Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2022-23

Εισαγωγή στους Υπολογιστές

(αρχές λειτουργίας και τεχνολογία)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Σχετικά με το μάθημα

• Εισαγωγή

- Ενότητες μαθήματος
 - Αρχές λειτουργίας υπολογιστών
 - Υλικό (hardware) Αρχιτεκτονική Η/Υ
 - Αλγόριθμοι Χειρισμός δεδομένων
 - Δομές δεδομένων Λογισμικό (software)
- Βιβλία για το μάθημα
 - Behrouz A. Forouzan, "Εισαγωγή στην Επιστήμη των Υπολογιστών", ΚΛΕΙΔΑΡΙΘΜΟΣ, 2015.
 - Καλαφατούδης, Δροσίτης, Κοίλιας, "Εισαγωγή στις Τεχνολογίες Πληροφορίας και Επικοινωνίας", 1η έκδοση, ΕΚΔΟΣΕΙΣ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ, 2011.

Ο «υπολογιστής»

• Εισαγωγή

Τι σχέση έχει...

- το facebook
- το gaming
- ένα αυτοκίνητο
 ...με το διπλανό
 σχήμα;

Ο «Υπολογιστής» μετασχηματίζει δεδομένα εισόδου σε δεδομένα εξόδου, βάσει ενός προγράμματος ελέγχου

Η «μνήμη»

• Εισαγωγή

Στην πραγματικότητα η «μνήμη» είναι μια ιεραρχία υποσυστημάτων (κρυφές μνήμες, κύρια μνήμη)

- Τα δεδομένα εισόδου και εξόδου αποθηκεύονται στη «μνήμη»
 - Μπορούν να χρησιμοποιηθούν σε επόμενη φάση επεξεργασίας
 - Και το πρόγραμμα ελέγχου πού βρίσκεται αποθηκευμένο;

Το μοντέλο "von Neumann"

• Εισαγωγή

Η καινοτομία (την εποχή των πρώτων υπολογιστών): το πρόγραμμα ελέγχου είναι δεδομένα!

- «Υπολογιστής αποθηκευμένου προγράμματος»
 - Το πρόγραμμα ελέγχου (εντολές) αποθηκεύεται μαζί με τα δεδομένα στη μνήμη

Το πρόγραμμα ελέγχου

• Εισαγωγή

Η εντολή μηχανής διαφέρει από τις εντολές υψηλού επιπέδου των γλωσσών προγραμματισμού

Κάθε εντολή μιας γλώσσας προγραμματισμού μεταφράζεται (μεταγλωττίζεται) σε πολλές εντολές μηχανής!

- Είναι ένα σύνολο «οδηγιών»
 - Περιγράφει το είδος της επεξεργασίας των δεδομένων εισόδου
 - Κάθε «οδηγία» ονομάζεται εντολή μηχανής
 - εκτελεί μια μικρή, αυτοτελή λειτουργία
 - το πρόγραμμα (ελέγχου) αποτελείται από πολλές εντολές μηχανής

Εντολή Μηχανής

• Εισαγωγή

Θα μπορούσε να υλοποιηθεί ένα χρήσιμο πρόγραμμα εάν δεν υπήρχαν εντολές διακλάδωσης;

Machine Instruction

- Μικρή λειτουργία χειρισμού δεδομένων
 - μεταφορά δεδομένων από/προς μνήμη
 - αριθμητική πράξη μεταξύ δύο αριθμών
 - έλεγχος αν ένας αριθμός είναι μηδέν...
 - K.O.K
- Οι εντολές μηχανής εκτελούνται σειριακά
 - Η μια μετά την άλλη από την επόμενη θέση μνήμης
- Εξαίρεση: εντολές διακλάδωσης
 - Εάν μια συνθήκη είναι αληθής, τότε μεταφορά της εκτέλεσης σε διαφορετικό σημείο του προγράμματος (όχι στην επόμενη θέση μνήμης)
 - branch (ή jump)

Χρονισμός υπολογιστικού συστήματος

• Εισαγωγή

Το σχήμα συμπληρώνεται με τις μονάδες εισόδου-εξόδου, για επικοινωνία με τον έξω κόσμο

- Χρονισμός μέσω ενός σήματος ρολογιού (clock)
 - ' Ο «παλμός» του υπολογιστικού συστήματος
 - Καθορίζει την έναρξη της επόμενης λειτουργίας

Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ)

• Εισαγωγή

• •

λέμε ότι ένας επεξεργαστής είναι 32-bit ή 64-bit; Πώς σχετίζεται με το διπλανό σχήμα;

Τι σημαίνει όταν

Τι περιέχει το μονοπάτι δεδομένων

• Εισαγωγή

Οι καταχωρητές παρέχουν τα δεδομένα εισόδου κατά την εκτέλεση των πράξεων.

