, we call this theory Peano Arithmetic, or PA. Thus $Q \subset PA$, and $PA \vdash Q$.

Notation. We define, for a natural number n,

$$\underline{n} \equiv \underbrace{SS \dots S}_{n} 0.$$

Definition. A function $f:\omega^n\to\omega$ is **representable** in Q if there exists an $\mathcal{L}_{\mathcal{N}}$ -formula $\varphi(x_1,\ldots,x_n,y)$ such that

$$Q \vdash \forall y (\varphi(\underline{k_1}, \dots, \underline{k_n}, y) \longleftrightarrow y = \underline{f}(k_1, \dots, k_n))$$

for all $k_1, \ldots, k_n \in \omega$. We say φ represents f in Q.

Definition. A relation $P \subset \omega^n$ is **representable** in Q if there exists an $\mathcal{L}_{\mathcal{N}}$ -formula $\varphi(x_1, \ldots, x_n)$ such that for all $k_1, \ldots, k_n \in \omega$,

$$P(k_1,\ldots,k_n) \to Q \vdash \varphi(k_1,\ldots,k_n)$$

and

$$\neg P(k_1,\ldots,k_n) \to Q \vdash \neg \varphi(k_1,\ldots,k_n).$$

Again, we say that φ represents P in Q.

To prove the Representability Theorem, we will require the following:

Lemma 1. If m = n, then $Q \vdash \underline{m} = \underline{n}$, and if $m \neq n$, then $Q \vdash \neg(\underline{m} = \underline{n})$.

Proof. It is enough to demonstrate this for m>n. For n=0, our result follows from axiom Q1. Assume, then, that the result holds for k=n and all l>k. Then we have that, for a given m>n+1, $Q\vdash \underline{m-1}\neq \underline{n}$. By axiom Q2 we have, $Q\vdash \underline{m-1}\neq \underline{n}\to \underline{m}\neq \underline{n+1}$. Hence we conclude that $Q\vdash \underline{m}\neq \underline{n+1}$, and the result holds for k=n+1, as required.

Lemma 2. $Q \vdash \underline{m} + \underline{n} = m + n$.

Proof. For n=0, our result follows from axiom Q3. Assume, then, that the result holds for k=n. We must show it holds for k=n+1 as well. But $Q \vdash \underline{m} + \underline{n} = m+n$, and we obtain $Q \vdash \underline{m} + n + 1 = m+n+1$ by Q4.

Lemma 3. $Q \vdash \underline{m} \cdot \underline{n} = \underline{m \cdot n}$

Proof. For n=0, our result follows from axiom Q5. Assume, then, that the result holds for k=n. Then $Q \vdash \underline{m} \cdot \underline{n} = \underline{mn}$. Applying Q6, we have that $Q \vdash \underline{m} \cdot \underline{n+1} = \underline{mn} + \underline{m}$, and applying the previous lemma, we have the result for k=n+1, as required.

Lemma 4. If m < n, then $Q \vdash \underline{m} < \underline{n}$. Further, if $m \ge n$, we have $Q \vdash \neg(\underline{m} < \underline{n})$.

Proof. For n=0, the result follows from Q7. Assume, then, that the results hold for k=n. We show both claims hold for k=n+1 as well.

First, suppose m < n + 1. Either m < n, and $Q \vdash \underline{m} < \underline{n}$ by the induction hypothesis, or m = n, and $Q \vdash \underline{m} = \underline{n}$ by Lemma 1. In either case, by Q8 and Rule T, we have that $Q \vdash \underline{m} < \underline{n+1}$.

Second, suppose $m \ge n+1$. Then m > n and by the induction hypothesis, $Q \vdash \neg(\underline{m} < \underline{n})$. By Lemma 1, we also have $Q \vdash \neg(\underline{m} = \underline{n})$. Again applying Q8 and Rule T, we have that $Q \vdash \neg(\underline{m} < n+1)$, as desired.

Lemma 5. For any relation $P \subset \omega^n$, P is representable in Q if and only if χ_P is representable.

Proof. Assume P is representable and that $\varphi(x_1 \dots x_n)$ represents P. Let

$$\psi(\overline{x},y) \equiv (\varphi(\overline{x}) \, \wedge \, y = 0) \, \vee \, (\neg \varphi(\overline{x}) \, \wedge \, y = \underline{1}).$$

We claim $\psi(\overline{x}, y)$ represents χ_P :

Suppose $P(k_1, \ldots, k_n)$ holds. Then $Q \vdash \varphi(k_1, \ldots, k_n)$. Now since

$$\varphi(k_1,\ldots,k_n) \to (y=0 \longleftrightarrow \psi(k_1,\ldots,k_n,y))$$

is a tautology, we have $Q \vdash y = 0 \longleftrightarrow \psi(\underline{k_1}, \dots, \underline{k_n}, y)$, as required. Similarly, if $\neg P(k_1, \dots, k_n)$ holds, then $Q \vdash \neg \varphi(\underline{k_1}, \dots, \underline{k_n})$, and since

$$\vdash \neg \varphi(k_1, \dots, k_n) \to (y = \underline{1} \longleftrightarrow \psi(k_1, \dots, k_n, y),$$

we obtain that $Q \vdash y = \underline{1} \longleftrightarrow \psi(\underline{k_1}, \dots, \underline{k_n}, y)$, as required. Thus, $\psi(\overline{x}, y)$ represents χ_P .

Assume now that $\psi(\overline{x}, y)$ represents χ_P . Then $\psi(\overline{x}, 0)$ represents P.

In particular, when $P(k_1, \ldots, k_n)$ holds, we have

$$Q \vdash \psi(k_1, \ldots, k_n, y) \longleftrightarrow y = 0.$$

Substitution of y by 0 yields $Q \vdash \psi(\underline{k_1}, \dots, \underline{k_n}, 0)$, as desired. Similarly, when $\neg P(k_1, \dots, k_n)$ holds, we have

$$Q \vdash \psi(\underline{k_1} \dots \underline{k_n}, y) \longleftrightarrow y = \underline{1},$$

and because $Q \vdash \neg (0 = \underline{1})$ we may conclude $Q \vdash \neg \psi(\underline{k_1} \dots \underline{k_n}, 0)$, as needed. Thus is P representable.

