- **21.1**. Démontrer que si $f \in C^2(\mathbf{R})$ et si f est convexe, alors on a $f''(x) \geq 0$, $\forall x \in \mathbf{R}$. (Indication: on pourra utiliser l'exercise 1 de la série 19 du 17 novembre.)
- 21.2. Trouver le rayon de convergence et la fonction limite de la série entière:

$$\sum_{n=1}^{\infty} nx^n.$$

Si vous ne trouvez pas de preuve directe, vous pouvez accepter de permuter la dérivée avec la somme infinie d'une série entière. Attention: cette opération est en générale incorrecte pour des séries, mais nous démontrerons qu'elle est valide pour les séries entières!

21.3. (*) Soit les deux séries entières $\sum_{n=0}^{\infty} a_n x^n$ et $\sum_{n=0}^{\infty} b_n x^n$ de rayon de convergence non nuls R_1 et R_2 respectivement.

Démontrer que si $R = \min(R_1, R_2)$ et si $x \in]-R, R[$, alors la série $\sum_{n=0}^{\infty} c_n x^n$ converge où $c_n = \sum_{k+j=n} a_k b_j$.

Quelle est la relation entre la fonction définie par cette série et les deux précédentes?