Graduate Qualifying Project & Professional Journey

Vandana Anand October 27th, 2021

Agenda

- (1) Introduction
- (2) GQP Project Overview
- (3) Key Takeaways & Learnings from GQP
- (4) Verizon Position, Work Responsibilities, How GQP Helped
- (5) Tips and Skills for Data Science Interviews and Jobs
- (6) Questions & Answers

Vandana Anand

Bachelor's in Computer Science '19

Master's in Data Science '20

Digital Marketing
Catalyst VLDP (Data
Science Analyst) on
Business
Enablement team

Hometown: Boston MA

Acapella

Love travelling: 11 countries & counting!

Badminton

GQP Project

Entity Linking WPI-Basis Technology Project

Sept 2020-Dec 2020

Team members: Kratika Agrawal, Vandana Anand, Xinlu He, Min Huang, Soumya Joshi, Jing Yu

Basis Technology Mentors: Gil Irizarry, Kfir Bar, Lital Ravid, Karin Lin, Zachary Yocum

WPI Mentors: Prof. Chun-Kit Ngan, Prof. Fatemeh Emdad

Project Team Introduction

Sponsors & Mentors

Gil Irizarry

Kfir Bar

Vice President - Engineering

Chief Scientist

gil@basistech.com

kfir@basistech.com

Latent Relations

End2End

DeepType

Soumya Joshi sjoshi2@wpi.edu

Min Huang mhuang3@wpi. edu

Vandana Anand vanand@wpi.edu

Xinlu He xhe4@wpi.edu

Kratika Agrawal kagrawal wpi.e

Jing Yu
jyu5@wpi.edu

Project Goal

Goal: Improve BT's current entity linking tool **Rosette** by applying a novel model to increase entity linking performance.

Our Entity Linking System

Named Entity Linking / Entity disambiguation method explained above includes the
 co-reference which is a relation between two or more mentions in a text when
 they refer to the same entity

Project Timeline

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14
TASK	8-Sep-20	14-Sep-20	21-Sep-20	28-Sep-20	5-Oct-20	12-Oct-20	19-Oct-20	26-Oct-20	2-Nov-20	9-Nov-20	16-Nov-20	23-Nov-20	30-Nov-20	7-Dec-20
Team & Project Introduction			2							82	63			
Exploring tool Rosette										12	49			
Annotation Tool Review			30							13				
Read relevant papers	0.5	0.00	(8)					100		12				
Paper Presentations								100		12				
Compare Evaluation Metric										(2)				
Implementation: 3 Teams		20								(4)	49			
Transforming BT Dataset		33		*			B							
Evaluation on BT Dataset		3.0	(8)					100						
Discussion of Novel Approach		100						100						
Novel Approach Implementation		30						13		2				

Latent Relations Model

Research Problems Addressed

- Tackled candidate selection problem which is to choose best entity from a list of candidates by
 - local and global modeling
 - Innovatively including latent relations between mentions into the global model

 Eliminated the need for extensive feature engineering by using representation learning to learn relation embeddings

Results

- Successfully applied BT dataset into the latent relations model
- Better F1 score with larger BT dataset

Conclusion & Future Scope

Conclusion:

- Successfully applied BT dataset into latent relations model
- Better F1 score with larger BT dataset

Future Scope:

- More training rounds are needed to reduce the randomness
- Larger BT dataset is required
 - Generate candidates based on latest version wikipedia KB
 - Might bring higher F1 score

Project References

- Improving Entity Linking by Modeling Latent Relations between Mentions: https://arxiv.org/pdf/1804.10637.pdf
- Latent Relations Model Github: https://github.com/lephong/mulrel-nel
- Deep Joint Entity Disambiguation with Local Neural Attention: https://arxiv.org/pdf/1704.04920.pdf
- Deep Joint Model Github: https://github.com/dalab/deep-ed

End2End Model

Advantage of the End2End Model

Overview of the End2End Paper

End2End Paper - Candidate Selection

Mention -- Entity Candidate pair:

e.g:

Discovery channel

Discovery Channel--basic cable and satellite television

Star Trek: Discovery--American television series

Discovery--space shuttle orbiter

Discovery--2001 album by Daft Punk

- How to get candidate-- Prior Possibility
 - The ratio of the times the pair appears to the times the mention appears in KB
 - KB: a lot of text sample--Wikipedia2014
 - 30 candidates
- If already know the mention (eg: The New York)
 - lose advantage: loose part of the context information
 - don't have to analyze all the spans

End2End Paper - Other Skills

- Word2Vec
 - transfer the word into vector
 - the cosine similarity indicates the level of semantic similarity between the words
 - pre-trained
- Bi-derection LSTM
 - both inside a word and the mention between word
 - lexical information in Character Embeddings
 - context- aware

Paper Implementation Workflow

Preparing the dataset

Datasets

aida_train aida_test aida_dev ace2004 aquaint clueweb msnbc wikipedia

Format

<u>Text</u>

The Electoral division of Apsley is one of the 15 electorates or seats in the Tasmanian Legislative Council. It is the second-largest upper house electorate in the state by area after Murchison.

