Week 10.2 Assignment

- Joshua Burden
- Bellevue University
- DSC550 Data Mining
- Dr. Brett Werner
- 11/06/2022

Begin Milestone 1 with a 250-500-word narrative describing your original idea for the analysis/model building business problem.

Clearly identify the problem you will address and the target for your model.

Background:

During the pandemic an increase in the need for health care professionals was required. The dataset collected is a modified synthetic dataset from IBM's Watson to show a useful insight into the attrition rate for healthcare workers.

Problem:

The data set includes information about the attrition rate for employees within the healthcare field. The meaning of employee attrition is the departure of employees from the organization for any reason whether that be voluntary or involuntary, including resignation, termination, death, or retirement. Companies to avoid attrition rates being too high is to replace those who are either leaving voluntarily or involuntary. The data set should provide insights into whether a company in the healthcare field was replacing their employees that were leaving the field, or if they continued to have a gradual but deliberate reduction in staff for any reason.

Original Idea:

The idea behind this data set is to discover whether certain roles within the healthcare industry, hours worked, age of an employee, or any other qualifying data points stand out as to why the healthcare industry had any determining factor on whether a person was to leave their field, while also predicting whether the employee was eventually replaced.

Dataset:

This dataset contains employee and company data useful for supervised ML, unsupervised ML, and analytics. Attrition - whether an employee left or not - is included and can be used as the

target variable. The data is synthetic and based on the IBM Watson dataset for attrition. Employee roles and departments were changed to reflect the healthcare domain. Also, known outcomes for some employees were changed to help increase the performance of ML models

Then, do a graphical analysis creating a minimum of four graphs.

Label your graphs appropriately and explain/analyze the information provided by each graph.

```
In [ ]:
         import pandas as pd
         import seaborn as sns
         from matplotlib import pyplot as plt
         import numpy as np
         import plotly.express as px
         data_df = pd.read_csv('./DATA/watson_healthcare_modified.csv')
In [ ]:
         data df.head()
            EmployeeID
Out[]:
                        Age Attrition
                                         BusinessTravel DailyRate
                                                                  Department DistanceFromHome Education
         0
                1313919
                          41
                                           Travel_Rarely
                                                            1102
                                                                    Cardiology
                                                                                               1
                                   No
                1200302
         1
                          49
                                   No
                                       Travel_Frequently
                                                             279
                                                                     Maternity
                                                                                               8
         2
                1060315
                                                                                               2
                          37
                                   Yes
                                           Travel_Rarely
                                                            1373
                                                                     Maternity
         3
                1272912
                                       Travel_Frequently
                                                            1392
                                                                                               3
                          33
                                   No
                                                                     Maternity
         4
                1414939
                          27
                                   No
                                           Travel_Rarely
                                                             591
                                                                     Maternity
                                                                                               2
        5 rows × 35 columns
         print("Number of duplicated data: "+str(data_df.duplicated().sum()))
In [ ]:
         Number of duplicated data: 0
```

data df.isnull().sum()

In []:

```
EmployeeID
                                       0
Out[]:
                                       0
         Age
         Attrition
                                       0
         BusinessTravel
                                       0
                                       0
         DailyRate
         Department
                                       0
         DistanceFromHome
                                       0
         Education
                                       0
                                       0
         EducationField
                                       0
         EmployeeCount
                                       0
         EnvironmentSatisfaction
                                       0
         Gender
         HourlyRate
                                       0
                                       0
         JobInvolvement
                                       0
         JobLevel
         JobRole
                                       0
         JobSatisfaction
                                       0
                                       0
         MaritalStatus
         MonthlyIncome
                                       0
         MonthlyRate
                                       0
                                       0
         NumCompaniesWorked
         Over18
                                       0
                                       0
         OverTime
         PercentSalaryHike
                                       0
         PerformanceRating
                                       0
         RelationshipSatisfaction
                                       0
         {\sf StandardHours}
                                       0
         Shift
                                       0
                                       0
         TotalWorkingYears
         TrainingTimesLastYear
                                       0
                                       0
         WorkLifeBalance
         YearsAtCompany
                                       0
                                       0
         YearsInCurrentRole
                                       0
         YearsSinceLastPromotion
         YearsWithCurrManager
                                       0
         dtype: int64
```

In []: data_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1676 entries, 0 to 1675
Data columns (total 35 columns):

