A multidimensional maximum bisection problem

Zoran Maksimović Military Academy, generala Pavla Jurišića Šturma 33, 11000 Belgrade, Serbia zmaksimovic@beotel.net

June 26, 2015

Abstract

This work introduces a multidimensional generalization of the maximum bisection problem. A mixed integer linear programming formulation is proposed with the proof of its correctness. The numerical tests, made on the randomly generated graphs, indicates that the multidimensional generalization is more difficult to solve than the original problem.

Keywords: Graph bisection, Mixed integer linear programming, Combinatorial optimization.

ACM Computing Classification System (1998): G.1.6

1 Introduction

The maximum bisection problem (MBP) is a well known combinatorial optimization problem. For a weighted graph G = (V, E) with non-negative weights on the edges and where |V| is an even number, the maximum bisection problem consists in finding a partition of the set of vertices V in two subsets S and $V \setminus S$, where $|S| = |V \setminus S|$ and the sum of weights of the edges between the sets is maximal. The maximum bisection can be applied in different fields such as VLSI design [17], image processing [16], compiler optimization [11], etc.

The maximum bisection problem is NP hard as shown in [4]. The complexity of finding optimal and good solutions of maximum bisection problem has given raise to various solution approaches ranging from application algorithms, exact methods to metaheuristics.

Widely used mathematical formulation with binary variables x_j assigned to each vertex can be presented as

$$\max \frac{1}{4} \sum_{i,j} w_{ij} (1 - x_i x_j)$$
s.t. $e^T x = 0$

$$x_j^2 = 1, \quad j = 1, \dots, n$$

where $e \in \mathbb{R}^n$ is the column vector of all ones, and T is the transpose operator. It should be noted that x_j is either 1 or -1 so either $S = \{j | x_j = 1\}$ or $S = \{j | x_j = -1\}$.

This formulation enabled approximation algorithms based on semidefinite programming. Goemans and Williamson approach to maximum bisection in [7] was extended by Frize and Jerrum in [6] and produced randomized 0.651 approximation algorithm. In [19] Ye improved performance ratio to 0.699 with modification of Frieze and Jerrum approach. The approximation ratio was further improved to 0.7016 by Halperin and Zwick in [9], including some triangle inequalities in the semidefinite programming relaxations.

The main goal of these approaches is the performance guarantee so they are not competitive with other methods for comparison in computational testing. In paper [10] a proof that there is no polynomial approximation algorithm with performance ratio greater than $\frac{16}{17}$ is given.

Beside these approximation algorithms, there are several approaches for its

Beside these approximation algorithms, there are several approaches for its exact solving such as linear and semidefinite branch-and-cut methods [1], intersection of semidefinite and polyhedral relaxations [15].

In [1] is discussed the minimum graph bisection problem and branch-and-cut approaches for finding its solution. The problem definition can be described as follows:

Let G = (V, E) be an undirected graph with $V = \{1, ..., n\}$ and edge set $E \subseteq \{\{i, j\} : i, j \in V, i < j\}$. For given vertex weights $f_v \in \mathbb{N} \cup \{0\}, v \in V$, and edge costs $w_{i,j} \in \mathbb{R}$, $\{i, j\} \in E$, a partition of the vertex set V into two disjoint clusters S and $V \setminus S$ with sizes $f(S) = \sum_{i \in S} f_i \leq F$ and $f(V \setminus S) \leq F$, where $F \in \mathbb{N} \cap [\frac{1}{2}f(V), f(V)]$, is called a bisection. Finding a bisection such that the total cost of edges in the cut $\delta(S) := \{\{i, j\} \in E : i \in S \land j \in V \setminus S\}$ is minimal is the minimum bisection problem (MB).

If the function f which represents the weight of nodes is equal to one for all nodes and F is equal to $\frac{1}{2}|V|$ and weights on edges w_{ij} takes negative values this problem becomes the maximum graph bisection problem. In order to apply brunch-and-cut approaches authors in [1] presented an integer linear programming formulation.

It can be assumed without loss of generality that G contains a spanning star rooted at s. Indeed, for a selected node $s \in V$ the set of edges can be extended so that s is adjacent to all other nodes in V, where the weights w of new edges is equal to zero.

Let y_{ij} be the binary variables defined as

$$y_{ij} = \begin{cases} 1, & \text{if } ij \text{ is in the cut} \\ 0, & \text{otherwise,} \end{cases}$$

The mathematial model is formulated as follows:

$$\min \sum_{ij} w_{ij} y_{ij}$$
s.t. $f_s + \sum_{v \neq s} f_v (1 - y_{sv}) \leq F$

$$\sum_{v \neq s} f_v y_{sv} \leq F$$

$$\sum_{ij \in C \setminus U} y_{ij} + \sum_{ij \in U} (1 - y_{ij}) \geq 1, \text{ cycle } C \subseteq E, \text{odd } U \subseteq C$$

$$y \in \{0, 1\}^E$$

Semidefinite programming formulation given in [1] is very similar to the one already presented in this paper. Separation routines for valid inequalities to the bisection cut polytope is developed and incorporated and incorporated into a common branch-and-cut framework for linear and semidefinite relaxations. On the basis of large sparse instances coming from VLSI design they showed the good performance of the semidefinite approach versus the mainstream linear one.

In the paper [15] authors presented a method for finding exact solutions of the Max-Cut problem based on semidefinite formulation. Semidefinite relaxation is used and combined with triangle inequalities, which is solved with the bundle method. This approach uses Lagrangian duality to get upper bounds with reasonable computational effort. The expensive part of their bounding procedure is solving the basic semidefinite programming relaxation of the Max-Cut problem. Authors also discussed applicability of their approach on the special case of Max-Cut problem where cardinality of partitions is equal i.e. maximum graph bisection problem.