Lemma 6. For a formula φ in $\mathcal{L}_{\mathcal{N}}$,

$$Q \vdash \varphi_0^x \to \cdots \to (\varphi_{k-1}^x \to (x < \underline{k} \to \varphi))$$

Proof. The proof is by induction on k. When k is 0, we have

$$Q \vdash (x < 0 \rightarrow \varphi).$$

This is (vacuously) true by axiom Q7. Now, assume that

$$Q \vdash \varphi_0^x \to \ldots \to (\varphi_{k-1}^x \to (x < \underline{k} \to \varphi)).$$

We must show that

$$Q \vdash \varphi_0^x \to \cdots \to (\varphi_k^x \to (x < k+1 \to \varphi)).$$

Equivalently, we want to show that $\Gamma \vdash \varphi$ where $\Gamma = Q \cup \{\varphi_0^x, ..., \varphi_{\underline{k}}^x, x < \underline{k+1}\}$. By Q8, $\Gamma \vdash x < \underline{k} \lor x = \underline{k}$. In the first case, the inductive hypothesis implies that $\Gamma \vdash \varphi$, while in the latter case, $\models x = \underline{k} \to (\varphi_{\underline{k}}^x \longleftrightarrow \varphi)$, and hence $\Gamma \vdash \varphi$. By either route, Γ proves φ .

Lemma 7. If (a) $Q \vdash \neg \varphi_{\underline{k}}^x$ for each k < n, and (b) $Q \vdash \varphi_{\underline{n}}^x$, then for $z \neq x$ not appearing in φ ,

$$Q \vdash (\varphi \land \forall z (z < x \to \neg \varphi_z^x)) \longleftrightarrow x = \underline{n}.$$

Proof. We define

$$\psi \equiv (\varphi \wedge \forall z (z < x \to \neg \varphi_z^x)).$$

Now, we obtain

$$\models x = \underline{n} \to (\psi \longleftrightarrow (\varphi_n^x \land \forall z (z < \underline{n} \to \neg \varphi_z^x))). \tag{*}$$

By (a) and Lemma 6, we get

$$Q \vdash x < \underline{n} \to \neg \varphi, \tag{**}$$

and, applying substitution and generalization, we obtain

$$Q \vdash \forall z (z < \underline{n} \rightarrow \neg \varphi_z^x).$$

Combining this with (b) and (*), we conclude

$$Q \vdash x = \underline{n} \to \psi.$$

For the reverse implication, we note that

$$\models \forall z (z < x \rightarrow \neg \varphi_z^x) \rightarrow (\underline{n} < x \rightarrow \neg \varphi_n^x),$$

and thus (b) implies $Q \vdash \psi \to \neg(\underline{n} < x)$. Now $Q \cup \{\psi, x < \underline{n}\} \vdash \varphi \land \neg \varphi$ by (**) and the definition of ψ . Therefore $Q \vdash \psi \to \neg(x < \underline{n})$ and by Axiom Q9 we conclude $Q \vdash \psi \to x = \underline{n}$.

Representability Theorem. Every recursive function or relation is representable in Q.

Proof. It suffices to prove representability of functions having the forms enumerated in the definition of recursiveness:

R1. I_i^n , +, ·, and $\chi_{<}$.

The latter three are representable by Lemmas 2, 3, and 4. In particular, for +, say, we have that $\varphi(x_1, x_2, y) \equiv y = x_1 + x_2$ represents + in Q, since for any $m, n \in \omega$,

$$Q \vdash \underline{m} + \underline{n} = \underline{m+n},$$

$$Q \vdash y = m+n \longleftrightarrow y = m+n,$$

$$Q \vdash \varphi(\underline{m}, \underline{n}, y) \longleftrightarrow y = m + n$$
, and hence

$$Q \vdash \forall y (\varphi(m, n, y) \longleftrightarrow y = m + n),$$

as required. \cdot and $\chi_{<}$ are similar (with $\chi_{<}$ making additional use of Lemma 5).

 I_i^n is representable by $\varphi(x_1,\ldots,x_n,y)\equiv x_i=y$. In particular, for any $k_1,\ldots,k_n\in\omega$, $I_i^n(k_1,\ldots,k_n)=k_i$, and hence

$$Q \vdash \varphi(\underline{k_1}, \dots, \underline{k_n}, y) \longleftrightarrow y = \underline{k_i} \longleftrightarrow y = \underline{I_i^n(k_1, \dots, k_n)},$$

by our choice of φ . Generalization completes the result.

R2. $F(\overline{a}) = G(H_1(\overline{a}), \dots, H_k(\overline{a}))$, where G and each of the H_i are representable. Assume that G is represented in Q by φ and the H_i are represented in Q by ψ_i , respectively. We show that F is represented by

$$\alpha(\overline{x}, y) \equiv \exists z_1, \dots, z_k(\psi_1(\overline{x}, z_1) \land \dots \land \psi_k(\overline{x}, z_k) \land \varphi(z_1, \dots, z_k, y)).$$

In other word we want to show, for any $a_1, ..., a_n \in \omega$,

$$Q \vdash \alpha(a_1, \dots, a_n, y) \longleftrightarrow y = G(H_1(\overline{a}), \dots, H_k(\overline{a})) \tag{\dagger}$$

where $\overline{a} = (a_1...a_n)$.

Now, for $\Gamma = Q \cup \{\alpha(\underline{a_1}, \dots, \underline{a_n}, y)\}$, since the ψ_i represent H_i , we have that $\Gamma \vdash \exists z_1, \dots, z_k(z_1 = \underline{H_1(\overline{a})} \land \dots \land z_k = \underline{H_k(\overline{a})} \land \varphi(z_1, \dots, z_k, y))$. Hence we have

$$\Gamma \models \exists z_1, \ldots, z_k(\varphi(H_1(\overline{a}), \ldots, H_k(\overline{a}), y)),$$

and since the z_i do not appear,

$$\Gamma \models \varphi(H_1(\overline{a}), \dots, H_k(\overline{a}), y).$$

Since φ represents G, we have

$$\Gamma \models y = G(H_1(\overline{a}), \dots, H_k(\overline{a})),$$

as required.

