A TAO for Data Wrangling: A Practical Routine for Getting Past the 'Janitor Work'*

Preliminary version. Do not circulate without permission.

Yue Hu¹ Yuehong Cassandra Tai² Frederick Solt³

This article focuses on a preliminary step in any ex-post data harmonization project—wrangling the pre-harmonized data—and suggests a practical routine for helping researchers reduce human errors in this often-tedious work. The routine includes three steps: (1) Team-based concept construct and data selection; (2) Data entry automation; and (3) "Second-order" opening—a "Tao" of data wrangling. We illustrate the routine with the examples of pre-harmonizing procedures used to produce the Standardized World Income Inequality Database (SWIID), a widely used database that uses Gini indices from multiple sources to create comparable estimates, and the Dynamic Comparative Public Opinion (DCPO) project, which creates a workflow for harmonizing aggregate public opinion data.

¹ Department of Political Science, Tsinghua University, Beijing, China

² Center for Social Data Analytics, Pennsylvania State University, University Park, USA

³ Department of Political Science, University of Iowa, Iowa City, USA

^{*}Corresponding author: Yuehong Cassandra Tai, yhcasstai@psu.edu. Current version: June 24, 2025. Replication materials and complete revision history may be found at https://github.com/fsolt/wrangling_data. The authors contributed equally to this work. Yue Hu appreciates the funding support from the National Natural Science Foundation of China (72374116) and Tsinghua University Initiative Scientific Research Program (2024THZWJC01).

1 The Issue of Wrangling in Data Harmonization

Empowered by the spreading Internet and advancing computational power, researchers have entered an unprecedented age of data availability. A growing volume of social science research aims to take the benefit to extend generality: they employ large quantities of data drawn from different sources. However, significant challenges in ensuring the quality of harmonized datasets remain in handling fitness for use and monitoring raw data quality (Slomczynsi, Tomescu-Dubrow, and Wysmulek 2025).

The wrangling step determines the quality of data in the harmonization process, and the challenge is how to properly and transparently clean the increasing amount and diversity of data.

The conventional approach usually and notoriously involves a great deal of manual work on indicator identification, data merging, data scaling, and so on (see, e.g., Lohr 2014). Manual wrangling undermines transparency and makes full reproducibility of the research pipeline more difficult to achieve (Liu and Salganik 2019). Worse, this tiresome task makes it easy to introduce errors in the data. Finally, even meticulous documentation cannot eliminate the influence of human discretion embedded in manual processing. Such discretion often leaves behind few traces, making it challenging for collaborators or reviewers to verify the wrangling process or diagnose sources of error.

In short, poor source data quality, the absence of reproducibility, and untrackable human discretion in manual janitor work have collectively become the largest obstacle on the way to data harmonization, yet thus far this obstacle has gained little attention. In this article, we provide a practical routine (a "TAO") that takes advantage of automatic programming and teamwork to reduce data-entry errors and improve the reproducibility and transparency of the wrangling process for researchers and reviewers. This TAO covers the three phases of data wrangling: data selection and collection, data entry, and opening. We illustrate how researchers can use this routine on statistics and survey data with examples of two ongoing harmonization efforts, the Standardized World Income Inequality Database (SWIID) and the Dynamic Comparative Public Opinion (DCPO) project.

2 A 3-Step "TAO" for Data Wrangling

Our routine aims to helping researchers reach three goals for scientific study:

- 1. To reduce the manual entry errors to improve the accuracy of the harmonized data and analytic data;
- 2. To incorporate as much available data as possible to provide a base for comparable data and increase generality of the inferences; and
- 3. To improve the reproducibility of data wrangling process for the sake of transparency.

The routine decomposes a data-wrangling process into three steps:

- 1. Team-based concept construct and data selection;
- 2. Data entry automation; and
- 3. "Second-order" opening.

We use two data harmonization projects, SWIID and DCPO, to illustrate this routine. SWIID is a long-running project that seeks to provide harmonized income inequality statistics for the broadest possible coverage of countries and years (Solt 2020). As of its most recent update at the time of this writing, its source data consists of more than 27,000 observations of the Gini coefficient of income distribution in nearly 200 countries over as many as 65 years, collected from over 400 separate sources including international organizations, national statistics bureaus, and academic studies.

