

COMPONENTS

INNOVATION AND EXCELLENCE IN PRECISION DATA ACQUISITION

COMPANY HISTORY

Founded in 1970, DATEL is a multinational company located approximately 35 miles south of Boston in Mansfield, Massachusetts. Our modern 180,000 square-foot facility houses our administrative offices, components and sub-systems engineering groups, modular and sub-systems production facilities, and the most modern thin-film and thick-film hybrid production facility in the industry. DATEL's hybrid manufacturing operation is a fully certified MIL-STD-1772 facility, supporting our high quality standards.

Our worldwide sales network extends to every major data acquisition product marketplace. The people who implement this sales network are skilled professionals dedicated to providing our customers with the highest possible standards of data acquisition products available today.

PRODUCT INFORMATION

DATEL offers one of the industry's broadest data acquisition product lines, meeting the rapidly growing need for components and sub-systems to interface with computers in industrial, commercial, scientific and military applications. These products employ five basic technologies: monolithic CMOS, monolithic bipolar, thin-film hybrid, thick-film hybrid and discrete component circuits. Many products employ a combination of these technologies to achieve higher levels of performance and complexity. The present product lines include: data converters, sample-hold amplifiers, analog multiplexers, amplifiers, data acquisition sub-systems, computer analog I/O boards, process monitor/controllers, digital panel meters, thermal printers, digital calibrators and power supplies.

COPYRIGHT © DATEL, INC 1991 ALL RIGHTS RESERVED PRINTED IN U.S.A.

PRODUCT INDEX

Section 1. Sampling Analog-to-Digital Conve	erters	Section 4. Sample/Hold Amplifiers	
ADS-111	1-1	SHM-20	4-1
ADS-112		SHM-30	
ADS-117		SHM-40	
ADS-118		SHM-43	
ADS-120sosa leiil sat aa xi		SHM-45	
ADS-130		SHM-4860	
ADS-131 acrossed accompanies of own appearance xeb	1-25	SHM-6	
ADS-132 moltoes tedt to ordenined edt.		SHM-7	4-17
ADS-193		SHM-91	4-19
ADS-21PC	1-39	SHM-945	4-21
ADS-924		SHM-HUevilámaaan	
ADS-928		SHM-49	
ADS-930		MSH-840	
ADS-941 ms. shall 9 nobulteduck anniwarth OREC			
ADS-942	1-57	Section 5. Hybrid Data Acquisition Systems	
ADS-944			
ADS-945		HDAS-16/8	5-1
ADS-976		HDAS-524/528	
		HDAS-534/538	
Section 2. Analog-to-Digital Converters		HDAS-75/76	
contain an Amaneg to Digital conventions		HDAS-950/951	
ADC-207	2-1		
ADC-208		Section 6. Analog Multiplexers	
ADC-228			
ADC-304		MV Series	6-1
ADC-500/505		MX Series	
ADC-508		MX-818/1616	
ADC-511		MX-826	
ADC-520/521		MX-850	
ADC-530			
ADC-908		Section 7. Amplifiers	
ADC-914			
ADC-HC12B		AM-1435	7-1
ADC-HS12B.		AM-500	7-3
ADC-HX/HZ Series	2-55	AM-551	
		ROJ-20,1K	
Section 3. Digital-to-Analog Converters			
		Section 8. Active Filters	
DAC-HF SERIES	3-1		
DAC-HK SERIES	3-5	FLJ-AC01	8-1
DAC-HP SERIES		FLJ-ACR1	8-3
DAC-HZ SERIES	3-13	FLJ-D1, D2, DC	
		FLJ-D5, D6	
		FLJ-R Series	
		FLJ-UR Series	
		FLJ-VL, VH, VB	
		FLT-C1	
		FLT-DL Series.	
		FI T-112	

HOW TO USE THIS DATABOOK

If you know the MODEL NUMBER, use the Product Index on the first page.

If you know the **PRODUCT TYPE**, refer to the Subject Index on page two to determine the proper section, then refer to the **SELECTION GUIDE TABLE** at the beginning of that section.

If you want **PRICE** and **AVAILABILITY** information contact your local DATEL salesperson or representative.

For all **OTHER INFORMATION**, such as New Product Highlights, Available Literature, available High Reliability Product Programs, a listing of available DESC drawings, Substitution Guide and Ordering Guide, use the Subject Index.

GENERAL INDEX

Other DATEL Literature	. Page iv
New Products	. Page v
Section 1. Sampling Analog-to-Digital Converters	. Page 1-1
Section 2. Analog-to-Digital Converters	. Page 2-1
Section 3. Digital-to-Analog Converters	
Section 4. Sample/Hold Amplifiers	
Section 5. Hybrid Data Acquisition Systems	. Page 5-1
Section 6. Analog Multiplexers	. Page 6-1
Section 7. Amplifiers	. Page 7-1
Section 8. Active Filters	. Page 8-1
Other DATEL Product Lines	
Power Supplies	. Page PS-1
Digital Voltage Calibrators	
Digital Panel MetersasloW noticelogA griwollof entires et	. Page DPM-1
Process Monitors	. Page PM-1
Thermal Printers	
Data Conversion I/O Boards	
AN-3 Data Converters. Getting to Know Dynamic Specifications existence	
Appendix A High Reliability Programs	. Page A-1
Appendix B DESC Standard Military Drawing Program	. Page B-1
Appendix C Older Products Still Available	. Page C-1
Appendix D Substitution List	. Page D-1
Ordering Guide	. Back Cover

AVAILABLE LITERATURE

DATEL'S ALL NEW DATA ACQUISITION HANDBOOK SERIES

The following additional Handboods are presented in complete data sheet format and include Selection Guides, Application Notes, and Ordering Information.

Volume 2. Data Acquisition Boards

DVME, Multibus, PC Bus

Volume 3. Industrial Monitor and Control Products
Process Monitors, Digital Panel Meters, Thermal Panel Printers, Benchtop and Hand-held Calibrators

Volume 4. Power Products
DC/DC Converters, Power Supplies

Also available are the following Application Notes:

AN-1 High-Speed A/D Converter Designs: Layout and Interfacing Pitfalls

AN-2 Picking the Right Sample-and-Hold Amp for Various Data Acquisition

Needs

AN-3 Data Converters: Getting to Know Dynamic Specifications

Data Acquisition and Conversion Handbook: Hasile Halle Axione and

A technical guide to A/D - D/A converters and their applications.

NEW PRODUCTS

ADS-117

12-Bit, 2.0 MHz, Low-Power Sampling A/D Converter

Features

- · 2.0 MHz minimum throughput
- Functionally complete
- · Small 24-pin DIP
- · Low-power, 1.4 Watts
- · Three-state output buffers
- · Samples to Nyquist

ADS-118

12-Bit, 5.0 MHz, Low-Power Sampling A/D Converter

Features

- · 5.0 MHz minimum throughput
- Functionally complete
- · Small 24-pin DIP
- · Low-power, 2.3 Watts
- · Three-state output buffers
- Samples to Nyquist

ADS-941

14-Bit, 1.0 MHz, High Resolution Sampling A/D Converter

Features

- · 1.0 MHz minimum throughput
- · Functionally complete
- · Small 32-pin DIP
- · Low-power, 2.8 Watts
- · Three-state output buffers
- Samples up to Nyquist

ADS-942

14-Bit, 2.0 MHz, High Resolution Sampling A/D Converter

Features

- · 2.0 MHz minimum throughput
- · Functionally complete
- Small 32-pin DIP
- Low-power 2.9 Watts
- Three-state output buffers
 Samples up to Nyquist

ADS-930

16-Bit, 500 KHz, High Resolution Sampling A/D Converter

Features

- · 500 KHz sampling rate
- Functionally complete
- · Small 40-pin DIP
- · Low-power, 1.8 Watts
- Three-state output buffers
- Samples up to Nyquist
- 16-Word FIFO memory

ADC-530

12-Bit, Ultra-Fast, Low-Power A/D Converter

Features

- · 350 nSec MAX. conversion time
- Low-power, 2.1 Watts
- Small initial errors
- Three-state output buffers
- Small 32-pin DIP
- No missing codes

NEW PRODUCTS

HDAS-950/951

16-Bit, 100 KHz **Data Acquisition Systems**

Features

- 16-bit resolution, 100 KHz
- 8 SE 4 D channels
- Miniature 40-pin DDIP
- Full-scale gain range from 100 mV to 10V
- High-impedance output state

SHM-945

High-Speed, Hybrid Precision Sample/Hold

Features

- 500 nSec MAX acquisition time to 0.00076%
- Differential input
- 0.0004% linearity
- 16-bit performance over military temperature range
- Small 24-pin DDIP package
- Operates at different gain settings

SHM-43

High-Speed, 0.01% Hybrid Sample/Hold

Features

- 35 nS MAX acquisition time to 0.01%
- 1 Picosecond aperture uncertainty
- 75 MHz small-signal bandwidth
- 520 Milliwatt maximum power dissipation
- Small 14-pin DIP package
- CMOS control signal

MX-826

Precision, High-Speed Multiplexer

Features

- 225 nSec Max. settling time to 0.01%
- 400 nSec. Max. settling time to 0.003%
- 150 nSec. Max. settling time to 0.1%
- 8 Channels single-ended inputs
- 395 Milliwatts power dissipation
- Small 24-pin DDIP package

MX-850

Precision, High Speed Multiplexer

Features

- 50 Nanoseconds settling time to 0.01%
- 70 Nanoseconds settling time to 0.003%
- 100 Nanoseconds settling time to 0.001%
- 4 Channels, single-ended inputs
- 207 Milliwatts power dissipation Small 14-pin DIP package

MSH-840

Quad Simultaneous Sample Hold

Features

- 4 Simultaneous sample/holds
- Internal 4 channel multiplexer
- 750 nSec acquisition time, 10V step to 0.01%
- 2 channels with optional X10 gain
- Control logic for interfacing to A/D's
- Low-power, 1.5 Watts

SHM-49

High-Speed, 0.01% Hybrid Sample/Hold

Features

- 16 MHz small signal bandwidth
- Small 8-pin DIP or LCC package
- 200 nS Max. acquisition time to 0.01%
- 72 dB feedthrough attenuation
- ±25 Picoseconds aperture uncertainty
- 413 Milliwatts power dissipation

ADS-120

12-Bit. 20 MHz Sampling A/D Converter

Features

- · 20 MHz minimum throughput
- · Samples to Nyquist
- · Functionally complete
- Small 40-pin DIP
- Low-power, 4.2 Watts
- Three-state output buffers High input bandwidth

ADS-944

14-Bit, 5.0 MHz, High Resolution Sampling A/D Converter

Features

- · 5.0 MHz minimum throughput
- · Functionally complete
- Small 32-pin DIP
- · Low-power, 3.4 Watts
- · Three-state output buffers
- Samples to Nyquist

ADS-945

14-Bit. 10.0 MHz. High Resolution Sampling A/D Converter

Features

- · 10 MHz sampling rate
- Functionally complete
- Small 40-pin DIP
- Low-power, 4.2 Watts
- · Three-state output buffers
- · Samples up to Nyquist
- · 16-Word FIFO memory

ADS-976

16-Bit. 200 KHz. Low-Power Sampling A/D Converter

Features

- · 200 KHz sampling rate
- Compatible to industry standard ADC76, AD376, AD1376
- · Small 32-pin DIP
- · Low-power, 1.8 Watts
- · Samples to Nyquist
- 16-Word FIFO memory

FLT-DL

4- and 5- Pole High Frequency Digitally Programmable Active Filters

Features

- Digitally programmable
 4- and 5-pole CAUER response
 Cascadable 7-pole CAUER response
- · Cutoff frequencies to 1.2 MHz
- Small 32-pin DIP
- · -55 to +125 °C operation

SAMPLING A/D CONVERTERS

	Model	Resolution (Bits)	Throughput (MHz)	Linearity Error (Max)	Power Watts (Max)	Case	Page
	ADC-HS12B	12	0.066	±3/4 LSB	1.8	32-Pin DIP	2-51
	ADS-111	12	0.500	±3/4 LSB	1.8	24-Pin DIP	1-1
	ADS-112	12	1.0	±3/4 LSB	1.7	24-Pin DIP	1-5
	ADS-193	12	1.0	±3/4 LSB	1.7	40-Pin DIP	1-35
	ADS-21PC	12	1.3	±1 LSB	2.5	46-Pin DIP	1-39
	ADS-132	12	2.0	±3/4 LSB	3.2	32-Pin DIP	1-31
Preliminary	ADS-117	12	2.0	±3/4 LSB	1.8	24-Pin DIP	1-9
Preliminary	ADS-118	12	5.0	±1 LSB	2.5	24-Pin DIP	1-13
	ADS-131	12	5.0	±1 LSB	4.0	40-Pin DIP	1-25
	ADS-130	12	10.0	±1 LSB	4.2	40-Pin DIP	1-19
Advanced	ADS-120	12	20.0	±1 LSB	4.2	40-Pin DIP	1-17
	ADS-924	14	0.300	±1 LSB	1.8	24-Pin DIP	1-43
	ADS-928	14	0.500	±3/4 LSB	3.4	32-Pin DIP	1-47
Preliminary	ADS-941	14	1.0	±3/4 LSB	3.3	32-Pin DIP	1-53
Preliminary	ADS-942	14	2.0	±1 LSB	3.4	32-Pin DIP	1-57
Advanced	ADS-944	14	5.0	±1 LSB	3.4	40-Pin DIP	1-61
Advanced	ADS-945	14	10.0	±1 LSB	4.2	40-Pin DIP	1-63
Advanced	ADS-976	16	0.200	±2 LSB	1.8	32-Pin DIP	1-65
Preliminary	ADS-930	16	0.500	±1 1/2 LSB	2.4	40-Pin DIP	1-51

SAMPLING A/D CONVERTERS

	Co	ntact DATE	L for your		
			component	14	
	Dala	350 P 25	806.0	M	
		needs	S. 0.1		
		Dial			
			0705		
		1-800-233	-2/05		
		for			
	Ар	plications A	ssistance		

ADS-111

12-Bit, 500 KHz, Low-Power Sampling A/D Converter

FEATURES

- · 12-Bit resolution
- · Internal Sample/Hold
- · 500 KHz minimum throughput
- · Functionally complete
- · Small 24-pin DIP
- · Low-power, 1.4 Watts
- · Three-state output buffers
- · No missing codes

GENERAL DESCRIPTION

DATEL's ADS-111 is a 12-bit, functionally complete, sampling A/D converter that is packaged in a space-saving 24-pin ceramic DIP. A minimum throughput rate of 500 KHz is achieved while only dissipating 1.4 Watts.

Manufactured using thick-film and thin-film hybrid technology, a proprietary chip and unique laser trimming schemes, the ADS-111's exclusive performance is based upon a digitally-corrected subranging architecture.

INPUT/OUTPUT CONNECTIONS

PIN	PIN FUNCTION		FUNCTION
1	BIT 12 OUT (LSB)	13	+5V
2	BIT 11 OUT	14	DIGITAL GROUND
3	BIT 10 OUT	15	EOC
4	BIT 9 OUT	16	START CONVERT
5	BIT 8 OUT	17	ENABLE (1-12)
6	BIT 7 OUT	18	COMP BIN
7	BIT 6 OUT	19	ANALOG INPUT
8	BIT 5 OUT	20	BIPOLAR
9	BIT 4 OUT	21	+10V REF
10	BIT 3 OUT	22	+15V
11	BIT 2 OUT	23	ANALOG GROUND
12	BIT 1 OUT (MSB)	24	-15V "0" aiga.J

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 22)	0 to +18	Volts dc
-15V Supply (Pin 24)	0 to -18	Volts dc
+5V Supply (Pin 13)	-0.5 to +7.0	Volts do
Digital Inputs		
(Pins 16, 17, 18)	-0.3 to +6.0	Volts dc
Analog Input (Pin 18)	-15 to +15	Volts dc
Lead Temp.(10 Sec.)	300 max	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15V$ dc and $\pm 5V$ dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range ADS-111 (See Table 4 also)	15	±5	UCLE TI	Volts do
Input Impedance	5.0	0 to +10 15.0	BIO TH	M Ohms
Input Capacitance	5.0	3	5	pf
DIGITAL INPUTS	13		TUOATI	0 0
Logic Levels Logic "1" Logic "0"	2.0	/GRMn	0.8	Volts do
Logic Loading "1"		1-000	5.0	uA
Logic Loading "0"	_		-200	μΑ
A/D PERFORMANCE				
Integral Non-Linearity	PARTY.	100 Hz 100 Hz 100	Description of	STORM DE
+25 °C	-	±1/2	±3/4	LSB
0 °C to +70 °C -55 C to +125 °C	-	±1/2	±3/4 ±2	LSB LSB
Differential Non-Linearity		_	IZ	LOD
+25 °C	-	±1/2	±3/4	LSB
0 °C to +70 °C	_	+1/2	+3/4	LSB
-55 C to +125 °C	-		±1	LSB
Full Scale Absolute				
Accuracy	1.3	-		
+25 °C	-	±5	±10	LSB
0 °C to +70 °C	-	±6	±18	LSB
-55 C to +125 °C		±10	±32	LSB
Unipolar Zero Error,	H	-		1/4
+25 °C (See Tech Note 1) LSB			±3	±5
Unipolar Zero Tempco	H_	±15	±30	ppm/ °C
Bipolar Zero Error,		ATE-E	JATIS	P. P.
+25 °C (See Tech Note 1)		HESHT H	±3	±5
Bipolar Zero Tempco	1-	±5	±8	ppm/°C
Bipolar Offset Error,	-			P.F.
+25 °C (See Tech Note 1) LSB		-	±4	±8
Bipolar Offset Tempco	-	±20	±40	ppm/°C
Gain Error, +25 °C	-	±4	±8	LSB
(See Tech Note 1)	-			
Gain Tempco	-	±20	±40	ppm/ °C
No Missing Codes				
(12 Bits)	Over	the Operati	ing Temp	. Range.

OUTPUTS	MIN.	TYP.	MAX.	UNITS
Logic Levels				
Logic "1"	2.4	1000-000	-	Volts do
Logic "0"	_	-	0.4	Volts do
Logic Loading "1"	_	_	-160	μА
Logic Loading "0"	_	_	6.4	mA
Internal Reference		100	0.4	11175
Voltage, +25 °C	+9.98	+10.0	+10.02	Volts dc
Drift.	+9.90	±5	±30	ppm/ °C
		TO	1.5	mA
External Current		and the second	1.5	IIIA
Resolution	-	12	Bits	Same of the same o
Output Coding	3			
(Pin 18 Hi)	1.5	Straight bina	ny/offset hin	any
(Pin 18 Low)	100		entary binan	
(Fill TO LOW)	(Complement		
DYNAMIC PERFORMANCE	21311		, , , , , , , , , , , , , , , , ,	oles eld
Conversion Rate		6217	na filme	SHIELDS!
+25 °C	500	600	Find per 8	KHz
		600		
0 °C to +70 °C	500	600	(A) (A) (A)	KHz
-55 C to +125 °C	500	DITTIN:	1535	KHz
Total Harmonic Distortion				
DC to 60 KHz at Vin ≤5V p-p	-65	-70	ADS-111	dB
DC to 40 KHz at Vin = 10V p-p	-65	-70	shavaos	dB
Slew Rate	toworth	90	A - QI	V/μSec.
Aperture Delay Time	ng L4 V	20	enn Africa	nSec.
Aperture Uncertainty	1070 Bur	±100	The Said of	pSec.
S/H Acquisition Time		-		
to 0.01% (10V step)	the tens m	m-House	MBU DET	HOSIUNE
+25 °C	(ING PERS)	sinu-bris	715	nSec.
0 °C to +70 °C	9 3 187	nonies ev	765	nSec.
-55 °C to +125 °C	J-1,00	firtons on	900	nSec.
(Sinusoidal Input)	-	-	465	nSec.
POWER REQUIREMENTS			111.00	
Power Supply Range				
+15V dc Supply	+14.25	+15.0	+15.75	Volts do
-15V dc Supply	-14.25	-15.0	-15.75	Volts do
+5V dc Supply	+4.5	+5.0	+5.5	Volts do
Power Supply Current				
+15V dc Supply	188 <u>1</u> 1887	+38	+50	mA
-15V dc Supply		-36	-47	mA
+5V dc Supply*	_	+66	+80	mA
Power Dissipation		1.4	1.8	Watts
Power Supply Rejection	_	-	0.01	%FSR/%
PHYSICAL/ENVIRONMENTA	A.I.		0.01	701 01 0 70
	AL.			
Operating Temp. Range			70	0.0
-MC	0	-	+70	°C
-MM/883B	-55	-	+125	°C
Storage Temperature	1	1		
Range	-65	CHE -	+150	°C
Package Type	24 nin	hermetic s	calod car	amic DIP
rackage Type	24-pin	Hellielic S	ealeu, cer	allic DIP

^{* +5}V power usage at 1 TTL logic loading per data output bit.

0.42 ounces (12 grams)

TECHNICAL NOTES

Weight

- Applications which are unaffected by endpoint errors or remove them through software will use the typical connections shown in Figure 3. Remove system errors or adjust the small initial errors of the ADS-111 to zero using the optional external circuitry shown in Figure 4. The external adjustment circuit has no affect on the throughput rate.
- 2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital

grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.

- 3. Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with a 4.7 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor. Bypass the +10V reference (pin 21) to analog ground (pin 23).
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 18) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie the COMP BIN pin to ground. The COMP BIN signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To obtain three-state outputs, connect ENABLE (pin 17) to a logic "0" (low). Otherwise, connect ENABLE (pin 17) to a logic "1" (high).

TIMING

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design

Table 1. Input Range Selection

10010	Table II input hange colection				
INPUT RANGE	INPUT PIN	TIE TOGETHER			
±5V dc 0 to+10V dc	Pin 19 Pin 19	Pin 20 to Pin 21 Pin 20 to Ground			

Table 2. Zero and Gain Adjust

FSR	ZERO ADJUST +1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB
0 to +10V dc	+1.22mV dc	+9.9963V dc
±5V dc	+1.22mVdc	+4.9963V dc

Table 3. Input Ranges (using external calibration)

INPUT RANGE	R1	R2	UNIT
0 to +10V, ±5V	2	2	K Ohms
0 to +5V, ±2.5V	2	6	K Ohms
0 to +2.5V, ±1.25V	2	14	K Ohms
0 10 +2.5 , ±1.25	168-8	t had	Offinia 1000

CALIBRATION PROCEDURE

 Connect the converter per Figure 3, Figure 4, and Table 1 for the appropriate full-scale range (FSR). Apply a pulse of 200 nanoseconds minimum to the START CONVERT input (pin 16) at a rate of 250 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the reference source per Table 2. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with the COMP BIN (pin 18) tied high (straight binary) or between 1111 1111 1111 and 1111 1111 1110 with pin 18 tied low (complementary binary).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with (pin 18) tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with (pin 18) tied low (complementary offset binary).

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for (pin 18) tied high or between 0000 0000 0000 0001 and 0000 0000 0000 for (pin 18) tied low.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

Figure 2. ADS-111 Timing Diagram

Table 4. Output Coding

INPUT RANGE	OIM OLAIT		OUTPUT CODING			separately to the		BIPOLAR	INPUT
0 to +10V	SCALE	MSB	LSB	MSB	LSB	00	RANGES		
+9.9976V	+FS -1 LSB	1111 111	111111	0000 000	00000	+FS -1 LSB	+4.9976V		
+8.7500V	7/8 FS	1110 000	0000 00	0001 11	11 1111	+3/4 FS	+3.7500V		
+7.5000V	3/4 FS	1100 000	0000 00	0011 11	11 1111	+1/2 FS	+2.5000V		
+5.0000V	1/2 FS	1000 000	0000	0111 11:	11 1111	0	0.0000V		
+2.5000V	1/4 FS	0100 000	00000	1011 11	11 1111	-1/2 FS	-2.5000V		
+1.2500V	1/8 FS	0010 000	0000	1101 11	11.1111	+3/4 FS	-3.7500V		
+0.0024V	1 LSB	0000 000	00 0001	1111 11	11 1110	-FS + 1 LSB	-4.9976V		
0.0000V	g potentiol g	0000 000	00000	1111 11	11 1111	-FS	-5.0000V		

Figure 3. Typical ADS-111 Connection Diagram

*For the values of R1 and R2 see Table 3.

Figure 4. Optional Calibration Circuit

MECHANICAL DIMENSIONS INCHES (MM)

ORI	DERING INFORMATION	
MODEL NUMBER	OPERATING TEMP. RANGE	SEAL
ADS-111MC	0 °C to +70 °C	Hermetic
ADS-111MM	-55 °C to +125 °C	Hermetic
ADS-111/883B	-55 °C to +125 °C	Hermetic
ACCESSORY		
	aluation Board (without ADS	5-111)

ADS-EVAL1 Evaluation Board (without ADS-111)
Receptacle for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 24 required.

ADS-112

12-Bit, 1.0 MHz Low-Power Sampling A/D Converter

FEATURES

- · 12-Bit resolution
- · Internal Sample/Hold
- · 1.0 MHz minimum throughput
- · Functionally complete
- · Small 24-pin DIP
- · Low-power, 1.3 Watts
- · Three-state output buffers
- · Samples to Nyquist
- No missing codes

DATEL's ADS-112 is a 12-bit, functionally complete, sampling A/D converter that is packaged in a space-saving 24-pin ceramic DIP. A minimum throughput rate of 1.0 MHz is achieved while only dissipating 1.3 Watts. The ADS-112 digitizes signals up to Nyquist.

Typical applications include spectrum, transient, vibration and waveform analysis. This device is also ideally suited for radar, sonar, video digitization, medical instrumentation and high-speed data acquisition systems.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION PIN				
1	BIT 12 OUT (LSB)	13	+5V		
2	BIT 11 OUT	14	DIGITAL GROUND		
3	BIT 10 OUT	15	EOC		
4	BIT 9 OUT	16	START CONVERT		
5	BIT 8 OUT	17	ENABLE (1-12)		
6	BIT 7 OUT	18	COMP BIN		
7	BIT 6 OUT	19	ANALOG INPUT		
8	BIT 5 OUT	20	BIPOLAR		
9	BIT 4 OUT	21	+10V REF		
10	BIT 3 OUT	22	+15V		
11	BIT 2 OUT	23	ANALOG GROUND		
12	BIT 1 OUT (MSB)	24	-15V		

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (Pin 22)	0 to +18	Volts dc	
-15V Supply (Pin 24)	0 to -18	Volts dc	
+5V Supply (Pin 13)	-0.5 to +7.0	Volts dc	
Digital Inputs			
(Pins 16, 17, 18)	-0.3 to +6.0	Volts dc	
Analog Input (Pin 19)	-15 to +15	Volts dc	
Lead Temp. (10 Sec.)	300 max	°C	

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ dc and $\pm 5 V$ dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Vd+	61	(88.4)	JO ST 71-	3 1
Input Voltage Range	34	1	JO HT TH	
ADS-112	at-	±5	JO OF TH	Volts dc
(See Table 4 also)	ar 1	0 to +10	THOU TH	Volts dc
Input Impedance	4.5	5.0	UC 8 TH	K Ohms
Input Capacitance	ST.	6	15	pf
DIGITAL INPUTS	19		TUO a TII	Z
Logic Levels	15		EUO A TI	
Logic "1"	2.0	-	BUTETH	Volts do
Logic "0"	80	-	0.8	Volts do
Logic Loading "1"	70	(DOME)	5	μΑ
Logic Loading "0"	24	(된용제)	-200	μΑ
A/D PERFORMANCE				
No Missing Codes			_	
(12 Bits; fin=500 KHz)	0/	er the Operation	ng Temp. Ra	inge.
Integral Non-Linearity				
+25 °C	-	±1/4	±3/4	LSB
0 °C to +70 °C	-	±1/4	±3/4	LSB
-55 C to +125 °C	-	-	±1.5	LSB
Differential Non-Linearity				
+25 °C (61-1) 3 JEANS 11 -	-		±3/4	LSB
0 °C to +70 °C			±3/4	LSB
-55 C to +125 °C	-	- 1	±1	LSB
Full Scale Absolute	4	-		
Accuracy				
+25 °C	-	±0.13	±0.25	% FSR
0 °C to +70 °C	-	±0.15	±0.44	% FSR
-55 C to +125 °C	11-	±0.25	±0.78	% FSR
Unipolar Zero Error,				
+25 °C (See Tech Note 1)	- 3TA	±0.074	±0.13	% FSR
Unipolar Zero Tempco.	- 109	±15	±30	ppm/ °C
Bipolar Zero Error.	RETER	DER H	DED	
+25 °C (See Tech Note 1)	-	±0.074	±0.13	% FSR
Bipolar Zero Tempco	-	±5	±8	ppm/°C
Bipolar Offset Error,				
+25 °C (See Tech Note 1)	1 -	±0.1	±0.2	% FSR
Bipolar Offset Tempco	-	±20	±40	ppm/°C
Cain France OF OC	-	±0.1	±0.2	% FSR
(See Tech Note 1)		102-10		
Gain Tempco	1	±20	±40	ppm/°C
Logic Levels			*	
Logic "1"	2.4	-	-	Volts do
Logic "0"	-		0.4	Volts do
Logic Loading "1"	- 50	-	-160	μА
Logic Loading "0"	- V8	_	6.4	mA
Internal Reference	¥6		C CUM	
	0.00	100	+10.02	Volts dc
Voltage, +25 °C	+9.98	+10.0		
Voltage, +25 °C Drift.	+9.98	+10.0 ±5	+30	ppm/ °C

OUTPUTS	MIN.	TYP.	MAX.	UNITS
Resolution		12	Bits	
Output Coding	1000000	Chroleba bine	a dalla at bio	
(Pin 18 Hi)		Straight bina		iry
(Pin 18 Low)		Complementa	entary binary	any
DVNAMO DEDECDMANCE		Complementa	ily oliset bill	ary
DYNAMIC PERFORMANCE				
In-Band Harmonics (-0.5 dB) DC to 100 KHz	-75	-81	tulose	FS -dB
100 KHz to 500 KHz	-70	-75	Same !	FS -dB
Total Harm. Distort. (-0.5 dB)	-70	nut mur	plating s	HM 0
DC to 100 KHz	-75	-78	- Interest of	FS -dB
100 KHz to 500 KHz	-68	-73	Airene	FS -dB
Signal-to-Noise Ratio		- GH	miq-45	Hamil
(w/o distort., -0.5 dB)		attsW £	T Jews	10-WO
DC to 100 KHz	-68	-72	n alesta	FS -dB
100KHz to 500 KHz	-67	-71	No STRATE	FS -dB
Signal-to-Noise Ratio	1 - 3 - 5 - 7	Taimba	N 01 85	liqmac
(& distort., -0.5 dB)	00	ageb	o prile	FS -dB
DC to 100 KHz 100 KHz to 500 KHz	-66 -66	-70 -70		FS -dB
Effective Bits, -0.5 dB	-00	-70	100	13.00
DC to 100 KHz	11.0	11.4		bits
100 KHz to 500 KHz	10.6	11.25	2741 1	bits
Two-Tone Intermodulation				11 1 1 1 1 1 1 1
Distort. (fin = 75 KHz,	March St.		*** 200	W. STATE
105 KHz, Fs = 1 MHz, -7 dB	-80	-88	11 -0147	FS -dB
Two-Tone Intermodulation		is pack		vnos Gv
Distort. (fin = 480 KHz,)	Tugngu	DIGIT MILITE	inim A	HILL OUT S
490 KHz, Fs = 1 MHz, -0.5 dB) Input Bandwidth	-65	609 BU	disabat	FS -dB
Small Signal (-20 dB input)	3.5	5	list.	MHz
Full Power (0 dB input)	2.5	4		MHz
Slew Rate	spectru.	150	polication	V/µSec.
Aperture Delay Time	vice-is a	This de	20 18	nSec.
Effect. Aperture Delay Time			10 16 cel	nSec.
Aperture Uncertainty (Jitter)	ams.	tion system	plunos s	sh basq
(RMS)	-	-	±15	pSec.
(peak)	-	- 1	±50	pSec.
Overvoltage Recovery Time	-	-	1000	nSec.
S/H Acquisition Time (Transient Recovery Time)		-	180	nSec.
+ 25 °C		160	180	nSec.
0 °C to +70 °C	-	200	235	nSec
-55 C to +125 °C		200	235	nSec
Conversion Rate				
(Changing Inputs)				
+25 °C 739	1.0	-	-	MHz
0 °C to +70 °C	1.0	-	- 1	MHz
-55 C to +125 °C	1.0	174	-	MHz
POWER REQUIREMENTS	-	CHIS -		
Power Supply Range ①	1			
+15V dc Supply	+14.25	+15.0	+15.75	Volts do
-15V dc Supply	-14.25	-15.0	-15.75	Volts do
+5V dc Supply	+4.75	+5.0	+5.25	Volts dc
Power Supply Current +15V dc Supply		+24	+35	mA
-15V dc Supply	-	-40	-48	mA
+5V dc Supply ≠	- 1	+80	+95	mA
Power Dissipation	-	1.3	1.7	Watts
Power Supply Rejection	-	-	0.07	%FSR/%V
PHYSICAL/ENVIRONMENTA	AL		150	COMP. 18
Operating Temperature		DISOJ		
Range, case		JOATMOO	-	BY TRATE
-MC	0	AND	+70	°C
-MM	-55	E COMMAN	+125	°C
Storage Temperature	-65		.150	°C
Range	-03		+150	
Package Type Weight	24-	pin hermetic s 0.42 ounce	ealed, ceran s (12 grams)	

For ±12V, +5V operation, contact DATEL
 +5V power usage at 1 TTL logic loading per data output bit.

TECHNICAL NOTES

- 1. Applications which are unaffected by endpoint errors or remove them through software will use the typical connections shown in Figure 3. Remove system errors or adjust the small initial errors of the ADS-112 to zero using the optional external circuitry shown in Figure 4. The external adjustment circuit has no affect on the throughput rate.
- 2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital ground are connected internally. Avoid ground-related problems by connecting the digital and analog ground to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with a 4.7μF, 25V tantalum electrolytic capacitor in parallel with a 0.1 μF ceramic capacitor. Bypass the +10V reference (pin 21) to analog ground (pin 23).
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 18) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie pin 18 to ground. The pin 18 signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To enable the three-state outputs, connect ENABLE (pin 17) to a logic "0" (low). To disable, connect pin 17 to a logic "1" (high).

TIMING

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

notices of the calibration procedure

 Connect the converter per Figure 3, Figure 4, and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 150 nanoseconds to the START CONVERT input (pin 16) at a rate of 250 KHz. This rate is chosen to reduce the flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with COMP BIN (pin 18) tied high (straight binary) or between 1111 1111 1111 and 1111 1111 1110 with pin 18 tied low (complementary binary).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000.0000 and 1000 0000 0001 with pin 18 tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with pin 18 tied low (complementary offset binary).

3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for pin 18 tied high or between 0000 0000 0000 0001 and 0000 0000 000 for pin 18 tied

To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 5.

Table 2. Input Range Selection

INPUT RANGE	INPUT PIN	TIE TOGETHER
±5V dc	Pin 19	Pin 20 to Pin 21
0 to+10V dc	Pin 19	Pin 20 to Ground

Table 3. Zero and Gain Adjust

ZERO ADJUST	GAIN ADJUST			
+1/2 LSB	+FS - 1 1/2 LSB			
+1.22mV dc	+9.9963V dc			
+1.22mVdc	+4.9963V dc			
	+1/2 LSB +1.22mV dc			

Table 4. Input Ranges (using external calibration)

INPUT RANGE	R1	R2	UNIT
0 to +10V, ±5V	2	2	K Ohms
0 to +5V, ±2.5V	2	6	K Ohms
0 to +2.5V, ±1.25V	2	14	K Ohms

Table 6. Output Coding for Bipolar Operation

INPUT RANGE	UNIPOLAR	OUTPUT	CODING	BIPOLAR	INPUT
0 to +10V	SCALE	MSB LSB	MSB LSB	SCALE	RANGES
+9.9976V	+FS -1 LSB	1111 1111 1111	0000 0000 0000	+FS -1 LSB	+4.9976V
+8.7500V	7/8 FS	1110 0000 0000	0001 1111 1111	+3/4 FS	+3.7500V
+7.5000V	3/4 FS	1100 0000 0000	0011 1111 1111	+1/2 FS	+2.5000V
+5.0000V	1/2 FS	1000 0000 0000	0111 1111 1111	0	0.0000V
+2.5000V	1/4 FS	0100 0000 0000	1011 1111 1111	-1/2 FS	-2.5000V
+1.2500V	1/8 FS	0010 0000 0000	1101 1111 1111	-3/4 FS	-3.7500V
+0.0024V	1 LSB	0000 0000 0001	1111 1111 1110	-FS +1 LSB	-4.9976V
0.0000V	0 elemotheto	0000 0000 0000	1111 1111 1111	-FS	-5.0000V

Figure 3. Typical ADS-112 Connection Diagram

MECHANICAL DIMENSIONS INCHES (mm)

Figure 4. Optional Calibration Circuit

Figure 5. FFT Analysis of ADS-112

MODEL	OPERATING	
NUMBER	TEMP. RANGE	SEAL
ADS-112MC	0 °C to +70 °C	Hermetic
ADS-112MM	-55 °C to +125 °C	Hermetic
ACCESSORIES	OX is sur sections	
ADS-EVAL1	Evaluation board (wit	hout ADS-112)
	PC board mounting can	
AMP Inc., Par	t # 3-331272-8 (Compone	ent Lead Socket),

PRELIMINARY PRODUCT DATA

ADS-117

12-Bit, 2.0 MHz, Low-Power Sampling A/D Converter

FEATURES

- · 12-Bit resolution
- · Internal Sample/Hold
- · 2.0 MHz minimum throughput
- · Functionally complete
- · Small 24-pin DIP
- · Low-power, 1.4 Watts
- · Three-state output buffers
- Samples to Nyquist

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	34	PIN	FUNCTION CONTROL OF THE PROPERTY OF THE PROPER
1	BIT 12 OUT (LSB)	401	13	+5V
2	BIT 11 OUT	8	14	DIGITAL GROUND
3	BIT 10 OUT		15	EOC
4	BIT 9 OUT		16	START CONVERT
5	BIT 8 OUT		17	ENABLE (1-12)
6	BIT 7 OUT	-	18	COMP BIN
7	BIT 6 OUT	-	19	ANALOG INPUT
8	BIT 5 OUT	-	20	BIPOLAR
9	BIT 4 OUT	= 1	21	+10V REF
10	BIT 3 OUT		22	+15V 30MAM904
11	BIT 2 OUT	-	23	ANALOG GROUND
12	BIT 1 OUT (MSB)	agg e	24	-15V

GENERAL DESCRIPTION

DATEL's ADS-117 is a 12-bit, functionally complete, sampling A/D converter that is packaged in a space-saving 24-pin ceramic DIP. A minimum throughput rate of 2.0 MHz is achieved while only dissipating 1.4 Watts. The ADS-117 digitizes signals up to Nyquist.

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS		
+15V Supply (Pin 22)	0 to +18	Volts dc	F. S.	
-15V Supply (Pin 24)	0 to -18	Volts dc		
+5V Supply (Pin 13)	-0.5 to +7.0	Volts dc		
Digital Inputs				
(Pins 16, 17, 18)	-0.3 to +6.0	Volts dc		
Analog Input (Pin 19)	-15 to +15	Volts dc		
Lead Temp. (10 Sec.)	300 max	°C		

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and +5 V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	PIN FIR	FERRE	HOR	Lenne
ADS-117	-	±5	-	Volts dc
(See Table 2 also)	ANT RE	0 to +10	S IN THICK	Volts dc
Input Impedance	4.5	5.0	Tuo	K Ohms
Input Capacitance	Set as	6	15	pf
DIGITAL INPUTS	16 ST/		TUC	e Tie
Logic Levels	2.0		TUC -TUC	Volts dc
Logic "1" Logic "0"	2.0			Volts dc
			0.8	νοιιs ac
			-200	μΑ
	0 + 1 13		-200	μΑ
PERFORMANCE	1 27		TUC	FE HELL
No Missing Codes (12 Bits; fin=1.0 MHz)	Over	the Operating	n Temp Bar	nne ann
Integral non-Linearity	Over	по орогани	I . omp. riai	.go.
+25 °C	_	±1/4	±3/4	LSB
0 °C to +70 °C	-	±1/4	±3/4	LSB
-55 C to +125 °C	3-0-33	2002-2007	±2	LSB
Differential Non-Linearity				
+25 °C	- 1		±3/4	LSB
0 °C to +70 °C	-	-	±3/4	LSB
-55 C to +125 °C	-	-	±1.5	LSB
Full Scale Absolute				
Accuracy (see Tech Note 1)				
+25 °C	- 1	±0.13	±0.25	% F\$R
0 °C to +70 °C	-	±0.15	±0.44	% FSR
-55 C to +125 °C	-	±0.25	±0.78	% FSR
Unipolar Zero Error,		.0.074	.0.10	e/ 50D
+25 °C (See Tech Note 1)	-	±0.074	±0.13	% FSR
Unipolar Zero Tempco.	-	±15	±30	ppm/°C
Bipolar Zero Error, +25 °C (See Tech Note 1)		±0.074	±0.13	% FSR
Bipolar Zero Tempco	-	±5.074	+8	
Bipolar Offset Error,	2.00	13	10	ppm/°C
+25 °C (See Tech Note 1)		±0.1	±0.2	% FSR
Bipolar Offset Tempco		+20	+40	ppm/°C
Gain Error, +25 °C		±0.1	±0.2	% FSR
(See Tech Note 1)	3-STATE		KTIĐIO	701011
Gain Tempco	TUETUO	±20	±40	ppm/ °C
OUTPUTS	STED GIVEN	100	UNDUL	
Internal Reference	0.00	10.0		
D-:4	+9.98	+10.0	+10.02	Volts dc
Drift. External Current	-	±5	±30	ppm/°C
External Current			1.5	mA
Resolution	E DE CO	12 B	its	
Output Coding		Stroight him	Inffant him	
(Pin 18 Hi) (Pin 18 Low)		Straight bin		
(FIII 10 LOW)		comp. bin./	comp. offs	set bin.
Lastatanda				
Logic Levels	0.4		23_	M-14
Logic "1"	2.4	R-T		Volts dc
Logic "0"	-VOH-	-	0.4	Volts dc
Logic Loading "1"	-	-	-160	μA
Logic Loading "0"			6.4	mA

OUTPUT CONT.	MIN.	TYP.	MAX.	UNITS
DYNAMIC PERFORMANCE	121.22			ld Service
In-Band Harmonics (-0.5 dB)		1 11		SHRIP
DC to 100 KHz	-75	-81	-	FS -dB
100 KHz to 500 KHz	-70	-75	renthul	FS -dB
500 KHz to 1 MHz	-67	-70	3100000	FS -dB
Total Harm. Distort. (-0.5 dB)		bio	M'elom	es terms
DC to 100 KHz	-75	-78	STATE OF THE PARTY OF	FS -dB
100 KHz to 500 KHz	-68	-73		FS -dB
500 KHz to 100 MHz	-66	-71	Listo A	FS -dB
Signal-to-Noise Ratio			910 0	all 24-m
(w/o distort., -0.5 dB)			1000	
DC to 100 KHz	-68	-72	EL 6-1 5	FS -dB
100KHz to 500 KHz	-67	-71	HOTHO S	FS -dB
500 KHz to 1 MHz	-66	-71	Translation of	FS -dB
Signal-to-Noise Ratio		36	enlarger a	n saidu
& distort., -0.5 dB	00	70		E0 40
DC to 100 KHz	-66 -66	-70 -70	-	FS -dB FS -dB
100 KHz to 500 KHz	-65		_	
500 KHz to 1 MHz Effective Bits, -0.5 dB	-00	-70	ESCRI	FS -dB
DC to 100 KHz	11.0	11.4		bits
100 KHz to 500 KHz	10.6	11.25	ALTERNA	bits
500 KHz to 1 MHz	10.5	11.25	81-111-	bits
Two-Tone Intermodulation	10.5	Dackage	I SI TECL	le le la la
Distort. (fin = 75 KHz,	elen tu	dispositi	numinim	A .910:
105 KHz, Fs = 1 MHz, -7 dB	-80	-88	ondania	FS -dB
Two-Tone Intermodulation	-		tom	wid of a
Distort. (fin = 970 KHz,		1 - 1 - 1	-2016	Bullion and other
990 KHz, Fs = 2 MHz, -0.5 dB)	-65	-68	_	FS -dB
Input Bandwidth			PAGE 1	
Small Signal (-20 dB input)	8	10	-	MHz
Full Power (0 dB input)	5	7	-	MHz
Feedthrough (1 MHz)	-72	-74	-	dB
Slew Rate	-	210	-	V/µSec.
Aperture Delay Time	-	-	20	nSec.
Effect. Aperture Delay Time	-	-	16	nSec.
Aperture Uncertainty (Jitter)				
(RMS)		±5	±15	pSec.
(peak)	-	-	±40	pSec.
Overvoltage Recovery Time	-	-	1000	nSec.
S/H Acquisition Time to 0.01%FS				
+ 25 °C	-	-	150	nSec.
0 °C to +70 °C	-	-	165	nSec
-55 C to +125 °C	20	1	170	nSec
Conversion Rate -55 C to +125 °C	2.0		_	MHz
POWER REQUIREMENTS				
Power Supply Range ①	44.05	450	45.75	1/-1/-
+15V dc Supply	+14.25	+15.0	+15.75	Volts dc
-15V dc Supply	-14.25	-15.0	-15.75	Volts do
+5V dc Supply	+4.75	+5.0	+5.25	Volts dc
Power Supply Current +15V dc Supply	3	+35	+46	mA
-15V dc Supply	10	-40	-50	mA
+5V dc Supply ②	-	+60	+75	mA mA
Power Dissipation		1.4	1.8	Watts
Power Supply Rejection		1.4	0.07	%FSR/%V
			0.07	761 STV 76 V
PHYSICAL/ENVIRONMENT	AL	1	1	
Operating Temperature Range, case			1	LOS PA
-MC	0	-6	+70	°C
-MM	-55		+125	°C
Storage Temperature	-55		TIZS	
Range	-65	_	+150	°C
	00		+100	186
		100	21	-
Package Type	24-	pin hermetic s	ealed, ceram	ic DIP
			s (12 grams)	

- For ±12V, +5V operation, contact DATEL
 +5V power usage at 1 TTL logic loading per data output bit.

move them through software will use the typical connections shown in Figure 3. Remove system errors or adjust the small initial errors of the ADS-117 to zero using the optional external circuitry shown in Figure 4. The external adjustment circuit has no affect on the throughput rate.

- 2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with a 4.7 μF, 25V tantalum electrolytic capacitor in parallel with a 0.1 μF ceramic capacitor.
 Bypass the +10V reference (pin 21) to analog ground (pin 23).
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 18) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie pin 18 to ground. The pin 18 signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To enable the three-state outputs, connect ENABLE (pin 17) to a logic "0" (low). To disable, connect pin 17 to a logic "1" (high).
- To meet the guaranteed conversion rate, a maximum start convert pulse is specified. A wider start convert pulse will result in slower conversion rates.

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

CALIBRATION PROCEDURE

 Connect the converter per Figure 3, Figure 4, and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 150 nanoseconds to the START CONVERT input (pin 16) at 2. Zero Adjustments

Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the reference source per Table 1. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with the pin 18 tied high (straight binary) or between 1111 1111 1111 and 1111 1111 1110 with the pin 18 tied low (complementary binary).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with pin 18 tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with pin 18 tied low (complementary offset binary).

- 3. Full-Scale Adjustment
- Set the output of the voltage reference used in step 2 to the value shown in Table 1. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for pin 18 tied high or between 0000 0000 0001 and 0000 0000 0000 for pin 18 tied low.
- To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

Table 1. Zero and Gain Adjust

FSR	ZERO ADJUST + 1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB		
0 to +10V dc ±5V dc	+1.22mV dc +1.22mV dc	+9.9963V dc +4.9963V dc		

Table 2. Input Ranges (using external calibration)

INPUT RANGE	R1	R2	UNIT
0 to +10V, ±5V	2	2	K Ohms
0 to +5V, ±2.5V	2	6	K Ohms
0 to +2.5V, ±1.25V	2	14	K Ohms

Table 3. Output Coding

		STRAIGHT BIN.	COMP. BINARY	NAME OF CO.	
UNIPOLAR	INPUT RANGES, V dc	OUTPUT (CODING	INPUT RANGE	BIPOLAR
SCALE	0 to +10V	MSB LSB	MSB LSB	±5V dc	SCALE
+FS -1 LSB	+9.9976V	1111 1111 1111	0000 0000 0000	+4.9976V	+FS -1 LSB
7/8 FS	+8.7500V	1110 0000 0000	0001 1111 1111	+3.7500V	+3/4 FS
3/4 FS	+7.5000V	1100 0000 0000	0011 1111 1111	+2.5000V	+1/2 FS
1/2 FS	+5.0000V	1000 0000 0000	0111 1111 1111	0.0000V	0
1/4 FS	2.5000V	0100 0000 0000	1011 1111 1111	-2.5000V	-1/2 FS
1/8 FS	1.2500V	0010 0000 0000	1101 1111 1111	-3.7500V	-3/4 FS
1 LSB	0.0024V	0000 0000 0001	1111 1111 1110	-4.9976V	-FS +1 LSB
0	0.0000V	0000 0000 0000	1111 1111 1111	-5.0000V	-FS
		OFF. BINARY	COMP. OFF. BIN		

SIGNAL 5K TO PIN 19

GAIN ADJUST 5K ZERO/OFFSET ADJUST

W-

Figure 2. ADS-117 Timing Diagram

Figure 4. Optional Calibration Circuit

Figure 5. FFT Analysis of ADS-117

Figure 3. Typical ADS-117 Connection Diagram

MECHANICAL DIMENSIONS INCHES (MM)

OPDERING INFORMATION

at the harder car	DERING INFORMA	umuvaaonan Od I.
MODEL NUMBER	OPERATING TEMP. RANGE	SEAL
ADS-117MC ADS-117MM	0 °C to +70 °C -55 °C to +125 °C	Hermetic Hermetic
ADS-EVAL1	Evaluation board (w	ithout ADS-117)
	PC board mounting car c., Part # 3-331272-8 (uired.	
For availability	of MIL-STD-883 version	ns of the ADS-11

contact DATEL.

PRELIMINARY PRODUCT DATA

ADS-118

12-Bit, 5.0 MHz, Low-Power Sampling A/D Converter

FEATURES

- · 12-Bit resolution
- · Internal Sample/Hold
- · 5.0 MHz minimum throughput
- · Functionally complete
- · Small 24-pin DIP
- · Low-power, 2.3 Watts
- · Three-state output buffers
- Samples to Nyquist

DATEL's ADS-118 is a 12-bit, functionally complete, sampling A/D converter that is packaged in a space-saving 24-pin ceramic DIP. A minimum throughput rate of 5.0 MHz is achieved while only dissipating 2.3 Watts. The ADS-118 digitizes signals up to Nyquist.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1 2 3 4 5 6 7 8 9 10 11	BIT 12 OUT (LSB) BIT 11 OUT BIT 10 OUT BIT 9 OUT BIT 8 OUT BIT 7 OUT BIT 6 OUT BIT 5 OUT BIT 4 OUT BIT 3 OUT BIT 2 OUT BIT 2 OUT BIT 1 OUT (MSB)	13 14 15 16 17 18 19 20 21 22 23 24	+5V DIGITAL GROUND EOC START CONVERT ENABLE (1-12) COMP BIN ANALOG INPUT -5V +10V REF +15V ANALOG GROUND -15V

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (Pin 22)	0 to +18	Volts dc	
-15V Supply (Pin 24)	0 to -18	Volts dc	
+5V Supply (Pin 13)	-0.5 to +7.0	Volts dc	
+5V Supply (Pin 20)	+0.5 to -7.0	Volts dc	
Digital Inputs			
(Pins 16, 17, 18)	-0.3 to +6.0	Volts dc	
Analog Input (Pin 19)	-15 to +15	Volts dc	
Lead Temp. (10 Sec.)	300 max	°C	

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ dc and $\pm 5 V$ dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	1 11/4		9353111	SASSA A
ADS-118	24 - 01	±1	Viv. Tillo	Volts dc
(See Table 4 also)	- 8	- 10	100	Volts dc
Input Impedance	5.0	10.0	1 100	M Ohms
Input Capacitance	10 - 01	6	15	pf
DIGITAL INPUTS	Mal VI		TUC	8 718
Logic Levels	18 00		TUC	
Logic "1" TU9VI DOJAI	2.0		-TUO	Volts do
Logic "0"	3 OS	1 -	0.8	Volts do
Logic Loading "1"	14 - 15	-	5100	μA
Logic Loading "0"	+ - SS	-	-200	μΑ
PERFORMANCE	AA ES		100	Z List
No Missing Codes		1 0 1	10M) 100	
(12 Bits; fIN = 2.5 MHz)	Ove	r tne Operati	ng Temp. Rai	nge.
Integral Non-Lin., fIN = 2.5 MHz				
+25 °C	-	± 1/4	±1	LSB
0 to +70 °C	-	± 1/2	±1	LSB
-55 to +125 ℃	-	-	±1.5	LSB
Diff.Non-Lin., fIN = 2.5 MHz		1.10		1.05
+25 °C	-	± 1/2	± 3/4	LSB
0 to +70 °C	-	±1/2	±1	LSB
-55 to +125 ℃	-		±1	LSB
Full Scale Absolute				
Accuracy (See Technical Note 1) +25 °C	1	+0.13	±0.25	% FSR
0 to +70 °C		±0.15	+0.44	% FSR
-55 to +125 °C	-	+0.25	+0.78	% FSR
Unipolar Zero Error.		10.25	10.76	/0 T OH
+25 °C (See Tech Note 1)	_	±0.074	+0.13	% FSR
Unipolar Zero Tempco.	- 1	±15	+30	ppm/ °C
Bipolar Zero Error,			200	ppin o
+25 °C (See Tech Note 1)	- 1	±0.074	±0.13	% FSR
Bipolar Zero Tempco	DIATE	±5	±8	ppm/ °C
Bipolar Offset Error,	TUTTUO		FORRECO	
+25 °C (See Tech Note 1)	татеказя	±0.1	±0.2	% FSR
Bipolar Offset Tempco	-	±20	±40	ppm/ °C
Gain Error, +25 ℃	-	±0.1	±0.2	% FSR
(See Tech Note 1)		100	1.10	
Gain Tempco		±20	±40	ppm/ °C
OUTPUTS				N
Logic Levis				11.0
Logic "1"	2.4	-	-	Volts dc
Logic "0"	- 1		0.4	Volts dc
Logic Loading "1"	-11	-	-160	μA
Logic Loading "0"	-		6.4	mA
Internal Reference	.0.00	.100	10.00	Malta de
Voltage, +25 °C Drift.	+9.98	+10.0	+10.02	Volts dc
Dritt. External Current	Var-	±5	±30	ppm/°C
External Current		-	1.5	mA

OUTPUT CONT.	MIN.	TYP.	MAX.	UNITS
Resolution	12 Bits			
Output Coding		Otrojakt bin	woffeet him	URES
(Pin 18 Hi) (Pin 18 Low)		Straight binar Compleme	y/offset binar ntary binary	У
(1.1110 LOW)	Complementary offset binary			ry
DYNAMIC PERFORMANCE				
In-Band (-0.5 dB)	300	puemi	mumin	m sHN
DC to 500 KHz	-70	-75	eneto vi	FS-dB
500 KHz to 1.0 MHz	-65	-70	COLUMN AND AND AND AND AND AND AND AND AND AN	FS -dB
1.0 MHz to 2.5 MHz	-63	-65	3144 31	FS-dB
Total Harm. Distort. (-0.5 dB) DC to 500 KHz	-70	-73	M E'Z '	FS -dB
500 KHz to 1.0 MHz	-63	-68	идшо з	FS-dB
1.0 MHz to 2.5 MHz	-60	-63	Upy M	FS -dB
Signal-to-Noise Ratio				
(w/o distort., -0.5 dB) DC to 500 KHz	-63	-68	10.2	FS -dB
500KHz to 1.0 MHz	-62	-66	-	FS -dB
1.0 MHz to 2.5 MHz	-60	-62	ESCRIP	FS -dB
Signal-to-Noise Ratio				
with distortion, -0.5 dB	sngilon	00	118 15 8	EC 40
DC to 500 KHz 500 KHz to 1.0 MHz	-65 -64	-66 -65	al Terit	FS -dB FS -dB
1.0 MHz to 2.5 MHz	-63	-65	murelnin	FS -dB
Effective Bits, -0.5 dB	eriT	that E	poitson	eib vino
DC to 500 KHz	10.6	10.8	- tair	bits
500 KHz to 1.0 MHz	10.3	10.5	-	bits
1.0 MHz to 2.5 MHz Two-Tone Intermodulation	10.3	10.4		bits
Distort. (fIN = 75 KHz,				
105 KHz, Fs = 5 MHz, -7 dB	-74	-81	-	FS -dB
Two-Tone Intermodulation				E T
Distort. (fIN = 2.3 KHz,	00	00	100	FC 45
2.5 MHz, Fs = 5 MHz, -0.5 dB) Input Bandwidth	-60	-63		FS -dB
Small Signal (-20 dB input)	50	65	_	MHz
Full Power (0 dB input)	30	40	1000-000	MHz
Slew Rate	-	250	-	V/ÛSec
Aperture Delay Time	-	-	10	nSec.
Effect. Aperture Delay Time Aperture Uncertainty (Jitter)	_		8	nSec.
(RMS)	-	-	±10	pSec.
(peak)	-	-	±25	pSec.
Overvoltage Recovery Time	-	-	1000	nSec.
S/H Acquisition Time to 0.01%		Harle I		
(Transient Recovery Time) +25 °C		-	50	nSec.
0 to +70 °C	18-	-	50	nSec.
-55 to +125 °C	-	1 - 1	50	nSec
Conversion Rate -55 to +125 ℃	5.0	- No	-	MHz
POWER REQUIREMENTS	La.			
Power Supply Range ①	THE PERSON			
+15V dc Supply	+14.25	+15.0	+15.75	Volts do
-15V dc Supply +5V dc Supply	-14.25 +4.75	-15.0 +5.0	-15.75 +5.25	Volts do
-5V dc Supply	-4.75	-5.0	-5.25	Volts dc
Power Supply Current			MI	1
+15V dc Supply	-	+45	+55	mA
-15V dc Supply	-	-20	-25	mA mA
+5V dc Supply @ -5 V dc Supply	_	+170	+175	mA mA
Power Dissipation		2.3	2.5	Watts
Power Supply Rejection	-	-	0.07	%FSR/%\
PHYSICAL/ENVIRONMENT		100	rugo	
Operating Temperature Range		1 0	14	101
-MC	0	ING T	+70	°C
-MM	-55		+125	°C
Storage Temperature Range	-65	+	+150	°C
Package Type	24-n	in hermetic se	ealed, cerami	ic DIP
Weight	- P		s (12 grams)	

For ±12V, +5V operation, contact DATEL
 +5V power usage at 1 TTL logic loading per data output bit.

TECHNICAL NOTES

- Applications which are unaffected by endpoint errors or remove them through software will use the typical connections shown in Figure 3. Remove system errors or adjust the small initial errors of the ADS-118 to zero using the optional external circuitry shown in Figures 4a and 4b. The external adjustment circuit has no affect on the throughput rate.
- 2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- 3. Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with a 4.7 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor. Bypass the +10V reference (pin 21) to analog ground (pin 23).
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 18) to +5V dc open. To obtain complementary binary or complementary offset binary output coding, tie pin 18 to ground. The pin 18 signal is compatible with CMOS/TTL logic levels for those users desiring logic control of this function.
- To enable the three-state outputs, connect ENABLE (pin 17) to a logic "0" (low). To disable, connect pin 17 to a logic "1" (high).
- 6. Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

CALIBRATION PROCEDURE

Connect the converter per Figure 3 and Figure 4 for the appropriate full-scale range (FSR). Apply a pulse of 45 nanoseconds to the START CONVERT input (pin 16) at a rate of 250 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the reference source per Table 1 for bipolar zero adjustment (zero +1/2 LSB).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with COMP BIN (pin 18) tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with COMP BIN (pin 18) tied low (complementary offset binary).

Full-Scale Adjustment Set the output of the voltage reference used in step 2 to the value shown in Table 1 for the bipolar gain adjustment (+FS -1 1/2 LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110

the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for COMP BIN (pin 18) tied high or between 0000 0000 0001 and 0000 0000 0000 for COMP BIN (pin 18) tied low.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 2.

Table 1. Zero and Gain Adjust, Bipolar Operation

BIPOLAR	ZERO ADJUST	GAIN ADJUST
FSR	0 + 1/2 LSB	+FS - 1 1/2 LSB
±1V dc	±244μV dc	+0.99926V dc

For Immediate Assistance, Dial 1-800-233-2765

Table 2. Output Coding for Bipolar Operation

BIPOLAR	INPUT RANGE OUTPUT CODING		
SCALE	(Volts dc) ±1V	MSB LSB	COMP. OFFSET BINARY MSB LSB
+FS -1 LSB	+0.99952V	1111 1111 1111	0000 0000 0000
+3/4 FS	+0.7500V	1110 0000 0000	0001 1111 1111
+1/2 FS	+0.5000V	1100 0000 0000	0011 1111 1111
0	0.0000V	1000 0000 0000	0111 1111 1111
-1/2 FS	-0.5000V	0100 0000 0000	1011 1111 1111
-3/4 FS	-0.7500V	0010 0000 0000	1101 1111 1111
-FS +1 LSB	-0.99952V	0000 0000 0001	1111 1111 1110
-FS	-1.0000V	0000 0000 0000	1111 1111 1111

Figure 3. Typical ADS-118 Connection Diagram

Figure 4a. Optional Bipolar Calibration Circuit

Figure 4b. Optional Unipolar Calibration Circuit

Figure 5. FFT Analysis of ADS-118

MECHANICAL DIMENSIONS INCHES (MM)

	RDERING INFORMAT	TION
MODEL NUMBER	OPERATING TEMP. RANGE	SEAL
ADS-118MC ADS-118MM	0 °C to +70 °C -55 °C to +125 °C	Hermetic Hermetic
ADS-EVAL2	Evaluation Board (with	nout ADS-118)
	r PC board mounting can t # 3-331272-8 (Compone	
For availability	of MIL-STD-883 version	s of the ADS-118,

contact DATEL.

FEATURES

- 12-Bit resolution
- · Internal Sample/Hold amplifier
- 20 MHz minimum throughput
- Samples up to Nyquist
- Functionally Complete
- · Small 40-pin DIP
- · Low-power, 4.2 Watts
- · Three-State output buffers
- · High input bandwidth
- · Overflow pin

GENERAL DESCRIPTION

DATEL's ADS-120 is a 12-bit, functionally complete, sampling A/D converter packaged in a small 40-pin DIP. A 20 MHz minimum throughput rate in digitizing sinusoidal signals is achieved while only dissipating 4.2 Watts.

The ADS-120 is offered in the commercial 0 to +70 °C and military -55 to +125 °C operating temperature range.

APPLICATIONS

- · Spectrum analysis
- Imaging
- · Radar
- Medical Instrumentation
- · High-speed Data Acquisition Systems

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+15V	40	DIGITAL GROUND
2	-15V	39	COMP BIN
3	ANALOG GROUND	38	ENABLE
4	ANALOG -5V	37	DATA READY
5	ANALOG +5V	36	DIGITAL +5V
6	ANALOG INPUT	35	START CONVERT
7	S/H OUT	34	OVERFLOW
8	DIGITAL +5V	33	BIT 1 (MSB)
9	DIGITAL GROUND	32	BIT 2 OUT
10	DIGITAL -5V	31	BIT 3 OUT
11	OFFSET ADJUST	30	BIT 4 OUT
12	ANALOG +5V	29	BIT 5 OUT
13	ANALOG GROUND	28	BIT 6 OUT
14	ANALOG -5V	27	DIGITAL GROUND
15	GAIN ADJUST	26	BIT 7 OUT
16	+10V REFERENCE	25	BIT 8 OUT
17	+15V SUPPLY	24	BIT 9 OUT
18	ANALOG -5V	23	BIT 10 OUT
19	ANALOG GROUND	22	BIT 11 OUT
20	ANALOG +5V	21	BIT 12 OUT (LSB)

ADVANCED PRODUCT DATA

REATINATE

- 12-Bit resolution
- demonstrate and representation with the
 - Samples up to Nyquist
 - uduos ánsuoueus
 - Small 40-pin DIP
 - week Stote centered builden
 - Mich least bandwidth
 - nia

Contact DATEL for up-to-date information on products covered by "Advanced" and

"Preliminary" product data sheets.

Dial

1-800-233-2765

for

Applications Assistance

ADS-130 12-Bit, 10 MHz Sampling A/D Converter

FEATURES

- 12-Bit resolution
- · Internal Sample/Hold amplifier
- 10 MHz minimum throughput
- · Samples up to Nyquist
- Functionally Complete
- · Small 40-pin DIP
- · Low-power, 3.85 Watts
- Three-State output buffers
- · High input bandwidth
- · Overflow pin
- · No missing codes

GENERAL DESCRIPTION

DATEL's ADS-130 is a 12-bit, functionally complete, sampling A/D converter packaged in a small 40-pin DIP. A 10 MHz minimum throughput rate in digitizing sinusoidal signals is achieved while only dissipating 3.85 Watts.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+15V	40	DIGITAL GROUND
2	-15V	39	COMP BIN
3	ANALOG GROUND	38	ENABLE
4	ANALOG -5V	37	DATA READY
5	ANALOG +5V	36	DIGITAL +5V
6	ANALOG INPUT	35	START CONVERT
	S/H OUT	34	OVERFLOW
8	DIGITAL +5V	33	BIT 1 (MSB)
9	DIGITAL GROUND	32	BIT 2 OUT
10	DIGITAL -5V	31	BIT 3 OUT
11	OFFSET ADJUST	30	BIT 4 OUT
12	ANALOG +5V	29	BIT 5 OUT
13	ANALOG GROUND	28	BIT 6 OUT
14	ANALOG -5V	27	DIGITAL GROUND
15	GAIN ADJUST	26	BIT 7 OUT
16	+10V REFERENCE	25	BIT 8 OUT
17	+15V SUPPLY	24	BIT 9 OUT
18	ANALOG -5V	23	BIT 10 OUT
19	ANALOG GROUND	22	BIT 11 OUT
20	ANALOG +5V	21	BIT 12 OUT (LSB)

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 1,17)	0 to +18	Volts dc
-15V Supply (Pin 2)	0 to -18	Volts dc
+5V Supply (Pin 5, 8,12,20,36)	-0.5 to +7.0	Volts dc
-5V Supply (Pin 4,10,14,18)	+0.5 to -7.0	Volts dc
Digital Inputs		
(Pins 35,38,39)	-0.3 to +5.5	Volts dc
Analog Input (Pin 6)	±5	Volts dc
Lead Temp. (10 Sec.)	300	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and $\pm 5 \text{V}$ dc unless otherwise specified.

INPUTS MOTTOMER	MIN	TYP	MAX	UNITS
ANALOG GMUORO JATIOID	014		Ver-	
Input Voltage Range	-39	±1.25	-15V	V dc
Input Impedance	50	160	ANALOG	KOhm
Input Capacitance		2.5	10	pF
DIGITAL VC+ 2A HIGHG	- 36	7.04	AND STREET	P. C
Logic Level "4"	2.0	TUPIN	DOLLAMA	V dc
	486		0.8	V dc
	887	764	5.0	μА
Logic Loading "1"	32	- VA	-200	uA
OUTPUTS	08	FEULUA	136/110	P
Resolution	BS I	12	Rits	22
Output Coding	27			
(Pin 39 HI)	28	Offse	t Binary	
(1 111 00 111)	3 C	omplementa	ary Offset E	Binary
(1 111 00 FOAA)		1 1 1 1 1	US VELO	1/de
LOGIC LEVEL I	2.4	Va.	00 444	V dc
Logic Level U	22	CROUN	0.4	V dc
Logic Loading 1	18	- SV	-160	μА
Logic Loading "U"		-	6.4	mA
Internal VREF, (pin 16)				
+25 ℃	+9.9	+10.0	+10.1	V dc
0 to +70 °C	+9.9	+10.0	+10.1	V dc
-55 to +125 ℃	+9.8	+10.0	+10.2	V dc
External Current	SI JUZINIO	DONE	2	mA
PERFORMANCE	36.	8. Ox.	9,27	10
Int. Non-Lin., fin= 5.0 MHz				
+25 °C	-	-	±1	LSB
0 to +70 °C	-	-	±1	LSB
-55 to +125 °C	-	_	±2	LSB
Diff. Non-Lin., fin = 5.0 MHz	F			-
+25 °C		_	+1-	LSB
0 to +70 °C	-	_	+1	LSB
-55 to +125 °C	_ 11		±2	LSB
Full Scale Absolute Accuracy		HORRE	12	LOD
+25 °C (Tech note 1)		±0.2	±0.4	%FSR
0 to +70 °C		±0.4	±0.4	%FSR
-55 to +125 °C	_	±0.4 ±0.8		%FSR
Bipolar Zero Error,	7/30	±0.8	±1.6	%F5H
		10.45		0/500
+25 °C (Tech note 1)		±0.15	±0.2	%FSR
0 to +70 °C	-	±0.2	±0.4	%FSR
-55 to +125 ℃	- 1	±0.4	±0.8	%FSR
Bipolar Offset Error,				1.0
+25 °C (Tech Note 1)	- 1	±0.15	±0.2	%FSR
0 to +70 °C	-	±0.2	±0.4	%FSR
-55 to +125 ℃	-	±0.4	±0.8	%FSR
Gain Error, +25 ℃				
(Tech Note 1)		±0.15	±0.2	%FSR
0 to +70 °C	-	±0.2	±0.4	%FSR
-55 to +125 °C	_	±0.4	±0.8	%FSR
No Missing Codes		20.1	20.0	, or St. 50.
(12 Bits, at fin = 2.5 MHz)				
(12 Dito, at 1114 - 2.0 1411 12)				

DYNAMIC PERFORMANCE	MIN	TYP	MAX	UNITS
Conversion Rate	hybrides.	-	PARAGE AND	Back Marie
(Changing Inputs),+25 °C	10	-	- 2	MHz
0 to +70 °C	10	-		MHz
-55 to +125 ℃	10	-	*****	MHz
Total Harm. Distort.(-0.5 dB)	00	70	GHINIGE	FC 4D
DC to 500 KHz 500 KHz to 2.5 MHz	-68 -65	-70 -67	elginsi	FS, -dB
2.5 MHz to 5 Mhz	-65	-67	amlmia	FS, -dB FS, -dB
Signal-to-Noise Ratio	-05	W	ot ou	F3, -ub
(w/o distortion, -0.5 dB)		skinbás	100 100	in the same
DC to 500 KHz	-67	-70	Sul Ans	FS, -dB
500 KHz to 2.5 MHz	-65	-69	G giq	FS, -dB
2.5 MHz to 5 Mhz	-65	-69	B.E-19	FS, -dB
Signal-to-Noise Ratio	en maria	Sand Sand	tun nte	10 nave
and Distortion (-0.5 dB)	2101	300 JON	THU DIE	15,0011
DC to 500 KHz	-65	-66	Dead h	FS, -dB
500 KHz to 2.5 MHz	-63	-65	Hid	FS, -dB
2.5 MHz to 5 Mhz	-63	-65	See or	FS, -dB
Spurious Free Dynamic Range		60	Acres Ba	Carlossia o
DC to 500 KHz (-0.5 dB)@	-69	-70	-	FS, -dB
500 KHz to 2.5 MHz	-66	-67	-	FS, -dB
2.5 MHz to 5 Mhz	-66	-67	heāa.	FS, -dB
Effective Bits	400	44.0	DODG.	Div
DC to 500 KHz	10.6	11.0	1001 0	Bits
500 KHz to 2.5 MHz	10.2	10.5	UC+FO	Bits
2.5 MHz to 5 Mhz	10.0	10.2	BRIOREJ 16	Bits
Two-tone Intermodulation	nie buiz	ander un	BIET THOU	Brown H
Distortion (fin =2.2 MHz,	-72	-75	ssipaling	dB
2.3 MHz, Fs = 8 MHz) Input Bandwidth	-12	-/5	_	UD
Small Signal (-20 dB input)	50	65	_	MHz
Full Power (0 dB input)	30	40		MHz
Slew Rate	175	200	_	V/µSec
Aperture Delay Time	-	5	7	nSec
Aperture Uncertainty	-	5	7	psec
S/H Acquisition Time				
to 0.01% FS (2.5V step)				
+25 °C		30	50	nSec
0 to +70 ℃	-	30	50	nSec
-55 to +125 °C	BEST TOTAL	50	70	nSec
Feedthrough Rejection				27 5
2.5V step	-62	-66	-	dB
Overvoltage Recovery, ±2.5 V	-	50	100	nSec
POWER REQUIREMENTS				
Power Supply Range				
+15V dc Supply (Vcc)	+14.25	+15.0	+15.75	V dc
-15V dc Supply (VEE)	-14.25	-15.0	-15.75	V dc
+5V dc Supply (VDD)	+4.75	+5.0	+5.25	V dc
-5V dc Supppy (Vss)	-4.75	-5.0	-5.25	V dc
Power Supply Current	-	HB -	-	III D.C.SAKA
+15V dc Supply	-	+26	+28	mA
-15V dc Supply	-	-30	-33	mA
+5V dc Supply①	-	+347	+372	mA
-5V dc Supply	-	-255	-285	mA Watta
Power Dissipation	-	3.85	4.2	Watts
Power Supply Rejection	-	0.05	0.1	%FSR/%
PHYSICAL/ENVIRONMENTAL	ROR			
Operating Temp. Range (Case)	1 45 4	- Inches		135
-MC	0	+	+70	°C
-MM	-55	-	+125	°C
Storage Temperature Range	-65	-	+150	°C
Walaht		0.50	10	A
Weight Booksas Type		0.56 oz. (
Package Type	I 40-Pir	n hermetic :	sealed, cera	amic IDIP

① +5V power usage at 1 TTL logic loading per data output bit. ② The same specifications apply to Inband Harmonics.

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or to reduce the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 15 (tie pin 15 to ANALOG GROUND for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 11 for zero/offset adjustment (tie pin 11 to ANALOG GROUND for operation without adjustment).
- Rated performance requires using good high-frequency circuit board layout techniques. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter.

In most cases, users will use a single +5V supply for both analog +5V and digital +5V (applicable for the -5V supply also). Should users have separate supplies the difference between the analog and digital supply should be within ± 100 mV to avoid performance degradation.

Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies. This prevents contamination of the analog ground by noisy digital ground currents.

- 3. Bypass all the analog and digital power supply pins with a 2.2 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor to their respective analog and digital grounds. Use of chip capacitors is recommended.
- 4. Obtain offset binary output coding by tying COMP BIN (pin 39) to +5V dc. To obtain complementary offset binary output coding, tie pin 39 to ground. The pin 39 signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To obtain three-state outputs, connect the ENABLE pin (pin 38) to a logic "1" (high). Otherwise, connect pin 38 to a logic "0" (low).
- The ADS-130 guarantees it's specified throughput rate over the temperature range when the START CONVERT pulse of 10 nS minimum, 90 nS maximum is provided at the specified rate. Start convert pulses greater than 90 nanoseconds will result in slower throughput rates.
- 7. The ADS-130 is capable of digitizing sinusoidal input frequencies up to the Nyquist frequency. The acquisition time for pulse or dc level signals is 50 nS maximum over the 0 to +70 °C temperature range. Acquisition time is 70 nSec. maximum from -55 °C to +125 °C.
- The specifications listed in Figure 2 (timing diagram) apply over the full operating temperature range unless otherwise specified.
- The OVERFLOW pin goes high for signals greater than +full scale (no overflow flag given for signals greater than -FS).
 The OVERFLOW pin is a three-state output and is enabled by pin 38.
- 10.The ADS-130 has a one pipeline delay in obtaining output data. Refer to the Timing Diagram in Figure 3.
- 11.The ADS-130 goes into the hold mode on the rising edge of the start convert pulse.

CALIBRATION PROCEDURE

1. Connect the converter per Figure 2.

Apply a pulse of 10 nS typical to the START CONVERT input (pin 35) at a rate of 500 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the analog input (pin 6) and analog ground. Adjust the output of the reference source per Table 2 for the bipolar zero adjustment (zero +1/2 LSB). Adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with COMP BIN (pin 39) tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with pin 39 tied low (complementary offset binary).

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 2 for the bipolar gain adjustment (+FS -1 1/2 LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 with pin 39 tied high or between 0000 0000 0000 0000 and 0000 0000 with pin 39 tied low.

To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

Figure 2. Typical ADS-130 Connection Diagram

Table 2. Zero and Gain Adjust

FSR	ZERO ADJUST 0 + 1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB
±1.25Vdc	+305 μV dc	+1.249085V dc

NOTE: FCLOCK = 10 MHz for all presentations and delicated account and approximately account and account and account and account and account and account and account account and account account and account account and account account account account and account account account account account account account account and account acco

NOTE: FcLock = 10 MHz for all presentations

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	SEAL
ADS-130MC ADS-130MM	0 to +70 °C -55 to +125 °C	Hermetic Hermetic
ADS-B130/131	Evaluation Boar ADS-130)	d (without

For availability of MIL-STD-883B versions, contact DATEL.

ADS-131

12-Bit, 5.0 MHz Sampling A/D Converter

FEATURES

- 12-Bit resolution
- · Internal Sample/Hold amplifier
- 5.0 MHz minimum throughput
- · Samples up to Nyquist
- Functionally Complete
- · Small 40-pin DIP
- · Low-power, 3.65 Watts
- Three-State output buffers
- · High input bandwidth
- · Overflow pin
- · No missing codes

GENERAL DESCRIPTION

DATEL's ADS-131 is a 12-bit, functionally complete, sampling A/D converter packaged in a small 40-pin DIP. A 5.0 MHz minimum throughput rate in digitizing sinusoidal signals is achieved while only dissipating 3.65 Watts.

PIN	FUNCTION	PIN	FUNCTION
1	+15V	40	DIGITAL GROUND
2	-15V	39	COMP BIN
3	ANALOG GROUND	38	ENABLE
4	ANALOG -5V	37	DATA READY
5	ANALOG +5V	36	DIGITAL +5V
6	ANALOG INPUT	35	START CONVERT
7	S/H OUT	34	OVERFLOW
8	DIGITAL +5V	33	BIT 1 (MSB)
9	DIGITAL GROUND	32	BIT 2 OUT
10	DIGITAL -5V	31	BIT 3 OUT
11	OFFSET ADJUST	30	BIT 4 OUT
12	ANALOG +5V	29	BIT 5 OUT
13	ANALOG GROUND	28	BIT 6 OUT
14	ANALOG -5V	27	DIGITAL GROUND
15	GAIN ADJUST	26	BIT 7 OUT
16	+10V REFERENCE	25	BIT 8 OUT
17	+15V SUPPLY	24	BIT 9 OUT
18	ANALOG -5V	23	BIT 10 OUT
19	ANALOG GROUND	22	BIT 11 OUT
20	ANALOG +5V	21	BIT 12 OUT (LSB)

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 1,17)	0 to +18	Volts do
-15V Supply (Pin 2)	0 to -18	Volts do
+5V Supply (Pin 5, 8,12,20,36)	-0.5 to +7.0	Volts do
-5V Supply (Pin 4,10,14,18)	+0.5 to -7.0	Volts do
Digital Inputs		
(Pins 35,38,39)	-0.3 to +5.5	Volts do
Analog Input (Pin 6)	±5	Volts do
Lead Temp.(10 Sec.)	300	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ dc and $\pm 5 V$ dc unless otherwise specified.

INPUTS GASH ATAG	MIN	TYP	MAX	UNITS
Analog Input Voltage Range	TU9	±1.25	A 5 7 8 5	V dc
Input Impedance Input Capacitance Digital	50	160 2.5	10	KOhm pF
Logic Levels	V	+ DOJAK	A 21	
Logic "1" TUO a Tie as	2.0	D DOLLAR	6 et	V dc
Logic "0" See JATISHO SS	- +	NALDIG -E	0.8 5.0	V dc
Logic Loading "0"	30/08	enag vo	-200	μA μA
OUTPUTS TUO OF THE CS	1	NALOG -5	A 81	
Resolution Output Coding (Pin 39 HI) (Pin 39 Low)	V	H BOTAN	A OG	
Logic Levels Logic "1"	2.4			V dc
Logic "0"		er = 0:	0.4	V dc
Logic Loading "1"		-	-160	цА
Logic Loading "0"	100 -	847740	6.4	mA
Internal Reference		-	-	
Voltage, (pin 16)	00	400	40.4	Mala
+25 °C 0 to +70 °C	+9.9	+10.0 +10.0	+10.1	V dc V dc
-55 to +125 °C	+9.9	+10.0	+10.1	V dc
External Current	-	-	2	mA
PERFORMANCE		K		STAGE
Int. Non-Lin., fin= 2.5MHz	ROBB			1.00
+25 °C 0 to +70 °C	HOITOBRE	003	±1 +1	LSB
-55 to +125 °C.	- 1700		±1 +2	LSB
Diff. Non-Lin.,fin = 2.5MHz		K	12	LOD
+25 °C	-	-	±1	LSB
0 to +70 °C	-	-	±1	LSB
-55 to +125 °C	-	-	±2	LSB
Full Scale Absolute Accuracy	-	—		
+25 °C (Tech note 1)	-	±0.2	±0.4	%FSR
0 to +70 °C -55 to +125 °C	QUANT.	±0.4 ±0.8	±0.8	%FSR %FSR
-55 to +125 °C Bipolar Zero Error,		±0.8	±1.6	%F3H
+25 °C (Tech note 1)	_	+0.15	+0.2	%FSR
0 to +70 °C	_	±0.2	±0.4	%FSR
-55 to +125 °C	-	±0.4	±0.8	%FSR
Bipolar Offset Error,				teste
+25 °C (Tech Note 1)	-	±0.15	±0.2	%FSR
0 to +70 °C	-	±0.2	±0.4	%FSR
-55 to +125 °C	-	+0.4	+0.8	%FSB

A/D PERF. CONT.	MIN	TYP	MAX	UNITS
Gain Error, +25 ℃	6/15/10 Dist	1000000	(Holas)	PURSAIN
(Tech Note 1)	-	±0.15	±0.2	%FSR
0 to +70 °C	-	±0.2	±0.4	%FSR
-55 to +125 ℃	-	±0.4	±0.8	%FSR
No Missing Codes		510	ruloss'	12-81
(12 Bits, at fin = 2.5 MHz)	Over	Operating 1	emperatur	e Range
DYNAMIC PERFORMANCE				
Conversion Rate	18	Nygul	at qui se	Sample
(Changing Inputs),+25 °C	5.0	alexens.	villari	MHz
0 to +70 °C	5.0	Name of Contract o	11000	MHz
-55 to +125 ℃	5.0	-7925	HIE-N	MHz
Total Harm. Distort.(-0.5 dB)	00 81	70	Wer, 3.	FO 40
DC to 500 KHz	-68	-70	o efeté	FS, -dB
500 KHz to 2.5 MHz	-65	-67	mark from	FS, -dB
Signal-to-Noise Ratio (w/o distortion, -0.5 dB)		ALIGNY SELECT	outs average	ni ngin
DC to 500 KHz	-67	-70	mid at	EC 4B
500 KHz to 2.5 MHz	-65	-69	sing of	FS, -dB FS, -dB
Signal-to-Noise Ratio	-03	-03		10, 40
and Distortion (-0.5 dB)	B			
DC to 500 KHz	-65	-66	_	FS, -dB
500 KHz to 2.5 MHz	-63	-65	READ BY	FS, -dB
Spurious Free Dynamic Range②	30			,
DC to 500 KHz	-68	-70	CI-SOA	FS, -dB
500 KHz to 2.5 MHz	-65	-67	ded Teh	FS, -dB
Effective Bits	stalla a	nager se	Ladoue	old ones
DC to 500 KHz	10.6	11.0	Delining of	bits
500 KHz to 2.5 MHz	10.2	10.5	IC STRIN	bits
Two-tone Intermodulation				100
Distortion (fin =2.2 MHz,				51,31
2.3 MHz, Fs = 5 MHz)	-72	-75	-	dB
Input Bandwidth			10. 10	- In the
Small Signal (-20 dB input)	50	65	-	MHz
Full Power (0 dB input)	30	40	-	MHz
Slew Rate	75	100	_	V/µSec
Aperture Delay Time		5	7	nSec
Aperture Uncertainty	-	5	7	psec
S/H Acquisition Time				
to 0.01% FS (2.5V step) +25 ℃		50	70	nSec
0 to +70 °C		50	70	nSec
-55 to +125 °C	_	70	100	nSec
Feedthrough Rejection		10	100	11000
2.5V step	-62	-66	_	dB
Overvoltage Recovery, ±2.5 V	-	100	200	nSec
POWER REQUIREMENTS				
Power Supply Range			8	
+15V dc Supply (Vcc)	+14.25	+15.0	+15.75	V dc
-15V dc Supply (VEE)	-14.25	-15.0	-15.75	V dc
+5V dc Supply (VDD)	+4.75	+5.0	+5.25	V dc
-5V dc Supppy (Vss)	-4.75	-5.0	-5.25	V dc
Power Supply Current		3.0	0.20	
+15V dc Supply	_	+25	+28	mA
-15V dc Supply	_	-30	-33	mA
+5V dc Supply®	-	+310	+342	mA
-5V dc Supply	-	-250	-275	mA
Power Dissipation	-	3.65	4.00	Watts
Power Supply Rejection	-	0.05	0.1	%FSR/%
PHYSICAL/ENVIRONMENTAL				
Operating Temp. Range			70	0.0
-MC	0	-	+70	°C
-MM Storogo Temporatura Banga	-55	-	+125	°C
Storage Temperature Range	-65		+150	°C
Weight Package Type		0.56 oz. (16		
Package Type		0.56 oz. (16 hermetic se		

① +5V power usage at 1 TTL logic loading per data output bit. ② The same specifications apply to Inband Harmonics.

- 1. Use external potentiometers to remove system errors or to reduce the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 15 (tie pin 15 to ANALOG GROUND for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 11 for zero/offset adjustment (tie pin 11 to ANALOG GROUND for operation without adjustment).
- Rated performance requires using good high-frequency circuit board layout techniques. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter.

In most cases, users will use a single +5V supply for both analog +5V and digital +5V (applicable for the -5V supply also). Should users have separate supplies the difference between the analog and digital supply should be within ± 100 mV to avoid performance degradation.

Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies. This prevents contamination of the analog ground by noisy digital ground currents.

- 3. Bypass all the analog and digital power supply pins with a 2.2 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor to their respective analog and digital grounds. Use of chip capacitors is recommended.
- 4. Obtain offset binary output coding by tying COMP BIN (pin 39) to +5V dc. To obtain complementary offset binary output coding, tie pin 39 to ground. The pin 39 signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To obtain three-state outputs, connect ENABLE (pin 38) to a logic "1" (high). Otherwise, connect pin 38 to a logic "0" (low).
- 6. The ADS-131 guarantees it's specified throughput rate over the temperature range when the START CONVERT pulse of 10 nS minimum, 190 nS maximum is provided at the specified rate. Start convert pulses greater than 190 nanoseconds will result in slower throughput rates.
- 7. The ADS-131 is capable of digitizing sinusoidal input frequencies up to the Nyquist frequency. The acquisition time for pulse or dc level signals is 70 nS maximum over the 0 to +70 °C temperature range. Acquisition time is 100 nSec. maximum from -55 °C to +125 °C.
- The specifications listed in Figure 3 (timing diagram) apply over the full operating temperature range unless otherwise specified.
- The OVERFLOW pin goes high for signals greater than +full scale (no overflow flag given for signals greater than -FS).
 The OVERFLOW pin is a three-state output and is enabled by the ENABLE line (pin 38).
- 10. The ADS-131 has a one pipeline delay in obtaining output data. Refer to the Timing Diagram in Figure 3.
- 11.ADS-131 goes into the hold mode on the rising edge of the start convert pulse.

1. Connect the converter per Figure 2.

Apply a pulse of 10 nS typical to the START CONVERT input (pin 35) at a rate of 500 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the analog input (pin 6) and analog ground. Adjust the output of the reference source per Table 2 for the bipolar zero adjustment (zero +1/2 LSB). Adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with COMP BIN (pin 39 tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with pin 39 tied low (complementary offset binary).

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 2 for the bipolar gain adjustment (+FS -1 1/2 LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 with COMP BIN (pin 39) tied high or between 0000 0000 0000 and 0000 0000 0001 with pin 39 tied low.

To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

Figure 2. Typical ADS-131 Connection Diagram

Table 2. Zero and Gain Adjust

FSR	ZERO ADJUST 0 + 1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB
±1.25Vdc	+305 μV dc	+1.249085V dc

FIN = 95 KHz

Fin =495 KHz

NOTE: FCLOCK = 5 MHz for all presentations

Table 3. Output Coding for Bipolar Operation

BIPOLAR	INPUT RANGE	OUTPUT	CODING
SCALE	(Volts dc) ±1.25V	OFFSET BINARY MSB LSB	COMP OFF. BINARY MSB LSB
+FS -1 LSB	+1.24939V	1111 1111 1111	0000 0000 0000
+3/4 FS	+0.9375V	1110 0000 0000	0001 1111 1111
+1/2 FS	+0.625V	1100 0000 0000	0011 1111 1111
0	0.0000V	1000 0000 0000	0111 1111 1111
-1/2 FS	-0.625V	0100 0000 0000	1011 1111 1111
-3/4 FS	-0.9375V	0010 0000 0000	1101 1111 1111
-FS +1 LSB	-1.24939V	0000 0000 0001	1111 1111 1110
-FS	-1.2500V	0000 0000 0000	1111 1111 1111

OUTPUT INHIBIT VALID TRUE INHIBIT VALID TRUE VALID COMPLEMENT VALID TRUE

25 nSec. Max. 15 nSec. Max. 45 nSec. Max. NOTE: NOT DRAWN TO SCALE

Figure 3. ADS-131 Output Data Timing

MECHANICAL DIMENSIONS INCHES (mm)

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	SEAL
ADS-131MC ADS-131MM	0 to +70 °C -55 to +125 °C	Hermetic Hermetic
Part Number	Description	
TP20K	Trimming Pote (2 required)	
ADS-B130/131	Evaluation Boar	d (without

For availability of MIL-STD-883B versions, contact DATEL.

FEATURES

- · 12-Bit resolution
- · Internal Sample/Hold
- · 2.0 MHz minimum throughput
- · Functionally complete
- · Small 32-pin DIP
- · Low-power, 2.9 Watts
- · Three-state output buffers
- · Samples up to Nyquist
- · No -5V supply required

GENERAL DESCRIPTION

DATEL's ADS-132 is a 12-bit, functionally complete, sampling A/D converter that is packaged in a small 32-pin ceramic DIP. The ADS-132 digitizes sinusoidal signals at a 2.0 MHz minimum throughput rate while dissipating only 2.9 Watts.

PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	17	DO NOT CONNECT
2	RANGE	18	EOC
3	INPUT HIGH	19	BIT 12 OUT (LSB)
4	INPUT LOW	20	BIT 11 OUT
5	OFFSET ADJUST	21	BIT 10 OUT
6	OVERFLOW	22	BIT 9 OUT
7 .	COMP. BIN	23	BIT 8 OUT
8	S/H OUT	24	BIT 7 OUT
9	BIPOLAR	25	BIT 6 OUT
10	ENABLE (1 - 12)	26	BIT 5 OUT
11	+5	27	BIT 4 OUT
12	DIGITAL GROUND	28	BIT 3 OUT
13	+15V	29	BIT 2 OUT
14	-15V	30	BIT 1 OUT (MSB)
15	DO NOT CONNECT	31	START CONVERT
16	ANALOG GROUND	32	GAIN ADJUST

0 to +18 0 to -18 -0.5 to +7.0	Volts do Volts do
0.5 to 17.0	Marine de
-0.5 to +7.0	Volts do
-0.3 to +6.0	Volts do
-15 to +15	Volts do
000	°C
	-15 to +15 300 max

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at 15 \pm V dc and +5V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	sets I	yes	TOMER	Pint
ADS-132		0 to -5	-	Volts do
(See Table 1 also)	71.1	0 to -10	+1001 H	Volts dc
903	8	0 to -20	BOMAR	Volts do
	61 1	0 to +10	TUSM	Volts dc
	09 3	±5	TUEN	Volts dc
	11 1	±10	OPESE	Volts do
Input Impedance	22	WOA		8
Input Ranges:	88	716	COMP.	1 7
(0 to -10, -20, 100 THE	145		UO HAS	- 8
+10, ±10) TUO 8 TIB	800	1,000	a leverin	Ohms
(0 to -5, ±5V)	400	500	IBAM3	Ohms
Input Capacitance	1	2	- 32	pf
DIGITAL INPUTS	28 28	MUURD	DIGITAL	12
Legis Levels	9		VETT	67
Logic "1"	2.0	die Too	-15V	Volts dc
Logic "O"	130-1-13	COLNIE	0.8	Volts dc
Logic Loading "1"	S8] U	MUORD D	5.0	μА
Logic Loading "0"			-200	μА
PERFORMANCE	NIM THE REAL PROPERTY.			
Integral Non-Linearity				-
@FIN=1MHz				
+25 °C		1 - 1 - 1	+3/4	LSB
0 °C to +70 °C			+3/4	LSB
-55 °C to +125 °C			±1.5	LSB
Differential Non-Linearity			11.0	LOD
@FIN=1MHz	1			
+25 °C			±3/4	LSB
0 °C to +70 °C			±3/4	LSB
-55 °C to +125 °C	9,164	10 10 10 10 10 10 10 10 10 10 10 10 10 1	±1.5	LSB
Full Scale Absolute		to distinct	11.5	LOD
Accuracy (See Tech Note 1)	(388) 1	120 001	SPIRE	1 3
+25 °C.		+0.1	+0.25	%FSR
0 °C to +70 °C		±0.13	±0.23	%FSR
-55 °C to +125 °C		±0.13	±0.52	%FSR
Unipolar Zero Error		10.2	10.5	701 011
+25 °C (See Tech Note 1)	2	±0.05	+0.13	%FSR
0 °C to +70 °C		+0.1	±0.15	%FSB
-55 °C to +125 °C	(4)	±0.18	±0.23	%FSR
Bipolar Zero Error	(803.0.9)	20.10	10.07	701 JH
+25 °C (See Tech Note 1)	(000) 31	+0.05	±0.13	%FSB
0 °C to +70 °C	10.51	±0.1	±0.15	%FSR
-55 °C to +125 °C		±0.18	±0.23	%FSR
Bipolar Offset Error,		10.10	10.07	701 011
+25 °C (See Tech Note 1)	-	±0.1	+0.2	%FSB
Bipolar Offset Tempco		±17	±35	ppm/°C
Gain Error, +25 °C		±0.08	±0.17	%FSR
(See Tech Note 1)		10.00	10.17	/81 On
Gain Tempco	1	±17	±35	ppm/ °C
No Missing Codes		117	T33	bhill, C
no missing codes				

OUTPUTS	MIN.	TYP.	MAX.	UNITS	
Resolution			? Bits		
Output Coding	Straight binary/offset binary Complementary binary/Complementary				
	Comp			mentary	
		offse	et binary		
Logic Levels	0.4		83	Valle de	
Logic "1"	2.4		0.4	Volts do	
Logic "0"	-	по	0.4	Volts dc	
Logic Loading "1"	-	hinklai	-160 4.8	μA	
Logic Loading "0" Internal Reference	and a con-	and marks	4.0	mA	
	+9.98	+10.0	+10.02	Volts dc	
Voltage, +25 °C Drift	+9.90	±5	±30	ppm/ °C	
External Current		13910	2	mA	
	1	wide We	S . HOWEV	27-90-22-7	
DYNAMIC PERFORMANCE	- CTON	and describe	to etete	- T-	
Conversion Rate, 12-Bits	2	diameter	1 10 00	MHz	
Total Harm. Distort. (-0.5 dB)		service day of	a special		
DC to 100 KHz	-72	-80	Helefits (FS,-dB	
100 KHz to 500 KHz	-70	-75	-	FS,-dB	
500 KHz to 1 MHz	-67	-71	-	FS, -dB	
Signal to Noise Ratio	0.00	Simples	eserces and		
(w/o distort., -0.5 dB)	933	MIT THE	Day 34	EC I	
DC to 100 KHz	-70	-72	-	FS,-dB	
100 KHz to 500 KHz	-68	-70	SI-SUA	FS, -dB	
500 KHz to 1 MHz	-66	-68	ant tens	FS, -dB	
Signal-to-Noise Ratio	lepidar	nia sesif	132 dig		
(with distort., -0.5 dB)	ab alin	W etsi	Jugngue	FO 10	
DC to 100 KHz	-68	-70	-	FS, -dB	
100 KHz to 500 KHz	-66	-68	-	FS, -dB	
500 KHz to 1 MHz	-65	-67	- 1	FS, -dB	
DC to 100 KHz	11.0	11.25		Bits	
100 KHz to 500 KHz	10.7	11.25		Bits	
500 KHz to 1 MHz	10.7	11.0		Bits	
Two-Tone Intermodulation	10.4	11.0		DILS	
Distort. (fin = 490 KHz,	100				
480 KHz, Fs = 2 MHz, -0.5 dB	-67	-70		FS, -dB	
Input Bandwidth	0,	10		10, 40	
Small Signal (-20 dB input)	16		_	MHz	
Full Power (0 dB input)	8	- 1	- 1	MHz	
Slew Rate		300	-	V/µSec.	
Aperture Delay Time	-	6	-	nSec.	
Aperture Uncertainty	-	5	40	pSec.	
Feedthrough Rejection	-	-74	-	dB	
S/H Acquisition Time	DAM!		Role		
to 0.01%FS (10V step)	-	160	180	nSec.	
S/H Acquisition Time			150		
to 0.1% FS (10V step)	-	100	150	nSec.	
POWER REQUIREMENTS					
Power Supply Range					
+15V dc Supply	+14.25	+15.0	+15.75	Volts do	
-15V dc Supply	-14.25	-15.0	-15.75	Volts do	
+5V dc Supply	+4.75	+5.0	+5.25	Volts do	
Power Supply Current					
+15V dc Supply	1	+75	+82	mA	
-15V dc Supply	-	-60	-68	mA	
+5V dc Supply ①	-	+155	+200	mA	
Power Dissipation	-	2.9	3.2	Watts %FSR/%	
Power Supply Rejection	-		0.01	70F3F1/70	
PHYSICAL/ENVIRONMENT	AL		18	13090	
Operating Temp. Range, Case	F		-		
-MC	0	und)	+70	°C	
-MM	-55	RTHOS	+125	°C	
Storage Temperature		1000 P		100	
Range	-65	-	+150	°C	
Package Type	32-pin	hermetic s	sealed, cer	amic DIP	
. morredo . Moo					

 ⁺⁵V power usage at 1 TTL logic loading per data output bit.
 Specifications subject to change without notice.

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 32 (ground pin 32 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/ offset adjustment (leave pin 5 open for operation without adjustment). See Figure 3.
- 2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 μF, 25V tantalum electrolytic capacitor in parallel with a 0.1 μF ceramic capacitor. Bypass the +10V reference (pin 1) to analog ground (pin 16).
- To enable the three-state outputs, connect ENABLE (pin 10) to a logic "0" (low). To disable, connect ENABLE (pin 10) to a logic "1" (high).
- 5. The ADS-132 is in the sample mode when the internal S/H CONTROL pin is high (S/H is in the high-state on power-up). The START CONVERT pulse should be given at a time delay equal to the desired acquisition time minus the 10 nanosecond delay from START CONVERT high to S/H CONTROL low. This assures the sample-hold has the minimum required acquisition time for the particular application mode.
- 6. Upon going into the hold mode there will be a 85 nanosecond maximum delay before EOC goes high and the A/D conversion begins. This consists for the remaining 50 nanoseconds of the START CONVERT (10 nanoseconds is part of the acquisition time) and a 20 nanosecond maximum delay from START CONVERT low to EOC high. The hold mode settling time requirement is met during this time.
- 7. Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

CALIBRATION PROCEDURE

- Connect the converter per Figure 3, and Tables 1 and 4 for the appropriate full-scale range (FSR). Apply a pulse of 60 nanoseconds minimum to the START CONVERT input (pin 31) at a rate of 500 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.
- Zero Adjustments
 Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the reference source per Table 2. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 (straight binary) or between 1111 1111 1111 and 1111 1111

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 (offset binary) or between 0111 1111 1111 and 0111 1111 1110 (complementary offset binary).

