Algoritmos em Grafos: Fluxo Máximo em Redes de Transporte

J. Pascoal Faria, R. Rossetti, L. Ferreira FEUP, MIEIC

Rede de transporte

- Modelar fluxos conservativos entre dois pontos através de canais com capacidade limitada
 - s: fonte (produtor)
 - t: poço (consumidor)
 - fluxo n\u00e3o pode ultrapassar a capacidade da aresta
 - soma dos fluxos de entrada num vértice intermédio igual à soma dos fluxos de saída
- Por vezes as arestas têm custos associados (custo de transportar uma unidade de fluxo)

Rede e capacidades

Rede e fluxos

Exemplos de aplicação

- Rede de abastecimento de líquido ponto a ponto
- Tráfego entre dois pontos
- Emparelhamento máximo em grafos bipartidos (maximum bipartite matching)

Redes com múltiplas fontes e poços

 Caso de múltiplas fontes e poços (ou mesmo de vértices que podem ser simultaneamente fontes, poços e vértices intermédios) é facilmente redutível ao caso base (uma fonte e um poço)

 Se a rede tiver custos nas arestas, as arestas adicionadas têm custo 0

Problema do fluxo máximo

 Encontrar um fluxo de valor máximo (fluxo total que parte de s / chega a t)

Formalização

Dados de entrada:

 c_{ii} - capacidade da aresta que vai do nó i a j(0 se não existir)

Dados de saída (variáveis a calcular):

 f_{ij} - fluxo que atravessa a aresta que vai do nó i para o nó j(0 se não existir)

Restrições:

$$0 \le f_{ij} \le c_{ij}, \forall_{ij}$$
$$\sum_{i} f_{ij} = \sum_{i} f_{ji}, \forall_{i \ne s, t}$$

Objectivo:

$$\max \sum_{j} f_{sj}$$

Algoritmo de Ford-Fulkerson (1955)

- Estruturas de dados:
 - G grafo base de capacidades c(v,w)
 - G_f grafo de fluxos f(v,w)
 - inicialmente fluxos iguais a 0
 - no fim, tem o fluxo máximo
 - G_r grafo de resíduos (auxiliar)
 - para cada arco (v, w) em G com c(v, w) > f(v, w), cria-se um arco no mesmo sentido em G_r de resíduo igual a c(v, w) f(v, w) (capacidade disponível)
 - para cada arco (v, w) em G com f(v, w) > 0, cria-se um arco em sentido inverso em G_r de resíduo igual a f(v, w)
 - necessário para garantir que se encontra a solução óptima (ver exemplo)!

Algoritmo de Ford-Fulkerson (1955)

- Método (dos caminhos de aumento):
 - Enquanto existirem caminhos entre s e t em G_r
 - Seleccionar um caminho qualquer em G_r entre s e t (caminho de aumento)
 - Determinar o valor mínimo (f) nos arcos desse caminho
 - Aumentar esse valor de fluxo (f) a cada um dos arcos correspondentes em G_f
 - Recalcular G_r

Exemplo: inicialização

Exemplo: 1ª iteração

Se não tivesse as arestas em sentido inverso, parava aqui com solução não óptima! (Caminho de aumento com fluxo 2)

Exemplo: 2ª iteração

Análise do algoritmo de Ford-Fulkerson

- Se as capacidades forem números racionais, o algoritmo termina com o fluxo máximo
- Se as capacidades forem inteiros e o fluxo máximo M
 - Algoritmo tem a propriedade de integralidade: os fluxos finais são também inteiros
 - Bastam M iterações (fluxo aumenta pelo menos 1 por iteração)
 - Cada iteração pode ser feita em tempo O(|E|)
 - Tempo de execução total: O(M |E|) mau

Algoritmo de Edmonds-Karp (1969)

- Em cada iteração do algoritmo de Ford-Fulkerson escolhe-se um caminho de aumento de comprimento mínimo
 - O exemplo apresentado anteriormente já obedece a este critério!
 - Um caminho de aumento mais curto pode ser encontrado em tempo O(|E|) através de pesquisa em largura
 - N° máximo de aumentos é |E|.|V| (ver referências)
 - Tempo de execução: O(|V| |E|²)

Implementação

- Para efetuar os cálculos num único grafo, guardam-se:
 - Em cada aresta:
 - **orig**: apontador para vértice de origem
 - dest: apontador para vértice de destino
 - capacity: capacidade da aresta
 - flow: fluxo na aresta
 - Em cada vértice:
 - **outgoing**: vetor de apontadores para arestas que saem do vértice **incoming**: vetor de apontadores para arestas dirigidas ao vértice
 - visited: campo booleano usado na procura do caminho de aumento
 - path: apontador para aresta anterior no caminho de aumento
 - No grafo:
 - vertexSet: vetor de apontadores para vértices
- O grafo de resíduos é determinado "on the fly"
 - Arestas percorridas no sentido normal têm resíduo = capacidade fluxo
 - Arestas percorridas no sentido inverso têm resíduo = fluxo

