Instructions for Practical Session: Creating a Spatial Data Infrastructure (SDI) for Cities

Kefualew S. K.

2025-03-09

1. Group Formation

- Students can either work in their existing groups or form new groups of up to 5 students.
- Each group selects a **town or city** that is familiar to most of the group members.

2. Dataset Creation

Each group will create datasets for the following categories: - **Transport** - **Electricity** - **Telecommunication** - **Landcover** - **Institutions** - **Hydrology**

2.1 Define Feature Classes and Attributes

- Identify **feature classes** for each dataset (e.g., roads for transport, rivers for hydrology).
- Specify the **attributes** to capture for each feature class (e.g., for rivers: river type, length, flow volume).

2.2 Define Lookup Tables

- Create and use **lookup tables** to maintain consistency when editing and managing attribute data. For example:
 - Lookup table for landcover types:

lt_landcovertype		
Code Landcover Type	Description	
		-
F Forest	Areas covered by trees (crown ≥ 20%)	
G Grassland	Grass-dominated areas	1
C Cropland	Areas cultivated for crops	I

 Lookup tables should be defined for all datasets to enhance data accuracy and consistency.

2.3 Specify Coordinate Reference System (CRS)

• Define and document the **coordinate reference system (CRS)** to be used for the spatial data (e.g., WGS 84, UTM Zone 37N).

3. Task Division and Standards Definition

• **Divide the Area**: Each group divides the selected town or city into sections and assigns each section to individual group members.

Define Standards:

- Data Structure: List datasets, feature classes, attributes, and lookup tables for the project.
- Data Description Language (DDL): Define how spatial data should be structured and organized.
- Quality Standards: Establish rules to ensure the accuracy, consistency, and completeness of the data.

4. Individual Tasks

Each student: 1. **Creates Data**: - Digitize features or import existing data for their assigned section. - Use the group-defined lookup tables for consistent attribute editing. 2. **Uses Group Data**: - Each student incorporates the datasets created by other group members to build a spatial data structure for the entire town. 3. **Demonstrates Work**: - Each student demonstrates their work to the group and collects feedback for improvement.

5. Group Collaboration

1. **Integrating Data**:

 Refine and integrate individual contributions to create a cohesive spatial dataset for the selected town.

2. Select the Best Dataset:

 The group identifies the most complete and consistent dataset to represent their town.

6. Inter-Group Collaboration

- 1. Each group shares its final dataset with other groups in the class.
- 2. Ensure that all shared datasets meet the defined quality and classification standards.

7. Class-Level Integration

1. Each student uses the shared datasets from all groups to create a unified **spatial data infrastructure (SDI)** for towns and cities.

- 2. Ensure the SDI reflects:
 - Seamless integration of datasets across all towns.
 - Alignment with established data standards and classifications.

8. Deliverables

- 1. Individual Submission:
 - Each student submits their individual dataset for their assigned section.
- 2. **Group Submission**:
 - An integrated dataset for the selected town or city.
- 3. Class Submission:
 - A comprehensive SDI incorporating datasets from all groups.
- 4. Deliverables Individual Submission:
- Each student submits their individual dataset for their assigned section.

9. Group Submission:

An integrated dataset for the selected town or city.

Class Submission:

- A comprehensive SDI incorporating datasets from all groups.
- Project Finalization Date: April 11 17, 2025

10. Evaluation and Monitoring

The instructor will evaluate the progress of each group weekly during practical sessions, using the checklist discussed in class to ensure compliance with standards and timely progress.

More on Attributes for Feature Classes

The feature classes with footnotes added for attribute explanations to make the tables more self-explanatory:

Transport

Feature Class	Attributes	Refers to Lookup Table
Roads	road_id, road_type, length_km, cond	<pre>1t_roadtype, 1t_cond</pre>
Ditches	ditch_id, width_m, depth_m, cond	1t_cond

Feature Class	Attributes	Refers to Lookup Table
Bridges	brg_id, brg_type, length_m, cond	1t_brtype, 1t_cond

Footnotes: - road_id: Unique identifier for each road. - road_type: Type of road (e.g., highway, primary road, secondary road). - length_km: Length of the road in kilometers. - cond: Condition of the road (e.g., good, fair, poor). - ditch_id: Unique identifier for each ditch. - width_m: Width of the ditch in meters. - depth_m: Depth of the ditch in meters. - brg_id: Unique identifier for each bridge. - brg_type: Type of bridge (e.g., vehicular, pedestrian). - length m: Length of the bridge in meters.

Electricity

Feature Class	Attributes	Refers to Lookup Table
Powerlines	line_id, capacity, length_km, cond	1t_cond
Streetlights	light_id, status, location	lt_lightstat
Substations	sub_id, capacity, status, location	1t_cond

Footnotes: - <code>line_id</code>: Unique identifier for each powerline. - <code>capacity</code>: Transmission capacity in megawatts (MW). - <code>light_id</code>: Unique identifier for each streetlight. - <code>status</code>: Operational status (e.g., functional, non-functional). - <code>sub_id</code>: Unique identifier for each substation. - <code>location</code>: Geographic location or description of the feature.

Telecommunication

Feature Class	Attributes	Refers to Lookup Table
Cell Towers	tower_id, height_m, status	1t_towerstat
Fiber Optic Cables	foc_id, length_km, status	1t_cond

Footnotes: - tower_id: Unique identifier for each cell tower. - height_m: Height of the tower in meters. - foc_id: Unique identifier for each fiber optic cable. - length_km: Length of the fiber optic cable in kilometers.

Landcover

Feature Class	Attributes	Refers to Lookup Table
Landcover_2000	lc_id, lu_code, area_ha	lt_landcovertype
Landcover_2025	lc_id, lu_code, area_ha	<pre>lt_landcovertype</pre>

Footnotes: - 1c_id: Unique identifier for each landcover polygon. - 1u_code: Land use type (e.g., forest, grassland, cropland). - area ha: Area in hectares.

Institutions

Feature Class	Attributes	Refers to Lookup Table
Institutions	inst id, instype, inst name, cap	lt_insttype

Footnotes: - <code>inst_id</code>: Unique identifier for each institution. - <code>instype</code>: Institution type (e.g., education, health, bank). - <code>inst_name</code>: Name of the institution (e.g., High School, Clinic, Nib Bank). - <code>cap</code>: Capacity or size of the institution (e.g., number of students or patients).

Hydrology

Feature Class	Attributes	Refers to Lookup Table
Rivers	riv_id, flow_code, width_m, length_km	lt_riverflowtype
Lakes	lake_id, lu_code, area_ha, depth_m	<pre>1t_landcovertype</pre>
Domestic Water	domw_id, source_code, cap_liters, status	1t_domwsource
Water Tankers	tank_id, cap_liters, status	lt_tankstat
Valve Points	valve_id, valve_code, status	<pre>1t_valvetype</pre>
Pipelines	pipe_id, length_km, status	1t_cond

Footnotes: - riv_id: Unique identifier for each river. - flow_code: Flow type of the river (e.g., perennial, seasonal). - lake_id: Unique identifier for each lake. - domw_id: Unique identifier for each domestic water source. - source_code: Type of domestic water source (e.g., well, spring). - tank_id: Unique identifier for each water tanker. - valve_id: Unique identifier for each valve. - valve_code: Valve type (e.g., open, closed). - pipe_id: Unique identifier for each pipeline.