Shreyas Sunil Gaikwad

C (+1)925-336-5931 Shreyas.gaikwad@utexas.edu in linkedin.com/in/shreyasg911 ↑ Shreyas911

EDUCATION

University of Texas at Austin

Austin, Texas

Ph.D. in Computational Science, Engineering, and Mathematics, GPA: 4.0/4.0 M.S. in Computational Science, Engineering, and Mathematics, GPA: 4.0/4.0

2020-2025 2019-2021

Indian Institute of Technology (IIT) Bombay

Mumbai, India

B. Tech with Honors in Mechanical Engineering (Minor in Computer Science), GPA: 9.32/10.0

2015-2019

EXPERIENCE

• Machine Learning Intern, Ansys Inc.

Summer 2024

- Developed unified Neural Radiance Field (NeRF) to implicitly represent multiple, diverse object geometries.
- Built scalable GenAI pipeline in PyTorch with 106 million parameters using unified NeRF and 3D-aware diffusion models to enable novel 3D object generation from single camera views of object geometries.
- Achieved 3D object generation time of 5 minutes for novel, user-provided single camera-view images.
- Graduate Research Assistant, UT Austin

- Developed Bayesian inversion framework for ice sheet model SICOPOLIS by leveraging open-source Automatic Differentiation (AD) tools to perform back-propagation in a Fortran-based numerical model. [1][4]
- Achieved **7,500x speed-up** over traditional finite difference-based ensemble methods for sensitivity analysis.
- Developed novel feature importance method for neural networks using eXplainable-AI (XAI) method Layerwise Relevance Propagation in Keras to validate deep learning insights against physics mechanisms. [2]
- Visiting Scholar, Argonne National Laboratory

- Developed **first-ever open-source** AD-based, **MPI**-parallel Bayesian inversion framework for ocean circulation model MITgcm, an alternative to proprietary software that costs ~\$14,000 per year. [II][1][3]

RESEARCH PROJECTS

• Machine Learning Applications in Geophysics

Spring 2021

- Developed CNNs, U-Nets in Keras for earthquake (96% accuracy) and seismic faults (97% accuracy) detection.
- Utilized Variational Autoencoders in Keras for clustering by reducing dimensionality into the latent space.
- Physics-Informed Machine Learning

- Trained a Deep Neural Network in **PyTorch** to emulate and assimilate a partial differential equation (PDE) based glacier model by leveraging higher-order derivatives of the PyTorch computational graph.
- Laplacian 2D Finite Difference (FD) Solver Application

- Features: OOP (C++), Solver (gauss, jacobi, PETSc), tests (bats, Travis CI, docker), 98% code coverage (lcov), **0% memory errors** (valgrind), build (autotools), HPC env (SLURM), parser & logger (GRVY).

OPEN-SOURCE CONTRIBUTIONS

I SICOPOLIS-AD v2, open-source data assimilation framework for the ice sheet model SICOPOLIS.

II MITgcm-AD v2, open-source data assimilation framework for the general ocean circulation model MITgcm.

TECHNICAL SKILLS

Languages	Python (PyTorch, Keras, Tensorflow), Julia, C/C++, Fortran-77/90, MATLAB
HPC toolkit	OpenMP, MPI, CUDA, SLURM, git, docker, shell scripts, CI, autotools, valgrind, lcov, GRVY

HONORS AND AWARDS

• Reviewer for Journal of Open Source Software (JOSS) and Journal of Mountain Science (JMS). 2023-Present

Invited talk at SIAM TX-LA: Computational Science to enable Digital Twins of the Oceans. 2023

Recipient of Peter O'Donnell Graduate fellowship worth \$24,000.

2019

• Ranked 509/1,500,000 (99.97 percentile) in nationwide university entrance exams, India.

2015

SELECT COURSEWORK

Data Science	Machine Learning, ML applications in Geophysics, Engineering Data Mining
Algorithms	Differential Equations, Linear Algebra, HPC, Functional Analysis, Data Structures & Algorithms
Modeling	Uncertainty Quantification in Modeling, Mathematical Modeling, Quantum & Statistical Mechanics

SELECT JOURNAL AND CONFERENCE ARTICLES

- 1. L Hascoët, JL Bouchot, SS Gaikwad et. al "Profiling checkpointing schedules in adjoint ST-AD", Preprint on arXiv, submitted to 8th International Conference on Algorithmic Differentiation (2024).
- 2. H Pillar, SS Gaikwad et. al "Pairing Neural Networks with Adjoints for Flexible Investigation and Robust Attribution of Ocean Variability", In preparation for submission to Geophysical Research Letters (2024).
- 3. SS Gaikwad et. al "MITgcm-AD v2: tangent linear and adjoint modeling framework for the oceans and atmosphere enabled by the Automatic Differentiation tool Tapenade", Future Generation Computer Systems (2024).
- 4. SS Gaikwad et. al "SICOPOLIS-AD v2: tangent linear and adjoint modeling framework for ice sheet modeling enabled by Automatic Differentiation tool Tapenade", Journal of Open Source Software 8, no. 83 (2023): 4679.