Constraints (equalities)

$$f(\mathbf{x}) \rightarrow \min$$
, s.t. $g_1(\mathbf{x}) = 0, \dots, g_m(\mathbf{x}) = 0$

All functions are continuously differentiable.

A necessary condition for \mathbf{x}^* to be a local extremum is given, if there exists multipliers $\lambda_1, \ldots, \lambda_{m+1}$ with at least one $\lambda_i \neq 0$ for $i = 1, \ldots, m+1$, such that:

$$\lambda_1 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_{i+1} \nabla g_i(\mathbf{x}^*) = 0$$

The Langrange multipliers λ_i are named after Lagrange (1736-1813), who discovered this theorem, but could not prove it. It took 100 years before the proof was found. Show that this yields m+n equations with m+n+1 unknowns.

A standard approach is to try $\lambda_1 = 0$ and $\lambda_1 = 1$ (Lagrange multiplier rule).

Constraints (inequalities)

 $f(\mathbf{x}) \to \min$, s.t. $g_1(\mathbf{x}) \leq 0, \ldots, g_m(\mathbf{x}) \leq 0$, all functions are continuously differentiable.

The Karush Kuhn Tucker conditions are said to hold for \mathbf{x}^* , if there exists multipliers $\lambda_1 \geq 0, \ldots, \lambda_{m+1} \geq 0$ and at least one $\lambda_i > 0$ for $i = 1, \ldots, m+1$, such that:

- (1) $\lambda_1 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_{i+1} \nabla g_i(\mathbf{x}^*) = \mathbf{0}$.
- (2) $\lambda_{i+1}g_i(\mathbf{x}^*) = 0, i = 1, ..., m$

KKT Theorem - Neccessary conditions for smooth, convex programming: Assume the objective and all constraint functions are convex in some ϵ -neighborhood of \mathbf{x}^* , if \mathbf{x}^* is a local minimum, then there exists $\lambda_1, \ldots, \lambda_{m+1}$ such that KKT conditions are fulfilled.

Harold W. Kuhn US-American Mathematician 1924-2014 Albert William Tucker Canadian Mathematician, 1905-1995

Constraint (inequality)

As in the case of Lagrange multiplier, we get m+n non-linear equations, the solution of which results in candidate solutions.

The KKT conditions are sufficient for optimiality, provided $\lambda_1 = 1$. In this case \mathbf{x}^* is a local minimum.

Note that if \mathbf{x}^* is in the interior of the feasible region (a Slater point), all $g_i(\mathbf{x}) < 0$ and thus $\lambda_1 > 0$.

[Brinkhuis, Tikhomirov, 2005]

Multiobjective Optimization [cf. Miettinnen '99]

Fritz John neccessary conditions

A neccessary condition for \mathbf{x}^* to be a locally efficient point is that there exists vectors $\lambda_1, \ldots, \lambda_k$ and v_1, \ldots, v_m such that

- (0) $\lambda \succ 0, v \succ 0$
- (1) $\sum_{i=1}^{k} \lambda_i \nabla f_i(\mathbf{x}^*) \sum_{i=1}^{m} \upsilon_i \nabla g_i(\mathbf{x}^*) = 0.$
- (2) $v_i g_i(\mathbf{x}^*) = 0, i = 1, ..., m$

Karush Kuhn Tucker sufficient conditions for a solution to be Pareto optimal: Let \mathbf{x}^* be a feasible point. Assume that all objective functions are locally convex and all constraint functions are locally concave, and the Fritz John conditions hold in \mathbf{x}^* , then \mathbf{x}^* is a local efficient point.

Unconstrained Multiobjective Optimization

In the unconstrained case Fritz John neccessary conditions reduce to

There exist numbers $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$, such that

- (1) $\lambda > 0$
- (2) $\sum_{i=1}^{k} \lambda_i \nabla f_i(\mathbf{x}^*) = \mathbf{0}.$

 \mathbf{x}^* is optimum for some linear scalarization with some weights $\lambda_1, \ldots, \lambda_k$.

In 2-dimensional spaces this criterion reduces to the observation, that either one of the objectives has a zero gradient (necessary condition for ideal points) or the gradients are parallel.