**VE320 – Summer 2021** 

**Semiconductor Physics** 

Instructor: Yaping Dan (但亚平) yaping.dan@sjtu.edu.cn

Chapter 10 Fundamentals of Metal-Oxide-Semiconductor Field Effect Transistors



## Outline

- 10.1 The two-terminal MOS structure
- 10.2 Capacitance-voltage characteristics
- 10.3 Non-ideal effects
- 10.4 The basic MOSFET operation

## Outline

#### 10.1 The two-terminal MOS structure

10.2 Capacitance-voltage characteristics

10.3 Non-ideal effects

10.4 The basic MOSFET operation



Metal-insulator-semiconductor (MIS)





Metal-insulator-semiconductor (MIS)



Metal-insulator-semiconductor (MIS)









# Charge distribution



### **Charge distribution**





# Check your understanding

### Example Problem #1

The dc charge distributions of four ideal MOS capacitors are shown in Figure P10.1. For each case: (a) Is the semiconductor n or p type? (b) Is the device biased in the accumulation, depletion, or inversion mode? (c) Draw the energy-band diagram in the semiconductor region.



# Depletion layer thickness

$$x_d = \left(\frac{2\epsilon_s \phi_s}{eN_a}\right)^{1/2}$$





### Depletion layer thickness



Maximum depletion layer

$$x_{dT} = \left(\frac{4\epsilon_s \phi_{fp}}{eN_a}\right)^{1/2}$$





### Depletion layer thickness



### Maximum depletion layer

$$\underline{x_{dT}} = \left(\frac{4\epsilon_s \phi_{fp}}{eN_a}\right)^{1/2}$$

## Outline

10.1 The two-terminal MOS structure

### 10.2 Capacitance-voltage characteristics

10.3 Non-ideal effects

10.4 The basic MOSFET operation











$$V_{S} = \frac{C_{ox}C_{s}}{C_{ox} + C_{s}}$$

$$V_{S} = \frac{C_{g} \cdot C_{ox}}{C_{ox} + C_{s}}$$

$$C_{S,min} = \frac{E_{S}}{2 E_{s} V_{S}}$$

Accumulation





$$C_S \rightarrow \infty$$

$$C = \frac{C_s C_{ox}}{C_s + C_{ox}} \approx C_{ox}$$







$$C_s \rightarrow \infty$$

$$C = \frac{C_s C_{ox}}{C_s + C_{ox}} \approx C_{ox}$$





$$C_s \rightarrow \infty$$

$$C = \frac{C_s C_{ox}}{C_s + C_{ox}} \approx C_{ox}$$

# Check your understanding

#### Problem Example #2

Consider a p-type silicon substrate at T = 300 K doped to  $N_a = 10^{16}$  cm<sup>-3</sup>.

The oxide is silicon dioxide with a thickness of  $t_{ox} = 18 \text{ nm} = 180 \text{ Å}$ , and the gate is aluminum.

Calculate 
$$C_{ox}$$
,  $C'_{min}$ , and  $C'_{FB}$  for a MOS capacitor.

$$C_{ox} = \frac{\mathcal{E}_{ox}}{t_{ox}} = \frac{3.9 \times 3.05 \times 10^{-1/4}}{18 \times 10^{-7}} = 1.92 \times 10^{-7} + \frac{1}{C_{ox}} = \frac{\mathcal{E}_{ox}}{t_{ox}} + \frac{\mathcal{E}_{s}}{t_{ox}} +$$















### Frequency dependence



### Frequency dependence



## Outline

10.1 The two-terminal MOS structure

10.2 Capacitance-voltage characteristics

10.3 Non-ideal effects

10.4 The basic MOSFET operation

### 10.3 Non-ideal effects

#### Work function difference



Metal-insulator-semiconductor (MIS)



## 10.3 Non-ideal effects

#### Work function difference





Metal-insulator-semiconductor (MIS)

### 10.3 Non-ideal effects

#### Work function difference





#### Work function difference





Metal oxide semiconductor

Vacuum level



Flat band

$$V_{FB} = (W_m - W_s)/q$$

Metal-insulator-semiconductor (MIS)





#### Work function difference

Metal oxide semiconductor











#### Work function difference

$$V_T = 2\phi_{fp} + t_{ox} \sqrt{\frac{4eN_a \varepsilon_{Si} \phi_{fp}}{\varepsilon_{ox}^2}} = 2\phi_b + \frac{|Q_{SD}|}{C_{ox}}$$

$$V_{T} = 2\phi_{fp} + t_{ox} \sqrt{\frac{4eN_{a}\varepsilon_{Si}\phi_{fp}}{\varepsilon_{ox}^{2}}} + V_{FB}$$

$$= 2\phi_{fp} + \frac{|Q_{SD}|}{C_{ox}} + \phi_{m}$$

### Fixed charges



Metal-insulator-semiconductor (MIS)

