FGI-2 – Formale Grundlagen der Informatik II

Modellierung und Analyse von Informatiksystemen

Präsenzlösung 2: Büchi-Automaten, ω -reguläre Sprachen

Präsenzteil am 19./20.10. – Abgabe am 26./27.10.2015

Präsenzaufgabe 2.1: Betrachten Sie den Büchi-Automaten A aus Beispiel 1.11 im Skript.

1. Erläutern Sie, warum $L^{\omega}(A)$ so aussieht, wie es im Skript angegeben ist.

Lösung: Laut Beispiel 1.11 gilt $L^{\omega}(A) = (acd^*c + bad)^{\omega}$.

A akzeptiert ein ω -Wort genau dann, wenn die Zustandsfolge zum Wort einen Endzustand unendlich oft enthält. Es muss also entweder z_2 oder z_3 unendlich oft auftreten.

Fall z_2 : Kann nur unendlich oft auftreten, wenn die Schleife z_0, z_1, z_2 unendlich oft durchlaufen wird, d.h. der Wortteil bad unendlich oft auftritt. In z_0 darf aber auch die obere Schleife zwischendurch beliebig oft gewählt werden, solange später wieder bad folgt.

Fall z_3 : Kann nur unendlich oft auftreten, wenn die Schleife z_0, z_3, z_4 unendlich oft durchlaufen wird, d.h. der Wortteil acc unendlich oft auftritt. In z_4 darf aber auch die d-Schleife beliebig oft eingeschoben werden, so dass der zu durchlaufende Wortteil auf acd^*c erweitert wird. Außerdem darf in z_0 auch die untere Schleife zwischendurch beliebig oft gewählt werden, solange später wieder acd^*c folgt.

Als ω -reguläre Ausdrücke:

Fall z_2 : $((acd^*c)^* \cdot bad)^{\omega}$

Fall z_3 : $((bad)^* \cdot acd^*c)^{\omega}$

Zusammen: $L^{\omega}(A) = ((acd^*c)^* \cdot bad)^{\omega} + ((bad)^* \cdot acd^*c)^{\omega}$

Die beiden Alternativen lassen sich mit etwas Überlegung zum oben genannten Ausdruck zusammenfassen.

2. Betrachten Sie A als NFA. Bestimmen Sie L(A).

Lösung: $L(A) = (acd^*c + bad)^*(a + ba)$

3. Angenommen z_2 sei nicht mehr Endzustand und sei A' der resultierende Automat. Bestimmen Sie dann die resultierende Sprache $L^{\omega}(A')$.

Lösung: $L^{\omega}(A') = ((bad)^* \cdot acd^*c)^{\omega}$

(Die obere Schleife muss unendlich oft auftreten, um z_3 unendlich oft zu besuchen. Die untere Schleife $z_0z_1z_2$ kann sowohl endlich als auch unendlich oft auftreten. Eine unendliche Wiederholung der unteren Schleife wird aber nur akzeptiert, wenn auch die obere Schleife mit Endzustand z_3 unendlich oft dazwischen auftritt.)

Präsenzaufgabe 2.2: Zeigen Sie die erste Teilaussage von Lemma 1.15: "Die Vereinigung zweier ω-regulärer Mengen $U \cup V$ ist immer eine ω-reguläre Menge."

1. Geben Sie ein Verfahren an, welches $U \cup V$ konstruktiv aus U und V ermittelt.

Lösung: A) Über ω -reguläre Ausdrücke: Gegeben zwei ω -reguläre Ausdrücke R_U und R_V , die U respektive V beschreiben, d.h. es gelten $M_{R_U}=U$ und $M_{R_V}=V$. Dann ist gemäß Def. 1.6 und 1.17 R_U+R_V ein ω -regulärer Ausdruck, der $M_{R_U+R_V}:=M_{R_U}\cup M_{R_V}=U\cup V$ beschreibt. B) Über Büchi-Automaten: Gegeben zwei Büchi-Automaten $A_U=(Q_U,\Sigma,\delta_U,Q_{0,U},F_U)$ und $A_V=(Q_V,\Sigma,\delta_V,Q_{0,V},F_V)$, die U respektive V akzeptieren. Die Vereinigung der (disjunkten) Zustandsmengen und Übergangsrelationen liefert den gesuchten Büchi-Automaten B, der alle Wörter aus beiden Sprachen akzeptiert:

$$Q_{B} := Q_{U} \cup Q_{V}
Q_{0,B} := Q_{0,U} \cup Q_{0,V}
F_{B} := F_{U} \cup F_{V}
\delta_{B} := \delta_{U} \cup \delta_{V}
= \{(q, x, q') \mid (q, x, q') \in \delta_{U} \lor (q, x, q') \in \delta_{V}\}$$

C) Ergänzung zu Variante B): Zusätzlich zur Vereinigung kann ein neuer Startzustand q_s eingeführt werden. Die bisherigen Startzustände sind dann keine mehr. Vom neuen Startzustand gehen Kanten zu allen Folgezuständen der bisherigen Startzustände mit jeweils identischer Beschriftung:

$$\begin{array}{lll} Q_{C} & := & Q_{B} \cup \{q_{s}\} \\ Q_{0,C} & := & \{q_{s}\} \\ F_{B} & := & F_{U} \cup F_{V} \\ \delta_{B} & := & \delta_{B} \\ & \cup & \{(q_{s},x,q') \mid \exists q \in Q_{0,U} : (q,x,q') \in \delta_{U}\} \\ & \cup & \{(q_{s},x,q') \mid \exists q \in Q_{0,V} : (q,x,q') \in \delta_{V}\} \end{array}$$

2. Wenden Sie Ihr Verfahren auf die Sprachen $L_{2,2,1} = \{bad\}^{\omega}$ und $L_{2,2,2} = (\{ac\} \cdot \{d\}^* \cdot \{c\})^{\omega}$ an.

