

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS
DEPARTAMENTO DE MATEMÁTICA
Segundo Semestre de 2018

Tarea 4

Teoría de Números - MAT 2225 Fecha de Entrega: 2018/09/11

> Integrantes del grupo: Nicholas Mc-Donnell, Camilo Sánchez

Problema 1 (3 pts). Encuentre todas las soluciones $x \in \mathbb{Z}$ para el siguiente sistema de congruencias:

 $\begin{cases} 5x \equiv 4 \mod 7 \\ 3x \equiv 2 \mod 8 \end{cases}$

Solución problema 1:

Problema 2 (3 pts). Sea p>2 un primo. Demuestre que -1 es un cuadrado módulo p si y solo si $p\equiv 1\mod 4$

Solución problema 2:

Problema 3 (3 pts c/u). Dada una finita lista finita de primos distintos $p_1, ..., p_l$ uno puede escribir los enteros $4(p_1 \cdot ... \cdot p_l)^2 + 1$ y $4p_1 \cdot ... \cdot p_l - 1$. Usando esta idea y adaptando la demostración de Euclides, demuestre lo siguiente:

- I) Existen infinitos primos $p \equiv 1 \mod 4$
- II) Existen infinitos primos $p \equiv 3 \mod 4$

Solución problema 3:

Problema 4 (4 pts.). Sea χ es carácter de Dirichlet módulo 4 no trivial. Demuestre que

$$L(1,\chi) = \frac{\pi}{4}$$

Solución problema 4:

Problema 5 (4 pts.). Sea $f(t) \in \mathbb{Z}[t]$ un polinomio no constante. Demuestre que existen infinitos primos p tales que la congruencia

$$f(x) \equiv 0 \mod p$$

tiene solución $x \in \mathbb{Z}$

Solución problema 5:

2