

Proba de Avaliación do Bacharelato para o Acceso á Universidade

Código: 23

CONVOCATORIA EXTRAORDINARIA 2020

FÍSICA

O exame consta de 8 preguntas de 2 puntos, das que poderá responder un <u>MÁXIMO DE 5</u>, combinadas como queira. Se responde máis preguntas das permitidas, <u>só se corrixirán as 5 primeiras respondidas.</u>

PREGUNTA 1. Responda indicando e xustificando a opción correcta:

- <u>1.1.</u> Un satélite xira arredor dun planeta nunha traxectoria elíptica. Cal das seguintes magnitudes permanece constante?: A) O momento angular. B) O momento lineal. C) A enerxía potencial.
- <u>1.2.</u> Unha partícula móvese nun círculo de raio r perpendicularmente a un campo magnético, $\overline{\textbf{\textit{B}}}$. Se duplicamos o valor de $\overline{\textbf{\textit{B}}}$, o valor de r. A) Duplícase. B) Redúcese á metade. C) Non varía.

PREGUNTA 2. Responda indicando e xustificando a opción correcta:

- $\underline{2.1.}$ Para obter unha imaxe virtual e dereita cunha lente delgada converxente, de distancia focal f, o obxecto debe estar a unha distancia da lente: A) Menor ca f. B) Maior ca f e menor que 2f. C) Maior ca 2f.
- <u>2.2.</u> Indúcese corrente nunha espira condutora se: A) É atravesada por un fluxo magnético constante. B) Xira no seo dun campo magnético uniforme. C) En ambos os casos.

PREGUNTA 3. Responda indicando e xustificando a opción correcta:

3.1. O chifre dunha locomotora emite un son de 435 Hz de frecuencia. Se a locomotora se move achegándose a un observador en repouso, a frecuencia percibida polo observador é: A) 435 Hz. B) Maior ca 435 Hz. C) Menor ca 435 Hz. 3.2. Unha mostra dunha substancia radioactiva contiña hai 10 anos o dobre de núcleos que no instante actual; polo tanto, o número de núcleos que había hai 30 anos respecto ao momento actual era: A) Seis veces maior. B) Tres veces maior. C) Oito veces maior.

PREGUNTA 4. Desenvolva esta práctica:

Nunha experiencia para calcular o traballo de extracción dun metal observamos que os fotoelectróns expulsados da súa superficie por unha luz de 4×10^{-7} m de lonxitude de onda no baleiro son freados por unha diferenza de potencial de 0,80 V. E se a lonxitude de onda é de 3×10^{-7} m o potencial de freado é 1,84 V. a) Represente graficamente a frecuencia fronte ao potencial de freado. b) Determine o traballo de extracción a partir da gráfica. DATOS: $c = 3\times10^8$ m·s⁻¹; $h = 6,63\times10^{-34}$ J·s; $|q_e| = 1,6\times10^{-19}$ C.

PREGUNTA 5. Resolva este problema:

A aceleración da gravidade na superficie dun planeta esférico de 4100 km de raio é 7,2 m·s⁻². Calcule: a) A masa do planeta. b) A enerxía mínima necesaria que hai que comunicar a un minisatélite de 3 kg de masa para lanzalo dende a superficie do planeta e situalo a 1000 km de altura sobre a mesma, nunha órbita circular arredor do planeta. DATO: $G = 6,67 \times 10^{-11} \text{ N·m}^2 \cdot \text{kg}^{-2}$.

PREGUNTA 6. Resolva este problema:

Dúas cargas puntuais de $-6~\mu\text{C}$ cada unha están fixas nos puntos de coordenadas (-5, 0) e (5, 0). As coordenadas están expresadas en metros. Calcule: a) O vector campo electrostático no punto (15, 0). b) A velocidade coa que chega ao punto (10, 0) unha partícula de masa 20 g e carga 8 μC que se abandona libremente no punto (15, 0). DATO: $K = 9 \times 10^9~\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2}$.

PREGUNTA 7. Resolva este problema:

Unha onda harmónica transversal de lonxitude de onda $\lambda = 60$ cm propágase no sentido positivo do eixe x. Na gráfica amósase a elongación (y) do punto de coordenada x = 0 en función do tempo.

Determine: a) A expresión matemática que describe esta onda, indicando o desfase inicial, a frecuencia e a amplitude da onda. b) A velocidade de propagación da onda.

PREGUNTA 8. Resolva este problema:

Un mergullador acende unha lanterna dentro da auga e enfócaa cara á superficie formando un ángulo de 30° coa normal. a) Con que ángulo emerxerá a luz da auga? b) Cal é o ángulo de incidencia a partir do cal a luz non sairá da auga? DATOS: n(auga) = 4/3; n(aire) = 1.

Solucións

- 1.1. Un satélite xira arredor dun planeta nunha traxectoria elíptica. Cal das seguintes magnitudes perma- 셾 nece constante?:

0

- A) O momento angular.
- B) O momento lineal.
- C) A enerxía potencial.

(A.B.A.U. extr. 20)

Solución: A

O campo gravitacional é un campo de forzas centrais, nas que a forza gravitacional que exerce o planeta sobre un satélite ten a mesma dirección (e sentido contrario) que o vector de posición do satélite colocando a orixe de coordenadas no planeta.

