

GLOBALLY GENERATED VECTOR BUNDLES OF RANK 2 ON A SMOOTH QUADRIC THREEFOLD

E. BALlico, S. HUH AND F. MALASPINA

ABSTRACT. We investigate the existence of globally generated vector bundles of rank 2 with $c_1 \leq 3$ on a smooth quadric threefold and determine their Chern classes. As an automatic consequence, every rank 2 globally generated vector bundle on Q with $c_1 = 3$ is an odd instanton up to twist.

1. INTRODUCTION

Globally generated vector bundles on projective varieties play an important role in algebraic geometry. If they are non-trivial they must have strictly positive first Chern class. Globally generated vector bundles on projective spaces with low first Chern class have been investigated in several papers. If $c_1(\mathcal{E}) = 1$ then it is easy to see that modulo trivial summands we have only $\mathcal{O}_{\mathbb{P}^n}(1)$ and $T\mathbb{P}^n(-1)$. The classification of rank r globally generated vector bundles with $c_1 = 2$ is settled in [14]. In [9] the second author carried out the case of rank two with $c_1 = 3$ on \mathbb{P}^3 and in [3] the authors continued the study until $c_1 \leq 5$. This classification was extended to any rank in [10] and to any \mathbb{P}^n ($n \geq 3$) in [1] and [15]. In [5] are shown the possible Chern classes of rank two globally generated vector bundles on \mathbb{P}^2 .

Let Q be a smooth quadric threefold over an algebraically closed field of characteristic zero. The aim of this paper is to investigate the existence of globally generated vector bundles of rank 2 on Q with $c_1 \leq 3$. We prove the following theorem:

Theorem 1.1. *There exists an indecomposable and globally generated vector bundle of rank 2 on Q with the Chern classes (c_1, c_2) , $c_1 \leq 3$ if and only if*

$$(c_1, c_2) \in \{(1, 1), (2, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9)\}.$$

We use an old method of associating to a rank 2 vector bundle on Q a curve in Q , and relate properties of the bundle to properties of the curve. In Sect.2 we set up basic computations and deal with the case $c_1 = 1$ as a preliminary case. In Sect.3 we prove that every indecomposable and globally

1991 *Mathematics Subject Classification.* Primary: 14F99; Secondary: 14J99.

Key words and phrases. Rank two vector bundles, globally generated, smooth quadric threefold.

The second author is supported by Basic Science Research Program 2012-0002904 through NRF funded by MEST.

generated vector bundle of rank 2 on Q with $c_1 = 2$ is a pull-back of a null-correlation bundle on \mathbb{P}^3 twisted by 1. In Sect.4, 5 and 6, we deal with the case of $c_1 = 3$. First we determine the possible second Chern class c_2 using the Liaison theory, that is $5 \leq c_2 \leq 9$. In each case we prove the existence of globally generated vector bundle of rank 2. In Sect.4 we explain the case of $c_2 = 5, 6, 7$ based on the result [12] about the moduli spaces of rank 2 vector bundles on Q . The critical part of this paper is on the existence of globally generated vector bundles of rank 2 with $c_2 = 8$ and 9. It is equivalent to the existence of a smooth elliptic curve C of degree c_2 whose ideal sheaf twisted by 3 is globally generated. The main ingredient is the result in [7] with replacing \mathbb{P}^3 by Q , by which we can deform a nodal reducible curve of degree c_2 constructed in a suitable way to a smooth elliptic curve that we need.

A typical way to construct a vector bundle on Q is by restriction of a vector bundle on \mathbb{P}^4 or by a pull-back of a vector bundle on \mathbb{P}^3 along a linear projection from Q to \mathbb{P}^3 . The spinor bundle Σ is not obtained by either one of these ways and it plays an important role in describing the globally generated vector bundle on Q . In fact, from the classification we observe that every rank two globally generated vector bundle on Q with $c_1 = 3$ is, up to twist, an odd instanton that is the cohomology of a monad involving Σ (see [6]).

The second author would like to thank Politecnico di Torino, especially the third author for warm hospitality.

2. PRELIMINARIES

Let Q be a smooth quadric hypersurface in \mathbb{P}^4 and let \mathcal{E} be a coherent sheaf of rank r on Q . Then we have:

$$\begin{aligned} c_1(\mathcal{E}(k)) &= c_1 + kr \\ c_2(\mathcal{E}(k)) &= c_2 + 2k(r-1)c_1 + 2k^2 \binom{r}{2} \\ c_3(\mathcal{E}(k)) &= c_3 + k(r-2)c_2 + 2k^2 \binom{r-1}{2} + 2k^3 \binom{r}{3} \\ \chi(\mathcal{E}) &= (2c_1^3 - 3c_1c_2 + 3c_3)/6 + 3(c_1^2 - c_2)/2 + 13c_1/6 + r, \end{aligned}$$

where (c_1, c_2, c_3) is the Chern classes of \mathcal{E} . In particular, when \mathcal{E} is a vector bundle of rank 2 with $c_1 = -1$, we have

$$\begin{aligned} \chi(\mathcal{E}) &= 1 - c_2, \quad \chi(\mathcal{E}(1)) = 6 - 2c_2, \quad \chi(\mathcal{E}(-1)) = 0, \\ \chi(\text{End}(\mathcal{E})) &= 7 - 6c_2. \end{aligned}$$

Let $\mathfrak{M}(c_1, c_2)$ be the moduli space of stable vector bundles of rank 2 on Q with the Chern classes (c_1, c_2) .

Proposition 2.1. [13] *Let \mathcal{E} be a globally generated vector bundle of rank r on Q such that $H^0(\mathcal{E}(-c_1)) \neq 0$, where c_1 is the first Chern class of \mathcal{E} .*

Then we have

$$\mathcal{E} \simeq \mathcal{O}_Q^{\oplus(r-1)} \oplus \mathcal{O}_Q(c_1).$$

Now assume that \mathcal{E} is a globally generated vector bundle of rank 2 on Q . Then \mathcal{E} admits an exact sequence

$$(1) \quad 0 \rightarrow \mathcal{O}_Q \rightarrow \mathcal{E} \rightarrow \mathcal{I}_C(c_1) \rightarrow 0,$$

where C is a smooth curve on Q . Notice that $\omega_C \simeq \mathcal{O}_C(-3 + c_1)$ and $c_2(\mathcal{E}) = \deg(C)$.

If l is a line on Q , then $\mathcal{E}|_l$ is also globally generated, which means in particular that $c_1(\mathcal{E}) \geq 0$.

Remark 2.2. $\mathcal{E} \cong \mathcal{O}_Q(c_1) \oplus \mathcal{O}_Q$ if and only if $C = \emptyset$.

Proposition 2.3. *We have $c_1(\mathcal{E}) = 1$ if and only if either $\mathcal{E} \cong \mathcal{O}_Q(1) \oplus \mathcal{O}_Q$ or \mathcal{E} is the spinor bundle.*

Proof. Both $\mathcal{O}_Q(1) \oplus \mathcal{O}_Q$ and the spinor bundle are globally generated and have the prescribed Chern classes. Hence it is sufficient to consider the case when $C \neq \emptyset$ by the remark 2.2. Since C is smooth and $\mathcal{I}_C(1)$ is globally generated, it is contained in a codimension 2 linear section of Q . Hence C is either a smooth conic or a line. In both cases C is ACM. From the sequence (1) we get that \mathcal{E} is an ACM vector bundle. Hence \mathcal{E} is either decomposable or a twist of the spinor bundle by Theorem 3.5 in [11]. Since \mathcal{E} is globally generated and $c_1(\mathcal{E}) = 1$, we get that either $\mathcal{E} \cong \mathcal{O}_Q(1) \oplus \mathcal{O}_Q$ or \mathcal{E} is the spinor bundle. \square

3. RANK TWO GLOBALLY GENERATED BUNDLES WITH $c_1 = 2$

In this section we prove the following result.

