Oximeter

Noe Sheridan

Introduction

An oximeter is a device which measures the proportion of oxygenated hemoglobin to non-oxygenated hemoglobin in the blood. Typically done by shining two LEDs through a small extremity and analyzing the light received on the other side of the appendage.

Design/Implementation Process

General Design

The general idea for the project and its requirements

Code Design

How the project would complete its tasks, signal communication

PCB Design

Design an STM32 shield PCB for the current design

Prototype Build

Acquiring and wiring the necessary components

Code

Writing the STM32 code for the prototype build, testing functionality

Block Diagram V1.0

Oximeter -Noe Sheridan

Block Diagram V2.0

Oximeter -Noe Sheridan

PCB

PCB

8

Code

```
if(counter2 == 0){
//calculate R and SpO2
IR_Max = 0; //8 bits on adc
 IR Min =255;
R_{Max} = 0; R_{Min} = 255;
for(int i =0; i< 4000; i++){ //for the 4000 data samples
     if(dataR[i] < R_Min && dataR[i] > 0){
         R_Min = dataR[i]; //if less than minimum, reset minimum
     }else if(dataR[i] > R Max){
         R_Max = dataR[i];//if more than maximum, reset maximum
     if(dataIR[i] < R_Min && dataIR[i] >0){
         IR_Min = dataIR[i];
     }else if(dataIR[i]>IR Max){
         IR_Max = dataIR[i];
     R=((R_Max - R_Min)/(R_Min))/((IR_Max - IR_Min)/IR_Min); //the ratio of red to IR light
     Sp02 = (-19*(R) +99)*100; //blood oxygen calculated from the ratio
     //x100 to make a percent value
     int Sp02int = Sp02*100; //integers easier on the code for 7-segment?
```

Code


```
while (1)
 if(counter == 0){
     //turn on red led and take data from photodiode
     HAL_GPIO_WritePin(GPIOA, RedLED_Pin, GPIO_PIN_SET);
     //call ADC interrupt?
     for(int i =0; i<4000; i++){
         dataR[i] = HAL_ADC_GetValue(&hadc1);
 }else if(counter ==1){
     //turn off red led
     HAL_GPIO_WritePin(GPIOA, RedLED_Pin, GPIO_PIN_RESET);
     //stop taking data?
 }else if(counter ==2){
     //turn on ir led and take data from photodiode
     HAL GPIO WritePin(GPIOA, InfaredLED Pin, GPIO PIN SET);
     for(int i = 0; i < 4000; i++){
         dataIR[i] = HAL_ADC_GetValue(&hadc1);
 }else if(counter == 3){
     //turn of ir led
     HAL_GPIO_WritePin(GPIOA, InfaredLED_Pin, GPIO_PIN_RESET);
     //stop taking data
```

Block Diagram For Prototype Circuit Build

Oximeter -Noe Sheridan

Prototype Build

- Sn74HC595 Shift Register
- 4-Digit 7-Segment Display
- 1 Red LED
- 1 IR LED
- 1 Photo-diode
- 3 Resistors (330 Ω , 330 Ω and 10k Ω)
- 2 Solderless Breadboards

Presentation Title 12

Issues/Setbacks

LED Timing

- LEDs turns on and off in cycles of 80ms
- Possibly not enough time to allow LED to turn on and allow photo-diode to collect the correct data

Unfamiliarity with STM32CubeIDE

 Not able to work quickly, unfamiliarity with the functions and libraries needed

Communication with Shift-Register

 Though I could find help with interfacing the 4-digit 7-segment display, I could not find any helpful resources for interfacing the 7-segment through the shift register

