Αντιπαράδειγμα, Αντιθετοαντιστροφή και γράφημα στη διδασκαλία της ανάλυσης Γ΄ λυκείου

Μ. Ελευθεριάδης 1 Κ. Λόλας 2 Α. Ευαγγελόπουλος 3

132ο ΓΕΛ ΘΕΣ/ΝΙΚΗΣ (ΠΕ03)

 2 100 ΓΕΛ ΘΕΣ/ΝΙΚΗΣ (ΠΕ03)

³Σχ. Σύμβουλος Μαθηματικών

Θεσσαλονίκη, Απρίλιος 2018

• Συμμετέχουν στη παράδοση

- Συμμετέχουν στη παράδοση
- Λύνουν ασκήσεις

- Συμμετέχουν στη παράδοση
- Λύνουν ασκήσεις
- Ξαναλύνουν ασκήσεις

- Συμμετέχουν στη παράδοση
- Λύνουν ασκήσεις
- Ξαναλύνουν ασκήσεις
- Ξαναξαναλύνουν ασκήσεις ...

Εργαλεία για τη Θεωρία

• Αντιπαράδειγμα

Εργαλεία για τη Θεωρία

- Αντιπαράδειγμα
- Αντιθετο-αντιστροφή

Εργαλεία για τη Θεωρία

- Αντιπαράδειγμα
- Αντιθετο-αντιστροφή
- Γραφική Αναπαράσταση

Αντιπαραδείγματα

Χρησιμότητα

Ένα παράδειγμα είναι ικανό να αποδείξουμε ότι η πρόταση είναι ψευδής

- παράδειγμα μεταστροφής
- παράδειγμα γεφύρωσης

Αντιθετο-αντιστροφή

Χρησιμότητα

Τσως η απόδειξη είναι ευκολότερη από την αρχική

Πρόταση

Αν η f συνεχής τότε η f^{-1} δεν είναι πάντα συνεχής.

Απόδειξη.

Η συνάρτηση
$$f\left(x
ight)=\left\{ egin{array}{ll} x, & x\in\left[0,1
ight] \\ x-1, & x\in\left(2,3
ight) \end{array}
ight.$$
 είναι συνεχής ενώ η

$$f^{-1}\left(x\right)=\left\{\begin{array}{ll}x,&x\in\left[0,1\right]\\x+1,&x\in\left(1,2\right)\end{array}\right.\ \mathrm{den}\ \mathrm{einal}\ \mathrm{sunechis}\ \mathrm{sto}\ 1.$$

Πρόταση

Αν η f παραγωγίσιμη, τότε η f^{-1} δεν είναι πάντα παραγωγίσιμη.

Απόδειξη.

Η συνάρτηση $\underline{f}\left(x\right)=x^3$ είναι «1-1» και παραγωγίσιμη στο \mathbb{R} . Όμως

$$\eta \ f^{-1} \left(x \right) = \left\{ \begin{array}{ll} \sqrt[3]{x}, & x \geq 0 \\ -\sqrt[3]{-x}, & x < 0 \end{array} \right. \ \text{den eίναι paraywyisimh sto } 0.$$

Πρόταση

Αν υπάρχει το όριο $\lim_{x\to x_0} [f\left(x\right)+g\left(x\right)]$, τότε δεν υπάρχουν πάντα τα όρια $\lim_{x\to x_0} f\left(x\right)$ και $\lim_{x\to x_0} g\left(x\right)$.

Απόδειξη.

$$\Gamma \text{ia } f\left(x\right) = \frac{1}{x^2} \text{ και } g\left(x\right) = -\frac{1}{x^2} \text{ τότε } \lim_{x \to 0} \left[f\left(x\right) + g\left(x\right)\right] = 0 \text{ και } \lim_{x \to 0} f\left(x\right) = +\infty.$$

Πρόταση

Aν $\lim_{x\to +\infty}f\left(x\right)=+\infty$, τότε η f δεν είναι πάντα γνησίως αύξουσα στο $+\infty$.

