

Asian/Pacific IslanderNative American

Black

- White
- Hispanic
- Multi-race and other

Multi-race and other

Effects of Altruistic Behavior on Schelling's Segregation Model

Jonathan Krahl, Nicola Lo Russo, Richard Schulz

Motivation

- Schelling's model highlights how individual preferences lead to unintended segregation.
- Traditional models assume agents act solely out of self-interest (egoism).
- Jensen et al. (2018) demonstrated that even a small fraction of altruistic agents can significantly improve overall system outcomes.
- Relocation Policies can shape segregation dynamics, but their interplay with altruism is underexplored.

State of the Art

1971: Original Schelling model (Thomas C. Schelling)

→ Even mild preferences for similar neighbors lead to **significant segregation**.

State of the Art

- 1971: Original Schelling model (Thomas C. Schelling)
 - → Even mild preferences for similar neighbors lead to **significant segregation**.
- 2018: Altruistic behavior effect in segregation models (Jensen et al.)
 - → Even a small fraction of altruists dramatically reduces segregation.

State of the Art

- 1971: Original Schelling model (Thomas C. Schelling)
 - → Even mild preferences for similar neighbors lead to **significant segregation**.
- 2018: Altruistic behavior effect in segregation models (Jensen et al.)
 - → Even a small fraction of altruists dramatically reduces segregation.
- 2024: Role of relocation policies in segregation models (Mauro et al.)
 - → Different tailored policies can **affect convergence time**.

Our Approach

Combine Jensen et al. (2018) and Mauro et al. (2024) to understand how altruistic behavior can influence segregation under different policies.

Our Approach

Combine Jensen et al. (2018) and Mauro et al. (2024) to understand how altruistic behavior can influence segregation under different policies.

Research question

What are the effects of altruism on relocation policies in segregation models?

Our Approach

Combine Jensen et al. (2018) and Mauro et al. (2024) to understand how altruistic behavior can influence segregation under different policies.

Research question

What are the effects of altruism on relocation policies in segregation models?

Hypothesis

Altruistic behavior will increase convergence time at a policy-dependant rate.

Schelling Model Recap

- Explores how individual preferences can lead to large-scale social patterns, especially segregation.
- Premise: Individuals have slight preferences for neighbors of similar backgrounds.
- Even mild preferences can result in significant group segregation.

Relocation Policies Overview

How an agent decides to move.

- Random: Agents move to a randomly selected empty cell.
- Distance-Relevance: Closer locations are preferred.
- Minimum Improvement: Agents move to the first cell that offers any improvement, even if minimal.
- Similar Neighbourhood: Prioritizes cells with a neighbourhood similar to the original.
- Different Neighbourhood: Prefers cells with economically dissimilar neighbourhoods compared to the original.
- Maximum Improvement: Agents move to cells where they would be happy; cells are scored directly proportional to the number of same-class agents.

All relocation policies are present in previous literature.

Similar History Relocation Policies

- Idea: Policies that take the historic occupancies of cells into consideration
- Real world analogy: Tenants preferences shape infrastructure development in their neighborhood
- Two new policies: Similar history neighborhood and similar history cell

How it works

- Rate empty cells by looking at their past occupancy
- Randomly choose cell among cells with k-highest scores

Let:

- $H_c = \{h_1, h_2, \dots, h_n\}$: The history of occupancies for the cell c.
- a: The type of the current agent considering relocation.

The score is:

$$Score_{cell}(c, a) = \sum_{i=1}^{n} \delta(a, h_i)$$

where $\delta(a, h_i)$ is defined as:

$$\delta(a, h_i) = \begin{cases} 1 & \text{if } a = h_i, \\ 0 & \text{otherwise.} \end{cases}$$

Results - Comparing convergence time and segregation

	policy	Step		segregation		perc_happy	
		std	mean	std	mean	std	mean
0	maximum_improvement	0.836660	4.2	0.005616	0.745754	0.00000	1.000000
1	minimum_improvement	4.037326	7.6	0.002298	0.547729	0.00000	1.000000
2	similar_history_cell	0.000000	100.0	0.005675	0.397338	0.00908	0.661172
3	similar_history_neighborhood	1.643168	9.2	0.007637	0.693167	0.00000	1.000000

Altruism

How to define altruism? Collective happiness is more important than personal happiness.

Altruism

How to define altruism? Collective happiness is more important than personal happiness.

We take the definition from [Jensen, 2018]: "[An agent] who act[s] to improve the collective utility [...] [A]s objective function [...] altruists consider the variation of the overall utility ΔU ."

$$U = \sum_{i=1}^{n} u_i^{\text{happiness of agent i}}$$

Happiness Delta Calculation

Simulation Setup

Grid setup:

- 50 x 50 grid
- Minority Agents Proportion: 40 %
- Density: 75 %

Agents' Properties:

- Homophily Parameter: 3
- Follow Policy Parameter: range(0,110,10)

Result Evaluation:

Take the average value of 50 simulations.

Results - Altruism 20% - Convergence Rate

Different policies are differently sensitive to altruism. Altruism significantly affects recently_emptied, similar_history_cell. Some policies also show step size reduction.

Results Altruism 20% - Segregation Rate

Altruism smoothes the segregation behavior and level. It delays the kink of similar history cell.

Takeaways and limitations

- Policy effects may be influenced by whether agents behave altruistically or egotistically.
- Altruism smoothes the segregation rate. It can reduce the steps of convergence rate for some policies (proof of concept).

But:

- Policies often address local happiness but fail to capture broader dynamics.
- Real-world altruism is more nuanced and context-dependent.
- People do not often agree on an "optimum".
- Policies are difficult to apply and analyze in real-world.
- We could try an approach that mixes policies.
- Increased computational power could show better convergence results.

References

- [1] Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2), 143-186.
- [2] Mauro, G., & Pappalardo, L. (2024). Dynamics of Policy-Driven Segregation in Schelling Models. In Proceedings of the Workshops of the EDBT/ICDT 2024 Joint Conference (March 25-28, 2024), Paestum, Italy. CEUR Workshop Proceedings.
- [3] Jensen, P., Matreux, T., Cambe, J., Larralde, H., & Bertin, E. (2018). Giant Catalytic Effect of Altruists in Schelling's Segregation Model. Physical Review Letters, 120(20), 208301.