Algebra 2 Chapter 2 Assignment (Focus on Proofs)

Problems

- 21. Prove: If $b \neq 0$ and $d \neq 0$, then $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$. (Hint: Use Exercise 20. We will assume Exercise 20 is the property that for $b \neq 0, d \neq 0$, it has been proven that $\frac{1}{b} \cdot \frac{1}{d} = \frac{1}{bd}$.)
- 22. Prove: If $c \neq 0$ and $d \neq 0$, then $\frac{1}{\frac{c}{d}} = \frac{d}{c}$.
- 23. Prove: If $b \neq 0$, $c \neq 0$ and $d \neq 0$, then $\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$.

Solutions

Proof for Exercise 21

Statements	Reasons
1. $b \neq 0$ and $d \neq 0$	1. Given
2. $\frac{a}{b} = a \cdot \frac{1}{b}$ and $\frac{c}{d} = c \cdot \frac{1}{d}$	2. Definition of division
3. $\frac{a}{b} \cdot \frac{c}{d} = \left(a \cdot \frac{1}{b}\right) \cdot \left(c \cdot \frac{1}{d}\right)$	3. Substitution
$4. = (a \cdot c) \cdot (\frac{1}{b} \cdot \frac{1}{d})$	4. Commutative and Associative properties of
	multiplication
$5. = ac \cdot \frac{1}{bd}$ $6. = \frac{ac}{bd}$	5. Assumed from Exercise 20
$6. = \frac{ac}{bd}$	6. Definition of division
$7. \therefore \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$	7. Transitive property of equality

Proof for Exercise 22

Statements	Reasons
1. $c \neq 0$ and $d \neq 0$	1. Given
2. $\frac{1}{\frac{c}{d}} = 1 \div \frac{c}{d}$	2. Definition of fraction bar as division
3. The reciprocal of a nonzero number x is $\frac{1}{x}$. The reciprocal of $\frac{c}{d}$ is $\frac{1}{2}$.	3. Definition of a reciprocal.
$4. \ \frac{c}{d} \cdot \frac{d}{c} = \frac{cd}{dc} = 1$	4. Proof from exercise 21.
5. The reciprocal of $\frac{c}{d}$ is $\frac{d}{c}$	5. Definition of a reciprocal $(a \cdot b = 1)$
6. $\frac{1}{\frac{c}{d}} = \frac{d}{c}$	6. Substitution

Proof for Exercise 23

Statements	Reasons
1. $b \neq 0, c \neq 0, d \neq 0$	1. Given
$2. \ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{1}{\frac{c}{d}}$	2. Definition of division
3. $\frac{1}{\frac{c}{d}} = \frac{d}{c}$	3. Result from Exercise 22
$4. \ \frac{\ddot{a}}{b} \div \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$ $5. = \frac{ad}{bc}$	4. Substitution
$5. = \frac{ad}{bc}$	5. Result from Exercise 21
$6. \therefore \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$	6. Transitive property of equality