accelerated gradient methods, 55-70, 94	Bregman divergence, 45–47, 50
for composite nonsmooth optimization, 71,	generating function for, 45
168	bundle methods, 156, 168
for constrained optimization, 126	
accumulation point, 34, 201	cardinality of vector, 150
active-set method, 114	Cauchy-Schwartz inequality, 31, 149
adjoint method, 190-192	chain rule, 188–190
application to neural networks, 191-192	efficiency of, 190
forward pass, 190	forward pass, 189
relationship to chain rule, 190	reverse pass, 189
reverse pass, 190	Chebyshev iterative method, 57, 71
algorithmic differentiation, see automatic	classification, 2, 12, 14, 77–78, 101, 191
differentiation	clustering, 3, 6
alternating direction method of multipliers	co-coercivity property, 25, 52
(ADMM), 181–184, 186, 187	complementarity condition, 196
augmented Lagrangian method, 167, 180-182,	complexity, 13, 14, 32, 42, 115, 203–204
186, 187	lower bounds, 56, 70–71
comparison with dual subgradient method,	of gradient methods, 61
181	of second-order methods, 42-44
software, 187	composite nonsmooth function, 146-150, 154,
specification of, 181	160
automatic differentiation, 103, 192-195	first-order necessary conditions, 147
checkpointing, 195	first-order optimality conditions, 146-148
computation graph, 193	strongly convex, 147
reverse mode, 194	compressed sensing, 168
reverse sweep, 194, 196	computational differentiation, see automatic
averaging of iterates	differentiation
in dual subgradient method, 180	condition number, 61
in mirror descent, 48, 50	conditional gradient method (Frank-Wolfe),
in the stochastic gradient method, 89	127–130, 186
in subgradient method, 156, 157	definition of, 128
	cone, 119, 201
back-propagation, 75, 194	polar of, 201
boundary point of a set, 211	of positive semidefinite matrices, 173
bounds, 26, 114, 118, 122, 185, 186, 198	conjugacy, 69

conjugate gradient method, 55, 68–70	differential equation limits of gradient
linear, 68–70, 72	methods, 56–57, 71
nonlinear, 70–72	dissipation term, 56
consensus optimization, 182-184	directed acyclic graph (DAG), 193
constrained optimization, 15, 21, 118-129,	directional derivatives, 40, 137–141, 153
133, 146, 170, 172, 196	additivity of, 138
convex, 144–146	definition of, 137
equality constraints, 170-171, 177, 186,	homogeneity of, 138
195, 197	at minimizer, 137
statement of, 118, 170	distributed computing, 183, 184
constraint qualification, 145, 175, 177	dual problem, 170, 172, 178, 185
convergence rate	for linear programming, 206
linear, 30, 33, 35, 105, 126	dual variable, <i>see</i> Lagrange multiplier
Q-linear, 201, 203	duality, 170, 171
R-linear, 61, 201	for linear programming, 200, 205–206
sublinear, 33, 68, 82, 105, 124, 128, 203	strong, 178–179, 206, 207
convex hull, 156, 206, 209	weak, 155, 172–174, 206
convexity	duality gap, 173
of function, 21	example of positive gap, 173–174, 187
modulus of, 22, 30, 34, 38, 50, 85, 88, 90,	example of positive gap, 173–174, 107
93, 104, 107, 111, 113, 161, 165, 213	effective domain, 134, 136, 139, 143, 146
in non-Euclidean norm, 45, 50	
of quadratic function, 31, 55, 58	eigenvalue decomposition of symmetric matrix, 202
of set, 21, 144, 200, 208	empirical model, 3
strong, 21-24, 30-32, 34, 45, 47, 88, 93,	
107, 109, 115, 120, 148, 165	empirical risk minimization (ERM), 78–80,
weak, 21, 107, 112	95, 101–102
coordinate descent methods, 39, 100-114	and finite-sum objective, 79
accelerated, 115	entropy function, 46
block, 100, 101, 113-114, 116, 182	epigraph, 21, 134, 135
comparison with steepest-descent method,	epoch, 160
109–111	Euclidean projection, <i>see</i> projection operator
cyclic, 110–113, 115	extended-value function, 134, 144
for empirical risk minimization, 101-102	
for graph-structured objective, 102-103	Farkas Lemma, 205–207
in machine learning, 101	feasible set, 118
parallel implementation, 116	feature selection, 2, 5
proximal, 154, 164–167	feature vector, 1, 192
random-permutations, 112	finite differences, 103
randomized, 37, 101, 105–111, 115, 165	finite-sum objective, 2, 12, 77, 80, 81, 85–87,
for regularized optimization, 113	94, 96, 183, 184, 192
	frame, 83
Danskin's Theorem, 133, 141-142, 151, 179	
data analysis, 1–3, 100	Gauss-Seidel method, 100, 110, 111
