Welcome to CS2209A

- ZOOM please ask questions! Weekly Schedule one file
- In-person: Midterm 25%, Oct 24, 3:00 to 5:00 PM; Final 30%
- 5 assignments: 5%, 10%, 10%, 10%, 10% (9/24, 10/8, 10/22, 11/19, 12/3)
- LogiCola and other software
- We will take a (more) applied/practical approach
- Logic and its use in CS and life
- Logic: representation and proof
 - Symbolic reasoning (true or false), human intelligence
 - Proof: sound and convincing deduction
 - Started from ancient Greek philosophers
- Propositional logic, first-order logic, Prolog

A Logical Puzzle with Three Boys

We assume that (premises): -The description of the story ...

Background (common sense) knowledge:

- boys cannot feel mud, if any, on their face
- boys have no mirrors...
- boy cannot tell others are laughing at him
- boys try to figure out if they have mud on face
- boys will be unhappy if they know to have mud on face

-

Prove: boy A deduced he has mud on his own face

How: A assumes that I had no mud on my face

. . . .

Contradiction!

Therefore, I (A) must have mud on my face!

A Proof

Given (accepting) premises, draw valid conclusions

```
Premise 1
Premise 2
Prove Z
Assume NOT Z
(so, therefore, thus, hence, I prove/deduce, it must be, ...)
Conclusion 1 (based on Premise i, Assumption, using Rule_x)
Conclusion 2 (based on Conclusion 1, Premise k, usnig Rule_y)
```

Convincing, justified, valid, make sense, Symbolic reasoning (true or false), human intelligence Rational thinking and reasoning; tool for Al?

Real-life Cases

Science: physics, geometry, biology, ..., history?

Newton's three Laws of Motion

- 1. A body remains in rest or uniform motion unless an external force
- 2. F = m a
- 3. The forces of action and reaction are equal and opposite Law of Gravitation: F = G M m /d² (G=6.674 x 10⁻¹¹)

How to convince people? Rhetoric

- Sci-fi movies; detective movies; ...
- Court
- Constitutions, laws, rules, policies
- Religions
-

Logic reasoning we will learn:

- If you overslept, you'll be late. You overslept, <u>Therefore</u>:
 You will be late
 - Rule: if A then B, A, therefore B
- If you overslept, you'll be late. You aren't late. <u>Therefore</u>:
 You didn't' oversleep.
 - Rule: If A then B. Not B. Therefore, Not A
- If you overslept, you'll be late. You didn't oversleep.
 Therefore: You are not late.
- If you overslept, you'll be late. You are very late. <u>Therefore</u>: You overslept.

If it rains and your tent leaks, then your sleeping bag gets wet.

Your sleeping bag does <u>not</u> get wet.

Your tent leaks.

Conclusion: it does not rain.

If (A and B) then C. Not C.

В.

Conclusion: Not A

If you get up early, you'll be late. You get up early.

Conclusion: You will be late

Why a bit strange? I don't like the premise!

- Limitation of logic
 - "The economy is poor; this proves the PM is bad"
 - Probabilistic reasoning AI very hot these years
 - Hard to convert knowledge to logic
 - Japan's Fifth Generation Project

Just for fun...

- Prove the sum of even numbers is even
- Prove sqrt of 2 is not rational

Chapter 3: Basic Propositional Logic

Based on Harry Gensler's book For CS2209A/B By Dr. Charles Ling; cling@csd.uwo.ca

Propositional Logic

Any (formal) language has:

- Syntax: "legal" ways of writing, WFF
 - Just like syntax in Python
- Semantics: "meaning" of the WFF
 - Just like how Python codes are run

3.1 Syntax

- Need a (formal representation) language to...
 - deal with simple statements: any strings in English
 - Use capital letters: P, Q, ...
 - They are called propositions
 - Use "logic connectives" to deal with "if-then", "and", "or", "not", etc. in English

Well-Formed Formula (wff)

The legal statements in logic is defined as:

- 1. Any capital letter is a wff.
- 2. The result of prefixing any wff with "~" is a wff.
- 3. The result of joining any two wffs by "·" or "∨" or "⊃" or "≡" and enclosing the result in () is a wff.