Proposition 3.1. *Let \mathcal{E} be a rank 2 vector bundle with $c_1(\mathcal{E}) = 2$. \mathcal{E} is globally generated if and only if \mathcal{E} is either isomorphic to*

- (1) $\mathcal{O}_Q(a) \oplus \mathcal{O}_Q(2 - a)$ with $a = 0, 1$ or
- (2) a pull-back of a null-correlation bundle on \mathbb{P}^3 twisted by 1

Lemma 3.2. *Let $C = E_1 \sqcup E_2 \sqcup J \subset Q$ be a curve with E_1 and E_2 smooth conics and $J \neq \emptyset$. Then $\mathcal{I}_C(2)$ is not globally generated.*

Proof. Assume that $\mathcal{I}_C(2)$ is globally generated. Let $H \subset \mathbb{P}^4$ denote a general hyperplane containing E_1 . Set $Q' := H \cap Q$. Q' is a smooth quadric surface, the scheme $Z := H \cap (E_2 \cup J)$ is a zero-dimensional scheme of degree at least 3 and $Z \cap E_1 = \emptyset$. Since $\mathcal{I}_C(2)$ is globally generated, so is $\mathcal{I}_{E_1 \cup Z, Q'}(2, 2)$; since E_1 is a curve of type $(1, 1)$ on Q' and $Z \cap E_1 = \emptyset$, so $\mathcal{I}_Z(1, 1)$ is globally generated. But this is absurd since $\deg(Z) \geq 3$. \square

Proof of Proposition 3.1. Let us assume that the vector bundle \mathcal{E} on Q is globally generated with $c_1(\mathcal{E}) = 2$ and then it fits into the exact sequence (1) with $c_1 = 2$ and C a smooth curve. Since $\omega_C \simeq \mathcal{O}_C(-1)$, C is a disjoint union of conics, i.e. $C = C_1 \cup \dots \cup C_r$, where each C_i is a conic.

By Remark 2.2 we have $\mathcal{E} \cong \mathcal{O}_Q(2) \oplus \mathcal{O}_Q$ if and only if $r = 0$. Now assume $r > 0$. Lemma 3.2 gives $r \in \{1, 2\}$. As the first case let us assume that $r = 1$. Since a smooth conic is ACM, the sequence (1) gives that \mathcal{E} is ACM. Hence we have $\mathcal{E} \cong \mathcal{O}_Q(1) \oplus \mathcal{O}_Q(1)$ by Theorem 3.5 in [11].

Now let us assume that $r = 2$. Let $M_i \subset \mathbb{P}^4$ be the plane spanned by C_i . Since $M_i \cap Q = C_i$ and $C_1 \cap C_2 = \emptyset$, the set $M_1 \cap M_2$ cannot be a line. Hence $M_1 \cap M_2$ is a point, say P . Since $M_i \cap Q = C_i$ and $C_1 \cap C_2 = \emptyset$, we have $P \notin Q$. The linear projection $\ell_P : \mathbb{P}^4 \setminus \{P\} \rightarrow \mathbb{P}^3$ send each E_i onto a line L_i . In Prop. 3.2 of [16], it was shown that all bundles as an extension in (1) are pull-back from bundles from extensions

$$(2) \quad 0 \rightarrow \mathcal{O}_{\mathbb{P}^3} \rightarrow \mathcal{F} \rightarrow \mathcal{I}_{L_1 \sqcup L_2}(2) \rightarrow 0$$

on \mathbb{P}^3 , in which \mathcal{F} is a null-correlation bundle twisted by 1.

4. RANK TWO GLOBALLY GENERATED BUNDLES WITH $c_1 = 3$

Let \mathcal{E} be a globally generated vector bundle of rank 2 on Q with the Chern classes (c_1, c_2) , $c_1 \geq 3$. It fits into the exact sequence (1).

Lemma 4.1. *The Chern classes (c_1, c_2) of \mathcal{E} satisfies the following inequality for $c_1 \geq 3$:*

$$c_2 \leq \frac{2}{3}(2c_1 + 1)(c_1 - 1).$$

In particular, if $c_1 = 3$, we have $c_2 \leq 9$.

Proof. Since $\mathcal{I}_C(c_1)$ is globally generated, so there are two hypersurfaces of degree c_1 in Q whose intersection is a curve X containing C . Let Y be a curve such that $X = C + Y$. If \mathcal{E} does not split, then Y is not empty so we have the exact sequence of liaison:

$$0 \rightarrow \mathcal{I}_X(c_1) \rightarrow \mathcal{I}_C(c_1) \rightarrow \omega_Y(3 - c_1) \rightarrow 0.$$

Since $\mathcal{I}_C(c_1)$ is globally generated, so is $\omega_Y(3 - c_1)$. It implies that

$$\deg(\omega_Y(3 - c_1)) = 2g' - 2 + d'(3 - c_1) \geq 0,$$

($d' = \deg(Y)$, $g' = g(Y)$) and so $g' \geq 0$. On the other hand, by liaison, we have

$$g' - g = \frac{1}{2}(d' - d)(2c_1 - 3)$$

and $d' = 2c_1^2 - d$, $2g - 2 = d(c_1 - 3)$ since $\omega_C(3 - c_1) = \mathcal{O}_C$. Here $d = \deg(C)$ and $g = g(C)$. Thus we have $g' = 1 + \frac{d(c_1 - 3)}{2} + (c_1^2 - d)(2c_1 - 3) \geq 0$ and so

$$c_2 \leq \frac{2(2c_1^3 - 3c_1^2 + 1)}{3c_1 - 3} = \frac{2}{3}(2c_1 + 1)(c_1 - 1).$$

□

Assume that \mathcal{E} is a globally generated vector bundle of rank 2 on Q with $c_1 = 3$ that fits into the sequence:

$$0 \rightarrow \mathcal{O}_Q \rightarrow \mathcal{E} \rightarrow \mathcal{I}_C(3) \rightarrow 0,$$

where C is a smooth curve with $\deg(C) = c_2(\mathcal{E})$.

Note that if $H^0(\mathcal{E}(-3)) \neq 0$, then \mathcal{E} is isomorphic to $\mathcal{O}_Q \oplus \mathcal{O}_Q(3)$, which is globally generated. So let us assume that $H^0(\mathcal{E}(-3)) = 0$.

As the first case, let us assume that $H^0(\mathcal{E}(-2)) \neq 0$, i.e. \mathcal{E} is unstable.

Proposition 4.2. *Let \mathcal{E} be a globally generated unstable vector bundle of rank 2 on Q with $c_1(\mathcal{E}) = 3$. Then \mathcal{E} is a direct sum of line bundles. In other words, we have*

$$\mathcal{E} \simeq \mathcal{O}_Q(a) \oplus \mathcal{O}_Q(3-a), \quad a = 0, 1.$$

Proof. Note that $h^0(\mathcal{I}_C(1)) \geq 0$ and so C is contained in the complete intersection of Q and two hypersurfaces of degree 1 and 3 inside \mathbb{P}^4 that is the ambient space containing Q . In particular, we have $\deg(C) \leq 6$. On the other hand, from a section in $H^0(\mathcal{E}(-2))$, we have a sequence

$$0 \rightarrow \mathcal{O}_Q(2) \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{C'}(1) \rightarrow 0.$$

If C' is empty, then \mathcal{E} is isomorphic to $\mathcal{O}_Q(1) \oplus \mathcal{O}_Q(2)$. If not, the degree of C' , which is $c_2(\mathcal{E}) - 4$ is at least 1. Thus $\deg(C) = c_2(\mathcal{E})$ is either 5 or 6. Note that $\omega_C \simeq \mathcal{O}_C$ and so C consists of smooth elliptic curves. If $\deg(C) = 5$, then C is a quintic elliptic curve contained in a hyperplane section of Q which is a quadric surface Q_2 . In the case when Q_2 is smooth, let (a, b) is the bidegree of C as a divisor of the quadric surface and then we have $\deg(C) = 5 = a + b$ and $g(C) = 1 = ab - a - b + 1$. But it is impossible. Similarly we can show that $\deg(C) = 6$ is not possible. If Q_2 is a quadric surface cone, we can show that it is impossible by Exercise V.2.9 of [8]. \square

Assume now that $H^0(\mathcal{E}(-2)) = 0$, i.e. \mathcal{E} is stable. By the Bogomolov inequality, we have $c_2(\mathcal{E}) \geq 5$. Recall that $c_2(\mathcal{E}) \leq 9$.

