Baze podataka

Osnove relacionog modela podataka

Strukturalna, operacijska i integritetna komponenta relacionog modela podataka

Sadržaj

- Koncepcija relacionog MP
- Model podataka
- Strukturalna komponenta I
- Operacijska komponenta
- Strukturalna komponenta II
- Integritetna komponenta
- Osnovne projektantske pretpostavke

Mrežni i hijerarhijski model

- U korišćenju 1970-ih godina
- Nedostaci
 - čvrsta povezanost programa i fizičke strukture podataka
 - strukturalna kompleksnost
 - proceduralno orijentisani jezici za manipulaciju podacima
 - "ad hoc" razvijeni modeli
 - bez značajnije upotrebe matematičkih formalizama

Mrežni i hijerarhijski model

- U razvoju od 1970-ih godina
 - Codd, E. F. (1970). "A Relational Model of Data for Large Shared Data Banks", Communications of the ACM 13(6): 377-387.
 - Komercijalna upotreba od 199x-ih
- Motiv razvoja
 - otklanjanje nedostataka klasičnih modela podataka
 - čvrsta povezanost logičkih i fizičkih aspekata
 - strukturalna kompleksnost
 - navigacioni jezik
 - insistiranje na matematičkim osnovama u razvoju MP
 - matematička osnova RMP
 - teorija skupova i relacija
 - jako oslanjanje na predikatski račun I reda

Zahtev

 nezavisnost programa od podataka, tj. fizičke strukture podataka

Kod ranijih MP

- fizički aspekti BP ugrađeni u programe
 - raspodela slogova po zonama
 - fizički redosled ⇒ logičko grupisanje slogova
 - transformacija vrednosti ključa u adresu
 - lanci slogova sa pokazivačima
 - hijerarhijski redosled slogova
 - postupci zaštite podataka

- Nezavisnost programa od podataka rešenje
 - potpuno odvajanje prezentacionog od formata memorisanja
 - relacija kao skup n-torki (torki)
 - apstraktni opis relacije: šema relacije

N(R, C)

- R skup obeležja
- C skup ograničenja, pri čemu je
 - $K \subseteq C$ obavezno zadat skup ključeva, koji je neprazan
- često, u početnim fazama projektovanja, šema relacije se posmatra kao struktura

N(R, K)

Primer

- Upis nove torke

(EKF, Elektronski, 8),

narušio bi ograničenje ključa (uslov integriteta)

Strukturalna jednostavnost

- koncept relacije
 - osnova reprezentacije logičkih struktura podataka u RMP
 - ne sadrži nikakve informacije o fizičkoj organizaciji podataka
 - "prirodna" upotreba jednog od fundamentalnih matematičkih koncepata
 - relacija "homogena" i "uniformna" struktura
 - lako razumljiva korisnicima podataka
 - uobičajena je tabelarna reprezentacija
 - » šema relacije ⇒ opis tabele (definicija tabele)
 - » relacija ⇒ kompletan sadržaj tabele (tabela)

Strukturalna jednostavnost

- selekcija podataka u operacijama nad BP
 - kod ranijih MP
 - upotreba fizičkih (relativnih ili apsolutnih) adresa
 - » pozicioniranje upotrebom indikatora aktuelnosti ili
 - » pozicioniranje putem odnosa između podataka
 - kod relacionog MP
 - asocijativno adresiranje
 - » isključiva upotreba simboličkih adresa vrlo često vrednosti ključa
 - » svaki podatak u BP pronalazi se na osnovu naziva relacije, zadatih obeležja i vrednosti ključa
 - » skup n-torki (torki) sa zajedničkom osobinom selektuje se na uniforman način – zadavanjem istog logičkog uslova
 - » SUBP vodi računa o transformaciji simboličke u relativnu adresu

Strukturalna jednostavnost

- povezivanje podataka
 - kod ranijih MP
 - upotreba fizičkih (relativnih ili apsolutnih) adresa u funkciji pokazivača
 - fizičko pozicioniranje logički susednih podataka
 - » o čemu je svaki transakcioni program morao voditi računa
 - kod relacionog MP
 - upotreba simboličkih adresa prenetih vrednosti ključa
 - rešenje putem prostiranja ključa
 - » uvođenje pojma stranog ključa i ograničenja referencijalnog integriteta
 - rešenje putem kreiranja posebne tabele sa prostiranjem ključeva
 - » u oba slučaja, transakcioni program ne vodi računa o pretvaranju simboličke u relativnu adresu

Primer

Fakultet

SFK	NAZ	BIP
FIL	Filozofski	1
PMF	Matematički	7
ETF	Elektrotehnički	9
EKF	Ekonomski	4
MAF	Mašinski	7

Projektant

MBR	IME	PRZ	SFK
МЗ	Iva	Ban	PMF
M1	Ana	Tot	MAF
M4	Ana	Ras	FIL
M8	Aca	Pap	ETF
M6	Iva	Ban	EKF
<i>M</i> 5	Eva	Tot	ETF

Operacijska komponenta

Primer

Radnik

MBR	IME	PLT	POL
101	Ana	3400	ž
102	Aca	4200	m
110	Ivo	7000	m
111	Olja	7200	ž

Radproj

MBR	SPR
101	11
101	14
102	14
110	13
110	11

Projekat

SPR	NAP	
11	X25	
13	Polaris	
14	Univ. IS	

Deklarativni jezik

- temelji se na primenjenim tehnikama povezivanja podataka sa prostiranjem ključa
- dva alata za upitni jezik
 - relaciona algebra
 - » definisana na osnovama teorije skupova i skupovnih operacija
 - skupovni operatori: unija, presek, razlika
 - specijalizovani skupovni operatori: spoj (join), projekcija, selekcija, itd.
 - relacioni račun
 - relacioni račun nad torkama
 - relacioni račun nad domenima
 - » definisani na osnovama predikatskog računa I reda

SQL - Structured Query Language

- zasnovan na relacionom računu nad torkama
- deklarativan
- rad sa skupovima podataka (torki)
- osnovni oblik naredbe za upite SQL-a je

```
SELECT < lista obeležja>
FROM < lista relacija>
WHERE < logički izraz>
```

Primer

Fakultet

SFK	NAZ	BIP
FIL	Filozofski	1
PMF	Matematički	7
ETF	Elektrotehnički	9
EKF	Ekonomski	4
MAF	Mašinski	7

Projektant

MBR	IME	PRZ	SFK
МЗ	Iva	Ban	PMF
M1	Ana	Tot	MAF
M4	Ana	Ras	FIL
M8	Aca	Pap	ETF
M6	Iva	Ban	EKF
<i>M</i> 5	Eva	Tot	ETF

Primer

SELECT IME, PRZ, BIP
 FROM Fakultet, Projektant
 WHERE BIP > 5 AND
 Fakultet.SFK = Projektant.SFK

