CUE - Cooperation in Urban Environments: Theoretical Notation

February 6, 2023

1 Model general notation

- A Agent;
- P Place;
- σ trait value;
- D critical Hamming distance of trait;
- R critical radius;
- \bullet C openness to contamination, or degree of interaction influence;
- M memory size;

2 Simulation notation

- t Timestep;
- T Total number of timesteps;
- x position coordinate;
- y position coordinate;

3 Agents

Agents are denoted by A. Any specific Agent is denoted by A^i , where i is the ID number of the Agent in a world of N_A Agents.

3.1 Parameters of Agents

Parameters are those static, constant attributes. They can be accessed by their names in the Agent subscript:

- $A_D^i D$ of A^i ;
- $A_R^i R$ of A^i ;
- $A_C^i C$ of A^i ;
- $A_M^i M$ of A^i ;

3.2 Variables of Agents

Variables are those mutable, changing attributes. They can be accessed by their names in the Agent subscript and by time step t in the Agent superscript:

- $A^i_{\sigma}(t) \sigma$ of A^i in time step t;
- $A_x^i(t) x$ position of A^i in time step t;
- $A_y^i(t) y$ position of A^i in time step t;

4 Places

Places are denoted by P. Any specific Place is denoted by it's own position: $P^{x,y}$ in 2D or P^x in 1D.

4.1 Parameters of Places

Parameters are those static, constant attributes. They can be accessed by their names in the Agent subscript:

•
$$P_C^{x,y} - C$$
 of $P^{x,y}$;

4.2 Variables of Places

Variables are those mutable, changing attributes. They can be accessed by their names in the Place subscript and by time step t in the Place superscript:

• $P_{\sigma}^{x,y}(t) - \sigma$ of $P^{x,y}$ in time step t;

5 Model equations

5.1 Interaction equations

When Agents interact with Places, both get some contamination from each other. Their next t+1 value of σ changes by the following equations. For Agents:

$$A^i_{\sigma}(t+1) = \frac{A^i_{\bar{\sigma}}(t) + P^{X,Y}_{\sigma}(t) \cdot A^i_C}{1 + A^i_C} \quad \forall i, t$$
 (1)

And for Places:

$$P_{\sigma}^{X,Y}(t+1) = \frac{P_{\sigma}^{X,Y}(t) + A_{\bar{\sigma}}^{i}(t) \cdot P_{C}^{X,Y}}{1 + P_{C}^{X,Y}} \quad \forall i, t$$
 (2)

Where $X = A_x^i(t)$ and $Y = A_y^i(t)$. The value of $A_{\bar{\sigma}}^{i,t}$ is a function of the Agent's previous traits (A_{σ}) and memory size (A_M) :

$$A_{\bar{\sigma}}^{i}(t) = \Psi(A_{\sigma}^{i}, A_{M}^{i}) \quad \forall i, t \tag{3}$$

Currently, the function Ψ the average of σ values allocated in the Agent's memory:

$$A_{\bar{\sigma}}^{i}(t) = \frac{1}{A_{M}^{i}} \sum_{n=0}^{A_{M}^{i}} A_{\sigma}^{i}(t-n) \quad \forall i, t$$
 (4)

5.2 Random walk

5.2.1 Set of candidate Places

At any time step, each Agent has a set \mathbb{P} of candidate Places to move in so they can interact. This set is made of Places P within the Agent's window of sight of size A_R and below the Agent's interaction threshold A_D . Hence:

$$P \in \mathbb{P} \mid |X - A_x| \le A_R \cap |Y - A_y| \le A_R \cap |P_\sigma - A_{\bar{\sigma}}| \le A_D \tag{5}$$

5.2.2 Uniform weighting function

The uniform weighting function is defined to set all available places the same likelihood to be chosen by a given Agent. Therefore:

$$P_L = \frac{1}{\mathbb{P}_N} \tag{6}$$

Where P_L is the likelihood of the candidate Place P and \mathbb{P}_N is the number of candidate Places in \mathbb{P} .

5.2.3 Linear weighting function

The linear weighting function is defined to set the likelihoods of candidate Places proportinal to the σ discrepancy. Therefore, Agents are biased to go to Places like themselves. The function:

$$P_L = -\frac{2}{\delta_{max}^2} \delta + \frac{2}{\delta_{max}} \tag{7}$$

Where P_L is the likelihood of the candidate Place P, $\delta = |A_{\sigma} - P_{\sigma}|$ and δ_{max} is the highest δ value found in \mathbb{P} .

5.2.4 Exception case

When the set \mathbb{P} of candidate Places is empty so $\mathbb{P}_N = 0$ then the set is recomputed without the interaction threshold constrain and uniform function is used. In this case:

$$P \in \mathbb{P} \mid |X - A_x| \le A_R \cap |Y - A_y| \le A_R \tag{8}$$