

INDIAN ASTRONOMICAL EPHEMERIS

FOR THE YEAR 2020

POSITIONAL ASTRONOMY CENTRE INDIA METEOROLOGICAL DEPARTMENT MINISTRY OF EARTH SCIENCES

THE

INDIAN ASTRONOMICAL EPHEMERIS

FOR THE YEAR
2020

POSITIONAL ASTRONOMY CENTRE
INDIA METEOROLOGICAL DEPARTMENT

Issued under the authority of

THE DIRECTOR GENERAL OF METEOROLOGY, NEW DELHI INDIA METEOROLOGICAL DEPARTMENT MINISTRY OF EARTH SCIENCES GOVERNMENT OF INDIA

Office of preparation

POSITIONAL ASTRONOMY CENTRE INDIA METEOROLOGICAL DEPARTMENT SALT LAKE, KOLKATA - 700 091

Copies available from:

In India:
The Controller of Publications
Civil Lines, Delhi - 110 054

Government of India Book Depot, 8, K. S. Roy Road, Kolkata - 700 001

Government of India Kitab Mahal, Baba Kharak Singh Marg, New Delhi

Government of India Book Depot, New Marine Lines, Mumbai - 20

(And other agents selling Government of India publications)

Sale Price : Inland Rs. 600.00; Foreign £ 12.00 or \$ 15.00

PREFACE

The Indian Astronomical Ephemeris is published annually by the India Meteorological Department (IMD) for providing data to astronomers. The speciality of this publication is that it contains calendric information which caters to the requirement of the country's panchang makers and other users. Thus it has great civil and cultural significance. This has been the mandate given to the Positional Astronomy Centre at Kolkata by the Govt. of India.

The calculations of the Indian Calendar portion, such as tithi, nakshatra etc. are given in Indian Standard Time (IST) and covers an extended period upto 21st March 2021 which is the end of the year 1942 Saka Era of the Indian National Calendar. A separate note has also been given to explain the terminology and the basis of different calculations relating to the Indian Calendar.

The epoch of the standard reference system in this publication is J 2000.0 and the argument of the ephemerides is Terrestrial Time (TT). Resolutions of the International Astronomical Union (IAU) recommending the changes from time to time including a list of new IAU constants are given in Part VI - Indian Calendar and Explanation.

Our sincere thanks are due to the Nautical Almanac Office, United States Naval Observatory and Her Majesty's Nautical Almanac Office, U.K.

The work of preparation and publication of the Indian Astronomical Ephemeris for 2020 has been done under the supervision of Shri S. Sen, Director, Positional Astronomy Centre, India Meteorological Department, Kolkata.

Dr. K. J. Ramesh Director General of Meteorology

Mausam Bhawan New Delhi - 110 003 29th July, 2019 A.D. (7 Sravana, 1941 Saka Era)

CONTENTS

										Page
Preface .		•					•		•	III
	P	ART I	− TIME,	SUN,	MOON,	PLANETS				
Time Scales .	•	•		•	•	•	•	•	•	2
Chronological Table	•	•		•	•	•	•	•	•	3
Calendar .	•	•		•	•		•		•	4
Sidereal Time .	•	•	•	•	•	•	•	•	•	13
Mean longitude and anomaly of	Sun	•		•	•	•	•	•	•	17
Ephemeris of the Sun							•			18
Rectangular Co-ordinates of the	Sun						•			34
Ephemeris for physical observa	tions of th	ne Sun					•			42
Ephemeris of the Moon	•						•			46
Ephemeris for physical observat	ions of th	e Moon								88
Ephemerides of planets:										
Mercury .										96
Venus .	•									112
Mars .										126
Jupiter .										140
Saturn .	•									154
Uranus .										168
Neptune .										182
Pluto .	_	_		_	_		_		_	196
Osculating Elements of Planets										200
Centre of Mass of the Solar Syst		•	·	Ī	·	·	•	·	·	202
Contro of Mass of the Solar Syst	••••	•	PAR'	ГИ— S	STARS	·	•	·	·	202
Longitude and Latitude of Stars			IAK	1 11 1	JIAKS					204
Mean Places of Stars .		•	•	•	•	•	•	•	•	215
	•	•	•	•	•	•	•	•	•	213
Apparent Places of Stars	•	•	•	•	•	•	•	•	•	
Besselian Day Numbers	•	•	•	•	•	•	•	•	•	244
Second Order Day Numbers		•	•	•	•	•	•	•	•	252
Position and Velocity of the Ear	th	•	•	•	•	•	•	•	•	256
Precession and Nutation	•	•	•	•	•	•	•	•	•	257
Apparent Places of Polaris	•	•	•	•	•	•	•	•	•	272
Polaris Tables .	•	•	•	•	•	•	•	•	•	275
DADE III	T A DI	EG OF	CI DIDICI	E CID	IGET AN	ID MOON	DIGE I	100010	E	
PART III -				E, SUN	ISET AN	ND MOON	KISE, I	MOONS	EI	200
Sunrise, Sunset and Twilight	Meridiai	1 of Greer	iwich)	•	•	•	•	•	•	280
Duration of Twilight.					•	•	•	•	•	288
Sunrise, Sunset and Twilight			thern Latitud	les	•	•	•	•	•	290
Sunrise and Sunset for certain St					•	•	•	•	•	292
Moonrise and Moonset for the C					ndia	•	•	•	•	296
Moonrise and Moonset Redu					•	•	•	•	•	312
Sunrise, Sunset and Moonrise,					•	•	•	•	•	313
Reduction of Local Mean Time	into the Ir	ndian Stan	dard Time .		•	•	•	•	•	314
Sunrise, Sunset and Moonrise,	Moonse	t Metho	d of Calcula	ition	•	•	•	•	•	315
Phases of the Moon	_	_	_	_	_	_		_	_	317

CONTENTS

PART IV	– ECLI	PSES. TI	RANSIT	AND OC	CCULTA	ΓΙΟΝS		Pag
Eclipses of the Sun and the Moon							_	. 320
Occultations of Planets and Bright Stars						_		. 338
	•	-					-	
PART V - ASTRON	NOMICA	L PHEN	OMENA	AND MI	ISCELLA	NEOUS	TABLE	S
Phenomena: Elongations and Magnitudes	s of Planets			•			•	. 342
Conjunctions, oppositions,		ets with the	e Sun (in Lo	ongitude)		•	•	. 344
Conjunctions of Planets wit	th the Moon	and other	Planets (in 1	Longitude)			•	. 345
Conjunctions of Planets wit	th Bright Sta	ırs (in R.A.)	•			•	. 346
Astronomical Diary .				•			•	. 347
Table I Conversion of mean Solar	into Sidere	al Time					•	. 351
Table II Conversion of sidereal int	o Mean Sol	ar Time					•	. 352
Table III Conversion of Arc to Time	e	•	•				•	. 353
Table IV Conversion of Time to Ar	c						•	. 354
Table V Conversion of Hours, Mi	nutes and S	econds to	Decimals of	f a Day			•	. 355
Table VI Conversion of Minutes ar	nd Seconds t	o Decimal	s of a Degre	ee			•	. 358
Table VII Interpolation Coefficients							•	. 359
Table VIII Everett Coefficients of the	Second Dif	ferences	•				•	. 361
Table IX Julian Day Number				•			•	. 363
Table X, Xa, Xb Atmospheric Re	efraction			•			•	. 364
Table XI Factors for Computing the	e Geocentric	Co-ordina	tes of a Pla	ace			•	. 367
Table XII Conversion of Geographi	ic to Geocen	tric Co-ord	linates	•			•	. 368
Latitude and Longitude of Places				•			•	. 369
Semi-diurnal and Semi-nocturnal Arcs, etc	: .			•			•	. 373
Natural Trigonometric Functions				•			•	. 374
Standard Time	•			•			•	. 375
PART V	I – INDI	IAN CAI	LENDAR	AND E	XPLANA	TION		
Explanatory Note						•		. 380
Phenomena & Mean Rahu, 2021				•			•	. 383
Indian Calendar, Saka Era 1942–1943						•		. 384
Principal Festivals and Anniversaries for H	olidays							. 414
Moslem Festivals .						•		. 417
The Islamic Calendar (Hejira 1441 - 1442)						•		. 417
The Parsi Calendar and Festivals						•		. 418
The Jewish Calendar and Festivals						•		. 418
Christian Festivals						•		. 419
The Indian Lunar Calendar .						•		. 420
Ayanamsa			•	·			•	. 423
Longitudes of Sun, Moon and Planets, 20	21		•	·			•	. 424
Declination of Sun and Latitude and Declin		on, 2021						. 428
Latitude and Declination of Planets, 2021		•					•	. 430
Longitude of Uranus, Neptune and Pluto, 2	0201							. 432
Explanation							•	. 433
Index			•	ē			•	. 476

PART - I

TIME, SUN, MOON, PLANETS

TIME-SCALE, 2020

Julian date for Standard epoch

190	0 January	0,	12 ^h U.T.	=	JD	241	5020.0
В	1950.0	=	1950 Jan. 0.923	=	JD	243	3282.423
В	2020.0	=	2020 Jan. 0.877	=	JD	245	8849.377
J	2020.5	=	2020 July 2.125	=	JD	245	9032.625
J	2000.0	=	2000 Jan. 1.5	=	JD	245	1545.0

Tabulations of Julian date against calendar date for 2020 are given on pages 4 to 12 and for other years are given at Table IX of Part-V on page 359.

The fraction of the year from 2020.5 is tabulated with the Besselian day numbers on pages 244-251.

The lengths of the principal years and mean months at 2020.0 as derived from the Sun's mean motion and mean Orbital elements respectively are:

Length of the year (ephemeris days):

	d		d	h	m s
Tropical (equinox to equinox)	365.2	242190	= 365	05	48 45.2
Sidereal (fixed star to fixed star)	365.2	256363	= 365	06	09 09.8
Anomalistic (perigee to perigee)	365.2	259635	= 365	06	13 52.5
Eclipse (node to node)	346.	620074	= 346	14	52 54.4
Length of the Month (ephemeris days)					
	d		d	h	m s
Synodic (new moon to new moon)	29.53	805888	= 29	12	44 02.9
Tropical (equinox to equinox)	27.32	215822	= 27	07	43 04.7
Sidereal (fixed star to fixed star)	27.32	216615	= 27	07	43 11.6
Anomalistic (perigee to perigee)	27.55	545501	= 27	13	18 33.1
Nodical (node to node)	27.21	22207	= 27	05	05 35.9
	h	m	S		
Length of the day: Mean Sidereal	23	56	04.09053	of me	ean Solar time.
Mean Solar	24	03	56.55537	of me	ean Sidereal time.

CHRONOLOGICAL TABLE

CHRONOLOGICAL CYCLES

Golden Number or Lunar Cycle	VII	Solar Cycle	13
Epact	5	Roman Indiction	13
Dominical Letter	ED		

CHRONOLOGICAL ERAS

The year 1942 of the Saka Era (Indian National Calendar) begins on March 21, 2020.

The year 1942 of the Saka Era or Saka Shalivahana (Lunisolar, Traditional Calendar) begins on March 25, 2020.

The year 1942 of the Saka Era (Solar, Traditional Calendar) begins on April 14, 2020.

The year 5121 of the Kali Era begins on April 14, 2020.

The year 2077 of the Vikram Samvat begins on March 25, 2020 (Chaitradi) and November 16, 2020 (Kartikadi) according to different systems of reckoning.

The year 1427 of the Bengali San begins on April 14, 2020.

The year 1196 of the Kollam Era begins on August 17, 2020.

Jovian year (Barhaspatya Varsa or 60-year cycle of Jupiter) 48 Ananda begins on June 1, 2020 (North Indian Usage), and 34 Sarvari on March 25, 2020 (Lunar Chaitradi) or April 14, 2020 (Solar) (South Indian Usage).

Vedanga Jyotisa year 1- Samvatsara of the 5-year cycle (389 th cycle of Paitamaha Siddhanta) begins on January 25, 2020.

The year 2564 of the Buddha Nirvana era begins on May 7, 2020.

The year 2547 of the Mahavira Nirvana Era begins on November 16, 2020.

The year 1442 of the Mohammedan Era begins on August 21, 2020.

The year 1390 of the Yazdejardi Era begins on August 16, 2020 according to the Indian Parsi (Shahenshahi) Calendar.

The year 6733 of the Julian period begins on January 14, 2020.

The year 5781 of the Jewish Era (A.M.) begins on September 19, 2020.

The year 2796 of the Greek Olympiad, being the 4th year of the 4-Year cycle (699 th Olympiad) begins on July, 2020.

The year 2773 of the Foundation of Rome (A.U.C.) begins on January 14, 2020.

The year 2769 of the Nabonassar begins on April 18, 2020.

The year 2332 of the Seleucidean era begins in the present-day usage of the Syrians on September 14 or October 14, 2020 according to different sects.

The Gregorian Year 2020 begins on January 1, 2020.

Da	ıy	Day	Day	Days	Fraction	Julian	Indian Cale	ndar	Phases
of	f	of	of	since	of	Day	Day of Month	Day	of the
Mor	nth	Year	Week	J 2020.5	Year	(at 0h		of	Moon
					since	U.T.)		Year	
					Jan. 1.0				
						2458	1941 Saka Era		
Dec.	28	362	Sat	-187.125	-0.0110	845.5	Pausha 7	282	
	29	363	Sun	186.125	-0.0082	846.5	8	283	
	30	364	Mon	185.125	-0.0055	847.5	9	284	
Dec.	31	365	Tue	184.125	-0.0027	848.5	10	285	
Jan.	1	1	Wed	183.125	0.0000	849.5	11	286	
	2	2	Thu	182.125	0.0027	850.5	12	287	
	2		Fri	181.125	0.0055	851.5	13	288	3-First Quarter
									4 ^h 45 ^m U.T.
	4	4	Sat	-180.125	0.0082	852.5	14	289	
	5		Sun	179.125	0.0110	853.5		290	
	6		Mon	178.125	0.0137	854.5	16	291	
	7		Tue	177.125	0.0164	855.5	17	292	
	8		Wed	176.125	0.0192	856.5	18	293	
	9		Thu	175.125	0.0219	857.5		294	
	10		Fri	174.125	0.0246	858.5	20	295	10-Full Moon
									19 ^h 21 ^m U.T.
	11		Sat	-173.125	0.0274	859.5		296	
	12		Sun	172.125	0.0301	860.5		297	
	13	13	Mon	171.125	0.0329	861.5	23	298	
	14	14	Tue	170.125	0.0356	862.5	24	299	
	15	15	Wed	169.125	0.0383	863.5	25	300	
	16	16	Thu	168.125	0.0411	864.5	26	301	
	17	17	Fri	167.125	0.0438	865.5	27	302	17-Last Quarter 12 ^h 58 ^m U.T.
	18	18	Sat	-166.125	0.0465	866.5	28	303	
	19		Sun	165.125	0.0493	867.5		304	
	20		Mon	164.125	0.0520	868.5		305	
	21		Tue	163.125	0.0548	869.5		306	
	22		Wed	162.125	0.0575	870.5		307	
	23		Thu	161.125	0.0602	871.5		308	
	24		Fri	160.125	0.0630	872.5		309	24-New Moon
									21 ^h 42 ^m U.T.
	25		Sat	-159.125	0.0657	873.5	5	310	
	26		Sun	158.125	0.0684	874.5		311	
	27		Mon	157.125	0.0712	875.5	7	312	
	28	28	Tue	156.125	0.0739	876.5	8	313	
	29		Wed	155.125	0.0767	877.5	9	314	
	30		Thu	154.125	0.0794			315	
	31	31	Fri	153.125	0.0821	879.5	11	316	
Feb.	1		Sat	-152.125	0.0849	880.5	12	317	
	2		Sun	151.125	0.0876			318	2-First Quarter
	3		Mon	150.125	0.0904			319	1 ^h 42 ^m U.T.
	4		Tue	149.125	0.0931	883.5	15	320	
	5	36	Wed	148.125	0.0958	884.5	16	321	
	6	37	Thu	147.125	0.0986	885.5	17	322	
	7	38	Fri	-146.125	0.1013	886.5	18	323	

Da	ıy	Day	Day	Days	Fraction	Julian	Indian Cale	ndar	Phases
of	f	of	of	since	of	Day	Day of Month	Day	of the
Mon	nth	Year	Week	J 2020.5	Year	(at 0h	-	of	Moon
					since	U.T.)		Year	
					Jan. 1.0				
						2458	1941 Saka Era		
Feb.	8	39	Sat	-145.125	0.1040	887.5	Magha 19	324	
	9	40	Sun	144.125	0.1068	888.5	20	325	
	10	41	Mon	143.125	0.1095	889.5	21	326	7 ^h 33 ^m U.T.
	11	42	Tue	142.125	0.1123	890.5	22	327	
	12	43	Wed	141.125	0.1150	891.5	23	328	
	13	44	Thu	140.125	0.1177	892.5	24	329	
	14	45	Fri	139.125	0.1205	893.5	25	330	
	15	46	Sat	-138.125	0.1232	894.5	26	331	15-Last Quarter
	16	47	Sun	137.125	0.1259	895.5	27	332	22 ^h 17 ^m U.T.
	17	48	Mon	136.125	0.1287	896.5	28	333	
	18	49	Tue	135.125	0.1314	897.5	29	334	
	19	50	Wed	134.125	0.1342	898.5	30	335	
	20	51	Thu	133.125	0.1369	899.5	Phalguna 1	336	
	21	52	Fri	132.125	0.1396	900.5	2	337	
	22	53	Sat	-131.125	0.1424	901.5	3	338	
	23	54	Sun	130.125	0.1451	902.5	4	339	23-New Moon
	24	55	Mon	129.125	0.1478	903.5	5	340	15 ^h 32 ^m U.T.
	25		Tue	128.125	0.1506	904.5	6	341	
	26	57	Wed	127.125	0.1533	905.5	7	342	
	27	58	Thu	126.125	0.1561	906.5	8	343	
	28	59	Fri	125.125	0.1588	907.5	9	344	
	29	60	Sat	-124.125	0.1615	908.5	10	345	
Mar.	1	61	Sun	123.125	0.1643	909.5	11	346	
	2	62	Mon	122.125	0.1670	910.5	12	347	
	3		Tue	121.125	0.1698	911.5	13	348	
	4		Wed	120.125	0.1725	912.5	14	349	
	5	65	Thu	119.125	0.1752	913.5	15	350	
	6	66	Fri	118.125	0.1780	914.5	16	351	
	7	67	Sat	-117.125	0.1807	915.5	17	352	
	8	68	Sun	116.125	0.1834	916.5	18	353	
	9	69	Mon	115.125	0.1862	917.5	19	354	
	10	70	Tue	114.125	0.1889	918.5	20	355	17 ^h 48 ^m U.T.
	11		Wed	113.125	0.1917	919.5	21	356	
	12		Thu	112.125	0.1944	920.5	22	357	
	13	73	Fri	111.125	0.1971	921.5	23	358	
	14	74	Sat	-110.125	0.1999	922.5	24	359	
	15	75	Sun	109.125	0.2026	923.5	25	360	
	16		Mon	108.125	0.2053	924.5	26	361	
	17		Tue	107.125	0.2081	925.5	27	362	
	18		Wed	106.125	0.2108	926.5	28	363	
	19	79	Thu	105.125	0.2136	927.5	29	364	
	20	80	Fri	-104.125	0.2163	928.5	30	365	

Da	ıy	Day	Day	Days	Fraction	Julian	Indian Cale	ndar	Phases
of	f	of	of	since	of	Day	Day of Month	Day	of the
Mor	nth	Year	Week	J 2020.5	Year	(at 0h		of	Moon
					since	U.T.)		Year	
					Jan. 1.0				
						2458	1942 Saka Era		
Mar.	21		Sat	-103.125	0.2190	929.5	Chaitra 1	1	
	22	82	Sun	102.125	0.2218	930.5	2	2 3	
	23	83	Mon	101.125	0.2245	931.5	3	3	
	24	84	Tue	100.125	0.2272	932.5	4	4	24-New Moon
	25		Wed	99.125	0.2300	933.5	5	5	9 ^h 28 ^m U.T.
	26	86	Thu	98.125	0.2327	934.5	6	6	
	27	87	Fri	97.125	0.2355	935.5	7	7	
	28		Sat	-96.125	0.2382	936.5	8	8	
	29		Sun	95.125	0.2409	937.5	9	9	
	30		Mon	94.125	0.2437	938.5	10	10	
	31		Tue	93.125	0.2464	939.5	11	11	
Apr.	1		Wed	92.125	0.2491	940.5	12	12	1-First Quarter
	2		Thu	91.125	0.2519	941.5	13	13	10 ^h 21 ^m U.T.
	3	94	Fri	90.125	0.2546	942.5	14	14	
	4	95	Sat	-89.125	0.2574	943.5	15	15	
	5		Sun	88.125	0.2601	944.5	16	16	
	6		Mon	87.125	0.2628	945.5	17	17	
	7		Tue	86.125	0.2656	946.5	18	18	
	8		Wed	85.125	0.2683	947.5	19	19	8-Full Moon
	9		Thu	84.125	0.2083	947.3	20	20	2 ^h 35 ^m U.T.
	10	100		83.125	0.2711	948.5	20	20	2 33 0.1.
	10	101	111	03.123	0.2736	747.3	21	21	
	11	102	Sat	-82.125	0.2765	950.5	22	22	
	12	103	Sun	81.125	0.2793	951.5	23	23	
	13	104	Mon	80.125	0.2820	952.5	24	24	
	14	105	Tue	79.125	0.2847	953.5	25	25	14-Last Quarter
	15	106	Wed	78.125	0.2875	954.5	26	26	22 ^h 56 ^m U.T.
	16	107	Thu	77.125	0.2902	955.5	27	27	
	17	108	Fri	76.125	0.2930	956.5	28	28	
	10	100	Cat	75 105	0.2057	057.5	20	20	
	18	109		-75.125	0.2957	957.5	29	29	
	19		Sun	74.125	0.2984	958.5	30	30	
	20		Mon	73.125	0.3012	959.5	31 Vojcekka 1	31	
	21 22		Tue	72.125	0.3039	960.5 961.5	Vaisakha 1	32	
			Wed	71.125	0.3066		2 3	33 34	
	23 24		Thu	70.125	0.3094	962.5 963.5	3 4	35	
	24	115	LU	69.125	0.3121	903.3	4	33	2 20 U.I.
	25	116		-68.125	0.3149	964.5	5	36	
	26		Sun	67.125	0.3176	965.5	6	37	
	27	118	Mon	66.125	0.3203	966.5	7	38	
	28	119	Tue	65.125	0.3231	967.5	8	39	
	29	120	Wed	64.125	0.3258	968.5	9	40	
	30		Thu	63.125	0.3285	969.5	10	41	
May	1	122	Fri	-62.125	0.3313	970.5	11	42	20 ^h 38 ^m U.T.

Da	ay	Day	Day	Days	Fraction	Julian	Indian Cale	endar	Phases
O	f	of	of	since	of	Day	Day of Month	Day	of the
Mo	nth	Year	Week	J 2020.5	Year	(at 0h	-	of	Moon
					since	U.T.)		Year	
					Jan. 1.0				
						2458	1942 Saka Era		
May	2	123	Sat	-61.125	0.3340	971.5	Vaisakha 12	43	
	3	124	Sun	60.125	0.3368	972.5	13	44	
	4	125	Mon	59.125	0.3395	973.5	14	45	
	5	126	Tue	58.125	0.3422	974.5	15	46	
	6	127	Wed	57.125	0.3450	975.5	16	47	
	7	128	Thu	56.125	0.3477	976.5	17	48	7-Full Moon
	8	129		55.125	0.3505	977.5	18	49	$10^{\rm h} 45^{\rm m} \rm U.T.$
	9	130	Sat	-54.125	0.3532	978.5	19	50	
	10		Sun	53.125	0.3559	979.5	20	51	
	11		Mon	52.125	0.3587	980.5	21	52	
	12		Tue	51.125	0.3614	981.5	22	53	
	13		Wed	50.125	0.3641	982.5	23	54	
	14		Thu	49.125	0.3669	983.5	24	55	14-Last Quarter
	15	136		48.125	0.3696	984.5	25	56	14 ^h 03 ^m U.T.
	13	150	111	40.123	0.5070	704.5	23	50	14 05 0.1.
	16	137	Sat	-47.125	0.3724	985.5	26	57	
	17		Sun	46.125	0.3751	986.5	27	58	
	18		Mon	45.125	0.3778	987.5	28	59	
	19		Tue	44.125	0.3806	988.5	29	60	
	20		Wed	43.125	0.3833	989.5	30	61	
	21		Thu	42.125	0.3860	990.5	31	62	
	22	143		41.125	0.3888	991.5	Jyaistha 1	63	22-New Moon
	22	143	111	41.123	0.5000	771.3	3 yaisiia 1	03	17 ^h 39 ^m U.T.
	23	144	Sat	-40.125	0.3915	992.5	2	64	1, 5, 6,1.
	24		Sun	39.125	0.3943	993.5	3	65	
	25		Mon	38.125	0.3970	994.5	4	66	
	26		Tue	37.125	0.3997	995.5	5	67	
	27		Wed	36.125	0.4025	996.5	6	68	
	28		Thu	35.125	0.4023	997.5	7	69	
	29	150		34.125	0.4032	998.5	8	70	
	23	150	111	34.123	0.4079	970.3	0	70	
	30	151	Sat	-33.125	0.4107	999.5	9	71	30-First Quarter
	31		Sun	32.125	0.4134		10	72	3 ^h 30 ^m U.T.
June	1		Mon	31.125	0.4162	001.5	11	73	2 20 3.1.
June	2		Tue	30.125	0.4189	001.5	12	74	
	3		Wed	29.125	0.4216	002.5	13	75	
	4		Thu	28.125	0.4210	003.5	14	76	
	5	150		27.125	0.4244	004.5	15	70 77	5-Full Moon
	3	137	FII	27.123	0.4271	003.3	13	//	3-Full Moon 19 ^h 12 ^m U.T.
	6	158	Sat	-26.125	0.4299	006.5	16	78	17 12 0.1.
	7		Sun	25.125	0.4326	007.5	17	79	
	8		Mon	24.125	0.4353	007.5	18	80	
	9		Tue	23.125	0.4381	009.5	19	81	
	10		Wed	22.125	0.4408	010.5	20	82	
	11		Thu	21.125	0.4435	010.5	21	83	
	12	164		-20.125	0.4463	011.5	21 22	84	
	12	104	1.11	-20.123	0.4403	012.3	22	04	

Month Year Week J 2020.5 Year since Jan. 1.0 (at 0h U.T.) of Year June 13 165 Sat -19.125 0.4490 013.51 Jyaishtha 23 85 13-Lange	Phases
June 13 165 Sat -19.125 0.4490 013.51 Jyaishtha 23 85 13-La 14 166 Sun 18.125 0.4518 014.51 24 86 6h 24 15 167 Mon 17.125 0.4545 015.51 25 87 16 168 Tue 16.125 0.4572 016.51 26 88 17 169 Wed 15.125 0.4600 017.51 27 89 18 170 Thu 14.125 0.4627 018.51 28 90 19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2	of the
June 13 165 Sat -19.125 0.4490 013.51 Jyaishtha 23 85 13-La 14 166 Sun 18.125 0.4518 014.51 24 86 6h 24 15 167 Mon 17.125 0.4545 015.51 25 87 16 168 Tue 16.125 0.4572 016.51 26 88 17 169 Wed 15.125 0.4600 017.51 27 89 18 170 Thu 14.125 0.4627 018.51 28 90 19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2	Moon
June 13 165 Sat -19.125 0.4490 013.51 Jyaishtha 23 85 13-Lz 14 166 Sun 18.125 0.4518 014.51 24 86 6h 24 15 167 Mon 17.125 0.4545 015.51 25 87 16 168 Tue 16.125 0.4572 016.51 26 88 17 169 Wed 15.125 0.4600 017.51 27 89 18 170 Thu 14.125 0.4627 018.51 28 90 19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2	
June 13 165 Sat -19.125 0.4490 013.51 Jyaishtha 23 85 13-Lz 14 166 Sun 18.125 0.4518 014.51 24 86 6h 24 15 167 Mon 17.125 0.4545 015.51 25 87 16 168 Tue 16.125 0.4572 016.51 26 88 17 169 Wed 15.125 0.4600 017.51 27 89 18 170 Thu 14.125 0.4627 018.51 28 90 19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h	
14 166 Sun 18.125 0.4518 014.51 24 86 6h 24 15 167 Mon 17.125 0.4545 015.51 25 87 16 168 Tue 16.125 0.4572 016.51 26 88 17 169 Wed 15.125 0.4600 017.51 27 89 18 170 Thu 14.125 0.4627 018.51 28 90 19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	
15 167 Mon 17.125 0.4545 015.51 25 87 16 168 Tue 16.125 0.4572 016.51 26 88 17 169 Wed 15.125 0.4600 017.51 27 89 18 170 Thu 14.125 0.4627 018.51 28 90 19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	ast Quarter
16 168 Tue 16.125 0.4572 016.51 26 88 17 169 Wed 15.125 0.4600 017.51 27 89 18 170 Thu 14.125 0.4627 018.51 28 90 19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	ŀ ^m U.T.
17 169 Wed 15.125 0.4600 017.51 27 89 18 170 Thu 14.125 0.4627 018.51 28 90 19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	
18 170 Thu 14.125 0.4627 018.51 28 90 19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	
19 171 Fri 13.125 0.4654 019.51 29 91 20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6 ^h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	
20 172 Sat -12.125 0.4682 020.51 30 92 21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6 ^h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	
21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	
21 173 Sun 11.125 0.4709 021.51 31 93 21-N 22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	
22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6 ^h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	
22 174 Mon 10.125 0.4737 022.51 Ashadha 1 94 6 ^h 41 23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	lew Moon
23 175 Tue 9.125 0.4764 023.51 2 95 24 176 Wed 8.125 0.4791 024.51 3 96	^m U.T.
24 176 Wed 8.125 0.4791 024.51 3 96	
1 4.21 17/11/04 1 7.14.21 0.48191 042.201 41 971	
26 178 Fri 6.125 0.4846 026.51 5 98	
27 179 Sat -5.125 0.4873 027.51 6 99	
	irst Quarter
29 181 Mon 3.125 0.4928 029.51 8 101 8 ^h 16	5 ^m U.T.
30 182 Tue 2.125 0.4956 030.51 9 102	
July 1 183 Wed 1.125 0.4983 031.51 10 103	
2 184 Thu -0.125 0.5010 032.51 11 104	
3 185 Fri +0.875 0.5038 033.51 12 105	
3 103 111 10.073 0.3030 033.31 12 103	
4 186 Sat +1.875 0.5065 034.51 13 106	
	ll Moon
6 188 Mon 3.875 0.5120 036.51 15 108 4 ^h 44	ŀ ^m U.T.
7 189 Tue 4.875 0.5147 037.51 16 109	
8 190 Wed 5.875 0.5175 038.51 17 110	
9 191 Thu 6.875 0.5202 039.51 18 111	
10 192 Fri 7.875 0.5229 040.51 19 112	
11 193 Sat +8.875 0.5257 041.51 20 113	
	ast Quarter
	29 ^m U.T.
14 196 Tue 11.875 0.5339 044.51 23 116	
15 197 Wed 12.875 0.5366 045.51 24 117	
16 198 Thu 13.875 0.5394 046.51 25 118	
17 199 Fri 14.875 0.5421 047.51 26 119	
3.5 121	
18 200 Sat +15.875 0.5448 048.51 27 120	
19 201 Sun 16.875 0.5476 049.51 28 121	
	lew Moon
	3 ^m U.T.
22 204 Wed 19.875 0.5558 052.51 31 124	
23 205 Thu 20.875 0.5585 053.51 Sravana 1 125	
24 206 Fri +21.875 0.5613 054.51 2 126	

Da	ıy	Day	Day	Days	Fraction	Julian	Indian Cale	endar	Phases
of	f	of	of	since	of	Day	Day of Month	Day	of the
Mor	nth	Year	Week	J 2020.5	Year	(at 0h		of	Moon
					since	U.T.)		Year	
					Jan. 1.0				
						2459	1942 Saka Era		
July	25	207	Sat	+22.875	0.5640	055.5	Sravana 3	127	
	26	208	Sun	23.875	0.5667	056.5	4	128	
	27		Mon	24.875	0.5695	057.5	5	129	27-First Quarter
	28		Tue	25.875	0.5722	058.5	6	130	12 ^h 33 ^m U.T.
	29		Wed	26.875	0.5750	059.5	7	131	
	30		Thu	27.875	0.5777	060.5	8	132	
	31	213		28.875	0.5804	061.5	9	133	
	31	213	111	20.073	0.5004	001.5		133	
Aug.	1	214	Sat	+29.875	0.5832	062.5	10	134	
Aug.	2		Sun	30.875	0.5852	063.5	11	135	
	3		Mon	31.875	0.5887	063.5	12	136	3-Full Moon
									15 ^h 59 ^m U.T.
	4		Tue	32.875	0.5914	065.5	13	137	13 39 0.1.
	5		Wed	33.875	0.5941	066.5	14	138	
	6		Thu	34.875	0.5969	067.5	15	139	
	7	220	Fri	35.875	0.5996	068.5	16	140	
	8	221		+36.875	0.6023	069.5	17	141	
	9		Sun	37.875	0.6051	070.5	18	142	
	10	223	Mon	38.875	0.6078	071.5	19	143	
	11		Tue	39.875	0.6106	072.5	20	144	11-Last Quarter
	12	225	Wed	40.875	0.6133	073.5	21	145	16 ^h 45 ^m U.T.
	13	226	Thu	41.875	0.6160	074.5	22	146	
	14	227	Fri	42.875	0.6188	075.5	23	147	
	15	228	Sat	+43.875	0.6215	076.5	24	148	
	16	229	Sun	44.875	0.6242	077.5	25	149	
	17		Mon	45.875	0.6270	078.5	26	150	
	18		Tue	46.875	0.6297	079.5	27	151	
	19		Wed	47.875	0.6325	080.5	28	152	19-New Moon
	20		Thu	48.875	0.6352	081.5	29	153	2 ^h 42 ^m U.T.
	21	234		49.875	0.6379	082.5	30	154	
		231	111	15.075	0.0377	002.3	30	15 1	
	22	235	Sat	+50.875	0.6407	083.5	31	155	
	23		Sun	51.875	0.6434	083.5	Bhadra 1	156	
	24		Mon	52.875	0.6461	084.5	2 Biladia 1	157	
	25		Tue	53.875	0.6489	085.5	3	158	25-First Quarter
	-								17 ^h 58 ^m U.T.
	26		Wed	54.875	0.6516	087.5	5	159	17 36 U.1.
	27		Thu	55.875	0.6544	088.5		160	
	28	241	rn	56.875	0.6571	089.5	6	161	
	20	2.42	a .	. 57.075	0.5500	000 =	_	1.0	
	29	242		+57.875	0.6598	090.5	7	162	
	30		Sun	58.875	0.6626	091.5	8	163	
	31		Mon	59.875	0.6653	092.5	9	164	
Sept.	1		Tue	60.875	0.6680	093.5	10	165	
	2		Wed	61.875	0.6708	094.5	11	166	
	3		Thu	62.875	0.6735	095.5	12	167	5 ⁿ 22 ^m U.T.
	4	248	Fri	+63.875	0.6763	096.5	13	168	

Da	y	Day	Day	Days	Fraction	Julian	Indian Cale	ndar	Phases
of		of	of	since	of	Day	Day of Month	Day	of the
Mon	nth	Year	Week	J 2020.5	Year	(at 0h		of	Moon
					since	U.T.)		Year	
					Jan. 1.0				
						2459	1942 Saka Era		
Sept.	5	249		+64.875	0.6790	097.5	Bhadra 14	169	
	6		Sun	65.875	0.6817	098.5	15	170	
	7		Mon	66.875	0.6845	099.5	16	171	
	8		Tue	67.875	0.6872	100.5	17	172	
	9		Wed	68.875	0.6900	101.5	18	173	
	10		Thu	69.875	0.6927	102.5	19	174	
	11	255	Fri	70.875	0.6954	103.5	20	175	9 ^h 26 ^m U.T.
	12	256	Sat	+71.875	0.6982	104.5	21	176	
	13	257	Sun	72.875	0.7009	105.5	22	177	
	14	258	Mon	73.875	0.7036	106.5	23	178	
	15	259	Tue	74.875	0.7064	107.5	24	179	
	16	260	Wed	75.875	0.7091	108.5	25	180	
	17	261	Thu	76.875	0.7119	109.5	26	181	17-New Moon
	18	262	Fri	77.875	0.7146	110.5	27	182	11 ^h 00 ^m U.T.
	19	263	Sat	+78.875	0.7173	111.5	28	183	
	20	264	Sun	79.875	0.7201	112.5	29	184	
	21	265	Mon	80.875	0.7228	113.5	30	185	
	22	266	Tue	81.875	0.7255	114.5	31	186	
	23	267	Wed	82.875	0.7283	115.5	Asvina 1	187	
	24	268	Thu	83.875	0.7310	116.5	2	188	24-First Quarter
	25	269	Fri	84.875	0.7338	117.5	3	189	1 ^h 55 ^m U.T.
	26	270	Sat	+85.875	0.7365	118.5	4	190	
	27	271	Sun	86.875	0.7392	119.5	5	191	
	28	272	Mon	87.875	0.7420	120.5	6	192	
	29	273	Tue	88.875	0.7447	121.5	7	193	
	30	274	Wed	89.875	0.7474	122.5	8	194	
Oct.	1	275	Thu	90.875	0.7502	123.5	9	195	
	2	276	Fri	91.875	0.7529	124.5	10	196	21 ^h 05 ^m U.T.
	3	277	Sat	+92.875	0.7557	125.5	11	197	
	4	278	Sun	93.875	0.7584	126.5	12	198	
	5		Mon	94.875	0.7611	127.5	13	199	
	6		Tue	95.875	0.7639	128.5	14	200	
	7	281	Wed	96.875	0.7666	129.5	15	201	
	8		Thu	97.875	0.7694	130.5	16	202	
	9	283	Fri	98.875	0.7721	131.5	17	203	
	10	284		+99.875	0.7748	132.5	18	204	
	11	285	Sun	100.875	0.7776	133.5	19	205	0 ^h 40 ^m U.T.
	12		Mon	101.875	0.7803	134.5	20	206	
	13	287	Tue	102.875	0.7830	135.5	21	207	
	14		Wed	103.875	0.7858	136.5	22	208	
	15	289	Thu	104.875	0.7885	137.5	23	209	
	16	290	Fri	+105.875	0.7913	138.5	24	210	16-New Moon 19 ^h 31 ^m U.T.

Da	ıy	Day	Day	Days	Fraction	Julian	Indian Cale	ndar	Phases
of	f	of	of	since	of	Day	Day of Month	Day	of the
Mor	nth	Year	Week	J 2020.5	Year	(at 0h		of	Moon
					since	U.T.)		Year	
					Jan. 1.0				
						2459	1942 Saka Era		
Oct.	17	291	Sat	+106.875	0.7940	139.5	Asvina 25	211	
	18	292	Sun	107.875	0.7967	140.5	26	212	
	19	293	Mon	108.875	0.7995	141.5	27	213	
	20		Tue	109.875	0.8022	142.5	28	214	
	21		Wed	110.875	0.8049	143.5	29	215	
	22	296	Thu	111.875	0.8077	144.5	30	216	
	23	297		112.875	0.8104	145.5	Kartika 1	217	
									13 ^h 23 ^m U.T.
	24	298	Sat	+113.875	0.8132	146.5	2	218	
	25		Sun	114.875	0.8159	147.5	3	219	
	26		Mon	115.875	0.8186	148.5	4	220	
	27		Tue	116.875	0.8214	149.5	5	221	
	28		Wed	117.875	0.8241	150.5	6	222	
	29		Thu	118.875	0.8268	151.5	7	223	
	30	304		119.875	0.8296	152.5	8	224	
	30	304	111	117.075	0.0270	152.5	O	227	
	31	305	Sat	+120.875	0.8323	153.5	9	225	31-Full Moon
Nov.	1		Sun	121.875	0.8351	154.5	10	226	
1101.	2		Mon	122.875	0.8378	155.5	11	227	11 15 0.11
	3		Tue	123.875	0.8405	156.5	12	228	
	4		Wed	124.875	0.8433	157.5	13	229	
	5		Thu	125.875	0.8460	157.5	14	230	
	6	311		126.875	0.8488	159.5	15	230	
	U	311	111	120.673	0.0400	139.3	13	231	
	7	312	Sat	+127.875	0.8515	160.5	16	232	
	8		Sun	128.875	0.8542	161.5	17	233	8-Last Quarter
	9		Mon	129.875	0.8570	162.5	18	234	
	10		Tue	130.875	0.8597	163.5	19	235	10 10 0111
	11		Wed	131.875	0.8624	164.5	20	236	
	12		Thu	132.875	0.8652	165.5	21	237	
	13	318		133.875	0.8679	166.5	22	238	
	13	310		123.073	0.0077	100.5	22	230	
	14	319	Sat	+134.875	0.8707	167.5	23	239	
	15		Sun	135.875	0.8734	168.5	24	240	15-New Moon
	16		Mon	136.875	0.8761	169.5	25	241	5 ^h 07 ^m U.T.
	17		Tue	137.875	0.8789	170.5	26	242	
	18		Wed	138.875	0.8816	171.5	27	243	
	19		Thu	139.875	0.8843	172.5	28	244	
	20	325		140.875	0.8871	173.5	29	245	
	_0	323		1.0.075	5.0071	173.3	2)	2.13	
	21	326	Sat	+141.875	0.8898	174.5	30	246	
	22		Sun	142.875	0.8926	175.5	Agrahayana 1	247	
	23		Mon	143.875	0.8953	176.5	2	248	. ~
	24		Tue	144.875	0.8980	177.5	3	249	
	25		Wed	145.875	0.9008	178.5	4	250	
	26		Thu	146.875	0.9035	179.5	5	251	
	27	332		+147.875	0.9062	180.5	6	252	

Da	y	Day	Day	Days	Fraction	Julian	Indian Cale	ndar	Phases
of	f	of	of	since	of	Day	Day of Month	Day	of the
Mor	nth	Year	Week	J 2020.5	Year	(at 0h		of	Moon
					since	U.T.)		Year	
					Jan. 1.0				
						2459	1942 Saka Era		
Nov.	28	333	Sat	+148.875	0.9090	181.5	Agrahayana 7	253	
	29	334	Sun	149.875	0.9117	182.5	8	254	
	30	335	Mon	150.875	0.9145	183.5	9	255	30-Full Moon
Dec.	1	336	Tue	151.875	0.9172	184.5	10	256	9 ^h 30 ^m U.T.
	2	337	Wed	152.875	0.9199	185.5	11	257	
	3	338	Thu	153.875	0.9227	186.5	12	258	
	4	339	Fri	154.875	0.9254	187.5	13	259	
	5	340	Sat	+155.875	0.9282	188.5	14	260	
	6	341	Sun	156.875	0.9309	189.5	15	261	
	7	342	Mon	157.875	0.9336	190.5	16	262	
	8	343	Tue	158.875	0.9364	191.5	17	263	
	9	344	Wed	159.875	0.9391	192.5	18	264	0 ^h 37 ^m U.T.
	10	345	Thu	160.875	0.9418	193.5	19	265	
	11	346	Fri	161.875	0.9446	194.5	20	266	
	12	347	Sat	+162.875	0.9473	195.5	21	267	
	13	348	Sun	163.875	0.9501	196.5	22	268	
	14	349	Mon	164.875	0.9528	197.5	23	269	14-New Moon
	15		Tue	165.875	0.9555	198.5	24	270	16 ^h 17 ^m U.T.
	16	351	Wed	166.875	0.9583	199.5	25	271	
	17	352	Thu	167.875	0.9610	200.5	26	272	
	18	353	Fri	168.875	0.9637	201.5	27	273	
	19	354	Sat	+169.875	0.9665	202.5	28	274	
	20	355	Sun	170.875	0.9692	203.5	29	275	
	21		Mon	171.875	0.9720	204.5	30	276	21-First Quarter
	22		Tue	172.875	0.9747	205.5	Pausha 1	277	23 ^h 41 ^m U.T.
	23	358	Wed	173.875	0.9774	206.5	2	278	
	24	359	Thu	174.875	0.9802	207.5	3	279	
	25	360	Fri	175.875	0.9829	208.5	4	280	
	26	361	Sat	+176.875	0.9856	209.5	5	281	
	27		Sun	177.875	0.9884	210.5	6	282	
	28		Mon	178.875	0.9911	211.5	7	283	
	29		Tue	179.875	0.9939	212.5	8	284	
	30		Wed	180.875	0.9966	213.5	9	285	30-Full Moon
	31		Thu	181.875	0.9993	214.5	10	286	
	32		Fri	+182.875	1.0021	215.5	11	287	

The new epoch is the middle of the Julian year, denoted by J 2020.5 (i.e. 2020, July 2.125) where the length of the Julian year is taken to be 365.25 days.

The Fraction of year is reckoned from January 1, 0^h U.T and is based on the tropical year of 365.2422 days. The Julian Day begins at noon. In order to obtain the Julian Day Number completed at noon as given in Table IX, increase the above figure by 0.5.

The Day of year of the Gregorian Calendar is reckoned from January 1, and that of the Indian Calendar from Chaitra 1.

13

Dat	e	Side 0 ^h U	ereal J.T. (eenwich Time at (G.H.A. quinox)	Equation of the Equinoxes at 0 ^h U.T.	Trar Equi	nsit o nox (wich D f Mean (U.T. at .S.T.)	ate	Sid 0 ^h 1	ereal U.T. (Time at	Equation of the Equinoxes at 0 ^h U.T.	Tran Equi	nsit o nox	wich f Mean (U.T. at .S.T.)
Jan.	0 1 2 3 4 5	6 6 6 6	m 36 40 44 48 52 56	s 32.679 29.234 25.790 22.345 18.900 15.456	s -1.007 1.009 1.012 1.015 1.019 1.021	h 17 17 17 17 17	m 20 16 12 08 04 00	s 36.376 Feb. 40.467 44.557 48.648 52.738 56.829	15 16 17 18 19 20	9 9 9	m 37 41 45 49 53 57	s 54.226 50.781 47.337 43.892 40.447 37.003	s -0.979 0.979 0.977 0.973 0.968 0.964	h 14 14 14 14 14	m 19 15 11 07 04 00	s 44.540 48.631 52.721 56.812 00.902 04.993
	6 7 8 9 10 11	7 7 7 7	00 04 08 12 15 19	12.011 08.567 05.122 01.677 58.233 54.788	-1.021 1.018 1.013 1.005 0.995 0.986	16 16 16 16 16	57 53 49 45 41 37	00.919 05.010 09.100 13.191 17.281 21.372	21 22 23 24 25 26	10 10 10 10	01 05 09 13 17 21	33.558 30.114 26.669 23.224 19.780 16.335	-0.962 0.962 0.964 0.969 0.976 0.984	23 23 23 23 23 23 23	54 50 46 42 38 34	30.788 34.879 38.969 43.060 47.150 51.241
	12 13 14 15 16 17	7 7 7 7	23 27 31 35 39 43	51.343 47.899 44.454 41.010 37.565 34.120	-0.978 0.974 0.973 0.976 0.980 0.985	16 16 16 16 16	33 29 25 21 17 13	25.462 29.553 33.643 37.734 Mar 41.825 45.915	27 28 29 . 1 2	10 10 10 10	25 29 33 37 40 44	12.890 09.446 06.001 02.556 59.112 55.667	-0.993 1.000 1.007 1.011 1.012 1.012	23 23 23 23 23 23 23	30 26 23 19 15 11	55.331 59.422 03.512 07.603 11.693 15.784
	18 19 20 21 22 23	7 7 7 8	47 51 55 59 03 07	30.676 27.231 23.786 20.342 16.897 13.452	-0.987 0.988 0.985 0.980 0.972 0.965	16 16 16 15 15	09 05 01 58 54 50	50.006 54.096 58.187 02.277 06.368 10.458	4 5 6 7 8 9	10 10 11 11	48 52 56 00 04 08	52.223 48.778 45.333 41.889 38.444 34.999	-1.009 1.004 1.000 0.998 0.998 1.002	23 23 22 22 22 22 22	07 03 59 55 51 47	19.874 23.965 28.055 32.146 36.237 40.327
	24 25 26 27 28 29	8 8 8 8	11 15 19 22 26 30	10.008 06.563 03.119 59.674 56.229 52.785	-0.959 0.954 0.952 0.953 0.956 0.960	15 15 15 15 15 15	46 42 38 34 30 26	14.549 18.639 22.730 26.820 30.911 35.001	10 11 12 13 14 15	11 11 11 11	12 16 20 24 28 32	31.555 28.110 24.666 21.221 17.776 14.332	-1.010 1.019 1.028 1.034 1.037	22 22 22 22 22 22 22	43 39 35 31 28 24	44.418 48.508 52.599 56.689 00.780 04.870
Feb.	30 31 1 2 3 4	8 8 8 8	34 38 42 46 50 54	49.340 45.895 42.451 39.006 35.562 32.117	-0.966 0.972 0.976 0.979 0.980 0.979	15 15 15 15 15 15	22 18 14 10 06 02	39.092 43.182 47.273 51.364 55.454 59.545	16 17 18 19 20 21	11 11 11	36 40 44 47 51 55	10.887 07.442 03.998 60.553 57.108 53.664	-1.034 1.030 1.027 1.026 1.026 1.029	22 22 22 22 22 22 22	20 16 12 08 04 00	08.961 13.051 17.142 21.232 25.323 29.413
	5 6 7 8 9 10	9 9 9	58 02 06 10 14 18	28.672 25.228 21.783 18.338 14.894 11.449	-0.974 0.968 0.961 0.955 0.951	14 14 14 14 14 14	59 55 51 47 43 39	03.635 07.726 11.816 15.907 19.997 24.088	22 23 24 25 26 27	12 12 12	59 03 07 11 15 19	50.219 46.775 43.330 39.885 36.441 32.996	-1.035 1.043 1.051 1.060 1.069 1.076	21 21 21 21 21 21	56 52 48 44 40 36	33.504 37.594 41.685 45.775 49.866 53.957
	11 12 13 14 15	9 9 9	22 26 30 33 37	08.004 04.560 01.115 57.671 54.226	-0.955 0.962 0.969 0.975 -0.979	14 14 14 14 14	35 31 27 23 19	28.178 32.269 36.359 40.450 44.540 Apr.	31	12 12	23 27 31 35 39	29.551 26.107 22.662 19.218 15.773	-1.082 1.084 1.085 1.083 -1.080	21 21 21 21 21	32 29 25 21 17	58.047 02.138 06.228 10.319 14.409

N.B.-Apparent Sidereal Time = Mean Sidereal Time + Equation of Equinoxes for the instant

14

Dat	e	Side 0 ^h U	ereal J.T. (eenwich Time at (G.H.A. quinox)	Equation of the Equinoxes at 0 ^h U.T.	Tran Equi	isit o nox (wich D f Mean (U.T. at .S.T.)	ate	Sid 0 ^h I	ereal U.T. (Time at	Equation of the Equinoxes at 0 ^h U.T.	Tran Equi	nsit o	wich f Mean (U.T. at .S.T.)
Apr.	1 2 3 4 5 6	12 12	m 39 43 47 51 55 58	s 15.773 12.328 08.884 05.439 01.994 58.550	s -1.080 1.076 1.073 1.072 1.075 1.081	h 21 21 21 21 21 20	m 17 13 09 05 01 57	s 14.409 May 18.500 22.590 26.681 30.771 34.862	17 18 19 20 21 22	15 15 15 15	m 40 44 48 52 56 00	s 37.320 33.875 30.431 26.986 23.541 20.097	s -1.111 1.117 1.122 1.126 1.129 1.129	h 18 18 18 18 18	m 16 12 08 04 00 56	s 22.574 26.664 30.755 34.845 38.936 43.026
	7 8 9 10 11 12	13 13 13 13	02 06 10 14 18 22	55.105 51.660 48.216 44.771 41.327 37.882	-1.090 1.098 1.106 1.109 1.109 1.105	20 20 20 20 20 20 20	53 49 45 41 37 33	38.952 43.043 47.133 51.224 55.315 59.405	23 24 25 26 27 28	16 16 16 16	04 08 12 16 20 23	16.652 13.207 09.763 06.318 02.874 59.429	-1.126 1.121 1.114 1.106 1.099 1.094	17 17 17 17 17 17	52 48 44 40 37 33	47.117 51.207 55.298 59.388 03.479 07.569
	13 14 15 16 17 18	13 13 13 13 13	26 30 34 38 42 46	34.437 30.993 27.548 24.103 20.659 17.214	-1.100 1.096 1.092 1.091 1.092 1.096	20 20 20 20 20 20 20	30 26 22 18 14 10	03.496 07.586 11.677 15.767 June 19.858 23.948	29 30 31 1 2	16 16 16 16	27 31 35 39 43 47	55.984 52.540 49.095 45.650 42.206 38.761	-1.091 1.091 1.094 1.098 1.103 1.105	17 17 17 17 17 17	29 25 21 17 13 09	11.660 15.750 19.841 23.932 28.022 32.113
	19 20 21 22 23 24	13 13 14 14	50 54 58 02 05 09	13.770 10.325 06.880 03.436 59.991 56.546	-1.102 1.109 1.117 1.124 1.130 1.134	20 20 19 19 19	06 02 58 54 50 46	28.039 32.129 36.220 40.310 44.401 48.491	4 5 6 7 8 9	16 16 17 17	51 55 59 03 07 11	35.316 31.872 28.427 24.983 21.538 18.093	-1.104 1.099 1.091 1.081 1.072 1.064	17 17 16 16 16	05 01 57 53 49 45	36.203 40.294 44.384 48.475 52.565 56.656
	25 26 27 28 29 30	14 14 14	13 17 21 25 29 33	53.102 49.657 46.212 42.768 39.323 35.879	-1.136 1.135 1.132 1.127 1.122 1.117	19 19 19 19 19	42 38 35 31 27 23	52.582 56.673 00.763 04.854 08.944 13.035	10 11 12 13 14 15	17 17 17 17	15 19 23 27 30 34	14.649 11.204 07.759 04.315 60.870 57.426	-1.059 1.056 1.057 1.060 1.063 1.067	16 16 16 16 16	42 38 34 30 26 22	00.746 04.837 08.927 13.018 17.108 21.199
May	1 2 3 4 5 6	14 14 14	37 41 45 49 53 57	32.434 28.989 25.545 22.100 18.655 15.211	-1.114 1.114 1.117 1.122 1.129 1.135	19 19 19 19 19	19 15 11 07 03 59	17.125 21.216 25.306 29.397 33.487 37.578	16 17 18 19 20 21	17 17 17	38 42 46 50 54 58	53.981 50.536 47.092 43.647 40.202 36.758	-1.071 1.073 1.072 1.069 1.064 1.056	16 16 16 16 16	18 14 10 06 02 58	25.290 29.380 33.471 37.561 41.652 45.742
	7 8 9 10 11 12	15 15 15 15	01 05 09 13 16 20	11.766 08.322 04.877 01.432 57.988 54.543	-1.138 1.137 1.133 1.125 1.118 1.110	18 18 18 18 18	55 51 47 43 39 36	41.668 45.759 49.849 53.940 58.030 02.121	22 23 24 25 26 27	18 18 18	02 06 10 14 18 22	33.313 29.868 26.424 22.979 19.535 16.090	-1.047 1.039 1.031 1.027 1.026 1.028	15 15 15 15	54 50 46 43 39 35	49.833 53.923 58.014 02.104 06.195 10.285
	13 14 15 16 17	15 15	24 28 32 36 40	51.098 47.654 44.209 40.764 37.320	-1.106 1.103 1.104 1.107 -1.111	18 18 18 18	32 28 24 20 16	06.211 10.302 14.393 18.483 July 22.574	1	18 18	26 30 34 38 41	12.645 09.201 05.756 02.311 58.867	-1.031 1.036 1.038 1.038 -1.035	15 15 15	31 27 23 19 15	14.376 18.466 22.557 26.647 30.738

 $N.B.-Apparent\ Sidereal\ Time = Mean\ Sidereal\ Time + Equation\ of\ Equinoxes\ for\ the\ instant$

