

date: 2014 / 01 / 09 (Thur)

time: 15:30 ~ 17:20

ps. 請在六七兩題間,擇一作答!若兩題均作答則請標記有效題,否則不予計分!

perfectly

A/V² and

C bias condition,

$$\frac{1}{2} \times 25 \times (V_{q}-2)^{2} = \frac{1}{2} \times 25 \times (5-V_{q}-2)^{2}$$

$$\frac{1}{2} \times 25 \times (V_{q}-2)^{2} = \frac{1}{2} \times 25 \times (5-V_{q}-2)^{2}$$

$$\frac{10M\Omega}{Q^{2}}$$

$$\frac{10M\Omega}{Q^{2}}$$

Fig.6.

- $h_p C_{OX} \frac{W_2}{L_2} = 0.01 \times \mu_n C_{OX} \frac{W_1}{L_1}$ [6%]
- As shown in Fig.6. The two MOSFETs are perfectly matched. $\mu_p C_{OX} \frac{w_2}{L_2} = \mu_n C_{OX} \frac{w_1}{L_1} = 25 \mu \text{A/V}^2$ and $V_{thn} = \left| V_{thp} \right| = 2 \text{V}$. Please obtain the DC bias condition, i.e. I_D and V_D . [7%]
- 6. A cascade amplifier design including one MOS and one BJT transistor is shown in Fig.7. The input signal is coupled from the gate of Q_1 and output from the emitter of Q_2 . Assume Q_1 is operating at saturation mode and Q_2 is at active mode, and the Early effect of both transistors cannot be neglected. Assume all capacitors are infinite large at the frequency interested. Use the

following parameters to answer the questions.

Q₁:
$$g_{m1} = 0.5 \text{ mA/V}$$
, $r_{o1} = 25 \text{ k}\Omega$; Q₂: $\beta = 100$, $g_{m2} = 50 \text{ mA/V}$, $r_{o2} = 25 \text{ k}\Omega$.

- (a) Draw and label correctly the small-signal model. [3%]
- (b) Please determine R_{out} . [8%]
- (c) Please determine $A_v = v_o/v_i$. [14%]

7. A cascade amplifier design including two MOS transistors is shown in Fig.8. The input signal is coupled from the source of Q_1 and output from the drain of Q_2 . Assume Q_1 and Q_2 are both operating at saturation mode,

2

and the Early effect of both transistors cannot be neglected. Assume all capacitors are infinite large at the frequency interested. Use the following parameters to answer the questions.

Q₁:
$$g_{m1} = 0.5 \text{ mA/V}$$
, $r_{o1} = 25 \text{ k}\Omega$; Q₂: $g_{m2} = 0.25 \text{ mA/V}$, $r_{o2} = 20 \text{ k}\Omega$.

- (a) Draw and label correctly the small-signal model. [3%]
- (b) Please determine R_{out} . [8%]
- (c) Please determine $A_v = v_o/v_i$. [14%]

