Inclusión de conjuntos/Subconjuntos

Diremos que A es subconjunto de B si para todo x, si $x \in A$ entonces $x \in B$.

Sean
$$A = \{x \in \mathbb{R} \mid x \ge 0\}$$
 y $B = \{x \in \mathbb{R} \mid x^2 - 6x = 0\}$

Veamos que $B \subseteq A$.

Sea $x \in B$, entonces sabemos que

$$x^2 - 6x = 0$$

$$x(x-6)=0$$

Es decir, que x = 0 o x = 6, pero en ambos casos tenemos que $x \ge 0$.

Por lo tanto $x \in A$ y podemos concluir que $B \subseteq A$.

¿Vale que A \subseteq *B*?

Igualdad de conjuntos

Dos conjuntos A y B son iguales si $A \subseteq B$ y $B \subseteq A$.

$$A = \{x \mid x \text{ es un digito del número } 312132\}$$
$$B = \{x \mid x \in \mathbb{Z} \land 0 < x < 4\}$$

Sea $x \in B$, entonces tenemos que $x \in \mathbb{Z}$ y además 0 < x < 4, es decir, que $x \in \{1,2,3\}$, pero entonces x es un dígito del número 312132, es decir, que $x \in A$.

Por lo tanto, $B \subseteq A$.

Sea $x \in A$, entonces x = 1 o x = 2 o x = 3, es decir, que en cualquiera de esos casos $\in \mathbb{Z}$ y además 0 < x < 4, entonces podemos concluir que $x \in B$.

Por lo tanto, $A \subseteq B$.

Podemos concluir entonces que A = B.

Propiedades de la inclusión de conjuntos

$$A = B$$
 si y solamente si $A \subseteq B$ y $B \subseteq A$ (antisimetría)

$$A \subseteq A$$
 (reflexividad)

$$A \subseteq B \ y B \subseteq C$$
 entonces $A \subseteq C$ (transitividad)

$$\emptyset \subseteq A$$

Transitividad

Supongamos que $A \subseteq B$ y $B \subseteq C$, entonces tenemos que

Para todo x, si $x \in A$ entonces $x \in B$ (1)

Para todo x, si $x \in B$ entonces $x \in C$ (2)

Sea $x \in A$. Por (1), tenemos que $x \in B$ y por (2), como $x \in B$, tenemos que $x \in C$, por lo tanto probamos que $x \in C$ y tenemos entonces que $A \subseteq C$.

$$\emptyset \subseteq A$$

Para probar esta inclusión, deberíamos ver que para todo x, si $x \in \emptyset$ entonces $x \in A$.

$$(x \in \emptyset) \to (x \in A)$$

Pero el antecedente $(x \in \emptyset)$ es Falso, entonces la implicación es Verdadera, sin importar si la proposición $x \in A$ es V o F.

Por lo tanto, probamos que $\emptyset \subseteq A$.

Operaciones entre conjuntos

Matemática I – Comisión 2B

Inclusión

Igualdad

Unión

$$A \cup B = \{x : x \in A \lor x \in B\}$$

Intersección

 $(\forall x)(x \in A \to x \in B)$

 $A \cap B = \{x : x \in A \land x \in B\}$

Diferencia

$$A - B = \{x : x \in A \land x \notin B\}$$

Complemento

$$A^C = \{x \colon x \in U \land x \notin A\}$$

$$A = \{0,1,2,3,4,5\}$$

$$B = \{-4,-2,0,2,4\}$$

$$C = \{-1,-2,-3,-4,-5\}$$

$$A \cup B = \{0,1,2,3,4,5,-2,-4\}$$

$$A \cap B = \{0,2,4\}$$

$$A \cap C = \{\} = \emptyset$$

$$A = \{x \mid x \text{ es un número de dos cifras que empieza con 7}\}$$

$$B = \{x \mid x \text{ es un número de dos cifras que termina con 2}\}$$

$$A = \{70,71,72,73,74,75,76,77,78,79\}$$

$$B = \{12,22,32,42,52,62,72,82,92\}$$

$$A \cup B = \{70,71,72,73,74,75,76,77,78,79,12,22,32,42,52,62,82,92\}$$

$$A \cap B = \{72\}$$

Propiedades de la inclusión

$$A = B$$
 si y solamente si $A \subseteq B$ y $B \subseteq A$ (antisimetría)

$$A \subseteq A$$
 (reflexividad)

$$A \subseteq B \ y \ B \subseteq C$$
 entonces $A \subseteq C$ (transitividad)

$$\emptyset \subseteq A$$

Transitividad

Supongamos que $A \subseteq B$ y $B \subseteq C$, entonces tenemos que

Para todo x, si $x \in A$ entonces $x \in B$ (1)

