

FILE 'CAPLUS' ENTERED AT 23:53:23 ON 26 JUN 2003

L17 128572 S L15 OR L16

L18 120 S L17 AND (HONEYBEE# OR BEE OR BEES OR APIS)

L19 5 S L18 AND (MITE OR MITES OR VARROA OR ACARAPIS)

see also next page
for more

MAIL Copy

AN 1998-83064 CROPUS I G
TI Controlling infestations in honey bee colonies e.g.
Varroa mites using slow release gel containing
essential oil or organic acid e.g. thymol.
IN Watkins M
PA Vita-Euro
LO Odiham, U.K.
PI WO 9747193 A1 19971218
AI GB 1996-12403 19960613
WO 1997-EP3078 19970612
DT Patent
LA English
OS WPI: 1998-051935 [05]
FA AB; LA; CT
TI Controlling infestations in honey bee colonies e.g.
Varroa mites using slow release gel containing
essential oil or organic acid e.g. thymol.
AB A method for control of acarid, lepidopteran, fungal or bacterial
infestations in honeybee colonies (especially **Varroa**
jacobsoni) is described, using a slow release gel, containing an
essential oil (preferably menthol, geraniol, thymol, myrcene, citral,
limonene, carene, camphor, eugenol, cineole, lemon oil,
eucalyptus oil or neem oil, especially thymol) or organic acid (e.g.
formic, acetic or oxalic acid), to the hives. The slow release gel is
also claimed. The gel is in a shallow tray dispenser with a hermetically
sealing lid or in strips, pellets, tablets or dispenser trays, and is
used for a 4-6 week treatment period. Preparation of formulations of
thymol, camphor, calcium oxalate, cineole (eucalyptol), **limonene**
, menthol, neem oil, acetic acid and formic acid. Tests with a 25%
thymol formulation, at 1 or 2 trays/hive, for control of **V. jacobsoni** are
also described.
ABEX The method is also useful for control of **Acarapis woodii**,
Tropilaelaps clarella, **Galleria mellonella**, **Achroia grisella**, **Braula**
caeca, **Ascospaera apis**, **Bacillus larvae** and **Melissococcus**
pluton, and is effective against both pyrethroid-resistant and
susceptible **V. jacobsoni**. The concentration of oil or acid is chosen to
reduce the level of **Varroa** infection to less than 20% over at
least one mite reproductive cycle. The formulation comprises a
regulated dose release of active substance into the hive over a set
period of time, at 10-40 deg. The thymol preparation described consisted
of 0.38 parts Carbopol EZ1 dissolved in 73.86 parts water, followed by
0.76 parts thymol, then 0.76 parts triethanolamine, to form a gel.
Shallow plastic trays are filled with 50 g portions of the gel, then
hermetically sealed. Similar formulations containing thymol (10, 15, 20,
25, 30, 35 or 40%), camphor (25%) and calcium oxalate (25%) are
described, also suspensions containing cineole (25%), **limonene**
(25%), menthol (25%), neem oil (25%), acetic acid (30%) and formic acid
(25%). In tests with the 25% thymol gel, 1 or 2 trays, each containing
50 g gel, were opened and placed in a hive, on top of the brood frames,
for 6 weeks. Average temperature was 33-34 deg inside the hive and 17-35
deg outside. After 6 weeks, **V. jacobsoni** infestation was reduced by
48.3% with 1 tray, 77.2% with 2 trays, and 12.9% in the untreated
control. (16)

AN 1990:174103 CAPLUS
DN 112:174103
TI Synergistic varrocide aerosol containing acetone for **honeybee**
colonies

IN Vesely, Vladimir; Titera, Dalibor; Kamler, Frantisek
PA Czech.

SO Czech., 2 pp.
CODEN: CZXXA9

DT Patent
LA Czech

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	CS 261124	B1	19890112	CS 1986-9452	19861217
PRAI	CS 1986-9452		19861217		

TI Synergistic varrocide aerosol containing acetone for **honeybee**
colonies

AB A synergistic compn. for protection of **honeybees** against
mites (Varroidae) comprises acaricide 1 and Me₂CO 50-5000 parts.
The compn. is used as an aerosol for **bee** colonies.

