

Matemática IV - Ing. Mecánica - 2019 Dra. Andrea Ridolfi Ing. Marcos Saromé

Guía de Actividad 2: Autovalores y autovectores

Ejercicio 1. Encuentre la matriz que proyecta todo punto del plano sobre la recta x + 2y = 0.

Ejercicio 2. Suponga que P es la matriz proyección sobre la recta que pasa por a.

- a) ¿Por qué el producto interno de \mathbf{x} con $P\mathbf{y}$ es igual al producto interno de $P\mathbf{x}$ con y?.
- b) ¿Son iguales los dos ángulos? Encuentre sus cosenos si a = (1, 1, -1), x = (2, 0, 1) e y = (2, 1, 2).
- c) ¿Por qué el producto interno de $P\mathbf{x}$ con $P\mathbf{y}$ siempre es el mismo? ¿Cuál es el ángulo entre $P\mathbf{x}$ y $P\mathbf{y}$?

Ejercicio 3. Proyecte el vector b = (1,1) sobre las rectas que pasan por $a_1 = (1,0)$ y $a_2 = (1,2)$.

- a) Trace las proyecciones p_1 y p_2 y sume $p_1 + p_2$. La suma de las proyecciones no es b porque las a's no son ortogonales.
- b) La proyección de b sobre el plano de a_1 y a_2 es igual a b. Encuentre $P = A(A^TA)^{-1}A^T$ para $A = \begin{bmatrix} a_1 & a_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$.

Ejercicio 4. Este problema proyecta $b = (b_1, ..., b_m)$ sobre la recta que pasa por a = (1, ..., 1). Se resuelven m ecuaciones ax = b en 1 incógnita (por mínimos cuadrados).

- a) Resuelva $\mathbf{a}^T \mathbf{a} \hat{\mathbf{x}} = \mathbf{a}^T \mathbf{b}$ para demostrar que $\hat{\mathbf{x}}$ es la media (el promedio) de las b's.
- b) Encuentre $\mathbf{e} = \mathbf{b} \mathbf{a}\hat{\mathbf{x}}$, la varianza $\sigma^2 = \|\mathbf{e}\|^2$ y la desviación estándar $\sigma = \|\mathbf{e}\|$.
- c) La recta horizontal $\hat{\mathbf{b}} = 3$ es la más próxima a $\mathbf{b} = (1, 2, 6)$. Compruebe que $\mathbf{p} = (3, 3, 3)$ es perpendicular a \mathbf{e} , y encuentre la matriz proyección P.

Ejercicio 5. Con b = 0, 8, 8, 20 en t = 0, 1, 3, 4, escriba y resuelva las ecuaciones normales $A^T A \widehat{x} = A^T b$. Para la mejor recta como en la figura, encuentre sus cuatro alturas p_i y sus cuatro errores e_i ¿Cúal es el valor mínimo $E^2 = e_1^2 + e_2^2 + e_3^2 + e_4^2$?

Figura 1: Proyección por mínimos cuadrados

Ejercicio 6. El promedio de los cuatro tiempos es $\hat{t} = \frac{1}{4}(0+1+3+4) = 2$. El promedio de las cuatro bs es $\hat{b} = \frac{1}{4}(0+8+8+20) = 9$.

- 1. Compruebe que la mejor recta pasa por el punto central $(\widehat{t},\widehat{b})=(2,9)$
- 2. Explique por qué $C+D\widehat{t}=\widehat{b}$ proviene de la primera ecuación en $A^TA\widehat{x}=A^Tb$

Ejercicio 7. Si A = QR, encuentre un fórmula sencilla para la matriz proyección P sobre el espacio columna de A.

Nota: QR es la factorización de A donde las columnas de Q son ortonormales y R es una matriz triangular superior invesible.

Ejercicio 8. Resuelva $\frac{du}{dt} = Pu$ cuando P es una proyección:

$$\begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

Parte de u(0) crece exponencialmente mientras la parte del espacio nulo, permanece fija.

Ejercicio 9. Los valores característicos de A son iguales a los valores característicos de A^T . Lo anterior es cierto porque

Demuestre con un ejemplo que los vectores característicos de A y A^T no son los mismos.

Ejercicio 10. Encuentre los valores característicos y los vectores característicos de

$$A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix} \qquad A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

Ejercicio 11. Suponga que los valores característicos de A son 0, 3, 5, con vectores característicos independientes u, v, w.