data assimilation, 188, 190	Gelfand's formula, 60
deep learning, see neural networks	generalizability, 7, 13
descent direction, 27-155	global minimizer, 27
definition of, 27	Gordan's Theorem, 207, 209
Gauss-Southwell, 37, 115	gradient descent method, see steepest-descent
in line-search methods, 36-38	method
randomized, 37	gradient map, 162

gradient methods with momentum, see accelerated gradient methods	Lipschitz constant for gradient, 17, 23, 28, 33, 38, 76, 87, 88, 101, 104, 122, 123, 125,
graph, 102, 182	128, 161–163
objective function based on, 103, 182	componentwise, 104, 113, 115, 165
	componentwise, for quadratic functions,
heavy-ball method, 55, 57, 65, 68, 71	104
Heine-Borel theorem, 209	for quadratic functions, 104
	Lipschitz constant for Hessian, 43
image segmentation, 102	Lipschitz continuity, 17
implicit function theorem, 197, 202-203	logistic regression, 9-10, 86
incremental gradient method, 77, 95	binary, 9
cyclic, 80–81	multiclass, 10, 12, 192
randomized, 77, 80, 87	loss function, 2, 79, 101
indicator function, 114, 133, 144, 160, 183	hinge, 79, 132, 139
definition of, 144	low-dimensional subspace, 2, 3
proximal operator of, 148	lower-semicontinuous function, 134, 144
subdifferential of, 144, 145	Lyapunov function, 55
iterate averaging, see averaging of iterates	for Nesterov's method, 61–68, 71
Jacobian matrix, 188, 196, 198, 202	matrix optimization, 2, 5–6
Jensen's inequality, 85, 106, 202	low-rank matrix completion, 5, 114
vensen s mequanty, es, 100, 202	nonnegative matrix factorization, 6, 114
Kaczmarz method	maximum likelihood, 4, 9, 10, 13
deterministic, 82–84	method of multipliers, see augmented
linear convergence of, 83	Lagrangian method
randomized, 75, 82–84, 86–87, 91–92, 95	min-max problem, see saddle point problem
Karush-Kuhn-Tucker (KKT) conditions, 206	minimizer
Kullback-Liebler (KL) divergence, 46	global, 15, 29
Kurdyka-Łojasiewicz (KL) condition, 51, 116	isolated local, 15
	local, 15, 148
label, 2, 3, 10, 11, 192	strict local, 15, 20
Lagrange multiplier, 172, 182, 184, 196	unique, 15, 147
Lagrangian, see Lagrangian function	minimum principle, 121, 210
Lagrangian function, 170, 172, 175, 196	mirror descent, 44-50, 89
augmented, 180, 181, 183, 184, 186	convergence of, 47–50
for semidefinite program, 173	missing data, 3
Lanczos method, 44	momentum, 55, 72, 94
law of iterated expectation, 88	Moreau envelope, 133, 150–151
learning rate, see steplength	gradient of, 150
least squares, 4-5, 75, 102, 114	relationship to proximal operator, 150
with zero loss, 82, 91	
level set, 35, 104, 105, 147	negative-curvature direction, 43, 44
limiting feasible directions, 208–209	nested composition of functions, 188
line search, 105	Nesterov's method, 55, 57, 70
backtracking, 41-42, 124-125	convergence on strongly convex functions,
exact, 39, 107, 110	62–65
extrapolation-bisection, 40-41, 204-205	convergence on strongly convex quadratics,
linear independence, 69	58–62
linear programming, 186, 205–206	convergence on weakly convex functions,
simplex method, 206	66–68

neural networks, 11-13, 132, 188, 191-192	definition of, 122
activation function, 11, 198	short-step, 123-124
classification, 12	for strongly convex function, 125-126
layer, 11	projection operator, 120–122, 128, 148, 170,
parameters, 12	185, 210
training of, 12	nonexpansivity of, 121, 126
Newton's method, 37	proper convex function, 134
nonlinear equations, 196, 202	closed, 134, 148
nonnegative orthant, 121, 177, 185	prox-operator, see proximal operator
nonsmooth function, 75, 132–150	proximal operator, 133, 148-150, 160, 162
eigenvalues of symmetric matrix, 133	of indicator function, 148
norms, 133	nonexpansivity of, 149, 161
normal cone, 48, 133, 144, 175, 208, 212–213	of zero function, 149
definition of, 118	proximal point method, 154, 167–168, 180
illustration of, 119	and augmented Lagrangian, 180
of intersection of closed convex sets,	definition of, 167
144–146	sublinear convergence of, 167–168
	proximal-gradient method, 110, 126, 148, 149,
nuclear norm, 5	154, 160–164, 168
	linear convergence of, 161–162
operator splitting, 182	sublinear convergence of, 162
optimal control, 188, 197–199	
optimality conditions, 133, 209	quadratic programming, 185–186