Metal oxide semiconductor





$$V_a = V_{FB} = -Q_{SS}/C$$



### Fixed charges



Metal-insulator-semiconductor (MIS)

Metal oxide semiconductor





$$V_g = V_{FB} = -Q_{SS}/2C$$

### Fixed charges



Metal-insulator-semiconductor (MIS)

Metal oxide semiconductor





Flat band

$$V_g = V_{FB} = -\frac{Q_{SS}}{C} \cdot \frac{x}{d}$$





### Fixed charges





$$V_T = 2\phi_{fp} + t_{ox} \sqrt{\frac{4eN_a \varepsilon_{Si} \phi_{fp}}{\varepsilon_{ox}^2}} + V_{FB}$$
$$= 2\phi_{fp} + \frac{|Q_{SD}|}{C_{ox}} + \phi_{ms} - \frac{Q_{ss}}{C_{ox}}$$

#### Problem Example #3

Consider an SOS capacitor as shown in Figure P10.29. Assume the SiO<sub>2</sub> is ideal (no trapped charge) and has a thickness of  $t_{ox} = \underline{500 \text{ Å}}$ . The doping concentrations are  $N_d = 10^{16} \text{ cm}^{-3}$  and  $N_a = 10^{16} \text{ cm}^{-3}$ . (a) Sketch the energy-band diagram through the device for (i) flat band, (ii)  $V_G = +3 \text{ V}$ , and (iii)  $V_G = -3 \text{ V}$ . (b) Calculate the flat-band voltage. (c) Estimate the voltage across the oxide for (i)  $V_G = +3 \text{ V}$  and (ii)  $V_G = -3 \text{ V}$ . (d) Sketch the high-frequency C-V characteristic curve.







#### Problem Example #4

Objective: Calculate the threshold voltage of a MOS system using an aluminum gate. Consider a p-type silicon substrate at T = 300 K doped to  $N_a = 10^{15}$  cm<sup>-3</sup>. Let  $Q'_{ss} = 10^{10}$  cm<sup>-2</sup>,  $t_{ox} = 12$  nm = 120 Å, and assume the oxide is silicon dioxide.

### Outline

- 10.1 The two-terminal MOS structure
- 10.2 Capacitance-voltage characteristics
- 10.3 Non-ideal effects
- 10.4 The basic MOSFET operation

Metal-Oxide-Semiconductor field effect transistor: MOSFET



Metal-Oxide-Semiconductor field effect transistor: MOSFET





Metal-oxide-semiconductor (MOS)

Metal-Oxide-Semiconductor field effect transistor: MOSFET







Metal-Oxide-Semiconductor field effect transistor: p-type MOSFET



P-type MOSFET



Metal-Oxide-Semiconductor field effect transistor: P MOSFET



P-type MOSFET

#### MOSFET structures





NMOS Enhancement mode

NMOS Depletion mode

#### MOSFET structures





PMOS Enhancement mode

PMOS Depletion mode

Metal-Oxide-Semiconductor field effect transistor: CMOS



Complementary Metal-oxide-semiconductor (CMOS) field effect transistors





60









## NMOSFET $I_D$ vs. $V_{DS}$ Characteristics

Next consider  $I_D$  (flowing into  $\overline{D}$ ) versus  $V_{DS}$ , as  $V_{GS}$  is varied:





Above threshold ( $V_{GS} > V_{T}$ ): "inversion layer" of electrons appears, so conduction between **S** and **D** is possible

Below "threshold" ( $V_{GS} < V_T$ ): no charge  $\rightarrow$  no conduction

#### Current-voltage characteristics

#### The MOSFET as a Controlled Resistor

- The MOSFET behaves as a resistor when  $V_{DS}$  is low:
  - $\square$  Drain current  $I_D$  increases linearly with  $V_{DS}$
  - $\square$  Resistance  $R_{DS}$  between SOURCE & DRAIN depends on  $V_{GS}$

•  $R_{DS}$  is lowered as  $V_{GS}$  increases above  $V_{T}$ 



#### NMOSFET Example:





Inversion charge density  $Q_i(x) = -C_{ox}[V_{GS}-V_{T}-V(x)]$  $I_{DS} = 0$  if  $V_{GS} < V_T$  where  $C_{ox} = \varepsilon_{ox} / t_{ox}$ 





Derivation of  $I_{ds}$  vs  $V_{ds}$  and  $V_{gs}$ 

## Charge in an N-Channel MOSFET



(no inversion layer at surface)



Average electron velocity **v** is proportional to lateral electric field **E** 



## What Happens at Larger $V_{DS}$ ?





Inversion-layer is "pinched-off" at the drain end



As  $V_{DS}$  increases above  $V_{GS} - V_T \equiv V_{DSAT}$ , the length of the "pinch-off" region  $\Delta L$  increases:

- "extra" voltage  $(V_{DS} V_{Dsat})$  is dropped across the distance  $\Delta L$
- the voltage dropped across the inversion-layer "resistor" remains  $V_{\scriptscriptstyle Dsat}$

 $\Rightarrow$  the drain current  $I_D$  saturates

Note: Electrons are swept into the drain by the E-field when they enter the pinch-off region.

