商業分析 HW4 105305072 企管四 許惠甄

1. 資料探索

a. 變數間的 Correlation

	Var1	Var2	value
1	roe	roe	1
2	roa	roe	0.927613722533678
3	profit_margin_rate	roe	0.769836624279952
4	gross_margin_rate	roe	0.263933319779695
5	expense_rate	roe	-0.563964269573648
6	asset_turnover	roe	0.147948736855924
7	inventory_turnover	roe	0.0609948258984017
8	equity_turnnover	roe	-0.0846514271433868
9	rev_growth_rate	roe	0.178890323350809
10	margin_growth_rate	roe	0.0423719956373313
11	op_profit_growth_rate	roe	0.070655719737964
12	cash_reinv_rate	roe	0.518422290791974
13	asset_growth_rate	roe	0.366727395586673
14	current_ratio	roe	0.00161885252532689
15	quick_rartio	roe	-0.178525536129484
16	debt_ratio	roe	-0.125853365081838
17	roe	roa	0.927613722533678
18	roa	roa	1
19	profit_margin_rate	roa	0.849678033161943
20	gross_margin_rate	roa	0.316508191821517
21	expense_rate	roa	-0.602167492346144
22	asset_turnover	roa	0.166463783487875
23	inventory_turnover	roa	0.0498719959855883
24	equity_turnnover	roa	0.0386910904570714
25	rev_growth_rate	roa	0.182344012908911
26	margin_growth_rate	roa	0.0252565080268641
27	op_profit_growth_rate	roa	0.0481880240850674
28	cash_reinv_rate	roa	0.504324078456767
29	asset_growth_rate	roa	0.388442882343791
30	current_ratio	roa	0.010373006903173
31	quick_rartio	roa	-0.133926962915792
32	debt_ratio	roa	-0.0535872922037833

b. Heatmap:

結論:

高度正相關變數:

- √ roe&roa
- ✓ profit_margin_rate&roa
- ✓ profit_margin_rate&roe
- √ asset_turnover&equity_turnover
- ✓ debt_turnover&equity_turnover

▶ 高度負相關變數:

- ✓ expense_rate&profit_margin_rate
- √ roa&expense_rate
- ✓ current_ratio&debt_ratio
- √ roe&expense_rate
- ✓ debt_ratio&gross_margin_rate

2. 以 SPCA 分析:

a. 每個主成份解釋多少變異:

PC	解釋多少變異	PC	解釋多少變異
PC1	14.93%	PC9	6.329%
PC2	13.11%	PC10	2.929%
PC3	23.10%	PC11	1.987%
PC4	12.18%	PC12	1.756%
PC5	9.481%	PC13	1.559%
PC6	7.724%	PC14	0.665%
PC7	7.060%	PC15	0.349%
PC8	6.555%	PC16	0.279%

b. 大概需要多少個 PC 來解釋這筆資料:

▶ 結論:至少需要 8 個 PC 才能解釋 80%以上的變異。

3. 找出前三個主成份分別重要變數為何並解釋

a. PC1:

- 重點變數:
 - asset_turnover \ rev_growth_rate \ quick_ratio \ debt_ratio
- ➤ 解釋: PC1 注重在公司在運用資產使用效率、營收成長幅度,去除掉存貨的償債能力,以及公司的財務槓桿。

b. PC2

- ▶ 重點變數:
 - inventory_turnover \cdot current_ratio \cdot profit_margin_rate \cdot quick_ratio
- ▶ 解釋:PC2 注重在公司使用存貨的效率、整體的償債能力以及企業的經營能力。

c. PC3

▶ 重點變數:

margin_growth_rate \ quick_ratio \ rev_growth_rate \ expense_rate

▶ 解釋:PC3 注重在除存貨以外的流動資產使用效率,公司營收與 毛利的成長率,以及營業費用率,總體而言詮釋公司費用及資產 投入是否可以創造營收且年復一年成長.

4. 找出適合投資的公司

▶ 結論:因為資產與收益面指標有較佳表現,而選擇投資右上角的公司比較適合。

```
finance <- read.csv("financialdata.csv")</pre>
data <- finance[,-1] #去掉第一行公司id
#把Factor型態轉成numeric型態
data$op_profit_growth_rate <- as.numeric(data$op_profit_growth_rate)</pre>
data$current_ratio <- as.numeric(data$current_ratio)</pre>
data$quick_rartio <- as.numeric(data$quick_rartio)</pre>
str(data)
#1.
M <- cor(data) #求出數據及內各個變數的Corr
#用melt函數Reshape資料
library(reshape2)
melted_Corrmat <- melt(M)</pre>
head(melted_Corrmat)
write.csv(melted_Corrmat,'melted_Corrmat.csv')
#畫Heatmap
library(ggplot2)
ggplot(data = melted_Corrmat,
       aes(Var1, Var2)) +
  geom_tile(aes(fill = value), colour = "grey") +
  scale_fill_gradient2(low = "firebrick4", high = "steelblue",
                       mid = "white", midpoint = 0) +
  guides(fill=guide_legend(title="Correlation")) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1),
        axis.title = element_blank())
#2.
library(nsprcomp)
spca <- nscumcomp(data, k=80, nneg=T, scale=T) #每組4個非零係數*16個變數
summary(spca)
screeplot(spca)
pve=(spca$sdev)^2 / (sum(spca$sdev^2))
plot(cumsum(pve), xlab="Principal Component", ylab="Cumulative Proportion
of Variance Explained ", ylim=c(0,1),type='b')
abline(h=0.8)
#3.
agplot(melt(spca$rotation), aes(Var2, Var1)) +
  geom_tile(aes(fill = value), colour = "white") +
 scale_fill_gradient2(low = "white", high = "steelblue") +
  guides(fill=guide_legend(title="Coefficient")) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1),
        axis.title = element_blank())
#4.
biplot(spca,scale=T)
```