Exemplo

fluxo/capacidade

Pseudo-código

```
FordFulkerson(g, s, t):
1. ResetFlows(g)
2. while FindAugmentationPath(g, s, t) do
3.  f ← FindMinResidualAlongPath(g, s, t)
4. AugmentFlowAlongPath(g, s, t, f)
```

```
ResetFlows(g):
```

- 1. for $v \in vertexSet(g)$ do
- 2. flow(v) \leftarrow 0

```
FindAugmentationPath(g,s,t): // Edmonds-Karp (breadth-first)
1.
     for v \in vertexSet(q) do visited(v) \leftarrow false
2.
    visited(s) \leftarrow true
3.
    \circ \leftarrow \varnothing
    ENQUEUE (Q, s)
4.
5.
    while Q \neq \emptyset \land \neg visited(t) do
6.
        v \leftarrow DEQUEUE(Q)
7.
        for e ∈ outgoing(v) do // direct residual edges
8.
           TestAndVisit(Q, e, dest(e), capacity(e) - flow(e))
9.
        for e ∈ incoming(v) do // reverse residual edges
10.
           TestAndVisit(Q, e, orig(e), flow(e))
11. return visited(t)
```

TestAndVisit(Q, e, w, residual):

- 1. if \neg visited(w) \land residual > 0 then
- 2. visited(w) \leftarrow true
- 3. path(w) \leftarrow e // previous edge in shortest path
- 4. ENQUEUE(O, w)

```
FindMinResidualAlongPath(g, s, t):
     f \leftarrow \infty
     v \leftarrow t
     while v \neq s do
4.
        e \leftarrow path(v)
5.
         if dest(e) = v then // direct residual edge
6.
             f \leftarrow min(f, capacity(e) - flow(e))
7.
            v \leftarrow orig(e)
8.
      else // reverse residual edge
             f \leftarrow \min(f, flow(e))
10.
          v \leftarrow dest(e)
```

```
AugmentFlowAlongPath(g, s, t, f):
1.  v ← t
2.  while v ≠ s do
3.  e ← path(v)
4.  if dest(e) = v then // direct residual edge
5.  flow(e) ← flow(e) + f
6.  v ← orig(e)
7.  else // reverse residual edge
8.  flow(e) ← flow(e) - f
9.  v ← dest(e)
```

Algoritmos mais eficientes

year	authors	complexity
1955	Ford-Fulkerson [19]	O(mnU)
1970	Dinic [15]	$O(mn^2)$
1969	Edmonds-Karp [17]	$O(m^2n)$
1972	Dinic [15], Edmonds-Karp [17]	$O(m^2 \log U)$
1973	Dinic [16], Gabow [20]	$O(mn \log U)$
1974	Karzanov [37]	$O(n^3)$
1977	Cherkassky [11]	$O(n^2m^{1/2})$
1980	Galil-Naamad [21]	$O(mn(\log n)^2)$
1983	Sleator-Tarjan [44]	$O(mn\log n)$
1986	Goldberg-Tarjan [26]	$O(mn\log(n^2/m))$
1987	Ahuja-Orlin [3]	$O(mn + n^2 \log U)$
1987	Ahuja-Orlin-Tarjan [4]	$O(mn\log(2+n\sqrt{\log U/m}))$
1990	Cheriyan-Hagerup-Mehlhorn [9]	$O(n^3/\log n)$
1990	Alon [5]	$O(mn + n^{8/3}\log n)$
1992	King-Rao-Tarjan [38]	$O(mn + n^{2+\epsilon})$
1993	Phillips-Westbrook [42]	$O(mn\log_{m/n}n + n^2(\log n)^{2+\epsilon})$
1994	King-Rao-Tarjan [39]	$O(mn\log_{m/(n\log n)}n)$
1997	Goldberg-Rao [23]	$O(\min\{m^{1/2}, n^{2/3}\}m \log(n^2/m) \log U$

(m = |E|, n = |V|, U = capacidade máxima)

T. Asano and Y. Asano: recent developments in Maximum Flow Algorithms. Journal of the Operations Research, 1 (2000).

Dualidade entre fluxo máximo e corte mínimo

- Teorema: O valor do fluxo máximo numa rede de transporte é igual à capacidade do corte mínimo
 - Um corte (S,T) numa rede de transporte G=(V,E) com fonte s e poço t é uma partição de V em conjuntos S e T=V-S tal que s∈S e t∈T
 - A capacidade de um corte (S,T) é a soma das capacidades das arestas cortadas dirigidas de S para T
 - Um corte mínimo é um corte cuja capacidade é mínima

Cortes mínimos na rede do exemplo:

Referências e informação adicional

- "Introduction to Algorithms", 3rd Edition, T.H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein., MIT Press, 2009
 - Chapter 26 Maximum Flow
- "Data Structures and Algorithm Analysis in Java", Second Edition, Mark Allen Weiss, Addison Wesley, 2006
- "The Algorithm Design Manual", Steven S. Skiena, Springer-Verlag, 1998