Exercise 3.4.16:

1. To see that the Cauchy-Riemann operator

$$\partial_{ar{z}}rac{1}{2}\left(rac{\partial}{\partial x}+irac{\partial}{\partial y}
ight)$$

is elliptic we compute the characteristic polynomial

$$P(i\xi)=rac{1}{2}i\left(\xi_1+i\xi_2
ight)$$

Then the triangle inequality immediately implies that

$$|\xi| \le |\xi_1| + |i\xi_2| = \frac{1}{2}|P(\xi)|$$

which shows that $\partial_{\bar{z}}$ is elliptic.

2. To see that $1/\pi z$ is a fundamental solution of $\partial_{\bar{z}}$ first note that because $\frac{1}{|z|} \in L^1_{\text{loc}}$ the function f(z) = 1/z defines a distribution on $\mathbb{C} \cong \mathbb{R}^2$. Moreover, by Theorem 2.9 we know that $\frac{1}{2\pi} \log |x|$ is a fundamental solution of Δ on \mathbb{R}^2 . So for any $\varphi \in \mathcal{D}$ we see that

$$\frac{1}{2\pi}\int \log |x|\Delta \varphi dxdy = \delta(\varphi) = \varphi(0)$$

Because $\Delta = 4\partial_{\bar{z}}\partial z$ we see that

$$\Delta(rac{1}{2\pi}\log|x|)(arphi)=4\partial_{ar{z}}(rac{1}{2\pi}\log|x|)(\partial_zarphi)=4(\partial_zrac{1}{2\pi}\log|x|)(\partial_{ar{z}}arphi)$$

But the above is equivalent to the statement that

$$(rac{1}{\pi z})(\partial_{ar{z}}arphi)=\partial_{ar{z}}rac{1}{\pi z}(arphi)=\delta(arphi)$$

which means that $1/\pi z$ is a fundamental solution of $\partial_{\bar{z}}$.

3. Suppose that f is continuous and $\partial_{\bar{z}} f = 0$ in the sense of distributions and let C be a simple, closed curve in the plane. Because $\partial_{\bar{z}}$ is elliptic the distribution $U = \frac{1}{\pi z} * f$ satisfies $\partial_{\bar{z}} U = f$ by the previous part. We then apply Theorem 2.14 to the distribution U to see that U is in act a C^{∞} function that satisfies

$$\partial_{ar{z}}\int_C U dz = \partial_{ar{z}}\int rac{f(\zeta}{\zeta-z} dz = \int rac{\partial_{ar{z}}f(\zeta)}{\zeta-z} dz$$

Then because $\partial_{\bar{z}} f = 0$ we have that

$$\int_C f dz = \int_C U dz = 0$$

So f is analytic by Morera's Theorem.

Exercise 3.4.17:

1. To see that $\log |f(z)|$ is locally integrable we begin by recalling that because f is meromorphic it can be written as the quotient of two entire functions f(z) = g(z)/h(z). Then we have the identity

$$\log |f(z)| = \log \left| rac{g(z)}{h(z)}
ight| = \log |g(z)| - \log |h(z)|$$

Thus, it suffices to show that $\log |g(z)|$ is locally integrable when g is entire.

In the case that g is an entire function then g admits a factorization

$$g(z) = z^m \prod_{i=1}^{\infty} E_n(z/a_n)$$

where the a_n are the roots of g and the E_n are the canonical factors

$$E_n(z) = \log(1-z) \sum_{i=1}^{\infty} rac{z^k}{k}$$

Thus,

$$\int \log \left| z^m \prod_{n=1}^\infty E_n(z/a_n)
ight| dz \leq \int m + \sum_{n=1}^\infty \log |E_n(z/a_k)|$$

So $\log |g(z)|$ is locally integrable if each of the $\log |E_n(z/a_n)|$ is. To verify this we expand

$$\log |E_n(z/a_n)| = \log |(1-z/a_k)e^{\sum_{i=1}^\infty a_k^{-i}z^i/i} \leq \log |1-z_k/a_k| + \sum_{i=1}^\infty rac{z^i}{ia_k^i}$$