DCPO is both a method and a database. Scholarship on comparative public opinion only rarely benefits from relevant items asked annually by the same survey in many countries (see, e.g., Hagemann, Hobolt, and Wratil 2017). To address the lack of crossnational and longitudinal data on many topics, a number of works have presented latent variable models that harmonize available but incomparable survey items (see e.g., Caughey, O'Grady, and Warshaw 2019; Claassen 2019). Advancing this line of work, DCPO not only provides latent variable measurements but also automated and reproducible data collection (Solt 2020), which has been applied in a complete pipeline for a variety of topics such as gender egalitarianism (Woo, Goldberg, and Solt 2023), political interest (Hu and Solt 2025), and support for gay rights (Woo et al. 2025), among other aspects of public opinion and open it freely for global researchers (see the data available at https://depo.org/).

2.1 Step 1: Team-Based Construct Building and Data Selection

Large-scale data selection and cleaning is often viewed as tiresome, as something to be delegated to research assistants, to someone—indeed anyone—else. Performing these tasks manually makes it easy to make mistakes and errors. Haegemans, Snoeck, and Lemahieu (2019, 1) lists examples of misrouted financial transactions and airline flights. In a more systematic examination, Barchard and Pace (2011) found that RAs assigned in an experiment to carefully enter data manually and instructed to prioritize accuracy over speed still had error rates approaching 1% in just a single roughly half-hour session. The consequences of such errors are pernicious, undermining our results and more broadly our confidence in the scientific enterprise.

Our antidote for this issue is a combination of teamwork and automation. We will focus first on teamwork and discuss the latter in OSM 2.2. The goals here are to have consistent understanding on the conceptualized construct, to select valid data for later measurement and/or analyses, and to reduce biases caused by inconsistent human judgment. A teamwork process to these ends requires using a deliberative set and a dual-entry process.

A deliberative set requires the members in a research team—whether several coauthors or a primary author with one or more RAs—to have a clear and coherent understanding of the research questions and associated data goals. These understandings will help the team members identify the right data to collect and discover extra useful data sources that are not in the initial plan.

In the early years of the SWIID program, for example, RAs were told that the goal of the project is to generate comparable statistics of country-level economic inequality. They were provided a list of sources to start with, mainly from national statistic bureaus, but also told that updated statistics for some countries may come from academic papers, published documents, and other sources, and encouraged to add each of these new sources by recording a valid link.

In the DCPO project, clearly defining and agreeing upon the latent construct among team members is a critical first step for ensuring theoretical comparability across countries and over time (Koc and Kołczyńska 2025). This process begins with a shared conceptual foundation established through literature review and the corresponding pre-defined potential dimensions of latent opinion. Each team member is then assigned survey datasets

from specific geographic regions and tasked with identifying potentially relevant items and potential dimensions based on both general theoretical guidance and region-specific knowledge. This structure ensures that the construct is informed by both global theory and local context. (For a more detailed checklist, see OSM A.)

Before data selection begins, team members undergo hands-on training on how the method works and what types of data and metadata they need to collect, such as data format and weighting types, that are essential for enabling the automated data preparation process.

Following the initial round of item selection and collection, the dual-entry section begins. In this stage, each team member reviews and re-codes the survey data originally handled by another member. The independently coded versions are then compared to detect discrepancies, which may arise from misinterpretations of the construct, ambiguous item wording, or data-entry errors.

Disputed cases are flagged for group discussion. Some mismatches may indicate items that may not be conceptually equivalent across cultures or regions, and others suggest multidimensionality that requires theoretical disaggregation. For the latter, we either categorize such items into pre-defined dimensions and/or revise the codebook accordingly to add new dimensions—an iterative process aimed at improving construct validity, intercoder reliability, and reducing oversimplification of the target variable (Slomczynsi, Tomescu-Dubrow, and Wysmulek 2025).

Therefore, multiple lab meetings are held throughout the data selection phase to share insights from each member's coding work and ensure conceptual alignment across the team. The process concludes with a final cross-check of the selected items by all members.

In addition to reducing manual biases, teamwork also helps expand the data pool. Both SWIID and DCPO projects enrolled team members from outside the United States. These members draw on their linguistic and cultural expertise to detect extra sources in non-English languages and improve the precision of the data selection. To some extent, data from different sources help correct the biases caused by the designers' cultural backgrounds.

2.2 Step 2: Data Entry Automation

Formatting data is arguably the step most prone to manual errors and controversies. The best solution is to automate the entry process, taking advantage of scripting and any application programming interfaces (APIs) provided by the data source.

