

CI 06 : ÉTUDE DU COMPORTEMENT STATIQUE DES SYSTÈMES CHAPITRE 1 – MODÉLISATION DES ACTIONS MÉCANIQUES

TRAVAUX DIRIGÉS: MODÉLISATION DES ACTIONS MÉCANIQUES

D'après Ressources de JP Pupier.

Renvoi d'angle

Ce renvoi d'angle permet de faire tourner un arbre vertical à partir du mouvement d'un arbre horizontal 9. Il comprend un engrenage à pignons coniques 5 et 6.

Question 1

Faire le schéma architectural du sous ensemble formé par les pièces 1, 9, 10, 11, 7 et 6. Ceci permettra de modéliser correctement les deux roulements en fonction de leur type mais aussi de leur montage.

On donne $\overrightarrow{AB} = 50 \overrightarrow{x}$, $\overrightarrow{AC} = 95 \overrightarrow{x}$, $\overrightarrow{AD} = 131 \overrightarrow{x}$, $\overrightarrow{DE} = 28 \overrightarrow{y}$ (valeurs en mm).

On note $\{\mathcal{T}(5 \to 6)\}$ le torseur d'efforts qu'exerce le pignon 5 sur le pignon 6. Il s'agit d'une force de point d'application E perpendiculaire à la surface de la denture (voir vue suivant F figure suivante).

LA résultante du $\{\mathcal{T}(5 \to 6)\}$ est composé des trois forces perpendiculaires \overrightarrow{A} , \overrightarrow{R} et \overrightarrow{T} .

- A pour effort axial, c'est-à-dire parallèle à l'axe du pignon;
- *R* pour effort radial : c'est une force qui est perpendiculaire à l'axe du pignon et qui donc le coupe en *D* ;
- $-\,T$ pour effort tangentiel car il est tangent au cône primitif. C'est la seule force utile;
- $-\delta$ est l'angle primitif du pignon conique;
- $-\alpha$ est l'angle de pression de la denture. La valeur de cet angle est normalisée.

Question 2

Exprimer $\{\mathcal{T}(5 \rightarrow 6)\}\$ en fonction de T, α et δ .

- Le poids des pièces est négligé.
- Le frottement est négligé.
- Le couple moteur fourni à l'arbre 9 vaut 5 m.daN. Son vecteur moment est colinéaire à x est il de sens négatif sur ce même axe. Il s'applique en A.
- $-\alpha = 20$; $\delta = 54$.

Question 3

Donner le torseur des actions mécanique de la liaison rotule en B.

Question 4

Donner le torseur des actions mécanique de la liaison linéaire annulaire en C puis en D.

Question 5

Donner le torseur des actions mécanique du pignon en E.

Question 6

Donner le torseur d'un couple moteur pur en C puis en E.

Question 7

Faire la somme des torseurs.

Question 8

Résoudre le système d'équations.