AN 1990:174103 CAPLUS
DN 112:174103
TI Synergistic varrocide aerosol containing acetone for **honeybee**
colonies
IN Vesely, Vladimir; Titera, Dalibor; Kamler, Frantisek
PA Czech.
SO Czech., 2 pp.
CODEN: CZXXA9
DT Patent
LA Czech
FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	CS 261124	B1	19890112	CS 1986-9452	19861217
PRAI	CS 1986-9452		19861217		
TI	Synergistic varrocide aerosol containing acetone for honeybee colonies				
AB	A synergistic compn. for protection of honeybees against mites (Varroidae) comprises acaricide 1 and Me ₂ CO 50-5000 parts. The compn. is used as an aerosol for bee colonies.				

AN 1998:17197 CABA
DN 981100478
TI Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants
AU Ellis, M. D.; Baxendale, F. P.
CS Department of Entomology, University of Nebraska, 202 Plant Industries Building, Lincoln, NE 68583-0816, USA.
SO Journal of Economic Entomology, (1997) Vol. 90, No. 5, pp. 1087-1091. 34 ref.
ISSN: 0022-0493
DT Journal
LA English
TI Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants.
AB Laboratory bioassays were conducted to characterize the acute toxicity of 7 monoterpenoids to *Acarapis woodi* and its host *Apis mellifera*. Citral, thymol, carvacrol, alpha -terpineol, pulegone, d-limonene, and menthol were applied as fumigants to mite-infested honey bees. Thymol and menthol were the most toxic compounds to honey bees, and alpha -terpineol was the least toxic. Menthol, citral, thymol, and carvacrol were more toxic to tracheal mites than to honey bees. Pulegone, d-limonene, and alpha -terpineol were more toxic to honey bees than to tracheal mites. Menthol was 18.9 times more toxic to tracheal mites than to honey bees at the LC50 concentrations; however, as the concentration increased, bee mortality increased more rapidly than mite mortality, and menthol was only 5.7 times more toxic at the LC90 concentrations. Probit regressions for bee and mite mortality were parallel for citral and thymol. Citral and thymol were 2.9 (2.5-3.3) and 2.0 (1.0-3.6) times more toxic to tracheal mites, respectively, at all concentrations estimated.

AN 92:125895 CABA
DN 920232424
TI Evaluation of botanical compounds for control of the honey-bee
tracheal mite, *Acarapis* woodi
AU Calderone, N. W.; Bruce, W. A.; Allen-Wardell, G.; Shimanuki, H.
CS Bee Research Laboratory, ARS, USDA, Building 476, BARC-EAST, Beltsville,
MD 20705, USA.
SO American Bee Journal, (1991) Vol. 131, No. 9, pp. 589-591. Bj.
ISSN: 0002-7626
DT Journal
LA English
TI Evaluation of botanical compounds for control of the honey-bee
tracheal mite, *Acarapis* woodi.
AB Several compounds were tested in the laboratory on groups of workers from
Acarapis-infested honey bee (*Apis mellifera*)
colonies. Clove oil killed 78.2% of mites and citronellal 63.4%;
both mortalities were significantly higher than that (11.6%) in untreated
controls. D-limonene killed nearly 30% of
mites. In a second series of tests, the mortalities of
mites treated by the following compounds were significantly higher
than in controls (11.1%): alpha -terpinene (39.3%), terpineol (28.5%) and
menthol (34.7%). Two of the compounds, alpha -pinene and alpha -terpinene,
caused higher mortalities than in controls, but differences were not
significant. All the plant-derived compounds (but alpha -pinene not
reported) caused lower bee mortality than was caused by menthol.

AN 80:7557 CABA
DN 790209312
TI Chemical for controlling **honeybee** parasites
CS USSR, All-Union Scientific Research Institute of Veterinary Sanitation
PI 19780000
SO Japanese Kokai (unexamined patent application), No. 53-139722, pp. 7. B.
DT Patent
LA Japanese
TI Chemical for controlling **honeybee** parasites.
AB Honeybee diseases caused by *Acarapis woodi* and
Varroa jacobsoni are controlled with N-methylcarbamates. Thus,
0.02% 1-naphthyl N-methylcarbamate in acetone controlled
infestations of these mites in **honeybees**. [Chem. Abstr.
90 : 116454p (1979).] F. B. Wells

