MODELAÇÃO DE UMA REDE VIÁRIA COM BASE NUM GRAFO COM ARCOS DE LARGURA, ORIENTAÇÃO E INCLINAÇÃO ARBITRÁRIAS

Apoio à realização do trabalho em grupo

Resumo

Convenções e terminologia Modelação Movimento interactivo (controlado pelo utilizador) Movimento automático (controlado pelo computador) Colocação do personagem na cena

João Paulo Pereira jjp@isep.ipp.pt

Índice

Convenções e terminologia	1
Cena	1
Nó <i>n</i> ;	1
Arco <i>a_{ij}</i>	1
Personagem	1
Animação (apenas para o movimento automático)	1
Modelação	3
Modelação de um nó	3
Círculo	3
Elemento de ligação	4
Modelação de um arco	4
Movimento interactivo (controlado pelo utilizador)	5
Detecção de colisões num nó	5
Detecção de colisões num arco	5
Determinação de pertença	5
Pertença de um ponto a um nó	5
Pertença de um ponto a um arco	6
Movimento automático (controlado pelo computador)	g
Preparação para a animação dos movimentos elementares	10
Movimento D	11
Movimento E	12
Movimento C	13
Movimento F	15
Movimento B	15
Movimento A	16
Animação de um movimento elementar	17
Inicialização da posição e da orientação do personagem	17
Observações	19
Colocação do personagem na cena	21
Referências	22

Índice de Figuras

Figura 1 – Modelo da rede viária	3
Figura 2 – Sequência de movimentos elementares	
Figura 3 – Corda	1:
Figura 4 – Entrada em um nó	
Figura 5 – Saída de um nó	14
Figura 6 – Localização e orientação iniciais do personagem	18

Convenções e terminologia

Cena

• **Direcção e sentido do vector** *up*: os correspondentes ao semieixo Z positivo¹.

Nó n_i

- **Localização**: ponto de coordenadas (*x_i*, *y_i*, *z_i*);
- Largura: w_i (a largura de um nó será igual à maior das larguras dos arcos que convergem/divergem nesse/desse nó).

Arco aii

- **Ligação**: do nó n_i ao nó n_j ;
- **Desnível**: $h_{ij} = z_j z_i$;
- Comprimento: s_{ij} ;
- Largura: w_{ii};
- **Orientação**: $\alpha_{ij} = \arctan^2((y_i y_i) / (x_i x_i))$ (em radianos);
- Inclinação: β_{ii} (em radianos).

Personagem

- Altura: ALTURA_PERSONAGEM;
- **Localização** (centro geométrico): ponto de coordenadas (x_P, y_P, z_P) ;
- Orientação: dir (em radianos);
- Velocidade horizontal: *vel_h*;
- Velocidade vertical (apenas para o movimento automático): vel_v;
- Velocidade angular (apenas para o movimento automático): vela.

Animação (apenas para o movimento automático)

- **Circulação**: pela direita;
- Número de fotogramas que compõem a animação de um movimento elementar: n;
- Tempo decorrido entre fotogramas: supõe-se constante e igual a 1;
- Raios de curvatura dos movimentos elementares B e F: RAIO_B e RAIO_F;
- Velocidades máximas pretendidas para os movimentos elementares A a F: VELA, VELB, VELC,
 VELD, VELE, VELE

¹ Note-se que, por omissão, o three.js assume o semieixo Y positivo como correspondendo à direcção e sentido deste vector [7].

² Deverá usar-se a função Math.atan2() em vez de Math.atan() [5].

Figura 1 – Modelo da rede viária

Modelação

A rede viária poderá ser modelada da maneira que a seguir se descreve (Figura 1).

Modelação de um nó

A geometria associada a um nó n_i poderá ser a de uma rotunda constituída pelos seguintes elementos:

- um círculo;
- tantos elementos de ligação quantos os arcos que convergem/divergem nesse/desse nó.

Círculo

O círculo deverá ter as propriedades que a seguir se discriminam:

- centro: (x_i, y_i, z_i + INFINITÉSIMO);
- raio: $r_i = K_CIRCULO * w_i / 2.0$; em que $K_CIRCULO$ designa uma constante superior a 1.0 (por exemplo, $K_CIRCULO = 2.1$).

