Exercícios Folha 1

## 1 Linguagens Formais e Expressões Regulares

- 1.1 Seja  $A = \{a, b\}$ . Determine o número de palavras sobre A tais que:
  - a) o comprimento é 3;
  - b) o comprimento é no máximo 3;
  - c) o comprimento não excede um dado número natural m.
- **1.2** Responda ao exercício anterior assumindo que A é um alfabeto com n letras.
- **1.3** Seja  $A = \{a, b\}$ . Para cada um dos seguintes conjuntos de palavras, dê exemplos de elementos e apresente uma sua caracterização alternativa.
  - a)  $\{u \in A^* : |u| \in \mathbb{N}\}$
  - **b)**  $\{u \in A^* : |u| = |u|_a\}$
  - c)  $\{u \in A^* : u = u^2\}$
  - **d)**  $\{u \in A^* : |u|_a + |u|_b < 10\}$
- **1.4** Sejam A um alfabeto,  $x, y, z \in A^*$  e  $a \in A$ . Prove por indução em palavras que:
  - a)  $x.\epsilon = x = \epsilon.x$ ;
  - **b)**  $|x.y|_a = |x|_a + |y|_a;$
  - **c)** x.(y.z) = (x.y).z.
- 1.5 Sejam A um alfabeto e  $x, y, z \in A^*$ . Prove por indução no comprimento de palavras que:
  - a)  $x.y = x.z \Rightarrow y = z$ ;
  - **b)**  $y.x = z.x \Rightarrow y = z.$
- **1.6** Sejam A um alfabeto,  $u \in A^*$  e  $n, m \in \mathbb{N}_0$ . Prove que:
  - a)  $|u^n| = n|u|;$
  - **b)**  $u^n.u^m = u^{n+m};$
  - **c)**  $(u^n)^m = u^{n \times m}$ .
- **1.7** Sejam A um alfabeto e  $x, y \in A^*$ . Prove que:
  - a)  $|x^I| = |x|$ ;
  - **b)**  $(x^I)^I = x$ ;
  - **c)**  $(x.y)^I = y^I.x^I.$
- **1.8** Sejam A um alfabeto e  $x \in A^*$ . Prove que, para qualquer fator y de x, existe um prefixo w de x e existe um sufixo z de x tais que x = w.y.z.

LCC/LMAT 2022/2023

Exercícios Folha 2

**1.9** Considere o alfabeto  $A = \{a, b\}$  e a condição P(x), sobre palavras em A, dada por:

$$|x|_a > |x|_b \Longrightarrow \exists u, v \in A^* : x = uav \land |u|_a = |u|_b.$$

- a) Verifique que P(x) é verdadeira para  $x \in \{baaab, baaa, baa, aab\}$ .
- **b)** Mostre que P(x) é verdadeira, para todo  $x \in A^*$ , usando indução no comprimento de palavras.
- **1.10** Seja  $A = \{a, b\}$ . Dê uma caracterização indutiva de cada uma das seguintes linguagens sobre A.
  - a)  $\{a^n : n \in \mathbb{N}_0\}$
  - **b**)  $A^{+}$
  - c)  $\{u \in A^* : bb \text{ \'e sufixo de } u\}$
  - **d)**  $\{a^nb^m: n, m \in \mathbb{N} \land n > m\}$
- **1.11** Cada uma das alíneas seguintes define indutivamente uma linguagem L sobre  $A = \{a, b\}$ . Apresente uma caracterização não indutiva de cada uma destas linguagens.
  - a) 1.  $a \in L$  2.  $x \in L \Rightarrow bx \in L$  3.  $x \in L \Rightarrow xb \in L$
  - **b)** 1.  $a \in L$  2.  $x \in L \Rightarrow bx \in L$  3.  $x \in L \Rightarrow xb \in L$  4.  $x \in L \Rightarrow xa \in L$
  - c) 1.  $a \in L$  2.  $b \in L$  3.  $x \in L$  e  $y \in L \Rightarrow xay \in L$  4.  $x \in L$  e  $y \in L \Rightarrow xby \in L$
- **1.12** Sejam  $A = \{a, b\}$  e L a linguagem sobre A definida indutivamente pelas regras que se seguem.
  - 1.  $a \in L$  2.  $x \in L \Rightarrow xa \in L$  3.  $x \in L \Rightarrow xb \in L$
  - a) Prove que  $ababa \in L$  e que  $baba \notin L$ .
  - b) Enuncie o Princípio de indução para L.
  - c) Prove que, para qualquer  $x \in L$ , existe  $y \in A^*$  tal que x = ay.
  - **d)** Prove que  $L = \{ay : y \in A^*\}.$
- **1.13** Sejam  $A = \{0,1\}$  e L a linguagem sobre A definida indutivamente pelas regras que se seguem.
  - 1.  $\epsilon \in L$  2.  $x \in L$  e  $y \in L \Rightarrow 0x1y \in L$  3.  $x \in L$  e  $y \in L \Rightarrow 1x0y \in L$
  - a) Determine  $\{u \in L : |u| \le 4\}$ .
  - b) Enuncie o Princípio de indução para L.
  - c) Prove que, para qualquer  $x \in L$ , |x| é par.
  - d) Apresente uma caracterização de L que não seja indutiva e prove que, de facto, a caracterização apresentada corresponde a L.

