EECS4312 Isolette Assignment

Anton Sitkovets (cse31027@cse.yorku.ca) Mina Zaki (zakim@cse.yorku.ca)

November 10, 2016

You may work on your own or in a team of no more than two students. Submit only one document under one Prism account.

Prism account used for submission: cse31027

Keep track of your revisions in the table below.

Revisions

Date	Revision	Description
10 November 2016	1.0	Final requirements document

Requirements Document:

Temperature control for an Isolette

L.O	nte	ents
-		

1	System Overview	5
2	Context Diagram	6
3	Goals	6
4	Monitored Variables	7
5	Controlled Variables	7
6	Mode Diagram	8
7	E/R-descriptions	9
8	Abstract variables needed for the Function Table	10
9	Function Table 9.1 Function Table for mode display: c_md 9.2 Function Table for heat control: c_hc 9.3 Function Table for temperature display: c_td 9.4 Function Table for temperature display: c_al 9.5 Function Table for message display: c_ms Validation	11 11 11 11 12 12
11	Use Cases	13
12	Acceptance Tests	13
13	Traceability	14
14	Glossary	14
Li	st of Figures	
	1 Isolette	5 6 8 13

List of Tables

1	Monitored Variables	7
2	Controlled Variables	8
3	Function Table for $c_{-}md$	11
4	Function Table for heat control: c_hc	11
5	Function Table for temperature display: ctd	11
6	Function Table for temperature display: cal	12
7	Legend for Conditional Abbreviations	12
8	Function Table for temperature display: $c_{-}ms$	12

1 System Overview

The System Under Development (SUD) is a computer controller for the thermostat of an Isolette.¹ An Isolette is an incubator for for an infant that provides controlled temperature, humidity and oxygen (Fig. 1). Isolettes are used extensively in Neonatal Intensive Care Units for the care of premature infants.

This requirements document is specifically for the control of temperature. The purpose of the Isolette computer controller is to maintain the air temperature of an Isolette within a desired range. It senses the current temperature of the Isolette and turns the heat source on and off to warm the air as needed. If the temperature falls too far below or rises too far above the desired temperature range, it activates an alarm to alert the nurse. The system allows the nurse to set the desired temperature range and to set the alarm temperature range outside the desired temperature range of which the alarm should be activated. This requirements documents follows the specification in [?] (Appendix A) except where noted.

Figure 1: Isolette

¹The image in Fig 1 is from: www.nufer-medical.ch.

2 Context Diagram

See Fig. A-1 in [?]. The System Under Description (SUD) is a computer *controller* to regulate the temperature of the Isolette. Everything else including the Operator Interface (described in [?]) is in the ecosystem (i.e. in the environment of the controller). The monitored variables and controlled variables for the controller are in Table 1 and Table 2, respectively. For clarity, simplicity and safety, there are some differences between the specifications in this document and the descriptions in [?].²

Figure 2: Context Diagram

3 Goals

The high-level goals (G) of the system are:

- G1—The Infant should be kept at a safe and comfortable temperature.
- G2—The Nurse should be warned if the Infant becomes too hot or too cold.
- G3—The cost of manufacturing the computer controller for the thermostat should be as low as possible.

²Documented in the write-up to this assignment: assign1-spec.pdf.

4 Monitored Variables

The monitored variables are a subset of those described in [?].³ There is a single status variable $m_{-}st$ that is *invalid* whenever any one of the operator inputs or temperature sensor are in a failed state. Otherwise types and ranges are as in [?].

Name	Type	Range	Units	Physical Interpretation
$m_{-}tm$	\mathbb{R}	68105	°F	actual temperature of Isolette
116_6116	11/2	00100	I.	air temperature from sensor
$m_{-}dl$	\mathbb{Z}	9799	°F	desired lower temperature
116_46		9199	I.	set by operator
$m_{-}dh$	\mathbb{Z}	98100	°F	desired higher temperature
116_416		30100	1	set by operator
$m_{-}al$	\mathbb{Z}	9398	°F	lower alarm temperature
111_41		9990	I.	set by operator
$m_{-}ah$	Z	99103	°F	higher alarm temperature
111-411		99103	I.	set by operator
$m_{-}st$	Enumerated	(1: 1 :1: 1)		status of sensor and
111_St		{valid, invalid}		operator settings
m_sw	Enumerated	{on, off}		switch set by operator

Table 1: Monitored Variables

5 Controlled Variables

The controlled variables are a subset of those described in [?].⁴ In addition, there is a mode display c_-md and a message display c_-ms .⁵

³With some change of nomenclature. Monitored variables have an "m" prefix.

⁴With some change of nomenclature. Controlled variables have a "c" prefix.

⁵The mode "off" is added to that of Fig. A-4 in [?], and the mode transitions have been changed.