Στους καταχωρητές αποθηκεύονται επίσης τα αποτελέσματα των πράξεων.

- Καταχωρητές (registers)
 - Θέσεις προσωρινής αποθήκευσης, γρήγορης προσπέλασης (περιορισμένος αριθμός: 16, 32 ή 64)
- Μονάδες εκτέλεσης αριθμητικών (και άλλων) πράξεων

Εκτέλεση εντολών: ο κύκλος μηχανής

Σε ποια μορφή αποθηκεύονται τα δεδομένα;

• Εισαγωγή

- Στη μνήμη και στους καταχωρητές
- Στις μονάδες εκτέλεσης πράξεων
- Απάντηση: σε δυαδική μορφή
 - Ακολουθίες από 0 και 1
 - ή αλλιώς ON/OFF, Αληθές/Ψευδές κ.ο.κ.
- Ισχύει για κάθε είδους δεδομένα
 - Ακόμα και για μη αριθμητικά δεδομένα: κείμενο, εικόνα, ήχο...
 - Και οι εντολές του υπολογιστή επίσης!
- Γιατί σε δυαδική μορφή;

Η τρέχουσα τεχνολογία των υπολογιστών

- Εισαγωγή
- Τεχνολογία

- Ηλεκτρονική
 - Τα στοιχεία που συγκροτούν τους υπολογιστές λειτουργούν με στάθμες τάσης ή φορά ρεύματος
 - Υλοποίηση με ημιαγωγούς
- Ψηφιακή
 - Οι επιτρεπόμενες τιμές ανήκουν σε διακριτές στάθμες
- Δυαδική
 - Δύο στάθμες, ΟΝ ή ΟFF, '0' ή '1'
 - Τα στοιχεία που συγκροτούν τους υπολογιστές υλοποιούν διακοπτικές λειτουργίες (ανοικτό-κλειστό)

Γιατί ψηφιακή τεχνολογία;

- Εισαγωγή
- Τεχνολογία

Τι θα συνέβαινε μεταξύ δύο αναλογικών τμημάτων (με συνεχές πεδίο τιμών);

- Δυνατότητα αναγέννησης του αρχικού σήματος
 - Όσο η παραμόρφωση δεν υπερβαίνει κάποια όρια
 - Οσο λιγότερες στάθμες επιτρέπονται, τόσο τα επιτρεπτά όρια διακύμανσης είναι μεγαλύτερα
 - Πλεονέκτημα της δυαδικής τεχνολογίας

Στάθμες ψηφιακού σήματος

- Εισαγωγή
- Τεχνολογία

Στα πρώτα ολοκληρωμένα λογικά κυκλώματα η τάση τροφοδοσίας ήταν >15V ενώ σήμερα βρίσκεται γύρω στο 1V

- Δυαδική λογική
 - 2 στάθμες
 - V+ και V- (π.χ. 5V και 0V)
 - «Τροφοδοσία» και «γείωση»
 - Αναπαριστούν το λογικό 1 και 0 αντίστοιχα
 - Κυματομορφές
 - Η στάθμη τάσης σε ένα σημείο του κυκλώματος
 στην εξέλιξη του χρόνου

Γιατί δυαδική τεχνολογία;

- Εισαγωγή
- Τεχνολογία

Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS.

- Το τρανζίστορ MOSFET
 - Ο μικροσκοπικός διακόπτης των σύγχρονων κυκλωμάτων
 - Η θεωρία λειτουργίας του είναι γνωστή από το 1925
 - ...αλλά τα πρώτα λειτουργικά κυκλώματα κατασκευάστηκαν τη δεκαετία του 60

Ημιαγωγοί – σε δύο διαφάνειες!

- Εισαγωγή
- Τεχνολογία
- Ημιαγωγοί
 - Στοιχεία με κρυσταλλική δομή (πυρίτιο, γερμάνιο...)
 - Μεταξύ αγωγών και μονωτών
 - Σε θερμοκρασία δωματίου και καθαρή μορφή: όχι καλοί αγωγοί του ηλεκτρισμού
 - Προσμίξεις με "ακάθαρτα" υλικά (impurities)
 - "Doping"
 - Προσθήκη ελεύθερων ηλεκτρονίων (donors)
 - n-type
 - Προσθήκη "οπών" (acceptors)
 - απουσία ηλεκτρονίων
 - p-type
 - Τα χαρακτηριστικά αγωγιμότητας αλλάζουν!

