Adatbázis-kezelő rendszerek I.

INDEXEK ÉS TRANZAKCIÓKEZELÉS

Indexek

Indexek létjogosultsága

Az adatelérés a memóriából gyors, DE nagy adatbázisok esetén az összes rekord nem tartható egyidőben a memóriában.

- Index nélküli tárolás: kupac szervezés
 - **Keresés**: lineáris, nem hatékony
 - Beszúrás: a fájl végére
 - Módosítás: 1 keresés + módosítás
 - o Törlés:
 - 1 keresés + a törölt rekord "deleted"-re állítása, vagy
 - ▼ 1 keresés + 1 törlés (üres hely marad)
 - Gyakori adatmanipulációknál időszakos újraszervezést igényel.
 - Hatékony tömeges adatfeltöltésnél.

• Index:

- A táblákban való keresés és a sorbarendezés gyorsítására alkalmas eszköz.
- Tervezés során nagy hangsúlyt kell rá fektetni.

Index – index file

- Index bejegyzés: <index kulcs, rekord pointer>
- Index file: index bejegyzések konkatenációja (az elején egy extra pointerrel)
 - Az index file-ok jellemzően sokkal kisebbek, mint az adatfájlok
- Elsődleges index (clustered index): az adatfájl rendezettségének alapját adja
 - o az adatblokkok az indexértékek alapján rendezettek
 - o jellemzően: PRIMARY KEY
 - o egyéb esetben UNIQUE korlátozás
- Másodlagos indexek (non-clustered index)
 - független a fizikai tárolás sorrendjétől
 - lehet több is

Elsődleges index vs. Másodlagos index

Elsődleges index

index blokk adat blokk

Másodlagos index

index blokk adat blokk

Index: ritka és sűrű indexek

Indexblokkok

Adatblokkok

• Sűrű indexek:

- az adatállománynak nem kell rendezetten tárolni az adatokat
- az adatfájl minden egyes rekordjához egy index-rekord tartozik

12 12 17 17 21 23 23 29 37 29 37 52 37 52

• Ritka index:

- csak rendezett adatok esetén használható
- csak az adatfájl blokkjának elején lévő kulcsértékeket tünteti fel

Indexek megvalósítása

- Indexek kialakítása leggyakrabban:
 - Hash tábla
 - Napjainkban már kevésbé használatos. Inkább csak hálós és hierarchikus rendszerek alkalmazták.
 - Bináris fa, B-fa, B+ fa, B* fa, R-fa, ...

Index – Hash tábla

- Hash kód számítása matematikai alapokon az index mező értékéből.
 - o pl.: prímszámmal történő osztás maradéka
- Hash tábla: tartalmazza a keresett érték fizikai címét.
- Hash kód ütközés esetén: azonos kódot adó kulcsok láncolása listába.

Index – Bináris fa

- Index kulcsok növekvő vagy csökkenő sorrendbe rendezése, majd bináris fa építése.
- A fa gyökere és csomópontjai nem tartalmazzák az index kulcshoz tartozó sor fizikai helyét, hanem csak a fa levelei.
- A keresés mindig a gyökértől kezdődik, a megfelelő ág felé folytatódik, és akkor ér véget, ha egy levélhez érünk.

• Nem túl hatékony, mert adatmanipulációs műveletek esetén gyakran újra kell építeni a fát.

Index – B-fa

A keresőfák felépítésénél arra törekszenek, hogy a fa valamennyi ága azonos hosszúságú legyen.

B-fa (Balanced? Tree)

B-fa vs. B+ fa

• B-fa:

 A köztes csúcsok is tartalmazhatnak
index kulcs, rekord pointer> párokat.

- A B-fa levelei egymással nincsenek összekapcsolva.
 - A kulcsokon történő lineáris keresés során a fa minden ágán végig kell utazni

• B+ fa:

- Nem tárolnak adat pointereket a belső csúcsokon, a mutatók csak a levélszinten jelenhet meg.
 - =>a belső csúcsok több kulcsértéket tudnak tárolni a memóriában
- A B+ fa levelei egymással kapcsolva vannak.
 - A kulcsokon történő lineáris keresés során csak 1-szer kell végigmenni a leveleken.
- Leggyakrabban alkalmazott megvalósítás.

B+ fa

Indexek kialaktása

• 1-1 index kialakítása:

- Történhet 1 vagy, több mező alapján (1 mezős és többmezős indexek)
- Gyorsítja: Az indexelt adatok keresését.
- Lassítja: általánosan a beszúrás, törlés és bizonyos esetekben a módosítás műveletét
- Másodlagos indexek esetében levélszinten: mutatók az adatrekordokra
- Elsődleges indexek esetében levélszinten: adatrekordok

Tranzakció kezelés

Tranzakció kezelés

- A DBMS támogatja a több felhasználós környezetet, és az adat megosztását:
 - o egymással versengő felhasználók
 - o inkonzisztens adatok?
- Tranzakció: az adatbázisműveletek 1 végrehajtási egysége
 - A DBMS biztosítja: minden egyes tranzakció vagy tökéletesen végrehajtódik (COMMIT), vagy az eredeti állapot állítódik vissza (ROLLBACK).
 - Tranzakció kezelő (TM): Az adatbázis alkalmazások fontos része, mely lehetővé teszi egymással konkuráló tranzakciók százainak egyidejű végrehajtását.
 - A tárkezelő biztosítja, hogy minden egyes teljesített tranzakció esetén a végrehajtott módosítások az adatbázisban tartósan rögzüljenek.

