## Instacart Data Analysis

~ Sanchari Chowdhuri

#### **Contents**

- 1. Data set Overview and Scope
- 2. Analysis Flow
- 3. Exploratory Data Analysis
- 4. Feature Engineering
- 5. Model Creation and Performance Metrics
- 6. Feature Selection
- 7. Prediction of Ordered Items from Given Test Data
- 8. Steps to Improve Model Performance
- 9. Insights and Recommendation

#### 1. Dataset Overview

- ▶ The dataset contains order details for **206,209** Instacart Users.
- ► The dataset has **3,421,083** orders.
- ► The dataset has **49,688** product details.
- All these products are spread across 134 different aisles and belong to 21 different departments.
- For these 206209 Users, their previous order details are available as "prior". Their latest order is segregated into training and testing order.

# Relationship among different files of the dataset

order\_products\_prior\_df.head(3)

|   | order_id | product_id | add_to_cart_order | reordered |
|---|----------|------------|-------------------|-----------|
| 0 | 2        | 33120      | 1                 | 1         |
| 1 | 2        | 28985      | 2                 | 1         |
| 2 | 2        | 9327       | 3                 | 0         |
|   |          |            |                   |           |

orders\_df.head()

| order_id | user_id | eval_set | order_number | order_dow | order_hour_of_day | days_since_prior_order |
|----------|---------|----------|--------------|-----------|-------------------|------------------------|
| 1        | 112108  | train    | 4            | 4         | 10                | 9.0                    |
| 2        | 202279  | prior    | 3            | 5         | 9                 | 8.0                    |
| 3        | 205970  | prior    | 16           | 5         | 17                | 12.0                   |
| 4        | 178520  | prior    | 36           | 1         | 9                 | 7.0                    |
|          |         |          |              |           |                   |                        |

products\_df.head()

|   | product_id | product_name                                   | aisle_id | department_id |
|---|------------|------------------------------------------------|----------|---------------|
| 0 | 1          | Chocolate Sandwich Cookies                     | 61       | 19            |
| 1 | 2          | All-Seasons Salt                               | 104      | 13            |
| 2 | 3          | Robust Golden Unsweetened Oolong Tea           | 94       | 7             |
| 3 | 4          | Smart Ones Classic Favorites Mini Rigatoni Wit | 38       | 1             |
| 4 | 5          | Green Chile Anytime Sauce                      | 5        | 13            |
|   |            |                                                |          |               |

aisles\_df.head()

|   | aisle_id | aisle                      |
|---|----------|----------------------------|
| 0 | 1        | prepared soups salads      |
| 1 | 2        | specialty cheeses          |
| 2 | 3        | energy granola bars        |
| 3 | 4        | instant foods              |
| 4 | 5        | narinades meat preparation |

departments\_df.head()

|   | department_id | department |
|---|---------------|------------|
| 0 | 1             | frozen     |
| 1 | 2             | other      |
| 2 | 3             | bakery     |
| 3 | 4             | produce    |
| 4 | 5             | alcohol    |
|   |               |            |

## Scope

► To predict what a user might purchase in their next order.



## 2. Analysis Flow

Exploratory Data Analysis (Refer 1.Instacart-EDA.ipynb)



Feature
Engineering for
training Data (Refer
2.Instacartfeature\_engineering
and flat file
creation.ipynb)



Training Model and
Testing (Refer
3.Instacart-Logistic
Regression and
Testing)



Creating Features for test data(Refer testdata\_flatfile.ipynb)

## 3. Exploratory Data Analysis

## Number of Orders per day of week



- o Sunday and Monday seems to have higher volume of orders than other days of the week
- o Towards mid week there is a dip in order volume suggesting people prefer to get their groceries towards weekend or beginning of the week