Ημιαγωγοί – σε δύο διαφάνειες!

- Εισαγωγή
- Τεχνολογία

- Το ενδιαφέρον σημείο (επαφής)
 - Όταν ενώνονται ημιαγωγοί n-type και p-type
 - Στο σημείο επαφής: κατάσταση ισορροπίας μετά από την αρχική μετακίνηση ηλεκτρονίων στο p-type, περαιτέρω ηλεκτρόνια απωθούνται
 - Με ορθή πόλωση, και άλλα ηλεκτρόνια μπορούν να υπερπηδήσουν το εμπόδιο και να φτάσουν στο p-type, οπότε παρατηρείται ροή ρεύματος
 - Με ανάστροφη πόλωση, νέα ηλεκτρόνια δεν έχουν την ευκαιρία να φτάσουν στο p-type, οπότε δεν ρέει ρεύμα μέσω της επαφής
 - την ανάστροφη πόλωση εκμεταλλεύονται τα ηλεκτρονικά ψηφιακά κυκλώματα των υπολογιστών

Λειτουργία του τρανζίστορ MOS(FET)

- Εισαγωγή
- Τεχνολογία

Το τρανζίστορ σήμερα είναι διαφορετικό (με πτερύγια – fins) για να λειτουργεί σωστά σε πολύ μικρές διαστάσεις!

Η συρρίκνωση του τρανζίστορ

- Εισαγωγή
- Τεχνολογία
- Ένας σύγχρονος επεξεργαστής μπορεί να περιέχει από 1 έως 30+ δις τρανζίστορ σε μία επιφάνεια 280-400mm² (συχνά σε πολλαπλά επίπεδα)
- Πλεονεκτήματα
 - Ταχύτερη λειτουργία
 - Πιο γρήγοροι χρόνοι ON-OFF
 - Μικρότερη κατανάλωση ενέργειας
 - Για τον ίδιο αριθμό τρανζίστορ!
 - Μεγαλύτερη ολοκλήρωση
 - Μείωση κόστους παραγωγής και αύξηση λειτουργικότητας
- Τρέχουσα εμπορική τεχνολογία:
 - «7nm» (όρος marketing, παλαιότερα συμβόλιζε το εύρος της πύλης του τρανζίστορ)
 - Περίπου 100εκ. τρανζίστορ/mm²

Το (μικρο)τσιπ

- Εισαγωγή
- Τεχνολογία
- Επίσημος όρος: "Ολοκληρωμένο κύκλωμα"
 - Integrated Circuit (IC)
 - "micro(chip)"

όλα τα στοιχεία συνδυάζονται στο ίδιο υπόστρωμα

πυριτίου.

• Τρανζίστορ , αγωγοί

• Πυκνωτές, αντιστάσεις

Intel P4 processor microchip (2005) 169 εκ. τρανζίστορ 90nm

- "Νόμος" του Moore (εμπειρικός)
 - ο αριθμός των τρανζίστορ ανά ολοκληρωμένο κύκλωμα διπλασιάζεται κάθε 1,5-2 χρόνια

Κατασκευή ολοκληρωμένων κυκλωμάτων

- Εισαγωγή
- Τεχνολογία

Λόγω της απαιτούμενης ακρίβειας, μια γραμμή παραγωγής κοστίζει δισ. \$

• Γραμμές παραγωγής

- Φωτολιθογραφία με μάσκες
 - Επικάλυψη με ειδικό φωτοανθεκτικό υλικό (photoresist)
 - Έκθεση σε υπεριώδες φως (με το ανάλογο μήκος κύματος)
 - Μέσω μιας μάσκας που επιλέγει τις περιοχές επεξεργασίας
 - Απομάκρυνση photresist από επιλεγμένες περιοχές, αφήνοντας εκτεθειμένα τα μέρη προς επεξεργασία
- Διεργασίες στα εκτεθειμένα μέρη
 - Οξείδωση, απόξεση, απόθεση μετάλλου, εμφύτευση ιόντων...
 - Ταυτόχρονα σε εκατομμύρια τρανζίστορ!
- Επανάληψη
 - Από το βήμα της μάσκας

Η αρχική επιφάνεια

Εφαρμογή photoresist και μάσκας

Εφαρμογή υπεριώδους ακτινοβολίας

- Εισαγωγή
- Τεχνολογία

Στα μέρη που μένουν εκτεθειμένα, μετά την υπεριώδη ακτινοβολία το photoresist γίνεται εύπλαστο. Στη συνέχεια αφαιρείται με χημικό τρόπο, αφήνοντας εκτεθειμένα μέρη για το επόμενο βήμα κατεργασίας.