In the DCPO case, data entry is fully automated through the R-based software, DCPOtools (Solt, Hu, and Tai 2018). This software processes raw survey files directly, ensuring reproducible data entry. It converts various file formats to R-readable objects, extracts variables of interest, reorders response values, applies survey weights, and aggregates weighted respondents by country and year based on actual fieldwork dates.

To address theoretical comparability concerns, DCPO employs conservative filtering, removing items appearing in fewer than five country-years in countries surveyed at least three times, minimizing the risk of sacrificing comparability for coverage (Koc and Kołczyńska 2025). DCPOtools standardizes country names using Arel-Bundock, Enevoldsen, and Yetman (2018)'s countrycode and ensures years reflect actual fieldwork dates, creating aggregated respondent data for the latent variable model.

Figure 1: Income Inequality Observations by Method of Collection

While coding datasets and items into structured spreadsheets facilitates automation, an even better approach starts the automation from the data selection step via scripting and APIs. As shown in Figure 1, the current version of SWIID collects 76% of the observations through APIs. In OSM B, we provide an illustrative list of R packages that can assist with tasks such as collecting data via APIs and cleaning and transforming data. The list is long but far from complete. If readers modify the arguments of the codes in this article's replication file that we use to create the list, they will discover many times more packages that already exist to help collect and wrangle data. The keyword-based

searching function that most these packages equip also ensure researchers to conduct data harmonization analysis with most updated data pools the sources have.

Returning to the case of the SWIID: when no API is available, the automation script downloads and reads any available spreadsheets. In the absence of a spreadsheet, the process of scraping the data either directly from the web or, preferably, from a pdf file (see Sepulveda 2024) is automated. Together the collection of 90% of the source data is scripted. This means not only that the possibility of errors introduced by hand entry for a vast majority of observations is eliminated but also that the updates and revisions that are frequent in these data are automatically incorporated as they become available.

Even for data sources that have to be entered in hand, such as those from academic articles or books, there is still opportunity for partial automation. For the remaining 10% of the SWIID observations, for instance, many were collected using Sepulveda's tabulapdf R package to avoid data-entry errors. Optical Character Recognition (OCR) can be used to extend this method to even hard-copy data sources. Finally, for data that one has to enter manually, the teamwork is crucial. Mirroring the approach for data selection described above, each hand-entered observation was independently entered twice into two separate spreadsheets. The dual-entry process allows for automated cross-checks of the newly entered data that increase the chances that errors are identified and corrected (see Barchard and Pace 2011).

2.3 Step 3: "Second-Order" Opening

Since the replication crisis, replication files for analytical results in academic articles has become a standard requirement for top-tier journals in political science (Chang and Li 2015; Open Science Collaboration 2015). Nevertheless, issue of researcher degrees of freedom indicates that current degree of openness is frequently still inadequate (see Hu, Tai, and Solt 2025.) Especially in relation with data harmonization, we encourage researchers to conduct what we will call a "second-order" opening of their research process. This involves not only opening one's analytical steps (the first-order opening common today) but also the data generation process (the second-order opening), including data collection, cleaning, and wrangling.

Empirical evidence has indicated the severe consequences of neglecting second-order opening. Recent research has found that the variation in the estimated effects caused by researchers may outweigh the population's variation (Holzmeister et al. 2024). Within this researcher-choice variation, a substantial portion comes from the data-wrangling process (Huntington-Klein et al. 2025, 33). In a "many-analyst" analysis, Huntington-Klein et al. (2025) requested 146 research teams to complete the same research task. The study found that the teams who were given the same research design but no precleaned data set generated the highest outcome variation—even higher than those teams who were only given the research task. The teams who were given the pre-cleaned data set generated the lowest outcome variation. These findings indicate that the research replicability cannot be secured by first-order opening without second-order opening.

If researchers apply our suggestions of team-based construct building, systematic data selection, and automated data entry, the second-order opening will be both feasible and efficient. Along with a clearly conceptualized theoretical framework, researchers can simply share their programming scripts for data downloading, formatting, and wrangling, and thereby ensure that the full pipeline is documented and reproducible.

With developed scientific and technical publishing system, such as Quarto or R Markdown, version control platforms like Github, and open collaboration platforms including the Open Science Framework, researchers can integrate the entire workflow—from raw data collection to final analysis—within a single, publicly trackable archive. We reached at this step for all the DCPO projects so far. Readers can trace a research project from the start in a Github repo and every wave of data update in the corresponding OSF project (see, for example, Tai, Hu, and Solt 2024).

