PCT

世界知的所有権機関国 際 事 務 局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 403/06, 403/12, 471/04, A01N 43/653, 43/84, 43/90

 $_{\mathbf{A1}}$

(11) 国際公開番号

WO99/21851

(43) 国際公開日

1999年5月6日(06.05.99)

(21) 国際出願番号

PCT/JP98/04808

(22) 国際出願日

1998年10月23日(23.10.98)

(30) 優先権データ 特願平9/292399

1997年10月24日(24.10.97)

(71) 出願人 (米国を除くすべての指定国について) 日産化学工業株式会社

(NISSAN CHEMICAL INDUSTRIES, LTD.)[JP/JP] 〒101-0054 東京都千代田区神田錦町3丁目7番地1 Tokyo, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

武山敏明(TAKEYAMA, Toshiaki)[JP/JP]

濱田敏正(HAMADA, Toshimasa)[JP/JP]

高橋寛明(TAKAHASHI, Hiroaki)[JP/JP]

渡辺淳一(WATANABE, Junichi)[JP/JP]

〒274-8507 千葉県船橋市坪井町722番地1

日産化学工業株式会社 中央研究所内 Chiba, (JP)

山岸和宏(YAMAGISHI, Kazuhiro)[JP/JP] 西岡正憲(NISHIOKA, Masanori)[JP/JP]

鈴木博之(SUZUKI, Hiroyuki)[JP/JP]

〒349-0294 埼玉県南埼玉郡白岡町大字白岡1470

日産化学工業株式会社 生物科学研究所内 Saitama, (JP) (74) 代理人

弁理士 粤 経夫, 外(HANABUSA, Tsunco et al.) 〒101-0062 東京都千代田区神田駿河台1丁目6番地 お茶の水スクエアB館 専特許事務所内 Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許 (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

(54)Title: SULFAMOYL COMPOUNDS AND AGRICULTURAL OR HORTICULTURAL BACTERICIDE

(54)発明の名称 スルファモイル化合物並びに農園芸用殺菌剤

(57) Abstract

Sulfamoyl compounds represented by general formula (1): wherein R¹ and R² each independently is C_{1.4} alkyl, or R¹ and R² in combination represent C_{4.6} alkylene or C_{4.6} alkyleneoxy; Y is H, halogeno, C_{1.8} alkyl, C_{1.8} alkoxy, C_{1.8} alkylthio, C_{1.8} haloalkyl, C_{1.8} haloalkylthio; A is a given heterocyclic group; B is a given heterocyclic group which is the same as or different from A; W is a bond or O; V is O or S; D, E, F, and G each independently is N, CR⁷, CR⁸, CR⁹, or CR¹⁰; and R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, and R¹¹ each independently is, e.g., H or a given group such as an optionally substituted aliphatic, aromatic, or heterocyclic group. The sulfamoyl compounds are useful as an agricultural or horticultural bactericide.

明細書

スルファモイル化合物並びに農園芸用殺菌剤

技術分野

本発明は、新規なスルファモイル化合物、並びに該化合物を有効成分として含 有する農薬(殺虫剤、殺菌剤、除草剤、植物生長調節剤等)、特に農園芸用殺菌_{・・} 剤に関するものである。

背景技術

特開平3-170464、6-32785、7-2803、7-215971 号公報にはある種のスルファモイル化合物が殺菌活性を有することが記載されている。

上記の公開公報に記載されている化合物においても、効力、残効性等の点で満足すべきものではなく植物病害に対して更に有用な農園芸用殺菌剤の開発が要望されている。

発明の開示

本発明者らは、このような状況に鑑み優れた殺菌剤を開発すべく種々検討を重ねた結果、新規なスルファモイル化合物が農園芸用殺菌剤として顕著な防除活性を有することを見い出し本発明に至った。

すなわち、本発明は[1]ないし〔38〕に関するものである。

[1] 一般式(1):

〔上記式中、 R^1 、 R^2 はそれぞれ独立して、 C_1 -、rルキルまたは R^1 と R^2 とが一緒になって C_4 -。rルキレン、 C_4 -。rルキレンオキシであり、

であり、

B は、A-1 ないしA-1 0、または

であり、

·Wは結合またはOであり、

VはOまたはSであり、

D, E, F, Gはそれぞれ独立して、N、CR'、CR®、CR® またはCR10

であり、

R*, R*, R*, R*, R*, R*, R*, R''*, R''はそれぞれ独立してH、C ı・。アルキル、C。・。シクロアルキル、Cュ・。アルケニル、C。・。シクロアルケ ニル、C2・8アルキニル、C1・8アルコキシ、C3・8シクロアルキルオキシ、C s・aシクロアルケニルオキシ、C2・aアルケニルオキシ、C2・aアルキニルオキ シ、C₁-₈アルキルチオ、C₅-₈シクロアルキルチオ、C₅-₈シクロアルケニル-チオ、C: - *アルケニルチオ、C: - *アルキニルチオ、C: - *ハロアルキル、C 1 · ₂ハロアルコキシ、C 1 · ₂ハロアルキルチオ、C 2 · ₂ハロアルケニル、C 2 · ₂ ハロアルケニルオキシ、C2-8ハロアルケニルチオ、C2-8ハロアルキニル、C z・aハロアルキニルオキシ、Ca・aハロアルキニルチオ、置換されていても良い フェニル(この置換基の種類は、ハロゲン、C」・4アルキル、C」・4ハロアルキ ル、 C_1 *アルコキシ、 C_1 *パロアルコキシ、 C_1 **アルキルチオ、 C_1 *** ロアルキルチオ、C₁・6アルキルスルホキシ、C₁・6アルキルスルホニル、CN、 NO2、C1-6アルコキシカルボニルであり、その置換基の数は1~5であり、そ の置換基は同一かもしくは相異なっていても良い)、置換されていても良いフェ ニル C, ・, アルキル、置換されていても良いベンジルチオ、置換されていても良 いベンジルオキシ、置換されていても良いフェノキシC」・。アルキル、置換され ていても良いフェノキシ、置換されていても良いフェニルチオC.・、アルキル、 置換されていても良いフェニルチオ、置換されていても良いベンゾイル、置換さ れていても良いベンゾイル C1・1アルキル、置換されていても良いベンゾイルオ キシ、置換されていても良いベンゾイルオキシC₁-,アルキル、置換されていて も良いナフチル、置換されていても良い5員もしくは6員複素環、 C . - 。ヒドロ キシアルキル、C1-8ヒドロキシハロアルキル、C1-8アルコキシC1-4アルキ ル、C₁-。ハロアルコキシC₁-、アルキル、C₁-。ハロアルキルチオC₁-、アル キル、Cı·ı₀ジアルコキシCı·₄アルキル、Cı·₃アルキレンジオキシCı·₄ アルキル、Cュ・。アルキルチオCュ・。アルキル、Cュ・ュ。ジアルキルチオCュ・。 アルキル、Cı・₃アルキレンジチオCı-∢アルキル、Cı-₅アルコキシカルボニ ル、C₁・6ハロアルコキシカルボニル、C₁・6アルコキシオキザリル、CHO、 CO2H、C1-8アルコキシカルボニルC1-4アルキル、C1-8ハロアルコキシ

カルボニルC,-、アルキル、NH2、C,-。アルキルアミノ、C,-。アルキルカ ルボニルアミノ、C₁-₈アルキルカルボニルアミノC₁-₄アルキル、C₁-₈ハロ アルキルカルボニルアミノ、C₁-₆ハロアルキルカルボニルアミノC₁-₄アルキ ル、C,-aアルコキシカルボニルアミノ、C,-aアルコキシカルボニルアミノ C ,·,アルキル、C, -,アルキルスルホニルアミノ、C, -,アルキルスルホニル アミノC₁-₄アルキル、C₁-₆ハロアルキルスルホニルアミノ、·C₁-₆ハロアル⁻ キルスルホニルアミノC₁-₄アルキル、C₁-₆ジアルキルアミノ、C₁-₆ジアル キルアミノC1-4アルキル、C1-6ジアルキルアミノカルボニル、C1-6ジアル キルアミノカルボニルC1・4アルキル、C2・8アルキレンイミノ、C2・8アルキ レンイミノC,-,アルキル、C2-&アルキレンイミノカルボニル、C2-&アルキ レンイミノカルボニルC_{1・4}アルキル、C_{1・6}アルキルカルボニル、C_{1・6}アル キルカルボニルオキシ、C₁-₈ハロアルキルカルボニル、C₁-₈ハロアルキルカ ルボニルオキシ、C₁-。アルキルカルボニルC₁-、アルキル、C₁-。アルキルカ ルボニルオキシC₁-4アルキル、C₁-8ハロアルキルカルボニルC₁-4アルキル、 C, 。ハロアルキルカルボニルオキシC, ·, アルキル、ヒドロキシイミノC, ·, アルキル、C , - 。アルコキシイミノ C , - 、アルキル、C , - 。アルキルカルボニル オキシイミノ C 1 - 4 アルキル、 C 1 - 8 アルキルスルホニルオキシイミノ C 1 - 4 ア ルキル、C₁・6アルキルスルホキシ、C₁・6ハロアルキルスルホキシ、C₁・6ア ルキルスルホキシC_{1・4}アルキル、C_{1・6}ハロアルキルスルホキシC_{1・4}アルキ ル、C₁・gアルキルスルホニル、C₁・gハロアルキルスルホニル、C₁・gアルキ ルスルホニルC₁-4アルキル、C₁-8ハロアルキルスルホニルC₁-4アルキル、 .C₁-。アルキルスルホニルオキシ、C₁-。ハロアルキルスルホニルオキシ、C₁-。アルキルスルホニルオキシC、・、アルキル、C、・。ハロアルキルスルホニルオキ シC₁・4アルキル、C₁・4ハロアルコキシスルホニル、C₁・4ハロアルコキシス ルホニルC₁-,アルキル、C₁-。ジアルキルスルファモイル、C₁-。ジアルキル スルファモイルC1-4アルキル、C1-8アルコキシスルホニル、C1-8アルコキ シスルホニルC,・,アルキル、С,・。シアノアルキル、СN、С,・。チオカルバ モイル、C₁-。ニトロアルキル、NO₂、ハロゲン、もしくはR³、R⁴、R⁵、R⁶、 R', R', R', R'', R''のうちの2つが一緒になってハロゲンで置換していて

も良い C_1 - $_3$ アルキレンジオキシ、または C_3 - $_3$ アルキレンである。〕で表されるスルファモイル化合物。

- [2] Aが、A-1である上記[1]記載のスルファモイル化合物。
- [3] Aが、A-2である上記[1]記載のスルファモイル化合物。
- [4] Aが、A-3である上記[1]記載のスルファモイル化合物。
- [5] Aが、A-4である上記[1]記載のスルファモイル化合物。
- [6] Aが、A-5またはA-6である上記[1]記載のスルファモイル化合物。
- [7] Aが、A-7またはA-8である上記[1]記載のスルファモイル化合物。
- [8] Aが、A-9またはA-10である上記[1]記載のスルファモイル 化合物
 - [9] Bが、B-1である上記[1]記載のスルファモイル化合物。
 - [10] Bが、B-2である上記 [1] 記載のスルファモイル化合物。
- [11] Bが、B-3またはB-4である上記[1]記載のスルファモイル 化合物。
 - [12] Bが、B-5である上記 [1] 記載のスルファモイル化合物。
- [13] Bが、B-6またはB-7である上記[1]記載のスルファモイル 化合物。
- [14] Bが、B-8またはB-9である上記[1]記載のスルファモイル化合物。
 - [15] Bが、B-10である上記[1]記載のスルファモイル化合物。
- [16] R', R'がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR'、CR'、CR'、CR'であり、R'がC₁-アルキルチオである上記[1]記載のスルファモイル化合物。
- [17] R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR¹、CR¹、CR¹、CR¹であり、R³がC」-1であり、B. Tuthである上記[1]記載のスルファモイル化合物。
 - [18] R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A

- 1 であり、D, E, F, GがCR'、CR'、CR'、CR'であり、R'がC₁-₃ハロアルキルである上記[1]記載のスルファモイル化合物。

- [19] R¹, R³がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR¹、CR゚、CR゚、CR¹゚であり、R゚がハロゲンである上記[1]記載のスルファモイル化合物。
- [20] R', R'がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR'、CR'、CR'、CR'であり、R'がHである上記[1]記載のスルファモイル化合物。
- [21] R', R'がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR'、CR'、CR'、CR'であり、R'がCNである上記[1]記載のスルファモイル化合物。
- [22] R', R'がMeであり、YがHであり、Wが結合であり、Aが、A-2であり、D, E, F, GがCR'、CR'、CR'、CR'、CR'であり、R', R'、R'がいずれもHである上記[1]記載のスルファモイル化合物。
- [23] R^1 , R^2 がMeであり、YがHであり、Wが結合であり、Aが、A 4 であり、 R^3 , R^4 , R^5 , R^6 のうち少なくとも 1 つが置換されていても良い、フェニルである上記 [1] 記載のスルファモイル化合物。
- [24] R', R'がMeであり、YがHであり、Wが結合であり、Bが、B-1である上記[1]記載のスルファモイル化合物。
- [25] R', R'がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR'、CR'、CR'、CR'であり、R'がC₁・*アルキルであり、R'がハロゲンである上記[1]記載のスルファモイル化合物。
- [26] R¹, R³がMeであり、YがHであり、Wが結合であり、Aが、A −1であり、D, E, F, GがCR¹、CR¹、CR¹、CR¹°であり、R³, R⁴がいずれもハロゲンである上記[1]記載のスルファモイル化合物。
- [27] R¹, R³がMeであり、YがHであり、Wが結合であり、Aが、A -1であり、D, E, F, GがCR¹、CR³、CR³、CR¹°であり、R³がC₁ ⋅₃アルキルであり、R¹がHまたはC₁・₃アルキルである上記[1]記載のスル

ファモイル化合物。

[28] R¹, R¹がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR¹、CR¹、CR¹、CR¹であり、R³がC₁・。ハロアルキルであり、R⁴がH、ハロゲンまたはC₁・。アルキルである上記[1]記載のスルファモイル化合物。

[29] R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR¹, CR¹, CR¹, CR¹, であり、R³がHまたはC₁-4アルキルであり、R⁴がC₁-4アルコキシカルボニルである上記[1]記載のスルファモイル化合物。

[30] R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A − 1であり、D, E, F, GがCR¹、CR¹、CR¹、CR¹。であり、R³がHであり、R³がハロゲンである上記[1]記載のスルファモイル化合物。

[32] R'、R'がMeであり、YがHであり、Wが結合であり、Aが、A – 1であり、D, E, F, GがいずれもCHであり、R' が C_1 - $_{\it e}$ $_{\it e}$

[33] R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A −1であり、D, E, F, GがいずれもCHであり、R³, R¹がいずれもハロゲ ンである上記[1]記載のスルファモイル化合物。

[35] R^1 , R^2 がM e であり、YがHであり、Wが結合であり、Aが、A -1であり、D, E, F, GがいずれもC Hであり、 R^2 がM e またはE t であり、 R^4 がC 1 またはB r である上記 [1] 記載のスルファモイル化合物。

[36] R¹、R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがいずれもCHであり、R³ がClまたはBrであり、R⁴がClまたはBrである上記 [1] 記載のスルファモイル化合物。

[37] 上記[1]ないし[36]記載のスルファモイル化合物の1種以上を有効成分として含有する農薬。

[38] 農薬が、農園芸用殺菌剤である上記[37]記載の農薬。

一般式 (1) の化合物において、 R^1 および R^2 の C_{1-4} アルキルとしては、メチル、エチル、n-6 もしくは i-7ロピル、n-6 i-6 s-7チル等が挙げられる。

R' & R'が一緒になってC、。アルキレンとしては、例えば、R'、R'が結合しているNを含めて、ピペリジン等が挙げられる。

Y. R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁰, R¹¹の各置換基の定義は以下の意味を有する。

 C_1 - $_4$ アルキルとしては、例えば、メチル、エチル、n-6しくはi-7ロピル、n-6しくはi-7チル、n-8ンチル等が挙げられる。

C。 。シクロアルキルとしては、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロペキシル等が挙げられる。

C:・アルケニルとしては、例えば、アリル、ビニル等が挙げられる。

Cs・aシクロアルケニルとしては、例えば、シクロペンテニル等が挙げられる。

C.・、アルキニルとしては、例えば、プロパルギル等が挙げられる。

C、・・アルコキシとしては、例えば、メトキシ、エトキシ等が挙げられる。

C₃-₄シクロアルキルオキシとしては、例えば、シクロプロピルオキシ等が挙 げられる。

C, , , シクロアルケニルオキシとしては、例えば、シクロペンテニル-3-オキシ等が挙げられる。

C。・、アルケニルオキシとしては、例えば、アリルオキシ等が挙げられる。

C:・アルキニルオキシとしては、例えば、プロパルギルオキシ等が挙げられ

る。

 C_1 - $_1$ アルキルチオとしては例えば、メチルチオ、エチルチオ、n-もしくはi-プロピルチオ等が挙げられる。

C₃・₈シクロアルキルチオとしては、例えば、シクロペンチルチオ等が挙げられる。

C₃-₄シクロアルケニルチオとしては、例えば、シクロペンテニル-3-チオ *** 等が挙げられる。

C:・aアルケニルチオとしては、例えば、アリルチオ等が挙げられる。

C₂・₈アルキニルチオとしては、例えば、プロパルギルチオ等が挙げられる。

C₁-₈ハロアルコキシとしては、例えば、トリフルオロメトキシ等が挙げられる。

C₁ ₈ハロアルキルチオとしては、例えば、トリフルオロメチルチオ等が挙げられる。

C₁・₈ハロアルキルとしては、例えば、クロロメチル、ジクロロメチル、ジクロロフルオロメチル、トリフルオロメチル等が挙げられる。

C₂・₄ハロアルケニルとしては、例えば、3-クロロアリル等が挙げられる。

C₂ *ハロアルケニルオキシとしては、例えば、3-クロロアリルオキシ等が 挙げられる。

C₂-₈ハロアルケニルチオとしては、例えば、3-クロロアリルチオ等が挙げられる。

Cz・xハロアルキニルとしては、例えば、ヨードプロパルギル等が挙げられる。

C₂ ₃ハロアルキニルオキシとしては、例えば、ヨードプロパルギルオキシ等が挙げられる。

C₂·₈ハロアルキニルチオとしては、例えば、ヨードプロパルギルチオ等が挙 げられる。

 C_1 - $_{8}$ ヒドロキシアルキルとしては、例えば、ヒドロキシメチル、1-ヒドロキシエチル等が挙げられる。

 C_1 - $_8$ ヒドロキシハロアルキルとしては、例えば、2, 2, 2-トリフルオロー1-ヒドロキシエチル等が挙げられる。

C₁-₆アルコキシC₁-₄アルキルとしては、例えば、メトキシメチル、メトキシエチル等が挙げられる。

C₁-₄ハロアルコキシC₁-₄アルキルとしては、例えば、トリフルオロエトキシメチル等が挙げられる。

C₁-₆アルキルチオC₁-₄アルキルとしては、例えば、メチルチオメチル、エチルチオメチル、メチルチオエチル等が挙げられる。

C₁-₈ハロアルキルチオC₁-₄アルキルとしては、例えば、トリフルオロエチルチオメチル等が挙げられる。

C₁-1₀ジアルコキシC₁-1アルキルとしては、例えば、ジメトキシメチル、ジェトキシメチル等が挙げられる。

C₁-1₀ジアルキルチオC₁-₄アルキルとしては、例えば、ジメチルチオメチル、 ジエチルチオメチル等が挙げられる。

C₁,アルキレンジオキシC₁,アルキルとしては、例えば、エチレンジオキシメチル等が挙げられる。

C₁·3アルキレンジチオC₁·4アルキルとしては、例えば、エチレンジチオメチル等が挙げられる。

置換されていても良いフェノキシC₁-₄アルキルとしては、例えば、フェノキシメチル等が挙げられる。

置換されていても良いフェノキシとしては、例えば、フェノキシ等が挙げられる。

置換されていても良いフェニルチオ C_1 -、アルキルとしては、例えば、フェニルチオメチル等が挙げられる。

置換されていても良いフェニルチオとしては、例えば、フェニルチオ等が挙げられる。

置換されていても良いフェニルC₁・、アルキルとしては、例えば、ベンジル、フェネチル等が挙げられる。

置換されていても良いベンジルチオとしては、例えば、ベンジルチオ等が挙げられる。

置換されていても良いベンジルオキシとしては、例えば、ベンジルオキシ等が

挙げられる。

置換されていても良いフェニルとしては、例えば、フェニル等が挙げられる。 置換されていても良いベンゾイルとしては、例えば、ベンゾイル等が挙げられる。 る。

置換されていても良いベンゾイルC₁・1アルキルとしては、例えば、ベンゾイルメチル等が挙げられる。

置換されていても良いベンゾイルオキシとしては、例えば、ベンゾイルオキシ 等が挙げられる。

置換されていても良いベンゾイルオキシC₁-,アルキルとしては、例えば、ベンゾイルオキシメチル等が挙げられる。

置換されていても良いナフチルとしては、例えば、ナフチル等が挙げられる。 置換されていても良い5員もしくは6員複素環としては、例えば、ピリジン、 チオフェン、フラン、チアゾール等が挙げられる。

