Tarefa 1: Explorar e Coordenar ações

Resgate de Vítimas de Catástrofes Naturais, Desastres ou Grandes Acidentes

1 Introdução

1.1 Versão

20240311 (V1)	Original
20241903 (V2)	Faixa de dificuldades, critérios possíveis de clustering, análise de clustering
20240322 (V3)	Definição do referencial básico para comparação dos resultados (baseline)
20240422 (V4)	Arquivo texto de clusters

1.2 Estrutura do documento

A seção 2 apresenta uma descrição da primeira parte do cenário de resgate após a ocorrência de um evento catastrófico. O cenário serve de contexto para todas as tarefas da disciplina. A seção 3 descreve os objetivos da tarefa, parametrizações e requisitos para realização. A seção 4 trata da forma de entrega da tarefa.

2 Descrição Geral do Cenário

Após um acidente, dois grupos de agentes artificiais (robôs terrestres) são lançados em uma área de risco para localizar e resgatar as vítimas. Todos os agentes iniciam na mesma posição denominada de base. Há dois grupos de agentes que trabalham em duas etapas sequenciais:

- exploradores: têm por objetivo localizar as vítimas e construir um mapa da região do acidente;
- 2) socorristas: devem levar o kit de ajuda para as vítimas localizadas pelo explorador.

Cada agente <u>explorador</u> constrói um mapa da região que explorou. O mapa contém os obstáculos e as vítimas encontradas (V_e) . Ao localizar uma vítima, um explorador lê seus sinais vitais (e.g. de respiração, pulsação, pressão). Cada explorador tem um tempo limitado para explorar o ambiente (T_e) em função da capacidade do tempo limite de bateria. Terminado o período, cada explorador deve retornar à posição base. Caso não consiga, todas as informações coletadas são perdidas.

Os agentes exploradores que conseguiram voltar à base montam um mapa único a partir das informações coletadas individualmente. Um deles envia o mapa unificado para os agentes socorristas que também estão na base.

Os socorristas entram em ação somente quando os agentes exploradores finalizam as buscas — os dois grupos não atuam ao mesmo tempo. Os socorristas separam as vítimas em grupos para que possam dividir a tarefa de socorro. Esta última consiste em levar kits de socorro ao máximo de vítimas dentre aquelas que foram encontradas.

3 Objetivos da tarefa

- 1) O conjunto dos agentes exploradores (A_e) deve localizar o maior número das |V| vítimas que estão dispersas em um ambiente desconhecido levando em conta um tempo T_e limite para encontrá-las.
- 2) O conjunto dos agentes exploradores (A_e) deve unificar os mapas construídos individualmente e enviá-lo aos agentes socorristas (A_s)

- 3) O conjunto dos agentes socorristas (A_s) , ao receber o mapa unificado dos exploradores, deve dividir as vítimas encontradas em grupos baseando-se um ou mais critérios definidos pela equipe de projeto, tais como *sinais vitais* \in {pDiast, pSist, qPA, pulso, fResp}, distância e/ou outros.
 - a. Nesta tarefa, os agentes <u>não</u> necessitam realizar o socorro (nas tarefas posteriores, as vítimas devem serão socorridas).

3.1 Parâmetros

O número de agentes exploradores e socorristas não sofrerá variação durante todo o projeto:

$$A_e = \{E_1, E_2, E_3, E_4\}$$

 $A_S = \{S_1, S_2, S_3, S_4\}$

Os parâmetros abaixo podem variar em diferentes cenários, por exemplo, no dia da entrega, o professor passa um ou mais cenários para realização de testes:

- dimensões do grid,
- número de vítimas e sinais vitais,
- tempos limite de exploração e de socorro,
- posição da base,
- dificuldade de acesso às posições do grid. A faixa de valores sempre está no intervalo]0, 3], exceto para os obstáculos intransponíveis que possuem o valor 100 (usar constante VS.OBST_WALL de constants.py).

3.2 Requisitos

- Implementar ao menos um algoritmo de IA (visto em sala de aula) para busca exploratória;
- Implementar ao menos um algoritmo de IA (visto em sala de aula) para clustering das vítimas; os clusters produzidos devem ser salvos em arquivos textos cluster₁.txt ... cluster_n.txt (um para cada cluster) no formato CSV contendo id, x, y, 0.0, 1 (id é a identificação da vítima, x e y, a posição dela e os dois últimos valores correspondem ao valor da gravidade e ao seu label)
- Atribuir os agrupamentos de vítimas para os agentes socorristas de modo livre;
- Construir e unificar os mapas individuais de modo livre.

4 APRESENTAÇÃO E ENTREGA

4.1 Forma de apresentação e entrega

O trabalho pode ser feito em equipes de **até 3 pessoas**. As soluções devem estar implementadas e funcionando para que vocês possam:

- apresentar a solução (estratégias);
- mostrar os resultados obtidos e compará-los por meio das métricas de exploração;
- executar a solução com os arquivos de teste que serão passados pelo professor no dia da entrega;

4.2 Artefatos para entregar

- 1) Os códigos fonte na linguagem que desejar com as instruções para rodar.
- 2) Os arquivos cluster1.txt, ..., clustern.txt para os dois cenários (datasets data 225 v 100x80 e data 132 v 100x80)

3) Um artigo PDF de até <u>3 páginas</u>, sem contar os apêndices com a estrutura abaixo e fonte tamanho 11.

Metodologia: caracterize o ambiente, o problema com seus estados e tamanho do espaço de estados, as estratégias de busca escolhidas com justificativa (por que esta estratégia e não outras possíveis?) e a forma de modelagem. Qual estratégia utilizou em cada agente para utilizar o máximo do tempo dado e conseguir retornar à base?

Resultados e análise: mostrar os resultados numéricos retornados pelo simulador para <u>ao menos dois cenários distintos</u> variando-se um ou mais dos seguintes parâmetros: tamanho do ambiente, número de vítimas, sinais vitais, tempo limite de exploração e dificuldade de acesso às posições. Compare os resultados obtidos pela equipe com uma estratégia *baseline* (utilizar o ex02 random dfs com os datasets <u>data 225v 100x80</u> e <u>data 132v 100x80</u>). Para *clustering*, analisar a qualidade dos grupos com a distância *intra-cluster* (SSE) e pelo método de análise de silhueta.

Conclusões: atingiu os objetivos, a solução está sobreadaptada ou generaliza bem para os diferentes cenários utilizados. O que pode ser melhorado, o que poderia ser feito no futuro para completar a solução? Há problemas éticos na solução – como ela afeta a vida das pessoas envolvidas? A solução é neutra? A solução é enviesada? Pense em situações em que uma suposta neutralidade da solução pode ser perdida.

Apêndices:

- 1) Referências bibliográficas
- 2) instruções claras de como executar o código CASO haja alguma coisa que fuja do padrão ou seja feita em outra plataforma