Greining Rása

Grunnhugtök

Ólafur Bjarki Bogason 11. janúar 2021

Inngangur

- Verkfræði snýst um að nýta lögmál nátturunnar til að byggja nytsamleg kerfi
- Rafmagnsverkfræði snýst í megindráttum um kerfi sem
 - Framleiða og flytja afl, t.d. raforkukerfi
 - Meðhöndla og flytja upplýsingar, t.d. snjallsímar
- Rafmagnsverkfræðingar hafa tekið þátt í að skapa..
 - Rafmagnsmótorinn
 - Raforkukerfi
 - Ljósaperuna
 - Hálfleiðartækni
 - Fjarskiptakerfi
 - ...

Inngangur

- Greining Rása er fyrsta námskeiðið í rafmagnsverkfræði
- Greining Rása er hagnýting á lögmálum rafsegulfræðinnar

Einingar

• Við notum SI einingakerfið

TABLE	1 2	Dorivad	Heite	in	CT

			IABLE 1.2 Delived dilits in 51		
			Quantity	Unit Name (Symbol)	Formula
			Frequency	hertz (Hz)	s^{-1}
			Force	newton (N)	kg⋅m/s ²
TABLE 1.1 The International System of Units (SI)		Energy or work	joule (J)	$N \cdot m$	
Quantity	Basic Unit	Symbol	Power	watt (W)	J/s
Length	meter	m	Electric charge	coulomb (C)	$A \cdot s$
Mass	kilogram	kg	Electric potential	volt (V)	J/C
Time	second	s	Electric resistance	ohm (\O)	V/A
Electric current	ampere	A	Electric conductance	siemens (S)	A/V
Thermodynamic temperature	degree kelvin	K	Electric capacitance	farad (F)	C/V
Amount of substance	mole	mol	Magnetic flux	weber (Wb)	V · s
Luminous intensity	candela	cd	Inductance	henry (H)	Wb/A

Markmið

- Geta greint allar spennur og strauma í rás sem inniheldur
 - Viðnám
 - Pétta
 - Spólur
 - Aðgerðamagnara
- Geta notað hjálparforritin MATLAB og LTSpice til að greina rásir

Grunnhugtök – Rafrás

- Rafrás er stærðfræðilegt líkan sem líkir eftir hegðun raunverulegra rafmagnstækja.
- Við notum rafrásina til að svara t.d. hversu mikill straumur fer í gegnum ljósaperuna
- Rafrásir samanstanda af (a) rásaeiningum og (b) tengingum beirra á milli

Grunnhugtök

- Hleðsla er rafeiginleiki rafeinda og róteinda
- Aðskildar jákvæðar og neikvæðar hleðslur þá myndast rafsvið og mættismunur
- Straumur eru hleðslur á hreyingu

Grunnhugtök - Hleðsla

- SI eining er Coulomb
- 1 Coulomb samsvarar hleðslu á $6.241 \cdot 10^{18}$ rafeindum
- Hleðsla einnar rafeindar er $-1.6 \cdot 10^{-19}$ Coulomb.
- Varðveisla hleðslunnar: Það er ekki hægt að skapa eða eyða hleðslu, bara flytja
- $\bullet\,$ Við notum táknið q(t) til að tákna hleðslu sem tiltekið efnismagn hefur á hverjum tíma.

Grunnhugtök - Flokkun efna

- Leiðari er efni þar sem rafeindir geta flust til nálægra frumeinda tiltölulega auðveldlega
 - Dæmi: Silfur, kopar og aðrir málmar
- Einangrari er efni þar sem rafeindir eru fastbundnar frumeindum (ekki lausar til að ferðast).
 - Dæmi: Flest keramik efni (t.d. gler), plast (fjölliður)
- Hálfleiðari er efni sem þarf utanaðkomandi örvun til þess að rafeindir geti ferðast
 - Dæmi: Kísill (Si), GaAs

$Grunnhugt\"{o}k-Straumur$

- Straumur er skilgreindur sem flæði jákvætt hlaðinna agna, en hleðsluberar eru venjulega rafeindir (-)
- Straumflæði er í öfuga átt við rafeindaflæði

- Straumur hefur eininguna A (Amper)
- 1 A samsvarar flutningi 1 C hleðslu á 1 sekúndu

Straumur: Skilgreiningastefna

- $\bullet\,$ Stefnan sem þið ákveðið ákvarðar formerki straumsins
- $\bullet\,$ Við köllum þessa stefnu **skilgreiningastefnu straumsins**