IME	PRZ	BIP
Iva	Ban	7
Ana	Tot	7
Aca	Pap	9
Eva	Tot	9

Primer

SELECT IME, PRZ, BIP
 FROM Fakultet NATURAL JOIN Projektant
 WHERE BIP > 5

IME	PRZ	BIP
Iva	Ban	7
Ana	Tot	7
Aca	Pap	9
Eva	Tot	9

Sadržaj

- Koncepcija relacionog MP
- Model podataka
- Strukturalna komponenta I
- Operacijska komponenta
- Strukturalna komponenta II
- Integritetna komponenta
- Osnovne projektantske pretpostavke

Model podataka

- Strukturalna komponenta
 - primitivni i složeni koncepti
 - "gradivni" elementi modela podataka
 - pravila za kreiranje složenih koncepata
 - služi za modeliranje LSO, kao statičke strukture sistema – šeme BP
- Operacijska komponenta
 - upitni jezik (QL)
 - jezik za manipulisanje podacima (DML)
 - jezik za definiciju podataka (DDL)
 - služi za modeliranje dinamike izmene stanja

Model podataka

- Integritetna komponenta
 - skup tipova ograničenja (uslova integriteta)
 - služi za modeliranje ograničenja nad podacima u BP
- Nivoi apstrakcije
 - određeni modelom podataka
 - nivo intenzije (konteksta)
 - nivo tipa
 - opisuje npr. nivo logičke strukture obeležja šeme
 - nivo ekstenzije (konkretizacije)
 - nivo pojave tipa
 - opisuje npr. nivo logičke strukture podataka

Sadržaj

- Koncepcija relacionog MP
- Model podataka
- Strukturalna komponenta I
- Operacijska komponenta
- Strukturalna komponenta II
- Integritetna komponenta
- Osnovne projektantske pretpostavke

BP -RMP

- Primitivni kncepti u RMP
 - Obeležje (Atribut)
 - reprezentuje osobinu (svojstvo) klase entiteta ili poveznika u realnom sistemu (RS)

Domen

 specifikacija skupa mogućih vrednosti koje neka obeležja mogu da dobiju

BP -RMP

- Polazna pretpostavka strukturalne komponente RMP
 - na kojoj se zasnivaju neke tehnike projektovanja relacione šeme BP
 - poznat je skup svih obeležja sistema
 - univerzalni skup obeležja

$$U = \{A_1, ..., A_n\}$$

- poznat je skup svih domena sistema
 - univerzalni skup domena

$$\mathbf{D} = \{D_1, \dots, D_k\}$$

- Pravilo pridruživanja domena obeležjima
 - svakom obeležju obavezno se pridružuje tačno jedan domen

Dom:
$$U \rightarrow D$$
, $(\forall A_i \in U)(Dom(A_i) \in D)$

Primer

 $U = \{MBR, IME, POL, SPR, NAP\}$

- opis semantike uvedenih obeležja
 - MBR- matični broj radnika
 - IME ime radnika
 - POL pol
 - SPR šifra projekta
 - NAP- naziv projekta

Primer

 $U = \{MBR, IME, POL, SPR, NAP\}$

 $D = \{DIDS, DIME, DPOL, DNAP\}$

- opis semantike uvedenih domena
 - DIDS domen za identifikacione brojeve {1, 2,..., 100000}
 - DIME domen za imena radnika {Ana, Aca, Iva,...}
 - DPOL domen za pol osobe {m, ž}
 - DNAP domena za nazive projekata (stringovi do dužine 30)

Primer

 $U = \{MBR, IME, POL, SPR, NAP\}$

 $D = \{DIDS, DIME, DPOL, DNAP\}$

- pridruživanje domena obeležjima
 - Dom(MBR) = DIDS, $dom(MBR) = \{1, 2, ..., 100000\}$
 - *Dom*(*IME*) = *DIME*, *dom*(*IME*) = {*Ana*, *Aca*, *Iva*,...}
 - Dom(POL) = DPOL, $dom(POL) = \{m, \check{z}\}$
 - Dom(SPR) = DIDS, $dom(SPR) = \{1, 2, ..., 100000\}$
 - Dom(NAP) = DNAP, dom(NAP) = {stringovi do dužine 30}

- Konvencije u označavanju
 - skup obeležja X = {A, B, C} skraćeno se zapisuje u formi
 - X = ABC, ili
 - X = A + B + C
 - obavezno u slučaju višeslovnih mnemoničkih oznaka obeležja
 - izraz X ∪ Y, gde su X i Y skupovi obeležja, skraćeno se zapisuje kao XY

- Primitivni koncepti nivoa intenzije
 - domen
 - obeležje
- Primitivni koncept nivoa ekstenzije
 - vrednost

- kreiranje svih ostalih (složenih) koncepata strukturalne komponente RMP
 - kombinovanjem (strukturiranjem) primitivnih koncepata
 - korišćenjem definisanih pravila u RMP

- Skup primitivnih i složenih koncepata RMP
 - za opis LSO (nivo intenzije) i LSP (nivo ekstenzije)

Nivo intenzije

- Domen
- Obeležje
- Skup obeležja
- Šema relacije
- Šema BP

Nivo ekstenzije

- Vrednost
- Podatak
- Torka (N-torka)
- Relacija
- Baza podataka

Torka

- reprezentuje jednu pojavu entiteta ili poveznika
- pomoću torke se svakom obeležju, iz nekog skupa obeležja, dodeljuje konkretna vrednost
 - iz skupa mogućih vrednosti definisanog domenom
- formalno, za:
 - $U = \{A_1, ..., A_n\}$
 - **DOM** = $\bigcup_{i=1}^n (dom(A_i))$
 - skup svih mogućih vrednosti
 - torka predstavlja preslikavanje

$$t: U \rightarrow DOM,$$

 $(\forall A_i \in U)(t(A_i) \in dom(A_i))$

Primer

```
- U = \{MBR, IME, POL, SPR, NAP\}
```

Torka t₁ definisana je na sledeći način

```
    t<sub>1</sub>(MBR) = 101
    t<sub>1</sub>(IME) = Ana
    t<sub>1</sub>(SPR) = 1100
        <sub>t1</sub>(POL) = ž
    t<sub>1</sub>(NAP) = Univerzitetski IS
```

BP –RMP 33 / 132

Primer

Torka t₁ može se prikazati kao skup podataka

```
t_1 = \{(MBR, 101), (IME, Ana), (POL, \check{z}), (SPR, 1100), (NAP, Univerzitetski IS)\}
```

Zadata je i torka t₂

```
t_2 = \{(MBR, 210), (IME, Aca), (POL, m), (SPR, 0105), (NAP, Polaris)\}
```

- Restrikcija ("skraćenje") torke t
 - na skup obeležja X⊆ U
 - oznaka: t[X]
 - svakom obeležju iz skupa X pridružuje se ona vrednost koju je imala polazna torka t
 - formalno
 - $X \subseteq U$, t. $U \rightarrow DOM$,
 - $t[X]: X \to DOM$

$$(\forall A \in X)(t[X](A) = t(A))$$

Primer

$$- t_2 = \{(MBR, 210), (IME, Aca), (POL, m), (SPR, 0105), (NAP, Polaris)\}$$

- Neka je X = MBR + IME
- $t_2[X] = \{(MBR, 210), (IME, Aca)\}$

Relacija

- nad skupom obeležja *U*
- predstavlja konačan skup torki
- reprezentuje skup realnih entiteta ili poveznika
- formalno

$$r(\mathbf{U}) \subseteq \{t \mid t: \mathbf{U} \rightarrow DOM\}, \mid r \mid \in \mathbb{N}_0$$