C₁。アルコキシカルボニルとしては、例えば、メトキシカルボニル等が挙げられる。

C₁ (アルコキシカルボニルC₁ ,アルキルとしては、例えば、メトキシカルボニルメチル等が挙げられる。

C₁ *ハロアルコキシカルボニルとしては、例えば、フルオロエトキシカルボニル等が挙げられる。

C₁・₆ハロアルコキシカルボニル C₁・₄アルキルとしては、例えば、フルオロエトキシカルボニルメチル等が挙げられる。

C₁-₆アルコキシオキザリルとしては、例えば、メトキシオキザリル、エトキシオキザリル等が挙げられる。

Ciraジアルキルアミノとしては、例えば、ジメチルアミノ等が挙げられる。

Cı·。アルキルアミノとしては、例えば、メチルアミノ等が挙げられる。

C_{1・4}ジアルキルアミノC_{1・4}アルキルとしては、例えば、ジメチルアミノメ チル等が挙げられる。

C₂-₄アルキレンイミノとしては、例えば、ピロリジノ、ピペリジノ等が挙げられる。

C₂-₆アルキレンイミノカルボニルとしては、例えば、ピロリジノカルボニル、 ピペリジノカルボニル等が挙げられる。

C₂·₆アルキレンイミノC₁·₄アルキルとしては、例えば、ピロリジノメチル、 ピペリジノメチル等が挙げられる。

C₂·₄アルキレンイミノカルボニルC₁·₄アルキルとしては、例えば、ピロリジノカルボニルメチル、ピペリジノカルボニルメチル等が挙げられる。

C₁-₆アルキルカルボニルアミノとしては、例えば、アセチルアミノ等が挙げられる。

C₁ ₆アルコキシカルボニルアミノとしては、例えば、メトキシカルボニルア ミノ等が挙げられる。

C₁-₆ハロアルキルカルボニルアミノとしては、例えば、トリフルオロアセチルアミノ等が挙げられる。

C₁-₆アルキルスルホニルアミノとしては、例えば、メタンスルホニルアミノ 等が挙げられる。

C₁·₆ハロアルキルスルホニルアミノとしては、例えば、クロロメチルスルホニルアミノ等が挙げられる。

 C_1 ・ $_{4}$ アルキルカルボニルアミノ C_1 ・ $_{4}$ アルキルとしては、例えば、アセチルアミノメチル等が挙げられる。

C₁・₆アルコキシカルボニルアミノC₁・₄アルキルとしては、例えば、メトキシカルボニルアミノメチル等が挙げられる。

C₁-4ハロアルキルカルボニルアミノC₁-4アルキルとしては、例えば、トリフルオロアセチルアミノメチル等が挙げられる。

C₁-₆アルキルスルホニルアミノC₁-₆アルキルとしては、例えば、メタンスルホニルアミノメチル等が挙げられる。

C₁-₄ハロアルキルスルホニルアミノC₁-₄アルキルとしては、例えば、クロロメチルスルホニルアミノメチル等が挙げられる。

C₁・₆ジアルキルアミノカルボニルとしては、例えば、ジメチルアミノカルボニル等が挙げられる。

С、・。ジアルキルアミノカルボニルС、・、アルキルとしては、例えば、ジメチ

ルアミノカルボニルメチル等が挙げられる。

Ciraアルキルカルボニルとしては、例えば、アセチル等が挙げられる。

C₁。ハロアルキルカルボニルとしては、例えば、トリフルオロアセチル等が 挙げられる。

 C_1 。rルキルカルボニルオキシとしては、例えば、アセチルオキシ等が挙げられる。

C₁・₈ハロアルキルカルボニルオキシとしては、例えば、トリフルオロアセチルオキシ等が挙げられる。

 C_1 - $_6$ アルキルカルボニル C_1 - $_4$ アルキルとしては、例えば、アセチルメチル等が挙げられる。

C₁-₆ハロアルキルカルボニル C₁-₄アルキルとしては、例えば、トリフルオロアセチルメチル等が挙げられる。

C₁・₆アルキルカルボニルオキシC₁・₄アルキルとしては、例えば、アセチルオキシメチル等が挙げられる。

C₁・₆ハロアルキルカルボニルオキシC₁・₄アルキルとしては、例えば、トリフルオロアセチルオキシメチル等が挙げられる。

ヒドロキシイミノC₁-₄アルキルとしては、例えば、ヒドロキシイミノメチル 等が挙げられる。

 C_1 。 C_1

C₁。アルキルカルボニルオキシイミノC₁、アルキルとしては、例えば、アセチルオキシイミノメチル等が挙げられる。

C₁-₆アルキルスルホニルオキシイミノC₁-₄アルキルとしては、例えば、メタンスルホニルオキシイミノメチル等が挙げられる。

C₁-₆アルキルスルホキシとしては、例えば、メチルスルホキシ等が挙げられる。

C₁-₆アルキルスルホキシC₁-₄アルキルとしては、例えば、メチルスルホキシメチル、エチルスルホキシメチル、メチルスルホキシエチル等が挙げられる。

Ciraアルキルスルホニルとしては、例えば、メタンスルホニル等が挙げられ

る。

C₁-₆アルキルスルホニルオキシとしては、例えば、メタンスルホニルオキシ 等が挙げられる。

C₁。アルキルスルホニルC₁・、アルキルとしては、例えば、メチルスルホニルメチル、エチルスルホニルメチル、メチルスルホニルエチル等が挙げられる。

C₁・₄アルキルスルホニルオキシC₁・₄アルキルとしては、例えば、メチルス ⁻ ルホニルオキシメチル等が挙げられる。

C₁-₆ハロアルキルスルホキシとしては、例えば、クロロメチルスルホキシ等が挙げられる。

C₁ ₆ハロアルキルスルホキシC₁ ₁アルキルとしては、例えば、クロロメチルスルホキシメチル等が挙げられる。

C₁-₈ハロアルキルスルホニルとしては、例えば、トリフルオロメチルスルホニル等が挙げられる。

C₁ ₆ハロアルキルスルホニルオキシとしては、例えば、トリフルオロメチルスルホニルオキシ等が挙げられる。

C₁・₆ハロアルキルスルホニル C₁・₁アルキルとしては、例えば、トリフルオロメチルスルホニルメチル等が挙げられる。

C₁ 。ハロアルキルスルホニルオキシC₁ 、アルキルとしては、例えば、トリフルオロメチルスルホニルオキシメチル等が挙げられる。

C₁-₄ジアルキルスルファモイルとしては、例えば、ジメチルスルファモイル 等が挙げられる。

C₁・₄ジアルキルスルファモイル C₁・₄アルキルとしては、例えば、ジメチルスルファモイルメチル等が挙げられる。

C₁·₆アルコキシスルホニルとしては、例えば、メトキシスルホニル等が挙げられる。

C₁-₆アルコキシスルホニルC₁-₄アルキルとしては、例えば、メトキシスルホニルメチル等が挙げられる。

C₁-₆ハロアルコキシスルホニルとしては、例えば、フルオロエトキシスルホニル等が挙げられる。

C₁ 。ハロアルコキシスルホニルC₁ 。アルキルとしては、例えば、フルオロエトキシスルホニルメチル等が挙げられる。

Cı・。ニトロアルキルとしては、例えば、ニトロメチル等が挙げられる。

C2・sシアノアルキルとしては、例えば、シアノメチル等が挙げられる。

C₁・6チオカルバモイルとしては、例えば、CSNH₂等が挙げられる。

ハロゲンとしては、F、Cl、Br、Iが挙げられる。

ハロゲンで置換されていても良いC₁-3アルキレンジオキシとしては、例えば、 ジフルオロメチレンジオキシ、テトラフルオロエチレンジオキシ等が挙げられる。 次に式(1)で表される本発明化合物を、第1表から第11表に示す。但し、

本発明化合物はこれらのみに限定されるものではない。

なお、表中のMe はメチルを、E t はエチルを、P r はプロピルを、B u はブチルを、n-はノルマルを、i-はイソを、s-はセカンダリーを、t-はターシャリーを、P h はフェニルを、B n はベンジルを、A c はアセチルを示す。

第 1 表

. WO 99/21851

化合物N o	R³	R'
1 - 1	Н	Н
1 · 2	Me	Н
1 - 3	Et	Н
1 - 4	n - Pr	Н
1 - 5	i – Pr	H
1 - 6	n - Bu	Н .
1 - 7	Ph	H
1 - 8	Bn	H
1 - 9	F	· H
1 - 10	C1	H
1 - 11	Br	Н
1 - 12	I	Н
1 - 13	SMe	Н
1 - 14	SEt	Н
1 - 15	CH₂OMe	Н
1 - 16	CC1F ₂	Н
1 - 17	CHF ₂	Н
1 - 18	CHFC1	Н
1 - 19	CH 2C1	Н

第 1	表(続	き)
化合物No	R³	R ¹
1 - 20	CF ₃	Н
1 - 21	CN	H
1 - 22	СНО	H
1 - 23	C ₂ F ₅	Н
1 - 24	CH=NOMe	H
1 - 25	CO ₂ Me	Н
1 - 26	CO ₂ Et	H
1 - 27	CONMe ₂	Н
1 - 28	COMe	Н
1 - 29	COPh	H
1 - 30	CH ₂ CO ₂ Me	· H
1 - 31	NO 2	Н
1 - 32	Н	C1
1 - 33	Me	C1
1 - 34	Et	C1
1 - 35	n - Pr	C1
1 - 36	i - Pr	C1
1 - 37	n - Bu	C1
1 - 38	Ph	C1
1 - 39	Bn	C1
1 - 40	F	Cl
1 - 41	C1	C1
1 - 42	Br	Cl
1 - 43	Ī	Cl
1 - 44	SMe	C1
1 - 45	SEt	C1
1 - 46	CH,OMe	Cl
1 · 47	CHF ₂	Cl
1 - 48	CHFC1	Cl
1 - 49	CH ₂ C1	Cl
1 - 50	CF,	C1
1 - 51	CN	C1
1 - 52	СНО	C1
1 - 53	C ₂ F ₅	C1
1 - 54	CH=NOMe	C1
1 - 55	CO ₂ Me	C1
1 - 56	CO ₂ Et	C1
1 - 57	CONMe ₂	Cl
1 - 58	COMe	Cl
1 - 59	CC1F ₂	Cl
1 - 60	CH ₂ CO ₂ Me	Cl
1 - 61	NO ₂	Cl
1 - 62	H	Br
1 · 63	Me	Br
1 09	m C	זמ

第	1 表 (続	き)
—————— 化合物 N o	R *	
1 - 64	Et _	Br
1 - 65	n - Pr	Br
1 · 66	i · Pr	Br
1 - 67	n - Bu	Br
1 - 68	Ph	Br
1 - 69	Bn	Br
1 - 70	F	Br
1 - 71	C1	Br
1 - 72	Br	Br
1 - 73	I	Br
1 - 74	SMe	Br
1 - 75	SEt	Br
1 - 76	CH₂OMe	Br
1 - 77	CHF,	Br
1 - 78	CHFC1	Br
1 - 79	CH ₂ C1	Br
1 - 80	CF,	Br
1 - 81	CN	Br
1 - 82	CHO	Br
1 - 83	C ₂ F ₅	Br
1 - 84	CH=NOMe	Br
1 - 85	CO, Me	Br
1 - 86	CO ₂ Et	Br
1 - 87	CONMe 2	Br
1 - 88	COMe	Br
1 - 89	CC1F ₂	Br
1 - 90	CH,CO,Me	Br
1 - 91	NO 2	Br
1 - 92	H v-	I
1 - 93	Me C+	I
1 - 94 1 · 95	Et	I
1 - 96	n - Pr n - Bu	I
1 - 97	Ph	I I
1 - 98	F	Ī
1 - 99	C1	I
1 - 100	Br	Ī
1 - 101	I	I
1 - 102	SMe	I
1 - 103	CF ₃	I
1 - 104	CN CN	Ĭ
1 - 105	H	F
1 - 106	Me	r F
1 - 107	Et	r F
1 101	DС	ľ

第 1	表(続	き)
化合物No	R ^s	R '
1 - 108	n - Pr	F
1 - 109	n - Bu	F
1 - 110	Ph	F
1 - 111	F	F
1 - 112	C1	F
1 · 113	Br	F
1 - 114	CO ₂ Et	F
1 - 115	SMe	F
1 - 116	CF ₃	F
1 - 117	CN	F
1 - 118	Н	Me
1 - 119	Ме	Me
1 - 120	Et	Me
1 - 121	n - Pr	Me
- 1 - 122	CF ₂ C1	Me
1 - 123	CHF 2	Ме
1 - 124	F	Me
1 - 125	C1	Me
1 - 126	Br	Me
1 - 127	I	Ме
1 - 128	SMe	Me
1 - 129	CF ₃	Me
1 - 130	CN	Me
1 - 131	СНО	Me
1 - 132	CH=NOH	Me
1 - 133	CH=NOMe	Me
1 - 134	CH=NOAc	Me
1 - 135	H	Et
1 - 136	Me	Et
1 - 137	Et	Et
1 - 138	n - Pr	Et
1 - 139	F	Et
1 - 140	Cl	Et
1 · 141	Br	Et
1 - 142	CHF 2	Et
1 · 143	CC1F ₂	Et
	CF ₃	Et E+
1 - 145	CN	Et
1 - 146	CHO	Et
1 - 147	- (CH ₂) ₃	
1 - 148	- (CH ₂) ₄	
1 - 149	- (CH ₂) ₅	
1 - 150	· (CH ₂) ₆	
1 - 151	Н	Ph

第	1 表 (続	き)
化合物No	R ⁸	R ¹
1 - 152	Me	Ph
1 - 153	Et	Ph
1 - 154	n Pr	Ph
1 · 155	F	Ph
1 - 156	C1	Ph
1~ 157	Br	Ph
1 - 158	I	Ph
1 - 159	SMe	Ph
1 - 160	CF ₃	Ph
1 - 161	CN	Ph
1 - 162	СНО	Ph
1 - 163	H	Bn
1 - 164	Me	Bn
1 - 165	Et	Bn
1 - 166 1 - 167	n - Pr	Bn
	F	Bn
1 - 168	C1	Bn
1 - 169	Br	Bn
1 - 170 1 - 171	I	Bn
	SMe	Bn
1 - 172 1 - 173	CF ₃ CN	Bn D-
1 - 173	H	Bn CE
1 - 175	Me	CF ₃ CF ₃
1 - 176	Et	CF ₃
1 - 177	n - Pr	CF ₃
1 - 178	n - Bu	CF ₃
1 - 179	Ph	CF:
1 - 180	F	CF ₃
1 - 181	Ċ1	CF ₃
1 - 182	Br	CF ₃
. 1 - 183	I	CF ₃
1 - 184	SMe	CF ₃
1 - 185	CF ₃	CF ₃
1 - 186	CN	CF ₃
1 - 187	Н	CHO
1 - 188	Ме	СНО
1 - 189	Et	СНО
1 - 190	n - Pr	СНО
1 - 191	n - Bu	CHO
1 - 192	F Bu	CHO
1 - 193	C1	CHO
1 - 194	Br	CHO
1 - 195	I	CHO

	<u></u>	
第 1	表(続	き)
化合物No	R ^s	R '
1 - 196	SMe	СНО
1 · 197	CF,	СНО
1 - 198	CN	СНО
1 - 199	Н	CH=NOH
1 - 200	Me	CH=NOH
1 - 201	Et	CH=NOH
1 - 202	n - Pr	CH=NOH
1 - 203	F	CH=NOH
1 - 204	C1	CH=NOH
1 - 205	Br	CH=NOH
1 - 206	Ī	CH=NOH
1 - 207	SMe	CH=NOH
1 · 208	CF ₃	CH=NOH
1 - 209	CN	CH=NOH
1 - 210	H	CH=NOMe
1 - 211	Me	CH=NOMe
1 - 212	Et	CH=NOMe
1 - 213	n - Pr	CH=NOMe
1 - 214	F	CH=NOMe
1 - 215	C1	CH=NOMe
1 - 216	Br	CH=NOMe
1 - 217	I	CH-NOME CH=NOMe
1 - 218	SMe	CH-NOME CH=NOMe
1 - 218	CF _s	CH=NOMe
1 - 220	CN S	CH-NOME CH=NOMe
1 - 221	H	CH=NOAc
1 - 222	Ме	CH=NOAC
1 223	Et	CH-NOAC
	n - Pr F	CH=NOAc
1 - 225		CH=NOAc
1 - 226	C1	CH=NOAc
1 - 227	Br	CH=NOAc
1 - 228	I CM-	CH=NOAc
1 - 229	SMe	CH=NOAc
1 - 230	CF ₃	CH=NOAc
1 - 231	CN	CH=NOAc
1 - 232	H	СОМе
1 - 233	Ме	COMe
1 - 234	Et	COMe
1 - 235	n - Pr	COMe
1 · 236	n - Bu	COMe
1 - 237	F	COMe
1 - 238	Cl	COMe
1 - 239	Br	COMe

 第	1 表 (続	き)
化合物 No	R ³	R ¹
1 - 240	I	СОМе
1 · 241	SMe	COMe
1 242	CF,	COMe
1 · 243	CN	COMe
1 - 244	Н	COEt
1 - 245	Мe	COEt
1 - 246	Et	COEt
1 - 247	n - Pr	COEt
1 - 248	n - Bu	COEt
1 - 249	Ph	COEt
1 - 250	F	COEt
1 - 251	C1	COEt
1 - 252	Br	COEt
1 · 253	I	COEt
1 - 254	SMe	COEt
1 - 255	CF ₃	COEt
1 · 256	CN	COEt
1 - 257	Н	COPh
1 - 258	Me	COPh
1 - 259	Et	COPh
1 - 260	n - Pr	COPh
1 - 261	F	COPh
1 - 262	Cl	COPh
1 - 263	Br	COPh
1 - 264	I	COPh
1 - 265	Н	COCF ₃
1 - 266	Me	COCF ₃
1 - 267	Et	COCF ₃
1 - 268	n - Pr	COCF ₃
1 - 269	F	COCF 3
1 - 270	C1 ·	COCF 3
1 · 271	Br	COCF ₃
1 - 272	I	COCF ₃
1 - 273	SMe	COCF ₃
1 - 274	CF ₃	COCF ₃
1 - 275	CN	COCF ₃
1 - 276	Н	CO ₂ Me
1 - 277	Me	CO ₂ Me
1 - 278	Et	CO ₂ Me
1 - 279	n - Pr	CO ₂ Me
1 - 280	n - Bu	CO ₂ Me
1 - 281	Ph	CO ₂ Me
1 - 282	F	CO₂Me
1 - 283	Cl	CO₂Me

 第	1 表	(続 き)	<u> </u>
化合物No	R ³	R	1
1 - 284	Br	C	D ₂ Me
1 - 285	I	C	D₂Me
1 - 286	SMe		D₂Me
1 - 287	CF ₃	C)₂Me
1 - 288	CN		D₂Me
1 · 289	Н	C	D₂Et
1 - 290	Me	C	D₂Et
1 - 291	Et	C) ₂ Et
1 - 292	F	C	D₂Et
1 - 293	C1	C) ₂ Et
1 - 294	Br	C)₂Et
1 - 295	SMe	C)₂Et
1 - 296	CF ₃	C)₂Et
1 - 297	CN	C) ₂ Et
1 - 298	H	C)₂n - Pr
1 - 299	Me)₂n - Pr
1 - 300	Et		o ₂ n - Pr
1 - 301	F		on - Pr
1 - 302	C1)₂n - Pr
1 - 303	Br		on - Pr
1 - 304	SMe)₂n - Pr
1 - 305	CF ₃)₂n - Pr
1 - 306	CN		₂ n - Pr
1 - 307	H) ₂ i - Pr
1 - 308	Me)₂i - Pr
1 - 309	Et)₂i - Pr
1 - 310	F)₂i - Pr
1 - 311	C1		2i - Pr
1 - 312	Br	•)₂i - Pr
1 - 313	SMe)₂i - Pr
1 - 314	CF ₃		0₂i - Pr
1 - 315	CN		o₂i - Pr
1 - 316	H)₂n - Bu
1 · 317	Me		on - Bu
1 · 318	Et)₂n - Bu
1 - 319	F)₂n - Bu
1 - 320	C1		on - Bu
1 - 321	Br		on Bu
1 - 322	SMe		₂n - Bu
1 - 323	CF ₃		en Bu
1 - 324	CN		≥n - Bu
1 - 325	H		2i - Bu
1 - 326	Me		2i Bu
1 - 327	Et	CC	₂i - Bu

第	1 表	(続	き)
化合物No	R ³		R ⁴
1 - 328	F		CO ₂ i - Bu
1 · 329	C1		CO₂i - Bu
1 - 330	Br		CO2i Bu
1 - 331	SMe		CO₂i - Bu
1 - 332	CF ₃		CO2i - Bu
1 - 333	CN		CO2i - Bu
1 - 334	Н		CO ₂ s - Bu
1 - 335	Мe	-	CO2s - Bu
1 - 336	Et		CO2s - Bu
1 - 337	F		CO2s - Bu
1 - 338	C1		CO2s - Bu
1 - 339	Br		CO2s - Bu
1 - 340	SMe		CO2s - Bu
1 - 341	CF ₃		CO2s - Bu
- 1 - 342	CN		CO2s - Bu
1 - 343	Н		CO ₂ t - Bu
1 - 344	Мe		CO₂t - Bu
1 - 345	Et		CO₂t - Bu
1 - 346	F		CO2t - Bu
1 - 347	C1		CO₂t - Bu
1 - 348	Br		CO2t - Bu
1 - 349	SMe		CO₂t - Bu
1 - 350	CF ₃		CO ₂ t - Bu
1 - 351	CN		CO₂t · Bu
1 - 352	Н		CO ₂ Ph
1 - 353	Ме		CO ₂ Ph
1 - 354	Et		CO ₂ Ph
1 - 355	F		CO ₂ Ph
1 - 356	C1		CO ₂ Ph
1 - 357	Br		CO ₂ Ph
1 - 358	SMe		CO₂Ph
1 - 359	CF ₃		CO ₂ Ph
1 - 360	CN		CO ₂ Ph
1 - 361	H		COCO₂Me
1 - 362	Ме		COCO ₂ Me
1 - 363	F		COCO, Me
1 - 364	C1		COCO, Me
1 - 365	Br		COCO, Me
1 - 366	SMe		COCO: Me
1 - 367	CF 3		COCO, Me
1 - 368	CN		COCO 2 Me
1 - 369	H		COCO, Et
1 - 370	Ме		COCO, Et
1 - 371	F		COCO ₂ Et

- 第 	1 表 (続	き)
化合物No	R ³	R ¹
1 - 372	_ C1	COCO ₂ Et
1 - 373	Br	COCO ₂ Et
1 - 374	SMe	COCO ₂ Et
1 - 375	CF ₃	COCO ₂ Et
1 - 376	CN	COCO ₂ Et
1 - 377	Н	SMe
1 - 378	Me	SMe
1 - 379	Et	SMe
1 - 380	n - Pr	SMe
1 - 381	F	SMe
1 - 382	C1	SMe
1 - 383	Br	SMe
1 - 384	I	SMe
1 - 385	SMe	SMe
1 - 386	CF ₃	SMe
1 - 387	CN	SMe
1 - 388	Н	SOMe
1 - 389	Ме	SOMe
1 - 390	Et	SOMe
1 - 391	C1	SOMe
1 - 392	Br	SOMe
1 - 393	CF _s	SOMe
1 - 394	CN	SOMe
1 - 395	Н	SO, Me
1 - 396	Мe	SO, Me
1 - 397	Et	SO ₂ Me
1 - 398	C1	SO, Me
1 - 399	Br	SO ₂ Me
1 - 400	CF ₃	SO.Me
1 - 401	CN	S0₂Me
1 - 402	Н .	SPh
1 - 403	Me	SPh
1 - 404	Et	SPh
1 - 405	n - Pr	SPh
1 - 406	F	SPh
1 - 407	C1	SPh
1 - 408	Br	SPh
1 - 409	I	SPh
1 - 410	SMe	SPh
1 - 411	CF ₃	SPh
1 - 412	CN	SPh
1 · 413	H	SOPh
1 - 414	Me	SOPh
1 - 415	Et	SOPh
1 -110	20	00111

