PROJETO DA INFRAESTRUTURA DE REDE

ESTRUTURAÇÃO DA INFRAESTRUTURA DE REDE DA EMPRESA AGROPECUÁRIA REI DOS FRANGOS

1- INTRODUÇÃO

O artigo tem como objetivo desenvolver e documentar a infraestrutura de redes para a empresa agropecuária Rei do Frango, uma renomada empresa na produção e pesquisa de frangos de corte. A empresa possui quatro locais principais, incluindo a sede em Belo Horizonte e três fazendas localizadas em Viçosa, Uberaba e Uberlândia.

A infraestrutura de redes proposta visa atender às necessidades específicas da empresa em termos de comunicação e conectividade entre esses quatro locais geograficamente dispersos.

2- RECURSOS DE REDE

Neste capítulo, serão apresentados os recursos de rede, seguindo boas práticas de documentação e explorando todas as ferramentas de maneira minuciosa.

2.1- A lista de equipamentos necessários encontra-se detalhada nas tabelas abaixo:

Tabela 1 - Equipamentos Matriz

MATRIZ (Belo Horizonte)					
Setor	Equipamento	Qtd			
	WorkStation	10			
Recursos Humanos	Câmera de Segurança	1			
Logística e Distribuição	Notebook	10			
Financeiro e Contabilidade	Notebook	5			
	Câmera de Segurança	2			
Comercial	Notebook	10			

Pesquisa e Desenvolvimento	Notebook	2
T coquisa o Docomoniumonto	Câmera de Segurança	3
Jurídico	Notebook	2
Curraice		
	WorkStation	4
T.I	Roteador	1
	Switches	2
	Servidor	1
GERAL	Acess Point	1
	Impressora	1

Tabela 2 - Equipamentos Viçosa

Fazenda Modelo (Viçosa)					
Setor	Equipamento	Qtd			
	workstation	5			
Gerência	Roteador	1			
	Servidor	1			
	Switch	1			
Geral	Impressora	1			
	Acess Point	1			
	Equipamentos IOT	5			
Aviário	workstation	2			
Aviano	Câmera de Segurança	4			
	Câmera de Produção	20			
Estoque	Equipamentos IOT	5			

Workstation	2
Câmera de Segurança	4

Tabela 3 - Equipamentos Fazenda de Uberaba

Fazenda 2 (Uberaba)						
Setor	Equipamento	Qtd				
	workstation	5				
Gerência	Roteador	1				
	Servidor	1				
	Switch	1				
Geral	Impressora	1				
2 3 3 3 3	Acess Point	1				
	Equipamentos IOT	5				
Aviário						
/ Widiio	workstation	1				
	Câmera de Segurança	4				
	Equipamentos IOT	5				
Estoque	workstation	2				
	Câmera de Segurança	4				

Tabela 4 - Equipamentos Fazenda de Uberlândia

	Fazenda 3 (Uberlândia)						
Setor	Equipamento	Qtd					
	workstation	5					
Gerência	Roteador	1					
00.0	Servidor	1					
	Switch	1					
Geral	Impressora	1					
Jona.	Acess Point	1					
	Equipamentos IOT	5					
Aviário							
Aviano	workstation	1					
	Câmera de Segurança	4					
	Equipamentos IOT	5					
Estoque	workstation	2					
2010440	Câmera de Segurança	4					

Ao analisar as tabelas é possível notar que Belo Horizonte (tabela 1), como a sede, possui requisitos mais diversificados de equipamentos para atender a diversos setores.

As fazendas Viçosa (tabela 2), Uberaba (tabela 3) e Uberlândia (tabela 4) têm necessidades mais focadas em equipamentos IoT para Aviário e Estoque, refletindo a natureza das operações agropecuárias.

A presença de câmeras de segurança é consistente em todas as localidades, indicando um compromisso com a segurança e o monitoramento em todas as instalações.

