Лабораторная работа 1

Установка и конфигурация операционной системы на виртуальную машину

Лушин Артём Андреевич

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Домашнее задание	14
6	Выводы	17
7	Контрольные вопросы	18

Список иллюстраций

4.1	имя машины и тип ОС	•	•	•	•	•	•	•	1
4.2	Выделение основной памяти и процессоров								8
4.3	Создание виртуального жёсткого диска								8
4.4	Установка языка интерфейся								9
4.5	Окно Настройки установки программ								9
4.6	Отключение KDUMP								10
4.7	Сеть и имя узла								10
4.8	Установка времени								11
4.9	Раскладка клавиатуры								11
4.10	Пароль для root								12
4.11	Создание пользователя								12
4.12	Установка образа		•			•			13
5.1	Версия ядра Linux								14
5.2	Частота процессора								14
5.3	Модель процессора								15
5.4	Объём оперативной памяти								15
5.5	Обнаруженный тепловизор								15
5.6	Тип файловых систем								16
5.7	Тип файловых систем с помощью df								16
5.8	Последовательность монтирования файловых систем								16

1 Цель работы

Приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

Здесь приводится описание задания в соответствии с рекомендациями методического пособия и выданным вариантом.

3 Теоретическое введение

Лабораторная работа подразумевает установку на виртуальную машину VirtualBox (https://www.virtualbox.org/) операционной системы Linux (дистрибутив Rocky (https://rockylinux.org/)).

Выполнение работы возможно как в дисплейном классе факультета физикоматематических и естественных наук РУДН, так и дома. Описание выполнения работы приведено для дисплейного класса со следующими характеристиками:

- Intel Core i3-550 3.2 GHz, 4 GB оперативной памяти, 20 GB свободного места на жёстком диске;
 - OC Linux Gentoo (http://www.gentoo.ru/);
 - VirtualBox верс. 6.1 или старше;
 - каталог с образами ОС для работающих в ди

4 Выполнение лабораторной работы

1) Я создал новую виртуальную машину с именем "4sem" и установил тип Linux (сделал фотографию раньше, чем поставил тип"

Рис. 4.1: Имя машины и тип ОС

2) Далее я выделил 11086МБ основной памяти и 10 процессоров.

Рис. 4.2: Выделение основной памяти и процессоров

3) Создал новый виртуальный жёсткий диск и выделил на него 110 Гигабайт. В новой версии VirtualBox нет возможности указать тип диска и он ставится автоматически.

Рис. 4.3: Создание виртуального жёсткого диска

4) Запустил виртуальную машину и поставил в качестве языка интерфейса - Английский (United States)

Рис. 4.4: Установка языка интерфейся

5) В окне выбора программ поставил базовое оборудование - Server with GUI, а в разделе Development Tools.

Рис. 4.5: Окно Настройки установки программ

6) В следующем окне отключить функцию KDUMP, убрав галочку.

Рис. 4.6: Отключение KDUMP

7) В разделе сети установил сеть и задал имя узла "aalushin.localdomin" (скриншот сделан до переименования)

Рис. 4.7: Сеть и имя узла

8) Установил москвоское время. Регион - Европа, город - Москва.

Рис. 4.8: Установка времени

9) В качестве раскладки клавиатуры поставил английскую, а затем русскую. То есть при входе автоматически включается английская раскладка, при необходимости переключается на русскую.

Рис. 4.9: Раскладка клавиатуры

10) После всех действия установил пароль для root-пользователя.

Рис. 4.10: Пароль для root

11) Создал пользователя. Имя пользователя такое же, как в дисплейных классах. Добавил пользователю возможность администратора.

Рис. 4.11: Создание пользователя

12) После установки и ввода всех данных начинаю загрузку образа.

Рис. 4.12: Установка образа

5 Домашнее задание

1) С помощью команды "dmesg" нашел информацию о версии ядра Linux

```
[aalushhquser -]$ dnesp | grep Linux | [a | 1.6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5
```

Рис. 5.1: Версия ядра Linux

2) С помощью команды "dmesg" нашел информацию о частоте процессора

Рис. 5.2: Частота процессора

3) С помощью команды "dmesg" нашел информацию о моделе процессора

```
[aalusihn@user ~]$ dmesg | Mhz
bash: Mhz: command not found...
[aalusihn@user ~]$ dmesg | grep Mhz
[aalusihn@user ~]$ dmesg | grep "Mhz"
[aalusihn@user ~]$ dmesg | grep -i Mhz
[ 0.000006] tsc: Detected 2688.000 MHz processor
[ 41.083066] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 98:00:27:b2:82:20
[aalusihn@user ~]$ dmesg | grep -i CPU0
[ 0.419783] smpboot: CPU0: 12th Gen Intel(R) Core(TM) i7-12650H (family: 0x6, model: 0x9a, stepping: 0x3)
[aalusihn@user ~]$
```