<u>XML</u>

```
<?xml version="1.0" encoding="UTF-8"?>
<wikipediaData.entityAnnotation>
       <document docName="Electoral division of Apsley">
             <annotation>
                    <mention>Tasmanian Legislative Council</mention>
                    <wikiName>Tasmanian Legislative Council</wikiName>
                    <offset>78</offset>
                    <length>29</length>
             </annotation>
             <annotation>
                    <mention>Murchison</mention>
                    <wikiName>Electoral division of Murchison</wikiName>
                    <offset>184</offset>
                    <length>9</length>
             </annotation>
       </document>
```

Preprocessing Output

```
DOCSTART Electoral division of Apslev
Electoral
division
Apsley
is
one
of
the
                                          Wikipedia
15
electorates
seats
in
the
MMSTART_579457
Tasmanian
Legislative
Council
It
is
the
second-largest
MMSTART_579457
house
MMEND
-DOCSTART- (1 EU)
                       --NME--
rejects
German B
               German Germany http://
en.wikipedia.org/wiki/Germany 11867 /m/
call
to
British B
               British United_Kingdom
                                                    AIDA
http://en.wikipedia.org/wiki/United Kingdom
       31717 /m/07ssc
lamb
Peter B
               Peter Blackburn -- NME--
Blackburn
                      Peter Blackburn --
NME--
BRUSSELS
                       BRUSSELS
Brussels
               http://en.wikipedia.org/
wiki/Brussels 3708
                      /m/0177z
1996-08-22
```

Training the Model

Entity Linking Training

Best	val:	idation	th	reshol	d = 0.	053 w	ith F1	L=90.1
aida_	dev							1
		90.1				F1:	90.1	
macro	P:	88.1	R:	88.3		F1:	88.2	
aida_	tes	t						
micro	P:	83.6	R:	82.1		F1:	82.8	
macro	P:	83.8	R:	84.3		F1:	84.1	
aida_	tra	in						ı
		96.0					95.7	
macro	P:	95.3	R:	95.2		F1:	95.3	
ace20	04					(530,500)		
micro	P:	19.3	R:	69.0		F1:	30.2	
macro	P:	21.3	R:	61.4		F1:	31.6	
aquai	nt							
		38.2				F1:	40.6	
macro	P:	40.1	R:	41.8		F1:	40.9	
cluew	eb							
		45.7				F1:	47.3	
macro	P:	53.6	R:	49.0		F1:	51.2	
msnbc								
		78.1				F1:	77.2	
macro	Ρ:	79.5	R:	74.5		F1:	76.9	
wikip	edi	а				(2553-05		
		40.9					41.8	
macro	P:	44.1	R:	43.4		F1:	43.7	J
(end2	end.	_neural	el	_env)	[wpi-p	rojec	t@wpi-	gcp-26

Model Performance

Entity Disambiguation Training

```
Evaluating ED datasets
Best validation threshold = -0.037 with F1=93.8
aida_dev
                                 F1: 93.8
micro P: 94.5
                R: 93.1
macro P: 93.1
                                 F1: 92.5
                R: 91.9
aida test
                R: 85.4
micro P: 89.2
                                 F1: 87.2
macro P: 90.0
                                 F1: 89.1
                R: 88.1
aida_train
                                 F1: 96.7
micro P: 97.3
                R: 96.1
                                 F1: 96.5
macro P: 97.0
                R: 95.9
ace2004
                                 F1: 88.1
micro P: 92.6
                R: 83.9
macro P: 93.8
                R: 85.1
                                 F1: 89.2
aquaint
micro P: 92.4
                R: 87.2
                                 F1: 89.7
                R: 86.7
                                 F1: 89.4
macro P: 92.4
clueweb
                                 F1: 77.3
micro P: 83.2
                R: 72.3
macro P: 82.8
                R: 72.6
                                 F1: 77.4
msnbc
                R: 90.3
                                 F1: 92.3
micro P: 94.4
                                 F1: 93.2
macro P: 95.4
                R: 91.1
wikipedia
micro P: 78.2
                R: 70.9
                                 F1: 74.4
macro P: 78.7
                R: 72.2
                                 F1: 75.3
(end2end neural el env) [wpi-project@wpi-gcp-2021-2
```

Testing the Model w/ AIDA and other datasets

Entity Disambiguation	Train Score	Test Score	Test Precision	Test Recall
Best Scores	92.2%	85.7%	88.5%	83%