Απόδειξη.

Η συνάρτηση $f\left(x\right)=\eta\mu x+x$ έχει $\lim_{x\to+\infty}f\left(x\right)=+\infty$, όμως δεν είναι γνησίως αύξουσα στο $+\infty$.

Πρόταση

Αν η f είναι συνεχής στο x_0 , τότε η f δεν είναι πάντα παραγωγίσιμη στο x_0 .

Απόδειξη.

Η συνάρτηση $f\left(x\right)=\left\{ egin{array}{ll} \ln x+1, & x>1 \\ -x^2+2, & x\leq 1 \end{array} \right.$ είναι συνεχής στο 1, όμως δεν είναι παραγωγίσιμη στο 1.

Πρόταση

Αν η fείναι συνεχής και $f(x) \neq 0$ για κάθε $x \in (\alpha, \beta) \cup (\beta, \gamma)$, τότε δεν έχει πάντα σταθερό πρόσημο στο $(\alpha, \beta) \cup (\beta, \gamma)$

Απόδειξη.

Η συνάρτηση $f\left(x\right)=\left\{ egin{array}{ll} x^2+1, & x>1 \\ -2, & x<1 \end{array} \right.$ είναι συνεχής όμως δεν έχει σταθερό πρόσημο στο $(-\infty,1)\cup(1,+\infty)$.

Πρόταση

Αν η C_f δέχεται εφαπτομένη ε στο x_0 , τότε η ε δεν έχει πάντα μόνο ένα κοινό σημείο με την C_f (άσκηση Γ10, σελ. 174-175).

Απόδειξη.

Η συνάρτηση $f\left(x\right)=\left\{ egin{array}{ll} x^2\eta\mu\frac{1}{x}, & x\neq 0 \\ 0, & x=0 \end{array} \right.$ είναι παραγωγίσιμη στο 0

και έχει εφαπτόμενη την $\varepsilon:y=0$ (άξονας x'x) που τέμνει την C_f σε άπειρα σημεία ($x_k=\frac{1}{k\pi},k\in\mathbb{Z}^*$) παρόλο που εφάπτεται της C_f . \square

Πρόταση

An h f+g είναι παραγωγίσιμη στο x_0 , τότε οι f,g δεν είναι πάντα παραγωγίσιμες στο x_0 .

Απόδειξη.

Η συνάρτηση (f+g)(x)=x+1 είναι παραγωγίσιμη στο 0, ενώ οι συναρτήσεις f(x)=x+|x| και g(x)=1-|x| δεν είναι παραγωγίσιμες στο 0.

Πρόταση

Αν συνάρτηση f είναι ορισμένη και συνεχής στο $[\alpha, \beta)$ δεν παρουσιάζει πάντα ακρότατο στο α .

Απόδειξη.

Η συνάρτηση $f^{-1}\left(x\right)=\left\{ egin{array}{ll} x^2\eta\mu^{rac{1}{x}}, & x\neq 0 \\ 0, & x=0 \end{array} \right.$ είναι συνεχής ως γινόμενο συνεχών και σύνθετη συνεχών και στο 0 είναι συνεχής, $\lim_{x\to 0}\left(x^2\eta\mu^{rac{1}{x}}\right)=0=f\left(0\right).$ Το $f\left(0\right)$ δεν είναι τοπικό ακρότατο, γιατί όσο κοντά στο 0, σε διάστημα της μορφής $\left[0,x\right]$ η $f\left(x\right)$ «αλλάζει» πρόσημο.

Πρόταση

Αν η συνάρτηση f είναι ορισμένη στο $[\alpha,\beta]$, δεν είναι συνεχής στο $x_0\in(\alpha,\beta)$ και αλλάζει το πρόσημο της f' εκατέρωθεν του x_0 , τότε δεν παρουσιάζει πάντα ακρότατο στο x_0 .

Απόδειξη.

Η συνάρτηση $f\left(x\right)=\left\{ egin{array}{ll} \sqrt{-x}, & x<0 \\ x^2+1, & x\geq 0 \end{array} \right.$ δεν είναι συνεχής στο 0.