Μετά την απόξεση

- Εισαγωγή
- Τεχνολογία

Στα μέρη που μένουν εκτεθειμένα εφαρμόζεται διαδικασία απόξεσης με τη βοήθεια οξέων. Στη συνέχεια η επιφάνεια καθαρίζεται με απιονισμένο νερό και στεγνώνει με άζωτο.

Απόθεση νέων στρωμάτων SiO,

- Εισαγωγή
- Τεχνολογία

Πριν το βήμα αυτό έχει προηγηθεί πάλι η εφαρμογή photoresist και μάσκας! Στο εξής η εφαρμογή μάσκας θα εννοείται πριν κάθε νέο βήμα.

Doping – Υπόστρωμα τρανζίστορ

• Εισαγωγή

• Τεχνολογία

Μέσω της εμφύτευσης με τη βοήθεια μιας δέσμης ιόντων, αλλάζει ο τύπος του ημιαγωγού της περιοχής κάτω από το λεπτό στρώμα οξειδίου σχηματίζοντας το υπόστρωμα των τρανζίστορ NMOS (doping)

Doping – Υπόστρωμα τρανζίστορ

- Εισαγωγή
- Τεχνολογία

Μέσω της εμφύτευσης με τη βοήθεια μιας δέσμης ιόντων, αλλάζει ο τύπος του ημιαγωγού της περιοχής κάτω από το λεπτό στρώμα οξειδίου σχηματίζοντας το υπόστρωμα των τρανζίστορ PMOS (doping)

Εναπόθεση polysilicon

- Εισαγωγή
- Τεχνολογία

Ένα σχήμα polysilicon εναποτίθεται χημικά με την κυκλοφορία αερίου μίγματος πάνω από την επιφάνεια πυριτίου θερμαινόμενη στους 650°C. Το σχήμα σχηματίζει τις πύλες των τρανζίστορ και τη μεταξύ τους διασύνδεση. Θα ακολουθήσει doping για να αυξηθεί η αγωγιμότητά του.

Doping πηγής και καταβόθρας τρανζίστορ

- Εισαγωγή
- Τεχνολογία

Στη συνέχεια σχηματίζονται οι πηγές και καταβόθρες των τρανζίστορ ανάλογα με τον τύπο τους (NMOS ή PMOS) με εμφύτευση ιόντων. Δημιουργία των σημείων επαφής για τους αγωγούς διασύνδεσης.

Doping πηγής και καταβόθρας τρανζίστορ

- Εισαγωγή
- Τεχνολογία

Στη συνέχεια σχηματίζονται οι πηγές και καταβόθρες των τρανζίστορ ανάλογα με τον τύπο τους (NMOS ή PMOS) με εμφύτευση ιόντων. Δημιουργία των σημείων επαφής για τους αγωγούς διασύνδεσης.

Πρώτο επίπεδο μεταλικών συνδέσεων

- Εισαγωγή
- Τεχνολογία

Τα επίπεδα μετάλλου δημιουργούνται με εξάχνωση του μεταλλικού υλικού σε κενό υπό την επίδραση δέσμης ηλεκτρονίων.

Διαδικασία παραγωγής

- Εισαγωγή
- Τεχνολογία
- Στην πραγματικότητα
 - Οι δημιουργούμενες επιφάνειες δεν είναι
 απόλυτα επίπεδες ούτε έχουν κάθετες γωνίες
 - τα χαρακτηριστικά είναι πιο ακανόνιστα
 - Οι αναλογίες διαστάσεων είναι διαφορετικές
 - ειδικά μελετημένες για την επιθυμητή ροή ηλεκτρονίων
 - Τα επίπεδα μετάλλου είναι πολύ περισσότερα
 - καταλαμβάνουν μεγάλο μέρος του ολοκληρωμένου κυκλώματος
 - Τα βήματα κατασκευής είναι πολύ περισσότερα (40+)
 - από την απλουστευμένη εικόνα που είδαμε
 - οι δομές που κατασκευάζονται είναι πολυπλοκότερες