Em resumo, os contrastes nas necessidades de equipamentos refletem as diferentes funções e operações desempenhadas em cada localidade, com Belo Horizonte atuando como a central de operações e as fazendas tendo requisitos mais específicos relacionados à produção e pesquisa agropecuária.

2.2 - Orçamento dos equipamentos

O orçamento foi meticulosamente elaborado por meio de uma pesquisa exaustiva nas lojas de tecnologia mais confiáveis e renomadas do mercado. Durante esse processo, buscamos incessantemente pelo melhor custo-benefício, visando garantir que os recursos financeiros da empresa fossem alocados de maneira eficiente e que cada compra refletisse a qualidade e a adequação às necessidades específicas de cada local, seja na matriz em Belo Horizonte ou nas fazendas em Viçosa, Uberaba e Uberlândia. Essa abordagem rigorosa assegura que os investimentos em infraestrutura de TI estejam alinhados com os objetivos da empresa Rei do Frango, garantindo eficiência operacional e suporte às operações em todos os locais. Os dados foram organizados na tabela abaixo.

		Ma	itriz	Faze	nda 1	Faze	nda 2	Faze	enda 3
		60		40		20		20	
Item	Valor	Qtde	Valor	Qtde	Valor	Qtde	Valor	Qtde	Valor
Nutanix HPC	20000	1	20000	1	20000	1	20000	1	20000
Estação Dell	5000	43	215000	10	50000	10	50000	10	50000
Roteador CISCO	2000	1	2000	1	995	1	995	1	995
Serial CISCO	1000	3	3000	1	3290	1	3290	1	3290
Switch Dell 24p	2800	1	2800	1	2800	1	2800	1	2800
Cabo UTP CAT6 cx	4500	11.80327869	53114.7541	3.93442623	17704.91803	3.93442623	17704.91803	3.93442623	17704.91803
RJ45 f Cat6	60	60	3600	30	1800	30	1800	30	1800
Patch Cord CAT 6	110	120	13200	60	6600	60	6600	60	6600
Patch Panel CAT 6 GIGALAN	1500	3	4500	1	1500	1	1500	1	1500
Rack 44 U	4500	1	4500	1	4500	1	4500	1	4500
Cx + placa	40	60	2400	40	1600	20	800	20	800
AP Rukus WiFi 6	6500	1	6500	1	6500	1	6500	1	6500
Organizador de Cabo	59	3	177	1	59	1	59	1	59
Impressora	5399	1	5399	1	5399	1	5399	1	5399
Nobreak	4173	1	4173	1	4173	1	4173	1	4173
Mesa + Cadeira	1568	43	67424	12	18816	12	18816	12	18816
		Total	407787.7541	Total	145736.918	Total	144936.918	Total	144936.918

Figura 1 - Orçamento dos materiais

Ao analisar a figura 1 de orçamento de materiais revela algumas tendências e diferenças notáveis nas necessidades de infraestrutura de TI em cada local. Esses contrastes refletem a complexidade das operações da empresa Rei do Frango em locais distintos, com a matriz atuando como o centro de operações principal e as

fazendas atendendo a necessidades específicas relacionadas à produção agropecuária.

Em relação aos equipamentos específicos, observa-se que a matriz (figura 01) possui requisitos mais substanciais em alguns aspectos. Por exemplo, a matriz adquiriu um número significativamente maior de estações Dell (43) em comparação com cada fazenda (10). Isso se deve ao fato de a matriz ter uma equipe de trabalho maior, além de atuar como o centro de operações principal.

Em termos de conectividade de rede, todos os locais adquiriram roteadores CISCO, switches Dell 24p e patch cords CAT6 em quantidades semelhantes, indicando a importância da conectividade confiável em todas as instalações.

No entanto, a quantidade de cabos UTP CAT6 variou consideravelmente, com a matriz adquirindo mais do que as fazendas. Isso reflete diferenças nas necessidades de cabeamento de rede em cada local.

