Planche de TD 3

Exercice 1. [Lemme du cours] Montrer que, si (x_n) est une suite dans un espace métrique (X,d), les quatre assertions suivantes sont équivalentes :

- 1. (x_n) admet une sous-suite convergeant vers a;
- 2. a est une valeur d'adhérence de (x_n) ;
- 3. $\forall V \in \mathcal{V}_a, \ \forall m \in \mathbb{N}, \ \exists n \text{ entire } \geq m, \ x_n \in V;$
- 4. $\forall \epsilon > 0, \ \forall m \in \mathbb{N}, \ \exists n \ \text{entier} \ \geq m, \ d(a, x_n) < \epsilon.$

Exercice 2. $[S^1]$ Montrer que l'application $p: \mathbb{R} \to S^1: t \mapsto e^{2i\pi t}$ est continue et surjective. En déduire que S^1 est connexe par arcs et compact.

Exercice 3. [espaces projectifs] On munit l'espace projectif $X = \mathbb{PR}^n$ (=quotient de \mathbb{R}^{n+1} par \sim avec $(X \sim X'$ si et seulement si $X = \lambda X'$ avec $\lambda \neq 0$)) de la topologie quotient.

- 1. Montrer que X est homéomorphe au quotient de S^n par la relation $(X \sim X')$ si et seulement si X = X' ou X = -X'.
- 2. En déduire que X est connexe et compact.
- 3. Montrer que $\mathbb{P}\mathbb{R}^1$ est homéomorphe à S^1 .

Exercice 4. [composantes connexes] Soit I = [0, 1] et considérons les deux parties de \mathbb{R}^2 suivantes :

$$A = \bigcup_{n \in \mathbb{N}^*} \left(\left\{ \frac{1}{n} \right\} \times I \right) \qquad X = \overline{A} \cup (I \times \{0\}).$$

Montrer que A possède une infinité de composantes connexes et que X est connexe. Faire un dessin résumant la situation.

Exercice 5. $[\mathbb{Q} \subset \mathbb{R}]$ Montrer que $\mathbb{Q} \subset \mathbb{R}$ n'est pas connexe. Pour $\alpha \in \mathbb{Q}$, déterminer la composante connexe de α . En déduire que les composante connexes ne sont pas ouvertes, puis que aucun point n'admet de voisinage connexe.

Exercice 6. [composantes connexes du complémentaire d'un sev] Soit E un sous-espace vectoriel de \mathbb{R}^n . A quelle condition $\mathbb{R}^n \setminus E$ est-t-il connexe ?

Exercice 7. [union de compacts] Montrer qu'une réunion finie de compacts est compacte.

Exercice 8. [sous-espaces de matrices] On note $\mathcal{M}_n(\mathbb{R})$ l'espace des matrices carrées d'ordre n. On admet, pour l'instant, que toutes les normes sur $\mathcal{M}_n(\mathbb{R})$ sont équivalentes et on munit $\mathcal{M}_n(\mathbb{R})$ de la topologie associée. Parmi les parties suivantes de $\mathcal{M}_n(\mathbb{R})$, y-en-a-t-il qui soient compactes ?

- 1. l'ensemble des matrices inversibles;
- 2. l'ensemble des matrices diagonales;
- 3. l'ensemble des matrices de déterminant 1;
- 4. l'ensemble des matrices idempotentes et symétriques.

Exercice 9. [La fourche double] Soit $X = \mathbb{R} \times \{-1\} \cup \mathbb{R} \times \{1\} \subset \mathbb{R}^2$. On définit la relation $\sim \text{sur } X$ par $(x,y) \sim (x',y')$ si (x,y) = (x',y') ou x = x' < 0.

- 1. Montrer que \sim est une relation d'équivalence sur X. On note $F=X/\sim, \pi:X\to F$ la projection canonique et on munit F de la topologie quotient.
- 2. Montrer que $\pi([-1,1] \times \{1\})$ est compact non fermé dans F. En déduire que F n'est pas Hausdorff.
- 3. Trouver deux points de F qui ne peuvent pas être séparés par des ouverts.
- 4. Trouver deux compacts de F dont l'intersection n'est pas compacte.

Exercice 10. [intersection de compacts] Montrer que dans un espace Hausdorff, toute intersection de compacts est compacte.

Exercice 11. [Tychonoff] Le but de cet exercice est de démontrer le théorème de Tychonoff : $X \times Y$ compact si et seulement si X et Y le sont.

- 1. Montrer que $X \times Y$ compact implique que X et Y le sont.
- 2. On supppose maintenant que X et Y sont compacts et on se donne un recouvrement $(U_i)_{i\in I}$ de $X\times Y$
 - (a) On fixe $x \in X$, justifier, pour chaque $y \in Y$, d'un ouvert V_y de X, un ouvert W_y de Y et d'un élént $i_y \in I$ tels que $(x,y) \in V_y \times W_y \subset U_{i_y}$.
 - (b) Montrer que $\{x\} \times Y$ peut-être recouvert par un nombre fini de $V_{y_1} \times W_{y_1} \cup \ldots \cup V_{y_n} \times W_{y_n}$. On pose alors $V_x = V_{y_1} \cap \ldots \cap V_{y_n}$
 - (c) Montrer que $V_x \times Y$ est recouvert par un nombre fini de U_i .
 - (d) Montrer que $X \times Y$ est recouvert par un nombre fini de $V_x \times Y$.
 - (e) Conclure.

