

(Established under the Presidency University Act, 2013 of the Karnataka Act 41 of 2013)

[2022-23 EVEN/ WINTER SEMESTER]

COURSE HAND OUT [Revision 02 - Jan 2023]

SCHOOL: School of Engineering DEPT: CSE DATE OF ISSUE: 28-

01-2023

NAME OF THE PROGRAM : Bachelor of Technology

P.R.C. APPROVAL REF. : PU/AC18.8/CSE16/CSE2021-25

SEMESTER/YEAR : 4th semester/2nd Year

COURSE TITLE & CODE : Operating Systems (CSE2010)

COURSE CREDIT STRUCTURE : 3-0-3

CONTACT HOURS : 3hours/week (45 Hours)

COURSE IC : Dr. Madhusudhan M V, Ms. Namrata Das

COURSE INSTRUCTOR(S) : Dr. Madhusudhan M V, Ms. Namrata Das, Dr. Md. Sameeruddin Khan, Dr. Saira Banu, Ms. Kokila S, Mr. Shankar J, Dr.L.Shakkeera, Ms. Bhuvaneshwari Patil, Mr. Asif Mohammed H.B., Ms. Sreelatha P K, Mr.Shivalingappa, Mr. Bilal Ahmad Mantoo, Mr. Tanveer Ahmed, Ms. Meena Kumari K S

COURSEURL:https://presiuniv.knimbus.com/user#/searchresultsearchId=eBook&curPage=0&layout=g rid&sorFieldId=none&topresult=false&content=*cloud*

PROGRAM OUTCOMES

- PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO 2: Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations

PO6: The engineer and society: Apply reasoning in formed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multi-disciplinary settings.

PO 10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi-disciplinary environments.

PO 12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

COURSE PREREQUISITES:

Students should have basic knowledge on computers, computer software & hardware, and Computer Organization. Prior programming experience in C is recommended.

COURSE DESCRIPTION:

This course introduces the concepts of operating system design and implementation. It covers the classical operating systems internal algorithms such as process scheduling, synchronization, deadlocks and memory management. The course also enhances the problem solving and systems programming ability.

Topics include: Core concepts of operating systems, such as processes and threads, scheduling, synchronization, deadlocks, memory management, file systems.

COURSE OUTCOMES: On successful completion of the course the students shall be able to: (The outcomes are to be developed using the appropriate action verbs from the Bloom's Taxonomy-the list of verbs are attached)

	TABLE 1: COURSE OUTCOMES	
CO	СО	Expected BLOOMS

Number		LEVEL
CO1	Describe the fundamental concepts of operating Systems	Remember
CO2	Demonstrate various CPU scheduling algorithms.	Application
CO3	Apply synchronization tools to a given problem.	Application
CO4	Discuss various memory management techniques.	Understand

MAPPING OF C.O. WITH P.O. [Mark H/M/L Against each of the C.O. depending on the degree of contribution of the C.O.to the P.O.]

[H-HIGH, M-MODERATE, L-LOW]

CO.												
No	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12
CO1	M									L		L
CO ₂	H	H	L		L	L						${f L}$
CO3	H	M	L		H	L						L

COURSE CONTENT (SYLLABUS):

Module1:Introduction

[8 Hours] [Remember Level(1)]

Overview and Introduction to OS, Operating System Operations, Operating System Services, User and OS interface, System Calls and its types, System Programs and types, Operating System Structure, loaders, linkers, Overview of OS design and implementation.

Module 2:Process Management

[9 Hours] [Application Level(3)]

Process Concept, Operations on Processes, Inter Process Communication, Introduction to threads - Multithreading Models, Threading Issues, Process Scheduling—Basic concepts, Scheduling Criteria, Scheduling Algorithms: FCFS, SJF, RR, Priority, Practice Problems on Scheduling.

Module 3: Process Synchronization and Deadlocks

[12 Hours] [Application Level(3)]

The Critical-Section Problem- Peterson's Solution, Synchronization hardware, Semaphores, Classic Problems of Synchronization with Semaphore Solution- Dining Philosopher's Problem / Readers and Writers Problems, . Introduction to Deadlocks, Necessary conditions for deadlock, Resource allocation Graph, Methods for handling deadlock: Deadlock Prevention and Implementation, Deadlock Avoidance and Implementation, Deadlock detection & Recovery from Deadlock.

