One-deterministic-counter automata

▶ https://arxiv.org/abs/2301.13456

Prince Mathew

*School of Mathematics & Computer Science Indian Institute of Technology Goa, India prince@iitgoa.ac.in¹

Joint work with Dr. Sreejith A.V., Dr. Vincent Penelle, and Dr. Prakash Saivasan

Outline of the talk

- One-counter Automata
- 2 One-deterministic-counter automata (ODCA)
 - Our results
- 3 Weighted One-deterministic-counter automata
 - Reachability problem of ODCA
 - A quick look at other results

(HT Goa) ODCA July 20, 2023 2 / 120

One-counter automata (OCA)

(IIT Goa)

ODCA

One-counter automata (OCA)

Write to counter: Increment(+1), No change (0), Decrement (-1)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ りゅ○

(IIT Goa)

One-counter automata (OCA)

Write to counter: Increment(+1), No change (0), Decrement (-1) Read from counter: zero (0), or positive (+)

(HT Goa)

Properties of OCA

- Equivalence of deterministic OCA is in P [2].
- Equivalence of non-deterministic OCA is undecidable [7].
- Equivalence of weighted OCA is open (weights from a field).

(IIT Goa) ODCA

One-deterministic-counter automata (ODCA)

One-deterministic-counter automata (ODCA)

Semantic definition

An OCA where all runs of a word lead to the same counter value.

(IIT Goa) ODCA July 20, 2023 6/120

One-deterministic-counter automata (ODCA)

Semantic definition

An OCA where all runs of a word lead to the same counter value.

Syntactic definition

Figure: One-deterministic-counter automata

Examples of ODCA

Example

The following languages/functions are over the alphabet $\Sigma = \{a, b\}$.

- $\bullet \quad \text{The language } \mathcal{L}_1 = \{a^n b a^n \mid n > 0\}.$
- **●** The function $f:(a+b)^* \to \mathbb{N}$ defined as follows: f(w) is the decimal equivalent of w when interpreted as a binary number, if the number of a's ≥ number of b's for any prefix of w, and 0 otherwise.
 - ODCAs are strict extensions of visibly OCA.

(HT Goa) ODCA July 20, 2023 7/120

Our results

- Equivalence of deterministic ODCA is in P.
 - Deterministic OCAs are equivalent to deterministic ODCAs.
 - 2 Equivalence of deterministic OCA is in P [2].

(IIT Goa) ODCA July 20, 2023 8 / 120

Our results

- Equivalence of deterministic ODCA is in P.
 - ① Deterministic OCAs are equivalent to deterministic ODCAs.
 - 2 Equivalence of deterministic OCA is in P [2].
- Equivalence of non-deterministic ODCA is in PSPACE.
 - A non-deterministic ODCA is equivalent to an exponential sized deterministic ODCA.
 - **2** A PSPACE machine can do this.

Our results

- Equivalence of deterministic ODCA is in P.
 - ① Deterministic OCAs are equivalent to deterministic ODCAs.
 - 2 Equivalence of deterministic OCA is in P [2].
- Equivalence of non-deterministic ODCA is in PSPACE.
 - A non-deterministic ODCA is equivalent to an exponential sized deterministic ODCA.
 - ② A PSPACE machine can do this.
- Equivalence of weighted ODCA is in P (main result).
 - Equivalence of weighted finite automata is in P [6] (weights from a field).
 - 2 We reduce equivalence of weighted ODCA to that of weighted finite automata.

Weighted One-deterministic-counter automata

Weighted Automata

- A weighted automata (WA) can be viewed as an NFA with weights.
- In this talk, we assume that the weights always comes from a field.
- Consider the following WA.

• Function recognised?

Weighted Automata

- A weighted automata (WA) can be viewed as an NFA with weights.
- In this talk, we assume that the weights always comes from a field.
- Consider the following WA.

- Function recognised?
 - Number of 'a's in the input.

Another example

• Consider the following WA.

• Function recognised?

(IIT Goa)

Another example

• Consider the following WA.

- Function recognised?
 - Decimal equivalent of binary number.

Evaluation

Initial distribution

 λ

1 0

Transition matrices

 $\delta(a)$

 $0 \mid 2$

$$\begin{array}{c|c}
\delta(b) \\
\hline
1 & 0 \\
0 & 2
\end{array}$$

Final distribution

 η

0
1

• Let $w = a_1 a_2 \dots a_n$ be a word.

