Системный сброс MSP430

- BOR BrownOut Reset. Возникает:
 - Низкий уровень напряжения питания (включение)
 - Низкий уровень <u>RST</u>/NMI, сконфигурированного как режим сброса
 - Сигнал выхода из режима LPMx.5 (Low Power Mode)
 - Программная генерация сигнала
- POR Power On Reset. Возникает:
 - Возник BOR
 - Возник сигнал подсистемы PMM (Power Management Module) SVS/SVM (Supply Voltage Supervisor/Monitor)
 - Программная генерация сигнала
- PUC Power Up Clear. Возникает:
 - Возник POR
 - Сигнал сторожевого таймера
 - Нарушение ключа безопасности сторожевого таймера или Flash памяти или РММ
 - Сигналы от периферии

Начальное состояние MSP430

- RST/NMI установлен в режим сброса
- I/О выводы устанавливаются на вход
- Регистр состояния сброшен
- Сторожевой таймер запускается в сторожевом режиме
- Счетчик команд загружается адресом загрузочного (boot) сектора. После окончания загрузки, РС устанавливается в 0FFFEh – SYSRSTIV
- Пользовательское ПО должно:
 - Инициализировать указатель стека (как правило, старший адрес RAM
 - Установить требуемый режим сторожевого таймера
 - Сконфигурировать режим периферии

- Пользовательские немаскируемые (UNMI)
 - Сигнал <u>RST</u>/NMI в режиме NMI
 - Сбой генератора
 - Ошибка доступа Flash памяти
- Системные немаскируемые (SMNI)
 - Сбой напряжения питания (от подсистемы РММ)
 - Доступ к несуществующей (vacant) памяти
 - События с буфером (mailslot) JTAG интерфейса
- Маскируемые
 - Отключаются индивидуально или все сразу (бит GIE регистра состояния SR).

- Обработка прерываний
- Задержка от возникновения запроса на прерывание до начала выполнения обработчика – 6 циклов
- Заканчивается выполнение текущей инструкции
- РС сохраняется в стеке (указывает на следующую команду)
- SR сохраняется в стеке
- Выбирается прерывание с макс. приоритетом (если несколько запросов)
- Автоматически сбрасывается флаг запроса от отдельного прерывания. Сброс общего флага запроса должен осуществляться программно
- Все биты SR сбрасываются, за исключением SCG0, так как останавливаются все режимы с низким питанием. Так как бит GIE = 0, все прерывания запрещаются
- Вектор (адрес обработчика) загружается в РС

- Из-за конвейерной архитектуры процессора, команда, следующая за EINT (разрешение прерывания), всегда выполняется, даже если запрос на прерывание возник до его разрешения
- Если за EINT сразу следует DINT, прерывание, ожидающее обработки может быть не обслужено. Команды, следующие за DINT в этом случае могут сработать некорректно. Аналогичные последствия вызываются альтернативными командами, которые устанавливают и сразу сбрасывают флаг GIE регистра состояний. Рекомендуется вставлять хотя бы одну команду между EINT и DINT
- Возврат из прерывания выполняется командой RETI. Команда выполняется за 5 циклов. Она загружает из стека \$R, PC

Interrupt Source	Interrupt Flag	System Interrupt	Word Address	Priority
Reset: power up, external reset watchdog, flash password	 WDTIFG KEYV	 Reset	offen	 Highest
System NMI: PMM		(Non)maskable	0FFFCh	
User NMI: NMI, oscillator fault, flash memory access violation	 NMIIFG OFIFG ACCVIFG	(Non)maskable (Non)maskable (Non)maskable	oFFFAh	
Device specific			0FFF8h	
Watchdog timer	WDTIFG	Maskable		
Device specific				
Reserved		Maskable		Lowest

- Таблица прерываний 0FFFFh 0FF80h, 64 вектора
- Бит SYSRIVECT регистра SYSCTL позволяет
 определить альтернативную таблицу векторов, в
 старших адресах RAM. По сигналу сброса этот бит
 автоматически сбрасывается