On the other hand, for $\Sigma = Q \cup \{y = G(H_1(\overline{a}), \dots, H_k(\overline{a}))\},\$

$$\Sigma \vdash \varphi(H_1(\overline{a}), \ldots, H_k(\overline{a}), y)$$

$$\Sigma \vdash \exists z_1, \ldots, z_k(z_1 = H_1(\overline{a}) \land \cdots z_k = H_k(\overline{a}) \land \varphi(z_1, \ldots, z_k, y))$$

$$\Sigma \vdash \exists z_1, \ldots, z_k(\psi_1(\overline{a}, z_i) \land \cdots \psi_k(\overline{a}, z_k) \land \varphi(z_1, \ldots, z_k, y))$$

$$\Sigma \vdash \alpha(a_1,\ldots,a_n,y)$$

Thus (†) is established.

R3. $F(\overline{a}) = \mu x(G(\overline{a}, x) = 0)$, where G is representable in Q and for all \overline{a} there exists x such that $G(\overline{a}, x) = 0$, is representable in Q.

Assume G is represented in Q by $\varphi(x_1, \ldots, x_n, x, y)$. Let

$$\psi(x_1, \dots, x_n, x) \equiv \varphi_0^y \wedge \forall z(z < x \to \neg \varphi_{0z}^{yx}).$$

Let $F(\overline{a}) = b$ and $k_i = G(\overline{a}, i)$ for $i \in \omega$. Then

$$Q \vdash \varphi(a_1, \ldots, a_n, \underline{i}, y) \longleftrightarrow y = k_i,$$

thus

$$Q \vdash \varphi(\underline{a_1}, \dots, \underline{a_n}, \underline{i}, 0) \longleftrightarrow 0 = \underline{k_i},$$

. Hence now if j < b, so that $k_j \neq 0$, then

$$Q \vdash \neg \varphi(a_1, \ldots, a_n, j, 0).$$

On the other hand, $k_b = 0$, so

$$Q \vdash \varphi(a_1, \ldots, a_n, \underline{b}, 0).$$

Hence, by Lemma 7,

$$Q \vdash (\varphi(\overline{a}, x, y)_0^y \land \forall z(z < x \to \neg \varphi(\overline{a}, x, y)_{0z}^y)) \longleftrightarrow x = \underline{b},$$

and thus,

$$Q \vdash \psi(\overline{a}, x) \longleftrightarrow x = \underline{b}.$$

By generalization, we have that ψ represents F in Q, as desired.

Step 2: Axiomatizable Complete Theories are Decidable

We begin by showing that we may encode terms and formulas of a reasonable language in such a way that important classes of formulas, e.g., the logical axioms, are mapped to recursive subsets of the natural numbers. We use this to derive the main result.

Definition. Let \mathcal{L} be a countable language with subsets \mathcal{C} , \mathcal{F} , and \mathcal{P} of constant, function, and predicate symbols, respectively (= $\in \mathcal{P}$). Let \mathcal{V} be a set of variables for \mathcal{L} . \mathcal{L} is called reasonable if the following two functions exist:

- $h: \mathcal{L} \cup \{\neg, \rightarrow, \forall\} \cup \mathcal{V} \to \omega$ injective such that $\underline{\mathcal{V}} = h(\mathcal{V}), \underline{\mathcal{C}} = h(\mathcal{C}), \underline{\mathcal{F}} = h(\mathcal{F}),$ and $\underline{\mathcal{P}} = h(\mathcal{P})$ are all recursive.
- AR : $\omega \to \omega \setminus \{0\}$ recursive such that AR(h(f)) = n and AR(h(P)) = n for n-ary function and predicate symbols f and P.

For the rest of this note, the language \mathcal{L} is countable and reasonable.

Now we define a coding []: { \mathcal{L} -terms and \mathcal{L} -formulas} $\to \omega$ inductively, by

• For
$$x \in \mathcal{V} \cup \mathcal{C}$$
, $\lceil x \rceil = \langle h(x) \rangle$.

• For \mathcal{L} -terms u_1, \ldots, u_n and n-ary $f \in \mathcal{F}$,

$$\lceil f u_1 u_2 \dots u_n \rceil = \langle h(f), \lceil u_1 \rceil, \lceil u_2 \rceil, \dots, \lceil u_n \rceil \rangle.$$

• For \mathcal{L} -terms t_1, \ldots, t_n and $P \in \mathcal{P}$,

$$\lceil Pt_1t_2 \dots t_n \rceil = \langle h(P), \lceil t_1 \rceil, \dots, \lceil t_n \rceil \rangle.$$

• For \mathcal{L} -formulas φ and ψ ,

$$\begin{split} \lceil \varphi \to \psi \rceil &= < h(\to), \lceil \varphi \rceil, \lceil \psi \rceil >, \\ \lceil \neg \varphi \rceil &= < h(\neg), \lceil \varphi \rceil >, \\ \lceil \forall x \varphi \rceil &= < h(\forall), \lceil x \rceil, \lceil \varphi \rceil >. \end{split}$$

Note that our definition of $\lceil \rceil$ is one-to-one. Given a term or formula σ , we call $\lceil \sigma \rceil$ the Gödel number of σ .

We show the following predicates and functions are recursive (We follow definitions for syntax in [E].):

 $(1) \ \ Vble = \{\lceil v \rceil \mid v \in \mathcal{V}\} \subset \omega \ \ \text{and} \ \ Const = \{\lceil c \rceil \mid c \in \mathcal{C}\} \subset \omega.$

Proof. Note

Vble(x) iff
$$x = \langle (x)_1 \rangle \land \underline{\mathcal{V}}((x)_1)$$
,
Const(x) iff $x = \langle (x)_1 \rangle \land \underline{\mathcal{C}}((x)_1)$.

