Matematyczne aspekty wyborów

Na podstawie wykładu Krzysztofa Ciesielskiego

Skrypt autorstwa

Arkadiusza Dąbala

Wersja z dnia: 2024-10-11

Contents

1	Preliminaria1.1 Jak wyglądają aktualnie wybory?	
2	Treść właściwa 2.1 Metody głosowania (system wyborczy)	5
	2.1.1 Metoda zwyciężcy	5
3	Deser	10

1 Preliminaria

1.1 Jak wyglądają aktualnie wybory?

Komentarz

Materiał ten nie ma w żadnym stopniu charakteru politycznego, a wyłącznie charakter matematyczny.

Przykład 1.1 Rozważny poniższe dane, oparte na 6 partiach, 1000 głosach i 6 mandatów do rozdania:

Nazwa	Głosy	: 1	: 2	: 3	: 4	Otrzymane mandaty
Filateliści	380	380	190	127	87	3
Gitarzyści	192	192	96	64		2
Szachiści	180	180	90			1
Piłkarze	96	96	48			1
Lotniarze	90	90				0
Kolejarze	62	62				0

System ten działa w następujący sposób:

- Liczby głosów dzielone są przez kolejne liczby naturalne dodatnie (tak jak w tabeli).
- Wybierane są z tej tabeli 6 największych liczb (wytłuszczony druk).
- Liczba mandatów zależy od liczby wytłuszczonych liczb w wierszu partii.

Przykład 1.2 Rozważmy tę samą tabelę, ale załóżmy, że partia Gitarzyści nie przekroczyła progu 5%.

Nazwa	Głosy	: 1	: 2	: 3	: 4	Otrzymane mandaty
Filateliści	380	380	190	127	87	3
Gitarzyści	192	192	96	64	_	
Szachiści	180	180	90			2
Piłkarze	96	96	48			1
Lotniarze	90	90				1
Kolejarze	62	62				0

Przykład 1.3

Rozważmy następującą tabelę z 5 mandatami do rozdania:

Nazwa	Głosy:1	: 2	: 3	: 4	Mandaty
Rybacy	6000	3000	2000	1500	3
Myśliwi	5700	2850	1900		2
Artyści	1950	975			0

Partia **Rybacy** prowadziła kampanię przeciwko **Myśliwym**, w wyniku czego liczba otrzymanych głosów zmieniła się następująco:

- Partia **Rybacy** zyskała 400 głosów (+400)
- Partia **Myśliwi** straciła 600 głosów (-600)
- Partia **Artyści** zyskała 200 głosów (+200)

Nazwa	Głosy:1	: 2	: 3	: 4	Mandaty
Rybacy	6400	3200	2133		3
Myśliwi	5100	2550	1700		2
Artyści	2150	1075			0

Komentarz

Tym oto sposobem partia Myśliwi stracili jeden mandat na rzecz partii Artyści.

Przykład 1.4

Rozważmy wyniki głosowania dla dwóch partii z 6 mandatami do rozdania.

Nazwa	Głosy:1	: 2	: 3	: 4	: 5	Mandaty
Matematycy	1200	600	400	300	240	5
Politycy	201	101				1

Popatrzmy na głosy bezpośrednio na konkretnych kandydatów z każdej partii:

Nazwa	Głosy
Kwadrat	201
Trójkąt	200
Stożek	200
Walec	200
Suma	200
Iloczyn	199

Nazwa	Głosy
Magister	35
Magistra	34
Urzędnik	33
Urzędas	33
Pani Basia	33
Pan Andrzej	33

Komentarz

Tym oto sposobem mandatu nie otrzymuje **Iloczyn**, mimo że zdobył więcej głosów niż **Magister**.

Przykład 1.5

Rozważmy sytuację, w której państwo jest podzielone na dwa bloki, oba mające po 50% wpływu na wyniki wyborów. Każdy blok ma przyznać po 4 mandaty.

W bloku A znajdowały się dwie partie: PZK (Partia Zwolenników Kawy) i PZH (Partia Zwolenników Herbaty), z których każda otrzymała po 25% głosów w ogólnokrajowym głosowaniu. W bloku B znajdowała się partia PZA (Partia Zwolenników Alkoholu) oraz inne partie, które nie przekroczyły progu 5%. Przedstawmy liczbę uzyskanych głosów w PZA:

Nazwa	Głosy
Żubr	19995
Żubrówka	2
Soplica	2
Pan Tadeusz	1

Komentarz

I tym oto sposobem wygrywają osoby, które dostają 2 lub 1 głos.