for composite nonsmooth function, 146–14	OSQP solver, 186
for convex functions, 134	22 (2 222.24, 222
examples of, 176–178	regression, 2, 79, 101
first-order, 196	regularization, 3
first-order necessary, 18–20, 27, 118, 119,	$\ell_1, 4, 9$
174–178	ℓ_2 , 4, 168
first-order sufficient, 22, 34, 119, 123, 146,	group-sparse, 10
176, 208	regularization function, 3, 13, 26, 101, 103,
geometric (for constrained optimization),	149, 160, 161
48, 118–120, 123, 146, 174–178	block-separable, 113, 114
second-order necessary, 18-20, 42	separable, 101, 110, 115, 154, 165
second-order sufficient, 20	regularization functions
order notation, 16, 201	block-separable, 116
overfitting, 3	regularization parameter, 3, 7, 9, 101, 160
	regularized optimization, see composite
penalty function, 4	nonsmooth function
quadratic, 45, 170–171	regularizer, see regularization function
penalty parameter, 171	restricted isometry property, 6
perceptron, 78, 80, 95	robustness, 7
as stochastic gradient method, 78	Toousticss, 7
Polyak-Łojasiewicz (PL) condition, 51, 115,	and dia maint muchlam 171 190
213	saddle point problem, 171, 180
prediction, 2	sampling, 79
primal problem, 170, 173, 178	with replacement, 113
	without replacement, 113
progressive function, 190, 191, 195, 196	semidefinite programming, 173
progressive function, 190, 191, 195–196	separable function, 183, 184
projected gradient method, 114, 122–127, 130	
161, 186	212
alternative search directions, 126–127	separation, 200, 209–212
with backtracking, 124–125	of closed convex sets, 210–211

of hyperplane from convex set, 211–212	sublinear convergence of, 82
of point from convex set, 209–210	SVRG, 96
proper, 211, 212	variance reduction, 94
strict, 143, 209–211	subdifferential, 132–144, 153
set	calculus of, 141–144
affine, 200	Clarke, 198
affine hull of, 200	closedness and convexity of, 134
closure of, 200	compactness of, 136, 143
interior of, 200	definition of, 134
multipliction by scalar, 200	and directional derivatives, 138–141
relative interior of, 175, 200, 211	subgradient, 132–144, 153, 211
Sion's minimax theorem, 180	definition of, 134
slack variables, 185	existence of, 135
softmax, 10–12, 14	minimum-norm, 154–156
solution	of smooth function, 137
global, 16, 21, 118, 119	and supporting hyperplane of epigraph, 135
local, 16, 21, 118, 119	subgradient descent method, 155–156
spectral radius, 58	subgradient method, 154, 156–160, 179, 198
stationary point, 20, 27, 29, 34, 36, 195, 196	with constant step norm, 158
steepest-descent method, 27–33, 43, 44, 55,	with decreasing steplength, 158–160
62, 68, 76, 77, 101, 105, 111, 149, 153,	dual, 179–181, 183, 185
155, 160, 161	with fixed steplength, 158
short-step, 28–30, 38, 109, 110	sublinear convergence of, 157–160
steplength, 27, 28, 33, 38–42, 78, 110, 122, 161	sufficient decrease condition, 39, 41, 125
	support vector machines, 6–9, 78, 79, 132 kernel, 9
constant step norm, 158 decreasing, 93, 158–160	maximum-margin, 7
exact, 39	supporting hyperplane, 135, 211
fixed, 28, 38, 92, 105, 107, 111, 158,	symmetric over-relaxation, 111
161–163, 167	symmetric over relaxation, 111
in mirror descent, 49–50	
for steepest-descent method, 28	Taylor series, <i>see</i> Taylor's theorem
for subgradient method, 158–160, 180	Taylor's theorem, 15–18, 20, 22–24, 27, 28,
Wolfe conditions and, 39–42	36, 40, 42, 43, 45, 106, 119, 125, 128,
stochastic gradient descent (SGD), see	139, 161
stochastic gradient method	statement of, 16
stochastic gradient method, 38, 75–95, 157,	for vector functions, 202 telescoping sum, 49, 164
192, 214	theorems of the alternative, 205–207
accelerated, 96	three-point property, 46, 48
additive noise model, 76, 86	thresholding
basic step, 75–76	hard, 150
bounded variance assumption, 85	soft, 150
contrast with steepest-descent method, 76	topic modeling, 102
convergence analysis of, 87-93	training, 1, 192
epochs, 92–94	ug, 1, 1,2
hyperparameters, 93, 94	
linear convergence of, 90–92	unbiased gradient estimate, 75, 77 utility maximization, 184–185
minibatches, 94-95, 192, 199	uumy maximizauon, 184–185
momentum, 94–95	
parallel implementation, 94	warm start, 168, 171
SAG, 96	Wolfe conditions
SAGA, 96	strong, 53
steplength, 81, 85, 88, 90-93	weak, 39-40, 204-205