Another set of approaches, especially for larger scale instances are metaheuristics. From the wide field of applied metaheuristics let mention some of them such as: memetic search [18], variable neighbeerhood search [14], neural networks [5], deterministing anealing [3]

Memetic search approach presented in [18] integrates a grouping crossover operator and a tabu search optimization procedure. The proposed crossover operator preserves the largest common vertex groupings with respect to the parent solutions while controlling the distance between the offspring solution and its parents. Experimental results indicates that the memetic algorithm improves, in many cases, the best known solutions for MBP.

Variable neighborhood search metaheuristic can obtain high quality solution for max-cut problems. However, comparing to max-cut problems, max-bisection

problems have more complicated feasible region via the linear constraint $e^T x = 0$. It is hard to directly apply the typical VNS metaheuristic to deal with max-bisection problems. In [14] Ling et al. combined the constraint $e^T x = 0$ with the objective function and obtained a new optimization problem which is equivalent to the max-bisection problem, and then adopted a distinct greedy local search technique to the resulted problem. This modified VNS metaheuristic based on the greedy local search technique is applied to solve max-bisection problems. Numerical results indicate that the proposed method is efficient and can obtain high quality solutions for max-bisection problems.

In [5], a new Lagrangian net algorithm is proposed to solve max-bisection problems. The bisection constraints is relaxed to the objective function by introducing the penalty function method. A bisection solution is calculated by a discrete Hopfield neural network (DHNN). The increasing penalty factor can help the DHNN to escape from the local minimum and to get a satisfying bisection. The convergence analysis of the proposed algorithm is also presented. Finally, numerical results of large-scale G-set problems show that the proposed method can find a better optimal solutions.

A deterministic annealing algorithm is proposed for approximating solution of max bisection problem in [3]. The algorithm is derived from the introduction of a square-root barrier function, where the barrier parameter behaves as temperature in an annealing procedure and decreases from a sufficiently large positive number to 0. The algorithm searches for a better solution in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between 0 and 1. It is proved that the algorithm converges to at least an integral local minimum point of the continuous problem if a local minimum point of the barrier problem is generated for a sequence of descending values of the barrier parameter with zero limit. Numerical results show that the algorithm is much faster than one of the best existing approximation algorithms while they produce more or less the same quality solution.

Any partition of the node set V in two sets defines a set of edges, that we call a cut, with ends in different partitions. If a graph has weight on edges, than weight of the cut is defined as the sum of weights of edges in the cut. The problem of finding a partition of the node set where the weight of the cut is maximal is called a Max-Cut problem. From this definition it follows that there is no restriction on the cardinality of the partitions. Maximum graph bisection problem is obtained from Max-Cut problem if it is required that the partitions have equal cardinality. From the definition it follows that the Max-Cut problem is a generalization of the maximum graph bisection problem, and that maximum graph bisection problem can be solved by introducing restrictions about cardinality in Max-Cut problem.

In this paper a multidimensional generalization of maximum bisection problem is introduced, where weights on edges instead of numbers are n-tuples of positive real numbers. The weight of the cut is the minimum of sums of the coordinates of edge weights. The goal is to find a partition of the set of vertices V in two sets with equal number of vertices and maximal weight of the cut.

For n=1 we have an ordinary maximum bisection problem. From the fact that maximum bisection problem is NP hard, and that the maximum bisection problem is a special case of the multidimensional maximum bisection problem it follows that multidimensional maximum bisection problem is also NP hard.

The weight of the cut in the multidimensional maximum bisection problem is calculated in two steps: firstly, the coordinates of the weight vectors on the edges of the cut are summed and secondly, the minimum of the sums is determined. This minimum is the weight of the cut. As it can be seen it is more complex than just summing the weights on the edges of the cut, which is the case in the MBP.

Although MMBP is a straightforward generalization of the MBP, most of the existing methods for solving the MBP can hardly be applied to the MMBP.

The semidefinite mathematical formulation for the MBP cannot be easily transformed to the one for the MMBP. In the MBP semidefinite formulations, the weights of the edges directly figure in the objective function and they are treated as numbers. In the MMBP, on each edge a vector of the weights is assigned and we are not interested only in the coordinates, but in the minimum of their sums. This reason makes approximation algorithms based on semidefinite programming presented in previous discussion, notably in [6], [7], [9], [12] and [19], inapplicable for solving MMBP.

Brunch and cut methods based on linear and semidefinite formulations presented in [1] cannot be applied for several reasons. In order to generate the cycles the authors in [1] introduced the additional edges with the weights equal to zero.

If this method is expanded in the multidimensional variant by introducing the additional edges, having the vectors of the weights of all zeros, a problem will appear: these new edges will be favored in the cut, since the minimum of the sums of the coordinates has to be determined. Also, it is not easy to reformulate the objective function where weight of edges are used. Since the semidefinite programming formulation is very similar to the one used by the approximation algorithms, the same consideration presented in the previous paragraph can also be applied in this case.

The method described in [15] requires solving the basic semidefinite programming relaxation of the max cut problem which is case of MMBP cannot be applied in the case of MMBP, because in MMBP the weights are represented as vectors.

In a proposed memetic search approach presented in [18] each individual in a population presents a bisection cut. If this approach is applied to the MMBP, the calculation of the fitness function could be pretty complicated. Nevertheless, if this approach is sill applied for solving MMBP, the calculation efforts in terms of time will be enormous.

The variable neighborhood search approach proposed in [14] combines the constraint $e^T x = 0$ with the objective function. In the case of MMBP, this approach is not applicable, because the weights are now vectors and the constraint eTx=0 can not be fitted with the objective function. Also, the greedy local search with a sorting procedure cannot be applied in the case of MMBP

since it is unclear which coordinate should be sorted.

