Determining a SAR ADC's Linear Range when using Operational Amplifiers

TIPL 4101
TI Precision Labs – ADCs

Created by Art Kay & Dale Li Presented by Peggy Liska

Single Ended Input: ADC Input Range Considerations

PARAMETER ADS7042	TEST CONDITION	MIN	TYP	MAX	UNIT	
ANALOG INPUT						
Full-scale input voltage span			0		AVDD	
Absolute Input voltage range	AINP to GND		0		AVDD+0.1	\/
	AINM to GND		-0.1		+0.1	V

Absolute Maximum Ratings

ADS7042	MIN	MAX	UNIT
AVDD to GND	-0.3	3.9	V
DVDD to GND	-0.3	3.9	V
AINP to GND	-0.3	AVDD + 0.3	V
AINM to GND	-0.3	+0.3	V

AVDD+0.3 = 3.3V + 0.3V = 3.6V

Single Ended Input: OPA320 Linear Range

PARAMETER OPA320		TEST CONDITION	MIN	TYP	MAX	UNIT
INPUT VOLTAGE						
Common-mode voltage range	V_{cm}		(V-) - 0.1		(V+)+0.1	V
OUTPUT						
Voltage swing from both rails		$RL = 10k\Omega$		10	20	mV
	V_{O}	$RL = 2k\Omega$		25	35	
OPEN-LOOP GAIN						
Open-loop gain	Λ	$0.1 < Vo < (V+)-0.1V, R_{L} = 10k\Omega$	114	132		dD.
	A _{OL}	$0.2 < Vo < (V+)-0.2V, R_1 = 2k\Omega$	108	123		dB

Amplifier Input Range	$-0.1 \text{V} < \text{V}_{cm} < 3.4 \text{V}$
Amplifier Output Range	$0.02 < V_O < 3.28V$
Amplifier Linear Range	$0.1 < V_O < 3.2V$
Worst Case Range	$0.1 < V_{O} < 3.2V$

Single Ended Input: Extending the Op Amp Range

Low Noise Negative Bias Generator

- Regulated Output Voltage −0.232 V
- Output Voltage Tolerance 5%
- Output Voltage Ripple 4 mV_{PP}
- Maximum Output Current 26 mA

Single Ended Input: OPA625

PARAMETER OPA320		TEST CONDITION	MIN	TYP	MAX	UNIT
INPUT VOLTAGE						
Common-mode voltage range	V_{cm}		(V-)		(V+) - 1.15	V
OUTPUT						
Voltage swing from both rails		$RL = 10k\Omega$		20	35	mV
	V_{O}	$RL = 600\Omega$		60	80	
OPEN-LOOP GAIN						
Open-loop gain	Λ	$0.15 < Vo < (V+) - 0.15V, R_{L} = 10k\Omega$	110	132		dD
	A _{OL}	$0.15 < Vo < (V+) - 0.15V$, $R_L = 10k\Omega$ $0.2 < Vo < (V+) - 0.2V$, $R_L = 600\Omega$	106	128		- dB

Amplifier input range	$0.0V < V_{cm} < 2.15V$
Amplifier output range	$0.035 < V_O < 3.265V$
Amplifier Linear Range	$0.15 < V_O < 3.15V$
Worst Case Range	0.15 < V _o < 2.15V

Inverting amplifier: Eliminate Common mode issue

PARAMETER OPA625		TEST CONDITION	MIN	TYP	MAX	UNIT
INPUT VOLTAGE						
Common-mode voltage range	V_{cm}		(V-)		(V+) - 1.15	V
OUTPUT						
Voltage swing from both rails		$RL = 10k\Omega$		20	35	
	V_{O}	$RL = 600\Omega$		60	80	- mV
OPEN-LOOP GAIN						
Onen leen gein	^	$0.15 < Vo < (V+) - 0.15V, R_{L} = 10k$	<u>Ω</u> 110	132		dD
Open-loop gain	A_{OL}	$0.2 < Vo < (V+) - 0.2V, R_1 = 600\Omega$	106	128		- dB

Amplifier input range	No Vcm limit
Amplifier output range	$0.035 < V_O < 3.265V$
Amplifier Linear Range	$0.15 < V_O < 3.15V$
Worst Case Range	$0.15 < V_{O} < 3.15V$

