⑩ 日本国特許庁(JP)

① 特許出願公開

◎ 公開特許公報(A) 平3-157107

51 Int. Cl. 5

識別記号

庁内整理番号

④公開 平成3年(1991)7月5日

B 01 D 21/01 C 01 B 33/20 102

7824-4D 6750-4G

審査請求 未請求 請求項の数 3 (全7頁)

60発明の名称

シリカ系凝集液及びその製造方法

②特 願 平1-296371

20出 願 平1(1989)11月15日

⑩発 明 者 西 村

勤

兵庫県姫路市威徳寺町2番地

⑪出 願 人 西 村

勤

兵庫県姫路市威徳寺町2番地

個代 理 人 弁理士 永田 久喜

明 細 書

1 発明の名称

シリカ系凝集液及びその製造方法

2 特許請求の範囲

- 1. 酸可溶性シリカ、酸可溶性アルミナ及び酸可溶性カルシウムを含有する資材を還元酸或いは中性酸により溶解して得られるシリカーアルミナーカルシウム溶液を主成分とするシリカ系凝集液。
- 2. 酸可溶性シリカ、酸可溶性アルミナ及び酸可溶性カルシウムを含有する資材を還元酸或いは中性酸で溶解するに際し、該資材の溶解量を増減させることにより溶解液のpHを2.5~3.5程度に調節して、溶解したモノマーシリカのゲル化を防止して安定化することを特徴とするシリカ系凝集液の製造方法。
- 3. 酸可溶性シリカ、酸可溶性アルミナ及び酸

可溶性カルシウムを含有する資材を還元酸或いは中性酸で溶解するに際し、まず還元酸により該資材を溶解した後、その溶液に適量の硫酸を添加して硫酸カルシウム沈澱を生成させて溶解液中の溶解カルシウム量を減少させ、モノマーシリカのゲル化を防止することを特徴とするシリカ系凝集液の製造方法。

3 発明の詳細な説明

[産業上の利用分野]

本発明は、水中に含有される水中混在物、即ち各種の溶解物質や微粒子、懸濁物質等の抽出、凝集、除去に使用される新規なシリカ系凝集液及 安定性に優れた該凝集液を製造する新規な方法に係り、特に水中に溶解したモノマーシリカの重合・ゲル化現象とA & *3 や C a *2 等による該現や吸着で、及びA & *3 や C a *2 による化学反応集争の促進、及の相乗作用により、優れた抽出・凝集を発揮するシリカ系凝集液及びその製法に関する。

[従来の技術]

従来、汚水や各種廃水中の溶解物質(イオン類) や有機、無機の微粒子、浮遊物質等の抽出や凝集、 除去には、主としてA & 凝集剤やF e 凝集剤及び 高分子凝集剤が用いられている。

この内A ℓ 凝集剤(パック、蕃土)は、A ℓ の水酸化物生成にかかわる凝集効果のみを利用したもので、対象水のpHが中性付近にある場合に限って有効であり、酸性水や強アルカリ水に対して効果を発現できない。従って、その添加前後にpH調節(含OH = 供給)操作が必要になるし、また有機高分子凝集剤添加による凝集の促進が必要である。

しかも、得られたスラッジの脱水性も悪く、その処理も大変である。更に、イオン吸着に基づくものであるため、水中のPO4²、SO4²、HCO₃ ² 等の陰イオン類や、界而活性剤、エマルジョン、石灰廃水、セメント廃水等の懸濁物質の抽出や凝集、除去には不向きである。

一方、Fe系凝集剤もAl凝集剤と同様に水酸

願平1-136898号)。そして、この方法に 用いる溶解シリカの一種として高濃度の酸溶解シ リカーアルミナ溶液を使用する方法を開発した。

[発明が解決しようとする課題]

この高濃度の酸溶解シリカーアルミナ溶液は、 汚水特に微酸性領域において少量(比)で混在物 の抽出・凝集を良好に行なうが、比較的短時間に ゲル化するなど安定性に欠ける難点があった。

即ち、この酸溶解シリカーアルミナ溶液は、鉱 滓粉末を希硫酸で溶解した上澄み液であり、実質 上大過剰のAℓ・3及びCa・2等を含有しており、 溶解シリカのH+、OH-供与による重合進行の 平行点とみられるpH 2.0に維持してもシリカの重 合→ゲル化が進行して短時間で凝固する欠点があった。

[課題を解決するための手段]

