

IMPLÉMENTEZ UN MODÈLE DE SCORING

Soutenance du P7: le 22/11/2022

Version notebook: 6.3.0
Version Python: 3.8.8
Version Pandas: 1.2.4
Version Seaborn: 0.11.1
Version Matplotlib: 3.3.4

Plan

- Contexte et présentation des Data-Set
- Analyse exploratoire
- Traitement et nettoyage des Data-Sets « Feature engineer »
- Modélisation
- Modèles retenu
- Présentation du Dashboard
- Conclusion

Contexte et présentation des Data-Set

Contexte:

Mission:

- Construire un modèle de scoring qui donnera une prédiction sur la probabilité de faillite d'un client de façon automatique.
- Construire un Dashboard interactif à destination des gestionnaires de la relation client permettant d'interpréter les prédictions faites par le modèle, et d'améliorer la connaissance client des chargés de relation client.

Contexte et présentation des Data-Set

Présentation des tables de données:

app_test

app_train

bureau

bureau_blc

sample_submission

Contexte et présentation des Data-Set

inst_payments

Valeurs nulles (NaN)

Nombre de colonnes sans NaN -----: 6 Nombre de colonnes NaN -----: 0 Nombre de colonnes mixtes----- 2 Nombre de lignes -----: 13605401 Nombre de colonnes -----: 8 Nombre de cases -----: 108843208 Nombre de valeurs nulles -----: 5810 Nombre de valeurs non nulles -----: 108837398 * le pourcentage des valeurs nulles -----: 0.0 % le pourcentage des valeurs non nulles --: 100.0 %

Le taux de remplissage en %

100.0%

Valeurs non nulles

****** inst payments ******

credit_card_blc

HomeCredit clmns desc

Présentation des tables de données:

****** HomeCredit_clmns_desc ******
* Nombre de colonnes sans NaN
Le taux de remplissage en % Valeurs nulles (NaN)

DOC CACIL balance

POS_CASH_balance
****** POS_CASH_balance ******
* Nombre de colonnes sans NaN
Le taux de remplissage en % Valeurs nulles (NaN)
0.1% 99.9%

Valeurs non nulles

previous app

Distribution des valeurs NaN par Features

Comme constaté le taux de valeurs absentes est assez important, donc avant de procéder la construction des modèles nous devrons compléter ces valeurs manquantes par imputation et une deuxième solution supprimer les colonnes qui contiennent beaucoup de valeurs NaN, mais il est impossible de savoir à l'avance si ces colonnes seront utiles à modèle. notre conséquent, nous conserverons toutes les colonnes pour le moment.

Distribution des classes « Target »

Comme présenté en dessous dans le pie. Il y a beaucoup plus de prêts remboursés à temps que de prêts non remboursés. Lorsque nous utiliserons des modèles d'apprentissage automatique plus sophistiqués, nous pourrons pondérer les classes en fonction de leur représentation dans les données afin de refléter ce déséquilibre. La technique utilisée **SMOTE** oversampling

Distribution des variables catégorielles pour app_train

100000

Valeurs aberrantes:

Concernant les valeurs aberrantes, elles seront remplacer par des valeurs NaN au lieu de les supprimer, ici l'exemple de la variable DAY_EMPLOYED

Analyse de corrélation: Corrélation avec la 'Target'

Les trois caractéristiques 'EXT_SOURCE' ont des corrélations négatives avec la 'Target', ce qui indique que plus la valeur de 'EXT SOURCE' augmente client est plus susceptible de rembourser le prêt. Nous pouvons également voir que 'DAYS BIRTH' positivement corrélé avec 'EXT SOURCE 1', ce qui indique que l'un des facteurs de ce score est peut-être l'âge du client.

