实验三 数码管显示八位学号以及 AU、LU 设计

姓名 侯少森 学号 18340055

一、数码管显示八位学号电路设计

1. 实验内容

利用 3 线-8 线译码器来在七段数码管上同时显示八位学号(18340055). 用 1 只 74LS197 (自动生成 8421 码),连入两个四位数码管的 P_{13} 、 P_{12} 、 P_{11} 、 P_{10} 和 P_{23} 、 P_{22} 、 P_{21} 、 P_{20} 作为数码管 BCD 码输入端作为数据源。将生成 8421 码的低 3 位连入 74LS138 (译码器)的 S_0 、 S_1 、 S_2 端, G_1 接高电平, G_{2A} 、 G_{2B} 接低电平,输出 Y_0 Y_7 选择接入数码管位选通信号接入,以使某一位固定显示某个数字。其中要利用 74LS48 来将 8421 码转换为七段码. 注意: 直接将 74LS197 生成 8421 码的低 3 位 (Q_2 , Q_1 , Q_0) 连入 74LS138 进行得到数码管位选信号,未能考虑 74LS197 生成 8421 码最高位 Q_1 ,因此 Q_2 0 和 Q_3 0 都能使 74LS138 的 Q_3 0 输出低电平, Q_3 1 和 Q_3 2 都能使 74LS138 的 Q_3 3 和 Q_4 3 都能使 74LS138 的 Q_5 3 和 Q_5 4 和 Q_5 5 和 Q_5 6 和 Q_5 7 和 Q_5 8 和 Q_5 7 和 Q_5 8 和 Q_5 8 和 Q_5 9 和

2. 仿真电路与结果

(1)根据实验内容,在 proteus 上设计出仿真电路图:

(2)点击运行,开始运行仿真电路图,得到的结果图如下:

- (3)可以看到两个四位数码管成功的将 18340055 显示出来,证明仿真成功.
- 3. 实验结果与分析
 - (1)在实验箱上连接好设计的电路.
 - (2)实验结果图:

(3)分析实验结果图:在数码管上显示出 18340055 字样, 表明实验电路设计成功.

二、AU 设计

1. 实验内容

- (1)利用八选一数据选择器 74LS151 设计一个半加半减器,输入为 S、A、B,其中 S 为功能选择口. 当 S=0 时,输出 A+B 及进位;当 S=1 时,输出 A-B及借位.
- (2) 构建出半加半减器的真值表(其中 OUTPUT 代表和/差, C 代表进位/借位):

S	A	В	OUTPUT	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	0

(3)使用 74LS151 分两次连线来单独显示和/差、进位/借位结果.

2. 仿真电路与结果

- (1)按照真值表,在 proteus 上设计仿真电路图:
 - ①和/差(其中 Ao、A1、A2、A3分别代表 S、A、B、OUTPUT):

②进位/借位(其中 Ao、A1、A2、A3分别代表 S、A、B、C):

- (2)点击运行,开始运行仿真电路图,得到的结果图如下:
- ①和/差(其中 Ao、Ai、A2、A3分别代表 S、A、B、OUTPUT):

②进位/借位(其中 A₀、A₁、A₂、A₃分别代表 S、A、B、C):

(3)分析仿真结果图:将示波器上显示的波形与之前构建的真值表一一验证,发现完全相符,因此,AU的仿真电路设计成功.(真值表中的"1"表示高

电平,"0"表示低电平).

- 3. 实验结果与分析
 - (1)按照仿真电路图在实验箱上连接实验电路.
 - (2)实验结果图如下:
 - ①和/差(其中 Do、D1、D2、D3分别代表 S、A、B、OUTPUT):

②借位/进位(其中 Do、D1、D2、D3分别代表 B、A、S、OUTPUT):

(3)分析实验结果图:

将示波器上显示的波形与之前构建的真值表一一验证,发现完全相符, 因此, AU 的仿真电路设计成功.(真值表中的"1"表示高电平,"0"表示低电 平).

三、LU 设计

1. 实验内容

(1)利用八选一数据选择器 74LS151 设计一个函数发生器电路. 它的功能如下表所示.

S ₁	S ₀	Y
0	0	A
0	1	A⊕B
1	0	A+B
1	1	A • B

(2)构建出真值表:

S1	S0	A	В	Y
0	0	0	0	0
			1	
0	0	1	0	1
			1	
0	1	0	0	В
			1	
0	1	1	0	\overline{B}
			1	
1	0	0	0	В
			1	
1	0	1	0	1
			1	
1	1	0	0	0
			1	
1	1	1	0	В
			1	

(3)使用 74LS151 根据真值表来构建仿真电路.

2. 仿真电路与结果

(1)按照真值表,在 proteus 上设计仿真电路图:

(2) 点击运行, 开始运行仿真电路图, 得到的结果图如下(其中 A_0 、 A_1 、 A_2 、 A_3 、 A_4 、 A_5 分别代表时钟、S1、S0、A、B、Y):

(3)分析仿真结果图:将示波器上显示的波形与之前构建的真值表一一验证,发现完全相符,因此,LU的仿真电路设计成功.(真值表中的"1"表示高电平,"0"表示低电平).

3. 实验结果与分析

- (1)在实验箱上连接好设计的电路.
- (2)实验结果图如下(其中 D_0 、 D_1 、 D_2 、 D_3 、 D_4 、 D_5 分别代表时钟、S1、S0、A、B、Y):

(3)分析实验结果图:将示波器上显示的波形与之前构建的真值表一一验证,发现完全相符,因此,LU的仿真电路设计成功.(真值表中的"1"表示高电平,"0"表示低电平).

四、实验总结

实验中遇到的问题:

做 LU 电路设计时, 因为有四个输入: S_1 、 S_2 、A、B, 而 74LS151 上只有三个输入端, 故将 B 接于 X_0 ~ X_7 端, 这样就解决了四个输入的问题.

实验收获:对八选一数据选择器 74LS151 有了更深的理解, 更为熟练的 掌握了 74LS151 的使用方法, 并可以利用 74LS151 设计出其他一些实用的电路.