

Creating reports with Rmarkdown

Joselyn Chávez

06/21/2022

Aplications of R Markdown

- Rendering scripts (knitr)
- Creating reports (pagedown-pdf)
- Websites (pagedown)
- Books (bookdown)
- Presentations (xaringan)
- CV (vitae, datadrivency)
- Thesis (thesisdown, iheiddown)

R script vs R markdown

Script

- Code is written directly on the script
- Comments are marked with '#'
- Output is printed on the console

R markdown

- Code is written inside R chunks
- Comments are written directly on the document
- Output on multiple formats

Starting a pipeline

- File > New file > R Markdown
- Assign a title
- Create empty document

Starting a pipeline

• Open a new chunk

Starting a pipeline

• Start writing some code

```
library(tidyverse)
library(janitor)
sinai_covid <- read_csv("sinai_covid.csv")
sinai_covid <- clean_names(sinai_covid)</pre>
```

```
sinai_covid %>%
  select(age, ethnicity, facility) %>%
  head()

ggplot(sinai_covid, aes(x = age, color = facility)) +
  geom_line()
```

Chunk options

- echo
- eval
- warnings
- message
- out.width
- out.height
- fig.align
- fig.alt
- ...

Bullet lists

You can use bullets (+, -, *) or numbers (1, 1.1)

Bullet lists

- First element
- + Second element
- * Third element
- 1. A number
- 2. Another number
- 1.1 A deep number
- 1.2 A second number

Working with tables

Using the kableExtra package

```
library(kableExtra)
x <- sinai_covid %>%
   select(age, ethnicity, facility) %>%
   head(2)

kable(x, caption = "Head of sinai covid") %>%
   kable_styling()
```

Head of sinai covid

age ethnicity	facility
62 NON-	THE MOUNT SINAI
63 NON- HISPANIC	HOSPITAL
64 NON-	THE MOUNT SINAI
64 NON- HISPANIC	HOSPITAL

More styling

```
kable(x, caption = "Head of sinai covid") %>%
  kable_styling() %>%
  kable_classic(full_width = F, html_font = "Cambria")
```

Head of sinai covid

age ethnicity	facility
63 NON- HISPANIC	THE MOUNT SINAI
HISPANIC	HOSPITAL
64 NON- HISPANIC	THE MOUNT SINAI
HISPANIC	HOSPITAL

Using the flextable package

```
library(flextable)
flextable(x) %>%
  autofit()
```

age	ethnicity	facility
63	NON-HISPANIC	THE MOUNT SINAI HOSPITAL
64	NON-HISPANIC	THE MOUNT SINAI HOSPITAL

The yaml section

• Add a title

```
title: "My first pipeline"
output:
   html_document
---
```

• Create a table of contents

```
title: "My first pipeline"
output:
  html_document:
    toc: true
    toc_depth: 2
```

• Float the table of contents

```
title: "My first pipeline"
output:
  html_document:
    toc: true
    toc_float: true
```

Animated plots with gganimate

```
library(gganimate)

influenza <- read.csv("influenza_vaccination.csv")
influenza <- clean_names(influenza)

influenza %>%
    group_by(mmwr_year, race_eth) %>%
    summarise(mean_vaccinated = mean(vaccinated)) %>%
    ggplot( aes(factor(mmwr_year), mean_vaccinated, color = race_ethere)
```

Adding time transition

```
influenza %>%
   group_by(mmwr_year, race_eth) %>%
   summarise(mean_vaccinated = mean(vaccinated)) %>%
   ggplot( aes(race_eth, mean_vaccinated)) +
   geom_col() +
   theme(axis.text.x = element_text(angle = 90)) +
   transition_states(mmwr_year)
```

Adding time as title

```
influenza %>%
    group_by(mmwr_year, race_eth) %>%
    summarise(mean_vaccinated = mean(vaccinated)) %>%
    ggplot( aes(race_eth, mean_vaccinated)) +
    geom_col() +
    theme(axis.text.x = element_text(angle = 90)) +
    labs(title = 'Year: {frame_time}') +
    transition_time(mmwr_year)
```

Statistical tests

	Dependence of the data				
Nature of the data	Independent		Paired		
	2 data sets	≥3 data sets	2 data sets	≥3 data sets	
Interval with assumptions	Unpaired t-test	Analysis of variance (ANOVA)	Paired t-test	Repeated measures analysis of variance (ANOVA)	
Ordinal (or Interval without assumptions)	Mann-Whitney test	Kruskal- Wallis test	Wilcoxon test	Friedman test	
Nominal	Chi-squared test (best referred as Fisher exact test)	Chi-squared test	McNemar test	Cochran Q test	

Thanks!

Ilustration by Allison Horst