#	Column	Non-Null Count	Dtype
0	EmployeeID	1676 non-null	 int64
1	Age	1676 non-null	int64
2	Attrition	1676 non-null	object
3	BusinessTravel	1676 non-null	object
4	DailyRate	1676 non-null	int64
5	Department	1676 non-null	object
6	DistanceFromHome	1676 non-null	int64
7	Education	1676 non-null	int64
8	EducationField	1676 non-null	object
9	EmployeeCount	1676 non-null	int64
10	EnvironmentSatisfaction	1676 non-null	int64
11	Gender	1676 non-null	object
12	HourlyRate	1676 non-null	int64
13	JobInvolvement	1676 non-null	int64
14	JobLevel	1676 non-null	int64
15	JobRole	1676 non-null	object
16	JobSatisfaction	1676 non-null	int64
17	MaritalStatus	1676 non-null	object
18	MonthlyIncome	1676 non-null	int64
19	MonthlyRate	1676 non-null	int64
20	NumCompaniesWorked	1676 non-null	int64
21	Over18	1676 non-null	object
22	OverTime	1676 non-null	object
23	PercentSalaryHike	1676 non-null	int64
24	PerformanceRating	1676 non-null	int64
25	RelationshipSatisfaction	1676 non-null	int64
26	StandardHours	1676 non-null	int64
27	Shift	1676 non-null	int64
28	TotalWorkingYears	1676 non-null	int64
29	TrainingTimesLastYear	1676 non-null	int64
30	WorkLifeBalance	1676 non-null	int64
31	YearsAtCompany	1676 non-null	int64
32	YearsInCurrentRole	1676 non-null	int64
33	YearsSinceLastPromotion	1676 non-null	int64
34	YearsWithCurrManager	1676 non-null	int64
dtype	es: int64(26), object(9)		

dtypes: int64(26), object(9)
memory usage: 458.4+ KB

Visualization 1

```
In [ ]: plt.figure(figsize=(20,10))
    sns.countplot(x='Age', hue='Attrition', data=data_df)
Out[ ]: <AxesSubplot:xlabel='Age', ylabel='count'>
```


Visualization 2

```
In [ ]: data_df.groupby('Attrition')['MonthlyIncome'].mean().sort_values().reset_index()
```

Out[]: Attrition MonthlyIncome 0 Yes 4024.246231

1 No 6852.301963

```
In [ ]: plt.figure(figsize=(20,10))
    sns.countplot(x='DistanceFromHome',hue='Attrition',data=data_df)
```

Out[]: <AxesSubplot:xlabel='DistanceFromHome', ylabel='count'>

Visualization 3

Visualization 4

```
In [ ]: plt.figure(figsize=(10,10))
    sns.countplot(x='Gender',hue='Attrition',data=data_df)
Out[ ]: <AxesSubplot:xlabel='Gender', ylabel='count'>
```


Breakdown of all the available datapoints

```
plt.figure(figsize=(30,50))
In [ ]:
         for index,column in enumerate(num col):
             plt.subplot(5,5,index+1)
             sns.countplot(data=num col,x=column)
             plt.xticks(rotation = 90)
         plt.tight_layout(pad = 1.0)
         plt.show()
                                                   Traceback (most recent call last)
        c:\Users\Joshu\Desktop\Masters\DSC550\JoshuaBurdenAssignment10-2.ipynb Cell 25 in <ce
        11 line: 2>()
              <a href='vscode-notebook-cell:/c%3A/Users/Joshu/Desktop/Masters/DSC550/JoshuaBu</pre>
        rdenAssignment10-2.ipynb#X33sZmlsZQ%3D%3D?line=0'>1</a> plt.figure(figsize=(30,50))
         ----> <a href='vscode-notebook-cell:/c%3A/Users/Joshu/Desktop/Masters/DSC550/JoshuaBu
        rdenAssignment10-2.ipynb#X33sZmlsZQ%3D%3D?line=1'>2</a> for index,column in enumerate
         (num_col):
              <a href='vscode-notebook-cell:/c%3A/Users/Joshu/Desktop/Masters/DSC550/JoshuaBu</pre>
        rdenAssignment10-2.ipynb#X33sZmlsZQ%3D%3D?line=2'>3</a>
                                                                     plt.subplot(5,5,index+1)
              <a href='vscode-notebook-cell:/c%3A/Users/Joshu/Desktop/Masters/DSC550/JoshuaBu
        rdenAssignment10-2.ipynb#X33sZmlsZQ%3D%3D?line=3'>4</a>
                                                                    sns.countplot(data=num co
        1,x=column)
        NameError: name 'num_col' is not defined
        <Figure size 2160x3600 with 0 Axes>
```

Observations:

