Série d'exercices

Exercice 1

On considère les molécules suivantes :

$$(A) \sim OH$$

- (N) O
- (o) H

- **1** Donner la famille de chaque molécule.
- 2 Donner le nom de chaque molécule.

Exercice 2

On considère un alcool primaire (A) de formule chimique linéaire $C_nH_{2n+1} - OH$ de masse molaire M(A) = 74g. mol^{-1}

- 1 Déterminer la formule semi développée et la représentation topologique de cet alcool.
- ② On introduit une quantité de matière n=0,2mol de cet alcool dans flacon contenant une solution de permanganate de potassium $(K^++MnO_4^-)$ acidifiée. Il se produit une réaction chimique entre l'alcool (A) et l'ion permanganate MnO_4^- conduit à la formation d'un composé organique (B)
 - a Donner le nom de la réaction chimique qui se produit dans le flacon après avoir ajouté l'alcool (A).
 - b Sachant que l'ion permanganate MnO₄ est utilisé en excès, déterminer la famille, le nom et la formule chimique du composé (B)
 - C Écrire l'équation de la réaction chimique se produisant entre l'alcool (A) et l'ion permanganate.
 - c Tracer le tableau d'avancement associé à cette réaction.
 - d Calculer la quantité de matière du composé (B) à l'état final (on considère que cette réaction est totale).
 - Le couple ox/red de l'ion permanganate est : MnO_4^-/Mn^{2+}

Données

- La masse molaire du carbone : $M(C) = 12g. mol^{-1}$
- La masse molaire d'hydrogène : M(H) = 1g. mol⁻¹
 La masse molaire d'oxygène : M(O) = 16g. mol⁻¹