そこで本発明者は、酸溶解シリカーアルミナ溶 液について更に研究を続け、安定化する技術の開 化物生成に伴う凝集効果を発現させるのみであり、なお悪いことには、処理後水中にFe *2、Fe *3を残留させる欠点を有する。この残留イオンは、凝集剤添加後にOH ̄を添加して液をアルカリ性にしても十分には除去できない。

しかも、両者とも高分子凝集剤の使用が不可欠 であるが、高分子凝集剤は特に高い親水性を持つ 故に、その一部が自然界へ処理水とともに排出さ れる危惧が持たれている。

A L 凝集剤、F e 凝集剤、高分子凝集剤には、 上記の如き不便さがあり、且つ特定の抽出、凝集 対象についてのみ有効である。従って処理コスト (スラッジ処理を含む)も高く、微妙な管理が必 要であり、更に高分子凝集剤の環境への影響も無 視できない。

そこで本発明者は、溶解したモノマーシリカが 水溶液中でイオン反応により重合し続いてゲル化 する過程において、溶解イオン類や浮遊物質とシ リカが結合し或いはこれらを吸着する現象を利用 した水中混在物の抽出・凝集方法を開発した(特

発に成功した。

即ち、本発明のシリカ系凝集液は、鉱溶等の酸可溶性シリカや酸可溶性アルミナ、酸可溶性カルシウムを含有する資材を希硫酸や希塩酸等で溶解して得られるシリカーアルミナーカルシウム溶液を主成分とする。また、その長期保存性を確保するために、溶解液のpHを2.5~3.5程度に調節したり、溶解液中の溶解カルシウム量を減少させたりするものである。

シリカ(SiO2)は、水中に溶解するとOH‐と結合(SiOH)しているのが常と考えられており、特に溶解したシリカが100ppm を越えるとSi(OH)4(モノマーシリカ、モノ珪酸、珪酸単量体)の生成が促進されると言われている(The Chemistry of Silicon:Ralpf K.Iler)。このモノマーシリカは、ヒドロゾルの形で水中に存在し、他のイオン類と異なる特殊な挙動やイオン反応をすることが知られている。

即ち、モノマーシリカは、酸性水中にあってシ ラノール化するとともに重合→ゲル化が進行し、 特に二重電荷を持つ(二極性)ことにより、⊕、 の各電荷を持つ物質を吸着することは既知である。但し、反応速度はpH2~7の範囲においては OH - イオン濃度に比例し、pH2以下では水素イオン濃度に比例して無水化が進行すると言われている。またpH4~6近辺の微酸性域では粒子成長をとげ、粒子集合とゲル化が同時進行的な形で急速に進行する。

化はさらに促進される。

このゲル化に際し、水中に含有されている 2 n、Pb、As等の金属陽イオン、Ca等のアルカリ 土類金属イオン、P³等の一部の陰イオンと持 力と属イオン、P³等の一部の陰イオンと持 力となる。 一体判等の溶解物質がシリカと結合質や 脂肪等の微粒子や懸濁物質、浮遊物質等がシリカ に吸着果、これらの水中混在物が水と分離されて その結果、これらの水中混在物が水と分離される。 これらの水中混な物が、本発明で ある。しかも、ゲル化したシリカは安定性がある。 自然状態での逆抽出は起こらない特性がある。

更に、モノマーシリカを含む溶液にAℓ・3、 Ca・2、Mg・2等の陽イオン類が存在すると重合→ゲル化反応は急速に進行することが本発明者の前記出願により明らかにされた。但し、Aℓ・3は単独でも重合→ゲル化を促進するが、Ca・2やMg・2はAℓ・3と共存して初めて大きな効果を奏する。これは、Aℓ・3がシリカの重合体内でシリカと分子レベルで入れ換わる所謂インターアクションの

結果生じたアルミナ変性によるもので、シリカと 結合して複合沈澱物となり、と同時に大量のH+ を生成させる現象に由来するものと思われる。

 $(-SiOH)_{m} + A \ell^{+3} =$

(-SiOH) m-n・(-SiO)nA ℓ*3 + n H+ しかも、A ℓ*3 はpH> 4 では水中のOH - と結合して水酸化アルミニウムを形成し、その際、水中の浮遊物質を吸着したり、リン酸イオン、その他陽イオンを吸着して沈澱する。

