Causal inference cheat sheet

Last compiled: September 12, 2020

1. Basic probability

- Law of total probability: $P(A) = \sum_i P(A, B_i)$ (a.k.a. marginalizing over B)
- Chain rule of probability: P(A,B) = P(A|B)P(B)
- Thus, $P(A) = \sum_{i} P(A|B_i)P(B_i)$
- Expectation: $E(g(X)) = \sum_x g(x) P(x)$ Conditional mean: $E(X|Y) = \sum_x x P(x|y)$ Variance: $\sigma_X^2 = E[(X E(x))^2]$
- Covariance: $\sigma_{XY} = E[(X E(X))(Y E(Y))]$
- Correlation coefficient: $\rho_{XY} = \sigma_{XY}/(\sigma_X \sigma_Y)$
- ullet Regression coefficient of X on Y: $r_{XY}=
 ho_{XY}\sigma_X/\sigma_Y=\sigma_{XY}/(\sigma_Y^2)$ (for the equation X= $r_{XY}Y + c + \mathcal{N}(0, \sigma^2)$
- Conditional independence: $(X \perp \!\!\! \perp Y|Z) \iff P(x|y,z) = P(x|z)$

Decomposition of a joint distribution into parents

$$P(x_1, ..., x_n) = \prod_{i} P(x_i | pa_i)$$
(1.1)

d-separation in Bayesian networks

A path p is d-separated (or blocked) by a set of notes Z if and only iff

- 1. p contains a chain $i \to m \to j$ or a fork $i \leftarrow m \to j$ such that the middle node m is in Z, or
- 2. p contains a collider $i \to m \leftarrow j$ such that the middle node m is not in Z and such that no descendant of m is in Z

where an arrow $pa_j \to x_j$ denotes part of a directed acyclic graph (DAG) in which variables are represented by nodes and arrows are drawn from each node of the parent set PA_i towards the child node X_{j} .

Probabilistic implications of d-separation Consequently, if X, Y, and Z are d-separated by Z in a DAG G then $(X \perp \!\!\!\perp Y|Z)$ in every distribution compatible with G. Conversely, if X, Y, and Z are not d-separated by Z in a DAG G then X and Y are dependent conditional on Z in almost all distributions compatible with G (assuming no parameter fine-tuning).

Causal Bayesian networks

A causal intervention $do(X_i = x_i)$ corresponds to setting the variable X_i to x_i and also mutilating the DAG such that all arrows pointing directly to X_i are removed:

$$P(v|do(x)) = \prod_{\{i|V_i \notin X\}} P(v_i|pa_i).$$
(2.1)

Amputation is the difference between seeing and doing.

3. Functional causal models

A functional causal model consists of a set of equations of the form

$$x_i = f_i(pa_i, u_i), \quad i = 1, ..., n$$
 (3.1)

where pa_i are the set of variables (parents) that directly determine the value of X_i and U_i represents errors (or "disturbances") due to omitted factors. When some disturbances U_i are judged to be dependent, it is customary to denote such dependencies in a causal graph with double-headed arrows. If the causal diagram is acyclic, then the corresponding model is called semi-Markovian and the values of the variables X are uniquely determined by those of the variables U. If the error terms U are jointly independent, the model is called Markovian.

Linear structural equation models obey

$$x_i = \sum_{k \neq i} \alpha_{ik} x_k + u_i, \quad i = 1, ..., n$$
 (3.2)

In linear models, pa_i corresponds to variables on the r.h.s. of the above equation where $\alpha_{ik} \neq 0$.

3.1. Counterfactuals in functional causal models: An example

Consider a randomized clinical trial, where patients are/are not treated $X \in \{0,1\}$. We also observe whether the patients die after treatment $Y\{0,1\}$. We wish to ask the question: did the patient die because of the treatment, despite the treatment, or regardless of the treatment.

Assume P(y|x) = 0.5, and therefore P(y,x) = 0.25 for all x and y. We can write two models with the same joint distribution

Model 1 (treatment no effect):

$$x = u_1 \tag{3.3}$$

$$y = u_2 \tag{3.4}$$

$$P(u_1 = 1) = P(u_2 = 1) = \frac{1}{2}$$
(3.5)

Model 2 (treatment has an effect):

$$x = u_1 \tag{3.6}$$

$$y = xu_2 + (1 - x)(1 - u_2) (3.7)$$

$$P(u_1 = 1) = P(u_2 = 1) = \frac{1}{2}$$
(3.8)

Let Q=fraction of deceased subjects from the treatment group who would not have died had they not taken the treatment. In model 1, Q=0 since X has no effect on Y. In model 2, subjects who died (y=1) and were treated (x=1) must correspond to $u_2=1$. If $u_2=1$ then the only way for y=0 is for x=0. I.e. if you are a patient for whom $u_2=1$ then the only way not to die is to not take the treatment, so the treatment caused your death. So Q=1.

Consequence 0: joint probability distributions are insufficient for counterfactual computation

Consequence 1: stochastic causal models are insufficient for counterfactual computation

Consequence 2: functional causal models are sufficient to define and compute counterfactual statements.

General method to compute counterfactuals Given evidence $e = \{X_{obs}, Y_{obs}\}$, to compute probability of Y = y under hypothetical condition X = x apply the following steps:

- 1. Abduction: Update the probability of disturbances P(u) to obtain P(u|e)
- 2. Action: Replace the equations corresponding to variables in the set X by the equations X = x
- 3. Prediction: Use the modified model to compute the probability Y = y.