ALGEBRAIC GEOMETRY

A. Ricolfi

Homework 2 — **Due date**: 8 November 2022

Exercise 1. Let (X, \mathcal{O}_X) be a scheme, $U \subset X$ an open subset. Show that $(U, \mathcal{O}_X|_U)$ is a scheme.

Exercise 2 (Irreducibility). Let *X* be a topological space.

- 1. Show that the following are equivalent:
 - (i) *X* is irreducible,
 - (ii) every nonempty open subset $U \subset X$ is dense,
 - (iii) any two nonempty open subsets of *X* intersect.
- 2. Show the following:
 - (a) If $V \subset X$ is a subspace, it is irreducible if and only if \overline{V} is irreducible.
 - (b) If $V \subset X$ is irreducible and $f: X \to Y$ is a continuous map, then f(V) is irreducible.
 - (c) The product of two irreducible spaces is irreducible.

Exercise 3. If *A* is an integral domain, then $X = \operatorname{Spec} A$ is irreducible.

Exercise 4. Let X be an irreducible scheme. Show that there exists a unique point $\xi \in X$ such that $X = \{\xi\}$. We call it the *generic point of X*.

Exercise 5. Let $A \hookrightarrow \mathbf{k}[t]$ be the **k**-subalgebra generated by t^2 and t^3 .

1. Show that the **k**-algebra homomorphism

$$\mathbf{k}[x,y] \xrightarrow{\pi} A, \quad x \mapsto t^2, \ y \mapsto t^3$$

is surjective and induces an isomorphism $\mathbf{k}[x,y]/(x^3-y^2) \xrightarrow{\sim} A$.

2. Consider the inclusion $\phi : A \hookrightarrow \mathbf{k}[t]$. Show that the induced map on prime spectra $f_{\phi} : \mathbb{A}^1_{\mathbf{k}} \to \operatorname{Spec} A$ is bijective on points, but not an isomorphism of schemes.

Exercise 6. Exhibit an isomorphism of affine schemes $\operatorname{Spec} \mathbf{k}[x,y]/(y-x^2) \cong \mathbb{A}^1_{\mathbf{k}}$. Prove that there *cannot* be an isomorphism of affine schemes between the 'circle' $\operatorname{Spec} \mathbf{k}[x,y]/(y^2+x^2-1)$ and $\mathbb{A}^1_{\mathbf{k}}$.

1