一方、Ca*2やMg*2はHCO3-やSO42 と化学結合して難溶解性沈澱物を生成して凝集沈 澱効果を高めたり、それらを抽出して除去する。 とともに、アルカリ性水中では、これらの塩特に 0.2 N以上の塩共存下ではモノマーシリカは単独 に粒成長をとげ、中和による電荷の消失により、 急速にゲル化する特性がある。

尚、モノマーシリカの溶解量は、H + 量に反比例し、OH = 量に比例するが、実際上モノマーシリカを得ること、特に高濃度で得ることは通常困難であった。即ち、シリカ(SiO2)は強酸に

は溶解せず、強アルカリには一部溶解するがpHが下がれば速やかにゲル化する。

鉱滓(高炉鉱滓、転炉鉱滓、電気炉鉱滓)は、SiO2、Al2O3、CaO、MgO等で主副成分を構成している。そして、それらが例えばCaO-SiO2、2CaO-SiO2等のカルシウムシリケート、2CaO-SiO2-Al2O3等のカルシウムシリケートアルミネート等の複合結晶を形成している

これらは、SI、Al、CaがOを介して結合

しているため酸に溶解し易いし、S i O 2 自身主として準安定型珪酸と呼ばれるα-クリストバライト型であるため溶解し易く、鉱滓は希酸によって容易に溶解する。

尚、酸としては塩酸(HCe)や有機酸等の還元酸、硫酸(H2SO4)等の中性酸(希釈すると還元酸の性質を帯びる)が用いられる。これらは、2規定以下に希釈したものが用いられる。濃度が2規定程度よりも高くなると、溶解中或いは溶解後短時間にコロイド沈澱が生じ、更に高くなると溶解しなくなる。より好ましくは、0.5~1.5規定程度、特に1規定程度である。

この鉱滓は、一部産業的利用が行われているものの、その大部分は産業廃棄物として埋め立て処理されているのが現状であり、安価に得られるし資源の有効活用の面からも好ましい。しかも、第一成分となるシリカ、第二成分となるアルミナ及び第三成分となるカルシウムやマグネシウムを豊富に含有しており、本発明のシリカ系凝集液の資

表 - 1

試料番号	溶解酸	溶止 解 停叫	溶解 解 リ %	溶解アル%	溶 解 CaO %	溶 解 Mg 0 %	判定 注 1
1	硫酸	2.2	1.51	0.71	0.85	0.18	× 凝固
2	硫酸	2.9	1.62	0.75	0.66	0.20	△ 凝固
3 **	硫酸	3.1	1.73	0.85	0.55	0.18	○ 溶解
4	硫酸	5.0		こゲルイ .5 程息			注 2
5	塩酸	2.2	1.45	0.70	1.75	0.25	× 凝固
6	塩酸	2.9	1.65	0.81	1.82	0.28	△ 凝固
7 **	塩酸	3.1	1.80	0.88	1.70	0.23	○ 溶解
8	塩酸	5.0	直 ちょ pH = 0	こゲルイ .5 程息	とが進行 関まで作	テして は下	注 2
9	塩酸+硫酸	3.1 ~ 3.2	1.88	0.95	0.44	0.22	冷解

材としては理想的なものである。

しかし、この溶解液は第二成分である酸可溶性 アルミナや第三成分である酸可溶カルシウムやマ グネシウムを大適剰に含むため、pllの程度によっ ては溶解後数分以内にゲル化するなど、極めて不 安定である。そこで、pH及び酸の種類を変えて、 酸溶解液のpll、各成分の濃度、及び安定性(ゲル 化を開始するまでの時間)等について、以下の各 実験を行なった。尚、各実験とも常温で行なった。

[実験]

実験 1 シリカ系凝集液の調整(その1)

鉱溶粉(150メッシュ以下)の適量を、1Nの希塩酸及び硫酸に溶解し、到達pH毎に酸溶解シリカ(Siを測定後SiO₂に換算)、酸溶解アルミナ、酸溶解カルシウム(CaO)及び酸溶解マグネシウム(MgO)の濃度を測定した(試料1~試料8)。尚、pHは鉱滓粉の溶解量が増えると上昇するので、あるpHの段階で液を濾別して溶解を停止した。その結果を、表一1に示す。

尚、表-1中、注1の×は使用不可能、△は短時間内の使用可、○は使用可能の状態を示す。また、注2はアルミナ変性の結果と思われる。

実験 2 シリカ系凝集液の調整 (その2)

