(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-154768 (P2004-154768A)

最終頁に続く

(43) 公開日 平成16年6月3日(2004.6.3)

(51) Int.C1. ⁷	FI		テーマコード(参考)	
BO1D 53/94	BO1D	53/36 1 O 3 C	3G090	
BO1D 39/00	BOID	39/00 B	4 DO 1 9	
BO1D 39/20	BO1D	39/20 D	4D048	
BO1D 46/00	BO1D	46/00 3 O 2	4D058	
BO1J 32/00	BO1J	32/00 ZAB	4G055	
	審査請求 未	請求 請求項の数 18 OL	(全 19 頁) 最終頁に続く	
(21) 出願番号	特願2003-315831 (P2003-315831)	(71) 出願人 000004260	_	
(22) 出願日	平成15年9月8日 (2003.9.8)	株式会社デンソー		
(31) 優先権主張番号		愛知県刈谷市昭和町1丁目1番地		
(32) 優先日	平成14年10月15日 (2002.10.15)	(74) 代理人 100079142	A.16 ====	
(33) 優先権主張国	日本国 (JP)	弁理士 高橋	存泰	
		(74) 代理人 100110700		
		弁理士 岩倉	民芳	
		(72) 発明者 石原 幹男		
			昭和町1丁目1番地 株式会	
		社デンソー内		
		(72) 発明者 西村 養		
			昭和町1丁目1番地 株式会	
		社デンソー内	_	
F ターム (参考) 3G090 AA02			2	

(54) 【発明の名称】排ガス浄化フィルタ及びその製造方法

(57)【要約】

【課題】強度が高く、かつ排ガスの浄化効率に優れた排 ガス浄化フィルタ及びその製造方法を提供すること。

【解決手段】外周壁21と、外周壁21の内側においてハニカム状に設けられた隔壁22と、隔壁22により仕切られていると共に両端面241、242に貫通してなる複数のセル23とを備えたセラミックハニカム構造体2を有する排ガス浄化フィルタ1。セラミックハニカム構造体2の両端面241、242は、外周壁21の内側面211からセル1ビッチの1、0~3、0倍の長さ分内側に入った部分を連続的に繋げた仮想線3を設けたとき、仮想線3よりも外側の外周領域25を90%以上栓材4によって閉塞してなる。

【選択図】図1

【特許請求の範囲】

【請求項1】

外周壁と, 該外周壁の内側においてハニカム状に設けられた隔壁と, 該隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを備えたセラミックハニカム構造体を有する排ガス浄化フィルタにおいて.

上記セラミックハニカム構造体の両端面は、上記外周壁の内側面から上記セル1ピッチの1.0~3.0倍の長さ分内側に入った部分を連続的に繋げた仮想線を設けたとき、該仮想線よりも外側の外周領域を90%以上栓材によって閉塞してなることを特徴とする排ガス浄化フィルタ。

【請求項2】

請求項1において、上記仮想線が通る各セルの開口部は、その一部又は全部を上記栓材によって閉塞されていることを特徴とする排ガス浄化フィルタ。

【請求項3】

請求項1または2において、上記セラミックハニカム構造体は、上記外周壁及び隔壁の 気孔率が50%以上であることを特徴とする排ガス浄化フィルタ。

【請求項4】

請求項1~3のいずれか一項において、上記外周壁は、0.2~0.8mmの厚みを有することを特徴とする排ガス浄化フィルタ。

【請求項5】

請求項1~4のいずれか一項において、上記セラミックハニカム構造体は、コージェラ 20 イトからなることを特徴とする排ガス浄化フィルタ。

【請求項6】

請求項1~5のいずれか一項において、上記排ガス浄化フィルタは、ディーゼルエンジンから排出される排ガスの浄化を行うディーゼルエンジン用排ガス浄化フィルタであって、上記セラミックハニカム構造体の端面における上記仮想線よりも内側の中央領域は、栓材を設けたセルの開口部と、栓材を設けないセルの開口部とが互いに隣り合うようにして混在していることを特徴とする排ガス浄化フィルタ。

【請求項7】

請求項 $1\sim6$ のいずれか一項において,上記仮想線は,上記外周壁の内側面から上記セル1ピッチの1. $0\sim2$. 0 倍の長さ分内側に入った部分を連続的に繋げた線であること 30 を特徴とする排ガス浄化フィルタ。

【請求項8】

請求項 $1\sim7$ のいずれか一項において、上記隔壁は、 $0.25\sim0.40$ mmの厚みを有することを特徴とする排ガス浄化フィルタ。

【請求項9】

外周壁と, 該外周壁の内側においてハニカム状に設けられた隔壁と, 該隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを有するセラミックハニカム構造体を成形する成形工程と,

該セラミックハニカム構造体の端面全体にマスクテープを貼付するマスキング工程と, 上記外周壁の内側面から上記セル1ピッチの1.0~3.0倍の長さ分内側に入った部 40

分を連続的に繋げた仮想線を設け、少なくとも該仮想線が通るセル及び該仮想線よりも外側のセルの開口部に貼付されたマスクテープに穴明けを施す穴明け工程と、

その後、栓材ペーストに上記端面をディッピングして、上記マスクテープにより閉塞されているセル以外のセルの開口部に栓材を形成して、上記仮想線よりも外側の外周領域を,90%以上栓材によって閉塞する栓詰め工程とを有することを特徴とする排ガス浄化フィルタの製造方法。

【請求項10】

請求項9において、上記穴明け工程においては、上記仮想線よりも内側の上記セルの開口部に貼付された上記マスクテープについては、互いに隣り合う上記セルの開口部のうちいずれか一方の開口部に貼付されたマスクテープに穴明けを施すことを特徴とする排ガス

