Example

Consider a 3-stage nocket.

$$\epsilon_1 = 0.0765, \epsilon_2 = 0.114, \epsilon_3 = 0.11)$$

$$I_{sp_1} = 304s$$
, $I_{sp_2} = 421s$, $I_{sp_3} = 421s$.

optimize the vehicle for maximum $\left(\frac{M_L}{M_{01}}\right)$.

$$\left\{\frac{1}{\epsilon_{1}}\left[1-\frac{1}{\alpha g_{e} + s_{h_{1}}}\right]^{\frac{g_{e} + s_{h_{1}}}{\Delta u_{b,im} b}} \otimes \left\{\frac{1}{\epsilon_{2}}\left[1-\frac{1}{\alpha g_{e} + s_{h_{2}}}\right]^{\frac{g_{e} + s_{h_{2}}}{\Delta u_{b,im} b}} \otimes \left\{\frac{1}{\epsilon_{3}}\left[1-\frac{1}{\alpha g_{e} + s_{h_{3}}}\right]^{\frac{g_{e} + s_{h_{3}}}{\Delta u_{b,im} b}} \right\} = e \quad (E)$$

Use MATLAB to solve Equation (E) for age

Then, get hi from Eqn. D:

$$\frac{M_L}{M_{01}} = \frac{\lambda_1}{1+\lambda_1} - \frac{\lambda_2}{1+\lambda_2} \cdot \frac{\lambda_3}{1+\lambda_3} \quad [from (10.35)]$$

MATIAB solution:

$$\chi g_{e} = 0.0038966$$
 $\lambda_{1} = 0.8142, \quad \lambda_{2} = 0.2514, \quad \lambda_{3} = 0.2421$
 $\frac{M_{L}}{M_{M}} = 0.01758$

$$\left(\Delta U_{b, \text{imp1}} = 2121.5 \text{ m/s}, \Delta U_{b, \text{imp2}} = 5084.2 \text{ m/s}, \Delta U_{b, \text{imp3}} = 5084.2 \text{ m/s}, \Delta U_{b, \text{imp3}} = 5194.3 \text{ m/s}$$

$$\Delta U_{b, \text{imp}} = \frac{3}{5} \Delta U_{b, \text{imp}} = 12400 \text{ m/s}, \Delta U_{b, \text{imp}} = 12400 \text{ m/s}$$

The data of this problem correspond to the Saturn \Box lunar launch vehicle. Its initial mass (MoI) was 2,902,000 kg and the mass of the Apollo II payload (ML) was 47000 kg, which gives $\frac{M_L}{M_{01}} = 0.0162$.

A vehicle with stages having equal E; and E is values is said to be similarly staged. It is clear from E on D, that the stages will have equal values of λ ; as well. For such a vehicle, E on E recomes

In This case, I can be found from Egn (F), without

having to find α . It needed, α can be found from Eqn. \mathbb{D} $\begin{cases} \lambda_i = \frac{\epsilon_i}{\alpha g_e \, \mathbb{I}_{sp_i}(1-\epsilon_i)-1} \end{cases}$ once λ has been determined.

Example

Reconsider the first three-stage example $\{M_0, = 2,500,000 \text{ kg}, \Delta U_b = 11023 \text{ m/s}\}$. The stages all have the same Isp. $M_S = 145,000 \text{ kg}, M_p = 2,287,000 \text{ kg}$. It the structural and $M_S = 145,000 \text{ kg}, M_p = 2,287,000 \text{ kg}$. It the structural and have the structural and perfect the structural and the structural an

$$E = \frac{M_{S_1}}{M_{S_1} + M_{p_1}} = \frac{M_{S_2}}{M_{S_2} + M_{p_2}} = \frac{M_{S_3}}{M_{S_2} + M_{p_3}} = \frac{M_{S_3}}{M_{S_3} + M_{p_3}}$$

$$\frac{M_{s_1} + M_{s_2} + M_{s_3}}{(M_{s_1} + M_{p_1}) + (M_{s_2} + M_{p_2}) + (M_{s_3} + M_{p_3})} = \frac{M_{s_{+o+}}}{M_{s_{+o+}} + M_{p_{+o+}}} = \frac{M_{s_{+o+}}}{M_{s_{+o+}} + M_{p_{+o+}}}$$

With this value of \in , \widehat{F} \Rightarrow $\lambda = 0.4772 [n = 3]$

$$\frac{M_L}{M_{01}} = \left(\frac{\lambda}{1+\lambda}\right)^3 = 0.0337 \text{ (larger Than the } 0.0294 \text{ value}$$
obtained with $\epsilon_1 = 0.05$, $\epsilon_2 = 0.0698$ and $\epsilon_3 = 0.1892$).

The value of αg_e (not really needed) can be found from D:

$$\propto g_e = \frac{1}{I_{sp}(1-\epsilon)} \left(1 + \frac{\epsilon}{\lambda}\right) = 0.03233$$

The similarly-staged vehicle has the highest (M2).