O momento angular, \overline{L}_0 , dunha partícula de masa m que se move cunha velocidade \overline{v} respecto dun punto O que se toma como orixe é:

$$\overline{L}_{O} = \overline{r} \times m \cdot \overline{v}$$

Para estudar a súa variación, derívase con respecto ao tempo:

$$\frac{\mathrm{d}\vec{L}_{\mathrm{O}}}{\mathrm{d}t} = \frac{\mathrm{d}(\vec{r} \times m \cdot \vec{v})}{\mathrm{d}t} = \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \times m \cdot \vec{v} + \vec{r} \times \frac{\mathrm{d}(m \cdot \vec{v})}{\mathrm{d}t} = \vec{v} \times m \cdot \vec{v} + \vec{r} \times \vec{F}$$

O primeiro sumando dá o vector $\overline{\mathbf{0}}$ (cero) porque a velocidade, $\overline{\mathbf{v}}$, e o momento lineal, $m \cdot \overline{\nu}$, son paralelos.

$$|\overline{\boldsymbol{v}} \times m \cdot \overline{\boldsymbol{v}}| = |\overline{\boldsymbol{v}}| \cdot m \cdot |\overline{\boldsymbol{v}}| \cdot \text{sen } 0 = 0$$

O segundo sumando tamén dá o vector $\overline{\mathbf{0}}$ porque, ao ser o campo de forzas un campo central, o vector de posición, \bar{r} , con orixe no punto orixe do campo e o vector forza (dirixido cara a esa orixe) son vectores paralelos de sentido contrario.

$$|\overline{\boldsymbol{r}} \times \overline{\boldsymbol{F}}| = |\overline{\boldsymbol{r}}| \cdot |\overline{\boldsymbol{F}}| \cdot \text{sen } 180^{\circ} = 0$$

A derivada é cero.

$$\frac{\mathrm{d}\vec{L}_{\mathrm{O}}}{\mathrm{d}t} = \vec{v} \times m \cdot \vec{v} + \vec{r} \times \vec{F} = \vec{0} + \vec{0} = \vec{0}$$

Cando unha partícula se move nun campo de forzas centrais, o momento angular, \bar{L}_0 , respecto ao punto orixe da forza é un vector constante, xa que a súa derivada é cero.

As outras opcións:

B. Falsa. O momento lineal, \overline{p} , dun obxecto de masa m que se move a unha velocidade \overline{v} , vale:

$$\overline{p} = m \cdot \overline{v}$$

Como o momento angular é constante, ao variar a distancia, \bar{r} , do satélite ao planeta, tamén variará a súa velocidade \overline{v} . Ademais, a dirección cambia a medida que o satélite se despraza arredor do planeta.

A enerxía potencial gravitacional, tomando como orixe de enerxía o infinito, vén dada pola expresión:

$$E_{\rm p} = -G \frac{M \cdot m}{r}$$

Sendo M a masa que orixina o campo gravitacional, (neste caso a do planeta), m é a masa do obxecto que xira arredor del (o satélite), r a distancia entre ambas os corpos e G a constante da gravitación universal. Nunha órbita elíptica, co planeta situado nun dos focos, a distancia do satélite ao planeta non é constante. Polo tanto, a enerxía potencial tampouco é constante.

1.2. Unha partícula móvese nun círculo de raio r perpendicularmente a un campo magnético, \overline{B} . Se duplicamos o valor de \overline{B} , o valor de r:

- B) Redúcese á metade.
- C) Non varía.

(A.B.A.U. extr. 20)

Solución: B

A forza magnética, \overline{F}_B , sobre unha carga, q, que se despraza no interior dun campo magnético, \overline{B} , cunha velocidade, \overline{v} , vén dada pola lei de Lorentz:

$$\overline{F}_B = q (\overline{v} \times \overline{B})$$

Esta forza é perpendicular en todos os puntos á dirección de avance da partícula, polo que describe unha traxectoria circular con velocidade de valor constante xa que a aceleración só ten compoñente normal a_N .

$$a_{\rm N} = \frac{v^2}{r}$$

Se só actúa a forza magnética:

$$\Sigma \overline{F} = \overline{F}_{R}$$

Aplicando a 2.ª lei de Newton:

$$\Sigma \overline{F} = m \cdot \overline{a}$$

$$F_B = m \cdot a = m \cdot a_N = m \frac{v^2}{R}$$

Usando a expresión da lei de Lorentz (en módulos) para a forza magnética:

$$|q| \cdot B \cdot v \cdot \operatorname{sen} \varphi = m \frac{v^2}{R}$$

Como as partículas entran perpendicularmente ao campo, sen φ = 1. Despexando o raio, R:

$$R = \frac{m \cdot v}{q \cdot B}$$

Como o valor da velocidade é constante, o mesmo que a carga e a masa da partícula, o raio da traxectoria é inversamente proporcional á intensidade do campo magnético. Se o campo magnético faise o dobre, o raio da traxectoria redúcese á metade.

- 2.1. Para obter unha imaxe virtual e dereita cunha lente delgada converxente, de distancia focal f, o obxecto debe estar a unha distancia da lente:
 - A) Menor que *f*.
 - B) Maior que f e menor que 2f.
 - C) Maior que 2f.

(A.B.A.U. extr. 20)

Debúxase un esquema de lente converxente (unha liña vertical rematada por dúas puntas de frechas) e sitúase o foco F´ á dereita da lente.

Debúxase, á súa esquerda, unha frecha vertical cara arriba, que representa ao obxecto O.

Desde o punto superior do obxecto debúxanse dous raios:

- Un, cara ao centro da lente. Atravésaa sen desviarse.
- Outro, horizontal cara á lente, que a atravesa e se refracta. Debúxase de forma que o raio refractado pase polo foco da dereita F'.

