# NPV, DISCOUNTING, AND THE PRICE OF RISK

### **NPV**

- A decision will increase the value of the firm if: Value of benefits > Value of costs
- But how to value/compare benefits and costs...
  - that occur at different times?
  - that are more or less uncertain?
  - that have different sensitivity to systematic risks?
- Main tool: Net Present Value
   NPV = Present Value (Benefits) Present Value (Costs)
- The NPV decision rule says that we should:
  - Accept all projects with NPV>0
  - Reject all projects with NPV<0</li>
- We get present values by taking any stream of expected benefits or costs and discounting them

# Example: How should we value a stream of cash flows that takes place over time?

Alex Rodriguez "\$275 million" contract with the Yankees

| Year  | Salary | "Signing<br>bonus" | With no discounting | Present value (at 10%) |
|-------|--------|--------------------|---------------------|------------------------|
| 2008  | 27     | 2                  |                     | 29.0                   |
| 2009  | 32     | 1                  |                     | 30.0                   |
| 2010  | 32     | 1                  |                     | 27.3                   |
| 2011  | 31     | 1                  |                     | 24.0                   |
| 2012  | 29     | 1                  |                     | 20.5                   |
| 2013  | 28     | 1                  |                     | 18.0                   |
| 2014  | 25     | 3                  |                     | 15.8                   |
| 2015  | 21     |                    |                     | 10.8                   |
| 2016  | 20     |                    |                     | 9.3                    |
| 2017  | 20     |                    |                     | 8.5                    |
| Total | 265    | 10                 | 275                 | 193.2                  |



# The PV of payments to Rodriguez

(the calculation is made as if in 2008)



What is the correct discount rate for A-Rod's contract? Why?

### Discounting

- "Discount rates" convert future dollars into dollars today
  - Idea, a dollar today is worth more than a dollar in the future, but exactly how much more?
- If there are many cash flows in the future, we discount each cash flow separately and then sum up the discounted values
  - We might ideally want to use a different r for every cash flow to reflect the "term structure"



### Perpetuities

 A perpetuity is a stream of equal cash flows that occur at regular intervals and last forever



Note: The first cash flow does not occur immediately, but at the **first period** 

• Present Value of a Perpetuity:  $PV(perpetuity) = \frac{C}{r}$ 

### **Annuities**

 An annuity is a stream of N equal cash flows paid at regular intervals



• PV(annuity)=  $\frac{c}{r} \left(1 - \frac{1}{(1+r)^N}\right)$  (Hint to remember formula: This is difference between PV of a perpetuity that starts now, minus the PV of a perpetuity that starts in N periods)

### **Growing Perpetuities**

- A growing perpetuity is a stream of perpetual cash flows that occur at regular intervals and grow at a constant rate forever
- For example, a growing perpetuity with a first payment of \$100 that grows at a rate of 3%:



• PV(growing perpetuity)= 
$$\frac{C}{r-a}$$

### **Growing Annuities**

 A growing annuity is a stream of N growing cash flows, paid at regular intervals



• PV(growing annuity)= 
$$\frac{c}{r-a}(1-(\frac{1+g}{1+r})^N)$$

# Take the lump sum or annuity? (1)

- The Robinson's of Munford, Tennesse were one of the winner's in the January 2016 Powerball jackpot
- Choice: Lump sum of \$327 million or 30 installments totaling \$528.8 million
- Which option should they take?



### Annuity structure

| Year  | Payout |
|-------|--------|
| 0     | 9.43   |
| 1     | 9.81   |
| 2     | 10.20  |
|       |        |
| 27    | 27.19  |
| 28    | 28.27  |
| 29    | 29.40  |
| Total | 528.8  |

Undiscounted total is \$528.8 million Not evenly divided, but a growing annuity (g=4%)

# Take the lump sum or annuity? (2)

#### **Considerations:**

- Any risk with the annuity?
- What's the correct discount rate?

  For benchmark rates, see http://online.wsj.com/mdc/public/page/2 3022-bondbnchmrk.html
- What if they can invest in the stock market at an expected return of 7%?
- Present value (PV) of the annuity?

# Example: Funding an endowed chair

- You want to endow a chair for a famous finance professor at Illinois
  - You want the endowment to add \$100,000 per year to the faculty member's resources (salary, conference travel, purchase of data, etc.)
  - You also want the funding to increase 2% per year to account for inflation
- You expect to earn a rate of return of 4% annually on the endowment
- How much will you need to donate to fund the chair?