2.3 - Largura de banda

A figura abaixo (figura 2) apresenta uma análise detalhada da necessidade de link de internet para as várias ferramentas de rede nas diferentes localidades da empresa, incluindo a matriz e as fazendas.

		Ma	triz	Fazer	nda 1	Fazer	nda 2	Fazer	nda 3	
		60		40		20		20		Link Internet
APPs	LB (kbps)	Qtde	LB	Qtde	LB	Qtde	LB	Qtde	LB	
Web	100	50	5000	30	3000	20	2000	20	2000	12000
e-mail	50	40	2000	7	350	6	300	6	300	2950
Bankline	100	10	1000	2	200	1	100	1	100	1400
Suporte	80	2	160	3	240	2	160	2	160	
Videoconferência	500	10	5000	2	1000	2	1000	2	1000	
Legacy	30	5	150	2	60	1	30	2	60	
SAP	50	10	500	4	200	2	100	2	100	
		Total	13810	Total	5050	Total	3690	Total	3720	
										16350

Figura 2 - Requisitos de Links

Através da análise da figura 2 dos requisitos de link de internet podemos perceber uma distribuição variada das necessidades de largura de banda. A matriz apresenta demandas mais substanciais em várias aplicações, com destaque para o acesso à web, onde requer 5.000 kbps (5 Mbps), e e-mail, com 2.000 kbps (2 Mbps).

As fazendas 1 e 2 têm requisitos menores em comparação com a matriz, enquanto a fazenda 3 apresenta os requisitos mais baixos em todas as aplicações.

Essa análise enfatiza a importância de dimensionar adequadamente a capacidade de internet em cada localidade para garantir que todas as aplicações funcionem de maneira eficiente e confiável. Além disso, demonstra a relevância da matriz como o centro das operações com requisitos mais elevados em várias aplicações.

3- PROTÓTIPO DA REDE

A imagem abaixo (figura 3) representa o protótipo da rede desenvolvido no Simulador da Cisco Packet Trace, uma representação visual das configurações e interconexões dos dispositivos de rede planejados para a infraestrutura da empresa Rei do Frango. Essa visualização oferece uma visão detalhada e prática da rede, facilitando a análise, o teste e a otimização das configurações antes da implementação real.

Figura 3 - Protótipo da Rede

Interpretando a figura 3 podemos observar que a topologia em estrela foi adotada, isso ocorre devido ao fato de ser uma escolha altamente adequada para o projeto de redes da empresa Rei do Frango por inúmeras razões cruciais. Primeiramente, essa topologia permite a centralização do controle da rede em um ponto central, tornando a administração e o monitoramento da rede muito mais

eficiente. Isso é particularmente valioso para uma empresa com várias localidades, como a Rei do Frango, pois simplifica a gestão da rede.

Além disso, essa topologia é notável por sua facilidade de manutenção. Problemas em dispositivos ou conexões não afetam o funcionamento dos outros dispositivos da rede, facilitando a identificação e isolamento de problemas, o que reduz o tempo de inatividade.

A escalabilidade é outra vantagem importante, pois a topologia em estrela permite a expansão simples da rede com a adição de novos dispositivos ou localidades, adaptando-se facilmente ao crescimento da empresa.

No contexto das múltiplas fazendas geograficamente dispersas da empresa Rei do Frango, a topologia em estrela se destaca como uma escolha eficaz para gerenciar e conectar todas essas localidades à sede central. Isso promove a eficiência operacional, a segurança e a escalabilidade da rede, atendendo às necessidades específicas da empresa no setor agropecuário.

4- DISTRIBUIÇÃO DOS IPs

A figura 4 abaixo descreve a alocação de endereços IP para dispositivos em diferentes localizações da rede da empresa Rei do Frango. Cada dispositivo possui um tipo específico e uma função designada, juntamente com seu endereço IP exclusivo e localização correspondente. Essa organização permite um controle preciso sobre a rede, identificando claramente a função de cada dispositivo e sua localização geográfica. Isso é essencial para a administração e o gerenciamento eficazes da rede, garantindo que todos os dispositivos estejam configurados corretamente e cumpram suas funções designadas em suas respectivas filiais ou na matriz da empresa.