次いで、実験1の試料7の水準(1N/HC & 溶解)で鉱滓を溶解し、溶解液のpllが3.2を越えて上昇したら、1N/H2S〇 4 を少量ずつ添加しながら溶解を続けて硫酸カルシウムの沈澱を生成させる。この場合、すでに溶解しているCaOはCaSO 4 を形成して沈澱する。再び、pllが3.1~3.2になれば、溶解を停止して溶解液を沈澱とともに抜き出した後、沈澱物(CaSO 4)を緩別し、凝集液とした。本処理を実験9とし、その結果を表一1に示す。

以上の結果、液のpHは3.1前後のもの(試料3 及び試料7)が安定性に優れていることが判る。 また、試料9の凝集液も極めて安定であった。尚、 実験1において、溶解カルシウム及び溶解マグネ シウムの溶解量は、硫酸溶解液の方が少なかった。 これはSO4々と結合して沈毅したことによると 思われる。

実験 3 溶解シリカのゲル化速度

次に、溶解シリカのゲル化速度を測定するために、1N/H2SO4及び1N/HC&の一定量(100mt)に、一定量(6g)の鉱滓を添加し、攪拌溶解した。

この場合、任意のpH毎に溶解を中止して、不溶解残渣を除く溶解液(含生成沈澱物)を別のビーカーに抜き出し、その凝固挙動(シリカのゲル化)について調査した。その結果を表 - 2 に示す。

表-2から明らかなように、硫酸、塩酸共に、pH3.1近傍での安定性が極めて良好であった。但し、現場で製造して直ちに消費するような場合には、pHが2.5~3.5程度であればほぼ使用に耐える。

尚、HCℓ溶解液の安定性が、H2SO4溶解液に比較して劣るのは、溶解Ca塩が多いためと思われる。

分とするものである。そして、水中に溶解したモノマーシリカの重合・ゲル化現象とそれに伴う抽出・凝集現象と、Aℓ⁴³やСa⁴²等による該現象の促進、及びAℓ⁴³やСa⁴²による化学反応や吸着現象、更には水中に含有している他の陽イオンや陰イオン等が沈澱物化するのに伴う吸着現象との相乗作用により、優れた抽出・凝集効果を発揮する。

しかして、本発明のシリカ系凝集液は、水中に含有される水中混在物即ち陽イオン、陰イオン等の溶解物質、蛋白質、脂肪、界而活性剤、藻等の浮遊物質や懸濁物質、各種エマルジョンや石灰廃水、セメント廃水等に含まれる懸濁物質等を、高効率で抽出、凝集して除去する。

このシリカ系凝集液は、pHを2.5~3.5特に3.1前後に保持し、或いは液中のCaO濃度を低くすることにより、長期保存を可能とする。

[使用例]

次に、前記試料3及び試料7のシリカ系凝集液

表 - 2

試料 番号	溶解酸	溶解中止 pll	ゲル化時間
1 0	硫酸	1.5	5 分以内
1 1	硫酸	2.5	1 2 時間
1 2	硫酸	3.1	≒ ∞
1 3	硫酸	3.5	2 4 時間
1 4	硫酸	4.5	5 分以内
1 5	塩酸	1.5	5 分以内
1 6	塩酸	2.5	5 時間
1 7	塩酸	3.1	7 2 時間
1 8	塩酸	3.5	12時間
1 9	塩酸	4.5	5 分以内

[作用]

本発明のシリカ系凝集液は、酸可溶性シリカ、 酸可溶性アルミナ及び酸可溶性カルシウムを含有 する資材を運元酸或いは中性酸により溶解して得 られるシリカーアルミナーカルシウム溶液を主成

を用いた使用例を説明する。

使用例 1 シリカ系凝集液による藻類含有水の 凝集テスト

検水1ℓ (pH = 6.6) を、ピーカーに採り、スターラーで攪拌しながら、PAC及びシリカ系凝集液を添加し、10分間攪拌後静置し、その一部を500 mtメスシリングーに入れて沈降速度を測定し

表 - 3

凝集剂	变	沈阝	革速!	便 c m	透視度	рН	判定
種類	濃度	10 分	20 分	30 分	及 CM		Æ
原水	_	0	0	0	18	6.7	×
P A C	200 PPM	5	16	24	> 50	6.2	0
試料 3	2 mt 注 1	2	17	27	> 50	5.6	0
試料	2 ml 注 2	3	18	27	> 50	5.8	0

