```
In [ ]:
In [13]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn.model_selection import train_test_split
          from sklearn.linear_model import LinearRegression, LogisticRegression
          from sklearn.metrics import mean_squared_error, accuracy_score
          import statsmodels.api as sm
In [14]:
          std_prfmnce =pd.read_csv("C:/Users/ardra/Downloads/archive (14)/StudentPerforman
          std_prfmnce
Out[14]:
                 Hours Studied
                                Attendance Parental_Involvement Access_to_Resources
                                                                                        Extracurri
              0
                            23
                                         84
                                                              Low
                                                                                  High
                                         64
                                                              Low
                                                                               Medium
              2
                            24
                                         98
                                                          Medium
                                                                               Medium
                            29
                                         89
                                                              Low
                                                                               Medium
              4
                            19
                                         92
                                                          Medium
                                                                               Medium
          6602
                            25
                                         69
                                                             High
                                                                               Medium
          6603
                            23
                                         76
                                                             High
                                                                               Medium
          6604
                            20
                                         90
                                                          Medium
                                                                                   Low
          6605
                            10
                                         86
                                                             High
                                                                                  High
          6606
                            15
                                         67
                                                          Medium
                                                                                   Low
         6607 rows × 20 columns
In [15]:
          print(std_prfmnce.columns)
         Index(['Hours_Studied', 'Attendance', 'Parental_Involvement',
                'Access_to_Resources', 'Extracurricular_Activities', 'Sleep_Hours',
                'Previous_Scores', 'Motivation_Level', 'Internet_Access',
                'Tutoring_Sessions', 'Family_Income', 'Teacher_Quality', 'School_Type', 'Peer_Influence', 'Physical_Activity', 'Learning_Disabilities',
                'Parental_Education_Level', 'Distance_from_Home', 'Gender',
                 'Exam_Score'],
               dtype='object')
In [16]:
          print("\nDescriptive Statistics:")
          print(std_prfmnce.describe())
```

```
Descriptive Statistics:
```

	Hours_Studied	Attendance	Sleep_Hours	Previous_Scores	\
count	6607.000000	6607.000000	6607.00000	6607.000000	
mean	19.975329	79.977448	7.02906	75.070531	
std	5.990594	11.547475	1.46812	14.399784	
min	1.000000	60.000000	4.00000	50.000000	
25%	16.000000	70.000000	6.00000	63.000000	
50%	20.000000	80.000000	7.00000	75.000000	
75%	24.000000	90.000000	8.00000	88.000000	
max	44.000000	100.000000	10.00000	100.000000	

	Tutoring_Sessions	Physical_Activity	Exam_Score
count	6607.000000	6607.000000	6607.000000
mean	1.493719	2.967610	67.235659
std	1.230570	1.031231	3.890456
min	0.000000	0.000000	55.000000
25%	1.000000	2.000000	65.000000
50%	1.000000	3.000000	67.000000
75%	2.000000	4.000000	69.000000
max	8.000000	6.000000	101.000000

```
In [17]: plt.figure(figsize=(8, 6))
    sns.regplot(x=std_prfmnce['Attendance'], y=std_prfmnce['Exam_Score'], scatter_kw
    plt.xlabel("Attendance")
    plt.ylabel("Exam Score")
    plt.title("Exam Score vs Attendance Percentage")
    plt.show()

    print("The correlation between the two variables is")
    print(std_prfmnce['Attendance'].corr(std_prfmnce['Exam_Score']))
```

Exam Score vs Attendance Percentage

The correlation between the two variables is 0.5810718633120644

```
In [20]: # Prepare Data for Regression
          X = std_prfmnce[['Attendance']] # Independent variable
          Y = std_prfmnce['Exam_Score'] # Dependent variable
          X = sm.add_constant(X)
          X.head()
          model = sm.OLS(Y,X, missing='drop')
          model result=model.fit()
          model_result.summary()
                               OLS Regression Results
Out[20]:
              Dep. Variable:
                                 Exam_Score
                                                   R-squared:
                                                                    0.338
                     Model:
                                        OLS
                                               Adj. R-squared:
                                                                    0.338
                   Method:
                                Least Squares
                                                    F-statistic:
                                                                    3367.
                      Date: Sat, 15 Mar 2025 Prob (F-statistic):
                                                                     0.00
                      Time:
                                    20:42:32
                                               Log-Likelihood:
                                                                  -16989.
          No. Observations:
                                       6607
                                                          AIC: 3.398e+04
               Df Residuals:
                                       6605
                                                          BIC: 3.400e+04
                  Df Model:
           Covariance Type:
                                   nonrobust
                          coef std err
                                              t P>|t| [0.025 0.975]
                const 51.5786
                                 0.273 189.191 0.000 51.044
          Attendance
                        0.1958
                                 0.003
                                         58.026 0.000
                                                        0.189
                                                                0.202
                Omnibus: 4752.483
                                      Durbin-Watson:
                                                            2.023
          Prob(Omnibus):
                              0.000 Jarque-Bera (JB): 163501.063
                    Skew:
                              3.038
                                            Prob(JB):
                                                             0.00
                 Kurtosis:
                                            Cond. No.
                             26.601
                                                             566.
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [22]: fitted_values = model_result.fittedvalues
    residuals = model_result.resid

plt.figure(figsize=(8,5))
    plt.scatter(fitted_values, residuals, alpha=0.8)
    plt.axhline(y=0, color='r', linestyle='dashed')
    plt.xlabel('fitted_values')
    plt.ylabel('Residuals')
    plt.title('Residuals Vs. Fitted Values')
    plt.show()
```

Residuals Vs. Fitted Values


```
import statsmodels.stats.diagnostic as smd
import numpy as np

# Get residuals and independent variables (exog)
residuals = model_result.resid
exog = model_result.model.exog # Independent variables (including constant)

# Perform the Breusch-Pagan test
bp_test = smd.het_breuschpagan(residuals, exog)
p_value = bp_test[1] # Extract the p-value

print(f"Breusch-Pagan test p-value: {p_value}")

# Interpretation
if p_value < 0.05:
    print("Heteroscedasticity detected! Consider transformation or robust standa else:
    print("No significant heteroscedasticity detected.")</pre>
```

Breusch-Pagan test p-value: 0.8057839143058365 No significant heteroscedasticity detected.

```
In []:
```