Skup svih mogućih torki nad skupom obeležja *U* - *Tuple*(*U*)

Primer

- $U = \{MBR, IME, POL, SPR, NAP\}$

```
- r_1(\mathbf{U}) = \{t_1, t_2\}
• t_1 = \{(MBR, 101), (IME, Ana), (POL, \check{z}), (SPR, 1100), (NAP, Univerzitetski IS)\}
```

• $t_2 = \{(MBR, 210), (IME, Aca), (POL, m), (SPR, 0105), (NAP, Polaris)\}$

Primer

$$- R = \{A, B, C\}, R \subseteq U$$

- $dom(A) = \{a_1, a_2\}$
- $dom(B) = \{b_1, b_2\}$
- $dom(C) = \{c_1, c_2\}$

$$-t_1 = \{(A, a_1), (B, b_1), (C, c_1)\}$$

$$-t_2 = \{(A, a_2), (B, b_2), (C, c_2)\}$$

$$-t_3 = \{(A, a_1), (B, b_1), (C, c_2)\}$$

$$- r(R) = \{t_1, t_2, t_3\}$$

- U relaciji se ne mogu pojaviti dve identične torke
 - to je onda ista torka, samo dva puta prikazana

- Uobičajena reprezentacija relacije
 - pomoću tabele
 - relaciju predstavlja kompletan sadržaj tabele
 - · kratko, tabela
 - poredak obeležja (kolona tabele) ne utiče na informacije koje sa sobom nosi relacija - nebitan
 - poredak torki u relaciji ne utiče na informacije koje sa sobom nosi relacija - nebitan

Primeri

Radnik	MBR	IME	POL	SPR	NAP
t ₁	101	Ana	ž	1100	Univerzitetski IS
t_2	210	Aca	m	0105	Polaris

r(R)	Α	В	С
t ₁	a ₁	<i>b</i> ₁	C ₁
t_2	a_2	b_2	c ₂
t_3	a ₁	<i>b</i> ₁	c ₂

BP –RMP 41 / 132

Sadržaj

- Koncepcija relacionog MP
- Model podataka
- Strukturalna komponenta I
- Operacijska komponenta
- Strukturalna komponenta II
- Integritetna komponenta
- Osnovne projektantske pretpostavke

BP -RMP

- Jezik za manipulaciju podacima u RMP
 - operacije za ažuriranje relacija
 - dodavanje nove torke (Add)
 - brisanje postojeće torke (Delete)
 - modifikacija podataka postojeće torke (Update)
- Jezik za definiciju podataka u RMP
 - operacije za upravljanje šemom BP
 - kreiranje, brisanje i modifikovanje delova šeme BP
- Upitni jezik u RMP
 - operacije za izražavanje upita nad jednom relacijom, ili skupom relacija
 - pružanje podataka na uvid korisniku

- Upitni jezik sačinjavaju
 - operatori za izražavanje upita
 - pravila za formiranje operanada upita izraza
 - pravila za primenu tih operatora
- Vrste teoretskih upitnih jezika u RMP
 - relaciona algebra
 - zasnovana na teoriji skupova i skupovnih operacija
 - relacioni račun
 - nad torkama
 - nad domenima
 - zasnovani na predikatskom računu I reda

- Osnovne skupovne operacije nad relacijama
 - Unija

$$r(R) \cup s(R) = \{t \mid t \in r \lor t \in s\}$$

- Presek

$$r(R) \cap s(R) = \{t \mid t \in r \land t \in s\}$$

- Razlika

$$r(R) - s(R) = \{t \mid t \in r \land t \notin s\}$$

Primer

r	А	В
	a ₁	<i>b</i> ₁
	a_2	b_2

S	А	В
	a ₁	<i>b</i> ₁
	a_3	b_3

$r \cup s$	Α	В
	a ₁	b_1
	a_2	b_2
	a_3	b_3

$r \cap s$	Α	В
	a ₁	<i>b</i> ₁

r-s	Α	В	
	a_2	b_2	

Selekcija

- torki iz relacije
- omogućava izbor (selektovanje) torki relacije po nekom kriterijumu

$$\sigma_{F}(r(R)) = \{t \in r \mid F(t)\}$$

- logičkom formulom F izražava se kriterijum po kojem se torke relacije r selektuju
- biće selektovane samo one torke, za koje je formula F tačna
 - zahteva se formalno definisanje sintakse za zapisivanje selekcionih formula tipa F

Primer

$$-\sigma_F(r(R)), F ::= PLT > 5000$$

r	MBR	IME	POL	SPR	PLT
	101	Ana	Ž	11	3400
	102	Aca	m	14	4200
	110	Ivo	m	11	7000
	111	Olja	ž	11	7200

 $\sigma_{\!\scriptscriptstyle F}$

Upit

- prikazati radnike čija je plata veća od 4000 i rade na projektu sa šifrom 11
- $-\sigma_{PLT > 4000 \land SPR = 11}(r)$

MBR	IME	POL	SPR	PLT
110	Ivo	m	11	7000
111	Olja	ž	11	7200

Projekcija (restrikcija) relacije

- izdvajanje vrednosti pojedinih kolona iz relacije
- projektovanje relacije na podskup skupa obeležja
- $-X \subseteq R$

$$\pi_X(r(R)) = \{t[X] \mid t \in r(R)\}$$

Primer

- *P* pilot
- A tip aviona
- L broj leta

• Upit:

- prikazati pilote i tipove aviona na kojima lete:
- $-\pi_{PA}(r(PAL))$

r	Р	Α	L
	Aca	747	101
	Ivo	737	101
	Aca	747	102
	Ana	DC9	110

Р	Α
Aca	747
Ivo	737
Ana	DC9

- Primer
 - Posmatra se relacija r

r	MBR	IME	POL	SPR	PLT
	101	Ana	ž	11	3400
	102	Aca	m	14	4200
	110	Ivo	m	11	7000
	111	Olja	ž	11	7200

BP –RMP 52 / 132

Upit

- prikazati matične brojeve i imena radnika čija plata je veća od 4000, a rade na projektu sa šifrom 11
- $F ::= PLT > 4000 \land SPR = 11$
- $-\pi_{MBR+IME}(\sigma_F(r))$

MBR	IME
110	Ivo
111	Olja

- Prirodni spoj relacija
 - spajanje torki različitih relacija po osnovu istih vrednosti zajedničkih obeležja
- Date su relacije r(R) i s(S)

$$r(R) \triangleright \triangleleft s(S) = \{t \in Tuple(RS) \mid t[R] \in r \land t[S] \in s\}$$

