

答题卡

1. (单选题, 3分)

设n阶方阵A与B等价,则下列说法中,不一定成立的是____。

A.

存在可逆阵 P 与 Q, 使得 $PAQ = B \leftarrow$

B. 如果A行等价于单位阵E,则 $|B| \neq 0$

C.

如果A可逆,则存在可逆阵P,使得 $PB = E \leftarrow$

如果|A| > 0,则|B| > 0

我的答案:

D

2. (单选题, 3分)

设 $\alpha_1, \alpha_2, \alpha_3$ 均是非齐次线性方程组 Ax = b 的解,下列向量中 \leftarrow

$$\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2$$
, $\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 - 2\boldsymbol{\alpha}_3$, $\frac{1}{5}(\boldsymbol{\alpha}_2 - \boldsymbol{\alpha}_3)$, $3\boldsymbol{\alpha}_1 - 4\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 \in \mathbb{R}$ 是导出组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的解向量的个数为______。 $\boldsymbol{\omega}$

- A. 3
- B. 4
- C. 1
- D. 2

我的答案:

3. (填空题, 3分)

设 α_1 、 α_2 、 α_3 均为 3 维列向量,已知矩阵 $A=(\pmb{\alpha}_1,\pmb{\alpha}_2,\pmb{\alpha}_3)$,且 $|\pmb{A}|=2$,将 \pmb{A} 的第 2 列乘以-3 加到第 3 列,得到矩阵 \boldsymbol{B} ,再交换 \boldsymbol{B} 的第1列与第2列,得到矩阵 \boldsymbol{C} ,则 $|\boldsymbol{C}|$ =____。 $^{\cup}$

我的答案:

/ (1) -2

设
$$D = \begin{vmatrix} 1 & 2 & -3 & 1 \\ 3 & -3 & 4 & 1 \\ 7 & 2 & -4 & 1 \\ 8 & -2 & 5 & 1 \end{vmatrix}$$
 , M_y 是元素 a_y 的余子式,则 $M_{11} + M_{21} + M_{31} + M_{41} = \underline{\hspace{1cm}}$ 。 \leftarrow

我的答案:

(1) 2

5. (填空题, 3分)

∃知
$$\boldsymbol{A}\boldsymbol{B} = \boldsymbol{C}$$
,其中 $\boldsymbol{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, $\boldsymbol{C} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{pmatrix}$, 则 \boldsymbol{B} 的伴随矩阵 $\boldsymbol{B}^* = \underline{}$

我的答案:

(1)

9: We have
$$B = (bi)h(bi) \le n$$
.

Some $C = (bi)h(bi) \le n$.

Some $C = (bi)h(bi)$.

Some $C = (bi)$

6. (填空题, 3分)

若 3 阶方阵 \boldsymbol{A} 与 \boldsymbol{B} 相似,且 $\left|\boldsymbol{A} - \frac{1}{2}\boldsymbol{E}\right| = \left|\boldsymbol{A} - \frac{1}{3}\boldsymbol{E}\right| = \left|\boldsymbol{A} - \frac{1}{4}\boldsymbol{E}\right| = 0$,其中 \boldsymbol{E} 为 3 <u>阶单位阵</u>,则矩阵 \leftrightarrow $\mathbf{\textit{B}}^{-1} - \mathbf{\textit{E}}$ 的迹(即对角线上元素之和) $Tr(\mathbf{\textit{B}}^{-1} - \mathbf{\textit{E}}) =$ ______。 \leftrightarrow

我的答案:

(1) 6

7. (简答题, 82分)

二、(12分) 设有向里组
$$\mathbf{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
, $\mathbf{\alpha}_2 = \begin{pmatrix} 2a \\ 1+a \\ 4 \end{pmatrix}$, $\mathbf{\alpha}_3 = \begin{pmatrix} 1 \\ 2 \\ a+3 \end{pmatrix}$ 及向里 $\mathbf{\beta} = \begin{pmatrix} a+2 \\ 3 \\ a+5 \end{pmatrix}$, 问当参数 a 取何值时,

- (1) β 不能由向里组 α , α , α , 线性表示; (2) β 可由向里组 α , α , α , 唯一地线性表示; \forall
- (3) **β**可由向量组 **α**, **α**, **α**, **4**线性表示,但表示式不唯一,并求出表示式。 ↔

三、(10 分)已知矩阵
$$\mathbf{A} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,矩阵 \mathbf{B} 满足 $\mathbf{A}^{-1}\mathbf{B}\mathbf{A}^{*} = 3\mathbf{A}^{-1}\mathbf{B} + 4(\mathbf{A}^{-1})^{2} - \mathbf{E}$,求矩阵 $\mathbf{B} \circ \leftrightarrow \mathbf{B}$

四、(16分) 设
$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, $\boldsymbol{\beta}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\boldsymbol{\beta}_2 = \begin{pmatrix} -1 \\ 3 \\ 4 \end{pmatrix}$, 向里空间 $V_1 = span\{\alpha_1,\alpha_2,\alpha_3\}$, $\boldsymbol{\alpha}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

 $V_2 = span\{\beta_1, \beta_2\}, \in$

(1) 求矩阵 $A = (\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2)$ 的满秩分解; (2) 求向里空间 V_1, V_2 的交与和的维数及一组基。 \forall

五、(10分)设V是实数域 \mathbb{R} 上的n阶上三角阵的全体, V_2 是实数域 \mathbb{R} 上的n阶上反对称阵的全体, \forall

- (1) 证明: $M_n(\mathbb{R})$ (实数域 \mathbb{R} 上的 n 阶方阵全体)中的任意 n 阶方阵 $A=(a_y)_n$ 均可表示为一个上三角阵和一个反对称阵之和; \leftarrow
- (2) 证明: M_n(ℝ) = V₁ ⊕ V₂ ←

六、(18 分) 定义线性空间
$$\mathbb{R}^3 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} | x_1, x_2, x_3 \in \mathbb{R} \right\}$$
上的变换 T 如下:对任意 $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$,

$$T(\mathbf{x}) = T \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 - x_2 \\ x_2 - x_3 \\ x_1 \end{pmatrix}, \quad (1) \text{ 证明: } T 是 \mathbb{R}^3 \text{上的—个线性变换; } (2) \text{ 求 } T 在 \mathbb{R}^3 \text{ 的基} \\$$

$$\boldsymbol{\alpha}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \boldsymbol{\alpha}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
下的矩阵;(3)求 T 的像空间与核空间的维数和一组基。 \leftarrow

七、(16分)已知n阶矩阵A,B满足 $BA=O,A^2=A$,证明: \leftrightarrow

- (1) $R(A)+R(B) \leq n$; \leftarrow
- (2) R(A)+R(A−E) = n;
- (3) 若齐次线性方程组 Ax = 0 与 Bx = 0 没有非零的公共解,则 R(A) + R(B) = n 。 \forall