## What Happens at Larger $V_{DS}$ ?





Inversion-layer is "pinched-off" at the drain end



As  $V_{DS}$  increases above  $V_{GS} - V_T \equiv V_{DSAT}$ ,

$$I_D = \mu_n C_{ox} \frac{W}{L} \left( V_{GS} - V_T - \frac{1}{2} V_{DS} \right) V_{DS}$$

 $I_D$  will not increase after  $V_{DS} \ge V_{GS}$ - $V_T$ 





## Summary of $I_D$ vs. $V_{DS}$

- As  $V_{DS}$  increases, the inversion-layer charge density at the drain end of the channel is reduced; therefore,  $I_D$ does not increase linearly with  $V_{DS}$ .
- When  $V_{DS}$  reaches  $V_{GS} V_T$ , the channel is "pinched off" at the drain end, and  $I_D$  saturates (i.e. it does not increase with further increases in  $V_{DS}$ ).



$$I_{DSAT} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$



## $I_D$ vs. $V_{DS}$ Characteristics

The MOSFET  $I_D$ - $V_{DS}$  curve consists of two regions:

1) Resistive or "Triode" Region:  $0 < V_{DS} < V_{GS} - V_{T}$ 

$$I_D=k_n'\frac{W}{L}\bigg[V_{GS}-V_T-\frac{V_{DS}}{2}\bigg]V_{DS}\bigg] V_{DS} = V_{GS}V_T$$
 where  $k_n'=\mu_nC_{ox}$ 

process transconductance parameter

2) Saturation Region:

$$V_{DS} > V_{GS} - V_{T}$$

$$I_{DSAT} = \frac{k_n'}{2} \frac{W}{L} (V_{GS} - V_T)^2$$

where 
$$k'_n = \mu_n C_{ox}$$



$$I_{D} = \frac{W\mu_{n} C_{\text{ox}}}{L} (V_{GS} - V_{T}) V_{DS}$$

$$\sqrt{I_{D}(\text{sat})} = \sqrt{\frac{W\mu_{n} C_{\text{ox}}}{2L}} (V_{GS} - V_{T})$$

$$Very \text{ small } V_{DS}$$

$$\int_{I_{D}} B A$$

$$Slope = \sqrt{\frac{\mu C_{\text{ox}} W V_{DS}}{2L}}$$

$$V_{T} V_{GS} \longrightarrow V_{TA} V_{GS} \longrightarrow V_{TA}$$
(a) (b)



#### Problem example 5

Objective: Design the width of a MOSFET such that a specified current is induced for a given applied bias.

Consider an ideal n-channel MOSFET with parameters  $L = 1.25 \,\mu\text{m}$ ,  $\mu_n = 650 \,\text{cm}^2/\text{V-s}$ ,  $C_{\text{ox}} = 6.9 \times 10^{-8} \,\text{F/cm}^2$ , and  $V_T = 0.65 \,\text{V}$ . Design the channel width W such that  $I_D(\text{sat}) = 4 \,\text{mA}$  for  $V_{GS} = 5 \,\text{V}$ .

Problem example 5

#### Substrate bias effect





#### Substrate bias effect





VE320 Yaping Dan

#### Substrate bias effect

When  $V_{SB} = 0$ , we had

When  $V_{SB} > 0$ , the space charge width increases and we now have

The change in the space charge density is then

#### Substrate bias effect

$$\Delta V_T = -\frac{\Delta Q_{SD}'}{C_{\text{ox}}} = \frac{\sqrt{2e\epsilon_s N_a}}{C_{\text{ox}}} \left[ \sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$

$$\gamma = \frac{\sqrt{2e\epsilon_s N_a}}{C_{or}}$$

$$\Delta V_T = \gamma \left[ \sqrt{2\phi_{fp} + V_{SB}} - \sqrt{2\phi_{fp}} \right]$$

#### Problem example 6

Objective: Calculate the body-effect coefficient and the change in the threshold voltage due to an applied source-to-body voltage.

Consider an n-channel silicon MOSFET at T=300 K. Assume the substrate is doped to  $N_a=3\times 10^{16}$  cm<sup>-3</sup> and assume the oxide is silicon dioxide with a thickness of  $t_{ox}=20$  nm = 200 Å. Let  $V_{SB}=1$  V.

Problem example 7