

PONTIFICIA UNIVERSIDAD JAVERIANA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL OPTIMIZACIÓN 2020-3 Corte 2 – Sesión 22

Problemas seleccionados para modelamiento

PROBLEMA 1. PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES [Modificado de Taha, 2012]

Se está pensando en ocho ciudades como sitios potenciales para la construcción de plantas de tratamiento de aguas residuales. En cada ciudad se puede construir máximo una planta. Una planta construida recibe las aguas residuales de una cualquier otra ciudad que se conecte a dicha planta a través de un ducto. La tabla siguiente presenta los datos de la situación. Los enlaces faltantes indican que no se puede construir un ducto entre la ciudad donde esté ubicada la planta de tratamiento y otra ciudad.

	Costo (\$) de construcción de un ducto entre cada par de ciudades por cada 1000 gal/h de capacidad										
De A	1	2	3	4	5	6	7	8			
1		100		200		50		70			
2				120		150		210			
3	400				120		90				
4			120		120			150			
5		200				100	200				
6			110	180			70				
7	200			150				180			
8	170		200			110		100			
Costo millones \$ de construcción de la planta	1.00	1.20	2.00	1.60	1.80	0.90	1.40	0.8			
Población (miles)	50	100	45	90	75	60	30	40			

La capacidad que debe tener cada ducto que se construya (en galones por hora) es una función directa de la cantidad de aguas residuales generada, la cual es a su vez una función de las poblaciones. Se descargan aproximadamente 500 galones de aguas residuales por cada 1000 residentes al sistema de drenaje por hora. La capacidad máxima de la planta es de 100000gal/h. Determine la ubicación y capacidad óptima de las plantas de tratamiento de aguas residuales considerando que se quiere minimizar el costo total (construcción de plantas y ductos).

RESULTADOS

la función objetivo es 3833600.000000 pesos

se debe construir una planta de tratamiento de aguas residuales en la ciudad 1

se debe construir una planta de tratamiento de aguas residuales en la ciudad 3

se debe construir una planta de tratamiento de aguas residuales en la ciudad 8

la planta 1 trata 50.000000 miles de galones/hr de aguas residuales de la ciudad 2

la planta 1 trata 45.000000 miles de galones/hr de aguas residuales de la ciudad 4

la planta 1 trata 5.000000 miles de galones/hr de aguas residuales de la ciudad 6

la planta 3 trata 37.500000 miles de galones/hr de aguas residuales de la ciudad 5

la planta 3 trata 15.000000 miles de galones/hr de aguas residuales de la ciudad 7 la planta 8 trata 25.000000 miles de galones/hr de aguas residuales de la ciudad 1

la planta 8 trata 22.500000 miles de galones/hr de aguas residuales de la ciudad 3

la planta 8 trata 25.000000 miles de galones/hr de aguas residuales de la ciudad 6

la planta 8 trata 20.000000 miles de galones/hr de aguas residuales de la ciudad 8

PONTIFICIA UNIVERSIDAD JAVERIANA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL OPTIMIZACIÓN 2020-3 Corte 2 – Sesión 22

Problemas seleccionados para modelamiento

PROBLEMA 2. COSTO FIJO Y VARIABLE DE PRODUCCIÓN EN MÁQUINAS

Una empresa fabrica un producto en |I| = 6 máquinas. El costo de producción de cada máquina está divido en dos: un costo fijo CF_i independiente de la cantidad producida y un costo variable CV_i por kilogramo de materia prima procesada. La tabla contiene los costos de producción en miles de pesos:

	Máquina 1	Máquina 2	Máquina 3	Máquina 4	Máquina 5	Máquina 6
Costo fijo:	650	720	580	640	725	630
CF_i						
Costo var:	3.8	4	4.5	3.7	5	4.1
CV_i						

Para la fabricación del producto existen 4 materias primas intercambiables, es decir que se puede producir el producto con cualquiera de ellas. Como requisitos se tienen que se deben utilizar exactamente 2 de las 4 materias primas existentes. La tabla contiene la cantidad de Kg de producto final producidos por cada Kg de materia prima que se procesa, las disponibilidades de las materias primas, ambas en kg, y las capacidades máximas de procesamiento de kg de materia prima en cada máquina. Los costos de las materias primas se suponen nulos, ya que la empresa dispone de ellas.