	<u>`</u>	-
第 ————	1 表	(続 き)
化合物No	R ^s	R '
1 - 416	C1	SOPh
1 - 417	Br	SOPh
1 · 418	CF 3	SOPh
1 · 419	CN	SOPh
1 - 420	Н	SO ₂ Ph
1 - 421	Мe	SO ₂ Ph
1 - 422	Et	S02Ph
1 - 423	C1	SO ₂ Ph
1 - 424	Br	S02Ph
1 - 425	CF ₃	SO ₂ Ph
1 - 426	CN	SO ₂ Ph
1 - 427	H	NO ₂
1 - 428	Me	NO ₂
1 - 429	Et	NO ₂
1 · 430	C1	NO ₂
1 431	Br	NO 2
1 - 432	SMe	NO 2
1 - 433	CF ₃	NO ₂
1 - 434	CN	NO ₂
1 - 435	Н	CN
1 - 436	Me	CN
1 - 437	Et	CN
1 - 438	n - Pr	CN
1 - 439	F	CN
1 - 440	C1	CN
1 - 441	Br	CN
1 - 442	SMe	CN ·
1 - 443	CF ₃	CN
1 - 444	CN	CN
1 - 445 1 - 446	H	- CH ₂ CN
1 - 447	Me Et	CH ₂ CN
1 - 448	n - Pr	CH₂CN CH₂CN
1 - 449	C1	
1 - 450	Br	CH2CN CH2CN
1 - 451	SMe	CH ₂ CN
1 - 452	CF ₃	CH ₂ CN
1 - 453	CN	CH ₂ CN
1 - 454	Н	OMe
1 - 455	Ме	OMe
1 · 456	Et	OMe
1 - 457	C1	OMe
1 - 458	Br	OMe
1 · 459	SMe	OMe
1 100	~m~	OHC

第 1	表 (続	き)
化合物No	R ⁸	R 4
1 - 460	CF ₃	0Me
1 - 461	CN	OMe
1 - 462	Н	CH2NMe2
1 - 463	Me	CH2NMe2
1 - 464	Et	CH2NMe2
1 - 465	C1	CH2NMe2
1 - 466	Br	CH ₂ NMe ₂
1 - 467	SMe	CH2NMe2
1 - 468	CF a	CH2NMe2
1 - 469	CN	CH2NMe2
1 - 470	Н	0C0Me
1 - 471	Me	OCOMe ·
1 - 472	Et	ОСОМе
1 - 473	C1	OCOMe
1 - 474	Br	OCOMe
1 - 475	SMe	OCOMe
1 - 476	CF 3	OCOMe
1 · 477	CN	OCOMe
1 478	Н	CH(OMe)2
1 - 479	Ме	CH(OMe) ₂
1 - 480	Et	CH(OMe) ₂
1 - 481	n - ·Pr	CH(OMe) ₂
1 - 482	C1	CH(OMe) ₂
1 - 483	Br	CH(OMe) ₂
1 - 484	SMe	CH(OMe) ₂
1 - 485	CF ₃	CH(OMe),
1 - 486	CN	CH(OMe) ₂
1 - 487	H	CH(SMe) ₂
1 - 488	Me	CH(SMe)
1 - 489	Et	CH(SMe) ₂
1 - 490	n - Pr	CH(SMe) ₂
1 - 491	C1	CH(SMe) ₂
1 - 492	Br	CH(SMe) ₂
1 493	SMe	CH(SMe) ₂
1 - 494	CF ₃	CH(SMe) ₂
1 · 495	CN	CH(SMe) ₂
1 - 496	H	CH ₂ C1
1 - 497	Me	CH ₂ C1
1 - 497	me Et	CH ₂ C1
1 - 498	n - Pr	CH ₂ C1
	n - Fr F	CH ₂ C1
1 - 501	C1	CH ₂ Cl
1 - 502	Br	CH ₂ C1
1 - 503	I	CH ₂ C1

		
第 	1 表 (続 き)
化合物 No	R ³	R '
1 - 504	SMe	CH ₂ C1
1 - 505	CF _s	CH ₂ C1
1 - 506	CN	CH ₂ C1
1 - 507	H	CH₂OH
1 - 508	Ме	CH 2 OH
1 - 509	Et	CH ₂ OH
1 - 510	n – Pr	CH ₂ OH
1 - 511	F	СН₂ОН
1 - 512	C1	CH₂OH
1 - 513	Br	CH ₂ OH
1 - 514	SMe	CH ₂ OH
1 - 515	CF ₃	CH ₂ OH
1 - 516	CN	CH ₂ OH
1 - 517	Н	СН(ОН)Ме
1 - 518	Ме	СН(ОН)Ме
1 - 519	Et	CH(OH)Me
1 - 520	n - Pr	CH(OH)Me
1 - 521	F	CH(OH)Me
1 - 522	C1	CH(OH)Me
1 - 523	Br	CH(OH)Me
1 - 524	SMe	CH(OH)Me
1 - 525	CF ₃	CH(OH)Me
1 - 526	CN	CH(OH)Me
1 · 527	Н	CH(OH)Et
1 - 528	Me	CH(OH)Et
1 - 529	Et	CH(OH)Et
1 - 530	n - Pr	CH(OH)Et
1 - 531	F	CH(OH)Et
1 - 532	C1	CH(OH)Et
1 - 533	Br	CH(OH)Et
1 - 534	SMe	CH(OH)Et
1 - 535	CF _s	CH(OH)Et
1 - 536	CN	CH(OH)Et
1 - 537	Н	CH(OH)CF ₃
1 - 538	Ме	CH(OH)CF ₃
1 - 539	Et	CH(OH)CF ₃
1 · 540	n - Pr	CH(OH)CF ₃
1 540	F	CH(OH)CF ₃
1 - 542	C1	=
1 - 542	Br	CH(OH)CF 3
1 - 544	SMe	CH(OH)CF
		CH(OH)CF ₃
1 - 545	CF 3	CH(OH)CF ₃
1 - 546	CN	CH(OH)CF ₃
1 - 547	Н	CH₂OMe

第	1 表	(続	き)
化合物 No	R ³		R 1
1 - 548	Me		CH₂OMe
1 - 549	Et		CH₂OMe
1 - 550	n - P	r	CH₂OMe
1 - 551	F		CH₂OMe
1 - 552	C1		CH₂OMe
1 - 553	Br		CH₂OMe
1 - 554	SMe		CH₂OMe
1 - 555	CF 3		CH₂OMe
1 - 556	CN		CH₂OMe
1 - 557	Н		CONMe ₂
1 - 558	Me		CONMe ₂
1 - 559	Et		CONMe ₂
1 - 560	n - P	r	CONMe 2
1 - 561	F		CONMe ₂
1 - 562	C1		CONMe ₂
1 - 563	Br		CONMe ₂
1 - 564	SMe		CONMe ₂
1 - 565	CF ₃		CONMe ₂
1 - 566	CN		CONMe ₂
1 - 567	Н		CO(4 - CF₃Ph
1 - 568	Ме		CO(4 - CF ₃ Ph
1 - 569	Et		CO(4 - CF ₃ Ph
1 - 570	C1		CO(4 - CF ₃ Ph
1 - 571	Br		CO(4 - CF ₃ Ph

$$\begin{array}{c} \mathsf{R}^{\mathsf{R}} & \mathsf{B}^{\mathsf{I}} & \mathsf{B}^{\mathsf{I}} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I} \\ \mathsf{I}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{I}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{I}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{I}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{I}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{I}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{I}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{I}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{I}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{R}^{\mathsf{I}} & \mathsf{O}_{2} \mathsf{S} & \mathsf{I}^{\mathsf{N}} & \mathsf{N} \\ \mathsf{R}^{\mathsf{R}} & \mathsf{$$

$$\begin{array}{c} \text{R}^{8} \\ \text{R}^{9} \\ \text{R}^{10} \\ \text{O}_{2} \\ \text{S} \\ \text{N} \\$$

化合物No	R 7	R *	R ⁹	R 10
2 - 1	F	Н	Н	Н
2 - 2	Н	F	H	H
2 - 3	Н	Н	F	Н
2 - 4	Н	Н	H	F
2 - 5	C1	H	Н	H
2 · 6	Н	C1	H	Н
2 - 7	Н	Н	C1	H
2 - 8	Н	Н	H	C1
2 - 9	Br	H	H	Н
2 - 10	Н	Br	H	H
2 - 11	Н	H	Br	H
2 - 12	Н	H	Н	Br
2 - 13	I	Н	H	Н
2 - 14	Н	Ι .	· H	Н
2 - 15	Н	Н	. I	H
2 - 16	Н	Н	Н	I
2 - 17	Мe	H	Н	H
2 - 18	H	Me	Н	Н
2 - 19	Н	Н	Me	Н
2 - 20	Н	Н	H	Мe
2 - 21	Et	H	Н	H
2 - 22	H	Et	Н	H
2 - 23	Н	Н	Et	Н
2 - 24	Н	Н	H	Et
2 - 25	MeO	H	Н	Н
2 - 26	Н	Me0	Н	Н
2 - 27	Н	H	Me0	Н
2 - 28	Н	Н	Н	MeO
2 - 29	NO 2	Н	Н	Н
2 - 30	H	NO ₂	Н	Н
2 - 31	Н	Н	NO ₂	Н
2 - 32	Н	Н	Н	NO 2
2 - 33	CN	Н	Н	H
2 - 34	Н	CN	Н	Н
2 - 35	Н	Н	CN	Н
2 - 36	Н	Н	Н	CN
2 - 37	CF _s	Н .	Н	Н
2 - 38	Н	CF ₃	Н	H -
2 - 39	Н	Н	CF ₃	Н
2 - 40	Н	Н	Н	CF ₈
2 · 41	CO₂Me	H	H	Н
2 - 42	Н	CO₂Me	H	H
2 - 43	H	Н	CO₂Ne	H
2 - 44	Ĥ	Ĥ	Н	CO ₂ Me

第 3 表

$$\begin{array}{c} R^{8} \\ R^{9} \\ R^{10} \\ O_{2}S \\ N-N \\ \end{array} \\ \begin{array}{c} \text{\sharp \hbar th t} \\ R^{9} \\ R^{10} \\ O \\ N-N \\ \end{array} \\ \begin{array}{c} N-N \\ N-N \\ SO_{2}NMe_{2} \\ \end{array} \\ \begin{array}{c} \text{\downarrow} \\ R^{10} \\ O \\ N-N \\ \end{array} \\ \begin{array}{c} N-N \\ SO_{2}NMe_{2} \\ \end{array} \\ \begin{array}{c} \text{\downarrow} \\ \text{$$

化合物No	R 7	R *	R ª	Rio
3 - 1	Н	Н	Н	Н
3 - 2	F	H	H	H
3 - 3	H	F	Н	Н
3 - 4	Н	Н	F	H
3 - 5	Н	Н	H	F
3 - 6	C1	Н	H	Н
3 - 7	Н	C1	Н	H
3 - 8	Н	H	C1	Н
3 - 9	Н	Н	H	C1
3 - 10	Br	Н	H	Н
3 - 11	Н	Br	H	H
3 - 12	Н	H	Br	Н
3 - 13	H	Н	Н	Br
3 - 14	Мe	H	Н	Н
3 - 15	H	Me	H	Н
3 - 16	Н	Η.	Me	H
3 - 17	Н	Н	H	Me
3 - 18	CF ₃	H	Н	Н
3 - 19	н.	CF ₃	H	Н
3 - 20	Н	Н	CF 3	Н
3 - 21	Н	Н	H	CF ₃

第 4 表

化合物No	R³	R '	
4 - 1	Н	Н	
4 - 2	H	Me	
4 - 3	Н	Et	
4 - 4	Н	C1	
4 - 5	Н	Br	
4 - 6	Н	CF ₃	

· 第 	4	表(紀	き き)	
化合物No		R ⁸	R ¹	
4 - 7	~ .	Me	Н	-
4 - 8		Мe	Мe	
4 - 9		Me	Et	
4 - 10		Me	Cl	
4 - 11		Me	Br	
4 - 12		Мe	CF ₃	
4 - 13		Et	Н	
4 - 14		Et	Me	
4 - 15		Et	Et	
4 - 16		Et	C1	
4 - 17		Et	Br	
4 - 18		Et	CF ₃	
4 - 19		C1	Н	
4 - 20		C1 -	Мe	
4 - 21		C1	Et	
4 - 22		C1	Cl	
4 - 23		C1	Br	
4 - 24		Cl	CF ₃	
4 - 25		Br	Н	
4 - 26		Br	Мe	
4 - 27		Br	Et	
4 - 28		Br	Br	
4 - 29		Br	CF ₃	

第 5 表

//. A 44- > 7					
化合物 N o	R ³	R '	R 5	R ⁶	
5 - 1	Н	Ph	Н	Н	
5 - 2	C1	Ph	Н	H	
5 - 3	Н	Ph	· C1	Н	
5 - 4	Н	Ph	Н	Cl	
5 - 5	C 1	Ph	CI	Н	
5 · 6	C1	Ph	Н	C1	
5 - 7	H	Ph	C1	C1	
5 - 8	C1	Ph	C1	C1	
5 - 9	Br	Ph	C1	Н	
5 - 10	C1	Ph	Br	H	
5 - 11	Br	Ph	H	C1	
5 - 12	C1	Ph	Н	Br	
5 - 13	Н	Ph	Br	C1	
5 - 14	Н	Ph	C1	Br	
5 - 15	Br	Ph	C1	C1	
5 · 16	C1	Ph	Br	C1	
5 - 17	C1	Ph	C1	Br	
5 - 18	Br	Ph	Br	C1	
5 - 19	Br	Ph	C1	Br	
5 - 20	C1	Ph	Br	Br	
5 - 21	Me	Ph	H	Н	
5 - 22	Н	Ph	Me	H	
5 - 23	Н	Ph	Н	Ме	
5 - 24	Мe	Ph	C1	H	
5 - 25	Me	Ph	Н	C1	
5 - 26	Ме	Ph	C1	C1	
5 - 27	Мe	Ph	Br	C1	
5 · 28	Me	Ph	C1	Br	
5 - 29	Cl	Ph	Me	Н	
5 - 30	Н	Ph	Me	C1	
5 - 31	C1	Ph	Мe	CI	
5 - 32	Br ·	Ph	Me	C1	
5 - 33	C1	Ph	Ме	Br	
5 - 34	Cl	Ph	Н	Ме	
5 - 35	Н	Ph	Cl	Me	
5 - 36	C1	Ph	Cl	Me	
5 - 37	Br	Ph	C1	Me	
5 - 38	C1	Ph	Br	Me	
5 - 39	Br	Ph	Н	H	
5 - 40	Н	Ph	Br	Н	
5 - 41	Н	Ph	Н	Br	
5 - 42	Br	Ph	Br	Н	
5 - 43	Br	Ph	Н	Br	
5 · 44	Н	Ph	Br	Br	
5 · 45	Br	Ph	Br	Br	
5 · 46	Me	Ph	Br	Н	

	第 5 ————	表 (続 き) ———		
化合物No		R ^s	R ¹	R 5	R ⁶
5 - 47		Ме	Ph	Н	Br
5 - 48		Me	Ph	Br	Br
5 - 49		Br	Ph	Me	Н
5 - 50		H	Ph	Me	Br
5 - 51		Br	Ph	Me	Br
5 - 52		Br	· Ph	Н	Me
5 - 53		Н	Ph	Br	Мe
5 - 54		Br	Ph	Br	Me
5 - 55	•	Мe	Ph	Ме	H
5 - 56		Me	Ph	Ие	. C1
5 - 57		Мe	Ph	Me	Br
5 - 58		Н	Ph	Me	Мe
5 - 59		C1	Ph	Ме	Me
5 - 60		Br	Ph	Me	Me
5 - 61		Мe	Ph	H	Мe
5 - 62		Me	Ph	C1	Мe
5 - 63		Me	Ph	Br	Мe
5 - 64		CO ₂ Me	Ph	Me	H
5 - 65		Me	Ph	CO ₂ Me	Н
5 - 66		CO₂Me	Ph	Me	C1
5 - 67		Ме	Ph	CO ₂ Me	Cl
5 - 68		CO₂Me	Ph	Мe	Br
5 - 69		Me	Ph	CO₂Me	Br
5 - 70		Ac	Ph	Me	Н
5 - 71		Me	Ph	Ac	Н
5 - 72		Ac	Ph	Me	C1
5 - 73		Me .	Ph	Ac	C1
5 - 74		Ac	Ph	Ие	Br
5 - 75		Ме	Ph	Ac	Br
5 - 76		CN	Ph	Me	Н
5 - 77		Me	Ph	CN	Н
5 - 78		CN	Ph	Me	C1
5 - 79		Me	Ph	CN	Cl
5 - 80	•	CN	Ph	Ме	Br
5 - 81		Me	Ph	CN	Br
5 - 82		Н	Ph	CO₂Me	Мe
5 - 83		H	Ph	Ме	CO ₂ M
5 - 84		C1	Ph	CO₂Me	Мe
5 - 85		C1	Ph	Ме	CO ₂ M
5 - 86		Br	Ph	CO₂Me	Me
5 - 87		Br	Ph	Me	CO ₂ M
5 - 88		H	Ph	Ac	Me
			* **		J. O
5 - 89		Н	Ph	Me	Ac

	第 5 ————	表 	(続き	ŧ)	
化合物No		R ³	R'	R ⁵	R 6
5 - 91		C1	Ph	Ме	Ac
5 - 92		Br	Ph	Ac	Мe
5 - 93		Br	Ph	Мe	Ac
5 · 94		Н	Ph	CN	Me
5 - 95		Н	Ph	Мe	CN
5 - 96		C1	Ph	CN	Me
5 - 97		C1	Ph	Мe	CN
5 - 98		Br	Ph	CN	Me
5 - 99		Br	Ph	Ме	CN
5 - 100		CO ₂ Me	Ph	H	Me
5 - 101		Ме	Ph	H	CO₂Me
5 - 102		CO₂Me	Ph	C1	Me
5 - 103		Me	Ph	C1	CO₂Me
5 - 104		CO.Me	Ph	Br	Мe
5 - 105 5 - 106		Me	Ph	Br	CO₂Me
5 - 106		Ac	Ph	H	Мe
5 - 107 5 - 108		Me	Ph	H	Ac
5 - 108 5 - 100		Ac	Ph	C1	Me
5 - 109 5 - 110		Me	Ph	C1	Ac
5 - 111		Ac	Ph	Br	Me
5 - 112		Me CN	Ph	Br	Ac
5 - 113		Me	Ph Ph	H	Me
5 - 114		CN CN	Ph	H Cl	CN
5 - 115		Me	Ph	C1	Me
5 - 116		CN	Ph	Br	CN Me
5 - 117		Ме	Ph	Br	me CN
5 - 118		Et	Ph	H	H
5 - 119		Н	Ph	Et	H
5 - 120		Н	Ph	H	Et
5 - 121		Et	Ph	C1	H
5 - 122		Et	Ph	Н	C1
5 - 123		Et	Ph	C1	Cl
5 - 124		Et	Ph	Br	Cl
5 - 125		Et	Ph	C1	Br
5 - 126		C1	Ph	Et	Н
5 - 12 7		Н	Ph	Et	C1
5 - 128		C1	Ph	Et	C1
5 - 129		Br	Ph	Et	C1
5 - 130		C1	Ph	Et	Br
5 - 131		C1	Ph	Н	Et
5 - 132		H	Ph	C1	Et
5 - 133		C1	Ph	C1	Et
5 - 134		Br	Ph	C1	Et

	第 5	表	(続 き)		
化合物No		R³	R 4	R ⁵	R ⁶
5 - 135		Cl	Ph	Br	Et
5 - 136		Et	Ph	Br	Н
5 - 137		Et	Ph	H	Br
5 - 138		Et	Ph	Br	Br
5 - 139		Br	Ph	Et	H
5 - 140		Н	Ph	Et	Br
5 - 141		Br	Ph	Et	Br
5 - 142		Br	Ph	Н	Et
5 - 143		Н	Ph	Br	Et
5 - 144		Br	Ph	Br	Et
5 - 145		CN	Ph	H	Н
5 - 146		Н	Ph	CN	H
5 - 147		Н	Ph	H	CN
5 - 148		CN	Ph	C1	H
5 - 149		CN	Ph	H	C1
5 - 150		CN	Ph	C1	C1
5 - 151		CN	Ph	Br	C1
5 - 152		CN	Ph	C1	Br
5 - 153		Cl	Ph	CN	H
5 - 154		Н	Ph	CN	C1
5 - 155		C1	Ph	CN	C1
5 - 156		Br	Ph	CN	C 1
5 - 157		C1	Ph	CN	Br
5 - 158		C1	Ph	Н	CN
5 - 159		Н	Ph	C1	CN
5 - 160		Br	Ph	Н	CN
5 - 161		Н	Ph	Br	CN
5 - 162		CN	Ph	Br	H
5 - 163		CN	Ph	Н	Br
5 - 164		CN -	Ph	Br	Br
5 - 165		Br	Ph	CN	Н
5 - 166		Н	Ph	CN	Br
5 - 167		Br	Ph	CN	Br
5 - 168		C1	Ph	C1	CN
5 - 169		Cl	Ph	Br	CN
5 - 170		Br ·	-	C1	CN
5 - 171		Br	Ph	Br	CN
5 172		CF ₃	Ph	H	Н
5 - 173		H	Ph	CF ₃	H
5 - 174		H	Ph	H	CF ₈
5 - 175		CF ₃	Ph	C1	H
5 - 176		CF ₃	Ph	Н	C1
5 - 177		CF ₃	Ph	C1	C1
5 - 178		CF ₃	Ph	Br	C1

	第	5 表	(続き))	
化合物No		R ³	R'	R ⁵	R ⁶
5 - 179		CF ₃	Ph	C1	Br
5 - 180		C 1	Ph	CF ₃	Н
5 - 181		Н	Ph	CF ₃	C1
5 - 182		C1	Ph	CF ₃	C1
5 - 183		Br	Ph	CF ₃	Cl
5 - 184		C1	Ph	CF ₃	Br
5 - 185		C1	Ph	H	CF ₃
5 - 186		Н	Ph	C1	CF ₃
5 - 187		C1	Ph	Cl	CF ₃
5 - 188		Br	Ph	C1	CF ₃
5 - 189	•	C1	Ph	Br	CF 3
5 - 190		CF ₃	Ph	Br	H
5 - 191		CF ₃	Ph	H	Br
5 - 192		CF ₃	Ph	Br	Br
_ 5 - 193		Br	Ph	CF ₃	Н
5 - 194		Н	Ph	CF ₃	Br
5 - 195		Br	Ph	CF ₃	Br
5 - 196		Br	Ph	Н	CF 3
5 - 197		H	Ph	Br	CF ₃
5 - 198		Br	Ph	Br	CF ₃
5 - 199		NO ₂	Ph	Н	Н
5 - 200		Н	Ph	NO ₂	Н
5 - 201		Н	Ph	Н	NO 2
5 - 202		NO ₂	Ph	C1	Н
5 - 203		NO ₂	Ph	Н	C1
5 204		NO 2	Ph	C1	Cl
5 - 205		NO ₂	Ph	Br	C1
5 - 206		NO 2	Ph	C1	Br
5 - 207		C1	Ph	NO ₂	H
5 - 20 8		Н	Ph	NO ₂	C1
5 - 209		C1	Ph	NO ₂	C1
5 - 210		Br	Ph	NO ₂	C1
5 - 211		C1	Ph	NO ₂	Br
5 - 212		C1	Ph	Н	NO 2
5 - 213		H	Ph	C1	NO ₂
5 - 214		C1	Ph	C1	NO ₂
5 - 215		Br	Ph	C1	NO 2
5 - 216		C1 ·	Ph	Br	NO ₂
5 - 217		NO ₂	Ph	Br	H
5 - 218		NO ₂	Ph	Н	Br
5 - 219		NO ₂	Ph	Br	Br
5 - 220		Br	Ph	NO ₂	H
5 - 221		H	Ph	NO ₂	Br