O diagrama mostra a formación da imaxe cando o obxecto atópase dentro da distancia focal. A ecuación das lentes é:

$$\frac{1}{s'} - \frac{1}{s} = \frac{1}{f'}$$

Despexando a distancia da imaxe á lente:

$$\frac{1}{s'} = \frac{1}{s} + \frac{1}{f'} = \frac{f' + s}{s \cdot f'} \Rightarrow s' = \frac{f' \cdot s}{s + f'}$$

O criterio de signo di que hay que poñer o obxecto á esquerda da lente, e a posición é negativa: s < 0.

Nas lentes delgadas converxentes a distancia focal é positiva: f' > 0,

Para que a imaxe sexa virtual ten que formarse á esquerda da lente: $s^{\prime} < 0$.

Como $f' \cdot s < 0$, para que s' < 0, s + f' ten que ser positiva: s + f' > 0.

Como s < 0 e f' > 0, para que s + f' sexa positiva |s| < f'. O obxecto terá que atoparse dentro da distancia focal.

- 2.2. Indúcese corrente nunha espira condutora se:
 - A) É atravesada por un fluxo magnético constante.
 - B) Xira no seo dun campo magnético uniforme.
 - C) En ámbolos dous casos.

(A.B.A.U. extr. 20)

Solución: B

A lei de Faraday-Lenz di que se inducirá unha corrente que se opoña á variación de fluxo a través da espira. A f.e.m. desa corrente será igual á variación de fluxo magnético respecto ao tempo.

$$\varepsilon = \frac{-\mathrm{d}\,\Phi}{\mathrm{d}\,t}$$

 \overline{X} O fluxo magnético é o produto escalar do vector \overline{B} , campo magnético polo vector \overline{S} , perpendicular á superficie delimitada pola espira.

$$\Phi = \overline{\boldsymbol{B}} \cdot \overline{\boldsymbol{S}} = B \cdot S \cdot \cos \varphi$$

Cando a espira xira arredor dun eixe paralelo ao campo magnético, o fluxo magnético non varía,

posto que é nulo todo o tempo: as liñas do campo magnético non atravesan a superficie da espira nin cando a espira está en repouso nin cando xira arredor do eixe, pois son sempre paralelas ao plano da espira. O ángulo φ vale sempre $\pi/2$ rad e o cos $\pi/2 = 0$.

Pero cando a espira xira arredor dun eixe perpendicular ao campo, as liñas de campo atravesan a superficie plana delimitada pola espira, variando o fluxo magnético desde 0 ata un máximo o volvendo a facerse nulo cando leve xirada media volta.

Se non xira, o fluxo non varía e non se induce corrente algunha.

- 3.1. O chifre dunha locomotora emite un son de 435 Hz de frecuencia. Se a locomotora se move achegándose a un observador en repouso, a frecuencia percibida polo observador é:
 - A) 435 Hz.
 - B) Maior ca 435 Hz.
 - C) Menor ca 435 Hz.

(A.B.A.U. extr. 20)

Solución: B

A ecuación do efecto Doppler é:

$$f(\text{obs}) = f(\text{em}) \frac{v(\text{son}) \pm v(\text{obs})}{v(\text{son}) \pm v(\text{em})}$$

Na que

f(obs) é a frecuencia que percibe o observador.

f(em) é a frecuencia emitida pola fonte.

v(son) é a velocidade do son.

ν(obs) é a velocidade do observador.

v(em) é a velocidade do emisor da frecuencia.

Para un observador en repouso e unha fonte dirixíndose cara a el a ecuación anterior queda:

$$f(obs) = f(em) \frac{v(son)}{v(son) - v(em)}$$

A frecuencia percibida polo observador é maior que a emitida.

Isto pódese comprobar escoitando o chifre dun tren que pasa cerca de nos. Cando pasa xunto a nos o son tórnase máis grave. É máis agudo cando se está a achegar e tórnase máis grave cando se afasta.

- 3.2. Unha mostra dunha substancia radioactiva contiña hai 10 anos o dobre de núcleos que no instante actual; polo tanto, o número de núcleos que había hai 30 anos respecto ao momento actual era:
 - A) Seis veces maior.
 - B) Tres veces maior.
 - C) Oito veces maior.

(A.B.A.U. extr. 20)

Solución: C

O período de semidesintegración dunha sustancia radioactiva é o tempo que transcorre ata que só queda a metade da mostra orixinal. É un valor constante. Do enunciado da cuestión dedúcese que o período de semidesintegración da sustancia radioactiva é de 10 anos xa que daquela había o dobre de núcleos que agora. De hai trinta anos ata agora transcorreron 3 períodos, polo que a cantidade que había entón era $2^3 = 8$ veces maior que agora.

- 4. Nunha experiencia para calcular o traballo de extracción dun metal observamos que os fotoelectróns expulsados da súa superficie por unha luz de 4×10^{-7} m de lonxitude de onda no baleiro son freados por unha diferenza de potencial de 0,80 V. E se a lonxitude de onda é de 3×10^{-7} m o potencial de freado é 1,84 V.
 - a) Represente graficamente a frecuencia fronte ao potencial de freado.
 - b) Determine o traballo de extracción a partir da gráfica.

Datos: $c = 3 \times 10^8 \text{ m} \cdot \text{s}^{-1}$; $h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$; $|q_e| = 1.6 \times 10^{-19} \text{ C}$.

