

FEATURE ENCODING:

- 1. Ordinal Encoding An ordinal encoding involves mapping each unique label to an integer value. This type of encoding is really only appropriate if there is a known relationship between the categories. This relationship does exist for some of the variables in our dataset, and ideally, this should be harnessed when preparing the data.
- 2. Label Encoding Label encoding is a simple and straight forward approach. This converts each value in a categorical column into a numerical value. Each value in a categorical column is called Label.
- 3. Binary Encoding Binary encoding converts a category into binary digits. Each binary digit creates one feature column. If there are n unique categories, then binary encoding results in the only log(base 2)ⁿ features.
- 4. One Hot Encoding We use this categorical data encoding technique when the features are nominal(do not have any order). In one hot encoding, for each level of a categorical feature, we create a new variable. Each category is mapped with a binary variable containing either 0 or 1. Here, 0 represents the absence, and 1 represents the presence of that category.

Methods Used for Data Transformation:

1. FUNCTION TRANSFORMATION

• Log Transformation • Reciprocal Transformation • Square Root Transformation • Square Transformation

2. POWER TRANSFORMATION

• Boxcox method • Yeojohnson method

CODING AND OUTPUT:

from google.colab import drive

drive.mount('/content/drive')

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

Is drive/MyDrive/'Colab Notebooks'/Data_set.csv

Is drive/MyDrive/'Colab Notebooks'/Data_to_Transform.csv

'drive/MyDrive/Colab Notebooks/Data_to_Transform.csv'

Is drive/MyDrive/'Colab Notebooks'/'Encoding Data.csv'

df=pd.read_csv('drive/MyDrive/Colab Notebooks/Encoding Data.csv')

ORDINAL ENCODER

 $from \ sklearn.preprocessing \ import \ Label Encoder, Ordinal Encoder$

pm=['Hot','Warm','Cold']

e1=OrdinalEncoder(categories=[pm])

e1.fit_transform(df[["ord_2"]])

df['bo2']=e1.fit_transform(df[["ord_2"]])

		id	bin_1	bin_2	nom_0	ord_2	bo2
	0	0	F	N	Red	Hot	0.0
	1	1	F	Υ	Blue	Warm	1.0
	2	2	F	N	Blue	Cold	2.0
	3	3	F	N	Green	Warm	1.0
	4	4	Т	N	Red	Cold	2.0
	5	5	Т	N	Green	Hot	0.0
	6	6	F	N	Red	Cold	2.0
	7	7	Т	N	Red	Cold	2.0
	8	8	F	N	Blue	Warm	1.0
	9	9	F	Υ	Red	Hot	0.0

LABEL ENCODER

le=LabelEncoder()

dfc=df.copy()

 $dfc['ord_2'] = le.fit_transform(df[["ord_2"]])$

dfc

ONEHOT ENCODER

```
from sklearn.preprocessing import OneHotEncoder
```

ohe=OneHotEncoder()

df2=df.copy()

enc=pd.DataFrame(ohe.fit_transform(df2[['nom_0']]))

df2=pd.concat([df2,enc],axis=1)

		id	bin_1	bin_2	nom_0	ord_2	bo2	0
	0	0	F	N	Red	Hot	0.0	(0, 2)\t1.0
	1	1	F	Υ	Blue	Warm	1.0	(0, 0)\t1.0
	2	2	F	N	Blue	Cold	2.0	(0, 0)\t1.0
	3	3	F	N	Green	Warm	1.0	(0, 1)\t1.0
	4	4	Т	N	Red	Cold	2.0	(0, 2)\t1.0
	5	5	Т	N	Green	Hot	0.0	(0, 1)\t1.0
	6	6	F	N	Red	Cold	2.0	(0, 2)\t1.0
	7	7	Т	N	Red	Cold	2.0	(0, 2)\t1.0
	8	8	F	N	Blue	Warm	1.0	(0, 0)\t1.0
	9	9	F	Y	Red	Hot	0.0	(0, 2)\t1.0

pd.get_dummies(df2,columns=["nom_0"])

