Markov Network Independencies

Sargur Srihari srihari@cedar.buffalo.edu

Topics

- Markov Network Independencies
 - Basic Independencies
 - Independencies Revisited
 - From Distributions to Graphs

Markov network captures independencies of interactions

Misconception MN with factors

 $P(a,b,c,d) = \frac{1}{Z}\phi_1(a,b)\cdot\phi_2(b,c)\cdot\phi_3(c,d)\cdot\phi_4(d,a)$

$$Z = \sum_{a,b,c,d} \phi_1(a,b) \cdot \phi_2(b,c) \cdot \phi_3(c,d) \cdot \phi_4(d,a)$$

where

As with BNs tight connection between factorization and independence properties:

P supports $(X \perp Y|Z)$ *iff* we can write distribution as $P(\chi) = \phi_1(X,Z) \phi_2(Y,Z)$

Similarly we can infer $(A \perp C | B, D)$

Basic Independencies

- As in Bayesian Networks, graph structure in a Markov network encodes a set of independence assumptions
- In a MN Probabilistic influence flows along the undirected paths in the graph and "blocked" if we condition on intervening

nodes

- i.e., we know their values
- We state this formally, next

C blocks nodes of A and B

Active Path Definition

- Let \mathcal{H} be a Markov network with nodes $\chi = \{X_1, ... X_n\}$,
- Let X_1 -...- X_k be a path in $\mathcal H$
- Let $Z \subseteq \chi$ be a set of observed variables
- A Path X_1 -...- X_k is <u>active</u> given Z if none of X_i is in Z
 - Ex 1:

If the observed set $Z=\{B\}$, path A-D-C is active

• Ex 2:

If the observed set $Z=\{C\}$, paths between nodes of $\{A\}$ and $\{B\}$ are inactive

 We can define separation in the graph when there is no active path, next

Separation and Global Independencies

- 1. Set of nodes Z <u>separates</u> sets X and Y denoted $\sup_{\mathcal{H}} (X; Y | Z)$ if there is no active path between any $X \in X$ and $Y \in Y$
 - Ex 1: $Z=\{B,D\}$ separates A and C
 - i.e., $\operatorname{sep}_{\mathcal{H}}(A;C\mid B,D)\}$ or there is no active path between A and C
 - Ex 2: C separates A and B
- 2. Global independencies associated with $\mathcal H$ are
 - $I(\mathcal{H}) = \{ (X \perp Y | Z) : \operatorname{sep}_{\mathcal{H}}(X; Y | Z) \}$
 - Independencies in $I(\mathcal{H})$ guaranteed to hold for every distribution P over \mathcal{H}

 $I(\mathcal{H}) = \{ (A \perp C | B, D),$ $(B \perp D | A, C) \}$

Definition of Separation Leads to a disadvantage

- With a superset of Z, separation still holds
 - If $sep_{\mathcal{H}}(X;Y|Z)$ then $sep_{\mathcal{H}}(X;Y|Z')$ for any $Z'\supset Z$
- If separation is taken as definition of independencies, we restrict ability to encode non-monotonic independence relations
 - Non-monotonic reasoning is quite useful
 - E.g., intercausal reasoning with BNs
 - Two diseases are independent, but dependent given some common symptom
 - Such independence properties cannot be expressed as a Markov network

Factorization and Independencies

- Can show connection between independence properties implied by a Markov structure and factorizing a distribution over the graph
- Analogous to Bayesian Networks
 - Let \mathcal{G} be a BN for a set of random variables χ and P be a distribution over χ .
 - If P factorizes according to \mathcal{G} , i.e.,product of CPDs, then \mathcal{G} is an I-map of P
 - i.e., independencies I(G) ⊊ I

Formalizing independencies in MNs and distributions

- Gibbs Distribution
 - A distribution P_{Φ} is a Gibbs distribution parameterized by a set of factors $\Phi = \{\phi_1(D_1),...,\phi_K(D_K)\}$
 - If defined as follows

$$P_{\Phi}(X_1,..X_n) = \frac{1}{Z}\tilde{P}(X_1,..X_n)$$

where

$$\left| \tilde{P}(X_1,..X_n) = \prod_{i=1}^m \phi_i(D_i) \right|$$

is an unnomalized measure and

$$Z = \sum_{X_1,...X_n} \tilde{P}(X_1,...X_n)$$
 is a normalizing constant

called the partition function

 D_i are sets of random variables

Soundness of Separation Criterion

- Theorem 1 (from factorization to independencies):
 - Let P be distributed over $\chi = \{X_1, ... X_n\}$ and \mathcal{H} a Markov structure over χ
 - If P is a Gibbs distribution that factorizes over \mathcal{H} , (i.e., every D_i in \mathcal{H} is a clique), then \mathcal{H} is an I-map for P (i.e., every independency in \mathcal{H} holds in P)
- Theorem 2: Hammersley-Clifford (other direction: from independencies to factorization)
 - if $\mathcal H$ is an I-map for P then P factorizes over $\mathcal H$
 - Holds only for positive distributions (P>0 for every assignment)

Positive Distribution

• A distribution P is said to be positive if for all events $\alpha \in S$ such that $\alpha \neq \emptyset$ we have

that $P(\alpha) > 0$

- Ex: A non-positive distribution
 - 16 possible values
 - Distribution *P*: 8 have value 1/8 rest are zero