Ur	ma empresa de agropecuári	ia com sede em uma	capital e 3 fazendas espa	alhadas no interior do estado.
Dispositivo 💟	Tipo	Endereço IP ~	Função ~	Localização 💟
Roteador_Matriz	ROTEADOR	192.168.0.1	CONEXAO A INTERNET	SEDE / ESCRITORIO CENTRAL
Servidor_Matriz	Servidor Dell	192.168.0.2	Servidor DHCP	SEDE
Impressao_Matriz	Impressora	192.168.0.4	Impressão	SEDE
Estacao01_Matriz	Estacao	192.168.0.6	Estação de trabalho	SEDE
Ponto_Acesso_Matriz	PONTO DE ACESSO	192.168.0.3	Wi-Fi	SEDE
Roteador_Filial01	ROTEADOR	192.168.1.1	CONEXAO A INTERNET	Filial 1
Servidor_Filial01	Servidor Dell	192.168.1.2	Servidor DHCP	Filial 1
Impressao_Filial01	Impressora	192.168.1.4	Impressão	Filial 1
Ponto_Acesso_Filial01	PONTO DE ACESSO	192.168.1.3	Wi-Fi	Filial 1
Roteador_Filial02	ROTEADOR	192.168.2.1	CONEXAO A INTERNET	Filial 2
Servidor_Filial02	Servidor Dell	192.168.2.2	Servidor DHCP	Filial 2
Impressao_Filial02	Impressora	192.168.2.4	Impressão	Filial 2
Ponto_Acesso_Filial02	PONTO DE ACESSO	192.168.2.3	Wi-Fi	Filial 2
Roteador_Filial03	ROTEADOR	192.168.3.1	CONEXAO A INTERNET	Filial 3
Servidor_Filial03	Servidor Dell	192.168.3.2	Servidor DHCP	Filial 3
Impressao_Filial03	Impressora	192.168.3.4	Impressão	Filial 3
Ponto_AcessoFilial03	PONTO DE ACESSO	192.168.3.3	Wi-Fi	Filial 3

Figura 4 - Distribuição de IPs

A distribuição de IPs (figura 4) segue uma organização estruturada e hierárquica, levando em consideração as funções específicas dos dispositivos e suas localizações geográficas dentro da rede da empresa Rei do Frango.

Na sede central da empresa, conhecida como "Matriz", o Roteador_Matriz (192.168.0.1) atua como ponto de conexão à internet. O Servidor_Matriz (192.168.0.2) desempenha funções de servidor e DHCP, enquanto a Impressora (Impressao_Matriz) utiliza o endereço IP 192.168.0.4 para tarefas de impressão. Além disso, o Ponto de Acesso Wi-Fi (Ponto_Acesso_Matriz) possui endereços IP na faixa 192.168.0.N para oferecer conectividade sem fio na matriz.

Nas filiais, como a "Filial 01", o Roteador_Filial01 (192.168.1.1) faz a conexão à internet, e o Servidor_Filial01 (192.168.1.2) age como servidor e fornece serviços DHCP. A Impressora (Inpressao_Filial01) usa o IP (192.168.1.4) para impressão, e o Ponto de Acesso Wi-Fi (Ponto_Acesso_Filial01) disponibiliza conectividade sem fio com endereços IP na faixa (192.168.1.N). A Estacao01_Matriz possui o IP (192.168.0.6) e é designado como estação de trabalho na Matriz.

Na "Filial 02", o Roteador_Filial02 (192.168.2.1) atua como ponto de acesso à internet, e o Servidor_Filial02 (192.168.2.2) desempenha funções de servidor e DHCP. A Impressora (Impressao_Filial02) utiliza o IP (192.168.2.4) para impressão, e o Ponto de Acesso Wi-Fi (Ponto_Acesso_Filial02) (oferece conectividade sem fio

com endereços IP na faixa (192.168.2.N). Além disso, o SensorTemp tem o IP (192.168.2.N) e é destinado à monitorização de temperatura no aviário da Filial 02.

