Machine Learning HW3

0853412 資管碩一 吳宛儒

1-2

1-3

Thetas: [0,0,0,1]		Thetas: [1,4,0,0]	
Train	Test	Train	Test
[[6.65758954]]	[[6.74853909]]	[[1.05224307]]	[[1.29879576]]
Thetas: [1,4,0,5]		Thetas: [1,32,5,5]	
Train	Test	Train	Test
[[1.0288404]]	[[1.28609023]]	[[0.96404492]]	[[1.25846852]]

ARD learning rate= 0.0001

Thetas: [0,0,0,1]		Thetas: [1,4,0,0]	
Train	Test	Train	Test
[[0.97162025]]	[[1.21648941]]	[[1.32446569]]	[[1.33961707]]
Thetas: [1,4,0,5]		Thetas: [1,32,5,5]	
Thetas: [1,	4,0,5]	Thetas: [1,3	32,5,5]
Thetas: [1,	4,0,5] Test	Thetas: [1,3	32,5,5] Test

ARD learning rate= 0.001

Thetas: [0,0,0,1]		Thetas: [1,4,0,0]	
Train	Test	Train	Test
[[6.65876231]]	[[6.77036825]]	[[7.56589985]]	[[7.79003101]]
Thetas: [1,4,0,5]		Thetas: [1,32,5,5]	
Train	Test	Train	Test
[[12.14293537]]	[[11.12835704]]	[[1.28399296]]	[[1.57993645]]

ARD learning rate= 0.00001

Thetas: [0,0,0,1]		Thetas: [1,4,0,0]	
Train	Test	Train	Test
[[12.46505149]]	[[13.5411752]]	[[5.28553288]]	[[4.76680009]]
Thetas: [1,4,0,5]		Thetas: [1,32,5,5]	
Thetas: [1,	4,0,5]	Thetas: [1,3	32,5,5]
Thetas: [1,	4,0,5] Test	Thetas: [1,5	32,5,5] Test

1-5

第一次實驗在未使用 ARD 並且僅有 theta3 非零的時候,其結果為線性且幾乎完全無法呈現真實 data 的分布情形,但是當 theta0 和 thetal 為非零且 theta2 和 theta3 為零的時候,效果便改善很多,到最後 thetas 為 [1,32,5,5] 的時候已經能有很不錯的呈現效果。在使用 ARD 以後,我嘗試了 learning rate=0.0001 和 0.001 兩種,發現兩種所得出的結果差異蠻大,尤其是在 thetas 為[0,0,0,1]和[1,4,0,0]和[1,4,0,5]的時候,較大的 learning rate 似乎無法真正學習到較好 fitting data 的方式,也有較大的 RMS error。因著這樣的結果我又嘗試了 learning rate 為 0.00001 的方式, 發現其效果並沒有想像中來得好。由此推測出 learning rate 並非越大越好,而是在設定為 0.001 的時候為最適合此 data 的 learning rate。

one-versus-the-rest: 在 training 的時候依據把某個類別的樣本歸為一類,期他剩餘的樣本歸為另一類(一次共兩類),如果有 K 個類別的樣本,就會有 K 個 SVM。分類時將未知樣本分類為具有最大分類函數值的那類。假設有 4 個類別 (label),當依上述方法建好 4 個 SVM 以後,在 testing 的時候,將 testing vector 分別利用這 4 個進行測試,得到 f1(x), f2(x), f3(x), f4(x),最終分的類別就是最大函數值的那個。

one-versus-one: 在任意兩個樣本之間設計一個 SVM,當有 k 個樣本的時候就需要設計 k(k-1)/2 個 SVM。當面對一個未知的樣本欲將其作分類,得票最多的類別就會是它的類別。假設今有 4 個類別 A, B, C, D,便會有 A, B; A, C; A, D; B, C; B, D; C, D 六個 SVM,透過 training 得到六個 trained SVM,testing 的時候每個未知的樣本就會得到一組結果,並用投票的方式決定最終的分類結果。選擇後者,因為第一種方法可能會存有 bias 偏差(只用屬於某類/不屬於某類來分劃),第二種方法雖然在類別很多的情況下成本較高,但多數實驗皆說明這種方法會比第一種方法還要好。

2-3, 2-4

SVM with multi-class classification: the decision boundary and support

2-5

若實現在作業使用的資料上,線性 kernel 已可以大致將資料做正確分類,而 polynomial kernel 則可以將其用非線性的方法切割。原本預期 polynomial 可以有更少的 support vector 數量,但在印出來的圖上面並沒有辦法有太多的區別,預計應該用其他 degree 嘗試出不一樣的效果。

3-2

The log likelihood curve of GMM

3-3

K = 3.5.7 and 10

K = 3, 5, 7, and 10			
K=	3	K=	: 5
K-means	GMM	K-means	GMM
K_means R G B 0 181 143 26 1 106 162 213 2 64 63 34	GMM R G B	K_means R G B 0 130 196 38 1 202 161 18 2 192 187 184 3 59 147 228 4 45 49 27	GMM R G B 0 79 113 139 1 176 136 13 2 195 184 179 3 73 166 248 4 54 54 10
K=7		K=10	
K-means	GMM	K-means	GMM
K_means R 6 B 0 215 175 19 1 98 82 22 2 31 33 9 3 161 123 24 4 64 159 243 5 62 102 146 6 195 188 184	GNM R G B H H H H H H H H H	K_means R G B 0	GMM R G B 0 112 115 117 1 48 50 10 2 202 190 184 3 169 132 8 4 21 133 229 5 75 165 248 6 76 145 204 7 124 107 34 8 168 85 0 9 196 147 21

The resulting images