Dat	e	Side 0 ^h U	ereal J.T. (eenwich Time at (G.H.A. quinox)	Equation of the Equinoxes at 0^h U.T.	Tran Equi	isit o nox (wich Da f Mean (U.T. at .S.T.)	te	Side 0 ^h U	ereal J.T. (Time at	Equation of the Equinoxes at 0 ^h U.T.	Tran Equi	sit o nox	wich f Mean (U.T. at .S.T.)
July	1 2 3 4 5 6	18 18 18 18	m 38 41 45 49 53 57	s 02.311 58.867 55.422 51.978 48.533 45.088	s -1.038 1.035 1.028 1.019 1.009 1.001	h 15 15 15 15 15 14	m 19 15 11 07 03 59	s 26.647 Aug. 30.738 34.829 38.919 43.010 47.100	16 17 18 19 20 21	21 21 21 21	m 39 43 47 51 55 59	s 23.858 20.414 16.969 13.524 10.080 06.635	s -0.979 0.974 0.971 0.970 0.974 0.980	h 22 22 22 22 22 21	m 16 13 09 05 01 57	s 56.516 00.607 04.697 08.788 12.878 16.969
	7 8 9 10 11 12	19 19 19 19	01 05 09 13 17 21	41.644 38.199 34.754 31.310 27.865 24.420	-0.995 0.991 0.991 0.994 0.998 1.002	14 14 14 14 14 14	55 51 47 44 40 36	51.191 55.281 59.372 03.462 07.553 11.643	22 23 24 25 26 27	22 22 22 22 22	03 06 10 14 18 22	03.191 59.746 56.301 52.857 49.412 45.967	-0.988 0.996 1.001 1.003 1.001 0.997	21 21 21 21 21 21	53 49 45 41 37 33	21.059 25.150 29.240 33.331 37.422 41.512
	13 14 15 16 17 18	19 19 19 19	25 29 33 37 41 45	20.976 17.531 14.087 10.642 07.197 03.753	-1.006 1.009 1.011 1.009 1.006 1.000	14 14 14 14 14 14	32 28 24 20 16 12	15.734 19.824 23.915 28.005 32.096 Sept. 36.186	28 29 30 31 1 2	22 22 22 22	26 30 34 38 42 46	42.523 39.078 35.634 32.189 28.744 25.300	-0.992 0.988 0.984 0.984 0.986 0.991	21 21 21 21 21 21	29 25 21 17 14 10	45.603 49.693 53.784 57.874 01.965 06.055
	19 20 21 22 23 24	19 19 20 20	48 52 56 00 04 08	60.308 56.863 53.419 49.974 46.530 43.085	-0.992 0.984 0.977 0.973 0.972 0.974	14 14 14 23 23 23	08 04 00 55 51 47	40.277 44.367 48.458 14.253 18.344 22.434	3 4 5 6 7 8	22 22 23 23	50 54 58 02 06 10	21.855 18.410 14.966 11.521 08.076 04.632	-0.998 1.007 1.015 1.024 1.030 1.035	21 20 20 20 20 20	06 02 58 54 50 46	10.146 14.236 18.327 22.417 26.508 30.598
	25 26 27 28 29 30	20 20 20	12 16 20 24 28 32	39.640 36.196 32.751 29.306 25.862 22.417	-0.979 0.985 0.990 0.992 0.991 0.987	23 23 23 23 23 23 23	43 39 35 31 27 23	26.525 30.615 34.706 38.796 42.887 46.977	9 10 11 12 13	23 23 23 23	14 17 21 25 29 33	01.187 57.743 54.298 50.853 47.409 43.964	-1.037 1.036 1.034 1.031 1.027 1.024	20 20 20 20 20 20 20	42 38 34 30 26 22	34.689 38.780 42.870 46.961 51.051 55.142
Aug.	31 1 2 3 4 5	20 20	36 40 44 48 52 56	18.972 15.528 12.083 08.639 05.194 01.749	-0.980 0.972 0.966 0.961 0.959 0.959	23 23 23 23 23 23 23	19 15 11 08 04 00	51.068 55.158 59.249 03.339 07.430 11.520	15 16 17 18 19 20	23 23 23	37 41 45 49 53 57	40.519 37.075 33.630 30.186 26.741 23.296	-1.024 1.028 1.035 1.044 1.053 1.060		03	59.232 03.323 07.413 11.504 15.594 19.685
	6 7 8 9 10 11	21 21 21 21	59 03 07 11 15 19	58.305 54.860 51.415 47.971 44.526 41.082	-0.963 0.969 0.975 0.982 0.987 0.991	22 22 22 22 22 22 22	56 52 48 44 40 36	15.611 19.702 23.792 27.883 31.973 36.064	21 22 23 24 25 26	0 0 0 0	01 05 09 13 17 21	19.852 16.407 12.962 09.518 06.073 02.628	-1.064 1.064 1.061 1.057 1.053 1.050	23 23 23 23	54 50 46 42 39 35	44.457 48.548 52.638 56.729 00.819 04.910
	12 13 14 15 16	21 21	23 27 31 35 39	37.637 34.192 30.748 27.303 23.858	-0.993 0.993 0.990 0.985 -0.979	22 22 22 22 22 22	32 28 24 20 16	40.154 44.245 48.335 52.426 56.516 Oct.	27 28 29 30 1	0 0 0	24 28 32 36 40	59.184 55.739 52.295 48.850 45.405	-1.049 1.052 1.057 1.064 -1.073	23 23	31 27 23 19 15	09.000 13.091 17.181 21.272 25.362

 $N.B.-Apparent\ Sidereal\ Time = Mean\ Sidereal\ Time + Equation\ of\ Equinoxes\ for\ the\ instant$

Dat	e	Side 0 ^h U	ereal J.T. (eenwich Time at G.H.A. quinox)	Equation of the Equinoxes at 0 ^h U.T.	Tran Equi	sit o nox (wich I f Mean (U.T. at .S.T.)	Date	Sid 0 ^h	ereal U.T. (eenwich Time at (G.H.A. quinox)	Equation of the Equinoxes at 0 ^h U.T.	Green Transit of Equinox 0 ^h G.M	of Mean (U.T. at
Oct.	1 2 3 4 5 6	$0 \\ 0$	m 40 44 48 52 56 00	s 45.405 41.961 38.516 35.071 31.627 28.182	s -1.073 1.082 1.090 1.097 1.103 1.105	h 23 23 23 23 22 22	m 15 11 07 03 59 55	s 25.362 Nov 29.453 33.543 37.634 41.725 45.815	v. 16 17 18 19 20 21	3 3 3 3	42 46 49 53 57	s 06.952 03.508 60.063 56.618 53.174 49.729	s -1.132 1.124 1.114 1.105 1.098 1.094	h m 20 14 20 10 20 06 20 02 19 58 19 54	s 33.527 37.617 41.708 45.798 49.889 53.979
	7 8 9 10 11 12	1 1 1 1	04 08 12 16 20 24	24.738 21.293 17.848 14.404 10.959 07.514	-1.106 1.104 1.101 1.097 1.094 1.093	22 22 22 22 22 22 22	51 47 43 40 36 32	49.906 53.996 58.087 02.177 06.268 10.358	22 23 24 25 26 27	4 4 4 4	09 13 17 21	46.284 42.840 39.395 35.951 32.506 29.061	-1.093 1.094 1.098 1.103 1.107 1.111	19 50 19 47 19 43 19 39 19 35 19 31	58.070 02.161 06.251 10.342 14.432 18.523
	13 14 15 16 17 18	1 1 1 1	28 31 35 39 43 47	04.070 60.625 57.180 53.736 50.291 46.847	-1.095 1.099 1.107 1.116 1.123 1.128	22 22 22 22 22 22 22	28 24 20 16 12 08	14.449 18.539 22.630 26.720 Dec 30.811 34.901	28 29 30 2. 1 2	4 4 4 4	33 37 41 45	25.617 22.172 18.727 15.283 11.838 08.394	-1.112 1.112 1.108 1.103 1.096 1.088	19 27 19 23 19 19 19 15 19 11 19 07	22.613 26.704 30.794 34.885 38.975 43.066
	19 20 21 22 23 24	1 1 2 2	51 55 59 03 07 11	43.402 39.957 36.513 33.068 29.623 26.179	-1.128 1.124 1.118 1.111 1.106 1.103	22 22 21 21 21 21	04 00 56 52 48 44	38.992 43.083 47.173 51.264 55.354 59.445	4 5 6 7 8 9	4 5 5 5	57 00 04 08	04.949 01.504 58.060 54.615 51.170 47.726	-1.080 1.073 1.069 1.067 1.068 1.072	19 03 18 59 18 55 18 51 18 48 18 44	47.156 51.247 55.337 59.428 03.518 07.609
	25 26 27 28 29 30	2 2 2 2	15 19 23 27 31 35	22.734 19.290 15.845 12.400 08.956 05.511	-1.103 1.106 1.111 1.118 1.125 1.132	21 21 21 21 21 21 21	41 37 33 29 25 21	03.535 07.626 11.716 15.807 19.897 23.988	10 11 12 13 14 15	5 5 5 5	28 32	44.281 40.836 37.392 33.947 30.503 27.058	-1.075 1.078 1.078 1.073 1.064 1.053	18 40 18 36 18 32 18 28 18 24 18 20	11.699 15.790 19.881 23.971 28.062 32.152
Nov.	31 1 2 3 4 5		39 42 46 50 54 58	02.066 58.622 55.177 51.732 48.288 44.843	-1.138 1.141 1.143 1.141 1.138 1.133	21 21 21 21 21 21 20	17 13 09 05 01 57	28.078 32.169 36.259 40.350 44.440 48.531	16 17 18 19 20 21	5 5 5 5	44 48 52 56	23.613 20.169 16.724 13.279 09.835 06.390	-1.041 1.031 1.023 1.019 1.019 1.020	18 16 18 12 18 08 18 04 18 00 17 56	36.243 40.333 44.424 48.514 52.605 56.695
	6 7 8 9 10 11	3 3 3	02 06 10 14 18 22	41.399 37.954 34.509 31.065 27.620 24.175	-1.127 1.122 1.118 1.117 1.118 1.122	20 20 20 20 20 20 20	53 49 46 42 38 34	52.622 56.712 00.803 04.893 08.984 13.074	22 23 24 25 26 27	6 6 6	07 11 15 19	02.946 59.501 56.056 52.612 49.167 45.722	-1.024 1.027 1.030 1.031 1.030 1.027	17 53 17 49 17 45 17 41 17 37 17 33	00.786 04.876 08.967 13.057 17.148 21.239
	12 13 14 15 16	3 3 3	26 30 34 38 42	20.731 17.286 13.842 10.397 06.952	-1.128 1.134 1.138 1.137 -1.132	20 20 20 20 20 20	30 26 22 18 14	17.165 21.255 25.346 29.436 33.527 Dec	28 29 30 31 2 32	6 6 6	31 35 39	42.278 38.833 35.388 31.944 28.499	-1.021 1.014 1.005 0.996 -0.988	17 29 17 25 17 21 17 17 17 13	25.329 29.420 33.510 37.601 41.691

 $N.B.-Apparent\ Sidereal\ Time = Mean\ Sidereal\ Time + Equation\ of\ Equinoxes\ for\ the\ instant$

SUN, 2020 MEAN LONGITUDE AND ANOMALY

Dat	te	Horizontal Parallax	L	Mean ongitu		Mean Anomaly	Date	Horizontal Parallax	L	Mea ongit		Mean Anomaly
		"	o	,	"	0		"	0	,	"	0
Jan	1	8.94	280	07	39.318	356.846 Ju	ıl 9	8.65	107	24	02.112	184.110
	11	8.94	289	59	02.623	6.702	19	8.65	117	15	25.417	193.966
	21	8.94	299	50	25.928	16.558	29	8.66	127	06	48.722	203.822
	31	8.93	309	41	49.233	26.414 A	ug 8	8.67	136	58	12.027	213.678
Feb	10	8.91	319	33	12.538	36.270	18	8.69	146	49	35.332	223.534
	20	8.9	329	24	35.843	46.126	28	8.71	156	40	58.637	233.390
Mar	1		339	15	59.148	55.982 Se			166	32	21.942	243.246
	11	8.85	349	07	22.453	65.838	17		176	23	45.247	253.102
	21	8.83	358	58	45.758	75.694	27		186	15	08.552	262.958
	31	8.8	8	50	09.063	85.550 O	ct 7	8.8	196	06	31.857	272.814
Apr	10	8.78	18	41	32.368	95.406	17	8.82	205	57	55.162	282.670
	20	8.75	28	32	55.673	105.262	27	8.85	215	49	18.467	292.526
	20	0.72	20	2.1	10.070	115 110 N		0.07	225	40	41 770	202 202
3.4	30		38	24	18.978	115.118 N			225	40	41.772	302.382
May	10		48	15	42.283	124.974	16		235	32	05.077	312.238
	20		58	07	05.588	134.830	26		245	23	28.382	322.094
	30		67	58	28.892	144.686 D			255	14	51.687	331.950
Jun	9		77	49	52.197	154.542	16		265	06	14.992	341.806
	19	8.65	87	41	15.502	164.398	26	8.94	274	57	38.297	351.662
	29	8.65	97	32	38.807	174.254	36	8.94	284	49	01.602	1.518
Jul	9		107	24	02.112	184.110	46		294	40	24.907	11.374

 $\begin{array}{cc} & \text{SUN, 2020} \\ \text{FOR } \ 0^{\text{h}} & \text{TERRESTRIAL TIME} \end{array}$

Date		(Mea	ic Lor in Equi f date)	inox	Latitude (Ecliptic of date)		nt Loi uinox	ngitude of date)	Aberra- tion	Prec. in Long. (J 2020.5	Nut. in Long.	Nut. in Obliquity	True Obliquity (23° 26')
		0	,	"	,,	0	,	"	"	of date)	"	"	"
Jan.	0 1 2 3 4 5	278 280 281 282 283 284	59 01 02 03 04 05	58.46 08.58 18.57 28.40 38.04 47.38	-0.40 0.47 0.50 0.50 0.47 0.43	278 280 281 282 283 284	59 00 01 02 04 05	21.19 31.28 41.23 51.00 00.59 09.89	20.84 20.84 20.84 20.84 20.84 20.84	-25.58 25.44 25.30 25.16 25.02 24.88	-16.47 16.49 16.54 16.60 16.66	-1.75 1.70 1.67 1.65 1.65	10.29 10.34 10.37 10.39 10.39
	6 7 8 9 10 11	285 286 287 288 289 290	06 08 09 10 11	56.46 05.21 13.67 21.80 29.61 37.13	-0.36 0.25 -0.11 +0.00 0.14 0.29	285 286 287 288 289 290	06 07 08 09 10 12	18.97 27.77 36.31 44.57 52.54 00.22	20.84 20.84 20.84 20.84 20.84 20.84	-24.74 24.60 24.46 24.33 24.19 24.05	-16.69 16.65 16.56 16.43 16.28 16.12	1.70 1.72 1.72 1.71	10.36 10.33 10.31 10.30 10.32 10.35
	12 13 14 15 16 17	291 292 293 294 295 296	13 14 15 17 18 19	44.44 51.50 58.41 05.16 11.80 18.25	+0.43 0.58 0.65 0.72 0.76 0.76	291 292 293 294 295 296	13 14 15 16 17 18	07.64 14.78 21.71 28.42 34.98 41.36	20.84 20.84 20.84 20.84 20.84 20.84	-23.91 23.77 23.63 23.49 23.35 23.21	-16.00 15.92 15.91 15.95 16.02 16.10	1.54 1.46 1.40 1.36	10.41 10.49 10.56 10.62 10.66 10.67
	18 19 20 21 22 23	297 298 299 300 301 302	20 21 22 23 24 25	24.57 30.67 36.50 41.97 47.05 51.65	+0.72 0.65 0.54 0.43 0.32 0.18	297 298 299 300 301 302	19 20 21 23 24 25	47.64 53.74 59.62 05.17 10.37 15.10	20.83 20.83 20.83 20.83 20.83 20.82	-23.08 22.94 22.80 22.66 22.52 22.38	-16.15 16.15 16.10 16.02 15.90 15.78	1.37 1.39 1.40 1.40	10.67 10.65 10.63 10.61 10.62 10.64
	24 25 26 27 28 29	303 304 305 306 307 308	26 27 29 30 31 32	55.63 58.91 01.41 03.04 03.75 03.41	+0.04 -0.07 0.18 0.29 0.36 0.40	303 304 305 306 307 308	26 27 28 29 30 31	19.18 22.54 25.07 26.70 27.36 26.94	20.82 20.82 20.82 20.82 20.81 20.81	-22.24 22.10 21.96 21.83 21.69 21.55	-15.67 15.60 15.57 15.57 15.62 15.70	1.27 1.21 1.14 1.08	10.68 10.74 10.80 10.87 10.92 10.97
Feb.	30 31 1 2 3 4	309 310 311 312 313 314	33 33 34 35 36 37	01.96 59.32 55.49 50.36 43.91 36.15	-0.40 0.40 0.36 0.29 0.18 -0.07	309 310 311 312 313 314	32 33 34 35 36 36	25.40 22.68 18.77 13.60 07.13 59.40	20.81 20.80 20.80 20.80 20.79	-21.41 21.27 21.13 20.99 20.85 20.72	-15.79 15.88 15.96 16.01 16.03 16.00	0.97 0.98 0.99	11.01 11.02 11.03 11.02 11.01 11.00
	5 6 7 8 9 10	315 316 317 318 319 320	38 39 40 40 41 42	26.94 16.41 04.46 51.12 36.45 20.51	+0.04 0.18 0.32 0.47 0.58 0.68	315 316 317 318 319 320	37 38 39 40 41 41	50.27 39.84 28.01 14.77 00.17 44.23	20.79 20.79 20.79 20.78 20.78 20.77	-20.58 20.44 20.30 20.16 20.02 19.88	-15.93 15.83 15.71 15.61 15.55 15.55	0.99 0.95 0.90 0.82	10.99 11.00 11.04 11.09 11.17 11.25
	11 12 13 14 15	321 322 323 324 325	43 43 44 45 45	03.30 44.92 25.39 04.76 42.98	+0.76 0.79 0.79 0.76 +0.72	321 322 323 324 325	42 43 43 44 45	26.96 08.47 48.83 28.10 06.26	20.77 20.77 20.76 20.76 20.75	-19.74 19.60 19.47 19.33 -19.19	-15.62 15.72 15.84 15.95 -16.00	0.61 0.58 0.58	11.33 11.38 11.41 11.41 11.39

^{*}To obtain the geometric longitude referred to the mean equinox of J 2000.0, add -17' 10".958 and subtract precession from J 2020.5.

Date			Appar it Asc	ent ension		ppare clinati		True Distance from the Earth		mi neter	Eph Tı	emei ansi	
Jan.	0 1 2 3 4 5	h 18 18 18 18 18	m 39 43 47 52 56 01	s 07.80 33.11 58.12 22.77 47.06 10.94	-23 23 22 22 22 22 22	07 03 58 53 47 41	53.76 31.98 42.54 25.57 41.24 29.72	0.983 3175 0.983 2931 0.983 2733 0.983 2583 0.983 2484 0.983 2439	16 16 16 16 16 16	15.93 15.95 15.97 15.98 15.99 16.00	h 12 12 12 12 12 12	m 02 03 03 04 04 05	s 50.60 19.22 47.51 15.44 42.98 10.11
	6 7 8 9 10 11	19 19 19 19 19	05 09 14 18 23 27	34.40 57.39 19.91 41.91 03.39 24.32	-22 22 22 22 22 22 21	34 27 20 12 03 55	51.20 45.88 13.99 15.76 51.43 01.25	0.983 2449 0.983 2516 0.983 2645 0.983 2835 0.983 3090 0.983 3410	16 16 16 16 16	16.00 15.99 15.98 15.96 15.93 15.90	12 12 12 12 12 12	05 06 06 06 07 07	36.78 02.99 28.70 53.88 18.53 42.62
	12 13 14 15 16 17	19 19 19 19 19	31 36 40 44 49 53	44.68 04.45 23.61 42.14 00.04 17.29	-21 21 21 21 21 21 20	45 36 25 15 04 53	45.48 04.37 58.19 27.20 31.68 11.91	0.983 3796 0.983 4248 0.983 4763 0.983 5341 0.983 5977 0.983 6669	16 16 16 16 16	15.86 15.82 15.77 15.71 15.65 15.58	12 12 12 12 12 12	08 08 08 09 09	06.12 29.03 51.33 13.00 34.02 54.39
	18 19 20 21 22 23	19 20 20 20 20 20 20	57 01 06 10 14 18	33.87 49.76 04.96 19.44 33.18 46.18	-20 20 20 20 19 19	41 29 16 03 50 37	28.20 20.87 50.25 56.68 40.53 02.14	0.983 7412 0.983 8203 0.983 9040 0.983 9918 0.984 0835 0.984 1789	16 16 16 16 16 16	15.51 15.43 15.34 15.26 15.17 15.07	12 12 12 12 12 12	10 10 10 11 11	14.07 33.06 51.34 08.89 25.70 41.75
	24 25 26 27 28 29	20 20 20 20 20 20 20	22 27 31 35 39 43	58.41 09.87 20.52 30.38 39.42 47.63	-19 19 18 18 18	23 08 53 38 23 07	01.89 40.16 57.31 53.73 29.81 45.93	0.984 2780 0.984 3805 0.984 4865 0.984 5960 0.984 7091 0.984 8258	16 16 16 16 16 16	14.97 14.87 14.77 14.66 14.55 14.43	12 12 12 12 12 12	11 12 12 12 12 13	57.03 11.53 25.22 38.11 50.18 01.43
Feb.	30 31 1 2 3 4	20 20 20 21 21 21	47 52 56 00 04 08	55.03 01.59 07.31 12.21 16.27 19.50	-17 17 17 17 16 16	51 35 18 01 44 26	42.50 19.92 38.59 38.92 21.33 46.24	0.984 9462 0.985 0706 0.985 1991 0.985 3317 0.985 4688 0.985 6106	16 16 16 16 16 16	14.31 14.19 14.06 13.93 13.80 13.66	12 12 12 12 12 12	13 13 13 13 13	11.85 21.44 30.19 38.11 45.19 51.44
	5 6 7 8 9 10	21 21 21 21 21 21	12 16 20 24 28 32	21.90 23.48 24.24 24.19 23.33 21.68	-16 15 15 15 14 14	08 50 32 13 54 35	54.07 45.24 20.16 39.26 42.95 31.62	0.985 7572 0.985 9088 0.986 0658 0.986 2282 0.986 3963 0.986 5700	16 16 16 16 16 16	13.51 13.36 13.21 13.05 12.88 12.71	12 12 12 12 12 12	13 14 14 14 14 14	56.86 01.46 05.24 08.22 10.40 11.80
	11 12 13 14 15	21 21 21 21 21	36 40 44 48 52	19.25 16.05 12.10 07.42 02.02	-14 13 13 13 -12	16 56 36 16 56	05.67 25.48 31.42 23.88 03.27	0.986 7493 0.986 9340 0.987 1239 0.987 3187 0.987 5179	16 16 16 16 16	12.53 12.35 12.16 11.97 11.77	12 12 12 12 12	14 14 14 14 14	

 $\begin{array}{cc} & \text{SUN, 2020} \\ \text{FOR } 0^{\text{h}} & \text{TERRESTRIAL TIME} \end{array}$

Date		(Mea	ic Lor n Equi f date)	inox	Latitude (Ecliptic of date)		nt Loi uinox	ngitude of date)	Aberra- tion	Prec. in Long. (J 2020.5	Nut. in Long.	Nut. in Obliquity	True Obliquity (23° 26')
		0	,	"	,,	0	,	"	"	of date)	"	"	"
Feb.	15 16 17 18 19 20	325 326 327 328 329 330	45 46 46 47 48 48	42.98 20.09 56.05 30.83 04.34 36.56	+0.72 0.61 0.50 0.40 0.25 0.14	325 326 327 328 329 330	45 45 46 46 47 48	06.26 43.38 19.38 54.23 27.82 00.11	20.75 20.75 20.75 20.74 20.74 20.73	-19.19 19.05 18.91 18.77 18.63 18.49	-16.00 16.01 15.97 15.90 15.83 15.76	-0.59 0.61 0.63 0.63 0.61	11.39 11.37 11.35 11.35 11.37 11.40
	21 22 23 24 25 26	331 332 333 334 335 336	49 49 50 50 50 51	07.37 36.74 04.61 30.85 55.44 18.25	+0.00 -0.11 0.18 0.25 0.32 0.32	331 332 333 334 335 336	48 49 49 49 50 50	30.96 00.34 28.16 54.34 18.82 41.50	20.73 20.72 20.72 20.71 20.71 20.70	-18.35 18.22 18.08 17.94 17.80 17.66	-15.73 15.73 15.77 15.85 15.96 16.10	0.46 0.40 0.34 0.29	11.45 11.51 11.57 11.63 11.68 11.71
Mar.	27 28 29 1 2 3	337 338 339 340 341 342	51 51 52 52 52 52 52	39.30 58.43 15.66 30.88 44.11 55.25	-0.32 0.29 0.22 0.14 -0.04 +0.07	337 338 339 340 341 342	51 51 51 51 52 52	02.41 21.42 38.56 53.71 06.92 18.08	20.70 20.69 20.69 20.68 20.68 20.67	-17.52 17.38 17.24 17.10 16.96 16.83	-16.23 16.36 16.46 16.53 16.55 16.54	0.24 0.25 0.27 0.29	11.73 11.73 11.72 11.70 11.67 11.66
	4 5 6 7 8 9	343 344 345 346 347 348	53 53 53 53 53 53	04.27 11.22 16.04 18.73 19.38 17.97	+0.22 0.32 0.47 0.58 0.68 0.76	343 344 345 346 347 348	52 52 52 52 52 52 52	27.16 34.18 39.07 41.81 42.46 40.98	20.67 20.66 20.66 20.65 20.65 20.64	-16.69 16.55 16.41 16.27 16.13 15.99	-16.49 16.42 16.35 16.31 16.32 16.39	0.29 0.25 0.19 0.12	11.65 11.67 11.70 11.76 11.83 11.90
	10 11 12 13 14 15	349 350 351 352 353 354	53 53 53 52 52 52	14.59 09.30 02.24 53.37 42.83 30.58	+0.79 0.83 0.79 0.76 0.65 0.54	349 350 351 352 353 354	52 52 52 52 52 52 51	37.49 32.05 24.85 15.89 05.30 53.06	20.64 20.63 20.63 20.62 20.62 20.61	-15.85 15.71 15.58 15.44 15.30 15.16	-16.51 16.67 16.81 16.91 16.96 16.95	+0.02 -0.01 0.04	11.95 11.98 11.97 11.94 11.90 11.87
	16 17 18 19 20 21	355 356 357 358 359 0	52 52 51 51 51 50	16.67 01.05 43.75 24.71 03.91 41.27	+0.43 0.29 0.18 +0.07 -0.04 0.14	355 356 357 358 359 0	51 51 51 50 50 50	39.20 23.65 06.41 47.40 26.59 03.91	20.60 20.60 20.59 20.59 20.58 20.57	-15.02 14.88 14.74 14.60 14.46 14.33	-16.90 16.85 16.80 16.77 16.78 16.83	0.10 0.08 0.05 -0.01	11.85 11.84 11.86 11.89 11.93 11.98
	22 23 24 25 26 27	1 2 3 4 5 6	50 49 49 48 48 47	16.81 50.39 22.05 51.67 19.22 44.67	-0.22 0.25 0.29 0.29 0.25 0.22	1 2 3 4 5 6	49 49 48 48 47 47	39.36 12.83 44.35 13.82 41.24 06.58	20.57 20.56 20.56 20.55 20.55 20.54	-14.19 14.05 13.91 13.77 13.63 13.49	-16.92 17.05 17.19 17.34 17.48 17.60	0.12 0.14 0.14 0.13	12.02 12.05 12.07 12.07 12.06 12.03
Apr.	28 29 30 31 1	7 8 9 10 11	47 46 45 45 44	07.92 29.01 47.79 04.30 18.48	0.11 -0.04 +0.11 0.22 +0.36	7 8 9 10 11	46 45 45 44 43	29.75 50.80 09.58 26.12 40.37	20.53 20.53 20.52 20.52 20.51	-13.35 13.21 13.08 12.94 -12.80	-17.69 17.73 17.74 17.71 -17.65	+0.03 -0.00 0.03	12.00 11.96 11.92 11.89 11.88

^{*}To obtain the geometric longitude referred to the mean equinox of J 2000.0, add -17' 10".958 and subtract precession from J 2020.5.

 ${\bf SUN, 2020} \\ {\bf FOR} \ 0^{\rm h} \ {\bf TERRESTRIAL} \ {\bf TIME}$

Date	Apparent Right Ascensi	Appar on Declina		True Distance from the Earth	Semi Diame		Epheme Trans	
Feb. 15 16 17 18 19 20	21 52 02 21 55 55 21 59 49 22 03 41 22 07 33	s ° 2.02 -12 56 5.91 12 35 9.10 12 14 1.60 11 53 3.43 11 32 4.58 11 11	5 29.98 4 44.44 3 47.06 2 38.26	0.987 5179 0.987 7212 0.987 9281 0.988 1383 0.988 3515 0.988 5673	16 1 16 1 16 1 16 1 16 1	1.57 1.37 1.16 0.96	h m 12 14 12 14 12 14 12 13 12 13 12 13	07.50 04.47 00.76 56.35 51.28
21 22 23 24 25 26	22 19 04 22 22 54 22 26 42 22 30 30	5.08 -10 49 4.93 10 28 4.15 10 06 2.74 9 44 0.72 9 22 8.10 8 59	8 07.63 6 17.42 4 17.90 2 09.50	0.988 7855 0.989 0060 0.989 2286 0.989 4531 0.989 6795 0.989 9078	16 1 16 1 16 0 16 0	0.31 0.09 9.87 9.65	12 13 12 13 12 13 12 13 12 13 12 12	07.32
27 28 29 Mar. 1 2 3	22 41 51 22 45 36 22 49 21 22 53 06	4.90 -8 37 1.14 8 14 5.82 7 52 1.97 7 29 5.60 7 06 0.74 6 43	4 55.17 2 15.40 9 28.82 6 35.85	0.990 1381 0.990 3702 0.990 6044 0.990 8407 0.991 0793 0.991 3202	16 0 16 0 16 0 16 0	18.98 18.75 18.52 18.28	12 12 12 12 12 12 12 12 12 12 12 11	37.23 26.09 14.43
4 5 6 7 8 9	23 04 17 23 08 00 23 11 42 23 15 24	4.39 -6 20 7.57 5 57 0.32 5 34 2.63 5 10 4.55 4 47 6.08 4 23	7 22.64 4 08.15 0 49.29 7 26.44	0.991 5637 0.991 8101 0.992 0594 0.992 3120 0.992 5679 0.992 8275	16 0 16 0 16 0 16 0	77.57 77.33 97.08 96.83	12 11 12 11 12 11 12 10 12 10 12 10	39.53
10 11 12 13 14 15	23 26 28 23 30 08 23 33 48 23 37 28	7.25 -4 00 3.10 3 36 3.64 3 13 3.91 2 49 3.93 2 26 3.72 2 02	6 57.51 3 22.21 9 44.65 6 05.16	0.993 0908 0.993 3576 0.993 6279 0.993 9014 0.994 1776 0.994 4563	16 0 16 0 16 0 16 0	06.06 05.80 05.53 05.26	12 10 12 09 12 09 12 09 12 09 12 08	52.94 36.79 20.38 03.73
16 17 18 19 20 21	23 48 27 23 52 06 23 55 45 23 59 24	3.30 -1 38 7.70 1 14 6.92 0 51 6.99 -0 27 4.93 +0 03 3.75 0 19	4 58.72 1 15.15 7 31.49 3 48.12	0.994 7371 0.995 0194 0.995 3029 0.995 5873 0.995 8723 0.996 1576	16 0 16 0 16 0 16 0)4.45)4.17)3.90)3.62	12 08 12 08 12 07 12 07 12 07 12 07	
22 23 24 25 26 27	0 10 21 0 13 59 0 17 38 0 21 16	2.46 +0 43 1.10 1 07 9.68 1 30 3.21 1 54 5.71 2 18 5.20 2 41	7 16.52 0 55.00 4 31.32 8 05.11	0.996 4430 0.996 7282 0.997 0131 0.997 2977 0.997 5817 0.997 8652	16 0 16 0 16 0 16 0)2.79)2.52)2.25)1.97	12 06 12 06 12 06 12 05 12 05 12 05	08.32 50.29 32.24
28 29 30 31 Apr. 1	0 32 12 0 35 50 0 39 29	3.70 +3 05 2.23 3 28 0.81 3 50 9.44 4 15 3.15 +4 38	8 27.61 1 47.58 5 03.18	0.998 1482 0.998 4306 0.998 7127 0.998 9944 0.999 2759	16 0 16 0 16 0	01.15 00.88 00.61	12 04 12 04 12 04 12 04 12 03	20.21 02.32

 $\begin{array}{cc} & \text{SUN, 2020} \\ \text{FOR } 0^{\text{h}} & \text{TERRESTRIAL TIME} \end{array}$

Date		(Mea	ic Lor in Equi f date)	inox	Latitude (Ecliptic of date)	Apparer (True eq	nt Loi uinox	ngitude of date)	Aberra- tion	Prec. in Long. (J 2020.5 of date)	Nut. in Long.	Nut. in Obliquity	True Obliquity (23° 26')
Apr.	1 2 3 4 5 6	11 12 13 14 15 16	44 43 42 41 40 39	" 18.48 30.36 39.83 47.01 51.89 54.46	0.58 0.68 0.76	11 12 13 14 15 16	43 42 42 41 40 39	" 40.37 52.31 01.84 09.02 13.87 16.34	20.51 20.50 20.50 20.49 20.49 20.48	-12.80 12.66 12.52 12.38 12.24 12.10	" -17.65 17.59 17.54 17.53 17.58 17.68	-0.03 0.00 +0.05 0.10	11.88 11.89 11.92 11.97 12.02 12.06
	7 8 9 10 11 12	17 18 19 20 21 22	38 37 36 35 34 33	54.83 53.09 49.33 43.57 35.99 26.63	0.76 0.68	17 18 19 20 21 22	38 37 36 35 33 32	16.58 14.70 10.84 05.03 57.46 48.16	20.48 20.47 20.46 20.46 20.45 20.45	-11.96 11.83 11.69 11.55 11.41 11.27	-17.82 17.96 18.08 18.13 18.13	0.16 0.12 0.07 +0.01	12.08 12.07 12.03 11.98 11.92 11.87
	13 14 15 16 17 18	23 24 25 26 27 28	32 31 29 28 27 25	15.48 02.64 48.09 31.81 13.89 54.21	0.18 +0.07 -0.04	23 24 25 26 27 28	31 30 29 27 26 25	37.09 24.34 09.85 53.60 35.66 15.92	20.44 20.43 20.43 20.42 20.42 20.41	-11.13 10.99 10.85 10.71 10.58 10.44	-17.99 17.91 17.85 17.83 17.85 17.92	0.06 0.05 -0.02 +0.01	11.85 11.84 11.85 11.88 11.91 11.94
	19 20 21 22 23 24	29 30 31 32 33 34	24 23 21 20 18 17	32.83 09.71 44.76 18.01 49.43 18.96	0.29 0.22	29 30 31 32 33 34	23 22 21 19 18 16	54.46 31.22 06.16 39.29 10.62 40.08	20.41 20.40 20.39 20.39 20.38 20.38	-10.30 10.16 10.02 9.88 9.74 9.60	-18.01 18.13 18.26 18.38 18.48 18.55	0.06 0.04 +0.01	11.96 11.97 11.96 11.94 11.90 11.85
	25 26 27 28 29 30	35 36 37 38 39 40	15 14 12 10 09 07	46.57 12.23 35.91 57.54 17.15 34.69	0.43	35 36 37 38 39 40	15 13 11 10 08 06	07.67 33.35 57.08 18.80 38.51 56.12	20.37 20.37 20.36 20.36 20.35 20.35	-9.46 9.33 9.19 9.05 8.91 8.77	-18.57 18.56 18.51 18.43 18.34 18.26	0.14 0.18 0.20 0.21	11.80 11.75 11.71 11.68 11.68 11.69
May	1 2 3 4 5 6	41 42 43 44 44 45	05 04 02 00 58 56	50.12 03.52 14.85 24.16 31.55 37.02	0.79	41 42 43 43 44 45	05 03 01 59 57 55	11.62 25.02 36.30 45.53 52.81 58.19	20.34 20.34 20.33 20.33 20.32 20.32	-8.63 8.49 8.35 8.21 8.08 7.94	-18.21 18.21 18.26 18.35 18.46 18.56	0.06 0.07	11.72 11.76 11.80 11.82 11.81 11.78
	7 8 9 10 11 12	46 47 48 49 50 51	54 52 50 48 46 44	40.71 42.72 43.12 42.04 39.54 35.69	0.43 0.29 0.18	46 47 48 49 50 51	54 52 50 48 46 43	01.84 03.86 04.34 03.38 01.02 57.29	20.31 20.31 20.30 20.30 20.29 20.29	-7.80 7.66 7.52 7.38 7.24 7.10	-18.61 18.60 18.52 18.40 18.27 18.16	0.28 0.32 0.33	11.72 11.66 11.60 11.56 11.54 11.54
	13 14 15 16 17	52 53 54 55 56	42 40 38 36 33	30.54 24.14 16.52 07.65 57.62	0.29 0.36	52 53 54 55 56	41 39 37 35 33	52.22 45.86 38.24 29.33 19.22	20.28 20.28 20.27 20.27 20.27	-6.96 6.82 6.69 6.55 -6.41	-18.08 18.04 18.05 18.10 -18.17	0.28 0.25 0.22	11.56 11.59 11.62 11.64 11.66

^{*}To obtain the geometric longitude referred to the mean equinox of J 2000.0, add -17' 10".958 and subtract precession from J 2020.5.

Date		Apparent Right Ascension		Apparent Declination			True Distance from the Earth		emi neter		Ephemeris Transit		
Apr.	1 2 3 4 5 6	h 0 0 0 0 0	m 43 46 50 54 57 01	s 08.15 46.96 25.88 04.93 44.13 23.50	+4 5 5 5 6 6	38 01 24 47 10 32	" 14.02 19.75 20.00 14.41 02.64 44.34	0.999 2759 0.999 5574 0.999 8391 1.000 1212 1.000 4040 1.000 6877	16 16 15 15 15 15	" 00.34 00.07 59.80 59.53 59.26 58.99	h 12 12 12 12 12 12	m 03 03 03 02 02 02	s 44.53 26.83 09.26 51.84 34.57 17.49
	7 8 9 10 11 12	1 1 1 1 1	05 08 12 16 19 23	03.07 42.85 22.88 03.17 43.75 24.64	+6 7 7 8 8 8	55 17 40 02 24 46	19.19 46.89 07.14 19.66 24.13 20.25	1.000 9725 1.001 2585 1.001 5456 1.001 8338 1.002 1227 1.002 4121	15 15 15 15 15 15	58.71 58.44 58.16 57.89 57.61 57.34	12 12 12 12 12 12	02 01 01 01 00 00	00.62 43.98 27.59 11.47 55.65 40.15
	13 14 15 16 17 18	1 1 1 1 1	27 30 34 38 41 45	05.86 47.42 29.33 11.62 54.29 37.36	+9 9 9 10 10 10	08 29 51 12 33 54	07.69 46.13 15.22 34.62 44.00 43.00	1.002 7016 1.002 9907 1.003 2791 1.003 5665 1.003 8525 1.004 1367	15 15 15 15 15 15	57.06 56.78 56.51 56.23 55.96 55.69	12 12 11 11 11 11	00 00 59 59 59 59	24.97 10.15 55.70 41.62 27.94 14.66
	19 20 21 22 23 24	1 1 1 2 2 2	49 53 56 00 04 08	20.84 04.75 49.08 33.87 19.11 04.81	+11 11 11 12 12 12	15 36 56 16 36 56	31.28 08.50 34.32 48.39 50.37 39.92	1.004 4189 1.004 6989 1.004 9764 1.005 2512 1.005 5232 1.005 7923	15 15 15 15 15 15	55.42 55.16 54.89 54.63 54.37 54.12	11 11 11 11 11	59 58 58 58 58 58	01.81 49.38 37.39 25.86 14.78 04.17
	25 26 27 28 29 30	2 2 2 2 2 2 2	11 15 19 23 27 30	50.99 37.66 24.81 12.45 00.60 49.25	+13 13 13 14 14 14	16 35 54 13 32 50	16.69 40.34 50.54 46.92 29.16 56.92	1.006 0584 1.006 3214 1.006 5814 1.006 8385 1.007 0928 1.007 3443	15 15 15 15 15 15	53.87 53.62 53.37 53.13 52.89 52.65	11 11 11 11 11	57 57 57 57 57 57	54.03 44.38 35.22 26.56 18.39 10.74
May	1 2 3 4 5 6	2 2 2 2 2 2 2	34 38 42 46 50 53	38.41 28.08 18.28 09.01 00.27 52.09	+15 15 15 16 16 16	09 27 44 02 19 36	09.85 07.62 49.91 16.41 26.81 20.84	1.007 5934 1.007 8402 1.008 0850 1.008 3281 1.008 5697 1.008 8101	15 15 15 15 15 15	52.41 52.18 51.95 51.72 51.49 51.26	11 11 11 11 11	57 56 56 56 56 56	03.60 56.98 50.89 45.33 40.32 35.86
	7 8 9 10 11 12	2 3 3 3 3 3	57 01 05 09 13 17	44.46 37.40 30.92 25.02 19.71 14.98	+16 17 17 17 17 18	52 09 25 41 56 11	58.23 18.72 22.04 07.93 36.11 46.29	1.009 0494 1.009 2875 1.009 5245 1.009 7600 1.009 9939 1.010 2258	15 15 15 15 15 15	51.04 50.81 50.59 50.37 50.15 49.93	11 11 11 11 11	56 56 56 56 56 56	31.96 28.63 25.88 23.71 22.12 21.12
	13 14 15 16 17	3 3 3 3 3	21 25 29 33 37	10.84 07.28 04.30 01.91 00.09	+18 18 18 19 +19	26 41 55 09 22	38.20 11.54 26.03 21.39 57.34	1.010 4554 1.010 6823 1.010 9062 1.011 1267 1.011 3437	15 15 15 15 15	49.72 49.50 49.29 49.08 48.88	11 11 11 11 11	56 56 56 56 56	20.71 20.89 21.65 22.99 24.91

 $\begin{array}{c} \textbf{SUN, 2020} \\ \textbf{FOR} \ 0^{\text{h}} \ \textbf{TERRESTRIAL} \ \textbf{TIME} \end{array}$

Date		(Mea	ic Lor n Equi f date)	nox	Latitude (Ecliptic of date)		nt Loi uinox	ngitude of date)	Aberra- tion	Prec. in Long. (J 2020.5	Nut. in Long.	Nut. in Obliquity	True Obliquity (23° 26')
		0	,	"	"	0	,	"	"	of date)	"	"	"
1 2 2	17 18 19 20 21 22	56 57 58 59 60 61	33 31 29 27 25 22	57.62 46.34 33.90 20.19 05.30 49.11	-0.40 0.40 0.36 0.32 0.25 0.14	56 57 58 59 60 61	33 31 28 26 24 22	19.22 07.86 55.34 41.57 26.64 10.45	20.27 20.26 20.26 20.25 20.25 20.25	-6.41 6.27 6.13 5.99 5.85 5.71	-18.17 18.26 18.35 18.42 18.46 18.46	-0.21 0.21 0.23 0.26 0.30 0.35	11.66 11.65 11.64 11.60 11.56 11.51
2 2 2 2	23 24 25 26 27 28	62 63 64 65 66 67	20 18 15 13 11 08	31.69 12.96 52.88 31.45 08.66 44.42	-0.04 +0.07 0.22 0.32 0.43 0.54	62 63 64 65 66 67	19 17 15 12 10 08	53.08 34.44 14.47 53.17 30.50 06.36	20.24 20.24 20.23 20.23 20.23 20.22	-5.57 5.44 5.30 5.16 5.02 4.88	-18.41 18.33 18.22 18.09 17.97 17.88	-0.40 0.44 0.46 0.47 0.45 0.42	11.46 11.42 11.39 11.39 11.40 11.43
3	29 30 31 1 2 3	68 69 70 70 71 72	06 03 01 58 56 53	18.79 51.76 23.27 53.44 22.27 49.81	+0.61 0.68 0.72 0.72 0.65 0.58	68 69 70 70 71 72	05 03 00 58 55 53	40.78 13.75 45.22 15.31 44.08 11.58	20.22 20.22 20.21 20.21 20.21 20.21	-4.74 4.60 4.46 4.32 4.19 4.05	-17.83 17.84 17.88 17.96 18.03 18.07	-0.37 0.33 0.30 0.29 0.30 0.34	11.47 11.52 11.55 11.56 11.54 11.50
	4 5 6 7 8 9	73 74 75 76 77 78	51 48 46 43 40 38	16.18 41.48 05.75 29.17 51.76 13.70	+0.50 0.36 0.22 +0.07 -0.07	73 74 75 76 77 78	50 48 45 42 40 37	37.97 03.35 27.76 51.34 14.09 36.16	20.20 20.20 20.20 20.19 20.19 20.19	-3.91 3.77 3.63 3.49 3.35 3.21	-18.05 17.97 17.84 17.68 17.52 17.39	-0.39 0.44 0.48 0.50 0.49 0.46	11.45 11.40 11.36 11.34 11.34 11.37
1 1 1 1	10 11 12 13 14	79 80 81 82 83 84	35 32 30 27 24 22	34.99 55.76 16.00 35.77 55.12 14.09	-0.29 0.40 0.47 0.50 0.54 0.50	79 80 81 82 83 84	34 32 29 26 24 21	57.54 18.35 38.58 58.31 17.60 36.50	20.19 20.19 20.18 20.18 20.18 20.18	-3.07 2.93 2.80 2.66 2.52 2.38	-17.31 17.27 17.28 17.32 17.39 17.45	-0.42 0.38 0.34 0.31 0.29 0.29	11.41 11.45 11.49 11.52 11.54 11.54
1 1 1 2	16 17 18 19 20 21	85 86 87 88 89 90	19 16 14 11 08 05	32.68 50.89 08.74 26.18 43.26 59.98	-0.47 0.43 0.32 0.22 -0.11 +0.00	85 86 87 88 89 90	18 16 13 10 08 05	55.04 13.22 31.08 48.58 05.75 22.60	20.17 20.17 20.17 20.17 20.17 20.17	-2.24 2.10 1.96 1.82 1.68 1.55	-17.51 17.54 17.53 17.48 17.39 17.27	-0.30 0.33 0.36 0.39 0.42 0.44	11.52 11.50 11.46 11.43 11.40 11.38
2 2 2 2	22 23 24 25 26 27	91 92 92 93 94 95	03 00 57 55 52 49	16.22 32.06 47.39 02.22 16.53 30.27	+0.14 0.25 0.36 0.47 0.54 0.58	91 91 92 93 94 95	02 59 57 54 51 48	38.98 54.96 10.40 25.31 39.64 53.35	20.17 20.16 20.16 20.16 20.16 20.16	-1.41 1.27 1.13 0.99 0.85 0.71	-17.12 16.98 16.86 16.79 16.77 16.80	-0.43 0.41 0.36 0.30 0.24 0.19	11.38 11.41 11.45 11.51 11.57 11.62
2 3	28 29 30 1 2	96 97 98 99 100	46 43 41 38 35	43.51 56.18 08.35 20.12 31.48	+0.58 0.54 0.47 0.40 +0.25	96 97 98 99 100	46 43 40 37 34	06.53 19.13 31.26 43.03 54.44	20.16 20.16 20.16 20.16 20.16	-0.57 0.43 0.30 0.16 -0.02	-16.86 16.93 16.98 16.98 -16.92	-0.16 0.15 0.16 0.20 -0.23	11.65 11.66 11.64 11.61 11.57

^{*}To obtain the geometric longitude referred to the mean equinox of J 2000.0, add -17' 10".958 and subtract precession from J 2020.5.

Date	Apparent Right Ascensi	Apparer on Declinati		True Distance from the Earth	Ser Dian		Ephemeris Transit		
May 17 18 19 20 21 22	3 37 00 3 40 58 3 44 58 3 48 58 3 52 58	s ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	57.34 13.60 09.90 45.98 01.56 56.40	1.011 3437 1.011 5568 1.011 7657 1.011 9702 1.012 1702 1.012 3654	15 15 15 15 15 15	48.88 48.68 48.49 48.29 48.11 47.92	h 11 11 11 11 11	m 56 56 56 56 56 56	s 24.91 27.39 30.44 34.04 38.19 42.86
23 24 25 26 27 28	4 05 02 4 09 05 4 13 08 4 17 11	0.93 +20 37 2.94 20 48 5.45 20 59 3.45 21 10 1.91 21 20 5.81 21 29	30.24 42.82 33.92 03.29 10.68 55.88	1.012 5557 1.012 7411 1.012 9215 1.013 0969 1.013 2674 1.013 4332	15 15 15 15 15 15	47.75 47.57 47.40 47.24 47.08 46.92	11 11 11 11 11	56 56 56 57 57 57	48.06 53.76 59.94 06.61 13.73 21.30
29 30 31 June 1 2 3	4 29 24 4 33 30 4 37 35 4 41 41	0.15 +21 39 4.91 21 48 0.07 21 56 5.61 22 05 1.52 22 13 7.79 22 20	18.66 18.81 56.11 10.40 01.50 29.25	1.013 5943 1.013 7512 1.013 9040 1.014 0530 1.014 1986 1.014 3410	15 15 15 15 15 15	46.77 46.63 46.48 46.35 46.21 46.08	11 11 11 11 11 11	57 57 57 57 58 58	29.29 37.70 46.50 55.68 05.22 15.11
4 5 6 7 8 9	4 54 01 4 58 08 5 02 16 5 06 24	4.42 +22 27 1.37 22 34 8.65 22 40 5.23 22 46 4.09 22 51 2.23 22 56	33.52 14.19 31.15 24.27 53.45 58.57	1.014 4806 1.014 6173 1.014 7514 1.014 8826 1.015 0111 1.015 1364	15 15 15 15 15 15	45.95 45.82 45.69 45.57 45.45 45.34	11 11 11 11 11 11	58 58 58 58 59 59	25.35 35.90 46.77 57.93 09.37 21.08
10 11 12 13 14 15	5 18 49 5 22 58 5 27 07 5 31 16	0.62 +23 01 0.24 23 05 8.07 23 09 7.09 23 13 6.28 23 16 5.62 23 18	39.52 56.21 48.51 16.37 19.68 58.38	1.015 2584 1.015 3768 1.015 4914 1.015 6018 1.015 7078 1.015 8090	15 15 15 15 15 15	45.22 45.11 45.01 44.90 44.80 44.71	11 11 11 12 12 12	59 59 59 00 00 00	33.02 45.20 57.57 10.13 22.85 35.71
16 17 18 19 20 21	5 43 44 5 47 54 5 52 04 5 56 13	5.09 +23 21 4.66 23 23 4.30 23 24 4.00 23 25 3.72 23 26 3.44 23 26	12.42 01.74 26.31 26.10 01.10 11.29	1.015 9054 1.015 9965 1.016 0822 1.016 1623 1.016 2366 1.016 3050	15 15 15 15 15 15	44.62 44.54 44.46 44.38 44.31 44.25	12 12 12 12 12 12	00 01 01 01 01 01	48.68 01.73 14.85 28.01 41.17 54.32
22 23 24 25 26 27	6 08 42 6 12 52 6 17 01 6 21 10	3.13 +23 25 2.75 23 25 2.29 23 24 1.71 23 22 0.97 23 20 0.07 23 18	56.68 17.28 13.12 44.21 50.60 32.32	1.016 3673 1.016 4236 1.016 4739 1.016 5182 1.016 5568 1.016 5898	15 15 15 15 15 15	44.19 44.14 44.09 44.05 44.01 43.98	12 12 12 12 12 12	02 02 02 02 02 02 03	07.42 20.44 33.36 46.15 58.78 11.23
28 29 30 July 1 2	6 33 37 6 37 46 6 41 54	8.96 +23 15 7.63 23 12 6.07 23 09 4.24 23 05 2.14 +23 00	49.45 42.04 10.20 14.02 53.64	1.016 6177 1.016 6407 1.016 6592 1.016 6734 1.016 6838	15 15 15 15 15	43.96 43.94 43.92 43.91 43.90	12 12 12 12 12	03 03 03 03 04	23.46 35.47 47.22 58.70 09.89

 $\begin{array}{c} \textbf{SUN, 2020} \\ \textbf{FOR} \ 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \end{array}$

Date		(Mea	ic Lon n Equi f date)	nox	Latitude (Ecliptic of date)					Long. (J 2020.5	Nut. in Long.	Nut. in Obliquity	True Obliquity (23° 26')
July	1 2 3 4 5 6	99 100 101 102 103 104	38 35 32 29 27 24	" 20.12 31.48 42.56 53.43 04.18 14.95	+0.40 0.25 +0.14 -0.00 0.14 0.29	99 100 101 102 103 104	37 34 32 29 26 23	" 43.03 54.44 05.64 16.66 27.56 38.47	20.16 20.16 20.16 20.16 20.16 20.16	of date) -0.16 -0.02 +0.12 0.26 0.40 0.54	16.92 16.81 16.66 16.50	0.23 0.26 0.27 0.25	11.61 11.57 11.55 11.54 11.55 11.58
	7 8 9 10 11 12	105 106 107 108 109 110	21 18 15 12 10 07	25.79 36.83 48.13 59.76 11.78 24.27	-0.40 0.50 0.58 0.65 0.65 0.65	105 106 107 108 109 110	20 18 15 12 09 06	49.42 00.50 11.81 23.40 35.35 47.77	20.16 20.16 20.16 20.16 20.16 20.16	+0.68 0.82 0.96 1.09 1.23 1.37	16.21 16.21 16.25 16.31	0.10 -0.04 +0.01 0.05	11.64 11.70 11.76 11.81 11.84 11.87
	13 14 15 16 17 18	111 112 112 113 114 115	04 01 59 56 53 50	37.23 50.71 04.74 19.37 34.57 50.35	-0.61 0.58 0.47 0.40 0.29 0.14	111 112 112 113 114 115	04 01 58 55 52 50	00.66 14.09 28.09 42.74 58.01 13.88	20.16 20.16 20.16 20.16 20.16 20.17	+1.51 1.65 1.79 1.93 2.07 2.21	16.53 16.51	0.07 0.06 0.04 0.02	11.87 11.86 11.85 11.83 11.81 11.80
	19 20 21 22 23 24	116 117 118 119 120 121	48 45 42 39 37 34	06.71 23.65 41.14 59.11 17.56 36.43	-0.04 +0.11 0.22 0.32 0.40 0.43	116 117 118 119 120 121	47 44 42 39 36 34	30.37 47.44 05.04 23.08 41.54 00.37	20.17 20.17 20.17 20.17 20.17 20.18	+2.34 2.48 2.62 2.76 2.90 3.04	16.09 15.98 15.91 15.89	0.06 0.12 0.19 0.26	11.81 11.84 11.90 11.97 12.04 12.11
	25 26 27 28 29 30	122 123 124 125 126 127	31 29 26 23 21 18	55.70 15.34 35.37 55.82 16.65 37.97	+0.43 0.43 0.36 0.29 0.18 +0.07	122 123 124 125 126 127	31 28 25 23 20 18	19.56 39.11 59.05 19.46 40.31 01.69	20.18 20.18 20.18 20.18 20.19 20.19	+3.18 3.32 3.46 3.60 3.73 3.87	16.10 16.18 16.22	0.41 0.41 0.40 0.38	12.16 12.19 12.19 12.17 12.15 12.13
Aug.	31 1 2 3 4 5	128 129 130 131 132 133	15 13 10 08 05 02	59.82 22.27 45.42 09.39 34.20 59.96	-0.07 0.22 0.32 0.47 0.58 0.65	128 129 130 131 132 133	15 12 10 07 04 02	23.65 46.22 09.48 33.53 58.37 24.11	20.19 20.19 20.20 20.20 20.20 20.20	+4.01 4.15 4.29 4.43 4.57 4.71	15.79 15.71	0.37 0.41 0.47 0.54	12.12 12.14 12.18 12.23 12.30 12.37
	6 7 8 9 10 11	134 134 135 136 137 138	00 57 55 52 50 47	26.80 54.72 23.85 54.24 25.94 58.98	-0.72 0.72 0.76 0.72 0.68 0.61	133 134 135 136 137 138	59 57 54 52 49 47	50.89 18.72 47.74 18.01 49.62 22.60	20.21 20.21 20.21 20.22 20.22 20.22	+4.85 4.98 5.12 5.26 5.40 5.54	15.84 15.94 16.05 16.14	0.72 0.76 0.77	12.43 12.48 12.51 12.53 12.53 12.52
	12 13 14 15 16	139 140 141 142 143	45 43 40 38 36	33.43 09.32 46.68 25.48 05.75	-0.50 0.40 0.29 0.14 -0.04	139 140 141 142 143	44 42 40 37 35	57.01 32.90 10.31 49.19 29.54	20.23 20.23 20.23 20.24 20.24	+5.68 5.82 5.96 6.10 +6.24	16.23 16.18 16.10	0.74 0.74	12.51 12.49 12.49 12.49 12.52

^{*}To obtain the geometric longitude referred to the mean equinox of J 2000.0, add -17' 10".958 and subtract precession from J 2020.5.

