${\bf Kurs:}$ Urządzenia Peryferyjne - Laboratorium

SKANER PŁASKI. WPROWADZANIE INFORMACJI DO KOMPUTERA

Autor:

Aleksandra Chrustek, 263900 Jonasz Trocha, 263951

Prowadzący: dr inż. Dariusz Caban

1 Wstęp

Celem ćwiczenia było zapoznanie się z zasadami działania skanera płaskiego oraz napisanie oprogramowania do zapisywania obrazu zeskanowanego.

2 Informacje teoretyczne

2.1 Budowa skanera (CCD, CIS, LIDE)

2.1.1 CCD (Charge-Coupled Device)

CCD to rodzaj matrycy światłoczułej złożonej z pikseli, gdzie każdy piksel rejestruje ilość światła. Światło przechodzi przez soczewki i trafia na matrycę CCD, gdzie generowane są sygnały elektryczne proporcjonalne do ilości padającego światła.

2.1.2 CIS (Contact Image Sensor)

CIS to układ złożony z diod świetlnych i detektorów zamontowanych bezpośrednio na powierzchni skanera. Światło odbite od dokumentu trafiasz bezpośrednio na detektory, generując sygnały elektryczne.

2.1.3 LIDE (LED Indirect Exposure)

LIDE wykorzystuje diody LED do oświetlania dokumentu. Światło LED jest kierowane na powierzchnię dokumentu, a odbite światło jest rejestrowane przez detektory. obsługą dźwięku.

2.2 Kolory cyfrowe

2.2.1 Filtry

Stosowane do eliminowania niepożądanych efektów, np. efektu czerwonych oczu.

2.2.2 Balans Bieli

Dostosowuje kolorystykę obrazu, usuwając dominację barw.

2.2.3 Rozdzielczość skanowania

Określa ilość detali, jakie skaner może zarejestrować. Wyrażana w dpi (dots per inch).

2.2.4 De-mozaikowanie

Proces eliminowania efektu mozaiki, który występuje w obrazach cyfrowych zapisanych w formacie Bayera.

2.2.5 Zoom

Zmiana skali obrazu, niekoniecznie związana z fizycznym zbliżaniem optycznym.

2.3 Biblioteki wspierające programowanie skanerów

2.3.1 TWAIN (Technology Without An Interesting Name)

Standard umożliwiający komunikację między oprogramowaniem a urządzeniami do akwizycji obrazu.

2.3.2 WIA (Windows Image Acquisition)

Zapewnia interfejs dla komunikacji między urządzeniem a systemem operacyjnym Windows.

2.3.3 SANE (Scanner Access Now Easy)

Otwarte oprogramowanie zapewniające dostęp do skanerów na platformach Unix i Linux.

2.3.4 ISIS (Image and Scanner Interface Specification)

Standard w przemyśle skanowania, umożliwiający komunikację z różnymi urządzeniami do akwizycji obrazu.

2.4 Formaty zapisu informacji graficznej

2.4.1 JPG (Joint Photographic Experts Group)

Format kompresji stratnej, efektywny dla fotografii.

2.4.2 PNG (Portable Network Graphics)

Format bezstratnej kompresji, wspierający przezroczystość.

2.4.3 TIFF (Tagged Image File Format)

Format umożliwiający przechowywanie obrazów z zachowaniem dużej jakości i informacji o metadanych.

2.4.4 BMP (Bitmap)

Format przechowujący obrazy w postaci mapy bitowej, bez kompresji.

2.4.5 RLE (Run-Length Encoding)

Metoda kompresji danych, stosowana m.in. w formacie BMP.

3 Realizacja zadania

Aplikacja jest zaprojektowana do obsługi skanera płaskiego. Należało napisać aplikację umożliwiającą uzyskanie obrazu na ekranie monitora po zeskanowaniu obiektu, oraz zapisanie obrazu do zbioru z możliwością wybrania jednego z kilku podanych formatów, realizację takich opcji jak zmiana parametrów skanowania (rozdzielczość, tryb skanowania), obracanie obrazu o 90, 180, 270 stopni w obie strony. W tych celach użyto biblioteki WIA (Windows Image Acquisition).