Primer

$r \bowtie s$	Α	В	С	D
	a ₁	<i>b</i> ₁	C ₁	d_1
	a ₁	b_1	C ₁	d_2
	a ₁	b_3	c_3	d_3

Primer

$r \bowtie s$	Α	В	С	D
	a_1	b_1	C ₁	d_1
	a ₁	<i>b</i> ₁	<i>C</i> ₂	d_2
	a_2	b_2	C ₁	d_1
	a_2	b_2	C ₂	d_2

Primer

Radnik

MBR	IME	PLT	POL
101	Ana	3400	Ž
102	Aca	4200	m
110	Ivo	7000	m
111	Olja	7200	Ž

Radproj

MBR	SPR
101	11
101	14
102	14
110	13
110	11

Projekat

SPR	NAP	
11	X25	
13	Polaris	
14	Univ. IS	

Upit

- izlistati matične brojeve radnika, šifre i nazive projekata na kojima rade
- Radproj ⊳⊲ Projekat

MBR	SPR	NAP
101	11	X25
101	14	Univ. IS
102	14	Univ. IS
110	13	Polaris
110	11	X25

Upit

- Izlistati matične brojeve i imena radnika, koji rade na projektu sa šifrom 11
- $π_{MBR+IME}(σ_{SPR=11}(Radproj))$ ⊳⊲ Radnik), ili
- $π_{MBR+IME}(σ_{SPR=11}(Radproj ▷ \triangleleft Radnik))$

MBR	IME
101	Ana
110	Ivo

Dekartov proizvod relacija

- spajanje formiranjem svih mogućih kombinacija torki iz dve relacije
- $-R \cap S = \emptyset$

$$r(R) \times s(S) = \{t \in Tuple(RS) \mid t[R] \in r \land t[S] \in s\}$$

Theta spajanje relacija

 selektovanje torki po nekom kriterijumu iz dekartovog proizvoda relacija

$$r(R) \rhd \lhd_F s(S) = \sigma_F(r \times s)$$

Primer

- date su relacije
 - r red vožnje Niš Beograd
 - s red vožnje Beograd Novi Sad

r	PNI	DBG
	06:00	09:00
	08:00	10:30
	13:00	16:00

S	PBG	DNS
	10:00	11:15
	12:00	13:30

Upit

- pregled svih mogućih varijanti za putovanje od Niša do Novog Sada s presedanjem u Beogradu
- $-r \triangleright \triangleleft_{DBG < PBG} s = \sigma_{DBG < PBG}(r \times s)$

$r \rhd \lhd_{DBG < PBG} s$	PNI	DBG	PBG	DNS
	06:00	09:00	10:00	11:15
	06:00	09:00	12:00	13:30
	08:00	10:30	12:00	13:30

Sadržaj

- Koncepcija relacionog MP
- Model podataka
- Strukturalna komponenta I
- Operacijska komponenta
- Strukturalna komponenta II
- Integritetna komponenta
- Osnovne projektantske pretpostavke

Šema relacije

- imenovani par

- N naziv šeme relacije (može biti izostavljen)
- R skup obeležja šeme relacije
- O skup ograničenja šeme relacije

Pojava nad šemom relacije

- -(R, O)
- bilo koja relacija r(R), takva da zadovoljava sva ograničenja iz skupa O

Primer

Data je šema relacije

O = {"Pilot može da leti samo na jednom tipu aviona"}

Let1	Р	Α	L
	Рор	747	101
	Pop	747	102
	Ana	737	103

Let2	Р	Α	L
	Рор	747	101
	Рор	737	102
	Ana	737	103

 Da li prikazane relacije predstavljaju pojave nad datom šemom relacije?

Relaciona šema baze podataka

- (imenovani) par

S - skup šema relacija

$$S = \{(R_i, O_i) \mid i \in \{1,..., n\}\}$$

I - skup međurelacionih ograničenja

Primer

- Zadate su šeme relacija
 - Radnik({MBR, IME, PRZ, DATR}, {"Ne postoje dva radnika sa istom vrednošću za MBR. Svaki radnik poseduje vrednost za MBR."})
 - Projekat({SPR, NAP}, {"Ne postoje dva projekta sa istom vrednošću za SPR. Svaki projekat poseduje vrednost za SPR."})
 - Angažovanje({SPR, MBR, BRC}, {"Ne može se isti radnik na istom projektu angažovati više od jedanput. Pri angažovanju, vrednosti za MBR i SPR su uvek poznate."})

Primer

```
    S = {Radnik, Projekat, Angažovanje}
    I = {
        "radnik ne može biti angažovan na projektu, ako nije zaposlen";
        "na projektu ne može biti angažovan ni jedan radnik, dok
        projekat ne bude registrovan"
        }
```

(S, I) predstavlja jednu relacionu šemu BP

Relaciona baza podataka

 jedna pojava nad zadatom relacionom šemom baze podataka (S, I)

s:
$$S \to \{r_i \mid i \in \{1,..., n\}\}, (\forall i)s(R_i, O_i) = r_i$$

- svakoj šemi relacije iz skupa S odgovara jedna njena pojava
- skup relacija s mora da zadovoljava sva međurelaciona ograničenja iz skupa I

- Baza podataka
 - reprezentuje jedno stanje realnog sistema
 - ažurira se, jer promene stanja realnog sistema treba da prate odgovarajuće promene podataka u BP
- Odnos šema BP BP

Nivo intenzije $\{(R_1, O_1), ..., (R_n, O_n)\}, I)$ Nivo ekstenzije $\{r_1(R_1), ..., r_n(R_n)\}$

Šema BP statička (sporo promenljiva kategorija) sistema BP

relaciona BP dinamička (stalno promenljiva kategorija) sistema BP

Primer

- S = {Radnik, Projekat, Angažovanje}
- RBP = {radnik, projekat, angažovanje}

radnik

MBR	IME	PRZ	DATR
101	Ana	Pap	12.12.65.
102	Aca	Tot	13.11.48.
110	Ivo	Ban	01.01.49.
111	Olja	Kun	06.05.71.

projekat

NAP
X25
Polaris
Univ. IS

angažovanje

MBR	SPR
101	11
101	14
102	14

Konzistentno stanje BP

- baza podataka $RBP = \{r_i \mid i \in \{1,..., n\}\}$ nad šemom (S, I) nalazi se u
 - formalno konzistentnom stanju ako
 - $(\forall r_i \in RBP)(r_i \text{ zadovoljava sva ograničenja odgovarajuće šeme} (R_i, O_i))$
 - RBP zadovoljava sva međurelaciona ograničenja iskazana putem I
 - suštinski konzistentnom stanju ako
 - se nalazi u formalno konzistentnom stanju i
 - predstavlja vernu sliku stanja realnog sistema
 - » u praksi, nivo pojave grešaka u BP sveden je na ispod 2-3%
- SUBP može da kontroliše formalnu konzistentnost

Sadržaj

- Koncepcija relacionog MP
- Model podataka
- Strukturalna komponenta I
- Operacijska komponenta
- Strukturalna komponenta II
- Integritetna komponenta
- Osnovne projektantske pretpostavke