AN 80:7345 CABA
DN 790209033
TI Acaricide preparations for the diagnosis and control of ectoparasites of honeybees
Akarizides Praparat zur Diagnostik und Bekampfung von Ektoparasiten der Bienen
AU Poljakov, A. A.; and 9 others; Polyakov, A. A.
CS Vsesoyuznoi Nauchno-issledovatel'skii Inst. Veterinarnoi Sanitarii, Moscow, USSR.
PI 19780000
SO German Federal Republic Offenlegungsschrift, No. 2719722, pp. 16. B.
DT Patent
LA German
TI [Acaricide preparations for the diagnosis and control of ectoparasites of honeybees].
Akarizides Praparat zur Diagnostik und Bekampfung von Ektoparasiten der Bienen.
AB N-methylcarbamates control infestation of honeybees by *Acarapis woodi* and by *Varroa jacobsoni*. Thus, application to hives of a composition containing 0.025% by weight methyl-N-methylcarbamate, 19.975% acetone, and 80% difluorodichloromethane, completely controlled these mites. The compounds are also useful for diagnosis, since their application to infested bees led to the appearance of dead *V. jacobsoni* on the bottom of the hive. [Chem. Abstr. 90 : 49668w (1979).] F. B. Wells

AN 2001:92646 CABA
DN 20013082193
TI Evaluation of grapefruit essential oils for controlling Varroa jacobsoni and *Acarapis woodi*
AU Elzen, P. J.; Baxter, J. R.; Elzen, G. W.; Rivera, R.; Wilson, W. T.
CS Kika de la Garza Subtropical Agricultural Research Center, USDA-ARS, 2413 E. Hwy. 83, Weslaco, TX 78596, USA.
SO American Bee Journal, (2000) Vol. 140, No. 8, pp. 666-668. 10 ref.
ISSN: 0002-7626
DT Journal
LA English
TI Evaluation of grapefruit essential oils for controlling Varroa jacobsoni and *Acarapis woodi*.
AB Four essential oils found in Citrus leaves - citral, limonene, citronellal, and linalool - were tested in the laboratory for effectiveness in knocking down *V. jacobsoni* mites from infested honey bees. Citral was the most effective, with 72.8% knockdown of mites from infested bees exposed to this compound. Only 7.9% initial knockdown of varroa mites was observed in the field test of citral, not significantly different from initial control mite drop. Total population change after 6 weeks of exposure between citral and control treatments was also not significantly different, with great increases in mite populations seen in the citral and control hives. Citral was more effective, however, in controlling the tracheal mite, *A. woodi*, resulting in a 66.8% reduction in populations after initial treatment. Discussion is presented on the use of natural essential oils in the control of honey bee acarine pests.

AN 2000-83996 CROPUS I G
TI Laboratory evaluation of miticides to control **Varroa jacobsoni**
(Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite.
AU Lindberg C M; Melathopoulos A P; Winston M L
CS Univ.Simon-Fraser
LO Burnaby, B.C., Can.
SO J.Econ.Entomol. (93, No. 2, 189-98, 2000) 3 Fig. 4 Tab. 47 Ref.
CODEN: JEENAI
AV Department of Biological Sciences, Simon Fraser University, Burnaby,
B.C., Canada V5A 1S6.
DT Journal
LA English
FA AB; LA; CT
TI Laboratory evaluation of miticides to control **Varroa jacobsoni**
(Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite.
AB Essential oil components was screened for selectivity and control of
Varroa jacobsoni on **honeybees (Apis mellifera)**, using a dish bioassay method, and **mite** and
bee LD50s were determined after 24, 34 and 67 hrs. Compounds
were: alpha-terpineol, benzyl acetate, benzyl alcohol, camphor,
carvacrol, cineole, cinnamic alcohol, cinnamic aldehyde, cinnamon oil,
citronellal, clove oil, eugenol, methanol (solvent), n-hexane,
limonene, Magic3 (a proprietary mix of 5 essential oil
components), menthol, methyl salicylate, phenyl ethyl alcohol, phenyl
ethyl propionate, pulegone, terpinen-4-ol, thymol and trans-anethole,
with tau-fluvalinate and formic acid as positive controls. Highest
mite toxicity and lowest bee mortality were with clove
oil, benzyl acetate, thymol, carvacrol, methyl salicylate and Magic 3,
and thymol, clove oil and Magic3 were most active by vapor exposure.
ABEX Bees and mites were confined in 60 x 20 mm petri
dishes with a sugar-cube for food, and test components (dissolved in
hexane) were applied to the dish base, allowing, vapor, contact and oral
applications. In some tests, organisms were exposed to vapor only.
Treatments considered to be selective killed over 70% of **mites**
at doses which killed less than 30% of **bees**. The most
selective treatment was tau-fluvalinate, while thymol, clove oil, Magic3
and methyl salicylate were at least as selective as formic acid.
Estimated **mite** LD50s were significantly lower for complete
exposure applications of thymol and Magic3 than for vapor applications,
indicating that these compounds act mainly as fumigants, while estimated
LD50s for clove oil were similar for both vapor and complete exposure.