Grunnhugtök - Straumur

- Við notum táknið i(t) fyrir straum
- Samkvæmt skilgreiningunni hér að ofan er

$$i(t) = \frac{dq(t)}{dt}$$

og

$$q(t) = \int_{-\infty}^{t} i(\tau)d\tau$$

Grunnhugtök - Spenna

- Spenna er mættismunur á milli tveggja póla
- Spenna hefur eininguna V (Volt) og táknið v(t).
- Það kostar vinnu að flytja hleðslu í gegnum einingu. 1 V samsvarar 1 J vinnu framkvæmdri á 1 C hleðslu.
- Samkvæmt skilgreiningu er

$$v(t) = \frac{dw(t)}{dq(t)}$$

Viðmiðunarpunktar spennu

- ullet Formerki ákvarðast af því hvaða póll er + og -
- Myndirnar að ofan hafa sömu eðlisfræðilega merkingu

Jörð

- Við veljum viðmiðunarpunkt sem kallast jörð
- Allar spennur í rás eru mældar með tilliti til jarðar

Mæling á spennu og straum

- Spennumælir mælir spennu án þess að draga straum
- Straummælir mælir straum án þess að spenna falli

${\bf Opin~r\acute{a}s/Skammhlaup}$

- $\bullet\,$ Opin rás: Enginn straumur rennur þar sem rás er opin
- Skammhlaup: Ekkert spennufall

Grunnhugtök - Rásaeiningar

- Rafrás samanstendur af rásaeiningum sem tengdar eru saman til að framkvæma ákveðin markmið. Meðhöndlun orku eða upplýsinga fer fram um tímaháð merki sem kölluð eru spenna og straumur
- Samspil rásaeininga breytir merkinu í nýjar spennur og strauma
- Dæmi um rásaeiningar eru: rafhlaða, viðnám, þéttir, spóla, tvistur og aðgerðamagnari

Grunnhugtök - Rásaeiningar

• Lind framkallar spennu eða straum sem stendur fyrir tilteknar upplýsingar.

Rásaeiningar - Spennulindir

• Spennu-straums-kennilínan fyrir kjörspennulind

- \bullet Ef lindin er tengd við rás ákvarðast stærð og stefna straumsins i(t) af rásinni
- Spennulind með 0 V spennu heldur báðum pólum sínum við sömu spennu, óháð straumnum sem um hana fer. Hún er þá jafngild fullkomnum leiðara.

Rásaeiningar - Spennulindir

- Ekki er hægt að tengja fullkominn leiðara milli póla spennulindar (nema 0 V). Þetta er kallað **skammhlaup**.
- Spennulindin tryggir spennumun milli pólanna en skammhlaupið tryggir sömu spennu, sem leiðir til mótsagnar.

 Ef spenna lindar breytist ekki sem fall af tíma kallast hún jafnspennulind

Rásaeiningar - Straumlindir

- Óháð straumlind: Óháð kjörstraumlind er rásaeining sem viðheldur ákveðnum straum í gegnum sig, óháð spennumuninum milli póla hennar.
- Spennu-straums-kennilínan fyrir kjörstraumlind

 \bullet Ef straumlindin er tengd við rás þá ákvarðast stærð og stefna spennunnar $v_{\rm ab}$ af rásinni

Rásaeiningar - Straumlindir

- Straumlind með 0 A straum hleypir engum straum í gegnum sig, óháð spennunni yfir hana og er jafngild opinni rás
- Straumlind getur aldrei verið ótengd, því eitthvert verður straumurinn að fara

Rásaeiningar - Stýrðar lindir

- Stýrðar lindir. Til eru fjórar tegundir stýrðra linda, þ.e. lindir þar sem lindarspennan eða straumurinn er háð einhverri breytu (spennu eða straum) annarsstaðar í rásinni. Þær eru
 - spennustýrð spennulind
 - straumstýrð spennulind
 - spennustýrð straumlind
 - straumstýrð straumlind

- \bullet Ef kraftur sem færir hleðslu um leiðara er fasti þá er straumurinn dq/dt=I fasti
- Slíkur straumur er nefndur **jafnstraumur** (DC)

• Riðstraumur (AC) er sínuslaga á forminu

$$i(t) = I_o \sin(\omega t + \phi)$$

Riðstraumur er sínuslaga á forminu

$$i(t) = I_o \sin(\omega t + \phi)$$

þar sem

- \bullet I_o er útslag merkisins
- ω er horntíðni
- \bullet t er tími
- ϕ er fasahorn

Venjulega notum við litla stafi til að tákna stærðir sem breytast með tíma (v,i,q), en stóra stafi til að tákna fastar stærðir (V,I,Q)

$$v(t) = V_o \cos \omega t$$

Meðalgildi straumsins er

$$I_{\text{ave}} = \frac{I_o}{T} \int_0^T |\sin(\omega \tau)| d\tau = \frac{2}{\pi} I_o$$

par sem T er lota merkisins $T = 2\pi/\omega$.