- Maternity departments had the highest rate of attrition followed by cardiology and neurology
- attrition rates had the highest peak at 29 years old
- 26-35 years old saw the highest range of attrition
- 42 years old and older saw the least attrition rates
- More men where likely to leave than women but Men also were more accounted for than women in the healthcare field
- · Human resources were the least likely to have people quit
- Life Sciences were the Education field with the highest amount of attrition
- people that lived closer to their jobs were more likely to leave

Milestone 2

```
In [ ]: data_df.head()
```

Out[]:		EmployeeID	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Educati
	0	1313919	41	No	Travel_Rarely	1102	Cardiology	1	
	1	1200302	49	No	Travel_Frequently	279	Maternity	8	
	2	1060315	37	Yes	Travel_Rarely	1373	Maternity	2	
	3	1272912	33	No	Travel_Frequently	1392	Maternity	3	
	4	1414939	27	No	Travel_Rarely	591	Maternity	2	

5 rows × 35 columns

```
In [ ]: data_df.shape
Out[ ]: (1676, 35)
```

Dropping data columns that don't provide much value or context to the data

```
In [ ]: #drop some of the values
   data_df1 = data_df.drop(['EmployeeID','Over18', 'EmployeeCount', 'StandardHours'], axi
   data_df1.head()
```

Out[]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education
	0	41	No	Travel_Rarely	1102	Cardiology	1	2	Life Sci
	1	49	No	Travel_Frequently	279	Maternity	8	1	Life Sci
	2	37	Yes	Travel_Rarely	1373	Maternity	2	2	(
	3	33	No	Travel_Frequently	1392	Maternity	3	4	Life Sci
	4	27	No	Travel_Rarely	591	Maternity	2	1	Me

5 rows × 31 columns

```
In []: #change attrition rates from no/yes to 0/1
    data_df1['Attrition'] = data_df1['Attrition'].str.replace('Yes', str(1))
    data_df1['Attrition'] = data_df1['Attrition'].str.replace('No', str(0))
    data_df1['Attrition'] = data_df1['Attrition'].astype('int')
```

converted attriations yes/no values and replaced them with 0/1 and set type to int

Look at shape and values of columns

```
In [ ]: data_df1.head()
```

Out[]:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Education
	0	41	0	Travel_Rarely	1102	Cardiology	1	2	Life Sci
	1	49	0	Travel_Frequently	279	Maternity	8	1	Life Sci
	2	37	1	Travel_Rarely	1373	Maternity	2	2	(
	3	33	0	Travel_Frequently	1392	Maternity	3	4	Life Sci
	4	27	0	Travel_Rarely	591	Maternity	2	1	Me

5 rows × 31 columns

In []: data_df1.describe().T

Out[]:		count	mean	std	min	25%	50%	75%	m
	Age	1676.0	36.866348	9.129126	18.0	30.00	36.0	43.00	60
	Attrition	1676.0	0.118735	0.323573	0.0	0.00	0.0	0.00	1
	DailyRate	1676.0	800.557876	401.594438	102.0	465.00	796.5	1157.00	1499
	DistanceFromHome	1676.0	9.221957	8.158118	1.0	2.00	7.0	14.00	29
	Education	1676.0	2.907518	1.025835	1.0	2.00	3.0	4.00	Ē
	EnvironmentSatisfaction	1676.0	2.714797	1.097534	1.0	2.00	3.0	4.00	4
	HourlyRate	1676.0	65.470167	20.207572	30.0	48.00	65.5	83.00	100
	JobInvolvement	1676.0	2.724940	0.714121	1.0	2.00	3.0	3.00	۷
	JobLevel	1676.0	2.066826	1.113423	1.0	1.00	2.0	3.00	5
	JobSatisfaction	1676.0	2.738663	1.104005	1.0	2.00	3.0	4.00	۷
	MonthlyIncome	1676.0	6516.512530	4728.456618	1009.0	2928.25	4899.0	8380.25	19999
	MonthlyRate	1676.0	14287.019690	7138.857783	2094.0	7993.00	14269.5	20462.00	26999
	NumCompaniesWorked	1676.0	2.662291	2.477704	0.0	1.00	2.0	4.00	ĉ
	PercentSalaryHike	1676.0	15.196897	3.646550	11.0	12.00	14.0	18.00	25
	PerformanceRating	1676.0	3.150358	0.357529	3.0	3.00	3.0	3.00	4
	RelationshipSatisfaction	1676.0	2.718377	1.078162	1.0	2.00	3.0	4.00	4
	Shift	1676.0	0.806086	0.855527	0.0	0.00	1.0	1.00	3
	TotalWorkingYears	1676.0	11.338902	7.834996	0.0	6.00	10.0	15.00	40
	TrainingTimesLastYear	1676.0	2.805489	1.288431	0.0	2.00	3.0	3.00	6
	WorkLifeBalance	1676.0	2.766110	0.702369	1.0	2.00	3.0	3.00	4
	YearsAtCompany	1676.0	7.033413	6.098991	0.0	3.00	5.0	10.00	40
	YearsInCurrentRole	1676.0	4.264916	3.627456	0.0	2.00	3.0	7.00	18
	YearsSinceLastPromotion	1676.0	2.200477	3.229587	0.0	0.00	1.0	3.00	15
	YearsWithCurrManager	1676.0	4.135442	3.559662	0.0	2.00	3.0	7.00	17

