

Decision trees and ensemble methods

Lecture 11 of "Mathematics and Al"

Outline

1. Decision trees

Regression trees, growing and pruning trees, classification trees

2. Ensemble methods

Bagging, boosting, random forests, BART

Decision trees

Decision trees

- Segmentation of the feature space into segments R_k (typically boxes)
- Prediction y_i is identical for all $X_i \in R_k$
 - Regression: Regression to the mean \bar{y}_k in R_k
 - Classification: Majority vote in R_k

Regression trees

Growing a regression tree

Quality of fit:

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

- Recursive binary splitting:
 - · Add one new segment at a time
 - Choose each segment s.t. it minimizes RSS

Growing a regression tree

Quality of fit:

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

- Recursive binary splitting:
 - Add one new segment at a time
 - Choose each segment s.t. it minimizes RSS

Possible segmentations

Pruning trees

 Minimizing RSS without additional stopping criterion creates a tree with n segments and perfect within-sample performance

• Reduce model complexity and overfitting by removing (i.e. "pruning") Putouls < 82 (i.e., "leaves")

Pruning trees

Adjusted quality of fit:

RSS + L1 penality =
$$\sum_{j=1}^{|T|} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2 + \alpha |T|$$

• Tuning α leads to sequence of trees of decreasing complexity

The full pipeline

- 1. Grow tree using full training set
 - > Large complex tree with high variance, low (no) bias
- 2. Apply L1 penalty, prune leaves successively with increasing α
 - > Sequence of "best trees" with descending tree size / model complexity
- 3. Grow trees using k-fold crossvalidation for various values of α
 - \triangleright Best value for α
- 4. Retrieve tree with corresponding α value from sequence of best trees
 - >Tree with best variance-bias tradeoff

A SISO* experiment

- $\bullet \ f(x) = x$
- $\bullet \ f(x) = x^2$
- f(x) = sign(x)
- $\bullet f(x) = \cos(x)$

Classification trees

- Quality of fit
 - > Error rate is hard to optimize via GD
 - ightharpoonup Gini index: $G = \sum_{j=1}^{J} \hat{p}_{m_j} \left(1 \hat{p}_{m_j} \right)$
 - \triangleright Entropy $H = -\sum_{j=1}^{J} \hat{p}_{m_j} \log \hat{p}_{m_j}$
- G, H optimize "node purity"

Ensemble methods

"The crowd's wisdom often surpasses that of even the most knowledgeable expert."

James Surowiecki (Author of "The Wisdom of Crowds")

Ensemble methods

- Idea: Combine many "weak learners" to create a "strong learner"
- Approaches:
 - Bagging,
 - random forests,
 - boosting,
 - Bayesian additive regression trees (BART)

Bagging

- 1. Bootstrap the training set *B* times
 - B (somewhat independent) training sets
- 2. Train a model on each training set
 - \triangleright B models $\hat{f}^{(b)}$, $b \in \{1, ..., B\}$ that yield (possibly different) predictions
- 3. For each query X, the ensemble prediction is mean (or majority vote) among B predictions $\hat{f}^{(b)}(X)$

Random forests

- 1. Select *B* random subset of variables
 - ➢ B ("very" independent) training sets
- 2. Train a model on each training set
 - \triangleright B models $\hat{f}^{(b)}$, $b \in \{1, ..., B\}$ that yield (possibly different) predictions
- 3. For each query X, the ensemble prediction is mean (or majority vote) among B predictions $\hat{f}^{(b)}(X)$

Boosting

Idea:

- Build a sequence of trees of desired complexity.
- Each tree addresses the shortcomings of the previous tree.

Bagging/RF

Parallel

Boosting

Image source: https://www.datacamp.com/tutorial/what-bagging-in-machine-learning-a-guide-with-examples

Put model k

back

Perturb

k'th model

BART

- Bayesian additive regression tree
- Idea: Combine bagging & boosting

Increase k by 1

Take k'th model

Remaining ensemble model $\hat{f}(X) = \sum_{i \neq k} \hat{f}^{(j)}(X)$

• Cycle through stack B times

Ensemble is mean of

B-L mean trees with "burn in" rounds L

Regression to

the mean

DARTMOUTH

Mean tree in

b'th iteration