جمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

DEVOIR DE MATHS

Niveau: 7D Durée: 4h Proposé le 09 Mai 2015 de 8h à 12h

Exercice 1 (4 points)

Pour chaque proposition, indiquer si elle est vraie ou fausse. Aucune justification n'est demandée.

On considère une suite (U_n) , définie sur \mathbb{N} , croissante et de termes strictement positifs.

On définit alors la suite (V_n) sur \mathbb{N} par $V_n = \frac{-1}{U_n}$. a) Si $\lim_{n \to +\infty} U_n = +\infty$, alors (V_n) est convergente.

- b) Si (U_n) est divergente, alors (V_n) est divergente.
- c) Si (U_n) est minorée par 5, alors (V_n) est minorée par -1.
- d) La suite (V_n) est croissante et négative.
- e) Les suites (U_n) et (V_n) sont adjacentes.
- f) Si (U_n) est géométrique, alors (V_n) est géométrique.
- g) Si (U_n) est arithmétique, alors (V_n) est arithmétique.
- h) La suite (U_n) est minorée.

www.amimath.i

Bonus: 2 points, (note maximale 20): Proposer une démonstration pour la réponse indiquée dans l'exercice 1; (proposition vraie ou fausse). Dans le cas d'une proposition fausse, la démonstration consistera à fournir un contre exemple.

Exercice 2 (4 points)

Le plan complexe est rapporté à un repère orthonormé (O;u, y).

- 1) Résoudre dans \mathbb{C} les équations : $z^2-2z+5=0$ et $z^2-6z+10=0$
- 2) Pour tout nombre complexe z tel que $z \ne 1+2i$ on pose : $f(z) = \frac{z-3-i}{z-1-2i}$.
- a) Calculer le nombre $\alpha = f(1+3i)$ puis l'écrire sous formes algébrique et trigonométrique.
- b) On considère les deux points A et B d'affixes respectives $z_A = 1 + 2i$ et $z_B = 3 + i$.

Déterminer et représenter dans le même repère les ensembles Γ_k des points M du plan d'affixe z dans chacun des cas suivants : Γ_2 tel que f(z) soit imaginaire pur.

$$\Gamma_1$$
 tel que $|\mathbf{f}(\mathbf{z})| = 1$.

$$\Gamma_3$$
 tel que $f(z)$ soit réel.

$$\Gamma_4$$
 tel que $|f(z)-1|=\sqrt{5}$.

3) Déterminer et représenter dans le repère précédent le point C tel que le quadrilatère OABC soit un parallélogramme.

Exercice 3 (5 points)

On considère la fonction numérique f définie par : $f(x) = x+1+e^x$. Soit (C) sa courbe représentative dans un repère orthonormé (O; i, j) d'unité 1cm.

- 1.a) Montrer que $\lim_{x \to -\infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$.
 - b) Calculer et donner une interprétation graphique de : $\lim_{x \to -\infty} (f(x) (x+1))$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
- 2. Dresser le tableau de variation de f.

- 3. Montrer que f réalise une bijection de \mathbb{R} sur un intervalle J que l'on déterminera.
- 4. Montrer que l'équation f(x) = 0 admet une unique solution α puis vérifier que $-1, 3 < \alpha < -1, 2$.
- 5. Construire les courbes (C) et (C') représentant respectivement la fonction f et sa réciproque f⁻¹ dans le repère (O;i, j).
- 6.a) Déterminer la primitive F de f qui vérifie : F(0) = 0.
- b) Soit A(α) l'aire du domaine plan limité par la courbe (C), l'axe des abscisses et les droites d'équation respectives $x = \alpha$ et x = 0.

Calculer $A(\alpha)$ en fonction de α . Montrer que $A(\alpha) = \frac{4-\alpha^2}{2}$.

- 7.a) Déterminer une équation de la tangente (T) à (C) au point d'abscisse $x_0 = \alpha$.
 - b) Vérifier que : $(f^{-1})'(0) = \frac{-1}{2}$.

www.amimath.i

Exercice 4 (7 points)

Partie A Soit g la fonction définie sur]0,+ ∞ [par : g(x) = x(1+lnx) - 2lnx .

- 1) Calculer g'(x). Vérifier que si x < 1, alors g'(x) < 0 et si x > 1, alors g'(x) > 0.
- 2) Déterminer les variations de g (On ne demande pas de calculer les limites aux bornes de]0,+∞[).
- 3) En déduire que $g(x) \ge 1$ pour tout x de $[0,+\infty]$.

Partie B

On considère la fonction f définie sur $]0,+\infty[$ par : $f(x) = 1 + x \ln x - (\ln x)^2$. 1.a)Montrer que $\lim_{x \to x} f(x) = -\infty$ et $\lim_{x \to x} f(x) = +\infty$.

- b) Calculer f'(x) et vérifier que f'(x) = $\frac{g(x)}{x}$.
- c) Dresser le tableau de variation de f . 2.a) Montrer que f réalise une bijection de]0,+∞[sur un intervalle J que l'on déterminera. On note
- (C') la courbe de f^{-1} dans le même repère.
- b) Montrer que l'équation f(x) = 0 admet une unique solution α puis vérifier que $0.4 < \alpha < 0.5$.
- 3. a) Donner une équation de la tangente (T) à la courbe C, en son point d'abscisse 1.
- b) Déterminer les points de C_f où la tangente est parallèle à la droite d'équation y = x.
- 4) On considère la fonction h définie sur $]0,+\infty[$ par $h(x) = x 1 \ln x$.
- a) Calculer h'(x) et montrer que pour tout x de $]0,+\infty[$, $h(x) \ge 0$. b) Montrer que $f(x) x = (\ln x 1)h(x)$. En déduire la position relative de C_f et (T)
- c) Calculer $\lim_{x \to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement.
- d) Tracer (T) et C_f dans un repère orthonormé (O, \vec{i}, \vec{j}) .
- e) Discuter graphiquement, suivant les valeurs de m ; le nombre de solutions de l'équation $1-m-x(1-\ln x)-(\ln x)^2=0$.
- 5.a) En utilisant une intégration par parties, calculer $I_1 = \int_1^e x \ln x dx$ et $I_2 = \int_1^e (\ln x)^2 dx$.

4 heures

b) Calculer l'aire du domaine plan limité par les courbes (C) et (C') et les droites x=1 et x=e.

Fin.