

I. AMENDMENTS TO THE CLAIMS:

Please cancel claims 8 and 9 without prejudice. Kindly amend claims 1-3, 10-12 and 15-17, and add new claims 18 and 19 as follows.

The following Listing of Claims replaces all prior listings, or versions, of claims in the above-captioned application.

LISTING OF CLAIMS:

1. (Currently Amended) A method for water hammerless opening of a fluid passage, comprising the steps of:

(a) providing a fluid passage openable by operation of an actuator operating type valve provided on the fluid passage of a pipe passage, wherein the fluid passage has a nearly constant pressure inside the pipe passage;

(b) moving a valve body of the actuator operating type valve from a state of full closing toward a direction of valve opening to a first degree of valve opening by increasing or decreasing driving input to an actuator of the actuator operating type valve, wherein the driving input is increased or reduced to a first prescribed set value;

(c) holding the driving input to the actuator at the first set value for a first period of time; and then

(d) further increasing or decreasing the driving input to move the valve body from the first degree of valve opening to a state of full valve opening so the fluid passage is opened without causing a water hammer.

2. (Currently Amended) A method for water hammerless opening of a fluid passage as claimed in Claim 1, wherein the valve is a normally closed and pneumatic pressure operating type diaphragm valve or a normally open and pneumatic pressure operating type

diaphragm valve, wherein the diaphragm valve~~each of these diaphragm valves~~ is of a fixed capacity type diaphragm valve wherein an inner capacity of the diaphragm valve is fixed and does not change~~is not changed~~ when the valve is operated.

3. (Currently Amended) A method for water hammerless opening of a fluid passage as claimed in Claim 1, wherein the first period of time is less than 1 second, and a pressure rise value of the fluid passage is made to be within 10% of a first steady state pressure value before opening the valve is made to open.

4. (Withdrawn) A device for water hammerless opening of a fluid passage, comprising:

(a) a valve comprising a valve body;

(b) an actuator disposed to drive the valve body;

(c) a vibration sensor removably fixed to a pipe passage on an upstream side of the valve;

(d) an electro-pneumatic conversion control device disposed to receive a valve opening/closing command signal input, wherein the electro-pneumatic conversion control device comprises a data storage part, wherein an actuator operating pressure P_a inputted to the actuator is controlled by a control signal S_c stored in advance in the data storage part; and

(e) a computation control device comprising a comparison computation circuit,

wherein the comparison computation circuit is disposed to receive as input a vibration detecting signal P_r from the vibration sensor, a step pressure setting signal P_s to be supplied to the actuator, a step pressure holding time setting signal T_s , and a permissible upper limit vibration pressure setting signal P_{rm} , and wherein the comparison computation circuit compares the vibration detecting signal P_r and the permissible upper limit vibration pressure setting signal P_{rm} , and the step pressure setting signal is adjusted by the comparison

computation circuit so that the control signal Sc is outputted by the comparison computation circuit to the data storage part of the electro-pneumatic conversion control device, wherein the control signal Sc comprises the holding time setting signal Ts and the adjusted step pressure setting signal Ps .

5. (Withdrawn) A device for water hammerless opening of a fluid passage as claimed in Claim 4, wherein the computation control device further comprises a step pressure setting circuit, a holding time setting circuit, a permissible upper limit vibration pressure setting circuit, a vibration pressure detecting circuit and the comparison computation circuit; and when the vibration detecting signal Pr exceeds the permissible upper limit vibration pressure setting signal Prm immediately after an actuator operating signal is step-changed, the step pressure setting signal Ps is adjusted toward a rising direction, and when the vibration detecting signal Pr exceeds the permissible upper limit vibration pressure setting signal Prm immediately after the actuator operating pressure Pa is made to zero from the intermediate step operating pressure, the step pressure setting signal Ps is adjusted toward a lowering direction.