Na "Filial 03", o Roteador_Filial03 (192.168.3.1) é o ponto de acesso à internet, e o Servidor_Filial03 (192.168.3.2) atua como servidor e fornece serviços DHCP. A Impressora (Impressao_Filial03) utiliza o IP (192.168.3.4) para tarefas de impressão, e o Ponto de Acesso Wi-Fi (Ponto_Acesso_Filial03) disponibiliza conectividade sem fio com endereços IP na faixa (192.168.3.N). A Cam_sec_filial03 (Câmera de Segurança) usa o IP (192.168.3.N) para fins de segurança na Filial 03.

Essa distribuição meticulosa de IPs é essencial para garantir que cada dispositivo tenha um endereço único e cumpra sua função de maneira eficaz em sua localização específica. Isso facilita a identificação, configuração e gestão de dispositivos em toda a infraestrutura de rede, contribuindo para um ambiente de trabalho organizado e eficiente na empresa Rei do Frango.

5 - VIRTUALIZAÇÃO LOCAL

Realizou-se a virtualização do servidor para simular serviços on-premises, sendo o principal objetivo criar um servidor com função de controlador de domínio, além de possuir funções de DHCP e atribuição de DNS e por fim adicionar uma estação ao domínio seguindo as políticas estabelecidas. O serviço de virtualização utilizado foi o Virtual Box.

1. Primeiramente, foi instalada uma máquina virtual com o Sistema Operacional Windows Server 2012. Após isso, renomeamos a máquina para o nome do servidor "Servidor_Matriz". Modificamos o IP na seção da interface de rede para ser condizente com a tabela de IPs. Atribuímos a esse servidor as funções de DNS e AD DS, transformando-o em Domain Controller (DC). Em seguida, um nome de domínio raiz foi estabelecido como "ReiDoFrango.local". Adicionalmente, adicionamos a função de DHCP ao servidor para atribuição automática de IPs, conforme ilustrado nas Figuras 5, 6, 7 e 8 abaixo:

Figura 5 - Tela inicial Servidor_Matriz

Figura 6 - Informações do servidor

Figura 7 - Informações adicionais

Figura 8 - Papéis e funções Servidor_Matriz

 Após isso criou-se as unidades organizacionais Minas conforme mostra a figura 9, com as UOs dentro representando a sede Belo Horizonte e as fazendas Viçosa, Brumadinho e Uberaba:

Figura 9 - Usuários e unidades organizacionais

3. Foi criada em belo horizonte a política de usuários pgbh que restringe ações como acessar o painel de controle, desinstalar e deletar programas entre outros demonstrada na figura abaixo:

Figura 10 - Política de usuários pgbh

4. Um usuário foi criado na UO de Belo Horizonte. Por fim, adicionou-se uma estação ao domínio e forçamos a aplicação das políticas de usuário estabelecidas. Conectamos à aplicação web do Rei dos Frangos, conforme pode-se observar nas Figuras 11, 12, 13 e 14:

Figura 11 - Tela inicial Estacao01

Figura 12 - Informações Estacao01

Figura 13 - Aplicação da política de usuário

Figura 14 - Site Rei dos Frangos

6 - IMPLANTAÇÃO NA NUVEM

Após realizar a virtualização local, foi realizada a implantação dos servidores na nuvem através dos serviços da AWS (Amazon Web Services). A implantação foi realizada por meio de uma VPC (Virtual Private Network) para criar uma rede privada na nuvem. A seguinte estrutura (figura 15) foi utilizada como base:

Figura 15 - Arquitetura da VPC

Os seguintes passos foram seguidos:

1. Foi criada uma VPC com um bloco CIDR conforme figura 16:

Figura 16 - Estrutura da VPC com Atribuição de Bloco CIDR

2. Criaram-se as subredes (figura 17). Dentro dessa VPC há duas zonas de disponibilidade com duas subredes cada, sendo uma pública e outra privada.