10

浄化フィルタの製造方法。

【請求項11】

外周壁と, 該外周壁の内側においてハニカム状に設けられた隔壁と, 該隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを有するセラミックハニカム構造体を成形する成形工程と,

該セラミックハニカム構造体の端面に、上記外周壁の内側面から上記セル1ピッチの1.0~3.0倍の長さ分内側に入った部分を連続的に繋げた仮想線を設け、該仮想線よりも内側の中央領域にマスクテープを貼付するマスキング工程と、

栓材ペーストに上記端面をディッピングして、上記マスクテープにより閉塞されているセル以外のセルの開口部に栓材を形成して、上記仮想線よりも外側の外周領域を、90% 10以上栓材によって閉塞する栓詰め工程とを有することを特徴とする排ガス浄化フィルタの製造方法。

【請求項12】

請求項11において、上記マスキング工程の後、上記栓詰め工程の前には、少なくとも上記仮想線が通るセルの開口部を被うマスクテープに穴明けを施す穴明け工程を行うことを特徴とする排ガス浄化フィルタの製造方法。

【請求項13】

外周壁と、該外周壁の内側においてハニカム状に設けられた隔壁と、該隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを有するセラミックハニカム構造体を成形する成形工程と、

該セラミックハニカム構造体の端面全体にマスクテープを貼付するマスキング工程と,

上記端面に、上記外周壁の内側面から上記セル1ピッチの1.0~3.0倍の長さ分内側に入った部分を連続的に繋げた仮想線を設け、該仮想線よりも外側の外周領域に貼付されたマスクテープを切除するカッティング工程と、

栓材ペーストに上記端面をディッピングして、上記マスクテープにより閉塞されているセル以外のセルの開口部に栓材を形成して、上記仮想線よりも外側の外周領域を、90%以上栓材によって閉塞する栓詰め工程とを有することを特徴とする排ガス浄化フィルタの製造方法。

【請求項14】

請求項13において、上記カッティング工程の後、上記栓詰め工程の前には、少なくと 3 も上記仮想線が通るセルの開口部を被うマスクテープに穴明けを施す穴明け工程を行うことを特徴とする排ガス浄化フィルタの製造方法。

【請求項15】

外周壁と,該外周壁の内側においてハニカム状に設けられた隔壁と,該隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを有するセラミックハニカム構造体を成形する成形工程と,

該セラミックハニカム構造体の端面全体にマスクテープを貼付するマスキング工程と, 上記端面に,上記外周壁の内側面から上記セル1ピッチの1.0~3.0倍の長さ分内 側に入った部分を連続的に繋げた仮想線を設け,該仮想線が通るセルの隔壁に沿ってマス クテープを切断すると共に,その外側のマスクテープを除去するカッティング工程と,

栓材ペーストに上記端面をディッピングして、上記マスクテープにより閉塞されている セル以外のセルの開口部に栓材を形成して、上記仮想線よりも外側の外周領域を、90% 以上栓材によって閉塞する栓詰め工程とを有することを特徴とする排ガス浄化フィルタの 製造方法。

【請求項16】

請求項11~15のいずれか一項において、上記マスキング工程の後、上記栓詰め工程の前に、上記仮想線よりも内側の上記セルの開口部に貼付された上記マスクテープについては、互いに隣り合う上記セルの開口部のうちいずれか一方の開口部に貼付されたマスクテープに穴明けを施すことを特徴とする排ガス浄化フィルタの製造方法。

【請求項17】

50

請求項 $9 \sim 16$ のいずれか一項において、上記仮想線は、上記外周壁の内側面から上記セル1ピッチの $1.0 \sim 2.0$ 倍の長さ分内側に入った部分を連続的に繋げた線であることを特徴とする排ガス浄化フィルタの製造方法。

【請求項18】

請求項9~17のいずれか一項において、上記隔壁は、0.25~0.40mmの厚みを有することを特徴とする排ガス浄化フィルタの製造方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行う排ガス浄化フィルタ及びその製造方法に関する。

【背景技術】

[0002]

従来より、内燃機関から排出される排ガス中のパティキュレートを捕集して排ガスの浄化を行う排ガス浄化フィルタとして、セラミックハニカム構造体を有する排ガス浄化フィルタがある。

上記セラミックハニカム構造体は、外周壁と、該外周壁の内側においてハニカム状に設けられた隔壁と、該隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを有する。

[0003]

上記排ガス浄化フィルタの浄化効率を高めるべく,上記隔壁はより薄くかつ気孔率を高くすることが望まれる。ところが,隔壁を薄く,気孔率を高くすると,上記セラミックハニカム構造体の機械的強度が低下する。そのため,触媒を付与する際や内燃機関に取り付ける際などに,上記セラミックハニカム構造体の端部に欠けが生じ易くなるという問題がある。

これに対し、外周部付近のセルに、栓材を充填したセラミックハニカム構造体が提案されている(例えば、特許文献1、2参照)。

[0004]

しかしながら、上記従来のセラミックハニカム構造体においては、上記栓材を充填する外周領域の範囲について何ら規定されていない。上記栓材を充填する外周領域の範囲が大きすぎると、排ガスの濾過面積が小さくなると共に圧力損失が増大するという問題がある。一方、上記栓材を充填する上記外周領域が小さすぎると、セラミックハニカム構造体の強度を確保することができない。

それ故,単に外周部付近に栓材を充填しただけでは,強度が高く,かつ浄化効率に優れた排ガス浄化フィルタを得ることは困難である。

[0005]