	M	latrice o	de corre	lations	linéaire	s Heat	map		1.0
TARGET	1.00	-0.18	-0.16	-0.16	-0.08	-0.07	-0.05		
EXT_SOURCE_3	-0.18	1.00	0.11	0.19	0.21	0.13	0.13		0.8
EXT_SOURCE_2	-0.16	0.11	1.00	0.21	0.09	0.09	0.05	-	0.6
EXT_SOURCE_1	-0.16	0.19	0.21	1.00	0.60	0.25	0.13	- 1	0.4
DAYS_BIRTH	-0.08	0.21	0.09	0.60	1.00	0.35	0.27	-	0.2
DAYS_EMPLOYED	-0.07	0.13	0.09	0.25	0.35	1.00	0.09		0.0
DAYS_ID_PUBLISH	-0.05	0.13	0.05	0.13	0.27	0.09	1.00		0.0
	TARGET	EXT_SOURCE_3	EXT_SOURCE_2	EXT_SOURCE_1	DAYS_BIRTH	DAYS_EMPLOYED	DAYS_ID_PUBLISH		

	(EXI_SOURCE_S	0.1.0010
i	EXT_SOURCE_2	-0.160472
i	EXT_SOURCE_1	-0.155317
	DAYS_BIRTH	-0.078239
	DAYS_EMPLOYED	-0.074958
	DAYS_ID_PUBLISH	-0.051457
	FLOORSMAX_AVG	-0.044003
i	FLOORSMAX_MEDI	-0.043768
Ī	FLOORSMAX_MODE	-0.043226
	DAYS_REGISTRATION	-0.041975
	AMT_GOODS_PRICE	-0.039645
	REGION_POPULATION_RELATIVE	-0.037227
1	ELEVATORS_AVG	-0.034199
	ELEVATORS_MEDI	-0.033863
	FLOORSMIN_AVG	-0.033614
ł	FLOORSMIN_MEDI	-0.033394
	LIVINGAREA_AVG	-0.032997
	LIVINGAREA_MEDI	-0.032739
	FLOORSMIN_MODE	-0.032698
	TOTALAREA_MODE	-0.032596
i	Name: TARGET, dtype: float64	
Ī	REG_REGION_NOT_LIVE_REGION	0.005576
	REG_REGION_NOT_WORK_REGION	
	OBS_60_CNT_SOCIAL_CIRCLE	0.009022
	OBS_30_CNT_SOCIAL_CIRCLE	0.009131
1	CNT_FAM_MEMBERS	0.009308
	CNT_CHILDREN	0.019187
ı	AMT_REQ_CREDIT_BUREAU_YEAR	0.019930
ł	FLAG_WORK_PHONE	0.028524
ı	DEF_60_CNT_SOCIAL_CIRCLE	0.031276
	DEF_30_CNT_SOCIAL_CIRCLE	
	LIVE_CITY_NOT_WORK_CITY	0.032518
	OWN_CAR_AGE	0.037612
i	FLAG_DOCUMENT_3	0.044346
Ī	REG_CITY_NOT_LIVE_CITY	0.044395
	FLAG_EMP_PHONE	0.045982
	REG_CITY_NOT_WORK_CITY	0.050994
	DAYS_LAST_PHONE_CHANGE	0.055218
ĺ	REGION_RATING_CLIENT	0.058899
	REGION_RATING_CLIENT_W_CITY	
	TARGET	1.000000
	Name: TARGET, dtype: float64)

-0.178919

(EXT_SOURCE_3

La première constatation est que la corrélation n'est pas très forte (en fait, elles sont toutes considérées comme très faibles), mais ces variables seront toujours utiles pour un modèle d'apprentissage automatique permettant de prédire si un demandeur remboursera ou non un prêt à temps.

Traitement et nettoyage des Data-Sets « Feature engineer »

X_train X_test ((230630, 505), (76877, 505))

Modélisation

Modélisation

Résultats de modélisation:

Model : LGBMClassifier()								
AUC : 0.7754								
========	precision	recall	f1-score	support				
0 1	0.92 0.61	1.00 0.03	0.96 0.06	70671 6206				

Model : Rando	mForestClass	ifier()		
AUC : 0.7175				
	precision	recall	f1-score	support
0	0.92	1.00	0.96	70671
1	1.00	0.00	0.00	6206

Model : LogisticRegression(max_iter=1000)							
AUC : 0.5884							
	precision	recall	f1-score	support			
0	0.92	1.00	0.96	70671			
1	0.08	0.00	0.00	6206			