Рис. 5.3: Модель процессора

4) С помощью команды "dmesg" нашел информацию об объёме доступной оперативной памяти. Максимальная оперативная память равно 131072 килобайта.

```
| Description |
```

Рис. 5.4: Объём оперативной памяти

5) С помощью команды "dmesg" определил тип обнаруженного тепловизора

```
[aalusihn@user ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
```

Рис. 5.5: Обнаруженный тепловизор

6) С помощью команды "dmesg" определил тип файловой системы корневого раздела. Так же аналогично можно узнать тип файловых систем с помощью команды "df -T" и под словом "Type" написан тип. В моём случае это - xfs.

Рис. 5.6: Тип файловых систем

```
[aalusihn@user ~]$ df -T /
Filesystem Type 1K-blocks Used Available Use% Mounted on
/dev/mapper/rl-root_xfs 73261056 5886020 67375036 9% /
```

Рис. 5.7: Тип файловых систем с помощью df

7) С помощью команды "dmesg" определил последовательность монтирования файловых систем.

```
[aalusihn@user ~]$ dmesg | grep -i "mount"

[ 0.307332] Wount-cache hash table entries: 32768 (order: 6, 262144 bytes, linear)
[ 0.307332] Wountpoint-cache hash table entries: 32768 (order: 6, 262144 bytes, linear)
[ 44.550890] XFS (dm-0): Mounting V5 Filesystem
[ 44.550890] XFS (dm-0): Ending clean mount
[ 48.579748] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 48.590856] systemd[1]: Mounting Huge Pages File System...
[ 48.591990] systemd[1]: Mounting Huge Pages File System...
[ 48.593261] systemd[1]: Mounting Kernel Debug File System...
[ 48.610452] systemd[1]: Mounting Kernel Debug File System...
[ 48.610452] systemd[1]: Mounting Kernel Debug File System...
[ 49.044254] systemd[1]: Mounting Kernel Trace File System...
[ 62.783720] XFS (dm-2): Mounting V5 Filesystem
[ 62.783720] XFS (dm-2): Mounting V5 Filesystem
[ 63.470126] XFS (dm-2): Ending clean mount
[ 63.470126] XFS (dal): Mounting Lean mount
```

Рис. 5.8: Последовательность монтирования файловых систем

6 Выводы

Я приобрёл практические навыки установки операционной системы на виртуальную машину. Настроил минимально необходимые для дальнейшей работы сервисы

7 Контрольные вопросы

1) Какую информацию содержит учётная запись пользователя?

Учётная запись пользователя - это запись, которая содержит сведения, необходимые для идентификации пользователя при подключении к системе, а также информацию для авторизации и учёта. Это имя пользователя и пароль

- 2) Укажите команды терминала и приведите пример
- для получения справки по команде: имя программы -help. dmesg -help
- для перемещения по файловой системе: cd путь. cd work
- для просмотра содержимого каталога: ls l. ls work
- для определения объёма каталога du имя папки. du work
- для создания / удаления каталогов / файлов: создание каталога mkdir, удаление файла или каталога rm -r, создание файла touch
- для создания определённых прав на файл/каталог: chmod разрешение имя файла. chown новый владелец для смены владельца
- для просмотра историй команд: history
- 3) Что такое файловая система? Приведите пример с краткой характеристикой.

Файловая система (англ. file system) — порядок, определяющий способ орга-

низации, хранения и именования данных на носителях информации в компью-

терах, а также в другом электронном оборудовании: цифровых фотоаппаратах,

мобильных телефонах и т. п.

• Для носителей с произвольным доступом (например, жёсткий диск): FAT32,

HPFS, ext2 и др. Поскольку доступ к дискам в несколько раз медленнее, чем

доступ к оперативной памяти, для прироста производительности во многих

файловых системах применяется асинхронная запись изменений на диск. Для

этого применяется либо журналирование, например, в ext3, ReiserFS, JFS, NTFS,

XFS, либо механизм soft updates и др. Журналирование широко распространено

в Linux, применяется в NTFS. Soft updates — в BSD системах.

• Для носителей с последовательным доступом (например, магнитные ленты):

QIC и др.

• Для оптических носителей — CD и DVD: ISO9660, HFS, UDF и др.

• Виртуальные файловые системы: AEFS и др.

• Сетевые файловые системы: NFS, CIFS, SSHFS, GmailFS и др.

• Для флэш-памяти: YAFFS, ExtremeFFS, exFAT

4) Как посмотреть, какие файловые системы подмонтированы в ОС?

\$ findmnt -mtab

5) Как удалить зависший процесс?

команды: kill, pgrep, pkill, killall

19