Temporary Layoffs, Loss-of-Recall, and Cyclical Unemployment Dynamics

Mark Gertler¹, Christopher Huckfeldt², Antonella Trigari³

¹New York University, NBER

²Cornell University

³Bocconi University, CEPR, and IGIER

Midwest Macro May 20, 2022

What We Do (1/2)

- ▶ Document the contribution of temporary layoffs (TL) to unemployment dynamics, from 1978 onwards
- Study contribution of "loss-of-recall" to cyclicality of unemployment
- Develop model of unemployment fluctuations that distinguishes between temporary and permanent separations ...

What We Do (2/2)

- ► Model allows for two types of unemployment:
 - Jobless unemployment (JL): search for new job
 - Temporary-layoff unemployment (TL): wait for recall

Worker in u_{TL} moves to u_{JL} if prior job is destroyed (i.e., loss-of-recall)

- Calibrate model to dynamics of jobless and temporary-layoff unemployment using CPS, 1979-2019
- Adapt the model to study the Covid-19 labor market

Why We Do It (1/2)

We want to understand the labor market in the wake of March 2020

Why We Do It (1/2)

We want to understand the labor market in the wake of March 2020

- Onset of Covid-19 pandemic: surge of temporary layoffs
 - First month: 15% of employed workers move to u_{TL}
 - Temporary layoff persistently high thereafter
 - Hit all sectors of the economy
- ▶ Workers in u_{TL} typically return to work faster
 - Via recall to previous job
 - ▶ Better re-employment wage outcomes than for workers in u_{JL}
 - Potential for swifter employment recovery
- But: possibility temporary layoffs become permanent (loss-of-recall)
 - Elevates risk of a slow recovery

Why We Do It (2/2)

- Fiscal response: Paycheck Protection Program (PPP)
 - Forgiveable loans for firms to recall workers
 - ▶ \$953-billion program— larger than 2009 Recovery Act
 - \$659 bil. allocated in first three months of program
- What role did PPP play in shaping employment recovery?
 - What is the no-PPP counterfactual?
 - Answer requires a structural model

Our findings:

- ► Large monthly employment gains of 2% in short-run
 - ▶ Due to higher recalls and preventing loss-of-recall
- Smaller long-run impact, but still substantial
 - Employment gains of 1% through May 2021

Plan

- ► Empirics of temporary-layoff unemployment
- Model (three stocks, five flows)
- Model evaluation

and then

► Application to Covid-19 Recession

Empirics of

Temporary-Layoff Unemployment & "Loss of Recall"

1. u_{TL} comprises just 1/8 of total unemployment (u)

Table: Unemployment, jobless unemployment, and temporary-layoff unemployment

	U =		
	JL + TL	JL	TL
mean(x)	0.062	0.054	0.008
std(x)/std(Y)	8.518	8.532	10.906
corr(x, Y)	-0.848	-0.810	-0.788

For second and third row, series are taken as (1) quarterly averages of seasonally adjusted monthly series, (2) logged, then (3) HP-filtered with smoothing parameter of 1600

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u

Table: Gross worker flows, 1978–2019 To						
From	E	TL	JL	1		
E	0.955	0.005	0.011	0.029		
TL	0.435	0.245	0.191	0.129		
JL	0.244	0.022	0.475	0.259		
	0.043	0.001	0.027	0.929		

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate

Table: Transitions from JL, TL, and JL-from-TL (1978–2019)

Ta

From	E	TL	JL	1
JL, unconditional	0.244	0.022	0.475	0.259
TL, unconditional	0.435	0.245	0.191	0.129
JL-from-TL	0.271	0.000	0.556	0.173

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:

	$p_{E,TL}$	$p_{E,JL}$	$p_{\mathit{TL},E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.264	4.962	6.609	7.126	10.084
corr(x, Y)	-0.393	-0.674	0.599	0.803	-0.192

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL

	$p_{E,TL}$	$p_{E,JL}$	$p_{\mathit{TL},E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.264	4.962	6.609	7.126	10.084
corr(x, Y)	-0.393	-0.674	0.599	0.803	-0.192

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment

	$p_{E,TL}$	$p_{E,JL}$	$p_{TL,E}$	$p_{JL,E}$	$p_{TL,JL}$
std(x)/std(Y)	11.264	4.962	6.609	7.126	10.084
corr(x, Y)	-0.393	-0.674	0.599	0.803	-0.192

