- Material covered last class
 - Examples of systems with nonlinear damping
 - •Qualitative Analyses (Chapter 2, Nayfeh and Mook): Seek information about all solutions, would like to know whether a certain property of these solutions remain unchanged if the system is subjected to various types of changes
 - ❖ First integral of motion
 - Phase portraits
 - Examples: Undamped and damped pendulum systems

$$\ddot{\theta} + \frac{g}{l} \left(\theta - \frac{\theta^3}{6} \right) = 0;$$
 undamped case

$$\ddot{\theta} + \frac{g}{l}\sin\theta = 0$$
; undamped case

$$\ddot{\theta} + 2\mu\dot{\theta} + \frac{g}{l}\sin\theta = 0$$
; Damped case

- •Today's class
 - Qualitative Analyses
 - Ship-roll motions
 - Duffing oscillator
 - Quantitative Analyses
 - Landau symbols and ordering
 - Straightforward expansions
 - Lindstedt-Poincaré technique
 - Method of multiple scales

•Example 2.8 (Nayfeh and Balachandran, 1995): Ship-Roll Motions

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\left(\omega_0^2 x_1 + \alpha_3 x_1^3 + \alpha_5 x_1^5\right) - \left(2\mu_1 x_2 + \mu_3 x_2^3\right)$$

$$\omega_0 = 5.278; \, \alpha_3 = -1.402\omega_0^2; \, \alpha_5 = 0.271\omega_0^2$$

undamped case: $\mu_1 = \mu_3 = 0$

damped case: $\mu_1 = 0.086$ and $\mu_3 = 0.108$

•Duffing oscillator $\ddot{x} + ax + bx^3 = 0$

•Georg Duffing (1861-1944)

•Experimental prototype: Dynamics and Control Laboratory, University of Maryland

- •Quantitative Analyses
- •Landau symbols, $O(\varepsilon)$ and $o(\varepsilon)$: Used to represent the asymptotic order of a quantity
- •Two scalar functions $f(\varepsilon)$ and $g(\varepsilon)$, near ε =0, say $|\varepsilon| \le \varepsilon_1$; $|\varepsilon|$ is a "small" positive quantity, $|\varepsilon| \ll 1$
- • $f(\varepsilon)$ =O($g(\varepsilon)$) if there exists a positive number K independent of ε and an ε_0 such that

$$|f(\varepsilon)| \le K |g(\varepsilon)|$$
 for all $|\varepsilon| \le |\varepsilon_0|$

which is equivalent to

$$\lim_{\varepsilon \to 0} \frac{\left| f\left(\varepsilon\right) \right|}{\left| g\left(\varepsilon\right) \right|} \le \infty$$

Function $f(\varepsilon)$ has been ordered by using function $g(\varepsilon)$.

•Two scalar functions $f(\varepsilon)$ and $g(\varepsilon)$, near ε =0, say $|\varepsilon| \le \varepsilon_1$; $|\varepsilon|$ is a "small" positive quantity, $|\varepsilon| \ll 1$

•
$$f(\varepsilon)$$
=o($g(\varepsilon)$) as $\varepsilon \to 0$ if $\left| \lim_{\varepsilon \to 0} \frac{|f(\varepsilon)|}{|g(\varepsilon)|} = 0 \right|$

- Similar notions also apply to vector functions
- Throughout this course, ε and powers of ε are to be used as gauge functions.
- Quantity denoted as O(1) is a bounded quantity.

•If f is a function of another variable t in addition to ε , and $g(t, \varepsilon)$ is a gauge function, one can also say that

$$f(t, \varepsilon) = O(g(t, \varepsilon)) \text{ as } \varepsilon \to 0$$

if there exists a positive number K independent of ε and an $\varepsilon_0 > 0$ so that

$$||f(t,\varepsilon)| \le K |g(t,\varepsilon)||$$
 for all $|\varepsilon| \le \varepsilon_0$

If K and ε_0 are independent of t, the above relationship is said to hold uniformly.