We know that $\log |w|$ is locally integrable, so we only need to consider the integrability of the sum term. Only finitely many of the series above satisfy $|z^i/ia_k^i| > 1/2$ because the otherwise the sequence of roots would have a limit point and the function would be identically zero, which is clearly integrable. So for sufficiently large k we have that

$$\int |E_n(z/a_k)| \leq \int \log|1-z_k/a_k| + \int \sum_{i=k}^{\infty} 2^{-n}$$

which is the sum of locally integrable functions and hence locally integrable. For large values of z/a_k we will use the analytic continuation of the usual power series representation for $\log(1+z)$ yielding

$$\log(1 + z/a_n) + \sum \frac{z^k}{ka_n^k} = -\sum (-1)^n \frac{z^k}{ka_n^k} + \sum \frac{z^k}{ka_n^k} \le \log|1 + z/a_n|$$

Which shows that

$$\int |E_n(z/a_n)| \le \int \log|1-z/a_n| < \infty$$

for small roots a_k and so each of the E_n is locally integrable and we are done.

2.

Exercise 3.4.18:

The forward direction follows from the homogeneity condition because we note that if we differentiate the identity $F_a(\varphi) = a^{\lambda} f(\varphi)$ with respect to a we get

$$egin{aligned} rac{\partial}{\partial a}F_a(arphi) &= rac{\partial}{\partial a}a^\lambda f(arphi) \ F(rac{\partial}{\partial a}arphi^a) &= \lambda a^{\lambda-1}F(arphi) \ F\left(\sum_{i=1}^n x_irac{\partial arphi}{\partial x_i}
ight) &= \lambda a^{\lambda-1}F(arphi) \end{aligned}$$

Then we observe that Linearity reduces the left side to

$$F\left(\sum_{i=1}^n x_i rac{\partial arphi}{\partial x_i}
ight) = \sum_{i=1}^n x_i F\left(rac{\partial arphi}{\partial x_i}
ight) = \left(\sum_{i=1}^n x_i rac{\partial}{\partial x_j} F
ight) (arphi)$$

Setting a = 1 gives

$$\sum_{i=1}^{n} x_i \frac{\partial}{\partial x_j} F = \lambda F$$

as desired.

Exercise 3.4.22:

First we will assume that $f \in L^1_{loc}$ and define u(x,t) = f(x-t)

Exercise 3.4.25:

In the forward direction, we suppose that F is a positive distribution. Then F in particular is a positive linear functional on \mathbb{R}^d . We then see that F must in fact be a continuous function because each φ is supported on a compact set in Ω and so F is bounded hence, it is continuous. Then because \mathcal{D} is dense in the space of continuous functions with compact support, C_0 , we apply the Hahn-Banach theorem to extend it to a continuous function on C_c .

Now we need to show that the extension of F, call it \tilde{F} is positive. Consider a test function φ convolved with a sequence of mollifiers η_n . If we set $\varphi_n = \varphi * \eta_n$ then each of the φ_n has compact support (because φ does). Because each each of the above have compact support we see that $\varphi_n \to \varphi$ uniformly and moreover that

$$\tilde{F}\varphi = \tilde{F}(\lim_{n \to \infty} \varphi_n) = \lim_{n \to \infty} \tilde{F}\varphi_n = \lim_{n \to \infty} F\varphi_n \ge 0$$

Where the second-to-last equality follows from density. So \tilde{F} is positive and by the Riesz representation theorem we can find a locally finite Borel measure μ such that

$$ilde{F}(arphi)=\int arphi(x)d\mu$$

And in particular we see that

$$F(arphi) = ilde{F}(arphi) = \int arphi(x) d\mu$$

as desired.

For the converse we simply note that a locally finite Borel measure μ is a continuous function in Ω because it is bounded. Then we use the fact that the test function φ is non-negative and so the distribution associated to the function μ is positive.

Exercise 3.4.27:

- 1.
- 2.
- 3.