1.2 Prawo Ciesielskiego

Rozważmy głosowanie względem 2 partii z 7 mandatami:

	Nazwa	Głosy:1	:3	:5	:7	:9	Mandaty
ľ	Kelnerzy	1050	350	210	150	117	4
	Sportowcy	1008	336	202	144		3

Partia **Sportowcy** postanowiła się rozdzielić na dwie partie i startować osobno:

Nazwa	Głosy:1	:3	:5	:7	:9	Mandaty
Kelnerzy	1050	350	210	150	117	3
Piłkarze	504	168	101			2
Siatkarze	504	168	101			2

Komentarz

Tym oto sposobem partia **Sportowcy** zdobyła większość.

2 Treść właściwa

2.1 Metody głosowania (system wyborczy)

Wprowadźmy kilka oznaczeń, niech:

W - zbiór wszystkich wyborców,

K - zbiór wszystkich kandydatów.

- Ten sam układ głosów (zestaw głosów) daje ten sam wynik (funkcja).
- Każdy układ głosów daje jakiś wynik (może być ∅).

Definicja 2.1 (Model)

Model to układ głosów (z przyporządkowanymi wyborcami).

Definicja 2.2 (Metoda anonimowa)

Metoda jest anonimowa, wtedy i tylko wtedy (w skrócie: \Leftrightarrow), gdy wszyscy wyborcy są traktowani tak samo, $\Leftrightarrow \forall_{x,y \in W}$ zamiana głosów x i y nie zmienia wyniku.

Komentarz

Alternatywnie, metoda nie jest anonimowa $\Leftrightarrow \exists_{x,y \in W}$ takie, że zamiana głosów x i y istotnie zmienia wynik.

Definicja 2.3 (Metoda neutralna)

Metoda jest neutralna, \Leftrightarrow wszyscy kandydaci są traktowani tak samo, \Leftrightarrow $\forall_{x,y\in K}$ zamiana ról x i y nie zmienia wyniku.

Komentarz

Alternatywnie, metoda nie jest neutralna $\Leftrightarrow \exists_{x,y \in K}$ takie, że zamiana ról x i y istotnie zmienia wynik, dokładniej definiując:

jeśli $\exists k_1, k_2 \in K : W_1 = \{w_1, w_2, \dots, w_i\}$ głosowali na k_1 , a $W_2 = \{w_{i+1}, w_{i+2}, \dots, w_j\}$ głosowali na k_2 to jeżeli kandydaci Ci "zamienią się" wyborcami (zbiorami W_1, W_2), to k_1 i k_2 zamienią się wynikami.

Definicja 2.4

Trzy rodzaje metod ze względu na wyniki:

- 1) Metoda zwycięzcy (MZ) wybiera zwycięzcę (zwycięzców),
- 2) Metoda porządkowa (MP) wynik to słaby porządek na zbiorze K,
- 3) Metoda rozdziału (MR) wynik to podział pewnych dóbr między kandydatów.

2.1.1 Metoda zwyciężcy

Definicja 2.5 (Klasyczna metoda zwycięzcy)

Klasyczna metoda zwycięzcy (klasyczna MZ) polega na tym, że każdy wyborca głosuje na dokładnie jednego kandydata. Zbiór

$$\Sigma = \{m : W \to K\}$$

jest zbiorem modeli, gdzie m jest modelem. Klasyczną metodę zwycięzcy możemy opisać funkcją

$$f: \Sigma \to P(K)$$
.

Definicja 2.6 (Semi-klasyczna metoda zwycięzcy)

Semi-klasyczna MZ polega na tym, że każdy wyborca głosuje na co najmniej jednego kandydata:

$$\Sigma = \{m : W \to P(K) \setminus \emptyset\}.$$

Metodę tę można opisać funkcją

$$f: \Sigma \to P(K)$$
.

Definicja 2.7 (Metoda efektywna)

 $Metoda\ zwycięzcy\ jest\ efektywna \Leftrightarrow zawsze\ wyłania\ przynajmniej\ jednego\ zwycięzcę.$

Przykład 2.1 (Przykłady metod głosowania) Metody klasyczne:

- 1) Dyktatura $\exists p \in W$: wynik jest tożsamy z głosem p.
- 2) Monarchia dany kandydat $k \in K$ wygrywa niezależnie od głosowania.
- 3) Metoda większości wygrywa kandydat (lub kandydaci), który(a) otrzymał(a) najwięcej głosów.
- 4) Metoda bezwzględnej większości wygrywa kandydat $k \in K$, który otrzymał co najmniej $\lfloor \frac{\#W}{2} \rfloor + 1$ głosów.
- 5) Metoda super większości – wygrywa kandydat, który uzyskał co najmnie
jqgłosów, gdzie $q>\frac{\#W}{2}.$
- 6) Metoda status quo *Założenie:* ∃ pewien stan z jednym zwycięzcą. Głosowanie metodą większości (lub super większości):
 - jeśli metoda daje wynik, zwycięża "nowy" kandydat,
 - jeśli metoda nie daje wyniku, zwycięża dotychczasowy kandydat.