(A.B.A.U. extr. 20)

Rta.: $W_e = 2.3 \text{ eV}.$

Solución:

Cando a luz interactúa co metal da célula fotoeléctrica faino coma se fose un chorro de partículas chamadas fotóns (paquetes de enerxía).

Cada fotón choca cun electrón e transmítelle toda a súa enerxía.

Para que se produza efecto fotoeléctrico, os electróns emitidos deben ter enerxía suficiente para chegar ao anticátodo, o que ocorre cando a enerxía do fotón é maior que o traballo de extracción, que é unha característica do metal.

A ecuación de Einstein do efecto fotoeléctrico pode escribirse:

$$E_{\rm f} = W_{\rm e} + E_{\rm c}$$

Na ecuación, $E_{\rm f}$ representa a enerxía do fotón incidente, $W_{\rm e}$ o traballo de extracción do metal e $E_{\rm c}$ a enerxía cinética máxima dos electróns (fotoelectróns) emitidos.

A enerxía que leva un fotón de frecuencia f é:

$$E_{\rm f} = h \cdot f$$

h é a constante de Planck e ten un valor moi pequeno: $h = 6.63 \cdot 10^{-34}$ J·s.

O potencial de freado é a diferencia de potencial que detén o paso de electróns, sendo unha medida da súa enerxía cinética máxima:

$$E_{\rm c} = q \cdot V$$

Ordenamos a ecuación de Einstein para que se axuste á gráfica da frecuencia fronte ao potencial de freado.

$$h \cdot f = W_e + q \cdot V$$

$$f = (q/h) \cdot V + W_e/h$$

Esta é a ecuación dunha recta

$$y = m \cdot x + b$$

Nela, f é a variable dependente (γ), V é a variable independente (x), (q/h) sería a pendente m e (W_e/h) a ordenada b na orixe. O traballo de extracción pode calcularse da ordenada na orixe:

Cifras significativas: 3 $R = 4100 \text{ km} = 4,10 \cdot 10^6 \text{ m}$

 $h = 1000 \text{ km} = 1,00 \cdot 10^6 \text{ m}$ $G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$

 $g_0 = 7,20 \text{ m/s}^2$

 $\vec{F}_{G} = -G \frac{M \cdot m}{r^{2}} \vec{u}_{r}$

 $\Sigma \overline{F} = m \cdot \overline{a}$

 $v = \frac{2\pi \cdot r}{T}$

m = 3,00 kg

M

 ΔE

$$b = 0.55 \cdot 10^{15} = W_e / h$$

$$W_{\rm e} = 0.55 \cdot 10^{15} \cdot h = 0.55 \cdot 10^{15} \, [\rm s^{-1}] \cdot 6.63 \cdot 10^{-34} \, [\rm J \cdot s] = 3.7 \cdot 10^{-19} \, \rm J$$

$$W_{\rm e} = 3.7 \cdot 10^{-19} \, [\rm J] / 1.6 \cdot 10^{-19} \, [\rm J/eV] = 2.3 \, \rm eV$$

- A aceleración da gravidade na superficie dun planeta esférico de 4100 km de raio é 7,2 m·s⁻². Calcula:
 - a) A masa do planeta.
 - b) A enerxía mínima necesaria que hai que comunicar a un minisatélite de 3 kg de masa para lanzalo dende a superficie do planeta e situalo a 1000 km de altura sobre a mesma, nunha órbita circular arredor do planeta.

DATO:
$$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$$
. (A.B.A.U. extr. 20)

Rta.: a) $M = 1.8 \cdot 10^{24} \text{ kg}$; b) $\Delta E = 5.30 \cdot 10^7 \text{ J}$.

Datos

Raio do planeta Aceleración da gravidade na superficie do planeta Masa do satélite Altura da órbita Constante da gravitación universal

Incógnitas

Masa do planeta Enerxía que hai que comunicarlle desde a superficie do planeta

Ecuacións

Lei de Newton da gravitación universal (forza que exerce un planeta esférico sobre un corpo puntual) 2.ª lei de Newton da Dinámica

Velocidade lineal nun movemento circular uniforme de raio r e período T

Aceleración normal dun obxecto que se move cunha velocidade lineal, v, nunha traxectoria circular de radio r

Peso dun obxecto de masa m na superficie dun planeta cuxa aceleración da $P = m \cdot g_0$ gravidade é go

Enerxía cinética dunha masa, m, que se move cunha velocidade, v

 $E_{\rm c} = \frac{1}{2} m \cdot v^2$ $E_{\rm p} = -G \frac{M \cdot m}{r}$ Enerxía potencial gravitacional (referida ao infinito)

Enerxía mecánica $E = E_{\rm c} + E_{\rm p}$

Solución:

a) Na superficie do planeta, o peso dun corpo, $m \cdot g_0$, é igual á forza gravitacional:

$$\mathbf{m} g_0 = G \frac{M \cdot \mathbf{m}}{R^2}$$

Despéxase a masa do planeta:

$$M = \frac{g_0 \cdot R^2}{G} = \frac{7,20 \text{ [m/s}^2] \cdot (4,10 \cdot 10^6 \text{ [m]})^2}{6,67 \cdot 10^{-11} \text{ [N·m}^2 \cdot \text{kg}^{-2}]} = 1,81 \cdot 10^{24} \text{ kg}$$

b) A enerxía mecánica é a suma das enerxías cinética e potencial. A expresión da enerxía potencial é:

$$E_{\rm p} = -G \frac{M \cdot m}{r}$$

Suponse que o satélite está en repouso na superficie do planeta, polo que só ten enerxía potencial. Calcúlase esta enerxía potencial:

$$E_{p}(\text{chan}) = -G \frac{M \cdot m}{R} = -6.67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^{2} \cdot \text{kg}^{-2} \right] \cdot \frac{1.81 \cdot 10^{24} \left[\text{kg} \right] \cdot 3.00 \left[\text{kg} \right]}{4.10 \cdot 10^{6} \left[\text{m} \right]} = -8.86 \cdot 10^{7} \text{ J}$$

