These slides are by courtesy of Prof. 李稻葵 and Prof. 郑捷.

Chapter Thirty-Two

Exchange

In Chapter 32 and 33

- We try to get some flavor of the theory of general equilibrium (一般均衡), which is a typically an advanced topic.
 - –A general equilibrium model puts together many consumers and firms trading many goods, and prices for all goods are determined endogenously by a set of market clearing conditions.

In Chapter 32 and 33

- Chapter 32
 - -2 consumers, no firm, 2 goods
- Chapter 33
 - -1 consumer, 1 firm, 2 goods

The Exchange Economy

- Two consumers, A and B.
- Their endowments of goods 1 and 2 are $_{\omega}^{A} = (\omega_{1}^{A}, \omega_{2}^{A})$ and $_{\omega}^{B} = (\omega_{1}^{B}, \omega_{2}^{B})$.
- E.g. $\omega^{A} = (6,4)$ and $\omega^{B} = (2,2)$.
- The total quantities available are $\omega_1^A + \omega_1^B = 6 + 2 = 8$ units of good 1 and $\omega_2^A + \omega_2^B = 4 + 2 = 6$ units of good 2.

Exchange

 A diagram, called an Edgeworth box, shows all possible allocations of the available quantities of goods 1 and 2 between the two consumers.

Starting an Edgeworth Box

Height =
$$\omega_2^A + \omega_2^B$$
 = $4 + 2$ = 6

Width =
$$\omega_1^A + \omega_1^B = 6 + 2 = 8$$

The Endowment Allocation

The Endowment Allocation

Other Feasible Allocations

- (x₁^A,x₂^A) denotes an allocation to consumer A.
- (x_1^B, x_2^B) denotes an allocation to consumer B.
- An allocation is feasible if and only if

$$x_1^A + x_1^B = \omega_1^A + \omega_1^B$$

and
$$x_2^A + x_2^B = \omega_2^A + \omega_2^B$$

Feasible Reallocations

Feasible Reallocations

 Each point in the box, including the boundary, represents a feasible allocation.

Adding Preferences to the Box

Assumption of Voluntary Trade

- If we assume that trade is voluntary, i.e. each consumer has the right to refuse to trade, we should expect the outcomes cannot make any consumer worse off.
- Can the model make a sharper prediction?

Further Improvements

Orange is Indeed improves the two consumers' welfare, but it can be improved further.

Pareto Efficiency **Green** cannot be Paretoimproved further, i.e. it is Pareto efficient.

Pareto Efficiency

Both A and B are worse off

A is strictly better off but B is strictly worse off

B is strictly better off but A is strictly worse off

Both A and B are worse

Pareto Efficient

The allocation is

Pareto efficient since the
only way one consumer's
welfare can be increased is to
decrease the welfare of the other
consumer.

The Core

- The core is the set of all Pareto efficient allocations that are welfareimproving for both consumers relative to their own endowments.
- We usually expect voluntary trade to achieve a core allocation.

Further Refinement of the Solution Concept

- Can the model make a even sharper prediction?
- That depends on how trade is conducted.
 - -Competitive market (general equilibrium theory)
 - Bargaining game
 - Other assumptions...

- Under the assumption of competitive markets, each consumer is a pricetaker.
- Typically, the price taking assumption only makes sense when there are many participants.
 - -We should interpret the 2-consumer Edgeworth box model as a simplistic illustration of the general equilibrium theory with many market participants.

So given p₁ and p₂, consumer A's net demands (a.k.a. excess demand) for goods 1 and 2 are

$$x_1^{*A} - \omega_1^A$$
 and $x_2^{*A} - \omega_2^A$.

 So given p₁ and p₂, consumer B's net demands for goods 1 and 2 are

$$x_1^{*B} - \omega_1^{B}$$
 and $x_2^{*B} - \omega_2^{B}$.

A general equilibrium occurs when prices p₁ and p₂ cause both the markets for goods 1 and 2 to clear;
 i.e.

$$\mathbf{x}_{1}^{*A} + \mathbf{x}_{1}^{*B} = \omega_{1}^{A} + \omega_{1}^{B}$$
 $\mathbf{x}_{2}^{*A} + \mathbf{x}_{2}^{*B} = \omega_{2}^{A} + \omega_{2}^{B}$.

- The above is gross demand = gross supply.
- Equivalently, we can rewrite it as the sum of net demand = 0.

Equilibrium

- If prices p₁ and p₂ clear both markets, then this price vector together with the resulted allocation is called a Walrasian equilibrium (a.k.a. competitive/market/price equilibrium).
- It has been shown that Walrasian equilibrium exists under relatively mild conditions (including convexity of preferences.)