Materia	Kg de produ	icto final pro	oducidos por	cada Kg de r	nateria prim	a procesado	Disponibilidad
prima	Máquina 1	Máquina	Máquina	Máquina	Máquina	Máquina	de materia
		2	3	4	5	6	prima (Kg)
Materia	0.8	0.5	0.6	0.8	0.5	0.6	500
Prima 1							
Materia	0.6	0.3	0.9	0.7	0.9	0.8	480
Prima 2							
Materia	0.6	0.6	0.3	0.8	0.2	0.6	535
Prima 3							
Materia	0.5	0.8	1.0	0.6	0.7	0.9	470
Prima 4							
Capacidad	150	175	210	260	335	290	
máxima de							
producción							
de la							
máquina							
(Kg de							
materia							
prima)							

En una máquina, si se usa, se deben procesar como mínimo 100kg de materia prima, de lo contrario no vales la pena encenderla. Se desean fabricar exactamente 800 Kg del producto final. Se pide construir un programa entero que proporcione un plan de producción a costo mínimo.

RESULTADOS

la función objetivo es 6504.33 pesos

se debe utilizar la materia prima 2

se debe utilizar la materia prima 4

se debe utilizar la máquina 3

se debe utilizar la máquina 4

se debe utilizar la máquina 5

se debe utilizar la máquina 6

PONTIFICIA UNIVERSIDAD JAVERIANA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL OPTIMIZACIÓN 2020-3 Corte 2 – Sesión 22

Problemas seleccionados para modelamiento

se deben procesar 260.000000 Kg de materia prima 2 en la máquina 4 para obtener 182.000000 Kg de producto final se deben procesar 166.666667 Kg de materia prima 2 en la máquina 5 para obtener 150.000000 Kg de producto final se deben procesar 30.000000 Kg de materia prima 2 en la máquina 6 para obtener 24.000000 Kg de producto final se deben procesar 210.000000 Kg de materia prima 4 en la máquina 3 para obtener 210.000000 Kg de producto final se deben procesar 260.000000 Kg de materia prima 4 en la máquina 6 para obtener 234.000000 Kg de producto final

PROBLEMA 3. COQUILLAGE OIL

Parte I

Coquillage Oil debe determinar qué plantas construir y las cantidades de gasolina a producir y vender desde dichas plantas a los clientes, para maximizar sus ganancias. La compañía tiene tres plantas que suministran gasolina a cinco clientes mediante oleoductos. La capacidad máxima de transporte en toneladas (ton) de cada oleoducto (arco), el precio de venta de tonelada de gasolina a cada cliente, el costo de construcción de cada planta y la demanda exacta de gasolina que se debe cumplir a cada cliente, están indicados en la siguiente tabla.

		(Client	e		
	1	1 2 3 4 5				Costo construcción planta (US\$)
Planta 1	70	120	140	60	170	55000
Planta 2	120	70	220	70	100	46000
Planta 3	80	140	70	120	90	51000
Precio de venta (US\$ / ton)	500	550	600	480	510	
Demanda (ton)	100	200	200	150	150	

Formule el problema en <u>forma compacta.</u>

Parte II

La compañía quiere invertir en proyectos de extensión de capacidad de sus oleoductos. Un proyecto en un oleoducto cuesta **\$250** y permite agregar una capacidad adicional de **50 toneladas** (no se puede hacer más de un proyecto de extensión por oleoducto).

Además se deben cumplir las restricciones siguientes. (i,j) indica el proyecto del oleoducto (planta i, cliente j):

- No se pueden hacer más de 4 proyectos
- Los proyectos (1,1) y (2,4) no se pueden hacer al mismo tiempo
- El proyecto (1, 1) solamente se podría hacer si se hace el proyecto (1, 4)
- Si se hace el proyecto (2,2) y el proyecto (3,4) entonces se debe hacer el proyecto (2,1)

¿Cómo cambia el modelamiento en forma compacta para maximizar las ganancias de Coquillage Oil?