Είναι γνησίως φθίνουσα στο $(-\infty,0)$ και γνησίως αύξουσα στο $(0,+\infty)$, όμως δε παρουσιάζει τ. ακρότατο στο 0.

Πρόταση

Αν η C_f μιας συνάρτησης f, αλλάζει κυρτότητα εκατέρωθεν του x_0 , τότε δεν παρουσιάζει πάντα στο x_0 σημείο καμπής.

Απόδειξη.

Έστω η συνάρτηση
$$f\left(x\right)=\left\{ egin{array}{ll} \sqrt{-x}, & x<0 \\ x^2, & x\geq 0 \end{array} \right.$$
 Στο $x_0=0$ η κυρτότητα αλλάζει είδος, αφού $f''\left(x\right)=\left\{ egin{array}{ll} \frac{1}{4x\sqrt{-x}}, & x<0 \\ 2, & x\geq 0 \end{array} \right.$ (δεν υπάρχει η $f''\left(0\right)$, αφού δεν υπάρχει και η $f'\left(0\right)$) και $f''\left(0\right)<0$ για $x<0$ και $f''\left(0\right)>0$ για $x>0$. Στο $x_0=0$ δεν υπάρχει εφαπτομένη και επομένως το $x_0=0$ δεν είναι σημείο καμπής.

Πρόταση

Αν η C_f μιας συνάρτησης f, έχει ασύμπτωτη την ευθεία ε , τότε η C_f μπορεί να τέμνει την ε .

Απόδειξη.

Η συνάρτηση $f\left(x\right)=\left\{egin{array}{l} \frac{\eta\mu x}{x}, & x\neq 0 \\ 1, & x=0 \end{array} \right.$ είναι συνεχής και $\lim_{x\to+\infty}\frac{\eta\mu x}{x}=0 \text{ και }\lim_{x\to-\infty}\frac{\eta\mu x}{x}=0 \text{ άρα η ευθεία }y=0 \text{ είναι }$ οριζόντια ασύμπτωτη της $f\left(\text{δηλαδή ο άξονας }x'x\right)$. Όμως η εξίσωση $f\left(x\right)=0$ έχει άπειρες λύσεις στο \mathbb{R} , άρα ο άξονας x'x και η C_f έχουν άπειρα κοινά σημεία $x\in\mathbb{R}$.

Πρόταση

Αντίστροφο Θ. Rolle. Αν η f είναι συνεχής στο $[\alpha,\beta], f(\alpha)=f(\beta)$ και υπάρχει $x_0\in(\alpha,\beta)$ τέτοιο ώστε $f'(x_0)=0$, τότε η f δεν είναι πάντα παραγωγίσιμη στο (α,β) .

Απόδειξη.

Η συνάρτηση
$$f(x) = |x^2 - 4x|$$
 έχει $f(-1) = f(5) = 5$ και $f'(2) = 0$, αλλά δεν είναι παραγωγίσιμη στο 0 .

Πρόταση

Αν η f είναι παραγωγίσιμη στο $(\alpha,\beta),$ $f(\alpha)=f(\beta)$ και υπάρχει $x_0\in(\alpha,\beta)$ τέτοιο ώστε $f'(x_0)=0,$ τότε η f δεν είναι πάντα συνεχής στο $[\alpha,\beta].$

Απόδειξη.

Πρόταση

Αν η f είναι συνεχής στο $[\alpha,\beta]$, παραγωγίσιμη στο (α,β) και υπάρχει $x_0\in(\alpha,\beta)$ τέτοιο ώστε $f'(x_0)=0$, τότε δεν είναι πάντα $f(\alpha)=f(\beta)$.

Απόδειξη.

Η συνάρτηση $f(x)=x^2, x\in [-1,2]$ είναι παραγωγίσιμη στο (-1,2), f'(0)=0, αλλά $f(-1)\neq f(2)$.

