٦

- 名古屋CV・PRML勉強会 研究紹介 -

マルチスペクトルcGANsによる 衛星画像の薄雲除去

榎本 憲二 (Kenji Enomoto)

自己紹介

榎本 憲二 (Kenji Enomoto)

博士前期課程1年

研究分野

> コンピュータビジョン, リモートセンシング

所属

> 名古屋大学 河口研究室

Webページ: https://enomotokenji.github.io/

研究背景

[https://www.restec.or.jp/satellite/landsat-8]

- 衛星画像による広域情報の取得
 - 交通サービス
 - 災害対応
 - 環境保護

- 気象条件に依存
 - 多くの衛星画像が雲で覆われ地表を観測不可

研究背景

波長が長くなると透過性が高くなる

波長が長くなると視認性が低下

やりたいこと

Multispectral conditional Generative Adversarial Nets (McGANs)

今やれること

Multispectral conditional Generative Adversarial Nets (McGANs)

画像の生成モデル

[http://torch.ch/blog/2015/11/13/gan.html]

ランダムノイズから適当な画像を生成

Generative Adversarial Networks (GANs)

GANs

➤ GeneratorとDiscriminatorを敵対的に学習

Generator (G)

▶ 画像を生成するモデル

Discriminator (D)

▶ 生成画像と正解画像を識別するモデル

正解画像:y

目的関数 $\min_{D} \max_{D} V(D,G) = \mathbb{E}_{y \sim p_{data}(y)}[\log D(y)] + \mathbb{E}_{z \sim p_{z}(z)}[\log (1 - D(G(z)))]$

conditional GANs (cGANs)

[M. Mirza et al., arXiv2014]

目的関数
$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G)$$

 $\mathcal{L}_{cGAN}(G, D) = \mathbb{E}_{x, y \sim p_{data}(x, y)}[\log D(x, y)] + \mathbb{E}_{x \sim p_{data}(x), z \sim p_{z}(z)}[\log (1 - D(x, G(x, z)))]$
 $\mathcal{L}_{L1}(G) = \mathbb{E}_{x, y \sim p_{data}(x, y), z \sim p_{z}(z)}[\parallel y - G(x, z) \parallel_{1}]$

Multispectral cGANs (McGANs)

目的関数 $G^* = \arg\min_{C} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G)$

入力:マルチスペクトル画像

出力:雲を除去した可視光画像と雲のマスク画像

衛星画像(RGB+NIR)

- WorldView-2
- 画像分解能: 0.5m/pixel

権利関係により 非表示 権利関係により 非表示

必要なデータは?

学習データ

- 近赤外線画像
- 雲がかかった可視光画像
- 雲がかかっていない可視光画像

テストデータ

- 近赤外線画像
- 雲がかかっている可視光画像

衛星画像(RGB+NIR)

- WorldView-2
- 画像分解能: 0.5m/pixel

権利関係により 非表示

権利関係により 非表示

必要なデータは?

学習データ

- 近赤外線画像
- 雲がかかった可視光画像
- 雲がかかっていない可視光画像

テストデータ

- 近赤外線画像
- 雲がかかっている可視光画像

Perlinノイズを用いて雲画像を生成 アルファブレンディングを用いて雲画像を合成

$$I_{synth} = I_{sat} \cdot (1 - \alpha) + I_{cloud} \cdot \alpha$$

問題点が...

権利関係により 非表示

可視光画像

権利関係により 非表示

近赤外線画像

問題点が...

t-Distributed Stochastic Neighbor Embedding (t-SNE) [Caltech 101, http://cs.stanford.edu/people/karpathy/cnnembed/]

次元削減手法の一つ (n次元→2or3次元)

 $(i_1, i_2, ..., i_n)$

 (I_1, I_2)

参考資料

Paper: http://jmlr.org/papers/v9/vandermaateno8a.html

t-SNE

Slideshare: https://www.slideshare.net/t koshikawa/visualizing-data-using-tsne-56773191

各グリッドの2次元ヒストグラム

テストデータ

Color correction

- > 雲の色を補正
- デモサイト: http://colorcorrect.argmax.jp/

問題点

> 雲以外の色も変わってしまう

色補正後

実験条件

フレームワーク - Chainer トレーニングデータ - 5000枚 バッチサイズ - 1 エポック数 - 500 24

推定したマスク画像

可視光画像 近赤外線画像 雲を除去した画像 正解画像

白い物体を雲と誤認識している例

可視光画像 近赤外線画像

雲を除去した画像

正解画像

推定したマスク画像

雲が厚すぎる例

可視光画像

近赤外線画像

雲を除去した画像

正解画像

推定したマスク画像

まとめ

- ネットワークモデル (GANs, cGANs, McGANs)
- データセット
 - 雲合成
 - t-SNEによるトレーニングデータの一様化
 - テストデータの色補正
- 実験結果

問題点

- 近赤外線が雲をあまり透過していない
- 輪郭がぼやけている (生成モデルによくみられる)
- 生成した雲と実際の雲の違いが大きい
- 数値評価がない