LCC/LMAT 2022/2023

Folha 3

Exercícios

**1.14** Seja  $A = \{0, 1\}$  e sejam  $L_1 = \{\epsilon, 1, 01\}$  e  $L_2 = \{\epsilon, 0, 10\}$ . Determine as seguintes linguagens sobre A:  $L_1 \cup L_2$ ,  $L_1 \cap L_2$ ,  $L_1 \setminus L_2$ ,  $L_1 \cdot L_2$ ,  $L_2 \cdot L_1$ ,  $0L_1 \in L_1 \cup L_2$ .

- **1.15** Sejam A um alfabeto e  $L, L_1, L_2 \subseteq A^*$ . Mostre que:
  - a) se  $L_1 \subseteq L_2$ , então  $LL_1 \subseteq LL_2$  e  $L_1L \subseteq L_2L$ ;
  - **b)** pode ter-se  $LL_1 \subseteq LL_2$  e  $L_1L \subseteq L_2L$  e  $L_1 \not\subseteq L_2$ ;
  - c) se  $L_1 \neq \emptyset$ , então  $L_1 \subseteq L_1L_2$  se e só se  $\epsilon \in L_2$ .
- **1.16** Seja  $A = \{0, 1\}$  e seja L a linguagem sobre A dada por  $\{1^{2n} : n \in \mathbb{N}\}$ . Determine:
  - a)  $L^0$ ,  $L^1$  e  $L^2$ ;
  - **b)**  $L^+ \in L^*$ .
- **1.17** Seja A o alfabeto  $\{0,1\}$ . Dê exemplos de linguagens  $L_1$  e  $L_2$  sobre A de tal modo que:
  - a)  $L_1$  seja uma linguagem finita e  $L_1^* = A^*$ ;
  - b)  $L_2$  seja uma linguagem infinita e  $L_2 \neq L_2^*$ .
- 1.18 Sejam A um alfabeto e L uma linguagem sobre A. Mostre que  $L=L^*$  se e só se são satisfeitas as seguintes condições:
  - i)  $\epsilon \in L$ ; ii) para todo  $u, v \in L$ ,  $uv \in L$ .
- **1.19** Sejam A um alfabeto e L uma linguagem sobre A. Mostre que:
  - a) para todo  $n, m \in \mathbb{N}_0, L^nL^m = L^{n+m}$ ;
  - **b)**  $L^*L^* = L^*$ ;
  - c) para todo  $n \in \mathbb{N}$ ,  $(L^*)^n = L^*$ ;
  - **d**)  $(L^*)^* = L^*$ .
- ${\bf 1.20}\,$  Sejam Aum alfabeto e  $L,L_1,L_2$  linguagens sobre A. Mostre que:
  - a)  $(L_1 \cup L_2)^I = L_1^I \cup L_2^I$ ;
  - **b)**  $(L_1L_2)^I = L_2^IL_1^I$ ;
  - c) para todo  $n \in \mathbb{N}_0$ ,  $(L^n)^I = (L^I)^n$ ;
  - **d)**  $(L^*)^I = (L^I)^*.$

Univ. Minho Dep. Matemática

## Autómatos e Linguagens Formais

LCC/LMAT 2022/2023

Exercícios Folha 4

**1.21** Seja  $A = \{0, 1\}$ . Para cada uma das seguintes palavras u, sobre o alfabeto  $A \cup \{\emptyset, \epsilon, (\cdot, \cdot), +, \cdot, *\}$ , indique: i) se  $u \in ER(A)$  e ii) se u abrevia um elemento de ER(A) (de acordo com as convenções estabelecidas), indicando um elemento de ER(A) abreviado por u.