Note that \mathcal{E} fits into the sequence

$$(3) \quad 0 \rightarrow \mathcal{O}_Q(1) \rightarrow \mathcal{E} \rightarrow \mathcal{I}_Z(2) \rightarrow 0.$$

with Z a locally complete intersection, $\deg(Z) = c_2 - 4$ and $\omega_Z \simeq \mathcal{O}_Z(-2)$.

If $c_2(\mathcal{E}) = 5$, then Z is a line. From the (3) we get that \mathcal{E} is ACM. Since \mathcal{E} is stable, we get $\mathcal{E} \simeq \Sigma(1)$ [11]. Obviously $\Sigma(1)$ is globally generated.

If $c_2(\mathcal{E}) = 6$, then \mathcal{E} is the cohomology of the following monad (Remark 4.8 in [12]):

$$0 \rightarrow \mathcal{O}_Q(1) \rightarrow \Sigma(1)^{\oplus 2} \rightarrow \mathcal{O}_Q(2) \rightarrow 0.$$

In this case, Z is either 2 disjoint lines on Q or a line with multiplicity 2. It is also known to be globally generated.

So we can assume that $H^0(\mathcal{E}(-1)) = 0$ and $c_2(\mathcal{E}) \geq 7$.

Remark 4.3. If $c_2(\mathcal{E}) = 7$, then a general vector bundle \mathcal{E} in $\mathfrak{M}(3, 7)$ can be shown to be globally generated using the ‘Castelnuovo-Mumford criterion’ (Theorem 5.2 in [12]). The same result also follows from the Lemma 6.2 with $C = A$. Since $h^0(\mathcal{I}_C(2)) = 0$ and $h^0(C, \mathcal{O}_C(2)) = 14 = h^0(\mathcal{O}_Q(2))$, (1) gives $h^1(\mathcal{E}(-1)) = 0$. Since C is an elliptic curve, we have $h^1(C, \mathcal{O}_C(1)) = 0$. Hence (1) gives $h^2(\mathcal{E}(-2)) = h^1(C, \mathcal{O}_C(1)) = 0$. We have $h^3(\mathcal{E}(-3)) = h^0(\mathcal{E}^\vee) = h^0(\mathcal{E}(-3)) = 0$. Hence the ‘Castelnuovo-Mumford criterion’ gives that \mathcal{E} is globally generated.

5. CASE $(c_1, c_2) = (3, 8)$

Let $\mathcal{F} = \mathcal{E}(-2)$. We can compute:

$$\begin{cases} H^1(\mathcal{F}(t)) = 0 \text{ for } t \leq -1 \\ \chi(\mathcal{F} \otimes \mathcal{F}^\vee) = -17 \\ \chi(\mathcal{F}) = -\chi(\mathcal{F}(-2)) = -3 \\ \chi(\mathcal{F}(1)) = -\chi(\mathcal{F}(-3)) = -2 \\ \chi(\mathcal{F}(-1)) = 0 \\ \chi(\mathcal{F}(2)) = 7 \end{cases}$$

Then the cohomology table for $\mathcal{F} = \mathcal{E}(-2)$ is as follows:

0	0	0	0	0	0
2	3	0	0	0	0
0	0	0	3	2	b
0	0	0	0	0	a
-3	-2	-1	0	1	2

with $a - b = 7$.

Proposition 5.1. *The vector bundles \mathcal{E} in $\mathfrak{M}(3, 8)$ with $H^0(\mathcal{E}(-1)) = 0$ is the cohomology of the following monad:*

$$0 \rightarrow \mathcal{O}_Q(1)^{\oplus 3} \rightarrow \Sigma(1)^{\oplus 4} \rightarrow \mathcal{O}_Q(2)^{\oplus 3} \rightarrow 0$$

Proof. Let us consider the sequence killing $H^1(\mathcal{F})$:

$$(4) \quad 0 \rightarrow \mathcal{F} \rightarrow \mathcal{B} \rightarrow \mathcal{O}_Q^{\oplus 3} \rightarrow 0$$

$H_*^2(\mathcal{F}) \cong H_*^2(\mathcal{B})$ and $H^1(\mathcal{F}) = H^0(\mathcal{F}) = 0$ since the map $H^0(\mathcal{O}_Q^{\oplus 3}) \rightarrow H^1(\mathcal{F})$ is an isomorphism. Moreover $h^3(\mathcal{B}(-3)) = h^3(\mathcal{O}_Q(-3)^{\oplus 3}) = 3$. So the cohomology table for \mathcal{B} and \mathcal{B}^\vee are as follows respectively :

3	0	0	0	0	0	0
2	3	0	0	0	0	0
0	0	0	0	0	3	2
0	0	0	0	0	0	3
-3	-2	-1	0	-3	-2	-1

Now let us consider the sequence killing $H^1(\mathcal{B}^\vee)$ and $H^1(\mathcal{B}^\vee(-1))$:

$$(5) \quad 0 \rightarrow \mathcal{B}^\vee \rightarrow \mathcal{P} \rightarrow \mathcal{O}_Q(1)^{\oplus 3} \oplus \mathcal{O}_Q^{\oplus 2} \rightarrow 0$$

$H_*^2(\mathcal{P}) \cong H_*^2(\mathcal{B}^\vee)$ and $H^1(\mathcal{P}) = H^1(\mathcal{P}(-1)) = 0$. $h^0(\mathcal{B}^\vee) - h^0(\mathcal{P}) + h^0(\mathcal{O}_Q(1)^{\oplus 3} \oplus \mathcal{O}_Q^{\oplus 2}) - h^1(\mathcal{B}^\vee) = 0$ then $h^0(\mathcal{P}) = 18$. Moreover $h^3(\mathcal{P}(-3)) = h^3(\mathcal{O}_Q(-3)^{\oplus 2}) = 2$. So the cohomology table for \mathcal{P} and \mathcal{P}^\vee are as follows:

2	0	0	0
0	0	0	0
0	0	0	0
0	0	0	18
-3	-2	-1	0

18	0	0	0
0	0	0	0
0	0	0	0
0	0	0	2
-3	-2	-1	0

Since $\mathcal{P}(1)$ and $\mathcal{P}^\vee(1)$ are Castelnuovo-Mumford regular, so \mathcal{P} is an ACM vector bundle. Note that the rank of \mathcal{P} is 10, $c_1(\mathcal{P}) = 4$, $h^0(\mathcal{P}) = 18$ and $h^0(\mathcal{P}^\vee) = 2$. So we have $\mathcal{P} = \mathcal{O}_Q^{\oplus 2} \oplus \Sigma^{\oplus 4}$, the sequence (5) reduces to

$$0 \rightarrow \mathcal{B}^\vee \rightarrow \Sigma^{\oplus 4} \rightarrow \mathcal{O}_Q(1)^{\oplus 3} \rightarrow 0$$

and the monad is as we claimed. \square

Remark 5.2. In [6], every vector bundle \mathcal{F} of rank 2 with the Chern classes $(c_1, c_2) = (-1, k)$ and $H^1(\mathcal{F}(-1)) = 0$ on Q , can be shown to be the cohomology of a monad

$$0 \rightarrow \mathcal{O}_Q^{\oplus k-1} \rightarrow \Sigma^{\oplus k} \rightarrow \mathcal{O}_Q(1)^{\oplus k-1} \rightarrow 0$$

using the Kapranov spectral sequences on Q .

