Основная идея

Возьмем за основу нейросетевой рекоммендер, так как он лучше всего показал себя в предыдущих экспериментах.

Добавим следующие улучшения:

- 1. В качестве контекста, помимо трека, с которого начинается сессия, будем использовать id пользователя. Гипотеза в том, что разные пользователи будут иметь разные предпочтения, даже если они начинают свою сессию с одного и того же трека.
- 2. Добавим к информации о текущем треке ід исполнителя.
- 3. Усложним архитектуру сети в надежде на то, что она выучит более сложные взаимосвязи. К каждой из 2 веток (контекст, текущий трек) добавим «башню» из 3 полносвязных слоев (Linear + LeakyReLu). В конце будем считать скалярное произведение между выходами из каждой ветки. В качестве функции потерь так же будем использовать MSE.

Детали

Алгоритм получения данных для рекомендаций:

- 1. Собираем данные с помощью нейросетевого рекомендера (100000 сессий).
 - а. Был проведен также эксперимент с обучением на данных рандомного рекоммендера, но в этом случае время прослушивания треков имеет неудачное распределение, сконцентрированное около 0, поэтому модель хуже показывает себя на реальных данных.
- 2. Выполняем обучение модели, используя early stopping.
- 3. Сохраняем эмбеддинги для треков, чтобы в дальнейшем использовать их в скалярном произведении, имея определенный контекст (пользователь и стартовый трек).
- 4. В сервисе Botify на старте приложения загружаем модель и эмбеддинги треков.
- 5. На каждый запрос для получения рекомендации
 - а. Если это первый запрос в рамках текущей сессии, рассчитываем рекомендации для текущего пользователя и первого трека в сессии, сохраняем в Redis.
 - b. Если это не первый запрос в рамках текущей сессии, берем рекомендации для пользователя и первого трека в сессии из Redis.
 - с. Если это последний запрос в сессии, удаляем сессионные данные из Redis.

Код для обучения модели находится в файле recsys/jupyter/Recommender.ipynb.

Результаты А/В эксперимента

	treatment	metric	effect	upper	lower	control_mean	treatment_mean	significant
0	T1	time	32.913	42.891	22.936	5.506	7.318	True
1	T1	sessions	-1.330	1.349	-4.008	1.110	1.095	False
2	T1	mean_request_latency	242.525	254.242	230.807	0.683	2.341	True
3	T1	mean_tracks_per_session	16.487	21.351	11.623	9.968	11.611	True
4	T1	mean_time_per_session	34.882	44.425	25.340	4.961	6.691	True

Как видно из Таблицы 1, новый рекоммендер статистически значимо выигрывает у предыдущего рекоммендера (среднее время сессии и среднее количество треков в сессии увеличились). Также можно заметить, что увеличилось время ответа за счет того, что для выдачи рекомендаций теперь используется не статический список, а модель, учитывающая контекст запроса.