

ພື້ນຖານຂອງ Arduino

4.1 ແນະນຳກ່ຽວກັບ Arduino

Arduino ໄດ້ຖືກປະດິດຢູ່ທີ່ Ivrea Interaction Design Institute. ມັນໄດ້ຖືກອອກແບບສໍາລັບ ການ prototyping ໄວ, ເປົ້າຫມາຍ hobbyist ໂດຍບໍ່ມີພື້ນຖານການຂຽນໂປຼແກຼມໃດໆ. ທັນທີທີແພ ລະຕະຟອມທີ່ເປັນມິດກັບຜູ້ໃຊ້ໄດ້ດຶງດູດຜູ້ຊົມທີກວມເອົາຊຸມຊົນທີກວ້າງຂວາງແລະເລີມປຽນແປງເພື່ອປັບ ຕົວແນວໂນ້ມຫລ້າສຸດໃນຕະຫຼາດ, ຈາກກະດານ 8-bit ກັບຜະລິດຕະພັນ IoT, ອຸປະກອນທີ່ໃສ່ໄດ້, ແລະ ສະພາບແວດລ້ອມຝັງຕົວ. ກະດານ Arduino ແມ່ນແຫຼ່ງເປີດຢາງສົມບູນແລະສາມາດໃຊ້ສໍາລັບການ ພັດທະນາແອັບພລິເຄຊັນທີ່ມີຄວາມຕ້ອງການໂດຍສະເພາະ. ຊອບແວ Arduino ແມ່ນເປັນມິດກັບຜູ້ໃຊ້ ແລະງ່າຍທີ່ຈະເລີມຕົ້ນດ້ວຍສະພາບແວດລ້ອມທີ່ມີຄວາມຍືດຫຍຸ່ນສໍາລັບຜູ້ໃຊ້ຂັ້ນສູງ. ມັນສາມາດດໍາເນີນ ການໄດ້ໃນເວທີ Mac, Linux, ແລະ Window. ສິ່ງໃຫມ່ສາມາດຮຽນຮູ້ກັບ Arduino.

ຂໍ້ ດີ ຂອງ Arduino :

ຄ່າໃຊ້ຈ່າຍ:ກະດານ Arduino ແມ່ນລາຄາແພງກວ່າເມືອທຽບກັບຈຸນລະພາກອື່ນໆ. ກະດານຄວບຄຸມ.

ເວທີ:ຊອບແວ Arduino (IDE) ແມ່ນເຫມາະສົມກັບສ່ວນໃຫຍ່ຂອງ ລະບົບປະຕິບັດການເຊັນ Macintosh OSX, Windows, ແລະ Linux.

ເປັນມິດກັບຜູ້ໃຊ້:ຊອບແວ Arduino (IDE) ແມ່ນເປັນມິດກັບຜູ້ໃຊ້, ງ່າຍທີ່ຈະ ເລີ່ມຕົ້ນ, ແລະມີຄວາມຍືດຫຍຸ່ນສໍາລັບນັກຂຽນໂປລແກລມທີ່ມີຄວາມຊໍານິຊໍານານ.

ແຫຼ່ງເປີດ:Arduino ເປັນຊອຟແວແຫຼ່ງເປີດທີ່ສາມາດເປັນ ໂປຣແກມດ້ວຍພາສາ C, C++, ຫຼື AVR-C. ດັ່ງນັ້ນຄວາມຫລາກຫລາຍຂອງໂມດູນ ສາມາດອອກແບບໂດຍຜູ້ໃຊ້.

4.1.1 Arduino Uno

Arduino/Genuino Uno ມີ microcontroller ATmega328 onboard. ມັນມີ 6 ຜອດ ປ້ອນຂໍ້ມູນແບບອະນາລັອກ (A0–A5) ແລະ 14 ພອດ I/O ດິຈິຕອລ, ໃນນັ້ນ 6 ຮູສຽບ PWM. ແຕ່ລະ pin ສາມາດດຳເນີນການກ່ຽວກັບ 0-5 V ຂອງແຮງດັນ. ມັນດຳເນີນການຢູ່ທີ 16 MHz ຂອງຄວາມຖີ.ຮູບ ທີ 4.1ສະແດງກະດານ Arduino Uno (ຕາຕະລາງ 4.1).

ຮູບທີ 4.1 ກະດານ Arduino Uno.

ຕາຕະລາງ **4.1** ລາຍລະອຽດ PIN ຂອງ Arduino UNO

ປັກໝຸດ	ລາຍລະອຽດ			
ວິນ	ມັນເປັນແຮງດັນພາຍນອກໃຫ້ກັບກະດານ 3.3 V			
3.3 ɔ	ການສະຫນອງ, ໃນຄະນະ			
+ 5 o	ແຮງດັນຂາອອກ +5 V			
GND	Ground			
IOREF	ມັນແມ່ນການເລືອກແຫຼ່ງພະລັງງານທີເຫມາະສົມໂດຍການສະຫນອງແຮງດັນ ອ້າງອິງ			
ລຳດັບ	ມັນ ສາ ມາດ ສົ່ງ ແລະ ຮັບ ຂ້ ມູນ serial ດ້ວຍ 0(Rx) 1(Tx) ສົ່ງ ຜົນ ໃຫ້			
ການຂັດຂວາງພາຍນອກ	ເກີດ ການ ຂັດ ຂວາງ ໃນ ຄ່າ ຕຳ (pins 2 ແລະ 3)			
PWM	8 bit ຫົກ PWM (3, 5, 6, 9, 10, 11)			
SPI	ມັນສະຫນັບສະຫນູນການສືສານ SPI [10 (SS), 11 (MOSI), 12 (MISO) ແລະ 13 (SCK)]			
LED	inbuilt LED ຂັບເຄືອນ			
TWI	ການສືສານ TWI [A4 (SDA), ແລະ A5 (SCL)] ແຮງດັນໄຟຟ້າ			
AREF	ອ້າງອີງກັບວັດສະດຸປ້ອນການປຽບທຽບ			
ຣີເຊັດ	ມັນຖືກນຳໃຊ້ເພື່ອປັບ microcontroller onboard			

4.1.2 Arduino Mega

Arduino Mega ມີ microcontroller ATmega2560 onboard. ມັນມີ 16 ອະນາລັອກອິນ ພຸດ, 54 ດິຈິຕອລ I/Os, ການເຊື່ອມຕໍ່ USB, 4 UART, ຊ່ອງສຽບໄຟ, ແລະປຸ່ມຣີເຊັດ. ມັນດຳເນີນ ການກ່ຽວກັບຄວາມຖີ 16 MHz.ຮູບທີ 4.2ສະແດງກະດານ Arduino Mega (ຕາຕະລາງ 4.2).

ຮູບທີ 4.2 ກະດານ Arduino Mega.