Module 4:Memory Management and File Systems

[13 Hours] [Understand Level(2)]

Introduction to Memory Management, Basic hardware-Base and Limit Registers, Address Binding, Logical vs Physical Address Space, Memory Management Unit(MMU), Dynamic loading and linking, Swapping, Contiguous and Non-Contiguous Memory Allocation, Segmentation, Paging - Structure of the Page Table - Virtual Memory and Demand Paging - Page Faults and Page Replacement Algorithms, Copy-on-write, Allocation of Frames - Thrashing.

File concept, Access Methods, Directory and Disk structure

DELIVERY PROCEDURE (PEDAGOGY):

Participative Learning: Page replacement algorithms (through Group Discussion).

Problem Based Learning: Scheduling policies, Deadlocks. (Scenario Based)

Technology Enabled Learning: Evolution of Operating Systems (NPTEL Videos by PCP Bhatt/IISc, Bangalore),

Active learning: Role Play on Scheduling policy, Page Replacement algorithms.

Self-learning topics: Dekker's solution for synchronization, Examples of IPC Systems-POSIX, Mach and Windows

XP, Case study of threading examples- Windows XP & Linux Threads.

	TABLE 3: SPECIAL DELIVERY METHOD/ PEDAGOGY PLANNED WITH TOPICS										
S. No	Lecture Number	Subtopic as per lesson Plan	Pedagogy title/ short explanation of adopted pedagogy	** At end of semester please update whether activity was done							
1	L36	Page replacement algorithms	Group Discussion								
2	L13	Scheduling policies, Deadlocks	Scenario Based								
3	L14	Scheduling algorithms	Active Learning								

REFERENCE MATERIALS:

Textbook: Silberschatz A, Galvin P B and Gagne G, "Operating System Concepts", 10th edition Wiley, 2018.

Reference books:

- 1. William Stallings, "Operating systems", Prentice Hall, 7th Edition, Pearson, 2013.
- 2. Andrew S Tanenbaum and Albert S Woodhull, "Operating Systems Design and Implementation", 3rd Edition, Pearson, 2015

SPECIFIC GUIDELINES TO STUDENTS:

- Be attentive and regular to the class
- Refer class materials and also you can refer online materials, YouTube videos, NPTELetc.
- Students should come prepared with the topics covered in the previous class
- No make-up for Assignment and Quiz
- Recommended to take NPTEL online certification course

COURSE SCHEDULE:

	TABLE 4: COURSE BROAD SCHEDULE										
Sl. No.	ACTIVITY	PLANNED STARTING DATE	PLANNED CONCLUDING DATE	TOTAL NUMBER OF PERIODS							
01	Over View of the course	16/2/23	16/2/23	1							
02	Module: 01	20/2/23	10/3/23	8							
02	Module: 02	13/3/23	6/4/23	9							
03	Assignment/any other activity/Guest Lecture/ Field Visit	8/4/23	8/4/23	1							
04	Midterm	10/4/23	15/4/23								
05	Module:03	17/4/23	12/5/23	12							
06	Module:04	15/5/23	8/6/23	13							
07	Revision	9/6/23	9/6/23	1							

DETAILED SCHEDULE OF INSTRUCTION:

	TABLE 5: DETAI	LED COURSE SCHEDULE/ LE	SSON PLAN	
Session no	TOPIC	SUBTOPIC	CO Number	Reference
1	Overview and Introduction to Operating System	Basic Operating System and examples of Operating Systems, Definition, Need of Operating System	CO1	T1-Ch01- 1.1,1.2
2	Operating System Structure,	OS structures: Monolithic, Layered, Micro-kernel, modular and hybrid	CO1	T1-Ch01- 1.4
3	Operations	Functions of OS- Process management, file management, memory management, device management, security, job accounting, control over system performance, error detecting.	CO1	T1-Ch01 1.5
4	OS services, User and OS interface	Program execution, I/O operations, File System manipulation, Communication, Error Detection, Resource Allocation, Protection, User-OS interface: CLI, GUI, Touch-screen, choice of interface	CO1	T1-Ch02- 2.1,2.2
5	System Calls, System program	System calls and types- Process control, File management, Device management, information maintenance, communication and protection System program and types- file management, file modification,	COI	T1-Ch02- 2.3,2.4