Przykład: referendum.

- 7) Metoda większości ważonej $(W = \{a_1, \ldots, a_n\})$, gdzie głos a_i ma wagę $w_i \ge 0$. Wygrywa ten, kto otrzyma ponad $\frac{w_1 + \cdots + w_n}{2}$ punktów.
- 8) Metoda głosowania blokowego $W = W_1 \cup \cdots \cup W_n$, gdzie W_k to zbiór wyborców bloku. W_k podejmuje decyzję większością głosów. W przypadku remisu wybierają zwycięzcę w W_k . Głos z W_k ma wagę i_k . Wygrywa kandydat z największą liczbą punktów.

Metody semi-klasyczne:

- 9) Metoda n-głosów każdy wyborca głosuje na n kandydatów, a zwycięża ten, kto uzyska najwięcej głosów.
- 10) Szeroka metoda n-głosów każdy głosuje na n kandydatów, ale mamy n zwyciężców (lub więcej w przypadku remisu na ostatnim "wygrywającym" miejscu)

Metoda ani klasyczna, ani semi-klasyczna:

11) Metoda punktowa – każdy wyborca $w \in W$ ma do rozdysponowania p punktów ($p \in \mathbb{N}$) między kandydatów. Zwycięża kandydat z największą liczbą punktów.

Definicja 2.8 (Metoda decyzyjna)

 $Metoda\ zwycięzcy\ jest\ decyzyjna \Leftrightarrow w\ każdym\ modelu\ wyłania\ dokładnie\ jednego\ zwycięzcę.$

Definicja 2.9 (Metoda prawie decyzyjna)

 $Metoda\ zwycięzcy\ jest\ prawie\ decyzyjna\ \Leftrightarrow w\ każdym\ modelu\ wyłania\ co\ najwyżej\ jednego\ zwycięzcę.$ $Sytuacja,\ w\ której\ nie\ ma\ zwycięzcy,\ zachodzi\ wtedy,\ gdy\ więcej\ niż\ jeden\ kandydat\ uzyskał\ tę\ samą,\ najwyższą\ liczbe\ punktów.$

Ćwiczenie 2.1 (Z ćwiczeń)

Zbadaj kto jest zwycięzcą w głosowaniu przez 99 osób na kandydatów: **Anastazy**, **Bermudy**, **Cezary**, jeśli otrzymano następujące wyniki metodą porządkową:

Liczba głosów	Wynik porządkowy
18	ABC
15	ACB
24	BAC
8	BCA
16	CAB
18	CBA

Ćwiczenie 2.2

Dane są wyniki głosowania:

Imię	$Liczba\ glos \acute{o}w$	
$Ja\acute{s}$	100	
Malgosia	1	

Zrób tak, by Małgosia wygrała.

Ćwiczenie 2.3

Uzupełnij tabelę:

	An on imowa	Neutralna	$\it Efektywna$
Dyktatura			
Monarchia			
Metoda Większości			

Definicja 2.10 (Kryterium jednoznacznej bezwzględnej większości)

Metoda zwyciężcy (MZ) spełnia kryterium jednoznacznej bezwzględnej większości \Leftrightarrow kandydat który ma ponad 50% głosów jest jedynym zwyciężcą.

Stwierdzenie 2.1

 $Mamy\ klasyczna\ metode\ zwyciężcy,\ taka\ że\ \#K=2\ i\ głosowanie\ jest\ metoda\ bezwględnej\ większości,\ wówczas\ metoda\ jest\ prawie\ decyzyjna.$

 1° #W nieparzysta - OK.

2° #W parzysta:

- jeden ma więcej niż 50% OK.
- równa 50% nie ma zwyciężcy.

TODO(endproof)

Stwierdzenie 2.2

 $Metoda\ jest\ decyzyjna => metoda\ jest\ prawie\ decyzyjna.$

Definicja 2.11 (Metoda monotoniczna ze względu na zwyciężce)

Z: MZ - klasyczna lub semi-klasyczna. Metoda jest monotoniczna ze względu na zwyciężcę $\Leftrightarrow Kandydat \ A \ wygrywa \ oraz \ B \neq A \ grupa \ wyborców \ zamieni \ A \ i \ B \ rolami \ bez \ straty \ dla \ A$ Jeżeli model się zmieni przy następujących dozwolonych operacjach:

M	\Rightarrow	N
A B	\Rightarrow	A B
	\Rightarrow	
+ +	\Rightarrow	+ +
- +	\Rightarrow	+ -

- \bullet $B \rightarrow A$
- 0 → 0
- 0 -> 1
- 1 -> 1
- \Rightarrow A dalej wygrywa.

Definicja 2.12 (Metoda quoty)

MZ klasyczna lub semi-klasyczna jest metodą quoty (większości kwalifikowanej) $\Leftrightarrow \exists_q$ (quota) - liczba głosów o własności: kandydat A jest zwyciężcą $\Leftrightarrow A$ dostał conajmniej q głosów.