Evaluation

Initial distribution

 λ

1 0

Transition matrices

 $\begin{array}{c|c} \delta(a) \\ \hline 1 & 1 \\ \hline 0 & 2 \\ \end{array}$

$$\begin{array}{c|c} \delta(b) \\ \hline 1 & 0 \\ \hline 0 & 2 \\ \hline \end{array}$$

Final distribution

 η

0

- Let $w = a_1 a_2 \dots a_n$ be a word.
- We define $\delta(w) = \delta(a_1)\delta(a_2)\cdots\delta(a_n)$.

Evaluation

Initial distribution

1 0

λ

Transition matrices

$\delta(a)$			
1	1		
0	2		

$$\begin{array}{c|c} \delta(b) \\ \hline 1 & 0 \\ \hline 0 & 2 \\ \hline \end{array}$$

Final distribution

$$\begin{array}{|c|c|}\hline \eta \\ \hline 0 \\ \hline 1 \end{array}$$

- Let $w = a_1 a_2 \dots a_n$ be a word.
- We define $\delta(w) = \delta(a_1)\delta(a_2)\cdots\delta(a_n)$.
- Accepting weight of $w = \lambda \delta(w) \eta$.

Weighted visibly ODCA

- **1** There is an initial distribution on the finite state machine: λ .
- **2** There is a final distribution on the finite state machine: ρ .
- **3** For every letter a, there are two matrices: $\delta_0(a)$ and $\delta_+(a)$.

$$\delta(w) = \delta_{r_1}(a_1)\delta_{r_2}(a_2)\cdots\delta_{r_n}(a_n)$$

where $r_i \in \{0, +\}$.

(HT Goa)

Example - One deterministic-counter Automata

$$L = \{a^m(b+c)^n b(b+c)^2 \mid n, m \in \mathbb{N} \text{ with } n > m\}.$$

 $({b,c},{1},-1)$

Input tape

Counter

Initial vector

(IIT Goa)

Counter structure

ODCA

July 20, 2023

15 / 120

Input tape

 $({b,c},{1},-1)$

Input tape

Counter

Input tape

Input tape

Input tape

 $({b,c},{1},-1)$

Input tape

Counter

 $({b,c},{1},-1)$

Input tape

Counter

 $({b,c},{1},-1)$

Input tape

Counter

 $({b,c},{1},-1)$

Input tape

Counter

 $({b,c},{1},-1)$

Input tape

Counter

Input tape

 $({b,c},{1},-1)$

Input tape

Counter

 $({b,c},{1},-1)$

Input tape

Counter

(IIT Goa)

ODCA

July 20, 2023

 $(\{b,c\},\{0\},0)$

 $({b,c},{1},-1)$

Input tape

Counter

Counter structure

 $({b,c},{1},-1)$

Input tape

Counter

 $(\{b,c\},\{0\},0)$

 $({b,c},{1},-1)$

Input tape

Counter

Counter structure

($\{u_{f}, \{0, 1_{f}, \pm 1\}$	$(\{0,c\},\{0,1\},\{0,1\},\{0,1\},\{0,1],\{0,$
Counter structu	re Q (()	Ω Ω
Counter burdeva	$\rightarrow (p_0)$ $(\{b,c\})$	(0), 0
	Ũ	
($(\{b,c\},\{1\},-1)$	

0	0	1	0	0	0	
0	0	0	0	0	0	
0	0	1	0	0	0	((7) (1)
0	0	0	0	0	0	$(\{b\}, \{1\}$
0	0	0	0	0	0	
0	0	0	0	0	0	

0	1	0	0	0	0	
0	1	0	1	0	0	
0	1	0	0	0	0	$(\{b\}, \{0\})$
0	0	0	0	1	0	$(\{0\},\{0\})$
0	0	0	0	0	1	
0	0	0	0	0	0	

($\{a$	}, -	$\{0,$	1})		$(\{b$,c]	}, {	1})		({	$b\},$, {0)})		($(\{c$	}, ·	$\{0\}$.)	
1	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Transition matrices

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \xrightarrow{p_0} (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