ຕາຕະລາງ 4.2 ປັກໝຸດຄຳອະທິບາຍ

ປັກໝຸດ	ລາຍລະອຽດ			
ວິນ	ແຮງດັນພາຍນອກຂອງກະດານ Arduino ອອກເປັນ 5 V			
+ 5 ɔ	ຄວບຄຸມ			
3.3 ວ	Onboard 3.3 V supply			
GND	Ground			
IOREF	ມັນແມ່ນການເລືອກແຫຼ່ງພະລັງງານທີເຫມາະສົມໂດຍການສະຫນອງແຮງດັນ ອ້າງອິງ			
ລຳດັບ 0	ມັນສາມາດສົ່ງແລະຮັບຂໍ້ມູນ serial ດ້ວຍ 0(Rx) ແລະ 1(Tx) ມັນສາມາດສົ່ງແລະຮັບ			
ລຳດັບ 1	ຂ້ມູນ serial ດ້ວຍ 19(Rx) ແລະ 18(Tx) ມັນສາມາດສົ່ງແລະຮັບຂ້ມູນ serial			
ລຳດັບ2	ດ້ວຍ 14(Rx) ແລະ 16(Tx))			
ການຂັດຂວາງພາຍນອກ	ມັນກະຕຸ້ນການລົບກວນພາຍນອກຢູທີຄ່າຕຳດ້ວຍ 2 (interrupt 0), 3 (ຂັດຂວາງ 1), 18 (ຂັດຂວາງ 5), 19 (ຂັດຂວາງ 4), ແລະ 20 (ຂັດຂວາງ 2)			
PWM	PWM 8 ບິດ (pins: 2–13 ແລະ 44–46)			
SPI	ມັນສະຫນັບສະຫນູນການສືສານ SPI [10 (SS), 11 (MOSI), 12 (MISO), ແລະ 13 (SCK)]			
LED	LED ຂັບເຄືອນຢູທີ pin 13			
TWI	ຮອງຮັບການສືສານ TWI [pins: 20 (SDA), 21 (SCL)] ມັນເປັນແຮງດັນ			
AREF	ໄຟຟ້າອ້າງອີງສໍາລັບການປ້ອນຂ້ມູນການປຽບທຽບ			
ຣີເຊັດ	ມັນຖືກນຳໃຊ້ເພື່ອປັບ microcontroller ໃນກະດານ			

4.1.3 Arduino Nano

Arduino/Genuino Nano ມີ microcontroller ATmega328 onboard. ມັນມີ 8 ອະນາ ລັອກອິນພຸດ, 14 ພອດ I/O ດິຈິຕອນ, ແລະ 6 PWM. ມັນມີຫນ່ວຍຄວາມຈຳ flash 32 KB, 1 KB EEPROM, 2 KB SRAM, ແລະເຮັດວຽກຢູ່ທີ 16 MHz ຂອງຄວາມຖີ.ຮູບທີ 4.3ສະແດງໃຫ້ເຫັນ Arduino Nano (ຕາຕະລາງ 4.3ແລະ4.4).

ຮູບທີ 4.3 ກະດານ Arduino Nano.

ຕາຕະລາງ 4.3 ລາຍລະອຽດ PIN ຂອງ Arduino NANO

PIN	ລາຍລະອຽດ		
ວິນ	ແຮງດັນພາຍນອກກັບກະດານ Output ເປັນ		
+ 5 o	+5 V		
3.3 ɔ	ການສະຫນອງ 3.3 V ຢູ່ເທິງຫ		
GND	ນ້າດິນ		
IOREF	ມັນຊ່ວຍເລືອກແຫຼ່ງພະລັງງານທີເຫມາະສົມໂດຍການສະຫນອງ a ການອ້າງອີງແຮງດັນ		
ລຳດັບ	ມັນ ສາ ມາດ ສົ່ງ ແລະ ຮັບ ຂ້ ມູນ serial ດ້ວຍ 0(Rx) ແລະ 1(Tx) ສົ່ງ ຜົນ ໃຫ້		
ການຂັດຂວາງພາຍນອກ	ເກີດ ການ ຂັດ ຂວາງ ໃນ ຄ່າ ຕຳ (pins 2 ແລະ 3)		
PWM	8 ບິດ PWM (3, 5, 6, 9, 10, 11)		
SPI	ມັນສະຫນັບສະຫນູນການສືສານ SPI ກັບ [10 (SS), 11 (MOSI), 12 (MISO) ແລະ 13 (SCK)]		
LED	LED ຂັບເຄືອນຢູທີ pin 13		
I2C	ຮອງຮັບສອງສາຍເຊື່ອມຕື [A4 (SDA) ແລະ A5 (SCL)] ມັນເປັນແຮງດັນອ້າງ		
AREF	ອີງສຳລັບການປ້ອນຂໍ້ມູນການປຽບທຽບ		
ຣີເຊັດ	ມັນຖືກນຳໃຊ້ເພື່ອບັບ microcontroller ໃນກະດານ		

ຕາຕະລາງ **4.4** ຕາຕະລາງປຽບທຽບສຳລັບກະດານ Arduino ຈຳນວນຫນ້ອຍ

ଞ୍ଜ	ໂຮງງານຜະລິດ	CPU ຄວາມໄວ	ປະຕິບັດການ / ^{ປ້ອນຂໍ} ້ມູນ ແຮງດັນ	ດິຈິຕອລ IO/ PWM	ອະນາລັອກ ເຂົ້າ/ອອກ	UART	Flash [kB]
LilyPad	ATmega168V ATmega328P	8 MHz	2.4-5.5 V/ 2.4-5.5 V	14/6	6/0	–	16
ເມກາ 2560	ATmega2560	16 MHz	5 V/4-12 V	54/15	16/0	4	256
ຈຸນລະພາກ	ATmega32U4	16 MHz	5 V/4-12 V	20/4	12/0	1	32
ຢູໂນ	ATmega328P	16 MHz	5 V/4-12 V	14/6	6/0	1	32
ລີໂອນາໂດ	ATmega32U4	16 MHz	5 V/4-12 V	20/4	12/0	1	32
ຢູນ	ATmega32U4 AR9331 Linux	16 MHz 400 MHz	5 ɔ	20/4	12/0	1	32
ອີເທີເນັດ	ATmega328P	16 MHz	5 V/4-12 V	14/4	6/0	— 3	32
Gemma	ATtiny85	8 MHz	3.3 V/ 4–16 ɔ	3/2	1/0	— 8	3
MKRZero	SAMD21 Cortex-M0+ 32 ບິດຕຳ ພະລັງງານ ARM MCU	48 MHz	3.3 ɔ	22/12	4 (ADC 8/10/ 12 ບິດ)/1 (DAC 10 ບິດ)	1	256

4.2 Arduino IDE

ສະພາບແວດລ້ອມການພັດທະນາປະສົມປະສານ Arduino (IDE) ເປັນຊອບແວທີເປີດ, ແລະເຮັດໃຫ້ມັນ ງ່າຍຕຶການຂຽນລະຫັດແລະອັບໂຫລດມັນໃສ່ກະດານ.

4.2.1 ຂັ້ນຕອນການຕິດຕັ້ງ Arduino IDE

ຂັ້ນຕອນທີ 1: ຕິດຕັ້ງ Arduino IDE ແລະເປີດປອງຢ້ຽມ

ເພື່ອເລີ່ມຕົ້ນ, ຕິດຕັ້ງ Arduino IDE.ຮູບທີ່ 4.4ສະ ແດງ ໃຫ້ ເຫັນ ປອງ ຢ້ຽມ ຂອງ Arduino IDE.

ຂັ້ນຕອນທີ 2: ເລືອກສະບັບຂອງກະດານ Arduino

Arduino ມີຫຼາຍລຸ້ນເຊັ່ນ UNO, MEGA, NANO, ແລະອື່ນໆ. ໃນໂຄງການ, ຊອກຫາສະບັບທີ່ເຫມາະສົມໂດຍການເລືອກພາລາມິເຕີຕາມຄວາມຕ້ອງການ. ກະດານທົ່ວໄປທີ່ສຸດສໍາລັບຜູ້ເລີ່ມຕົ້ນແມ່ນ Arduino UNO. ເລືອກກະດານແລະພອດ serial

tiny.one/IoT-BSc

```
sketch_jun17a | Arduino 1.6.5
00 BBB
void setup() {
  // put your setup code here, to run once:
void loop() {
  // put your main code here, to run repeatedly:
```

ຮູບທີ **4.**4 Window Arduino IDE.

ຮູບທີ **4.**5 ການເລືອກກະດານ Arduino.

ໃນ Arduino IDE. ເພື່ອເລືອກກະດານ Arduino, ໃຫ້ຄລິກໃສ່ "ເຄື່ອງມື" ແລະຫັງຈາກນັ້ນ ໃຫ້ຄລິກໃສ່ "ກະດານ."ຮູ<mark>ບທີ 4.5</mark>ສະແດງໃຫ້ເຫັນການເລືອກ "Arduino Uno."

