Computational Problems

Debadatta Kar, PhD Scholar, Electrical Engineering and Computer Science, Indian Institute of Science Education and Research, Bhopal

July, 2025

III

1 Introduction

This article will cover the computational problems involved in the Lattices. We will look at the Shortest Vector Problem in detail and a way to solve it computationally. In the first part, we will define the problems, and subsequently, we will look at the way the mechanism to solve them evolved.

2 Exact Computational Problems

2.1 Shortest Vector problem(SVP)

Input: Basis of lattice BOutput: $\mathbf{v} \in \mathcal{L}$ such that

 $||\mathbf{v}|| = \lambda_1$

2.1.1 Optimisation Version of SVP

Input: Basis of lattice B Output: $\lambda_1(\mathcal{L}(B))$

2.1.2 Decision Version of SVP

Input: Basis of lattice B and $d \in \mathbb{R}$ Output: Yes if $\lambda_1 \leq d$ else No

2.2 Closest vector Problem(CVP)

Input: Basis of lattice B and a target vector $\mathbf{t} \in \mathbb{R}^n$ in the ambient space.

Output: $v \in \mathcal{L}$ such that

 $\|\mathbf{v}\| = \min_{\mathbf{u} \in \mathcal{L}} ||\mathbf{u} - \mathbf{t}||$

2.3 Shortest Integer vector Problem(SIVP)

Input: Basis of lattice B

Output: $||\mathbf{v_1}|| \le ||\mathbf{v_2}|| \le \cdots \le ||\mathbf{v_d}|| \le \lambda_d$

3 Approximation Computational Problems

The γ -approximate shortest vector problem, where $\gamma = \gamma(n) \geq 1$ is a function of dimension n. It has the following variants

3.1 $Decision(GapSVP_{\gamma})$

Input: Basis of lattice B and $d \in \mathbb{Z}^+$ Output: $\lambda_1(\mathcal{L}) \leq d$ or $\lambda_1(\mathcal{L}) > \gamma \cdot d$

3.2 Estimation(EstSVP $_{\gamma}$)

Input: Basis of lattice B

Output: $\lambda_1(\mathcal{L})$ up to a factor γ and return $d \in [\lambda_1(\mathcal{L}), \gamma \cdot \lambda_1(\mathcal{L})]$

3.3 Search(SVP $_{\gamma}$)

Input: Basis of lattice B

Output: $\mathbf{v} \in \mathcal{L}(B)$ such that $0 < ||\mathbf{v}|| \le \gamma \cdot \lambda_1(\mathcal{L})$

Open Problem: Prove or disprove $SVP_{\gamma} \leq GapSVP_{\gamma}$

References

- [1] Oded Regev, Lecture Notes on Lattices in Computer Science, Tel Aviv University, Fall 2009.
- [2] Vinod Vaikuntanathan, Advanced Topics in Cryptography: From Lattices to Program Obfuscation, MIT, Fall 2024.
- [3] Chris Peikert, Lattices in Cryptography, University of Michigan, 2015
- [4] Deng, Xinyue An Introduction to Lenstra-Lenstra-Lovasz Lattice Basis Reduction Algorithm, Massachusetts Institute of Technology, 2016