AIAP Batch 15 Technical Assessment

Billy Lim Jun Ming

Exploratory Data Analysis (EDA)

Data Cleaning

- Merged pre-purchase & post-trip data
- Based on Ext_Intcode
 - Rows with duplicate Ext_Intcode were dropped
 - Kept the row with less NA values (or the later row)

index	Cruise Name	Ticket Type	Cruise Distance	Ext_Intcode	WiFi	Dining	Entertainment
89340	Blastoise	None	150 KM	BL100AELMIT	0.0	1	1.0
89343	Blastoise	Luxury	150 KM	BL100AELMIT	0.0	1	1.0
44849	Blastoise	Luxury	1464 KM	BL100AQXMUS	1.0	0	1.0
15647	Lapras	Standard	1733 KM	BL100BAEEDV	NaN	1	NaN
15642	Lapras	Standard	1733 KM	BL100BAEEDV	NaN	1	NaN

Data Cleaning

- Fixed typos in Cruise Name
 - To Blastoise or Lapras
 - Based on Levenshtein edit distance

Typecasted appropriately

- Ratings → Ordinal Numbers
- Dates → Datetimes
- \circ km, miles \rightarrow km

index	Cruise Name	Ticket Type	Cruise Distance	Ext_Intcode	WiFi	Dining	Entertainment
0	Blastoise	None	3567 KM	LB446RWOOZI	1	1	1
2	IAPRAS	Deluxe	1167 KM	BL713UHBAAN	NaN	0	0
3	Lapras	Deluxe	280 KM	LB243DMKCFL	NaN	0	1
9	None	Luxury	None	LB251DCACEW	0	0	1
12	blast	Standard	236 Miles	LB810DDUDEB	NaN	0	NaN
26	lap	Luxury	331 Miles	LB994CFCVQZ	0	0	1
37	blastoise	Standard	1085 KM	BL870JKZNZY	NaN	0	NaN
42	blast0ise	None	366 KM	BL332YRXJQW	NaN	1	NaN
45	lapras	Luxury	163 KM	LB265JZQPLM	0	1	0

Post-Trip Satisfaction Survey

- NA values are dubiously distributed
 - Many NA for WiFi & Entertainment
 - Zero NA for Dining

Post-Trip Satisfaction Survey

- NA values are dubiously distributed
 - Many NA for WiFi & Entertainment
 - Zero NA for Dining

 Satisfied and dissatisfied responses were perfectly balanced

Post-Trip Satisfaction Survey

- NA values are dubiously distributed
 - Many NA for WiFi & Entertainment
 - Zero NA for Dining
- Satisfied and dissatisfied responses

 Gender_Male

 Were perfectly balanced

 Direct Company Website
- Uncorrelated with pre-purchase importance ratings
 - WiFi rated unimportant → 50% satisfied
 - WiFi rated important → 50% satisfied
- Dropped post-trip survey data

Pre-Trip Importance Survey

- Subsets of criteria are correlated
 - Convenience factors(WiFi, embarkation timing & gate)
 - Onboard facilities
 (cabin comfort, dining, cleanliness)
 - Hospitality services
 (Baggage handling, onboard service)
- We can aggregate them together
- Applied PCA on pre-trip survey

Date of Birth

Onboard With Service tion time convenient se of Online booking

Online Check-in nboard Dining Service Cleanliness
Cleanliness

Cabin service Baggage handling Onboard Service Check-in Service

Cruise Distance

EDA Logging

vice

king ation k-in vice nfort nent

vice alling vice

ess

vice

Ticket Type

- Luxury Tickets
 - Older age group
 - More exacting
- Standard Tickets
 - Younger age group
 - Less exacting
- Deluxe Tickets
 - Broader age group
 - Middle ground

Ticket Type

- Very imbalanced distribution
 - Deluxe tickets make up <10% of sample

Since it's our **target variable**, we must

- Use stratified splittings
- Choose scoring metric appropriately

ML Models & Performance

Model Pipeline

Ticket Type	Gender	Cruise Name	Source of Traffic	Date of Birth	Cruise Distance	Pre-Trip Importance Survey	Logging	Post-Trip Satisfaction Survey
Label	-		Year()	-		Dropped		
Encoder	Impute Most Frequent Category		Impute Mean					
	One-Hot Encode -		-	PCA				
ML Model								

Chosen ML models:

- Linear Support Vector Machine (simple, explainable)
- Random Forest (ensemble, minimise variance)
- Gradient-Boosted Tree (ensemble, minimise bias)

ML Models

Chosen ML models:

 Linear Support Vector Machine (simple, explainable)

Source: https://en.wikipedia.org/wiki/Support_vector_machine

ML Models

Chosen ML models:

- Linear Support Vector Machine (simple, explainable)
- Random Forest (ensemble, minimise variance)
- Gradient-Boosted Tree (ensemble, minimise bias)

Source: https://towardsdatascience.com/the-ultimate-guide-to-adaboost-random-forests-and-xgboost-7f9327061c4f

Training

Stratified train-test split

Stratified 5-fold cross-validation

Source: https://scikit-learn.org/stable/modules/cross_validation.html

Scoring

• F1 score

$$F_1 = 2rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Macro-averaged

$$F_1 ext{-macro} = rac{1}{3}egin{bmatrix} F_1(ext{Luxury}) \ +F_1(ext{Deluxe}) \ +F_1(ext{Standard}) \end{bmatrix}$$

How many relevant items are retrieved?

How many retrieved items are relevant?

$$Precision = \frac{1}{1}$$

Source: https://en.wikipedia.org/wiki/F-score

Performance

- SVM might be too simple
- Gradient boosting didn't overfit and had higher test score

Model	F1-macro
Dummy	0.216
SVM	0.496
Random Forest	0.542
Gradient Boost	0.548

```
Dummv
Hyperparameters used are {}
The test F1-macro score is 0.21581929516985543
SVM
Hyperparameters used are {'C': 0.03125}
The test F1-macro score is 0.4957812932938626
Random Forest
Hyperparameters used are {'criterion': 'qini',
'max_depth': 80, 'max_features': 'sqrt',
'n_estimators': 10}
The test F1-macro score is 0.5420678411521804
Gradient Boost
Hyperparameters used are {'learning_rate': 0.1,
'max_depth': 9, 'max_iter': 500}
The test F1-macro score is 0.5482298987666266
```