【特許文献1】特公昭63-12658号公報

【特許文献2】特開平7-246341号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明は、かかる従来の問題点に鑑みてなされたもので、強度が高く、かつ排ガスの浄 化効率に優れた排ガス浄化フィルタ及びその製造方法を提供しようとするものである。

【課題を解決するための手段】

[0007]

第1の発明は、外周壁と、該外周壁の内側においてハニカム状に設けられた隔壁と、該隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを備えたセラミック ハニカム構造体を有する排ガス浄化フィルタにおいて、

上記セラミックハニカム構造体の両端面は、上記外周壁の内側面から上記セル1ピッチ 50

10

20

30

の1.0~3.0倍の長さ分内側に入った部分を連続的に繋げた仮想線を設けたとき,該 仮想線よりも外側の外周領域を90%以上栓材によって閉塞してなることを特徴とする排 ガス浄化フィルタにある(請求項1)。

[00008]

次に、本発明の作用効果につき説明する。

上記セラミックハニカム構造体は、上述のごとく、両端面における上記外周領域を90 %以上栓材によって閉塞してなる。

そのため、上記セラミックハニカム構造体の両端面の外周部が補強される。そして、上 記仮想線が、上記外周壁の内側面からセル1ピッチの1.0倍以上の長さ分内側に入った 部分を連続的に繋げたものであるため、上記栓材を詰める上記外周領域の幅がセル1ピッ チの1.0倍以上となる。それ故、上記セラミックハニカム構造体の強度を充分に確保す ることができる。これにより、上記排ガス浄化フィルタの製造時、取り扱い時等における 欠けの発生を防止することができる。

[0009]

また、上記仮想線が、上記外周壁の内側面からセル1ピッチの3.0倍以下の長さ分内 側に入った部分を連続的に繋げたものであるため、上記栓材を詰める上記外周領域の幅が セル1ピッチの3.0倍以下となる。それ故、排ガス浄化フィルタにおいて、排ガスを通 すことができない上記外周領域の面積を充分に小さくすることができる。これにより、排 ガスの濾過面積を確保することができると共に、排ガスの圧力損失を抑制することができ る。そのため、浄化効率に優れた排ガス浄化フィルタを得ることができる。

[0010]

以上のごとく、本発明によれば、強度が高く、かつ排ガスの浄化効率に優れた排ガス浄 化フィルタを得ることができる。

$[0\ 0\ 1\ 1]$

第2の発明は,外周壁と,該外周壁の内側においてハニカム状に設けられた隔壁と,該 隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを有するセラミック ハニカム構造体を成形する成形工程と,

該セラミックハニカム構造体の端面全体にマスクテープを貼付するマスキング工程と, 上記外周壁の内側面から上記セル1ピッチの1.0~3.0倍の長さ分内側に入った部 分を連続的に繋げた仮想線を設け、少なくとも該仮想線が通るセル及び該仮想線よりも外 30

側のセルの開口部に貼付されたマスクテープに穴明けを施す穴明け工程と,

その後、栓材ペーストに上記端面をディッピングして、上記マスクテープにより閉塞さ れているセル以外のセルの開口部に栓材を形成して、上記仮想線よりも外側の外周領域を 9 0 %以上栓材によって閉塞する栓詰め工程とを有することを特徴とする排ガス浄化フ ィルタの製造方法にある(請求項9)。

$[0\ 0\ 1\ 2\]$

本製造方法によれば、上記セラミックハニカム構造体における上記外周領域に、栓材を 容易かつ確実に形成することができる。

従って、上記第2の発明によれば、強度が高く、かつ排ガスの浄化効率に優れた排ガス 浄化フィルタを容易かつ確実に製造することができる。

[0013]

第3の発明は,外周壁と,該外周壁の内側においてハニカム状に設けられた隔壁と,該 隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを有するセラミック ハニカム構造体を成形する成形工程と,

該セラミックハニカム構造体の端面に、上記外周壁の内側面から上記セル1ピッチの1 . 0~3.0倍の長さ分内側に入った部分を連続的に繋げた仮想線を設け,該仮想線より も内側の中央領域にマスクテープを貼付するマスキング工程と,

栓材ペーストに上記端面をディッピングして、上記マスクテープにより閉塞されている セル以外のセルの開口部に栓材を形成して、上記仮想線よりも外側の外周領域を、90% 以上栓材によって閉塞する栓詰め工程とを有することを特徴とする排ガス浄化フィルタの 50

製造方法にある(請求項11)。

[0014]

本製造方法によれば、上記外周領域にはマスクテープを貼付しないため、該マスクテー プに穴明けを行うことなく,外周領域に栓材を形成することができる。そのため,工数を 削減することができ、排ガス浄化フィルタを容易に製造することができると共に、製造コ ストを削減することができる。

[0015]

第4の発明は、外周壁と、該外周壁の内側においてハニカム状に設けられた隔壁と、該 隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを有するセラミック ハニカム構造体を成形する成形工程と,

該セラミックハニカム構造体の端面全体にマスクテープを貼付するマスキング工程と, 上記端面に、上記外周壁の内側面から上記セル1ピッチの1.0~3.0倍の長さ分内 側に入った部分を連続的に繋げた仮想線を設け、該仮想線よりも外側の外周領域に貼付さ れたマスクテープを切除するカッティング工程と,

栓材ペーストに上記端面をディッピングして、上記マスクテープにより閉塞されている セル以外のセルの開口部に栓材を形成して、上記仮想線よりも外側の外周領域を、90% 以上栓材によって閉塞する栓詰め工程とを有することを特徴とする排ガス浄化フィルタの 製造方法にある(請求項13)。

