PROBLEM: 1

Use the Predictive Analysis to find the relationship between Price , Ads budget with Sales.

SOLUTION: 1

Independent Variables = Price (X1) & Ads budget (X2)

Dependent Variable = Sales

Line of Regression --> y = m1x1 + m2x2 + c

where, m1 & m2 are slopes

& c is intercept

After using Regression, we got

m1 = -142.54

m2 = 0.102257

&

c = 3092.883

Now,

Putting all the values in equation (1) we get,

which is the relationship between price, ads budget with Sales.

PROBLEM: 2 & 3

- 2) What will be the sales if Price is 20\$ and Ads Budget is 1700?
- 3) What will be the sales if price is 10\$ and Ads Budget is 3500?

SOLUTION: 2 & 3

BY using the above relation we get,

x1	x2	У
20	1700	1700
10	3500	0

PROBLEM: 4

Find the optimum value for Price and Ads Budget to maximize the sales.

where,

cost per unit=8

Constraints:

min profit 4000 profit >= 4000
max budget 10000 budget <= 10000
min budget 1000 budget >= 1000

SOLUTION: 4

Decision variables = Price, Ads budget

Objective = To find Optimum value of Price and Ads Budget to Maximise

the Sales

Constraints are,

Min profit 4000 i.e, Profit >= 4000

Max budget 10000 i.e, Budget <= 10000

Min budget 1000 i.e, Budget >= 1000

Also given that, cost per unit = 8

We know,

Sales = -142.54 (Price) + 0.102257 (Ads budget) + 3092.883

Total Profit = ((S.P-C.P)*Sales) - Adverting cost

After using Solver we get,

Price	15.16680568		
Ads Budget	10000		
Sales	1953.45		
Cost per unit	8		
Profit	4000		

Thus the optimum values for Price and Ads Budget are \$15 & \$10000 to maximise the sales with the given constraints.

PROBLEM: 5

5) Maximize the Profit

Constraints:- Ads Budget <= 1000

SOLUTION: 5

Decision variables = Price, Ads budget

Objective = To find Optimum value of Price and Ads Budget to Maximise

the Profit

Constraints, Ads Budget <= 1000

We know,

Sales = -142.54 (Price) + 0.102257 (Ads budget) + 3092.883

Total Profit = ((S.P-C.P)*Sales) - Adverting cost

After using Solver we get,

Price	14.84853432		
Ads Budget	0		
Sales	976.2479		
Cost per unit	8		
Profit	6685.868		

So, without investing on Ads Budget and just increasing the Selling Price to \$14 that's enough to get good Profit.

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.933950245					
R Square	0.87226306					
Adjusted R Square	0.850973571					
Standard Error	118.1823858					
Observations	15					

ANOVA

	df		SS	MS	F	ignificance F
Regression		2	1144505.1	572252.5	40.97153	4.34E-06
Residual		12	167604.92	13967.08		
Total		14	1312110			

	Coefficients	tandard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%
Intercept	3092.883488	200.17042	15.45125	2.77E-09	2656.75	3529.017	2656.75
X Variable 1	-142.5484493	17.152812	-8.3105	2.54E-06	-179.921	-105.176	-179.921
X Variable 2	0.10225716	0.036723	2.784556	0.01651	0.022245	0.18227	0.022245

-105.176

0.18227