Proposed Lagrangian net algorithm in [5] cannot be easily applied on solution of MMBP. First of all, penalty functions will have to be modified in order to reflect the fact that weights are now vectors. Second, the convergence to optimal solution could not be easily translated in a such space where weight of edges are vectors instead of numbers.

A deterministic annealing algorithm from [19] can not be easily applied, since it is not clear what "a feasible descent direction" means in the case of MMBP because the weights are now vectors. Also, the convergence to an integral local minimum also can not be guaranteed in the case of MMBP.

Like many other graph partitioning problems, MBP is applied for solving various practical problems, such as VLSI design [17], image processing [16], compiler optimization [11], social network analysis etc. Multidimensional maximum bisection problem appears whenever relation between entities are vectors of numbers instead of single numbers. Some practical application are:

- For arbitrary pair of workers can be established several aspects of incompatibility. That aspect could be character, knowledge, experience, etc. where the higher level of incompatibility is represented with greater numbers. The problem is to divide the group of workers in two teams with equal size where the greatest part of incompatibility among workers lies between teams.
- In VLSI design electrical components also have certain aspects that might be considered such as interference, current used, interconnectedness, heat dissipation etc. The problem is to designate electrical components to one of the two boards in such way that, for example, the two warmest components are on the different boards.

2 Mixed integer solution for the multidimensional maximum bisection problem

Before the MILP formulation, the formal mathematical formulation of the problem is given. Let G = (V, E) be an undirected graph, and w is a function that assigns to each edge $e = \{i, j\}$ a k-tuple of positive real numbers $(w_{e1}, w_{e2}, \ldots, w_{ek})$ and $S \subseteq V$. The cut C(S) determined by the set S is defined as

$$C(S) = \{ e \in E | e \cap S \neq \emptyset \land e \cap (V \setminus S) \neq \emptyset) \}.$$

From the definition, it is obvious that the cuts C(S) and $C(V \setminus S)$ are the same sets.

The weight of the cut is defined as

$$w(C(S)) = \min_{1 \le l \le k} \sum_{\{i,j\} \in C(S)} w_{ijl}.$$

The goal of the multidimensional maximum bisection problem is to find a partition of the set of vertices in two sets S and $V \setminus S$ where $|S| = |V \setminus S|$ and

where the weight of the cut w(C(S)) is maximal.

The multidimensional maximum bisection problem can be illustrated by the example given on the Figure 1, which optimal solution is given with the set $S = \{1,3,5\}$. The set S generates the cut $C(S) = \{\{1,2\},\{1,4\},\{1,6\},\{2,3\},\{3,4\},\{3,6\},\{4,5\},\{5,6\}\}$ where the sums over coordinates are (18,23) and the weight of the cut is 18.

Figure 1: An example of a graph with pairs as weights over the edges

Let $S \subseteq V$, |V| = n, k be dimension of weight vector and w_{el} be the l-th coordinate of the weight vector for the edge e.

$$x_i = \begin{cases} 1, & i \in S \\ 0, & i \notin S, \end{cases} i \in V$$

$$y_e = \begin{cases} 1, & \text{if edge } e \in C(S) \\ 0, & \text{otherwise,} \end{cases} e \in E$$

The exact solution of the multidimensional maximum bisection problem using mixed integer linear programming can be stated as:

$$\max U$$
 (1)

such that

$$U \le \sum_{e \in E} w_{el} \cdot y_e, \quad 1 \le l \le k \tag{2}$$

$$x_{e_i} + x_{e_j} \ge y_e, \quad \{e_i, e_j\} = e \in E$$
 (3)

$$x_{e_i} + x_{e_j} + y_e \le 2, \quad \{e_i, e_j\} = e \in E$$
 (4)

$$\sum_{i=1}^{n} x_i = n/2, \tag{5}$$

$$x_i, y_e \in \{0, 1\}, i \in V, e \in E$$
 (6)

$$U \in [0, +\infty) \tag{7}$$

Theorem 1. A partition of set of vertices of a given graph G = (V, E) in two sets S and $V \setminus S$ is the solution of the generalized Max-Bisection problem if and only if constraints (2)-(7) and objective function are satisfied.

Proof. (\Rightarrow) Suppose that S is an optimal solution and its corresponding cut is C(S). It will be proved that constraints (2)-(7) are fulfilled.

Based on the definition of weight of the cut, the constraint (2) is true, and based on the goal of the multidimensional maximum bisection problem, (1) also holds.

If $y_e = 0$ than (3) and (4) are obviously true. If $y_e = 1$ than the corresponding edge $e = \{i, j\}$ belongs to the cut, and exactly one vertex incident to the edge e must be in the set S, so either $x_{e_i} = 1$ or $x_{e_i} = 1$ and therefore constraints (3) and (4) holds.

The constraint (5) is obviously fulfilled as it is required that the vertex set is partitioned into two set with the equal number of vertices, and the constraints (6) and (6) are fulfilled by the definition and the fact that maximum of the cut is to be found.

(\Leftarrow) Suppose that objective and constraints are satisfied. The partition of V into two sets S and $V \setminus S$ is determined by the set $S = \{i \in V | x_i = 1\}$, where the cut is $C(S) = \{e \in E | y_e = 1\}$.

From the constraint (2) it follows that

$$U \le \min_{1 \le l \le k} \sum_{\substack{\{i,j\} \in E \\ i \in S, j \notin S}} w_{ijl},$$

meaning that $U \leq w(C(S))$ and it follows from the objective function that U is equal to the greatest weight of the cut.

From the constraint (6) y_e is either 0 or 1.

If $y_e = 1$ then from the constraints (3) and (4) it follows that both vertices of the edge e are not in the same set S nor set $V \setminus S$.

If $y_e = 0$ then from the constraints (1)-(4) it follows that both vertices of the edge e must be in the same partitions set (either S or $V \setminus S$). If vertices are in different partitions, than it can be concluded that the weight of the edge e is not included in the weight of the cut, and therefore U is not maximal which contradicts to the supposition that all constraints are fulfilled. From this it follows that vertices of the edge must be in the same partition.

From the constraint (5) it follows that $|S| = n/2 = |V \setminus S|$ which means that the vertex set is partitioned into two sets with the equal number of vertices.

From the constraints (6) it follows that each vector must be in either S or in $V \setminus S$. The same applies for the edges.

3 Experimental results

The experiments were conducted on an Intel Core i3 running on 1.7Ghz with 3GB RAM using CPLEX 12.4, Gurobi 5.6 and total enumeration. In order to run the experiments, a set of 27 random graphs was generated: graphs with 10 vertices and 15, 25 and 40 edges; graphs with 20 vertices and 30, 70 and 150 edges; graphs with 30 vertices and 50, 150 and 400 edges; graphs with 50 vertices and 80, 300 and 1000 edges; graphs with 100 vertices and 150, 500 and 3000 edges; graphs with 300 vertices and 500, 2000, 10000 and 30000 edges; graphs with 500 vertices and 1000, 3000, 10000 and 60000 edges and graphs with 1000 vertices and 1500, 10000, 100000 and 350000 edges. For each edge of a random graph, a 20-tuple is generated where each coordinate is a random number in the range 1.000-9.999.

The experiments were conducted using different vector dimensions: 1, 2, 3, 4, 5, 10, 15 and 20 of the same instances in order to confirm that the increase of the dimension of vectors over the edges significantly complicate finding of the optimal solution. All tests were run with 7200 seconds time limit. Numerical results for instances where optimal solutions were found is shown in Tables 1-3. In the Tables 4-6 numerical results are shown for the instances where optimal solutions were not found.

All tables have common first two columns. In the first column, denoted with *instance*, the names of instances are given in the format XXX_YYY where XXX is the number of the vertices and YYY is the number of the edges. For example, the instance 030_400 is a graph with 30 vertices and 400 edges. In the second column, denoted with k, a vector dimension is given.

In the Tables 1-3 in the third column, denoted with *opt*, the optimal result is given. The subsequent two columns contain information about total enumeration: time when optimal solution is found (t) and total running time (t_{tot}) . The last four columns contain information about CPLEX and Gurobi time needed for finding optimal solution and running time, denoted in the same manner.

Third column of the Tables 4-6 contains the maximum of the solutions found for each method (enumeration, CPLEX and Gurobi). In the subsequent two columns the solution is given (denoted with sol) and the time needed for finding that optimal solution (denoted with t) using total enumeration. The following four columns contain information about running CPLEX and Gurobi denoted in the same manner.

As it can be seen in the table 2 for instance 030_400 and k = 5, 10, 15, 20, Gurobi didn't finish their work in 7200 seconds or it run out of memory as well as CPLEX for k = 10, 15, 20.

In the Tables 4-6 neither of CPLEX, Gurobi and total enumeration complete finding the optimal solutions for the given 7200 seconds for smaller instances

and for larger instances because insufficient amount of memory (instances with 1000 vertices).

Obviously, the number of vertices and edges has great influence on the particular solver performance. For example, for the instance 030_050 with vector dimension 1 both CPLEX and Gurobi completed finding the optimal solution for less than one second, while for the instance 030_400 it took 775.5 and 193.2 seconds respectively to find the optimal solution. The results, given in the Tables 1-6, also indicates that the complexity highly increases with the increase of the vector dimension. For example, for the instance 040_400 where the vector dimension k is equal to 4, it took more than 5000 second for both CPLEX and Gurobi to find the solution.

Tables 1-6

4 Conclusions

This paper has taken into consideration a multidimensional generalization of maximum bisection problem where weights on the edges are n-tuples. A mixed integer linear programming formulation is introduced with proof of its correctness. Usability of the model is tested on the set of 27 randomly generated graphs with number of vertices ranging from 10 to 1000 and number of edges ranging from 15 to 350000. The proposed formulation is tested using standard ILP solvers CPLEX and Gurobi, on randomly generated instances. The computational results indicates that the complexity highly increases with the increase of vector dimension especially for the dense graphs.

In future work it may be useful to take into consideration n-tuples as weights in several related problems, such as Max-Cut, Max k-Cut, Max k-Vertex Cover, etc. Other direction could be developing some metaheuristics in cases of large-scale instances which is out of reach for exact methods.

References

- [1] Armbruster M., Fgenschuh M., Helmberg C., Martin A., 2008. A comparative study of linear and semidefinite branch-and-cut methods for solving the minimum graph bisection problem. In Proc. Conf. Integer Programming and Combinatorial Optimization (IPCO), 5035, 112–124.
- [2] Brunetta L., Conforti M., Rinaldi G., 1997. A branch-and-cut algorithm for the equicut problem. Mathematical Programming, 78, 243–263.
- [3] Dang C., He L., Hui I.K., 2002. A deterministic annealing algorithm for approximating a solution of the max-bisection problem Neural Netw., 15(3), 441–58.
- [4] Garey M. R., Johnson D. S., Stockmeyer L. J., 1976. Some simplified NP-complete graph problems. Theoretical Computer Science, 1, 237–267.