$[0\ 0\ 1\ 6\]$

本製造方法によれば、上記セラミックハニカム構造体の端面にマスクテープを貼付する 際、厳密な位置合せをする必要がないため、貼付作業が容易である。それ故、上記第4の 発明によれば、強度が高く、かつ排ガスの浄化効率に優れた排ガス浄化フィルタを容易に 製造することができる。

[0017]

第5の発明は,外周壁と,該外周壁の内側においてハニカム状に設けられた隔壁と,該 隔壁により仕切られていると共に両端面に貫通してなる複数のセルとを有するセラミック ハニカム構造体を成形する成形工程と,

該セラミックハニカム構造体の端面全体にマスクテープを貼付するマスキング工程と, 上記端面に、上記外周壁の内側面から上記セル1ピッチの1.0~3.0倍の長さ分内 側に入った部分を連続的に繋げた仮想線を設け、該仮想線が通るセルの隔壁に沿ってマス 30 クテープを切断すると共に, その外側のマスクテープを除去するカッティング工程と,

栓材ペーストに上記端面をディッピングして、上記マスクテープにより閉塞されている セル以外のセルの開口部に栓材を形成して、上記仮想線よりも外側の外周領域を、90% 以上栓材によって閉塞する栓詰め工程とを有することを特徴とする排ガス浄化フィルタの 製造方法にある(請求項15)。

[0018]

本製造方法によれば、上記仮想線が通るセルを被うマスクテープをも除去して、該セル の開口部の全体を開放することができる。そのため、上記仮想線が通るセルには、その開 口部の全体に上記栓材を形成することができる。

また、上記仮想線が通るセルの開口部には、改めて穴明けを行う必要がない。 従って、第5の発明によれば、強度が高く、かつ排ガスの浄化効率に優れた排ガス浄化 フィルタを容易に製造することができる。

【発明を実施するための最良の形態】

[0019]

上記第1の発明(請求項1)において、上記セル1ピッチとは、下記の定義式(1)に より定義される。

1ピッチ=25.4/(メッシュ数) 1/2・・・(1)

ここで,メッシュ数とは, 25.4mm四方中に存在するセルの数をいう。

従って、上記セルが断面正方形状であれば、1ピッチとはセルの1辺の長さに隔壁の厚 みを足した長さとなる。

10

20

また、上記栓材により閉塞する上記外周領域の90%とは、上記外周領域にあるセルの開口部の総面積を基準としたものである。

[0020]

また、上記仮想線が通る各セルの開口部は、その一部又は全部を上記栓材によって閉塞することができる(請求項2)。

上記セルの開口部の一部を栓材によって閉塞する場合には、製造が容易である。また、 上記セルの開口部の全部を栓材によって閉塞する場合には、より強度に優れた排ガス浄化 フィルタを得ることができる。

[0021]

また、上記セラミックハニカム構造体は、上記外周壁及び隔壁の気孔率が50%以上と 10 することができる(請求項3)。

この場合には、排ガスの濾過面積、触媒担持面積が大きくなり、浄化効率の高い排ガス 浄化フィルタを得ることができる。

また、この場合には、仮に上記外周領域に栓材を設けないと、上記セラミックハニカム構造体の強度が低く、欠けが生じやすい。そこで、上述のごとく外周領域に栓材を形成することにより、セラミックハニカム構造体の強度を向上させ、ひいては排ガス浄化フィルタの強度を向上させることができる。

上記気孔率が50%未満の場合には、排ガス浄化効率を充分に向上させることが困難となるおそれがある。

[0022]

また、上記外周壁は、 $0.2 \sim 0.8 \text{ mm}$ の厚みを有することが好ましい(請求項4)

。 この場合には,排ガス浄化フィルタの強度と排ガス浄化効率とを確保することができる

上記厚みが 0.2 mm未満の場合には、排ガス浄化フィルタの強度を確保することが困難となるおそれがある。一方、上記厚みが 0.8 mmを超える場合には、排ガスの濾過面積が小さくなると共に、圧力損失が大きくなり、排ガス浄化効率を充分確保することが困難となるおそれがある。

[0023]

また、上記セラミックハニカム構造体は、コージェライトからなることが好ましい(請 30 求項5)。

この場合には、所望の気孔率の外周壁及び隔壁を有するセラミックハニカム構造体を容易かつ安価に成形することができる。

[0024]

また、上記排ガス浄化フィルタは、ディーゼルエンジンから排出される排ガスの浄化を行うディーゼルエンジン用排ガス浄化フィルタであって、上記セラミックハニカム構造体の端面における上記仮想線よりも内側の中央領域は、栓材を設けたセルの開口部と、栓材を設けないセルの開口部とが互いに隣り合うようにして混在しているものであってもよい(請求項6)。

この場合には、強度が高く、かつ排ガスの浄化効率に優れたディーゼルエンジン用排ガ 40 ス浄化フィルタを提供することができる。

[0025]

また、上記仮想線は、上記外周壁の内側面から上記セル1ピッチの1.0~2.0倍の長さ分内側に入った部分を連続的に繋げた線であることが好ましい(請求項7)。

この場合には、、上記セラミックハニカム構造体の強度を充分に確保しつつ、浄化効率に優れた排ガス浄化フィルタを得ることができる(実施例7参照)。

[0026]

また、上記隔壁は、0.25~0.40mmの厚みを有することが好ましい(請求項8)。

。 この場合には、排ガス中のパティキュレートを充分に捕集することができると共に、排 50 ガスの圧力損失を抑制することができる。それ故、より浄化効率に優れた排ガス浄化フィルタを得ることができる。