 ${\bf SUN, 2020} \\ {\bf FOR} \ 0^{\rm h} \ {\bf TERRESTRIAL} \ {\bf TIME}$

Date		Apparent Right Ascension		Apparent Declination			True Distance from the Earth		emi neter		Ephemeris Transit		
2	1 2 3 4 5 6	h 6 6 6 6 7	m 41 46 50 54 58 02	s 54.24 02.14 09.74 17.02 23.98 30.59	+23 23 22 22 22 22 22	05 00 56 51 45 39	" 14.02 53.64 09.17 00.75 28.53 32.64	1.016 6734 1.016 6838 1.016 6906 1.016 6939 1.016 6938 1.016 6904	15 15 15 15 15 15	43.91 43.90 43.89 43.89 43.89 43.89	h 12 12 12 12 12 12	m 03 04 04 04 04 04	\$ 58.70 09.89 20.77 31.33 41.56 51.42
8	1	7 7 7 7 7 7	06 10 14 18 22 27	36.84 42.71 48.19 53.26 57.91 02.13	+22 22 22 22 22 22 21	33 26 19 11 04 55	13.22 30.42 24.38 55.27 03.24 48.47	1.016 6837 1.016 6734 1.016 6594 1.016 6416 1.016 6198 1.016 5936	15 15 15 15 15 15	43.90 43.91 43.92 43.94 43.96 43.98	12 12 12 12 12 12	05 05 05 05 05 05	00.92 10.04 18.76 27.07 34.96 42.40
13 12 13 16 17	4 5 6 7	7 7 7 7 7 7	31 35 39 43 47 51	05.90 09.21 12.05 14.40 16.25 17.59	+21 21 21 21 21 20	47 38 28 19 09 58	11.14 11.44 49.57 05.75 00.17 33.08	1.016 5630 1.016 5275 1.016 4872 1.016 4416 1.016 3906 1.016 3340	15 15 15 15 15 15	44.01 44.04 44.08 44.12 44.17 44.22	12 12 12 12 12 12	05 05 06 06 06 06	49.39 55.91 01.95 07.50 12.53 17.04
19 20 21 22 22 24	0 1 2 3	7 7 8 8 8 8	55 59 03 07 11 15	18.40 18.66 18.37 17.50 16.05 14.00	+20 20 20 20 20 20 19	47 36 25 13 01 48	44.71 35.29 05.08 14.33 03.29 32.22	1.016 2717 1.016 2033 1.016 1290 1.016 0485 1.015 9621 1.015 8697	15 15 15 15 15 15	44.28 44.34 44.41 44.49 44.57 44.65	12 12 12 12 12 12	06 06 06 06 06 06	21.01 24.44 27.30 29.58 31.27 32.36
25 20 27 28 29 30	6 7 8 9	8 8 8 8 8	19 23 27 30 34 38	11.34 08.06 04.17 59.66 54.52 48.76	+19 19 19 18 18 18	35 22 09 55 41 26	41.38 31.05 01.49 12.98 05.83 40.33	1.015 7717 1.015 6683 1.015 5599 1.015 4469 1.015 3296 1.015 2084	15 15 15 15 15 15	44.74 44.84 44.94 45.05 45.16 45.27	12 12 12 12 12 12	06 06 06 06 06 06	32.84 32.71 31.95 30.57 28.56 25.92
- 2 2 2	1 1 2 3 4 5	8 8 8 8 8	42 46 50 54 58 02	42.38 35.38 27.75 19.52 10.67 01.22	+18 17 17 17 17 16	11 56 41 26 10 53	56.76 55.43 36.62 00.63 07.72 58.18	1.015 0836 1.014 9555 1.014 8243 1.014 6901 1.014 5531 1.014 4132	15 15 15 15 15 15	45.38 45.50 45.63 45.75 45.88 46.01	12 12 12 12 12 12	06 06 06 06 06 05	22.66 18.79 14.29 09.19 03.49 57.18
· · · · · · · · · · · · · · · · · · ·		9 9 9 9 9	05 09 13 17 21 24	51.18 40.55 29.33 17.55 05.21 52.31	+16 16 16 15 15 15	37 20 03 46 29 11	32.30 50.34 52.59 39.34 10.87 27.49	1.014 2704 1.014 1247 1.013 9758 1.013 8237 1.013 6683 1.013 5092	15 15 15 15 15 15	46.14 46.28 46.42 46.56 46.70 46.85	12 12 12 12 12 12	05 05 05 05 05 05	50.29 42.82 34.77 26.15 16.98 07.25
12 13 14 15	3 4 5	9 9 9 9	28 32 36 39 43	38.86 24.88 10.37 55.34 39.80	+14 14 14 13 +13	53 35 16 58 39	29.48 17.15 50.82 10.78 17.37	1.013 3465 1.013 1797 1.013 0089 1.012 8337 1.012 6540	15 15 15 15 15	47.01 47.16 47.32 47.48 47.65	12 12 12 12 12	04 04 04 04 04	56.98 46.18 34.85 23.00 10.64

 $\begin{array}{cc} & \textbf{SUN, 2020} \\ \text{FOR } 0^{\text{h}} & \text{TERRESTRIAL TIME} \end{array}$

Date		(Mea	ic Lor in Equi f date	inox	Latitude (Ecliptic of date)	Apparei (True eq			Aberra- tion	Prec. in Long. (J 2020.5	Nut. in Long.	Nut. in Obliquity	True Obliquity (23° 26')
		0	,	"	"	0	,	"	"	of date)	"	"	"
Aug.	16 17 18 19 20 21	143 144 145 146 147 148	36 33 31 29 27 24	05.75 47.50 30.68 15.29 01.21 48.48	-0.04 +0.11 0.18 0.29 0.32 0.32	143 144 145 146 147 148	35 33 30 28 26 24	29.54 11.38 54.61 39.22 25.08 12.24	20.24 20.24 20.25 20.25 20.25 20.26	+6.24 6.37 6.51 6.65 6.79 6.93	-16.01 15.92 15.87 15.87 15.92 16.03	0.89 0.97 1.05	12.52 12.57 12.64 12.71 12.79 12.85
	22 23 24 25 26 27	149 150 151 152 153 154	22 20 18 16 14 11	36.97 26.70 17.59 09.68 02.94 57.38	+0.32 0.29 0.22 +0.11 -0.00 0.14	149 150 151 152 153 154	22 19 17 15 13	00.59 50.20 40.99 33.05 26.33 20.83	20.26 20.27 20.27 20.28 20.28 20.29	+7.07 7.21 7.35 7.49 7.62 7.76	-16.16 16.28 16.37 16.40 16.37 16.31	1.15 1.13 1.11	12.88 12.89 12.87 12.84 12.82 12.80
Sept.	28 29 30 31 1 2	155 156 157 158 159 159	09 07 05 03 01 59	53.07 50.09 48.43 48.23 49.50 52.34	-0.29 0.40 0.50 0.61 0.72 0.76	155 156 157 158 159 159	09 07 05 03 01 59	16.60 13.69 12.08 11.88 13.12 15.86	20.29 20.29 20.30 20.30 20.31 20.31	+7.90 8.04 8.18 8.32 8.46 8.60	-16.23 16.15 16.10 16.09 16.12 16.21	1.11 1.16 1.22	12.81 12.84 12.89 12.95 13.01 13.07
	3 4 5 6 7 8	160 161 162 163 164 165	57 56 54 52 50 48	56.83 03.07 11.08 20.91 32.66 46.39	-0.79 0.79 0.79 0.76 0.68 0.58	160 161 162 163 164 165	57 55 53 51 49 48	20.23 26.33 34.19 43.88 55.52 09.18	20.32 20.32 20.33 20.33 20.34 20.34	+8.74 8.88 9.01 9.15 9.29 9.43	-16.32 16.46 16.60 16.74 16.84 16.92	1.42 1.44 1.44 1.42	13.11 13.15 13.16 13.16 13.14 13.12
	9 10 11 12 13 14	166 167 168 169 170 171	47 45 43 42 40 38	02.10 19.87 39.72 01.64 25.68 51.83	-0.47 0.36 0.25 -0.11 +0.00 0.11	166 167 168 169 170 171	46 44 43 41 39 38	24.85 42.61 02.50 24.47 48.56 14.75	20.35 20.35 20.36 20.36 20.37 20.37	+9.57 9.71 9.85 9.99 10.13 10.26	-16.95 16.95 16.91 16.85 16.79 16.75	1.36 1.35 1.36 1.39	13.09 13.07 13.06 13.07 13.10 13.15
	15 16 17 18 19 20	172 173 174 175 176 177	37 35 34 32 31 30	20.03 50.35 22.62 56.84 32.94 10.84	+0.18 0.25 0.29 0.25 0.22 0.14	172 173 174 175 176 177	36 35 33 32 30 29	42.95 13.20 45.36 19.43 55.37 33.14	20.38 20.39 20.39 20.40 20.40 20.41	+10.40 10.54 10.68 10.82 10.96 11.10	-16.75 16.81 16.92 17.07 17.22 17.34	1.57	13.21 13.27 13.33 13.36 13.36 13.34
	21 22 23 24 25 26	178 179 180 181 182 183	28 27 26 24 23 22	50.49 31.84 14.86 59.56 45.91 33.94	+0.07 -0.07 0.18 0.32 0.47 0.58	178 179 180 181 182 183	28 26 25 24 23 21	12.72 54.06 37.13 21.89 08.30 56.38	20.41 20.42 20.42 20.43 20.44 20.44	+11.24 11.38 11.52 11.65 11.79 11.93	-17.40 17.40 17.36 17.28 17.21 17.17	1.55 1.52	13.29 13.25 13.22 13.20 13.21 13.24
Oct.	27 28 29 30 1	184 185 186 187 188	21 20 19 18 17	23.70 15.27 08.65 03.87 01.05	-0.68 0.76 0.83 0.86 -0.86	184 185 186 187 188	20 19 18 17 16	46.14 37.67 30.96 26.05 23.09	20.45 20.45 20.46 20.47 20.47	+12.07 12.21 12.35 12.49 +12.63	-17.16 17.19 17.28 17.40 -17.54	1.64 1.68 1.71	13.28 13.33 13.37 13.40 13.42

^{*}To obtain the geometric longitude referred to the mean equinox of J 2000.0, add -17' 10".958 and subtract precession from J 2020.5.

SUN, 2020 FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	Apparent Right Ascension	Apparent Declination	True Distance from the Earth	Semi Diameter	Ephemeris Transit		
Aug. 16 17 18 19 20 21	h m s 9 43 39.80 9 47 23.75 9 51 07.20 9 54 50.15 9 58 32.61 10 02 14.59	13 20 10.90 13 00 51.71 12 41 20.12 12 21 36.47	1.012 6540 1.012 4695 1.012 2801 1.012 0857 1.011 8863 1.011 6818	15 47.65 15 47.83 15 48.00 15 48.19 15 48.37 15 48.56	h m s 12 04 10.64 12 03 57.78 12 03 44.42 12 03 30.57 12 03 16.24 12 03 01.44		
22 23 24 25 26 27	10 05 56.10 10 09 37.14 10 13 17.74 10 16 57.90 10 20 37.63 10 24 16.96	11 21 16.43 11 00 47.84 10 40 08.85 10 19 19.80	1.011 4726 1.011 2587 1.011 0407 1.010 8188 1.010 5936 1.010 3653	15 48.76 15 48.96 15 49.17 15 49.37 15 49.59 15 49.80	12 02 46.17 12 02 30.44 12 02 14.27 12 01 57.66 12 01 40.64 12 01 23.21		
28 29 30 31 Sept. 1 2	10 27 55.90 10 31 34.46 10 35 12.67 10 38 50.53 10 42 28.07 10 46 05.31	9 15 55.65 8 54 29.69 8 32 55.30	1.009 6658	15 50.02 15 50.24 15 50.46 15 50.68 15 50.91 15 51.13	12 01 05.40 12 00 47.23 12 00 28.70 12 00 09.85 11 59 50.70 11 59 31.25		
3 4 5 6 7 8	10 49 42.27 10 53 18.98 10 56 55.45 11 00 31.70 11 04 07.77 11 07 43.66	7 05 19.51 6 43 07.51 6 20 48.87 5 58 23.91	1.008 7086 1.008 4657 1.008 2216 1.007 9760 1.007 7290 1.007 4804	15 51.36 15 51.59 15 51.82 15 52.05 15 52.28 15 52.52	11 59 11.54 11 58 51.58 11 58 31.40 11 58 11.01 11 57 50.44 11 57 29.71		
9 10 11 12 13 14	11 11 19.40 11 14 55.01 11 18 30.50 11 22 05.91 11 25 41.24 11 29 16.51	4 50 34.18 4 27 47.02 4 04 55.11	1.007 2301 1.006 9780 1.006 7239 1.006 4676 1.006 2089 1.005 9477	15 52.76 15 52.99 15 53.24 15 53.48 15 53.72 15 53.97	11 57 08.83 11 56 47.83 11 56 26.72 11 56 05.53 11 55 44.28 11 55 22.97		
15 16 17 18 19 20	11 32 51.73 11 36 26.94 11 40 02.13 11 43 37.33 11 47 12.55 11 50 47.81	2 32 46.64 2 09 36.04	1.005 6836 1.005 4166 1.005 1465 1.004 8732 1.004 5968 1.004 3175	15 54.22 15 54.47 15 54.73 15 54.99 15 55.25 15 55.52	11 55 01.64 11 54 40.29 11 54 18.94 11 53 57.61 11 53 36.30 11 53 15.05		
21 22 23 24 25 26	11 54 23.13 11 57 58.53 12 01 34.02 12 05 09.62 12 08 45.35 12 12 21.24	0 13 09.81 0 10 11.55 0 33 33.45 +0 56 55.50	1.004 0356 1.003 7515 1.003 4654 1.003 1780 1.002 8895 1.002 6003	15 55.79 15 56.06 15 56.33 15 56.60 15 56.88 15 57.16	11 52 53.86 11 52 32.75 11 52 11.74 11 51 50.85 11 51 30.10 11 51 09.51		
27 28 29 30 Oct. 1	12 15 57.30 12 19 33.55 12 23 10.02 12 26 46.73 12 30 23.71	2 06 59.20 2 30 18.47	1.002 3109 1.002 0214 1.001 7322 1.001 4436 1.001 1555	15 57.43 15 57.71 15 57.99 15 58.26 15 58.54	11 50 49.11 11 50 28.92 11 50 08.96 11 49 49.26 11 49 29.83		

 $\begin{array}{c} \textbf{SUN, 2020} \\ \textbf{FOR} \ 0^{\text{h}} \ \textbf{TERRESTRIAL} \ \textbf{TIME} \end{array}$

Date		(Mea	ic Lon in Equi f date)	nox	Latitude (Ecliptic of date)		nt Loi uinox	ngitude of date)	Aberra- tion	Prec. in Long. (J 2020.5	Nut. in Long.	Nut. in Obliquity	True Obliquity (23° 26')
Oct.	1 2 3 4 5 6	188 189 190 191 192 193	17 16 15 14 13 12	" 01.05 00.19 01.36 04.64 10.05 17.65	-0.86 0.83 0.79 0.72 0.65 0.54	188 189 190 191 192 193	16 15 14 13 12 11	23.09 22.07 23.10 26.26 31.57 39.12	20.47 20.48 20.48 20.49 20.50 20.50	of date) +12.63 12.77 12.91 13.04 13.18 13.32	" -17.54 17.69 17.83 17.94 18.03 18.07	1.74 1.72 1.69 1.65	13.42 13.42 13.41 13.38 13.34 13.29
	7 8 9 10 11 12	194 195 196 197 198 199	11 10 09 09 08 07	27.44 39.54 53.92 10.59 29.62 50.97	-0.40 0.29 0.14 -0.04 +0.07 0.14	194 195 196 197 198 199	10 10 09 08 07 07	48.90 01.02 15.44 32.17 51.24 12.61	20.51 20.51 20.52 20.52 20.53 20.54	+13.46 13.60 13.74 13.88 14.02 14.16	-18.08 18.05 18.00 17.94 17.89 17.87	1.55 1.53 1.54 1.56	13.26 13.23 13.21 13.21 13.24 13.27
	13 14 15 16 17 18	200 201 202 203 204 205	07 06 06 05 05 04	14.64 40.60 08.83 39.25 11.73 46.25	+0.22 0.25 0.25 0.22 0.14 +0.04	200 201 202 203 204 205	06 06 05 05 04 04	36.25 02.12 30.23 00.49 32.84 07.28	20.54 20.55 20.55 20.56 20.56 20.57	+14.29 14.43 14.57 14.71 14.85 14.99	-17.90 17.98 18.10 18.24 18.36 18.44	1.69 1.72 1.72 1.69	13.32 13.36 13.39 13.39 13.36 13.30
	19 20 21 22 23 24	206 207 208 209 210 211	04 04 03 03 03 02	22.67 00.95 41.02 22.77 06.28 51.44	-0.07 0.18 0.32 0.47 0.61 0.72	206 207 208 209 210 211	03 03 03 02 02 02	43.70 22.03 02.20 44.05 27.64 12.84	20.58 20.59 20.59 20.60 20.61	+15.13 15.27 15.41 15.55 15.68 15.82	-18.44 18.38 18.28 18.17 18.09 18.04	1.51 1.48 1.47 1.48	13.23 13.18 13.14 13.13 13.14 13.16
	25 26 27 28 29 30	212 213 214 215 216 217	02 02 02 02 02 02 01	38.30 26.83 17.09 09.11 02.90 58.44	-0.79 0.86 0.90 0.90 0.86 0.83	212 213 214 215 216 217	01 01 01 01 01 01	59.70 48.18 38.35 30.25 23.92 19.34	20.61 20.62 20.62 20.63 20.63 20.64	+15.96 16.10 16.24 16.38 16.52 16.66	-18.04 18.08 18.16 18.27 18.39 18.51	1.57 1.59 1.60	13.19 13.23 13.25 13.26 13.25 13.23
Nov.	31 1 2 3 4 5	218 219 220 221 222 223	01 01 01 01 02 02	55.84 55.12 56.26 59.38 04.44 11.49	-0.76 0.65 0.54 0.43 0.29 0.18	218 219 220 221 222 223	01 01 01 01 01 01	16.64 15.85 16.97 20.10 25.21 32.34	20.65 20.65 20.66 20.66 20.67 20.67	+16.80 16.94 17.07 17.21 17.35 17.49	-18.60 18.66 18.68 18.66 18.61 18.53	1.49 1.44 1.38 1.34	13.19 13.14 13.08 13.03 12.99 12.96
	6 7 8 9 10 11	224 225 226 227 228 229	02 02 02 03 03 03	20.55 31.66 44.85 00.06 17.37 36.66	-0.04 +0.07 0.14 0.22 0.29 0.29	224 225 226 227 228 229	01 01 02 02 02 02	41.48 52.68 05.93 21.16 38.44 57.66	20.68 20.69 20.69 20.70 20.70	+17.63 17.77 17.91 18.05 18.19 18.32	-18.43 18.35 18.28 18.26 18.28 18.35	1.31 1.34 1.37 1.41	12.95 12.95 12.98 13.01 13.05 13.07
	12 13 14 15 16	230 231 232 233 234	03 04 04 05 05	57.93 21.15 46.23 13.01 41.45	+0.25 0.22 0.11 +0.00 -0.14	230 231 232 233 234	03 03 04 04 05	18.83 41.94 06.96 33.74 02.26	20.71 20.71 20.72 20.72 20.72	+18.46 18.60 18.74 18.88 +19.02	-18.45 18.54 18.60 18.59 -18.51	1.42 1.37	13.08 13.05 13.00 12.94 12.87

^{*}To obtain the geometric longitude referred to the mean equinox of J 2000.0, add -17' 10".958 and subtract precession from J 2020.5.

 ${\bf SUN, 2020} \\ {\bf FOR} \ 0^{\rm h} \ {\bf TERRESTRIAL} \ {\bf TIME}$

Date			Appar it Asc	ent ension		pare linati		True Distance from the Earth		emi neter		emei ansi	
Oct.	1 2 3 4 5 6	h 12 12 12 12 12 12	m 30 34 37 41 44 48	s 23.71 00.97 38.55 16.47 54.76 33.42	-3 3 4 4 4 5	16 40 03 26 49 12	52.10 05.79 16.97 25.31 30.47 32.12	1.001 1555 1.000 8683 1.000 5820 1.000 2965 1.000 0121 0.999 7286	15 15 15 15 15 15	58.54 58.81 59.09 59.36 59.63 59.91	h 11 11 11 11 11	m 49 49 48 48 48 47	\$ 29.83 10.71 51.91 33.46 15.38 57.70
	7 8 9 10 11 12	12 12 12 13 13 13	52 55 59 03 06 10	12.50 52.00 31.95 12.37 53.28 34.69	-5 5 6 6 7 7	35 58 21 43 06 29	29.91 23.50 12.53 56.66 35.50 08.69	0.999 4459 0.999 1641 0.998 8829 0.998 6022 0.998 3219 0.998 0418	16 16 16 16 16	00.18 00.45 00.72 00.99 01.26 01.53	11 11 11 11 11	47 47 47 46 46 46	40.43 23.59 07.22 51.32 35.91 21.03
	13 14 15 16 17 18	13 13 13 13 13 13	14 17 21 25 29 32	16.63 59.10 42.13 25.73 09.91 54.68	-7 8 8 8 9 9	51 13 36 58 20 42	35.84 56.55 10.41 16.98 15.97 07.10	0.997 7615 0.997 4810 0.997 1999 0.996 9182 0.996 6357 0.996 3525	16 16 16 16 16	01.80 02.07 02.34 02.61 02.88 03.16	11 11 11 11 11	46 45 45 45 45 45	06.67 52.87 39.63 26.97 14.90 03.43
	19 20 21 22 23 24	13 13 13 13 13 13	36 40 44 48 51 55	40.08 26.10 12.75 00.06 48.02 36.65	-10 10 10 11 11 11	03 25 46 08 29 50	49.80 23.61 48.12 02.92 07.60 01.76	0.996 0688 0.995 7848 0.995 5010 0.995 2175 0.994 9350 0.994 6538	16 16 16 16 16 16	03.43 03.71 03.98 04.26 04.53 04.80	11 11 11 11 11	44 44 44 44 44	52.57 42.34 32.75 23.81 15.54 07.95
	25 26 27 28 29 30	13 14 14 14 14 14	59 03 07 10 14 18	25.96 15.98 06.72 58.19 50.40 43.38	-12 12 12 13 13 13	10 31 51 11 31 51	45.00 16.91 37.12 45.23 40.86 23.63	0.994 3742 0.994 0966 0.993 8213 0.993 5486 0.993 2787 0.993 0118	16 16 16 16 16	05.07 05.34 05.61 05.88 06.14 06.40	11 11 11 11 11	44 43 43 43 43 43	01.05 54.87 49.41 44.69 40.73 37.54
Nov.	31 1 2 3 4 5	14 14 14 14 14 14	22 26 30 34 38 42	37.13 31.68 27.03 23.19 20.19 18.01	-14 14 14 15 15 15	10 30 49 07 26 44	53.16 09.06 10.97 58.50 31.26 48.87	0.992 7481 0.992 4877 0.992 2308 0.991 9772 0.991 7272 0.991 4806	16 16 16 16 16	06.65 06.91 07.16 07.41 07.65 07.89	11 11 11 11 11	43 43 43 43 43 43	35.13 33.51 32.70 32.71 33.55 35.23
	6 7 8 9 10 11	14 14 14 14 15 15	46 50 54 58 02 06	16.68 16.21 16.58 17.82 19.92 22.89	-16 16 16 16 17 17	02 20 38 55 12 28	50.94 37.06 06.86 19.91 15.82 54.18	0.991 2373 0.990 9973 0.990 7604 0.990 5264 0.990 2950 0.990 0661	16 16 16 16 16	08.13 08.36 08.59 08.82 09.05 09.27	11 11 11 11 11	43 43 43 43 44	37.75 41.13 45.37 50.48 56.45 03.29
	12 13 14 15 16	15 15 15 15 15	10 14 18 22 26	26.72 31.42 36.99 43.41 50.68	-17 18 18 18 -18	45 01 16 32 47	14.57 16.59 59.83 23.88 28.35	0.989 8394 0.989 6146 0.989 3915 0.989 1700 0.988 9502	16 16 16 16 16	09.50 09.72 09.93 10.15 10.37	11 11 11 11 11	44 44	11.00 19.57 29.00 39.29 50.41

 $\begin{array}{cc} & \text{SUN, 2020} \\ \text{FOR } \ 0^{\text{h}} & \text{TERRESTRIAL TIME} \end{array}$

Date		(Mea	ic Lor in Equi f date)	inox	Latitude (Ecliptic of date)		nt Loi uinox	ngitude of date)	Aberra- tion	Prec. in Long. (J 2020.5	Nut. in Long.	Nut. in Obliquity	True Obliquity (23° 26')
		0	,	"	"	0	,	"	"	of date)	"	"	"
Nov.	16 17 18 19 20 21	234 235 236 237 238 239	05 06 06 07 07 08	41.45 11.45 42.86 15.62 49.67 24.92	-0.14 0.25 0.40 0.54 0.65 0.76	234 235 236 237 238 239	05 05 06 06 07 07	02.26 32.39 03.96 36.86 11.03 46.34	20.72 20.73 20.73 20.74 20.74 20.75	+19.02 19.16 19.30 19.44 19.58 19.71	-18.51 18.38 18.22 18.06 17.95 17.88	1.17 1.17 1.19	12.87 12.82 12.79 12.79 12.81 12.85
	22 23 24 25 26 27	240 241 242 243 244 245	09 09 10 10 11 12	01.42 39.03 17.83 57.76 38.81 21.03	-0.83 0.86 0.86 0.86 0.83 0.76	240 241 242 243 244 245	08 09 09 10 10	22.85 00.43 39.17 19.02 59.99 42.14	20.75 20.76 20.76 20.76 20.77 20.77	+19.85 19.99 20.13 20.27 20.41 20.55	-17.86 17.89 17.95 18.03 18.10 18.16	1.29 1.31 1.31 1.29	12.93 12.93 12.91
Dec.	28 29 30 1 2 3	246 247 248 249 250 251	13 13 14 15 16 16	04.40 48.96 34.67 21.60 09.73 59.13	-0.65 0.54 0.43 0.29 0.14 -0.00	246 247 248 249 250 251	12 13 13 14 15 16	25.49 10.06 55.81 42.83 31.07 20.60	20.78 20.78 20.78 20.79 20.79 20.79	+20.69 20.83 20.97 21.10 21.24 21.38	-18.19 18.18 18.12 18.03 17.92 17.78	1.17 1.13 1.09 1.06	
	4 5 6 7 8 9	252 253 254 255 256 257	17 18 19 20 21 22	49.76 41.71 34.93 29.48 25.30 22.42	+0.11 0.22 0.29 0.36 0.36 0.36	252 253 254 255 256 257	17 18 18 19 20 21	11.36 03.42 56.70 51.28 47.08 44.14	20.80 20.80 20.80 20.80 20.81 20.81	+21.52 21.66 21.80 21.94 22.08 22.22	-17.65 17.54 17.47 17.45 17.47 17.52	1.10 1.14 1.19 1.23	12.74 12.79
	10 11 12 13 14 15	258 259 260 261 262 263	23 24 25 26 27 28	20.77 20.32 21.01 22.72 25.36 28.83	+0.32 0.25 0.14 +0.00 -0.14 0.29	258 259 260 261 262 263	22 23 24 25 26 27	42.42 41.93 42.62 44.40 47.18 50.83	20.81 20.81 20.82 20.82 20.82 20.82	+22.36 22.49 22.63 22.77 22.91 23.05	-17.58 17.63 17.62 17.54 17.40 17.22	1.22 1.17 1.12 1.08	12.85 12.82 12.77 12.72 12.67 12.64
	16 17 18 19 20 21	264 265 266 267 268 269	29 30 31 32 33 35	32.97 37.74 42.96 48.64 54.62 00.92	-0.40 0.54 0.65 0.72 0.76 0.79	264 265 266 267 268 269	28 30 31 32 33 34	55.16 00.11 05.45 11.18 17.17 23.45	20.83 20.83 20.83 20.83 20.83 20.83	+23.19 23.33 23.47 23.61 23.75 23.88	-17.02 16.85 16.73 16.67 16.66 16.69	1.09 1.14 1.19 1.24	12.68 12.72 12.78
	22 23 24 25 26 27	270 271 272 273 274 275	36 37 38 39 40 41	07.43 14.16 21.02 28.07 35.27 42.58	-0.79 0.76 0.68 0.58 0.47 0.36	270 271 272 273 274 275	35 36 37 38 39 41	29.90 36.58 43.39 50.42 57.64 04.99	20.84 20.84 20.84 20.84 20.84 20.84	+24.02 24.16 24.30 24.44 24.58 24.72	-16.74 16.79 16.84 16.86 16.84 16.79	1.31 1.30 1.28 1.25	12.89 12.89 12.88 12.86 12.83 12.80
	28 29 30 31 32	276 277 278 279 280	42 43 45 46 47	50.02 57.58 05.29 13.15 21.21	-0.22 -0.07 +0.04 0.18 +0.29	276 277 278 279 280	42 43 44 45 46	12.53 20.21 28.07 36.07 44.26	20.84 20.84 20.84 20.84 20.84	+24.86 25.00 25.14 25.27 +25.41	-16.70 16.57 16.43 16.28 -16.16	1.19 1.19 1.22	12.77 12.76 12.77 12.79 12.83

^{*}To obtain the geometric longitude referred to the mean equinox of J 2000.0, add -17' 10".958 and subtract precession from J 2020.5.

SUN, 2020 FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	Apparent Right Ascension	Apparent Declination	True Distance from the Earth	Semi Diameter	Ephemeris Transit
Nov. 16 17 18 19 20 21	h m s 15 26 50.68 15 30 58.79 15 35 07.73 15 39 17.48 15 43 28.04 15 47 39.38	-18 47 28.35 19 02 12.81 19 16 36.88 19 30 40.14 19 44 22.20 19 57 42.67	0.988 9502 0.988 7321 0.988 5159 0.988 3020 0.988 0907 0.987 8824	16 10.37 16 10.58 16 10.79 16 11.00 16 11.21 16 11.42	h m s 11 44 50.41 11 45 02.36 11 45 15.14 11 45 28.72 11 45 43.11 11 45 58.28
22	15 51 51.50	-20 10 41.18	0.987 6774	16 11.62	11 46 14.23
23	15 56 04.39	20 23 17.39	0.987 4760	16 11.82	11 46 30.94
24	16 00 18.04	20 35 30.93	0.987 2786	16 12.01	11 46 48.41
25	16 04 32.44	20 47 21.48	0.987 0855	16 12.20	11 47 06.62
26	16 08 47.57	20 58 48.72	0.986 8969	16 12.39	11 47 25.57
27	16 13 03.43	21 09 52.33	0.986 7130	16 12.57	11 47 45.22
28	16 17 19.99	-21 20 32.01	0.986 5342	16 12.74	11 48 05.59
29	16 21 37.26	21 30 47.46	0.986 3605	16 12.92	11 48 26.63
30	16 25 55.20	21 40 38.41	0.986 1921	16 13.08	11 48 48.35
Dec. 1	16 30 13.81	21 50 04.57	0.986 0291	16 13.24	11 49 10.72
2	16 34 33.06	21 59 05.69	0.985 8716	16 13.40	11 49 33.73
3	16 38 52.94	22 07 41.50	0.985 7196	16 13.55	11 49 57.35
4	16 43 13.42	-22 15 51.74	0.985 5731	16 13.69	11 50 21.57
5	16 47 34.49	22 23 36.18	0.985 4319	16 13.83	11 50 46.37
6	16 51 56.12	22 30 54.56	0.985 2960	16 13.97	11 51 11.71
7	16 56 18.29	22 37 46.65	0.985 1651	16 14.10	11 51 37.59
8	17 00 40.97	22 44 12.22	0.985 0391	16 14.22	11 52 03.97
9	17 05 04.14	22 50 11.05	0.984 9176	16 14.34	11 52 30.82
10	17 09 27.76 17 13 51.82 17 18 16.28 17 22 41.11 17 27 06.27 17 31 31.73	-22 55 42.95	0.984 8004	16 14.46	11 52 58.12
11		23 00 47.71	0.984 6872	16 14.57	11 53 25.84
12		23 05 25.16	0.984 5777	16 14.68	11 53 53.94
13		23 09 35.14	0.984 4716	16 14.78	11 54 22.38
14		23 13 17.51	0.984 3688	16 14.88	11 54 51.14
15		23 16 32.13	0.984 2692	16 14.98	11 55 20.16
16	17 35 57.43	-23 19 18.88	0.984 1729	16 15.08	11 55 49.42
17	17 40 23.35	23 21 37.65	0.984 0800	16 15.17	11 56 18.87
18	17 44 49.43	23 23 28.34	0.983 9907	16 15.26	11 56 48.48
19	17 49 15.65	23 24 50.86	0.983 9053	16 15.34	11 57 18.21
20	17 53 41.97	23 25 45.15	0.983 8240	16 15.42	11 57 48.02
21	17 58 08.35	23 26 11.17	0.983 7472	16 15.50	11 58 17.87
22	18 02 34.76 18 07 01.17 18 11 27.53 18 15 53.83 18 20 20.03 18 24 46.10	-23 26 08.90	0.983 6751	16 15.57	11 58 47.74
23		23 25 38.33	0.983 6080	16 15.64	11 59 17.59
24		23 24 39.48	0.983 5462	16 15.70	11 59 47.38
25		23 23 12.37	0.983 4899	16 15.75	12 00 17.09
26		23 21 17.06	0.983 4393	16 15.80	12 00 46.68
27		23 18 53.61	0.983 3946	16 15.85	12 01 16.12
28	18 29 12.00 18 33 37.71 18 38 03.20 18 42 28.43 18 46 53.38	-23 16 02.10	0.983 3560	16 15.89	12 01 45.38
29		23 12 42.62	0.983 3236	16 15.92	12 02 14.43
30		23 08 55.27	0.983 2976	16 15.95	12 02 43.24
31		23 04 40.18	0.983 2780	16 15.97	12 03 11.78
32		-22 59 57.47	0.983 2649	16 15.98	12 03 40.02

SUN, 2020 EQUATORIAL RECTANGULAR CO-ORDINATES FOR $0^{\rm h}$ TERRESTRIAL TIME MEAN EQUATOR AND EQUINOX OF J 2020.5 AND J 2000.0

Dat	te	X _{2020.5}	X _{2000.0}	Y 2020.5	Y _{2000.0}	$Z_{2020.5}$	$Z_{2000.0}$
Jan.	0	+0.149 8509	+0.149 0809	-0.891 7657	-0.891 7640	-0.386 2797	-0.386 5815
	1	0.167 1135	0.166 3458	0.889 1687	0.889 1670	0.385 1199	0.385 4561
	2	0.184 3227	0.183 5575	0.886 2947	0.886 2930	0.383 8400	0.384 2105
	3	0.201 4730	0.200 7105	0.883 1448	0.883 1431	0.382 4405	0.382 8451
	4	0.218 5591	0.217 7997	0.879 7203	0.879 7187	0.380 9219	0.381 3605
	5	0.235 5758	0.234 8196	0.876 0226	0.876 0209	0.379 2849	0.379 7574
	6	+0.252 5179	+0.251 7651	-0.872 0529	-0.872 0513	-0.377 5300	-0.378 0362
	7	0.269 3803	0.268 6313	0.867 8129	0.867 8113	0.375 6579	0.376 1977
	8	0.286 1580	0.285 4129	0.863 3040	0.863 3024	0.373 6693	0.374 2425
	9	0.302 8462	0.302 1052	0.858 5279	0.858 5263	0.371 5650	0.372 1714
	10	0.319 4399	0.318 7033	0.853 4861	0.853 4845	0.369 3457	0.369 9851
	11	0.335 9345	0.335 2025	0.848 1802	0.848 1787	0.367 0121	0.367 6844
	12	+0.352 3252	+0.351 5980	-0.842 6119	-0.842 6103	-0.364 5650	-0.365 2699
	13	0.368 6073	0.367 8853	0.836 7827	0.836 7811	0.362 0050	0.362 7424
	14	0.384 7762	0.384 0594	0.830 6941	0.830 6926	0.359 3331	0.360 1026
	15	0.400 8270	0.400 1158	0.824 3478	0.824 3463	0.356 5497	0.357 3512
	16	0.416 7550	0.416 0495	0.817 7453	0.817 7438	0.353 6557	0.354 4889
	17	0.432 5551	0.431 8555	0.810 8883	0.810 8868	0.350 6519	0.351 5165
	18	+0.448 2224	+0.447 5291	-0.803 7786	-0.803 7772	-0.347 5389	-0.348 4347
	19	0.463 7519	0.463 0649	0.796 4182	0.796 4168	0.344 3177	0.345 2444
	20	0.479 1385	0.478 4581	0.788 8091	0.788 8077	0.340 9891	0.341 9464
	21	0.494 3770	0.493 7034	0.780 9535	0.780 9521	0.337 5541	0.338 5417
	22	0.509 4625	0.508 7959	0.772 8540	0.772 8526	0.334 0136	0.335 0313
	23	0.524 3898	0.523 7305	0.764 5129	0.764 5115	0.330 3688	0.331 4162
	24	+0.539 1541	+0.538 5022	-0.755 9331	-0.755 9317	-0.326 6209	-0.327 6976
	25	0.553 7505	0.553 1062	0.747 1173	0.747 1160	0.322 7709	0.323 8767
	26	0.568 1742	0.567 5378	0.738 0687	0.738 0674	0.318 8203	0.319 9548
	27	0.582 4206	0.581 7922	0.728 7903	0.728 7890	0.314 7703	0.315 9332
	28	0.596 4851	0.595 8649	0.719 2853	0.719 2840	0.310 6224	0.311 8132
	29	0.610 3633	0.609 7516	0.709 5570	0.709 5557	0.306 3778	0.307 5963
Feb.	30	+0.624 0510	+0.623 4479	-0.699 6087	-0.699 6075	-0.302 0382	-0.303 2839
	31	0.637 5439	0.636 9497	0.689 4441	0.689 4429	0.297 6050	0.298 8775
	1	0.650 8381	0.650 2528	0.679 0664	0.679 0653	0.293 0797	0.294 3787
	2	0.663 9296	0.663 3535	0.668 4794	0.668 4783	0.288 4639	0.289 7889
	3	0.676 8146	0.676 2478	0.657 6866	0.657 6854	0.283 7592	0.285 1098
	4	0.689 4894	0.688 9321	0.646 6916	0.646 6905	0.278 9672	0.280 3430
	5	+0.701 9504	+0.701 4029	-0.635 4981	-0.635 4970	-0.274 0894	-0.275 4900
	6	0.714 1943	0.713 6566	0.624 1098	0.624 1088	0.269 1276	0.270 5526
	7	0.726 2178	0.725 6901	0.612 5303	0.612 5293	0.264 0834	0.265 5322
	8	0.738 0176	0.737 5002	0.600 7634	0.600 7624	0.258 9583	0.260 4306
	9	0.749 5907	0.749 0836	0.588 8125	0.588 8116	0.253 7540	0.255 2494
	10	0.760 9340	0.760 4374	0.576 6813	0.576 6804	0.248 4722	0.249 9900
	11	+0.772 0444	+0.771 5584	-0.564 3731	-0.564 3722	-0.243 1142	-0.244 6541
	12	0.782 9188	0.782 4437	0.551 8915	0.551 8907	0.237 6817	0.239 2432
	13	0.793 5541	0.793 0899	0.539 2400	0.539 2392	0.232 1761	0.233 7588
	14	0.803 9470	0.803 4939	0.526 4221	0.526 4213	0.226 5991	0.228 2025
	15	+0.814 0944	+0.813 6525	-0.513 4415	-0.513 4407	-0.220 9523	-0.222 5758

SUN, 2020 EQUATORIAL RECTANGULAR CO-ORDINATES FOR $0^{\rm h}$ TERRESTRIAL TIME MEAN EQUATOR AND EQUINOX OF J 2020.5 AND J 2000.0

Dat	e	$X_{2020.5}$	X _{2000.0}	Y _{2020.5}	Y _{2000.0}	$Z_{2020.5}$	$Z_{2000.0}$
Feb.	15	+0.814 0944	+0.813 6525	-0.513 4415	-0.513 4407	-0.220 9523	-0.222 5758
	16	0.823 9928	0.823 5623	0.500 3019	0.500 3012	0.215 2371	0.216 8803
	17	0.833 6391	0.833 2201	0.487 0074	0.487 0066	0.209 4554	0.211 1178
	18	0.843 0302	0.842 6228	0.473 5619	0.473 5612	0.203 6088	0.205 2898
	19	0.852 1629	0.851 7673	0.459 9697	0.459 9690	0.197 6992	0.199 3984
	20	0.861 0342	0.860 6504	0.446 2350	0.446 2344	0.191 7283	0.193 4451
	21	+0.869 6412	+0.869 2695	-0.432 3623	-0.432 3617	-0.185 6982	-0.187 4320
	22	0.877 9813	0.877 6217	0.418 3561	0.418 3555	0.179 6105	0.181 3610
	23	0.886 0517	0.885 7043	0.404 2209	0.404 2204	0.173 4675	0.175 2339
	24	0.893 8500	0.893 5150	0.389 9615	0.389 9610	0.167 2710	0.169 0529
	25	0.901 3739	0.901 0513	0.375 5825	0.375 5820	0.161 0231	0.162 8199
	26	0.908 6212	0.908 3111	0.361 0886	0.361 0882	0.154 7258	0.156 5370
Mar.	27	+0.915 5898	+0.915 2923	-0.346 4848	-0.346 4843	-0.148 3812	-0.150 2063
	28	0.922 2779	0.921 9932	0.331 7756	0.331 7753	0.141 9914	0.143 8297
	29	0.928 6837	0.928 4118	0.316 9661	0.316 9657	0.135 5585	0.137 4096
	1	0.934 8057	0.934 5466	0.302 0610	0.302 0606	0.129 0846	0.130 9478
	2	0.940 6423	0.940 3962	0.287 0650	0.287 0647	0.122 5719	0.124 4466
	3	0.946 1922	0.945 9592	0.271 9832	0.271 9829	0.116 0223	0.117 9081
	4	+0.951 4544	+0.951 2344	-0.256 8201	-0.256 8199	-0.109 4381	-0.111 3342
	5	0.956 4276	0.956 2209	0.241 5806	0.241 5804	0.102 8212	0.104 7273
	6	0.961 1111	0.960 9176	0.226 2693	0.226 2691	0.096 1739	0.098 0892
	7	0.965 5041	0.965 3238	0.210 8909	0.210 8908	0.089 4981	0.091 4221
	8	0.969 6057	0.969 4388	0.195 4499	0.195 4498	0.082 7959	0.084 7280
	9	0.973 4155	0.973 2620	0.179 9508	0.179 9507	0.076 0691	0.078 0087
	10	+0.976 9326	+0.976 7926	-0.164 3978	-0.164 3978	-0.069 3198	-0.071 2663
	11	0.980 1565	0.980 0299	0.148 7953	0.148 7953	0.062 5497	0.064 5026
	12	0.983 0864	0.982 9733	0.133 1475	0.133 1476	0.055 7608	0.057 7195
	13	0.985 7214	0.985 6219	0.117 4589	0.117 4589	0.048 9549	0.050 9188
	14	0.988 0608	0.987 9749	0.101 7337	0.101 7338	0.042 1339	0.044 1025
	15	0.990 1037	0.990 0314	0.085 9765	0.085 9767	0.035 2998	0.037 2723
	16	+0.991 8494	+0.991 7907	-0.070 1920	-0.070 1922	-0.028 4545	-0.030 4304
	17	0.993 2972	0.993 2522	0.054 3849	0.054 3851	0.021 5999	0.023 5787
	18	0.994 4465	0.994 4152	0.038 5599	0.038 5601	0.014 7383	0.016 7193
	19	0.995 2969	0.995 2792	0.022 7219	0.022 7222	0.007 8716	0.009 8542
	20	0.995 8481	0.995 8441	-0.006 8760	-0.006 8762	-0.001 0019	-0.002 9856
	21	0.996 0999	0.996 1096	+0.008 9731	+0.008 9728	+0.005 8685	+0.003 8844
	22	+0.996 0524	+0.996 0758	+0.024 8203	+0.024 8199	+0.012 7377	+0.010 7537
	23	0.995 7055	0.995 7426	0.040 6605	0.040 6602	0.019 6034	0.017 6202
	24	0.995 0597	0.995 1105	0.056 4889	0.056 4885	0.026 4635	0.024 4816
	25	0.994 1153	0.994 1798	0.072 3003	0.072 2999	0.033 3158	0.031 3359
	26	0.992 8730	0.992 9510	0.088 0899	0.088 0895	0.040 1582	0.038 1808
	27	0.991 3333	0.991 4249	0.103 8527	+0.103 8522	0.046 9885	0.045 0142
Apr.	28	+0.989 4971	+0.989 6024	+0.119 5837	+0.119 5831	+0.053 8045	+0.051 8340
	29	0.987 3655	0.987 4843	0.135 2780	0.135 2775	0.060 6042	0.058 6380
	30	0.984 9396	0.985 0719	0.150 9309	0.150 9304	0.067 3854	0.065 4241
	31	0.982 2206	0.982 3664	0.166 5377	0.166 5370	0.074 1461	0.072 1902
	1	+0.979 2099	+0.979 3691	+0.182 0935	+0.182 0928	+0.080 8841	+0.078 9343

SUN, 2020 EQUATORIAL RECTANGULAR CO-ORDINATES FOR $0^{\rm h}$ TERRESTRIAL TIME MEAN EQUATOR AND EQUINOX OF J 2020.5 AND J 2000.0

Dat	te	X _{2020.5}	X _{2000.0}	Y _{2020.5}	Y _{2000.0}	$Z_{2020.5}$	$Z_{2000.0}$
Apr.	1 2 3 4	+0.979 2099 0.975 9089 0.972 3194 0.968 4430	+0.979 3691 0.976 0816 0.972 5054 0.968 6422	+0.182 0935 0.197 5938 0.213 0342 0.228 4102	+0.182 0928 0.197 5932 0.213 0335 0.228 4095	+0.080 8841 0.087 5975 0.094 2843 0.100 9425	+0.078 9343 0.085 6543 0.092 3483 0.099 0143
	5 6	0.964 2814 0.959 8364	0.964 4938 0.960 0620	0.243 7175 0.258 9521	0.243 7168 0.258 9513	0.107 5703 0.114 1658	0.105 6504 0.112 2549
	7 8	+0.955 1098 0.950 1032	+0.955 3484 0.950 3549	+0.274 1099 0.289 1869	+0.274 1091 0.289 1860	+0.120 7273 0.127 2531	+0.118 8258 0.125 3616
	9 10	0.944 8185 0.939 2570	0.945 0831 0.939 5345	0.304 1792 0.319 0829	0.304 1783 0.319 0820	0.133 7413 0.140 1905	0.131 8605 0.138 3208
	11	0.933 4203	0.939 3343	0.333 8940	0.319 0820	0.146 5989	0.138 3208
	12	0.927 3101	0.927 6131	0.348 6084	0.348 6074	0.152 9647	0.151 1188
	13	+0.920 9279	+0.921 2435	+0.363 2219	+0.363 2209	+0.159 2862	+0.157 4531
	14	0.914 2754	0.914 6034	0.377 7304 0.392 1296	0.377 7294 0.392 1286	0.165 5616	0.163 7418
	15 16	0.907 3543 0.900 1668	0.907 6948 0.900 5196	0.392 1296 0.406 4152	0.392 1286 0.406 4141	0.171 7891 0.177 9670	0.169 9832 0.176 1754
	17	0.892 7147	0.893 0797	0.420 5829	0.420 5818	0.184 0932	0.182 3166
	18	0.885 0003	0.885 3774	0.434 6284	0.434 6273	0.190 1661	0.188 4049
	19	+0.877 0259	+0.877 4151	+0.448 5475	+0.448 5463	+0.196 1839	+0.194 4385
	20	0.868 7940	0.869 1950	0.462 3359	0.462 3347	0.202 1445	0.200 4157
	21 22	0.860 3071 0.851 5679	0.860 7199 0.851 9924	0.475 9894 0.489 5040	0.475 9882 0.489 5027	0.208 0464 0.213 8876	0.206 3345 0.212 1932
	23	0.842 5793	0.843 0153	0.502 8754	0.502 8741	0.219 6665	0.217 9900
	24	0.833 3442	0.833 7916	0.516 0997	0.516 0984	0.225 3812	0.223 7231
	25	+0.823 8657	+0.824 3244	+0.529 1729	+0.529 1716	+0.231 0300	+0.229 3909
	26 27	0.814 1469 0.804 1911	0.814 6167 0.804 6719	0.542 0911 0.554 8506	0.542 0898 0.554 8493	0.236 6112 0.242 1233	0.234 9915 0.240 5234
	28	0.794 0017	0.794 4934	0.567 4477	0.567 4464	0.242 1233	0.245 9850
	29	0.783 5822	0.784 0847	0.579 8789	0.579 8775	0.252 9332	0.251 3745
	30	0.772 9362	0.773 4492	0.592 1406	0.592 1392	0.258 2280	0.256 6906
May	1	+0.762 0672	+0.762 5907	+0.604 2295	+0.604 2281	+0.263 4474	+0.261 9317
	2	0.750 9790 0.739 6751	0.751 5127 0.740 2190	0.616 1426 0.627 8767	0.616 1412 0.627 8753	0.268 5901 0.273 6545	0.267 0965 0.272 1835
	4	0.728 1593	0.740 2190 0.728 7131	0.639 4290	0.639 4275	0.278 6396	0.272 1833
	5	0.716 4352	0.716 9987	0.650 7967	0.650 7952	0.283 5440	0.282 1194
	6	0.704 5062	0.705 0794	0.661 9770	0.661 9755	0.288 3667	0.286 9658
	7	+0.692 3759	+0.692 9585	+0.672 9673	+0.672 9657	+0.293 1063	+0.291 7297
	8 9	0.680 0475	0.680 6395	0.683 7649	0.683 7634	0.297 7620	0.296 4099
	10	0.667 5245 0.654 8101	0.668 1256 0.655 4202	0.694 3672 0.704 7713	0.694 3656 0.704 7697	0.302 3324 0.306 8166	0.301 0054 0.305 5148
	11	0.641 9077	0.642 5266	0.714 9745	0.714 9729	0.311 2132	0.309 9372
	12	0.628 8207	0.629 4482	0.724 9739	0.724 9723	0.315 5211	0.314 2713
	13	+0.615 5527	+0.616 1885	+0.734 7666	+0.734 7649	+0.319 7392	+0.318 5158
	14	0.602 1071	0.602 7513	0.744 3497	0.744 3480	0.323 8661	0.322 6695
	15 16	0.588 4879 0.574 6987	0.589 1401 0.575 3588	0.753 7204 0.762 8759	0.753 7187 0.762 8742	0.327 9007 0.331 8418	0.326 7313 0.330 6999
	17	+0.560 7437	+0.561 4115	+0.771 8134	+0.771 8117	+0.335 6883	+0.334 5742

SUN, 2020 EQUATORIAL RECTANGULAR CO-ORDINATES FOR $0^{\rm h}$ TERRESTRIAL TIME MEAN EQUATOR AND EQUINOX OF J 2020.5 AND J 2000.0

Dat	e	$X_{2020.5}$	$X_{2000.0}$	Y 2020.5	Y 2000.0	$Z_{2020.5}$	$Z_{2000.0}$
May		+0.560 7437	+0.561 4115	+0.771 8134	+0.771 8117	+0.335 6883	+0.334 5742
	18	0.546 6267	0.547 3020	0.780 5303	0.780 5286	0.339 4389	0.338 3529
	19	0.532 3520	0.533 0346	0.789 0238	0.789 0221	0.343 0925	0.342 0350
	20 21	0.517 9238 0.503 3464	0.518 6135 0.504 0431	0.797 2915 0.805 3308	0.797 2898 0.805 3290	0.346 6481 0.350 1045	0.345 6194 0.349 1048
	22	+0.488 6243	0.489 3276	0.813 1393	0.803 3290	0.353 4606	0.352 4904
	23	+0.473 7618	+0.474 4716	+0.820 7148	+0.820 7131	+0.356 7156	+0.355 7750
	24	0.458 7636 0.443 6344	0.459 4798 0.444 3567	0.828 0551 0.835 1580	0.828 0533 0.835 1562	0.359 8684 0.362 9181	0.358 9576 0.362 0375
	25 26	0.443 0344 0.428 3789	0.444 3367 0.429 1071	0.833 1380 0.842 0217	0.833 1362 0.842 0199	0.365 8638	0.365 0136
	27	0.413 0019	0.413 7358	0.848 6443	0.848 6425	0.368 7047	0.367 8852
	28	0.397 5081	0.398 2474	0.855 0242	0.855 0224	0.371 4401	0.370 6514
	29	+0.381 9024	+0.382 6470	+0.861 1598	+0.861 1580	+0.374 0693	+0.373 3117
	30	0.366 1895	0.366 9391	0.867 0499	0.867 0480	0.376 5916	0.375 8654
_	31	0.350 3742	0.351 1287	0.872 6931	0.872 6912	0.379 0066	0.378 3119
June	1	0.334 4612	0.335 2203	0.878 0883	0.878 0865	0.381 3137	0.380 6508
	2	0.318 4550	0.319 2186	0.883 2346	0.883 2327	0.383 5126	0.382 8815
	3	0.302 3602	0.303 1280	0.888 1309	0.888 1291	0.385 6027	0.385 0038
	4	+0.286 1812	+0.286 9530	+0.892 7765	+0.892 7746	+0.387 5839	+0.387 0171
	5	0.269 9223	0.270 6978	0.897 1703	0.897 1685	0.389 4556	0.388 9212
	6	0.253 5877	0.254 3667	0.901 3115	0.901 3096	0.391 2176	0.390 7158
	7 8	0.237 1816 0.220 7083	0.237 9640 0.221 4938	0.905 1990 0.908 8319	0.905 1972 0.908 8301	0.392 8694 0.394 4107	0.392 4003 0.393 9745
	9	0.204 1721	0.221 4938 0.204 9605	0.912 2091	0.908 8301	0.395 8411	0.395 4378
	10	+0.187 5774	+0.188 3684	+0.915 3295	+0.915 3277	+0.397 1602	+0.396 7900
	11 12	0.170 9285 0.154 2300	0.171 7219 0.155 0257	0.918 1922 0.920 7961	0.918 1903 0.920 7942	0.398 3675 0.399 4627	0.398 0305 0.399 1589
	13	0.134 2300	0.138 2842	0.923 1403	0.920 7942	0.400 4454	0.400 1750
	14	0.120 7027	0.136 2642	0.925 2239	0.925 2220	0.401 3152	0.401 0782
	15	0.103 8834	0.104 6843	0.927 0461	0.927 0443	0.402 0718	0.401 8683
	16	+0.087 0332	+0.087 8355	+0.928 6063	+0.928 6045	+0.402 7148	+0.402 5449
	17	0.070 1571	0.070 9605	0.929 9038	0.929 9019	0.403 2441	0.403 1078
	18	0.053 2601	0.054 0643	0.930 9380	0.930 9362	0.403 6593	0.403 5566
	19 20	0.036 3469	0.037 1518	0.931 7086	0.931 7067 0.932 2132	0.403 9602 0.404 1468	0.403 8913 0.404 1116
	20	0.019 4228 +0.002 4928	0.020 2281 +0.003 2983	0.932 2151 0.932 4574	0.932 2132 0.932 4555	0.404 1468	0.404 1116
		+0.002 4928					
	22	-0.014 4380	-0.013 6326	+0.932 4353	+0.932 4335	+0.404 1763	+0.404 2085
	23	0.031 3645	0.030 5594	0.932 1490	0.932 1471	0.404 0192	0.404 0851
	24 25	0.048 2815 0.065 1839	0.047 4769 0.064 3801	0.931 5986 0.930 7845	0.931 5967 0.930 7826	0.403 7476 0.403 3616	0.403 8472 0.403 4948
	26	0.082 0667	0.081 2638	0.930 7843	0.930 7826	0.403 3616 0.402 8614	0.403 4948
	27	0.098 9247	0.098 1230	0.928 3674	0.928 3656	0.402 2472	0.402 4477
	28	-0.115 7532	-0.114 9529	+0.926 7658	+0.926 7640	+0.401 5195	+0.401 7535
	29	0.132 5474	0.131 7487	0.924 9033	0.924 9015	0.400 6786	0.400 9461
	30	0.149 3025	0.148 5057	0.922 7809	0.922 7791	0.399 7249	0.400 0258
July	1	0.166 0140	0.165 2193	0.920 3995	0.920 3978	0.398 6589	0.398 9930
	2	-0.182 6775	-0.181 8851	+0.917 7602	+0.917 7584	+0.397 4810	+0.397 8483

SUN, 2020 EQUATORIAL RECTANGULAR CO-ORDINATES FOR $0^{\rm h}$ TERRESTRIAL TIME MEAN EQUATOR AND EQUINOX OF J 2020.5 AND J 2000.0

