Department of Electronics & Communication Engineering Indian Institute of Technology Roorkee

ECN 614 – Adaptive Signal Processing Techniques TUTORIAL #2

1. The sampled form of the transmitted radar signal is $A_0 e^{-j\Omega_0 n}$ where Ω_0 is the angular frequency and A_0 is the transmitted complex amplitude. The signal received is given as

$$x[n] = A_1 e^{-j\Omega_1 n} + \nu[n]$$

where $|A_1| < |A_0|$ and Ω_1 differs from Ω_0 by virtue of Doppler shift produced by the motion of the target of interest, and $\nu[n]$ is a sample of white noise.

The time-series x[n] is applied to an M-tap Wiener filter with cross-correlation vector between x[n] and the desired response preset to $\mathbf{p} = \sigma_0^2 \mathbf{a}(\Omega_0)$, where $\sigma_0^2 = E\{|A_0|^2\}$ and $\mathbf{a}(\Omega_0) = \begin{bmatrix} 1 & e^{-j\Omega_0} & \dots & e^{-j\Omega_0(M-1)} \end{bmatrix}^T$. Derive expression for the tap-weight vector of the Wiener filter.

- 2. Derive the augmented Wiener-Hopf equations of a forward prediction-error filter by
 - (a) Formulate the expression for the mean-square value of the forward prediction error in terms of the tap-weight vector of the forward prediction-error filter.
 - (b) Minimize this mean-square prediction error, subject to the constraint that the first tap-weight (fed with the current sample x[n]) is equal to unity.
- 3. Consider the linear prediction of a stationary autoregressive process generated from the difference equation

$$x[n] = 0.9x[n-1] + v[n]$$

where $\{\nu[n]\}$ is a zero-mean white-noise process with unit variance. Determine the tap weights of the forward prediction-error filter.

4. Consider the filtering structure described in the figure below, where the delay Δ is an integer greater than unity.

Find the optimum value of the weight-vector $\mathbf{w}[n]$ so as to minimize the estimation error e[n].

5. A process x[n] consists of a single sinusoidal process of complex amplitude α and angular frequency Ω in additive white noise of zero mean and variance σ_v^2 , as given by

$$x[n] = \alpha e^{j\Omega n} + v[n]$$

where $E\{|\alpha|^2\} = \sigma_{\alpha}^2$ and $\{|\nu[n]|^2\} = \sigma_{\nu}^2$. Determine the tap weights of the forward prediction-error filter of order M and the final value of the prediction-error power.

6. Consider a wide-sense stationary process x[n] whose auto-correlation function has the following values for different lags:

$$r(0) = 1$$
; $r(1) = 0.8$; $r(2) = 0.6$; $r(3) = 0.4$

- (a) Use the Levinson-Durbin recursion to evaluate the tap weights of the forward prediction-error filter of order three and the final value of the prediction-error power.
- (b) Based on the Levinson-Durbin recursion, determine the transfer function of the forward prediction-error filter and check your result with that in Part (a) above.
- 7. A second-order autoregressive process is defined by the difference equation

$$x[n] = x[n-1] - 0.5x[n-2] + v[n]$$

where $\{\nu[n]\}$ is a zero-mean white-noise process with variance $\sigma_{\nu}^2 = 0.5$.

- (a) Find the average power of x[n].
- (b) Find the reflection coefficients κ_1 and κ_2 .
- (c) Using the results obtained in Part (a) and Part (b) above, compute the autocorrelation function values r(1) and r(2), and the average prediction-error powers P_1 and P_2 .