Note that $H^1(\mathcal{E}(-3)) = H^1(\mathcal{I}_C) = 0$ implies that $H^0(\mathcal{O}_C) = 1$, i.e. C is a smooth irreducible elliptic curve of degree 8.

Proposition 5.3. *There is a globally generated and stable vector bundle \mathcal{E} of rank 2 on Q with $(c_1, c_2) = (3, 8)$ such that*

- $h^0(\mathcal{E}(-1)) = 0$, $h^0(\mathcal{E}) = 7$
- $h^1(\mathcal{E}(-1)) = 2$, $h^1(\mathcal{E}(-2)) = 3$ and $h^1(\mathcal{E}(t)) = 0$ for all $t \geq 0, t \leq -3$

Let us fix 5 distinct points $P_1, \dots, P_5 \in \mathbb{P}^2$ such that no 3 of them are collinear. Let $\pi : W \rightarrow \mathbb{P}^2$ be the blowing-up of these 5 points. The anticanonical line bundle ω_W^\vee of W is very ample and the image $U \subset \mathbb{P}^4$ of W by the complete linear system $|\omega_W^\vee|$ is a smooth Del Pezzo surface of degree 4 which is the complete intersection of two quadric hypersurfaces ([4]) (in the standard notation for Del Pezzo surfaces $\omega_W^\vee = (3; 1, 1, 1, 1, 1)$, i.e. it is given by the strict transform of all cubic plane curves containing all points P_1, \dots, P_5). Conversely, any smooth complete intersection $U' \subset \mathbb{P}^4$ is the complete intersection of two quadric hypersurfaces. Hence for general P_1, \dots, P_5 we may assume that U is contained in a smooth quadric. Hence we see $U \subset Q$. Every curve $C \subset U$ is a curve contained in Q . We have

$h^0(U, \mathcal{O}_U(1)) = 5$, $h^0(U, \mathcal{O}_U(2)) = 13$ and $h^0(U, \mathcal{O}_U(3)) = \chi(\mathcal{O}_U) + \mathcal{O}_U(3) \cdot \mathcal{O}_U(4)/2 = 25$ by the Riemann-Roch theorem.

Remark 5.4. Let $E \subset \mathbb{P}^4$ be a smooth and non-degenerate elliptic curve such that $\deg(E) = 6$. Since $h^1(\mathcal{I}_{E, \mathbb{P}^4}(1)) = 1$, it is easy to check that $h^1(\mathcal{I}_{E, \mathbb{P}^4}(2)) = 0$. Castelnuovo-Mumford's lemma implies that $\mathcal{I}_{E, \mathbb{P}^4}(3)$ is spanned. Hence for every smooth elliptic curve $E \subset Q$ with $\deg(E) = 6$ and E not contained in a hyperplane, the sheaf $\mathcal{I}_E(3)$ on Q is spanned.

Fix any such smooth elliptic curve $E \subset Q$ such that $\deg(E) = 6$ and E is not contained in a hyperplane of \mathbb{P}^4 . Since $h^0(E, \mathcal{O}_E(2)) = 12 = h^0(\mathcal{O}_Q(2)) - 2$, it is contained in some quadric hypersurface of Q . Let $U \subset Q$ be the smooth Del Pezzo surface of degree 4 just introduced. We find smooth elliptic curves of degree 6 inside U by taking the smooth elements of type $(3; 1, 1, 1, 0, 0)$. Fix one such curve E . Since $h^0(U, \mathcal{O}_U(2)) = 13$ and $h^0(E, \mathcal{O}_E(2)) = 12$, E is contained in at least one quadric hypersurface, T , of U . See E as a curve of type $(3; 1, 1, 1, 0, 0)$. T has type $(6; 2, 2, 2, 2, 2)$. Hence the curve $T - E$ is a curve of type $(3; 1, 1, 1, 2, 2)$. No cubic plane curve with at least two singular points is integral. We see that $h^0(U, \mathcal{O}_U(T - U)) = 1$ and that the unique curve in $|T - U|$ is the disjoint union of two lines R_1 and R_2 with R_1 the image of the strict transform in W of the only conic containing the five points P_1, \dots, P_5 (i.e. the only curve of type $(2; 1, 1, 1, 1, 1)$), while R_2 is the image in U of the strict transform of the line of \mathbb{P}^2 spanned by P_4 and P_5 (i.e. the only curve of type $(1; 0, 0, 0, 1, 1)$).

Remark 5.5. Since $\mathcal{I}_E(3)$ is spanned the line bundle $\mathcal{L} := \mathcal{O}_U(3)(-E)$ is spanned. Let $\alpha : U \rightarrow \mathbb{P}^r$, $r := h^0(U, \mathcal{L}) - 1$, denote the morphism induced by $|\mathcal{L}|$. Since \mathcal{L} has type $(6; 2, 2, 2, 3, 3)$, we have $\mathcal{L} \cdot \mathcal{L} = 36 - 4 - 4 - 4 - 9 - 9 = 6$ and $\mathcal{L} \cdot \omega_U^\vee = \mathcal{L} \cdot \mathcal{O}_U(1) = 18 - 2 - 2 - 2 - 3 - 3 = 6$. Riemann-Roch gives $\chi(\mathcal{L}) = 1 + (6+6)/2 = 7$. Since \mathcal{L} is spanned, Serre duality gives $h^2(\mathcal{L}) = 0$. Hence $r \geq 6$. Since $\alpha(U)$ spans \mathbb{P}^r , we have $\deg(\alpha(U)) \geq 6$. Since $\mathcal{L} \cdot \mathcal{L} > 0$, $\alpha(U)$ is a surface. Since $\deg(\alpha) \cdot \deg(\alpha(U)) = \mathcal{L} \cdot \mathcal{L} = 6$, we have $\deg(\alpha) = 1$, i.e. α is birational onto its image.

Lemma 5.6. *If the pair (O_1, O_2) is general in $U \times U$, then $\mathcal{I}_{E \cup \{O_1, O_2\}, U}(3)$ is spanned.*

Proof. Take \mathcal{L} , α and \mathbb{P}^r as in Remark 5.5. Lemma 5.6 just says that $\{O_1, O_2\}$ is the scheme-theoretic base locus, β , of the linear system $|\mathcal{I}_{\{O_1, O_2\}} \otimes \mathcal{L}|$ on U . Since α is birational onto its image and O_1, O_2 are general, we have $\alpha(O_1) \neq \alpha(O_2)$ and $\alpha^{-1}(\alpha(O_i)) = O_i$ as schemes. In characteristic zero a general codimension 2 section of the non-degenerate surface $\alpha(U)$ is in linearly general position ([2], pages 112–113). Since the pair $(\alpha(O_1), \alpha(O_2))$ is general in $\alpha(U) \times \alpha(U)$, we get that $\{\alpha(O_1), \alpha(O_2)\}$ is the scheme-theoretic intersection of $\alpha(U)$ with the line of \mathbb{P}^r spanned by $\alpha(O_1)$ and $\alpha(O_2)$. Hence $\beta = \{O_1, O_2\}$. \square

Fix $E \subset U \subset Q$ as above and a general $(O_1, O_2) \in U \times U$. The union of the set of all lines containing O_i and contained in Q is the quadric cone

$(T_{O_i}Q) \cap Q$. Hence there is a line $D_i \subset Q$ containing O_i and intersecting E . For general (O_1, O_2) we may assume $D_1 \cap D_2 = \emptyset$ and that D_i intersects quasi-transversally E and only at the point $A_i := D_i \cap E$. Hence $Y := E \cup D_1 \cup D_2$ is a nodal and connected curve of degree 8 inside Q with $p_a(Y) = 1$.