Date	X _{2020.5}	$X_{2000.0}$	Y _{2020.5}	Y _{2000.0}	$Z_{2020.5}$	$Z_{2000.0}$
July 1 2 3 4 5 6	-0.166 0140	-0.165 2193	+0.920 3995	+0.920 3978	+0.398 6589	+0.398 9930
	0.182 6775	0.181 8851	0.917 7602	0.917 7584	0.397 4810	0.397 8483
	0.199 2887	0.198 4988	0.914 8638	0.914 8621	0.396 1918	0.396 5921
	0.215 8432	0.215 0561	0.911 7114	0.911 7097	0.394 7916	0.395 2249
	0.232 3369	0.231 5528	0.908 3039	0.908 3022	0.393 2809	0.393 7471
	0.248 7655	0.247 9846	0.904 6422	0.904 6405	0.391 6602	0.392 1591
7	-0.265 1247	-0.264 3472	+0.900 7271	+0.900 7254	+0.389 9298	+0.390 4613
8	0.281 4103	0.280 6364	0.896 5595	0.896 5578	0.388 0903	0.388 6542
9	0.297 6178	0.296 8478	0.892 1404	0.892 1387	0.386 1420	0.386 7382
10	0.313 7429	0.312 9769	0.887 4706	0.887 4689	0.384 0854	0.384 7136
11	0.329 7811	0.329 0195	0.882 5512	0.882 5496	0.381 9208	0.382 5810
12	0.345 7280	0.344 9708	0.877 3833	0.877 3817	0.379 6489	0.380 3408
13	-0.361 5789	-0.360 8265	+0.871 9680	+0.871 9664	+0.377 2701	+0.377 9936
14	0.377 3294	0.376 5819	0.866 3066	0.866 3049	0.374 7849	0.375 5397
15	0.392 9749	0.392 2325	0.860 4003	0.860 3987	0.372 1939	0.372 9798
16	0.408 5107	0.407 7736	0.854 2506	0.854 2490	0.369 4977	0.370 3146
17	0.423 9322	0.423 2007	0.847 8589	0.847 8574	0.366 6969	0.367 5445
18	0.439 2348	0.438 5091	0.841 2270	0.841 2254	0.363 7923	0.364 6703
19	-0.454 4139	-0.453 6941	+0.834 3565	+0.834 3549	+0.360 7845	+0.361 6927
20	0.469 4647	0.468 7510	0.827 2492	0.827 2477	0.357 6743	0.358 6125
21	0.484 3825	0.483 6753	0.819 9073	0.819 9058	0.354 4626	0.355 4305
22	0.499 1629	0.498 4622	0.812 3328	0.812 3313	0.351 1502	0.352 1475
23	0.513 8012	0.513 1072	0.804 5281	0.804 5266	0.347 7382	0.348 7647
24	0.528 2929	0.527 6060	0.796 4956	0.796 4941	0.344 2276	0.345 2829
25	-0.542 6339	-0.541 9541	+0.788 2379	+0.788 2365	+0.340 6195	+0.341 7033
26	0.556 8198	0.556 1474	0.779 7577	0.779 7563	0.336 9151	0.338 0272
27	0.570 8468	0.570 1819	0.771 0577	0.771 0563	0.333 1156	0.334 2555
28	0.584 7109	0.584 0537	0.762 1406	0.762 1393	0.329 2221	0.330 3896
29	0.598 4084	0.597 7592	0.753 0093	0.753 0080	0.325 2360	0.326 4307
30	0.611 9358	0.611 2947	0.743 6665	0.743 6652	0.321 1584	0.322 3801
Aug. 31 2 3 4 5	-0.625 2895 0.638 4661 0.651 4622 0.664 2744 0.676 8993 0.689 3336	-0.624 6566 0.637 8417 0.650 8464 0.663 6674 0.676 3013 0.688 7447	+0.734 1149 0.724 3571 0.714 3959 0.704 2338 0.693 8735 0.683 3175	+0.734 1136 0.724 3559 0.714 3947 0.704 2326 0.693 8723 0.683 3164	+0.316 9905 0.312 7337 0.308 3891 0.303 9577 0.299 4410 0.294 8399	+0.318 2388 0.314 0082 0.309 6894 0.305 2835 0.300 7919 0.296 2155
6	-0.701 5737	-0.700 9942	+0.672 5686	+0.672 5674	+0.290 1556	+0.291 5556
7	0.713 6164	0.713 0463	0.661 6293	0.661 6282	0.285 3894	0.286 8134
8	0.725 4581	0.724 8977	0.650 5024	0.650 5013	0.280 5425	0.281 9899
9	0.737 0954	0.736 5447	0.639 1907	0.639 1897	0.275 6159	0.277 0865
10	0.748 5248	0.747 9841	0.627 6971	0.627 6961	0.270 6111	0.272 1044
11	0.759 7428	0.759 2122	0.616 0244	0.616 0234	0.265 5292	0.267 0448
12	-0.770 7460	-0.770 2257	+0.604 1757	+0.604 1747	+0.260 3715	+0.261 9090
13	0.781 5310	0.781 0210	0.592 1541	0.592 1531	0.255 1393	0.256 6983
14	0.792 0942	0.791 5948	0.579 9627	0.579 9618	0.249 8341	0.251 4140
15	0.802 4324	0.801 9437	0.567 6048	0.567 6039	0.244 4571	0.246 0576
16	-0.812 5420	-0.812 0641	+0.555 0837	+0.555 0828	+0.239 0099	+0.240 6305

SUN, 2020 EQUATORIAL RECTANGULAR CO-ORDINATES FOR $0^{\rm h}$ TERRESTRIAL TIME MEAN EQUATOR AND EQUINOX OF J 2020.5 AND J 2000.0

Dat	e	X _{2020.5}	$X_{2000.0}$	Y 2020.5	Y 2000.0	$Z_{2020.5}$	$Z_{2000.0}$
Aug.	16	-0.812 5420	-0.812 0641	+0.555 0837	+0.555 0828	+0.239 0099	+0.240 6305
	17	0.822 4196	0.821 9527	0.542 4030	0.542 4022	0.233 4939	0.235 1341
	18	0.832 0621	0.831 6063	0.529 5663	0.529 5655	0.227 9107	0.229 5700
	19	0.841 4660	0.841 0214	0.516 5774	0.516 5766	0.222 2618	0.223 9398
	20	0.850 6283	0.850 1951	0.503 4401	0.503 4393	0.216 5489	0.218 2452
	21	0.859 5459	0.859 1242	0.490 1585	0.490 1577	0.210 7738	0.212 4878
	22	-0.868 2161	-0.867 8060	+0.476 7367	+0.476 7360	+0.204 9383	+0.206 6695
	23	0.876 6362	0.876 2378	0.463 1789	0.463 1782	0.199 0441	0.200 7920
	24	0.884 8038	0.884 4173	0.449 4893	0.449 4887	0.193 0931	0.194 8573
	25	0.892 7166	0.892 3421	0.435 6721	0.435 6715	0.187 0872	0.188 8670
	26	0.900 3726	0.900 0101	0.421 7313	0.421 7308	0.181 0282	0.182 8232
	27	0.907 7697	0.907 4194	0.407 6712	0.407 6707	0.174 9178	0.176 7275
Sept.	28	-0.914 9062	-0.914 5681	+0.393 4956	+0.393 4951	+0.168 7579	+0.170 5818
	29	0.921 7800	0.921 4543	0.379 2087	0.379 2082	0.162 5503	0.164 3878
	30	0.928 3895	0.928 0762	0.364 8142	0.364 8137	0.156 2966	0.158 1472
	31	0.934 7329	0.934 4321	0.350 3160	0.350 3156	0.149 9986	0.151 8618
	1	0.940 8084	0.940 5203	0.335 7182	0.335 7178	0.143 6580	0.145 5333
	2	0.946 6143	0.946 3389	0.321 0244	0.321 0241	0.137 2765	0.139 1633
	3	-0.952 1489	-0.951 8863	+0.306 2387	+0.306 2384	+0.130 8558	+0.132 7536
	4	0.957 4105	0.957 1607	0.291 3649	0.291 3646	0.124 3977	0.126 3058
	5	0.962 3974	0.962 1605	0.276 4069	0.276 4067	0.117 9037	0.119 8218
	6	0.967 1078	0.966 8839	0.261 3688	0.261 3686	0.111 3757	0.113 3031
	7	0.971 5401	0.971 3293	0.246 2545	0.246 2543	0.104 8153	0.106 7515
	8	0.975 6927	0.975 4950	0.231 0682	0.231 0680	0.098 2244	0.100 1688
	9	-0.979 5639	-0.979 3794	+0.215 8140	+0.215 8138	+0.091 6046	+0.093 5567
	10	0.983 1522	0.982 9809	0.200 4960	0.200 4959	0.084 9579	0.086 9170
	11	0.986 4560	0.986 2980	0.185 1185	0.185 1185	0.078 2860	0.080 2516
	12	0.989 4738	0.989 3292	0.169 6860	0.169 6859	0.071 5907	0.073 5623
	13	0.992 2043	0.992 0730	0.154 2027	0.154 2027	0.064 8741	0.066 8510
	14	0.994 6459	0.994 5281	0.138 6732	0.138 6732	0.058 1378	0.060 1196
	15	-0.996 7974	-0.996 6931	+0.123 1022	+0.123 1023	+0.051 3841	+0.053 3701
	16	0.998 6576	0.998 5668	0.107 4943	0.107 4944	0.044 6148	0.046 6044
	17	1.000 2254	1.000 1481	0.091 8545	0.091 8546	0.037 8321	0.039 8248
	18	1.001 5000	1.001 4362	0.076 1876	0.076 1877	0.031 0380	0.033 0332
	19	1.002 4806	1.002 4303	0.060 4986	0.060 4988	0.024 2348	0.026 2319
	20	1.003 1669	1.003 1301	0.044 7926	0.044 7928	0.017 4246	0.019 4230
	21	-1.003 5585	-1.003 5354	+0.029 0744	+0.029 0747	+0.010 6096	+0.012 6087
	22	1.003 6555	1.003 6460	+0.013 3491	+0.013 3494	+0.003 7920	+0.005 7912
	23	1.003 4580	1.003 4621	-0.002 3787	-0.002 3784	-0.003 0262	-0.001 0274
	24	1.002 9663	1.002 9839	0.018 1042	0.018 1038	0.009 8428	0.007 8450
	25	1.002 1805	1.002 2117	0.033 8228	0.033 8224	0.016 6558	0.014 6597
	26	1.001 1012	1.001 1460	0.049 5300	0.049 5297	0.023 4633	0.021 4693
Oct.	27	-0.999 7286	-0.999 7870	-0.065 2214	-0.065 2210	-0.030 2632	-0.028 2721
	28	0.998 0633	0.998 1351	0.080 8926	0.080 8921	0.037 0537	0.035 0659
	29	0.996 1056	0.996 1910	0.096 5391	0.096 5386	0.043 8327	0.041 8489
	30	0.993 8561	0.993 9549	0.112 1566	0.112 1561	0.050 5985	0.048 6192
	1	-0.991 3152	-0.991 4275	-0.127 7408	-0.127 7403	-0.057 3491	-0.055 3750

SUN, 2020 EQUATORIAL RECTANGULAR CO-ORDINATES FOR $0^{\rm h}$ TERRESTRIAL TIME MEAN EQUATOR AND EQUINOX OF J 2020.5 AND J 2000.0

Date		X _{2020.5}	X _{2000.0}	Y 2020.5	Y _{2000.0}	$Z_{2020.5}$	$Z_{2000.0}$
Oct.	1 2 3 4 5 6	-0.991 3152 0.988 4834 0.985 3614 0.981 9497 0.978 2489 0.974 2597	-0.991 4275 0.988 6092 0.985 5005 0.982 1022 0.978 4146 0.974 4387	-0.127 7408 0.143 2874 0.158 7919 0.174 2501 0.189 6575 0.205 0099	-0.127 7403 0.143 2868 0.158 7913 0.174 2495 0.189 6569 0.205 0092	-0.057 3491 0.064 0827 0.070 7973 0.077 4912 0.084 1624 0.090 8090	-0.055 3750 0.062 1142 0.068 8351 0.075 5358 0.082 2145 0.088 8691
1	7 8 9 10 11	-0.969 9827 0.965 4187 0.960 5686 0.955 4332 0.950 0134 0.944 3102	-0.970 1749 0.965 6241 0.960 7871 0.955 6646 0.950 2578 0.944 5675	-0.220 3027 0.235 5315 0.250 6919 0.265 7792 0.280 7889 0.295 7165	-0.220 3020 0.235 5308 0.250 6911 0.265 7784 0.280 7881 0.295 7156	-0.097 4292 0.104 0210 0.110 5826 0.117 1120 0.123 6073 0.130 0665	-0.095 4979 0.102 0988 0.108 6702 0.115 2099 0.121 7160 0.128 1866
1 1 1	13 14 15 16 17	-0.938 3248 0.932 0584 0.925 5124 0.918 6883 0.911 5880 0.904 2136	-0.938 5949 0.932 3413 0.925 8079 0.918 9964 0.911 9085 0.904 5464	-0.310 5571 0.325 3060 0.339 9584 0.354 5094 0.368 9541 0.383 2877	-0.310 5562 0.325 3051 0.339 9574 0.354 5084 0.368 9531 0.383 2866	-0.136 4875 0.142 8684 0.149 2071 0.155 5015 0.161 7494 0.167 9487	-0.134 6196 0.141 0131 0.147 3648 0.153 6728 0.159 9349 0.166 1490
2	19 20 21 22 23 24	-0.896 5671 0.888 6513 0.880 4685 0.872 0215 0.863 3130 0.854 3458	-0.896 9123 0.889 0085 0.880 8378 0.872 4028 0.863 7061 0.854 7506	-0.397 5054 0.411 6026 0.425 5749 0.439 4180 0.453 1275 0.466 6996	-0.397 5043 0.411 6016 0.425 5738 0.439 4168 0.453 1264 0.466 6984	-0.174 0974 0.180 1934 0.186 2348 0.192 2195 0.198 1459 0.204 0120	-0.172 3130 0.178 4248 0.184 4825 0.190 4842 0.196 4279 0.202 3120
2	25 26 27 28 29 30	-0.845 1226 0.835 6462 0.825 9195 0.815 9453 0.805 7263 0.795 2656	-0.845 5390 0.836 0741 0.826 3587 0.816 3957 0.806 1878 0.795 7379	-0.480 1302 0.493 4153 0.506 5513 0.519 5341 0.532 3602 0.545 0257	-0.480 1290 0.493 4141 0.506 5500 0.519 5328 0.532 3589 0.545 0244	-0.209 8162 0.215 5567 0.221 2319 0.226 8400 0.232 3796 0.237 8490	-0.208 1346 0.213 8940 0.219 5886 0.225 2167 0.230 7766 0.236 2669
Nov.	31 1 2 3 4 5	-0.784 5659 0.773 6301 0.762 4613 0.751 0624 0.739 4365 0.727 5864	-0.785 0490 0.774 1239 0.762 9656 0.751 5770 0.739 9612 0.728 1212	-0.557 5270 0.569 8604 0.582 0223 0.594 0090 0.605 8170 0.617 4425	-0.557 5257 0.569 8591 0.582 0209 0.594 0076 0.605 8155 0.617 4410	-0.243 2465 0.248 5708 0.253 8201 0.258 9929 0.264 0878 0.269 1031	-0.241 6858 0.247 0319 0.252 3035 0.257 4991 0.262 6171 0.267 6561
	6 7 8 9 10	-0.715 5155 0.703 2268 0.690 7236 0.678 0092 0.665 0870 0.651 9606	-0.716 0601 0.703 7811 0.691 2874 0.678 5824 0.665 6694 0.652 5520	-0.628 8819 0.640 1317 0.651 1881 0.662 0476 0.672 7063 0.683 1607	-0.628 8805 0.640 1302 0.651 1866 0.662 0460 0.672 7048 0.683 1591	-0.274 0374 0.278 8891 0.283 6566 0.288 3384 0.292 9330 0.297 4387	-0.272 6145 0.277 4907 0.282 2831 0.286 9903 0.291 6107 0.296 1426
1 1 1	12 13 14 15	-0.638 6337 0.625 1100 0.611 3937 0.597 4891 -0.583 4006	-0.639 2339 0.625 7189 0.612 0110 0.598 1147 -0.584 0343	-0.693 4070 0.703 4415 0.713 2606 0.722 8608 -0.732 2386	-0.693 4054 0.703 4399 0.713 2590 0.722 8592 -0.732 2370	-0.301 8541 0.306 1774 0.310 4071 0.314 5416 -0.318 5795	-0.300 5845 0.304 9348 0.309 1919 0.313 3541 -0.317 4201

SUN, 2020 EQUATORIAL RECTANGULAR CO-ORDINATES FOR $0^{\rm h}$ TERRESTRIAL TIME MEAN EQUATOR AND EQUINOX OF J 2020.5 AND J 2000.0

Date	X _{2020.5}	X _{2000.0}	Y 2020.5	Y 2000.0	$Z_{2020.5}$	$Z_{2000.0}$
Nov. 16	-0.583 4006	-0.584 0343	-0.732 2386	-0.732 2370	-0.318 5795	-0.317 4201
17	0.569 1328	0.569 7743	0.741 3908	0.741 3891	0.322 5193	0.321 3884
18	0.554 6905	0.555 3397	0.750 3144	0.750 3127	0.326 3596	0.325 2575
19	0.540 0783	0.540 7350	0.759 0065	0.759 0048	0.330 0993	0.329 0263
20	0.525 3011	0.525 9651	0.767 4644	0.767 4628	0.333 7370	0.332 6934
21	0.510 3637	0.511 0347	0.775 6857	0.775 6840	0.337 2716	0.336 2579
22	-0.495 2708	-0.495 9487	-0.783 6679	-0.783 6662	-0.340 7022	-0.339 7186
23	0.480 0271	0.480 7116	0.791 4087	0.791 4070	0.344 0277	0.343 0745
24	0.464 6373	0.465 3283	0.798 9059	0.798 9042	0.347 2471	0.346 3246
25	0.449 1062	0.449 8034	0.806 1573	0.806 1555	0.350 3596	0.349 4680
26	0.433 4383	0.434 1416	0.813 1608	0.813 1590	0.353 3642	0.352 5038
27	0.417 6384	0.418 3475	0.819 9143	0.819 9126	0.356 2600	0.355 4312
28	-0.401 7112	-0.402 4259	-0.826 4161	-0.826 4143	-0.359 0463	-0.358 2492
29	0.385 6614	0.386 3814	0.832 6640	0.832 6622	0.361 7223	0.360 9571
30	0.369 4935	0.370 2187	0.838 6563	0.838 6545	0.364 2871	0.363 5542
Dec. 1	0.353 2123	0.353 9424	0.844 3910	0.844 3893	0.366 7400	0.366 0396
2	0.336 8225	0.337 5573	0.849 8666	0.849 8648	0.369 0803	0.368 4125
3	0.320 3287	0.321 0680	0.855 0810	0.855 0792	0.371 3073	0.370 6724
4	-0.303 7357	-0.304 4792	-0.860 0327	-0.860 0309	-0.373 4202	-0.372 8183
5	0.287 0481	0.287 7956	0.864 7199	0.864 7181	0.375 4183	0.374 8497
6	0.270 2709	0.271 0222	0.869 1408	0.869 1390	0.377 3010	0.376 7659
7	0.253 4088	0.254 1636	0.873 2938	0.873 2920	0.379 0675	0.378 5660
8	0.236 4668	0.237 2249	0.877 1773	0.877 1755	0.380 7171	0.380 2494
9	0.219 4499	-0.220 2111	0.880 7894	0.880 7876	0.382 2492	0.381 8154
10	-0.202 3633	-0.203 1273	-0.884 1288	-0.884 1270	-0.383 6631	-0.383 2632
11	0.185 2122	0.185 9789	0.887 1937	0.887 1919	0.384 9580	0.384 5924
12	0.168 0021	0.168 7712	0.889 9829	0.889 9811	0.386 1334	0.385 8021
13	0.150 7386	0.151 5098	0.892 4949	0.892 4931	0.387 1887	0.386 8917
14	0.133 4274	0.134 2005	0.894 7286	0.894 7268	0.388 1233	0.387 8609
15	0.116 0742	0.116 8490	0.896 6832	0.896 6814	0.388 9369	0.388 7090
16	-0.098 6850	-0.099 4611	-0.898 3579	-0.898 3561	-0.389 6290	-0.389 4357
17	0.081 2654	0.082 0428	0.899 7521	0.899 7503	0.390 1994	0.390 0408
18	0.063 8214	0.064 5997	0.900 8655	0.900 8637	0.390 6479	0.390 5241
19	0.046 3586	0.047 1376	0.901 6980	0.901 6963	0.390 9745	0.390 8855
20	0.028 8828	0.029 6622	0.902 2496	0.902 2478	0.391 1791	0.391 1249
21	-0.011 3994	-0.012 1790	0.902 5202	0.902 5184	0.391 2618	0.391 2425
22	+0.006 0861	+0.005 3065	-0.902 5101	-0.902 5083	-0.391 2226	-0.391 2381
23	0.023 5681	0.022 7888	0.902 2195	0.902 2177	0.391 0617	0.391 1120
24	0.041 0413	0.040 2626	0.901 6487	0.901 6469	0.390 7792	0.390 8643
25	0.058 5005	0.057 7225	0.900 7981	0.900 7963	0.390 3753	0.390 4952
26	0.075 9402	0.075 1632	0.899 6681	0.899 6663	0.389 8502	0.390 0048
27	0.093 3553	0.092 5796	0.898 2593	0.898 2575	0.389 2043	0.389 3936
28	+0.110 7406	+0.109 9664	-0.896 5722	-0.896 5704	-0.388 4377	-0.388 6616
29	0.128 0910	0.127 3185	0.894 6074	0.894 6057	0.387 5508	0.387 8092
30	0.145 4014	0.144 6309	0.892 3656	0.892 3639	0.386 5439	0.386 8368
31	0.162 6667	0.161 8984	0.889 8476	0.889 8458	0.385 4173	0.385 7446
32	+0.179 8819	+0.179 1161	-0.887 0539	-0.887 0522	-0.384 1715	-0.384 5331

 $\begin{array}{c} \textbf{SUN, 2020} \\ \textbf{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \textbf{FOR } \textbf{0}^{\text{h}} \, \textbf{TERRESTRIAL TIME} \end{array}$

Date	Position Angle	Heliog	raphic	Date	Position Angle	Heliog	raphic
	of Axis	Latitude B_0	Longitude L_0		of Axis	Latitude B_0	Longitude L_0
	o	0	o		o	0	o
Jan. 0	+2.81	-2.82	84.02	Feb. 15	-17.19	-6.80	198.32
1	2.32	2.94	70.85	16	17.53	6.84	185.15
2	1.84	3.06	57.68	17	17.86	6.89	171.98
3	1.35	3.18	44.51	18	18.18	6.92	158.81
4	0.87	3.29	31.34	19	18.50	6.96	145.64
5	+0.38	3.40	18.17	20	18.81	7.00	132.48
6	-0.10	-3.52	5.00	21	-19.12	-7.03	119.31
7	0.58	3.63	351.83	22	19.42	7.06	106.14
8	1.06	3.74	338.66	23	19.72	7.09	92.97
9	1.55	3.85	325.49	24	20.01	7.11	79.80
10	2.03	3.96	312.33	25	20.29	7.14	66.63
11	2.50	4.07	299.16	26	20.57	7.16	53.46
12	-2.98	-4.17	285.99	27	-20.84	-7.18	40.29
13	3.45	4.28	272.82	28	21.10	7.20	27.12
14	3.93	4.38	259.65	29	21.36	7.21	13.94
15	4.40	4.48	246.48	Mar. 1	21.62	7.22	0.77
16	4.87	4.58	233.32	2	21.86	7.23	347.60
17	5.33	4.68	220.15	3	22.10	7.24	334.43
18	-5.80	-4.78	206.98	4	-22.34	-7.25	321.25
19	6.26	4.88	193.81	5	22.56	7.25	308.08
20	6.71	4.97	180.65	6	22.78	7.25	294.90
21	7.17	5.06	167.48	7	23.00	7.25	281.73
22	7.62	5.16	154.31	8	23.20	7.25	268.55
23	8.07	5.25	141.15	9	23.41	7.24	255.37
24	-8.51	-5.33	127.98	10	-23.60	-7.24	242.20
25	8.95	5.42	114.82	11	23.79	7.23	229.02
26	9.39	5.50	101.65	12	23.97	7.21	215.84
27	9.83	5.59	88.48	13	24.14	7.20	202.66
28	10.25	5.67	75.32	14	24.31	7.18	189.48
29	10.68	5.75	62.15	15	24.47	7.17	176.30
30	-11.10	-5.83	48.99	16	-24.63	-7.15	163.12
31	11.52	5.90	35.82	17	24.78	7.12	149.94
Feb. 1	11.93	5.98	22.65	18	24.92	7.10	136.76
2	12.34	6.05	9.49	19	25.05	7.07	123.58
3	12.74	6.12	356.32	20	25.18	7.04	110.39
4	13.14	6.19	343.16	21	25.30	7.01	97.21
5 6 7 8 9	-13.53 13.92 14.31 14.69 15.06 15.43	-6.25 6.32 6.38 6.44 6.50 6.55	329.99 316.82 303.66 290.49 277.32 264.15	22 23 24 25 26 27	-25.41 25.52 25.62 25.71 25.79 25.87	-6.98 6.94 6.90 6.86 6.82 6.78	84.02 70.84 57.65 44.47 31.28 18.09
11	-15.79	-6.61	250.99	28	-25.94	-6.73	4.90
12	16.15	6.66	237.82	29	26.01	6.69	351.71
13	16.50	6.71	224.65	30	26.07	6.64	338.52
14	16.85	6.76	211.48	31	26.12	6.58	325.33
15	-17.19	-6.80	198.32	Apr. 1	-26.16	-6.53	312.14

 $\begin{array}{c} \textbf{SUN, 2020} \\ \textbf{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \textbf{FOR } \textbf{0}^{\text{h}} \, \textbf{TERRESTRIAL TIME} \end{array}$

Date	Position Angle	Heliog	raphic	Date	Position Angle	Heliog	raphic
	of Axis	Latitude B_0	Longitude L_0		of Axis	Latitude B_0	Longitude L_0
Apr. 1 2 3 4 5 6	-26.16	-6.53	312.14	May 17	-20.28	-2.41	64.45
	26.19	6.48	298.95	18	19.99	2.30	51.22
	26.22	6.42	285.75	19	19.69	2.18	37.99
	26.24	6.36	272.56	20	19.38	2.06	24.77
	26.26	6.30	259.36	21	19.07	1.95	11.54
	26.26	6.24	246.17	22	18.75	-1.83	358.31
7	-26.26	-6.17	232.97	23	-18.43	-1.71	345.08
8	26.26	6.11	219.77	24	18.10	1.59	331.85
9	26.24	6.04	206.57	25	17.77	1.48	318.62
10	26.22	5.97	193.37	26	17.42	1.36	305.39
11	26.19	5.90	180.17	27	17.08	1.24	292.16
12	26.15	5.82	166.97	28	16.73	1.12	278.93
13	-26.11	-5.75	153.77	29	-16.37	-1.00	265.69
14	26.05	5.67	140.57	30	16.01	0.88	252.46
15	26.00	5.59	127.36	31	15.64	0.76	239.23
16	25.93	5.51	114.16	June 1	15.27	0.64	225.99
17	25.85	5.43	100.95	2	14.89	0.52	212.76
18	25.77	5.35	87.75	3	14.51	0.40	199.53
19	-25.68	-5.26	74.54	4	-14.12	-0.28	186.29
20	25.59	5.18	61.33	5	13.73	0.15	173.06
21	25.49	5.09	48.13	6	13.34	-0.03	159.82
22	25.37	5.00	34.92	7	12.94	+0.09	146.58
23	25.26	4.91	21.71	8	12.54	0.21	133.35
24	25.13	4.82	8.50	9	12.13	0.33	120.11
25	-25.00	-4.73	355.29	10	-11.72	+0.45	106.88
26	24.86	4.63	342.07	11	11.31	0.57	93.64
27	24.71	4.54	328.86	12	10.89	0.69	80.40
28	24.56	4.44	315.65	13	10.47	0.81	67.17
29	24.39	4.34	302.43	14	10.04	0.93	53.93
30	24.23	4.25	289.22	15	9.62	1.05	40.70
May 1 2 3 4 5 6	-24.05	-4.15	276.00	16	-9.19	+1.17	27.46
	23.87	4.04	262.79	17	8.75	1.29	14.22
	23.68	3.94	249.57	18	8.32	1.41	0.99
	23.48	3.84	236.35	19	7.88	1.52	347.75
	23.27	3.73	223.13	20	7.44	1.64	334.51
	23.06	3.63	209.91	21	7.00	1.76	321.28
7	-22.84	-3.52	196.69	22	-6.55	+1.87	308.04
8	22.62	3.42	183.47	23	6.11	1.99	294.80
9	22.38	3.31	170.25	24	5.66	2.11	281.57
10	22.14	3.20	157.02	25	5.21	2.22	268.33
11	21.90	3.09	143.80	26	4.76	2.34	255.09
12	21.64	2.98	130.58	27	4.31	2.45	241.86
13	-21.38	-2.87	117.35	28	-3.86	+2.56	228.62
14	21.12	2.75	104.13	29	3.41	2.67	215.38
15	20.84	2.64	90.90	30	2.96	2.79	202.15
16	20.56	2.53	77.68	July 1	2.50	2.90	188.91
17	-20.28	-2.41	64.45	2	-2.05	+3.01	175.67

 $\begin{array}{c} \textbf{SUN, 2020} \\ \textbf{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \textbf{FOR } \textbf{0}^{\text{h}} \, \textbf{TERRESTRIAL TIME} \end{array}$

Date	e	Position Angle	Heliog	raphic	Date	Position Angle	Heliog	raphic
		of Axis	Latitude B_0	Longitude L_0		of Axis	Latitude B_0	Longitude L_0
July	1	-2.50	+2.90	188.91	Aug. 16	+16.45	+6.70	300.39
	2	2.05	3.01	175.67	17	16.78	6.75	287.18
	3	1.60	3.12	162.44	18	17.11	6.79	273.96
	4	1.14	3.22	149.20	19	17.43	6.83	260.74
	5	0.69	3.33	135.97	20	17.75	6.87	247.53
	6	-0.24	3.44	122.73	21	18.06	6.91	234.31
	7 8 9 10 11	+0.21 0.67 1.12 1.57 2.01 2.46	+3.54 3.65 3.75 3.86 3.96 4.06	109.49 96.26 83.02 69.79 56.55 43.32	22 23 24 25 26 27	+18.37 18.67 18.96 19.26 19.54 19.82	+6.95 6.98 7.01 7.04 7.07 7.10	221.10 207.88 194.67 181.46 168.24 155.03
	13 14 15 16 17	+2.91 3.35 3.80 4.24 4.68 5.12	+4.16 4.25 4.35 4.45 4.54 4.64	30.09 16.85 3.62 350.39 337.16 323.93	28 29 30 31 Sept. 1 2	+20.10 20.37 20.63 20.89 21.15 21.40	+7.12 7.14 7.16 7.18 7.20 7.21	141.82 128.61 115.40 102.19 88.98 75.77
	19	+5.55	+4.73	310.69	3	+21.64	+7.22	62.56
	20	5.98	4.82	297.46	4	21.88	7.23	49.35
	21	6.42	4.91	284.23	5	22.11	7.24	36.14
	22	6.84	5.00	271.00	6	22.33	7.25	22.94
	23	7.27	5.08	257.77	7	22.55	7.25	9.73
	24	7.69	5.17	244.54	8	22.77	7.25	356.52
	25	+8.11	+5.25	231.32	9	+22.97	+7.25	343.32
	26	8.53	5.34	218.09	10	23.18	7.25	330.11
	27	8.94	5.42	204.86	11	23.37	7.24	316.91
	28	9.35	5.50	191.63	12	23.56	7.24	303.70
	29	9.76	5.58	178.40	13	23.75	7.23	290.50
	30	10.17	5.65	165.18	14	23.93	7.22	277.30
Aug.	31	+10.57	+5.73	151.95	15	+24.10	+7.20	264.10
	1	10.97	5.80	138.72	16	24.26	7.19	250.89
	2	11.36	5.87	125.50	17	24.42	7.17	237.69
	3	11.75	5.94	112.27	18	24.58	7.15	224.49
	4	12.14	6.01	99.05	19	24.73	7.13	211.29
	5	12.52	6.08	85.82	20	24.87	7.11	198.09
	6	+12.90	+6.14	72.60	21	+25.00	+7.08	184.89
	7	13.27	6.21	59.38	22	25.13	7.05	171.69
	8	13.64	6.27	46.15	23	25.25	7.02	158.49
	9	14.01	6.33	32.93	24	25.36	6.99	145.30
	10	14.37	6.39	19.71	25	25.47	6.96	132.10
	11	14.73	6.44	6.49	26	25.57	6.92	118.90
	12	+15.08	+6.50	353.27	27	+25.67	+6.88	105.70
	13	15.43	6.55	340.05	28	25.75	6.84	92.50
	14	15.78	6.60	326.83	29	25.84	6.80	79.31
	15	16.12	6.65	313.61	30	25.91	6.76	66.11
	16	+16.45	+6.70	300.39	Oct. 1	+25.98	+6.71	52.92

 $\begin{array}{c} \textbf{SUN, 2020} \\ \textbf{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \textbf{FOR } \textbf{0}^{\text{h}} \, \textbf{TERRESTRIAL TIME} \end{array}$

Date	e	Position Angle	Heliog	raphic	Date	Position Angle	Heliog	raphic
		of Axis	Latitude B_0	Longitude L_0		of Axis	Latitude B_0	Longitude L_0
Oct.	1	+25.98	+6.71	52.92	Nov. 16	+21.00	+2.70	166.24
	2	26.04	6.66	39.72	17	20.71	2.59	153.06
	3	26.09	6.61	26.52	18	20.41	2.47	139.87
	4	26.14	6.56	13.33	19	20.11	2.35	126.69
	5	26.18	6.51	0.13	20	19.80	2.23	113.51
	6	26.21	6.45	346.94	21	19.48	2.10	100.33
	7	+26.23	+6.39	333.75	22	+19.16	+1.98	87.15
	8	26.25	6.33	320.55	23	18.83	1.86	73.97
	9	26.26	6.27	307.36	24	18.49	1.73	60.79
	10	26.26	6.20	294.17	25	18.14	1.61	47.61
	11	26.26	6.14	280.97	26	17.79	1.49	34.43
	12	26.25	6.07	267.78	27	17.43	1.36	21.25
	13 14 15 16 17	+26.23 26.20 26.17 26.13 26.08 26.02	+6.00 5.93 5.86 5.78 5.71 5.63	254.59 241.40 228.21 215.02 201.83 188.64	28 29 30 Dec. 1 2 3	+17.07 16.70 16.32 15.94 15.55 15.15	+1.23 1.11 0.98 0.85 0.73 0.60	8.07 354.89 341.71 328.53 315.35 302.17
	19	+25.96	+5.55	175.45	4	+14.75	+0.47	288.99
	20	25.88	5.46	162.26	5	14.34	0.34	275.81
	21	25.80	5.38	149.07	6	13.93	0.22	262.64
	22	25.72	5.30	135.88	7	13.52	+0.09	249.46
	23	25.62	5.21	122.69	8	13.09	-0.04	236.28
	24	25.52	5.12	109.50	9	12.67	0.17	223.10
	25	+25.41	+5.03	96.32	10	+12.24	-0.30	209.93
	26	25.29	4.94	83.13	11	11.80	0.42	196.75
	27	25.16	4.85	69.94	12	11.36	0.55	183.58
	28	25.03	4.75	56.75	13	10.92	0.68	170.40
	29	24.89	4.66	43.57	14	10.47	0.81	157.23
	30	24.74	4.56	30.38	15	10.02	0.94	144.05
Nov.	31	+24.58	+4.46	17.19	16	+9.56	-1.06	130.88
	1	24.42	4.36	4.00	17	9.10	1.19	117.70
	2	24.24	4.26	350.82	18	8.64	1.32	104.53
	3	24.06	4.15	337.63	19	8.18	1.44	91.35
	4	23.87	4.05	324.45	20	7.71	1.57	78.18
	5	23.68	3.94	311.26	21	7.24	1.69	65.01
	6 7 8 9 10	+23.47 23.26 23.04 22.81 22.57 22.33	+3.84 3.73 3.62 3.51 3.40 3.28	298.07 284.89 271.70 258.52 245.34 232.15	22 23 24 25 26 27	+6.77 6.29 5.81 5.34 4.86 4.38	-1.82 1.94 2.07 2.19 2.31 2.43	51.83 38.66 25.49 12.32 359.14 345.97
	12	+22.08	+3.17	218.97	28	+3.89	-2.55	332.80
	13	21.82	3.05	205.79	29	3.41	2.67	319.63
	14	21.55	2.94	192.60	30	2.93	2.79	306.46
	15	21.28	2.82	179.42	31	2.44	2.91	293.29
	16	+21.00	+2.70	166.24	32	+1.96	-3.03	280.11

MOON, 2020

UNIVERSAL TIME

PHASES OF THE MOON

Lunation		New	мо Мо	on		First	Qua	rter		Ful	Мо	on		Last (Quar	ter
		d	h	m		d	h	m		d	h	m		d	h	m
1201	Dec.	26	05	13	Jan.	3	04	45	Jan.	10	19	21	Jan.	17	12	58
1202	Jan.	24	21	42	Feb.	2	01	42	Feb.	9	07	33	Feb.	15	22	17
1203	Feb.	23	15	32	Mar.	2	19	57	Mar.	9	17	48	Mar.	16	09	34
1204	Mar.	24	09	28	Apr.	1	10	21	Apr.	8	02	35	Apr.	14	22	56
1205	Apr.	23	02	26	Apr.	30	20	38	May	7	10	45	May	14	14	03
1206	May	22	17	39	May	30	03	30	Jun.	5	19	12	Jun.	13	06	24
1207	Jun.	21	06	41	Jun.	28	08	16	Jul.	5	04	44	Jul.	12	23	29
1208	Jul.	20	17	33	Jul.	27	12	33	Aug.	3	15	59	Aug.	11	16	45
1209	Aug.	19	02	42	Aug.	25	17	58	Sep.	2	05	22	Sep.	10	09	26
1210	Sep.	17	11	00	Sep.	24	01	55	Oct.	1	21	05	Oct.	10	00	40
1211	Oct.	16	19	31	Oct.	23	13	23	Oct.	31	14	49	Nov.	8	13	46
1212	Nov.	15	05	07	Nov.	22	04	45	Nov.	30	09	30	Dec.	8	00	37
1213	Dec.	14	16	17	Dec.	21	23	41	Dec.	30	03	28	Jan.	6	09	37

MOON AT PERIGEE

MOON AT APOGEE

	d	h		d	h		d	h		d	h		d	h		d	h
Dec.	18	20	May	6	03	Sep.	18	14	Dec.	5	04	Apr.	20	19	Sep.	6	06
Jan.	13	20	Jun.	3	04	Oct.	16	24	Jan.	2	02	May	18	08	Oct.	3	17
Feb.	10	20	Jun.	30	02	Nov.	14	12	Jan.	29	21	Jun.	15	01	Oct.	30	19
Mar.	10	07	Jul.	25	05	Dec.	12	21	Feb.	26	12	Jul.	12	19	Nov.	27	00
Apr.	7	18	Aug.	21	11	Jan.	9	16	Mar.	24	15	Aug.	9	14	Dec.	24	17
															Jan.	21	13

MOON, 2020 MEAN EQUATOR, ORBIT, LONGITUDE AND ELONGATION

Dat	te	Me	an Equato	or	Orbit Perige		Node			ean gitude	Mean Elongation
		i	Δ	Ω'	Γ'		Ω			(D
Jan. Feb.	1 11 21 31 10 20	23.704 23.690 23.676 23.662 23.648 23.634	281.722 281.200 280.676 280.153 279.629 279.105	356.200 356.193 356.186 356.180 356.174 356.168	177 05 178 12 179 19 180 26 181 33 182 40	59.5 50.0 40.5 31.0 21.6 12.1	98 14 97 42 97 11 96 39 96 07 95 35	37.9 51.6 05.2 18.9 32.6 46.2	345 117 248 20 152 284	04 06.9 49 57.2 35 47.5 21 37.7	308.992 70.900 192.807
Mar.	1 11 21 31 10 20	23.620 23.606 23.591 23.577 23.563 23.549	278.581 278.056 277.531 277.006 276.481 275.955	356.162 356.157 356.152 356.148 356.144 356.140	183 47 184 53 186 00 187 07 188 14 189 21	02.6 53.1 43.7 34.2 24.7 15.2	95 03 94 32 94 00 93 28 92 56 92 25	59.9 13.6 27.2 40.9 54.6 08.2	55 187 319 91 222 354	39 08.6 24 58.8 10 49.1 56 39.4	320.437 82.344 204.252
May June	30 10 20 30 9 19	23.535 23.521 23.506 23.492 23.478 23.464	275.429 274.902 274.376 273.848 273.321 272.794	356.136 356.133 356.130 356.128 356.125 356.123	190 28 191 34 192 41 193 48 194 55 196 02	05.8 56.3 46.8 37.3 27.8 18.4	91 53 91 21 90 49 90 18 89 46 89 14	21.9 35.6 49.2 02.9 16.5 30.2	126 258 30 161 293 65	14 10.2 00 00.5 45 50.7 31 41.0	209.974 331.882 93.789 215.697
July Aug.	29 9 19 29 8 18	23.450 23.436 23.421 23.407 23.393 23.379	272.266 271.737 271.209 270.680 270.151 269.621	356.122 356.121 356.120 356.119 356.119 356.119	197 09 198 15 199 22 200 29 201 36 202 43	08.9 59.4 49.9 40.5 31.0 21.5	88 42 88 10 87 39 87 07 86 35 86 03	43.9 57.5 11.2 24.9 38.5 52.2	197 328 100 232 4 135	49 11.8 35 02.1 20 52.4 06 42.7	221.419 343.327 105.234 227.142
Sept.	28 7 17 27 7 17	23.365 23.350 23.336 23.322 23.308 23.293	268.562 268.031 267.501	356.119 356.120 356.121 356.123 356.124 356.126	203 50 204 57 206 03 207 10 208 17 209 24	12.0 02.5 53.1 43.6 34.1 24.6	85 32 85 00 84 28 83 56 83 25 82 53	05.9 19.5 33.2 46.9 00.5 14.2	267 39 171 302 74 206	24 13.5 10 03.7 55 54.0 41 44.3	232.864 354.772 116.679 238.587
Nov.	27 6 16 26 6 16	23.279 23.265 23.251 23.236 23.222 23.208	265.907 265.375 264.843 264.311 263.778 263.245	356.129 356.132 356.135 356.138 356.142 356.146	210 31 211 38 212 44 213 51 214 58 216 05	15.2 05.7 56.2 46.7 37.3 27.8	82 21 81 49 81 17 80 46 80 14 79 42	27.9 41.5 55.2 08.9 22.5 36.2	109 241	45 05.4 30 55.7 16 45.9	244.309 6.217 128.124 250.032
	26 36 46	23.194 23.179 23.165	262.712 262.178 261.644	356.150 356.155 356.160	217 12 218 19 219 25	18.3 08.8 59.3	79 10 78 39 78 07	49.9 03.5 17.2	48 180 312	34 16.7	255.754

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Da	ite		parer ngitu				appare Latitud		True Geocentric Distance (A. U.)		emi neter
Jan.	0.0 0.5 1.0 1.5 2.0 2.5	334 340 346 352 358 3	09 09 07 04 00 56	53.3 41.7 43.9 30.8 35.3 31.7		° -4 4 4 5 5 5	22 39 53 04 11 16	" 27.7 36.2 37.5 26.3 58.6 11.1	(X 10 ⁻³) 2.6870 2.6942 2.6996 2.7031 2.7044 2.7036	14 14 14 14 14 14	51.54 49.14 47.35 46.22 45.78 46.05
	3.0 3.5 4.0 4.5 5.0 5.5	9 15 21 27 33 40	52 50 49 50 54 02	55.1 21.3 26.0 44.6 51.4 19.2		-5 5 5 4 4 4	17 14 08 59 46 30	01.5 28.0 29.6 06.4 19.2 10.2	2.7006 2.6954 2.6880 2.6786 2.6672 2.6542	14 14 14 14 14 15	47.04 48.76 51.20 54.33 58.13 02.55
	6.0 6.5 7.0 7.5 8.0 8.5	46 52 58 65 71 78	13 29 49 15 45 22	38.8 18.0 41.0 08.0 54.1 08.8		-4 3 3 2 2 1	10 48 22 53 22 48	43.2 04.0 20.9 45.1 31.2 57.7	2.6396 2.6238 2.6070 2.5896 2.5720 2.5544	15 15 15 15 15 15	07.53 13.00 18.87 25.04 31.40 37.82
	9.0 9.5 10.0 10.5 11.0 11.5	85 91 98 105 112 119	03 51 43 41 43 49	55.5 10.7 44.0 18.1 28.5 44.6	+	-1 -0 -0 0 1	13 36 01 40 18 55	26.9 25.6 35.5 01.9 16.2 38.8	2.5372 2.5207 2.5054 2.4914 2.4791 2.4685	15 15 15 16 16 16	44.17 50.33 56.15 01.52 06.31 10.42
	12.0 12.5 13.0 13.5 14.0 14.5	126 134 141 148 155 163	59 12 26 42 59 15	30.2 04.4 43.4 41.8 13.8 35.5		-2 3 4 4 4	31 05 35 03 26 46	29.4 08.2 57.2 21.7 51.7 02.4	2.4600 2.4535 2.4491 2.4467 2.4464 2.4478	16 16 16 16 16	13.80 16.37 18.13 19.07 19.22 18.63
	15.0 15.5 16.0 16.5 17.0 17.5	170 177 184 192 199 206	31 45 57 06 13 16	05.4 06.5 06.1 37.1 18.0 52.4		-5 5 5 5 5	00 10 15 14 09 00	35.2 17.8 04.3 54.7 54.8 15.3	2.4510 2.4556 2.4615 2.4685 2.4764 2.4851	16 16 16 16 16	17.38 15.54 13.20 10.43 07.33 03.97
	18.0 18.5 19.0 19.5 20.0 20.5	213 220 227 233 240 247	17 14 07 57 43 26	09.0 00.9 24.7 20.1 48.7 53.7		-4 4 4 3 3 2	46 28 06 40 12 42	11.2 01.2 07.2 53.4 46.0 12.6	2.4943 2.5039 2.5139 2.5241 2.5346 2.5452	16 15 15 15 15 15	00.41 56.71 52.91 49.04 45.13 41.20
	21.0 21.5 22.0 22.5 23.0	254 260 267 273 280	06 43 16 46 13	39.0 08.9 27.5 38.7 46.2	+	-2 1 1 -0 -0	09 35 00 25 10	41.9 42.9 45.0 17.3 11.8	2.5559 2.5668 2.5778 2.5889 2.6000	15 15 15 15 15	37.24 33.27 29.30 25.32 21.35

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

D	ate		parer ngitu			Appare Latitud		True Geocentric Distance (A. U.)		emi neter
Jan.	23.0 23.5 24.0 24.5 25.0 25.5	280 286 292 299 305 311	13 37 59 17 32 45	46.2 53.2 02.8 18.1 42.8 21.1	-0 0 1 1 2 2	10 45 19 52 23 52	" 11.8 15.0 26.3 21.5 38.3 56.6	(X 10 ⁻³) 2.6000 2.6112 2.6223 2.6334 2.6443 2.6548	15 15 15 15 15 15	21.35 17.41 13.51 09.67 05.94 02.34
	26.0 26.5 27.0 27.5 28.0 28.5	317 324 330 336 342 348	55 02 07 10 11 10	18.5 42.1 40.5 24.8 08.2 06.7	-3 3 4 4 4 4	19 44 06 25 40 53	58.7 29.2 15.1 05.9 53.0 30.0	2.6649 2.6744 2.6832 2.6910 2.6977 2.7031	14 14 14 14 14 14	58.91 55.72 52.80 50.21 48.00 46.22
	29.0 29.5 30.0 30.5 31.0 31.5	354 0 5 11 17 23	07 04 59 55 51 47	38.8 05.9 51.9 23.6 09.9 42.2	-5 5 5 5 4	02 08 11 11 07 59	52.2 56.5 41.2 05.6 10.4 56.8	2.7070 2.7093 2.7098 2.7085 2.7051 2.6997	14 14 14 14 14 14	44.94 44.18 44.01 44.45 45.55 47.33
Feb.	1.0 1.5 2.0 2.5 3.0 3.5	29 35 41 47 54 60	45 45 47 52 02 15	33.8 19.7 35.9 59.3 06.6 34.2	-4 4 3 3 3	49 35 18 58 36 10	27.2 44.7 53.4 58.6 07.0 26.9	2.6922 2.6827 2.6711 2.6576 2.6423 2.6254	14 14 14 15 15	49.80 52.97 56.84 01.40 06.61 12.44
	4.0 4.5 5.0 5.5 6.0 6.5	66 72 79 86 92 99	33 57 27 03 46 35	56.6 46.1 31.4 36.3 18.5 48.3	-2 2 1 1 -0 +0	42 11 38 03 27 09	08.8 25.8 33.9 52.8 45.9 19.3	2.6072 2.5880 2.5680 2.5476 2.5273 2.5074	15 15 15 15 15 15	18.81 25.64 32.85 40.30 47.85 55.37
	7.0 7.5 8.0 8.5 9.0 9.5	106 113 120 127 135 142	32 35 44 59 19 44	07.2 06.6 27.3 38.7 59.0 36.1	+0 1 2 2 3 3	46 24 00 35 08 38	50.9 13.2 47.2 51.5 43.9 42.7	2.4884 2.4707 2.4547 2.4407 2.4290 2.4200	16 16 16 16 16	02.66 09.56 15.90 21.50 26.20 29.90
	10.0 10.5 11.0 11.5 12.0 12.5	150 157 165 172 180 187	12 42 13 44 13 40	29.1 30.3 28.2 10.6 27.5 14.4	+4 4 4 5 5	05 27 45 57 05 08	09.1 28.3 12.1 59.5 37.6 02.2	2.4137 2.4102 2.4097 2.4118 2.4167 2.4239	16 16 16 16 16	32.48 33.90 34.14 33.24 31.26 28.31
	13.0 13.5 14.0 14.5 15.0	195 202 209 216 223	03 22 36 45 49	34.4 40.3 55.3 53.4 19.1	+5 4 4 4 +4	05 57 45 28 07	17.1 33.2 07.7 23.0 44.6	2.4332 2.4444 2.4571 2.4710 2.4857	16 16 16 16 16	24.51 20.00 14.94 09.47 03.73

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Da	ate		parer ngitu			Appare Latitud		True Geocentric Distance (A. U.)		emi neter
Feb.	15.0 15.5 16.0 16.5 17.0 17.5	223 230 237 244 251 257	49 47 39 26 07 44	19.1 06.5 17.8 02.1 33.7 10.7	0 +4 3 3 2 2 1	07 43 16 47 15 43	" 44.6 40.7 40.8 15.0 53.1 04.5	(X 10 ⁻³) 2.4857 2.5010 2.5165 2.5321 2.5476 2.5627	16 15 15 15 15 15	" 03.73 57.84 51.92 46.05 40.31 34.77
	18.0 18.5 19.0 19.5 20.0 20.5	264 270 277 283 289 296	16 44 08 28 45 00	13.7 04.5 05.0 36.6 59.5 32.2	$^{+1}_{0}$ $^{+0}_{-0}$ $^{1}_{1}$	09 35 00 33 06 38	17.7 00.0 37.6 24.6 43.1 55.7	2.5774 2.5915 2.6049 2.6178 2.6299 2.6413	15 15 15 15 15 15	29.45 24.39 19.61 15.10 10.89 06.95
	21.0 21.5 22.0 22.5 23.0 23.5	302 308 314 320 326 332	12 22 29 35 39 41	31.4 11.8 46.2 25.9 20.7 39.4	-2 2 3 3 4	09 38 05 30 52 11	41.7 42.1 39.3 17.5 22.9 43.5	2.6520 2.6620 2.6713 2.6798 2.6876 2.6946	15 14 14 14 14 14	03.29 59.89 56.77 53.91 51.33 49.02
	24.0 24.5 25.0 25.5 26.0 26.5	338 344 350 356 2 8	42 42 40 37 34 30	30.4 02.1 23.1 43.3 13.9 07.9	-4 4 4 5 5	28 41 51 58 02 02	09.0 31.3 44.3 43.5 26.5 52.3	2.7007 2.7059 2.7101 2.7132 2.7152 2.7158	14 14 14 14 14 14	47.00 45.30 43.92 42.90 42.28 42.07
	27.0 27.5 28.0 28.5 29.0 29.5	14 20 26 32 38 44	25 21 16 13 10 09	40.6 09.7 55.5 21.3 53.2 59.7	-5 4 4 4 4 3	00 53 44 32 16 58	01.7 56.8 40.9 18.8 56.0 39.3	2.7150 2.7128 2.7089 2.7033 2.6959 2.6868	14 14 14 14 14 14	42.32 43.06 44.33 46.15 48.57 51.59
Mar.	1.0 1.5 2.0 2.5 3.0 3.5	50 56 62 68 74 81	11 15 22 33 48 09	12.4 04.7 12.1 11.5 40.3 15.7	-3 3 2 2 1 -1	37 13 47 19 49 17	36.7 57.2 51.1 30.3 08.5 01.5	2.6758 2.6631 2.6486 2.6324 2.6147 2.5958	14 14 15 15 15 15	55.24 59.54 04.46 10.01 16.16 22.85
	4.0 4.5 5.0 5.5 6.0 6.5	87 94 100 107 114 121	35 08 47 33 27 29	33.6 07.3 26.1 53.4 45.1 07.6	+0 0 0 1 1 2	43 08 26 02 37 11	27.5 47.8 33.4 08.3 25.5 50.4	2.5758 2.5550 2.5337 2.5124 2.4915 2.4714	15 15 15 15 16 16	30.03 37.60 45.45 53.46 01.47 09.31
	7.0 7.5 8.0 8.5 9.0	128 135 143 150 158	37 53 16 44 18	55.9 52.4 25.1 48.0 01.3	+2 3 3 4 +4	44 15 43 07 28	45.6 31.4 27.8 55.3 17.7	2.4525 2.4353 2.4202 2.4076 2.3978	16 16 16 16	16.77 23.67 29.81 34.98 39.03

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	Apparent	Apparent	True Geocentric	Semi
	Longitude	Latitude	Distance (A. U.)	Diameter
Mar. 9.0	158 18 01.3	+4 28 17.7	(X 10 ⁻³) 2.3978 2.3912 2.3877 2.3876 2.3907 2.3970	16 39.03
9.5	165 54 53.1	4 44 03.5		16 41.83
10.0	173 34 01.8	4 54 48.2		16 43.28
10.5	181 14 00.3	5 00 15.6		16 43.34
11.0	188 53 19.4	5 00 18.8		16 42.02
11.5	196 30 32.7	4 55 01.0		16 39.40
12.0	204 04 20.6	+4 44 34.1	2.4062	16 35.57
12.5	211 33 33.2	4 29 18.4	2.4180	16 30.70
13.0	218 57 13.5	4 09 40.8	2.4322	16 24.94
13.5	226 14 38.1	3 46 12.6	2.4482	16 18.49
14.0	233 25 17.7	3 19 28.5	2.4657	16 11.53
14.5	240 28 56.6	2 50 04.2	2.4843	16 04.26
15.0	247 25 31.5	+2 18 35.3	2.5036	15 56.84
15.5	254 15 09.4	1 45 36.3	2.5232	15 49.42
16.0	260 58 05.9	1 11 39.8	2.5427	15 42.14
16.5	267 34 43.5	0 37 16.4	2.5618	15 35.10
17.0	274 05 29.2	+0 02 53.9	2.5803	15 28.39
17.5	280 30 53.3	-0 31 02.2	2.5980	15 22.07
18.0	286 51 27.5	-1 04 08.6	2.6147	15 16.19
18.5	293 07 44.2	1 36 04.4	2.6302	15 10.78
19.0	299 20 15.0	2 06 30.6	2.6445	15 05.86
19.5	305 29 30.2	2 35 09.9	2.6575	15 01.42
20.0	311 35 58.2	3 01 46.7	2.6692	14 57.47
20.5	317 40 05.0	3 26 07.1	2.6796	14 54.00
21.0	323 42 14.2	-3 47 58.4	2.6886	14 50.98
21.5	329 42 46.6	4 07 09.4	2.6965	14 48.40
22.0	335 42 00.7	4 23 30.6	2.7030	14 46.24
22.5	341 40 12.2	4 36 53.6	2.7084	14 44.48
23.0	347 37 35.0	4 47 11.9	2.7126	14 43.11
23.5	353 34 21.0	4 54 20.3	2.7157	14 42.10
24.0	359 30 41.0	-4 58 15.4	2.7177	14 41.47
24.5	5 26 44.6	4 58 55.3	2.7185	14 41.19
25.0	11 22 41.4	4 56 20.0	2.7183	14 41.26
25.5	17 18 40.9	4 50 31.1	2.7169	14 41.71
26.0	23 14 53.6	4 41 31.9	2.7144	14 42.52
26.5	29 11 31.0	4 29 27.2	2.7107	14 43.71
27.0	35 08 46.3	-4 14 23.5	2.7058	14 45.31
27.5	41 06 54.7	3 56 28.5	2.6997	14 47.34
28.0	47 06 14.1	3 35 51.7	2.6922	14 49.80
28.5	53 07 04.5	3 12 43.7	2.6834	14 52.73
29.0	59 09 48.8	2 47 16.3	2.6732	14 56.14
29.5	65 14 52.6	2 19 42.9	2.6615	15 00.06
30.0	71 22 44.1	-1 50 18.0	2.6485	15 04.48
30.5	77 33 53.5	1 19 17.8	2.6341	15 09.42
31.0	83 48 53.1	0 46 59.8	2.6184	15 14.88
31.5	90 08 16.1	-0 13 43.5	2.6015	15 20.82
Apr. 1.0	96 32 36.3	+0 20 10.0	2.5835	15 27.23