SFR – Special Function Register

Регистр	Адрес	Назначение
SFRIE1	0100h	Разрешение прерываний
SFRIFG1	0102h	Флаги прерываний
SFRRPCR	0104h	Управление выводами сброса

Системные регистры

Gaoine		A CHI PEI
Регистр	Адрес	Назначение
SYSCTL	0180h	Регистр управления
SYSBSLC	0182h	Конфигурация начальной загрузки
	0186h	Регистры управления JTAG
SYSBERRIV	0198h	Генератор вектора ошибок шины
SYSUNIV	019Ah	Генератор вектора пользовательских NMI
SYSSNIV	019Ch	Генератор вектора системных NMI
SYSRSTIV	019Eh	Генератор вектора сброса

Регистр	Биты	Поле	Назначение
SFRIE1	7	JMBOUTIE	Разрешение прерываний выхода JTAG
	6	JMBINIE	Разрешение пр-й входа JTAG
	5	ACCVIE	Разрешение пр-й нарушения доступа Flash
	4	NMIIE	Разр. пр-й вывода NMI
	3	VMAIE	Разр. пр-й доступа к несуществующей памяти
	1	OFIE	Разр. пр-й сбоя генератора
	0	WDTIE	Разр. пр-й сторожевого таймера

Регистр	Биты	Поле	Назначение
SFRIFG1	7	JMBOUTIFG	Флаг прерывания выхода JTAG
	6	JMBINIFG	Флаг пр-я входа JTAG
	4	NMIIFG	Флаг пр-я NMI
	3	VMAIFG	Флаг пр-я доступа к несуществующей памяти
	1	OFIFG	Флаг пр-я сбоя генератора
	0	WDTIFG	Флаг пр-я сторожевого таймера ₁₁

Регистр	Биты	Поле	Назначение
SFRRPCR	3	SYSRSTRE	Разрешение резистора на выводе сброса
	2	SYSRSTUP	Режим резистора выхода сброса
	1	SYSNMIIES	Выбор перепада NMI
	0	SYSNMI	Режим вывода NMI/RST (сброс или NMI)
SYSCTL	5	SYSJTAGPIN	Разрешение отдельных выходов JTAG
	4	SYSBSLIND	Детектор последовательности BSL

12

Регистр	Биты	Поле	Назначение
SYSCTL	2	SYSPMMPE	Защищенный доступ к РММ
	0	SYSRIVECT	Вектор прерывания при выходе за пределы RAM (64К или полностью)
SYSBSLC	15	SYSBSLPE	Разрешение защиты памяти загрузчика
	14	SYSBSLOFF	Запрет памяти загрузчика
	2	SYSBSLR	Назначение младших 16 байт RAM для загрузчика
	0-1	SYSBSLSIZE	Размер загрузчика (выбор сегментов)

13

Регистр	Биты	Поле	Назначение
SYSUNIV	0-15	SYSUNIV	Вектор пользовательского NMI
SYSSNIV	0-15	SYSSNIV	Вектор системного NMI
SYSRSTIV	0-15	SYSRSTIV	Вектор прерывания сброса
SYSBERRIV	0-15	SYSBSLOFF	Вектор прерывания ошибки системной шины

- Фон-Неймановская архитектура с единым адресным пространством для кода, данных, и устройств вводавывода
- Прямой, без ограничений, доступ к любой точке адресного пространства
- Для устройств ввода-вывода применяется без ограничений весь набор команд и способов адресации

 $4 \times 32 \text{ KG} = 128 \text{ KG}$ Основная Flash-память ^{Таблица} зекторов (Bank A – Bank D)

прерываний

 $4 \times 2 \text{ KG} = 8 \text{ KG} RAM$ (Sector 0 – Sector 3)

Альтернативная таблица векторов

2 *K***6 USB RAM** (Sector 7)

Таблица дескрипторов устройств

 $4 \times 1286 = 5126$ Информационная Flash-память (Info A – Info D)

 $4 \times 5126 = 2K6$ Flash-память начальной загрузки (BSL0-BSL3 – BootStrap Loader)

