

An algebraic notion of conditional independence, and its application to knowledge representation

Jesse Heyninck

April 25, 2024

Open Universiteit, the Netherlands

$$r: \inf(X) \leftarrow \inf(Y), \operatorname{cnct}(Y, X), \operatorname{not} \operatorname{vac}(X).$$

```
r_1: inf(b) \leftarrow inf(a), cnct(a, b), not vac(b).

r_2: inf(c) \leftarrow inf(d), cnct(d, c), not vac(c).

r_3: inf(a)., r_4: cnct(a, b)., r_5: cnct(d, c).
```

 $r_1: \inf(b) \leftarrow \inf(a), \operatorname{cnct}(a,b), \operatorname{not} \operatorname{vac}(b).$

 r_2 : inf(c) \leftarrow inf(d), cnct(d, c), not vac(c).

 r_3 : inf(a)., r_4 : cnct(a,b)., r_5 : cnct(d,c).


```
r_1: \inf(b) \leftarrow \inf(\mathbf{a}), \operatorname{cnct}(\mathbf{a}, \mathbf{b}), \operatorname{not} \operatorname{vac}(\mathbf{b}).

r_2: \inf(\mathbf{c}) \leftarrow \inf(\mathbf{a}), \operatorname{cnct}(\mathbf{a}, \mathbf{c}), \operatorname{not} \operatorname{vac}(\mathbf{c}).

r_3: \inf(\mathbf{a}), r_4: \operatorname{cnct}(\mathbf{a}, \mathbf{b}), r_5: \operatorname{cnct}(\mathbf{a}, \mathbf{c}).
```


Once we know inf(a) (or $\neg inf(a)$), we obtain two independent subprograms.

 Should we investigate conditional independence for normal logic programs? Or logic programs with aggregates, disjunction, choice constructs, . . .

- Should we investigate conditional independence for normal logic programs? Or logic programs with aggregates, disjunction, choice constructs, ...
- Under the stable semantics? Or the well-founded, partial stable, supported, regular, ... model semantics?

- Should we investigate conditional independence for normal logic programs? Or logic programs with aggregates, disjunction, choice constructs, . . .
- Under the stable semantics? Or the well-founded, partial stable, supported, regular, ... model semantics?
- And what about abstract (dialectical) argumentation (with weights?), autoepistemic logic, default logic, ...?

- Should we investigate conditional independence for normal logic programs? Or logic programs with aggregates, disjunction, choice constructs, . . .
- Under the stable semantics? Or the well-founded, partial stable, supported, regular, ... model semantics?
- And what about abstract (dialectical) argumentation (with weights?), autoepistemic logic, default logic, ...?
- Conditional independence seems a good candidate for a top-down approach.

Approximation Fixpoint Theory [DMT00]

- Constructive techniques for approximating the fixpoints of an operator O over a lattice L.
- Uniform framework for the mechanisms underlying many different knowledge representation formalisms, such as logic programming [PDB07], autoepistemic logic [DMT03], default logic [DMT03], abstract argumentation [SW15] and abstract dialectical frameworks [SW15].
- To define semantics for a formalism, the user merely has to choose the lattice and define the operator, and then AFT does all the hard work for the user.

Given a lattice $\mathcal{L}=\langle L,\leq \rangle$, we are interested in operator $O:L\to L$ and its fixpoints.

Given a lattice $\mathcal{L} = \langle L, \leq \rangle$, we are interested in operator $O: L \to L$ and its fixpoints.

$$\mathcal{P} = \{ p \leftarrow \neg q \}$$
$$IC_{\mathcal{P}}(x) = \{ \alpha \in \mathcal{A}_{\mathcal{P}} \mid \alpha \leftarrow \phi \in \mathcal{P} \text{ and } x(\phi) = \mathsf{T} \}$$

Given a lattice $\mathcal{L}=\langle L,\leq \rangle$, we are interested in operator $O:L\to L$ and its fixpoints.

$$\mathcal{P} = \{ p \leftarrow \neg q; q \leftarrow \neg q \}$$

$$IC_{\mathcal{P}}(x) = \{ \alpha \in \mathcal{A}_{\mathcal{P}} \mid \alpha \leftarrow \phi \in \mathcal{P} \text{ and } x(\phi) = \mathsf{T} \}$$