Πρόταση

Αντίστροφο ΘΜΤ. Αν η f είναι συνεχής στο $[\alpha,\beta]$ και υπάρχει $x_0\in(\alpha,\beta)$ τέτοιο ώστε $f'(x_0)=\frac{f(\beta)-f(\alpha)}{\beta-\alpha}$, τότε η f δεν είναι πάντα παραγωγίσιμη στο (α,β) .

Πρόταση

Αν η f είναι παραγωγίσιμη στο (α,β) και υπάρχει $x_0\in(\alpha,\beta)$ τέτοιο ώστε $f'(x_0)=\frac{f(\beta)-f(\alpha)}{\beta-\alpha}$, τότε η f δεν είναι πάντα συνεχής στο $[\alpha,\beta]$.

Πρόταση

Αντίστροφο Μονοτονίας. Αν η f είναι συνεχής στο $[\alpha, \beta]$, παραγωγίσιμη στο (α, β) και γνησίως αύξουσα στο $[\alpha, \beta]$, τότε δεν είναι πάντα f'(x) > 0, για κάθε $x \in (\alpha, \beta)$.

Πρόταση

Aν f'(x)>0 για κάθε $x\in(\alpha,\beta)$ και f γνησίως αύξουσα στο $[\alpha,\beta]$, τότε δεν είναι πάντα η f συνεχής στο $[\alpha,\beta]$.

Πρόταση

Αντίστροφο Θ. Fermat. Αν η f είναι παραγωγίσιμη $x_0 \in (\alpha, \beta)$, $f'(x_0) = 0$, τότε η f δεν είναι πάντα θέση τ. ακρότατου το x_0 .

Πρόταση

Αν η f έχει θέση τοπ. ακρότατου το x_0 και $f'(x_0)=0$, τότε το x_0 δεν είναι πάντα εσωτερικό σημείο διαστήματος.

Πρόταση

Αν το $x\lim_{x\to x_0}\frac{f(x)}{g(x)}=\left(\frac{0}{0}\right)$ ή $\left(\frac{\pm\infty}{\pm\infty}\right)$ και υπάρχει τότε δεν υπάρχει πάντα το $\lim_{x\to x_0}\frac{f'(x)}{g'(x)}$.

Απόδειξη.

Για $f\left(x
ight)=x^{2}\eta\mu\frac{1}{x}$ και $g\left(x
ight)=\varepsilon\varphi x$ έχουμε

$$\lim_{x \to 0} \frac{x^2 \eta \mu \frac{1}{x}}{\varepsilon \varphi x} = \left(\frac{0}{0}\right) = \lim_{x \to 0} \frac{x \eta \mu \frac{1}{x}}{\frac{\eta \mu x}{\sigma \upsilon \nu x}} = 0$$

, αλλά

$$\lim_{x\to 0} \frac{\left(x^2\eta\mu\frac{1}{x}\right)'}{\left(\varepsilon(xx)'\right)} = \lim_{x\to 0} \frac{2x\eta\mu\frac{1}{x} - \sigma\!\nu\frac{1}{x}}{\frac{1}{2x^2x}} = \lim_{x\to 0} \sigma\upsilon\nu^2x \left(2x\eta\mu\frac{1}{x} - \sigma\!\nu\frac{1}{x}\right)$$

Πρόταση

Αντίστροφο Σ.Κ. Αν η f είναι 2 φορές παραγωγίσιμη και $f'(x_0)=0$, τότε η f δεν είναι πάντα θέση σημείου καμπής.

Απόδειξη.

Η $f\left(x\right)=x^{4}$, έχει $f'\left(x_{0}\right)=0$, αλλά το 0 δεν είναι σημείο καμπής.

Πρόταση

Αντίστροφο Κυρτότητας. Αν η f είναι συνεχής στο $[\alpha,\beta]$, 2 φορές παραγωγίσιμη στο (α,β) και κυρτή στο $[\alpha,\beta]$, τότε δεν είναι f''(x)>0, για κάθε $x\in(\alpha,\beta)$.