> 4K Порты в/в

243FFh

0FFFFh

OFF80h

04400h

043FFh

02400h

023FFh

01C00h

01A00h-01A93h

019FFh

01800h

017FFh

01000h

00FFFh

00000h

16

- RAM:
- 4 сектора по 2 Кб
- Каждый из секторов может быть полностью отключен, данные теряются
- Каждый из секторов автоматически переходит в режим пониженного энергопотребления, когда это возможно
- USB RAM может использоваться как обычная RAM, если USB не используется

- Flash:
- Основная flash память делится на сегменты по 512 б. Информационная flash память – на 4 сегмента по 128 б.
- Каждый из сегментов может быть стерт за один шаг, также как и все сегменты одновременно.
 Информационные сегменты стираются индивидуально
- Сегмент А может независимо блокироваться
- Процессор может выполнять пересылки в 1 байт, 1 слово или несколько слов

- UCS Unified Clock System
- Источники синхросигналов:
- 32 КГц кварцевый генератор (XT1 LF)
- Внутренний генератор низкой частоты со сверх малым потреблением (VLO), около 9,4 КГц
- Внутренний низкочастотный генератор (REFO) 32 КГц
- Интегрированный внутренний цифровой управляемый генератор (DCO), стабилизируется с помощью цифровой автоподстройки частоты (FLL frequency locked loop)
- Высокочастотный кварцевый генератор (ХТ2) 4 – 32 МГц. На плате установлен 4 МГц

- Три синхросигнала выбираются из этих источников:
- Вспомогательная тактовая частота (ACLK)
- Главная частота (МСLК), используется для тактирования процессора
- SMCLK (Sub-Main), используется для тактирования периферии
- Буферный выход частоты ACLK/n (1, 2, 4, 8, 16, 32)

div: /1, /2, /4, /8, /16, /32

- После сброса:
- Источником для ACLK выбирается XT1CLK
- Источником для MCLK, SMCLK выбирается DCOCLKDIV
- Разрешается автоподстройка, источником для FLL выбирается XT1CLK
- Для F5529 выводы кварцевых генераторов разделяются с цифровыми I/O. Поэтому после сброса эти выводы конфигурируются как цифровые, и сигналы от кварца недоступны

 Переключение MCLK и SMCLK с одного источника на другой:

- Входная частота FLLREFCLK для FLL выбирается битами SELREF регистра UCSCTL3. Поле FLLREFDIV задает делитель (/n) этой частоты: 1,2,4, ...,16.
- Поле DCORSEL (рег. UCSCTL1) задает один из 8 диапазонов частот
- Поле FLLN (рег. UCSCTL2) задает множитель DCO, определяющий 1 из 32 уровней № внутри диапазона
- Поле FLLD(pez. UCSCTL2) задает
 делитель D = 1, 2, 4, ..., 32 для частоты
 DCOCLKDIV на выходе
 25

- Частота на выходе DCOCLK = (FLLREFCLK / n) * (N+1) * D
- Частота на выходе

```
DCOCLKDIV = (FLLREFCLK / n) * (N+1)
```

Обязателен выбор DCORSEL:

```
■ 000 : 0,07 — 1,7 МГц 100 : 1,3 — 28,2 МГц
```

- 001: 0,15 3,45 МГц 101: 2,5 54,1 МГц
- 010:0,32 7,38 MFy 110:4,6 88 MFy
- 011:0,64 14,0 MFy 111:8,5 135 MFy

- Поля MOD и DCO задают начальную частоту блока автоподстройки, что значительно ее ускоряет.
- Время подстройки на 1 уровень DCO: 32 * n тактов FLLREFCLK
- Время подстройки DCO в наихудшем случае:
 - 32 * 32 * n maкmoв FLLREFCLK
- Дождаться стабилизации частоты можно, используя проверку флагов ошибок

- UCS Unified Clock System
- DCO Digitally Controlled Oscillator

Регистр	Адрес	Назначение
UCSCTL0	0160h	Управление UCS
UCSCTL1	0162h	Управление UCS
UCSCTL8	0170h	Управление UCS