		第 5 表 (続き)							
化合物No	R ³	R '	R 5	R ⁶					
5 - 223	Br	Ph	Н	NO 2					
5 - 224	Н	Ph	Br	NO 2					
5 - 225	Br	Ph	Br	NO 2					
5 - 226	CO,Me	Ph	H	H					
5 - 227	H	Ph	CO₂Me	Н					
5 - 228	Н	Ph	H	CO ₂ Me					
5 - 229	CO ₂ Me	Ph	C1	H					
5 - 230	CO ₂ Me	Ph	H	C1					
5 - 231	CO₂Me	Ph	C1	C1					
5 - 232	CO ₂ Me	Ph	Br	C1					
5 - 233	CO ₂ Me	Ph	C1	Br					
5 - 234	C1	Ph	CO ₂ Me	H					
5 - 235	Н	Ph	CO ₂ Me	Cl					
5 - 236	C1	Ph	CO₂Me	C1					
5 · 237	Br	Ph	CO₂Me	C1					
5 - 238	C1	Ph	CO ₂ Me	Br					
5 - 239	C1	Ph	Н	CO ₂ Me					
5 - 240	Н	Ph	C1	CO ₂ Me					
5 - 241	Cl	Ph	C1	CO ₂ Me					
5 - 242	Br	Ph	C1	CO ₂ Me					
5 - 243	C1	Ph	Br	CO ₂ Me					
5 - 244	CO₂Me	Ph	Br	Н					
5 - 245	CO₂Me	Ph	H	Br					
5 - 246	CO ₂ Me	Ph	Br	Br					
5 - 247	Br	Ph	CO₂Me	Н					
5 - 248	Н	Ph	CO ₂ Me	Br					
5 - 249	Br	Ph	CO ₂ Me	Br					
5 - 250	Br	Ph	Н	CO ₂ Me					
5 - 251	H	Ph	Br	CO 2 Me					
5 - 252	Br	Ph	Br	CO ₂ Me					
5 - 253	Ac	Ph	H	Н					
5 - 254	Н	Ph	Ac	H					
5 - 255	H	Ph	Н	Ac					
5 - 256	Ac	Ph	C1	H					
5 - 257	Ac	Ph	H	C1					
5 - 258	Ac	Ph	C1	C1					
5 - 259	Ac	Ph	Br	C1					
5 - 260	Ac	Ph '	C1	Br					
5 - 261	C1	Ph	Ac	Н					
5 - 262	H	Ph	Ac	C1					
5 - 263	C1	Ph	Ac	C1					
5 - 264	Br	Ph	Ac	C1					
	C1	Ph		Br					
5 - 265			Ас						
5 - 266	C1	Ph	Н	Ac					

//. A #4-5-			_		
化合物 N o 	·	R ³	R ⁴	R ⁵	R ⁶
5 - 267		Н	Ph	C 1	Ac
5 - 268		C1	Ph	C1	Ac
5 - 269		Br	Ph	C1	Ac
5 · 270		C1	Ph	Br	Ac
5 · 271		Ac	Ph	Br	Н
5 - 272		Ac	Ph	Н	Br
5 - 273		. Ac	Ph	Br	Br
5 - 274		Br	Ph	Ac	H
5 - 275		Н	Ph	Ac	Br
5 - 276		Br	Ph	Ac	Br
5 - 277		Br	Ph	H	Ac
5 - 278		H	Ph	Br	Ac
5 - 279		Br	Ph	Br	Ac
5 - 280		Ph	H	H	Н
5 - 281		Ph	C1	H	H
5 - 282		Ph	Н	C1	H
5 - 283		Ph	H	H	C1
5 - 284		Ph	C1	C1	H
5 - 285		Ph	Br	C1	Н
5 - 286 5 - 287		Ph	C1	Br	H
5 - 287 5 - 288		Ph	C1	H	C1
5 - 289		Ph Ph	Br	H	C1
5 - 290		Ph	C1	H	Br
5 - 291		Ph Ph	H H	C1	C1 C1
5 - 292		Ph	п Н	Br Cl	Br
5 - 293		Ph	C1	C1	Cl
5 - 294		Ph	Br	C1	C1
5 - 295		Ph	C1	Br	C1
5 - 296	•	Ph	C1	C1	Br
5 - 297		Ph	Br	Br	C1
5 - 298		Ph	Br	C1	Br
5 - 299		Ph	C1	Br	Br
5 - 300		Ph	Me	Н	Н
5 - 301		Ph	Н	Ме	H
5 - 302		Ph	H	Н	Me
5 - 303		Ph	Ме	C1	H
5 - 304		Ph	Me	H	C1
5 - 305		Ph	Ме	C1	C1
5 - 306		Ph	ме Ме	Br	C1
5 - 307		Ph	ме Ме	C1	Br
5 - 308		Ph	me C1	Ме	Н
5 - 309		Ph	H	ме Ме	CI
U U U U		1 11	11	ΨC	O I

	第 5	表	(続 き)		
化合物No		R ³	R 4	R ⁵	R 6.
5 - 311	-	Ph	C1	Ме	Br
5 - 312		Ph	C1	Н	Me
5 - 313		Ph	Н	C1	Me
5 - 314		Ph	C1	C1	Мe
5 - 315		Ph	Br	Н	H
5 - 316		Ph	Н	Br	Н
5 - 317		Ph	H	Н	Br
5 - 318		Ph	Br	Br	Н
5 - 319		Ph	Br	H	Br
5 - 320		Ph	H	Br	Br
5 - 321		Ph	Br	Br	Br
5 - 322		Ph	Ме	Br	H
5 - 323		Ph	Ме	H	Br
5 - 324		Ph	Ме	Br	Br
- 5 - 325		Ph	Br	Мe	Н
5 - 326		Ph	Н	Me	Br
5 - 327		Ph	Br	Me	Br
5 - 328		Ph	Br	Ме	C1
5 - 329		Ph	Br	Н	Мe
5 - 330		Ph	H	Br	Мe
5 - 331		Ph	Br	Br	Ме
5 - 332		Ph	CN	Н	Н
5 - 333		Ph	Н	CN	Н
5 - 334		Ph	Н	Н	CN
5 - 335		Ph	CN	Cl	Н
5 - 336		Ph	CN	Н	C1
5 - 337		Ph	CN	Cl	C1
5 - 338		Ph	CN	Br	C1
5 - 339		Ph	CN	C1	Br
5 - 340		Ph	C1	CN	H
5 - 341	•	Ph	Н	CN	C1
5 - 342		Ph	C1	CN	C1
5 - 343		Ph	Br	CN	C1
5 - 344		Ph	C1	CN	Br
5 - 345		Ph	C1	Н	CN
5 - 346	·	Ph	H	C1	CN
5 - 347		Ph	C1	C1	CN
5 · 348		Ph	Br	C1	CN
5 - 349		Ph	C1	Br	CN
5 - 350		Ph	CN	Br	H
5 - 351		Ph	CN	Н	Br
5 - 352		Ph	CN	Br	Br
5 - 353		Ph	Br	CN	Н
5 - 354		Ph	Н	CN	Br

	第	5	—— 表	(続き)	
化合物No			R³	R '	R ^s	R ⁶
5 - 355		F	Ph	Br	CN	Br
5 - 356		F	Ph	Br	Н	CN
5 - 357			h	H	Br	CN
5 - 358		P	h	Br	Br	CN
5 - 359			h	CF ₃	H	H
5 - 360		P	h	Н	CF ₃	H
5 - 361		P	h	Н	Н	CF ₃
5 - 362		P	h	CF ₃	C1	Н
5 - 363		P	'n	CF ₃	Н	C1
5 - 364		P	h	CF ₃	C1	C1
5 · 365		P	h	CF ₃	Br	. C1
5 - 366		P	h	CF ₃	C1	Br
5 - 367		P	h	C1	CF ₃	Н
5 - 368		P	h	Н	CF ₃	C1
- 5 - 369		P	h	C1	CF ₃	C1
5 - 370		P	h	Br	CF _s	C1
5 - 371		P	h	C1	CF ₃	Br
5 - 372		P	h	C1	Н	CF ₃
5 - 373		Pl	h	Н	C1	CF ₃
5 - 374		Pl	h	C1	C1	CF ₃
5 - 375		PI	h	Br	Cl	CF 3
5 - 376		Pł	h	C1	Br	CF ₃
5 - 377		Pl		CF 3	Br	Н
5 - 378		Pi		CF 3	H	Br
5 - 379		Pł		CF ₃	Br	Br
5 380		Pł		Br	CF ₃	Н
5 · 381		Ph		Н	CF ₃	Br
5 - 382		Ph		Br	CF ₃	Br
5 - 383		Ph		Br	H	CF ₃
5 - 384		Ph		Н	Br	CF ₃
5 - 385		Ph		Br	Br	CF ₈
5 - 386		Ph		NO ₂	Н	H
5 - 387		Ph		H	NO ₂	Н
5 - 388		Ph		H	Н	NO 2
5 - 389		Ph		NO ₂	C1	Н
5 - 390		Ph		NO ₂	H	C1
5 - 391		Ph		NO ₂	C1	C1
5 - 392		Ph		NO ₂	Br	C1
5 - 393		Ph		NO 2	C1	Br
5 - 394		Ph		C1	NO ₂	Н
5 - 395		Ph		H	NO ₂	C1
5 - 396		Ph		C1	NO ₂	C1
5 - 397		Ph		Br	NO ₂	C1
5 - 398		Ph		Cl	NO ₂	Br

	5 5	表	(続き)		
化合物No		R³	R'	R 5	R ⁶
5 - 399		Ph	NO 2	Br	Н
5 - 400		Ph	NO ₂	H	Br
5 - 401		Ph	NO 2	Br	Br
5 - 402		Ph	Br	NO ₂	H
5 - 403		Ph	Н	NO 2	Br
5 - 404		Ph	Br	NO 2	Br
5 - 405		Ph	CO₂Me	Н	H
5 - 406		Ph	H	CO.Me	H
5 - 407		Ph	Н	H	CO ₂ Me
5 - 408		Ph	CO.Me	C1	H
5 - 409		Ph	CO. Me	H	C1
5 - 410		Ph	CO.Me	C1	C1
5 - 411		Ph	CO ₂ Me	Br	C1
5 - 412		Ph	CO₂Me	C1	Br
5 - 413		Ph	C1	CO₂Me	H
5 - 414		Ph	H	CO₂Me	C1
5 - 415		Ph	C1	CO ₂ Me	C1
5 - 416		Ph	Br	CO.Me	C1
5 - 417		Ph	C1	CO₂Me	Br
5 - 418		Ph	C1	Н	CO₂Me
5 - 419		Ph	H	C1	CO₂Me
5 - 420		Ph	C1	C1	CO₂Me
5 - 421		Ph	Br	C1	CO₂Me
5 - 422		Ph	C1	Br	CO₂Me
5 - 423		Ph	C1	Br	Me
5 - 424		Ph	Br	C1	Ме
5 - 425		Ph	CO₂Me	Br	H
5 - 426		Ph	CO.Me	H	Br
5 - 427		Ph	CO₂Me	Br	Br
5 - 428		Ph	Br	CO₂Me	H
5 - 429		Ph	H	CO₂Me	Br D
5 - 430		Ph	Br B	CO₂Me	Br
5 - 431		Ph	Br	H	CO₂Me
5 - 432		Ph	H	Br D	CO.Me
5 - 433		Ph	Br CO E+	Br	CO₂Me
5 - 434		Ph	CO₂Et	C1	H
5 - 435 5 - 426		Ph Db	CO₂Et	H	C1
5 - 436		Ph	CO ₂ Et	C1	C1
5 - 437		Ph Dh	CO₂Et	Br C1	C1
5 - 438		Ph	CO₂Et	C1	Br
5 - 439		Ph	CO ₂ Et	Br CO F4	Br
5 - 440		Ph	C1	CO ₂ Et	H
5 - 441		Ph	H	CO ₂ Et	C1
5 - 442		Ph	C1	CO ₂ Et	Cl

	第 5	表	(続 き)		
化合物No		R³	R '	R ^s	R ⁶
5 - 443		Ph	Br	CO ₂ Et	C1
5 - 444		Ph	C1	CO ₂ Et	Br
5 - 445		Ph	Br	CO ₂ Et	Br
5 - 446		Ph	H	Н	CO ₂ Et
5 - 447		Ph	C1	Н	CO ₂ Et
5 - 448		Ph	H	C1	CO ₂ Et
5 - 449		Ph	Cl	C1	CO ₂ Et
5 - 450		Ph	C1	Br	CO ₂ Et
5 - 451		Ph	Br	C1	CO ₂ Et
5 - 452		Ph	Br	Br	CO ₂ Et
5 - 453		Ph	Н	Н	Ac
5 - 454		Ph	C1	Н	Ac
5 - 455		Ph	H	C1	Ac
5 - 456		Ph	C1	C1	Ac
5 - 457		Ph	Н	Н	Et
5 - 458		Ph	C1	Н	Et
5 - 459		Ph	H	C1	Et
5 - 460		Ph	C1	C1	Et
5 - 461		Ph	Н	H	Ph
5 - 462		Ph	C1	Н	Ph
5 - 463		Ph	Н	C1	Ph
5 - 464		Ph	C1	C1	Ph
5 - 465		Ph	Ph	Н	Н
5 - 466		Н	Ph	Ph	Н
5 - 467		Н	Ph	Н	Ph
5 - 468		Ph	Ph	C1	Н
5 - 469		Ph	Ph	H	C1
5 - 470		Ph	Ph	C1	Cl
5 - 471		Ph	Ph	Br	Cl
5 - 472		Ph	Ph	C1	Br
5 - 473		Ph	Ph	Br	H
5 - 474		Ph	Ph	Н	Br
5 - 475		Ph	Ph	Br	Br
5 - 476		C1	Ph	Ph	Н
5 - 477		C1	Ph	Ph	Cl
5 - 478		Br	Ph	Ph	Н
5 - 479		Br	Ph	Ph	C1
5 - 480		Br	Ph	Ph	Br
5 - 481		C1	Ph	H	Ph
5 - 482		H	Ph	C1	Ph
5 - 483		Br	Ph	H	Ph
5 - 484		H	Ph	Br	Ph
5 - 485		C1	Ph	C1	Ph
5 - 486		Br			
J = 400		זמ	Ph	C1	Ph

化合物No	R ^s	R 4	R ⁵	R ⁶
5 - 487	C1	Ph	Br	Ph
5 - 488	Br	Ph	Br	Ph
5 - 489	CO ₂ Et	Ph	Н	\mathbf{H}_{\perp}
5 - 490	Н	Ph	CO ₂ Et	H
5 - 491	Н	Ph	H	CO 2 Et
5 - 492	CO ₂ Et	Ph	C1	H
5 - 493	CO ₂ Et	Ph	H .	C1
5 - 494	CO ₂ Et	Ph	C1	C1
5 - 495	C1	Ph	CO ₂ Et	H
5 - 496	Н	Ph	CO ₂ Et	C1
5 - 497	C1	Ph	CO ₂ Et	C1
5 - 498	C1	Ph	Н	CO ₂ E1
5 - 499	Н	Ph	C 1	CO ₂ E1
5 - 500	C1	Ph	C1	CO 2 Et
- 5 - 501	CO ₂ Et	Ph	Br	H
5 - 502	CO ₂ Et	Ph	Н	Br
5 - 503	CO ₂ Et	Ph	Cl	Br
5 - 504	CO ₂ Et	Ph	Br	C1
5 - 505	CO ₂ Et	Ph	Br	Br
5 - 506	Br	Ph	CO ₂ Et	H
5 - 507	Н	Ph	CO ₂ Et	Br
5 - 508	Br	Ph	CO ₂ Et	Br
5 - 509	C1	Ph	CO ₂ Et	Br
5 - 510	Br	Ph	CO ₂ Et	Cl
5 - 511	Br	Ph .	H	CO ₂ E1
5 - 512	Н	Ph	Br	CO ₂ Et
5 - 513	Br	Ph	Br	CO ₂ Et
5 - 514	C1	Ph	Br	CO 2 Et
5 - 515	Br	Ph	C1	CO ₂ Et
5 - 516	Н	Ph	CO ₂ Et	Me
5 - 517	C1	Ph	CO ₂ Et	Me
5 - 518	Br	Ph	CO ₂ Et	Me
5 - 519	Me	Ph	CO ₂ Et	H
5 - 520	Мe	Ph	CO ₂ Et	C1
5 - 521	Мe	Ph	CO ₂ Et	Br
5 - 522	Ph	Н	H	NO 2
5 - 523	Ph	C1	H	NO 2
5 - 524	Ph	Н	C1	NO 2
5 - 525	Ph	C1	Cl	NO ₂

化合物No	R ⁸	R '	R ¹	R ⁸	R 9	R 10	R ¹	ı
6 - 1	Н	Н	Ме	Н	Н	Н	Н	
6 - 2	Н	Н	Н	Ме	Н	Н	Н	
6 - 3	Н	Н	Н	Н	Мe	Н	Н	
6 - 4	Н	Н	C1	Н	Н	H	H	
6 - 5	H	Н	H	Cl	Н	H	Н	
6 - 6	Н	Н	Н	Н	C1	H	Н	
6 - 7	H	H	Br	Н	Н	Н	Н	
6 - 8 ·	Н	Н	H	Br	Н	H	Н	
6 - 9	Н	Н	H	Н	Br	H	Н	
6 - 10	H ·	• •	CF ₃	H	Н	H	Н	
6 - 11	H	H	Н	CF ₃	H	H	H	
6 - 12	Н	Н	H	Н	CF ₃	H	H	
6 - 13	H	C1	Ме	H	Н	H	Н	
6 - 14	H	C1	Н	Me	Н	H	Н	
6 - 15	Н	C1	Н	Н	Мe	H	Н	
6 - 16	H	C1	C1	Н	Н	H	Н	
6 - 17	Н	C1	H	C1	Н	H	H	
6 - 18	Н	Cl	H	Н	C1	H	Н	
6 - 19	Н	C1	Br	H	H	Н	Н	
6 - 20	Н	Cl.	Н	Br	Н	Н	Н	
6 - 21	H	C1	Н	Н	Br	H	Н	
6 - 22	H	C1	CF ₃	H	Н	Н	Н	
6 - 23	H	C1	Н	CF ₃	Н	H	H	
6 - 24	H	C1	Н	Н	CF ₃	H	Н	
6 - 25	H	Br	Me	Н	Н	H	H	
6 - 26	H	Br	Н	Ме	H	H	Н	
6 - 27	H	Br	Н	Н	Me	H	Н	
6 - 28	Н	Br	C1	Н	H	H	Н	
6 - 29	H	Br	Н	C1	H	H	Н	
6 - 30	Н	Br	Н	Н	Cl	H	Н	
6 - 31	H	Br	Br	Н	Н	Н	Н	
6 - 32	Н	Br	H	Br	H	Н	Н	
6 - 33	Н	Br	H	Н	Br.	Н	Н	
6 - 34	H	Br	CF ₃	Н	H	Н	Н	
6 - 35	H	Br	Н	CF ₃	Н	Н	Н	
6 - 36	Н	Bŕ	Н	H	CF ₃	Н	Н	
6 - 37	Н	Мe	Me	Н	Н	Н	Н	
6 - 38	H	Мe	Н	Мe	Н	Н	Н	
6 - 39	Н	Me	H	Н	Me	Н	Н	
6 - 40	Н	Мe	C1	Н	Н	H	Н	
6 - 41	Н	Me	Н	C1	Н	H	H	
0 - 41			H	Н	C1	H	H	
6 - 42	Н	Мe	п	11	U 1	11	11	
	H H	ме Ме						
6 - 42			Br H	Н	Н	Н	Н	
6 - 42 6 - 43	Н	Me	Br					

化合物 No R³ R⁴ R7 R8 Rº R¹º R 6-47 H Me H CF₃ H H H 6-48 H Me H H CF₃ H H 6-49 Me Cl Me H H H H 6-50 Me Cl H Me H H H 6-51 Me Cl H H Me H H 6-52 Me Cl Cl H H H H H 6-53 Me Cl H Cl H H H H 6-53 Me Cl H Cl H H H H 6-55 Me Cl H H H Cl H H 6-55 Me Cl H H H H H 6-55 Me Cl H H H H H H 6-55 Me Cl H H H H H H 6-56 Me Cl H H H H H H H 6-57 Me Cl H H H H H H H H H H H H H H H H H H	
6 - 48	1 1
6 - 49 Me C1 Me H H H H 6 - 50 Me C1 H Me H H H 6 - 51 Me C1 H H Me H H 6 - 52 Me C1 C1 H H H H 6 - 53 Me C1 H C1 H H H 6 - 54 Me C1 H C1 H H 6 - 55 Me C1 Br H H H 6 - 56 Me C1 H Br H H H 6 - 57 Me C1 H Br H H H 6 - 58 Me C1 C1 H H H H 6 - 59 Me C1 H H Br H H 6 - 60 Me C1 H CF ₃ H H 6 - 61 Me Br Me H H H	
6 - 49 Me C1 Me H H H H 6 - 50 Me C1 H Me H H H 6 - 51 Me C1 H H Me H H 6 - 52 Me C1 C1 H H H H 6 - 53 Me C1 H C1 H H H 6 - 54 Me C1 H C1 H H 6 - 55 Me C1 Br H H H 6 - 56 Me C1 H Br H H H 6 - 57 Me C1 H Br H H H 6 - 58 Me C1 C1 H H H H 6 - 59 Me C1 H H Br H H 6 - 60 Me C1 H CF ₃ H H 6 - 61 Me Br Me H H H	
6 - 50 Me C1 H Me H H H 6 - 51 Me C1 H H Me H H 6 - 52 Me C1 C1 H H H H 6 - 53 Me C1 H C1 H H H 6 - 54 Me C1 H H C1 H H 6 - 55 Me C1 Br H H H 6 - 56 Me C1 H Br H H H 6 - 57 Me C1 H Br H H H 6 - 58 Me C1 CF _s H H H 6 - 59 Me C1 H CF _s H H H 6 - 60 Me C1 H CF _s H H 6 - 61 Me Br Me H H H	
6 - 51 Me C1 H H Me H H 6 - 52 Me C1 C1 H H H H 6 - 53 Me C1 H C1 H H H 6 - 54 Me C1 H H C1 H H 6 - 55 Me C1 Br H H H 6 - 56 Me C1 H Br H H H 6 - 57 Me C1 H Br H H 6 - 58 Me C1 CF _s H H H 6 - 59 Me C1 H CF _s H H 6 - 60 Me C1 H CF _s H H 6 - 61 Me Br Me H H H	
6-52 Me C1 C1 H H H H H H H H H G-53 Me C1 H C1 H H H H H H G-54 Me C1 H H C1 H H H H H H H H H H H H H H H	
6-53 Me Cl H Cl H H H H H 6-54 Me Cl H H H H Cl H H H H Cl H H H H H H H	
6-54 Me C1 H H C1 H H 6-55 Me C1 Br H H H H 6-56 Me C1 H Br H H H 6-57 Me C1 H Br H H H 6-58 Me C1 CF _s H H H H 6-59 Me C1 H CF _s H H H 6-60 Me C1 H CF _s H H H 6-61 Me Br Me H H H	
6-55 Me C1 Br H H H H H H 6-56 Me C1 H Br H H H H H 6-57 Me C1 H H Br H H H H H H H H H H H H H H H H	
6-56 Me Cl H Br H H H H 6-57 Me Cl H H Br H H H H 6-58 Me Cl CF ₃ H H H H H 6-59 Me Cl H CF ₃ H H H H 6-60 Me Cl H H CF ₃ H H H 6-61 Me Br Me H H H H H H H H H H H H H H H H H H	
6-57 Me C1 H H Br H H 6-58 Me C1 CF ₃ H H H 6-59 Me C1 H CF ₃ H H H 6-60 Me C1 H CF ₃ H H 6-61 Me Br Me H H H 6-62 Me Br H Me H H	
6-58 Me C1 CF ₃ H H H H 6-59 Me C1 H CF ₃ H H H 6-60 Me C1 H H CF ₃ H H 6-61 Me Br Me H H H H 6-62 Me Br H Me H H H	
6-59 Me C1 H CF ₃ H H H 6-60 Me C1 H H CF ₃ H H 6-61 Me Br Me H H H H 6-62 Me Br H Me H H H	
$6-60$ Me C1 H H CF $_3$ H H $6-61$ Me Br Me H H H H $6-62$ Me Br H Me H H H	
6-61 Me Br Me H H H 6-62 Me Br H Me H H H	
6-62 Me Br H Me H H	
6-63 Me Br H H Me H H	
6-64 Me Br Cl H H H H	
6-65 Me Br H C1 H H H	
6 66 Me Br H H Cl H H	
6-67 Me Br Br H H H	
6-68 Me Br H Br H H	
6-70 Me Br CF ₈ H H H H	
6 - 71 Me Br H CF ₃ H H H	
6-72 Me Br H H CF ₃ H H	
6 - 73 C1 C1 Me H H H	
6 - 74 C1 C1 H Me H H H	
6 - 75 C1 C1 H H Me H H	
6 - 76 C1 C1 C1 H H H H	
6 - 77 C1 C1 H C1 H H H	
6 - 78	
6 - 79 C1 C1 Br H H H H	
6 - 80 C1 C1 H Br H H H	
6 - 81 C1 C1 H H Br H H	
6 - 82 C1 C1 CF ₃ H H H H	
6 - 83 C1 C1 H CF, H H H	
6 - 84 C1 C1 H H CF ₃ H H	
6-85 C1 Br Me H H H	
6-86 C1 Br H Me H H H	
6-87 Cl Br H H Me H H	
6 - 88 C1 Br C1 H H H H	
6 - 89 C1 Br H C1 H H H	
6 - 90 C1 Br H H C1 H H	

