

APLICACIONES DE LA SEGUNDA FORMA FUNDAMENTAL

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 20) 13.ABRIL.2023

Las curvaturas principales κ_1 y κ_2 están relacionadas con el tensor de estrés.

(a) La Sagrada Familia (Gaudi). (b) Detalle de catenarias en las columnas

Ver https://www.youtube.com/watch?v=KXP_kPPc7LY

Puente formado por lineas de curvatura (Schlaich).

Ver https://www.youtube.com/watch?v=VeahtDy7n8I&t=5s

Variedad de estructuras arquitectónicas basadas en superficies.

Gauss nos enseña hasta como se debe tomar un pedazo de pizza.

Ejemplo 1: (El plano)

Tomemos la parametrización $\mathbf{x}(u,v) = \mathbf{p}_0 + u\mathbf{w}_1 + v\mathbf{w}_2$, con $\{\mathbf{w}_1,w_2\}$ base del plano. Luego, $\mathbf{x}_u = \mathbf{w}_1, \mathbf{x}_v = \mathbf{w}_2$.

De ahí,

$$N(\mathbf{p}) = \frac{\mathbf{x}_u(\mathbf{p}) \times \mathbf{x}_v(\mathbf{p})}{|\mathbf{x}_u(\mathbf{p}) \times \mathbf{x}_v(\mathbf{p})|} = \frac{\mathbf{w}_1 \times \mathbf{w}_2}{|\mathbf{w}_1 \times \mathbf{w}_2|}$$

es constante.

 \Rightarrow DN(\mathbf{p}) = 0, $\forall \mathbf{p} \in S$. Así, si \mathbf{e}_1 y \mathbf{e}_2 son las directiones principales, entonces

$$DN(\mathbf{p}) \cdot \mathbf{e}_1 = \mathbf{0} = O\mathbf{e}_1, \quad DN(\mathbf{p}) \cdot \mathbf{e}_2 = \mathbf{0} = O\mathbf{e}_2.$$

De modo que $\kappa_1 = 0$ y $\kappa_2 = 0$.

En este caso $II_{\mathbf{p}}(\mathbf{v}) = 0$, para todo $\mathbf{v} \in T_{\mathbf{p}}S$.

Ejemplo 2: (Esfera de radio R)

Para una esfera S^2 de radio R (centrada en el origen), tenemos que la aplicación de Gauss, con la orientación que apunta todos los vectores normales hacia el origen, es

$$N(\mathbf{p}) = -\frac{1}{R}\mathbf{p}, \quad \forall \mathbf{p} \in S^2.$$

Luego, $DN(\mathbf{p}) \cdot \mathbf{v} = -\frac{1}{R}I \cdot \mathbf{v} = -\frac{1}{R}\mathbf{v}$, $\forall \mathbf{v} \in T_{\mathbf{p}}S^2$. En particular,

$$II_{\mathbf{p}}(\mathbf{v}) = -\langle DN(\mathbf{p}) \cdot \mathbf{v}, \mathbf{v} \rangle = \frac{1}{R} ||\mathbf{v}||^2.$$

Si \mathbf{e}_1 y \mathbf{e}_2 son las direcciones principales en S_R^2 , entonces

$$DN(\mathbf{p}) \cdot \mathbf{e}_1 = -\frac{1}{R}\mathbf{e}_1, \quad DN(\mathbf{p}) \cdot \mathbf{e}_2 = -\frac{1}{R}\mathbf{e}_2.$$

Luego, $\kappa_1 = \frac{1}{R}$ y $\kappa_2 = \frac{1}{R}$, y $II_{\mathbf{p}}(\mathbf{v}) = -\frac{1}{R}$, para todo $\mathbf{v} \in T_{\mathbf{p}}S^2$.

Ejemplo 3: (Cilindro)

Consideramos el cilindro $S = S^1 \times \mathbb{R} = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 = R^2\}$. $S = f^{-1}(R^2)$, con $f(x,y,z) = x^2 + y^2$, y como R^2 es valor regular de f, S es superficie regular orientable. Además,

$$N(\mathbf{p}) = -rac{
abla f(x,y,z)}{|
abla f(x,y,z)|} = rac{(2x,2y,0)}{|(2x,2y,0)|} = -rac{1}{R}(x,y,0) = -rac{1}{R}\mathbf{p}.$$

Consideramos la curva (x(t),y(t),z(t)) contenida en el cilindro, es decir, con $x(t)^2+y(t)^2=R^2$. A lo largo de esta curva, $N(t)=\frac{1}{R}(-x(t),-y(t),o)$ y por lo tanto,

$$DN(\mathbf{p}) \cdot (x'(t), y'(t), z'(t)) = N'(t) = \frac{1}{R}(-x'(t), -y'(t), o).$$

Concluimos lo siguiente:

Si \mathbf{w}_1 es un vector tangente al cilindro y paralelo al eje z, entonces $DN(\mathbf{p}) \cdot \mathbf{w}_1 = \mathbf{0} = O\mathbf{w}_1$; si \mathbf{w}_2 es un vector tangente al cilindro y paralelo al plano xy, entonces $DN(\mathbf{p}) \cdot \mathbf{w}_2 = -\frac{1}{D}\mathbf{w}_2$.

De ello se deduce que \mathbf{w}_1 y \mathbf{w}_2 son los autovectores de $DN(\mathbf{p})$, con autovalores $\kappa_1=0$ y $\kappa_2=\frac{1}{R}$, respectivamente.