Exercice 12. [séparabilité] Montrer que tout espace métrique compact est séparable.

Exercice 13. [Compacité de O(n) et SO(n)] Soit $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrice carrées d'ordre n, on munit \mathbb{R}^n du produit euclidien canonique. Pour $A \in \mathcal{M}_n(\mathbb{R})$, on pose $||A|| = \sup_{||\mathbf{x}|| < 1} ||A\mathbf{x}||$.

- 1. Montrer que $A \mapsto ||A||$ est une norme sur $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que si une suite A_n converge vers A pour cette norme, alors pour tout $\mathbf{x} \in \mathbb{R}^n$, $A_n \mathbf{x} \to A \mathbf{x}$.
- 3. Montrer que le groupe orthonal O(n) est contenu dans la boule unité de ||.||.
- 4. En déduire que O(n) et $SO(n) = O(n) \cap SL_n(\mathbb{R})$ sont compacts.

Exercice 14. [Compactifié d'Alexandroff] Soit X un espace topologique Hausdorff et ω un point n'appartenant pas à X. On pose $\hat{X} = X \cup \{\omega\}$.

- 1. Montrer que l'ensemble formé par les ouverts de X et les ensembles de la forme $\{\omega\} \cup (X \setminus K)$ avec K compact de X est une topologie sur \hat{X} . \hat{H} est appelé le compactifié d'Alexandroff de X.
- 2. Quel est le compactifié d'Alexandroff d'un espace compact ?
- 3. Montrer que \hat{X} est compact pour cette topologie.
- 4. Montrer que \hat{X} est Hausdorff si et seulement si tout point de X admet un voisinage compact.
- 5. On suppose que $X = \mathbb{N}$, montrer que \hat{X} est homéomorphe à $\{1/n, n \in \mathbb{N}^*\}$.
- 6. On suppose que $X=\mathbb{R}^n,$ montrer que \hat{X} est homéomorphe à $S^n.$

Exercice 15. [Un début de complétude] Soit X un **ensemble** non-vide et $l^{\infty}(X)$ l'ensemble de toutes les fonctions $f: X \to \mathbb{R}$ bornées sur X. On munit $l^{\infty}(X)$ de la distance associée à la norme $\|\cdot\|_{\infty}$.

1. Montrer que $l^{\infty}(X)$ est complet.

2. On suppose maintenant que X est un espace topologique compact. Montrer que le sous-espace $C^0(X)$ des fonctions continues est fermé. Que peut-on en déduire ?

Exercices facultatifs:

Exercice 16. [Topologie bizarre I] Soit $\mathcal{T} = \{\{1, \dots, n\}, n \in \mathbb{N}^*\} \cup \{\emptyset, \mathbb{N}^*\}.$

- 1. Montrer que \mathcal{T} est une topologie sur \mathbb{N}^* . Dans la suite, on note X l'espace topologique $(\mathbb{N}^*, \mathcal{T})$.
- 2. Montrer que deux points de X ne ne sont jamais séparés.
- 3. Montrer que $K \subset X$ est compact si est seulement si K est fini. En déduire que X n'est pas compact.
- 4. Montrer que aucun compact de X n'est fermé et qu'aucun fermé non vide de X est compact. En dëduire que l'adhérence d'un compact de X n'est jamais compacte.

Exercice 17. [Adhérence de sin(1/x)] Soit $A = \left\{ \begin{bmatrix} x \\ \sin(1/x) \end{pmatrix} \right\}_{x>0}$, montrer que $\overline{A} = A \cup (\{0\} \times [-1,1])$, puis que \overline{A} est connexe mais pas connexe par arcs.

Exercice 18. [Topologie bizarre II] Soit X un espace topologique dans lequel tout ouvert est fermé. Montrer que X est réunion disjointe d'espaces grossiers.

Exercice 19. [Asticieux et difficile; matrices diagonalisables] Soit A une matrice carré d'ordre 2 à coefficients réels. Montrer que A est diagonalisable ssi sa classe de similitude est connexe. (Indication: dans un sens, utiliser $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$; dans l'autre, en les démontrant comme exercice, utiliser les faits, que $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \mapsto b-c$ est continue, que toute matrice est semblable à sa transposée et que toute matrice symétrique réelle est diagonalisable)

Exercice 20. [Très difficile; projecteurs] Soit \mathcal{P} l'ensemble des matrices idempotentes de taille $n \times n$. Monter que \mathcal{P} est compact ssi n = 1, est fermé, d'intérieur vide. Etudier les composantes connexes (Indication : trace(P) = rang(P) (montrez le) est constant sur les classes de similitude).