9	第 6 章	表 (続	き)	4. <u>.</u>			
化合物No	R ³	R '	R '	R ⁸	R ⁹	R¹º	Rι
6 - 91	C1	Br	Br	Н	Н	Н	Н
6 - 92	C1	Br	Н	Br	Н	H	Н
6 - 93	C1	Br	H	Н	Br	H	H
6 - 94	C1	Br	CF 3	H	Н	Н	Н
6 - 95	C1 ·	Br	Н	CF 3	H	Н	Н
6 - 96	C1	Br	Н	Н	CF 3	Н	H
6 - 97	Br	Br	Me	Н	Н	Н	Н
6 - 98	Br	Br	Н	Me	Н	Н	H
6 - 99	Br	Br	Н	H	Мe	H	H
6 - 100	Br	Br	C1	H	Н	Н	H
6 - 101	Br	Br	Н	, C1	H	Н	Н
6 - 102	Br	Br	H	Н	Cl	Н	Н
6 - 103	Br	Br	Br	Н	Η .	H	Н
6 - 104	Br	Br	Н	Br	Н	Н	Н
6 - 105	Br	Br	H	Н	Br	H	Н
6 - 106	Br	Br	CF ₃	Н	Н	Н	H
6 - 107	Br	Br	Н	CF 3	Н	H	H
6 - 108	Br	Br	H	H	CF ₃	H	H
6 - 109	Ме	Me	Me	Н	Н	H	Н
6 - 110	Me	Me	H	Мe	Н	H	H
6 - 111	Me	Me	H	Н	Мe	Н	Н
6 - 112	Мe	Me	Cl	Н	H	H	Н
6 - 113	Me	Me	H	C1	Н	Н	Н
6 - 114	Me	Me	Н	Н	C1	H	H
6 - 115	Me	Мe	Br	Н	Н	H	Н
6 - 116	Me	Me	H	Br	H	H	Н
6 - 117	Мe	Me	H	H	Br	H	Н
6 - 118	Ме	Me	CF ₃	H	Н	H	Н
6 - 119	Me	Ме	H	CF ₃	H	H	H
6 - 120	Ме	Me	H	Н	CF ₈	H	H
6 - 121	H	H	Me	C1	Н	Н	H
6 - 122	H	Н	Me	H	C1	H	Н
6 - 123	H	Н	Me	H	Н	C1	H
6 - 124	H	Н	Me	Н	H	Н	C1
6 - 125	H	Н	C1	Me	H ·	Н	Н
6 - 126	H	Н	Н	Me	C1	Н	Н
6 - 127	Н	Н	Н	Me	Н	Cl	Н
6 - 128	Н	Н	Н	Me	H	Н	Cl
6 - 129	H	Н	C1	Н	Me	Н	Н
6 - 130	Н	Н	H	C1	Мe	Н	Н
6 - 131	H	Н	C1	Cl	Н	Н	Н
6 - 132	H	H	C1	Н	C1	Н	Н
6 - 133	H	H	C1	Н	Н	C1	Н
6 - 134	H	Н	C1	H	Н	Н	C1

 第	6 表	——— (続	き)				
	R ³	R '	R 7	R *	R °	RII	R 11
6 - 135	H	Н	Н	C1	C1	H	H
6 - 136	H	Н	H	C1	Н	C1	Н
6 - 137	Н	H	CF,	C1	Н	H	Н
6 - 138	Н	H	CF ₃	H	C1	H	Н
6 - 139	H	Н	CF ₃	H	H	C1	H
6 - 140	Н	H	CF ₃	H	H	H	C1
6 - 141	H	H	C1	CF 3	Н	H	Н
6 - 142	H	H	Н	CF 3	C1	H	Н
6 - 143	H	H	Н	CF ₈	Н	C1	H
6 - 144	H	H	Н	CF ₈	H	H	C1
6 - 145	H	H	C 1	H	CF ₃	H	H
6 146	Н	H	H	C1	CF ₃	H	H
6 - 147	H	C1	Мe	C1	Н	H	Н
6 - 148	H	C1	Me	H	C1	H	H
6 - 149	H	C1	Мe	H	H	C1	Н
6 - 150	H	C1	Мe	H	Н	H	Cl
6 - 151	H	Cl	C1	Ме	Н	H	H
6 - 152	H	C1	Н	Ме	C1	H	Н
6 - 153	H	C1	Н	Me	H	Cl	Н
6 - 154	H	C1	Н	Me	H	H	C1
6 - 155	H	C1	C1	H	Me	H	H
6 - 156	H	C1	Н	C1	Me	H	H
6 - 157	Н	C1	C1	C1	H	H	H
6 - 158	H	C1	C1	H	C1	H	H
6 - 159	H	C1	C1	H	Н	C1	H
6 - 160	H	C1	C1	H	Н	H	C1
6 - 161	H	C1	Н	C1	C1	H	Н
6 - 162	H	C1	H	C1	Н	C1	H
	; H	Br	Мe	C1	H	H	H
6 - 164	H	Br	Me	H	C1	H	H.
6 - 165	H	Br	Ме	H	H	C1	H
6 - 166	H	Br	Me	H	H	H	C1
6 - 167	H	Br	C1	Me	H	H	H
6 - 168	H	Br	H	Me	C1	H	H
6 - 169	H	Br	H	Me	H	C1	H
6 - 170	H	Br	H	Me	H	Н	C1
6 - 171	H	Br	C1	H	Me	H	H
6 - 172	H	Br	H	C1	Мe	Н	H
6 - 173	H	Br	C1	C1	H	Н	H
6 - 174	H	Br	C1	H	C1	H	H
6 · 175	H	Br D	C1	H	H	C1	H
6 - 176	H	Br	Cl	H	H	Н	C1
6 - 177	H	Br	H	C1	C1	H	H
6 - 178	H	Br	H	C1	Н	C1	Н

	第 6	表(続	き)				
化合物No	R ^s	R'	R 7	R ⁸	R ⁹	R 10	R
6 - 179	Н	Ме	Ме	C1	Н	Н	Н
6 - 180	Н	Me	Мe	H	C1	H	Н
6 - 181	Н	Me	Me	Н	H	C1	Н
6 - 182	Н	Me	Me	Н	Н	Н	C1
6 - 183	Н	Me	C1	Me	Н	Н	Н
6 - 184	. H	Ме	Н	Мe	C1	Н	Н
6 - 185	H	Мe	H	Me	·H	C1	H
6 - 186	H	Me	Н	Мe	H	H	C1
6 - 187	H	Ме	C1	H	Me	Н	Н
6 - 188	H	Me	H	Cl	Me	H	Н
6 - 189	Н	- Me	C1	C1	Н	Н	Н
6 - 190	Н	Me	C1	H	C1	Н	Н
6 - 191	Н	Me	Cl	Н	Н	C1	Н
6 - 192	H	Me	Cl	Н	H	Н	Cl
6 - 193	Н	Me	Н	C1	C1	H	Н
6 - 194	Н	Me	Н	Cl	Н	Cl	H
6 - 195	C1	Me	Ме	C1	H	Н	Н
6 - 196	C1	Ме	Ме	Н	C1	H	Н
6 - 197	C1	Me	Ме	H	Н	Cl	Н
6 - 198	C1	Мe	Мe	H	H	H	Cl
6 - 199	C1	Me	C1	Мe	H	Н	H
6 - 200	C1	Me	H	Me	C1	H	H
6 - 201	C1	Мe	H	Мe	Н	Cl	H
6 - 202	C1	Мe	H	Мe	H	Н	C1
6 - 203	C1	Me	C1	H	Ме	H	H
6 - 204	C1	Me	Н	C1	Mе	Н	H
6 - 205	C1	Ие	Cl	C1	H	Н	H
6 - 206	C1	Иe	C1	H	C1	H	H
6 - 207	C1	Мe	C1	H	Н	Cl	
6 - 208	C1	Me	C1	H	H	Н	H C1
6 - 209	C1	Me	Η̈́	C1	Cl	Н	
6 - 210	C1	Me	H	C1	H		H
6 - 211	Br	Me	Ме	C1	H	Cl	H
6 - 212	Br	Me	ме Ме	H	C1	Н	H
6 - 213	Br	Me	Mе	H		H	H
6 - 214	Br	Me	ме Ме	л Н	H	C1	H
6 - 215	Br	Me Me			Н	H	Cl
6 - 216			C1	Me	H	H	H
6 - 217	Br P-	Me Me	H	Me	Cl	H	H
	Br B-	Me	H	Ме	H	Cl	Н
6 - 218	Br B-	Me	H	Me	H	H	C1
6 - 219	Br	Ме	C1	Н	Ме	H	H
6 - 220	Br	Me	H	C1	Me	Н	H
6 - 221	Br	Me	C1	C1	Н	Н	H
6 - 222	Br	Me	C1	Н	C1	H	Н

第	6 表	(続	き)				
化合物No	R ³	R ⁴	R 7	R 8	R ³	R 10	RII
6 - 223 6 - 224 6 - 225 6 - 226	Br Br Br Br	Me Me Me Me	C1 C1 H H	H H C1 C1	H H Cl H	C1 H H C1	H C1 H H

化合物No	R ³	R 7	R 8	R 9	R 10
7 - 1	Н	Н	Н	Н	H
7 - 2	Me	Н	Н	Н	Н
7 - 3	Et	Н	Н	Н	Н
7 - 4	Ph	Н	Н	Н	Н
7 - 5	C1	Н	Н	H	H
7 - 6	Br	Н	Н	H	Н
7 - 7	CF ₃	, Н	Н	Н	Н
7 - 8	Н	C1	Н	Н	Н
7 - 9	H	Н	C1	Н	Н
7 - 10	Н	Н	Н	C1	Н
7 - 11	Н	Н	Н	Н	C1
7 - 12	Н	Br	Н	Н	Н
7 - 13	Н	Н	Br	H	H
7 - 14	Н	Н	Н	Br	Н
7 - 15	Н	. Н	Н	Н	Br

第 8 表

化合物No	R 8	R'	R '	R 8	R ⁹	R '	0 R 1 1
8 - 1	Н	Н	Н	Н	Н	Н	Н
8 - 2.	H	C1	Н	H	Н	H	Н
8 - 3	Н	Br	Н	H	Н	Н	Н
8 - 4	Н	NO ₂	Н	H	Н	Н	Н
8 - 5	Н	CO ₂ Me	Н	H	H	Н	Н
8 - 6	H	CN	Н	Н	Н	Н	H
8 - 7	Н	Me	Н	. H	Н	Н	Н
8 - 8	H	Et	Н	H	Н	H	Н
8 - 9	H	Ph	Н	Н	Н	Н	Н
8 - 10	Me	Н	H	Н	H	Н	Н
8 - 11	Мe	. C1	Н	Н	Н	Н	Н
8 - 12	Me	Br	Н	H	Н	Н	Н
8 - 13	Me	NO 2	H	Н	H	Н	H
8 - 14	Мe	CO₂Me	Н	Н	Н	Н	H
8 - 15	Мe	CN	Н	Н	Н	H	H
8 - 16	Мe	Ме	Н	Н	Н	H	H
8 - 17	Мe	Et	Н	Н	Н	H	H
8 - 18	Мe	Ph	Н	Н	H	H	H
8 19	Et	Н	Н	H	H	H	H
8 - 20	Et	C1	Н	H	H	H	H
8 - 21	Et	Br	H	H	H	Н	H
8 - 22	Et	NO 2	H	H	H	H	H
8 - 23	Et	CO₂Me	H	H	H	H	H
8 - 24	Et	CN	H	H	Н	H	H
8 - 25	Et	Me	H	H	H	Н	H
8 - 26	Et	Et	H	H	H	H	H
8 - 27	Et	Ph	H	H	H	Н	H
8 - 28	n - Pr	H	H	Н	H	Н	H
8 - 29	n - Pr	Cl	H	H	H	Н	H
8 - 30	n - Pr	Br	H	H	H	H	п Н
8 - 31	n - Pr	NO 2	H	H	·H	H	п Н
8 - 32	n - Pr	CO.Me	H	H	H		
8 - 33	n - Pr	CN	H	H	H	H	Η .
8 - 34	n - Pr	Me	H	H	H	H	H
8 - 35	n - Pr	Et	H	H		Н	H
8 - 36	n - Pr	Ph	н		H	H	H
8 - 37	Cl	H		Н	Н	Н	Н
8 - 38	C1	C1	Н	H	H	H	H
8 - 39	C1		H	Н	H	H	H
8 - 40	C1	Br	Н	H	H	H	Н
8 - 41		NO ₂	Н	H	H	Н	Н
8 - 41 8 - 42	C1	CO₂Me	H	H	Н	H	H
8 - 42	C1	CN	H	H	Н	H	Н
	C1	Me	H	H	Н	H	Н
8 - 44	C1	Et	H	H	H	H	H
8 - 45	C1	Ph	H	Н	H	Н	Н
8 - 46	Br	Н	Н	Н	H	H	Н

第	8 表	(続	き)				
化合物No	R ³	R'	R 7	R *	R ª	R 10	R
8 - 47	Br	C 1	Н	Н	Н	Н	Н
8 - 48	Br	Br	Н	Н	H	H	H
8 - 49	Br	NO 2	H	Н	Н	H	H
8 - 50	Br	CO₂Me	Н	Н	H	H	H
8 - 51	Br	CN	Н	Н	H	Н	H
8 - 52	Br	Me	Н	H	Н	Н	Н
8 - 53	Br	Et	Н	H	H	Н	Н
8 - 54	Br	Ph	Н	Н	Н	Н	H
8 - 55	CF 3	H	Н	H	H	H	H
8 - 56	CF s	C1	Н	H	H	H	H
8 - 57	CF ₃	Br	H	Н	H	H	H
8 - 58	CF 3	NO ₂	Н	Н	H	Н	Н
8 - 59	CF ₃	CO₂Me	Н	Н	Н	Н	Н
8 - 60	CF ₃	CN	Н	Н	Н	Н	Н
8 - 61	CF 3	Me	Н	Н	Н	Н	Н
8 - 62	CF _s	Et	Н	Н	Н	Н	H
8 - 63	CF ₃	Ph	Н	Н	Н	Н	Н
8 - 64	Ph	Н	Н	Н	Н	Н	Н
8 - 65	Ph	C1	Н	Н	Н	Н	H
8 - 66	Ph	Br	Н	H	Н	Н	H
8 - 67	Ph	NO 2	Н	H	Н	Н	H
8 - 68	Ph	CO₂Me	H	H	H	H	Н
8 - 69	Ph	CN	H	Н	H	H	H
8 - 70	Ph	Me	H	H	H	H	Н
8 - 71	Ph	Et	H	H	H	H	H
8 - 72	Ph	Ph	H	H	H	H	Н
8 - 73	Me	C1	Мe	H	H	H	Н
8 - 74	Me	C1	H	Мe	H	H	Н
8 - 75	Me	C1	H	H	Иe	H	H
8 76	Me	C1	C1	H	H	H	H
8 - 77	Me	C1	H	C1	H	H	H
8 - 78	Me	C1	H	Н	C1	H	H
8 - 79	Me	C1	Br	H	H	H	H
8 - 80	Me	C1	Н	Br	H	H	Н
8 - 81	Me	C1	H	Н	Br	H	H
8 - 82	Me	C1	CF ₃	H	Н	H	Н
8 - 83	Me	C1	H	CF ₃	H	H	H
8 - 84	Me	Cl	H	H	CF ₃	H	Н
8 - 85	Me		Мe	H	H	H	
		Br Br			н Н		Н
8 - 86	Me	Br	H	Ме		Н	Н
8 - 87	Me	Br	H	Н	Ме	H	Н
8 - 88	Me	Br D	C1	H	H	H	Н
8 - 89	Me	Br	H	C1	H	H	Н
8 - 90	Me	Br	Н	Н	C1	H	H

第	8 表	(続	き)				
化合物No	R ³	R ¹	R ⁷	R ⁸	R ª	R 10	R
8 - 91	Ме	Br	Br	Н	Н	Н	Н
8 - 92	Мe	Br	Н	Br	H	Н	Н
8 - 93	Me	Br	Н	Н	Br	Н	Н
8 - 94	Ме	Br	CF 3	Н	Н	Н	Н
8 - 95	Me	Br	H	CF ₃	Н	Н	Н
8 - 96	Me	Br	H	H	CF ₃	Н	Н

第 9 表

. WO 99/21851

化合物 N o	R ³	R '	R '	R *	R *	R 10
9 - 1	Н	Н	Н	Н	Н	Н
9 - 2	Н	C1	H	H	Н	Н
9 - 3	Н	Br	Н	H	H	Н
9 - 4	Н	NO 2	Н	Н	Н	Н
9 - 5	Н	CN	Н	Н	H	Н
9 - 6	H	CF ₃	Н	Н	Н	Н
9 - 7	H	Me	Н	Н	Н	Н
9 - 8	H	Et	H	Н	Н	Н
9 - 9	Н	SMe	Н	Н	Н	Н
9 - 10	H	CO₂Me	Н	Н	Н	Н
9 - 11	Ме	H	Н	H	Н	Н
9 - 12	Me	C1	Н	Н	Н	Н
9 - 13	Me	Br	H	Н	Н	Н
9 - 14	Me	NO 2	Н	Н	Н	Н
9 - 15	Me	CN	Н	Н	Н	Н
9 - 16	Me	CF ₃	Н	Н	Н	H

第	9 表	(続	き)			
化合物No	R ³	R i	R ⁷	R ⁸	R ³	R ' º
9 - 17	Ме	Me	Н	Н	Н	Н
9 - 18	Me	Et	Н	H	Н	Н
9 - 19	Me	SMe	Н	Н	Н	Н
9 - 20	Me	CO2Me	H	H	Н	Н
9 - 21	Et	H	Н	H	Н	H
9 - 22	Et	Cl	H	Н	Н	Н
9 - 23	Et	Br	Н	H	Н	H ·
9 - 24	Et	NO 2	Н	Н	Н	Н
9 - 25	Et	CN	Н	Н	Н	Н
9 - 26	Et	CF ₃	Н	Н	Н	Н
9 - 27	Et	Ме	H	Н	H	Н
9 - 28	Et	Et	Н	Н	H	H
9 - 29	Et	SMe	H	H	H	H
9 - 30	Et	CO ₂ Me	H	H	H	Ĥ
- 9 - 31	C1	H	H	H	H	H
9 - 32	C1	Me	H	H	H	H
9 - 33	C1	Et	H	H	H	H
9 - 34	C1	CN	H	H	H	H
9 - 34 9 - 35					H	H
	C1	CF s	H	H		
9 - 36	C1	C1	H	H	H	H
9 - 37	C1	Br	H	H	H	H
9 - 38	C1	NO ₂	H	H	Н	H
9 - 39	C1	SMe	Н	H	Н	Н
9 - 40	C1	CO ₂ Me	H	H	Н	Н
9 - 41	Br	H	Н	H	Н	H
9 - 42	Br	Me	Н	H	Н	H
9 - 43	Br	Et	Н	H	Н	Н
9 - 44	Br	CN	Н	H	H	H
9 - 45	Br	CF 3	Н	Н	Н	H
9 - 46	Br	C1	H	H	H	Н
9 - 47	Br	Br	H	H	Η	H
9 - 48	Br	NO ₂	Н	Н	H	H
9 - 49	Br	SMe	Н	H	H	H
9 - 50	Br	CO₂Me	Н	Н	Н	H
9 - 51	CF ₃	Н	Н	H	Н	Н
9 - 52	CF ₃	Me	Н	Н	Н	Н
9 - 53	CF ₃	Et	Н	Н	Н	Н
9 - 54	CF ₃	CN	H	H	H	Н
9 - 55	CF ₃	CF ₃	H	H	H	H
9 - 56	CF ₃	Cl 3	H	H	H	H
9 - 57	CF ₃	Br	H	H	H	H
9 - 58	CF ₃	NO 2	H	Н	H	H
9 - 58					Н	Н
	CF 3	SMe	H	H		
9 - 60	CF ₃	CO ₂ Me	Н	Н	H	Н

