

WORKSHOP P&D D0636

Modelagem Estatístico-Computacional do Modelo de Negócio da Cemig Distribuição Utilizando Bases de Dados e Conhecimento Técnico

Modelos Multi Camadas aplicados ao estudo do índice DEC

Prof. Dr. Marcelo Azevedo Costa Equipe UFMG Equipe CEMIG-D

Agenda

- Análise Exploratória do índice DEC
- II. Modelos paramétricos para o índice DEC
- III. Modelos multi-camadas para o índice DEC

Statistical Modeling: The Two Cultures

Leo Breiman

Statistical Science, Vol. 16, No. 3 (Aug., 2001), pp. 199-215

- a) Focus on finding a good solution that's what consultants get paid for;
- b) Live with the data before you plunge into modeling;
- search for a model that gives a good solutions, either algorithmic or data;
- d) predictive accuracy on test sets is the criterion for how good the model is;

O indice DEC

DEC: Duração Equivalente de interrupção por unidade Consumidora - Intervalo de tempo que, em média, no período de apuração, em cada unidade consumidora do conjunto considerado ocorreu descontinuidade da distribuição de energia elétrica.

 A continuidade do fornecimento é avaliada pela ANEEL através de subdivisões das distribuidoras, denominadas Conjuntos Elétricos.

O indice DEC

Variáveis preditoras selecionadas

Fatores Latentes	Variáveis que compõem o fator latente	
Ativos Geográficos	Área de atendimento (km²)	
	Extensão de estradas na área de atendimento (km)	
	Número de municípios atendidos	
	Número de locais atendidos (por definição da CEMIG)	
Ativos Elétricos 1	Extensão das linhas de distribuição (km)	
	Extensão da rede de distribuição (km)	
	Número total de clientes atendidos	
Ativos Elétricos 2	Número de subestações	
	Número de equipamentos de proteção	
	Número de equipamentos automatizados	
Variáveis Climáticas	Índice de umidade no período (%)	
	Temperatura média no período (°C)	
	Quantidade de chuva (mm)	
Demanda de Serviços 1	Número de equipes de trabalho utilizada	
	Número de serviços comerciais realizados	
	Número de serviços emergenciais realizados	
Demanda de Serviços 2	Número de interrupções devido a queda de árvores nas linhas	
	de distribuição	
	Número de interrupções devido a queda de árvores nas	
	subestações	
	Número de interrupções devido a queda de árvores nas redes	
	de distribuição	
Aplicação de Recursos	Capital gasto com OPEX (Operational Expenditures - R\$)	
	Capital gasto com CAPEX (Capital Expenditures - R\$)	

Variáveis preditoras (25)

Variável preditora	Coeficiente	valor-P	R ²
Servicos.Comerciais	-0,000025	0,0000	0,2254
Total.Clientes	-0,000010	0,0000	0,2090
Equip.Automatizados	-0,007731	0,0000	0,1468
Municipios	0,070730	0,0000	0,1267
Forca.de.Trabalho	-0,000166	0,0000	0,1217
FSS.LD.s	0,083660	0,0000	0,1192
Volume.chuva	-0,001959	0,0000	0,1182
FSS.Ind	-0,000237	0,0000	0,1078
Area.km.quad	0,000071	0,0000	0,0987
Locais	0,056310	0,0000	0,0888
Vegetacao.km	0,000645	0,0000	0,0836
FSS.Redes	0,000142	0,0001	0,0597
km.Rede	0,000093	0,0001	0,0559
ROPEX	0,000000	0,0011	0,0397
temperatura	0,094450	0,0017	0,0365
Equip.Protecao	0,000179	0,0113	0,0240
Estradas.km	0,000015	0,0363	0,0164
RCAPEX	0,000000	0,0411	0,0156
Servicos.Emergenciais	-0,000018	0,0477	0,0147
Vento	-0,139500	0,1236	0,0089
FSS.SE.s	0,016840	0,2686	0,0046
Quant.SE.s	0,025150	0,4115	0,0025
Descargas.atm	0,000005	0,6313	0,0009
km.LD.s	0,000062	0,9086	0,0000
umidade	0,000598	0,9379	0,0000

$$\log(DEC) = \beta_0 + \beta_1 x$$
$$DEC = e^{\beta_0 + \beta_1 x}$$

Variáveis preditoras (25)

O Modelo de Equações Estruturais (MEE)

O Modelo de Equações Estruturais (MEE)

Modelo de Regressão - MEE

Adjusted R-squared: 0.5586

```
lm(formula = DQ \sim AG1 + AE1 + AE2 + VC1 + DS1 + DS2 + AR1, data = dados)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.103e-17 4.066e-02 0.000 1.000000
          3.645e-01 8.198e-02 4.446 1.30e-05 ***
AG1
        -5.087e-01 1.095e-01 -4.647 5.36e-06 ***
AE1
          -6.563e-01 1.132e-01 -5.796 1.96e-08 ***
AE2
VC1
         -1.831e-01 4.265e-02 -4.293 2.49e-05 ***
DS1
          -1.297e-01 7.985e-02 -1.624 0.105596
DS2
          8.606e-01 8.234e-02 10.451 < 2e-16 ***
AR1
          2.451e-01 6.649e-02 3.686 0.000277 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
                                 0.5702
Multiple R-squared:
```

Validação cruzada k-fold

predictive accuracy on test sets is the criterion for how good the model is

No caso do DEC, estamos utilizando validação cruzada do tipo **leave-one-out** (n=264)