- a) Proporcione una base para el espacio nulo y una base para el espacio columna.
- b) Encuentre una solución particular de Ax = v + w. Encuentre todas las soluciones.

c) Demuestre que Ax = u no tiene solución. (En caso de tenerla, entonces..... estaría en el espacio columna.)

Ejercicio 12. ¿Qué se hace a $Ax = \lambda x$, para demostrar los incisos a), b), y c)?

- a) λ^2 es un valor caracteístico de A^2 .
- b) λ^{-1} es un valor característico de A^{-1} .
- c) $\lambda + 1$ es un valor característico de A + I.

Ejercicio 13.

- a) Construya matrices 2 por 2 tales que los valores característicos de A B no sean los productos de los valores característicos de A y B, y los valores característicos de A + B no sean las sumas de los valores característicos individuales.
- b) Compruebe, no obstante, que la suma de los valores característicos de A + B es igual a la suma de todos los valores característicos individuales de A y B, y de manera semejante para los productos. ¿Por qué es cierto lo anterior?

Ejercicio 14. Se sabe que los valores característicos de una matriz B de 3 por 3 son 0, 1, 2. Esta información es suficiente para encontrar tres de los cuatro incisos siguientes:

- a) El rango de A.
- b) El determinante de BTB,
- c) Los valores característicos de BTB
- d) Los valores característicos de (B+I)-1

Ejercicio 15. Suponga que los valores características de A son 1, 2, 4. ¿Cuál es la traza de A^2 ?¿Cuál es el determinante de $(A^{-1})^T$?

Ejercicio 16. La siguiente matriz es singular con rango 1. Encuentre tres $\lambda's$ y tres vectores característicos:

$$A = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 4 \\ 2 & 1 & 2 \end{bmatrix}$$

Ejercicio 17. Suponga que $A = uv^T$ es una columna multiplicada por un reglón (una matriz con rango 1).

- a) Multiplique A por u, para demostrar que u es un vector característico. ¿Cuál es λ ?
- b) ¿Cuáles son los otros valores característicos de A (y por qué)?
- c) Calcule traza (A), a partir de la suma de la diagonal y la suma de los λs .

Ejercicio 18. Si a $A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$, encuentre A^{100} , diagonalizando A.

Ejercicio 19. Suponga que $|A| = S\Lambda S^{-1}$. Tome determinantes para demostrar que $A = \lambda_1 \lambda_2 ... \lambda_n =$ producto de λs . Esta rápida demostracíon sólo funciona cuando A es......

Ejercicio 20. (Opcional) La ecuación de orden superior y'' + y = 0 puede escribirse como un sistema de primer orden si la velocidad y' se introduce como otra incognita:

$$\frac{d}{dt} \begin{bmatrix} y \\ y' \end{bmatrix} = \begin{bmatrix} y' \\ y'' \end{bmatrix} = \begin{bmatrix} y' \\ -y \end{bmatrix}$$

Si ésta es du/dt = Au, ¿Cuál es la matriz A de 2 por 2? Encuentre sus valores característicos y sus vectores característicos, y calcule la solución que empieza desde y(0) = 2, y'(0) = 0.

Ejercicio 21. Suponga que la población de conejos r, y la población de lobos w están regidas por

$$\frac{dr}{dt} = 4r - 2w$$

$$\frac{dw}{dt} = r + w.$$

- a) Este sistema es ¿estable, neutralmente estable o inestable?
- b) Si inicialmente r = 300 y w = 200, ¿Cuáles son las poblaciones en el instante t?
- c) Al cabo de bastante tiempo, ¿cuál es la proporción de conejos a lobos?

Ejercicio 22. Entre dos habitaciones con aforo para v(0) = 30 personas y w(0) = 10 personas se abre una puerta. El moviminto entre las habitaciones es proporcional a la diferencia v - w:

$$\frac{dv}{dt} = w - v \qquad y \qquad \frac{dw}{dt} = v - w.$$

Demuestre que el total v+w es constante (40 personas). Encuentre la matriz en $\frac{du}{dt}=Au$, así como sus valores característicos y vectores característicos. ¿Cuáles son v y w en t=1?

Entrega

Se deben entregar obligatoriamente los ejercicios: