Engineering Mathematics

DPP-01

Differential Equation + Partial Differential

- In R², the family of trajectories orthogonal to the family of $x^{2/3} + y^{2/3} = a^{2/3}$ is given by (a) $x^{4/3} + y^{4/3} = c^{4/3}$ (b) $x^{4/3} - y^{4/3} = c^{4/3}$ (c) $x^{5/3} - y^{5/3} = c^{5/3}$ (d) $x^{2/3} - y^{2/3} = c^{2/3}$

- A particular integral of the differential equation

$$y'' + 3y' + 2y = e^{e^x}$$
 is

- (a) $e^{e^x}e^{-x}$ (b) $e^{e^x}e^{-2x}$ (c) $e^{e^x}e^{2x}$ (d) $e^{e^x}e^x$

- An integrating factor of the differential equation

$$\left(y + \frac{1}{3}y^3 + \frac{1}{2}x^2\right)dx + \frac{1}{4}(x + xy^2)dy = 0$$
 is

- (c) x^3
- (d) 2 log_ex
- Let y(x) be the solution of the differential equation $(xy + y + e^{-x}) dx + (x + e^{-x}) dy = 0$ Satisfying y(0) = 1. Then, y(-1) is equal to
- (c) $\frac{e}{1-a}$
- If $y(x) = \lambda e^{2x} + e^{\beta x}$, $\beta \neq 2$, is a solution of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 6y = 0$. Satisfying $\frac{dy}{dx}(0) = 5$, then y(0) equal to
 - (a) 1
- (b) 4
- (c) 5
- (d) 9
- If $x^h y^k$ is an integrating factor of the differential equation y(1 + xy) dx + x(1 - xy) dy = 0, then the ordered pair (h, k) is equal to
 - (a) (-2, -2)
- (b) (-2, -1)
- (c) (-1, -2)
- (b) (-2, -1)(d) (-1, -1)

The general solution of the differential equation with

constant coefficients $\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$

Approaches zero as $x \to \infty$, if:

- (a) b is negative and c is positive
- (b) b is positive and c is negative
- (c) Both b and c are positive
- (d) Both b and c are negative
- Let y(x) be the solution of differential equation:

$$\frac{d}{dx}\left(x\frac{dy}{dx}\right) = x; y\left(1\right) = 0, \frac{dy}{dx}|_{x=1} = 0. \text{ Then y (2) is:}$$

- (a) $\frac{3}{4} + \frac{1}{2} \ln 2$ (b) $\frac{3}{4} \frac{1}{2} \ln 2$
- (c) $\frac{3}{4} + \ln 2$ (d) $\frac{3}{4} \ln 2$
- One of the points which lies on the solution curve of the differential equation (y - x) dx + (x + y) dy = 0 with the condition y(0) = 1, is:
 - (a) (1, -2)
- (b) (2,-1)
- (c) (2, 1)
- (d) (-1, 2)
- 10. The non-zero value of the n for which the differential equation $(3xy^2 + n^2x^2y) dx + (nx^3 + 3x^2y) dy = 0, x \ne 0$ becomes exact is:
 - (a) -3
- (b) -2
- (c) 2
- (d) 3
- 11. If y(t) is a solution of the differential equation $y^n + 4y = 2e^t$, then $\lim_{t\to\infty} e^{-t}y(t)$ is equal to