- Full-Scale Adjustment
 Set the output of the voltage reference used in step 2 to the
 value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111
 1111 1110 and 1111 1111 1111 (offset binary) or between
 0000 0000 0001 and 0000 0000 0000 (complementary off set binary).
- To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

Table 1. ADS-132 Input Range Selection

INPUT RANGE	INPUT PIN	TIE TOGETHER
0 to -5V dc	Pin 3	Pin 8 to Pin 9, Pin 2 to Pin 3
0 to -10V dc	Pin 3	Pin 8 to Pin 9
0 to +10V dc	Pin 3	Pin 8 to Pin 9, Pin 2 to EXT10V Reference *
0 to -20V dc	Pin 3	Pin 1 to Pins 2 & 9
±5V dc	Pin 3	Pin 1 to Pin 9, Pin 2 to Pin 3
±10V dc	Pin 3	Pin 1 to Pin 9

^{*} EXT -10V REF may be referenced to pin 1, EXT +10V REF

Table 2. Zero and Gain Adjust

FSR	ZERO ADJUST + 1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB
0 to -5V dc	-0.61 mV	-4.9982V dc
0 to -10V dc	-1.22 mV	-9.9963V dc
0 to +10 V dc	+1.22 mV	+9.9963V dc
0 to -20V dc	-2.44 mV	-19.9927V dc
±5V dc	+1.22mV dc	+4.9963V dc
±10V dc	+2.44 mV dc	+9.9927V dc

Figure 2. ADS-132 Timing Diagram

Table 3. Output Coding

UNIPOLAR		INPUT R	ANGES, V	de	OUTPU	T CODING	INPUT	RANGE	BIPOLAR
SCALE	0 to +10V	0 to -5V	0 to -10V	0 to -20V	MSB LSB	MSB LSB	±5V dc	±10V dc	SCALE
+FS -1 LSB	+9.9976V	-4.998V	-9.9976V	-19.9951V	1111 1111 1111	0000 0000 0000	+4.9976V	+9.9951V	+FS -1 LSB
7/8 FS	+8.7500V	-4.375V	-8.750V	-17.500V	1110 0000 0000	0001 1111 1111	+3.7500V	+7.5000V	+3/4 FS
3/4 FS	+7.5000V	-3.750V	-7.500V	-15.00V	1100 0000 0000	0011 1111 1111	-2.5000V	+5.0000V	+1/2 FS
1/2 FS	+5.0000V	-2.500V	-5.000V	-10.00V	1000 0000 0000	0111 1111 1111	0.0000V	0.0000V	0
1/4 FS	+2.5000V	-1.250V	-2.500V	-5.000V	0100 0000 0000	1011 1111 1111	-2.5000V	-5.0000V	-1/2 FS
1/8 FS	+1.2500V	-0.625V	-1.250V	-2.500V	0010 0000 0000	1101 1111 1111	-3.7500V	-7.5000V	-3/4 FS
1 LSB	+0.0024V	-0.0012V	-0.0024V	-0.0049V	0000 0000 0001	1111 1111 1110	-4.9976V	-9.9951V	-FS +1 LSB
Oro ent year	0.0000V	0.0000V	0.000V	0.000V	0000 0000 0000	1111 1111 1111	-5.0000V	-10.000V	-FS

Figure 3. Typical ADS-132 Connection Diagram, ±10V dc

MECHANICAL DIMENSIONS INCHES (MM)

Table 4. COMP BIN (Pin 7) Connection

INPUT RANGE	BINARY	COMPLEMENTARY BINARY			
Pin 7 logic state*					
0 to +10V	Low	High			
0 to -5V	High	Low			
0 to -10V	High	Low			
0 to -20V	High	Low			
±5V	Low	High			
±10V	Low	High			

* For logic state low connect to +5V. For logic state high leave open.

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	SEAL
ADS-132MC	0 °C to +70 °C	Hermetic
ADS-132MM	-55 °C to +125 °C	Hermetic

Receptacle for PC board mounting can be ordered through AMP Inc., Part #3-331272-8 (Component Lead Socket), 24 required.

ADS-EVAL1 Evaluation Board (without ADS-132)

For availability of MIL-STD-883 versions, contact DATEL.

12-Bit, 1.0 MHz, Low-Power Sampling A/D Converter

FEATURES

- · 12-Bit resolution
- · Internal Sample/Hold
- 1.0 MHz minimum throughput
- Functionally complete
- · Low-power, 1.3 Watts
- Samples to Nyquist

GENERAL DESCRIPTION

DATEL's ADS-193 is a 12-bit, functionally complete, sampling A/D converter that is packaged in a 40-pin ceramic DIP. A minimum throughput rate of 1.0 MHz is achieved while only dissipating 1.3 Watts. The ADS-193 digitizes signals up to Nyquist.

Typical applications include spectrum, transient, vibration and waveform analysis. This device is also ideally suited for radar, sonar, video digitization, medical instrumentation and high-speed data acquisition systems. For information on high reliability screening, contact DATEL.

PIN	FUNCTION	PIN	FUNCTION
1	+5V	40	DIGITAL GROUND
2	+10 V REFERENCE	39	BIT 1 OUT (MSB)
3	DIGITAL GROUND	38	BIT 2 OUT
4	DIGITAL GROUND	37	BIT 3 OUT
5	-15V	36	BIT 4 OUT
6	ANALOG INPUT	35	BIT 5 OUT
7	DO NOT CONNECT	34	BIT 6 OUT
8	GAIN OFFSET ADJ.	33	+5V
9	ANALOG GROUND	32	UNIPOLAR OFFSET
10	ANALOG GROUND	31	+10V REFERENCE
11	ANALOG GROUND	30	+15V
12	ANALOG GROUND	29	BIT 7 OUT
13	ANALOG GROUND	28	NO CONNECTION
14	ANALOG GROUND	27	NO CONNECTION
15	ANALOG GROUND	26	BIT 8 OUT
16	ANALOG GROUND	25	BIT 9 OUT
17	+5V	24	BIT 10 OUT
18	DIGITAL GROUND	23	BIT 11 OUT
19	-15V	22	BIT 12 OUT (LSB)
20	START CONVERT	21	EOC

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 30)	0 to +18	Volts dc
-15V Supply (Pin 5,19)	0 to -18	Volts dc
+5V Supply (Pin 1,33)	-0.5 to +7.0	Volts do
Digital Inputs		
(Pins 20)	-0.3 to +6.0	Volts do
Analog Input (Pin 6)	-15 to +15	Volts do
Lead Temp. (10 Sec.)	300 max	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and $\pm 5 \text{V}$ dc unless otherwise specified..

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	-	0 to -5	DOUANA TOHIOU	Volts do
V84 8	-	±2.5	GAIN OF	Volts do
Input Impedance	950	1,000	1,050	Ohms
Input Capacitance	-	6	15	pf
DIGITAL INPUTS	28	CMUOFE	DOJAMA	12
Logic Levels		OMICHE	ANALOG	67
Logic "1"	2.0	CIFLIORE	ECUANA	Volts do
Logic "0"	-	CIMIONS	0.8	Volts do
Logic Loading "1"	-	-	5.0	μΑ
Logic Loading "0"	-	CHUCK	-200	μΑ
A/D PERFORMANCE	20	TREVIO	START OF	20
No Missing Codes	-	atha Ossari	T D	
(12 Bits; fin=500 KHz)	OVE	er the Operat	ing remp. H	larige.
Integral Non-Linearity +25 °C		±1/4	±3/4	LSB
0 °C to +70 °C	W. S. 1284	±1/4 ±1/4	±3/4 +3/4	LSB
-55 C to +125 °C		±1/4	+1.5	LSB
Differential Non-Linearity			11.5	LOD
+25 °C			±3/4	LSB
0 °C to +70 °C			±3/4	LSB
-55 C to +125 °C			±1	LSB
Full Scale Absolute	1 2			LOD
Accuracy				
+25 °C	-	±0.13	±0.25	% FSR
0 °C to +70 °C	-	±0.15	±0.44	% FSR
-55 C to +125 °C	1	+0.25	+0.78	% FSR
Unipolar Zero Error,	4-			H
+25 °C (See Tech Note 1)	-	±0.074	±0.13	% FSR
Uninolar Zero Tempoo	1	±15	±30	ppm/°(
Bipolar Zero Error,				
+25 °C (See Tech Note 1)	-	±0.074	±0.13	% FSR
Bipolar Zero Tempco	-	±5	±8	ppm/°(
Bipolar Offset Error,	-	JATISIG		T A
+25 °C (See Tech Note 1)	- 1	±0.1	±0.2	% FSR
Bipolar Offset Tempco	-	±20	±40	ppm/°(
Gain Error, +25 °C	-	±0.1	±0.2	% FSR
(See Tech Note 1)	4			1 8
Gain Tempco	0-7	±20	±40	ppm/°(
Logic Levels		4 1 E		3
Logic "1"	2.4	-	+ 1	Volts do
Logic "0" (88.1) ST TIE SS	I	-	0.4	Volts do
Logic Loading "1"	-		-160	μА
Logic Loading "0"	-		4.8	mA
Internal Reference				1
Voltage, +25 °C	+9.98	+10.0	+10.02	Volts do
Drift.		±5	±30	ppm/° (
External Current	61,0	_ 81.84	1.5	mA

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Resolution		12	2 Bits	SATUR
Output Coding				
			entary binar ary offset bir	
PERFORMANCE		ploma	qmas h	smemi
Conversion Rate	1.0	SOLD THEFT	HANGETT N	MHz
In-Band Harmonics (-0.5dB)	6	omplet	o wilsono	Functi
DC to 100 KHz	-76	-81	t .newc	FS-dB
100 KHz to 500 KHz	-70	-75	15 00 00	FS-dB
Total Harm. Distort. (-0.5dB)		10100	See or or	ID
DC to 100 KHz	-75	-78	-	FS-dB
100 KHz to 500 KHz Signal-to-Noise Ratio	-68	-73	-	FS-dB
(w/o distortion, -0.5dB)	\$40	HIPTE	P DESI	SMER
DC to 100 KHz	-68	-72	_	FS-dB
100 KHz to 500 KHz		S1-71 8	801-20A	FS-dB
Signal-to-Noise Ratio		losg st	erter that	vnon a
& distortion, -0.5dB			through	mumini
DC to 100 KHz			BW 6.1 (FS-dB
100 KHz to 500 KHz	-66	-70	-	FS-dB
Effective Bits, -0.5dB	11.0	11.25		Bits
DC to 100 KHz 100 KHz to 500 KHz	10.6	11.25	pplication	Bits
Two-Tone Intermodulation	10.0 10.0	o anti-	analysis	mo bits
Distortion (fIN=75, 105 KHz	nedical	zation,	leo digili	iv nanc
Fs=1 MHz, -7dB	-80	-88	aiupos s	FS-dB
Two-Tone Intermodulation	131	AG tost	ening, op	lity sore
Dist. (fIN=480 KHz, 490				
KHz, Fs=1 MHz, (-0.5dB)	-65	-68	-	FS-dB
Input Bandwidth	7.5	10		MHz
Small Signal (-20dB) Full Power (0dB)	7.5	8	-	MHZ
Slew Rate	3	150		V/µSec.
Aperture Delay Time	_	-	20	nSec.
Effect. Aperture Delay Time	- 1	-	16	nSec.
Aperture Uncertainty (Jitter)				
(rms)	E - 1913	-	±15	pSec.
(peak)	-	-	±50	pSec.
S/H Acquisition Time to		-	180	nSec.
0.01% (Transient Recovery) Overvoltage Recovery Time			1000	nSec.
POWER REQUIREMENTS			1 1000	11060.
Power Supply Range	1			
+15V dc Supply	+14.25	+15.0	+15.75	Volts do
-15V dc Supply	-14.25	-15.0	-15.75	Volts do
+5V dc Supply	+4.75	+5.0	+5.25	Volts do
Power Supply Current	160			
+15V dc Supply	100	+24	+35	mA
-15V dc Supply	-4	-40 +95	-48 +115	mA mA
+5V dc Supply ① Power Dissipation	_	1.3	1.7	Watts
Power Supply Rejection		-	0.05	%FSR/%
PHYSICAL/ENVIRONMENT	TAL)†	- LGA T	IATRO .
Operating Temp. Range	1		E_Tagas	NIPOLAR C
-MC	0	100	+70	° C
-MM	-55)#	+125	° C
Storage Temperature			150	
Range	-65	-	+150	° C
Package Type	40-p	in hermetic :	sealed, cera	mic DIP
		ounces (16		

 ⁺⁵V power usage at 1 TTL logic loading per data output bit.
 Specifications subject to change without notice.

TECHNICAL NOTES

- Use external potentiometers as shown in Figure 3 to adjust the offset and gain errors to zero. For operation without adjustment, leave pin 8 open.
- Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are connected internally. Avoid ground-related problems by connecting the digital analog grounds to one point, the ground plane beneath the converter.

Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.

- 3. Bypass the analog and digital supplies to ground with a 10 μ F, 25V tantalum electrolytic capacitor. Bypass the +10V reference (pin 2 and 31) to analog ground (pin 16) with a 0.1 μ F ceramic capacitor.
- 4. For unipolar, 0 to -5V FSR, connect pins 31 and 32. For bipolar, $\pm 2.5V$ FSR, connect pin 32 to analog ground and connect pin 31 to a 0.1 μ F ceramic capacitor only.
- Pins 27 and 28 are no connection pins. Connecting pins 27 and 28 together is acceptable.

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001.

Full-Scale Adjustment
 Set the output of the voltage reference used in step 2 to the value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111

1111 1110 and 1111 1111 1111.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

Table 2. Zero and Gain Adjust

FSR	ZERO ADJUST + 1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB
0 to -5V dc	-0.61mV dc	-4.9982V
±2.5V dc	+0.61 mV	-2.4982V

TIMING

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

CALIBRATION PROCEDURE

- Connect the converter per Figure 3 for the appropriate fullscale range (FSR). Apply a pulse of 200 nanoseconds minimum to the START CONVERT input (pin 20) at a rate of 250 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.
- 2. Zero Adjustments

Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the reference source per Table 2. Adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 for unipolar.

Figure 2. ADS-193 Timing Diagram

Table 3. Output Coding

		COMP. BINARY	HANC	
UNIPOLAR	INPUT RANGE, V dc	OUTPUT CODING	INPUT RANGE	BIPOLAR
SCALE	0 to -5V	MSB LSB	±2.5V dc	SCALE
+FS -1 LSB	-4.998V	1111 1111 1111	-2.4988V	+FS -1 LSB
7/8 FS	-4.375V	1110 0000 0000	-1.8750V	+3/4 FS
3/4 FS	-3.750V	1100 0000 0000	-1.2500V	+1/2 FS
1/2 FS	-2.500V	1000 0000 0000	0.0000V	0
1/4 FS	-1.250V	0100 0000 0000	+1.2500V	-1/2 FS
1/8 FS	-0.625V	0010 0000 0000	+1.8750V	-3/4 FS
1 LSB	-0.0012V	0000 0000 0001	+2.4988V	-FS +1 LSB
00 V 888-GT	0.000V	0000 0000 0000	+2.5000V	-FS
		COMP. OFF. BIN.		

Figure 3. Typical ADS-193 Connection Diagram

FFT Analysis of ADS-193

MECHANICAL DIMENSIONS INCHES (MM)

ORDERING INFORMATION

ODEDATING TEMP

NUMBER SEAL	RANGE	
ADS-193MC	0 °C to +70 °C	Hermetic
ADS-193MM	-55 °C to +125 °C	Hermetic
ADS-EVAL1	Evolution Board (without	ADS-193)

Receptacle for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 40 required.

For availability of MIL-STD-883 versions, contact DATEL.

ADS-21PC

Low-Power, 12-Bit, 1.3 MHz Sampling A/D Converter

FEATURES

- · 12-Bit resolution
- · 1.3 MHz throughput rate
- · S/H included
- · Single 46-pin DIP

GENERAL DESCRIPTION

DATEL's ADS-21PC Sampling Converter combines a 12-bit A/D and a S/H in one space-saving package. Designed and manufactured at DATEL's modern, certified hybrid assembly facility using state-of-the-art integrated circuits, the ADS-21PC provides the highest quality and performance for signal processing applications.

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 36 (ground pin 36 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 37 for zero/offset adjustment (leave pin 37 open for operation without adjustment)
- 2. Rated performance requires using good high frequency circuit board layout techniques. The analog and digital grounds are connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies. This prevents contamination of the analog ground by noisy digital ground currents.

MECHANICAL DIMENSIONS

PIN	FUNCTION	PIN	FUNCTION
1	N/C	24	ANA GND
2	DIG GND	25	ANA GND
3	START CONVERT	26	ANA GND
4	DIG GND	27	ANA GND
5	DIG GND	28	ANA GND
6	EOC		ANA GND
7	DIG GND		ANA GND
8	N/C	31	+15V
9	+5V	32	N/C
10	ENABLE	33	OVERFLOW
11	N/C	34	COMP BIN
	BIT 1 (MSB)	35	N/C
	BIT 2		GAIN ADJUST
	BIT 3		OFFSET ADJUST
	BIT 4		BIAS
16	BIT 5		ANALOG INPUT
17	BIT 6	40	RANGE
18		41	ANA GND
19		42	
20		43	
21			S/H OUT
22	BIT 11	45	
23	BIT 12 (LSB)	46	N/C

PARAMETERS	LIMITS
+15V Supply (Pin 31)	-0.3 to +18V dc
-15V Supply (Pin 45)	+0.3 to -18V dc
+5V Supply (Pin 9)	-0.5 to +7V dc
Digital Inputs (Pins 3,10,34)	-0.3 to +5.5V dc
Analog Input (Pins 38, 39)	-15 to +15V dc
Lead Temp. (10 Sec.)	300 °C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and +5 V dc unless otherwise specified.

INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Ranges		0 to +10	_	V dc
SHORE	142141	0 to -5V	ECLIAN	V dc
	_	0 to -10	_	V de
	_	±10, ±5	_	V dc
Input Impedance	ST			
0 to -10V, 0 to +10V,	1			
±10V	-	1	-	ΚΩ
0 to -5V, ±5V (F8.8)	-	500	-	Ohms
Logic Levels		0.00		
Logic 1	2.0	300 _		V dc
Logic 0	-	-(20)	0.8	V dc
Logic Levels Logic 1			-	
Logic 0	-	-	-200	μΑ
	- 13		-200	μА
OUTPUTS	DOLLO!			
Output Coding Options		straight		
	+ 1	offset		
		omplemen		
Logic Levels 00 00 00 00 00	com	plementar	y offset b	oinary
Logic 12017AJUMUO-MOM	2.4			Male
Logic 0	2.4	-	0.4	V dc V dc
Logic Loading	- 1	-	0.4	v ac
Logic 1			-160	μА
Logic 0			6.4	mΑ
Internal Reference (Pin 43)			0.4	111/4
Voltage, +25 °C	9.98	10.0	10.02	V dc
Drift	-	±5	±30	ppm/°C
External Current (Pin 43)	-	- 42	1.5	mA
DYNAMIC PERFORMANCE			747	
Feedthrough Rejection	_	-74		dB
SNR w/o distortion, -0.5 dB		SEAT .		
dc to 100 kHz	-69.0	-71	_	dB
100 KHz to 500 KHz	-67	-70	THE	dB
SNR with distortion, -0.5 dB				
dc to 100 kHz	-68.0	-71	W033	dB
100 KHz to 500 KHz	-66	-70	-	dB
Effective Bits		0 1	(68M)	
dc to 100 kHz	11	11.5	-	Bits
100 KHz to 500 KHz	10.7	11.3	-	Bits
Inband Harmonics ①	70	17 11		PIS IN
dc to 100 KHz	-72	-80	-	FS -dB
100 to 500 KHz	-70	-75	-	FS,-dB
Frequency Response Small Signal (-3 dB)		16	7 1	MHz
Slew Rate	ST	300	_	
Aperture Delay Time		300	±16	V/µS
Aperture Uncertainty (Jitter)	-2 7	9 6		nS pS
Settling Time	8 7	37 B	±50	100
10V to ±0.01% FS		8 51		
(±1mV)	8 1	60	100	nS
/		00	100	110

DYNAMIC PERFORM. CONT.	MIN	TYP	MAX	UNITS
Acquisition Time				
10V step to ±1.0 mV		TO SOUTH	tribustu.	0.000
(0.01% FS)				40.40
+25 °C	-	145	180	nS
0 to +70 °C	-	165	220	nS
PERFORMANCE, ±10V RANGE				
Integral Nonlinearity				pepul
0 to +70 °C	-	-	±0.0125	%FSR±1/2LSB
Differential Nonlinearity				
0 to +70 °C	-	-	±0.0125	%FSR±1/2LSB
FS Absol. Accuracy				1.00
+25 °C	mos tehs	±5	±12	LSB
0 to +70 °C	ackarge.	±6	±15	LSB
Unipolar Zero Error +25 °C	yd beltined by	+2	±5	LSB
Unipolar Zero Tempco	circuite	±13	+25	Control of the second
Bipolar Zero Error	nomento	TIS	±5	ppm/°C LSB
Bipolar Zero Tempco		±13	±25	ppm/°C
Bipolar Offset Error		113	123	ppill/ C
+25 °C	1 - 1	+2	±8	LSB
Bipolar Offset Tempco	_	±17	±40	ppm/°C
Gain Error, +25 °C	-	±3	±8	LSB
Gain Tempco	DE GROWING	±18	+40	ppm/°C
Throughput Rate	BAIL NOS	5 360	.0192 01	Crorne takun
+25 °C	1.3	quy_en	HILL THE	MHz
0 to +70 °C	1.1	autent.	8 Jugnin	MHz
No Missing Codes (12 bits				
POWER SUPPLY REQUIR	EMENTS	10 101	indo re	THE STATES OF
Power Supply Range	44.05	45	45.75	V. I.
+15V dc Supply -15V dc Supply	+14.25	+15	+15.75	V dc
+5V dc Supply	+4.75	-15 +5	-15.75 +5.25	V dc V dc
Power Supply Current	+4.75	+3	+5.25	V dC
+15V Supply	unds to	+50	+65	mA
-15V Supply	Due to	-65	-72	mA
+5V Supply*	ing muse	+80	+95	mA some
Power Dissipation	da sult o	2.1	2.5	Watts
Power Supply Rejection	naioe estan	0.01	0.05	%FSR/%V
PHYSICAL-ENVIRONMEN	TAL		1 0.00	nd our end.
Operating Temp. Range	1 0		+70	°C
Storage Temp. Range	-65		+125	°C
Package Type	- 00		46-pin DI	
Pins		0.010	x 0.018 cop	
Weight			Oz. (35 g	

^{*+5}V power usage at 1 TTL logic loading per data output bit.

 \oplus Same specification values apply for Total Harmonic Distortion (-0.5 dB below FS).

TECHNICAL NOTES CONT.

- 3. Bypass all the analog and digital supplies and the +10V reference (pin 43) to ground with a 4.7 µF, 25V tantalum electrolytic capacitor in parallel with a 0.1 µF ceramic capacitor. Bypass the +10V reference (pin 43) to analog ground (pin 41).
- 4. The COMP BIN input (pin 34) allows selection of binary/ offset binary or complementary binary/complementary offset binary. Refer to Table 3 for the desired coding selection. Pin 34 has an internal pull-up resistor and is TTL-compatible for those users desiring logic control of this function.
- 5. The internal Sample/Hold control signal goes low following the rising edge of a start convert pulse and high 65 nanoseconds minimum before EOC goes low. This S/H low signal indicates that the converter can accept a new analog input.

Table 1. Input Connections

Input Voltage Range	Connect Input Pin 38 to	Connect Pin 40 (Range) to
0 to -5V	39	44
0 to -10V	_	44
0 to +10V	Ext10V Ref.*	44
±5V	39	43
±10V		43

^{*}May be referenced to +10V Ref. (Pin 43)

CALIBRATION PROCEDURE

1. Connect the converter per Figure 3 and Tables 1 and 3 for the appropriate full-scale range (FSR) and coding options. Apply a pulse of 100 nanoseconds minimum to the START CONVERT input (pin 3) at a rate of 500 KHz. This rate chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustment

Apply a précision voltage reference source between the analog input (pin 39) and ground (pin 24). Adjust the output of the reference source per Table 2. For Unipolar operation adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 or between 1111 1111 1111 and 1111 1111. Refer to Table 4.

Table 2. Zero and Gain Adjust

FSR	Zero Adjust +1/2 LSB	Gain Adjust +FS - 1 1/2 LSB
0 to -5V	-0.61 mV	-4.9982V
0 to -10V	V-1.22 mV	-9.9963V
0 to +10V	+1.22 mV	+9.9963V
±10V dc	+2.44 mV	+9.9927V dc
±5V dc	+1.22 mV	+4.9963V dc

For bipolar operation, adjust the potentiometer until the displayed code flickers equally between 1000 0000 0000 and 1000 0000 0001 or between 0111 1111 1111 and 0111 1111 1110. Refer to Table 5.

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 on between 0000 0000 0001 and 0000 0000 0000 depending on the output coding selected.

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Tables 4 and 5.

Table 3. Input Range/Output Selection

Input Voltage Range	Binary/ Offset Binary Connect Pin 34 to	Comp. Binary/ Comp.Offset Binary Connect Pin 34 to
0 to -5V	1101	2,4,5,7
0 to -10V	V8- of 0	2,4,5,7
0 to +10V	2,4,5,7	
±5V	2,4,5,7	
±10V	2,4,5,7	-
View 0.0 to -	At 1/24	

Table 4. Output Coding for Unipolar Operation

				Outp Straight Binary	ut Coding Comp. Binary
Scale	0 to -5V	0 to -10V	0 to +10V	MSB LSB	MSB LSE
+FS - 1LSB	-4.998V	-9.9976V	+9.9976V	1111 1111 1111	0000 0000 0000
7/8 FS	-4.375V	-8.750V	+8.750V	1110 0000 0000	0001 1111 1111
3/4 FS	-3.750V	-7.500V	+7.500V	1100 0000 0000	0011 1111 1111
1/2 FS	-2.500V	-5.00V	+5.00V	1000 0000 0000	0111 1111 1111
1/4 FS	-1.250V	-2.500V	+2.500V	0100 0000 0000	1011 1111 1111
1/8 FS	-0.625V	-1.250V	+1.250V	0010 0000 0000	1101 1111 1111
1 LSB	-0.0012V	-0.0024V	+0.0024V	0000 0000 0001	1111 1111 1110
O world yillow	0.0000V	0.0000V	0.0000V	0000 0000 0000	1111 1111 1111

Table 5. Output Coding for Bipolar Operation

			-3	0	utput	Codi	ng		
Bipolar Scale		Input Ranges Volts dc ±5V ±10V		Offset Binary MSB LSB		Offset Bi			
+FS - 1 LSB +3/4 FS +1/2 FS 0 -1/2 FS -3/4 FS -FS +1LSB -FS	+4.9976V +3.7500V +2.5000V 0.0000V -2.5000V -3.7500V -4.9976V -5.0000V	+9.9951V +7.5000V +5.0000V 0.0000V -5.0000V -7.5000V -9.9951V -10.0000V	1100 1000 0100 0010 0000	0000 0000 0000 0000 0000	1111 0000 0000 0000 0000 0000 0001	0011 0111 1011 1101 1111	1111 1111 1111 1111 1111 1111	1111 1111 1111 1111 1111 1111	

- 1. Pins 2, 4, 5, 7, 24-30, and 41 must be connected to the ground plane as close as possible to the case.
- Pins 1, 8, 11, 32, 35, 42, and 46 have no internal connections.

Figure 3.
Typical ADS-21PC Connections

ORDERING INFORMATION	ORDERING	INFORMATION
----------------------	----------	-------------

MODEL NO. TEMP. RANGE

ADS-21PC 0 to +70 °C

ADS-924

14-Bit, 300 KHz, Low-Power Sampling A/D Converter

FEATURES

- · 14-Bit resolution
- · Internal Sample/Hold
- · 300 KHz minimum throughput
- · Functionally complete
- · Small 24-pin DIP
- Low-power, 1.4 Watts
- · Three-state output buffers

GENERAL DESCRIPTION

DATEL's ADS-924 is a 14-bit, functionally complete, sampling A/D converter that is packaged in a space-saving 24-pin ceramic DIP. A minimum throughput rate of 300 KHz is achieved while only dissipating 1.4 Watts.

PIN	FUNCTION	PIN	FUNCTION
1 2 3 4 5 6 7 8 9 10	BIT 14 OUT (LSB) BIT 13 OUT BIT 13 OUT BIT 10 OUT BIT 10 OUT BIT 9 OUT BIT 8 OUT BIT 7 OUT BIT 6 OUT BIT 5 OUT BIT 5 OUT BIT 4 OUT	13 14 15 16 17 18 19 20 21 22 23	+5V ENABLE EOC START CONVERT BIT 2 OUT BIT 1 (MSB) ANALOG INPUT BIPOLAR +10V REF +15V GROUND
10	BIT 5 OUT	22	+15V

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 22)	0 to +18	Volts do
-15V Supply (Pin 24)	0 to -18	Volts do
+5V Supply (Pin 13)	-0.5 to +7.0	Volts do
Digital Inputs		
(Pins 14, 16)	-0.3 to +6.0	Volts do
Analog Input (Pin 19)	-15 to +15	Volts do
Lead Temp.(10 Sec.)	300 max	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and +5 V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	PHM	1	опом	B 1499
ADS-924	-	+5	_	Volts do
(See Table 4 also)	139	0 to +10	HOATT	Volts do
Input Impedance	5.0	15.0	TIE OUT	M Ohms
Input Capacitance	3.0	3	511	pf
DIGITAL INPUTS	10		PHONET	10 1 2
Logic Levels	18		TUO 9 T	8 8
Logic "1" DOJAMA	2.0	_	TUO 8 T	Volts do
Logic "0" HAJOSIS	20	_	0.8	Volts do
Logic Loading "1"	115		5	μΑ
Logic Loading "0"	22	_	-200	μА
PERFORMANCE	1.0		TUOIT	101 11
Integral Non-Linearity	T	1	-	
+25 °C (see Tech Notes)	-	±1/2	±1	LSB
0 °C to +70 °C	_	±1	+2	LSB
-55 °C to +125 °C	-		±3	LSB
Differential Non-Linearity	DEEDE	a established	No. of Street	1250
+25 °C	_	+1/2	+1	LSB
0 °C to +70 °C	_	+1	+2	LSB
-55 °C to +125 °C	_		+2.5	LSB
Full Scale Absolute			12.0	LOD
Accuracy				
+25 °C	_	±0.037	±0.074	%FSR
0 °C to +70 °C	-	±0.074	±0.13	%FSR
-55 °C to +125 °C		+0.12	+0.2	%FSR
Unipolar Zero Error.		10.12	10.2	/01 OH
+25 °C (See Tech Note 1)	-	±0.02	±0.031	%FSR
0 °C to +70 °C	-	±0.02		
-55 °C to +125 °C	-		±0.09	%FSR
	-	-	±0.12	%FSR
Bipolar Zero Error,	-			1/4
+25 °C (See Tech Note 1)	-	±0.02	±0.031	%FSR
0 °C to +70 °C	-	-	±0.09	%FSR
-55 °C to +125 °C	277	100	±0.12	%FSR
Bipolar Offset Error,	THE THE	100	MOSTDARS	00
+25 °C (See Tech Note 1)	REN	±0.02	±0.061	%FSR
0 °C to +70 °C	-	-	±0.12	%FSR
-33 0 10 + 123 0	-		±0.15	%FSR
Gain Error, +25 °C	-	±0.02	±0.061	%FSR
(See Tech Note 1)	+		P. F. Land	1
0 °C to +70 °C	-		±0.12	%FSR
-55 °C to +125 °C	-	- 0	±0.15	%FSR

OUTPUTS	MIN.	TYP.	MAX.	UNITS
No Missing Codes (14 Bits) (13 Bits) (12 Bits)	over -	er 0 to 70	25 °C °C temp. '5 °C temp	range o. range
Logic Levels		no	hulosen	18-41
Logic "1"	2.4	bloit/el	dma2 in	Volts do
Logic "0"	arinim	neis cours	0.4	Volts do
Logic Loading "1"		holeson	-160	μА
Logic Loading "0"	-	and the	6.4	mA
Internal Reference		7411	nig-ea	HEITES
Voltage, +25 °C	+9.98	+10.0	+10.02	
Drift	Frett	±5	±30	ppm/°C
External Current	-	-	1.5	mA
Resolution Output Coding	Str		Bits ry/offset b	oinary
DYNAMIC PERFORMANCE	oit, fanc	Is a 14-	ADS-924	SATEL'S
a space-saving 24-pin on	th bags	is peuk	prits red to	VIIIUU OVA
Conversion Time +25 °C	300		A mine displace	KHz
0 °C to +70 °C	300	- 9		KHz
-55 °C to +125 °C	300	_		KHz
Total Harmonic Distortion	000			14112
DC to 100 KHz at Vin<2.5V p-p			1 - 1 - 1	
+25 °C	-72	-76	-	dB
-55 °C to +125 °C	-70	-72	-	dB
DC to 40 KHz at Vin = 10V p-p				
+25 °C	-72	-76	-	dB
-55 °C to +125 °C	-70	-72	-	dB
Slew Rate	-	90	-	V/μSec.
Aperture Delay Time	-	20	-	nSec.
Aperture Uncertainty	-	±100	-	pSec.
S/H Acquisition Time to 0.006% (10V step)		3/3		
+25 °C			1.2	uSec.
0 °C to +70 °C	-	-	1.35	μSec.
-55 °C to +125 °C	-	_	1.5	μSec.
(Sinusoidal Input)	_	_	700	nSec.
POWER REQUIREMENTS				
Power Supply Range				
+15V dc Supply	14.25	+15.0	+15.75	Volts do
-15V dc Supply	-14.25	-15.0	-15.75	Volts do
+5V dc Supply	+4.5	+5.0	+5.5	Volts do
Power Supply Current	1	+41	+49	m A
+15V dc Supply	T	+41 -46	-53	mA mA
-15V dc Supply +5V dc Supply*	III	+66	+75	mA mA
Power Dissipation	LIE	1.4	1.8	Watts
Power Supply Rejection	-	-	0.01	%FSR/%
PHYSICAL/ENVIRONMENTA		~~~		7010
Operating Temp. Range			M	
-MC	0	-	+70	°C
-MM	-55	-	+125	°C
Storage Temperature	0.5		,	
Range	-65		+150	°C
Package Type	24-pii	n hermetic s	sealed, cera	mic DIP

^{* +5}V power usage at 1 TTL logic loading per data output bit.

- Applications which are unaffected by endpoint errors or remove them through software will use the typical connections shown in Figure 3. Remove system errors or adjust the small initial errors of the ADS-924 to zero using the optional external circuitry shown in Figure 4. The external adjustment circuit has no affect on the throughput rate.
- 2. Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with a 4.7 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor. Bypass the +10V reference (pin 21) to analog ground (pin 23).
- The ADS-924 exhibits up to 2.0 LSB's of peak-to-peak noise. Digital signal processing (DSP) applications will average this noise.
- To obtain three-state outputs, connect ENABLE (pin 14) to a logic "0" (low). Otherwise, connect ENABLE (pin 14) to a logic "1" (high).

TIMING

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

Figure 2. ADS-924 Timing Diagram

Table 2. Input Range Selection

INPUT RANGE	INPUT PIN	TIE TOGETHER
±5V dc	Pin 19	Pin 20 to Pin 21
0 to +10V dc	Pin 19	Pin 20 to Ground

Table 3. Zero and Gain Adjust

FSR Social ha	ZERO ADJUST +1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB
0 to +10V dc	+300μV dc	+9.9991V dc
±5V dc	+300μV dc	+4.9991V dc

(using external calibration)

INPUT RANGE	R1	R2	UNIT
0 to +10V, ±5V	2	2	K Ohms
0 to +5V, ±2.5V	1.65	4.99	K Ohms
0 to +2.5V, ±1.25V	715	4990	K Ohms

Figure 3. Typical Input Connections for the ADS-924

CALIBRATION PROCEDURE

- Connect the converter per Figure 3, Figure 4, and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 200 nanoseconds minimum to the START CONVERT input (pin 16) at a rate of 250 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.
- 2. Zero Adjustments

For bipolar operation, adjust the potentiometer such that the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001.

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 11 1111 1111 1110 and 11 1111 1111 1111.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 5.

Table 6. Output Coding

INPUT RANGE	UNIPOLAR	OUTPUT	CODING	BIPOLAR	INPUT
0 to +10V	SCALE	MSB LSB	MSB LSB	SCALE	RANGES
+9.99939V	+FS -1 LSB	1111 1111 1111	0000 0000 0000	+FS -1 LSB	+4.99939V
+8.7500V	7/8 FS	1110 0000 0000	0001 1111 1111	+3/4 FS	+3.7500V
+7.5000V	3/4 FS	1100 0000 0000	0011 1111 1111	+1/2 FS	+2.5000V
+5.0000V	1/2 FS	1000 0000 0000	0111 1111 1111	0	0.0000V
+2.5000V	1/4 FS	0100 0000 0000	1011 1111 1111	-1/2 FS	-2.5000V
+1.2500V	1/8 FS	0010 0000 0000	1101 1111 1111	-3/4 FS	-3.7500V
+0.0003V	1 LSB	0000 0000 0001	1111 1111 1110	-FS + 1 LSB	-4.99939V
0.0000V	0	0000 0000 0000	1111 1111 1111	-FS	-5.0000V

Figure 5. FFT Analysis of ADS-924

MECHANICAL DIMENSIONS INCHES (MM)

* See Table 4 for R1 and R2 values.

Figure 4. Optional Calibration Circuit

ORDERIN	CIN	IEODA	MOLTAN
OUDEUI	IG II	ALOULI	MATION

MODEL NUMBER	OPERATING TEMP. RANGE	SEAL
ADS-924MC	0 °C to +70 °C	Hermetic
ADS-924MM	-55 °C to +125 °C	Hermetic

Receptacle for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 24 required.

For availability of MIL-STD-883B versions, contact DATEL.

ADS-928

High Resolution Sampling A/D Converter

FEATURES

- · 14-Bit resolution
- 500 KHz sampling rate
- · Functionally complete
- · Small 32-pin DIP
- · Low-power, 3.1 Watts
- · Three-state output buffers
- · Samples up to Nyquist

GENERAL DESCRIPTION

DATEL's ADS-928 is a 14-bit, 500 KHz sampling rate, functionally complete A/D converter. The ADS-928 samples up to Nyquist with no missing codes.

Packaged in a small 32-pin DIP, power requirements are ± 15 volts and ± 5 volts with 3.1 Watts power dissipation.

PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	17	BIT 14 OUT (LSB)
2	BIPOLAR	18	BIT 13 OUT
3	ANALOG INPUT	19	BIT 12 OUT
4	SIGNAL GROUND	20	BIT 11 OUT
5	OFFSET ADJUST	21	BIT 10 OUT
6	GAIN ADJUST	- 22	BIT 9 OUT
7	OVERFLOW	23	BIT 8 OUT
8	COMP. BIN	24	BIT 7 OUT
9	ENABLE	25	BIT 6 OUT
10	+5V	26	BIT 5 OUT
11	DIGITAL GROUND	27	BIT 4 OUT
12	+15V	28	BIT 3 OUT
13	-15V	29	BIT 2 OUT
14	NO CONNECTION	30	BIT 1 OUT (MSB)
15	ANALOG GROUND	31	BIT 1 OUT (MSB)
16	EOC	32	START CONVERT

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 12)	-0.3 to +18	Volts dc
-15V Supply (Pin 13)	+0.3 to -18	Volts dc
+5V Supply (Pin 10)	-0.3 to +7.0	Volts dc
Digital Inputs		
(Pins 8, 9, 32)	-0.3 to +7.0	Volts dc
Analog Input (Pin 3)	±25	Volts
Lead Temp. (10 Sec.)	300 max	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ dc and +5 V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	37		HPOLAR	I I S
BIT 12 GUT	1 -	0 to -10	POTRICE	Volts
	09 -	±5	JAMON.	Volts
Input Impedance	4.9	5	198440	K Ohms
Input Capacitance	22 -	7 80	15	pf
DIGITAL INPUTS	ES NO	747	MUNICIPAL BANK	N a
Logic Levels Tuo a Tig	ES		BUBAN	1 2
Logic "1" TUO a TIA	2.0	-	- V8	Volts do
Logic "0" TUO A TIB	12 -	GINDORE	0.8	Volts do
Logic Loading "1"	85 -	-	5.0	μА
Logic Loading "0"	10-	_	-200	μΑ
PERFORMANCE	08	IECTION	ANOD ON	1 61
Int. Non-Lin. @ fin = 250 KHz	38	UNUURD	DOUARD	1 2
+25 °C	-	±1/2	±3/4	LSB
0 to +70 °C	-	±3/4	±1	LSB
-55 to +125 °C	-	±1	±2	LSB
Diff. Non-Lin. @ fin = 250 KHz	1	100000000000000000000000000000000000000	11/0	LSB
+25 °C	-	_	±1/2	LSB
0 to +70 °C -55 to +125 °C		+1	±3/4 +2	LSB
Full Scale Absolute	-	TI	IZ	LOD
Accuracy	1			
+25 °C.		±0.08	±0.122	%FSR
0 to +70 °C		±0.18	±0.122	%FSR
-55 to +125 °C		+0.61	+0.85	%FSR
Halanday Tree Person		10.01	10.00	701 011
+25 °C		±0.04	±0.122	%FSR
0 to +70 °C	S 9+1	±0.07	±0.13	%FSR
-55 to +125 °C	S down	±0.1	±0.17	%FSR
Bipolar Zero Error,	8 -			10.01.
+25 °C (Tech Note 1)	Sie	±0.04	±0.122	%FSR
0 to +70 °C		±0.07	±0.18	%FSR
-55 to +125 °C	The second	±0.1	±0.3	%FSR
Bipolar Offset Error,		HATTING W	NORTH	
+25 °C (Tech Note 1)	- 00	±0.018	±0.12	%FSR
0 to +70 °C	-	±0.12	±0.3	%FSR
-55 to +125 °C	S	±0.53	±0.73	%FSR
Gain Error, +25 °C	8	±0.018	±0.12	%FSR
(See Tech Note 1)	5		4	
0 to +70 °C	1 0	±0.12	±0.3	%FSR
-55 to +125 °C	1 -1	±0.53	±0.73	%FSR
No Missing Codes				
14 BILS @ 250 KHZ JIN			TO +70°C.	
13 Bits @ 250 KHz fin	1		TO +125•C	
Resolution	-Q	14 Bits	minimum	
Output Coding	0	A-13-1-2-1-4	41.1 (0) 0	
(Pin 8 Hi)		aight bin./offs		
(Pin 8 Low)	Cor	mp. bin./Comp	o. offset bin.	, C2C

OUTPUTS	MIN.	TYP.	MAX.	UNITS
Logic Levels	AND SERVICES	partition is a	Temperature	1922
Logic "1"	2.4			Volts dc
Logic "0"	_	_	0.4	Volts do
Logic Loading "1"	_	-	-160	μА
Logic Loading "0"	-	- 0	6.4	mA
Internal Reference		ales nei	omes t	800 KH
Voltage, +25 °C	+9.98	+10.0	+10.02	Volts dc
Drift	-	±13	±30	ppm/°C
External Current	-	- 9	2	mA
DYNAMIC PERFORMANCI	E	SHEW	LE JISW	109-1/0.
Total Harm. Distort. (-0.5 dB)	219	ma ma	MO 6181	E-68201
DC to 100 KHz	-83	-88	of qua	FS - dB
100 KHz to 250 KHz	-78	-82	- 0	FS - dB
Signal-to-Noise Ratio		THE SE		
(w/o distortion, -0.5 dB)		12 13 14		
DC to 100 KHz	-82	-88	0580	FS - dB
100 KHz to 250 KHz	-78	-84	-	FS - dB
Signal-to-Noise Ratio	HOLOUS .	idate o	800.20	E S' IRT
& distortion, -0.5 dB	MA SOUT	2007100-1010	O (A) et	siamooo
DC to 100 KHz	-77	-80	-	FS-dB
100 KHz to 250 KHz	-72	-75	nissim o	FS - dB
Effective Bits, -0.5 dB				
DC to 100 KHz	12.5		BITTE I	
100 KHz to 250 KHz	12.0	12.3	W SHOY S	Bits
Two-tone Intermodulation	R v T	1000		
Distortion (fin = 100 KHz,	Parallel			
240 KHz, Fs=500 KHz,				
-0.5 dB)	-92	-	-	FS - dB
Input Bandwidth				
Small Signal (-20 dB input)	6	-	-	MHz
Full Power (0 dB input)	1.75	-	-	MHz
Feedthrough Rejection				-10
@ fin = 250 KHz	-90	- 00	-	dB
Slew Rate	80	90	105	V/μSec.
Aperture Delay Time	-	±20	±25	nSec.
Aperture Uncertainty	-	_	±100	pSec.
S/H Acquisition Time		680	750	0000
(to 0.01%FS (10V step)	THE THE			nSec.
Overvoltage Recovery, ±12V		600	1000	11500.
A/D Conversion Rate +25°C	500	600	-	KHz
+25°C 0 to +70°C	500	600		KHZ
-55 to =125°C	550	550		KHZ
	1 330	330		MAS
POWER REQUIREMENTS	-	-		TZUL
Power Supply Range	44.05	45.0	45.75	M-M-
+15V dc Supply	+14.25	+15.0	+15.75	Volts do
-15V dc Supply	-14.25	-15.0	-15.75	Volts do
+5V dc Supply	+4.75	+5.0	+5.25	Volts dc
Power Supply Current	The second	.05	1445	m A
+15V dc Supply	82	+95	+115	mA mA
-15V dc Supply	1 5-1	+83	+100	
+5V dc Supply ① Power Dissipation	4	3.1	3.4	mA Watts
Power Supply Rejection	J LA	3.1	0.02	%FSR/%\
PHYSICAL/ENVIRONMENT	TAI		0.02	701 010 701
	175	1	1	10 70-16
Operating Temp. Range	0	1,213,0	+70	°C
-MC -MM	0	-		°C
	-55	-	+125	0
Storage Temperature	-65		+150	°C
Range Package Type		hermetic se		
Weight	02-pill		(12 grams)	

① +5V power usage at 1 TTL logic loading per data output bit.

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 6 (ground pin 6 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/ offset adjustment (connect pin 5 to pin 15, analog ground for operation without adjustment).
- 2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 μF, 25V tantalum electrolytic capacitor in parallel with a 0.1 μF ceramic capacitor. Bypass the +10V reference (pin 1) to analog ground (pin 15).
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 8) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie the COMP BIN pin to ground. The COMP BIN signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect ENABLE (pin 9) to a logic "1" (high).
- The 200 nSec. minimum START CONVERT pulse width assures the hold mode settling time requirements are met.
- The specifications listed in Figure 2 (timing diagram) apply over the full operating temperature range unless otherwise specified.

CALIBRATION PROCEDURE

Connect the converter per Figure 3, and Table 1 for the appropriate full-scale range (FSR). Apply a pulse of 200 nanoseconds minimum to the START CONVERT input (pin 32) at a rate of 200 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

Table 1. Input Connections

INPUT RANGE	INPUT PIN	TIE TOGETHER
0 to -10V	Pin 3	Pins 2 and 4
±5V	Pin 3	Pins 1 and 2

Table 2. Zero and Gain Adjust

FSR	ZERO ADJUST +1/2 LSB	GAIN ADJUST FS - 1/2 LSB
0 to -10V	-305 μV	-9.999085V
±5V	-305 μV	-4.999085V

2. Zero Adjustments

Apply a precision voltage reference source between the analog input (pin 3) and signal ground (pin 4). Adjust the output of the reference source per Table 2.

For bipolar operation, adjust the potentiometer such that the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001 with COMP BIN (pin 8) tied high (offset binary) or between 01 1111 1111 1111 and 01 1111 1111 1110 COMP BIN (pin 8) tied low (complementary offset binary).

Full-Scale Adjustment
 Set the output of the voltage reference used in step 2 to the value shown in Table 2.

Two's complement coding requires use of the MSB (pin 31) with the COMP BIN (pin 8) tied high, adjusting the gain trimming potentiometer so that the output code flickers equally between 01 1111 1111 1110 and 01 1111 1111 1111.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

Figure 2. ADS-928 Timing Diagram

SCALE	0 to -10V	MSB LSB	MSB LSB	MSB LSB	±5V dc	SCALE
FS -1 LSB	-9.999390	11 1111 1111 1111	00 0000 0000 0000	01 1111 1111 1111	-4.99939	+FS -1 LSE
7/8 FS	-8.750000	11 1000 0000 0000	00 0111 1111 1111	01 1000 0000 0000	-3.75000	+3/4 FS
3/4 FS	-7.500000	11 0000 0000 0000	00 1111 1111 1111	01 0000 0000 0000	-2.50000	+1/2 FS
1/2 FS	-5.000000	10 0000 0000 0000	01 1111 1111 1111	00 0000 0000 0000	0.00000	0 1900 101
1/4 FS	-2.500000	01 0000 0000 0000	10 1111 1111 1111	10 0000 0000 0000	+2.50000	-1/2 FS
1/8 FS	-1.250000	00 1000 0000 0000	11 0111 1111 1111	10 1000 0000 0000	+3.75000	-3/4 FS
1 LSB	-0.000610	00 0000 0000 0001	11 1111 1111 1110	10 0000 0000 0001	+4.99939	-FS +1 LSE
0	0.000000	00 0000 0000 0000		10 00000000 0000	+5.00000	-FS

Figure 3. Typical ADS-928 Connection Diagram

Figure 4. FFT Analysis of ADS-928

ONDER	RING INFORMATION
MODEL NUMBER	OPERATING TEMP. RANGE SEAL
ADS-928MC	0 °C to +70 °C Hermetic
ADS-928MM	-55 °C to +125 °C Hermetic
ADS-EVAL1	Evaluation Board (without ADS-928
Receptacle for PC bo	ard mounting can be ordered
through AMP Inc., Pa	rt # 3-331272-8 (Component Lead
Socket), 32 required.	PSR ZERO ADJUST

ADVANCED PRODUCT DATA

ADS-930

16-Bit, 500 KHz, High Resolution Sampling A/D Converter

FEATURES

- · 16-Bit resolution
- 500 KHz sampling rate
- Functionally complete
- Internal S/H
- Small 40-pin DIP
- · Low-power, 2.1 Watts
- · Three-state output buffers
- Samples up to Nyquist
- 16 word FIFO memory

GENERAL DESCRIPTION

DATEL's ADS-930 is a 16-bit, 500 KHz sampling rate, functionally complete A/D converter with internal FIFO. The ADS-930 samples up to Nyquist with no missing codes.

Packaged in a small 40-pin TDIP, power requirements are ±15 Volts and +5 Volts with 2.1 Watts power dissipation.

APPLICATIONS

- Spectroscopy
- Spectrum analysis
- Imaging
- Radar
- Medical instrumentation
- · High-speed data acquisition systems

I/O CONNECTIONS

Pin	Function	Pin	Function Program of
1	+10V REFERENCE	21	BIT 16 OUT (LSB)
2	BIPOLAR	22	BIT 15 OUT
3	ANALOG INPUT	23	FIFO/DIR
4	ANALOG GROUND	24	DIGITAL GROUND
5	OFFSET ADJUST	25	BIT 14 OUT
6	GAIN ADJUST	26	BIT 13 OUT
7	+15V	27	BIT 12 OUT
8	COMP BIN	28	BIT 11 OUT
9	ENABLE	29	BIT 10 OUT
10	FIFO READ	30	ANALOG GROUND
11	ANALOG GROUND	31	BIT 9 OUT
12	-15V	32	BIT 8 OUT
13	ANALOG GROUND	33	BIT 7 OUT
14	OVERFLOW	34	BIT 6 OUT
15	EOC	35	BIT 5 OUT
16	+5V	36	BIT 4 OUT
17	START CONVERT	37	BIT 3 OUT
18	DIGITAL GROUND	38	BIT 2 OUT
19	FSTAT1	39	BIT 1 OUT (MSB)
20	FSTAT 2	40	BIT 1 OUT (MSB)

THE RESIDENCE OF SHIPPING A STANFALL	A C THESE THE PARTY OF	F. S. R. R. State Volt. 1
PARAMETERS	LIMITS	UNITS
+15V Supply	-0.3 to +18	Volts dc
-15V Supply	+0.3 to -18	Volts dc
+5V Supply	-0.3 to +7.0	Volts dc
Digital Inputs	-0.3 to +7.0	Volts dc
Analog Input	±25	Volts
Lead Temp. (10 Sec.)	300 max	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and +5 V dc unless otherwide specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	8 18	0 to +10	8323A	Volts
TUO at TR	22	0 to -10	PAL	Volts
	1 120	±5, ±10	9141-00	Volts
Input Impedance	1.9	2	BE-DO	K Ohms
Input Capacitance	8 8	7	15	pf
DIGITAL INPUTS	26 8		SULGA	CAIN
Logic Levels	00		ine e	Lino I
Logic "1"	2.0	-	7 10	Volts do
Logic "U"	1 00	-	0.8	Volts do
Logic Loading "1"	11	2715 A 1 5 5	2.5	μΑ
Logic Loading "0"	10	CZ/AUC	-100	μА
PERFORMANCE	SE	GMUC	SO DO	IAMA
Int. Non-Lin. @ fin = 250 KHz	34		WOJAR	BVO
+25 °C TUO 8 TH	(A)	±1	±1 1/2	LSB
0 to +70 °C TUO A TH	(50)	TBD	TBD	LSB
-55 to +125 ℃	87 8	TBD	TBD	LSB
Diff. Non-Lin. @ fin = 250 KHz	88	(DVII II	190	10100
+25 °C	1 00	±1	±1 1/2	LSB
010+70 0	1 00	TBD	TBD	LSB
00 10 1120 0		TBD	TBD	LSB
Full Scale Absolute				
Accuracy		10.04	10.07	O/ FOD
+25 °C.	100 m 300	±0.04	±0.07	%FSR
0 to +70 °C	-	±0.18	±0.36	%FSR
-55 to +125 ℃		±0.61	±0.85	%FSR
Unipolar Zero Error,		±0.012	±0.04	%FSB
+25 ℃ 0 to +70 ℃	-			
	-	±0.07	±0.13	%FSR
-55 to +125 ℃	_	±0.1	±0.17	%FSR
Bipolar Zero Error, +25 °C (Tech Note 1)		±0.012	±0.04	%FSR
+25 °C (Tech Note 1) 0 to +70 °C		±0.012 +0.07	±0.04 ±0.18	%FSR
-55 to +125 °C	-	±0.07	±0.18 ±0.3	%FSR
Bipolar Offset Error.		10.1	±0.5	70F3H
+25 °C (Tech Note 1)		±0.018	±0.061	%FSR
0 to +70 °C		±0.12	+0.3	%FSR
-55 to +125 ℃		+0.53	+0.73	%FSR
Gain Error, +25 °C		±0.018	±0.73 ±0.061	%FSR
(See Tech Note 1)		10.010	10.001	/01 JU
0 to +70 °C		±0.12	±0.3	%FSR
-55 to +125 °C TUO 8 THE SE	1 - 10	±0.12 ±0.53	±0.73	%FSR
No Missing Codes	100	10.55	IU.73	70FOR
15 Bits @ 250 KHz fin		Over 0 to	+70 °C	
TBD Bits @ 250 KHz fin		Over -55 t		
Resolution		16 Bits r		

OUTPUTS Output Coding	MIN.	TYP.	MAX.	UNITS
(Pin Hi)	Strain	ght bin./offs	set bin./2's	Comp.
(Pin Low)	Comp	bin./Com	p. offset b	oinC2C
Logic Levels				
Logic "1"	2.4	-	25 35 25 62	Volts do
Logic "0"	-	-	0.4	Volts do
Logic Loading "1"	-	-	-160	μA
Logic Loading "0"	-		6.4	mA
Internal Reference	G-Mark	0,100	represent	0 2011
Voltage (+5V), +25 °C	+4.98	+5.0	+5.02	Volts do
Drift	-	±25	±30	ppm/°C
External Current	-	-	5	mA
Internal Reference	0.00	100	10.00	V
Voltage (-10V), +25 °C Drift	-9.98	-10.0	-10.02	Volts do
External Current	-	±13	±30	ppm/ °C
		7,6150	-5	mA
DYNAMIC PERFORMANCE		1716	HAND UT	FT DRUSS
Total Harm. Distort. (-0.5 dB)		MOUTS	IROSRI	LARS
DC to 100 KHz	-89	-95		FS - dB
100 KHz to 250 KHz	-83	-88	a ai neo.	FS - dB
Signal-to-Noise Ratio	estri dila	notion me	n ChA ob	Marine D
(w/o distortion, -0.5 dB)	-90	-95	book of a	FS - dB
DC to 100 KHz 100 KHz to 250 KHz	-87	-89	STAL FOR CO	FS - dB
Signal-to-Noise Ratio	-87	-09	to the sec	L2 - QB
& distortion, -0.5 dB	16 WOLL	FED FIRE	Simali ex	a in pap
DC to 100 KHz	-82	-87	SHO A C+	FS - dB
100 KHz to 250 KHz	-78	-80		FS - dB
Effective Bits, -0.5 dB		- 00	SM	IAUL
DC to 100 KHz	14	14.5		Bits
100 KHz to 250 KHz	13	13.5		Bits
Two-tone Intermodulation			eleylana	muntos
Distort. (fin = 100 KHz, 240 KHz,				pnips
Fs=500 KHz, -0.5 dB)	TBD	-		FS - dB
Slew Rate	90	100	nemante	V/µSec.
Aperture Delay Time	n system	oltidups	±10	nSec.
Aperture Uncertainty	-	-	±100	pSec.
S/H Acquisition Time		400	000	
(to 0.01%FS (10V step)	-	480	600	nSec.
Feedthrough Rejection @ fin = 250 KHz	-96			dB
A/D Conversion Rate	-30			UD
+25 °C	500	_	_	KHz
0 to +70 °C	500	_	-	KHz
-55 to +125 ℃	500	H1552763	SUPPLIES	KHz
Input Bandwidth				
Small Signal (-20 dB input)	6	8		MHz
Full Power (0 dB input)	1.5	2	-	MHz
Overvoltage Recovery, ±12V	-	600	1000	nSec.
POWER REQUIREMENTS	-1p			
Power Supply Range				1 0 Ti
+15V dc Supply	+14.25	+15.0	+15.75	Volts do
-15V dc Supply	-14.25	-15.0	-15.75	Volts do
+5V dc Supply	+4.75	+5.0	+5.25	Volts do
Power Supply Current		1.1		1 .
+15V dc Supply	-	+47	+55	mA _
-15V dc Supply	18	-68	-75	mA
+5V dc Supply ① Power Dissipation	7-	+84	+90	mA Wette
Power Supply Rejection	-	2.1	0.02	Watts %FSR/%
PHYSICAL/ENVIRONMENT	ΔΙ		0.02	701 011/6
			.70	1 00
Oper. Temp. Range, -MC -MM	0 -55		+70 +125	°C
Storage Temp. Range	-55 -65		+125	°C
Package Type		nermetic se		
Pins		010 x 0.01		

Specification footnotes

① +5V power usage at 1 TTL logic loading per data output bit.

Warm-up time to full specification: 5 minutes

PRELIMINARY PRODUCT DATA

14-Bit, 1.0 MHz, High Resolution Sampling A/D Converter

FEATURES

- · 14-Bit resolution
- · 1.0 MHz minimum throughput
- Internal Sample/Hold
- · Functionally complete
- · Small 32-pin DIP
- · Low-power, 2.8 Watts
- Three-state output buffers
- · Samples up to Nyquist

GENERAL DESCRIPTION

DATEL's ADS-941 is a 14-bit, 1.0 MHz sampling rate, functionally complete A/D converter. The ADS-941 samples up to Nyquist with no missing codes.

Packaged in a small 32-pin DIP, power requirements are ±15 volts and +5 volts with 2.8 Watts power dissipation.

PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	17	BIT 14 OUT (LSB)
2	BIPOLAR	18	BIT 13 OUT
3	ANALOG INPUT	19	BIT 12 OUT
4	SIGNAL GROUND	20	BIT 11 OUT
5	OFFSET ADJUST	21	BIT 10 OUT
6	ANALOG GROUND	22	BIT 9 OUT
7	OVERFLOW	23	BIT 8 OUT
8	COMP. BIN	24	BIT 7 OUT
9	ENABLE	25	BIT 6 OUT
10	+5V	26	BIT 5 OUT
11	DIGITAL GROUND	27	BIT 4 OUT
12	+15V	28	BIT 3 OUT
13	-15V	29	BIT 2 OUT
14	NO CONNECTION	30	BIT 1 OUT (MSB)
15	ANALOG GROUND	31	BIT 1 OUT (MSB)
16	EOC	32	START CONVERT

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 12)	-0.3 to +18	Volts do
-15V Supply (Pin 13)	+0.3 to -18	Volts do
+5V Supply (Pin 10)	-0.3 to +7.0	Volts do
Digital Inputs		
(Pins 8, 9, 32)	-0.3 to +7.0	Volts do
Analog Input (Pin 3)	±25	Volts
Lead Temp. (10 Sec.)	300 max	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating range and at $\pm 15 V$ dc and $\pm 5 V$ dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	000	CMUO	D JAVI	A SIG
THO OF THE	31 65 4	0 to +10	FSET AL	Volts
		±5	0 240 IA	Volts
Input Impedance		2.5	ERIT ON	K Ohms
Input Capacitance	100	7	15	pf 8
DIGITAL INPUTS	25		BUBA	MB 8
Logic Levels	92	аицо	RO IATH	SIGT I
Logic "1"	20	-	- 1/	Volts do
Logic "0"	1	-	0.8	Volts do
Logic Loading "1"	- CO	1075177	5.0	μА
Logic Loading "0"	30	CITAL PLAN	-200	μА
PERFORMANCE	32		0	e Eo
Int. Non-Lin. @ fIN = 500 KHz				
+25 °C	-	±1/2	±3/4	LSB
0 to +70 °C	-	±3/4	±1	LSB
-55 to +125 °C	-	±1	±2	LSB
Diff. Non-Lin. @ fIN = 500 KHz				
+25 °C	-	-	±1/2	LSB
0 to +70 °C	-	-	±3/4	LSB
-55 to +125 °C	-	±1	±2	LSB
Full Scale Absolute				
Accuracy (See Tech Note 1)				0/ 505
+25 °C.	-	±0.08	±0.122	%FSR
0 to +70 °C	0	±0.18	±0.36	%FSR
-55 to +125 °C	8 0-	±0.61	±0.85	%FSR
Unipolar Zero Error	0	10010	1004	%FSR
+25 °C (Tech Note 1) 0 to +70 °C	C desi	±0.012 ±0.07	±0.04 ±0.13	%FSR
-55 to +125 °C		±0.07	±0.13 ±0.17	%FSR
Bipolar Zero Error		±0.1	IU.17	70F3H
OF OO /T N-4- 4)		±0.04	±0.122	%FSB
0 to +70 °C		±0.04	±0.122	%FSR
-55 to +125 °C	S 100	±0.1	±0.10	%FSR
Bipolar Offset Error,	5 - 19	20.1	10.0	701 011
+25 °C (Tech Note 1)	8 -	±0.018	±0.061	%FSR
0 to +70 °C		±0.12	±0.3	%FSR
-55 to +125 °C		±0.53	±0.73	%FSR
Gain Error (Tech Note 1)		20.00		701 011
±25 °C		±0.018	±0.12	%FSR
0 to +70 °C		±0.12	±0.3	%FSR
-55 to +125 °C	-	±0.53	±0.73	%FSR
No Missing Codes		1111		
14 Bits @ 500 KHz fIN	Ov	er the Operati	ng Temp. R	ange.
13 Bits @ 500 KHz fIN				
Resolution		8 14	Bits	

OUTPUTS	MIN.	TYP.	MAX.	UNITS	
Output Coding	toud		MINAR		
(Pin 8 Hi)	Stra	ight hin /offs	et bin /2's C	omp.	
(Pin 8 Low)	Straight bin./offset bin./2's Comp. Comp. bin./Comp. offset bin., C2C				
Logic Levels	Comp. bin./comp. diset bin., 620				
Logic "1"	2.4			Volts dc	
Logic "0"		_	0.4	Volts do	
Logic Loading "1"	_	_ ne	-160	μА	
Logic Loading "0"	acappu	rutt_mur	6.4	mA	
Internal Reference			Same	amaini	
Voltage, +25 °C	+9.98	+10.0	+10.02	Volts do	
Drift	10.00	±13	±30	ppm/ °C	
External Current		710	5	mA	
		S Wattis	2.1000	713-19 U.Z	
PERFORMANCE	1 .03011	ud tuch	o oleh	9000	
Slew Rate	180	200	-	V/μSec.	
Aperture Delay Time	- 1	our far	±12	nSec.	
Aperture Uncertainty	- 1	-	±100	pSec.	
S/H Acquisition Time					
(to 0.006%FS (10V step)		250	300	nSec.	
Total Harm. Distort. (-0.5 dB)	00	OLI TIME	Lead T	FO 10	
DC to 100 KHz	-82	-90	-	FS - dB	
100 KHz to 500 KHz	-77	-85	105-941	FS - dB	
Signal-to-Noise Ratio	dT .teh		A stelan		
(w/o distortion, -0.5 dB)	2000	o polesim	on diw	FS - dB	
DC to 100 KHz	-82	-90	= =		
100 KHz to 500 KHz	-77	-85	ne e ni	FS - dB	
Signal-to-Noise Ratio	1288		Ba bos		
& distortion, -0.5 dB				EC 4D	
DC to 100 KHz	-74	-78	7.3	FS - dB	
100 KHz to 500 KHz	-69	-73	-	FS - dB	
Effective Bits, -0.5 dB	10.4	10.1	1 1 1 1 1	Bits	
DC to 100 KHz	12.4	13.1			
100 KHz to 500 KHz	11.8	12.3	-	Bits	
Two-tone Intermodulation					
Distortion (flN = 100 KHz,			Market 1		
240 KHz, Fs=1.0 MHz,	00			FS - dB	
-0.5 dB)	-92		-	L9 - 0D	
Input Bandwidth	6			MHz	
Small Signal (-20 dB input)	1.75			MHz	
Full Power (0 dB input)	1./5	MASSAGE WAS	EGS GERRE	IVITIZ	
Feedthrough Rejection @ flN = 500 KHz	-87			dB	
Overvoltage Recovery, ±12V	-0/	1000	2000	nSec.	
		1000	2000	11360.	
A/D Conversion Rate +25 °C	1.0	1.1		MHz	
0 to +70 °C	1.0	1.1		MHz	
-55 to +125 °C	1.0	1.05		MHz	
	1.0	1.00		IVII 1Z	
POWER REQUIREMENTS				A SOUTH	
Power Supply Range		45.5	45	14.5	
+15V dc Supply	+14.25	+15.0	+15.75	Volts do	
-15V dc Supply	-14.25	-15.0	-15.75	Volts do	
+5V dc Supply	+4.75	+5.0	+5.25	Volts dc	
Power Supply Current	-	00	05		
+15V dc Supply		+68	+85	mA	
-15V dc Supply	- Da	-87	-95	mA	
+5V dc Supply ①	E .	+150	+160	mA Wette	
Power Dissipation	-	2.8	3.3	Watts	
Power Supply Rejection		Live	0.02	%FSR/%	
PHYSICAL/ENVIRONMENT/	AL		N		
Operating Temp. Range					
-MC	0	1 - 1	+70	°C o	
-MM	-55	-	+125	°C	
Storage Temperature					
Range	-65	JK <u>P</u> RTMO	+150	°C	
Package Type	22 nin	hermetic se	alad caram	ic TDIP	
FAUNDUE IVDE	1 32-010	mennetic se	aleu, ceram	IU IUIT	

① +5V power usage at 1 TTL logic loading per data output bit. ② Warm-up time to full specification: 20 minutes.

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or the small initial errors to zero. Use a 200 Ω trimming potentiometer in series with the analog input for gain adjustment. Use a short in place of the gain adjustment trim pot for operation without adjustments. Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/offset adjustment (connect pin 5 to pin 15, analog ground for operation without adjustment).
- 2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- 3. Bypass the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor. Bypass the +10V reference (pin 1) to analog ground (pin 15).
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 8) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie the COMP BIN pin to ground. The COMP BIN signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect ENABLE (pin 9) to a logic "1" (high).

CALIBRATION PROCEDURE

Connect the converter per Figure 3, and Table 1 for the appropriate full-scale range (FSR). Apply a pulse of 50 nanoseconds minimum to the START CONVERT input (pin 32) at a rate of 200 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

Table 1. Input Connections

NPUT RANGE	INPUT PIN	TIE TOGETHER
0 to -10V	Pin 3	Pins 2 and 4
±5V 1473	Pin 3	Pins 1 and 2

Table 2. Zero and Gain Adjust

FSR // benebro	ZERO ADJUST +1/2 LSB	GAIN ADJUST FS - 1/2 LSB	
0 to +10V	-305 μV	-9.999085V	
±5V	-305 μV	-4.999085V	

2. Zero Adjustments

Apply a precision voltage reference source between the analog input (pin 3) and signal ground (pin 4). Adjust the output of the reference source per Table 2.

For bipolar operation, adjust the potentiometer such that the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001 with pin 8 tied high (offset binary) or between 01 1111 1111 1111 and 01 1111 1111 1110 with pin 8 tied low (complementary offset binary).

Full-Scale Adjustment
 Set the output of the voltage reference used in step 2 to the value shown in Table 2.

Two's complement coding requires use of the MSB (pin 31) with the COMP BIN (pin 8) tied high, adjusting the gain trimming potentiometer so that the output code flickers equally between 01 1111 1111 1110 and 01 1111 1111 1111.

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

NOTE: Retriggering the START CONVERT pulse before EOC goes low will not initiate a new conversion.

NOTE: The specifications listed apply over the full operating temperature range unless otherwise specified.

Figure 2. ADS-941 Timing Diagram

Table 3. Output Coding

UNIPOLAR	INPUT RANGES, V dc	lov noision a precision vol	OUTPUT CODING		INPUT RANGE	BI POLAR
SCALE	0 to +10V	MSB LSB	MSB LSB	MSB LSB	±10V dc	SCALE
FS -1 LSB	-9.999390	11 1111 1111 1111	00 0000 0000 0000	01 1111 1111 1111	-4.99939	+FS -1 LSB
7/8 FS	-8.750000	11 1000 0000 0000	00 0111 1111 1111	01 1000 0000 0000	-3.75000	+3/4 FS
3/4 FS	-7.500000	11 0000 0000 0000	00 1111 1111 1111	01 0000 0000 0000	-2.50000	+1/2 FS
1/2 FS	-5.000000	10 0000 0000 0000	01 1111 1111 1111	00 0000 0000 0000	0.00000	0
1/4 FS	-2.500000	01 0000 0000 0000	10 1111 1111 1111	10 0000 0000 0000	+2.50000	-1/2 FS
1/8 FS	-1.250000	00 1000 0000 0000	11 0111 1111 1111	10 1000 0000 0000	+3.75000	-3/4 FS
1 LSB	-0.000610	00 0000 0000 0001	11 1111 1111 1110	10 0000 0000 0001	+4.99939	-FS +1 LSE
0	0.000000	00 0000 0000 0000	11 1111 1111 1111	10 00000000 0000	+5.00000	-FS

Figure 3. Typical ADS-941 Connection Diagram

Figure 4. FFT Analysis of ADS-941

ORDERING INFORMATION

stand-off from case.

On	DENING INFOR	MATION	
MODEL NUMBER	OPERATING TE	MP. RANGE	SEAL
ADS-941MC ADS-941MM	0 °C to +70 °C -55 °C to +125 °C		Hermetic Hermetic
ACCESSORY	ADS-EVAL1		ion Board ADS-941)
AMP Inc., Part # 3 required.	board mounting ca -331272-8 (Compo IIL-STD-883B versi	nent Lead S	socket), 32

PRELIMINARY PRODUCT DATA

14-Bit, 2.0 MHz, High Resolution Sampling A/D Converter

FEATURES

- 14-Bit resolution
- Internal Sample/Hold
- · 2.0 MHz minimum throughput
- · Functionally complete
- · Small 32-pin DIP
- · Low-power 2.9 Watts
- · Three-state output buffers
- · Samples up to Nyquist

DATEL's ADS-942 is a 14-bit, 2.0 MHz sampling rate, functionally complete A/D converter. The ADS-942 samples up to Nyquist with no missing codes.

Packaged in a small 32-pin DIP, power requirements are ± 15 volts and ± 5 volts with 2.9 Watts power dissipation.

PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	17	BIT 14 OUT (LSB)
2	BIPOLAR	18	BIT 13 OUT
3	ANALOG INPUT	19	BIT 12 OUT
4	SIGNAL GROUND	20	BIT 11 OUT
5	OFFSET ADJUST	21	BIT 10 OUT
6	ANALOG GROUND	22	BIT 9 OUT
allo 7	OVERFLOW	23	BIT 8 OUT
8	COMP. BIN	24	BIT 7 OUT
9	ENABLE	25	BIT 6 OUT
10	+5V	26	BIT 5 OUT
11	DIGITAL GROUND	27	BIT 4 OUT
12	+15V	28	BIT 3 OUT
13	-15V	29	BIT 2 OUT
14	DO NOT CONNECT	30	BIT 1 OUT (MSB)
15	ANALOG GROUND	31	BIT 1 OUT (MSB)
16	EOC	32	START CONVERT
			BOMMANNOS S

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 12)	-0.3 to +18	Volts dc
-15V Supply (Pin 13)	+0.3 to -18	Volts dc
+5V Supply (Pin 10)	-0.3 to +7.0	Volts dc
Digital Inputs		
(Pins 8, 9, 32)	-0.3 to +7.0	Volts dc
Analog Input (Pin 3)	±25	Volts
Lead Temp. (10 Sec.)	300 max	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ dc and $\pm 5 V$ dc unless otherwise specified.

ANALOG INPUTS TIE	MIN.	TYP.	MAX.	UNITS
Input Voltage Range		Taulono 1	PERSE	a
TUO 9 TIB 9			O IAVIA	Volts
		±5	3534/0	Volts
Input Impedance		2.5	GL#GG	K Ohms
Input Capacitance		7	15	pf
DIGITAL INPUTS	2		+5V	101
Logic Levels		MUUME .	MINISTA	01
Logic "1"		-	1731	Volts do
Logic "0"		าวเหนือวาว	0.8	Volts do
Logic Loading 1		HUORE 8	5.0	μΑ
Logic Loading "0"	1 + ~	DISTRIBUTE DE	-200	μА
PERFORMANCE				
Int. Non-Lin. @ $f_{IN} = 1 \text{ MHz}$				100
+25 °C	-	±1/2	±1	LSB
0 to +70 °C	-	±3/4	±1.5	LSB
-55 to +125 °C	-04000	±1	±2.5	LSB
Diff. Non-Lin. @ fin = 1 MHz		14/0		100
+25 °C 0 to +70 °C	-	±1/2	±1	LSB
-55 to +125 °C	-	±3/4	±1.25	LSB LSB
Full Scale Absolute	-	±1	±2.5	LSB
Accuracy		1		
+25 °C.	1	±0.08	±0.122	%FSR
0 to +70 °C		±0.08	±0.122	%FSR
55 to .125 °C	-	±0.16	±0.85	%FSR
Unipolar Zero Error,		10.01	10.00	70F3N
+25 °C	-	±0.012	±0.04	%FSR
0 to +70 °C	-	±0.07	±0.13	%FSR
-55 to +125 °C	-	±0.1	±0.17	%FSR
Bipolar Zero Error,			20.17	701 011
+25 °C (Tech Note 1)	-	±0.04	±0.122	%FSR
0 to .70 °C	-	±0.07	±0.18	%FSR
-55 to +125 °C	ATE	18 TU 4	±0.3	%FSR
Bipolar Offset Error,	TUT	100	ACTUARA	00 /0.011
+25 °C (Tech Note 1)	Rate	±0.018	±0.061	%FSR
0 to +70 °C TUO 9 TIS SS	-	±0.12	±0.3	%FSR
-55 to +125 °C	-	±0.53	±0.73	%FSR
Gain Error, +25 °C	-	±0.018	±0.122	%FSR
(See Tech Note 1)				
0 to +70 °C	-	±0.12	±0.3	%FSR
-55 to +125 °C	-	±0.53	±0.73	%FSR
No Missing Codes	-	property to		
14 Bits @ 1 MHz fin	- Inner	Over 0	to 70°C	
13 Bits @ 1 MHz fin	-		to +125°C	
Resolution		14	Bits	

OUTPUTS	MIN.	TYP.	MAX.	UNITS	
Output Coding (Pin 8 Hi) (Pin 8 Low) Logic Levels	Straight binary/offset binary Complementary binary				
Logic "1"	2.4	50	trin-pay	Volts dc	
Logic "0"		India to at	0.4	Volts do	
Logic Loading "1"	-	101013761	-160	μА	
Logic Loading "0"	Mulbine	aus ame	6.4	mA	
Internal Reference	. 0		yllano	Funety	
Voltage, +25 °C	+9.98	+10.0	+10.02	Volts dc	
Drift	-	±13	±30	ppm/°C	
External Current	-	DANGE O	5	mA	
DYNAMIC PERFORMANCE	1 10	deservit e	1 20 25	Marine Co.	
Total Harm. Distort. (-0.5 dB)	70	0.5		E0 4D	
DC to 100 KHz 100 KHz to 1 MHz	-79 -73	-85 -79		FS - dB FS - dB	
Signal-to-Noise Ratio	-/3	-/9		F3-UD	
(w/o distortion, -0.5 dB)	140		SEO JA	GENER	
DC to 100 KHz	-78	-85	-	FS - dB	
100 KHz to 1 MHz		-79	ADS-94P	FS - dB	
Signal-to-Noise Ratio	r. The		CLA stell	amea vile	
& distortion, -0.5 dB		saboo on	ezim on	drive tenur	
DC to 100 KHz	-72	-77	-	FS - dB	
100 KHz to 1 MHz	-68	-71	ne s ni l	FS - dB	
DC to 100 KHz	12.3	13.0	+5 volus	Bits	
100 KHz to 1 MHz	11.7	12.3		Bits	
Two-tone Intermodulation	11.7	12.0		Dita	
Distortion (fin = 100 KHz,					
240 KHz, Fs=2.0 MHz,				The state of	
-0.5 dB)	-92	-	-	FS - dB	
Input Bandwidth					
Small Signal (-20 dB input)	6	-	-	MHz	
Full Power (0 dB input) Slew Rate	1.75	-	-	MHz	
Aperture Delay Time	210	250	±10	V/µSec. nSec.	
Aperture Uncertainty, Rms			±10	pSec.	
S/H Acquisition Time	STATE OF		-10	pood.	
(to 0.006%FS (10V step)	-	120	150	nSec.	
Feedthrough Rejection			-		
@ fin = 1 MHz	-85	-	-	dB	
Overvoltage Recovery, ±12V	-	1000	2000	nSec.	
A/D Conversion Rate +25 °C	2.0	2.1		MHz	
0 to +70 °C	2.0	2.1		MHz	
-55 to +125 °C	2.0	2.05		MHz	
POWER REQUIREMENTS					
Power Supply Range			100	PER THE	
+15V dc Supply	+14.25	+15.0	+15.75	Volts dc	
-15V dc Supply	-14.25	-15.0	-15.75	Volts dc	
+5V dc Supply	+4.75	+5.0	+5.25	Volts dc	
Power Supply Current	18	.70	.07	4	
+15V dc Supply -15V dc Supply	1- Jan	+70 -80	+87	mA mA	
+5V dc Supply ①		+155	+165	mA mA	
Power Dissipation	-	2.9	3.4	Watts	
Power Supply Rejection	-		0.02	%FSR/%\	
PHYSICAL/ENVIRONMENTA	AL				
Operating Temp. Range			12	TOSMMOD	
-MC	0	51261	+70	°C	
-MM	-55	CONTROL	+125	°C	
Storage Temperature	05		450	20	
Storage Temperature Range Package Type	-65	-	+150 sealed, cera	°C mic DIP	

 ⁺⁵V power usage at 1 TTL logic loading per data output bit.
 Warm-up time to full specification: 20 minutes.

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or the small initial errors to zero. Use a 200 Ω trimming potentiometer in series with the analog input for gain adjustment. Use a short in place of the gain adjustment trim pot for operation without adjustments. Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/offset adjustment (connect pin 5 to pin 15, analog ground for operation without adjustment).
- 2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- Bypass the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 μF, 25V tantalum electrolytic capacitor in parallel with a 0.1 μF ceramic capacitor. Bypass the +10V reference (pin 1) to analog ground (pin 15).
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 8) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie pin 18 to ground. The pin 18 signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect pin 9 to a logic "1" (high).

CALIBRATION PROCEDURE

Connect the converter per Figure 3, and Table 1 for the appropriate full-scale range (FSR). Apply a pulse of 35 nanoseconds minimum to the START CONVERT input (pin 32) at a rate of 200 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

Table 1. Input Connections

INPUT RANGE	INPUT PIN	TIE TOGETHER
0 to +10V	Pin 3	Pins 2 and 4
±5V	Pin 3	Pins 1 and 2

Table 2. Zero and Gain Adjust

FSR Comments	ZERO ADJUST +1/2 LSB	GAIN ADJUST FS - 1/2 LSB
0 to +10V	-305 μV	+9.999085V
±5V	-305 μV	-4.999085V

2. Zero Adjustments

Apply a precision voltage reference source between the analog input (pin 3) and signal ground (pin 4). Adjust the output of the reference source per Table 2.

For bipolar operation, adjust the potentiometer such that the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001 with pin 8 tied high (offset binary) or between 01 1111 1111 1111 and 01 1111 1111 1110 with pin 8 tied low (complementary offset binary).

Full-Scale Adjustment
 Set the output of the voltage reference used in step 2 to the
 value shown in Table 2.

Two's complement coding requires use of the MSB (pin 31) with the COMP BIN (pin 8) tied high, adjusting the gain trimming potentiometer so that the output code flickers equally between 01 1111 1111 1110 and 01 1111 1111 1111.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 3.

Figure 2. ADS-942 Timing Diagram

Table 3. Output Coding

UNIPOLAR	INPUT RANGES, V dc	OUTPUT CODING					INPUT RANGE	BI POLAR
SCALE	0 to +10V	MSB LSB	MSB	LSB	MSB	LSB	±10V dc	SCALE
FS -1 LSB	+9.999390	11 1111 1111 1111	00 0000	0000 0000	01 1111	1111 1111	-4.99939	+FS -1 LSE
7/8 FS	+8.750000	11 1000 0000 0000	00 0111	1111 1111	01 1000	0000 0000	-3.75000	+3/4 FS
3/4 FS	+7.500000	11 0000 0000 0000	00 1111	1111 1111	01 0000	0000 0000	-2.50000	+1/2 FS
1/2 FS	+5.000000	10 0000 0000 0000	01 1111	1111 1111	00 0000	0000 0000	0.00000	0
1/4 FS	+2.500000	01 0000 0000 0000	10 1111	1111 1111	10 0000	0000 0000	+2.50000	-1/2 FS
1/8 FS	+1.250000	00 1000 0000 0000	11 0111	1111 1111	10 1000	0000 0000	+3.75000	-3/4 FS
1 LSB	+0.000610	00 0000 0000 0001	11 1111	1111 1110	10 0000	0000 0001	+4.99939	-FS +1 LSE
0	0.000000	00 0000 0000 0000	11 1111	1111 1111	10 00000	0000 0000	+5.00000	-FS

Figure 3. Typical ADS-942 Connection Diagram

Figure 4. FFT Analysis of ADS-942

MECHANICAL DIMENSIONS INCHES (MM) or or (1 mig) son

NOTE: Pins have a 0.025 inch, ±0.01 stand-off from case.

ORD	ERING INFORM	ATION	
MODEL NUMBER	OPERATING TEN	P. RANGE	SEAL
ADS-942MC ADS-942MM	0 °C to +7 -55 °C to +1		Hermetic Hermetic
ACCESSORY	ADS-EVAL1		tion Board ADS-942)
Receptacle for PC b AMP Inc., Part # 3-3 required.	ooard mounting car 331272-8 (Compon	be ordere ent Lead S	d through socket), 32

For availibility of MIL-STD-883B versions, contact DATEL.

1-60

14-Bit, 5.0 MHz, High Resolution Sampling A/D Converter

ADVANCED PRODUCT DATA

FEATURES

- · 14-Bit resolution
- · Internal Sample/Hold
- · 5.0 MHz minimum throughput
- · Functionally complete
- · Small 32-pin DIP
- Low-power 3.4 Watts
- · Three-state output buffers
- Samples up to Nyquist

GENERAL DESCRIPTION

DATEL's ADS-944 is a 14-bit, 5.0 MHz sampling rate, functionally complete sampling A/D converter. The ADS-944 samples up to Nyquist with no missing codes.

Packaged in a small 32-pin DIP, power requirements are ±15 volts and +5 volts with 3.4 Watts power dissipation.

The ADS-944 is offered in the comercial 0 to +70 °C and military -55 to +125 °C operating temperature range.

APPLICATIONS

- · Spectrum analysis
- · Imaging
- Radar
- Medical instrumentation
- · High-speed data acquisition systems

I/O CONNECTIONS

	1/O CONNECTIONS							
PIN	FUNCTION	PIN	FUNCTION					
1	+10V REF. OUT	17	BIT 14 OUT (LSB)					
2	BIPOLAR	18	BIT 13 OUT					
2	ANALOG INPUT	19	BIT 12 OUT					
4	SIGNAL GROUND	20	BIT 11 OUT					
4 5	OFFSET ADJUST	21	BIT 10 OUT					
6	ANALOG GND	22	BIT 9 OUT					
7	OVERFLOW	23	BIT 8 OUT					
8	COMP. BIN.	24	BIT 7 OUT					
9	ENABLE	25	BIT 6 OUT					
10	+5V 200000	26	BIT 5 OUT					
11	DIGITAL GROUND	27	BIT 4 OUT					
12	+15V	28	BIT 3 OUT					
13	-15V	29	BIT 2 OUT					
14	DO NOT CONNECT	30	BIT 1 OUT (MSB)					
15	ANALOG GROUND	31	BIT 1 OUT (MSB)					
16	EOC	32	START CONVERT					

| VO CONNECTIONS | PIN FUNCTION | | +10V REF. QUT | 17 SIT 14 QUT (LSB) | 2 SIPOLAR | 18 SIT 13 QUT | 3 ANALOG INPUT | 19 SIT 13 QUT | 4 SIGNAL GROUND | 20 SIT 11 QUT | 4 SIF SIT 14 QUT | 5 SIT 15 QUT

Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets.

Dial **1-800-233-2765**

for

FEATURES

- 14-Bit resolution
- · 10 MHz sampling rate
- Functionally complete
- Internal S/H
- Small 40-pin DIP
- · Low-power, 4.2 Watts
- · Three-state output buffers
- Samples up to Nyquist
 16 word FIFO memory

GENERAL DESCRIPTION

DATEL's ADS-945 is a 14-bit, 10 MHz sampling rate, functionally complete A/D converter with internal FIFO. The ADS-945 samples up to Nyquist with no missing codes.

Packaged in a small 40-pin TDIP, power requirements are ±15 Volts and ±5 Volts with 4.2 Watts power dissipation.

APPLICATIONS

- Spectroscopy
- Spectrum analysis
- · Imaging
- Radar
- Medical instrumentation
- · High-speed data acquisition systems

I/O Connections

Function	Function
+5V REFERENCE OFFSET ADJUST ANALOG INPUT HIGH ANALOG INPUT LOW BIPOLAR -10V REFERENCE ENABLE LOW B9-14 GAIN ADJUST OVERFLOW DO NOT CONNECT -5V BIT 14 OUT (LSB) BIT 13 OUT BIT 12 OUT BIT 10 OUT BIT 10 OUT FSTAT1 FSTAT2 BIT 1 OUT (MSB)	START CONVERT FIFO/DIR FIFO READ BIT 8 OUT BIT 7 OUT BIT 5 OUT BIT 5 OUT BIT 3 OUT BIT 2 OUT BIT 2 OUT BIT 1 OUT (MSB) +5V DIGITAL GROUND ENABLE HIGH (B1-8) S/H OUT COMP BIN -15V ANALOG GROUND +15V

ADVANCED PRODUCT DATA

VO Connections
Function
Function

-SV REFERENCE
OFFSET ADJUST
ANALOG INPUT HIGH
ANALOG INPUT HIGH
ANALOG INPUT LOW
BIT S OUT
BIT S OUT
ANALOG INPUT LOW
BIT S OUT
BIT S OUT (MSB)

Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets.

Dial
1-800-233-2765
for
Applications Assistance

PRELIMINARY PRODUCT DATA

ADS-976

16-bit, 200 KHz, Low-Power Sampling A/D Converter

FEATURES

- 16-bit resolution
- · 200 KHz sampling rate
- Compatible to industry standard ADC76, AD376,
- Internal sample-holdSmall 32-pin DIP
- Low-power, 1.8 Watts
- Samples to Nyquist
- 16 word FIFO memory

GENERAL DESCRIPTION

DATEL's ADS-976 is a 16-bit, 200 KHz sampling rate, functionally complete A/D converter with an internal samplehold. The ADS-976 samples up to Nyquist with no missing

The internal FIFO can be either bypassed or utilized with full (16 words) or half-full (8 words). The FIFO capability still allows the ADS-976 to be compatible to the industry pin-out versions for 16-bit parallel output applications.

Packaged in a small 32-pin DIP, power requirements are ±15 volts and +5 volts with a 1.8 Watts power dissipation.

INPUT/OUTPUT CONNECTIONS

	PIN	FUNCTION	PIN	FUNCTION
ate, func- mple-				
missing	1	BIT 1 OUT (MSB)	32	FIFO READ
missing	2	BIT 2 OUT	31	START CONVERT
	3	BIT 3 OUT	30	+5V
up-to-date info	4	BIT 4 OUT	29	GAIN ADJUST
d with full	5	BIT 5 OUT	28	+15V
ity still al-	5	BIT 6 OUT	27	OFFSET ADJUST
oin-out	7	BIT 7 OUT	26	BIPOLAR OFFSET
product data sh	8	BIT 8 OUT	25	10V
	9	BIT 9 OUT	24	20V
ts are	10	BIT 10 OUT	23	FIFO/DIR
pation.	11	BIT 11 OUT	22	ANALOG GROUND
	12	BIT 12 OUT	21	-15V
	13	BIT 13 OUT	20	FSTAT2
	14	BIT 14 OUT	19	DIGITAL GROUND
	15	BIT 15 OUT	18	EOC
	16	BIT 16 OUT (LSB)	17	FSTAT1

PRELIMINARY PRODUCT DATA

PEATURES

16-bit respinise

u Artz samping

87ETGA

Small 32-pin DIP

Companier, 1.8 Wallet

INPUTIOUTPUT CONNECTIONS

Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets.

Dial

1-800-233-2765

for

Applications Assistance

A/D CONVERTERS

	Model	Resolution (Bits)	Conversion Time (µsec)	Linearity Error	Power (Watts)	Case	Page
	ADC-207	7	0.050	±1/2 LSB	0.25	18-Pin DIP	2-1
	ADC-228	8	0.040	±1/2 LSB	1.25	24-Pin DIP	2-9
	ADC-208	8	0.050	±3/4 LSB	0.60	24-Pin DIP	2-5
	ADC-304	8	0.050	±1/2 LSB	0.39	28-Pin DIP	2-13
New	ADC-530	12	0.350	±3/4 LSB	2.10	32-Pin DIP	2-33
	ADC-500	12	0.500	±1 LSB	1.70	32-Pin DIP	2-17
	ADC-505	12	0.550	±1 LSB	1.70	32-Pin DIP	2-17
	ADC-508	12	0.700	±1 LSB	1.70	32-Pin DIP	2-21
	ADC-520	12	0.800	±1/2 LSB	1.60	32-Pin DIP	2-29
	ADC-521	12	0.800	±1/2 LSB	1.60	32-Pin DIP	2-29
	ADC-511	12	1001.001 J	±3/4 LSB	1.25	24-Pin DIP	2-25
	ADC-HZ12B	12	8	±1/2 LSB	1.5	32-Pin DIP	2-55
	ADC-HX12B	12	20	±1/2 LSB	1.5	32-Pin DIP	2-55
	ADC-HC12B	12	300	±1/2 LSB	0.17	32-Pin DIP	2-47
	ADC-908	14	1.0	±1/2 LSB	2.70	32-Pin DIP	2-37
	ADC-914	14	2.4	±1 LSB	1.20	24-Pin DIP	2-41

eanO	Power (Waits)	Linearity	Conversion Time (used)	Respirition (Bits)	
	89.1 C	ontact DATE	EL for your		
		a Acquisition		12 1	
	1.5	H2/2/5B	20	12	
		need	S. 000		
		Ball Dial			

1-800-233-2765 for Applications Assistance

FEATURES

- · 7-Bit flash A/D converter
- 20 MHz Sampling rate
- · Low-power (250 mW)
- +5V dc Operation
- 1.2 Micron CMOS
- · 7-bit latched 3-state output with overflow bit
- Surface mount versions
- MIL-STD-883 versions
- No missing codes

GENERAL DESCRIPTION

The ADC-207 is the industry's first 7-bit flash converter using a high-speed 1.2 micron CMOS process. This process offers some very distinctive advantages over other processes, making the ADC-207 a very unique device. The smaller geometrics of the process achieves high-speed, better linearity and better temperature performance. Since the ADC-207 is a CMOS device, it also has very low power consumption (250 mW). The device draws power from a single +5V supply, and is conservatively rated for 20 MHz operation. The ADC-207 allows using sampling apertures as small as 12nS, making it more closely approach an ideal sampler. The small sampling apertures also let the device operate at greater than 20 MHz.

MECHANICAL DIMENSIONS

DIP PINS	FUNCTION	LCC		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	CLOCK IN DIGITAL GROUND -REFERENCE ANA/DIG INPUT MIDPOINT + REFERENCE ANALOG GROUND CS1 CS2 OVERFLOW BIT 1 (MSB) BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 +VDD	1 4 5 6 7 8 9 11 12 13 14 16 17 19 20 21 23 24		

CS2 9

FUNCTIONAL SPECIFICATIONS

(Typical at +5Vdc power, +25 deg. C, 20 MHz clock, +Reference = 5V, -Reference = Ground, unless noted)

ABSOLUTE MAXIMUM RA	MIN.	TYPICAL	MAX.	UNITS
	TINGS			
Power supply voltage	-0.5	_	+7.0	V dc
+Vdd, pin 18)		- State .		
Digital inputs	-0.5		+5.5	V dc
Analog input	-0.5	_	+Vdd	V dc
		Carre	+0.5	
Reference inputs	-0.5		+Vdd	V dc
Digital outputs	-0.5	_	+5.5	V dc
short circuit protected			I T	
to ground)			111	
Lead temperature,	_	_	+300	°C
10 sec. ma		a man	0.110.00	
Ambient temperature	-65	TI TIMOTO	+150	°C
NPUTS		111111111111111111111111111111111111111		
ANALOG SIGNAL INPUT				
single-ended, non-isolated				
Input range	0		+5.0	V
dc-20 MHz	0	D.	10.0	(8,12)
Input impedance	3-	1000	150	Ohms
Input capacitance,	1	10	_	pF
full input range		18.5		
DIGITAL INPUTS:	All .			105-004
Logic "1" level	2.0	_	2	V
Logic "0" level	5-	_	0.8	V
Logic "1" loading		+/-1	+/-5	microamps
Logic "0" loading	_	+/-1	+/-5	microamps
Sample pulse width,	12		14	nS
during sampling portion	m			H H H H H
of clock	d)	15.00.00		
Reference ladder	_	330		Ohms
resistance		198.0		12.51
DIGITAL OUTPUTS				
Data coding	S	traight bina	ry	
Data output resolution	7	T _	_	
Logic "1" level	3.2	4.5	_	V
Logic "0" level	_	-	0.4	V
at 1.6 mA	AS "		0.4	
Logic "1" loading	4	_	_	mA
Logic "0" loading	4	_	_	mA
Output data valid delay		15	17	nS
from rising edge				
PERFORMANCE				
Conversion rate ¹	20	35		mega
Soliversion rate	20	00		samples/sec
Harmonic distortion ²	DOLTU	-40	61 -	dB
8 MHz 2nd order harmonic)				m STI
Differential gain ³	_	3	_910	%
	NOTION	1.5	588	degrees
Differential phase ³	an a trace	8	-	nS
Differential phase ³ Aperture delay	The second second	50	- 1	pS
Aperture delay	0000	30		
Aperture delay	ORD JA	30	1 3	4
Aperture delay Aperture jitter No missing codes	0	HA-	+70	°C MI
Aperture delay Aperture jitter No missing codes	0 -55	HE SU	+70 +125	°C
Aperture delay Aperture jitter No missing codes MC grade	MARINE CURREN			
Aperture delay Aperture jitter No missing codes MC grade MM grade	-55 -	HANA ANA	+125	°C
Aperture delay Aperture jitter No missing codes MC grade MM grade Integral linearity at 25°C	-55 -		+125	°C LSB
Aperture delay Aperture jitter No missing codes MC grade MM grade ntegral linearity at 25°C Adjustable over temp. range	-55 - -		+125 +/-1 - +/-0.5	°C LSB LSB
Aperture delay Aperture jitter No missing codes MC grade MM grade ntegral linearity at 25°C Adjustable over temp. range Differential nonlinearity	-55 - -	 +/-0.8 +/-1.0	+125 +/-1 —	°C LSB LSB

DESCRIPTION	MIN.	TYPICAL	MAX.	UNITS
POWER REQUIREMENTS				
Power supply range (+Vdd) Power supply current Power dissipation	+3.0	+5.0 +50 250	+5.5 +70 385	V dc mA mW
ENVIRONMENTAL — MECI	HANICA	AL	8	BRUTA
Operating temp. range: LC/MC Versions MM/LM/883 Versions Storage temp. range	0 -55 -65	nov <u>er</u> ter trai c	+70 +125 +150	°C °
		rmetic sea	aled, cer	
Pin material	010 × .0	018 inch Kov	ar	

NOTES: 1. At full power input and chip selects enabled

- 2. At 4 MHz input and 20 MHz clock
- 3. For 10-step, 40 IRE NTSC ramp test

TECHNICAL NOTES

- Input Buffer Amplifier—Since the ADC-207 has a switched capacitor type input, the input impedance of the 207 is dependent on the clock frequency. At relatively slow conversion rates a general purpose type input buffer can be used; at high coversion rates DATEL recommends either the HA-5033, the LH-0033 or Elantec 2003. See Figure 2 for typical connections.
- Reference Ladder—Adjusting the voltage at +Ref adjusts the gain of the ADC-207. Adjusting the voltage at -Ref adjusts the offset or zero of the ADC-207. The midpoint pin is usually bypassed to ground through a .fuf capacitor, although it can be tied to a precision voltage halfway between +Ref and -Ref. This would improve integral linearity beyond 7 bits.
- Clock Pulse Width—To improve performance at Nyguist bandwidths, the clock duty cycle can be adjusted so that the low portion of the clock pulse is 12 nseconds wide. The smaller aperature allows the ADC-207 to closely resemble an ideal sampler.

CAUTION

Since the ADC-207 is a CMOS device, normal precautions against static electricity should be taken. use ground straps, grounded mats, etc. The Absolute Maximum Ratings of the device MUST NOT BE EXCEEDED as irrevocable damage to the ADC-207 will occur.

TIMING DIAGRAM

OUTPUT CODING

(+Ref=+5.12V, -Ref=Gnd, MID POINT=no connection)

NOTE: The reference should be held to 0.1% accuracy or better. Do not use the +5V power supply as a reference input without precision regulation and high frequency decoupling.

Values shown here are for a 5.12Vdc reference. Scale other references proportionally. Calibration equipment should test for code changes at the midpoints between these center values shown in Table 1. For example, at the half-scale major carry, set the input to 2.54V and adjust the reference until the code flickers equally between 63 and 64. Note also that the weighting for the comparator resistor network leaves the first and last thresholds to within 1/2 LSB of the end points to adjust the code transition to the proper midpoint values.

Table 1. ADC-207 Output Coding

Analog In (Center Value)	Code	Overflow	1 2 MSB		3	4	5	6 7 LSB		Decimal B	Hexadecimal (incl. 0V)
0.00V	Zero	0	0	0	0	0	0	0	0	0	00
+0.04V	+1 LSB	0	0	0	0	0	0	0	1	1	01
+1.28V	+1/4 FS	0	0	1	0	0	0	0	0	32	20
+2.52V	+1/2FS-1 LSB	0	0	1	1	1	1	1	1	63	3F
+2.56V	+1/2FS	0	1	0	0	0	0	0	0	64	40
+2.60V	+1/2FS +1 LSB	0.00	oman	0	0	0	0	0	1	65	41
+3.84V	+3/4FS	0	1.	1	0	0	0	0	0	96	60
+5.08V	+FS	0	1	1	1	1	1	1	1	127	7F
+5.12V	Overflow	1	1	1	1	1	1	1	1-	255*	FF

Figure 2. Typical Connections for Using the ADC-207

CHIP SELECT

The 3-state buffer has two enable lines, CS1 and CS2. Table 2 shows the truth table for chip select signals.
CS1 has the function of enabling/disabling bits 1 through 7. CS2 has the function of enabling/disabling bits 1 through 7 and the overflow bit. Also a full-scale input produces all ones, including the overflow bit at the output.

Table 2. Chip Select Truth Table

CS1 CS2		Bits 1-7	Overflow Bit		
0	0	3 State Mode	3 State Mode		
1	0	3 State Mode	3 State Mode		
0	1	DATA Outputed	DATA Outputed		
1	1	3 State Mode	DATA Outputed		

ORD	ERING INFORMATI	ON
MODEL	TEMP. RANGE	PACKAGE
ADC-207MC ADC-207MM ADC-207/883B	0 to +70 °C -55 to +125 °C -55 to +125 °C	18-pin DIP 18-pin DIP 18-pin DIP
ADC-207LC ADC-207LM ADC-207L/883B	0 to +125 °C -55 to +125 °C -55 to +125 °C	24-pin LCC 24-pin LCC 24-pin LCC
ACCESSORIES		
ADC-B207/208 Ev	valuation Board (with	out ADC-207)

are equally between 62 and on Note and orner the weighting the comparation resident network leaves the first and least thresholds to within 32 LSB of the end points to edjust the cut alreadition to the proper midpoint values.

