Fundamentos de Lógica

Conceito de Lógica

 Lógica simbólica ou lógica matemática é a ciência que estuda a estrutura de um pensamento completo para diferenciar de argumentos verdadeiros e falsos.

Argumentos

 É um conjunto de várias proposições, antecedentes, que por consequente tem uma outra proposição como conclusão

Tabela Verdade

Tabela verdade é um mecanismo utilizado na lógica matemática para definição de um valor lógico (verdadeiro ou falso) de uma premissa.

Em lógica, as proposições representam pensamentos completos e indicam afirmações de fatos ou ideias.

Utiliza-se a tabela verdade em proposições compostas, ou seja, sentenças formadas por proposições simples, sendo que o resultado do valor lógico depende apenas do valor de cada proposição.

Para combinar proposições simples e formar proposições compostas são utilizados conectivos lógicos. Estes conectivos representam operações lógicas.

Proposição / premissa simples

p: O número dez é par

q: O número onze é impar

Proposição / premissa composta

P: O número dez é par **e** o número onze é impar

Para formar as proposições compostas se faz necessários os **conectivos lógicos**

No quadro abaixo, indicamos os **principais conectivos**, os símbolos usados para representá-los, a operação lógica que representam e o resultante valor lógico.

Relação	Conectivo	Valor Lógico
Conjunção	E (^)	Terá valor Verdadeiro quando as premissas forem verdadeiras
Disjunção	OU (V)	Terá valor Verdadeiro quando uma das premissas for verdadeira
Implicação (condicional)	Se então (→)	Terá valor Falso quando a antecedente for Verdadeira e consequente for Falsa
Bi implicação (Bicondincional)	Se e somente se (\leftrightarrow)	Será Verdadeira quando as premissas forem Verdadeiras ou quando as premissas forem falsas
Negação	Não (~)	Terá valor Verdadeiro quando a premissa for Falsa e vice versa

Tabela Verdade da Negação					
p	~p				
V	F				
F	V				

Exemplo:

p: Paulo é um corredor ~p: Paulo não é um corredor

Tabela Verdade da Conjunção							
p	q	þνd					
V	V	V					
V	F	F					
F	V	F					
F	F	F					

Exemplo: Qual o valor lógico de p Λ q?

p: Ônibus é um meio de transporte

q: Focus é um carro da marca Ford

Tabela Verdade da Disjunção							
p	q	pVq					
V	V	V					
V	F	V					
F	V	V					
F	F	F					

Tabela Verdade da Condicional q $p \rightarrow q$ V V V V F F F V V F F V

p: Nasci em Mato Grosso

q: Sou brasileiro

p → q: Se nasci em Mato Grosso, então sou Brasileiro

Antecedente

Consequente

F

Exemplo:

F

Comprarei uma moto se, e somente se, receber o salário do mês

V

Construção da Tabela Verdade

Para construir a tabela verdade devemos colocar os valores lógicos como verdadeiro ou falso para cada uma das proposições simples que formam a conclusão (proposição composta).

Tabela Verdade da Conjunção							
р	q	pΛq					
V	V	V					
V	F	F					
F	V	F					
F	F	F					

Para determinar o número de linhas da tabela iremos identificar a quantidade de proposições (antecedentes) que devemos atribuir como valor n. O cálculo da quantidade de linhas da tabela será utilizado a fórmula 2ⁿ.

Exemplo: Calcular a quantidades de linhas de uma tabela verdade das seguintes proposições **p** e **q**

Duas proposições (p e q) logo ${\bf n}$ será igual a ${\bf 2}$.

$$2^n = 2^2 = 4$$

Portanto teremos 4 linhas

linha	
1	
2	
3	
4	

р	q	peq

Para determinar a sequencia dos valores lógicos em uma tabela verdade devemos colocar todas as possibilidades possíveis utilizando a seguinte fórmula **2**^(n-k) onde **k** <u>é a posição</u> da coluna que devemos preencher com valores verdadeiros e também com valores falsos **seguidos**.

