Bicategories

December 24, 2023

00ZK

Contents

- 1. spans in bicategories: add Proposition 7 here: https://arxiv.org/abs/1903.03890
- 2. add fact: internal adjunctions in $\mathsf{PseudoFun}(\mathcal{C}, \mathcal{D})$ are precisely the invertible strong transformations as in [JY21, Example 6.2.7]. What are the internal adjunctions?

1 Monomorphisms in Bicategories

1.1 Faithful Monorphisms

Let C be a bicategory.

Definition 1.1.1.1. A 1-morphism $f: A \cap B$ is a **faithful monomorphism in** C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(\mathcal{C})$, the functor

00ZP

 $f_* \colon \mathsf{Hom}_C(X,A) \to \mathsf{Hom}_C(X,B)$

given by postcomposition by f is faithful.

2. Given a diagram in C of the form

$$X \xrightarrow{\phi \atop \psi} A \xrightarrow{f} B,$$

if we have $id_f \circ \alpha = id_f \circ \beta$, then $\alpha = \beta$.

Example 1.1.1.2. Here are some examples of faithful monomorphisms.

1. Full Monomorphisms in Cats₂.

2. Full Monomorphisms in Rel.

3. Full Monomorphisms in Span. 00ZU

1.2 Full Monona phisms

Let C be a bicategory.

Definition 1.2.1.1. A 1-morphism $f: AO \oplus Y B$ is a **full monomorphism** in C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(\mathcal{C})$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is full.

2. For each $X \in \text{Obj}(C)$ and each 2-morphism

00ZX

$$\gamma \colon f \circ \phi \Longrightarrow f \circ \psi, \quad X \underbrace{\uparrow \circ \phi}_{f \circ \psi} B$$

of C, there exists a 2-morphism $\alpha \colon \phi \Longrightarrow \psi$ of C such that we have an equality

$$X \xrightarrow{\phi} A \xrightarrow{f} B = X \xrightarrow{f \circ \phi} B$$

of pasting diagrams in C, i.e. such that we have

$$\gamma = \mathrm{id}_f \circ \alpha$$
.

Example 1.2.1.2. Here are some examples of full monomorphisms.

1. Full Monomorphisms in Cats₂.

2. Full Monomorphisms in Rel. 0101

3. Full Monomorphisms in Span. 0102

1.3 Fully Faith Monomorphisms

Let C be a bicategory.

Definition 1.3.1.1. A 1-morphism $f: A \ominus OB$ is a fully faithful monomorphism in C if the following equivalent conditions are satisfied:

1. The 1-morphism f is fully and faithful. 0105

2. For each $X \in \text{Obj}(C)$, the functor

$$f_* \colon \mathsf{Hom}_{\mathcal{C}}(X,A) \to \mathsf{Hom}_{\mathcal{C}}(X,B)$$

given by postcomposition by f is fully faithful.

3. The conditions in ?? of ?? and ?? of ?? hold.

Example 1.3.1.2. Here are some examples of fully faithful monomorphisms.

1. Fully Faithful Monomorphisms in Cats₂. 0109

2. Fully Faithful Monomorphisms in Rel. 010A

3. Fully Faithful Monomorphisms in Span. 010B

1.4 Strict Monorphisms

Let C be a bicategory.

Definition 1.4.1.1. A 1-morphism $f: A \cap B$ is a **strict monomorphism** in C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(C)$, the action on objects

$$f_* : \mathrm{Obj}(\mathsf{Hom}_C(X,A)) \to \mathrm{Obj}(\mathsf{Hom}_C(X,B))$$

of the functor

$$f_* \colon \mathsf{Hom}_C(X,A) \to \mathsf{Hom}_C(X,B)$$

given by postcomposition by f is injective.

2. For each diagram in C of the form

010F

010Q

$$X \stackrel{\phi}{\Longrightarrow} A \stackrel{f}{\longrightarrow} B,$$

if $f \circ \phi = f \circ \psi$, then $\phi = \psi$.

Example 1.4.1.2. Here are some examples of strict monomorphisms.

