

Certification Exhibit

FCC ID: VEYXMODR2

FCC Rule Part: 15.247

ACS Project Number: 13-2112

Manufacturer: xG Technology, Inc.

Model: xMod

RF Exposure

Model: xMod FCC ID: VEYXMODR2

General Information:

Applicant: xG Technology, Inc.

ACS Project: 13-2112 Device Category: Mobile

Environment: General Population/Uncontrolled Exposure

Transmitter Signal Correlation Information:

The xMod 900 MHz output signals are correlated using cyclic delay diversity (CDD). The maximum output power listed corresponds to the summation of the output power at both TX antenna ports. The directional gain is calculated per FCC KDB Publication No. 662911 D01 Multiple Transmitter Output v01r02.

Directional Gain = G_{ANT} + Array Gain Array Gain = $10*log(N_{ANT}/N_{SS})$ dB

Where,

 G_{ANT} = Antenna Gain

 N_{ANT} = number of transmit antennas and

 N_{SS} = number of spatial streams. (Assume N_{SS} = 1 unless you have specific information to the contrary.)

Directional Gain = 0 + 10*log(2/1) = 3.01 dBi

Technical Information:

Antenna Type: Planar Inverted-F Antenna Array (4 RX x 2 TX)

Antenna Gain: 0 dBi Directional Gain: 3.01 dBi

Maximum Transmitter Conducted Power: 27.71 dBm, 590.2 mW

Maximum System EIRP: 30.72 dBm, 1180.4 mW (Considering Directional Gain)

Exposure Conditions: Greater than 20 centimeters

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 1: xMax 900 MHz MPE Calculations

MPE Calculator for Mobile Equipment											
Limits for General Population/Uncontrolled Exposure*											
Transmit	Radio	Power	Radio	Antenna	Antenna	Distance (cm)	Power Density (mW/cm^2)				
Frequency	Power	Density Limit	Power	Gain	Gain (mW						
(MHz)	(dBm)	(mW/Cm2)	(mW)	(dBi)	eq.)						
900	27.71	0.60	590.20	3.01	2.000	20	0.235				

Model: xMod FCC ID: VEYXMODR2

Summation of Power Densities

The xMod contains a WLAN module model xMaxW (FCC ID: VEYXMODR1W1). The module uses a 3.4 dBi Flex PCB Dipole antenna. The MPE calculations for the xMaxW operating single-handedly are provided below:

Table 2: WLAN 2.4 GHz MPE Calculations

MPE Calculator for Mobile Equipment										
Limits for General Population/Uncontrolled Exposure*										
Transmit	Radio	Power	Radio	Antenna	Antenna	Distance	Power Density			
Frequency	Power	Density Limit	Power	Gain	Gain (mW	(cm)	(mW/cm^2)			
(MHz)	(dBm)	(mW/Cm2)	(mW)	(dBi)	eq.)	(CIII)	(IIIVV/CIII 2)			
2400	14.77	1.00	29.99	3.4	2.188	20	0.013			

The 900 MHz and 2.4 GHz radios can operate simultaneously. Therefore, the maximum RF exposure is determined by the summation of the MPE ratios. The limits is such that the total MPE ratio is less or equal to 1.0

The maximum MPE ratio is calculated as such:

900 MHz xMax and 2.4 GHz WLAN Operating Simultaneously: 900 MHz xMax MPE Ratio + 2.4 GHz WLAN MPE Ratio (0.235/0.6) + (0.013/1) = (0.3917 + 0.013) = 0.4047 < 1

Installation Guidelines

The installation manual should contain text similar to the following advising how to install the equipment to maintain compliance with the FCC RF exposure requirements:

RF Exposure

In accordance with FCC requirements of human exposure to radio frequency fields, the radiating element shall be installed such that a minimum separation distance of 20 centimeters will be maintained.

Conclusion

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.