X_1	X_2	X_3	X_4	<i>P(</i> X)
0	0	0	0	1/8
1	0	0	0	1/8
1	1	0	0	1/8
1	1	1	0	1/8
0	0	0	1	1/8
0	0	1	1	1/8
0	1	1	1	1/8
1	1	1	1	1/8

Rest 8 probs are 0

Non-positive distribution consistent with ${\cal H}$

- Four binary random variables
- Global Independencies in graph H:
 - Consider $X_1 X_2 X_3 X_4 X_1$
 - implies $(X_1 \perp X_3 | X_2, X_4)$
- P also satisfies this
 - For the assignment $X_2=1, X_4=0$

$$- P(X_1=1|X_2=1,X_4=0)=1$$

- Rest are zero
- Thus X_1 is independent of X_3

X_{1}	X_2	X_3	X_4	<i>P</i> (X)
0	0	0	0	1/8
1	0	0	0	1/8
1	1	0	0	1/8
1	1	1	0	1/8
0	0	0	1	1/8
0	0	1	1	1/8
0	1	1	1	1/8
1	1	1	1	1/8

Rest 8 probs are 0

- Global independencies hold $\Rightarrow \mathcal{H}$ is an I-map for P
- But P does not factorize according to \mathcal{H} (Proof by contradiction)

Graphical Model as Filter

p(x) is allowed to pass through only if It satisfies independencies in graph This set is denoted DF or UF (for BN or MN)

- UI is set of distributions that are consistent with set of conditional independence statements read from the undirected graph using graph separation
- UF are set of distributions that can be expressed as factorization of the form

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_{C}(\mathbf{x}_{C})$$

Hammersley-Clifford theorem states that UI and UF are identical

Independencies in Bayesian Networks

- Bayesian networks have two types of independencies
 - Local independencies
 - Each node is independent of its non-descendants given it parents
 - Global independencies
 - Induced by d-separation
- These two sets of independencies are equivalent
 - One implies the other

Three Independencies of an MN

- 1. Pairwise Independencies (defined next slide)
 - Pairwise $I_p(\mathcal{H})$
- 2. Local independencies (defined shortly)
 - Markov Blanket $I_{\ell}(\mathcal{H})$
- 3. Global independency $I(\mathcal{H})$
 - Identify three sets of nodes A, B and C
 - To test conditional independence property

$$A \perp B \mid C$$

- Consider all possible paths from nodes in set A to nodes in set B
 - If all such paths pass through one or more nodes in C_{15} then path is blocked and independence holds

Pairwise Independency $I_p(\mathcal{H})$

• If \mathcal{H} is a MN its pairwise independencies are

$$I_p(\mathcal{H}) = \{ (X \perp Y | \chi - \{X, Y\}) : X - Y \notin \mathcal{H} \}$$

Meaning: When X, Y are **not** directly connected i.e., X— $Y \notin \mathcal{H}$,

they are independent given all other variables

- Example:

$$I_p(\mathcal{H}) = \{ (A \perp C|B,D), (B \perp D|A,C) \}$$

Markov Blanket Independency I(H)

- Analogous to local independencies in Bayesian networks
 - We can block all influences by conditioning on its immediate neighbors
 - Node is conditionally independent of all nodes given its immediate neighbors
- For graph $\mathcal H$ the Markov blanket of X in $\mathcal H$ is the set of neighbors of X in $\mathcal H$
- Local independencies associated are

$$-I_{\ell}(\mathcal{H}) = \{(X \perp \chi - \{X\} - MB_{\mathcal{H}}(X) | MB_{\mathcal{H}}(X)) : X \in \chi\}$$

Relationship between Markov properties

- Three independencies of network structure ${\cal H}$
- $I_p(\mathcal{H})$ is strictly weaker than $I_\ell(\mathcal{H})$ is strictly weaker than $I(\mathcal{H})$
- For positive distributions all three are equivalent

Separation in Markov Networks

- Markov network encodes a set of conditional independencies
- Probabilistic influence flows
 - in undirected paths
- Blocked if we condition on intervening nodes Separates sets A and B
 - Every path from any node in A to B passes through C
 - No explaining away
 - Testing for independence simpler than in directed graphs
 - Alternative view
 - Remove all nodes in set C together with all their connecting links
 - If no paths from A to B then conditional independence holds
- Markov blanket

 A node is conditionally independent of all other nodes conditioned only on its neighbors

Factorization Properties

- Factorization rule corresponds to conditional independence test
- Notion of locality needed
- Consider two nodes x_i and x_j not connected by a link
 - They are conditionally independent given all other nodes in graph
 - · Because there is no direct path between them and
 - All other paths pass through nodes that are observed and hence those paths are blocked
 - Expressed as

$$p(x_i, x_j \mid \mathbf{x}_{\setminus \{i,j\}}) = p(x_i \mid \mathbf{x}_{\setminus \{i,j\}}) p(x_j \mid \mathbf{x}_{\setminus \{i,j\}})$$

- Where $\mathbf{X}_{\setminus\{i,j\}}$ denotes set x of all variables with x_i and x_j removed
- For conditional independence to hold
 - factorization is such that x_i and x_j do not appear in the same factor
 - No path between them other than going through others
 - leads to graph concept of clique