

Partition and Selection

Foundations of Algorithms
Guven

Reading Assignment

• Cormen, Chapter 7, 9

Outline

- Divide and Conquer
- Partition
- Selection
- Quickselect
- Deterministic Selection

Divide and Conquer

- Algorithm design paradigm:
 - 1. Divide instance of the problem into two or more smaller instances (disjoint)
 - 2. Solve smaller instances recursively
 - 3. Obtain solution to original (larger) instance by combining these (smaller) solutions
- Multi-branched recursion
 - e.g. Fibonacci sequence: $F_n = F_{n-1} + F_{n-2}$ (true benefit DC?)
 - e.g. Fast Fourier Transform (true benefit DC)
 - Note, in practice recursion is avoided by direct iteration

Divide and Conquer Paradigm

- Divide and conquer ← e.g. Hadoop MapReduce
 - Not overlapping solutions
 - Not dynamic programming where the previous results are used in the next iteration
 - Each subproblem has an independent solution

Fibonacci Generation

- $F_0=0$, $F_1=1$, and $F_n=F_{n-1}+F_{n-2} \forall n \ge 2$
 - (0, 1, 1, 2, 3, 5, 8, 13, 21, ...)
- A recursive solution

```
def fibr(n):
    if n < 2:
       return n
    else:
        return fibr(n-1)+fibr(n-2)
```

- Time complexity: O(2ⁿ)
 - fibr looks like a divide and conquer approach
 - But it is not. Why? Because the solutions are overlapping

Quicksort

```
def quicksort(A,p,r):
  if p<r:</pre>
    q=partition(A,p,r) # divide
    quicksort (A,p,q-1) # T(n/2)
    quicksort(A,q+1,r) # T(n/2)
def partition(A,p,r):
  x=A[r]; i=p-1
  for j in range(p,r): # Takes (r-p) operations
    if A[i]<=x:
      i +=1
      A[i],A[j]=A[j],A[i] # swap
  A[i+1], A[r]=A[r], A[i+1] # swap the pivot
  return i+1
```

Quicksort is also called partition-exchange sort algorithm

Quicksort Example

i	j,p								r
	1	2	3	4	5	4	3	2	3
	i,p	j							r
	1	2	3	4	5	4	3	2	3
	р	i	j						r
	1	2	3	4	5	4	3	2	3
	p	_	i	j					<u>r</u>
	1	2	3	4	5	4	3	2	3
	р		i		j				<u>r</u>
	1	2	3	4	5	4	3	2	3
	р		i			j			r
	1	2	3	4	5	4	3	2	3
	p	_	i				j		r
	1	2	3	4	5	4	3	2	3
	p			i				j	r
	1	2	3	4	5	4	3	2	3
	1	2	3	3	5	4	3	2	4

In-class Exercise

- A=[10,2,8,4,6,1,2,2,5]
- Write down the partitions p, r, A at the end of first and second iterations
- Answer
 - 08 [2, 4, 1, 2, 2, 5, 10, 6, 8]
 - 0 4 [2, 1, 2, 2, 4, 5, 10, 6, 8]
 - 68 [1, 2, 2, 2, 4, 5, 6, 8, 10]

Selection Problem

- Given n elements from a totally ordered universe, find the kth smallest
- Minimum: k=1, maximum: k=n
- Median: k=[(n+1)/2]
- O(n) comparisons for min or max
- O(n log n) comparisons by sorting
- O(n log k) comparisons with a binary heap

Selection Problem

- The input may or may not be ordered
 - It is orderable since drawn from an ordered universe
- Also named as ith order statistic
- Applications of Selection
 - Pivot selection by median can be used for Quicksort
 - Incremental sorting
 - Order statistics

Recall Binary Heap

- A binary heap is a complete binary tree which satisfies the heap ordering property
 - min-heap: the value of each node is greater than or equal to the value of its parent, minimum-value element at the root
 - max-heap: the value of each node is less than or equal to the value of its parent, maximum-value element at the root
- Insertion O(log n)
- Extraction O(log n)
- Application: priority queue

Quickselect

- Idea: 3-way partition such that
 - smaller, equal and larger items in L, M and R, respectively
 - then recur in one of the subarrays the one containing the kth smallest element
- Pick pivot p ∈ A uniformly at random

Quickselect

```
def quickselect (A, k):
  p = A[int(len(A)/2)] # Pick the middle
  L,M,R = partition3way(A,p) # (n-1) comparisons
  if k \le len(L):
    return quickselect(L,k)
  elif k>len(L)+len(M):
    return quickselect (R, k-len (L) -len (M))
  else:
    return p
def partition3way(A,p):
  L,M,R=[],[],[]
  for a in A: # Can be improved like quicksort
    if p>a: L.append(a)
    elif p<a: R.append(a)</pre>
    else: M.append(a)
  return L,M,R
```

Analysis of Quickselect

- Without losing generality, assume distinct elements
- Candy bar split problem
 - After a "fair" split the average length of the longest bar is 3/4
 - Expected value E(x) = integral 1/2 to 1 with uniform distribution

•
$$E(x) = \int_{\frac{1}{2}}^{1} x f(x) dx$$
, $f(x) = \begin{cases} 0, else \\ 2, \frac{1}{2} \le x \le 1 \end{cases}$

- E(x) = 3/4
- T(n) = T(3n/4) + O(n)

Analysis of Quickselect

- Normal case: T(n) = T(3n/4) + O(n)
 - $T(n) \leq 4n$
 - Linear algorithm (!)
- Unlucky case: T(n) = T(n-1) + O(n)
 - $T(n) \le n^2$
 - More costly than O(n log n) sorting

Deterministic Selection

- Median of medians
- 1. Group the array into n/5 groups of size 5 and find the median of each group
- Recursively, find the true median of the medians, call this p
- Use p as a pivot to split the array into subarrays L and R
- 4. Recurse on the appropriate subarray

Deterministic Selection Analysis

- O(n) for step 1
- T(n/5) for step 2
- 3/10 subarray $\leq p$, 3/10 subarray $\geq p$
- $T(n) \le cn + T(n/5) + T(7n/10)$
- Then, $T(n) \le cn + T(9n/10)$
- Finally, T(n) ≤ 10n
- Thus, the cost increases for the sake of determinism

Deterministic Selection Analysis