AN 2000-84096 CROPUS I G
TI Method to control parasitic mites on beneficial insects e.g.
Apidae.
IN Black B C; Baubach W R; Beluch M P
PA Am.Cyanamid
LO Madison, N.J., USA
PI EP 972448 A2 20000119
AI US 1998-115787 19980714
EP 1999-305410 19990707
DT Patent
LA English
OS WPI: 2000-099724
FA AB; LA; CT
TI Method to control parasitic mites on beneficial insects e.g.
Apidae.
AB A method for the protection of beneficial insects, such as honeybees, from infestation and damage caused by parasitic mites, by application of tebufenpyrad (TEB) to the insects or mites, their brood chamber or habitat, is claimed. In acaricidal bioassays, honeybees infested with 70-90% Varroa jacobsoni received topical application of TEB (0.006, 0.06 and 0.6 ug/bee). Treated bees were placed in an incubator at 31 deg in the dark and fed a 50% sugar solution for 5 days; at 0.6 ug/bee, mortality rates for bees and mites were 28% and 92%, resp. Honeybees infested with Acarapis woodi were treated with 500 ppm TEB in acetone; 100% mite mortality occurred after 8-8.5 min. Field tests with two V. jacobsoni infested hives, sticky boards treated with 18% TEB in beeswax/lard base were placed in the hives; one day after treatment, mite counts of 1777 and 1080 mites/day were recorded.
ABEX The method is claimed especially for the control of parasitic mites, such as, V. jacobsoni, A. woodi and Tropilaelaps clareae. The claimed advantage is that the method can be used with little or no concomitant harm to the beneficial host. (4)

AN 1998-83064 CROPUS I G
TI Controlling infestations in honey bee colonies e.g.
Varroa mites using slow release gel containing
essential oil or organic acid e.g. thymol.
IN Watkins M
PA Vita-Euro
LO Odiham, U.K.
PI WO 9747193 A1 19971218
AI GB 1996-12403 19960613
WO 1997-EP3078 19970612
DT Patent
LA English
OS WPI: 1998-051935 [05]
FA AB; LA; CT
TI Controlling infestations in honey bee colonies e.g.
Varroa mites using slow release gel containing
essential oil or organic acid e.g. thymol.
AB A method for control of acarid, lepidopteran, fungal or bacterial
infestations in honeybee colonies (especially Varroa
jacobsoni) is described, using a slow release gel, containing an
essential oil (preferably menthol, geraniol, thymol, myrcene, citral,
limonene, carene, camphor, eugenol, cineole, lemon oil,
eucalyptus oil or neem oil, especially thymol) or organic acid (e.g.
formic, acetic or oxalic acid), to the hives. The slow release gel is
also claimed. The gel is in a shallow tray dispenser with a hermetically
sealing lid or in strips, pellets, tablets or dispenser trays, and is
used for a 4-6 week treatment period. Preparation of formulations of
thymol, camphor, calcium oxalate, cineole (eucalyptol), limonene
, menthol, neem oil, acetic acid and formic acid. Tests with a 25%
thymol formulation, at 1 or 2 trays/hive, for control of V. jacobsoni are
also described.
ABEX The method is also useful for control of *Acarapis woodii*,
Tropilaelaps clareae, *Galleria mellonella*, *Achroia grisella*, *Braula
caeca*, *Ascospaera apis*, *Bacillus larvae* and *Melissococcus
pluton*, and is effective against both pyrethroid-resistant and
susceptible V. jacobsoni. The concentration of oil or acid is chosen to
reduce the level of Varroa infection to less than 20% over at
least one mite reproductive cycle. The formulation comprises a
regulated dose release of active substance into the hive over a set
period of time, at 10-40 deg. The thymol preparation described consisted
of 0.38 parts Carbopol EZ1 dissolved in 73.86 parts water, followed by
0.76 parts thymol, then 0.76 parts triethanolamine, to form a gel.
Shallow plastic trays are filled with 50 g portions of the gel, then
hermetically sealed. Similar formulations containing thymol (10, 15, 20,
25, 30, 35 or 40%), camphor (25%) and calcium oxalate (25%) are
described, also suspensions containing cineole (25%), limonene
(25%), menthol (25%), neem oil (25%), acetic acid (30%) and formic acid
(25%). In tests with the 25% thymol gel, 1 or 2 trays, each containing
50 g gel, were opened and placed in a hive, on top of the brood frames,
for 6 weeks. Average temperature was 33-34 deg inside the hive and 17-35
deg outside. After 6 weeks, V. jacobsoni infestation was reduced by
48.3% with 1 tray, 77.2% with 2 trays, and 12.9% in the untreated
control. (16)