Poniżej przedstawione zostały poszczególne metody do obsługi skanera płaskiego:

 Metoda Form1_Load(object sender, EventArgs e): Inicjalizuje formularz po jego załadowaniu. Wywołuje metodę ListScanners() do wylistowania dostępnych skanerów. Ustawia domyślną ścieżkę wyjściową na folder tymczasowy. Ustawia domyślny format pliku na JPEG.

```
private void Form1_Load(object sender, EventArgs e)
{
    ListScanners();

    // Set start output folder TMP
    textBox1.Text = Path.GetTempPath();
    // Set JPEG as default
    comboBox1.SelectedIndex = 1;
}
```

2. Metoda ListScanners(): Czyści zawartość kontrolki listBox1. Tworzy instancję DeviceManager. Przechodzi przez listę urządzeń i dodaje do listy skanerów (tylko urządzenia skanujące).

```
private void ListScanners()
{
    // Clear the ListBox.
    listBox1.Items.Clear();

    // Create a DeviceManager instance
    var deviceManager = new DeviceManager();

    // Loop through the list of devices and add the name to the listbox
    for (int i = 1; i <= deviceManager.DeviceInfos.Count; i++)</pre>
```

```
{
          // Add the device only if it's a scanner
          if (deviceManager.DeviceInfos[i].Type !=
          WiaDeviceType.ScannerDeviceType)
           {
               continue;
          }
          // Add the Scanner device to the listbox
           (the entire DeviceInfos object)
           // Important: we store an object of type scanner
           (which ToString method returns the name of the scanner)
           listBox1.Items.Add(
               new Scanner(deviceManager.DeviceInfos[i])
          );
      }
  }
3. Metoda button Click(object sender, EventArgs e): Rozpoczyna asynchroniczne
  zadanie skanowania przez wywołanie Task.Factory.StartNew(StartScanning). Po
  zakończeniu skanowania, wywołuje metodę TriggerScan().
```

4. Metoda TriggerScan(): Wyświetla komunikat o pomyślnym zeskanowaniu obrazu

Task.Factory.StartNew(StartScanning).ContinueWith(result => TriggerScan());

```
private void TriggerScan()
{
    Console.WriteLine("Image successfully scanned");
}
```

private void button1_Click(object sender, EventArgs e)

{

}

na konsoli.

5. Metoda StartScanning(): Wybiera zaznaczony skaner z listy. W zależności od wybranych opcji (format, rozmiar i tryb koloru), ustawia parametry skanowania. Wybiera odpowiedni format pliku na podstawie wyboru użytkownika. Skanuje obraz przy użyciu metody ScanImage obiektu skanera. Zapisuje zeskanowany obraz w określonym formacie i ścieżce. Wyświetla zeskanowany obraz w kontrolce picture-Box1.

```
public void StartScanning()
{
    Scanner device = null;
    this.Invoke(new MethodInvoker(delegate ()
    {
        device = listBox1.SelectedItem as Scanner;
    }));
    if (radioButton1.Checked)
    {
        System.Console.WriteLine("A4 checked");
        device.width_pixel = 2500;
        device.height_pixel = 3400;
    else if (radioButton2.Checked)
    ₹
        System.Console.WriteLine("A5 checked");
        device.width_pixel = 1600;
        device.height_pixel = 2350;
    }
    if (radioButton3.Checked)
    {
        System.Console.WriteLine("Kolor");
        device.color_mode = 1;
    }
    else if (radioButton4.Checked)
        System.Console.WriteLine("Czerń");
        device.color_mode = 2;
    }
    if (device == null)
    {
        MessageBox.Show("You need to select first
        an scanner device from the list",
                        "Warning",
                        MessageBoxButtons.OK, MessageBoxIcon.Warning);
```

```
return;
}else if(String.IsNullOrEmpty(textBox2.Text))
{
    MessageBox.Show("Provide a filename",
                    "Warning",
                    MessageBoxButtons.OK, MessageBoxIcon.Warning);
    return;
}
ImageFile image = new ImageFile();
string imageExtension = "";
this.Invoke(new MethodInvoker(delegate ()
{
    switch (comboBox1.SelectedIndex)
        case 0:
            image = device.ScanImage(WIA.FormatID.wiaFormatPNG);
            imageExtension = ".png";
            break;
        case 1:
            image = device.ScanImage(WIA.FormatID.wiaFormatJPEG);
            imageExtension = ".jpeg";
            break;
        case 2:
            image = device.ScanImage(WIA.FormatID.wiaFormatBMP);
            imageExtension = ".bmp";
            break;
        case 3:
            image = device.ScanImage(WIA.FormatID.wiaFormatGIF);
            imageExtension = ".gif";
            break;
        case 4:
            image = device.ScanImage(WIA.FormatID.wiaFormatTIFF);
            imageExtension = ".tiff";
            break;
    }
}));
```

```
// Save the image
var path = Path.Combine(textBox1.Text, textBox2.Text + imageExtension);

if (File.Exists(path))
{
    File.Delete(path);
}

image.SaveFile(path);
pictureBox1.Image = new Bitmap(path);
}
```