Counter structure

Counter Counter Counter

($\{a$	$\}, \{$	[0,	1})		$(\{b$,c]	},{	1})
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\},\{0\})$													
0	1	0	0	0	0								
0	1	0	1	0	0								
0	1	0	0	0	0								
0	0	0	0	1	0								
0	0	0	0	0	1								
0	0	0	0	0	0								

$(\{c\},\{0\})$												
0	1	0	0	0	0							
0	1	0	0	0	0							
0	1	0	0	0	0							
0	0	0	0	1	0							
0	0	0	0	0	1							
0	0	0	0	0	0							

(-	$\{a\}$	} , {	0, 1	1})		(-	$\{b,$	$c\}$, {1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\},\{0\})$												
0	1	0	0	0	0							
0	1	0	1	0	0							
0	1	0	0	0	0							
0	0	0	0	1	0							
0	0	0	0	0	1							
0	0	0	0	0	0							

($(\{c\},\{0\})$												
0	1	0	0	0	0								
0	1	0	0	0	0								
0	1	0	0	0	0								
0	0	0	0	1	0								
0	0	0	0	0	1								
0	0	0	0	0	0								

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \xrightarrow{p_0} (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

(-	$(\{a\},\{0,1\})$							$(\{b,c\},\{1\})$							
1	0	0	0	0	0		0	0	1	0	0	0			
0	0	0	0	0	0		0	0	0	0	0	0			
0	0	0	0	0	0		0	0	1	0	0	0			
0	0	0	0	0	0		0	0	0	0	0	0			
0	0	0	0	0	0		0	0	0	0	0	0			
0	0	0	0	0	0		0	0	0	0	0	0			

$(\{b\}, \{0\})$												
0	1	0	0	0	0							
0	1	0	1	0	0							
0	1	0	0	0	0							
0	0	0	0	1	0							
0	0	0	0	0	1							
0	0	0	0	0	0							

$(\{c\},\{0\})$											
0 1 0 0 0 0											
0	1	0	0	0	0						
0	1	0	0	0	0						
0	0	0	0	1	0						
0	0	0	0	0	1						
0	0	0	0	0	0						

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ 0 \qquad (\{b,c\},\{0\},0) \qquad p_1 \\ (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	٠, {	0, 1	1})		(-	$\{b,$	$c\}$	{1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\}, \{0\})$											
0	1	0	0	0	0						
0	1	0	1	0	0						
0	1	0	0	0	0						
0	0	0	0	1	0						
0	0	0	0	0	1						
0	0	0	0	0	0						

$(\{c\},\{0\})$											
0 1 0 0 0 0											
1	0	0	0	0							
1	0	0	0	0							
0	0	0	1	0							
0	0	0	0	1							
0	0	0	0	0							
	1 1 1 0	1 0 1 0 1 0 0 0 0 0	1 0 0 1 0 0 1 0 0 0 0 0 0 0 0	1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0							

(-	$\{a\}$	} , {	0, 1	1})		(-	$\{b,$	$c\}$, {1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\}, \{0\})$											
0	1	0	0	0	0						
0	1	0	1	0	0						
0	1	0	0	0	0						
0	0	0	0	1	0						
0	0	0	0	0	1						
0	0	0	0	0	0						
0	0	U	0	U	0						

(-	$\{c\}$, {(0})		
0	1	0	0	0	0
0	1	0	0	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \xrightarrow{p_0} (\{b,c\},\{0\},0) \\ p_1 \\ (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	} , {	0, 1	1})		(-	$\{b,$	$c\}$, {1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\},\{0\})$												
0 1 0 0 0 0												
0	1	0	1	0	0							
0	1	0	0	0	0							
0	0	0	0	1	0							
0	0	0	0	0	1							
0	0	0	0	0	0							

($(\{c\},\{0\})$										
0 1 0 0 0 0											
0	1	0	0	0	0						
0	1	0	0	0	0						
0	0	0	0	1	0						
0	0	0	0	0	1						
0	0	0	0	0	0						

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ 0 \qquad (\{b,c\},\{0\},0) \\ p_0 \qquad (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	} , {	0, 1	1})		(-	$\{b,$	$c\}$, {1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\},\{0\})$											
0	1	0	0	0	0						
0	1	0	1	0	0						
0	1	0	0	0	0						
0	0	0	0	1	0						
0	0	0	0	0	1						
0	0	0	0	0	0						

