```
Supplementary - September 2022
           Solve (i) p(1+q) = qz (ii) py^2 = x(y^2 + q^2)
           20MA201
                                                                                                                   6
                                                                                                                         L1
          Solve by the method of separation of variables \frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, where
                                                                                                                   7
                                                                                                                         L2
           u(x,0)=6e^{-3x}
      c) Derive one dimensional wave equation in the form \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}
                                                                                                                   7
                                                                                                                          L2
                                                    Unit - IV
 7. a) Evaluate \iiint 5x^2y^3z \ dxdydz
                                                                                                                   6
                                                                                                                          L1
            Change the order of integration and hence evaluate \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^2 (e^{-x^2/y}) dy dx
                                                                                                                   7
                                                                                                                          L2
      c) Prove that \beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}
                                                                                                                   7
                                                                                                                          L2
      a) Evaluate \int_{1}^{2} x(8-x^3)^{\frac{1}{3}} dx in terms of Gamma function.
                                                                                                                          L1
           Find the area of the cardioid r = a(1 + \cos \theta). Using double integration.
                                                                                                                   7
                                                                                                                          L2
           Find the volume common to the cylinders x^2 + y^2 = a^2 and x^2 + z^2 = a^2.
                                                                                                                   7
                                                                                                                          L2
 9. a) Find (i) L\{\cos 2t \cos 3t\}, (ii) L\{e^{-4t}\int_{0}^{t} \frac{\sin 3u}{u} du\}.
                                                                                                                   6
                                                                                                                          L2
      b) Rewrite f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \cos 2t, \pi < t < 2\pi \\ \cos 3t, & t > 2\pi \end{cases} using unit step functions and find
            its Laplace transform.
                                                                                                                   7
      c) Find the Laplace transform of
                                                                                                                          L2
                   f(t) = t : 0 < t < c
                      = 2c - t; c < t < 2c, f(t + 2c) = f(t).
                                                                                                                   7
                                                                                                                         L2
10.
          Find (i) L^{-1}\left\{\frac{5s+1}{(s^2+2s+15)}\right\} (ii) L^{-1}\left\{\log\frac{s+4}{s+5}\right\}
                                                                                                                   6
                                                                                                                          L2
     b) Using convolution theorem find L^{-1}\left\{\frac{2}{(s^2+1)(s+1)}\right\}
    c) Solve y''(t) + 2y'(t) + 5y(t) = e^{-t} \sin t; y(0) = 0,
                                                                                                                    7
                                                                                                                          L2
            y'(0) = 1 by Laplace transform method.
                                                                                                                    7
                                                                                                                          L2
 BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome
```

USN

NMAM INSTITUTE OF TECHNOLOGY, NITTEN

(An Autonomous Institution affiliated to VTU, Belagayi)

Second Semester B.E. (Credit System) Degree Examinations of Certification Supplementary Examinations - September 2022: Certification States

20MA201- ENGINEERING MATHEMATICS - II

ion: 3 Hours

Max. Marks: 100

ole: Answer Five full questions choosing One full question from each Unit.

ole: Answer Five full questions choosing One full question from each	ii Ollit.			
Unit – I	Marks	BT*	CO*	PO*
Solve $[3x^2y + 6xy + x]dx + [x^3 + 3x^2 + y]dy = 0$.	6	L*1	1	1
If a body originally is at $85^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the				
temperature of air being $40^{\rm o}C$, find the temperature of the body after 40 minutes from the original.	7	L2	1	2
Solve $\cos^2 x \frac{dy}{dx} + y = \tan x$.	7	L1	1	1
Solve $\sin(px - y) = p$. Find the member of the orthogonal trajectories of the family	6	L1	1	1
$y = ke^{-2x} + 5x$ passing through the point (0, 5).	7	L2	1	2
Solve $p(p+x) = y(y+x)$.	7	L1		1
Solve $(D^2 + 5D + 6)y = xe^{3x} + e^{2x}$.	6	L1	2	1
Solve $(D^2 - 2D + 2)y = e^x \tan x$ using the method of variation of	7	L2	2	1
parameters. Solve $x \frac{d^3 y}{dx^3} + \frac{d^2 y}{dx^2} - \frac{2y}{x^2} = x + \frac{1}{x^3}$	7	L2	2	1
Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \cos 4x + 5x^2$.	6			
Solve $(D^2 + 2D + 3)y = 5 + 7x + 3x^2$	7	L2	2 2	2 1
Solve (D ² + 2D + 1) $y = 2e^{x}+e^{2x}+7$	7	L2	2 2	2 2
Unit – III				
Solve by direct integration $\frac{\partial^3 u}{\partial x \partial y^2} = \sin(5x + 2y) + 2xy$	ϵ	3 L	1 (3 1
Solve by Lagrange's method $(mz - ny)\frac{\partial z}{\partial x} + (nx - lz)\frac{\partial z}{\partial y} + mx - ly = 0$	7	7 L	2	3
Derive one dimensional heat flow equation in the form $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ P.T.O		7 L	2	3