Given a lattice $\mathcal{L} = \langle L, \leq \rangle$, we are interested in operator $O: L \to L$ and its fixpoints.

$$\mathcal{P} = \{ p \leftarrow \neg q; q \leftarrow \neg q \}$$
$$\mathcal{IC}_{\mathcal{P}}(x, y) = \{ \alpha \in \mathcal{A}_{\mathcal{P}} \mid \alpha \leftarrow \phi \in \mathcal{P} \text{ and } (x, y)(\phi) \ge \mathsf{T} \}$$

Given a lattice $\mathcal{L}=\langle L,\leq \rangle$, we are interested in operator $O:L\to L$ and its fixpoints.

AFT: summary

- Represent or define NMR-formalism by specifying a lattice and a (family of) operator(s).
- Many operators are non-monotonic and obtain a natural semantics in terms of approximations, i.e. pairs of elements.
- These approximations are again operators over lattices.

AFT: summary

- Represent or define NMR-formalism by specifying a lattice and a (family of) operator(s).
- Many operators are non-monotonic and obtain a natural semantics in terms of approximations, i.e. pairs of elements.
- These approximations are again operators over lattices.

Formalism	Lattice	Operator
Logic programming	Herbrand bases ordered by \subseteq	Immediate consequence
Formal argumentation	Sets of arguments ordered by \subseteq	Defense
ADFs	Sets of arguments ordered by \subseteq	Γ-operator
Default logic	Sets of possible worlds ordered by \supseteq	Immediate consequence
Weighted ADFs	Multivalued assignments	Γ-operator
• • •		

AFT: summary

- Represent or define NMR-formalism by specifying a lattice and a (family of) operator(s).
- Many operators are non-monotonic and obtain a natural semantics in terms of approximations, i.e. pairs of elements.
- These approximations are again operators over lattices.

Formalism	Lattice	Operator
Logic programming	Herbrand bases ordered by \subseteq	Immediate consequence
Formal argumentation	Sets of arguments ordered by \subseteq	Defense
ADFs	Sets of arguments ordered by \subseteq	Γ-operator
Default logic	Sets of possible worlds ordered by \supseteq	Immediate consequence
Weighted ADFs	Multivalued assignments	Γ-operator

If we study a concept in AFT, it is applicable to many formalisms under a wide family of semantics.

Roadmap

We are interested in defining conditional independence of *parts of a lattice* sanctioned by an operator.

- 1. Divide lattices in sub-lattices
- 2. Define and study conditional independence of sub-lattices w.r.t. *O*.

Sub-lattices

Let I be a set, which we call the *index set*, and for each $i \in I$, let L_i be a set. The product set $\bigotimes_{i \in I} L_i$ is the following set of functions:

$$\bigotimes_{i\in I} L_i = \{f \mid f: I \to \bigcup_{i\in I} L_i \text{ s.t. } \forall i \in I: f(i) \in L_i\}$$

Sub-lattices

Let I be a set, which we call the *index set*, and for each $i \in I$, let L_i be a set. The product set $\bigotimes_{i \in I} L_i$ is the following set of functions:

$$\bigotimes_{i \in I} L_i = \{ f \mid f : I \to \bigcup_{i \in I} L_i \text{ s.t. } \forall i \in I : f(i) \in L_i \}$$

The product set $\bigotimes_{i \in I} L_i$ contains all ways of selecting one element of every set L_i .

For a finite set $I = \{1, \ldots, n\}$, the product $\bigotimes_{i \in I} L_i$ is (isomorphic to) the cartesian product $L_1 \times \ldots \times L_n$.

Example
$$L_1 = \{\emptyset, \{p\}\} \text{ and } L_2 = \{\emptyset, \{q\}\},$$
 $\bigotimes_{i \in \{1,2\}} L_i \text{ contains}$ $f(1) = f(2) = \emptyset, \text{ and}$ $f'(1) = \emptyset \text{ and } f'(2) = \{q\},$

Roadmap

- Motivation and Preliminaries
- Sub-lattices
- Conditional Independence w.r.t. an operator
- Results
- Application to Logic Programming

Conditional Independence w.r.t. an operator

Definition

Let $O: L_1 \otimes L_2 \otimes L_3 \to L_1 \otimes L_2 \otimes L_3$ be given. $L_1 \perp \!\!\!\perp_O L_2 \mid L_3$ if there exist operators

$$O_{1,3}: L_1 \otimes L_3 \to L_1 \otimes L_3$$
 and $O_{2,3}: L_2 \otimes L_3 \to L_2 \otimes L_3$

s.t. for $i, j \in \{1, 2\}$, $i \neq j$, and for every $x_i \otimes x_3 \in L_i \otimes L_3$ and for every $x_j \in L_j$ it holds that:

$$O(x_i \otimes x_j \otimes x_3)_{|i,3} = O_{i,3}(x_i \otimes x_3).$$

Conditional Independence w.r.t. an operator

Definition

Let $O: L_1 \otimes L_2 \otimes L_3 \to L_1 \otimes L_2 \otimes L_3$ be given. $L_1 \perp \!\!\!\perp_O L_2 \mid L_3$ if there exist operators

$$O_{1,3}: L_1 \otimes L_3 \rightarrow L_1 \otimes L_3$$
 and $O_{2,3}: L_2 \otimes L_3 \rightarrow L_2 \otimes L_3$

s.t. for $i, j \in \{1, 2\}$, $i \neq j$, and for every $x_i \otimes x_3 \in L_i \otimes L_3$ and for every $x_j \in L_j$ it holds that:

$$O(x_i \otimes x_j \otimes x_3)_{|i,3} = O_{i,3}(x_i \otimes x_3).$$

where $x_i \otimes x_j \otimes x_{3|i,3} = x_i \otimes x_3$

```
r_1: inf(b) \leftarrow inf(a), cnct(a, b), not vac(b).

r_2: inf(c) \leftarrow inf(a), cnct(a, c), not vac(c).

r_3: inf(a)., r_4: cnct(a, b)., r_5: cnct(a, c).
```

```
 \begin{aligned} r_1: &\inf(b) \leftarrow \inf(a), \operatorname{cnct}(a, b), \operatorname{not} \operatorname{vac}(b). \\ r_2: &\inf(c) \leftarrow \inf(a), \operatorname{cnct}(a, c), \operatorname{not} \operatorname{vac}(c). \\ r_3: &\inf(a)., r_4: \operatorname{cnct}(a, b)., r_5: \operatorname{cnct}(a, c). \\ \mathcal{A}_1 &= &\{\inf(b), \operatorname{cnct}(a, b), \operatorname{vac}(b)\} \\ \mathcal{A}_2 &= &\{\inf(c), \operatorname{cnct}(a, c), \operatorname{vac}(c)\} \\ \mathcal{A}_3 &= &\{\inf(a)\} \\ \mathcal{P}_1 &= \{r_1, r_3, r_4\} \text{ and } \mathcal{P}_2 &= \{r_2, r_3, r_5\} \end{aligned}
```

```
r_1: inf(b) \leftarrow inf(a), cnct(a, b), not vac(b).
               r_2: inf(c) \leftarrow inf(a), cnct(a, c), not vac(c).
               r_3: inf(a)., r_4: cnct(a, b)., r_5: cnct(a, c).
                     A_1 = \{\inf(b), \operatorname{cnct}(a, b), \operatorname{vac}(b)\}
                     A_2 = \{\inf(c), \operatorname{cnct}(a, c), \operatorname{vac}(c)\}
                     A_3 = \{\inf(a)\}
                      \mathcal{P}_1 = \{r_1, r_3, r_4\} \text{ and } \mathcal{P}_2 = \{r_2, r_3, r_5\}
For any x_1 \subseteq A_1, x_2 \subseteq A_2, x_3 \subseteq A_3,
              IC_{\mathcal{D}}(x_1 \cup x_2 \cup x_3) \cap (A_1 \cup A_3) = IC_{\mathcal{D}_1}(x_1 \cup x_2)
```

```
r_1: inf(b) \leftarrow inf(a), cnct(a, b), not vac(b).
                r_2: inf(c) \leftarrow inf(a), cnct(a, c), not vac(c).
                r_3: inf(a)., r_4: cnct(a, b)., r_5: cnct(a, c).
                       A_1 = \{\inf(b), \operatorname{cnct}(a, b), \operatorname{vac}(b)\}
                       A_2 = \{\inf(c), \operatorname{cnct}(a, c), \operatorname{vac}(c)\}
                       A_3 = \{\inf(a)\}
                        \mathcal{P}_1 = \{r_1, r_3, r_4\} \text{ and } \mathcal{P}_2 = \{r_2, r_3, r_5\}
For any x_1 \subseteq A_1, x_2 \subseteq A_2, x_3 \subseteq A_3,
               IC_{\mathcal{D}}(x_1 \cup x_2 \cup x_3) \cap (A_1 \cup A_3) = IC_{\mathcal{D}_1}(x_1 \cup x_2)
(similarly for \mathcal{P}_2), and thus:
                                     2^{A_1} \perp \perp_{IC_{\mathcal{D}}} 2^{A_2} \mid 2^{A_3}
```