$(\{c\}, \{0\})$										
0	1	0	0	0	0					
0	1	0	0	0	0					
0	1	0	0	0	0					
0	0	0	0	1	0					
0	0	0	0	0	1					
0	0	0	0	0	0					

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow (\{b,c\},\{0\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	} , {	0, 1	1})		(-	$\{b,$	$c\}$, {1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\}, \{0\})$										
0	1	0	0	0	0					
0	1	0	1	0	0					
0	1	0	0	0	0					
0	0	0	0	1	0					
0	0	0	0	0	1					
0	0	0	0	0	0					

({	$(\{c\}, \{0\})$											
0	1	0	0	0	0							
0	1	0	0	0	0							
0	1	0	0	0	0							
0	0	0	0	1	0							
0	0	0	0	0	1							
0	0	0	0	0	0							

(HT Goa)

ODCA

July 20, 2023

41/120

$(\{a\},\{0,1\})$					(-	$\{b,$	$c\}$, {1	.})		
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\},\{0\})$										
0	1	0	0	0	0					
0	1	0	1	0	0					
0	1	0	0	0	0					
0	0	0	0	1	0					
0	0	0	0	0	1					
0	0	0	0	0	0					

({	$(\{c\}, \{0\})$											
0	1	0	0	0	0							
0	1	0	0	0	0							
0	1	0	0	0	0							
0	0	0	0	1	0							
0	0	0	0	0	1							
0	0	0	0	0	0							

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow (\{b,c\},\{0\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

(-	$\{a\}$	٠, {	0, 1	1})		(-	$\{b,$	$c\}$, {1	.})	
1	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$(\{b\},\{0\})$										
0	1	0	0	0	0					
0	1	0	1	0	0					
0	1	0	0	0	0					
0	0	0	0	1	0					
0	0	0	0	0	1					
0	0	0	0	0	0					

({	$(\{c\}, \{0\})$											
0	1	0	0	0	0							
0	1	0	0	0	0							
0	1	0	0	0	0							
0	0	0	0	1	0							
0	0	0	0	0	1							
0	0	0	0	0	0							

a c c b c b

$(\{a\},\{0,1\})$						(-		(
1	0	0	0	0	0	0	0	1	0	0	0	0	Γ
0	0	0	0	0	0	0	0	0	0	0	0	0	Γ
0	0	0	0	0	0	0	0	1	0	0	0	0	Γ
0	0	0	0	0	0	0	0	0	0	0	0	0	Γ
0	0	0	0	0	0	0	0	0	0	0	0	0	Γ
0	0	0	0	0	0	0	0	0	0	0	0	0	Γ

	$(\{b$	}, ·			($\{c\}$	$, \{$		
0	1	0	0	0	0		0	1	0
0	1	0	1	0	0		0	1	0
0	1	0	0	0	0		0	1	0
0	0	0	0	1	0		0	0	0
0	0	0	0	0	1		0	0	0
0	0	0	0	0	0		0	0	0
						•			

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow (\{b,c\},\{0\},\{0\},0) \\ (\{b,c\},\{1\},-1)$$

(IIT Goa)

ODCA

July 20, 2023

44 / 120

0

0

 $\begin{array}{c|cccc}
0 & 0 & 1 \\
\hline
0 & 0 & 0 \\
\end{array}$

0 0 0

(-	$\{a\}$	} , {	0, 1	1})		$(\{b,c\},\{1\})$.})	
1	0	0	0	0	0		0	0	1	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0		0	0	1	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0
0	0	0	0	0	0		0	0	0	0	0	0

($\{b\}$	$\}, \{$	0})	
0	1	0	0	0	0
0	1	0	1	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

({	$c\},$	{0)		
0	1	0	0	0	0
0	1	0	0	0	0
0	1	0	0	0	0
0	0	0	0	1	0
0	0	0	0	0	1
0	0	0	0	0	0

a c c b c

$$(\{a\},\{0,1\},+1) \qquad (\{b,c\},\{0,1\},0) \\ \longrightarrow \begin{array}{c} (\{b,c\},\{0\},0) \\ (\{b,c\},\{1\},-1) \end{array}$$

Reachability problem

(IIT Goa) ODCA July 20, 2023 46/120

Reachability

co-VS Reachability problem

INPUT:

- \bullet A weighted visibly OCA \mathcal{A} over a field,
- an initial configuration c,
- \bullet a vector space \mathcal{V} , and
- counter value m.