	第 9 3	表 (続	き)			
化合物No	R ³	R '	R 7	R *	R *	R 10
9 - 61	SMe	Н	Н	Н	Н	Н
9 - 62	SMe	C1	Н	H	Н	H
9 - 63	SMe	Br	Н	H	H	Н
9 - 64	SMe	NO 2	Н	Н	Н	Н
9 - 65	SMe	CN	Н	Н	Н	H
9 - 66	SMe	CF 3	H	Н	Н	H
9 - 67	SMe	Me	H	Н	Н	Н
9 - 68	SMe	Et	H	Н	Н	Н
9 - 69	SMe	SMe	Н	H	Н	Н
9 - 70	SMe	CO₂Me	Н	H	Н	Н
9 - 71	CN	Н	Н	Н	Н	Н
9 - 72	CN	Me	Н	Н	H	Н
9 - 73	CN	Et	Н	Н	H	Н
9 - 74	CN	CN	Н	Н	Н	Н
9 - 75	· · CN	CF ₃	Н	Н	Н	H
9 - 76	CN	Cl	Н	Н	H	Н
9 - 77	CN	Br	Н	Н	H	H
9 - 78	CN	NO 2	H	H	H	H
9 - 79	CN	SMe	H	H	H	H
9 - 80	CN	CO ₂ Me	H	H	H	H
9 - 81	Ме	Н	Мe	H	H	H
9 - 82	Me	H	H	Мe	H	H
9 - 83	Me	H	H	Н	Ме	H
9 - 84	Ме	H	H	H	Н	Мe
9 - 85	Ме	Н	F	H	H	Н
9 - 86	Ме	H	H	F	H	Н
9 - 87	Me	Н	H	r H	F	
9 - 88	Me	H	H	H		H
9 - 89	Me				H	F
9 - 90	Me Me	H	Cl	H	H	H
9 - 90	ме Ме	H H	H	C1	H	Н
9 - 91	ме Ме	H H	Н	H	Cl	H
9 - 92 9 - 93	ne Me		H	H	H	C1
9 - 93 9 - 94		H	Br	H	H	Н
	Me	H	Н	Br	H	H
9 - 95	Me	H	H	H	Br	H
9 - 96	Мe	H	H	H	Н	Br
9 - 97	Ме	C1	Мe	H	Н	Н
9 - 98	Ме	C1	H	Me	Н	Н
9 - 99	Ме	C1	H	Н	Me	Н
9 - 100	Ме	C1	Н	Н	H	Мe
9 - 101	Me	C 1	F	H	Н	H
9 - 102	Me	C1	Н	F	Н	Н
9 - 103	Me	C1	Н	H	F	Н
9 - 104	Мe	C1	Н	Н	Н	F

第	9 表	(続	き)			
化合物No	R ³	R'	R ⁷	R *	R ⁹	R 10
9 - 105	Me	·C1	Cl	Н	Н	Н
9 - 106	Me	C1	Н	C1	Н	Н
9 - 107	Ме	C1	Н	Н	C1	Н
9 - 108	Me	C1	Н	H	H	C1
9 - 109	Me	C1	Br	Н	Н	Н
9 - 110	Me	C1	Н	Br	Н	Н
9 - 111	Me	C1	Н	H	Br	Н
9 - 112	Me	C1	Н	Н	Н	Br
9 - 113	Ме	Br	Me	Н	Н	H
9 - 114	Ме	Br	Н	Мe	Н	Н
9 - 115	Me	Br	Н	Н	Мe	Н
9 - 116	Ме	Br	H	Н	Н	Me
9 - 117	Ме	Br	F	Н	Н	Н
9 - 118	Ме	Br	H	F	·H	Н
9 - 119	Me	Br	Н	Н	F	Н
9 - 120	Me	Br	H	H	H	F
9 - 121	Me	Br	C1	H	H	H
9 - 122	Me	Br	Н	C1	H	H
9 - 123	Me	Br	H	Н	Cl	H
9 - 124	Me	Br	H	H	H	C1
9 - 125	Me	Br	Br	H	H	H
9 - 126	Me	Br	H	Br	H	H
9 - 127	Me	Br	H	H	Br	H
9 - 128	Me	Br	H	H	Н	Br

第 10 表

化合物No	R ³	R ⁷	R ⁸	R *	R 10
10 - 1	H	Н	Н	Н	Н
10 - 2	Ме	Н	Н	Н	Н
10 - 3	Et	Н	Н	Н	Н
10 - 4	n - Pr	Н	Н	H	Н
10 - 5	C1	Н	Н	Н	Н
10 - 6	Br	Н	H	Н	Н
10 - 7	SMe	H	Н	Н	Н
10 - 8	CF ₃	H	Н	Н	Н
10 - 9	CN	Н	Н	H	Н
10 - 10	H	Me	Н	Н	Н
10 - 11	H	Н	Мe	Н	Н
10 - 12	Н	H	Н	Ме	Н
10 - 13	H	H	H	Н	Ие
10 - 14	H	F	H	H	H
10 - 15	H	H	F	H	Н
10 - 16	H	H	H	F	H
10 - 17	H	H	H	H	F
10 - 18	H	Cl	H	H	H
10 - 19	H	H	C1	H	H
10 - 20	H	H	H	Cl	H
10 - 20	H	H	H	H	C1
10 - 21	H	Br	H	H	H
	п Н	Н	Br	H	H
10 - 23	л Н		Н	Br	H
10 - 24 10 - 25	п Н	H H	п Н	Н	Br
			H	H	Н
10 - 26	Ме	Ме		H	H
10 - 27	Me	H	Ме		H
10 - 28	Me	H	H	Ме	л Me
10 - 29	Me	H	H	H	
10 - 30	Ме	F	H	H	Н
10 - 31	Ме	H	F	H	H
10 - 32	Ме	H	H	F	H
10 - 33	Ме	H	H	H	F
10 - 34	Ме	C1	H	H	H
10 - 35	Me	H	C1	H	H
10 - 36	Ме	Ĥ	H	C1	H
10 - 37	Me	H	Н	H	C1
10 - 38	Me	Br	Н	H	H
10 - 39	Me	H	Br	Н	H
10 - 40	Me	Н	Н	Br	Н
10 - 41	Me	Н	Н	Н	Br
10 - 42	Et	Me	Н	Н	Н
10 - 43	Et	H	Me	Н	Н
10 - 44	Et	H	Н	Me	Н
10 - 45	Et	Н	Н	Н	Ме
10 - 46	Et	F	Н	Н	Н

	第 10	表(約	売 き)			
化合物No	R³	R '	R *	R ⁹	R 10	
10 - 47	Et	Н	F	Н	Н	
10 - 48	Et	H	Н	F	Н	
10 - 49 10 - 50	Et	H	H	H	F	
10 - 50 10 - 51	Et E+	C1	H	H	H	
10 - 51	Et Et	H	C1	H	H	
10 - 53	Et	H H	H H	C1	H	
10 - 54	Et	Br	H	H H	C1	
10 - 55	Et	Н	Br	н Н	H H	
10 - 56	Et	H	H	Br	п Н	
10 - 57	Et	H	H	H	Br	
10 - 58	C1	Ме	H	H	Н	
10 - 59	Cl	Н	Мe	H	H	
10 - 60	C1	Н	Н	Мe	H	
10 - 61	C1	Н	Н	Н	Ме	
10 - 62	Cl	F	Н	Н	Н	
10 - 63	C1	Н	F	H	Н	
10 - 64	C1	Н	Н	F	Н	
10 - 65	C1	H	Н	H	F	
10 - 66	C1	C1	H	H	H	
10 - 67	C1	H	C1	H	H	
10 - 68	C1	Н	Н	C1	H	
10 - 69	C1	Н	H	H	C1	
10 - 70	C1	Br	H	H	Н	
10 - 71	C1	H	Br	H	H	
10 - 72 10 - 73	C1	Н	Н	Br	H	
10 - 73	C1 Br	H Me	H	H	Br	
10 74	Br	me H	H Me	H H	H H	
10 - 76	Br	H	H	Me	п Н	
10 - 77	Br	H	Н	H	Me	
10 - 78	Br	F	H	H	Н	
10 - 79	Br	Н	F	H	H	
10 - 80	Br	Н	Н	F	H	
10 - 81	Br	Н	H	Н	F	
10 - 82	Br	Cl	Н	Н	Н	
10 - 83	Br	Н	Cl	H	Н	
10 - 84	Br	Н	Н	C1	H	
10 - 85	Br	Н	Н	Н	C1	
10 - 86	Br	Br	Н	Н	Н	
10 - 87	Br	H	Br	Н	Н	
10 - 88	Br	H	Н	Br	H	
10 - 89	Br	Н	Н	Н	Br	

第11 表

$$R^{9} \xrightarrow{R^{10}} R^{11} \xrightarrow{N} R^{11} R^{11} R^{11} R^{11} \xrightarrow{N} R^{11} R^{11} R^{11} R^{11} R^{11}$$

化合物No	R¹	R ⁸	R ⁹	R 10	R 1 1
11 - 1	Н	Н	Н	Н	Н
11 - 2	Me	Н	Н	Н	Н
11 - 3	H	Me	Н	Н	Н
11 - 4	Н	Н	Мe	H	Н
11 - 5	Et	Н	H	H	Н
11 - 6	H	Et	Н	Н	Н
11 - 7	H	H	Et	Н	Н
11 - 8	F	Н	Н	H	Н
11 - 9	H	F	Ή	Н	Н
11 - 10	Н	Н	F	Н	Н
11 - 11	C1	Н	H	Н	Н
11 - 12	H	C1	Н	Н	Н
11 - 13	H	H	C1	Н	Н
11 - 14	Br	Н	H	H	Н
11 - 15	H	Br	H	Н	Н
11 - 16	H	Н	Br	Н	Н
11 - 17	CF ₃	Н	H	H	Н
11 - 18	H	CF ₃	Н	H	Н
11 - 19	Н	Н	CF ₃	Н	Н
11 - 20	OCF 3	Н	Н	Н	Н
11 - 21	H	OCF 3	Н	Н	Н
11 - 22	Н	Н	OCF 3	Н	Н
11 - 23	Ph	Н	H	Н	Н
11 - 24	Н	Ph	H	H	Н
11 - 25	Н	H	Ph	Н	Н
11 - 26	OPh	H	H	H	Н
11 - 27	Н	OPh	H	Н	Н
11 - 28	Н	Н	OPh	Н	Н
11 - 29	Bn	Н	H	Н	Н

3	第11 表	(続き	:)		
化合物No	R ⁷	R ⁸	R ³	R 10	RII
11 - 30	Н	Bn	Н	Н	Н
11 · 31	Н	Н	Bn	Н	H
11 - 32	CO₂Me	H	Н	Н	Н
11 - 33	Н	CO₂Me	Н	Н	Н
11 - 34	H	Н	CO₂Me	e H	H
11 - 35	CN	Н	Н	Н	Н
11 - 36	Н	CN	Н	Н	H
11 - 37	H	H	CN	Н	Н
11 - 38	NO 2	Н	H	H	Н
11 - 39	Н	NO 2	H	H	Н
11 - 40	Н	H	NO 2	Н	Н
11 - 41	OMe	Н	H	H	Н
11 - 42	Н	ОМе	H	H	Н
11 - 43	H	Н	OMe	Н	Н
11 - 44	Ме	C1	H	Н	H
11 - 45	Мe	Н	C1	Н	Н
11 · 46	Me	H	Н	C1	Н
11 - 47	Me	Н	H	H	C1
11 - 48	C1	Me	Н	Н	Н
11 - 49	H	Ме	C1	H	Н
11 - 50	H	Мe	Н	Cl ·	Н
11 - 51	Н	Me	Н	Н	C1
11 - 52	C1	Н	Мe	H	Н
11 - 53	H	C1	Me	H	Н
11 - 54	Me	Me	H	H	Н
11 - 55	Me	Н	Me	H	H
11 - 56	Me	Н	H	Me	Н
11 - 57	Me	Н	Н	H	Ме
11 - 58	H	Me	Me	H	Н
11 - 59	H	Me	Н	Me	H
11 - 60	C1	C1	Н	H	H
11 - 61	C1	Н	C1	H	Н
11 - 62	C1	Н	Н	C1	H
11 - 63	C1	Н	Н	Н	C1
11 - 64	Н	C1	C1	Н	Н
11 - 65	Н	C1	Н	C1	Н

次に本発明化合物の製造法について以下に説明するが、これら方法のみに限定されるものではない。

(製法1)

式(2)

$$A - H$$
 (2)

(式中Aは前記と同じ意味を表す。) で表される化合物と、

式(3)

(式中R', R', Yは前記と同じ意味を表し、Xはハロゲンを表す。)で表される化合物を反応させることによって本発明化合物を製造することができる。

(製法2)

式(4)

(式中B, Yは前記と同じ意味を表す。)で表される化合物と、

式(5)

 $R^1R^2NSO_2X$ (式中 R^1 、 R^2 は前記と同じ意味を表し、Xはハロゲンを表す。)で表される化合物を反応させることによって本発明化合物を製造することができる。

(製法3)

式(6)

_WO 99/21851 PCT/JP98/04808 ·

(式中 R^1 , R^2 , A, Yは前記と同じ意味を表す。)で表される化合物を酸化剤で酸化することによって本発明化合物を製造することができる。

(製法1)において、(2)とハロスルホニルトリアゾール(3)を塩基存在下で反応させることにより、スルファモイル誘導体(1)を合成することができる。

溶媒は反応に対して不活性であればよく、例えばジオキサン、ジメトキシェタン、テトラヒドロフラン等のエーテル類、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素類、ジクロロエタン、クロロホルム等のハロゲン化炭素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アセトニトリル等のニトリル類、ピリジン、トリエチルアミン、トリブチルアミン等の第3級アミン類、N、N-ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物、ニトロエタン、ニトロベンゼン等のニトロ化合物、酢酸エチル等のエステル類、あるいはそれらの混合物が用いられる。反応温度は-78℃から溶媒の沸点の間で行うことができる。

塩基としては、例えば、ピリジン、4-ジメチルアミノピリジン、トリエチルアミン、ジエチルイソプロピルアミン、N,N-ジエチルアニリン等の有機塩基、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の無機塩基、水素化ナトリウム等の金属水素化物、ナトリウムメトキシド、カリウムt・ブトキシド等の金属アルコキシド、リチウムジイソプロピルアミド等の有機金属アミド、n-ブチルリチウム等の有機金属化合物を用いることができる。

(製法2)において、(4)とジアルキルスルファモイルハライド(5)を塩

基存在下反応させることにより、スルファモイル誘導体(1)を合成することができる。

溶媒は反応に対して不活性であればよく、例えばジオキサン、ジメトキシエタン、テトラヒドロフラン等のエーテル類、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素類、ジクロロエタン、クロロホルム等のハロゲン化炭素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アセトニトリル等のニトリル類、ピリジン、トリエチルアミン、トリブチルアミン等の第3級アミン類、N、N - ジメチルホルムアミド等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物、ニトロエタン、ニトロベンゼン等のニトロ化合物、酢酸エチル等のエステル類、あるいはそれらの混合物が用いられる。反応温度は-78℃から溶媒の沸点の間で行うことができる。

塩基としては、例えば、ピリジン、4-ジメチルアミノピリジン、トリエチルアミン、ジエチルイソプロピルアミン、N,N-ジエチルアニリン等の有機塩基、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の無機塩基、水素化ナトリウム等の金属水素化物、ナトリウムメトキシド、カリウムt・ブトキシド等の金属アルコキシド、リチウムジイソプロピルアミド等の有機金属アミド、n-ブチルリチウム等の有機金属化合物を用いることができる。

(製法3)において、(6)を酸化剤で酸化することにより、スルファモイル 誘導体(1)を合成することができる。

溶媒は反応に対して不活性であればよく、例えばジオキサン、ジメトキシエタン、テトラヒドロフラン等のエーテル類、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素類、ジクロロエタン、クロロホルム等のハロゲン化炭素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アセトニトリル等のニトリル類、N、N-ジメチルホルムアミド等のアミド類、酢酸エチル等のエステル類、酢酸等のカルボン酸類、水、あるいはそれらの混合物が用いられる。反応温度は-78℃から溶媒の沸点の間で行うことができる。

酸化剤としては、例えば、過酸化水素、過酢酸、3-クロロ過安息香酸、過炭酸ナトリウム等の過酸化物を用いることができる。

WO 99/21851 PCT/JP98/04808 ·

尚、本法の出発原料である化合物(2)、(3)、(4)および(6)はそれぞれ公知の方法(例えば化合物(2)については大有機化学14巻299~514頁、化合物(3)については特開平5-43557号、特開平7-215971号公報、化合物(4)についてはChem. Pharm. Bull. 41(7)1226-1231(1993)、化合物(6)については特開平9-143181参照)あるいはそれに準じた方法により容易に合成することができる。

次に、本発明化合物の防除対象となる植物病害としては、イネのいもち病(Pyricularia oryzae)、ごま葉枯病(Cochliobolus miyabeanus)、紋枯病(Rhizoctonia solani)、ムギ類のうどんこ病(Erysiphe graminis f.sp. hordei, f.sp. tritici)、斑葉病(Pyrenophora graminea):網斑病(Pyrenophora teres)、赤かび病(Gibberella zeae)、さび病(Puccinia striiformis, P. graminis, P. recondita, P. hordei)、雪腐病(Tipula sp., Micronectriella nivais)、裸黒穂病(Ustilago tritici, U. nuda)、アイスポット(Pseudocercosporella herpotrichoides)、雲形病(Rhynchosporium secalis)、葉枯病(Septoria tritici)、ふ枯病(Leptosphaeria nodorum)、

カンキツの黒点病 (Diaporthe citri)、そうか病 (Elsinoe fawcetti)、果実腐敗病 (Penicillium digitalum, P. italicum)、リンゴのモニリア病 (Selero tinia mali)、腐らん病 (Valsa mali)、うどんこ病 (Podosphaera lcucotr icha)、斑点落葉病 (Alternaria mali)、黒星病 (Venturia inaequalis)、ナシの黒星病 (Venturia nashicola)、黒斑病 (Alternaria kikuchiana)、赤星病 (Gymnosporangium haracanum)、モモの灰星病 (Sclerolinia cinerea)、黒星病 (Cleadosporium carpophilum)、フォモプシス腐敗病 (Phomopsis sp.)、

ブドウのべと病(Plasmopara viticola)、黒とう病(Elsinoe ampelina)、晩腐病(Glomerella cingulata)、うどんこ病(Uncinula necator)、さび病(Phakopsora ampelopsidis)、カキの炭そ病(Gloeosporium kakj)、落葉病(Cercospora kakj, Mycosphaerella nawae)、ウリ類のべと病(Pseudoperenospora cubensis)、炭そ病(Colletotrichum lagenarium)、うどんこ病(Sphae rotheca fuliginea)、つる枯病(Mycosphaerella melonis)、トマトの疫病(

Phytophthora infestans)、輪紋病(Alternaria solani)、葉かび病(Clado sporiumfulvum)、

ナスの褐紋病 (Phomopsis vexans)、うどんこ病 (Erysiphe cichoracoarum)、アプラナ科野菜の黒斑病 (Alternaria japonica)、白斑病 (Cercosporella b rassicae)、ネギのさび病 (Puccinia allii)、ダイズの紫斑病 (Cercospora kikuchii)、黒とう病 (Elsinoe glycines)、黒点病 (Diaporthe phaseolol um)、インゲンの炭そ病 (Colletotrichum lindemuthianum)、

ラッカセイの黒渋病(Mycosphaerella personatum)、褐斑病(Cercospora ar achidicola)、エンドウのうどんこ病(Erysiphe pisi)、ジャガイモの夏疫病(Alternaria solani)、イチゴのうどんこ病(Sphaerotheca humuli)、チャの網もち病(Exobasidium reticulatum)、白星病(Elsinoe leucospila)、タバコの赤星病(Alternaria lingipes)、うどんこ病(Erysiphe cichoracearum)、炭そ病(Colletotrichum tabacum)、テンサイの褐斑病(Cercospora be ticola)、バラの黒星病(Diplocarpon rosae)、うどんこ病(Sphaerotheca pannosa)、キクの褐斑病(Septoria chrysanthemiindici)、白さび病(Pucci nia horiana)、種々の作物の灰色かび病(Botrytis cinerea)、種々の作物の灰色が誘病(Sclerotinia sclerotiorum)等が挙げられる。

本発明化合物を農園芸用殺菌剤として使用するにあたっては、一般には適当な担体、例えばクレー、タルク、ベントナイト、珪藻土等の固体担体あるいは水、アルコール類(メタノール、エタノール等)、芳香族炭化水素類(ベンゼン、トルエン、メチルナフタレン等)、塩素化炭化水素類、エーテル類、ケトン類、エステル類(酢酸エチル類)、酸アミド類(ジメチルホルムアミド等)などの液体担体と混用して適用することができ、所望により乳化剤、分散剤、懸濁剤、浸透剤、展着剤、安定剤などを添加し、液剤、乳剤、水和剤、粉剤、粒剤、フロアブル剤等任意の剤型にて実用に供することができる。

本発明の化合物は、各種の殺菌剤、殺バクテリア剤、殺ダニ剤、殺線虫剤、殺虫剤等の活性化合物、または他の生物学的に活性な化合物と混合もしくは併用して用いることができる。これらの活性物質の一般名を以下に具体的に列挙するが、これらのみに限定されるものではない。

WO 99/21851 PCT/JP98/04808

殺菌剤活性化合物:アシベンゾラール (acibenzolar)、アムプロピルホス (ampropyfos)、アニラジン (anilazine)、アザコナゾール (azaconazole)、アゾキシストロビン (azoxystrobin)、ベナラキシル (benalaxyl)、ベノダニル (benodanil)、ベノミル (benomyl)、ベンザマクリル (benzamacril)、ビナパクリル (binapacryl)、ビフェニル (biphenyl)、ビテルタノール (bitertanol)、ベトキサジン (bethoxazine)、ボルドー液 (bordeaux mixture)、ブラストサイジンーS (blasticidin・S)、ブロモコナゾール (bromoconazole)、ブピリメート (bupirimate)、ブチオベート (buthiobate)、カルシウムポリスルフィド (calcium polysulfide)、キャプタフォール (captafol)、キャプタン (captan)、カッパーオキシクロリド (copper oxychloride)、カルプロパミド (carpropamid)、カルベンダジン (carbendazim)、カルボキシン (carboxin)、キノメチオネート (chinomethionat)、クロベンチアゾン (chlobenthiazone)、クロルフェナゾール (chlorfenazol)、クロロネブ (chloroneb)、クロロタロニル (chlorothalonil)、クロゾリネート (chlozolinate)、クフラネブ (cufraneb)、

シモキサニル(cymoxanil)、シプロコナゾール(cyproconazol)、シプロジニル(cyprodinil)、シプロフラム(cyprofuram)、デバカルブ(debacarb)、ジクロフェン(dichlorophen)、ジクロブトラゾール(diclobutrazol)、ジクロフラニド(diclhlofluanid)、ジクロメジン(diclomedine)、ジクロラン(dicloran)、ジエトフェンカルブ(diethofencarb)、ジクロシメット(diclocymet)、ジフェノコナゾール(difenoconazole)、ジフルメトリン(diflumetorim)、ジメチリモール(dimethirimol)、

ジメトモルフ(dimethomorph)、ジニコナゾール(diniconazole)、ジニコナゾールーM(diniconazole - M)、ジノカップ(dinocap)、ジフェニルアミン(diphenylamine)、ジピリチオン(dipyrithione)、ジタリムホス(ditalimfos)、ジチアノン(dithianon)、ドデモルフ(dodemorph)、ドジン(dodine)、ドラゾクソロン(drazoxolon)、エデフェノホス(edifenphos)、エポキシコナゾール(epoxiconazole)、エタコナゾール(etaconazole)、エチリモル(ethirimol)、エトリジアノール(etridiazole)、ファモキサゾン(famoxadone)、フェ