Para todo x, si $x \in B$ entonces $x \in C$ (2)

Sea $x \in A$. Por (1), tenemos que $x \in B$ y por (2), como $x \in B$, tenemos que $x \in C$, por lo tanto probamos que $x \in C$ y tenemos entonces que $A \subseteq C$.

$$\emptyset \subseteq A$$

Para probar esta inclusión, deberíamos ver que para todo x, si $x \in \emptyset$ entonces $x \in A$.

$$(x \in \emptyset) \to (x \in A)$$

Pero el antecedente $(x \in \emptyset)$ es Falso, entonces la implicación es Verdadera, sin importar si la proposición $x \in A$ es V o F.

Por lo tanto, probamos que $\emptyset \subseteq A$.

Propiedades de la unión

$$(A \cup B) \cup C = A \cup (B \cup C)$$

(asociatividad)

$$A \cup B = B \cup A$$

(conmutatividad)

$$A \subseteq B$$
 si y solamente si $A \cup B = B$

 $A \subseteq B$ si y solamente si $A \cup B = B$

Veamos que $A \subseteq B \rightarrow A \cup B = B$

Supongamos que $A \subseteq B$ y sea $x \in A \cup B$. Tenemos entonces, por definición de unión, que $x \in A$ o $x \in B$. Pero si $x \in A$, entonces $x \in B$. Por lo tanto, en cualquiera de los dos casos tenemos que $x \in B$ y queda probado que $A \cup B \subseteq B$.

Por otro lado, si $x \in B$, entonces $x \in A \lor x \in B$, por lo que $x \in A \cup B$. Es decir, que $B \subseteq A \cup B$.

Hemos probado entonces que $A \cup B = B$.

Veamos ahora que $A \cup B = B \rightarrow A \subseteq B$.

Supongamos que $A \cup B = B$ y sea $x \in A$. Como $x \in A$, entonces $x \in A \cup B$, pero $A \cup B = B$, por lo que $x \in B$. Por lo tanto, probamos que $A \subseteq B$.

Matemática I – Comisión 2B

Propiedades de la intersección

$$(A \cap B) \cap C = A \cap (B \cap C)$$

(asociatividad)

$$A \cap B = B \cap A$$

(conmutatividad)

$$A \subseteq B$$
 si y solamente si $A \cap B = A$

Si la intersección de dos conjuntos es el conjunto vacío, decimos que son **disjuntos.**

$$A \subseteq B$$
 si y solamente si $A \cap B = A$

Veamos que $A \subseteq B \rightarrow A \cap B = A$

Supongamos que $A \subseteq B$ y sea $x \in A \cap B$. Tenemos entonces, por definición de intersección, que $x \in A$ y $x \in B$. En particular, vale que $x \in A$ y queda probado que $x \in A$.

Por otro lado, si $x \in A$, entonces $x \in B$, porque $A \subseteq B$ por lo que $x \in A \cap B$. Es decir, que $A \subseteq A \cap B$.

Hemos probado entonces que $A \cap B = A$.

Veamos ahora que $A \cap B = A \rightarrow A \subseteq B$.

Supongamos que $A \cap B = A$ y sea $x \in A$. Como $x \in A$, entonces $x \in A \cap B$, porque $A \cap B = A$. Luego, tenemos que $x \in A$ y $x \in B$. Por lo tanto, probamos que $A \subseteq B$.

Matemática I – Comisión 2B

Propiedades de la diferencia

$$A - A = \emptyset$$

$$\emptyset - A = \emptyset$$

$$A - \emptyset = A$$

Si
$$A - B = B - A$$
 entonces $A = B$

$$\emptyset - A = \emptyset$$

Veamos que $\emptyset - A \subseteq \emptyset$.