3 Discussion

Figure 2 presents the whole process of the 3-step routine of data wrangling for later harmonization phase. Implementing these practices requires effort, just as in many open-science endeavors (see Engzell and Rohrer 2021). Though labor-intensive, the double-entry method reduces error rates thirty-fold (Barchard and Pace 2011, 1837), which easily justifies the additional investment. Teamwork fosters conceptual alignment and construct refinement through collaborative discussion while also distributing tasks to reduce fatigue-related errors.

Social scientists now benefit from standardized harmonization workflows (Slomczynsi,

Figure 2: The TAO of Data Wrangling Before Data Harmonization. Source: Self generated.

Tomescu-Dubrow, and Wysmulek 2025) and automated data processing (Kritzinger, Lutz, and Boomgaarden 2025). Researchers can reuse high-quality harmonized datasets, enhancing efficiency and comparability. Open-source software packages like those used by the SWIID and DCPOtools have already automated many data preparation tasks. With large language models emerging, intelligent agents may soon handle parts of these routines, potentially advancing automation to new levels (Kritzinger, Lutz, and Boomgaarden 2025).

A final point we would like to emphasize is that, in our three-step routine, researchers remain central to data harmonization. As illustrated in the SWIID and DCPO examples, researchers are responsible for all critical decisions from clarifying research questions and building theoretical constructs to conducting version control and developing replication materials. Early and critical steps, such as construct development and codebook refinement, must be conducted iteratively to achieve high intercoder reliability. Even with automated data entry, human validation remains essential for verifying variable formats and value ranges. Computing environments should be documented to minimize system-related discrepancies (Liu and Salganik 2019).

For ex-post harmonization projects, careful attention to pre-harmonization stages substantially contributes to overall data quality. While some error is inevitable, with responsible researcher oversight, data-entry errors can be minimized while transparency, openness, and research credibility continue to grow.

References

- Arel-Bundock, Vincent, Nils Enevoldsen, and C. J. Yetman. 2018. "countrycode: Convert Country Names and Country Codes." *Journal of Open Source Software* 3(28): 848–49.
- Barchard, Kimberly A., and Larry A. Pace. 2011. "Preventing Human Error: The Impact of Data Entry Methods on Data Accuracy and Statistical Results." Computers in Human Behavior 27(5): 1834–39.
- Caughey, Devin, Tom O'Grady, and Christopher Warshaw. 2019. "Policy Ideology in European Mass Publics, 1981–2016." *American Political Science Review*: 1–20.
- Chang, Andrew, and Phillip Li. 2015. "Is Economics Research Replicable? Sixty Published Papers from Thirteen Journals Say 'Usually Not'." Finance and Economics Discussion Series 7: 1–25.
- Claassen, Christopher. 2019. "Estimating Smooth Country—Year Panels of Public Opinion." *Political Analysis* 27(1): 1–20.
- Engzell, Per, and Julia M. Rohrer. 2021. "Improving Social Science: Lessons from the Open Science Movement." *PS: Political Science & Politics* 54(2): 297–300.
- Haegemans, Tom, Monique Snoeck, and Wilfried Lemahieu. 2019. "A Theoretical Framework to Improve the Quality of Manually Acquired Data." *Information & Management* 56(1): 1–14.
- Hagemann, Sara, Sara B. Hobolt, and Christopher Wratil. 2017. "Government Responsiveness in the European Union: Evidence from Council Voting." *Comparative Political Studies* 50(6): 850–76.
- Holzmeister, Felix, Magnus Johannesson, Robert Böhm, Anna Dreber, Jürgen Huber, and Michael Kirchler. 2024. "Heterogeneity in Effect Size Estimates." *Proceedings of the National Academy of Sciences* 121(32): 1–10.