ナリモル (fenarimol) 、フェブコナゾール (febuconazole) 、フェンフラム (fenfuram) 、

フェンピクロニル(fenpiclonil)、フェンプロピジン(fenpropidin)、フェンフロピモルフ(fenpropimorph)、フェンチン(fentin)、フェルバン(ferbam)、フェリムゾン(ferimzone)、フルアジナム(fluazinam)、フルジオキソニル(fludioxonil)、フルオロイミド(fluoroimide)、フルキンコナゾール(fluqui nconazole)、フルシラゾール(flusilazole)、フルスルファミド(flusulfami de)、フルトラニル(flutolanil)、フルトリアフォール(flutriafol)、フォルペット(folpet)、フォセチルーアルミニウム(fosetyl‐aluminium)、フベリダゾール(fuberidazole)、フララキシル(furalaxyl)、フェナミドン(fenamidone)、フェンヘキサミド(fenhexamid)、グアザチン(guazatine)、ヘキサクロロベンゼン(hexachlorobenzene)、ヘキサコナゾール(hexaconazole)、ヒメキサゾール(hymexazol)、イマザリル(imazalil)、イミベンコナゾール(imibenconazole)、イミノクタジン(iminoctadine)、イプコナゾール(ipconazole)、イプロベンホス(iprobenfos)、

イプロジオン (iprodione) 、イソプロチオラン (isoprothiolane) 、イプロバリカルブ (iprovalicarb) 、カスガマイシン (kasugamycin) 、クレソキシムーメチル (kresoxim methyl) 、マンカッパー (mancopper) 、マンコゼブ (mancozeb) 、マンネブ (maneb) 、メパニピリム (mepanipyrim) 、メプロニル (mepronil) 、メタラキシル (metalaxyl) 、メトコナゾール (metconazole) 、メチラム (metiram) 、メトミノストロビン (metominostrobin) 、

ミクロブタニル (myclobutanil)、ナバム (nabam)、ニッケルビス (ジメチルジチオカーバメート) (nickel bis(dimethyldithiocarbamate))、ニトロタールーイソプロピル (nitrothal isopropyl)、ヌアリモル (nuarimol)、オクチリノン (octhilinone)、オフレース (ofurace)、オキサジキシル (oxadixyl)、オキシカルボキシン (oxycarboxin)、オキポコナゾールフマール酸塩 (oxpoconaz ole fumarate)、

ペフラゾエート (pefurzoate) 、ペンコナゾール (penconazole) 、ペンシクロン (pencycuron) 、フタライド (phthalide) 、ピペラリン (piperalin) 、ポリオ

WO 99/21851 PCT/JP98/04808

キシン (polyoxins) 、プロベナゾール (probenazole) 、プロクロラズ (prochloraz) 、プロシミドン (procymidone) 、プロパモカルブ塩酸塩 (propamocarb hydrochloride) 、プロピコナゾール (propiconazole) 、プロピネブ (propineb) 、ピラゾホス (pyrazophos) 、ピリフェノックス (pyrifenox) 、ピリメタニル (pyrimethanil) 、ピロキュロン (pyroquilon) 、キノキシフェン (quinoxyfen) 、キントゼン (quintozene) 、

硫黄 (sulfur) 、スピロキサミン (spiroxamine) 、テブコナゾール (tebuconaz ole) 、テクナゼン (tecnazene) 、テトラコナゾール (tetraconazole) 、チアベンダゾール (thiabendazole) 、チフルザミド (thifluzamide) 、チオファネートーメチル (thiophanate - methyl) 、チラム (thiram) 、トルクロホスーメチル (tolclofos - methyl) 、トリルフラニド (tolylfluanid) 、

トリアジメホン(triadimefon)、トリアジメノール(toriadimenol)、トリアゾキシド(triazoxide)、トリシクラゾール(tricyclazole)、トリデモルフ(tridemorph)、トリフルミゾール(triflumizole)、トリホリン(triforine)、トリチコナゾール(triticonazole)、バリダマイシン(validamycin)、ビンクロゾリン(vinclozolin)、ジネブ(zineb)、ジラム(ziram)。

殺バクテリア剤活性化合物:ストレプトマイシン(streptomycin)、オキシテトラサイクリン(oxyterracycline)、オキソリニックアシド(oxolinic acid)。 殺線虫剤活性化合物:アルドキシカルブ(aldoxycarb)、フォスチアゼート(fosthiazate)、フォスチエタン(fosthietan)、オキサミル(oxamyl)、フェナミホス(fenamiphos)。

殺ダニ剤活性化合物:アミトラズ (amitraz)、プロモプロピレート (bromopr opylate)、チノメチオネート (chinomethionat)、クロロベンジラート (chlor obezilate)、クロフェンテジン (clofentezine)、サイヘキサチン (cyhexatin e)、ジコフォール (dicofol)、ジエノクロール (dienochlor)、エトキサゾール (etoxazole)、フェナザキン (fenazaquin)、フェンブタチンオキシド (fen butatin oxide)、

フェンプロパトリン (fenpropathrin)、フェンプロキシメート (fenproximate)、 ハルフェンプロックス (halfenprox)、ヘキシチアゾックス (hexythiazox)、ミ WO 99/21851 PCT/JP98/04808

ルベメクチン (milbemectin)、プロパルギット (propargite)、ピリダベン (pyridaben)、ピリミジフェン (pyrimidifen)、テブフェンピラド (tebufenpyrad)。

殺虫剤活性化合物:アバメクチン (abamectin)、アセフェート (acephate)、アセタミピリド (acetamipirid)、アジンホスーメチル (azinphos・methyl)、ベンジオカルブ (bendiocarb)、ベンフラカルブ (benfuracarb)、ベンスルタップ (bensultap)、ビフェントリン (bifenthrin)、ププロフェジン (buprofezin)、ブトカルボキシン (butocarboxim)、カルバリル (carbaryl)、カルボフラン (carbofuran)、カルボスルファン (carbosulfan)、カルタップ (cartap)、クロルフェナピル (chlorfenapyr)、クロルピリホス (chlorpyrifos)、クロルフェンビンホス (chlorfenvinphos)、クロルフルアズロン (chlorfluazuron)、クロチアニジン (clothianidin)、クロマフェノジド (chromafenozide)、クロピリホスーメチル (chlorpyrifos・methyl)、シフルトリン (cyfluthrin)、ベーターシフルトリン (beta・cyfluthrin)、シペルメトリン (cypermethrin)、シロマジン (cyromazine)、

シハロトリン(cyhalothrin)、ラムダーシハロトリン(lambda・cyhalothrin)、デルタメトリン(deltamethrin)、ジアフェンチウロン(diafenthiuron)、ダイアジノン(diazinon)、ジアクロデン(diacloden)、ジフルベンズロン(diflu benzuron)、ジメチルビンホス(dimethylvinphos)、ジオフェノラン(diofeno lan)、ジスルフォトン(disulfoton)、ジメトエート(dimethoate)、EPN、エスフェンバレレート(esfenvalerate)、エチオフェンカルブ(ethiofencarb)、エチプロール(ethiprole)、エトフェンプロックス(etofenprox)、

エトリムホス (etrimfos) 、フェニトロチオン (fenitrothion) 、フェノブカルブ (fenobucarb) 、フェノキシカーブ (fenoxycarb) 、フェンプロパトリン (fenoropathrin) 、フェンバレレート (fenvalerate) 、フィプロニル (fipronil) 、フルシトリネート (flucythrinate) 、フルフェノクスウロン (flufenoxuron) 、フルフェンプロックス (flufenprox) 、タウーフルバリネート (tau fluvalinate) 、ホノホス (fonophos) 、フォルメタネート (formetanate) 、フォルモチオン (formothion) 、フラチオカルブ (furathiocarb) 、

WO 99/21851 PCT/JP98/04808 ·

ハロフェノジド (halofenozide)、ヘキサフルムロン (hexaflumuron)、ヒドラメチルノン (hydramethylnon)、イミダクロプリド (imidacloprid)、イソフェンホス (isofenphos)、インドキサカルブ (indoxacarb)、イソプロカルブ (isoprocarb)、イソキサチオン (isoxathion)、ルフェヌウロン (lufenuron)、マラチオン (malathion)、メタルデヒド (metaldehyde)、メタミドホス (methamidophos)、メチダチオン (methidathion)、メタクリホス (methacrifos)、メタルカルブ (metalcarb)、メソミル (methomyl)、メソプレン (methoprene)、メトキシクロール (methoxychlor)、メトキシフェノジド (methoxyfenozide)、モノクロトホス (monocrotophos)、ムスカルーレ (muscalure)、ニテンピラム (nitenpyram)、オメトエート (omethoate)、オキシデメトンーメチル (oxydemeton methyl)、オキサミル (oxamyl)、

パラチオン(parathion)、パラチオン-メチル(parathion methyl)、ペルメトリン(permethrin)、フェントエート(phenthoate)、フォキシム(phoxim)、ホレート(phorate)、ホサロン(phosalone)、ホスメット(phosmet)、ホスファミドン(phosphamidon)、ピリミカルブ(pirimicarb)、ピリミホス-メチル(pirimiphos methyl)、プロフェノホス(profenofos)、ピメトロジン(pymetrozine)、ピラクロホス(pyraclofos)、ピリプロキシフェン(pyriproxyfen)、ロテノン(rotenone)、スルプロホス(sulprofos)、

シラフルオフェン (silafluofen)、スピノサド (spinosad)、スルホテップ (sulfotep)、テブフェノジド (tebfenozide)、テフルベンズロン (teflubenzuron)、テフルトリン (tefluthorin)、テルブホス (terbufos)、テトラクロロビンホス (tetrachlorvinphos)、チオジカルブ (thiodicarb)、チアメトキサム (thiamethoxam)、チオファノックス (thiofanox)、チオメトン (thiometon)、トルフェンピラド (tolfenpyrad)、トラロメスリン (tralomethrin)、トリクロルホン (trichlorfon)、トリアズロン (triazuron)、トリフルムロン (triflumuron)、バミドチオン (vamidothion)。

本発明化合物の施用方法としては、農園芸用殺菌剤として使用する場合は、茎葉散布、土壌処理、種子消毒等があげられるが、通常当業者が利用する一般的な方法においても有効である。

また、必要に応じて製剤または散布時に他種の除草剤、各種殺虫剤、殺菌剤、 植物生長調節剤、共力剤などと混合施用してもよい。本発明化合物の施用薬量は 適用場面、施用時期、施用方法、対象病害、栽培作物等により差異はあるが一般 には有効成分量としてヘクタール当たり0.005~50kg程度が適当である。

次に、本発明化合物を有効成分とする殺菌剤の製剤例を示すがこれらのみに限定されるものではない。なお、以下の製剤例において「部」は重量部を意味する。

製剤例1 乳剤

本発明化合物・・・・・・ 20部メチルナフタレン・・・・・・ 55部

シクロヘキサノン ・・・・・・ 20部

ソルポール 2 6 8 0 ・・・・・ 5 部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業(株)商品名)

以上を均一に混合して乳剤とする。使用に際しては上記乳剤を50~2000 0倍に希釈して有効成分量がヘクタール当たり0.005~50kgになるよう に散布する。

製剤例2 水和剤

本発明化合物 ・・・・・・ 25部

ジークライトPEP ・・・・・・ 66部

(カオリナイトとセリサイトの混合物:ジークライト工業(株)商品名)

ソルポール5039 ・・・・・・ 4部

(アニオン性界面活性剤:東邦化学工業(株)商品名)

カープレックス#80 ・・・・・ 3部

(ホワイトカーボン:塩野義製薬(株)商品名)

リグニンスルホン酸カルシウム ・・・・・・ 2部

以上を均一に混合粉砕して水和剤とする。

使用に際しては上記水和剤を 5 0 ~ 2 0 0 0 0 倍に希釈して有効成分量が へクタール当たり 0.05~50kgになるように散布する。

製剤例3 粉剤

										-	••
本発明化合物	٠	•	•	•	•	•	•			3	部
カープレックス#80	•	•	•	•	•	•	•	0		5	部
(ホワイトカーボン:塩野義製薬	(株	(;	啓	i 45	名	;)					
クレー	•	•	•	•	•	•	•		9	5	部
リン酸ジイソプロピル	•	•	•	•	•	•	•	1		5	部
以上を均一に混合粉砕して粉剤と	: す	る	ن	使	用	163	際	i	7	上	記粉剤を有効成分量が
ヘクタール当たり0.005~50	k	g	15	な	る	ょ	う	に	散	布	iする。
製剤例4 粒剤											
本発明化合物	•	•	•	•	•	•	•			5	部
ベントナイト	•	•	•	•	•	•	•		3	0	部
タルク	•	•	•	•	•	•	٠		6	4	部
リグニンスルホン酸カルシウム	•	•	•	•	•	•	•			1	部
以上を均一に混合粉砕して少量の	水	を	מל	え	7	攪	拌	混	合	L	、押出式造粒機で造粒
し、乾燥して粒剤とする。使用に際	し	て	上	記	粒	剤	を	有	効	成	分量がヘクタール当た
り0.005~50kgになるよう	に	散	布	す	る	0					
製剤例5 フロアブル剤											
本発明化合物	•	•	•	•	•	•	•		2	5	部
ソルポール3353	•	•	•	•	•	•	•			5	部
(非イオン性界面活性剤:東邦化学	I	業	(株)	商	品	名)		
ルノックス1000C	•	•	•	•	•	•	•	0.		5 :	部
(陰イオン界面活性剤:東邦化学工	業	(;	株)	商	品	名.)			
ザンサンガム (天然高分子)	•	•	•	•	•	•	•		0.		2 部
安息香酸ソーダ	•	•	•	•	•	•	•		0.		4 部

有効成分(本発明化合物)を除く上記の成分を均一に溶解し、ついで本発明化合物を加えよく攪拌した後、サンドミルにて湿式粉砕してフロアブル剤を得る。使用に際しては、上記フロアブル剤を50~2000倍に希釈して有効成分量がヘクタール当たり0.005~50kgになるように散布する。

••••• 58.9部

プロピレングリコール

水

発明を実施するための最良の形態

次に実施例により、本発明の内容を具体的に説明するが、本発明はこれらのみ に限定されるべきものではない。

実施例1

1-(N, N-ジメチルスルファモイル) -3-(2-メチル-3-クロロインドール-1-イル) スルホニル-1, 2, 4-トリアゾールの製造(<math>1-33(a))

2-メチルー3-クロロインドール0.6gをテトラヒドロフラン20mlに 溶解し水素化ナトリウム(55%以上)0.17gを氷冷下攪拌しながら加えた。室温で1時間撹拌後、再び氷冷し、1-N、N-ジメチルスルファモイルー3-クロロスルホニルー1,2、4-トリアゾール1.0gを加え、室温で3時間攪拌した。反応終了後、希塩酸を加え酢酸エチルで抽出した。溶媒を留去後、カラムクロマトグラフィーにより精製して標題化合物0.73gを得た。

実施例2

1-(N, N-ジメチルスルファモイル)-3-(3-クロローインダゾール -1-イル) スルホニルー1, 2, 4-トリアゾールの製造(<math>7-5(a))

3-クロロインダゾール0.5gをテトラヒドロフラン20mlに溶解しトリエチルアミン0.4gを氷冷下攪拌しながら加えた。その後、1-N,N-ジメチルスルファモイル-3-クロロスルホニル-1,2、4-トリアゾール0.94gを加え、室温で16時間攪拌した。反応終了後、希塩酸で中和後、酢酸エチルで抽出した。溶媒を留去後、カラムクロマトグラフィーにより精製して標題化合物0.94gを得た。

実施例3

1-(N, N-ジメチルスルファモイル)-3-(3-フェニル-4-クロロ-5-メチルピラゾール-1-イル) スルホニル-1, 2, 4-トリアゾールの製造(8-11(a))

3-フェニル-4-クロロ-5-メチルピラゾール0.56gをテトラヒドロフラン20mlに溶解しトリエチルアミン0.47gを氷冷下攪拌しながら加えた。その後、1-N、N-ジメチルスルファモイル-3-クロロスルホニル-1,

WO 99/21851 PCT/JP98/04808 ·

2、4-トリアゾール 0. 8 g を加え、室温で 1 6 時間攪拌した。反応終了後、 希塩酸で中和し、酢酸エチルで抽出した。溶媒を留去後、カラムクロマトグラフィーにより精製して標題化合物 1. 0 4 g を得た。

実施例 4

1-iジメチルスルファモイル-3-(4-i)フルオロメチルベンゾイル) -1, 2, 4-iリアゾールの製造(11-i9(a))

3-(4-h) フルオロメチルベンゾイル)-1, 2, 4-h リアゾール 0. 3 1 g e D M F g m g

実施例5

1-ジメチルスルファモイルー3-(2-メチルイミダゾ[1, 2-a] ピリジン-3-イルスルホニル)-1, 2, 4-トリアゾールの製造(10-2 (a))

1-ジメチルスルファモイル-3-(2-メチルイミダゾ〔1, 2-a〕ピリジン-3-イルスルフェニル)-1, 2, 4-トリアゾール1. 2gをアセトニトリル20mlおよび水20mlの混合液に溶解し、室温にて過炭酸ナトウム3.0gをかえた。1時間室温にて撹拌したのち、過炭酸ナトウム3.0gをさらに加えた。反応終了後、希塩酸で中和し、酢酸エチルで抽出した。溶媒を留去後、カラムクロマトグラフィーにより精製して標題化合物0.3gを得た。

次に、これらの方法に準じて製造した一般式(1)の化合物の物性を第12表に示す。

化合物No 物性値(融点 ℃)

1 · 1(a) 98 · 100
1 · 2(a) 74 · 76
1 · 3(a) 70 · 72
1 · 4(a) 70 · 72
1 · 9(a) 136 · 139
1 · 10(a) 118 · 121

第 12 表

第	1	2	表	(締	李	`
777			AX.	(W/L	_	,

郑	1 2 3	(形を)		
化合物N o		物性値	(融点	ზ)
1 · 11(a))	138	- 139	
1 - 12(a		138	- 139	
1 · 13(a)		96 -		
1 - 14(a			物	
1 - 20(a)			- 126	
1 - 21(a			- 122	
1 - 22(a			- 121	
1 - 23(a		78 -	79	
1 - 26(a			- 142.5	
1 - 27(a		60 -	61	
1 - 31(a		158	- 161	
1 - 32(a		145.	5 - 146.	5
1 - 33(a		120	- 122	
1 - 34(a		81 -	82	
1 - 35(a		71 -		
1 - 38(a			- 129	
1 - 41(a			- 154	
1 - 42(a			- 141	
1 - 42(i	•	油划		
1 - 42(k		·	- 145	
1 - 42(1			. 5 - 171	
1 - 43(a			5 - 120	
1 - 44(a			- 150	
1 - 45(a		油划		
1 - 50(a			- 126	
1 - 51(a			- 182	
1 - 56(a		94 -		
1 - 57(a		61 -	63	
1 - 62(a			. 5 - 149	
1 - 63(a			. 5 - 136	
1 - 71(a		159	- 159.5	
1 - 72(a		104	- 107	
1 - 81(a		163	- 165	
1 - 105(a)	135	- 137	
1 - 118(137	- 140	
1 - 119(139	- 140	
1 - 125(-	129	- 131	
1 - 126(- 121	
1 - 130(- 145	
1 - 131(- 129	
1 - 133(113	- 115	
1 - 135(81	
1 - 136(. 5 - 135.	. 5
1 - 148(112	- 113	

第 12表	(続き)
化合物No	物性値(融点 ℃)
1 - 152(a) 1 - 161(a)	120 · 122 油状物
1 - 163(a)	134. 5 - 136
1 - 168(a)	138 - 139. 5
1 - 187(a)	172 - 174
1 - 188(a)	166 - 168
1 · 211(a)	94 - 95
1 - 222(a)	126 - 127
1 - 232(a)	172 - 174
1 - 233(a)	164 - 165
1 - 243(a)	油状物
1 - 258(a)	125 - 128
1 - 265(a)	142 - 143. 5
1 - 266(a)	114 - 117
1 - 276(a)	177. 5 - 179
1 - 276(j)	87 - 89
1 - 277(a)	132 - 133
1 - 283(a)	112 - 113
1 - 289(a)	138. 5 - 139. 5
1 - 290(a)	142 - 143
1 - 298(a)	90 - 92
1 · 311(a)	142 - 143
1 - 316(a)	65 - 66. 5
1 · 316(j)	91 - 92
1 - 326(a) 1 - 343(a)	82 · 84 油状物
1 - 343(a) 1 - 353(a)	160 - 163
1 · 370(a)	油状物
1 · 378(a)	93 - 94
1 - 396(a)	149 - 151
1 · 403(a)	129 - 131
1 - 414(a)	151. 5 - 153
1 - 421(a)	107 - 108, 5
1 - 435(a)	184 - 186
1 - 440(a)	194. 5 - 195. 5
1 - 445(a)	50 - 53
1 - 470(a)	120 - 122
1 · 497(a)	119 - 121
1 - 508(a)	148 - 150
1 - 518(a)	油状物
1 - 537(a)	153 - 155
1 - 548(a)	204‐206 (分解)
1 - 557(a)	油状物
1 - 568(a)	51 - 53

第	1 2	夷	(続き)
277	1 4	ax.	