Model : Dummy			=======	
	======================================			
AUC : 0.5000				
========	precision	11	f1-score	
	precision	recarr	11-Score	support
0	0.92	1.00	0.96	70671
1	1.00	0.00	0.00	6206

$$Precision = \frac{tp}{tp + fp}$$

$$Recall = \frac{tp}{tp + fn}$$

$$Fscore = \frac{precision. recall}{Beta^2. precision + recall}$$

$$= (1 + Beta^2). \frac{tp}{(1 + Beta^2). tp + Beta^2. fn + fp}$$

	models	fpr	tpr	fprOpt	tprOpt	Accuracy	Precision	F_beta_Score	Recall	Time	AUC
3	LGBMClassifier	[0.0, 0.0, 0.0, 1.4150075702905011e-05, 1.4150	[0.0, 0.00016113438607798906, 0.00048340315823	0.2695	0.6819	0.92	0.60	0.04	0.03	20.24	0.78
2	RandomForestClassifier	[0.0, 0.0, 0.0, 2.8300151405810022e-05, 4.2450	[0.0, 0.00016113438607798906, 0.00048340315823	0.3533	0.6761	0.92	0.60	0.00	0.00	294.75	0.72
1	LogisticRegression	[0.0, 1.4150075702905011e-05, 0.00014150075702	[0.0, 0.0, 0.0, 0.0, 0.00016113438607798906, 0.0001	0.47	0.5838	0.92	0.13	0.00	0.00	13.39	0.57
0	DummyClassifier	[0.0, 1.0]	[0.0, 1.0]	0.0	0.0	0.92	0.00	0.00	0.00	0.28	0.50

On donne plus d'importance au recall donc aux FN

Entrainement LGBMClassifier:

Entrainement du modèle avec Grid Search CV

```
[LGBMClassifier(learning_rate=0.11, max_depth=10, min_child_weight=40, n_estimators=300, num_leaves=35, reg_alpha=1, reg_lambda=1.4, scale_pos_weight=20, subsample=0.7), {'n_estimators': 300, 'reg_alpha': 1, 'reg_lambda': 1.4, 'subsample': 0.7}]
```

```
y_proba_0 = Scoring_credit.predict_proba(X_test)[:, 1]
y_pred_0 = (y_proba_0 > 0.53)
y_pred_0 = np.array(y_pred_0 > 0) * 1
```


La différence entre la métrique spécifique métier et la métrique technique Fbeta-measure c'est qu'on a moins de FN, 1366 contre 1652, au niveau des TN et FP la métrique technique est un peu mieux, sinon sur les TP la métrique spécifique est un peu mieux

Sur la métrique spécifique des clients ne se sont pas vus accordés de prêts alors qu'ils étaient solvables **FP**, mais à l'inverse moins de clients ont été prédits solvables alors qu'ils ne l'étaient pas **FN**. Ce que l'on a essayé par la construction d'une métrique métier est donc vérifié.

i	AUC : 0.7749			======	
	========	precision	recall	f1-score	support
	0 1	0.97 0.16	0.65 0.76	0.78 0.26	70671 6206
	accuracy macro avg weighted avg	0.56 0.90	0.71 0.66	0.66 0.52 0.74	76877 76877 76877

```
y_proba_1 = Scoring_credit.predict_proba(X_test)[:, 1]
y_pred_1 = (y_proba_1 > 0.4828)
y_pred_1 = np.array(y_pred_1 > 0) * 1
```


Métrique et fonction coût métier « le seuil de solvabilité optimisé »:

Au globale trois métriques a été testées pour définir le seuil de solvabilité en plus de cela la fonction coût métier

G-MEAN: 0.53

Sensitivity = True Positive Rate Specificity = 1 – False Positive Rate G-Mean = sqrt (Sensitivity * Specificity)