- $\mathbf{a}$ )  $(\epsilon.1)$ 
  - **b**) (0.)
- $\mathbf{c}$ ) (\*0)
- **d**) Ø\*Ø
- **e**)  $10^3$  **f**)  $01^* + \epsilon + 10^+$

**1.22** Para cada uma das seguintes expressões regulares r, sobre o alfabeto  $\{a, b, c\}$ , determine  $\mathcal{L}(r)$ .

- a)  $abc\epsilon$
- **b)**  $a(b + \emptyset c)$

- a)  $abc\epsilon$  b)  $a(b + \emptyset c)$ c)  $ab^*c$  d)  $(a+b)^n a (com <math>n \in \mathbb{N}_0)$ e)  $a(a+b+c)^+(b+c)$  f)  $(a+b+c)^*aa(a+b+c)^*$

1.23 Dê exemplos de palavras de "comprimento mínimo", sobre o alfabeto {0,1}, que não pertençam à linguagem representada por cada uma das seguintes expressões regulares:

- a)  $\epsilon + (0^* + 1^*)(0^* + 1^*)$ ;
- **b)**  $1^*(01)^*0^*$ ;
- c) 0\*(100\*)\*1\*.

**1.24** Prove que cada uma das seguintes linguagens sobre o alfabeto  $\{a, b, c\}$  é regular.

- a) O conjunto das palavras que têm, pelo menos, uma ocorrência de b ou de c.
- b) O conjunto das palavras de comprimento impar.
- c) O conjunto das palavras nas quais, pelo menos, uma das letras não ocorre.

**1.25** Sejam A um alfabeto e  $r, r_1, r_2, s, s_1, s_2 \in ER(A)$ . Prove que:

- a)  $r \le r^{\circ}$ ; b)  $r \le s \Rightarrow r^{\circ} \le s$ , c)  $r_1 \le s_1 \ e \ r_2 \le s_2 \Rightarrow r_1 + r_2 \le s_1 + s_2$ ; d)  $r_1 \le s_1 \ e \ r_2 \le s_2 \Rightarrow r_1 r_2 \le s_1 s_2$ ; e)  $r_1 \le s \ e \ r_2 \le s \Rightarrow r_1 + r_2 \le s$ ; f)  $r_1 \le s^{\circ} \ e \ r_2 \le s^{\circ} \Rightarrow r_1 r_2 \le s^{\circ}$ .

**1.26** Seja A um alfabeto e sejam  $r, s \in ER(A)$ . Prove que:

- a)  $r^* = r^*r^*$ ;
- **b)**  $r^* = (r^*)^*;$  **c)**  $(r+s)^* = (r^* + s^*s)^* = (r^*s^*)^*.$

1.27 Prove que, dadas expressões regulares r e s sobre um alfabeto A, as seguintes igualdades não são necessariamente válidas:

- a)  $(r+s)^* = r^* + s^*;$  b)  $(rs)^* = r^*s^*.$

1.28 Prove que o conjunto das linguagens regulares sobre um alfabeto é fechado para as operações de união, concatenação, e fecho de Kleene.

1.29 Para cada uma das seguintes equações lineares à direita, indique soluções alternativas em  $ER(\{a,b\})$ , se possível, e determine uma solução mínima em  $ER(\{a,b\})$ .

- a)  $X_1 = aX_1 + a + \epsilon$ ; b)  $X_2 = (b+a)X_2 + a^*$ ; c)  $Y = (ab)^*Y + a + b$ .

1.30 Utilize sistemas de equações para encontrar expressões regulares que provem que cada uma das seguintes linguagens sobre o alfabeto  $\{a, b, c\}$  é regular:

- a) o conjunto das palavras onde o número de ocorrências de a é par;
- **b)** o conjunto das palavras em que não ocorre o fator *abc*;
- c) o conjunto das palavras nas quais o fator ab ocorre exatamente uma vez e c não ocorre.

LCC/LMAT 2022/2023

Exercícios Folha 5

## 2 Autómatos Finitos

**2.1** Considere o autómato  $\mathcal{A} = (\{0,1,2\},\{a,b\},\delta,0,\{2\})$  em que a função transição  $\delta$  é dada pela tabela que se segue.