上記隔壁の厚みが0.25 mm未満の場合には、上記パティキュレートが上記隔壁をすり抜けやすくなり、パティキュレートの捕集率が低下するおそれがある。一方、上記隔壁の厚みが0.40 mmを超える場合には、上記排ガスの圧力損失が高くなるおそれがある(実施例8参照)。

[0027]

次に、上記第2の発明(請求項9)において、上記マスキング工程、穴明け工程、及び 栓詰め工程は、上記セラミックハニカム構造体の両方の端面に対してそれぞれ行うことが できる。

[0028]

また、上記穴明け工程においては、上記仮想線よりも内側の上記セルの開口部に貼付された上記マスクテープについては、互いに隣り合う上記セルの開口部のうちいずれか一方の開口部に貼付されたマスクテープに穴明けを施すことができる(請求項10)。

この場合には、上記セラミックハニカム構造体の端面における上記仮想線よりも内側の中央領域は、栓材を設けたセルの開口部と、栓材を設けないセルの開口部とが互いに隣り合うようにして混在することとなる。その結果、強度が高く、かつ排ガスの浄化効率に優れたディーゼルエンジン用排ガス浄化フィルタを得ることができる。

[0029]

次に、上記第3の発明(請求項11)において、上記マスキング工程の後、上記栓詰め 20 工程の前には、少なくとも上記仮想線が通るセルの開口部を被うマスクテープに穴明けを 施す穴明け工程を行うことが好ましい(請求項12)。

この場合には、上記仮想線が通るセルの開口部にも、その全部に栓材を形成することができる。そのため、一層強度の高い排ガス浄化フィルタを得ることができる。

[0030]

また、上記第4の発明(請求項13)において、上記カッティング工程の後、上記栓詰め工程の前には、少なくとも上記仮想線が通るセルの開口部を被うマスクテープに穴明けを施す穴明け工程を行うことが好ましい(請求項14)。

この場合には、上記仮想線が通るセルの開口部にも、その全部に栓材を形成することができる。そのため、一層強度の高い排ガス浄化フィルタを得ることができる。

[0031]

また、上記第3の発明(請求項11)又は第4の発明(請求項13)において、上記マスキング工程の後、上記栓詰め工程の前に、上記仮想線よりも内側の上記セルの開口部に貼付された上記マスクテープについては、互いに隣り合う上記セルの開口部のうちいずれか一方の開口部に貼付されたマスクテープに穴明けを施すことができる(請求項16)。

この場合には、上記セラミックハニカム構造体の端面における上記仮想線よりも内側の中央領域は、栓材を設けたセルの開口部と、栓材を設けないセルの開口部とが互いに隣り合うようにして混在することとなる。その結果、強度が高く、かつ排ガスの浄化効率に優れたディーゼルエンジン用排ガス浄化フィルタを得ることができる。

【実施例】

[0032]

(実施例1)

本発明にかかる排ガス浄化フィルタ及びその製造方法につき,図1~図11を用いて説明する。

図1~図3に示すごとく、上記排ガス浄化フィルタ1は、外周壁21と、該外周壁21 の内側においてハニカム状に設けられた隔壁22と、該隔壁22により仕切られていると 共に両端面241、242に貫通してなる複数のセル23とを備えたセラミックハニカム 構造体2を有する。

[0033]

上記セラミックハニカム構造体2の両端面241,242は、図1に示すごとく、上記 50

10

30

10

外周壁 2 1 の内側面 2 1 1 から上記セル1 ピッチの 1. 0 ~ 3. 0 倍の長さ分内側に入った部分を連続的に繋げた仮想線 3 を設けたとき,該仮想線 3 よりも外側の外周領域 2 5 を 9 0 %以上栓材 4 によって閉塞してなる。

[0034]

上記セル1ピッチとは、上述した定義式(1)により定義されるが、本例においては、図4に示すごとく、上記セル23が断面正方形状であるため、1ピッチとはセル23の1辺の長さaに隔壁22の厚みbを足した長さとなる。

具体的には、上記セル23の一辺の長さaは、 $1.07\sim1.27$ mmであり、隔壁22の厚みbは $0.25\sim0.35$ mmである。それ故、1ピッチは、 $1.32\sim1.62$ mmである。

また、上記外周壁 2 1 は、0 . $2\sim0$. 8 mmの厚みを有する。また、上記栓材 4 は、上記端面 2 4 1 , 2 4 2 から $1\sim6$ mmの深さ分上記セル 2 3 の開口部 2 3 1 に配設されている。

[0035]

また、上記セラミックハニカム構造体2は、上記外周壁21及び隔壁22の気孔率が50%以上である。

また、上記セラミックハニカム構造体2は、コージェライトからなる。また、栓材4も コージェライトからなる。

[0036]

また、上記排ガス浄化フィルタ1は、ディーゼルエンジンから排出される排ガスの浄化 20を行うディーゼルエンジン用排ガス浄化フィルタである。そして、図1、図3に示すごとく、上記セラミックハニカム構造体2の端面241、242における上記仮想線3よりも内側の中央領域26は、栓材4を設けたセル23の開口部231と、栓材4を設けないセル23の開口部231とが互いに降り合うようにして混在している。

即ち、図3に示すごとく、上記中央領域26におけるセル23は、そのいずれか一方の 開口部231が上記栓材4によって閉塞されており、降り合うセル23は、互いに反対側 の開口部231に栓材4を形成してなる。

[0037]