AN 1990:174103 CAPLUS
DN 112:174103
TI Synergistic varrocide aerosol containing acetone for **honeybee**
colonies

IN Vesely, Vladimir; Titera, Dalibor; Kamler, Frantisek
PA Czech.

SO Czech., 2 pp.
CODEN: CZXXA9

DT Patent
LA Czech

FAN CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	CS 261124	B1	19890112	CS 1986-9452	19861217
PRAI	CS 1986-9452		19861217		

TI Synergistic varrocide aerosol containing acetone for **honeybee**
colonies

AB A synergistic compn. for protection of **honeybees** against
mites (Varroidae) comprises acaricide 1 and Me₂CO 50-5000 parts.
The compn. is used as an aerosol for **bee** colonies.

AN 1990:174103 CAPLUS

DN 112:174103

TI Synergistic varrocide aerosol containing acetone for **honeybee** colonies

IN Vesely, Vladimir; Titera, Dalibor; Kamler, Frantisek

PA Czech.

SO Czech., 2 pp.

CODEN: CZXXA9

DT Patent

LA Czech

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	CS 261124	B1	19890112	CS 1986-9452	19861217
PRAI	CS 1986-9452		19861217		

TI Synergistic varrocide aerosol containing acetone for **honeybee** colonies

AB A synergistic compn. for protection of **honeybees** against **mites** (Varroidae) comprises acaricide 1 and Me₂CO 50-5000 parts. The compn. is used as an aerosol for **bee** colonies.

AN 1998:17197 CABA
DN 981100478
TI Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants
AU Ellis, M. D.; Baxendale, F. P.
CS Department of Entomology, University of Nebraska, 202 Plant Industries Building, Lincoln, NE 68583-0816, USA.
SO Journal of Economic Entomology, (1997) Vol. 90, No. 5, pp. 1087-1091. 34 ref.
ISSN: 0022-0493
DT Journal
LA English
TI Toxicity of seven monoterpenoids to tracheal mites (Acari: Tarsonemidae) and their honey bee (Hymenoptera: Apidae) hosts when applied as fumigants.
AB Laboratory bioassays were conducted to characterize the acute toxicity of 7 monoterpenoids to *Acarapis woodi* and its host *Apis mellifera*. Citral, thymol, carvacrol, alpha -terpineol, pulegone, d-limonene, and menthol were applied as fumigants to mite-infested honey bees. Thymol and menthol were the most toxic compounds to honey bees, and alpha -terpineol was the least toxic. Menthol, citral, thymol, and carvacrol were more toxic to tracheal mites than to honey bees. Pulegone, d-limonene, and alpha -terpineol were more toxic to honey bees than to tracheal mites. Menthol was 18.9 times more toxic to tracheal mites than to honey bees at the LC50 concentrations; however, as the concentration increased, bee mortality increased more rapidly than mite mortality, and menthol was only 5.7 times more toxic at the LC90 concentrations. Probit regressions for bee and mite mortality were parallel for citral and thymol. Citral and thymol were 2.9 (2.5-3.3) and 2.0 (1.0-3.6) times more toxic to tracheal mites, respectively, at all concentrations estimated.