•Examples

•
$$\sin(\varepsilon) = O(\varepsilon)$$

•
$$\sin(10\varepsilon) = O(\varepsilon)$$

•
$$\sin(\varepsilon) = o(1)$$

•
$$\sin(\varepsilon^2) = O(\varepsilon^2)$$

•
$$\sin(\varepsilon^2) = o(\varepsilon)$$

•
$$cos(\varepsilon) = O(1)$$

$$\bullet \cos(\varepsilon) = o(\varepsilon^{-\frac{1}{2}})$$

•
$$1 - \cos(\varepsilon) = O(\varepsilon^2)$$

$$\bullet \sinh(\varepsilon) = O(\varepsilon)$$

•
$$\sin(2\varepsilon) - \sin(\varepsilon) = O(\varepsilon^3)$$

$$\bullet \sin(t + \varepsilon) = O(1)$$

•
$$\sin(t + \varepsilon) = O(\sin t)$$
 uniformly as $\varepsilon \to 0$

•
$$e^{-\varepsilon t} - 1 = O(\varepsilon)$$
 non-uniformly as $\varepsilon \to 0$

Asymptotic Expansion

$$f\left(\varepsilon\right) = \sum_{n=0}^{N} c_n f_n\left(\varepsilon\right)$$

•Sequence $\{f_n(\varepsilon)\}, n = 0, ..., N+1 \text{ is such that }$

$$f_n(\varepsilon) = o(f_{n-1}(\varepsilon))$$
 as $\varepsilon \to 0$ for $n = 1, ..., N+1$

•
$$\lim_{\varepsilon \to 0} \left[f(\varepsilon) - \sum_{n=0}^{N} c_n f_n(\varepsilon) \right] = O(f_{n+1}(\varepsilon))$$

- •Asymptotic expansions need not converge as $N \rightarrow \infty$
- Asymptotic expansions do not uniquely determine functions

- Examples of sequences: ε^n , $\varepsilon^{n/3}$, $(\sin(\varepsilon))^n$
- •Asymptotic expansion can be defined in terms of an asymptotic sequence; for instance, $\sum_{n=0}^{N} c_n \delta_n(\varepsilon)$ where C_n is independent of ε and $\delta_n(\varepsilon)$ is an asymptotic sequence.

•So,
$$v(\varepsilon) \approx \sum_{n=0}^{\infty} a_n \delta_n(\varepsilon) \text{ as } \varepsilon \to 0$$

$$v(\varepsilon) = \sum_{n=0}^{N-1} a_n \delta_n(\varepsilon) + O(\delta_N(\varepsilon)) \text{ as } \varepsilon \to 0$$

•In our case,

$$v(t,\varepsilon) = \sum_{n=0}^{N-1} \varepsilon^n v_n(t) + O(\varepsilon^{N+1})$$

•Expansion with n terms is called an nth order approximation and the expansion is called a Poincaré asymptotic expansion. An expansion is said to be uniformly valid upto $O(\epsilon^k)$ if the error is $O(\epsilon^{k+1})$ for all times t.

- Illustration of straightforward expansion
 - ***** Example:

Damped, Linear Oscillator

$$\ddot{x} + 2\varepsilon \dot{x} + x = 0$$
; $\varepsilon > 0$; $x(t = 0) = 0$; $\dot{x}(t = 0) = 1$

Expansion :
$$x(t, \varepsilon) = x_0(t) + \varepsilon x_1(t) + \dots$$

Two problems for exploring straightforward expansions further

Undamped, Duffing Oscillator

$$\ddot{u} + u + \varepsilon \alpha u^3 = 0$$
; $\varepsilon > 0$; $u(t = 0) = 0$; $\dot{u}(t = 0) = 1$

Damped, Duffing Oscillator

$$\ddot{u} + 2\varepsilon\mu\dot{u} + u + \varepsilon\alpha u^3 = 0; \ \varepsilon > 0; \ \mu > 0; \ u(t=0) = 0; \ \dot{u}(t=0) = 1$$

Expansion: $u(t,\varepsilon) = u_0(t) + \varepsilon u_1(t) + \dots$

- Material to be covered next class
 - Quantitative Analyses (to be continued)
 - Straightforward expansions
 - Lindstedt-Poincaré technique
 - Method of multiple scales