3. CVIČENÍ K PŘEDMĚTU BI-LIN

KAM FIT ČVUT

19. března 2015

1 Součin matic

Příklad 1.1. Vypočtěte součiny AB a BA následujících matic:

a)

$$\mathbb{A} = \begin{pmatrix} 3 & 1 & 5 & 1 \\ 1 & 2 & 4 & 0 \\ 5 & -7 & 10 & -8 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} 4 & 1 \\ 0 & 1 \\ -2 & 1 \\ 0 & 1 \end{pmatrix},$$

b)

$$\mathbb{A} = \begin{pmatrix} 3 & 4 & 1 & 1 \\ 5 & -2 & 4 & 10 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} 4 & 2 \\ 1 & -2 \\ 0 & 2 \\ 1 & -2 \end{pmatrix},$$

c)

$$\mathbb{A} = \begin{pmatrix} 1 & 2 & \cdots & n \end{pmatrix} \in \mathbb{R}^{1,n}, \quad \mathbb{B} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^{n,1}.$$

 $V\acute{y}sledek.$

a)
$$\mathbb{AB} = \begin{pmatrix} 2 & 10 \\ -4 & 7 \\ 0 & 0 \end{pmatrix}$$
, \mathbb{BA} není definován,

b)
$$\mathbb{AB} = \begin{pmatrix} 17 & -2 \\ 28 & 2 \end{pmatrix}$$
, $\mathbb{BA} = \begin{pmatrix} 22 & 12 & 12 & 24 \\ -7 & 8 & -7 & -19 \\ 10 & -4 & 8 & 20 \\ -7 & 8 & -7 & -19 \end{pmatrix}$.

c)
$$\mathbb{AB} = \left(\frac{n(n+1)}{2}\right) \in \mathbb{R}^{1,1}, \ \mathbb{BA} = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \\ \vdots & \vdots & & \vdots \\ 1 & 2 & \cdots & n \end{pmatrix} \in \mathbb{R}^{n,n}.$$

Příklad 1.2. Spočtěte \mathbb{A}^n pro $n \in \mathbb{N}$, je-li

a)

$$\mathbb{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

b)

$$\mathbb{A} = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix},$$

c)

$$\mathbb{A} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix},$$

Výsledek.

a)
$$\mathbb{A}^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$
, b) $\mathbb{A}^n = \begin{cases} \mathbb{E}, & \text{pro n sud\'e}, \\ \mathbb{A}, & \text{pro n lich\'e}, \end{cases}$ c) $\mathbb{A}^n = \begin{pmatrix} \cos n\varphi & -\sin n\varphi \\ \sin n\varphi & \cos n\varphi \end{pmatrix}$.

2 Hodnost matice

Příklad 2.1. Určete hodnosti následujících matic:

a)
$$\mathbb{A} = \begin{pmatrix} 1 & 2 & 2 & 1 & 3 \\ 2 & 1 & 3 & 1 & 2 \\ 2 & 2 & 0 & 1 & 3 \\ 2 & 0 & 1 & 2 & 2 \\ 1 & -5 & 3 & 2 & -3 \end{pmatrix}$$
, b) $\mathbb{A} = \begin{pmatrix} 0 & 4 & 10 & 1 \\ 4 & 8 & 18 & 7 \\ 10 & 18 & 40 & 17 \\ 1 & 7 & 17 & 3 \end{pmatrix}$, c) $\mathbb{A} = \begin{pmatrix} 3 & 6 \\ 17 & 34 \\ -4 & -8 \end{pmatrix}$,

d)
$$\mathbb{A} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 4 & 1 \\ 1 & 1 & 1 & 5 \\ 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
, e) $\mathbb{A} = \begin{pmatrix} 3 & 1 & 2 & 2 & 2 & 1 & 3 \\ 1 & 2 & 1 & 1 & 3 & 1 & 2 \\ 2 & 2 & 0 & 0 & 1 & 3 & 3 \\ 3 & -1 & 0 & 0 & -3 & 2 & 2 \end{pmatrix}$.

