Natural Language Processing Probabilistic Language Models

Felipe Bravo-Marquez

June 13, 2023

Overview

- The language modeling problem
- Trigram models
- Evaluating language models: perplexity
- Estimation techniques:
 - 1. Linear interpolation
 - 2. Discounting methods
- This slides are based on the course material by Michael Collins:

http://www.cs.columbia.edu/~mcollins/cs4705-spring2019/slides/lmslides.pdf

The Language Modeling Problem

- We have some (finite) vocabulary, say V = {the, a, man, telescope, Beckham, two, . . .}
- We have an (infinite) set of strings, V^* .
- For example:
 - the STOP
 - a STOP
 - the fan STOP
 - the fan saw Beckham STOP
 - the fan saw saw STOP
 - the fan saw Beckham play for Real Madrid STOP
- Where STOP is a special symbol indicating the end of a sentence.

The Language Modeling Problem (Continued)

- We have a training sample of example sentences in English.
- We need to "learn" a probability distribution p.
- p is a function that satisfies:

$$\sum_{x \in V^*} p(x) = 1$$

$$p(x) \ge 0 \quad \text{for all } x \in V^*$$

Examples of probability distributions:

$$p(\text{the STOP}) = 10^{-12}$$
 $p(\text{the fan STOP}) = 10^{-8}$
 $p(\text{the fan saw Beckham STOP}) = 2 \times 10^{-8}$
 $p(\text{the fan saw saw STOP}) = 10^{-15}$

 $p(\text{the fan saw Beckham play for Real Madrid STOP}) = 2 \times 10^{-9}$

Why on earth would we want to do this?

- Speech recognition was the original motivation.
- Consider the sentences: 1) recognize speech and 2) wreck a nice beach.
- These two sentences sound very similar when pronounced, making it challenging for automatic speech recognition systems to accurately transcribe them.
- Language models come into play to disambiguate the sentences by leveraging context and language patterns.
- The language model assigns probabilities to different word sequences based on their frequency of occurrence in a large corpus of text.
- In this case, when the speech recognition system analyzes the audio input and tries to transcribe it, it takes into account the language model probabilities to determine the most likely interpretation.
- The language model would favor p(recognize speech) over p(wreck a nice beach) since the former is a more common and coherent word sequence in the context of speech recognition.

Why on earth would we want to do this?

- By incorporating language models, speech recognition systems can improve accuracy by selecting the sentence that aligns better with linguistic patterns and context, even when faced with similar-sounding alternatives.
- Related problems are optical character recognition, handwriting recognition.
- Acutally, Language Models are useful in any NLP tasks involving the generation of language (e.g., machine translation, chatbots).
- The estimation techniques developed for this problem will be VERY useful for other problems in NLP.

A Naive Method

- A very naive method for estimating the probability of a sentence is to count the
 occurrences of the sentence in the training data and divide it by the total number
 of training sentences (N) to estimate the probability.
- We have N training sentences.
- For any sentence x_1, x_2, \dots, x_n , $c(x_1, x_2, \dots, x_n)$ is the number of times the sentence is seen in our training data.
- A naive estimate:

$$p(x1,x2,\ldots,xn)=\frac{c(x_1,x_2,\ldots,x_n)}{N}$$

- Problem: As the number of possible sentences grows exponentially with sentence length and vocabulary size, it becomes increasingly unlikely for a specific sentence to appear in the training data.
- Consequently, many sentences will have a probability of zero according to the naive model, leading to poor generalization.

Markov Processes

- Consider a sequence of random variables X_1, X_2, \dots, X_n .
- Each random variable can take any value in a finite set V.
- For now, we assume the length n is fixed (e.g., n = 100).
- Our goal: model $P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$

First-Order Markov Processes

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1})$$

$$= P(X_1 = x_1) \prod_{i=2}^n P(X_i = x_i | X_{i-1} = x_{i-1})$$

The first-order Markov assumption: For any $i \in \{2, ..., n\}$ and any $x_1, ..., x_i$,

$$P(X_i = x_i | X_1 = x_1, \dots, X_{i-1} = x_{i-1}) = P(X_i = x_i | X_{i-1} = x_{i-1})$$

Second-Order Markov Processes

$$P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) =$$

$$P(X_1 = x_1) \cdot P(X_2 = x_2 | X_1 = x_1) \cdot \prod_{i=3}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

$$= \prod_{i=1}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

(For convenience, we assume $x_0 = x_{-1} = *$, where * is a special "start" symbol.)

