IN THE CLAIMS

- 1. through 15. (Canceled)
- 16. (Currently Amended) A <u>computer-implemented</u> method for measuring <u>a</u> complexity of nested object state transition diagrams <u>that are represented as data structures in the computer</u>, the <u>method</u> comprising the steps of:
- a) using a computer, determining a plurality of graphs of object state transitions at K levels l_k, wherein:
 - (A) 0<k<K; wherein
 - (B) one or more of said graphs at level l_k+1 are expansions of one or more of said graphs at level l_k ; and
 - (C) said graphs comprise a plurality of nodes to represent a corresponding plurality of states of use-cases and a plurality of edges to represent a corresponding plurality of transitions between the states; and
 - b) using the computer, determining the a complexity for said plurality of graphs.
- 17. (Currently Amended) The <u>computer-implemented</u> method <u>as in of claim 16</u>, wherein: the state of an <u>object</u> at level k is a super state of an object state at level k+1, and it the state of an object at level k is a sub state of an object state at level k-1, and the method further includes the step of identifying the state transion relationship between super state and sub state as in one of a group consisting of "in," "out," and "inout". the three eases as "in" / "out" / "inout".
- 18. (Currently Amended) The <u>computer-implemented</u> method as in <u>of</u> claim 17, <u>further</u> <u>comprising</u>: wherein said determining the number of paths comprises the steps of

selecting said level $l_k = l_K$;

expanding a graph L from said selected level l_k with said at least one graph from said level l_{K+1} ;

determining the paths in said expanded graph; and determining the a number of conditions in said transition paths.

19. (Currently Amended) The <u>computer-implemented</u> method as in <u>of</u> claim 18 further comprising: the step of

removing one or more an unnecessary path [s] from said at least one graph.

20. (Currently Amended) The <u>computer-implemented</u> method as in <u>of</u> claim 19 wherein said one or more unnecessary paths comprise one or more numbers of the <u>a</u> group consisting of:

(exception → fallout),
(exception → exception),
(one-repetition loop → fallout),
(one repetition loop → cancelled), and

(one repetition loop \rightarrow exception).

21. (Currently Amended) A <u>computer-implemented</u> method as in <u>of</u> claim 16 to measure a nested object state transition complexity between two super-states by recursively applying Equation 6:

$$STPC_{k,p,q} = \sum_{i=1}^{m_k} \left(\prod_{j=1}^{n_{k,i}} \left(C_{k,i,j} + \left(STPC_{k+1,i,j} - sub_{k,i,j} \right) \right) + mul_{k,i}(N) \right)$$
 Equation 6

wherein:

 $m_k = the \underline{a}$ number of transition paths of level-k object (k>1) between two super-states or the a number of transition paths of level-1 object;

n_{k,i}= the a number of states along path i for level-k object; [.]

 $C_{k,i,j}$ is the <u>a</u> number of conditions to bring level-k object state from Sk,i,j-1 to Sk,i,j;

 $STPC_{k+1,i,j} = Substate Transition Complexity between state Sk,i,j-1 and Sk,i,j;$

$$sub_{k,i,j}=0$$
 if $STPC_{k+1,i,j}=0$ and $sub_{k,i,j}=1$ if $(STPC_{k+1,i,j}\neq 0)$:

If the <u>if a multiplicity</u> between level-k <u>objet object</u> and level-(k+1) is 1:N, then mul_{k,i}(N)=0 [,] if (N=1) and mul_{k,i}(N)=r [,] if (N>1); <u>and</u>

Where r is the <u>a</u> number of times that level_{k+1} objects transit [s] back to level_k in path i.

22. (Canceled)