Entity Linking	Train Score	Test Score	Test Precision	Test Recall
Best Scores	62.9%	56.8%	57.5%	56.1%
Using all Spans Best Score	89.1%	80.1%	83.5%	76.9%

Preparing the BT dataset

```
"version": "1.1.0",
  "data": "On Wednesday, the total number of confirmed deaths linked to SARS-CoV-2
  "attributes": {
     "entities":
       "type": "list".
       "itemType": "entities",
       "items": [
                                                     JSON
            "mentions": [
                 "startOffset": 44,
                 "endOffset": 50
            "type": "SYMPTOM",
            "entityId": "Q4"
  "documentMetadata": {
       "SARS-CoV-2 surpasses 100,000 confirmed deaths in the United States"
     "language": [
       "en"
     "direction": [
     "published_date": [
       "2020-05-29"
     "accessed_date": [
       "2020-08-19T17:57:25,224462"
       "https://en.wikinews.org/wiki/SARS-CoV-
2 surpasses 100,000 confirmed deaths in the United States"
     "domain": [
       "https://en.wikinews.org"
     "wikinews categories": [
       "https://en.wikinews.org/wiki/Category:Archived",
       "https://en.wikinews.org/wiki/Category:COVID-19".
       "https://en.wikinews.org/wiki/Category:Coronavirus",
       "https://en.wikinews.org/wiki/Category:Disease"
       "https://en.wikinews.org/wiki/Category:Health".
```

```
DOCSTART_SARS-CoV-2_surpasses_100,000 confirmed_deaths
0n
Wednesday
the
              Doc start: DOCSTART_fileName
total
              row: word or punc
number
of
              mention: start with "MMSTART Wikiid"
confirmed
                        end with "MMFND"
MMSTART 4
              between paragraph: *NL*
deaths
MMEND
linked
to
MMSTART_84263196
SARS
CoV
MMEND
MMSTART_89469904
coronavirus
                                  pair_num: 3114
                   processBT
MMEND
MMSTART_166231
                                  BTDB_num 207
                   processBT
infections
MMEND
                                  unknown id 0
                   processBT
surpassed
100
                                  file_num 70
                   processBT
```

Future Scope

- Testing the End2End Model with the BT dataset (cannot plug in directly)
- Rearranging the implementation code to be compatible with BT's data structure
- Evaluating the accuracy of the model on BT's dataset
- Running the model on BT's server and integrating with existing processes to improve entity procedures

Project Conclusion

- End2End: if only the word disambiguation process, the result cannot take much of an advantage of this model.
- End2End gave reasonable accuracy on the AIDA testing set because the number of mentions is so big. Since BT's data is lower we expect this number to be lower as well
- We learned:
 - Entity linking and entity disambiguation processes
 - Researching and understanding how the End2End model works
 - Preprocessing various datasets and transforming BT's data to be compatible with the model

Project References

- Research Paper: https://arxiv.org/pdf/1808.07699.pdf
- End2End Github: https://github.com/dalab/end2end-neural_el
- https://github.com/lephong/mulrel-nel (Entity Linking)
- https://github.com/basis-technology-corp/annotated-data-model
- https://github.com/basis-technology-corp/wpi-gqp-2020 (BT data)

DeepType Model:

Multilingual Entity Linking by Neural Type
System Evolution

Deep Type: Implementation

Progress:

- Downloaded Wikidata & Wikipedia latest dumps
- Building Type System
- Followed varied approaches in building type system.

Limitations:

- Large files, need even larger space to run the whole process
- Incompatible packages and data dump
- Needed more time for building Type System through WikiAPI

Lesson Learnt:

- Assumes strong coherence among entities
- Entities can be easily disambiguated using Type System graph
- More accuracy if learnability is more for Type System knowledge base

Deep Type: Reported Results in the paper

Model		enwiki	frwiki	dewiki	eswiki	WKD30	CoNLL	TAC 2010
M&	W(Milne and Witten 2008)					84.6	1170	-
Tag	Me (Ferragina and Scaiella 2010)	83.224		80.711		90.9	-	-
(Gl	oberson et al. 2016)					2	91.7	87.2
(Yamada et al. 2016)						-	91.5	85.2
NTEE (Yamada et al. 2017)						-	-	87.7
LinkCount only		89.064**	92.013	92.013**	89.980	82.710	68.614	81.485
	manual	94.331**	92.967			91.888**	93.108**	90.743*
	manual (oracle)	97.734	98.026	98.632	98.178	95.872	98.217	98.601
	greedy	93.725**	92.984	341.60.000.000.000		92.375**	94.151**	90.850*
	greedy (oracle)	98.002	97.222	97.915	98.246	97.293	98.982	98.278
Ours	CEM	93.707**	92.415	100000000000000000000000000000000000000	322000 200	92.247**	93.962**	90.302*
Ō	CEM (oracle)	97.500	96.648	97.480	97.599	96.481	99.005	96.767
	GA	93.684**	92.027			92.062**	94.879**	90.312*
	GA (oracle)	97.297	96.783	97.408	97.609	96.268	98.461	96.663
	GA (English only)	93.029**				91.743**	93.701**	-

Significant improvements over prior work denoted by * for p < 0.05, and ** for p < 0.01.