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)

	$p_{E,TL}$				$p_{TL,JL}$
std(x)/std(Y)	11.264	4.962	6.609	7.126	10.084
corr(x, Y)	-0.393	-0.674	0.599	0.803	-0.192

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)

```
Direct effect: p_{E,TL} \uparrow \& p_{TL,E} \downarrow \Rightarrow u_{TL} \uparrow
Indirect effect: p_{E,TL} \uparrow \& p_{TL,JL} \uparrow \Rightarrow u_{JL\text{-from-}TL} \uparrow
```

- 1. u_{TL} comprises just 1/8 of total unemployment (u)
- 2. But look at flows: E-to-TL's account for 1/3 of all separations to u
- 3. And, JL-from-TL's return to employment at substantially lower rate
- 4. E-to-TL's are particularly important during recessions:
 - 4.1 More employed workers are put on TL
 - 4.2 Fewer workers from u_{TL} are recalled to employment
 - 4.3 More workers move from u_{TL} to u_{JL} (loss-of-recall)
- 5. We develop methods to estimate the *indirect effect*, i.e. JL-from-TL

Direct effect:
$$p_{E,TL} \uparrow \& p_{TL,E} \downarrow \Rightarrow u_{TL} \uparrow$$

Indirect effect: $p_{E,TL} \uparrow \& p_{TL,JL} \uparrow \Rightarrow u_{JL\text{-from-}TL} \uparrow$

Model

Model

Model

Starting point: RBC model with search and matching

- Perfect consumption insurance
- Wage rigidity via staggered Nash wage bargaining

Key variations:

- Endog. separations into temporary-layoff unemp.
- Recall hiring from temporary-layoff unemployment
- Endogenous separations into jobless unemployment
 - "Quasi-efficient:" allow for temporary paycuts
 - ▶ Permanent sep. triggers $u_{TL} \rightarrow u_{JL}$ for some workers
- Hiring from jobless unemployment

Details of model

- Unemployed are either in
 - JL: Searching for work in a DMP-style matching market
 - TL: Waiting for recall or loss-of-recall
- Firms, w/ CRS technology in labor and capital, draws cost shocks
 - ► Overhead costs to entire firm ⇒ separations to JL and JL-from-TL
 - ► Worker-specific overhead costs ⇒ separations to TL
- After separations: firms rent capital, hire from JL, and recall from TL
- Base wages set via staggered Nash bargaining
 - But temporary paycuts avoid inefficient exit

Model evaluation

Calibration

- Calibrate model to match standard labor market stocks and flows...
 - Plus characteristics of temporary layoff, recall, and loss-of-recall
- Nested, two-stage estimation of 16 parameters
 - ► Inner loop: long-run moments
 - Outer loop: business cycle features
- Where we tie our hands:
 - Not a small-surplus calibration
 - Temporary paycuts can undo wage rigidty
- Model does well!

▶ Loss-of-Recall

recession

Application to the Covid-19

Adapting the model to the Covid-19 recession

- Introduce two shocks:
 - "Lockdown" shocks: workers move to lockdown-TL (MIT shock)
 - Persistent shocks to effective TFP w/ each wave (social distancing)
- Add two parameters specific to workers on lockdown-TL:
 - Allow for different recall cost (vs. TL)
 - Allow for different rate for loss-of-recall (vs. TL)
- Treatment of PPP:
 - Direct factor payment subsidy, à la Kaplan, Moll, Violante (2020)
 - Pre-announcement: program is unexpected
 - Post-announcement: availability of funds is known
- Estimate shocks and parameters to match stocks and flows
 - Model does well!

No-PPP Counterfactual

Q: What did PPP do?

Keep decision rules, parameters, and shocks, but remove PPP

A: Save a lot of worker/job matches!