(2) $Term = \{ \lceil t \rceil \mid t \text{ an } \mathcal{L}\text{-term} \} \subset \omega.$

Proof. Note

$$\textit{Term}(a) \text{ iff } \begin{cases} \forall j < (\textit{lh}(a) \dot{-}1) \; \textit{Term}((a)_{j+2}) & \text{if } \textit{Seq}(a) \, \land \, \underline{\mathcal{F}}((a)_1) \\ & \wedge \, \text{AR}((a)_1) = \textit{lh}(a) \dot{-}1, \\ \textit{Vble}(a) \, \lor \, \textit{Const}(a) & \text{otherwise.} \end{cases}$$

(3) $AtF = \{ [\sigma] \mid \sigma \text{ an atomic } \mathcal{L}\text{-formula} \} \subset \omega.$

Proof. Note

$$AtF(a) \text{ iff } Seq(a) \land \underline{\mathcal{P}}((a)_1) \land (AR((a)_1) = lh(a)\dot{-}1)$$
$$\land \forall j < (lh(a)\dot{-}1) \ (Term((a)_{j+2})).$$

(4) $Form = \{ [\varphi] \mid \varphi \text{ an } \mathcal{L}\text{-formula} \} \subset \omega.$

Proof. Note

$$Form(a) \text{ iff } \begin{cases} Form((a)_2) & \text{if } a = < h(\neg), (a)_2 >, \\ Form((a)_2) \wedge Form((a)_3) & \text{if } a = < h(\rightarrow), (a)_2, (a)_3 >, \\ Vble((a)_2) \wedge Form((a)_3) & \text{if } a = < h(\forall), (a)_2, (a)_3 >, \\ AtF(a) & \text{otherwise.} \end{cases}$$

(5) $Sub: \omega^3 \to \omega$, such that $Sub(\lceil t \rceil, \lceil x \rceil, \lceil u \rceil) = \lceil t_u^x \rceil$ and $Sub(\lceil \varphi \rceil, \lceil x \rceil, \lceil u \rceil) = \lceil \varphi_u^x \rceil$ for terms t and u, variable x, and formula φ .

Proof. Define

$$Sub(a,b,c) = \begin{cases} c & \text{if } Vble(a) \land a = b, \\ <(a)_1, Sub((a)_2, b, c), \dots & \text{if } lh(a) > 1 \land (a)_1 \neq h(\forall) \\ \dots, Sub((a)_{lh(a)}, b, c) > & \land Seq(a), \\ <(a)_1, (a)_2, Sub((a)_3, b, c) > & \text{if } a = < h(\forall), (a)_2, (a)_3 >, \\ & & \land (a)_2 \neq b \\ a & \text{otherwise.} \end{cases}$$

Note that, if well-defined, the function has the properties desired above.

We show Sub is well-defined by induction on a: a = 0 falls into the first or last category since lh(0) = 0, hence Sub(0, b, c) is well-defined for all $b, c \in \omega$. If $a \neq 0$, then $(a)_i < a$ for all $i \leq lh(a)$, and thus we may assume the values $Sub((a)_i, b, c)$ are well-defined, showing Sub(a, b, c) to be well-defined in all cases.

(6) Free $\subset \omega^2$, such that for formula φ , term τ , and variable x, Free($\lceil \varphi \rceil, \lceil x \rceil$) if and only if x occurs free in φ , and Free($\lceil \tau \rceil, \lceil x \rceil$) if and only if x occurs in τ

Proof. Define

$$Free(a,b) \text{ iff } \begin{cases} \exists j < (lh(a) \dot{-}1) \left(Free((a)_{j+2},b)\right) & \text{if } lh(a) > 1 \ \land \ (a)_1 \neq h(\forall), \\ Free((a)_3,b) \ \land \ (a)_2 \neq b & \text{if } lh(a) > 1 \ \land \ (a)_1 = h(\forall), \\ a = b & \text{otherwise.} \end{cases}$$

Free clearly has the desired property, and that it is well-defined follows by essentially the same induction on a as above.

(7) $Sent = \{ [\varphi] \mid \varphi \text{ is an } \mathcal{L}\text{-sentence} \} \subset \omega.$

Proof. Note

$$Sent(a) \text{ iff } Form(a) \land \forall b < a (\neg Vble(b) \lor \neg Free(a,b)).$$

(8) $Subst(a,b,c) \subset \omega^3$ such that for a given formula φ , variable x, and term t, $Subst([\varphi],[x],[t])$ if and only if t is substitutable for x in φ .

Proof. Define

$$Subst(a,b,c) \text{ if } a = \langle h(\neg), (a)_2 \rangle, \\ Subst((a)_2,b,c) \wedge Subst((a)_3,b,c) & \text{if } a = \langle h(\neg), (a)_2 \rangle, \\ \neg Free(a,b) \vee (\neg Free(c,(a)_2) & \text{if } a = \langle h(\forall), (a)_2, (a)_3 \rangle, \\ \wedge Subst((a)_3,b,c)) & \\ 0 = 0 & \text{otherwise.} \end{cases}$$

Note that *Subst* has the desired property, and is well-defined by essentially the same induction used above.

(9) We define

$$False(a,b) \text{ iff } \begin{cases} \neg False((a)_2,b) \, \wedge \, False((a)_3,b) & \text{if } a = < h(\rightarrow), (a)_2, (a)_3 > \\ & \wedge \, Form((a)_2) \, \wedge \, Form((a)_3), \\ \neg False((a)_2,b) & \text{if } a = < h(\neg), (a)_2 > \wedge \, Form((a)_2), \\ Form(a) \, \wedge \, (b)_a = 0 & \text{otherwise.} \end{cases}$$

False is recursive by the same induction as applied above. We note the significance of False presently.

To each $b \in \omega$, we may associate a truth assignment v_b such that for a prime formula ψ (atomic or of the form $\forall x \varphi$),

$$v_b(\psi) = F \text{ iff } (b)_{\lceil \psi \rceil} = 0.$$

Further, for any truth assignment $v: A \to \{T, F\}$, where A is a finite set of prime formulas, there exists a b such that $v = v_b$: we may write $A = \{\varphi_1, \dots, \varphi_n\}$ such that $\lceil \varphi_1 \rceil < \lceil \varphi_2 \rceil < \dots < \lceil \varphi_n \rceil$. For $1 \le j \le \lceil \varphi_n \rceil$ define $c_j = 0$ when $j = \lceil \varphi_i \rceil$ for some $i \le n$ and $v(\varphi_i) = F$, and $c_j = 1$ otherwise. Then $b = \langle c_1, \dots, c_{\lceil \varphi_n \rceil} \rangle$ satisfies $v_b = v$ on A.

