

Discretization

Discretization or binning consists in sorting continuous variables into discrete intervals.

Discretization: why use it?

- Improve model performance.
- Reduce training time.
- Improve value spread.
- Mitigate the effect of outliers.
- Create simpler features (for us humans).

Limitations of discretization

Discretization can also lead to a loss of information.

• For example by combining values that are strongly associated with different classes (target values) into the same bin.

Discretization task

The aim of the discretization algorithm is to find the minimum number of intervals without incurring in information loss.

Discretization methods

Unsupervised

- Equal-width
- Equal-frequency
- Arbitrary
- Binarization
- K means

Supervised

- Decision Trees
- Chi-Merge
- CAIM

Given the number of intervals, they find the interval limits.

Find the optimal number of bins and their limits.

Basic discretization methods

Unsupervised

- Equal-width
- Equal-frequency
- Arbitrary
- Binarization
- K means

Supervised

- Decision Trees
- Chi-Merge
- CAIM

Given the number of intervals, they find the interval limits.

Find the optimal number of bins and their limits.

> Equal-width discretization preserves the original variable shape.

➤ Equal-frequency discretization returns an homogeneous value distribution.

> Arbitrary discretization may or may not change the shape of the original variable depending on how we create the intervals.

Age after equal-width discretization

Age after arbitrary discretization

Discretization + encoding

After discretization, we commonly use the intervals as categories.

➤ If the intervals are integers, it is the equivalent of ordinal encoding.

> But, we can follow up with any encoding that we like.

Discretization with pandas

pandas.cut

```
pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3,
include_lowest=False, duplicates='raise', ordered=True)

Bin values into discrete intervals.
[source]
```

pandas.qcut

```
pandas.qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise')
Quantile-based discretization function.
[source]
```


Discretization with sklearn

sklearn.preprocessing.KBinsDiscretizer

class sklearn.preprocessing.KBinsDiscretizer(n_bins=5, *, encode='onehot', strategy='quantile', dtype=None, subsample='warn', random_state=None)

[source]

Bin continuous data into intervals.

Discretization with Feature-engine

EqualWidthDiscretiser

```
class feature_engine.discretisation.EqualWidthDiscretiser(variables=None,
bins=10, return_object=False, return_boundaries=False, precision=3) [source]
```

EqualFrequencyDiscretiser

```
class feature_engine.discretisation.EqualFrequencyDiscretiser(variables=None,
q=10, return_object=False, return_boundaries=False, precision=3) [source]
```

ArbitraryDiscretiser

```
class feature_engine.discretisation.ArbitraryDiscretiser(binning_dict,
return_object=False, return_boundaries=False, precision=3, errors='ignore')
```


Accompanying Jupyter Notebook

- How to perform discretization:
 - Pandas
 - Scikit-learn
 - Feature-engine

THANK YOU

www.trainindata.com