题号	_	11	Ξ	四	五	六	七	八	九	+	总分	阅卷人
得分												

得分	阅卷人

.

.

. . .

一、选择题(每题3分,共15分)

- 1. 下列命题正确的是(
- (A) f(x)在点 x_0 连续的充要条件是f(x)在点 x_0 可导
- (B) 若 $f'(x) = x^2$ (偶函数),则f(x)必是奇函数

(C) 若
$$\lim_{x\to 0} \frac{f(x)}{x} = a(常数)$$
,则 $f'(0) = a$

- 2. 设f(x)在 x_0 处可导,则 $\lim_{h\to 0} \frac{f(x_0-2h)-f(x_0)}{2h} = ($)
- (A) $-f'(x_0)$ (B) $f'(-x_0)$ (C) $f'(x_0)$ (D) $2f'(x_0)$
- 3. 设函数f(x)在 x_0 可导,则 $\lim_{t\to 0} \frac{f(x_0+t)+f(x_0-3t)}{t} = ($)
- (A) $f'(x_0)$ (B) $-2f'(x_0)$ (C) ∞ (D) 不能确定

4.曲线
$$\begin{cases} x = e^t \sin 2t \\ y = e^t \cos t \end{cases}$$
 在点(0,1)处的法线方程为()

- (A) y + 2x 1 = 0 (B) y 2x 1 = 0 (C) y + 2x + 1 = 0 (D) y + 2x 2 = 0
- 5.设函数 $f(x) = (e^x 1)(e^{2x} 2)\cdots(e^{nx} n)$, 其中 n 为正数,则 f'(0) = (
- (A) $(-1)^{n-1}(n-1)!$ (B) $(-1)^n(n-1)!$ (C) $(-1)^{n-1}n!$ (D) $(-1)^nn!$

二、填空题(每题 3 分, 共 15 分)

1.设函数 y = f(x) 由方程 $\cos(xy) + \ln y - x = 1$ 确定,则 $\lim_{n \to \infty} n \left| f(\frac{2}{n}) - 1 \right| = \underline{\qquad}$.

- 2. 设方程 $e^{xy} + y^2 = \cos x$ 确定 y 为 x 的函数,则 $\frac{dy}{dx} = \underline{\hspace{1cm}}$
- 3.设y = y(x)是有方程 $\sqrt{x^2 + y^2} = e^{\arctan \frac{y}{x}}$ 确定的隐函数,则 $\frac{d^2 y}{dx^2} =$ _____.

- 4. 己知 $f(x) = (1+x^2)^{\tan x}$,则 f'(x) =______
- 5. 设函数 f(x)在x = 2的某邻域内可导,且 $f'(x) = e^{f(x)}$, f(2) = 1, $\bigcup f'''(2) =$ _____.

得分	阅卷人

三、计算、证明题(1-10 题每题 6 分, 第 11 题 10 分, 共 70 分)

2. 设函数 f(x) 在 x = 0 处可导(即 f'(0) 存在),且 f(x) = f(0) + 2x + a(x),

. . .

$8. \forall f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x^{\beta}}, & x \neq 0 \\ 0, & x \neq 0 \end{cases}$	$(\beta > 0),$	试讨论在什么条件下, $f'(x)$ 在 $x = 0$ 处连续.
(0, x=0)		

9.设函数 $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}}$,试讨论f(x)在 $(-\infty, +\infty)$ 内的不可导点

11. 设对任意实数 $0 < \lambda < 1$,有 $f[\lambda x_1 + (1-\lambda)x_2] \ge \lambda f(x_1) + (1-\lambda)f(x_2)$ 试证: 若 $x_1 < x_2$ 且在点 x_1 、 x_2 处可导,则有 $f'(x_1) \ge \frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge f'(x_2)$

欲

四、附加题 (1-3 题每题 4 分, 4 题 8 分, 共 20 分)

1. 设函数 $f(x) = x(x+1)(x+2)\cdots(x+n)$, 求 f'(-1).

2. 己知 $y = \ln(e^x + \sqrt{1 + e^{2x}})$,求 y'.

3. 设函数 y = y(x) 由方程 $2^{xy} = x + y$ 所确定,求 $dy|_{x=0}$.

- 4. (I)设函数u(x), v(x)可导,利用导数定义证明: [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x);
- (II) 设函数 $u_1(x)$, $u_2(x)$, $u_3(x)$, … , $u_n(x)$ 可导, $f(x) = u_1(x)u_2(x) \cdots u_n(x)$, 写出 f(x) 的求导公式.