c) Find the inverse Laplace transform of $\log \frac{s^2+1}{s(s+1)}$.

6 L2

Unit - III

7. a) Form the partial differential equation by eliminating the arbitrary constants / functions from

i) $z = ax + by + a^2 + b^2$; ii) $x + y + z = f(x^2 + y^2 + z^2)$.

7 L2

b) Derive one dimensional wave equation in the form $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$. c) Solve the following PDE by direct integration method:

7 L3

 $\frac{\partial^2 z}{\partial x \partial y^2} + 12x^2y + \sin(x - 2y) = 0.$

6 L2

Solve $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ by the method of separation of variables.

7 L2

Solve $(x^2 - y^2 - z^2)p + 2xyq = 2xz$. Solve $p^2y(1 + x^2) = qx^2$.

7 L2

L2 6

> :)][1 (3)()3

ent eliwa and social

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

Committee to should be

NMAM INSTITUTE OF TECHNOLOGY, NIXTE

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester B.E. (Credit System) Degree Examinations

September - October 2022

21MA201 - ENGINEERING MATHEMATICS - II

tion: 3 Hours

Max. Marks: 100

ote: Answer Five full questions choosing Two full questions from Unit - I & Unit - II each and One full question from Unit - III.

	Unit – I	Marks	вт*	CO*	PO*
100000000000000000000000000000000000000	Solve $\frac{dy}{dx} + y \tan x = y^3 \sec x$.	7	L*2	1	2
b)	A body originally at $80^{\circ}C$ cools down to $60^{\circ}C$ in 20 minutes, the temperature of air being $40^{\circ}C$. Find the temperature of the body after 40 minutes from the original.	_			
c)	Solve $(4D^2 - 1)y = e^{2x} + 1$.	7 6	L3 L2	1 2	2 2
a)	Solve $\frac{dy}{dx} - \frac{dx}{dy} = \frac{x}{y} - \frac{y}{x}$.	7	L2	1	2
b) c)	Solve $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} + 2y = 10\left(x + \frac{1}{x}\right)$.	7	L2	2	2
	Find the orthogonal trajectories of $\frac{x^2}{a^2} + \frac{y^2}{a^2 + \lambda} = 1$ where λ is a parameter.	6	L3	1	2
a) b)	Solve $(D^2 + 2D + 2)y = 1 + 3x + x^2$. Using the method of variation of parameters, solve	7	L2	2	2
9	$(D^2 + 1)y = \sec x \tan x$. Find the general and singular solutions of $p = \sin(y - xp)$.	7 6	L3 L2	2 1	2 2
	Unit – II				
3	If $L\{f(t)\} = F(s)$ then prove that $L\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} (F(s))$. Using partial fraction method find the inverse Laplace transform of	7	L3	3	1
	$\frac{s^2+s-2}{s(s+3)(s-2)}.$	7	L2	4	2
3	Find the Laplace transform of $e^{-3t}(2\cos 5t - 3\sin 5t)$.	6	L2	3	2
2)	If $f(t)$ is a periodic function with period T , then prove that				
	$L\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-st} f(t) dt$	7	L3	3	1
o) 3)	Find the Laplace transform of $\int_0^t \frac{\cos at - \cos bt}{t} dt$. Using convolution theorem find the inverse Laplace transform of	7	L2	3	2
25	$\frac{1}{(s^2+a^2)^2}$.	6	L2	4	2
a)	Rewrite the following function using unit step function and find its Laplace transform: $(t^2, 0 \le t < 2)$				
	$f(t) = \begin{cases} t^2, & 0 \le t < 2\\ 4, & 2 \le t < 4\\ 0, & t \ge 4 \end{cases}$	7	L2	! 3	3 2
)	Using Laplace transform method, solve the differential equation $x''(t) + 4x(t) = 2t - 8$, $x(0) = 1$ and $x'(0) = 0$.	7	' Li	3 4	1 2