- ▶ Average monthly empl. gains of \approx 2.14 p.p. in first 6 months
- Doubles number of recalls over the same period

➤ Stocks, no-PPP counterfactual

➤ Flows, no-PPP counterfactual

Counterfactual: JL-from-TL without PPP

Conclusion

Concluding Remarks

Two Directions for Further Work

- 1. Match-specific capital
 - Recalls preserve match-specific capital
 - Thus, interesting to consider heterogenous match quality

2. Reallocation

- Evidence that smaller firms benefited more from PPP
- PPP might have hindered efficient reallocation

Supplementary Slides

Model: full slides

Searchers, Matching and Recalls

- Jobless unemployment (DMP matching market)
 - New hires *m* from unemployment

$$m = \sigma_m u_{JJ}^{\sigma} v^{1-\sigma}$$

 \triangleright Job finding and hiring probabilities p and q, hiring rate x

$$\boldsymbol{p} = \frac{\boldsymbol{m}}{\boldsymbol{u}_{JL}}, \quad \boldsymbol{q} = \frac{\boldsymbol{m}}{\boldsymbol{v}}, \quad \boldsymbol{x} = \frac{\boldsymbol{p} \cdot \boldsymbol{u}_{JL}}{\mathcal{F}(\boldsymbol{\vartheta}^*)\boldsymbol{n}} = \frac{\boldsymbol{q} \cdot \boldsymbol{v}}{\mathcal{F}(\boldsymbol{\vartheta}^*)\boldsymbol{n}}$$

- ► Temporary-layoff unemployment
 - \triangleright Recalls m_r from TL unemp., recall hiring rate x_r

$$m_r = p_r u_{TL}, \quad x_r = \frac{p_r u_{TL}}{\mathcal{F}(\vartheta^*) n}$$

- ▶ Workers in u_{TL} move to u_{JL} with exog. probability $1 \rho_r$
 - or if firm exits (with prob. $1 \mathcal{G}(\gamma^*)$)

Firms (or plants, shifts, production unit, etc.)

- Firms are "large", i.e hire a continuum of workers
 - Firm, or establishment, or shift, or job, etc.
- CRS technology
 - $ightharpoonup n \equiv$ beginning of period employment
 - $ightharpoonup \mathcal{F} \equiv$ fraction of workers not on temporary layoff
 - \blacktriangleright $\xi_k, \xi_n \equiv$ factor utilization rates

$$y = \tilde{z}(\xi_k k)^{\alpha}(\xi_n \mathcal{F} n)^{1-\alpha}$$
$$= zk^{\alpha}(\mathcal{F} n)^{1-\alpha}$$

Given CRS technology, firm decisions scale independent

Overhead Costs: Temporary versus Permanent Layoffs

- $\gamma \equiv i.i.d$ firm specific cost shock
- $\vartheta \equiv i.i.d.$ worker-specific cost shock
 - Non-exiting firms ($\gamma < \gamma^*$) pay overhead costs to operate:

$$\varsigma(\gamma, \vartheta^*) n = \left[\varsigma_{\gamma} \gamma + \varsigma_{\vartheta} \int^{\vartheta^*} \vartheta d\mathcal{F}(\vartheta) \right] n$$
$$\mathcal{F}(\vartheta^*) = \Pr\{\vartheta \leq \vartheta^*\} \qquad \mathcal{G}(\gamma^*) = \Pr\{\gamma \leq \gamma^*\}$$

- ▶ Temporary layoff: each worker draws ϑ
 - ▶ Workers w/ $\vartheta \ge \vartheta^*$ (endog. thresh.) go on temporary layoff
- ightharpoonup Permanent layoff: firms draws γ
 - Firm operates if $\gamma < \gamma^*$ (endog. thresh.); otherwise exits

Timing of Events

- 1. Firm enters period with stock of workers *n*
- 2. Aggregate & worker-specific shocks revealed
- 3. Firms and workers bargain over base wages w
- 4. Firms assigns $1 \mathcal{F}(\vartheta^*)$ workers to temporary layoff,
- 5. Firm-specific shock γ revealed
 - ▶ If $\gamma \ge \gamma^* \to \text{firm exits, workers move to } u_{JL}$
 - Firm's workers in u_{TL} move to u_{JL}
 - ▶ If $\gamma < \gamma^* \rightarrow$ firm continues
 - Rents capital and produces output
 - \blacktriangleright Hires workers from u_{JL} , recalls workers from u_{TL}
 - Possibility of temporary paycuts, i.e. remitted wages $\omega < w$