化合物No	物性値(融点 ℃)
2 - 2(a)	134 - 135
2 - 2(b)	160 - 161
2 - 2(n)	184 - 186
2 - 2(o)	180 - 181. 5
2 - 3(b)	140. 5 - 142
2 - 3(n)	151. 5 - 152. 5
2 - 3(n) 2 - 3(o)	162. 5 - 163
2 · 4(b)	176 - 180
2 - 5(a)	143 - 144
	174 - 176
2 - 5(b)	
2 - 6(a)	104 - 105
2 - 6(d)	141 - 143
2 - 6(e)	168 - 169
2 - 6(n)	173 - 175
2 - 7(a)	117 - 118
2 - 7(b)	142 - 145
2 - 7(n)	143 - 144
2 - 8(b)	177 - 179
2 - 8(x)	123 - 124
2 - 10(a)	112. 5 - 114
2 - 10(b)	143 - 145
2 - 10(n)	163 - 164.5
2 - 10(v)	138 - 141
2 - 11(e)	149 - 150. 5
2 - 14(a)	85. 5 - 87
2 - 14(b)	150. 5 - 153
2 - 17(a)	145 - 147
2 - 17(b)	181 - 183
2 - 18(a)	86 - 87
	134 - 136
2 - 18(b)	82 - 83
2 - 19(a)	
2 - 19(b)	136 - 138
2 - 20(a)	109 - 110
2 - 20(b)	148 - 149
2 - 24(a)	61 - 63
2 - 24(b)	81 - 83
2 - 26(a)	126. 5 · 127. 5
2 - 30(a)	177 - 179
2 - 30(b)	174 - 176
2 - 34(a)	156 - 157
2 - 34(b)	181 - 183
2 - 39(e)	126 - 128
2 - 44(b)	162 - 163
3 - 1(a)	160 - 162
2 (4)	

第 12表	(続き)
化合物 N o	物性値(融点 ℃)
5 - 1(a)	115 118
5 - 22(a)	油状物
5 - 23(a)	39 - 42
5 - 34(a)	55‐58 (分解)
5 · 58(a)	44 - 47
5 - 82(a)	121 - 123
5 - 146(a)	182 - 184
5 - 146(h)	145. 5 - 147. 5
5 - 153(a)	139 - 140
5 - 165(a)	128 - 129.5
5 - 227(a)	42 - 45
5 - 234(a)	油状物
5 - 247(a)	油状物
5 - 254(a)	68 - 70
5 - 254(h)	油状物
5 - 261(a)	151 - 154
5 - 274(a)	173 - 176
5 - 490(a)	126 - 129
5 - 495(a)	149 - 15 0. 5
5 - 506(a)	145 - 147
6 - 6(a)	163.5 - 164.5
6 - 30(a)	54 - 56
7 - 1(a), (b)	135‐137 (混合物)
7 - 2(e)	135 - 136
7 - 5(a)	164 - 165
8 · 1(a)	154. 5 - 155. 5
8 · 10(a)	110. 5 - 111
8 · 11(a)	125 128
10 · 2(a)	179. 5 - 181
11 - 1(a)	81 - 82
11 - 17(a)	89 - 91
11 - 18(a)	62 - 63
11 - 19(a)	121 - 122
11 - 24(a)	133 - 135

本発明化合物の有用性について、以下の試験例において具体的に説明する。但し、これらのみに限定されるものではない。

試験例1:キュウリベと病防除効果試験

直径7cmのポットで育成した1.5葉期のキュウリ(品種:相模半白)に、本発明化合物乳剤を水で希釈して500ppmに調製した薬液をスプレーガンを

WO 99/21851 PCT/JP98/04808

用いポット当たり20ml散布した。

散布翌日キュウリベと病菌 (Pseudoperonospora cubensis) の胞子懸濁液 (2 × 10° 個/ml) を噴霧し、温度 25℃、湿度 95%以上の接種箱に一昼夜入れた。その後、温室におき、接種 7日後に形成された病斑面積の接種葉に占める割合を測定し、下記の式に従い、防除価を算出した。

防除価=〔1-(処理区病斑面積率/無処理区病斑面積率)〕×100 その結果、以下の化合物が防除価100を示した。

本発明化合物 No.:1-1(a)、1-2(a)、1-3(a)、1-4(a), 1-9 (a), 1-10 (a), 1-11 (a), 1-12 (a), 1-13(a), 1-14(a), 1-20(a), 1-21(a), 1-22(a), 1-23 (a), 1-32 (a), 1-33 (a), 1-34 (a), 1-35(a), 1-38 (a), 1-41 (a), 1-42 (a), 1-43 (a), 1-44 (a), 1-45 (a), 1-50 (a), 1-51 (a), 1-56(a) 1-62 (a) 1-63 (a) 1-71 (a) 1-72 (a) 1-81 (a) 1-105 (a) 1-118 (a) 1-119 (a) 1-125 (a) 1-126 (a) 1-130 (a) 1-131 (a) 1-133 (a) 1-135 (a) 1-136 (c) 1-148 (a) 1-152 (a) 1-161 (a) 1-163 (a) 1-168 (a) 1-187 (a), 1-188 (a), 1-211 (a), 1-222 (a), 1 -232 (a) 1-233 (a) 1-243 (a) 1-258 (a) 1-265 (a) 1-266 (a) 1-276 (a) 1-277 (a) 1-283 (a), 1-289 (a), 1-290 (a), 1-298 (a), 1 -311 (a) 1-316 (a) 1-326 (a) 1-343 (a) 1-353 (a) 1-370 (a) 1-378 (a) 1-396 (a) 1-403 (a) \ 1-414 (a) \ \ 1-421 (a) \ \ 1-435 (a) \ \ 1 -440 (a) 1-445 (a) 1-470 (a) 1-497 (a) 1-508 (a) 1-518 (a) 1-537 (a) 1-548 (a) 1-548568(a), 2-2(a), 2-2(b), 2-2(n), 2-2(o), 2-3 (b) 2-3 (n) 2-3 (o) 2-4 (b) 2-5 (a) 2-6

. WO 99/21851 PCT/JP98/04808

5 (b) , 2 - 6 (a) , 2 - 6 (d) , 2 - 6 (e) , 2 - 6 (n) , 2 - 7 (a) , 2 - 7 (b) , 2 - 7 (n) , 2 - 8 (b) , 2 - 8 (x) , 2 - 10 (a) , 2 - 10 (b) , 2 - 10 (n) , 2 - 10 (v) , 2 - 11 (e) , 2 - 14 (a) , 2 - 14 (b) , 2 - 17 (a) , 2 - 17 (b) , 2 - 18 (a) , 2 - 18 (b) , 2 - 19 (a) , 2 - 19 (b) , 2 - 20 (a) , 2 - 20 (b) , 2 - 24 (a) , 2 - 24 (b) , 2 - 26 (a) , 2 - 34 (a) , 2 - 34 (b) , 2 - 39 (e) , 2 - 44 (b) , 3 - 1 (a) , 5 - 1 (a) , 5 - 22 (a) , 5 - 23 (a) , 5 - 34 (a) , 5 - 58 (a) , 5 - 82 (a) , 5 - 146 (a) , 5 - 153 (a) , 5 - 165 (a) , 5 - 277 (a) , 5 - 234 (a) , 5 - 247 (a) , 5 - 254 (a) , 5 - 261 (a) , 5 - 274 (a) , 5 - 247 (a) , 5 - 254 (a) , 5 - 506 (a) , 6 - 6 (a) , 6 - 30 (a) , 7 - 1 (a) , (b) , 7 - 2 (e) , 7 - 5 (a) , 8 - 1 (a) , 8 - 10 (a) , 8 - 11 (a) , 10 - 2 (a) , 11 - 14 (a) , 11 - 17 (a) , 11 - 18 (a) , 11 - 19 (a) , 11 - 24 (a)

産業上の利用可能性

これらの化合物は新規な化合物であり、優れた農園芸用殺菌作用を示し、有用作物に対する薬害も認められないため、農園芸用殺菌剤として有用である。

請求の範囲

(1) 式(1)

〔上記式中、 R^1 、 R^2 はそれぞれ独立して、 C_1 -、Pルキルまたは R^1 と R^2 とが一緒になって C_4 -。Pルキレン、 C_4 -。Pルキレンオキシであり、

YはH、 \wedge ロゲン、 C_1 - $_8$ アルキル、 C_1 - $_8$ アルコキシ、 C_1 - $_8$ アルキルチオ、 C_1 - $_8$ \wedge ロアルキル、 C_1 - $_8$ \wedge ロアルコキシ、 C_1 - $_8$ \wedge ロアルキルチオであり、Aは、

であり、

B は、A-1 ないしA-1 0、または

であり、

Wは結合またはOであり、

VはOまたはSであり、

D, E, F, Gはそれぞれ独立して、N、CR1、CR8、CR8 またはCR10

. WO 99/21851 PCT/JP98/04808

であり、

R³, R⁴, R⁵, R⁶, R⁷, R⁸, R¹⁰, R¹¹はそれぞれ独立してH、C ı・゚アルキル、C゚゚・゚゚シクロアルキル、C゚゚・゚アルケニル、C゚゚・゚゚シクロアルケ ニル、C2・8アルキニル、C1・8アルコキシ、C3・8シクロアルキルオキシ、C s・aシクロアルケニルオキシ、C2・aアルケニルオキシ、C2・aアルキニルオキ シ、C₁-₈アルキルチオ、C₃-₈シクロアルキルチオ、C₅-₈シクロアルケニル チオ、 C_2 - $_8$ アルケニルチオ、 C_2 - $_8$ アルキニルチオ、 C_1 - $_8$ ハロアルキル、Cハロアルケニルオキシ、C2-8ハロアルケニルチオ、C2-8ハロアルキニル、C 2・8ハロアルキニルオキシ、C2・8ハロアルキニルチオ、置換されていても良い フェニル(この置換基の種類は、ハロゲン、C₁-2アルキル、C₁-2ハロアルキ ル、 C_1 - $_8$ アルコキシ、 C_1 - $_8$ ハロアルコキシ、 C_1 - $_8$ アルキルチオ、 C_1 - $_8$ ハ ロアルキルチオ、C₁・6アルキルスルホキシ、C_{1・6}アルキルスルホニル、CN、 NO₂、C₁-₆アルコキシカルボニルであり、その置換基の数は1~5であり、そ の置換基は同一かもしくは相異なっていても良い)、置換されていても良いフェ ニルC・、アルキル、置換されていても良いベンジルチオ、置換されていても良 いベンジルオキシ、置換されていても良いフェノキシC₁・₄アルキル、置換され ていても良いフェノキシ、置換されていても良いフェニルチオC₁・,アルキル、 置換されていても良いフェニルチオ、置換されていても良いベンゾイル、置換さ れていても良いベンゾイルC」・4アルキル、置換されていても良いベンゾイルオ キシ、置換されていても良いベンゾイルオキシC₁・1アルキル、置換されていて も良いナフチル、置換されていても良い5員もしくは6員複素環、C₁-2ヒドロ キシアルキル、C1-8ヒドロキシハロアルキル、C1-6アルコキシC1-4アルキ ル、C₁-。ハロアルコキシC₁-、アルキル、C₁-。ハロアルキルチオC₁-、アル キル、C1-10ジアルコキシC1-4アルキル、C1-3アルキレンジオキシC1-4 アルキル、Cı・。アルキルチオCı・。アルキル、Cı・ュ。ジアルキルチオCı・。 アルキル、C₁-₈アルキレンジチオC₁-₄アルキル、C₁-₆アルコキシカルボニ ル、 C_1 - $_6$ ハロアルコキシカルボニル、 C_1 - $_6$ アルコキシオキザリル、CHO、 CO_2H , C_1 - $_8$ P ν $^{-1}$ $^$

カルボニルC₁・4アルキル、NH₂、C₁・6アルキルアミノ、C₁・6アルキルカ ルボニルアミノ、C₁-6アルキルカルボニルアミノC₁-4アルキル、C₁-6ハロ アルキルカルボニルアミノ、C₁-₄ハロアルキルカルボニルアミノC₁-₄アルキ ル、C₁-。アルコキシカルボニルアミノ、C₁-。アルコキシカルボニルアミノC ı-,アルキル、Cı-,アルキルスルホニルアミノ、Cı-,アルキルスルホニル アミノC₁-₄アルキル、C₁-₆ハロアルキルスルホニルアミノ、C₁-₆ハロアル キルスルホニルアミノC₁-、アルキル、C₁-。ジアルキルアミノ、C₁-。ジアル キルアミノC₁-,アルキル、C₁-。ジアルキルアミノカルボニル、C₁-。ジアル キルアミノカルボニルC₁-、アルキル、C₂-。アルキレンイミノ、C₂-。アルキ レンイミノC1・4アルキル、C2・6アルキレンイミノカルボニル、C2・6アルキ レンイミノカルボニル C_1 - $_{\epsilon}$ アルキル、 C_1 - $_{\epsilon}$ アルキルカルボニル、 C_1 - $_{\epsilon}$ アル キルカルボニルオキシ、C₁-₆ハロアルキルカルボニル、C₁-₆ハロアルキルカ ルボニルオキシ、C₁-₆アルキルカルボニルC₁-₄アルキル、C₁-₆アルキルカ ルボニルオキシC」・、アルキル、C」・。ハロアルキルカルボニルC」・、アルキル、 C₁-₆ハロアルキルカルボニルオキシC₁-₄アルキル、ヒドロキシイミノC₁-₄ アルキル、Cı・。アルコキシイミノCı・、アルキル、Cı・。アルキルカルボニル オキシイミノC1-4アルキル、C1-6アルキルスルホニルオキシイミノC1-4ア ルキル、C₁-₆アルキルスルホキシ、C₁-₆ハロアルキルスルホキシ、C₁-₆ア ルキルスルホキシC₁-₄アルキル、C₁-₅ハロアルキルスルホキシC₁-₄アルキ ル、C₁-₆アルキルスルホニル、C₁-₆ハロアルキルスルホニル、C₁-₆アルキ ルスルホニルC1-4アルキル、C1-6ハロアルキルスルホニルC1-4アルキル、 C₁-₆アルキルスルホニルオキシ、C₁-₆ハロアルキルスルホニルオキシ、C₁-。アルキルスルホニルオキシC_{1・}、アルキル、C_{1・}。ハロアルキルスルホニルオキ シCı·ˌアルキル、Cı·。ハロアルコキシスルホニル、Cı·。ハロアルコキシス ルホニルC₁-4アルキル、C₁-6ジアルキルスルファモイル、C₁-6ジアルキル スルファモイル C 1 - 4 アルキル、 C 1 - 6 アルコキシスルホニル、 C 1 - 6 アルコキ シスルホニルC1-4アルキル、C2-6シアノアルキル、CN、C1-6チオカルバ モイル、C₁-₆ニトロアルキル、NO₂、ハロゲン、もしくはR⁸, R⁴, R⁵, R⁶, R', R', R', R'', R''のうちの2つが一緒になってハロゲンで置換していて

も良い C_1 - $_3$ アルキレンジオキシ、または C_3 - $_3$ アルキレンである。〕で表されるスルファモイル化合物。

- (2) Aが、A-1である請求項1記載のスルファモイル化合物。
- (3) Aが、A-2 である請求項1記載のスルファモイル化合物。
- (4) Aが、A-3である請求項1記載のスルファモイル化合物。
- (5) Aが、A-4である請求項1記載のスルファモイル化合物。
- (6) Aが、A-5またはA-6である請求項1記載のスルファモイル化合物。
- (7) Aが、A-7またはA-8である請求項1記載のスルファモイル化合物。
- (8) Aが、A-9またはA-10である請求項1記載のスルファモイル化合物。
- (9) Bが、B-1である請求項1記載のスルファモイル化合物。
- (10) Bが、B-2である請求項1記載のスルファモイル化合物。
- (11) Bが、B-3またはB-4である請求項1記載のスルファモイル化合物。
- (12) Bが、B-5である請求項1記載のスルファモイル化合物。
- (13) Bが、B-6またはB-7である請求項1記載のスルファモイル化合物。
- (14) Bが、B-8またはB-9である請求項1記載のスルファモイル化合物。
- (15) Bが、B-10である請求項1記載のスルファモイル化合物。
- (16) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR⁷、CR⁸、CR⁹、CR¹⁰であり、R⁸がC₁。 アルキルチオである請求項1記載のスルファモイル化合物。
- (17) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR¹、CR³、CR³、CR¹°であり、R°がC」。 アルキルである請求項1記載のスルファモイル化合物。
- (18) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR¹、CR³、CR³、CR¹⁶であり、R³がC₁-₈ハロアルキルである請求項1記載のスルファモイル化合物。

- (19) R¹、R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D、E、F、GがCR¹、CR³、CR³、CR¹°であり、R³がハロゲンである請求項1記載のスルファモイル化合物。
- (20) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR¹、CR³、CR³、CR¹⁰であり、R³がHである請求項1記載のスルファモイル化合物。
- (21) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A−1であり、D, E, F, GがCR¹、CR³、CR³、CR¹°であり、R³がCNである請求項1記載のスルファモイル化合物。
- (22) R', R'がMeであり、YがHであり、Wが結合であり、Aが、A-2であり、D, E, F, GがCR'、CR'、CR'、CR'であり、R', R', R'がいずれもHである請求項1記載のスルファモイル化合物。
- (23) R^1 , R^2 がMeであり、YがHであり、Wが結合であり、Aが、A 4 であり、 R^3 , R^4 , R^5 , R^6 のうち少なくとも 1 つが置換されていても良い、フェニルである請求項 1 記載のスルファモイル化合物。
- (24) R¹, R²がMeであり、YがHであり、Wが結合であり、Bが、B-1である請求項1記載のスルファモイル化合物。
- (25) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D、E、F、GがCR¹、CR¹、CR¹、CR¹であり、R³がCı・。アルキルであり、R¹がハロゲンである請求項1記載のスルファモイル化合物。
- (26) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR¹、CR¹、CR¹、CR¹°であり、R³, R¹がいずれもハロゲンである請求項1記載のスルファモイル化合物。
- (27) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A~1であり、D, E, F, GがCR⁷、CR⁸、CR⁹、CR¹⁰であり、R³がC₁- $_8$ アルキルであり、R⁴がHまたはC₁- $_8$ アルキルである請求項1記載のスルファモイル化合物。
- (28) R¹、R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR²、CR³、CR³、CR¹⁶であり、R³がC₁-3

_WO 99/21851 PCT/JP98/04808 -

ハロアルキルであり、R'がH、ハロゲンまたは C_1 - $_8$ アルキルである請求項1記載のスルファモイル化合物。

- (29) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR¹, CR⁸, CR⁹、CR¹⁰であり、R⁸がHまたはC₁-8アルキルであり、R⁴がC₁-6アルコキシカルボニルである請求項1記載。Oスルファモイル化合物。
- (30) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがCR⁷、CR⁸、CR⁹、CR¹⁰であり、R³がHであり、R⁴がハロゲンである請求項1記載のスルファモイル化合物。
- (31) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、Aーlであり、D, E, F, GがCR⁷、CR⁸、CR¹⁰であり、R⁸がCNであり、R⁴がHまたはC₁。アルキルである請求項1記載のスルファモイル化合物。
- (32) R¹、R²がMeであり、YがHであり、Wが結合であり、Aが、Aー1であり、D、E、F、GがいずれもCHであり、R³がC₁- $_{8}$ アルキルであり、R⁴がハロゲンである請求項1記載のスルファモイル化合物。
- $(3\ 3)$ R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがいずれもCHであり、R³, R⁴がいずれもハロゲンである請求項1記載のスルファモイル化合物。
- (3.4) R¹、R²がMeであり、YがHであり、Wが結合であり、Aが、Aー1であり、D, E, F, GがいずれもCHであり、R³がC₁- $_8$ ハロアルキルであり、R⁴がHまたはC₁- $_8$ アルキルである請求項1記載のスルファモイル化合物。
- (3.5) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがいずれもCHであり、R³ がMeまたはEtであり、R⁴がClまたはBrである請求項1記載のスルファモイル化合物。
- (3.6) R¹, R²がMeであり、YがHであり、Wが結合であり、Aが、A-1であり、D, E, F, GがいずれもCHであり、R² がClまたはBrであり、R⁴がClまたはBrである請求項1記載のスルファモイル化合物。
- (37) 請求項1ないし36記載のスルファモイル化合物の1種以上を有効成分として含有する農薬。

(38) 農薬が、農園芸用殺菌剤である請求項37記載の農薬。

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP98/04808

A CIA	SSIFICATION OF SUBJECT MATTER		
Int	C16 C07D403/06, 403/12, 471	/04, A01N43/653, 84, 90	
According	to International Patent Classification (IPC) or to both	h national classification and IPC	
B. FIEL	DS SEARCHED		
Minimum Int	documentation searched (classification system follow .C1 ⁶ C07D403/06, 403/12, 471/	ved by classification symbols) /04, A01N43/653, 84, 90	
	ation searched other than minimum documentation to		
Electronic CA,	data base consulted during the international search (IREGISTRY (STN)	name of data base and, where practicable, s	earch terms used)
C. DOC	JMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where		Relevant to claim No.
Y	JP, 7-215971, A (Mitsubish 15 August, 1995 (15. 08. 95 Claims (Family: none)	i Chemical Corp.),),	1-38
Y	JP, 7-2803, A (Mitsubishi Pe 6 January, 1995 (06. 01. 95 Claims (Family: none)	etrochemical Co.,Ltd.),	1-38
Y	JP, 6-32785, A (Mitsubishi P 8 February, 1994 (08. 02. 9 Claims & WO, 94/01419, A1 & EP, 603415, A1 & US, 552	4), & AU, 9345138 A	1-38
Y	JP, 63-255269, A (Schering 21 October, 1988 (21. 10. 88 Full text & EP, 284277, A & BR, 8801269, A & DK, 880 & FI, 8801321, A & ZA, 880 & PT, 87010, A & CN, 88016 & CS, 8801799, A & DD, 284 & US, 5045557, A & IL, 858	8), & AU, 8813318, A 01492, A 01982, A 622, A	1-38
× Further	documents are listed in the continuation of Box C.	See patent family annex.	
Special categories of cited documents: A considered to be of particular relevance E carlier document but published on or after the international filing date considered to be of particular relevance (accument which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published prior to the international filing date but later than the priority date claimed O document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document is taken alone document of particular relevance; the claimed invention			
ame and ma Japan	iling address of the ISA/ ese Patent Office	Authorized officer	
acsimile No.		Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/04808

tegory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
PX	WO, 97/41113, Al (Nissan Chemical Industries, Ltd.), 6 November, 1997 (06. 11. 97), Claims & AU, 9724077, A	1, 6, 37,	
	·		
	.		
:			

			00704808
A. 発明の Int.Cl ⁶ C	0属する分野の分類(国際特許分類(IPC) 07D403/06,403/12,471 <i>。</i>) /04, A01N43/653, 84,	9 0
B. 調査を	····································	·	
	11つにガ野 最小限資料(国際特許分類(IPC))		
Int. Cl ⁶ C	07D403/06, 403/12, 471/	/04, A01N43/653, 84,	90
最小限資料以	外の資料で調査を行った分野に含まれるもの		
国際調査で使	用した電子データベース(データベースの名和 GISTRY (STN)	外、調査に使用した用語)	
C 関連十二	Z 1. EN U.S. de Z wheth		
<u>C.</u> 関連する 引用文献の	ると認められる文献 		-
カテゴリー*	引用文献名 及び一部の箇所が関連する	るときは、その関連する簡 所の表 示	関連する 請求の範囲の番号
Y	JP, 7-215971, A (三巻95 (15.08.95), 請求の	6化学株式会社) 15 00	1-38
Y	JP, 7-2803, A (三菱油化 5 (06.01.95), 請求の範	公株式会社), 6. 1月. 199 5囲(ファミリーなし)	1-38
Y	JP, 6-32785, A (三菱油 94 (08.02.94), 請求の WO, 94/01419, A1&A EP, 603415, A1&US,) TI	1-38
x C欄の続き	にも文献が列挙されている。		
			紙を参照。
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表された文献であって、出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献			
国際調査を完了	06.01.99	国際調査報告の発送日 19.01.9	99
郵位	名称及びあて先 特許庁 (ISA/JP) 更番号100-8915 千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 富永 保 印: 電話番号 03-3581-1101 F	4C 9159

国際調査報告

C (続き). 関連すると認められる文献					
C (続き). 引用文献の	1000000000000000000000000000000000000	関連する 請求の範囲の番号			
<u>カテゴリー*</u> Y	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 JP, 63-255269, A (シエーリング・アグロケミカルズ・リミテツド), 21.10月.1988(21.10.88), 全文&EP, 284277, A&AU, 8813318, A&BR, 8801269, A&DK, 8801492, A&FI, 8801321, A&ZA, 8801982, A&FI, 87010, A&CN, 8801622, A&CS, 8801799, Aⅅ, 284579, A&US, 5045557, A&IL, 85800, A				
PX	WO, 97/41113, A1 (日産化学工業株式会社), 6. 1 1月. 1997 (06. 11. 97), 請求の範囲& AU, 9724077, A	1, 6, 37, 38			
·					
		·			
·					