Exercises X

Exercise 1 (Galois Connection). Remember that a Galois connection is defined by two monotonic functions $\alpha: C \to A$ and $\gamma: A \to C$ between partial orders \leq on C and \sqsubseteq on A, such that

$$\forall a, c. \quad \alpha(c) \sqsubseteq a \iff c \le \gamma(a) \quad (*)$$

a) Show that the condition (*) is equivalent to the conjunction of these two conditions:

$$\forall c.$$
 $c \leq \gamma(\alpha(c))$
 $\forall a. \ \alpha(\gamma(a)) \sqsubseteq a$

- b) Let α and γ satisfy the condition of a Galois connection. Show that the following three conditions are equivalent:
 - 1. $\alpha(\gamma(a)) = a$ for all a
 - 2. α is a surjective function
 - 3. γ is an injective function
- c) State the condition for $c = \gamma(\alpha(c))$ to hold for all c. When C is the set of sets of concrete states and A is a domain of static analysis, is it more reasonable to expect that $c = \gamma(\alpha(c))$ or $\alpha(\gamma(a)) = a$ to be satisfied, and why?

Exercise 2 (lub and glb). Let (A, \sqsubseteq) be a partial order such that every set $S \subseteq A$ has the greatest lower bound.

Prove that then every set $S \subseteq A$ has the least upper bound, or show a counterexample.

What about the lattice with three elements $\{0, 1_a, 1_b\}$ the relations $0 \le 1_a$ and $0 \le 1_b$? Solution: Suppose we have some arbitrary set $S \subseteq A$, then we know that $\Box S$ exists.

Let U be the set of all its upper bounds, i.e. $U = \{x | \forall y \in S.y \sqsubseteq x\}$. Since every subset of A has a greatest lower bound, we know that $a = \sqcap U$ exists. Now we want to show that a is an upper bound on S and that it is the least one

We want to show that $\forall y \in S.y \sqsubseteq a$.

Let L be the set of lower bounds on U, i.e. $L = \{z | \forall x \in U.z \sqsubseteq x\}$.

Clearly, $S \subseteq L$, since U are the upper bounds on S. Then a is the greatest element in L, and thus $\forall y \in S.y \sqsubseteq a$ and so a is an upper bound on S.

Now take any upper bound $x \in U$. Since $a = \sqcap U$, we have $a \sqsubseteq x$ and so a is the least upper bound. \Diamond

Exercise 3 (Lattices). Consider algebraic structures with signature (\vee, \wedge) , each of arity 2, and satisfying the following axioms:

$$\begin{array}{c|c} x \vee y = y \vee x & x \wedge y = y \wedge x \\ (x \vee y) \vee z = x \vee (y \vee z) & (x \wedge y) \wedge z = x \wedge (y \wedge z) \\ x \vee x = x & x \wedge (x \wedge y) = x & x \wedge (x \vee y) = x \end{array}$$

- a) Show that for any x and y, $x \wedge y = x$ if and only if $x \vee y = y$.
- b) Define $x \leq y$ by $x \wedge y = x$. Show that \leq is a partial order relation.
- c) Show that \vee and \wedge are respectively the binary greatest lower bound and least upper bound for \leq .

Exercise 4 (post). let S be any set, $r \subseteq S \times S$ a binary relation and $I \subseteq S$. Define $post : 2^S \to 2^S$ by $post(X) = I \cup r[X]$. Prove that post is monotonic. Does post admit a least fixed point?

Exercise 5. Partitioning

- a) Show that for any set S, $(2^S, \subseteq)$ is a lattice.
- b) Consider a set $S = P \times V$. For each set $g \in 2^{P \times V}$, define $\bar{g} : P \to 2^V$ by $\bar{g}(p) = \{v \mid (p, v) \in g\}$. Show that \bar{g} is injective.
- c) Consider the set of all functions $P \to 2^V$. Define a lattice on this set that is isomorphic to $(2^{P \times V}, \subseteq)$.

Remember: A lattice isomorphism between two lattices L_1 and L_2 is a bijective function $f: L_1 \to L_2$ such that $f(x \land y) = f(x) \land f(y)$, $f(x \lor y) = f(x) \lor f(y)$ and $f(x) \le f(y)$ holds if and only if $x \le y$.