Competitive Programming and Contests

Queries of operations

You are given an array A[1, n] of n integers and an array O[1, m] of m operations. Each operation is a triple $\langle l, r, d \rangle$, with $1 \leq l \leq r \leq n$, and it increases the entries $A[l], A[l+1], \ldots, A[r]$ by value d, i.e., A[l] = A[l] + d.

You are also given k queries. Each query is a pair $\langle a, b \rangle$, with $1 \le a \le b \le m$ and it asks to execute all the operations $O[a], O[a+1], \ldots, O[b]$.

Your goal is to perform all the queries and report the array A after all these operations. Note that the problem is offline, i.e., you can execute the queries in any order.

We assume that $k, m \leq n$, just for convenience in expressing the time complexities below. The solution should run in $\Theta((k+m)\log n + n))$ time. **Input.** The first line contains n, m, and k. The next line contains the n integers in A. Next m lines contain the operations, a operation consists of three integers: l, r, and d. Next k lines contain the queries, a query number consists of two integers: a and b.

Output. On a single line print the n integers of the final array A. Separate the printed numbers by spaces.

Example

Input		Output
3 3 3	// n m k	9 18 17
1 2 3	// A	
1 2 1	// l r d	
1 3 2	//	
2 3 4	//	
1 2	// a b	
1 3	//	
2 3	//	