Анализ декогеренции в FS (BNL) структуре со случайными наклонами E+B элементов

29 июня 2018 г.

1 Введение. FS структура

Структура с замороженным спином (FS) — это накопительное кольцо для эскперимента по поиску ЭДМ в котором спин частицы пучка непрерывно сонаправлен с вектором импульса частицы. Такое возможно для некоторых частиц, таких как дейтрон, только при некоторых "магических" значениях кинетической энергии. Для дейтрона, эта энергия находится в районе 270 МэВ.

В этой работе анализируется структура с элементами с совмещёнными Е+В полями, расположенными в арках кольца.

2 Дизайн симуляции

Симуляция была проведена с использованием программы COSY Infinity; использовалось отображение структуры в 3d, построенное до 5го порядка разложения Тейлора. E+B элементы моделируются неоднородными Вин-вильтрами (WC), наклонёнными на случайный угол вокруг оптической оси. Рассматриваются два случая: распределение углов имеет 1) нулевое ожидание, и 2) ожидание $0.5 \cdot 10^{-4}$ радиан. В обоих случаях, стандартное отклонение распределения углов — 10^{-4} радиан.

Три ансамбля по 15 частиц, плюс квази-референсная (с начальным отклонением по оси х 10^{-6} мм) пропущены через структуру на 10^6 оборотов: 1) частицы с начальным отклонением в х-направлении в диапазоне ± 7 мм, 2) с таким же разбросом а у-направлении, 3) с разбросом по энергии $\pm 7 \cdot 10^{-4} \Delta K/K$, где K — референсная кинетическая энергия (270.0092МэВ).

Наилучшая оценка величины кинетической энергии, найденная для этой структуры — 270.0092МэВ. Результаты симуляции не чувствительны к более точным подстройкам. При этой энергии, прецессия спина в горизонтальной плоскости всё ещё наблюдается в системе координат, связанной с пучком, то есть условие замороженности спина не выполняется. (За 250,000 оборотов, приблизительно четверть секунды, S_x компонента спина растёт на 10^{-5} .) По этой причине, мы корректируем спин-векторы частиц ансамбля в плоскости x-z после каждого оборота, чтобы симулировать эффект замороженности спина. Корректировака выполняется путём поворота спин-векторов частиц ансамбля на линию изначального направления спина ($\vec{S}_0: S_x = 0, S_z = 1$) на их средний угол отклонения от этого направления. Таким образом, декогеренция в горизонтальной плоскости предполагается незатронутой. (Выполнение условия замороженности спина имеет значительное влияния на прецессию в вертикальной плоскости, что наблюдалось в симуояциях при отключении коррекции.) Если средний угол меньше $\pi/2$, поворот осуществляется в направлении $+\vec{S}_0$, иначе, в направлении $-\vec{S}_0$. Это сделано чтобы не вмешиваться в прецессию в вертикальной плоскости: когда вертикальная компонента спина S_y растёт, его проекция на плоскость x-z находится в первом и четвёртом квадрантах, а когда уменьшается — в квадрантах 3 и 4. Если бы направление коррекции всегда было $+\vec{S}_0$, спин бы остановился на положении $\vec{S}=(0,1,0)$, и перестал бы прецессировать в обеих плоскостях x-z и z-v.

Далее рассматривается декогеренция в горизонтальной и вертикальной плоскостях.

3 Декогеренция в горизонтальной плоскости

4 Декогеренция в вертикальной плоскости

Рис. 1: Рост горизонтальной компоненты спина

Рис. 2: Рост вертикальной компоненты спина