- Hu, Yue, and Frederick Solt. 2025. "Macrointerest Across Countries." *British Journal of Political Science* 55(e71): 1–10.
- Hu, Yue, Yuehong Cassandra Tai, and Frederick Solt. 2025. "Revisiting the Evidence on Thermostatic Response to Democratic Change: Degrees of Democratic Support or Researcher Degrees of Freedom?" Political Science Research and Methods 13.
- Huntington-Klein, Nick, Claus C Portner, Ian McCarthy, and The Many Economists Collaborative on Researcher Variation. 2025. The Sources of Researcher Variation in Economics. National Bureau of Economic Research. Working Paper.
- Koc, Piotr, and Marta Kołczyńska. 2025. "Modeling Trends in Public Opinion: An Overview of Approaches, Assumptions and Trade-Offs." Working Paper.
- Kritzinger, Sylvia, Georg Lutz, and Hajo Boomgaarden. 2025. "Visions for the Future: Challenges and Opportunities for Creating Sustainable Scholarly Infrastructures for Data Harmonization." Working Paper.
- Liu, David M, and Matthew J Salganik. 2019. "Successes and Struggles with Computational Reproducibility: Lessons from the Fragile Families Challenge." *Socius* 5: 2378023119849803.
- Lohr, Steve. 2014. "For Data Scientists, 'Janitor Work' Is Hurdle to Insights." New York Times: B4.
- Open Science Collaboration. 2015. "Estimating the Reproducibility of Psychological Science." Science 349(6251): aac4716.
- Sepulveda, Mauricio Vargas. 2024. "tabulapdf: Extract Tables from PDF Documents."
- Slomczynsi, Kazmierz M., Irina Tomescu-Dubrow, and Ilona Wysmulek. 2025. "Navigating Complexities of Ex-Post Harmonization of Cross-National Survey Data: Insights

- from the Survey Data Recycling, SDR, Project." Working Paper.
- Solt, Frederick. 2020. "Measuring Income Inequality Across Countries and over Time: The Standardized World Income Inequality Database." Social Science Quarterly 101(3, 3): 1183–99.
- Solt, Frederick, Yue Hu, and Yuehong Tai. 2018. "DCPOtools: Tools for Dynamic Comparative Public Opinion."
- Tai, Yuehong 'Cassandra', Yue Hu, and Frederick Solt. 2024. "Democracy, Public Support, and Measurement Uncertainty." *American Political Science Review* 118(1): 512–18.
- Woo, Byung-Deuk, Lindsey A. Goldberg, and Frederick Solt. 2023. "Public Gender Egalitarianism: A Dataset of Dynamic Comparative Public Opinion Toward Egalitarian Gender Roles in the Public Sphere." *British Journal of Political Science* 53(2): 766–75.
- Woo, Byung-Deuk, Hyein Ko, Yuehong Cassandra Tai, Yue Hu, and Frederick Solt. 2025. "Public Support for Gay Rights Across Countries and over Time." Social Science Quarterly 106(1): 1–7.

Table A.1: Checklist with Decision Rationale

Step	Checklist	Notes	
1.Clarify Conceptual Construct	Literature review and shared across the team.		
	Confirm shared understanding of theoretical construct.	Notes from team discussion	
	Relevant theoretical dimensions are discussed and documented.	- Cubsion	
2.Document Research Goals	Instructions on key variable formats and downstream analytical needs.	Update when necessary	
	Review initial codebook.		
	Data input training.		
3.Assign Data Collection	Assign datasets to team members by geography or source.	Document ambigu-	
	Each team member maintains a seperate sheet for raw data collection and a log of decisions.	ous items	
4 Decel Feature and Course Charles	Conduct dual entry by second team member.	Record discrepancies found	
4.Dual-Entry and Cross-Check	Discrepancies flagged and logged for group discussion.		
5.Deliberation on Discrepancies	Team discussion on discrepancies.	Provide examples of key disputes and how they were resolved	
	Items with unclear mapping to conceptual dimensions are categorized or excluded.		
	Update codebook/documentation.		
	Finalize data by cross-check of all members	Mention major updates.	
6.Log Data and Decision	Log all decisions and changes in version-controlled repository (e.g., OSF, GitHub).		

Online Supplementary Materials

A Checklist for Deliberation Process

Table A.1 is a checklist with notes or rationales for key decisions made during the deliberation process. The focus on each step may vary depending on the research purpose. For example, in public opinion harmonization projects like DCPO, more time is typically devoted to conceptualization and construct development compared to administrative data projects such as SWIID. However, this general checklist can serve as a useful guide across a range of harmonization efforts.

B R packages for data wrangling

Here are the tables of example R packages that researchers can use to collect, clean, and transform data. The tables were generated by the pkgsearch::pkg_search() function with the keywords relating to data downloading (Table A.2), wrangling (Table A.3), and transforming (Table A.4). The packages are ranked based on the 'score' metric that reflects both textual relevances with the keyword and package popularity in the last month. Only the top twenty packages and only the maintainers' names are shown. We encourage readers to use the codes in this paper's replication file to explore more useful packages. We also recommend readers to refer to the "CRAN Task View: Reproducible Research" page for more useful tools to achieve the first-order and second-order opening.