Name	Type	Range	Units	Physical Interpretation
$c_{-}hc$	Enumerated	{on, off}		heat control: command to
C_11C	Enumerated	{011, 011}		turn heat source on or off
c_{-td}	\mathbb{Z}	$\{0\} \cup \{68 105\}$	°F	displayed temperature of Isolette
$C_{-}\iota u$		$\{0\} \cup \{00100\}$	Г	(zero when Isolette is off)
$c_{-}al$	Enumerated	{off, on}		sound alarm to call nurse
$c_{-}md$	Enumerated	{off, init,		mode of Isolette operation
C_III.u	Enumerated	normal, failed}		(failed if $m_st = invalid$)
e me	Enumerated	Coursenated (OK, TooHot,		messages to display to nurse
$c_{-}ms$		TooCold, SensorIssue}		messages to display to hurse

Table 2: Controlled Variables

6 Mode Diagram

Figure 3: Mode Diagram

7 E/R-descriptions

REQ	<u> </u>		controller shall operate in one our modes: off, init, normal fail.	See statechart in Fig. 3.
	ture controller shall maintain rent temperature inside the Iso		In the <i>normal</i> mode, the tempture controller shall maintain rent temperature inside the Isol within a set temperature ra(the <i>desired</i> range).	cur- lette
REQ	REQ3 ture rent with		ne normal mode, the tempera- controller shall maintain cur- temperature inside the Isolette in a set temperature range desired range).	If the sensor is not functioning, requires immediate attention and the system will be in fail mode.
REQ	RF(.)4		system should not display two r messages at the same time.	Avoid bombarding the user with error messages
REQ5 cons		cons	ritize error message display to ider sensor status as most imant followed by alarm temperee.	If the sensor is not functioning, requires immediate attention and the system will be in fail mode.

ENV6	The higher alarm temperature will always be higher than the lower alarm temperature.	To create an area that can be the desired temperature range.
------	--	--

ENV7	The displayed temperature is an integer	The current temperature reading is rounded to the nearest integer
------	---	---

ENV8	The status of the sensor and operator settings can either be valid or invalid	It is important to know if the sensor readings are accurate or else any decisions made may put the infant in danger
------	---	---

8 Abstract variables needed for the Function Table

Abstract variables are not needed.

9 Function Table

9.1 Function Table for mode display: c_md

	$c_{-}md(i)$			
i = 0	off			
	$m_{-}sw = off$			off
	$m_{-}sw = \text{on}$	$c_{-}md(i-1) = off$		init
		$c_{-}md(i-1) = init$	C1	normal
i > 0			$\neg C1$	$c_{-}md(i-1)$
1 /0		$c_{-}md(i-1) = normal$	$m_{-}st = invalid$	fail
			$m_{-}st = \text{valid}$	$c_{-}md(i-1)$
		$c_{-}md(i-1) = failed$	$m_{-}st = invalid$	$c_{-}md(i-1)$
		$c_{-ma}(r_{-1}) = ranea$	$m_{-}st = \text{valid}$	normal

Table 3: Function Table for $c_{-}md$

9.2 Function Table for heat control: c_hc

				c_hc (i)
i = 0				off
	$c_{-}m$	d (i-1) = off		off
			$m_{-}tm$ (i) $< m_{-}dl$ (i)	on
i >0	C4	$m_{-}dl$ (i) $< m_{-}dh$ (i)	$m_{-}dl$ (i) $<= m_{-}tm$ (i) $<= m_{-}dh$ (i)	$c_{-}hc$ (i-1)
1 /0			$m_{-}tm$ (i) $>m_{-}dh$ (i)	off
		$m_{-}dl$ (i) $>= m_{-}dh$ (i)	c_hc (i-1)
	$c_{-}md$ (i-1) = failed		off	

Table 4: Function Table for heat control: c_hc

9.3 Function Table for temperature display: c_td

		$c_{-}td(i)$
i = 0		0
i >0	$c_{-}md(i-1) = off$	0
	$c_{-}md(i-1) = init$	0
1 /0	$c_{-}md(i-1) = normal$	$\lfloor m tm + 0.5 \rfloor$
	$c_{-}md(i-1) = failed$	0

Table 5: Function Table for temperature display: c_-td

9.4 Function Table for temperature display: c_al

					$c_{-}al(i)$
i = 0					off
	C2				$c_{-}al(i-1)$
i >0	$\neg C2$	С3			on
		$\neg C3$	$c_{-}al(i-1) = off$		$c_{-}al(i-1)$
			$c_{-}al(i-1) = on$	$held_for(c_al,10)(i-1)$	off
				$\neg held_for(c_al, 10)(i-1)$	on

Table 6: Function Table for temperature display: c_-al

Condition	Meaning
C1	$(m_{-}st\ (i) = valid) \land (m_{-}dl(i) \le m_{-}tm(i) \le m_{-}dh(i))$
	$\wedge (m_{-}al(i) < m_{-}dl(i) < m_{-}dh(i) < m_{-}ah(i))$
C2	$(m_{-}al\ (i) \le m_{-}tm(i) < m_{-}al(i) + 0.5) \lor (m_{-}ah(i) - 0.5 < m_{-}tm(i) \le m_{-}ah(i))$
C3	$(m_{-}tm\ (i) < m_{-}al(i)) \lor (m_{-}tm(i) > m_{-}ah(i)) \lor (m_{-}st(i) = invalid)$
C4	$(c_{-}md(i-1) = init) \lor (c_{-}md(i-1) = normal)$