Elemento de ligação

Dado um nó n_i ligado a um arco a_{ij} , a geometria do elemento de ligação poderá ser a de um rectângulo horizontal com as propriedades que a seguir se discriminam:

- comprimento: s_i = K_LIGACAO * r_i;
 em que K_LIGACAO designa uma constante superior a 1.0 (por exemplo, K_LIGACAO = 1.1);
- largura: w_{ij};
 orientação: α_{ij}.

Modelação de um arco

A geometria associada a um arco a_{ij} poderá ser a de uma rampa (i.e. um rectângulo inclinado) com as propriedades que a seguir se discriminam:

- comprimento da projecção no plano OXY: $p_{ij} = \sqrt{((x_j x_i)^2 + (y_j y_i)^2)} s_i s_j$;
- desnível: $h_{ij} = z_j z_i$;
- comprimento: $s_{ij} = \sqrt{(p_{ij}^2 + h_{ij}^2)}$;
- largura: w_{ij} ;
- orientação: α_{ij};
- **inclinação**: $\theta_{ij} = \arctan(h_{ij} / p_{ij})$.

Movimento interactivo (controlado pelo utilizador)

Deverá manter-se um registo actualizado da localização do personagem no grafo, ou seja, se este se encontra num dado nó (o nó n_i) ou num dado arco (o arco a_{ii}).

Caso não houvesse colisão, a localização do personagem no próximo fotograma seria dada pelas seguintes equações (apenas a abcissa e a ordenada; a cota será calculada mais adiante)³:

- $x'_P = x_P + vel_h * cos(dir);$
- $y'_P = y_P + vel_h * sin(dir)$.

Detecção de colisões num nó

Caso o personagem se encontre no nó n_i do grafo, não haverá colisão se o ponto correspondente à nova localização pertencer:

- ao círculo desse nó;
- a um dos elementos de ligação desse nó;
- a um dos arcos que convergem/divergem nesse/desse nó.

Detecção de colisões num arco

Caso o personagem se encontre no arco a_{ij} do grafo, não haverá colisão se o ponto correspondente à nova localização pertencer:

- a esse arco;
- ao elemento de ligação desse arco ao nó n_i;
- ao círculo do nó n_i;
- ao elemento de ligação desse arco ao nó n_i;
- ao círculo do nó n_i.

Determinação de pertença

Pertença de um ponto a um nó

O ponto correspondente à nova localização do personagem pertencerá ao nó n_i se e só se pertencer ao círculo ou a um dos elementos de ligação que o representam.

Pertença de um ponto a um círculo

O ponto correspondente à nova localização do personagem pertencerá ao círculo do nó n_i se e só se a distância daquele ao centro do círculo não for superior ao raio:

•
$$(x'_P - x_i)^2 + (y'_P - y_i)^2 \le r_i^2$$
.

Verificando-se esta condição, considera-se que o personagem passa a estar (caso não estivesse já) localizado no nó n_i do grafo. As coordenadas da nova localização serão dadas pelas equações:

- $x_P = x'_P$;
- $y_P = y'_P$;
- $z_P = z_i + ALTURA_PERSONAGEM / 2.0.$

³ Supõe-se, para simplificar os cálculos, que o tempo decorrido entre fotogramas é constante e igual a 1.

Pertença de um ponto a um elemento de ligação

Para determinar se o ponto correspondente à nova localização do personagem pertence ao elemento de ligação do nó n_i ao arco a_{ij} , poderá proceder-se da maneira que a seguir se descreve:

Efectua-se uma mudança de sistema de coordenadas que verifique as seguintes condições:

- faça coincidir a nova origem com o ponto (x_i, y_i) ;
- alinhe o novo eixo X com o eixo longitudinal do elemento de ligação.

Neste novo sistema, as coordenadas correspondentes à nova localização do personagem serão dadas pelas seguintes equações:

- $x''_P = (x'_P x_i) * \cos(\alpha_{ij}) + (y'_P y_i) * \sin(\alpha_{ij});$
- $y''_P = (y'_P y_i) * \cos(\alpha_{ij}) (x'_P x_i) * \sin(\alpha_{ij}).$

O ponto correspondente à nova localização do personagem pertencerá ao elemento de ligação se e só se não ultrapassar os limites do rectângulo que o representa:

- $0.0 \le x''_P \le s_i$;
- $-w_{ii} / 2.0 \le y''_P \le w_{ii} / 2.0$.