Modeling Variable Length Sequences

- We would like the length of the sequence, *n*, to also be a random variable.
- A simple solution: always define $X_n = STOP$, where STOP is a special symbol.
- Then use a Markov process as before:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = \prod_{i=1}^n P(X_i = x_i | X_{i-2} = x_{i-2}, X_{i-1} = x_{i-1})$$

• (For convenience, we assume $x_0 = x_{-1} = *$, where * is a special "start" symbol.)

Trigram Language Models

- · A trigram language model consists of:
 - 1. A finite set V
 - 2. A parameter q(w|u,v) for each trigram u,v,w such that $w \in V \cup \{STOP\}$, and $u,v \in V \cup \{*\}$
- For any sentence $x_1 ldots x_n$ where $x_i \in V$ for i = 1 ldots (n-1), and $x_n = \mathsf{STOP}$, the probability of the sentence under the trigram language model is:

$$p(x_1...x_n) = \prod_{i=1}^n q(x_i|x_{i-2},x_{i-1})$$

• We define $x_0 = x_{-1} = *$ for convenience.

An Example

For the sentence the dog barks STOP, we would have:

$$p(\mathsf{the\ dog\ barks\ STOP}) = q(\mathsf{the}|*,*) \times q(\mathsf{dog}|*,\mathsf{the}) \times q(\mathsf{barks}|\mathsf{the,\ dog}) \times q(\mathsf{STOP}|\mathsf{dog,\ barks})$$

The Trigram Estimation Problem

Remaining estimation problem:

$$q(w_i|w_{i-2},w_{i-1})$$

For example:

q(laughs|the, dog)

A natural estimate (the "maximum likelihood estimate"):

$$q(w_i|w_{i-2},w_{i-1}) = \frac{\text{Count}(w_{i-2},w_{i-1},w_i)}{\text{Count}(w_{i-2},w_{i-1})}$$

For instance,

$$q(|aughs|the, dog) = \frac{Count(the, dog, |aughs)}{Count(the, dog)}$$

Sparse Data Problems

A natural estimate (the "maximum likelihood estimate"):

$$\begin{split} q(w_i|w_{i-2},w_{i-1}) &= \frac{\mathsf{Count}(w_{i-2},w_{i-1},w_i)}{\mathsf{Count}(w_{i-2},w_{i-1})} \\ q(\mathsf{laughs}|\mathsf{the},\mathsf{dog}) &= \frac{\mathsf{Count}(\mathsf{the},\mathsf{dog},\mathsf{laughs})}{\mathsf{Count}(\mathsf{the},\mathsf{dog})} \end{split}$$

- Say our vocabulary size is N = |V|, then there are N^3 parameters in the model.
- For example, $N = 20,000 \Rightarrow 20,000^3 = 8 \times 10^{12}$ parameters.

Evaluating a Language Model: Perplexity

- We have some test data, m sentences: s₁, s₂, s₃, ..., s_m
- We could look at the probability under our model $\prod_{i=1}^{m} p(s_i)$. Or more conveniently, the log probability:

$$\log\left(\prod_{i=1}^m p(s_i)\right) = \sum_{i=1}^m \log p(s_i)$$

In fact, the usual evaluation measure is perplexity:

Perplexity =
$$2^{-l}$$
 where $l = \frac{1}{M} \sum_{i=1}^{m} \log p(s_i)$

M is the total number of words in the test data

Some Intuition about Perplexity

• Say we have a vocabulary V, and N = |V| + 1, and a model that predicts:

$$q(w|u,v) = \frac{1}{N}$$
 for all $w \in V \cup \{STOP\}$, for all $u,v \in V \cup \{*\}$

It's easy to calculate the perplexity in this case:

Perplexity =
$$2^{-l}$$
 where $l = \log \frac{1}{N} \Rightarrow \text{Perplexity} = N$

Perplexity can be seen as a measure of the effective "branching factor"

Some Intuition about Perplexity

 Proof: Let's consider the log probability of a sentence s = w₁ w₂ ... w_m under the model:

$$\log p(s) = \log \prod_{i=1}^{m} q(w_i|w_{i-2}, w_{i-1}) = \sum_{i=1}^{m} \log q(w_i|w_{i-2}, w_{i-1})$$

• Since each $q(w_i|w_{i-2},w_{i-1})$ is equal to $\frac{1}{N}$, we have:

$$\log p(s) = \sum_{i=1}^{m} \log \frac{1}{N} = m \cdot \log \frac{1}{N} = -m \cdot \log N$$

Therefore, the perplexity is given by:

Perplexity =
$$2^{-l} = 2^{-(-m \cdot \log N)} = N$$

Some History

- Shannon conducted experiments on the entropy of English, specifically investigating how well people perform in the perplexity game.
- Reference: C. Shannon. "Prediction and entropy of printed English." Bell Systems Technical Journal, 30:50–64, 1951.