- Definisana putem tipova ograničenja
- Karakteristike tipa ograničenja
 - formalizam za zapisivanje (definicija)
 - pravilo za interpretaciju (validaciju)
 - oblast definisanosti
 - tip logičke strukture obeležja nad kojom se ograničenje definiše
 - oblast interpretacije
 - tip logičke strukture podataka nad kojom se ograničenje interpretira

- Karakteristike tipa ograničenja
 - skup operacija nad bazom podataka koje mogu dovesti do narušavanja ograničenja datog tipa
 - skup mogućih akcija kojima se obezbeđuje očuvanje validnosti baze podataka, pri pokušaju narušavanja ograničenja datog tipa
 - definiše se za svaku operaciju koja može dovesti do narušavanja ograničenja

BP -RMP

- Tipovi ograničenja u relacionom modelu podataka
 - ograničenje domena
 - ograničenje vrednosti obeležja
 - ograničenje torke
 - integritet entiteta (ograničenje ključa)
 - ograničenje jedinstvenosti vrednosti obeležja
 - zavisnost sadržavanja
 - ograničenje referencijalnog integriteta
 - funkcionalna zavisnost

- Oblasti definisanosti u relacionom MP
 - vanrelaciono ograničenje
 - definiše se izvan konteksta šeme relacije
 - jednorelaciono (unutarrelaciono, lokalno) ograničenje
 - definiše se nad tačno jednom šemom relacije
 - višerelaciono ograničenje
 - definiše se nad skupom ili nizom šema relacija, koji sadrži bar dva člana

BP -RMP

- Oblasti interpretacije u relacionom MP
 - ograničenje vrednosti
 - interpretira se nad tačno jednom vrednošću nekog obeležja
 - ograničenje torke
 - interpretira se nad jednom torkom bilo koje relacije
 - relaciono ograničenje
 - interpretira se nad skupom torki bilo koje relacije
 - međurelaciono ograničenje
 - interpretira se nad barem dve, bilo koje relacije

- Oblasti interpretacije u relacionom MP
 - ograničenje torke
 - relaciono ograničenje
 - međurelaciono ograničenje
 - Napomena "bilo koja relacija":
 - jedna relacija iz baze podataka, ili
 - relacija koja je nastala primenom izraza relacione algebre nad jednom ili više drugih relacija - pogled
 - » moguća i primena operatora spajanja

Specifikacija domena

D(id(D), Predef)

- D naziv domena
- id(D) ograničenje (integritet) domena
- Predef predefinisana vrednost domena

Ograničenje domena

id(D) = (Tip, Dužina, Uslov)

- Tip tip podatka (primitivni domen), ili
 oznaka prethodno definisanog domena
- Dužina dužina tipa podatka
- Uslov logički uslov

Specifikacija domena

- Tip
 - predstavlja jedinu obaveznu komponentu specifikacije ograničenja domena
- Dužina
 - navodi se samo za tipove podataka (primitivne domene) koji to zahtevaju
 - ne navodi za domene čiji tip ne predstavlja primitivni domen
- Uslov
 - mora da ga zadovoljava svaka vrednost iz skupa mogućih vrednosti domena
- Predef
 - mora da zadovolji ograničenja tipa, dužine i uslova

Ograničenje domena

- interpretacija ograničenja
 - moguća za bilo koju vrednost konstantu d
 - oznaka id(D)(d)

Primeri

- DPrezime((String, 30, Δ), Δ)
- DDatum((Date, Δ , d ≥ '01.01.1900'), Δ)
- DOcena((Number, 2, $d \ge 5 \land d \le 10$), ∆)
- DPozOcena((DOcena, Δ , d ≥ 6), 6)
 - Δ komponenta u specifikaciji nije zadata

Nula (nedostajuća, izostavljena) vrednost

- specijalna vrednost
- označava se posebnim simbolom
 - ω, ili ? (u literaturi) ili
 - NULL (u literaturi i SQL-u)
- moguća značenja
 - nepoznata postojeća vrednost obeležja
 - nepostojeća vrednost obeležja
 - neinformativna vrednost obeležja
- skup mogućih vrednosti svih domena proširuje se nula vrednošću

$$DOM \cup \{\omega\}$$

nula vrednost a priori zadovoljava svako ograničenje domena

- Specifikacija obeležja šeme relacije
 - $-A \in R$, N(R, O)
 - zadaje se za svako obeležje šeme relacije

(id(N, A), Predef)

- id(A) ograničenje vrednosti obeležja
- Predef predefinisana vrednost obeležja
- Ograničenje vrednosti obeležja
 id(N, A) = (Domen, Null)
 - Domen oznaka (naziv) domena obeležja
 - Null ∈ {T, ⊥} ograničenje nula vrednosti obeležja
 - T dozvola dodele nula vrednosti obeležju u r(N)
 - ⊥ zabrana dodele nula vrednosti obeležju u r(N)

Specifikacija obeležja šeme relacije

- Domen i Null
 - obavezne komponente specifikacije
- Predef
 - ako se navede, onda je on važeći
 - u protivnom, važeći je Predef odgovarajućeg Domena, ili prvog sledećeg nasleđenog domena, za koji je Predef definisan
- Interpretacija ograničenja
 - moguća za bilo koju vrednost obeležja d
 - oznaka id(N, A)(d)

Ograničenje torke

- izražava ograničenja na moguće vrednosti unutar jedne torke
- predstavlja skup ograničenja vrednosti obeležja, kojem je pridodat logički uslov
- formalno, za šemu relacije N(R, O)

$$id(N) = id(R) = (\{id(N, A) \mid A \in R\}, Uslov)$$

- Uslov
 - logički uslov koji svaka torka mora da zadovolji
 - može, u ulozi operanda, da sadrži bilo koje obeležje date šeme relacije
- interpretacija ograničenja
 - moguća za bilo koju torku nad skupom obeležja R, id(N)(t)

Primer

- Radnik({MBR, PRZ, IME, ZAN, BPJZ}, O)

Radnik	Domen	Null	Predef
MBR	MBRD	1	Δ
PRZ	PRZD	Τ	Δ
IME	IMED	上	Δ
ZAN	ZAND	上	Δ
<i>BPJZ</i>	BPJZD	Т	Δ
Uslov:	$ZAN = 'prq' \Leftrightarrow$	BPJZ <>	ω

- Primer
 - Radnik({MBR, PRZ, IME, ZAN, BPJZ}, O)

Domen	Tip	Dužina	Uslov	Predef
MBRD	Number	4	<i>d</i> ≥ <i>0</i>	Δ
PRZD	String	30	Δ	Δ
IMED	String	15	Δ	Δ
ZAND	String	3	Δ	Δ
<i>BPJZD</i>	Number	2	<i>d</i> ≥ <i>0</i>	0

Ključ šeme relacije

- minimalni podskup skupa obeležja šeme relacije, na osnovu kojeg se jedinstveno može identifikovati svaka torka relacije nad datom šemom
- formalno, X je ključ ako
 - 10 $(\forall u, v \in r(R))(u[X] = v[X] \Rightarrow u = v)$
 - 2^0 $(\forall Y \subset X)(\neg 1^0)$
- oblast interpretacije
 - skup torki (relacija) nad datom šemom relacije

