RSA and Diffie-Hellman Key Exchange

AIF183119 Keamanan Informasi Universitas Katolik Parahyangan Mariskha Tri Adithia MSc, PDEng

Overview

- Diffie-Hellman key exchange
- Some math
- Key generation
- Encryption and decryption
- RSA security

Diffie-Hellman Key Exchange

- Key exchange algorithm for symmetric key cryptography
- Exchanging information which is not secret to generate secret key
- Entities should first agree on 2 prime large numbers n and g, such that g < n

The algorithm

Alice

Generate x

Compute $X = g^x \mod n$

Compute symmetric key

$$K = Y^x \mod n$$

Bob

Generate y

Compute $Y = g^y \mod n$

Compute symmetric key

$$K = X^y \mod n$$

X

The algorithm Example

- \bullet Misalkan n = 97 dan g = 5
- Alice memilih x = 36, maka $X = g^x \mod n = 5^{36} \mod 97 = 50$
- Alice mengirimkan X pada Bob
- Bob memilih y = 58, maka $Y = g^y \mod n = 5^{58} \mod 97 = 44$
- Bob mengirimkan Y pada Alice
- Maka kunci simetri yang didapat

$$K = X^y \mod n = 44^{36} \mod 97 = 75$$

$$K = Y^x \mod n = 50^{58} \mod 97 = 75$$

Exercise

Determine the symmetric key generated by Alice and Bob if n = 17 and g = 3, x = 2, and y = 5. Draw the key exchange scheme.

Weaknesses

- Discrete logarithm attack-> computing the value of x and y
 - > p should be very big, > 300 digits
 - > p-1 should have at least one big prime factors, > 60 digits
 - x and y should be destroyed once the key is generated
- Man-in-the-middle attack
 - > How?

Math in RSA

Greatest Common Divisor (GCD)

Example:

Factors of 45: 1,3,5,9,15,45

Factors of 36: 1,2,3,4,9,12,18,36

GCD(45,36)=9

Math in RSA (2)

 Relatively prime
 a and b are relatively prime if the GCD(a,b) = 1

Examples: 23 and 13, and 125 and 4, are relatively prime

Key generation

No.	Variables	Properties
1	Prime numbers p and q	Secret
2	$n = p \cdot q$	Public
3	$\phi(n) = (p-1)(q-1)$	Secret
4	e (encryption key)	Public
5	d (decryption key)	Secret
6	m (plaintext)	Secret
7	c (ciphertext)	Public

Key generation (2)

- 1. Choose two prime numbers p and q
- 2. Compute $n = p \cdot q \ (p \neq q, \text{ why?})$
- 3. Compute $\phi(n) = (p-1)(q-1)$
- 4. Choose a public key e, which is relatively prime with $\phi(n)$
- 5. Generate the private key, $d = e^{-1} \mod \phi(n)$

Kunci publik adalah pasangan (e,n) Kunci privat adalah d

Key generation (3)

Example:

- 1. Suppose p = 47 and q = 71
- 2. Compute $n = p \cdot q = 47 \cdot 71 = 3337$
- 3. Determine $\phi(n) = (p-1)(q-1) = 46 \cdot 70 = 3220$
- 4. Suppose the public key e = 79
- 5. Generate the private key $d = 79^{-1} \mod 3220 = 1019$

Exercise

Determine the public and private keys if p = 53 and q = 67.

Encryption and decryption

Encryption algorithm

- 1. Suppose the receiver public key and modulus are e and n, respectively
- 2. Divide the plaintext *m* into blocks $m_1, m_2, ...$ such that $m_1, m_2, ...$ in [0, n-1]
- 3. Encrypt block m_i as $c_i = m_i^e \mod n$

Decryption algorithm

Decrypt ciphertext c_i as $m_i = c_i^d \mod n$

$$m_i = c_i^d \mod n$$

Encryption and decryption Example

- Alice wants to send a message to Bob
- Alice's message is m = HARI INI or m = 7265827332737873 in ASCII code, n = 3337
- Divide m into blocks of 3 digits (why?)

$$m_1 = 726$$
 $m_4 = 273$ $m_2 = 582$ $m_5 = 787$ $m_6 = 003$

Encryption and decryption Example (2)

• Encrypt m using Bob's public key e = 79 as follows:

$$m_1 = 726^{79} \mod 3337 = 215$$

 $m_2 = 582^{79} \mod 3337 = 1743$
 $m_3 = 733^{79} \mod 3337 = 1731$

$$m_4 = 273^{79} \mod 3337 = 776$$

 $m_5 = 787^{79} \mod 3337 = 933$
 $m_6 = 003^{79} \mod 3337 = 158$

The ciphertext is
 c = 215 1743 1731 776 933 158

Encryption and decryption Example (3)

 Bob decrypts the message using his private key d = 1019, as follows:

$$m_1 = 215^{1019} \mod 3337 = 726$$
 $m_5 = 933^{1019} \mod 3337 = 273$ $m_4 = 776^{1019} \mod 3337 = 582$ $m_3 = 1731^{1019} \mod 3337 = 787$ $m_2 = 1743^{1019} \mod 3337 = 733$ $m_6 = 158^{1019} \mod 3337 = 3$

Exercise

Determine the public and private keys given p = 3 and q = 7 and encrypt the message m = 1214200915

Discussion

• If you want to attack the RSA, what will you do?

Questions?