Timing of Events

- 1. Firm enters period with stock of workers *n*
- 2. Aggregate & worker-specific shocks revealed
- 3. Firms and workers bargain over base wages w
- 4. Firms assigns $1 \mathcal{F}(\vartheta^*)$ workers to temporary layoff,
- 5. Firm-specific shock γ revealed
 - ▶ If $\gamma \ge \gamma^*$ → firm exits, workers move to u_{JL}
 - Firm's workers in u_{TL} move to u_{JL}
 - ▶ If $\gamma < \gamma^* \rightarrow$ firm continues
 - Rents capital and produces output
 - \blacktriangleright Hires workers from u_{JL} , recalls workers from u_{TL}
 - Possibility of temporary paycuts, i.e. remitted wages $\omega < w$

Solve backwards

Behind the timing

- Timing accomplishes the following:
 - 1. Temporary layoff policy ϑ^* independent of γ
 - Analytic tractability
 - 2. Base wages are independent of γ
 - Computational tractability
 - 3. Firm cannot cut wages to avoid temporary layoffs
 - Consistent with data
- \blacktriangleright (1) and (2) achieved by mid-period realization of γ
- (3) achieved by separation of temporary layoffs and bargaining

Firm problem (at non-exiting firms w/ TL policy ϑ^*)

$$F(n, \mathbf{w}, \gamma, u_{TL}, \mathbf{s}) = \max_{\mathbf{k}, \mathbf{x}, \mathbf{x}_{r}} \left\{ z \mathbf{k}^{\alpha} \left[\mathcal{F}(\vartheta^{*}) n \right]^{1-\alpha} - \omega \left(\mathbf{w}, \gamma, \mathbf{s} \right) \mathcal{F}(\vartheta^{*}) n - r \mathbf{k} \right.$$
$$\left. - \iota(\mathbf{x}) \mathcal{F}(\vartheta^{*}) n - \iota_{r}(\mathbf{x}_{r}) \mathcal{F}(\vartheta^{*}) n - \varsigma(\vartheta^{*}, \gamma) n \right.$$
$$\left. + \mathbb{E} \left\{ \Lambda(\mathbf{s}, \mathbf{s}') \int_{\vartheta^{*'}}^{\gamma^{*'}} \max_{\vartheta^{*'}} \check{F}\left(n', \mathbf{w}', \gamma', u'_{TL}, \mathbf{s}' \right) d\mathcal{G}(\gamma') | n, \mathbf{w}, \mathbf{s} \right\} \right\},$$

s.t.

$$u'_{TL} = \rho_r u_{TL} - \rho_r x_r \mathcal{F}(\vartheta^*) n + (1 - \mathcal{F}(\vartheta^*)) n$$

$$n' = (1 + x + x_r) \mathcal{F}(\vartheta^*) n$$

$$x_r \mathcal{F}(\vartheta^*) n \le u_{TL}$$

with

$$\iota(\mathbf{X}) = \chi \mathbf{X} + \frac{\kappa}{2} (\mathbf{X} - \tilde{\mathbf{X}})^2, \quad \iota_r(\mathbf{X}_r) = \chi \mathbf{X}_r + \frac{\kappa_r}{2} (\mathbf{X}_r - \tilde{\mathbf{X}}_r)^2,$$
and $\max \breve{F} = F$

Firm problem (at non-exiting firms w/ TL policy ϑ^*)

$$F(n, \mathbf{w}, \gamma, u_{TL}, \mathbf{s}) = \max_{\mathbf{k}, \mathbf{x}, \mathbf{x}_{r}} \left\{ z_{\mathbf{k}^{\alpha}}^{\alpha} \left[\mathcal{F}(\vartheta^{*}) n \right]^{1-\alpha} - \omega \left(\mathbf{w}, \gamma, \mathbf{s} \right) \mathcal{F}(\vartheta^{*}) n - r_{\mathbf{k}} \right.$$
$$\left. - \iota(\mathbf{x}) \mathcal{F}(\vartheta^{*}) n - \iota_{r}(\mathbf{x}_{r}) \mathcal{F}(\vartheta^{*}) n - \varsigma(\vartheta^{*}, \gamma) n \right.$$
$$\left. + \mathbb{E} \left\{ \Lambda(\mathbf{s}, \mathbf{s}') \int_{\vartheta^{*'}}^{\gamma^{*'}} \max_{\vartheta^{*'}} \check{F}\left(n', \mathbf{w}', \gamma', u'_{TL}, \mathbf{s}' \right) d\mathcal{G}(\gamma') | n, \mathbf{w}, \mathbf{s} \right\} \right\},$$

s.t.

