Experimental study of Neural ODE training with adaptive solver for dynamical systems modeling

Hannah Plath, Thiago Petrilli Maffei Dardis, Alexandre Allauzen

ESPCI Paris - PSL

MILES team - Université Paris Dauphine

December 1st, 2022

Outlines

- 1 Introduction
 - From ResNet to Neural ODE
 - Neural ODEs
 - Lorenz'63
- 2 Fehlberg's Method
 - lacksquare Evaluations of $f_{m{ heta}}$

- 3 Experiments
 - Trajectories prediction
 - Performance
- 4 Fehlberg's Training
 - Results
- 5 Conclusion
 - Take-home message

Introduction

From ResNet to Neural ODE

A deep Network is a cascade of K transformations/layers , for the k^{th} layer

$$h_k = \underbrace{h_{k-1} +}_{\mbox{Residual}} \underbrace{f_{\theta_k}(h_{k-1})}_{\mbox{Neural-Net}}$$

- The residual connexion allows the model to be very deep
- Help for the vanishing gradient issue

If
$$K \, \longrightarrow \, \infty$$

 $\frac{dh(t)}{dt} = f(h(t), t, \theta)$, the NNet is now a model of the dynamics

We can parameterize the continuous dynamics of hidden states in Neural Networks with an ODE:

$$\frac{dh(t)}{dt} = f(h(t), t, \theta) \tag{1}$$

- Starting from the input layer h(0), we can define the output layer h(T) to be the solution to this ODE initial value problem at some time T.
- From the hidden state $z(t_0)$ we can define the loss function at $z(t_1)$ as:

$$L(z(t_1)) = L(z(t_0) + \int_{t_0}^{\tau_1} f(z(t), t, \theta)) dt$$
 (2)

Neural ODEs

We can parameterize the continuous dynamics of hidden states in Neural Networks with an ODE:

$$\frac{dh(t)}{dt} = f(h(t), t, \theta) \tag{1}$$

- Starting from the input layer h(0), we can define the output layer h(T) to be the solution to this ODE initial value problem at some time T.
- From the hidden state $z(t_0)$ we can define the loss function at $z(t_1)$ as:

$$L(z(t_1)) = L(z(t_0) + \int_{t_0}^{t_1} f(z(t), t, \theta)) dt$$
 (2)

Neural ODEs

We can parameterize the continuous dynamics of hidden states in Neural Networks with an ODE:

$$\frac{dh(t)}{dt} = f(h(t), t, \theta) \tag{1}$$

- Starting from the input layer h(0), we can define the output layer h(T) to be the solution to this ODE initial value problem at some time T.
- From the hidden state $z(t_0)$ we can define the loss function at $z(t_1)$ as:

$$L(z(t_1)) = L(z(t_0) + \int_{t_0}^{t_1} f(z(t), t, \theta)) dt$$
 (2)

Lorenz'63

- This butterfly attractor is broadly used as a benchmark for time series modeling
- Consider a point $x \in \mathbb{R}^3$ with its three coordinates x_1, x_2, x_3 . The Lorenz'63

$$\dot{x_1} = \frac{dx_1}{dt} = \sigma(x_2 - x_1),
\dot{x_2} = x_1(\rho - x_3) - x_1,
\dot{x_3} = x_1x_2 - \beta x_3$$
(3)

■ In this work we consider the standard setting ($\beta = 8/3$, $\sigma = 10$, $\rho = 28$), such

- This butterfly attractor is broadly used as a benchmark for time series modeling
- Consider a point $x \in \mathbb{R}^3$ with its three coordinates x_1 , x_2 , x_3 . The Lorenz'63 system consists of three coupled nonlinear ODEs:

$$\dot{x_1} = \frac{dx_1}{dt} = \sigma(x_2 - x_1),
\dot{x_2} = x_1(\rho - x_3) - x_1,
\dot{x_3} = x_1x_2 - \beta x_3$$
(3)

■ In this work we consider the standard setting ($\beta = 8/3$, $\sigma = 10$, $\rho = 28$), such that the solution exhibits a *chaotic* regime.