12. A particular integral of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} = e^{2x}\sin x \text{ is}$$

(a)
$$\frac{e^{2x}}{10} \left(3\cos x - 2\sin x \right)$$

(b)
$$-\frac{e^{2x}}{10} \left(3\cos x - 2\sin x\right)$$

(c)
$$-\frac{e^{2x}}{5}(2\cos x + \sin x)$$

(d)
$$-\frac{e^{2x}}{5}(2\cos x - \sin x)$$

- 13. Let $y(x) = u(x) \sin x + v(x) \cos x$ be a solution of the differential equation $y'' + y = \sec x$. Then u(x) is
 - (a) $\ln |\cos x| + c$
- (b) -x + c
- (c) x + c
- (d) $\ln |\sec x| + c$
- **14.** Let x, $x + e^x$ and $1 + x + e^x$ be solutions of a linear second order ordinary differential equation with constant coefficients. If y(x) is the solution of the same equation satisfying y(0) = 3 and y'(0) = 4, then y(1) is equal to
 - (a) e + 1
- (b) 2e + 3
- (c) 3e + 2
- (d) 3e+1

15. A partial differential equation:

$$z\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = xyz$$

- (a) is of order 1, and is non-linear
- (b) is of order 1, and is linear
- (c) is of order 2, and is non-linear
- (d) is of order 2, and is linear
- **16**. Particular integral of ordinary differential equation $y'' + 2y + y = xe^{-x} \sin x$ is:

$$y'' + 2y + y = xe^{-x} \sin x$$
 is:
(a) $-e^{-x}(x \sin x + 2 \cos x)$

- (b) $e^x(x \cos x + 2 \sin x)$
- (c) $xe^{-x}(\cos x + \sin x)$
- (d) $xe^{-x}(\sin x \cos x)$
- 17. The solution of homogeneous differential equation

$$\frac{dy}{dx} = \frac{y}{x} + \tan\left(\frac{y}{x}\right)$$
 is (c being constant):

(a)
$$x = c \sin\left(\frac{y}{x}\right)$$
 (b) $x = c \sin\left(\frac{x}{y}\right)$

(c)
$$x = c \tan\left(\frac{y}{x}\right)$$
 (d) $x = c \cot\left(\frac{y}{x}\right)$

- **18.** The orthogonal trajectory of the family of curves $ay^2 = x^3$, where a is an arbitrary constant, is
 - (a) $3y^2 + 2x^2 = constant$
 - (b) $2y^2 3x^2 = constant$
 - (c) $3y^2 2x^2 = \text{constant}$ (d) $2y^2 + 3x^2 = \text{constant}$
- 19. The differential equation of a family of parabolas with foci at origin and axis along x-axis is

(a)
$$y\left(\frac{dy}{dx}\right)^2 + 2x^2\frac{dy}{dx} + y = 0$$

(b)
$$y \left(\frac{dy}{dx}\right)^2 + 2x \frac{dy}{dx} - y = 0$$

(c)
$$y \left(\frac{dy}{dx}\right)^2 + 2x \frac{dy}{dx} + y = 0$$

(d)
$$y^2 \left(\frac{dy}{dx}\right)^2 + 2x\frac{dy}{dx} - y^2 = 0$$

- **20.** For $a, b, c \in \mathbb{R}$ if the differential equation $(ax^2 + bxy + y^2) dx + (2x^2 + cxy + y^2) dy = 0$ is exact, then
 - (a) b = 2, c = 2a (b) b = 4, c = 2 (c) b = 2, c = 4 (d) b = 2, a = 2c
- **21.** Let f_1 and f_2 be two solutions of

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x)y = 0$$

where a_0 , a_1 and a_2 are continuous on [0, 1] and $a_0(x) \neq 0$ for all $x \in [0, 1]$. Moreover, let $f_1\left(\frac{1}{2}\right) = f_2\left(\frac{1}{2}\right) = 0$.