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	Apparent Longitude		oparent atitude	True Geocentric Distance (A. U.)	Se Dian	
Apr. 1.0 1.5 2.0 2.5 3.0 3.5	96 32 36 103 02 26 109 38 18 116 20 40 123 09 52 130 06 13	9 0 1 8 1 2 0 2 9 8 2	20 10.0 54 17.1 28 12.2 01 27.2 33 31.7 03 53.1	(X 10 ⁻³) 2.5835 2.5647 2.5451 2.5252 2.5052 2.4855	15 15 15 15 15 15	27.23 34.05 41.22 48.65 56.21 03.79
4.0 4.5 5.0 5.5 6.0 6.5	137 09 47. 144 20 30. 151 38 06. 159 02 05. 166 31 40. 174 05 53.	6 3 4 9 4 1 4 4	31 57.0 57 08.4 18 52.3 36 35.3 49 47.5 58 04.0	2.4665 2.4486 2.4322 2.4177 2.4055 2.3961	16 16 16 16 16	11.22 18.33 24.93 30.83 35.83 39.77
7.0 7.5 8.0 8.5 9.0 9.5	181 43 34. 189 23 21. 197 03 47. 204 43 22. 212 20 41. 219 54 21.	3 4 1 2 4 1 9 4 1	01 06.9 58 46.6 51 03.0 38 05.6 20 13.5 57 53.4	2.3896 2.3862 2.3862 2.3894 2.3960 2.4056	16 16 16 16 16	42.50 43.90 43.92 42.55 39.82 35.82
10.0 10.5 11.0 11.5 12.0 12.5	227 23 12. 234 46 15. 242 02 45. 249 12 12. 256 14 18. 263 08 59.	4 3 6 6 2 1 2 1 1 2 1	31 39.1 02 08.6 30 02.3 56 01.3 20 45.4 44 52.2	2.4180 2.4329 2.4499 2.4686 2.4886 2.5094	16 16 16 16 16	30.71 24.63 17.79 10.38 02.60 54.64
13.0 13.5 14.0 14.5 15.0 15.5	269 56 21. 276 36 41. 283 10 21. 289 37 49. 295 59 38. 302 16 23.	2 -0 : 1 1 : 6 1 : 9 2 :	08 56.3 26 31.3 01 03.5 34 16.5 05 49.6 35 25.3	2.5305 2.5516 2.5723 2.5922 2.6112 2.6289	15 15 15 15 15 15	46.67 38.85 31.30 24.13 17.42 11.24
16.0 16.5 17.0 17.5 18.0 18.5	308 28 39 314 37 01 320 42 05 326 44 24 332 44 30 338 42 52	3 3 2 3 4 9 2 4 2	02 48.6 27 46.5 50 08.1 09 43.8 26 25.5 40 06.6	2.6451 2.6598 2.6729 2.6842 2.6938 2.7016	15 15 14 14 14 14	05.64 00.63 56.24 52.46 49.28 46.70
19.0 19.5 20.0 20.5 21.0 21.5	344 39 57. 350 36 10. 356 31 53. 2 27 24. 8 23 00. 14 18 57.	8 4 1 1 5 0 0 5 0 4 5	50 41.4 58 05.4 02 15.6 03 09.8 00 47.6 55 09.8	2.7078 2.7123 2.7153 2.7168 2.7169 2.7157	14 14 14 14 14	44.68 43.20 42.23 41.74 41.71 42.09
22.0 22.5 23.0 23.5 24.0	20 15 27. 26 12 42. 32 10 53. 38 10 10. 44 10 42.	4 4 3 3 4 1 4 9	46 18.9 34 18.9 19 15.7 01 16.7 40 31.5	2.7134 2.7099 2.7053 2.6997 2.6932	14 14 14 14 14	42.86 44.01 45.50 47.32 49.46

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Da	ate		Apparent Longitude		Apparent Latitude			True Geocentric Distance (A. U.)		emi neter
Apr.	24.0 24.5 25.0 25.5 26.0 26.5	644 50 56 62 68 74	10 12 16 21 29 39	" 42.9 42.4 19.9 48.2 21.3 15.3	-3 3 2 2 1 1	40 17 51 23 53 22	31.5 11.0 28.1 37.5 55.2 39.0	(X 10 ⁻³) 2.6932 2.6858 2.6775 2.6683 2.6583 2.6474	14 14 14 14 15 15	49.46 51.92 54.68 57.76 01.15 04.85
	27.0 27.5 28.0 28.5 29.0 29.5	80 87 93 99 106 112	51 07 26 48 15 46	48.2 19.5 10.9 45.1 25.9 37.3	-0 -0 +0 0 1	50 16 17 51 25 58	08.1 43.1 14.1 20.0 10.1 18.2	2.6357 2.6231 2.6097 2.5955 2.5806 2.5651	15 15 15 15 15 15	08.88 13.24 17.93 22.95 28.28 33.90
May	30.0 30.5 1.0 1.5 2.0 2.5	119 126 132 139 146 153	22 04 50 43 42 46	42.6 03.3 58.1 41.0 20.1 56.3	+2 3 3 4 4	30 00 28 54 17 36	17.3 39.1 54.3 33.2 05.9 03.4	2.5490 2.5327 2.5161 2.4996 2.4835 2.4679	15 15 15 15 16 16	39.77 45.86 52.08 58.36 04.59 10.66
	3.0 3.5 4.0 4.5 5.0 5.5	160 168 175 182 190 197	57 13 34 59 28 59	21.1 16.2 12.4 29.1 15.3 30.6	+4 5 5 5 5 4	50 01 07 07 02 53	58.1 25.0 03.3 37.5 58.6 05.3	2.4534 2.4401 2.4284 2.4187 2.4113 2.4064	16 16 16 16 16	16.43 21.74 26.46 30.41 33.46 35.49
	6.0 6.5 7.0 7.5 8.0 8.5	205 213 220 228 235 242	32 04 36 05 31 53	07.0 52.2 31.8 53.6 49.6 19.6	+4 4 3 3 2 2	38 18 53 25 54 19	04.9 13.1 53.8 38.4 03.6 50.5	2.4042 2.4049 2.4086 2.4152 2.4245 2.4365	16 16 16 16 16	36.38 36.08 34.57 31.87 28.04 23.19
	9.0 9.5 10.0 10.5 11.0 11.5	250 257 264 271 278 284	09 19 23 20 11 54	32.6 48.6 38.6 45.3 01.9 31.2	+1 1 +0 -0 0 1	43 06 28 09 46 22	41.9 21.0 29.4 14.2 14.7 01.3	2.4508 2.4671 2.4851 2.5043 2.5243 2.5448	16 16 16 15 15	17.45 10.98 03.96 56.56 48.97 41.35
	12.0 12.5 13.0 13.5 14.0 14.5	291 298 304 310 317 323	31 02 26 45 00 10	24.4 00.0 41.9 58.7 21.8 24.9	-1 2 2 3 3 4	56 28 57 24 49 10	07.3 10.4 52.3 58.1 15.8 36.1	2.5652 2.5853 2.6046 2.6229 2.6399 2.6553	15 15 15 15 15 15	33.84 26.59 19.71 13.30 07.43 02.15
	15.0 15.5 16.0 16.5 17.0	329 335 341 347 353	16 19 20 18 16	43.0 51.2 24.6 57.2 01.9	-4 4 4 5 -5	28 43 55 04 09	51.6 56.9 47.9 21.4 35.8	2.6691 2.6809 2.6908 2.6988 2.7047	14 14 14 14 14	57.52 53.54 50.25 47.63 45.68

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Da	Date Apparent Longitude		Apparent Latitude			True Geocentric Distance (A. U.)		emi neter		
May	17.0 17.5 18.0 18.5 19.0 19.5	353 359 5 11 16 22	16 12 07 03 59 56	" 01.9 09.9 50.3 30.3 34.7 26.2	° -5 5 5 4 4	09 11 10 05 57 45	35.8 29.9 03.8 18.4 16.0 59.9	(X 10 ⁻³) 2.7047 2.7087 2.7108 2.7110 2.7096 2.7066	14 14 14 14 14 14	45.68 44.38 43.70 43.62 44.09 45.07
	20.0 20.5 21.0 21.5 22.0 22.5	28 34 40 46 53 59	54 53 54 57 02 10	24.7 48.3 52.7 51.6 57.1 19.7	-4 4 3 3 2	31 14 53 30 04 36	34.7 06.9 44.4 37.3 57.3 58.5	2.7021 2.6964 2.6895 2.6816 2.6729 2.6635	14 14 14 14 14	46.53 48.42 50.69 53.30 56.21 59.38
	23.0 23.5 24.0 24.5 25.0 25.5	65 71 77 84 90 96	20 32 47 05 26 50	08.7 32.7 39.5 36.8 32.3 33.9	-2 1 1 -0 +0	06 35 02 27 07 42	57.1 11.1 00.9 48.5 02.3 06.3	2.6535 2.6430 2.6322 2.6210 2.6096 2.5980	15 15 15 15 15 15	02.77 06.35 10.09 13.97 17.96 22.07
	26.0 26.5 27.0 27.5 28.0 28.5	103 109 116 123 129 136	17 48 22 00 42 27	49.6 28.0 37.6 27.1 04.4 36.9	+1 1 2 2 3 3	16 51 24 55 24 51	56.9 06.8 07.9 31.8 50.2 35.1	2.5862 2.5743 2.5624 2.5503 2.5383 2.5263	15 15 15 15 15 15	26.26 30.54 34.89 39.30 43.76 48.24
	29.0 29.5 30.0 30.5 31.0 31.5	143 150 157 164 171 178	17 10 08 10 15 24	09.9 46.7 27.5 08.1 39.9 48.6	+4 4 5 5 5	15 35 52 04 12 15	19.4 37.3 04.8 20.2 05.2 05.2	2.5144 2.5028 2.4915 2.4807 2.4706 2.4613	15 15 16 16 16 16	52.72 57.15 01.49 05.67 09.63 13.27
June	1.0 1.5 2.0 2.5 3.0 3.5	185 192 200 207 214 222	37 52 10 29 49 09	14.0 29.6 02.5 14.3 21.5 36.6	+5 5 4 4 4 3	13 06 54 37 16 50	10.2 15.6 23.1 40.5 22.8 51.4	2.4532 2.4463 2.4410 2.4374 2.4357 2.4362	16 16 16 16 16	16.51 19.24 21.38 22.82 23.49 23.32
	4.0 4.5 5.0 5.5 6.0 6.5	229 236 244 251 258 265	29 47 02 15 24 28	10.1 11.6 51.7 24.1 06.4 22.1	+3 2 2 1 0 +0	21 49 13 36 58 19	34.1 04.0 58.6 58.1 44.1 58.1	2.4388 2.4436 2.4507 2.4600 2.4714 2.4846	16 16 16 16 16	22.27 20.31 17.47 13.77 09.30 04.14
	7.0 7.5 8.0 8.5 9.0	272 279 286 292 299	27 21 10 52 29	41.1 40.8 05.7 48.1 47.4	-0 0 1 2 -2	18 56 33 07 40	40.0 33.1 07.5 53.8 26.8	2.4995 2.5157 2.5329 2.5508 2.5690	15 15 15 15 15	58.41 52.24 45.76 39.12 32.46

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Da	Date Apparent Longitude			Apparent Latitude			True Geocentric Distance (A. U.)		emi neter		
June	9.0 9.5 10.0 10.5 11.0 11.5	299 306 312 318 325 331	29 01 27 47 03 15	47.4 09.5 06.5 56.0 59.7 43.5		° -2 3 4 4 4 4	40 10 37 01 22 40	" 26.8 26.0 34.8 40.2 32.9 06.1	(X 10 ⁻³) 2.5690 2.5872 2.6050 2.6221 2.6381 2.6529	15 15 15 15 15 15	32.46 25.91 19.59 13.60 08.05 03.00
	12.0 12.5 13.0 13.5 14.0 14.5	337 343 349 355 1 7	23 28 29 29 27 24	36.0 08.4 53.3 24.6 16.4 03.1		-4 5 5 5 5 5	54 04 12 16 16 13	15.5 58.6 14.4 03.3 26.5 26.0	2.6660 2.6775 2.6870 2.6946 2.7000 2.7033	14 14 14 14 14 14	58.53 54.69 51.51 49.02 47.23 46.14
	15.0 15.5 16.0 16.5 17.0 17.5	13 19 25 31 37 43	20 16 13 11 10 12	18.6 35.8 26.7 21.4 48.4 13.9		-5 4 4 4 4 3	07 57 44 28 09 47	04.9 26.7 36.1 38.6 41.1 51.8	2.7045 2.7037 2.7009 2.6962 2.6898 2.6818	14 14 14 14 14	45.74 46.02 46.95 48.49 50.61 53.24
	18.0 18.5 19.0 19.5 20.0 20.5	49 55 61 67 74 80	16 22 32 44 01 21	01.9 33.6 07.4 58.8 20.4 21.2		-3 2 2 1 1 -0	23 56 27 55 22 48	20.5 19.1 01.3 43.5 44.1 24.4	2.6725 2.6621 2.6508 2.6387 2.6262 2.6134	14 14 15 15 15 15	56.35 59.86 03.71 07.83 12.16 16.63
	21.0 21.5 22.0 22.5 23.0 23.5	86 93 99 106 112 119	45 12 44 19 58 40	07.7 43.0 07.4 18.5 11.3 38.7	+	-0 -0 0 1 2	13 22 58 33 08 41	07.8 39.8 30.5 54.8 22.3 21.6	2.6006 2.5878 2.5753 2.5633 2.5518 2.5408	15 15 15 15 15 15	21.16 25.70 30.18 34.55 38.77 42.81
	24.0 24.5 25.0 25.5 26.0 26.5	126 133 140 147 154 161	26 15 07 02 00 00	31.5 39.2 49.5 49.4 24.7 20.6		-3 3 4 4 4 5	12 40 06 28 46 01	21.8 52.6 25.1 32.6 51.3 00.6	2.5306 2.5211 2.5123 2.5042 2.4969 2.4903	15 15 15 15 15 16	46.63 50.21 53.54 56.61 59.41 01.95
	27.0 27.5 28.0 28.5 29.0 29.5	168 175 182 189 196 203	02 06 11 18 25 33	21.7 11.8 34.2 11.5 45.2 56.0		-5 5 5 5 4	10 15 16 11 02 48	43.7 48.0 05.7 33.8 14.2 14.2	2.4844 2.4793 2.4750 2.4715 2.4688 2.4671	16 16 16 16 16	04.21 06.20 07.89 09.27 10.31 10.99
July	30.0 30.5 1.0 1.5 2.0	210 217 224 232 239	42 50 58 05 11	23.6 46.2 41.2 44.7 32.1		4 4 3 3 -2	29 07 40 10 38	46.0 07.2 39.9 50.6 10.0	2.4664 2.4667 2.4682 2.4710 2.4752	16 16 16 16 16	11.28 11.14 10.54 09.44 07.81

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	Date Apparent Longitude		Apparent Latitude			True Geocentric Distance (A. U.)		emi neter		
٠	1.0 1.5 2.0 2.5 3.0 3.5	224 232 239 246 253 260	58 05 11 15 17	" 41.2 44.7 32.1 38.2 37.6 05.3	0 +3 3 2 2 1 0	40 10 38 03 26 48	39.9 50.6 10.0 11.5 31.1 46.0	(X 10 ⁻³) 2.4682 2.4710 2.4752 2.4807 2.4877 2.4961	16 16 16 16 16 16	" 10.54 09.44 07.81 05.65 02.94 59.70
	4.0 4.5 5.0 5.5 6.0 6.5	267 274 280 287 294 301	13 06 56 42 23 00	37.2 50.7 25.6 04.3 32.6 40.1	+0 -0 1 1 2 2	10 27 04 40 15 47	33.7 28.9 46.7 47.0 00.1 00.1	2.5059 2.5170 2.5293 2.5426 2.5568 2.5715	15 15 15 15 15 15	55.95 51.74 47.12 42.15 36.93 31.55
	7.0 7.5 8.0 8.5 9.0 9.5	307 314 320 326 333 339	33 01 25 44 00 11	20.5 32.1 17.5 44.0 03.1 30.6	-3 3 4 4 4 4	16 42 06 26 43 56	25.0 56.5 20.6 26.5 06.9 17.2	2.5867 2.6019 2.6170 2.6315 2.6454 2.6582	15 15 15 15 15 15	26.10 20.68 15.38 10.31 05.56 01.19
1 1 1 1	0.0 0.5 1.0 1.5 2.0 2.5	345 351 357 3 9 15	19 24 26 26 24 21	26.0 12.6 16.6 06.8 14.5 12.6	-5 5 5 5 5 5	05 12 14 13 09 01	55.5 01.7 37.4 45.4 29.9 55.5	2.6697 2.6798 2.6881 2.6946 2.6991 2.7015	14 14 14 14 14 14	57.30 53.93 51.16 49.01 47.53 46.74
1 1 1 1	3.0 3.5 4.0 4.5 5.0 5.5	21 27 33 39 45 51	17 13 10 09 09 11	35.5 58.4 57.0 06.9 03.2 20.1	-4 4 4 3 3	51 37 20 00 37 12	07.7 12.8 17.8 30.4 59.3 54.6	2.7018 2.6999 2.6958 2.6898 2.6818 2.6719	14 14 14 14 14	46.66 47.28 48.60 50.61 53.27 56.55
1 1 1 1	6.0 6.5 7.0 7.5 8.0 8.5	57 63 69 75 82 88	16 25 37 54 15 41	29.9 03.2 27.5 07.2 22.5 29.2	-2 2 1 1 0 -0	45 15 44 11 36 01	27.6 51.7 22.2 16.6 55.3 41.1	2.6605 2.6477 2.6337 2.6189 2.6034 2.5877	15 15 15 15 15 15	00.40 04.76 09.56 14.72 20.14 25.74
1 2 2 2	9.0 9.5 0.0 0.5 1.0	95 101 108 115 122 129	12 48 30 16 07 03	37.9 53.3 14.3 33.3 36.6 04.2	+0 1 1 2 2 3	34 09 44 18 51 21	00.1 40.2 48.3 52.2 18.0 32.0	2.5719 2.5565 2.5416 2.5275 2.5145 2.5028	15 15 15 15 15 15	31.41 37.04 42.53 47.77 52.67 57.15
2 2 2	2.0 2.5 3.0 3.5 4.0	136 143 150 157 164	02 05 11 19 29	30.6 25.7 15.3 22.8 10.1	+3 4 4 4 +5	49 13 33 50 01	01.1 14.1 42.6 02.4 53.8	2.4924 2.4835 2.4762 2.4705 2.4663	16 16 16 16	01.13 04.56 07.41 09.65 11.29

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Da	Date Apparent Longitude		Apparent Latitude			True Geocentric Distance (A. U.)		emi neter		
July	24.0 24.5 25.0 25.5 26.0 26.5	164 171 178 186 193 200	29 39 51 02 12 22	10.1 59.6 14.5 20.9 48.0 08.8	+5 5 5 5 5 4	01 09 11 08 01 49	53.8 02.7 20.9 45.9 21.3 16.2	(X 10 ⁻³) 2.4663 2.4637 2.4625 2.4626 2.4639 2.4663	16 16 16 16 16 16	11.29 12.33 12.82 12.78 12.26 11.31
	27.0 27.5 28.0 28.5 29.0 29.5	207 214 221 228 235 242	30 36 40 41 41 38	00.9 05.5 08.2 57.7 25.6 25.8	+4 4 3 3 2 2	32 12 47 19 49 16	44.8 05.6 41.5 58.4 24.8 31.4	2.4697 2.4740 2.4791 2.4850 2.4915 2.4987	16 16 16 16 16 15	09.97 08.28 06.28 04.00 01.46 58.69
Aug.	30.0 30.5 31.0 31.5 1.0 1.5	249 256 263 270 276 283	32 24 13 00 44 24	53.4 44.5 55.3 22.1 00.4 45.7	+1 1 +0 -0 0 1	41 05 29 07 43 19	50.3 54.5 17.2 28.8 51.3 19.8	2.5066 2.5150 2.5241 2.5338 2.5440 2.5547	15 15 15 15 15 15	55.69 52.48 49.06 45.45 41.65 37.68
	2.0 2.5 3.0 3.5 4.0 4.5	290 296 303 309 316 322	02 37 08 37 02 23	32.6 15.7 49.6 09.5 11.6 53.6	-1 2 2 3 3 4	53 25 55 23 47 09	25.3 41.6 45.0 14.7 53.2 26.5	2.5660 2.5777 2.5898 2.6020 2.6144 2.6268	15 15 15 15 15 15	33.56 29.32 25.00 20.63 16.27 11.97
	5.0 5.5 6.0 6.5 7.0 7.5	328 334 341 347 353 359	42 57 09 17 23 26	15.1 18.4 08.5 53.4 44.8 57.5	-4 4 4 5 5 5	27 42 54 01 06 07	43.6 36.7 01.0 54.2 16.5 10.1	2.6388 2.6505 2.6616 2.6718 2.6810 2.6890	15 15 15 14 14 14	07.79 03.79 00.04 56.59 53.51 50.86
	8.0 8.5 9.0 9.5 10.0 10.5	5 11 17 23 29 35	27 26 24 20 15	49.9 43.8 04.2 19.1 59.2 37.6	-5 4 4 4 4 4	04 58 49 37 22 04	38.8 47.8 43.6 33.2 24.9 27.2	2.6955 2.7005 2.7037 2.7050 2.7043 2.7015	14 14 14 14 14 14	48.70 47.07 46.03 45.61 45.84 46.74
	11.0 11.5 12.0 12.5 13.0 13.5	41 47 53 59 65 71	07 05 04 06 10 19	49.7 12.0 22.7 00.1 42.8 08.6	-3 3 2 2 1 1	43 20 55 27 58 27	49.6 42.0 15.5 41.8 14.3 07.5	2.6966 2.6897 2.6807 2.6697 2.6569 2.6425	14 14 14 14 15 15	48.34 50.64 53.63 57.30 01.62 06.55
	14.0 14.5 15.0 15.5 16.0	77 83 90 96 103	31 49 12 41 16	53.5 31.4 32.5 22.5 21.2	-0 -0 +0 0 +1	54 21 13 47 22	38.2 04.9 11.0 45.9 13.1	2.6266 2.6096 2.5916 2.5731 2.5545	15 15 15 15 15	12.03 17.98 24.33 30.97 37.78

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Da	Date Apparent Longitude		Apparent Latitude			True Geocentric Distance (A. U.)		emi neter		
Aug.	16.0 16.5 17.0 17.5 18.0 18.5	103 109 116 123 130 137	16 57 45 39 39 45	21.2 41.6 28.5 37.3 54.0 53.9	+1 1 2 2 3 3	22 56 28 59 28 54	13.1 03.4 45.0 44.5 27.0 18.1	(X 10 ⁻³) 2.5545 2.5359 2.5179 2.5009 2.4850 2.4707	15 15 15 15 16 16	37.78 44.63 51.38 57.88 03.99 09.56
	19.0 19.5 20.0 20.5 21.0 21.5	144 152 159 166 174 181	57 12 31 53 16 40	02.7 36.6 43.7 26.5 43.5 32.6	+4 4 4 5 5	16 35 49 58 03 02	44.2 14.8 23.5 49.3 18.1 42.9	2.4583 2.4480 2.4399 2.4342 2.4309 2.4299	16 16 16 16 16	14.45 18.56 21.80 24.10 25.45 25.84
	22.0 22.5 23.0 23.5 24.0 24.5	189 196 203 211 218 225	03 25 45 02 15 24	53.3 49.3 30.9 15.7 30.4 50.4	+4 4 4 3 3	57 46 31 11 48 21	04.6 31.4 18.2 46.0 20.5 31.1	2.4313 2.4347 2.4401 2.4471 2.4557 2.4655	16 16 16 16 16	25.31 23.92 21.75 18.91 15.50 11.62
	25.0 25.5 26.0 26.5 27.0 27.5	232 239 246 253 260 266	29 30 27 19 07 51	59.7 49.8 19.3 31.7 35.0 39.6	+2 1 1 +0 -0	51 19 46 11 35 00	49.4 48.7 02.6 04.3 26.5 19.5	2.4763 2.4878 2.4999 2.5123 2.5250 2.5377	16 16 15 15 15 15	07.39 02.91 58.25 53.51 48.73 43.97
	28.0 28.5 29.0 29.5 30.0 30.5	273 280 286 293 299 306	31 08 42 12 39 03	57.8 42.3 05.4 18.6 32.1 54.5	-0 1 1 2 2 3	35 10 43 15 44 12	44.0 18.8 37.8 17.1 54.7 11.2	2.5504 2.5630 2.5754 2.5877 2.5996 2.6113	15 15 15 15 15 15	39.27 34.65 30.14 25.75 21.49 17.36
Sept.	31.0 31.5 1.0 1.5 2.0 2.5	312 318 325 331 337 343	25 44 00 14 26 35	32.8 32.4 57.8 52.4 19.6 22.7	-3 3 4 4 4 4	36 58 17 32 44 53	49.5 35.1 15.9 42.5 48.2 28.8	2.6227 2.6338 2.6444 2.6546 2.6643 2.6735	15 15 15 15 14 14	13.38 09.55 05.88 02.40 59.11 56.04
	3.0 3.5 4.0 4.5 5.0 5.5	349 355 1 7 13 19	42 46 48 49 48 45	06.1 35.3 57.7 22.8 02.9 13.1	-4 5 4 4 4	58 00 58 53 45 34	42.4 29.5 52.7 56.3 46.5 30.8	2.6819 2.6895 2.6962 2.7018 2.7063 2.7094	14 14 14 14 14	53.23 50.70 48.48 46.63 45.17 44.15
	6.0 6.5 7.0 7.5 8.0	25 31 37 43 49	41 36 31 25 21	11.4 19.4 01.4 45.0 00.8	-4 4 3 3 -2	20 03 43 21 57	17.9 17.4 39.9 36.6 19.5	2.7111 2.7111 2.7095 2.7060 2.7007	14 14 14 14 14	43.61 43.59 44.12 45.25 47.00

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	Date Apparent		True Geocentric	Semi
	Longitude		Distance (A. U.)	Diameter
Sept. 8.0	49 21 00.8	-2 57 19.5	(X 10 ⁻³) 2.7007 2.6935 2.6843 2.6731 2.6601 2.6454	14 47.00
8.5	55 17 22.1	2 31 01.2		14 49.39
9.0	61 15 24.6	2 02 55.1		14 52.43
9.5	67 15 45.9	1 33 15.5		14 56.15
10.0	73 19 05.3	1 02 17.5		15 00.53
10.5	79 26 02.7	-0 30 17.8		15 05.55
11.0	85 37 18.3	+0 02 25.7	2.6290	15 11.19
11.5	91 53 31.4	0 35 33.0	2.6112	15 17.40
12.0	98 15 19.3	1 08 42.4	2.5922	15 24.12
12.5	104 43 16.4	1 41 29.6	2.5723	15 31.27
13.0	111 17 52.2	2 13 28.3	2.5519	15 38.73
13.5	117 59 30.0	2 44 09.5	2.5312	15 46.39
14.0	124 48 25.0	+3 13 02.3	2.5108	15 54.11
14.5	131 44 43.1	3 39 34.3	2.4909	16 01.71
15.0	138 48 18.6	4 03 12.1	2.4721	16 09.03
15.5	145 58 53.4	4 23 22.7	2.4547	16 15.88
16.0	153 15 56.4	4 39 34.7	2.4392	16 22.08
16.5	160 38 43.2	4 51 20.3	2.4260	16 27.45
17.0	168 06 16.9	+4 58 16.4	2.4153	16 31.83
17.5	175 37 30.4	5 00 06.9	2.4073	16 35.10
18.0	183 11 08.3	4 56 43.3	2.4023	16 37.17
18.5	190 45 51.2	4 48 06.1	2.4003	16 37.99
19.0	198 20 18.7	4 34 24.7	2.4014	16 37.56
19.5	205 53 13.5	4 15 57.0	2.4053	16 35.92
20.0	213 23 24.8	+3 53 08.6	2.4120	16 33.16
20.5	220 49 51.1	3 26 31.1	2.4212	16 29.39
21.0	228 11 42.1	2 56 40.4	2.4326	16 24.77
21.5	235 28 19.3	2 24 15.0	2.4458	16 19.44
22.0	242 39 16.6	1 49 54.4	2.4605	16 13.58
22.5	249 44 19.3	1 14 17.5	2.4764	16 07.35
23.0	256 43 23.1	+0 38 01.5	2.4930	16 00.89
23.5	263 36 32.1	+0 01 41.6	2.5101	15 54.34
24.0	270 23 57.7	-0 34 10.3	2.5274	15 47.82
24.5	277 05 56.6	1 09 04.9	2.5445	15 41.43
25.0	283 42 48.9	1 42 36.4	2.5614	15 35.26
25.5	290 14 57.1	2 14 21.7	2.5776	15 29.35
26.0	296 42 44.8	-2 44 00.6	2.5933	15 23.75
26.5	303 06 35.4	3 11 15.5	2.6081	15 18.50
27.0	309 26 51.4	3 35 51.4	2.6220	15 13.61
27.5	315 43 53.9	3 57 35.6	2.6351	15 09.09
28.0	321 58 02.1	4 16 17.4	2.6472	15 04.94
28.5	328 09 33.4	4 31 48.5	2.6583	15 01.16
29.0	334 18 42.9	-4 44 02.4	2.6684	14 57.73
29.5	340 25 43.7	4 52 54.7	2.6776	14 54.65
30.0	346 30 47.3	4 58 23.0	2.6859	14 51.90
30.5	352 34 03.8	5 00 26.9	2.6932	14 49.49
Oct. 1.0	358 35 42.1	-4 59 07.8	2.6995	14 47.40

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	Date Apparent Longitude		Appare Latitu		True Geocentric Distance (A. U.)		emi meter
Oct. 1.0 1.5 2.0 2.5 3.0 3.5	358 35 44 4 35 55 10 34 3 16 32 1 22 28 4	2.1 -4 0.8 4 1.4 4 1.8 4 1.0 4 1.2 4	59 54 46 35 21 04	" 07.8 29.1 35.8 34.7 34.1 43.7	(X 10 ⁻³) 2.6995 2.7048 2.7092 2.7126 2.7148 2.7160	14 14 14 14 14 14	" 47.40 45.64 44.21 43.12 42.38 42.02
4.0 4.5 5.0 5.5 6.0 6.5	40 14 16 46 08 56 52 03 46 57 59 22	3.9 -3 5.3 3 5.4 2 5.7 2 5.7 2 5.5 1	45 23 59 33 05 35	14.6 18.8 09.5 00.6 06.8 43.6	2.7159 2.7146 2.7119 2.7077 2.7021 2.6949	14 14 14 14 14 14	42.04 42.47 43.35 44.70 46.55 48.92
7.0 7.5 8.0 8.5 9.0 9.5	75 54 33 81 57 33 88 03 5 94 14 0	1.1 -1 1.0 0 1.1 -0 1.1 +0 1.0 1 1.5 1	05 33 01 31 03 35	07.2 34.6 23.4 07.5 38.2 47.7	2.6861 2.6756 2.6635 2.6497 2.6344 2.6177	14 14 14 15 15	51.84 55.33 59.41 04.07 09.32 15.14
10.0 10.5 11.0 11.5 12.0 12.5	113 14 0' 119 45 5' 126 24 3' 133 10 2	1.0 +2 1.7 2 1.8 3 1.7 3 1.7 3 1.3 4	07 37 06 32 57 18	13.4 31.2 15.2 58.2 11.5 25.8	2.5996 2.5804 2.5604 2.5398 2.5189 2.4982	15 15 15 15 15 15	21.50 28.34 35.61 43.20 51.01 58.90
13.0 13.5 14.0 14.5 15.0 15.5	154 12 2 161 27 4 168 49 4 176 17 2	3.5 +4 3.9 4 4.4 4 .8 5 5.3 5 .6 4	36 49 59 03 03 57	11.2 59.1 22.8 59.3 31.1 47.6	2.4780 2.4588 2.4410 2.4251 2.4115 2.4004	16 16 16 16 16	06.71 14.26 21.35 27.80 33.39 37.96
16.0 16.5 17.0 17.5 18.0 18.5	199 04 5: 206 44 2: 214 23 2: 222 00 3:	5.9 +4 2.8 4 3.3 4 5.2 3 2.0 3 7.7 2	46 30 09 43 14 41	46.2 34.0 27.2 51.4 19.8 32.0	2.3923 2.3874 2.3858 2.3875 2.3925 2.4007	16 16 16 16 16	41.33 43.40 44.07 43.35 41.25 37.86
19.0 19.5 20.0 20.5 21.0 21.5	244 28 20 251 46 5 258 58 4 266 03 5	2.5 +2 5.7 1 .2 0 (.8 +0 0.3 -0 0.6 1	06 29 50 12 25 02	11.8 04.6 55.9 29.1 35.7 42.3	2.4117 2.4252 2.4409 2.4584 2.4773 2.4970	16 16 16 16 16	33.31 27.76 21.39 14.41 07.00 59.36
22.0 22.5 23.0 23.5 24.0	286 38 56 293 17 3 299 50 19	2.5 -1 2.1 2 3.8 3 2.7 -3	38 11 43 12 37	19.2 59.6 21.0 05.0 57.0	2.5172 2.5375 2.5576 2.5771 2.5957	15 15 15 15 15	51.66 44.04 36.64 29.55 22.87

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Da	Date Apparent Longitude		Apparent Latitude			True Geocentric Distance (A. U.)		emi neter		
Oct.	24.0 24.5 25.0 25.5 26.0 26.5	306 312 318 325 331 337	17 40 57 11 22 29	39.7 02.7 57.1 52.5 17.6 39.7	o -3 4 4 4 4 4	37 00 20 36 49 58	57.0 45.3 21.1 37.9 31.2 58.2	(X 10 ⁻³) 2.5957 2.6133 2.6297 2.6448 2.6584 2.6705	15 15 15 15 15 15 14	" 22.87 16.65 10.94 05.76 01.12 57.03
	27.0 27.5 28.0 28.5 29.0 29.5	343 349 355 1 7 13	34 36 37 36 34 31	24.7 56.2 36.1 44.1 38.1 34.2	-5 5 5 4 4	04 07 06 02 54 44	57.9 30.5 37.9 23.2 51.1 07.4	2.6812 2.6903 2.6980 2.7043 2.7092 2.7128	14 14 14 14 14 14	53.47 50.43 47.89 45.83 44.22 43.04
Nov.	30.0 30.5 31.0 31.5 1.0 1.5	19 25 31 37 43 49	27 23 18 14 09 05	47.0 30.1 56.3 17.7 46.9 36.6	-4 4 3 3 3 2	30 13 54 32 07 41	19.8 37.0 09.4 08.7 47.9 21.5	2.7152 2.7164 2.7165 2.7155 2.7134 2.7102	14 14 14 14 14 14	42.27 41.88 41.85 42.18 42.86 43.88
	2.0 2.5 3.0 3.5 4.0 4.5	55 60 66 72 78 85	02 59 57 57 58 02	00.4 13.1 31.0 12.0 36.0 04.8	-2 1 1 0 -0 +0	13 43 12 40 07 25	04.8 14.6 08.4 04.6 22.5 38.0	2.7061 2.7008 2.6945 2.6871 2.6785 2.6689	14 14 14 14 14 14	45.25 46.96 49.04 51.49 54.34 57.59
	5.0 5.5 6.0 6.5 7.0 7.5	91 97 103 109 116 122	08 16 29 45 05 30	02.2 53.8 06.7 09.5 31.0 40.3	+0 1 2 2 3 3	58 31 03 33 02 30	36.2 10.9 00.1 41.2 51.1 05.7	2.6580 2.6459 2.6327 2.6183 2.6028 2.5863	15 15 15 15 15 15	01.26 05.37 09.92 14.92 20.36 26.22
	8.0 8.5 9.0 9.5 10.0 10.5	129 135 142 149 156 163	01 37 19 07 02 04	05.2 11.6 22.0 54.2 59.8 42.4	+3 4 4 4 5 5	55 17 36 51 03 10	00.8 11.5 12.9 40.2 09.6 19.2	2.5690 2.5510 2.5325 2.5137 2.4951 2.4769	15 15 15 15 16 16	32.47 39.06 45.93 52.97 00.09 07.14
	11.0 11.5 12.0 12.5 13.0 13.5	170 177 184 192 199 207	12 27 47 13 42 15	56.4 25.6 42.5 08.0 51.5 52.4	+5 5 5 4 4 4	12 10 02 50 32 10	49.6 25.4 56.4 18.9 37.0 03.0	2.4595 2.4433 2.4287 2.4160 2.4058 2.3982	16 16 16 16 16	13.99 20.45 26.35 31.51 35.74 38.89
	14.0 14.5 15.0 15.5 16.0	214 222 230 237 245	51 27 02 36 08	02.1 06.1 47.4 50.1 01.7	+3 3 2 2 +1	42 11 37 00 21	58.1 51.9 21.6 10.2 04.7	2.3935 2.3920 2.3937 2.3986 2.4066	16 16 16 16	40.84 41.48 40.77 38.72 35.39

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Da	Date Apparent Longitude			Appar Latitu		True Geocentric Distance (A. U.)		emi neter		
Nov.	16.0 16.5 17.0 17.5 18.0 18.5	245 252 259 267 274 281	08 35 57 14 24 28	01.7 16.8 38.7 21.4 49.9 40.9	+1 0 +0 -0 1	21 40 00	04.7 53.9 26.0 33.0 21.5 22.6	(X 10 ⁻³) 2.4066 2.4176 2.4312 2.4471 2.4650 2.4843	16 16 16 16 16 16	35.39 30.88 25.33 18.91 11.82 04.26
	19.0 19.5 20.0 20.5 21.0 21.5	288 295 301 308 315 321	25 15 59 36 06 31	41.7 49.8 11.7 01.0 38.0 27.3	-2 3 3 3 4 4	18	05.4 04.4 59.8 36.9 45.3 18.3	2.5047 2.5257 2.5468 2.5678 2.5881 2.6074	15 15 15 15 15 15	56.41 48.46 40.59 32.93 25.61 18.73
	22.0 22.5 23.0 23.5 24.0 24.5	327 334 340 346 352 358	50 05 16 22 26 27	57.3 38.9 04.5 46.8 18.7 12.6	-4 5 5 5 5 5	52 03 11 14 15 12	12.3 26.1 00.7 58.3 22.6 18.4	2.6256 2.6424 2.6575 2.6709 2.6824 2.6921	15 15 15 14 14 14	12.37 06.59 01.43 56.91 53.05 49.85
	25.0 25.5 26.0 26.5 27.0 27.5	4 10 16 22 28 34	25 23 19 14 09 04	59.5 09.2 09.7 27.2 26.1 28.6	-5 4 4 4 4 3	43 27	51.1 07.5 14.8 21.6 37.3 12.5	2.6999 2.7058 2.7100 2.7124 2.7132 2.7126	14 14 14 14 14 14	47.28 45.33 43.97 43.18 42.90 43.12
	28.0 28.5 29.0 29.5 30.0 30.5	39 45 51 57 63 69	59 56 53 51 51 53	55.2 04.4 13.2 37.0 29.8 05.0	-3 2 2 2 1 1 0	57 29 59 27	19.0 10.1 00.3 05.6 43.5 12.7	2.7105 2.7072 2.7028 2.6973 2.6910 2.6838	14 14 14 14 14 14	43.79 44.86 46.32 48.10 50.20 52.58
Dec.	1.0 1.5 2.0 2.5 3.0 3.5	75 82 88 94 100 106	56 02 10 20 33 49	34.7 11.1 05.7 30.4 37.1 38.3	-0 +0 0 1 1 2		53.2 53.6 45.7 19.9 12.8 00.2	2.6759 2.6674 2.6582 2.6484 2.6380 2.6272	14 14 15 15 15 15	55.21 58.09 01.20 04.52 08.07 11.83
	4.0 4.5 5.0 5.5 6.0 6.5	113 119 125 132 139 145	08 31 57 27 01 39	46.6 15.6 18.6 09.7 02.1 08.9	+2 3 3 4 4 4	48	18.1 42.3 49.0 15.0 37.7 35.7	2.6157 2.6038 2.5913 2.5783 2.5649 2.5511	15 15 15 15 15 15	15.82 20.02 24.45 29.10 33.96 39.01
	7.0 7.5 8.0 8.5 9.0	152 159 166 172 179	21 08 00 57 58	41.4 49.3 39.2 14.0 32.0	+5 5 5 5 +5	02 11 16 17 12	48.9 58.9 49.8 08.4 44.9	2.5370 2.5228 2.5085 2.4943 2.4806	15 15 15 16 16	44.23 49.57 54.98 00.39 05.70

 $\label{eq:MOON, 2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	Date Apparent Longitude		Appare Latitud		True Geocentric Distance (A. U.)		emi neter
Dec. 9.0 9.5 10.0 10.5 11.0 11.5	179 58 33 187 04 20 194 14 43 201 29 00 208 46 53 216 07 43	0 5 5 4 9 4 6 4	12 03 49 30 07 40	" 44.9 33.8 34.6 52.4 38.6 11.3	(X 10 ⁻³) 2.4806 2.4675 2.4554 2.4445 2.4351 2.4276	16 16 16 16 16 16	" 05.70 10.82 15.62 19.97 23.75 26.81
12.0 12.5 13.0 13.5 14.0 14.5	223 30 54 230 55 33 238 20 49 245 45 46 253 09 27 260 30 55	9 2 9 1 8 1 5 +0	08 34 57 18 37 03	55.5 22.7 10.2 00.2 37.8 10.3	2.4221 2.4190 2.4184 2.4205 2.4252 2.4327	16 16 16 16 16	29.03 30.30 30.54 29.70 27.76 24.74
15.0 15.5 16.0 16.5 17.0 17.5	267 49 10 275 03 4 282 13 2' 289 17 5' 296 16 44 303 09 29	8 1 4 2 7 2 7 3	43 23 00 35 08 37	37.8 00.8 38.9 56.7 24.5 38.6	2.4427 2.4550 2.4695 2.4859 2.5037 2.5225	16 16 16 16 15	20.71 15.76 10.03 03.66 56.81 49.66
18.0 18.5 19.0 19.5 20.0 20.5	309 56 0 316 36 18 323 10 25 329 38 35 336 01 07 342 18 26	2 4 5 4 7 4 4 5	03 25 43 57 07 14	21.1 19.7 26.7 39.1 57.0 23.2	2.5420 2.5618 2.5814 2.6006 2.6188 2.6359	15 15 15 15 15 15	42.37 35.09 27.98 21.16 14.74 08.81
21.0 21.5 22.0 22.5 23.0 23.5	348 30 53 354 39 07 0 43 33 6 45 0 12 43 52 18 40 47	3 5 1 5 1 5 1 4	17 16 11 03 52 38	02.9 02.6 29.8 33.2 21.7 05.0	2.6515 2.6654 2.6775 2.6876 2.6957 2.7016	15 14 14 14 14 14	03.46 58.73 54.67 51.31 48.65 46.70
24.0 24.5 25.0 25.5 26.0 26.5	24 36 22 30 31 11 36 25 53 42 20 53 48 16 50 54 14 03	7 4 8 3 7 3 1 2	20 00 38 13 46 17	53.2 56.8 27.0 36.0 36.7 43.3	2.7054 2.7072 2.7070 2.7049 2.7010 2.6956	14 14 14 14 14	45.45 44.87 44.95 45.64 46.90 48.69
27.0 27.5 28.0 28.5 29.0 29.5	60 13 0' 66 14 20 72 18 0: 78 24 36 84 34 1 90 47 0:	0 1 6 0 0 -0 9 +0	47 15 42 08 25 59	11.2 17.3 20.0 39.5 22.7 23.3	2.6887 2.6807 2.6716 2.6617 2.6511 2.6401	14 14 14 15 15	50.95 53.63 56.67 00.01 03.59 07.35
30.0 30.5 31.0 31.5 32.0	97 03 17 103 23 02 109 46 18 116 13 08 122 43 28	1 2 8 2 3 3	32 05 37 06 34	58.0 41.2 06.7 48.1 19.1	2.6288 2.6174 2.6060 2.5946 2.5834	15 15 15 15 15	11.25 15.23 19.25 23.27 27.26

 $\begin{tabular}{ll} \textbf{MOON, 2020} \\ FOR 0^h AND 12^h TERRESTRIAL TIME \\ \end{tabular}$

Date	Apparent Right Ascension	Apparen Declinati	
Jan. 0.0 0.5 1.0 1.5 2.0 2.5	h m s 22 30 44.46 22 53 55.73 23 16 38.29 23 38 57.59 0 00 59.58 0 22 50.52	12 04 9 58 7 48 5 33	06.46 54 33.04 04.59 54 24.23 41.62 54 17.67 10.67 54 13.51 39.54 54 11.88 11.78 54 12.87
3.0 3.5 4.0 4.5 5.0 5.5	0 44 36.93 1 06 25.48 1 28 22.95 1 50 36.19 2 13 12.00 2 36 17.09	+1 23 3 43 6 02 8 19	48.34 54 16.51 30.80 54 22.83 44.65 54 31.78 49.28 54 43.29 35.81 54 57.25 48.50 55 13.47
6.0 6.5 7.0 7.5 8.0 8.5	2 59 57.84 3 24 20.16 3 49 29.12 4 15 28.62 4 42 20.88 5 10 06.03	14 42 16 36 18 19 19 50	03.07 55 31.76 45.44 55 51.84 11.08 56 13.39 25.47 56 36.04 25.85 56 59.38 04.70 57 22.95
9.0 9.5 10.0 10.5 11.0 11.5	5 38 41.63 6 08 02.45 6 38 00.46 7 08 25.20 7 39 04.56 8 09 45.83	23 10	15.15 57 46.29 58.17 58 08.89 31.07 58 30.27 36.29 58 49.96 29.10 59 07.55 02.92 59 22.67
12.0 12.5 13.0 13.5 14.0 14.5	8 40 16.88 9 10 27.22 9 40 08.82 10 09 16.51 10 37 48.03 11 05 43.77	19 31 17 45 15 43 13 26	51.09 59 35.05 04.98 59 44.51 28.82 59 50.95 12.40 59 54.40 42.94 59 54.96 37.35 59 52.82
15.0 15.5 16.0 16.5 17.0 17.5	11 33 06.35 12 00 00.07 12 26 30.50 12 52 43.93 13 18 47.04 13 44 46.50	+0 02 -2 44	35.76 59 48.22 16.57 59 41.46 13.30 59 32.84 52.84 59 22.70 25.11 59 11.31 27.83 58 58.97
18.0 18.5 19.0 19.5 20.0 20.5	14 10 48.72 14 36 59.49 15 03 23.77 15 30 05.32 15 57 06.49 16 24 27.93	13 00 15 11 17 09	08.94 58 45.90 27.73 58 32.32 28.78 58 18.37 22.02 58 04.17 23.60 57 49.82 57.50 57 35.36
21.0 21.5 22.0 22.5 23.0	16 52 08.46 17 20 04.97 17 48 12.53 18 16 24.69 18 44 33.95	21 31 22 23 22 57	37.96 57 20.83 12.51 57 06.26 45.21 56 51.67 39.71 56 37.07 41.45 56 22.51

 $\label{eq:MOON,2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	Apparent Right Ascension	Apparer Declinati	
Jan. 23.0 23.5 24.0 24.5 25.0 25.5	h m s 18 44 33.95 19 12 32.32 19 40 12.01 20 07 26.03 20 34 08.68 21 00 15.88	-23 12 23 08 22 47 22 07 21 12 20 01	41.45 56 22.51 58.72 56 08.03 02.08 55 53.70 42.36 55 39.62 07.30 55 25.90 37.47 55 12.68
26.0	21 25 45.27	-18 37	41.90 55 00.12 53.92 54 48.38 47.57 54 37.66 54.91 54 28.15 44.02 54 20.04 37.97 54 13.52
26.5	21 50 36.22	17 01	
27.0	22 14 49.66	15 15	
27.5	22 38 27.85	13 20	
28.0	23 01 34.18	11 18	
28.5	23 24 12.89	9 10	
29.0	23 46 28.90	-6 57	54.44 54 08.80 45.92 54 06.03 20.45 54 05.40 42.66 54 07.03 04.88 54 11.06 00.04 54 17.57
29.5	0 08 27.64	4 41	
30.0	0 30 14.91	-2 23	
30.5	0 51 56.80	+0 03	
31.0	1 13 39.59	2 16	
31.5	1 35 29.74	4 35	
Feb. 1.0	1 57 33.82	+6 51	59.49 54 26.64 56.84 54 38.29 40.85 54 52.51 53.71 55 09.25 09.53 55 28.39 53.32 55 49.77
1.5	2 19 58.42	9 05	
2.0	2 42 50.09	11 15	
2.5	3 06 15.18	13 19	
3.0	3 30 19.69	15 17	
3.5	3 55 08.97	17 05	
4.0	4 20 47.41	+18 44	20.77 56 13.16 38.96 56 38.26 48.72 57 04.70 48.62 57 32.06 40.92 57 59.80 39.18 58 27.38
4.5	4 47 17.99	20 10	
5.0	5 14 41.87	21 22	
5.5	5 42 57.92	22 18	
6.0	6 12 02.42	22 56	
6.5	6 41 48.87	23 14	
7.0	7 12 08.28	+23 11	16.91 58 54.16 36.19 59 19.51 14.81 59 42.77 30.79 60 03.32 23.41 60 20.61 30.55 60 34.16
7.5	7 42 49.66	22 45	
8.0	8 13 40.97	21 57	
8.5	8 44 30.16	20 46	
9.0	9 15 06.32	19 14	
9.5	9 45 20.57	17 22	
10.0	10 15 06.60	+15 13	03.12 60 43.64 37.37 60 48.85 06.56 60 49.74 32.88 60 46.42 00.33 60 39.16 29.22 60 28.33
10.5	10 44 20.94	12 48	
11.0	11 13 02.76	10 12	
11.5	11 41 13.55	7 26	
12.0	12 08 56.64	4 35	
12.5	12 36 16.70	+1 40	
13.0	13 03 19.23	-1 14	07.93 60 14.38 08.88 59 57.84 03.06 59 39.26 32.02 59 19.17 29.40 58 58.08
13.5	13 30 10.10	4 06	
14.0	13 56 55.23	6 53	
14.5	14 23 40.16	9 32	
15.0	14 50 29.79	-12 02	

 $\begin{tabular}{ll} \textbf{MOON}, 2020 \\ FOR <math>0^h$ AND 12^h TERRESTRIAL TIME

Date		appare at Asce			ppare clina			zontal allax
Feb. 15. 15. 16. 16. 17.	5 15 0 15 5 16 0 16	m 50 17 44 12 39 07	s 29.79 28.09 37.84 00.42 35.63 21.67	-12 14 16 18 19 21	02 21 26 17 51 09	"29.40 00.71 23.23 06.31 52.04 36.46	58 58 58 57 57 57	58.08 36.46 14.71 53.17 32.12 11.75
18. 18. 19. 19. 20. 20.	5 18 0 18 5 18 0 19	35 03 31 58 26 53	15.15 11.31 04.35 47.89 15.45 20.97	-22 22 23 23 23 23 22	09 51 14 18 04 33	31.02 04.04 01.98 29.99 51.67 47.86	56 56 56 55 55 55	52.23 33.66 16.09 59.56 44.07 29.61
21. 21. 22. 22. 23. 23.	5 20 0 21 5 21 0 22	19 46 11 36 01 24	59.27 06.33 39.53 37.64 00.82 50.46	-21 20 19 17 16 14	46 43 26 56 15 25	14.58 20.25 22.68 45.87 57.23 25.06	55 55 54 54 54 54	16.17 03.72 52.25 41.76 32.27 23.79
24. 24. 25. 25. 26. 26.	5 23 0 23 5 23 0 0	48 10 33 55 17 39	08.97 59.67 26.53 34.09 27.28 11.33	-12 10 8 5 3 -1	26 20 09 54 36 16	36.71 57.15 48.18 28.02 11.39 09.82	54 54 54 54 53 53	16.39 10.12 05.07 01.34 59.03 58.27
27. 27. 28. 28. 29.	5 1 0 1 5 2 0 2	00 22 44 06 28 51	51.73 34.11 24.26 28.01 51.20 39.60	+1 3 5 7 10 12	04 24 43 58 10 17	27.67 33.75 01.68 44.17 32.10 13.19	53 54 54 54 54 54	59.19 01.91 06.56 13.26 22.12 33.23
Mar. 1. 1. 2. 2. 3. 3.	5 3 0 4 5 4 0 4	14 38 03 28 54 21	58.77 53.91 29.64 49.71 56.71 51.66	+14 16 17 19 20 21	17 10 53 25 45 51	30.80 02.81 20.93 50.48 51.02 37.98	54 55 55 55 56 56	46.64 02.40 20.49 40.87 03.43 28.00
4. 4. 5. 5. 6.	5 6 0 6 5 7 0 7	49 18 47 16 46 16	33.79 00.18 05.76 43.44 44.50 59.29	+22 23 23 23 22 21	41 13 26 18 49 58	25.63 31.39 21.41 37.16 22.24 08.57	56 57 57 58 58 59	54.34 22.14 50.98 20.40 49.80 18.57
7. 7. 8. 8. 9.	5 9 0 9 5 10	47 17 47 17 46	18.03 31.67 32.65 15.42 36.65	+20 19 17 15 +12	45 10 16 04 36	01.30 41.35 25.72 05.18 00.12	59 60 60 60 61	45.98 11.31 33.83 52.83 07.71

 $\begin{tabular}{ll} MOON, 2020 \\ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME \\ \end{tabular}$

Date	Apparent Right Ascension	Apparent Declination	Horizontal Parallax
Mar. 9.0 9.5 10.0 10.5 11.0 11.5	h m s 10 46 36.65 11 15 35.25 11 44 12.16 12 12 29.92 12 40 32.29 13 08 23.77	+12 36 00.12 9 54 54.83 7 03 51.14 4 06 01.69 +1 04 43.56 -1 56 47.57	61 07.71 61 17.98 61 23.30 61 23.52 61 18.69 61 09.06
12.0	13 36 09.18	-4 55 22.43	60 55.01
12.5	14 03 53.24	7 48 02.19	60 37.10
13.0	14 31 40.15	10 32 01.68	60 15.96
13.5	14 59 33.32	13 04 51.64	59 52.27
14.0	15 27 35.01	15 24 20.50	59 26.73
14.5	15 55 46.13	17 28 35.60	59 00.03
15.0	16 24 06.06	-19 16 04.17	58 32.78
15.5	16 52 32.61	20 45 34.10	58 05.55
16.0	17 21 02.12	21 56 14.53	57 38.81
16.5	17 49 29.68	22 47 35.99	57 12.96
17.0	18 17 49.51	23 19 30.20	56 48.32
17.5	18 45 55.40	23 32 09.05	56 25.13
18.0	19 13 41.23	-23 26 03.00	56 03.55
18.5	19 41 01.42	23 01 58.71	55 43.69
19.0	20 07 51.36	22 20 56.23	55 25.62
19.5	20 34 07.64	21 24 05.91	55 09.33
20.0	20 59 48.20	20 12 45.31	54 54.83
20.5	21 24 52.35	18 48 16.44	54 42.07
21.0	21 49 20.65	-17 12 03.41	54 30.98
21.5	22 13 14.79	15 25 30.58	54 21.51
22.0	22 36 37.39	13 30 01.25	54 13.57
22.5	22 59 31.84	11 26 56.92	54 07.12
23.0	23 22 02.11	9 17 36.84	54 02.08
23.5	23 44 12.59	7 03 17.93	53 58.40
24.0	0 06 08.03	-4 45 15.02	53 56.06
24.5	0 27 53.39	2 24 41.16	53 55.03
25.0	0 49 33.79	-0 02 48.14	53 55.32
25.5	1 11 14.43	+2 19 12.95	53 56.93
26.0	1 33 00.60	4 40 11.04	53 59.92
26.5	1 54 57.56	6 58 54.40	54 04.31
27.0	2 17 10.52	+9 14 09.93	54 10.19
27.5	2 39 44.56	11 24 42.44	54 17.61
28.0	3 02 44.54	13 29 14.03	54 26.66
28.5	3 26 14.96	15 26 23.60	54 37.41
29.0	3 50 19.79	17 14 46.50	54 49.94
29.5	4 15 02.30	18 52 54.69	55 04.31
30.0	4 40 24.79	+20 19 17.22	55 20.56
30.5	5 06 28.36	21 32 21.42	55 38.70
Apr. 31.0	5 33 12.73	22 30 34.88	55 58.72
31.5	6 00 35.99	23 12 28.14	56 20.56
1.0	6 28 34.58	+23 36 38.25	56 44.09