次に、本例の排ガス浄化フィルタ1の製造方法につき説明する。

まず、外周壁 2 1 と、隔壁 2 2 と、複数のセル 2 3 とを有するセラミックハニカム構造 30 体 2 を成形する成形工程を行う。

次いで、図5に示すごとく、該セラミックハニカム構造体2の端面241全体にマスクテープ5を貼付するマスキング工程を行う。

[0038]

その後、図7に示すごとく、上記仮想線3(図1)が通るセル23及び該仮想線3よりも外側のセル23の開口部に貼付されたマスクテープ5に穴明けを施す。このとき、中央領域26におけるセル23の開口部231にも市松模様状にマスクテープ5に穴明けを施す穴明け工程を行う。

その後、図8に示すごとく、栓材ペースト41に上記端面241をディッピングして、図9に示すごとく、上記マスクテープ5により閉塞されているセル以外のセル23の開口 40部231に栓材4を形成する栓詰め工程を行う。

[0039]

また、図10、図11に示すごとく、上記セラミックハニカム構造体2における他の端面242にも同様に、栓材4を形成する。

これにより、図1に示すごとく、上記セラミックハニカム構造体2の両端面241,242における上記仮想線3よりも外側の外周領域25を、90%以上栓材4によって閉塞する。

[0040]

また、上記穴明けは、図 6 に示すごとく、まずカメラ5 1 によってセラミックハニカム構造体2 の端面2 4 1 (2 4 2) を撮像し、画像処理することにより、穴明けすべき位置 50

の検出を行う。次いで、図7に示すごとく、レーザ52によりマスクテープ5に穴明けを行う。

[0041]

上記のごとく,所定のセル23の開口部231に栓材4を形成した後,セラミックハニカム構造体2を焼成して,排ガス浄化フィルタ1を得る。

また、上記排ガス浄化フィルタ1における隔壁23には、触媒を担持させることができる。

[0042]

次に、本例の作用効果につき説明する。

上記セラミックハニカム構造体 2 は、上述のごとく、両端面 2 4 1 、 2 4 2 における上 10 記外周領域 2 5 を 9 0 %以上栓材 4 によって閉塞してなる。

そのため、上記セラミックハニカム構造体2の両端面241,242の外周部、即ち角部が補強される。そして、上記仮想線3が、上記外周壁21の内側面211からセル1ピッチの1.0倍以上の長さ分内側に入った部分を連続的に繋げたものであるため、上記栓材4を詰める上記外周領域25の幅がセル1ピッチの1.0倍以上となる。それ故、上記セラミックハニカム構造体2の強度を充分に確保することができる。これにより、上記排ガス浄化フィルタ1の製造時、取り扱い時等における欠けの発生を防止することができる

[0043]

また、上記仮想線 3 が、上記外周壁 2 1 の内側面 2 1 1 からセル1 ピッチの 3 . 0 倍以 2 での長さ分内側に入った部分を連続的に繋げたものであるため、上記栓材 4 を詰める上記外周領域 2 5 の幅がセル1 ピッチの 3 . 0 倍以下となる。それ故、排ガス浄化フィルタ 1 において、排ガスを通すことができない上記外周領域 2 5 の面積を充分に小さくすることができる。これにより、排ガスの濾過面積を確保することができると共に、排ガスの圧力損失を抑制することができる。そのため、浄化効率に優れた排ガス浄化フィルタ 1 を得ることができる。

[0044]

また、上記セラミックハニカム構造体2は、上記外周壁21及び隔壁22の気孔率が50%以上であるため、浄化効率の高い排ガス浄化フィルタ1を得ることができる。

また、この場合には、仮に上記外周領域25に栓材4を設けないと、上記セラミックハ ³⁰ ニカム構造体2の強度が低く、欠けが生じやすい。そこで、上述のごとく外周領域25に栓材4を形成することにより、セラミックハニカム構造体2の強度を向上させ、ひいては排ガス浄化フィルタ1の強度を向上させることができる。

[0045]

また、上記外周壁 21 は、 $0.2\sim0.8$ mmの厚みを有するため、排ガス浄化フィルタ1の強度と排ガス浄化効率とを確保することができる。

また、上記セラミックハニカム構造体2は、コージェライトからなるため、所望の気孔率の外周壁21及び隔壁22を有するセラミックハニカム構造体2を容易かつ安価に成形することができる。

[0046]

以上のごとく,本例によれば,強度が高く,かつ排ガスの浄化効率に優れた排ガス浄化フィルタを得ることができる。

[0047]

(実施例2)

本例は、図12、図13に示すごとく、実施例1とは異なる方法により、排ガス浄化フィルタ1を製造する例である。

即ち,実施例1において示したセラミックハニカム構造体2の端面241 (242) に対し,図12に示すごとく,仮想線3よりも内側の中央領域26にマスクテープ5を貼付する。

従って、マスクテープ5は、上記仮想線3に沿った外形を有する。

40

[0048]

その後、栓詰め工程の前に、図13に示すごとく、上記仮想線3が通るセル23の開口部231を被うマスクテープ5に穴明けを施す穴明け工程を行う。この穴明け工程においては、上記仮想線3よりも内側の中央領域26におけるマスクテープ5にも、市松模様状に穴明けを施す。図13において、符号55が穴明けを施した穴明け部である。

その他は,実施例1と同様である。

[0049]

本製造方法によれば、上記外周領域25にはマスクテープ5を貼付しないため、該マスクテープ5に穴明けを行うことなく、外周領域25に栓材4を形成することができる。そのため、穴明け工程における工数を削減することができ、排ガス浄化フィルタ1を容易に 10 製造することができると共に、製造コストを削減することができる。