6. (Withdrawn) A device for water hammerless opening of a fluid passage as claimed in Claim 4, wherein the electro-pneumatic conversion device comprises the data storage part that stores the control signal Sc from the computation control device, a signal conversion part, and an electro-pneumatic conversion part, wherein an actuator operating pressure control signal Se is outputted from the signal conversion part to the electro-pneumatic conversion part based on a control signal Sc' stored in advance in the data storage part so that the pipe passage is opened without causing a water hammer.

7. (Withdrawn) A device for water hammerless opening of a fluid passage, comprising:

- (a) an actuator operating type valve installed on a fluid passage;
- (b) an electro-pneumatic conversion device disposed to supply a 2-step actuator operating pressure P_a to the actuator operating type valve;
- (c) a vibration sensor removably fixed to the pipe passage on an upstream side of the actuator operating type valve; and
- (d) a tuning box disposed to receive as input a vibration detecting signal P_r detected through the vibration sensor and to output to the electro-pneumatic conversion device a control signal S_c to control a step operating pressure P_s' of the 2-step actuator operating pressure P_a , wherein the tuning box adjusts the control signal S_c so that output from the electro-pneumatic conversion device of the 2-step actuator operating pressure P_a comprising the step operating pressure P_s' makes the vibration detecting signal P_r nearly zero.

8. (Cancelled)

9. (Cancelled)

10. (Currently Amended) A method for water hammerless opening of a fluid passage as claimed in Claim 18~~Claim 8~~, wherein the vibration sensor and the tuning box are removable, and are removed after the control signal S_c data at a time of outputting the 2-step operating pressure P_a , with which generation of vibration is nearly zero, are inputted to a memory storage of the electro-pneumatic conversion device.

11. (Currently Amended) A method for water hammerless opening of a fluid passage as claimed in Claim 18~~Claim 8~~, wherein the vibration sensor is provided at a position on the

upstream side within 1000mm from where the actuator operating type valve is installed on the fluid passage.

12. (Currently Amended) A method for water hammerless opening of a fluid passage as claimed in Claim 18~~Claim 8~~, wherein a step operating pressure holding time t of the 2-step operating pressure P_a is set at less than 1 second.

13. (Withdrawn) A method for supplying a chemical solution, comprising the steps of:

(a) supplying a fluid to a fluid passage on a downstream side of an actuator operating type valve installed on the fluid passage by opening the fluid passage using the actuator operating type valve, wherein the fluid passage has a nearly constant internal pressure therein, and the fluid is a chemical solution; wherein opening of the fluid passage includes the steps of

i. firstly, moving a valve body of the actuator operating type valve toward a direction of valve opening by increasing or decreasing a driving input to an actuator to the prescribed set value, wherein the actuator is operably connected to the actuator operating type valve; and

ii. secondly, holding the actuator driving input at the set value for a first period of time; and

thirdly, further increasing or decreasing the driving input to move the valve body of the valve to a state of full opening so that a water hammer does not occur at the time the valve is opened.

14. (Withdrawn) A method for supplying a chemical solution as claim in Claim 13, wherein the first period of time is less than 1 second.

15. (Currently Amended) A method for water hammerless opening of a fluid passage as claimed in Claim 19~~Claim 9~~, wherein the vibration sensor and the tuning box are removable, and are removed after the control signal S_c data at a time of outputting the 2-step operating pressure P_a , with which generation of vibration is nearly zero, are inputted to a memory storage of the electro-pneumatic conversion device.

16. (Currently Amended) A method for water hammerless opening of a fluid passage as claimed in Claim 19~~Claim 9~~, wherein the vibration sensor is provided at a position on the upstream side within 1000mm from where the actuator operating type valve is installed on the fluid passage.

17. (Currently Amended) A method for water hammerless opening of a fluid passage as claimed in Claim 19~~Claim 9~~, wherein a step operating pressure holding time t of the 2-step operating pressure P_a is set at less than 1 second.