Verificando-se estas condições, considera-se que o personagem passa a estar (caso não estivesse já) localizado no nó n_i do grafo. As coordenadas da nova localização serão dadas por equações idênticas às da pertença a um círculo:

- $\bullet \qquad \chi_P = \chi'_P;$
- $y_P = y'_P$;
- $z_P = z_i + ALTURA PERSONAGEM / 2.0.$

Pertença de um ponto a um arco

Para determinar se o ponto correspondente à nova localização do personagem pertence ao arco a_{ij} , poderá proceder-se da maneira que a seguir se descreve:

Efectua-se uma mudança de sistema de coordenadas idêntica à efectuada para a determinação da pertença a um elemento de ligação, ou seja, que verifique as seguintes condições:

- faça coincidir a nova origem com o ponto (x_i, y_i) ;
- alinhe o novo eixo X com o eixo longitudinal da projecção do arco no plano OXY.

Neste novo sistema, as coordenadas correspondentes à nova localização do personagem serão, tal como anteriormente, dadas pelas seguintes equações:

- $x''_P = (x'_P x_i) * \cos(\alpha_{ii}) + (y'_P y_i) * \sin(\alpha_{ii});$
- $y''_P = (y'_P y_i) * \cos(\alpha_{ij}) (x'_P x_i) * \sin(\alpha_{ij}).$

O ponto correspondente à nova localização do personagem pertencerá ao arco se e só se não ultrapassar os limites da projecção do rectângulo que o representa:

• $S_i < X''_P < S_i + p_{ii}$;

• $-w_{ij} / 2.0 \le y''_P \le w_{ij} / 2.0.$

Verificando-se estas condições, considera-se que o personagem passa a estar (caso não estivesse já) localizado no arco a_{ij} do grafo. As coordenadas da nova localização serão dadas por equações que se assemelham às da pertença a um círculo e a um elemento de ligação. A única diferença reside na inclusão de uma regra de três simples no cálculo da cota:

- $x_P = x'_P$;
- $y_P = y'_P$;
- $z_P = z_i + (x''_P s_i) / p_{ij} * h_{ij} + ALTURA_PERSONAGEM / 2.0.$

Movimento automático (controlado pelo computador)

Pretende-se deslocar o personagem de um nó de origem para um nó de destino, de acordo com um percurso previamente estabelecido, o qual é constituído por uma sequência de movimentos entre nós adjacentes. Cada um destes movimentos poderá, por sua vez, ser decomposto numa sequência de seis movimentos elementares: rectilíneos, para percorrer as rampas e parte dos elementos de ligação das rotundas; e circulares, para entrar, percorrer e sair dos círculos das rotundas.

Nas rampas e elementos de ligação assume-se que o personagem se desloca pela via de trânsito correspondente ao lado direito da faixa de rodagem. À distância do personagem à berma do lado direito poderá atribuir-se o seguinte valor:

• $b_{ij} = K_BERMA * w_{ij}$; em que K_BERMA designa uma constante tal que $0.0 < K_BERMA < 0.5$ (por exemplo, $K_BERMA = 0.25$).

Nos círculos assume-se que o personagem se desloca no sentido directo⁴. À distância do personagem à periferia do círculo poderá atribuir-se o seguinte valor:

• $b_i = K BERMA * w_i$.

Assumindo que o personagem se encontra correctamente localizado e orientado, os movimentos elementares acima referidos poderão ser os que a seguir se discriminam (Figura 2):

- movimento A: circular directo (o personagem percorre parte do círculo);
- movimento B: circular retrógrado⁵ (o personagem sai do círculo);
- movimento C: rectilíneo (o personagem percorre parte do elemento de ligação);
- movimento D: rectilíneo (o personagem percorre a totalidade da rampa);
- movimento E: rectilíneo (o personagem percorre parte do elemento de ligação);
- **movimento F**: circular retrógrado (o personagem entra no círculo).

Figura 2 – Sequência de movimentos elementares

O processo de automatização do movimento será constituído pelas seguintes etapas:

⁴ Isto é, no sentido contrário ao do movimento dos ponteiros de um relógio.

⁵ Isto é, no sentido do movimento dos ponteiros de um relógio.