Výsledek. a) h(A) = 4, b) h(A) = 2, c) h(A) = 1, d) h(A) = 4, e) h(A) = 3.

Příklad 2.2. V závislosti na parametru $\alpha \in \mathbb{R}$ určete hodnosti následujících matic:

a)
$$\mathbb{A} = \begin{pmatrix} 0 & 1 & 2 \\ \alpha & 2 & 3 \\ 2 & 1 & \alpha \end{pmatrix}$$
, b) $\mathbb{A} = \begin{pmatrix} 3 & 1 & 1 & 4 \\ \alpha & 4 & 10 & 1 \\ 1 & 7 & 17 & 3 \\ 2 & 2 & 4 & 1 \end{pmatrix}$, c) $\mathbb{A} = \begin{pmatrix} 1 - \alpha & \alpha \\ \alpha & 1 \end{pmatrix}$,

d)
$$\mathbb{A} = \begin{pmatrix} 1 & \alpha & -1 & 2 \\ 2 & -1 & \alpha & 5 \\ 1 & 10 & -6 & 1 \end{pmatrix}$$
, e) $\mathbb{A} = \begin{pmatrix} \alpha & \alpha & 1 \\ \alpha & 1 & \alpha \\ 1 & \alpha & \alpha \end{pmatrix}$, f) $\mathbb{A} = \begin{pmatrix} \alpha + 2 & 2\alpha & 2\alpha & 0 \\ 2 & 1 & 1 & 1 \\ 2 & \alpha + 1 & \alpha + 1 & 1 \\ \alpha + 2 & \alpha + 1 & 2 & 2 \\ \alpha + 2 & \alpha + 1 & \alpha + 1 & 1 \end{pmatrix}$.

Výsledek. a) $h(\mathbb{A}) = 3$ pro $\forall \alpha \in \mathbb{R}$ b) $h(\mathbb{A}) = 3$ pro $\alpha = 0$, $h(\mathbb{A}) = 4$ jinak, c) $h(\mathbb{A}) = 1$ pro $\alpha = -\frac{1}{2} \pm \frac{\sqrt{5}}{2}$, $h(\mathbb{A}) = 2$ jinak, d) $h(\mathbb{A}) = 2$ pro $\alpha = 3$, $h(\mathbb{A}) = 3$ jinak, e) $h(\mathbb{A}) = 1$ pro $\alpha = 1$, $h(\mathbb{A}) = 2$ pro $\alpha = -\frac{1}{2}$, $h(\mathbb{A}) = 3$ jinak, f) $h(\mathbb{A}) = 3$ pro $\alpha \in \{0, 1\}$, $h(\mathbb{A}) = 4$ jinak.

Další úlohy k procvičování:

Příklad 2.3. Jak je třeba volit parametry $\alpha, \beta, \gamma \in \mathbb{C}$, aby následující matice měly hodnost rovnou třem:

a)
$$\mathbb{A} = \begin{pmatrix} 0 & -1 & 1 \\ \alpha & \beta & -2 \\ 2 & 3 & -1 \end{pmatrix}$$
, b) $\mathbb{A} = \begin{pmatrix} 2 & -1 & 3 & 4 \\ \alpha & 2 & 1 & 1 \\ 4 & 3 & -2 & 1 \\ \beta & -3 & 2 & 1 \end{pmatrix}$, c) $\mathbb{A} = \begin{pmatrix} 2 & 0 & 1 & 3 & \alpha \\ 1 & 4 & -2 & 2 & \beta \\ 1 & -12 & 8 & 0 & \gamma \end{pmatrix}$.

Výsledek. a) $\alpha + 2 \neq \beta$, b) $\alpha + 2\beta + 2 = 0$, c) $2\alpha \neq 3\beta + \gamma$.

