TOPICS IN DIFFERENTIAL TOPOLOGY

RANDALL R. VAN WHY

1. The Category of Smooth Manifolds

Definition 1.1. Let $V \subset \mathbb{R}^n$. A map $f: V \to \mathbb{R}^n$ is called smooth or differentiable of class C^{∞} if f can be extended to a map $g: U \to \mathbb{R}^n$ with $U \supset V$ is open in \mathbb{R}^n and all partial derivatives of g exists and are continuous.

Definition 1.2. A smooth function $f: V \to U$ with $V, U \subset \mathbb{R}^n$ is a diffeomorphism if $\exists g: U \to V$ smooth with $f \circ g = g \circ f = id$. We say U and V are diffeomorphic.

Definition 1.3. A smooth n-manifold M is a topological n-manifold with a countable basis together with a smoothness structure $\mathscr S$ on M. $\mathscr S$ is a collection of pairs (U_i,ϕ_i) satisfying:

- 1. Each $(U_i, \phi_i) \in \mathscr{S}$ (called charts) consists of an open set $U \subset M$ (called the coordinate patch) and a homeomorphism $\phi_i : U \to V$ (called the coordinate map) which maps U onto some open subset of \mathbb{R}^n or \mathbb{R}^n_+ .
- 2. $\bigcup U_i = M$
- 3. if $(U_i, \phi_i), (U_j, \phi_j) \in \mathscr{S}$ for $i \neq j$, then $\phi_i \circ \phi_j^{-1} : \phi_j(U_i \cap U_j) \to \mathbb{R}^n$ or \mathbb{R}^n_+ is smooth.
- 4. $\mathscr S$ is minimal with respect to 3. i.e. if $(U,\phi) \not\in \mathscr S$ is adjoined to $\mathscr S$, then property 3. fails.

Construction 1.4. A function $f: M \to N$ from an m-manifold M to an n-manifold N is called smooth if for every $x \in M$ there is a chart (U, ϕ) in M containing x and a chart (V, ψ) containing f(x) such that $\psi \circ f \circ \phi^{-1} : \phi(U) \subset \mathbb{R}^m \to \psi(V) \subset \mathbb{R}^n$ is smooth.

Date : September 6, 2015.