Prediction and Entropy of Printed English By C. E. SHANNON

(Manuscript Received Sept. 15, 1950)

Some History

- Chomsky, in his book Syntactic Structures (1957), made several important points regarding grammar.
- According to Chomsky, the notion of "grammatical" cannot be equated with "meaningful" or "significant" in a semantic sense.
- He illustrated this with two nonsensical sentences:
 - (1) Colorless green ideas sleep furiously.
 - (2) Furiously sleep ideas green colorless.
- While both sentences lack meaning, Chomsky argued that only the first one is considered grammatical by English speakers.

Some History

- Chomsky also emphasized that grammaticality in English cannot be determined solely based on statistical approximations.
- Even though neither sentence (1) nor (2) has likely occurred in English discourse, a statistical model would consider them equally "remote" from English.
- However, sentence (1) is grammatical, while sentence (2) is not, highlighting the limitations of statistical approaches in capturing grammaticality.

The Bias-Variance Trade-Off

Trigram maximum-likelihood estimate:

$$q_{ML}(w_i|w_{i-2}, w_{i-1}) = \frac{Count(w_{i-2}, w_{i-1}, w_i)}{Count(w_{i-2}, w_{i-1})}$$

Bigram maximum-likelihood estimate:

$$q_{\mathsf{ML}}(w_i|w_{i-1}) = \frac{\mathsf{Count}(w_{i-1},w_i)}{\mathsf{Count}(w_{i-1})}$$

Unigram maximum-likelihood estimate:

$$q_{\mathsf{ML}}(w_i) = \frac{\mathsf{Count}(w_i)}{\mathsf{Count}()}$$

Linear Interpolation

• Take our estimate $q(w_i|w_{i-2},w_{i-1})$ to be

$$q(w_i|w_{i-2},w_{i-1}) = \lambda_1 \cdot q_{\mathsf{ML}}(w_i|w_{i-2},w_{i-1}) + \lambda_2 \cdot q_{\mathsf{ML}}(w_i|w_{i-1}) + \lambda_3 \cdot q_{\mathsf{ML}}(w_i)$$

where $\lambda_1 + \lambda_2 + \lambda_3 = 1$, and $\lambda_i \ge 0$ for all i.

• Our estimate correctly defines a distribution (define $V' = V \cup \{STOP\}$):

$$\sum_{w \in V'} q(w|u, v)$$

$$= \sum_{w \in V'} [\lambda_1 \cdot q_{\mathsf{ML}}(w|u, v) + \lambda_2 \cdot q_{\mathsf{ML}}(w|v) + \lambda_3 \cdot q_{\mathsf{ML}}(w)]$$

$$= \lambda_1 \sum_{w} q_{\mathsf{ML}}(w|u, v) + \lambda_2 \sum_{w} q_{\mathsf{ML}}(w|v) + \lambda_3 \sum_{w} q_{\mathsf{ML}}(w)$$

$$= \lambda_1 + \lambda_2 + \lambda_3 = 1$$

• We can also show that $q(w|u,v) \ge 0$ for all $w \in V'$.

Estimating λ Values

- Hold out part of the training set as validation data.
- Define c'(w₁, w₂, w₃) to be the number of times the trigram (w₁, w₂, w₃) is seen
 in the validation set.
- Choose λ_1 , λ_2 , λ_3 to maximize:

$$L(\lambda_1, \lambda_2, \lambda_3) = \sum_{w_1, w_2, w_3} c'(w_1, w_2, w_3) \log q(w_3 | w_1, w_2)$$

such that $\lambda_1 + \lambda_2 + \lambda_3 = 1$, and $\lambda_i \geq 0$ for all i, and where

$$q(w_i|w_{i-2}, w_{i-1}) = \lambda_1 \cdot q_{\mathsf{ML}}(w_i|w_{i-2}, w_{i-1}) + \lambda_2 \cdot q_{\mathsf{ML}}(w_i|w_{i-1}) + \lambda_3 \cdot q_{\mathsf{ML}}(w_i)$$

Discounting Methods

Consider the following counts and maximum-likelihood estimates:

Sentence	Count	$q_{ML}(w_i w_{i-1})$	
the	48		
the, dog	15	15 48	
the, woman	11	11 48	
the, man	10	10 48	
the, park	5	48 48 2 48	
the, job	2	<u>2</u> 48	
the, telescope	1	1 48 1	
the, manual	1	1 48 1	
the, afternoon	1	17 48 1	
the, country	1	1 48	
the, street	1	1 48	

• The maximum-likelihood estimates are high, particularly for low count items.