Input Crossover Distortion in Rail-to-Rail Inputs

PARAMETER OPA316		TEST CONDITIONS	MIN	TYP	MAX	UNIT		
INPUT V	INPUT VOLTAGE RANGE							
V _{CM}	Common mode voltage range	TA = -40C to 85C	-0.2		(V+)+0.1	V		
CMRR	Common mode Rejection	Vs = 5V, -0.1V <vcm< 3.6v<="" td=""><td>76</td><td>90</td><td></td><td>dB</td></vcm<>	76	90		dB		
		Vs = 5V, -0.1V <vcm<5.2v< td=""><td>65</td><td>80</td><td></td><td>dB</td></vcm<5.2v<>	65	80		dB		

Input Cross-Over distortion vs Zero Cross-Over

PARAM OPA350	ETER: - Has Crossover	MIN	TYP	MAX	UNIT		
INPUT VOLTAGE RANGE							
V _{CM}	Common mode voltage range	(V-)-0.1		(V+)+0.1	V		
CMRR	Common mode Rejection -0.1V <vcm<5.6v< td=""><td>74</td><td>90</td><td></td><td>dB</td></vcm<5.6v<>	74	90		dB		

PARAM OPA320	ETER: - Zero Cross-Over	MIN	TYP	MAX	UNIT
INPUT \	OLTAGE RANGE				
V _{CM}	Common mode voltage range	(V-)-0.1		(V+)+0.1	V
CMRR	Common mode Rejection -0.1V <vcm<5.6v< td=""><td>100</td><td>114</td><td></td><td>dB</td></vcm<5.6v<>	100	114		dB

Optimize bypass for internal charge pump op amps

Short direct connections from supply to decoupling

THD vs. Input Crossover Distortion

Finding standard resistors for unusual gains

Thanks for your time! Please try the quiz.

TIPL 4101 TI Precision Labs – ADCs

Created by Art Kay

PARAMETER OPA376		TEST CONDITION	MIN	TYP	MAX	UNIT
INPUT VOLTAGE						
Common-mode voltage range	V_{cm}		(V-) - 0.1		(V+)+0.1	V
OUTPUT						
Maltana and an formal bath malla	V -	$RL = 10k\Omega$		10	20	
Voltage swing from both rails		$RL = 2k\Omega$		20	30	mV
OPEN-LOOP GAIN						
Open-loop gain	Λ ———	$50 \text{mV} < \text{Vo} < (\text{V+})-50 \text{mV}, R_L = 10 \text{k}\Omega$	120	134		-ID
		$0.1 < Vo < (V+)-0.1V, R_L = 2k\Omega$	120	126		dB

PARAMETER OPA338			TEST CONDITION	MIN	TYP	MAX	UNIT
INPUT VOLTAGE							
Common-mode voltage range	V_{cm}			(V-) - 0.2		(V+)-1.2	V
OUTPUT							
Voltage swing from both rails V _O	I	$RL = 25k\Omega$			40	125	
	v _o	RL = 5k	Ω		150	500	mV
OPEN-LOOP GAIN							
Open Joon gain		125mV	$<$ Vo $<$ (V+)-125mV, R _L = 25k Ω	100	120		40
	500mV	$< Vo < (V+)-500mV, R_L = 5k\Omega$	100	114		dB	

PARAMETER OPA338		TEST CONDITION	MIN	TYP	MAX	UNIT
INPUT VOLTAGE						
Common-mode voltage range	V_{cm}		(V-) - 0.2		(V+)-1.2	V
OUTPUT						
Voltage swing from both rails V _O	\/	$RL = 25k\Omega$		40	125	\/
	V _O	$RL = 5k\Omega$		150	500	mV
OPEN-LOOP GAIN						
	^	$125 \text{mV} < \text{Vo} < (\text{V+})-125 \text{mV}, R_L = 25 \text{M}$	<Ω 100	120		4D
Open-loop gain	A _{OL}	$500 \text{mV} < \text{Vo} < (\text{V+})-500 \text{mV}, R_L = 5 \text{kg}$	Ω 100	114		− dB

- 4. The amplifier shown below _____
 - a. Would have poor power supply rejection.
 - b. Would show crossover distortion if the input signal is greater than 15Vpk.
 - c. Would not show crossover distortion.
 - d. Would have a low input impedance.

Figure 13: Offset Voltage vs. Common-Mode Voltage

- 5. The amplifier shown below _____
 - a. Would have poor power supply rejection.
 - b. Would show crossover distortion if the input signal is greater than 15Vpk.
 - c. Would not show crossover distortion.

Figure 13: Offset Voltage vs. Common-Mode Voltage

- 6. Which of the following applies to an inverting amplifier topology.
 - a. Gain error is determined by resistor tolerance.
 - b. The input impedance is relatively low ($10k\Omega$ in this case).
 - c. The circuit will not have crossover distortion issues.
 - d. Common mode rejection would be eliminated
 - e. The output will be loaded by the feedback network (10k Ω in this case).
 - f. All the statements apply to the inverting topology.
 - g. None of the statements apply to the inverting topology.

