Mayank Vyas

1265 E University Dr, Tempe AZ 85288

+1-602-517-1664 mvvas7@asu.edu www.linkedin.com/in/mavank-vvas-369796213 github.com/Mavank-glitch-cpu https://tinvurl.com/mavank-portfolio

EDUCATION

Arizona State University

Tempe,AZ

Masters in Data Science

Aug 2024 - May 2026

Statistical Learning, Natural Language Processing, Statistics, Cloud Computing, Big Data Analytics, Data Visualization

Institute of Infrastructure Technology Research and Management

Ahmedabad, India

Bachelors in Electrical Engineering with minors in Computer Science

Nov 2020 - May 2024

Thesis: MaskRoot: Deep Learning Pipeline for Root Phenotyping

Relevant Courses Data Structures and Algorithms, Computer Architecture, Artificial Intelligence, Distributed Systems, Linux

SKILLS

Languages

Python,SQL,C++ ,R ,Javascript,Bash,Latex,HTML/CSS,VBA,YAML,Command Line,Matplotlib

AI/ML/Cloud Apache Spark, Data Modeling, Tensorflow, PyTorch, Keras, Semantics, CUDA, AWS, Agile, GCP, Snowflake, Docker, Kubernetes, Kafka

Data Tools

MongoDB,ETL,Power BI, Tableau,MATLAB,Excel,Business Analytics,Data Engineering,Mathematics,Hadoop

Mathematics, MATLAB, critical thinking, problem solving, Excel **Math Tools**

PROFESSIONAL EXPERIENCE

Machine Learning Assistant | Data prep and Data Transfer, Deployment , Monitoring

May 2022 - January 2024

Indian Institute of Information Technology, Chennai (Sponsored by IIT Bombay)

Chennai India

lot and Kalman Filtering Framework | lot,Cloud Computing,Arduino,Data Transmission

- Designed a LoRaWAN fog computing architecture for smart agriculture, reducing sensor energy consumption by 40% and enhancing data transmission efficiency via lightweight regression models.
- Deployed APAEs (Analytical Prediction Algorithm) across distributed layers, slashing redundant data transmissions by 93.6% with <10% mean absolute error (MAE). Published in IEEE IoT Journal (DOI: 10.1109/JIOT.2023.10278208).
- Integrated adaptive Kalman filters on fog nodes to minimize bandwidth usage by 85%, enabling latency-sensitive decision-making for irrigation and pest control systems.

Machine Learning Framework Development | Pytorch, Predictive models

- Designed a Regressive Model (RPDM) data pipeline using TensorFlow Lite, reducing bandwidth usage by 85% in IoT networks.
- Achieved 99.97% prediction accuracy with <u>Decision Trees</u> over <u>Regression</u>, <u>SVM</u>, <u>Ensembling/Boosting</u>, enabling edge devices to perform real-time actuation (e.g., irrigation control) during internet outages
- Implemented lightweight model compression (flat buffer files) for deployment on Raspberry Pi/Arduino, lowering power consumption by 82.89%.

LoRa-Based Data Aggregation for Smart Agriculture (DASA) | Data Aggregation, Data Modelling, Energy Efficiency, Computer Vision

- Designed a Ward's method clustering algorithm to compress IoT sensor data by 57.39%, deployed on fog nodes to reduce cloud transmission costs by 38%.
- Developed Github CI/CD pipelines for ML model deployment on AWS & Azure, reducing deployment time by 40%. Achieving 1.1s latency for real-time field monitoring, improving response time by 35% over traditional cellular networks.
- Tested on a 20-acre testbed, cutting energy consumption by 82.89% at tolerance thresholds (ε =1.0)

PUBLICATIONS

- DASA: An efficient data aggregation algorithm for LoRa enabled fog layer in smart agriculture. Springer
- On Reducing <u>Data Transmissions</u> in Fog Enabled LoRa Based Smart Agriculture. <u>IEEE</u>
- Intelligent <u>Data Forwarding Scheme</u> for LoRa based Fog Enabled Smart Agriculture. <u>IEEE</u>

PROJECTS / OPEN-SOURCE

TRIM QA | LLM, RAG, Pruning, BM-25

January 2025 - May 2025

- Designed and implemented a multimodal Retrieval-Augmented Generation (RAG) pipeline to extract answers from semi-structured sources like tables, JSON files, and scraped web data, enabling flexible and context-rich query handling.
- Integrated BM25-based retrieval to identify relevant tables from the NQ-Tables dataset based on user queries, which improved initial candidate selection and resulted in 97% retrieval accuracy.
- Developed a custom table pruning algorithm to eliminate irrelevant rows and columns by analyzing query-table relationships; this outperformed TaBERT and Sentence Transformers with a 98% accuracy rate in answer extraction.
- Optimized the reranking and context delivery process by ranking pruned tables before sending them to the LLM, reducing the average inference latency to ~10ms without sacrificing response quality.

Hire-Smart | React, FastAPI, BERT, FAISS, Docker, AWS, GitHub API, BeautifulSoup, Pandas, SQL Link January 2025-May 2025

- Designed an end-to-end NLP candidate search engine using BERT (Hugging Face Transformers) and FAISS to convert natural-language queries into embeddings, enabling real-time semantic matching across 10,000+ profiles with <100ms latency.
- Engineered a scalable data pipeline using BeautifulSoup, to scrape, clean, and structure 10,000+ GitHub profiles, extracting features like project complexity, commit frequency, and tech stack relevance, which improved candidate-match accuracy by 40% for hiring teams.
- Developed a holistic applicant evaluation portal (React frontend + FastAPI backend) where candidates showcase GitHub activity (stars, forks, PRs) alongside resumes. Integrated a Popularity Index algorithm to auto-rank talent, cutting recruiter screening time by 60% while boosting candidate visibility for niche roles.