 $\label{eq:MOON,2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	Apparent	Apparent	Horizontal
	Right Ascension	Declination	Parallax
Apr. 1.0 1.5 2.0 2.5 3.0 3.5	h m s 6 28 34.58 6 57 03.41 7 25 56.04 7 55 05.20 8 24 23.32 8 53 43.15	+23 36 38.25 23 41 52.87 23 27 14.66 22 52 05.54 21 56 10.37 20 39 39.63	56 44.09 57 09.14 57 35.45 58 02.71 58 30.50 58 58.32
4.0	9 22 58.38	+19 03 10.96	59 25.60
4.5	9 52 04.11	17 07 49.48	59 51.70
5.0	10 20 57.12	14 55 06.99	60 15.93
5.5	10 49 36.06	12 27 00.33	60 37.59
6.0	11 18 01.29	9 45 48.93	60 55.97
6.5	11 46 14.75	6 54 11.84	61 10.43
7.0	12 14 19.62	+3 55 04.29	61 20.44
7.5	12 42 19.94	+0 51 33.67	61 25.60
8.0	13 10 20.29	-2 13 04.88	61 25.66
8.5	13 38 25.28	5 15 33.26	61 20.61
9.0	14 06 39.19	8 12 35.48	61 10.58
9.5	14 35 05.54	11 01 02.83	60 55.93
10.0	15 03 46.68	-13 37 58.95	60 37.14
10.5	15 32 43.46	16 00 44.63	60 14.84
11.0	16 01 54.91	18 07 02.23	59 49.72
11.5	16 31 18.20	19 54 59.39	59 22.51
12.0	17 00 48.59	21 23 11.88	58 53.94
12.5	17 30 19.74	22 30 45.31	58 24.72
13.0	17 59 44.15	-23 17 15.45	57 55.46
13.5	18 28 53.77	23 42 46.94	57 26.73
14.0	18 57 40.69	23 47 50.56	56 59.01
14.5	19 25 57.80	23 33 19.22	56 32.68
15.0	19 53 39.26	23 00 23.09	56 08.06
15.5	20 20 40.89	22 10 24.52	55 45.38
16.0	20 47 00.27	-21 04 53.20	55 24.80
16.5	21 12 36.71	19 45 21.98	55 06.42
17.0	21 37 31.10	18 13 23.69	54 50.29
17.5	22 01 45.63	16 30 28.81	54 36.41
18.0	22 25 23.56	14 38 04.17	54 24.76
18.5	22 48 28.97	12 37 32.41	54 15.26
19.0	23 11 06.49	-10 30 12.01	54 07.85
19.5	23 33 21.17	8 17 17.81	54 02.42
20.0	23 55 18.33	6 00 01.71	53 58.87
20.5	0 17 03.41	3 39 33.69	53 57.08
21.0	0 38 41.95	-1 17 02.71	53 56.94
21.5	1 00 19.50	+1 06 22.20	53 58.34
22.0	1 22 01.55	+3 29 31.05	54 01.19
22.5	1 43 53.54	5 51 11.99	54 05.38
23.0	2 06 00.74	8 10 10.56	54 10.86
23.5	2 28 28.21	10 25 09.10	54 17.55
24.0	2 51 20.72	+12 34 46.31	54 25.42

 $\label{eq:MOON,2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	•		ppare t Asc	ent ension		ppare clina			izontal allax
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24.0 24.5 25.0 25.5 26.0 26.5	h 2 3 4 4 4	m 51 14 38 03 28 54	s 20.72 42.55 37.42 08.21 16.82 03.91	+12 14 16 18 19 21	34 37 32 17 50	46.31 37.17 13.05 02.37 31.64 07.22	54 54 54 54 55 55	" 25.42 34.43 44.58 55.87 08.31 21.92
2 2 2 2	27.0 27.5 28.0 28.5 29.0 29.5	5 5 6 6 7 7	20 47 15 42 11 39	28.70 28.90 00.63 58.64 16.51 47.19	+22 23 23 23 23 23 23	17 07 40 55 51 27	17.56 36.11 44.69 36.98 21.99 26.97	55 55 56 56 56 57	36.72 52.73 09.95 28.37 47.93 08.56
	30.0 30.5 1.0 1.5 2.0 2.5	8 8 9 9 10 10	08 36 05 33 01 29	23.50 58.73 27.16 44.53 48.22 37.40	+22 21 20 18 16 14	43 40 17 36 38 24	39.53 08.74 25.31 20.80 06.40 11.47	57 57 58 58 59 59	30.13 52.47 15.31 38.37 01.26 23.54
	3.0 3.5 4.0 4.5 5.0 5.5	10 11 11 12 12 13	57 24 51 19 46 13	12.94 37.27 54.07 08.03 24.48 49.03	+11 9 6 3 +0 -2	56 16 27 30 30 32	22.14 40.07 21.43 55.94 05.74 16.13	59 60 60 60 60 60	44.71 04.23 21.54 36.05 47.26 54.68
	6.0 6.5 7.0 7.5 8.0 8.5	13 14 14 15 15 16	41 09 37 06 35 05	27.22 24.07 43.64 28.57 39.64 15.40	-5 8 11 13 16 18	33 29 17 55 19 26	08.01 22.68 51.52 29.61 21.77 49.18	60 60 60 60 60	57.97 56.88 51.34 41.42 27.36 09.54
1 1	9.0 9.5 10.0 10.5 11.0	16 17 17 18 18 19	35 05 35 05 35 05	11.93 22.86 39.71 52.47 50.48 23.40	-20 21 22 23 23 23	15 43 50 35 57 57	36.08 55.94 36.22 01.06 11.28 41.58	59 59 58 58 58 57	48.47 24.72 58.94 31.78 03.90 35.90
1 1 1	12.0 12.5 13.0 13.5 14.0	19 20 20 20 21 21	34 02 30 56 22 47	22.07 39.20 09.79 51.22 43.11 47.00	-23 22 22 20 19 17	37 58 01 48 22 44	35.41 18.19 29.93 58.33 32.86 00.39	57 56 56 55 55 55	08.35 41.74 16.48 52.93 31.37 12.01
]]]	15.0 15.5 16.0 16.5 17.0	22 22 22 23 23	12 35 58 21 43	05.98 44.35 47.23 20.30 29.60	-15 13 11 9 -7	55 57 51 40 24	02.29 12.94 59.34 41.55 33.68	54 54 54 54 54	54.99 40.40 28.31 18.69 11.53

 $\begin{tabular}{ll} MOON, 2020 \\ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME \\ \end{tabular}$

Dat	e		ppare t Asce	ent ension		ppare clina			izontal rallax
·	17.0 17.5 18.0 18.5 19.0 19.5	h 23 0 0 0 1 1	m 43 05 27 48 10 31	s 29.60 21.36 01.85 37.40 14.24 58.52	-7 5 2 -0 +2 4	24 04 42 18 05 29	33.68 45.29 22.84 31.36 44.01 16.52	54 54 54 54 54 54	" 11.53 06.75 04.26 03.95 05.68 09.30
	20.0 20.5 21.0 21.5 22.0 22.5	1 2 2 3 3 3 3	53 16 38 02 25 50	56.21 13.06 54.51 05.51 50.41 12.69	+6 9 11 13 15 17	50 09 23 31 32 24	56.43 29.84 37.83 55.90 53.82 56.22	54 54 54 54 54 55	14.66 21.59 29.93 39.52 50.21 01.84
	23.0 23.5 24.0 24.5 25.0 25.5	4 4 5 5 6 6	15 40 07 34 01 29	14.73 57.56 20.57 21.40 55.80 57.84	+19 20 21 22 23 23	06 35 50 50 33 57	23.67 34.76 48.92 30.10 11.04 37.81	55 55 55 55 56 56	14.28 27.42 41.15 55.38 10.06 25.12
	26.0 26.5 27.0 27.5 28.0 28.5	6 7 7 8 8 9	58 26 55 24 52 20	20.16 54.52 32.48 06.05 28.36 34.21	+24 23 23 22 21 19	02 48 13 19 06 34	54.10 24.75 57.90 45.73 23.53 47.58	56 56 57 57 57 58	40.53 56.23 12.21 28.41 44.78 01.23
	29.0 29.5 30.0 30.5 31.0 31.5	9 10 10 11 11 12	48 15 42 09 36 02	20.27 45.30 49.97 36.74 09.53 33.44	+17 15 13 10 8 5	46 42 24 54 14 26	12.22 06.76 12.63 21.13 31.99 52.56	58 58 58 59 59 59	17.67 33.94 49.87 05.23 19.75 33.12
June	1.0 1.5 2.0 2.5 3.0 3.5	12 12 13 13 14 14	28 55 21 48 15 43	54.41 18.90 53.60 45.01 59.14 41.00	+2 -0 3 6 9	33 22 20 15 05 49	37.70 50.17 00.89 16.79 53.59 02.27	59 59 60 60 60	45.00 55.05 02.89 08.20 10.66 10.03
	4.0 4.5 5.0 5.5 6.0 6.5	15 15 16 16 17 17	11 40 09 39 09 40	54.19 40.37 58.81 46.06 55.82 19.21	-14 16 18 20 21 23	21 41 45 31 57 01	52.34 36.36 36.07 29.45 18.25 35.08	60 59 59 59 59 59	06.16 58.98 48.53 34.97 18.54 59.59
	7.0 7.5 8.0 8.5 9.0	18 18 19 19 20	10 41 10 40 09	45.30 02.10 57.57 20.79 02.83	-23 24 23 23 -22	43 02 59 35 52	28.70 46.64 54.44 51.62 04.91	58 58 57 57 57	38.55 15.89 52.12 27.75 03.30

 $\begin{tabular}{ll} MOON, 2020 \\ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME \\ \end{tabular}$

Date	Apparent Right Ascension	Apparent Declination	Horizontal Parallax
June 9.0 9.5 10.0 10.5 11.0 11.5	h m s 20 09 02.83 20 36 57.28 21 04 00.46 21 30 11.31 21 55 31.05 22 20 02.73	-22 52 04.91 21 50 20.24 20 32 34.41 19 00 47.81 17 16 58.64 15 22 58.95	57 03.30 56 39.24 56 16.02 55 54.04 55 33.64 55 15.12
12.0	22 43 50.81	-13 20 32.36	54 58.71
12.5	23 07 00.72	11 11 13.24	54 44.60
13.0	23 29 38.58	8 56 26.97	54 32.93
13.5	23 51 50.89	6 37 30.92	54 23.78
14.0	0 13 44.40	4 15 35.98	54 17.20
14.5	0 35 25.94	-1 51 48.31	54 13.20
15.0	0 57 02.35	+0 32 48.76	54 11.75
15.5	1 18 40.45	2 57 12.73	54 12.78
16.0	1 40 26.94	5 20 20.06	54 16.19
16.5	2 02 28.40	7 41 04.34	54 21.85
17.0	2 24 51.14	9 58 14.66	54 29.62
17.5	2 47 41.17	12 10 34.26	54 39.30
18.0	3 11 03.98	+14 16 39.49	54 50.70
18.5	3 35 04.37	16 14 59.39	55 03.58
19.0	3 59 46.15	18 03 55.96	55 17.72
19.5	4 25 11.88	19 41 45.32	55 32.87
20.0	4 51 22.46	21 06 40.03	55 48.76
20.5	5 18 16.89	22 16 52.61	56 05.16
21.0	5 45 52.00	+23 10 40.22	56 21.80
21.5	6 14 02.42	23 46 30.30	56 38.45
22.0	6 42 40.76	24 03 06.47	56 54.90
22.5	7 11 38.01	23 59 34.20	57 10.96
23.0	7 40 44.30	23 35 25.19	57 26.47
23.5	8 09 49.66	22 50 39.84	57 41.28
24.0	8 38 44.95	+21 45 47.54	57 55.30
24.5	9 07 22.54	20 21 44.61	58 08.44
25.0	9 35 36.89	18 39 50.68	58 20.67
25.5	10 03 24.81	16 41 43.96	58 31.94
26.0	10 30 45.41	14 29 16.47	58 42.25
26.5	10 57 39.98	12 04 29.58	58 51.56
27.0	11 24 11.68	+9 29 30.62	58 59.87
27.5	11 50 25.12	6 46 30.46	59 07.15
28.0	12 16 26.09	3 57 42.17	59 13.35
28.5	12 42 21.10	+1 05 20.55	59 18.41
29.0	13 08 17.14	-1 48 17.71	59 22.25
29.5	13 34 21.32	4 40 53.51	59 24.76
30.0	14 00 40.55	-7 30 04.89	59 25.83
30.5	14 27 21.21	10 13 26.92	59 25.31
July 1.0	14 54 28.71	12 48 32.21	59 23.09
1.5	15 22 07.13	15 12 52.58	59 19.05
2.0	15 50 18.69	-17 24 01.90	59 13.08

Date	Apparent Right Ascension	Apparent Declination	Horizontal Parallax
July 1.0 1.5 2.0 2.5 3.0 3.5	h m s 14 54 28.71 15 22 07.13 15 50 18.69 16 19 03.36 16 48 18.48 17 17 58.61	-12 48 32.21 15 12 52.58 17 24 01.90 19 19 40.42 20 57 40.39 22 16 12.65	59 23.09 59 19.05 59 13.08 59 05.14 58 55.20 58 43.30
4.0	17 47 55.71	-23 13 53.26	58 29.54
4.5	18 17 59.55	23 49 49.32	58 14.07
5.0	18 47 58.61	24 03 42.72	57 57.09
5.5	19 17 41.03	23 55 51.08	57 38.87
6.0	19 46 55.74	23 27 05.49	57 19.71
6.5	20 15 33.36	22 38 45.44	56 59.94
7.0	20 43 26.86	-21 32 31.86	56 39.93
7.5	21 10 31.81	20 10 19.41	56 20.02
8.0	21 36 46.39	18 34 09.14	56 00.59
8.5	22 02 11.13	16 46 02.27	55 41.97
9.0	22 26 48.47	14 47 55.63	55 24.50
9.5	22 50 42.39	12 41 38.61	55 08.48
10.0	23 13 57.95	-10 28 51.65	54 54.18
10.5	23 36 41.01	8 11 05.93	54 41.83
11.0	23 58 57.91	5 49 43.91	54 31.64
11.5	0 20 55.31	3 26 00.48	54 23.76
12.0	0 42 40.03	-1 01 04.62	54 18.33
12.5	1 04 18.97	+1 23 58.88	54 15.43
13.0	1 25 59.04	+3 48 07.37	54 15.11
13.5	1 47 47.13	6 10 18.42	54 17.39
14.0	2 09 49.99	8 29 27.83	54 22.25
14.5	2 32 14.24	10 44 27.75	54 29.61
15.0	2 55 06.20	12 54 05.01	54 39.39
15.5	3 18 31.73	14 56 59.76	54 51.44
16.0	3 42 36.08	+16 51 44.53	55 05.57
16.5	4 07 23.53	18 36 44.07	55 21.58
17.0	4 32 57.10	20 10 16.05	55 39.20
17.5	4 59 18.14	21 30 32.98	55 58.14
18.0	5 26 26.02	22 35 45.54	56 18.06
18.5	5 54 17.79	23 24 07.35	56 38.62
19.0	6 22 48.12	+23 54 01.01	56 59.43
19.5	6 51 49.38	24 04 04.91	57 20.10
20.0	7 21 12.13	23 53 20.00	57 40.25
20.5	7 50 45.83	23 21 15.46	57 59.50
21.0	8 20 19.70	22 27 52.45	58 17.49
21.5	8 49 43.76	21 13 45.27	58 33.93
22.0	9 18 49.59	+19 39 59.72	58 48.55
22.5	9 47 31.01	17 48 09.28	59 01.15
23.0	10 15 44.30	15 40 09.77	59 11.60
23.5	10 43 28.26	13 18 13.35	59 19.83
24.0	11 10 43.98	+10 44 42.88	59 25.84

 $\begin{tabular}{ll} MOON, 2020 \\ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME \\ \end{tabular}$

Date	Apparent Right Ascension	Apparent Declination	Horizontal Parallax
July 24.0 24.5 25.0 25.5 26.0 26.5	h m s 11 10 43.98 11 37 34.50 12 04 04.39 12 30 19.37 12 56 25.89 13 22 30.77	+10 44 42.88 8 02 06.96 5 12 56.21 +2 19 40.63 -0 35 11.89 3 29 16.22	59 25.84 59 29.68 59 31.47 59 31.33 59 29.42 59 25.92
27.0	13 48 40.88	-6 20 10.06	59 21.00
27.5	14 15 02.82	9 05 33.79	59 14.79
28.0	14 41 42.55	11 43 10.28	59 07.45
28.5	15 08 45.06	14 10 45.18	58 59.08
29.0	15 36 13.96	16 26 07.93	58 49.77
29.5	16 04 11.11	18 27 13.62	58 39.59
30.0	16 32 36.26	-20 12 06.04	58 28.58
30.5	17 01 26.78	21 39 01.69	58 16.79
31.0	17 30 37.66	22 46 34.55	58 04.24
31.5	18 00 01.61	23 33 40.92	57 50.96
Aug. 1.0	18 29 29.57	23 59 43.69	57 37.01
1.5	18 58 51.43	24 04 35.10	57 22.43
2.0	19 27 56.86	-23 48 37.40	57 07.31
2.5	19 56 36.25	23 12 41.16	56 51.75
3.0	20 24 41.44	22 18 01.43	56 35.88
3.5	20 52 06.28	21 06 12.33	56 19.86
4.0	21 18 46.86	19 39 01.02	56 03.85
4.5	21 44 41.52	17 58 21.66	55 48.07
5.0	22 09 50.63	-16 06 10.20	55 32.72
5.5	22 34 16.32	14 04 20.25	55 18.03
6.0	22 58 02.08	11 54 40.18	55 04.24
6.5	23 21 12.44	9 38 51.34	54 51.59
7.0	23 43 52.70	7 18 27.35	54 40.28
7.5	0 06 08.66	4 54 54.17	54 30.56
8.0	0 28 06.46	-2 29 30.72	54 22.62
8.5	0 49 52.46	-0 03 30.00	54 16.65
9.0	1 11 33.11	+2 21 59.48	54 12.81
9.5	1 33 14.94	4 45 52.19	54 11.26
10.0	1 55 04.46	7 07 03.79	54 12.10
10.5	2 17 08.14	9 24 29.46	54 15.43
11.0	2 39 32.31	+11 37 02.11	54 21.31
11.5	3 02 23.07	13 43 30.82	54 29.74
12.0	3 25 46.13	15 42 39.40	54 40.73
12.5	3 49 46.65	17 33 05.39	54 54.20
13.0	4 14 28.93	19 13 19.53	55 10.06
13.5	4 39 56.15	20 41 46.09	55 28.15
14.0	5 06 09.98	+21 56 44.21	55 48.26
14.5	5 33 10.28	22 56 30.48	56 10.13
15.0	6 00 54.77	23 39 22.94	56 33.44
15.5	6 29 18.93	24 03 46.38	56 57.82
16.0	6 58 16.06	+24 08 18.65	57 22.82

 $\begin{tabular}{ll} \textbf{MOON, 2020} \\ FOR 0^h AND 12^h TERRESTRIAL TIME \\ \end{tabular}$

Da	te		ppare t Asc	ent ension		ppare			izontal rallax
Aug.	16.0 16.5 17.0 17.5 18.0 18.5	h 6 7 7 8 8 9	m 58 27 57 26 56 25	s 16.06 37.62 13.87 54.69 30.43 52.81	+24 23 23 22 20 19	08 51 14 14 54 13	18.65 57.28 05.66 37.79 00.88 15.52	57 57 58 58 58 58	" 22.82 47.98 12.76 36.63 59.05 19.48
	19.0 19.5 20.0 20.5 21.0 21.5	9 10 10 11 11 11	54 23 51 19 47 14	55.48 34.41 47.95 36.65 03.03 11.07	+17 14 12 9 6 3	13 57 27 45 54 57	53.43 53.28 35.46 36.19 41.98 44.55	59 59 60 60 60	37.45 52.54 04.43 12.90 17.83 19.26
	22.0 22.5 23.0 23.5 24.0 24.5	12 13 13 14 14	41 07 34 01 28 55	05.92 53.39 39.59 30.59 32.02 48.73	+0 -2 5 7 10 13	57 02 00 53 39 14	36.68 51.10 52.86 48.97 07.26 23.91	60 60 60 59 59 59	17.31 12.21 04.26 53.82 41.29 27.07
	25.0 25.5 26.0 26.5 27.0 27.5	15 15 16 16 17 17	23 51 19 48 17 46	24.43 21.34 39.87 18.45 13.39 19.02	-15 17 19 21 22 23	37 46 38 13 28 24	24.45 05.04 34.26 15.45 49.58 18.21	59 58 58 58 58 58	11.55 55.08 37.99 20.56 03.02 45.54
	28.0 28.5 29.0 29.5 30.0 30.5	18 18 19 19 20 20	15 44 13 41 09 37	28.05 32.07 22.27 50.17 48.28 10.66	-23 24 24 23 22 21	59 13 06 39 54 51	06.14 03.24 24.93 51.09 23.43 21.66	57 57 56 56 56 56	28.28 11.34 54.77 38.65 23.00 07.85
Sept.	31.0 31.5 1.0 1.5 2.0 2.5	21 21 21 22 22 22 23	03 29 55 19 43 07	53.18 53.63 11.62 48.39 46.51 09.61	-20 18 17 15 13 10	32 58 13 16 10 57	18.97 57.37 03.39 24.45 46.08 49.92	55 55 55 55 55 54	53.22 39.16 25.70 12.90 00.83 49.57
	3.0 3.5 4.0 4.5 5.0 5.5	23 23 0 0 0 1	30 52 14 36 58 19	02.13 29.05 35.78 27.94 11.34 51.85	-8 6 3 -1 +1 3	39 16 50 23 03 29	12.57 25.06 52.84 56.16 09.19 11.01	54 54 54 54 54 54	39.24 29.94 21.82 15.00 09.65 05.90
	6.0 6.5 7.0 7.5 8.0	1 2 2 2 2 3	41 03 25 48 10	35.37 27.75 34.78 02.07 54.97	+5 8 10 12 +14	52 13 29 39 43	59.54 26.32 22.92 39.71 04.66	54 54 54 54 54	03.92 03.84 05.81 09.95 16.36

 $\begin{tabular}{ll} \textbf{MOON}, \textbf{2020} \\ FOR <math>0^h$ AND 12^h TERRESTRIAL TIME

Date	Apparent Right Ascension	Apparent Declination	Horizontal Parallax
Sept. 8.0 8.5 9.0 9.5 10.0 10.5	h m s 3 10 54.97 3 34 18.45 3 58 16.88 4 22 53.86 4 48 11.95 5 14 12.38	+14 43 04.66 16 38 22.38 18 24 13.34 19 59 13.64 21 21 55.27 22 30 47.28	54 16.36 54 25.13 54 36.33 54 49.96 55 06.04 55 24.48
11.0	5 40 54.80	+23 24 17.80	55 45.19
11.5	6 08 17.12	24 00 57.13	56 08.00
12.0	6 36 15.39	24 19 21.78	56 32.67
12.5	7 04 43.96	24 18 19.31	56 58.90
13.0	7 33 35.73	23 56 53.43	57 26.30
13.5	8 02 42.70	23 14 29.03	57 54.43
14.0	8 31 56.59	+22 10 56.28	58 22.75
14.5	9 01 09.57	20 46 33.59	58 50.67
15.0	9 30 14.90	19 02 08.92	59 17.55
15.5	9 59 07.47	16 58 59.54	59 42.70
16.0	10 27 44.06	14 38 50.29	60 05.45
16.5	10 56 03.45	12 03 50.80	60 25.17
17.0	11 24 06.33	+9 16 31.79	60 41.26
17.5	11 51 55.06	6 19 40.95	60 53.28
18.0	12 19 33.33	3 16 18.51	61 00.88
18.5	12 47 05.77	+0 09 32.73	61 03.89
19.0	13 14 37.58	-2 57 24.57	61 02.30
19.5	13 42 14.09	6 01 22.23	60 56.28
20.0	14 10 00.39	-8 59 13.75	60 46.14
20.5	14 38 00.87	11 48 00.99	60 32.32
21.0	15 06 18.85	14 24 57.58	60 15.34
21.5	15 34 56.18	16 47 32.14	59 55.79
22.0	16 03 52.93	18 53 31.37	59 34.27
22.5	16 33 07.13	20 41 03.04	59 11.38
23.0	17 02 34.77	-22 08 38.78	58 47.66
23.5	17 32 09.87	23 15 16.36	58 23.62
24.0	18 01 44.92	24 00 21.29	57 59.69
24.5	18 31 11.43	24 23 47.18	57 36.23
25.0	19 00 20.64	24 25 54.68	57 13.55
25.5	19 29 04.28	24 07 28.98	56 51.85
26.0	19 57 15.20	-23 29 36.08	56 31.31
26.5	20 24 47.84	22 33 38.19	56 12.03
27.0	20 51 38.53	21 21 08.95	55 54.08
27.5	21 17 45.46	19 53 48.87	55 37.49
28.0	21 43 08.64	18 13 21.43	55 22.25
28.5	22 07 49.60	16 21 29.98	55 08.35
29.0	22 31 51.13	-14 19 55.63	54 55.76
29.5	22 55 17.01	12 10 15.91	54 44.45
30.0	23 18 11.71	9 54 04.03	54 34.37
30.5	23 40 40.22	7 32 48.83	54 25.51
Oct. 1.0	0 02 47.81	-5 07 54.95	54 17.85

 $\label{eq:MOON,2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	Apparent Right Ascension	Apparent Declination	Horizontal Parallax
Oct. 1.0 1.5 2.0 2.5 3.0 3.5	h m s 0 02 47.81 0 24 39.98 0 46 22.27 1 08 00.29 1 29 39.57 1 51 25.58	-5 07 54.9 2 40 43.2 -0 12 31.6 +2 15 24.4 4 41 51.3 7 05 35.9	8 54 11.39 6 54 06.14 9 54 02.14 3 53 59.43
4.0 4.5 5.0 5.5 6.0 6.5	2 13 23.62 2 35 38.81 2 58 15.97 3 21 19.51 3 44 53.32 4 09 00.56	+9 25 25.2 11 40 05.9 13 48 23.2 15 49 00.3 17 40 38.8 19 21 57.8	9 53 59.75 0 54 02.98 5 54 07.93 0 54 14.71
7.0 7.5 8.0 8.5 9.0 9.5	4 33 43.53 4 59 03.39 5 25 00.06 5 51 32.04 6 18 36.36 6 46 08.70	+20 51 35.0 22 08 07.3 23 10 12.0 23 56 29.5 24 25 45.3 24 36 53.7	1 54 46.96 55 01.92 3 55 19.05 9 55 38.33
10.0 10.5 11.0 11.5 12.0 12.5	7 14 03.56 7 42 14.67 8 10 35.43 8 38 59.49 9 07 21.25 9 35 36.31	+24 29 00.6 24 01 27.0 23 13 51.9 22 06 14.2 20 38 54.6 18 52 36.0	9 56 48.17 4 57 14.84 5 57 42.73 3 58 11.40
13.0 13.5 14.0 14.5 15.0 15.5	10 03 41.76 10 31 36.38 10 59 20.62 11 26 56.48 11 54 27.29 12 21 57.44	+16 48 23.6 14 27 44.8 11 52 28.1 9 04 42.4 6 06 55.7 3 01 53.2	7 59 36.74 8 60 02.80 7 60 26.46 0 60 47.01
16.0 16.5 17.0 17.5 18.0 18.5	12 49 32.06 13 17 16.59 13 45 16.44 14 13 36.46 14 42 20.55 15 11 31.05	+0 07 24.2 -3 17 43.9 6 25 44.4 9 28 00.5 12 21 08.7 15 01 53.2	5 61 23.73 6 61 26.22 8 61 23.55 7 61 15.84
19.0 19.5 20.0 20.5 21.0 21.5	15 41 08.35 16 11 10.48 16 41 32.86 17 12 08.44 17 42 48.04 18 13 21.07	-17 27 12.7 19 34 26.7 21 21 22.7 22 46 20.6 23 48 17.5 24 26 48.6	8 60 26.31 3 60 02.94 7 59 37.30 5 59 10.11
22.0 22.5 23.0 23.5 24.0	18 43 36.47 19 13 23.71 19 42 33.68 20 10 59.36 20 38 36.14	-24 42 06.7 24 34 58.0 24 06 36.6 23 18 37.4 -22 12 48.5	0 57 45.80 1 57 18.62 1 56 52.61

 $\begin{tabular}{ll} \textbf{MOON}, \textbf{2020} \\ FOR <math>0^h$ AND 12^h TERRESTRIAL TIME

Date	Apparent Right Ascensi		Apparent Declination	Horizontal Parallax
Oct. 24.0 24.5 25.0 25.5 26.0 26.5	21 05 21 21 31 16 21 56 22 22 20 42	6.14 -22 1.85 20 6.55 19 2.21 17 2.23 15 1.14 13	12 48.53 51 04.71 15 21.72 27 32.43 29 24.25	56 28.07 56 05.24 55 44.27 55 25.24 55 08.22 54 53.19
27.0 27.5 28.0 28.5 29.0 29.5	23 29 57 23 52 05 0 13 56 0 35 35	1.19 -11 7.10 8 5.88 6 5.60 3 5.36 -1 8.20 +0	25 37.20 58 57.15 30 34.01	54 40.12 54 28.97 54 19.65 54 12.08 54 06.18 54 01.84
30.0 30.5 31.0 31.5 Nov. 1.0 1.5	1 40 19 2 02 09 2 24 15 2 46 42	1.01 +3 0.52 5 0.24 8 5.39 10 0.82 12 5.90 14	52 51.62 16 04.38 34 55.41 48 07.15	53 59.00 53 57.56 53 57.47 53 58.69 54 01.17 54 04.92
2.0 2.5 3.0 3.5 4.0 4.5	3 56 53 4 21 22 4 46 26 5 12 05	3.37 +16 3.20 18 2.38 20 5.72 21 5.76 22 7.57 23	40 12.65 17 03.02 41 14.98 51 25.09	54 09.94 54 16.24 54 23.87 54 32.87 54 43.31 54 55.24
5.0 5.5 6.0 6.5 7.0 7.5	6 32 04 6 59 29 7 27 07 7 54 51	3.82 +24 4.84 24 9.94 24 7.74 24 1.71 23 5.68 23	45 14.94 47 36.13 31 01.91 55 15.98	55 08.73 55 23.81 55 40.53 55 58.89 56 18.86 56 40.38
8.0 8.5 9.0 9.5 10.0 10.5	9 17 43 9 45 00 10 12 05 10 38 58	4.33 +21 3.60 20 9.97 18 5.60 16 3.31 13 1.48 11	25 07.30 19 29.42	57 03.33 57 27.53 57 52.72 58 18.59 58 44.72 59 10.63
11.0 11.5 12.0 12.5 13.0 13.5	11 58 55 12 25 36 12 52 29 13 19 40	3.87 +8 5.40 5 5.84 +2 0.59 -0 0.26 3 5.34 6	45 25.48 43 47.60 22 18.72 30 03.55	59 35.75 59 59.48 60 21.14 60 40.07 60 55.62 61 07.20
14.0 14.5 15.0 15.5 16.0	14 44 01 15 13 19 15 43 16	0.71 -9 1.10 12 0.49 15 6.50 17 0.75 -19	31 29.51 13 25.91 40 26.98	61 14.33 61 16.69 61 14.09 61 06.57 60 54.34

 $\label{eq:MOON,2020} \textbf{MOON, 2020}$ FOR 0^{h} AND 12^{h} TERRESTRIAL TIME

Date	2		ppare t Asce	ent ension		ppare			izontal rallax
]]]	16.0 16.5 17.0 17.5 18.0 18.5	h 16 16 17 17 18 18	m 13 44 16 47 19 50	s 49.75 53.60 19.07 54.34 25.66 38.68	-19 21 23 24 24 24	49 37 02 04 40 51	25.59 39.20 59.71 01.53 06.51 24.52	60 60 60 59 59 59	54.34 37.77 17.39 53.83 27.80 00.02
] 2 2	19.0 19.5 20.0 20.5 21.0 21.5	19 19 20 20 21 21	21 51 20 48 15 41	19.87 17.73 23.67 32.36 41.68 52.29	-24 24 23 21 20 18	38 03 08 54 25 41	49.48 51.58 27.16 48.09 12.13 55.32	58 58 57 57 56 56	31.21 02.04 33.12 04.99 38.11 12.86
2	22.0 22.5 23.0 23.5 24.0 24.5	22 22 22 23 23 0	07 31 55 18 40 02	07.13 30.80 09.05 08.37 35.60 37.79	-16 14 12 10 7 5	47 42 30 12 49 23	06.76 45.63 40.03 27.24 34.85 22.36	55 55 55 54 54 54	49.51 28.29 09.35 52.78 38.60 26.82
2	25.0 25.5 26.0 26.5 27.0 27.5	0 0 1 1 1 2	24 45 07 28 50 12	21.96 55.04 23.82 54.87 34.50 28.74	-2 -0 +2 4 6 9	55 25 03 31 56 18	03.16 46.49 20.67 11.80 39.20 32.70	54 54 54 54 54 54	17.39 10.23 05.25 02.33 01.34 02.14
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28.0 28.5 29.0 29.5 30.0 30.5	2 2 3 3 4 4	34 57 20 44 08 33	43.21 23.04 32.74 15.96 35.34 32.23	+11 13 15 17 19 21	35 46 50 44 28 01	38.55 38.72 10.62 47.34 58.57 12.16	54 54 54 54 54 54	04.58 08.54 13.86 20.43 28.13 36.86
Dec.	1.0 1.5 2.0 2.5 3.0 3.5	4 5 5 6 6 7	59 25 51 19 46 14	06.48 16.28 58.10 06.77 35.74 17.50	+22 23 24 24 24 24 24	19 23 11 41 52 45	56.48 43.50 12.40 13.47 51.89 30.83	54 54 55 55 55 55	46.53 57.10 08.50 20.71 33.73 47.55
	4.0 4.5 5.0 5.5 6.0 6.5	7 8 8 9 9	42 09 37 04 31 58	04.21 48.30 23.09 43.31 45.46 27.92	+24 23 22 21 19 17	18 33 28 05 26 30	53.60 04.44 27.87 47.04 01.17 22.81	56 56 56 56 57 57	02.17 17.61 33.87 50.94 08.78 27.33
	7.0 7.5 8.0 8.5 9.0	10 10 11 11 12	24 50 16 42 08	51.00 56.79 48.95 32.45 13.35	+15 12 10 7 +4	20 57 22 38 47	15.28 10.71 48.76 56.35 27.99	57 58 58 58 59	46.49 06.10 25.96 45.81 05.32

 $\begin{tabular}{ll} \textbf{MOON}, \textbf{2020} \\ FOR <math>0^h$ AND 12^h TERRESTRIAL TIME

Date	Apparent Right Ascen		Apparent Declination	Horizontal Parallax
Dec. 9.0 9.5 10.0 10.5 11.0 11.5	12 33 5 12 59 5 13 26 1 13 52 5	\$ 13.35 158.50 155.26 11.27 54.04 10.58	+4 47 27.99 +1 50 26.86 -1 09 53.89 4 11 09.76 7 10 43.88 10 05 46.87	59 05.32 59 24.11 59 41.73 59 57.72 60 11.59 60 22.82
12.0 12.5 13.0 13.5 14.0 14.5	15 16 4 15 46 1 16 16 2 16 47 1	06.88 17.28 13.82 25.51 17.78 12.26	-12 53 18.08 15 30 08.58 17 53 06.56 19 59 05.08 21 45 12.07 23 09 01.71	60 30.98 60 35.65 60 36.54 60 33.44 60 26.31 60 15.22
15.0 15.5 16.0 16.5 17.0 17.5	18 22 1 18 53 5 19 25 1 19 55 4	27.00 17.34 57.26 10.97 14.54 27.03	-24 08 45.48 24 43 21.18 24 52 37.60 24 37 13.93 23 58 33.81 22 58 35.30	60 00.42 59 42.26 59 21.21 58 57.82 58 32.69 58 06.43
18.0 18.5 19.0 19.5 20.0 20.5	21 21 5 21 48 3 22 14 1 22 38 5	11.15 53.33 33.29 13.53 58.57	-21 39 38.89 20 04 15.76 18 14 57.83 16 14 10.40 14 04 07.65 11 46 50.46	57 39.65 57 12.94 56 46.83 56 21.78 55 58.22 55 36.47
21.0 21.5 22.0 22.5 23.0 23.5	23 48 4 0 10 5 0 32 4 0 54 2	07.68 15.93 56.63 17.37 25.66 58.84	-9 24 06.12 6 57 29.29 4 28 23.78 -1 58 04.70 +0 32 19.16 3 01 42.97	55 16.81 54 59.45 54 44.55 54 32.20 54 22.44 54 15.28
24.0 24.5 25.0 25.5 26.0 26.5	1 59 1 2 21 1 2 43 3 3 06 2	34.06 18.19 17.83 39.16 27.85 18.90	+5 29 03.62 7 53 17.62 10 13 19.24 12 27 58.91 14 36 02.04 16 36 08.31	54 10.68 54 08.57 54 08.85 54 11.38 54 16.02 54 22.58
27.0 27.5 28.0 28.5 29.0 29.5	4 18 2 4 43 4 5 09 3 5 36 1	46.40 23.25 40.94 39.21 5.86 26.67	+18 26 51.58 20 06 40.55 21 34 00.41 22 47 15.53 23 44 53.08 24 25 27.66	54 30.89 54 40.72 54 51.87 55 04.13 55 17.27 55 31.10
30.0 30.5 31.0 31.5 32.0	6 59 0 7 27 1 7 55 2)4.51 4.98 27.71	+24 47 46.27 24 50 53.29 24 34 14.71 23 57 40.87 +23 01 27.48	55 45.41 56 00.02 56 14.78 56 29.54 56 44.20

MOON, 2020 AT EPHEMERIS TRANSIT

Date	Age $(at 0^h)$	Epheme Trans		Geoce Declir		Date	Age (at 0 ^h)	Ep T			Geoce Declin	
	d U 1 5.78 L 1 U 2 6.78 L 2 U 3 7.78 L	d h 31 16 1 04 1 17 2 05 2 17 3 06	m 23.1 44.3 05.1 25.6 46.0 06.4	-11 9 6 4 -2 +0	18.9 07.7 51.6 31.8 09.4 14.6	Jan. 23 24 25 25 26 26	d L 28.78 U 0.10 L U 1.10 L U	d 23 24 25 25 26 26	h 23 11 00 12 01 13	m 27.8 54.0 19.7 44.6 08.9 32.5	-22 22 21 19 18 16	48.4 08.1 10.4 56.8 29.0 48.8
	3 U 4 8.78 L 4 U 5 9.78 L 5 U 6 10.78 L	3 18 4 06 4 19 5 07 5 19 6 08	26.9 47.6 08.6 30.1 52.3 15.2	+2 5 7 9 11 14	38.9 02.7 24.6 43.4 57.6 05.6	27 27 28 28 29 29	2.10 L U 3.10 L U 4.10 L U	27 27 28 28 29 29	01 14 02 15 03 15	55.4 17.6 39.3 00.5 21.3 41.8	-14 12 10 8 6 3	57.9 58.1 50.9 37.7 20.1 59.3
	6 U 7 11.78 L 7 U 8 12.78 L 8 U 9 13.78 L	6 20 7 09 7 21 8 09 8 22 9 10	38.8 03.4 29.0 55.6 23.0 51.4	+16 17 19 20 22 22	05.4 55.1 32.5 54.9 00.2 45.8	30 30 31 31 Feb. 1	5.10 L U 6.10 L U 7.10 L U	30 30 31 31 1	04 16 04 17 05 17	02.1 22.4 42.7 03.3 24.1 45.3	-1 +0 3 5 7 10	36.5 47.3 10.8 33.0 52.7 08.8
10 1 1 1 12	1 15.78 U 1 L 2 16.78 U	9 23 10 11 11 00 11 12 12 01 12 13	20.5 50.1 20.0 49.9 19.6 48.8	+23 23 22 22 20 19	09.9 10.7 47.6 00.2 49.3 16.3	2 2 3 3 4 4	8.10 L U 9.10 L U 10.10 L U	2 2 3 3 4 4	06 18 06 19 07 20	07.1 29.6 52.8 16.9 42.0 08.0	+12 14 16 18 19 21	19.8 24.3 20.6 07.0 41.2 01.2
1: 1: 14 1: 1:	3 L 4 18.78 U 4 L 5 19.78 U	13 02 13 14 14 03 14 15 15 04 15 16	17.6 45.7 13.1 39.8 06.0 31.7	+17 15 12 10 7 4	23.3 13.0 48.0 11.5 26.4 35.6	5 5 6 6 7 7	11.10 L U 12.10 L U 13.10 L U	5 5 6 6 7 7	08 21 09 22 10 23	35.0 02.9 31.7 01.1 30.9 01.0	+22 22 23 23 22 22	04.6 49.1 12.6 13.3 50.0 02.1
10 10 11 11 11 11	6 L 7 21.78 U 7 L	16 04 16 17 17 05 17 18 18 06 18 19	57.0 22.0 46.8 11.7 36.7 01.8	+1 -1 4 6 9 12	41.8 12.2 04.0 51.2 31.5 02.9	8 9 9 10 10	14.10 L 15.10 U L 16.10 U L 17.10 U	8 9 9 10 10	11 00 12 00 13 01	31.1 00.9 30.3 59.2 27.5 55.2	+20 19 17 15 12 9	49.8 14.3 17.4 01.7 30.2 46.2
19 20 20 2 2	9 L 0 24.78 U 0 L 1 25.78 U	19 07 19 19 20 08 20 20 21 09 21 21	27.3 53.1 19.3 45.9 12.7 39.8	-14 16 18 19 21 22	23.2 30.5 22.8 58.6 16.4 15.0	11 12 12 13 13	18.10 U L 19.10 U L 20.10 U	11 12 12 13 13 14	14 02 15 03 16 04	22.3 48.9 15.1 41.0 06.7 32.4	+6 3 +0 -2 5 7	53.1 54.2 53.1 07.3 04.0 54.4
2: 2: 2: 2:	2 L 3 27.78 U	22 10 22 22 23 11 23 23	07.0 34.2 01.2 27.8	-22 23 23 -22	53.6 11.9 10.0 48.4	14 15 15 16	21.10 U L 22.10 U	14 15 15 16	16 05 17 06	58.1 23.8 49.8 16.0	-10 13 15 -17	35.9 06.3 23.7 26.1

MOON, 2020 AT EPHEMERIS TRANSIT

Dat	te	Age (at 0 ^h)	Ep	heme Trans	eris it	Geoce Declin	entric nation	Date		Age (at 0^h)	Ep T	heme rans	eris it	Geoce Declir	entric nation
Feb.	16 17 17	d 22.10 U L 23.10 U L 24.10 U L	d 16 16 17 17 18 18	h 06 18 07 19 08 20	m 16.0 42.5 09.2 36.0 02.9 29.8	-17 19 20 21 22 23	26.1 12.1 40.3 49.7 39.4 09.2		11 11 12 12	d L 16.35 U L 17.35 U L 18.35 U	d 10 11 11 12 12 13	h 13 01 13 02 14 03	m 00.2 27.2 54.1 20.8 47.5 14.3	+3 -0 2 5 8 11	51.0 42.7 25.3 29.7 27.0 14.5
	19 19 20 20 21 21	25.10 U L 26.10 U L 27.10 U L	19 19 20 20 21 21	08 21 09 22 10 23	56.6 23.1 49.2 14.8 39.9 04.3	-23 23 22 21 20 19	19.1 09.3 40.7 54.2 51.1 32.8		14 15 15	19.35 U L 20.35 U L 21.35 U	13 14 14 15 15 16	15 04 16 05 17 05	41.3 08.3 35.6 03.0 30.5 58.0	-13 16 18 19 21 22	49.2 09.0 11.8 56.0 20.4 24.2
	22 22 23 24 24 25	28.10 U L 29.10 U 0.35 L U 1.35 L	22 22 23 24 24 25	11 23 12 00 12 01	28.2 51.3 13.9 35.8 57.3 18.4	-18 16 14 12 10 7	01.0 17.2 23.2 20.5 10.7 55.3		17 18 18	22.35 U L 23.35 U L 24.35 U	16 17 17 18 18 19	18 06 19 07 20 08	25.5 52.7 19.6 46.1 12.0 37.4	-23 23 23 23 22 21	07.1 29.1 30.6 12.5 35.7 41.6
	25 26 26 27 27 28	2.35 L U 3.35 L U 4.35 L	25 26 26 27 27 28	13 01 14 02 15 03	39.1 59.5 19.8 40.1 00.4 20.9	-5 3 -0 +1 3 6	35.6 13.0 48.9 35.7 59.5 21.2		20 21 21	25.35 U L 26.35 U L 27.35 U	19 20 20 21 21 22	21 09 21 10 22 10	02.0 26.1 49.4 12.2 34.3 55.9	-20 19 17 15 13	31.7 07.4 30.3 42.1 44.2 38.2
Mar.	28 29 29 1 1 2	5.35 L U 6.35 L U 7.35 L	28 29 29 30 1 2	15 04 16 04 17 05	41.7 02.8 24.4 46.7 09.6 33.3	+8 10 13 15 16 18	39.8 53.9 02.2 03.3 55.7 37.6		22 23 23 24 25 25	28.35 U L 29.35 U 0.61 L U	22 23 23 24 25 25	23 11 23 12 00 12	17.1 37.9 58.4 18.8 39.0 59.3	-9 7 4 -2 +0 2	25.5 07.5 45.6 21.0 04.9 30.9
	2 3 4 4 5	8.35 L U 9.35 L U 10.35 L	2 3 3 4 4 5	17 06 18 07 19 08	57.8 23.2 49.5 16.7 44.6 13.2	+20 21 22 23 23 23	07.3 22.7 22.0 03.1 24.1 23.3		26 26 27 27 28 28	1.61 L U 2.61 L U 3.61 L U	26 26 27 27 28 28	01 13 02 14 02 15	19.7 40.2 01.1 22.4 44.2 06.5	+4 7 9 11 13 15	55.7 18.0 36.5 49.9 56.6 55.4
	5 6 6 7 7 8	11.35 L U 12.35 L U 13.35 L	5 6 6 7 7 8	20 09 21 10 22 11	42.2 11.6 41.1 10.6 39.8 08.7	+22 22 21 19 17 15	59.6 12.1 00.8 26.4 30.1 14.1		29 29 30 30 31 31	4.61 L U 5.61 L U 6.61 L U	29 29 30 30 31 31	03 15 04 16 05 17	29.5 53.2 17.6 42.8 08.7 35.4	+17 19 20 21 22 23	44.5 22.2 47.0 57.1 50.6 26.0
	8 9 10 10	U 14.35 L 15.35 U L	8 9 10 10	23 12 00 13	37.2 05.2 32.9 00.2	+12 9 6 +3	40.9 53.7 55.9 51.0	Apr.	1 1 2 2	7.61 L U 8.61 L U	1 1 2 2	06 18 06 19	02.6 30.3 58.5 26.8	+23 23 23 +22	41.7 36.4 09.3 19.8

MOON, 2020 AT EPHEMERIS TRANSIT

Dat	e	Age (at 0 ^h)		hemo Γrans	eris it	Geoce Declir		Date	Age (at 0 ^h)	Ep T	heme rans	eris it	Geoce	
Apr.	1 1 2 2 3 3	d 7.61 L U 8.61 L U 9.61 L U	d 1 1 2 2 3 3	h 06 18 06 19 07 20	m 02.6 30.3 58.5 26.8 55.3 23.7	+23 23 23 22 21 19	41.7 36.4 09.3 19.8 07.9 34.2	Apr. 24 25 25 26 26 27	d U 1.90 L U 2.90 L U 3.90 L	d 24 25 25 26 26 27	h 13 01 13 02 14 03	m 04.8 27.5 50.9 14.9 39.7 05.1	+14 16 18 20 21 22	48.3 45.5 32.2 06.7 27.1 31.8
	4 4 5 5 6 6	10.61 L U 11.61 L U 12.61 L U	4 4 5 5 6 6	08 21 09 22 10 23	51.9 20.0 47.7 15.2 42.5 09.6	+17 15 12 10 7 4	39.7 26.0 55.3 10.0 13.1 07.8	27 28 28 29 29 30	4.90 L U 5.90 L U 6.90 U	27 28 28 29 29 30	15 03 16 04 17 18	31.2 57.8 24.9 52.3 20.0 15.2	+23 23 23 23 23 23 20	19.1 47.7 56.3 44.0 10.4 59.4
	7 8 8 9 9	13.61 L 14.61 U L 15.61 U L 16.61 U	7 8 8 9 9	11 00 12 00 13 01	36.6 03.6 30.7 58.0 25.5 53.3	+0 -2 5 8 11 14	57.6 14.0 23.2 26.5 20.3 01.4	May 1 1 2 2 2 3 3 3	7.90 L U 8.90 L U 9.90 L U	1 1 2 2 3 3	06 19 07 20 08 20	42.6 09.8 36.7 03.4 29.8 56.1	+19 17 15 12 10 7	23.1 27.7 14.9 46.4 04.4 11.4
	11 12 12	17.61 U L 18.61 U L 19.61 U	10 11 11 12 12 13	14 02 15 03 16 04	21.4 49.7 18.2 46.9 15.5 43.9	-16 18 20 21 22 23	26.9 34.2 21.3 46.7 49.7 29.8	4 5 5	10.90 L U 11.90 L U 12.90 L U	4 4 5 5 6 6	09 21 10 22 11 23	22.3 48.5 14.8 41.4 08.3 35.7	+4 +1 -2 5 8 11	10.1 03.3 05.6 13.6 16.9 12.3
	13 14 14 15 15 16	20.61 U L 21.61 U L 22.61 U	13 14 14 15 15 16	17 05 18 06 18 07	12.0 39.6 06.6 32.9 58.5 23.2	-23 23 23 22 21 20	47.5 43.4 18.8 35.1 34.1 17.5	8 9 9	13.90 L 14.90 U L 15.90 U L 16.90 U	7 8 8 9 9	12 00 13 01 13 02	03.5 31.8 00.5 29.6 59.0 28.5	-13 16 18 20 21 23	56.2 25.3 36.7 27.7 56.5 01.6
	16 17 17 18 18 19	23.61 U L 24.61 U L 25.61 U	16 17 17 18 18 19	19 08 20 08 21 09	47.2 10.4 33.0 54.9 16.3 37.2	-18 17 15 13 10 8	47.0 04.4 11.3 09.2 59.7 44.0	11 12 12	17.90 U L 18.90 U L 19.90 U	10 11 11 12 12 13	14 03 15 04 16 05	57.8 26.8 55.3 23.1 50.1 16.3	-23 23 23 23 23 22 21	42.6 59.5 53.4 25.4 37.5 31.5
	19 20 20 21 21 22	26.61 U L 27.61 U L 28.61 U	19 20 20 21 21 21 22	21 10 22 10 23 11	57.8 18.2 38.4 58.6 18.9 39.4	-6 3 -1 +0 3 5	23.6 59.6 33.3 54.1 21.4 47.2	13 14 14 15 15	20.90 U L 21.90 U L 22.90 U	13 14 14 15 15 16	17 06 18 06 19 07	41.5 05.8 29.2 51.9 13.8 35.2	-20 18 16 14 12 10	09.6 33.9 46.3 48.6 42.6 29.6
	23 23 24 24	29.61 L U 0.90 L U	23 23 24 24	00 12 00 13	00.1 21.2 42.7 04.8	+8 10 12 +14	10.2 29.0 42.3 48.3	16 17 17 18	23.90 U L 24.90 U	16 17 17 18	19 08 20 08	56.1 16.7 37.0 57.2	-8 5 3 -0	11.1 48.4 22.7 55.1

MOON, 2020 AT EPHEMERIS TRANSIT

Dat	e	Age (at 0 ^h)	Ер Т	heme Trans	eris it	Geoce Declin	entric nation	Date	Age (at 0 ^h)	Ер Т	heme Trans	eris it	Geoce Declir	entric nation
May	18 19 19	d 24.90 U L 25.90 U L 26.90 U L	d 18 18 19 19 20 20	h 08 21 09 21 10 22	m 57.2 17.4 37.6 58.2 19.0 40.3	° -0 +1 4 6 8 11	55.1 33.2 01.0 27.2 50.3 09.0	11 11 12 12	d L 19.26 U L 20.26 U L 21.26 U	d 10 11 11 12 12 13	h 16 04 17 05 17 06	m 21.6 45.4 08.3 30.6 52.1 13.2	-18 16 14 12 10 7	24.4 32.9 31.5 21.9 05.9 44.9
	21 21 22 23 23 24	27.90 U L 28.90 U 0.26 L U 1.26 L	21 21 22 23 23 24	11 23 11 00 12 01	02.1 24.5 47.6 11.4 35.9 01.3	+13 15 17 19 20 21	21.9 27.1 23.1 07.9 39.7 56.5	14 15 15	22.26 U L 23.26 U L 24.26 U	13 14 14 15 15 16	18 06 19 07 19 08	33.8 54.1 14.4 34.5 54.8 15.4	-5 2 -0 +2 4 6	20.2 53.0 24.6 04.1 31.8 57.5
	24 25 25 26 26 27	2.26 L U 3.26 L U 4.26 L	24 25 25 26 26 27	13 01 14 02 15 03	27.2 53.9 20.9 48.4 16.0 43.7	+22 23 24 24 23 22	56.6 38.3 00.2 01.3 41.0 59.2	17 18 18	25.26 U L 26.26 U L 27.26 U	16 17 17 18 18 19	20 08 21 09 22 10	36.3 57.6 19.5 42.1 05.4 29.6	+9 11 13 15 17	19.9 37.6 49.2 53.0 47.3 30.1
	27 28 28 29 29 30	5.26 L U 6.26 L U 7.26 L	27 28 28 29 29 30	16 04 17 05 17 06	11.3 38.6 05.6 32.2 58.4 24.3	+21 20 18 16 14 12	56.3 33.1 50.7 50.8 35.1 05.6	20	28.26 U L 29.26 U 0.72 L U	19 20 20 21 22 22	22 11 23 12 00 13	54.5 20.3 46.8 13.9 41.6 09.7	+20 22 23 23 24 23	59.5 13.4 09.8 47.0 03.5 58.1
June	30 31 31 1 1 2	8.26 L U 9.26 L U 10.26 L	30 31 31 1 1 2	18 07 19 08 20 08	49.8 15.2 40.4 05.7 31.1 56.8	+9 6 3 +0 -2 5	24.5 34.0 36.6 34.8 28.7 31.0	23 23 24 24 25 25	1.72 L U 2.72 L U 3.72 L U	23 23 24 24 25 25	01 14 02 15 03 15	37.9 06.0 34.0 01.6 28.7 55.4	+23 22 21 19 18 15	30.5 40.7 29.4 57.7 07.2 59.9
	3	11.26 L U 12.26 L U 13.26 L	2 3 3 4 4 5	21 09 22 10 23 11	22.8 49.4 16.5 44.3 12.7 41.6	-8 11 14 16 18 20	29.2 20.1 00.6 27.6 38.0 29.0	26 26 27 27 28 28	4.72 L U 5.72 L U 6.72 L U	26 26 27 27 28 28	04 16 05 17 06 18	21.5 47.2 12.5 37.5 02.3 27.1	+13 11 8 5 +2 -0	38.0 03.8 19.6 28.0 31.3 28.0
	6 6 7 7 8 8	14.26 U L 15.26 U L 16.26 U L	6 6 7 7 8 8	00 12 01 13 02 14	10.9 40.5 10.1 39.5 08.5 36.9	-21 23 23 24 23 23	58.4 04.5 46.4 03.7 57.1 28.0	29 29 30 30 July 1 1	7.72 L U 8.72 L U 9.72 L U	29 29 30 30 1	06 19 07 20 08 21	52.0 17.0 42.5 08.3 34.8 01.8	-3 6 9 11 14 16	27.3 24.1 15.8 59.7 33.0 52.9
	9 9 10 10	17.26 U L 18.26 U L	9 9 10 10	03 15 03 16	04.5 31.1 56.8 21.6	-22 21 20 -18	37.9 29.2 03.8 24.4	2 2 3 3	10.72 L U 11.72 L U	2 2 3 3	09 21 10 22	29.5 57.7 26.5 55.6	-18 20 22 -23	56.9 42.3 07.1 09.6