$$u'_{TL} = \rho_r u_{TL} - \rho_r x_r \mathcal{F}(\vartheta^*) n + (1 - \mathcal{F}(\vartheta^*)) n$$

$$n' = (1 + x + x_r) \mathcal{F}(\vartheta^*) n$$

$$x_r \mathcal{F}(\vartheta^*) n \le u_{TL}$$

with

$$\iota(\mathbf{X}) = \chi \mathbf{X} + \frac{\kappa}{2} (\mathbf{X} - \tilde{\mathbf{X}})^2, \quad \iota_r(\mathbf{X}_r) = \chi \mathbf{X}_r + \frac{\kappa_r}{2} (\mathbf{X}_r - \tilde{\mathbf{X}}_r)^2,$$
and $\max \breve{F} = F$

Hiring conditions (at non-exiting firms w/ policy ϑ^*)

Let $J(w, \gamma) \equiv F(n, w, \gamma) / n$ be the firm value per worker

$$\chi + \kappa \left(\mathbf{x} - \tilde{\mathbf{x}} \right) = \mathbb{E} \left\{ \Lambda \int_{\vartheta^{*'}}^{\gamma^{*'}} \max_{\vartheta^{*'}} \check{\mathbf{J}} \left(\mathbf{w}', \gamma' \right) d\mathcal{G}(\gamma') \right\}$$
$$\chi + \kappa_r \left(\mathbf{x}_r - \tilde{\mathbf{x}}_r \right) = \mathbb{E} \left\{ \Lambda \int_{\vartheta^{*'}}^{\gamma^{*'}} \max_{\vartheta^{*'}} \check{\mathbf{J}} \left(\mathbf{w}', \gamma' \right) d\mathcal{G}(\gamma') \right\}$$

- ▶ Link between x_r and recall rate μ : $x_r = \frac{\mu u_r}{\mathcal{F}(\vartheta^*)n}$

Temporary layoffs

- ► Temporary layoffs = $(1 \mathcal{F}(\vartheta^*))\mathcal{G}(\gamma^*)n$
- ► TL threshold ϑ^* maximizes $\int^{\gamma^*} \check{J}(\mathbf{w}, \gamma, \mathbf{s}) d\mathcal{G}(\gamma)$:

$$\int^{\gamma^*} J(\mathbf{w}, \gamma, \mathbf{s}) d\mathcal{G}(\gamma) + \varsigma_{\gamma} \Gamma + \varsigma_{\vartheta} \Theta \mathcal{G}(\gamma^*) = \varsigma_{\vartheta} \vartheta^* \mathcal{F}(\vartheta^*) \mathcal{G}(\gamma^*)$$

where
$$\Gamma = \int^{\gamma^*} \gamma d\mathcal{G}(\gamma)$$
 and $\Theta = \int^{\theta^*} \theta d\mathcal{F}(\theta)$

Shutdowns (permanent layoffs)

- ▶ Permanent separations from employment = $(1 \mathcal{G}(\gamma^*))n$
- ▶ Shutdown threshold γ^* solves

$$J(\underline{w}, \gamma^*, \mathbf{s}) = 0$$

with $\underline{w} \equiv \text{reservation wage}$

Paycut threshold $\gamma^{\dagger} \in (0, \gamma^*)$ solves

$$J(\mathbf{w}, \gamma^{\dagger}, \mathbf{s}) = 0$$

Paycuts for $\gamma \in (\gamma^{\dagger}, \gamma^*)$ (firm gets 0 surplus in this region)

Workers (1/2)

Value of work

$$V(\mathbf{w}, \gamma, \mathbf{s}) = \omega(\mathbf{w}, \gamma, \mathbf{s}) + \mathbb{E}\left\{\Lambda(\mathbf{s}, \mathbf{s}') \ \overline{V}(\mathbf{w}', \mathbf{s}') | \mathbf{w}, \mathbf{s}\right\},$$

with

$$egin{aligned} ar{V}(oldsymbol{w}, oldsymbol{s}) &= \mathcal{F}(artheta^*) \left[\int^{\gamma^*} V\left(oldsymbol{w}, \gamma, oldsymbol{s}
ight) d\mathcal{G}(\gamma) + \left(1 - \mathcal{G}(\gamma^*)
ight) U_{JL}(oldsymbol{s})
ight] \ &+ \left(1 - \mathcal{F}(artheta^*)
ight) ar{U}_{TL}(oldsymbol{w}, oldsymbol{s}) \end{aligned}$$

where

- $V_{JL}(\mathbf{s})$ is the value of jobless unemployment
- $ightharpoonup ar{U}_{TL}$ is the expected value of temporary-layoff unemployment
- $\blacktriangleright \ \omega(\mathbf{w}, \gamma, \mathbf{s})$ are remitted wages