Similarities with Probability Theory

$$A \perp \!\!\!\perp B|C \text{ if } P(A,B|C) = P(A|C)P(B|C).$$

Similarities with Probability Theory

$$A \perp \!\!\!\perp B|C \text{ if } P(A,B|C) = P(A|C)P(B|C).$$

Fact

 $L_1 \perp \!\!\!\perp_O L_2 \mid L_3$ implies:

$$O(x_1 \otimes x_2 \otimes x_3) = O_{1,3}(x_1 \otimes x_3) \otimes O_{2,3}(x_2 \otimes x_3)|_2$$

= $O_{1,2}(x_1 \otimes x_3)|_1 \otimes O_{2,3}(x_2 \otimes x_3)$

Similarities with Probability Theory

$$A \perp \!\!\!\perp B|C \text{ if } P(A,B|C) = P(A|C)P(B|C).$$

Fact $L_1 \perp \!\!\!\perp_Q L_2 \mid L_3 \text{ implies:}$

$$O(x_1 \otimes x_2 \otimes x_3) = O_{1,3}(x_1 \otimes x_3) \otimes O_{2,3}(x_2 \otimes x_3)|_2$$

= $O_{1,2}(x_1 \otimes x_3)|_1 \otimes O_{2,3}(x_2 \otimes x_3)$

Furthermore, for any i, j = 1, 2, $i \neq j$, $x_i \in \mathcal{L}_i, x_j, x_j' \in \mathcal{L}_j$ and $x_3 \in \mathcal{L}_3$ it holds that:

$$O(x_i \otimes x_j \otimes x_3)_{|i,3} = O(x_i \otimes x_j' \otimes x_3)_{|i,3}$$

Search for Fixpoints can be Split

Proposition

Let an operator O s.t. $L_1 \perp \!\!\! \perp_O L_2 \mid L_3$ be given. Then $x_1 \otimes x_2 \otimes x_3 = O(x_1 \otimes x_2 \otimes x_3)$ iff $x_1 \otimes x_3 = O_{1,3}(x_1 \otimes x_3)$ and $x_2 \otimes x_3 = O_{2,3}(x_2 \otimes x_3)$.

Search for Fixpoints can be Split

Proposition

```
Let an operator O s.t. L_1 \perp\!\!\!\perp_O L_2 \mid L_3 be given.

Then x_1 \otimes x_2 \otimes x_3 = O(x_1 \otimes x_2 \otimes x_3) iff x_1 \otimes x_3 = O_{1,3}(x_1 \otimes x_3) and x_2 \otimes x_3 = O_{2,3}(x_2 \otimes x_3).
```

Example

```
r_1: \inf(b) \leftarrow \inf(a), \operatorname{cnct}(a, b), \operatorname{not} \operatorname{vac}(b).

r_2: \inf(c) \leftarrow \inf(a), \operatorname{cnct}(a, c), \operatorname{not} \operatorname{vac}(c).

r_3: \inf(a), r_4: \operatorname{cnct}(a, b), r_5: \operatorname{cnct}(a, c).
```

We can look for supported models of \mathcal{P} by looking for supported models of \mathcal{P}_1 and \mathcal{P}_2 and combining them afterwards.

Monotonicity is Preserved

Proposition

Let an operator O s.t. $L_1 \perp \!\!\! \perp_O L_2 \mid L_3$ be given.