た。30分静置後の上澄水について、透視度を測定 した。その結果を、表-3に示す。

使用例1において、透視度はいずれも良好であったが、シリカ系凝集液はPACに比べて沈降速度が速く、また沈澱物の圧縮性も良好であった。

尚、シリカ系凝集液の各成分の濃度(ppm)は、 試料3(注1)で溶解シリカが3 4.6ppm 、溶解 アルミナが1 7.0ppm 、溶解カルシウムが1 1.0 ppm 、溶解マグネシウムが3.6ppm 、試料7(注 2)では溶解シリカが3 6.0ppm 、溶解アルミナ が1 7.6ppm 、溶解カルシウムが3 4.0ppm 、溶 解マグネシウムが4.6ppm で、PACに比べて数 分の1である。

使用例 2 シリカ系凝集液によるコンクリート 排水処理 (その 1:pH無調整)

使用例1と同様にして、コンクリート排水(pH = 12.3:原水)1 &に、PAC及びシリカ系凝集液を加え、10分間提件後に沈降速度及び透視度を測定した。その結果を、表-4に示す。

シウムが27.5ppm 、溶解マグネシウムが9.0ppm 、試料7(注2)では溶解シリカが90.0ppm 、溶解アルミナが44.0ppm 、溶解カルシウムが85.0ppm 、溶解マグネシウムが11.5ppm で、その合計はPACと同程度である。以下、使用例3~4も同じ濃度である。

使用例 3 シリカ系凝集液によるコンクリート 排水処理 (その 2: plf 調整)

本例の場合、PAC処理でもかなりの凝集効果を示した。但し、PAC処理後A&を十分に沈殿させるために多量にアルカリを加えてpH調整した。

現在では、このようにコンクリート排水の処理にはpH調整が付き物であり、コストを増大させる要因となっている。それにもかかわらず、沈澱

表 - 4

凝集剂		沈降速度cm			рH	CaO	透視度
種類	濃度	10 分	20 分	30 分		P P m →	C TF
原水	_	-	-	-	12.3	520	18
P A C	200 PPM	_	-	-	12.3	490	12
试料	5 ml 注 1	2	17	27	12.1	78	> 50
試料	5 m2 注 2	3	18	27	12.1	260	> 50

本例では、PAC添加のものはAℓが溶解してコロイド化し、30分経過後も沈降は0であり、また透視度も原水と殆ど変化がなく、カルシウム濃度も高く、殆ど凝集効果を示していない。

これに対し、試料 3 及び試料 7 を添加したものは、共にシリカーカルシウムーアルミナ系沈澱物を生成して沈降し、極めて良好な凝集効果を示した。但し、本例ではシリカ系凝集液の各成分の濃度(ppm)は、試料 3 (注 1) で溶解シリカが 8 6.5ppm、溶解アルミナが 4 2.5ppm、溶解カル

表 - 5

凝集液		沈降速度cm				'sal API	рН		
種類	濃度	10 分	20 分	30 分	CaO ppm	透視 度 cm	初期調整	凝集 液添 加後	耳綱 整後
原水	-		-	-	520	21	12.1	_	
P A C	200 PPM	8	22	31	430	>50	6.5	6.5	8.0
試料 3	5 m£	8	22	34	85	>50	5.8	5.8	無調 整
試料	5 ml	8	23	34	280	>50	5.7	5.7	無調 整

物のしまりが悪く、脱水不良が生じる等、極めて 難物である。

これに対し、本発明品の場合、使用例 2 (pH無調整)に比べて沈降速度が幾分速くなった程度である。換言すれば、本発明のシリカ系凝集液の場合、わざわざコストを掛けてpH調整しなくても、十分な凝集効果を示す、と言うことができる。

使用例 4 水中乳脂肪・蛋白の凝集処理

牛乳10%の水溶液を原水として、使用例1と 同様に処理した。結果を、表~6に示す。

本例では、PAC添加のものはエマルジョンに対する凝集効果に不満があった。ただ、透視度は原水よりはかなり良くなっているが、白濁が残り凝集効果はあまり良好でない。

従来この種食品工業の廃水は、PAC処理以外は希釈して生物処理するか生物処理と凝集剤を併用するのが一般的である。しかし、生物処理は装置装置が大型化するし管理が大変であるうえ、この種廃水に対してはあまり効果が無く、何れにし