7. Select 0.1% and 1% standard value resistors for the circuit below to set the gain to -0.188.

Solutions

Amplifier input range	$-0.1 \text{V} < \text{V}_{cm} < 5.1 \text{V}$
Amplifier output range	$0.02 < V_O < 4.98V$
Amplifier Linear Range	$0.05 < V_O < 4.95V$
Worst Case Range	$0.05 < V_O < 4.95V$

PARAMETER OPA376		TEST CONDITION	MIN	TYP	MAX	UNIT
INPUT VOLTAGE						
Common-mode voltage range	V_{cm}		(V-) - 0.1		(V+)+0.1	V
OUTPUT						
Voltage swing from both rails V _O	\	$RL = 10k\Omega$		10	20	
	V _O	$RL = 2k\Omega$		20	30	mV
OPEN-LOOP GAIN						
Open Ioon gain	^	50mV < Vo < (V+)- 50 mV, R _L = 10 kΩ	120	134		alD.
	$0.1 < Vo < (V+)-0.1V, R_L = 2k\Omega$	120	126		dB	

Amplifier input range	$-0.2V < V_{cm} < 3.8V$
Amplifier output range	$0.02 < V_O < 4.875V$
Amplifier Linear Range	$0.125 < V_O < 4.875V$
Worst Case Range	$0.125 < V_O < 3.8V$

PARAMETER OPA338			TEST CONDITION	MIN	TYP	MAX	UNIT	
INPUT VOLTAGE								
Common-mode voltage range	V_{cm}			(V-) - 0.2		(V+)-1.2	V	
OUTPUT								
Voltage swing from both rails V _O	l l	RL = 25	ikΩ		40	125	mV	
	V _O	RL = 5k	Ω		150	500		
OPEN-LOOP GAIN								
Open-loop gain	Λ	125mV	$< Vo < (V+)-125mV, R_L = 25k\Omega$	100	120		-ID	
	500mV	$< Vo < (V+)-500mV, R_L = 5k\Omega$	100	114		dB		

Amplifier input range	No limit, Vcm = 0V
Amplifier output range	$0.02 < V_O < 4.875V$
Amplifier Linear Range	$0.125 < V_O < 4.875V$
Worst Case Range	0.125 < V _O < 4.875V

PARAMETER OPA338		TEST CONDITION	MIN	TYP	MAX	UNIT
INPUT VOLTAGE						
Common-mode voltage range	V_{cm}		(V-) - 0.2		(V+)-1.2	V
OUTPUT						
Voltage swing from both rails V _O		$RL = 25k\Omega$		40	125	
	V _O	$RL = 5k\Omega$		150	500	mV
OPEN-LOOP GAIN						
	$125 \text{mV} < \text{Vo} < (\text{V+})-125 \text{mV}, R_L = 25 \text{k}\Omega$	100	120		JD	
Open-loop gain	A_{OL}	500mV < Vo < (V+)- 500 mV, R _L = 5 kΩ	100	114		− dB

- 4. The amplifier shown below _____.
 - a. Would have poor power supply rejection.
 - b. Would show crossover distortion if the input signal is greater than 15Vpk.
 - c. Would not show crossover distortion.
 - d. Would have a low input impedance.

Figure 13: Offset Voltage vs. Common-Mode Voltage

- 5. The amplifier shown below _____.
 - a. Would have poor power supply rejection.
 - b. Would show crossover distortion if the input signal is greater than 15Vpk.
 - c. Would not show crossover distortion.

Figure 13: Offset Voltage vs. Common-Mode Voltage

- 6. Which of the following applies to an inverting amplifier topology.
 - a. Gain error is determined by resistor tolerance.
 - b. The input impedance is relatively low (10k Ω in this case).
 - c. The circuit will not have crossover distortion issues.
 - d. Would have a low input impedance.
 - e. The output will be loaded by the feedback network ($10k\Omega$ in this case).
 - f. All the statements apply to the inverting topology.
 - g. None of the statements apply to the inverting topology.

7. Select 0.1% and 1% standard value resistors for the circuit below to set the gain to -0.188. Use the "Analog Engineer's calculator".

For 0.1%: Rf = 2.67k Ω , R1 = 14.2k Ω (or another power of 10 multiple).

For 1.0%: Rf = $2.21k\Omega$, R1 = $11.8k\Omega$ (or another power of 10 multiple).