Регистр	Биты	Поле	Назначение
UCSCTL0	8-12	DCO	Поддиапазон частот DCO
	3-7	MOD	Счетчик модулятора
UCSCTL1	4-6	DCORSEL	Выбор диапазона частот DCO
	0	DISMOD	Запрет модуляции (FLL)
UCSCTL2	12-14	FLLD	Делитель FLL (DCOCLKDIV)
	0-9	FLLN	Множитель DCO. Больше 0
UCSCTL3	4-6	SELREF	Выбор источника для FLL
	0-2	FLLREFDIV	Делитель частоты FLL
UCSCTL4	8-10	SELA	Выбор источника для ACLK
	4-6	SELS	Выбор источника для SMCLK
	0-2	SELM	Выбор источника для MCLK

Регистр	Биты	Поле	Назначение
UCSCTL5	12-14	DIVPA	Делитель ACLK (внешний)
	8-10	DIVA	Делитель ACLK
	4-6	DIVS	Делитель SMCLK
	0-2	DIVM	Делитель MCLK
UCSCTL6	14-15	XT2DRIVE	Диапазон частот XT2
	12	XT2BYPASS	Прямой сигнал от резонатора XT2
	8	XT2OFF	Отключение XT2, если не источник для A/M/SMCLK
	7-6	XT1DRIVE	Ток по выходу XT1

Регистр	Биты	Поле	Назначение
UCSCTL6	4	XT1BYPASS	Прямой сигнал от резонатора XT1
	2-3	CAP	Выбор емкости на резонаторе
	1	SMCLKOFF	Отключение SMCLK
	0	XT10FF	Отключение XT1, если не источник для A/M/SMCLK
UCSCTL7	3	XT2OFFG	Флаг сбоя генератора <i>X</i> T2
	1	XT1LF0FFG	Флаг сбоя генератора XT1
	0	DCOFFG	Флаг сбоя генератора DCO

Регистр	Биты	Поле	Назначение
UCSCTL8	0-3		Разрешение запросов по синхросигналам

Режимы питания MSP430F5529

- Входное напряжение 1,8-3,6 В
- PMM Power Management Module
- 4 уровня напряжения для питания ядра (Vcore), задаваемых программно
- Супервизор уровня напряжения (SVS Supple Voltage Supervisor) с программируемым порогом как для выходного, так и для входного напряжения
- Монитор уровня напряжения (SVM Supple Voltage Monitor) – аналогично
- Сброс при низком питании (BOR)
- Программно доступные индикаторы сбоя питания
- Защита выводов от сбоя по питанию

Режимы питания MSP430F5529

- SVS/M_{H/L} Supple Voltage Supervisor / Monitor
- Монитор изменения напряжения только отслеживает выход за пороговое значение, супервизор еще и генерирует сигнал сброса
- Н на входе, L на выходе

Режимы питания MSP430F5529

■ При изменении уровня Vcore нельзя увеличивать частоту МСLК пока не установится новый уровень напряжения. Для проверки уровня Vcore используется SVM_L 37

- Vcore можно изменять только на один уровень за 1 раз
- 1. Устанавливаются новые уровни SVM_H, SVS_H, чтобы убедиться, что входное напряжение DV_{CC} выше планируемого Vcore. Установить новый уровень SVM_L, дождаться установки флага SVSMLDLYIFG
- 2. Установить PMMCOREV для определения нового уровня Vcore
- 3. Дождаться установки флага SVMLVLRIFG
- 4. Установить новый уровень SVS 2

- При снижении уровня питания, нужно предусмотреть, чтобы частота МСLК не оказалась выше допустимой для данного уровня. Понижение питания также возможно только на 1 уровень за 1 раз
- 5. Задаем SVM_L, SVS_L для нового уровня и ожидаем установки SVSMLDLYIFG
- 6. Программируем новый уровень Vcore, задав PMMCOREV