18. (NEW) A method for water hammerless opening of a fluid passage, comprising the steps of:

(a) providing a fluid passage openable by operation of an actuator operating type valve provided on the fluid passage of a pipe passage, wherein the fluid passage has a nearly constant pressure inside the pipe passage;

(b) moving a valve body of the actuator operating type valve toward a direction of valve opening by increasing or decreasing driving input to an actuator of the actuator operating type valve, wherein the driving input is increased or reduced to a first prescribed set value;

(c) holding the driving input to the actuator at the first set value for a first period of time; and then

(d) further increasing or decreasing the driving input to move the valve body to a state of full valve opening so the fluid passage is opened without causing a water hammer;

(e) opening the fluid passage, wherein the fluid passage has a vibration sensor removably fixed on an upstream side of the actuator operating type valve installed on the fluid passage;

(f) inputting a vibration detecting signal Pr from the vibration sensor to a tuning box; and then,

(g) inputting a control signal Sc from the tuning box to an electro-pneumatic conversion device; and

(h) generating a 2-step actuator operating pressure Pa in the electro-pneumatic conversion device when the control signal Sc is inputted, and supplying the 2-step actuator operating pressure Pa to an actuator operably connected to the actuator operating type valve so that the actuator operating type valve is made to open in a 2-step operation, wherein the 2-step actuator operating pressure Pa to be supplied to the actuator and the vibration detecting signal are compared for a relative relationship of the two, and when vibration is generated at a time when a first step actuator operating pressure Pa rises, a step operating pressure Ps' is lowered, and when vibration is generated at a time when a second step actuator operating pressure Pa rises, the step operating pressure Ps' is raised, and the step operating pressure Ps' of the step operating pressure Pa , to make the vibration detecting signal Pr nearly zero, is determined by repeating a plurality of adjustments of raising or lowering the step operating pressure Ps' so that the actuator operating type valve is made to open based on control signal Sc data when the 2-step operating pressure Pa of the step operating pressure Ps' , to make

generation of vibration nearly zero, is outputted from the electro-pneumatic conversion device.

19. (NEW) A method for water hammerless opening of a fluid passage, comprising the steps of:

- (a) providing a fluid passage openable by operation of an actuator operating type valve provided on the fluid passage of a pipe passage, wherein the fluid passage has a nearly constant pressure inside the pipe passage;
- (b) moving a valve body of the actuator operating type valve toward a direction of valve opening by increasing or decreasing driving input to an actuator of the actuator operating type valve, wherein the driving input is increased or reduced to a first prescribed set value;
- (c) holding the driving input to the actuator at the first set value for a first period of time; and then
- (d) further increasing or decreasing the driving input to move the valve body to a state of full valve opening so the fluid passage is opened without causing a water hammer;
- (e) opening the fluid passage, wherein the fluid passage has a vibration sensor removably fixed on an upstream side of the actuator operating type valve installed on the fluid passage;
- (f) inputting a vibration detecting signal Pr to a tuning box; and then,
- (g) inputting a control signal Sc from the tuning box to an electro-pneumatic conversion device; and
- (h) generating a 2-step actuator operating pressure Pr in the electro-pneumatic conversion device the when the control signal Sc is inputted, and supplying the 2-step actuator operating pressure Pa to an actuator operably connected to the actuator operating

type valve so that the actuator operating type valve is made to open in a 2-step operation, wherein the 2-step actuator operating pressure P_a to be supplied to the actuator and the vibration detecting signal P_r are compared for a relative relationship of the two, and when vibration is generated at a time when a first step actuator operating pressure P_a drops, a step operating pressure P_s' is raised, and when vibration is generated at a time when a second step actuator operating pressure P_a drops, the step operating pressure P_s' is lowered, and the step operating pressure P_s' of the 2-step operating pressure P_a , to make the vibration detecting signal P_r nearly zero, is determined by repeating a plurality of adjustments of raising or lowering the step operating pressure P_s' so that the actuator operating type valve is made to open based on control signal SC data when the 2-step operating pressure P_a of the step operating pressure P_s' , to make generation of vibration nearly zero, is outputted from the electro-pneumatic conversion device.