Příklad 2.4. Nalezněte všechny parametry $\alpha \in \mathbb{R}$, tak aby následující matice měly minimální hodnost:

a)
$$\mathbb{A} = \begin{pmatrix} 1 & 2 & \alpha \\ 1 & \alpha + 2 & \alpha + 4 \\ 2 & \alpha + 4 & \alpha(\alpha + 2) \end{pmatrix}$$
, b) $\mathbb{A} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \alpha + 1 & 3 & 4 \\ 2 & 2 & 4 & 5 \\ 3 & 3 & 3 & \alpha + 3 \end{pmatrix}$, c) $\mathbb{A} = \begin{pmatrix} 2 & 1 & -1 & 1 \\ 3 & \alpha & 2 & 3 \\ 1 & 1 & -1 & 0 \\ 10 & -5 & 5 & \alpha \end{pmatrix}$.

Výsledek. a) $\alpha \in \{-2, 0, 2\}$, b) $\alpha = 0$, c) $\alpha \in \{-2, 15\}$.

Příklad 2.5. V závislosti na parametrech $\alpha, \beta \in \mathbb{R}$ určete hodnosti následujících matic:

a)
$$\mathbb{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ -1 & \beta & \alpha \end{pmatrix}$$
, b) $\mathbb{A} = \begin{pmatrix} \alpha & \beta & 1 \\ 1 & \alpha\beta & 1 \\ 1 & \beta & \alpha \end{pmatrix}$, c) $\mathbb{A} = \begin{pmatrix} \alpha & \beta^2 & \alpha\beta^2 \\ 1 & \beta & \alpha\beta \\ 1 & \beta & \beta^2 \end{pmatrix}$.

Výsledek. a) $h(\mathbb{A}) = 2$ pro $\alpha = \pm \beta$, $h(\mathbb{A}) = 3$ jinak, b) $h(\mathbb{A}) = 1$ pro $\alpha = 1$, $h(\mathbb{A}) = 2$ pro $\alpha = -2 \vee (\alpha \neq 1 \wedge \beta = 0)$, $h(\mathbb{A}) = 3$ jinak, c) $h(\mathbb{A}) = 1$ pro $\beta = 0 \vee \alpha = \beta$, $h(\mathbb{A}) = 3$ jinak.

Příklad 2.6.

Buď $n \ge 2$. Určete pravdivostní hodnotu následujících tvrzení:

- a) $(\forall \mathbb{A}, \mathbb{B} \in \mathbb{C}^{n,n})(\mathbb{AB} = \mathbb{BA}),$
- b) $(\forall \mathbb{A}, \mathbb{B} \in \mathbb{C}^{n,n})(\mathbb{AB} = \Theta \Rightarrow \mathbb{BA} = \Theta),$
- c) $(\forall \mathbb{A}, \mathbb{B} \in \mathbb{C}^{n,n})(\mathbb{A} \neq \Theta \wedge \mathbb{B} \neq \Theta \Rightarrow \mathbb{AB} \neq \Theta),$
- d) $(\forall \mathbb{A}, \mathbb{B} \in \mathbb{C}^{n,n})((\mathbb{A} + \mathbb{B})^2 = \mathbb{A}^2 + 2\mathbb{A}\mathbb{B} + \mathbb{B}^2),$
- e) $(\forall \mathbb{A}, \mathbb{B} \in \mathbb{C}^{n,n})(\mathbb{A}^2 \mathbb{B}^2 = (\mathbb{A} + \mathbb{B})(\mathbb{A} \mathbb{B}))$.

Výsledek. Ani jedno z tvrzení neplatí. (Najděte protipříklady!)

Příklad 2.7. * *Stopou* Tr \mathbb{A} čtvercové matice \mathbb{A} rozumíme součet jejích prvků na diagonále. Dokažte, že pro matice $\mathbb{B} \in T^{m,n}$ a $\mathbb{C} \in T^{n,m}$ platí

$$\operatorname{Tr}(\mathbb{BC}) = \operatorname{Tr}(\mathbb{CB}).$$

Příklad 2.8. S využitím výsledku předchozího cvičení dokažte, že neexistují matice $\mathbb{A}, \mathbb{B} \in T^{n,n}$ takové, aby $\mathbb{AB} - \mathbb{BA} = \mathbb{E}$.

Příklad 2.9. Je množina čtvercových matic s nulovou stopou podprostor $T^{n,n}$? Pokud ano, jakou má tento podprostor dimenzi?