- [5] Fengmin, X., Xusheng, M., Baili C., 2011. A new Lagrangian net algorithm for solving max-bisection problems Journal of Computational and Applied Mathematics 235, 3718–3723
- [6] Frieze A., Jerrum M., 1997. Improved approximation algorithm for max k-cut and max-bisection, Algorithmica, 18(1), 67-81.
- [7] Goemans, M.X., Williamson, D.P., 1995. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, Journal of the Association for Computing Machinery, 42(6):1115-1145.
- [8] Hager W. W., Phan D. T., Zhang H., 2013. An exact algorithm for graph partitioning. Mathematical Programming, 137, 531–556.
- [9] Halperin, E., Zwick, U., 2002. A unified framework for obtaining improved approximation algorithms for maximum graph bisection problem, Random Struct. Algorithms, 20(3), 82-402.
- [10] Hastad, J., 1997. Some optimal in approachability results, in: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, ACM, New York, 1997, pp. 1–10.
- [11] Hendrickson B., Leland R., 1995. An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM Journal on Scientific Computing 16(2), 452–469.
- [12] Karish, S., Rendl, F., Clausen, J., 2000. Solving graph bisection problems with semidefinite programming, SIAM Journal on Computing 12(3), 177-191.
- [13] Krishnan, K., Mitchell, J., 2016. A semidefinite programming based polyhedral cut and price approach for the Max-Cut problem. Computational Optimization and Applications, 33(1), 51–71.
- [14] Ling, A.F., Xu, C.X., Tang L., 2008. A modified VNS metaheuristic for max-bisection problems Journal of Computational and Applied Mathematics 220, 413–421
- [15] Rendl, F., Rinaldi, G., Wiegele, A., 2008. Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations, Mathematical Programming 121(2), 307-335.
- [16] Shi J., Malik J., 1997. Normalized Cuts and Image Segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 731–737.
- [17] Slowik A., Bialko M., 2006. Partitioning of VLSI Circuits on Subcircuits with Minimal Number of Connections Using Evolutionary Algorithm. ICAISC 2006, Springer-Verlag, 470–478.

- [18] Wu, Q., Hao, J.K., 2013. Memetic search for the max-bisection problem, Computers & Operations Research 40 (1), 166–179.
- [19] Ye, Y., 2001. A 0.699-approximation algorithm for max-bisection, Mathematical Programming, 90(1), 101-111.

Table 1: Instances with known optimal solutions

	Tai		enumeration			LEX	Gurobi	
instance	k	opt	t (s)	t_{tot} (s)	t (s)	t_{tot} (s)	t (s)	t_{tot} (s)
010_015	1	68.708	0.001	0.001	0.051	0.155	0.030	0.030
010_015	2	59.971	0.001	0.001	0.046	0.062	0.030	0.030
010_015	3	54.324	0.001	0.001	0.066	0.088	0.040	0.040
010_015	4	54.324	0.001	0.001	0.091	0.121	0.040	0.040
010_015	5	54.324	0.001	0.001	0.085	0.212	0.050	0.050
010_015	10	49.011	0.001	0.001	0.263	0.269	0.050	0.050
010_015	15	49.011	0.001	0.001	0.134	0.141	0.050	0.050
010_015	20	47.347	0.001	0.001	0.165	0.239	0.060	0.060
010_025	1	82.500	0.001	0.001	0.001	0.265	0.030	0.030
010_025	2	82.500	0.001	0.001	0.183	0.187	0.050	0.050
010_025	3	82.500	0.001	0.001	0.236	0.247	0.030	0.030
010_025	4	82.500	0.001	0.001	0.240	0.245	0.030	0.030
010_025	5	82.500	0.001	0.001	0.357	0.374	0.070	0.070
010_025	10	79.842	0.001	0.001	0.196	0.204	0.070	0.070
010_025	15	79.842	0.001	0.001	0.199	0.243	0.070	0.070
010_025	20	79.842	0.001	0.001	0.256	0.263	0.100	0.100
010_040	1	109.743	0.001	0.002	0.185	0.403	0.060	0.060
010_040	2	109.743	0.001	0.001	0.295	0.312	0.070	0.070
010_040	3	109.743	0.001	0.001	0.381	0.391	0.110	0.110
010_040	4	109.743	0.001	0.001	0.377	0.386	0.080	0.080
010_040	5	109.743	0.001	0.001	0.450	0.493	0.110	0.110
010_040	10	109.743	0.001	0.001	0.525	0.538	0.120	0.120
010_040	15	109.743	0.001	0.001	0.415	0.427	0.110	0.110
010_040	20	108.651	0.001	0.001	0.486	0.500	0.160	0.160
020_030	1	136.696	0.016	0.078	0.068	0.227	0.030	0.030
020_030	2	122.664	0.031	0.078	0.105	0.109	0.040	0.040
020_030	3	122.664	0.031	0.078	0.047	0.194	0.040	0.040
020_030	4	107.134	0.015	0.093	0.214	0.220	0.050	0.050
020_030	5	105.441	0.046	0.109	0.267	0.276	0.090	0.090
020_030	10	105.441	0.062	0.124	0.290	0.298	0.110	0.110
020_030	15	105.441	0.062	0.140	0.196	0.203	0.090	0.090
020_030	20	105.441	0.475	0.171	0.249	0.258	0.090	0.090
020_070	1	250.973	0.016	0.156	0.318	0.620	0.120	0.120
020_070	2	250.973	0.001	0.171	0.425	0.437	0.160	0.160
020_070	3	246.420	0.001	0.187	0.559	0.583	0.190	0.190
020_070	4	246.420	0.001	0.203	0.571	0.588	0.180	0.180
020_070	5	246.420	0.015	0.218	0.639	0.659	0.190	0.190
020_070	10	244.988	0.001	0.265	0.704	0.725	0.240	0.240
020_070	15	244.988	0.015	0.312	0.578	0.619	0.270	0.270
020_070	20	244.988	0.015	0.374	0.808	0.835	0.250	0.250