RESULTADOS Parte I

las utilidades totales son US\$ 368000

se debe construir la planta 2

se debe construir la planta 3

por el oleducto que va desde la planta 2 al cliente 1 se deben enviar 20.000000 toneladas de gasolina por el oleducto que va desde la planta 2 al cliente 2 se deben enviar 60.000000 toneladas de gasolina por el oleducto que va desde la planta 2 al cliente 3 se deben enviar 130.000000 toneladas de gasolina por el oleducto que va desde la planta 3 al cliente 1 se deben enviar 80.000000 toneladas de gasolina por el oleducto que va desde la planta 3 al cliente 2 se deben enviar 140.000000 toneladas de gasolina por el oleducto que va desde la planta 3 al cliente 3 se deben enviar 70.000000 toneladas de gasolina

RESULTADOS Parte II

las utilidades totales son US\$ 376000.000000

PONTIFICIA UNIVERSIDAD JAVERIANA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL OPTIMIZACIÓN 2020-3 Corte 2 – Sesión 22 Problemas seleccionados para modelamiento

se debe construir la planta 2 se debe construir la planta 3

se debe hacer un proyecto de extensión en el oleoducto que va de planta 3 al cliente 2

se debe hacer un proyecto de extensión en el oleoducto que va de planta 3 al cliente 3

se debe hacer un proyecto de extensión en el oleoducto que va de planta 3 al cliente 4

se debe hacer un proyecto de extensión en el oleoducto que va de planta 3 al cliente 5

por el oleducto que va desde la planta 2 al cliente 1 se deben enviar 20.000000 toneladas de gasolina

por el oleducto que va desde la planta 2 al cliente 2 se deben enviar 10.000000 toneladas de gasolina

por el oleducto que va desde la planta 2 al cliente 3 se deben enviar 80.000000 toneladas de gasolina

por el oleducto que va desde la planta 3 al cliente 1 se deben enviar 80.000000 toneladas de gasolina

por el oleducto que va desde la planta 3 al cliente 2 se deben enviar 190.00000 toneladas de gasolina

por el oleducto que va desde la planta 3 al cliente 3 se deben enviar 120.00000 toneladas de gasolina

PROBLEMA 4. COSTO FIJO CONTRUCCIÓN FÁBRICAS Y CAMINOS ENTRE CIUDADES Y COSTO VARIABLE TRANSPORTE

Existen $|\mathbf{N}|$ ciudades de una región que requieren de cierto producto; la demanda anual del producto en la ciudad i es de d_i unidades $(i \in \mathbf{N})$. La empresa que producirá este producto ha decidido instalar a lo sumo m fábricas en la región para satisfacer estas demandas. Asuma que sólo se puede instalar a lo más una fábrica en cada ciudad. El costo fijo de instalar una fábrica en la ciudad i es p_i y la capacidad máxima de producción anual de esa fábrica es de h_i unidades. También es necesario construir las rutas para transportar los productos de las fábricas a las otras ciudades; el costo fijo de construcción del camino entre la ciudad i la ciudad j es f_{ij} y tiene una capacidad anual de transporte de k_{ij} unidades. El costo unitario de transporte entre la ciudad i y la ciudad j es de c_{ij} . Formule un modelo que permita encontrar la localización óptima de las fábricas, los caminos que deben construirse y los flujos de productos con el fin de minimizar los costos totales.

ciudad i	Demanda (unidades)	costo de construir una fábrica en la ciudad (\$)	capacidad de producción en una fábrica instalada en ciudad i (unidades)
1	2990	\$ 6,000,000	22960
2	7830	\$ 2,400,000	18620
3	2910	\$ 6,000,000	25340
4	9700	\$ 12,000,000	27370
5	3810	\$ 3,600,000	18340
6	5580	\$ 9,600,000	22750
7	6650	\$ 10,800,000	27370
8	3070	\$ 8,400,000	24220
9	6640	\$ 10,800,000	39690
10	6130	\$ 6,000,000	33880
11	1010	\$ 10,800,000	22680
12	6800	\$ 1,200,000	20230
13	2070	\$ 10,400,000	14210
14	6060	\$ 1,300,000	32480
15	1020	\$ 1,300,000	22470