Then $O: \bigotimes_{i \in \{1,2,3\}} L_i \to \bigotimes_{i \in \{1,2,3\}} L_i$ is \leq_{\otimes} -monotonic iff $O_{i,3}: L_i \otimes L_3 \to L_i \otimes L_3$ is \leq_{\otimes} -monotonic for i = 1,2.

Proposition

Let $a \leq_{\otimes}$ -monotonic operator O s.t. $L_1 \perp \!\!\! \perp_O L_2 \mid L_3$ be given. Then x is a least fixed point of O iff $x_{\mid i,3}$ is a least fixed point of $O_{i,3}$ (for i=1,2).

Application to AFT I

Proposition

Let \mathcal{O} be an approximation operator s.t. $L_1^2 \perp \!\!\! \perp_{\mathcal{O}} L_2^2 \mid L_3^2$. Then:

- (x, y) is the Kripke-Kleene fixpoint of \mathcal{O} iff $(x_{|i,3}, y_{|i,3})$ is the Kripke-Kleene fp. of $\mathcal{O}_{i,3}$ for i = 1, 2.
- (x,y) is a fixpoint of \mathcal{O} iff $(x_{|i,3},y_{|i,3})$ is a fp. of $\mathcal{O}_{i,3}$ for i=1,2.

Proposition

Let \mathcal{O} be an approximation operator s.t. $L_1^2 \perp\!\!\!\perp_{\mathcal{O}} L_2^2 \mid L_3^2$. Then $L_1^2 \perp\!\!\!\perp_{\mathcal{C}(\mathcal{O}_l)} L_2^2 \mid L_3^2$ and $L_1^2 \perp\!\!\!\perp_{\mathcal{C}(\mathcal{O}_u)} L_2^2 \mid L_3^2$.

Application to AFT I

Proposition

Let \mathcal{O} be an approximation operator s.t. $L_1^2 \perp \!\!\! \perp_{\mathcal{O}} L_2^2 \mid L_3^2$. Then:

- 1. (x, y) is a fixpoint of $S(\mathcal{O})$ iff $(x_{|i,3}, y_{|i,3})$ is a fp. of $S(\mathcal{O}_{i,3})$ for i = 1, 2.
- 2. (x, y) is the well-founded fixpoint of \mathcal{O} iff $(x_{|i,3}, y_{|i,3})$ is the well-founded fp. of $\mathcal{O}_{i,3}$ for i = 1, 2.

Application to AFT I

Proposition

Let \mathcal{O} be an approximation operator s.t. $L_1^2 \perp \!\!\! \perp_{\mathcal{O}} L_2^2 \mid L_3^2$. Then:

- 1. (x, y) is a fixpoint of $S(\mathcal{O})$ iff $(x_{|i,3}, y_{|i,3})$ is a fp. of $S(\mathcal{O}_{i,3})$ for i = 1, 2.
- 2. (x, y) is the well-founded fixpoint of \mathcal{O} iff $(x_{|i,3}, y_{|i,3})$ is the well-founded fp. of $\mathcal{O}_{i,3}$ for i = 1, 2.

These results show that most reasoning tasks in NMR can be tackled using a *divide-and-conquer*-methodology if the problem instance admits conditional independencies.

Application to Logic Programming

Proposition

Let a normal logic program \mathcal{P} be given for which $\mathcal{A}_{\mathcal{P}}$ is partitioned into $\mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3$ s.t. $\mathcal{A}_1 \perp \!\!\!\perp_{\mathcal{P}} \mathcal{A}_2 \mid \mathcal{A}_3$.

- $(x_1 \cup x_2 \cup x_3, y_1 \cup y_2 \cup y_3)$ is a supported model of \mathcal{P} iff $(x_i \cup x_3, y_i \cup y_3)$ is a supported model of $\mathcal{P}_{|\mathcal{A}_i \cup \mathcal{A}_3}$ (for i = 1, 2).
- $(x_1 \cup x_2 \cup x_3, y_1 \cup y_2 \cup y_3)$ is a 3-valued stable model of \mathcal{P} iff $(x_i \cup x_3, y_i \cup y_3)$ is a 3-valued stable model of $\mathcal{P}_{|\mathcal{A}_i \cup \mathcal{A}_3|}$ (for i = 1, 2).
- The [ultimate] well-founded model of \mathcal{P} can be obtained as $(x_1 \cup x_2 \cup x_3, y_1 \cup y_2 \cup y_3)$, where $(x_i \cup x_3, y_i \cup y_3)$ is the well-founded model of $\mathcal{P}_{\mathcal{A}_j}$ (for $i, j = 1, 2, i \neq j$).