Then moreover, for any formula φ built up from A,

$$\overline{v}(\varphi) = F \text{ iff } \overline{v_b}(\varphi) = F \text{ iff } False(\lceil \varphi \rceil, b).$$

(10) Define $Taut = \{ \lceil \sigma \rceil \mid \sigma \text{ is a tautology} \} \subset \omega$.

Proof. Recall $bd : \omega \to \omega$ such that $bd(a) = \max\{\langle c_1, \ldots, c_a \rangle \mid c_i \in \{0,1\}\}$, recursive, has been previously defined. Define

$$Taut(a) \text{ iff } Form(a) \land \forall b < (bd(a) + 1) (\neg False(a, b)).$$

(11) $\underline{AG2} = \{ [\varphi] \mid \varphi \text{ is in axiom group } 2 \} \subset \omega.$

Proof. Recall axiom group 2 contains formulas of the form $\forall x\psi \to \psi_t^x$, with term t substitutable for x in ψ . Thus

where $\exists x, y, z < a P(x, y, z)$ abbreviates what one would expect.

(12) $\underline{AG3} = \{ [\varphi] \mid \varphi \text{ is in axiom group } 3 \} \subset \omega.$

Proof. Recall we take axiom group 3 to be the formulas having the following form: $\forall x(\psi \to \psi') \to (\forall x\psi \to \forall x\psi')$. Thus

(13) $\underline{AG4} = \{ [\varphi] \mid \varphi \text{ is in axiom group } 4 \} \subset \omega.$

Proof. Recall axiom group 4 contains formulas of the form $\psi \to \forall x\psi$, where x does not occur free in ψ . Thus

$$\underline{\text{AG4}}(a) \text{ iff } \exists x, y < a \ (Vble(x) \land Form(y) \\ \land \neg Free(y, x) \land a = < h(\rightarrow), y, < h(\forall), x, y >>)$$

(14) AG5 = { $\lceil \varphi \rceil \mid \varphi \text{ is in axiom group 5} \} \subset \omega$.

Proof. Recall axiom group 5 contains formulas of the form x = x, for a variable x, hence

$$\underline{\mathrm{AG5}}(a) \text{ iff } \exists x < a \ (\mathit{Vble}(x) \ \land \ a = < h(=), x, x >).$$

(15) $AG6 = \{ [\varphi] \mid \varphi \text{ is in axiom group } 6 \} \subset \omega.$

Proof. Recall formulas of axiom group 6 have the form $x = y \to (\psi \to \psi')$, where ψ is an atomic formula and ψ' is obtained by from ψ by replacing one or more occurrences of x with y. Thus

$$\underline{AG6}(a) \text{ iff } \exists x, y, b, c < a \text{ } (Vble(x) \land Vble(y) \land AtF(b) \land AtF(c)$$

$$\land lh(b) = lh(c) \land \forall j < lh(b) + 1((c)_j = (b)_j \lor ((c)_j = y \land (b)_j = x))$$

$$\land a = \langle h(\rightarrow), \langle h(=), x, y \rangle, \langle h(\rightarrow), b, c \rangle \rangle$$

(16) $Gen(a,b) \subset \omega^2$, such that $Gen([\varphi], [\psi])$ if and only if φ is a generalization of ψ (i.e., $\varphi = \forall x_1 \dots \forall x_n \psi$ for some finite $\{x_i\} \subset \mathcal{V}$).

Proof. Note that

Froof. Note that
$$\begin{cases} a = \langle h(\forall), (a)_2, (a)_3 \rangle \land Vble((a)_2) \land Gen((a)_3, b) & \text{if } a > b, \\ 0 = 0 & \text{if } a = b, \\ 0 = 1 & \text{if } a < b. \end{cases}$$

(17) $\Lambda = \{ [\sigma] \mid \sigma \in \Lambda \} \subset \omega$, where Λ is the set of logical axioms.

Proof. Note that

$$\underline{\Lambda}(a) \text{ iff } \exists b < a + 1 \ (Form(a) \land Gen(a, b))$$

 $\wedge (Taut(b) \lor \underline{AG2}(b) \lor \underline{AG3}(b) \lor \underline{AG4}(b) \lor \underline{AG5}(b) \lor \underline{AG6}(b)))$

We have, to this point, defined three codings: <> on sequences of natural numbers, h on the language and logical symbols, and $\lceil \rceil$ on the terms and formulas. We presently define a fourth coding, of sequences of formulas:

$$[]$$
: {sequences of \mathcal{L} -formulas} $\rightarrow \omega$,

given by

$$\llbracket \varphi_1, \dots, \varphi_n \rrbracket = \langle [\varphi_1], \dots, [\varphi_n] \rangle.$$

This map is one-to-one, as it is derived from the established (injective) codings, and in particular, we can determine, for a given number, if it lies in the image of [], and, if so, recover the associated sequence of formulas.

Definition. Given \mathcal{L} , let T be a theory (a collection of sentences) in \mathcal{L} . Define

$$\underline{T} = \{ \lceil \sigma \rceil \mid \sigma \in T \}.$$

We say that T is **axiomatizable** if there exists a theory S, axiomatizing T (that is, such that $\operatorname{Cn} S = \operatorname{Cn} T$), such that \underline{S} is recursive. We say that T is **decidable** if $\operatorname{Cn} T$ is recursive.

We shall make use of the following relations:

• $Ded_T = \{ \llbracket \varphi_1, \dots, \varphi_n \rrbracket \mid \varphi_1, \dots, \varphi_n \text{ is a deduction from } T \} \subset \omega.$ Note that

 $Ded_T(a)$ iff $Seq(a) \wedge lh(a) \neq 0$

$$\land \forall j < lh(a) \ (\underline{\Lambda}((a)_{j+1}) \lor \underline{T}((a)_{j+1}) \lor \exists i, k < j+1 \ ((a)_{k+1} = < h(\rightarrow), (a)_{i+1}, (a)_{j+1} >))$$

- $Prf_T \subset \omega^2$, given by $Prf_T(a,b)$ iff $Ded_T(b) \wedge a = (b)_{lh(b)}$.
- $Pf_T \subset \omega$, given by $Pf_T(a)$ iff $Sent(a) \wedge \exists x Prf_T(a, x)$.