check correlation of data columns

In []: data_df1.corr()

Attrition DailyRate DistanceFromHome Education Environment Out[]:

	Age	Attrition	DailyRate	DistanceFromHome	Education	Environment
Age	1.000000	-0.239984	0.001441	-0.010079	0.204655	
Attrition	-0.239984	1.000000	-0.053892	0.105580	-0.038843	
DailyRate	0.001441	-0.053892	1.000000	-0.009227	-0.015881	
DistanceFromHome	-0.010079	0.105580	-0.009227	1.000000	0.015937	
Education	0.204655	-0.038843	-0.015881	0.015937	1.000000	
EnvironmentSatisfaction	0.008945	-0.101278	0.010620	-0.019730	-0.031925	
HourlyRate	0.034671	-0.036300	0.027128	0.026947	0.017996	
Jobinvolvement	0.034193	-0.166036	0.058864	0.010281	0.041046	
JobLevel	0.518333	-0.207634	0.009005	-0.023455	0.093227	
JobSatisfaction	-0.015848	-0.081881	0.032115	-0.004758	-0.003957	
MonthlyIncome	0.511378	-0.193527	0.011030	-0.041201	0.085116	
MonthlyRate	0.025837	0.045744	-0.032211	0.031672	-0.019198	
NumCompaniesWorked	0.296045	0.017279	0.034296	-0.024969	0.126758	
PercentSalaryHike	0.007570	0.002943	0.019325	0.034172	-0.006461	
PerformanceRating	0.005246	0.010728	0.003353	0.020482	-0.020664	
RelationshipSatisfaction	0.058528	-0.020462	0.014539	0.005482	-0.005750	
Shift	0.037117	-0.158322	0.054407	0.029180	0.024451	
TotalWorkingYears	0.692512	-0.234182	0.009378	-0.017663	0.143324	
TrainingTimesLastYear	-0.015408	-0.054836	0.001901	-0.055471	-0.014070	
WorkLifeBalance	-0.004878	-0.090513	-0.028549	-0.037821	0.003933	
YearsAtCompany	0.319012	-0.201373	-0.026892	-0.007420	0.057461	
YearsInCurrentRole	0.222655	-0.207891	0.019651	0.011448	0.051029	
YearsSinceLastPromotion	0.217212	-0.086207	-0.034571	-0.000126	0.045785	
YearsWithCurrManager	0.215909	-0.201087	-0.025272	0.000403	0.055096	

24 rows × 24 columns

dropping rows that exceed a threshold of 0.2

```
In [ ]:
        threshold = 0.2
         data_df1 = data_df1.drop(data_df1.std()[data_df1.std() < threshold].index.values, axis</pre>
```

C:\Users\Joshu\AppData\Local\Temp\ipykernel_316\2220865994.py:2: FutureWarning:

Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is de precated; in a future version this will raise TypeError. Select only valid columns b efore calling the reduction.

Out[]

In []: data_df1

:		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educa
	0	41	0	Travel_Rarely	1102	Cardiology	1	2	Life
	1	49	0	Travel_Frequently	279	Maternity	8	1	Life
	2	37	1	Travel_Rarely	1373	Maternity	2	2	
	3	33	0	Travel_Frequently	1392	Maternity	3	4	Life
	4	27	0	Travel_Rarely	591	Maternity	2	1	
	•••								
	1671	26	1	Travel_Rarely	471	Neurology	24	3	
	1672	46	0	Travel_Rarely	1125	Cardiology	10	3	N
	1673	20	0	Travel_Rarely	959	Maternity	1	3	Life
	1674	39	0	Travel_Rarely	466	Neurology	1	1	Life
	1675	27	0	Travel_Rarely	511	Cardiology	2	2	

1676 rows × 31 columns

In []: #Get dummies
 data_df2 = data_df1.copy()
 data_df2 = pd.get_dummies(data_df2, drop_first=True)
 data_df2