PONTIFICIA UNIVERSIDAD JAVERIANA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL OPTIMIZACIÓN 2020-3 Corte 2 – Sesión 22 Problemas seleccionados para modelamiento

f_{ij} (\$)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	6000000	3000000	13500000	13500000	6000000	12000000	9000000	3000000	3000000	9000000	15000000	6000000	1500000	9000000
2	6000000	0	3000000	13500000	6000000	9000000	3000000	10500000	9000000	1500000	15000000	15000000	3000000	15000000	6000000
3	3000000	3000000	0	1500000	12000000	9000000	12000000	3000000	12000000	7500000	7500000	9000000	1500000	9000000	9000000
4	13500000	13500000	1500000	0	7500000	15000000	15000000	12000000	1500000	15000000	1500000	4500000	15000000	4500000	9000000
5	13500000	6000000	12000000	7500000	0	9000000	13500000	6000000	13500000	10500000	15000000	3000000	7500000	7500000	10500000
6	6000000	9000000	9000000	15000000	9000000	0	4500000	15000000	9000000	15000000	6000000	7500000	3000000	4500000	15000000
7	12000000	3000000	12000000	15000000	13500000	4500000	0	7500000	9000000	4500000	6000000	7500000	4500000	7500000	7500000
8	9000000	10500000	3000000	12000000	6000000	15000000	7500000	0	9000000	3000000	12000000	13500000	6000000	10500000	4500000
9	3000000	9000000	12000000	1500000	13500000	9000000	9000000	9000000	0	15000000	12000000	9000000	4500000	10500000	1500000
10	3000000	1500000	7500000	15000000	10500000	15000000	4500000	3000000	15000000	0	9000000	15000000	13500000	1500000	15000000
11	9000000	15000000	7500000	1500000	15000000	6000000	6000000	12000000	12000000	9000000	0	7500000	15000000	6000000	3000000
12	15000000	15000000	9000000	4500000	3000000	7500000	7500000	13500000	9000000	15000000	7500000	0	12000000	1500000	12000000
13	6000000	3000000	1500000	15000000	7500000	3000000	4500000	6000000	4500000	13500000	15000000	12000000	0	15000000	12000000
14	1500000	15000000	9000000	4500000	7500000	4500000	7500000	10500000	10500000	1500000	6000000	1500000	15000000	0	7500000
15	9000000	6000000	9000000	9000000	10500000	15000000	7500000	4500000	1500000	15000000	3000000	12000000	12000000	7500000	0

k_{ij} (unds)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	23659	13267	13682	16035	16784	20045	20908	22865	15084	25545	17573	12740	29094	22731	11491
2	18233	12725	12145	26608	14457	15827	24630	23421	22218	19333	22932	15082	15657	19448	13068
3	25323	17878	24532	28698	26510	13445	17537	29093	20612	10040	23435	18378	14018	11553	21252
4	15497	15223	20323	16902	13041	13118	23089	12980	16964	25159	17209	28349	10351	13388	28463
5	23733	14066	17169	11849	10075	27992	15631	24334	11296	21480	21634	11435	26393	18612	20506
6	24209	11648	23076	26500	17797	15796	11246	28566	26792	20721	16938	21220	13419	21275	12091
7	12300	21127	26997	19767	26606	14376	21636	10302	18273	19566	19631	26397	22895	21333	18720
8	25977	18807	11501	24826	21746	15154	27763	26966	10024	15329	20120	13954	15019	12034	11323
9	21489	21320	23367	21494	26027	20015	26664	22077	12503	21277	29472	12359	15212	24921	26283
10	25188	13967	19397	14388	28080	27222	29250	24943	27868	25810	12143	24657	14433	17692	27479
11	13077	10704	29002	25909	26121	13193	18611	25385	14995	10195	28474	15765	26226	13483	10104
12	14718	17928	21579	25045	25294	25744	10986	12269	12319	13450	29543	19595	21281	24370	29124
13	28123	25778	17113	27530	24667	15162	23356	29962	21812	25470	25326	25869	24010	28366	27040
14	10246	24891	17671	19771	17004	11249	19010	27982	26942	18964	11960	20769	16033	24913	22330
15	13822	25110	21342	19975	20591	18461	12620	20176	24089	11083	29568	15947	26616	22355	11409

