

Normalização

Professor: Yuri Ferreira

- > Revisão aula anterior:
 - O que é normalização;
 - Normalização: Semântica dos Atributos;
 - > Redundância de informação;
 - Anomalias de atualização;
 - ➤ Valores nulos nas tuplas;
 - Geração de tuplas falsas;
 - > Dependências Funcionais;

- > Conteúdo:
- ➤ Formas Normais;
- ▶ 1º Forma Normal (1FN);
- ≥ 2º Forma Normal (2FN);
- ≥ 3º Forma Normal (3FN);
- ➤ Definição Geral da 2FN e 3FN;

> Formas Normais

- > O conceito de normalização foi introduzido por E. F. Codd em 1972;
- > Codd criou as três primeiras formas de normalização:
 - Primeira forma normal (1FN);
 - Segunda forma normal (2FN);
 - > Terceira forma normal (3FN);

- > Formas Normais
- ➤ Primeira forma normal (1FN):
- Objetivo é reprovar atributos multivalorados, atributos compostos e suas combinações;
- > O domínio de um atributo deve incluir apenas valores atômicos;

- > Formas Normais
- ➤ Primeira forma normal (1FN):
- > Ex: Atributo multivalorado **Diocal**:

Dnome	Dnumero	Cpf_gerente	Diocal
Pesquisa	5	33344555587	Santo André, Itu. São Paulo
Administração	4	98765432168	Mauá
Matriz	1	88866555576	São Paulo

- > Formas Normais
- ➤ Primeira forma normal (1FN):
- > Como normalizar primeira forma normal:

- > Remover o atributo **Dlocal** que viola 1FN;
- > Criar uma relação separada Localizacao_DEP e adicionar o local;
- > A chave primária da nova **relação** é a combinação {Dnumero, Dlocal};

- > Formas Normais
- ➤ Primeira forma normal (1FN):
- > Relações Aninhadas:

- > Cpf chave primária da relação;
- ➤ **Projnumero** chave parcial da relação aninhada;

Cpf	Fnome	Projnumero	Horas
12345678966	Silva, João B.	1	32,5
		2	7,5
66688444476	Lima, Ronaldo K.	3	40,0
45345345376	Leite, Joice A.	1	20,0
		2	20,0
33344555587	Wong, Fernando T.	2	10,0
		3	10,0
		10	10,0
		20	10,0
99988777767	Zelaya, Alice J.	30	30,0
		10	10,0
98798798733	Pereira, André V.	10	35,0
	71.35.056.00 CD64.0C-901	30	5.0
	1		
98765432168	Souza, Jennifer S.	30	20,0
		20	15,0
88866555576	Brito, Jorge E.	20	NULL

- > Formas Normais
- ➤ Primeira forma normal (1FN):
- Para normalizar a relação aninhada na 1FN:
 - Remover os atributos da relação aninhada para uma nova relação e propagamos a chave primária para ela;
 - A chave primária da nova relação será a combinação da chave parcial e da chave primária da relação original;
 - A decomposição e propagação da chave primária resulta nos seguintes esquemas:

- > Formas Normais
- ➤ Segunda forma normal (2FN):
- Definição: Um Esquema de relação R está na 2FN, se cada atributo não principal A em R for total e funcionalmente dependente da chave primária de R;
- > Utiliza o conceito de dependência funcional total;

- > Formas Normais
- Segunda forma normal (2FN):
- Ex: As Dependências funcionais DF1, DF2 e DF3, levam a decomposição de FUNC PROJ nos três esquemas de relação FP1, FP2 e FP3, cada qual estando na 2FN:

- > Formas Normais
- ➤ Terceira forma normal (3FN):
- Definição: Um esquema de relação R está na 3FN se ele satisfazer a 2FN e nenhum atributo não principal de R for transitivamente dependente da chave primária;
- Esta relacionada ao conceito de dependência transitiva;
- Ex: Cpf -> Dnumero, Dnumero -> Cpf_gerente então Cpf -> Cpf_gerente
- ➤ Não está na 3FN:

- > Formas Normais
- ➤ Terceira forma normal (3FN):
- Normalizando para 3FN

2019

- > Formas Normais
- ➤ Definição Geral da 2FN e 3FN:
- ➤ Um esquema de relação R está na segunda forma normal (2FN) se cada atributo não principal A em R não for parcialmente dependente de qualquer chave de R;

- Formas Normais: Definição Geral da 2FN e 3FN
- Ex: esquema de relação LOTES -> descreve lotes de terreno à venda em diversas cidades de um estado;

2019

- Formas Normais: Definição Geral da 2FN e 3FN
- Ex: esquema de relação LOTES:
- > DF1: Prop_num -> Nome_cidade, Num_lote, Area, Preco, Imposto;
- ➤ DF2: {Nome_cidade, Num_lote} -> Prop_num, Area, Preco, Imposto;
- DF3: Nome_cidade -> Imposto; (Significa: Imposto é fixo para determinada Cidade)
- ▶ DF4: Area -> Preco; (Significa: Preço de um lote é determinado por sua área, independente da cidade em que esteja);