Calcúlase o raio da órbita circular sumando a altura de 1000 km ao raio do planeta:

$$r = R + h = 4,10 \cdot 10^6 \text{ [m]} + 1,00 \cdot 10^6 \text{ [m]} = 5,10 \cdot 10^6 \text{ m}$$

Calcúlase a enerxía potencial na órbita:

$$E_{p}(\text{\'orbita}) = -G \frac{M \cdot m}{r} = -6.67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^{2} \cdot \text{kg}^{-2} \right] \cdot \frac{1.81 \cdot 10^{24} \left[\text{kg} \right] \cdot 3.00 \left[\text{kg} \right]}{5.10 \cdot 10^{6} \left[\text{m} \right]} = -7.12 \cdot 10^{7} \text{ J}$$

Para calcular a enerxía cinética na órbita necesítase calcular a velocidade orbital.

A forza gravitacional, \overline{F}_G , que exerce un astro de masa M sobre un satélite de masa m que xira arredor del nunha órbita de radio r, é unha forza central, está dirixida cara ao astro, e réxese pola lei de Newton da gravitación universal:

$$\vec{F}_{G} = -G \frac{M \cdot m}{r^{2}} \vec{u}_{r}$$

Nesta expresión, G é a constante da gravitación universal, e \overline{u}_r , o vector unitario na dirección da liña que une o astro co satélite. En módulos:

$$F_{\rm G} = G \frac{M \cdot m}{r^2}$$

En moitos casos a traxectoria do satélite é practicamente circular arredor do centro do astro. Como a forza gravitacional é unha forza central, a aceleración só ten compoñente normal, $a_{\rm N}$. Ao non ter aceleración tanxencial, o módulo, v, da velocidade lineal é constante e o movemento é circular uniforme.

A aceleración normal, nun movemento circular uniforme de raio r, obtense da expresión:

$$a_{\rm N} = \frac{v^2}{r}$$

Como a forza gravitacional que exerce o astro sobre o satélite é moito maior que calquera outra, pódese considerar que é a única forza que actúa.

$$\Sigma \overline{\boldsymbol{F}} = \overline{\boldsymbol{F}}_{G}$$

A 2.ª lei de Newton di que a forza resultante sobre un obxecto produce unha aceleración directamente proporcional á forza, sendo a súa masa, *m*, a constante de proporcionalidade.

$$\Sigma \overline{F} = m \cdot \overline{a}$$

Expresada para os módulos, queda:

$$\left|\sum \vec{F}\right| = m \cdot |\vec{a}|$$

$$F_G = m \cdot a_N$$

Substituíndo a expresión do módulo, F_G, da forza gravitacional, e a da aceleración normal, queda:

$$G\frac{M \cdot m}{r^2} = m \frac{v^2}{r}$$

Despexando a velocidade orbital do satélite, queda:

$$v = \sqrt{\frac{G \cdot M}{r}}$$

Substitúense os valores:

$$v = \sqrt{\frac{G \cdot M}{r}} = \sqrt{\frac{6,67 \cdot 10^{-11} \left[\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2} \right] \cdot 1,81 \cdot 10^{24} \left[\text{kg} \right]}{5,10 \cdot 10^6 \left[\text{m} \right]}} = 4,87 \cdot 10^3 \text{ m/s} = 4,87 \text{ km/s}$$

Calcúlase a enerxía cinética en órbita:

$$E_c(\text{órbita}) = m \cdot v^2 / 2 = [3.00 \text{ [kg]} \cdot (4.87 \cdot 10^3 \text{ [m/s]})^2] / 2 = 3.56 \cdot 10^7 \text{ J}$$

A enerxía mecánica é a suma das súas enerxías cinética e potencial:

$$E(\text{\'orbita}) = E_c(\text{\'orbita}) + E_p(\text{\'orbita}) = 3,56 \cdot 10^7 [\text{J}] + (-7,12 \cdot 10^7 [\text{J}]) = -3,56 \cdot 10^7 \text{J}$$

Análise: Pódese demostrar que a enerxía mecánica ten o valor oposto ao da enerxía cinética substituíndo $G \cdot M / r$ por v^2 na expresión da enerxía mecánica:

$$E = E_{c} + E_{p} = \frac{1}{2} m \cdot v^{2} - G \frac{M \cdot m}{r} = \frac{1}{2} m \cdot v^{2} - m \cdot v^{2} = -\frac{1}{2} m \cdot v^{2} = -E_{c}$$

A enerxía que hai que comunicarlle ao satélite na superficie dun planeta é a diferenza entre a que terá en órbita e a que ten no chan:

$$\Delta E = E(\text{\'orbita}) - E(\text{chan}) = -3.56 \cdot 10^7 \text{ [J]} - (-8.86 \cdot 10^7 \text{ [J]}) = 5.30 \cdot 10^7 \text{ J}$$

- Dúas cargas puntuais de -6 μC cada unha están fixas nos puntos de coordenadas (-5, 0) e (5, 0). As coordenadas están expresadas en metros. Calcula:
 - a) O vector campo electrostático no punto (15, 0).
 - b) A velocidade coa que chega ao punto (10, 0) unha partícula de masa 20 g e carga 8 μC que se abandona libremente no punto (15, 0).