DVCC(V)	PMMCOREV[1:0]	Fsys max (MHz)
>= 1,8	00 = 1,4 (Active Mode)	8
>= 2,0	01 = 1,6 (Active Mode)	12
>= 2,2	10 = 1,8 (Active Mode)	20

- Поле SVSHRVL задает уровни напряжения порога SVS_{H_IT-}.
 Типовые значения 1,68; 1,88; 2,08; 2,18 В.
- SVSMHRRL: SVS_{H_IT+} 1,74; 1,94; 2,14; 2,30; 2,40; 2,70; 3,10; 3,10 B
- U Допустимые значения SVSMHRRL (определяет уровни SVS_{H_IT+} и SVM_H) в зависимости от PMMCOREV

Режим	Описание	CPU (MCLK)	SMCLK	AMCLK	Сохранение содержимого RAM	BOR	Самоактивация	Источники прерывания
Активный	ЦПУ, все тактовые сигналы и периферия разрешены	•	•	•	•	•		Таймеры, ADC, DMA, USART, WDT, I/O, компаратор, внешние прерывания, USCI, RTC, другая периферия
LPMo	ЦПУ выключен, тактирование периферии разрешено		•	•	•	•	•	Таймеры, ADC, DMA, USART, WDT, I/O, компаратор, внешние прерывания, USCI, RTC, другая периферия
LPM1	ЦПУ выключен, тактирование периферии разрешено, DCO запрещен, DC-генератор может быть запрещен		•	•	•	•	•	Таймеры, ADC, DMA, USART, WDT, I/O, компаратор, внешние прерывания, USCI, RTC, другая периферия
LPM2	ЦПУ выключен, разрешена только одна тактовая частота периферии			•	•	•	•	Таймеры, ADC, DMA, USART, WDT, I/O, компаратор, внешние прерывания, USCI, RTC, другая периферия
LPM3	ЦПУ выключен,			•	•	•	•	Таймеры, ADC, DMA, USART, WDT, I/O, компаратор, внешние прерывания, USCI, RTC, другая периферия
LPM3.5	Данные в RAM не сохраняются, RTC может быть разрешен (только в семействе MSP430F5xx)					•	•	Внешние прерывания, RTC
LPM4	ЦПУ выключен, все тактовые частоты запрещены				•	•		Внешние прерывания
LPM4.5	Данные в RAM не сохраняются, RTC запрещены (только в семействе MSP430F5xx)					•		Внешние прерывания

- SVS Supple Voltage Supervisor
- SVM Supple Voltage Monitor
- PMM Power Management Module

Регистр	Адрес	Назначение
PMMCTL0	0120h	Управление РММ
PMMCTL1	0122h	Управление РММ
SVSMHCTL	0124h	Управление SVS, SVM по входу
SVSMLCTL	0126h	Управление SVS, SVM по выходу
PMMIFG	012Ch	Флаги прерываний
PMMIE	012Eh	Разрешение прерываний
PM5CTL0	0130h	Управление режимом LPMx.5

Регистр	Биты	Поле	Назначение
PMMCTL0	8-15	PMMPW	Пароль
	4	PMMREGOFF	Отключение регулятора
	3	PMMSWPOR	Программный POR
	2	<i>PMMSWBOR</i>	Программный BOR
	0-1	<i>PMMCOREV</i>	Уровень питания Vcore
PMMCTL1			Резерв
SVSMHCTL	15	SVMHFP	Режим высокой производительности SVM
	14	SVMHE	Разрешение SVMH
	12	SVMHOVPE	Разрешение определения превышения на входе

Регистр	Биты	Поле	Назначение
SVSMHCTL	11	SVSHFP	Режим высокой производительности SVS
	10	SVSHE	Разрешение SVS _н
	8-9	SVSHRVL	Уровень напряжения на входе для сброса
	7	SVSMHACE	Разрешение автоматичес- кого контроля SVS _H , SVM _H
	6	SVSMHEVM	Mаскирование событий SVS _н , SVM _н
	4	SVSHMD	Режим SVS _н : генерация флагов прерывания в LPM2,3,4