First Welfare Theorem

- Note that trading in competitive markets achieves a Pareto efficient allocation.
- This observation holds in general under very mild assumption (monotonic preferences), which is known as First Welfare Theorem, a.k.a. First Fundamental Theorem of Welfare Economics.

Walras' Law

- Assuming both consumers' preferences are monotonic, and so their budget constraint is binding, i.e.
- For consumer A:

$$p_1x_1^{*A}+p_2x_2^{*A}=p_1\omega_1^A+p_2\omega_2^A$$
 For consumer B:

$$p_1x_1^{*B} + p_2x_2^{*B} = p_1\omega_1^B + p_2\omega_2^B$$

Walras' Law

$$p_{1}x_{1}^{*A} + p_{2}x_{2}^{*A} = p_{1}\omega_{1}^{A} + p_{2}\omega_{2}^{A}$$

$$p_{1}x_{1}^{*B} + p_{2}x_{2}^{*B} = p_{1}\omega_{1}^{B} + p_{2}\omega_{2}^{B}$$

Summing gives

$$p_{1}(x_{1}^{*A} + x_{1}^{*B}) + p_{2}(x_{2}^{*A} + x_{2}^{*B})$$

$$= p_{1}(\omega_{1}^{A} + \omega_{1}^{B}) + p_{2}(\omega_{2}^{B} + \omega_{2}^{B}).$$

Walras' Law

$$p_{1}(x_{1}^{*A} + x_{1}^{*B} - \omega_{1}^{A} - \omega_{1}^{B}) +$$

$$p_{2}(x_{2}^{*A} + x_{2}^{*B} - \omega_{2}^{A} - \omega_{2}^{B})$$

$$= 0.$$

This says that the summed market value of excess demands is zero for any positive prices p₁ and p₂ -- this is Walras' Law.

Implications of Walras' Law

Suppose the market for good A is in equilibrium; that is,

$$x_1^{*A} + x_1^{*B} - \omega_1^A - \omega_1^B = 0.$$

Then

$$p_1(x_1^{*A} + x_1^{*B} - \omega_1^A - \omega_1^B) +$$

$$\mathbf{p}_{2}(\mathbf{x}_{2}^{*A} + \mathbf{x}_{2}^{*B} - \mathbf{\omega}_{2}^{A} - \mathbf{\omega}_{2}^{B}) = 0$$

implies market for good B also clears:

$$\mathbf{x_{2}^{*A}} + \mathbf{x_{2}^{*B}} - \mathbf{\omega_{2}^{A}} - \mathbf{\omega_{2}^{B}} = \mathbf{0}.$$

Implications of Walras' Law

- If one market clears, then then other market must also clears.
- More generally, if there are n goods, and n-1 markets clear, then the remaining market must also clears.

Implications of Walras' Law

What if, for some positive prices p_1 and p_2 , there is an excess quantity supplied of good 1? That is,

$$\mathbf{x_1^{*A}} + \mathbf{x_1^{*B}} - \mathbf{\omega_1^{A}} - \mathbf{\omega_1^{B}} < 0.$$

Then

$$\mathbf{p}_{1}(\mathbf{x}_{1}^{*A} + \mathbf{x}_{1}^{*B} - \mathbf{\omega}_{1}^{A} - \mathbf{\omega}_{1}^{B}) +$$

$$\mathbf{p_2}(\mathbf{x_2^{*A}} + \mathbf{x_2^{*B}} - \mathbf{\omega_2^{A}} - \mathbf{\omega_2^{B}}) = \mathbf{0}$$

implies market for good B is in shortage:

$$\mathbf{x}_{2}^{*A} + \mathbf{x}_{2}^{*B} - \mathbf{\omega}_{2}^{A} - \mathbf{\omega}_{2}^{B} > 0.$$

Second Welfare Theorem

- First Welfare Theorem states that the competitive markets always implement one of the Pareto efficient allocations.
- What if the implemented allocation is not desirable in other aspects, e.g. "fairness"?

Second Welfare Theorem

- What if the government want to implement another Pareto efficient allocation?
- Second welfare theorem states that competitive markets can implement any Pareto efficient allocation, as long as the government can redistribute the consumers' endowment or monetary income.
 - It holds under mild assumptions, including convexity of preferences.

Second Welfare Theorem

Second Fundamental Theorem

A Can this allocation be implemented by competitive trading from ω ? No.

Second Fundamental Theorem

Summary

- Key concepts:
 - Pareto efficiency
 - -Contract curve
 - -Core
 - -Walrasian equilibrium
 - -Walras' Law
 - -First and Second Welfare Theorems
- Key methodology: The Edgeworth box