IBM DATA SCIENCE CAPSTONE PROJECT - SPACE X

STEFANOVIC - 31/10/21

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

EXECUTIVE SUMMARY

SUMMARY OF METHODOLOGIES

- Data collection
- Data wrangling
- EDA with data visualization
- EDA with SQL
- Building an interactive map with Folium
- Building a Dashboard with Plotly Dash
- Predictive analysis (Classification)

SUMMARY OF ALL RESULTS

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

INTRODUCTION

PROJECT BACKGROUND

 Space Exploration Technologies Corp. is an American aerospace manufacturer, space transportation services and communications corporation headquartered in Hawthorne, California. SpaceX was founded in 2002 by Elon Musk with the goal of reducing space transportation costs to enable the colonization of Mars.

RESEARCH QUESTIONS

- What influences a successful rocket landing?
- Which factors have an impact on the success rate of the landing?
- What conditions Space X need to accomplish in order to get the best success rate?

METHODOLOGY

- I. Data collection by Space X Rest API and Web Scrapping from Wikipedia.
- 2. Data Wrangling (Transforming the data to be able to run further analysis)
- 3. Execute exploratory data analysis (EDA) by using several visualization tools and SQL.
- 4. Performed an interactive visual analytics using Folium and Plotly Dash
- 5. Performed predictive analytics using classification models

DATA COLLECTION - SPACE X API

I. Getting Response from API

spacex_url="https://api.spacexdata.com/v4/launches/past"
response = requests.get(spacex_url).json()

2. Converting Reponse to a json file

response = requests.get(static_json_url).json()
data = pd.json normalize(response)

3. Apply custom functions to clean data

getLaunchSite(data)
getPayloadData(data)
getCoreData(data)

4. Assign list to dictionary then data frame

```
launch dict = ('FlightNumber': list(data['flight number']),
'Date': list(data['date']),
'BoosterVersion': BoosterVersion,
'PayloadMass':PayloadMass,
'Orbit':Orbit,
'LaunchSite':LaunchSite,
'Outcome':Outcome,
'Flights':Flights,
'GridFins':GridFins,
'Reused':Reused,
'Legs':Legs,
'LandingPad':LandingPad,
'Block':Block,
'ReusedCount':ReusedCount,
'Serial':Serial,
'Longitude': Longitude,
'Latitude': Latitude}
```

5. Filter data frame and export to csv

data_falcon9 = df.loc[df['BoosterVersion']!="Falcon 1"]
data_falcon9.to_csv('dataset_part_1.csv', index=False)

DATA COLLECTION - WEB SCRAPPING

I. Getting Response from HTML

```
page = requests.get(static_url)
```

2. Creating Beautiful Soup Object

```
soup = BeautifulSoup(page.text, 'html.parser')
```

3. Finding tables

```
html_tables = soup.find_all('table')
```

5. Creation of dictionary

```
launch_dict= dict.fromkeys(column_names)
# Remove an irrelvant column
del launch_dict['Date and time ( )']

launch_dict['Flight No.'] = []
launch_dict['Launch site'] = []
launch_dict['Payload'] = []
launch_dict['Payload mass'] = []
launch_dict['Customer'] = []
launch_dict['Customer'] = []
launch_dict['Version Booster']=[]
launch_dict['Nooster landing']=[]
launch_dict['Booster landing']=[]
launch_dict['Oate']=[]
launch_dict['Time']=[]
```

6. Converting to dataframe

```
df = pd.DataFrame.from dict(launch dict)
```

7. Data frame to csv

```
df.to_csv('spacex_web_scraped.csv', index=False)
```

DATA WRANGLING

The data set consists out of several landing data collected for each rocket start.

	FlightNumber	Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	Landing
0	1	2010- 06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN
1	2	2012- 05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN
2	3	2013- 03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN
3	4	2013- 09-29	Falcon 9	500.000000	РО	VAFB SLC 4E	False Ocean	1	False	False	False	NaN
4	5	2013- 12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN

In order to run further analysis it was necessary to proceed first with a data wrangling process

EDA

Data Wrangling

Export dataset as csv

EDA WITH DATA VISUALIZATION

For the EDA we run the following visualizations:

- I. Relationship between Flight Number and Launch Site
- 2. The relationship between Payload and Launch Site
- 3. Relationship between success rate of each orbit type
- 4. Relationship between Flight Number and Orbit type
- 5. Relationship between Payload and Orbit type
- 6. Launch Success Yearly Trend

For the EDA with SQL we run the following queries:

- I. Display the total payload mass carried by boosters launched by NASA (CRS)
- 2. Display average payload mass carried by booster version F9
- 3. List the date where the successful landing outcome in drone ship was achieved.
- 4. List the names of the boosters which have success in ground pad and have payload mass greater than 4000 but less than 6000
- 5. List the total number of successful and failure mission outcomes
- 6. List the names of the booster versions which have carried the maximum payload mass. Use a subquery
- 7. List the records which will display the month names, successful landing outcomes in ground pad ,booster versions, launch site for the months in year 2017
- 8. Rank the count of successful landing outcomes between the date 2010-06-04 and 2017-03-20 in descending order.