1				
		status information,		
		programming language support		
6	Linkers and	Linker, loader	CO1	T1-Ch02-
	loaders			2.5
7	OS structure	OS structure	CO1	T1-Ch02-
				2.7
8	Overview of OS	Design policies and	CO1	T1-Ch02-
	design and	implementation		2.6
	implementation			
		MODULE 1 Completed		
9	Process Concept	Process Vs Program, Process	CO2	T1-Ch03-
		states and transition, PCB,		3.1,3.2
		Context Switching		
		Context 5 witching		
10	Operations on	Parent and Child process,	CO2	T1-Ch03-
10	Process	Creation and termination of	CO2	3.3
	1100033	Process, IPC		3.3
11	Inter-process	Direct, Indirect, Buffering &	CO2	T1-Ch03-
11	Communication	Synchronization	CO2	3.4
12	·	•	CO2	T1-Ch04-
12	Introduction to threads	Introduction to threads,	CO2	4.1
	uneaus	Single		4.1
		threaded and Multithreaded		
		processes,		
		Benefits		
13	Multithreading	Many-to-one, one-to-one, one-	CO2	T1-Ch04-
	models	to-many, Threading issues		4.2,4.4
14	Basic concepts of	Basics, types of schedulers,	CO2	T1-Ch05-
	scheduling	Scheduling Criteria		5.1,5.3
15	Scheduling	FCFS and practice problems	CO2	T1-Ch05-
	Algorithms:			5.3
16	Scheduling	SJF/SRTF and practice	CO2	T1-Ch05-
	Algorithms:	problems		5.3
17	Scheduling	Round Robin and Priority	CO2	T1-Ch05-
	Algorithms:	scheduling, practice problems		5.3
		MODULE 2 Completed		
		MIDTERM		
18	Introduction to	Definition, solution to Critical	CO3	T1-Ch06-
	critical section	section problem	<u> </u>	6.1,6.2
19	Peterson Solution	Peterson Solution	CO3	T1-Ch06-
				6.3
20	Synchronization	Synchronization hardware	CO3	T1-Ch06-
	hardware	<u> </u>		6.4
21	Semaphore	Definition, Types, Operations	CO3	T1-Ch06-
	1	, ,, ,, ,, ,,		6.5
22	Classical	Dining Philosopher's problem,	CO3	T1-Ch06-
	Examples	Reader-writer problem		6.6
23	Dining	Dining Philosopher problem	CO3	T1-Ch06-
23	Philosopher	solution		6.8
	_			
	problem	using semaphore		
	solution			
24	Introduction to	Definition, deadlock	CO3	T1-Ch07-
1	Deadlocks	Characterization – necessary		7.1,7.2
		conditions for deadlock		

25	Deadlock	Description and	CO3	T1-Ch07-
23	Characterisation	Resource allocation graph,	CO3	7.3
26	Methods of	Deadlock prevention and	CO3	T1-Ch07-
20	handling deadlock	deadlock avoidance	CO3	7.4
27	Deadlock	Safe state, RAG and Banker's	CO3	T1-Ch07-
21	avoidance	algorithm	CO3	7.5
28	Deadlock	Banker's algorithm	CO3	T1-Ch07-
	avoidance			7.6
29	Deadlock	Deadlock detection and	CO3	T1-Ch07-
	detection and	Recovery		7.7
	Recovery			
		MODULE 3 Completed		
30	Introduction to	Introduction, Basic hardware-	CO4	T1-Ch08-
	Memory	Base and Limit Registers,		8.1
	Management	Address Binding, Logical vs		
		Physical Address Space		
31	Memory	Memory Management	CO4	T1-Ch08-
	Management	Unit(MMU), Dynamic loading		8.1
	Unit(MMU),	and linking		
	Dynamic loading			
32	and linking Swapping,	Swapping, Contiguous and	CO4	T1-Ch08-
32	Contiguous and	Swapping, Contiguous and Non-Contiguous Memory	CO4	8.2, 8.3
	Non-Contiguous	Allocation Memory		6.2, 6.3
	Memory	Tinocation		
	Allocation			
33	Segmentation	Segmentation	CO4	T1-Ch08-
				8.4
34	Paging - Structure	Paging - Structure of the Page	CO4	T1-Ch08-
	of the Page Table	Table		8.4
35	Structure of the	Structure of the Page Table	CO4	T1-Ch08-
	Page Table			8.5
36	Virtual Memory	Virtual Memory, Virtual	CO4	T1-Ch9-
	and Demand	Address Space and Demand		9.1
	Paging	Paging, Pure Demand Paging, Locality of Reference		
37	Page Faults and	Basic and FIFO page	CO4	T1-Ch9-
37		replacement algorithms		9.4
	Algorithms	(concept with practice		J
	<i>G</i>	problems)		
38	Page Replacement	Optimal and LRU page	CO4	T1-Ch9-
	Algorithms	replacement algorithms(concept		9.4
		with practice problems), Copy		
		on write		
39	Allocation of	Allocation of Frames	CO4	T1-Ch9-
	Frames			9.5
40	Thrashing	Cause and Working-Set Model	CO4	T1-Ch9-
	F'1 G	Til G	GO 1	9.6
41	File Concepts,	File Concepts, Access Methods	CO4	T1-Ch10-
40	Access Methods	D'andre and 1' 1	GO4	10.1,10.2
42	Directory and	Directory and disk structure	CO4	T1-Ch10-
	disk structure	MODULE 4 Completed		10.3
		Revision		
		END TERM		
		LID ILIMI		

