

RNN (Recurrent Neural Network)

is processed in context.

RNNs is often used for sequential data, each item Input Data points one at a time, then predict the next step. Prediction depends on previous data points.

Dense layer: classification

Recurrent layer: Process sequential data in

sequential way

Use 1 shell recurrently.

Xt: input Yt: output

Ht: hidden state (memory, used for next step)

Expand to n-step in a linear way

RNN Data Shape

Shape of $X = [batch_size, # steps, # dimensions] = [2, 9, 1]$

Input at each step = [batch_size, # dimensions] = [2, 1]

Output at each step = [batch size, # units] = [2, 3]

Output Shape = [batch size, #steps, # units] = [2, 9, 3]

Shape of Yt = Shape of Ht

Memory Cell contains:

- Dense layer
- Input = state vector + input data
- Activation function =

Backpropagation through time (BPTT)

Output prediction at each time step, then **compare** with target and calculate error, then back propagate the **error** to update the **weight vectors**.

Shortcomings -> LSTM

- No long-term memory
- Network can't use information from distant past
- Can't learn patterns with long dependencies

Use **LSTM** to overcome these issues:

- Special type of RNN
- Can learn long-term patterns

LSTM Cells

- Contains a simple RNN cell
- 1st State vector: hidden state: short-term memory
- 2nd state vector: **cell state**: contains information of long-term memory
 - Updated twice
 - X : decide what to forget in long terms
 - +: decide what new information to remember
 - Few computation, can stabilize the gradients
- 3 Gates work as filters (make decisions)
 - Forget Gate
 - Input Gate
 - Output Gate

GRU (Gate-Recurrent Unit)

Autoencoder

Autoencoder is a data compression algorithm.

The compression and decompression functions are implemented with neural networks.

- Data Specific: Only able to compress test data similar to trained data
- Lossy: Decompressed outputs will be degraded compared to original inputs

Application

- Data denoising
- Dimensionality reduction