Riðstraumur og jafnstraumur í MATLAB:

```
% Ridstraumur
%
t=0:0.001:0.1; fre = 2 * pi * 20; phi = 0.5 * pi; I0 = 3;
i = I0 * sin(fre * t + phi);
figure(1)
plot(t,i)
xlabel('t [s]');
ylabel('i(t) [A]');
print -deps 'rid.eps'
% Jafnstraumur
%
I = 3 * ones(length(t));
figure(2)
plot(t,I)
vlabol(2+ [c])).
```

\mathbf{Afl}

James Watt 1736 - 1819

• Afl er vinna á tímaeiningu og hefur eininguna Watt

$$P = \frac{dw}{dt} = \frac{dw}{dq}\frac{dq}{dt} = vi$$

• Afl er spenna sinnum straumur

\mathbf{Afl}

- Ef afl er jákvæð stærð þá eyðir eining afli
- $\bullet\,$ Ef afl er neikvætt þá gefur eining frá sér afl

Varðveisla aflsins

- Orka er varðveitt í sérhverju lokuðu kerfi
- ullet \Rightarrow Afl er varðveitt í sérhverri lokaðri rás

$$\sum_{\text{rásaeiningar}} P_{eining} = 0$$

Viðnám

 Viðnám: Viðnám er hæfni efnis til að veita straumi viðnám sem

$$R = \frac{\rho L}{A}$$

og Aer þverskurðarflatarmál, ρ er eðlisviðnám og Ler lengd.

 \bullet Eining viðnáms er Ohm $[\Omega]$

Eðlisviðnám

- Sá eiginleiki efnis að hindra straum sem um það fer er nefnd **eðlisviðnám** og táknuð með ρ .
- Einangrarar hafa hátt eðlisviðnám
- Leiðarar hafa lágt eðlisviðnám

Efni	Eðlisviðnám $[\Omega \text{ cm}]$
Kísill	2.3×10^{5}
Kolefni	4×10^{-3}
Ál	2.7×10^{-6}
Kopar	1.7×10^{-6}
Polystyrene	1×10^{18}

Lögmál Ohms

• Lögmál Ohms: Spenna yfir viðnám er í réttu hlutfalli við strauminn

Leiðni

• Leiðni er andhverfa viðnáms

$$G = \frac{1}{R}$$

og hefur eininguna S (Siemens) eða mho (\mho).

Lögmál Ohms

 Viðnám er skilgreint sem sérhver sú rásaeining þar sem spennumunur milli póla er í réttu hlutfalli við strauminn sem á milli fer. Þetta má rita

$$v = iR$$

sem er nefnt lögmál Ohms

Viðnám er táknað með R. Einingin fyrir viðnám er Ohm, táknað með

$$\Omega = \frac{1.V}{1 A}$$

Lögmál Ohms: Skilgreiningarstefnur

Lögmál Ohms

- \bullet Ef viðnám er fasti (eins og oftast) er kennilína þess bein lína í v-i plani, sem liggur í gegnum upphafspunktinn og hefur hallatölu 1/R
- Svona viðnám kallast **línulegt**

 Ef kennilínan liggur ekki í gegnum upphafspunktinn eða er ekki bein lína þá er viðnámið ekki línulegt

Afl og lögmál Ohms

- Ef p = vi > 0 tekur rásaeiningin til sín orku, ef p < 0 lætur hún frá sér orku.
- Afl í viðnámi

$$p = vi = (iR)i = i^{2}R$$
$$p = vi = v\frac{v}{R} = \frac{v^{2}}{R}$$

Sign Convention for Power

- If p > 0, power is being delivered to the box.
- If p < 0, power is being extracted from the box.

Lindir - ekki fullkomnar

 Raunhæft líkan af spennulind og straumlind sem ekki eru fullkomnar má setja sem

• R_s kallast innra viðnám

Lindir - ekki fullkomnar

Fyrir spennulind

$$v_{\rm out} = v_{\rm s} - i_{\rm s} R_{\rm s}$$

Fyrir straumlind

$$i_{\text{out}} = i_{\text{s}} - \frac{v_{\text{out}}}{R_{\text{s}}} = i_{\text{s}} - G_{\text{s}}v_{\text{out}}$$