Ključ šeme relacije

 u određenim situacijama (u procesu projektovanja šeme BP) skup ograničenja šeme relacije zadaje se samo kao skup ključeva

N(R, K)

- Primer
 - šema relacije Radnik(R, K)
 - R = {MBR, IME, PRZ, DATR, POL, MESR, RBRE}
 - $K = \{MBR, DATR + MESR + POL + RBRE\}$

Primer

- Radnik({MBR, IME, PRZ, DATR}, {MBR})
- Projekat({SPR, NAP}, {SPR})
- Angažovanje({SPR, MBR, BRC}, {SPR+MBR})

- Ograničenje ključa (integritet entiteta)
 - šeme relacije N(R, K)
 - ključ $X \in K$, $X \subseteq R$
 - oznaka

Key(N, X)

– za sva obeležja ključa nula vrednosti su zabranjene $(\forall K_i \in K)(\forall A \in K_i)(Null(N, A) = \bot)$

- Vrste obeležja šeme relacije, s obzirom na ključeve
 - primarno (ključno) obeležje
 - pripada barem jednom ključu šeme relacije
 - neprimarno (sporedno) obeležje
 - ne pripada ni jednom ključu šeme relacije

Ograničenje ključa (integritet entiteta)

- svaka šema relacije mora posedovati najmanje jedan ključ (K≠∅)
 - proizilazi iz definicije pojma relacije

– ekvivalentni ključevi

svi ključevi skupa ključeva K

primarni ključ

- jedan izabrani ključ, od svih ekvivalentnih ključeva
- oznaka $K_p(N)$
- svaka šema relacije treba da poseduje tačno jedan primarni ključ
- koristi se u ulozi asocijativne (simboličke) adrese za povezivanje podataka u relacijama

Ograničenje jedinstvenosti

- vrednosti obeležja šeme relacije N(R, O)
- Uniqueness Constraint

Unique(N, X)

- X skup obeležja, X ⊆ R
- zahteva da ne-nula kombinacija vrednosti obeležja bude jedinstvena u relaciji nad N(R, O)
- formalno
 - $(\forall u, v \in r(R))((\forall A \in X)(u[A] \neq \omega \land v[A] \neq \omega) \Rightarrow$ $(u[X] = v[X] \Rightarrow u = v))$

Ograničenje jedinstvenosti

- oblast interpretacije
 - skup torki relacija nad datom šemom N(R, O)
- skup svih ograničenja jedinstvenosti u šemi N(R, O)

$$Uniq = \{Unique(N, X) \mid X \subseteq R\}$$

Primer

Radnik({MBR, IME, PRZ, DATR, JMBG}, O)

- Uniq ⊆ 0
- Uniq = {Unique(Radnik, JMBG)}
- Unique(Radnik, JMBG)
 - zahteva da ako radnik poseduje ne-nula vrednost za JMBG, onda je ta vrednost jedinstvena u relaciji nad šemom Radnik

Skup svih ograničenja šeme relacije

- praktično, kada šemu relacije treba implementirati u datom SUBP, zadaje se kao unija
 - skupa ključeva,
 - ograničenja jedinstvenosti i
 - ograničenja torke

 $N(R, K \cup Uniq \cup \{id(R)\})$

Primer

```
Radnik({MBR, PRZ, IME, ZAN, BPJZ, JMBG}, K \cup Uniq \cup \{id(R)\})
```

- $-K = \{MBR\}$
- Uniq = {Unique(Radnik, JMBG)}
- id(R) prethodno zadat, u tabelarnom obliku

Primer ograničenja ugrađenih u šemu BP

```
CREATE TABLE radnik(
      Mbr integer NOT NULL,
      Ime varchar(20) NOT NULL,
      Prz varchar(25) NOT NULL,
      Sef integer,
      Plt decimal(10, 2),
      Pre decimal(6, 2),
      God date NOT NULL,
      CONSTRAINT radnik_PK PRIMARY KEY (Mbr),
      CONSTRAINT radnik_FK FOREIGN KEY (Sef)
            REFERENCES Radnik (Mbr),
      CONSTRAINT radnik_CH CHECK (Plt>500) );
```

Primer

```
CREATE TABLE projekat
      Spr integer not null,
      Ruk integer not null,
      Nap varchar(30),
      Nar varchar(30),
CONSTRAINT projekat_PK PRIMARY KEY (Spr),
      CONSTRAINT projekat_FK FOREIGN KEY
(Ruk) REFERENCES Radnik (Mbr),
      CONSTRAINT projekat_UK UNIQUE (Nap)
```

BP -RMP

Zavisnost sadržavanja

- date su šeme relacije $N_i(R_i, O_i)$ i $N_i(R_i, O_i)$
- dati su domenski kompatibilni nizovi obeležja

$$X = (A_1, ..., A_n), (\forall I \in \{1, ..., n\})(A_i \in R_i),$$

$$Y = (B_1, ..., B_n), (\forall I \in \{1, ..., n\})(B_i \in R_j),$$

$$(\forall I \in \{1, ..., n\})(dom(A_i) \subseteq dom(B_i))$$

oznaka (pravilo zapisivanja)

$$N_i[X] \subseteq N_j[Y]$$

Zavisnost sadržavanja

$$N_i[X] \subseteq N_j[Y]$$

– važi ako je za bilo koje dve relacije $r(R_i, O_i)$ i $s(R_j, O_j)$ zadovoljeno

$$(\forall u \in r)(\exists v \in s)(\forall l \in \{1,...,n\})(u[A_l] = \omega \vee u[A_l] = v[B_l])$$

- oblast definisanosti
 - niz od dve šeme relacije
- oblast interpretacije
 - relacije nad šemama N_i i N_i

Primer

- date su relacije $r(N_i)$ i $s(N_i)$
- važi zavisnost sadržavanja $N_i[B]$ ⊆ $N_i[B]$

r	Α	В
	a ₁	<i>b</i> ₁
	a_2	b_2

S	В	С
	<i>b</i> ₁	C ₁
	b_2	C ₁
	b_3	c_2

Primer

- date su relacije $r(N_i)$ i $s(N_i)$
- važi zavisnost sadržavanja $N_i[(A, B)] \subseteq N_i[(C, D)]$

r	Α	В
	a ₁	<i>b</i> ₁
	a_2	ω

S	С	D
	a ₁	b_1
	a_2	b_2
	a_3	b_2

Ograničenje referencijalnog integriteta

- zavisnost sadržavanja $N_i[X] \subseteq N_j[Y]$, kada je Y ključ šeme relacije $N_i(R_i, K_i)$
- $-N_i$ referencirajuća šema relacije
- N_i referencirana šema relacije

Primer

- Projekat[RUK] ⊆ Radnik[MBR]
- Angažovanje[MBR] ⊆ Radnik[MBR]
- Angažovanje[SPR] ⊆ Projekat[SPR]

Radnik

MBR	IME	PRZ	DATR
101	Ana	Pap	12.12.85.
102	Aca	Tot	13.11.88.
110	Ivo	Ban	01.01.79.
111	Olja	Kun	06.05.81.