Lösung: ω -reguläre Ausdrücke gemäß Alternative A):

$$\begin{array}{rcl} R_U & = & (bad)^{\omega} \\ R_V & = & (ac \cdot d^* \cdot c)^{\omega} \\ R_{U+V} & = & (bad)^{\omega} + (ac \cdot d^* \cdot c)^{\omega} \end{array}$$

Büchi-Automaten B und C gemäß Alternativen B) und C):

Es gilt
$$L^{\omega}(B) = L^{\omega}(C) = (bad)^{\omega} + (acd^*c)^{\omega}$$
.

Die rechte Lösung besitzt nur einen Startzustand.

3. Begründen Sie Korrektheit und Termination Ihres Verfahrens.

Lösung: Termination: Alle drei Verfahren bestehen nur aus einem Schritt, terminieren also immer.

Korrektheit:

- A) Gemäß Def. 1.17 ist R_U+R_V ein wohlgeformter ω -regulärer Ausdruck (es werden keine in Sequenzen eingeschachtelten ω -Abschlüsse eingeführt). Gemäß Def. 1.6 beschreibt R_U+R_V genau die gesuchte Menge $M_{R_U+R_V}:=M_{R_U}\cup M_{R_V}=U\cup V$.
- B) Korrektheit $((U \cup V) \subseteq L^{\omega}(B))$: Sei $w \in U$, d.h. $w \in L^{\omega}(A_U)$. Dann gibt es einen unendlichen Pfad zu w in A_U , der einen Endzustand $q_e \in F_A$ unendlich oft enthält. Dieser Pfad ist in B ebenfalls möglich, da durch die Vereinigung weder Start- noch Endzustände noch Übergänge entfernt werden.

Analog kann für $w \in V$ argumentiert werden.

Korrektheit $(L^{\omega}(B) \subseteq (U \cup V))$: Da die Zustandsmengen vor der Vereinigung disjunkt waren, gibt es auch keine Übergänge zwischen Zuständen aus den beiden Automatenteilen. Daher können keine Wörter von B akzeptiert werden, die nicht von einem der einzelnen Automaten akzeptiert werden.

- ${\cal C})$ Da der neue Startzustand q_s in C die gleichen Übergänge bietet wie alle Startzustände in $Q_{0,B}$ zusammengenommen und die Übergänge jeweils in die gleichen Folgezustände führen, können dieselben Wörter gelesen werden. Alle akzeptierten Pfade in C unterscheiden sich ab dem zweiten Zustand nicht mehr von den akzeptierten Pfaden in B.
- 4. Vergleichen Sie die Sprache $L_{2,2,1} \cup L_{2,2,2}$ mit der Sprache $L^{\omega}(A)$ aus Präsenzaufgabe 2.1.

Lösung: In $L^{\omega}(A)$ können Schleifenteile gemischt auftreten, in $L_{2.2.1} \cup L_{2.2.2}$ nicht.

Übungsaufgabe 2.3: Gegeben der NFA $A_{2,3}$:

von 6

- 1. Geben Sie explizit die Sprache $L(A_{2.3})$ sowie die Sprachen $L^{\omega}(A_{2.3})$ und $(L(A_{2.3}))^{\omega}$ als regulären bzw. ω -regulären Ausdruck an.
- 2. Diskutieren Sie den Unterschied zwischen $L^{\omega}(A_{2.3})$ und $(L(A_{2.3}))^{\omega}$. Benennen Sie zwei konkrete ω -Wörter aus jeder Sprache (Sie können die Wörter als ω -reguläre Ausdrücke ohne die Operatoren +, ()⁺ und ()* beschreiben).
- 3. Zeichnen Sie das Zustandsdiagramm eines Büchi-Automaten, der $(L(A_{2.3}))^{\omega}$ akzeptiert. Begründen Sie die Korrektheit des Automaten.

Übungsaufgabe 2.4: Zeigen Sie die zweite Teilaussage von Lemma 1.15: "Der ω -Abschluss U^{ω} einer regulären Menge U ist immer eine ω -reguläre Menge."

von 6

Führen Sie einen konstruktiven Beweis durch. *Hinweis:* Der kurze Lösungsweg über reguläre Ausdrücke bringt maximal die halbe Punktzahl. Volle Punktzahl gibt es nur für die Konstruktion eines Büchi-Automaten.

1. Benennen Sie die Arbeitsschritte, die für einen konstruktiven Beweis des Lemmas notwendig sind.

- $2.\,$ Entwickeln Sie ein geeignetes Konstruktionsverfahren.
- 3. Weisen Sie die Qualität Ihres Verfahrens entsprechend Teilaufgabe 1 nach.
- 4. Wenden Sie das Verfahren aus Ihrem Beweis auf die reguläre Sprache an, die von NFA $A_{2.3}$ akzeptiert wird.

 $Bisher\ erreichbare\ Punktzahl{:}\ 24$