Reachability

co-VS Reachability problem

INPUT:

- A weighted visibly OCA \mathcal{A} over a field,
- an initial configuration c,
- ullet a vector space \mathcal{V} , and
- counter value m.

OUTPUT:

- Yes, if there exists a run $c \stackrel{*}{\to} \overline{\mathcal{V}} \times \{m\}$ in \mathcal{A} , and
- No, otherwise.

Reachability

co-VS Reachability problem

INPUT:

- A weighted visibly OCA \mathcal{A} over a field,
- an initial configuration c,
- ullet a vector space \mathcal{V} , and
- counter value m.

OUTPUT:

- Yes, if there exists a run $c \stackrel{*}{\to} \overline{\mathcal{V}} \times \{m\}$ in \mathcal{A} , and
- No, otherwise.
- $z \in \Sigma^*$ is a reachability witness for $(c, \overline{\mathcal{V}}, m)$ if $c \stackrel{z}{\to} \overline{\mathcal{V}} \times \{m\}$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● める○

co-VS reachability

Theorem - co-VS reachability

co-VS reachability is decidable in polynomial time.

• We prove this by showing a pseudo-pumping lemma.

(IIT Goa) ODCA July 20, 2023 48/120

Pseudo-pumping lemma (pumping down)

Pseudo-pumping lemma

If z is a reachability witness for $(c, \overline{\mathcal{V}}, m)$ and the maximum counter value encountered during the run of z is not polynomially bounded in the input size then,

• there exists a subword z_{sub} of z, such that $c \xrightarrow{z_{sub}} \overline{\mathcal{V}} \times \{m\}$, and the maximum counter value encountered during this run is less than the maximum counter value encountered during the run of z.

Pseudo-pumping lemma - Figure

• Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrices.

• Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrices.

• For all $i \in [0, 9]$, $\mathbf{x} \mathbb{A}_i \mathbb{M}_i \mathbb{B}_i \in \overline{\mathcal{V}}$.

 \mathbb{M}_9

 \mathbb{M}_8

 \mathbb{M}_7

 \mathbb{M}_6

 \mathbb{M}_5

 \mathbb{M}_4

 \mathbb{M}_3

 \mathbb{M}_2

 \mathbb{M}_1

• Assume for all $i \in [0, 9]$, M_i is a 3×3 matrix.

• For all $i \in [0, 9]$, $\mathbf{x} \mathbb{A}_i \mathbb{M}_i \mathbb{B}_i \in \overline{\mathcal{V}}$.

• $\exists j \in [0, 9], \, \mathbb{M}_j = \alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}.$

 M_9

 \mathbb{M}_8

 \mathbb{M}_7

 \mathbb{M}_6

 \mathbb{M}_5

 \mathbb{M}_4

 \mathbb{M}_3

 \mathbb{M}_2

 \mathbb{M}_1

• Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.

• For all $i \in [0, 9]$, $\mathbf{x} \mathbb{A}_i \mathbb{M}_i \mathbb{B}_i \in \overline{\mathcal{V}}$.

• $\exists j \in [0, 9], \, \mathbb{M}_j = \alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}.$

• $\mathbf{x} \mathbb{A}_j (\alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}) \mathbb{B}_j \in \overline{\mathcal{V}}.$

 \mathbb{M}_9

 \mathbb{M}_8

 \mathbb{M}_7

 \mathbb{M}_6

 \mathbb{M}_5

 \mathbb{M}_4

 M_3

 \mathbb{M}_3 \mathbb{M}_2

 \mathbb{M}_1

• Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.

• For all $i \in [0, 9]$, $\mathbf{x} \mathbb{A}_i \mathbb{M}_i \mathbb{B}_i \in \overline{\mathcal{V}}$.