## Orders by hours of the Day



People order groceries in day time

## How frequently do customers order?

Frequency distribution by days since prior order



Customers order Weekly and monthly the most

#### When do customers order the most



Heatmap showing volume of orders across hour of day and day of week

#### Most Popular products



Product Name

#### Number of Products in an Order



#### Popular Department across day of week



• Department id 4 and 16 are popular throughout the week

### Department wise reorder ratio



Department id 4 and 16 have high reorder ratio

## 4. Feature Engineering

## User-Product Based Features

- user\_product\_avg\_add\_to\_cart\_order
- user\_product\_total\_orders
- user\_product\_avg\_days\_since\_prior\_order
- user\_product\_avg\_order\_dow
- user\_product\_avg\_order\_hour\_of\_day

## Product Based Features

- product\_total\_orders
- product\_avg\_add\_to\_cart\_order
- product\_avg\_order\_dow
- product\_avg\_order\_hour\_of\_day
- product\_avg\_days\_since\_prior\_order

## User Based Feature

- user\_total\_orders | user\_avg\_cartsize
- user\_total\_products | user\_avg\_days\_since\_prior\_order
- user\_avg\_order\_dow
- user\_avg\_order\_hour\_of\_day
- user\_product\_order\_freq

## User-Product Delta Features

- product\_total\_orders\_delta\_per\_user
- product\_avg\_add\_to\_cart\_order\_delta\_per\_user
- product\_avg\_order\_dow\_per\_user
- product\_avg\_order\_hour\_of\_day\_per\_user
- product\_avg\_days\_since\_prior\_order\_per\_user

## Feature Engineering

▶ 23 new features are created for User- product pair

| Feature Name                            | Description                                                                                 |
|-----------------------------------------|---------------------------------------------------------------------------------------------|
| user_product_avg_add_to_cart_order      | this column tells the average add to cart order of the product for this user                |
| user_product_total_orders               | how many times this product was ordered by this user                                        |
| user_product_avg_days_since_prior_order | average number of days elapsed since last time this product was ordered by the user         |
| user_product_avg_order_dow              | average day of the week when the user orders this product                                   |
| user_product_avg_order_hour_of_day      | average hour of the day when the user orders this product.                                  |
| In_cart                                 | This tells whether a prior product ordered by the user is also present in the current order |
| product_total_orders                    | How many times a given product has been ordered overall                                     |
| product_avg_add_to_cart_order           | This tells the average add to cart order of the product                                     |
| product_avg_order_dow                   | This tells the average day of week when this product is ordered                             |
| product_avg_order_hour_of_day           | the average hour of the day when this product is ordered the most                           |
| product_avg_days_since_prior_order      | average number of days elapsed since this product was last ordered                          |

## Feature Engineering (....contd)

| Feature Name                                             | Description                                                                                                                                                           |
|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| user_total_orders                                        | Total number of orders placed by the user                                                                                                                             |
| user_avg_cartsize                                        | Average cart size of the user                                                                                                                                         |
| user_total_products                                      | Total number of products ordered by the user                                                                                                                          |
| user_avg_days_since_prior_order                          | Number of days elapsed between subsequent orders                                                                                                                      |
| user_avg_order_dow                                       | Average day of the week when user places order                                                                                                                        |
| user_avg_order_hour_of_day                               | Average hour of the day when user places order                                                                                                                        |
| user_product_order_freq                                  | Ratio of user_product_total_orders and user_total_orders                                                                                                              |
| product_total_orders_delta_per_user                      | difference between total number of orders placed for the product and total number of orders placed for the product by the specific user.                              |
| <pre>product_avg_add_to_cart_order_delta _per_user</pre> | difference between product's average add to cart order based on all users and product's average add to cart order based on this specific users.                       |
| product_avg_order_dow_per_user                           | difference between average day of week when the product is ordered based on all users and average day of week when the product is ordered based on this specific user |
| product_avg_order_hour_of_day_per_<br>user               | difference between product's average hour of day when ordered and product's average hour of day when ordered by this user                                             |
| <pre>product_avg_days_since_prior_order_ per_user</pre>  | difference between product's average days elapsed since last order placed and average days elapsed since last order placed by specific user                           |

# 5.Model Creation and Performance Metrics

## Training Model 1

- Model Used :Logistic Regression
- dependent variable = in\_cart [0,1]
- Independent variable are all the previous mentioned features.