Some examples of wff:

only when it is connected by connectors then it have to be enclosed.

Recursive & Strick

Examples of Valid/Invalid wff

```
• (P·P), ~~~ P
         (p·q) × capital letter.
• (P & Q), (P · Q) x
• (~P), (Q), ((R · Q)), (P·(Q·R)) to many
\bullet(P\cdot Q)(P\cdot Q\cdot R)(P\cdot Q)\equiv R,
• If P then Q
```

Logic (including wff) is very precise

The usual meaning in English

```
\sim P = \text{Not-P}

(P \cdot Q) = \text{Both P and Q}

(P \vee Q) = \text{Either P or Q}

(P \supset Q) = \text{If P then Q}

(P \equiv Q) = \text{P if and only if Q}
```

Propositional translations

- Semantics: precise definitions later
- Can help to guide translating English to wff and vise versa
- Real-life cases can be translated and proved with wff.
- "All students are rich", "John is a student", thus "John is rich" must be represented by three different propositions; cannot prove with this logic.

Quite subtle...

```
(\sim P \cdot Q) = Not-P (pause) and (pause) Q
 \sim (P \cdot Q) = Not (pause) P and Q
```

These two also differ:

$$(P \cdot (Q \supset R)) = P$$
, and if Q then R
 $((P \cdot Q) \supset R) = If P$ -and-Q, then R

https://www.harryhiker.com/lc/index.htm

Exercise LogiCola C (EM & ET)

Set C (ET). Propositional Translations (Easier, Type the answer) Click mouse or hit key to get the next problem.

LogiCola C-ET

Some useful rules in translation

 Rule: have your capital letters stand for whole statements

```
Here, "and" is not logic "and" and Lowen is married

Wrong: Bob and Lauren got married to each other = (B·L)

Right: Bob and Lauren got married to each other = M

only one upwal letter.
```

• Rule: put "(" wherever you see "both," "either," or "if."

Either not A or B =
$$(\sim A \vee B)$$

Not either A or B = $\sim (A \vee B)$
If both A and B, then C = $((A \cdot B) \supset C)$
Not both not A and B = $\sim (\sim A \cdot B)$
 $\sim (\sim A \cdot B)$

 Rule: Group together parts on either side of a comma.

If A, then B and C =
$$(A \supset (B \cdot C))$$

If A then B, and C = $((A \supset B) \cdot C)$

If it snows then I'll go outside and I'll ski =
$$\begin{cases} If \text{ it snows, then I'll} \\ go \text{ outside and I'll ski} \end{cases} = (S \supset (G \cdot K))$$

Exercise (LogiCola Exercise Set C) Try E/H (easy/hard), M/T (mulC/type)

- 2. Both A and either B or C. (A・(Bヾし))
- 3. Either both A and B or C. ((A·⅓) ∨ ∠)
- 4. If A, then B or C. (AC (BVC))
- 5. If A then B, or C. ((ACB) VC)
- 6. If not A, then not either B or C.
- 7. If not A, then either not B or C.
- 8. Either A or B, and C.
- 9. Either A, or B and C.
- 10. If A then not both not B and not C.
- 11. If you get an error message, then the disk is bad or it's a Macintosh disk.
- 12. If I bring my digital camera, then if my batteries don't die then I'll take pictures of my backpack trip and put the pictures on my Web site.

3.2 The meaning/semantics of wff Simple truth tables

- **Define** the meaning of connectives first...
 - What does(P v Q)mean?
- Use a truth table to <u>define</u>: It lists all possible truth-value combinations for the letters and says whether the wff is true or false, in each case.

Semantics of "~" in logic and in NL (Natural Language) (Use 1 for True, 0 for False)

$$\begin{array}{c|cccc} P & \sim P & & & \text{"I didn't go} \\ \hline 0 & 1 & & \sim 0 = 1 & & \text{to Paris."} \\ 1 & 0 & & \sim 1 = 0 & & \end{array}$$

"~P" has the *opposite* value of "P." "~P" is a *negation*.

