LinkedIn Data Analysis Challenge

Tasks

- Straighten out the dataframe to a table of at least 7 columns.
- Identify the top 5 predominant ages in the dataset.
- Determine the bank with the largest share of transactions.
- Show a distribution of channels used on transactions.

```
In [11]: #Load the libaries
library(readxl)
library(dplyr)
library(ggplot2)
library(treemapify)
library(plotrix)

In [12]: #import data
data <- read_excel('Killa.xlsx')

In [13]: #to view the first five rows
head(data)</pre>
```

First Last Name Name	transaction
('tx_id': '5ed3d67b8723c11444c43283', 'tx_doeukw uuoaklowalb 'tx_amount': 6192, 'tx_mode': 'Debit', 'tx_c	•
{'tx_id': '5ed3d67b8723c11444c43283', 'tx_d angulbo seagn 'tx_amount': 38445, 'tx_mode': 'Debit', 'tx_cha	•
\[\tau_id': '5ed3d67b8723c11444c43283', 'tx_d \] dukowi eukloomja 'tx_amount': 29627, 'tx_mode': 'Debit', 'tx_cha	
\tx_id': '5ed3d67b8723c11444c43283', 'tx_d loawiob uuilawobmn 'tx_amount': 27791, 'tx_mode': 'Debit', 'tx_c	•
\(\frac{\tx_id': '5ed3d67b8723c11444c43283', 'tx_d}{\tau_amount': 6192, 'tx_mode': 'Debit', 'tx_c}\)	
{'tx_id': '5ed3d67b8723c11444c43283', 'tx_d juagn ahcnaiz 'tx_amount': 38445, 'tx_mode': 'Debit', 'tx_cha	•

Data Wrangling

```
In [14]: data$transaction <- gsub("\\{|\\}", '', data$transaction) #to remove the curly
braces
data$transaction <- gsub("\\[|\\]", '', data$transaction) #to remove square br
ackets
data$transaction <- gsub("'", '', data$transaction) #to remove the parentheses
head(data)</pre>
```

ne transactio	Last Name	First Name
tx_id: 5ed3d67b8723c11444c43283, tx_date: 2020-06-13T05:28:47.5430002 tx_amount: 6192, tx_mode: Debit, tx_channel: web, bank_name: QBank, dob 1992-11-10 00:00:0	uuoaklowalb	nooeukw
tx_id: 5ed3d67b8723c11444c43283, tx_date: 2020-06-12T20:22:38.9860002gn tx_amount: 38445, tx_mode: Debit, tx_channel: mobile, bank_name: ABank, dob_n/	seagn	angulbo
tx_id: 5ed3d67b8723c11444c43283, tx_date: 2020-06-13T06:00:46.9040002 nja tx_amount: 29627, tx_mode: Debit, tx_channel: mobile, bank_name: GBank, dob 1992-01-01 00:00:0	eukloomja	dukowi
tx_id: 5ed3d67b8723c11444c43283, tx_date: 2020-06-13T16:10:51.4790002 nn tx_amount: 27791, tx_mode: Debit, tx_channel: web, bank_name: KBank, dot 1981-01-07 00:00:0	uuilawobmn	ltuoawiob
tx_id: 5ed3d67b8723c11444c43283, tx_date: 2020-06-13T05:28:47.5430002 tx_amount: 6192, tx_mode: Debit, tx_channel: web, bank_name: QBank, dob: n/	donald	nakuolo
tx_id: 5ed3d67b8723c11444c43283, tx_date: 2020-06-12T20:22:38.9860002 aiz tx_amount: 38445, tx_mode: Debit, tx_channel: mobile, bank_name: ABank, dob 1980-11-22 00:00:0	ahcnaiz	juagn

