

深度学习应用开发 基于TensorFlow的实践

吴明晖 李卓蓉 金苍宏

浙江大学城市学院

计算机与计算科学学院

Dept. of Computer Science Zhejiang University City College

波士顿房价预测 多元线性回归问题TensorFlow实践

波士顿房价预测

波士顿房价数据集包括506个样本,每个样本包括12个特征变量和该地区的平均房价

房价(单价)显然和多个特征变量相关,不是单变量线性回归(一元线性回归)问题

选择多个特征变量来建立线性方程,这就是多变量线性回归(多元线性回归)问题

前情回顾: 一元线性回归

前情回顾: 机器学习的步骤

使用Tensorflow进行算法设计与训练的核心步骤

- (1) 准备数据
- (2) 构建模型
- (3) 训练模型
- (4) 进行预测

上述步骤是我们使用Tensorflow进行算法设计与训练的核心步骤,贯穿于后面介绍的具体实战中。本章用一个简单的例子来讲解这几个步骤。

房价预测问题:多元线性回归及TensorFlow 编程进阶

数据读取

数据集解读

	A	В	C	D	E	F	G	Н	I	J	K	L	M
1	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	LSTAT	MEDV
2	0.00632	18	2. 31	0	0. 538	6. 575	65. 2	4. 09	1	296	15. 3	4. 98	24
3	0.02731	0	7. 07	0	0.469	6. 421	78. 9	4.9671	2	242	17.8	9. 14	21.6
4	0.02729	0	7. 07	0	0.469	7. 185	61. 1	4. 9671	2	242	17.8	4. 03	34. 7
5	0. 03237	0	2. 18	0	0. 458	6. 998	45.8	6.0622	3	222	18. 7	2.94	33.4
6	0.06905	0	2. 18	0	0. 458	7. 147	54. 2	6.0622	3	222	18. 7	5. 33	36. 2
7	0.02985	0	2. 18	0	0. 458	6. 43	58. 7	6.0622	3	222	18. 7	5. 21	28. 7

CRIM: 城镇人均犯罪率

ZN: 住宅用地超过 25000 sq.ft. 的比例

INDUS: 城镇非零售商用土地的比例

CHAS: 边界是河流为1, 否则0

NOX: 一氧化氮浓度

RM: 住宅平均房间数

AGE: 1940年之前建成的自用房屋比例

DIS: 到波士顿5个中心区域的加权距离

RAD: 辐射性公路的靠近指数

TAX: 每10000美元的全值财产税率

PTRATIO: 城镇师生比例

LSTAT: 人口中地位低下者的比例

MEDV: 自住房的平均房价,单位:干美元

8

读取数据

```
がシスタ城市学院

ZHEJIANG UNIVERSITY CITY COLLEGE
```

```
%matplotlib notebook
import tensorflow as tf
import matplotlib. pyplot as plt
import numpy as np
import pandas as pd
from sklearn.utils import shuffle
# 读取数据文件
df = pd. read csv ("data/boston. csv", header=0)
#显示数据摘要描述信息
print (df.describe())
```


读取数据

```
%matplotlib notebook
import tensorflow as tf
import matplotlib. pyplot as plt
import numpy as np
import pandas as pd
from sklearn.utils import shuffle
# 读取数据文件
df = pd. read csv("data/boston. csv",
#显示数据摘要描述信息
print (df. describe())
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	\
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
mean	3.613524	11. 363636	11. 136779	0.069170	0. 554695	6. 284634	
std	8.601545	23. 322453	6.860353	0. 253994	0. 115878	0.702617	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3. 561000	
25%	0.082045	0.000000	5. 190000	0.000000	0.449000	5.885500	
50%	0. 256510	0.000000	9.690000	0.000000	0. 538000	6. 208500	
75%	3.677082	12.500000	18. 100000	0.000000	0.624000	6.623500	
max	88. 976200	100.000000	27.740000	1.000000	0.871000	8. 780000	
	AGE	DIS	RAD	TAX	PTRATIO	LSTAT	\
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
mean	68. 574901	3. 795043	9. 549407	408. 237154	18. 455534	12.653063	
std	28. 148861	2. 105710	8.707259	168. 537116	2. 164946	7. 141062	
min	2.900000	1. 129600	1.000000	187. 000000	12.600000	1.730000	
25%	45.025000	2. 100175	4.000000	279.000000	17. 400000	6. 950000	
50%	77. 500000	3. 207450	5. 000000	330.000000	19.050000	11. 360000	
75%	94.075000	5. 188425	24.000000	666.000000	20. 200000	16. 955000	
max	100.000000	12. 126500	24.000000	711. 000000	22.000000	37. 970000	
	MEDV						
count	506.000000						

22, 532806 9.197104 std min 5. 000000 17,025000 21, 200000 25,000000 50,000000

max

通过pandas读取数据文件,列出统计概述

想快速读取常规大小的数据文件时,通过创建读缓存区和其他的机制可能会造成额外的开 销。此时建议采用Pandas库来处理。

Pandas官网 (http://pandas.pydata.org)这样介绍Pandas:

"Pandas是一款开源的、基于BSD协议的Python库,能够提供高性能、易用的数据结构 和数据分析工具。"他具有以下特点:

- 能够从CSV文件、文本文件、MS Excel、SQL数据库,甚至是用于科学用途的HDF5 格式
- CSV文件加载能够自动识别列头,支持列的直接寻址
- 数据结构自动转换为Numpy的多维数组

准备建模

多元线性回归模型

多变量线性方程的矩阵运算表示

$$Y = x_1 x w_1 + x_2 x w_2 + ... + x_n x w_n + b$$

$$Y = \sum_{k=0}^{n} X_k * W_k + b$$

$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} * \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} + b = \begin{bmatrix} x_1 * w_1 + x_2 * w_2 + x_3 * w_3 \end{bmatrix} + b$$

矩阵运算是机器学习的基本手段,必须掌握!