NOT function (Inverter)

- Boolean expression $X = \overline{A}$
- Truth table

Input	Output
LOW (0)	HIGH (1)
HIGH (1)	LOW (0)

• Logic circuit

Circuit implementation

AND operation

- Boolean expression X = AB
- Truth table

Inputs		Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{X}
0	0	0
0	1	0
1	0	0
1	1	1

• Logic circuit

$$A \longrightarrow X = AB$$

Inputs			Output
\boldsymbol{A}	\boldsymbol{B}	<i>C</i>	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Application of AND gate

Seat Belt Alarm System

If the ignition is on and the seat belt is unbuckled and the timer is running, the output is HIGH.

OR operation

- Boolean expression X = A + B
- Truth table

A	В	A + B = X
0	0	0 + 0 = 0
0	1	0 + 1 = 1
1	0	1 + 0 = 1
1	1	1 + 1 = 1

• Logic circuit

Question: draw the truth table for 3-input OR gate

Application of OR gate

When one of the windows or the door is opened, the gate output goes HIGH.

NAND gate

Boolean expression

$$X = \overline{AB}$$

Logic circuit

Truth table

Inputs		Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{X}
0	0	1
0	1	1
1	0	1
1	1	0

 Inherent in a NAND gate's operation is the fact that one or more LOW inputs produce a HIGH output

$$\overline{AB} = \overline{A} + \overline{B}$$

Verify this using truth table

Circuit

Question: draw the truth table for 3-input NAND gate

NOR gate

Boolean expression

$$X = \overline{A + B}$$

Logic circuit

Truth table

Inputs		Output
\boldsymbol{A}	В	\boldsymbol{X}
0	0	1
0	1	0
1	0	0
1	1	0

A HIGH is produced on the gate output only when all of the inputs are LOW

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Verify this using truth table

Circuit

Question: draw the truth table for 3-input NOR gate

Exclusive-OR (XOR) gate

- The output of XOR is HIGH only when the two inputs are at opposite logic levels.
- Truth table

Inputs		Output
A	\boldsymbol{B}	\boldsymbol{X}
0	0	0
0	1	1
1	0	1
1	1	0

• Logic circuit

Question: draw the truth table for 3-input XOR gate

Exclusive-NOR (XNOR) gate

- The output of XNOR is LOW only when the two inputs are at opposite logic levels.
- Truth table

Inp	outs	Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{X}
0	0	1
0	1	0
1	0	0
1	1	1

- Boolean expression $X = \overline{AB} + AB$
- Logic circuit

Think about it:

• In the truth table with two inputs, how many lines? How many columns?

Truth Table & Boolean Expression

Even or odd 1s

A	В	C	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

y = A'BC + AB'C + ABC'

Boolean Expression & Logic Circuit

Truth Table & Logic Circuit

Inputs				Output
\boldsymbol{A}	В	\boldsymbol{C}	D	A(B + CD)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1
1	1	1	1	1

Reading materials

• Chapter 3 of Floyd book