- (a) one of f_1 and f_2 must be identically zero
- (b) $f_1(x) = f_2(x)$ for all $x \in [0,1]$
- (c) $f_2(x) = cf_2(x)$ for some constant c
- (d) None of the above
- 22. The general solution of the equation

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{2x}$$
 is (c₁, c₂ being constants):

(a)
$$y = c_1 e^{-2x} + c_2 e^{-3x} + \frac{1}{10} e^{2x}$$

(b)
$$y = c_1 e^{-2x} + c_2 e^{-3x} + \frac{1}{5} e^{2x}$$

(c)
$$y = c_1 e^{-2x} + c_2 e^{-3x} + \frac{1}{20} e^{2x}$$

(d)
$$y = c_1 e^{-2x} + c_2 e^{-3x} + \frac{1}{4} e^{2x}$$

23. The general solution of the equation

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 4y = 0$$
 is (c₁, c₂ being constants)

- (a) $y = c_1 e^{-x} + c_2 e^{-4x}$
- (b) $y = c_1 e^x + c_2 e^{-4x}$
- (c) $y = c_1 e^{-x} + c_2 e^{4x}$
- (d) $v = c_1 e^{2x} + c_2 e^{-4x}$

24. The singular solution of the Clairaut's differential equation $y = px + \frac{a}{p}$, where $p = \frac{dy}{dx}$, is:

- (b) $v^2 = 4ax$
- (a) $y^2 = 4x$ (b) $y^2 = 4ax$ (c) $y^2 = ax$ (d) $y^2 = \frac{x}{a}$

25. Consider the second order differential equation $x^{2}y''(x) + xy'(x) - 9y(x) = 0$ for x > 0If the solution satisfies the initial conditions y(1) = 0, v'(1) = 2, then v(2) is

26. The eigenvalues associated with the BVP $y''(x) - 2y'(x) + (1 - \lambda)y(x) = 0, y(0) = 0, y(1) = 0$ js/are

- (a) $\lambda = 0$
- (b) $\lambda = \pi^2 n^2, n = 1, 2, 3, ...$
- (c) $\lambda = -\pi^2 n^2$, n = 1, 2, 3, ...
- (d) $\lambda = \pi n, n = 1, 2, 3, ...$

27. If the partial differential equations

$$(x-2)^{2} \frac{\partial^{2} u}{\partial x^{2}} - (y-3)^{3} \frac{\partial^{2} u}{\partial y^{2}} + 2x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u$$

is parabolic in the region $S \subseteq R^2$ but not in $R^2 \setminus S$, then Sis

- S is
- (a) $\{(x, y) \in \mathbb{R}^2 : x = 2 \text{ or } y = 3\}$
- (b) $\{(x, y) \in \mathbb{R}^2 : x = 2 \text{ and } y = 3\}$
- (c) $\{(x, y) \in \mathbb{R}^2 : x = 2\}$
- (d) $\{(x, y) \in \mathbb{R}^2 : y = 3\}$

28. Let u(x, y) be the solution of the Cauchy problem

$$x^2 \frac{\partial u}{\partial x} - y^2 \frac{\partial u}{\partial y} = 0, \mathbf{u} \rightarrow e^x \text{ as } \mathbf{y} \rightarrow \infty, \text{ then } u \ (1, 1)$$

- (a) -1
- (b) 0
- (c) 1
- (d) $e^{1/2}$

29. The general solution of the differential equation

$$x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 4y = 0$$
 is

- (a) $y = (c_1 + c_2 x^2) e^x$
- (b) $y = (c_1 + c_2 x)e^{2x}$
- (c) $v = (c_1 + c_2 \log x)x$
- (d) $v = (c_1 + c_2 \log x)x^2$

30. The initial value problem $x \frac{dy}{dx} = 2y, y(a) = b$ has

- (a) infinitely many solutions through (0, b) if $b \ne 0$
- (b) unique solution for all a and b
- (c) no solution if a = b = 0
- (d) infinitely many solution if a = b = 0

31. The solution of the differential equation

$$\frac{d^2y}{dx^2} + 4y = \cos 2x$$
, given by

- (a) $c_1 \cos 2x + c_2 \sin 2x + \frac{x}{4} \sin 2x$
- (b) $c_1 \cos 2x + c_2 \sin 2x + \frac{x}{2} \sin 2x$
- (c) $c_1 \cos 2x + c_2 \sin 2x + \frac{x}{4} \cos 2x$
- (d) $c_1 \cos 2x + c_2 \sin 2x + x \cos 2x$