Table A.2: Example packages for downloading data with API $\,$

package	title	maintainer
giscoR	Download Map Data from GISCO API - Eurostat	Diego Hernangómez
rwebstat	Download Data from the Webstat API	Vincent Guegan
crypto2	Download Crypto Currency Data from 'CoinMarket-Cap' without 'API'	Sebastian Stoeckl
RKaggle	'Kaggle' Dataset Downloader 'API'	Benjamin Smith
csodata	Download Data from the CSO 'PxStat' API	Conor Crowley
hansard	Provides Easy Downloading Capabilities for the UK Parliament API	Evan Odell
cranlogs	Download Logs from the 'RStudio' 'CRAN' Mirror	Gábor Csárdi
clinicalomicsdbR	Interface with the 'ClinicalOmicsDB' API, Allowing for Easy DataDownloading and Importing	John Elizarraras
wdi2	Download World Development Indicators from the World BankIndicators API	Christoph Scheuch
GDELTtools	Download, Slice, and Normalize GDELT V1 Event and Sentiment APIData	Stephen R. Haptonstahl
neonUtilities	Utilities for Working with NEON Data	Claire Lunch
piggyback	Managing Larger Data on a GitHub Repository	Carl Boettiger
Quandl	API Wrapper for Quandl.com	Dave Dotson
nasapower	NASA POWER API Client	Adam H. Sparks
rstudioapi	Safely Access the RStudio API	Kevin Ushey
rdhs	API Client and Dataset Management for the Demographic and HealthSurvey (DHS) Data	OJ Watson
fishtree	Interface to the Fish Tree of Life API	Jonathan Chang
ridigbio	Interface to the iDigBio Data API	Jesse Bennett
tradestatistics	Open Trade Statistics API Wrapper and Utility Program	Mauricio Vargas
FlickrAPI	Access to Flickr API	Koki Ando
easycensus	Quickly Find, Extract, and Marginalize U.S. Census Tables	Cory McCartan
shutterstock	Access 'Shutterstock' REST API	Metin Yazici
wbstats	Programmatic Access to Data and Statistics from the World BankAPI	Jesse Piburn
gwasrapidd	'REST' 'API' Client for the 'NHGRI'-'EBI' 'GWAS' Catalog	Ramiro Magno
ecos	Economic Statistics System of the Bank of Korea	Seokhoon Joo
rscopus	Scopus Database 'API' Interface	John Muschelli
I14Y	Search and Get Data from the I14Y Interoperability Platform of Switzerland	Felix Luginbuhl
riingo	An R Interface to the 'Tiingo' Stock Price API	Davis Vaughan
PurpleAir	Query the 'PurpleAir' Application Programming Interface	Cole Brokamp
kaigiroku	Programmatic Access to the API for Japanese Diet Proceedings	Akitaka Matsuo
mgpStreamingSDK	Interact with the Maxar MGP Streaming API	Nathan Carr
GetLattesData	Reading Bibliometric Data from Lattes Platform	Marcelo Perlin
worldbank	Client for World Banks's 'Indicators' and 'Poverty and Inequality Platform (PIP)' APIs	Maximilian Mücke
BFS	Get Data from the Swiss Federal Statistical Office	Felix Luginbuhl
trud	Query the 'NHS TRUD API'	Alasdair Warwick
rinat	Access 'iNaturalist' Data Through APIs	Stéphane Guillou
jsonlite	A Simple and Robust JSON Parser and Generator for R	Jeroen Ooms
yfinancer	'Yahoo Finance' API Wrapper	Giovanni Colitti
zen4R	Interface to 'Zenodo' REST API	Emmanuel Blondel
opendotaR	Interface for OpenDota API	Kari Gunnarsson
Visualize.CRAN.Dow	nlo \ds ualize Downloads from 'CRAN' Packages	Marcelo Ponce
PurpleAirAPI	Historical Data Retrieval from 'PurpleAir' Sensors via API	Heba Abdelrazzak
pacu	Precision Agriculture Computational Utilities	dos Santos Caio
cbsodataR	Statistics Netherlands (CBS) Open Data API Client	Edwin de Jonge
kosis	Korean Statistical Information Service (KOSIS)	Seokhoon Joo
MetaculR	Analyze Metaculus Predictions Questions	Joseph de la Torre Dwyer
trelloR	Access the Trello API	Jakub Chromec
rscorecard	A Method to Download Department of Education Col-	Benjamin Skinner