Discounting Methods

· Define "discounted" counts as follows:

$$Count^*(x) = Count(x) - 0.5$$

Sentence	Count	Count*(x)	$\mathbf{q}_{ML}(\mathbf{w_i} \mathbf{w_{i-1}})$
the	48		
the, dog	15	14.5	14.5 48
the, woman	11	10.5	10.5 48
the, man	10	9.5	48 9.5 48
the, park	5	4.5	4.5 48
the, job	2	1.5	1.5 48
the, telescope	1	0.5	<u>0.5</u> 48
the, manual	1	0.5	0.5
the, afternoon	1	0.5	<u>0.5</u> 48
the, country	1	0.5	0.5 48
the, street	1	0.5	<u>0.5</u> 48

The new estimates are based on the discounted counts.

Discounting Methods (Continued)

• We now have some "missing probability mass":

$$\alpha(w_{i-1}) = 1 - \sum_{w} \frac{\operatorname{Count}^*(w_{i-1}, w)}{\operatorname{Count}(w_{i-1})}$$

For example, in our case:

$$\alpha(\text{the}) = \frac{10 \times 0.5}{48} = \frac{5}{48}$$

Katz Back-Off Models (Bigrams)

For a bigram model, define two sets:

$$A(w_{i-1}) = \{w : Count(w_{i-1}, w) > 0\}$$

 $B(w_{i-1}) = \{w : Count(w_{i-1}, w) = 0\}$

A bigram model:

$$q_{\mathsf{BO}}(w_i|w_{i-1}) = \begin{cases} \frac{\mathsf{Count}^*(w_{i-1}, w_i)}{\mathsf{Count}(w_{i-1})} & \text{if } w_i \in A(w_{i-1}) \\ \frac{\alpha(w_{i-1})q_{\mathsf{ML}}(w_i)}{\sum_{w \in B(w_{i-1})}q_{\mathsf{ML}}(w)} & \text{if } w_i \in B(w_{i-1}) \end{cases}$$

Where:

$$\alpha(w_{i-1}) = 1 - \sum_{w \in A(w_{i-1})} \frac{\text{Count}^*(w_{i-1}, w)}{\text{Count}(w_{i-1})}$$

Katz Back-Off Models (Trigrams)

For a trigram model, first define two sets:

$$A(w_{i-2}, w_{i-1}) = \{w : Count(w_{i-2}, w_{i-1}, w) > 0\}$$

$$B(w_{i-2}, w_{i-1}) = \{w : Count(w_{i-2}, w_{i-1}, w) = 0\}$$

A trigram model is defined in terms of the bigram model:

$$q_{\mathsf{BO}}(w_i|w_{i-2},w_{i-1}) = \begin{cases} \frac{\mathsf{Count}^*(w_{i-2},w_{i-1},w_i)}{\mathsf{Count}(w_{i-2},w_{i-1})} & \text{if } w_i \in A(w_{i-2},w_{i-1}) \\ \frac{\alpha(w_{i-2},w_{i-1})q_{\mathsf{BO}}(w_i|w_{i-1})}{\sum_{w \in B(w_{i-2},w_{i-1})}q_{\mathsf{BO}}(w_i|w_{i-1})} & \text{if } w_i \in B(w_{i-2},w_{i-1}) \end{cases}$$

Where:

$$\alpha(w_{i-2}, w_{i-1}) = 1 - \sum_{w \in A(w_{i-2}, w_{i-1})} \frac{\text{Count}^*(w_{i-2}, w_{i-1}, w)}{\text{Count}(w_{i-2}, w_{i-1})}$$

Summary

- Three steps in deriving the language model probabilities:
 - 1. Expand $p(w_1, w_2, ..., w_n)$ using Chain rule.
 - 2. Make Markov Independence Assumptions $p(w_i|w_1, w_2, ..., w_{i-2}, w_{i-1}) = p(w_i|w_{i-2}, w_{i-1})$
 - 3. Smooth the estimates using low order counts.
- Other methods used to improve language models:
 - "Topic" or "long-range" features.
 - Syntactic models.
- It's generally hard to improve on trigram models though!!

Questions?

Thanks for your Attention!

References I