•
$$\exists j \in [0, 9], \, \mathbb{M}_j = \alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}.$$

• $\mathbf{x} \mathbb{A}_j (\alpha_0 \mathbb{M}_0 + \alpha_1 \mathbb{M}_1 + \dots + \alpha_{j-1} \mathbb{M}_{j-1}) \mathbb{B}_j \in \overline{\mathcal{V}}.$

• There exists $k \in [0, j-1]$, $\mathbf{x} \mathbb{A}_j \mathbb{M}_k \mathbb{B}_j \in \overline{\mathcal{V}}$.

 \mathbb{M}_9

 \mathbb{M}_8

 \mathbb{M}_7

 \mathbb{M}_6

 \mathbb{M}_5

VII5

 \mathbb{M}_4

 \mathbb{M}_3

 \mathbb{M}_2

 \mathbb{M}_1

Multiple cuts

67 / 120

Special word Lemma

Lemma-Special word

The lexicographically minimal reachability witness z, if it exists, satisfies the following conditions:

- $z = uy_1^{r_1}w_1y_2^{r_2}w_2$ such that $|uy_1w_1y_2w_2|$ is polynomially bounded in input size, and

ullet We show that a factor repeats in the lexicographically minimal word if d is large enough.

- 4 □ b 4 圖 b 4 필 b 4 필 b 9 Q @

(IIT Goa) ODCA July 20, 2023 69 / 120

run of the lexicographically minimal witness \boldsymbol{z}

counter value

counter value

counter value

counter value

• Assume for all $i \in [0, 9]$, M_i is a 3×3 matrix.

• Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.

• Arrange the words x_0, x_1, \ldots, x_9 in the lexicographical ordering.

 \mathbb{M}_{i_0} \mathbb{M}_{i_8} \mathbb{M}_{i_7} \mathbb{M}_{i_6} \mathbb{M}_{i_5} \mathbb{M}_{i_4} \mathbb{M}_{i_3} \mathbb{M}_{i_2} \mathbb{M}_{i_1}

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- Arrange the words x_0, x_1, \ldots, x_9 in the lexicographical ordering.
- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.

 \mathbb{M}_{i_9}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7}

 \mathbb{M}_{i_6}

 \mathbb{M}_{i_5}

 \mathbb{M}_{i_4}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- Arrange the words x_0, x_1, \ldots, x_9 in the lexicographical ordering.
- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.
- For all $j \in [0, 9]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_j} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.

 \mathbb{M}_{i_9}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7}

 \mathbb{M}_{i_6}

 \mathbb{M}_{i_5}

 \mathbb{M}_{i_4}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- Arrange the words x_0, x_1, \ldots, x_9 in the lexicographical ordering.
- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.
- For all $j \in [0, 9]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_j} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.
- There exists $j \in [0, 9]$, $\mathbb{M}_{i_j} = \alpha_0 \mathbb{M}_{i_0} + \alpha_1 \mathbb{M}_{i_1} + \dots + \alpha_{j-1} \mathbb{M}_{i_{j-1}}$.

 \mathbb{M}_{i_9}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7}

 \mathbb{M}_{i_6}

 \mathbb{M}_{i_5}

 \mathbb{M}_{i_4}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

- Assume for all $i \in [0, 9]$, \mathbb{M}_i is a 3×3 matrix.
- Arrange the words x_0, x_1, \ldots, x_9 in the lexicographical ordering.
- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.
- For all $j \in [0, 9]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_j} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.
- There exists $j \in [0, 9]$, $\mathbb{M}_{i_j} = \alpha_0 \mathbb{M}_{i_0} + \alpha_1 \mathbb{M}_{i_1} + \dots + \alpha_{j-1} \mathbb{M}_{i_{j-1}}$.
- $\mathbf{x} \mathbb{A}_{i_j} (\alpha_0 \mathbb{M}_{i_0} + \alpha_1 \mathbb{M}_{i_1} + \dots + \alpha_{j-1} \mathbb{M}_{i_{j-1}}) \mathbb{B}_{i_j} \in \overline{\mathcal{V}}.$