ASSESSMENT SCHEDULE:

		TABLE 6 AS	SESSMENT:	SCHEDULE			
Sl. no	Assessment type	Contents	Course outcome Number	Duration In Hours	marks	Weightage	Venue, DATE &TIME
1	Assignment 1 https://presiuniv.kni mbus.com/user#/sea rchresultsearchId=eB ook&curPage=0&lay out=grid&sorFieldId= none&topresult=fals e&content=*cloud*	OS Services OS Structures Scheduling algorithms IPC	CO1, CO2	1 hour	10	5%	To be notified later
	Surprise Test-1	Module-1	CO1	30 min	10	5%	To be notified later
	Surprise Test-2	Module-2	CO2	30 min	10	5%	To be notified later
2	Midterm	Modules 1 and 2	CO1, CO2	2 hours	50	25%	As received from COE
3	Surprise test 3	Module 3	CO3	30 min	10	5%	To be notified later
4	Assignment2 https://presiuniv.kni mbus.com/user#/sea rchresultsearchId=eB ook&curPage=0&lay out=grid&sorFieldId= none&topresult=fals e&content=*cloud*	Classic Problems of Synchronization Problems on deadlocks Virtual Memory and Demand Paging	CO3, CO4	1 hour	10	5%	To be notified later
5	Endterm	Modules 1, 2, 3, 4	CO1, CO2, CO3, CO4	3 hours	100	50%	As received from COE

COURSE CLEARANCE CRITERIA:

("AS PER ACADEMIC REGULATIONS OF THE UNIVERSITY")

MAKEUP EXAM POLICY:b

("AS PER ACADEMIC REGULATIONS OF THE UNIVERSITY")

CONTACT TIMINGS IN THE CHAMBER FOR ANY DISCUSSIONS:

To be notified by the Instructor based on the timetable.

SAMPLE THOUGHT PROVOKING QUESTIONS:

	TABLE 7: SAMPLE THOUGHT P	ROVOKING	QUESTIONS	
SL	QUESTION	MARKS	COURSE	BLOOM'S
NO			OUTCOME	LEVEL
			NO.	
1.	Can you run your executable code [.exe file] on a	2	CO1	Remember
	system which is not having an OS? Elaborate			
	youranswer.			
2.	During a process switch [context	2	CO2	Understand
	switching],theoperatingsystemexecutes instructions			
	that choose the next process to execute. These			
	instructions are typically at a fixed location			
	inmemory.			
	Why?			
3.	Imagine a Railway Ticketing Counter. ● Initially there are 3 counters.	10	CO2	Application
	 There is a security guard who keeps a check on the people so that no one breaks the line. 			
	 Each counter has2 people waiting inline. 			
	 The people waiting in line came in as per the alphabetical order. 			
	A new 4th counter is being opened. And			
	therearetwo new persons G and H about to join the linesecurity guard, now you who can be			
	processedget to the counter at the new			
	aremarked1,2,3and4). People waiting inline (
	A, B, C and so on. Here t, followed by B and then			
	C etc.			
	Answer			
4.	Consider the following page reference string:	8	CO4	Application
	1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.			
	How many page faults would occurfor			