Note that we may read $Prf_T(a,b)$ as "b is a proof of a from T," and $Pf_T(a)$ as "a is a sentence provable from T." In particular

$$Pf_T = \underline{\operatorname{Cn} T} = \{ \lceil \sigma \rceil \mid T \vdash \sigma \}.$$

We use this fact to prove the following:

Theorem. If T is axiomatizable, then $Pf_T = \underline{\operatorname{Cn} T}$ is recursively enumerable.

Proof. Let S axiomatize T, where S is recursive. From the above definitions, we see that Ded_S and Prf_S are recursive relations, hence Pf_S is an r.e. relation. But $Pf_S = Pf_T$, since $\operatorname{Cn} S = \operatorname{Cn} T$.

Theorem. If T is axiomatizable and complete in \mathcal{L} , then T is decidable.

Proof. By the negation theorem, it suffices to show that $\neg Pf_T$ is recursively enumerable. Note that since T is complete, for any sentence σ , $T \nvdash \sigma$ if and only if $T \vdash \neg \sigma$. Hence

$$\neg Pf_T(a) \text{ iff } \neg Sent(a) \lor \exists m Prf_T(< h(\neg), a>, m)$$
$$\text{iff } \exists m(\neg Sent(a) \lor Prf_T(< h(\neg), a>, m)).$$

Thus $\neg Pf_T$ is recursively enumerable, and Pf_T is recursive.

We can see that if we say T is axiomatizable in wider sense when S axiomatizing T is recursively enumerable, then the above two theorems still hold with this seemingly weaker notion. In fact, two notions are equivalent, which is known as Craig's Theorem.

Step 3: The Incompleteness Theorems and Other Results

We return now to the language of natural numbers, $\mathcal{L}_{\mathcal{N}}$. Recall that we define, for a natural number n,

$$\underline{n} \equiv \underbrace{SS \dots S}_{n} 0.$$

Definition. The diagonalization of an $\mathcal{L}_{\mathcal{N}}$ formula φ is a new formula

$$d(\varphi) \equiv \varphi^{v_0}_{\lceil \varphi \rceil}.$$

Lemma. There exist recursive functions $num : \omega \to \omega$ and $dg : \omega \to \omega$ such that respectively,

$$num(n) = \lceil \underline{n} \rceil,$$

and for any $\mathcal{L}_{\mathcal{N}}$ formula φ ,

$$dg(\lceil \varphi \rceil) = \lceil d(\varphi) \rceil.$$

Proof. Let $num(0) = \langle h(0) \rangle$ and, for $n \in \omega$ we let

$$num(n+1) = \langle h(S), num(n) \rangle.$$

Then it follows $num(n) = \lceil \underline{n} \rceil$.

Define

$$dg(a) = Sub(a, \lceil v_0 \rceil, num(a)),$$

where $Sub: \omega^3 \to \omega$ is introduced in Step 2, (5). Then

$$dg(\lceil \varphi \rceil) = Sub(\lceil \varphi \rceil, \lceil v_0 \rceil, \lceil \lceil \varphi \rceil)) = \lceil d(\varphi) \rceil,$$

as wanted.

Fixed Point Theorem (Gödel). For any $\mathcal{L}_{\mathcal{N}}$ -formula $\varphi(x)$ (i.e., either a sentence or a formula having x as the only free variable), there is some $\mathcal{L}_{\mathcal{N}}$ -sentence σ such that

$$Q \vdash \sigma \longleftrightarrow \varphi(\lceil \sigma \rceil).$$

Proof. Since dq is recursive, it is representable in Q by Step 1, say by $\psi(x,y)$. Then

$$Q \vdash \forall y (\psi(\underline{n}, y) \longleftrightarrow y = dg(n)).$$

Let $\delta(v_0) \equiv \exists y (\psi(v_0, y) \land \varphi(y))$, and let $n = \lceil \delta(v_0) \rceil$. Define

$$\sigma \equiv d(\delta(v_0)) \equiv \exists y (\psi(\underline{n}, y) \land \varphi(y)).$$

Now we let $k = dg(n) = dg(\lceil \delta(v_0) \rceil) = \lceil \sigma \rceil$, then

$$Q \vdash \psi(\underline{n}, y) \longleftrightarrow y = \underline{k}.$$

Therefore

$$Q \vdash \sigma \longleftrightarrow \exists y(y = \underline{k} \land \varphi(y)) \longleftrightarrow \varphi(\underline{k}) \longleftrightarrow \varphi(\lceil \sigma \rceil),$$

as required.

Tarski Undefinability Theorem. $\underline{\operatorname{Th} \mathcal{N}} = \{ [\sigma] \mid \mathcal{N} \models \sigma \} \text{ is not definable.}$

Proof. Suppose $\underline{\operatorname{Th}} \underline{\mathcal{N}}$ were definable by $\beta(x)$. Then by the fixed point lemma, with $\varphi = \neg \beta$, there exists a sentence σ such that

$$\mathcal{N} \models \sigma \longleftrightarrow \neg \beta(\lceil \sigma \rceil).$$

Then $\mathcal{N} \models \sigma$ implies that $\mathcal{N} \not\models \beta(\underline{\lceil \sigma \rceil})$, implying $\mathcal{N} \not\models \sigma$, or $\mathcal{N} \models \neg \sigma$, since Th \mathcal{N} is complete. On the other hand, $\overline{\mathcal{N}} \not\models \sigma$ implies $\mathcal{N} \models \neg \sigma$, and thus that $\mathcal{N} \models \beta(\underline{\lceil \sigma \rceil})$, implying $\mathcal{N} \models \sigma$. The contradictions together imply that β cannot represent Th $\overline{\mathcal{N}}$.

Strong Undecidability of Q. Let T be a theory in $\mathcal{L} \supset \mathcal{L}_{\mathbb{N}}$. If $T \cup Q$ is consistent in \mathcal{L} , then T is not decidable in \mathcal{L} (Cn T is not recursive).

Proof. Assume that $\underline{\operatorname{Cn} T}$ is recursive. We first show that this implies recursiveness of $\underline{\operatorname{Cn}(T \cup Q)}$. Since Q is finite, it suffices to show that for any sentence τ in the language, $\operatorname{Cn}(T \cup \{\tau\})$ is recursive.