BUILDING AN INTERACTIVE MAP WITH FOLIUM

- To visualize the launch data I used an interactive map.
- I assigned the launch outcomes to the classes 0 and I with green and red markets and display them on the map.
- I also applied Haversine's formula to calculate the distance from the lunch site to landmarks in order to identify trends.

BUILDING AN INTERACTIVE DASHBOARD

- Next I developed an interactive dashboard with Flask and Dash.
- In the dashboard it is possible for the user to adjust the visualization in order to analyze the data.
- Graphs used:
 - Pie Chart
 - Scatter Graph

PREDICTIVE ANALYSIS

I. Building a Model

- Load dataset with pandas
- Transform data
- Split data in training and test sets
- Decide MLA
- Set parameters
- Fit the model

Evaluating the Model

- Check accuracy of the model
- Plot confusion matrix

Improving the Model

- Feature Engineering
- Algorithm Tuning

Finding the best performance model

 The model with the best accuracy score wins

RESULTS

- Exploratory data analysis results
- Interactive analytics results
- Predictive analysis results

The more amount of flights at launch site the greater the success rate at a lunch site.

The greater the payload mass for Lunch Site the higher the success rate for the Rocket.

Success rate vs. Orbit type

ORBIT GEO, HEO, SSO, ES-LI has the best success rate!

Flight Number vs. Orbit type

Payload vs. Orbit type

LEO orbit success rate is related to the number of flights.

Launch success yearly trend

Lunch success rate increase significant since 2013.

SQL QUERY

select DISTINCT Launch_Site from tblSpaceX

Unique Launch Sites

CCAFS LC-40

CCAFS SLC-40

CCAFS SLC-40

(SC LC-39A

VAFB SLC-4E

SQL QUERY

select TOP 5 * from tblSpaceX WHERE Launch_Site LIKE 'KSC%'

Landing_Outcome	Mission_Outcome	Customer	Orbit	PAYLOAD_MASS_KG_	Payload	Launch_Site	Booster_Version	Time_UTC	Date
Success (ground pad)	Success	NASA (CRS)	LEO (ISS)	2490	SpaceX CRS-10	KSC LC-39A	F9 FT B1031.1	2021-07-02 14:39:00.0000000	19-02-2017
No attempt	Success	EchoStar	GTO	5600	EchoStar 23	KSC LC-39A	F9 FT B1030	2021-07-02 06:00:00.0000000	16-03-2017
Success (drone ship)	Success	SES	GT0	5300	SES-10	KSC LC-39A	F9 FT B1021.2	2021-07-02 22:27:00.0000000	30-03-2017
Success (ground pad)	Success	NRO	LE0	5300	NROL-76	KSC LC-39A	F9 FT B1032.1	2021-07-02 11:15:00.0000000	01-05-2017
No attempt	Success	Inmarsat	GTO	6070	Inmarsat-5 F4	KSC LC-39A	F9 FT B1034	2021-07-02 23:21:00.0000000	15-05-2017

SQL QUERY

select SUM(PAYLOAD_MASS_KG_) TotalPayloadMass from tblSpaceX where Customer = 'NASA (CRS)'", 'TotalPayloadMass

Total Payload Mass

45596

SQL QUERY

select AVG(PAYLOAD_MASS_KG_) AveragePayloadMass from tblSpaceX where Booster_Version = 'F9 \lor 1.1'

Average Payload Mass

9 2928

SQL QUERY

select MIN(Date) SLO from tblSpaceX where Landing_Outcome = "Success (drone ship)"

Date which first Successful landing outcome in drone ship was acheived.