Workers (2/2)

Value of jobless unemployment

$$U_{JL}(\mathbf{s}) = b + \mathbb{E}\left\{\Lambda\left(\mathbf{s}, \mathbf{s}'\right) \left[\rho \bar{V}_{X}\left(\mathbf{s}'\right) + (1-\rho) U_{JL}\left(\mathbf{s}'\right)\right] | \mathbf{s} \right\}$$
 where \bar{V}_{X} is the expected value of being a new hire

Value of temporary-layoff unemployment

$$egin{aligned} U_{TL}(oldsymbol{w},oldsymbol{s}) &= b + \mathbb{E}\left\{\Lambda\left(oldsymbol{s},oldsymbol{s}'
ight)\left[p_rar{V}\left(oldsymbol{w}',oldsymbol{s}'
ight) + \left(1-p_r
ight)
ho_rar{U}_{TL}\left(oldsymbol{w}',oldsymbol{s}'
ight) + \left(1-p_r
ight)\left(1-
ho_r
ight)U_{JL}\left(oldsymbol{s}'
ight)
ight]\left|oldsymbol{w},oldsymbol{s}
ight\}. \end{aligned}$$

with

$$ar{U}_{TL}(\mathbf{w},\mathbf{s}) = \mathcal{G}\left(\gamma^*\right)U_{TL}\left(\mathbf{w},\mathbf{s}\right) + \left(1 - \mathcal{G}(\gamma^*)\right)U_{JL}\left(\mathbf{s}\right).$$

Staggered Wage Bargaining

- **Each** period, probability 1λ of renegotiating base wage
- ightharpoonup Parties bargain over surpluses prior to realization of γ
 - ► Worker surplus: $\bar{H}(w, \mathbf{s}) \equiv \bar{V}(w, \mathbf{s}) U_{JL}(\mathbf{s})$
 - Firm surplus: $\bar{J}(w, \mathbf{s}) \equiv \int^{\gamma^*} J(w, \mathbf{s}) d\mathcal{G}(\gamma^*)$
- Contract wage w* solves

$$\max_{w^*} \bar{H}(w^*)^{\eta} \bar{J}(w^*)^{1-\eta}$$

subject to

$$w' = \begin{cases} w \text{ with probability } \lambda \\ w^{*'} \text{ with probability } 1 - \lambda \end{cases}$$

and to wage cut policy

Model evaluation, full slides

Calibration: Assigned Parameters

Parameter values			
Discount factor	β	$0.997 = 0.99^{1/3}$	
Capital depreciation rate	δ	0.008 = 0.025/3	
Production function parameter	α	0.33	
Autoregressive parameter, TFP	$ ho_{\it z}$	$0.99^{1/3}$	
Standard deviation, TFP	σ_{z}	0.007	
Elasticity of matches to searchers	σ	0.5	
Bargaining power parameter	η	0.5	
Matching function constant	$\sigma_{\it m}$	1.0	
Renegotiation frequency	λ	8/9 (3 quarters)	

Calibration: Estimated Parameters (Inner Loop)

Parameter	Description	Value	Target
χ	Scale, hiring costs	1.0567	Average JL, E rate (0.304)
$arsigma_{artheta}\cdot oldsymbol{e}^{\mu_{artheta}}$	Scale, overhead costs, worker	0.0893	Average E , TL rate (0.005)
$arsigma_{\gamma}\cdot m{e}^{\mu_{\gamma}}$	Scale, overhead costs, firm	2.0097	Average E , JL rate (0.011)
$1- ho_r$	Loss of recall rate	0.3925	Average TL, JL rate (0.210)
b	Flow value of unemp.	0.8848	Rel. value non-work (0.71)

