(XE 2007)

gate 1

EE24Btech11041 - Mohit

Q.7-Q.24	carry	two	marks	eacl	h
----------	-------	-----	-------	------	---

1)	to 3 places of decimals	of terms required in the se is	eries expansion of e^x to ev	aluate at $x = 1$	(XE 2007)
	a) 8	b) 7	c) 6	d) 5	
2)	The iteration scheme x_i . The value of x correct in	$_{n+1} = \frac{1}{1+x_n^2}$ converges to a up to 2 places of decimal	real number x in the inte is equal to	erval (0, 1) wit	th $x_0 = 0.5$ (XE 2007)
	a) 0.65	b) 0.68	c) 0.73	d) 0.80	
3)	If the diagonal element matrix A will always be	s of a lower triangular sq	uare matrix A are all diff	erent from zer	ro, then the (XE 2007)
	a) symmetric	b) non-symmetric	c) singular	d) non-singu	ılar
4)	If two eigenvalues of the $M = \begin{pmatrix} 2 & 6 & 0 \\ 1 & p & 0 \\ 0 & 0 & 3 \end{pmatrix}$ are -1 and 4, then the				(XE 2007)
	a) 4	b) 2	c) 1	d) -1	
5)	Consider the system of	linear simultaneous equat	tions:		
		x + 10y = 5; y + 5z	= 1; 10x - y + z = 0		
	On applying Gauss-Seid	del method, the value of x	correct up to 4 decimal	places is:	(XE 2007)
	a) 0.0385	b) 0.0395	c) 0.0405	d) 0.0410	
6)		of x at which the curve c	_		g Lagrange (XE 2007)
	a) 1.375	b) 0.0395	c) 0.0405	d) 0.0410	
7)	The equation of the stra	ight line of best fit using	the following data: by the	principle of lo	east squares
		x 1 2 y 14 13	3 4 5 9 5 2		
	is:				(XE 2007)
	a) $y = 18 - 3x$	b) $y = 18.1 - 3.1x$	c) $y = 18.2 - 3.2x$	d) $y = 18.3$	-3.3x
8)	On solving the initial va	alue problem:			
		$\frac{dy}{dx} = xy^2,$	y(1) = 1		(1)
	by Euler's method the	value of v at $x = 1.2$ with			

				2			
a) 1.1000	b) 1.1232	c) 1.2210	d) 1.2331				
9) The local error o	f the following scheme:						
$y_{n+1} = y_n + \frac{h}{12} \left(5y'_{n+1} + 8y'_n - y'_{n-1} \right) \tag{2}$							
by comparing wi	th the Taylor series:	12					
$y_{n+1} = y_n + hy'_n + \frac{h^2}{2!}y''_n + \cdots $ (3)							
is:		2! "	(XE	E 2007)			
a) $O(h^4)$	b) $O(h^5)$	c) $O(h^2)$	d) $O(h^3)$				
	The area bounded by the curve $y = 1 - x^2$ and the x-axis from $x = -1$ to $x = 1$ using Trapezoida rule with step length $h = 0.5$ is: (XE 2007)						
a) 1.20	b) 1.23	c) 1.25	d) 1.33				
11) The iteration sch	eme:						
	$x_{n+1} = \sqrt{a}$	$a\left(1 + \frac{3a^2}{x_n^2}\right) - \frac{3a^2}{x_n}, a > 0$		(4)			
converges to the	real number:		(XF	E 2007)			
a) \sqrt{a}	b) <i>a</i>	c) $a\sqrt{a}$	d) a^2				
12) If the binary representation of two numbers m and n are 01001101 and 00101011, respectively, then the binary representation of $m - n$ is: (XE 2007)							
a) 00010010	b) 00100010	c) 00111101	d) 00100001				
P: A local variable is used only within the block where it is defined, and its sub-blocks Q: Global variables are declared outside the scope of all blocks R: Extern variables are used by linkers for sharing between other compilation units S: By default, all global variables are extern variables (XE 2007)							
a) P and Q	b) P, Q and R	c) P, Q and S	d) P, Q, R and S	•			
4 14) Consider the foll	owing recursive function g	g().					

```
Recursive integer function g(m,n) result (r)
integer :: m,n
if (n == 0) then
     r=m
else if (m \le 0) then
     r = n + 1
else if ((n - n/2*2) == 1) then
     r = g(m-2, n/2)
end if
end
```

a) 2

b) 4

c) 6

d) 8

15) If the following function is called with x = 1

```
real function print_value(x)
real :: x , sum , term
integer :: i
i = 0
sum = 2.0
term = 1.0
do while (term > 0.00001)
    term = x * term/(i+1)
    sum = sum + term
    i = i + 1
end do
print_value = sum
end
```

The value returned will be close to

(XE 2007)

a) $\log_e 2$

- b) log_e 3
- c) 1 + e

d) e

16) Consider the following C program

```
#include <stdio.h>
#include <string.h>
void main()
    char s[80], *p;
    int sum = 0;
    p = s;
    gets(s);
    while (*p)
        if (*p == '1')
            sum = 2*sum + 1;
        else if (*p == '0')
             sum = sum * 2;
        else
            printf("invalid_string");
        p++;
    printf("%d", sum);
```

Which number will be printed if the input string is 10110?

(XE 2007)

4

a) 31

b) 28

c) 25

d) 22