Engineering Mathematics Problem Set 05

Department of Electrical Engineering Sharif University of Technology Fall Semester 1398-99

1 Integration

- 1. Find the contour integral $\int_{\gamma} \bar{z} dz$ for:
 - (a) γ is the triangle ABC oriented counterclockwise, where A=0, B=1+i, and C=-2.
 - (b) γ is the circle |z i| = 2 oriented counterclockwise.
- 2. Evaluate the following integral:

$$I = \int_C \left(z + \frac{1}{z}\right)^2 \mathrm{d}z$$

where C is the following curve:

$$C: \quad z=x+iy \quad , \quad y+x=1 \quad , \quad 0 \leq x,y \leq 1$$

3. Evaluated the following integral, where the unit circle is traversed counterclockwise:

$$I = \frac{1}{2\pi i} \oint_{|z|=1} \frac{(z+2)^2}{z^2 (2z-1)} dz$$

4. Let C_R be the circle |z| = R oriented counterclockwise (R > 1). Show that

$$\left| \oint_{C_R} \frac{\operatorname{Log}(z^2)}{z^2} dz \right| < 4\pi \left(\frac{\pi + \ln R}{R} \right)$$

and then

$$\lim_{R \to \infty} \oint_{C_R} \frac{\operatorname{Log}(z^2)}{z^2} \mathrm{d}z = 0$$

5. Without evaluating the integral, show that

$$\left| \int_C \frac{1}{\bar{z}^2 + \bar{z} + 1} \mathrm{d}z \right| \le \frac{9\pi}{16}$$

where C is the arc of the circle |z| = 3 from z = 3 to z = 3i lying in the first quadrant.

6. Evaluate

$$I = \oint_C \frac{\sin z}{(z+1)^7} \mathrm{d}z$$

where C is the circle of radius 5, center 0, positively oriented.

7. Find the value of $\oint_C g(z)dz$, where C is the circle |z-i|=2 oriented counterclockwise, when

1

(a)
$$g(z) = \frac{1}{z^2 + 4}$$

(b)
$$g(z) = \frac{1}{z(z^2 + 4)}$$

8. Compute the integrals of the following functions along the curvers C_1 and C_2 , both oriented counterclockwise:

$$C_1 = \{|z| = 1\}$$
 , $C_2 = \{|z - 2| = 1\}$

- (a) $\frac{1}{2z z^2}$
- (b) $\frac{\sinh z}{(2z-z^2)^2}$
- 9. Show that if f is analytic inside and on a simple closed curve C and z_0 is not on C, then

$$(n-1)! \oint_C \frac{f^{(m)}(z)}{(z-z_0)^n} dz = (m+n-1)! \oint_C \frac{f(z)}{(z-z_0)^{m+n}} dz$$

for all positive integers m and n.

- 10. Let C be the circle |z| = 1 oriented counterclockwise.
 - (a) Compute

$$I_1 = \oint_C \frac{1}{z^2 - 8z + 1} \mathrm{d}z$$

(b) Use (or not use) the previous part to compute

$$I_2 = \int_0^\pi \frac{1}{4 - \cos \theta} \mathrm{d}\theta$$

2 Sequences and Series

11. Determine whether each of the following sequences are convergent.

(a)
$$x_n = \frac{(-1)^n n^2}{n^2 + 1}$$

(b)
$$x_n = \frac{(-1)^n e^n}{e^{n^2} + n}$$

(c)
$$x_n = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n}$$

12. Let $\{x_n\}_{n=1}^{\infty}$ be a real sequence, where $x_1 > 0$, $x_2 > 0$, and the following recurrence relation holds for $n \geq 3$:

$$x_n = \frac{x_{n-1} + x_{n-2}}{2}$$

Show that this sequence is convergent, and find its limit:

$$\lim_{n\to\infty} x_n$$

2

- 13. Show that:
 - (a) If $\sum_{n=0}^{\infty} a_n$ is convergent, then $\sum_{n=0}^{\infty} \frac{a_n}{n}$ is also convergent.
 - (b) If $\sum_{n=0}^{\infty} a_n$ is divergent, then $\sum_{n=0}^{\infty} na_n$ is also divergent.
 - (c) If $\sum_{n=0}^{\infty} |a_n|$ and $\sum_{n=0}^{\infty} |b_n|$ converge, then $\sum_{n=0}^{\infty} a_n b_n$ is convergent.

14. Determine whether each of the following series are convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(b)
$$\sum_{n=0}^{\infty} (-1)^n n^{(1-n)/n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{\sin n}{n}$$

(d)
$$\sum_{p=1}^{\infty} \frac{1}{n^p}$$
 (for different values of p)

15. Find the region of convergence for each of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{x^{2n-1}}{(2n-1)!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n(x-1)^n}{2^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n!(x+2)^n}{2^n}$$

(d)
$$\sum_{n=1}^{\infty} (n^{1/n} - 1) x^n$$

(e)
$$\sum_{n=1}^{\infty} \frac{\sin^n z}{n^2 + 1}$$

16. Find the Taylor series of the following functions and their radii of convergence:

(a)
$$z \sinh(z^2)$$
 at $z = 0$.

(b)
$$e^z$$
 at $z = 2$.

(c)
$$\frac{z^2 + z}{(1-z)^2}$$
 at $z = -1$.

(d)
$$\cos^2 z$$
 at $z = \pi$.

- 17. Let f be a function analytic at 0 and $g(z) = f(z^2)$. Show that $g^{(2n-1)}(0) = 0$ for all positive integers n.
- 18. Find a power-series expansion of the function $f(z) = \frac{1}{1-z}$ in each of the following regions:

(a)
$$|z| < 1$$
 (centered at $z = 0$)

(b)
$$|z| > 1$$
 (centered at $z = 0$)

(c)
$$|z+1| < 2$$
 (centered at $z = -1$)

(d)
$$|z+1| > 2$$
 (centered at $z = -1$)

19. Find a power-series expansion of the function $f(z) = \frac{1}{z(1-z)}$ in each of the following regions:

(a)
$$|z - 1| > 1$$

(b)
$$|z+1| < 1$$

- (c) 1 < |z+1| < 2
- (d) |z+1| > 2
- 20. Find a Laurent series expansion for each of the following functions, centered at z=0:

(a)
$$f(z) = \frac{\sin z}{z}$$

(b)
$$f(z) = \frac{1 - \cos z}{z^5}$$

(c)
$$f(z) = \sin \frac{\tilde{1}}{z}$$

- 21. Find the Laurent series of the function $f(z) = \frac{z+4}{z^2(z^2+3z+2)}$ in
 - (a) 0 < |z| < 1
 - (b) 1 < |z| < 2
 - (c) |z| > 2
 - (d) 0 < |z+1| < 1
- 22. Prove that the coefficients c_n in the expansion

$$\frac{1}{1 - z - z^2} = \sum_{n=0}^{\infty} c_n z^n$$

satisfy the recurrence relation $c_0 = c_1 = 1$, $c_n = c_{n-1} + c_{n-2}$ for $n \ge 2$. What is the radius of convergence of the series?