ຂັ້ນຕອນທີ 3: ຂຽນແລະລວບລວມໂຄງການ

ຂຽນໂຄງການຢູ່ໃນປອງຢ້ຽມ Arduino IDE. ຫຼັງຈາກນັ້ນ, "RUN" pro-ກຣາມ.ຮູບທີ່ 4.6ສະແດງໃຫ້ເຫັນປອງຢ້ຽມທີ່ຈະລວບລວມໂຄງການ.

```
© stetchjunTa|Arduno 165
File Edit Stetch Tools Help

② ○ □ □ ver/
stetch_undTa

Void setup() {
    // put your setup code here, to run once:
}

void loop() {
    // put your main code here, to run repeatedly:

}
```

ຮູບທີ 4.6 ລວບລວມໂຄງການ.

ຂັ້ນຕອນທີ 4: ເຊື່ອມຕຶ Arduino ກັບ PC

ເຊື່ອມຕໍ Arduino ກັບພອດ USB ຂອງ PC ດ້ວຍສາຍ USB. ທຸກໆ
Arduino board ມີທີ່ຢູ່ serial-port ທີ່ແຕກຕ່າງກັນ (COM2, COM4, ແລະອື່ນໆ),
ດັ່ງນັ້ນມັນຈຳເປັນຕ້ອງປັບຄ່າພອດສຳລັບແຕ່ລະ Arduino ແລະເລືອກມັນໃນ IDE. ເພື່ອ
ກວດເບິ່ງພອດທີ Arduino ຖືກເຊື່ອມຕໍ, ຄລິກຂວາໃສ່ "PC" ຈາກນັ້ນເລືອກ "ຜູ້ຈັດການ";
ປອງຢ້ຽມຈະເບີດ. ຈາກນັ້ນກົດສອງຄັ້ງໃສ່ "Device Manager." ປອງຢ້ຽມທີ່ສະແດງຢູ່ໃນ
ຮູບທີ່ 4.7ຈະເປີດ. ໃຫ້ຄລິກໃສ່ພອດ COM ແລະ LPT ແລະພອດທີ່ອຸປະກອນເຊື່ອມຕໍ່
ສາມາດພົບໄດ້.

ໃນປັດຈຸບັນໃຫ້ຄລິກໃສ່ "ເຄື່ອງມື" ຢູ່ໃນປອງຢ້ຽມ Arduino IDE. ໄປທີ ພອດແລະເລືອກເລກພອດດຽວກັນ, ເຊິ່ງພົບຢູ່ໃນຕົວຈັດການອຸປະກອນ (ເລືອກ COM1 ຫຼື COM2, ແລະອື່ນໆ).ຮູ<mark>ບທີ 4.8</mark>ສະແດງໃຫ້ເຫັນ "COM38" ເປັນພອດ serial ຂອງກະດານ

ຂັ້ນ ຕອນ ທີ 5 : ອັບ ໂຫລດ ໂຄງ ການ ກັບ Arduino board

ອັບໂຫຼດໂປຣແກຣມໃສ່ກະດານ Arduino.ຮູບທີ 4.9ສະ ແດງ ໃຫ້ ເຫັນ ວິ ທີ ການ ອັບ ໂຫລດ ໂຄງ ການ .

ຮູບທີ 4.7 ປອງຢ້ຽມເພື່ອກວດສອບພອດຂອງ Arduino.

ຮູບທີ 4.8 ພອດ serial ຂອງຄະນະ.

ພື້ນຖານຂອງ Arduino 37

```
**Sets Sets took lee

**Took l
```

ຮູບທີ 4.9 ປອງຢ້ຽມເພື່ອອັບໂຫລດໂຄງການ.