Semantics of "·" in logic and in NL

"I went to Paris and I went to Quebec."

PQ	$(P \cdot Q)$	
0 0	0	$(0 \cdot 0) = 0$
0 1	0	$(0 \cdot 1) = 0$
1 0	0	$(1 \cdot 0) = 0$
1 1	1	$(1 \cdot 1) = 1$

"(P • Q)" claims that *both* parts are true.
"(P • Q)" is a *conjunction*; P and Q are its *conjuncts*.

Semantics of "v" in logic and in NL

"I went to Paris or I went to Quebec."

P Q

$$(P \lor Q)$$

 0 0
 $(0 \lor 0) = 0$

 0 1
 1
 $(0 \lor 1) = 1$

 1 0
 1
 $(1 \lor 0) = 1$

 1 1
 1
 $(1 \lor 1) = 1$

"(P \vee Q)" claims that *at least one* part is true. "(P \vee Q)" is a *disjunction*; P and Q are its *disjuncts*.

Real-life "or" may be different from logic

- "You can have all-you-can-eat soup or salad and bread".
- Exclusive "or": A or B but not both = ((A ∨ B)
 ·~(A·B))
- Most logic books treat "either A or B" as exclusive OR... but this textbook treats "either A or B" as (AVB)
- "You better do this, or you will be in trouble"

Semantics of "⊃" in logic and in NL

"If I went to Paris, then I went to Quebec."

PQ	$(P \supset Q)$	
0 0	1	$(0 \supset 0) = 1$
0 1	1	$(0 \supset 1) = 1$
1 0	0	$(1 \supset 0) = 0$
1 1	1	$(1 \supset 1) = 1$

"(P \supset Q)" says we *don't* have the first part true and the second false. "(P \supset Q)" is a *conditional*; P is the *antecedent* and Q the *consequent*.

Falsity implies anything.	$(0 \supset) = 1$
Anything implies truth.	$(\supset 1) = 1$
Truth doesn't imply falsity.	$(1\supset 0)=0$

Some interesting examples of "if"

If I opened the door, ... (counterfactual)

"If A then B" does NOT imply A... but is often taken otherwise.

Semantics of "≡" in logic and in NL

PQ	$(P \equiv Q)$		
0 0	1	$(0 \equiv 0) = 1$	"I went to Paris, if
0 1	0	$(0 \equiv 1) = 0$	and only if I went
1 0	0	$(1 \equiv 0) = 0$	to Quebec."
1 1	1	$(1 \equiv 1) = 1$	

"($P \equiv Q$)" claims that both parts have the *same* truth value. "($P \equiv Q$)" is a *biconditional*.

Summarv

Basic Truth Equivalences

AND	OR	IF-THEN	IFF	NOT
$(0 \cdot 0) = 0$ $(0 \cdot 1) = 0$ $(1 \cdot 0) = 0$ $(1 \cdot 1) = 1$	$(0 \lor 0) = 0$ $(0 \lor 1) = 1$ $(1 \lor 0) = 1$ $(1 \lor 1) = 1$	$(0 \supset 0) = 1$ $(0 \supset 1) = 1$ $(1 \supset 0) = 0$ $(1 \supset 1) = 1$	$(0 \equiv 0) = 1$ $(0 \equiv 1) = 0$ $(1 \equiv 0) = 0$ $(1 \equiv 1) = 1$	$\sim 0 = 1$ $\sim 1 = 0$
both parts are true	at least one part is true	we don't have first true & second false	both parts have same truth value	reverse the truth value

Falsity implies anything.
Anything implies truth.
Truth doesn't imply falsity.

3.3 Truth evaluations

 We can calculate the truth value of a wff if we know the truth value of (all of) its letters.