Výsledek. Ano, $n^2 - 1$.

Příklad 2.10. * Matice $\mathbb{A} \in T^{n,n}$ je symetrická, právě když $(\forall i, j \in \hat{n})(\mathbb{A}_{ij} = \mathbb{A}_{ji})$. Je množina symetrických matic podprostor $T^{n,n}$? Pokud ano, jakou má tento podprostor dimenzi?

Výsledek. Ano, n(n+1)/2.

3 Regularita a inverzní matice

Příklad 3.1. Rozhodněte, zda jsou následující matice regulární a v kladném případě k nim nalezněte matice inverzní:

a)
$$\mathbb{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, b) $\mathbb{A} = \begin{pmatrix} 5 & 4 & 6 \\ 1 & 1 & 1 \\ 3 & 3 & 4 \end{pmatrix}$, c) $\mathbb{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$, d) $\mathbb{A} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$,

Výsledek.

a)
$$\mathbb{A}^{-1} = \begin{pmatrix} -2 & 1 \\ 3/2 & -1/2 \end{pmatrix}$$
, b) $\mathbb{A}^{-1} = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 2 & 1 \\ 0 & -3 & 1 \end{pmatrix}$, c) \mathbb{A} není regulární,

f)
$$\mathbb{A}^{-1} = \frac{1}{10} \begin{pmatrix} 2 & 2 & 0 & 2 \\ -4 & 1 & 5 & 1 \\ -8 & -3 & 5 & 7 \\ 0 & -5 & 5 & 5 \end{pmatrix}$$
, g) $\mathbb{A}^{-1} = \frac{1}{25} \begin{pmatrix} -2 - 9i & 1 + 2i & 3 + i \\ 10 & 5 + 5i & -15 \\ -6 & 2 - 3i & 9 \end{pmatrix}$.

Příklad 3.2. Zjistěte, pro které hodnoty parametru $\alpha \in \mathbb{C}$ jsou následující matice regulární, a nalezněte k nim matice inverzní:

a)
$$\mathbb{A} = \begin{pmatrix} \alpha & 1 \\ 1 & 0 \end{pmatrix}$$
, b) $\mathbb{A} = \begin{pmatrix} 1 & 1 \\ \alpha & \alpha \end{pmatrix}$, c) $\mathbb{A} = \begin{pmatrix} 1 & 0 \\ 1 & \alpha \end{pmatrix}$, d) $\mathbb{A} = \begin{pmatrix} \alpha & 1 \\ 1 & \alpha \end{pmatrix}$,
e) $\mathbb{A} = \begin{pmatrix} 0 & \alpha & 1 \\ \alpha & 1 & \alpha \\ 1 & \alpha & 0 \end{pmatrix}$, f) $\mathbb{A} = \begin{pmatrix} 0 & 1 & \alpha \\ 1 & \alpha & 1 \\ \alpha & 1 & 0 \end{pmatrix}$, g) $\mathbb{A} = \begin{pmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 1 & 0 & \alpha \end{pmatrix}$, h) $\mathbb{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & \alpha \\ 1 & \alpha & 1 \end{pmatrix}$.

Výsledek.

a)
$$\forall \alpha \in \mathbb{C}$$
, $\mathbb{A}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -\alpha \end{pmatrix}$, b) $\nexists \alpha \in \mathbb{C}$, c) $\alpha \neq 0$, $\mathbb{A}^{-1} = \begin{pmatrix} 1 & 0 \\ -1/\alpha & 1/\alpha \end{pmatrix}$,
d) $\alpha \neq \pm 1$, $\mathbb{A}^{-1} = \frac{1}{\alpha^2 - 1} \begin{pmatrix} \alpha & -1 \\ -1 & \alpha \end{pmatrix}$,
e) $\alpha \neq \pm \frac{1}{\sqrt{2}}$, $\mathbb{A}^{-1} = \frac{1}{2\alpha^2 - 1} \begin{pmatrix} -\alpha^2 & \alpha & \alpha^2 - 1 \\ \alpha & -1 & \alpha \\ \alpha^2 - 1 & \alpha & -\alpha^2 \end{pmatrix}$,
f) $\alpha \notin \{0, \pm \sqrt{2}\}$, $\mathbb{A}^{-1} = \frac{1}{\alpha(2 - \alpha^2)} \begin{pmatrix} -1 & \alpha & 1 - \alpha^2 \\ \alpha & -\alpha^2 & \alpha \\ 1 - \alpha^2 & \alpha & -1 \end{pmatrix}$,