Out[]:		Age	Attrition	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate
	0	41	0	1102	1	2	2	94
	1	49	0	279	8	1	3	61
	2	37	1	1373	2	2	4	92
	3	33	0	1392	3	4	4	56
	4	27	0	591	2	1	1	40
	•••							
	1671	26	1	471	24	3	3	66
	1672	46	0	1125	10	3	3	94
	1673	20	0	959	1	3	4	83
	1674	39	0	466	1	1	4	65
	1675	27	0	511	2	2	1	89

1676 rows × 41 columns

12

13

15

16

17

18

19

20

21

22

23

25

26 27

28

29

30

Shift

NumCompaniesWorked

PercentSalaryHike

PerformanceRating

TotalWorkingYears

YearsInCurrentRole

YearsWithCurrManager

Department_Maternity

Department Neurology

WorkLifeBalance

YearsAtCompany

TrainingTimesLastYear

YearsSinceLastPromotion

BusinessTravel Travel Frequently

BusinessTravel Travel Rarely

EducationField Life Sciences

EducationField Marketing

EducationField Medical

RelationshipSatisfaction

```
JoshuaBurdenAssignment10-2
        data_df2.info()
In [ ]:
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1676 entries, 0 to 1675
        Data columns (total 41 columns):
              Column
                                                  Non-Null Count
          #
                                                                  Dtype
              _____
                                                  _____
                                                                   _ _ _ _ _
          0
                                                  1676 non-null
                                                                   int64
              Age
          1
              Attrition
                                                  1676 non-null
                                                                   int32
          2
              DailyRate
                                                  1676 non-null
                                                                   int64
          3
              DistanceFromHome
                                                  1676 non-null
                                                                   int64
          4
              Education
                                                  1676 non-null
                                                                   int64
          5
              EnvironmentSatisfaction
                                                  1676 non-null
                                                                   int64
          6
              HourlyRate
                                                  1676 non-null
                                                                   int64
          7
              JobInvolvement
                                                  1676 non-null
                                                                   int64
          8
              JobLevel
                                                  1676 non-null
                                                                   int64
          9
              JobSatisfaction
                                                  1676 non-null
                                                                   int64
          10
              MonthlyIncome
                                                  1676 non-null
                                                                   int64
              MonthlyRate
                                                  1676 non-null
                                                                   int64
```

1676 non-null

int64

uint8

uint8

uint8

uint8

uint8

uint8

uint8

uint8

31 EducationField_Other 1676 non-null uint8 EducationField_Technical Degree 1676 non-null uint8 Gender Male 1676 non-null uint8 33 34 JobRole Administrative 1676 non-null uint8 35 JobRole Nurse 1676 non-null uint8 36 JobRole_Other 1676 non-null uint8 JobRole Therapist 1676 non-null uint8 38 MaritalStatus Married 1676 non-null uint8 39 MaritalStatus Single 1676 non-null uint8

dtypes: int32(1), int64(23), uint8(17)

memory usage: 335.7 KB

OverTime Yes

create the final dataframe

```
df final = data df2.copy()
df final
```

6/22, 8:21 PM					JoshuaBurden	Assignment10	-2	
Out[]:		Age	Attrition	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate
	0	41	0	1102	1	2	2	94
	1	49	0	279	8	1	3	61
	2	37	1	1373	2	2	4	92
	3	33	0	1392	3	4	4	56
	4	27	0	591	2	1	1	40
	•••							
	1671	26	1	471	24	3	3	66
	1672	46	0	1125	10	3	3	94
	1673	20	0	959	1	3	4	83
	1674	39	0	466	1	1	4	65
	1675	27	0	511	2	2	1	89
	1676 r	ows ×	41 colum	ins				
4								•
	Create	e a tra	ining and	test mode	set			
T- [].	C	-1.1	1	14:		4124		

```
In [ ]: from sklearn.model_selection import train_test_split
        from sklearn.tree import DecisionTreeClassifier
        from sklearn import tree
        from sklearn.metrics import accuracy_score
        from sklearn.metrics import confusion_matrix
In [ ]: X = df_final.drop(['Attrition'], axis='columns')
In [ ]: y= df_final['Attrition']
        y.to_frame().head()
Out[]:
           Attrition
        0
                 0
                 0
        2
                 1
        3
                 0
        4
                 0
```

```
In [ ]: print("X shape",X.shape,"\n","y shape",y.shape)
        X shape (1676, 40)
         y shape (1676,)
        num_cols = [col for col in data_df.columns if data_df[col].dtypes in ("int64", "float6")
In [ ]:
```

```
In [ ]: for col in num_cols:
    fig, ax = plt.subplots(1, figsize = (12, 6))
    sns.histplot(data = data_df[col], kde = True)
    plt.show()
```


