

Embedded Machine Learning for Edge Computing

ML Pipeline, Model Evaluation and Deployment

Sahan Hemachandra

Aug/2024

About me

- Graduated from Department of Electronic and Telecommunications Engineering in 2021, specializing in computer vision.
- Authored papers several papers in computer vision conferences and a journal.
- Previously worked as a Senior Software Engineer at WSO2
- Currently working as a Research Assistant at Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi

What will you Learn?

1. How can we deploy Embedded AI solutions (Theory)?

- A. Required devices
- B. Training process for a model
- C. How to optimize models for embedded devices
- D. Porting and running models

RECAP

Arduino Nano BLE

BLE and Processor

XIAO ESP32S3

Required Devices

- A resource rich device for training
- An embedded system for inference

Required Devices

Pipeline: Embedded ML

Running Example

Cat-Dog detection model

Capturing the data

Better data = Better model

Capturing the data - Creating a dataset PNTE

Process of creating your own dataset

- 1. Data **Acquisition**
- 2. Data Cleaning
- 3. Data Labeling

Capturing the data - Creating a dataset

Data Acquisition

1. Generate the data

- Used when no dataset for the use case exists
- Can be done via **crowdsourcing** or **synthesizing** data

2. Augment the data

- Uses an existing dataset by "modifying" the existing
 - Cropping
 - Flipping
 - Rotating
 - Adjusting contrast and/or brightness

Capturing the data - Creating a dataset

Data Cleaning

- Cleaning out rogue data (duplicates, noisy, etc.)
- Cleaning out formatting issues (e.g., String to data-time formatting)
- Removing bias' in the data diversify

Dataset

Capturing the data - Creating a dataset

Data Labeling

- Give more contextual meaning to the data
 - e.g., An image of a dog should be labelled as "Dog"

Training the model

1. Selecting the model for the problem

- 1. Understand the use-case
- 2. Consider the type of data

2. Creating the model

- Can use popular libraries
 - 1. TensorFlow
 - 2. SciKit Learn
 - 3. Keras

Cont. Cat-dog detection

- 1. What is the type of data we will feed into the model to get an output?
 - Text data
 - Image data
 - Numerical data
- 2. What model is most suitable for the job?
 - Convolutional Neural Networks
 - Decision trees
 - K-Nearest Neighbor
- 3. What framework should be use?
 - Keras
 - OpenCV
 - TensorFlow

Cont. Cat-dog detection

- 1. What is the type of data we will feed into the model to get an output?
 - Text data
 - Image data
 - Numerical data
- 2. What model is most suitable for the job?
 - Convolutional Neural Networks

- Decision trees
- K-Nearest Neighbor
- 3. What framework should be use?
 - Keras
 - OpenCV
 - TensorFlow

Model Maintenance

ML-OPS