linha	р	q	peq
1	V	V	
2	V	F	
3	F	V	
4	F	F	

Duas proposições (p e q) Logo n=2 Portanto teremos 2º= 2º linhas (4)

Segunda coluna terá V e F alternado k=2 e 2²⁻²=2⁰=1

Primeira coluna terá 2 V seguidos e 2 F seguidos k=1 e 2²⁻¹=2¹=2

Construa a tabela verdade da proposição $P(p,q,r) = p^q$

Passos para construção da nossa tabela verdade

1º Passo: Temos 3 proposições (p, q, r) logo o nosso n=3

2º Passo: Aplicar na fórmula 2ⁿ para ver quantas linhas teremos na nossa tabela. Aplicando o valor n=3 teremos 8 linhas (2³=8 linhas)

3º Passo: Verificar a quantidades de V e F seguidos em cada posição da nossa tabela. Para isso devemos pegar a primeira posição (a esquerda da tabela) e aplicar na fórmula 2^{n-k}. Neste caso o nosso n=3 e o nosso k=1 (primeira posição). Isso corresponde a 2³⁻¹=2²⁼⁴ que será 4 V seguidos e depois 4 F seguidos.

4º Passo: Pegar a segunda posição da coluna onde o K=2 (segunda posição) e aplicar na fórmula 2^{n-k} . Isso corresponde a $2^{3-2}=2^{1-2}$ que será 2 V seguidos e depois 2 F seguidos.

5º Passo: Pegar a terceira posição da coluna onde o K=3 (terceira posição) e aplicar na fórmula 2^{n-k} . Isso corresponde a $2^{3-3}=2^{0-1}$ que será 1 V e depois 1 F alternados.

Observe o próximo slide a tabela construída

р	q	r	p^q^r
V	V	V	V
V	V	F	F
V	F	V	F
V	F	F	F
F	V	V	F
F	V	F	F
F	F	V	F
F	F	F	F

Construir a seguinte tabela verdade

р	q	~p	~q	pVq	ρνd	~pVq	р /~q	~(pV~q)	(~p ∧ q)

Resultado da tabela verdade

р	q	~p	~q	pVq	ρνq	~pVq	р /~ q	~(pV~q)	(~p ∧ q)
V	V	F	F	V	V	V	F	F	F
V	F	F	V	V	F	F	V	F	F
F	V	V	F	V	F	V	F	V	V
F	F	V	V	F	F	V	F	F	F

Construir a seguinte tabela verdade

р	q	~p	~q	p> q	p <> q	~p>q	p>~q	(pV~q)	~(~p> q)

Resultado da tabela verdade

р	q	~p	~q	p> q	p <> q	~p>q	p>~q	(pV~q)	~(~p> q)
V	V	F	F	V	V	V	F	V	F
V	F	F	V	F	F	V	V	V	F
F	V	V	F	V	F	V	V	F	F
F	F	V	V	V	V	F	V	V	V

Exercícios:

- 1^a Questão:Construa a tabela verdade da proposição P(p,q) = p^q
- 2ª Questão:Construa a tabela verdade da proposição P(p,q) = p^~q
- 3^a Questão:Construa a tabela verdade da proposição $P(p,q) = \sim (p \vee q)$
- 4^a Questão:Construa a tabela verdade da proposição $P(p,q) = -(-p \ v \ q) \ ^q$
- 5^a Questão:Construa a tabela verdade da proposição P(p,q) = \sim (p v q) $^{\sim}$ (\sim p v q)
- 6^a Questão:Construa a tabela verdade da proposição P(p,q) = ~(p v~q) → (~p v q)
- 7^a Questão: Construa a tabela verdade da proposição P(p,q,r) = p^q^r
- 8^a Questão: Construa a tabela verdade da proposição $P(p,q,r) = p^-q^-r$
- 9^a Questão: Construa a tabela verdade da proposição $P(p,q,r) = -p^q^r$
- 10^a Questão: Construa a tabela verdade da proposição $P(p,q,r) = -p^{-2}$
- 11ª Questão: Construa a tabela verdade da proposição $P(p,q,r) = (p^{q})^{r}$
- 12ª Questão: Construa a tabela verdade da proposição $P(p,q,r) = (-p^-q)^r$
- 13ª Questão: Construa a tabela verdade da proposição P(p,q,r) = (-p-->-q) -->-r
- 14ª Questão: Construa a tabela verdade da proposição $P(p,q,r) = (p^{q}) < --> r$
- 15ª Questão: Construa a tabela verdade da proposição $P(p,q,r) = (p^{r}) (r v q)$

