18 Dense subspaces of L^p

Theorem 18.1. Assume (X, d) is a metric space, μ is a Borel measure on X s.t. $\mu(B_R(x)) < \infty$, $\forall x \in X$ and $\forall R > 0$, $1 \le p \le \infty$. Then the bounded continuous functions on X with bounded support form a dense subspace of $L^p(X, d\mu)$. (Where by bounded support we mean that f is zero outside $B_R(x)$ for some x and R > 0.)

If X is locally compact, then by $C_c(X)$ we denote the space of continuous functions on X with compact support.

Theorem 18.2. Assume (X,d) is a separable, so it has a dense subset, locally compact metric space, μ is a Borel measure on X s.t. $\mu(K) < \infty$ for every compact $K \subset X$, $| \leq P < \infty$. Then $C_c(X)$ is dense in $L^p(X,d\mu)$.

Remark. Theorem 17.8 in the book is wrong.

Remark. These results do not extent to $p = \infty$.

For $X = \mathbb{R}^n$, either theorem implies that if μ is a Borel measure on \mathbb{R}^n , s.t. $\mu(B_R(x)) < \infty$, $\forall x, \forall R > 0$, then $C_c(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n, d\mu)$, $1 \le p < \infty$. Later we will prove that $C_c^\infty(\mathbb{R}^n)$ is still dense in $L^p(\mathbb{R}^n, d\mu)$. For $\mu = \lambda_n$ we write $L^p(\mathbb{R}^n)$ instead of $L^p(\mathbb{R}^n, d\lambda_n)$.

19 Modes of convergence

Theorem 19.1. (Egorov)

Assume $(X, \mathcal{B}, \overline{\mu})$ is a measure space, $\mu(X) < \infty$. Assume $f_n, f: X \to \mathbb{C}$ are measurable functions and $f_n \to f$ a.e. Then $\forall \epsilon > 0$ there is $X_{\epsilon} \in \mathcal{B}$ s.t. $\mu(X_{\epsilon}) < \epsilon$ and $f_n \to f$ uniformly on $X \setminus X_{\epsilon}$.

- 1. For measurable functions f_n, f , we write $f_n \to f$ in the p-th mean, excluding $p = \infty$, if $\lim_{n \to \infty} ||f_n f||_p = 0$.
- 2. For p=1 we sat that $f_n \to f$ in <u>mean</u> and for p=2 we say that $f_n \to f$ in quadratic mean.
- 3. We say that $f_n \to f$ in $\underline{\text{measure}}$ if $\lim_{n \to \infty} \mu(\{x : |f_n(x) f(x)| \ge \epsilon\}) = 0, \ \forall \epsilon > 0.$

Theorem 19.2. Assume (X, \mathcal{B}, μ) is a measure space, $1 \leq p < \infty$, $f_n, f \to \mathbb{C}$ are measurable functions. Then

- 1. if $f_n \to f$ in the p-th mean, then $f_n \to f$ in measure
- 2. if $f_n \to f$ in measure, then there is a subsequence $(f_n)_{n=1}^{\infty}$ s.t. $f_{n_k} \to f$ a.e.
- 3. if $f_n \to f$ a.e. and $\mu(X) < \infty$, then $f_n \to f$ in measure.

In particular, if $f_n \to f$ in the p-th mean, then $f_{n_k} \to f$ a.e. for a subsequence $(f_{n_k})_k$.

20 Hilbert spaces

Assume H is a vector space over \mathbb{C} .

Definition 20.1. A pre-inner product on H is a map $(\cdot,\cdot): H \times H \to \mathbb{C}$ which is

1. sesquilinear: that is, linear in the first variable, and antilinear in the second, for $u, v, w \in H$, $\alpha, \beta \in \mathbb{C}$

$$(\alpha u + \beta v, w) = \alpha(u, w) + \beta(v, w)$$

$$(w, \alpha u + \beta v) = \bar{\alpha}(w, u) + \bar{\beta}(w, v)$$

- 2. Hermitian: $(u, v) = \overline{(v, u)}$
- 3. Positive semidefinite: (u, u) > 0 for $u \in H$.

It is called an inner product or a scalar product, if instead of (3) the map is

3. positive definite: (u, u) > 0 for $u \in H$, $u \neq 0$.

A similar definition makes sense for real vector spaces, but then $(\cdot,\cdot): H \times H \to \mathbb{R}$ is

- 1. bilinear
- 2. Symmetric: (u, v) = (v, u).

- 3. Positive semidefinite (for pre-inner products) or
- 3'. positive definite (for inner products)

We only consider complex vector spaces, but all the results will have analogues for real ones as well.

Theorem 20.2. Cauchy-Schwarz inequality If (\cdot, \cdot) is a pre-inner product, then

$$|(u,v)| \le (u,u)^{1/2} (v,v)^{1/2}$$

Corollary 20.3. We have a seminorm $||u|| \equiv (u,u)^{1/2}$. It is a norm if and only if (\cdot,\cdot) is an inner product.

Definition 20.4. A <u>Hilbert space</u> is a complex vector space H with an inner product (\cdot, \cdot) s.t. H is complete with respect to the norm $||u|| = (u, u)^{1/2}$. The norm of the Hilbert space is determined by the inner product, but the inner product can also be recovered from the norm by the polarisations identity

$$(u,v) = \frac{||u+v||^2 - ||u-v||^2}{4} + i \frac{||u+iv||^2 - ||u-iv||^2}{4},$$

which is proven by direct computation. A similar computation also proves the parallelogram law:

$$||u+v||^2 + ||u-v||^2 = 2||u||^2 + 2||v||^2.$$

Remark. A norm in a vector space is given by an inner product if and only if it satisfies the parallelogram law, and then the scalar product is uniquely determined by the polarisation identity.

Remark. Assume (X, \mathcal{B}, μ) is a measure space. Then $L^2(X, d\mu)$ is a Hilbert space with inner product

$$(f,g) = \int_{X} f\bar{g}d\mu.$$

If $\mathscr{B} = \mathcal{P}(X)$ and μ is the counting measure, then we denote $L^2(X, d\mu)$ by $l^2(X)$. If $X = \mathbb{N}$ then we simply write l^2 , this is called sequence space. A more formal definition is

$$l^{2}(X) = \left\{ f: X \to \mathbb{C} : \sum_{x} |f(x)|^{2} < \infty \right\}$$

which is a Hilbert space with inner product $(f,g) = \sum_{x \in X} f(x)\bar{g}(x)$.

We recall that a subspace C of a vector space is called <u>convex</u> if $\forall u, v \in C, \forall t \in [0, 1]$ we have $tu + (1-t)v \in C$. The following is one of the key properties of Hilbert spaces.

Theorem 20.5. Assume H is a Hilbert space, $C \subset H$ is a closed convex subset, $u \in H$. Then there is a unique $u_0 \in C$ s.t.

$$||u - u_0|| = d(u, C) = \inf_{v \in C} ||u - v||.$$