First Name	Last Name	tx_id	tx_date	tx_amount	tx_mode	tx_c
nooeukw	uuoaklowalb	tx_id: 5ed3d67b8723c11444c43283	tx_date: 2020-06- 13T05:28:47.543000Z	tx_amount: 6192	tx_mode: Debit	tx_c
angulbo	seagn	tx_id: 5ed3d67b8723c11444c43283	tx_date: 2020-06- 12T20:22:38.986000Z	tx_amount: 38445	tx_mode: Debit	tx_c
dukowi	eukloomja	tx_id: 5ed3d67b8723c11444c43283	tx_date: 2020-06- 13T06:00:46.904000Z	tx_amount: 29627	tx_mode: Debit	tx_c
Ituoawiob	uuilawobmn	tx_id: 5ed3d67b8723c11444c43283	tx_date: 2020-06- 13T16:10:51.479000Z	tx_amount: 27791	tx_mode: Debit	tx_c
nakuolo	donald	tx_id: 5ed3d67b8723c11444c43283	tx_date: 2020-06- 13T05:28:47.543000Z	tx_amount: 6192	tx_mode: Debit	tx_c
juagn	ahcnaiz	tx_id: 5ed3d67b8723c11444c43283	tx_date: 2020-06- 12T20:22:38.986000Z	tx_amount: 38445	tx_mode: Debit	tx_c
4						

```
In [16]: #to separate and extract the data needed for analysis. NA was imputed to ignor
         e the first variable
         data <- data %>% separate(tx id, c(NA, "ID"), sep = "([:])", extra = "drop")
         data <- data %>% separate(tx date, c(NA, "Date"), sep = "([:])", extra = "dro
         data <- data %>% separate(tx_amount, c(NA, "Amount"), sep = "([:])", extra =
         "drop")
         data <- data %>% separate(tx mode, c(NA, "ModeOfPayment"), sep = "([:])", extr
         a = "drop")
         data <- data %>% separate(tx_channel, c(NA, "Channel"), sep = "([:])", extra =
         "drop")
         data <- data %>% separate(bank_name, c(NA, "BankName"), sep = "([:])", extra =
         data <- data %>% separate(dob, c(NA, "YearOfBirth"), sep = "([:-])", extra =
         "drop")
         head(data)
```

First Name	Last Name	ID	Date	Amount	ModeOfPayment	Channel	Ва
nooeukw	uuoaklowalb	5ed3d67b8723c11444c43283	2020- 06- 13T05	6192	Debit	web	
angulbo	seagn	5ed3d67b8723c11444c43283	2020- 06- 12T20	38445	Debit	mobile	
dukowi	eukloomja	5ed3d67b8723c11444c43283	2020- 06- 13T06	29627	Debit	mobile	
Ituoawiob	uuilawobmn	5ed3d67b8723c11444c43283	2020- 06- 13T16	27791	Debit	web	
nakuolo	donald	5ed3d67b8723c11444c43283	2020- 06- 13T05	6192	Debit	web	
juagn	ahcnaiz	5ed3d67b8723c11444c43283	2020- 06- 12T20	38445	Debit	mobile	
4							•
<pre>data <- transform(data, YearOfBirth = as.numeric(YearOfBirth)) data\$Age <- 2020 - data\$YearOfBirth #to extract the age</pre>							

```
In [17]:
```

Warning message in eval(substitute(list(...)), `_data`, parent.frame()): "NAs introduced by coercion"

To identify the top 5 predominant ages in the dataset

Top 5 predominant Ages

To determine the bank with the largest share of transactions.

```
In [19]: options(repr.plot.width=5, repr.plot.height=3)
    data <- transform(data, Amount = as.numeric(Amount))
    bankdata <- data %>% group_by(BankName) %>% summarise(Amount = sum(Amount))
    bankdata$PercAmt <- round(bankdata$Amount*100/sum(bankdata$Amount))
    bankdata$label <- paste0(bankdata$BankName, "\n", round(bankdata$PercAmt), "%"
    )

    ggplot(bankdata, aes(fill = BankName, area = Amount, label = label)) + geom_tr
    eemap() + geom_treemap_text(colour = "white",
        place = "centre") + labs(title = "Banks and the percentage share of their
        transactions") + theme(legend.position = "none")</pre>
```

Banks and the percentage share of their transactions

ABank has the largest share of transactions

To show distribution of channels used on transactions

[`]summarise()` ungrouping output (override with `.groups` argument)

Distribution of channels used