その他は,実施例1と同様である。

[0050]

(実施例3)

本例は、図14に示すごとく、仮想線3が通るセル3については栓材4を部分的に形成した排ガス浄化フィルタ1の例である。

即ち,まず,成形工程及びマスキング工程を,実施例2と同様に行う(図12参照)。 次いで,穴明け工程の際,上記仮想線3が通るセル23については,穴明けを行わない。 その他は,実施例2と同様である。

[0 0 5 1]

これにより、図14に示すごとく、仮想線3が通るセル3については栓材4が部分栓となって形成される。この場合には、穴明け個所を更に少なくすることにより、穴明け工程における工数を削減することができる。

その他は、実施例2と同様の作用効果を有する。

[0 0 5 2]

(実施例4)

本例は、マスキング工程において、セラミックハニカム構造体2の端面241 (242) 全体にマスクテープ5を貼付し、その後、仮想線3に沿って上記マスクテープ5を切断するカッティング工程を行う例である。

カッティング工程の後は、実施例2或いは実施例3と同様の方法により、排ガス浄化フ 30 ィルタ1を製造する。

上記マスクテープ5の切断には、例えばレーザを用いる。

その他は,実施例1と同様である。

[0 0 5 3]

本製造方法によれば、上記セラミックハニカム構造体2の端面241,242にマスクテープ5を貼付する際、厳密な位置合せをする必要がないため、貼付作業が容易である。それ故、強度が高く、かつ排ガスの浄化効率に優れた排ガス浄化フィルタを容易に製造することができる。

その他, 実施例1と同様の作用効果を有する。

[0054]

(実施例5)

本例は、図15に示すごとく、マスキング工程においては、セラミックハニカム構造体2の端面241(242)全体にマスクテープ5を貼付し、カッティング工程において、仮想線3が通るセル23の隔壁22に沿ってマスクテープ5を切断すると共に、その外側のマスクテープ5を除去する例である。

[0055]

従って、切断ラインは、仮想線3の内側にある隔壁22に沿って描くことのできる最大 面積を囲む閉曲線となる。

その後は、実施例1と同様の方法で、排ガス浄化フィルタ1を製造する。

上記マスクテープ5の切断には、例えばレーザを用いる。

20

40

その他は、実施例1と同様である。

[0056]

本製造方法によれば、上記仮想線3が通るセル23を被うマスクテープ5をも除去して、該セル23の開口部231の全体を開放することができる。そのため、上記仮想線3が通るセル23には、その開口部231の全体に上記栓材4を形成することができる。

[0057]

また、上記仮想線3が通るセル23の開口部231には、改めて穴明けを行う必要がない。

従って, 本例によれば, 強度が高く, かつ排ガスの浄化効率に優れた排ガス浄化フィルタを容易に製造することができる。

その他、実施例1と同様の作用効果を有する。

[0058]

(実施例6)

本例は、図16、図17に示すごとく、本発明にかかる排ガス浄化フィルタの欠け発生 度合を試験した例である。

本発明の排ガス浄化フィルタ, 即ち, 外周領域に栓材を形成した排ガス浄化フィルタを 試料1とした。

また、試料1に用いたものと同様のセラミックハニカム構造体であって、外周領域に栓材を形成していないものを試料2とした。

また、比較的気孔率の低いモノリス3mil品を試料3とした。

各試料の各種データは,表1に示すとおりである。

[0059]

【表1】

(表1)

	試料1	試料2	試料3
外周領域の栓材	有	無	無
寸法(直径×高さ)	129×50mm	129×50mm	129×50mm
外周壁の厚み	0.6mm	0.6mm	0.6mm
隔壁の厚み	0.3mm	0.3mm	0.09mm
セル数	300メッシュ	300メッシュ	600メッシュ
材質	コージェライト	コージェライト	コージェライト
気孔率	65%	65%	35%

[0060]

試験方法としては、図16に示すごとく、各セラミックハニカム構造体61を、セルの 貫通方向Tが鉛直方向Sに対して45°となるように傾斜させた状態で、支持台62の上に載置する。

そして、底面の直径20mm、高さ30mm、質量100gの円柱状の鉛の錘63を、上記セラミックハニカム構造体61の角部611へ、上方30cmの位置から自由落下させる。

なお、錘63は、鉛直方向に配された円筒状のガイド64の中を落下させる。

$[0\ 0\ 6\ 1]$

これにより、各セラミックハニカム構造体61の角部611に生じた欠けの深さを測定した。また、この試験を各試料につき、各5回行った。

試験の結果を図17に示す。同図に示す値は、5回の試験結果の平均値である。

[0062]

図17から分かるように,本発明に係る試料1は,外周領域に栓材を設けなかった試料 50

20

10

2よりも、欠けの深さが大幅に小さい。

そして、試料1は、気孔率が65%と大きいにもかかわらず、気孔率が35%と小さいモノリスからなる試料3と略同等の欠け深さであった。

以上の結果から、本発明によれば、欠けの発生を充分に防止することができる強度に優れた排ガス浄化フィルタを得ることができることが分かる。

[0063]

(実施例7)

本例は、図18に示すごとく、栓材によって閉塞した外周領域の幅と、その排ガス浄化フィルタの圧損上昇率及び欠けの深さとの関係を評価した例である。

即ち、サンプルとしては、上記外周領域の幅をそれぞれ、セル1ピッチ分、2ピッチ分 10、3ピッチ分、4ピッチ分としたのものと、外周領域に栓詰めしないものとを用意した。

