

Rob J Hyndman

Forecasting: Principles and Practice

8. Seasonal ARIMA models

OTexts.com/fpp/8/9

Outline

1 Backshift notation reviewed

2 Seasonal ARIMA models

3 ARIMA vs ETS

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1}$$
.

In other words, B, operating on y_t , has the effect of shifting the data back one period. Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2y_t = y_{t-2}.$$

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1}$$
.

In other words, B, operating on y_t , has the effect of **shifting the data back one period**. Two applications of B to y_t **shifts the data back two periods**:

$$B(By_t) = B^2y_t = y_{t-2}.$$

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1}$$
.

In other words, B, operating on y_t , has the effect of shifting the data back one period. Two applications of B to y_t shifts the data back two periods:

$$B(By_t) = B^2y_t = y_{t-2}.$$

A very useful notational device is the backward shift operator, *B*, which is used as follows:

$$By_t = y_{t-1}$$
.

In other words, B, operating on y_t , has the effect of shifting the data back one period. Two applications of B to y_t shifts the data back two periods:

$$B(By_t)=B^2y_t=y_{t-2}.$$

- First difference: 1 B.
- Double difference: $(1 B)^2$.
- *d*th-order difference: $(1 B)^d y_t$.
- Seasonal difference: $1 B^m$.
- Seasonal difference followed by a first difference: $(1 B)(1 B^m)$.
- Multiply terms together to see the combined effect:

$$(1-B)(1-B^m)y_t = (1-B-B^m+B^{m+1})y_t$$

= $y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$

- First difference: 1 B.
- Double difference: $(1 B)^2$.
- *d*th-order difference: $(1 B)^d y_t$.
- Seasonal difference: $1 B^m$.
- Seasonal difference followed by a first difference: $(1 B)(1 B^m)$.
- Multiply terms together to see the combined effect:

$$(1 - B)(1 - B^m)y_t = (1 - B - B^m + B^{m+1})y_t$$

= $y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$

- First difference: 1 B.
- Double difference: $(1 B)^2$.
- dth-order difference: $(1 B)^d y_t$.
- Seasonal difference: $1 B^m$.
- Seasonal difference followed by a first difference: $(1 B)(1 B^m)$.
- Multiply terms together together to see the combined effect:

$$(1-B)(1-B^m)y_t = (1-B-B^m+B^{m+1})y_t$$

= $y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$

- First difference: 1 B.
- Double difference: $(1 B)^2$.
- dth-order difference: $(1 B)^d y_t$.
- Seasonal difference: $1 B^m$.
- Seasonal difference followed by a first difference: $(1 B)(1 B^m)$.
- Multiply terms together together to see the combined effect:

$$(1-B)(1-B^m)y_t = (1-B-B^m+B^{m+1})y_t$$

= $y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$.

- First difference: 1 B.
- Double difference: $(1 B)^2$.
- dth-order difference: $(1 B)^d y_t$.
- Seasonal difference: $1 B^m$.
- Seasonal difference followed by a first difference: $(1 B)(1 B^m)$.
- Multiply terms together together to see the combined effect:

$$(1-B)(1-B^m)y_t = (1-B-B^m+B^{m+1})y_t$$

= $y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$.

- First difference: 1 B.
- Double difference: $(1 B)^2$.
- dth-order difference: $(1 B)^d y_t$.
- Seasonal difference: $1 B^m$.
- Seasonal difference followed by a first difference: $(1 B)(1 B^m)$.
- Multiply terms together to see the combined effect:

$$(1-B)(1-B^m)y_t = (1-B-B^m+B^{m+1})y_t$$

= $y_t - y_{t-1} - y_{t-m} + y_{t-m-1}$.