Splitting up Reasoning Tasks

Example

```
r_1: inf(b) \leftarrow inf(a), cnct(a, b), not vac(b).
          r_2: inf(c) \leftarrow inf(a), cnct(a, c), not vac(c).
          r_3: inf(a)., r_4: cnct(a, b)., r_5: cnct(a, c).
          r_6: inf(d) \leftarrow inf(c), cnct(c, d), not vac(d).
          r_7: inf(e) \leftarrow inf(c), cnct(c, e), not vac(e).
                 r_8: cnct(c,d)., r_9: cnct(c,e).
                 vac(e)
                           \rightarrow inf(e)
                                                  inf(d)
                         cnct(c, e)
                                         inf(c)
                                                    cnct(c,d)
             inf(b)
                                                                vac(d)
                                       cnct(a, c)
vac(b)
           cnct(a, b)
                                                      vac(c)
                           inf(a)
```

Example

CIT-Trees

A binary labelled tree (V, E, ν) is a conditional independence tree for $\mathcal O$ (in short, CIT) if the following holds:

- $\nu: V \rightarrow 2^I \times 2^I \times 2^I$,
- the root is labelled $\langle I_1, I_2, I_3 \rangle$ where I_1, I_2, I_3 is a partition of I,
- for every $(v_1, v_2), (v_1, v_3) \in E$, where $\nu(v_i) = \langle I_1^i, I_2^i, I_3^i \rangle$ for i = 1, 2, 3, $I_j^1 \cup I_3^1 = I_1^j \cup I_j^2 \cup I_j^3$ for j = 2, 3 and $I_j^1 \cup I_2^1 \cup I_3^1 = I_1^2 \cup I_2^2 \cup I_3^2 \cup I_3^1 \cup I_2^3 \cup I_3^3$,
- if $\nu(v) = \langle I_1, I_2, I_3 \rangle$ then $\bigotimes_{i \in I_1} \mathcal{L}_i \perp \!\!\! \perp_{\mathcal{O}_{I_1 \cup I_2 \cup I_3}} \bigotimes_{i \in I_2} \mathcal{L}_i \mid \bigotimes_{i \in I_3} \mathcal{L}_i$.

Example: Well-Founded Interpretation

- WF($\mathcal{P}_1 \cup \mathcal{P}_3$) = {inf(a), cnct(a, b), inf(b)} Search space size: 2^4
- WF($\mathcal{P}_4 \cup \mathcal{P}_2 \cup \mathcal{P}_3$)= {inf(a), cnct(a, c), inf(c), cnct(c, e), inf(e)} Search space size: 2^7
- WF($\mathcal{P}_5 \cup \mathcal{P}_2 \cup \mathcal{P}_3$) = {inf(a), cnct(a, c), inf(c), cnct(c, d), inf(d)} Search space size: 2^7

Example: Well-Founded Interpretation

- WF($\mathcal{P}_1 \cup \mathcal{P}_3$) = {inf(a), cnct(a, b), inf(b)} Search space size: 2^4
- WF($\mathcal{P}_4 \cup \mathcal{P}_2 \cup \mathcal{P}_3$)= {inf(a), cnct(a, c), inf(c), cnct(c, e), inf(e)} Search space size: 2^7
- WF($\mathcal{P}_5 \cup \mathcal{P}_2 \cup \mathcal{P}_3$) = {inf(a), cnct(a, c), inf(c), cnct(c, d), inf(d)} Search space size: 2^7
- WF($\mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3 \cup \mathcal{P}_4 \cup \mathcal{P}_5$) = WF($\mathcal{P}_1 \cup \mathcal{P}_3$) \cup WF($\mathcal{P}_4 \cup \mathcal{P}_2 \cup \mathcal{P}_3$) \cup WF($\mathcal{P}_5 \cup \mathcal{P}_2 \cup \mathcal{P}_3$). Original search space size: 2^{14}