- 1. Strict Monomorphisms in Cats₂. 010H
- 2. Strict Monomorphisms in Rel. 010J
- 3. Strict Monomorphisms in Span. 010K

2 Epimorphisms in Bicategories

2.1 Faithful Ep**ána**grphisms

Let C be a bicategory.

Definition 2.1.1.1. A 1-morphism $f: A \cap B$ is a **faithful epimorphism** in C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(\mathcal{C})$, the functor

$$f^* \colon \mathsf{Hom}_C(B,X) \to \mathsf{Hom}_C(A,X)$$

given by precomposition by f is faithful.

2. Given a diagram in \mathcal{C} of the form

$$A \stackrel{f}{\longrightarrow} B \underbrace{\alpha \Downarrow \beta}_{\psi} X,$$

if we have $\alpha \circ id_f = \beta \circ id_f$, then $\alpha = \beta$.

Example 2.1.1.2. Here are some examples of faithful epimorphisms.

- 1. Full Epimorphisms in Cats₂. 010S
- 2. Full Epimorphisms in Rel.
- 3. Full Epimorphisms in Span. 010U

2.2 Full Epimopphisms

Let C be a bicategory.

Definition 2.2.1.1. A 1-morphism $f: A \cap B$ is a full epimorphism in C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(\mathcal{C})$, the functor

010X

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is full.

2. For each $X \in \text{Obj}(\mathcal{C})$ and each 2-morphism

011F

$$\gamma \colon \phi \circ f \Longrightarrow \psi \circ f, \quad X \xrightarrow{\phi \circ f} B$$

of C, there exists a 2-morphism $\alpha \colon \phi \Longrightarrow \psi$ of C such that we have an equality

$$A \xrightarrow{f} B \underbrace{\underset{\psi}{\underbrace{\phi \circ f}}} X = A \underbrace{\underset{\psi \circ f}{\underbrace{\phi \circ f}}} X$$

of pasting diagrams in C, i.e. such that we have

$$\gamma = \alpha \circ \mathrm{id}_f$$
.

Example 2.2.1.2. Here are some examples of full epimorphisms.

1. Full Epimorphisms in Cats₂.

2. Full Epimorphisms in Rel. 0111

3. Full Epimorphisms in Span. 0112

2.3 Fully Faithall Epimorphisms

Let C be a bicategory.

Definition 2.3.1.1. A 1-morphism $f: A \bowtie B$ is a fully faithful epimorphism in C if the following equivalent conditions are satisfied:

1. The 1-morphism f is fully and faithful. 0115

2. For each $X \in \text{Obj}(C)$, the functor

$$f^* \colon \mathsf{Hom}_{\mathcal{C}}(B,X) \to \mathsf{Hom}_{\mathcal{C}}(A,X)$$

given by precomposition by f is fully faithful.

3. The conditions in ?? of ?? and ?? of ?? hold.

Example 2.3.1.2. Here are some examples of fully faithful epimorphisms.

1. Fully Faithful Epimorphisms in Cats₂. 0119

2. Fully Faithful Epimorphisms in Rel. 011A

3. Fully Faithful Epimorphisms in Span. 011B

2.4 Strict Epinorphisms

Let C be a bicategory.

Definition 2.4.1.1. A 1-morphism $f: A \cap B$ is a **strict epimorphism in** C if the following equivalent conditions are satisfied:

1. For each $X \in \text{Obj}(\mathcal{C})$, the action on objects 011E

$$f^* \colon \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(B,X)) \to \mathrm{Obj}(\mathsf{Hom}_{\mathcal{C}}(A,X))$$

of the functor

$$f^* \colon \mathsf{Hom}_C(B,X) \to \mathsf{Hom}_C(A,X)$$

given by precomposition by f is injective.

2. For each diagram in C of the form

$$A \stackrel{f}{\longrightarrow} B \stackrel{\phi}{\Longrightarrow} X,$$

011F

if $\phi \circ f = \psi \circ f$, then $\phi = \psi$.

Example 2.4.1.2. Here are some examples of strict epimorphisms.