- 1. inicialização da posição e da orientação do personagem;
- 2. enquanto não for atingido o nó de destino:
 - a. preparação para a animação do movimento elementar A;
 - b. animação do movimento elementar A;
 - c. preparação para a animação do movimento elementar B;
 - d. animação do movimento elementar B;
 - e. preparação para a animação do movimento elementar C;
 - f. animação do movimento elementar C;
 - g. preparação para a animação do movimento elementar D;
 - h. animação do movimento elementar D;
 - i. preparação para a animação do movimento elementar *E*;
 - j. animação do movimento elementar E;
 - k. preparação para a animação do movimento elementar F;
 - I. animação do movimento elementar F.

A etapa 1 poderá ser efectuada apenas uma vez, no início do processo. As etapas a a l deverão ser realizadas repetidamente tantas vezes quantas forem necessárias para atingir o nó de destino.

Para facilitar a compreensão, este documento começará por descrever as etapas de preparação para a animação dos movimentos elementares D, E, C, F, B e A, por esta ordem (etapas g, i, e, k, c e a, respectivamente). Segue-se a descrição da animação dos movimentos elementares (comum às etapas h, f, f, f, f, f e g). Por último, descreve-se a inicialização da posição e da orientação do personagem (etapa g).

Preparação para a animação dos movimentos elementares

Na preparação para a animação de cada um dos movimentos elementares será necessário definir quatro parâmetros:

- número de fotogramas que compõem a animação do movimento elementar: n;
- velocidade angular do personagem: *vel_a*;
- velocidade horizontal do personagem: *vel*_h;
- velocidade vertical do personagem: vel_v.

Além disso, a natureza descontínua dos movimentos circulares terá as seguintes implicações:

- em cada fotograma, o personagem percorrerá, não um arco de circunferência, mas a corda [1] correspondente (Figura 3);
- antes de iniciar a animação de um movimento circular, deverá ajustar-se a orientação do personagem, subtraindo-lhe metade do valor da velocidade angular: -vel_a / 2.0;
- uma vez concluída a animação de um movimento circular, deverá reajustar-se a orientação do personagem, adicionando-lhe metade do valor da velocidade angular: vela / 2.0.

Figura 3 – Corda

Movimento D

Seja n_i o nó de proveniência do personagem, n_j o nó adjacente para onde o personagem se dirige e VEL_D a velocidade máxima pretendida para este movimento.

O personagem terá de percorrer a totalidade do comprimento da rampa.

O número de fotogramas que compõem a animação será dado pelo tecto⁶ da razão entre o comprimento da rampa e a referida velocidade:

• $n = [s_{ij} / VEL_D].$

Dada a natureza rectilínea do movimento, a velocidade angular será nula:

• $vel_a = 0.0$.

A velocidade horizontal será dada pela razão entre o comprimento da projecção da rampa no plano OXY e o número de fotogramas:

• $vel_h = p_{ij} / n$.

A velocidade vertical será dada pela razão entre o desnível da rampa e o número de fotogramas:

• $vel_v = h_{ii} / n$.

⁶ Poderá usar-se a função Math.ceil() [6].

Movimento E

Seja n_i o nó de proveniência do personagem, n_j o nó adjacente em que o personagem vai entrar, $RAIO_F$ o raio de curvatura pretendido para o movimento circular retrógrado F e VEL_E a velocidade máxima pretendida para o movimento E (Figura 4).

Figura 4 – Entrada em um nó

O personagem terá de percorrer apenas uma parte do comprimento do elemento de ligação, a qual poderá ser determinada com o auxílio do triângulo rectângulo representado na figura.

O comprimento da hipotenusa do triângulo rectângulo será dado pela equação:

• $hip = r_j - b_j + RAIO_F$.

O comprimento do cateto transversal será dado pela equação:

• $cat_{trans} = w_{ij} / 2.0 - b_{ij} + RAIO_F$.

Aplicando o teorema de Pitágoras, obtém-se para o comprimento do cateto longitudinal:

• $cat_{long} = V(hip^2 - cat_{trans}^2)$.

O comprimento do percurso será dado pelo comprimento do elemento de ligação subtraído do comprimento do cateto longitudinal:

• $I_{ij} = s_j - cat_{long}$.

O número de fotogramas que compõem a animação será dado pelo tecto da razão entre o comprimento do percurso e a velocidade:

• $n = [I_{ij} / VEL_E]$.

Dada a natureza rectilínea do movimento, a velocidade angular será nula:

• $vel_a = 0.0$.