 $[0\ 0\ 6\ 4\]$

上記圧損上昇率とは、外周領域に栓詰めをしないものを基準にした圧力損失の上昇率である。該圧力損失は、排ガス浄化フィルタに 5 m³/分で室温空気を流したとき、上記排ガス浄化フィルタの両端面における圧力差として求めた値である。後述する実施例 8 における圧力損失も同様に求めた値である。

また、欠けの深さは、上記実施例 6 に示した欠け試験方法により測定したものである。 図 1 8 において、上記圧損上昇率を○にて表し、上記欠けの深さを●にて表す。

[0065]

図18から分かるように、圧損上昇率は、上記外周領域が2ピッチ分を超えると大きく 2なる。また、該外周領域が4ピッチ分となると、圧損上昇率が更に大きくなり、40%を超える。

また、欠けについては、栓詰めなしのものに比べると外周領域1ピッチ分に栓詰めすることにより、欠け深さを小さくすることができる。更に、外周領域2ピッチ分とすることにより、欠け深さを更に小さくすることができる。

上記の結果から、上記外周領域の幅としては1~3ピッチ分とする必要があり、好ましくは、1~2ピッチ分とするのがよいことが分かる。

[0066]

(実施例8)

本例は、図19に示すごとく、セラミックハニカム構造体の隔壁の厚みと、排ガス中の 30 パティキュレートの捕集率及び圧力損失との関係を評価した例である。

上記捕集率は、以下の手段によって測定した値である。

即ち、上記各排ガス浄化フィルタに対し、パティキュレートを含む排ガスを、 $2 \text{ m}^3 /$ 分の流量で流入させた。そして、排ガスを流入させる前後における排ガス浄化フィルタの質量M1, M2をそれぞれ測定すると共に、排ガス浄化フィルタを通過したパティキュレートの質量Nを計測した。そして、上記質量M1, M2, 及びNを基にして、計算式

P = (M 2 - M 1) / (M 2 - M 1 + N)

により計算することにより、パティキュレートの捕集率Pを算出した。

 $[0\ 0\ 6\ 7\]$

図19において、上記捕集率を●にて表し、上記圧力損失を○にて表す。

図19に示すごとく、上記捕集率については、隔壁の厚みを0.25mm以上とすることにより、充分に高くすることができる。ただし、隔壁の厚みが0.40mmを超えると、圧力損失が極端に大きくなる。

上記の結果から、上記隔壁の厚みとしては、0.25~0.40mmとすることが好ま しいことが分かる。

【図面の簡単な説明】

[0068]

- 【図1】実施例1における,排ガス浄化フィルタの正面図。
- 【図2】実施例1における,排ガス浄化フィルタの斜視図。
- 【図3】実施例1における、セルの貫通方向に沿った排ガス浄化フィルタの断面図。

50

- 【図4】実施例1における、セルの開口部の正面図。
- 【図5】実施例1における, セラミックハニカム構造体にマスクテープを貼付した状態を表す斜視説明図。
- 【図 6】実施例 1 における, 穴明けすべきマスクテープの位置を検出する様子を表す斜視説明図。
- 【図7】実施例1における,セラミックハニカム構造体に貼着したマスクテープに穴明けを行う様子を表す斜視説明図。
- 【図8】実施例1における,セラミックハニカム構造体の端面を栓材スラリーにディッピングする状態を表す断面説明図。
- 【図9】実施例1における,ディッピング後の状態を表す断面説明図。
- 【図10】実施例1における, セラミックハニカム構造体の他の端面を栓材スラリーにディッピングする状態を表す断面説明図。
- 【図11】実施例1における、セラミックハニカム構造体の両端面をディッピングした後の状態を表す断面説明図。
- 【図12】実施例2における、端面にマスクテープを貼付したセラミックハニカム構造体の正面図。
- 【図13】実施例2における,マスクテープに穴明けを施した状態を表す説明図。
- 【図14】実施例3における,排ガス浄化フィルタの正面図。
- 【図 1 5】実施例 5 における,セラミックハニカム構造体の端面に貼着したマスクテープを切断した状態を表す説明図。
- 【図16】実施例6における,欠け試験方法の説明図。
- 【図17】実施例6における,試験結果を表す線図。
- 【図18】 実施例7における, 測定結果を表す線図。
- 【図19】実施例8における,測定結果を表す線図。

【符号の説明】

[0069]

- 1 排ガス浄化フィルタ
- 2 セラミックハニカム構造体
- 2 1 外周壁
- 2 1 1 内側面
- 22 隔壁
- 23 セル
- 241, 242 端面
- 25 外周領域
- 3 仮想線
- 4 栓材

10

【図1】

(図)

【図2】

【図3】

(図3)

【図4】

【図5】

(図5)

(図 6)

【図12】

242

【図11】

(図11)

【図13】

【図15】

【図16】

【図17】

(図17)

【図18】

(⊠18)

【図19】

フロントページの続き テーマコード(参考) FΙ (51) Int.Cl.⁷ 4G069 B 0 1 J 35/04 B 0 1 J 35/04 301D F 0 1 N 3/02 301B B 2 8 B 11/00 301C F 0 1 N 3/02 F 0 1 N 3/02 B 2 8 B 11/00 Z

Fターム(参考) 4D019 AA01 BA05 BB06 BD01 CA01 CB06

4D048 AA14 AB01 BB02 BB14 CD05

4D058 JA37 JA38 JB06 SA08

4G055 AA07 AC10 BA35

4G069 AA01 AA08 AA11 BA13B CA03 CA07 CA18 EA19 EA27 ED03