Cada subrede possui sua tabela de rotas para direcionar o tráfego de rede. A subrede pública direciona o tráfego roteável pela internet para o gateway da internet que executa a conversão de endereços de rede para instâncias com endereços ipv4 públicos. Já a subrede privada aponta seu tráfego vinculado à internet para o gateway NAT, que reside em uma subrede pública e faz a conversão de endereços ips privados para um ip público para acesso à internet. No nosso caso, não foi utilizado um gateway NAT.

Figura 17 - Configuração de Subredes e Gateways na VPC

3. Após isso, criou-se um grupo de segurança, que funciona como um firewall para as instâncias, controlando o tráfego de entrada e de saída. O grupo de segurança possui duas regras de entrada: HTTP e acesso remoto (RDP) como demonstrado na Figura 18.

Figura 18 - Grupo de segurança

4. O servidor web foi implementado através de uma instância EC2 da Amazon. Atribuiu-se um nome à instância e foi escolhido o tipo de instancia e seu par chave-valor associado. A instancia escolhida foi o Windows Server 2016. Foram realizadas as configurações de rede, colocando a instancia na subrede pública da nossa VPC e com ip público automático. A instância seguirá as políticas de segurança estabelecidas, como acesso por http e remoto conforme figura 19:

Figura 19 - Informações instância

 Foi feita a execução remota da instancia inserindo as credenciais de acesso como demonstrado na figura 20.

Figura 20 - Conexão Remota

6. A instancia foi configurada para rodar o servidor web conforme figura 21:

Figura 21 - Configurações da instancia

7. Acesso ao site da aplicação Rei dos Frangos através do ip público da instância (figura 22):

Figura 22 - Site Rei dos Frangos

7 - MONITORAMENTO DOS AMBIENTES DE REDE

Para monitorar os ambientes, será utilizada a ferramenta Zabbix. O Zabbix é uma ferramenta de software versátil que monitora uma grande variedade de parâmetros de rede e a saúde de servidores, máquinas virtuais, aplicações, bancos de dados, websites, entre outros. Ele oferece notificações flexíveis via e-mail para alertas de eventos, possibilitando uma resposta rápida a problemas que afetam os servidores.

Uma característica do Zabbix é sua capacidade de proporcionar recursos robustos para a criação de relatórios e a visualização de dados, com base nas informações armazenadas. Essa funcionalidade torna o Zabbix uma escolha ideal para o gerenciamento de capacidade, permitindo que os administradores monitorem e tomem decisões com base nos dados coletados.

O Zabbix usa principalmente o protocolo SNMP (Simple Network Management Protocol) para monitorar dispositivos de rede, mas também suporta protocolos como ICMP (Internet Control Message Protocol) para monitoramento de conectividade e agentes Zabbix para monitorar sistemas e serviços. Ele opera em uma arquitetura de gerente e agente, no qual o agente coleta os dados localmente e o gerente consolida os dados recebidos gerando relatórios e gráficos. O protocolo SNMP é amplamente utilizado para coletar informações de dispositivos de rede, como roteadores, switches e impressoras.

As seguintes etapas foram seguidas:

1. Configuração do gerente. Foi realizada a importação do appliance do zabbix para o Virtual Box conforme demonstrado na figura 23. O appliance utiliza o sistema operacional Linux, distribuição CentOs 8 juntamente com o Apache, PHP e Mysql para implementar a ferramenta de gerência. Após importar, configurou-se a placa de rede da máquina para operar em modo bridge, para poder conectar-se a outras máquinas na rede local conforme figura 24:

Figura 4. Site de download da imagem Virtual BOX do Zabbix

Figura 23 - Importação do appliance

Figura 24 - Detalhe da configuração da placa de rede de uma VM

2. Execução do appliance representada na figura 24. Após importar o appliance para o virtual box, foi executada a máquina virtual com o appliance e observado o ip obtido.