ARMA model:

$$\begin{aligned} y_t &= c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} \\ &= c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t \\ \phi(B) y_t &= c + \theta(B) e_t \\ \text{where } \phi(B) &= 1 - \phi_1 B - \dots - \phi_p B^p \\ \text{and } \theta(B) &= 1 + \theta_1 B + \dots + \theta_q B^q. \end{aligned}$$

$$(1 - \phi_1 B) (1 - B)y_t = c + (1 + \theta_1 B)e_t$$

ARMA model:

$$\begin{aligned} y_t &= c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} \\ &= c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t \\ \phi(B) y_t &= c + \theta(B) e_t \\ \text{where } \phi(B) &= 1 - \phi_1 B - \dots - \phi_p B^p \\ \text{and } \theta(B) &= 1 + \theta_1 B + \dots + \theta_q B^q. \end{aligned}$$

$$(1 - \phi_1 B) (1 - B)y_t = c + (1 + \theta_1 B)e_t$$

ARMA model:

$$\begin{aligned} y_t &= c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} \\ &= c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t \\ \phi(B) y_t &= c + \theta(B) e_t \\ \text{where } \phi(B) &= 1 - \phi_1 B - \dots - \phi_p B^p \\ \text{and } \theta(B) &= 1 + \theta_1 B + \dots + \theta_q B^q. \end{aligned}$$

$$(1-\phi_1 B)$$
 $(1-B)y_t = c + (1+\theta_1 B)e_t$
 \uparrow
First
difference

ARMA model:

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q}$$

$$= c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t$$

$$\phi(B) y_t = c + \theta(B) e_t$$
where $\phi(B) = 1 - \phi_1 B - \dots - \phi_p B^p$
and $\theta(B) = 1 + \theta_1 B + \dots + \theta_q B^q$.

$$(1 - \phi_1 B) (1 - B)y_t = c + (1 + \theta_1 B)e_t$$
 \uparrow
AR(1)

ARMA model:

$$\begin{aligned} y_t &= c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} \\ &= c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t \\ \phi(B) y_t &= c + \theta(B) e_t \\ \text{where } \phi(B) &= 1 - \phi_1 B - \dots - \phi_p B^p \\ \text{and } \theta(B) &= 1 + \theta_1 B + \dots + \theta_q B^q. \end{aligned}$$

$$(1-\phi_1B)$$
 $(1-B)y_t = c+(1+\theta_1B)e_t$
 \uparrow
 $MA(1)$

Outline

1 Backshift notation reviewed

2 Seasonal ARIMA models

3 ARIMA vs ETS

ARIMA
$$(p, d, q)$$
 $(P, D, Q)_m$

where m = number of periods per season.

ARIMA
$$(p, d, q)$$
 $(P, D, Q)_m$
 \uparrow
 $\begin{pmatrix} \text{Non-seasonal} \\ \text{part of the} \\ \text{model} \end{pmatrix}$

where m = number of periods per season.

ARIMA
$$(p, d, q)$$
 $\underbrace{(P, D, Q)_m}_{\uparrow}$

$$\begin{pmatrix} \text{Seasonal} \\ \text{part of} \\ \text{the} \\ \text{model} \end{pmatrix}$$

where m = number of periods per season.

É.g., $ARIMA(1,1,1)(1,1,1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t$$

E.g., $ARIMA(1,1,1)(1,1,1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t.$$

É.g., $ARIMA(1,1,1)(1,1,1)_4$ model (without constant)

$$(1 - \phi_1 B)(1 - \Phi_1 B^4)(1 - B)(1 - B^4)y_t = (1 + \theta_1 B)(1 + \Theta_1 B^4)e_t.$$

E.g., ARIMA $(1,1,1)(1,1,1)_4$ model (without constant) $(1-\phi_1 B)(1-\Phi_1 B^4)(1-B)(1-B^4)y_t = (1+\theta_1 B)(1+\Theta_1 B^4)e_t.$

É.g., $ARIMA(1,1,1)(1,1,1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t.$$

É.g., $ARIMA(1,1,1)(1,1,1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t.$$

 $\check{E}.g.$, ARIMA $(1,1,1)(1,1,1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t.$$

E.g., $ARIMA(1,1,1)(1,1,1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t.$$

É.g., $ARIMA(1,1,1)(1,1,1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t$$

E.g., $ARIMA(1,1,1)(1,1,1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t.$$

 \dot{E} .g., $ARIMA(1,1,1)(1,1,1)_4$ model (without constant)

$$(1-\phi_1B)(1-\Phi_1B^4)(1-B)(1-B^4)y_t = (1+\theta_1B)(1+\Theta_1B^4)e_t.$$

All the factors can be multiplied out and the general model written as follows:

$$y_{t} = (1 + \phi_{1})y_{t-1} - \phi_{1}y_{t-2} + (1 + \Phi_{1})y_{t-4}$$

$$- (1 + \phi_{1} + \Phi_{1} + \phi_{1}\Phi_{1})y_{t-5} + (\phi_{1} + \phi_{1}\Phi_{1})y_{t-6}$$

$$- \Phi_{1}y_{t-8} + (\Phi_{1} + \phi_{1}\Phi_{1})y_{t-9} - \phi_{1}\Phi_{1}y_{t-10}$$

$$+ e_{t} + \theta_{1}e_{t-1} + \Theta_{1}e_{t-4} + \theta_{1}\Theta_{1}e_{t-5}.$$