	id	bin_1	bin_2	ord_2	bo2	0	nom_0_Blue	nom_0_Green	nom_0_Red
0	0	F	N	Hot	0.0	(0, 2)\t1.0	False	False	True
1	1	F	Υ	Warm	1.0	(0, 0)\t1.0	True	False	False
2	2	F	N	Cold	2.0	(0, 0)\t1.0	True	False	False
3	3	F	N	Warm	1.0	(0, 1)\t1.0	False	True	False
4	4	Т	N	Cold	2.0	(0, 2)\t1.0	False	False	True
5	5	Т	N	Hot	0.0	(0, 1)\t1.0	False	True	False
6	6	F	N	Cold	2.0	(0, 2)\t1.0	False	False	True
7	7	Т	N	Cold	2.0	(0, 2)\t1.0	False	False	True
8	8	F	N	Warm	1.0	(0, 0)\t1.0	True	False	False
9	9	F	Y	Hot	0.0	(0, 2)\t1.0	False	False	True

BINARY ENCODER

pip install --upgrade category_encoders

```
→ Collecting category encoders

      Downloading category encoders-2.6.4-py2.py3-none-any.whl.metadata (8.0 kB)
    Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from category encoders) (1.26.4)
    Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.10/dist-packages (from category encoders) (1.5.2)
    Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from category encoders) (1.13.1)
    Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from category encoders) (0.14.4)
    Requirement already satisfied: pandas>=1.0.5 in /usr/local/lib/python3.10/dist-packages (from category encoders) (2.2.2)
    Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.10/dist-packages (from category encoders) (1.0.1)
    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.0.5->category encoders) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.0.5->category encoders) (2024.2)
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.0.5->category encoders) (2024.2)
    Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.20.0->category encoders) (1.4.2)
    Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.20.0->category encoders) (3.5.0)
    Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.9.0->category encoders) (24.2)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=1.0.5->category encoders) (1.16.0)
    Downloading category encoders-2.6.4-py2.py3-none-any.whl (82 kB)
                                              - 82.0/82.0 kB 4.7 MB/s eta 0:00:00
    Installing collected packages: category encoders
    Successfully installed category encoders-2.6.4
```

from category_encoders import BinaryEncoder

df=pd.read_csv('drive/MyDrive/data.csv')

df

dfb=pd.concat([df,nd],axis=1)

 *		id	bin_1	bin_2	City	0rd_1	0rd_2	Target	Ord_2_0	Ord_2_1	Ord_2_2
	0	0	F	N	Delhi	Hot	High School	0	0	0	1
	1	1	F	Υ	Bangalore	Warm	Masters	1	0	1	0
	2	2	М	N	Mumbai	Very Hot	Diploma	1	0	1	1
	3	3	М	Υ	Chennai	Cold	Bachelors	0	1	0	0
	4	4	М	Υ	Delhi	Cold	Bachelors	1	1	0	0
	5	5	F	N	Delhi	Very Hot	Masters	0	0	1	0
	6	6	М	N	Chennai	Warm	PhD	1	1	0	1
	7	7	F	N	Chennai	Hot	High School	1	0	0	1
	8	8	М	N	Delhi	Very Hot	High School	0	0	0	1
	9	9	F	Y	Delhi	Warm	PhD	0	1	0	1

TARGET ENCODER

from category_encoders import TargetEncoder

te=TargetEncoder()

cc=df.copy()

 $new = te.fit_transform(X = cc["City"], y = cc["Target"])$

cc=pd.concat([cc,new],axis=1)

CC

						2,410 0 2 0,			
		id	bin_1	bin_2	City	Ord_1	Ord_2	Target	City
	0	0	F	N	Delhi	Hot	High School	0	0.445272
	1	1	F	Υ	Bangalore	Warm	Masters	1	0.565054
	2	2	М	N	Mumbai	Very Hot	Diploma	1	0.565054
	3	3	М	Υ	Chennai	Cold	Bachelors	0	0.525744
	4	4	М	Υ	Delhi	Cold	Bachelors	1	0.445272
	5	5	F	N	Delhi	Very Hot	Masters	0	0.445272
	6	6	М	N	Chennai	Warm	PhD	1	0.525744
	7	7	F	N	Chennai	Hot	High School	1	0.525744
	8	8	М	N	Delhi	Very Hot	High School	0	0.445272
	9	9	F	Υ	Delhi	Warm	PhD	0	0.445272