LogiCola D (TM & TH)

If A=1 and B=1,
then
$$(A \cdot \sim B) = 0$$

If A=0 and B=0,
then "
$$\sim$$
(\sim A \supset B)" =

If
$$A=0$$
, $B=0$, and $C=0$,
then " \sim ((A \vee B) \cdot \sim C)" =

If
$$A=0$$
, $B=1$, and $C=1$,
then $(^{\sim}A \supset (^{\sim}B \lor C))" =$

3.4 Unknown evaluations

- We can <u>sometimes</u> figure out a formula's truth value even if we don't know the truth value of some letters.
- Exercise—LogiCola D (UE, UM, & UH)
- All propositions: either true, false, or unknown

T=1 (T is true), F=0 (F is false), and U=?

$$(\sim T \cdot U)$$
 $(\sim 1 \cdot ?) = (0 \cdot ?) = 0$

3.5 Truth tables of wff

 A wff with n distinct letters has 2ⁿ possible truth-value combinations:

$$((P \vee Q) \supset R)$$

PQR	$((P \lor Q) \supset R)$
0 0 0	1
001	1
0 1 0	0
0 1 1	1
100	0
101	1
1 1 0	0
111	1

 $((P \lor Q) \supset R)$

PQR	$((P \lor Q) \supset R)$
000	1
001	1
010	0
0 1 1	1
100	0
101	1
110	0
111	1

3.
$$(P \vee (Q \cdot \sim R))$$

4.
$$((P \cdot \sim Q) \supset R)$$

5.
$$((P \equiv Q) \supset Q)$$

6.
$$((P \lor \sim Q) \supset R)$$

7.
$$(\sim Q \supset \sim P)$$

8. $(P \equiv (P \cdot P))$

Can be used to verify if two wff's are equivalent or not: iff the two truth tables are the same.

Also from truth table to wff

PQR	$((P \lor Q) \supset R)$
000	1
001	1
010	0
0 1 1	1
100	0
101	1
110	0
111	1

- The truth table for "(PV~P)" is true in all cases, which makes the wff a tautology
 - "Good or bad"; "Tomorrow's just another day"; "everyone is special"
- The truth table for "(P·~P)" is false in all cases: which makes the wff a self-contradiction
 - "This is the best time; this is the worst time"
- Otherwise (when the truth table has some 1 and some 0), the wff is a contingent
 - SAT problem: satisfiable or not: NP
 - Given a wff, how to tell if it is ...

3.5a Exercise—LogiCola D (FM & FH)

Logical Paradox...

Everything I say is a lie. Is this a lie?

 Barber paradox: An adult male barber shaves all and only men who do not shave themselves.
 Does he shave himself?

One thing is certain in this world: nothing is certain.

Logical Paradox...

"Logical proof" that God does not exist. ©

- God is supposed to be omnipotent (all-powerful).
- If He is omnipotent, then He can create a rock so big that He can't pick it up.
- If He cannot make a rock like this, then He is not omnipotent.
- If He can make a rock so big that He can't pick it up, then He isn't omnipotent either.
- Either way we demonstrated that God cannot do something.
- Therefore God is not omnipotent.
- Therefore God does not exist.

3.6 The truth-table test

- Our first "proof system": given premises, to prove a conclusion, using truth tables (not a derivation)
- Construct a truth table showing the truth value of the premises and conclusion for all possible cases.
- The argument is valid (the conclusion is proved) if and only if for all rows (cases) that the premises are all true, the conclusion is also true.
- Otherwise (exists a case where premises are true but conclusion is false), the argument is invalid
- Logically entail

• If you're a dog, then you're an animal. You're not an animal . You're not a dog

DA	$(D \supset A)$,	\sim A	~D
0 0	1	1	1
0 1	1	0	1
10	0	1	0
11	1	0	0

So, the conclusion is valid (can conclude that "you're not an animal"

prove by truth table.

