Problem 1

- 1. Not wffs
- 2. Not wffs
- 3. Not wffs
- 4. Wffs
- 5. Wffs

Problem 2

X is bound and Z is free

The scope of the first $\forall x$ is P and Q

The scope of the second $\forall x$ is R

Problem3

1. f(A,B) means a line connects point A and point B, E(X,Y) means line X and line Y are the same line.

$$(\forall A)(\forall B)$$
 ($(\forall X)(\forall Y)$ ($E(X,f(A,B)) \land E(Y,f(A,B)) \rightarrow E(X,Y)$))

2. P(X)means X works in Shanghai

Q(X)means X lives in Shanghai

$$\exists X (P(X) \land \neg Q(X))$$

3. P(Y) means date Y is tomorrow and date Y is fine

Q(X) means student X will go swimming

$$(\forall Y) P(Y) \rightarrow (\exists X) Q(X)$$

Problem 4

任意一个正整数都是有理数而并非所有有理数都是正整数。

Problem 5

1. P(x) means X is not smaller than 2

2.
$$((P(a)\rightarrow Q(a)) \lor (P(a)\rightarrow Q(b)) \lor (P(a)\rightarrow Q(c))) \land ((P(b)\rightarrow Q(a)) \lor (P(b)\rightarrow Q(b)) \lor (P(b)\rightarrow Q(c))) \land ((P(c)\rightarrow Q(a)) \lor (P(c)\rightarrow Q(b)) \lor (P(c)\rightarrow Q(c)))$$

$$= (\neg P(a) \lor Q(a) \lor Q(b) \lor Q(c)) \land (\neg P(b) \lor Q(a) \lor Q(b) \lor Q(c)) \land (\neg P(c) \lor Q(a) \lor Q(b) \lor Q(c))$$

- 3. True
 - **False**
 - **False**
 - True
 - True
 - **False**

Problem 6

1.
$$(\forall x)(P(x) \rightarrow (\exists y)Q(x, y))$$

$$=(\forall x)(\neg P(x) \lor (\exists y)Q(x, y))$$

$$=(\forall x)(\exists y)((\neg P(x) \lor Q(x, y))$$

$$(\exists x)P(x, y) \leftrightarrow (\forall z)Q(z)$$

$$= (\neg(\exists x)P(x, y) \lor (\forall z)Q(z)) \land ((\exists x)P(x, y) \lor \neg(\forall z)Q(z))$$

$$= ((\forall x) \neg P(x, y) \lor (\forall z) Q(z)) \land ((\exists x) P(x, y) \lor (\exists z) \neg Q(z))$$

$$= (\forall x)(\forall z)(\neg P(x, y) \lor Q(z)) \land (\exists x)(P(x, y) \lor \neg Q(x))$$

$$= (\forall x)(\forall z)(\neg P(x, y) \lor Q(z)) \land (\exists m)(P(m, y) \lor \neg Q(m))$$

=(
$$\forall x$$
)($\forall z$)($\exists m$)(($\neg P(x, y) \lor Q(z)$) \land ($P(m, y) \lor \neg Q(m)$))

$$=(\forall x)(\forall z)(\exists m)S(x,y,z,m)$$

2.
$$(\forall x)(P(x) \rightarrow (\exists y)Q(x, y)) \lor (\forall z)R(z)$$

$$= (\forall x) (\neg (P(x) \lor ((\exists y)Q(x, y)) \lor (\forall z)R(z)))$$

$$= (\forall x)(\neg P(x) \lor (\exists y)(\forall z)(Q(x,y) \lor R(z)))$$

$$= (\forall x)(\exists y)(\forall z) (\neg P(x) \lor Q(x, y) \lor R(z))$$

$$=(\forall x)(\exists y)(\forall z)M(x,y,z)$$

$$=(\forall x)(\forall z)M(x,f(x),z)$$

$(\exists y)(\forall x)(\forall z)(\exists u)(\forall v)P(x, y, z, u, v)$

= $(\forall x)(\forall z)(\forall v)P(x, a, z, f(x,z), v)$

Problem 7

P = true Q =true

It will not return unsat

当改变一个变元的真值后使得 profits 为 5 时返回 sat

Problem 8

Ø	\parallel 1 \vee 2 , $\underline{1}$ \vee $\underline{2}$, 2 \vee 3, $\underline{3}$ \vee 4, 1 \vee $\underline{4}$	
<u>1</u>	$ 1 \lor \underline{2}, \underline{1} \lor \underline{2}, 2 \lor 3, \underline{3} \lor 4, 1 \lor \underline{4}$	
<u>124</u>	$ 1 \lor \underline{2}, \underline{1} \lor \underline{2}, 2 \lor 3, \underline{3} \lor 4, 1 \lor \underline{4}$	
<u>124</u> 3	\parallel 1 \vee 2 , $\underline{1}$ \vee $\underline{2}$, 2 \vee 3, $\underline{3}$ \vee 4, 1 \vee $\underline{4}$	$\underline{3} \lor 4 \mathbf{not} \mathbf{profit}$
1	\parallel 1 \vee $\stackrel{2}{\underline{}}$, $\stackrel{1}{\underline{}}$ \vee $\stackrel{2}{\underline{}}$, 2 \vee 3, $\stackrel{3}{\underline{}}$ \vee 4, 1 \vee $\stackrel{4}{\underline{}}$	
1 <u>2</u>	$ 1 \lor \underline{2}, \underline{1} \lor \underline{2}, 2 \lor 3, \underline{3} \lor 4, 1 \lor \underline{4}$	
1 <u>2</u> 3	$ 1 \lor \underline{2}, \underline{1} \lor \underline{2}, 2 \lor 3, \underline{3} \lor 4, 1 \lor \underline{4}$	
1 <u>2</u> 34	$ 1 \lor \underline{2}, \underline{1} \lor \underline{2}, 2 \lor 3, \underline{3} \lor 4, 1 \lor \underline{4}$	profit