www. tremepapers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions)

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pa	ge 2		Mark Scheme: Teachers' version Syllabus		Paper	
		<u>J - </u>		GCE AS/A LEVEL – May/June 2010	9702	22	
1	(a)	mic	rome	ter/screw gauge/digital callipers		B1	[1]
	(b)	(i)	look	/check for zero error		B1	[1]
		(ii)		several readings Ind the circumference/along the wire		M1 A1	[2]
2	(a)	con	stant iight l	al speed is zero acceleration ine motion , one mark each)		B2	[2]
	(b)	(i)	0.79 $t = 0$	½a t ² 0 = ½ × 9.8 × t ² 0.40 s allow 1 SF or greater 3 SF answer		C1 A1 A1	[3]
		(ii)	0.90 $t = 0$	ance travelled by end of time interval = 90 cm		C1 C1 A1	[3]
	(c)	•		tance) means ball's speed/acceleration is less		M1 A1	[2]
3	(a)	(i)	force	e is rate of change of momentum		B1	[1]
		(ii)	force	e on body A is equal in magnitude to force on body B (tes are in opposite directionses are of the same kind		A1	[3]
	(b)	(i)	1 F, 2 t A	$A_A = -F_B$		B1 B1	[1] [1]
		(ii)	Δp =	$= F_{A} t_{A} = -F_{B} t_{B} \dots$		B1	[1]
	(c)	fina	l mor	nomentum change occurs at same times for both spher mentum of sphere B is to the right nagnitude 5 N s		B1 M1 A1	[3]
4	(a)	amı neiç	plitud ghbou	energy transfer e varies along its length/nodes <u>and</u> antinodes uring points (in inter-nodal loop) vibrate in phase, etc. , 1 mark each to max 2		B2	[2]

	Pa	ge 3		Mark Scheme: Teachers' version Syllabus		Paper	
				GCE AS/A LEVEL – May/June 2010	9702	22	
	(b)	(i)		(330 × 10 ²)/550 60 cm		M1 A0	[1]
		(ii)	antir	e labelled at piston node labelled at open end of tubetional node and antinode in correct positions along tube		B1 B1 B1	[3]
	(c)		west	t frequency, length = λ/4		C1	
		freq	uenc	ey = 330/1.8		C1 A1	[3]
5	(a)	(i)	data You	ng modulus = stress/strain		C1 M1	
			= 1.	1 × 10 ¹¹ Pa		A1	[3]
		(ii)		mark was removed from the assessment, owing to a ponsistency in the printed question paper.	oower-of-ten		
	(b)	whe	n ruk	ween lines represents energy/area under curve representer is stretched and then released/two areas are differgy seen as thermal energy/heating/difference represer	rent	M1 A1	
				as heat		A1	[3]
6	(a)			$\propto V^2 \text{ or } P = V^2/R \qquad$ $r = (230^2 - 220^2)/230^2$		C1	
				= 8.5 %		A1	[2]
	(b)	(i)	zero			A1	[1]
		(ii)	0.3(0)A		A1	[1]
	(c)			ect plots to within ± 1 mm		B1	[1]
		(ii)		onable line/curve through points giving current as 0.12 v ± 0.005A)		B1	[1]
		(iii)		IR		C1	
				0.12 × 5.0 0.6(0)V		A1	[2]
	(d)	curr resist or c	ent in stand urrer	ets as a potential divider/current divides/current in AC non BC		B1 B1 B1	[2]

	Pa	ge 4		Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2010	9702	22	
7	(a)	(i)	eithe or	er helium <u>nucleus</u> contains 2 protons and 2 neutrons		B1	[1]
		(ii)	e.g. range is a few cm in air/sheet of thin paper speed up to 0.1 c causes dense ionisation in air positively charged or deflected in magnetic or electric fields (any two, 1 each to max 2)			B2	[2]
	(b)	(i)		er ¹ p or ¹ H		B1 B1	[2]
		(ii)	1	initially, α -particle must have some kinetic energy		B1	[1]
		(ii)		1.1 MeV = 1.1 × 1.6 × 10^{-13} = 1.76 × 10^{-13} J		C1 C1 C1 A1	[4]