Milestone 3

In Milestone 3, you will begin the process of selecting, building, and evaluating a model. You are required to train and evaluate at least one model in this milestone. Write step-by-step for performing each of these steps. You can use any methods/tools you think are most appropriate, but you should explain/justify why you are selecting the model(s) and evaluation metric(s) you choose. It is important to think about what type of model and metric makes sense for your problem. Again, do what makes the most sense for your project. Write a short overview/conclusion of the insights gained from your model building/evaluation.

It is important to note that these milestones are meant to keep you on track for the final project submission. At any point, you can pivot or modify your project as needed based on what you discover. These milestones are not final versions; they are drafts of the many steps you need to complete along the way.

As a reminder, Teams is a great place to discuss your project with your peers. Feel free to solicit feedback/input (without creating a group project!) and collaborate on your projects with your peers.

Each milestone will build on top of each other, so make sure you do not fall behind. Submit Milestones 1-3 together. I recommend building your project milestones in a Jupyter Notebook, building upon one another. However, make sure it is clear where each milestone begins and ends.

Predict the model Accuracy

```
In []: ## Display all the columns and rows so they can all be seen
pd.options.display.max_columns = None
pd.options.display.max_rows = None

## create a correlation matrix of the auto df and call is correlation_mat
correlation_matrix = X_train.corr()
correlation_matrix
```

Out[]:

	Age	DailyRate	DistanceFromHome	Education	EnvironmentSatisfac
Age	1.00	-0.01	-0.02	0.21	
DailyRate	-0.01	1.00	-0.02	-0.03	
DistanceFromHome	-0.02	-0.02	1.00	0.03	-
Education	0.21	-0.03	0.03	1.00	-
EnvironmentSatisfaction	0.02	0.01	-0.02	-0.02	
HourlyRate	0.02	0.04	0.04	-0.00	-
Jobinvolvement	0.05	0.04	0.01	0.05	
JobLevel	0.50	-0.01	-0.01	0.09	
JobSatisfaction	-0.01	0.03	-0.01	0.02	-
MonthlyIncome	0.50	-0.00	-0.02	0.09	
MonthlyRate	0.03	0.01	0.06	-0.02	
NumCompaniesWorked	0.27	0.02	-0.04	0.11	
PercentSalaryHike	0.04	0.02	0.04	-0.01	-
PerformanceRating	0.02	0.02	0.04	-0.01	-
RelationshipSatisfaction	0.04	-0.01	0.01	-0.00	-
Shift	0.03	0.06	0.01	-0.01	-
TotalWorkingYears	0.68	-0.02	-0.00	0.14	
TrainingTimesLastYear	-0.04	-0.02	-0.06	0.02	-
WorkLifeBalance	0.01	-0.02	-0.02	0.00	
YearsAtCompany	0.32	-0.04	0.01	0.05	
YearsInCurrentRole	0.22	0.01	0.01	0.05	-
YearsSinceLastPromotion	0.21	-0.04	0.01	0.04	
YearsWithCurrManager	0.22	-0.05	0.01	0.05	
BusinessTravel_Travel_Frequently	-0.04	-0.02	-0.01	0.00	-
BusinessTravel_Travel_Rarely	0.04	-0.00	-0.02	-0.01	
Department_Maternity	-0.04	0.02	0.08	-0.02	-
Department_Neurology	0.10	0.01	-0.10	0.02	
EducationField_Life Sciences	-0.03	-0.02	-0.03	0.01	-
EducationField_Marketing	0.06	-0.05	0.04	0.05	
EducationField_Medical	0.01	0.04	0.01	-0.09	-
EducationField_Other	-0.03	0.02	-0.01	0.06	
EducationField_Technical Degree	-0.02	0.04	-0.00	-0.01	
Gender_Male	-0.03	0.00	0.01	-0.04	-