The reduced curve Y is locally a complete intersection and hence its normal sheaf \mathcal{N}_Y is a rank 2 vector bundle of degree $\deg(TQ|_Y) = 24$. Since Y has nodes only at A_1 and A_2 , the vector bundles $\mathcal{N}_Y|_E$ are obtained from \mathcal{N}_E making two positive elementary transformations. Since $h^1(E, \mathcal{N}_E) = 0$, we have $h^1(E, \mathcal{N}_Y|_E) = 0$. Each normal bundle \mathcal{N}_{D_i} is a direct sum of a degree 0 line bundle and a degree 1 line bundle. Hence for every vector bundle \mathcal{F} on D_i obtained from \mathcal{N}_{D_i} making one negative elementary transformation has no factor of degree ≤ -2 . Hence $h^1(D_i, \mathcal{F}) = 0$. Hence $h^1(D_1 \cup D_2, \mathcal{R}) = 0$, where \mathcal{R} is the vector bundle obtained from $\mathcal{N}_{D_1 \cup D_2}$ making the two negative elementary transformations at A_1 and A_2 associated to the tangent lines of E at these points. Hence $h^1(Y, \mathcal{N}_Y) = 0$ and Y is smoothable inside Q (use [7], Theorem 4.1, for Q instead of the smooth 3-fold \mathbb{P}^3). We get that the nearby smooth curves, C , have $h^1(\mathcal{N}_C) = 0$ and they form a 24-dimensional family smooth at C . By semicontinuity the general such C has also $h^1(\mathcal{I}_C(3)) = 0$. Since in a flat family $\{C_\lambda\}$ of family with constant $h^1(\mathcal{I}_{C_\lambda}(3))$, the condition “ $\mathcal{I}_{C_\lambda}(3)$ is spanned” is an open condition, to find a degree 8 smooth elliptic curve $C \subset Q$ with $\mathcal{I}_C(3)$ spanned (and hence to complete the case $c_1 = 3, c_2 = 8$), it is sufficient to prove that $\mathcal{I}_Y(3)$ is spanned.

Lemma 5.7. *The sheaf $\mathcal{I}_Y(3)$ is spanned.*

Proof. Let \mathcal{B} denote the scheme-theoretic base-locus of the linear system $|\mathcal{I}_Y(3)|$ on Q . We need to prove that $\mathcal{B} = Y$ as schemes. Since $Y \cap U = E \cup \{O_1, O_2\}$ as schemes and $h^1(\mathcal{I}_U(3)) = h^1(\mathcal{O}_Q(1)) = 0$, $\mathcal{B}|_U$ is the scheme-theoretic base locus of the linear system $|\mathcal{I}_{\{O_1, O_2\}} \otimes \mathcal{L}|$ on U . Lemma 5.6 gives $\mathcal{B}|_U = E \cup \{O_1, O_2\}$ as schemes. Let $H \subset \mathbb{P}^4$ be the hyperplane spanned by the lines D_1 and D_2 . For general O_1, O_2 we may assume that $Q_2 := Q \cap H$ is a smooth quadric surface. Since $U \cup Q_2 \in |\mathcal{I}_Y(3)|$, $h^1(\mathcal{I}_{Q_2}(3)) = h^1(\mathcal{O}_Q(2)) = 0$ and $\mathcal{B}|_U = E \cup \{O_1, O_2\}$, to prove the lemma it is sufficient to prove that $D_1 \cup D_2 \cup (E \cap Q_2)$ is the scheme theoretic base locus of the linear system $|\mathcal{I}_{D_1 \cup D_2 \cup (E \cap Q_2), Q_2}(3)|$ on Q_2 . We call $(1, 0)$ the system of lines of Q_2 contained D_1 and D_2 . Since Y is nodal, $D_1 \cup D_2 \cup (E \cap Q_2) = D_1 \cup D_2 \cup Z$ with $\deg(Z) = 4$ and $E \cap H = \{A_1, A_2\} \cup Z$. Since $\mathcal{I}_{D_1 \cup D_2, Q_2}(3) \cong \mathcal{O}_{Q_2}(1, 3)$, it is sufficient that Z is not contained in a line. Since $\mathcal{I}_E(3)$ is spanned, no line contains a degree 4 subscheme of E . \square

Lemma 5.8. *Let $Y = E \cup D_1 \cup D_2$ as above. For general Y we have $h^1(\mathcal{I}_Y(3)) = 0$.*

Proof. Let $M \subset \mathbb{P}^4$ be the hyperplane spanned by the lines D_1 and D_2 . Set $Q' := Q \cap M$. Look at the Castelnuovo exact sequence

$$(6) \quad 0 \rightarrow \mathcal{I}_E(2) \rightarrow \mathcal{I}_Y(3) \rightarrow \mathcal{I}_{D_1 \cup D_2 \cap (E \cap Q'), Q'}(3) \rightarrow 0$$

Since $h^1(\mathcal{I}_E(2)) = 0$ (Lemma 5.4), the exact sequence (6) shows that it is sufficient to prove that $h^1(Q', \mathcal{I}_{D_1 \cup D_2 \cap (E \cap Q'), Q'}(3)) = 0$. Since the integral quadric surface Q' contains D_1 and D_2 and $D_1 \cap D_2 = \emptyset$, Q' is a smooth quadric surface. Call $(1, 0)$ the ruling of Q' containing D_1 and D_2 . For general D_1 and D_2 the hyperplane M is not tangent to E either at A_1 or at A_2 . Hence the scheme $E \cap Q'$ is the disjoint union of $\{A_1, A_2\}$ (with its reduced structure) and a degree 4 scheme Z . Since $D_i \cap E = \{A_i\}$, we have $Z \cap (D_1 \cup D_2) = \emptyset$. Hence it is sufficient to prove $h^1(Q', \mathcal{I}_{Z, Q'}(1, 3)) = 0$. Since $\deg(Z) = 4$, it is easy to check that $h^1(Q', \mathcal{I}_{Z, Q'}(1, 3)) > 0$ if and only if there is a scheme $B \subset Z$ with $\deg(B) = 3$ and B in a line of type $(1, 0)$ on Q' . To exclude the existence of such a scheme B it is sufficient to find E without a two-dimensional family of trisecant lines (move D_1 and D_2). \square

Proof of Proposition 5.3. By the Serre correspondence it is sufficient to find a smooth elliptic curve $C \subset Q$ such that $\mathcal{I}_C(3)$ is spanned, $h^1(\mathcal{I}_C(t)) = 0$ for all $t \geq 3$ and $h^0(\mathcal{I}_C(2)) = 0$ (indeed, the last condition implies $h^0(\mathcal{I}_C(t)) = 0$ for all $t \leq 1$ and hence $h^1(\mathcal{I}_C(2)) = 2$, $h^1(\mathcal{I}_C(1)) = 3$ and $h^1(\mathcal{I}_C(t)) = 0$ for all $t \leq 0$ by the Riemann-Roch theorem). By semicontinuity it is sufficient to find Y with the same properties. There is Y with $\mathcal{I}_Y(3)$ spanned (Lemma 5.7) and with $h^1(\mathcal{I}_Y(3)) = 0$ (Lemma 5.7). Castelnuovo-Mumford's lemma implies $h^1(\mathcal{I}_Y(t)) = 0$ for all $t \geq 4$. Since $Y = E \cup D_1 \cup D_2$ with $h^0(\mathcal{I}_E(2)) = 0$ (Lemma 5.4), we have $h^0(\mathcal{I}_Y(2)) = 0$. \square

Remark 5.9. For a vector bundle \mathcal{E} in $\mathfrak{M}(3, 8)$ that fits into the sequence:

$$0 \rightarrow \mathcal{O}_Q(1) \rightarrow \mathcal{E} \rightarrow \mathcal{I}_Z(2) \rightarrow 0,$$

where Z is the disjoint union of 4 lines, we can easily compute that $h^2(\mathcal{End}(\mathcal{E})) = 0$. It implies that \mathcal{E} is a smooth point of $\mathfrak{M}(3, 8)$ and the dimension of $\mathfrak{M}(3, 8)$ is 18 since such bundles form a 15-dimensional subvariety of $\mathfrak{M}(3, 8)$ and $\chi(\mathcal{End}(\mathcal{E})) = -17$.

