Mini-math Div 3/4: Monday, October 25, 2021 (15 minutes)

- 1. Find $\frac{dy}{dx}$ in the following cases:
 - (a) (2 points) $y = xg(\sin x)$, where g(x) is a differentiable function
 - (b) (2 points) $y = e^{e^{\tan x}}$
 - (c) (2 points) (AP) $y = \frac{\arctan x}{x}$
 - (d) (2 points) $x^2y x = \sin(x+y)$

2. (2 points) Find y'' if $y = \tan x^2$.

3. (2 points) The differentiable function f(x) has the following values and derivatives:

x	-2/3	-1/3	3	6	7	8
f(x)	1	2	-9	-11	5	3
f'(x)	3	4	9	10	7	8

The function g(x) is shown below:

If h(x) = f(g(x)), find the equation of the tangent line to h(x) at x = 2.

4. (2 points) (AP) Suppose f and g are differentiable functions where $g(x) = f^{-1}(x)$ for all x. Suppose further that

$$f(-9) = 7$$
, $f(8) = 6$, $f(6) = -9$, $f(7) = 8$
 $f'(-9) = 6$, $f'(8) = 4$, $f'(6) = -4$, $f'(7) = 3$

Find g'(-9).