#### **Solution:**

- The cost of the endowment will start at \$100,000, and increase by 2% each year. This is a growing perpetuity:
- PV(growing perpetuity)=  $\frac{C}{r-a} = \frac{100,000}{0.04-0.02} = $5 \text{ million}$

### THE PRICE OF RISK

# Flashback to Investments: No Arbitrage and the Risk Premium

- "Risk Premium"
  - Additional expected return that investors require to compensate for risk
- The risk premium of a security is determined only by its systematic risk!
- The risk premium for diversifiable/idiosyncratic risk is zero; i.e., investors will not get a
  premium for taking on such risk
  - Why? Because investors can easily eliminate idiosyncratic risk by diversifying
- Consider a "proof by contradiction":
  - Suppose that idiosyncratic risk of some investment was rewarded with a return premium; then
    investors could buy these investments, earn the additional premium, but diversify across the
    investments to eliminate all the risk
  - With this strategy, investors could earn higher returns without taking on any additional risk!
  - Everyone would want to buy these investments, so investors would bid up their prices
  - As they get more expensive, they earn smaller and smaller returns, until they no longer had a return premium and the arbitrage opportunity is eliminated

### The Risk Premium

- When an investment is risky, to compute its PV we must discount the *expected cash flow* at the rate:
  - r = risk-free interest rate (to account for the time value)
    - + risk premium (to account for the systematic risk)
- If an investment is risky but has only idiosyncratic risk, what's the correct discount rate?
  - Where is the idiosyncratic risk captured if not in the discount rate?

### **Example: Risky Cash Flows**

- Suppose there is a 50/50 probability of either "State A" or "State B" happening next year, and the risk-free interest rate is 4%
- Below are the Cash Flows (in \$) of:
  - X: A risk-free security (always pays the same, regardless of state)
  - Y: A risky security (pays more in state A than in state B)
- What is the value of these securities?

|                       | Cash flow in one year |         |  |
|-----------------------|-----------------------|---------|--|
|                       | State A               | State B |  |
| X: Risk-free security | 1100                  | 1100    |  |
| Y: Risky security     | 1400                  | 800     |  |

### Example: Risky Cash Flows (cont.)

- The Risk-free Security always pays \$1,100
- We can value it by discounting using the one-year risk-free rate: Price(risk-free security) = \$1,100/1.04=\$1,056
- For the Risky Security, we first calculate the expected cash flow:
   Expected cash flow(risky security)=½ (\$1400) + ½ (\$800) = \$1,100
- To get the current value of this security, we need to discount the expected cash flow
- But what is the appropriate discount rate?
- Recall that the appropriate discount rate is:
   r = Risk-free rate + Risk premium,
   so if we know the risk-free rate (e.g. from Treasuries with a similar one-year maturity), we just need to figure out the risk premium

### Example: Risky Cash Flows (cont.)

- The risk premium depends on how risky security correlates with other risk factors that investors are concerned about
  - Risk premium has the form (Beta<sub>R[security],R[risk factor]</sub>)\*(Premium per unit of beta)
  - For example, in CAPM: how the payoff from an investment correlates with the stock market
  - There are also alternative risk models for systematic risk, and we can have more than factor (with a beta and premium)
    - e.g., the Fama-French 3-factor model
- Suppose security Y, the risky security, is positively correlated with the stock market (i.e., beta>0), then CAPM predicts a positive risk premium
  - Suppose this risk premium is 6% (e.g, a beta of 1.2 and a market risk premium of 5%), then the correct discount rate is: 4%+6%=10%
  - Then the value today of the risky security is: Value(risky security) = Expected cash flow/(1+r) = \$1.100/1.10=\$1.000
  - Thus, the risky security is worth less than the risk-free security even though the expected cash flow from both are the same!
- What if the payoff from Y is uncorrelated with the stock market (beta=0)?
- Or what if it is negatively correlated with the stock market (beta<0)?</li>

### **CAPM**

- We will mostly use CAPM in the course, but, CAPM has a big problem!
- What is the main empirical prediction in CAPM?

$$E[R_i] = R_f + \beta_{i,market} * (E[R_{market}] - R_f)$$

Betas and Returns (source: Fama and French 1992)



### Fama-French 3-factor model

- So if CAPM doesn't work, are there any alternatives?
- Most academics and many practitioners use the Fama-French 3-factor model as a benchmark:

$$E[R_i] = R_f + \beta_{i,market} * (E[R_{market}] - R_f) + \beta_{i,SMB} * (E[R_{SMB}]) + \beta_{i,HML} * (E[R_{HML}])$$

- Equation starts out as CAPM but adds two new "risk factors":
  - How security i correlates with a portfolio called "small minus big" that is long "small stocks" (low market cap) and short "big stocks" (high market cap)
  - How security i correlates with a portfolio called "high minus low" that is long "value stocks" (high B/M) and short "growth stocks" (low B/M)
  - $-E[R_{SMB}]$  and  $E[R_{HML}]$  are positive and quite large (especially the premium on HML)
  - Empirically, this model works much better than CAPM!
- Many don't stop here, but add a "momentum factor", a "liquidity factor", etc...
  - All these alternative models work the same, just add more terms to the expected return of i!