_____ thresholdOpt=0.53 gmean= 0.71 fprOpt = 0.31 tprOpt = 0.73

Youden's J statistic: 0.5343

Youden's J statistic: youdenJ = TPr - FPr

Best Threshold: 0.5343 with Youden J statistic: 0.7089 FPR: 0.3129, TPR: 0.7314

!!!! F-measure: permet d'équilibrer la précision et le rappel

Fbeta-Measure: 0.5343

F2-score = (5 * precision * recall) / (4 *precision + recall)

Best Threshold = 0.534333, F-Score = 0.441

F2-Measure (beta=2.0) : Moins de poids de précision, plus de poids de rappel (plus d'importance au rappel autrement dit aux faux négatifs)

Métrique bancaire seuil personnalisé: 0.4828

J = TP*TP_value + TN*TN_value + FP*FP_Value + FN*FN_value

pris:

TP value: 1 FN_value: -30 • TN value: 1 • FP value : -1

Les coefficients qui ont été Le seuil optimal pour le modèle Lightgbm est : 0.4828 Optimal threshold 0.70 ළී 0.60 0.50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Seuil de probabilité

1 seuil_optim_lgbm =seuil_optimal_search(y_test,prob,Ind_bank)

Features importance global:

les principales Features qui contribuent à l'élaboration du modèle

	features	weights
178	PAYMENT_RATE	272
26	EXT_SOURCE_2	227
27	EXT_SOURCE_3	189
6	DAYS_BIRTH	163
3	AMT_ANNUITY	133
9	DAYS_ID_PUBLISH	130
497	INSTAL_AMT_PAYMENT_MIN	115
2	AMT_CREDIT	115
42	DAYS_LAST_PHONE_CHANGE	112
8	DAYS_REGISTRATION	112
7	DAYS_EMPLOYED	111
174	DAYS_EMPLOYED_PERC	109
177	ANNUITY_INCOME_PERC	103
4	AMT_GOODS_PRICE	103
175	INCOME_CREDIT_PERC	101
5	REGION_POPULATION_RELATIVE	92
484	INSTAL_DBD_MEAN	91
457	APPROVED_DAYS_DECISION_MAX	91
283	PREV_CNT_PAYMENT_MEAN	89
483	INSTAL_DBD_MAX	83

EXT SOUR

Local Explanations LIME: Importance des Features pour un client spécifique

Exemple d'un client « customer ID = 123326 »

Interpretable Local Model-agnostic Explanations: est un modèle local cherche à expliquer prédiction d'un individu par analyse de son voisinage.

_____ customer ID = 123326

SHAP analysis:

Le SHAP signifie SHapley Additive exPlanations et utilise l'approche de la théorie des jeux pour expliquer les prédictions du modèle.

Les valeurs de Shapley calculent l'importance d'une variable en comparant ce qu'un modèle prédit avec et sans cette variable. Cependant, étant donné que l'ordre dans lequel un modèle voit les variables peut affecter ses prédictions, cela se fait dans tous les ordres possibles, afin que les fonctionnalités soient comparées équitablement. Cette approche est inspirée de la théorie des jeux.

Présentation du Dashboard

Dashboard « App » + API FLASK:

L'application a été développée en backend et en frontend, Le backend API FLASK à été déployé sur la plateforme Heroku et le dashboard est développé avec Streamlit (Framework open-source Python), hébergée sous GitHub et déployée sur https://share.streamlit.io/

Cette App permet de:

- Visualiser le score et l'interprétation de ce score pour chaque client de façon intelligible
- Visualiser des informations descriptives relatives à un client (via un système de filtre).
- Comparer les informations descriptives relatives à un client à l'ensemble des clients ou à un groupe de clients similaire

Conclusion

Model

- Travailler plus sur la partie Feature Engineering
- Choix de technique pour équilibrer les classes
- Des métriques d'évaluations basées sur des hypotheses métier confirmées

Dashboard app + API Flask:

- Création et éployement sur share.streamlit
- Déployement sur le cloud Heroku

URL de l'App:

https://bit.ly/dashboard3hkDxiN

Dépôt Github:

https://github.com/KH-spec/loan-dash-strmlt

https://github.com/KH-spec/app api flask

→ Dashboard

→ API FLASK

Annexe