4.3 ຄໍາສັ່ງພື້ນຖານສໍາລັບ Arduino

- 1.**pinMode(x, OUTPUT);**//ມອບຫມາຍເລກ PIN x ເປັນຂາອອກທີ x ເປັນຕົວເລກຂອງ PIN ດິຈິຕອນ
- 2.**digitalWrite(x, HIGH);**//ເປີດເລກ PIN x ເປັນ HIGH ຫຼື ON ບ່ອນທີ x ເປັນຕົວ ເລກຂອງ PIN ດິຈິຕອລ
- 3.**pinMode(x, INPUT);**//ມອບຫມາຍເລກ PIN x ເປັນ PIN ປ້ອນບ່ອນທີ x ເປັນຕົວ ເລກຂອງ PIN ດິຈິຕອນ
- 4.**digitalRead(Pin ດິຈິຕອລ);**//ອ່ານ pin ດິຈິຕອນເຊັນ 13 ຫຼື 12 ຫຼື 11 ແລະອື່ນໆ.
- 5.**analogRead(pin analog);**//ອ່ານ pin analog ເຊັ່ນ A0 ຫຼື A1 ຫຼື A2 ແລະອື່ນໆ.

4.4 ຄຳສັ່ງ LCD

- 1.lcd.begin(16, 2);//ເລີ່ມຕັ້ນ LCD 16*2 ຫຼື 20*4
- 2.**lcd.print("RAJESH");**//ພິ່ມສາຍ "RAJESH" ໃນ LCD
- 3.**lcd.setCursor(x, y);**//ຕັ້ງຕົວກະພິບຂອງ LCD ໃນບ່ອນທີ່ຕ້ອງການໂດຍທີ x ເປັນຈຳ ນວນ COLUMN ແລະ y
- 4.**lcd.print(LPU);**//ພິມ LPU ເປັນຈຳນວນເຕັມໃນ LCD
- 5.**lcd.Clear();**//ລຶບລ້າງເນື້ອໃນຂອງ LCD

4.5 ຄໍາສັງການສື່ສານ Serial

- 1.**Serial.begin(baudrate);**//ເລີ່ມຕົ້ນການສື່ສານ serial ເພື່ອກຳນົດອັດຕາ baud ເປັນ 600/1200/2400/4800/9600
- 2.**Serial.print("RAJESH");**//serial print fixed string ທີ່ມີກຳນົດອັດຕາ baud ໃນແຖວ Tx
- 3.**Serial.println("RAJESH");**//serial print fixed string ກັບກຳນົດອັດຕາ baud ແລະໃສ່ຄຳສັ່ງໃນແຖວ Tx
- 4.**Serial.print("LPU");**//serial print int string ທີ່ມີກຳນົດອັດຕາ baud ໃນແຖວ Tx
- 5.**Serial.print("LPU");**//serial print int string ກັບກຳນົດອັດຕາ baud ແລະໃສ່ຄຳ ສັ່ງໃນແຖວ Tx
- 6.**Serial.Write(BYTE);**//serial ໂອນຫນຶ່ງ byte ໃນແຖວ Tx
- 7.**Serial.read();**//ອ່ານຫນຶ່ງ byte serial ຈາກ Rx line

4.6 ຫຼືນກັບ LED ແລະ Arduino

ໄດໂອດປອຍແສງ (LED) ແມ່ນອຸປະກອນທີ່ສາມາດໃຊ້ເປັນຕົວຊີບອກໄດ້. ໄຟ LED ມີສອງຂ້ົວ, anode ແລະ cathode. LEDs ມີຢູ່ໃນສີທີ່ແຕກຕ່າງກັນ.ຮູບທີ 4.10ສະແດງ LED.

ຮູບ 4.10 ໄດໂອດປອຍແສງ.

ສີທີ່ແຕກຕ່າງກັນສາມາດຖືກນໍາໃຊ້ເພື່ອເປັນຕົວແທນຂອງເງື່ອນໄຂທີ່ແຕກຕ່າງກັນ. ສີຂອງ LED ແມ່ນ ເນື່ອງມາຈາກການປອຍແສງສະຫວ່າງໃນພາກພື້ນສະເພາະຂອງ spectrum ແສງສະຫວ່າງທີ່ສັງເກດເຫັນ ໂດຍທາດປະສົມທີ່ແຕກຕ່າງກັນ.

