Question	Answer	Marks	Guidance
(a)	State or imply $dx = 3\sec^2\theta d\theta$	B1	
	Substitute throughout for <i>x</i> and d <i>x</i>	M1	
	Obtain any correct form in terms of θ	A1	e.g. $\int \frac{81\sec^2 \theta}{\left(9 + 9\tan^2 \theta\right)^2} d\theta$
	Justify change of limits and obtain $\int_0^{\frac{\pi}{4}} \cos^2 \theta d\theta$ correctly	A1	AG
		4	
(b)	Obtain indefinite integral of the form $\int a + b \cos 2\theta d\theta$, where $ab \neq 0$	*M1	
	Obtain $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$	A1	
	Use correct limits correctly in an expression containing $p\theta$ and $q\sin 2\theta$ where $pq \neq 0$	DM1	$\frac{\pi}{8} + \frac{1}{4}(-0)$
	Obtain answer $\frac{1}{8}(\pi+2)$	A1	Or exact equivalent e.g. $\frac{1}{8}\pi + \frac{1}{4}$.
		4	