Age DailyRate DistanceFromHome Education EnvironmentSatisfac

					3	,	e Distance				
		JobRol	e_Administr	ative	0.25	-0.0	4	0.01	0.09		
			JobRole_N	lurse	-0.09	-0.0	1	0.04	0.01		
			JobRole_C	Other	-0.10	0.0	4	-0.03	-0.04		-
		Jo	bRole_Ther	apist	0.07	-0.0	1	-0.01	-0.03		
		Marita	alStatus_Ma	rried	0.10	0.0	2	0.01	0.01		-
		Mar	italStatus_Si	ingle	-0.11	-0.0	9	-0.01	0.01		
			OverTime	e_Yes	0.04	0.0	3	0.02	-0.04		
4											•
In []:	X.desc	cribe()									
Out[]:		Age	DailyRate	Distar	nceFro	mHome	Education	Environmer	ntSatisfaction	HourlyRate	Jobli
-	count	1676.00	1676.00			1676.00	1676.00		1676.00	1676.00	
	mean	36.87	800.56			9.22	2.91		2.71	65.47	
	std	9.13	401.59			8.16	1.03		1.10	20.21	
	min	18.00	102.00			1.00	1.00		1.00	30.00	
	25%	30.00	465.00			2.00	2.00		2.00	48.00	
	50%	36.00	796.50			7.00	3.00		3.00	65.50	
	75%	43.00	1157.00			14.00	4.00		4.00	83.00	
	max	60.00	1499.00			29.00	5.00		4.00	100.00	
4											>
In []:		tions.di cribe()	splay.floa	at_for	mat	= '{:.2f	}'.format				
Out[]:	count mean std min 25% 50% 75% max Name:	1676. 0. 0. 0. 0. 0. 1. Attritic	12 32 00 00 00 00	: floa	t64						
In []:	fig, a sns.he	eatmap(X vm	ulticollin .subplots _train.com in=-1, vma	(figsi rr(), ax=1,	cent	20, 20)) er=0, are= Tru e	e)	18)			

plt.show()


```
In []: df_correlations = X_train.corr().abs().stack().reset_index().sort_values(0, ascending=
# zip the variable name columns in a new column named "pairs"
    df_correlations['pairs'] = list(zip(df_correlations.level_0, df_correlations.level_1))
# set index to pairs
    df_correlations.set_index(['pairs'], inplace = True)

# rename our results column to correlation
    df_correlations.rename(columns={0: "correlation"}, inplace=True)

# Drop 1:1 correlations to get rid of self pairs
    df_correlations.drop(df_correlations[df_correlations['correlation'] == 1.000000].index

# view pairs above 75% correlation and below 90% correlation (engineered features will df_correlations[(df_correlations.correlation>.75) & (df_correlations.correlation<.95)]</pre>
```

Out[]: level_0 level_1 correla

		pairs
JobLevel	TotalWorkingYears	(TotalWorkingYears, JobLevel)
TotalWorkingYears	JobLevel	(JobLevel, TotalWorkingYears)
YearsWithCurrManager	YearsAtCompany	(YearsAtCompany, YearsWithCurrManager)
YearsAtCompany	YearsWithCurrManager	(YearsWithCurrManager, YearsAtCompany)
TotalWorkingYears	MonthlyIncome	(MonthlyIncome, TotalWorkingYears)
MonthlyIncome	TotalWorkingYears	(TotalWorkingYears, MonthlyIncome)
PerformanceRating	PercentSalaryHike	(PercentSalaryHike, PerformanceRating)
PercentSalaryHike	PerformanceRating	(PerformanceRating, PercentSalaryHike)
BusinessTravel_Travel_Rarely	BusinessTravel_Travel_Frequently	(BusinessTravel_Travel_Frequently, BusinessTravel_Travel_Rarely)
BusinessTravel_Travel_Frequently	BusinessTravel_Travel_Rarely	(BusinessTravel_Travel_Rarely, BusinessTravel_Travel_Frequently)
YearsInCurrentRole	YearsAtCompany	(YearsAtCompany, YearsInCurrentRole)
YearsAtCompany	YearsInCurrentRole	(YearsInCurrentRole, YearsAtCompany)