Common ARIMA models

In the US Census Bureau uses the following models most often:

```
ARIMA(0,1,1)(0,1,1)_m with log transformation ARIMA(0,1,2)(0,1,1)_m with log transformation ARIMA(2,1,0)(0,1,1)_m with log transformation ARIMA(0,2,2)(0,1,1)_m with log transformation ARIMA(2,1,2)(0,1,1)_m with no transformation
```

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

ARIMA(0,0,0)(0,0,1)₁₂ will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36, . . .

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

$ARIMA(0,0,0)(0,0,1)_{12}$ will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

$ARIMA(0,0,0)(1,0,0)_{12}$ will show:

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

$ARIMA(0,0,0)(0,0,1)_{12}$ will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

 $ARIMA(0,0,0)(1,0,0)_{12}$ will show:

Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

$ARIMA(0,0,0)(0,0,1)_{12}$ will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

$ARIMA(0,0,0)(1,0,0)_{12}$ will show:

- exponential decay in the seasonal lags of the ACF
- a single significant spike at lag 12 in the PACF.

Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

$ARIMA(0,0,0)(0,0,1)_{12}$ will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

$ARIMA(0,0,0)(1,0,0)_{12}$ will show:

- exponential decay in the seasonal lags of the ACF
- a single significant spike at lag 12 in the PACF.

Seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the seasonal lags of the PACF and ACF.

$ARIMA(0,0,0)(0,0,1)_{12}$ will show:

- a spike at lag 12 in the ACF but no other significant spikes.
- The PACF will show exponential decay in the seasonal lags; that is, at lags 12, 24, 36,

$ARIMA(0,0,0)(1,0,0)_{12}$ will show:

- exponential decay in the seasonal lags of the ACF
- a single significant spike at lag 12 in the PACF.

Forecasting: Principles and Practice

13

Seasonal ARIMA models

Forecasting: Principles and Practice

14

Seasonal ARIMA models

- \blacksquare d=1 and D=1 seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)₄.
- We could also have started with ARIMA(1,1,0)(1,1,0)₄.

```
fit <- Arima(euretail, order=c(0,1,1),
    seasonal=c(0,1,1))
tsdisplay(residuals(fit))</pre>
```

- \blacksquare d=1 and D=1 seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)₄.
- We could also have started with $ARIMA(1,1,0)(1,1,0)_4$.

fit <- Arima(euretail, order=c(0,1,1),
 seasonal=c(0,1,1))
tsdisplay(residuals(fit))</pre>

- \blacksquare d=1 and D=1 seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)₄.
- We could also have started with ARIMA(1,1,0)(1,1,0)₄.

fit <- Arima(euretail, order=c(0,1,1),
 seasonal=c(0,1,1))
tsdisplay(residuals(fit))</pre>

- \blacksquare d=1 and D=1 seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)₄.
- We could also have started with ARIMA(1,1,0)(1,1,0)₄.

```
fit <- Arima(euretail, order=c(0,1,1),
    seasonal=c(0,1,1))
tsdisplay(residuals(fit))</pre>
```

- \blacksquare d=1 and D=1 seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)₄.
- We could also have started with $ARIMA(1,1,0)(1,1,0)_4$.

```
fit <- Arima(euretail, order=c(0,1,1),
    seasonal=c(0,1,1))
tsdisplay(residuals(fit))</pre>
```

- \blacksquare d=1 and D=1 seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)₄.
- We could also have started with ARIMA(1,1,0)(1,1,0)₄.

```
fit <- Arima(euretail, order=c(0,1,1),
    seasonal=c(0,1,1))
tsdisplay(residuals(fit))</pre>
```