g)
$$\alpha \notin \left\{-1, \frac{1}{2} \pm i \frac{\sqrt{3}}{2}\right\}, \ \mathbb{A}^{-1} = \frac{1}{\alpha^3 + 1} \begin{pmatrix} \alpha^2 & -\alpha & 1\\ 1 & \alpha^2 & -\alpha\\ -\alpha & 1 & \alpha^2 \end{pmatrix}.$$

Příklad 3.3. Nalezněte neznámou matici X vyhovující rovnici

a) $\mathbb{X}\mathbb{A} = (\mathbb{X} - \mathbb{B})\mathbb{B}$, je-li

$$\mathbb{A} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & 0 & 0 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix},$$

b) XB - A = B, je-li

$$\mathbb{A} = \begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & -1 \\ 3 & 3 & 1 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 2 & 2 & 1 \end{pmatrix},$$

c) $\mathbb{AX} - \mathbb{B} = \mathbb{X}$, je-li

$$\mathbb{A} = \begin{pmatrix} 3 & 4 & 3 \\ 1 & 6 & 0 \\ 0 & 1 & 2 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} 0 & -1 & 3 \\ 3 & 1 & 0 \\ -1 & 2 & 2 \end{pmatrix},$$

d) $\mathbb{AX} + 2\mathbb{B} = \mathbb{BX} - 2\mathbb{C}$, je-li

$$\mathbb{A} = \begin{pmatrix} -1 & 2 \\ 1 & -5 \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, \quad \mathbb{C} = \begin{pmatrix} 0 & 1 \\ -2 & 8 \end{pmatrix},$$

e) $\mathbb{AX} + i\mathbb{X} = \mathbb{B}$, je-li

$$\mathbb{A} = \begin{pmatrix} 5 & i-1 \\ 0 & 3i \end{pmatrix}, \quad \mathbb{B} = \begin{pmatrix} 13+i & 4i \\ -8 & -4i \end{pmatrix}.$$

Výsledek.

a)
$$\mathbb{X} = \begin{pmatrix} 4 & 8 & 4 \\ 2 & 4 & 2 \\ 7 & 14 & 9 \end{pmatrix}$$
, b) $\mathbb{X} = \begin{pmatrix} 17 & 13 & -7 \\ -8 & -6 & 4 \\ -1 & -1 & 3 \end{pmatrix}$, c) $\mathbb{X} = \frac{1}{3} \begin{pmatrix} 4 & -12 & -5 \\ 1 & 3 & 1 \\ -4 & 3 & 5 \end{pmatrix}$, d) $\mathbb{X} = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$, e) $\mathbb{X} = \begin{pmatrix} 3 & i \\ 2i & -1 \end{pmatrix}$.

Další úlohy k procvičování:

Příklad 3.4. * Dokažte, že matice $\mathbb{A} \in \mathbb{R}^{n,n}$ je regulární a najděte \mathbb{A}^{-1} , je-li

a)
$$\mathbb{A} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$
, b) $\mathbb{A} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 1 & 1 & \dots & 0 \end{pmatrix}$, c) $\mathbb{A} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 0 & 1 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$,

d)
$$\mathbb{A} = \begin{pmatrix} 1 & \alpha & 0 & 0 & \dots & 0 \\ 0 & 1 & \alpha & 0 & \dots & 0 \\ 0 & 0 & 1 & \alpha & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$
, e) $\mathbb{A} = \begin{pmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \dots & \alpha^{n-1} \\ 0 & 1 & \alpha & \alpha^2 & \dots & \alpha^{n-2} \\ 0 & 0 & 1 & \alpha & \dots & \alpha^{n-3} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$.