溶性シリカ、酸可溶性アルミナ及び酸可溶性カルシウムを含有する資材を還元酸或いは中性酸により溶解して得られるシリカーアルミナーカルシウム溶液を主成分とするシリカ系凝集液である。

そして、モノマーシリカの重合→ゲル化はモノマーシリカの安定pH(約3.1)を外して弱酸性側にしたり、溶解塩(カルシウムイオン、アルミニウムイオン等)との交互作用を利用することにより著しく進行し、水中混在物の抽出や凝集、除去に効果を発現する。

一方、本凝集液は大過剰の C a *2 、 A ℓ *3 、 M ℓ *2 を共有しており、対象水のpHが近中性以上アルカリ側で、それぞれ効果を発現する。また、汚水中のイオンとの間にも交互作用を発現し、抽出・凝集効果を増大する。例えば、高濃度の含有水では、その溶解シリカをゲル化、合わせてその重合ゲル化に際し水中混在物を抽出、凝集、除去する。

このように、本凝集液は多機能性を保持し、且 つpIIの影響を受けにくいとか凝集効果に優れる ても決定的な処理方法に欠けていた。

これに対し本発明のシリカ系凝集液は、PACに比べて凝集効果、特にコロイド以下の粒子に対して有効に働き、沈降速度も速く、シリカーカルシウムーアルミナ系沈澱物を生成して沈降し、極めて良好な凝集効果を示した。このシリカ系凝集液の使用により生物処理も不要になる。

表 - 6

凝集剂	灰	沈阝	肇速 €	Œсm	рΗ	透視度	備考
種類	濃度	10 分	20 分	30 分		度 Cm	
原水	-		_	-		0	
P A C	200 PPM	6	8	15	6.6	33	白濁
试料 3	5 ml	12	25	34	5.8	> 50	
試料 7	5 mt	12	27	34	5.8	> 50	

[発明の効果]

以上詳述したように、本発明の凝集液は、酸可

とか凝集物が脱水し易い等、従来の凝集剤には見 られない効果を発現することができる。

また、本凝集液を長期に保存したり、長期にわたって使用する場合は、本凝集液をpH約3.1となるように調整したり、Ca塩やMg塩濃度を約0.2規定以下にコントロールすることにより、目的は達せられる。

しかも、本発明シリカ系凝集液は安価に得られ、 且つ使用方法も廃水中に数~数十ppm 程度混入して攪拌するだけでよいことから、処理コストは極めて低廉となる。従って、工業的廃水のみならず農業廃水や膨大な量の準自然水(湖沼、池等)の処理にも利用でき、従来処理コストや設備コスト面から放置されてきた大量水の処理も可能となる。

特 許 出 願 入 代 理 人 弁理士 西村 動永田 久

PAT-NO: JP403157107A

DOCUMENT-IDENTIFIER: JP 03157107 A

TITLE: SILICA-BASED LIQUID

FLOCCULANT AND ITS

PRODUCTION

PUBN-DATE: July 5, 1991

INVENTOR-INFORMATION:

NAME COUNTRY

NISHIMURA, TSUTOMU

ASSIGNEE-INFORMATION:

NAME COUNTRY

NISHIMURA TSUTOMU N/A

APPL-NO: JP01296371

APPL-DATE: November 15, 1989

INT-CL (IPC): B01D021/01, C01B033/20

ABSTRACT:

PURPOSE: To obtain the silica-based liq. flocculant excellent in flocculating effect by using a silica-alumina-calcium soln. obtained by dissolving a material contg. acid-soluble silica, acid-soluble alumina and acid-soluble calcium in acid as the essential component of the flocculant.

CONSTITUTION: The material such as slag contg. the acid-soluble silica, alumina and calcium is dissolved in reducing acid or neutral acid to obtain a silica- alumina-calcium soln. which is used as the essential component of

the flocculant. The flocculant is polymerized and gelled in weakly alkaline water due to the presence of salt. When the flocculant is gelled, the metal cation, ion of an alkaline-earth metal such as Ca, part of anion, surfactant, etc., dissolved in the water are combined with silica, integrally polymerized and gelled. The fine particles of protein, fat, etc., suspensoid, suspended matter, etc., are adsorbed by the silica, integrally polymerized, gelled and separated from the water. The silica-based liq. flocculant can be preserved for a long period by holding its pH at about 2.5-3.5 or decreasing the CaO concn. in the liq.

COPYRIGHT: (C)1991,JPO&Japio