

Diffusion-based Thermal Infrared Image Denoising via Latent and Wavelet Domain Optimization

Tai Hyoung Rhee

Seoul National University williamrhee@snu.ac.kr

Ayoung Kim Seoul National University

ayoungk@snu.ac.kr

Problem Statement

Multispectral Motion Dataset¹

OdomBeyondVision²

- Severe non-uniform fixed pattern noise is present for challenging cases, e.g. indoor sequences
- Causes various complications for downstream tasks

Thermal Imaging in Wavelet Domain

Wavelet transform can effectively separate noise!

Proposed Method

- Utilize Stable Diffusion, large pretrained diffusion model to mitigate data scarcity and enhance diversity
- Fine-tune U-Net in Latent + Wavelet domain for robust denoising
- Cascade the identical model tuned on pixel domain for enhanced fidelity

Results

Noisy

DehazeFormer [32]

DeepIR [17]

Cascaded DTCWT

Cascaded DTCWT

- Qualitative zero-shot results on indoor sequences^{1,2} with heavy fixed pattern noise
- First model to effectively denoise in such challenging conditions

Quantitative Results

Method	PSNR (dB) ↑	SSIM ↑
CLAHE	17.23	0.3205
NB2NB	17.59	0.5552
Cycle-Dehaze	13.77	0.7358
FFDNet	17.61	0.5162
DehazeFormer	18.18	0.5134
$\rm U^2D^2Net$	23.63	0.7358
Liu et al.	<u>24.53</u>	0.5335
Proposed	27.97	0.8594

All methods trained using 5570 clean-noisy paired TIR images, provided by Liu et al.3

Model	Loss			Evaluation Metric					
	Pixel	Latent	DWT	DTCWT	PSNR (dB) ↑	SSIM ↑	LPIPS ↓	FID ↓	
Pixel-wise Loss	✓				23.65	0.7800	0.1769	69.8716	
Latent-Only		\checkmark			26.28	0.8472	0.1767	46.4288	
Bior. DWT		\checkmark	\checkmark		26.49	0.8594	0.1748	45.7763	
DTCWT		\checkmark		\checkmark	27.97	0.8382	<u>0.1560</u>	40.4746	
Bior. Cascaded	✓	\checkmark	\checkmark		26.32	0.8507	0.1602	<u>38.7875</u>	
DTCWT Cascaded	✓	\checkmark		\checkmark	26.53	0.8556	0.1529	38.1301	

^{*} This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) No. RS-2023-0024175

DeepIR [17]

¹ W. Dai, Y. Zhang, S. Chen, D. Sun, and D. Kong, "A multi-spectral dataset for evaluating motion estimation systems," in Proc. IEEE Intl. Conf. on Robot. and Automat. IEEE, 2021,pp. 5560–5566.

² P. Li, K. Cai, M. R. U. Saputra, Z. Dai, and C. X. Lu, "Odombeyondvision: An indoor multi-modal multi-platform odometry dataset beyond the visible spectrum," in Proc.IEEE/RSJ Intl. Conf. on Intell. Robots and Sys. ³ G. Liu, J. Xu, Y. Cheng, Y. Su, and B. Yang, "A two-stageapproach for single thermal image restoration," ElectronicsLetters, vol. 61, no. 1, p. e70111, 2025.