Algebra I Blatt 9

Thorben Kastenholz Jendrik Stelzner

26. Juni 2014

Aufgabe 2

Sei zunächst p>0 prim und $m\geq 1.$ Wir bemerken, dass $\mathbb{Z}/p^m\mathbb{Z}$ genau dann semisimple ist, wenn m=1.

Hierfür bemerken wir zunächst, dass $\mathbb{Z}/p^m\mathbb{Z}$ unzerlegbar ist. Denn ist

$$\mathbb{Z}/p^m\mathbb{Z}=G_1\oplus\ldots\oplus G_k,$$

so muss $|G_i| | p^m$ für alle i = 1, ..., k, also $|G_i| = p^{m_i}$ mit $m_i \le m$ für alle i = 1, ..., k. Für ein Element $a \in \mathbb{Z}/p^m\mathbb{Z}$ ist dann

ord
$$a \leq \text{kgV}(|G_1|, \dots, |G_k|) = p^{\max_{i=1,\dots,k} m_i}$$
.

Da ord 1=m für $1\in\mathbb{Z}/p^m\mathbb{Z}$ muss $\max_{i=1,\dots,k}m_i=m$, also $|G_i|=p^m=|\mathbb{Z}/p^m\mathbb{Z}|$ für ein $1\leq i\leq k$, und somit bereits $\mathbb{Z}/p^m\mathbb{Z}=G_i$.

Da $\mathbb{Z}/p^m\mathbb{Z}$ unzerlegbar ist, ist $\mathbb{Z}/p^m\mathbb{Z}$ genau dann semisimple, wenn es irreduzibel ist, also genau dann, wenn m=1.

Für den allgemeinen Fall sei $n\geq 1$. Es sei $n=p_1^{\nu_1}\cdots p_k^{\nu_k}$ eine Primfaktorzerlegung von n mit $p_i\neq p_j$ für $i\neq j$ und $\nu_i\geq 1$ für alle $i=1,\ldots,k$. Da $\mathbb Z$ ein Hauptidealring ist, ist

$$n\mathbb{Z} = (n) = (\text{kgV}(p_1^{\nu_1}, \dots, p_k^{\nu_k})) = \bigcap_{i=1}^k (p_i^{\nu_i}).$$

Da \mathbb{Z} ein Hauptidealring ist, ist

$$(p_i^{\nu_i}) + (p_j^{\nu_j}) = (\mathrm{ggT}(p_i^{\nu_i}, p_j^{\nu_j})) = (1) = \mathbb{Z},$$

für $i \neq j$. Die Ideale $(p_i^{\nu_i})$ sind also paarweise koprim zueinander. Nach dem chinesischen Restklassensatz gibt es also einen Isomorphismus von Ringen

$$\mathbb{Z}/(n) = \mathbb{Z}/\bigcap_{i=1}^{k} (p_i^{\nu_i}) \cong \prod_{i=1}^{k} \mathbb{Z}/(p_i^{\nu_i}),$$

also insbesondere einen Isomorphismus von abelschen Gruppen

$$\mathbb{Z}/n\mathbb{Z} \cong \bigoplus_{i=1}^k \mathbb{Z}/(p_i^{\nu_i})\mathbb{Z}.$$

 $\mathbb{Z}/n\mathbb{Z}$ ist genau dann semisimple, wenn jeder dieser Summanden semisimple ist. Nach der obigen Beobachtung gilt dies genau dann, wenn $\nu_i=1$ für alle $i=1,\ldots,k$, wenn also n quadratfrei ist.