Table A.3

package	title	maintainer
discretization	Data Preprocessing, Discretization for Classification	HyunJi Kim
helda	Preprocess Data and Get Better Insights from Machine LearningModels	Simon Corde
recipes	Preprocessing and Feature Engineering Steps for Mod-	Max Kuhn
recipes	eling	wax Kumi
dunlin	Preprocessing Tools for Clinical Trial Data	Joe Zhu
dataprep	Efficient and Flexible Data Preprocessing Tools	Chun-Sheng Liang
smallsets	Visual Documentation for Data Preprocessing	Lydia R. Lucchesi
rtry	Preprocessing Plant Trait Data	Olee Hoi Ying Lam
PupilPre	Preprocessing Pupil Size Data	Aki-Juhani Kyröläinen
mpactr	Correction of Preprocessed MS Data	Patrick Schloss
bdpar	Big Data Preprocessing Architecture	Miguel Ferreiro-Díaz
webtrackR	Preprocessing and Analyzing Web Tracking Data	David Schoch
tsrobprep	Robust Preprocessing of Time Series Data	Michał Narajewski
VWPre	Tools for Preprocessing Visual World Data	Vincent Porretta
binst	Data Preprocessing, Binning for Classification and Re-	Chapman Siu
	gression	-
PreProcessing	Various Preprocessing Transformations of Numeric	Swamiji Pravedson
· ·	Data Matrices	•
esmtools	Preprocessing Experience Sampling Method (ESM)	Jordan Revol
	Data	
${\bf RobLoxBioC}$	Infinitesimally Robust Estimators for Preprocessing -	Matthias Kohl
	Omics Data	
shinyrecipes	Gadget to Use the Data Preprocessing 'recipes' Pack-	Alberto Almuiña
	ageInteractively	
RGCxGC	Preprocessing and Multivariate Analysis of Bidimen-	Cristian Quiroz-Moreno
	sional GasChromatography Data	
mlr3pipelines	Preprocessing Operators and Pipelines for 'mlr3'	Martin Binder
cobalt	Covariate Balance Tables and Plots	Noah Greifer
EEM	Read and Preprocess Fluorescence Excitation-	Vipavee Trivittayasil
	Emission Matrix(EEM) Data	
clickR	Semi-Automatic Preprocessing of Messy Data with	David Hervas Marin
	Change Trackingfor Dataset Cleaning	
SerolyzeR	Reading, Quality Control and Preprocessing of MBA	Tymoteusz Kwiecinski
	(MultiplexBead Assay) Data	
PvSTATEM	Reading, Quality Control and Preprocessing of MBA	Tymoteusz Kwiecinski
	(MultiplexBead Assay) Data	
huge	High-Dimensional Undirected Graph Estimation	Haoming Jiang
klaR	Classification and Visualization	Uwe Ligges
datawizard	Easy Data Wrangling and Statistical Transformations	Etienne Bacher
dplyr	A Grammar of Data Manipulation	Hadley Wickham
pagoda2	Single Cell Analysis and Differential Expression	Evan Biederstedt
ggplot2	Create Elegant Data Visualisations Using the Gram-	Thomas Lin Pedersen
	mar of Graphics	
biclust	BiCluster Algorithms	Sebastian Kaiser
tidyr	Tidy Messy Data	Hadley Wickham
tibble	Simple Data Frames	Kirill Müller
prospectr	Miscellaneous Functions for Processing and Sample	Leonardo Ramirez-Lopez
	Selection of Spectroscopic Data	
microeco	Microbial Community Ecology Data Analysis	Chi Liu
pammtools	Piece-Wise Exponential Additive Mixed Modeling	Andreas Bender
	Tools for Survival Analysis	
ebal	Entropy Reweighting to Create Balanced Samples	Jens Hainmueller
ordinalRR	Analysis of Repeatability and Reproducibility Studies	Ken Ryan
œ.	withOrdinal Measurements	
ff	Memory-Efficient Storage of Large Data on Disk and	Jens Oehlschlägel
12 .14	Fast AccessFunctions	Mana Daala
mlr3data	Collection of Machine Learning Data Sets for 'mlr3'	Marc Becker
lubridate	Make Dealing with Dates a Little Easier	Vitalie Spinu
daltoolbox	Leveraging Experiment Lines to Data Analytics	Eduardo Ogasawara
mlrCPO	Composable Preprocessing Operators and Pipelines for Machinel carning A4	Martin Binder
1	for Machine Dearning	I if D
readr	Read Rectangular Text Data	Jennifer Bryan