40

Регистр	Биты	Поле	Назначение
SVSMHCTL	3	SVSMHDLYST	Режим задержи SVSH, SVMH
	0-2	SVSMHRLL	Достигнутый уровень напряжения на входе
SVSMLCTL			Все поля аналогичны SVSMHCTL, но для напряжения на выходе
SVSMIO	12	SVMHVLROE	Разрешение на вывод SVMOUT выдать флаг SVMHVLRIFG
	11	SVMHOE	Разрешение на вывод SVMOUT выдать флаг SVMHIFG

Регистр	Биты	Поле	Назначение
SVSMIO	5	SVMOUTPOL	Полярность сигнала SVMOUT: 1- активный высокий
	4	SVMLVLROE	Разрешение на вывод SVMOUT выдать флаг SVMLVLRIFG
	3	SVMLOE	Разрешение на вывод SVMOUT выдать флаг SVMLIFG
PMMIFG	15	PMMLPM5IFG	Флаг прерывания, если система находилась в режиме LPMx.5
	13	SVSLIFG	Флаг прерывания по напряжению ₈ выхода

Регистр	Биты	Поле	Назначение
PMMIFG	12	SVSHIFG	Флаг прерывания по напряжению входа
	10	PMMPORIFG	Флаг пр-я программного POR
	9	PMMRSTIFG	Флаг пр-я по выводу сброса
	8	PMMBORIFG	Флаг пр-я программного BOR
	6	SVMHVLRIFG	Флаг пр-я при достижении уровня напряжения на входе
	5	SVMHIFG	Флаг пр-я по напряжению входа
	4	SVSMHDLYIFG	Флаг пр-я при достижении установленной задержки SVS и SVM на входе

Регистр	Биты	Поле	Назначение
PMMIFG	2	SVMLVLRIFG	Флаг пр-я при достижении уровня напряжения на выходе
	1	SVMLIFG	Флаг пр-я по напряжению выхода
	0	SVSMLDLYIFG	Флаг пр-я при достижении установленной задержки SVS и SVM на выходе
PMMRIE	13	SVSHVLRPE	Разрешение РОК при превышении уровня напряжения на входе
	12	SVSHPE	Разрешение РОК при падении напряжения на входе ниже заданного уровня

Регистр	Биты	Поле	Назначение
PMMRIE	9	SVMLVLRPE	Разрешение РОК при превышении уровня напряжения на выходе
	8	SVSLPE	Разрешение РОК при падении напряжения на выходе ниже заданного уровня
	6	SVSHVLRIE	Разрешение прерываний по уровню напряжения сброса на входе
	5	SVMHIE	Разрешение прерываний по напряжению входа
	4	SVSMHDLYIE	Разрешение прерываний по исте-чении задержки SVS, SVM на входе

Регистр	Биты	Поле	Назначение
PMMRIE	2	SVMLVLRIE	Разрешение пр-й по уровню напряжения сброса на выходе
	1	SVMLIE	Разрешение прерываний по напряжению выхода
	0	SVSMLDLYIE	Разрешение пр-й по истечении задержки SVS, SVM на выходе
PMM5CTL0	0	LOCKLPM5	Блокировка конфигура- ции I/O при входе или выходе из LPMx.5. После установки, сбрасыва- ется только пользова- телем или при следую- щей подаче питания.

- RST/NMI максимально длительное время нахождения в режимах пониженного энергопотребления (особенно LPM3 и LPM4);
- использование прерываний для управления ходом выполнения программ;
- включение периферии только по мере необходимости;
- использование интегрированной периферии с низким потреблением энергии вместо программного выполнения функций;
- вычисление ветвей и использование таблиц значений вместо опроса флагов и длительных программных вычислений;
- избегать частого вызова функций и процедур из-за дополнительных затрат;

- использовать однотактные регистры ЦПУ в длинных процедурах;
- отключать недоступные и неиспользуемые сегменты памяти при помощи регистра управления ОЗУ RCCTL0.