Table 1. ADC-267 Output Coding

	6 7 6 7			
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		EL for you on compone ds.	0.00V + 0.04V +1.28V +2.52V +2.56V +2.56V +3.84V +5.08V +5.12V

Dial

1-800-233-2765

for

Applications Assistance

| OFFICE | TEMP. | PACKAGE | PACKAGE

ADC-208 8-bit, 20 Msps Cmos Flash A/D

16

ETUSTUS 10 S

FEATURES

- · 8-Bit flash A/D converter
- · 20 MHz sampling rate
- · 10 MHz full-power bandwidth
- Sample-hold not required
- · Low power CMOS
- · +5V dc operation
- · 1.2 Micron CMOS
- 8-Bit latched three-state outputs with overflow bit
- · Surface mount versions
- · MIL-STD-883B versions
- · No missing codes

GENERAL DESCRIPTION

The ADC-208 utilizes an advanced VLSI 1.2 micron CMOS in providing 20 MHz sampling rates at 8-bits. The flexibility of the design architecture and process delivers effective bit rates to 30 MHz in the burst mode, one shot mode conversion times of 35 nanoseconds, low power modes to 150 mW, latch-up free operation without external components and operation over the full military temperature range.

The ADC-208 has 256 auto-zeroing comparators which are auto-balanced on every conversion to cancel out any offsets due to temperature and/or dynamic effects. These comparators sample the difference between the analog input and the reference voltages generated by the precision reference ladder network. Parallel output data and the overflow pin have Three-State outputs. The overflow pin allows cascading two devices for 9-bit operation.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1 2 3 4 5 6 7 8 9 10 11 11 12 13 13 14 15 16 17 18 19 20 21 22 22 23 24	VDD CLOCK -REFERENCE ANA/DIG GND (VSS) ANALOG INPUT REFERENCE MID-POINT ANALOG INPUT ANA/DIG GND (VSS) +REFERENCE VDD CST (OUTPUT ENABLE) OVERFLOW ENABLE) OVERFLOW BIT BIT 1 (MSB) BIT 2 BIT 3 BIT 4 REF 3/4 FS VDD REF 1/4 FS BIT 5 BIT 6 BIT 7 BIT 8 (LSB)

ABSOLUTE MAXIMUM RATINGS

DESCRIPTION	LIMITS	UNITS
Power Supply Voltage (V _{DD} Pin 1,10,19)	-0.5 to +7.0	V dc
Digital Inputs	-0.5 to +5.5	V dc
Analog Input	-0.5 to $+V_{DD}+0.5$	V dc
Reference Inputs	-0.5 to $+V_{DD} + 0.5$	V dc
Digital Outputs (short circuit protected to ground)	-0.5 to +5.5	V dc
Lead Temperature(10 sec)	+300 max.	°C
Storage Temperature	-65 to +150	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range +5V, ±0.25V power supplies, 15 MHz clock, +Reference = +5V, -Reference = Ground, unless otherwise noted.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Single-Ended,Non- Isolated Input Range	0	001:0	+5.0	(6,1)
Analog Input Capacitance	0	-	+5.0	V (2.0)
(static - Pin 5 to Pin 7) ^① (dynamic- Pin 5 to Pin 7) Ref. Ladder	=	10 64		pF pF
Resistance Ref. input (Note 1)	-0.5	300	- V _{DD} +0.5	Ohms V dc
DIGITAL INPUTS		(12,7)	00	OGA
Logic Levels				
Logic 1 Logic 0 Logic Loading	3.2	-	0.8	V dc V dc
Logic 1	ss	+1	+5	μА
Logic 0	23 E	+1	+5	μΑ
Clock Low Pulse Width	15	25	= =	nSec.
DIGITAL OUTPUTS	1			
Logic Levels				
Logic 1 Logic 0	_	4.5	5.0	V dc V dc
Logic Loading	_	_	0.4	v dc
Logic 1	4	_	_	mA
Logic 0	4	PULLOU	-	mA
Output Data Valid Delay from Rising Clock Edge	попто	# FUN	19	
99% probability 100% probability	5	10	15	nSec.
+25 °C	5	10	25	nSec.
-55 °C to +125 °C	IND BIO	AMA I	40	nSec
Resolution TMD9 all	ENENCE	Str	aight Binar 8 Bits	У
PERFORMANCE	DIG GNE	AMA	8	
Sampling Rate. ²	15	20	it [MSPS
Full Power Bandwidth Diff. Linearity at +25 °C	10	588		MHz
(See Tech, Note 4)	(82M)	TIB		
Code Transitions	- 5	±0.5	±1.0	LSB
Center of Codes Diff. Lin. Over Temp.	- 6	±0.25	OF T	LSB
Code Transitions	3/4 FS	±0.5	±1.0	LSB
Center of Codes	TMTS	±0.25	- 21	LSB
	0 9	TIR	0	

MIN.	TYP.	MAX.	UNITS
and the second		1	The second second
DOM: NO		THE REAL PROPERTY.	NO. OF CHAPTER
		+1/2	LSB
	_		LSB
-		±1/2	LSB
		converte	OtA riesh ti
		solven me	Hames will!
- 1	±1/2	±1	LSB
		DESIDER SPAN	od-uni zum
		eluper re	n pierl-sign
_	+2	+25	LSB
- 11			LSB
_	11.0	11.5	MO nomin
Sec		1000	A Supermont of
HIN SI	100	100	LCD
-			LSB
-		THE PROPERTY OF PERSONS ASSESSMENT	LSB
-	±2.5	±4	LSB
		1	mar Brassadara
-	±1	±1.75	LSB
_	±1.5	±2.5	LSB
15 mm	2		%
IOTA I		S-11E CBX	degree
and-6 h		sampling	nSec.
Slikere	The STATE OF STATE OF STATE OF	e and p	pSec.
abom to	30	st mode.	poec.
40	10	levus secon	dB
-40		Leaventon	0.00
15 6216	10	(B) 43) X9	MHz
1 1 1 1 1		161 91UIS	negry tempe
			%FSR/%/Vs
	he opera	ating tempe	erature range
NTS	olarevno	every co	no beonetec
+3.5	+5.0	+5.5	V dc
em en	41.00	1000	annton, ann
-			mA
IN LESS			mA
S HIG V	+135	+160	mA
		peration	es for 9-bit o
-	660	725	mW
-	550	690	mW
-	745	880	mW
IENTAL			-
	p	1.2	2.70
0	-2	+70	°C
	Del		°C
The State of	-8-		°C
-03	-	+130	
24-0	n hermot	tic spaled	ceramic DID
24-pin hermetic sealed, ceramic L			
		- ±1/2 - ±2/3 - ±1.6 - ±2.3 - ±1.8 - ±2.5 - ±1 - ±1.5 - 2 - 1.1 - 8 - 50 -40	-

- ① Maximum input impedance is a function of clock
- At full power input and chip selects enabled. For 10-step, 40 IRE NTSC ramp test.

TECHNICAL NOTES

- 1. The Reference ladder is floating with respect to V_{DD} and may be referenced anywhere within the specified limits. AC modulation of the reference voltage may also be utilized; contact DATEL for further information.
- 2. Clock Pulse Width To improve performance when input signals may exceed Nyquist bandwidths, the clock duty cycle can be adjusted so that the low portion (sample mode) of the clock pulse is 15 nanoseconds wide. Reducing the sampling

Table 1. ADC-208 Output Coding

ANALO	G CODE	OVER FLOW	DATA 1234	BITS 5678	DECIMAL	HEX
0.00 V	Zero	0	0000	0000	0	00
+0.02 V	+1 LSB	0	0000	0001	DOT 1_VE	01
+1.28 V	+1/4 FS	0	0100	0000	64	40
+2.54 V	+1/2 FS-1 LSB	0	0111	1111	127	40 7F
+2.56 V	+1/2 FS	0	1000	0000	128	80
+2.58 V	+1/2 FS+1 LSB	0	1000	0001	129	81
+3.84 V	+3/4 FS	0	1100	0000	192	CO
+5.10 V +5.12 V	+FS Overflow	0	1111	1111 1111	255 511*	FF 1FF

* Note the overflow code does not clear the data bits.

Values shown here are for a +5.12Vdc reference. Scale other references proportionally (+REF = +5.12V, -REF = GND, 1/4,1/2, and 3/4 Reference FS = No Connection)

time period minimizes the amount the input voltage slews and prevents the comparators from saturating.

- 3. The parallel output data and Overflow pin become available at the three-state buffer output when enabled. A full-scale input produces all "1"s on the data outputs. The OVERFLOW pin goes "high" when the analog input level exceeds + REF minus 1/2 LSB. Table 2 shows the truth table for the chip select enable signals.
- 4. DATEL uses the conservative definitions when specifying Integral Linearity (end-point) and Differential Linearity (code transition). The specifications using the less conservative definition have also been provided as a comparative specification for products specified this way.
- 5. The process that is used to fabricate the ADC-208 eliminates the latchup phenomena that has plagued CMOS devices in the past. The ADC-208 does not require external protection diodes.

CALIBRATION PROCEDURE

1. Connect the converter appropriately; a typical connection circuit is shown in Figure 2. Then apply an appropriate clock input. The ADC-208's reference input should be held to $\pm 0.1\%$ accuracy or better. Do not use the +5V power supply as a reference without precision regulation and high frequency decoupling capacitors.

2. Zero Adjustment

Apply a precision voltage reference source between the analog input (pins 5 & 7) and ground. Adjust the output of the reference source per Table 1 for the Unipolar Zero adjustment (+ 1/2 LSB). Adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 and 0000 0001. Ground -REFERENCE (pin 3) for operation without adjustment.

3. Full Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 1 for the Unipolar Gain Adjustment (+FS -1 1/2 LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1110 and 1111 1111. The + REFERENCE (pin 9) should be tied directly to a +5V reference for operation without adjustment.

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 1.

5. Integral Nonlinearity Adjustments

Provision is made for optional adjustment of Integral Nonlinearity through access of the reference's 1/4, 1/2 & 3/4 Full Scale points. For example, at the half-scale major carry, set the input to 2.55V and adjust the reference until the code flickers equally between 127 and 128 for a 5.12V Full Scale input.

Table 2. Chip Select Truth Table

CS1	CS2	Bits 1-8	Overflow Bit
0	0	Tri-State Mode	Tri-State Mode
1	0	Tri-State Mode	Tri-State Mode
0	1	DATA Outputted	DATA Outputted
1	1	Tri-State Mode	DATA Outputted

BUFFER RECOMMENDED

Figure 2. ADC-208 Typical Connections

NOTES:

Tie all V_{DD} pins (1,10, & 19) together. Tie both Analog Input pins (5 & 7) together. Connect both ANA/DIG GNDs (VSS pins 4 & 8) to one point, the ground plane beneath the converter.

Timing Diagram

LOW POWER MODES

Power Supply Aspect of Power Dissipation

Reduction of the V_{DD} power supply of the ADC-208 results in lower power dissipation. Refer to the curve of Figure 3 for power dissipation as a function of V_{DD} . The limiting factor is V_{DD} must be greater than the TTL or CMOS output levels. Interfacing to standard logic families presents little problem as the output drivers go to V_{DD} for a high state and to VSS for a low state.

BURST MODE

Applications can utilize an inherent system clock up to 30 MHz in the burst mode. The system clock can generate a one shot for a single conversion without requiring generation of a separate clock at a lower frequency.

Figure 4. Burst Mode for Low Power

Figure 3. Power Dissipation Versus VDD

Figure 5 shows power dissipation as a function of burst rate and repitition rate. Applications not requiring continuous conversions can give a double clock pulse, the clock returning low between conversions to reduce power dissipation. Power dissipation is essentially eliminated when the clock and signal input are turned off.

Figure 6 shows power dissipation as a function of the clock duty cycle. A conversion time of 35 nanoseconds can be obtained for a single conversion by leaving the clock in the Autozero mode. To initiate a conversion, the clock is put in the sample mode for 25 nanoseconds and then brought back high

to the Auto-zero mode. Data is valid 15 nanoseconds after the clock goes high, eliminating the pipeline delay.

Figure 5. Power Dissipation vs. Burst Rate vs.
Repetition Rate

Figure 6. Power Dissipation vs. Duty Cycle for One-Shot Mode

OR	DERING INFORMA	TION
MODEL	TEMPERATURE RANGE	PACKAGE
ADC-208MC ADC-208MM ADC-208/883B	0 °C to +70 °C -55 °C to +125 °C -55 °C to +125 °C	24-pin DIP 24-pin DIP 24-pin DIP
ADC-208LC ADC-208LM ADC-208L/883B	0 °C to +70 °C -55 °C to +125 °C -55 °C to +125 °C	24-pin LCC 24-pin LCC 24-pin LCC
ACCESSORIES ADC-B207/208	Evaluation Board (w	

ADC-228 8-Bit, 20 MSPS Complete A/D Converter

FEATURES

- · 8-Bit Flash A/D converter
- 20 MHz Sampling rate
- · Complete support circuitry
- · Low power, 1.5W
- · 10 MHz Full power bandwidth
- · Sample-hold not required
- · Three-state outputs
- MIL-STD-883B versions

GENERAL DESCRIPTION

The ADC-228 combines analog front-end circuitry and a flash A/D converter to digitize high speed analog signals at a 20 mega samples per second rate. The ADC-228 contains an 8-bit, 20 MHz, flash A/D, a wideband analog input buffer, a precision voltage reference, temperature compensation circuitry, reference trims, and a three-state output buffer in a 24-pin package.

The ADC-228 offers significant savings by combining all of the circuitry in a single package. Valuable board real estate is saved, and design time and manufacturing costs are reduced to achieve these savings.

The ADC-228 is housed in a 24-pin hermetically sealed package and is available in the commercial, 0 to +70 °C, and military, -55 to +125 °C, temperature ranges. Operation is from \pm 15V and +5V dc power supplies.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+5V POWER IN	24	BIT 8
2	GROUND	23	BIT 7
3	±5V REF	22	BIT 6
4	GROUND	21	BIT 5
5	ANALOG INPUT	20	N/C
6	GROUND	19	+15V POWER IN
7	GROUND	18	CLOCK INPUT
8	NLINV	17	BIT 4
9	NLINV	16	BIT 3
10	-15V POWER IN	15	BIT 2
11	CS1	14	BIT 41 (MSB)
12	CS1	13	N/C

ABSOLUTE MAXIMUM RATINGS

DESCRIPTION	PARAMETERS
Power Supply Voltage (VDD Pin 1)	-0.5 to+7.0 V dc
Vcc (Pin 19)	-0.3 to +18.0V dc
Vee (Pin 10)	+0.3 to -18.0V dc
Digital Inputs (Pins 8,9,11,12,18)	-0.5 to +5.5 V dc
Analog Input (Pin 5)	-0.5 to +Vdd+0.5 V dc
Digital Outputs (short circuit protected to ground)	-0.5 to +5.5 V dc
Lead Temp. (10 sec)	+300 °C
Storage Temperature	-65 to +150 °C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and $\pm 15 \text{V}$ dc and $\pm 5 \text{V}$ dc power supply voltages unless otherwise specified (20 MHz clock).

DESCRIPTION	MIN	TYP	MAX	UNITS
ANALOG INPUTS	65		ONULAN SERVICE	10 3
Single-Ended, Non-Isolated Input Range dc-20 MHz Analog Input Resistance Analog Input Capacitance	0 2.45	2.5 5	+5.0 2.55	Volts Kohm pF
DIGITAL INPUTS	ar L		V6/41_	B 18
Logic Levels Logic 1 Logic 0	2.0	ML A3	0.8	V dc V dc
Logic Loading Logic 1 Logic 0 Clock Low Pulse Widths	I	-	160 -0.5	μA mA
"high" "low"	15 15	-	-	nSec.
DIGITAL OUTPUTS				Color I
	straight bin., comp. bin. two's comp., comp. two's comp. 8 Bits			
Coding Resolution	straig	comp. two	o's comp.	s comp.,
Resolution Logic Levels Logic 1 Logic 0	2.4	comp. two	o's comp.	v dc v dc
Resolution Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0	2.4	comp. two	o's comp. lits	V dc
Resolution Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 Output Data Valid Delay From Rising Edge	2.4	comp. two	o's comp. oits - 0.55 -0.5	V dc V dc
Resolution Logic Levels Logic 1 Logic 0 Logic Coding Logic 1 Logic 0 Output Data Valid Delay	2.4	comp. two	o's comp. its - 0.55 - -0.5 4	V dc V dc mA mA
Resolution Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 Output Data Valid Delay From Rising Edge Output Hold Time	2.4	comp. two	o's comp. its - 0.55 - -0.5 4	V dc V dc mA mA

PERFORMANCE CON'T.	MIN	TYP	MAX	UNITS
Integral Linearity +25 °C		1000000		Marine Sulf
End-point	- 3	-	±0.5	LSB
Best-fit Line	_	-	±0.5	LSB
Over temperature				
End-point	4-344	with the	±1.0	LSB
Best-fit Line	-10110	ERROR W	±0.75	LSB
Zero-Scale Offset	9	let post	HUBS :	IFFIR US
(Code "0" to "1" Transition)	various	la hoor	luz els	Cornel
(+25 °C)	-	43/2	±0.5	LSB
(-55 to +125 °C)	_	+0.5	±1.0	LSB
Gain error	Ro hygbyre	±0.5	±1.0	LSB
Full Scale Absolute Accuracy	hanle	±0.5	±1.0	LSB
Differential Gain (2)		2		%
Differential Phase (2)		STE COM	n einie	deg.
Aperture Delay	-5	diatov 8	+10	nSec.
Aperture Jitter	-3	50	710	pSec.
No Missing Codes	Our th		tomporetu	
Power Supply Rejection		ne operating		
DYNAMIC PERFORMANCE	0.	02 %FSR/%	or vs iviaxiii	uiil
Total Harm. Distort.,-0.5dB	nalog from	a agride	228 001	FC 45
DC to 2.5 MHz	-53	-55	of Teh	FS, -dB
2.5 MHz to 5 MHz	-48	-50	eg esta	FS, -dB
5 MHz to 10 MHz	-36	-39	rizelt v	FS, -dB
Signal-to-Noise Ratio	uleseorn	anna	oten ente	stlov -n
and Distortion,-0.5dB		- Inches	- conset	F0 10
DC to 2.5 MHz	-45	-48	10200	FS, -dB
2.5 MHz to 5 MHz	-44	-46	-	FS, -dB
5 MHz to 10 MHz	-35	-39	-	FS, -dB
Signal-to-Noise Ratio	ives inec	dingle a	ello 855	OUA a
w/o Distortion,-0.5 dB	ge. Val.	e packs	a sing	si yasius
DC to 2.5 MHz	-52	-55	miasb t	FS, -dB
2.5 MHz to 5 MHz	-52	-55	a gaarit	FS, -dB
5 MHz to 10 MHz	-52	-55	-	FS, -dB
Effective Bits,-0.5dB	L	- Samuel	1 -1 poc	OMA A
DC to 2.5 MHz	7.5	7.75	81,035	Bits
2.5 MHz to 5 MHz	7.25	7.5	SHEWS	Bits
5 MHz to 10 MHz	6.75	7	J. 077.4	Bits
Input Bandwidth	polies	DOWER SE	ob Vey	ons Va
Full Power Bandwidth (0Db)	10	-	-	MHz
Small Signal (-20dB)	20	-	-	MHz
POWER SUPPLY				
Power Supply Range				
+15V dc Supply	+11	+15	+15.75	Volts
-15V dc Supply	-11	-15	-15.75	Volts
+5V dc Supply	+4.75	+5	+5.25	Volts
Power Supply Current	Pre in a	12 10		
+15V Supply	-	-	+30	mA
-15V Supply	-	F 78	+10	mA
+5V Supply	-	9- 18	+230	mA
Power Dissipation		6 (03)	1	
±12V, +5V Nominal	-	1.4	1.6	W
Over full supply range	-	1.5	1.75	W
PHYSICAL-ENVIRONMENTAL	/ugal	VIR 5		
Operating Temp. Range			METER	
MC MC		0 to +	70 °C	
MM/883B	100		125 °C	
	10 10		150 °C	
Storage Temp. Range	1	-DD IO 4		

- At full power input and chip selects enabled.
 For 10-step, 40 IRE NTSC ramp test

TECHNICAL NOTES 15 0 15 855 OTA A SeldeT

- Rated performance requires using good high frequency techniques. The analog and digital grounds are connected internally. Avoid ground related problems by connecting the grounds to one point, the ground plane beneath the convertier. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- 2. Bypass all the analog and digital supplies and the + reference (pin 3) to ground with a 4.7 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor.
- 3. DATEL uses the conservative definitions when specifying Integral Linearity (end-point) and Differential Linearity (code transition). The specifications using the less conservative definition have also been provided as a comparative specification for products specified this way.
- Single conversions (one-shot mode) would require another clock edge to read out data. Users desiring to provide just a single clock pulse could use the circuit shown in Figure 2 to obtain the data.

Figure 2. Single Clock Pulse Circuit and Operation

Table 1. ADC-228 Unipolar Output Coding

ANALOG INPUT	CODE	STRAIGHT BIN. NMINV=0 NLINV=0	COMP. BIN NMINV=1 NLINV=1
+4.96V	+FS-1 LSB	1111 1110	0000 0001
+3.75V	+ 3/4 FS	1100 0000	0011 1111
+2.50V	+ 1/2 FS	1000 0000	0111 1111
+1.25V	+ 1/4 FS	0100 0000	1011 1111
+0.02V	+ 1 LSB	0000 0001	1111 1110
0.00V	ZERO	0000 0000	1111 1111

Table 2. ADC-228 Bipolar Output Coding (Assumes analog input is externally offset)

ANALOG INPUT	CODE and a second at the constants	TWO'S COMP. NMINV=1 NLINV=0	COMP. TWO'S COMP. NMINV=0 NLINV=1
+2.480V	+FS-1 LSB	0111 1111	1000 0000
+1.250V	+1/2 FS	0100 0000	1011 1111
+0.020V	+1 LSB	0000 0001	1111 1110
+0.000V	ZERO	0000 0000	1111 1111
-1.250V	-1/2 FS	1100 0000	0011 1111
-2.480V	-FS+1 LSB	1000 0001	0111 1110
-2.500V	-FS	1000 0000	0111 1111
Colored Colored		san dinina has	A winner I leaved

Table 3. Chip Select Truth Table

CS1 Pin 12	CS1 Pin 11	Bits 1-8
0	0	Three State Mode
0	1	Three State Mode
1	0	Data Outputted
1	1	Three State Mode

Figure 4. ADC-228 Timing Diagram

ORDERING INFORMATION

TEMP DANGE DAGKAGE

MODEL	TEMP. HANGE	PACKAGE
ADC-228MC	0 to +70 °C	24-pin DIP
ADC-228MM	-55 to +125 °C	24-pin DIP
ADC-228/883B	-55 to +125 °C	24-pin DIP

Receptacle for PC board mounting can be ordered through AMP Inc., part # 3-331272-8 (component lead socket), 24 required.

ADC-304 8-Bit, 20 MHz

Low-Power, Flash A/D

FEATURES

- · 8-Bit resolution as palene and to trove.
- ± 1/2 LSB non-linearity
- 20 MHz conversion rate
- 8 MHz input bandwidth (-3 dB)
- · Low-power consumption (390 mW)
- TTL-compatible
- · Single or dual supply operation

GENERAL DESCRIPTION

DATEL's ADC-304 is an 8-bit, 20 MHz analog-to-digital flash converter. The ADC-304 offers many performance features not obtainable from other flash A/D's.

Key features include a low-power dissipation of 390 mW and TTL compatible outputs. A wide analog input bandwidth of 8 MHz (-3 dB) allows operation without the need of a sample-hold. Also, single +5V supply operation is obtainable with an input range of +3 to +5V, eliminating the need for an additional power supply. A 0 to -2 V input range is available with ±5V supply operation.

Another novel feature of the ADC-304 is its user-selectable output coding. The MINV and LINV pins allow selection of binary, complementary binary, and if external offset circuitry is used for bipolar inputs, offset binary, two's complement, and complementary two's complement coding.

The ADC-304 is supplied in a 28-pin dual in-line package and operates over a -20°C to +75°C temperature range. Storage temperature range is from -65°C to +150°C.

MECHANICAL DIMENSIONS

Table 1. ADC-304 Input/Output Connections

Pin	Function	Pin	Function
1	BIT 1 OUT (MSB)	15	BIT 7 OUT
2	BIT 2 OUT	16	BIT 8 OUT (LSB)
3	BIT 3 OUT	17	CLOCK INPUT
4	BIT 4 OUT	18	VRT
5	DIG GND	19	ANA GND
6	+5V POWER (Vcc)	20	NO CONNECTION
7	- 5.2V POWER (VEE)	21	ANAIN
8	- 5.2V POWER (VEE)	22	NO CONNECTION
9	- 5.2V POWER (VEE)	23	ANAIN
10	+5V POWER (Vcc)	24	NO CONNECTION
11_	DIG GND	25	ANA GND
12	LINV	26	VRB
13	BIT 5 OUT	27	VRM
14	BIT 6 OUT	28	MINV

	AXIMUM RATINGS (Ta	a = 25°C)	
Supply Voltage	Vcc-GND VEE-GND	0 to +6 0 to -6	V
Input Voltage (analog)	Vin (Dual Power Supply)	VEE to ANA GND +0.3	v
Input Voltage (reference)	VRт, VRв, VRм (Dual Power Supply) VRт—VRв	VEE to ANA GND +0.3 2.5	V V
Input Current	IVRM	-3.0 to +3.0	mA
Input Voltage	Digital Inputs	-0.5 to VCC	٧

FUNCTIONAL SPECIFICATIONS

Unless otherwise noted, the following specifications apply to the ADC-304 when used either with a single or dual power source. The test conditions are:

For Single Power Supply Operation: $\begin{tabular}{ll} Vcc & (Pins 6 + 10) & = +5V, DIG GND & = 0V \\ Vec & (Pins 7, 8 + 9) & = 0V, & VR\tau & (Pin 18) & = +5V \\ VRe & (Pin 26) & = +3V, & Ta & = 25^{\circ}C \\ ANA & GND & (Pins 19 + 25) & = +5V \\ \end{tabular}$

For Dual Power Supply Operation: $V_{CC} \mbox{ (Pins 6 + 10)} = +5V, \mbox{ DIG GND (Pins 5 + 11)} = 0V \\ \mbox{ ANA GND} = 0V, \mbox{ VEE} = -5V \\ \mbox{ VRr} \mbox{ (Pin 18)} = 0V, \mbox{ VRB} \mbox{ (Pin 26)} = -2V \\ \mbox{ Ta} = 25^{\circ}C \\ \mbox{$

DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Inputs				in named
Analog	10	Y		miuonio is
Input Range	VRB		VRT	V
Input Capacitance	1.0	30	35	pF
Input Bias Current	100	50	100	μΑ
Offset Voltage:				madaga a
(VRT)	10/8 ± \$00	13	19	mV
(VRB)	(0.55 ± 0.0)	5	11	mV
Digital				
Logic Levels:	1111111111			
Logic "1"	2.0	- 1	-	V
Logic "0"	105 ± 0.008		0.8	V
Logic Input Currents :	80170 7 518			PIL
Logic "1"		-100	0	μΑ
Logic "0"	1.	-0.32	-0.5	mA
Outputs				
Resolution		8		Bits
Output Coding		aight Binar		1114
		ementary B Compleme		1114
		olementary		
		omplement		
(AC) TUO 6 TIO (A)	100/21	9 9		1
Logic levels:	TUDET	24	MG.	1
Logic "1"	2.7	3.4	0.5	V
	V 1230 1465 CL 145	10	0.5	V
Logic Level Loading:	S. 2V POWILE	500	1 9	7
Logic "0"	BLIVE PLANTED	-500	3	μA mA
	1 13 17 17 17 17	1 9	3	MA
Output Data Delay	G GND	05	20	-0
(TDLH)(TDHL)	TURNAT	25 26	30	nSec.

TECHNICAL NOTES

- DIG GND pins (5 and 11) and Vcc pins (6 and 10) connect to separate internal circuits within the ADC-304. Connect these pins to their respective PCB patterns.
- Layout of the analog and digital sections should be separated to reduce interference from noise. To further guard against unwanted noise, it is recommended to bypass, as close as possible, the voltage supply pins (6,10) to their respective ground pins (5,11) with a 1 μF and a 0.01 μF ceramic disk capacitor in parallel.
- 3. The input capacitance of the analog input is much smaller than that of a typical Flash A/D Converter. It is necessary to use an amplifier with sufficient bandwidth and driving power. The analog input pins (21,23) are separated internally, so they should be connected together externally. If the ADC-304 is driven with a low- output impedance amplifier, parasitic oscillations may occur.

These parasitic oscillations can be prevented by introducing a small resistance of 2 to 10Ω between the amplifier output and the ADC-304's A/D input. This resistance must be of very low value of inductance at high frequencies.

Note that each of the analog input pins are divided in this manner with these resistances. Connect the driving amplifier as close as possible to the A/D input of the ADC-304.

4. The voltage between VRT (pin 18) and VRB (pin 26) is equivalent to the dynamic range of the analog input. Bypass VRB to ANA GND (pins 19 and 25) by means of a 1 μF and 0.01 μF capacitor in parallel. To balance the characteristics of the ADC-304 at high frequencies, bypass VRM (pin 27) with a 0.01μF capacitor to ANA GND (pins 19 and 25).

Also, VRM (pin 27) can be used as a trimming pin for more precise linearity compensation. A stable voltage source with a potential equal to -FSR and a 1 $K\Omega$ potentiometer can be connected to VRM (pin 27) as shown in Figure 3 for this purpose.

 Separate the clock input, CLK (pin 17), from other leads as much as possible, observing proper EMI and RFI wiring techniques. This will reduce the inductive pick-up of this lead from interfering with the "clean" operation of the ADC-304.

Performance	MIN.	TYP.	MAX.	UNITS
Conversion Rate 1	20	sagett 2's.		MHz
Non-Linearity	Strange Straight	NAME OF TAXABLE	±1/2	LSB
Differential Non-Linearity	-	. 0	±1/2	LSB
Differential Gain Error ²	1. 0	1 1	1.5	%
Differential Phase Error ²	- Hittiti	_ 00000		Degree
Aperture Delay	5	7	1 0	nSec.
Aperture Jitter	- corese			pSec.
Clock pulse width: Tpw1	35	- 00000	010 - 1111	nSec.
Tpw0	10	- 00000	10 - 1111	nSec.
Reference Pin Current	0000000	15	18	mA
Reference Resistance	1	130	1	ohms
(VRT to VRB)				
Reference Input (Dual Supply)	Manado A	Samer Suppl	To ± not go	
(VRT)	-0.1	0	+0.1	V - 0
(VRB)	-1.8	-2.0	-2.2	V
Power Supply Requirements	armentange.	todotes	11002 416	THE .
Single Power Supply	1 0	-		
Supply voltage	1	5 00000	01 1011	707
(Vcc)	4.75	1 1 10000	5.25	V
(VEE)	- 11111101	0 00000	or- tree	UV Vm
Supply Current:	PERFER	00000	FT 1177	SOT Vin
Supply Current: (ICC + IEE)	- CTEATER	71	88	mA
Power Dissipation	- mmren	360	442	mW
Dual Power Supply	0800000	PERM	10 0000	0000 \
Supply Voltage:				
(Vcc)	4.75	5.0	5.25	V
(VEE)	-4.75	-5.2	-5.5	V
Supply Current	7	128 5, 150		
(ICC)	- 17	10	14	mA
(IEE)	(40)	62	75	mA
Power Dissipation		390	440	mW
Physical/Environmental	1			
Operating Temperature	-20	-	+75	°C
Storage Temperature	-55		+150	°C

1. fin = 1 KHz, ramp

2. NTSC 40 IRE-modulated ramp, Fc = 14.3 MSPS

Figure 2: ADC-304 Timing Diagram

TECHNICAL NOTES (CONT.)

- The analog input signal is sampled on the positive-going edge of CLK. Corresponding digital data appears at the output on the negative-going edge of the CLK pulse after a small delay of 35 nSec. maximum (TDLH, TDHL). Refer to the Timing diagram, Figure 4, for more information.
- Connect all free pins to ANA GND (pins 19 and 25) to reduce unwanted noise.

The analog input range is equal to a 2V spread. The voltage on VRT-VRB will equal 2V. The connection of VRT and ANA GND is 2V higher than VRB. Whether using a single or dual power supply, the analog input will range from the value of VRT to VRB. If VRT equals +5V, then VRB will equal +3V and the analog input range will be from +5 to +3V.

Figure 3: Improving Linearity Compensation

Table 2. Output Coding for +5V Power Supply Operation (+5 to +3V Signal Input)

		Straight Binary	Complement 2's Complement	2's Complement	Complement Binary
Unipolar	MINV	2 0	0	1	1
Scale	LINV	ap 0	1 1	0	1
+FS - 1 LSB	+4.9922V	11111111	10000000	01111111	00000000
+ 1/8 FS	+4.7500V	11011111	10100000	01011111	00100000
+ 3/4 FS	+4.5000V	10111111	11000000	00111111	01000000
+ 1/2 FS	+4.0000V	01111111	00000000	11111111	10000000
+ 1/4 FS	+ 3.5000V	00111111	01000000	10111111	11000000
+1/8 FS	+3.2500V	00011111	00100000	11011111	11100000
+1LSB	+3.0078V	00000001	01111110	10000001	11111110
Zero	+3.0000V	00000000	01111111	10000000	111111111

Supply of a policy of the supply of the supp

and ANA	-	Straight Binary	Complement 2's Complement	2's Complement	Complement Binary
Unipolar	MINV	0	0	1	1
Scale	LINV	0	1	0	1
0	0V	11111111	10000000	01111111	00000000
-1 LSB	-7.813 mV	11111110	10000001	01111110	00000001
-1/8 FS	- 250.00 mV	11011111	10100000	01011111	00100000
- 1/4 FS	-500.00 mV	10111111	11000000	00111111	01000000
- 1/2 FS	-1.0V	01111111	00000000	11111111	10000000
- 3/4 FS	-1.5V	00111111	01000000	10111111	11000000
- 1/8 FS	-1.75V	00011111	00100000	11011111	11100000
-FS + 1 LSB	- 1.9922V	00000000	01111111	10000000	11111111

APPLICATION CIRCUITS

Figure 5: Connections for +5V
Power Supply Operation

Figure 6: Connections for ±5V Power Supply Operation

ORDERING INFORMATION

MODEL DESCRIPTION

ADC-304 8-bit, 20 MHZ, Low-power, flash A/D

ADC-500, ADC-505 12-Bit, Ultra-Fast, Low-Power A/D Converters

FEATURES

- · 12-Bit resolution
- 500 Nanosecond maximum conversion time
- · Low-power, 1.6W
- · Small initial errors
- · Three-state output buffers
- -55°C to +125°C operation
- · Small 32-pin DIP
- No missing codes

GENERAL DESCRIPTION

DATEL's ADC-500 and ADC-505 are 12-bit analog-to-digital converters which have small initial errors and can also provide adjustment capability for system errors. Both models have identical specifications except for conversion times. The ADC-505 has a maximum conversion time of 550 nanoseconds while the ultra-fast ADC-500 accomplishes a 12-bit conversion in less than 500 nanoseconds. Figure 1 is a simplified block diagram applicable to both devices.

Manufactured using thick-film and thin-film hybrid technology, these converters' remarkable performances are based upon a digitally-corrected subranging architecture. DATEL further enhances this technology by using a proprietary custom chip and unique laser trimming schemes. The ADC-500 and ADC-505 are packaged in a 32-pin ceramic DIP and consume 1.6 watts.

INPUT/OUTPUT CONNECTIONS

PIN	SIGNAL NAME	
1	+10V REF	
2	RANGE . 3	
3	INPUT HIGH	
4	INPUT LOW	
5	OFFSET ADJUST	
6	NO CONNECTION	
7	COMP BIN	
8	OVERFLOW	
9	ENABLE (6-12)	
10	ENABLE (1-5, O.F.)	
11	+5V	
12	DIGITAL GROUND	
13	+15V	
14	-15V	
15	-5V	
16	ANALOG GROUND	
17	S/H CONTROL	
18	EOC	
19	BIT 12 (LSB)	
20	BIT 11	
21	BIT 10	
22	BIT 9	
23	BIT 8	
24	BIT 7	
25	BIT 6	
26	BIT 5	
27	BIT 4	
28	BIT 3	
29	BIT 2	
30	BIT 1 (MSB)	
31	START CONVERT	
32	GAIN ADJUST	

Another novel feature of the ADC-500 is the provision of a Sample/Hold control pin for applications where a sample-hold is used in conjunction with the ADC-500. This feature allows the sample-and-hold device to go back into the sample mode a minimum of 30 nanoseconds before the conversion is complete, improving the overall conversion rate of the system.

Parameters	MINIMUM	MAXIMUM	UNITS
+ 15V Supply (Pin 13)	0	+18	Volts do
- 15V Supply (Pin 14)	0	-18	Volts do
+5V Supply (Pin 11)	-0.5	+7	Volts do
- 5V Supply (Pin 15)	+0.5	-7	Volts do
Digital Inputs			
(Pins 7, 9, 10 & 31)	-0.3	+6	Volts do
Analog Input (Pin 3)		+ 15	Volts do
Lead temp. (10 sec)		300	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ dc and $\pm 5 V$ dc unless otherwise specified.

DESCRIPTION	MIN.	TYP.	MAX.	UNITS
MECHANICAL DISTURNI				
Input Voltage Range (See Tech. Note 9) Logic Levels: Logic 1 Logic 0 Logic Logic 1 . Logic 0	2.0	0 to +10 0 to +20 ±10	- - - 0.8 2.5 -100	
OUTPUTS	4	0018	192	
Output Coding: . (Pin 7 High) (Pin 7 Low)		comp	binary/offs plementary nentary offs	binary
Logic Levels: Logic 1 Logic 0 Logic Loading: Logic 1 Logic 0		COI _	0.4 - 160 6.4	Volts dc Volts dc μA mA
Internal Reference: Voltage, +25°C Drift External Current	Var-	10.0 ±5	10.02 ± 30 1.5	Volts dc ppm/°C mA
PERFORMANCE	9600	1 0		BIRLS SALVANE S
Integral Nonlinearity: +25°C. 0°C to +70°C55°C to +125°C. Integral Nonlin. Tempco. Differential Nonlinearity +25°C. 0°C to +70°C55°C to +125°C. Differential Nonlin. Tempco. Full-Scale Absol.	VEII- VEII- SATIO SATIO SET 13	P 81 9 65	±0.0125 ±0.0125 ±0.0125 ±0.0125 ±8 ±0.0125 ±0.0125 ±0.0125	%FSR ± ½ LSB %FSR ± ½ LSB %FSR ± 3 LSB ppm/°C %FSR ± ½ LSB %FSR ± ½ LSB %FSR ± 1 LSB %FSR ± 1 LSB
Accuracy: +25°C 0°C to +70°C -55°C to +125°C			±8 ±14 ±29	LSB LSB LSB

PERFORMANCE (cont.)				
DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Jnipolar Zero Error,				
+25°C	_	± 1	±3	LSB
Jnipolar Zero Tempco	_	± 13	± 25	ppm/°C
Bipolar Zero Error,	1122			
+25°C	_	±1	±3	LSB
lipolar Zero Tempco	_	±13	± 25	ppm/°C
Sipolar Offset Error,	lenavno			
+25°C	_	±2	±5	LSB
Sipolar Offset Error				
Tempco	-	± 17.5	± 35	ppm/°C
iain Error, +25°C	_	±2	±5	LSB
ain Tempco	_	± 17.5	± 35	ppm/°C
onversion Times:				°C to +125
ADC-500				
+25°C	-	-	500	nsec.
0°C to +70°C	-	-	540	nsec.
-55°C to +125°C	7. E ST.		560	nsec.
ADC-505			550	nsec.
+25°C			590	nsec.
0°C to +70°C		4000	620	nsec.
-55°C to +125°C			020	11300.
+25 °C 0 to +70 °C	l-91 ens me Isid		-72 dB min. -72 dB min.	
0 to +70 °C -55 to +125 °C lo Missing Codes	ma lsiti tor sys		-72 dB min. -65 dB min.	
0 to +70 °C -55 to +125 °C lo Missing Codes (12 Bits):	ove Ove	er the Op	-72 dB min. -65 dB min.	
0 to +70 °C -55 to +125 °C No Missing Codes	ove Ove	er the Op	-72 dB min. -65 dB min.	
0 to +70 °C -55 to +125 °C No Missing Codes (12 Bits): POWER SUPPLY REQUIF	Ove	er the Op	-72 dB min. -65 dB min. perating Te	emp. Range
0 to +70 °C -55 to +125 °C Io Missing Codes (12 Bits): POWER SUPPLY REQUIF Power Supply Range: +15V dc Supply	Over REMENTS + 14.25	er the Op	-72 dB min. -65 dB min. perating Te + 15.75	emp. Range
0 to +70 °C -55 to +125 °C to Missing Codes (12 Bits):	Ove + 14.25 - 14.25	+ 15 - 15	-72 dB min. -65 dB min. perating Te + 15.75 - 15.75	emp. Range Volts dc Volts dc
0 to +70 °C -55 to +125 °C o Missing Codes (12 Bits):OWER SUPPLY REQUIF ower Supply Range: + 15V dc Supply - 15V dc Supply + 5V dc Supply	Ove + 14.25 - 14.25 + 4.75	+ 15 - 15 + 5	-72 dB min. -65 dB min. perating Te +15.75 -15.75 +5.25	wmp. Range Volts dc Volts dc Volts dc Volts dc
0 to +70 °C -55 to +125 °C loo Missing Codes (12 Bits):	Ove + 14.25 - 14.25	+ 15 - 15	-72 dB min. -65 dB min. perating Te + 15.75 - 15.75	emp. Range Volts dc Volts dc
0 to +70 °C -55 to +125 °C to Missing Codes (12 Bits):	Ove REMENTS + 14.25 - 14.25 + 4.75 - 4.75	+ 15 - 15 + 5 - 5	-72 dB min. -65 dB min. perating Te + 15.75 - 15.75 + 5.25 - 5.25	volts dc Volts dc Volts dc Volts dc Volts dc
0 to +70 °C -55 to +125 °C to Missing Codes (12 Bits):	Ove + 14.25 - 14.25 + 4.75	+ 15 - 15 + 5 - 5 + 23	-72 dB min. -65 dB min. perating Te +15.75 -15.75 +5.25 -5.25 +30	Volts dc Volts dc Volts dc Volts dc
0 to +70 °C -55 to +125 °C o Missing Codes (12 Bits): OWER SUPPLY REQUIF ower Supply Range: +15V dc Supply -15V dc Supply -5V dc Supply -5V dc Supply ower Supply Current: +15V Supply -15V Supply -15V Supply -15V Supply	Ove REMENTS + 14.25 - 14.25 + 4.75 - 4.75	+15 -15 +5 -5 +23 -11	-72 dB min. -65 dB min. perating Te + 15.75 - 15.75 + 5.25 - 5.25 + 30 - 15	Volts dc Volts dc Volts dc Volts dc Volts dc
0 to +70 °C -55 to +125 °C o Missing Codes (12 Bits): OWER SUPPLY REQUIF ower Supply Range: +15V dc Supply -5V dc Supply -5V dc Supply -5V dc Supply -15V dc Supply -15V Supply Current: +15V Supply -15V Supply -15V Supply -15V Supply	Ove REMENTS + 14.25 - 14.25 + 4.75 - 4.75	+ 15 - 15 + 5 - 5 + 23 - 11 + 55	-72 dB min. -65 dB min. perating Te + 15.75 - 15.75 + 5.25 - 5.25 + 30 - 15 + 90	Volts dc Volts dc Volts dc Volts dc Volts dc
0 to +70 °C -55 to +125 °C oo Missing Codes (12 Bits): OWER SUPPLY REQUIF ower Supply Range: +15V dc Supply -15V dc Supply +5V dc Supply -5V dc Supply -5V dc Supply -15V Supply -15V Supply -15V Supply -15V Supply -15V Supply -15V Supply -5V Supply	Ove REMENTS + 14.25 - 14.25 + 4.75 - 4.75	+15 -15 +5 -5 +23 -11 +55 -175	-72 dB min. -65 dB min. perating Te + 15.75 - 15.75 + 5.25 - 5.25 + 30 - 15 + 90 - 210	Volts dc Volts dc Volts dc Volts dc MA MA MA MA
0 to +70 °C -55 to +125 °C ob Missing Codes (12 Bits): DWER SUPPLY REQUIF DWER SUPPLY REQUIF -15V dc Supply -15V dc Supply -5V Supply	Ove REMENTS + 14.25 - 14.25 + 4.75 - 4.75	+ 15 - 15 + 5 - 5 + 23 - 11 + 55	-72 dB min. -65 dB min. perating Te +15.75 -15.75 +5.25 -30 -15 +90 -210 1.8	volts dc Volts dc Volts dc Volts dc MA MA MA Watts
0 to +70 °C -55 to +125 °C -55 to +125 °C -55 to +125 °C -55 to +125 °C -56 to +125 °C -57 to +125 °C -58 to +125 °C -58 to +125 °C -59 to Supply -59 to Sup	Ove REMENTS + 14.25 - 14.25 + 4.75 - 4.75	+15 -15 +5 -5 +23 -11 +55 -175	-72 dB min. -65 dB min. perating Te + 15.75 - 15.75 + 5.25 - 5.25 + 30 - 15 + 90 - 210	volts dc Volts dc Volts dc Volts dc MA MA MA Watts
0 to +70 °C -55 to +125 °C oo Missing Codes (12 Bits): OWER SUPPLY REQUIF ower Supply Range: +15V dc Supply -15V dc Supply +5V dc Supply -5V dc Supply -5V dc Supply -15V Supply -15V Supply -15V Supply -15V Supply -5V Supply	Over 14.25 + 14.25 + 4.75 - 4.75 - 4.75	+15 -15 +5 -5 +23 -11 +55 -175	-72 dB min. -65 dB min. perating Te +15.75 -15.75 +5.25 -30 -15 +90 -210 1.8	volts dc Volts dc Volts dc Volts dc MA MA MA Watts
0 to +70 °C -55 to +125 °C lo Missing Codes (12 Bits): OWER SUPPLY REQUIF OWER SUPPLY REQUIF OWER SUPPLY REQUIF -15V dc Supply -5V dc Supply -6V	Over 14.25 + 14.25 + 4.75 - 4.75 - 4.75	+15 -15 +5 -5 +23 -11 +55 -175	-72 dB min. -65 dB min. perating Te +15.75 -15.75 +5.25 -30 -15 +90 -210 1.8	volts dc Volts dc Volts dc Volts dc MA MA MA Watts
0 to +70 °C -55 to +125 °C oo Missing Codes (12 Bits): OWER SUPPLY REQUIF ower Supply Range: +15V dc Supply -15V dc Supply +5V dc Supply -5V dc Supply -15V Suppl	+ 14.25 - 14.25 + 4.75 - 4.75	+15 -15 +5 -5 +23 -11 +55 -175	-72 dB min. -65 dB min. perating Te +15.75 -15.75 +5.25 -5.25 +30 -15 +90 -210 1.8 0.01	Volts dc Volts dc Volts dc Volts dc MA MA MA Watts %FSR/%\
0 to +70 °C -55 to +125 °C 0 o Missing Codes (12 Bits): OWER SUPPLY REQUIF OWER SUPPLY REQUIF -15V dc Supply -15V dc Supply -5V dc Supply -15V Supply -5V Supply	Over REMENTS + 14.25 - 14.25 + 4.75 - 4.75 - 4.75 - 7.4.7	+15 -15 +5 -5 +23 -11 +55 -175	-72 dB min. -65 dB min. perating Te +15.75 -15.75 +5.25 -5.25 +30 -210 1.8 0.01	volts dc Volts dc Volts dc Volts dc MA MA MA Watts %FSR/%\
0 to +70 °C -55 to +125 °C -57 -58 -58 -58 -58 -58 -58 -58 -58 -58 -58	+ 14.25 - 14.25 + 4.75 - 4.75	+15 -15 +5 -5 +23 -11 +55 -175	-72 dB min. -65 dB min. perating Te +15.75 -15.75 +5.25 -5.25 +30 -15 +90 -210 1.8 0.01	Volts dc Volts dc Volts dc Volts dc MA MA Watts %FSR/%\
0 to +70 °C -55 to +125 °C ob Missing Codes (12 Bits):	+ 14.25 - 14.25 + 4.75 - 4.75	+15 -15 +5 -5 +23 -11 +55 -175	-72 dB min. -65 dB min. perating Te +15.75 -15.75 -5.25 +30 -210 1.8 0.01	Volts dc Volts dc Volts dc Volts dc Volts dc Watts dc Watts %FSR/%\
0 to +70 °C -55 to +125 °C -56 to +125 °C -57 to Supply -157 dc Supply -157 dc Supply -57 Supply -57 Supply -57 Supply -58 Supply -58 Supply -58 Supply -59 Supply -50 Supply	+ 14.25 - 14.25 + 4.75 - 4.75 - 4.75 	+15 -15 -15 +5 -5 +23 -11 +55 -175 1.6	-72 dB min. -65 dB min. perating Te +15.75 -15.75 +5.25 -5.25 +30 -210 1.8 0.01 +70 +125 +150	Volts dc Volts dc Volts dc Volts dc Wats dc Volts dc Wats dc Wats dc Wats dc Wats dc C C C C C C C C C C C C C C C C C C C
0 to +70 °C -55 to +125 °C -57 to +125 °C -58 to +125 °C -58 to +125 °C -58 to +125 °C -58 to +125 °C -157 to Supply -58 to Supply -59 to	+ 14.25 - 14.25 + 4.75 - 4.75 - 4.75 - 7 TAL	+ 15 - 15 + 5 - 5 - 11 + 55 - 175 1.6	-72 dB min. -65 dB min. perating Te +15.75 -15.75 -5.25 +30 -210 1.8 0.01	Volts dc Volts dc Volts dc Volts dc Wats dc Volts dc Wats dc Wats dc Wats dc Wats dc C C C C C C C C C C C C C C C C C C C

* +5V power usage at 1TTL logic loading per data output bit.

① With DATEL sample and hold model number SHM-45.

Weight 0.42 ounces (12) grams

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 32 (ground pin 32 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/offset adjustment (leave pin 5 open for operation without adjustment).
- 2. Rated performance requires using good high frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.

- 3. Bypass all the analog and digital supplies and the $\pm 10V$ reference (pin 1) to ground with a $4.7~\mu F$, 25V tantalum electrolytic capacitor in parallel with a $0.1~\mu F$ ceramic capacitor. Bypass the $\pm 10V$ reference (pin 1) to analog ground (pin 16). The $\pm 5V$ dc supply is treated as an analog supply and analog ground (pin 16) should be treated as its return path for decoupling purposes.
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 7) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie the COMP BIN pin to ground. The COMP BIN signal is compatible to CMOS/ TTL logic levels for those users desiring logic control of this function.
- 5. An overflow signal, pin 8, indicates when analog input signals are below or above the desired full-scale range. To overflow pin also has a three-state output and is enabled by pin 10 (Enable bits 1-5 & O.F.).
- 6. The Sample/Hold control signal, pin 17, goes low following the rising edge of START CONVERT pulse and high 30 nanoseconds minimum before EOC goes low. This indicates that the converter can accept a new analog input.
- 7. The drive requirements of the ADC-500/505 may be satisfied with a wide-bandwidth, low output impeance input source. Applications of these converters that require the use of a sample-hold may be satisfied by using DATEL's model SHM-45. Using this device with multiplexers or for test purposes will require an input buffer.

- Over temperature, input capacitance is 50 pF maximum and input impedance is 1.75K minimum (2.5K typical) for unipolar and 3.75K minimum (5K typical) for bipolar. These values are guaranteed by design.
- Requirements for ±2.5V inputs can be satisfied using DATEL's AM-1435 amplifier in front of the SHM-45/ADC-500 configuration, shown in Figure 3, at the appropriate gain. The SHM-45's gain of 2 mode allows 0 to +5V or ±5V input ranges.

TIMING

Figure 2 shows the relationship between the various input signals. The timing cited applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

TABLE 2. INPUT CONNECTIONS

INPUT VOLTAGE RANGE	INPUT PIN	CONNECT PIN 2 (RANGE) TO PIN
0 to +10V dc	3	FALIOSPALI 3
0 to +20V dc	3	16
± 10V dc	3	100/11/03/11

TABLE 3. ZERO AND GAIN ADJUST

FSR	ZERO ADJUST +1/2 LSB	GAIN ADJUST +FS -1 1/2 LSB
0 to +10V dc	+1.22 mV	+9.9963V dc
0 to +20V dc ±10V dc	+2.44 mV +2.44 mV	+19.9927V dc +9.9927V dc

Figure 2. ADC-500/505 and SHM-45 Timing Diagram

CALIBRATION PROCEDURE

Removal of system errors or the small initial errors is accomplished as follows:

- 1. Connect the converter per Figure 3 and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 50 nanoseconds minimum to the START CONVERT input (pin 31) at a rate of 500 KHz. This rate chosen to reduce flicker if LÉD's are used on the outputs for calibration purposes.
- 2. Zero Adjustments Apply a precision voltage reference source between the analog input (pin 3) and ground (pin 16). Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code

flickers equally between 0000 0000 0000 and 0000 0000 0001 with the COMP BIN (pin 7) tied high or between 1111 1111 1111 and 1111 1111 1110 with the COMP BIN tied low.

- 3. Full-Scale Adjustment Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for COMP BIN (pin 7) tied high or between 0000 0000 0001 and 0000 0000 0000 for COMP BIN tied low.
- 4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in

TABLE 4. OUTPUT CODING

	INPULKAN	IGES, V dc	OUTPUT	CODING	INPUT RANGE	BIPOLAR
SCALE	0 to +10V	0 to +20V	MSB LSB	MSB LSB	±10V dc	SCALE
+FS -1 LSB	+9.9976V	+19.9951V	1111 1111 1111	0000 0000 0000	+9.9951V	+FS -1 LSB
7/8 FS	+8.7500V	+17.500V	1110 0000 0000	0001 1111 1111	+7.5000V	+3/4 FS
3/4 FS	+7.5000V	+15.000V	1100 0000 0000	0011 1111 1111	+5.0000V	+1/2 FS
1/2 FS	+5.0000V	+10.000V	1000 0000 0000	0111 1111 1111	0.0000V	0
1/4 FS	2.5000V	+5.0000V	0100 0000 0000	1011 1111 1111	-5.0000V	-1/2 FS
1/8 FS	1.2500V	+2.5000V	0010 0000 0000	1101 1111 1111	-7.5000V	-3/4 FS
1 LSB	0.0024V	+0.0049V	0000 0000 0001	1111 1111 1110	-9.9951V	-FS +1 LSB
0	0.0000V	0.0000V	0000 0000 0000	1111 1111 1111	-10.000V	-FS

ADC-500BMC 0 to +70 °C Hermetic

ADC-500BMM -55 to +125 °C Hermetic ADC-500BMC 0 to +70 °C Hermetic ADC-500 BMM -55 to +125 °C Hermetic

Receptable for PC board mounting can be ordered through AMP Incorporated, #3-331272-8 (Component Lead Socket), 32 required.

Figure 3. ADC-SHM Connection Diagram

12-Bit, Ultra-Fast, Low-Power A/D Converter

FEATURES

- 12-Bit resolution
- 700 Nanosecond maximum conversion time
- Low-power, 1.6W
- · Small initial errors
- · Three-state output buffers
- -55°C to +125°C operation
- · Small 32-pin DIP
- · No missing codes

GENERAL DESCRIPTION

DATEL's ADC-508 is a 12-bit, analog-to-digital converter which has small initial errors and can also provide adjustment capability for system errors. The ADC-508 has a maximum conversion time of 700 nanoseconds. Figure 1 is a simplified block diagram.

Manufactured using thick-film and thin-film hybrid technology, this converter's remarkable performance is based upon a digitally-corrected subranging architecture. DATEL further enhances this technology by using a proprietary custom chip and unique laser trimming schemes. The ADC-508 is packaged in a 32-pin ceramic DIP and consumes 1.6 watts.

32 1

(22,9)

0.100

INPUT/OUTPUT CONNECTIONS

SIGNAL NAME

stand off from case

RANGE INPUT HIGH	2 3		
INPUT LOW OFFSET ADJUST	4 5	ob enoV	* + 3V power usage at 1TTL logic loading por data output bit. th With DATEL sample and hold model number SHM-45.
NO CONNECTION COMP BIN OVERFLOW	081 — 6 7 8	Am :	TECHNICAL MOTES
ENABLE (6-12) ENABLE (1-5, O.F.) +5V DIGITAL GROUND	9 10 11 12	ob etoV	76/T OKC
+15V -15V -5V	13 14 15	10 ENABLE BITS 15 & OF.	(S)
ANALOG GROUND S/H CONTROL EOC	16 17 2210.04 18	30) BIT 1 (MSB) 29) BIT 2 28) BIT 3	O OFFSET S,
BIT 12 (LSB) BIT 11	19 20	20 BIT 5 20 BIT 5 23 BIT 6	C TOTAL TOTAL AND THE PARTY AN
BIT 10 BIT 9 BIT 8	21 22 23	24 BIT 7	CORRECTION OU
BIT 7 BIT 6 BIT 5	24 25 26	22 BiT 9 21 BiT 10	
BIT 4 BIT 3	27 28	20) BIT 11 19) BIT 12 (LSB)	1 SOSC CONTROL S
BIT 2 BIT 1 (MSB) START CONVERT	29 30 31	9 ENABLE (6-12) 8 OVERFLOW	
GAIN ADJUST	32	ON .	(1) (2) (5) (3) (6) (4) (6) +5V DIG GND -5V -15V ANA GND -15V NO CONNECTION

EOC

conjunction with the ADC-508. This feature allows the sample-and-hold device to go back into the sample mode a minimum of 30 nanoseconds before the conversion is complete, improving the overall conversion rate of the system.

Power required is \pm 15V dc and \pm 5V dc. Models are available in the commercial 0°C to + 70°C, and military - 55°C to + 125°C operating temperature range. Typical applications include spectrum, transient, vibration, and waveform analysis. These devices are also ideally suited for radar, sonar and video digitization, medical instrumentation, and high-speed data acquisition systems. For information

Parameters I + 15V Supply (Pin 13)	MINIMUM	MAXIMUM	UNITS Volts do
		+ 18	
- 15V Supply (Pin 14)	0	-18	Volts do
+ 5V Supply (Pin 11)		+7	Volts do
- 5V Supply (Pin 15)	+0.5	-7	Volts do
Digital Inputs			
(Pins 7, 9, 10 & 31)	-0.3	+6	Volts do
Analog Input (Pin 3)	- 15	+ 15	Volts do
Lead temp. (10 sec)		300	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ dc and $\pm 5 V$ dc unless otherwise specified.

		1605087	9 1	MOTTOR 1
DESCRIPTION	MIN.	TYP.	MAX.	UNITS
INPUTS	341			
Input Voltage Range (See Tech. Note 9)	=	0 to +10 0 to +20 +10	_ <u>+</u> _=	Volts dc Volts dc Volts dc
Logic Levels: Logic 1 Logic 0	_	001.0 _ - (8.5)	0.8	Volts dc Volts dc
Logic Loading: Logic 1 . Logic 0 .		=	2.5 - 100	μ Α μ Α
OUTPUTS	HEEDT	1981 500		
Output Coding: (Pin 7 High) (Pin 7 Low)		com	t binary/offs plementary mentary of	binary
Logic 0	2.4	-	0.4	Volts dc Volts dc
Logic Loading: Logic 1 . Logic 0 .	DO ON	=	- 160 6.4	μA mA
Internal Reference: Voltage, +25°C Drift External Current	9.98	10.0 ±5	10.02 ± 30 1.5	Volts dc ppm/°C mA
PERFORMANCE	VEE+	1 2		
Integral Nonlinearity: +25°C	3 JA JAA 3 JA JAA 3 JA JAA 3 JA JAA 3 JA JAA	+3	± 0.0125 ± 0.0125 ± 8	%FSR ± ½ LSB %FSR ± ½ LSB ppm/°C
+25°C	01.318 9.318 8.718	- 15 - 15	± 0.0125 ± 0.0125	%FSR ± ½ LSB %FSR ± ½ LSB
Tempco	1718 8 ft 6	3g _as	± 2.5	ppm/°C
+ 25°C	<u>6.318</u>	+3	±8 ±14	LSB LSB

DESCRIPTION	MIN.	TYP.	MAX.	UNITS
Unipolar Zero Error,	E 17.5		IL RESE	Sagur
+25°C	_	± 1	+3	LSB
Unipolar Zero Tempco	_	±13	± 25	ppm/°C
Bipolar Zero Error,				
+25°C	-	± 1	±3	LSB
Bipolar Zero Tempco	de m eno	± 13	± 25	ppm/°C
Bipolar Offset Error,			_W/R	1 101 00
+25°C	-	±2	± 5	LSB
Tempco		+ 17.5	± 35	ppm/°C
Gain Error, +25°C		+2	+5	LSB
Gain Tempco		+ 17.5	+35	ppm/°C
Conversion Times:		1 17.0	T 00	ррии о
ADC-508				
+25°C	_	_	700	nsec.
0°C to +70°C	_	- 0	740	nsec.
Harm. Distort. (-FS) ①				
+25 °C			-72 dB min	
0 to +70 °C			-72 dB min	
No Missing Codes			NEED THE DOME	
(12 Bits):	Ov	er the O	perating Te	mp. Range
Power Supply Range:	11 2107	is meta	sifty for sy	trioni capat
+ 15V dc Supply	+14.25	+15	+ 15.75	Volts dc
- 15V dc Supply	- 14.25	- 15	- 15.75	Volts dc
+5V dc Supply	+4.75	+5	+5.25	Volts dc
- 5V dc Supply	-4.75	-5	-5.25	Volts dc
- 5V dc Supply Power Supply Current:	-4.75	mur ya		
- 5V dc Supply Power Supply Current: + 15V Supply	-4.75 -	+23	+30	mA
- 5V dc Supply Power Supply Current: + 15V Supply 15V Supply	-4.75 - -	+23	+30	mA mA
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply + 5V Supply	-4.75 - - -	+23	+30	mA
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply + 5V Supply - 5V Supply	-4.75 - - - -	+23 -11 +55	+30 -15 +90	mA mA mA
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply + 5V Supply - 5V Supply Power Dissipation	-4.75 - - - - - -	+23 -11 +55 -175	+30 -15 +90 -210	mA mA mA mA
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply + 5V Supply - 5V Supply - 5V Supply Power Dissipation Power Supply Rejection	ents enterna e	+23 -11 +55 -175	+30 -15 +90 -210	mA mA mA MA Watts
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply + 5V Supply - 5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN	ents enterna e	+23 -11 +55 -175	+30 -15 +90 -210	mA mA mA MA Watts
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply + 5V Supply - 5V Supply - 5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN Operating Temp. Range:	TAL	+23 -11 +55 -175	+30 -15 +90 -210 1.8 0.01	mA mA mA mA Watts %FSR/%V
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply + 5V Supply - 5V Supply - 5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN Operating Temp. Range: - BMC	ents enterna e	+23 -11 +55 -175	+30 -15 +90 -210	mA mA mA MA Watts
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply - 15V Supply - 5V Supply Power Dissipation PHYSICAL/ENVIRONMEN Operating Temp. Range: - BMC Storage Temperature	TAL 0	+23 -11 +55 -175	+30 -15 +90 -210 1.8 0.01	mA mA mA mA Watts %FSR/%V
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply - 15V Supply - 5V Supply - 5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN Operating Temp. Range: - BMC Storage Temperature Range.	TAL 0 -65	+23 -11 +55 -175 1.6	+30 -15 +90 -210 1.8 0.01 +70 +150	mA mA mA mA Watts %FSR/%V
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply + 5V Supply - 5V Supply - 5V Supply Power Dissipation Power Supply Rejection PHYSICAL/ENVIRONMEN Operating Temp. Range: - BMC Storage Temperature Range Package Type	TAL 0 - 65 32-pin I	+23 -11 +55 -175 1.6 -	+30 -15 +90 -210 1.8 0.01 +70 +150 sealed, ce	mA mA mA mA Watts %FSR/%V
- 5V dc Supply Power Supply Current: + 15V Supply - 15V Supply - 15V Supply - 5V Supply Power Dissipation PHYSICAL/ENVIRONMEN Operating Temp. Range: - BMC Storage Temperature	TAL 0 -65 32-pin 0.010 ×	+23 -11 +55 -175 1.6 -	+30 -15 +90 -210 1.8 0.01 +70 +150 sealed, ce	mA mA mA mA Watts %FSR/%V

^{* +5}V power usage at 1TTL logic loading per data output bit.

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 32 (ground pin 32 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/offset adjustment (leave pin 5 open for operation without adjustment).
- 2. Rated performance requires using good high frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.

① With DATEL sample and hold model number SHM-45.

- 3. Bypass all the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor. Bypass the +10V reference (pin 1) to analog ground (pin 16). The -5V dc supply is treated as an analog supply and analog ground (pin 16) should be treated as its return path for decoupling purposes.
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 7) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie the COMP BIN pin to ground. The COMP BIN signal is compatible to CMOS/ TTL logic levels for those users desiring logic control of this function.
- 5. An overflow signal, pin 8, indicates when analog input signals are below or above the desired full-scale range. To overflow pin also has a three-state output and is enabled by pin 10 (Enable bits 1-5 & O.F.).
- 6. The Sample/Hold control signal, pin 17, goes low following the rising edge of START CONVERT pulse and high 30 nanoseconds minimum before EOC goes low. This indicates that the converter can accept a new analog input.
- 7. The drive requirements of the ADC-508 may be satisfied with a wide-bandwidth, low output impeance input source. Applications of these converters that require the use of a sample-hold may be satisfied by using DATEL's model SHM-45. Using this device with multiplexers or for test purposes will require an input buffer.

- Over temperature, input capacitance is 50 pF maximum and input impdeance is 1.75K minimum (2.5K typical) for unipolar and 3.75K minimum (5K typical) for bipolar. These values are guaranteed by design.
- Requirements for ±2.5V inputs can be satisfied using DATEL's AM-1435 amplifier in front of the SHM-45/ADC-508 configuration, shown in Figure 3, at the appropriate gain. The SHM-45's gain of 2 mode allows 0 to +5V or ±5V input ranges.

TIMING

Figure 2 shows the relationship between the various input signals. The timing cited applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

TABLE 2. INPUT CONNECTIONS

INPUT VOLTAGE RANGE	INPUT PIN	CONNECT PIN 2 (RANGE) TO PIN
0 to +10V dc	3 94	RAJOSHU 3
0 to +20V dc	VA 3	manna 16
± 10V dc	3	8816.83.1

TABLE 3. ZERO AND GAIN ADJUST

FSR	ZERO ADJUST +1/2 LSB	GAIN ADJUST +FS -1 1/2 LSB
0 to +10V dc	+1.22 mV	+9.9963V dc
0 to +20V dc ±10V dc	+2.44 mV +2.44 mV	+19.9927V dc +9.9927V dc

Figure 2. ADC-508 and SHM-45 Timing Diagram

CALIBRATION PROCEDURE

Removal of system errors or the small initial errors is accomplished as follows:

- Connect the converter per Figure 3 and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 50 nanoseconds minimum to the START CONVERT input (pin 31) at a rate of 500 KHz. This rate chosen to reduce flicker if LED's are used on the outputs for calibration purposes.
- Zero Adjustments Apply a precision voltage reference source between the analog input (pin 3) and ground (pin 16). Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code

flickers equally between 0000 0000 0000 and 0000 0000 0001 with the COMP BIN (pin 7) tied high or between 1111 1111 1111 and 1111 1111 1110 with the COMP BIN tied low.

- Full-Scale Adjustment Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for COMP BIN (pin 7) tied high or between 0000 0000 0001 and 0000 0000 0000 for COMP BIN tied low.
- To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

TABLE 4. OUTPUT CODING

d and start			STRAIGHT	BIN. COM	P. BINARY		
UNIPOLAR	INPUT RAN	NGES, V dc	OUTP	UT CODIN	G	INPUT RANGE	BIPOLAR
SCALE	0 to +10V	0 to +20V	MSB L	SB MSB	LSB	±10V dc	SCALE
+FS -1 LSB	+9.9976V	+19.9951V	1111 1111 1	111 0000	0000 0000	+9.9951V	+FS -1 LSB
7/8 FS	+8.7500V	+17.500V	1110 0000 00	000 0001	1111 1111	+7.5000V	+3/4 FS
3/4 FS	+7.5000V	+15.000V	1100 0000 00	000 0011	1111 1111	+5.0000V	+1/2 FS
1/2 FS	+5.0000V	+10.000V	1000 0000 00	000 0111	1111 1111	0.0000V	0
1/4 FS	2.5000V	+5.0000V	0100 0000 00	000 1011	1111 1111	-5.0000V	-1/2 FS
1/8 FS	1.2500V	+2.5000V	0010 0000 00	000 1101	1111 1111	-7.5000V	-3/4 FS
1 LSB	0.0024V	+0.0049V	0000 0000 00	001 1111	1111 1110	-9.9951V	-FS +1 LSB
0,000.04	0.0000V	0.0000V	0000 0000 00	000 1111	1111 1111	-10.000V	-FS
/19:9927\	Vm bb.S	+ ob	OFF. BINA	RY COMP	P. OFF. BIN		

Receptable for PC board mounting can be ordered through AMP Incorporated, #3-331272-8 (Component

Lead Socket), 32 required.

ADC-511 12-Bit, High-Speed, Low-Power A/D Converter

FEATURES

- · 12-Bit resolution
- 1.0 Microsecond maximum conversion time
- · Low-power, 925 milliwatts
- · Three-state, output buffers
- · Functionally complete
- · Small 24-pin DIP
- · No missing codes

GENERAL DESCRIPTION

DATEL's ADC-511 uses an advanced design to provide a highspeed, functionally complete 12-bit A/D converter in a small 24-pin DIP. The ADC-511 delivers a conversion speed of 1 microsecond while consuming only 925 milliwatts of power.

Manufactured using thin- and thick-film hybrid technology, the ADC-511's exclusive performance is based upon a digitally-corrected subranging architecture. DATEL further enhances this technology by using a proprietary custom chip and unique laser trimming schemes.

Functionally complete, the ADC-511 contains an internal clock, three-state outputs and an internal reference.

INPUT/OUTPUT CONNECTIONS

INFOT/OUTFOT COMMEDITIONS							
PIN	FUNCTION	PIN	FUNCTION				
1 2 3 4 5 6 7 8 9 10	BIT 12 OUT (LSB) BIT 11 OUT BIT 10 OUT BIT 9 OUT BIT 8 OUT BIT 7 OUT BIT 6 OUT BIT 5 OUT BIT 5 OUT BIT 5 OUT BIT 3 OUT BIT 3 OUT BIT 3 OUT	13 14 15 16 17 18 19 20 21 22 23	+5V DIGITAL GROUND EOC START CONVERT ENABLE (1 - 12) COMP BIN ANALOG INPUT BIPOLAR +10V REF +15V ANALOG GROUND				
12	BIT 1 OUT (MSB)	24	-15V				

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (Pin 22)	0 to +18	Volts dc	
-15V Supply (Pin 24)	0 to -18	Volts dc	
+5V Supply(Pin 13)	-0.5 to +7	Volts dc	
Digital inputs (Pins 16, 17, and 18)	-0.3 to +7	Volts dc	
Analog input	-25 to +25	Volts dc	
Lead temp. (10 sec.)	300	° C max.	

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ dc and $\pm 5 V$ dc unless otherwise specified.

INPUTS LORD LATERO	MIN.	TYP.	MAX.	UNITS
Analog Signal Range (See Table 5 also)	17 -	0 to +10 ±5	JOS TR	Volts Volts
Input Impedance Resistance Capacitance	2 -	2.5	_ 50	K Ohms pF
Logic Levels: Logic 1 Logic 0 Logic Loading:	2.0	- 1	0.8	Volts Volts
Logic 1 Logic 0	=	_	2.5 -100	μA μA
OUTPUTS	real Disk	S STORY (SS)	10000000	Line Cold
Resolution Logic Levels:	12	-	-	Bits
Logic 1 Logic 0 Logic Loading:	2.4	_	0.4	Volts Volts
Logic 1 Logic 0	-	_	- 160 6.4	μA mA
Internal Reference: +Voltage, +25° C Tempco External current	9.98	10 ±5	10.02 ±30 1.5	Volts do
Output Coding:		Straight binary Complementa	ntary binar	ry
PERFORMANCE		10.70	our I	
0 °C to +70 °C -55 °C to +125 °C	RESIDENCE PERSONAL	±1/2 ±1/2 -	±3/4 ±3/4 ±1.5	LSB LSB LSB
Differential Nonlinearity +25 °C 0 °C to +70 °C -55 °C to +125 °C	-	±1/2 ±1/2	±3/4 ±3/4 ±1	LSB LSB LSB
Full-Scale Absolute Accuracy +25 °C		±3	±7	LSB
0 °C to +70 °C -55 °C to +125 °C Unipolar Zero Error ®		±4 ±8	±13 ±28	LSB LSB
	1	+1	±3	LSB

PERFORMANCE	MIN.	TYP.	MAX.	UNITS
Bipolar Zero Error ①	_	±1	±3	LSB
Bipolar Zero Tempco	-	±2	±5	ppm/°C
Bipolar Offset Error ①	-	±2	±4	LSB
Bipolar Offset Tempco	-	±17.5	±35	ppm/°C
Gain Error ①	-	±2	±4	LSB
Gain Error Tempco	eo mami	±17.5	±35	ppm/°C
Conversion Time	ottou	dillizer PC	1,02011	Sauce La
+25 °C	523509	d drawing	1.0	μSec.
0 °C to +70 °C	erent	D 114dsm	1.0	μSec.
-55 °C to +125 °C	- 6	la la mos	1.15	μSec.
No missing codes (For 12 binary bits)	Guarant	Guaranteed over operating temp. range		
POWER REQUIREMENTS	3	conc	d Bases	SECT OFF
Power Supply Range	1105	4.5	45.75	
+15V dc Supply	+14.25	+15	+15.75	Volts do
-15V dc Supply +5V dc Supply	+4.75	+5	+5.25	Volts do
Supply Current	+4.75	+5	+5.25	VOILS GC
+15V Supply		+20	+29	mA
-15V Supply	Dechavos	-20	-28	mA
+5V Supply @	Tid-Sit Bit	+65	+79	mA
Power Dissipation	s aneviles	925	1250	mW
Supply Rejection	only 925	nim <u>u</u> ena	±0.01	%FSR/%V
PHYSICAL/ENVIRONMEN	NTAL	s -mint pr	ured usin	danulaci
Operating Temperature Range	imande is	had avid	subrana	100-511
—MC Models	0	s near	+70	° C
-MM Models	-55	semai	+125	°C
Storage Temperature		12.00		
Range	-65	enti-stel	+150	°C
erelice.	let amoin	no bno e	lughue e	pie com
Package Type	24-p	in hermetical		
Weight		0.42(1	2)oz.(grar	n)

- ① Specifications cited are at +25 °C. See Techical Note 1 for further information.
- ② + 5V power usage at 1 TTL logic loading per data output bit.

- Applications unaffected by endpoint errors or those that remove them through software will use the typical connections shown in Figure 2. The optional external circuitry of Figure 4 removes system errors or helps adjust the small initial errors of the ADC-511 to zero. The external adjustment circuit has no affect on the throughput rate. Table 1 shows how to select the input range.
- 2. Rated performance requires using good high frequency circuit board layout techniques. The analog and digital grounds are connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. This prevents contamination of the analog ground by noisy digital ground currents.
- Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with a 4.7μF, 25V tantalum electrolytic capacitor in parallel with a 0.1 μF ceramic capacitor.
 Bypass the +10V reference (pin 21) to analog ground (pin 23).
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 18) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie pin 18 to ground. The complementary signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To obtain Three-State outputs, connect ENABLE (pin 17) to a logic "0" (low). Otherwise, connect pin 17 to a logic "1" (high).

TIMING

Figure 3 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

Figure 2. Typical Input Connections for the ADC-511

1. The data outputs should be connected to LED's to observe the resulting data values. Connect the converter per Figure 2, Figure 4, and Table 1 for the appropriate Full Scale Range (FSR). Apply a pulse of 200 nanoseconds minimum to the START CONVERT input (pin 16) at a rate of 250 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the amplifier's signal input and analog ground. Use a very low-noise signal source for accurate calibration.

Adjust the output of the reference source per Table 4. For unipolar operation, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with the COMP BIN (pin 18) tied high or between 1111 1111 1111 and 1111 1111 1110 with pin 18 tied low.

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with pin 18 tied high or between 0111 1111 1111 and 0111 1111 1110 with pin 18 tied low.

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 4. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for pin 18 tied high or between 0000 0000 0000 0001 and 0000 0000 0000 for pin 18 tied low.

To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 6.

Table 1. Input Connections

INPUT RANGE	INPUT PIN	JUMPER THESE PINS:
0 to -10V dc	Pin 19	Pin 20 to GROUND
±5V dc	Pin 19	Pin 20 to Pin 21

Table 4. Zero and Gain Adjust

FSR MAN	ZERO ADJUST +1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB
0 to +10V dc	+1.22mV dc	+9.9963V dc
±5V dc	+1.22mV dc	+4.9963V dc

Table 5. Input Ranges (using external calibration)

INPUT RANGE	R1	R2	UNIT
0 to +10V, +5V	2	2	K Ohms
0 to +5V, ±2.5V	2	6	K Ohms
0 to +2.5V, +1.25V	2	14	K Ohms

Table 6. Output Coding

		STRAIGHT BIN	COMP. BINARY		
UNIPOLAR	INPUT RANGES, V dc	OUTPUT	CODING	INPUT RANGE	BIPOLAR
SCALE	0 to +10V	MSB LSB	MSB LSB	±10V dc	SCALE
+FS -1 LSB	+9.9976V	1111 1111 1111	0000 0000 0000	+4.9976V	+FS -1 LSB
7/8 FS	+8.7500V	1110 0000 0000	0001 1111 1111	+3.7500V	+3/4 FS
3/4 FS	+7.5000V	1100 0000 0000	0011 1111 1111	+2.5000V	+1/2 FS
1/2 FS	+5.0000V	1000 0000 0000	0111 1111 1111	0.0000V	0
1/4 FS	+2.5000V	0100 0000 0000	1011 1111 1111	-2.5000V	-1/2 FS
1/8 FS	+1.2500V	0010 0000 0000	1101 1111 1111	-3.7500V	-3/4 FS
1 LSB	+0.0024V	0000 0000 0001	1111 1111 1110	-4.9976V	-FS +1 LSB
og ground. 0	0.0000V	0000 0000 0000	1111 1111 1111	-5.0000V	-FS
ne calibration.	e signal source for aucura	OFF. BINARY	COMP. OFF. BIN		

Figure 3. ADC-511 Timing Diagram

NOTE: NOT DRAWN TO SCALE

Optional Calibration Circuit

* See Table 5 for R1 and R2 values.

Figure 4. Optional Calibration Circuit

		RMATION
MODEL	TEMPERATURE RANGE	SEAL
ADC-511MC	0 °C to +70 °C	Hermetic
ADC-511MM	-55 °C to +125 °C	Hermetic
ADC-511/883B	-55 °C to +125 °C	Hermetic
	r PC board mounting Incorporated, #3-33 required.	

ADC-520, ADC-521

12-Bit, Ultra-Fast, Low-Power A/D Converters

FEATURES

- · 12-Bit resolution
- 800 Nanosecond maximum conversion time
- · Pin-programmable input ranges
- · Internal high impedance buffer
- · Low 1.6 watts power consumption
- · Three-state output buffers
- · Small 32-pin DIP
- · No missing codes

GENERAL DESCRIPTION

DATEL's ADC-520 and ADC-521 are 12-bit analog-to-digital converters with conversion speeds of up to 800 nanoseconds. Both models are identical except for the analog input voltage ranges.

The performance of these converters is based upon a digitally-correcting subranging architecture. DATEL further enhances this technology by using unique laser trimming schemes. The ADC-520 and ADC-521 are packaged in a 32-pin ceramic DIP and consume 1.6 watts.

TECHNICAL NOTES

 Use external potentiometers to remove system errors or the small initial errors to zero. Use a 20K ohm trimming potentiometer for gain adjjustment with the wirper tied to pin 27 (ground pin 27 for operation without adjustments). Use a 20K ohm trimming potentiometer with the wiper tied to pin 19 for zero/offset adjustment (leave pin 19 open for operation without adjustment).

MECHANICAL DIMENSIONS INCHES (mm)

32

0.900

(22,9) NOTE: Pins have a 0.025 inch, ±0.01 stand-off from case.

SOLUTE MAXIMU

I/O CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 OUT (LSB)	17	COMP BIN
2	BIT 11 OUT	18	REF. OUT (+10V do
3	BIT 10 OUT	19	OFFSET ADJUST
4	BIT 9 OUT	20	EOC
5	BIT 8 OUT	21	START CONVERT
6	BIT 7 OUT	22	RANGE 1
7	BIT 6 OUT	23	RANGE 2
8	BIT 5 OUT	24	INPUT HIGH
9	BIT 4 OUT	25	BIPOLAR OFFSET
10	BIT 3 OUT	26	INPUT LOW
11	BIT 2 OUT	27	GAIN ADJUST
12	BIT 1 OUT (MSB)	28	+15V
13	BIT 1 OUT (MSB)	29	BUFFER OUTPUT
14	ENABLE	30	BUFFER INPUT
15	DIGITAL GROUND	31	-15V
16	+5V	32	ANALOG GROUND

- 2. Rated performance requires using good high frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- 3. Bypass all the analog and digital supplies and the +10V reference (pin 18) to ground with a 4.7 μF, 25V tantalum electrolytic capacitor in parallel with a 0.1 μF ceramic capacitor. Bypass the +10V reference (pin 18) to analog ground (pin 32) the same way.
- 4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 7) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie the COMP BIN pin to ground. In the bipolar mode, two's complement output coding is available by using the MSB output (pin 13). The COMP BIN signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- 5. Enable the three-state <u>outputs</u> by connecting <u>ENABLE</u> (<u>pin</u> 14) to a logic 0 (low). The <u>ENABLE</u> signal has no effect on <u>MSB</u> (pin 13) which is not a three-state output and therefore is not controlled by the enable pin.
- Satisfy high-speed drive requirements of the ADC-520, -521 with a wide-bandwidth, low output impedance input source such as DATEL's SHM-45 sample-and-hold or AM-1435 amplifier.
- 7. The ADC-520,-521 provide an internal buffer amplifier. Using this buffer provides an inut impedance of 10¹² ohms, allowing the A/D to be driven from a high impedance source or directly from an analog multiplexer. When using the input buffer, allow a delay equal to its settling time between input level change and the negative going edge of the START CONVERT pulse. If the buffer is not required, its input should be connected to analog ground to avoid introducing noise into the converter.

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (Pin 28)	0 to +18	Volts dc	
-15V Supply (Pin 31)	0 to -18	Volts dc	
+5V Supply (Pin 16)	-0.5 to +7.0	Volts dc	
Digital Inputs			
(Pins 14, 17, 21)	-0.3 to +6.0	Volts dc	
Analog Input (Pin 24)	-15 to +15	Volts dc	
Lead Temp.(10 Sec.)	300	∞C	

FUNCTIONAL SPECIFICATIONS

The following specifications apply over the operating temperature range and at $\pm 15 \text{V}$ dc and +5 V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Range	The state of the s	Dis Tig		hatens (
(ADC-520)	(BSM) TI	±10		Volts dc
1 29 4 BUFFER OUTPUT	(E(E(AI)) 11	0 to +10	-	Volts dc
	TOWN HOTERS	0 to +20		Volts dc
	-	0 to -20		Volts dc
(ADC-521)	_	±2.5	1	Volts dc
	_	0 to +5	-	Volts dc

Input Impedance	MIN.	TYP.	MAX.	UNITS		
(ADO 500)	24113330		authorized	ngo hisa		
(ADC-520) Unipolar:	1.75	2.5		K Ohms		
Bipolar:	3.75	5.0	_89	K Ohms		
(ADC-521) Unipolar:	2.0	2.5	_	K Ohms		
Bipolar:	1.6	2.0	pitujoss	K Ohms		
Input Capacitance	/R00 MU	mixam b	50	pf		
input Capacitance	hatter	man and	30	emeinl		
Buffer Amplifier Input Voltage	+10	ine asser	an engin	Volts do		
Input Impedance	- 34	10 ¹²	Buo whell	Ohms		
Settling Time	-	700	1000	nSec.		
DIGITAL INPUTS						
Logic "1"	2.0		T -	Volts do		
Logic "0"	-	-	0.8	Volts do		
Logic Loading "1" Logic Loading "0"	- 30	CHEIN	-200	μA μA		
1	821 are	OGA bos	092-00	A PURITA		
0017015	rogo m	inemos	T tilling	produovin		
Resolution 19078 Isolati Logic "1"	12	elebem r	108 - abi	Bits Volts do		
Logic "0"	-	- Loughes	0.4	Volts do		
Logic Loading "1"	nevilos	azerii in	-160	μА		
Logic Loading "0"	ig archi	subrangi	6.4	mA		
Internal Reference	poisu y	d ygoloni	foet sidt	seonedi		
Voltage, +25 °C	9.98	10.0 ±5	10.02 ±30	Volts do		
External Current	P. I. emu	_ 	1.5	mA		
Output Coding						
(Pin 17 HI)	Str	aight bina	v/offset bi	nary		
(Pin 17 Low)		Compleme	entary bina	ary		
	Complementary offset binary					
(Note 4)		Two's co				
(Note 4)	Compl	ementary	two's com	plement		
PERFORMANCE	notheroc	galaanin	mrta XIO	Use a 2		
Integral Non-Linearity	ntsulps is	reuninar Amoronaz	distance of	di dedo		
+25 °C 0 °C to +70 °C		_	±1/2 ±1/2	LSB		
				1 202		
Integral Non-Lin. Tempco	_	±3	±8	ppm/°C		
Differential Non-Linearity		1 3 4	15	71794		
+25 °C	>-	-	±1/2	LSB		
0 °C to +70 °C	-	-	±1/2	LSB		
Differential Non-Lin.						
Tempco	-	- 7	±2.5	ppm/°C		
Full Scale Absolute	-		1 - Land	DE TENTO PAGE		
Accuracy		10	10	LCD		
+25 °C 0 °C to +70 °C		±3 ±4	±8 ±14	LSB		
				1		
Unipolar Operation Zero Error ①		±1	±5	LSB		
Zero Tempco		±13	±25	ppm/°C		
Zero Adjust Range	±5			LSB		

Bipolar Operation	MIN.	TYP.	MAX.	UNITS
Zero Error ① Zero Tempco Zero Adjust Range Offset Error ① Offset Tempco Offset Adjust Range	- ±5 - ±5	±1 ±2 - ±2 ±17.5	±5 ±5 - ±5 ±35	LSB ppm/°C LSB LSB ppm/°C LSB
Gain Error ⊕ Gain Tempco Gain Error Adjust Range Conversion Times +25 °C 0 °C to +70 °C	±5	±2 ±17.5	±5 ±35 - 800 850	LSB ppm/°C LSB nSec. nSec.
Harm. Distort. (-FS) ② +25 °C 0 to +70 °C -55 to +125 °C No Missing Codes (12 Bits)	Range	-72 d -65 d	B min. B min. B min. B min.	ature
POWER REQUIREMEN	TS		-	
Power Supply Range +15V dc Supply -15V dc Supply +5V dc Supply	+14.25 -14.25 +4.75	+15.0 -15.0 +5.0	+15.75 -15.75 +5.25	Volts dc Volts dc Volts dc
Power Supply Current +15V dc Supply -15V dc Supply +5V dc Supply* Power Dissipation Power Supply Rejection		+52 -36 +66 1.6	+65 -45 +70 1.9 0.01	mA mA mA Watts %FSR/%\
PHYSICAL/ENVIRONM	ENTAL	15.75		
Operating Temp. Range	0	_	+70	°C
Storage Temperature Range	-65	-	+150	°C
Package Type Pins Weight	0.0	10 x 0.018	aled, cerar inch Kova (12 grams	ar

- * +5V power usage at 1 TTL logic loading per data output bit.
- Specifications cited are at +25 °C. See Technical Note 1 for further information.
- ② With DATEL SHM-45, see Figure 3.

INPUT CONNECTIONS

Table 2a. ADC-520 Input Connections

NULLARIS	INP		
INPUT RANGE	W/O BUFFER	WITH BUFFER	CONNECT
±10V dc	Pin 24	Pin 30, tie 29 to 24	Pin 18 to 25
0 to +10V dc	Pin 24	Pin 30, tie 29 to 24	Pin 24 to 25
0 to +20V dc	Pin 24	DO NOT USE	Pin 26 to 25
0 to -20V dc	Pin 25	DO NOT USE	Pin 18 to 24,
8-331272-8		S riguoriti	22 to 23 to 24

Table 2b. ADC-521 Input Connections

.yleyitot	INF	oliset binery a	
INPUT RANGE	W/O BUFFER	WITH BUFFER	CONNECT
±2.5V dc	Pin 24,22,23	Pin 30, tie 29 to 24	Pin 25 to 18
0 to +5V dc	Pin 24,22,23	Pin 30, tie 29 to 24	Pin 25 to 26
and comple-		P BIN fied low. Tw	

Figure 2. ADC-520, ADC-521 Timing Diagram

TIMING

Figure 2 shows the relationship between the various input signals. The timing cited applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

CALIBRATION PROCEDURE

- Connect the converter per Figure 3 and Tables 2a and 2b for the appropriate full-scale range (FSR). Apply a pulse of 50 nanoseconds minimum to the START CONVERT input (pin 21) at a rate of 500 KHz. This rate reduces flicker if LED's are used on the outputs for calibration purposes.
- 2. Zero Adjustments Apply a precision voltage reference source between the analog input and ground. Refer to Tables 2a and 2b for the correct input pin. Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with the COMP BIN (pin 17) tied high (straight binary) or between 1111 1111 1111 and 1111 1111 1110 with the COMP BIN tied low (complementary binary).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with COMP BIN (pin 17) tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with COMP BIN (pin 17) tied low (complementary offset binary).

Two's complement and complementary two's complement reguires the use of MSB (pin 13) versus MSB (pin 12) as given for offset binary or complementary offset binary respectively.

- 3. Full-Scale Adjustment Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for COMP BIN (pin 17) tied high or between 0000 0000 0001 and 0000 0000 0000 for COMP BIN tied low. Two's complement and complementary two's complement respectively requires using MSB, pin
- 4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Tables 4 and 5.

Table 3. Zero and Gain Adjust

FSR	ZERO ADJUST +1/2 LSB	GAIN ADJUST +FS -1 1/2 LSB
0 to +5V	+0.610 mV dc	+4.9971V dc
0 to +10V dc	+1.22 mV dc	+9.9963V dc
0 to +20V dc	+2.44 mV dc	+19.9927V dc
0 to -20V dc	-2.44 mV dc	-19.9927V dc
+10V dc	+2.44 mV dc	+9.9927V dc
+2.5V dc	+0.610 mV dc	+2.4982V dc

(25) BIPOLAR OFFSET (18) INV DEE A BUFFER OUT ANGE 1 (24) (3) RANGE 2 (26) INPUT LOW (21) START CONVERT OFFSET ADJUST

Figure 3. ADC/SHM Connection Diagram

Table 4. Output Coding for Unipolar Operation

UNIPOLAR	INPL	T RANGES,V	OLTS dc	OOM I	OUTPU	T CODING	
SCALE	0 to +5V	0 to +10V	/ 0 to +20V	STRAIGHT MSB	BINAR		BINARY
+FS-1LSB	+4.9988V	+9.9976V	+19.9951V	1111-1111	1111	0000 0000	0000
7/8 FS	+4.3750V	+8.7500V	+17.500V	1110 0000	0000	0001 111	1 1111
3/4 FS	+3.7500V	+7.5000V	+15.000V	1100 0000	0000	0011 111	1 1111
1/2 FS	+2.5000V	+5.0000V	+10.000V	1000 0000	0000	0111 111	1 1111
1/4 FS	+1.2500V	+2.5000V	+5.0000V	0100 0000	0000	1011 111	1 1111
1/8 FS	+0.0024V	+1.2500V	+2.5000V	0010 0000	0000	1101 111	1 1111
1 LSB	+0.0012V	+0.0024V	+0.0048V	0000 0000	0001	1111 111	1 1110
0	0.0000V	0.0000V	0.0000V	0000 0000	0000	1111 111	1 1111

Table 5. Output Coding for Bipolar Operation

BIPOLAR	INPUT RANGES, VOLTS dc		OUTPUT CODING			
SCALE	<u>+</u> 2.5V	±10V RU0	OFFSET BINARY MSB LSB	COMP TWO'S COMP	TWO'S COMP. MSB LSE	
+FS -1 LSB	+2.4988V	+9.9951V	1111 1111 1111	1000 0000 0000	0111 1111 1111	
+3/4 FS	+1.8750V	+7.5000V	1110 0000 0000	1001 1111 1111	0110 0000 0000	
+1/2 FS	+1.2500V	+5.0000V	1100 0000 0000	1011 1111 1111	0100 0000 0000	
0	0.0000V	0.0000V	1000 0000 0000	1111 1111 1111	0000 0000 0000	
-1/2 FS	-1.2500V	-5.0000V	0100 0000 0000	0011 1111 1111	1100 0000 0000	
-3/4 FS	-1.8750V	-7.5000V	0010 0000 0000	0101 1111 1111	1010 0000 0000	
-FS +1 LSB	-2.4988V	-9.9951V	0000 0000 0001	0111 1111 1110	1000 0000 0001	
-FS	-2.5000V	-10.000V	0000 0000 0000	0111 1111 1111	1000 0000 0000	

ORDERING INFORMATION

OPERATING

ADC-521MC 0 to +70 °C

Order PC board mounting receptacle through AMP Inc. part #3-331272-8 (Component Lead Socket), 32 required.

MODEL NO. TEMP. RANGE ADC-520MC 0 to +70 °C

ADC-530 12-Bit, Ultra-fast, Low-Power A/D Converter

FEATURES

- 12-Bit resolution
- · 350 Nanoseconds maximum conversion time
- · Low-power, 2.1W
- · Small initial errors
- · Three-state output buffers
- · -55 to +125 °C operation
- · Small 32-pin DIP
- No missing codes

GENERAL DESCRIPTION

DATEL's ADC-530 reflects the ultimate in state-of-the-art analog signal conversion technology. The ADC-530 boasts a conversion speed of 350 nanoseconds, along with a low-power consumption of 2.1 watts.

DATEL's ADC-530 is a 12-bit analog-to-digital converter which has small initial errors and can also provide adjustment capability for system errors. The ADC-530 has a maximum conversion time of 350 nanoseconds.

Manufactured using thick-film and thin-film hybrid technology, this converter's remarkable performance is based upon a digitally-corrected subranging architecture. DATEL further enhances this technology by using a proprietary custom chip and unique laser trimming schemes. The ADC-530 is packaged in a 32-pin ceramic DIP.

INPUT/OUTPUT CONNECTIONS

PIN	SIGNAL NAME	PIN	SIGNA NAME
1	+10V REF. OUT	17	S/H CONTROL
2	RANGE	18	EOC
3	INPUT HIGH	19	BIT 12 OUT (LSB)
4	INPUT LOW	20	BIT 11 OUT
5	OFFSET ADJUST	21	BIT 10 OUT
6	DO NOT CONNECT	22	BIT 9 OUT
7	COMP BIN	23	BIT 8 OUT
8	OVERFLOW	24	BIT 7 OUT
9	ENABLE (BITS 7-12)	25	BIT 6 OUT
10	ENABLE (BITS 1-6) & OVERFLOW	26	BIT 5 OUT
11	+5V	27	BIT 4 OUT
12	DIGITAL GROUND	28	BIT 3 OUT
13	+15V - 01+d0	29	BIT 2 OUT
14	-15V - 33-010	30	BIT 1 OUT (MSB)
15	NO CONNECTION	31	START CONVERT
16	ANALOG GROUND	32	GAIN ADJUST

All digital inputs and three-state outputs are TTL- and CMOS-compatible. Output coding can be in straight binary/offset binary or complementary binary/complementary offset binary by using the COMP BIN pin. An overflow pin indicates when inputs are below or above the normal full-scale range.

A novel feature of the ADC-530 is the provision of a Sample/ Hold control pin for applications where a sample-hold is used in conjunction with the ADC-530. This feature allows the sample-and-hold device to go back into the sample mode a minimum of 30 nanoseconds before the conversion is complete, improving the overall conversion rate of the system.

ABSOLUTE MAXIMUM RATINGS

+15V Supply (Pin 13)	0 to +18V dc
-15V Supply (Pin 14)	0 to -18V dc
+5V Supply (Pin 11)	-0.5 to +7V dc
Digital Inputs (Pins 7, 9, 10, & 31) Analog Input (Pin 3) Lead temperature (10 Sec.)	-0.3 to +6V dc -15 to +15V dc 300 °C max.

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and $\pm 5 \text{V}$ power supply voltages unless otherwise specified.

INPUTS	MIN.	TYP.	MAX.	UNIT
Input Voltage Range	-	0 to +10	-	V dc
(See Tech Note 9)	-	0 to +20	-	V dc
	-	±10	CHIE	V dc
Logic Levels		GIAUG	10 ap	AMA BE
Logic 1	2.0	-	-	V dc
Logic 0	-	-	0.8	V dc
Logic Loading	water water	and the same of	2.5	
Logic 1 Logic 0			-100	μΑ
3			1-100	μΑ
OUTPUTS	-			-
Logic Levels				799
Logic 1	2.4	-	-	V dc
Logic 0	0	-	0.4	V dc
Logic Loading	1		100	
Logic 1 Logic 0		-	-160 6.4	μA mA
Internal Reference	01 45-4	CHARTOSH	0.4	IIIA
Voltage, +25 °C	9.98	10.0	10.02	V dc
Drift		+5	+30	ppm/°C
External Current	3 4-		1.5	mA O
Output Coding			113	
(Pin 7 High)	Stra	aight binary/o		y
(Pin 7 Low)		complementa		
A TRE	com	plementary of	offset bina	ry
PERFORMANCE	10 10	aranae \	A.	10
77 718	912	TUPTUO \	F.K.	1 3 K
Integral Nonlinearity	6	The Control of	1	Lon
+25 °C	-	-	±3/4	LSB
0 to +70 °C -55 to +125 °C		4 7 1 7	±3/4 +1.5	LSB
Differential Nonlinearity	0 9		II.5	LOD
+25 °C		-	±3/4	LSB
			±3/4	LSB
0 to +70 °C				

PERFORMANCE	MIN.	TYP.	MAX.	UNITS
Full-Scale Abs. Accuracy			TE SET TO SET	
+25 °C	-	±0.1	±0.25	%FSR
0 to +70 °C	TO LESS HOLD	+0.13	±0.32	%FSR
-55 to +125 °C		+0.2	+0.5	%FSR
Unipolar Zero Error				TEATER STOP AS TO
+25 °C	_	±0.05	±0.13	%FSR
Unipolar Zero Tempco		±13	±25	ppm/°C
Bipolar Zero Error		110	philos	ррпи о
+25 °C	es annuerts	±0.05	±0.13	%FSR
Bipolar Zero Tempco	NO THEFT	±13	±25	ppm/°C
Bipolar Offset Error		T10	120	ppin 0
+25 °C		±0.1	±0.2	%FSR
		±0.1	IU.2	70F3H
Bipolar Offset Error	8 10/1	147.5	+35	ppm/°C
Tempco	190	±17.5		
Gain Error, +25 °C	-	±0.08	±0.17	%FSR
Gain Tempco	F	±17.5	±35	ppm/°C
Conversion Times		391	too gns	seim on
+25 °C	-	T .	350	nSec.
0 to +70 °C	-	-	400	nSec.
-55 to +125 °C		-	400	nSec.
No Missing Codes (12 Bits)	PE	the operating	ig temp. rar	nge
POWER SUPPLY REQUIREMEN	NTS			
Power Supply Range	demittu ert	reflects	DC-830	
+15V dc Supply	+14.25	+15	+15.75	V dc
-15V dc Supply	-14.25	-15	-15.75	V dc
+5V dc Supply	+4.75	+5	+5.25	V dc
Power Supply Current				
+15V Supply	e resilier e s 10	+60	+70	mA
-15V Supply	an Bransalla In	-30	-40	mA
+5V Supply *	g oats nac	+150	+180	mA
Power Dissipation	ADC-230	2.1	2.5	Watts
Power Supply Rejection	.81	osecon	0.01	%FSR/%\
			0.01	701 01 0 70 4
PHYSICAL/ENVIRONMENTAL	nitt bas m	i thick-fil	oniau be	nutosiuns
Operating Temperature				
Range, Case		8 phighs	ndns pa	
-MC		0 to +70	Colonn	
-MM		-55 to +12	5°C	
Storage Temp. Range		-65 to +150		
Package Type	32-pin	hermetic, c	eramic DIP	

^{*+5}V power usage at 1 TTL logic loading per data output bit.

TECHNICAL NOTES

Weight

 Use external potentiometers to remove system errors or the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 32 (ground pin 32 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/ offset adjustment (leave pin 5 open for operation without adjustment).

0.42 ounces (12 grams)

- 2. Rated performance requires using good high frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, retun the analog and digital ground separately to the power supplies.
- 3. Bypass all the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor. Bypass the +10V reference (pin 1) to analog ground (pin 16)

- 4. Obtain straight binary/offset binary output coding by tieing COMP BIN (pin 7) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding tie the COMP BIN pin to ground. The COMP BIN signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- An overflow signal, pin 8, indicates when analog input signals are below or above the desired full-scale range. The overflow pin also has a three-state output and is enabled by pin 10 (ENABLE bits 1-5 & O.F.).
- 6. The sample-and-hold (S/H) control signal, pin 17, goes low following the rising edge of a start convert pulse and high 30 nanoseconds minimum before EOC goes low. This indicates that the converter can accept a new analog input.
- 7. The drive requirements of the ADC-530 may be satisfied with a wide-bandwidth, low output impedance input source. Applications of these converters that require the use of a sample-and-hold may be satisfied by using DATEL's model SHM-45. Using this device with multiplexers or for test purposes will require an input buffer.
- Over temperature, input capacitance is 50 pF maximum and input impedance is 1.75K minimum (2.5K typical) for 0 to +10V and 3.75K minimum (5K typical) for 0 to +20V, ±10V. These values are guaranteed by design.
- Requirements for ±2.5V inputs can be satisfied using DAT-EL's AM-1435 amplifier in front of the SHM-45/ADC-530 configuration, shown in Figure 3, at the appropriate gain. The SHM-45's gain of 2 mode allows 0 to +5V or ±5V input ranges.

TIMING

Figure 2 shows the relationship between the various input signals. The timing cited applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

Figure 2. ADC-530 and SHM-45 Timing Diagram

CALIBRATION PROCEDURE

Connect the converter per Figure 3 and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 100 nanoseconds minimum to the START CONVERT input (pin 31) at a rate of 500 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the analog input (pin 3) and ground (pin 16). Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with the COMP BIN (pin 7) tied high or between 1111 1111 1111 and 1111 1111 1110 with pin 7 tied low.

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with pin 7 tied high or between 0111 1111 1111 and 0111 1111 1110 with pin 7 tied low.

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for pin 7 tied high or between 0000 0000 0000 1111 1111 1111 for pin 7 tied low.

 To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

Table 2. Input Connections

INPUT VOLTAGE RANGE	INPUT PIN	CONNECT PIN 2 (RANGE) TO PIN:
0 to +10V dc	3	3
0 to +20V dc	3	16
±10V dc	3	0.0 X 010.0 1

Table 3. Zero and Gain Adjust

FSR	ZERO ADJUST +1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB
0 to +10V dc	+1.22 mV	+909963V dc
0 to +20V dc	+2.44 mV	+19.9927V dc
±10V dc	+2.44 mV	+9.9927V dc

Table 4. Output Coding

			STRAIGHT BIN.	COMP. BINARY	de or leaving it	(pin 7) to +5%
UNIPOLAR	INPUT RAN	NGES, V dc	ОИТРИТ	CODING	INPUT RANGE	BIPOLAR
SCALE	0 to +10V	0 to +20V	MSB LSE	B MSB LSB	±10V dc	SCALE
+FS -1 LSB	+9.9976V	+19.9951V	1111 1111 111	0000 0000 0000	+9.9951V	+FS -1 LSB
7/8 FS	+8.7500V	17.500V	1110 0000 0000	0001 1111 1111	+7.5000V	+3/4 FS
3/4 FS	+7.5000V	15.000V	1100 0000 0000	0 0011 1111 1111	+5.0000V	+1/2 FS
1/2 FS	+5.0000V	+10.000V	1000 0000 0000	0 0111 1111 1111	0.0000V	0
1/4 FS	+2.5000V	+5.0000V	0100 0000 0000	1011 1111 1111	-5.0000V	-1/2 FS
1/8 FS	+1.2500V	+2.5000V	0010 0000 0000	1101 1111 1111	-7.5000V	-3/4 FS
1 LSB	+0.0024V	+0.0049V	0000 0000 000	11111 1111 1110	-9.9951V	-FS +1 LSB
0	0.0000V	0.0000V	0000 0000 0000	1111 1111 1111	-10.000V	-FS
00 0000 bris	ouce agos of	between 900	OFF. BINARY	COMP. OFF. BIN	1.	

Figure 3. ADC-530 Calibration Setup

+15V

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: Pins have a 0.025 inch, ±0.01 stand-off from case.

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE	SEAL
ADC-530 MC	0 to +70 °C	Hermetic
ADC-530 MM	-55 to +125 °C	Hermetic

Receptacle for PC board mounting can be ordered through AMP Incorporated, #3-331272-8 (Component Lead Socket), 32 required.

For availability of MIL-STD-883B versions, contact DATEL.

ADC-908 High-Resolution Ultra-Fast A/D Converter

FEATURES

- 14-Bit resolution
- 1.0 μSec. conversion time
- · Functionally complete
- · Small 32-pin DIP
- · Low-power, 2.9 Watts maximum
- · Three-state output buffers
- No missing codes

GENERAL DESCRIPTION

DATEL's ADC-908 is a 14-bit, 1.0 microsecond conversion time, functionally complete A/D converter.

Packaged in a small 32-pin DIP, power requirements are ± 15 volts and +5 volts with a 2.9 Watts maximum power dissipation.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	+10V REF. OUT	17	BIT 14 OUT (LSB)
2	BIPOLAR	18	BIT 13 OUT
3	ANALOG INPUT	19	BIT 12 OUT
4	SIGNAL GROUND	20	BIT 11 OUT
5	OFFSET ADJUST	21	BIT 10 OUT
6	GAIN ADJUST	22	BIT 9 OUT
7	OVERFLOW	23	BIT 8 OUT
8	COMP. BIN	24	BIT 7 OUT
9	ENABLE	25	BIT 6 OUT
10	+5V	26	BIT 5 OUT
11	DIGITAL GROUND	27	BIT 4 OUT
12	+15V	28	BIT 3 OUT
13	-15V	29	BIT 2 OUT
14	S/H CONTROL	30	BIT 1 OUT (MSB)
15	ANALOG GROUND	31	BIT 1 OUT (MSB)
16	EOC	32	START CONVERT

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (Pin 12)	-0.3 to +18	Volts dc	
-15V Supply (Pin 13)	+0.3 to -18	Volts dc	
+5V Supply (Pin 10)	-0.3 to +7.0	Volts dc	
Digital Inputs			
(Pins 8, 9, 32)	-0.3 to +7.0	Volts dc	
Analog Input (Pin 3)	±25	Volts	
Lead Temp. (10 Sec.)	300 max.	°C	

FUNCTIONAL SPECIFICATIONS

Apply over the perating temperature range and at $\pm 15 \text{V}$ dc and $\pm 5 \text{V}$ dc power supply voltages unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Input Voltage Range	98-	Tauu	GAIN AL	a .
100 6 118	28	0 to +10	OVERE	Volts
	IS _	0 to +20	COMP.	Volts
	88 _	±5	ENABLE	Volts
Input Impedance	3 1		_V2+	K Ohms
Input Capacitance	12 1	MU7AD	15	pf
DIGITAL INPUTS	89	HI I	Vet-	1 81
Logic Levels	de l	FROL	SVH COI	141
Logic "1" TUO 1 TIB	2.0	MUGAD 8	O. HUA	Volts dc
Logic "0" OO TRATE	00 -	-	0.8	Volts dc
Logic Loading "1"		_	5	μА
Logic Loading "0"	-		-200	μА
A/D PERFORMANCE				
Integral Non-Linearity	- Comment	honoreum comb	in an consumin	No transportation
+25 °C	-	±1/2	±3/4	LSB
0 °C to +70 °C	-	±3/4	±1	LSB
-55 °C to +125 °C		±1	±2	LSB
Differential Non-Linearity				
+25 °C	_	±1/4	±1/2	LSB
0 °C to +70 °C	-	±1/2	±3/4	LSB
-55 °C to +125 °C	- 1	+1	+2	LSB
Full Scale Absolute		The second second		
Accuracy				
+25 °C. (88%) TUG	TIE TO	±0.08	+0.122	%FSR
0 °C to +70 °C	712 00	±0.18	±0.36	%FSR
-55 °C to +125 °C	TIE es	±0.61	±0.85	%FSR
Unipolar Zero Error.	1	10.01	10.00	701 011
+25 °C		±0.04	±0.122	%FSR
0.1- 70.00	A STATE OF THE PARTY OF THE PAR	±0.07	±0.122	%FSR
FF 4- 10F 0C		+0.1	+0.17	%FSR
Bineley Zeve Evvey	1	STATE	±0.17	70F3H
+25 °C (Tech Note 1)	TIBLIST	±0.012	1004	%FSR
	I TIB ES		±0.04	
0 to +70 °C	OF THE SE	±0.07	±0.18	%FSR
-55 to +125 °C	_	±0.1	±0.3	%FSR
Dipolar Oliset Elloi,				0/505
120 0 (10011110101)		±0.018	±0.061	%FSR
0 to +70 °C		±0.12	±0.3	%FSR
-55 to +125 °C		±0.53	±0.73	%FSR
Gain Error,	TIB TE	The same		
+25 °C (Tech Note 1)	SAPE 8	±0.018	±0.12	%FSR
0 to +70 °C	HINES H	±0.12	±0.3	%FSR
-55 to +125 °C				

A/D PERFORMANCE	MIN.	TYP.	MAX.	UNITS
A/D Conversion Times +25 °C 0 °C to +70 °C -55 °C to +125 °C	-	_	1.0 1.08 1.15	μSec. μSec. μSec.
No Missing Codes (14 Bits) (13 Bits)		0 to - -55 to		
OUTPUTS				
Resolution Output Coding (Pin 8 Hi) (Pin 8 Low)	Stra		Bits ry/offset bi entary bina	
Logic Levels Logic "1" Logic "0" Logic Loading "1" Logic Loading "0" Internal Reference Voltage, +25 °C	2.4	- - - - +10.0	- 0.4 -160 6.4 +10.02	Volts dc Volts dc μA mA
Drift External Current	OIF, pow a Watte	±13 -	±30 2	ppm/ °C mA
POWER REQUIREMENTS				.00
Power Supply Range +15V dc Supply -15V dc Supply +5V dc Supply Power Supply Current	+14.25 -14.25 +4.75	+15.0 -15.0 +5.0	+15.75 -15.75 +5.25	Volts dc Volts dc Volts dc
+15V dc Supply -15V dc Supply +5V dc Supply * Power Dissipation Power Supply Rejection	= = = = = = = = = = = = = = = = = = = =	+85 -71 +80 2.7	+95 -80 +100 2.9 0.02	mA mA mA Watts %FSR/%V
PHYSICAL/ENVIRONMEN	TAL			
Operating Temp. Range -MC -MM Storage Temperature	0 -55	-	+70 +125	°C °C
Range	-65	-	+150	°C
Package Type Weight	32-pin hermetic sealed, ceramic TDIP 0.42 ounces (12 grams) max.			

 ⁺⁵V power usage at 1 TTL logic loading per data output bit.
 Specifications subject to change without notice.

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 6 (ground pin 6 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/ offset adjustment (ground pin 5 for operation without adjustment).
- 2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- 3. Bypass the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor. Bypass the +10V reference (pin 1) to analog ground (pin 15).
- 4. Obtain straight binary/offset binary or 2's complement output coding by tying COMP BIN (pin 8) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary, complementary off set binary, or complementary 2's complement output coding, tie pin 8 to ground. The COMP BIN signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.
- To enable the three-state outputs, connect ENABLE (pin 9) to a logic "0" (low). To disable, connect pin 9 to a logic "1" (high).

6. The SAMPLE/HOLD CONTROL, pin 14, is low on power-up. The START CONVERT pulse should be given at a time delay equal to the desired acquisition time minus the 10 nanosecond delay from START CONVERT high to S/H CONTROL high. This assures the sample-hold has the minimum required acquisition time for the particular application mode.

The SAMPLE/HOLD CONTROL pin goes high following the rising edge of a START CONVERT pulse and low 30 nanoseconds minimum before \overline{EOC} goes low. This indicates the converter can accept a new analog input.

7. Retriggering the START CONVERT pulse before EOC goes low will not initiate a new conversion.

Table 1. Input Connections

INPUT RANGE	INPUT PIN	TIE TOGETHER
0 to +10V	Pin 3	Pins 2 and 4
0 to +20	Pin 2	Pins 3 and 4
±5V	Pin 3	Pins 2 and 1

Table 2. Zero and Gain Adjust

FSR	ZERO ADJUST +1/2 LSB	GAIN ADJUST FS - 1/2 LSB
0 to +10V	+305 μV	+9.999085V
0 to +20V	+610 μV	+19.99817V
±5V	+305 μV	+4.999085V

Figure 2. ADC-908 Timing Diagram

Figure 3. Typical ADC-908 Connection Diagram

CALIBRATION PROCEDURE

Connect the converter per Figure 3, and Table 1 for the appropriate full-scale range (FSR). Apply a pulse of 200 nanoseconds minimum to the START CONVERT input (pin 31) at a rate of 250 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the analog input (pin 3) and ground (pin 4). Adjust the output of the reference source per Table 2.

Table 3. Output Coding for Unipolar Operation

UNIPOLAR SCALE	INPUT I	s)	OUTPUT STRAIGHT BIN.	COMP. BINARY	
	0 to +10V	0 to +20V	MSB LSB	MSB LSB	
+FS-1LSB	+9.99939	+19.99878	11 1111 1111 1111	00 0000 0000 0000	
7/8 FS	+8.7500	+17.500	11 1000 0000 0000	00 0111 1111 1111	
3/4 FS	+7.5000	+15.00	11 0000 0000 0000	00 1111 1111 1111	
1/2 FS	+5.0000	+10.00	10 0000 0000 0000	01 1111 1111 1111	
1/4 FS	+2.5000	+5.000	01 0000 0000 0000	10 1111 1111 1111	
1/8 FS	+1.2500	+2.500	00 1000 0000 0000	11 0111 1111 1111	
1 LSB	+0.00061	+0.00122	00 0000 0000 0001	11 1111 1111 1110	
0	0.0000	0.000	00 0000 0000 0000	11 1111 1111 1111	

For bipolar operation, adjust the potentiometer such that the code flickers equally between 10 0000 0000 0000 and 10 0000 0000 0001 with pin 8 tied high (offset binary) or between 01 1111 1111 1111 and 01 1111 1111 1110 with pin 8 tied low (complementary offset binary).

Full-Scale Adjustment
 Set the output of the voltage reference used in step 2 to the value shown in Table 2.

Two's complement coding requires use of the $\overline{\text{MSB}}$ (pin 31) with the pin 8 tied high, adjusting the gain trimming potentiometer so that the output code flickers equally between 01 1111 1111 1110 and 01 1111 1111 1111.

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Tables 3 and 4.

Table 4. Output Coding for Bipolar Operation

BIPOLAR SCALE	INPUT RANGE (Volts)	OUTPUT CODING OFFSET BIN. COMP OFF. BIN.		TWO'S COMP.	
	±5V	MSB LSB	MSB LSB	MSB LSB	
+FS -1 LSB	+4.99939	11 1111 1111 1111	00 0000 0000 0000	01 1111 1111 1111	
+3/4 FS	+3.7500	11 1000 0000 0000	00 0111 1111 1111	01 1000 0000 0000	
+1/2 FS	+2.5000	11 0000 0000 0000	00 1111 1111 1111	01 0000 0000 0000	
0	0.0000	10 0000 0000 0000	01 1111 1111 1111	00 0000 0000 0000	
-1/2 FS	-2.5000	01 0000 0000 0000	10 1111 1111 1111	11 0000 0000 0000	
-3/4 FS	-3.7500	00 1000 0000 0000	11 0111 1111 1111	10 1000 0000 0000	
-FS +1 LSB	-4.99939	00 0000 0000 0001	11 1111 1111 1110	10 0000 0000 0001	
-FS	-5.0000	00 0000 0000 0000	11 1111 1111 1111	10 0000 0000 0000	

		DESCRIPTION OF THE PROPERTY OF
ORE	ERING INFORMATION	
MODEL NUMBER	OPERATING TEMP. RANGE	SEAL
ADC-908MC	0 °C to +70 °C	Hermetic
ADC-908MM	-55 °C to +125 °C	Hermetic
	r PC board mounting can Inc., Part # 3-331272-8 (32 required.	
For availability	y of MIL-STD-883 version	ns, contact

PRODUCT DATA

ADC-914 14-Bit, High-Speed, Low-Power A/D Converter

FEATURES

- · 14-Bit resolution
- 2.4 Microsecond maximum conversion time
- · Low-power, 925 milliwatts
- · Three-state output buffers
- Functionally complete
- · Small 24-pin DIP

DATEL's ADC-914 uses an advanced design to provide a highspeed, functionally complete 14-bit A/D converter in a small 24-pin DIP. The ADC-914 delivers a conversion speed of 2.4 microsecond while consuming only 925 milliwatts of power.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 14 OUT (LSB)	13	+5V
2	BIT 13 OUT	14	ENABLE
3	BIT 12 OUT	15	EOC
4	BIT 11 OUT	16	START CONVERT
5	BIT 10 OUT	17	BIT 2 OUT
6	BIT 9 OUT	18	BIT 1 (MSB)
7	BIT 8 OUT	19	ANALOG INPUT
8	BIT 7 OUT	20	BIPOLAR
9	BIT 6 OUT	21	+10V REF
10	BIT 5 OUT	22	+15V
11	BIT 4 OUT	23	GROUND
12	BIT 3 OUT (MSB)	24	-15V 0 aloc
		1	Company of the Compan

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (Pin 22)	0 to +18	Volts dc
-15V Supply (Pin 24)	0 to -18	Volts dc
+5V Supply(Pin 13)	-0.5 to +7	Volts dc
Digital inputs (Pins 14 and 16)	-0.3 to +7	Volts dc
Analog input	-25 to +25	Volts do
Lead temp. (10 sec.)	300	° C max

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ dc and $\pm 5 V$ dc unless otherwise specified.

	13	(ESB)	T 14 OUT	1 8
INPUTS	MIN.	TYP.	MAX.	UNITS
Analog Signal Range	47	0 to +10	UC-OF T	Volts
(See Table 5 also)	18	±5	TUDET	Volts
Input Impedance	81		TUO 8 T	8 1 2
Resistance PAJO918	2	2.5	TUOYE	K Ohms
Capacitance	10	-	50	pF
Logic Levels:	1 75 1		THOAT	11-11-
Logic 0	2.0	40014	0.8	Volts Volts
Logic Loading:		(C) C(N)	0.0	VOILS
Logic 1	_	_	2.5	μА
Logic 0	W_ 34	E1922 20	-100	μА
OUTPUTS			1 .00	port
Resolution	14			Dita
Logic Levels:	14	-	-	Bits
Logic 1	2.4			Volts
Logic 0	-		0.4	Volts
Logic Loading:			0.4	VOILS
Logic 1	-	-	- 160	uA
Logic 0		_	6.4	mA
Internal Reference:				
+Voltage, +25° C	9.98	10	10.02	Volts do
Tempco		±5	±30	ppm/°C
External current	-	-	1.5	mA
Output Coding:	St	raight binar	y/Offset bir	nary
PERFORMANCE		8-		
Integral Nonlinearity	TURTUO	TAME IN THE	DEFINOS	
+25 °C THOS THE T	REGISTED	±1/2	±1	LSB
0 °C to +70 °C	-	±1	±2	LSB
-55 °C to +125 °C	-	7-	±3	LSB
Differential Nonlinearity				1
+25 °C TUO 17 THE A	-	±1/2	±1	LSB
0 °C to +70 °C	-	±1	±2	LSB
-55 °C to +125 °C		-	±2.5	LSB
	_			
Full-Scale Absolute				
Accuracy		10.00	10.07	0/505
Accuracy +25 °C	- 1	±0.037	±0.074	%FSR
Accuracy +25 °C 0 °C to +70 °C	= [±0.074	±0.13	%FSR
Accuracy +25 °C 0 °C to +70 °C -55 °C to +125 °C	- 1			
Accuracy +25 °C 0 °C to +70 °C -55 °C to +125 °C Unipolar Zero Error	1 1 45	±0.074 ±0.12	±0.13 ±0.2	%FSR
Accuracy +25 °C 0 °C to +70 °C -55 °C to +125 °C	1 48 89	±0.074	±0.13	%FSR %FSR

PERFORMANCE	MIN.	TYP.	MAX.	UNITS
Bipolar Zero Error				
+25 °C (Tech Note 1)	_	±0.02	±0.031	%FSR
0 °C to +70 °C	_		±0.09	%FSR
-55 °C to +125 °C	-		±0.12	%FSR
Bipolar Offset Error		1927	tistnoo	HEAR
+25 °C (Tech Note 1)	-	±0.02	±0.061	%FSR
0 °C to +70 °C	LEIRUS	XSD DI	±0.12	%FSR
-55 °C to +125 °C	-	- 90	±0.15	%FSR
Gain Error	ette	dilling 2	R henvi	Low-pa
+25 °C (See Tech Note 1)	-	±0.02	±0.061	%FSR
0 °C to +70 °C	2193	na Tada	±0.12	%FSR
-55 °C to +125 °C	- 1	stel n mo	±0.15	%FSR
Conversion Time		91	d nig-a	Small 1
+25 °C	-	-	2.4	μSec.
0 °C to +70 °C	-	-	2.4	μSec.
-55 °C to +125 °C	-	-	2.4	μSec.
No missing codes	44 98	arrois?	ean i	D
+25 °C	14	211-1111	-	Bits
0 °C to +70 °C -55 °C to +125 °C	13	-		Bits Bits
CONTRACTOR TO THE PERSON	12	UB Sash	MIR-OU	DILS
POWER REQUIREMENTS	8 14-bit)	reiginos	Aliguogo	ani 'neak
Power Supply Range	R CHRANGE	WEE-GU	A CONTRACTOR OF THE PARTY OF TH	and mide
+15V dc Supply	+14.25	+15	+15.75	Volts dc
-15V dc Supply	-14.25	-15	-15.75	Volts dc
+5V dc Supply	+4.75	+5	+5.25	Volts do
Supply Current				
+15V Supply		+20	+25	mA
-15V Supply	-	-20	-28	mA
+5V Supply ®	-	+65	+75	mA
Power Dissipation	-	925	1200	mW
Supply Rejection	-	-	±0.01	%FSR/%V
PHYSICAL/ENVIRONMENT	TAL	7.		
Operating Temperature				
Range	7			
—MC Models	0	-	+70	° C
MM Models	-55	_	+125	° C
Storage Temperature				
Range	-65	_	+150	° C
and a second	- 00		1100	
Package Type	24-	oin hermet	ically sea	led
3,1-			amic DIP	
Weight			2)oz.(gran	n) was
WEIGHT		0.42(1	2102.(yrar	11)

① + 5V power usage at 1 TTL logic loading per data output bit.

TECHNICAL NOTES

- Applications unaffected by endpoint errors or those that remove them through software will use the typical connections shown in Figure 2. The optional external circuitry of Figure 4 removes system errors or helps adjust the small initial errors of the ADC-914 to zero. The external adjustment circuit has no affect on the throughput rate. Table 1 shows how to select the input range.
- Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with a 4.7 μF, 25V tantalum electrolytic capacitor in parallel with a 0.1 μF ceramic capacitor. Bypass the +10V reference (pin 21) to ground (pin 23).

CALIBRATION

 Apply a pulse 200 nanoseconds minimum to the START CON-VERT input (pin 16) at a rate of 250 KHz. That rate is chosen to reduce flicker if LED's are used on the outputs for calilbration purposes.

Connect the converter per Figure 2, Figure 4, and Table 1 for the appropriate full scale range (FSR).

2. Zero Adjustments:

Apply a precision voltage reference source between the amplifier's signal input and analog ground. Use a very low-noise signal source for accurate calibration.

3. Full-Scale Adjustment:

Set the output of the voltage reference used in step 2 to the value shown in Table 4. Adjust the gain trimming potentiometer so that the output code flickers between 11 1111 1111 1111 1111.

To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in table 6.

Table 1. Input Connections

INPUT RANGE	INPUT PIN	JUMPER THESE PINS:
0 to -10V dc ±5V dc	Pin 19 Pin 19	Pin 20 to GROUND

Figure 2. Typical Input Connections for the ADC-914

Optional Calibration Circuit

* See Table 5 for R1 and R2 values.

Figure 4. Optional Calibration Circuit

Table 4. Zero and Gain Adjust

FSR	ZERO ADJUST +1/2 LSB	GAIN ADJUST +FS - 1 1/2 LSB
0 to +10V dc	+305 μV	-9.9991V dc
±5V dc	+305 μV	-4.9991V dc

Table 5. Input Ranges (using external calibration)

INPUT RANGE	R1 8	R2	UNIT
0 to +10V, +5V	2	2	K Ohms
0 to +5V, ±2.5V	1.65	4.99	K Ohms
0 to +2.5V, +1.25V	715	4990	Ohms

TIMING

Figure 3 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.

NOTE: NOT DRAWN TO SCALE

Figure 3. ADC-914 Timing Diagram

	STRAIGHT	BIN.			
UNIPOLAR SCALE	INPUT RANGES, V dc 0 to +10V	MSB	LSB	INPUT RANGE	BIPOLAR
+FS -1 LSB 7/8 FS 3/4 FS 1/2 FS 1/4 FS 1/8 FS	+9.99939V +8.7500V +7.5000V +5.0000V +2.5000V +1.2500V	1111 1111 1110 0000 1100 0000 1000 0000 0100 0000 0010 0000	0000 0000 0000	+4.99939V +3.7500V +2.5000V 0.0000V -2.5000V -3.7500V	+FS -1 LSB +3/4 FS +1/2 FS 0 -1/2 FS -3/4 FS
1 LSB 0	+0.00061V 0.0000V	0000 0000 0000 0000 OFF. BIN		-4.99939V -5.0000V	-FS +1 LSB -FS

Figure 5. ADC-914 FFT Analysis

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: Pins have a 0.025 inch, ±0.01 stand-off from case.

ORDERING INFORMATION

MODEL	TEMPERATURE RANGE	SEAL
ADC-914MC ADC-914MM	0 °C to +70 °C -55 °C to +125 °C	Hermetic Hermetic
00 00 10		

A receptacle for PC board mounting can be ordered through AMP Incorporated, #3-331272-8 (Component Lead Socket), 24 required.

For availability of MIL-STD-883 Versions, contact DATEL.

ADC-HC12B

12-Bit, Low-Power
A/D Converter

FEATURES

- Single supply operation 0 x 010 0
- · Automatic standby mode control
- · Low power consumption
- · Six input ranges
- · MIL temperature ranges available

GENERAL DESCRIPTION

The ADC-HC is a complete, 12-bit, low-power, analog-to-digital converter utilizing CMOS technology. This hybrid IC incorporates active laser trimming of highly stable thin-film resistors to provide module performance with IC price, size and reliability.

The device is ideal for portable and remote applications such as seismology, oceanography, meteorology, and pollution monitoring. Other key applications include military and aerospace, requiring wide operating temperature ranges and high reliability.

The ADC-HC converter can operate from either a single +9V dc to +15V dc power source (interrupt power mode) or from a $\pm9V$ dc to $\pm15V$ dc power source (continuous power mode) at a maximum conversion rate of 3.3 KHz.

A key feature of this unit when operating in the interrupt power mode is the extremely low quiescent power consumption (less than 10 μ A at 12V, 25°C).

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±0.01

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION /	PIN	FUNCTION
1	BIT 1 (MSB)	17	POWER MODE
2	BIT 1 (MSB)	18	V _{DD}
3	BIT 2	19	V _{SS}
4	BIT 3	20	REF OUT
5	BIT 4	21	START CONVERT
6	BIT 5	22	DITITAL COM.
7	BIT 6	23	ANALOG COM.
8	BIT 7	24	BIPOLAR OFFSET
9	BIT 8	25	SUM, JUNC.
10	BIT 9	26	10V INPUT
11	BIT 10	27	20V INPUT
12	BIT 11	28	GAIN ADJ.
13	BIT 12 (LSB)	29	ZERO TRIM
14	SERIAL OUT	30	ZERO ADJ (WIPER
15	CLOCK OUT	31	ZERO TRIM
16	E.O.C. (STATUS)	32	N.C.

ABSOLUTE MAXIMUM RATINGS

Positive Supply (V_{DD}) Negative Supply (V_{SS}) + 18V .. - 18V Analog Inputs . . + 25V Digital Inputs 0 to VDD

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, ±12V, unless otherwise noted.

INPUTS

Analog Input Ranges. unipolar

0 to +5V. 0 to +10V. 0 to +20V

Analog Input Ranges, bipolar Input Impedance

±2.5V, ±5V, ±10V 5K (0 to +5V, ±2.5V) 10K (0 to +10V, ±5V) 20K (0 to +20V, ±10V)

Start Convert, Interrupt Mode

Positive Pulse with duration of 50 microseconds minimum

Start Convert. Continuous Mode

Positive Pulse with duration of 5

VIL (Logic "0" VIH (Logic "1") Input Current

microseconds minimum 0.3 V_{DD} maximum 0.7 V_{DD} minimum

30 pA Input Capacitance 15 pF

OUTPUTS

Parallel Output Data

12 parallel lines of data, held until next

conversion command 0V, -2.0 mA

V_{OL} (Logic "0") V_{OH} (Logic "1") All Digital Outputs Coding, unipolar .

V_{DD}, +4.0 mA CMOS Compatible Straight Binary Offset Binary, 2's Complement NRZ successive decision pulses out

Coding, bipolar Serial Output MSB first, Straight Binary or Offset

Binary

Train of positive going (V_{DD}) Clock Output 25 microseconds pulses, 40 kHz E.O.C. (Status)

Conversion Status Signal, Logic "1" during reset and conversion, Logic "0" when conversion complete (data valid)

PERFORMANCE

12 Bits

± ½ LSB maximum ± ½ LSB maximum Nonlinearity **Differential Nonlinearity** Gain Error Adjust to zero Offset or Zero Error . . . Adjust to zero

±30 ppm/°C maximum ±20 ppm/°C of FSR maximum Gain Tempco Offset Tempco . ± 10 ppm/°C of FSR ± 2 ppm/°C of FSR Zero Tempco .

Diff. Nonlinearity Tempco . . No Missing Codes

Guaranteed over operating temperature range

Conversion Time 300 microseconds maximum **Throughput Time**

305 microseconds maximum continuous power mode 350 microseconds maximum interrupt

power mode

003%/% Supply Power Supply Rejection

POWER REQUIREMENTS

Continuous Power Mode

VDD . +9.0V to +15.0V -9.0V to -15.0V Interrupt Power Mode V_{DD} . . +9V to +15.0V

Power Consumption. Continuous Mode .

165 mW typical, 200 mW maximum Quiescent Mode 150 μW maximum, 15 μW typical

PHYSICAL/ENVIRONMENTAL

Operating Temperature

0 °C to +70 °C (BMC)

-55 °C to +125 °C (BMM, BMM-QL)

Storage Temperature Range -65°C to +150°C

Package Type Ceramic 0.010 x 0.018 inch Kovar Weight 0.5 ounces (14 g.)

TECHNICAL NOTES

- 1. The ADC-HC contains CMOS components and must be properly handled to prevent damage from static pick-up. Proper anti-static handling procedures should be observed including storage in conductive foam or shorting all pins together with aluminum foil. Do not connect in circuit under "power on" conditions. Digital signals should be applied after the converter's power has been turned on.
- 2. For single supply (+12V nominal) or dual supply (+12V nominal) operation, bypass the power input pins to ground with a 0.1 µF ceramic capacitor. It is not critical that the supplies be balanced.
- 3. Analog and digital grounds should be kept separate whenever possible to prevent digital signals from flowing in the analog ground circuit and inducing spurious analog signal noise. Analog Common (Pin 23) and Digital Ground (Pin 22) are not connected internally and must be tied together externally.
- 4. The ADC-HC can operate from either a single or dual supply. When using dual supplies, tie POWER MODE (Pin 17) to VDD (Pin 18). In this continuous power mode, an A/D conversion will take place when a 5 microseconds or greater positive going pulse is applied to START CONVERT (Pin 21). For single supply operation (interrupt power mode), tie Power Mode (Pin 17) to E.O.C. (Pin 16). When EOC goes low, the converter is switched to standby mode (power is disconnected to analog circuitry) and digital output data becomes valid and remains valid until next start pulse is applied. Upon receipt of a 50 microseconds minimum, 500 microseconds maximum pulse on START CONVERT (Pin 21), the converter will stabilize, make a complete conversion and return to standby mode.
- 5. Digital output codes are listed in coding tables. Parallel data is valid when EOC is in low state. This data can be transferred into latches during a logic "1" to logic "0" transition of the EOC line. Serial data out (Pin 14) is in NRZ (non-return to zero) format. This data is guaranteed valid in a 50 nanoseconds to 300 nanoseconds time frame after the positive edge of the clock. All digital inputs and outputs are CMOS compatible. See application notes for CMOS-TTL interface.
- 6. REF OUT (Pin 20) is a 6.3V +5% internal reference pin connection.
- 7. For zero or offset and gain adjustment, refer to connections and calibration notes. The trim pots should be located as close as possible to the converter to avoid noise pickup. Zero point is always adjusted first, followed by gain, the adjustment with analog input at the most positive end of analog range. The range of the OFFSET (ZERO) ADJ. is ± 15 mV. The range of GAIN ADJ. is 0.1% of full scale range can also be increased by decreasing the value of the series resistor (3.9 MΩ nominal). Potentiometer values are 10K and should be 100 ppm/°C ceramic type.

CONNECTIONS AND CALIBRATION ADC-HC TIMING DIAGRAM

CONNECTIONS DIAGRAM

MODE-SINGLE SUPPLY OPERATION

OUTPUT CODING

	INPUT VOLTA	AGE RANGE		COI	DING
		UNIPOLAR STRAIGHT BINA			T BINARY
	0 to +20V	0 to +10V	0 to +5V	MSB	LSB
+FS - 1 LSB +½FS +1 LSB ZERO	+ 19.9951 + 10.0000 + 0.0049 0.0000	+9.9976 +5.0000 +0.0024 0.0000	+4.9988 +2.5000 +0.0012 0.0000	1000 00	111 1111 000 0000 000 0001 000 0000

		BIPOLAR		OFFSET	BINARY*
	± 10V	± 5V	± 2.5V	MSB	LSB
+FS - 1 LSB +½FS +1 LSB ZERO -FS - 1 LSB -FS	+9.9951 +5.0000 +0.0049 0.0000 -9.9951 -10.0000	+4.9976 +2.5000 +0.0024 0.0000 -4.9976 -5.0000	+ 2.4988 + 1.2500 + 0.0012 0.0000 - 2.4988 - 2.5000	1100 00 1000 00 1000 00 0000 00	111 1111 000 0000 000 0001 000 0001 000 0001

*For 2's COMPLEMENT, MSB is inverted, use MSB (pin 1)

INPUT PIN CONNECTIONS

INPUT VOLTAGE RANGE	INPUT PIN	CONNECT THESE PINS TOGETHER
0 to +5V	26	23 to 24, 25 to 27
0 to +10V	26	23 to 24
0 to +20V	27	23 to 24
± 2.5V	26	24 to 25, 25 to 27
±5V	26	24 to 25
± 10V	27	24 to 25

CALIBRATION PROCEDURE

1. Connect the converter as shown in the Connection Diagram. Use the Input Pin Connections table for the desired input voltage range. Apply start conversion pulses to start pin.

2. Zero and Offset Adjustment

Apply a precision voltage reference source between the selected analog input range and ground. Adjust the output of the reference source to + 1/2 LSB. Adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 for unipolar and 1000 0000 0000 and 1000 0000 0001 for bipolar mode.

3. Full Scale Adjustment

Change the output of the precision reference source for +FS-11/2 LSB. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111.

4. For bipolar operation, the offset and Full Scale Adjustment are interactive. Repeat the offset and Full Scale Adjustment procedure as necessary until both points are set.

APPLICATIONS

ADC-HC INTERRUPT POWER MODE

ADC-HC CONTINUOUS POWER MODE

LOW POWER MICRO-PROCESSOR INTERFACE

EMS COMPONENTS .	MANUFACTURE	MODEL	DATA BITS	TYPE
OWER MICROPROCESSOR	RCA	CDP1802	8	CMOS
NVERTER	INTERSIL DATEL	IM6100 ADC-HC	12	CMOS

TTL-CMOS INTERFACE

CMOS and TTL logic are not compatible due to different threshold levels. They can, however, be interfaced by simple techniques.

The START CONVERT (Pin 21) can be driven directly from an open collector, high voltage TTL gate. Resistor Rx is used to source current and bring the TTL output up to the CMOS threshold level. Typical values of Rx are 3.3K to 10K ohms.

CMOS to TTL interface requires sufficient sink current in the low state. The CD4049 (inverting) and CD4050 (noninverting) buffers, powered from +5V logic supply can accept input voltage swings of +5 to +15V from the CMOS system. Each buffer gate can drive at least one input from any TTL family.

ORDERIN	INFORMATIO	N Mag Boat Joy
MODEL	TEMP. RANGE	SEAL
ADC-HC12BMC	0 to +70 °C	Hermetic
ADC-HC12BMM	-55 to +125 °C	Hermetic
ADC-HC12BMM-QL	-55 to +125 °C	Hermetic

ADC-HS12B

12-Bit A/D Converter With Sample-Hold

FEATURES

- · 12-Bit resolution
- Internal sample and hold
- 6 Microseconds acquisition time
- 9 Microseconds conversion time
- · Programmable input ranges
- · Parallel & serial outputs

GENERAL DESCRIPTION OF A MAN DESCRIPTION

The ADC-HS12B is a high performance 12-bit hybrid A/D converter with a self-contained sample-hold. It is specifically designed for systems applications where the sample-hold is an integral part of the conversion process. The internal sample-hold has a 6 microseconds acquisition time for a full 10V dc input change; the A/D converter has a fast 9 microseconds conversion time. Five input voltage ranges are programmable by external pin connection; 0 to +5V, 0 to+10V, ±2.5V, ±5V, and ±10V. Input impedance to the sample-hold is 100 megohms. Output coding is complementary binary for unipolar operation and complimentary offset binary for bipolar operation, with both parallel and serial outputs brought out.

The ADC-HS12B uses a fast 12-bit monolithic DAC which includes a precision zener reference source. The circuit also contains a fast monolithic 12-bit successive approximation register, a clock and a monolithic sample-hold.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ± 0.01"

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 OUT (LSB)	17.	CH WITHBORN
2	BIT 11 OUT	18	REF OUT
3	BIT 10 OUT	19	CLOCK OUT
4	BIT 9 OUT	20	E.O.C. (STATUS)
5	BIT 8 OUT	21	START CONVERT
6	BIT 7 OUT	22	COMPAR INPUT
7	BIT 6 OUT	23	BIPOLAR OFFSET
8	BIT 5 OUT	24	10V RANGE
9	BIT 4 OUT	25	20V RANGE
10	BIT 3 OUT	26	ANALOG COM
11	BIT 2 OUT	27	GAIN ADJ.
12	BIT 1 OUT (MSB)	28	+ 15V POWER
13	SERIAL DATA OUT	29	S.H. OUTPUT
14	SHORT CYCLE	30	ANALOG IN
15	DIGITAL COM	31	- 15V POWER
16	+5V POWER	32	SAMPLE CONTROL

Logic Supply Voltage, pin 16 . . . +5.5V Digital Input Voltage, pins 14, 21, 32 +5.5V Analog Input Voltage, pin 30 . . . ± 15V

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, ±15V and +5V supplies unless otherwise noted.

		11	
	W		

Sample Control Input Logic high = hold Logic low = sample Loading: 1 TTL load

OUTPUTS²

SAMPLE-HOLD PERFORMANCE³

CONVERTER PERFORMANCE

Resolution 12 bits (1 part in 4096)
Nonlinearity ±½ LSB max.
Differential Nonlinearity ± ½ LSB max.
Temp. Coefficient of Gain ±20 ppm/°C max.
Temp. Coefficient of Zero,
unipolar ±5 ppm/°C of FSR max.
Temp. Coefficient of Offset,
bipolar ±10 ppm/°C of FSR max.
Differential Nonlinearity
Tempco ±2 ppm/°C of FSR

Missing Codes ... None over oper temp. range Conversion Time ... 9 usec. max. Power Supply Rejection ... 0.004%/% max.

POWER REQUIREMENTS

Power Suppy Voltage + 15V dc \pm 0.5V at 20 mA - 15V dc \pm 0.5V at 25 mA + 5V dc \pm 0.25V at 85 mA

 Storage Temperature Range
 −65 °C to +150 °C

 Package Type
 32 pin ceramic

 Pins
 0.010 x 0.018 inch Kovar

 Weight
 0.5 ounce (14 grams)

FOOTNOTES:

- 1. For sample-hold input
- 2. All digital outputs can drive 2 TTL loads
- 3. For 1000 pF external hold capacitor

TECHNICAL NOTES

- 1. It is recommended that the $\pm 15V$ power input pins both be bypassed to ground with a 0.01 μF ceramic capacitor in parallel with a 1 μF electrolytic capacitor and the +5V power input pin be bypassed to ground with a 1 μF electrolytic capacitor as shown in the connection diagrams. In addition, pin 27 should be bypassed to ground with a 0.01 μF ceramic capacitor. These precautions will assure noise free operation of the converter.
- 2. Digital Common (pin 15) and Analog Common (pin 26) are not connected together internally, and therefore must be connected as directly as possible externally. It is recommended that a ground plane be run underneath the case between the two commons. Analog ground and ±15V power ground should be run to pin 26 whereas digital ground and +5V dc ground should be run to pin 15.
- 3. External adjustment of zero or offset and gain are provided for by trimming potentiometers connected as shown in the connection diagrams. The potentiometer values can be between 10K and 100K ohms and should be 100 ppm/ $^{\circ}\text{C}$, cermet types. The adjustment range is $\pm 0.5\%$ of FSR for zero or offset and $\pm 0.3\%$ for gain. The trimming pots should be located as close as possible to the converter to avoid noise pickup. Calibration of the ADC-HS12B is performed with the sample-hold connected and operating dynamically. This results in adjusting out the sample-hold errors along with the A/D converter. For slow throughput applications it is recommended that a 0.01 μF hold capacitor be used for best accuracy. With this value the acquisition time becomes 25 microseconds and the external timing must be adjusted accordingly.
- 4. The recommended timing shown in the Timing Diagram allows 6 microseconds for the sample-hold acquisition and then 1 microsecond after the sample-hold goes into the hold mode to allow for output settling before the A/D begins its conversion cycle.
- 5. Short cycled operation results in shorter conversion times where the conversion can be truncated to less than 12 bits. This is done by connecting pin 14 to the output bit following the last bit desired. For example, for an 8-bit conversion, pin 14 is connected to bit 9 output. Maximum conversion times are given for short-cycled conversions in the Table.
- 6. Note that output coding is complementary coding. For unipolar operation it is complementary binary and for bipolar operation it is complementary offset binary. In cases where bipolar coding of offset binary is required, this can be achieved by inverting the analog input to the converter (using an operational amplifier connected for gain of -1.0000). The

converter is then calibrated so that -FS analog input gives an output code of 0000 0000 0000, and +FS-1 LSB gives 1111 1111 1111.

- 7. These converters dissipate 1.81 watts maximum of power. The case to ambient thermal resistance is approximately 25°C per watt. For ambient temperatures above 50°C, care should be taken not to restrict air circulation in the vicinity of the converter.
- 8. These converters can be operated with an external clock. To accomplish this, a negative pulse train is applied to START

CONVERT (Pin 21). The rate of the external clock must be lower than the rate of the internal clock. The pulse width of the external clock should be between 100 nanoseconds and 300 nanoseconds. Each N bit conversion cycle requires a pulse train of N + 1 clock pulses for completion, e.g., an 8-bit conversion requires 9 clock pulses for completion. A continuous pulse train may be used for consecutive conversions, resulting in an N bit conversion every N + 1 pulses, or the E.O.C. output may be used to gate a continuous pulse train for single conversions.

UNIPOLAR OPERATION, 0 TO +10V

BIPOLAR OPERATION. +5V

CODING TABLES

UNIPOLAR OPERATION

INPUT RANGE			COMP RY CC	man died.
0 TO +10V	0 TO +5V	MSB	miluer	LSB
+9.9976V	+4.9988V	0000	0000	0000
+8.7500	+4.3750	0001	1111	1111
+7.5000	+3.7500	0011	1111	1111
+5.0000	+2.5000	0111	1111	1111
+2.5000	+1.2500	1011	1111	1111
+1.2500	+ 0.6250	1101	1111	1111
+0.0024	+0.0012	1111	1111	1110
0.0000	0.0000	1111	1111	1111

BIPOLAR OPERATION

INPUT	INPUT VOLTAGE RANGE			COMP ET BI	Nacional Contract
± 10V	±5V	± 2.5V	MSB	st ed b	LSB
+9.9951V	+4.9976V	+2.4988V	0000	0000	0000
+7.5000	+3.7500	+ 1.8750	0001	1111	1111
+5.0000	+2.5000	+1.2500	0011	1111	1111
0.0000	0.0000	0.0000	0111	1111	1111
-5.0000	-2.5000	-1.2500	1011	1111	1111
-7.5000	-3.7500	- 1.8750	1101	1111	1111
-9.9951	-4.9976	-2.4988	1111	1111	1110
-10.0000	-5.0000	-2.5000	1111	1111	1111

CALIBRATION PROCEDURE

 Connect the ADC-HS12B as shown in one of the connection diagrams. The sample-hold and A/D converter should be timed as shown in the timing diagram. The trigger pulse should be applied at a rate of 70 kHz or less and should be 100 nanoseconds minimum width.

2. Zero and Offset Adjustments

Apply a precision voltage reference source between the selected analog input and ground. Adjust the output of the reference source to the value shown in the Calibration Table for the unipolar zero adjustment (zero +½ LSB) or the bipolar offset adjustment (-FS+½ LSB). Adjust the trimming potentiometer so that the output code flickers equally between 1111 1111 1111 and 1111 1111 1110.

3. Full Scale Adjustment

Change the output of the precision voltage reference source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+FS – 1½ LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 0000 0000 0001 and 0000 00000 0000.

PIN 14 CONNECTION FOR SHORT CYCLE OPERATION

RES. (BITS)	PIN 14 TO	CONV. TIME
1	PIN 11	0.7 μsec.
2	PIN 10	1.3
3	PIN 9	2.0
4	PIN 8	2.6
5	PIN 7	3.3
6	PIN 6	4.0
7	PIN 5	4.6
8	PIN 4	5.3
9	PIN 3	6.0
10	PIN 2	6.6
11	PIN 1	7.3
12	PIN 16	9.0

INPUT CONNECTIONS

INPUT VOLTAGE RANGE	CON	NECT THESE TOGETHER	PINS
0 to +5V	29 & 24	22 & 25	23 & 26
0 to +10V	29 & 24	1011	23 & 26
± 2.5V	29 & 24	22 & 25	23 & 22
±5V	29 & 24	BUSINESS TO SELECT	23 & 22
± 10V	29 & 25	_=	23 & 22

CALIBRATION TABLE

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE
0 to +5V	ZERO GAIN	+ 0.6 mV + 4.9982V
0 to +10V	ZERO GAIN	+ 1.2 mV + 9.9963V
BIPOLAR RANGE		
± 2.5V	OFFSET GAIN	- 2.4994V + 2.4982V
±5V	OFFSET GAIN	-4.9988V +4.9963V
± 10V	OFFSET GAIN	- 9.9976V + 9.9927V

SHORT CYCLE OPERATION

ORDERING INFORMATION MODEL TEMP. RANGE ADC-HS12BMC 0 to +70 °C ADC-HS12BMM -55 to +125 °C ADC-HS12BMM-QL -55 to +125 °C

ADC-HX, ADC-HZ Series

12-Bit, Analog-to-Digital Converters

FEATURES

- · 12-Bit resolution
- · 8-or 20-Microseconds conversions
- 5 Input ranges
- · Internal high Z buffer
- Short-cycle operation

GENERAL DESCRIPTION

The ADC-HX12B and ADC-HZ12B are self-contained, high performance, 12-bit A/D converters manufactured with thick-and thin-film hybrid technology. They use the successive approximation conversion technique to achieve a 12-bit conversion in 20 and 8 microseconds respectively. Five input voltage ranges are programmable by external pin connection: 0 to +5V, 0 to +10V, ±2.5V, ±5V, and ±10V. An internal buffer amplifier is also provided for applications where 100 megohm input impedance is required.

These converters utilize a fast 12-bit monolithic DAC which includes a precision zener reference source. The circuit also contains a fast monolithic comparator, a monolithic 12-bit successive approximation register, a clock and a monolithic buffer amplifier. Nonlinearity is specified at $\pm ^{1}\!/_{2}$ LSB maximum.

Both models have identical operation except for conversion speed. They can be short-cycled to give faster conversion in lower resolution applications. Use of the internal buffer amplifier increases conversion time by 3 microseconds, the settling time of the amplifier. Output coding is complementary binary, complementary offset binary, or complementary two's complement. Serial data is also brought out. The package is a 32-pin ceramic case.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±0.01"

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 12 OUT (LSB)	17	CLOCK RATE
2	BIT 11 OUT	18	REF OUT
3	BIT 10 OUT	19	CLOCK OUT
4	BIT 9 OUT	20	E.O.C. (STATUS)
5	BIT 8 OUT	21	START CONVERT
6	BIT 7 OUT	22	COMPAR INPUT
7	BIT 6 OUT	23	BIPOLAR OFFSET
8	BIT 5 OUT	24	10V RANGE
9	BIT 4 OUT	25	20V RANGE
10	BIT 3 OUT	26	ANALOG COM
11	BIT 2 OUT	27	GAIN ADJ.
12	BIT 1 OUT (MSB)	28	+ 15V POWER
13	BIT 1 OUT (MSB)	29	BUFFER OUTPUT
14	SHORT CYCLE	30	BUFFER INPUT
15	DIGITAL COM	31	- 15V POWER
16	+5V POWER	32	SERIAL OUTPUT

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, ±15V and +5V supplies unless otherwise noted.

INPUTS	ADC-HX12B	ADC-HZ12B
Analog Input Ranges, unipolar Analog Input Ranges, bipolar Input Impedance	± 2.5V, ± 5V, =	± 10V FS , ± 2.5V)
Input Impedance with Buffer Input Bias Current of Buffer Input Overvoltage Start Conversion	125 nA typical, ± 15V 2V min. to 5.5V	max. positive ion of 100 nsec. all times <30
	next conversion Loading: 2 TTL	
OUTPUTS ¹	8 2 2 5 5	2 2 2 3
Daniel Outrat Data	40	

Parallel Output Data 12 parallel lines of data held until next conversion command. Vour ("0") ≤ +0.4V Vour ("1") ≥ +2.4V Coding, unipolar. Complementary Binary Complementary Offset Binary Complementary Two's Complementary Two's Complementary Two's Complementary Complementary offset Binary Complementary Two's C	OUTPUTS!	
Coding, unipolar. Complementary Binary Coding, bipolar. Complementary Offset Binary Complementary Two's Complement NRZ successive decision pulses out, MSB first. Compl. Binary or Compl. Offset Binary Coding End of Conversion (Status) Conversion status signal. Output is logic "1" during reset and conversion and logic "0" when conversion complete. Clock Output Train of positive going +5V 100 nsec. pulses. 600 kHz for ADC- HX12B and 1.5 MHz for ADC-		next conversion command. V_{OUT} ("0") $\leq +0.4V$
Serial Output Data	Coding, bipolar	Complementary Binary Complementary Offset Binary Complementary Two's
End of Conversion (Status) Conversion status sígnal. Output is logic "1" during reset and conversion and logic "0" when conversion complete. Clock Output Train of positive going +5V 100 nsec. pulses. 600 kHz for ADC-HX12B and 1.5 MHz for ADC-	Serial Output Data	NRZ successive decision pulses out, MSB first. Compl. Binary or
Clock Output	End of Conversion (Status)	Conversion status signal. Output is logic "1" during reset and conversion and logic "0" when
	Clock Output	Train of positive going +5V 100 nsec. pulses. 600 kHz for ADC- HX12B and 1.5 MHz for ADC-

PERFORMANCE

Resolution	12 bits (1 part in 4096)
Nonlinearity	± 1/2 LSB max.
Differential Nonlinearity	± ¾ LSB max.
Gain Error, before adjustment	+0.1%
Zero Error, unipolar, before adj	± 0.05% of FSR3
Offset Error, bipolar, before adj	± 0.1% of FSR3
Temp. Coeff. of Gain	± 20 ppm/°C max.
Temp. Coeff. of Zero, unipolar	±5 ppm/°C of FSR max.3
Temp. Coeff. of Offset, bipolar	± 10 ppm/°C of FSR max.3
Diff. Nonlinearity Tempco	±2 ppm/°C of FSR3
No Missing Codes	Over oper, temp, range
Conversion Time ² , 12 bits	20 μsec. max. 8.0 μsec. max.
10 bits4	15 μsec. max. 6.0 μsec. max.
8 bits4	10 μsec. max. 4.0 μsec. max.
Buffer Settling Time, 10V step	3.0 µsec. to 0.01%
Power Supply Rejection	0.004%/% Supply max.

POWER REQUIREMENTS

1 HUICHUS 1 VAN	somes and	ı
Power Supply Voltage	+ 15V dc ± 0.5V dc at 20 mA - 15V dc ± 0.5V dc at 25 mA + 5V dc ± 0.25V dc at 85 mA	

PHYSICAL/ENVIRONMENTAL

Operating Temperature Range	
Storage Temperature Range	1.700 x 1.100 x 0.160 inches
Pins	0.010 x 0.018 inch Kovar

FOOTNOTES:

- 1. All digital outputs can drive 2 TTL loads.
- Without buffer amplifier used. ADC-HZ12B may require external adjustment of clock rate.
- FSR is full scale range and is 10V for 0 to +10V or ±5V input and 20V for +10V input.
- 4. Short cycled operation.

TECHNICAL NOTES

- 1. It is recommended that the ± 15 V power input pins both be bypassed to ground with a 0.01 μ F ceramic capacitor in parallel with a 1 μ F electrolytic capacitor and the ± 5 V power input pin be bypassed to ground with a 10 μ F electrolytic capacitor as shown in the connection diagrams. In addition, pin 27 should be bypassed to ground with a 0.01 μ F ceramic capacitor. These precautions will assure noise free operation of the converter.
- Digital Common (pin 15) and Analog Common (pin 26) are not connected together internally, and therefore must be connected as directly as possible externally. It is recommended that a ground plane be run underneath the case between the two commons. Analog ground and ±15V power ground should be run to pin 26 whereas digital ground and +5V dc ground should be run to pin 15.
- 3. External adjustment of zero or offset and gain are provided for by trimming potentiometers connected as shown in the connection diagrams. The potentiometer values can be between 10K and 100K ohms and should be 100 ppm/°C cermet types. The adjustment range is ±0.2% of FSR for zero or offset and ±0.3% for gain. The trimming pots should be located as close as possible to the converter to avoid noise pickup. In some cases, for example 8 bit short-cycled operation, external adjustment may not be necessary.
- 4. Short-cycled operation results in shorter conversion times where the conversion can be truncated to less than 12 bits. This is done by connecting pin 14 to the output bit following the last bit desired. For example, for an 8-bit conversion, pin 14 is connected to bit 9 output. Maximum conversion times are given for short-cycled conversions of 8 or 10 bits. In these two cases the clock rate is also speeded up by connecting the clock rate adjust (pin 17) to +5V dc (10 bits) or +15V dc (8 bits). The clock rate should not be arbitrarily speeded up to exceed the maximum conversion rate at a given resolution, however, or missing codes will result.

- These converters dissipate 1.7 watts maximum of power. The
 case to ambient thermal resistance is approximately 25°C
 per watt. For ambient temperatures above 50°C, care should
 be taken not to restrict air circulation in the vicinity of the
 converter.
- 7. These converters can be operated with an external clock. To accomplish this, a negative pulse train is applied to START CONVERT (Pin 21). The rate of the external clock must be lower than the rate of the internal clock as adjusted (see clock rate adjustment diagram) for the converter resolution selected. The pulse width of the external clock should be between 100 nanoseconds and 300 nanoseconds. Each N-bit conversion cycle requires a pulse train of N + 1 clock pulses for completion, e.g., an 8-bit conversion requires 9 clock pulses for completion. A continuous pulse train may be used for consecutive conversions, resulting in an N-bit conversion every N + 1 pulses, or the E.O.C. output may be used to gate a continuous pulse train for single conversions.
- 8. When the input buffer amplifier is used, a delay equal to its settling time must be allowed between the input level change, such as a multiplexer channel change, and the negative-going edge of the START CONVERSION pulse. If the buffer is not required, its input (pin 30) should be tied to ANALOG GROUND (pin 26). This prevents the unused amplifier from introducing noise into the converter. For applications not using the internal buffer, the converter must be driven from a source with an extremely low input impedance.

Imp	UT C	Our	ecuro	י בלוו

INPUT	WITHOUT BUFFER			WITH BUFFER				
VOLT. RANGE	VOLT.	INPUT PIN	CONNECT THESE PINS TOGETHER		INPUT PIN		NNECT THE	
0 to +5V 0 to +10V	24 24	22 & 25	23 & 26 23 & 26	30 30	22 & 25	23 & 26	29 & 24	
± 2.5V ± 5V	24 24	22 & 25	23 & 22 23 & 22	30	22 & 25	23 & 22	29 & 24	
± 10V	25	_	23 & 22	30	-	23 & 22	29 & 25	

CALIBRATION PROCEDURE

 Connect the converter for bipolar or unipolar operation. Use the input connection table for the desired input voltage range and input impedance. Apply Start Convert pulses of 100 nanoseconds minimum duration to pin 21. The spacing of the pulses should be no less than the maximum conversion time.

2. Zero and Offset Adjustments

Apply a precision voltage reference source between the selected analog input and ground. Adjust the output of the reference source to the value shown in the Calibration Table for the unipolar zero adjustment (zero + $\frac{1}{2}$ LSB) or the bipolar offset adjustment (-FS+ $\frac{1}{2}$ LSB). Adjust the trimming potentiometer so that the output code flickers equally between 1111 1111 1111 and 1111 11110.

3. Full Scale Adjustment

Change the output of the precision voltage reference source to the value shown in the Calibration Table for the unipolar or bipolar gain adjustment (+FS-11/2LSB). Adjust the gain trimming potentiometer so that the output code flickers equally between 0000 0000 0001 and 0000 0000 0000.

TIMING DIAGRAM OPERATING PERIODS

ADC-HX12B ADC-HZ12B

 T_1 20 μsec. 8.0 μsec. T_2 1.56 μsec. 0.56 μsec.

TIMING DIAGRAM FOR ADC-HX12B, ADC-HZ12B OUTPUT: 101010101010

Calibration Table

UNIPOLAR RANGE	ADJUST.	INPUT VOLTAGE	
0 to +5V	ZERO GAIN	+ 0.6 mV + 4.9982V	
0 to +10V	ZERO GAIN	+ 1.2 mV + 9.9963V	
BIPOLAR RANGE	WASHING LINES	TOTAL POLICE	
± 2.5V	OFFSET GAIN	-2.4994V +2.4982V	
±5V 848 08	OFFSET GAIN	- 4.9988V + 4.9963V	
± 10V-	OFFSET	- 9.9976V	

Coding Table, Unipolar Operation

	INPUT RANGE		INPUT RANGE C BINAR		
1	0 TO +10V	0 TO +5V	MSB	LSB	
1	+9.9976V	+4.9988V	0000	0000 0000	
4	+8.7500	+4.3750	0001	1111 1111	
9	+7.5000	+3.7500	0011	1111 1111	
4	+5.0000	+ 2.5000	0111	1111 1111	
10	+ 2.5000	+1.2500	1011	1111 1111	
	+1.2500	+ 0.6250	1101	1111 1111	
9	+ 0 0024	+0.0012	1111	1111 1110	
st	0.0000	0.0000	1111	1111 1111	

Coding Table, Bipolar Operation

INPUT VOLTAGE RANGE		COMP. OFFSET BINARY		COMP. TWO'S COMPLEMENT			
± 10V	± 5V	2.5V	MSB	LSB	MSB		LSB
+9 9951V	+ 4 9976V	+ 2.4988V		0000 0000	1000	0000	0000
+7 5000	+ 3.7500	+ 1.8750		1111 1111	1001		1111
+ 5 0000	+ 2 5000	+1 2500	0011	1111 1111	1011	1111	1111
0.0000	0 0000	0 0000	0111	1111 1111	1111	1111	1111
- 5 0000	- 2 5000	- 1 2500	1011	1111 1111	0011	1111	1111
- 7 5000	- 3 7500	- 1 8750	1101	1111 1111	0101	11111	1111
- 9 9951	- 4 9976	- 2 4988	1111	1111 1110	0111	1111	1110
- 10 0000	- 5,0000	- 2 5000	1111	1111 1111	0111	1111	1111

BIPOLAR OPERATION, -5V TO +5V

UNIPOLAR OPERATION, 0 TO +10V

ORDERING INFORMATION

MODEL	TEMP. RANGE	SEAL
ADC-HX12BGC	0 to +70 °C	Ероху
ADC-HX12BMC	0 to +70 °C	Hermetic
ADC-HX12BMM	-55 to +125 °C	Hermetic
ADC-HX/883B	-55 to +125 °C	Hermetic
ADC-HZ12BGC	0 to +70 °C	Ероху
ADC-HZ12BMC	0 to +70 °C	Hermetic
ADC-HZ12BMM	-55 to +125 °C	Hermetic
ADC-HZ/883B	-55 to +125 °C	Hermetic
IL-STD-883B units awing Number 596		r DESC

D/A CONVERTERS

Model	Resolution (Bits)	Settling Time	Linearity Error	Power (Watts)	Case	Page
DAC-HF8	8	25 ns	±1/2 LSB	0.750	24-Pin DIP	3-1
DAC-HF10	10	25 ns	±1/2 LSB	0.900	24-Pin DIP	3-1
DAC-HF12	12	50 ns	±1/2 LSB	0.900	24-Pin DIP	3-1
DAC-HK12	12	3 µs	±1/2LSB	0.700	24-Pin DIP	3-5
DAC-HZ12	12	3 µs	±1/2 LSB	0.390	24-Pin DIP	3-13
DAC-HP16	16	15 µs	±0.003% FSR	0.600	24-Pin DIP	3-9

		Settling	

Contact DATEL for your Data Acquisition component needs.

Dial 1-800-233-2765 for Applications Assistance

DAC-HF Series Ultra-Fast D/A Converters

FEATURES to the converter, directly to 11 STURES

- · 8-, 10-, 12-Bit resolution
- Settling times to 25 nanoseconds
- · 20 ppm/°C tempco on toennoo vd ameldorg good bearing
- Unipolar or bipolar operation
- · Current output and Music and to down as abuton blunds
- Internal feedback resistor

GENERAL DESCRIPTION

The DAC-HF Series of hybrid DAC's are ultra high-speed, current output devices. They incorporate state-of-the-art performance in a miniature package, achieving maximum output settling times of 25 nanoseconds for the 8- and 10-bit models and 50 nanoseconds for the 12-bit model. They can be used to drive a resistor load directly for up to \pm 1V output or a fast operational amplifier (such as DATEL's AM-500) for higher voltage outputs with sub-microsecond settling times. A tapped feedback resistor and a bipolar offset resistor are included internally to give five programmable output voltage ranges with an external operational amplifier.

The DAC-HF design combines proven hybrid production techniques with advanced circuit design to realize high speed current switching. The design incorporates fast PNP current switches driving a low impedance R-2R thin-film ladder network. The nichrome thin-film resistor network is deposited by electron beam evaporation on a low capacitance substrate to assure high-speed performance. The resistors are then functionally trimmed by laser for optimum linearity.

NOTE: FOR DAC-HF10B PINS 11 & 12 ARE NO CONNECTION FOR DAC-HF8B PINS 9, 10, 11 & 12 ARE NO CONNECTION

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±0.01"

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION .	PIN	FUNCTION
1	BIT 1 IN (MSB)	13	GROUND
2	BIT 2 IN	14	GROUND
3	BIT 3 IN SO S.O.	15	GROUND
4	BIT 4 IN	16	REF. IN
5	BIT 5 IN	17	20 V RANGE
6	BIT 6 IN	18	OUTPUT
7	BIT 7 IN	19	10 V RANGE
8	BIT 8 IN	20	BIPOLAR OFFSET
9	BIT 9 IN	21	REF. OUT
10	BIT 10 IN	22	-15 VDC
11	BIT 11 IN	23	GROUND
12	BIT 12 IN (LSB)	24	+15 VDC

ABSOLUTE MAXIMUM RATINGS, ALL MODELS

Positive Supply, Pin 24 + 18V Negative Supply, Pin 22 - 18V Digital Input Voltage, Pins 1 to 12 . . + 15V

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, ±15V supplies unless otherwise specified.

DESCRIPTION	8B	10B	12B
INPUTS		NI CONTRACTOR	
Resolution, Bits Coding, Unipolar Output Coding, Bipolar Output Input Logic Level, Bit ON ("1") Input Logic Level, Bit OFF ("0")	8 Straight Bi Offset Bina +2.0 to + 0V to +0.8	10 nary try 5.5V at +40 3V at 2.6 m/	12 ΟμΑ
OUTPUTS			
Output Current Range, Unipolar Output Current Range, Bipolar Output Voltage Compliance Output Voltage Ranges² Output Resistance Output Capacitance Output Leakage Current, All Bits OFF	±2.5 mA ±1.2V 0 to -5V 0 to -10V ±2.5V ±5V ±10V 400 ohms ±		
PERFORMANCE		19.47	
Differential Linearity Error, Max TMN to TMAX Monotonicity Gain Tempco, max. Offset Tempco, Bipolar, max. Zero Tempco, max. Settling Time, nsec. max. Power Supply Sensitivity	0.024%	over oper. tel °C °C of F.S.R. /°C of F.S.R 25 Supply	mp. range
POWER REQUIREMENTS			
Supply Voltage	± 15V dc : 35mA 15mA	± 0.5V 40mA 15mA	45mA 15mA
PHYSICAL/ENVIRONMENTAL			
Operating Temperature Range Storage Temperature Range Package Type	24-Pin Cer 0.010 × 0	amic DIP .018 inch Ko	
FOOTNOTES: 1. Full scale current change to 1 LSB v 2. With External Operational Amplifier.	with 400Ω load.	TIS A	

TECHNICAL NOTES

- Proper operation of the DAC-HF series converters is dependent on good board layout and connection practices. Bypass supplies as shown in the connection diagrams. Mount bypass capacitors close to the converter, directly to the supply pins where possible.
- 2. Use of a ground plane is particularly important in high speed D to A converters as it reduces high frequency noise and aids in decoupling the digital inputs from the analog output. Avoid ground loop problems by connecting all grounds on the board to the ground plane. The remainder of the ground plane should include as much of the circuit board as possible.
- When the converter is configured for voltage output with an external operational amplifier, keep the leads from the converter to the output amplifier as short as possible.
- 4. The high speed current switching technique used in the DAC-HF series inherently reduces the amplitude and duration of large transient spikes at the output ("glitches"). The most severe glitches occur at half-scale, the major carry transition from 011 ... 1 to 100 ... 0 or vice versa. At this time, a skewing of the input codes can create a transition state code of 111 ... 1. The duration of the "transition state code" is dependent on the degree of skewing but its effect is dependent on the speed of the DAC (an ultra-fast DAC will respond to these brief spurious inputs to a greater degree than a slow DAC). Minimize the effects of input skewing by using a high-speed input register to match input switching times. The input register recommended for use with the DAC-HF is easily implemented with two Texas Instruments SN74S174 hex Dtype flip-flops. This register will reduce glitches to a very low level and ensure fast output settling times.
- 5. Test the DAC-HF using a low capacitance test probe (such as a 10X probe). Take care to assure the shortest possible connection between probe ground and circuit ground. Long probe ground leads may pick up environmental E.M.I. causing artifacts on the scope display, i.e., signals that do not originate at the unit under test.
- 6. Passive components used with the DAC-HF may be as indicated here: 0.1 μF and 1 μF bypass capacitors should be ceramic type and tantalum type respectively; the 400 Ω output load is a 0.1% 10 ppm/°C metal film type; adjustment potentiometers are ceremet types: other resistors may be \pm 10% carbon composition types.
- 7. Output voltage compliance is ±1.2V to preserve the linearity of the converter. In the bipolar mode, the DAC-HF can be operated with no load to give an output voltage of ±1.0V. In the unipolar mode, the load resistance must be less than 600Ω to give less than +1.2V output. The specified output currents of 0 to +5 mA and ±2.5 mA are measured into a short circuit or an operational amplifier summing junction.

CONNECTION AND CALIBRATION

UNIPOLAR CURRENT OUTPUT CONNECTIONS

UNIPOLAR CURRENT OUTPUT CALIBRATION PROCEDURE

- 1. Connect the converter as shown in the connection diagram.
- Set all inputs low and adjust the ZERO ADJUST potentiometer for a reading of 0V at the output.
- Set all inputs high and adjust the GAIN ADJUST potentiometer for a reading of F.S. + 1 LSB (given in the coding table for 12-bit units).

BIPOLAR CURRENT OUTPUT CONNECTIONS

BIPOLAR CURRENT OUTPUT CALIBRATION PROCEDURE

- 1. Connect the converter as shown in the connection diagram.
- Set all inputs low and adjust the OFFSET ADJUST potentiometer for an output reading of +F.S., (given in the coding table for 12-bit units).
- 3. Set all inputs high and adjust the GAIN ADJUST potentiometer for an output reading of -F.S. +1 LSB, (given in the coding table for 12-bit units).

CODING TABLES UNIPOLAR OUTPUT

UNIPOLAR	INPUT CODING	ANALOG OUTPUT			
SCALE	STRAIGHT BINARY	0 to +1V F.S	0 to -5V F.S	0 to -10V F.S	
-F.S. +1 LSB	1111 1111 1111	+0.9998V	-4.9988V	-9.9976V	
- ¾ F.S.	1100 0000 0000	+0.7500V	-3.7500V	-7.5000V	
- ½ F.S.	1000 0000 0000	+0.5000V	-2.5000V	-5.0000V	
- 1/4 F.S.	0100 0000 0000	+0.2500V	-1.2500V	-2.5000V	
-1 LSB	0000 0000 0001	+0.0002V	-0.0012V	-0.0024V	
0	0000 0000 0000	+0.0000V	+0.0000V	0.0000V	

BIPOLAR OUTPUT

BIPOLAR	INPUT CODING	ANALOG OUTPUT			
SCALE	OFFSET BINARY	±0.5V F.S.	±2.5V F.S.	±5V F.S.	± 10V F.S.
-F.S. +1LSB	1111 1111 1111	+0.4998V	-2.4988V	-4.9976V	-9.9951V
- ½ F.S.	1100 0000 0000	+0.1250V	-1.2500V	-2.5000V	-5.0000V
-1 LSB	1000 0000 0001	+0.0002V	-0.0012V	-0.0024V	-0.0049V
0	1000 0000 0000	V0000.0	0.0000V	0.0000V	0.0000V
+ 1/2 F.S.	0100 0000 0000	-0.1250V	+1.2500V	+2.500V	+5.0000\
+F.S 1LSB	0000 0000 0001	-0.4998V	+2.4988V	+4.9976V	+9.9951
+ F.S.	0000 0000 0000	-0.5000V	+2.5000V	+5.0000V	+10.0000V

PROGRAMMABLE OUTPUT RANGE PIN CONNECTIONS

OUTPUT VOLTAGE RANGE	FEEDBACK CONNECTION	CONNECT THESE PINS TOGETHER
0 to -5V	PIN 19	PIN 17 to PIN 18 PIN 20 to PIN 23
0 to -10V	PIN 19	PIN 20 to PIN 23
± 2.5V	PIN 19	PIN 17 to PIN 18 PIN 20 to PIN 18
± 5V	PIN 19	PIN 20 to PIN 18
± 10V	PIN 17	PIN 20 to PIN 18

In all programmable output ranges pin 18 connects to external operational amplifier inverting input

APPLICATIONS

UNIPOLAR ULTRA-FAST VOLTAGE OUTPUT

VOLTAGE OUTPUT WAVEFORMS

DAC-HF with AM-500, ±5V output full scale (10V) step

HIGH SPEED INPUT REGISTER

UNIPOLAR FAST VOLTAGE OUTPUT CIRCUIT

EQUIVALENT OUTPUT CIRCUIT

CODING TABLES

V0085	V0002:0 +	0100 0000 0010	.B.7 MA
V9700 0-		DERING INFORMAT	ION 88
A0000 0 +		0000 0000 0000	
		OPERATING	
	MODEL	TEMP. RANGE	SEAL
D.	O LIFORNIO	14 100001 7000	
	C-HF8BMC	0 to +70 °C	Hermetic
	AC-HF8BMM AC-HF8/883B	-55 to +125 °C	Hermetic
USTUO DOJ	W-110/003B	-55 to +125 °C	Hermetic
the state of the s	C-HF10BMC	0 to +70 °C	Hermetic
	C-HF10BMM	-55 to +125 °C	Hermetic
	C-HF10/883B	-55 to +125 °C	Hermetic
12V - 0.0024			
00000 DA	C-HF12BMC	0 to +70 °C	Hermetic
	C-HF12BMM	-55 to +125 °C	Hermetic
	C-HF12/883B	-55 to +125 °C	Hermetic
MARIO D. L. SANDO			

3-4

DAC-HK Series 12-Bit Hybrid DAC's with Input Register

FEATURES

- · 12-Bit resolution
- · 20 ppm/°C Tempco
- · Input register
- · 2 Coding options
- Fast settling time

GENERAL DESCRIPTION

The DAC-HK Series hybrid D/A converters are high performance 12-bit devices with a fast settling voltage output. They incorporate a level controlled input storage register and are specifically designed for systems applications such as data bus interfacing with computers. When the "load" input is high, data in the storage register is held and when the load input is low, date is transferred through to the DAC. There are two basic models available by coding option: binary, and two's complement. The output voltage ranges are externally pin-programmable and include: 0 to +2.5V, 0 to +5V, 0 to +10V, ±2.5V, ±5V, and ±10V.

The DAC-HK Series contains a precision zener reference circuit. This eliminates code-dependent ground currents by routing current from the positive supply to the internal ground node a determined by the R-2R ladder network. The internal feedback resistors for the on-board amplifier track the ladder network resistors, enhancing temperature performance. The excellent tracking of the resistors results in a differential nonlinearity tempco of 2 ppm/°C maximum. The temperature coefficient of gain is 20 ppm/°C maximum and tempco of zero is ±3 ppm/°C maximum.

NOTE: Pins have a 0.025 inch, ±0.01 stand-off from case.

REF. GAIN BIP. OUT ADJUST OFFSET +Vs -Vs +5V (22) (14) (13) 19) 20V BANGE **★** 5K 5K D/A CONVERTER 18 10V RANGE SUM. JUNCTION +5V 15) OUTPUT STROBE (6) REGISTER REGISTER REGISTER 74LS75 74LS75 (21) GND 5678 9000

(LSB)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
10	BIT 1 IN (MSB)	13	+5 VDC
2	BIT 2 IN	14	-15 VDC
3	BIT 3 IN	15	OUTPUT
4	BIT 4 IN	16	LOAD
5	BIT 5 IN	17	BIPOLAR OFF.
6	BIT 6 IN	18	10 V RANGE
7	BIT 7 IN	19	20 V RANGE
8	BIT 8 IN	20	SUM. JUNCTION
9	BIT 9 IN	21	GROUND
10	BIT 10 IN	22	+15 VDC
11	BIT 11 IN	23	GAIN ADJ.
12	BIT 12 IN (LSB)	24	REF. OUT

RIT

(MSB)

ABSOLUTE MAXIMUM RATINGS DAC-HK12B

+5.25V 1-12 & 16 . +5.5V Output Current, pin 15

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, ±15V and +5V supplies unless otherwise noted.

INPUIS	
Resolution	Str
Input Logic Level, bit ON	IW
("1")	+ 2

raight Binary fset Binary o's Complement1 2.0V to +5.5V

bits

Input Logic Level, bit OFF ("0") Load Input²

0V to + 0.8V1 LSTTL load High ("1") = hold data Low ("0") = transfer data

Load Input Loading 3 LSTTL loads

OUTPUT

Output Voltage Ranges³, 0 to +10V Output Voltage Ranges³, bipolar Output Current

Output Impedance

± 2.5V ±5V ± 10V ± 5 mA min. 0.05 ohm

PERFORMANCE

Linearity Error, max..... ± 1/2 LSB Differential Linearity Error, ± 3/4 LSB ±0.1% Zero Error, before trimming ... ± 0.05% Gain Tempco, max..... + 20 ppm/°C Zero Tempco, unipolar, ±5 ppm/°C of FSR Offset Tempco, bipolar, ± 10 ppm/°C of FSR

max. . . Monotonicity .

±2 ppm/°C of FSR Guaranteed over oper, temp, range

Settling Time, 5V change Settling Time, 10V change . . . 3 µsec Settling Time, 20V change . . . 4 µsec 800 nsec 20V/usec Power Supply Rejection +0.002% FSR/%

POWER REQUIREMENTS

+ 15V dc \pm 0.5V dc at 10 mA - 15V dc \pm 0.5V dc at 25 mA + 5V dc \pm 0.25V dc at 35 mA Power Supply Voltage ± 12V dc, +5V operation4

PHYSICAL/ENVIRONMENTAL

0°C to +70°C (BGC, BMC) Operating Temperature Range . -55 °C to +125 °C (BMM/883B) -65°C to +125°C Storage Temperature Range .

24-pin Ceramic DIP Package Type 0.010 x 0.018 inch Kovar 0.2 ounces (6 grams)

FOOTNOTES:

- 1. For two's complement coding order the model described under ordering information.
- 2. Logic levels are the same as for data inputs.
- 3. By external pin connection.
- 4. For ± 12V dc, +5V dc operation, contact factory.

TECHNICAL NOTES

- 1. It is recommended that these converters be operated with local supply bypass capacitors of 1 µF (tantalum type) at the +15, -15, and +5V supply pins. The capacitors should be connected as close to the pins as possible. In high RFI noise environments these capacitors should be shunted with 0.01 μF ceramic capacitors.
- 2. The analog, digital, and power grounds should be separated from each other as close as possible to pin 21 where they all must come together.
- 3. The "load" control pin is a level triggered input which causes the register to hold data with a high input and transfer data to the DAC with a low input.
- 4. A setup time of 50 nanoseconds minimum must be allowed for the input data. The DAC output voltage begins to change when the register output changes.
- 5. The external gain adjustment shown in the Connection Diagrams has a range of $\pm 0.2\%$ of full scale. If a wider range is desired the 18-Megohm resistor can be decreased slightly in value. The full-scale output is typically accurate within ±0.1% with no adjustment. The zero, or offset, adjustment has a range of $\pm 0.35\%$ of FS.
- 6. If the reference output terminal (pin 24) is used, an operational amplifier in non-inverting mode should be used as a buffer. Current drawn from pin 24 should be limited to ±10 μA in order not to affect the T.C. of the reference.

TIMING DIAGRAM

CONNECTION DIAGRAMS

OUTPUT RANGE SELECTION

RANGE	CONNECT	THESE PINS	TOGETHE
±10 V	15 & 19	17 & 20	madneton
±5 V	15 & 18	17 & 20	luiper at
±2.5 V	15 & 18	17 & 20	19 & 20
+10 V	15 & 18	17 & 21	O HALIO
+5 V	15 & 18	17 & 21	19 & 20

CODING TABLES

UNIPOLAR OPERATION

STRAIGHT BINARY	OUTPUT RANGES		
MSB LSB	0 to +10V	0 to +5V	
1111 1111 1111	+9.9976	+4.9988	
1100 0000 0000	+7.5000	+3.7500	
1000 0000 0000	+5.0000	+ 2.5000	
0100 0000 0000	+2.5000	+1.2500	
0000 0000 0001	+0.0024	+0.0012	
0000 0000 0000	0.0000	0.0000	

BIPOLAR OPERATION

OFFSET BINARY		TWO's COMPLEMENT		OU.	TPUT RANGE	ES
MSB	LSB	MSB	LSB	± 10V	± 5V	± 2.5V
1111 11	11 1111	0111 111	1 1111	+9.9951	+4.9976	+ 2.4988
1100 000	00 0000	0100 000	0 0000	+5.0000	+2.5000	+1.2500
1000 000	0000 0000	0000 000	0 0000	0.0000	0.0000	0.0000
0100 000	00000	1100 000	0 0000	-5.0000	-2.5000	- 1.2500
0000 000	00 0001	1000 000	0 0001	-9.9951	-4.9976	-2.498
0000 000	00 0000	1000 000	0 0000	- 10.0000	-5.0000	-2.500

APPLICATIONS

INTERFACING TO ≥ 12 BIT DATA BUS

CALIBRATION PROCEDURE

Select the desired output voltage range and connect the converter up as shown in the Output Range Selection Table and the Connection Diagrams. Refer to the Coding Tables.

UNIPOLAR OPERATION

- Zero Adjustment. Set the input digital code to 0000 0000 0000 and adjust the ZERO ADJ. potentiometer to give 0.0000V output.
- Gain Adjustment. Set the input digital code to 1111 1111 1111 (straight binary) and adjust the GAIN ADJ. potentiometer to give the full-scale output voltage shown in the Coding Table.

BIPOLAR OPERATION

- Offset Adjustment. Set the digital input code to 0000 0000 0000 (offset binary) or 1000 0000 0000 (two's complement) and adjust the OFFSET ADJ. potentiometer to give the negative full-scale output voltage shown in the Coding Table.
- Gain Adjustment. Set the digital input code to 1111 1111 1111 (offset binary) or a 0111 1111 1111 (two's complement) and adjust the GAIN ADJ. potentiometer to give the positive full-scale output voltage shown in the Coding Table.

INTERFACING TO 8 BIT DATA BUS

ORDERING INFORMATION

MODEL NO.	OPERATING TEMP. RANGE	SEAL	
Binary Coding			
DAC-HK12BGC	0 to +70 °C	Epoxy	
DAC-HK12BMC	0 to +70 °C	Herm.	
DAC-HK12BMM	-55 to +125 °C	Herm.	
DAC-HKB/883B	-55 to +125 °C	Herm.	
2's Complement Co	ding		
DAC-HK12BGC-2	0 to +70 °C	Epoxy	
DAC-HK12BMC-2	0 to +70 °C	Herm.	
DAC-HK12BMM-2	-55 to +125 °C	Herm.	
DAC-HKB-2/883B	-55 to +125 °C	Herm.	

The MIL-STD-883B units are available under DESC Drawing Number 5962-89528.

DAC-HP16B

16-Bit, Micro-electronic Digital-to-Analog Converter

FEATURES a crolloages effT eniq ylqqua Vat - bns Vat 4

- · 16-Bit binary model does driv lettered or beau ad bluoda
- Voltage outputs the based fluoris and fluo prival narky.
- 15 ppm/°C Maximum gain tempco of bas distingly polising
- Linearity to \pm 0.003% at small plants before an external value and all the external data at last the external data at last the external data.

GENERAL DESCRIPTION

The DAC-HP series are high resolution hybrid D/A converters with voltage output. They are self-contained, including a low tempco zener reference circuit and output operational amplifier, all in a miniature 24-pin double spaced ceramic DIP package. The DAC-HP16B has 16-bit binary resolution with $\pm 0.003\%$ linearity. Input coding is complementary binary and complementary offset binary for the DAC-HP16B. This device operates in both unipolar and bipolar modes with output voltages of 0 to ± 100 dc and ± 50 dc respectively. Binary versions with a bipolar output voltage range of ± 100 dc are available, denoted by the suffix "-1" after the model designation.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±0.01"

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 IN (MSB)	13 -	BIT 13 IN
2	BIT 2 IN	14	BIT 14 IN
3	BIT 3 IN	15	BIT 15 IN
4	BIT 4 IN	16	BIT 16-IN (LSB)
5	BIT 5 IN	1.7	OUTPUT
6	BIT 6 IN	18	BIPOLAR OFF
7	BIT 7 IN	19	-15VDC
8	BIT 8 IN	20	GROUND
9	BIT 9 IN	21	SUM JUNCTION
10	BIT 10 IN	22	GAIN ADJ
11	BIT 11 IN	23	+15VDC
12	BIT 12 IN	24	REF OUT

ABSOLUTE MAXIMUM RATINGS

Positive Supply, pin 23 + 18V

Negative Supply, pin 19 . . . - 18V

Digital Input Voltage, pins 1-16 + 5.5V

Output Current, pin 17 . . . ± 20 mA

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, and ±15V supplies unless otherwise noted.

INPUTS

OUTPUTS

 Output Voltage Range, Unipolar²
 0 to +10V

 Output Voltage Range, Bipolar
 ±5V

 Output Voltage Range, "-1"Suffix
 ±10V

 Output Current, min.6
 ±5 mA

 Output Impedance
 0.05 ohm

PERFORMANCE

POWER REQUIREMENTS

(Quiescent, all bits high) + 15V dc, \pm 0.5V dc at 20 mA - 15V dc, \pm 0.5V dc at 25 mA \pm 12V dc operation⁷

PHYSICAL/ENVIRONMENTAL

 Operating Temperature Range
 0°C to +70°C (BMC, BGC)

 -55°C to +125°C (BMM, 883B)

 Storage Temperature Range
 -65°C to +150°C

 Package Type
 24 pin ceramic

 Pins
 0.010 x 0.018 inch diameter Kovar

 Weight
 0.2 ounces (6 grams)

FOOTNOTES:

- 1. Drive from TTL output with only the DAC-HP as load.
- 2. Unipolar output range for suffix "-1" models, 0 to +10V, is reached at $\frac{1}{2}$ scale input.
- For all models except DAC-HP16BGC.
- 4. FSR is 0 to +FS or -FS to +FS voltage.
- 5. To 0.005% FSR.
- 6. Pin 17.
- 7. For ± 12V dc operation, consult factory.

TECHNICAL NOTES

- 1. It is recommended that these converters be operated with local supply bypass capacitors of 1 μ F (tantalum type) at the +15V and -15V supply pins. The capacitors should be connected as close to the pins as possible. In high frequency noise environments an additional 0.01 μ F ceramic capacitor should be used in parallel with each tantalum bypass.
- When laying out the circuit board for this device, isolate the analog, digital, and power grounds as much as possible from each other before joining them at pin 20.
- 3. The external gain adjustment shown in the diagrams gives an adjustment of $\pm 0.2\%$ of full-scale range. The converters are internally trimmed to $\pm 0.1\%$ at full scale. A wider range of adjustment may be achieved by decreasing the value of the the 510 Kohm resistor.
- The zero adjustment, or offset adjustment, has an adjustment range of ± 0.35% of full-scale range. The unipolar zero is internally set to zero within ± 0.1% of full-scale range.
- 5. If the reference output (pin 24) is used, it must be buffered by an operational amplifier in the noninverting mode. Current drawn from pin 24 should be limited to \pm 10 μ A in order that the temperature coefficient of the reference circuit not be affected. This is sufficient current for the bias current of most of the popular operational amplifier types.

CALIBRATION PROCEDURE

For bipolar operation connect Bipolar Offset (pin 18) to Summing Junction (pin 21). For unipolar operation connect Bipolar Offset (pin 18) to Ground (pin 20). In making the following adjustments, refer to the coding tables.

- Zero Adjusment. Set the input digital code to 1111 1111 1111 1111 and adjust the ZERO ADJ. potentiometer to give 0.00000V output unipolar or -FS bipolar operation.
- Gain Adjustment. Set the input digital code to 0000 0000 0000 0000 (complementary binary) and adjust the GAIN ADJ. potentiometer to give +9.99985V output unipolar or +FS - 1 LSB output bipolar operation.

OFFSET AND GAIN ADJUST

CONNECTION AND CALIBRATION

CODING TABLES BIPOLAR OUTPUT — Complementary Offset Binary

INPUT CO	DE	1875 Sec. 19	OUTPUT	OUTPUT VOLTAGE
MSB	LSB	SCALE	VOLTAGE	SUFFIX "-1" MODELS
0000 0000 00	00 0000	+FS-1LSB	+4.99985V	+ 9.99969V
0011 1111 11	11 1111	+ 1/2FS	+2.50000	+5.00000
0111 1111 11	11 1111	0	0.00000	0.00000
1011 1111 11	11 1111	- 1/2FS	-2.50000	-5.00000
1111 1111 11	11 1110	-FS+1LSB	-4.99985	- 9.99969
1111 1111 11	11 1111	-FS	-5.00000V	- 10.0000V

UNIPOLAR OUTPUT — Complementary Binary

	NPUT	CODE			OUTPUT
MSB			LSB	SCALE	VOLTAGE
0000	0000	0000	0000	+FS-1LSB	+9.99985V
0011	1111	1111	1111	+ 3/4 FS	+7.50000
0111	1111	1111	1111	+ 1/2 FS	+5.00000
1011	1111	1111	1111	+ 1/4 FS	+2.50000
1111	1111	1111	1110	+1 LSB	+ 153 μV
1111	1111	1111	1111	DOLLE O MANA	0

APPLICATION

011521111	IG INFORMATION	
MODEL NO.	OPERATING TEMP. RANGE	SEAL
DAC-HP16BMC DAC-HP16BMM DAC-HPB/883B DAC-HP16BMC-1 DAC-HP16BMM-1 DAC-HPB-1/883B	0 to +70 °C -55 to +125 °C -55 to +125 °C 0 to +70 °C -55 to +125 °C -55 to +125 °C	Herm. Herm. Herm. Herm. Herm.
DAC-HP16BGC-1 DAC-HP16BGC	0 to +70 °C 0 to +70 °C	Ероху

The MIL-STD-883B units are available under DESC Drawing Number 5962-89531.

CONNECTION AND CALIBRATION

SUPPLIX "- +" MODELS			
	+ WFS	TITL STEE	

Contact DATEL for your

Data Acquisition component
needs.

Dial
1-800-233-2765
for
Applications Assistance

FEATURES

- · 12-Bit binary
- 5 Output ranges
- · 3 Microseconds settling time
- · Internal reference and output amplifier
- · High performance

GENERAL DESCRIPTION

The DAC-HZ Series are high performance, hybrid 12-bit binary digital-to-analog converters. These converters are manufactured using thin- and thick-film technology. They are complete and self-contained with a precision internal reference and fast output operational amplifier. Pinprogrammable output voltage ranges are provided for a high degree of application flexibility; the output voltage ranges are 0 to ±5V dc, 0 to +10V dc, ±2.5V dc, —5V dc, and ±10V dc. Current output is also provided.

The DAC-HZ Series contains a precision zener reference circuit. This eliminates code-dependent ground currents by routing current from the positive supply to the internal ground node as determined by the R-2R ladder network. The internal feedback resistors for the on-board amplifier track the ladder network resisters, enhancing temperature performance. The excellent tracking of the resistors results in a differential nonlinearity tempco of 2 ppm/°C maximum. The temperature coefficient of gain is 20 ppm/°C maximum and tempco of zero is ±3 ppm/°C maximum.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 1 IN	13	NO CONNECTION
2	BIT 2 IN	14	-15V dc
3	BIT 3 IN	15	VOLT. OUT
4	BIT 4 IN	16	REFERENCE IN
5	BIT 5 IN	17	BIPOLAR OFFSET
6	BIT 6 IN	18	10V RANGE
7	BIT 7 IN	19	20V RANGE
8	BIT 8 IN	20	CURRENT OUT
9	BIT 9 IN	21	GROUND
10	BIT 10 IN	22	+15V dc
11	BIT 11 IN	23	GAIN ADJUST
12	BIT 12 IN	24	REFERENCE OUT

FUNCTIONAL SPECIFICATIONS Typical at 25°C and ±15V supplies unless otherwise noted.

INPUTS	DAC-HZ12B (Binary)	DAC-HZ12D (BCD)
Resolution	Comp. Binary	3 BCD Digits Comp. BCD
Input Logic Level, bit ON ("0")	0V to +0.8	√ at −1 mA
Input Logic Level, bit OFF ("1")	+2.4V to +5.	5V at +40 μA
Logic Loading OUTPUTS	A THE	load
Output Current, unipolar	0 to -2 mA, ±20%	0 to -1.25 mA, ±10
Output Current, bipolar	±1 mA, ±20% ±2.5V	
Voltage Compliance, lout Output Impedance, lout,	12.3V	
unipolar	5 k ohms	
Output Impedance, lout,		
bipolar	2.8 k ohms	-
unipolar	0V to + 5V	0 to + 2.5V
umpoidi	0V to + 10V	0 to +5V
		0 to +10V
Output Voltage Ranges,		
bipolar	±2.5V	million torper
	±5V +10V	- Chan
Output Current, Vout	T.0.	5 60 70
Output Impedance, Vout	0.05 ohm	tree to
PERFORMANCE		
Voltage Output Nonlinearity Differential Nonlinearity Gain Error, before trimming Gain Tempco, max. Zero Tempco, unipolar, max. Cero Tempco, unipolar, max.	±½ LSB max. ±¾ LSB max. ±0.1% of FSR¹ ±0.05% of FSR¹ ±20 ppm/°C	±¼ LSB max. ±¼ LSB max.
Zero Tempco, unipolar, max	±3 ppm/°C of FSR1	
Diff. Nonlinearity Tempco,	±10 ppill/ C oi r3h	ija .
max	±2 ppm/°C of FSR1	
Monotonicity	Over oper, temp, range	
Setting Time, lout to ½ LSB ² .	300 nsec.	20,000
Settling Time, Vout to ½ LSB Slew Rate		
Power Supply Rejection		1 *
POWER REQUIREMENTS		
Power Supply Voltage		V dc at 10 mA V dc at 16 mA
Гермотом	±12V dc c	operation4
PHYSICAL/ENVIRONMENTAL		
Operating Temperature	BITZIN 14	9
	0°C to	+70°C
REFERENCE IN	and -55°C	
DA T D	-65°C to	
	1.300×0.800	
Package Size		ramic DIP
Package Size		
Package Size Package Type	Kovar 0.010 ×	
Package Size Package Type Pins Weight	Kovar 0.010 × 0.22 ounces	
Package Size Package Type Pins Weight *Specifications same as first coli	Kovar 0.010 × 0.22 ounces	(63 grams)
Package Size. Package Type Pins Weight. *Specifications same as first coli	Kovar 0.010 × 0.22 ounces	(63 grams)

TECHNICAL NOTES

- The DAC-HZ12 series converters are designed and factory calibrated to give ±½ LSB linearity (binary version) with respect to a straight line between end points. This means that if zero and full scale are exactly adjusted externally, the relative accuracy will be ±½ LSB everywhere over the full output range without any additional adjustments.
- These converters must be operated with local supply by-pass capacitors from +15V to ground and -15V to ground. Tantalum type capacitors of 1 μF are recommended and should be mounted as close as possible to the converter. If the converters are used in a high frequency noise environment a 0.01 μF ceramic capacitor should be used across each tantalum capacitor.
- 3. When operating in the current output mode the equivalent internal current source of 2 mA must drive both the internal source resistances and the external load resistor. A 300 nanosecond output settling time is achieved for the voltage across a 100 ohm load resistor; for higher value resistors the settling time becomes longer due to the output capacitance of the converter. For fastest possible voltage output for a large transition, an external fast settling amplifier such as DATEL's AM-500 should be used in the inverting mode. Settling time of less than 1 microsecond can be achieved. See application diagram.

CALIBRATION PROCEDURE

- Select the desired output range and connect the converter up as shown in the Output Range Selection table and the Standard Connection diagrams.
- 2. To calibrate, refer to the Coding Tables. Note that complementary coding is used.
- 3. Zero and Offset Adjustments

For unipolar operation set all digital inputs to "1" (+2.0 to +5.5V) and adjust the ZERO ADJ. potentiometer for zero output voltage or current. For bipolar operation set all digital inputs to "1" and adjust the OFFSET ADJ. potentiometer for the negative full scale (for voltage out) or positive full scale (for current out) output value shown in the Coding Table.

4. Gain Adjustment

Set all digital inputs to "0" (0V to +0.8V) and adjust the GAIN ADJ. potentiometer for the positive full scale (for voltage out) or negative full scale (for current out) output value shown in the Coding Table.

OUTPUT RANGE SELECTION

BIN. RANGE	CONNE	CT THESE	PINS TO	GETHER
±10V	15 & 19	17 & 20	_	16 & 24
±5V	15 & 18	17 & 20	_	16 & 24
±2.5V	15 & 18	17 & 20	19 & 20	16 & 24
+10V	15 & 18	17 & 21	>	16 & 24
+5V	15 & 18	17 & 21	19 & 20	16 & 24
±1 mA	1	17 & 20		16 & 24
-2 mA	-	17 & 21	_	16 & 24

VOLTAGE OUTPUT IS AT PIN 15. CURRENT OUTPUT IS AT PIN 20.

4. For ±12V dc operation, contact factory.

UNIPOLAR OUTPUT - COMPLEMENTARY BINARY

BINARY INPUT CODE		UNIPOLAR OUTPUT RANGES			
MSB		LSB	0 TO +10V	0 TO +5V	0 TO -2 mA
0000	0000	0000	+ 9.9976V	+4.9988V	- 1.9995 mA
0011	1111	1111	+ 7.5000	+ 3.7500	- 1.5000
0111	1111	1111	+5.0000	+ 2.5000	- 1.0000
1011	1111	1111	+ 2.5000	+ 1.2500	-0.5000
1111	1111	1110	+0.0024	+0.0012	- 0.0005
1111	1111	1111	0.0000	0.0000	0.0000

BIPOLAR OUTPUT — COMPLEMENTARY OFFSET BINARY

INPUT CODE				BIPOLAR OUTPUT RANGES				
MSB		LSB	± 10V	± 5V	± 2.5V	±1 mA		
0000	0000	0000	+9.9951V	+4.9976V	+2.4988V	-0.9995 mA		
0011	1111	1111	+5.0000	+ 2.5000	+ 1.2500	-0.5000		
0111	1111	1111	0.0000	0.0000	0.0000	0.0000		
1011	1111	1111	-5.0000	-2.5000	-1.2500	+ 0.5000		
1111	1111	1110	-9.9951	-4.9976	-2.4988	+ 0.9995		
1111	1111	1111	-10.0000	-5.0000	-2.5000	+ 1.0000		

EQUIVALENT CURRENT MODE OUTPUT CIRCUIT

USE OF HIGH SPEED EXTERNAL OP AMP FOR FASTER SETTLING

PRECISION, LOW COST BASE LINE RAMP GENERATOR

DAC-HZB/883B

THIS CIRCUIT DEVELOPS A HIGHLY LINEAR (.01%)
OUTPUT VOLTAGE RAMP FROM 0 TO -10V. THE RAMP
CAN BE MADE AS SLOW AS DESIRED WITHOUT
AFFECTING LINEARITY BY SETTING THE PULSE
RATE OF THE TIMING CIRCUIT TO THE PROPER
VALUE THE OUTPUT RAMP IS GENERATED IN DISCRETE STEPS OF .024% FS (4096 STEPS FOR

Herm.

Herm.

MODEL NO.	OPERATING TEMP. RANGE	SEAL
DAC-HZ12BGC	0 to +70 °C	Ероху
DAC-HZ12BMC	0 to +70 °C	Herm.
DAC-HZ12BMM	-55 to +125 °C	Herm.
DAC-HZ12DGC	0 to +70 °C	Ероху
DAC-HZDMC	0 to +70 °C	Herm.
DAC-HZ12DMM	-55 to +125 °C	Herm.

-55 to +125 °C

ORDERING INFORMATION

DAC-HZ12DMM-QL -55 to +125 °C

SAMPLE HOLD AMPLIFIERS

	Model	Linearity (%)	Acquisition Time	Aperture Delay	Aperture Jitter	Bandwidth (MHz)	Hold Mode Droop	Case	Page
	SHM-HU	0.1	25 ns	6 ns	10 ps	50	50 μV/μs	24-Pin DIP	4-23
	SHM-7	0.1	40 ns	3 ns	10 ps	40	100 μV/μs	24-Pin DIP	4-17
	SHM 40	0.1	40 ns	3 ns	10 ps	40	100 μV/μs	24-Pin DIP	4-5
	SHM-6	0.02	2 µs	20 ns	2 ns	5	10 μV/μs	32-Pin DIP	4-15
New	SHM-43	0.01	35 ns	5 ns	1 ps	150	5 μV/μs	24-Pin DIP	4-7
Preliminary	SHM-49	0.01	140 ns	6 ns	15 ps	16	1 μV/μs	8-Pin DIP	4-25
	SHM-45	0.01	200 ns	6 ns	±50 ps	16	0.5 μV/μs	24-Pin DIP	4-11
	SHM-4860	0.01	200 ns	6 ns	±50 ps	16	0.5 μV/μs	24-Pin DIP	4-13
	SHM-30	0.01	500 ns	-25 ns	0.1 ns	4.5	0.01 μV/μs	14-Pin DIP	4-3
	SHM-20	0.01	1 µs	30 ns	1 ns	2	0.8 μV/μs	14-Pin DIP	4-1
I TELL	SHM-91	0.003	2 µs	15 ns	300 ps	06/11(2)	5 μV/μs	24-Pin DIP	4-19
New	SHM-945	0.0004	500 ns	5ns	10 ps	12	0.5 μV/μs	24-Pin DIP	4-21
Advanced	MSH-840*	0.01	750 ns	6 ns	±1 ns	1	1 μV/μs	32-Pin DIP	4-27

^{*} QUAD Simultaneous Sample-Hold with 4-Channel Multiplexer

For Immediate Assistance, Dial 1-800-233-2765 (808) JETARI 1-8000 AM, bishenda Managaran Cabo Barran Lettag

	Conta	ct DATE	L for vo	ur ags		
		quisition				
	Daia AC	needs	SUG			

Dial
1-800-233-2765
for
Applications Assistance

SHM-20

High-Speed, 0.01% Monolithic Sample-hold

FEATURES

- · Internal hold capacitor
- 1 Microsecond acquisition time
- · 1 Nanosecond aperture uncertainty
- · 0.01% Accuracy
- · 0.08 MicroV/microsecond droop rate
- · Differential inputs

GENERAL DESCRIPTION

DATEL's SHM-20 is a low-cost, complete monolithic sample-hold amplifier which includes an internal 100 pF MOS hold capacitor. Primarily designed for high-speed analog signal processing applications, the SHM-20 features a typical acquisition time of 1.0 microsecond for a 10V input step to 0.01%. Aperture uncertainty is typically 1 nanosecond and droop rate is as low as 0.08 $\mu V/microsecond$.

MECHANICAL DIMENSIONS INCHES (MM) MAX.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	- INPUT
2	+ INPUT
3	OFFSET ADJUST
4	OFFSET ADJUST
5	-V _S #8TMEME
6	REFERENCE GROUND
7	OUTPUT
8	INTEGRATOR COMPENSATION
9	+VS JATHERMON
10	NO CONNECTION
11	EXTERNAL HOLD CAPACITOR
12	NO CONNECTION
13	SUPPLY VOLTAGE GROUND
14	S/H CONTROL

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	/ TO V
I	Differential Input Voltage	±24V
l	Digital Input Voltage, Pin 14	
١	Output Current, Continuous1	±20 mA

FUNCTIONAL SPECIFICATIONS

Typical at +25 °C, \pm 15V dc, using internal hold capacitor, unless otherwise noted

nput Voltage Range ² , min	
nput Impedance, min.	
nput Capacitance, max.	
nput Offset Voltage, max.	
nput Offset Voltage Drift, maxnput Bias Current, max	200 πΔ
nput Offset Current, max.	
DIGITAL INPUTS ²	
Logic Level High, Vin ("1") min.,	
Hold Modeogic Level Low, Vin ("0"), max,	2.0V
Sample Mode	V8.0
ligh Level Inut Current, max	
ow Level Input Current, max.	10 μΑ
DUTPUT	
Output Voltage Range ² , min	
Output Impedance, Hold Mode ²	
PERFORMANCE	
Accuracy	0.01%
OC Gain, min.	
Gain Accuracy ⁴	
Gain Error Tempco	±0.6 ppm/ °C
Gain Bandwidth Product5	2 MHz
fold Mode Feedthrough,	
10V P-P, 100 KHz ²	
Proop Rate	
Proop Rate ²	
Pedestal Error9	
Total Output Noise, DC to 10 MHz, max	
Power Supply Rejection Ratio min.	
+VS	
-VS	65 dB
DYNAMIC CHARACTERISTICS	
Acquisition Time, 10V to 0.1%	0.8115
10V to 0.01%	
Aperture Delay Time	30 nS
Aperture Uncertainty Time	
Aperture Time	
Hold Mode Settling Time, 0.01%2	
Rise Time	
Slew Rate ⁷	
POWER REQUIREMENTS8	
Positive Supply, Pin 9	
PHYSICAL/ENVIRONMENTAL	
Operating Temp. Range	
Storage Temp. Range	

- 3. Cannot tolerate even a momentary short circuit to ground or either supply.
- 4. Voltage gain = +1
- Voltage gain = +1, load resistance = 1 kΩ, load capacitance = 50 pF, output voltage = 100 mV P-P.
- 6. Input voltage = 0V, digital input voltage = 3.5V.
- Output voltage = 10V step.
- A power supply voltage as low as ±12V may be used. However, this will cause some degradation in performance.
- 9. For CH = 100 pF. For CH = 1000 pF Pedestal Error is 0.1 mV. For CH = 0.01 μ F Pedestal Error is 0.01 mV.

TECHNICAL NOTES

- A printed circuit board with ground plane is recommended for best performance. The supply pins (pins 5, 9) should be bypassed to ground with a 0.01 to 0.1 μF ceramic capacitor as close to the pins as possible.
- If an external hold capacitor (CH) is connected to pins 7 and 11, then a noise bandwidth capacitor with a value of 10% of the value of the external hold capacitor should be connected from pin 8 to signal ground, pin 6. Exact value and type are not critical.
- 3. The Hold Capacitor (CH) should have high insulation resistance and low dielectric absorption to minimize droop error. For operating temperatures up to +70 °C, polystyrene dielectric is a good choice. Any PC connections to the hold capacitor terminal (pin 11) should be kept short and "guarded" by the ground plane to avoid errors due to drift currents from nearby signal lines or power supply voltages.
- 4. The offset adjust may be used to eliminate the pedestal error by connecting a 10 K ohm pot between pins 3 and 4 and connecting the wiper to the -15V supply, pin 5.

ORDERING INFORMATION

OPERATING TEMP. RANGE

SHM-20C 0 to +70 °C

SHM-30C

Very High-Speed 0.01% Monolithic Sample-Hold

FEATURES

- 500 nS Acquisition time to 0.01%
- Droop rate of 0.01 μV/μS
- Internal hold capacitor
- 90/V μS Slew rate
- Low 0.5 mV offset voltage

GENERAL DESCRIPTION STREET OF THE VOLUME

DATEL's SHM-30C is a complete monolithic sample-hold amplifier which includes an internal 90 pF MOS hold capacitor. Primarily designed to be used in precision, high speed data acquisition applications, the SHM-30C features an acquisition time of 500 nS typical to 0.01%, and a droop rate of 0.01 $\mu V/\mu S$, Other salient features of the SHM-30C include an aperture uncertainty time of 0.1 nS, a slew rate of 90 $V/\mu S$, and a fully differential input.

The SHM-30C is composed of an input amplifier designed to deliver large amounts of current, a low leakage switch, and an integrator. The low pedestal error of 0.5 mV can be trimmed to zero with a single potentiometer for demanding applications.

The SHM-30C is packaged in a 14-pin ceramic DIP and operates over the temperature of 0°C to +70°C.

Pinout for SHM-30

ABSOLUTE MAXIMUM RATINGS

Voltage			PWR/SIG	GND	+20V	
Voltage	between	V- and	PWR/SIG	GND	-20V	
Differen	tial Input	Voltage			+24V	
Digital I	nput Volt	age			+8V to -6V	
Output	Current,	Continu	ous1		+17 mA	

FUNCTIONAL SPECIFICATIONS

Typical at 25 °C range unless otherwise noted.

ANALOG INPUT	
Input Voltage Range, min Input Impedance, min Input Capacitance Input Offset Voltage, max. Input Offset Voltage Drift, max. Input Bias Current, max. Input Offset Current, max.	±10V 5MΩ 3 pF 1.5 mV 10 μV/ ℃ ±300 nA 300 nA
DIGITAL INPUTS	
Logic Level High, V _{IN} ("1"), min. Logic Level Low, V _{IN} ("0"), max. High Level Input Current, max. Low Level Input Current, max.	2.0V 0.8V 40 μA 40 μA
OUTPUT	
Output Voltage Range, min. Output Current, min. Output Impedance, Hold Mode	±10V ±10 mA 0.2 ohm
PERFORMANCE	D.VI.
DC Gain Gain Bandwidth Products Hold Mode Feedthrough, 20V pk-pk, 100 KHz Droop Rate Over Full Temp Range, max. Pedestal Error4 Total Output Noise, DC to 4 MHz, Sample Mode Hold Mode Power Supply Rejection Ratio, min.6 Common Mode Rejection Ratio ² , min.	2 x 10° V/V 4.5 MHz -88 dB 0.01 µV/µS 10 µV/µS 0.5 mV 230 µVRMS 190 µVRMS 86 dB 86 dB
DYNAMIC CHARACTERISTICS	
Acquisition Time 10V to 0.1% over full temp. range, max. 10V to 0.01% over full temp. range, max. Aperture Delay Time Aperture Uncertainty Time Aperture Time Hold Mode Settling Time, 0.01%, max Rise Time ³ Overshoot ³ Slew Rate ⁵	350 nS 500 nS 500 nS 900 nS -25 nS 0.1 nS 20 nS 200 nS 70 nS 10% 900/ µS

POWER REQUIREMENTS	
Positive Supply, max. (Pin 10) Negative Supply, max. (Pin 5)	+15V @ 24 mA -15V @ 25 mA
PHYSICAL/ENVIRONMENTAL	ATURES
Operating Temperature Range Storage Temperature Range Package Type	0 °C to +70 °C -55 °C to +150 °C 14-pin, Cerdip

Notes:

- Internal power dissipation may limit output power below +17 mA
- 2. VcM= ±10V dc
- 3. Vo = 200 mV pk-pk, RL = 2K, CL = 50 pF
- Vin = 0V; S/H control signal 3.5V with 20 nS rise time from 0V to 3.5V
- 5. Vo = 20V Step, RL = 2K, CL = 50 pF
- Based on a three volt delta in each supply, i.e. 15V = ±1.5V dc

TECHNICAL NOTES

- A printed circuit board with ground plane is recommended for optimum performance. Bypass capacitors (0.01 to 0.1 μF ceramic) should be provided from each power supply terminal to the PWR GND terminal on Pin 11.
- 2. The internal hold capacitor is 90 pF MOS.
- The output circuit is not short-circuit protected. Only momentary short-circuits to ground are permissable.

MECHANICAL DIMENSIONS

INCHES (mm) MIN. INCHES (mm) MAX.

ORDERING INFORMATION
SHM-30C 0 to +70 °C

SHM-40

Video Speed Sample-Hold

FEATURES

- 40 nSec Acquisition time
- Dual outputs
- 10 pSec Aperture uncertainty
- · 40 MHz bandwidth
- · 30 mA Output current

GENERAL DESCRIPTION

DATEL's SHM-40 is an ultra-fast sample and hold designed for high speed analog signal processing applications. The SHM-40 acquires a 2V input change to 0.1% in only 40 nSec and aperture uncertainty time is less than 10 pSec. sample-mode bandwidth is 40 MHz.

The SHM-40 is a complete sample-hold, containing an input buffer amplifier, a precision 53 pF MOS holding capacitor, and two output buffer amplifiers. The sampling switch is controlled by a series 10,000 complementary ECL input. An ECL differential line driver can be conveniently used for the sample control inputs.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±0.01"

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	SAMPLE	13	POWER COM.
2	N.C.	14	ANALOG COM.
3	SAMPLE	15	POWER COM.
4	N.C.	16	OUTPUT 2
5	N.C.	17	ANALOG COM.
6	N.C.	18	OUTPUT 1
7	N.C.	19	+ 15VDC
8	N.C.	20	ANALOG COM.
9	- 15VDC	21	INPUT COM.
10	N.C.	22	ANALOG INPUT
11	POWER COM.	23	N.C.
12	POWER COM.	24	N.C.

ORDERING INFORMATION

MODEL NO.

OPERATING TEMP. RANGE

SHM-40MC SHM-40MM 0 to +70 °C -55 to +125 °C

ABSOLUTE MAXIMUM RATINGS

Positive Supply	-0.5V dc to +18V dc
Negative Supply	
Digital Input Voltage	-5.0V dc to +5.0V dc
Analog Input Voltage	-5.0V dc to +5.0V dc

FUNCTIONAL SPECIFICATIONS

The following specifications apply over the full operating temperature range and power supply range unless otherwise specified.

DESCRIPTION	MIN.	TYPICAL	MAX.	UNITS
INPUTS	(20),31	0		
Input Voltage Range	±2.5	13.	-	Vdc
Input Bias Current Input Impedance	100K	±30 1M	±100	μA Ω
Max Source Impedance ^① Sample Control	BAVO El. =1	111	50	Ω
Inputs ^②	-	114	-	-
OUTPUTS				
Output Voltage				
Range	±2.5	1 + 1	-	Vdc
Output Current ³ Output Impedance ³	±30	±60	-	mA
Output Impedance (3)	8	13	20	Ω
PERFORMANCE		des L	138738	
Linearity	808.8	.1%	.2%	% of FS
Gain	+0.980	+0.993	+1.0	-
Gain Tempco Sample to Hold	-60	-20	+20	ppm/°(
Offset Error Sample Mode Offset	-	±15	±50	mV
Voltage	-	±10	±50	mV
Volt Drift	HEIL C	±25	±100	μV/°C
Volt Drift	10N_ P	PRICE IN	-	-
SHM-40MC	-	±143	±714	μV/°C
SHM-40MM	-	±56	±278	μV/°C
Hold Mode		A N.C.		- 10
Feedthrough	-	-66	-60	dB
Hold Mode Droop	_	211	-	-
at 25°C	-	20	100	μV/μS
at 125° C	-	500	2500	μV/μS
3.00.0	COM	POWER		
DYNAMIC CHARACTER	ISTICS	season 2		
Acquisition Time				
2V to 0.1%	-	-	40	nS
2V to 1.0%	-	-	25	nS
4V to 0.1%	-	-	50	nS
4V to 1.0%	M DM	3	35	nS nS
Time Hold Mode Settling	7.0%	10	-	pS
Time	OA	20	40	nS
Bandwidth, -3dB	25	40	-	MHz

FUNCTIONAL SPECIFICATIONS (continued)

DESCRIPTION	MIN.	TYPICAL	MAX.	UNITS
POWER SUPPLY REQUI	REMEN	NTS		Spiritary : 120
Supply Voltage Range ±V Power Supply	±14.5	±15	±15.5	Vdc
Rej. Ratio	-20	-30	гро-А а	dB
±15V dc	MID IS	60 60	80 80	mA mA
Power Dissipation		1.8	2.4	Watts
PHYSICAL/ENVIRONME	NTAL	monus i	uquu	Am 06
Thermal Resistance Junction to Case Case to Ambient Operating Temp. Range	ĪKO	.030 .035	BOTTN	°C/mW °C/mW
SHM-40MC	0°	+25°	+70°	°C
SHM-40MM	-55°	+25°	+125°	°C
Storage Temp	-65°	+25°	+150°	°C
Package Type Pins		Pin, herme nic 0.010 x	tically	

- 1. Should be purely resistive. See technical note 3.
- 2. Input logic voltage levels are V_{in} "0" = -1.5V to -1.4V, and V_{in} "1" = -0.7V to -1.05V. These are differential ECL 10,000.
- Specified for each output, both outputs may be tied together for decreased output impedance and increased output current.

TECHNICAL NOTES

- The use of good high frequency circuit board layout techniques is required for rated performance. The power common, analog common, and input common pins are not connected internally and therefore must be connected externally as directly as possible through a low inductance, low resistance path. The extensive use of a ground plane for all common connections is highly recommended.
- 2. Although they are internally bypassed with 0.033 μ F capacitors the supply pins should be externally bypassed with 0.1 μ F ceramic chip capacitors mounted as close to the supply pins as possible.
- The SHM-40 inputs and outputs are sensitive to unusual loading or long lines. The analog input must be nonreactive so that leads should be short and purely resistive. Also, the complementary ECL driver should be as close as possible to pins 1 and 3 to minimize lead lengths to these pins.
- The maximum, differential, digital input voltage is ±5V.
 For example, if pin 3 is at a potential of -5V, pin 1 may not exceed 0V.
- The SHM-40 has no significant acquisition time drift with temperature.
- A positive pulse on Pin 3 and a negative pulse on Pin 1 selects the HOLD mode.

SHM-43

High Speed, 0.01% Hybrid Sample/Hold

FEATURES

- 35 nSec maximum acquisition time to 0.01%
- 30 nS max. hold mode settling to 0.01%
- · 1 pSec aperture uncertainty
- 75 MHz small-signal bandwidth
- 520 mW maximum power dissipation
- Small 14-pin DIP package
- CMOS control signal

GENERAL DESCRIPTION

The SHM-43 sample-hold utilizes a proprietary architecture in delivering an acquisition time of 35 nanoseconds maximum to 0.01% and 20 nanoseconds maximum to 0.1% accuracy.

Operation requires ± 15 and $\pm 5V$ supplies and the analog input range is $\pm 2V$. Packaged in a small 14-pin DIP, the SHM-43 offers a CMOS compatible sample command while dissipating just 500 milliwatts.

The SHM-43 has been designed for applications that demand fast acquisition times (25 nS .01%), fast hold mode settling (20nS .01%), wide band width, and the ability to drive resistive (100 Ω), and capacitive (60pF) loads with no compromise in performance. These features make the SHM-43 an ideal choice for driving flash A/D converters in applications such as radar and communications.

Two temperature ranges are offered; the commercial 0 to +70 °C and military -55 to +125 °C.

PIN	FUNCTION
1	INPUT
2	REF BYPASS
3	POWER GND
4	DIGITAL +5V
5	S/H OR S/H
6	S/H CONTROL
7	DIGITAL GROUND
8	S/H OUT
9	+5 BYPASS
10	-5 BYPASS
11	ANALOG GROUND
12	+15V POWER
13	-5V
14	ANALOG +5V

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS	
+15V Supply (pin 12)	-0.5 to +18	V dc	
+5V Supply (pin 4, 14)	-0.5 to +7	V dc	
-5V Supply (pin 13)	+0.5 to -7	V dc	
Analog Inputs (pin 1)	+5V Supply -1	V dc	
	+5V Supply +1	V dc	
Digital Inputs (pins 5,6)	-0.5 to +7	V dc	
Lead Temperature (10 sec.)	300 Max.	°C	
Short circuit to ground	70	mA	

Output shorted to any supply will cause permanent damage.

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and over the operating power supply range unless otherwise specified.

PARAMETERS	MIN	TYP	MAX	UNITS
Input Voltage Ranges	-2	_	+2	VOLTS
Input Bias Current @25 °C	-71	50		цА
Input Bias Current TC	ATY B	200		nA/°C
Input Impedance		160		Kohms
me to the contract of the cont				Romins
(Digital Supply = +5V)	2+_JATI	51G 1		
Logic Lovole	NG BO	HIG. 1. S		
Logic 1	3.2	HIS] 4		V dc
Logic 0	3.2	DIG	1.4	V dc
Logic Loading	TUO	HV8 1 8	1.4	V dC
	PASS	A. 1		
Logic 1	SZAGY	88. 0	±1	μΑ
Logic 0	0.204	UAA	±1	μА
OUTPUTS	WO9 V	2 +15		
Voltage Range	+2	Ve- b	L	V
Output Current	+30			mA
Output Impedance (DC)		0.2	_	Ohms
Stable Capacative Load	60	100	_	pF
PERFORMANCE		250	ASST S	Andreite
Nonlinearity				
DC+1V	_	_	.01	%
DC+2V			TBD	%
Sample Mode Offset 25 °C	_	_	+20	mV
Sample Mode Offset TC		_	30	μV/°C
Pedestal 25 °C		_	+10	mV
Pedestal TC End Point Avg.			5	uV/°C
Gain 25 °C		1		V/V
Gain Error	0.99	1	0.99	V/V
Gain TC	0.55	15	25	ppm/°C
Aperture Delay		5	10	nSec.
Aperture Jitter		1	3	pS
Slew Rate	200	250	3	V/uSec.
Full Power BW +1.5V	200	250		MHz
-3db BW .5VPP	100	150		MHz
Harmonic Distortion	100	150	_	IVIHZ
		74	70	dB
±1V 5MHz	_	-74	-70	
±1V 20MHz		-60	-50	dB
Acq.Time 0.1% ± 1V		15	20	nSec.
Acq.Time 0.01% ± 1V	-	25	35	nSec.
Hold Mode Settling 0.1%	_	15	20	nSec.
Hold Mode Settling 0.01%	_	20	30	nSec.
Feedthrough Rejection 2V Step	76	82	-	dB
Droop Rate, +25 °C	_	1	5	μV/μS
-55 °C	-	-	1	μV/μS
+125 °C	_	25	50	μV/μS

POWER SUPPLY REQUIREMENTS	MIN	TYP	MAX	UNITS
Range	engliselythii		econtamo	
Analog +5V	+4.75	_	+5.25	V dc
Digital -5V	+4.75	_	+5.25	V dc
-5V	-4.75	_	-5.25	V dc
+15V	+14.25	_	+15.75	V dc
Currents	aceutsbic	30	sec mai	35 nf
Analog +5V	tiltise obe		33	mA
Digital +5V	1913/2015 19270	50	100	mA
-5V	certainty	38	41	mA
+15V	stvylorisci li	8	10	mA
Power Dissipation	55	460	520	mA dB
Power Supply Rejection	-55	60	of the Royal Park	QB
ENVIRONMENTAL	is.	onle to	atnos S	CMO
Operating Temp. Range				
-MC	0	THE	+70	°C
-MM _	-55	_	+125	°C
Storage Temp. Range	-65	_	+150	°C

TECHNICAL NOTES (2010, 2013) semil notificipos test

- 1. Bypass the +5V analog, +5V digital, +15V supplies with a 1 μ F, 25V tantalum capacitor in parallel with a 0.01 μ F ceramic capacitor mounted as close to the pin as possible.
- 2. Additional bypass capacitors are necessary, because of internal high switching speeds, and high slew rates of internal components. These additional points (pin 2-REFERENCE, pin 9, +5V, pin 10,-5V) are internal connections that must be bypassed with a minimum of a 1µF tantalum (polarity of connections are shown on the test circuit drawing) capacitor mounted as close to the pin as possible.
- 3. As with all high speed analog circuits, it is essential that good grounding techniques be used. Tie all ground pins together at a single ground point beneath the device, and use a short low impedance run to the ground of the analog power supplies. The ground point should be a solid ground plane under the device and any associated converter.
- 4. The offset, pedestal and gain errors of the SHM-43 are laser trimmed at DATEL and no external compensation capabilities have been provided. This prevents introducing noise through the offset adjust terminals of the S/H amplifier and guarantees excellent gain linearity, offset drift, and pedestal performance.

TEST CIRCUIT CONNECTIONS

* Connections shown for S/H, if opposite polarity sample hold command is desired, connect pin 6 to +5V (pin 4). Using opposite polarity, S/H command will *not* effect speed or accuracy.

* The SHM-43 has been optimised for driving 100 Ω loads,R1 should be chosen so that the total load on the S/H is 100 Ω .

TEST METHOD

ORDERING GUIDE

MODEL NUMBER

TEMP. RANGE

SHM-43MC SHM-43MM 0 to +70 °C

-55 to +125 °C

Contact DATEL for availability of MIL-STD-883 versions.

геят сиясит сомместнымя

Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets.

Dial
1-800-233-2765
for
Applications Assistance

SHM-45

High-Speed Hybrid Precision Sample-hold

FEATURES

- Ideally suited for DATEL's Ultra-fast ADC-500/505 A/D converters
- · 200 nSec Maximum acquisition time
- · 0.01% accuracy
- 100 nSec Maximum sample-hold settling time
- · 74 dB Feedthrough attenuation
- · ±50 pSec Aperture uncertainty
- Operable at different gain settings

GENERAL DESCRIPTION

DATEL's SHM-45 is a high-speed, high accuracy sample-hold designed for precision, high-speed analog signal processing applications. Manufactured with modern, high quality hybrid technology, the SHM-45 features excellent dynamic specifications including a maximum acquisition time of only 200 nSec for a 10V step to 0.01%. Sample-to-hold settling time to 0.01% accuracy is 100 nSec maximum with an aperture uncertainty of ±50 pSec.

The SHM-45 is a complete sample-hold circuit, containing a precision MOS hold capacitor and a MOSFET switching configuration which results in faster switching and better feedthrough attenuation. Additionally, an FET input amplifier design allows faster acquisition and settling times while maintaining a considerably lower droop rate.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ± 0.01

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION		
1	OUTPUT	13	INPUT A		
2	N/C	14	RANGE		
3	N/C	15	GROUND		
4	N/C	16	N/C		
5	N/C	17	N/C		
6	N/C	18	N/C		
7	N/C	19	N/C		
8	N/C	20	N/C		
9	+5V SUPPLY	21	GROUND		
10	GROUND	22	-15V SUPPLY		
11	N/C	23	GROUND		
12	HOLD COMMAND	24	+15V SUPPLY		

ABSOLUTE MAXIMUM RATINGS

±15V Supply Voltage (Pins 24, 22)	±18V
+5V Supply Voltage (Pin 9)	-0.5V to +7V
Analog Input (Pin 13, 14)1	±18V
Digital Input (Pins 11, 12)	-0.5V to $+5.5V$
Output Current ²	±65 mA

FUNCTIONAL SPECIFICATIONS

Specified at +25 °C, gains of -1, ±15V, and +5V power supplies unless otherwise specified.

ANALOG INPUTS (Pin 13, 14)	MIN.	TYP.	MAX.	UNITS
Input Volt. Range ¹ Input Impedance	±10 -	- 1	-	V K ohm
LOGIC INPUTS (TTL) Logic 1 Voltage	+2.0			V
Logic 0 Voltage	SAL DIME	Malera	+0.8	V
Logic 1 Current	MMI SAHS	INI	40	μΑ
Logic 0 Current	-	-	-1.6	mA
ANALOG OUTPUTS (Pin 1)	140.05	44.5		T 1/
Output Volt. Range Output Current 2	±10.25	+11.5	±40	V mA
Output Impedance		0.1	140	ohm
Max. Capacitive Load	800-0 = 0	250	-	pf
TRANSFER CHARACTERISTICS	1			
Gain	1 -	-1.0	_	V/V
Gain Error	-	±0.05	±0.1	%
Gain Tempco	-	±0.5	±5	ppm/ °C
Linearity Error 5 Initial Offset Voltage	1 7KOYY	±0.005	±0.01	%FS mV
Offset Step (pedestal) 3		±1	±5	mV
DYNAMIC CHARACTERISTICS	1	1		
Frequency Response	190	11-0	091 08 79	
Small Signal (-3 dB)	-	16	T MA	MHz
Slew Rate		300	-	V/µS
Acquisition Time 4	DOMATE HOM	100	000	
10V step to 0.01% FS 10V step to 0.1% FS	_	160 100	200 170	nS nS
Aperture Delay Time		6	170	nS
Aperture Uncertainty (Jitter)	-	±1	±5	pS -
Settling Time	1			
10V to ±0.01% FS	-	60	100	nS -C
10V to ±0.1% FS Droop Rate	-	40	T	nS
at T = +25 °C	-	0.5	5	μV/μS
at T = +70 °C	_	15	_	μν/μS
at T = +125 °C	-	1.2	-	mV/μS
Feedthrough Rejection	-	-74	-	dB
POWER SUPPLY REQUIREMENT	STUDIE	J9(f)		
Supply Voltage Range, ±15V	-	±3	-	%
+5V Power Supply Rej. Ratio	PURCTION	±5 +0.5	5	% mV/V
Current Drains, +15V	- 0	+21	+25	mA
-15V GMUOHO RE	- 0	-22	-25	mA
+5V 3W 8r	- 0	+17	+25	mW
Power Consumption	- 3	730	875	mW
PHYSICAL/ENVIRONMENTAL		PT THE		V81 +
Operating Temperature Range	CISSUS Va	to . 70.90 (-	mhiant)	- ASI -
SHM-45MC SHM-45MM/MM-QL		to +70 °C (a to +125 °C		
Storage Temperature Range		-65 to +15		
Thermal Resistance		00 10 +10		
Junction-to-Case		0.015 °C/	mW	
Case-to-Ambient		0.035 °C/		
Package Type		24-pin cer		
Pins	K	ovar (0.010	x 0.018)	

Footnotes

- Input signal times gain should not exceed the output voltage range.
- The SHM-45 output is current limited at approximately ±65 mA. The device can withstand a sustained short to ground. However, shorts to either supply will cause permanent damage.
- Sample-to-Hold offset error (Pedestal) is constant regardless of input/output level.
- 4. FS is defined as 10 Volts.

TECHNICAL NOTES

- All ground pins (10, 15, 21, 23) should be tied together and connected to system analog ground as close to the package as possible. It is recommended to use a ground plane under the device and solder all four ground pins directly to it. Care must be taken to insure that no ground potentials can exist between pin 10 and the other ground pins.
- Although the power supply pins (9, 22, 24) are internally bypassed to ground with 0.01 μF ceramic capacitors, additional external 0.1 μF to 1 μF tantalum bypass capacitors may be required in critical applications.
- 3. A logic 1 on the HOLD COMMAND input, pin 12 will put the device in the sample mode. In this mode, the device acts as an inverting unity gain amplifier and its output will track its input. A logic 0 on pin 12 will put the device in the hold mode, and the output will be held constant at the last input level present when the hold command was given.
- 4. The maximum capacitive load to avoid oscillation is typically 250 pF. Recommended resistive load is 500Ω , although values as low as 250Ω may be used. Acquisition and sample-to-hold settling times are relatively unaffected by resistive loads down to 250Ω and capacitive loads up to 50 pF. However, higher capacitances will affect both acquisition and settling time.
- The RANGE pin of the SHM-45 is usable to select different output voltage ranges. The output voltage ranges are selectable by hardware programming the SHM-45 to operate at different gains. Table 1 shows the range selection details.

Table 1. Jumper Selections for Vout Ranges

Vin	Vouт	Connect Pins	Operating Gain
-5 to +5	+10 to -10	13 to 14	-2
-10 to +10	+10 to -10	_	-1
0 to -5	0 to +10	13 to 14	-2
0 to -10	0 to +10		-109 A-109M
-10 to +10	+5 to -5	1 to 14	-0.5
0 to -10	o to +5	1 to 14	-0.5

ORDERING INFORMATION

MODEL	TEMP. RANGE
SHM-45MC	0 to +70 °C
SHM-45MM	-55 to +125 °C
SHM-45MM-QL	-55 to +125 °C

For availability fo MIL-STD-883B versions, contact DATEL.

SHM-4860

High-Speed, 0.01% Hybrid Sample-Hold

FEATURES

- · 200 Nanoseconds maximum acquisition time
- · 0.01% Accuracy
- 100 Nanoseconds maximum sample-hold settling time
- · 74 dB Feedthrough attenuation
- ±50 Picoseconds aperture uncertainty

GENERAL DESCRIPTION

DATEL's SHM-4860 is a high-speed, highly accurate sample-hold designed for precision, high-speed analog signal processing applications. Manufactured using modern, high-quality hybrid technology, the SHM-4860 features excellent dynamic specifications including a maximum acquisition time of only 200 nanoseconds for a 10V step to 0.01%. Sample-to-hold settling time, to 0.01% accuracy, is 100 nanoseconds maximum with an aperture uncertainty of ± 50 picoseconds.

The SHM-4860 is a complete sample-hold circuit, containing a precision MOS hold capacitor and a MOSFET switching configuration which results in faster switching and better feedthrough attenuation. Additionally, an FET input amplifier design allows faster acquisition and settling times while maintaining a considerably lower droop rate.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±0.01

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	OUTPUT	13	INPUT
2	N/C	14	N/C
3	N/C	15	GROUND
4	N/C	16	N/C
5	N/C	17	N/C
6	N/C	18	N/C
7	N/C	19	N/C
8	N/C	20	N/C
9	+5V SUPPLY	21	GROUND
10	GROUND	22	- 15V SUPPLY
11	HOLD COMMAND	23	GROUND
12	HOLD COMMAND	24	+ 15V SUPPLY

FUNCTIONAL SPECIFICATIONS

Typical at 25 °C, ±15V, and +5V supplies unless otherwise noted.

ANALOG INPUT/OUTPUT	MIN.	TYP.	MAX.	UNITS
Input/Output Voltage Range	±10.25	±11.5		V
Input Impedance	-	1	-	kΩ
Output Current ²	- 1	-	±40	mA
Output Impedance		0.1	-	kΩ
Maximum Capacitive Load	-	250	-	pF
DIGITAL INPUT	TO FIN			À
Input Logic Level	+2.0	CHARL STATE	5.0	V
Logic 1	12.0	lea m	0.8	V
Logic 0 Loading	DOL.	1000	0.0	V
Logic 1	- And the said	MM2	40	mA
Logic 0		-	-1.6	mA
TRANSFER CHARACTERISTICS	Title open			
Gain		1.0	30.7	V/V
Gain Accuracy	0	±0.05	±0.1	%
Gain Linearity Error ³	-	±0.005	±0.01	% FS
Sample-Mode Offset Voltage Sample-to-Hold Offset Error	- 1	±0.5	±5	m V
(Pedestal) ⁴	ANHOA	±2.5	±20	mV
Gain Tempco (Drift)	SHO48	±0.5	±5	ppm/ °C
Sample-Mode Offset Drift ³ ,			-	
FSR/°C	0.051	±3	±15	ppm
Sample-to-Hold Offset (Pedestal) Drift ³	_	±4	_	ppm
DYNAMIC CHARACTERISTICS		PHIS (Q1, at (8.6)		
Acquisition Time	RANCH -			
10V to ±0.01% FS	701	160	200	nS
10 V to ±0.1% FS		100	170	nS
10V to ±1% FS	- 1-	90	-	nS
1V to ±1% FS	- 1	75	-	nS
Sample-to-Hold, Settling Time			400	
10V to ±0.01% FS 10V to ±0.1% FS	Wally - 1	60 40	100	nS nS
Sample-to-Hold Transient	1 7 9	180		mV P-P
Aperture Delay Time	_ 1	6		nS
Aperture Uncertainty (Jitter)	5	±50	ion -	pS
Output Slew Rate		300	an _	μV/μS
Small Signal Bandwidth (-3 dB)	080 - 1	16		MHz
Droop: +25 ℃	\$(15,2	0.5	5	μV/μS
+70 °C	HOME SPORT DA	15 310	-	μV/μS
+125 ℃	-	1.2	-	mV/μS
Feedthrough	-	75	_	dB
POWER REQUIREMENTS				I di
Voltage Range: ±15V	TURTUE	±3	-	%
+5V Power Supply Rejection Patio	1.07 +1 01	±5 +0.5	-	% mV/V
Power Supply Rejection Ratio Quiescent Current Drain		±0.5		IIIV/V
+15V	IACIT	+21	+25	mA
-15V TURNI ET	-	-22	-25	mA
+5V	-	+17	+25	mA
Power Consumption		730	875	m W
PHYSICAL/ENVIRONMENTAL		NIC	16	109
Operating Temperature Ranges		Oth	8	
SHM-4860 MC		0 to +		
SHM-4860 MM/MM-QL		-55 to +		
Storage Temperature Range		-65 to +		
Package Type Pins			Ceramic	
			10 x 0.018	

Footnotes

Input signal should not exceed the supply voltage.

 The SHM-4860's output is current limited at approximately ±65 mA. The device can withstand a sustained short to ground. However, shorts from the output to either supply will cause permanent damage. For normal operation the load current should not exceed ±40 mA.

3. Fulli Scale (FS) = 10V. Full Scale Range (FSR) = 20V.

4. Sample-to-Hold offset error (Pedestal) is constant regardless of input/output level.

ABSOLUTE MAXIMUM RATINGS

+ 15V Supply Voltage (Pins 24, 22)	± 18V
+5V Supply Voltage (Pin 9)	-0.5V to $+7V$
Analog Input (Pin 13)1	± 18V
Digital Input (Pins 11, 12)	-0.5V to $+5.5V$
Output Current ²	± 65 mA

TECHNICAL NOTES

- 1. All ground pins (10, 15, 21, 23) should be tied together and connected to system analog ground as close to the package as possible. It is recommended to use a ground plane under the device and solder all four ground pins directly to it. Care must be taken to insure that no ground potentials can exist between Pin 10 and the other ground pins.
- Although the power supply pins (9, 22, 24) are internally bypassed to ground with 0.01 μF ceramic capacitors, additional external 0.1 μF to 1 μF tantalum bypass capacitors may be required in critical applications.
- 3. A logic "0" on the HOLD COMMAND INPUT, (Pin 11) (or a logic "1" on the HOLD COMMAND INPUT, Pin 12) will put the device in the sample mode. In this mode, the device acts as an inverting unity gain amplifier and its output will track its input. A logic "1" on Pin 11 (logic "0" on Pin 12) will put the device in the HOLD mode, and the output will be held constant at the last input level present when the hold command was given.

If the HOLD COMMAND INPUT (Pin 11) is used to control the device, Pin 12 must be tied to digital ground. If HOLD COMMAND INPUT (Pin 12) is used to control the device, Pin 11 must be tied to +5V.

4. The maximum capacitive load to avoid oscillation is typically 250 pF. Recommended resistive load is 500Ω, although values as low as 250Ω may be used. Acquisition and sample-to-hold settling times are relatively unaffected by resistive loads down to 250Ω and capacitive loads up to 50 pF. However, higher capacitances will affect both acquisition and settling time.

ORDERING INFORMATION

	MODEL NO.	OPERATING TEMP. RANGE
	SHM-4860MC	0 to +70 °C
1	SHM-4860MM	-55 to +125 °C
	SHM-4860MM-QL	-55 to +125 °C
	Fan annual alabelian at MAII	CTD 000Bion

For availability of MIL-STD-883B versions, contact DATEL.

0.02%, 2.0 Microseconds Microelectronic Sample-hold

FEATURES

- 0.02% Accuracy
- 2.0 Microseconds acquisition time
- · 2 Nanoseconds aperture uncertainty
- 5 MHz Bandwidth, small signal
- · 25 mA Output current
- Gain-programmable from ±1 to ±10

GENERAL DESCRIPTION

DATEL's SHM-6 is a high-speed, high accuracy sample-hold circuit manufactured with thin-film hybrid technology. This design offers the speed and performance of modular sample-holds with the compactness and integrity of advanced hybrid techniques. The unit's excellent high-speed characteristics include a guaranteed acquisition time of 700 nanoseconds to 0.1% accuracy and 2.0 microseconds to 0.02% for a 10 volt change.

The SHM-6 is a complete sample-hold containing a precision MOS holding capacitor. The input amplifier is an open loop transductance amplifier which can be externally connected for closed loop gains from ± 1 to ± 10 . In addition to its speed, accuracy and selectable gain, the SHM-6 has an output capability of 25 mA. These features allow this unit to offer an unusual degree of adaptability.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±0.01"

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
V8.0±	+IN	17	S/H STEP ADJUST.
2	-IN	- 18	S/H STEP ADJUST.
3	NC V	19	NC
4	OFFSET ADJUST	20	NC
5	NC	21	NC
6	OFFSET ADJ. (Wiper)	22	DIGITAL CONTROL
7	NC	23	NC
8	OFFSET ADJUST	24	+ V dc
9	NC .	25	NC
10	ANALOG COMMON	26	POWER GROUND
11	OUTPU	27	NC STATE
12	NC	28	+ 15V dc
13	NC NC	29	NC
14	C.H. (OPTIONAL)	30	NC
15	NC	31	- 15V dc
16	S/H ADJ. (Wiper)	32	NC

ABSOLUTE MAXIMUM RATINGS Positive Supply + 18V Negative Supply - 18V Logic Supply + 7.0V Digital Input Voltage + 5.5V Analog Input Voltage ± Vs Differential Input Voltage ± 30V

FUNCTIONAL SPECIFICATIONS

INPUT AMPLIFIER SPECIFICAT	IONS
Offset Voltage Offset Voltage Tempco Offset Current Offset Current vs. Temp. Bias Current lnput Resistance Common Mode Voltage Range Common Mode Voltage Range Come Loop Gain Gain Bandwidth Product	± 100 μ/V°C 1 nA maximum Doubles every 10°C 10 nA maximum 10° Ω ± 10V minimum 74 dB minimum 10°V/V
DIGITAL INPUT CHARACTERIS	TICS
Digital Control Logic	DTL, TTL 0V to +0.8V at -3.2 mA +2.0V to +5.0V at +80μ
ANALOG OUTPUT CHARACTER	RISTICS
Output Voltage Range Output Current Output Resistance	± 10V minimum ± 25 mA maximum 0.1 Ω maximum
SAMPLE/HOLD CHARACTERIS	TICS (Noninverting unity gain)
Acquisition Time, 10V Step to 0.1% Acquisition Time, 10V Step to 0.02% Aperture Delay Time	1.5 μsec. typical 2 μsec. maximum

Acquisition Time, $10V \text{Step to } 0.02\% \qquad \qquad 1.5 \mu \text{sec. typical} \\ 2 \mu \text{sec. maximum} \\ \text{Aperture Delay Time} \qquad 20 \text{nsec.} \\ \text{Aperture Uncertainty Time} \qquad 2 \text{nsec.} \\ \text{Sample to Hold Error} \qquad \text{Adjustable to Zero} \\ \text{Hold Mode Voltage Droop} \qquad 10 \mu V / \mu \text{sec. maximum} \\ \text{Hold Mode Feedthrough} \qquad 0.02\% \text{maximum} \\ \text{Offset} \qquad \qquad \text{Adjustable to Zero} \\ \text{Gain} \qquad \qquad \pm 1 \text{to } \pm 10 \\ \text{Gain Error} \qquad 0.01\% \text{maximum} \\ \text{Nonlinearity, VouT} = \pm 10V \qquad 0.02\% \text{maximum} \\ \text{Full Power Bandwidth,} \\ \text{VouT} = \pm 10V \qquad \qquad 500 \text{KHz} \\ \text{Slew Rate} \qquad \qquad 40 V / \mu \text{sec.}$	Acquisition Time, 10V Step to 0.1%	700 nsec. maximum
Aperture Uncertainty Time. 2 nsec. Sample to Hold Error Adjustable to Zero Hold Mode Voltage Droop 10 µVIµsec. maximum Hold Mode Feedthrough 0.0296 maximum Offset Adjustable to Zero Gain ±1 to ±10 Gain Error 0.0196 maximum Nonlinearity, Voux = +10V 0.0296 maximum		
Aperture Uncertainty Time. 2 nsec. Sample to Hold Error Adjustable to Zero Hold Mode Voltage Droop 10 µVIµsec. maximum Hold Mode Feedthrough 0.0296 maximum Offset Adjustable to Zero Gain ±1 to ±10 Gain Error 0.0196 maximum Nonlinearity, Voux = +10V 0.0296 maximum		
Sample to Hold Error Adjustable to Zero Hold Mode Voltage Droop 10 μ V/ μ sec. maximum Hold Mode Feedthrough 0.02% maximum Offset Adjustable to Zero Gain ±1 to ±10 Gain Error 0.01% maximum Nonlinearity, Voux = +10V 0.02% maximum 0.02% maximum	Aperture Uncertainty Time	2 nsec.
Hold Mode Voltage Droop 10 μV/μsec. maximum	Sample to Hold Error	Adjustable to Zero
Hold Mode Feedthrough	Hold Mode Voltage Droop	10 μV/μsec. maximum
Gain ± 1 to ± 10 Gain Error 0.01% maximum Nonlinearity, Vour = +10V 0.02% maximum	Hold Mode Feedthrough	0.02% maximum
Gain Error	Offset	Adjustable to Zero
Nonlinearity, Vout = +10V 0.02% maximum		
Nonlinearity, V _{OUT} = ± 10V 0.02% maximum Full Power Bandwidth, V _{OUT} = ± 10V	Gain Error	0.01% maximum
Full Power Bandwidth,	Nonlinearity, $V_{OUT} = \pm 10V \dots$	0.02% maximum
$V_{OUT} = +10V$ 500 KHz	Full Power Bandwidth,	
	$V_{OUT} = \pm 10V \dots$	500 KHz
Slew Rate 40 V/μsec.	Slew Rate	40 V/μsec.

POWER REQUIREMENTS

Positive Supply	+ 15	5V dc ± 0.5V at 55 mA
Negative Supply		
Logic Supply	+5\	/ dc ± 0.5V at 30 mA

PHYSICAL/ENVIRONMENTAL

Operating Temperature Ranges	
SHM-6MC	0°C to +70°C
SHM-6MM	-55°C to +100°C
Storage Temperature Range	-65°C to +150°C
Package Type	32 Pin Ceramic
Pins	
Weight	0.5 Ounce (14 grams)

TECHNICAL NOTES

- 1. It is essential that the +15V, -15V, and +5V supplies, pins 28, 31, and 24 respectively, each be bypassed to ground with a 0.1 µF ceramic capacitor connected as close to the pins as possible.
- 2. Digital Common, pin 26, and Analog Common, pin 10, are not connected together internally, therefore they must be connected externally as directly as possible.
- 3. An external holding capacitor can be added to decrease hold mode voltage droop but with consequently long acqui-
- 4. In the inverting unity gain operating mode, the feedback and input resistors should be carefully matched or trimmed to yield the desired gain of one. In general, the operating parameters are the same as the noninverting unity gain configuration, except that the sampling bandwidth is reduced by a factor of two. For applications of the SHM-6 with gain greater than one, sampling bandwidth is inversely proportional to gain.
- 5. Capacitive loads on the output should be limited to 100 pF to maximize acquisition time. The SHM-6 has a ±25 mA current drive capability.
- 6. The adjustment procedures for the SHM-6 are as follows. Ground the input pin and connect the output to a D.V.M.; operate the offset adjustment potentiometer to yield an output of zero as read on the D.V.M. The sample-hold step adjustment is performed with the input pin grounded and the output connected to an oscilloscope set to 1 mV/ cm sensitivity. The digital input pin is driven with a compatible square wave at approximately 250 KHz and the sample-hold step adjustment potentiometer is operated to produce a flat-line output on the oscilloscope.
- 7. Trim pots should be 100 ppm/ °C cermet type. Gain Resistors should be 100 ppm/°C, or better, metal film type.

ORDERING INFORMATION

MODEL	OPERATING TEMP. RANGE	SEAL
SHM-6MC	0 to +70 °C	Hermetic
SHM-6MM	-55 to +100 °C	Hermetic

FEATURES

- 40 Nanoseconds acquisition time
- Dual outputs and humb you support dailed be
- 10 Picoseconds aperture uncertainty
- 40 MHz Bandwidth
- 30 mA Output current

GENERAL DESCRIPTION

DATEL's SHM-7 is an ultra-fast sample and hold designed for high-speed analog signal processing applications. The SHM-7 acquires a 2V dc input change to 0.1% in only 40 nanoseconds and aperture uncertainty time is less than 10 picoseconds. Sample-mode bandwidth is 40 MHz.

The SHM-7 is a complete sample-hold, containing an input buffer amplifier, a precision 53 pF MOS holding capacitor, and two output buffer amplifiers. The sampling switch is controlled by a series 10,000 complementary ECL input. An ECL differential line driver can be conveniently used for the sample control inputs.

MECHANICAL DIMENSIONS INCHES (MM)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
lq upns	SAMPLE	13	POWER COM.
2	N.C.	1 9 14 97	ANALOG COM.
3	SAMPLE	15	POWER COM.
4	N.C.	16	OUTPUT 2
5	N.C.	17	ANALOG COM.
6	N.C.	18	OUTPUT 1
7	N.C.	19	+ 15V dc
8	N.C.	20	ANALOG COM.
9	- 15V dc	21	INPUT COM.
10	N.C.	22	ANALOG INPUT
11	POWER COM.	23	N.C.
12	POWER COM.	24	N.C.

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, ±15V dc Supplies Unless Otherwise Noted.

INPUTS

Input Voltage Range¹, minimum ± 2.5V dc 10 kΩ 500 Differential ECL 10.000

Positive Pulse on Pin 3 and Negative Pulse on Pin 1 gives Hold Mode

OUTPUTS

Output Voltage Range¹, minimum . . . ± 2.5V dc maximum . . ± 5V dc Output Current⁴ ± 30 mA Output Impedance4 130

PERFORMANCE

Linearity ±2.5V input volt. range ... 0.1% ±5V input volt. range ... 0.2% Sample-to-Hold Offset Error, maximum ... Sample-Mode Offset Voltage, maximum ... ± 20 mV Sample-to-Hold Offset Voltage Drift ... 75 μ V/°C Sample-Mode Offset Voltage Drift ... ± 250 μ V/°C Hold Mode Feedthrough, maximum ... – 66 dB

Hold Mode Droop 100 μV/microseconds

DYNAMIC CHARACTERISTICS

Acquisition Time, 2V to 0.1% 40 nanoseconds 2V to 1% 25 nanoseconds 4V to 0.1% 50 nanoseconds 4V to 1% 35 nanoseconds 10V to 0.1% 6 60 nanoseconds 10V to 1%6 45 nanoseconds Aperture Delay Time 3 nanoseconds Aperture Uncertainty Time,

maximum 10 picoseconds
Hold Mode Settling Time 20 nanoseconds
Sample-Mode Bandwidth; -3 dB 40 MHz Sampling Rate⁵ 17 MHz

POWER REQUIREMENTS

Positive Supply, Pin 19 + 15V dc ± 0.5V dc at 60 mA Negative Supply, Pin 9 -15V dc ± 0.5V dc at 60 mA

PHYSICAL/ENVIRONMENTAL

ceramic Pins..... 0.010 x 0.018 Inch Kovar

FOOTNOTES:

- 1. The SHM-7MC has a maximum input/output voltage range of ±5V.
- 2. Should be purely resistive. See technical note 3. 3. Input logic voltage levels are $V_{\rm in}$ "0" = -1.5V to -1.4V, and $V_{\rm in}$ "1" = -0.7V to
- Specified for each output, both outputs may be tied together for decreased output impedance and increased output current.
- For a ± 2V input.
- 10V is a step from -5V to +5V dc.

ABSOLUTE MAXIMUM RATINGS

Positive Supply + 18V dc
 Negative Supply
 - 18V dc

 Digital Input Voltage
 ± 5V dc

 Analog Input Voltage
 ± 5V dc

TECHNICAL NOTES

- 1. The use of good high frequency circuit board layout techniques is required for rated performance. The power common, analog common, and input common pins are not connected internally and therefore must be connected externally as directly as possible thorugh a low inductance, low resistance path. The extensive use of a ground plane for all common connections is highly recommended.
- Although they are internally bypassed with 0.033 μF capacitors the supply pins should be externally bypassed with 0.1 uF ceramic chip capacitors mounted as close to the supply pins as possible.
- 3. The SHM-7 inputs and outputs are sensitive to unusual loading or long lines. The analog input must be nonreactive so that leads should be short and purely resistive. Also, the complementary ECL driver should be as close as possible to pins 1 and 3 to minimize lead lengths to these pins.
- 4. The maximum, differential, digital input voltage is ±5V. For example, if pin 3 is at a potential of -5V, pin 1 may not exceed 0V

SHM-91 Precision Dual Sample-and-Hold

FEATURES

- · Contains two precision sample-hold amplifiers
- Designed for use with 12- or 14-bit A/D converters
- Fast acquisition time (2 μSec to ± 0.002%)
- No external components required
- Wide temperature range (-55 to +125°C available)
- · 24-pin dual in-line package
- Multiplexed inputs and outputs for application versatility

GENERAL DESCRIPTION

DATEL's SHM-91 is a high performance/high resolution dual sample-hold amplifier. This hybrid device is designed for multi-channel analog signal processing applications with 12- to 14-bit accuracy requirements. Typical applications for this device would demand high speed and high resolution. The SHM-91 offers both of these features at a low cost.

The SHM-91 consists of two separate sample-hold amplifiers, each independently controlled to allow flexibility when implementing a system design. Each half consists of a two-channel input multiplexer and a sample-hold amplifier. The output of each sample-hold is available directly or through a multipelxed output.

willing as a see edited en eboth +15 V dc

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±0.01"

1 A OUT 2A 4 A ADDR 8 A SAMPLE (9 A EN 7 MUX OUT BEN 19 00 1B 15 13 BOUT S/H 2B (16 B ADDR 20 GROUND B SAMPLE 21 **6**

-15 V dc o josepa liny "0"

INPUT/OUTPUT CONNECTIONS

PIN	SIGNAL		
1	A OUT		
2	GROUND		
3	1887 1A 6000 -		
4	2A		
5	+15V dc		
6	-15V dc		
7	A EN		
8	A ADDR		
9	A SAMPLE		
10	NO CONNECTION		
11	MUX OUT		
12	GROUND		
13	BOUT		
14	GROUND		
15	1B		
16	2B		
17	+15V dc		SESSO OF HUITOR
18	-15V dc	ORD	DERING INFORMATION
19	BEN		
20	B ADDR	MC MC	ODEL TEMP. RANGE
21	B SAMPLE	55	TEIM . TAITOL
22	NO CONNECTION	SHM	M-91MC 0 to +70 °C
23	MUX OUT		M-91MM -55 to +125 °C
24	GROUND	SHIVE	1-9 HVIIVI -35 (0 + 125 C

ABSOLUTE MAXIMUM RATINGS Positive Supply (Pins 5, 17) -0.5V dc to +18V dc Negative Supply (Pins 6, 18) +0.5V dc to -18V dc Digital Input Voltages Address, Sample (Pins 8, 9, 20, 21) -0.5V dc to +7V dc Mux. Enable (Pins 7, 19) -18V dc to +18V dc Analog Input Voltage ±15V dc

FUNCTIONAL SPECIFICATIONS

The following specifications apply over the full operating temperature range and power supply range unless otherwise specified. For test aspects, contact the factory.

DESCRIPTION	MIN.	TYPICAL	MAX.	UNITS
ANALOG INPUTS	EN USIN		-	
Input Voltage Range Input Impedance Input Capacitance Input Bias Current	±10 1M -	BAVE BAVE	- 30 1.5	V Ohm pf μA
LOGIC INPUTS (TTL/CMOS)		1	
Logic 1 voltage Logic 0 voltage Logic 1 current Logic 0 current	2.4 - - -	3 Morto 4 – Wilh 5 –	- 0.8 1 1	V V μΑ μΑ
ANALOG OUTPUTS		1 X		NOT UNITED
Direct Output (pins 1, 13) Output Voltage Range Output Current Output Impedance Mux. Output (pins 11, 23) Output Voltage Range	±10 10 - ±10	008 0 0.2 21 100 00 12 10 00 1	- 2	V mA Ohm
Output Current Output Impedance OFF Output Leakage OFF Output Capacitance Output Switch Delay	10 - - - -	50 - - -	- 150 1 20 500	mA Ohms μA pf nS
PERFORMANCE				CONNECT
Gain (1) Gain Error (1) Gain Tempco Linearity Tempco. Initial Offset Voltage (2) Offset Tempco., Hold Mode	111111	+1 - 1 - - - 20	- ±0.02 10 0.003 ±1 ±1 50	- % ppm/°C % FSR ppm/°C mV μV/°C
Crosstalk, channel-to-channel. Offset Tempco. Tracking (A vs. B) Gain Tracking (A vs. B) Gain Tracking Tempco	-90 - -	+10 - -	±20 ±50 +0.5	dB μV/°C ppm ppm/°C
PHYSICAL/ENVIRONMENTA	1		GMUU	ррии о
Thermal Resistance Junction-to-Case Case-to-Ambient Operating Temp. Range	GRO OM	0.015 0.035 0 to +70 °C -55 to +125 -55 to + 24-pin herme ceram	C (ambier °C (ambier 125 °C etically se	ent)

T/H SWITCHING	MIN.	TYP.	MAX.	UNITS
Aperture Delay Time	-	15	-	nS
Aperture Uncertainty (Jitter)	100-000	300	1,000	pS
Offset Step (2)	-	-	±1	mV
Settling Time to ±2 mV	-	-	600	nS
HOLD MODE DYNAMICS				
Droop Rate: +25 °C	innes no	Melasto	5	μV/μS
+85 °C	10 32 0	Niw one	10	μV/μS
+125 °C	-	-	100	μV/μS
Feedthrough Rejection	-90	ame no	susarib:	dB
HOLD-TO-TRACK DYNAMIC	S			
Acquisition Time	(c-) eg	IEST STEEL	predure	g apriv
10V Step to ±0.2 mV	- specie	aq enli	2	μS
10V Step to ±1 mV	tatua h	es abun	1.5	μS
POWER SUPPLY REQUIRE	MENTS			
Supply Voltage Range ±V	±14.5	±15	±15.5	V dc
Power Supply Rej. Ratio	-60	-	-	dB
Current Drains: ±15V dc	-	-	30	mA
-15V	HOL	MAIN	30	mA
Power Dissipation	-	700	900	mW
TRACK MODE DYNAMICS				
Frequency Response	airfT cie	Aligma	plorf-etc	ense la
Small Signal (-3dB)	o lembia	potens	lentheri	Mhz
Slew Rate	Committee of	45	enote field	VIμS

- 1. Specified at +25 °C.
- 2. Tested at ±25 °C with input source impedance of 50 ohms.

TECHNICAL NOTES

- 1. All ground pins (2, 12, 14, 24) should be tied together and connected to system analog ground as close to the package as possible. It is recommended to use a ground plane under the device and solder all four ground pins directly to it. The power supply pins (5, 6, 17, 18) should be bypassed to analog ground with .01 μF ceramic capacitors located as close to the pins as possible. In certain critical applications, additional bypass precautions using 0.1 or 1.0 μF tantalum capacitors are suggested.
- 2. A logic "1" on the sample pins (9, 21) will put this device in the sample mode. In this mode, the device acts as an unity gain amplifier and its output will track its input. A logic "0" on the sample pins (9, 21) will put the device in the hold mode, and the output will be held constant at the last input level present before the hold command was given.
- Care should be taken when using the multiplexer output pins (11, 23) that the A EN (pin 7) and the B EN (pin 19) are not active (logic 0) at the same time. This condition could possibly damage the device.
- 4. The output of the SHM-91 should drive a high impedance receiver to minimize voltage divider losses. The receiver input impedance should be 100K ohms or greater when using the direct outputs from the amplifiers (pins 1 and 13). The receiver input impedance should be 2.5 M ohms or greater when using the multiplexer outputs (pins 11 and 23).
- 5. The SHM-91 should not be left in the hold mode for long periods of time. It should be left in the sample mode when long or indeterminate periods of time are involved. If left in the hold mode for several seconds, the output will continue to "droop" toward the power supply voltage. Eventually the output amplifier will saturate. The unit will require longer than the specified acquistion time to acquire a signal when the output amplifiers are saturated.
- A Logic "1" on the A or B ADDR (Address) pins (8 and 20) will select channel 1A or 1B on the respective input mux. A Logic "0" will select 2A or 2B.

SHM-945

High-Speed Hybrid Precision Sample-hold

FEATURES

- 500 nSec Maximum acquisition time to 0.00076%
- Differential input
- 0.0004% Linearity
- 16-Bit Performance over military temperature range
- · Small 24-DDIP package
- Operates at different gain settings

GENERAL DESCRIPTION

DATEL's SHM-945 is a precision, high-speed sample-and-hold featuring a maximum acquisition time of 500 nano-seconds to 0.00076% accuracy. Differential inputs are provided to reject common-mode signals found in applications requiring 16-bit accuracy. A range pin allows gain selections of -0.5, -1, and -2.

The SHM-945 contains an internal hold capacitor with internal compensation networks for pedestal error, feedthrough and dielectric absorption.

TECHNICAL NOTES

- 1. Bypass the $\pm 15V$ and $\pm 5V$ supplies with a 1 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.01 ceramic capacitor, mounted as close to the pin as possible.
- Tie all ground pins together at a single ground point beneath the device and use a short, low impedance run to the ground of the analog power supplies. The ground point should be a solid ground plane under the sample/hold and data converter.
- 3. Differential amplifier high-resolution applications frequently require the ability to sense ground at a distant signal source. To avoid errors due to different ground potential, use the SHM-945's analog input low (pin 10) to sense the ground at the signal source. In noisy applications, using shielded twisted pair wire, with one end of the shield tied to ground at the sample/hold, is recommended. Analog Input Low and Range Return (when used) must be ≤ 100 mV maximum with respect to Analog Ground.

	PART OF THE PROPERTY OF THE PART OF THE PA						
RANGE 14	→	· · · · · · · · · · · · · · · · · · ·	s early too who	CHARLES THE TOTAL			
ANALOG 13	2K	pedestal pedoi	bas , mb n			1 ANALO	
RANGE RETURN 15	MOTANAC	23/41 8 /4/8 3					
ANALOG 10 PUT LOW	***		явамии			21 ANALO	
S/H 12 S/H 11	125 °C He	SWITCH DRIVER					
DATEL	2-6, 16-20 NO CONNECTION	7,23 POWER	24 +15V	22 9 -15V +5V	8 DIGITAL		

PIN	FUNCTION
1 2 3 4 5 6	ANALOG OUTPUT NO CONNECTION NO CONNECTION NO CONNECTION NO CONNECTION NO CONNECTION
7 8 9 10	POWER GROUND DIGITAL GROUND +5V ANALOG INPUT LOW SAMPLE/HOLD
12 13 14 15 16	SAMPLE/HOLD ANALOG INPUT HIGH RANGE RANGE RETURN NO CONNECTION NO CONNECTION
18 19 20 21 22 23 24	NO CONNECTION NO CONNECTION NO CONNECTION ANALOG GROUND -15V SUPPLY +15V SUPPLY

PARAMETERS	LIMITS	UNITS
+15V Supply (pin 24)	-0.5 to +18	V dc
-15V Supply (pin 22)	+0.5 to -18	V dc
+5V Supply (pin 9)	-0.5 to +7	V dc
Digital Inputs (pins 11,12)	-0.5 to +7	V dc
Analog Inputs (pin 13)	-VS to +VS	V dc
Lead Temperature (10 sec.)	300 max.	°C
Short circuit to ground	50	mA

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and over the operating power supply range unless otherwise specified. Gain = -1.

INPUTS SMOTEMEN	MIN	TYP	MAX	UNITS
Voltage Ranges	+10	+10.5		V dc
Common Mode Voltage Range	±100)	MM 008.	m V
Common Mode Reject. Ratio	86		(8.05)	dB
Digital Input	00		Jones of	ub.
Logic 1 Levels	2.0	9	_	V dc
Logic 0 Levels	2.0		0.8	V dc
Logic 1 Loading	7		±1	цA
		A	±1	цA
Logic 0 Loading	_		±Ι	μА
OUTPUTS		20	O GAVO	N.
Voltage Ranges	±10	+10.5	-	V
Output Current	30	35	-	mA
Stable Capacitive Load	-	-	50	pF
Output Impedance	-	0.05	0.25	Ohms
PERFORMANCE				
Nonlinearity: DC ±10V	SBC	A45	To The	
+25 °C	_007	ONAL	0.0004	%FS
-55 to +125 ℃	- 12	(2) - (2)	0.00076	%FS
Sample Mode Offset Error			0.000.0	,,,,
+25 °C	_	0.5	2	mV
0 to +70 °C	_	0.0	2.5	m V
-55 to +125 ℃		_	003	m V
Sample Mode Offset Tempco	eni9 :	атои г	10	μV/°C
S/H Offset (Pedestal) Error			1210	μνιο
+25 °C	-	+2	±5	m V
0 to +70 ℃		+5	±7.5	m V
		±7	±1.5	m V
-55 to +125 ℃	-			
Pedestal Tempco	T	2	5	ppm/ ℃
Pedestal Nonlinearity Gain	- Mid	-1	0.00076	%FS V/V
		-1	-	V/V
Gain Error TURTUO DOLIAM				0/50
25 ℃ иогтовииоэ о	2 -	-	±0.02	%FS
0 to +70 °C // O TO TO TO TO TO	1 E	-	±0.035	%FS
-55 to +125 ℃	1 1	-	±0.05	%FS
Gain Tempco	in - a	3	5	ppm/ ℃
Harmonic Distortion (below FS) ①	-96	-	-	dB
Acq. Time, ±0.003 %FS 10V Step	1 7			
+25 °C GMUOAD JATION	1 1 8	275	350	nSec.
0 to +70 ℃	- 8	-	350	nSec.
-55 to +125 ℃ TUSM DOLAM	- 01	-	425	nSec.
Acq. Time, ±0.003 %FS 20V Step	11.11		T	
+25 ℃ GJOH BJ9MA	01123344448	375	400	nSec.
0 to +70 °C 11 TURM SOLJAM	181	-	450	nSec.
-55 to +125 ℃	1 4 41	-	500	nSec.
Acq. Time, ±0.00076 %FS 10V Step	1 61			
+25 °C ИОПОВИИОО О	1 91	400	500	nSec.
0 to +70 ℃	1 7 21	-	550	nSec.
-55 to +125 ℃	4 1 88	-	600	nSec.
Acq. Time, ±0.00076 %FS 20V Step	1 91			
+25 °C	1 1 09	550	650	nSec.
	1 15	-	700	nSec.
0 to +70 °C	92			

Aperture Delay, +25 ℃	-	5	10	nSec.
-55 to +125 ℃	B000000	40	13	nSec.
Aperture Uncertainty, +25 ℃	-	10		pSec.
-55 to +125 ℃		-	30	pSec.
Slew Rate	120	150	- 0	V/µSec.
Full Power BW (±FS)	1.6	1.9	-	MHz
Small Signal BW (-3 dB)	12	16		MHz
Hold Mode Settling, ±0.003 %FS	HOTHER.	DOS TUT	INLX SUG-	SACIL IN
+25 ℃	-	130	150	nSec.
0 to +70 °C	-	- 0	150	nSec.
-55 to +125 °C	-	- "	175	nSec.
Hold Mode Settling, ±0.00076 %FS	BETHERN '	9A0 83	asmion	
+25 ℃	-	200	250	nSec.
0 to +70 °C	ellion o	on Inon	250	nSec.
-55 to +125 °C	HILLIAN IN	off Arres	300	nSec.
Feedthrough Rejection 10V Step	92	100	-	dB
Droop Rate, +25 °C	-	0.5	1	μV/μS
0 to +70 ℃	- 16	OTPRIE	50	μV/μS
-55 to +125 °C	-	250	500	μV/μS
Output Noise, Hold Mode		60	80	μV RMS
POWER SUPPLY REQUIREMENT	S	mumix	SITI B DI	hutsel
Range, +15V	+14.25	+15.0	+15.75	V dc
-15V contention of brust at	-14.25	-15.0	-15.75	V dc
+5V	+4.75	+5.0	+5.25	V dc
Current, +15V	-	+10	+12	mA
-15V	-	-10	-12	mA
+5V	-	+0.5	+1.5	mA
Power Dissipation	i lemet	305	385	mW
Power Supply Rejection	88	110	n nells	dB
ENVIRONMENTAL		.non	dudsay t	Helectin
Operating Temp. Range				
-MC	0	-83	+70	℃
-MM	-55	-	+125	℃
Storage Temp. Range	-65	ggu= V8+	+150	℃
Package Type		4-pin Herm		
Weight	0.2	8 Oz. (8 gra	ams) max.	

① (DC to 1 MHz, 10V pk-pk) .

- 4. For a gain of -0.5, connect pin 14 (RANGE) to pin 1 (ANALOG OUTPUT) and tie pin 15 (RANGE RETURN) to ground.
- 5. For a gain of -2, connect pin 14 to pin 13 (ANALOG INPUT) and tie pin 15 to ground.
- 6. When using Sample/Hold (pin 11) connect pin 12 to Digital Ground. If using the Sample/Hold polarity (pin 12) tie pin 11 to +5V.
- 7. The offset, pedestal, and gain errors of the SHM-945 are laser trimmed at DATEL and no external compensation capabilities have been provided. This prevents introducing noise through the offset adjust terminals of the S/H amplifier and guarantees excellent gain linearity, offset drift, and pedestal performance.

ORDEF	RING INFORMATION	ON
MODEL NUMBER	TEMP. RANGE	SEAL
SHM-945 MC SHM-945 MM	0 to +70 °C -55 to +125 °C	Hermetic Hermetic

SHM-HU

Ultra-Fast, 0.1% Micro-Electronic Sample-hold

FEATURES

- 25 Nanoseconds acquisition time
- 50 MHz Bandwidth
- · 10 Picoseconds aperture uncertainty
- · Up to 8-bit accuracy
- ±2.5V Input range

GENERAL DESCRIPTION

DATEL's SHM-HU is an ultra high-speed sample-hold capable of video speed signal processing. The SHM-HU acquires a full-scale 5V input change in just 25 nanoseconds and features a 10 picoseconds aperture uncertainty time. Bandwidth is 50 MHz and the slew rate is 200 V/microseconds.

Through the use of thin-film hybrid construction, this ultra high-speed circuit is contained in a miniature 24-pin ceramic package. A 53 picofarad MOS hold capacitor is incorporated inside the package and provision is made for externally added capacitance when necessary. The sample-hold requires four external resistors and an LH0033 fast buffer amplifier for completion. The circuit is zeroed by adjustment of the LH0033 amplifier.

Other features of this unit include a $\pm 2.5 \text{V}$ input/output voltage range and a fixed gain of 0.0955. The sampling switch is controlled by a complementary series 10,000 ECL input. An ECL differential line driver can be conveniently used for the sample control inputs.

Power requirements are $\pm 15V$ dc at 60 mA and $\pm 5V$ dc at 70 mA. There are three basic models covering two operating temperature ranges, 0 to $\pm 70^{\circ}C$, and ± 55 to $\pm 100^{\circ}C$.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±0.01"

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	SAMPLE CONTROL
3	SAMPLE CONTROL
6	-BIAS 1
7	-BIAS 2
9	-5V POWER
10	GROUND
12	+5V POWER
14	GROUND
15	GROUND
16	GROUND
18	OUTPUT
19	+5V POWER
20	+BIAS 2
22	INPUT
23	+BIAS 1

ABSOLUTE MAXIMUM RATINGS

Power Supplies, Pins 9-19 ± 6V Analog Input Voltage, Pin 22 . . . ±5V
Sample Inputs, Pins 1 & 3 ±5V Differential Current, Pins 6, 7, 20, 23, 50 mA

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, ±15V and ±5V supplies with external LH0033 Buffer Amplifier unless otherwise noted.

INPUTS

Input Impedance 106 Ohms
Sample Control Inputs4 Differential ECL 10,000 Positive Pulse on Pin 1 and Negative Pulse on Pin 3 gives Sample Mode

OUTPUT¹

Output Voltage Range, Min. ± 2.5V Output Current ± 10 mA
Output Impedance 6 Ohms

PERFORMANCE

Accuracy 0.1% Output Offset Voltage²,

DYNAMIC RESPONSE

Acquisition Time, 5V Step to 0.2% Slew Rate ... 200V/µsec.

Aperture Delay Time ... 6 nsec.

Aperture Uncertainty Time ... 10 psec.

POWER REQUIREMENTS³

Power Supply Voltage ± 15V dc ± 0.75V at 60 mA ± 5V dc ± 0.25V at 70 mA

PHYSICAL/ENVIRONMENTAL

 Operating Temperature Ranges
 0 to +70°C

 SHM-HUMM
 -55 to +100°C

 Storage Temperature Range
 -65 to +150°C
 24 Pin Ceramic Pins ... 0.010 x 0.018 inch Ko Weight ... 0.2 ounces (6 grams) 0.010 x 0.018 inch Kovar

FOOTNOTES:

1. Output is from LH0033 amplifier and is not short circuit proof.

Output offset voltage adjustable to zero by LH0033 offset adjustment.

3. ±12V supplies can be used if the 360 ohm resistors at the Bias 1 pins are changed to 240 ohms and the 240 ohm resistors at the Bias 2 pins are changed

4. The SHM-HU can be driven by TTL logic input by biasing SAMPLE CONTROL input to +1.2V and driving the SAMPLE CONTROL with a positive pulse for sampling mode.

TECHNICAL NOTES

- 1. It is recommended that the ±5V supplies of the SHM-HU be bypassed with 0.1 µF ceramic capacitors as close as possible to pins 9 and 19. The \pm 15V supplies to the LH0033 should be bypassed with the same value capacitors.
- 2. It is essential that the output lead from pin 18 to pin 5 of the LH0033 be kept as short and direct as possible. Also, the complementary ECL driver should be as close as possible to pins 1 and 3 to minimize lead lengths to these pins.
- 3. With model SHM-HUMC the LH0033C should be used, and with model SHM-HUMM, model LH0033 should be used.
- An external hold capacitor may be added from pin 18 to pin 15. This capacitor should be an MOS or polystyrene type. Hold mode Droop and sample-to-hold offset error will decrease proportionately with the size of this capacitor and acquisition time will increase proportionately.

CONNECTION DIAGRAM

ORDERING INFORMATION

OPERATING MODEL NO. TEMP, RANGE

SHM-HUMC SHM-HUMM SHM-HUMM-QL

0 to +70 °C -55 to +100 °C -55 to +100 °C

PRELIMINARY PRODUCT DATA

SHM-49

High Speed, 0.01% Hybrid Sample/Hold

MECHANICAL DIMENSIONS

FEATURES

- 16 MHz small signal bandwidth
- Small 8 pin DIP or LCC package
- 200 nanoseconds maximum acquisition time to 0.01%
- 100 nanoseconds maximum sample/hold settling time
- 72 dB feedthrough attenuation
- ±25 picoseconds aperture uncertainty
- 413 mW maximum power dissipation

GENERAL DESCRIPTION

DATEL's SHM-49 is a high-speed, highly accurate sample/ hold designed for precision, high-speed analog signal processing applications. Manufactured using modern, highquality hybrid technology, the SHM-49 features excellent dy-namic specifications including a maximum acquisition time of only 200 nanoseconds for a 10V step to 0.01%. Sample-tohold settling time, to 0.01% accuracy, is 100 nanoseconds maximum with an aperture uncertainty of ±25 picoseconds.

The SHM-49 is a complete sample/hold circuit, containing a precision MOS hold capacitor and a MOSFET switching configuration which results in faster switching and better feedthrough attenuation. Additionally a FET input amplifier design allows faster acquisition and settling times while maintaining a considerably lower droop rate.

DIP	PINOUT			
1	+5V	4		
2	S/H	7		
3	ANALOG IN	10		
4	ANALOG RETURN	12		
5	-15V	16		
7	+15V	19		
8	POWER GROUND	24		

24 pin ceramic

ABSOLUTE MAXIMUM RATINGS

±15V Supply Voltage ±18V +5V Supply Voltage -0.5V to +7V Analog Input ±18V Digital Input -0.5V to +5.5V **Output Current** ±65 mA

FUNCTIONAL SPECIFICATIONS

Apply ever temperature range and at ±15V dc and +5V dc unless otherwise specified.

ANALOG INPUT/OUTPUT	MIN.	TYP.	MAX.	UNITS
Input/Output Voltage Range	±10	±11.5	_	V
Input Impedance	000	2	-	ΚΩ
Output Current	_	1 - 6	±40	mA
Output Impedance	_	0.1	dia - de	Ω
Capacitive Load	-	250	201 -	pF
DIGITAL INPUT		1		***
Input Logic Level		N OEL D	Uhlu	III.
Logic 1	+2.0	1 -	+5.0	V
Logic 0	0	-	+0.8	V
Loading ¹	-	1	-	TTL
TRANSFER CHARACTERISTICS				
Gain	-	-1.0	-	V/V
Gain Accuracy	-	±1	-	%
Gain Linearity Error ²	-	±0.005	±0.01	% FS
Sample-Mode Offset Voltage Sample-to-Hold Offset Error	-	±0.5	±5	mV
(Pedestal) 3		±2.5	±25	mV
Gain Tempco (Drift)	- apre-1	±0.5	±15	ppm of
5720	600,000		Di T	FSR/ °C
Sample-Mode Offset Drift 2	- 1	±3	±15	ppm of
Sample-to-Hold Offset		982	EE , TNO 10	T SH/ C
(Pedestal) Drift	-	±5	-	ppm of
DYNAMIC CHARACTERISTICS	- 6	411	HHP	
Acquisition Time;	50101	0 11		
10V to ±0.01% FS (±1 mV)		160	200	nS
10V to ±0.1% FS (±10 mV)	- 1	100	150	nS
10V to ±1% FS (±100 mV)		90	2.0 -	nS
1V to ±1% FS (±100 mV)	1 -	75	-	nS
Sample-to-Hold, Settling Time	THE REAL PROPERTY.	HART SHALE	THE WHITE	1000
10V to ±0.01% FS (±1 mV)	-	60	100	nS
10V to ±0.1% FS (±10 mV)		40	_	nS
	_	40		
Sample-to-Hold Transient	_	100	-	
	=			
Aperture Delay Time		100	= = = = = = = = = = = = = = = = = = = =	mV p-p
Aperture Delay Time Aperture Uncertainty (Jitter)	- - - 200	100		mV p-p nS pS
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate	200	100 10 <±25		mV p-p
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB)		100 10 <±25 300	- - - - 10	mV p-p nS pS V/μS
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB)		100 10 <±25 300 16	- - - 10	mV p-p nS pS V/μS MHz μV/μS
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB) Droop; +25 °C		100 10 <±25 300 16 0.5	- - - - 10	mV p-p nS pS V/μS MHz μV/μS μV/μS
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB) Droop; +25 °C +70 °C +125 °C		100 10 <±25 300 16 0.5 15	- - - 10 - -	mV p-p nS pS V/μS MHz μV/μS μV/μS
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB) Droop; +25 °C +70 °C +125 °C Feedthrough		100 10 <±25 300 16 0.5 15	10	mV p-r nS pS V/µS MHz µV/µS µV/µS mV/µS
+125 °C Feedthrough POWER REQUIREMENTS Voltage Range, ±15V		100 10 <±25 300 16 0.5 15 1.2 72	10 -	mV p-p nS pS V/µS MHz µV/µS µV/µS mV/µS dB
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB) Droop; +25 °C +70 °C +125 °C Feedthrough POWER REQUIREMENTS Voltage Range, ±15V +5V		100 10 <±25 300 16 0.5 15 1.2 72 ±3 ±5	10	mV p-r nS pS V/µS MHz µV/µS mV/µS dB
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB) Droop; +25 °C +70 °C +125 °C Feedthrough POWER REQUIREMENTS Voltage Range, ±15V +5V Power Supply Rejection Ratio		100 10 <±25 300 16 0.5 15 1.2 72 ±3 ±5 ±0.5		mV p-r nS pS V/µS MHz µV/µS µV/µS mV/µS dB
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB) Droop; +25 °C +70 °C +125 °C Feedthrough POWER REQUIREMENTS Voltage Range, ±15V +5V Power Supply Rejection Ratio Quiescent Current Drain, +15V		100 10 <±25 300 16 0.5 15 1.2 72 ±3 ±5 ±0.5 +12	- - - - +13.5	mV p-p-nS pS V/µS MHZ µV/µS µV/µS dB
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB) Droop; +25 °C +70 °C +125 °C Feedthrough POWER REQUIREMENTS Voltage Range, ±15V +5V Power Supply Rejection Ratio Quiescent Current Drain, +15V -15V		100 10 ±25 300 16 0.5 15 1.2 72 ±3 ±5 ±0.5 +12 -12	- - - - - 13.5 -13.5	mV p-p-nS pS V/µS MHz µV/µS dB % mV/V mA mA
Aperture Delay Time Aperture Uncertainty (Jitter) Output Slew Rate Small Signal Bandwidth (-3 dB) Droop; +25 °C +70 °C +125 °C Feedthrough POWER REQUIREMENTS Voltage Range, ±15V +5V Power Supply Rejection Ratio Quiescent Current Drain, +15V		100 10 <±25 300 16 0.5 15 1.2 72 ±3 ±5 ±0.5 +12	- - - - +13.5	mV p-p-nS pS V/µS MHZ µV/µS µV/µS dB

PHYSICAL/ENVIRONMENTAL	
Operating Temperature Range	ALIANGS VOLUMNI IDC
SHM-49MC/LC	0 to +70 °C
SHM-49MM/LM	-55 to +125 °C
Storage Temperature Range	-65 to +150 °C
Package Type, DIP	8 pin ceramic

Footnotes

- 1. One TTL load is defined as sinking 40 μA with a logic 1 input and
- sourcing 1.6mA with a logic 0 input.

 Full Scale (FS) = 10V. Full Scale Range (FSR) = 20V.

 Sample-to-Hold offset error (Pedestal) is constant regardless of input/output level.

TECHNICAL NOTES

- All ground pins should be tied together and connected to system analog ground as close to the package as possible. It is recommended to use a ground plane under the device and solder ground pins directly to it. Care must be taken to insure that no ground potentials can exist between ground
- 2. External 0.1 µF to 1 µF tantalum bypass capacitors are required in critical ap-
- A logic 1 on S/H puts the unit in the track mode. A logic 0 puts the unit in
- The maximum capacitive load to avoid oscillation is typically 250 pF. Recommended resistive load is 500Ω, although values as low as 250Ω may be used. Acquisition and sample-to-hold settling times are relatively unaffected by resistive loads down to 250Ω and capacitive loads up to 50 pF. However, capacitances will affect both acquisition and settling time.

Offset and Gain Adjustments

NOTE: with a precision source, adjust R1 and R2 so that the output of the SHM-49 in the hold mode matches the source output.

ORDERING INFORMATION

MODEL NO.	OPERATING TEMP. RANGE
SHM-49MC	0 to +70 °C
SHM-49LC	0 to +70 °C
SHM-49MM	-55 to +125 °C
SHM-49LM	-55 to +125 °C
	of High Reliability versions of contact DATEL.

MSH-840

Quad Simultaneous Sample Hold

ADVANCED PRODUCT DATA

FEATURES

- · 4 Simultaneous sample holds
- Internal 4-channel multiplexer
- 750 nSec. Acquisition time, 10V step to 0.01%
- · 2 Channels with optional X10 gain
- · Control logic for interfacing to A/D's
- · Low power 1.5 Watts
- Small 32-pin TDIP
- -55 °C to +125 °C Versions

GENERAL DESCRIPTION

The MSH-840 is a quad simultaneous sample-hold featuring an acquisition time of 750 nSec. Control logic is provided for strobing the channels simultaneously and for interfacing to A/D's. A 4-channel multiplexer allows individual S/H outputs to be digitized.

The MSH-840 requires +/-15V and +5V power supplies and dissipates just 1.5 Watts. Packaged in a small 32-pin TDIP, both commercial 0 to +70 °C and military -55 to +125 °C operating temperature range models are offered.

PIN	FUNCTION	PIN	FUNCTION
1	DIGCOM	17	+15V
2	+5V	18	PWRCOM
2	SSH1 IN	19	-15V
4	OFSADJ1	20	MUX OUT
5	SSH1 OUT	21	MUX IN4
6	SSH2 IN	22	MUX IN3
7	OFSADJ2	23	MUX IN2
8	SSH2 OUT	24	MUX IN1
9	SSH3 IN	25	ANACOM
10	OFSADJ3	26	CA1
11	G X10 3	27	CAO
12	SSH3 OUT	28	START CONVERT
13	SSH4 IN	29	CONV IN
14	OFSADJ4	30	S/H IN
		31	EOC
14 15 16	G X10 4 SSH4 OUT		

Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets.

> Dial 1-800-233-2765 for

HYBRID DATA ACQUISITION SYSTEMS

	Model	Resolution (Bits)	Throughput (KHz)	Linearity Error (Max)	Power (Watts Max)	Channels	Case	Page
	HDAS-16	12	50	±3/4 LSB	1.75	16 SE	62-Pin	5-1
	HDAS-8	12	50	±3/4 LSB	1.75	8 DE	62-Pin	5-1
	HDAS-75	12	75	±3/4 LSB	0.7	8 SE	40-Pin DIP	5-15
	HDAS-76	12	75	±3/4 LSB	0.7	4 DE	40-Pin DIP	5-15
	HDAS-534	12	250	±3/4 LSB	3.0	4 DE	40-Pin DIP	5-11
	HDAS-538	12	250	±3/4 LSB	3.0	8 SE	40-PIN DIP	5-11
	HDAS-524	12	400	±3/4 LSB	3.0	4 DE	40-Pin DIP	5-7
	HDAS-528	12	400	±3/4 LSB	3.0	8 SE	40-Pin DIP	5-7
Preliminary	HDAS-950	16	100	±1/2 LSB @ 14 BITS	1.4	8 SE	40-Pin DIP	5-19
Preliminary	HDAS-951	16	100	±1/2 LSB @ 14 BITS	1.4	4 DE	40-Pin DIP	5-19

Data Acquisition component

Dial 1-800-233-2765 for polications Assistance

	1.75			

Contact DATEL for your Data Acquisition component needs.

Dial 1-800-233-2765 for Applications Assistance

HDAS-16, HDAS-8

12-Bit Microelectronic Data Acquisition Systems

FEATURES

- Miniature 63-pin hermetic package
- 12-Bit resolution, 50 KHz
- Full-scale gain range of 50 mV to 10V
- · Three-state outputs
- 16 Channels single-ended or 8 channels differential
- · Auto-sequencing channel addressing
- · MIL-STD-883 versions
- No missing codes

GENERAL DESCRIPTION

Using thin-and thick-film hybrid technology, DATEL offers complete low-cost data acquisition systems with superior performance and reliability.

The HDAS-8 (with 8 differential input channels), and the HDAS-16 (with 16 single-ended input channels), are complete high performance 12-bit data acquisition systems in 62-pin packages. Each HDAS may expand to 32 single-ended or 16 or more differential channels by adding external multiplexers.

Internal channel address sequencing is automatic after each conversion, or the user may supply external channel addresses.

MECHANICAL DIMENSIONS - INCHES (MM)

PIN SPACING IS 0 100 INCHES ±0 005 NON-CUMULATIVE (2.5 mm)

MAXIMUM PIN DIMENSIONS ARE 0 012 × 0 022 INCHES (0.3 × 0.5 MM)

Internal HDAS circuitry includes:

- Analog signal multiplexer
- Resistor programmable gain instrumentation amplifier
- A sample-and-hold-circuit, complete with MOS hold capacitor
- A 10 volt buffered reference
- A 12-bit A/D converter with three-state outputs and control logic

ABSOLUTE MAXIMUM RATINGS						
Parameters	Min.	Max.	Units			
+15V Supply (Pin 43)	-0.5	+18	Volts dc			
-15V Supply (Pin 44)	+0.5	-18	Volts dc			
+5V Supply (Pin 18)	-0.5	+7	Volts dc			
Analog Inputs(Note 1)	-35	+35	Volts			
Digital Inputs	-0.5	+7	Volts			
Junction-Case		13	°C/Watt			
Case-Ambient		17	°C/Watt			
Junction-Ambient		30	°C/Watt			
Power Dissipation		1.75	Watts			
Lead Temp. (10 Sec.)		300	°C			

FUNCTIONAL SPECIFICATIONS

The following specifications apply over the operating temperature range and power supply range unless otherwise indicated.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Signal Range				
Uninolar				
Gain = 1	0	100	+10	Volts
Gain = 200	0		+50	mV
Bipolar	11 11 11 11 11		1.5	Personal Per
Gain = 1	-10	_	+10	Volts
Gain = 200	-50	-	+50	
887 8 4	ED SPACE		-	
Input Gain Equation	Gain =	1 + (20K)	Ohm/RG/	AIN)
(Note 2)		(==:(-,
Gain Equation Error			+ ± 0.1	%
Instrumentation Amp.		2.67		-
Input Impedance	108	1012	1 1	Ohms
Input Bica Current:				
0°C to +70°C	15.		+ 250	nΑ
0°C to +70°C	Doubles	01/00/ 100	Cahous	7000
-55 0 10 +125 0	Doubles	every 10	o above	100
Input Offset Current:			W 44 30	901 10
0°C to + 70°C		_		nA
-55°C to +125°C	Doubles	every 10°	C above	70°C
Multiplexer				
Channel ON Resistance	(6) 1974 <u>Lines</u>	15356	2.0	K Ohms
Channel ON Resistance				
Leakage		30	_	pA
Channel OFF Output				
Leakage	_	1.0	_	nA
Channel ON Leakage	_	100		pA
Input Capacitance				
	_	100	" = =	pF
HDAS-8, Channel On	_	50		pF
HDAS-16, Channel On	_	5		pF
Input Offset Voltage				
Gain = 1 to 200, +25°C	-	_	±2	mV
-55°C to +125°C	± (30pp	m/°C x G	ain) ± 20	1
elicently like conference	ppm/°C	(max)		
Common Mode Range	+11	NCOSTS .	_	Volts
				23
CMRR, Gain = 1, at 60 Hz				dB
Input Voltage Noise (Referred to input)	MOS M			
to input)	ud flov			
Gain = 1	CLA BA	150		μV RMS
Channel Crosstalk				dB Hivis
	- 00	dien		UD
PERFORMANCE		HELEN		SEE
Resolution	12	-	-	Bits
Integral				
Nonlinearity:				
+25°C			± 3/4	LSB
0°C to 70°C	_			LSB
-55°C to +125°C				LSB

PERFORMANCE (cont.)	MIN.	TYP.	MAX.	UNITS
Differential				
Nonlinearity:				
+25°C	_	_	± 3/4	LSB
0°C to 70°C	_	_	±1	LSB
-55°C to +125°C	_	_	±1	LSB
Differential Nonlinearity				100
Tempco		rl nic-E		
Unipolar Zero Error			ozer fil	
+25°C (Note 3)	i lo m u	nen n in e	±0.1	%FSR
-55°C to +125°C	-		± 0.3	%FSR
Unipolar Zero Tempco	_	indino i	±20	ppm/°C
Bipolar Zero Error				
±25°C (Note 3)	laite	on all the	+0.1	%FSR
-55°C to +125°C	1022	CO COCCI	±0.3	%FSR
Bipolar Zero Tempco	enna n o	Busha	± 35	ppm/°C
Bipolar Offset Error			0.1	0/ECD
+25°C (Note 3)	_		0.1	%FSR
-55°C to +125°C	_	86864	1.35	ppm/°C
Gain Error	_	T	I 33	ppiii/ C
+25°C (Note 3)			+02	%FSR
-55°C to +125°C	_	_	+0.2	%FSR
- 55 °C to + 125 °C	TOITS	ESCR		ppm/°C
No Missing Codes	Over the	operating t	emperati	ure range
DYNAMIC CHARACTERISTICS				
Acquisition Time,	ydliki	alter bee	eance a	mohan
At Gain = 1 +25°C		9	10	"Sec
-55°C to +125°C		_	15	uSec.
At Gain = 10, +25°C	elenin	8 11 9	8-6AC	μSec.
-55°C to +125°C. At Gain = 10, +25°C. At Gain = 50, +25°C	-algnie	16	w) ar	µSec.
At Gain = 200, +25°C	GOOG R	60	noun ee	uSec.
Aperture Delay Time	tid elmol	100	500	nSec.
Aperture UncertaintyS/H Droop Rate	Sile Sile	in to	1	nSec. mV/Sec
S/H Droop Rate	HO 510			
Feedthrough Accuracy	_	ol o xers.	±0.01	%
A/D Conversion Time:				
+25°C	iress s	9	10	μSec.
-55°C to +125°C	mou -d	1 10 -	15	uSec.
I hroughput Hate				
+25°C	50	55	.886	KHz
-55°C to +125°C	33		_	KHz
DIGITAL INPUTS			DE ROKE	12000
Logic Levels:				
(Pins 5, 8, 13, 14, 15, 16, 19, and 20)				Male
Logic 1	2.0	1		Volts
Logic 0	0	5 9	0.8	Volts
(Pins 21,26, 31)				
Logic 1	2.0	1 - 2	5.5	Volts
Logic 0	0			Volts
Logic Loading:				
(Pins 5, 8, 13, 14, 15, 16, 19, and 20)			O STATE	7 813 (4
Logic 1		L. James	1	μΑ
Logic 0	I SHEET	_	-280	μΑ
(Pins 21, 26, 31)				
Logic 1	1	-		μА
Logic 0	_	-	-0.40	
	20	-	145	nSec.
Multiplexer Address Set-up	20			E 1240 61
Multiplexer Address Set-up Time	20			
Multiplexer Address Set-up Time	20	00	000	-0
Multiplexer Address Set-up Time		20		nSec.

OUTPUTS aldst neits	MIN.	TYP.	MAX.	UNITS
Logic Levels:				
(Pin 7 & Output Data)				
Logic 1	2.4	_	-	Volts
Logic 0	AD -	_	0.4	Volts
(Pins 9, 10, 11, and 12)				
Logic 1	4.4	-	V07 +_0	
Logic 0		_		Volts
Logic Loading: Logic 1				-
Logic 1		_	400	
Logic o		_	4	mA
Voltage, +25°C	+9.99	+10.00	+10.01	Volts dc
Drift	- 000	_	± 20	ppm/°C
External current	45	-	1/01	mA
Data Output Coding	Straight	binary (un pipolar)	ipolar) or	offset
			-	
POWER REQUIREMENTS	imants are	aujbs ni	ag bna t	. Offse
Power Supply Range:	imants are	in adjus meiens	t and ga	L Offse
Power Supply Range: + 15V dc Supply	one almand	+ 15.0	+ 15.5	Volts dc
Power Supply Range: +15V dc Supply	+14.5	+ 15.0 - 15.0	+ 15.5 - 15.5	Volts dc Volts dc
Power Supply Range: +15V dc Supply	+14.5	+ 15.0 - 15.0	+ 15.5 - 15.5	Volts dc Volts dc
Power Supply Range: + 15V dc Supply - 15V dc Supply + 5 dc Supply Supply Current	+14.5 14.5 +4.75	+ 15.0 - 15.0 + 5.0	+ 15.5 - 15.5 + 5.25	Volts dc Volts dc Volts dc
Power Supply Range: +15V dc Supply -15V dc Supply +5 dc Supply Supply Current: +15V supply	+14.5 14.5 +4.75	+ 15.0 - 15.0 + 5.0	+ 15.5 - 15.5 + 5.25	Volts dc Volts dc Volts dc
Power Supply Range: + 15V dc Supply - 15V dc Supply +5 dc Supply Supply Current: + 15V Supply - 15V Supply	+14.5 14.5 +4.75	+ 15.0 - 15.0 + 5.0	+ 15.5 - 15.5 + 5.25 + 40 - 45	Volts dc Volts dc Volts dc mA mA
Power Supply Range: + 15V dc Supply - 15V dc Supply +5 dc Supply Supply Current: + 15V Supply - 15V Supply	+14.5 14.5 +4.75	+15.0 -15.0 +5.0	+ 15.5 - 15.5 + 5.25 + 40 - 45 + 95	Volts dc Volts dc Volts dc mA mA mA
Power Supply Range: + 15V dc Supply - 15V dc Supply +5 dc Supply Supply Current: + 15V Supply - 15V Supply	+14.5 14.5 +4.75	+ 15.0 - 15.0 + 5.0	+ 15.5 - 15.5 + 5.25 + 40 - 45 + 95	Volts dc Volts dc Volts dc mA mA
Power Supply Range: + 15V dc Supply - 15V dc Supply +5 dc Supply Supply Current: + 15V Supply - 15V Supply	+14.5 14.5 +4.75	+15.0 -15.0 +5.0	+ 15.5 - 15.5 + 5.25 + 40 - 45 + 95	Volts dc Volts dc Volts dc mA mA mA
Power Supply Range: + 15V dc Supply - 15V dc Supply + 5 dc Supply Supply Current: + 15V Supply - 15V Supply - 5V Supply - 5V Supply Power Dissipation PHYSICAL — ENVIRONMENTAL Operating	+14.5 14.5 +4.75	+15.0 -15.0 +5.0 	+ 15.5 - 15.5 + 5.25 + 440 - 45 + 95 1.75	Volts dc Volts dc Volts dc mA mA Watts
Power Supply Range: + 15V dc Supply - 15V dc Supply + 5 dc Supply Supply Current: + 15V Supply - 15V Supply + 5V Supply Power Dissipation PHYSICAL — ENVIRONMENTAL Operating Temperature Range:	+14.5 14.5 +4.75	+15.0 -15.0 +5.0 - - - 1.45	+ 15.5 - 15.5 + 5.25 + 40 - 45 + 95 1.75	Volts dc Volts dc Volts dc mA mA Watts
Power Supply Range: + 15V dc Supply - 15V dc Supply + 5 dc Supply Supply Current: + 15V Supply - 15V Supply + 5V Supply Power Dissipation PHYSICAL — ENVIRONMENTAL Operating Temperature Range:	+14.5 14.5 +4.75	+15.0 -15.0 +5.0 - - - 1.45	+ 15.5 - 15.5 + 5.25 + 40 - 45 + 95 1.75	Volts dc Volts dc Volts dc mA mA Watts
Power Supply Range: +15V dc Supply -15V dc Supply +5 dc Supply Supply Current: +15V Supply -15V Supply -15V Supply Power Dissipation PHYSICAL — ENVIRONMENTAL Operating Temperature Range: MC Models MMR83B Models	+14.5 14.5 +4.75 	+15.0 -15.0 +5.0 	+ 15.5 - 15.5 + 5.25 + 40 - 45 + 95 1.75	Volts dc Volts dc Volts dc mA mA Watts
Power Supply Range: +15V dc Supply -15V dc Supply +5 dc Supply Supply Current: +15V Supply -15V Supply -15V Supply Power Dissipation PHYSICAL — ENVIRONMENTAL Operating Temperature Range: MC Models MMR83B Models	+14.5 14.5 +4.75 	+15.0 -15.0 +5.0 	+ 15.5 - 15.5 + 5.25 + 40 - 45 + 95 1.75	Volts dc Volts dc Volts dc mA mA Watts
Power Supply Range: +15V dc Supply -15V dc Supply +5 dc Supply Supply Current: +15V Supply -15V Supply -15V Supply Power Dissipation PHYSICAL — ENVIRONMENTAL Operating Temperature Range: MC Models MMR83B Models	+14.5 14.5 +4.75 	+15.0 -15.0 +5.0 	+ 15.5 - 15.5 + 5.25 + 40 - 45 + 95 1.75	Volts dc Volts dc Volts dc mA mA Watts
Power Supply Range: +15V dc Supply -15V dc Supply +5 dc Supply Supply Current: +15V Supply -15V Supply -15V Supply Power Dissipation PHYSICAL — ENVIRONMENTAL Operating Temperature Range: MC Models MMR83B Models	+14.5 14.5 +4.75 	+15.0 -15.0 +5.0 	+ 15.5 - 15.5 + 5.25 + 40 - 45 + 95 1.75 + 70 + 125 + 150	Volts dc Volts dc Volts dc mA mA Watts
Power Supply Range: + 15V dc Supply - 15V dc Supply + 5 dc Supply Supply Current: + 15V Supply - 15V Supply - 15V Supply Power Dissipation PHYSICAL — ENVIRONMENTAL Operating Temperature Range: MC Models MM/883B Models Storage Temperature Range: Weight	+14.5 -14.5 +4.75 	+15.0 -15.0 +5.0 	+15.5 -15.5 +5.25 +40 -45 +95 1.75 +70 +125 +150 19.7)	Volts dc Volts dc Volts dc MA MA Watts
Power Supply Range: +15V dc Supply -15V dc Supply +5 dc Supply Supply Current: +15V Supply -15V Supply -15V Supply Power Dissipation PHYSICAL — ENVIRONMENTAL Operating Temperature Range: MC Models MMR83B Models	+14.5 14.5 +4.75 	+15.0 -15.0 +5.0 	+15.5 -15.5 +5.25 +40 -45 +95 1.75 +70 +125 +150 19.7)	Volts dc Volts dc Volts dc mA mA Watts deg. C deg. C deg. C

SPECIFICATION NOTES

- 1. Analog inputs will withstand ± 35 volts with power on. If the power is off, the maximum safe input (no damage) is ± 20 volts.
- 2. The gain equation error is guaranteed before external trimming and applies at gains under 50. This error increases at gains over 50.
- 3. Adjustable to zero.
- STROBE pulse width must be smaller than EOC period to achieve maximum throughput rate.

TECHNICAL NOTES

- 1. Input channels are protected to 20 volts beyond the power supplies. All digital output pins have one second short circuit protection; CHOLD has a ten second short circuit protection.
- 2. To retain high system throughput rate while digitizing low level signals, apply external high-gain amplifiers for each channel. Datel's AM-551 is suggested for such amplifier-per-channel applications.
- 3. The HDAS devices have self-starting circuits for free-running sequential operation. If, however, in a power-up condition the supply voltage slew rate is less than 3V per microsecond, the free running state might not be initialized. Apply a negative pulse to the STROBE, to eliminate this condition.
- For unipolar operation, connect BIPOLAR INPUT (pin 38) to S/H OUT (pin 39).
 For bipolar operation, connect BIPOLAR INPUT (pin 38) to + 10V REFERENCE OUT (pin 40).
- 5. RDELAY may be a standard value 5% carbon composition or film type resistor.
- 6. RGAIN must be very accurate with low temperature coefficients. If necessary, fabricate the gain resistor from a precision metal film type in series with a low value trim resistor or potentiometer. The total resistor temperature coefficient must be no greater than ± 10 ppm/°C.

PIN CONNECTIONS

PIN NO.	HDAS-16	HDAS-8
1	CH3 IN	CH3 HIGH IN
2	CH2 IN	CH2 HIGH IN
3 04 940 00	CH1 IN	CH1 HIGH IN
4	CHO IN	CH0 HIGH IN
5 pelait	MUX ENABLE	* GAC
6	R DELAY	
7	EOC bhA lameuped	*
8 223 01 121	STROBE MAN SWOOD OF	* #A1.0
90190 01 28	SEAOTA CHYRIOIT IIIM	*
	MULTIPLEXER	
		MAINTHPE EXCER
	A2 A1 OUT	*BJBAVE
		HEXE SRIT JUN
	RA8 MULTIPLEXER	NODRESS IN
14 00 (18)		NI COSHUU
15	RA2 IN	
16	RA1	MOLTAL OUTPUTS
17	DIGITAL COMMON	* 308
18	+5V dc	
19	LOAD ENABLE	
20	CLEAR ENABLE	(A-I)*BUBANG
21	ENABLE (Bits 9-12)	
	BIT 12 OUT (LSB)	(8-2)*3U8AU
	BIT 11 OUT	
	BIT 10 OUT	1 ABLE 19-12)
	BIT 9 OUT	
	ENABLE (Bits 5-8)	REXECTION.
	BIT 8 OUT	- DURESS OUT -
28	BIT 7 OUT	100 000000
29	BIT 6 OUT	9890 100 10 10 10 10 10 10 10 10 10 10 10 1
30	BIT 5 OUT	STURMI DOLLAR
		hannel inputs
31	ENABLE (Bits 1–4)	Bigglat telegia
32	BIT 4 OUT (TUO HIS)	
33	BIT 3 OUT	
34	BIT 2 OUT	
35	BIT 1 OUT (MSB)	AMP. BY HIGH
36	GAIN ADJUST	AMP. BILLOW
37	OFFSET ADJUST	***************************************
38	BIPOLAR INPUT	
39		CHALOG OUTPUTS
40	+ 10V OUT	Set OUT
41	ANALOG SIGNAL COMMON	TUGIVO!
42	ANALOG POWER COMMON	*
43	+ 15V dc	ADJUST MENT PINS
44	- 15V dc	AVALUOG SIGNAL
45	C HOLD HIGH	COMMON
46	C HOLD LOW	· · · · · · · · · · · · · · · · · · ·
47 101510	R GAIN LOW	January MAD
48	R GAIN HIGH	ADJUS PMENT
49	AMP. IN HIGH1	*
50	AMP INLLOW/1	The artist of the second of the
51	CH1E IN	CH7 LOW IN
52	CH14 IN	CH6 LOW IN
53	CH13 IN	CH5 LOW IN
54	CH13 IN	CH4 LOW IN
55	CH12 IN	CH4 LOW IN
56	CHIUIN	CH2 LOW IN
57	CH3 IIV	CH1 LOW IN
58	CHOTIN	CH0 LOW IN
59	CH7 IN	CH7 HIGH IN
60	CH6 IN	CH6 HIGH IN
61	CH5 IN	CH5 HIGH IN
62	CH4 IN	CH4 HIGH IN
Same as HDAS	6-16 Dega evada ani hariw renovino	clane baneath the

- Same as HDAS-16
- Caution: pins 49 and 50 do not have overvoltage protection; therefore, protected multiplexers, such as DATEL's MX-1606 an MX-808 are recommended. See the General Operation description.

Table 1. Description of Pin Functions

Table 1.		otion of Pin Functions	Carlo Mi
FUNCTION	LOGIC	DESCRIPTION	
DIGITAL INPUTS	UIAIL	DESCRIPTION OF THE PROPERTY OF	0
STROBE	1 to 0	Initiates acquisition and conversi	ion
		of analog signal	
LOAD	0	Random Address Mode Initiated	
		on falling edge of STROBE	
	1	Sequential Address Mode	
CLEAR	0	Allows next STROBE pulse to re	
		MULTIPLEXER ADDRESS to Choverriding LOAD COMMAND	
MULTIPLEXER	0	Disables internal MULTIPLEXER	
ENABLE	1	Enables internal MULTIPLEXER	
MULTIPLEXER		Selects channel for Random Add	
ADDRESS IN		Mode 8, 4, 2, and 1 natural binary of	coaing
DIGITAL OUTPUTS			
EOC		End of Conversion (STATUS)	
200	0	Conversion complete	
	1	Conversion in process	
ENABLE (1-4)	0	Enables three-state outputs bits	1-4
	1	Disables three-state outputs bits	
ENABLE (5-8)	0	Enables three-state outputs bits	
	1	Disables three-state outputs bits	5-8
ENABLE (9-12)	0	Enables three-state outputs bits 9	9-12
	1	Disables three-state outputs bits	
MULTIPLEXER		Output of MULTIPLEXER Address	
ADDRESS OUT		Register 8, 4, 2, 1 natural binary coding	
ANALOG INPUTS Channel Inputs Bipolar Input	(S/H (For bi	voltage to ±20V beyond power sunipolar operation, connect to pin 38 DIT) ploar operation, connect to pin 40 OUT)	
AMP. IN HIGH		BEM TUG F TIS	35
AMP. IN LOW	tation	e pins are direct inputs to the instru amplifier for external channel exp nd 16SE or 8D channels.	
ANALOG OUTPUT	S		
S/H OUT		ole/Hold Output	
+ 10V OUT		red + 10V reference output	
		ANALOG POWER COI	
ADJUSTMENT PIN	S		
ANALOG SIGNAL			
COMMON	. Low I	evel analog signal return	
GAIN		nal gain adjustment, see calibratio ctions.	n
OFFSET ADJUSTMENT		nal offset adjustment. See calibrat	ion
R GAIN			41.5
H GAIN		nal gain selection point. Factory a = 1 when left open.	ujustec
C HOLD		nal hold capacitor connection.	
R DELAY	Optio conne Must	nal acquisition time adjustment wheeted to +5V, factory adjusted for 9 be connected to +5V either direct	μSec.
	throu	gh a resistor.	

- ANALOG SIGNAL COMMON, POWER COMMON, and DIGITAL COMMON are connected internally. Avoid ground-related problems by connecting the commons to one point... the ground plane beneath the converer when the above special grounding considerations do not apply.
- For HDAS-16, tie pin 50 to a "signal source common" if possible. Otherwise tie pin 50 to pin 41 (ANA SIGN COM).

Table 2. Calibration Table

UNIPOLAR RANGE	ADJUST	INPUT VOLTAGE
0 TO +5V	ZERO GAIN	+ 0.6 mV + 4.9982V
0 TO +10V	ZERO GAIN	+1.2 mV +9.9963V
BIPOLAR RANGE		
± 2.5V	OFFSET GAIN	-2.4994V +2.4982V
±5V	OFFSET GAIN	- 4.9988V + 4.9963V
± 10V	OFFSET GAIN	-9.9976V +9.9927V

CALIBRATION PROCEDURES

- Offset and gain adjustments are made by connecting two 20K trim potentiometers as shown in Figure 1.
- Connect a precision voltage source to pin 4 (CH0 IN). If the HDAS-8 is used, connect pin 58 (CH0 LOW IN) to analog ground. Ground pin 20 (CLEAR) and momentarily short pin 8 (STROBE). Trigger the A/D by connecting pin 7 (EOC) to pin 8 (STROBE). Select proper value for RGAIN and RDELAY by referring to Table 3.
- Adjust the precision voltage source to the value shown in Table 2 for the unipolar zero adjustment (ZERO + ½ LSB) or the bipolar offset adjustment (-FS + ½ LSB). Adjust the offset trim potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001.
- 4. Change the output of the precision voltage source to the value shown in Table 2 for the unipolar or bipolar gain adjustment (+FS - 1½ LSB). Adjust the gain trim potentiometer so that the output flickers equally between 1111 1111 1110 and 1111 1111

Figure 1. External Adjustment

GENERAL OPERATION

The HDAS devices accept either 16 single-ended or 8 differential input signals. For single-ended circuits, the AMP IN LOW (pin 50) input to the instrumentation amplifier must terminate at ANALOG SIGNAL COMMON (pin 41). For differential circuits, both the HIGH and LOW signal inputs must terminate externally for each channel. Tie unused channels to the ANALOG SIGNAL COMMON (pin 41). To obtain additional channels, connect external multiplexers to the AMP IN HIGH (pin 49) and AMP IN LOW (pin 50). Using this scheme, the HDAS-16 can provide 32 single-ended expansion channels while the HDAS-8 can provide up to 16 differential expansion channels. DATEL multiplexer MX-1606 is recommended.

The acquisition time is the amount of time the multiplexer, instrumentation amplifier, and Sample/Hold require to settle within a specified range of accuracy after STROBE (pin 8) goes low. The acquisition time period can be observed by measuring how long EOC is low after the falling edge of STROBE (see

Table 2	Immed	Damma	Davamatava	(Timinal)
Table 3.	mput	nange	Parameters	(Typical)

INPUT RANGE	GAIN	RGAIN (Ω)	ACQUISITION AND SETTLING DELAY	RDELAY (Ω)	THROUGHPUT	SYSTEM ACCURACY (%of FSR)
± 10V	ATRO 1	OPEN	9 μSec.	0 (SHORT)	55.5 KHz	0.009%
± 5V	2	20.0K	9 µSec.	0 (SHORT)	55.5 KHz	0.009%
± 2.5V	4	6.667K	9 μSec.	0 (SHORT)	55.5 KHz	0.009%
± 1V	10	2.222K	9 μSec.	0 (SHORT)	55.5 KHz	0.009%
± 200 mV	50	408.2	16 μSec.	7K	40.0 KHz	0.010%
+ 100 mV	100	202.0	30 μSec.	21K	25.6 KHz	0.011%
± 50 mV	200	100.5	60 μSec.	51K	14.5 KHz	0.016%

NOTES

RGAIN (
$$\Omega$$
) = $\frac{20,000}{(GAIN-1)}$ RDELAY (Ω) = $\frac{(Delay \,\mu sec. \times 1000)}{(GAIN-1)}$ - 9000

- For gains between 1 and 10, RDELAY (pin 6) must be shorted to +5V (pin 18).
- Throughput period equals Acquisition and Settling Delay, plus A/D conversion period (10 microseconds maximum).

Figure 2). For higher gains increase the acquisition time. Do this by connecting a resistor from RDELAY (pin 6) to +5V (pin 18). An external resistor RGAIN, can be added to increase the gain value. The gain is equal to 1 without an RGAIN resistor. Table 3 refers to the appropriate RDELAY and RGAIN resistors required for various gains.

The HDAS devices enter the hold mode and are ready for conversion as soon as the one-shot (controlling acquisition time) times out. An internal clock is gated ON, and start-convert pulse is sent to the 12-bit A/D converter, driving the EOC output high.

The HDAS devices can be configured for either bipolar or unipolar operation (see Table 2). The conversion is complete within a maximum of 10 microseconds. The EOC now returns low, the data is valid and sent to the three-state output buffers. The sample/hold amplifier is now ready to acquire new data. The next falling edge of the STROBE pulse repeats the process for the next conversion.

Table 4. Output Coding

UNIPOLAR		STRAIGHT BINARY	
	0 to +10V	0 to +5V	DANDIS (-)
+FS-1LSB	+9.9976	+4.9988	1111 1111 1111
+ 1/2FS	+5.0000	+ 2.5000	1000 0000 0000
+1 LSB	+0.0024	+0.0012	0000 0000 0001
ZERO	0.0000	0.0000	0000 0000 0000

	BIPOLAR		OFFSET BINARY*
	± 10 V	± 5V	
+FS-1LSB	+9.9951	+4.9976	1111 1111 1111
+ 1/2 FS	+5.0000	+ 2.5000	1100 0000 0000
+1 LSB	+0.0049	+0.0024	1000 0000 0001
ZERO	0.0000	0.0000	1000 0000 0000
-FS+1LSB	-9.9951	-4.9976	0000 0000 0001
-FS	- 10.000	-5.0000	0000 0000 0000

^{*}For 2's complement — add inverter to MSB line.

MULTIPLEXER ADDRESSING

The HDAS devices can be configured in either random or sequential addressing modes. Refer to Table 5 and the subsequent descriptions. The number of channels sequentially addressed can be truncated using the MUX ADDRESS OUT (pins 9, 10, 11 and 12) and appropriate decoding circuitry for the highest channel desired. The decoding circuit can drive the CLEAR (pin 20) function low to reset the addressing to channel 0.

- The analog input range to the A/D converter is 0 to +10V for unipolar signals, and -10.0V to +10.0V for bipolar signals.
- 4. Full-scale can be accommodated for analog signal ranges of ±50mv

RANDOM ADDRESS

Set pin 19 (LOAD) to logic 0. The next falling edge of STROBE will load the MUX CHANNEL ADDRESS present on pin 13 to pin 16. Digital address inputs must be stable 20 nanoseconds before and after falling edge of STROBE pulse.

FREE RUNNING SEQUENTIAL ADDRESS

Set pin 19 (LOAD) and pin 20 (CLEAR) to logic 1 or leave open. Connect pin 7 (EOC) to pin 8 (STROBE). The falling edge of EOC will increment channel address. This means that when the EOC is low, the digital output data is valid for the previous channel (CHn –1) than the channel indicated on MUX ADDRESS OUTPUT. The HDAS will continually scan all channels.

Example:

CH4 has been addressed and a conversion takes place. The EOC goes low. That channel's data becomes valid, but MUX ADDRESS CODE is now CH5.

TRIGGERED SEQUENTIAL ADDRESS

Set pin 19 (LOAD) and pin 20 (CLEAR) to logic 1 or leave open. Apply a falling edge trigger pulse to pin 8 (STROBE). This negative transition causes the contents of the address counter to be incremented by one, followed by an A/D conversion in 9 microseconds.

Table 5. Mux Channel Addressing

		- Charles	E	DRESS	MUXAD	-
	9		PIN			
	ž	5	12	11	10	9
	ON	MUX ENAB.	RA1	RA2	RA4	RA8
	NONE	0	X	X	X	X
	0	1	0	0	0	0 0 0 0 0 0
	1	1	1100	0	0	0
	2	H []	0	1.01	0	0
	3		BICAG	0 1.53	0	0
	2 3 4 5 6	H I	12 AC	0	1	0
HDAS-8	6	4 1	0	1	1	0
(3-BIT ADDRESS	7	1	4812AC	1 33	1	0
	8	1	0	0	0	1
	8 9	1	1	0	0	1
	10	A 1	0.00)9 tot 8	0.00	intrain
	11	1 1	tenderes	ed, 143-	0	idos i
	12	91 1	0	0	1	1
HDAS-16	13	1	1	0	1	1
(4-BIT ADDRESS	14 15	1	810	136 Mod	era alei	uffy co

Figure 2. HDAS Timing Diagram

INPUT VOLTAGE PROTECTION

As shown in Figure 3, the multiplexer has reversed biased diodes which protect the input channels from being damaged by overvoltage signals. The HDAS input channels are protected up to 20V beyond the supplies and can be increased by adding series resisters (Ri) to each channel. The input resistor must limit the current flowing through the protection diodes to 10 mA.

The value of Ri for a specific voltage protection range (Vp) can be calculated by the following formula:

$$Vp = (R signal + Ri + Ron) (10 mA)$$

where $R_{ON} = 2K$

NOTE: Increased input series resistance will increase multiplexer settling time significantly.

Figure 3. Multiplexer Equivalent Circuit

ORDERIN	NG INFORMATION
MODEL	OPERATING TEMP. RANGE
HDAS-16MC	0°C to + 70°C
HDAS-16MM HDAS-16/883B	-55°C to + 125°C -55°C to + 125°C
HDAS-8MC	0°C to + 70°C
HDAS-8/883B	-55°C to + 125°C -55°C to + 125°C
	ounting can be ordered through AN (component lead spring socket)

HDAS-524,-528 12-Bit, 400 KHz Data Acquisition Systems

FEATURES

- · 12-bit resolution, 400 KHz
- · 8 channels single-ended or 4 channels differential
- · Miniature 40-pin DDIP
- · Full scale gain range from 100 mV to 10V
- · Three-state outputs
- · No missing codes

GENERAL DESCRIPTION

The HDAS-524,-528 are complete data acquisition systems containing an internal multiplexer, instrumentation amplifier, sample-hold, analog-to-digital converter and three-state outputs. Packaged in a miniature 40-pin double-dip package, the HDAS-524/528 has a low power dissipation of 2.6 watts.

The HDAS-524 provides 4 differential inputs and the HDAS-528 provides 8 single-ended inputs. An internal instrumentation amplifier is characterized for gains of 1,2,4,8,10 and 100. The gain range is selectable through an external resistor.

TECHNICAL NOTES

- 1. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the analog, signal and digital grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies. This prevents contamination of the analog ground by noisy digital ground currents.
- Double-level multiplexing allows expanding the multiplexer channel capacity of the HDAS-528 from 8 singleended channels to 128 single-ended channels or the HDAS-524 from 4 differential channels to 32 single-ended channels.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	CH 0/CH 0 HI	40	START CNVRT
2	CH 1/CH 1 HI	39	CA2
3	CH 2/CH 2 HI	38	CA1
4	CH 3/CH 3 HI	37	CA0
5	CH 7/CH 3 LO	36	+5V
	CH 6/CH 2 LO	35	DIGITAL GND
7	CH 5/CH 1 LO	34	ENABLE
8	CH 4/CH 0 LO	33	BIT 1 (MSB)
9	COMP BIN	32	BIT 2
10	RGAIN LO	31	BIT 3
11		30	BIT 4
12	S/H OUT	29	BIT 5
13	+10V REF OUT	28	BIT 6
	SIGNAL GND	27	BIT 7
15	GAIN ADJ	26	BIT 8
16	OFFSET ADJUST	25	BIT 9
17	BIPOLAR	24	BIT 10
18	-15V	23	BIT 11
19	ANALOG GND	22	BIT 12
20	+15V	21	EOC
00			

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (pin 20)	0 to +18	V dc
-15V Supply (pin 18)	0 to -18	V dc
+5V Supply (pin 36) Digital Inputs	-0.5 to +7.0	V dc
(pins 9, pins 34, 36-40)	-0.3 to +6.0	V dc
Analog Inputs (pins 1-8)	±25	V
Lead Temp. (10 Sec.)	300	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and +5V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Number of Inputs				
HDAS-524		4 differenti		
HDAS-528		8 single-end	ded inputs	
Input Voltage Ranges				
Gain = 1		0 to +10V	, ±10V	
Gain = 100	(to 100 mV	±100 mV	ECHRIO
I.A. Gain Ranges		1, 2, 4, 8,	10, 100	
Input Impedance	ajau zostu	091,4605	mohac	Bated
CH ON, CH OFF	1011	1012	and_layd	Ohms
	d internall	aloennos	fon en	abnuo
(-528) CH ON, CH OFF	and particle	more vet	25	pF
(-524) CH ON, CH OFF	and the same	10-00	12	pF
Input Bias Current	OUTDINE SHE	minor s	200	pA
	uolance a	eni ant o		
Input Offset Current	neturn th	mag mu	50	pA
Input Offset Voltage	002 19900	ent et v	±10	mV
Common Mode Volt. Range	±11	Inna and	in anito	V
CMMR, G=1,@10Hz,		100		THE PARTY OF THE P
Vcm=1V p-p	-75	-80	-	dB
Voltage Noise (RMS)				
Gain = 1	e wolfe or	desiration	200	μV
Gain = 8	APPEN TONE	_	50	μV
MUX Crosstalk @ 125 KHz	-72	n Kanania	en calcular	dB
MUX ON Resistance	eque-sign	450	500	Ohms
Bias Current Tempco	Doubles	(max.) ever	v 10 °C at	nove 70 °C
Offset Current Tempco	Doubles	(max.) ever	v 10 °C at	20 0 0 0
Offset Voltage Tempco		n/ °C x gain		
	(±30 ppr			(max.)
Input Gain Equation		Rg = 1/[(ga	III - 1]/ Z []	
DIGITAL INPUTS				
Logic Levels				
Logic 1	2.0	-	-	V dc
Logic 0	_	-	0.8	V dc
	1			v dc
Logic Loading			5	6 12 75 5
Logic Loading Logic 1	105 Mr.	-	5	μА
Logic Loading Logic 1 Logic 0	nyster _	-	5 -200	6 12 75 5
Logic Loading Logic 1 Logic 0	TORUS MM	-		μА
Logic Loading Logic 1 Logic 0	TO BUT SEN OLD INC.	-		μА
Logic Loading Logic 1 Logic 0 OUTPUTS	TOTAL - MM - MM DOL MO 5 0 1 0 0	-		μА
Logic Loading Logic 1 Logic 0 OUTPUTS	2.4	-		μА
Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1	2.4	=	-200	μΑ μΑ V dc
Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0	2.4	=		µА µА
Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading	2.4	-	-200 - 0.4	μΑ μΑ V dc V dc
Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Logic O	2.4	-	-200 -0.4 -160	μΑ μΑ V dc V dc
Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 1	100 (42) 1 00 (42) 1 00 (42) 1 00 (42) 2 00 (42) 2	-	-200 - 0.4	μΑ μΑ V dc V dc
Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 Internal Reference	DENOT S CHARD S 19600 S NUMBER OF UDSS ST BOAL ST	-	-200 - 0.4 -160 6.4	μΑ μΑ V dc V dc V dc
Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 1 Logic 1 Logic 1 Logic 1 Logic 1 Logic 1 Logic 6 Internal Reference Voltage, +25 °C	2.4		-200 -200 - 0.4 -160 6.4 +10.1	μΑ μΑ V dc V dc μΑ mA
Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 Index and Reference Voltage, +25 °C Drift	DENOT S CHARD S 19600 S NUMBER OF UDSS ST BOAL ST	- - - - +10.0 ±5	-200 -0.4 -160 6.4 +10.1 ±35	μΑ μΑ V dc V dc μΑ mA V dc
Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 1 Logic 1 Logic 1 Logic 1 Logic 1 Logic 1 Logic 6 Internal Reference Voltage, +25 °C	DENOT S CHARD S 19600 S NUMBER OF UDSS ST BOAL ST		-200 -200 - 0.4 -160 6.4 +10.1	μΑ μΑ V dc V dc μΑ mA

PERFORMANCE	MIN.	TYP.	MAX.	UNITS
Resolution	12	_	_	Bits
Integral Nonlinearity,25 °C	90 TV-10-	-503	±3/4	LSB
0 to +70 °C	-	-	±3/4	LSB
-55 to +125 °C	-	-	±1.5	LSB
Differential Nonlinearity			- 500	MAIWE
+25 °C	-	-	±3/4	LSB
0 to +70 °C	- 231	N 000 J	±3/4	LSB
-55 to +125 °C	aria è ao b	sbre-si	±1	LSB
F.S. Abs. Accuracy +25 °C	-	±0.13	±0.30	%FSR
0 to +70 °C	n 00 F mi	±0.15	±0.5	%FSR
-55 to +125 °C	-	±0.25	±0.78	%FSR
Unipolar Zero Error,+25 °C	-	±0.074 ±15	±0.15 ±30	%FSR ppm/°C
Unipolar Zero Tempco Bipolar Zero Error, +25 °C		±0.074	±0.15	%FSR
Bipolar Zero Tempco		±5	±10	ppm/°C
Bipolar Offset Error,+25 °C	-	±0.1	±0.25	%FSR
Bipolar Offset Tempco	-	±20	±40	ppm/°C
Gain Error, +25 °C	_	±0.1	±0.25	%FSR
Gain Tempco	distantant	±20	±40	ppm/°C
Harmonic Distortion (- FS)	STATE OF THE STATE	200 03	C	painints
(DC to 50 KHz,10V pk-pk) ①	-65	-73	HH 116	dB
No Missing Codes	Ove	er operating	temperatu	re range
SIGNAL TIMING	izaib tawa	a wolls	1528 ha	DAS-52A
Enable to Data Val. Delay	-	-	10	nS
MUX Address Set-up Time	400	29Firen	0 653-8	nS
Start Convert Pulse Width	50	100	2 8 25	nS
Data Valid After	in a solution	in the	de el cel	Glarge, ac
EOC Signal Goes Low	AND INT DO	Hatesta a	20	nS
Conversion Time, +25 °C	ubae mu a	ALBER MORE	800	nS
0 to +70 °C	-	-	850	nS
-55 to +125 °C	-	1	880	nS
Throughput Rates Gain= 1, ①	400			KHz
Gain = 2, ①	325			KHz
Gain = 4, ①	275	_	_	KHz
Gain = 8, ①	225	-	_	KHz
Gain = 10, ①	175	-	-	KHz
Gain = 100, ①	40	-	-	KHz
S/H PERFORMANCE				
Acquistion Time	1004			
Full Scale Step to 0.01%	-	500	900	nS
Full Scale Step to 0.1%	-	400	750	nS
Aperture Delay	-50	-20	0	nS
Aperture Uncertainty	- 70	±100	±150	nS V/v
Slew Rate	70	90	-	V/µS
Hold Mode Settling Time, 10V to ±0.01%FS		100	200	nS
10V to ±0.1%FS		75	150	nS
Feedthrough Rejection	-80	-88	-	dB
Droop Rate, ①	-	0.1	100	μV/μS
POWER SUPPLY		2 100 000	- See	m - 12 5 1 1 1 4
	14.05	150	15.75	V de
-15V	+14.25	+15.0	+15.75	V dc V dc
+5V	+4.75	+5.0	+5.25	V dc V dc
Current +15V	74.73	+78	+90	mA
-15V	_	-72	-82	mA
+5V	-	+75	+90	mA
Power Dissipation	-	2.6	3.0	Watts
Power Supply Rejection	1	-	0.01%	%FSR/%\
ENVIRONMENTAL	V	-	1800	3 045
Oper. Temp. Range, -MC	0		+70	°C
-MM	-55	-	+125	°C
Storage Temp. Range	-65	40 -1-	+150	°C
Package Type		40-pir		
Weight Pins		2 ox. (9 g		
FILES	()(71U X U.U1	O III. NOV	al

 $[\]widehat{\mbox{0}}$ Specifications valid at 25 °C and over the temperature ranges of 0 to +70 °C and -55 to +125 °C.

TECHNICAL NOTES (CONT.)

3. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 9) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie the COMP BIN pin to ground. The COMP BIN signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.

4. To enable the three-state outputs, connect ENABLE (pin 10) to a logic "0" (low). To disable, connect ENABLE (pin 10) to a logic "1" (high).

HDAS-524/528 OPERATION

The HDAS devices accept either 8 single-ended or 4 differential input signals. Tie unused channels to SIGNAL GROUND, pin 14.

Channel selection is accomplished using the multiplexer address pins shown in Table 1. Obtain additional channels by connecting external multiplexers.

The acquisition time is the amount of time the multiplexer, instrumentation amplifier and sample-hold require to settle within a specified range of accuracy: The acquisition time can be measured by how long \overline{EOC} is low before the rising edge of the START CONVERT pulse for continuous operation. Higher gains require the use of the RGAIN resistor to increase the acquisition time. The gain is equal to 1 without an RGAIN resistor. Table 2 refers to the appropriate RGAIN resistors for various throughputs.

The HDAS devices enter the hold mode and are ready for conversion upon the start convert going high. The conversion is complete within a maximum of 800 nsec (+25°C). FOC returns low, the data is valid and sent to the three-state output buffers. The sample/hold is now ready to acquire new data.

Figure 1. HDAS-524/528 Timing Diagram

NOTES:

- A START CONVERT pulse greater than 150 nS will slow the throughput.
 Retriggering START CONVERT before EOC goes low will not start a new
- Times shown apply over the full operating temperature range.

Table 1. MUX Channel Addressing

	CHANNEL	SS PINS 37 CA0	38	MUX A 39 CA2
	0	0	0	0
HDAS-524	1	1	0	0
(2-BIT ADDRESS	2	0	1	0
	3	1	1	0
	4	0	0	1
HDAS-528	5	1	0	1
(3-BIT ADDRESS	6	0	1	1
0 1 1	7	1	1	- 1

Table 2. Input Range Parameters

INPUT RANGE	GAIN	RGAIN()	THROUGHPUT
0 to +10V	1	OPEN	400 KHz
0 to +5V	2	2K	325 KHz
0 to +2.5V	4	665 Ω	275 KHz
0 to +1.25V	8	287 Ω	225 KHz
0 to +1.0V	10	221 Ω	175 KHz
0 to +100mV	100	20 Ω	40 KHz
±10V	1	OPEN	400 KHz
±5V	2	2K	325 KHz
±2.5V	4	665 Ω	275 KHz
±1.25V	8	287 Ω	225 KHz
±1.0V	10	221 Ω	175 KHz
±100mV	100	20 Ω	40 KHz

Figure 2. Typical Connection Diagram

NOTES:

- 1. For unipolar operation, connect pin 12 to pin 17.
- 2. For bipolar operation, connect pin 13 to pin 17.
- Position Rgain as close as possible to pins 10 and 11. Use RN55C, 1% resistors.
- 4. If gain and offset adjusts are not used connect pin 15 to ground and leave pin 16 open.

MECHANICAL DIMENSIONS

Table 3. Zero and Gain Adjust

Zero Adjust +1/2 LSB	Gain Adjust +FS - 1 1/2 LSB
+1.22 mV	+9.9963V
+2.44 mV dc	+9.9927V dc
	+1/2 LSB +1.22 mV

Table 4. Output Coding

		STRAIGHT BIN.	COMP. BINARY		
UNIPOLAR	INPUT RANGE	OUTPUT	CODING	INPUT RANGE	BIPOLAR
SCALE	0 to +10V dc	MSB LSB	MSB LSB	±10V dc	SCALE
+FS -1 LSB	+9.9976V	1111 1111 1111	0000 0000 0000	+9.9951V	+FS -1 LSB
7/8 FS	+8.7500V	1110 0000 0000	0001 1111 1111	+7.5000V	+3/4 FS
3/4 FS	+7.5000V	1100 0000 0000	0011 1111 1111	+5.0000V	+1/2 FS
1/2 FS	+5.0000V	1000 0000 0000	0111 1111 1111	0.0000V	0
1/4 FS	2.5000V	0100 0000 0000	1011 1111 1111	-5.0000V	-1/2 FS
1/8 FS	1.2500V	0010 0000 0000	1101 1111 1111	-7.5000V	-3/4 FS
1 LSB	0.0024V	0000 0000 0001	1111 1111 1110	-9.9951V	-FS +1 LSB
0	0.0000V	0000 0000 0000	1111 1111 1111	-10.000V	-FS
	100	OFF. BINARY	COMP. OFF. BIN.		HARON BE

CALIBRATION PROCEDURE

1. Connect the converter per Figure 2 and Tables 2 and 3 for the appropriate full-scale range (FSR). Apply a pulse of 100 nanoseconds (typical) to the START CONVERT input (pin 40) at a rate of 100 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the analog input and signal ground (pin 14). Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with the COMP BIN (pin 9) tied high (straight binary) or between 1111 1111 and 1111 1111 1110 with the COMP BIN (pin 9) tied low (complementary binary).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with COMP BIN (pin 9) tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with COMP BIN (pin 9) tied low (complementary offset binary).

3. Full-Scale Adjustment

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

ORDERING INFORMATION						
MODEL NUMBER	INPUT	OPERATING TEMP. RANGE	SEAL			
HDAS-524MC	4 D CHANNELS	0 to +70 °C	Hermetic			
HDAS-524MM	4 D CHANNELS	-55 to +125 °C	Hermetic			
HDAS-528MC	8 SE CHANNELS	0 to +70 °C	Hermetic			
HDAS-528MM	8 SE CHANNELS	-55 to +125 °C	Hermetic			

Receptacle for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 40 required.

For availability of MIL-STD-883B versions of the HDAS-524 & HDAS-528, contact DATEL.

HDAS-534,-538 12-Bit, 250 KHz Data Acquisition Systems

FEATURES

- · 12-bit resolution, 250 KHz
- · 8 channels single-ended or 4 channels differential
- · Miniature 40-pin DDIP
- · Full scale gain range from 100 mV to 10V
- · Three-state outputs
- · No missing codes

GENERAL DESCRIPTION

The HDAS-534/538 are complete data acquisition systems containing an internal multiplexer, instrumentation amplifier, sample-hold, analog-to-digital converter and three-state outputs. Packaged in a miniature 40-pin double-dip package, the HDAS-534/538 provides 250 KHz throughput with a low power dissipation of 2.6 Watts.

The HDAS-534 provides 4 differential inputs and the HDAS-538 provides 8 single-ended inputs. An internal instrumentation amplifier is characterized for gains of 1,2,4,8,10 and 100. The gain range is selectable through an external resistor.

TECHNICAL NOTES

- 1. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the analog, signal and digital grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- 2. Double-level multiplexing allows expanding the multiplexer channel capacity of the HDAS-538 from 8 single-ended channels to 128 single-ended channels or the HDAS-534 from 4 differential channels to 32 single-ended channels.
- 3. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 9) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding,

MECHANICAL DIMENSIONS INCHES (mm)

tie pin 9 to ground. Pin 9 signal is compatible to CMOS/TTL logic levels for logic control of this function.

4. To enable the three-state outputs, connect ENABLE (pin 10) to a logic "0" (low), To disable, connect pin 10 to a logic "1" (high).

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	CH 0/CH 0 HI	40	START CNVRT
2	CH 1/CH 1 HI	39	CA2
2	CH 2/CH 2 HI	38	CA1
4	CH 3/CH 3 HI	37	CA0
5	CH 7/CH 3 LO	36	+5V
4 5 6 7 8 9	CH 6/CH 2 LO	35	DIGITAL GND
7	CH 5/CH 1 LO	34	ENABLE
8	CH 4/CH 0 LO	33	BIT 1 (MSB)
	COMP BIN	32	BIT 2
10	RGAIN LO	31	BIT 3
. 11	RGAIN HI	30	BIT 4
12	S/H OUT	29	BIT 5
13	+10V REF OUT	28	BIT 6
14	SIGNAL GND	. 27	BIT 7
15	GAIN ADJ	26	BIT 8
16	OFFSET ADJUST	25	BIT 9
17	BIPOLAR	24	BIT 10
18	-15V	23	BIT 11
19	ANALOG GND	22	BIT-12 (LSB)
20	+15V	21	EOC

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (pin 20)	0 to +18	V dc
-15V Supply (pin 18)	0 to -18	V dc
+5V Supply (pin 36)	-0.5 to +7.0	V dc
Digital Inputs		
(pins 34, 37-40)	-0.3 to +6.0	V dc
Analog Inputs (pins 1-8)	±25	V
Lead Temp. (10 Sec.)	300	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and +5V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS	
Number of Inputs	XXXX 016.0				
HDAS-534	0,457	4 different	ial inputs		
HDAS-538	8 single-ended inputs				
Input Voltage Ranges			A (8,8) 981	(0)	
Gain = 1	0 to +10V , ±10V				
Gain = 100	(0 to 100 mV	, ±100 mV		
I.A. Gain Ranges	20	1, 2, 4, 8,	10, 100		
Input Impedance	-				
CH ON, CH OFF	1011	1012	-	Ohms	
Input Capacitance					
(534) CH ON, CH OFF	HOASHON	-	25	pF	
(538) CH ON, CH OFF	DEC-SATOR		12	pF	
Input Bias Current	-	78.014	200	pA	
Input Offset Current	MOTTOS	- sign	50	pA	
Input Offset Voltage	Vietna-	-	±10	mV	
Common Mode Volt. Range CMMR, G=1 ,@ 10 Hz,	±11	-	-	V	
Vcm=1V p-p Voltage Noise (RMS)	-75	-80	-	dB	
Gain = 1	- 1	-	200	μV	
Gain = 8	_	-	50	μV	
MUX Crosstalk @ 125 KHz	-72	-	-	dB	
MUX ON Resistance	003.09	450	500	Ohms	
Bias Current Tempco	Doubles	(max.) eve	rv 10 °C ah	10VP 70 °C	
Offset Current Tempco		(max.) eve			
Offset Voltage Tempco		m/ °C x gain			
Input Gain Equation	(_00 pp	Rg = 1/[(g		o (max.)	
		1		-	
DIGITAL INPUTS					
Logic Levels	iste ocipi To disable	(wol) "(it elden	of (0)	
Logic Levels	2.0	(wol) "(i legic "	V dc	
Logic Levels Logic 1 Logic 0	2.0	(wol) "(0.8	V dc V dc	
Logic Levels Logic 1 Logic 0 Logic Loading	2.0	l (low).	120000	V dc	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1	2.0	(wol) "(5	V dc μA	
Logic Levels Logic 1 Logic 0 Logic Loading	2.0	(wol) "(120000	V dc	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0	2.0	(wol) "(5	V dc μA	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS	2.0 - 0/1/24 <u>-</u> 1	(wol) "(5	V dc μA	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1	2.0	(wol) "(5 -200	V dc μA	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0	2.4	(wo).	5 -200	V dc μA μA	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 1 Logic 0 Logic 1 Logic 0 Logic 1 Logic 1 Logic 1 Logic 1 Logic 1 Logic 1 Logic Loading	2.4	.(wol) *(5 -200	V dc µA µA V dc V dc	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 1 Logic 0 Logic 1	2.4	.(wof), "(low).	5 -200	V dc µA µA V dc V dc V dc	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 0 Logic 1 Logic 0 Logic 1 Logic 0	2.4	.(wal) "C	5 -200	V dc µA µA V dc V dc	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 1 Logic 0 Logic 1 Logic 0 Logic 1 Logic 0 Logic 1 Logic 2 Logic 1 Logic 1 Logic 2 Logic 1 Logic 1 Logic 2 Logic 3 Logic 4 Logic 5 Logic 5 Logic 6 Logic 6 Logic 6 Logic 7 Logic 7 Logic 7 Logic 9	2.4	-	5 -200	V dc µA µA V dc V dc V dc	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic O Internal Reference Voltage, +25 °C	2.4		5 -200 - 0.4 -160 6.4 +10.1	V dc µA µA V dc V dc V dc V dc V dc V dc	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 1 Logic 0 India 1 Logic 0 Logic loading Logic 1 Logic 0 India 2 India 2 India 3 India 3 India 4 India 4 India 5 India 6 India 7	2.4	-	5 -200 - 0.4 -160 6.4 +10.1 ±35	V dc μA μA V dc V dc μA mA	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 0 Logic 1 Logic 0 Internal Reference Voltage, 425 °C	2.4		5 -200 - 0.4 -160 6.4 +10.1	V dc µA µA V dc V dc V dc MA	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 1 Logic 0 Indigit 1 Logic 0 Indigit 1 Logic 0 Internal Reference Voltage, +25 °C Drift	2.4	- - - - - - +10.0 ±5	5 -200 - 0.4 -160 6.4 +10.1 ±35 1.5	V dc μA μA V dc V dc μA mA V dc ppm/ °C mA	
Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 1 Logic 0 Independent Logic 0 Independent Logic 1 Logic 0 Internal Reference Voltage, +25 °C Drift External Current	2.4 		5 -200 - 0.4 -160 6.4 +10.1 ±35 1.5	V dc μA μA V dc V dc V dc V dc γ dc γ dc γ dc γ dc γ dc	

PERFORMANCE	MIN.	TYP.	MAX.	UNITS
Resolution	12			Bits
Integral Nonlinearity,25 °C	CELEUR CE		±3/4	LSB
0 to +70 °C			±3/4	LSB
		1017		
-55 to +125 °C	-	-	±1.5	LSB
Differential Nonlinearity, +25 °C	-w143	0.000	±3/4	LSB
0 to +70 °C	with the bar	but Tools	±3/4	LSB
-55 to +125 °C	D L IG De	milani	±1	LSB
F.S. Abs. Accuracy +25 °C	_	±0.13	±0.30	%FSR
0 to +70 °C	001_mon	±0.15	±0.5	%FSR
		±0.25		%FSR
-55 to +125 ℃	_		±0.78	
Unipolar Zero Error,+25 °C	-	±0.074	±0.15	%FSR
Unipolar Zero Tempco	-	±15	±30	ppm/°C
Bipolar Zero Error, +25 ℃	- 289	±0.074	±0.15	%FSR
Bipolar Zero Tempco	-	±5	±10	ppm/°C
Bipolar Offset Error,+25 °C	rsin=iro	±0.1	±0.25	%FSR
Bipolar Offset Tempco		±20	±40	ppm/ °C
	acet dain			
Gain Error, +25 ℃	gitan: col	±0.1	±0.25	%FSR
Gain Tempco	Ob mide	±20	±40	ppm/°C
Harmonic Distortion (- FS)	elst N. nast	malaine	er grann	PA PARIL
(DC to 50 KHz, 10V pk-pk)"①	-65	-73	0.00	dB
No Missing Codes	Over	operating t	emperatur	e ranne
	010	operating t	omporator	o rungo
SIGNAL TIMING	mettib A	BSDIVOR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AGH en
Enable to Data Val. Delay	ndlix-man	ta. Alfilli	10	nS
MUX Address Set-up Time	400	191051191	0.81461	nS
Start Convert Pulse Width	125	150	175	nS
Data Valid Before			-	
EOC Signal Goes Low	_	20217	20	nS
Conversion Time, +25 °C		100000	1000	nS
	_	-		
0 to +70 °C, -55 to +125 °C	SO SAUD	per cons	1100	nS
Throughput Rates	ant as	pininget	fuguait!	need the
Gain= 1, ①	250	santhei b	atosania	KHz
Gain = 2, ①	150	-	and the same of the same	KHz
Gain = 4, ①	125	Bright a	BH SUN	KHz
Gain = 8, ①	100	d egsiq.	DRUGHO:	KHz
Gain = 10, ①	90	endetal	send has	KHz
		stinile be	o molecul	
Gain = 100, ①	30	WII 0-2 CI	in Mileston	KHz
S/H PERFORMANCE				
Acquistion Time	wells gr	indiplex	n level-	2. Double
Full Scale Step to 0.01%	03-SA01	500	900	nS
Full Scale Step to 0.1%	nionando	400	750	nS
Aperture Delay	-50	-20	0	nS
Aperture Uncertainty	a-sagina	±100	±150	pS
Slew Rate	70	90		V/µS
	nid ibzite	Washid .	straigh	ν/μο
Hold Mode Settling Time,	al your last	400	000	9 910
10V to ±0.01%FS	The second	100	200	nS
10V to ±0.1%FS	HILL TOTAL	75	150	nS
Feedthrough Rejection	-80	-88	o vienio	dB
Droop Rate, ①	-	0.1	100	μV/μS
POWER SUPPLY				
Range, +15V	+14.25	+15.0	+15.75	V dc
-15V	-14.25	-15.0	-15.75	V dc
+5V	+4.75	+5.0	+5.25	V dc
Current, +15V	01 _ 34	+78	+90	mA
-15V	-br 1):	-72		mA
	1		-82	
+5V		+75	+90	mA
Power Dissipation	- 7	2.6	3.0	Watts
Dower Supply Dejection			0.01%	%FSR/%\
			[6(8)	
Power Supply Rejection ENVIRONMENTAL				
ENVIRONMENTAL Oper. Temp. Range, -MC	0	7 (4)	+70	℃
ENVIRONMENTAL Oper. Temp. Range, -MC -MM	-55	1 -	+125	°C
ENVIRONMENTAL Oper. Temp. Range, -MC -MM Storage Temp. Range		1-1	+125 +150	
ENVIRONMENTAL Oper. Temp. Range, -MC -MM Storage Temp. Range Package Type	-55	- - 40-pin	+125 +150	°C
ENVIRONMENTAL Oper. Temp. Range, -MC -MM Storage Temp. Range	-55 -65	- - 40-pin .32 oz./(9 gi	+125 +150 DDIP	°C

 $[\]oplus$ Specifications valid at 25 °C and over the operating temperature ranges of 0 to +70 °C and -55 to +125 °C.

HDAS-534/538 OPERATION

The HDAS devices accept either 8 single-ended or 4 differential input signals. Tie unused channels to SIGNAL GROUND, pin 14.

Channel selection is accomplished using the multiplexer address pins shown in Table 1. Obtain additional channels by connecting external multiplexers.

The acquisition time is the amount of time the multiplexer, instrumentation amplifier and sample-hold require to settle within a specified range of accuracy.

The acquisition time can be measured by how long $\overline{\text{EOC}}$ is low before the rising edge of the START CONVERT pulse for continuous operation. Higher gains require the use of the RGAIN resistor to increase the acquisition time. The gain is equal to 1 without an RGAIN resistor. Table 2 refers to the appropriate RGAIN resistors for various throughputs.

The HDAS devices enter the hold mode and are ready for conversion upon the start convert going high. The conversion is complete within a maximum of 1 μsec (+ 25°C). \overline{EOC} returns low, the data is valid and sent to the three-state output buffers. The sample/hold is now ready to acquire new data.

Figure 1. HDAS-534/538 Timing Diagram

Table 1. MUX Channel Addressing

MUX A 39 CA2	38	37 CA0	ge (FSR). App	Connect the conver- opriate full-scale rain picel) to the START ICHz, This rate is of
0	0	0	end to one less	
0	0	1	1	HDAS-534
0	1	0	2	(2-BIT ADDRESS)
0	1	1	3	
1	0	0	4	
94 10	0	Adjust men	5	HDAS-538
. 1	1	()	6	(3-BIT ADDRESS)
1	1	Long toge	7	stemoilhelog politin
			MARKA MARK MARK	

Table 2. Input Range Parameters

INPUT RANGE	GAIN	RGAIN()	THROUGHPUT
0 to +10V	0 0 00 0	OPEN	250 KHz
0 to +5V	2	2K	150 KHz
0 to +2.5V	4	665 Ω	125 KHz
0 to +1.25V	8	287 Ω	100 KHz
0 to +1.0V	10	221 Ω	90 KHz
0 to +100mV	100	20 Ω	30 KHz
±10V	1000	OPEN	250 KHz
±5V	2	2K	150 KHz
±2.5V	4	665 Ω	125 KHz
±1.25V	8	287 Ω	100 KHz
±1.0V	10	221 Ω	90 KHz
±100mV	100	20 Ω	30 KHz
	160		

Notes

- A START CONVERT pulse greater than
 175 nanoseconds will slow the throughput.
- Retriggering START CONVERT before EOC goes low will not start a new conversion.
- Times shown apply over the full operating temperature range.

Table 3. Zero and Gain Adjust

FSR	Zero Adjust +1/2 LSB	Gain Adjust +FS - 1 1/2 LSB
0 to +10V dc	+1.22mV	+9.9963V dc
±10V dc	+2.44 mV dc	+9.9927V dc

CALIBRATION PROCEDURE

1. Connect the converter per Figure 2 and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 150 nSec (typical) to the START CONVERT input (pin 40) at a rate of 75 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

Apply a precision voltage reference source between the analog input and signal ground (pin 14). Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with COMP BIN (pin 9) tied high (straight binary) or between 1111 1111 1111 1111 with pin 9 tied low (complementary binary).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with pin 9 tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with pin 9 tied low (complementary offset binary).

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for pin 9 tied high and 0000 0000 0000 1 and 0000 0000 0000 for pin 9 tied low.

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

Figure 2. Typical Connection Diagram

NOTES:

- 1. For unipolar operation, connect pin 12 to pin 17.
- 2. For bipolar operation, connect pin 13 to pin 17.
- Position RGAIN as close as possible to pins 10 and 11. Use RN55C, 1% resistors.
- 4. If gain and offset adjusts are not used connect pin 15 to ground and leave pin 16 open.

Table 4. Output Coding

		STRAIGHT BIN	. COMP. BINARY	AND AND	
UNIPOLAR	INPUT RANGES, V dc	OUTPU	T CODING	INPUT RANGE	BIPOLAR
SCALE	0 to +10V	MSB LSI	B MSB LSB	±10V dc	SCALE
+FS -1 LSB	+9.9976V	1111 1111 111	1 0000 0000 0000	+9.9951V	+FS -1 LSB
7/8 FS	+8.7500V	1110 0000 000	0 0001 1111 1111	+7.5000V	+3/4 FS
3/4 FS	+7.5000V	1100 0000 000	0 0011 1111 1111	+5.0000V	+1/2 FS
1/2 FS	+5.0000V	1000 0000 000	0 0111 1111 1111	0.0000V	0
1/4 FS	+2.5000V	0100 0000 000	1011 1111 1111	-5.0000V	-1/2 FS
1/8 FS	+1.2500V	0010 0000 000	1101 1111 1111	-7.5000V	-3/4 FS
1 LSB	+0.0024V	0000 0000 000	1 1111 1111 1110	-9.9951V	-FS +1 LSB
O TABVIOO	0.0000V	0000 0000 0000	1111 1111 1111	-10.000V	-FS
WON IS MERO TO	CONVERSION.	OFF. BINARY	COMP. OFF. BI	N.	

	ORDERING INF	ORMATION	
MODEL NO.	INPUT	OPER. TEMP. RANGE	SEAL
HDAS-534MC	4 D Channels	0 to +70 °C	Hermetic
HDAS-534MM	4 D Channels	-55 to +125°C	Hermetic
HDAS-538MC	8 SE Channels	0 to +70° C	Hermetic
HDAS-538MM	8 SF Channels	-55 to +125 °C	Hermetic

HDAS-75,-76 12-Bit, 75 KHz Data Acquisition Systems

FEATURES

- · 12-Bit resolution, 75 KHz
- · 8 Channels single-ended or 4 channels differential
- Miniature 40-pin DDIP
- · Full-scale gain range from 100 mV to 10V
- · High impedance output state
- · No missing codes

GENERAL DESCRIPTION

The HDAS-75,-76 are complete data acquisition systems containing an internal multiplexer, instrumentation amplifier, sample-hold, analog-to-digital converter and three-state outputs. Packaged in a miniature 40-pin double-dip package, the HDAS-75/76 has a low power dissipation of 500 milliwatts.

The HDAS-76 provides 4 differential inputs and the HDAS-75 provides 8 single-ended inputs. An internal instrumentation amplifier is characterized for gains of 1,2,4,8,10 and 100. The gain range is selectable through an external resistor.

TECHNICAL NOTES

- 1. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds are not connected internally. Avoid ground-related problems by connecting the analog, signal and digital grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
- 2. Double-level multiplexing allows expanding the multiplexer channel capacity of the HDAS-75 from 8 single-ended channels to 128 single-ended channels or the HDAS-76 from 4 differential channels to 32 single-ended channels.

MECHANICAL DIMENSIONS INCHES (MM)

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
	RGAIN HI INST. AMP OUT +10V REF OUT SIGNAL GND GAIN ADJ OFFSET ADJUST	40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21	CA0 +5V DIGITAL GND DIGITAL GND BIT 1 (MSB) BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 6 BIT 7 BIT 8 BIT 8 BIT 9

Ц	A Supply Tom ZVF	U (O + 18	v ac
	-15V Supply (pin 18)	0 to -18	V dc
	+5V Supply (pin 36) Digital Inputs	-0.5 to +7.0	V dc
	(pins 37-40)	-0.3 to +6.0	V dc
	Analog Inputs (pins 1-8)	±25	V
	Lead Temp. (10 Sec.)	300	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and +5V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS	
Number of Inputs	187304	HATTEN			
HDAS-76	200	4 different	tial inputs		
HDAS75	22 12 72 12 12	8 single-en			
Input Voltage Ranges		59.011			
Gain = 1	SM 218,Q	0 to +10\	/ +10V		
Gain = 100	10(10)	0 to 100 mV		1	
I.A. Gain Ranges		1, 2, 4, 8	10 100		
na dun nanges		1, 2, 7, 0	, 10, 100		
Input Impedance	VXIIIOA.	T	I	T	
CH ON, CH OFF	1011	1012	-	Ohms	
Input Capacitance	Be-f				
(-75) CH ON, CH OFF	- 1	4	25	pF	
(-76) CH ON, CH OFF	- 1	-	12	pF	
Input Bias Current	- 1	-	200	pA	
Input Offset Current	-	-	50	pA	
Input Offset Voltage	- 1	-	±10	mV	
Common Mode Volt Range	±11	-	-	V	
CMMP C-1 @10H-	TEMBER	1			
Vcm=1V p-p	-75	-80	-	dB	
Voltage Noise (RMS)	orne I	(d,arder			
Gain = 1	way -	-	200	μV	
Gain = 8	-	-	50	μV	
MUX Crosstalk @ 125 KHz	-72	-	-	dB	
MUX ON Resistance	_	450	500	Ohms	
Bias Current Tempco	Doubles	1	1		
	Doubles	Doubles (max.) every 10 °C above 70 °C Doubles (max.) every 10 °C above 70 °C			
Offcot Current Tompco	Double	(may) our	ny 10 00 al	20 00 TO 00	
Offset Voltage Tempco	Doubles	(max.) eve	ry 10 °C al	oove 70 °C	
Offset Voltage Tempco	Doubles (±30 pp	m/ °C x gair	n) ±20 ppm	oove 70 °C n/ °C (max.)	
Offset Voltage Tempco Input Gain Equation	Doubles (±30 pp	m/ °C x gair	ry 10 °C at n) ±20 ppm ain -1)/2K]	oove 70 °C / °C (max.)	
Offset Voltage Tempco	Doubles (±30 pp	m/ °C x gair	n) ±20 ppm	oove 70 °C / °C (max.)	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels	Doubles (±30 pp	m/ °C x gair	n) ±20 ppm	n/ °C (max.)	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS	Doubles (±30 pp	m/ °C x gair	n) ±20 ppm	bove 70 °C n/ °C (max.)	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0	(±30 pp	m/ °C x gair	n) ±20 ppm	n/ °C (max.)	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1	(±30 pp	m/ °C x gair	n) ±20 ppm ain -1)/2K]	v dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0	(±30 pp	m/ °C x gair	n) ±20 ppm ain -1)/2K]	v dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading	(±30 pp	m/ °C x gair	n) ±20 ppm ain -1)/2K] — 0.8	V dc V dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1	(±30 pp	m/ °C x gair	n) ±20 ppm ain -1)/2K] - 0.8 +30	V dc V dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1	(±30 pp	m/ °C x gair	n) ±20 ppm ain -1)/2K] - 0.8 +30	V dc V dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 0 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS	(±30 pp	m/ °C x gair	n) ±20 ppm ain -1)/2K] - 0.8 +30	V dc V dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels	2.4 - -	m/ °C x gair	n) ±20 ppm ain -1)/2K] - 0.8 +30	V dc V dc V dc μA μA	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1	(±30 pp	m/ °C x gair	1) ±20 ppm ain -1)/2K] - 0.8 +30 -30	V dc V dc μA μA	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 0 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0	2.4 - -	m/ °C x gair	n) ±20 ppm ain -1)/2K] - 0.8 +30	V dc V dc V dc μA μA	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 0 Logic 1 Logic 0 Code Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic 1 L	2.4 - -	m/ °C x gair		V dc V dc μA μA V dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 1 Logic 1 Logic 1 Logic 1 Logic 1	2.4 - -	m/ °C x gair	- 0.8 +30 -30	V dc V dc V dc μA μA	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 0 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS OUTPUTS OUTPUTS Logic 1 Logic 0 Logic Levels Logic 1 Logic 0 Logic Logic 1 Logic 0 Logic Logic 1 Logic 0	2.4 - -	m/ °C x gair		V dc V dc V dc V dc V dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 0 Logic 0 Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Internal Reference	2.4 - -	m/ °C x gair	- 0.8 +30 -30	V dc V dc V dc μA μA	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 0 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS OUTPUTS OUTPUTS Logic 1 Logic 0 Logic Levels Logic 1 Logic 0 Logic Logic 1 Logic 0 Logic Logic 1 Logic 0	2.4	m/ °C x gair	- 0.8 +30 -30	V dc V dc μA μA V dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 0 Logic Coading Logic 0 OUTPUTS OUTPUTS OUTPUTS Logic Levels Logic 1 Logic 0 Logic Levels Logic 1 Logic 0 Indicate Logic 1 Logic 0 Logic Indicate Logic 0 Logic Loading Logic 1 Logic 0 Indicate Logic 0 Internal Reference	2.4	m) °C x gair Rg = 1/l(g) ±20 ppm ain -1)/2K] - 0.8 +30 -30 - 0.4 -500 1.6	V dc V dc V dc μA μA V dc V dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 Incomplete to the second of the seco	2.4	m/ °C x gair Rg = 1/[(g) ±20 ppm ain -1)/2K] - 0.8 +30 -30 - 0.4 -500 1.6 +10.1	V dc V dc V dc μA μA V dc V dc	
Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 0 Logic Color Logic O Logic Loading Logic 1 Logic 0 OUTPUTS OUTPUTS OUTPUTS OUTPUTS Output Logic 1 Logic 0 Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 Indernal Reference Voltage, +25 °C Drift	2.4 - - - +9.9	m/ °C x gair Rg = 1/[(g		V dc V dc V dc μA μA V dc V dc V dc	

-55 to +125 °C	1		±3/4	V LT2R
Differential Nonlinearity		_	±1.5	LSB
+25 °C			±3/4	LSB
0 to +70 °C		5 KH2 -	+3/4	LSB
-55 to +125 °C	a made di a	v halone	±1	LSB
F.S. Abs. Accuracy +25 °C	10000	±0.13	±0.30	%FSR
0 to +70 °C		±0.15	±0.50	%FSR
-55 to +125 °C	gram upr	±0.15	±0.78	%FSR
Unipolar Zero Error,+25 °C	30	±0.074	±0.15	%FSR
Unipolar Zero Tempco		±15	±30	ppm/°C
Bipolar Zero Error, +25 °C		±0.074	±0.15	%FSR
Bipolar Zero Tempco	1 -	±5	±10	ppm/°C
Bipolar Offset Error,+25 °C	-	±0.1	±0.25	%FSR
Bipolar Offset Tempco		±20	±40	ppm/°C
Gain Error, +25 °C	BIND OF	±0.1	±0.25	%FSR
Gain Tempco	Hondam ,	±20	±40	ppm/°C
Harmonic Distortion (- FS)	Nerter un	pop latin	D-01-00	sris bior
(DC to 5KHz,10V pk-pk) ①	-65	-73	nim-n	dB
No Missing Codes	Over	operating te	mperature	range
SIGNAL TIMING				
MUX Address Set-up Time	400	1110 th 01	prvojq	nS
Start Convert Pulse Width	0.050	iqni, bet	ua-albu	μS
Data Valid Before	ains of .	tol ber	nelosna	ther is of
EOC Signal Goes Low	300	Dotal) el	listoplea	nS
Conversion Time, +25 °C	-	-	12	μS
0 to +70 °C	-	-	13	μS
-55 to +125 °C	-	-	13	μS
Throughput Rates		Programme and		
Gain= 1, ①	75	80		KHz
Gain = 2, ①	60	70	CONTRACTOR OF	KHz
Gain = 4, ①	50	60	DelTino	KHz
Gain = 8, ① (1) beliefer-bridge	45	50	mi reato	KHz
Gain = 10, ①	40	45	na ent	KHz
Gain = 100, ①	10	20	islatin	KHz
S/H PERFORMANCE				ence and
Acquistion Time	BEGES DIM	CLB INTE	D GHIS Q	HSGS BOY
Full Scale Step to 0.01%	-	1.4	1.8	μS
Full Scale Step to 0.1%	-	0.8	1.4	μS
Aperture Delay	-50	-20	0	nS
Aperture Uncertainty	8-75 from	AOH 6	±200	pS
Slew Rate	70	90	ne-ālor	V/µS
Hold Mode Settling Time,	Exions, of	min. C.F. o	abrains	do leitore
10V to ±0.01%FS	A	200	400	nS
10V to ±0.1%FS	-	150	300	nS
Feedthrough Rejection	-80	-88	100	dB
Droop Rate, ①	1 -	_	100	μV/μS
POWER SUPPLY				
Range +15V	+14.25	+15.0	+15.75	V dc
-15V	-14.25	-15.0	-15.75	V dc
+5V	+4.75	+5.0	+5.25	V dc
Current +15V	-	+15	+20	mA
-15V	-	-10	-15	mA
+5V	-	+25	+35	mA
Power Dissipation	-	0.500	0.700	Watts
Power Supply Rejection	115	-	0.01%	%FSR/%V
ENVIRONMENTAL	. 1	53 T IN	1/4	- CO
Oper. Temp. Range, -MC, -PC	0		+70	°C
-MM	-55	-	+125	°C
Storage Temp. Range	-65	-	+150	°C
Package Type		40-r	oin DDIP	
Weight		0.00	9 grams) m	

 $[\]oplus$ Specifications valid at 25 °C and over the temperature ranges of 0 to +70 °C and -55 to +125 °C.

HDAS-75/76 OPERATION

The HDAS devices accept either 8 single-ended or 4 differential input signals. Tie unused channels to SIGNAL GROUND, pin 14.

Channel selection is accomplished using the multiplexer address pins shown in Table 1. Obtain additional channels by connecting external multiplexers.

The acquisition time is the amount of time the multiplexer, instrumentation amplifier and sample-hold require to settle within a specified range of accuracy after the start convert goes high. The acquisition time can be measured by how long EOC is low before the rising edge of the START CONVERT pulse for continuous operation. Higher gains require the use of the RGAIN resistor to increase the acquisition time. The gain is equal to 1 without an RGAIN resistor. Table 2 refers to the appropriate RGAIN resistors for various throughputs.

Figure 2. Typical Connection Diagram

NOTES:

- 1. For unipolar operation, connect pin 12 to pin 17.
- 2. For bipolar operation, connect pin 13 to pin 17.
- 3. Ground pin 15 if Gain Adjust is not used.
- Leave pin 16 open if offset adjust is not used.
- Position RGAIN as close as possible to pins 10 and 11. Use RN55C, 1% resistors.

CALIBRATION PROCEDURE

1. Connect the converter per Figure 2 and Tables 2 and 3 for the appropriate full-scale range (FSR). Apply a pulse of 1.0 µsec (typical) to the START CONVERT input (pin 40) at a rate of 75 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

Table 2. Input Range Parameters

INPUT RANGE	GAIN	RGAIN	THROUGHPUT
0 to +10V	10 110 11	OPEN	75 KHz
0 to +5V	2	2ΚΩ	60 KHz
0 to +2.5V	4	665 Ω	50 KHz
0 to +1.25V	8	287 Ω	45 KHz
0 to +1.0V	10	221 Ω	40 KHz
0 to +100mV	100	20 Ω	10 KHz
±10V	1	OPEN	75 KHz
±5V	2	2ΚΩ	60 KHz
±2.5V	4	665 Ω	50 KHz
±1.25V	8	287 Ω	45 KHz
±1.0V	10	221 Ω	40 KHz
±100mV	100	20 Ω	10 KHz

Rgain =

(agin 1)
(gain - 1)

Table 1. MUX Channel Addressing

39	38 CA1	SS PINS 37 CA0	CHANNEL	
0	0	0	0	
0	0	1	1	HDAS-76
0	1	0	2	(2-BIT ADDRESS
0	1	1	3	
1	0	0	4	
1	0	1	5	HDAS-75
1	1	0	6	(3-BIT ADDRESS
1	1	1	7	

2. Zero Adjustments

Apply a precision voltage reference source between the analog input and signal ground (pin 14). Adjust the output of the reference source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001.

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001.

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111.

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

Table 3. Zero and Gain Adjust

FSR	Zero Adjust +1/2 LSB	Gain Adjust +FS - 1 1/2 LSB	
0 to +10V dc	+1.22mV	+9.9963V dc	
±10V dc	+2.44 mV dc	+9.9927V dc	

TIMING

The EOC output signal, when high, indicates that a conversion is in process. During a conversion the digital output buffers are in a high impedance state, preventing data from being read. A START CONVERT input received during a conversion has no effect on the existing conversion. As shown in Figure 1a, data can be read while START CONVERT is high and EOC is low.

Figure 1a. Data Valid with START CONVERT Immediately Returned High

The A/D conversion begins on the falling edge of a start convert command. If START CONVERT stays low after EOC becomes low, the output buffers stay in a high impedance state. Valid data can be read 150 nanseconds maximum after START CONVERT goes high. Figure 1b shows how to use the START CONVERT pulse to control when the output data becomes valid.

Figure 1b. Data Valid with START CONVERT
Returned High Later

NOTES

- A START CONVERT pulse greater than 5 μS will slow the overall throughput.
 - Retriggering START CONVERT before EOC goes low will not initiate a new conversion.
 - Timing specifications apply over the full operating temperature range.

Table 4. Output Coding

		STRAIGHT BIN	FOR OLUMN	
UNIPOLAR	INPUT RANGES, V dc	OUTPUT CODING	G INPUT RANGE	BIPOLAR
SCALE	0 to +10V	MSB LSB	±10V dc	SCALE
+FS -1 LSB	+9.9976V	1111 1111 1111	+9.9951V	+FS -1 LSB
7/8 FS	+8.7500V	1110 0000 0000	+7.5000V	+3/4 FS
3/4 FS	+7.5000V	1100 0000 0000	+5.0000V	+1/2 FS
1/2 FS	+5.0000V	1000 0000 0000	0.0000V	0
1/4 FS	+2.5000V	0100 0000 0000	-5.0000V	-1/2 FS
1/8 FS	+1.2500V	0010 0000 0000	-7.5000V	-3/4 FS
1 LSB	+0.0024V	0000 0000 0001	-9.9951V	-FS +1 LSB
0	0.0000V	0000 0000 0000	-10.000V	-FS
		OFF. BINARY		

	OHDERING IN	DRMATION	
MODEL NO.	INPUT	OPERATING TEMP. RANGE	SEAL
HDAS-76PC	4 D Channels	0 to +70 °C	Plastic
HDAS-76MC	4 D Channels	0 to +70 °C	Hermetic
HDAS-76MM	4 D Channels	-55 to +125 °C	Hermetic
HDAS-76/883	4D Channels	-55 to +125 °C	Hermetic
HDAS-75PC	8 SE Channels	0 to +70 °C	Plastic
HDAS-75MC	8 SE Channels	0 to +70 °C	Hermetic
HDAS-75MM	8 SE Channels	-55 to +125 °C	Hermetic
HDAS-75/883	8 SE Channels	-55 to +125 °C	Hermetic

Inc., Part # 3-331272-8 (Component Lead Socket), 40 required.

PRELIMINARY PRODUCT DATA

HDAS-950/-951 16-Bit, 100 KHz Data Acquisition Systems

FEATURES

- · 16-Bit resolution, 100 KHz
- · 8 Channels single-ended or 4 channels differential
- · Miniature 40-pin DDIP
- · Full-scale gain range from 100 mV to 10V
- · High-impedance output state

GENERAL DESCRIPTION

The HDAS-950/-951 are complete data acquisition systems containing an internal multiplexer, instrumentation amplifier, sample-hold, analog-to-digital converter and three-state outputs. Packaged in a miniature 40-pin double-dip package, the HDAS-950/-951 have a low power dissipation of 2.4 watts.

The HDAS-951 provides 4 differential inputs and the HDAS-950 provides 8 single-ended inputs. An internal instrumentation amplifier is characterized for gains of 1, 2, 4, 8, 10 and 100. the gain range is selectable using an external resistor.

TECHNICAL NOTES

- 1. Use external potentiometers to remove system errors or the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 12 (ground pin 12 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 11 for zero/offset adjustment (leave pin 11 open for operation without adjustment).
- 2. Bypass the analog and digital supplies and the +10V reference (pin 9) to ground with a 4.7 µF, 25V tantalum electrolytic capacitor in parallel-with a 0.1 µF ceramic capacitor. Bypass the +10V reference (pin 9) to analog ground (pin 33).
- 3. Rated performance requires using good high-frequency circuit board layout techniques. the analog and digital grounds

are not connected internally. Avoid ground-related problems by connecting the analog and digital grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.

4. Double-level multiplexing allows expanding the multiplexer channel capacity of the HDAS-950 from 8 single-ended channels to 128 single-ended channels or the HDAS-951 from 4 differential channels to 32 single-ended channels.

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (pin 32)	0 to +18	V dc
-15V Supply (pin 31)	0 to -18	V dc
+5V Supply (pin 14) Digital Inputs	-0.5 to +7.0	V dc
(pins 15-20, 22, 34-37)	-0.3 to VDD +0.3	V dc
Analog Inputs (pins 1-8)	±14	V
Lead Temp. (10 Sec.)	300	°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 \text{V}$ dc and +5V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS	
Number of Inputs HDAS-950 HDAS-951	10 May		ended input		
Input Voltage Ranges Gain = 1		0 to +10V dc, ±5V dc			
Gain = 100	50.0	0 to 100 m	V dc. ±50 i	πV	
I.A. Gain Ranges	The state of the s		8, 10, 100		
Gain Equation Error	7 19-10 3	- (3a+	±0.1	%	
Input Impedance	1 1 1 1 1 1 1	STATE OF		ASS	
CH ON, CH OFF	1013	1014	294	Ohms	
Input Capacitance		1.1	100	0.00	
(-950) CH ON, CH OFF	-	1	25	pF	
(-951) CH ON, CH OFF	-	-	12	pF	
Input Bias Current	_	_	500	nA	
Input Offset Current	1 2	-	20	nA	
Input Offset Voltage	_	+2	-	mV	
Common Mode Volt. Range	+10	_		V	
CMMR, G=1, @ 10Hz,	Soul date Print	A vite	nehi te	hanen	
Vcm=1V p-p	bar bar-fast	-110	Short of	dB	
Voltage Noise (RMS)	Mar grouns	110	JARSEN CO	S SHILLS	
	27 9 U 79 T	MANDO B	TBD	μV	
Gain – 1					
Gain = 1	ly return po	dns Jam	TRD		
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco	Double	- -72 es (max.) ev		μV dB above 70 °C	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco	Double Double	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a	μV dB above 70 °C above 70 °C n/ °C (max.	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco	Double Double	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a in) ±20 ppr	μV dB above 70 °C above 70 °C n/ °C (max.	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation	Double Double	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a in) ±20 ppr	μV dB above 70 °C above 70 °C n/ °C (max.	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1	Double Double	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a in) ±20 ppr K/(gain -1)	μV dB above 70 °C n/ °C (max.	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels	Double Double (±30 p	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a in) ±20 ppr	μV dB above 70 °C above 70 °C n/ °C (max.	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1	Double Double (±30 p	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a in) ±20 ppr K/(gain -1)	μV dB above 70 °C n/ °C (max.	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0	Double Double (±30 p	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a ery 10 °C a in) ±20 ppr K/(gain -1)	μV dB above 70 °C n/ °C (max.	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading	Double Double (±30 p	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a ery 10 °C a in) ±20 ppr K/(gain -1)	μV dB above 70 °C above 70 °C n/ °C (max.	
Gain = 8 Maxim = 8 Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1	Double Double (±30 p	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a ery 10 °C a in) ±20 ppr K/(gain -1)	μV dB above 70 °C above 70 °C n/ °C (max.	
Gain = 8 Mix Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 0	Double Double (±30 p	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a ery 10 °C a in) ±20 ppr K/(gain -1)	μV dB above 70 °C above 70 °C n/ °C (max.	
Gain = 8 Mix Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 0 OUTPUTS	Double Double (±30 p	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a ery 10 °C a in) ±20 ppr K/(gain -1)	μV dB above 70 °C above 70 °C n/ °C (max.	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels	Double Double (±30 p)	es (max.) ev es (max.) ev pm/ °C x ga	ery 10 °C a ery 10 °C a ery 10 °C a in) ±20 ppr K/(gain -1)	μV dB above 70 °C n/ °C (max.) V dc V dc μA μA	
Gain = 8 MUX Crosstalk @ 100 KHz Blas Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Cogic Loading Logic 1 Cogic Co OUTPUTS Logic Levels Logic 1 Logic 0 Logic I Logic 0	Double Double (±30 p)	es (max.) ev es (max.) ev pm/ °C x ga		μV dB	
Gain = 8 MUX Crosstalk @ 100 KHz MUX Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 CUTPUTS Logic Levels Logic 1 Logic 0 CUTPUTS Logic Loading Logic 1	2.25 ———————————————————————————————————	es (max.) ev es (max.) ev pm/ °C x ga		μν dB above 70 °C above 70 °C n/ °C (max.) V dc V dc μA μA V dc V dc	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 CUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 Logic Loading Logic 1	2.25 	es (max.) ev es (max.) ev pm/ °C x ga		μV dB	
Gain = 8 MUX Crosstalk @ 100 KHz Blas Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 0 Logic Logic Logic Logic 1 Logic 0 Logic Logic 1 Logic 0 Logic 1 Logic 1 Logic 0	2.25 ———————————————————————————————————	es (max.) ev es (max.) ev pm/ °C x ga		μν dg dbbove 70 °C bbove 70 °C (max.) V dc V dc V dc V dc V dc V dc	
Gain = 8 MUX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 OUTPUTS Logic Loading Logic 1 Logic 0 Logic Levels Logic 1 Logic 0 Internal Reference	2.25 	ss (max.) eves (max.) eves (max.) even max.)		μν dg dbbove 70 °C bbove 70 °C (max.) V dc V dc V dc V dc V dc V dc	
Gain = 8 MUX Crosstalk @ 100 KHz Blas Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 OUTPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 0 Logic Logic Logic Logic 1 Logic 0 Logic Logic 1 Logic 0 Logic 1 Logic 1 Logic 0	2.25 - - - +9.9	es (max.) ev es (max.) ev pm/ °C x ga		i,V dc V dc V dc LAA LAA LAA LAA LAA LAA LAA LAA LAA LA	
Gain = 8 MX Crosstalk @ 100 KHz Bias Current Tempco Offset Current Tempco Offset Voltage Tempco Input Gain Equation DIGITAL INPUTS Logic Levels Logic 1 Logic 0 Logic Loading Logic 1 Logic 0 Internal Reference Voltage, +25 °C	2.25 	ss (max.) ev ss (max.) ev ss (max.) ev ss (max.) ev pm/ °C x gai Rg = 2		μίν dB above 70 °C above 70 °C n/ °C (max.) V dc V dc μA μA V dc V dc V dc V dc	

PERFORMANCE	MIN.	TYP.	MAX.	UNITS
Resolution	16	MAGO	Hd Al	Bits
Integral Nonlinearity,25 °C	_		±0.006	%FSR
0 to +70 °C	-		±0.012	%FSR
-55 to +125 °C			TBD	%FSR
Differential Nonlinearity, +25 °C			±0.006	%FSR
0 to +70 °C		13.3 6 7	±0.012	%FSR
		Lux	TBD	%FSR
-55 to +125 °C		741300		
F.S. Abs. Accuracy +25 °C	Isnafario	2 15 be	±0.15	%FSR
0 to +70 °C	_	-	TBD	%FSR
-55 to +125 °C		_	TBD	%FSR
Unipolar Zero Error,+25 °C	01 4111	W1 4000	±0.05	%FSR
Unipolar Zero Tempco	-	atete it	TBD	ppm/ °C
Bipolar Zero Error, +25 °C	-	-	±0.05	%FSR
Bipolar Zero Tempco		(5/50)	TBD	ppm/ °C
Bipolar Offset Error,+25 °C	-	12000	±0.1	%FSR
Bipolar Offset Tempco	-	- 1	TBD	ppm/°C
Gain Error, +25 ℃	sist sis	duras e	±0.1	%FSR
Gain Tempco	nieni ne	relation	TBD	ppm/ °C
Harmonic Distortion (- FS)		o letinil	-of-cold	ns bloc
		h andei	im c ni	la construction
(DC to 5KHz,10V pk-pk)	TANK A BURNE	70	W - 25 - 110	dB
+25 °C	theren is	-78 TBD	IS STYBIL	dB
-55 to +125 ℃	_			
No Missing Codes	Ove	r operating	temperatur	e range
SIGNAL TIMING	JIS. AM	qui babi	19-OIDUR	2 S 890N
Enable to Data Val. Delay	courteff.	A ALEXANTE	10	nS
MUX Address Set-up Time	400	BROKE DIST	s si afti	nS
Start Convert Pulse Width, @	0.800	-	5.0	μS
Data Valid After			933	WHAT EAS
EOC Signal Goes Low	35	_	1,500	nS
Conversion Time, ①	_		4	uS
		of arele	mailieu	μο
Throughput Rates		s egu	ones of	al errors
Gain= 1, +25 ℃	100	region or	a efficient	KHZ
+25 °C		otnami	disc tre	
0 to +70 °C	TBD	STIPHING	CHAIL HOL	KHz
-55 to +125 °C	TBD	Unicho) d	BH J-FJ(4)	KHz
Gain = 2, ①	Se leant	75	igo tot r	KHz
Gain = 4, ①	-	75	, -	KHz
Gain = 8, ①	s autinos	75	nois-sol	KHz
Gain = 10, ①	1/2-0 5	75	The Tarner	KHz
Gain = 100, ①	nintense	50	s dilitate	KHz
S/H PERFORMANCE	nueng go	ilens of	e nig) s	referenc
Acquistion Time				
Full Scale Step to 0.01%	acar- Su	5.2	DBJ BOU	μS
Full Scale Step to 0.1%	e palen	4.2	abire 108	μS
Aperture Delay	_	-20	0	nS
Aperture Uncertanty	_	±100	_	pS
Slew Rate	_	90	_	V/µS
Hold Mode Settling Time,		00		7740
10V to ±0.003% FS		800		nS
	-	400		
10V to ±0.1%FS	STATE OF THE PARTY OF		100000000000000000000000000000000000000	nS
Feedthrough Rejection	-	TBD	TBD	dB
Droop Rate ①	_		IBD	μV/μS
POWER SUPPLY	iken stares	ve door		10
	W	+15.0	+15.75	V dc
Range +15V	+14.25	1	-15.75	V dc
Range +15V -15V	-14.25	-15.0		
	-14.25	+5.0	+5.25	V dc
-15V +5V		+5.0	+5.25	
-15V +5V Current +15V	-14.25	+5.0 +65	+5.25	mA
-15V +5V Current +15V -15V	-14.25	+5.0 +65 -65	+5.25	mA mA
-15V +5V Current +15V -15V +5V	-14.25	+5.0 +65 -65 +80	+5.25	mA mA mA
-15V +5V Current +15V -15V +5V Power Dissipation	-14.25	+5.0 +65 -65	- x	mA mA mA Watts
-15V +5V Current +15V -15V +5V Power Dissipation Power Supply Rejection	-14.25	+5.0 +65 -65 +80	+5.25	mA mA mA Watts
-15V +5V Current +15V -15V +5V Power Dissipation Power Supply Rejection ENVIRONMENTAL	-14.25 +4.75 - - - -	+5.0 +65 -65 +80	0.03	mA mA mA Watts %FSR/%
-15V +5V Current +15V -15V +5V Power Dissipation Power Supply Rejection ENVIRONMENTAL Oper. Temp. Range, -MC	-14.25 +4.75 - - - - -	+5.0 +65 -65 +80	0.03	mA mA mA Watts %FSR/ %
-15V +5V Current +15V -15V +5V Power Dissipation Power Supply Rejection ENVIRONMENTAL Oper. Temp. Range, -MC MM	-14.25 +4.75 - - - - - - - - - - - - - - - -	+5.0 +65 -65 +80	- - - 0.03 +70 +125	mA mA mA Watts %FSR/%
-15V +5V Current +15V -15V +5V Power Dissipation Power Supply Rejection ENVIRONMENTAL Oper. Temp. Range, -MC	-14.25 +4.75 - - - - -	+5.0 +65 -65 +80	- - - 0.03 +70 +125 +150	mA mA mA Watts %FSR/ %

① Specifications valid at 25 °C and over the operating temperature ranges of 0 to +70 °C and -55 to +125 °C.

② Pulse widths greater than 5 μSec. will decrease the specified throughput rate.

HDAS-950/951 OPERATION

The HDAS devices accept either 8 single-ended or 4 differential input signals. Tie unused channels to ANALOG GROUND, pin 33.

Channel selection is accomplished using the multiplexer address pins shown in Table 1. Obtain additional channels by connecting external multiplexers.

The acquisition time is the amount of time the multiplexer, instrumentation amplifier and sample-hold require to settle within a specified range of accuracy prior to EOC going low. The acquisition time can be measured by how long EOC is low before the rising edge of the START CONVERT pulse for continuous operation. Higher gains require the use of the RGAIN resistor to increase the acquisition time. The gain is equal to 1 without an RGAIN resistor. Table 2 refers to the appropriate RGAIN resistors for various throughputs.

Table 2. Input Range Parameters

INPUT RANGE	GAIN	RGAIN	THROUGHPUT
0 to +10V	1	OPEN	100 KHz
0 to +5V	2	2K Ω	75 KHz
0 to +2.5V	4	665 Ω	75 KHz
0 to +1.25V	8	287 Ω	75 KHz
0 to +1.0V	10	221 Ω	75 KHz
0 to +100mV	100	20 Ω	50 KHz
±5V	1	OPEN	100 KHz
±2.5V	2	2K Ω	75 KHz
±1.25V	4	665 Ω	75 KHz
±0.625V	8	287 Ω	75 KHz
±0.5V	10	221 Ω	75 KHz
±50mV	100	20 Ω	50 KHz

Note Rgain = 2K/(gain -1)

The HDAS devices enter the hold mode and are ready for conversion upon the start convert going high; the falling edge forces EOC high. the conversion is complete within a maximum of 4 µsec (+25 °C). EOC returns low, the data is valid and sent to the output. The sample/hold is now ready to acquire new data. The next start convert pulse repeats the process for the next conversion.

Figure 1. HDAS-950/-951 Timing

The specifications listed in Figure 1 apply over the full operating temperature range unless otherwise specified.

	FSTAT1	FSTAT2
Empty	0	1
Half-full	1	0
Full	1	1

Table 5. FIFO Status

FIFO OPERATION

FIFO/DIR	When HIGH, the FIFO is enabled. When
	LOW, the data is brought directly to the
	output bits.

FIFO READ

A rising pulse edge brings the oldest
(First In) word stored in the memory to
the output bits.

FSTAT1, FSTAT2 These outputs show the status of the

FIFO. See Table 5.

Table 1. MUX Channel Addressing

	CHANNEL		36 CA1	MUX A 37 CA2
rs equally between	1000 0000	0	0	0
HDAS-951	1	1	0	0
(2-BIT ADDRESS	2	0	1	0
le Adjustment	3	1	1	0
	4	0	0	1
HDAS-950	0920 95191010	of Stable of	0	1
(3-BIT ADDRESS	in alo 6 der oil	0	100	1
ajust the gain trim e hickers equally b		refer sq tha		1

Figure 2. Typical Connection Diagram

NOTES:

- 1. For unipolar operation, connect pin 9 to pin 10.
- 2. For bipolar operation, leave pin 10 floating.
- Position Rgain as close as possible to pins. Use RN55C, 1% resistors.

propriate full-scale range (FSR). Apply a pulse of 1.0 μsec (typical) to the START CONVERT input (pin 20) at a rate of 50 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

2. Zero Adjustments

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 0000 and 1000 0000 0000 0001.

3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 3 or for the unipolar or bipolar gain adjustment. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1111 1110 and 1111 1111 1111.

4. To confirm proper operation of the device, vary the precision reference voltage to obtain the output coding listed in Table 4.

NOTES

- 1. This procedure is valid for single-ended inputs only.
- External circuitry is needed to alternately enable both bytes.

Table 3. Zero and Gain Adjust

FSR	Zero Adjust +1/2 LSB	Gain Adjust +FS - 1 1/2 LSE	
0 to +10V dc	+76 μV	+9.99977V dc	
±10V dc	+153 μV dc	+9.99954V dc	

Table 4. Output Coding

		STRAIGHT BIN.	and parapose of you		
UNIPOLAR	INPUT RANGES, V dc	OUTPUT CODING	INPUT RANGE	BIPOLAR	.noistevno.
SCALE	0 to +10V	MSB LSB	±10V dc	SCALE	
+FS -1 LSB	+9.99985V	1111 1111 1111 1111	+9.9997V	+FS -1 LSB	
7/8 FS	+8.7500V	1110 0000 0000 0000	+7.5000V	+3/4 FS	TRATE
3/4 FS	+7.5000V	1100 0000 0000 0000	+5.0000V	+1/2 FS	CONVERT
1/2 FS	+5.0000V	1000 0000 0000 0000	0.0000V	0	
1/4 FS	+2.5000V	0100 0000 0000 0000	-5.0000V	-1/2 FS	
1/8 FS	+1.2500V	0010 0000 0000 0000	-7.5000V	-3/4 FS	Hig -
1 LSB	+0.00015V	0000 0000 0000 0001	-9.9997V	-FS +1 LSB	
0	0.0000V	0000 0000 0000 0000	-10.000V	-FS	
16		OFFSET BINARY			

	ORDERING IN	NFORMATION	
MODEL NUMBER	INPUT	OPER. TEMP. RANGE	SEAL
HDAS-951MC	4 D CHANNELS	0 to +70 °C	Hermetic
HDAS-951MM	4 D CHANNELS	-55° to +125°C	Hermetic
HDAS-950MC	8 SE CHANNELS	0 to +70° C	Hermetic
HDAS-950MM	8 SE CHANNELS	-55 to +125 °C	Hermetic
Receptacle for PC bo		dered through AMP Inc.,Part	t # 3-331272-8

MULTIPLEXERS

	Model	Channels	Settling Time 20V to 0.01%	Access Time	Input Range	Power (Watts)	Case	Page
	MXD-409	4 D	3 µs	500 ns	±15V	0.105	16-Pin DIP	6-5
	MX-808	8 SE	3 µs	500 ns	±15V	0.105	16-Pin DIP	6-5
THE STATE	MXD-807	8 D	3 µs	500 ns	±15V	0.105	28-Pin DIP	6-5
	MX-1606	16 SE	3 µs	500 ns	±15V	0.105	28-Pin DIP	6-5
	MVD-409	4 D	2.8 µs	350 ns	±15V	0.055	16-Pin DIP	6-1
	MV-808	8 SE	2.8 µs	350 ns	±15V	0.055	16-Pin DIP	6-1
	MVD-807	8 D	2.4 µs	300 ns	±15V	0.105	28-Pin DIP	6-1
	MV-1606	16 SE	2.4 µs	300 ns	±15V	0.105	28-Pin DIP	6-1
	MX-818C	8 SE/4D	800 ns	125 ns	±15V	0.540	18-Pin DIP	6-9
Films	MX-1616C	16 SE/8 D	800 ns	150 ns	±15V	0.900	28-Pin DIP	6-9
New	MX-826	8 SE	200 ns	70 ns	±10.5V	0.395	24-Pin DIP	6-13
New	MX-850	4 SE	50 ns	20 ns	±10V	0.250	14-Pin DIP	6-15
,,,,,,	11171 000	. 02	A TO THE TOTAL	20 110		0.200	141111011	

Dial 1-800-233-2765 for Applications Assistance

	Väte	150 ns	an 008		
	Conta	ct DATEL	for your		
14-Pin DIP	Data Acc	quisition on needs.	component		

Dial 1-800-233-2765 for Applications Assistance

Low ON-Resistance CMOS Analog Multiplexers

FEATURES

- · 0.01% Accuracy
- · Low "ON" resistance
- · Break-before-make switching
- Dielectrically isolated CMOS
- Single-ended or differential
- · Fast settling time
- DTL/TTL/CMOS-compatible
- 350 KHz Sampling rate

GENERAL DESCRIPTION

The MV Series analog multiplexers are 4-, 8-, and 16-channel monolithic devices featuring a low ON resistance of 270 ohms. These units are manufactured with CMOS technology using a dielectric isolation process. There are 8-and 16-channel single-ended models and 4- and 8-channel differential models in this series. Channel addressing is done by a 2-, 3-, or 4-bit binary code; an inhibit input enables or disables the entire device to permit expansion of the number of channels by using several devices together. Another important feature is break-before-make switching, which insures that no two channels are ever momentarily shorted together. With a high impedance load, transfer accuracies of 0.01% can be achieved at channel sampling rates up to 350 KHz.

MECHANICAL DIMENSIONS INCHES (MM)

ON RESISTANCE VS. TEMPERATURE

MV Series

Power Supply, digital **Analog Input Voltage Digital Input Voltage** Package Dissipation, max.

±20V +30V ±|Vs +2V| ±Vs 780 mW

±20V ±|Vs +2V| ±|Vs +4V| 1200 mW

±20V +30V ±|Vs +2V| ±Vs 780 mW

±|Vs +2V| ±|Vs+4V|

1200 mW

FUNCTIONAL SPECIFICATIONS

Typical at +15V supplies (and +5V supply for MV-808 & MVD-409), unless otherwise noted.

ANALOG INPUTS	MV-808	MV-1606/1606M	MVD-409	MVD-807	me-elgni
Number of Channels	8	16	4	8	mies Ten
Type	Single-ended	Single-ended	Differential	Differential	WHITTH
Input Voltage Range	±15V	±15V	±15V	±15V	SO MHZ S
Channel ON Resistance 1	250Ω	270Ω	250Ω	270Ω	
Channel ON Resistance 2, max. over temp.	500Ω	500Ω	500Ω	500Ω	100
Channel OFF Input Leakage	20 pA	30 pA	20 pA	30 pA	
Channel OFF Output Leakage	100 pA	1.0 nA	50 pA	1.0 nA	TARRE
Channel ON Leakage	100 pA	1.0 nA	50 pA	1.0 nA	JAMAN
Channel OFF Input Capacitance	4 pF	4 pF	4 pF	4 pF	
Channel OFF Output Capacitance		44 pF	10 pF	22 pF	west 1763
Channel OFF Output Capacitance	20 pF	44 pr	10 pr	22 pr	WAY Se
DIGITAL INPUTS ³		20MO miw	beautedured s	These units a	emine anni
Logic 0 Threshold, max.	+0.4V	+0.8V	+0.4V	+0.8V	an ypoloni
Logic 1 Threshold 4, min.	+4.0V	+2.4V	+4.0V	+2.4V	nario-87
Input Current, max., High or Low	1 μΑ	5 uA	1 uA	5 uA	n leitner
Channel Address Coding	3 Bits	4 Bits	2 Bits	3 Bits	
Channel Inhibit, all channels OFF	Logic 1	Logic 0	Logic 1	Logic 0	a yd a
	Logic i	Logic o	innectodio di vab s	Logic o	b to seld
PERFORMANCE		AGES TOGGEDEL	ran isabas busi	it channels by t	number i liher imad
Transfer Error, max.	0.01%	0.01%	0.01%	0.01%	enuani rk
Crosstalk, 10 KHz	-86 dB	-86 dB	-86 dB	-86 dB	and last
Common Mode Rejection	_	HOUSTIEN, USE	120 dB	120 dB	spot ben
Settling Time, 20V to 0.1%	1.1 µS	1.2 μS	1.1 µS	1.2 µS	o selasti
Settling Time, 20V to 0.01%	2.8 μS	2.4 µS	2.8 µS	2.4 µS	s up to 3
Turn ON Time	350 nS	300 nS	350 nS	300 nS	
Turn OFF Time	250 nS	220 nS	250 nS	220 nS	5,
nhibit/Enable Delay	300 nS	300 nS	300 nS	300 nS	The second
Break-Before-Make Delay	100 nS	80 nS	100 nS	80 nS	
POWER REQUIREMENTS					
Power Supply Voltage	±15V dc	±15V dc	±15V dc	±15V dc	
					- All the Art
Power Supply Current 5, max.	+1, -2 mA	+3, -1 mA	+1, -1 mA	+3, -1 mA	
Digital Supply Voltage	+5V dc	-	+5V dc	V- 0168 _ gV+	
Digital Supply Current, max.	2 mA	-	2mA	0-0-	
PHYSICAL/ENVIRONMENTAL				SGMD REPORTED	
Operating Temperature Range	0 to +70 °C	0 to +70 °C	0 to +70 °C	0 to +70 °C	
MV-1606M Oper. Temp. Range		-55 to +125 °C			
Storage Temperature Range	-65 to +150 °C	-65 to +150 °C	-65 to +150 °C	-65 to +150 °C	
Package	16 pin DIP	28 pin DIP	16 pin DIP	28 pin DIP	

Footnotes

- 1. For MV-1606M typical value is 170 ohms.
- For MV-1606M maximum value is 400 ohms.
- 3. Channel address and inhibit inputs.
- 4. For MV-808 and MVD-409; to drive from DTL/TTL logic 1K pull-up resistors to +5V should be used.
- 5. For MV-1606M maximum current is +3, -1 mA.

TECHNICAL NOTES

- 1. The transfer accuracy of the MV series multiplexers depends on both the source resistance and load resistance. For example, with zero source resistance and assuming 500 ohms maximum channel ON resistance, the load impedance must be at least 5 megohms to achieve 0.01% accuracy. In practice it is recommended that a load impedance of 108 ohms or more be used. Source resistance
- should be kept as low as possible so that accuracy or settling time are not degraded. Less than 250 ohms is recommended.
- 2. Channel expansion is accomplished by use of the inhibit input of the multiplexers. To expand the number of channels, use multiple multiplexers with the inhibit inputs connected to a decoder.

CONNECTION AND APPLICATION

CHANNEL ADDRESSING

PIN CONNECTIONS

MV-1606

8	4	2	1	INHIB.	ON CHANNEL
X	×	х	X	0	NONE
0	0	0	0	1	1
0	0	0	1	1	2
0	0	1	0	1	3
0	0	1	1	1	4
0	1	0	0	1	5
0	1	0	1	- 1	6
0	1	1	0	1	7
0	1	1	1	- 1	8
1	0	0	0	1	9
1	0	0	1	1	10
1	0	1	0	1	11
1	0	1	1	1	12
1	1	0	0	1	13
1	1	0	1	1	14
1	1	1	0	1	15
1	1	1	1	1	16

MV-808, MVD-807

4	2	1	MVD-807 INHIB.	MV-808 INHIB.	CHANNEL
X	X	X	0	. 1	NONE
0	0	0	.1	0	1
0	0	1	1	0	2
0	1	0	1	0	3
0	1	1	1	0	4
1	0	0	1	0	5
1	0	1	1	0	6
1	1	0	1	0	7
1	1	1	1	0	8

MVD-409

2 1		INHIB.	ON CHANNEL
X	X	1	NONE
0	0	0	1
0	1	000	2
1	0	0	3
1	1	0	4 0

MV-808				
CA2	10	16	-CA1	
+ 5V	2	15	Vs	
NHIBIT -	3	14	+ Vs	
CA3 -	4	13	1 IN	
8 IN	5	12	- OUT	
7 IN	6	11	2 IN	
6 IN -	7	10	- 3 IN	
5 IN -	8	9	4 IN	

MVD-409

NOTES: CA = CHANNEL ADDRESS Vs = SUPPLY VOLTAGE NC = NO CONNECTIONS

TOP VIEW SHOWN

MV-1606 - OUT +Vs 28 27 - -Vs NC -- 8 IN NC 26 16 IN 25 - 7 IN 15 IN 24 - 6 IN 23 - 5 IN 14 IN -13 IN 22 - 4 IN 21 - 3 IN 12 IN 11 IN 20 — 2 IN 10 IN 10 19 - 1 IN - INHIBIT 9 IN 18 17 - CA1 GND -- CA2

MVD-807

15 - CA4

CA8

LEAKAGE CURRENT VS. TEMPERATURE

- MV-1606, MVD-807 CHANNEL OFF OUTPUT LEAKAGE
 MV-808 CHANNEL OFF OUTPUT LEAKAGE
 MVD-409 CHANNEL OFF OUTPUT LEAKAGE
 MV-1606, MVD-807 CHANNEL OFF INPUT LEAKAGE
 MV-406, MVD-409 CHANNEL OFF INPUT LEAKAGE
 MV-808, MVD-409 CHANNEL OFF INPUT LEAKAGE

ORDERING INFORMATION

MODEL NO.	CHANNELS	OPERATING TEMP. RANGE
MV-808	8 S.E.	0 to 70°C
MV-1606	16 S.E.	0 to 70°C
MV-1606M	16 S.E.	-55 to +125°C
MVD-409	4 Diff.	0 to 70°C
MVD-807	8 Diff.	0 to 70°C

COMMECTION AND APPLICATION

SORT-VAN

SORT-V

| DOS-OVAL

Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets.

Dial **1-800-233-2765**

for

Applications Assistance

CHAMNELS	

MX Series

4-, 8-, and 16-Channel CMOS Multiplexers

FEATURES

- · 200 KHz Sampling rates
- · 0.01% Accuracy
- · Dielectrically isolated CMOS
- · Break-before-make switching
- · Single-ended and differential
- Overvoltage protection
- DTL/TTL/CMOS-compatible
- · 7.5 mW Standby power

GENERAL DESCRIPTION

The MX Series analog multiplexers are 4-, 8-, and 16-channel monolithic devices manufactured with a dielectrically isolated complementary MOS process. The circuits incorporate analog and digital input protection which protects the units from both overvoltage and loss of power. The digital inputs are DTL/TTL/CMOS compatible and address the proper channel by means of a 2-, 3-, or 4-bit binary code. An inhibit input enables or disables the entire device and this permits expansion of the number of channels by using several devices together. Another important feature of these multiplexers is the use of breakbefore-make switching to in-sure that no two channels are ever momentarily shorted together. Transfer accuracies of 0.01% can be achieved at channel sampling rates up to 200 KHz and over ±10V signal ranges.

MECHANICAL DIMENSIONS - INCHES (MM)

MX-1606, MXD-807

MX-808, MXD-409

CROSSTALK VS. FREQUENCY OF INPUT SIGNAL

		WIA-1000	WAD-403	MYD-001
Voltage Between Supply Pins	40V	40V	40V	40V
VREF to Ground, V + to Ground	+20V	+20V	+20V	+20V
Digital Input Overvoltage	±IVs +4VI	± Vs +4V	± Vs +4V	± Vs +4V
Analog Input Overvoltage	± Vs +20V	± Vs +20V	± Vs +20V	± Vs +20V
Package Dissipation, max.	725 mW	1200 mW	725 mW	1200 mW
				The state of the s

FUNCTIONAL SPECIFICATIONS

Typical at 25 °C +15V supplies R source <1K, unless otherwise noted.

ANALOG INPUTS	MX-808	MX-1606	MXD-409	MXD-807
Number of Channels Type Input Voltage Range Channel ON Resistance Channel OF Resistance, Over Temp. Channel OFF Input Leakage Channel OFF Output Leakage Channel OF Input Leakage Channel OFF Input Capacitance Channel OFF Input Capacitance	8 Single-ended ±15V 1.5 KΩ 2.0 KΩ max. 30 pA 1.0 nA 100 pA 5 pF 25 pF	16 Single-ended ±15V 1.5 KΩ 2.0 KΩ max. 30 pA 1.0 nA 100 pA 5 pF 50 pF	4 Differential ±15V 1.5 ΚΩ 2.0 ΚΩ max. 30 pA 1.0 nA 100 pA 5 pF 12 pF	8 Differential ±15V 1.5 KΩ 2.0 KΩ max. 30 pA 1.0 nA 100 pA 5 pF 25 pF
DIGITAL INPUTS I	en en	The circuits	MOS process.	omplementary
Logic 0 Threshold Logic 1 Threshold, (TTL) ² Logic 1 Threshold, (CMOS) ³ Input Current, High or Low Channel Address Coding Channel Inhibit, all channels OFF	+0.8V, max. +4.0V min. +6.0V min. 5 µA max. 3 Bits Logic 0	+0.8V, max. +4.0V min. +6.0V min. 5 μA max. 4 Bits Logic 0	+0.8V, max. +4.0V min. - 5 μA max. 2 Bits Logic 0	+0.8V, max. +4.0V min. - 5 μA max. 3 Bits Logic 0
PERFORMANCE		nemonA ne	devices togeth	Ising several
Transfer Error, max. Crosstalk, 1 KHz Common Mode Rejection Settling Time 4, 20V to 0.1% Settling Time 4, 20V to 0.01% Turn ON Time Turn OFF Time Break-Before-Make Delay Inhibit/Enable Delay	0.01% 0.005% - 2 µS 3 µS 500 nS 300 nS 300 nS 300 nS	0.01% 0.005% - 2 μS 3 μS 500 nS 300 nS 80 nS 300 nS	0.01% 0.005% 120 dB 2 µS 3 µS 500 nS 300 nS 80 nS 300 nS	0.01% 0.005% 120 dB 2 µS 3 µS 500 nS 300 nS 80 nS 300 nS
POWER REQUIREMENTS				
Rated Power Supply Voltage Power Supply Voltage Range Quiescent Current, max. Power Consumption, 10 KHz Sampling	±15V dc ±5V to ±20V +2, -1 mA 7.5 mW	±15V dc ±5V to ±20V +2, -1 mA 7.5 mW	±15V dc ±5V to ±20V +2, -1 mA 7.5 mW	±15V dc ±5V to ±20V +2, -1 mA 7.5 mW
PHYSICAL/ENVIRONMENTAL	rican.			- 64- 040 6A
Operating Temperature Range Storage Temperature Range Package	0 to +70 °C -65 to +150 °C 16 pin DIP	0 to +70 °C -65 to +150 °C 28 pin DIP	0 to +70 °C -65 to +150 °C 16 pin DIP	0 to +70 °C -65 to +150 °C 28 pin DIP

Footnotes

- 1. The digital inputs are the channel address inputs and the inhibit input.
- To drive from DTL/TTL circuits, 1K pull-resistors to +5V are recommended. With models MX-1606 and MXD-807, pin 13 should be left open.
- 3. For a +6.0V threshold with models MX-1606 and MXD-807, pin 13 is connected to +10V.
- 4. With a load impedance of >100 megohms in parallel with 2 pF.

TECHNICAL NOTES

1. The transfer accuracy of these multiplexers depends on both the source resistance and the load resistance. With zero source resistance, and assuming 2K ohms maximum channel ON resistance, the load impedance should be at least 20 megohms to achieve 0.01% accuracy. In practice, it is recommended that a load impedance of at least 100 megohms be used to minimize errors. Source resistance should be kept as low as possible so that accuracy is not affected; less than 1 K ohms is recommended. Higher source resistance, in addition to affecting accuracy, will degrade the settling time of the multiplexer.

Channel expansion uses the inhibit input of the multiplexer. A logic 0 on this input disables the multiplexer.

CONNECTION & APPLICATION

PIN CONNECTIONS

CHANNEL ADDRESSING

ation of

28 ___ A OUT

___ 7A IN

--- 6A IN

17 — CA1 16 — CA2

15 --- CA4

23 — 5A IN 22 — 4A IN

21 — 3A IN 20 — 2A IN

19 — 1A IN
18 — INHIBIT

27

	8	4	2	1	INHIB.	CHANNEL
	X	X	X	X	0	NONE
	0	0	0	0	1	1
	0	0	0	1	1	2
	0	0	1	0	1	3
	0	0	1	1	1	4
	0	1	0	0	1	5
	0	1	0	1	1	6
	0	1	1	0	1	7
	0	1	1	1	1	8
	1	0	0	0	1	9
	1	0	0	1	1	10
	1	0	1	0	1	11
	1	0	1	1	AG I	12
100	1	1	0	0	to the	13
	1	1	0	1	1	14
	1	1	1	0		15

1 1 1 1

MX-1606

ON

4	2	1	INHIB.	ON CHANNEI
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1.	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

MX-808, MXD-807

MXD-409						
2	1	INHIB.	ON CHANNEL			
X	X	0	NONE			
0	0	1	1			
0	1	1	2			
1	0	1	3			
1	1	1	4			

	MXD	-409	
CA1 —	10	16	— CA2
INHIB -	2	15	GND
- Vs -	- 3	14	+ V _S
1A IN	4	13	—1B IN
2A IN -	- 5	12	- 2B IN
3A IN-	- 6	11	-3B IN
4A IN-	7	10	-4B IN
A OUT-	- 8	9	-B OUT

NOTES:

LEAKAGE CURRENT VS. TEMP.

B OUT -

NC-

8B IN-7B IN-

6B IN-

5B IN-

4B IN-

1B IN-

GND-12

V_R-13

8 3B IN-2B IN-

SETTLING TIME VS. SOURCE RESISTANCE (20V STEP)

16

ORDERING INFORMATION							
MODEL NO.	CHANNELS	OPERATING TEMP. RANGE					
MX-808	8 S.E.	0°C to +70°C					
MX-1606	16 S.E.	0°C to +70°C					
MXD-409	4 Diff.	0°C to +70°C					
MXD-807	8 Diff	0°C to +70°C					

Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets.

Dial

1-800-233-2765

for

Applications Assistance

MX-1616, MX-818

High-Speed CMOS Analog Multiplexers

FEATURES

- 800 Nanoseconds settling time
- · Programmable input mode
- · Break-before-make switching
- · Dielectrically isolated CMOS
- TTL/CMOS-compatible

GENERAL DESCRIPTION

The MX-1616 and MX-818 are high-speed high performance analog multiplexers manufactured with a dielectrically isolated CMOS process. Both devices achieve transfer accuracies of 0.01% at channel sampling rates of up to 1.25 MHz over ±10V signal ranges. These multiplexers are ideal for high-speed, multichannel, data acquisition systems where the multiplexer operates into a high impedance load such as a sample-hold, buffer amplifier or instrumentation amplifier.

A unique feature of these circuits is tha ability of the use to program their inputs for either single-ended or differential operation. The MX-1616 is user programmable either as a single-ended 16-channel or as a differential 8-channel multiplexer while the MX-818 is user programmable either as a single-ended 8-channel or as a differential 4-channel multiplexer.

MECHANICAL DIMENSIONS INCHES (MM)

ABSOLUTE MAXIMUM RATIN	GS MX-1616	MX-818
Voltage Between Supply		
Pins	33V	*
		*30000
Analog Input Voltage	$CA3 = (-V_S - 2V) - 6V < Logic "1"$	$CA2 = (-V_S - 2V)$
		*
CMOS2	+V- +2V	
CMOS ²	GRND -2V	
Package Dissipation,		
maximum	1200 mW	725 mW

FUNCTIONAL	SPECIFICATIONS
-------------------	-----------------------

Typical at +25°C, ±15V dc supplies, unless otherwise noted.

ANALOG INPUTS	MX-1616	MX-818
No. of Channels	8 Differential	8 Single-Ended 4 Differential
Input Voltage Range Channel ON Resistance,	± 15V	11 1 .
maximum ³	. 750Ω	Gran *
Temp., maximum ³	1 ΚΩ	
Leakage	10 pA	50 pA
Channel OFF Output Leakage	35 nA	100 pA
Channel ON Leakage	40 pA	100 pA
Capacitance	2.5 pF	1.9 pF
Channel OFF Output Capacitance	18 pF	10 pF
DIGITAL INPUTS	0.0	
Logic "0" Threshold,		
maximum: TTL		
Logic "1" Threshold, minimum: TTL	+2 4V	20,000,00
CMOSnput Leakage Current,	0.7 (Logic sup.)	
maximum: High		858530A *
Low		20 μA 3 Bits
Channel Inhibit, All Channels OFF	Logic "0"	
PERFORMANCE	0/0	
Transfer Error, maximum	0.01%	
Settling Time, 10V step to 0.1%	250 nsec.	1 - 10
10V step to 0.01%	800 nsec. 150 nsec. ⁴	125 nsec.5
Enable Delay "ON", maximum		
Enable Delay		4191.707
"OFF", maximum		1
POWER REQUIREMENTS	100	
Rated Power		atat-xxx
Supply Voltage		
maximum	± 30 mA	± 18 mA
maximum	900 mW	540 mW

PHYSICAL/ENVIRONMENTAL	MX-1616	MX-818
Operating Temp. Range:		
C Suffix 0°	°C to +70°C	*****
		EATURES
Storage Temperature		
Range	65°C to 155°C	* ******
Package	3-Pin DIP	18 Pin DIP
	* Same specifica	tion as column 1.

- 1. For TTL compatibility, the Logic Select pin (MX-1616 Pin 13, MX-818 Pin 8) is grounded or left open.
- 2. For CMOS compatibility, the Logic Select Pin (MX-1616 Pin 13, MX-818 Pin 8) is tied to the system Logic Supply.
- 3. Vin = \pm 10V, lout = $-100~\mu\text{A}$. 4. 200 nseconds maximum at full rated operating temperature.
- 150 nseconds maximum at full rated operating temperature.

TECHNICAL NOTES

- 1. The transfer accuracy of the MX-1616 and MX-818 depends upon both the source and the load resistance. With zero source resistance and assuming 1 KΩ maximum chanel on resistance the load impedance must be at least 10 $M\Omega$ to achieve 0.01% accuracy. Source resistance should be kept as low as possible so that accuracy or settling time are not degraded. Less than 500Ω is recommended.
- 2. Channel expansion is accomplished by the use of the inhibit input of the multiplexers. To expand the number of channels, use multiple multiplexers with the inhibit inputs connected to a decoder.

PIN CONNECTIONS

CONNECTION & APPLICATION

MX-1616 - USED AS 16 CHANNEL MULTIPLEXER

	USE CA3 AS DIGITAL ADDRESS INPUT				ON CHANNEL TO		
3	2	1	0	INHIB.	OUPUT A	OUTPUT	
Х	X	х	Х	0	NONE	NONE	
0	0	0	0	1	1A		
0	0	0	1	1	2A		
0	0	1	0	1	3A		
0	0	1	1	1	4A		
0	1	0	0	1	5A		
0	1	0	1	1	6A		
0	1	1	0	1	7A		
0	1	1	1	1	8A		
1	0	0	0	1		1B	
1	0	0	1	1		2B	
1	0	1	0	1	المساداة	3B	
1	0	1	1	1	no noi	4B	
1	1	0	0	1	—bn	5B	
1	1	0	1	1		6B	
1	1	1	0	1		7B	
1	1	1	1	1		8B	

MX-818 - USED AS 8 CHANNEL MULTIPLEXER

USE CA2 AS DIGITAL ADDRESS INPUT				ON CHANNEL TO		
2	1	0	INHIB.	OUTPUT A	OUTPUT B	
X	Х	X	0	NONE	NONE	
0	0	0	1	1A		
0	0	1	1	2A		
0	1	0	1	3A		
0	1	1	1	4A		
1	0	0	1		1 B	
1	0	1	1		2 B	
1	1	0	1		3 B	
1	1	1	1		4 B	

MX-1616 - USED AS DUAL 8 CHANNEL MULTIPLEXER

	CONNECT CA3 TO - V SUPPLY			ON CHANNEL TO		
2	1	0	INHIB.	OUTPUT A	OUTPU1 B	
X	X	X	0	NONE	NONE	
0	0	0	1	1A	1B	
0	0	1	1	2A	2B	
0	1	0	1	3A	3B	
0	1	1	1	4A	4B	
1	0	0	1	5A	5B	
1	0	1	1	6A	6B	
1	1	0	1	7A	7B	
1	1	1	1	8A	8B	

MX-818 - USED AS DUAL 4 CHANNEL MULTIPLEXER

	- V SUPPLY		ON CHANNEL TO				
1	0 INHIB.	0 INHIB.	0 INHIB.		OUTPUT A	OUTPUT B	
Х	х	0	NONE	NONE			
0	0	1	1	1B			
0	1	1	2	2B			
1	0	1	3	3B			
1	1	1	4	4B			

ORDERING INFORMATION

MODEL NO.	CHANNELS	OPERATING TEMP. RANGE
MX-818C	8 S.E. or 4 Diff.	0 to +70 °C
MX-1616C	16 S.E. or 8 Diff.	0 to +70 °C

CONNECTION & APPLICATION

Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets.

			Dial
			1-800-233-2765
			for
	1	Ap	plications Assistance

ORDERING INFORMATION
ORDERATION
O

MX-826 Precision, High-Speed Multiplexer

FEATURES

- 225 nSec. maximum settling time to 0.01%
- 400 nSec. maximum settling time to 0.003%
- 150 nSec. maximum settling time to 0.1%
- 8 Channels single-ended inputs
- 395 mW Power dissipation
 Small 24-pin DDIP package

GENERAL DESCRIPTION

The MX-826 is a precision high-speed multiplexer characterized for 10-, 12-, and 14-bit applications. The performance benchmarks are its 225 nanoseconds maximum settling time to 0.01% accuracy and its unprecedented specification of accuracy to 0.003%.

The MX-826 provides eight single-ended inputs. Channel addressing is done by a three-bit binary code. Break-before-make switching assures that no two channels are ever momentarily shorted together.

The MX-826 operates from $\pm 15V$ and $\pm 5V$ power supplies. Models are available in two operating temperature ranges: 0 to ± 70 °C and ± 50 to ± 125 °C.

MECHANICAL DIMENSIONS INCHES (mm)

NOTE: Pins have a 0.025 inch, ±0.01 stand-off from case.

Figure 1. MX-826 Simplified Block Diagram

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	A0	13	OUTPUT
2	A1	14	N/C
3	A2	15	N/C
4	IN1	16	+15V (+Vcc)
5	IN2	17	GROUND
6	IN3	18	GROUND
7	IN4	19	-15V (-VEE)
8	IN5	20	N/C
9	IN6	21	N/C
10	IN7	22	N/C
11.	IN8	23	GROUND
12	GROUND	24	+5V (+VDD)

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS
+15V Supply (Pin 16)	0 to +18V dc
-15V Supply (Pin 19)	0 to -18V dc
+5V Supply (Pin 24)	-0.5 to +7V dc
Digital Inputs (Pins 1,2,3)	-0.3 to +5.5V dc
Analog Inputs (Pins 4-11)	-15 to +15V dc
Lead Temperature (10 sec.)	300 °C
Short Circuit to Ground	Continuous

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and over the operating power supply range unless otherwise specified.

INPUTS	MIN	TYP	MAX	UNITS
Input Voltage Ranges	±10.0	±10.5	-	V dc
Digital Input, Logic Level				
Logic 1	2.0	_XA03	008.0_	V dc
Logic 0	-	_ (8	0.8	V dc
Logic Loading			1	μА
Logic 1		E sino	cerapil	μΑ
Logic 0 OUTPUTS		- Inch	AVON II	μΛ
0017015	1.100		1	Volts
Output Range Output Current	±10.0	±10.5	21.	mA
Stable Capacitive Load	13		100	pF
Output Impedance DC		0.1	-	Ohms
PERFORMANCE	- 11	1000	rayasa .	
Gain	220Ada	-1	100	FS
Gain Error, 25 °C	AT DIEGO	-1	±0.03	%FS
Gain Tempco, -55 to +125 °C	(= ,S)	±0.5	±0.03	ppm/ °C
Offset, 25 °C		±0.5	±0.5	mV
Offset Voltage Drift		<5	±10	μV/°C
Slew Rate	200	300	-/-	V/µS
Cross Talk		- 1	esser 1	
100 KHz	-82	-86	En -	dB
1 MHz	-64	-69	-	dB
Bandwidth	201 05040	S SVAR ANN	STON	
3 dB Small Signal	8	8.5	-	MHz
Full Power	2.45	3.5	2.55	MHz KΩ
Input Impedance Output Settling Time	2.45	2.5	2.55	K22
(10V step, +25 °C) 500Ω Load		1 - 2-1		
0.1% 10 Bitc		100	150	nS
0.01% 12 Bits	TUST	150	225	nS
0.003% 14 Bits		300	400	nS
(20V step, +25 °C) 1KΩ Load	MOST	EUNIC !	PBU	
0.1% 10 Bits		150	180	nS
0.01% 12Bits	-	200	240	nS
0.003% 14 Bits	-	600	720	nS
Switching Characteristics		64	F	
Break before make delay	8	15	25	nS
Turn On/Turn Off Harmonic Distortion	-	20	50	nS
DC to 100 KHz, 10V pp		INS	8	
. 2E 0C	-90	-92	9	dB
-55 to +125 °C	-88	-92	12.	dB
1MHz 10V pp	00	Civil	6	ub.
+25 °C OM 15	-75	-85	6_	dB
-55 to +125 °C	-70	-85	01-1	dB
DC to 100 KHz 20V pp		SMI 3	17	
+25 °C/	-87	-89	21-	dB
-55 to +125 °C	-85	-89		dB
1MHz to 20V pp	70	00		-ID
+25 °C	-72	-83	-	dB
-55 to +125 °C	-67	-83	_	dB
Signal-to-Noise Ratio with Distortion	-69	-72	100	dB
without Distortion	-75	-80		dB
WILLIOUT DISTOLION	-/5	-80		UB

POWER SUPPLY REQ.	MIN	TYP	MAX	UNITS
Range				
+15V	+14.5	+15	+15.5	Volts
-15V	-14.5	-15	-15.5	Volts
+5V	+4.75	+5	+5.25	Volts
Current (Quiescent)				
+15V	-	+13	+19	mA
-15V	- 1	-13	-19	mA
+5V	-	<1	+1	mA
Power Supply Reject Ratio	86	prilite	a memi	dB
Power Supply Dissipation	ime-lo-l	395	575	mW.
PHYSICAL/ENVIRONMENTA	Fåt sun		e mumi	
Operating Temp. Range		nolls	giesib 1	Powe
-MC Models	0	graces	+70	°C
-MM Models	-55	-	+125	°C
Storage Temp. Range	-65	Tuesda	+150	°C
Package Type			aled cerar	
Pin Type			3 inch Kov	
Weight	0.42 0	z. (12 gra	am) maxii	num

TECHNICAL NOTES

- 1. Bypass the \pm 15V and \pm 5V power supplies with a 1 μ F, 25V tantalum electrolytic capacitor in parallel with a 0.1 μ F ceramic capacitor.
- 2. Analog signals up to $\pm 15 \text{V}$ may be present while the MUX power supplies are off.
- The absence of an R_{ON} specification or output leakage specification is related to the architecture of the switching network. The inputs see a constant 2.5 K Ohm input impedance whether the channel is on or off.
- 4. Typical recovery times from an overvoltage condition of >±3V is approximately 200 nanoseconds from a negative overdrive and 700 nanoseconds from a positive overdrive.
- 5. Double level multiplexing may be used to provide up to 64 channels (nine MX-826's required).

Table 1. Channel Addressing

On Channel		Add A1	dress A0
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

ORDERING INFORMATION

ı	Model No.	Channels	Oper. Temp. Hang
ı	MX-826MC	8SE	0 to +70 °C
I	MX-826MM	8SE	-55 to +125 °C

Order PC board mounting receptacle through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 24 required.

For availablilty of MIL-STD-883B version contact DATEL.

FEATURES

- 50 nSec settling time to 0.01%
- 70 nSec settling time to 0.003%
- 100 nSec settling time to 0.001%
- 4 Channels, single-ended inputs
 207 mW power dissipation
- Small 14-pin DIP package

GENERAL DESCRIPTION

The MX-850 is a precision high-speed multiplexer characterized for 10-, 12-, 14-, and 16-bit applications. The performance benchmarks are its 50 nanosecond maximum settling time to 0.01% accuracy and its unprecedented specification of accuracy to 0.001%.

TECHNICAL NOTES

- Proper operation of the MX-850 multiplexer is dependent upon good board layout and connection practices. Bypass supplies as shown in the connection diagrams. Mount bypass capacitors directly to the supply pins whenever possible.
- All grounds pins (9, 11, 13) should be tied together and connected to ground as close to the multiplexer as possible.
- 3. When power is off, current limit input signals on pins 4, 5, 6, and 7 to 20 mA. Failure to current limit will cause permanent damage to the device, as when powering up or down, it is possible that two switches might be on at the same time. Excessive current (greater than 20 mA) will flow from the more positive input to the more negative input, permanently damaging the device. Applications where the power supply for the multiplexer also powers the signal sources may not require limiting resistors. See Figure 4.

MX-850 Simplified Block Diagram

MX-850 Mechanical Dimensions

NOTE: Pins have 0.025 Inch ± 0.01 stand-off from case.

PIN	FUNCTION	
1 8	ENABLE	601
2	A0	
3	A1 -	
4	CH 1 INPUT	
5	CH 2 INPUT	
6	CH 3 INPUT	
7	CH 4 INPUT	
8	OUTPUT	
9	GROUND	
10	+15V	
11	GROUND	
12	+5V	
13	GROUND	
14	-15V	

ABSOLUTE MAXIMUM RATINGS

PARAMETER	LIMITS	UNITS
+15V Supply (pin 10)	-0.5 to +16.5	Volts
-15V Supply (pin 14)	+0.5 to -16.5	Volts
+5V Supply (pin 12)	-0.5 to +7.0	Volts
Digital inputs (pins 1, 2, 3)	-0.5 to +6.0	Volts
Analog inputs (pins 4, 5, 6, 7)	-10.5 to +10.5	Volts
Analog Input Current	±20	mA
Lead temperature (10 Sec)	300 max.	°C
Switching frequency/duty cycle	10/50	MHz/%

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at $\pm 15 V$ and +5 V dc unless otherwise specified.

ANALOG INPUTS	MIN.	TYP.	MAX.	UNITS
Analog signal range On resistance, +25 °C 0 to +70 °C -55 to +125 °C	- - - -	18 - -	±10.0 90 120 140	Volts Ohm Ohm Ohm
Ron versus Vin		See F	igure 1	
Input leakage current (Off), +25 °C 0 to +70 °C -55 to +125 °C	=	0.02	0.2 10 25	nA nA nA
Output leakage current (Off), +25 °C 0 to +70 °C -55 to +125 °C	- - -	0.02	0.2 20 40	nA nA nA
On channel leakage current, +25 °C 0 to +70 °C -55 to +125 °C Nonlinearity	72.4 1.0 1.2.7	0.4	1.0 25 35 0.001	nA nA nA %FSR
Large signal bandwidth (-3dB)	80	100	11	MHz
DIGITAL INPUTS		008	0	
Logic Levels "1" Logic Levels "0" Logic Loading "1" 0 0 0 1001 1001 1001 1001 1001 100	2.0	7.8 E	0.8 1 -1	Volts Volts μΑ μΑ
SWITCHING CHARACTERIST	ICS			
Access time Break-before-make	-	-	20	nS
delay time Enable delay (On, Off) Settling time, 10M Load		3	10	nS nS
(0.1%) 10V step (0.01%) 10V step (0.003%) 10V step (0.001%) 10V step	B.HIAI - RMT 11	25 40 60 80	30 50 70 100	nS nS nS nS
Settling time, 5K Load (0.1%) 10V step (0.01%) 10V step (0.003%) 10V step (0.001%) 10V step	TURTU	25 40 60 80	30 50 70 100	nS nS nS
Settling time, 10M Load (0.1%) 20V step (0.01%) 20V step (0.003%) 20V step (0.001%) 20V step	ROUNE SV = SV = SOUNE	30 50 75 100	35 60 85 120	nS nS nS
Settling time, 5K Load (0.1%) 20V step (0.01%) 20V step (0.003%) 20V step (0.001%) 20V step	_ V8	30 50 75 100	35 60 85 120	nS nS nS

SWITCHING CHAR. (cont.)	MIN.	TYP.	MAX.	UNITS
Crosstalk ①				
10 KHz (20 Vpp)	D1-000	-105	-100	dB
1 MHz (20 Vpp)	-	-94	-92	dB
10 MHz (5 Vpp)	-	-76	-71	dB
20 MHz (3 Vpp)	-	-64	-62	dB
Chan. input capacitance	96.3	4	mit onli	138 000
(Off) (On)	70.000	10	6	pF pF
Chan. output capacitance	0T (UE	10	12	þi
(On)	- sandi	8	10	pF
POWER SUPPLY REQUIREM	MENTS	egak	eq 910	nlg-All
Power supply range	T	MOST	diagra	IN JA
+15V -15V	+14.5	+15	+15.5	Volts
+5V	-14.5 +4.75	-15 +5	-15.5 +5.25	Volts
Power supply current,	+4.73	30 0 b	+5.25	VOILS
quiescent	possors	in 02 at	erica arre	mrlane
+15V	becerqu	3.0	4.0	mA
-15V	-	10	12	mA
+5V	-	3	3.5	mA
Power sup. rejection ratio	-80	-90	83TO	dB
Power supply dissipation,				
quiescent +25 °C	flum 02	207	260	mW
0 to +70 °C	pannes	207	260	mW
-55 to +125 °C	reso_net	ISANIGO B	280	mW
Pd versus frequency	o wissing	see F	igure 3	OPTIO 8X
PHYSICAL/ENVIRONMENTA	Li stuari	13) s	9) anic	zabnusos
Operating temp. range	karn erit	olose to	เล อีกบอาจ	eded to
-MC	0	-	+70	°C
signals on pins 4, 5, MM-	-55	il tremu	+125	°C
Storage temp. range	-65	et estulia	+150	°C
Package type -MC/MM	W 28 9	4-nin her	metic DIP	ent dans
Pin type	apriotives	- piii liei	mone Dir	
-MC/MM	0.0	10 x 0.018	B inch Ko	var
Weight			ams) maxi	

① See Figures 2a and 2b.

Table 1. Channel Addressing

ON		MUX ADDRE	SS
CHANNEL	En	A1	A0
Disable	1	X	X
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1

Figure 3. Power Dissipation Versus Switching Frequency

DC 1 MHz 2 MHz 3 MHz 4 MHz 5 MHz 6 MHz 7 MHz 8 MHz 9 MHz 10 MHz

SWITCHING FREQUENCY 50% DUTY CYCLE

Figure 2b. Crosstalk Test Circuit

Current Limiting Resistors

As noted in Technical Note 3, some current limiting technique must be employed to protect the device. The following lists the suggested resistor values for the current limiting resistors shown in Figure 4.

Input Ranges	Limiting Resistors
±10V	R=500Ω
±5V	R=250Ω
< <u>+</u> 1V	No current limit needed

Other current limiting circuits can be used, such as a current limited op amp drive, depending upon the application.

Figure 4. Typical Connections

Channel Expansion

The MX-850's ENABLE input provides a means of channel expansion. As shown in Figure 5 and in Table 2, multiple multiplexers may be used by connecting the ENABLE inputs to a decoder.

Table 2. Eight-Channel Addressing

ON	MUX	(ADDI	RESS
CHANNEL	a 1 mra	2	3
3.13Y0 Y 100 A	L L	L L	SAULCHS L
2	L	L	H
3	L	Н	L
4	L	H	Н
5	Н	L	L
6	Н	L	Н
7	Н	H	L
8	Н	H	Н

ORDERING INFORMATION

MODEL NUMBER	OPERATING TEMP. RANGE	SEAL
MX-850MC	0 to +70 °C	Hermetic
VIX-850MM	-55 to +125 °C	Hermetic

Receptacle for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 14 required.

For availability of MIL-STD-883B versions of the MX-850, contact DATEL.

OPERATIONAL AMPLIFIERS

Model	DC Open Loop Gain (V/V)	Settling Time (µsec)	Slew Rate (V/µsec)	Gain Bandwidth (MHz)	Case	Page	
AM-500	10 ⁶	200 ns/0.01%	1000	100	14-Pin DIP	7-3	
AM-1435	10 ⁵	70 ns/0.01%	300	1000	14-Pin DIP	7-1	

INSTRUMENTATION AMPLIFIERS

Model	Gain Range	Settling Time	Case	Page
AM-551	1 to 1000	2 µs/0.01%	16-Pin DIP	7-5

RESISTOR TUNEABLE OSCILLATORS

Model	Frequency Range	Accuracy	Case	Page
ROJ-20	20 Hz to 20 KHz	0.5% @ 1 KHz	24-pin DIP	7-7
ROJ-1K	1KHz to 100 KHz	0.5% @ 10 KHz	24-pin DIP	7-7

			AM-500

INSTRUMENTATION AMPLIFIERS

Contact DATEL for your Data Acquisition component needs.

Dial **1-800-233-2765**

for Applications Assistance

MALON

Ultra-High Speed Wideband Operational Amplifier

FEATURES

- 70 Nanoseconds settling to 0.01%
- 1 GHz Gain bandwidth product
- · 100 dB Open loop gain
- · 80 dB Minimum CMRR
- -55°C to +125°C Operation

GENERAL DESCRIPTION

DATEL's AM-1435 is an ultrafast settling, wide-band operational amplifier. Utilizing precision thin-film hybrid construction and differential input operational amplifier design techniques, the AM-1435 achieves a settling time of only 70 nanoseconds for a 10 volt step to 0.01% accuracy. High speed performance is optimized with high open-loop gain, flat frequency response beyond 10 KHz and a roll-off of 6 dB/octave to beyond 100 MHz. Typically, gain bandwidth product is 1 GHz and slew rate is 300 V/microsecond.

AM-1435 dc characteristics include a dc open loop gain of 100 db, 1 M Ω input impedance, and an initial input offset voltage of only ± 2 mV. Input offset voltage drift is typically $\pm 5~\mu V/^{\circ} C$. Also featured is a minimum common mode rejection ratio of 80 dB and full power frequency of 8 MHz.

MECHANICAL DIMENSIONS INCHES (MM)

NOTE: PINS HAVE 0.025 ± 0.01 INCH STANDOFF FROM CASE

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
1	OPTIONAL CAP
2	OUTPUT
3	COMPENSATION CAP.
4	+ 15V SUPPLY (+ Vs)
5	OFFSET ADJUST
6	OFFSET ADJUST
7	- INPUT
8	+ INPUT
9	N.C.
10	N.C.
11	N.C.
12	- 15V SUPPLY (- Vs)
13	OUTPUT CURRENT SOURCE
14	COMMON

FUNCTIONAL SPECIFICATIONS

Typical at +25°C, ±15V dc supplies, unless otherwise noted.

INPUT CHARACTERISTICS	MINIMUM	TYPICAL	MAXIMUM
Differential between inputs			+ 4V
Common Mode Voltage Range	± 7V	± 8.5V	
Common Mode Rejection Ratio:	The state of the s		
dc	80 dB		
1 MHz	70 dB	-	
Input Impedance;			
common mode	1 MΩ 2 pF	_	_
differential mode	2.5 kΩ 2 pF		_
Input Offset Voltage ² Input Bias Current	- 13	± 2 mV	± 5 mV
Input Bias Current		10 μA	20 μΑ
Input Offset Current		0.3 μΑ	
OUTPUT CHARACTERISTICS			
Output Voltage ³	± 5V	± 7V	
Output Current ³	± 10 mA	± 14 mA	
Stable Capacitive Load4	DADE	1000 pF	brisc i s biw
PERMIT DESCRIPTION	(FEATURE)		bhaga an
PERFORMANCE		STATE OF STATE	relitions
dc Open Loop Gain ³	90 dB	100 dB	ng time of
Input Offset Voltage Drift		± 5 μV/°C	± 25 μV/°C
Input Bias Current Drift	_	50 nA/°C	100 nA/°C
Input Offset Current Drift	1 -	2 nA/°C	d a roll-off
Input Voltage Noise,			
0.01 Hz to 10 Hz	0.080.0	15 μV P-P	nisp - yils:
100 Hz to 10 kHz	-	1.6 μV RMS	AV COC ai
10 Hz to 1 MHz	_	5.2 μV RMS	_
Input Current Noise ⁵ ,		05-400	
0.01 Hz to 10 Hz		2.5 nA P-P	
100 Hz to 10 kHz	-	2.5 nA RMS 3.5 nA RMS	to ni sp qo
Power Supply Rejection Ratio		0.15 mV/V ΔV _s	teatho Jugn
ower supply rejection ratio		0.15 IIIV/V ΔVS	is typically
DYNAMIC CHARACTERISTICS			ebom non
Gain Bandwidth Product	700 MHz	1000 MHz	- 121 HW W 16
Unity Gain Bandwidth	I MIS	150 MHz	
Full Power Frequency6	8 MHz	10 MHz	
Settling Time, 10V to 0.025%7	_	60 nsec.	75 nsec.
10V to 0.01%	MT:STON—	70 nsec.8	-
5V to 1.0%		25 nsec.	_
5V to 0.1%		40 nsec.	60 nsec.
1V to 1.0%	-	10 nsec.	- · · ·
1V to 0.1%		20 nsec.	_
Slew Rate	250 V/μsec.6	300 V/μsec.	40/
Overshoot		- -	1%
Propagation Delay		5 nsec. 40 nsec.	
Overload Recovery Time		50 nsec.	100 50 516
overload necovery fillie		50 H5ec.	
POWER REQUIREMENTS 35/4/00			
	1011	. 15\/	± 16V
Rated Supply Voltage	± 12V	± 15V	
Rated Supply VoltageQuiescent Current ⁸	± 12V	± 15V	± 30 mA

TECHNICAL NOTES

- The extensive use of a ground plane for all common connections is recommended. Keep lead length to a minimum with point-to-point connections wired directly to the amplifier pins. Use 1 μF tantalum bypass capacitors the +Vs and -Vs pins.
- 2. When using the AM-1435MM over the +85 to +125°C temperature range, use an 18°C/W heat sink.
- 3. Apply negative supply voltage before the positive supply. Power-up prior to applying power to either input. If frequency response is not critical, use arrexternal input protection circuit.

COMPENSATION - The typical connection diagram shows the AM-1435 in a unity gain inverting configuration. Use in any conventional amp circuit, the AM-1435, as a noninverting amplifier, requires a noise gain of at least two (NOISE GAIN = 1 + R4/R1).

The 2 pF compensation capacitor at C₁ is required for stable operation when the noise gain is less than 10. Compensation for bias current is provided by R₂ and its value determined by the formula

$$R_2 = \frac{(R_1) \times (R_4)}{R_1 + R_4}$$

R₃ and C₄ are optional. Use C₄ when driving capacitive loads to prevent oscillation of the output stage.

When using the AM-1435 at low impedances, include the feedback resistor as a part of the total output load.

TYPICAL CONNECTION DIAGRAM

THE STATE OF THE S

Oper. Temp. Range

AM-1435MC

AM-1435MM9/MM-QL

Storage Temp. Range

Package

0 to +70 °C

-65 to +125 °C

14-pin hermetically sealed ceramic

FOOTNOTES:

- Specified for dc linear operation. Common mode voltage range prior to fault condition is ± 10V dc maximum.
 Adjustable to zero. 6. C₁ = 0.5 pF.
- R_L = 500Ω.
 C₁ = 3 pF.
 Referred to input.
- 6. $C_1 = 0.5 \text{ pF}.$ 7. $C_f = 1 \text{ pF}.$ 8. $\pm V_S = \pm 15 \text{V dc}.$ 9. With 18°C/watt heat sink.

ORDERING INFORMATION

Model No.	Operating Temp. Range
AM-1435MC	0 to +70 °C
AM-1435MM	-55 to +125 °C
AM-1435MM-QL	-55 to +125 °C

AM-500 Series

Ultra-Fast Operational Amplifier

FEATURES

- 200 Nanoseconds settling to 0.01%
- 1000V/Microsecond slew rate
- · 100 MHz Minimum gain-bandwidth
- 10⁶ Open loop gain
- · 1 Microvolt/°C drift
- ± 50 mA Output current

GENERAL DESCRIPTION

The AM-500 Series amplifiers are ultra-fast settling operational amplifiers for use in inverting applications. A unique feedforward amplifier design combines the characteristics of a low drift dc amplifier with those of a very fast AC amplifier. For optimum fast settling performance, this amplifier has an open loop gain roll-off of 6 dB per octave to beyond 100 MHz.

where G is closed loop gain and Rt is in kilohms.

Output settling time is 200 nanoseconds maximum to 0.01% for a 10 dc volt step change. Slew rate is 1000V/microsecond for positive output transitions and 1800V/microsecond for negative transitions. This high slew rate permits undistorted reproduction of a full load, 20V peak-to-peak sinewave out to 16 MHz. Gain bandwidth product is 100 MHz minimum.

AM-500 series dc characteristics include a dc open loop gain of 10^6 , 30 megohm input impedance, and 1 nanoampere bias current. Input offset voltage is ± 0.5 mV and input offset voltage drift is 1 microvolt/°C. Although these amplifiers do not operate differentially, a dc offset voltage in the range of ± 5 V dc can be applied to the positive input terminal.

Power supply requirement is $\pm 15V$ dc at 22 mA quiescent current. The amplifiers will operate over a supply range of $\pm 10V$ to $\pm 18V$ dc. Output current capability is ± 50 mA with output short circuit protection.

NOTE: PINS HAVE ±0.01 INCH STANDOFF FROM CASE

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION
291	NO CONNECTION
2	NO CONNECTION
3	NO CONNECTION
4	-INPUT
5	+INPUT
6	-SUPPLY
7	NO CONNECTION
8	COMMON
9	DO NOT CONNECT
10	OUTPUT
11	+SUPPLY
12	NO CONNECTION
13	NO CONNECTION
14	NO CONNECTION

FUNCTIONAL SPECIFICATIONS, AM-500 SERIES

Typical at 25°C, ±15V dc supply, unless otherwise noted.

INPUT CHARACTERISTICS

nput Common Mode Voltage
Range ¹ ± 5V
Maximum Input Voltage, no
damage + 18V
Differential Input Impedance 30 Meg. typical, 3 Meg. min.
nput Bias Current 1 nA typical, 4 nA max.
nput Offset Current 0.5 nA typ., 8 nA max.
nput Offset Voltage 0.5 mV typ., 3 mV max.

OUTPUT CHARACTERISTICS

Output Voltage Output Current, S.C. protected Stable Capacitive Load	. ±50 mA typ., ±25 mA min. . 100 pF	
Output Impedance	. 25Ω	

PERFORMANCE

Input Offset Voltage Drift,
0°C to +70°C 1 μV/°C typ., 5 μV/°C max.
-55° C to $+125^{\circ}$ C
Input Bias Current Drift,
-55°C to +70°C20 pA/°C
+70°C to +125°Cdoubles every 10°C
Input Voltage Noise,2
0.01 Hz to 1 Hz
100 Hz to 10 kHz 1 μV RMS typ., 5 μV max.
1 Hz to 10 MHz 20 μV RMS typ., 100 μV max.
Power Supply Rejection Ratio 80 dB min.

DYNAMIC CHARACTERISTICS

Gain Bandwidth Product	130 MHz typ., 100 MHz min.	Just
Slew Rate, positive going	1000V/µsec.	
Slew Rate, negative going Full Power Frequency	1800V/µsec.	
(20V peak-to-peak)	16 MHz	
10V step to 1%3	70 nsec.	
10V step to 0.1%3	100 nsec.	
10V step to 0.01%3	200 nsec. max.	
Overload Recovery Time	10 µsec.	

POWER REQUIREMENTS

Voltage, rated performance ± 15\	
Voltage, operating ± 10\	
Quiescent Current	A typ., 33 mA max.

PHYSICAL/ENVIRONMENTAL

Operating Temperature Range
AM-500GC0°C to +70°C
AM-500MC 0 °C to +70 °C
AM-500MM/MM-QL 55°C to + 125°C
Storage Temperature Range 55°C to +125°C
Package Type 14 pin ceramic
Pins
Weight 0.09 ounces (2.5 grams)

FOOTNOTES:

- 1. dc only
- 2. -3 dB Single-pole bandwidth
- 3. 1k Input and feedback resistors, 2.4 pF feedback capacitor

TECHNICAL NOTES

- 1. The circuit design shows the connection of the AM-500 series for fast settling operation with a closed loop gain of -1. It can be used for fast settling at closed loop gains up to -10. The equivalent resistance seen by the summing junction should be 500 ohms or less. For gains larger than -1 use an input resistor of 500 ohms and pick a feedback resistor for the required closed loop gain (1k for -2, 1.5k for -3, etc.).
- A small feedback capacitor should be used across the feedback resistor. Determine C in nanofarads from the following formula:

$$C = \frac{1 + |G|}{0.816Rf}$$

where G is closed loop gain and Rf is in kilohms.

- Summing point leads must be kept as short as possible. Input and feedback resistors should be soldered close to the body of the resistor directly to the summing point (pin 4). Summing point capacitance to ground must be kept very low.
- 4. Low output impedance power supplies should be used with 1 μ F tantalum bypassing capacitors at the amplifier supply terminals. There are internal 0.03 μ F ceramic capacitors in the amplifier.
- Although these amplifiers are inverting mode only, a dc voltage in the range of ±5V may be applied to the positive input terminal for offsetting the amplifier.
- For interrupted power applications, apply power to the AM-500 three (3) seconds before operating the device.

CONNECTION FOR FAST SETTLING WITH GAIN OF -1

ORDERING INFORMATION

MODEL NO.	OPERATING TEMP. RANGE	SEAL
AM-500GC	0 to +70 °C	Ероху
AM-500MC	0 to +70 °C	Herm.
AM-500MM	-55 to +125 °C	Herm.
AM-500MM-QL	-55 to +125 °C	Herm.

Low Cost, Programmable Gain Instrumentation Amplifier

FEATURES

- · 1 to 1000 Gain range
- ±0.01% Maximum nonlinearity
- · 2 Microseconds settling time
- . 100 dB CMRR nig tuotilo entrena nig foeles niso tugruo

GENERAL DESCRIPTION

DATEL's AM-551 is a low cost, high performance, programmable gain instrumentation amplifier manufactured with hybrid thin-film technology. Gain is adjustable over a range of 1 to 1000 by the addition of a single external resistor and a simple user-selectable pin-strapping option. Maximum gain nonlinearity is ±0.01%.

The AM-551 dynamic characteristics include a settling time of 2 microseconds for a 20V dc output step to 0.01% accuracy. Slew rate is 23V dc/microsecond and small signal bandwidth is 400 KHz. Other specifications include a common mode rejection ration of 100 dB, a $10^{12}\Omega$ input impedance and a minimum output voltage swing of $\pm 11V$ dc. Maximum offset voltage drift is ± 15 microvolts/°C.

The combination of high accuracy, speed, low cost, and rugged hybrid construction make the AM-551 and ideal choice for applications involving the remote amplification of low-level signals produced by thermocouples, strain gages and RTD's, high performance data acquisition systems and remote instrumentation systems.

Power requirement is $\pm 15 \mathrm{V}$ dc and all devices are cased in miniature, hermetically sealed, 16-pin ceramic packages. Models are available for operation over the commercial, 0°C to $+70^{\circ}\mathrm{C}$, and military, -55°C to $+125^{\circ}\mathrm{C}$ operating temperature ranges.

MECHANICAL DIMENSIONS INCHES (MM)

16-PIN CERAMIC DIP

	1) 16 15	ZE KO	+ Vs	- Vs (6)		
- INPUT (5)	1				20UTPUT GAIR	N SELECT
		· ~ ~ ·			11) ОИТРИТ	
R _G ④						
GUARD (13)		} _	-			
R _G ②	TAMEDEM ON	I SIGNO	•		10)	
		MODEL N			OUTPUT OFF	SET ADJUST
+ INPUT (3)	W+ pt 0	1			SIGNAL CON	IMON

NIC	FUNCTION
1	INPUT OFFSET ADJUST
2	RG (Gain Resistor)
3	+ INPUT
4	RG (Gain Resistor)
5	- INPUT
6	-V _S
7	SIGNAL COMMON
8	OUTPUT OFFSET ADJ. WIPER
9	OUTPUT OFFSET ADJUST
10	OUTPUT OFFSET ADJUST
11	OUTPUT
12	OUTPUT GAIN SELECT
13	GUARD
14	+Vs
15	INPUT OFFSET ADJUST
16	INPUT OFFSET ADJ. WIPER

ABSOLUTE MAXIMUM RATINGS

Positive Supply, Pin 14	+18V
Negative Supply, Pin 6	- 18V
Input Voltage Range	± 18V
Differential Input Voltage Range	± 30V
Output Short Circuit	Continuous
Power Dissipation	810 mW

FUNCTIONAL SPECIFICATIONS

Typical at +25 °C, ±15V dc supplies, unless otherwise noted.

INPUT CHARACTERISTICS	
Input Offset Voltage, unadjusted¹, max. Input Bias Current, max. Input Offset Current, max. Input Impedance, Diff. or Com. Mode Common Mode Voltage Range, min.	±1 mV x gain ±100 pA ±20 pA 10 ¹² Ω ±11V
OUTPUT CHARACHTERISTICS	
Output Voltage Range, min. (RL = 2kΩ Output Current, min. Output Impedance ³ Output Offset Voltage, unadjusted ¹ , max.	±11V ±5mA 0.5Ω ±1 mV x gain
PERFORMANCE	
Gain Range ⁴ Gain Equation ⁷ Gain Accuracy, max.	1 to 1000 V/V G = (1 + 20k/Rg)G2 ±0.04%
Gain Nonlinearity, max. Gain Tempco, max. ⁵ Offset Voltage Drift, max.	±0.01% 50 ppm/℃ 15 µV/ ℃
Input Bias Current Drift Input Voltage Noise, dc to 100 Hz Power Supply Rejection Ratio Common Mode Rejection Ratio ⁶ 1 KHz	Doubles for every 10 °C 20 nV/vHz 82 dB
100 Hz dc Siew Rate	98 dB 100 dB 23V/µS
Small Signal Response, (-3 dB) G = 1,10 G = 50 G = 100 G = 1000	600 KHz 200 KHz 100 KHz 40 KHz
Settling Time, 20V to 0.01% G = 1 G = 10	3.0 μS 4.0 μS
G = 50 G = 100 G = 1000	11 µS 20 µS 200 µS
POWER REQUIREMENTS	AND
Rated Power Supply Voltage Supply Current, max. Power Supply Range	±15V dc ±27 mA ±5V to ±18V
PHYSICAL/ENVIRONMENTAL	131,38 v
Operating Temperature Range MC MM Storage Temperature Range Package Type	0 to +70 °C -55 to +125 °C -65 to +150 °C 16 pin Ceramic DIP

Footnotes:

- Adjustable to zero.
- At 1 KHz, for all gain ranges.
- 4. To 0.01% accuracy. Higher gains degrade performance 5. Tempco of $R_G = \pm 0$ ppm/ °C. For $R_G = \infty$, Gain Tempco = 5 ppm/ °C
- 6. 1 kΩ Source Imbalance
- 7. G₂ is the gain of the second stage of the AM-551. Connecting output gain select (pin 12) to the output (pin 11) sets the second stage gain at 1. Connecting output gain select (pin 12) to signal common (pin 7) sets the second stage gain at 10. R_G is the gain resistor for the first stage and is connected to R_G (pins 2, 4).

TECHNICAL NOTES

- 1. A 25 kΩ trimpot may be used for both input and output offset adjusts. The trimpot is connected across the input offset adjust pins (Pins 1, 15) and the wiper is connected to Pin 16.
 - For output offset adjust, the trimpot is connected across the output offset adjust pins (Pins 10, 9) with the wiper connected
- 2. For unity gain, RG is left open and the output gain select pin (Pin 12) is tied to the output pin (Pin 11). To avoid oscillation in the unity gain configuration, the connection between the output gain select pin and the output pin should be kept as short as possible.
- 3. Gain selection is accomplished in two stages. The input stage gain (G1) is selected by an external gain resistor (RG) connected across the (R_G) pins, (Pins 2, 4) and is expressed as follows:

$$G_1 = 1 + \frac{20k}{R_G}$$

The output stage gain (G2) is selected by external pinstrapping: For G₂ = 1, connect the gain select pin (Pin 12) to the output pin (Pin 11). For $G_2 = 10$, connect the gain select pin (Pin 12) to the signal common pin (Pin 7).

The total gain of the amplifier is as follows:

$$G_t = G_1 \times G_2 = \left(1 + \frac{20k}{R_G}\right) G_2$$

4. Both power supplies should be bypassed to ground with 0.1 microfarad electrolytic capacitors.

TYPICAL CONNECTION DIAGRAM

ORDERING INFORMATION

MODEL NO.	OPERATING TEMP. RANGE	
AM-551MC AM-551MM	0 to +70 °C -55 to +125 °C	

ROJ-20, 1K **Resistor Tuneable**

FEATURES

- · Oscillation frequency is set by two external
- · Ultra low distortion: 0.0018% typical
- · Stable
- · Hybrid, small

GENERAL DESCRIPTION

ROJ-20 and ROJ-1K are resistor tuneable oscillators whose oscillation frequency is set with two external resistors. Output frequency range of ROJ-20 is 20Hz to 20KHz while that of ROJ-1K is 1KHz to 100KHz. Output distortion is as low as 0.0018% typical at 1KHz frequency range. Output voltage temperature coefficiency is also as low as 50ppm/°C. Output voltage amplitude is internally trimmed at 2.5Vrms ±0.5% and this amplitude is adjusted to the range from 500mV to 20Vp-p with external resistors. Sine and cosine waves are generated from two output terminals. A synchronization input terminal is provided in order to fine tune the relationship of these two outputs.

Hybrid construction has made it possible to build highly stable oscillators in small size at low cost.

MECHANICAL DIMENSIONS INCHES (mm) 1.36(34.5)-PIN SECTION $0.02 \times 0.01 (0.5 \times 0.25)$ 1.33(33.7)--0.72(18.2)-0.31 0.20(5.0) -0 60(15 2)--0.10(2.54) -0.74(18.7)-

PHASE DIFFERENCE BETWEEN SYNC INPUT AND OUTPUT (Technical Note 5) (Fig. 6)

fin: Sync Input Frequency fo: Frequency when no Sync In is given.

PIN CONNECTIONS

PIN	FUNCTION
1	SYNCHRONIZATION INPUT
3	GND
5	−15V POWER SUPPLY ✓
7 /	+15V POWER SUPPLY
11	OUTPUT 1
12	20Vp-p
14	20Vp-p
16	REXT
18	OUTPUT 2 (-90°)
19	REXT
20	GND
21	REXT

SPECIFICATIONS

Typical value at 25 °C with ±15VDC supplies unless otherwise specified.

	ROJ-20	ROJ-1K
OSCILLATED FREQUENCY	BARASATIONA	
Frequency Range (Note 1) Accuracy, Calculated Frequency Wave Shape	20Hz - 20KHz 0.5%@1KHz Sin, Cosin	1KHz - 100KHz 0.5% @10KHz * Same as left
OUTPUT CHARACTERISTICS		
Output Voltage/Current Voltage Level Accuracy (Note 2) " (20Vp-p, Note 3) Distortion Output Impedance Load Voltage Level Tracking Error Output Voltage TC Frequency TC	±10V/5mA 2.5Vrms ±0.5%max. 0.05% (<10KHz) 0.0018% typ (>70 Hz) 0.005% max. (70Hz - 10KHz) 50 ohm max. 2 Kohm min. 100pF max. 0.4% (Rext1=Rext2) 50ppm/*C	0.1% (<50KHz) *(2KHz - 50KHz) 0.01% max. (>50KHz) 25ppm/*C
POWER REQUIREMENTS & ENV	IRONMENT	Spenier II
Power Supply Voltage Power Supply Current Operating Temperature Range Storage Temperature Range Relative Humidity	±15V±10% +14mA, -21mA -20°C to +70°C -30°C to +80°C 10% to 95% Non Condensing	From Sounds

Note 1. Two external resistors are: ROJ-20 Rext = $\frac{15.9}{\text{fo (KHz)}}$ (Kohm)

ROJ-1K Rext = $\frac{159}{\text{fo (KHz)}}$ (Kohm)

Note 2. Pins 12 and 14 OPEN.

Note 3. Pins 12 and 14 CONNECTED.

OUTPUT LEVEL ADJUSTMENTS Figures 4 and 5

TYPICAL CONNECTIONS (Fig. 3)

TECHNICAL NOTES

- 1. Typical connections are shown in Figure 3. Do not connect unused pins to any points. The external synchronization pin (Pin 1) is left open normally.
- Output voltage level is 20Vp-p when the pins 12 and 14 are connected, 2.5Vrms when these pins are disconnected

Any output voltage level can be set using external resistors RV1 and RV2 as shown Figure 4-a and 5-a.

The curves 4-b and 5-b show approximate values. The use of potentiometers are recommended when an accurate level of output is desired.

 Output frequency can be slightly shifted toward lower frequency range if two Cext are added. See Figure 3.
 Relationship among Rext, Cext and fo

ROJ-20 Rext =
$$\frac{159}{(\text{Cext} + 0.01) \times \text{fo}}$$
 (Kohm)
Cext : μ F fo : Hz
ROJ-1K Rext = $\frac{159}{(\text{Cext} + 0.001) \times \text{fo}}$ (Kohm)

- Output frequency could become unstable if the capacitive load exceeds 100pF. The use of 50ohm resistor or an output buffer amplifier is recommended.
- Output frequency can be synchronized with the input from the pin 1. First, oscillate at nearly equal frequency to the one desired to be synchronized. Then, apply synchronization frequency to pin 1 at several Vrms level.

Phase difference between synchronization input and output frequency vs. the frequency ratio is shown in Figure 6.

ORDERING INFORMATION MODEL & DESCRIPTION

ROJ-20 20 Hz to 20 KHz output ROJ-1K 1 KHz to 100 KHz output

TUNABLE ACTIVE FILTERS

Model	Poles	Low	High Pass	Band Pass	Band Reject	Rolloff (dB/Oct)	Frequency Cutoff Range (FC)	Filter Type	Gain	Case	Page
FLT-DL41 *	4			7 7-1-		30	100 to 400KHz	CA	+1	32 DIP	8-25
FLT-DL42*	4					30	250 to 1000 KHz	CA	+1	32 DIP	8-2
FLT-DL51 *	5					50	120 to 470 KHz	CA	+1	32 DIP	8-25
FLT-DL52*	5					50	300 to 1200KHz	CA	+1	32 DIP	8-25
FLT-DL41/DL51§*	7		-	THE		50	100 to 400KHz	CA	+1	2-32 DIP	8-25
FLT-DL42/DL52§*	7					50	0.25 to 1.0MHz	CA	+1	2-32 DIP	8-2
FLT-C1	7					52	78 Hz-20 KHz	CH -	1, 2, 4, 8	32 DIP	8-2
FLJ-DC	2		+			12	1 Hz-159 KHz	BU,CH,BE	1 ~ 10	40 QDIP	8-5
FLJ-D1	2			+		12	1 Hz-1.599 KHz	BU	1 ~ 10	40 QDIP	8-5
FLJ-D2	2					12	100 Hz-159.9 KHz	BU	1 ~ 10	40 QDIP	8-5
FLJ-D5LA1	5					60	10 Hz-2 KHz	CA	0 ±0.3 dB max *	40 QDIP	8-9
FLJ-D5LA2	5					60	100 Hz-20 KHz	CA	0 ±0.3 dB max	40 QDIP	8-9
FLJ-D6LA1	6	+				80	10 Hz-2 KHz	CA	0 ±0.3 dB max	40 QDIP	8-9
FLJ-D6LA2	6					80	100 Hz-20 KHz	CA	0 ±0.3 dB max	40 QDIP	8-9
FLJ-VB	2				FASS 2	12	200Hz-20KHz	BU	±1dB	40 QDIP	8-12
FLJ-VH	4		+		ani	24	20Hz-20KHz	BU	±0.5dB	40 QDIP	8-17
FLJ-VL	4			tima	ana	24	100Hz-100KHz	BU	±0.5dB	40 QDIP	8-17
FLJ-R3BA1	3				1		10Hz-2KHz	CA	0 ±1dB max	40 QDIP	8-11
FLJ-R3BA2	3			+		- 2	100Hz-20KHz	CA	0 ±1dB max	40 QDIP	8-11
FLJ-R8LA1	8					135	10Hz-2KHz	CA	0 ±0.1dB max	40 QDIP	8-11
FLJ-R8LA2	8			11-0		135	100Hz-20KHz	CA	0 ±0.1dB max	40 QDIP	8-11
FLJ-R8LB1	8		12.15			100	10Hz-2KHz	CA	0 ±0.1dB max	40 QDIP	8-11
FLJ-R8LB2	8					100	100Hz-20KHz	CA	0 ±0.1dB max	40 QDIP	8-11
FLJ-UR1BA1	. 1				- 5	are.	40Hz-1.6KHz	BU	0 ±1dB	20 SIP	8-13
FLJ-UR2BA1	2				-	W 100	40Hz-1.6KHz	BU	0 ±1dB	20 SIP	8-13
FLJ-UR2EA1	2						40Hz-1.6KHz	BU	0 ±0.3dB	20 SIP	8-13
FLJ-UR2LH1	2			ELL		12	40Hz-1.6KHz	BU	0 ±0.3dB	20 SIP	8-13
FLJ-UR4HA1	4			- 6	OUB	24	40Hz-1.6KHz	BU	0 ±1dB	20 SIP	8-13
FLJ-UR4HB1	4					42	40Hz-1.6KHz	CH	0 ±1dB	20 SIP	8-13
FLJ-UR4LA1	4	+				24	40Hz-1.6KHz	BU	0 ±0.3dB	20 SIP	8-13
FLJ-UR4LB1	4				-7	42	40Hz-1.6KHz	CH	0 ±0.3dB	20 SIP	8-13
FLJ-UR1BA2	1					_	400Hz-10KHz	BU	0 ±1dB	20 SIP	8-13
FLJ-UR2BA2	2						400Hz-10KHz	BU	0 ±1dB	20 SIP	8-13
FLJ-UR2EA2	2					_	400Hz-10KHz	BU	0 ±0.3dB	20 SIP	8-13
FLJ-UR2LH2	2			1		12	400Hz-20KHz	BU	0 ±0.3dB	20 SIP	8-13
FLJ-UR4HA2	4					24	400Hz-5KHz	BU	0 ±1dB	20 SIP	8-13
FLJ-UR4HB2	4	V1 - 7				42	400Hz-5KHz	CH	0 ±1dB	20 SIP	8-13
FLJ-UR4LA2	4	•				24	400Hz-20KHz	BU	0 ±0.3dB	20 SIP	8-13
FLJ-UR4LB2	4					42	400Hz-20KHz	CH	0 ±0.3dB	20 SIP	8-13
FLT-U2	2		•		(Carry)	12	0.001Hz-200KHz	BU,CH,BE,CA	0.1-1000	16 DIP	8-29

BU = Butterworth BE = Bessel
CH = Chebyshev CA = Cauer/Elliptical

All Filters operate over the commercial temperature range -20°C to +70° Model FLT-U2 also operates at -55°C to +125°C § Cascaded Pair *Preliminary

FEATURES

- · Output 2.5Vms ±0.5% accuracy
- · 500mV ~ 20Vp-p wide amplitude range
- · Single inline small package

GENERAL DESCRIPTION

FLJ-ACO1 is an accessory used with the FLJ-D1, D2 and DC filters to build a digitally programmable oscillator. The oscillator is controlled with 3 digits of BCD logic input. The setting method, set frequency accuracy and TC depend on the filters which are to be used with this FLJ-ACO1, but the specifications related to output voltage such as output voltage accuracy, stability and amplitude TC are determined by the FLJ-ACO1. The output voltage is trimmed internally to provide 2.5Vrms ±0.5% output.

MECHANICAL DIMENSIONS AND ADDRESS (mm)

FLJ-D1 FOR LOWER FREQUENCY (Fig. 4)

FLJ-DC FOR LOWER FREQUENCY (Fig. 5)

Note: FLJ-D1 or FLJ-DC with 5000pF of Cext for lower than 10Hz oscillation, use one of these circuits.

OUTPUT VOLTAGE ADJUSTMENT (Fig. 6)

PIN CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
10	Rq	11	OUTPUT PROTECTION
2	LOOP OUTPUT	12	COMPENSATION 1
3	GND	13	SUB (-90°) OUTPUT
4	+15V Supply	14	COMPENSATION 3
5	-15V Supply	15	MAIN OUTPUT
6	NC	16	-Vref IN
7	NC	17	COMPENSATION 2
8	NC	18	OUTPUT RANGE 1
9	NC	19	OUTPUT RANGE 2
10	Cext	20	- Vref OUT

DO NOT CONNECT NC PINS
PIN 14 SHOULD BE LEFT OPEN NORMALLY.

SPECIFICATIONS

Typical at 25 °C, with ± 15 V power supplies unless otherwise specified.

ABSOLUTE RATINGS	HOSH
Power Supply Voltage (±Vs) Signal Input (Pin 13) Detector Input (Pin 15)	±18V ±Vs ±Vs
OUTPUT	MOTORE MR
Output Voltage Voltage Range ≦100kHz ≦ 50kHz Voltage Set Accuracy Amplitude TC Output Resistance Distortion Sub Output	2.5Vrms normal *1 500mVrms to 2.5Vrms 500mVrms to 20Vp-p ±0.5% max. 100 ppm/°C 5Ω max. 0.01%@10kHz -90°phase of Main
FREQUENCY	F NOLES
Frequency Range Frequency Set Error Setting Method	100Hz to 100kHz *2 ±0.1% BCD 3 digits
POWER SUPPLIES & ENVIRONMEN	Т
Supply Voltage	±15V ±10% +14mA, -24mA -20°C to 70°C -30°C to 80°C 10% to 95%/80% RH

- *1. 20V p-p with pin connections, other voltage output ranges are available with the use of external components.
- Expandable to wider range with the use of external components

TYPICAL CONNECTION (Fig. 3)

Note 1. Open SW1 and SW2 for 2.5VrmS output. Close SW1 and SW2 for 20Vp-p output.

2. Two Cext are required for FLJ-DC.

TECHNICAL NOTES

 Oscillation frequency range varies depending on the Digital Tuneable Filter to be used with FLJ-ACO1.

FLJ-D1 1 Hz ~ 1.599 KHz FLJ-D2 100 Hz ~ 159.9 KHz

FLJ-DC Determined by external capacitors Any model can be used connected as shown in Figure 3 to get the performance that meets the values shown in the specification table.

FLJ-DC needs two external capacitors. The relationship between capacitance and oscillation frequency fc is:

 $\label{eq:fc} \text{fc: } \frac{\text{N}}{\text{20-Cext}} \quad \text{fc: Hz, Cext: } \mu\text{F} \\ \text{N: Digital Number}$

For example, once Cext of 0.005 µF and N of 1000 are given, fc shall be 10 KHz. Therefore, with N of 1 to 1599, fc can be set at any frequency of 10 Hz to 15.99 KHz range with BCD logic inputs.

- 3. Expansion to higher frequency range: The maximum frequency is 50 KHz for 20V p-p output even if FLJ-D2 is used. Connect pin 11 of both FLJ-DC and FLJ-ACO1 together to expand the oscillation frequency range to higher levels. Up to 100 KHz of frequency range is obtained for 20V p-p amplitude even though distortion ratio is slightly derated as the protection circuit in FLJ-ACO1 works. Up to 159.9 KHz of oscillation shall be available for 2.5 Vrms output with the same connection.
- Distortion at lower frequency range shall be improved with the addition of a few external components.
 - With the FLJ-D1 connect as shown in Figure
 As little as 0.01% distortion can be attained at 4 Hz oscillation.
 - With the FLJ-DC, Cext = 5000 pF connect as shown in Figure 5. Distortion at 10 Hz shall be improved to 0.005%.
- Adjustment of output voltage: Normal 2.5 Vrms output voltage is obtained with SW1 of Figure 3 open and 20V p-p is obtained with SW1 closed. For other output voltage, follow Figure 6 and the following equation.

 $R= \ \frac{1111}{\text{Vo(rms)}} \ (\text{K}\Omega)$

The range of Vo is 0.5 Vrms to 20V p-p.

ORDERING INFORMATION

MODEL NO.

DESCRIPTION

FLJ-ACO1 Oscillator adapter for FLJ-D Series filters

FEATURES

- · Cutoff frequency of resistor tuneable filters can be set with BCD logic.
- · Single inline hybrid.
- · Small size, low cost

GENERAL DESCRIPTION

FLJ-ACR series are logic controlled resistor networks. They are designed to be used with resistor tuneable filters such as FLJ-UR series.

Four separate resistor networks are included in one package. One network consists of four resistors such as R, R/2, R/4 and R/8. The value of R in FLJ-ACR1 is 1.59M Ω while that of FLJ-ACR2 is $150k\Omega$.

A combination of an FLJ-ACR and an FLJ-UR makes it possible to make a filter whose cutoff frequency or center frequency is set with BCD logic. It is also possible to use this resistor network in the negative feedback loop of an amplifier circuit and control the gain with BCD logic.

MECHANICAL DIMENSIONS (Fig. 2) INCHES (mm)

FLJ-UR Series List

Model No.	fc Range	No. of Pole	Туре
FLJ-UR4LA1	200 DOE	4	LP, Butt.
FLJ-UR4LB1		4	LP, Cheb.
FLJ-UR4HA1		4	HP, Butt.
FLJ-UR4HB1	40Hz ~	4	HP, Cheb.
FLJ-UR2LH1	1.6KHz	2	LP/HP, Butt
FLJ-UR1BA1	and man seem of	1 pair	BP, Butt.
FLJ-UR2BA1		2 pair	BP, Butt.
FLJ-UR2EA1		2 pair	BE, Butt.
FLJ-UR4LA2	******	4	LP, Butt.
FLJ-UR4LB2	RISTICS Logi	4	LP, Cheb.
FLJ-UR4HA2	areas and see	4	HP, Butt.
FLJ-UR4HB2	400Hz ~	4	HP, Cheb.
FLJ-UR2LH2	20KHz	2	LP/HP, Butt
FLJ-UR1BA2	ZeoneR r	1 pair	BP, Butt.
FLJ-UR2BA2		2 pair	BP, Butt.
FLJ-UR2EA2	man-rapid.	2 pair	BE. Butt.

LP: Lowpass

BE: Band elimination HP: Highpass Butt.: Butterworth BP: Bandpass Cheb.: Chebychev

SPECIFICATIONS

Typical at 25°C, ±15VDC power supplies unless otherwise specified.

ABSOLUTE RATINGS

Power Supply Voltage	e (±Vs)	 	±18V
			±Vs
Control Logic Voltage		 	+5.5Vmax., -0.5V min.

FREQUENCY SET MODE

THE GOLINOT OLT MODE	
BCD 1 Digit	0 to 15
BCD 1 Digit +1	1 to 16

Table 1. Frequency Set Range (with FLJ-UR) Unit: Hz

1a. FLJ-ACR1 or ACR2 Single Use

FLJ-UR	Suffix	-1 (Low	Range)	-2 (High	Range)
Frequency	Set Mode	BCD	BCD+1	BCD	BCD+1
14	From	0*	10	0*	100
FLJ-ACR1	То	150	160	1.5k	1.6k
/v (180 m	Resolution	10	10	100	100
	From	0*	100	0*	1 k
FLJ-ACR2	То	1.5k	1.6k	15k	16k
	Resolution	100	100	1k	1k

1b. FLJ-ACR1 and ACR2 (Parallel Use) for Greater Frequency Resolution

FLJ-UR Suffix		nil seins1	-1 (Low Range)			-2 (High Range)		
Frequency	-ACR2	BCD	BCD	BCD+1	BCD	BCD	BCD+1	
Set Mode	-ACR1	BCD	BCD+1	BCD	BCD	BCD+1	BCD	
From		0*	10	100	0*	100	1k	
То	II a	1.59k	1.60k	1.69k	15.9k	16.0k	16.9k	
Resolution		10	10 Tel	10	100	100	100	

^{*} Output saturates at 11V dc with zero logic code input (0000); however, digital code correspons to value of fc directly.

PERFORMANCE

Frequency Set Er	ror	***************************************	±1% or less
CONTROL CHAP	RACTERISTICS Logic	c Code	BCD 1 digit (1, 2, 4, 8)
Logic and Level			0V: ON
			+5V or Open: OFF

POWER SUPPLIES AND ENVIRONMENT
Power Supply (Operating Range) ±15V (±5V to ±18V)
Current +6.2mA, -1.2mA
Operating Temperature Range 0 to 70°C
Storage Temperature Range
Operating Humidity Range
Storage Temperature Range

TECHNICAL NOTES

- 1. FLJ-ACR1 and FLJ-ARC2 contain four separate resistor networks which are controlled by common logic inputs. There are two types of FLJ-UR's (resistor tuneable filters) which are to be connected with FLJ-ACR's to build BCD Logic Programmable Filters. One type such as FLJ-UR2LH or FLJ-UR1BA requires two external resistors while all other FLJ-UR's require four external resistors to set a cutoff frequency. Therefore, one FLJ-ACR can control two FLJ-UR2LH's or FLJ-UR1BA's. See Figure 3.
- 2. BCD + 1 connections are made by connecting pins 6 to 8, 11 to 10, 13 to 15, and 18 to 17 on the units required per Table 1a. or 1b.

TYPICAL CONNECTION (Fig. 3)

ORDERING INFORMATION

MODEL RESISTANCE

FLJ-ACR1 FLJ-ACR2 $1.59~\mathrm{M}\Omega$ 159 KΩ

for FLJ-UR Filter Series

FLJ-D1, D2, DC Digital-Programmable Filter

FEATURES

- · Cutoff frequency is set by logic inputs
- Lowpass, Highpass and Bandpass output functions are available simultaneously
- · Gain and Q are set by external components
- · High accuracy, high stable

GENERAL DESCRIPTION

FLJ-D1, D2, and DC are digitally programmable filters which can set the cutoff frequency and center frequency with 3 digit BCD inputs.

Two-pole lowpass, bandpass, and highpass output functions are available simultaneously from three different outputs and notch function is available by combining these outputs to the uncommitted op amp.

To realize higher order filters, several filters can be cascaded. And to obtain higher performance of higher order filters, both Gain and Q are designed to be set with external components.

MECHANICAL DIMENSIONS INCHES(mm)

ZENER OUTPUT (Fig. 3)

800 400 200 100 80 40 20 10 8 4 2 1 fc Set Logic Input

*C_{INT} FLJ-D1 50,000pF FLJ-D2 500pF

FLJ-DC None. Need Cext.

PIN CONNECTIONS (Table 1)

FUNCTION	PI	IN	FUNCTION
INPUT (BP)	1	40	+Vs (+15V)
ANALOG GND.	2	39.	5V ZENER OUTPUT
INPUT (HP, LP)	3	38	Vc(+5V)
ANALOG GND	4	37	DIGITAL GND
OUTPUT (HP)	5	36	ANALOG GND
ANALOG GND	6	35	NC
AMP. (+) INPUT	7	34	-Vs(-15V)
AMP. (-) INPUT	8	33	NC
AMP: OUTPUT	9	32	LOGIC 800
ANALOG GND	10	31	LOGIC 400
Cext 1.	11	30	LOGIC 200
NC	12	29	LOGIC 100
OUTPUT (BP)	13	28	LOGIC 80
ZERO ADJ. (HP, LP)	14	27	LOGIC 40
NEG. FEEDBACK IN	15	26	LOGIC 20
ANALOG GND	16	25	LOGIC 10
Cext 2.	17	24	LOGIC 8
NC	18	23	LOGIC 4
OUTPUT (LP)	19	22	LOGIC 2
ZERO ADJ. (BP)	20	21	LOGIC 1

DO NOT CONNECT NC PINS TO OTHERS.

SPECIFICATIONS (Table 2)

Typical at 25 °C, \pm 15V and +5V supplies, gain of -1, Q = $\sqrt{2}/2$ unless otherwise specified.

ABSOLUTE RATINGS

Power Supplies . . . ±Vs : ±20V, Vc : +5.5V Control Logic Input Vc+0.5V Analog Input ±Vs

FILTER CHARACTERISTICS

Frequency Program Range: FLJ-D1 . . . 1Hz ~ 1.599KHz FLJ-D2 . . . 100Hz ~ 159.9KHz FLJ-DC... 0.1 Hz to 159.9 KHz Frequency Program BCD 3 digits, MSD is hexa-decimal (0~15) Frequency Program Accuracy ±0.1% $1/3 \le Q \le 1 \times 10^6 / fc$ Rolloff 12dB/oct (LP, HP), 6dB/oct (BP) 2pole (1 pole pair) Voltage Gain 1~10

Pass Band Gain Variance Depends on external resistors
Resonant Frequency T.C. 0.01%/*C
Gain T.C. 0.2dB Full Temperature Range

 Gain T.C.
 0.203 Fine Temperature name

 Distortion
 0.002%

 Noise
 35μVrms (LP), 100μVrms (HP), 30μVrms (BP)

 Load Resistance
 2KΩ

AMPLIFIER CHARACTERISTICS

Input Voltage Range	±10V min.
Input Impedance	300ΚΩ
Input Offset Voltage	0.5mV
Input Bias Current	200nA
Input Offset Drift	5μV/°C
Output Voltage/Current	±10V/5mA min.
Output Impedance	5Ω max.
Output Short Circuit Current	38mA
Small Signal Frequency Bandwidth	10MHz
Slew Rate	8V/uSec

POWER SUPPLIES AND ENVIRONMENT

POWER SUPPLIES AND ENVIRO	ONWENT	
Supply Voltages		
Operating Temperature Range Operating Humidity Range	-20°C ~ +70°C	
Storage Temperature Range Storage Humidity Range		

TECHNICAL NOTES

- The cutoff frequency of lowpass and highpass, and the center frequency of bandpass filters can be set with three digit BCD, TTL compatible logic inputs. The MSD is hexadecimal. See Table 2.
- 2. The cutoff frequency is shown as either one equation of the following:

fc =
$$\frac{N}{20 \cdot C}$$
 Hz, C: μ F, N: Digital Number

$$fc = \frac{N}{2\pi \cdot C \cdot Rf} Hz, C : F, Rf : \Omega, N : Digital$$
Number

C=50,000pF is contained in FLJ-D1 and C=500pF is contained in FLJ-D2 respectively, while no capacitor is contained in FLJ-DC.

The fc's of each model are:

FLJ-D1: fc = N or fc =
$$\frac{N}{2\pi \cdot 5 \times 10^{-8} \cdot Rf}$$

FLJ-D2: fc=100N or fc =
$$\frac{N}{2\pi \cdot 5 \times 10^{-10} \cdot Rf}$$

FLJ-DC : fc=
$$\frac{N}{20 \cdot C}$$
 or fc = $\frac{N}{2\pi \cdot Cext \cdot Rf}$

The value of Rf is 3.183 M Ω . The value of Cext is calculated taking

- these factors into consideration. 3. Each logic input is connected to CMOS4000 series internally. Then each input is pulled down with $100 \mathrm{K}\Omega$ resistors. The use of $10 \mathrm{K}\Omega$ pull-up resistors to $+5\mathrm{V}$ is recommended when filters are programmed with TTL logic.
- 4. An independent +5V zener diode is contained in the filter. The output voltage range of this diode is +4.87V ~ +5.12V. The connection shown in Figure 3 is recommended if a filter is driven by ±15V supplies only.
- Analog GND (Pin36) and logic GND (Pin37) are separated. Connect grounds of ±15V and +5V externally. No return current of the digital power supply should flow through the analog ground.
- The use of 4.7μF and 0.1μF bypass capacitors for both ±15V and +5V lines close to the module is highly recommended

LOGIC INPUT CODING TABLE (Table 2)

Logic Input *1	Decimal	fc(Cutoff Freque	ncy)
(MSD) (LSD	Number	FLJ-D1	FLJ-D2	FLJ-DC*2
0000 0000 0001	1	1Hz	100 Hz	0.1Hz
0000 0000 0010	2	2	200	0.2
0000 0000 0100	4	4	400	0.4
0000 0000 1000	8	8	800	0.8
0000 0001 0000	10	10	1KHz	1
0000 0010 0000	20	20	2	2
0000 0100 0000	40	40	4	4
0000 1000 0000	80	80	8	8
0001 0000 0000	100	100	10	10
0010 0000 0000	200	200	20	20
0100 0000 0000	400	400	40	40
1000 0000 0000	800	800	80	80
1001 0000 0001	900	900	90	90
1010 0000 0000	1000	1000	100	100
1100 0000 0000	1200	1200	120	120
1110 0000 0000	1400	1400	140	140
1111 0000 0000	1500	1500	150	150
1111 1001 100:	1599	1599Hz	159.9KHz	159.9Hz

Note: *1. Logic 1 = +5V Logic 0 = GND or OPEN

*2.IFLJ-DC needs external capacitors. These values are ones when two 0.5µF are used as external capacitors.

GAIN AND Q

The gain and Q of these filters are set with the following equations.

1. Lowpass and highpass filters

Gain:
$$G = \frac{-1}{Rg} \times 10^4 \text{ (Rg : }\Omega\text{)}$$

Q:
$$Q = \frac{Rg \cdot (Rq + 10^4)}{Rq \cdot (2Rg + 10^4)}$$

$$Rg = 10K\Omega$$
 when $G = -1$. Then, $Rq = \frac{10^4}{3\Omega - 1}$

Then, the following values are obtained:

	Q	Rq	
Butterworth	0.70711	8.918ΚΩ	
Bessel	0.57735	13.66KO	

See Figures 4 and 5 for "Amplitude/Phase vs. Frequency" characteristics, and Figure 7 for typical connections.

2. Bandpass filter

Gain:
$$G = \frac{-1}{Rg} \times 10^4 \text{ (Rg : }\Omega\text{)}$$

Q:
$$Q = \frac{1 + (1/Rg + 1/Rq) \cdot 10^4}{2}$$

$$Rg=10K\Omega$$
 when $G=$ -1. Then, $Rq=\frac{10^4}{2(Q\text{-}1)}$

Then, the following values are obtained:

See Figure 6 for amplitude vs. frequency characteristics and Figure 8 for typical connections.

BUTTERWORTH HIGHPASS (Fig. 4)

BUTTERWORTH LOWPASS (Fig. 5)

BANDPASS (Fig. 6)

BANDPASS FILTER CONNECTIONS (Fig.8)

FLJ-D5, D6 Digital-Programmable, High-Order Lowpass Filter

FEATURES

- 60dB, 80dB/octave rolloff lowpass filter
- Cutoff frequency programmed by logic at 8 points
- Compact, lightweight, hybrid IC construction

GENERAL DESCRIPTION

FLJ-D5, and D6 series are lowpass filters that, although compact, have higher order and high attenuation performance. They are Chebyshev type filters. The FLJ-D5LA is a 5-pole filter which has a rolloff of 60 dB/oct and the FLJ-D6LA is a 6-pole filter with a rolloff of 80 dB/oct. The cutoff frequency is programmed with 3-bit, TTL-compatible digital logic and the settings can be changed to 8 different levels. Cutoff frequency range of the lower range type (which has suffix 1) is 10Hz-2kHz, and the higher range type (with suffix 2) is 100Hz-20KHz.

Ripple within the pass band is minimal at 0.13dBp-p and the distortion rate is held extremely low at 0.05%. These filters are optimal as anti-aliasing filters in A/D conversion circuits of data acquisition systems

FLJ-D6LA1, 2 (Fig. 5)

(gp) ppmid 0.2 40
0.2 50
0.2 60
0.2 77

Cf in the diagram is 10000pF for the Suffix 1 model and 1000pF for the Suffix 2 model.

Cf in the diagram is 10000pF for the Suffix 1 model and 1000pF for the Suffix 2 model.

SPECIFICATIONS (Table 1)

Typical at 25°C and ±15V supply voltage unless otherwise specified.

ABSOLUTE RATINGS

Supply voltage (±Vs)	16V
Input voltage	±Vs
Logic input voltage +	5.5V

FILTER CHARACTERISTICS, CUTOFF FREQUENCY

Low Range (10, 20, 50, 100, 200, 500, 1K, 2KHz, 8 points programmable, at -3dB)
FLJ-D5LA1 5-pole Chebyshev
FLJ-D6LA1 6-pole Chebyshev
High Range (100, 200, 500, 1K, 2K, 5K, 10K, 20KHz, 8 points programmable, at 0dB)
FLJ-D5LA2 5-pole Chebyshev

..... 6-pole Chebyshev FLJ-D6LA2 ... Setting of Cutoff Frequency ... 3-bit binary, TTL-compatible

177		Control			
Model 1	Model 2	TNH	4	2	1
10Hz	100Hz	0	0	0	0
20	200	0	0	0	1
50	500	0	0	1	0
100	1KHz	0	0	1	1
200	2K	0	1	0	0
500	5K	0	1	0	1
1K	10K	0	1	-1	0
2K	20K	0	1	214.	1

"1": OV

"0": +5V or OPEN

Accuracy of setting of cutoff frequency ±3%max.

PASS BAND CHARACTERISTICS

Gain	0dB±0.3dBmax. (0.05fc)
Ripple	0.13dBp-p (central designed value)
Distortion rate	0.05%

ROLLOFF CHARACTERISTICS

	FLJ-D5LA1,2	FLJ-D6LA1,2
Rolloff	60dB (1.82fc) 60dB	80dB/oct 74dB (1.9fc) 74dB 60dBmin.

INPUT CHARACTERISTICS

Input impedance	50KΩmin.		
Maximum input voltage	+10Vmin		

OUTPUT CHARACTERISTICS

Output impedance	
Maximum output voltage	±10Vmin.
Noise (input shorted) Offset voltage	140µVrms max. (BW10Hz-500KHz) 10mV adjustable

POWER SUPPLY AND ENVIRONMENTAL CONDITIONS

Supply voltage	±15V ±1Vmax. ±28mA (FLJ-D5), ±33mA (FLJ-D6)
	-20°C to +70°C, 10%-95%RH
Storage temperature/ Humidity range	-30°C to +80°C, 10%-80%RH

LOGIC INPUT PINS (Fig. 6)

CASCADE WIRING DIAGRAM (Fig. 7)

TECHNICAL NOTES

- 1. A switching-type power supply is not recommended. Install 0.01 μF multilayer ceramic and 4.7 μF tantalum bypass capacitors in parallel as close to the filter as possible.
- 2. Each logic input (Pins 21-24) which programs the cutoff frequency has an internal analog comparator as shown in Fig. 6. External logic signals are TTL-compatible.
- 3. The fc setting input logic is negative true. Terminal open or +5V represents logic "0", while GND level is logic "1". The INH terminal is used normally open. Once INH is given logic "1", all 4, 2 and 1 logic inputs are inhibited and all internal resistor network switches are opened. The fc setting with external resistors becomes available with logic "1" at this INH terminal. The relationship between fc and the external resistors in this case is as follows:

FLJ-D5LA1 (Low Range Type)	FLJ-D6LA1 (Low Range Type)		
Rext1 = $\frac{31.423 \times 10^3}{\text{fc (Hz)}}$ (K Ω)	Rext1 = Rext2 = $\frac{29.622 \times 10^3}{\text{fc (Hz)}}$ (K Ω		
Rext2 = Rext3 = $\frac{21.399 \times 10^3}{\text{fc (Hz)}}$ (K Ω)	Rext3 = Rext4 = $\frac{18.633 \times 10^{3}}{\text{fc (Hz)}}$ (K Ω		
Rext4 = Rext5 = $\frac{16.358 \times 10^3}{\text{fc (Hz)}}$ (KQ)	Rext5 = Rext6 = $\frac{15.215 \times 10^{3}}{\text{fc (Hz)}}$ (K Ω		
FLJ-D5LA2 (High Range Type)	FLJ-D6LA2 (High Range Type)		
$Rext1 = \frac{314.23 \times 10^3}{fc (Hz)} (K\Omega)$	Rext1 = Rext2 = $\frac{296.22 \times 10^3}{\text{fc (Hz)}}$ (K Ω		
Rext2 = Rext3 = $\frac{213.99 \times 10^3}{\text{fc (Hz)}}$ (K Ω)	Rext3 = Rext4 = $\frac{186.33 \times 10^3}{\text{fc (Hz)}}$ (KΩ		
Rext4 = Rext5 = $\frac{163.58 \times 10^3}{\text{fc (Hz)}} (\text{K}\Omega)$	Rext5 = Rext6 = $\frac{152.15 \times 10^3}{\text{fc (Hz)}}$ (K Ω		

- 4. An 11-pole ultra-high attenuation filter is available once cascaded as shown in Fig. 7. As can be seen from the curves (Figs. 4,5), the amplitude of the ripple in the pass band is reversed between FLJ-D5LA and FLJ-D6LA. As a result, when connected in a cascade, the pass band ripple amplitude is greatly reduced, and moreover, the rolloff becomes steeper.
- For filters that have been constructed like those in this series, it is not recommended to change the fc setting range with external capacitors. This is because trimming of the internal constants is performed with pairs of internal resistors and capacitors. Although shifting to a lower fc setting range is possible through the addition of external capacitors, in this case a change will result in ripple amplitude.

ORDERING INFORMATION

Low Cutoff Frequency Type (10Hz-2KHz) FLJ-D5LA1: 60dB/oct., 5-pole

FLJ-D6LA1: 80dB/oct., 6-pole High Cutoff Frequency Type

(100Hz-20KHz) FLJ-D5LA2 60dB/oct., 5-pole

FLJ-D6LA2: 80dB/oct., 6-pole

FLJ-R Series Higher Order, Resistor-Tuneable Filter

FEATURES I sules of laupe one doinly

- · 135dB, 100dB/octave high order, lowpass filter
- 1/3 octave bandwidth (Q=4.32) bandpass filter
- Can set cutoff (fc) frequency with 6 or 8 external resistors
- Ultra-compact size, high-function hybrid construction

GENERAL DESCRIPTION

The FLJ-R series filters are of the highest order and have the highest attenuation characteristics among the entire group of DATEL filter products. Through the use of hybrid techniques, even though compact in size, the FLJ-R series filters have complete 8-pole lowpass and 3-pole pair bandpass filter functions. The cutoff (central) frequency can be set with only 6 or 8 external resistors.

Bandpass ripple in the lowpass filter is 0.1dB and boasts outstanding performance with the distortion ratios for all models being a mere 0.005%. Each model is composed of the Suffix 1 and Suffix 2 types and varies according to cutoff frequency setting range. The Suffix 1 model has a range from 10Hz-2KHz and the Suffix 2 model has a range from 10Hz-2KHz and the Suffix 2 model has a range from 100Hz-2DKHz. The FLJ-R series filters are optimum as antialiasing filters in A/D conversion circuits of data acquisition systems.

The FLJ-R3BA1, 2 are 1/3 octave, bandpass filters that meet IEC-225 Standard requirements.

MECHANICAL DIMENSIONS

FLJ-R8LA, B Block Diagram with External Connections (Fig. 1)

FLJ-R3BA Block Diagram with External Connections (Fig. 2)

SPECIFICATIONS

Typical at 25°C and ±15V supply voltage unless otherwise specified.

ABSOLUTE RATINGS

Supply voltage	e (±Vs)	 	 	±18V
Input voltage		 	 	±Vs

Suffix 1: 10Hz-2KHz

Suffix 2: 100Hz-20KHz 8 equivalent lowpass or

6 equivalent bandpass external resistors

fc setting accuracy ±2%max.

FILTER CHARACTERISTICS

fc setting range

PASS BAND CHARACTERIST	ICS	7 EBS 1	
(64.631) Pin Cross Section	FLJ-R8LA,B	FLJ-R3BA	
Gain	0dB±0.1dBmax.	0dB±1dBmax. 0dB±	
Gain after Rf adjustment	0.15dB	00B± —	
Ripple ≤0.9fc		-	
Ripple after Rf adjust			
Distortion ratio	407724	*Same as left	bindyrl f
DOLL OFF OUADAOTEDICTIC	0		

ROLLOFF CHARACTERISTICS

	FLJ-R8LA	FLJ-R8LB	FLJ-R3BA
Attenuation rolloff	135dB/oct	100dB/oct	_
Q	86dB@1.56fc 86dB 80dBmin.	92dB@2.0fc 106dB 86dBmin.	4.32(BW1/3oct) 18dB/octBW 80dBmin.

INPUT CHARACTERISTICS

Input impedance	50KΩmin.
Maximum input voltage	±10Vmin.

OUTPUT CHARACTERISTICS

Output impedance	100Ωmax.
Maximum output voltage	±10Vmin.
Noise (input shorted)	140µVrms max. (BW10-500KHz)
Offset voltage	+10mV zero adjustable

POWER SUPPLY AND ENVIRONMENTAL CONDITIONS

Supply voltage (operating range) Power consumption current	±15V (±5V-±18V) 40mA (FLJ-R8), 25mA (FLJ-R3)
Operating temperature/ Humidity range	-20°C to +70°C, 10%-95%RH
Humidity range	-30°C to +80°C, 10%-80%RH

TECHNICAL NOTES

 Setting the cutoff (central) frequency is accomplished with 8 external resistors which are equal in value for lowpass filters and 6 external resistors which are equal in value for bandpass filters. The relationship between the resistance Rf of the external resistors and the cutoff frequency fc is as follows:

Suffix 1 model (10Hz-2KHz)	Suffix 2 model (100Hz-20KHz)
$Rf = \frac{15.9 \times 10^3}{fc} (K\Omega)$	$Rf = \frac{159 \times 10^3}{fc} (K\Omega)$

where fc is measured in Hz.

The FC setting range can be shifted to a lower band by adding external capacitors Cext. The equation shown below should be used for reference.

Suffix 1 model	Suffix 2 model
Court 159 (KO)	Coxt - 159 (KO)
$Cext = \frac{100}{(Cext + 0.01) \times fc} (K\Omega)$	$Cext = \frac{139}{(Cext + 0.001) \times fc} (K\Omega)$
where Cext is measured in u.F.	and fc in Hz

In this case, the external capacitors should have high dielectric characteristics. It is recommended to use multilayer ceramic capacitors. Further, tolerance of these capacitors should be within ±0.25%. For filters such as these of higher order and with high attenuation characteristics, the uniformity of the tolerance of external resistors and capacitors has an effect not only on the accuracy of the setting range, but also on the size of pass band ripple.

- Use series type power supplies for the ±15V power supplies because switching-type power supplies are not recommended. Install 4.7μF tantalum and 0.01μF multilayer ceramic bypass capacitors. It is recommended that these be installed in parallel, and as close to the filter as possible, between the ±15V power supplies and ground.
- Use metal film resistors with a tolerance better than 1% for the 6 or 8 fc setting resistors.

ORDERING INFORMATION

Low Cutoff Frequence	cy Type (10Hz-2KHz)
FLJ-R8LA1:	135dB/oct., 8-pole
FLJ-R8LB1:	100dB/oct., 8-pole
FLJ-R3BA1:	3-pole pair bandpass

High Cutoff Frequency Type (100Hz-20KHz)
FLJ-R8LA2: 135dB/oct., 8-pole
FLJ-R8LB2: 100dB/oct., 8-pole
FLJ-R3BA2: 3-pole pair bandpass

FLJ-UR Series Single In-line Hybrid Resistor Tuneable Filter

FEATURES

- · Small and thin size
- · A variety of families
- Cutoff frequency fc is set by only two or four resistors
- · Light weight, low cost

GENERAL DESCRIPTION

The FLJ-UR series filters are single in-line package resistor tuneable filters. They are small in size and can reduce installation space on the printed circuit board. The cutoff frequency can be easily set by only two or four external resistors. The series has a variety of products, allowing system designers flexibility in selecting filters to suit their application.

MECHANICAL DIMENSIONS (Fig. 2)

INCHES (mm)

Pin cross section: 0.02×0.01 (0.5×0.25)

SPECIFICATIONS

Typical at R=31.8 kΩ, 25°C and ±15V supply voltage unless otherwise specified.

COMMON SPECIFICATIONS TO ALL MODELS

ABSOLUTE RATINGS

Supply voltage (±Vs) ±18V Input voltage.....±Vs

FREQUENCY CHARACTERISTICS

fc accuracy.....±3% max. (with 0 dB gain at the frequency given in Note *2)

INPUT CHARACTERISTICS

Input Impedance......50 k Ω min. Maximum Input Voltage ±10V

OUTPUT CHARACTERISTICS

Output Impedance100 Ω max. Maximum Output Voltage ... ±10V min. Load Resistance......10 k Ω min. Noise (10~500 kHz)......140 μ V max. Offset Voltage±30 mV max. zero adjustable

POWER SUPPLY AND ENVIRONMENTS

Supply Voltage ±15V Supply Voltage,

Operating Range±5V~±18V Operating Temerature/

Humidity Range-20°C~70°C, 10~95%RH

Storage Temperature/

Humidity Range-30°C~80°C, 10~80%RH

SPECIFICATIONS 1 (4 POLE MODELS)

No. of po	les/characteristics	4-pole lowpass	4-pole lowpass	4-pole highpass	4-pole highpass
Туре		Butterworth	Chebyshev	Butterworth	Chebyshev
Model	161	FLJ-UR4LA	FLJ-UR4LB	FLJ-UR4HA	FLJ-UR4HB
fc (-3 dB) cha	aracteristics	4	motsus as	alwallo, struitsono la utali	rev e and solvan or T
Range ^{*1}	Suffix 1 model	40 Hz~1.6 kHz	*Same as left	*Same as left	*Same as left
Hange	Suffix 2 model	400 Hz~20 kHz	. Zongdo	400 Hz~5 kHz	DE 131 SIMENYOR BEDIEF
Setting		by 4 external resistors	•		•
Pass band cha	aracteristics	(E-1) 68.9			
Gain ^{*2}		0 dB±0.3 dB		0 dB±1 dB	
Ripple	\$60.00 (0.5×0.25)	0.0 matters of the order 10.0	0.28 dBp-p		0.28 dBp-p
Upper-limit frequency (small signal)			_	50 kHz±1 dB max. 3	
Rolloff charac	teristics				
Rolloff		24 dB/oct	42 dB/oct or equivalent	24 dB/oct	42 dB/oct or equivalent
Attenuation vo	olume (1/2 fc or 2 fc)	24 dB	55 dB	24 dB	55 dB
Minimum atter	nuation		46 dB	-	46 dB
Attenuation at	t 1 MHz	70 dB min.		_	
Output charac	cteristics	ELECTRICAL PROPERTY.			
Offset drift		30 μV/°C		15 μV/°C	
Distortion rate	e ²	0.01%		0.1%	
Slew rate		<u>-</u>	-	2V/μsec	
Quiescent cur	rrent/package				
Quiescent cur	rrent (@±15V)	±12 mA	±16 mA	±8 mA	±16 mA
Package		20 pins SIP (A)		MAN-6	

SPECIFICATIONS 2 (2 POLE AND 1 POLE PAIR MODELS)

No. of poles	s/characteristics	2-pole high lowpass	1-pole pair bandpass	2-pole pair bandpass	2-pole pair band elimination
Туре		Butterworth	Butterworth	Butterworth	Butterworth
Model		FLJ-UR2LH	FLJ-UR1BA	FLJ-UR2BA	FLJ-UR2EA
fc (-3 dB) chara	acteristics		100	1 1 2	-C 17
Range*1	Suffix 1 model	40 Hz~1.6 kHz	*Same as left	*Same as left	*Same as left
Hange '	Suffix 2 model	400 Hz~20 kHz	400 Hz~10 kHz	reference memorally [1]	
Setting		by 2 external resistors		by 4 external resistors	1.4
Pass band chara	acteristics	A ANA AAA	Y Table	111 0 2 111	The state of the s
Gain ²		0 dB±0.3 dB	0 dB±1 dB		0 dB±0.3 dB
Upper-limit frequ	uency (small signal) ³	100 kHz±1 dB HPF		The state of the s	50 kHz±1 dB max.
Rolloff characte	ristics	S -MAN-6			265-4-1
Rolloff		12 dB/oct		Secretary Sec.	3 3 - 1
Q		1 - 9	5 *4	5	5
Attenuation volu	ume (1/2 fc or 2 fc)	12 dB	17.5 dB	35 dB	V - 1
Attenuation at 1	MHz	-70 dB min. LPF			
Maximum attenu	uation (f ₀)				60 dB
Output characte	eristics				100
Offset drift	70	15 μV/°C			30 μV/°C
Distortion rate ²		0.1%	0.01%	-(0t)-(t)-(t)-(t)-(t)-(t)-(t)-(t)-(t)-(t)-(-(1)-(2)-(3)-(4)-(5)-
Slew rate		2V/μsec HPF	Coll T -	rel I so = I	2V/μsec
Quiescent curre	nt/package	12	1.02	12 112	- You A. H.
Quiescent curre	ent (@±15V)	±8 mA	result.	±12 mA	±20 mA
Package		20 pins SIP (A)	•		20 pins SIP (B)

^{11:} Addition of 2 or 4 external capacitors allow extension to lower band.
12: FLJ-UR4LA, 4LB: fc/10, FLJ-UR4HA; 3.3 fc, FLJ-UR4HB; 10 fc (fc≦3 kHz), 3.3 fc (fc>3 kHz)
FLJ-UR2LH: fc/10 (LPF), 10 fc (HPF)

^{&#}x27;3: Gain of 0 dB at above stated frequencies. (See '2)
'4: Connection of a specified pin to GND allow 10, 20, 30, 40 and 50. External resistors allow a range of 1.81≦Q≦50.

TECHNICAL NOTES (8 - g/4) resigned Model STARS

- Do not use a switching regulator. Use a well regulated ±15V power supply. Install 0.01 μF bypass capacitors as close to the filter as possible.
- Use metal film resistors of 1% tolerance for fc setting. When making a higher-order filter, use more accurate resistors.
- Connect external resistors with short leads as close to the filter as possible.
- Use external capacitors with good stability and high dielectric resistance. It is recommended to use multilayer ceramic capacitors or plastic film capacitors.
- 5. Regulate output offset voltage by using an external trimmer (10 K Ω to 50 K Ω).
- 6. The FLJ-UR series filters are packaged single inline and are compact in size. Installation at high-density may cause temperature rises between elements. Installation with 0.8" or more of space between filters can eliminate the problem.
- Relation between fc and external resistor/capacitor: With the FLJ-UR series, a cutoff or center frequency can be set by 2 or 4 external resistors. The values of R of 2 or 4 external resistors for normal use can be calculated as:

$$R = \frac{15.9 \times 10^6}{\text{fc (Hz)}} (\Omega) \quad \text{Suffix 1 model}$$

$$R = \frac{159 \times 10^6}{\text{fc (Hz)}} (\Omega) \quad \text{Suffix 2 model}$$

In certain applications the resistance of each of 2 or 4 resistors may be changed. R1 to R4 shown in the block diagrams are the external resistors explained here. In standard use, the fc can be set to a minimum of 40 Hz. This is because the values of R have to be increased to about 400K according to the relation between R and fc. The fc setting range can be expanded to lower band by adding 2 or 4 external capacitors.

$$R = \frac{159 \times 10^3}{\text{(Cext+0.01) fc}} (\Omega) \quad \text{Suffix 1 model}$$

$$R = \frac{159 \times 10^3}{(Cext + 0.001) \text{ fc}} (\Omega) \quad \text{Suffix 2 model}$$

where Cext is measured in μF and Fc in Hz.

In the applications in which the output offset, time drift, or output noise must be minimal, use the above external capacitors if the values of external resistors exceed 100 k Ω each.

8. How to tune fc

As shown in the specifications, the fc setting accuracy is 3% depending on the accuracy of elements used. There is no practical problem in tuning when they are used as low-pass or highpass filters. However, bandpass filters and band elimination filters may require sharp tuning. Such filters can be tuned with external trimmers as shown in Fig. 10. R₁, R₂ and VR₁ are not used with the FLJ-UR1BA1/2.

a. FLJ-UR1BA1/2

- An input signal of oscillating frequency fc is given.
- I/O signals are monitored with a phase measuring instrument such as an oscilloscope.
- Tune VR₂ until the phase difference between I/O signals can be reduced to 0°.

b. FLJ-UR2BA1/2

- An input frequency of 1.0734×fc is provided.
- Tune VR₁ until the phase difference between the input signal and the output signal at pin 9 reaches at 180° looking at a phase measuring instrument such as an oscilloscope.
- An input signal of frequency fc is given.
- Tune VR2 until the phase difference between the input signal and the output signal at pin 20 is set at 0°.

FLJ-UR4LA1/2 Block Diagram (Fig. 3)

FLJ-UR4HA1/2 Block Diagram (Fig. 4)

FLJ-UR4HB1/2 Block Diagram (Fig. 5)

Cf in each figure is 10000 pF for suffix 1 model and 1000 pF for suffix 2 model.

FLJ-UR2LH1/2 Block Diagram (Fig. 6)

FLJ-UR1BA1/2 Block Diagram (Fig. 7)

FLJ-UR2BA1/2 Block Diagram (Fig. 8)

Cf in each figure is 10000 pF for suffix 1 model and 1000 pF for suffix 2 model.

FLJ-UR2EA1/2 Block Diagram (Fig. 9)

fc tuning method (Fig. 10)

ORDERING INFORMATION

LOW CUTOFF FREQUENCY TYPE (40 Hz~1.6 kHz)

FLJ-UR4LA1: 4-pole lowpass, Butterworth
FLJ-UR4LB1: 4-pole lowpass, Chebyshev
FLJ-UR4HA1: 4-pole highpass, Butterworth
FLJ-UR4HB1: 4-pole highpass, Chebyshev
FLJ-UR2LH1: 2-pole lowpass/highpass, Butterworth
FLJ-UR1BA1: 1-pole pair bandpass, Butterworth
FLJ-UR2BA1: 2-pole pair bandpass, Butterworth
FLJ-UR2EA1: 2-pole pair band elimination, Butterworth

HIGH CUTOFF FREQUENCY TYPE (400 Hz~5 k/10 k/20 kHz)

FLJ-UR4LA2: 4-pole lowpass, Butterworth
FLJ-UR4LB2: 4-pole lowpass, Chebyshev
FLJ-UR4HA2: 4-pole highpass, Butterworth
FLJ-UR4HB2: 4-pole highpass, Chebyshev
FLJ-UR2LH2: 2-pole highpass/lowpass, Butterworth
FLJ-UR1BA2: 1-pole pair bandpass, Butterworth
FLJ-UR2BA2: 2-pole pair bandpass, Butterworth

FLJ-UR2EA2: 2-pole pair band elimination, Butterworth

FLJ-VL, VH, VB Voltage Tuneable Filter

FEATURES

- Cutoff frequency is tuned by external voltage
- · Wide range of control frequency
- · Small in hybrid

GENERAL DESCRIPTION

FLJ-V Series filters cutoff frequency or center frequency can be set with an external control voltage.

Hybrid construction has made it possible to build highly reliable, high performance filters in small size at low cost.

FLJ-VL is a lowpass filter and FLJ-VH is a highpass filter. Both filters have 24dB/oct of rolloff characteristics. FLJ-VB is a bandpass filter which has 12dB/octBW at Q=5.

MECHANICAL DIMENSIONS INCHES(mm)

PIN CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION	
1	INPUT	21	CONTROL V. INPUT	
2	GND	22	GND .	
4	Rq1	34	-Vcc (-15V)	
7	Cext 1-1	36	GND	
8	Rq1, Cext1-1	37	GND	
9	Cext1-2	40	+Vcc (+15V)	
10	Cext 1-2		HV P	
11	Rq2	1000		
14	Cext2-1	0		
15	Rq2, Cext2-1			
16	Cext 2-2			
17	Cext2-2	I at 1		
18	ZERO ADJ.	epni		
20	OUTPUT	Igno		

DO NOT CONNECT UNUSED PINS TO OTHERS.

SPECIFICATIONS

Typical values at 25°C with ±15V supply, 10V control voltage, ±1V rated input unless otherwise specified.

Filter	FLJ-VL (Lowpass Filter)	FLJ-VB (Bandpass Filter)	FLJ-VH (Highpass Filter)
ABSOLUTE MAXIMUM			
Input Voltage	±18V ±Vcc ±Vcc	* "Same as FLJ-VL" * "Same as FLJ-VL" * "Same as FLJ-VL"	* "Same as FLJ-VL" * "Same as FLJ-VL" * "Same as FLJ-VL"
FILTER CHARACTERISTICS			range of control frequenc
Frequency Set Accuracy Control Input Voltage Range Control Input Impedance Characteristic Rolloff Pass Gain vs. Control Input V. Distortion	100Hz ~ 100KHz ± (3%+0.01% F.S.) max. +10mV ~ +10V 50 Kohm min. 4 pole Butterworth 24dB/oct ±0.5dB 0.1% max. ±0.03%/*C		20Hz ~ 20KHz +10mV ~ +10V 4 pole Butterworth 24dB/oct ±0.5dB *
AMPLIFIER CHARACTERISTICS		fall size at low cost.	gh performance filters in sn
Rated Input Voltage Input Impedance Offset Voltage Offset V. Variance vs. Control V. Temperature Drift Noise © Output Voltage/Current Output Impedance Load Resistance Small Signal BW	±10V min. ±1V 50 Kohm min. ±10mV Zero Adjustable ±20mV max. 300μV/*C 800μVrms max. «10Hz ~ 300KHz ±10V/5mA min. 50ohm max. 10Kohm min. DC ~ fc		±10V min. to be of the event and the second and th
POWER REQUIREMENTS & ENVIRONM	MENT		
Current	±15V, +10%, -5% ±36mA -20°C ~ +70°C 10% ~ 95%RH -30°C ~ +80°C 10% ~ 80%RH		

 \odot Typically <300 μ Vrms for the FLJ-VH. The FLJ-VL/VB are typically <300 μ Vrms for control voltages up to 2V and <500 μ Vrms for control voltages from 2 to 10 Volts.

TECHNICAL NOTES

- The rated input voltage is ±1V. The maximum performance is obtained if input voltage does not exceed this range.
- These filters are 4pole Butterworth (2pole pair) filters. Cutoff frequency is controlled by external voltage. The relationship between control voltage and cutoff frequency is linear (=proportional). Cutoff frequency ranges can be shifted toward lower frequency region if four external capacitors are added. See Figure 3. FLJ-VL:

Cext1, Cext 2 =
$$\frac{1}{\text{fc(max)} \times 2\pi \times 6.36 \times 10^3}$$
 = 250 x 10⁻¹² FLJ-VB, VH:

Cext1, Cext 2 =
$$\frac{1}{\text{fc(max)} \times 2\pi \times 6.36 \times 10^3}$$
 - 1250 x 10⁻¹² Cext1, Cext 2 : F (Farad)

fc(max): -3dB frequency at 10V control voltage.

3. Zero offset adjustment range is approximately ±50mV.

 Control input voltage signal has approximately 10KHz of frequency response. However, it takes long time before the output DC offset (=approx. 10mV) settles under the new fc set. It is not recommended to use alternating signals for the control input, depending on applications. The cutoff frequency shall be affected by unstable control voltage if it is small signal, even if, it is DC.

5. FLJ-VL can be used as Bessel filter. Connect Rq1 = $95.3K\Omega$ and Rq2 = $9.53K\Omega$ as shown Figure 3. External capacitors should be:

Cext1 = 250
$$\left(\frac{100}{\text{fc(max) (KHz)} \times 1.43241} - 1\right)$$

Cext2 = 250 $\left(\frac{100}{\text{fc(max) (KHz)} \times 1.60594} - 1\right)$

fc(max) \leq 62.2KHz, -3dB frequency at 10V control input voltage.