Projekat

SPR	NAP	RUK
11	X25	101
13	Polaris	101
14	Univ.IS	111

Angažovanje

MBR	SPR
101	11
101	14
111	14

Primer

```
CREATE TABLE projekat
      Spr integer not null,
      Ruk integer not null,
      Nap varchar(30),
      Nar varchar(30),
CONSTRAINT projekat_PK PRIMARY KEY (Spr),
      CONSTRAINT projekat_FK FOREIGN KEY
(Ruk) REFERENCES Radnik (Mbr),
      CONSTRAINT projekat_UK UNIQUE (Nap)
```

BP -RMP

Funkcionalna zavisnost (FZ)

- izraz oblika f: $X \rightarrow Y$
 - gde su X i Y skupovi obeležja
 - f je oznaka FZ
 - Xi Ysu podskupovi skupa U
 - oznaka f se, u notaciji, često izostavlja
- semantika
 - ako je poznata X vrednost, poznata je i Y vrednost
 - svakoj X vrednosti odgovara samo jedna Y vrednost
- relacija r zadovoljava FZ X→Y ako važi

$$(\forall u, v \in r)(u[X] = v[X] \Rightarrow u[Y] = v[Y])$$

- oblast interpretacije
 - relacija r(N) ili r(U)

Funkcionalna zavisnost (FZ)

- Primer
 - MBR→IME
 - ako dve torke imaju istu vrednost za MBR, moraju imati istu vrednost i za IME
- skup FZ se označava sa F
 - **F** = {MBR→IME, MBR+MES+GOD→BRC,...}

Trivijalna FZ

- svaka FZ koja je zadovoljena u bilo kojoj relaciji
- svaka FZ $X \rightarrow Y$, za koju važi $Y \subseteq X$
- Primer
 - $MBR \rightarrow MBR$, $MBR \rightarrow \emptyset$, $AB \rightarrow A$,...

Primer

- semantika uvedenih obeležja skupa *U*
 - BRI broj indeksa
 - IME ime studenta
 - PRZ prezime studenta
 - BPI broj položenih ispita
 - OZP oznaka predmeta
 - NAP naziv predmeta
 - NAS prezime nastavnika
 - OCE ocena na ispitu

Primer

Student

BRI	IME	PRZ	BPI	OZP	NAP	NAS	OCE
159	Ivo	Ban	13	P1	Mat	Han	09
159	Ivo	Ban	13	P2	Fiz	Kun	08
013	Ana	Tot	09	P1	Mat	Pap	06
119	Eva	Kon	15	P3	Hem	Kiš	07
159	Ivo	Ban	13	P3	Hem	Kiš	10
119	Eva	Kon	15	P1	Mat	Han	09
159	Ivo	Ban	13	P4	Mat	Car	10
037	Eva	Tot	01	P4	Mat	Car	10

BP –RMP 111 / 132

- Primer
 - Relacija Student zadovoljava sledeće FZ

$$F = \{BRI \rightarrow IME + PRZ + BPI, IME + PRZ \rightarrow BRI, OZP \rightarrow NAP, NAS \rightarrow OZP + NAP, BRI + OZP \rightarrow OCE + NAS\}$$

Relacija Student ne zadovoljava sledeće FZ
 BRI→OCE, OZP→NAS, ...

- Način identifikacije važećih FZ
 - na osnovu odnosa i pravila poslovanja koji postoje u realnom sistemu

Funkcionalna zavisnost

logička posledica

- FZ f je logička posledica od skupa FZ F
- oznaka: **F** |= f
 - ako svaka relacija r koja zadovoljava F zadovoljava i f
 - $(\forall r \in SAT(\mathbf{U}))(r |= \mathbf{F} \Rightarrow r |= f)$
- skup FZ F₂ je logička posledica od skupa FZ F₁
- oznaka: F₁ |= F₂
 - ako $(\forall f \in \mathbf{F_2})(\mathbf{F_1} |= f)$

- implikacioni problem

• rešiti implikacioni problem, znači utvrditi da li važi *F* |= *f*

ekvivalentnost skupova FZ

- oznaka: *F*₁ ≡ *F*₂
- ako $F_1 |= F_2 \wedge F_2 |= F_1$

Funkcionalna zavisnost

- zatvarač (zatvorenje) skupa FZ
 - oznaka F*
 - skup koji sadrži sve logičke posledice od F
 - $F^+ = \{f \mid F \mid = f\}$
 - važi za svaki F da F ⊆ F⁺
 - $F_1 \models F_2$ akko $F_2^+ \subseteq F_1^+$
- ekvivalentnost skupova FZ
 - $F_1 = F_2$ akko $F_1^+ = F_2^+$

Funkcionalna zavisnost

- Armstrongova pravila izvođenja
 - refleksivnost

$$- Y \subseteq X \mid -X \rightarrow Y$$

proširenje

$$-X \rightarrow Y, W \subseteq V \mid -XV \rightarrow YW$$

pseudotranzitivnost

$$-X \rightarrow Y, YV \rightarrow Z \mid -XV \rightarrow Z$$

- Izvedena pravila izvođenja
 - uniranje desnih strana

$$-X \rightarrow Y, X \rightarrow Z \mid -X \rightarrow YZ$$

dekompozicija desnih strana

$$-X \rightarrow Y, V \subseteq Y \mid -X \rightarrow V$$

tranzitivnost

$$-X \rightarrow Y, Y \rightarrow Z \mid -X \rightarrow Z$$

Primer

- varijante u označavanju
 - primena pravila dekompozicije i uniranja desnih strana $\{BRI \rightarrow IME, BRI \rightarrow PRZ\} \equiv \{BRI \rightarrow IME + PRZ\}$
 - proizvoljno dekomponovanje levih strana nije dozvoljeno {BRI+OZP→OCE} <u>≠</u> {BRI→OCE, OZP→OCE}

Funkcionalna zavisnost

- Sistem armstrongovih pravila izvođenja je
 - refleksivnost, proširenje i pseudotranizitivnost
 - korektan (neprotivurečan)
 - svaka FZ koja se izvede primenom AP iz nekog skupa FZ predstavlja logičku posledicu tog skupa FZ
 - kompletan
 - svaka logička posledica nekog skupa FZ može se izvesti primenom AP iz tog skupa
 - neredundantan (minimalan)
 - ne može se eliminisati kao suvišno ni jedno od tri pravila izvođenja, a da prethodna dva svojstva ostanu očuvana

Nepotpuna FZ

- $-X \rightarrow Y \in \mathbf{F}$ je nepotpuna
 - ako sadrži logički suvišno obeležje na levoj strani
 - $(\exists X' \subset X)(X' \rightarrow Y \in F^{+})$
- Primer
 - BRI+IME→PRZ, zbog BRI→IME
 - redukuje se u BRI→PRZ