DATO:
$$K = 9 \times 10^9 \text{ N·m}^2 \cdot \text{C}^{-2}$$
. (A.B.A.U. extr. 20)
Rta.: a) $\overline{E}_C = -675 \, \overline{\mathbf{i}} \, \text{N/C}$; b) $\overline{\mathbf{v}}_D = -2.24 \, \overline{\mathbf{i}} \, \text{m/s}$.

Datos	Cifras significativas: 3
Valor das cargas fixas	$Q = -6.00 \mu\text{C} = -6.00 \cdot 10^{-6} \text{C}$
Posicións das cargas fixas: A	$\bar{r}_{A} = (-5,00,0) \text{ m}$
В	$\bar{r}_{\rm B} = (5,00,0)~{\rm m}$
Posición do punto C	$\bar{r}_{\rm C} = (15,0,0) {\rm m}$
Carga que se despraza	$q = 8,00 \ \mu\text{C} = 8,00 \cdot 10^{-6} \ \text{C}$
Masa da carga que se despraza ata a orixe	m = 20.0 g = 0.0200 kg
Velocidade inicial no punto C	$v_{\rm C}=0$
Posición do punto D polo que pasa a carga que se despraza	$\bar{r}_{D} = (10,0,0) \text{ m}$
Constante de Coulomb	$K = 9,00 \cdot 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$
Incógnitas	
Vector campo eléctrico no punto C	$\overline{m{E}}_{\! ext{C}}$

Velocidade que terá a carga de 8 μC ao pasar polo punto D

Outros símbolos

Distancia

Ecuacións

Lei de Coulomb: forza entre dúas cargas puntuais, Q e q, separadas unha distancia, r

Principio de superposición

Potencial eléctrico nun punto a unha distancia, r, dunha carga puntual, Q

Potencial eléctrico nun punto debido a varias cargas Enerxía potencial eléctrica dunha carga nun punto A Enerxía cinética dunha masa, m, que se move cunha velocidade, v Principio da conservación da enerxía entre dous puntos A e B

$$\vec{F} = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

$$\vec{F}_A = \sum_i \vec{F}_{Ai}$$

$$V = K \frac{Q}{r}$$

$$V = \sum_i V_i$$

$$E_{pA} = q \cdot V_A$$

$$E_c = \frac{1}{2} m \cdot v^2$$

 $(E_{\rm c}+E_{\rm p})_{\rm A}=(E_{\rm c}+E_{\rm p})_{\rm B}$

 $v_{
m D}$

Solución:

a) Faise un debuxo no que se sitúan os puntos A(-5, 0), B(5, 0) e C(15, 0).

Debúxanse os vectores de campo no punto C, un vector por cada carga, prestando atención ao sentido, que é de atracción porque as cargas son negativas.

A medida do campo vectorial creado pola carga situada no punto B é catro veces maior que o creado pola carga situada no punto A, que está ao dobre de distancia.

Debúxase o vector suma, que é o campo resultante, \overline{E}_{c} .

O principio de superposición di que a intensidade de campo eléctrico nun punto, debido á presencia de varias cargas, é a suma vectorial dos campos producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o campo nun punto, calcúlanse os campos creados nese punto por cada carga, e despois súmanse os vectores.

A forza eléctrica entre dúas cargas puntuais, Q e q, separadas por unha distancia, r, vén dada pola lei de Coulomb, na que K é a constante de Coulomb e \overline{u}_r o vector unitario na liña que une as cargas.

$$\vec{F}_E = K \frac{Q \cdot q}{r^2} \vec{u}_r$$

O campo eléctrico nun punto situado a unha distancia, r, dunha carga puntual, Q, é a forza sobre a unidade de carga positiva situada nese punto:

$$\vec{E} = \frac{\vec{F}_E}{q} = \frac{K \frac{Q \cdot \mathbf{q}}{r^2} \vec{u}_r}{\mathbf{q}} = K \frac{Q}{r^2} \vec{u}_r$$

A distancia entre os puntos A e C vale: $r_{AC} = |(15,0,0) \text{ [m]} - (-5,00,0) \text{ [m]}| = 20,0 \text{ m}.$

O vector unitario do punto C, tomando como orixe o punto A, é \bar{i} , o vector unitario do eixe X. Calcúlase o campo no punto C, debido á carga de -6 μC situada no punto A:

$$\vec{E}_{CA} = 9,00 \cdot 10^9 \left[\text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-6} \left[\text{C} \right]}{\left(20,0 \right[\text{m} \right]^2} \vec{i} = -135 \vec{i} \text{ N/C}$$

A distancia entre os puntos B e C vale: $r_{BC} = |(15,0,0) \text{ [m]} - (5,00,0) \text{ [m]}| = 10,0 \text{ m}$

O vector unitario do punto C, tomando como orixe o punto B, é \bar{i} , o vector unitario do eixe X. Calcúlase o campo no punto C debido á carga de −6 µC situada no punto B:

$$\vec{E}_{CB} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-6} \left[\text{C} \right]}{\left(10,0 \left[\text{m} \right] \right)^2} \vec{i} = -540 \vec{i} \text{ N/C}$$