Cext1, Cext2 : pF (pico Farad)

TYPICAL CONNECTION (Fig. 3)

AMPLITUDE VS. FREQUENCY (Fig. 4)

FLJ-VL (Fig. 4-1)

FLJ-VH (Fig. 4-2)

FLJ-VB (Fig. 4-3)

ORDERING INFORMATION

MODEL NO.	DESCRIPTION
FLJ-VL	Low-pass filter
FLJ-VB	Butterworth 4 pole Band-pass filter Butterworth 4 pole
FLJ-VH	High-pass filter Butterworth 4 pole

Contact DATEL for your Data Acquisition component needs.

Dial
1-800-233-2765
for
Applications Assistance

FLT-C1

Programmable 7th Order, Low-pass, Switched Capacitor Active Filter

FEATURES

- Digital tuning
- Stopband attenuation >76dB at 3fC
- · Built-in sample-hold
- · Programmable gain of 1, 2, 4, 8
- Dynamic range of 85dB
- 12-Bit precision

DESCRIPTION

DATEL's Model FLT-C1 is a monolithic, 7th order, lowpass active filter for applications requiring sharp, fast attenuation rolloff. Exceptionally low noise performance of this switched capacitor filter permit it to be used in applications requiring 12-bit accuracy.

A combination of an 8-bit control input and the clock frequency set the corner frequency over a range of 78 Hz to 20 KHz. A 2-bit control input selects the gain. A built-in oscillator (less crystal) is provided for systems where a system clock is not available.

ORDERING INFORMATION

MODEL DESCRIPTION

FLT-C1 7th Order, Low-pass, Switched Capacitor Active Filter

FUNCTIONAL SPECIFICATIONS

Typical at 25 $^{\circ}$ C range unless otherwise noted. Specifications subject to change without notice.

FILTER CHARACTERISTICS	ASSULANCE OF SECURITION AND ADDRESS.
Frequency Range	78 Hz to 20 KHz
Voltage Gain	1, 2, 4, or 8
Gain Accuracy (G=1)	+0.1%
Offset Voltage (G=1)	5 mV
Filter Response	7-pole Chebychev
(Relative to DC Gain)	, polo chiobychov
at 1.5 fc	-30 dB max.
at 2 fc	-52 dB max.
at 3 fc	-76 dB max.
Input Signal Level	±3V min.
Output Voltage	±3V
Output Current	±0.6 mA
Passband Ripple	±0.1dB
Band edge Tolerance	±0.5%
Wideband Noise, 20 KHz, BW	100 μVrms max.
Harmonic Distortion	-72 dB
Dynamic Range	85dB min.
CLOCK (78,5) 801.0	(8020,0) 020,0 les
Input Clock Frequency ①	1 MHz min. 4 MHz typ.
DIGITAL INPUTS	
Input High	2.0V min.
Input Low	0.8V max.
Leakage Current	1 μA max.
Input Capacitance	10 pF max.
POWER SUPPLY REQUIREMEN	TS
Supply Voltage	±5V (±5%)
Supply Current	±15 mA
Power Dissipation	150 mW

 $\ensuremath{\textcircled{1}}$ Also internal clock frequency. Internal clock requires external crystal.

FUNCTIONAL DESCRIPTION

The FLT-C1 is made up of two programmable filter sections used in different combinations to meet various applications.

The **switched capacitor stage** (SCF), is a 7-pole, lowpass filter designed to provide an accurate, programmable passband for fixed or dynamic applications.

The switching frequency may be derived either from a crystal oscillator or from a system clock. Since the filter band edge can be programmed by varying the frequency of the clock which controls the filter's switches, it can track the sample rate of an external A/D converter. Digital programming allows for band edges of up to 20 KHz and gains of 1, 2, 4, or 8.

The RC filter stage is a low-order active filter with a bandedge accuracy of 5%. This accuracy is adequate because the filter sampling rate is 50 times greater than the band edge frequency.

Pin Functions

Name	Function
Vss	Negative supply voltage.
CS	Chip select; active low.
G1-G2	The digital inputs that control the DC gain of the SC filter.
D0-D7	The digital inputs that control the RC filter band edge, SC filter band edge, and SC filter decimation rate.
SYNC	This digital input controls the sampling instant for the SC filter decimated output; active low.
CLKOUT	Master clock output capable of driving 1 stan- dard TTL load. It is a buffered version of ei- ther CLKIN or the internally generated crystal oscillator output.
VDD	Positive supply voltage
CNVRT	This digital output indicates that the SCouT output has settled and can now be converted or sampled (drive capatibility is 1 standard TTL load); active low.
X1-X2	An external crystal is connected between these pins to generate an accurate clock for chip operation.
CLKIN	The master clock input. Forcing CLKIN to Vss enables the on-chip oscillator (external crystal).
GND	Ground.
SCOUT	SC filter output.
PD	This digital input is used to power down the analog circuitry; active low.
RCOUT	RC filter output.
RCIN	RC filter input.
SCIN	SC filter input (only valid when AA/SM is forced low).
WR	Write strobe; active low.
DS_	Data strobe.
AA/SM	This digital input controls whether the input to the SC filter comes from RCout or SCIN.
AS	Address strobe.
A0	Register address select.

The band edge of the RC filter is programmable to insure sufficient rejection of any SC filter harmonics. Ratio matching of on-chip resistors and capacitors provides eight RC filter band-edges spanning a 12-to-1 range.

A decimator, placed at the output of the SC filter, samples the differential output and converts it to a single-ended signal. In addition, the decimator can be programmed to allow an integer decrease in the sampling rate by low filtering of the signal and keeping every Nth sample, similar to a programmable sample-hold. By choosing the proper decimation rate, the hold time at SCour will be long enough to allow an A/D conversion to take place without the need of external S/H components. An external S/H is recommended for hold times faster than $100~\mu S$ to prevent more than 1/2 LSB of droop for a 12-bit A/D converion.

Microprocessor Interface Timing Characteristics

SCour Synchronization Timing

μP Interface Timing	terface Timing Ref.			
CS Hold Time	T5	10 nSec. min.		
Data Hold Time	T4	10 nSec. min.		
Data Set-up Time	T3	100 nSec. min.		
Address Hold Time	T2	10 nSec. min.		
Address Set-up Time	T1	20 nSec. min.		

SCOUT	Ref.	Duration
Synchronization Timing		
SyncB Delay Time	T8	100 nSec. min.
SyncB Set-up Time	T9	75 nSec. min.
CLKIN To CLKOUT Delay	T6	50 nSec. max.
CLKIN To CNVRT Delay	T7	75 nSec. max.
Sync Pulse Width	T10	75 nSec. min.

RCF band edge							
RCF 3dB BW	D	7	D6	D5	DC Gain		
					DC Gain	G1	G2
80 KHz	(0	0	0			
56KHz	(0	0	1	1	1	1
40KHz	(0	1	0	2	1	0
28KHz	(0	1	1	4	Ó	1
14KHz		1	0	1	8	0	0
10KHz		1	1	0	0	U	U
7KHz		1	1	1			
Clock to SCF ba					Decimator	Samp	le Rate
fclk/fc	D0	D1	D2		Decimator	Samp	le Rate
fclk/fc 200	D0	D1					
fclk/fc 200 400	D0	D1	D2 0 1				
fclk/fc 200 400 800	D0 0 0 0 0	D1	D2		fs/н/fc 25.000	D3	D4
fcLK/fc 200 400 800 1,600	D0	D1 0 0 1 1	D2 0 1		fs/н/fc 25.000 12.500	D3	D4
fclk/fc 200 400 800	D0 0 0 0 0	D1	D2 0 1		fs/н/fc 25.000 12.500 6.250	D3	D4 0 1
fcLK/fc 200 400 800 1,600	D0 0 0 0 0	D1 0 0 1 1	D2 0 1		fs/н/fc 25.000 12.500	D3	D4 0 1

fc = 0.1dB Bandwidth of the SC filter. fCLK = Master clock frequency at CLKOUT. fS/H = Sample rate at SCOUT output.

TOP VIEW

Vss		A0	32
CS		AS	31
G1		AA/SM	30
G2		DS	29
D5		N/C	28
D6		WR	27
D7		SCIN	26
D0	FLT-C1	RCIN	25
D1		RCout	24
D2		PD	23
D3		SCout	22
N/C		GND	21
D4		CLKIN	20
SYNC		X1	19
CLKout		X2	18
VDD		CNVRT	17
	CS G1 G2 D5 D6 D7 D0 D1 D2 D3 N/C D4 SYNC CLKout	CS G1 G2 D5 D6 D7 D0 FLT-C1 D1 D2 D3 N/C D4 SYNC CLKOUT	CS AS G1 AA√SM G2 DS D5 N/C D6 WR D7 SCN D0 FLT-C1 RCOUT D1 RCOUT PD D3 SCOUT N/C N/C GND CLKIN SYNC X1 CLKOUT X2

Contact DATEL for your
Data Acquisition component
needs.

Dial
1-800-233-2765
for
Applications Assistance

TOP VIE W

4-and 5-Pole High Frequency Digitally Programable Active Filters

FEATURES

- · Digitally programmable
- 4- and 5-Pole Cauer response
- Cascadable 7 Pole Cauer response
- Cutoff Frequencies to 1.2 MHz
- Small 32-pin DIP
- -55 °C to +125 °C operation

GENERAL DESCRIPTION

DATEL's FLT-DL series of 4- and 5-pole digitally programmable active filters are functionally complete, simple to use, and offer a wide range of frequency response options. The models offered operate over the frequency ranges of 100 KHz to 470 KHz and 250 KHz to 1200 KHz.

The FLT-DL Series are Cauer response filters which can be cascaded to provide equivalent 7 pole Cauer performance.

DATEL's FLT-DL Series filters are manufactured using thick-film and thin-film hybrid technology and unique laser trimming schemes. These filters are packaged in a space-saving 32-pin ceramic DIP. Units are specified for operation over the commercial temperature range of 0 to +70 °C and the military temperature range of -55 to +125 °C.

TECHNICAL NOTES bas & serup I of awards era smellit

1. Use an external 50 Kohm potentiometer to reduce the small initial offset error to zero. Tie the wiper to pin 18, OFFSET ADJUST. Connect the other terminals of the potentiometer to the +/-15 volt power supplies. For operation without adjustments, leave pin 18 unconnected.

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
+15V Supply (pin 1)	-0.3 to +18	V dc
-15V Supply (pin 3)	+0.3 to -18	V dc
Digital inputs (pins 22- 25)	-Vcc to +15	Vdc
Analog input (pin 31,32)	-25 to +25	V dc
Lead temperature (10 sec.)	300	°C
Junction temperature (Tj)	+175	°C
Storage Temperature	-65 to +150	°C
Power dissipation	3	Watts

Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

FUNCTIONAL SPECIFICATIONS

Apply at 25°C and at ± 15 Vdc power supply voltages unless otherwise specified.

INPUTS	MIN	TYP	MAX	UNITS
Input Voltage Range	±10	200	_	Volts
Input Impedance (Noninverting)	0.0V+	+ 1		E. I
Pin 1	4	8-1	-	Kohms
Pin 3 иоповиис	6	6.0	_	Kohms
DIGITAL INPUTS	O ON	91-11		
Logic Threshold	ORD .	1Vcc <u>+</u> 2	0%	Volts
Logic Input Impedance	100	81	-	Kohms
OUTPUT CHARACTERISTICS	SITT	19-21		
Output Voltage Range	±10	12	-	Volts
DC Output Resistance	1	25	-	Ohms
Output Current Limit	IAMA	16		
(Short Circuit Protected)	DATE:	\$8	<u>+</u> 25	mA
Recommended Load Resistance	2	_	_	Kohms
FILTER CHARACTERISTICS	Zembes:	posteroes	and the	
Freq. Range (cascaded pair)				The state of
FLT-DL41/51	100	-	400	KHz
FLT-DL42/52	250	-	1000	KHz
Programming Bits	4	-		-
Programming Frequency				
Increments	00			1/11=
FLT-DL41/51 FLT-DL42/52	20 50		-	KHz
Programming Accuracy	TBD	901	1	KHZ
Voltage Gain	Unity	IR IT'S	(3)	
Passband Ripple FLT-DL	.7	138		%
Settling Time (to 0.01%)	Linne		No.	/0
fc=1MHz FLT-DL42	_ 1	6	_	μSec
FLT-DL52	- 3	7	_	μSec
fc=100KHz FLT-DL41		60	_	μSec
FLT-DL51	- 1	60		μSec.
Transition Slope				
FLT-DL41/42	30		_	dB/oct
FLT-DL51/52	50		-	dB/oct
FLT-DL4/5	80	1	-	dB/oct
StopBand Attenuation				
(to 10MHz)	00			-ID
FLT-DL41/42 FLT-DL51/52	30		OB CECTA	dB
FL1-DL51/52	50	- 1	ABOT ST	dB

FILTER CHARACTERISTICS CONT.	MIN	TYP	MAX	UNITS	
Offset Voltage Offset Voltage Drift	-	-	TBD	-	
0 to +70 °C	_	-	TBD	BUTA:	
-55 to +125 °C	- 1	_	TBD	-	
Noise	stde	mmang	TBD	Digita	
POWER REQUIREMENTS	noqeet	Саво	sto9-8 b	ine -A	
Rated Voltage Quiescent Current FLT-DL5	±14.25 ±70	±15	±15.75	Volts mA	
FLT-DL4 Power Dissipation	±60 —	(0 g, 5	3	mA W	
PHYSICAL/ENVIRONMENTAL	MO	ITHIRC	630 Tr	HENE	
Operating Temperature Range		MC 0 to	o +70 °C o + 125 °C		
	-65 to +150 °C Ceramic 32-Pin DIP				
Weight			TBD		

- 2. Bypass each power supply with a 0.1 microfarad tantalum electrolytic capacitor.
- 3. Digital inputs are binary. The truth table (Table 1) details the cutoff frequency for each filter and for cascaded pairs of filters as a function of input coding.
- 4. The frequency responses of the 4-pole and 5-pole Gauer filters are shown in Figures 2 and 3 respectively. Figure 4 details the response of a cascaded pair of frequency matched 4- and 5-pole filters. The response for a cascaded pair is similar to a 7-pole Gauer, as shown in Figure 5.
- 5. When cascading a 4-and a 5-pole filter pair, the order of connection is not important. The filters must, however, be frequency matched.

Figure 2. 4-Pole CAUER Response

Figure 3. 5-Pole CAUER Response

Table 1. Cutoff Frequencies for Digitally Tuned Filters, and for Cascaded Combinations of Two Filters

DIGITAL INPUT (BIN)		СИТ	OFF FREQUE	NCY (KHz)		
					CASC	CADED
	FLT-DL41	FLT-DL42	FLT-DL51	FLT-DL52	41X51	42X52
0000	103.8	259.5	121.5	303.8	100	250
0001	124.6	311.4	145.0	364.5	120	300
0010	145.3	363.3	170.1	425.3	140	350
0011	166.1	415.2	194.4	486.0	160	400
0100	186.8	467.1	218.7	546.8	180	450
0101	207.6	519.0	243.0	607.5	200	500
0110	228.4	570.9	267.3	668.3	220	550
0111	249.1	622.8	291.6	729.0	240	600
1000	269.9	674.7	315.9	789.8	260	650
1001	290.6	726.6	340.2	850.5	280	700
1010	311.4	778.5	364.5	911.3	300	750
1011	332.2	830.4	388.8	972.0	320	800
1100	352.9	882.3	413.1	1032.8	340	850
1101	373.7	934.2	437.4	1093.5	360	900
1110	394.4	986.1	461.7	1154.3	380	950
1111	415.2	1038.0	468.0	1215.0	400	1000

Figure 4. 4- and 5-Pole Pair Response

Figure 5. 7-Pole CAUER Response

	ORDERING INFORMAT	TION
MODEL NO.	DESCRIPTION	TEMP. RANGE
FLT-DL41MC	100 KHz,4 Pole	0 to 70 °C
FLT-DL41MM	100 KHz,4 Pole	-55 to 125 °C
FLT-DL51MC	100 KHz,5 Pole	0 to 70 °C
FLT-DL51MM	100 KHz,5 Pole	-55 to 125 °C
FLT-DL42MC	250 KHz, 4 Pole	0 to 70 °C
FLT-DL42MM	250 KHz, 4 Pole	-55 to 125 °C
FLT-DL52MC	250 KHz, 5 Pole	0 to 70 °C
FLT-DL52MM	250 KHz, 5 Pole	-55 to 125 °C

Receptacle for PC board mounting can be ordered through AMP Inc., Part #3-331272-8 (Component Lead Socket) 24 required.

For availability of MIL-STD-883 versions, contact DATEL.

Table 1. Cutoff Frequencies for Digitally Tuned Fillers, and for Cascaded Combinations of Two Filters

					186.8 207.6 228.4 249.1	
	oos pro	ct DATEL for oducts covere Preliminary" p	ed by "Adva	inced" and	269.9 no 290.6 311.4 332.2	
		8.5201 8.2001 8.4871 9.81 1-800	Dial)-233-2765 for			

Applications Assistance

8-28

FEATURES

- State variable filter
- · LP, BP, or HP functions
- · 2-pole response
- · Low-noise operational amplifiers
- --55°C to +125°C operation
- · Low cost

GENERAL DESCRIPTION

The FLT-U2 is a universal active filter manufactured with a thick-film hybrid technology. It uses the state variable active filter principle to implement a second order transfer function. Three committed operational amplifiers are used for the second order function while a fourth uncommitted operational amplifier can be used a a gain stage, summing amplifier, buffer amplifier or to add another independent real pole.

Two-pole low-pass, bandpass, and highpass output functions are available simultaneously from three different outputs, and notch and allpass functions are available by combining these outputs in the uncommitted operational amplifier. To realize higher order filters, several FLT-U2's can be cascaded. Q range is from 0.1 to 1,000 and resonant frequency range is 0.001Hz to 200kHz. Frequency stability is 0.01%/°C and resonant frequency accuracy is within ±5% of calculated values. Frequency tuning is done by two external resistors and Q tuning by a third external resistor. For resonant frequencies below 50Hz, two external tuning capacitors must be added. Exact tuning of the resonant frequency is done by varying one of the resistors around its calculated value.

The internal operational amplifiers in the FLT-U2 have 3 MHz gain bandwidth products and a wideband input noise specification of only $10nV/\sqrt{Hz}$.

MECHANICAL DIMENSIONS INCHES (MM)

CONNECTIONS DIAGRAM

FUNCTIONAL SPECIFICATIONS

Typical at 25°C, ±15V supplies, unless otherwise stated.

FILTER CHARACTERISTICS

Frequency Range ¹	0.001 Hz to 200 kHz
Q Range ¹	0.1 to 1.000
fo Accuracy	±5%
fo Temperature Coefficient	0.01%/°C
Voltage Gain ¹	0.1 to 1.000

AMPLIFIER CHARACTERISTICS

Input Offset Voltage Input Bias Current Input Offset Current Input Impedance Input Com. Mode Voltage Range	40 nA typ., 500 nA max. 5 nA typ., 200 nA max. 5 Megohms
Input Com. Mode Voltage Range	10 nV/√Hz
Output Current	±5 mA min.
Common Mode Rejection Ratio Power Supply Rejection	10 μV/V
Unity Gain Bandwidth	

POWER SUPPLY REQUIREMENTS

Voltage, rated performance ± 15V dc	
Voltage Range, operating \pm 5V to \pm 18V	
Quiescent Current 11.5 mA max.	

PHYSICAL/ENVIRONMENTAL

Operating Temperature Range	
FLT-U2	
FLT-U2M	-55°C to +125°C
Storage Temperature Range	-55°C to +125°C
Case	Ceramic 16-pin DIP (double-spaced)

FOOTNOTE:

1. $f_0Q \le 5 \times 10^5$ optimally

TECHNICAL NOTES

- 1. The FLT-U2 has simultaneous lowpass, bandpass, and highpass output functions. The chosen output for a particular function will be at unity gain based on Tables II and III. This means that the other two unused outputs will be at other gain levels. The gain of the lowpass output is always 10 dB higher than the gain of the bandpass output and 20 dB higher than the gain of the highpass output.
- When tuning the filter and checking it over its frequency range, the outputs should be checked with a scope to make sure there is no waveform clipping present, as this will affect the operation of the filter. In particular the lowpass output should be checked since its gain is the highest.
- Check f₁, the center frequency for bandpass and the cutoff frequency for lowpass or highpass, at the bandpass output. Here the peaking frequency can easily be determined for high Q filters and the 0° or 180° phase frequency can easily be determined for low Q filters (depending on whether inverting or noninverting).
- 4. Tuning resistors should be 1% metal film resistors with 100 ppm/°C temperature stability or better for best performance. Likewise external tuning capacitors should be NPO ceramic or other stable capacitor types.

THEORY OF OPERATION

The FLT-U2 block diagram is shown in Figure 1. This is a second order state-variable filter using three operational amplifiers. Lowpass, bandpass, and highpass transfer functions are simultaneously produced at its three output terminals. These three transfer functions are characterized by the following second order equations:

$$H(s) = \frac{K_1}{S^2 + \frac{\omega_0}{Q}S + \omega_0^2}$$
 LOWPASS
$$H(s) = \frac{K_2S}{S^2 + \frac{\omega_0}{Q}S + \omega_0^2}$$
 BANDPASS
$$H(s) = \frac{K_3S^2}{S^2 + \frac{\omega_0}{Q}S + \omega_0^2}$$
 HIGHPASS

where K₁, K₂, and K₃ are arbitrary gain constants.

A second order system is characterized by the location of its poles in the s-plane as shown in Figure 2. The natural radian frequency of this system is ω_0 . In Hertz this is $f_0 = \frac{\omega_0}{2}$.

The resonant radian frequency of the circuit is different from the natural radian frequency and is:

$$\omega_1 = \omega_0 \sin \emptyset = \sqrt{\omega_0^2 - \sigma_1^2}$$

The damping factor d determines the amount of peaking in the filter frequency response and is defined as:

The point at which the peaking becomes zero is called critical damping and is $d = \sqrt{2} / 2$.

Q is found from d and is a measure of the sharpness of the resonance of the peaking:

$$Q = \frac{1}{2d}$$
Also,
$$Q = \frac{f_0}{-3 \text{ dB Bandwidth}} = \frac{\omega_0}{2\sigma_1}$$

For high Q filters the natural frequency and resonant frequency are approximately equal.

$$\omega_1 \simeq \omega_0 \text{ or } f_1 \simeq f_0$$

This is true since $\omega_1=\omega_0\sin\emptyset$ and $\sin\emptyset\simeq 1$ as the poles move close to the $j\omega$ axis in the s-plane.

For high Qs (Q > 1) we therefore have for the second order filter:

fo = Bandpass center frequency

≈ Lowpass corner frequency

= Highpass corner frequency

In the simplified tuning procedure which follows, the tuning is accomplished by independently setting the natural frequency and Q of the filter. This is done most simply by assuming unity gain for the output of the desired filter function. Unity gain means a gain of one (\pm) at dc for lowpass, at center frequency for bandpass, and at high frequency $(f>>f_0)$ for highpass. Unity gain does not apply to all outputs simultaneously but only to the chosen output based on the component values given in the tables. Figure 3 shows the relative gains of the three simultaneous outputs assuming the bandpass gain is set to unity. Note that lowpass gain is always 10 dB higher than bandpass gain and highpass gain is always 10 dB lower than bandpass gain.

SIMPLIFIED TUNING PROCEDURE

 Select the desired transfer function (lowpass, bandpass, or highpass) and inverted or noninverted output. From this determine the filter configuration (inverting or noninverting) using Table I.

TABLE I FILTER CONFIGURATION

117	LP	BP	HP
INVERTING INPUT	INV	NON-INV	INV
NONINVERTING INPUT	NON-INV	INV	NON-INV

- 2. Starting with the desired natural frequency and Q (determined from the filter transfer function or s-plane diagram), compute f_0Q . For $f_0Q > 10^4$ the actual realized Q will exceed the calculated value. At $f_0Q = 10^4$ the increase is about 1% and at $f_0Q = 10^5$ it is about 20%.
- 3. Inverting Configuration. Using the value of Q from Step 2 find R₁ and R₃ from Table II. R₂ is open, or infinite.

TABLE II INVERTING CONFIGURATION

	R ₁ 3 911	R ₂	R ₃
LOWPASS	100K	OPEN	100K 3.80 Q-1
BANDPASS	Q X 31.6K	OPEN	100K 3.48 Q
HIGHPASS	10K	OPEN	100K 6.64 Q-1

 Noninverting Configuration. Using the value of Q from Step 2 find R₂ and R₃ from Table III. R₁ is open, or infinite.

TABLE III NONINVERTING CONFIGURATION

	R ₁	R ₂	R ₃
LOWPASS	OPEN	316K	100K
	7. 91	Q Figu	3.16 Q-1
BANDPASS	OPEN	100k	100K
DANDI ASS	OFEN	TOOK	3.48 Q-1
HIGHPASS	OPEN	31.6K	100K
HIGHTASS	OFEN	Q	0.316 Q-1

 Using the value of f₀ from Step 2, set the natural frequency of the filter by finding R₄ and R₅ from the equation:

$$R_4 = R_5 = \frac{5.03 \times 10^7}{f_0}$$

where R_4 and R_5 are in ohms and f_0 is in Hertz. The natural frequency varies as $\sqrt{R_4}\overline{R}_5$ and therefore one value may be increased and the other decreased and the natural frequency will be constant if the geometric mean is constant. To maintain constant bandwidth at the bandpass output while varying center frequency, fix R_4 and vary R_5 .

6. For $f_0 < 50$ Hz the internal 1000 pF capacitors should be shunted with external capacitors across pins 5 & 7 and 13 & 14. If equal value capacitors are used, R_4 and R_5 are then computed from:

$$R_4 = R_5 = \frac{5.03 \times 10^{10}}{f_0 C}$$
 (C in pF)

For unequal value capacitors this becomes:

$$R_4 = R_5 = \frac{5.03 \times 10^{10}}{f_0 \sqrt{C_1 C_2}} (C_1 C_2 \text{ in pF})$$

In both cases the capacitance is the sum of the external values and the internal 1000 pF values.

7. This procedure is based on unity gain output for the desired function. For additional gain, the fourth uncommitted operational amplifier should be used as an inverting or noninverting gain stage following the selected output. See Figure 4. A third pole on the real axis of the s-plane may also be added to the transfer function by adding a capacitor to the gain stage as shown in Figure 5.

Figure 1.
FLT-U2 Block Diagram

Figure 2.
S-Plane Diagram

Figure 3.
Relative Gains of Simultaneous Outputs, Q=1

Uncommitted Op Amp Gain Configurations

Using the Uncommitted Op Amp to Add a Real Axis Pole

ADVANCED FILTERS

All of the common filter types can be realized by using cascaded FLT-U2 stages. This includes multi-pole Butterworth, Bessel, Chebyshev, and Elliptic types. The basic procedure is to implement each pole pair with a single FLT-U2 and cascade enough units to realize all poles. A real axis pole is implemented by an uncommitted operational amplifier stage. Each stage should be separately tuned with an oscillator and scope and then the stages connected together and checked. See Figure 6.

A notch filter can be constructed in several ways. The first way is to use the FLT-U2 as an inverting bandpass filter and sum the output of the filter with the input signal by means of the uncommitted operational amplifier. This produces a net subtraction at the center frequency of the bandpass which produces a null at the output of the amplifier. (see Figure 7). Likewise lowpass and highpass outputs (which are always in phase) can be subtracted from each other with an external operational amplifier. The highpass output must have some gain added to it, however, so that its gain is equal to that of the lowpass output. A third method is to use two separate FLT-U2's, one as a two-pole lowpass filter and the other as a two-pole highpass filter. Again the outputs are subtracted in an operational amplifier. This method permits independent tuning of the two sections to get the best null response.

ORDERING INFORMATION

MODEL

FLT-U2 FLT-U2M

OPERATING TEMP. RANGE

0°C to +70°C

-55°C to +125°C

WIDE-RANGING, DC-DC POWER CONVERTERS OG OG SOMAR TUSM SOM

NEW 20 WATT, WIDE-RANGING, DC-DC POWER CONVERTERS (2" x 2" x 0.45")

(Vdc)		Output	Input Current No Load/Full Load	Output Noise & RIPPLE (TYP)	Efficiency (Min @ F.L.)	Line/Load Regulation	Model SAVI
4.6 - 13.2V (5V,	Nom)	3.3V,4.25 A	25 mA/3.78 A	50 mV p-p	75%	±0.2% / ±0.5%	UWR-3.3/4250-D5
9.0 - 18V (12V,	Nom)	3.3V,4.85 A	20 mA/1.77 A	50 mV p-p	76%	±0.2% / ±0.5%	UWR-3.3/4850-D12
18 - 72V (48V,	Nom)	3.3V,4.85 A	15 mA/0.843 A	50 mV p-p	79%	±0.2% / ±0.5%	UWR-3.3/4850-D48
4.6-13.2V (5V,	Nom)	5.0V,3.60 A	10 mA/1.875 A	50 mV p-p	80%	±0.2% / ±0.5%	UWR-5/3000-D5
9.0 - 18V (12V,	Nom)	5.0V,4.0 A	15 mA/2.032 A	50 mV p-p	82%	±0.2% / ±0.5%	UWR-5/4000-D12
18 - 72V (48V,	Nom)	5.0V,4.0 A	10 mA/0.505 A	50 mV p-p	82%	±0.2% / ±0.5%	UWR-5/4000-D48
4.6-13.2V (5V,	Nom)	±12V,0.625 A	40 mA/1.829 A	85 mV p-p	82%	±0.2% / ±1%	BWR-12/625-D5
9.0 - 18V (12V,	Nom)	±12V,0.830 A	40 mA/2.00 A	75 mV p-p	84%	±0.2% / ±1%	BWR-12/830-D12
18 - 72V (48V,	Nom)	±12V,0.830 A	10 mA/0.508 A	85 mV p-p	82%	±0.2% / ±1%	BWR-12/830-D48
4.6 - 13.2V (5V,	Nom)	±15V,0.600 A	40 mA/1.829 A	85 mV p-p	82%	±0.2% / ±1%	BWR-15/500-D5
9.0 - 18V (12V,	Nom)	±15V,0.670 A	30 mA/1.587 A	85 mV p-p	84%	±0.2% / ±1%	BWR-15/670-D12
18 - 72V (48V.		±15V,0.670 A	10 mA/0.508 A	85 mV p-p	82%	±0.2% / ±1%	BWR-15/670-D48
4.7 - 7.0V (5V,	1000	3.3V,1.8 A	30 mA/1.715 A	50 mV p-p	70%	±0.2% / ±0.5%	UWR-3.3/1800-D5
4.7 - 7.0V (5V,	Nom)	3.3V,1.8 A	30 mA/1.715 A	50 mV p-p	70%	±0.2% / ±0.5%	UWR-3.3/1800-D5
9.0 - 18V (12V,	Nom)	3.3V,2.5 A	30 mA/0.915 A	50 mV p-p	75%	±0.2% / ±0.5%	UWR-3.3/2500-D12
18 - 72V (48V,	Nom)	3.3V,1.80 A	15 mA/0.170 A	50 mV p-p	75%	±0.2% / ±0.5%	UWR-3.3/1800-D48
4.7 - 7.0V (5V,	Nom)	5.0V,1.60 A	30 mA/2.160 A	50 mV p-p	74%	±0.2% / ±0.5%	UWR-5/1600-D5
9.0 - 18V (12V,	Nom)	5.0V,2.0 A	15 mA/1.03 A	50 mV p-p	81%	±0.2% / ±0.5%	UWR-5/2000-D12
18 - 72V (24/4	48V)	5.0V,1.80 A	15 mA/0.240 A	50 mV p-p	78%	±0.2% / ±0.5%	UWR-5/1800-D48
	Nom)	±5.0V,0.70 A	30 mA/1.842 A	50 mV p-p	76%	±0.2% / ±1%	BWR-5/700-D5
4.7 - 7.0V (5V,			15mA/0.830 A	50 mV p-p	80%	±0.2% / ±1%	BWR-5/800-D12
4.7 - 7.0V (5V, 9.0 - 18V (12V,	Nom)	±5.0V,0.80 A	1311A/0.030 A				D1111-3/000-D12
		±5.0V,0.80 A ±12V,0.335 A	40 mA/2.1 A	15 mV p-p	76%	±0.2% / ±1%	BWR-12/335-D5
9.0 - 18V (12V,	Nom)			100	76% 83%		
9.0 - 18V (12V, 4.7 - 7.0V (5V,	Nom) Nom)	±12V,0.335 A	40 mA/2.1 A	15 mV p-p		±0.2% / ±1%	BWR-12/335-D5
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1	Nom) Nom) /, Nom)	±12V,0.335 A ±12V,0.415 A	40 mA/2.1 A 35 mA/1.00 A	15 mV p-p 25 mV p-p	83%	±0.2% / ±1% ±0.2% / ±1%	BWR-12/335-D5 BWR-12/415-D12
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1 8 - 72V (24/48V	Nom) Nom) /, Nom) Nom)	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A	15 mV p-p 25 mV p-p 50 mV p-p	83% 80%	±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D48
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1 8 - 72V (24/48V 4.6 - 13.2V (5V,	Nom) Nom) /, Nom) Nom)	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A ±15V,0.275 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A	15 mV p-p 25 mV p-p 50 mV p-p 15 mV p-p	83% 80% 77%	±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D48 BWR-15/275-D5
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1 8 - 72V (24/48V 4.6 - 13.2V (5V, 9.0 - 18V (12V, 8 - 72V (24/48V	Nom) Nom) /, Nom) Nom) Nom)	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A ±15V,0.275 A ±15V,0.330 A ±15V,0.330 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A 35 mA/0.992 A	15 mV p-p 25 mV p-p 50 mV p-p 15 mV p-p 25 mV p-p 50 mV p-p	83% 80% 77% 84% 81%	±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D48 BWR-15/275-D5 BWR-15/330-D12 BWR-15/330-D48
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1 8 - 72V (24/48V 4.6 - 13.2V (5V, 9.0 - 18V (12V, 8 - 72V (24/48V	Nom) Nom) /, Nom) Nom) Nom) Nom) (, Nom) T, WIDE	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A ±15V,0.275 A ±15V,0.330 A ±15V,0.330 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A 35 mA/0.992 A 15 mA/0.257 A	15 mV p-p 25 mV p-p 50 mV p-p 15 mV p-p 25 mV p-p 50 mV p-p	83% 80% 77% 84% 81%	±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±19% ±0.2% / ±19 ±0.2% / ±1%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D48 BWR-15/275-D5 BWR-15/330-D12 BWR-15/330-D48
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1 8 - 72V (24/48V 4.6 - 13.2V (5V, 9.0 - 18V (12V, 8 - 72V (24/48V 1EW, 3 WATT	Nom) Nom) /, Nom) Nom) Nom) Nom) /, Nom) /, Nom)	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A ±15V,0.275 A ±15V,0.330 A ±15V,0.330 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A 35 mA/0.992 A 15 mA/0.257 A	15 mV p-p 25 mV p-p 50 mV p-p 15 mV p-p 25 mV p-p 25 mV p-p 50 mV p-p	83% 80% 77% 84% 81% (0.8"x0.435")	±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D48 BWR-15/275-D5 BWR-15/330-D12 BWR-15/330-D48
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1 8 - 72V (24/48V 4.6 - 13.2V (5V, 9.0 - 18V (12V, 8 - 72V (24/48V 1EW, 3 WATT 4.5 - 9.0V (5V,	Nom) Nom) /, Nom) Nom) Nom) Nom) /, Nom) /, Nom) /, Nom) Nom) Nom)	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A ±15V,0.275 A ±15V,0.330 A ±15V,0.330 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A 35 mA/0.992 A 15 mA/0.257 A DC POWER CONVE	15 mV p-p 25 mV p-p 50 mV p-p 15 mV p-p 25 mV p-p 25 mV p-p 50 mV p-p ERTERS (1.25")	83% 80% 77% 84% 81% (0.8"x0.435")	±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D48 BWR-15/275-D5 BWR-15/330-D12 BWR-15/330-D48
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1) 8 - 72V (24/48V 1.6 - 13.2V (5V, 9.0 - 18V (12V, 1.6 - 13.2V (5V, 1.6 - 13.2V (24/48V) 1.6 - 13.2V (24/48V) 1.7 - 1	Nom) Nom) (, Nom) Nom) Nom) Nom) Nom) Nom) Nom) Nom)	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A ±15V,0.275 A ±15V,0.330 A ±15V,0.330 A RANGING, DC-	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A 35 mA/0.992 A 15 mA/0.257 A DC POWER CONVE 25 mA/0.714 A 15 mA/0.278 A	15 mV p-p 25 mV p-p 50 mV p-p 15 mV p-p 15 mV p-p 50 mV p-p 50 mV p-p 50 mV p-p 100 mV p-p 100 mV p-p	83% 80% 77% 84% 81% x0.8"x0.435") 70%	±0.2% / ±1% ±0.2% / ±0.5%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D48 BWR-15/275-D5 BWR-15/330-D12 BWR-15/330-D48
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1, 9.0 - 18 (12V, 1, 8.6 - 13.2V (5V, 9.0 - 18V (12V, 8 - 72V (24/48V) 18EW, 3 WATT 4.5 - 9.0V (5V, 9.0 - 18V (12V,	Nom) Nom) (, Nom) Nom) Nom) Nom) Nom) Nom) Nom) Nom)	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A ±15V,0.275 A ±15V,0.330 A ±15V,0.330 A RANGING, DC - 5.0V,0.50 A 5.0V,0.50 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A 35 mA/0.992 A 15 mA/0.957 A DC POWER CONVE 25 mA/0.714 A 15 mA/0.278 A 10 mA/0.069 A	15 mV p-p 25 mV p-p 50 mV p-p 15 mV p-p 25 mV p-p 50 mV p-p 50 mV p-p 100 mV p-p 100 mV p-p 100 mV p-p	83% 80% 77% 84% 81% x0.8"x0.435") 70% 70% 75%	±0.2% / ±1% ±0.2% / ±0.5%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D48 BWR-15/275-D5 BWR-15/330-D12 BWR-15/330-D48 UWR-5/500-D5 UWR-5/500-D12 UWR-5/500-D48
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1) 8 - 72V (24/48V 8.6 - 13.2V (5V, 9.0 - 18V (12V, 8 - 72V (24/48V 16EW, 3 WATT 4.5 - 9.0V (5V, 18 - 72V (48V, 18 - 72V (5V, 18 -	Nom) Nom) Nom) Nom) Nom) Nom) Nom) Nom)	±12V.0.415 A ±12V.0.415 A ±12V.0.415 A ±15V.0.275 A ±15V.0.330 A ±15V.0.330 A RANGING, DC- 5.0V,0.50 A 5.0V,0.50 A ±12V.0.105 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A 35 mA/0.992 A 15 mA/0.257 A DC POWER CONVE 25 mA/0.714 A 15 mA/0.278 A 10 mA/0.069 A 25 mA/0.714 A	15 mV p-p 25 mV p-p 50 mV p-p 15 mV p-p 25 mV p-p 25 mV p-p 25 mV p-p 50 mV p-p 50 mV p-p 100 mV p-p 100 mV p-p 100 mV p-p 75 mV p-p	83% 80% 77% 84% 81% x0.8"x0.435") 70% 75% 70%	±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±0.5% ±0.2% / ±0.5% ±0.2% / ±0.5% ±0.2% / ±0.5% ±0.2% / ±0.5%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D12 BWR-15/275-D5 BWR-15/330-D12 BWR-15/330-D12 UWR-5/500-D5 UWR-5/500-D12 UWR-5/500-D48 BWR-12/105-D5
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1) 8 - 72V (24/48V 4.6 - 13.2V (5V, 9.0 - 18V (12V, 8 - 72V (24/48V 1EW, 3 WATT 4.5 - 9.0V (5V, 9.0 - 18V (12V, 18 - 72V (48V, 4.5 - 9.0V (5V, 9.0 - 18V (12V, 18 - 72V (48V, 18 - 72V (48V, 18 - 72V (48V, 18 - 72V (48V,	Nom) Nom) Nom) Nom) Nom) Nom) Nom) Nom)	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A ±15V,0.275 A ±15V,0.330 A ±15V,0.330 A RANGING, DC- 5.0V,0.50 A 5.0V,0.50 A ±12V,0.105 A ±12V,0.125 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A 35 mA/0.992 A 15 mA/0.257 A DC POWER CONVE 25 mA/0.714 A 15 mA/0.278 A 10 mA/0.069 A 25 mA/0.714 A 15 mA/0.333 A	15 mV p-p 25 mV p-p 15 mV p-p 15 mV p-p 15 mV p-p 25 mV p-p 50 mV p-p 50 mV p-p 100 mV p-p 100 mV p-p 100 mV p-p 100 mV p-p 75 mV p-p 75 mV p-p	83% 80% 77% 84% 81% **********************************	±0.2% / ±1% ±0.2% / ±0.5% ±0.2% / ±0.5% ±0.2% / ±0.5% ±0.2% / ±0.5% ±0.2% / ±0.5%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D48 BWR-15/275-D5 BWR-15/330-D12 BWR-15/330-D48 UWR-5/500-D5 UWR-5/500-D12 UWR-5/500-D48 BWR-12/105-D5 BWR-12/125-D12
9.0 - 18V (12V, 4.7 - 7.0V (5V, 9.0 - 18 (12V, 1 8 - 72V (24/48V 1.6 - 13.2V (5V, 9.0 - 18V (12V, 8 - 72V (24/48V IEW, 3 WATT 4.5 - 9.0V (5V, 9.0 - 18V (12V, 18 - 72V (48V, 18 - 7	Nom) Nom) Nom) Nom) Nom) Nom) Nom) Nom)	±12V,0.335 A ±12V,0.415 A ±12V,0.415 A ±15V,0.275 A ±15V,0.330 A ±15V,0.330 A RANGING, DC 5.0V,0.50 A 5.0V,0.50 A 5.0V,0.50 A ±12V,0.105 A ±12V,0.125 A	40 mA/2.1 A 35 mA/1.00 A 15 mA/0.260 A 40 mA/2.142 A 35 mA/0.992 A 15 mA/0.257 A DC POWER CONVE 25 mA/0.714 A 15 mA/0.278 A 10 mA/0.069 A 25 mA/0.714 A 15 mA/0.333 A 10 mA/0.076 A	15 mV p-p 25 mV p-p 16 mV p-p 15 mV p-p 25 mV p-p 50 mV p-p 50 mV p-p 50 mV p-p 100 mV p-p 100 mV p-p 100 mV p-p 75 mV p-p 75 mV p-p 75 mV p-p 75 mV p-p	83% 80% 77% 84% 81% **********************************	±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±1% ±0.2% / ±0.5% ±0.2% / ±0.5%	BWR-12/335-D5 BWR-12/415-D12 BWR-12/415-D12 BWR-15/275-D5 BWR-15/330-D12 BWR-15/330-D48 UWR-5/500-D5 UWR-5/500-D12 UWR-5/500-D12 UWR-5/500-D48 BWR-12/105-D5 BWR-12/125-D12 BWR-12/125-D48

WIDE INPUT RANGE DC/DC CONVERTERS REWORD OF DOLOMOMAR - BOWN

INPUT	(DUTPUT	NO LOAD/FULL LOAD INPUT CURRENT	LINE/LOAD REGULATION	EFFICIENCY	MODEL	
9-18V dc	5V dc,	3000 mA	30 mA / 1700 mA	0.02% / 1.0%	75%	UPS-5/3000-D12	
9-18V dc	12V dc,	1250 mA	30 mA / 1600 mA	0.02% / 1.0%	78%	UPS-12/1250-D12	
9-18V dc	15V dc,	1000 mA	30 mA / 1600 mA	0.02% / 1.0%	78%	UPS-15/1000-D12	
9-18V dc	5V dc,	5000 mA	30 mA / 2800 mA	0.02% / 1.0%	75%	UPS-5/5000-D12	
9-18V dc	12V dc,	2500 mA	30 mA / 3200 mA	0.02% / 1.0%	78%	UPS-12/2500-D12	
9-18V dc	15V dc,	2000 mA	30 mA / 3200 mA	0.02% / 1.0%	78%	UPS-15/2000-D12	
18-36V dc	5V dc,	3000 mA	20 mA / 810 mA	0.02% / 1.0%	77%	UPS-5/3000-D24	
18-36V dc	12V dc,	1250 mA	20 mA / 780 mA	0.02% / 1.0%	80%	UPS-12/1250-D24	
18-36V dc	15V dc,	1000 mA	20 mA / 780 mA	0.02% / 1.0%	80%	UPS-15/1000-D24	
18-36V dc	5V dc,	5000 mA	20 mA / 1350 mA	0.02% / 1.0%	77%	UPS-5/5000-D24	1. VDP/VST - 0
18-36V dc	12V dc,	2500 mA	20 mA / 1550 mA	0.02% / 1.0%	80%	UPS-12/2500-D24	(Va) VS.81-8.
18-36V dc	15V dc,	2000 mA	20 mA / 1550 mA	0.02% / 1.0%	80%	UPS-15/2000-D24	
9-18V dc	±12V dc,	±625 mA	25 mA / 1520 mA	0.02% / 1.0%	82%	BPS-12/625-D12	4. VBALVST - 8
9-18V dc	±15V dc,	±500 mA	25 mA / 1520 mA	0.02% / 1.0%	82%	BPS-15/500-D12	
9-18V dc	±12V dc,	±1250 mA	25 mA / 3050 mA	0.02% / 1.0%	82%	BPS-12/1250-D12	
9-18V dc	±15V dc,	±1000 mA	25 mA / 3050 mA	0.02% / 1.0%	82%	BPS-15/1000-D12	
18-36V dc	±12V dc,	±625 mA	25 mA / 750 mA	0.02% / 1.0%	84%	BPS-12/625-D24	
18-36V dc	±15V dc,	±500 mA	25 mA / 750 mA	0.02% / 1.0%	84%	BPS-15/500-D24	TAN UT WE
18-36V dc	±12V dc,	±1250 mA	25 mA / 1500 mA	0.02% / 1.0%	84%	BPS-12/1250-D24	
18-36V dc	±15V dc,	±1000 mA	25 mA / 1500 mA	0.02% / 1.0%	84%	BPS-15/1000-D24	1 VE; VO Y = Y.
9-18V dc	+5/±12V dc,	1500/±310 mA	50 mA / 1600 mA	1.0% / 5.0%	78%	TPS-5/1500-12/310	D-D12
9-18V dc	+5/±15V dc,	1500/±250 mA	50 mA / 1600 mA	1.0% / 5.0%	78%	TPS-5/1500-15/250	D-D12
9-18V dc	+5/+12/-5V dc,	1500/+310/500 mA	50 mA / 1470 mA	1.0% / 5.0%	78%	TPS-12/310-5/1500	D-D12
18-36V dc	+5/±12V dc,	1500/±310 mA	40 mA / 780 mA	1.0% / 5.0%	80%	TPS-5/1500-12/310	D-D24
18-36V dc	+5/±15V dc,	1500/±250 mA	40 mA / 780 mA	1.0% / 5.0%	80%	TPS-5/1500-15/250	D-D24
18-36V dc	+5/+12/-5V dc.	1500/+310/500 mA	40 mA / 715 mA	1.0% / 5.0%	80%	TPS-12/310-5/1500	D-D24

MINIATURE DC/DC CONVERTERS

INPUT	OUTPUT	NO LOAD/FULL LOAD INPUT CURRENT	LINE/LOAD REGULATION	OUTPUT NOISE & RIPPLE (MAX) ¹	REFLECTED	ISOLATION VOLTAGE MIN	MODEL
5V dc	12V dc, 80 mA	90 mA / 380 mA	0.3% / 0.4%	20 mV p-p	15 mA p-p	300V dc	UPS-12/80-D5
5V dc	15V dc, 65 mA	90 mA / 380 mA	0.3% / 0.4%	20 mV p-p	15 mA p-p	300V dc	UPS-15/65-D5
5V dc	±12V dc, ±40 mA	90 mA / 380 mA	0.3% / 0.4%	20 mV p-p	15 mA p-p	300V dc	BPS-12/40-D5
5V dc	±15V dc, ±33 mA	90 mA / 380 mA	0.3% / 0.4%	20 mV p-p	15 mA p-p	300V dc	BPS-15/33-D5

NOTE 1. 15µF capacitor across each output.

PLUG-IN ADAPTERS

OUTPUT	RATED OUTPUT	LINE/LOAD	OUTPUT	ad Ameri
VOLTAGE	CURRENT	REGULATION	RIPPLE (MAX)	MODEL
4.8 to 5.3V dc	500mA	0.3% / 0.3%	8 mV RMS	UPA-5/500
11.5 to 12.5V dc	200mA	0.3% / 0.3%	8 mV RMS	UPA-12/200

1W - 10W DC/DC CONVERTERS

INPUT	OUTPUT	NO LOAD/FULL LOAD REGULATION	LINE/LOAD REGULATION	TEMP. COEF.	OUTPUT NOISE & RIPPLE (MAX)	REFLECTED RIPPLE MAX	MODEL
12V	5V, 200 mA	100 mA / 220 mA	0.05% / 0.1%	0.02% / °C	20 mV p-p	1 V mA p-p	UPM-5/200-D12
28V	5V, 200 mA	40 mA / 100 mA	0.05% / 0.1%	0.02% / °C	20 mV p-p	5 mA p-p	UPM-5/200-D28
5V	12V, 80 mA	220 mA / 500 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	25 mA p-p	UPM-12/80-D5
5V	24V, 40 mA	220 mA / 500 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	25 mA p-p	UPM-24/40-D5
12V	24V, 40 mA	95 mA / 210 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	10 mA p-p	UPM-24/40-D12
5V	28V, 25 mA	160 mA / 400 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	20 mA p-p	UPM-28/25-D5
12V	28V, 25 mA	80 mA / 180 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	9 mA p-p	UPM-28/25-D12
5V	5V,600 mA	125 mA / 935 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	32 mA p-p	UPS-5/600-D5
12V	5V,600 mA	50 mA:/364 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	24 mA p-p	UPS-5/600-D12
28V	5V, 600 mA	20 mA / 135 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	21 mA p-p	UPS-5/600-D28
5V	12V,250 mA	140 mA / 863 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	31 mA p-p	UPS-12/250-D5
28V	12V,250 mA	25 mA / 125 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	21 mA p-p	UPS-12/250-D2
2V	24V, 125 mA	125 mA / 530 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	26 mA p-p	UPM-24/125-D1
5V	28V, 100 mA	300 mA / 1350 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	67 mA p-p	UPM-28/100-D5
2V	28V, 100 mA	125 mA / 500 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	25 mA p-p	UPM-28/100-D1
2V	5V, 1000 mA	50 mA / 640 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	54 mA p-p	UPS-5/1000-D1
2V 24V	5V, 1000 mA	25 mA / 320 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	22 mA p-p	UPS-5/1000-D1
28V	5V, 1000 mA	20 mA / 275 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	22 mA p-p	UPS-5/1000-D2
5V	12V, 470 mA	500 mA / 2000 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	61 mA p-p	UPS-12/470-D5
4V	12V,470 mA	120 mA / 415 mA	0.02% / 0.04%	0.02% / °C	50 mV p-p	26 mA p-p	UPS-12/470-D3
5V	24V,210 mA	500 mA / 2000 mA	0.05% / 0.01%	0.02% / °C	50 mV p-p	100 mA p-p	UPM-24/210-D5
2V	24V,210 mA	200 mA / 830 mA	0.05% / 0.01%	0.02% / °C	50 mV p-p	42 mA p-p	UPM-24/210-D1
24V	5V, 2000 mA	45 mA / 640 mA	0.02% / 0.05%	0.02% / °C	50 mV p-p	32 mA p-p	UPS-5/2000-D2
28V	5V,2000 mA	40 mA / 550 mA	0.02% / 0.05%	0.02% / °C	50 mV p-p	33 mA p-p	UPS-5/2000-D2
V8V	5V,2000 mA	20 mA / 320 mA	0.02% / 0.05%	0.02%/°C	50 mV p-p	32 mA p-p	UPS-5/2000-D4
5V	±12V, ±25 mA	150 mA /350 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	17 mA p-p	BPM-12/25-D5
2V	±12V, ±25 mA	80 mA /165 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	8 mA p-p	BPM-12/25-D12
28V	±12V, ±25 mA	30 mA /65 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	3 mA p-p	BPM-12/25-D28
5V	±15V, ±25 mA	160 mA /400 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	20 mA p-p	BPM-15/25-D5
2V	±15V, ±25 mA	80 mA /80 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	9 mA p-p	BPM-15/25-D12
28V	±15V, ±25 mA	30 mA /80 mA	0.05% / 0.05%	0.02% / °C	20 mV p-p	4 mA p-p	BPM-15/25-D28
5V	±12V, ±125 mA	130 mA /965 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	34 mA p-p	BPS-12/125-D5
2V	±12V, ±125 mA	55 mA /380 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	23 mA p-p	BPS-12/125-D1
28V	±12V, ±125 mA	25 mA /145 mA	0.02% / 0.02%	0.01%/°C	35 mV p-p	21 mA p-p	BPS-12/125-D2
5V	±15V, ±100 mA	135 mA /955 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	33 mA p-p	BPS-15/100-D5
2V	±15V, ±100 mA	55 mA /376 mA	0.02% / 0.02%	0.01%/°C	35 mV p-p	24 mA p-p	BPS-15/100-D1
V8	±15V, ±100 mA	25 mA /143 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	21 mA p-p	BPS-15/100-D2
5V	±15V, ±150 mA	450 mA /1750 mA	0.05% / 0.05%	0.005% / °C	25 mV p-p	87 mA p-p	BPM-15/150-D5
4V	±15V, ±150 mA	80 mA /350 mA	0.05% / 0.05%	0.005% / °C	25 mV p-p	18 mA p-p	BPM-15/150-D2
8V	±15V, ±150 mA	70 mA /300 mA	0.05% / 0.05%	0.005% / °C	25 mV p-p	15 mA p-p	BPM-15/150-D2
5V	±12V, ±230 mA	130 mA /1650 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	58 mA p-p	BPS-12/230-D5
2V	±12V, ±230 mA	55 mA /690 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	24 mA p-p	BPS-12/230-D1
4V	±12V, ±230 mA	25 mA /340 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	24 mA p-p	BPS-12/230-D2
8V	±12V, ±230 mA	25 mA /300 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	23 mA p-p	BPS-12/230-D2
5V	±15V, ±190 mA	135 mA /1700 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	60 mA p-p	BPS-15/190-D5
2V	±15V, ±190 mA	55 mA /710 mA	0.02% / 0.02%	0.01%/°C	35 mV p-p	25 mA p-p	BPS-15/190-D1
4V	±15V, ±190 mA	30 mA /350 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	25 mA p-p	BPS-15/190-D2
8V	±15V, ±190 mA	25 mA /300 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	24 mA p-p	BPS-15/190-D2
8V	±15V, ±190 mA	14 mA /180 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	25 mA p-p	BPS-15/190-D4
5V	±12V, ±420 mA	980 mA /4000 mA	0.05% / 0.05%	0.02% / °C	50 mV p-p	120 mA p-p	BPM-12/420-D5
2V	±12V, ±420 mA	340 mA /1530 mA	0.05% / 0.05%	0.02% / °C	50 mV p-p	46 mA p-p	BPM-12/420-D1
4V	±12V, ±420 mA	175 mA /760 mA	0.05% / 0.05%	0.02% / °C	50 mV p-p	23 mA p-p	BPM-12/420-D2
8V	±12V, ±420 mA	130 mA /650 mA	0.05% / 0.05%	0.02% / °C	50 mV p-p	20 mA p-p	BPM-12/420-D2
5V	±15V, ±412 mA	260 mA /3700 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	130 mA p-p	BPS-15/412-D5
2V	±15V, ±412 mA	110 mA /1590 mA	0.02% /0.02%	0.01% / °C	35 mV p-p	54 mA p-p	BPS-15/412-D1
4V	±15V, ±412 mA	55 mA /770 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	38 mA p-p	BPS-15/412-D2
8V	±15V, ±412 mA	45 mA /660 mA	0.02% / 0.02%	0.01% / °C	35 mV p-p	39 mA p-p	BPS-15/412-D2

1W - 10W AC/DC SUPPLIES

OUTPUT VOLTAGE	RATED OUTPUT CURRENT	VOLTAGE ACCURACY	LINE REGULATION	LOAD REGULATION	OUTPUT RIPPLE (MAX)	OUTPUT	MODEL
5V dc	250 mA	1.0%	0.05%	0.1%	1 mV RMS	0.05Ω	UPM-5/250
5V dc	500 mA	1.0%	0.05%	0.1%	1 mV RMS	0.05Ω	UPM-5/500
5V dc	1000 mA	1.0%	0.05%	0.1%	1 mV RMS	0.01Ω	UPM-5/1000
5V dc	1000 mA	2.0%	0.25%	0.25%	1 mV RMS	0.01Ω	UPM-5/1000B
5V dc	2000 mA	1.0%	0.05%	0.1%	1 mV RMS	0.005Ω	UPM-5/2000
±5V dc	±250 mA	1.0%	0.05%	0.1%	1 mV RMS	0.05Ω	BPM-5/250
±5V dc	±500 mA	1.0%	0.05%	0.1%	1 mV RMS	0.03Ω	BPM-5/500
±12V dc	±100 mA	2.0%	0.02%	0.05%	2 mV RMS	0.10Ω	BPM-12/100
±12V dc	±200 mA	1.0%	0.02%	0.05%	2 mV RMS	0.05Ω	BPM-12/200
±15V dc	±60 mA	1.0%	0.02%	0.05%	2 mV RMS	0.20Ω	BPM-15/60
±15V dc	±100 mA	1.0%	0.02%	0.05%	2 mV RMS	0.10Ω	BPM-15/100
±15V dc	±200 mA	1.0%	0.02%	0.05%	2 mV RMS	0.05Ω	BPM-15/200
±15V dc	±300 mA	1.0%	0.02%	0.05%	2 mV RMS	0.03Ω	BPM-15/300
±12/5V dc	±100 / 500 mA	1.0%	0.02% / 0.05%	0.05% / 0.1%	2 mV /1 mV RMS	0.10 / 0.05Ω	TPM-12/100-5/500
±12/5V dc	±150 / 1000 mA	1.0%	0.02% / 0.05%	0.05% / 0.1%	2 mV /1 mV RMS	Θ 0.10 / 0.05Ω	TPM-12/150-5/1000
±15/5V dc	±100 / 500 mA	1.0%	0.02% / 0.05%	0.05% / 0.1%	2 mV /1 mV RMS	0.10 / 0.05Ω	TPM-15/100-5/500
±15/5V dc	±150 / 1000 mA	1.0%	0.02% / 0.05%	0.05% / 0.1%	2 mV /1 mV RMS	0.10 / 0.05Ω	TPM-15/150-5/1000

CHASSIS MOUNT AC/DC SUPPLIES

		Q=0.2501_200				
OUTPUT	RATED OUTPUT	VOLTAGE	LINE/LOAD REGULATION	OUTPUT RIPPLE (MAX)	OUTPUT	MODEL
5V dc	250 mA	1.0%	0.05% / 0.1%	1 mV p-p	0.05Ω	UCM-5/250
5V dc	500 mA	1.0%	0.05% / 0.1%	1 mV p-p	0.05Ω	UCM-5/500
5V dc	1000 mA	1.0%	0.05% / 0.1%	1 mV p-p	0.01Ω	UCM-5/1000
5V dc	2000 mA	1.0%	0.05% / 0.1%	1 mV p-p	0.005Ω	UCM-5/2000
±15V dc	±60 mA	1.0%	0.02% / 0.05%	2 mV p-p	0.20Ω	BCM-15/60
±15V dc	±100 mA	1.0%	0.02% / 0.05%	2 mV p-p	0.10Ω	BCM-15/100
±15V dc	±200 mA	1.0%	0.02% / 0.05%	2 mV p-p	0.05Ω	BCM-15/200
±15V dc	±300 mA	1.0%	0.02% / 0.05%	2 mV p-p	0.05Ω	BCM-15/300

HIGH EFFICIENCY AC/DC SUPPLIES

OUTPUT	RATED OUTPUT	VOLTAGE	LINE/LOAD REGULATION	OUTPUT RIPPLE (MAX)	OUTPUT	MODEL
5V dc	5000 mA	80%	0.05% / 0.1%	50 mV p-p	0.002Ω	USM-5/5
5V dc	5000 mA	80%	0.05% / 0.1%	50 mV p-p	0.002Ω	USC-5/5

HIGH VOLTAGE MODULES

OUTPUT VOLTAGE	RATED OUTPUT CURRENT	VOLTAGE ACCURACY	LINE/LOAD REGULATION	OUTPUT RIPPLE (MAX)	OUTPUT IMPEDANCE	MODEL
±120V dc	25 mA	1.0%	0.05% / 0.2%	10 mV RMS	5.0Ω	BPM-120/25
±150V dc	20 mA	1.0%	0.05% / 0.2%	10 mV RMS	5.0Ω	BPM-150/20
±180V dc	16 mA	1.0%	0.05% / 0.2%	10 mV RMS	5.0Ω	BPM-180/16

VOLTAGE CALIBRATORS

MODEL	OUTPUT RANGE	SETTABLE INCREMENTS	ACCURACY	SOURCE/SINK CURRENT	DISPLAY	POWER	CASE/ MOUNTING
DVC-350A	±1.2000 or ±12.000	100 μV or 1 mV	0.015%	20 mA	4 1/2 DIGIT LCD	9V Battery or 115 VAC Adaptor (optional)	5.75 X 3.60 X 1.29 in (146 X 91 X 33 mm) HAND HELD
DVC-8500	± 19.999	1 mV	0.005%	25 mA	4 1/2 DIGIT MECHANICAL	100 VAC (J) 115 VAC (A) 230 VAC (E)	5.59 X 2.11 X 5.78 (142 X 54 X 147 mm)

DIGITAL PANEL METERS

	Model	Power	Std. Input	Case	Features
	DM-3100L-1	+5Vdc	±2Vdc	В	Short Depth Case
	DM3100N-1	+5Vdc	±2Vdc	A	Provisions for 4-20 mA input
	DM-3101-1	+5Vdc	±2Vdc	Α	High Intensity Display
3.5 Digit LED	DM3103-1	+5Vdc	±2Vdc	В	High Intensity Display
old Digit ELD	DM-31-1	+5Vdc	±2Vdc		Low Cost - Uncased
	DM-3100B-1	115/230VAC	±2Vdc	В	Short Depth Case
	DM3104-1	115/230VAC	±2Vdc	В	High Intensity Display
	DM-9115-1	115/230VAC	±2Vdc	С	NEMA 12 (Vibration Std)
	DM-4101N-1	+5Vdc	±2Vdc	Α	High Intensity Display
	DM-9200-1	+5Vdc	±2Vdc	С	NEMA 12 (Vibration Standard)
	DM-4100D-1	+5Vdc	±2Vdc	Α	High Speed Sampling Serial/ParallelBCD Output
4.5 Digit LED	DM-4101D-1	+5Vdc	±2Vdc	A	High Intensity Display Serial/Parallel BCD Output
	DM-4101L-1	+5Vdc	±2Vdc	В	Serial BCD Output
	DM-4200-1	+5Vdc	±2Vdc	Α	Serial BCD Output
	DM-9215-1	115/230VAC	±2Vdc	С	NEMA 12 (Vibration)
	DM-3100U-1	+5/9Vdc	±2Vdc	A	Units Display (Batt. Pwr.)
	DM-3100X-1	+5/9Vdc	±2Vdc	В	Battery Powered
3.5 Digit LCD	DM-3102A	+5Vdc	±2Vdc	Α	Units Display Autoranging (200 mV - 200V)
	DM-LX3-1	+5Vdc	±2Vdc		Low Cost - Uncased
	DM-3100U2	115VAC	±2Vdc	А	Units Display
4.5 Digit LCD	DM-4105-1	+5Vdc	±2Vdc	Α	Serial BCD OUT (Batt. Pwr.)
Other Digital	DBM-20	+5Vdc	Adjustable	А	20 Segment LED Bar Graph w/ TTL Outputs
Panel Products	PC-6	+5Vdc		В	10 MHz Counter/Timer

NOTE: Input range kits are available for all DM-3100, 4100, and 9000 Series DPMs

			GMUTAN		
	SOURCEISHIK CURRENT	ACCURACY			
				±1,3000 or ±12,000	
					DVC-8500

3.5 DIGIT, MINIATURE VOLTAGE METERS OF THOO SERVING METERS OF THE SERVING METERS OF THE

	Model	Power	Std. Input	Case	Features	
	DMH-30PC-0	+5Vdc	±200 mV	nil sisEjmos	Encapsulated (Plastic), 24-pin DDIP	
NEW	DMH-30PC-1	+5Vdc	±2Vdc	OWERE BUT	Encapsulated (Plastic), 24-pin DDIP	
Self-Contained	DMH-30PC-2	+5Vdc	±20Vdc	leng Elnem	Encapsulated (Plastic), 24-pin DDIP	
3.5 Digit LED Ultra-Miniature	DMH-30MM-0	+5Vdc	±200mV	E E	Hermetically Sealed, Quartz window,	
	DMH-30MM-1	+5Vdc	±2Vdc	E	Ceramic 24-pin DDIP,	
	DMH-30MM-2	+5Vdc	±20Vdc	E	MIL-D-87157 Temperature Range	
	DMS-30PC-0-RL	+5Vdc	±200mV	F	Control Blooks Control Students Solids	
	DMS-30PC-1-RL	+5Vdc	±2Vdc	on su Ed well	Sealed, Plastic Case,	
	DMS-30PC-2-RL	+5Vdc	±20Vdc	out believe	- Low Intensity RED Display	
	DMS-30PC-0-RS	+5Vdc	±200mV	For religibility	e front carrel or vig the social pod:	
	DMS-30PC-1-RS	+5Vdc	±2Vdc	shae (Elda-M	Sealed, Plastic Case,	
	DMS-30PC-2-RS	+5Vdc	±20Vdc	taed sRt ylgr	Standard Intensity RED DISPLAY	
	DMS-30PC-0-RH	+5Vdc	±200mV	F	Sealed, Plastic Case,	
	DMS-30PC-1-RH	+5Vdc	±2Vdc	F	High Intensity RED DISPLAY	
	DMS-30PC-2-RH	+5Vdc	±20Vdc	F	night intensity NED DISPLAT	
NEW	DMS-30PC-0-GL	+5Vdc	±200mV	F		
Self-Contained	DMS-30PC-1-GL	+5Vdc	±2Vdc	F	Sealed, Plastic Case,	
Single-Piece	DMS-30PC-2-GL	+5Vdc	±20Vdc	F	Low Intensity GREEN DISPLAY	
3.5 Digit LED	DMS-30PC-0-GS	+5Vdc	±200mV	F	0 1 1 5 1 1 0	
	DMS-30PC-1-GS	+5Vdc	±2Vdc	F	Sealed, Plastic Case,	
	DMS-30PC-2-GS	+5Vdc	±20Vdc	F	Standard Intensity GREEN DISPLA	
	DMS-30PC-0-BS	+5Vdc	±200mV	F	2 7 1 21 11 2	
	DMS-30PC-1-BS	+5Vdc	±2Vdc	F	Sealed, Plastic Case,	
	DMS-30PC-2-BS	+5Vdc	±20Vdc	F	- Standard Intensity BLUE DISPLAY	
	DMS-30PC-0-YS	+5Vdc	±200mV	F	Cooled Disable Coole	
	DMS-30PC-1-YS	+5Vdc	±2Vdc	F	Sealed, Plastic Case,	
	DMS-30PC-2-YS	+5Vdc	±20Vdc	F	Standard Intensity YELLOW DISPLA	
	DMS-30PC-0-OH	+5Vdc	±200mV	F	Caslad Blastic Casa	
	DMS-30PC-1-OH	+5Vdc	±2Vdc	F	Sealed, Plastic Case,	
	DMS-30PC-2-OH	+5Vdc	±20Vdc	F	High Intensity ORANGE DISPLAY	

- CASE SIZES

 A 2.53"W x 3.34"D x 0.94"H (64 x 85 x 24 mm)

 B 3.00"W x 2.15"D x 1.76"H (76 x 55 x 45 mm)

 C 3.60"W x 3.57"D x 1.67"H (91 x 91 x 42 mm)

 D 1.89"W x 1.22:D x 0.94"H (48 x 31 x 24 mm)

 E 1.29"W x 0.25"D x 0.80"H (33 x 6 x 20 mm)

 f 2.19"W x 0.54"D x 0.95"H (55 x 14 x 24 mm)

PROCESS MONITORS/CONTROLLERS

DATEL designs and manufactures a complete line of Process Monitors/Controllers supporting Thermocouples, RTDs, Strain Gages, and Voltage/Current signal inputs. These low cost units contain such features as built-in RS-232 serial port (RS-422/485 optional), user-selectable setpoint outputs (up to 4 discrete and 1 optional Analog), built-in configuration and setup command set, fully isolated inputs (to 1500 Volts, typ.) and a six-character, 14-segment vacuum fluorescent display (blue-green). Each model may be configured and operated from either the front panel or via the serial port. For reliability, accuracy, and low price, DATEL's PM-5000 series Process Monitors/Controllers are simply the best.

PANEL MOUNT THERMAL PRINTERS

Model Co	olumi	Input Input Inferface	Power (Note 1)	Character Set	Case	Special Features	
		None	Vð.	Numeric			
DPP-Q7	7	BCD	115/230 VAC	(decimal or hex) plus sign	Α	Simple DATEL DPM interface	
APP-20A1	20	Parallel	115/230 VAC	96 char ASCII	A	Inverted, tall character options	
APP-20D1	20	Parallel	+12 Vdc	96 char ASCII	Α	Inverted, tall character options	
APP-A20A21	20	RS-232/20 mA loop	115/230 VAC	96 char ASCII	Α	Inverted, tall, condensed	
APP-A20D21	20	RS-232/20 mA loop	+12 Vdc	96 char ASCII	Α	character options	
APP-20A3	20	IEEE-488	115/230 VAC	96 char ASCII	А	Inverted, tall character options	
MPP-20A	20	RS-232/Parallel	115 VAC	127 char ASCII	A	Notice	
MPP-20D	20	RS-232/Parallel	+12 Vdc	127 char ASCII	Α	Inverted, tall, enhanced character options	
MPP-20E	20	RS-232/Parallel	230 VAC	127 char ASCII	A	enovi	
APP-48A1	48	Parallel	115 VAC	192 char ASCII	В	Inverted character options	
APP-48A2	48	RS-232	115/230 VAC	192 char ASCII	В	Inverted character options	
APP-48D2	48	RS-232	+12 Vdc	192 char ASCII	В	Inverted character options	
APP-48A3	48	IEEE-488	115/230 VAC	192 char ASCII	В	Inverted character options	
APP-48D3	48	IEEE-488	+12 Vdc	192 char ASCII	В	Inverted character options	
APP-M20A1	20	Parallel	115/230 VAC	96 char ASCII	С		
APP-M20A21	20	RS-232	115/230 VAC	96 char ASCII	С	Hardened for shock, vibration	
APP-M20D21	20	RS-232	+12 Vdc	96 char ASCII	С	and humidity (mobile)	
APP-M48D1	48	Parallel	+12 Vdc	192 char ASCII	D		
APP-M48D2	48	RS-232	+12 Vdc	192 char ASCII	D		
NEW GPP-42	42	Serial/Parallel	115/230 VAC (50/60 Hz)	256 char ASCII	8 g1	8 International Character Sets High Res Graphics, 200 Line Buffer CUSTOM	
						CHARACTERS AVAILABLE	

NOTE 1. 100 VAC versions available for most models ("J" version); European line cords also available ("E" version). Consult factory, CASES

A = 4.44"W x 2.76"H x 8.00"D

B = 8.20"W x 2.84"H x 8.14"D

C = 5.36"W x 3.74"H x 8.00"D (Including mobile-mount brackets)

D = 9.25"W x 3.25"H x 10.44"D (Including mobile-mount brackets)

E = 8.20"W x 2.84"H x 10.50"D

MULTIBUS I BOARDS

Model	A/D Channels	A/D Resolution	A/D Spee	ed PGA	In/Out Ranges	D/A Channels	D/A Resolution	Notes lated
ST-702	8 D Isolated 1 KV	13 Bits	33 ms	x50, x100	5V Down to 50 mV	None		Direct thermocouple connections, on board linearize and CJC
ST-711 ST-732	32S / 16D	12 Bits	20 µs	x1 to x1 K Software	5V, 10V Down to 50 mV	2 (732)	12 Bits	On board start timer, Interrupt
ST-703	None	Par between	A	fiDaA seto 89	2.5V to 10V 4 to 20 mA	4 Isolated	12 Bits	350V Isolation per channel
ST-724	None	lini denevit	A	96 onar ABCII 98 onar ABCII	5V, 10V 4 to 20 mA	4	12 Bits	APP-A20021
ST-728	None	Ref between	A	127 char ASCII 127 char ASCII	5V, 10V 4 to 20 mA	4 or 8	12 Bits	MPP-20A MPP-20Q
ST-716	None		A	127 char ASOII	5V, 10V	4 or 8	16 Bits	
ST-705	8 D	13 Bits	33 ms	x1 to x200	4V Down to 20 mV	None	9A 85	RS-232 subsystem and CPU, Direct thermocouple connection, linearize, CJC
ST-519	TTL discrete I/O	Inverted char	8	NOBA 1865 SRT	SAV OS STATE	304-333 404-333	86	72 TTL lines, In/Out, Interrupt

PC/AT A/D-D/A BOARDS

Model	A/D Channels	A/D Resolution	A/D Speed	Prog. Gain Amplifier	In/Out Ranges	D/A Channels	D/A Resolution	Notes
PC-414A	4 SE w/simul sampling	12 Bits	1.5 MHz	x1 or x10	5V, 10V,	C) alebon iso	12 Bits	NOTE 1. 189 VAC versions a
PC-414B	4 SE	14 Bits	500 KHz		5V, 10V	1	12 Bits	4K-sample FIFO memory, analog trigger,
PC-414C	4 SE	12 Bits	1 MHz		5V, 10V	nuam-elfacia)	12 Bits	parallel data port, counter/timer, DMA
PC-414D	1 SE	12 Bits	4 MHz		1V	1	12 Bits	Vectored interrupt
PC-414E	16 SE	12 Bits	400 KHz	x1 to x100	10V to 100 mV	1	12 Bits	
PC-430A	4 SE w/simul sampling	12 Bits	1.5 MHz	x1 or x10	5V, 10V, 1V	None		Local 32 MHZ 320C30
PC-430B	4 SE	14 Bits	500 KHz		5V, 10V	None		DSP, 512K memory,DMA Fast "no prgmg"
PC-430C	4 SE	12 Bits	1 MHz		5V, 10V	None		command executive,
PC-430D	1 SE	12 Bits	4 MHz		1V	None		DSP library, Vectored interrupt
PC-430E	16 SE	12 Bits	400 KHz	x1 to x100	10V to 100 mV	None		
PC-462	4 Monitor Channels	12 Bits	25 KHz	-	0 to ±15V or 5V, 10W	2 Isolated, V or I mode	12 Bits	Programmable power DAC
-								

VMEBUS A/D - D/A BOARDS A YTLIBALISH HOW

Model	A/D Channels	A/D Resolution	A/D Speed	Prog. Gain Amplifier	In/Out Ranges	D/A Channels	D/A Resolution	Notes AG
DVME-601A	drig Append	12 Bits	20 μs	E STOTIO JE	Hat ond, EAT	DIGWO!	-enoucen	00010 0011
DVME-601B	16 S/ 8 D	12 Bits	4 µs	iass H Co	NL-STD-883 C	N - 1 14	OPTIO	68010 CPU 256K memory
DVME-601C	Expandable	16 Bits	35 µs	x1 to x1K	5, 10V down to 50 mV	None		RS-232, 5 TTL I/O Counter/Timers
DVME-601D	to 256	16 Bits	: 400 ms	nice Supp	down to 50 mv	by the D	DEPLIA	"No prgmg" Command Exe
DVME-601E	PECRE-IN-1	12 Bits	2 μs	With Mills	COMPLIANCE STALLER	in FULL	ESTERONISCE AS	Vectored interrupt
DVME-611/612A		12 Bits	20 μs	1211022	2112 22 22 22 22 22 22 22 22 22 22 22 22	D110 , AU		CARROLL THE CARROLL SHEET
DVME-611/612B	equirements	12 Bits	4 μs	v of MIL-S	ncise overviev	oo a eevi	g harlo gr	
DVME-611/612C	32 S / 16 D	16 Bits	35 µs	x1 to x128	5V, 10V	2 (612)	12 Bits	Short I/O
DVME-611/612D	Expandable to 256	16 Bits	400 ms	Software Pamble	down to 50 mV			SA:16, SD:16 Vectored interrupt
DVME-611/612E	10 256	12 Bits	2 μs	- gillolo				
DVME-611/612F		14 Bits	4 µs		00	HTAM		
DVME-613	16 S/8 D Isolated 500V	12-14-16 Bits	40 μs	x1 to x100	5V, 10V down to 50 mV	None	Wellnoo 20	8 In/8 Out TTL, SA:24, SD:16 Start timer, interrupt
DVME-624	None	3	es device inperature	ot beiny	2.5 to 10V 4 to 20 mA	4 Isolated	12 Bits	SA:16, SD:16 350V Isolation
DVME-626	None	reb la son	nes recista	Daterm	5V, 10V	6 01	16 Bits	SA:16, SD:16
DVME-628	None	lares due l	e extreme	mayes a	2.5 to 10V 4 to 20 mA	8	12 Bits	SA:16, SD:16
DVME-641	32 S/16 D	Slave MUX board	6 μs Settling	Ellminal	5V, 10V 4 to 20 mA	,10	0S borlleM	Slave input expander to 601, 611, 612
DVME-643	8D Isolated	Slave MUX board	2.5 ms Settling	x50, x100	5V Down to 50 mV	C F JA HOII	bnoo ise i	Slave input expander to 601, 611, 612
DVME-645	16 S/8D	Slave MUX board	6 μs Settling	Stresser S eliminat	5V, 10V	15, tion B, 16	Wellind 10 Fest Gond	Simultaneous Sample/Hold Expander to 601, 611, 612
DVME-614A	4 Simul. S/H	12 Bits	1.5 MHz	x1 or x10	1V, 5V, 10V		and The second	4K-sample FIFO memory
DVME-614B	4 S	14 Bits	500 KHz	Static re	5V, 10V	s perform	Static Test	Analog trigger
DVME-614C	4 S	12 Bits	1 MHz		5V, 10V	1	12 Bits	Parallel data port Sample counter/timer
DVME-614D	15	12 Bits	4 MHz	semile I	5V, 10V	at +25 °C ing tempi	Performed milh, opera	Simultaneous sampling
DVME-614E	16 S	12 Bits	400 KHz	x1 to x100	1, 5, 10V, 100mV	A STATE OF THE STA		Vectored interrupt
DVME-630A	4 Simul. S/H	12 Bits	1.5 MHz	x1 or x10	1V, 5V, 10V	id, tion A tile	Method 10	Seal Fine
DVME-630B	48	14 Bits	500 KHz	o togay	5V, 10V	inil) A-noù I≤ lo amul	Fest Condi Sec. for vo	Local 32 MHz 320C30
DVME-630C	48	12 Bits	1 MHz		5V, 10V	None	9nd 5_x 10	DSP, 512 K Memory, Fast "no prgmg" command
DVME-630D	18	12 Bits	4 MHz		5V, 10V	LD chis.	0 to <10 (gross)	Executive, Interrupt DSP library
DVME-630E	16 S	12 Bits	400 KHz	x1 to x100	1, 5, 10V, 100mV		(Manual B)	DOF HOTATY
DVME-622	None	nis, design manship o documen	that maler , and work ocurement	insured marking cable of	5V, 10V	16 Simul. Update	12 Bits	3 μs settling per channel
DVME-621	None				5V, 10V @ 100 mA or 160 mA	4 Isolated	12 Bits	Power DAC's, voltage or current mode, active drivers, 500V isolation

HIGH-RELIABILITY PROGRAMS AND A CLASSICAL PROGRAMS

DATEL is committed to meeting the demading requirements of military, aerospace, and severe environment applications. Toward that end, DATEL offers several options in its quality program.

OPTION 1 — MIL-STD-883 Class H Compliant Devices

DATEL Inc. is **QUALIFIED** by the Defense Electronics Supply Center for the manufacture of selected hybrid microcircuits in **FULL COMPLIANCE** with Military Specification **MIL-H-38534** (Hybrid Microcircuits), FSC 5962, and **MIL-STD-1772 SECTION B**.

The accompanying chart gives a concise overview of MIL-STD-883 screening requirements and their implications for DATEL customers.

TEST	METH	IOD		21/2	PURPOSE		de l'ori
Internal Visual (Precap)	Method 2017	SV, 10V			s with poten lectrical, or t		
Stabilization Bake	Method 1008, Test Condition C, 24	4 hrs. at 150 °C		es device mperature	failure due t s.	to storage	at ele-
Temperature Cycling	Method 1010, Test Condition C, -69	5 to 150 °C	posure t	o extreme	ance of devi temperatur illures due to	e changes	. Re-
Constant Acceleration	Method 2001, Test Condition A, Y	AXIS, 5 kg.		ical weakr	al failures di ness not det		
Burn-in Test	Method 1015, Test Condition B, 16	60 hrs. at +125 °C			at temperatu ortality failur		to ana a
PDA 10%	Static Tests perform	ed at +25 °C			allowable - greater thar		s with
Final Electrical Test	Performed at +25 °C min. operating temper			that device arameters.		specified o	E-814D
Seal Fine and Gross	Method 1014, Test Condition A (fin Sec. for volume of ≥0		nates de	egradation	y of device p due to abso taminants.		
Fast "no promp" commis	and 5 x 10-8 cc/Sec. ≥1.0 to <10.0 cm ³ . T						0008-5
Executive, Interrupt 058P fibrary	(gross)	rest Condition C					0000-3
External Visual	Method 2009		marking	, and work	ials, design manship co t documenta	nform with	

MIL-STD-883 compliancy also requires that complete documentation be available to support the product. An analysis of the design along with element and package evaluations are performed to ensure a high quality product. The manufacturing process is also stringently controlled in order to obtain the high quality level.

Initial qualification requires passing the MIL-STD-883 test for groups A, B, C, and D. After initial qualification, groups A & B are tested for all lots. Group C is tested initially and to qualify any product changes which may occur. Group D testing is also performed initially and at intervals not exceeding 6 months for future lots.

MIL-STD-883 PRODUCTS

ANALOG-TO-DIGITAL CONVERTERS

MODEL NO.	RESOLUTION	CONVERSION TIME	LINEARITY
ADC-HZ12B/883B	12 Bits	8 μSec	±1/2 LSB
ADC-HX12B/883B	12 Bits	20 μSec	±1/2 LSB
ADC-816/883B	10 Bits	800 nSec	±1/2 LSB
ADC-511/883B	12 Bits	1 μSec	±3/4 LSB
ADC-228/883B	8 Bits	4 nSec	±1/2 LSB
ADC-208/883B	8 Bits	50 nSec	±1.5 LSB
ADC-207/883B	7 Bits	50 nSec	±1 LSB
ADS-111/883B	12 Bits	500 KHz	±3/4 LSB

DIGITAL-TO-ANALOG CONVERTERS

MODEL NO.	RESOLUTION	SETTLING TIME	LINEARITY
DAC-HZ12B/883B	12 Bits	3 μSec	±1/2 LSB
DAC-HP16B/883B	16 Bits	15 μSec	±2 LSB
DAC-HK12B/883B	12 Bits	3 μSec	±1/2 LSB
DAC-HF12/883B	12 Bits	50 nSec	±1/2 LSB
DAC-HF10/883B	10 Bits	25 nSec	±1/2 LSB
DAC-HF8/883B	8 Bits	25 nSec	±1/2 LSB

DATA ACQUISITION SUBSYSTEMS

MODEL NO.	RESOLUTION	INPUT CHANNELS	THROUGHPUT
HDAS-76/883B	12 Bits	4 Diff.	75 KHz
HDAS-75/883B	12 Bits	8 SE	75 KHz
HDAS-16/883B	12 Bits	16 SE	50 KHz
HDAS-8/883B	12 Bits	8 Diff.	50 KHz

MULTIPLEXERS

MODEL NO.	CHANNELS	SETTLING TIME	ACCESS TIME	ć
MX-826/883B	8 SE	200 nSec	70 nSec	

SAMPLE-AND-HOLD AMPLIFIERS

MODEL NO.	LINEARITY	ACQUISITON TIME	BANDWIDTH
SHM-4860/883B	0.01%	200 nSec	16 MHz

100% External Visual

OPTION 2 — DATEL QL SCREENING PROGRAM

TEST -to ni ballo	TEST CONDITION	
Internal Visual (100% Precap)	Test Method 2017	Eliminate visual defects prior to seal
Stabilization Bake 100%	TM 1008, Condition C 24 hours at + 150 °C (Optional if TM 1030 is used)	Eliminates failures due to high temp storage
Temperature Cycling, 100%	TM 1010, Condition C -65 to +150 °C, 10 cycles	Eliminates failures due to mechanical weakness
100% Constant Acceleration	TM 2001, Condition A Y1 Axis, 5000 G	Eliminates failures due to mechanical weakness
100% Burn-in	Static burn-in 160 hrs. at +125 °C (Similar to TM 1015 or TM 1030)	Eliminates failures due to infant mortality
100% Final Electrical Test	Performed at +25 °C, TMIN, and TMAX operating temperatures	Verifies that devices meet speicifications over temperature range
100% Fine and Gross Leak	Test Method 1014 Condition A (fine) 5 x 10 ⁻⁷ cc/Sec. Condition C (gross)	Insures hermeticity for high humidity environments
100% External Visual	Test Method 2009	Insures proper marking, construction, workmanship

-QL PRODUCTS

SAMPLE-HOLD AMPLIFIERS

MODEL NO.	LINEARITY	ACQUISITION TIME	HOLD MODE DROOP
SHM-45MM-QL	0.01%	200 nSec.	0.5 μV/μSec.
SHM-4860MM-QL		200 nSec.	0.5 μV/μSec.
SHM-6MM-QL	0.02%	2 μSec.	10 μV/μSec.
SHM-HUMM-QL		25 nSec.	50 μV/μSec.

OPERATIONAL AMPLIFIERS

MODEL NO.	OFFSET VOLTAGE	GAIN BANDWIDTH	OUTPUT
AM-500MM-QL	3 mV	130 MHz	+10V at 50 mA
AM-1435MM-QL	5 mV	1000 MHz	+ 7V at 14 mA

DATA ACQUISITION SUBSYSTEMS

MODEL NO.	RESOLUTION	INPUT CHANNELS	THROUGHPUT
HDAS-16MM-QL	12 Bits	16 Single-Ended	50 KHz

ANALOG-TO-DIGITAL CONVERTERS

MODEL NO. Sup bas galassa	RESOLUTION	CONVERSION TIME	LINEARITY
ADC-817AMM-QL	12 Bits	2 μSec.	± 1 LSB
ADC-HX12BMM-QL	12 Bits	20 μSec.	± 1/2 LSB
ADC-HC12BMM-QL	12 Bits	300 μSec.	± 1/2 LSB
ADC-815MM-QL	8 Bits	700 nSec.	± 1/2 LSB
ADC-825MM-QL	8 Bits	1 μSec.	± 1/2 LSB

SAMPLING ANALOG-TO-DIGITAL CONVERTERS

MODEL NO. Assistant one en	RESOLUTION	SPEED	LINEARITY
ADC-HS12BMM-QL	12 Bits	66 KHz	± 1/2 LSB

DIGITAL-TO-ANALOG CONVERTERS

MODEL NO. 199102 M-mu8	RESOLUTION	SETTLING TIME	LINEARITY
DAC-HP16BMM-QL DAC-HF12BMM-QL DAC-HK12BMM-QL DAC-HZ12BMM-QL DAC-HF10BMM-QL DAC-HF8BMM-QL	12 Bits 10 Bits		± 2 LSB ± 1/2 LSB ± 1/2 LSB ± 1/2 LSB ± 1/2 LSB ± 1/2 LSB

BS9000 PRODUCTS

MALLOG-TO-DIGITAL CONVERTERS

Parts qualified to the BSBUDU spec quality factor of 1.

OPTION 3 - BS9000 PROGRAM

DATEL also has a BS9000 program in compliance with British Standards for high reliability devices. BS9000 is the United Kingdom's national system for the independent inspection approval and surveillance of manufacturers, distributors and test laboratories in the electronic component industry.

The accompanying product flow gives an overview of the BS9000 products through screening and quality conformance inspection.

BS9000 Screening Requirements

BS9000 PRODUCTS

ANALOG-TO-DIGITAL CONVERTERS

MODEL NO.	RESOLUTION	CONVERSION TIME	LINEARITY
ADC-208MM-BS9400-G0140	8 BITS	66 nSec	±2 1/2 LSB
ADC-303MM-BS9400-G0106	8 BITS	10 nSec	±3/4 LSB
ADC-303JM-BS9400-G0106	8 BITS	10nSec	±3/4 LSB
ADC-304MM-B29400-G0177	8 BITS	50 nSec	±1/2 LSB

Parts qualified to the BS9000 specification have a quality level equivalent to MIL-M-38510 giving a quality factor of 1.

MODEL NO

DECOLUTION CONVERGION TIME INTEREST

DESC STANDARD MILITARY DRAWING PROGRAM

The Standard Military Drawing (SMD) program is a program administered by the Defense Electronics Supply Center (DESC) in Dayton, Ohio. Under this program a certified MIL-STD-1772 manufacturer, such as DATEL Inc., may supply a hybrid device using one government controlled Source Control Drawing (SCD). This saves both the customer and supplier time and effort.

DATEL Inc. is an active participant in the DESC SMD program. At publication time the following DESC Dreawing numbers have been assigned and are approved or are pending approval. Please contact DATEL Inc. for current status and future SMD compliant products.

DESC DRAWING N	JMBER DATEL MODEL NUMBER	
5962-88508 5962-88508 5962-89528 5962-89528 5962-89531 5962-89531	ADC-HX/883B ADC-HZ/883B DAC-HKB/883B DAC-HKB-2/883B DAC-HPB/883B DAC-HPB-1/883B	
5962-90857 5962-89996 5962-89996 5962-89996 5962-88514 5962-88514	ADC-208/883B (pending) DAC-HF8/883B (pending) DAC-HF10/883B (pending) DAC-HF12/883B (pending) HDAS-8/883B (pending) HDAS-16/883B (pending)	
SCM-100A		
	DAC-DG12B1	
t-OHMH8		
SHM-IC-1M	DAC-H888-EXX	
HU-MH2		
SHU-MHS		
	DAC-HI10B	

STILL AVAILABLE

The following older DATEL component products have not been included in this new databook. For new designs the component products offered in this databook will provide economically superior performance. For existing designs we at DATEL are committed to supplying our older products to our customers for as long as possible and practical. Please contact our Sales Department for information regarding price, delivery, and minimum order quantity on any of the following.

ADC-EH12B2 ADC-EH12B3 ADC-EH8B1 ADC-EH8B2 ADC-EK10B ADC-EK12B ADC-EK12DC ADC-EK12DR ADC-EK12DR ADC-EK12DR ADC-ET10BC ADC-ET10BC ADC-ET12BC ADC-ET12BR ADC-ET12BR ADC-ET12BR ADC-ET12BR ADC-ET12BR ADC-ET12BR ADC-ET12BR ADC-ET12BR ADC-ET12BR ADC-ET12BA ADC-ET12D3 ADC-ET12D3 ADC-HX12BAMM-QL	ADS-125MC AM-227 AM-427-1A AM-427-1B AM-427-2B AM-427-2M AM-430A AM-430B AM-450-2 AM-450-2M AM-450-2M AM-452-2 AM-452-2M	DAC-169-16B DAC-169-16D DAC-298B DAC-4910B DAC-4912D DAC-562C DAC-562C DAC-608C DAC-610C DAC-612C DAC-7134UL DAC-7523 DAC-7533 DAC-7541 DAC-8308 HDAS-16MM-QL MDAS-16 MDAS-8D MDAS-940D MDAS-940S MS-13 MS-6
--	--	--

SUBSTITUTION GUIDE FOR DISCONTINUED COMPONENT PRODUCTS

The following products are no longer available from DATEL. Where applicable, the nearest equivalent DATEL replacement is listed. Some of these replacement products are functionally similar only and may not be pin-for-pin compatible with the discontinued product.

Discontinued Model	Nearest Equiveler
ADC-300	ADC-208
ADC-301	None
ADC-302	None
ADC-303	None
ADC-310	None
ADC-508MM	ADC-505BMM
ADC-515BMC	ADC-500BMC
ADC-515BMM	ADC-500BMM
ADC-575BMM	ADC-505BMM
ADC-520MM	ADC-505BMM
ADC-321000 ADC-7109	ADC-503DIVIVI
ADC-7109 ADC-810MM-QL	ADC-511/883B
ADC-816MM-QL	ADC-511/883B
ADC-876MM-QL	ADC-511/883B
	ADC-817AMM
ADC-827AMM	
ADC-B300E	None
ADC-B301E	None
ADC-B302E	None
ADC-B303	None
ADC-B310E	None
ADS-105MM	ADS-112MM
ADS-106MM	ADS-112MM
ADS-115MC	ADS-112MC ADS-112MM
ADS-115MM	ADS-112MIN
ADS-116MC	ADS-112MM
ADS-116MM	ADS-112MM
ADS-125MM ADS-126MC	ADS-112MINI
ADS-126MC ADS-126MM	ADS-112MM
ADS-126WIWI ADS-21AC	ADS-112MINI ADS-21PC
ADS-21AC ADS-22AC	ADS-21PC
AM-100 Series	AM-551
AM-200 Series	AM-543MC
AM-427-2A	AM-427-2B
AM-453-2C/2M	AM-450-2
AM-460-2M	AM-450-2M
AM-7650-1/-2	None
DAC-330	DAC-HF10
DAC-7134BJ/BK/UJ/UK	DAC-7134BL/UL
DAC-VR Series	DAC-HK12
DAS-952R	None
DILS-1,2,3*	None
HDAS-8MM-QL	HDAS-8/883B
MS-11*	None
MS-12*	None
MS-12 MS-2*	None
MS-3*	None
MS-4*	None
MS-5*	None
MS-9*	None
SCM-103/102	None
SHM-LM-2M	SHM-IC-1M
SHM-360	None
SHM-361	None
SHM-9 Series	SHM-IC-1
TP Series*	None
11 001163	140110

^{*}Available through distributors

CHRISTITUTION CHIDS FOR DISCONTINUED COMPONENT PRODUCTS

The following products are no longer available from DATEL. Where applicable, the nearest equivalent DATEL replacement is listed. Some of truce replacement products are functionally similar only and may not be pin-for-pin carroatilitie with the discentinged product.

None	
	ADS-126MM
	AM-427-2A

"Available through distributors

GENERAL DISCLAIMER

DATEL Inc. reserves the right to make changes to its products and their specifications at any time, without prior notice to anyone.

DATEL Inc. has made every effort to ensure accuracy of the information contained in this databook but can assume no responsibility for inadvertent errors, omissions, or subsequent changes.

DATEL Inc. does not assume any responsibility for the use of any circuitry or other information described within this databook, and further, makes no representations of any kind that the circuitry and information described herein is free of infringement of any intellectual property right or any other right of third parties. No express or implied license of any DATEL Inc. intellectual property right is granted by implication or otherwise.

LIFE SUPPORT AND NUCLEAR FACILITY APPLICATIONS POLICY

DATEL Inc. products are not for and should not be used within life support systems or nuclear facility applications without the specific written consent of DATEL Inc.

A Life Support system is a product or system intended to support or sustain life and which if it fails can be reasonably expected to result in significant personal injury or death. Nuclear Facility applications are defined as any application involving a nuclear reactor or any facility involved in any way with the handling or processing or radioactive materials and in which the failure of equipment in any way could reasonably result in harm to life, property or the environment.

GENERAL DISCLAIMER

DATEL Inc. reserves the right to make changes to its products and their specifications at any time, without prior notice to anyone.

DATEL Inc. has made every effort to ensure accuracy of the information contained in this databook, but can assume no responsibility for inadvertent errors, omissions, or subsequent changes.

DATEL Inc. does not assume any responsibility for the use of any circuitry or other information described within this databook, and further, makes no representations of any kind that the circuitry and information described herein is free of infringement of any intellectual property right or any other right of third parties. No express or implied license of any DATEL Inc. intellectual property right is granted by implication or otherwise.

LIFE SUPPORT AND NUCLEAR FACILITY APPLICATIONS POLICY

DATEL Inc. products are not for and should not be used within life support systems or nuclear facility applications without the specific written consent of DATEL Inc.

A Life Support system is a product or system intended to support or sustain life and which if it fails can be reasonably expected to result in significant personal injury or death. Nuclear Facility applications are defined as any application involving a nuclear reactor or any facility involved in any way with the handling or processing of radioactive materials and in which the failure of equipment in any way could reasonably result in harm to life, property or the environment.

ORDERING GUIDE

This ordering guide is presented as a procedural guide. For a formal statement of policies, refer to the TERMS AND CONDITIONS OF SALE found on the Quotation form or on the Customer Acknowledgement copy of the Sales Order.

PLACING AN ORDER

When ordering a DATEL product, give the complete model number, product description, and option description. Place orders with a DATEL field sales representative or with the factory by letter, telephone, FAX, or TELEX. Minimum order and minimum per shipment is \$100.

OUTSIDE THE U.S.A. AND CANADA Place overseas orders with a DATEL Sales Subsidiary (in West Germany, France, the United Kingdom, and Japan) or with a DATEL overseas sales representative. Orders received directly will be treated the same as if placed through our overseas sales representative. In countries without a DATEL representative, orders should be placed by TELEX and confirmed by air mail.

FIELD SALES REPRESENTATIVE

DATEL employs field sales representatives throughout the United States, Canada, Europe, and the Far East. DATEL also has Sales Subsidiaries in Munich, West Germany; Paris, France; London, England; and Tokyo and Osaka, Japan. Only these sales representatives are authorized by DATEL to solicit sales, and any information or data received by sources other than these authorized representatives or the DATEL factory are not considered binding.

PRICES

All prices are F.O.B., Mansfield, Massachusetts, U.S.A. in U.S. dollars. Applicable federal, state, and local taxes are extra and paid by buyer. Prices are subject to change without notice.

TERMS Net 30 days

DISCOUNTS

Quantity discounts are available when placed in a single order. OEM discounts are available on an order or contract basis; consult the factory for details

QUOTATIONS

Price and delivery quotations made by DATEL or its authorized field sales representatives are valid for 30 days unless otherwise stated.

DELIVERY

DATEL uses an IBM System 4381, for efficient processing of orders. All orders placed with DATEL are acknowledged within a few days by an acknowledgement copy of our sales order form. This copy indicates pertinent information including a formal statement of terms and conditions of sale and estimated delivery date. This date has preference over all other agreed upon dates unless otherwise specified.

DATEL ships all products in rugged commercial containers suitable for insuring safe delivery under normal shipping conditions. Unless shipping method is specified, the best available method will be used. Shipping charges are normally prepaid and billed to the customer except for Air Freight charges which are sent collect. The appropriate data sheet and/or instruction is packed with each product shipped.

ORDER CANCELLATION

All orders entered with DATEL are binding and are subject to a cancellation charge if cancelled before or after the scheduled shipping date appearing on the acknowledgement copy of the sales order form. Refer to DATEL's Standard Terms and Conditions for specific charges.

WARRANTY

DATEL warrants that all of its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment. DATEL's obligations under this warranty are limited to replacing or repairing, at its option, at its factory or facility, any of the products which shall within the applicable period after shipment be returned to DATEL's facility, transportation charges prepaid, and which are after examination disclosed to the satisfaction of DATEL to be thus defective. This warranty shall not apply to any such equipment which shall have been repaired or altered except by DATEL or which shall have been subjected to misuse, negligence, or accident. In no case shall DATEL's liability exceed the original purchase price. The aforementioned provisions do not extend the original warranty period of any product which has either been repaired or replaced by DATEL.

RETURNS

You will need a **return authorization number** and shipping instructions from the factory when returning products for any reason. Items should not be returned air freight collect as they connot be accepted. It is absolutely necessary to return products in the manner stated here, otherwise considerable delay will result in processing the return.

RETURNS OUTSIDE THE U.S.A. AND CANADA Contact the local sales representative or factory for authorization and shipping instructions first.

CERTIFICATE OF COMPLIANCE

When requested by the customer DATEL will provide a standard Certificate of Compliance with all shipments. This request must be specified on the purchase order.

ANALOG-TO-DIGITAL CONVERTERS SAMPLING A/D CONVERTERS FLASH A/D CONVERTERS DIGITAL-TO-ANALOG CONVERTERS SAMPLE-AND-HOLD AMPLIFIERS **MULTIPLEXERS OPERATIONAL AMPLIFIERS ISOLATION AMPLIFIERS** INSTRUMENTATION AMPLIFIERS DATA ACQUISITION SUBSYSTEMS **ACTIVE FILTERS** V/F-F/V CONVERTERS **DIGITAL PANEL METERS CALIBRATORS** PROCESS MONITORS/CONTROLLERS THERMAL PRINTERS **POWER SUPPLIES** DC/DC CONVERTERS DATA ACQUISITION BOARDS DSP/DATA ACQUISITION PRODUCTS

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194 Telephone (508) 339-3000 TELEX 174388 FAX (508) 339-6356

For Immediate Assistance: 1-800-233-2765

DATEL (UNITED KINGDOM) Tel: Basingstoke (256) 469-085
DATEL (FRANCE) Tel: (1) 3460-0101
DATEL (GERMANY) Tel: (89) 53-0741
DATEL (JAPAN) Tokyo Tel: (3) 3779-1031 Osaka Tel: (6) 354-2025

PRINTED IN U.S.A.

JI/BA/JFOK