

## DEPARTMENT OF PHYSICS

Annexure - I

| 1. | Subject Code:          | TPH 101/201 | Course Title: Engineering Physics |
|----|------------------------|-------------|-----------------------------------|
| 2. | <b>Contact Hours</b> : | L: 3        | T: P: <b>Semester</b> : I / II    |
| 3. | Credits: 3             |             |                                   |

- 4. **Pre-requisite**: Basic Knowledge of Physics
- **5. Course Outcomes**: After completion of the course students will be able to
  - 1. Define the wave nature of light through different phenomenon.
  - 2. Extend the knowledge of Laser, fiber optics and polarization in engineering problems.
  - 3. Understand the concept of theory of relativity.
  - 4. Examine the behavior of Electromagnetic Waves (EM) using Maxwell Equations.
  - 5. Explain the properties of Superconductors.
  - 6. Discuss quantum theory of radiation and applications of Schrodinger wave equations.

| UNIT            | CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contact<br>Hrs |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Unit/Module-I   | Interference: Conditions of interference, Spatial and temporal coherence, Bi-prism experiment, interference in wedge shaped film, Newton's rings.  Diffraction: Fraunhofer diffraction at single slit and n-slits (Diffraction Grating). Rayleigh's criteria of resolution. Resolving power of grating.                                                                                                                                                                                                       | 9              |
| Unit/Module- II | Polarization: Basic theory of double refraction, Malus law, Ordinary and Extra-ordinary ray, Production and detection of plane, circularly and elliptically polarized light, specific rotation and polarimeters.  Laser: Spontaneous and Stimulated emission of radiation, Einstein Coefficients' Principle of laser action. Construction and working of Ruby and He-Ne laser photovoltaic effect.  Fiber Optics: Introduction to Fiber Optics, types of fiber, acceptance angle and cone, numerical aperture |                |
| Unit/Module-III | Special theory of relativity: Inertial and non inertial frames, Galilean                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8              |

|                 | transformation, Michelson-Morley experiment, Einstein postulates of special theory of relativity, Lorentz transformation equation, length contraction, time dilation, variation mass of velocity, Mass energy relation.                                                                                                                                                            |    |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Unit/ Module-IV | Superconductivity: Essential properties of Superconductors, zero resistivity, Type I, Type II superconductors and their properties.  Electromagnatism: Displacement current, Three electric vectors (E, P, D), Maxwell's equations in integral and differential forms. Electromagnetic wave propagation in free space.                                                             | 8  |
| Unit/ Module-V  | Quantum Mechanics: Quantum concept and radiation, Wave particle duality (de-Broglie concept of matter waves), Heisenberg's uncertainty principle, Schrodinger's wave equation in one dimension under a conservative force field, wave function and its significance, Eigen values and Eigen functions for particle confined in one dimensional infinite potential box (rigid box). | 8  |
|                 | Total                                                                                                                                                                                                                                                                                                                                                                              | 42 |

## **Text Books:**

- Ajoy Ghatak, "Optics", 4<sup>th</sup> Edition, Tata Mc Graw Hill, 2009
- N. Subrahmanyam Brijlal & M. N. Avadhanulu, "Optics:", 24th Edition, S. Chand, 2010
- A. Beiser, "Concepts of Modern Physics", Tatac Mc Graw Hill
- Resnick, Krane, Halliday, "Physics (vol I&II)", 5<sup>th</sup> Edition, Wiley, 2007
- Robert Resnick, "Introduction to Special Relativity", Wiley Publishers, 2007

## **Reference Books:**

- John R. Taylor, Chris D. Zafiratos, Michael A. Dubson, "Modern Physics", 1<sup>st</sup> Edotion, Pearson Education, 2007
- Gerd Keiser, "Optic Fiber Communication" 5<sup>th</sup> Edition, Tata Mc. Graw Hill, 2017
- Alastair I M Rae, Jim Napolitano, "Quantum Mechanics" 6<sup>th</sup> Edition, Wiley, 2015
- David J. Griffiths, "Introduction to Electrodynamics", 3<sup>rd</sup> Edition, Prentice, 2011

- Charles P. Poole, Jr. Frank J. Owens, "Introduction to Nanotechnology", Wiley, 2017
- Hug D. Young & Roger A. Freedman, "University Physics", 12<sup>th</sup> Edition, Pearson Publication, 2008
- Alan Giambattista, Betty Mc. Carthy Richardson, Robert C Richardson, "Fundamentals of Physics", 1<sup>st</sup> Edition, Tata Mc Graw Hill, 2009