CD 11 0	T .	1	1		1
Table 20	Instances	3371th	znown	ontimal	colutions
Table 4.	motances	WILLI	KHOWH	ODumai	SOLUMONS

	10	ible 2. Ilist	enumeration					
instance	k	opt			CPLEX		Gurobi	
			t (s)	t_{tot} (s)	t (s)	t_{tot} (s)	t (s)	t_{tot} (s)
020_150	1	502.411	0.031	0.359	1.769	2.210	0.840	0.840
020_150	2	476.472	0.187	0.374	1.476	1.529	1.570	1.570
020 _ 150	3	466.079	0.187	0.421	1.193	2.505	2.670	1.000
020_150	4	466.079	0.202	0.421	2.201	2.832	2.350	2.350
020 150	5	455.679	0.171	0.452	4.213	5.076	2	6.760
020 1 50	10	442.486	0.202	0.561	1.912	3.387	1	2.190
020_150	15	440.870	0.234	0.671	2.353	2.963	1	5.870
020_150	20	440.870	0.296	0.811	3.751	3.948	1	3.070
030_050	1	224.556	47.41	117.6	0.194	0.194	0.050	0.050
030_050	2	224.556	49.82	123.6	0.134	0.141	0.080	0.080
030_050	3	221.761	54.74	136.3	0.183	0.193	0.110	0.110
030_050	4	221.761	54.24	145.1	0.164	0.173	0.090	0.090
030_050	5	214.010	158.1	151.5	0.496	0.511	0.110	0.110
030_050	10	207.983	86.80	198.9	0.382	0.396	0.170	0.170
030_050	15	199.817	92.96	233.2	0.324	0.337	0.170	0.170
030_050	20	199.817	111.7	279.3	0.472	0.488	0.160	0.160
030_150	1	589.593	118.8	345.4	1.610	1.676	0.940	0.940
$030 \text{_} 150$	2	536.473	130.9	374.0	1.230	1.264	1.050	1.000
030_150	3	533.635	141.8	404.8	3.122	3.223	1.590	1.000
030_150	4	533.635	150.8	433.5	1.608	2.500	1.480	1.000
030_150	5	533.635	156.8	449.4	2.635	2.708	1.270	1.270
030_150	10	525.300	89.9	573.0	3.150	3.238	2	3.490
$030 \text{_} 150$	15	519.586	106.5	936.8	3.437	4.837	1	4.470
030_150	20	519.586	216.7	1375	3.969	4.641	1	3.120
030_400	1	1331.773	391.5	1327	15.08	775.5	59	193.2
030_400	2	1230.856	539.2	1430	26.87	1928	167	1249
030_400	3	1208.703	125.0	1416	498.5	4033	2293	2889
030_400	4	1187.753	530.8	1520	5138	5382	4389	5527
030_400	5	1181.987	45.5	1602	5521	5563	_	-
030_400	10	1154.353	593.1	2116	-	-	_	-
030_400	15	1142.317	519.2	2611	-	-	_	-
030_400	20	1140.635	605.3	3098	-	-	-	-

	Table 3: Inst		enumeration		CP	LEX	Gurobi		
instance	k	opt	t (s)	t_{tot} (s)	t (s)	t_{tot} (s)	t (s)	t_{tot} (s)	
050_080	1	372.069	-	-	0.396	0.407	0150	0150	
050_080	2	346.271	-	_	0.475	0.496	0150	0150	
050_080	3	346.271	-	-	0.491	0.513	0.130	0.130	
050_080	4	346.271	-	-	0.446	0.465	0.180	0.180	
050_080	5	333.258	-	-	0.697	0.720	0.200	0.200	
050_080	10	333.258	-	-	0.615	0.632	0.250	0.250	
050_080	15	332.970	-	-	0.575	0.634	0.250	0.250	
050_080	20	332.970	-	-	0.882	0.911	0.250	0.250	
050_300	1	1124.331	-	_	7.828	23.89	15	73.58	
050_300	2	1098.891	-	_	5.292	22.85	46	60.92	
050_300	3	1098.891	-	-	12.82	31.82	7	60.87	
050_300	4	1094.621	-	-	51.75	117.4	21	74.23	
050_300	5	1094.621	-	-	9.152	27.05	37	89.12	
050_300	10	1076.105	-	-	17.71	32.11	7	75.70	
050_300	15	1062.553	-	-	29.32	295.3	45	107.30	
050_300	20	1062.553	-	-	63.49	236.9	89	163.70	
100_150	1	697.973	-	-	0.586	0.612	0.350	0.350	
100_150	2	696.787	-	-	0.750	1.106	0.520	0.520	
100_150	3	689.403	-	-	1.082	1.124	0.690	0.690	
100_150	4	689.403	-	-	0.843	1.126	0.650	0.650	
100_150	5	689.403	-	-	1.425	1.425	1.090	1.090	
100_150	10	686.703	-	-	1.873	1.945	1.000	1.000	
100_150	15	673.056	-	-	1.343	1.343	1.570	1.570	
100_150	20	655.263	-	-	1.678	2.410	0.930	0.930	
300_500	1	2543.862	-	-	13.99	52.52	106	127.40	
300_500	2	2524.215	-	-	263.5	265.9	55	279.66	
300_500	3	2456.085	-	-	102.5	3455	450	460.41	
300_500	4	2456.085	-	-	382.3	1264	151	961.72	
300_500	5	2448.516	-	-	116.7	1939	167	752.36	
300_500	10	2377.530	-	-	280.0	537.5	29	287.21	
300_500	15	2360.732	-	-	591.4	636.5	67	654.83	
300_500	20	2352.357	-	-	40.98	1766	101	692.72	
100_500	1	1986.131	-	-	-	-	300	1495	
100_500	2	1931.452	-	-	292.8	4481	45	1514	
100_500	3	1901.654	-	-	-	-	1104	1998	
100_500	4	1901.654	-	-	-	-	1435	2842	
100_500	5	1876.418	_		_	_	675	3902	