1

5. a) Find (i) $(i)L^{-1}\left[\frac{s^2-3s+4}{s^3}\right]$ (ii) $L^{-1}\left\{\frac{s+2}{s^2-4s+13}\right\}$

- 6 L3
- b) If $L[f(t)] = \overline{f}(s)$, then prove that $L[t^n f(t)] = (-1)^n \frac{d^n}{ds^n} \overline{f}(s)$ for
- 7 L2

3

- c) Find the inverse Laplace transform of $\frac{1}{(s^2+1)(s^2+9)}$ by using the convolution theorem.
- 7 L3 4
- 6. a) Find the inverse Laplace transform of (i) $\log \left[\frac{s+1}{(s-1)} \right]$ (ii) $\frac{1-e^{-2s}}{s^2}$.
- 6 L2 4
- b) Express $f(t) = \begin{cases} t^2, 0 < t \le 3 \\ 4t, t > 3 \end{cases}$ in terms of unit step function and hence find its Laplace transform.
- 7 L3 3

c) Find $L\{f(t)\}\$ if $f(t) = \begin{cases} t, & 0 < t < c \\ 2c - t, c \le t < 2c \end{cases}$ and f(t + 2c) = f(t).

7 L2 3

Unit - III

- 7. a) Form the partial differential equation by eliminating the arbitrary functions / arbitrary constants from the equations
 - i) $z=(x-a)^2+(y-b)^2+5$ ii) $z=f(x^2+y^2)$

6 L1 5

b) Solve $\frac{\partial^3 z}{\partial x^2 \partial y} = \sin(5x + 7y)$ by direct integration.

- 7 L2 5
- Derive one dimensional wave equation in the form $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.
- 7 L3 5

8. a) Solve the following non-linear partial differential equation z pq = p+q

6 L2 5

b) Solve (y+z)p-(x+z)q=(x-y) by Lagrange's method.

- 7 L2 5
- Solve $\frac{\partial^2 u}{\partial x^2} 2 \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$ by the method of separation of variables.
- 7 L2 5

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

			 	-	-	-	
		 				ı	
						1	
						1	
USN							1 1
11.710							
0011							1 1
							. ,
		 					Parties and Parties

NMAM INSTITUTE OF TECHNOLOGY, NITTE

(An Autonomous Institution affiliated to VT/Uppelagavi

Second Semester B.E. (Credit System) Degree Examina

Makeup Examination - November 2022

21MA201 - ENGINEERING MATHEMATICS -4

Duration: 3 Hours Max. Marks: 100

Note: Answer Five full questions choosing Two full questions from Unit - I & Unit - II each and One full question from Unit - III.

		Unit – I	Marks	BT*	CO*	PO*
1.	a)	Find the general and singular solutions of the equation $sin(px-y)=p$.	6	L*2	1	1
	b)	Obtain the orthogonal trajectories for the curve $r = \frac{2a}{1 + c \circ s \theta}$.	7	L2	1	1
	c)	Solve $y''-2y'+2y=e^x cosx$	7	L1	2	1
2.	a)	Solve $(D^2-4D+4)y=\frac{e^{2x}}{x}$ by using the method of variation of				
		parameters.	6	L1	2	1
	b)	Solve $y-2px=tan^{-1}(xp^2)$	7	L3	1	2
	c)	Solve $x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 12 y = x^2 \log x$	7	L2	2	2
3.	a)	Solve $x^3 \frac{dy}{dx} - x^2 y = -y^4 \cos x$	6	L2	1	1
	b)	A body is originally at 80°C cools down to 60°C in 20 min, the temperature of air being 40°C. Find the temperature of the body after 50 min from the original.	7	L2	1	1
	c)	Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} = x^3 + 3x^2 + 5$.	7	L2	2	1
		Unit – II				
4.	a)	Find (i) $L\{t^2 \sin 2t\}$ (ii) $L\{\frac{\sin t}{t}\}$	6	5 L2	2 3	3 2
	b)	If $f(t)$ is a periodic function with period T so that $f(t+T)=f(t)$ for all				
		values of t, then prove that L{f(t)} = $\frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt$		7 L	1 :	3 1
		Solve $x''(t)+4x(t)=2t-8$, $x(0)=1,x'(0)=0$ by the Laplace transform method.		7 L	1	4 1

P.T.O.