- \blacksquare d=1 and D=1 seems necessary.
- Significant spike at lag 1 in ACF suggests non-seasonal MA(1) component.
- Significant spike at lag 4 in ACF suggests seasonal MA(1) component.
- Initial candidate model: ARIMA(0,1,1)(0,1,1)₄.
- We could also have started with $ARIMA(1,1,0)(1,1,0)_4$.

```
fit <- Arima(euretail, order=c(0,1,1),
  seasonal=c(0,1,1))
tsdisplay(residuals(fit))</pre>
```


Lag

Lag

- ACF and PACF of residuals show significant spikes at lag 2, and maybe lag 3.
- \blacksquare AIC_c of ARIMA(0,1,2)(0,1,1)₄ model is 74.36.
- AIC_c of ARIMA(0,1,3)(0,1,1)₄ model is 68.53.

```
fit <- Arima(euretail, order=c(0,1,3),
    seasonal=c(0,1,1))

tsdisplay(residuals(fit))

Box.test(res, lag=16, fitdf=4,
    type="Ljung")
plot(forecast(fit3, h=12))</pre>
```

- ACF and PACF of residuals show significant spikes at lag 2, and maybe lag 3.
- AIC_c of ARIMA(0,1,2)(0,1,1)₄ model is 74.36.
- AIC_c of ARIMA(0,1,3)(0,1,1)₄ model is 68.53.

```
fit <- Arima(euretail, order=c(0,1,3),
    seasonal=c(0,1,1))
tsdisplay(residuals(fit))
Box.test(res, lag=16, fitdf=4,
    type="Ljung")
plot(forecast(fit3, h=12))</pre>
```

- ACF and PACF of residuals show significant spikes at lag 2, and maybe lag 3.
- AIC_c of ARIMA(0,1,2)(0,1,1)₄ model is 74.36.
- AIC_c of ARIMA(0,1,3)(0,1,1)₄ model is 68.53.

```
fit <- Arima(euretail, order=c(0,1,3),
    seasonal=c(0,1,1))
tsdisplay(residuals(fit))
Box.test(res, lag=16, fitdf=4,
    type="Ljung")
plot(forecast(fit3, h=12))</pre>
```

- ACF and PACF of residuals show significant spikes at lag 2, and maybe lag 3.
- AIC_c of ARIMA(0,1,2)(0,1,1)₄ model is 74.36.
- AIC_c of ARIMA(0,1,3)(0,1,1)₄ model is 68.53.

```
fit <- Arima(euretail, order=c(0,1,3),
    seasonal=c(0,1,1))
tsdisplay(residuals(fit))
Box.test(res, lag=16, fitdf=4,
    type="Ljung")
plot(forecast(fit3, h=12))</pre>
```

- ACF and PACF of residuals show significant spikes at lag 2, and maybe lag 3.
- AIC_c of ARIMA(0,1,2)(0,1,1)₄ model is 74.36.
- AIC_c of ARIMA(0,1,3)(0,1,1)₄ model is 68.53.

```
fit <- Arima(euretail, order=c(0,1,3),
    seasonal=c(0,1,1))
tsdisplay(residuals(fit))
Box.test(res, lag=16, fitdf=4,
    type="Ljung")
plot(forecast(fit3, h=12))</pre>
```



```
sigma^2 estimated as 0.1411: log likelihood=-30.19 AIC=68.37 AICc=69.11 BIC=76.68
```

Coefficients:

```
ma1 ma2 ma3 sma1
0.2625 0.3697 0.4194 -0.6615
s.e. 0.1239 0.1260 0.1296 0.1555
```

```
sigma^2 estimated as 0.1451: log likelihood=-28.7 AIC=67.4 AICc=68.53 BIC=77.78
```


- Choose D = 1 and d = 0.
- Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.
- Spikes in PACF sugges possible non-seasonal AR(3) term.
- Initial candidate model: $ARIMA(3,0,0)(2,1,0)_{12}$.

- Choose D = 1 and d = 0.
- Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.
- Spikes in PACF sugges possible non-seasonal AR(3) term.
- Initial candidate model: $ARIMA(3,0,0)(2,1,0)_{12}$.

- Choose D = 1 and d = 0.
- Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.
- Spikes in PACF sugges possible non-seasonal AR(3) term.
- Initial candidate model: $ARIMA(3,0,0)(2,1,0)_{12}$.