A velocidade horizontal será dada pela razão entre o comprimento do percurso e o número de fotogramas:

• $vel_h = l_{ii} / n$.

Uma vez que o elemento de ligação é horizontal, a velocidade vertical será nula:

• $vel_v = 0.0$.

Movimento C

Seja n_j o nó de onde o personagem vai sair, n_k o nó adjacente para onde o personagem se dirige, $RAIO_B$ o raio de curvatura pretendido para o movimento circular retrógrado B e VEL_C a velocidade máxima pretendida para o movimento C (Figura 5).

Aplicando um raciocínio idêntico ao usado na preparação do movimento *E*, verifica-se que o personagem terá de percorrer apenas uma parte do comprimento do elemento de ligação, a qual poderá ser determinada com o auxílio do triângulo rectângulo representado na figura.

O comprimento da hipotenusa do triângulo rectângulo será dado pela equação:

• $hip = r_i - b_i + RAIO_B$.

O comprimento do cateto transversal será dado pela equação:

• $cat_{trans} = w_{jk} / 2.0 - b_{jk} + RAIO_B$.

Aplicando o teorema de Pitágoras, obtém-se para o comprimento do cateto longitudinal:

• $cat_{long} = V(hip^2 - cat_{trans}^2)$.

O comprimento do percurso será dado pelo comprimento do elemento de ligação subtraído do comprimento do cateto longitudinal:

• $I_{jk} = s_j - cat_{long}$.

O número de fotogramas que compõem a animação será dado pelo tecto da razão entre o comprimento do percurso e a velocidade:

• $n = [I_{jk} / VEL_C].$

Figura 5 – Saída de um nó

Dada a natureza rectilínea do movimento, a velocidade angular será nula:

• $vel_a = 0.0$.

A velocidade horizontal será dada pela razão entre o comprimento do percurso e o número de fotogramas:

• $veI_h = I_{jk} / n$.

Uma vez que o elemento de ligação é horizontal, a velocidade vertical será nula:

• $vel_v = 0.0$.

Movimento F

Seja n_i o nó de proveniência do personagem, n_j o nó adjacente em que o personagem vai entrar, $RAIO_F$ o raio de curvatura do movimento e VEL_F a velocidade máxima pretendida (Figura 4).

O personagem deverá percorrer no sentido retrógrado um arco de circunferência de raio $RAIO_F$ que subentenda um ângulo de ϑ_{ij} radianos. Os valores do ângulo subentendido e do comprimento do arco poderão ser determinados com o auxílio do triângulo rectângulo representado na figura.

O comprimento da hipotenusa do triângulo rectângulo será dado pela equação:

• $hip = r_j - b_j + RAIO_F$.

O comprimento do cateto transversal será dado pela equação:

• $cat_{trans} = w_{ij} / 2.0 - b_{ij} + RAIO_F$.

O ângulo subentendido e o comprimento do arco a percorrer serão dados pelas equações:

- $\vartheta_{ij} = \arccos^7(cat_{trans} / hip);$
- $c_{ij} = RAIO_F * \vartheta_{ij}$.

O número de fotogramas que compõem a animação e os valores das velocidades angular, horizontal e vertical serão dados pelas seguintes equações:

- $n = [c_{ij} / VEL_F];$
- $vel_a = -\vartheta_{ii} / n^8$;
- $vel_h = 2.0 * RAIO_F * sin(\vartheta_{ij} / n / 2.0)^9$;
- $vel_v = 0.0$.

Movimento B

Seja n_j o nó de onde o personagem vai sair, n_k o nó adjacente para onde o personagem se dirige, $RAIO_B$ o raio de curvatura do movimento e VEL_B a velocidade máxima pretendida (Figura 5).

Aplicando um raciocínio idêntico ao usado na preparação do movimento *F*, verifica-se que o personagem deverá percorrer no sentido retrógrado um arco de circunferência de raio *RAIO_B* que subentenda um

⁷ Poderá usar-se a função Math.acos() [4].

⁸ O sinal negativo reflecte o sentido retrógrado pretendido.

⁹ Recorde-se que, em cada fotograma, o personagem percorrerá, não um arco de circunferência, mas a corda correspondente.

ângulo de ϑ_{jk} radianos. Os valores do ângulo subentendido e do comprimento do arco poderão ser determinados com o auxílio do triângulo rectângulo representado na figura.

