Kurze korrekte Schreibweisen:

Es geht nicht um die Richtigkeit der Bilder, sondern nur um die Schreibweise!!!

CDCL:

Level	Variable	Belegung	Grund
1	x	0	Decision
2	y	0	Decision
	z	0	$\{x, y, \neg z\}$
	w	1	$\{x, y, z, w\}$
	t	0	$\{x, z, \neg t\}$
3	u	0	Decision
	v	1	$\{t, u, v\}$
	p	0	$\{u, \neg v, \neg p\}$
	p	1	$\{p,z,\neg v\}$ Konfliktklausel

Branch & Bound:

Schritte: Initiales UB = 4. $\varphi_w = \{\{x, y\}, \{\neg x, \neg z\}, \{\neg y, \neg z\}, \{z\}, \{x\}\}\}$ LB = 0 $\varphi_{wx} = \{\{\neg z\}, \{\neg y, \neg z\}, \{z\}\}$ $\dot{L}B = 0$ $\begin{aligned} & \pmb{\varphi}_{\text{wxy}} = \{\{\neg z\}, \{\neg z\}, \{z\}\} \\ & \textit{LB} = 0 \end{aligned}$ $0 \ge 4$? $\varphi_{wxyz} = \{\{\}, \{\}\}\}$ No LB=20 UB = min(4,2) = 2w $\varphi_{wxy\overline{z}} = \{\{\}\}$ Yes LB=1UB = min(2,1) = 1 $1 \ge 1$? $0 \ge 4$? UB = 1 Yes No $\varphi_{wx\overline{y}} = \{\{\neg z\}, \{z\}\}$ LB=0х $\varphi_{wx\overline{y}z} = \{\{\}\}$ UB = 1 $1 \ge 1$? $0 \ge 4$? LB=1UB = min(1,1) = 1No 0 $\varphi_{wx\overline{yz}} = \{\{\}\}$ у LB = 10 ≥ 4 ? $0 \ge 1$? UB = min(1,1) = 1No Νo $\varphi_{\text{MX}} = \{\{y\}, \{\neg y, \neg z\}, \{\neg y, \neg z\}, \{z\}, \{\}\}\}$ LB = 1 und $LB \ge UB \Rightarrow$ return 1 $\varphi_{\overline{w}} = \{\{x, y\}, \{\neg x, \neg z\}, \{\}, \{z\}, \{x\}\}\}$ $LB = 1 \text{ und } LB \ge UB \Rightarrow \text{return } 1$ 1

NonCNF:

$\mathbf{L}\mathbf{v}$	Var	Val	Grund	Ursache	Stack
1	V	Т	Decision		∨ = T@1
2	\neg_1	F	Decision		$\neg_1 = F@2$
	\wedge_2	Т	Parent	$\{ \vee = T, \neg_1 = F \}$	$\wedge_2 = T@2$
	\wedge_1	Т	Parent	$\{\neg_1 = F\}$	$\wedge_1 = T@2$
	b	Т	Parent	$\{ \land_1 = T \}$	b = T@2
	\neg_2	Т	Parent	$\{ \land_1 = T \}$	$\neg_2 = T@2$
	\boldsymbol{a}	F	Parent	$\{\neg_2 = T\}$	a = F@2
	\wedge_2	F	Child	$\{a = F\}$	

Bestimmen der NoGood-Menge:

$$\begin{split} &(\{\vee=\mathsf{T}@1,\neg_1=\mathsf{F}@2,a=\mathsf{F}@2\}\setminus\{a=\mathsf{F}@2\})\cup\{\neg_2=\mathsf{T}@2\}\\ &=\{\vee=\mathsf{T}@1,\neg_1=\mathsf{F}@2,\neg_2=\mathsf{T}@2\}\\ &(\{\vee=\mathsf{T}@1,\neg_1=\mathsf{F}@2,\neg_2=\mathsf{T}@2\}\setminus\{\neg_2=\mathsf{T}@2\})\cup\{\wedge_1=\mathsf{T}@2\}\\ &=\{\vee=\mathsf{T}@1,\neg_1=\mathsf{F}@2,\wedge_1=\mathsf{T}@2\}\\ &(\{\vee=\mathsf{T}@1,\neg_1=\mathsf{F}@2,\wedge_1=\mathsf{T}@2\}\setminus\{\wedge_1=\mathsf{T}@2\})\cup\{\neg_1=\mathsf{F}@2\}\\ &=\{\vee=\mathsf{T}@1,\neg_1=\mathsf{F}@2,\wedge_1=\mathsf{T}@2\}\setminus\{\wedge_1=\mathsf{T}@2\})\cup\{\neg_1=\mathsf{F}@2\}\\ &=\{\vee=\mathsf{T}@1,\neg_1=\mathsf{F}@2\}\\ \end{split}$$

Backbone:

Backbone KaiserKüchlin

```
\begin{split} \varphi &= \{\{x,y\}, \{u,z\}, \{\neg w,z\}, \{\neg x,z\}, \{u,\neg w\}, \{x,\neg y\}\}\} \\ SAT (\varphi \cup u) &= \{x,z\} \\ SAT (\varphi \cup \neg u) &= \{\neg w,x,z\} \\ SAT (\varphi \cup w) &= \{u,x,z\} \\ SAT (\varphi \cup \neg w) &= \{x,z\} \\ SAT (\varphi \cup \neg x) &= \{u,x,z\} \\ SAT (\varphi \cup \neg x) &= \{0\} \\ P_{\varphi} &= \{x\} \\ SAT (\varphi \cup \neg y) &= \{u,x,z\} \\ SAT (\varphi \cup \neg y) &= \{u,x,z\} \\ SAT (\varphi \cup \neg y) &= \{u,x,z\} \\ SAT (\varphi \cup \neg z) &= \{u,x\} \\ SAT (\varphi \cup \neg z) &= \{0\} \\ P_{\varphi} &= \{x,z\} \\ \text{return } P_{\varphi} &= \{x,z\}, N_{\varphi} &= \{0\} \\ P_{\varphi} &= \{x,z\} \end{split}
```

Backbone mit Flips

$$\beta^* = v = \{u, w, x, y, z\}$$
1.1 $v = \{\neg u, \neg w, x, y, z\}$
1.3 $\beta^* = \{x, y, z\}$
2.1 $v = \{\neg u, \neg w, x, \neg y, z\}$
2.3 $\beta^* = \{x, z\}$
3.1 $v = \emptyset$
3.2 return $\beta = \{x, z\}$

LeBerre:

```
 \varphi = \{\{x\}, \{\neg y\}, \{y, b_1\}, \{x, y, b_2\}, \{\neg x, b_3\}, \{\neg x, y, b_4\}, \{z, b_5\}, \{\neg x, \neg z, b_6\}, \{y, z, b_7\}, \{y, \neg z, b_8\}\} \text{ ub} \leftarrow 8 \\ 1. \text{ Iteration } \\ \text{Sat}(\varphi \cup \text{CNF}(\sum_{i=1}^8 < ub(=8) = true \\ (z.B.x = 1, y = 0, b_1 = 1, b_3 = 1, b_4 = 1, z = 1, b_6 = 1, b_8 = 1, b_2 = 0, b_5 = 0, b_7 = 0) \\ \# \text{satisfiedBlockingVariables} = 5 > 0 \\ \Rightarrow \text{ ub} \leftarrow 5 \\ 2. \text{ Iteration } \\ \text{Sat}(\varphi \cup \text{CNF}(\sum_{i=1}^8 < ub(=5)) = false \\ \Rightarrow \text{ return ub}(=5)
```