- Choose D = 1 and d = 0.
- Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.
- Spikes in PACF sugges possible non-seasonal AR(3) term.
- Initial candidate model: $ARIMA(3,0,0)(2,1,0)_{12}$.

Model	AICc
ARIMA(3,0,0)(2,1,0) ₁₂	-475.12
$ARIMA(3,0,1)(2,1,0)_{12}$	-476.31
$ARIMA(3,0,2)(2,1,0)_{12}$	-474.88
$ARIMA(3,0,1)(1,1,0)_{12}$	-463.40
$ARIMA(3,0,1)(0,1,1)_{12}$	-483.67
$ARIMA(3,0,1)(0,1,2)_{12}$	-485.48
$ARIMA(3,0,1)(1,1,1)_{12}$	-484.25

```
> fit <- Arima(h02, order=c(3,0,1),
  seasonal=c(0,1,2), lambda=0)
ARIMA(3,0,1)(0,1,2)[12]
Box Cox transformation: lambda= 0
Coefficients:
           ar2 ar3 ma1
                                     sma1
                                              sma2
        ar1
    -0.1603 0.5481 0.5678 0.3827
                                   -0.5222 -0.1768
s.e. 0.1636 0.0878 0.0942 0.1895 0.0861
                                            0.0872
sigma^2 estimated as 0.004145:
                             log likelihood=250.04
```

AIC=-486.08 AICc=-485.48

BIC=-463.28


```
tsdisplay(residuals(fit))
Box.test(residuals(fit), lag=36,
  fitdf=6, type="Ljung")
auto.arima(h02,lambda=0)
```

Training:	July	91 – June	06
------------------	------	-----------	----

Test: July 06 – June 08

Model	RMSE	
ARIMA(3,0,0)(2,1,0) ₁₂	0.0661	
$ARIMA(3,0,1)(2,1,0)_{12}$	0.0646	
$ARIMA(3,0,2)(2,1,0)_{12}$	0.0645	
$ARIMA(3,0,1)(1,1,0)_{12}$	0.0679	
$ARIMA(3,0,1)(0,1,1)_{12}$	0.0644	
$ARIMA(3,0,1)(0,1,2)_{12}$	0.0622	
$ARIMA(3,0,1)(1,1,1)_{12}$	0.0630	
$ARIMA(4,0,3)(0,1,1)_{12}$	0.0648	
$ARIMA(3,0,3)(0,1,1)_{12}$	0.0640	
$ARIMA(4,0,2)(0,1,1)_{12}$	0.0648	
$ARIMA(3,0,2)(0,1,1)_{12}$	0.0644	
$ARIMA(2,1,3)(0,1,1)_{12}$	0.0634	
$ARIMA(2,1,4)(0,1,1)_{12}$	0.0632	
$ARIMA(2,1,5)(0,1,1)_{12}$	0.0640	

Training:	July 91	– June ()6
------------------	---------	----------	----

Test: July 06 – June 08

Model	RMSE	
ARIMA(3,0,0)(2,1,0) ₁₂	0.0661	
$ARIMA(3,0,1)(2,1,0)_{12}$	0.0646	
$ARIMA(3,0,2)(2,1,0)_{12}$	0.0645	
$ARIMA(3,0,1)(1,1,0)_{12}$	0.0679	
$ARIMA(3,0,1)(0,1,1)_{12}$	0.0644	
$ARIMA(3,0,1)(0,1,2)_{12}$	0.0622	
$ARIMA(3,0,1)(1,1,1)_{12}$	0.0630	
$ARIMA(4,0,3)(0,1,1)_{12}$	0.0648	
$ARIMA(3,0,3)(0,1,1)_{12}$	0.0640	
$ARIMA(4,0,2)(0,1,1)_{12}$	0.0648	
$ARIMA(3,0,2)(0,1,1)_{12}$	0.0644	
$ARIMA(2,1,3)(0,1,1)_{12}$	0.0634	
$ARIMA(2,1,4)(0,1,1)_{12}$	0.0632	
$ARIMA(2,1,5)(0,1,1)_{12}$	0.0640	

```
getrmse <- function(x,h,...)</pre>
  train.end <- time(x)[length(x)-h]
  test.start <- time(x)[length(x)-h+1]
  train <- window(x,end=train.end)</pre>
  test <- window(x,start=test.start)</pre>
  fit <- Arima(train,...)</pre>
  fc <- forecast(fit,h=h)</pre>
  return(accuracy(fc,test)[2,"RMSE"])
```

```
getrmse(h02,h=24,order=c(3,0,0),seasonal=c(2,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(2,1,0),lambda=0)
getrmse(h02, h=24, order=c(3,0,2), seasonal=c(2,1,0), lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(1,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(0,1,2),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(1,1,1),lambda=0)
getrmse(h02,h=24,order=c(4,0,3),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(3,0,3),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(4,0,2),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(3,0,2),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(2,1,3),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(2,1,4),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(2,1,5),seasonal=c(0,1,1),lambda=0)
```

