Calcul de tableaux d'amortissement

1 Tableau d'amortissement

Un emprunt est caractérisé par :

- une somme empruntée notée K;
- un taux annuel, en %, noté i;
- une périodicité qui correspond à la fréquence de remboursement, noté *periodicite*. Elle est usuellement exprimée en parties d'une année et prend les valeurs 1 (remboursement annuel), 2 (semestriel), 4 (trimestriel) ou 12 (mensuel);
- un taux périodique, noté ip;
- une durée, notée duree, exprimée en périodes (mois, trimestres, semestres, années);
- la date de la première échéance, notée date_initiale;
- la date de chaque échéance, notée date;
- le numéro de l'échéance, noté ieme, entre 1 et duree;
- le montant de chaque échéance, noté pmt;
- la proportion de capital de chaque échéance, notée ke;
- la proportion des intérêts de chaque échéance, notée ipe;
- le capital restant dû, noté crd.

Un tableau d'amortissement comprendra les colonnes ieme, date, pmt, ke, ipe et crd.

2 Capital constant

Cet emprunt est caractérisé par le fait que ke est constant.

2.1 Calcul de la première échéance

Connaissant K, i, periodicite, duree et $date_initiale$, il s'agit de déterminer la valeur de pmt_0 .

1. Calculer ip:

$$ip = \frac{i}{periodicite} \tag{1}$$

2. Déterminer la part de capital contenue dans chaque échéance :

$$ke = \frac{K}{duree} \tag{2}$$

3. Déterminer la part des intérêts contenue dans la première échéance :

$$ipe_0 = K \times ip \tag{3}$$

4. En déduire la valeur de la première échéance :

$$pmt_0 = ke + ipe_0 (4)$$

2.2 Calcul du capital initial

Connaissant pmt_0 , i, periodicite, duree et $date_initiale$, il s'agit de déterminer la valeur du capital initial K.

1. Calculer ip:

$$ip = \frac{i}{periodicite} \tag{5}$$

2. En déduire le montant du capital initial :

$$K = \frac{pmt_0 \times duree}{1 + duree \times ip} \tag{6}$$

3. Déterminer la part de capital contenue dans chaque échéance :

$$ke = \frac{K}{duree} \tag{7}$$

4. Déterminer la part des intérêts contenue dans la première échéance :

$$ipe_0 = K \times ip$$
 (8)

2.3 Calcul du taux annuel

Connaissant K, pmt_0 , periodicite, duree et $date_initiale$, cherchons i.

1. Déterminer la part de capital contenue dans chaque échéance :

$$ke = \frac{K}{duree} \tag{9}$$

2. Déterminer la part des intérêts contenue dans la première échéance :

$$ipe_0 = pmt_0 - ke (10)$$

3. En déduire le taux annuel :

$$i = \frac{ipe_0}{K} \tag{11}$$

2.4 Calcul du nombre de périodes

Connaissant K, i, periodicite, pmt_0 et $date_initiale$, cherchons duree.

1. Calculer ip:

$$ip = \frac{i}{periodicite} \tag{12}$$

2. Calculer ipe_0 :

$$ipe_0 = K \times ip \tag{13}$$

3. Calculer ke:

$$ke = pmt_0 - ipe_0 (14)$$

4. En déduire le nombre de périodes :

$$duree = \frac{K}{ke} \tag{15}$$

2.5 Construction du tableau d'amortissement

La première ligne du tableau d'amortissement se construit en fonction des données initiales, en utilisant les formules ci-dessus. Calculer aussi le capital restant dû de la première échéance avec :

$$crd_0 = K - ke (16)$$

Les duree-1 lignes successives se calculent itérativement :

$$crd_i = crd_{i-1} - ke (17)$$

$$ipe_i = crd_{i-1} \times ip \tag{18}$$

$$pmt_i = crd_{i-1} \times ip + ke \tag{19}$$

3 Échéance constante

Cet emprunt est caractérisé par le fait que la somme à payer chaque mois par l'emprunteur (l'échéance) est constante.

3.1 Calcul de l'échéance

Connaissant K, i, periodicite, duree et date initiale, il s'agit de déterminer la valeur de pmt.

1. Calculer ip:

$$ip = \frac{i}{periodicite} \tag{20}$$

2. Calculer ensuite la valeur de pmt :

$$pmt = \frac{K \times ip}{1 - (1 + ip)^{-duree}} \tag{21}$$

3.2 Calcul du capital initial

Connaissant pmt, i, periodicite, duree et $date_initiale$, il s'agit de déterminer la valeur du capital initial K accessible.

1. Calculer ip:

$$ip = \frac{i}{periodicite} \tag{22}$$

2. Calculer K:

$$K = \frac{pmt((ip+1)^{duree} - 1)}{ip(ip+1)^{duree}}$$
(23)

3.3 Calcul du taux annuel

Connaissant K, pmt, periodicite, duree et date_initiale, cherchons i.

Il n'existe pas de formule algébrique pour calculer le taux. Il convient de procéder par une recherche numérique approchée par incrémentation ou décrémentation successives (de 0.001% par exemple) d'un taux estimé puis de mesurer l'écart obtenu entre pmt connu et pmt calculé.

Prendre garde au nombre maximum d'itérations acceptable.

3.4 Calcul du nombre de périodes

Connaissant K, i, periodicite, pmt et $date_initiale$, cherchons duree.

1. Calculer ip:

$$ip = \frac{i}{periodicite} \tag{24}$$

2. Calculer duree:

$$duree = \frac{log(-(pmt/(ip \times K - pmt)))}{log(1+ip)}$$
(25)

3. Arrondir la valeur de duree à l'entier supérieur.

3.5 Construction du tableau d'amortissement

La première ligne du tableau d'amortissement se construit en fonction des données initiales, en utilisant les formules ci-dessus. Calculer aussi le capital restant dû de la première échéance avec :

$$crd_0 = K - ke (26)$$

Les duree - 1 lignes successives se calculent itérativement :

$$crd_i = crd_{i-1} - ke_i (27)$$

$$ipe_i = crd_{i-1} \times ip \tag{28}$$

$$ke_i = pmt - ipe_i (29)$$

Copyright © 2006-2011 Laboratoire de Recherche pour le Développement Local Tous droits réservés