- Formas Normais: Definição Geral da 2FN e 3FN
- Ex: esquema de relação LOTES:
- Então este esquema de relação viola a 2FN, porque imposto é parcialmente dependente da chave candidata (Nome_cidade, Num_lote);

- Formas Normais: Definição Geral da 2FN e 3FN
- Ex: esquema de relação LOTES:
- ▶ Para normalizar Lotes na 2FN, decomponha-o nas duas relações Lotes1 e Lotes2;
- ➤ Observe que DF4 não viola a 2FN;

- Formas Normais: Definição Geral da 2FN e 3FN
- Ex: esquema de relação LOTES:
- ➤ Agora a 3FN é violada na relação Lotes1, pois Area não é uma superchave e Preço não é um atributo principal em Lotes1;
- ➤ Então decompomos a relação Lotes 1 em Lotes1A e Lotes1B, para que a relação Lotes1 fique normalizada na 3FN;

- Formas Normais: Definição Geral da 2FN e 3FN
- Ex: esquema de relação LOTES:
- ➤ Por fim segue as fazes de cada Normalização:

> Formas Normais: Revisão

Forma Normal	Teste	Remédio (normalização)
1NF	Relação não tem atributos multivalorados ou relações aninhadas	Definir novas relações para cada atributo multivalorado ou relação aninhada
2NF	Para relações onde chave primária contém múltiplos atributos, nenhum atributo não-chave deve ser dependente funcionalmente de uma parte da chave primária	Decompor e definir uma nova relação para cada chave parcial com seus atributos dependentes. Mantenha a relação original com a sua chave e seus atributos funcionalmente dependentes
3NF	Relação não pode ter um atributo não-chave determinado funcionalmente por outro atributo não-chave. Não tem dependência transitiva de um atributo não chave.	Decompor e definir uma relação que inclua os atributos não-chave que determinam funcionalmente os outros atributos não-chave.

> Exercícios:

 Considere as seguintes relações para um banco de dados de aplicação de processamento de pedido na ABC, Inc.

PEDIDO (Pnum, Pdata, Custo, Quantia_total)

ITEM_PEDIDO (Pnum, Inum, Qtd_pedida, Preco_total, Desconto_porc)

Suponha que cada item tenha um desconto diferente. O Preco_total refere-se a um item, Pdata é a data em que o pedido foi feito e Quantia_total é o valor do pedido. Se aplicarmos uma junção natural nas relações ITEM_PEDIDO e PEDIDO nesse banco de dados, como será o esquema de relação resultante? Qual será sua chave? Mostre as DFs nessa relação resultante. Ela está na 2FN?

Fonte: Elmasri, 2011.

> Exercícios:

Desconto_tempo =

24

per 15.30. Considere a seguinte relação:

VENDA_CARRO (Num_carro, Data_venda, Num_vendedor, Comissao_porc, Desconto_tempo)

Suponha que um carro possa ser vendido por vários vendedores e, portanto, [Num_carro, Num_ vendedor] é a chave primária. Dependências adicionais são

Data_venda → Desconto_tempo e

Num_vendedor → Comissao_porc

Com base na chave primária dada, essa relação está na 1FN, 2FN ou 3FN? Por quê? Como você a normalizaria completamente com sucesso?

2019

Comissao_porc = percentual_comissão

Fonte: Elmasri, 2011.

> Exercícios:

15.31. Considere a seguinte relação para livros publicados:

LIVRO (Titulo_livro, Nome_autor, Tipo_livro, Lista_preco, Afiliacao_autor, Editora)

Afiliacao_autor refere-se à afiliação do autor. Suponha que existam as seguintes dependências:

Titulo_livro → Editora, Tipo_livro

Tipo_livro → Lista_preco

Nome_autor → Afiliacao_autor

- a. Em que forma normal essa relação está? Explique sua resposta.
- Aplique a normalização até não poder decompor mais a relação. Indique os motivos por trás de cada decomposição.

Fonte: Elmasri, 2011.

> Referências:

- ➤ SILBERSCHATZ, A.; KORTH, F.; SUDARSHA, S. Database System Concepts. 6. ed. Nova York: MC Graw Hill, 2011.
- ELMASRI, R.; NAVATHE B. Sistemas de banco de dados. 6. Ed. São Paulo, SP: Pearson Addison-Wesley, 2011.
- MORO, M. M. Introdução a Banco de dados. UFMG, 2018.
- > Sanches A. R. Fundamentos de armazenamento de manipulação de dados. USP, 2005. Disponível em: https://www.ime.usp.br/~andrers/aulas/bd2005-1/aula11.html