In particular, note that $\alpha \in \operatorname{Cn}(T \cup \{\tau\})$ iff $\tau \to \alpha \in \operatorname{Cn} T$. Thus

$$a \in \operatorname{Cn}(T \cup \{\tau\}) \text{ iff } \operatorname{Sent}(a) \land \langle h(\to), \lceil \tau \rceil, a \rangle \in \operatorname{Cn} T.$$

Hence $\operatorname{Cn}(T \cup \{\tau\})$ is recursive, as desired.

To prove the theorem, then, it suffices to show that $Cn(T \cup Q)$ is not recursive. If this were the case, then it would be representable, say by $\beta(x)$, in Q. By the fixed point lemma, there exists an $\mathcal{L}_{\mathcal{N}}$ sentence σ such that

$$Q \vdash \sigma \longleftrightarrow \neg \beta(\lceil \sigma \rceil).$$

If $T \cup Q \vdash \sigma$, then

$$Q \vdash \beta(\lceil \sigma \rceil),$$

by the representability of $Cn(T \cup Q)$ by $\beta(x)$ in Q. In particular,

$$Q \vdash \neg \sigma$$
,

a contradiction. On the other hand, if $T \cup Q \nvdash \sigma$, then by representability,

$$Q \vdash \neg \beta(\lceil \sigma \rceil),$$

and hence

$$Q \vdash \sigma$$
,

a contradiction, implying that $\underline{\mathrm{Cn}(T \cup Q)}$ is not representable, and hence not recursive.

Corollary. Th \mathbb{N} , PA, and Q are all undecidable.

Proof. We need note only that each of these theories is consistent with Q.

Moreover, we have:

Undecidability of First Order Logic (Church). For a reasonable countable language $\mathcal{L} \supset \mathcal{L}_N$, the set of all Gödel numbers of valid sentences $(\{\lceil \sigma \rceil \mid \emptyset \vdash \sigma\})$ is not recursive (the set of valid sentences is not decidable).

In fact, the above corollary is true for any countable \mathcal{L} containing a k-ary predicate or function symbol, $k \geq 2$, or at least two unary function symbols.

Gödel-Rosser First Incompleteness Theorem. If T is a theory in a countable reasonable $\mathcal{L} \supset \mathcal{L}_{\mathcal{N}}$, with $T \cup Q$ consistent and T axiomatizable, then T is not complete.

Proof. By Step 2, if T is complete, then T is decidable, contradicting the strong undecidability of Q.

Remarks. In $(\mathcal{N}, +)$, 0, <, and S are definable. Hence the same result follows if we take $\mathcal{L}'_{\mathcal{N}} = \{+, \cdot\}$ instead of our usual $\mathcal{L}_{\mathcal{N}}$. In particular, $\operatorname{Th}(\mathcal{N}, +, \cdot)$ is undecidable, and for any $T' \supset Q'$ (where Q' is simply Q written in the language of $\mathcal{L}'_{\mathcal{N}}$), we have that T' is, if consistent, undecidable, and, if axiomatizable, incomplete.

It is important to note that for an undecidable theory T, we may have $T \subset T'$, where T' is a decidable theory. As an example, the theory of groups is undecidable, whereas the theory of divisible torsion-free groups is decidable.

We turn our attention now to the proof of the result used in Gödel's original paper. In particular, Gödel worked in the model $(\mathcal{N}, +, \cdot, 0, <, E)$. (Note that E, exponentiation, is definable in $(\mathcal{N}, +, \cdot, 0, <)$, or, equivalently, $(\mathcal{N}, +, \cdot)$).

Let $T \supset Q$ be a consistent theory in a reasonable countable language $\mathcal{L} \supset \mathcal{L}_{\mathcal{N}}$, and presume that T is recursive. Then

$$T \vdash \sigma \Rightarrow Q \vdash Pf_T(\lceil \sigma \rceil).$$

In particular, $T \vdash \sigma$ implies that $Prf_T([\underline{\sigma}], m)$ for some $m \in \omega$. Since Prf_T is recursive, it is representable in Q, hence $Q \vdash Prf_T([\sigma], \underline{m})$, and

$$Q \vdash \exists x Prf_T(\lceil \sigma \rceil, x),$$

or

$$Q \vdash Pf_T(\lceil \sigma \rceil).$$

By the fixed point lemma, there exists a sentence α such that

$$T \supset Q \vdash \alpha \longleftrightarrow \neg Pf_T(\lceil \alpha \rceil). \tag{*}$$

If $T \vdash \alpha$, then $Q \vdash Pf_T(\lceil \alpha \rceil)$, and thus $Q \vdash \neg \alpha$, and hence $T \vdash \neg \alpha$, a contradiction. Thus $T \nvdash \alpha$.

On the other hand, if T is ω -consistent (i.e., whenever $T \vdash \exists x \varphi(x)$, then for some $n \in \omega$, $T \nvdash \neg \varphi(\underline{n})$), then $T \nvdash \neg \alpha$. In particular, if $T \vdash \neg \alpha$, then

$$T \vdash Pf_T(\lceil \alpha \rceil),$$

by (*). That is,

$$T \vdash \exists x Prf_T(\lceil \alpha \rceil, x).$$

However, if $Prf_T(\lceil \underline{\alpha} \rceil, m)$ for some $m \in \omega$, then $T \vdash \alpha$, contradicting the consistency of T. Thus we must have $\neg Prf_T(\lceil \underline{\alpha} \rceil, m)$ for all $m \in \omega$. Since Q represents Prf_T ,

$$T\supset Q \vdash \neg \mathit{Prf}_T(\underline{\lceil \alpha \rceil}, m)$$

for all $m \in \omega$, contradicting the ω -consistency of T.

Rosser generalized Gödel's proof by singling out for T a sentence α such that $T \nvdash \alpha$ and $T \nvdash \neg \alpha$, without the assumption of ω -consistency.

We now begin our approach to Gödel's Second Incompleteness Theorem. We fix T, a theory in a countable reasonable language $\mathcal{L} \supset \mathcal{L}_{\mathcal{N}}$.

We note the following fact from Hilbert and Bernays' Grundlagen der Mathematik, 1934.