 \mathbb{M}_{i_9}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7}

 \mathbb{M}_{i_6}

 \mathbb{M}_{i_5}

-5

 \mathbb{M}_{i_4}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

- Assume for all $i \in [0, 9]$, M_i is a 3×3 matrix.
- \bullet Arrange the words x_0, x_1, \ldots, x_9 in the lexicographical ordering.
- Let $x_{i_0} < x_{i_1} < \ldots < x_{i_9}$.
- For all $j \in [0, 9]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_j} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.
- There exists $j \in [0, 9]$, $\mathbb{M}_{i_j} = \alpha_0 \mathbb{M}_{i_0} + \alpha_1 \mathbb{M}_{i_1} + \dots + \alpha_{j-1} \mathbb{M}_{i_{j-1}}$.
- $\mathbf{x}\mathbb{A}_{i_j}(\alpha_0\mathbb{M}_{i_0} + \alpha_1\mathbb{M}_{i_1} + \dots + \alpha_{j-1}\mathbb{M}_{i_{j-1}})\mathbb{B}_{i_j} \in \overline{\mathcal{V}}.$
- There exists $k \in [0, j-1]$, $\mathbf{x} \mathbb{A}_{i_j} \mathbb{M}_{i_k} \mathbb{B}_{i_j} \in \overline{\mathcal{V}}$.

 \mathbb{M}_{i_9}

 \mathbb{M}_{i_8}

 \mathbb{M}_{i_7}

 \mathbb{M}_{i_6}

 \mathbb{M}_{i_5}

 \mathbb{M}_{i}

 \mathbb{M}_{i_3}

 \mathbb{M}_{i_2}

 \mathbb{M}_{i_1}

(IIT Goa)

Multiple cuts

Equivalence

(IIT Goa) ODCA July 20, 2023 99 / 120

Equivalence

Lemma - Witness bound

If two weighted ODCAs A_1 and A_2 are not equivalent, then there exists a witness z such that the counter values encountered during the run of z are less than a polynomial in the input size.

Equivalence

Lemma - Witness bound

If two weighted ODCAs A_1 and A_2 are not equivalent, then there exists a witness z such that the counter values encountered during the run of z are less than a polynomial in the input size.

Theorem - Equivalence

There is a polynomial time algorithm to check the equivalence of two weighted ODCAs.

(IIT Goa) ODCA July 20, 2023 101 / 120

Theorem - Regularity

Given a ODCA, determining whether there exists a weighted automata recognising the same function is in P.

IT Goa) ODCA July 20, 2023 102 / 120

Theorem - Regularity

Given a ODCA, determining whether there exists a weighted automata recognising the same function is in P.

m MT ~Goa) ~~ ODCA ~~ July ~20, ~2023 ~~ 105 / 120

Theorem - Regularity

Given a ODCA, determining whether there exists a weighted automata recognising the same function is in P.

Theorem - Covering

Given two ODCAs A_1 , A_2 without initial configurations, determining whether for all initial distributions of A_1 does A_2 have an initial distribution which makes them equivalent is in P.

(IIT Goa) ODCA July 20, 2023 105 / 120

Summary

- co-VS reachability problem of ODCAs is in P.
- Equivalence of weighted ODCAs is in P.
- Regularity of weighted ODCAs is in P.

Existing Results

Machine	Equivalence	Reference
DFA	P (NL)	[4]
DOCA	P (NL-Complete)	[1]
NOCA	Undecidable	[1]
DPDA	Decidable	[5]
NPDA	Undecidable	[1]
PA	Р	[6]
DWROCA	Р	Our result
Weighted ODCA	Р	Our result
Deterministic-stack PDA	open	-
pPDA	open	[3]

References I

[1] Stanislav Böhm and Stefan Göller.

Language equivalence of deterministic real-time one-counter automata is nl-complete.

In Filip Murlak and Piotr Sankowski, editors, MFCS, volume 6907 of Lecture Notes in Computer Science, pages 194–205. Springer, 2011.

[2] Stanislav Böhm, Stefan Göller, and Petr Jancar.

Equivalence of deterministic one-counter automata is nl-complete.

In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC'13, Palo Alto, CA, USA, June 1-4, 2013, pages 131–140. ACM, 2013.

- [3] Vojtech Forejt, Petr Jancar, Stefan Kiefer, and James Worrell 0001. Language equivalence of probabilistic pushdown automata. Inf. Comput, 237:1–11, 2014.
- [4] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison Wesley, Reading, Mass., 1979.

4□ > 4Ē > 4Ē > Ē > 94.0°

References II

[5] Géraud Sénizergues.