- a) Represente o autómato  $\mathcal{A}$  através de um grafo.
- **b)** Para  $q \in \{0, 1, 2\}$  e  $u \in \{\epsilon, a, b, ab, ba, aab, abb\}$ , determine  $\delta(q, u)$ .
- c) Dê exemplo de palavras u de comprimento 2 tais que:
  - i) u é etiqueta de caminho com origem 1 e destino 2;
  - ii) uba é etiqueta de caminho bem sucedido;
  - iii) não há caminhos com origem 0 e etiqueta ua;
  - iv)  $0 \stackrel{abu}{\longrightarrow} 2;$
  - $\mathbf{v}$ ) au é aceite por  $\mathcal{A}$ ;
  - **vi)** au é rejeitada por  $\mathcal{A}$ .
- d) Mostre que:
  - i)  $\forall u \in \{a, b\}^*. 1 \in \delta(0, au);$
  - ii)  $\forall n \in \mathbb{N}. 2 \in \delta(1, a^n)$ ;
- e) Mostre que, para todo  $u \in \{a, b\}^*, n \in \mathbb{N}$ , a palavra  $aua^n$  é reconhecida por A.
- f) Mostre que:
  - i)  $\forall x \in \{a, b\}^*$ .  $0 \xrightarrow{x} 1 \Longrightarrow \exists u \in \{a, b\}^*$ . x = au;
  - ii)  $\forall x \in \{a,b\}^*$ .  $0 \xrightarrow{x} 2 \Longrightarrow \exists u \in \{a,b\}^*, n \in \mathbb{N}. x = aua^n$ .
- **g)** Indique L(A) e prove a sua afirmação.
- **2.2** Considere o autómato  $\mathcal{A} = (\{0,1,2\},\{a,b\},\delta,0,\{2\})$  em que a função transição  $\delta$  é dada pela tabela que se segue.

- a) Represente o autómato A através de um grafo.
- b) Indique se  $\mathcal{A}$  é: i) determinista; ii) completo; iii) acessível; iv) co-acessível.
- c) Dê exemplos de palavras aceites por  $\mathcal{A}$  e de palavras rejeitadas por  $\mathcal{A}$ .
- d) Descreva a linguagem reconhecida por  $\mathcal{A}$  e prove a sua afirmação.

## Autómatos e Linguagens Formais

LCC/LMAT 2022/2023

Exercícios Folha 6

**2.3** Considere o autómato  $\mathcal{A}=(\{Q,\{a,b\},\delta,i,F)$  representado pelo seguinte grafo.



- a) Explicite Q,  $\delta$ ,  $i \in F$ .
- b) Dê exemplos de palavras aceites por  $\mathcal{A}$  e de palavras rejeitadas por  $\mathcal{A}$ .
- c) Mostre que para qualquer  $u \in \{a, b\}^*$  que seja não vazia e aceite por  $\mathcal{A}$ , existe  $v \in \{a, b\}^*$  tal que u = ava.
- d) Descreva a linguagem reconhecida por A.
- e) Classifique o autómato em relação a determinismo e a completude.
- **2.4** Seja  $A = \{a, b\}$ . Prove que é reconhecível por autómatos finitos a linguagem constituída por todas as palavras em que:
  - a) ocorre o fator aa;
  - **b)** não ocorre o fator aa;
  - c) têm um número ímpar de ocorrências de a;
  - d) cada ocorrência de a é precedida de uma ocorrência de b.
- 2.5 Para cada uma das linguagens dos dois exercícios anteriores, indique um autómato determinista e acessível que a reconheça.
- 2.6 Considere uma máquina de venda de café que aceita moedas de 10, 20 e 50 cêntimos, custando cada café 50 cêntimos e sendo as moedas depositadas sequencialmente. Quando a quantia depositada atinge ou excede os 50 cêntimos, a máquina fornece um café, mas não devolve troco. Construa um autómato que simule o funcionamento desta máquina.
- **2.7** Seja  $\mathcal{A}$  o autómato com transições- $\epsilon$  e alfabeto  $\{a,b\}$ , dado pelo seguinte grafo:



- a) Calcule o fecho- $\epsilon$  de cada um dos estados de A.
- b) Para cada  $u \in \{a, b\}^*$  tal que  $|u| \leq 2$ , indique todos os caminhos com origem 0 e etiqueta u e diga se u é aceite por A.
- c) Prove que  $\mathcal{A}$  aceita todas as palavras da linguagem  $\mathcal{L}((ab)^*)$ .
- d) Indique uma expressão regular r tal que  $L(A) = \mathcal{L}(r)$ .
- e) Construa um autómato sem transições vazias que reconheça L(A).
- **2.8** Seja  $A = \{a, b\}$ . Prove que as linguagens associadas às seguintes expressões regulares sobre A são reconhecíveis por autómatos com transições vazias:
  - a)  $aa + ab^*$ ;
- **b)**  $(aa + ab^*)^*$ ;
- c)  $(aa + ab^*)^*bb$ .