AN 92:125895 CABA
DN 920232424
TI Evaluation of botanical compounds for control of the honey-bee
tracheal mite, *Acarapis woodi*
AU Calderone, N. W.; Bruce, W. A.; Allen-Wardell, G.; Shimanuki, H.
CS Bee Research Laboratory, ARS, USDA, Building 476, BARC-EAST, Beltsville,
MD 20705, USA.
SO American Bee Journal, (1991) Vol. 131, No. 9, pp. 589-591. Bj.
ISSN: 0002-7626
DT Journal
LA English
TI Evaluation of botanical compounds for control of the honey-bee
tracheal mite, *Acarapis woodi*.
AB Several compounds were tested in the laboratory on groups of workers from
Acarapis-infested honey bee (*Apis mellifera*)
colonies. Clove oil killed 78.2% of mites and citronellal 63.4%;
both mortalities were significantly higher than that (11.6%) in untreated
controls. D-limonene killed nearly 30% of
mites. In a second series of tests, the mortalities of
mites treated by the following compounds were significantly higher
than in controls (11.1%): alpha -terpinene (39.3%), terpineol (28.5%) and
menthol (34.7%). Two of the compounds, alpha -pinene and alpha -terpinene,
caused higher mortalities than in controls, but differences were not
significant. All the plant-derived compounds (but alpha -pinene not
reported) caused lower bee mortality than was caused by menthol.

AN 80:7557 CABA
DN 790209312
TI Chemical for controlling **honeybee** parasites
CS USSR, All-Union Scientific Research Institute of Veterinary Sanitation
PI 19780000
SO Japanese Kokai (unexamined patent application), No. 53-139722, pp. 7. B.
DT Patent
LA Japanese
TI Chemical for controlling **honeybee** parasites.
AB **Honeybee** diseases caused by **Acarapis woodi** and
Varroa jacobsoni are controlled with N-methylcarbamates. Thus,
0.02% 1-naphthyl N-methylcarbamate in acetone controlled
infestations of these **mites** in **honeybees**. [Chem. Abstr.
90 : 116454p (1979).] F. B. Wells

AN 80:7345 CABA
DN 790209033
TI Acaricide preparations for the diagnosis and control of ectoparasites of **honeybees**
Akarizides Praparat zur Diagnostik und Bekampfung von Ektoparasiten der Bienen
AU Poljakov, A. A.; and 9 others; Polyakov, A. A.
CS Vsesoyuznoi Nauchno-issledovatel'skii Inst. Veterinarnoi Sanitarii, Moscow, USSR.
PI 19780000
SO German Federal Republic Offenlegungsschrift, No. 2719722, pp. 16. B.
DT Patent
LA German
TI [Acaricide preparations for the diagnosis and control of ectoparasites of **honeybees**.]
Akarizides Praparat zur Diagnostik und Bekampfung von Ektoparasiten der Bienen.
AB N-methylcarbamates control infestation of **honeybees** by **Acarapis woodi** and by **Varroa jacobsoni**. Thus, application to hives of a composition containing 0.025% by weight methyl-N-methylcarbamate, 19.975% **acetone**, and 80% difluorodichloromethane, completely controlled these **mites**. The compounds are also useful for diagnosis, since their application to infested **bees** led to the appearance of dead **V. jacobsoni** on the bottom of the hive. [Chem. Abstr. 90 : 49668w (1979).] F. B. Wells

AN 2001:92646 CABA
DN 20013082193
TI Evaluation of grapefruit essential oils for controlling **Varroa**
jacobsoni and **Acarapis woodi**
AU Elzen, P. J.; Baxter, J. R.; Elzen, G. W.; Rivera, R.; Wilson, W. T.
CS Kika de la Garza Subtropical Agricultural Research Center, USDA-ARS, 2413
E. Hwy. 83, Weslaco, TX 78596, USA.
SO American Bee Journal, (2000) Vol. 140, No. 8, pp. 666-668. 10 ref.
ISSN: 0002-7626
DT Journal
LA English
TI Evaluation of grapefruit essential oils for controlling **Varroa**
jacobsoni and **Acarapis woodi**.
AB Four essential oils found in Citrus leaves - citral, limonene, citronellal, and linalool - were tested in the laboratory for effectiveness in knocking down **V. jacobsoni** mites from infested honey bees. Citral was the most effective, with 72.8% knockdown of mites from infested bees exposed to this compound. Only 7.9% initial knockdown of varroa mites was observed in the field test of citral, not significantly different from initial control mite drop. Total population change after 6 weeks of exposure between citral and control treatments was also not significantly different, with great increases in mite populations seen in the citral and control hives. Citral was more effective, however, in controlling the tracheal mite, **A. woodi**, resulting in a 66.8% reduction in populations after initial treatment. Discussion is presented on the use of natural essential oils in the control of honey bee acarine pests.