R² Preditivo para o modelo MEE

```
## Calculando o R2Preditivo
yhat <- rep(NA, nrow(dados))</pre>
 for(cont in 1:nrow(dados)){
  modelo \leftarrow lm(DQ \sim AG1 + AE1 + AE2 + VC1 + DS1 + DS2 + AR1,
                data=dados[-cont,])
   yhat[cont] <- predict(modelo, newdata=dados[cont,])</pre>
R2pred(dados$DQ, yhat)
> R2pred(dados$DQ, yhat)
[1] 0.5346226
```

> R2pred(dados\$DQ, yhat) [1] **0.5641286** Modelo com TODAS as 25 variáveis

R² Preditivo para o modelo Ridge

 Existem técnicas estatísticas para regularização de um modelo com várias variáveis de forma a melhorar o R² Preditivo

> R2pred(dados\$DQ, yhat) Modelo com TODAS as [1] **0.5673525**

25 variáveis e regularização

Modelos Híbridos Multi-Camadas

Measurement 146 (2019) 425-436

Contents lists available at ScienceDirect

Measurement

Failure detection in robotic arms using statistical modeling, machine learning and hybrid gradient boosting

Marcelo Azevedo Costa ^{a,*}, Bernhard Wullt ^c, Mikael Norrlöf ^{c,b}, Svante Gunnarsson ^b

- ^aDepartment of Production Engineering, Universidade Federal de Minas Gerais, Brazil
- ^b Department of Electrical Engineering, Linköping University, Sweden
- c Robotics and Discrete Automation, ABB AB, Sweden

Hybrid Gradient Boosting Modelos Multi-Camadas

... Layer M

Modelo Multi-Camadas: Regressão + CART (Árvore de Regressão)

Modelo Modelo resíduos CART MEE

R2pred(dados\$DQ, yhat) Modelo Multi-Camadas [1] **0.5713538**

25 variáveis e regularização

Modelo Multi-Camadas: MEE + CART (Árvore de Regressão)

> **R2pred**(dados\$DQ, yhat) [1] **0.5713538**

Modelo MEE + CART (CART com 25 variáveis)

Modelos Multi-Camadas

MEE + xgboost

```
> R2pred(dados$DQ, yhat)
[1] 0.6431925
```

MEE + Random Forest

```
> R2pred(dados$DQ, yhat)
[1] 0.6494157
```

Ajuste do Modelo de Random Forest Feature Importance

Modelos Univariados versus Feature Importance

Variável preditora	Coeficiente	R ²	
Servicos.Comerciais	-0,000025	0,2254	
Total.Clientes	-0,000010	0,2090	
Equip.Automatizados	-0,007731	0,1468	
Municipios	0,070730	0,1267	
Forca.de.Trabalho	-0,000166	0,1217	
FSS.LD.s	0,083660	0,1192	
Volume.chuva	-0,001959	0,1182	
FSS.Ind	-0,000237	0,1078	
Area.km.quad	0,000071	0,0987	
Locais	0,056310	0,0888	
Vegetacao.km	0,000645	0,0836	
FSS.Redes	0,000142	0,0597	/
km.Rede	0,000093	0,0559	
ROPEX	0,000000	0,0397	
temperatura	0,094450	0,0365	//
Equip.Protecao	0,000179	0,0240	
Estradas.km	0,000015	0,0164	_//
RCAPEX	0,000000	0,0156	
Servicos.Emergenciais	-0,000018	0,0147	/
Vento	-0,139500	0,0089	
FSS.SE.s	0,016840	0,0046	
Quant.SE.s	0,025150	0,0025	
Descargas.atm	0,000005	0,0009	
km.LD.s	0,000062	0,0000	
umidade	0,000598	0,0000	

Variável Climática (VC)

Variável Climática (VC)

```
Call:
lm(formula = y \sim x)
Residuals:
    Min 10 Median 30 Max
-2.00781 -0.34300 0.01288 0.32557 1.46836
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.70449 0.03331 81.179 < 2e-16 ***
VC -0.09090 0.03358 -2.707 0.00724 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5403 on 261 degrees of freedom
Multiple R-squared: 0.02731, Adjusted R-squared: 0.02358
F-statistic: 7.327 on 1 and 261 DF, p-value: 0.007241
```

working paper

A novel clustering-based spatial regression model applied to consumer power outage indicator

Marcelo Azevedo Costa^a, Leandro Brioschi Mineti^a, Álvaro Lédo Ferreira^a

^aDepartment of Industrial Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil

Regressão Espacial Variáveis Climáticas

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.09959 0.05703 54.349 <2e-16 ***
x.aux 0.08275 0.05312 1.558 0.122
```

Regressão Espacial Variáveis Climáticas

$$Y_i \sim Normal(\beta_{j0} + \beta_{j1}x_i; \sigma^2)$$

Relatório 6 - Modelos Espaciais de Regressão Univariada

$$Y_i = \beta_{j0} + \beta_{j1} x_i + \epsilon_i$$

Ativos Elétricos 1 (AE1)

Ativos Elétricos 2 (AE2)

Ativos Geográficos (AG)

Aplicação de Recursos (AR)

Demanda de Serviços (DS1)

Demanda de Serviços 2 (DS2)

Variáveis Climáticas (VC)

Partições estimadas + MEE

(a) Predictice coefficient of determination (R_{pred}^2) for different number of clusters.

(b) Electrical areas divided into 3 spatial clusters.

Modelo Multi-Camadas: Regressão Espacial Univariada + MEE


```
> R2pred(y, yhat)
[1] 0.6179093
```

Grupo	R2pred
1	0.2980404
2	0.5065615
3	0.3598554

Modelo Multi-Camadas: Regressão Espacial Univariada + MEE + Random Forests

> R2pred(y, yhat)
[1] 0.6761937

Grupo	R2pred (MEE)	R2pred (MEE + RF)
1	0.2980404	0.4517246
2	0.5065615	0.5502779
3	0.3598554	0.3931501