PONTIFICIA UNIVERSIDAD JAVERIANA DEPARTAMENTO DE INGENIERÍA INDUSTRIAL OPTIMIZACIÓN 2020-3 Corte 2 – Sesión 22 Problemas seleccionados para modelamiento

c_{ij} (\$/und)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	0	256	87	73	67	156	285	59	177	111	77	116	184	174	274
2	97	0	212	293	224	273	142	179	225	167	262	151	239	244	343
3	103	238	0	149	314	340	254	220	81	346	272	263	207	128	285
4	297	312	211	0	56	265	155	280	232	98	338	80	252	277	145
5	176	132	275	269	0	70	168	52	136	102	233	112	64	142	249
6	56	173	320	324	345	0	288	327	155	320	278	224	80	110	217
7	348	149	289	293	204	314	0	329	146	278	142	333	102	212	97
8	231	130	141	309	77	184	219	0	72	172	59	88	114	160	325
9	330	141	264	250	204	311	227	146	0	181	267	192	274	160	339
10	154	296	180	339	264	194	197	159	253	0	236	168	208	210	326
11	301	305	299	139	291	106	138	153	107	321	0	336	144	69	239
12	257	192	303	57	312	219	107	179	242	315	77	0	170	108	262
13	324	208	233	206	350	287	73	245	133	334	249	273	0	254	121
14	143	299	187	212	332	270	348	225	124	123	283	113	264	0	333
15	292	151	268	53	265	292	326	121	212	310	349	189	156	288	0

RESULTADOS

z.val = 52121440

se instala fábrica en la ciudad 2

se instala fábrica en la ciudad 3

se instala fábrica en la ciudad 12

se instala fábrica en la ciudad 14

se instala fábrica en la ciudad 15

se despacha entre la fábrica ubicada en la ciudad 2 y la ciudad 2 una cantidad de 7830 se despacha entre la fábrica ubicada en la ciudad 2 y la ciudad 7 una cantidad de 6650 se despacha entre la fábrica ubicada en la ciudad 3 y la ciudad 3 una cantidad de 2910 se despacha entre la fábrica ubicada en la ciudad 3 y la ciudad 4 una cantidad de 9700 se despacha entre la fábrica ubicada en la ciudad 3 y la ciudad 8 una cantidad de 3070 se despacha entre la fábrica ubicada en la ciudad 3 y la ciudad 13 una cantidad de 2070 se despacha entre la fábrica ubicada en la ciudad 12 y la ciudad 5 una cantidad de 3810 se despacha entre la fábrica ubicada en la ciudad 12 y la ciudad 12 una cantidad de 6800 se despacha entre la fábrica ubicada en la ciudad 14 y la ciudad 1 una cantidad de 2990 se despacha entre la fábrica ubicada en la ciudad 14 y la ciudad 6 una cantidad de 5580 se despacha entre la fábrica ubicada en la ciudad 14 y la ciudad 10 una cantidad de 6130 se despacha entre la fábrica ubicada en la ciudad 14 y la ciudad 14 una cantidad de 6060 se despacha entre la fábrica ubicada en la ciudad 15 y la ciudad 9 una cantidad de 6640

se despacha entre la fábrica ubicada en la ciudad 15 y la ciudad 11 una cantidad de 1010

se despacha entre la fábrica ubicada en la ciudad 15 y la ciudad 15 una cantidad de 1020