MOON, 2020 AT EPHEMERIS TRANSIT

Dat	e	Age (at 0 ^h)		hemo Γrans	eris it	Geoce Declir	entric nation	Date	Age (at 0 ^h)	Ep T	heme Trans	eris it	Geoce Declir	entric nation
July	1 1 2 2 3 3	d 9.72 L U 10.72 L U 11.72 L U	d 1 1 2 2 3 3	h 08 21 09 21 10 22	m 34.8 01.8 29.5 57.7 26.5 55.6	-14 16 18 20 22 23	33.0 52.9 56.9 42.3 07.1 09.6	July 24 25 25 26 26 27	d U 4.27 L U 5.27 L U 6.27 L	d 24 25 25 26 26 27	h 15 03 16 04 17 05	m 34.3 59.6 24.6 49.6 14.6 39.7	+7 4 +1 -1 4 7	12.4 15.6 15.5 45.4 44.5 39.0
	4 4 5 6 6 7	12.72 L U 13.72 L 14.72 U L 15.72 U	4 4 5 6 6 7	11 23 12 00 13 01	24.8 53.9 22.8 51.1 18.7 45.5	-23 24 23 23 22 21	48.6 03.7 55.3 24.3 32.4 21.4	27 28 28 29 29 30	7.27 L U 8.27 L U 9.27 L	27 28 28 29 29 30	18 06 18 07 19 08	05.1 30.8 57.1 23.8 51.1 18.8	-10 13 15 17 19 21	26.6 04.7 30.8 42.6 37.8 14.3
	7 8 8 9 9	16.72 U L 17.72 U L 18.72 U	7 8 8 9 9	14 02 15 03 15 04	11.4 36.3 00.3 23.5 45.9 07.7	-19 18 16 14 12 9	53.8 11.6 17.3 13.0 00.6 42.0	30 31 31 Aug. 1 1	10.27 L U 11.27 L U 12.27 L	30 31 31 1 1 2	20 09 21 10 22 11	47.0 15.5 44.0 12.5 40.8 08.5	-22 23 23 24 23 23	30.4 24.7 56.4 05.2 51.4 15.9
	10 11 11 12 12 13	19.72 U L 20.72 U L 21.72 U	10 11 11 12 12 13	16 04 17 05 17 06	28.9 49.6 10.1 30.3 50.6 10.9	-7 4 -2 +0 2 5	18.7 52.1 23.7 05.5 34.4 01.7	2 3 4 4 5 5	U 13.27 L 14.27 U L 15.27 U L	2 3 4 4 5 5	23 12 00 12 01 13	35.7 02.1 27.6 52.3 16.2 39.3	-22 21 19 17 15 13	20.2 06.0 35.4 50.6 53.7 46.9
	13 14 14 15 15 16	22.72 U L 23.72 U L 24.72 U	13 14 14 15 15 16	18 06 19 07 19 08	31.4 52.2 13.6 35.4 58.0 21.3	+7 9 12 14 16 18	26.4 47.4 03.2 12.7 14.2 06.0	6 6 7 7 8 8	16.27 U L 17.27 U L 18.27 U L	6 6 7 7 8 8	02 14 02 15 03 15	01.7 23.4 44.7 05.5 26.0 46.3	-11 9 6 4 -1 +0	32.1 11.2 45.9 17.6 47.8 42.3
	16 17 17 18 18 19	25.72 U L 26.72 U L 27.72 U	16 17 17 18 18 19	20 09 21 10 22 10	45.4 10.4 36.3 03.0 30.5 58.5	+19 21 22 23 23 24	46.2 12.9 24.0 17.4 51.3 04.0	9 9 10 10 11	19.27 U L 20.27 U L 21.27 U L	9 9 10 10 11 11	04 16 04 17 05 17	06.5 26.9 47.4 08.2 29.4 51.2	+3 5 8 10 12 14	11.5 38.6 02.4 21.9 35.7 42.6
	19 20 21 21 22 22	28.72 U 0.27 L U 1.27 L U	19 20 21 21 22 22	23 11 00 12 01 13	26.9 55.6 24.3 52.8 21.0 48.7	+23 23 22 21 19 17	54.3 21.5 25.7 07.5 28.3 29.9	12 12 13 13 14 14	22.27 U L 23.27 U L 24.27 U L	12 12 13 13 14 14	06 18 07 19 07 20	13.5 36.7 00.6 25.4 51.0 17.4	+16 18 20 21 22 23	41.1 29.7 06.5 29.8 37.6 28.0
	23 23 24 24	2.27 L U 3.27 L U	23 23 24 24	02 14 03 15	15.8 42.5 08.6 34.3	+15 12 10 +7	14.4 44.5 02.9 12.4	15 15 16 16	25.27 U L 26.27 U L	15 15 16 16	08 21 09 22	44.6 12.5 40.9 09.6	+23 24 23 +23	59.0 09.1 56.7 21.3

MOON, 2020 AT EPHEMERIS TRANSIT

Date	e	L.				Geoce Declin	entric nation	Date	Age (at 0 ^h)	Ep T		eris it	Geoc	
Aug.	16 17 17 18 19	d L 27.27 U L 28.27 U 29.27 L U	d 16 17 17 18 19	h 22 10 23 11 00 12	m 09.6 38.4 07.1 35.7 03.8 31.5	+23 22 21 19 17 14	21.3 22.4 00.6 17.0 13.2 51.6	10 10	22.89 U	d 9 9 10 10 11	h 04 17 05 18 06 18	m 53.4 17.1 41.6 06.8 32.8 59.5	+19 20 21 23 23 24	04.3 37.3 56.4 00.0 46.5 14.0
	20 20 21 21 22 22	0.89 L U 1.89 L U 2.89 L U	20 20 21 21 22 22	00 13 01 14 02 15	58.8 25.5 51.9 17.9 43.8 09.5	+12 9 6 3 +0 -2	14.8 25.7 27.5 23.4 16.5 50.0	12 13 13	24.89 U L 25.89 U	12 12 13 13 14 14	07 19 08 20 09 21	26.8 54.6 22.7 51.0 19.3 47.6	+24 24 23 22 21 19	21.0 06.5 29.5 29.6 07.2 22.8
	23 23 24 24 25 25	3.89 L U 4.89 L U 5.89 L U	23 23 24 24 25 25	03 16 04 16 05 17	35.2 01.0 27.0 53.4 20.1 47.2	-5 8 11 14 16 18	53.2 50.1 38.0 14.3 36.5 42.4	15 15 16 16 17 18	27.89 U L 28.89 U	15 15 16 16 17 18	10 22 11 23 12 00	15.6 43.3 10.7 37.8 04.6 31.2	+17 14 12 9 6 +3	18.0 54.5 14.9 21.9 18.6 08.3
	26 26 27 27 28 28	6.89 L U 7.89 L U 8.89 L U	26 26 27 27 28 28	06 18 07 19 08 20	14.7 42.5 10.7 38.9 07.1 35.1	-20 21 23 23 24 24	30.1 57.9 04.5 48.9 10.8 10.4	18 19 19 20 20 21	1.54 L U 2.54 L U	18 19 19 20 20 21	12 01 13 02 14 03	57.7 24.2 50.8 17.6 44.7 12.1	-0 3 6 9 12 15	05.5 19.1 29.2 32.3 25.0 04.5
	29 29 30 30 31 31	9.89 L U 10.89 L U 11.89 L U	29 29 30 30 31 31	09 21 09 22 10 23	02.7 29.8 56.3 22.0 47.0 11.2	-23 23 22 20 19 17	48.2 05.4 03.4 44.0 09.0 20.6	21 22 22 23 23 24	4.54 L U 5.54 L U	21 22 22 23 23 24	15 04 16 05 17 06	39.9 08.0 36.4 05.0 33.7 02.4	-17 19 21 22 23 24	27.8 32.7 17.1 39.5 38.9 14.9
Sept.	1 1 2 3 3 4	12.89 L U 13.89 L 14.89 U L 15.89 U	1 1 2 3 3 4	11 23 12 00 13 01	34.6 57.3 19.3 40.9 01.9 22.6	-15 13 10 8 6 3	20.7 11.3 54.2 31.2 04.0 34.1	24 25 25 26 26	7.54 L U 8.54 L U	24 25 25 26 26 27	18 06 19 07 20 08	30.8 58.8 26.3 53.1 19.1 44.3	-24 24 23 22 21 20	27.6 17.6 46.2 54.8 45.1 18.9
	4 5 5 6 6 7	L 16.89 U L 17.89 U L 18.89 U	4 5 5 6 6 7	13 02 14 02 15 03	43.0 03.3 23.6 43.9 04.5 25.3	-1 +1 3 6 8 11	02.9 28.3 58.1 25.3 48.8 07.2	27 28 28 29 29 30	10.54 L U 11.54 L U	27 28 28 29 29 30	21 09 21 10 22 11	08.7 32.3 55.2 17.4 39.1 00.2	-18 16 14 12 10 7	38.4 45.3 41.6 29.2 09.7 44.7
	7 8 8 9	19.89 U L 20.89 U	7 8 8 9	15 04 16 04	46.5 08.2 30.5 53.4	+13 15 17 +19	19.3 23.8 19.3 04.3	30 Oct. 1 2 2	13.54 L	30 1 2 2	23 11 00 12	21.0 41.4 01.7 22.0	-5 2 -0 +2	15.8 44.5 12.2 19.9

MOON, 2020 AT EPHEMERIS TRANSIT

Dat	e	Age (at 0 ^h)		hemo Γrans	eris it	Geoce Declir	entric nation	Date		Age (at 0 ^h)	Ep T	heme Trans	eris it	Geoc	
Oct.	1 2 2 3 3 4	d 13.54 L 14.54 U L 15.54 U L 16.54 U	d 1 2 2 3 3 4	h 11 00 12 00 13 01	m 41.4 01.7 22.0 42.2 02.6 23.2	-2 -0 +2 4 7 9	44.5 12.2 19.9 50.4 17.9 41.3	Oct.	25 25 26 26	d 8.19 L U 9.19 L U 10.19 L	d 24 25 25 26 26 27	h 19 07 19 08 20 08	m 06.2 30.5 53.8 16.4 38.3 59.6	-19 18 16 14 11 9	56.0 09.2 10.9 02.8 46.9 24.7
	4 5 5 6 6 7	17.54 U L 18.54 U L 19.54 U	4 5 5 6 6 7	13 02 14 02 15 03	44.1 05.4 27.2 49.6 12.6 36.3	+11 14 16 18 19 21	59.1 10.0 12.6 05.5 47.1 16.0		27 28 28 29 29 30	11.19 L U 12.19 L U 13.19 L	27 28 28 29 29 30	21 09 22 10 22 11	20.5 41.0 01.2 21.4 41.5 01.7	-6 4 -1 +0 3 5	57.8 27.4 55.1 38.0 10.4 41.1
	7 8 8 9 9	20.54 U L 21.54 U L 22.54 U	7 8 8 9 9	16 04 16 05 17 06	00.6 25.7 51.3 17.5 44.2 11.3	+22 23 24 24 24 24 24	30.5 29.2 10.4 32.9 35.5 17.3	Nov.	1	U 14.19 L 15.19 U L 16.19 U L	30 31 1 1 2 2	23 11 00 12 00 13	22.1 42.8 03.9 25.4 47.5 10.2	+8 10 12 14 16 18	08.6 31.7 48.8 58.6 59.6 50.2
	10 11 11 12 12 13	23.54 U L 24.54 U L 25.54 U	10 11 11 12 12 13	18 07 19 08 20 08	38.6 06.0 33.4 00.8 27.9 54.9	+23 22 21 19 17 15	37.6 36.3 13.5 30.0 26.8 05.4		3 4 4	17.19 U L 18.19 U L 19.19 U L	3 4 4 5 5	01 13 02 14 03 15	33.5 57.5 22.0 47.2 12.9 39.1	+20 21 23 23 24 24	28.7 53.7 03.5 56.6 31.8 47.9
	13 14 14 15 15 16	26.54 U L 27.54 U L 28.54 U	13 14 14 15 15 16	21 09 22 10 23 11	21.7 48.3 14.8 41.3 07.8 34.6	+12 9 6 3 +0 -3	27.8 36.2 33.4 22.4 06.4 11.0		6 7 7	20.19 U L 21.19 U L 22.19 U L	6 6 7 7 8 8	04 16 04 17 05 18	05.5 32.2 58.9 25.6 52.2 18.5	+24 24 23 22 21 19	44.1 19.8 34.8 29.3 03.8 19.1
	17 17 18 18 19	0.19 L U 1.19 L U 2.19 L U	17 17 18 18 19	00 12 00 13 01 14	01.6 28.9 56.8 25.0 53.9 23.1	-6 9 12 15 17 19	26.1 35.1 34.3 19.9 48.6 57.3		9 10 10	23.19 U L 24.19 U L 25.19 U L	9 9 10 10 11 11	06 19 07 20 08 20	44.7 10.5 36.2 01.8 27.3 52.9	+17 14 12 9 6 3	16.4 57.2 23.0 35.8 37.8 31.5
	20 20 21 21 22 22	3.19 L U 4.19 L U 5.19 L U	20 20 21 21 22 22	02 15 03 16 04 17	52.7 22.5 52.4 22.0 51.3 20.0	-21 23 24 24 24 24 24	43.8 06.1 03.3 35.1 41.9 24.9		12 12 13 13 14 14	26.19 U L 27.19 U L 28.19 U L	12 12 13 13 14 14	09 21 10 22 11 23	18.6 44.7 11.2 38.2 05.8 34.2	+0 -2 6 9 12 15	19.6 54.8 08.4 17.7 18.8 07.9
	23 23 24 24	6.19 L U 7.19 L U	23 23 24 24	05 18 06 19	47.9 15.0 41.1 06.2	-23 22 21 -19	45.8 46.5 29.1 56.0		15 16 16 17	29.19 U 0.79 L U 1.79 L	15 16 16 17	12 00 13 01	03.3 33.1 03.3 34.1	-17 19 21 -23	41.0 54.9 46.1 12.4

MOON, 2020 AT EPHEMERIS TRANSIT

Dat	te	Age (at 0 ^h)	Ep	heme Frans	eris it	Geoce Declir		Date	Age (at 0 ^h)	Ep T	heme rans	eris it	Geoce	entric nation
Nov.	17 17 18 18 19	d 1.79 L U 2.79 L U 3.79 L U	d 17 17 18 18 19	h 01 14 02 15 03 16	m 34.1 04.9 35.7 06.0 35.7 04.6	-23 24 24 24 24 24 23	12.4 12.1 44.6 50.4 30.6 47.3	11	d 24.79 U L 25.79 U L 26.79 U L	d 10 10 11 11 12 12	h 07 20 08 21 09 22	m 59.4 24.9 50.9 17.7 45.2 13.6	-3 6 9 12 15 17	10.6 17.4 20.4 16.3 01.7 33.0
	20 20 21 21 22 22	4.79 L U 5.79 L U 6.79 L U	20 20 21 21 22 22	04 16 05 17 06 18	32.5 59.3 24.9 49.5 13.1 35.8	-22 21 19 17 15 13	42.6 19.4 40.2 47.5 43.7 31.0	13	27.79 U L 28.79 U 0.32 L U 1.32 L	13 13 14 15 15 16	10 23 11 00 12 01	42.8 12.9 43.5 14.5 45.6 16.6	-19 21 23 24 24 24	46.4 38.9 07.3 09.7 44.7 52.2
	23 23 24 24 25 25	7.79 L U 8.79 L U 9.79 L U	23 23 24 24 25 25	06 19 07 20 08 20	57.8 19.1 39.8 00.3 20.4 40.5	-11 8 6 3 -1 +1	11.1 45.8 16.5 44.6 11.3 22.1	16 17 17 18 18	2.32 L U 3.32 L U 4.32 L	16 17 17 18 18 19	13 02 14 03 15 04	47.0 16.6 45.3 12.8 39.3 04.5	-24 23 22 21 19 17	33.0 48.8 42.1 15.6 32.4 35.1
	26 26 27 27 28 28	10.79 L U 11.79 L U 12.79 L U	26 26 27 27 28 28	09 21 09 22 10 22	00.6 20.8 41.2 02.0 23.2 45.0	+3 6 8 11 13 15	54.5 24.8 51.5 13.6 29.4 37.7	19 20 20 21 21 22	5.32 L U 6.32 L U 7.32 L	19 20 20 21 21 22	16 04 17 05 17 06	28.7 51.9 14.2 35.8 56.8 17.4	-15 13 10 8 5 3	26.6 09.2 45.1 16.1 43.8 09.7
Dec.	29 29 30 1 1 2	13.79 L U 14.79 L 15.79 U L 16.79 U	29 29 30 1 1 2	11 23 11 00 12 01	07.3 30.4 54.1 18.5 43.6 09.2	+17 19 21 22 23 24	36.7 24.9 00.5 21.8 27.0 14.9	22 23 23 24 24 25	8.32 L U 9.32 L U 10.32 L	22 23 23 24 24 25	18 06 19 07 19 08	37.7 57.9 18.0 38.2 58.7 19.6	-0 +1 4 7 9 11	34.9 59.2 31.7 01.3 26.9 47.4
	2 3 3 4 4 5	17.79 U L 18.79 U L 19.79 U	2 3 3 4 4 5	13 02 14 02 15 03	35.3 01.8 28.5 55.3 21.9 48.4	+24 24 24 24 23 22	43.8 53.0 41.6 09.5 16.8 04.2	26 27 27	11.32 L U 12.32 L U 13.32 L	25 26 26 27 27 28	20 09 21 09 22 10	40.9 02.8 25.3 48.5 12.5 37.2	+14 16 18 19 21 22	01.4 07.4 03.9 49.3 21.8 39.6
	5 6 6 7 7 8	20.79 U L 21.79 U L 22.79 U	5 6 6 7 7 8	16 04 17 05 17 06	14.6 40.5 05.9 31.1 55.9 20.6	+20 18 16 14 11 8	32.4 42.8 36.8 16.0 42.2 57.3	29	14.32 L U 15.32 L 16.32 U L	28 29 29 30 31 31	23 11 23 12 00 13	02.6 28.7 55.4 22.3 49.5 16.7	+23 24 24 24 24 24 23	40.9 24.0 47.7 50.7 32.4 52.6
	8 9 9 10	23.79 U L 24.79 U	8 9 9 10	18 07 19 07	45.1 09.7 34.4 59.4	+6 +3 -0 -3	03.3 02.4 03.1 10.6	32	17.32 U L 18.32 U L	32 32 33 33	01 14 02 15	43.8 10.6 37.1 03.1	+22 21 19 +17	51.8 30.7 50.5 52.9

 $\begin{array}{c} \textbf{MOON, 2020} \\ \textbf{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \textbf{FOR } 0^{\text{h}} \, \textbf{TERRESTRIAL TIME} \end{array}$

Date	The Ear		The Sur		Position A		Fraction
$0^{\rm h}$ TT	Selenogra	•	Selenogra	_	Axis	Bright	Illuminated
-	Long.	Lat.	Colong.	Lat.	0	Limb	
Jan. 0	+1.968	+5.711	323.26	-0.04	337	251	0.216
1	+0.773	6.382	335.43	0.06	336	249	0.299
2	-0.495	6.777	347.61	0.07	336	248	0.389
3	1.767	6.884	359.77	0.09	337	247	0.483
4	2.970	6.697	11.93	0.10	339	247	0.577
5	4.031	6.215	24.08	0.12	341	249	0.670
6 7 8 9 10 11	-4.879 5.455 5.709 5.614 5.164 4.383	5.444 4.398 3.106 +1.615 -0.002 1.654	36.22 48.36 60.50 72.63 84.75 96.88	-0.14 0.16 0.19 0.22 0.25 0.29	345 349 354 359 5	251 254 259 265 274 72	0.759 0.839 0.908 0.960 0.992 0.999
12 13 14 15 16 17	-3.320 2.055 -0.680 +0.701 1.997 3.131	-3.230 4.617 5.711 6.434 6.740 6.621	109.00 121.13 133.26 145.40 157.54 169.69	-0.32 0.36 0.40 0.44 0.48 0.51	16 20 23 24 23 22	96 103 107 110 111	0.981 0.936 0.867 0.778 0.674 0.563
18	+4.050	-6.101	181.84	-0.55	19	110	0.449
19	4.728	5.229	194.01	0.59	15	108	0.341
20	5.156	4.072	206.18	0.62	10	104	0.241
21	5.341	2.706	218.36	0.65	5	99	0.155
22	5.297	-1.215	230.54	0.69	360	93	0.087
23	5.039	+0.316	242.72	0.72	354	85	0.037
24	+4.582	+1.810	254.91	-0.74	349	73	0.008
25	3.940	3.194	267.10	0.77	344	321	0.001
26	3.126	4.407	279.30	0.79	341	267	0.013
27	2.157	5.402	291.49	0.81	338	258	0.043
28	+1.052	6.145	303.67	0.82	337	254	0.091
29	-0.157	6.614	315.86	0.84	336	251	0.152
30	-1.433	+6.797	328.04	-0.85	337	250	0.226
31	2.723	6.692	340.21	0.86	338	250	0.309
Feb. 1	3.966	6.300	352.38	0.87	340	251	0.399
2	5.091	5.630	04.55	0.89	343	252	0.495
3	6.021	4.697	16.71	0.90	347	255	0.592
4	6.677	3.524	28.86	0.91	352	259	0.688
5	-6.985	+2.143	41.01	-0.93	357	264	0.779
6	6.882	+0.609	53.15	0.95	3	271	0.861
7	6.332	-1.005	65.28	0.97	9	278	0.928
8	5.335	2.603	77.41	0.99	14	289	0.976
9	3.937	4.069	89.54	1.02	19	323	0.998
10	2.236	5.285	101.67	1.04	22	88	0.992
11	-0.374	-6.144	113.81	-1.07	24	102	0.957
12	+1.487	6.577	125.94	1.10	24	107	0.895
13	3.187	6.558	138.08	1.13	22	109	0.812
14	4.601	6.110	150.22	1.15	20	108	0.713
15	+5.650	-5.288	162.38	-1.18	16	106	0.604

 $\begin{array}{c} \textbf{MOON, 2020} \\ \text{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \text{FOR } 0^{\text{h}} \text{ TERRESTRIAL TIME} \end{array}$

Date	The Ear		The Su		Position A		Fraction
Oh TT	Selenogra Long.	Lat.	Selenogra Colong.	Lat.	Axis	Bright Limb	Illuminated
	o o	0	0	0	0	0	
Feb. 15	+5.650	-5.288	162.38	-1.18	16	106	0.604
16	6.308	4.172	174.54	1.21	12	103	0.493
17	6.586	2.847	186.71	1.23	6	98	0.386
18	6.524	-1.399	198.88	1.26	1	93	0.286
19	6.177	+0.092	211.06	1.28	355	87	0.197
20	5.598	1.552	223.25	1.31	350	80	0.123
21	+4.836	+2.917	235.45	-1.33	345	73	0.066
22	3.932	4.128	247.64	1.35	342	64	0.026
23	2.913	5.139	259.84	1.37	339	41	0.005
24	1.801	5.911	272.04	1.38	337	297	0.003
25	+0.612	6.417	284.24	1.39	336	264	0.019
26	-0.638	6.643	296.44	1.40	336	257	0.052
27 28 29 Mar. 1 2	-1.926 3.221 4.480 5.645 6.646 7.401	+6.584 6.243 5.633 4.772 3.684 2.404	308.64 320.83 333.02 345.21 357.39 9.56	-1.40 1.41 1.41 1.41 1.41 1.41	338 340 342 346 350 355	254 253 254 256 259 264	0.101 0.164 0.239 0.325 0.419 0.518
4 5 6 7 8 9	-7.827 7.841 7.378 6.407 4.947 3.081	+0.973 -0.551 2.092 3.555 4.830 5.803	21.73 33.89 46.05 58.20 70.34 82.48	-1.41 1.42 1.42 1.43 1.44	0 6 12 17 21 23	269 275 282 289 298 315	0.620 0.720 0.813 0.893 0.954 0.990
10	-0.957	-6.376	94.63	-1.45	24	61	0.997
11	+1.231	6.491	106.77	1.46	23	98	0.974
12	3.276	6.142	118.91	1.47	21	104	0.922
13	5.005	5.376	131.06	1.48	17	104	0.846
14	6.301	4.278	143.22	1.49	13	102	0.754
15	7.115	2.948	155.38	1.50	8	99	0.651
16	+7.453	-1.489	167.56	-1.52	2	94	0.544
17	7.365	+0.010	179.73	1.53	357	88	0.438
18	6.921	1.470	191.92	1.54	351	82	0.338
19	6.197	2.828	204.11	1.55	346	77	0.247
20	5.266	4.033	216.31	1.57	342	71	0.168
21	4.191	5.039	228.52	1.58	339	65	0.103
22	+3.022	+5.814	240.73	-1.58	337	59	0.053
23	1.793	6.331	252.94	1.59	336	50	0.019
24	+0.530	6.572	265.15	1.59	336	17	0.003
25	-0.749	6.530	277.37	1.59	337	284	0.005
26	2.028	6.207	289.59	1.59	339	263	0.025
27	3.287	5.615	301.80	1.58	342	259	0.062
28	-4.499	4.775	314.01	-1.57	345	258	0.115
29	5.622	3.716	326.22	1.56	349	260	0.183
30	6.602	2.475	338.42	1.55	354	263	0.264
31	7.372	+1.096	350.62	1.54	359	268	0.356
Apr. 1	-7.854	-0.367	2.82	-1.53	4	273	0.456

 $\begin{array}{c} \textbf{MOON, 2020} \\ \text{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \text{FOR } 0^{\text{h}} \text{ TERRESTRIAL TIME} \end{array}$

Date	The Ear		The Sur	n's	Position A		Fraction
O ^h TT	Selenogra Long.	Lat.	Selenogra Colong.	Lat.	Axis	Bright Limb	Illuminated
	Long.	Lat.	cololig.	Lat.	0	LIIIID	
Apr. 1	-7.854	-0.367	2.82	-1.53	4	273	0.456
2	7.968	1.850	15.00	1.51	10	279	0.562
3	7.643	3.275	27.18	1.50	15	284	0.668
4	6.830	4.551	39.36	1.49	19	290	0.769
5	5.524	5.578	51.52	1.48	22	296	0.859
6	3.779	6.257	63.69	1.47	24	301	0.931
7 8 9 10 11 12	-1.717 +0.485 2.621 4.498 5.971 6.961	-6.509 6.294 5.627 4.572 3.234 1.728	75.85 88.00 100.16 112.32 124.49 136.66	-1.45 1.44 1.43 1.42 1.41	24 22 19 15 10 4	311 5 91 99 98 95	0.979 0.998 0.986 0.946 0.880 0.797
13 14 15 16 17 18	+7.450 7.472 7.088 6.377 5.421 4.295	-0.166 +1.358 2.769 4.012 5.046 5.842	148.84 161.02 173.21 185.41 197.62 209.83	-1.41 1.41 1.40 1.40 1.40 1.40	358 353 348 343 340 338	90 85 79 74 69	0.701 0.599 0.497 0.397 0.304 0.220
19	+3.065	+6.376	222.05	-1.40	337	62	0.147
20	1.783	6.634	234.27	1.40	336	59	0.087
21	+0.490	6.609	246.50	1.39	337	55	0.042
22	-0.784	6.300	258.73	1.38	339	47	0.013
23	2.017	5.717	270.96	1.37	341	355	0.002
24	3.187	4.880	283.19	1.36	344	273	0.009
25	-4.276	3.818	295.42	-1.34	348	264	0.034
26	5.253	2.572	307.65	1.32	352	264	0.078
27	6.084	+1.189	319.88	1.30	358	267	0.139
28	6.722	-0.272	332.10	1.27	3	271	0.216
29	7.111	1.748	344.32	1.25	8	276	0.307
30	7.192	3.164	356.53	1.22	14	282	0.408
May 1 2 3 4 5 6	-6.910	-4.442	8.74	-1.20	18	287	0.517
	6.224	5.496	20.93	1.17	21	291	0.627
	5.126	6.241	33.13	1.15	23	295	0.734
	3.650	6.600	45.31	1.12	24	298	0.831
	-1.883	6.521	57.49	1.09	23	300	0.911
	+0.040	5.990	69.67	1.07	21	303	0.967
7	+1.956	-5.040	81.84	-1.04	17	320	0.996
8	3.699	3.749	94.02	1.01	12	83	0.995
9	5.130	2.230	106.20	0.99	7	94	0.966
10	6.154	-0.603	118.37	0.97	1	92	0.912
11	6.729	+1.014	130.56	0.95	355	87	0.839
12	6.860	2.529	142.75	0.93	349	82	0.752
13	+6.585	+3.870	154.95	-0.92	345	77	0.657
14	5.964	4.988	167.15	0.90	341	72	0.559
15	5.069	5.852	179.36	0.89	338	69	0.461
16	3.975	6.443	191.58	0.88	337	66	0.366
17	+2.755	+6.749	203.80	-0.87	336	64	0.277

 $\begin{array}{c} \textbf{MOON, 2020} \\ \text{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \text{FOR } 0^{\text{h}} \text{ TERRESTRIAL TIME} \end{array}$

Date	The Ear		The Sur		Position A		Fraction
$0^{\rm h}$ TT	Selenogra	_	Selenogra	_	Axis	Bright	Illuminated
-	Long.	Lat.	Colong.	Lat.	0	Limb	
May 17	+2.755	+6.749	203.80	-0.87	336	64	0.277
18	1.474	6.766	216.03	0.86	337	63	0.197
19	+0.190	6.495	228.26	0.85	338	62	0.127
20	-1.050	5.945	240.50	0.84	340	62	0.071
21	2.207	5.131	252.74	0.82	343	61	0.030
22	3.252	4.081	264.99	0.80	347	55	0.006
23	-4.158	+2.830	277.23	-0.78	351	295	0.001
24	4.904	+1.429	289.48	0.76	356	269	0.016
25	5.468	-0.061	301.72	0.73	2	270	0.052
26	5.824	1.572	313.96	0.70	7	274	0.107
27	5.948	3.025	326.20	0.67	12	279	0.181
28	5.815	4.340	338.43	0.64	17	284	0.271
29	-5.403	-5.435	350.66	-0.61	20	288	0.374
30	4.704	6.235	2.88	0.57	23	292	0.485
31	3.725	6.674	15.09	0.54	24	294	0.598
June 1	2.500	6.703	27.30	0.50	23	296	0.709
2	-1.092	6.303	39.49	0.47	21	296	0.809
3	+0.412	5.486	51.69	0.43	18	295	0.893
4	+1.904	-4.306	63.88	-0.39	14	293	0.955
5	3.273	2.850	76.07	0.36	9	292	0.991
6	4.420	-1.229	88.25	0.32	3	75	0.999
7	5.265	+0.439	100.44	0.29	357	90	0.981
8	5.759	2.045	112.63	0.26	352	86	0.939
9	5.886	3.498	124.83	0.23	346	81	0.878
10 11 12 13 14 15	+5.654 5.098 4.268 3.225 2.038 +0.778	+4.732 5.705 6.391 6.782 6.874 6.673	137.02 149.23 161.44 173.65 185.88 198.10	-0.21 0.19 0.17 0.16 0.14 0.13	342 339 337 336 337 338	76 72 69 67 66	0.802 0.715 0.623 0.527 0.432 0.339
16	-0.488	+6.188	210.34	-0.12	340	66	0.252
17	1.694	5.435	222.58	0.10	342	68	0.174
18	2.782	4.435	234.82	0.09	346	70	0.107
19	3.704	3.220	247.07	0.07	350	74	0.054
20	4.419	1.834	259.32	0.05	355	78	0.017
21	4.900	+0.334	271.57	-0.03	0	85	0.001
22	-5.129	-1.210	283.82	0.00	6	268	0.006
23	5.101	2.715	296.07	+0.03	11	274	0.034
24	4.823	4.094	308.32	0.06	16	280	0.084
25	4.311	5.260	320.57	0.09	20	285	0.156
26	3.593	6.131	332.81	0.12	22	289	0.245
27	2.703	6.644	345.04	0.16	24	292	0.349
28	-1.685	-6.757	357.27	+0.19	23	293	0.462
29	-0.586	6.455	9.49	0.23	22	293	0.577
30	+0.542	5.750	21.70	0.27	19	292	0.688
July 1	1.647	4.687	33.91	0.31	16	289	0.790
2	+2.674	-3.336	46.11	+0.35	11	285	0.875

 $\begin{array}{c} \textbf{MOON, 2020} \\ \textbf{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \textbf{FOR } 0^{\text{h}} \, \textbf{TERRESTRIAL TIME} \end{array}$

Date	The Ear		The Su		Position A		Fraction
O ^h TT	Selenogra		Selenogr Colong.		Axis	Bright Limb	Illuminated
	Long.	Lat.	colong.	Lat.	0	Limb	
July 1	+1.647	-4.687	33.91	+0.31	16	289	0.790
2	2.674	3.336	46.11	0.35	11	285	0.875
3	3.572	1.789	58.31	0.39	6	280	0.941
4	4.293	-0.151	70.50	0.42	360	272	0.982
5	4.793	+1.473	82.70	0.46	354	242	0.999
6	5.039	2.986	94.89	0.49	348	92	0.992
7	+5.010	+4.309	107.08	+0.52	344	83	0.962
8	4.701	5.383	119.28	0.55	340	77	0.913
9	4.119	6.173	131.48	0.57	338	73	0.848
10	3.293	6.661	143.68	0.59	337	70	0.771
11	2.263	6.844	155.89	0.61	336	69	0.685
12	+1.086	6.727	168.11	0.62	337	68	0.594
13	-0.174	+6.324	180.33	+0.63	339	68	0.499
14	1.444	5.652	192.55	0.64	341	69	0.405
15	2.647	4.732	204.78	0.65	344	72	0.313
16	3.709	3.593	217.02	0.66	348	75	0.226
17	4.558	2.270	229.26	0.67	353	80	0.149
18	5.135	+0.812	241.51	0.69	358	86	0.084
19	-5.393	-0.720	253.76	+0.70	4	94	0.035
20	5.308	2.248	266.01	0.72	9	109	0.007
21	4.883	3.682	278.26	0.74	15	244	0.002
22	4.149	4.925	290.51	0.76	19	275	0.022
23	3.164	5.885	302.76	0.79	22	283	0.067
24	2.011	6.487	315.01	0.81	23	288	0.136
25	-0.779	-6.682	327.25	+0.84	23	290	0.329
26	+0.443	6.455	339.48	0.87	22	291	
27	1.583	5.826	351.71	0.91	20	290	
28	2.587	4.841	3.93	0.94	17	288	
29	3.426	3.573	16.15	0.97	12	285	
30	4.083	2.105	28.35	1.01	7	280	
Aug. 31 2 2 3 4 5	+4.557 4.845 4.947 4.856 4.566 4.069	-0.532 +1.051 2.555 3.901 5.025 5.882	40.55 52.75 64.94 77.13 89.32 101.51	+1.04 1.08 1.11 1.14 1.17 1.19	1 356 350 345 341 339	273 266 256 236 116 85	0.922 0.969 0.995
6	+3.365	+6.445	113.70	+1.21	337	77	0.944
7	2.463	6.703	125.90	1.22	336	73	0.891
8	1.388	6.659	138.09	1.23	337	71	0.824
9	+0.177	6.326	150.30	1.24	338	70	0.746
10	-1.115	5.725	162.50	1.25	340	71	0.660
11	2.420	4.880	174.71	1.25	343	73	0.568
12 13 14 15 16	-3.660 4.750 5.603 6.136 -6.282	+3.820 2.578 +1.195 -0.278 -1.775	186.93 199.15 211.38 223.61 235.85	+1.25 1.25 1.25 1.26 +1.26	347 351 356 2 7	75 79 84 90 97	0.283 0.196

 $\begin{array}{c} \textbf{MOON, 2020} \\ \text{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \text{FOR } 0^{\text{h}} \text{ TERRESTRIAL TIME} \end{array}$

Dat		The Ear		The Su		Position A		Fraction
O ^h T	T	Selenogra Long.	Lat.	Selenogra Colong.	Lat.	Axis	Bright Limb	Illuminated
-		o o	0	o o	0	0	0	
Aug.	16	-6.282	-1.775	235.85	+1.26	7	97	0.119
	17	5.998	3.217	248.09	1.27	13	106	0.058
	18	5.276	4.510	260.33	1.27	17	119	0.018
	19	4.158	5.553	272.58	1.28	21	180	0.002
	20	2.728	6.256	284.82	1.30	23	271	0.013
	21	-1.116	6.549	297.07	1.31	24	283	0.052
	22	+0.535	-6.404	309.30	+1.33	23	287	0.117
	23	2.084	5.834	321.54	1.34	21	288	0.204
	24	3.423	4.891	333.77	1.36	17	287	0.306
	25	4.483	3.655	345.99	1.39	13	284	0.417
	26	5.240	2.220	358.20	1.41	8	280	0.529
	27	5.702	-0.682	10.41	1.43	3	274	0.639
Sept.	28	+5.896	+0.867	22.61	+1.46	357	268	0.739
	29	5.857	2.343	34.80	1.48	351	261	0.826
	30	5.618	3.674	46.99	1.51	346	254	0.897
	31	5.203	4.801	59.17	1.53	342	246	0.950
	1	4.626	5.678	71.35	1.54	339	233	0.984
	2	3.894	6.274	83.53	1.56	337	186	0.998
	3	+3.010	+6.572	95.71	+1.57	337	96	0.992
	4	1.980	6.571	107.89	1.57	337	80	0.969
	5	+0.817	6.281	120.08	1.58	338	75	0.928
	6	-0.453	5.721	132.26	1.57	340	74	0.872
	7	1.791	4.919	144.45	1.57	342	74	0.803
	8	3.139	3.906	156.64	1.56	346	76	0.723
	9 10 11 12 13 14	-4.426 5.568 6.474 7.050 7.210 6.892	+2.719 +1.397 -0.013 1.456 2.867 4.165	168.83 181.03 193.24 205.45 217.67 229.89	+1.55 1.54 1.53 1.52 1.51 1.50	350 354 360 5 10	79 83 88 94 100 107	0.635 0.540 0.441 0.342 0.246 0.159
	15 16 17 18 19 20	-6.066 4.760 3.060 -1.114 +0.898 2.793	-5.258 6.051 6.458 6.423 5.935 5.034	242.12 254.35 266.58 278.81 291.04 303.27	+1.49 1.49 1.48 1.48 1.49	19 22 23 23 22 19	114 124 151 261 281 284	0.086 0.033 0.005 0.006 0.038 0.096
	21	+4.420	-3.802	315.49	+1.49	15	283	0.178
	22	5.683	2.346	327.71	1.50	10	280	0.276
	23	6.543	-0.780	339.92	1.50	4	276	0.383
	24	7.006	+0.793	352.12	1.51	358	270	0.493
	25	7.112	2.284	4.32	1.52	353	264	0.599
	26	6.913	3.622	16.50	1.53	347	258	0.699
Oct.	27	+6.465	+4.754	28.69	+1.54	343	252	0.788
	28	5.816	5.637	40.86	1.55	340	246	0.863
	29	5.005	6.244	53.04	1.56	338	241	0.923
	30	4.058	6.560	65.20	1.56	337	234	0.966
	1	+2.996	+6.579	77.37	+1.56	337	219	0.991

 $\begin{array}{c} \textbf{MOON, 2020} \\ \textbf{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \textbf{FOR } 0^{\text{h}} \, \textbf{TERRESTRIAL TIME} \end{array}$

Date	The Ear Selenogra		The Sur Selenogra	n's	Position A Axis		Fraction Illuminated
0 ^h TT	Long.	Lat.	Colong.	Lat.	AXIS	Bright Limb	mummated
	0	0	0	0	0	0	
Oct. 1	+2.996	+6.579	77.37	+1.56	337	219	0.991
2	1.830	6.308	89.54	1.55	337	141	0.998
3	+0.577	5.765	101.70	1.55	339	88	0.987
4	-0.743	4.976	113.87	1.53	342	79	0.959
5	2.101	3.975	126.03	1.52	345	78	0.915
6	3.453	2.800	138.20	1.50	349	79	0.855
7	-4.741	+1.496	150.38	+1.48	353	82	0.782
8	5.894	+0.111	162.55	1.46	358	87	0.698
9	6.830	-1.304	174.73	1.43	3	92	0.604
10	7.460	2.688	186.92	1.41	9	97	0.504
11	7.697	3.975	199.11	1.38	14	103	0.400
12	7.468	5.088	211.31	1.36	18	109	0.298
13	-6.729	-5.943	223.52	+1.34	21	114	0.201
14	5.481	6.455	235.73	1.32	23	119	0.117
15	3.789	6.552	247.94	1.30	23	124	0.052
16	-1.778	6.195	260.15	1.28	22	135	0.012
17	+0.374	5.391	272.37	1.26	20	234	0.002
18	2.471	4.198	284.59	1.25	16	277	0.023
19	+4.338	-2.722	296.80	+1.24	12	280	0.072
20	5.842	-1.091	309.01	1.23	6	277	0.145
21	6.913	+0.569	321.21	1.22	0	272	0.236
22	7.534	2.148	333.41	1.21	354	266	0.337
23	7.728	3.563	345.60	1.21	349	260	0.443
24	7.545	4.752	357.78	1.20	344	255	0.547
25	+7.046	+5.679	9.96	+1.20	341	250	0.646
26	6.295	6.319	22.13	1.19	338	246	0.738
27	5.350	6.661	34.29	1.19	337	243	0.818
28	4.258	6.704	46.45	1.18	337	240	0.885
29	3.062	6.455	58.61	1.17	337	238	0.938
30	1.794	5.929	70.76	1.15	339	234	0.975
Nov. 1 2 3 4 5	+0.481 -0.851 2.173 3.450 4.642 5.696	+5.150 4.149 2.968 1.651 +0.251 -1.177	82.91 95.06 107.21 119.35 131.51 143.66	+1.14 1.11 1.09 1.06 1.03 1.00	341 344 348 352 357 2	220 110 84 83 85 90	0.995 0.998 0.983 0.950 0.900 0.834
6 7 8 9 10	-6.551 7.141 7.396 7.255 6.676 5.648	-2.572 3.871 5.005 5.903 6.494 6.711	155.82 167.98 180.15 192.32 204.50 216.69	+0.97 0.93 0.90 0.86 0.83 0.80	7 12 17 20 22 23	95 100 105 110 114 117	0.755 0.663 0.562 0.455 0.347 0.243
12	-4.204	-6.505	228.88	+0.77	23	118	0.150
13	2.429	5.856	241.08	0.74	21	119	0.075
14	-0.456	4.788	253.28	0.71	18	121	0.023
15	+1.555	3.375	265.48	0.68	14	146	0.001
16	+3.438	-1.731	277.68	+0.65	9	273	0.009

 $\begin{array}{c} \textbf{MOON, 2020} \\ \text{EPHEMERIS FOR PHYSICAL OBSERVATIONS} \\ \text{FOR } 0^{\text{h}} \text{ TERRESTRIAL TIME} \end{array}$

Date	The Ear		The Sur	n's	Position A		Fraction
0 ^h TT	Selenogra	_	Selenogra	_	Axis	Bright	Illuminated
	Long.	Lat.	Colong.	Lat.	0	Limb	
Nov. 16	+3.438	-1.731	277.68	+0.65	9	273	0.009
17	5.049	+0.008	289.88	0.63	3	274	0.047
18	6.287	1.708	302.08	0.61	357	270	0.108
19	7.096	3.258	314.27	0.59	351	264	0.189
20	7.465	4.577	326.46	0.57	346	258	0.281
21	7.416	5.612	338.64	0.55	342	254	0.381
22	+6.997	+6.339	350.81	+0.54	339	250	0.482
23	6.268	6.750	2.98	0.53	337	247	0.580
24	5.295	6.848	15.14	0.51	337	245	0.674
25	4.145	6.646	27.29	0.49	337	244	0.760
26	2.879	6.161	39.44	0.48	338	243	0.835
27	1.553	5.416	51.59	0.46	340	244	0.899
28	+0.218	+4.441	63.73	+0.43	343	245	0.948
29	-1.084	3.271	75.87	0.41	347	246	0.982
30	2.315	1.951	88.00	0.38	351	241	0.998
Dec. 1	3.440	+0.532	100.14	0.35	356	87	0.997
2	4.427	-0.925	112.27	0.32	1	87	0.976
3	5.243	2.358	124.41	0.28	6	91	0.936
4	-5.856	-3.697	136.55	+0.24	11	97	0.878
5	6.231	4.873	148.69	0.21	16	102	0.803
6	6.336	5.820	160.84	0.17	19	106	0.714
7	6.144	6.473	172.99	0.13	22	110	0.613
8	5.634	6.776	185.15	0.09	23	113	0.504
9	4.806	6.689	197.32	0.06	23	115	0.392
10	-3.679	-6.188	209.49	+0.02	22	115	0.284
11	2.299	5.283	221.67	-0.02	20	114	0.184
12	-0.743	4.017	233.85	0.05	16	111	0.101
13	+0.891	2.471	246.04	0.08	11	107	0.040
14	2.490	-0.758	258.23	0.12	6	101	0.007
15	3.936	+0.992	270.42	0.15	359	280	0.002
16	+5.129	+2.650	282.61	-0.17	353	271	0.024
17	5.987	4.109	294.80	0.20	348	264	0.071
18	6.463	5.292	306.99	0.22	343	258	0.138
19	6.541	6.154	319.17	0.25	340	254	0.220
20	6.237	6.681	331.35	0.27	338	250	0.310
21	5.591	6.874	343.52	0.28	337	248	0.406
22	+4.659 3.514 2.229 +0.881 -0.458 1.719	+6.751	355.68	-0.30	337	246	0.503
23		6.335	7.84	0.32	338	246	0.597
24		5.652	19.99	0.34	340	247	0.688
25		4.733	32.13	0.36	342	249	0.771
26		3.612	44.27	0.38	345	251	0.845
27		2.329	56.41	0.40	349	255	0.908
28	-2.845	+0.929	68.54	-0.43	354	261	0.956
29	3.788	-0.531	80.67	0.46	359	269	0.987
30	4.513	1.987	92.80	0.48	5	316	1.000
31	4.998	3.369	104.93	0.51	10	84	0.992
32	-5.232	-4.600	117.06	-0.55	15	95	0.963

$\begin{array}{c} \textbf{MERCURY, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR } 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	e		ioce: ngiti	ntric ude		lioce atitu	ntric de	Radius Vector		Dat	te		ioce ngit	ntric ude		ioce atitu			lius ctor
Jan.	0 1 2 3 4 5	259 262 265 267 270 273	27 12 58	17.2 14.9 40.2 45.5 43.1 45.6	-3 3 4 4 4 4	38 55 11 27 43 57	07.9 09.0 39.7 38.8 04.5 55.3	0.466 62 0.466 26 0.465 63 0.464 71 0.463 53 0.462 06	660 319 197 304	Feb.	17 18 19	95 101 107 113 119 125	22 29 31 26	" 08.5 01.5 55.5 37.7 05.3 27.0		35 00 21 37	" 01.5 23.6 29.6 08.8 18.5 03.0	0.312 0.314 0.317 0.321	9 9640 2 0174 4 6420 7 7990 4 4436 5 5271
	6 7 8 9 10	276 279 282 285 287 290	13 06 01 57	05.7 56.5 31.3 03.9 48.3 59.3	-5 5 5 5 6 6	12 25 38 50 02 12	09.3 44.6 38.8 49.5 14.1 49.4	0.460 32 0.458 33 0.456 03 0.453 48 0.450 68 0.447 63	157 358 898 812		22 23 24 25	130 136 141 146 151 156	18 37 46 45	02.8 24.4 13.9 23.4 53.1 50.4	6 6 6	59 59 56 49	32.0 59.8 43.9 03.8 19.9 52.7	0.334 0.339 0.345 0.350	9982 18047 98946 52169 97230 53665
	12 13 14 15 16 17	293 297 300 303 306 309	03 11 23 38	51.8 41.6 44.9 18.7 40.5 08.6	-6 6 6 6 6	22 31 39 45 51 55	32.2 18.9 05.5 47.5 20.3 38.5	0.444 29 0.440 72 0.436 91 0.432 86 0.428 59 0.424 10	247 140 686 1 966	Mar.	28 29 1 2	161 165 170 174 178 182	48 10 25 32	28.4 04.5 59.7 37.1 21.6 38.6		14 58 41 22	02.3 07.6 26.4 14.9 47.7 18.1	0.367 0.373 0.379 0.385	2 1041 7 8958 3 7045 9 4967 5 2415 9 9115
	18 19 20 21 22 23	313 316 320 324 327 331	50 24 03 48	02.0 40.4 24.2 34.5 33.0 41.6	-6 7 7 6 6 6	58 00 00 58 54 49	36.4 08.0 06.4 24.7 55.2 30.0	0.419 41 0.414 51 0.409 44 0.404 20 0.398 81 0.393 29	191 458 057 157		5 6 7 8	186 190 193 197 200 204	09 49 22 51	54.2 34.3 04.2 48.9 12.4 38.0	4 4 3 3	21 00 38 16	57.7 56.9 24.5 28.5 15.8 52.1	0.401 0.407 0.412 0.417	5 4817 1 9298 7 2359 2 3821 7 3528 2 1338
	24 25 26 27 28 29	335 339 343 348 352 357	53 13 41	23.0 59.5 53.6 27.2 01.1 54.7	-6 6 6 6 5 5	42 32 20 05 48 28	00.7 18.8 15.7 42.8 32.3 36.9	0.387 60 0.381 94 0.376 17 0.370 36 0.364 56 0.358 79	483 727 672 639		11 12 13 14	207 210 213 217 220 223	48 58 05 09	27.8 03.4 45.1 52.4 43.8 37.2	2 1 1 1	08 46 24 01	22.7 51.8 23.4 00.5 46.1 42.5	0.431 0.435 0.439 0.442	5 7126 1 0784 5 2213 9 1328 2 8053 5 2322
Feb.	30 31 1 2 3 4	6 11 17 22	01 54 57 08 29 58	25.4 47.4 11.1 42.2 20.4 58.5	-5 4 4 3 3 2	05 40 11 39 05 28	50.5 09.1 30.7 56.7 32.1 26.7	0.353 10 0.347 53 0.342 13 0.336 93 0.332 00 0.327 38	399 336 387 054		17 18 19 20	226 229 231 234 237 240	04 58 49 40	49.6 37.2 15.6 59.9 04.5 43.4	-0 0	03 25 46 06	52.0 43.7 03.0 04.4 46.6 08.5	0.452 0.454 0.457 0.459	9 4077 2 3267 4 9849 7 3784 9 5040 1 3588
	5 6 7 8 9 10	33 39 45 51 57 63	37 24 18 19 27 39	20.8 02.8 29.9 56.6 27.1 55.3	-1 1 -0 +0 1	48 07 24 20 05 49	55.3 18.3 02.1 21.5 15.3 58.4	0.323 13 0.319 29 0.315 92 0.313 00 0.310 70 0.309 03	929 227 664 656		23 24 25 26	243 246 248 251 254 257	02 48 33 18	10.1 38.0 19.8 28.2 15.7 54.7	-1 2 2 2 3 3	06 26 44 03	08.8 46.5 00.7 50.2 14.1 11.2	0.464 0.465 0.466 0.466	2 9406 4 2473 5 2775 6 0300 6 5038 6 6985
	11 12 13 14 15	76 82 88	56 14 33 52 09	05.8 35.7 56.6 37.8 08.5	+2 3 3 4 +5	33 15 55 32 06	47.4 58.4 49.3 41.3 01.5	0.307 96 0.307 68 0.308 51 0.309 96	048 895 137	Apr.	29 30 31	259 262 265 268 270	32 18 04	37.2 35.6 02.1 08.8 08.3	4	55 12 28	40.4 40.5 10.3 08.3 32.9	0.466 0.465 0.464	6 6139 6 2500 6 6072 4 6863 8 4884

$\begin{array}{c} \textbf{MERCURY, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR} \ 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	e		ioce ngit	ntric ude		lioce atitu	ntric ide	Radius Vector	Da	te			ntric ude		ioce atitu		Radii Vect	
Apr.	1 2 3 4 5 6	270 273 276 279 282 285	39 28 19 12	08.3 13.0 35.8 29.7 08.0 44.5	-4 4 5 5 5 5	43 58 12 26 39 51	32.9 22.6 35.5 09.5 02.3 11.7	0.463 4884 0.462 0148 0.460 2673 0.458 2481 0.455 9599 0.453 4056		18 19 20 21	119 125 131 136 141 146	23 00 28 47	10.5 16.2 35.0 38.8 10.3 01.7	6 6 7	49 56 00 59	44.4 20.8 42.0 02.6 40.0 53.9	0.321 5 0.325 6 0.330 1 0.334 9 0.340 0 0.345 3	6620 1442 9602 0579
	11	288 291 294 297 300 303	02 04 09 17	33.3 49.1 46.9 42.5 52.2 32.8	-6 6 6 6 6	02 13 22 31 39 45	34.7 08.5 49.6 34.5 19.1 59.0	0.450 5888 0.447 5139 0.444 1854 0.440 6090 0.436 7909 0.432 7383		24 25 26 27	151 156 161 165 170 174	44 25 56 19	13.3 53.0 13.8 33.4 12.7 35.0	6 6 5	39 27 13 57	04.6 32.7 38.1 39.9 55.6 41.5	0.350 8 0.356 5 0.362 2 0.368 0 0.373 8 0.379 0	5444 2842 0768 8854
	13 14 15 16 17 18	306 310 313 316 320 324	04 28 57 31	02.0 38.2 40.2 27.9 21.6 42.6	-6 6 6 7 7 6	51 55 58 00 00 58	29.5 45.3 40.6 09.3 04.8 19.8	0.428 4593 0.423 9632 0.419 2606 0.414 3632 0.409 2844 0.404 0394		30 31 1 2	178 182 186 190 193 197	39 31 16 55	05.1 08.7 11.7 39.9 58.7 33.1	4	02 42 21 59	12.2 40.9 19.1 17.1 43.9 47.3	0.385 4 0.391 0 0.396 0 0.402 0 0.407 3 0.412 5	0863 6529 0967 3980
	21 22 23	327 331 335 339 344 348	47 45 49 02	52.2 12.8 06.8 56.6 04.8 53.0	-6 6 6 6 6	54 49 41 31 19 05	46.8 17.9 44.5 58.3 50.6 13.0	0.398 6451 0.393 1206 0.387 4873 0.381 7689 0.375 9920 0.370 1861		5 6 7 8	200 204 207 210 214 217	21 39 54 04	47.1 03.8 45.5 13.6 48.4 49.4	2 2 2 1	53 30 08 45	34.1 10.2 40.7 09.8 41.4 18.8	0.417 5 0.422 2 0.426 8 0.431 2 0.435 3 0.439 2	2785 8508 2097 3454
	25 26 27 28 29 30	357 2 7	49 25 10 04 06 18	42.2 51.8 38.8 17.5 58.2 46.3	-5 5 5 4 4 3	47 27 05 39 10 38	57.4 56.7 04.9 17.9 34.0 54.6	0.364 3836 0.358 6202 0.352 9347 0.347 3692 0.341 9688 0.336 7815		11 12 13 14	220 223 226 229 232 234	16 14 10 03	35.1 23.3 31.0 14.4 49.2 30.2	0 +0 -0 0	39 17 04 25	04.7 01.5 11.4 23.9 42.6 43.5	0.442 9 0.446 3 0.449 3 0.452 4 0.457 4	3335 5010 4120 0620
May	1 2 3 4 5 6	33 39 45	39 09 48 35 29 31	41.5 36.0 14.3 11.2 51.9 30.7	-3 2 1 1 -0 +0	04 27 47 05 22 21	24.9 14.7 39.0 58.5 39.6 45.4	0.331 8572 0.327 2477 0.323 0053 0.319 1818 0.315 8270 0.312 9876		17 18 19 20	237 240 243 246 248 251	34 21 07 53	32.0 08.6 33.4 59.7 40.4 48.1	1 1 2 2	27 47 07 26	25.1 46.3 45.9 22.9 36.3 25.1	0.459 5 0.461 4 0.462 9 0.464 2 0.465 3 0.466 0	4107 9839 2821 3036
	7 8 9 10 11 12	63 70 76 82	39 51 08 26 45 04	11.4 47.5 03.4 36.0 56.9 35.1	+1 1 2 3 3 4	06 51 35 17 57 33	39.5 21.5 08.1 15.4 01.2 47.0	0.310 7048 0.309 0135 0.307 9403 0.307 5024 0.307 7072 0.308 5511		23 24 25 26	254 257 259 262 265 268	08 52 37 23	35.3 14.2 57.2 56.4 24.0 32.3	-3 3 3 4 4	21 39 56 12	48.1 44.4 12.7 11.9 40.7 37.7	0.466 3 0.466 6 0.466 2 0.465 3 0.464 6	6987 6055 2330 5816
		95 101 107 113 119	41 42	00.2 44.8 28.1 57.4 10.5	+5 5 6 6 +6	07 36 01 21 37	00.1 14.5 12.2 43.0 44.4	0.310 0206 0.312 0922 0.314 7340 0.317 9068 0.321 5657		29 30 1	270 273 276 279 282	44 34 25	33.7 40.7 06.2 03.2 45.0	4 5 5	58 13 26	01.3 49.9 01.5 34.2 25.8	0.463 4 0.461 9 0.460 2 0.458 1 0.455 8	9638 2080 1806