#### **Performance Metrics**

Overall Model Accuracy: 85.2%

```
# Create Logistic Regression classifier object
lr = LogisticRegression(class_weight='balanced')

#Train Logistic Regression classifier
log_sm_reg=lr.fit(X_tr, y_tr)

#Predicting for test data called X_te (this is obtained by splitting 20% of train data)
y_pred_LR = log_sm_reg.predict(X_te)
scores_LR = metrics.accuracy_score(y_te, y_pred_LR)
scores_LR
```

0.852246300278243

Although the Overall Accuracy is high but due to class imbalances accuracy is not the best metrics to quantify the classifier's performance.

Precision, Recall and F1 Score

from sklearn.metrics import classification\_report
print(classification\_report(y\_te,y\_pred\_LR))

|             | precision    | recall | f1-score     | support |
|-------------|--------------|--------|--------------|---------|
| 0<br>1      | 0.94<br>0.34 |        | 0.92<br>0.39 |         |
| avg / total | 0.88         | 0.85   | 0.86         | 1186373 |

- ► F1- Score Class 1 =0.39
- ► Precision Class1=34%
- ► Recall Class1 = 47%

#### Confusion Matrix

```
pd.crosstab(y_te,y_pred, rownames=['True'], colnames=['Predicted'], margins=True)
```

| Predicted | 0       | 1      | All     |
|-----------|---------|--------|---------|
| True      |         |        |         |
| 0         | 954025  | 111103 | 1065128 |
| 1         | 64188   | 57057  | 121245  |
| All       | 1018213 | 168160 | 1186373 |

- Out of 1065128 instances of a product not being ordered -
  - 954025 times the classifier was correctly able to predict that the product would not be reordered
  - ▶ 111103 times the classifier misclassified a not ordered product as reordered product.
- Out of 121245 instances of a product being reordered -
  - ▶ 64188 times the classifier misclassified a reordered product as not currently ordered.
  - ▶ 57057 times the classifier correctly classified product as reordered

#### ROC Curve

Receiver Operating Characteristic - for Logistic Regression



0.7868745505797903

► Area Under Curve is 0.78

#### Test Data (order\_products\_test\_cap.csv)

- The test data contains 32804 unique order ids which belongs to 32804 users.
- These are testing users.
- This test data have to be normalized (by merging prior order-product history of 32804 users)
- After all the product, user and product-user based features are obtained for these 32804 test users, the classifier trained previously will be used to predict the products ordered by these 32804 test users.

#### Model Metrics on Test Data.

- ► Model Accuracy: 76.7%
- Precision ,Recall, F1 Score

|             | precision    | recall | f1-score | support |  |
|-------------|--------------|--------|----------|---------|--|
|             | 0.95<br>0.25 |        |          |         |  |
| avg / total | 0.88         | 0.77   | 0.81     | 1987019 |  |

#### On the test dataset:

- Class 0 : Precision = 95% | Recall =78% | F1 Score=0.86
- Class 1: Precision = 25% | Recall =65% | F1 Score=0.36

Confusion Matrix:

| Predicted | 0       | 1      | AII     |
|-----------|---------|--------|---------|
| True      |         |        |         |
| 0         | 1396049 | 390199 | 1786248 |
| 1         | 70991   | 129780 | 200771  |
| AII       | 1467040 | 519979 | 1987019 |

## Training Model 2

- Model Used :Random Forest
- Dependent variable = in\_cart [0,1]
- ▶ Independent variable are all the previous mentioned features.