- Models with lowest AIC_c values tend to give slightly better results than the other models.
- AIC_c comparisons must have the same orders of differencing. But RMSE test set comparisons can involve any models.
- No model passes all the residual tests.
- Use the best model available, even if it does not pass all tests.
- In this case, the ARIMA(3,0,1)(0,1,2)₁₂ has the lowest RMSE value and the best AIC_c value for models with fewer than 6 parameters.

- Models with lowest AIC_c values tend to give slightly better results than the other models.
- AIC_c comparisons must have the same orders of differencing. But RMSE test set comparisons can involve any models.
- No model passes all the residual tests.
- Use the best model available, even if it does not pass all tests.
- In this case, the ARIMA(3,0,1)(0,1,2)₁₂ has the lowest RMSE value and the best AIC_c value for models with fewer than 6 parameters.

- Models with lowest AIC_c values tend to give slightly better results than the other models.
- AIC_c comparisons must have the same orders of differencing. But RMSE test set comparisons can involve any models.
- No model passes all the residual tests.
- Use the best model available, even if it does not pass all tests.
- In this case, the ARIMA(3,0,1)(0,1,2)₁₂ has the lowest RMSE value and the best AIC_c value for models with fewer than 6 parameters.

- Models with lowest AIC_c values tend to give slightly better results than the other models.
- AIC_c comparisons must have the same orders of differencing. But RMSE test set comparisons can involve any models.
- No model passes all the residual tests.
- Use the best model available, even if it does not pass all tests.
- In this case, the ARIMA(3,0,1)(0,1,2)₁₂ has the lowest RMSE value and the best AIC_c value for models with fewer than 6 parameters.

- Models with lowest AIC_c values tend to give slightly better results than the other models.
- AIC_c comparisons must have the same orders of differencing. But RMSE test set comparisons can involve any models.
- No model passes all the residual tests.
- Use the best model available, even if it does not pass all tests.
- In this case, the ARIMA(3,0,1)(0,1,2)₁₂ has the lowest RMSE value and the best AIC_c value for models with fewer than 6 parameters.

Outline

1 Backshift notation reviewed

2 Seasonal ARIMA models

3 ARIMA vs ETS

- Myth that ARIMA models are more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit root.

- Myth that ARIMA models are more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit root.

- Myth that ARIMA models are more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit root.

- Myth that ARIMA models are more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit root.

- Myth that ARIMA models are more general than exponential smoothing.
- Linear exponential smoothing models all special cases of ARIMA models.
- Non-linear exponential smoothing models have no equivalent ARIMA counterparts.
- Many ARIMA models have no exponential smoothing counterparts.
- ETS models all non-stationary. Models with seasonality or non-damped trend (or both) have two unit roots; all other models have one unit root.

Simple exponential smoothing

- Forecasts equivalent to ARIMA(0,1,1).
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

Forecasts equivalent to ARIMA(0.2.21)

Damped Holt's method

Holt-Winters' additive method

Simple exponential smoothing

- Forecasts equivalent to **ARIMA(0,1,1)**.
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

Forecasts equivalent to ARIMA(0,2,2)

Damped Holt's method

Holt-Winters' additive method

Simple exponential smoothing

- Forecasts equivalent to **ARIMA(0,1,1)**.
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to ARIMA(0,2,2)
- Parameters: $\theta_1=\alpha+\beta-2$ and $\theta_2=1-\alpha$. Damped Holt's method

Holt-Winters' additive method

Simple exponential smoothing

- Forecasts equivalent to **ARIMA(0,1,1)**.
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

Holt-Winters' additive method

Simple exponential smoothing

- Forecasts equivalent to **ARIMA(0,1,1)**.
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