Figura 25 - Execução do appliance

3. Instalação do agente no servidor local. Foi realizada a instalação do serviço de SNMP no servidor local (Servidor Matriz) para responder a consultas SNMP. Através do Server Manager no windows server. O serviço foi configurado com string de comunidade para segurança conforme demonstrado a seguir na figura 25:

Figura 26 - Configuração de Servidor Local para Monitoramento com Zabbix

4. Acesso via navegador para o ip atribuído ao Zabbix (figura 26), neste exemplo 192.168.0.8. O usuário é Admin e a senha é zabbix.

Figura 27 - Tela de login do Zabbix

5. Adição de hosts. Na tela de configuração, após a tela de login, foi adicionado um host para que o Zabbix Server recolha seus dados. O Host foi configurado de modo a usar interface SNMP e usar a porta 161 para recebimento dos protocolos snmp conforme demonstrado na figura 27.

Figura 28 - Tela de configuração host

6. Conforme figura 28, observa-se a visualização dos hosts. Após adicionar o host, as seguintes telas aparecerão com as cores em verde indicando ausência de erros.

Figura 29 - Configuração do Grupo de Segurança com Regras de Entrada (HTTP e RDP)

 Acesso aos gráficos. Clicando em Graphs pode-se acessar os diversos gráficos disponíveis no zabbix com os dados coletados no agente no servidor local (figuras 29, 30 e 31):

Figura 30 - Página de Gráficos no Zabbix

Figura 31 - Exemplo de Gráfico de Dados Coletados no Zabbix

Figura 32 - - Exemplo de Gráfico do uso do disco

CONCLUSÃO:

Foi apresentada uma visão da configuração do Zabbix em um servidor local, demonstrando a importância dessa ferramenta de monitoramento na gestão de sistemas e redes. Através de imagens, todo o processo de implantação e configuração do Zabbix pôde ser acompanhado.

Configuração de Servidor na Nuvem AWS para Monitoramento com Zabbix

INTRODUÇÃO

O objetivo da documentação é fornecer um passo a passo da configuração do servidor na plataforma de nuvem AWS (Amazon Web Services) e a integração desse servidor na rede do Zabbix, uma ferramenta de monitoramento e gerenciamento de sistemas. O Zabbix permite monitorar o desempenho e a disponibilidade de serviços, aplicativos e recursos em tempo real, tornando-o uma escolha ideal para a manutenção de servidores na nuvem.

PRÉ-REQUISITOS PARA CONFIGURAÇÃO:

- Uma conta ativa na AWS.
- Acesso às credenciais da conta AWS.
- Conhecimento básico do Zabbix e sua infraestrutura.
- Uma instância de servidor Zabbix já configurada e em funcionamento.

PASSOS PARA CONFIGURAÇÃO:

1. Acesso à instancia EC2 (figura 32). Foi feito o acesso á instancia EC2 que foi configurada na etapa 6, através do acesso remoto (RDP):

Figura 33 - Tela de conexão à instância EC2

2. Configuração Segurança de Grupo: No passo de configuração da instância EC2, foram definidas as regras de segurança do grupo para permitir a comunicação com o servidor Zabbix. Foi aberta a porta necessária para o

Zabbix, geralmente a 10050 TCP, e restringindo o acesso a partir do endereço IP do servidor Zabbix conforme demonstrado em figura 33.

Figura 34 - Configuração de Segurança do Grupo na Instância EC2 para Comunicação com o Servidor Zabbix (Porta 10050 TCP, Restrito ao Endereço IP do Servidor Zabbix)

3. Instalação do Agente Zabbix na Instância EC2 (figura 34). Foi feita a instalação do serviço de SNMP na instância EC2, que executa o Windows server 2016. Após a instalação o serviço é configurado para permitir a troca de mensagens SNMP.