Table 4: Instances with unknown optimal solutions

instance	k	best	enumeration		CPLEX		Gurobi	
ilistance	n	Dest	sol	t (s)	sol	t (s)	sol	t (s)
050_1000	1	3099.083	2914.536	5125	3089.713	1531	3099.083	2404
050_1000	2	3016.320	2874.113	1368	3016.320	5257	3013.999	1354
050_1000	3	2977.524	2861.193	2159	2977.524	650.3	2973.205	6592
050_1000	4	2930.936	2826.714	2475	2930.936	3794	2928.399	2284
050_1000	5	2915.139	2821.667	2586	2915.139	1636	2909.632	3419
050_1000	10	2890.945	2775.508	295.9	2890.945	898.6	2827.708	1658
050_1000	15	2853.382	2762.585	3324	2853.382	1401	2833.230	4129
050_1000	20	2840.953	2762.585	4042	2840.953	2392	2827.708	1658
100_500	10	1852.608	1522.286	3768	1843.131	1572	1852.608	5504
100_500	15	1834.379	1480.356	4748	1834.379	223.3	1834.379	392
100_500	20	1809.037	1480.356	5857	1809.037	607.1	1809.037	4827
100_3000	1	8874.360	8505.179	5089	8874.360	6230	8864.220	2720
100_3000	2	8718.983	8436.693	5774	8718.983	5946	8674.793	2500
100_3000	3	8718.983	8386.485	5289	8656.097	7086	8718.983	3267
100_3000	4	8709.104	8386.485	5692	8709.104	421.0	8699.536	30
100_3000	5	8698.801	8296.34	5703	8583.056	219.3	8698.801	3170
100_3000	10	8709.173	8171.752	505.9	8440.079	142.0	8709.173	4914
100_3000	15	8402.444	8117.397	778.9	8402.444	267.7	8375.000	3770
100_3000	20	8521.629	8048.049	4098	8464.797	266.4	8521.629	4894

Table 5: Instances with unknown optimal solutions

	Table 5: Instances with unknown optimal solutions										
instance	k	best	enumera		CPLEX		Gurobi				
		##00 40°	sol	t (s)	sol	t (s)	sol	t (s)			
300_2k	1	7709.498	5744.132	6999	7690.407	6322	7709.498	6637			
300_2k	2	7645.349	5742.752	2774	7645.349	6487	7414.360	5032			
300_2k	3	7509.420	5740.743	3139	7509.420	7197	7242.234	1234			
300_2k	4	7442.000	5739.065	4386	7442.000	6745	7402.851	1412			
300 _ 2k	5	7389.467	5733.544	4731	7389.467	6871	7299.509	887			
300 _ 2k	10	7416.068	5733.544	7099	7416.068	7097	7168.137	2206			
300 _ 2k	15	7307.361	5679.214	198.9	7307.361	6595	7291.780	4513			
300_2k	20	7345.519	5669.931	7136	7345.519	6059	7147.080	3663			
300_10k	1	30824.693	27486.982	2801	30824.693	0.353	29951.782	33			
300 _ 10k	2	29659.475	27486.982	3249	29771.046	4288	29659.475	539			
300 _ 10k	3	30759.960	27472.383	3818	29819.923	6494	30759.960	336			
300 _ 10k	4	30989.566	27472.383	4302	29359.477	3087	30989.566	188			
300 _ 10k	5	30872.004	27246.909	1004	29682.394	4164	30872.004	80			
300 _ 10k	10	30968.334	27246.649	931.3	29253.722	6862	30968.334	747			
300_10k	15	30748.223	27183.126	2194	29241.136	5092	30748.223	1299			
300_10k	20	30923.953	27183.126	2729	29498.737	4891	30923.953	48			
300_30k	1	85934.244	83070.887	6456	85934.244	1.225	84451.384	3			
300 _ 30k	2	83903.267	83028.62	6874	66065.103	5760	83903.267	7126			
300 _ 30k	3	84952.867	83021.191	5183	66814.125	5575	84952.867	1573			
$300_{-}30k$	4	85143.297	83021.191	5804	66514.511	5641	85143.297	4027			
300 _ 30k	5	85845.606	83028.62	6141	66007.823	6611	85845.606	3331			
300 _ 30k	10	85691.919	82945.149	3427	65971.340	5955	85691.919	2977			
$300_{-}30k$	15	85894.230	82768.105	6617	66204.979	6213	85894.230	2572			
300 _ 30k	20	85715.008	82735.728	6759	65252.157	7072	85715.008	3401			
500_1k	1	4744.994	2806.965	5913	4740.014	4102	4744.994	2801			
500 _ 1k	2	4739.982	2806.965	7054	4739.982	6815	4739.529	6620			
$500_{-}1k$	3	4695.510	2762.100	1590	4695.510	789.2	4692.877	4350			
$500_{-}1k$	4	4688.866	2762.100	1239	4688.866	5575	4680.997	6234			
500 _ 1k	5	4687.445	2762.100	1933	4680.664	2883	4687.445	2885			
500 _ 1k	10	4636.442	2762.100	2995	4636.442	2509	4623.145	5832			
500 _ 1k	15	4622.783	2762.100	3794	4622.783	6846	4619.915	5316			
$500_{-}1k$	20	4602.182	2713.144	3218	4602.182	3253	4589.822	4576			
500_3k	1	11372.166	8358.183	7124	11372.166	474.4	11289.831	2687			
500 _ 3k	2	11293.525	8352.269	2402	11077.172	2835	11293.525	3663			
500_3k	3	11257.063	8352.269	2774	11063.300	727.4	11257.063	3975			
500_3k	4	11267.662	8352.269	2279	10974.964	782.7	11267.662	4074			
500_3k	5	11214.219	8339.367	3179	10831.476	679.7	11214.219	4509			
500 _ 3k	10	10972.091	8339.367	4692	10799.479	912.4	10972.091	5591			
500_3k	15	11159.572	8286.828	3631	10751.672	3379	11159.572	6946			
500_3k	20	11038.550	8286.828	5905	10812.779	4230	11038.550	6971			
	-		1		1		1				