6. CASE $(c_1, c_2) = (3, 9)$

Assume that $c_2(\mathcal{E}) = 9$. Again let $\mathcal{F} = \mathcal{E}(-2)$. We can compute:

$$\left\{ \begin{array}{l} H^1(\mathcal{F}(t)) = 0 \text{ for } t \leq -2 \\ \chi(\mathcal{F} \otimes \mathcal{F}^\vee) = -23 \\ \chi(\mathcal{F}) = -\chi(\mathcal{F}(-2)) = -4 \\ \chi(\mathcal{F}(1)) = -\chi(\mathcal{F}(-3)) = -4 \\ \chi(\mathcal{F}(-1)) = 0 \\ \chi(\mathcal{F}(2)) = 4 \end{array} \right.$$

Then the cohomology table for $\mathcal{F} = \mathcal{E}(-2)$ is as follows:

0	0	0	0	0	0
4	4	c	0	0	0
0	0	c	4	4	b
0	0	0	0	0	a
-3	-2	-1	0	1	2

with $a - b = 4$. If $\{k_1 \leq \dots \leq k_4\}$ is the spectrum of \mathcal{F} , then the possibility is either $\{-2, -1, -1, 0\}$ or $\{-1, -1, -1, -1\}$. It implies that $H^1(\mathcal{E}(-3)) = 0$ or 1, i.e. $c = 0$ or 1 in the table. Thus $h^0(\mathcal{O}_C)$ is either 1 or 2. Since $\omega_C \simeq \mathcal{O}_C$, so C is either an irreducible elliptic curve of degree 9 or consists of two irreducible elliptic curves. Note that C cannot have a plane cubic curve as its component.

Lemma 6.1. *C is an irreducible smooth elliptic curve of degree 9.*

Proof. Assume that $C = C_1 \sqcup C_2$ with C_i smooth elliptic, $\deg(C_1) = 4$ and $\deg(C_2) = 5$. The curve C_1 is contained in a hyperplane section J , which may be a cone. Even if J is not smooth, C_1 is a complete intersection of J with a quadric surface in the linear span $\langle J \rangle \cong \mathbb{P}^3$. So in $J \cap (C_1 \cup C_2)$ we have C_1 and a degree 5 scheme $J \cap C_2$; the only possibility to have $\mathcal{I}_{C_1 \cup C_2}(3)$ spanned is that $\mathcal{I}_{J \cap C_2, J}(1)$ is spanned, which is absurd. \square

In particular, we have $c = 0$ in the cohomology table of \mathcal{F} . Similarly as in the proposition 5.1, we can show that \mathcal{E} is the cohomology of a monad:

$$0 \rightarrow \mathcal{O}_Q(1)^{\oplus 4} \rightarrow \Sigma(1)^{\oplus 5} \rightarrow \mathcal{O}_Q(2)^{\oplus 4} \rightarrow 0.$$

Now we will prove the existence of a smooth elliptic curve $C \subset Q$ such that $\deg(C) = 9$ and $h^1(\mathcal{I}_C(3)) = 0$. Since $3 \cdot 9 = 27 = h^0(\mathcal{O}_Q(3)) - 3$, we have $h^1(\mathcal{I}_C(3)) = 0$ if and only if $h^0(\mathcal{I}_C(3)) = 3$. The latter condition obviously implies $h^0(\mathcal{I}_C(2)) = 0$. Hence proving the existence of C also proves the existence of a rank two vector bundle \mathcal{E} on Q with $(c_1, c_2) = (3, 9)$, $h^0(\mathcal{E}) = 4$, $h^1(\mathcal{E}) = 0$, $h^0(\mathcal{E}(-1)) = 0$ (and hence \mathcal{E} is stable).

Lemma 6.2. *There is a smooth elliptic curve $A \subset Q$ such that $\deg(A) = 7$ and $h^0(\mathcal{I}_A(2)) = 0$.*

Proof. We start with a smooth hyperplane section Q_2 of Q and a smooth elliptic curve $B \subset Q_2$ of type $(2, 2)$. Fix 2 general points $P_1, P_2 \in B$. The union $U(P_i)$ of all lines in Q passing through P_i is the quadric cone $T_{P_i}(Q) \cap Q$ of the tangent space $T_{P_i}(Q) \cong \mathbb{P}^3$ of Q at P_i . Hence we may find a line $D_1 \subset Q$ such that $P_1 \in D_1$ and a smooth conic $D_2 \subset Q$ such that $D_2 \cap Q_2$ is P_2 and a point not in B . For general D_i we may also assume $D_1 \cap D_2 = \emptyset$ and $D_i \not\subseteq Q_2$. For general D_1, D_2 we may also assume that no hyperplane section of Q contains $D_1 \cup D_2$. Set $Y := B \cup D_1 \cup D_2$. Since Q_2 is a hyperplane section of Q , $D_i \not\subseteq Q_2$ and $B \subset Q_2$, then $Q_2 \cap D_i = \{P_i\}$ and D_i is not the tangent line of B at P_i . Hence Y is a nodal connected curve of degree 7 and with arithmetic genus 1.

The reduced curve Y is locally a complete intersection and hence its normal sheaf \mathcal{N}_Y is a rank 2 vector bundle of degree $\deg(TQ|_Y) = 21$. Since $Y = B \cup (D_1 \cup D_2)$ has nodes only at P_1, P_2 , the vector bundles $\mathcal{N}_Y|_B$ are obtained from \mathcal{N}_B making 2 positive elementary transformations, each of them at one of the points P_i . Since \mathcal{N}_B is a direct sum of a line bundle of degree 4 and a line bundle of degree 8, we have $h^1(B, \mathcal{N}_B) = 0$. Hence $h^1(B, \mathcal{N}_Y|_B) = 0$. The normal bundle \mathcal{N}_{D_1} is a direct sum of a degree 0 line bundle and a degree 1 line bundle. The normal bundle \mathcal{N}_{D_2} is a direct sum of a degree 2 line bundle and a degree 4 line bundle. Hence for every vector bundle \mathcal{F} on D_i obtained from $\mathcal{N}_{D_1 \cup D_2}$ making 2 negative elementary transformations, each of them at a different point P_1, P_2 , has no factor of degree ≤ -2 . Hence $h^1(D_i, \mathcal{F}) = 0$. Hence $h^1(D_1 \cup D_2, \mathcal{G}) = 0$, where \mathcal{G} is the vector bundle obtained from $\mathcal{N}_{D_1 \cup D_2}$ making the 2 negative elementary transformations at P_1 and P_2 associated to the tangent lines of B at these points. Hence $h^1(Y, \mathcal{N}_Y) = 0$ and Y is smoothable inside Q (use [7], Theorem 4.1, for Q instead of the smooth 3-fold \mathbb{P}^3). By semicontinuity to prove Lemma 6.2 it is sufficient to prove $h^0(\mathcal{I}_Y(2)) = 0$. Assume $h^0(\mathcal{I}_Y(2)) > 0$ and take $\Delta \in |\mathcal{I}_Y(2)|$. Since $Q_2 \cap Y$ contains B and a point of $D_2 \cap (Q_2 \setminus B)$, we have $Q_2 \subset \Delta$, i.e. $\Delta = Q_2 \cup Q'$ for some hyperplane section Q' of Q . Since neither D_1 nor D_2 is contained in Q_2 , we get $D_1 \cup D_2 \subset Q'$, contradicting our choice of $D_1 \cup D_2$. \square