O comprimento da hipotenusa do triângulo rectângulo será dado pela equação:

• $hip = r_j - b_j + RAIO_B$.

O comprimento do cateto transversal será dado pela equação:

• $cat_{trans} = w_{ik} / 2.0 - b_{ik} + RAIO_B$.

O ângulo subentendido e o comprimento do arco a percorrer serão dados pelas equações:

- $\vartheta_{jk} = \arccos(cat_{trans} / hip);$
- $c_{jk} = RAIO_B * \vartheta_{jk}$.

O número de fotogramas que compõem a animação e os valores das velocidades angular, horizontal e vertical serão dados pelas seguintes equações:

- $n = [c_{ik} / VEL_B];$
- $vel_a = -\vartheta_{ik} / n$;
- $vel_h = 2.0 * RAIO_B * sin(\vartheta_{ik} / n / 2.0);$
- $vel_v = 0.0$.

Movimento A

Seja n_i o nó de proveniência do personagem, n_j o nó adjacente em que o personagem se encontra, n_k o nó adjacente para onde o personagem se dirige e VEL_A a velocidade máxima pretendida para este movimento (Figura 4 e Figura 5).

O personagem deverá percorrer no sentido directo um arco de circunferência de raio $(r_j - b_j)$ que subentenda um ângulo de φ_{ijk} radianos. O ângulo subentendido será obtido calculando a diferença entre as orientações dos arcos a_{jk} e a_{ji} e subtraindo os ângulos complementares¹⁰ dos ângulos ϑ_{ij} e ϑ_{jk} :

• $\varphi_{ijk} = \alpha_{jk} - \alpha_{ji} - (\pi / 2.0 - \vartheta_{ij}) - (\pi / 2.0 - \vartheta_{jk}).$

Sabendo que $\alpha_{ii} = \alpha_{ij} - \pi$, ter-se-á:

• $\varphi_{ijk} = \alpha_{jk} - (\alpha_{ij} - \pi) - (\pi / 2.0 - \vartheta_{ij}) - (\pi / 2.0 - \vartheta_{jk});$ $\varphi_{ijk} = \alpha_{jk} - \alpha_{ij} + \pi - \pi / 2.0 + \vartheta_{ij} - \pi / 2.0 + \vartheta_{jk};$ $\varphi_{ijk} = \alpha_{jk} - \alpha_{ij} + \vartheta_{ij} + \vartheta_{jk}.$

Dado o sentido directo pretendido para o movimento, deverá garantir-se que $\varphi_{ijk} > 0.0$, adicionando 2.0 * π se necessário.

Por outro lado, de modo a evitar que o personagem descreva voltas supérfluas ao círculo, deverá garantirse que $\varphi_{iik} \le 2.0 * \pi$, subtraindo $2.0 * \pi$ se necessário.

 $^{^{10}}$ Diz-se que dois ângulos são complementares quando a sua soma perfaz 90° ou π / 2 radianos [3].

O comprimento do arco será dado pela equação:

```
• d_{ijk} = (r_i - b_i) * \varphi_{ijk}.
```

O número de fotogramas que compõem a animação e os valores das velocidades angular, horizontal e vertical serão dados pelas seguintes equações:

- $n = [d_{ijk} / VEL_A];$
- $vel_a = \varphi_{ijk} / n$;
- $vel_h = 2.0 * (r_i b_i) * \sin(\varphi_{ijk} / n / 2.0);$
- $vel_v = 0.0$.

Animação de um movimento elementar

A orientação e a localização do personagem no próximo fotograma serão dadas pelas seguintes equações:

- $dir' = dir + vel_a$;
- $x'_P = x_P + vel_h * cos(dir);$
- $y'_P = y_P + vel_h * sin(dir);$
- $z'_P = z_P + vel_v$.

Dada a natureza automática do movimento, não será necessário efectuar a detecção de colisões, pelo que a orientação e a localização do personagem poderão ser actualizadas incondicionalmente:

- dir = dir';
- $x_p = x'_p$;
- $y_p = y'_p$;
- $z_p = z'_p$.

O número de fotogramas para a conclusão da animação deverá então ser reduzido de uma unidade. Se este número se anular, a animação corrente estará concluída e deverá preparar-se a animação do movimento elementar seguinte.