Table 7: Legend for Conditional Abbreviations

9.5 Function Table for message display: c_ms

			c_ms	Meaning
i = 0		OK	All ok	
$m_{-}st = \text{invalid}$		1	SensorIssue	The temperature sensor or
	$m_{-}st = mvanc$	_st — mvanu		operator settings have failed.
i >0		$m_{-}tm > m_{-}ah$	TooHot	The current temperature is higher
	$m_{-}st = \text{valid}$			than the higher alarm temperature.
		$m_{-}tm < m_{-}al$	TooCold	The current temperature is lower
				than the lower alarm temperature.
		ELSE	OK	All ok

Table 8: Function Table for temperature display: $c_{-}ms$

10 Validation

Proof of completeness and disjointness and validation of the requirements using PVS.

Include the PVS sources in the appendix to this document but summarize the proofs here.

```
Proof summary for theory Isolette
                                     complete
                                             [shostak]( n/a s)
  mode_ft_TCC1.....proved -
  mode_ft_TCC2.....proved -
                                     complete
                                             [shostak]( n/a s)
  mode_ft_TCC3.....proved
                                     complete
                                             [shostak]( n/a s)
                                             [shostak]( n/a s)
  mode_ft_TCC4.....proved
                                     complete
  mode ft TCC5.....proved
                                     complete
                                             [shostak]( n/a s)
  mode ft TCC6.....proved
                                     complete
                                             [shostak]( n/a s)
  mode_ft_TCC7.....proved
                                     complete
                                             [shostak]( n/a s)
  mode_ft_TCC8.....proved
                                     complete
                                             [shostak]( n/a s)
  mode_ft_TCC9.....proved
                                     complete
                                             [shostak]( n/a s)
  mode_ft_TCC10.....proved
                                             [shostak]( n/a s)
  mode_ft_TCC11.....proved
                                     complete
                                             [shostak]( n/a s)
  mode_ft_TCC12.....proved
                                             [shostak]( n/a s)
                                     complete
  display_ft_TCC1.....proved
                                     complete
                                             [shostak]( n/a s)
  display_ft_TCC2.....proved
                                     complete
                                             [shostak]( n/a s)
  display_ft_TCC3.....proved
                                     complete
                                             [shostak]( n/a s)
  heat_ft_TCC1.....proved
                                     complete
                                             [shostak]( n/a s)
  heat ft TCC2.
            .....proved
                                             [shostak]( n/a s)
  heat_ft_TCC3.....proved
                                     complete
                                             [shostak]( n/a s)
  heat ft TCC4.....proved
                                     complete
                                             [shostak]( n/a s)
                                     complete
                                             [shostak]( n/a s)
  heat ft TCC5.....proved
  alarm_ft_TCC1.....proved
                                             [shostak]( n/a s)
                                     complete
  alarm_ft_TCC2.....proved
                                     complete
                                             [shostak]( n/a s)
  alarm_ft_TCC3.....proved
                                     complete
                                             [shostak]( n/a s)
  alarm_ft_TCC4.....proved
                                     complete
                                             [shostak]( n/a s)
  alarm_ft_TCC5.....proved
                                     complete
                                             [shostak]( n/a s)
  message_ft_TCC1.....proved
                                             [shostak]( n/a s)
                                     complete
                                     complete
  message ft TCC2.....proved
                                             [shostak]( n/a s)
  message_ft_TCC3.....proved -
                                     complete
                                             [shostak]( n/a s)
  inv1.....proved
                                     complete
                                             [shostak]( n/a s)
                                     complete
                                             [shostak]( n/a s)
  inv2.....proved
  inv3.....proved
                                     complete
                                             [shostak]( n/a s)
  inv4.....proved -
                                     complete
                                             [shostak]( n/a s)
                .....proved - complete
                                             [shostak]( n/a s)
  Theory totals: 33 formulas, 33 attempted, 33 succeeded (0.00 s)
Grand Totals: 33 proofs, 33 attempted, 33 succeeded (0.00 s)
```

Figure 4: Proof of completeness, disjointness and validation of the requirements

11 Use Cases

See Section A2 of [?] for some use cases. The use cases need to be adapted to the revised descriptions of the previous sections of this document.

12 Acceptance Tests

In this section, the use cases have to be converted into precise acceptance tests (using the function table to describe pre/post conditions) to be run when the design and implementation are complete.

13 Traceability

Matrix to show which acceptance tests passed, and which R-descriptions they checked.

14 Glossary

The definition of important terms is placed in this section. You are not required to complete this.