Výsledek.

a)
$$\mathbb{A}^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 & \dots & 0 \\ 0 & 1 & -1 & 0 & \dots & 0 \\ 0 & 0 & 1 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$
, b) $\mathbb{A}^{-1} = \begin{pmatrix} 2-n & 1 & 1 & \dots & 1 \\ 1 & -1 & 0 & \dots & 0 \\ 1 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \dots & -1 \end{pmatrix}$,

c)
$$\mathbb{A}^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ -1 & 1 & 0 & 0 & \dots & 0 \\ 1 & -1 & 1 & 0 & \dots & 0 \\ -1 & 1 & -1 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ (-1)^{n-1} & (-1)^n & (-1)^{n-1} & (-1)^n & \dots & 1 \end{pmatrix},$$

$$\mathbf{d})\mathbb{A}^{-1} = \begin{pmatrix} 1 & -\alpha & \alpha^2 & -\alpha^3 & \dots & (-\alpha)^{n-1} \\ 0 & 1 & -\alpha & \alpha^2 & \dots & (-\alpha)^{n-2} \\ 0 & 0 & 1 & -\alpha & \dots & (-\alpha)^{n-3} \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}, \mathbf{e}) \,\,\mathbb{A}^{-1} = \begin{pmatrix} 1 & -\alpha & 0 & 0 & \dots & 0 \\ 0 & 1 & -\alpha & 0 & \dots & 0 \\ 0 & 0 & 1 & -\alpha & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Příklad 3.5. Buďte $\mathbb{A} \in T^{n,n}$ regulární a $\mathbb{B} \in T^{n,n}$ singulární. Potom obě matice \mathbb{AB} , \mathbb{BA} jsou singulární. Dokažte.

Příklad 3.6. Musí být součet dvou regulárních matic regulární matice? Může být součet dvou matic, z nichž jedna, resp. žádná není regulární, regulární matice? Uveď te vhodné příklady.

Výsledek. Ne, ano.

Příklad 3.7. Nechť $\mathbb{A}, \mathbb{B} \in T^{n,n}$. Potom matice \mathbb{A}, \mathbb{B} jsou obě regulární, právě když matice \mathbb{AB}, \mathbb{BA} jsou obě regulární. Dokažte.

Příklad 3.8. Nechť $\mathbb{A} \in T^{n,n}$ vyhovuje rovnici $\mathbb{A}^2 - \mathbb{A} + \mathbb{E} = \Theta$. Dokažte, že \mathbb{A} je regulární. Co musí platit pro matici \mathbb{A}^{-1} ?

 $V\acute{y}sledek. \ \mathbb{A}^{-1} = \mathbb{E} - \mathbb{A}.$

Příklad 3.9. * Nechť pro matici $\mathbb{A} \in T^{n,n}$ existuje $k \in \mathbb{N}$ takové, že $\mathbb{A}^k = \Theta$ (taková \mathbb{A} se nazývá *nilpotentní* matice). Potom je matice $\mathbb{E} - \mathbb{A}$ regulární a platí $(\mathbb{E} - \mathbb{A})^{-1} = \mathbb{E} + \mathbb{A} + \mathbb{A}^2 + \cdots + \mathbb{A}^{k-1}$. Dokažte.

Příklad 3.10. * Nechť $\mathbb{A} \in T^{n,n}$ je regulární. Jak se změní matice \mathbb{A}^{-1} , jestliže v matici \mathbb{A} :

- a) prohodíme i-tý a j-tý řádek,
- b) *i*-tý řádek vynásobíme číslem $\alpha \in T \setminus \{0\}$,
- c) k *i*-tému řádku přičteme *j*-tý řádek, $i \neq j$?

Jak se změní inverzní matice při podobných transformacích sloupců?

 $V\acute{y}sledek$. a) Zamění se i-tý a j-tý sloupec, b) i-tý sloupec se vynásobí číslem $1/\alpha$, c) od j-tého sloupce se odečte i-tý. Varianta pro sloupce: jako a), b), c) ale s řádky.