Tranzakciók ACID tulajdonsága

• ACID tulajdonságok:

- Atomosság (Atomicity): a tranzakció "mindent vagy semmit" jellegű végrehajtása (vagy teljesen végrehajtjuk, vagy egyáltalán nem hajtjuk végre).
- Konzisztenciamegőrzés (Consistency preservation): a tranzakció végrehajtása után is teljesüljenek az adatbázisban előírt konzisztenciamegszorítások (integritási megszorítások).
- Elkülönítés (Isolation): minden tranzakciónak látszólag úgy kell lefutnia, mintha ez alatt az idő alatt semmilyen másik tranzakciót sem hajtanánk végre.
- Tartósság (Durability): az a feltétel, hogy ha egyszer egy tranzakció befejeződött, akkor már soha többé nem veszhet el a tranzakciónak az adatbázison kifejtett hatása.

Párhuzamosan futó tranzakciók hatásai, problémái

- Piszkos olvasás: Amennyiben párhuzamosan futó tranzakciók láthatják egymás nem commitált adatait, akkor olyan adatokkal dolgozhatnak, melyeket később a másik tranzakció visszagörget.
- Elveszett módosítás: Ha két vagy több tranzakció ugyanazon az adatelemen dolgozik, akkor a tranzakciók felül tudják írni egymás módosításait es csak annak a tranzakciónak marad meg a hatása, mely utolsónak adta ki a commit utasítást.
- Nem megismételhető olvasás: Egy tranzakció élete során egy rekordot nem lehet állandónak tekinteni, mert azt egy másik tranzakció módosíthatja. Így ha egy rekord lekérdezését megismételjük a tranzakcióban többször is, nem biztos, hogy mindig ugyanazt az eredményt kapjuk.
- Fantom rekordok: A fantom rekordok olyan rekordok, melyek megjelenhetnek illetve eltűnhetnek egy táblából egy tranzakció élete során egy másik párhuzamosan futó tranzakció működése révén.

ACID elvek biztosítása

- ACD:
 - o tranzakciós logfálok
 - o adatbázis mentések
- I:
 - Különféle szintű zárolások

Zárolások

Zárolási paraméterek:

Objektum mérete:

rekord, lap, kulcs, index, tábla, adatbázis kis méret

kevesebb konfliktus nagyobb adminisztráció kisebb adminisztráció

nagy méret

Zárolás időtartama:

- Objektum lefoglalása
- Objektum feloldása

o Művelet:

- Írás: exclusive lock (kizárólagos hozzáférés, más nem férhet hozzá)
- Olvasás: shared lock (osztott hozzáférés, csak olvashatja)
- Módosítás: updale lock (előjegyzett kizárólagos)

Alementacidi.

Lin

Kétfázisú zárolás

Kétfázisú zárolási protokoll (2PL):

- Kiterjesztési fázis: szükséges zárak elhelyezése (de egyetlen sem kerül elengedésre).
- Feloldási fázis:
 - A zárolások feloldhatók, de újabb zár már nem helyezhető el
 - a tranzakció befejezésekor az összes zár feloldásra kerül.
- Különféle típusai léteznek

Legtöbb rendszer 2PL-lel biztosítja az ACID elvek betartását.

Holtpont

Holtpont: olyan állapot, mikor két vagy több tranzakció vár a másik által lezárt objektumra.

- Holtpont feloldása:
 - Módosítási zárak alkalmazása (update lock)
 - Várakozási gráf
 - csúcsok: tranzakciók
 - ★ élek: T1 -> T2, ha:
 - o T1 lezárva tartja az "x" adatbáziselemet.
 - T2 kéri az "x" adatbáziselemet, hogy zárolhassa azt.
 - ▼ holtpont = hurok a gráfba
 - holtpont feloldása: kiválasztott tranzakció (áldozat, victim) visszagörgetése
 - Időkorlát mechanizmus (timeout)

Tranzakció gráf

• Tranzakció gráf:

- o irányított gráf, ahol
 - csúcsok: műveletek (read (r), write (w))
 - élek: megelőzési relációk

Megkötések:

- o Gráfnak tartalmazni kell egy lezárási műveletet (commit (c), abort (a))
 - minden tranzakcióra pontosan 1 művelet,
 - csak a legutolsó elemként jelenhet meg

History

- History: a rendszerben futó tranzakciók összessége
- History gráf:
 - + szerepel a tranzakció azonosítója is