- This butterfly attractor is broadly used as a benchmark for time series modeling
- Consider a point $x \in \mathbb{R}^3$ with its three coordinates x_1 , x_2 , x_3 . The Lorenz'63 system consists of three coupled nonlinear ODEs:

$$\dot{x_1} = \frac{dx_1}{dt} = \sigma(x_2 - x_1),
\dot{x_2} = x_1(\rho - x_3) - x_1,
\dot{x_3} = x_1x_2 - \beta x_3$$
(3)

■ In this work we consider the standard setting ($\beta = 8/3$, $\sigma = 10$, $\rho = 28$), such that the solution exhibits a *chaotic* regime.

Fehlberg's Method

■ The method requires three evaluations of f_{θ} for a fixed step-size h:

$$f_1 = f_{\theta}(x_i), \ f_2 = f_{\theta}(x_i + hf_i), \ f_3 = f_{\theta}(x_i + \frac{h}{4}[f_1 + f_2])$$
 (4)

■ Then, we can compute two approximations for the next point:

$$A_1 = x_i + \frac{h}{2}[f_1 + f_2]$$
 (RK2 method), and $A_2 = x_i + \frac{h}{6}[f_1 + f_2 + 4f_3]$ (RK3) (5)

■ Then, we can estimate the following error:

$$r = \frac{|A_1 - A_2|}{h} \simeq Kh^2 \tag{6}$$

■ The method requires three evaluations of f_{θ} for a fixed step-size h:

$$f_1 = f_{\theta}(x_i), \ f_2 = f_{\theta}(x_i + hf_i), \ f_3 = f_{\theta}(x_i + \frac{h}{4}[f_1 + f_2])$$
 (4)

■ Then, we can compute two approximations for the next point:

$$A_1 = x_i + \frac{h}{2}[f_1 + f_2]$$
 (RK2 method), and $A_2 = x_i + \frac{h}{6}[f_1 + f_2 + 4f_3]$ (RK3) (5)

■ Then, we can estimate the following error:

$$r = \frac{|A_1 - A_2|}{h} \simeq Kh^2 \tag{6}$$

■ The method requires three evaluations of f_{θ} for a fixed step-size h:

$$f_1 = f_{\theta}(x_i), \ f_2 = f_{\theta}(x_i + hf_i), \ f_3 = f_{\theta}(x_i + \frac{h}{4}[f_1 + f_2])$$
 (4)

■ Then, we can compute two approximations for the next point:

$$A_1 = x_i + \frac{h}{2}[f_1 + f_2]$$
 (RK2 method), and $A_2 = x_i + \frac{h}{6}[f_1 + f_2 + 4f_3]$ (RK3) (5)

■ Then, we can estimate the following error:

$$r = \frac{|A_1 - A_2|}{h} \simeq Kh^2 \tag{6}$$

• If $r > \epsilon$, then A_2 is rejected and we need to restart the computation with

$$h' = S \times h\sqrt{\epsilon/r} \tag{7}$$

■ We've used the following default values: h=1, S=0.9 and ϵ =0.1.

• If $r > \epsilon$, then A_2 is rejected and we need to restart the computation with

$$h' = S \times h\sqrt{\epsilon/r} \tag{7}$$

■ We've used the following default values: h=1, S=0.9 and $\epsilon=0.1$.

Experiments

Trajectories prediction

Figure: Each figure depicts a different time slice of the generated trajectory and of the original training data: from 0 to 600, 600 to 1200 and 2000 to 2600.

Performance

Figure: Time evolution of (from left to right and top to bottom): the MSE, the evolution of x_1 , the MSE w.r.t the true ODE of Lorenz'63, and the number of steps.

Fehlberg's Training

Results

Figure: Time evolution for two training conditions of: the MSE loss; the percentage of accepted hypotheses A_2 ; the new number of steps for the rejected hypotheses (before rounding).

Conclusion

- Neural ODE relies on solvers for inference and training.
- Adaptive solvers cannot be seamlessly leveraged as a black-box:

Our contributions:

- → For most of the numerical methods, the step size is adapted given the self-estimated error of the model.
- → Neural ODE model is always self-confident, and the "adaptive" ability is under-used.
- → A simple workaround:

Use the supervision within the solver.

Thank you for your attention!