#### **Performance Metrics**

Overall Model Accuracy: 91.12%

```
from sklearn.ensemble import RandomForestClassifier
# Create the model with 100 trees
RandomForest = RandomForestClassifier(n estimators=100, random state=50, max features = 'sqrt', n jobs=-1, verbose = 1)
# Fit on training data
Random Forest=RandomForest.fit(X tr, y tr)
[Parallel(n jobs=-1)]: Using backend ThreadingBackend with 4 concurrent workers.
[Parallel(n jobs=-1)]: Done 42 tasks | elapsed: 10.9min
[Parallel(n jobs=-1)]: Done 100 out of 100 | elapsed: 26.7min finished
#Predicting for test data called X te (this is obtained by splitting 20% of train data)
y pred RandomForest = Random Forest.predict(X te)
scores RandomForest = metrics.accuracy score(y te, y pred RandomForest)
scores RandomForest
[Parallel(n jobs=4)]: Using backend ThreadingBackend with 4 concurrent workers.
[Parallel(n jobs=4)]: Done 42 tasks
                                       | elapsed: 13.0s
[Parallel(n jobs=4)]: Done 100 out of 100 | elapsed: 30.1s finished
0.9112993974070549
```

Although the Overall Accuracy is high but due to class imbalances accuracy is not the best metrics to quantify the classifier's performance. Precision, Recall and F1 Score

from sklearn.metrics import classification\_report
print(classification\_report(y\_te,y\_pred\_RandomForest))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.91      | 1.00   | 0.95     | 1065128 |
| 1            | 0.87      | 0.16   | 0.26     | 121245  |
| micro avg    | 0.91      | 0.91   | 0.91     | 1186373 |
| macro avg    | 0.89      | 0.58   | 0.61     | 1186373 |
| weighted avg | 0.91      | 0.91   | 0.88     | 1186373 |

- ► F1- Score Class 1 =0.26
- ► Precision Class1=87%
- Recall Class1 = 16%

#### Confusion Matrix

```
: pd.crosstab(y_te,y_pred_RandomForest, rownames=['True'], colnames=['Predicted'], margins=True)
```

| Predicted | 0       | 1     | AII     |
|-----------|---------|-------|---------|
| True      |         |       |         |
| 0         | 1062280 | 2848  | 1065128 |
| 1         | 102384  | 18861 | 121245  |
| AII       | 1164664 | 21709 | 1186373 |

- Out of 1065128 instances of a product not being ordered -
  - ▶ 1062280 times the classifier was correctly able to predict that the product would not be reordered
  - ▶ 2848 times the classifier misclassified a not ordered product as reordered product.
- Out of 121245 instances of a product being reordered -
  - ▶ 102384 times the classifier misclassified a reordered product as not currently ordered.
  - ▶ 18861 times the classifier correctly classified product as reordered

#### Random Forest Model Metrics on Test Data

- Model Accuracy = 90.31%
- Precision, Recall, F1 of Random Forest on Test Data

from sklearn.metrics import classification\_report
print(classification\_report(y\_te\_1, y\_pred\_test\_RF))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.91      | 0.99   | 0.95     | 1786248 |
| 1            | 0.61      | 0.12   | 0.20     | 200771  |
| micro avg    | 0.90      | 0.90   | 0.90     | 1987019 |
| macro avg    | 0.76      | 0.56   | 0.57     | 1987019 |
| weighted avg | 0.88      | 0.90   | 0.87     | 1987019 |

#### On the test dataset:

- Class 0 : Precision = 91% | Recall =99% | F1 Score=0.95
- Class 1 : Precision = 61% | Recall = 12% | F1 Score = 0.20

#### Confusion Matrix

pd.crosstab(y\_te\_1,y\_pred\_test\_RF, rownames=['True'], colnames=['Predicted'], margins=True)

| Predicted | 0       | 1     | All     |
|-----------|---------|-------|---------|
| True      |         |       |         |
| 0         | 1770742 | 15506 | 1786248 |
| 1         | 176928  | 23843 | 200771  |
| All       | 1947670 | 39349 | 1987019 |

#### 6. Feature Selection

- Feature Selection is the process of selecting out the most significant features from a given dataset.
- Importance of feature selection :
  - ▶ It enables the machine learning algorithm to train faster.
  - ▶ It reduces the complexity of a model and makes it easier to interpret.
  - ▶ It improves the accuracy of a model if the right subset is chosen.
- In the current dataset 2 types of feature selection are done
  - Recurrent Feature Elimination
  - ► Feature Importance

## Feature Importance Method

- Feature importance of each feature of the dataset can be obtained by using the feature importance property of the model.
- It gives score for each feature of the data, the higher the score more important is the feature towards output variable.
- Feature importance is an inbuilt class that comes with Tree Based Classifiers. Here Random Forest is being used.

```
print(RandomForest.feature_importances_)

[0.04797194 0.03634959 0.04564338 0.03480491 0.02720089 0.03377166
    0.0350788    0.04009387 0.03391157 0.03384475 0.03412726 0.03139867
    0.03220216 0.04566014 0.04786582 0.04707142 0.04650463 0.09905013
    0.03801115 0.0454801    0.04341607 0.04434399 0.04585245 0.00022412
    0.00071467 0.00200777 0.00234493 0.00146426 0.00019144 0.00141197
    0.00339857 0.00191169 0.00123798 0.00252655 0.00113706 0.00056259
    0.00142082 0.00058744 0.0001823 0.00188839 0.00065056 0.00040345
    0.00339851 0.00267961]
```

► Most important features (Top 11)

| В                                               | С          |
|-------------------------------------------------|------------|
| features                                        | imp score  |
| 'user_product_order_freq',                      | 0.09905013 |
| 'user_avg_days_since_prior_order',              | 0.04786582 |
| 'user_avg_order_dow',                           | 0.04707142 |
| 'user_avg_order_hour_of_day',                   | 0.04650463 |
| 'product_avg_days_since_prior_order_per_user',  | 0.04585245 |
| 'user_total_products',                          | 0.04566014 |
| 'user_product_total_orders',                    | 0.04564338 |
| 'product_avg_add_to_cart_order_delta_per_user', | 0.0454801  |
| 'product_avg_order_hour_of_day_per_user',       | 0.04434399 |
| 'product_avg_order_dow_per_user',               | 0.04341607 |
| 'product_avg_add_to_cart_order',                | 0.04009387 |

Subset training data to only contain top 11 most important features. (X\_tr\_fi)

Train logistic regression on the new subsetted dataset (X\_tr\_fi)

```
#logistic regression with 11 imp features
lr = LogisticRegression(class_weight='balanced')
log_12_imp_fe=lr.fit(X_tr_fi, y_tr)

#Predicting for test data called X_te (this is obtained by splitting 20% of train data)
y_pred_LR_12_fi = log_12_imp_fe.predict(X_te_fi)
scores_LR_12_fi = metrics.accuracy_score(y_te, y_pred_LR_12_fi)
scores_LR_12_fi
```

- : 0.8556861964997518
- Model Accuracy of feature Importance model is 85.56%
- Performance Metrics
- ► F1- Score Class 1 =0.39
- Precision Class1=34%
- Recall Class1 = 45%

from sklearn.metrics import classification\_report
print(classification\_report(y\_te,y\_pred\_LR\_12\_fi))

|          |     | precision | recall | f1-score | support |
|----------|-----|-----------|--------|----------|---------|
|          | 0   | 0.94      | 0.90   | 0.92     | 1065128 |
|          | 1   | 0.34      | 0.45   | 0.39     | 121245  |
| micro    | avg | 0.86      | 0.86   | 0.86     | 1186373 |
| macro    |     | 0.64      | 0.68   | 0.65     | 1186373 |
| weighted | avg | 0.87      | 0.86   | 0.86     | 1186373 |

#### Confusion Matrix

pd.crosstab(y\_te,y\_pred\_LR\_12\_fi, rownames=['True'], colnames=['Predicted'], margins=True)

| Predicted | 0       | 1      | All     |
|-----------|---------|--------|---------|
| True      |         |        |         |
| 0         | 960531  | 104597 | 1065128 |
| 1         | 66613   | 54632  | 121245  |
| AII       | 1027144 | 159229 | 1186373 |