06-05-2016

SQL QUERY

select Booster_Version from tblSpaceX where Landing_Outcome = 'Success (ground pad)' AND Payload_MASS_KG_ > 4000 AND Payload_MASS_KG_ < 6000


```
Date which first Successful landing outcome in drone ship was acheived.

6 F9 FT 81832.1

1 F9 84 81848.1

2 F9 84 81843.1
```

SQL QUERY

SELECT(SELECT Count(Mission_Outcome) from tblSpaceX where Mission_Outcome LIKE '%Success%') as Successful_Mission_Outcomes, (SELECT Count(Mission_Outcome) from tblSpaceX where Mission_Outcome LIKE '%Failure%') as Failure_Mission_Coutcomes

Successful_Mission_Outcomes Failure_Mission_Outcomes

100 1

SQL QUERY

SELECT DISTINCT Booster_Version, MAX(PAYLOAD_MASS _KG_) AS [Maximum Payload Mass]
FROM tblSpaceX GROUP BY Booster_Version
ORDER BY [Maximum Payload Mass] DESC

0	F9 B5 B1048.4	15600
1	F9 B5 B1048.5	15600
2	F9 B5 B1049.4	15600
3	F9 B5 B1049.5	15600
4	F9 B5 B1049.7	15600
92	F9 v1.1 B1003	500
93	F9 FT B1038.1	475
94	F9 B4 B1045.1	362
95	F9 v1.0 B0003	e
96	F9 v1.0 B0004	e

SQL QUERY

SELECT DATENAME(month, DATEADD(month, MONTH(CONVERT(date, Date, 105)), 0) - 1) AS Month, Booster_Version, Launch_Site, Landing_Outcome FROM tblSpaceX
WHERE (Landing_Outcome LIKE N'%Success%') AND (YEAR(CONVERT(date, Date, 105)) = '2017')

Month	Booster	_Version	Laune	ch_Site	Lar	nding_Outcome
January	F9 FT	B1029.1	VAFB	SLC-4E	Success	(drone ship)
February	F9 FT	B1031.1	KSC	LC-39A	Success	(ground pad)
March	F9 FT	B1021.2	KSC	LC-39A	Success	(drone ship)
May	F9 FT	B1032.1	KSC	LC-39A	Success	(ground pad)
June	F9 FT	81035.1	KSC	LC-39A	Success	(ground pad)
June	F9 FT	B1029.2	KSC	LC-39A	Success	(drone ship)
June	F9 FT	B1036.1	VAFB	SLC-4E	Success	(drone ship)
August	F9 B4	B1039.1	KSC	LC-39A	Success	(ground pad)
August	F9 FT	B1038.1	VAFB	SLC-4E	Success	(drone ship)
eptember	F9 B4	B1040.1	KSC	LC-39A	Success	(ground pad)
October	F9 B4	B1041.1	VAFB	SLC-4E	Success	(drone ship)
October 0	F9 FT	B1031.2	KSC	LC-39A	Success	(drone ship)
October	F9 B4	B1042.1	KSC	LC-39A	Success	(drone ship)
December	F9 FT	B1035.2	CCAFS	SLC-40	Success	(ground pad)

SQL QUERY

SELECT COUNT(Landing_Outcome)

FROM tblSpaceX

WHERE (Landing_Outcome LIKE '%Success%')

AND (Date > '04-06-2010')

AND (Date < '20-03-2017')

INTERACTIVE MAP WITH FOLIUM

Green Markers: Show the successful Launches

Red Markers: Show the unsuccessful Launches

INTERACTIVE MAP WITH FOLIUM

Questions and Answers:

- I. Are launch sites in close proximity to railways? No
- 2. Are launch sites in close proximity to highways? No
- 3. Are launch sites in close proximity to coastline? Yes
- 4. Do launch sites keep certain distance away from cities? Yes

DASHBOARD WITH PLOTLY DASH

KSC LC-39A is the most successful launch site.

DASHBOARD WITH PLOTLY DASH

KSC LC-39A has a success rate of 76.9%.

DASHBOARD WITH PLOTLY DASH

The success rate for low weighted payloads is higher than for heavy weighted payloads.

PREDICTIVE ANALYSIS (CLASSIFICATION)

To calculate the best algorithm we used the following function:

bestalgorithm = max(algorithms, key=algorithms.get)

We received the following result

	Accuracy	Algorithm
0	0.653571	KNN
1	0.667857	Tree
2	0.667857	LogisticRegression

The tree algorithm has the highest accuracy.

PREDICTIVE ANALYSIS (CLASSIFICATION)

The Confusion matrix for the tree algorithm is visualized on the right side.

The major problem is false positives.

CONCLUSION

- The tree classifier algorithm is the best for ML for the data set
- Low weighted payloads perform better than heavy ones.
- KSC LC-39A has the most successful launches from all the sites
- Orbit GEO,HEO,SSO,ES-LI has the best success rates
- Based on the data it can be concluded that SpaceX will be able in a few years to significant increase their success rate of rocket launches.

THANK YOU!