Figura 35 - Instalação e Configuração do Agente Zabbix com Serviço SNMP na Instância EC2

4. Adição e configuração do host no Zabbix: No servidor Zabbix, adicionou-se o novo host representando a instância EC2 conforme figura 35. O Host name configurado (AWS Reis dos Frangos):

Figura 36 - Adição de novo host

5. Acesso aos gráficos. Clicando em graphs, é disponibilizado diversos gráficos sobre os dados coletados da instância EC2 como as seguintes figuras 36 e 37:

Figura 37 - Gráfico do tráfego de rede

Figura 38 - Gráficos do uso de memória física e cpu

6. Foi criado um mapa de rede representando as conexões entre o zabbix server, o servidor local e a instância na nuvem conforme figura 38:

Figura 39 - Mapa de rede

CONCLUSÃO

Após a configuração com sucesso um servidor na nuvem AWS e a integração à rede do Zabbix para monitoramento contínuo. Conclui-se que o processo permitirá que se mantenha um controle detalhado das métricas de desempenho da instância EC2 (servidor virtual na nuvem) e tome medidas proativas para garantir a disponibilidade e o desempenho ideal dos recursos na nuvem.

Índice de Tabelas

Tabela 1 - Equipamentos Matriz	1
Tabela 2 - Equipamentos Viçosa	2
Tabela 3 - Equipamentos Fazenda de Uberaba	3
Tabela 4 - Equipamentos Fazenda de Uberlândia	4

Índice de Figuras

Figura 1 - Orçamento dos materiais	5
Figura 2 - Requisitos de Links	6
Figura 3 - Protótipo da Rede	7
Figura 4 - Distribuição de IPs	9
Figura 5 - Tela inicial Servidor_Matriz	. 11
Figura 6 - Informações do servidor	. 11
Figura 7 - Informações adicionais	
Figura 8 - Papéis e funções Servidor_Matriz	. 12
Figura 9 - Usuários e unidades organizacionais	. 13
Figura 10 - Política de usuários pgbh	
Figura 11 - Tela inicial Estacao01	. 14
Figura 12 - Informações Estacao01	
Figura 13 - Aplicação da política de usuário	. 15
Figura 14 - Site Rei dos Frangos	. 15
Figura 15 - Arquitetura da VPC	
Figura 16 - Estrutura da VPC com Atribuição de Bloco CIDR	
Figura 17 - Configuração de Subredes e Gateways na VPC	. 17
Figura 18 - Grupo de segurança	. 17
Figura 19 - Informações instância	
Figura 20 - Conexão Remota	. 18
Figura 21 - Configurações da instancia	
Figura 22 - Site Rei dos Frangos	. 19
Figura 23 - Importação do appliance	
Figura 24 - Detalhe da configuração da placa de rede de uma VMVM	
Figura 25 - Execução do appliance	
Figura 26 - Configuração de Servidor Local para Monitoramento com Zabbix	. 22
Figura 27 - Tela de login do Zabbix	. 23
Figura 28 - Tela de configuração host	. 23
Figura 29 - Configuração do Grupo de Segurança com Regras de Entrada (HTTP e RDP)	24
Figura 30 - Página de Gráficos no Zabbix	. 24
Figura 31 - Exemplo de Gráfico de Dados Coletados no Zabbix	. 25
Figura 32 Exemplo de Gráfico do uso do disco	. 25
Figura 33 - Tela de conexão à instância EC2	
Figura 34 - Configuração de Segurança do Grupo na Instância EC2 para Comunicação co	om
o Servidor Zabbix (Porta 10050 TCP, Restrito ao Endereço IP do Servidor Zabbix)	. 27
Figura 35 - Instalação e Configuração do Agente Zabbix com Serviço SNMP na Instância	
EC2	. 27
Figura 36 - Adição de novo host	
Figura 37 - Gráfico do tráfego de rede	
Figura 38 - Gráficos do uso de memória física e cpu	
Figura 39 - Mapa de rede	. 29