Inicialização da posição e da orientação do personagem

Para determinar a localização e a orientação do personagem (representadas a vermelho na Figura 6) no nó de origem n_j , poderá imaginar-se que aquele havia concluído o movimento circular retrógrado de entrada no círculo da rotunda, proveniente de um qualquer nó n_i adjacente.

O valor do ângulo subentendido pelo arco de circunferência poderá ser determinado com o auxílio do triângulo rectângulo representado na figura.

O comprimento da hipotenusa do triângulo rectângulo será dado pela equação:

• $hip = r_i - b_i + RAIO_F$.

O comprimento do cateto transversal será dado pela equação:

• $cat_{trans} = w_{ii} / 2.0 - b_{ii} + RAIO_F$.

O ângulo subentendido será dado pela equação:

• $\vartheta_{ij} = \arccos(cat_{trans} / hip)$.

A orientação será obtida adicionando à orientação do arco a_{ji} o ângulo complementar do ângulo ϑ_{ij} e ainda π / 2.0 radianos:

•
$$dir = \alpha_{ji} + (\pi / 2 - \vartheta_{ij}) + \pi / 2.0;$$

 $dir = \alpha_{ji} - \vartheta_{ij} + \pi.$

Figura 6 – Localização e orientação iniciais do personagem

Sabendo que $\alpha_{ji} = \alpha_{ij} - \pi$, ter-se-á:

•
$$dir = \alpha_{ij} - \pi - \vartheta_{ij} + \pi;$$

 $dir = \alpha_{ij} - \vartheta_{ij}.$

A localização do personagem poderá ser calculada tomando o centro do círculo como referência:

- $x_P = x_i + (r_i b_i) * \sin(dir);$
- $y_P = y_j (r_j b_j) * \cos(dir);$
- $z_P = z_j + ALTURA_PERSONAGEM / 2.0.$

Observações

Não obstante os cuidados referidos na secção Movimento A aquando da determinação do valor de φ_{ijk} , poderá acontecer que, no movimento A, o personagem descreva uma volta aparentemente desnecessária ao círculo de uma rotunda. Não se trata de um erro. Sucede que, consoante os valores que forem definidos para o raio do círculo e para os raios de curvatura dos movimentos F e B, seja fisicamente impossível percorrer a sucessão de movimentos F, A e B sem executar uma volta suplementar. Este comportamento poderá ser evitado reduzindo os valores de $RAIO_F$ e $RAIO_B$ e/ou aumentando o valor de $K_CIRCULO$. Caso se opte pela primeira solução, os valores de VEL_F e VEL_B deverão também ser reduzidos, sob pena de se perder fluidez na animação dos movimentos F e B.

Colocação do personagem na cena

Dependendo da natureza do personagem, poderá ou não ser necessário incliná-lo nas rampas constituintes dos arcos do grafo.

Se o personagem for bípede e se deslocar a pé, num monociclo ou num Segway [2], por exemplo, poderá assumir-se que a sua postura não se afastará significativamente da vertical, pelo que não será necessário incliná-lo. Já os personagens quadrúpedes ou os que se desloquem numa bicicleta, triciclo ou automóvel, entre outros exemplos, terão de ser inclinados. Se for a_{ij} o arco a percorrer, o ângulo de inclinação será igual ao da rampa correspondente: θ_{ij} .

Referências

- [1] Wikipedia, "Chord," [Online]. Available: https://en.wikipedia.org/wiki/Chord_(geometry). [Acedido em 20 Setembro 2022].
- [2] Wikipedia, "Segway," [Online]. Available: https://en.wikipedia.org/wiki/Segway. [Acedido em 20 Setembro 2022].
- [3] Wikipedia, "Angle: Complementary angles," [Online]. Available: https://en.wikipedia.org/wiki/Angle#complementary_angle. [Acedido em 20 Setembro 2022].
- [4] Mozilla, "Math.acos()," [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/acos. [Acedido em 20 Setembro 2022].
- [5] Mozilla, "Math.atan2()," [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/atan2. [Acedido em 20 Setembro 2022].
- [6] Mozilla, "Math.ceil()," [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/ceil. [Acedido em 20 Setembro 2022].
- [7] Three.js, "Object3D: up," [Online]. Available: https://threejs.org/docs/index.html?q=object3d#api/en/core/Object3D.up. [Acedido em 20 Setembro 2022].