Lemma 6.3. *There is a smooth elliptic curve $C \subset Q$ such that $\deg(C) = 9$, $h^0(\mathcal{I}_C(3)) = 3$ and $h^1(\mathcal{I}_C(3)) = 0$.*

Proof. Let $C \subset Q$ be any smooth elliptic curve of degree 9. Since $h^0(\mathcal{O}_C(3)) = 27 = h^0(\mathcal{O}_Q(3)) - 3$, we have $h^1(\mathcal{I}_C(3)) = h^0(\mathcal{I}_C(3)) - 3$. Hence it is sufficient to prove the existence of a smooth elliptic curve C with $\deg(C) = 9$ and $h^0(\mathcal{I}_C(3)) = 3$. Let $A \subset Q$ be a smooth elliptic curve such that $\deg(A) = 7$ and $h^0(\mathcal{I}_A(2)) = 0$. Fix two general $P_1, P_2 \in A$ (Lemma 6.2). The union $U(P_i)$ of all lines in Q passing through P_i is the quadric cone $T_{P_i}(Q) \cap Q$ of the tangent space $T_{P_i}(Q)$ of Q at P_i . Hence we may find lines $D_i \subset Q$, $i = 1, 2$, such that $P_i \in D_i$, D_i is not the tangent line to A at P_i , $D_1 \cap D_2 = \emptyset$ and $D_i \cap A = \{P_i\}$. Hence $Y := A \cup D_1 \cup D_2$ is a connected nodal curve with degree 9 and arithmetic genus 1. As in the proof of Lemma 6.2 we see that Y is smoothable inside Q . Hence by semicontinuity to prove Lemma 6.3 it is sufficient to prove $h^0(\mathcal{I}_Y(3)) = 3$. Let $H \subset \mathbb{P}^4$ be the hyperplane spanned by $D_1 \cup D_2$. Set $Q' := Q \cap H$. Since Q' contains the disjoint lines D_1, D_2 , Q' is a smooth quadric surface. Call $(1, 0)$ the ruling of Q' containing D_1 and D_2 . Fix general $O_1, O_2, O_3 \in Q'$. Since $h^0(\mathcal{I}_Y(3)) \geq 3$ by the Riemann-Roch theorem, to prove $h^0(\mathcal{I}_Y(3)) = 3$ it is sufficient to prove $h^0(\mathcal{I}_{Y \cup \{O_1, O_2, O_3\}}(3)) = 0$. Assume $h^0(\mathcal{I}_{Y \cup \{O_1, O_2, O_3\}}(3)) > 0$ and take $\Delta \in |\mathcal{I}_{Y \cup \{O_1, O_2, O_3\}}(3)|$. For general D_1 and D_2 we may also assume that H is not tangent to A neither at P_1 nor at P_2 . Hence the scheme $A \cap Q'$ is the disjoint union of P_1, P_2 , and a degree 5 scheme, Z , such that $Z \cap (D_1 \cup D_2) = \emptyset$. First assume $Q' \subset \Delta$. Hence $\Delta = Q' \cup T$ with T a quadric hypersurface

of Q . Since $Q' \cap A$ is a finite set, we get $A \subset T$. Hence $h^0(\mathcal{I}_A(2)) > 0$, a contradiction. Hence $\Delta' := \Delta \cap Q'$ is a divisor of type $(3, 3)$ of Q' containing $D_1 \cup D_2$. Set $J := \Delta' - D_1 - D_2$. J is a divisor of type $(1, 3)$ on Q' containing Z, O_1, O_2 and O_3 . Since the points O_i are general in Q' , to get a contradiction (and hence to prove the lemma) it is sufficient to prove $h^0(Q', \mathcal{I}_Z(1, 3)) = 3$, i.e. $h^1(\mathcal{I}_Z(1, 3)) = 0$. Fix a smooth $D \in |\mathcal{O}_{Q'}(1, 1)|$ and take a general hyperplane section T of Q with $T \cap T' = D$. T is a smooth quadric surface. We may specialize A to a curve $Y' := A' \cup L_1 \cup L_2 \cup L_3$ with A' a smooth curve of type $(2, 2)$, each L_i a line intersecting transversally A' and $P_i \in L_i$, $i = 1, 2$. For general Y' we have $Y \cap Q' = Z' \cup \{P_1, P_2\}$ with $\sharp(Z' \cap D) = 4$. By semicontinuity it is sufficient to prove $h^1(Q', \mathcal{I}_{Z'}(1, 3)) = 0$. Since $\sharp(Z' \setminus Z' \cap D) = 1$, we have $h^1(Q', \mathcal{I}_{Z' \setminus Z' \cap D; Q'}(0, 2)) = 0$. D is a smooth rational curve and $\deg(\mathcal{O}_D(1, 3)) = 4$. Hence $h^1(D, \mathcal{I}_{D \cap Z', S}(1, 3)) = 0$. From the exact sequence on Q' :

$$0 \rightarrow \mathcal{I}_{Z' \setminus Z' \cap D, Q'}(0, 2) \rightarrow \mathcal{I}_{Z', Q'}(1, 3) \rightarrow \mathcal{I}_{D \cap Z', D}(1, 3) \rightarrow 0$$

we get $h^1(Q', \mathcal{I}_{Z'}(1, 3)) = 0$, concluding the proof. \square

Let us start with the smooth elliptic curve C given by Lemma 6.3 ; hence $h^1(\mathcal{I}_C(3)) = 0$ and $h^0(\mathcal{I}_C(3)) = 3$. Since $h^0(\mathcal{I}_C(3)) \geq 2$, there are at least two degree 3 hypersurfaces M_1, M_2 containing C . Since $h^0(\mathcal{I}_C(2)) = 0$, the scheme-theoretic intersection $X := M_1 \cap M_2$ has dimension 1, i.e. it is a complete intersection. By the Liaison induced by X , we have

$$(7) \quad 0 \rightarrow \mathcal{I}_X(3) \rightarrow \mathcal{I}_C(3) \rightarrow \omega_Y \rightarrow 0.$$

We need to prove that ω_Y is spanned. Since X is a complete intersection of M_1 and M_2 , we have $h^0(\mathcal{I}_X(3)) = 2$ and $h^1(\mathcal{I}_X(3)) = 0$. Since $h^0(\mathcal{I}_C(3)) = 3$, the sequence (7) gives $h^0(\omega_Y) = 1$. We have $h^2(\mathcal{I}_C(3)) = h^1(\mathcal{O}_C(3)) = 0$ and $h^2(\mathcal{I}_X(3)) = h^1(\mathcal{O}_X(3)) = 1$ since $\omega_X \cong \mathcal{O}_X(3)$ by the adjunction formula. Since $h^1(\mathcal{I}_C(3)) = 0$ we get $h^1(\omega_Y) = 1$. Hence $h^0(\mathcal{O}_Y) = 1$ by the duality of locally Cohen-Macaulay projective schemes. Since $p_a(Y) = 1$ to get that ω_Y is trivial and hence that ω_Y is spanned, it is sufficient to prove that (at least for certain C) it is spanned outside finitely many points. Since ω_Y is a quotient of $\mathcal{I}_C(3)$, it is spanned at all points at which $\mathcal{I}_C(3)$ is spanned. Hence it is sufficient to find C with the additional condition that $\mathcal{I}_C(3)$ is spanned outside finitely many points. This is the Lemma 6.4 below.