Sea $x \in \emptyset - A$. Luego $x \in \emptyset \land x \notin A$. Luego, $x \in \emptyset$ y por lo tanto hemos probado que $\emptyset - A \subseteq \emptyset$.

Veamos ahora que $\emptyset \subseteq \emptyset - A$

Para ver esto deberíamos probar que

$$(\forall x)(x \in \emptyset \to x \in \emptyset - A)$$

pero como el antecedente es falso, la implicación es verdadera.

Si
$$A - B = B - A$$
 entonces $A = B$

Supongamos que A - B = B - A. Veamos que $A \subseteq B$.

Sea $x \in A$. Entonces tenemos dos opciones:

- Si $x \in B$, entonces ya está.
- Si $x \notin B$, entonces $x \in A \land x \notin B$, es decir, $x \in A B$, pero A B = B A, es decir, que $x \in B \land x \notin A$, lo cual es un absurdo, porque contradice la hipótesis de que $x \in A$.

Por lo tanto, debemos tener que $x \in B$ y entonces $A \subseteq B$.

Propiedades del complemento

$$(A^{C})^{C} = A$$

$$\emptyset^{C} = U$$

$$U^{C} = \emptyset$$

Si $A \subseteq B$ entonces $B^C \subseteq A^C$

Si $A \subseteq B$ entonces $B^C \subseteq A^C$

Supongamos que $A \subseteq B$ y veamos que $B^C \subseteq A^C$. Es decir, que $(\forall x)(x \in B^C \to x \in A^C)$. Lo veremos por el absurdo, es decir, supongamos que $x \in B^C$ y $x \notin A^C$.

Como $x \in B^C$, tenemos que $x \notin B$. Pero, por otro lado, como $x \notin A^C$, entonces tenemos que $x \in A$. Como $x \in A$ y, por hipótesis, $A \subseteq B$, entonces $x \in B$. Pero esto es un absurdo, porque no podemos tener que $x \notin B$ y $x \in B$.

Por lo tanto, queda probado que $(\forall x)(x \in B^C \to x \in A^C)$, es decir, que $B^C \subseteq A^C$.

Otras propiedades

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Leyes de De Morgan:

$$(A \cup B)^C = A^C \cap B^C$$

$$(A \cap B)^C = A^C \cup B^C$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Veamos que $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$

Sea
$$x \in A \cup (B \cap C)$$
.

Luego, tenemos que $x \in A \lor (x \in B \cap C)$, es decir, que $x \in A \lor (x \in B \land x \in C)$.

Pero como $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$, tenemos que

$$(x \in A \lor x \in B) \land (x \in A \lor x \in C)$$

Es decir, que

$$(x \in A \cup B) \land (x \in A \cup C)$$
$$x \in (A \cup B) \cap (A \cup C)$$

Por lo tanto, probamos que

$$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$$
.

La vuelta sale de manera análoga.

$$(A \cap B)^C = A^C \cup B^C$$

Veamos que $(A \cap B)^C \subseteq A^C \cup B^C$.

Sea $x \in (A \cap B)^C$, entonces tenemos que $x \notin A \cap B$.

$$\neg(x \in A \land x \in B)$$

Por las leyes de De Morgan en lógica $(\neg(p \land q) = \neg p \lor \neg q)$,

$$\neg(x \in A) \lor \neg(x \in B)$$

$$x \notin A \lor x \notin B$$

$$x \in A^C \lor x \in B^C$$

$$x \in A^C \cup B^C$$

Hemos probado entonces que $(A \cap B)^C \subseteq A^C \cup B^C$.

Veamos ahora que $A^C \cup B^C \subseteq (A \cap B)^C$

Sea $x \in A^C \cup B^C$. Luego, $x \in A^C \lor x \in B^C$, es decir, $x \notin A \lor x \notin B$. Es decir,

$$\neg(x \in A) \lor \neg(x \in B)$$

$$\neg(x \in A \land x \in B)$$

$$\neg(x \in A \cap B)$$

$$x \notin A \cap B$$

Por lo tanto $x \in (A \cap B)^C$