Tranzitivna FZ

- $-X\rightarrow Z$ tranzitivna
 - ako važi $X \rightarrow Y \in F^+$ i $Y \rightarrow Z \in F^+$, a ne važi da je $Y \rightarrow X \in F^+$
- Primer
 - $NAS \rightarrow OZP$, $OZP \rightarrow NAP$, $\neg (OZP \rightarrow NAS)$
 - NAS→NAP je tranzitivna i logički suvišna

Ključ šeme relacije i FZ

- X je ključ šeme relacije (R, F), ako važi
 - 1º iz \mathbf{F} sledi $X \rightarrow R (X \rightarrow R \in \mathbf{F}^+)$
 - 2º X je minimalni skup obeležja s osobinom 1º

$$-\neg(\exists X'\subset X)(X'\rightarrow R\in F^+)$$

Zatvarač (zatvorenje) skupa obeležja

- skup svih obeležja koja funkcionalno zavise od X
- $-X_{F}^{+}=\{A\subseteq \boldsymbol{U}\mid X\rightarrow A\in \boldsymbol{F}^{+}\}$

• Algoritam za izračunavanje zatvarača X_F^+

- $X_0 \leftarrow X$
- (Za $i \ge 0$)($X_{i+1} \leftarrow X_i \cup \{A \subseteq U \mid (\exists V \rightarrow W \in F)(V \subseteq X_i \land A \in W)\}$)
- (Za $n \ge 0$)($X_{n+1} = X_n \Rightarrow X_{F}^+ = X_n$)

Generisanje jednog ključa šeme relacije

- polazi se od R i vrši se redukcija
 - izbacivanjem obeležja i izračunavanjem zatvarača ostatka
 - *X*←*R*
 - Redukcija Red(X): (∀A ∈ X)(A ∈ (X \ {A}))_F⁺ ⇒ X ← X \ {A})

Generisanje svih alternativnih ključeva

- polazi se od prvog generisanog ključa $X, K \leftarrow \{X\}$
 - $(\forall X \in K)(\forall V \rightarrow W \in F)(X \cap W \neq \emptyset \Rightarrow X_{newk} \leftarrow (X \setminus W)V)$
 - Redukcija: $Red(X_{newk})$: $K \leftarrow K \cup \{Red(X_{newk})\}$

Primer

$$F = \{BRI \rightarrow IME + PRZ + BPI, IME + PRZ \rightarrow BRI, OZP \rightarrow NAP, NAS \rightarrow OZP + NAP, BRI + OZP \rightarrow OCE + NAS\}$$

- šema relacije Student ima četiri ključa
 - $K_1 = BRI + NAS$, $K_2 = IME + PRZ + NAS$,
 - $K_3 = BRI + OZP$, $K_4 = IME + PRZ + OZP$
- Pojam ključa
 - fundamentalan za teoriju i praksu relacionog MP
 - ne projektuju se ostala ograničenja šeme BP, dok se ne preciziraju ključevi svih šema relacija

- Projekcija skupa funkcionalnih zavisnosti na skup obeležja
 - dati su skup fz F i skup obeležja X ⊆ U
 - projekcija *F* |_X predstavlja skup svih funkcionalnih zavisnosti koje logički slede iz *F*, a definisane su u skupu obeležja *X*
 - formalno

$$F|_X = \{V \rightarrow W \mid F \mid = V \rightarrow W \land VW \subseteq X\}$$

Primer

$$- \mathbf{F} = \{A \rightarrow B, B \rightarrow C, BE \rightarrow F, A \rightarrow D\}$$

 $- F|_{ACDEF} = \{A \rightarrow C, AE \rightarrow F, A \rightarrow D, \text{ sve trivijalne fz}\}$

Primer

Data je šema relacije $N(\{A, B, C, D\}, \{AB \rightarrow C, C \rightarrow A, D \rightarrow B\})$

Da li je *AD* ključ u *N*: Da / Ne

Dokaz:

Da li je AC ključ u N: Da / Ne

Dokaz:

Primer

Da li navedene logičke implikacije uvek važe:

$$X \rightarrow Y$$
, $Z \subseteq X \models Z \rightarrow Y$ Da / Ne $X \rightarrow Y$, $Z \subseteq Y \models X \rightarrow Z$ Da / Ne $X \rightarrow Y$, $V \subseteq W \models XV \rightarrow YW$ Da / Ne $X \rightarrow Y$, $X \rightarrow Z \models X \rightarrow YZ$ Da / Ne $X \rightarrow Y$, $Z \rightarrow Y \models XZ \rightarrow Y$ Da / Ne $X \rightarrow Y$, $Z \rightarrow V \models XV \rightarrow YV$ Da / Ne $X \rightarrow Y$, $Z \rightarrow V \models XV \rightarrow YV$ Da / Ne

BP –RMP

Sadržaj

- Koncepcija relacionog MP
- Model podataka
- Strukturalna komponenta I
- Operacijska komponenta
- Strukturalna komponenta II
- Integritetna komponenta
- Osnovne projektantske pretpostavke

BP -RMP

- Pretpostavka o postojanju šeme univerzalne relacije (ŠUR)
 - U univerzalni skup obeležja
 - OGR skup svih ograničenja realnog sistema
 - šema univerzalne relacije

(*U*, *OGR*)

- pretpostavka da uvek egzistira u imaginarnom svetu
- Posledica
 - jedinstvena uloga svakog obeležja u ŠUR
 - ne postoje dva obeležja s istom ulogom (sinonimi)
 - ne postoji obeležje s više od jedne uloge (homonimi)
 - svako obeležje u budućoj šemi BP identifikuje se isključivo putem svog naziva

Univerzalna relacija

- pojava nad ŠUR, r(U, OGR)
- reprezentuje stanje realnog sistema
- apstraktni pojam preuzet iz imaginarnog sveta
- praktično, nemoguće je implementirati je pod nekim SUBP
 - prepreke logičkog karaktera i
 - prepreke vezane za moguću fizičku organizaciju podataka

teoretski zahtev

 stanje relacione baze podataka nad (S, I) treba, u informativnom smislu, da odgovara sadržaju univerzalne relacije

- Šema BP (S, I) treba da zadovolji sledeće kriterijume u odnosu na (U, OGR)
 - da predstavlja dekompoziciju ŠUR:

$$(\forall N_i \in S)(R_i \neq \varnothing) \land \cup_{N_i \in S}(R_i) = U$$

 skup svih ograničenja da bude ekvivalentan polaznom skupu ograničenja OGR

$$\bigcup_{N_i \in S} (O_i) \cup I \equiv OGR$$

spojivost bez gubitaka informacija

$$r(\mathbf{U}, \mathbf{OGR}) = \triangleright \triangleleft_{N_i \in S}(r_i(R_i))$$

Sadržaj

- Koncepcija relacionog MP
- Model podataka
- Strukturalna komponenta I
- Operacijska komponenta
- Strukturalna komponenta II
- Integritetna komponenta
- Osnovne projektantske pretpostavke

BP -RMP

Pitanja i komentari

BP –RMP 131 / 132

Baze podataka

Osnove relacionog modela podataka

Strukturalna, operacijska i integritetna komponenta relacionog modela podataka