Курсовая работа

Моделирование передачи данных в MININET

Ассан Акосси Жан-Самуэль НФИбд-03-18

Содержание

Введение	5						
Актуальность работы	. 5						
Цель работы							
Задачи работы							
Методы исследования							
Структура работы							
1. Эмулятор компьютерной сети Mininet	7						
1.1. O Mininet	. 7						
1.2. Установка и настройка Mininet							
1.2.1. Использование пакета для установки Mininet							
1.2.2. Использование mininet в графическом режиме							
1.3. Пример модели простой сети в Mininet							
2. Анализ характеристик сети в Mininet	13						
2.1. Описание модели сети на базе протокола ТСР	13						
2.2. Построение модели сети на базе протокола TCP в Mininet							
2.3. Визуализация данных с помощью Wireshark							
Заключение	14						
Список литературы							

Список иллюстраций

1.1.	Запуск MININET
1.2.	Тестирование содединений между хостами h1 и h2
1.3.	Окно интерфейса miniedit
1.4.	Настройка адресов для хостов
1.5.	Проверка доступности хостов
1.6.	Изменение адреса для хоста
1.7.	Проверка, какой адрес установлен на хосте

Список таблиц

0.1.

Введение

Актуальность работы

Актуальность темы работы обусловлена интересом исследователей к изучению задач моделирования процессов передачи даннах в компьютерных сетях. Реальное сетевое оборудование дорого использовать для развёртывания экспериментальных стендов. В качестве альтернативного решения есть несколько программ, например GNS3, CISCO PACKET TRACER, PUTTY SECURE CRT, моделирующих оборудование сетей передачи данных. Но все средства имитационного моделирования сетей передачи данных позволяют собирать данный с построенных в них моделях сетей. Возможное решение — Mininet[1] и Wireshark[2].

Цель работы

Целью моей курсовой работы является

Задачи работы

Основными задачами мой работы являются:

- 1. ...
- 2. ...

Методы исследования

Методом исследования является ...

Структура работы

Курсовая работа состоит из введения, трех разделов, заключения и списка используемой литературы. Во введении

В первом разделе

Во втором разделе ...

Во третьем разделе ...

В заключении подведены общие итоги курсовой работы, изложены основные выводы.

1. Эмулятор компьютерной сети Mininet

1.1. O Mininet

Mininet[1] — это свободно распространяемое программное обеспечение виртуализации разработки и тестирования сетевых инструментов и протоколов. С помощью одной команды Mininet может создать реалистичную виртуальную сеть на любом типе машины (виртуальной, облачной или собственной). В результате она обеспечивает недорогое решение и оптимизированную разработку в соответствии с производственными сетями. Mininet полезен для разработки, обучения и исследований, поскольку его легко настраивать и взаимодействовать с ним через СLI или GUI. Mininet был первоначально разработан для экспериментов с OpenFlow2 и программно-определяемыми сетями.

1.2. Установка и настройка Mininet

Міпіпеt позволяет построить виртуальную сеть непосредственно на компьютере. Хосты Mininet работают под управлением стандартного сетевого программного обеспечения Linux, а коммутаторы поддерживают OpenFlow для очень гибкой пользовательской маршрутизации и программно-определяемых сетей. Для развертывания mininet в этой работе использовался дистрибутив Ubuntu версии 20.10.

1.2.1. Использование пакета для установки Mininet

Перед установкой проверяются обновления в системе: sudo apt-get update

Затем производится установка пакета mininet с помощью команды sudo apt-get install mininet

Запуск mininet осуществляется с помощью команды sudo mn

Если нет ошибок, то установка прошла успешно.

Команды, приведенные на рис. 1.1 создают простую топологию, состоящую из одного коммутатора (s1) и двух хостов (h1, h2), проверяют, работает ли OVS с помощью команды pingall (рис. 1.2).

```
akossijs@akossijs:~ Q = - □ ⊗

akossijs@akossijs:~$ sudo mn
[sudo] password for akossijs:

*** No default OpenFlow controller found for default switch!

*** Falling back to OVS Bridge

*** Adding network

*** Adding controller

*** Adding switches:

$1

*** Adding links:
(h1, s1) (h2, s1)

*** Configuring hosts
h1 h2

*** Starting controller

*** Starting 1 switches

$1 ...

*** Starting CLI:
```

Рис. 1.1.: Запуск MININET

```
*** Starting CLI:
mininet> pingall

*** Ping: testing ping reachability
h1 -> h2
h2 -> h1
*** Results: 0% dropped (2/2 received)
mininet>
```

Рис. 1.2.: Тестирование содединений между хостами h1 и h2

OVS — это виртуальный коммутатор, который будет использоваться для подключения устройств в mininet. Хост h1 смог достичь h2, а h2 смог достичь h1. Это также показывает, что 0% пакетов были отброшены.

1.2.2. Использование mininet в графическом режиме

С Mininet можно работать и с помощью графического интерфейса. Для этого используется Miniedit.

Miniedit — это не что иное, как программа на языке python, предоставляющая графический интерфейс, который позволяет нам создавать топологии и управлять ими.

Можно использовать следующий набор команд для установки программного обеспечения для работы в Miniedit:

• установить git, если он не установлен:

apt-get install git

• создать клон репозитория mininet на github:

git clone https://github.com/mininet/mininet

• установить пакет python, если он не установлен:

sudo app install python3-pip python3-tk

• установить mininet внутри python:

sudo pip3 install install mininet

• установить стандартный эмулятор терминала для графической среды, если он не установлен:

sudo apt-get install xterm

Если все настроено правильно, у нас не возникнет проблем с запуском программы mininet с графическим интерфейсом (рис. 1.3).

Рис. 1.3.: Окно интерфейса miniedit

1.3. Пример модели простой сети в Mininet

Создадим топологию сети, состоящую из двух хостов и коммутатора. Для этого необходимо выполнить следующие шаги (рис. 1.4):

- запустить программу;
- создать топологию, в которой у нас есть два хоста и коммутатор для развертывания;
- настроить хосты h1:10.0.0.1/8, h2:10.0.0.2/8 и запустить проект через кнопку *запуск*.

Рис. 1.4.: Настройка адресов для хостов

На рис. 1.5 показано, что сеть и терминалы h1 и h2 доступны.

Рис. 1.5.: Проверка доступности хостов

Пример изменения адреса для хоста показан на рис. 1.6.

Рис. 1.6.: Изменение адреса для хоста

На рис. 1.7 показан ввод команды ifonfig, чтобы показать, какой адрес установлен на хостах.

Рис. 1.7.: Проверка, какой адрес установлен на хосте

2. Анализ характеристик сети в Mininet

2.1.	Описание модели	1 сети на	базе	протокола	TCP
Тека	Orp.				

2.2. Построение модели сети на базе протокола TCP в Mininet

Текст.

2.3. Визуализация данных с помощью Wireshark

Текст.

Заключение

Текст.

Список литературы

- 1. Mininet [Электронный ресурс]. URL: http://mininet.org/.
- 2. Wireshark [Электронный ресурс]. URL: https://www.wireshark.org/.