Table 6: Instances with unknown optimal solutions

Table 6: Instances with unknown optimal solutions										
instance k		best	enumerat	ion	CPLEX		Gurob	i		
mstance	n	Dest	sol	t (s)	sol	t (s)	sol	t (s)		
500_10k	1	31847.822	27998.844	6100	31547.096	0.040	31847.822	1		
500 _ 10k	2	32453.585	27998.844	7183	31547.096	2676	32453.585	509		
500 _ 10k	3	32741.433	27986.956	437.3	30709.973	4326	32741.433	272		
500 _ 10k	4	32134.073	27602.152	3184	30710.467	3293	32134.073	12		
500 _ 10k	5	32261.153	27602.152	6980	30880.867	3453	32261.153	555		
500 _ 10k	10	32868.335	27602.152	6403	30610.289	5060	32868.335	416		
500 _ 10k	15	32579.889	27556.169	96.57	30226.088	3517	32579.889	479		
500 _ 10k	20	32660.868	27556.169	189.3	30007.443	4501	32660.868	919		
500_60k	1	173626.906	165928.512	4365	173626.906	3.894	168687.246	79		
500_60k	2	169984.258	165762.356	1814	-	-	169984.258	2000		
500 _ 60k	3	171399.820	165762.356	2057	-	-	171399.820	2937		
500_60k	4	166948.978	165762.356	2351	-	_	166948.978	1678		
500_60k	5	172710.669	165762.356	3584	-	_	172710.669	437		
500 _ 60k	10	165966.934	165615.397	3365	-	_	165966.934	144		
500_60k	15	165512.248	165067.289	3315	_	_	165512.248	14		
500_60k	20	166051.696	165067.289	6398	_	_	166051.696	4068		
1k_1.5k	1	7830.439	4429.553	5142	7830.439	4199	7830.439	7082		
1k _ 1.5k	2	7660.702	4406.755	3049	7660.702	500.7	7659.381	5093		
1k_1.5k	3	7561.257	4331.854	2753	7561.257	394.7	7549.120	5741		
1k_1.5k	4	7552.921	4331.854	3761	7552.921	6665	7551.454	2691		
1k_1.5k	5	7561.257	4331.854	4126	7561.257	6775	7558.126	4247		
1k_1.5k	10	7499.702	4313.156	6082	7486.617	6695	7499.702	5871		
1k _ 1.5k	15	7457.737	4212.573	2637	7457.737	6542	7448.530	5709		
1k_1.5k	20	7432.879	4208.582	3862	7422.875	4892	7432.879	6725		
1k_10k	1	34497.300	27849.420	4164	34497.300	3619	33468.985	49		
1k _ 10k	2	33431.473	27453.988	3955	33431.473	2859	33308.086	6351		
1k_10k	3	35076.961	27449.083	2319	33788.255	2971	35076.961	81		
1k_10k	4	34828.276	27436.452	2905	33388.788	3102	34828.276	3937		
1k_10k	5	35122.442	27436.452	3200	33158.065	3165	35122.442	1306		
1k_10k	10	34552.295	27340.450	7001	33220.939	2952	34552.295	6163		
1k _ 10k	15	34642.263	27327.217	6969	33157.350	4653	34642.263	3900		
1k_10k	20	34789.795	27318.103	5733	32978.447	4106	34789.795	2139		
1k_100k	1	294083.743	272658.632	3015	294083.743	1.156	284444.969	1254		
1k_100k	2	277883.845	272658.632	3860	204000.140	1.100	277883.845	2339		
1k_100k	3	277770.801	272658.632	4468		_	277770.801	2931		
1k_100k	4	287363.683	272627.483	6531	_	_	287363.683	6850		
1k_100k	5	293827.978	272581.574	2464	_	_	293827.978	6160		
1k_100k	10	276657.467	272263.665	3562		_	276657.467	2569		
1k_100k	15	291638.645	272127.084	3985		_	291638.645	5470		
1k_100k	20	294052.633	272114.368	5228		_	294052.633	1382		
1k_350k	1	986248.932	964947.365	5146	986248.932	30.42	965489.117	4131		
1k_350k 1k_350k	2	963299.917	963270.571	6110	900240.932	50.42	963299.917	$\frac{4131}{1174}$		
1k_350k 1k_350k	3	962372.761	962136.163	3520	_	_	962372.761	3720		
1k_350k 1k_350k	3 4	965016.683	962136.163	3919		_	965016.683	1321		
1k_350k 1k_350k	5	963881.119	962136.163	4313	_	-	963881.119	1521 1551		
1k_350k 1k_350k	10	962136.163	962136.163	6521		-	303001.113	1991		
1k_350k 1k_350k	15	962052.538	962052.538	3701	_	-	_	_		
1k_350k 1k_350k	20	962008.567	962008.567	$\frac{3701}{2578}$	_	_	_	-		
1K_550K	20	902000.007	302006.00 <i>1</i>	2010	-	-	-			