	lowing re	placen	nent algorit	hms. ass	uming			
one. t	•	•	five, six, or		_			
			rames are i					
			s will all co	_				
<i>y</i>	-	replace						
• FIFO replacement								
Optimalreplacement								
A res	taurant w	ould li	ke to serve	four di	nner partie	es, 8	CO3	Application
P1 th	rough P4.	The r	estaurant h	as a tota	l of 8 plat	es		
and 1	2 bowls.	Assum	e that each	group o	f diners w	ill		
stop	eating ar	nd wa	it for the	waiter	to bring	a		
reque	sted item	(plate	or bowl) to	the table	le when it	is		
requir	ed. Assur	methat	the diners	don't m	ind waitir	g.		
The r	naximum	reque	st and curr	ent alloc	cation tabl	es		
are sh	own asfo	llows:						
Ma	Plates	Во	Current	Plates	Bowls			
X		wls						
p1	7	7	p1	2	3			
p2	6	10	p2	3	5			
	1	2	р3	0	1			
р3								

TARGET SET FOR COURSE OUTCOME ATTAINMENT:

TAB	TABLE 8: TARGET SET FOR ATTAINMENT OF EACH CO and ATTAINMENT ANALYSIS AFTER RESULTS												
Sl.no	C.O. No.	Course Outcomes	Threshold Set for the CO	Target set for attainment in percentage	Actual C.O. Attainment In Percentage	Remarks on attainment & Measures to enhance the attainment							
01	CO1	Describe the fundamental concepts of operatingSystems	55	70	*	*							
02	CO2	Demonstrate various CPUschedulingalgorithms.	50	65									
03	CO3	Apply synchronization tools to agivenproblem.	45	60									
04	CO4	Discuss various memorymanagementtechniques.	45	60									

* LAST TWO COLUMNS ARE TO BE FILLED AFTER END TERM EXAM WITH ACTUAL ATTAINMENT VALUES

Signature of the course Instructor In-Charge (s)

APPROVAL:

This course has been duly verified Approved by the D.A.C.

Signature of the Chairperson D.A.C.

Name and signature of the Instructor In-Charge (s) AFTER completing entries in Table number 3 and 8 at end of semester:

Name and signature of the DAC Chairperson AFTER completing entries in Table number 3 and 8 at end of semester:

BLOOM'S TAXONOMY SAMPLE VERBS

Learning Outcomes Verbs at Each Bloom Taxonomy Level to be used for writing the course Outcomes.

REMEMBER	UNDERSTAND	APPLY	ANALYZE	EVALUATE	CREATE
Arrange	Classify	Apply	Analyze	Appraise	Arrange
Define	Compare	Change	Appraise	Argue	Assemble

Describe	Compute	Choose	Break down	Assess	Construct
Duplicate	Convert	Calculate	Calculate	Choose	Collect
Identify	Contrast	Classify	Categorize	Compare	Compose
Label	Defend	Demonstrate	Compare	Contrast	Create
List	Describe	Determine	Contrast	Criticize	Design
Match	Differentiate	Employ	Criticize	Defend	Develop
Name	Distinguish	Examine	Debate	Discriminate	Formulate
Order	Estimate	Illustrate	Diagram	Estimate	Integrate
Outline	Explain	Interpret	Differentiate	Evaluate	Manage
Recite	Extrapolate	Modify	Discriminate	Explain	Organize
Recognize	Generalize	Operate	Distinguish	Interpret	Plan
Relate	Interpolate	Practice	Examine	Judge	Prepare
Repeat	Locate	Predict	Experiment	Measure	Prescribe
Reproduce	Paraphrase	Prepare	Indentify	Predict	Produce
Select	Predict	Produce	Infer	Rank	Propose
State	Recognize	Restructure	Inventory	Rate	Specify
Tabulate	Review	Schedule	Relate	Recommend	Synthesize
Tell	Summarize	Sketch	Separate	Select	Write
	Translate	Solve	Subdivide	Support	
		Use	Test	Validate	