Lecture 25

A More Secure Authentication Dialogue

- Once per user logon session
 - (1) C \rightarrow AS: $ID_{c} | ID_{tgs}$
 - (2) AS —> C: E(K_C, Ticket_{tgs})
- Once per type of service:
 - (3) C \rightarrow TGS: $ID_c | |ID_v| | Ticket_{tgs}$
 - (4) TGS —> C: Ticket_v
- Once per service session:
 - (5) C —> V: $ID_r | I \text{ Ticket}_{v}$, $Ticket_{tgs} = E(K_{tgs}, [ID_C || AD_C || ID_{tgs} || TS_1 || Lifetime_1])$ $Ticket_v = E(K_v, [ID_C || AD_C || ID_v || TS_2 || Lifetime_2])$

- 1. C —> AS: $ID_c ||P_c||ID_v$
- 2. AS -> C : Ticket = $E(K_{V}, [ID_{C} | AD_{C} | ID_{V}])$
- 3. C —> V: ID_C || Ticket

Advantage

- No password transmitted in plaintext
- Ticket is reusable. Timestamp is added to prevent reuse of ticket by an attacker

Secure?

no user authentication

- Ticket hijacking
 - Malicious user may steal the service ticket of another user on the same workstation and try to use it
 - Network address verification does not help
 - Servers must verify that the user who is presenting the ticket is the same user to whom the ticket was issued
- No server authentication
 - Attacker may misconfigure the network so that he receives message addressed to a finished by the order of the network of the legitimate server – man in the middle attack
 - Capture private information from users and/or deny service
 - Servers must prove their identity to users
- Solution: section key

- - (1) C —> AS: ID_C | | ID_{tgs}
 - (2) AS -> C: E(K_C, Ticket_{tgs})
- Once per type of service:
 - (3) C —>TGS: ID_C ||ID_v|| Ticket_{tgs}
 - (4) TGS -> C: Ticket_v
- Once per service session:
 - (5) C -> V: ID_C || Ticket_v

Kerberos v4. - once per user logon session

AS

Kerberos v4. - once per type of service...

Client uses Ticket_{tgs} to obtain a service ticket, Ticket_v and a short-term session key for each network service (printer, email, etc.)

$$Ticket_{tgs} = \mathbb{E}(K_{tgs}, [K_{c, tgs} || ID_C || AD_C || ID_{tgs} || TS_2 || \text{Lifetime}_2])$$

Kerberos v4. - once per service session

For each service request, client uses the short-term key, $K_{c,v}$, for that service and the ticket he received from TGS

 $Ticket_{v} = \mathbb{E}(K_{v}, [K_{c, v} || ID_{C} || AD_{C} || ID_{v} || TS_{4} || \operatorname{Lifetime}_{4}])$

Overview of Kerberos