Binäre Suche:

```
\varphi = \{\{x\}, \{\neg y\}, \{y, b_1\}, \{x, y, b_2\}, \{\neg x, b_3\}, \{\neg x, y, b_4\}, \{z, b_5\}, \{\neg x, \neg z, b_6\}, \{y, z, b_7\}, \{y, \neg z, b_8\}\}
lb=0
ub=8
mid=4
1. Iteration
\operatorname{Sat}(\varphi \cup \operatorname{CNF}(\sum_{i=1}^{8} \leq mid) = false
lb=5
mid = 6
2. Iteration
Sat(\varphi \cup CNF(\sum_{i=1}^{8} \leq mid) = true
(z.B.x = 1.y = 0, z = 1, b_1 = 1, b_2 = 0, b_3 = 1, b_4 = 1, b_5 = 0, b_6 = 1, b_7 = 0, b_8 = 1)
ub=6
mid=5
2. Iteration
Sat(\varphi \cup CNF(\sum_{i=1}^{8} \leq mid) = true
(z.B.x = 1.y = 0, z = 1, b_1 = 1, b_2 = 0, b_3 = 1, b_4 = 1, b_5 = 0, b_6 = 1, b_7 = 0, b_8 = 1)
ub=5
Eine erfüllende Belegung:
x = 1.y = 0, z = 1, b_1 = 1, b_2 = 0, b_3 = 1, b_4 = 1, b_5 = 0, b_6 = 1, b_7 = 0, b_8 = 1
Kosten: 5
```

FuMalik:

1. Iteration $SAT(\varphi) = false$

$$\varphi_c \leftarrow \left\{ \left\{ \neg x \right\}, \left\{ \neg z \right\}, \left\{ x, z \right\} \right\}$$

$$\varphi \leftarrow \left\{ \left\{ \neg x \right\}, \left\{ \neg z \right\}, \left\{ z, \neg w \right\}, \qquad \text{Hard}$$

$$\left\{ w \right\}, \left\{ \neg y \right\}, \left\{ x, y \right\}, \qquad \text{Soft}$$

$$\left\{ x, z, b_1^1 \right\} \right\} \qquad \text{Blockklausel}$$

$$\cup \text{CNF} \left(\sum_{i=1}^1 b_i^1 = 1 \right)$$

 $cost \leftarrow 1$

2. Iteration $SAT(\varphi) = false$

$$\begin{split} \varphi_c &= \left\{ \left\{ \neg z \right\}, \left\{ z, \neg w \right\}, \left\{ w \right\} \right\} \\ \varphi &\leftarrow \left\{ \left\{ \neg x \right\}, \left\{ \neg z \right\}, \left\{ z, \neg w \right\}, \right. \\ \left\{ \neg y \right\}, \left\{ x, y \right\}, \right. & \text{Soft} \\ \left\{ x, z, b_1^1 \right\}, \left\{ w, b_1^2 \right\} \right\} & \text{Blockklausel} \\ & \quad \cup \text{CNF} \left(\sum_{i=1}^1 b_i^1 = 1 \right) \cup \text{CNF} \left(\sum_{i=1}^1 b_i^2 = 1 \right) \end{split}$$

 $cost \leftarrow 2$

3. $SAT(\varphi) = false$

$$\begin{split} \varphi_c &= \left\{ \left\{ \neg x \right\}, \left\{ \neg y \right\}, \left\{ x, y \right\} \right\} \\ \varphi &\leftarrow \left\{ \left\{ \neg x \right\}, \left\{ \neg z \right\}, \left\{ z, \neg w \right\}, \right. \right. \quad \text{Hard} \\ \left\{ x, z, b_1^1 \right\}, \left\{ w, b_1^2 \right\}, \left\{ \neg y, b_1^3 \right\}, \left\{ x, y, b_2^3 \right\} \right\} \\ & \quad \cup \text{CNF}\left(\sum_{i=1}^1 b_i^1 = 1 \right) \cup \text{CNF}\left(\sum_{i=1}^1 b_i^2 = 1 \right) \cup \text{CNF}\left(\sum_{i=1}^2 b_i^3 = 1 \right) \end{split}$$

 $cost \leftarrow 3$

Iteration SAT(φ) = true. Die Kosten betragen 3 und eine passende Belegung ist:

$$\{x\mapsto 0, z\mapsto 0, w\mapsto 0, y\mapsto 0\}$$

. Unerfüllt bleiben die Klauseln: $\{x,y\}$, $\{w\}$, $\{x,z\}$.