1. Strict Epimorphisms in Cats₂.

2. Strict Epimorphisms in Rel. 011J

3. Strict Epimorphisms in Span. 011K

3 bicategories of spans

Proposition 3.0.1.1. Let A and B be objects of C.

1. As a Pullback. We have an isomorphism of categories

$$\operatorname{Span}_{\mathcal{C}}(A,B) \cong \mathcal{C}_{/A} \times_{\mathcal{C}} \mathcal{C}_{/B}, \qquad \qquad \downarrow \qquad \qquad \downarrow \stackrel{\text{$\stackrel{>}{\Longrightarrow}$}}{\swarrow} \mathcal{C}.$$

Proof. ??, As a Pullback: In detail, the pullback $C_{/A} \times_C C_{/B}$ is the category where

- Objects. The objects of $C_{/A} \times_C C_{/B}$ consist of pairs ((S, f), (S', g)) of objects of C consisting of
 - A pair (S, f) in $Obj(\mathcal{C}_{/A})$ consisting of an object S of \mathcal{C} and a morphism $f: S \to A$ of \mathcal{C} ;
 - A pair (S',g) in $Obj(C_{/B})$ consisting of an object S' of C and a morphism $g: S \to B$ of C;

such that

$$\underbrace{\overline{\Xi}(S,f)}_{\stackrel{\mathrm{def}}{=}S} = \underbrace{\overline{\Xi}(S',g)}_{\stackrel{\mathrm{def}}{=}S'}.$$

Thus the objects of $C_{/A} \times_C C_{/B}$ are the same as spans in C from A to B.

• Morphisms. A morphism of $C_{/A} \times_C C_{/B}$ from (S, f, g) to (S', f', g') consists of a pair of morphisms

$$\phi \colon S \to S'$$
$$\psi \colon S \to S'$$

such that the diagrams

such that

$$\underbrace{\overline{\Xi}(\phi)}_{\stackrel{\text{def}}{=}\phi} = \underbrace{\overline{\Xi}(\psi)}_{\stackrel{\text{def}}{=}\psi}.$$

Thus the morphisms of $C_{/A} \times_C C_{/B}$ are also the same as morphisms of spans in C from (S, f, g) to (S, f', g').

• Identities and Composition. The identities and composition of $C_{/A} \times_C C_{/B}$ are also the same as those in $\mathsf{Span}_C(A,B)$.

This finishes the proof.

Appendices

A Other Chapters

Sets

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Relations
- 6. Spans
- 7. Posets

Indexed and Fibred Sets

- 7. Indexed Sets
- 8. Fibred Sets
- 9. Un/Straightening for Indexed and Fibred Sets

Category Theory

11. Categories

- 12. Types of Morphisms in Categories
- 13. Adjunctions and the Yoneda Lemma
- 14. Constructions With Categories
- 15. Kan Extensions

Bicategories

- 17. Bicategories
- 18. Internal Adjunctions

Internal Category Theory

19. Internal Categories

Cyclic Stuff

20. The Cycle Category

Cubical Stuff

21. The Cube Category

Globular Stuff

22. The Globe Category

Cellular Stuff

23. The Cell Category

Monoids

- 24. Monoids
- 25. Constructions With Monoids

Monoids With Zero

- 26. Monoids With Zero
- 27. Constructions With Monoids With Zero

Groups

- 28. Groups
- 29. Constructions With Groups

Hyper Algebra

- 30. Hypermonoids
- 31. Hypergroups
- 32. Hypersemirings and Hyperrings
- 33. Quantales

Near-Rings

34. Near-Semirings

35. Near-Rings

Real Analysis

- 36. Real Analysis in One Variable
- 37. Real Analysis in Several Variables

Measure Theory

- 38. Measurable Spaces
- 39. Measures and Integration

Probability Theory

39. Probability Theory

Stochastic Analysis

- 40. Stochastic Processes, Martingales, and Brownian Motion
- 41. Itô Calculus
- 42. Stochastic Differential Equations

Differential Geometry

43. Topological and Smooth Manifolds

Schemes

44. Schemes