ເພື່ອເຂົ້າໃຈການເຮັດວຽກຂອງ LED, ເຊື່ອມຕໍ anode ຂອງ LED ກັບ pin 4 ຂອງ Arduino ແລະ cathode ກັບດິນ. ອັບໂຫຼດຮູບແຕ້ມທີ່ອະທິບາຍໄວ້ໃນພາກ 4.4.1 ໄປໃສ່ Arduino ແລະສັງເກດການ ກະພິບຂອງໄຟ LED.

ຮູບທີ່ 4.11ສະແດງແຜນວາດວົງຈອນຂອງ Arduino interfacing ກັບ LED.

ຮູບທີ 4.11 ແຜນວາດວົງຈອນເພື່ອໂຕ້ຕອບກັບ LED ກັບ Arduino.

40

4.6.1 ແຜນຜັງ

```
int LED_CONTROL=4;
ການຕັ້ງຄ່າ void()
{
 pinMode(LED_CONTROL, OUTPUT); // initialize pin 4 as output pin
}
void loop()
{
 digitalWrite(LED_CONTROL, HIGH); // ເຮັດໃຫ້ pin 4 HIGH
 delay(1000); // ຄວາມລ່າຊ້າ 1000 mS
 digitalWrite(LED_CONTROL, ຕ້າ); // ເຮັດໃຫ້ pin 4 HIGH
 delay(1000); // ຄວາມລ່າຊ້າ 1000 mS
}
```

4.7 ຫຼືນກັບ LCD ກັບ Arduino

ໍຈສະແດງຜົນໄປເຊຍກັນເປັນຂອງແຫຼວ (LCD) ແມ່ນໂມດູນຈໍສະແດງຜົນທີ່ໃຊ້ທົ່ວໄປ. A 16×2 ຈໍ LCD ຖືກນໍາໃຊ້ເປັນອຸປະກອນສະແດງຢູ່ໃນວົງຈອນ. ໂມດູນນີ້ແມ່ນຕ້ອງການຫຼາຍກວ່າເຈັດສ່ວນເພາະວ່າພວກເຂົາ ບໍມີຂໍ້ຈໍາກັດໃນການສະແດງພິເສດ, ແລະແມ້ກະທັ້ງ custom, ຕົວອັກສອນແລະປະຫຍັດ.

A 16×2 LCD ສາມາດສະແດງ 16 ຕົວອັກສອນຕໍແຖວ, ແລະມີ 2 ແຖວ. ໃນ LCD ນີ້, 5×4 pixel matrix ສະແດງລັກສະນະ. ມັນມີສອງທະບຽນ, ຄື, ລົງທະບຽນຂ້ມູນແລະທະບຽນຄຳສັ່ງ.ຮູບທີ 4.12ສະ ແດງ ໃຫ້ ເຫັນ 16 ×2 ຈໍ LCD.

A 20×4 LCD ມີ 4 ແຖວແລະສາມາດສະແດງ 20 ຕົວອັກສອນຕໍແຖວ. A 5×4 pixel matrix ຖືກ ນຳໃຊ້ເພື່ອສະແດງຕົວອັກສອນ. ລາຍລະອຽດ PIN ແມ່ນຄືກັນກັບ LCD (16×2).ຮູບທີ 4.13ສະ ແດງ ໃຫ້ ເຫັນ 20 ×4 ຈໍ LCD (ຕາຕະລາງ 4.5).

ຮູບທີ 4.12 ການ ສະ ແດງ ໄປ ເຊຍ ກັນ ຂອງ ແຫຼວ (16 ×2).

ຮູບທີ 4.13 ການ ສະ ແດງ ໄປ ເຊຍ ກັນ ຂອງ ແຫຼວ (20 ×4).