32. The following initial value problem of a first order linear system

$$x' = 3x - 2y$$
, $x(0) = 1$
 $y' = -3x + 4y$, $y(0) = -2$

can be converted into an initial value problem of a 2nd order differential equation for x(t). It is

- (a) x'' -7x' + 6x = 0; x(0) = 1, x'(0) = -2
- (b) x'' -7x' + 6x = 0; x(0) = 1, x'(0) = 0
- (c) x'' -7x' + 6x = 0; x(0) = 1, x'(0) = 7
- (d) x'' x' + 6x = 0; x(0) = 1, x'(0) = -2

33. The solution of the differential equation $x(x-y) dy + y^2 dx = 0$ is (c being constant):

- (a) $y = ce^{y/x}$ (b) $y = ce^{x/y}$ (c) $y = x + ce^{y/x}$ (d) $y = x^2 ce^{y/x}$

34. Let u(x, t) be the solution of the wave equation $u_{xx} = u_{tt}, (x, 0) = \cos(5\pi x), u_t(x, 0) = 0.$

- Then, the value of u(1, 1) is:
- (a) -1
- (b) 0
- (c) 2
- (d) 1

- **35.** For the wave equation $u_{tt} = 16u_{xx}$, the characteristic coordinates are
 - (a) $\xi = x + 16t, \eta = x 16t$
 - (b) $\xi = x + 4t, \eta = x 4t$
 - (c) $\xi = x + 256t$, $\eta = x 256t$
 - (d) $\xi = x + 2t, \, \eta = x 2t$
- **36.** If the differential equation $2t^2 \frac{d^2y}{dt^2} + t \frac{dy}{dt} 3y = 0$

associated with the boundary conditions y(1) = 5, y(4) = 9, then y(9) =

- (a) 27.44
- (b) 13.2
- (c) 19
- (d) 11.35
- 37. The initial value problem

$$x\frac{dy}{dx} = y + x^2, x > 0, y(0) = 0$$

- (a) infinitely many solutions
- (b) exactly two solutions
- (c) a unique solution
- (d) no solution
- **38.** Consider the one dimensional wave equation:

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}, x > 0, t > 0$$

subject to the initial conditions:

$$u(x, 0) = |\sin x|, x \ge 0$$

$$u_t(x, 0) = 0, x \ge 0$$

and the boundary condition:

$$u(0, t) = 0, t \ge 0.$$

Then $u\left(\pi, \frac{\pi}{4}\right)$ is equal to

- (a) 1
- (b) (
- (c) $\frac{1}{2}$
- (d) $-\frac{1}{2}$
- **39.** The ordinary differential equation:

$$\frac{dy}{dx} = \frac{2y}{x}$$
 with the initial condition y (0) = 0, has

- (a) infinitely many solutions
- (b) no solution
- (c) more than one but only finitely many solutions
- (d) unique solution
- **40.** If $y = a \cos(\log x) + b \sin(\log x)$, then

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y$$
 is equal to:

- (a) -1
- (b) 1
- (c) 0
- (d) None of these

41. Solution of the differential equation

$$\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$
 is

(a)
$$e^y = x + e^x + c$$
 (b) $e^y = \frac{x^2}{2} + e^x + c$

(c)
$$e^y = \frac{x^3}{3} + e^x + c$$
 (d) $e^y = \frac{x^4}{4} + e^x + c$

42. Let *y* be the solution of

$$(1+x)y''(x)+y'(x)-\frac{1}{1+x}y(x)=0, x \in (-1,\infty)$$

$$y(0) = 1, y'(0) = 0$$

Then

- (a) y is bounded on $(0, \infty)$
- (b) y is bounded on (-1, 0]
- (c) $y(x) \ge 2$ on $(-1, \infty)$
- (d) y attains it minimum at x = 0
- **43.** The Wronskian of $\cos x$, $\sin x$ and e^{-x} at x = 0 is
 - (a) 1
- (b) 2
- (c) -1
- (d) -2
- **44.** The initial value problem $y' = \sqrt{y}$, $y(0) = \alpha$, $\alpha \ge 0$ has
 - (a) at least two solutions if $\alpha = 0$
 - (b) no solution if $\alpha > 0$
 - (c) at least one solution if $\alpha > 0$
 - (d) a unique solution if $\alpha = 0$
- 45. Consider the differential equation

$$\sin 2x \frac{dy}{dx} = 2y + 2\cos x, y\left(\frac{\pi}{4}\right) = 1 - \sqrt{2}$$

Then which of the following statements(s) is (are) TRUE?

- (a) The solution is unbounded when $x \to 0$
- (b) The solution is unbounded when $x \to \pi/2$
- (c) The solution is bounded when $x \to 0$
- (d) The solution is bounded when $x \rightarrow \pi/2$
- **46.** Let y(x) be the solution of the differential equation

$$\frac{dy}{dx} = (y-1)(y-3)$$
 satisfying the condition y (0) = 2.

Then which of the following is/are TRUE?

- (a) The function y(x) is not bounded above
- (b) The function y(x) is bounded
- (c) $\lim_{a \to +\infty} y(x) = 1$
- (d) $\lim_{a\to -\infty} y(x) = 3$
- **47.** Let k, l, \in R be such that every solution of

$$\frac{d^2y}{dx^2} + 2k\frac{dy}{dx} + ly = 0 \text{ satisfies } \lim_{x \to \infty} y(x) = 0.$$
Then

(a)
$$3k^2 + l < 0$$
 and $k > 0$

(b)
$$k^2 + l > 0$$
 and $k < 0$

(c)
$$k^2 - l \le 0$$
 and $k > 0$

(d)
$$k^2 - l > 0, k > 0$$
 and $l > 0$

48. The Solution(s) of the differential equation $\frac{dy}{dx} = (\sin 2x) y^{1/3} \text{ satisfying } y (0) = 0 \text{ is (are)}$

(a)
$$y(x) = 0$$

(b)
$$y(x) = -\sqrt{\frac{8}{27}} \sin^3 x$$

(c)
$$y(x) = \sqrt{\frac{8}{27}} \sin^3 x$$

(d)
$$y(x) = -\sqrt{\frac{8}{27}}\cos^3 x$$

49. Let y(x) be the solution of the differential equation

$$\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = 0, \ y(0) = 1, \frac{dy}{dx}\Big|_{x=0} = -1$$

Then, y(x) attains its maximum value at x.....

50. If the orthogonal trajectories of the family of ellipse
$$x^2+2y^2=c_1,c_1>0$$
 are given by $y=c_2x^\alpha,c_2\in\mathbb{R}$, then $\alpha=\dots$

- **51.** Let y(x), x > 0 be the solution of the differential equation $x^2 \frac{d^2 y}{dx^2} + 5x \frac{dy}{dx} + 4y = 0$ satisfying the conditions y(1) = 1 and y'(1) = 0. Then, the value of $e^2 y(e)$ is ...
- **52.** If y(x) is the solution of the initial value problem $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0, y(0) = 2, \frac{dy}{dx}(0) = 0$ Then $y(\ln 2)$ is (round off to 2 decimal places) equal to
- **53.** If x(t) is the solution to the differential equation $\frac{dz}{dt} = x^2t^3 + xt$, for t > 0, satisfying x(0) = 1, then the value of $x(\sqrt{2})$ is ... (correct up to two decimal places.)

Answer Key

24. (b)

25. (a)

26. (c)

27 (a)

Any issue with DPP, please report by clicking here:- https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if
Telegram Link: https://t.me/mathandaptitudes