(Często quota wyrażana jest w procentach, wtedy nieraz z nierównością słabą.)

Twierdzenie 2.1 (Maya - Kenneth Maya, 1952r)

Z: Klasyczna metoda zwyciężcy i #K = 2, metoda, która jest:

- anoniowa
- \bullet neutralna
- monotoniczna ze względu na zwyciężce
- prawie decyzyjna
- ⇒ jest metodą bezwzględnej większości.

Złóżmy, że A, B - kandydaci Metoda aninimowa \Rightarrow interesuą nas liczby głosów A - a głosów B - b głosów 1* #W = 2n (parzysta) a=n, b=n 1.1Hipoteza A wygrywa metoda jest neutralna, to przy wymianie wyborców \Rightarrow B wygyrwa \Rightarrow A,B wygyrwają sprzeczność

Analogicznie B nie wygyrwa (żadej nie ma ponad 50%, nie ma wyższych)

 1.2^* a>b, Hipoteza: B wygrywa, a-b wyborców zmiania głosy z B na A z monotoniczności \Rightarrow B dalej wygrywa

B ma teraz a głosów \Rightarrow (neutralność) A ten wygrywa -> sprzeczność z prawie decyzyjne prawie decyzyjne \Rightarrow A wygyrwa

A ma ponad połowę głosów

 $2^* \# W = wn + 1$ (nieparzyście)

Niech a>b ipoteza B wygyrwa, a-b TODO zmienią głosy i jak poprzednio udowadniamy Zawsze wygyrwa ten co ma ponad połowę głosów.

Definicja 2.13 (Metoda zakładająca uporządkowanie)

Metoda zwyciężcy jest metodą zakładającą uporządkowanie (MZU) $\Leftrightarrow \forall_{w \in W}$ ustala K kandytatów w niliowym porządku i od tego zależy jego głos.

Zapis $A \stackrel{w,m}{<} B$ w modelu m, wstawia B wyżej niż A $A \stackrel{w}{<} B$ - gdy wiadomo jaki model

Przykład 2.2

- 1. Metoda punktów Bordy (Jean Charles de Borda 1733 1799 Inżynier wojskowy) Każdy wyborca punktuje od (n-1) do 0 1. n-1 2. n-2 : n-1 1 n 0 wygrywa ten co otrzyma największą liczbę punktów
- 2. Metoda Hare'a (Sir Thomas Hare 1806 1891 Anglia, Prawnik) (1857r) polega na odrzucaniu tego (tych), kto ma najmniej pierwszych miejsc i głosujemy dalej (listy pozostają z usunięciem odrzuconego kandydata) aż ktoś ma ponad 50%. Gdy równo i nie ma kogo odrzucić wtedy wszyscy wygrywają.
- 3. Metoda Coombs'a (Clyde Coombs 1912 1988, USA, Psycholog) wypisujemy kolejność, odrzucamy tego, kto ma najwięcej ostatnich miejsc i głosujemy dalej aż ktoś ma ponad 50% pierwszych miejsc. Gdy się nie da wyrzucać, wygrywają wszyscy, którzy zostali.
- 4. Metoda odrzuceń ostatniego jak w metodzie Coombsa, przy czym odrzucamy "do oporu". Gdy się nie da wyrzucać, wygrywają wszyscy, którzy zostali.

Przykład 2.3

Różnica między metodą Coomb'sa, a metodą odrzucania. TABELKA

5. Metoda Copelanda (Arthur H Copeland - 1898 - 1970 - Matematyk) - porównujemy parami kandydatów. Ten który więcej razy wyżej 1 pkt, w przypadku remisu po 0.5 punktu.

 $\#m: A \stackrel{m}{<} B$ $\#m: B \stackrel{m}{<} A$

Decyduje suma punktów. (Zwyciężców może być więcej niż 1)

- 6. Metoda terminażowa (Z: #W = 2n+1 nieparzysta) k_1 porównujemy z k_2 (metodą powyżej), następnie porównujemy z k_3 itd.
- 7. Metoda pozycyjna $P(p_1, p_2, ..., p_n)$ przy czym $p_1 \ge p_2 \ge ... \ge p_n$. 1 p_1 punktów 2 p_2 punktów itd. Wygrywa ten z największą ilością punktów.

UWAGA - w szczególności: Metoda Bordy: P(n-1, n-2, ..., 1, 0) Metoda większości P(1, 0, ..., 0) Metoda k głosów P(1, 1, ..., 1, 0, ..., 0) (gdzie 1 występuje k razy)

3 Deser

 ${\bf W}$ sumie to deseru jeszcze nie ma, ale ma być na ostatnim wykładzie!!!