Polo principio de superposición, o vector de intensidade de campo eléctrico resultante no punto C é a suma vectorial dos vectores de intensidade de campo de cada carga:

$$\overline{E}_{C} = \overline{E}_{CA} + \overline{E}_{CB} = -135 \overline{i} [N/C] + (-540 \overline{i} [N/C]) = -675 \overline{i} N/C$$

Análise: Coincide co debuxo. O campo resultante do cálculo está dirixido no sentido negativo do eixe X.

b) Como a forza eléctrica é unha forza conservativa, a enerxía mecánica consérvase.

$$(E_{\rm c} + E_{\rm p})_{\rm C} = (E_{\rm c} + E_{\rm p})_{\rm D}$$

½ $m \ v_{\rm C}^2 + q \cdot V_{\rm C} = \frac{1}{2} \ m \ v_{\rm D}^2 + q \cdot V_{\rm D}$

Hai que calcular os potencias eléctricos nos puntos C e D.

O potencial eléctrico nun punto, debido á presencia de varias cargas, é a suma dos potenciais producidos nese punto por cada carga, coma se o resto das cargas non estivese presente.

Para determinar o potencial eléctrico nun punto, calcúlanse os potenciais creados nese punto por cada carga, e despois súmanse.

A ecuación do potencial eléctrico, V, nun punto situado a unha distancia, r, dunha carga puntual, Q, é:

$$V = K \frac{Q}{r}$$

K é a constante de Coulomb.

Calcúlase o potencial eléctrico no punto C, debido á carga de -6 μC situada no punto A é:

$$V_{\text{CA}} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-6} \left[\text{C} \right]}{(20,0 \left[\text{m} \right])} = -2,70 \cdot 10^3 \text{ V}$$

Calcúlase o potencial eléctrico no punto C, debido á carga de -6 µC situada no punto B é:

$$V_{\rm CB} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-6} \left[\text{C} \right]}{(10,0 \left[\text{m} \right])} = -5,40 \cdot 10^3 \text{ V}$$

O potencial eléctrico no punto C é a suma:

$$V_{\rm C} = V_{\rm CA} + V_{\rm CB} = -2.70 \cdot 10^3 \, [\rm V] + (-5.40 \cdot 10^3 \, [\rm V]) = -8.10 \cdot 10^3 \, \rm V$$

A distancia entre os puntos A(-5, 0) e D(10, 0) vale: $r_{AD} = |(10,0,0) \text{ [m]} - (-5,00,0) \text{ [m]}| = 15,0 \text{ m}$. Calcúlase o potencial eléctrico no punto D, debido á carga de -6 μ C situada no punto A:

$$V_{\rm DA} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-6} \left[\text{C} \right]}{\left(15,0 \left[\text{m} \right] \right)} = -3,60 \cdot 10^3 \text{ V}$$

A distancia entre os puntos B e D vale: $r_{BD} = |(10,0,0) \, [m] - (5,00,0) \, [m]| = 5,0 \, m$. Calcúlase o potencial eléctrico no punto D, debido á carga de $-6 \, \mu$ C situada no punto B:

$$V_{\rm DB} = 9,00 \cdot 10^9 \left[\text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \right] \frac{-6,00 \cdot 10^{-6} \left[\text{C} \right]}{(5,0 \left[\text{m} \right])} = -1,1 \cdot 10^4 \text{ V}$$

O potencial eléctrico no punto D é a suma:

$$V_{\rm D} = V_{\rm DA} + V_{\rm DB} = -3.60 \cdot 10^3 \, [\rm V] + (-1.1 \cdot 10^4 \, [\rm V]) = -1.5 \cdot 10^4 \, \rm V$$

Aplícase o principio de conservación da enerxía:

$$0 + 8,00 \cdot 10^{-6} [C] \cdot (-8,10 \cdot 10^{3} [V]) = (20,0 \cdot 10^{-3} [kg] \cdot v_{D}^{2} / 2) + 8,00 \cdot 10^{-6} [C] \cdot (-1,5 \cdot 10^{4} [V])$$

O valor da velocidade obtense despexando:

$$v_{\rm D} = \sqrt{\frac{2 \cdot 8,00 \cdot 10^{-6} \left[{\rm C} \right] \left(1,5 \cdot 10^4 - 8,10 \cdot 10^3 \right) \left[{\rm V} \right]}{20,0 \cdot 10^{-3} \left[{\rm kg} \right]}} = 2,2 \text{ m/s}$$

Como a velocidade é un vector, hai que determinar a dirección e o sentido.

Pódese deducir que a aceleración ten a dirección do eixe X en sentido negativo, porque a carga é positiva e a aceleración seguirá a dirección e o sentido do campo. Se un móbil parte do repouso, e a aceleración ten dirección constante, o movemento será rectilíneo na liña da aceleración.

$$\overline{\mathbf{v}}_{\mathrm{D}} = -2.2 \; \overline{\mathbf{i}} \; \mathrm{m/s}$$

- 7. Unha onda harmónica transversal de lonxitude de onda $\lambda = 60$ cm propágase no sentido positivo do eixe x. Na gráfica amósase a elongación (y) do punto de coordenada x = 0 en función do tempo. Determina:
 - a) A expresión matemática que describe esta onda, indicando o desfase inicial, a frecuencia e a amplitude da onda.
 - b) A velocidade de propagación da onda.