Forecasts equivalent to ARIMA(1,1,2)

Holt-Winters' additive method

Simple exponential smoothing

- Forecasts equivalent to ARIMA(0,1,1).
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

- Forecasts equivalent to ARIMA(1.1.2)
 - Parameters: $\phi_1 = \phi$, $\theta_1 = \alpha + \phi \beta 2$, $\theta_2 = (1 \alpha)\phi$

Holt-Winters' additive method

Simple exponential smoothing

- Forecasts equivalent to ARIMA(0,1,1).
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

- Forecasts equivalent to ARIMA(1,1,2).
- Parameters: $\phi_1 = \phi$, $\theta_1 = \alpha + \phi \beta 2$, $\theta_2 = (1 \alpha)\phi$.

Holt-Winters' additive method

Simple exponential smoothing

- Forecasts equivalent to **ARIMA(0,1,1)**.
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

- Forecasts equivalent to **ARIMA(1,1,2)**.
- Parameters: $\phi_1 = \phi$, $\theta_1 = \alpha + \phi\beta 2$, $\theta_2 = (1 \alpha)\phi$.

Holt-Winters' additive method

Forecasts equivalent to ARIMA(0,1,m+1)(0,1,0)_m

Simple exponential smoothing

- Forecasts equivalent to **ARIMA(0,1,1)**.
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

- Forecasts equivalent to ARIMA(1,1,2).
- Parameters: $\phi_1 = \phi$, $\theta_1 = \alpha + \phi\beta 2$, $\theta_2 = (1 \alpha)\phi$.

Holt-Winters' additive method

- Forecasts equivalent to ARIMA(0,1,m+1)(0,1,0)_m
- Parameter restrictions because ARIMA has m+1
- Holt-Winters' multiplicative method

Simple exponential smoothing

- Forecasts equivalent to ARIMA(0,1,1).
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

- Forecasts equivalent to ARIMA(1,1,2).
- Parameters: $\phi_1 = \phi$, $\theta_1 = \alpha + \phi\beta 2$, $\theta_2 = (1 \alpha)\phi$.

Holt-Winters' additive method

- Forecasts equivalent to $ARIMA(0,1,m+1)(0,1,0)_m$.
- Parameter restrictions because ARIMA has m + 1 parameters whereas HW uses only three parameters.

Simple exponential smoothing

- Forecasts equivalent to ARIMA(0,1,1).
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

- Forecasts equivalent to ARIMA(1,1,2).
- Parameters: $\phi_1 = \phi$, $\theta_1 = \alpha + \phi\beta 2$, $\theta_2 = (1 \alpha)\phi$.

Holt-Winters' additive method

- Forecasts equivalent to $ARIMA(0,1,m+1)(0,1,0)_m$.
- Parameter restrictions because ARIMA has m + 1 parameters whereas HW uses only three parameters.

Simple exponential smoothing

- Forecasts equivalent to ARIMA(0,1,1).
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

- Forecasts equivalent to ARIMA(1,1,2).
- Parameters: $\phi_1 = \phi$, $\theta_1 = \alpha + \phi \beta 2$, $\theta_2 = (1 \alpha)\phi$.

Holt-Winters' additive method

- Forecasts equivalent to $ARIMA(0,1,m+1)(0,1,0)_m$.
- Parameter restrictions because ARIMA has m + 1 parameters whereas HW uses only three parameters.

Holt-Winters' multiplicative method

No ARIMA equivalence

Simple exponential smoothing

- Forecasts equivalent to ARIMA(0,1,1).
- Parameters: $\theta_1 = \alpha 1$.

Holt's method

- Forecasts equivalent to **ARIMA(0,2,2)**.
- Parameters: $\theta_1 = \alpha + \beta 2$ and $\theta_2 = 1 \alpha$.

Damped Holt's method

- Forecasts equivalent to ARIMA(1,1,2).
- Parameters: $\phi_1 = \phi$, $\theta_1 = \alpha + \phi \beta 2$, $\theta_2 = (1 \alpha)\phi$.

Holt-Winters' additive method

- Forecasts equivalent to $ARIMA(0,1,m+1)(0,1,0)_m$.
- Parameter restrictions because ARIMA has m + 1 parameters whereas HW uses only three parameters.

Holt-Winters' multiplicative method

No ARIMA equivalence