Lemma 6.4. *There is a smooth elliptic curve $C \subset Q$ such that $\deg(C) = 9$, $h^0(\mathcal{I}_C(3)) = 3$, $h^1(\mathcal{I}_C(3)) = 0$ and such that $\mathcal{I}_C(3)$ is spanned outside finitely many points.*

Proof. By semicontinuity it is sufficient to find $Y = B \cup D_1 \cup D_2$ as in the proof of Lemma 6.3 with the additional property that the base locus of $\mathcal{I}_Y(3)$ is finite. Fix B satisfying the thesis of Lemma 6.2. Let $H \subset \mathbb{P}^4$ be a general hyperplane. By the Uniform Position Principle ([2], pp. 112–113) the scheme $B \cap H$ is formed by 7 points in uniform position and we call

A_1, A_2 two of them. Moreover, the monodromy of the generic hyperplane section is the full transite group ([2], p. 112). Hence for general H we may assume that no two of the points of $A \cap H$ are contained in a line in H . Set $Q' := Q \cap H$. For general H the scheme Q' is a smooth quadric surface. Fix one of the system of lines of Q' , say $(1, 0)$, and call D_i the line of type $(1, 0)$ of Q' containing A_i . Set $S := B \cap Q' \setminus \{A_1, A_2\}$. Notice that $\sharp(S) = 5$ and $S \cap D_i = \emptyset$. Set $Y := B \cup D_1 \cup D_2$. The proof of Lemma 6.3 gives $h^1(\mathcal{I}_Y(3)) = 0$ and $h^0(\mathcal{I}_Y(3)) = 3$. Let \mathcal{B} denote the base locus of $\mathcal{I}_Y(3)$. It is sufficient to prove that $\mathcal{B} \cap Q' = \emptyset$. Since $h^i(\mathcal{I}_B(2)) = 0$, $i = 0, 1$, we saw in the proof of Lemma 6.3 that the restriction of $|\mathcal{I}_Y(3)|$ to Q' is given by all forms $D_1 \cup D_2 \cup T$ with $T \in |\mathcal{I}_S(1, 3)|$ and $h^0(Q', \mathcal{I}_S(1, 3)) = 3$. Since S is in uniform position, T is a general element of $|\mathcal{I}_S(1, 3)|$. Fix two general $T_1, T_2 \in |\mathcal{I}_S(1, 3)|$. Since T_1 is irreducible, the scheme $T_1 \cap T_2$ is zero-dimensional. We have $\deg(T_1 \cap T_2) = 3 + 3 = 6$. Since $S \subset T_1 \cap T_2$ and $h^0(Q', \mathcal{I}_S(1, 3)) = 3$, we get that $\mathcal{I}_S(1, 3)$ is a spanned sheaf of Q' . Since $S \cap (D_1 \cup D_2) = \emptyset$, we also get that the scheme $Y \cap Q'$ is the intersection with Q' of all elements of $|\mathcal{I}_Y(3)|$. Hence $\mathcal{B} \cap Q' = \emptyset$. Hence \mathcal{B} is supported by finitely many points. \square

Remark 6.5. Similarly as in the case $c_1 = 8$, for a vector bundle $\mathcal{E} \in \mathfrak{M}(3, 9)$ that fits into the sequence:

$$0 \rightarrow \mathcal{O}_Q(1) \rightarrow \mathcal{E} \rightarrow \mathcal{I}_Z(2) \rightarrow 0,$$

where Z is the disjoint union of 5 lines, we can easily compute that $h^2(\text{End}(\mathcal{E})) = 0$. It implies that \mathcal{E} is a smooth point of $\mathfrak{M}(3, 9)$ and the dimension of $\mathfrak{M}(3, 9)$ is 24 since such bundles form a 19-dimensional subvariety of $\mathfrak{M}(3, 9)$ and $\chi(\text{End}(\mathcal{E})) = -23$.

As an automatic consequence from the classification, we observe that if \mathcal{E} is a rank two globally generated vector bundle on Q with $c_1 = 3$, then we have $c_1(\mathcal{E}(-2)) = -1$ and $H^1(\mathcal{E}(-3)) = 0$. Thus we have the following:

Corollary 6.6. *Every rank two globally generated vector bundle on Q with $c_1 = 3$, is an odd instanton (see [6]) up to twist.*

REFERENCES

- [1] C. Anghel and N. Manolache, *Globally generated vector bundles on \mathbb{P}^n with $c_1 = 3$* , Preprint, arXiv:1202.6261 [math.AG], 2012.
- [2] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, *Geometry of algebraic curves. Vol. I*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932 (86h:14019)
- [3] L. Chiodera and P. Ellia, *Rank two globally generated vector bundles with $c_1 \leq 5$* , Preprint, arXiv:1111.5725 [math.AG], 2011.
- [4] M. Demazure, H. C. Pinkham, and B. Teissier (eds.), *Séminaire sur les Singularités des Surfaces*, Lecture Notes in Mathematics, vol. 777, Springer, Berlin, 1980, Held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977. MR 579026 (82d:14021)

- [5] P. Ellia, *Chern classes of rank two globally generated vector bundles on \mathbb{P}^2* , Preprint, arXiv:1111.5718 [math.AG], 2011.
- [6] D. Faenzi, *Even and odd instanton bundles on fano threefolds of picard number 1*, Preprint, arXiv:1109.3858 [math.AG], 2011.
- [7] R. Hartshorne and A. Hirschowitz, *Smoothing algebraic space curves*, Algebraic geometry, Sitges (Barcelona), 1983, Lecture Notes in Math., vol. 1124, Springer, Berlin, 1985, pp. 98–131. MR 805332 (87h:14023)
- [8] R. Hartshorne, *Algebraic geometry*, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
- [9] S. Huh, *On triple veronese embeddings of \mathbb{P}^n in the grassmannians*, Math. Nachr. **284** (2011), 1453–1461.
- [10] N. Manolache, *Globally generated vector bundles on \mathbb{P}^3 with $c_1 = 3$* , Preprint, arXiv:1202.5988 [math.AG], 2012.
- [11] G. Ottaviani, *Some extensions of Horrocks criterion to vector bundles on Grassmannians and quadrics*, Ann. Mat. Pura Appl. (4) **155** (1989), 317–341. MR 1042842 (91f:14018)
- [12] G. Ottaviani and M. Szurek, *On moduli of stable 2-bundles with small Chern classes on Q_3* , Ann. Mat. Pura Appl. (4) **167** (1994), 191–241, With an appendix by Nicolae Manolache. MR 1313556 (96c:14010)
- [13] J. C. Sierra, *A degree bound for globally generated vector bundles*, Math. Z. **262** (2009), no. 3, 517–525. MR 2506304 (2010i:14076)
- [14] J. C. Sierra and L. Ugaglia, *On globally generated vector bundles on projective spaces*, J. Pure Appl. Algebra **213** (2009), no. 11, 2141–2146. MR 2533312 (2010d:14062)
- [15] J. C. Sierra and L. Ugaglia, *On globally generated vector bundles on projective spaces ii*, Preprint, arXiv:1203.0185 [math.AG], 2012.
- [16] M. Szurek and J. A. Wiśniewski, *Fano bundles over \mathbb{P}^3 and Q_3* , Pacific J. Math. **141** (1990), no. 1, 197–208. MR 1028270 (91g:14036)

UNIVERSITÀ DI TRENTO, 38123 POVO (TN), ITALY
E-mail address: edoardo.ballico@unitn.it

DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, CHEONCHEON-DONG,
 JANGAN-GU, SUWON 440-746, KOREA
E-mail address: sukmoonh@skku.edu

POLITECNICO DI TORINO, CORSO DUCA DEGLI ABRUZZI 24, 10129 TORINO, ITALY
E-mail address: francesco.malaspina@polito.it