Calibration: Estimated Parameters (Outer Loop)

Parameter	Description	Value
$\chi/(\kappa \tilde{x})$	Hiring elasticity, new hires	0.3942
$\chi/(\kappa_r \tilde{x}_r)$	Hiring elasticity, recalls	0.8912
$\sigma_{artheta}$	Parameter lognormal ${\mathcal F}$	1.4140
σ_{γ}	Parameter lognormal ${\cal G}$	0.3215

Moment	Target	Model
SD of hiring rate	3.304	3.253
SD of total separation rate	6.620	4.707
SD of temporary-layoff unemployment, u_{TL}	10.906	10.969
SD of jobless unemployment, u_{JL}	8.532	10.519
SD of hiring rate from u_{JL} relative to	0.445	0.442
SD of recall hiring rate from u_{TL}		

TFP Shock: Employment, Unemployment and Wages

TFP Shock: Transition Probabilities

TFP Shock: Shut off u_{JL} from u_{TL}

Application to PPP, full slides

Adapting the model to the Covid-19 recession

Introduce series of shocks and two parameters

- 1. Shocks:
 - "Lockdown" shocks
 - ▶ Beginning of period: fraction 1ν move to TL unemp
 - Unanticipated (MIT shock)
 - Utilization restrictions on capital and labor
 - ► Transitory shock at start of pandemic
 - New persistent shock with each Covid wave
 - PPP as factor payment subsidy (as in KMV)
 - ▶ PPP 2020: 12.5% of quarterly GDP, most payments May-July
 - ▶ PPP 2021: 5.4% of quarterly GDP, most payments Jan-April

Thus, need to estimate:

- 1.1 Lockdown shocks for each month of pandemic (+T)
- 1.2 Size of transitory utilization shock at onset of pandemic (+1)
- 1.3 Size of persistent utilization shock for three waves (+3)

Recession Experiment, cont.

• • •

2. Two parameters:

(Possibly) reduced recall costs for workers in lockdown

$$\chi X_r + \frac{\kappa_r}{2} \left(X_r - \xi \underbrace{\frac{(1-\phi)u_{TL}}{\mathcal{F}(\vartheta^*)n}}_{\text{Workers on lockdown}} - \tilde{X}_r \right)^2$$

- $ightharpoonup 0 \le \xi \le 1$
- ightharpoonup Different rate of exog. TL-to-JL for workers on lockdown, $ho_{r\phi}$

Recession Experiment, cont.

- Moments to match:
 - 1. Stocks: $\{u_{TL}, u_{JL}\}_{\tau}$ since onset of pandemic
 - 2. Gross flows: $\{g_{E,TL}, g_{TL,E}, g_{TL,JL}\}_{\tau}$ since onset
 - 3. Inflows into u_{JL} : March-April 2020 only
 - To discipline size of transitory shock
- Estimate by SMM:
 - T months of pandemic w/ 3 waves (for now)
 - \triangleright (5 · T + 1) moments to match
 - ightharpoonup (T+5) parameters to estimate
 - System is highly overidentified

Parameter, shock estimates

Parameters

Variable	Description	Value	
ρ_Z	Autoregressive coefficient	0.7651	
	for persistent utilization shocks	0.7051	
ξ	Adjustment costs	0.4988	
	for workers on lockdown		
$1- ho_{r\phi}$	Probability of exogenous loss of recall for	0.6329	
	workers in temporary unemployment	0.0329	

Shocks

Description	Value
Persistent utilization shock, April 2020	-10.28%
Transitory utilization shock, April 2020	-0.90%
Persistent utilization shock, September 2020	-4.23%
Persistent utilization shock, January 2021	-9.56%

Parameter, shock estimates

Covid Onset, Stocks

Covid Onset, Gross Flows

Policy Counterfactual: No PPP, stocks

Policy Counterfactual: No PPP, flows

PPP takeaway

- PPP achieved sizeable employment gains
- Immediate term: May to September 2020
 - Achieved average monthly employment gains of 2.14%
 - Doubled cumulative recalls
- Longer term
 - Smaller persistent employment gains
 - Avg. monthly empl. at least 1% higher through May 2021
- Employment gains came from recalls
 - ightharpoonup PPP preserved ties btwn firms and workers in u_{TL}
 - Fulfilled mandate