ຕາຕະລາງ 4.5 ລາຍລະອຽດ LCD Pin

ປັກໝຸດ	ລາຍລະອຽດ			
Pin (1) ດິນ	ດິນ (0 V)			
ພິນ (2) ວcc	ການສະຫນອງພະລັງງານ (5 V)			
ພິນ (3) ວຍຍ	ຕົວຕ້ານທານຕົວປຽນແປງແມ່ນໃຊ້ເພື່ອປັບຄວາມຄົມຊັດ			
Pin (4) ລົງທະບຽນ ເລືອກ	ເມື່ອຕ໊າ, ມັນເລືອກຄຳສັ່ງລົງທະບຽນ, ແລະຖ້າສູງ, ຫຼັງຈາກນັ້ນມັນເລືອກ ການ ຈົດ ທະບຽນ ຂ້ ມູນ			
ປັກໝຸດ (5) ອ່ານ/ຂຽນ	ສູງ ເພື່ອ ອ່ານ ບັນ ຊີ ແລະ ຕຳ ທີ ຈະ ຂຽນ ກ່ຽວ ກັບ ການ ຈົດ ທະ ບຽນ ສົ່ງ ຂ້			
Pin (6) ເປີດໃຊ້ງານ	ມູນ ກັບ ເສັ້ນ ຂໍ້ ມູນ ໃນ ເວ ລາ ທີ ກຳ ມະ ຈອນ ສູງ ຫາ ຕຳ ແມ່ນ ໄດ້ ຮັບ			
ປັກໝຸດ (7) DB0				
Pin (8) DB1				
Pin (9) DB2	ສາຍຂ້ມູນ 8 ບິດ			
ປັກໝຸດ (10) DB3				
ປັກໝຸດ (11) DB4				
Pin (12) DB5				
Pin (13) DB6				
ປັກໝຸດ (14) DB7				
Pin (15) LED+	Backlight Vcc (5 V)			
Pin (16) LED-	Backlight ground (0 V)			

ການເຊື່ອມຕໍ່ LCD

ເຊື່ອມຕໍ່ອົງປະກອບດັ່ງຕໍ່ໄປນີ້:

- Arduino digital pin (13) ຫາ RS pin (4) ຂອງ LCD.
- Arduino digital pin (GND) ຫາ RW pin (5) ຂອງ LCD.
- Arduino digital pin (12) ຫາ E pin (6) ຂອງ LCD.

- Arduino pin digital (11) ຫາ D4 pin (11) ຂອງ LCD.
- Arduino pin digital (10) ຫາ D5 pin (12) ຂອງ LCD.
- Arduino ດິຈິຕອລ pin (9) ຫາ D6 pin (13) ຂອງ LCD.
- Arduino ດິຈິຕອລ pin (8) ຫາ D7 pin (14) ຂອງ LCD.

ຮູບທີ່ 4.14ສະແດງແຜນວາດວົງຈອນຂອງ Arduino interfacing ກັບ LCD.

ຮູບທີ 4.14 ແຜນວາດວົງຈອນເພື່ອອ່ານ LCD.

facebook.com/somsacki

4.7.1 ແຜນຜັງ

```
# ປະກອບມີ <LiquidCrystal.h>
LiquidCrystal lcd(13, 12, 11, 10, 9, 8);
ການຕັ້ງຄ່າ void()
{
 lcd.begin(20, 4); // ເລີ່ມຕົ້ນ LCD lcd.print("ຍິນດີຕ້ອນ
 รับ"); // Print string on LCD delay(2000); // Delay
 2000mS
 lcd.clear();
}
void loop()
 lcd.setCursor(0, 1); // ຕັ້ງຕົວກະພິບຂອງ LCD lcd.print("ECE
 Department"); // Print string on LCD delay(2000); //
 Delay 2000mS
 lcd.setCursor(0, 2); // ຕັ້ງຕົວກະພິບຂອງ LCD
 lcd.print("Rajesh Singh"); // Print string on LCD
 delay(2000); // Delay 2000mS
}
```