Induction

Joseph Song

1 Induction

Let $S \subseteq \mathbb{N}$. If S contains 1, and for any element $n \in S$, $n+1 \in S$, then $S = \mathbb{N}$.

Proof by induction: show the base case (n = 0, 1). Then with the inductive hypothesis, the case where it holds for n, show it holds for n + 1.

Example 1.1. Let $y_1 = 6$, and define $y_{n+1} = (2y_n - 6)/3$. Prove $y_n > -6, \forall n \in \mathbb{N}$.

Proof. First, we prove the base case, (n = 1). In this case, it is given. $y_1 = 6 > -6$. Then, with the inductive hypothesis, show it holds for n + 1. The inductive hypothesis is we claim $y_n > -6$, because it holds for n. Using that, derive $y_{n+1} > -6$ as well to complete the proof.

With some scratch work:

$$y_{n+1} = (2y_n - 6)/3 > -6$$

$$\Rightarrow 2y_n - 6 > -18$$

$$\Rightarrow 2y_n > -12$$

$$\Rightarrow y_n > -6$$

We get $y_n > -6$ at the end, but we want to use that in the beginning. So our inductive step goes like this:

$$\begin{array}{ll} y_n > -6 \\ \Rightarrow & 2y_n > -12 \\ \Rightarrow & 2y_n - 6 > -18 \\ \Rightarrow & (2y_n - 6)/3 > -6 \\ \Rightarrow & (2y_n - 6)/3 = y_{n+1} \\ \Rightarrow & y_{n+1} > -6 \end{array}$$