 Metoda button2_Click(object sender, EventArgs e): Wywołuje okno dialogowe wyboru folderu. Ustawia ścieżkę folderu wybranego przez użytkownika w kontrolce textBox1.

```
private void button2_Click(object sender, EventArgs e)
{
    FolderBrowserDialog folderDlg = new FolderBrowserDialog();
    folderDlg.ShowNewFolderButton = true;
    DialogResult result = folderDlg.ShowDialog();

    if (result == DialogResult.OK)
    {
        textBox1.Text = folderDlg.SelectedPath;
    }
}
```

7. Obsługa zdarzeń radioButton1_CheckedChanged, radioButton2_CheckedChanged, radioButton3_CheckedChanged, radioButton4_CheckedChanged: Obsługuje zmiany stanu zaznaczenia radiobuttonów.

4 Wnioski

Zadanie miało na celu wprowadzenie w obszar programowania urządzeń peryferyjnych, konkretnie skanera płaskiego. Realizacja tego zadania okazała się wymagająca, ponieważ wiązała się z koniecznością zaznajomienia się z zasadami zmieniania rozdzielczości, kolorystyki oraz obracania obrazu oraz zrozumieniem, jak obsługa skanera płaskiego wygląda z perspektywy zaimplementowanej aplikacji. W konsekwencji, musieliśmy znaleźć sposoby na efektywne skanowanie oczekiwanego formatu obrazu z oczekiwanymi parametrami i przełożenie tych sposobów na konkretne działania na poziomie aplikacji. W

trakcie laboratorium udało się zaimplementować wszystkie wymagane przez instrukcję metody, z wyjątkiem obracania obrazu. Aplikacja umożliwia skanowanie dokumentów z różnymi parametrami. Wykorzystuje Windows Image Acquisition (WIA) do komunikacji z urządzeniem do skanowania. Obsługuje różne formaty obrazów, a także pozwala na wybór rozdzielczości i trybu kolorów. Umożliwia użytkownikowi wybór skanera z listy dostępnych urządzeń. Skanowane obrazy są zapisywane w wybranym formacie i lokalizacji. W rezultacie, zadanie dostarczyło nam praktycznej wiedzy na temat programowania urządzeń peryferyjnych, a zdobyte umiejętności mogą być użyteczne w projektach obejmujących obsługę różnorodnych urządzeń wejściowych.

Lab 5 - Skowner ptasla

- 1. Zacrelismy od napisanie oplikagi nyknyvoja, cej una, dzenie do slianovanie i tajcaa, co się z wybranym una, olze-niem.
- 2. Następnie pobraliśmy wontośći ustanien' skanowania ze otrony z dokumentacją i patnyliśmy jak modyfileoranie wartośći paramehow uprywa na skanowanie.
- 3. Kajęlismy się dodaniem opiji zmiony kontrastu i jasnosiu oraznosiu opije opijybonu międny kolonowym otanowaniem, a oraznobiatym. Umiesalismy okionko, w którym można wybroci vymienione opije, skonowaci w poszukiwanie una, olzeni wybtuć una, drenie, skonowaci zapisaci do pliku oraz drienko kyswietlające zeskanowany obraz.

 4. Dodalismy wylor formatu; Ali lub 15.

Lebo 13.12.2023