• If you're a dog, then you're an animal. You're not a dog. The You're not an animal

DA	(D⊃A),	\sim D	∴ ~A	
0 0	1	1	1	
0 1	1	1	0	← Invalid
10	0	0	1	- .
11	1	0	trde ->	sold.
	premises Idea	-) wnews	ion take -	imalid

So, cannot conclude (or invalid to deduce) "you're not an animal Cannot conclude that "you are an animal"

Short-cut table: do it faster

Letter comb	P1	P2	P3		С
	1	·	o evaluate ot and continue		?
	If C is 1, no need to evaluate any Pi (ignore this row and continue the table)			1	
	If all Pi are 1 and C is 0, stop the table. The argument is invalid.			0	
			not happen v argument is	•	

3.6a Exercise—LogiCola D (AE, AM, & AH)

3.6a Exercise (selected)

- 3. If television is always right, then Anacin is better than Bayer. If television is always right, then Anacin isn't better than Bayer. Television isn't always right. [Use T and B.]
- 4. If it rains and your tent leaks, then your down sleeping bag will get wet. Your tent won't leak. Your down sleeping bag won't get wet. [Use R, L, and W.]
- 7. If ethics depends on God's will, then something is good because God desires it. Something isn't good because God desires it. (Instead, God desires something because it's already good.) . Ethics doesn't depend on God's will. [Use D and B; this argument is from Plato's Euthyphro.]
- 9. I'll go to Paris during spring break if and only if I'll win the lottery. I won't win the lottery. I won't go to Paris during spring break. [Use P and W.]

- If an argument "passes the truth-table test", it means that the premises "entails" the conclusion (in semantics). ⊨
- The truth-table test can get tedious for long arguments.
 Arguments with 6 letters may need 64 lines, and ones with 10 letters need 1024 lines. Can have infinite # of letters
- Can we do it based only on "syntax"? Yes, see 3.10-,
 Chapter 4, ...

3.7 The truth-assignment test

- Take a propositional argument. Set each premise to 1 and the conclusion to 0. The argument is VALID if and only if no consistent way of assigning 1 and 0 to the letters will make this work—so we can't make the premises all true and conclusion false.
- You REFUTE the argument if you can find such an assignment
 - Finding a "counter example"

$$(L \lor R) = 1 \qquad (L^{0} \lor R^{0}) = 1 \qquad (L^{0} \lor R^{0}) \neq 1$$

$$\sim L = 1 \qquad \Rightarrow \qquad \sim L^{0} = 1 \qquad \Rightarrow \qquad \sim L^{0} = 1$$

$$\therefore R = 0 \qquad \therefore R^{0} = 0 \qquad \therefore R^{0} = 0$$

Exercise—LogiCola E (S); E (E)

Translate and then prove:

If you're rich, then you aren't both dishonest and not fanatical.

You aren't dishonest.

You aren't fanatical.

∴ You aren't rich.

If you're rough or a foreigner, then you're greedy and confused. You're rough.

∴ You're greedy.

Harder Translations

- Read Chapter 3.8 by yourselves
- Read Chapter 3.9 by yourselves
- 3.8a Exercise—LogiCola C (HM & HT)
- 3.9a Exercise—LogiCola E (F I)

3.10/3.11 S-rules, I-rules

- Formal proof system: "step by step", by syntax only
- Inference rules, which state that certain formulas can be derived with validity from certain other formulas, mechanically – algorithm
- "Deduce", "formally deducible": |-
- Also check mechanically if a proof is valid
- They reflect sound reasoning
- What we hope to have (see later)...
 - Everything that is deduced is indeed true. Sound: A ├ B then A ├ B
 - Everything that is true can be deduced. Complete: A ⊨ B then A ⊢ B
- Here is one proof system: using (only) S/I rules
 - You need to do it "by hand" like a machine

Note: P, Q can be any wff. E.g., (A · (B · C))

S-Rules

This and that.

This.

That.

$$\frac{(P \cdot Q)}{P \cdot Q}$$

AND statement, so both parts are true.

Not either this or that.

- Not this.
- Not that.

$$\frac{\sim (P \vee Q)}{\sim P, \sim Q}$$

NOT-EITHER is true, so both are false.

False if-then.

- First part true.
- Second part false.

$$\frac{\sim (P \supset Q)}{P \sim Q}$$

FALSE IF-THEN, so first part true, second part false.