Out[]:		level_0	level_1	0
	656	TotalWorkingYears	TotalWorkingYears	1.00
	647	TotalWorkingYears	JobLevel	0.78
	649	TotalWorkingYears	MonthlyIncome	0.77
	640	TotalWorkingYears	Age	0.68
	659	TotalWorkingYears	YearsAtCompany	0.63
	662	TotalWorkingYears	YearsWithCurrManager	0.48
	660	TotalWorkingYears	YearsInCurrentRole	0.47
	673	TotalWorkingYears	JobRole_Administrative	0.43
	661	TotalWorkingYears	YearsSinceLastPromotion	0.39
	651	TotalWorkingYears	NumCompaniesWorked	0.24
	675	TotalWorkingYears	JobRole_Other	0.18
	643	TotalWorkingYears	Education	0.14
	674	TotalWorkingYears	JobRole_Nurse	0.13
	666	TotalWorkingYears	Department_Neurology	0.13
	665	TotalWorkingYears	Department_Maternity	0.09
	676	TotalWorkingYears	JobRole_Therapist	0.09
	678	TotalWorkingYears	MaritalStatus_Single	0.07
	668	TotalWorkingYears	EducationField_Marketing	0.05
	672	TotalWorkingYears	Gender_Male	0.05
	677	TotalWorkingYears	MaritalStatus_Married	0.05
	650	TotalWorkingYears	MonthlyRate	0.05
	664	TotalWorkingYears	BusinessTravel_Travel_Rarely	0.04
	667	TotalWorkingYears	EducationField_Life Sciences	0.04
	657	TotalWorkingYears	TrainingTimesLastYear	0.04
	670	TotalWorkingYears	EducationField_Other	0.04
	679	TotalWorkingYears	OverTime_Yes	0.03
	653	TotalWorkingYears	PerformanceRating	0.03
	669	TotalWorkingYears	EducationField_Medical	0.03
	663	TotalWorkingYears	BusinessTravel_Travel_Frequently	0.03
	671	TotalWorkingYears	EducationField_Technical Degree	0.02
	641	TotalWorkingYears	DailyRate	0.02
	648	TotalWorkingYears	JobSatisfaction	0.02
	652	TotalWorkingYears	PercentSalaryHike	0.02

	level_0	level_1	0
658	TotalWorkingYears	WorkLifeBalance	0.01
645	TotalWorkingYears	HourlyRate	0.01
654	TotalWorkingYears	RelationshipSatisfaction	0.01
655	TotalWorkingYears	Shift	0.01
644	TotalWorkingYears	EnvironmentSatisfaction	0.01
646	TotalWorkingYears	JobInvolvement	0.00
642	TotalWorkingYears	DistanceFromHome	0.00

Observation:

Total Years worked has a high positive corelation with the following:

- Job Level
- Monthly Income
- Years At Company

This means that for the number of years worked within the a company, there is a high likelihood these individuals are paid well, and have spent a long while in a prestigious career within their company and are less likely to leave.

```
In []: ## Creating linear chart between TotalYearsWorked and couple of constant variables avo
## Among various features available in the dataset,
## I have chosen below constant variables for plotting which are most useful compared
linearCols = [ 'MonthlyIncome', 'Age', 'YearsAtCompany', 'DistanceFromHome', 'TotalWor

## Plotting linear graph between Price and vriables present in the above list
for col in linearCols:
    lat_changes = X_train.groupby(col)['TotalWorkingYears'].mean()
    plt.scatter(lat_changes.index, lat_changes)
    plt.title("Linearity check between Income Monthly and "+ col)
    plt.xlabel(col)
    plt.ylabel('Total Years Worked')
    plt.show()
```


Observation:

• MonthlyIncome vs TotalWorkingYears: Total years worked vs monthly income was linear in value as even the lowest of incomes still increased more than the previous year worked.

- Age vs TotalWorkingYears: We see something interesting at the age of 50-55 where the
 total years worked vs age significantly drops indicating that the median age for people in
 this dataset leaving the workforce around 55 while outliers do exist that make it past the
 working age of 60.
- YearsAtCompany vs TotalWorkingYears: The longer a person has total working years, it would seem that the is a linear climb of individuals working with the same company
- DistanceFromHome vs TotalWorkingYears: Seems somewhat linear but in two different ways, individuals who live closer work at the same place longer, and people that live farther away tend to leave sooner after 10 miles of distance, while at the same time an equal amount of people after 10 miles will continue to work for the same institution
- TotalWorkingYears vs TotalWorkingYears: 1:1 relationship so should be a straight line.
- YearsInCurrentRole vs TotalWorkingYears: Those who work the same role tend to stay in the same institution so a linear relationship is created.

RandomForest Classification

```
In [ ]:
        from sklearn.ensemble import RandomForestClassifier
        rd = RandomForestClassifier()
        rd.fit(X_train,y_train)
In [ ]:
        RandomForestClassifier()
Out[]:
In [ ]: y_pred = rd.predict(X_test)
In [ ]:
        print(f'RandomForest Classification Score: {accuracy score(y test, y pred)}')
        RandomForest Classification Score: 0.8902147971360382
        cm = confusion matrix(y test, y pred)
In [ ]:
        sns.set(font scale=1.4)
        sns.heatmap(cm, annot=True, annot_kws={"size": 16}, fmt="d", cmap='Accent')
        plt.show()
```


Observation:

- True positives where high along with true negatives
- Larger scores of false negatives were counted over false positives

In []: