The Augmented External Activity Complex of a Matroid

Dania Morales

Joint with Andrew Berget

Colorado Mesa University

AMS Spring Sectional at KU Special Session: Algebraic, Geometric and Topological Combinatorics March 29, 2025

Matroids

Definition

A matroid *independence system*, $\mathcal{I} \subset 2^{[n]}$, with ground set [n] satisfies the following axioms:

- (I0) $\emptyset \in \mathcal{I}$
- (I1) If $J \in \mathcal{I}$ and $I \subset J \implies I \in \mathcal{I}$
- (I2) (Donation) If $I, J \in \mathcal{I}$ and $|I| < |J| \implies$ there exists $j \in J \setminus I$ so that $I \cup \{j\} \in \mathcal{I}$.
 - A maximal independent set is called a basis.
 - ightharpoonup All bases have size, r = rank.

$$\mathcal{I} = \left\{ \begin{array}{ccc} \emptyset, & 1, & 34, \\ & 2, & 24, \\ & 3, & 14, \\ & 4, & 23, \\ & & 13 \end{array} \right\}$$

Simplicial complexes

Definition

A simplicial complex $\Delta \subset 2^{[n]}$ with vertex set [n] satisfies the following axioms:

- (I0) $\emptyset \in \Delta$
- (I1) If $J \in \Delta$ and $I \subset J \implies I \in \Delta$.
 - ▶ The elements (maximal) of Δ are called *faces* (*facets*).
 - ▶ If all facets have the same size we call our complex *pure*.

$$\Delta = \langle 34, 24, 14, 23, 13 \rangle$$

Shellability

Definition

A (pure) simplicial complex, $\Delta = \langle F_1, F_2, \dots, F_s \rangle$, is *shellable* if we can order the facets in a *shelling order*.

For every $j \ge 2$, the facet F_j introduces a **unique** minimal new face to the complex generated by $F_1, F_2, \ldots, F_{j-1}$.

$$\Delta = \langle 34, 24, 14, 23, 13 \rangle$$

Matroids, simplicial complexes & shellability

Theorem (Provan-Billera 1980)

For a matroid M, the independent set complex, \mathcal{I} , is shellable. Any lexicographic ordering of the bases gives a shelling.

Theorem (Björner 1980)

The order complex of the lattice of flats, $\Delta(\mathcal{F}(M))$, is shellable.

Theorem (B-K-R-S-S-S-T-Z-Z 2022)

The augmented Bergman complex is shellable.

Theorem (Ardila-Castillo-Samper 2016)

The external activity complex, $\underline{\Delta}_M$, is shellable. Any linear extension of Las Vergnas's internal/external order gives a shelling.

Matroid activities

Our ground set $1 < 2 < \cdots < n$ is equipped with the natural order.

Definition (Las Vergnas 2001)

Let B be a basis with $e \notin B$. We say that e is externally active iff

for any $b \in B$ with $B \cup e \setminus b$ is a basis then e > b.

Otherwise, e is externally passive. Internal activity is obtained by matroid duality and external activity.

В	EA(B)	EP(B)	IA(B)	IP(B)
34 24	Ø	12	34	Ø
24	Ø	13	4	2
14	2	3	4	1
23	4	1	Ø	23
13	24	Ø	Ø	13

Las Vergnas's active orders (for matroid bases)

Definition (Las Vergnas 2001)

Suppose that A and B are bases.

$$A \leq_{int/ext} B :\iff IP(A) \cup EA(A) \subset IP(B) \cup EA(B)$$

The external activity complex

Definition (Ardila-Boocher 2016)

The external activity complex of a matroid, $\underline{\Delta}_M$, is a simplicial complex generated by the facets:

$$B \mapsto F(B) := \{x_i : i \in B \cup EP(B)\} \cup \{z_j : j \in B \cup EA(B)\}$$

Example

В	EA(B)	EP(B)	F(24)
34	Ø	12	$F(34) = x_1 x_2 x_3 x_4 z_3 z_4$
24	Ø	13	$F(24) = x_1 x_2 x_3 x_4 z_2 z_4$
14	2	3	$F(14) = x_1 x_3 x_4 z_1 z_2 z_4$
23	4	1	$F(23) = x_1 x_2 x_3 z_2 z_3 z_4$
13	24	Ø	$F(13) = x_1 x_3 z_1 z_2 z_3 z_4$

Notice: x_1 and z_4 belong to every facet.

The external activity complex (shelling orders)

Shelling orders of $\underline{\Delta}_M$ (Ardila-Castillo-Samper 2016): Take any linear extension of $\leq_{int/ext}$. The minimal new faces (restriction sets) record internal passivity.

<i>B</i> :	34	24	14	23	13
F'(B):	$x_2x_3x_4z_3$	$x_2x_3x_4z_2$	$x_3x_4z_1z_2$	$x_2x_3z_2z_3$	$x_3z_1z_2z_3$
R(B):	Ø	z_2	z_1	z_2z_3	z_1z_3

The external activity complex

Observation: For shelling orders of $\underline{\Delta}_M$, linear extensions of $\leq_{int/ext}$ cannot be relaxed.

Question: Is $\underline{\Delta}_M$ contained in a (shellable) simplicial complex that incorporates both external and internal activities?

Answer: Yes.

Las Vergnas's active orders (for independent sets)

Theorem (Crapo 1969)

Every independent set I can be written uniquely as $I = B \setminus Y$ where B is a basis and $Y \subset IA(B)$.

34 has
$$IA(34) = 34$$
 24 has $IA(24) = 4$
 14 has $IA(14) = 4$
 $34 \setminus \emptyset = 34$
 $24 \setminus \emptyset = 24$
 $14 \setminus \emptyset = 14$
 $34 \setminus 3 = 4$
 $24 \setminus 4 = 2$
 $34 \setminus 4 = 1$
 $34 \setminus 4 = 3$
 $34 \setminus 4 = \emptyset$

23 has
$$IA(23) = \emptyset$$
 | 13 has $IA(13) = \emptyset$
23 \ \emptyset = 23 | 13 \ \emptyset = 13

Las Vergnas's active orders (for independent sets)

4. The augmented external activity complex

Definition (Berget-M. 2024)

The augmented external activity complex of a matroid is a simplicial complex generated by the facets,

$$I \mapsto F(I) := \{x_i : i \in I \cup EP(I)\} \cup \{y_i : i \in Y\} \cup \{z_i : j \in I \cup EA(I)\}$$

for every independent set $I = B \setminus Y$ and $Y \subset IA(B)$ is unique.

Example

Recall IA(14) = 4. We have $14 = 14 \setminus \emptyset$. Also, $1 = 14 \setminus 4$.

$$F(14) = x_1 x_3 x_4 z_1 z_2 z_4$$

$$F(1) = x_1 x_3 x_4 y_4 z_1 z_2$$

4. The augmented external activity complex

Theorem (Berget-M. 2024)

- i. The augmented external activity complex, Δ_M , contains $\underline{\Delta}_M$ as a subcomplex.
- ii. Δ_M is shellable.
 - a. Any linear extension of $\leq_{int/ext}$ on the independent sets gives a shelling.
 - ▶ The restriction set of F(I) is $R(I) = z_I$.
 - ▶ The h-polynomial of Δ_M is the f-polynomial of $\mathcal{I}(M)$.
 - b. Any linear extension of $\leq'_{int/ext}$ on the independent sets gives a shelling.
 - Let $I = B \setminus Y$. The restriction set of F(I) is $R(I) = y_Y z_{IP(B)}$.

Thank you!