FEATURE TRANSFORMATION

from scipy import stats

df=pd.read_csv('drive/MyDrive/Data_to_Transform.csv')

		Moderate Positive Skew	Highly Positive Skew	Moderate Negative Skew	Highly Negative Skew
	0	0.899990	2.895074	11.180748	9.027485
	1	1.113554	2.962385	10.842938	9.009762
	2	1.156830	2.966378	10.817934	9.006134
	3	1.264131	3.000324	10.764570	9.000125
	4	1.323914	3.012109	10.753117	8.981296
	9995	14.749050	16.289513	-2.980821	-3.254882
	9996	14.854474	16.396252	-3.147526	-3.772332
	9997	15.262103	17.102991	-3.517256	-4.717950
	9998	15.269983	17.628467	-4.689833	-5.670496
	9999	16.204517	18.052331	-6.335679	-7.036091
	10000	rows × 4 columns			

df.skew()

np.log(df["Highly Positive Skew"])

		Highly Positive Skew
	0	1.063011
	1	1.085995
	2	1.087342
	3	1.098720
	4	1.102640
	9995	2.790522
	9996	2.797053
	9997	2.839253
	9998	2.869515
	9999	2.893275
	10000 ro	ws × 1 columns
	dtype: flo	oat64

np.reciprocal(df["Moderate Positive Skew"])

		Moderate Posit	ive Skew	
	0		1.111123	
	1		0.898026	
	2		0.864431	
	3		0.791057	
	4		0.755336	
	9995		0.067801	
	9996		0.067320	
	9997		0.065522	
	9998		0.065488	
	9999		0.061711	
	10000	rows × 1 columns		
	dtype:	float64		

np.sqrt(df["Highly Positive Skew"])

→		Highly Positive Skew	
	0	1.701492	
	1	1.721158	
	2	1.722317	
	3	1.732144	
	4	1.735543	
	9995	4.036027	
	9996	4.049229	
	9997	4.135576	
	9998	4.198627	
	9999	4.248803	
	10000	rows × 1 columns	
	dtype:	float64	

np.square(df["Highly Positive Skew"])

₹		Highly Positive Skew
	0	8.381452
	1	8.775724
	2	8.799396
	3	9.001942
	4	9.072800
	9995	265.348230
	9996	268.837091
	9997	292.512290
	9998	310.762852
	9999	325.886637
	10000	rows × 1 columns
	dtype:	float64

 $df["Highly\ Positive\ Skew_boxcox"], parameters = stats.boxcox(df["Highly\ Positive\ Skew"])$

df["Moderate Negative Skew_yeojohnson"],parameters=stats.yeojohnson(df["Moderate Negative Skew"])

	Moderate Positive Ske	w Highly Positive Skew	Moderate Negative Skew	Highly Negative Skew	Highly Positive Skew_boxcox	Moderate Negative Skew_yeojohnson
0	0.899990	2.895074	11.180748	9.027485	0.812909	29.137807
1	1.113554	2.962385	10.842938	9.009762	0.825921	27.885274
2	1.156830	2.966378	10.817934	9.006134	0.826679	27.793303
3	1.26413	3.000324	10.764570	9.000125	0.833058	27.597362
4	1.323914	3.012109	10.753117	8.981296	0.835247	27.555370
999	95 14.749050	16.289513	-2.980821	-3.254882	1.457701	-1.949345
999	96 14.85447	16.396252	-3.147526	-3.772332	1.459189	-2.028952
999	97 15.262103	3 17.102991	-3.517256	-4.717950	1.468681	-2.199693
999	98 15.269983	3 17.628467	-4.689833	-5.670496	1.475357	-2.697151
999	16.20451	7 18.052331	-6.335679	-7.036091	1.480525	-3.311401
1000	00 rows × 6 columns					
						↑ ↓ ♦ G

df.skew()

import seaborn as sns

import statsmodels.api as sm

import matplotlib.pyplot as plt

sm.qqplot(df["Moderate Negative Skew"],line='45')

plt.show()

sm.qqplot(np.reciprocal(df["Moderate Negative Skew"]),line='45')
plt.show()

RESULT:

THUS THE ABOVE CODE IS EXECUETED SUCCESSFULLY