- Out of 1065128 instances of a product not being ordered -
  - 960531 times the classifier was correctly able to predict that the product would not be reordered
  - ▶ 104597 times the classifier misclassified a not ordered product as reordered product.
- Out of 121245 instances of a product being reordered -
  - ▶ 66613 times the classifier misclassified a reordered product as not currently ordered.
  - ▶ 54632 times the classifier correctly classified product as reordered

# Recursive Feature Elimination Method (or RFE)

- RFE works by recursively removing attributes and building a model on those attributes that remain.
- It uses the model accuracy to identify which attributes (and combination of attributes) contribute the most to predicting the target attribute.

```
from sklearn.feature_selection import RFE

lr = LogisticRegression(class_weight='balanced')|

rfe = RFE(lr, 5)

fit = rfe.fit(X_tr, y_tr)

print("Num Features: %d") % fit.n_features_
print("Selected Features: %s") % fit.support_
print("Feature Ranking: %s") % fit.ranking_

Num Features: 5

Selected Features: [False False True False False False False True True False Fals
```

► Top 5 important features according to RFE Method

| Feature                         | value |
|---------------------------------|-------|
| 'user_product_total_orders',    | True  |
| 'product_avg_add_to_cart_order' | True  |
| 'product_avg_order_dow',        | True  |
| 'user_total_products',          | True  |
| 'user_product_order_freq',      | True  |
|                                 |       |

Model Accuracy

```
y_pred_LR_RFE = fit.predict(X_te)
scores_LR_RFE = metrics.accuracy_score(y_te, y_pred_LR_RFE)
scores_LR_RFE

0.8654504106212801
```

▶ Model Accuracy of logistic Regression with top 5 features (RFE method) is 86.5%

- Precision , Recall , F1 Score
  - ► F1- Score Class 1 =0.39
  - Precision Class1=36%
  - Recall Class1 = 42%

from sklearn.metrics import classification\_report
print(classification report(y te,y pred LR RFE))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.93      | 0.92   | 0.92     | 1065128 |
| 1            | 0.36      | 0.42   | 0.39     | 121245  |
| micro avg    | 0.87      | 0.87   | 0.87     | 1186373 |
| macro avg    | 0.65      | 0.67   | 0.66     | 1186373 |
| weighted avg | 0.87      | 0.87   | 0.87     | 1186373 |

#### Confusion Matrix:

pd.crosstab(y te,y pred LR RFE, rownames=['True'], colnames=['Predicted'], margins=True)

| Predicted | 0       | 1      | All     |
|-----------|---------|--------|---------|
| True      |         |        |         |
| 0         | 976033  | 89095  | 1065128 |
| 1         | 70531   | 50714  | 121245  |
| All       | 1046564 | 139809 | 1186373 |

- Out of 1065128 instances of a product not being ordered -
  - > 976033 times the classifier was correctly able to predict that the product would not be reordered
  - ▶ 89095 times the classifier misclassified a not ordered product as reordered product.
- Out of 121245 instances of a product being reordered -
  - 70531 times the classifier misclassified a reordered product as not currently ordered.
  - ▶ 50714 times the classifier correctly classified product as reordered

## Performance Comparison

| Model Type                               | Model Accuracy                                               | Precision                                                                                                                                                                                                                                            | Recall                                                                                                                                                                                                                      | F1 Score                                                  |
|------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                          | Overall Accuracy of<br>the Model in<br>correctly classifying | Precision is the ratio of correctly predicted positive observations to the total predicted positive observations. The question that this metric answer is of all products that labeled as reordered by the model, how many were reordered in reality | Recall is the ratio of correctly predicted positive observations to the all observations in actual class. The question recall answers is: Of all the products that truly reordered, how many did the model label as reorder | F1 Score is the weighted average of Precision and Recall. |
| Logistic Regression                      | 85.22%                                                       | Class 0: 94%<br>Class 1: 34%<br>Weighted: 88%                                                                                                                                                                                                        | Class 0: 90%<br>Class 1: 47%<br>Weighted: 85%                                                                                                                                                                               | Class 0: 0.92<br>Class 1: 0.39<br>Weighted: 0.86          |
| Random Forest                            | 91.12%                                                       | Class 0: 91%<br>Class 1: 87%<br>Weighted: 91%                                                                                                                                                                                                        | Class 0: 100%<br>Class 1: 16%<br>Weighted: 91%                                                                                                                                                                              | Class 0: 0.95<br>Class 1: 0.26<br>Weighted: 0.88          |
| Logistic Regression (feature Importance) | 85.56%                                                       | Class 0: 94%<br>Class 1: 34%<br>Weighted: 87%                                                                                                                                                                                                        | Class 0: 90%<br>Class 1: 45%<br>Weighted: 86%                                                                                                                                                                               | Class 0: 0.92<br>Class 1: 0.39<br>Weighted: 0.86          |
| Logistic Regression(RFE)                 | 86.54%                                                       | Class 0: 93%<br>Class 1: 36%<br>Weighted :87%                                                                                                                                                                                                        | Class 0: 92%<br>Class 1: 42%<br>Weighted :87%                                                                                                                                                                               | Class 0: 0.92<br>Class 1: 0.39<br>Weighted :0.87          |

## 7. Predicting Test Dataset Results

| Α          | В            | С         | D          | Е |
|------------|--------------|-----------|------------|---|
| order_id ▼ | product_id 🔻 | user_id 💌 | Prediction |   |
| 393        | 6184         | 111860    | 1          |   |
| 393        | 13424        | 111860    | 0          |   |
| 393        | 12078        | 111860    | 1          |   |
| 393        | 16797        | 111860    | 1          |   |
| 393        | 19828        | 111860    | 1          |   |
| 393        | 30591        | 111860    | 1          |   |
| 393        | 32403        | 111860    | 1          |   |
| 473        | 47144        | 77529     | 1          |   |
| 473        | 20082        | 77529     | 1          |   |
| 473        | 36441        | 77529     | 0          |   |
| 631        | 42265        | 184099    | 1          |   |
| 631        | 21137        | 184099    | 1          |   |
| 631        | 27344        | 184099    | 1          |   |
| 631        | 13829        | 184099    | 0          |   |
| 631        | 15842        | 184099    | 0          |   |
| 631        | 9203         | 184099    | 0          |   |
| 774        | 43335        | 27650     | 0          |   |
| 774        | 16108        | 27650     | 0          |   |
| 1280       | 49235        | 176046    | 1          |   |
| 1280       | 27845        | 176046    | 1          |   |
| 1280       | 39581        | 176046    | 1          |   |
| 1280       | 48186        | 176046    | 1          |   |

### 8. Steps to improve Model Performance

The training data has class imbalance. There are more instances for class 0("product not being in latest order") than class 1 ("product being in latest order")

```
y_tr.value_counts<u>()</u>
0 4265760
1 482402
```

- Currently class\_weight='balanced' is used in training the logistic Regression. Which effectively tells that each class is equally important.
- However, Oversampling and under sampling will create equal number of instances for both the classes
- Conduct SMOTE (Synthetic Minority Over-sampling Technique)
  - ▶ By creating synthetic (not duplicate) samples of the minority class. Thus making the minority class equal to the majority class.
- Conduct NearMiss
  - This is an under-sampling technique. Instead of resampling the Minority class, this will make the majority class equal to minority class.

## 9.Insights & Recommendations

- Improved Stocking and restocking of products
- Coupons for boosting midweek sales
  - Increasing Sales of Popular Departments in mid week through targeted coupons. Thus increasing total sales
- Increasing product based loyalty of popular products

Entire Solution is available at

https://github.com/SanchariChowdhuri/Instacart\_Data\_Analysis

## Thank you