Fixed-Parameter Complexity

Definition

Let an operator O over the power set lattice $\bigotimes_{i \in I} \mathcal{L}_i$ and CIT $T = (V, E, \nu)$ be given s.t. V_I are the leafs of T. The CIT-partition-size of O relative to (V, E, ν) is defined as

$$\max(\{|\bigotimes_{i\in I_j}\mathcal{L}_i\otimes\bigotimes_{i\in I_3}\mathcal{L}_i|\mid v\in V_{\mathsf{I}},\nu(v)=\langle I_1,I_2,I_3\rangle,j=1,2\})$$

Fixed-Parameter Complexity

Definition

Let an operator O over the power set lattice $\bigotimes_{i \in I} \mathcal{L}_i$ and CIT $T = (V, E, \nu)$ be given s.t. V_I are the leafs of T. The CIT-partition-size of O relative to (V, E, ν) is defined as

$$\max(\{|\bigotimes_{i\in I_j}\mathcal{L}_i\otimes\bigotimes_{i\in I_3}\mathcal{L}_i|\mid v\in V_{\mathsf{I}},\nu(v)=\langle I_1,I_2,I_3\rangle,j=1,2\})$$

Proposition

Let a \leq_{\otimes} -monotonic operator O over the product lattice $\bigotimes_{i\in I} \mathcal{L}_i$ and CIT $T=(V,E,\nu)$ with CIT-partition-size s be given. Assume that O(x,y) can be computed to a call to an NP-oracle. The least fixpoint of O can be computed in time O(f(s)).

Rounding Up

Other things in the paper

- Syntactical (sufficient) criteria for conditional independence in logic programs.
- Comparison with treewidth-based decompositions of logic programs.
- (Non)-satisfaction of graphoid properties.
- Comparison with Darwiche's logical notion of independence [Dar97].
- Relations with splitting in AFT [VGD06].

- Algebraic account of conditional independence of sublattice w.r.t. an operator.
- Language-independent account of how the structure of problems in fixpoint-based logic allows to reduce global to parallel instances of local problems.
- Immediately applicable to logic program, formal argumentation, ADFs, default logic, . . .

- Algebraic account of conditional independence of sublattice w.r.t. an operator.
- Language-independent account of how the structure of problems in fixpoint-based logic allows to reduce global to parallel instances of local problems.
- Immediately applicable to logic program, formal argumentation, ADFs, default logic, . . .
- Future work:
 - Implementation (happy to join forces)

- Algebraic account of conditional independence of sublattice w.r.t. an operator.
- Language-independent account of how the structure of problems in fixpoint-based logic allows to reduce global to parallel instances of local problems.
- Immediately applicable to logic program, formal argumentation, ADFs, default logic, . . .
- Future work:
 - Implementation (happy to join forces)
 - Application to your favorite formalism?

- Algebraic account of conditional independence of sublattice w.r.t. an operator.
- Language-independent account of how the structure of problems in fixpoint-based logic allows to reduce global to parallel instances of local problems.
- Immediately applicable to logic program, formal argumentation, ADFs, default logic, . . .
- Future work:
 - Implementation (happy to join forces)
 - Application to your favorite formalism?

Thank you for your attention. Questions?

Bibliography i

Adnan Darwiche.

A logical notion of conditional independence: properties and applications.

Artificial Intelligence, 97(1-2):45-82, 1997.

Marc Denecker, Victor Marek, and Mirosław Truszczyński. Approximations, stable operators, well-founded fixpoints and applications in nonmonotonic reasoning.

In Logic-based Artificial Intelligence, volume 597 of The Springer International Series in Engineering and Computer Science, pages 127–144. Springer, 2000.

Bibliography ii

Artificial Intelligence, 143(1):79–122, 2003.

Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe.

Well-founded and stable semantics of logic programs with aggregates.

Theory and Practice of Logic Programming, 7(3):301–353, 2007.

Bibliography iii

Hannes Strass and Johannes Peter Wallner.

Analyzing the computational complexity of abstract dialectical frameworks via approximation fixpoint theory.

Artificial Intelligence, 226:34–74, 2015.

Joost Vennekens, David Gilis, and Marc Denecker.

Splitting an operator: Algebraic modularity results

Splitting an operator: Algebraic modularity results for logics with fixpoint semantics.

ACM Transactions on computational logic (TOCL), 7(4):765–797, 2006.