Contrôle de géométrie analytique $N^{\circ}4$

Durée: 1 heure 45 minutes. Barème sur 15 points.

NOM:	_	
	Groupe	
PRENOM:	_	

1. Dans le plan muni du repère orthonormé $R_e = (O, \vec{e}_1, \vec{e}_2)$, on définit la conique \mathcal{E} par son équation cartésienne:

$$\mathcal{E} : 3x^2 + 2xy + 3y^2 - 2x + 2y = 0$$

- (a) Déterminer l'équation réduite de \mathcal{E} et le repère R_u dans lequel l'équation de \mathcal{E} est réduite.
- (b) Déterminer, relativement au repère R_e , les coordonnées des sommets portés par l'axe focal.
- (c) Représenter, avec précision, la conique \mathcal{E} dans le repère R_e . Unité 20 carrés.

5 pts

2. Dans le plan muni d'un repère orthonormé, on considère les droites :

$$t: x - y + \beta = 0$$

où β est un paramètre positif ou nul, ainsi que les paraboles \mathcal{P} d'axe Ox et de foyer F(2; 0) qui sont tangentes à t.

(a) Déterminer l'équation cartésienne de \mathcal{P} en fonction de β .

On considère l'hyperbole \mathcal{H} : (x+1)(y-4)=-1 d'axe imaginaire d.

(b) Déterminer l'équation cartésienne de la parabole \mathcal{P} de la famille définie sous (a), qui est tangente à la droite d.

4,5 pts

3. Le plan est muni du repère orthonormé $R_e = (O, \vec{e_1}, \vec{e_2})$. On donne l'équation d'une famille de coniques:

$$\mathcal{F}: x^2 + 2m xy + y^2 - 2m x + 6y - 4 = 0, \quad m \in \mathbb{R}$$

- (a) Montrer que cette famille ne possède aucune conique dégénérée.
- (b) On considère les coniques de \mathcal{F} qui possèdent un centre. Déterminer l'équation cartésienne du lieu des centres de ces coniques. Représenter avec soin ce lieu (centre, sommets et asymptotes éventuelles). Unité 4 carrés.

On considère les hyperboles de la famille \mathcal{F} telles que m > 1.

(c) Déterminer m de sorte que les asymptotes, dans le repère réduit R_u , soient de pente $\pm \frac{\sqrt{3}}{3}$.

5,5 pts