

Rainfall Anomaly Detection in MacLeish

Elaine Chen, Ashley Qian

Introduction

Background:

Due to the design of the MacLeish station's rainfall gauge, snow can accumulate in the funnel and get temporarily stuck. When the snow later melts, it may be incorrectly recorded as rainfall on days when it neither rained nor snowed, leading to errors in the measured rainfall data.

Goal:

We aim to build a model that identifies such anomalies.

Data origin:

We will use five years of data (2019–2023) to train and evaluate the model provided by the Center for the Environment, Ecological Design & Sustainability.

The model will also rely on precipitation and snow data from the Leverett Number 2 station from the National Centers for Environmental Information as ground truth, since that station distinguishes between rain and snow.

Method

Predictor Selection:

We first applied bagging and random tree models to identify the most influential predictors in our dataset.

We then built three separate models based on different combinations of predictors and data scopes:

- 1. Using only CEEDS data as predictors.
- 2. Using CEEDS data together with NCEI data (is_snow, is_rain) and incorporating lag features.
- 3. Using only winter-season data (from November to April).

After implementing the three models, we selected the combination that provided the lowest prediction error rate and retained predictors with an importance factor ≥ 0.1 .

Interpretation:

After identifying the most important predictors, we implemented a logistic regression model to provide a clearer explanation of their effects on anomaly detection.

Future Work

Time series models:

Since the data is time-based, it would be more logical to apply models designed for time-dependent data, like LSTM or ARIMA.

Collinearity:

There might be collinearity within the predictors, for example, minimum/maximum temperature and average temperature.

Anomaly definition:

The current definition of anomalies includes a restriction on minimum temperature to filter out summer rainfall events, considering the ~10-mile distance between MacLeish and Leverett. However, CEEDS could further refine this definition.

Result

Data	Model	Lag Feature	Classification Error
All-Year	Bagging	No	3.72%
All-Year	Random Forest	No	3.72%
All-Year	Bagging	Yes	5.04%
All-Year	Random Forest	Yes	5.22%
Winter	Bagging	No	8.24%
Winter	Random Forest	No	9.74%
Winter	Bagging	Yes	7.89%
Winter	Random Forest	Yes	9.77%

Upon reviewing the table above, we notice that bagging models almost always demonstrate a lower classification error when compared to random forest models. Incorporating the lag features generally increases the classification error, except for bagging models trained on winter-only data. The lag features also demonstrate fairly low importance across all models (below 0.01). Additionally, models trained on winter-only data generate higher classification errors when compared to those trained on all-year data.

The lowest classification error among all models is 3.72%, achieved by the bagging (the tree is shown in the Visualization section) and random forest model trained on all-year data without lag features. The most important features of both models are identical: Total Rainfall, Mean Relative Humidity, and Min Temp, though the ranking slightly differs.

	Coefficient	Std. Error	z-statistics	p-value
Intercept	-20.8374	15.444	-1.349	0.177
Min Temp	-0.1412	0.014	-10.186	0.000
Wind Direction	-0.0034	0.001	-3.636	0.000
Mean Relative Humidity	0.0276	0.007	3.899	0.000
Atmospheric Pressure	0.0165	0.015	1.104	0.270
Total Rainfall	0.0103	0.011	0.967	0.333

The table above shows the logistics regression results.

So the final equation for our model is:

logit(p)=-20.8374-0.1412×(Min Temp)-0.0034×(Wind Direction)+0.0276×(Mean Relative Humidity)+0.0165×(Atmospheric Pressure)+0.0103×(Total Rainfall)

Data

Column Name	Unit	Meaning	
TIMESTAMP	YYYY/MM/DD HH:MM	Date and time of the observation	
Average Temp	°C	Daily average temperature	
Max Daily Temp	°C	Maximum daily temperature	
Min Temp	°C	Minimum daily temperature	
Wind Speed	m/s	Average wind speed	
Wind Direction	Degrees (°)	Average wind direction	
Max Wind Speed	m/s	Maximum wind speed	
Min Wind Speed	m/s	Minimum wind speed	
Mean Relative Humidity	%	Daily average relative humidity	
Atmospheric Pressure	mb	Atmospheric pressure	
Mean Solar Radiation	W/m²	Average solar radiation	
Total Rainfall	mm	Total rainfall recorded by MacLeish station	
Precipitation	mm	Precipitation recorded by Leverett Station No. 2	
ls_rain	1/0	1 if precipitation > 0, else 0	
Snow	mm	Snowfall recorded by Leverett Station No. 2	
ls_snow	1/0	1 if snowfall > 0, else 0	
ls_anomaly	1/0	1 if Precipitation == 0 and Snow == 0 and Total Rainfall ≠ 0 and Min Temp < 1°C	