Table A.4: Example packages for transforming data with API $\,$

package	title	maintainer
yaml	Methods to Convert R Data to YAML and Back	Shawn Garbett
geojsonio	Convert Data from and to 'GeoJSON' or 'TopoJSON'	Michael Mahoney
jsonlite	A Simple and Robust JSON Parser and Generator for R	Jeroen Ooms
reticulate	Interface to 'Python'	Tomasz Kalinowski
keyToEnglish	Convert Data to Memorable Phrases	Max Candocia
qtl2convert	Convert Data among QTL Mapping Packages	Karl W Broman
gtools	Various R Programming Tools	Ben Bolker
rmarkdown	Dynamic Documents for R	Yihui Xie
interleave	Converts Tabular Data to Interleaved Vectors	David Cooley
do	Data Operator	Jing Zhang
rio	A Swiss-Army Knife for Data I/O	Chung-hong Chan
data.tree	General Purpose Hierarchical Data Structure	Christoph Glur
wktmo	Converting Weekly Data to Monthly Data	You Li
GDPuc	Easily Convert GDP Data	Johannes Koch
nuts	Convert European Regional Data	Moritz Hennicke
wearables	Tools to Read and Convert Wearables Data	Peter de Looff
xml2relational	Converting XML Documents into Relational Data Models	Joachim Zuckarelli
${\bf Tidy Multiqc}$	Converts 'MultiQC' Reports into Tidy Data Frames	Michael Milton
odk	Convert 'ODK' or 'XLSForm' to 'SPSS' Data Frame	Muntashir-Al-Arefin
spbabel	Convert Spatial Data Using Tidy Tables	Michael D. Sumner
exp2flux	Convert Gene EXPression Data to FBA FLUXes	Daniel Osorio
ecocomDP	Tools to Create, Use, and Convert ecocomDP Data	Colin Smith
tbl2xts	Convert Tibbles or Data Frames to Xts Easily	Nico Katzke
LAIr	Converting NDVI to LAI of Field, Proximal and Satellite Data	Francesco Chianucci
broom.mixed	Tidying Methods for Mixed Models	Ben Bolker
ILRCM	Convert Irregular Longitudinal Data to Regular Inter-	Atanu Bhattacharjee
intorgraph	vals and Perform Clustering Coording Poutings for Network Data Objects	Mighal Pajanawaki
intergraph	Coercion Routines for Network Data Objects	Michał Bojanowski
gtfs2gps	Converting Transport Data from GTFS Format to GPS-Like Records	Pedro R. Andrade
vcfR RJSONIO	Manipulate and Visualize VCF Data Serialize R Objects to JSON, JavaScript Object Nota-	Brian J. Knaus
	tion	Yaoxiang Li Ma Sandin Carai
MissingHandle	Handles Missing Dates and Data and Converts into Weekly and Monthly from Daily	Mr. Sandip Garai
orsk	Converting Odds Ratio to Relative Risk in Cohort Studies withPartial Data Information	Zhu Wang
sjlabelled	Labelled Data Utility Functions	Daniel Lüdecke
dplyr	A Grammar of Data Manipulation	Hadley Wickham
pack	Convert Values to/from Raw Vectors	Joshua M. Ulrich
tidytree	A Tidy Tool for Phylogenetic Tree Data Manipulation	Guangchuang Yu
ggplot2	Create Elegant Data Visualisations Using the Grammar of Graphics	Thomas Lin Pedersen
string2path	Rendering Font into 'data.frame'	Hiroaki Yutani
tdata	Prepare Your Time-Series Data for Further Analysis	Ramin Mojab
DDIwR	DDI with R	Adrian Dusa
CADF	Customer Analytics Data Formatting	Ludwig Steven
tidyr	Tidy Messy Data	Hadley Wickham
tibble	Simple Data Frames	Kirill Müller
redquack	Transfer 'REDCap' Data to Database	Dylan Pieper
tinytable	Simple and Configurable Tables in 'HTML', 'LaTeX', 'Markdown', 'Word', 'PNG', 'PDF', and 'Typst' For-	Vincent Arel-Bundock
mergen	mats AI-Driven Code Generation, Explanation and Execution for DataAnalysis	Altuna Akalin
unpivotr	Unpivot Complex and Irregular Data Layouts	Duncan Garmonsway
jsonld	JSON for Linking Data	Jeroen Ooms
mltools	Machine Learning Tools	Ben Gorman
mergenstudio		Jacqueline Jansen
orgonovacio	'Mergen' Studio: An 'RStudio' Addin Wrapper for the 'Mergen' Package	vacquonno vanbon