Decidability of the equivalence problem for deterministic pushdown automata. In *Proceedings of INFINITY'97*, 1997.

[6] Wen-Guey Tzeng.

A polynomial-time algorithm for the equivalence of probabilistic automata.

SIAM J. Comput, 21(2):216–227, 1992.

[7] Valiant and Paterson.

Deterministic one-counter automata.

JCSS: Journal of Computer and System Sciences, 10, 1975.

[8] https://latex-beamer.com/beamer-template/

Thank You!

(IIT Goa)

Appendix

(HT Goa) ODCA July 20, 2023 111 / 120

Non-deterministic Finite Automata

• Consider the following NFA.

 \bullet Language recognised?

IIT Goa) ODCA July 20, 2023 112 / 120

Non-deterministic Finite Automata

• Consider the following NFA.

- Language recognised?
 - Set of all words containing at least one 'a'.

IIT Goa) July 20, 2023 112 / 120

Equivalence WA(1)

• Given two weighted automata \mathcal{A} and \mathcal{B} , the equivalence problem asks whether for all $w \in \Sigma^*$, $f_{\mathcal{A}}(w) = f_{\mathcal{B}}(w)$.

Theorem- Equivalence WA

The equivalence problem for weighted automata over a field is decidable in polynomial time.

- Given two weighted automata \mathcal{A} and \mathcal{B} over a field, we can construct a weighted automata \mathcal{C} recognising the function $f_{\mathcal{A}} f_{\mathcal{B}}$.
- To check equivalence of \mathcal{A} and \mathcal{B} , it suffices to check the existence of a word which is accepted with non-zero weight by \mathcal{C} .

IIT Goa) July 20, 2023 113 / 120

Equivalence(2)

- Let K be the number of states of C and η its final distribution.
- $\mathcal{V} = \{ \mathbf{x} \in \mathcal{F}^{\mathsf{K}} \mid \mathbf{x}\eta = 0 \}$ is a vector space.
- Given a vector space $\mathcal{U} \subseteq \mathcal{F}^{\mathsf{K}}$, we define $\overline{\mathcal{U}} = \mathcal{F}^{\mathsf{K}} \setminus \mathcal{U}$.
- The equivalence problem is to check the existence of a word w such that $\lambda \delta(w) \in \overline{\mathcal{V}}$.

IT Goa) ODCA July 20, 2023 114 / 120

co-VS reachability of weighted automata

co-VS reachability problem of WA

Input: Vector space V, Weighted automaton C.

Output: Yes, If there is a run of \mathcal{C} that reaches a configuration in $\overline{\mathcal{V}}$. No, otherwise.

Theorem- co-VS reachability

The co-VS reachability problem for weighted automata is decidable in polynomial time.

Lemma- minimal word

The length of the minimal run, if it exists, that reaches a configuration in $\overline{\mathcal{V}}$ is less than the number of states of \mathcal{C} .

(IIT Goa) ODCA July 20, 2023 115 / 120

Minimal word

- Let the number of states of C be 4.
- Assume $w = a_1 a_2 a_3 a_4$ is a minimal reachability witness.

- $B_5 = c_1B_1 + c_2B_2 + c_3B_3 + c_4B_4$ for some $c_1, c_2, c_3, c_4 \in \mathcal{F}$.
- There exists i < 5 such that $B_i \in \overline{\mathcal{V}}$. This is a contradiction.

(IIT Goa)

Polynomial time algorithm

• Starting from q_0 construct a basis set by traversing the tree in a breadth-first manner and adding independent vectors to it.

Example (a)

Figure: $\mathcal{L}_1 = \{a^n b a^n \mid n > 0\}$

(IIT Goa

ODCA

July 20, 2023

Example (b)

Finite state machine

Figure: $\mathcal{L}_2 = \{(a+b)^* \mid \#a's > \#b's\}$

- 4 ロ b 4 個 b 4 差 b 4 差 b 9 9 0 0 0

(IIT Goa)

ODCA

July 20, 2023

Example (c)

Figure: $f(w_1w_2)$ = decimal value of w_2 's binary interpretation, if $w_1 \in \mathcal{L}_1$ and #a's $\geq \#b$'s for any prefix of w_2 ; 0 otherwise.

(IIT Goa) ODCA July 20, 2023 120 / 120