AN 2000-83996 CROPUS I G
TI Laboratory evaluation of miticides to control **Varroa jacobsoni**
(Acari: Varroidae), a honey **bee** (Hymenoptera: Apidae) parasite.
AU Lindberg C M; Melathopoulos A P; Winston M L
CS Univ.Simon-Fraser
LO Burnaby, B.C., Can.
SO J.Econ.Entomol.. (93, No. 2, 189-98, 2000) 3 Fig. 4 Tab. 47 Ref.
CODEN: JEENAI
AV Department of Biological Sciences, Simon Fraser University, Burnaby,
B.C., Canada V5A 1S6.
DT Journal
LA English
FA AB; LA; CT
TI Laboratory evaluation of miticides to control **Varroa jacobsoni**
(Acari: Varroidae), a honey **bee** (Hymenoptera: Apidae) parasite.
AB Essential oil components was screened for selectivity and control of
Varroa jacobsoni on **honeybees** (*Apis mellifera*), using a dish bioassay method, and **mite** and
bee LD50s were determined after 24, 34 and 67 hrs. Compounds
were: alpha-terpineol, benzyl acetate, benzyl alcohol, camphor,
carvacrol, cineole, cinnamic alcohol, cinnamic aldehyde, cinnamon oil,
citronellal, clove oil, eugenol, methanol (solvent), n-hexane,
limonene, Magic3 (a proprietary mix of 5 essential oil
components), menthol, methyl salicylate, phenyl ethyl alcohol, phenyl
ethyl propionate, pulegone, terpinen-4-ol, thymol and trans-anethole,
with tau-fluvalinate and formic acid as positive controls. Highest
mite toxicity and lowest bee mortality were with clove
oil, benzyl acetate, thymol, carvacrol, methyl salicylate and Magic 3,
and thymol, clove oil and Magic3 were most active by vapor exposure.
ABEX Bees and mites were confined in 60 x 20 mm petri
dishes with a sugar-cube for food, and test components (dissolved in
hexane) were applied to the dish base, allowing, vapor, contact and oral
applications. In some tests, organisms were exposed to vapor only.
Treatments considered to be selective killed over 70% of mites
at doses which killed less than 30% of bees. The most
selective treatment was tau-fluvalinate, while thymol, clove oil, Magic3
and methyl salicylate were at least as selective as formic acid.
Estimated mite LD50s were significantly lower for complete
exposure applications of thymol and Magic3 than for vapor applications,
indicating that these compounds act mainly as fumigants, while estimated
LD50s for clove oil were similar for both vapor and complete exposure.

AN 2000-84096 CROPU I G
TI Method to control parasitic mites on beneficial insects e.g.
Apidae.
IN Black B C; Baubach W R; Beluch M P
PA Am.Cyanamid
LO Madison, N.J., USA
PI EP 972448 A2 20000119
AI US 1998-115787 19980714
EP 1999-305410 19990707
DT Patent
LA English
OS WPI: 2000-099724
FA AB; LA; CT
TI Method to control parasitic mites on beneficial insects e.g.
Apidae.
AB A method for the protection of beneficial insects, such as **honeybees**, from infestation and damage caused by parasitic mites, by application of tebufenpyrad (TEB) to the insects or mites, their brood chamber or habitat, is claimed. In acaricidal bioassays, **honeybees** infested with 70-90% **Varroa jacobsoni** received topical application of TEB (0.006, 0.06 and 0.6 ug/bee). Treated bees were placed in an incubator at 31 deg in the dark and fed a 50% sugar solution for 5 days; at 0.6 ug/bee, mortality rates for bees and mites were 28% and 92%, resp. Honeybees infested with **Acarapis woodi** were treated with 500 ppm TEB in acetone; 100% mite mortality occurred after 8-8.5 min. Field tests with two **V. jacobsoni** infested hives, sticky boards treated with 18% TEB in beeswax/lard base were placed in the hives; one day after treatment, mite counts of 1777 and 1080 mites/day were recorded.
ABEX The method is claimed especially for the control of parasitic mites, such as, **V. jacobsoni**, **A. woodi** and **Tropilaelaps clareae**. The claimed advantage is that the method can be used with little or no concomitant harm to the beneficial host. (4)