3.10a Exercise—LogiCola F (SE & SH)

All S-rules

S-rules

$$(P \cdot Q) \rightarrow P, Q$$

$$\sim (P \vee Q) \rightarrow \sim P, \sim Q$$

$$\sim (P \supset Q) \rightarrow P, \sim Q$$

$$\sim \sim P \rightarrow P$$

$$(P \equiv Q) \rightarrow (P \supset Q), (Q \supset P)$$

$$\sim (P \equiv Q) \rightarrow (P \vee Q), \sim (P \cdot Q)$$

Also: $P \rightarrow \sim \sim P$

I-Rules

Not both are true. This one is true. The other isn't.
$$\frac{P}{\sim Q} \quad \frac{Q}{\sim P} \quad \frac{Affirm \text{ one part.}}{Affirm \text{ one part.}}$$

$$\therefore \text{ The other isn't.} \quad \frac{P}{\sim Q} \quad \frac{Q}{\sim P} \quad \frac{Affirm \text{ one part.}}{Affirm \text{ one part.}}$$

$$At \text{ least one is true.} \quad \frac{(P \vee Q)}{Q} \quad \frac{(P \vee Q)}{Q} \quad \frac{Affirm \text{ OR.}}{Deny \text{ one part.}}$$

$$\therefore \text{ The other is.} \quad \frac{P}{Q} \quad \frac{Q}{P} \quad \frac{Affirm \text{ other part.}}{Affirm \text{ other part.}}$$

$$\text{IF-THEN.} \quad \frac{(P \supset Q)}{Q} \quad \text{Deny second.} \quad \frac{P \supset Q}{\sim P}$$

$$\therefore \text{ Affirm second.} \quad \frac{P}{Q} \quad \frac{Q}{\sim P} \quad \frac{Q}{\sim$$

3.11a Exercise—LogiCola F (IE & IH)

P and Q can be any wff

Exercise

$$\sim (\sim A \vee (B \cdot C))$$

$$\frac{\sim (\sim A \vee (B \cdot C))}{A, \sim (B \cdot C)}$$

1.
$$\sim ((A \cdot B) \supset \sim C)$$

7.
$$\sim ((A \supset B) \lor C)$$

5.
$$((A \cdot B) \vee (C \supset D))$$

8.
$$((A \supset B) \supset C)$$

 $(A \supset B)$

3.
$$\sim ((G \vee H) \cdot (I \vee J))$$

Rules you can use

S-rules

$$(P \cdot Q) \rightarrow P, Q$$

$$\sim (P \vee Q) \rightarrow \sim P, \sim Q$$

$$\sim (P \supset Q) \rightarrow P, \sim Q$$

$$\sim \sim P \rightarrow P$$

$$(P \equiv Q) \rightarrow (P \supset Q), (Q \supset P)$$

$$\sim (P \equiv Q) \rightarrow (P \vee Q), \sim (P \cdot Q)$$

I-rules

$$\sim (P \cdot Q), P \rightarrow \sim Q$$

$$\sim (P \cdot Q), Q \rightarrow \sim P$$

$$(P \vee Q), \sim P \rightarrow Q$$

$$(P \vee Q), \sim Q \rightarrow P$$

$$(P \supset Q), P \rightarrow Q$$

$$(P \supset Q), \sim Q \rightarrow \sim P$$

Sound but Incomplete...

- These rules are certainly sound
- But incomplete...
 - Cannot prove this

Next Chapter 4: sound and complete proof system

3.14 Logic and computers

Name	Graphic Symbol	Algebraic Function	Truth Table
AND	A	F = A + B or F = AB	A B F 0 0 0 0 1 0 1 0 0 1 1 1
OR	A	F = A + B	A B F 0 0 0 0 1 1 1 0 1 1 1 1
NOT	A — F	F = Ā or F = A'	A F 0 1 1 0
NAND	А	F = (AB)	A B F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	А	$F = (\overline{A + B})$	A B F 0 0 1 0 1 0 1 0 0 1 1 0