Graphing Sine and Cosine

Chase Mathison¹

Shenandoah University

14 February 2024

Announcements

- Homework and Project in MyOpenMath.
- 2 Office hours, 10am 11am.

Graphing $sin(\theta)$ and $cos(\theta)$

Graphing $sin(\theta)$ and $cos(\theta)$

The Period of $sin(\theta)$ and $cos(\theta)$

We've already discussed the period of $sin(\theta)$ and $cos(\theta)$, but let's see if we can determine these from the graphs we just drew.

Special Characteristics of Sine and Cosine functions

The following are special characteristics we can determine from the graphs of $sin(\theta)$ and $cos(\theta)$:

- The domain of both functions is: _____.
- 2 The range of both functions is: ______.
- Both functions are periodic with period: _____.
- sin (θ) is _____, in other words, the graph of $y = \sin(\theta)$ is symmetric about the origin.

Investigating General Sinusoidal Functions

In general, we call any periodic function that oscillates between a maximum value and a minimum value ______. Sinusoidal functions in general can be written as:

$$y =$$

or

$$y =$$

Let's investigate how all of these numbers affect the shape of the graph of sin and cos.

A (With C and D both 0)

Amplitude

B (With C and D both 0)

Period

C

The Phase Shift

The Midline

Putting it all together

So to graph a sinusoidal function $y = A \sin(Bx - C) + D$ or $y = A \cos(Bx - C) + D$:

- 1 Determine the Amplitude: |A|
- 2 Determine the Period: $\frac{2\pi}{|B|}$
- **3** Determine the Phase Shift: $\frac{C}{B}$
- **4** Determine the midline: y = D

A Modeling Problem

Model the number of hours of daylight in Winchester, VA t days after January 1 using a sinusoidal function.