Implémentez un modèle de scoring

Formation Data scientist Projet n°7 Bayram DONAT

Sommaire

- Problématique
- Présentation du jeu de données
- Approche de modélisation
- Présentation du dashboard

Problématique

- Contexte
 - Entreprise : "Prêt à dépenser", société financière
 - Activité : proposer des crédits à la consommation pour des personnes ayant peu ou pas du tout d'historique de prêt.
 - Besoins:
 - à partir de sources de données variées, réaliser un outil de "scoring crédit" pour :
 - · calculer la probabilité qu'un client rembourse son crédit,
 - classifier la demande en crédit accordé ou refusé.
 - transparence vis-à-vis des décisions d'octroi de crédit auprès des clients (valeurs de l'entreprise)
 - développer un dashboard interactif pour les chargés de clientèle et clients

Problématique

- Mission
 - Construire un modèle de scoring avec **prédiction sur la probabilité de faillite** d'un client de façon automatique à partir d'une BDD kaggle.
 - Construire un dashboard interactif :
 - Visualiser le score et l'interprétation de ce score pour chaque client
 - Visualiser des informations d'un client (via un système de filtre).
 - Comparer les informations descriptives relatives à un client à l'ensemble des clients ou à un groupe de clients similaires

Jeux de données

- Une base de données client disp Kaggle :
 - 8 fichiers CSV
- Travail sur le fichier application_t

- Analyse exploratoire
 - Définition des colonnes
 - Nombre de ligne colonnes
 - Valeurs manquantes
 - Valeurs uniques
 - Analyse univariée
 - Analyse bivariée

- Traitement
 - Passage des variables catégorielles en numérique
 - Suppression des colonnes à variance nulle
 - Traitement des données aberrantes et remplissage des données manquantes
 - Création de variables fonctionnelles et polynomiales
 - Normalisation

- Traitement
 - Séparation données entrainement et test
 - Déséquilibre de la variable TARGET
 - 0 : 169611 valeurs
 - 1:14895 valeurs
 - Equilibrage TARGET par SMOTE*

- Entrainement différents modèles
- Optimisation du meilleur modèle
- Interprétabilité SHAP**
 - Globale
 - Locale
- Recherche des plus proches voisins

Modélisation

^{*} Synthetic Minority Oversampling Technique

^{**} SHapley Additive exPlanations

	Model Type	F1-Score	FBeta-Score	Recall_score	Precision_score	Roc_AUC_score
0	logistic regression classifier	0.000000	0.000000	0.000000	0.000000	0.578986
1	decision tree classifier	0.151854	0.162898	0.171198	0.136437	0.546818
2	random forest classifier	0.006400	0.004021	0.003223	0.457143	0.719823
3	gradient boosting classifier	0.026646	0.017001	0.013696	0.489209	0.748325
4	light gradient boosting machine classifier	0.024385	0.015516	0.012487	0.516667	0.758652

ROC Curve : threshold RFE_light gradient boosting machine classifier

Matrice de confusion : threshold RFE_light gradient boosting machine classifier

Présentation du dashboard

Solution	ion Description		
SHAP	Explication / interprétabilité de la prédiction		
fastapi	API permettant d'appeler la prédiction à partir de l'identifiant du client		
streamlit	Tableau de bord		
Heroku	Déploiement sur le cloud		
Git hub	Versionning		

https://api-oc-p7-mbd.herokuapp.com/docs

https://dash-oc-p7-mbd.herokuapp.com/

https://github.com/m3hm3tb4yr4m/OC-P7-Backend

https://github.com/m3hm3tb4yr4m/OC-P7-Frontend

Présentation du dashboard

Présentation du dashboard

Conclusion

- Projet très intéressant
- Modélisation
 - Perfectionnement du features engineering
 - Choix des métriques d'évaluation important
 - Choix des hyperparamètres important
- Outils de présentation
 - Visualisation et présentation du travail compréhensible
 - Travail de versionning essentiel en programmation
 - Problèmes de compatibilités des bibliothèques python