Circuito Lógico ou Portas

"Portas ou circuitos lógicos são dispositivos que operam e trabalham com um ou mais sinais lógicos de entrada para produzir uma e somente uma saída, dependente da função implementada no circuito" (Wikipédia)

"Os circuitos digitais ou circuitos lógicos são definidos como circuitos eletrônicos que empregam a utilização de sinais elétricos em apenas dois níveis de corrente (ou tensão) para definir a representação de valores binários" (Wikipédia)

Circuito Lógico ou Portas

V	1
F	0

р	q	p AND q
V	V	V
V	F	F
F	V	F
F	F	F

Α	В	A . B
1	1	1
1	0	0
0	1	0
0	0	0

Expressões Booleanas derivadas de Circuito Lógico

Circuito Lógico

Expressões Booleanas

Podemos extrair expressões booleanas a partir de um circuito lógico e vice versa

Simbologia do Circuito Lógico

Portas Lógicas e Tabela Verdade

$$A$$
 OR $S=A+b$

AND					
Α	В	S = A . B			
1	1	1			
1	0	0			
0	1	0			
0	0	0			

OR					
Α	В	S = A + B			
1	1	1			
1	0	1			
0	1	1			
0	0	0			

Portas Lógicas e Tabela Verdade

NOT				
А	S = A			
1	0			
0	1			

A porta **XOR** (Exclusive OR / OU Exclusivo) é uma porta de duas entradas que produz em sua saída '1' para entradas com valores diferentes, e o '0' para entradas com valores iguais

XOR					
А	В	S= A + B			
1	1	0			
1	0	1			
0	1	1			
0	0	0			

Exemplo de Portas Lógicas e Tabela Verdade

Construir o circuito lógico e tabela verdade a partir da expressão booleana S= (a+b)(ab)

S = (a+b)(ab)						
a	b	a+b	ab	S		
1	1	1	1	1		
1	0	1	0	0		
0	1	1	0	0		
0	0	0	0	0		

Exercícios Resolvido: Construir o circuito lógico e tabela verdade a partir da expressão booleana abaixo.

Α	В	AB	A+B	(AB)+(A+B)
1	1	1	1	1
1	0	0	1	1
0	1	0	1	1
0	0	0	0	0

Exercícios Resolvido: Construir o circuito lógico e tabela verdade a partir da expressão booleana abaixo.

$$S = (\overline{B}A) + (\overline{A}B)$$

Α	В	\overline{A}	\overline{B}	$\overline{B}A$	$\overline{A}B$	S
1	1	0	0	0	0	0
1	0	0	1	1	0	1
0	1	1	0	0	1	1
0	0	1	1	0	0	0

Exercícios: Construir o circuito lógico e tabela verdade a partir da expressão booleana abaixo.

$$(ab)+b$$

$$a+b+(ab)$$

$$ab+c$$

$$(ab)+(cd)$$

$$(abc)+(bc)$$

$$(ab)+(cd)$$
 $(abc)+(bc)$ $(a+b)(c+d)$

$$\overline{a}bc + (\overline{bc})$$

$$[a+b+(ab\overline{c})]$$

$$\overline{(a\overline{b})}+(c+d)\overline{d}$$

$$\overline{[\overline{(a\overline{b})}+(c+d)\overline{d}]}$$