Fact. If T is consistent, $T \vdash PA$, and \underline{T} is recursive, then for any sentences σ and δ in \mathcal{L} ,

I.
$$T \vdash \sigma \Rightarrow Q \vdash Pf_T(\lceil \sigma \rceil)$$

II. $PA \vdash (Pf_T(\lceil \sigma \rceil) \land Pf_T(\lceil \sigma \to \delta \rceil)) \to Pf_T(\lceil \delta \rceil)$
III. $PA \vdash Pf_T(\lceil \sigma \rceil) \to Pf_T(\lceil \rho T \rceil)$

Notation. We will write $Con_T \equiv \neg Pf_T([0 \neq 0])$. Clearly Con_T holds if and only if T is consistent.

Lemma. If $T \vdash \sigma \to \delta$, then $PA \vdash Pf_T(\lceil \sigma \rceil) \to Pf_T(\lceil \delta \rceil)$.

Proof. If $T \vdash \sigma \to \delta$, then by (I) above,

$$PA \vdash Pf_T(\lceil \sigma \to \delta \rceil),$$

and by (II),

$$PA \vdash Pf_T(\lceil \sigma \rceil) \to Pf_T(\lceil \delta \rceil).$$

Gödel's Second Incompleteness Theorem. If T is consistent, \underline{T} is recursive, and $T \vdash PA$, then $T \nvdash Con_T$.

Proof. By the fixed point lemma, there exists σ such that

$$Q \vdash \sigma \longleftrightarrow \neg Pf_T(\lceil \sigma \rceil). \tag{\dagger}$$

By (III), above,

$$PA \vdash Pf_T(\lceil \underline{\sigma} \rceil) \to Pf_T(\lceil Pf_T(\lceil \underline{\sigma} \rceil) \rceil).$$
 (‡)

And further, by Lemma, we have

$$PA \vdash Pf_T\left([Pf_T(\underline{\lceil \sigma \rceil})] \right) \to Pf_T(\underline{\lceil \neg \sigma \rceil}).$$

Combining this result with (‡), we have

$$PA \vdash Pf_T(\lceil \sigma \rceil) \to Pf_T(\lceil \neg \sigma \rceil).$$

Now note that $\vdash \neg \sigma \longleftrightarrow (\sigma \to (0 \neq 0))$. By the lemma,

$$PA \vdash Pf_T(\lceil \sigma \rceil) \to Pf_T(\lceil \sigma \to (0 \neq 0) \rceil).$$

In particular,

$$PA \vdash Pf_T(\lceil \sigma \rceil) \to Pf_T(\lceil \sigma \rceil) \land Pf_T(\lceil \sigma \to (0 \neq 0) \rceil),$$

hence, by (II),

$$PA \vdash Pf_T(\lceil \sigma \rceil) \to Pf_T(\lceil 0 \neq 0 \rceil),$$

i.e.

$$PA \vdash Pf_T(\lceil \sigma \rceil) \to \neg Con_T.$$

Thus $PA \vdash Con_T \rightarrow \sigma$, by (†).

Now, suppose that $T \vdash Con_T$. Then $T \vdash \sigma$, and hence by (I), $T \supset Q \vdash Pf_T(\lceil \sigma \rceil)$. But again, by (\dagger) , this implies that $T \vdash \neg \sigma$, a contradiction, showing that T cannot prove its own consistency.

We remark that one may carry the proof through using only the assumption that \underline{T} is recursively enumerable.

Löb's Theorem. Suppose T is a consistent theory in $\mathcal{L} \supset \mathcal{L}_{\mathbb{N}}$, such that \underline{T} recursive, and $T \vdash PA$. Then for any \mathcal{L} -sentence σ , if $T \vdash Pf_T([\underline{\sigma}]) \to \sigma$, then $T \vdash \sigma$.

Proof. By the fixed point lemma, there exists δ such that

$$Q \vdash \delta \longleftrightarrow (Pf_T(\lceil \delta \rceil) \to \sigma).$$

Since $T \vdash PA \supset Q$, T proves the same result. From this we may deduce that

$$PA \vdash Pf_T(\lceil \delta \rceil) \to Pf_T(\lceil \sigma \rceil).$$

In particular, by our lemma, we have

$$\mathit{PA} \vdash \mathit{Pf}_T(\underline{\lceil \delta \rceil}) \to \mathit{Pf}_T\left(\underline{\lceil \mathit{Pf}_T(\underline{\lceil \delta \rceil}) \to \sigma \rceil}\right),$$

and, combining this with (III) from above,

$$PA \vdash Pf_{T}(\lceil \underline{\delta} \rceil) \to Pf_{T}\left(\lceil Pf_{T}(\lceil \underline{\delta} \rceil) \rceil\right) \land Pf_{T}\left(\lceil Pf_{T}(\lceil \underline{\delta} \rceil) \to \sigma \rceil\right),$$

and thus, by (II),

$$PA \vdash Pf_T(\lceil \delta \rceil) \to Pf_T(\lceil \sigma \rceil),$$

as desired.

Now assume that $T \vdash Pf_T(\lceil \sigma \rceil) \to \sigma$. Then, by the above,

$$T \vdash Pf_T(\lceil \delta \rceil) \to \sigma.$$

By our choice of δ , this in turn implies that $T \vdash \delta$. By (I), we have that $Q \vdash Pf_T(\lceil \delta \rceil)$, and hence T proves the same result, implying that $T \vdash \sigma$, as desired.

Remark. Gödel's Second Incompleteness Theorem in fact follows from Löb's Theorem. In particular, given T as in the hypotheses of both theorems, if $T \vdash Con_T$, then

$$T \vdash Pf_T(\lceil 0 \neq 0 \rceil) \to 0 \neq 0.$$

But by Löb's Theorem, this in turn implies that $T \vdash 0 \neq 0$, showing that such a theory, if consistent, cannot prove its own consistency.

References

- [BJ] G. S. Boolos and R. C. Jeffrey, Computability and logic.
- $[\mathbf{E}] \ \ \mathbf{H.} \ \mathbf{Enderton}, \ A \ mathematical \ introduction \ to \ logic.$
- [Sh] J. R. Shoenfield, Mathematical logic.
- [Sm] R. M. Smullyan, Gödel's incompleteness theorems.