Rta.: a) $y(x, t) = 0.80 \cdot \text{sen}(2.1 \cdot t - 10 \cdot x) \text{ [m]}; \ \varphi_0 = 0; \ f = 0.33 \text{ s}^{-1}; \ A = 0.80 \text{ m}; \ b) \ v_p = 0.20 \text{ m} \cdot \text{s}^{-1}.$

Datos	Cifras significativas: 2
Lonxitude de onda	$\lambda = 60 \text{ cm} = 0,60 \text{ m}$
Gráfica	
Incógnitas	
Ecuación da onda (amplitude, frecuencia angular e número de onda)	A, ω, k
Velocidade de propagación	$ u_{ m p}$
Outros símbolos	
Posición do punto (distancia ao foco)	x
Período	T

Ecuacións

Deductorio	
Ecuación dunha onda harmónica unidimensional	$y = A \cdot \operatorname{sen}(\omega \cdot t \pm k \cdot x + \varphi_0)$
Número de onda	$k = 2 \pi / \lambda$
Relación entre a frecuencia e o período	f = 1 / T
Frecuencia angular	$\omega = 2 \pi \cdot f$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{\rm p} = \lambda \cdot f$
Velocidade de propagación	$v_{ m p} = \Delta x / \Delta t$
Relación entre a lonxitude de onda e a velocidade de propagación	$v_{ m p} = \lambda \cdot f$

Solución:

a) A ecuación dunha onda harmónica é:

$$y = A \cdot \text{sen}(\omega \cdot t - k \cdot x + \varphi_0)$$

Podemos observar na gráfica:

O tempo dunha oscilación completa é T = 3.0 s

⇒ período:

T = 3.0 s.

A elongación máxima vale A = 0.80 m

 \Rightarrow amplitude: A = 0.80 m.

 $\theta_{\rm r}$

λ

Cando o tempo é cero a elongación do punto x = 0 vale y = 0.

$$0 = \text{sen } \varphi_0 \Longrightarrow \varphi_0 = 0 \text{ ou } \varphi_0 = \pi$$

Para t = T/4 = 0.75 s, a elongación do punto x = 0 vale y = 0.80 m = A > 0.

$$y = A \cdot \text{sen}((2 \cdot \pi / T) \cdot (T/4) + \varphi_0) = A \cdot \text{sen}(\pi/2 + \varphi_0) = A \Rightarrow \text{sen}(\pi/2 + \varphi_0) = 1 \Rightarrow \varphi_0 = 0$$

O desfase inicial vale 0. $\Rightarrow \varphi_0 = 0$

Calcúlase o número de onda a partir da lonxitude de onda:

$$k = \frac{2\pi}{\lambda} = \frac{2 \cdot 3.14 \text{ [rad]}}{0.60 \text{ [m]}} = 10 \text{ rad/m}$$

Calcúlase a frecuencia a partir do período:

$$f = \frac{1}{T} = \frac{1}{3.0 \text{ s}} = 0.33 \text{ s}^{-1}$$

Calcúlase a frecuencia angular a partir da frecuencia:

$$\omega = 2 \pi \cdot f = 2 \cdot 3,14 \cdot 0,33 \, [s^{-1}] = 2,1 \, \text{rad} \cdot s^{-1}$$

A ecuación de onda queda:

$$v(x, t) = 0.80 \cdot \text{sen}(2.1 \cdot t - 10 \cdot x) \text{ [m]}$$

b) Calcúlase a velocidade de propagación a partir da lonxitude de onda e da frecuencia:

$$v_p = \lambda \cdot f = 0.60 \text{ [m]} \cdot 0.33 \text{ [s}^{-1}\text{]} = 0.20 \text{ m} \cdot \text{s}^{-1}$$

- Un mergullador acende unha lanterna dentro da auga e enfócaa cara á superficie formando un ángu- 🔇 lo de 30° coa normal.
 - a) Con que ángulo emerxerá a luz da auga?
 - b) Cal é o ángulo de incidencia a partir do cal a luz non sairá da auga?

DATOS: n(auga) = 4/3; n(aire) = 1.

(A.B.A.U. extr. 20)

Rta.: a) $\theta_r = 41.8^\circ$; b) $\lambda = 48.6^\circ$.

Cifras significativas: 3 Datos Índice de refracción do aire n = 1,00Índice de refracción da auga $n_{\rm a} = 4 / 3 = 1,33$ Ángulo de incidencia na auga $\theta_{\rm i}$ = 30,0° Incógnitas

Ángulo de refracción Ángulo límite

Ecuacións

Lei de Snell da refracción $n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$

Solución:

a) Aplicando a lei de Snell da refracción:

$$n_{\rm i} \cdot {\rm sen} \ \theta_{\rm i} = n_{\rm r} \cdot {\rm sen} \ \theta_{\rm r}$$

$$1,33 \cdot \text{sen } 30,0 = 1,00 \cdot \text{sen } \theta_{\text{r}}$$

sen
$$\theta_r = 1.33 \cdot \text{sen } 30.0 = 1.33 \cdot 0.500 = 0.667$$

$$\theta_{\rm r} = {\rm arcsen} \ 0.667 = 41.8^{\circ}$$

b) Ángulo límite λ é o ángulo de incidencia que produce un ángulo de refracción de 90°.

$$1,33 \cdot \text{sen } \lambda = 1,00 \cdot \text{sen } 90,0^{\circ}$$

sen
$$\lambda = 1.00 / 1.33 = 0.75$$

$$\lambda = \arcsin 0.75 = 48.6^{\circ}$$

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 16/07/24

