

Flash Attention (v1)

Vahid Mirjalili (https://vmirly.github.io)

Complexity of dot-production attention

- Original:
 - Memory $O(N^2)$
 - Computation complexity: $O(N^2)$

→ Quadratic

Difficulty in increasing the context length

• Approximate attention methods: O(N) \rightarrow Linear

But often they are not able to achieve wall-clock speedup.

Why?

Reducing FLOP operations, at the cost of <u>memory access overhead</u>

FlashAttention Overview

Key Idea:

Avoid reading and writing the full attention matrix to and from DRAM

- Using a tiling mechanism
- I/O-aware, significantly fewer memory access
- Exact attention

- Wall-clock speedup at training:
 - BERT-Large (seq. length=512) → 15%
 speedup
 - GPT-2 (seq. length=1k) → 3x speedup

FlashAttention

Key Idea

Avoid reading and writing the full attention matrix to and from DRAM

Challenges

1. Computing the softmax step without accessing the whole QK^{T}

2. Backward-pass without storing the attention matrix

Solutions

Tiling mechanism

- Only storing the normalization factor of softmax
- Recomputing attention on-chip

Faster than reading the attention matrix from memory

Understanding GPU Basics

NVIDIA A100 TensorCore

108 SMs

Types of DRAM:

- SDRAM
- GDDR
- HBM

Size: 80GB of HBM2e Bandwidth: 2039 GB/s

GPU Execution

Performance of computing function y = f(x)

- Time for memory access: T_{mem}
- Time for mathematical computations: T_{math}

Total time:

$$T_f = \max(T_{mem}, T_{math})$$

If
$$T_{math} > T_{mem} \rightarrow$$
 compute-bound

If
$$T_{mem} > T_{math} \rightarrow \text{memory-bound}$$

$$BW_{math} = \# ops \ per \ second$$

$$BW_{mem} = \# \ bytes \ per \ second$$

$$T_{math} = \frac{\# ops}{BW_{math}}$$

$$T_{mem} = \frac{\text{\# bytes}}{BW_{mem}}$$

torch.matmul(Q, K.T)

GPT2: d = 64 N = 1024

S = torch.matmul(Q, K.transpose(-2, -1))
P = torch.softmax(S, dim=-1)
output = torch.matmul(P, V)

Step 1

Compute $S = QK^{\mathsf{T}}$ SM **SRAM** Load Q and KWrite S to from HBM **HBM HBM**

Step 2

FlashAttention Algorithm

- Tiling (for the forward pass)
 - Loading blocks of Q, K, and V and computing the output partially

- Re-computation (for the backward pass)
 - Using the stored normalization factors for each row

Reformulating Softmax Function

Softmax
$$(x)_i = \frac{\exp(x_i)}{\sum_k \exp(x_k)} \times \frac{\exp(-m)}{\exp(-m)}$$

 χ

$$\Rightarrow \frac{\exp(x_i - m)}{\sum_k \exp(x_k - m)}$$

Re-formulating softmax:

$$\vec{f}(x) = \left[e^{x_1 - m}, e^{x_2 - m}, e^{x_3 - m}, \dots e^{x_N - m} \right]$$

$$l(x) = \sum_{j} f(x)_{j}$$
Softmax(x) = $\frac{\vec{f}(x)}{l(x)}$

$$\vec{x} = \left[\vec{x}^{\{1\}}, \vec{x}^{\{2\}} \right]$$

Block 1

Block 2

$$m_1 = \max(x^{\{1\}})$$

$$\vec{f_1} = e^{x^{\{1\}} - m_1}$$

$$l_1 = \sum_j e^{x_j^{\{1\}} - m_1}$$

$$m_2 = \max(x^{\{2\}})$$

$$\vec{f}_2 = e^{x^{\{2\}} - m_2}$$

$$l_2 = \sum_{j} e^{x_j^{\{2\}} - m_2}$$

How can we compute softmax of the entire vector x?

Softmax of Two Concatenated Vectors

Block 1
$$\vec{l}_{1} = \max(\vec{x}^{\{1\}})$$

$$\vec{l}_{1} = \sum_{j} e^{x_{j} - m_{1}}$$

$$\vec{f}_{1} = e^{x^{\{1\}} - m_{1}}$$

Block 2
$$\vec{x}^{\{2\}}$$

$$l_2 = \sum_{j} e^{x_j - m_2}$$

$$\vec{f}_2 = e^{x^{\{2\}} - m_2}$$

$$\vec{x} = [\vec{x}^{\{1\}}, \vec{x}^{\{2\}}]$$

Overall max

$$m(x) = \max(m_1, m_2)$$

Adjusted \vec{f}_1 and \vec{f}_2

$$\vec{f}(x) = [e^{m_1 - m(x)} f_1, e^{m_2 - m(x)} f_2]$$

Adjusted normalization factor

$$l(x) = e^{m_1 - m(x)} l_1 + e^{m_2 - m(x)} l_2$$

Softmax(
$$\vec{x}$$
) = $\frac{\vec{f}(x)}{l(x)}$

FlashAttention – Input and Initialization

Initialize intermediate vectors and the output:

FlashAttention – Partial Updates

Partial update to block matrix O_i

$$O_i^{\text{new}} = \text{diag}(l_i^{\text{new}})^{-1} \left(\text{diag}(l_i) e^{m_i - m_i^{\text{new}}} O_i + e^{\widetilde{m}_i - m_i^{\text{new}}} \widetilde{F}_{ij} V_j \right)$$

FlashAttention – Partial Updates

HBM Access Comparison

Naïve Algorithm

$$O(Nd + N^2)$$

FlashAttention

$$O(N^2d^2M^{-1})$$

M: Size of SRAM

e.g. $M = 100KB \rightarrow M \ll d^2$

FlashAttention reduces number of HBM accesses

Reduced training time of LLMs

Model implementations	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Huggingface [87]	18.2	$9.5 \text{ days } (1.0\times)$
GPT-2 small - Megatron-LM [77]	18.2	$4.7 \text{ days } (2.0\times)$
GPT-2 small - FlashAttention	18.2	$2.7 \text{ days } (3.5 \times)$
GPT-2 medium - Huggingface [87]	14.2	$21.0 \text{ days } (1.0\times)$
GPT-2 medium - Megatron-LM [77]	14.3	$11.5 \text{ days } (1.8 \times)$
GPT-2 medium - FlashAttention	14.3	$6.9 ext{ days } (3.0 \times)$
	•	

Increasing context length

Model implementations	Context length	OpenWebText (ppl)	Training time (speedup)
GPT-2 small - Megatron-LM	1k	18.2	$4.7 \text{ days } (1.0 \times)$
GPT-2 small - FlashAttention	1k	18.2	$\textbf{2.7 days} (\textbf{1.7} \times)$
GPT-2 small - FlashAttention	2k	17.6	$3.0 \text{ days } (1.6 \times)$
GPT-2 small - FlashAttention	4k	17.5	$3.6 \text{ days } (1.3\times)$

Ref: https://arxiv.org/abs/2205.14135