Απόδειξη.

$$H f(x) = (x-2)^4 + x$$
 είναι κυρτή αλλά έχει $f''(2) = 0$.

Πρόταση

Πρόταση 25. Αν $f'(x) \neq 0$ για κάθε $x \in (\alpha, \beta) \cup (\beta, \gamma)$, τότε δεν είναι πάντα γνησίως αύξουσα στο $(\alpha, \beta) \cup (\beta, \gamma)$

Απόδειξη.

Η συνάρτηση
$$f\left(x\right)=-\frac{1}{x}$$
είναι $f'\left(x\right)=\frac{1}{x^{2}}>0$ για $x\in(-\infty,0)\cup(0,+\infty)$ όμως $f\left(-1\right)=1>f(1)=-1$

Πρόταση

Αν η f είναι παραγωγίσιμη, τότε η f' δεν είναι πάντα συνεχής.

Απόδειξη.

Η συνάρτηση $f\left(x\right)=\left\{ egin{array}{ll} x^2\eta\mu^{rac{1}{x}},&x\neq0\\ 0,&x=0 \end{array} \right.$ είναι συνεχής στο \mathbb{R} , με παράγωγο $f'\left(x\right)=\left\{ egin{array}{ll} 2x\eta\mu^{rac{1}{x}}-\sigma\upsilon\nu^{rac{1}{x}},&x\neq0\\ 0,&x=0 \end{array} \right.$ η οποία δεν είναι συνεχής στο 0.

Πρόταση

Αν η f δεν είναι αντιστρέψιμη τότε δεν είναι «1-1».

Απόδειξη.

Αν ήταν «1-1» τότε θα ήταν αντιστρέψιμη.

Πρόταση

Αν δεν υπάρχει το όριο $\lim_{x\to x_0}\ [f\left(x\right)+g\left(x\right)]$, τότε δεν υπάρχει το $\lim_{x\to x_0}f\left(x\right)$ ή το $\lim_{x\to x_0}g\left(x\right)$.

Απόδειξη.

Αν υπήρχαν και τα δύο, τότε τα υπήρχε και το $\lim_{x \to x_0} \ [f\left(x\right) + g\left(x\right)],$ ΑΤΟΠΟ.

Πρόταση

Aν η $g\circ f$ δεν είναι συνεχής στο x_0 , τότε η f δεν είναι συνεχής στο x_0 ή η g δεν είναι συνεχής στο $f\left(x_0\right)$.

Απόδειξη.

Αν η f ήταν συνεχής στο x_0 και η g ήταν συνεχής στο $f(x_0)$ τότε θα ήταν συνεχής και η $g\circ f$, ΑΤΟΠΟ.

Πρόταση

Aν η f δεν έχει ρίζα στο (α,β) , τότε η f δεν είναι συνεχής στο $[\alpha,\beta]$ ή $f(\alpha)\cdot f(\beta)\geq 0$

Απόδειξη.

Aν η f ήταν συνεχής στο $[\alpha,\beta]$ και $f(\alpha)\cdot f(\beta)<0$ τότε η f έχει ρίζα στο (α,β) , ΑΤΟΠΟ.

Πρόταση

An h $g\circ f$ den eίναι παραγωγίσιμη στο x_0 , τότε h f den eίναι πραγωγίσιμη στο x_0 ή h g den eίναι παραγωγίσιμη στο $f(x_0)$.

Απόδειξη.

Αν η f ήταν παραγωγίσιμη στο x_0 και η g ήταν παραγωγίσιμη στο $f(x_0)$ τότε θα ήταν παραγωγίσιμη και η $g \circ f$ στο x_0 , ΑΤΟΠΟ.

Πρόταση

An h f den eίναι συνεχής στο x_0 , τότε h f den είναι πραγωγίσιμη στο x_0 .

Απόδειξη.

Αν η f ήταν παραγωγίσιμη στο x_0 τότε θα ήταν και συνεχής στο x_0 , ΑΤΟΠΟ.

Σας Ευχαριστούμε...