Project References

DeepType Multilingual Entity Linking by Neural Type System Evolution:

https://arxiv.org/pdf/1802.01021.pdf

DeepType Source Code: https://github.com/openai/deeptype

Novel Approach with Robust Disambiguation

Robust Disambiguation Approach

Novel Disambiguation Approach

Novel Model: Graph Generation

Done:

- Use Robust Disambiguation technique code to produce graph https://github.com/codepie/aida
- Installed PostgreSQL 9.6.0
- Downloaded Yago dumps
- Imported Yago dumps in PostgreSQL
- Extract Mention Nodes, Entity Nodes and edge information from the generated graph

They performed Kashmir, written by Page and Plant. Page played unusual chords on his Gibson.

```
Generated Graph:

0

node = Kashmir, From:2/2, To:2/2, Offset: 15, Length: 7

node type = MENTION

successors = {}

1

node = Gibson, From:16/16, To:16/16, Offset: 85, Length: 6

node type = MENTION

successors = {}
```

Future Scope

- Establish connection between PostgreSQL and AIDA repository
- Develop weighted graph
- Translate weighted Graph => weighted Adjacency Matrices
- Generate Graph: AIDA dataset and Basis Technology dataset
- Get Embeddings: AIDA dataset and Basis Technology dataset
- Perform Training of CNN model
- Evaluate performance on Basis Technology dataset

Project References

- Robust Disambiguation of Named Entities in Text:
 - https://www.aclweb.org/anthology/D11-1072.pdf
- AIDA Online Demo: https://aida.dor.ai/overview
- AIDA Source Code: https://github.com/codepie/aida
- Wikipedia2Vec: https://wikipedia2vec/

Overall Learning

Thank You

Sponsors & Mentors:

Gil Irizarry

Vice President -Engineering gil@basistech.com

Kfir Bar

Chief Scientist kfir@basistech.com

Instructors:

Prof. Chun-Kit (Ben) Ngan Professor cngan@wpi.edu **Prof. Fatemeh Emdad**

Professor femdad@wpi.edu

Prof. Elke A. RundensteinerDirector of Data Science
rundenst@wpi.edu

Verizon Role: Digital Marketing Catalyst

Verizon Position

Verizon Leadership Development Program (VLDP)

- Designed to drive success of Verizon's future leaders.
- Provides college graduates a 3-4 year immersive experience as the build leadership skills
- Customized job rotations, leadership development curriculum, networking activities, hands-on learning, and opportunity to present to senior leadership

Marketing Catalyst in Digital Sales

 Digital Sales = driving marketing, sales and growth on <u>Verizon.com</u> using Artificial Intelligence (AI) and Machine Learning (ML)

Marketing Catalyst in Digital Sales

What do we do?

Innovate and initiate business problems to drive AI driven solutions, derive actionable insights, and push forward marketing and sales.

- Understand the business problem
- Translate technical tasks that need to be carried out
- Connect with the right team members
- Apply problem solving techniques
- Follow through with the team to deliver results

Teams we interact with:

- Business
- Marketing
- Data Engineering
- Global Technology Services (GTS) - Frontend/Backend engineers & Architects
- Al Center (Data Scientists)

Projects

Consolidate Reporting

Establish a one stop shop to evaluate models and personalization services on the digital platform

Analysis

Use reporting tools to assess model performance as well as user behavior, trends, and interaction. Identify areas of opportunities to implement AI/ML. Derive business value for model/experience implementations

Confluence Page

Document team's projects and share with the business to get up to speed on evaluating the enabled services

How GQP Helped

- Hands on project based experience and effective teamwork skills
- Learning to run effective meetings
- Presenting to sponsors that prepared me for executive leadership level presentations
- Translating complex technical concepts into understandable bullet points
- Exposure to different type of models that I can apply at work and suggest innovative approaches to business problems

Tips & Skills

Interviews & Workplace Tips/Skills

Behavioral

- Prepare by thinking of 2-3 teamwork experiences
- Being spontaneous takes practice!
- Soft skills are very important in the real world
- It's okay to take risks, we learn valuable lessons when we pick up ourselves
- Take business classes to understand the concepts

Technical

- Do your research about interesting and innovative technologies applied in the field
- Talk about your ideas and how you might integrate into the current process and develop it
- Leetcode for programming,
 SQL and Python are significant
- Having technical knowledge is key to communicating effectively with various teams

Q&A