$\begin{array}{c} \textbf{MERCURY, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR } 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	te		ioce ngit	ntric ude		lioce atitu	ntric de	Radius Vector	Da	te			ntric ude		ioce atitu		Rad Vec	
July	1 2 3 4 5 6	282	17 12 09	"03.2 45.0 25.5 18.8 39.4 42.6	-5 5 5 6 6 6	26 39 51 02 13 23	34.2 25.8 33.7 55.3 27.4 06.8	0.458 1806 0.455 8842 0.453 3219 0.450 4973 0.447 4146 0.444 0786		17 18 19 20	° 136 141 147 152 156 161	38 56 05 04 53	35.1 49.0 22.6 16.9 39.4 43.6	6 6 6	59 55 48 39	" 04.9 35.9 43.9 49.4 12.9 14.3	0.335 0.340 0.345 0.351 0.356 0.362	2178 5522 0673 7172
	7 8 9 10 11 12	297 300 303 306 310 313	23 35 51 11	44.0 60.0 47.4 24.0 08.1 18.7	-6 6 6 6 6	31 39 46 51 55 58	49.9 32.5 10.3 38.6 51.9 44.6	0.440 4948 0.436 6696 0.432 6102 0.428 3247 0.423 8224 0.419 1139		23 24 25 26	166 170 174 178 182 186	27 41 47 46	47.2 11.3 19.2 35.6 26.3 17.1	5 5 5 5	57 40 21 02	12.6 25.3 08.8 37.4 04.3 41.1	0.368 0.374 0.379 0.385 0.391 0.396	0600 8496 5902 2543
	13 14 15 16 17 18	317 320 324 328 331 335	38 17 03 54	15.4 18.9 50.1 10.8 43.0 49.3	-7 7 6 6 6 6	00 00 58 54 49 41	10.5 02.9 14.6 38.1 05.4 28.0	0.414 2111 0.409 1274 0.403 8779 0.398 4797 0.392 9520 0.387 3160	Sept.	29 30 31 1	190 194 197 201 204 207	02 36 04 27	34.0 42.3 06.9 11.8 20.1 54.1	3 3 3	59 37 14 52	38.0 04.0 06.8 53.2 29.0 59.3	0.402 0.407 0.412 0.417 0.422 0.426	5532 6888 6479 4166
	19 20 21 22 23 24	348 352 357	10 30 58	52.1 13.8 16.2 20.2 44.9 47.6	-6 6 6 5 5 5	31 19 04 47 27 04	37.6 25.3 42.9 22.3 16.4 19.3	0.381 5959 0.375 8181 0.370 0123 0.364 2109 0.358 4496 0.352 7676		4 5 6 7	211 214 217 220 223 226	10 17 21 22	15.1 43.4 38.4 18.7 02.1 05.4	1 1 1 0	45 22 00 38	28.4 00.2 37.7 23.9 21.1 31.3	0.431 0.435 0.439 0.443 0.446 0.449	4633 3602 0177 4293
	25 26 27 28 29 30	12 17	13 16 28 49 20 58	42.3 39.1 43.4 54.5 04.7 57.8	-4 4 3 3 2 1	38 09 37 03 26 46	26.9 37.6 52.9 18.1 03.3 23.5	0.347 2069 0.341 8128 0.336 6330 0.331 7180 0.327 1192 0.322 8890		10 11 12 13	229 232 235 237 240 243	09 00 50 39	44.9 16.2 54.2 53.5 27.8 50.9	0	26 47 08 28	03.5 21.7 22.0 03.0 23.6 22.5	0.452 0.455 0.457 0.459 0.461 0.463	1343 5115 6205 4587
Aug.	31 1 2 3 4 5	45 51 57 64	46 41 42 50 03 19	08.7 02.0 51.8 41.6 24.6 45.1	-1 -0 +0 1 1 2	04 21 23 08 52 36	39.7 18.4 08.0 02.2 43.0 27.1	0.319 0793 0.315 7397 0.312 9167 0.310 6514 0.308 9785 0.307 9243		16 17 18 19	246 248 251 254 257 259	58 44 28 13	15.8 55.5 02.5 49.4 28.5 11.9	2 2 3 3	27 45 04 22	58.9 11.6 59.6 21.8 17.3 44.7	0.464 0.465 0.466 0.466 0.466	3269 0624 5192 6969
	6 7 8 9 10 11	82 89	38 57 16 32 45 52	19.6 39.7 14.4 33.2 09.2 41.6	+3 3 4 5 5 6	18 58 34 07 37 01	30.5 11.3 51.0 57.1 03.9 53.5	0.307 5057 0.307 7297 0.308 5926 0.310 0803 0.312 1693 0.314 8274		22 23 24 25	262 265 268 271 273 276	28 14 01 50	11.9 40.7 50.5 53.9 03.2 31.4	4 4 4 4	13 29 44 59	43.0 10.8 06.8 29.3 16.8 27.3	0.466 0.465 0.464 0.463 0.461 0.460	5548 6171 4025 9123
	12 13 14 15 16	113 119 125 131 136	53 47 33 10 38	58.1 56.6 46.5 48.6 35.1	+6 6 6 6 +7	22 38 49 56 00	16.1 09.3 37.7 51.4 04.9	0.318 0151 0.321 6875 0.325 7956 0.330 2882 0.335 1129		28 29 30	279 282 285 288 291	23 18 14	31.5 16.8 01.2 58.7 24.1	6	39 51 03	58.8 49.0 55.6 15.6 46.2	0.458 0.455 0.453 0.450 0.447	8085 2383 4059

$\begin{array}{c} \textbf{MERCURY, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR } 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	e		ioce: ngiti	ntric ude		lioce atitu	ntric ide	Radius Vector	Da	te			ntric ude		ioce atitu		Radi Vect	
Oct.	1 2 3 4 5 6	291 294 297 300 303 306	16 21 30 41	" 24.1 32.6 39.7 01.9 56.1 40.0	-6 6 6 6 6	13 23 32 39 46 51	46.2 23.9 05.1 45.8 21.6 47.6	0.447 3155 0.443 9721 0.440 3810 0.436 5487 0.432 4823 0.428 1902		17 18 19 20	157 161 166 170 174 178	42 13 35 49	33.7 21.2 08.7 17.3 10.4 12.9	+6 6 6 5 5 5	26 12 56 39	52.9 50.2 45.0 54.8 35.7 02.2	0.356 0.362 0.368 0.374 0.380 0.385	6347 4288 2369 0254
	7 8 9 10 11 12	310 313 317 320 324 328	41 10 45 24	31.9 50.9 56.7 09.9 51.4 23.0	-6 6 7 7 6 6	55 58 00 00 58 54	58.5 48.6 11.7 01.1 09.6 29.7	0.423 6816 0.418 9671 0.414 0586 0.408 9696 0.403 7154 0.398 3130		23 24 25 26	182 186 190 194 197 201	45 30 09 42	50.4 28.8 34.1 31.5 46.0 41.4	4 4 3 3	41 19 58 36	27.4 02.8 58.7 23.8 26.0 11.9	0.391 0.396 0.402 0.407 0.412 0.417	9850 4205 7123 8428
	13 14 15 16 17 18		00 05 18 38	06.9 25.5 41.3 16.7 33.5 52.5	-6 6 6 6 6 5	48 41 31 19 04 46	53.3 11.9 17.2 00.5 13.4 47.8	0.392 7817 0.387 1429 0.381 4206 0.375 6415 0.369 8353 0.364 0346	Dec.	29 30 1 2	204 207 211 214 217 220	52 06 16 23	41.1 07.0 20.6 42.0 30.8 05.5	+2 2 2 1 1 0	29 06 44 21	47.5 17.7 46.9 18.7 56.5 42.9	0.422 0.427 0.431 0.435 0.439 0.443	1186 4641 5859 4756
	19 20 21 22 23 24	17	28 23 26	32.8 51.4 02.5 15.9 36.9 04.6	-5 5 4 4 3 3	26 03 37 08 36 02	36.7 34.3 36.5 41.7 51.7 11.9	0.358 2752 0.352 5963 0.347 0400 0.341 6516 0.336 4792 0.331 5730		5 6 7 8	223 226 229 232 235 237	25 21 14 06	43.7 42.3 17.7 45.3 20.1 16.4	+0 -0 0 0	15 05 27 48	40.5 51.2 43.1 00.9 00.6 41.0	0.446 0.449 0.452 0.455 0.457 0.459	6818 5771 2111 5801
	25 26 27 28 29 30		52 54	30.9 39.6 05.1 11.8 13.5 13.2	-2 1 1 -0 +0 1	24 45 03 19 24 09	52.3 08.5 21.2 57.5 30.3 24.7	0.326 9847 0.322 7666 0.318 9705 0.315 6460 0.312 8394 0.310 5917		11 12 13 14	240 243 246 249 251 254	32 18 04 49	48.4 09.5 32.8 11.2 17.5 03.9	-1 1 2 2 2 3	48 08 27 46	00.9 59.2 34.8 46.8 34.0 55.4	0.461 0.463 0.464 0.465 0.466 0.466	0674 3489 3537 0806
Nov.	31 1 2 3 4 5	76	31 50 09 27	04.0 29.8 07.0 27.1 59.0 12.3	+1 2 3 3 4 5	54 37 19 59 35 08	04.5 46.1 45.8 21.5 55.2 54.3	0.308 9373 0.307 9022 0.307 5032 0.307 7468 0.308 6289 0.310 1354		17 18 19 20	257 260 262 265 268 271	03 48 33 20	42.9 26.6 27.3 57.2 08.4 13.6	-3 3 4 4 4	40 57 13 29	50.0 16.6 13.9 40.8 35.8 57.3	0.466 0.466 0.465 0.465 0.464 0.463	5879 1985 5303 5841
	9	101 108 114 119 125 131	05 58 44	40.2 02.1 06.1 50.4 24.7 10.2	+5 6 6 6 6 6	37 02 22 38 49 57	53.4 35.0 49.3 34.3 54.7 00.8	0.312 2422 0.314 9170 0.318 1201 0.321 8065 0.325 9271 0.330 4305		23 24 25 26	273 276 279 282 285 288	44 35 28 23	25.1 55.9 59.0 47.7 36.0 37.9	-4 5 5 5 5 6	13 27 40 52	43.6 52.9 23.2 12.1 17.3 35.8	0.461 0.460 0.458 0.455 0.453 0.450	0899 0461 7334 1551
	12 13 14 15 16	136 142 147 152 157	06 14 13	39.6 35.8 51.7 28.4 33.7	+7 6 6 6 +6	00 59 55 48 38	07.3 31.7 33.8 34.0 52.9	0.335 2646 0.340 3772 0.345 7178 0.351 2377 0.356 8910		29 30 31	291 294 297 300 303	22 27 36	08.0 21.7 34.6 03.0 04.0	6 6 6	23 32 39	04.8 40.9 20.3 59.0 32.7	0.447 0.443 0.440 0.436 0.432	8651 2665 4268

Date	2	Geo	paren centr ngitud	ric	Geo	paren ocentr atitude	ic	Date		Geo	parer centr gitud	ric	Ge	ppare ocent atituc
Jan.	0 1 2 3 4 5	272 274 275 277 279 280	48 22 57 32 07 43	34.9 55.4 34.1 31.6 49.0 27.1	-1 1 1 1 1 1	11 16 21 26 31 35	01.4 22.0 29.9 24.7 05.6 32.1	Feb.	15 16 17 18 19 20	342 342 342 342 342 342 342	31 47 53 48 33 08	47.4 45.1 22.5 33.3 24.4 17.7	+1 2 2 2 2 2 3	54 10 25 40 54 06
	6 7 8 9 10 11	282 283 285 287 288 290	19 55 32 09 47 25	26.9 49.3 35.1 45.3 20.6 21.7	-1 1 1 1 1 1	39 43 47 50 53 56	43.7 39.5 19.1 41.6 46.3 32.5		21 22 23 24 25 26	341 340 340 339 338 336	33 50 00 04 03 59	50.0 54.2 37.7 20.8 33.8 53.0	+3 3 3 3 3 3	17 26 34 39 42 43
	12 13 14 15 16 17	292 293 295 297 298 300	03 42 22 01 42 22	49.4 44.2 06.4 56.3 14.1 59.4	-1 2 2 2 2 2 2	58 01 02 04 05 05	59.3 05.9 51.5 15.0 15.6 52.0	Mar.	27 28 29 1 2 3	335 334 333 332 331 331	54 50 47 47 52 02	56.7 20.8 34.8 58.5 39.9 33.9	+3 3 3 3 3 3	41 38 32 25 15 05
	18 19 20 21 22 23	302 303 305 307 308 310	04 45 27 10 53 36	11.9 50.6 54.1 20.7 07.8 12.2	-2 2 2 2 2 1	06 05 05 03 02 59	03.4 48.4 05.8 54.5 13.0 59.9		4 5 6 7 8 9	330 329 329 328 328 328	18 40 09 45 27 16	22.3 34.2 27.5 10.3 42.8 58.6	+2 2 2 2 2 1	53 41 27 14 00 45
	24 25 26 27 28 29	312 314 315 317 319 320	19 02 46 29 12 55	29.9 55.8 23.8 46.4 54.5 37.3	-1 1 1 1 1 1	57 53 49 45 40 34	13.8 53.2 56.6 22.3 08.9 14.7		10 11 12 13 14 15	328 328 328 328 328 328 329	12 14 23 36 56 20	46.8 53.1 00.7 51.7 07.4 29.1	+1 1 1 0 0 0	31 17 03 49 36 22
Feb.	30 31 1 2 3 4	322 324 325 327 329 330	37 18 58 37 13 48	42.1 53.7 54.4 23.8 58.3 11.0	-1 1 1 1 0 0	27 20 12 03 53 43	38.2 18.0 12.9 21.6 43.5 17.9		16 17 18 19 20 21	329 330 331 331 332 333	49 23 01 42 28 17	38.5 17.7 09.9 59.3 31.1 31.3	+0 -0 0 0 0	10 02 13 25 36 46
	5 6 7 8 9 10	332 333 335 336 337 338	19 47 11 30 44 51	31.8 26.9 19.4 29.4 14.1 49.4	-0 0 -0 +0 0	32 20 07 06 20 35	04.9 05.0 19.3 10.1 20.4 07.5		22 23 24 25 26 27	334 335 336 337 338 339	09 05 03 04 07 13	47.5 08.0 22.1 20.2 53.5 54.0	-0 1 1 1 1 1	56 06 15 23 31 38
	11 12 13 14 15	339 340 341 342 342	52 45 30 05 31	30.0 31.1 09.9 46.6 47.4	+0 1 1 1 +1	50 06 22 38 54	26.3 10.4 11.9 21.5 28.5	Apr.	28 29 30 31 1	340 341 342 344 345	22 32 45 00 16	14.5 48.6 30.5 15.0 57.5	-1 1 1 2 -2	45 52 58 03 08

Date	e	Geo	parer centr gitud	ric	Geo	paren ocentr atitude	ric	Date		Geo	parer centr gitud	ic	Ge	ppare ocent atituc
Apr.	1 2 3 4 5 6	345 346 347 349 350 352	16 35 56 18 42 07	57.5 33.9 00.7 14.7 13.2 54.0	-2 2 2 2 2 2 2	08 13 17 20 23 26	46.8 15.5 14.3 43.3 42.5 11.7	May	17 18 19 20 21 22	70 72 74 76 77 79	23 18 11 02 49 34	01.4 49.2 59.4 24.3 57.9 34.9	+1 1 1 2 2 2	47 53 58 03 07 10
	7 8 9 10 11 12	353 355 356 358 359	35 04 34 07 40 16	15.2 15.1 52.8 07.0 57.2 22.9	-2 2 2 2 2 2 2	28 29 30 31 31 30	11.0 40.2 39.4 08.4 07.2 35.6		23 24 25 26 27 28	81 82 84 86 87 88	16 54 30 02 31 57	11.2 43.2 08.0 22.7 25.2 12.8	+2 2 2 2 2 2 2	13 14 15 15 14 13
	13 14 15 16 17 18	2 4 6 7 9 11	53 31 12 53 37 22	23.6 59.3 09.9 55.8 17.2 14.6	-2 2 2 2 2 2 2	29 28 25 23 20 16	33.7 01.2 58.2 24.6 20.4 45.6	June	29 30 31 1 2 3	90 91 92 94 95 96	19 38 54 07 16 21	43.4 54.2 42.8 06.0 00.8 23.5	+2 2 2 1 1 1	10 07 03 57 52 45
	19 20 21 22 23 24	13 14 16 18 20 22	08 56 46 38 31 25	48.3 59.0 47.0 12.8 16.5 58.1	-2 2 2 1 1 1	12 08 02 57 51 44	40.2 04.4 58.3 22.2 16.4 41.3		4 5 6 7 8 9	97 98 99 100 100 101	23 21 15 06 52 35	10.3 17.0 39.1 11.6 49.5 27.6	+1 1 1 1 1 0	38 29 20 11 00 49
	25 26 27 28 29 30	24 26 28 30 32 34	22 20 19 20 23 27	17.0 12.5 43.0 46.3 19.4 18.0	-1 1 1 1 1 0	37 30 22 13 04 55	37.6 06.0 07.5 43.3 54.7 43.4		10 11 12 13 14 15	102 102 103 103 104 104	14 48 18 44 05 22	00.3 22.5 28.8 14.3 34.6 25.9	+0 0 +0 -0 0	37 24 11 02 17 32
May	1 2 3 4 5 6	36 38 40 42 45 47	32 39 46 55 04 14	37.0 09.7 48.0 22.4 42.5 33.9	-0 0 0 0 -0 +0	46 36 26 15 05 05	11.4 21.1 15.1 56.5 28.8 05.1		16 17 18 19 20 21	104 104 104 104 104 104	34 42 45 44 38 28	45.5 31.7 44.5 25.8 39.4 31.9	-0 1 1 1 1 2	48 03 20 36 53 09
	7 8 9 10 11 12	49 51 53 55 58 60	24 34 44 54 03 10	43.9 56.9 56.3 25.0 05.6 40.7	+0 0 0 0 0 1	15 26 36 46 56 06	40.2 12.7 38.1 51.9 49.5 26.7		22 23 24 25 26 27	104 103 103 103 102 102	14 55 33 08 39 08	12.5 53.7 51.2 24.1 55.1 50.3	-2 2 2 3 3 3	26 42 58 13 28 41
	13 14 15 16 17	62 64 66 68 70	16 21 24 24 23	53.6 28.2 09.8 44.8 01.4	+1 1 1 1 +1	15 24 32 40 47	39.0 22.5 33.6 09.0 05.8	July	28 29 30 1 2	101 101 100 99 99	35 00 25 48 13	39.0 53.4 08.0 58.7 02.8	-3 4 4 4 -4	54 06 16 25 33

Date	e	Geo	parer ocentr ngituc	ric	Geo	paren ocentr atitude	ic	Date		Geo	parer ocentr ngitud	ric	Ge	ppare ocent atituc
July	1 2 3 4 5 6	99 99 98 98 97 97	48 13 37 04 32 03	58.7 02.8 57.6 19.8 44.9 46.2	o -4 4 4 4 4	25 33 39 44 47 48	57.1 36.5 45.2 20.5 20.8 46.1	Aug.	16 17 18 19 20 21	141 143 145 147 149 151	51 53 54 53 52 50	45.0 19.5 03.7 50.1 32.5 06.1	o +1 1 1 1 1	44 45 45 45 44 42
	7 8 9 10 11 12	96 96 95 95 95 95	37 15 57 43 34 29	54.8 38.6 22.4 27.9 13.0 52.7	-4 4 4 4 4	48 46 43 39 33 26	37.3 57.0 48.3 15.5 23.3 17.2		22 23 24 25 26 27	153 155 157 159 161 163	46 41 35 27 19 08	27.3 33.3 22.3 52.9 04.5 56.9	+1 1 1 1 1	40 37 34 30 26 22
	13 14 15 16 17 18	95 95 95 96 96	30 36 48 04 27 55	39.0 40.9 05.0 55.9 16.1 06.7	-4 4 3 3 3 3	18 08 58 47 35 23	02.6 45.5 31.8 27.2 37.7 08.8	Sept.	28 29 30 31 1 2	164 166 168 170 171 173	57 44 30 15 58 40	30.1 44.5 40.7 19.5 41.8 48.4	+1 1 1 1 0 0	17 11 06 00 54 48
	19 20 21 22 23 24	97 98 98 99 100 101	28 07 51 41 36 36	27.3 16.7 32.5 11.7 10.7 25.2	-3 2 2 2 2 2 1	10 56 42 28 13 59	06.0 34.7 39.9 26.6 59.6 23.6		3 4 5 6 7 8	175 177 178 180 181 183	21 01 39 16 53 27	40.5 18.8 44.4 58.2 00.8 53.0	+0 0 0 0 0 +0	41 34 27 20 13 05
	25 26 27 28 29 30	102 103 105 106 107 109	41 52 07 28 53 22	50.2 20.1 48.5 08.1 10.3 45.2	-1 1 1 1 0 0	44 30 15 01 46 32	43.3 03.1 27.5 00.9 47.9 52.7		9 10 11 12 13 14	185 186 188 189 191 192	01 34 05 35 04 32	35.3 08.1 31.6 45.9 50.9 46.1	-0 0 0 0 0	01 09 17 24 32 40
Aug.	31 1 2 3 4 5	110 112 114 116 117 119	56 34 16 02 51 43	41.6 46.4 45.1 21.2 16.7 11.9	-0 -0 +0 0 0	19 06 06 18 29 40	19.7 13.3 22.6 24.0 47.1 28.8		15 16 17 18 19 20	193 195 196 198 199 200	59 25 49 12 34 54	30.9 04.6 25.9 33.3 25.2 59.3	-0 0 1 1 1 1	48 56 04 12 20 28
	6 7 8 9 10 11	121 123 125 127 129 131	37 34 33 33 35 37	46.3 38.0 25.1 45.3 17.0 39.5	+0 0 1 1 1 1	50 59 07 15 22 27	25.9 36.1 57.4 28.4 08.2 56.6		21 22 23 24 25 26	202 203 204 206 207 208	14 32 48 03 16 28	13.0 03.4 26.9 19.3 36.1 11.8	-1 1 1 1 2 2	35 43 51 58 06 13
	12 13 14 15 16	133 135 137 139 141	40 43 46 49 51	33.1 39.9 43.5 29.4 45.0	+1 1 1 1 +1	32 37 40 42 44	53.8 00.3 17.4 46.5 29.1	Oct.	27 28 29 30 1	209 210 211 212 213	38 45 51 55 56	00.5 55.1 48.0 30.2 52.0	-2 2 2 2 -2	20 27 34 40 46

Date)	Geo	paren centr ngitud	ric	Geo	paren ocentr atitude	ric	Date		Geo	parer ocentr ngituo	ic	Ge	ppare ocent atituc
Oct.	1 2 3 4 5 6	213 214 215 216 217 218	56 55 51 44 34 21	52.0 42.2 48.2 56.0 50.1 12.9	-2 2 2 3 3 3	46 52 58 03 07 11	40.7 30.9 00.4 06.7 47.0 58.3	Nov.	16 17 18 19 20 21	216 217 218 220 221 223	09 32 56 23 50 19	" 41.2 09.4 44.4 05.2 53.9 55.3	+2 2 1 1 1 1	06 02 57 52 46 40
	7 8 9 10 11 12	219 219 220 220 221 221	03 42 15 44 07 25	45.3 05.8 51.3 36.5 54.1 15.5	-3 3 3 3 3	15 18 21 22 23 23	37.2 39.7 01.6 38.1 24.0 13.4		22 23 24 25 26 27	224 226 227 229 230 232	49 20 52 24 56 29	56.4 46.1 15.2 15.9 41.9 27.6	+1 1 1 1 1	34 28 21 15 08 01
	13 14 15 16 17 18	221 221 221 221 221 221 220	36 40 36 25 05 37	10.7 09.5 42.2 21.4 44.1 33.8	-3 3 3 3 3 2	22 19 15 10 04 56	00.0 36.9 57.1 53.3 18.1 05.1	Dec.	28 29 30 1 2 3	234 235 237 238 240 241	02 35 09 42 16 49	28.8 41.8 03.8 32.5 06.0 43.0	+0 0 0 0 0	54 47 40 33 26 19
	19 20 21 22 23 24	220 219 218 217 216 215	00 15 21 20 13 01	43.9 21.1 48.9 51.0 33.1 24.1	-2 2 2 2 1 1	46 34 20 05 48 30	08.8 25.7 54.7 38.7 44.7 24.5		4 5 6 7 8 9	243 244 246 248 249 251	23 57 30 04 38 12	22.6 04.1 47.1 31.4 17.3 04.7	+0 +0 -0 0 0	12 05 01 08 15 22
	25 26 27 28 29 30	213 212 211 210 208 208	46 30 15 04 59 02	13.8 09.3 27.8 28.5 23.6 09.8	-1 0 0 -0 +0 0	10 50 29 09 10 30	55.0 37.3 55.9 17.1 53.3 11.1		10 11 12 13 14 15	252 254 255 257 259 260	45 19 53 27 01 35	54.3 46.4 41.7 40.9 44.6 53.6	-0 0 0 0 0	28 35 41 47 53 59
Nov.	31 1 2 3 4 5	207 206 206 205 205 206	14 37 11 56 54 02	22.1 10.0 16.3 58.4 11.7 33.5	+0 1 1 1 1 1	48 04 19 32 44 53	15.9 51.4 46.4 54.0 11.7 40.5		16 17 18 19 20 21	262 263 265 266 268 270	10 44 19 53 28 03	08.6 30.5 00.1 38.2 25.9 24.0	-1 1 1 1 1	05 10 16 21 26 31
	6 7 8 9 10 11	206 206 207 208 209 210	21 50 27 13 06 05	27.4 08.0 44.3 23.0 11.1 17.4	+2 2 2 2 2 2 2	01 07 11 15 16 17	23.8 27.1 56.9 00.7 46.0 20.3		22 23 24 25 26 27	271 273 274 276 278 279	38 13 49 25 01 37	33.3 54.6 28.8 16.7 18.8 35.6	-1 1 1 1 1	35 40 44 47 51 54
	12 13 14 15 16	211 212 213 214 216	09 19 32 49 09	53.9 16.5 45.0 43.8 41.2	+2 2 2 2 +2	16 15 13 10 06	51.0 25.0 08.6 07.7 27.9		28 29 30 31 32	281 282 284 286 287	14 50 27 05 42	07.7 55.2 58.1 16.4 49.5	-1 2 2 2 -2	57 00 02 04 06

 $\label{eq:mercury, 2020} \textbf{MERCURY, 2020}$ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME

Date		Ap Right	pare Asce		Ap Dec	paren linatio	t on	True Distance from the Earth	Hor. Parallax	Semi Diameter		emeri ansit	.S
Jan.	0 1 2 3 4 5	h 18 18 18 18 18	m 12 19 26 33 40 47	s 21.48 16.96 13.95 12.34 12.03 12.93	-24 24 24 24 24 24 24	35 38 39 39 38 35	23.3 08.5 32.3 33.7 11.4 24.6	1.431 445 1.434 024 1.436 054 1.437 534 1.438 463 1.438 837	6.14 6.13 6.12 6.12 6.11 6.11	2.35 2.34 2.34 2.34 2.34 2.34	h 11 11 11 11 11	m 37 40 43 46 49 52	s 16 16 18 21 25 30
	6 7 8 9 10 11	18 19 19 19 19	54 01 08 15 22 29	14.92 17.91 21.77 26.40 31.67 37.47	-24 24 24 24 23 23	31 25 18 09 59 48	12.2 33.3 26.9 52.3 48.6 15.0	1.438 653 1.437 905 1.436 586 1.434 689 1.432 204 1.429 121	6.11 6.12 6.12 6.13 6.14 6.15	2.34 2.34 2.34 2.34 2.35 2.35	11 11 12 12 12 12	55 58 01 05 08 11	36 44 52 01 10 20
	12 13 14 15 16 17	19 19 19 19 20 20	36 43 50 58 05 12	43.65 50.09 56.64 03.15 09.46 15.41	-23 23 23 22 22 22	35 20 04 46 27 06	10.9 35.6 28.6 49.4 37.5 52.8	1.425 428 1.421 110 1.416 153 1.410 539 1.404 250 1.397 266	6.17 6.19 6.21 6.23 6.26 6.29	2.36 2.36 2.37 2.38 2.39 2.40	12 12 12 12 12 12	14 17 20 24 27 30	30 40 51 01 11 21
	18 19 20 21 22 23	20 20 20 20 20 20 20	19 26 33 40 47 54	20.80 25.42 29.04 31.42 32.25 31.22	-21 21 20 20 19	44 20 55 28 59 29	35.0 44.3 20.8 25.0 57.6 59.6	1.389 564 1.381 122 1.371 914 1.361 915 1.351 096 1.339 429	6.33 6.37 6.41 6.46 6.51 6.57	2.42 2.43 2.45 2.47 2.49 2.51	12 12 12 12 12 12	33 36 39 42 45 48	30 38 44 50 54 55
	24 25 26 27 28 29	21 21 21 21 21 21	01 08 15 22 28 35	27.95 22.03 12.98 00.25 43.22 21.16	-18 18 17 17 16 16	58 25 51 15 38 00	32.5 38.1 18.7 37.3 37.5 24.0	1.326 884 1.313 433 1.299 045 1.283 693 1.267 350 1.249 991	6.63 6.70 6.77 6.85 6.94 7.04	2.53 2.56 2.59 2.62 2.65 2.69	12 12 12 13 13 13	51 54 57 00 03 05	54 51 43 32 16 55
Feb.	30 31 1 2 3 4	21 21 21 22 22 22 22	41 48 54 00 06 12	53.26 18.57 36.00 44.32 42.15 27.91	-15 14 13 13 12 11	21 40 59 17 34 51	02.0 38.2 20.5 18.0 41.6 43.9	1.231 599 1.212 159 1.191 664 1.170 120 1.147 540 1.123 957	7.14 7.25 7.38 7.52 7.66 7.82	2.73 2.77 2.82 2.87 2.93 2.99	13 13 13 13 13 13	08 10 13 15 17 18	27 52 08 15 10 51
	5 6 7 8 9 10	22 22 22 22 22 22 22	17 23 28 32 37 40	59.87 16.09 14.50 52.83 08.72 59.73	-11 10 9 9 8 7	08 25 43 01 21 42	39.2 43.9 16.2 36.5 06.6 10.2	1.099 416 1.073 985 1.047 752 1.020 828 0.993 350 0.965 478	8.00 8.19 8.39 8.61 8.85 9.11	3.06 3.13 3.21 3.29 3.38 3.48	13 13 13 13 13 13	20 21 22 22 22 22 22	18 28 19 49 55 34
	11 12 13 14 15	22 22 22 22 22 22	44 47 49 51 52	23.37 17.25 39.07 26.80 38.75	-7 6 5 5 -5	05 30 58 30 05	12.2 38.3 54.5 26.4 38.5	0.937 393 0.909 299 0.881 417 0.853 981 0.827 231	9.38 9.67 9.98 10.30 10.63	3.58 3.70 3.81 3.93 4.06	13 13 13 13 13	21 20 18 16 12	45 25 32 04 59

 $\label{eq:mercury, 2020} \textbf{MERCURY, 2020}$ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME

Date			oarer Ascei	nt nsion			parent inatio		True Distance from the Earth	Hor. Parallax	Semi Diameter		emeri ansit	s
Feb. 1 1 1 1 1 2	5 2: 6 2: 7 2: 8 2: 9 2:	2 2 2	m 52 53 53 52 51 49	s 38.75 13.68 10.96 30.65 13.60 21.54		o 5 1 1 1 1	05 44 28 16 09 07	38.5 53.3 30.6 46.2 50.9 49.9	0.827 231 0.801 410 0.776 756 0.753 496 0.731 843 0.711 984	10.63 10.97 11.32 11.67 12.02 12.35	4.06 4.19 4.33 4.46 4.59 4.72	h 13 13 13 13 12 12	m 12 09 04 00 54 48	s 59 17 58 02 31 26
2 2 2 2 2 2 2	2 2: 3 2: 4 2: 5 2:	2 2 2 2	46 44 40 37 33 29	57.13 03.92 46.31 09.38 18.77 20.38	4	1 1	10 18 30 46 06 28	41.7 17.5 21.5 30.2 14.2 58.8	0.694 082 0.678 269 0.664 642 0.653 262 0.644 151 0.637 298	12.67 12.97 13.23 13.46 13.65 13.80	4.84 4.95 5.06 5.14 5.22 5.27	12 12 12 12 12 12	41 34 27 19 11 04	51 50 28 49 60 06
	8 2 9 2 1 2 2 2		25 21 17 14 10 07	20.18 23.90 36.86 03.76 48.58 54.48	(6 7 7	54 20 48 17 45 12	05.6 55.0 47.3 04.7 12.7 40.9	0.632 656 0.630 147 0.629 667 0.631 093 0.634 285 0.639 096	13.90 13.96 13.97 13.93 13.86 13.76	5.31 5.33 5.34 5.32 5.30 5.26	11 11 11 11 11 11	56 48 40 33 26 19	13 26 51 32 32 54
	4 2 5 2 6 2 7 2 8 2 9 2	2 2 2 1	05 03 01 00 59 59	23.85 18.32 38.82 25.74 38.93 17.90	-8 6 10 10)))	39 03 27 48 07 24	03.6 59.8 13.0 30.9 44.8 48.8	0.645 373 0.652 965 0.661 725 0.671 512 0.682 194 0.693 651	13.63 13.47 13.29 13.10 12.89 12.68	5.21 5.15 5.08 5.00 4.93 4.84	11 11 11 10 10	13 07 02 57 53 48	40 51 29 32 01 56
1 1 1 1 1 1	1 2 2 2 3 2 4 2	1 2 2 2	59 59 00 01 03 05	21.86 49.80 40.57 52.96 25.68 17.47	-10 10 11 11 11) 	39 52 02 10 16 20	39.7 16.0 37.9 46.5 44.0 33.0	0.705 769 0.718 450 0.731 602 0.745 144 0.759 007 0.773 126	12.46 12.24 12.02 11.80 11.59 11.37	4.76 4.68 4.59 4.51 4.43 4.35	10 10 10 10 10	45 41 39 36 34 32	15 57 01 27 12 15
1 1 1 1 2 2	7 2 8 2 9 2 0 2	2 2 2 2 2	07 09 12 15 18 22	27.07 53.26 34.89 30.86 40.14 01.77	-1: 1: 1: 1: 1:	l l l	22 21 19 15 09 01	16.3 57.1 38.8 24.6 17.7 21.4	0.787 447 0.801 923 0.816 512 0.831 177 0.845 889 0.860 621	11.17 10.97 10.77 10.58 10.40 10.22	4.27 4.19 4.12 4.04 3.97 3.90	10 10 10 10 10	30 29 28 27 26 25	36 12 04 09 27 58
2 2 2 2 2 2 2 2	3 2: 4 2: 5 2: 6 2:	2 2 2	25 29 33 37 41 45	34.89 18.65 12.33 15.24 26.76 46.33	-10 10 10 10)))	51 40 27 12 56 38	38.6 12.3 05.4 20.4 00.0 06.6	0.875 349 0.890 055 0.904 723 0.919 337 0.933 886 0.948 360	10.05 9.88 9.72 9.57 9.42 9.27	3.84 3.78 3.71 3.65 3.60 3.54	10 10 10 10 10 10	25 25 25 25 26 26	39 30 32 42 00 27
2 2 3 3 Apr.	9 2 0 2 1 2	2 3	50 54 59 04 09	13.44 47.65 28.55 15.78 09.03	-9	3 3 3	18 57 35 11 46	42.4 49.7 30.6 47.1 41.0	0.962 749 0.977 047 0.991 247 1.005 342 1.019 327	9.13 9.00 8.87 8.75 8.63	3.49 3.44 3.39 3.34 3.30	10 10 10 10 10	27 27 28 29 30	00 41 28 22 21

 $\label{eq:mercury, 2020} \textbf{MERCURY, 2020}$ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME

Date		Ap Right	pare Asce		Ap Dec	paren linatio	t on	True Distance from the Earth	Hor. Parallax	Semi Diameter		emeri ansit	s
Apr.	1 2 3 4 5 6	h 23 23 23 23 23 23 23	m 09 14 19 24 29 34	s 09.03 08.02 12.54 22.37 37.35 57.37	-7 7 6 6 5 5	46 20 52 23 53 21	" 41.0 14.3 28.6 25.6 07.1 34.5	1.019 327 1.033 197 1.046 947 1.060 572 1.074 066 1.087 424	8.63 8.51 8.40 8.29 8.19 8.09	3.30 3.25 3.21 3.17 3.13 3.09	h 10 10 10 10 10	m 30 31 32 33 35 36	s 21 26 36 52 13 38
	7 8 9 10 11 12	23 23 23 23 0 0	40 45 51 57 02 08	22.32 52.15 26.82 06.32 50.67 39.92	-4 4 3 3 2 1	48 14 39 03 26 47	49.3 53.1 47.4 33.6 13.2 47.7	1.100 639 1.113 703 1.126 608 1.139 345 1.151 903 1.164 268	7.99 7.90 7.81 7.72 7.63 7.55	3.05 3.02 2.98 2.95 2.92 2.89	10 10 10 10 10 10	38 39 41 43 45 46	09 45 25 10 00 55
-	13 14 15 16 17	0 0 0 0 0	14 20 26 32 39 45	34.11 33.34 37.72 47.37 02.45 23.12	-1 -0 +0 0 1 2	08 27 13 56 39 23	18.8 48.1 42.8 12.0 37.6 57.5	1.176 426 1.188 361 1.200 053 1.211 483 1.222 626 1.233 454	7.48 7.40 7.33 7.26 7.19 7.13	2.86 2.83 2.80 2.77 2.75 2.72	10 10 10 10 10 11	48 51 53 55 57 00	55 01 11 27 48 15
,	19 20 21 22 23 24	0 0 1 1 1 1	51 58 05 11 18 25	49.56 21.99 00.62 45.66 37.35 35.92	+3 3 4 5 6 7	09 55 41 29 17 06	09.5 11.1 59.7 32.1 45.1 34.8	1.243 938 1.254 043 1.263 732 1.272 963 1.281 688 1.289 857	7.07 7.01 6.96 6.91 6.86 6.82	2.70 2.68 2.66 2.64 2.62 2.60	11 11 11 11 11	02 05 08 11 14 17	48 27 12 04 03 09
, , , ,	25 26 27 28 29 30	1 1 1 1 2 2	32 39 47 54 02 10	41.58 54.55 15.01 43.11 18.97 02.64	+7 8 9 10 11 12	55 45 35 26 17 07	57.1 47.0 59.3 27.9 05.9 45.9	1.297 414 1.304 299 1.310 446 1.315 786 1.320 248 1.323 755	6.78 6.74 6.71 6.68 6.66 6.64	2.59 2.58 2.56 2.55 2.54 2.54	11 11 11 11 11	20 23 27 30 34 38	22 42 10 46 29 21
May	1 2 3 4 5 6	2 2 2 2 2 2 2	17 25 33 42 50 59	54.09 53.23 59.85 13.63 34.19 00.81	+12 13 14 15 16 17	58 48 38 27 16 03	19.4 37.1 29.1 44.5 11.6 39.2	1.326 233 1.327 605 1.327 798 1.326 744 1.324 382 1.320 660	6.63 6.62 6.62 6.63 6.64 6.66	2.53 2.53 2.53 2.53 2.54 2.54	11 11 11 11 11 12	42 46 50 55 59 04	20 27 41 03 31 05
	7 8 9 10 11	3 3 3 3 3 3	07 16 24 33 42 51	32.91 09.59 49.88 32.69 16.81 01.01	+17 18 19 19 20 21	49 34 17 59 38 16	54.2 44.5 57.9 22.8 48.4 04.8	1.315 541 1.309 002 1.301 037 1.291 659 1.280 900 1.268 810	6.68 6.72 6.76 6.81 6.87 6.93	2.55 2.57 2.58 2.60 2.62 2.65	12 12 12 12 12 12	08 13 18 23 27 32	43 26 13 01 49 37
	13 14 15 16 17	3 4 4 4 4	59 08 17 25 33	43.97 24.38 00.97 32.48 57.71	+21 22 22 23 +23	51 23 53 21 46	03.6 37.8 42.1 12.7 07.6	1.255 457 1.240 922 1.225 301 1.208 696 1.191 216	7.00 7.09 7.18 7.28 7.38	2.68 2.71 2.74 2.78 2.82	12 12 12 12 12	37 42 46 51 55	24 07 45 18 43

 $\label{eq:mercury, 2020} \textbf{MERCURY, 2020}$ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME

Date	Ap Right	pare Asce		Ap Dec	paren linatio	t on	True Distance from the Earth	Hor. Parallax	Semi Diameter		emeri ansit	s
May 17 18 19 20 21 22	h 4 4 4 5 5	m 33 42 50 58 06 13	s 57.71 15.56 24.98 25.04 14.88 53.73	+23 24 24 24 24 24 25	46 08 28 45 59 12	"07.6 26.0 08.9 18.3 57.2 09.6	1.191 216 1.172 973 1.154 076 1.134 636 1.114 754 1.094 530	7.38 7.50 7.62 7.75 7.89 8.03	2.82 2.86 2.91 2.96 3.01 3.07	h 12 13 13 13 13 13	m 55 00 04 08 11 15	s 43 01 09 08 56 33
23 24 25 26 27 28	5 5 5 5 5 5	21 28 35 42 49 55	20.90 35.76 37.74 26.35 01.11 21.60	+25 25 25 25 25 25 25	22 29 34 38 39 39	00.2 34.3 57.5 15.8 35.5 02.9	1.074 054 1.053 410 1.032 675 1.011 917 0.991 200 0.970 579	8.19 8.35 8.52 8.69 8.87 9.06	3.13 3.19 3.25 3.32 3.39 3.46	13 13 13 13 13 13	18 22 25 27 30 32	57 09 07 52 22 38
29 30 31 June 1 2 3	6 6 6 6 6	01 07 12 18 23 28	27.42 18.20 53.56 13.18 16.70 03.80	+25 25 25 25 25 25 25	36 32 27 20 11 02	44.3 46.3 15.1 17.1 58.7 26.1	0.950 105 0.929 824 0.909 776 0.889 998 0.870 523 0.851 382	9.26 9.46 9.67 9.88 10.10 10.33	3.54 3.61 3.69 3.78 3.86 3.95	13 13 13 13 13 13	34 36 37 39 40 40	39 25 55 09 06 47
4 5 6 7 8 9	6 6 6 6 6	32 36 40 44 47 50	34.14 47.39 43.23 21.32 41.33 42.94	+24 24 24 24 23 23	51 40 27 13 59 44	45.3 02.6 23.8 54.9 41.6 49.8	0.832 604 0.814 216 0.796 242 0.778 708 0.761 637 0.745 054	10.56 10.80 11.04 11.29 11.55 11.80	4.04 4.13 4.22 4.31 4.41 4.51	13 13 13 13 13 13	41 41 41 40 39 38	12 18 08 39 52 46
10 11 12 13 14 15	6 6 6 7 7	53 55 57 59 01 02	25.83 49.72 54.33 39.43 04.82 10.38	+23 23 22 22 22 22 22	29 13 57 40 24 07	25.1 33.2 19.5 49.6 09.0 23.1	0.728 982 0.713 446 0.698 472 0.684 085 0.670 314 0.657 187	12.06 12.33 12.59 12.86 13.12 13.38	4.61 4.71 4.81 4.91 5.01 5.11	13 13 13 13 13 13	37 35 33 31 28 25	22 39 36 13 31 30
16 17 18 19 20 21	7 7 7 7 7 7	02 03 03 03 02 01	56.05 21.89 28.03 14.77 42.55 51.98	+21 21 21 21 20 20	50 33 17 01 45 29	37.4 57.3 28.1 15.3 24.1 59.9	0.644 734 0.632 987 0.621 980 0.611 747 0.602 322 0.593 744	13.64 13.89 14.14 14.38 14.60 14.81	5.21 5.31 5.40 5.49 5.58 5.66	13 13 13 13 13 13	22 18 14 10 05 00	08 27 27 07 29 33
22 23 24 25 26 27	7 6 6 6 6	00 59 57 55 53 51	43.86 19.22 39.27 45.48 39.54 23.34	+20 20 19 19 19 19	15 00 47 34 22 11	08.0 53.6 21.8 37.6 45.9 51.5	0.586 048 0.579 271 0.573 451 0.568 624 0.564 823 0.562 082	15.01 15.18 15.34 15.47 15.57 15.65	5.73 5.80 5.86 5.91 5.95 5.98	12 12 12 12 12 12	55 49 44 38 32 25	21 52 10 14 08 52
28 29 30 July 1 2	6 6 6 6	48 46 43 41 38	58.99 28.76 55.06 20.40 47.33	+19 18 18 18 +18	01 53 45 39 34	58.6 11.6 34.0 09.3 00.1	0.560 429 0.559 891 0.560 491 0.562 247 0.565 171	15.69 15.71 15.69 15.64 15.56	6.00 6.00 5.99 5.98 5.95	12 12 12 12 11	19 13 06 00 53	29 02 33 04 38

 $\label{eq:mercury, 2020} \textbf{MERCURY, 2020}$ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME

Date	е	Ap Right	pare Asce		Ap Dec	paren linatio	t on	True Distance from the Earth	Hor. Parallax	Semi Diameter		emeri ansit	S
July	1 2 3 4 5 6	h 6 6 6 6 6	m 41 38 36 33 31 29	s 20.40 47.33 18.41 56.14 42.92 41.01	+18 18 18 18 18 18	39 34 30 27 26 26	" 09.3 00.1 08.7 36.4 24.0 31.3	0.562 247 0.565 171 0.569 273 0.574 556 0.581 018 0.588 653	15.64 15.56 15.45 15.31 15.14 14.94	5.98 5.95 5.90 5.85 5.78 5.71	h 12 11 11 11 11	m 00 53 47 41 35 29	s 04 38 17 04 01 10
	7 8 9 10 11 12	6 6 6 6 6	27 26 25 24 23 23	52.53 19.37 03.22 05.58 27.71 10.66	+18 18 18 18 18 18	27 30 34 39 46 53	57.3 40.3 37.6 45.8 00.5 16.9	0.597 450 0.607 393 0.618 464 0.630 642 0.643 900 0.658 212	14.72 14.48 14.22 13.94 13.66 13.36	5.62 5.53 5.43 5.33 5.22 5.10	11 11 11 11 11 10	23 18 13 08 04 59	33 13 10 25 01 58
	13 14 15 16 17 18	6 6 6 6 6	23 23 24 25 27 29	15.32 42.36 32.33 45.61 22.47 23.07	+19 19 19 19 19	01 10 20 30 41 52	29.2 31.1 15.7 35.5 22.7 28.6	0.673 547 0.689 873 0.707 156 0.725 358 0.744 441 0.764 363	13.06 12.75 12.44 12.12 11.81 11.51	4.99 4.87 4.75 4.63 4.51 4.40	10 10 10 10 10 10	56 52 50 47 45 43	17 58 03 30 21 36
	19 20 21 22 23 24	6 6 6 6 6	31 34 37 41 45 49	47.49 35.72 47.67 23.19 22.07 44.03	+20 20 20 20 20 20 20	03 15 26 36 47 56	44.4 00.7 07.8 55.5 13.2 50.2	0.785 079 0.806 539 0.828 691 0.851 476 0.874 830 0.898 683	11.20 10.90 10.61 10.33 10.05 9.79	4.28 4.17 4.05 3.95 3.84 3.74	10 10 10 10 10 10	42 41 40 40 40 41	15 17 43 32 45 21
	25 26 27 28 29 30	6 6 7 7 7 7	54 59 05 10 17 23	28.71 35.68 04.41 54.24 04.42 34.03	+21 21 21 21 21 21 21	05 13 19 24 28 29	35.2 16.8 43.5 43.8 06.2 39.6	0.922 956 0.947 564 0.972 411 0.997 395 1.022 402 1.047 314	9.53 9.28 9.04 8.82 8.60 8.40	3.64 3.55 3.46 3.37 3.29 3.21	10 10 10 10 10 10	42 43 45 47 49 52	19 39 21 23 46 28
Aug.	31 1 2 3 4 5	7 7 7 7 8 8	30 37 44 52 00 08	22.03 27.20 48.15 23.37 11.18 09.81	+21 21 21 21 21 21 20	29 26 21 14 04 52	13.3 37.4 43.1 22.6 29.9 00.6	1.072 002 1.096 333 1.120 171 1.143 381 1.165 828 1.187 385	8.20 8.02 7.85 7.69 7.54 7.41	3.13 3.06 3.00 2.94 2.88 2.83	10 10 11 11 11 11	55 58 02 06 09 14	28 44 16 01 58 05
	6 7 8 9 10	8 8 8 8 8	16 24 32 41 49 58	17.38 31.99 51.74 14.75 39.24 03.56	+20 20 19 19 19 19	36 19 58 35 10 42	52.2 04.2 38.1 37.1 06.5 12.7	1.207 936 1.227 377 1.245 621 1.262 599 1.278 260 1.292 574	7.28 7.16 7.06 6.97 6.88 6.80	2.78 2.74 2.70 2.66 2.63 2.60	11 11 11 11 11 11	18 22 27 31 36 40	21 42 08 36 05 33
	12 13 14 15 16	9 9 9 9	06 14 23 31 39	26.19 45.80 01.23 11.50 15.82	+18 17 17 16 +15	12 39 05 29 51	03.7 48.1 35.5 35.5 58.2	1.305 527 1.317 126 1.327 388 1.336 347 1.344 043	6.74 6.68 6.63 6.58 6.54	2.57 2.55 2.53 2.51 2.50	11 11 11 11 12	44 49 53 57 01	59 21 38 49 55

 $\label{eq:mercury, 2020} \textbf{MERCURY, 2020}$ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME

Date	Ap Right	pare Asce			paren linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter		emeri ansit	S
Aug. 16 17 18 19 20 21	h 9 9 10 10	m 39 47 55 02 10 17	s 15.82 13.55 04.23 47.51 23.19 51.14	+15 15 14 13 13 12	51 12 32 50 08 25	58.2 53.3 30.4 58.7 26.9 03.3	1.363 266	6.54 6.51 6.49 6.47 6.45 6.44	2.50 2.49 2.48 2.47 2.46 2.46	h 12 12 12 12 12 12	m 01 05 09 13 17 20	s 55 53 44 28 03 31
22 23 24 25 26 27	10 10 10 10 10 10	25 32 39 46 53 59	11.35 23.87 28.79 26.28 16.50 59.67	+11 10 10 9 8 7	40 56 10 25 39 53	55.4 10.4 54.8 14.5 15.3 02.0	1.367 164 1.366 764 1.365 599 1.363 719	6.43 6.43 6.44 6.45 6.46	2.46 2.46 2.46 2.46 2.46 2.47	12 12 12 12 12 12	23 27 30 33 35 38	51 04 09 06 56 40
28 29 30 31 Sept. 1 2	11 11 11 11 11	06 13 19 25 31 38	36.01 05.76 29.15 46.43 57.85 03.64	+7 6 5 4 4 3	06 20 33 47 00 14	39.3 11.5 42.3 15.4 54.0 40.9	1.344 982	6.48 6.49 6.51 6.54 6.56 6.59	2.47 2.48 2.49 2.50 2.51 2.52	12 12 12 12 12 12	41 43 46 48 50 52	16 46 10 28 40 46
3 4 5 6 7 8	11 11 11 12 12 12	44 49 55 01 07 12	04.03 59.23 49.48 34.95 15.83 52.31	+2 1 0 +0 -0	28 42 57 12 32 17	39.1 51.0 19.1 05.4 47.8 18.6	1.313 485 1.305 896 1.297 913	6.62 6.66 6.70 6.73 6.78 6.82	2.53 2.54 2.56 2.57 2.59 2.61	12 12 12 13 13 13	54 56 58 00 02 03	48 44 35 22 04 41
9 10 11 12 13 14	12 12 12 12 12 12	18 23 29 34 39 45	24.52 52.61 16.70 36.89 53.27 05.90	-2 2 3 4 4 5	01 45 28 11 53 34	25.1 05.5 18.0 00.8 12.4 50.9	1.262 230 1.252 409 1.242 239	6.87 6.92 6.97 7.02 7.08 7.14	2.62 2.64 2.66 2.68 2.70 2.73	13 13 13 13 13 13	05 06 08 09 10 12	15 44 10 31 49 03
15 16 17 18 19 20	12 12 13 13 13 13	50 55 00 05 10 15	14.81 20.03 21.55 19.35 13.35 03.48	-6 6 7 8 8	15 56 36 15 53 31	54.6 21.9 10.9 19.9 47.0 30.3	1.209 660 1.198 117 1.186 236	7.20 7.27 7.34 7.41 7.49 7.57	2.75 2.78 2.80 2.83 2.86 2.89	13 13 13 13 13 13	13 14 15 16 17 18	14 20 23 22 18 09
21 22 23 24 25 26	13 13 13 13 13 13	19 24 29 33 38 42	49.62 31.60 09.23 42.27 10.44 33.40	-10 10 11 11 12 13	08 44 19 54 27 00	27.7 37.1 56.1 22.5 53.5 26.3	1.148 560 1.135 326 1.121 756 1.107 851 1.093 611 1.079 041	7.66 7.75 7.84 7.94 8.04 8.15	2.93 2.96 3.00 3.03 3.07 3.11	13 13 13 13 13 13	18 19 20 20 21 21	57 40 18 52 21 44
27 28 29 30 Oct. 1	13 13 13 13 14	46 51 55 59 02	50.77 02.10 06.88 04.51 54.33	-13 14 14 14 -15	31 02 31 59 26	58.0 25.3 44.6 52.1 43.4	1.064 143 1.048 921 1.033 382 1.017 534 1.001 386	8.26 8.38 8.51 8.64 8.78	3.16 3.20 3.25 3.30 3.36	13 13 13 13 13	22 22 22 22 22 22	02 13 17 14 03

 $\label{eq:mercury, 2020} \textbf{MERCURY, 2020}$ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME

Date	Ap Right	pare Asce			paren linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter		emeri ansit	is
Oct. 1 2 3 4 5 6	h 14 14 14 14 14	m 02 06 10 13 16	s 54.33 35.58 07.42 28.87 38.89 36.26	-15 15 16 16 16 17	26 52 16 38 59 18	" 43.4 13.8 18.3 50.9 45.4 54.6	0.984 951 0.968 245 0.951 288 0.934 104	8.78 8.93 9.08 9.24 9.41 9.59	3.36 3.41 3.47 3.53 3.60 3.67	h 13 13 13 13 13	m 22 21 21 20 19 18	s 03 42 12 30 37 30
7 8 9 10 11 12	14 14 14 14 14 14	22 24 26 28 30 31	19.69 47.72 58.78 51.17 23.09 32.66	-17 17 18 18 18	36 51 04 15 23 28	10.6 24.6 26.8 06.5 11.6 29.1	0.881 520 0.863 794 0.846 066	9.78 9.98 10.18 10.39 10.62 10.84	3.74 3.81 3.89 3.97 4.06 4.14	13 13 13 13 13 13	17 15 13 11 08 05	09 31 36 21 45 45
13 14 15 16 17 18	14 14 14 14 14 14	32 32 32 31 30 28	17.93 36.99 28.02 49.39 39.82 58.53	-18 18 18 18 18 17	30 29 25 16 04 47	44.9 43.8 10.2 48.4 23.4 42.0	0.776 805 0.760 461 0.744 790 0.729 972	11.08 11.32 11.56 11.81 12.05 12.28	4.23 4.33 4.42 4.51 4.60 4.69	13 12 12 12 12 12	02 58 54 49 43 38	20 28 08 17 55 02
19 20 21 22 23 24	14 14 14 14 14	26 24 20 17 13 08	45.44 01.36 48.23 09.19 08.78 52.79	-17 17 16 15 15	26 00 30 56 18 36	34.3 56.0 49.9 28.8 17.1 52.3	0.683 460 0.676 209 0.671 196	12.50 12.70 12.87 13.01 13.10 13.15	4.77 4.85 4.92 4.97 5.01 5.03	12 12 12 12 12 12	31 24 17 09 01 53	38 44 23 38 35 21
25 26 27 28 29 30	14 14 13 13 13 13	04 00 55 51 48 44	28.21 02.82 44.84 42.41 03.06 53.30	-13 13 12 11 10 10	53 07 22 38 56 18	05.1 57.8 41.5 31.2 40.7 17.5	0.677 425 0.686 106 0.697 638	13.15 13.09 12.98 12.82 12.61 12.35	5.02 5.00 4.96 4.90 4.82 4.72	11 11 11 11 11	45 36 28 20 13 06	01 44 39 53 32 43
Nov. 1 2 3 4 5	13 13 13 13 13 13	42 40 39 38 38 39	18.30 21.73 05.72 30.99 37.04 22.40	-9 9 8 8 8	44 15 52 34 23 17	18.5 27.1 12.0 47.6 15.4 26.3	0.791 821 0.816 093	12.07 11.76 11.44 11.11 10.78 10.45	4.61 4.49 4.37 4.24 4.12 3.99	11 10 10 10 10	00 54 50 45 42 39	31 57 04 52 20 26
6 7 8 9 10 11	13 13 13 13 13 13	40 42 45 48 51 55	44.87 41.77 10.18 07.05 29.39 14.34	-8 8 8 8 9	17 21 30 44 01 21	02.9 42.0 56.7 18.4 18.1 27.4	0.894 260	10.14 9.83 9.55 9.28 9.02 8.78	3.87 3.76 3.65 3.54 3.45 3.36	10 10 10 10 10 10	37 35 34 33 32 32	07 22 07 19 55 52
12 13 14 15 16	13 14 14 14 14	59 03 08 13 18	19.23 41.63 19.34 10.42 13.16	-9 10 10 11 -11	44 09 36 05 34	19.2 28.4 31.6 08.1 58.9	1.052 283	8.56 8.36 8.17 7.99 7.83	3.27 3.19 3.12 3.05 2.99	10 10 10 10 10	33 33 34 35 36	09 42 29 29 40

 $\label{eq:mercury, 2020} \textbf{MERCURY, 2020}$ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME

Date	A _l Right	opare Asce	nt nsion		paren linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter		emeri ansit	s
Nov. 16 17 18 19 20 21	h 14 14 14 14 14	m 18 23 28 34 39 45	s 13.16 26.06 47.84 17.39 53.76 36.16	-11 12 12 13 13 14	34 05 37 09 41 14	58.9 47.1 17.9 18.1 36.0 01.5	1.123 608 1.145 730 1.166 978 1.187 342 1.206 817 1.225 409	7.83 7.68 7.54 7.41 7.29 7.18	2.99 2.93 2.88 2.83 2.78 2.74	h 10 10 10 10 10	m 36 38 39 41 42 44	s 40 00 29 05 48 37
22 23 24 25 26 27	14 14 15 15 15 15	51 57 03 09 15 21	23.92 16.46 13.30 14.06 18.40 26.04	-14 15 15 16 16 17	46 18 50 22 53 23	25.6 40.4 38.9 15.2 23.8 59.9	1.243 126 1.259 980 1.275 986 1.291 163 1.305 527 1.319 099	7.07 6.98 6.89 6.81 6.74 6.67	2.70 2.67 2.63 2.60 2.57 2.55	10 10 10 10 10 10	46 48 50 52 54 56	30 28 31 37 46 59
28 29 30 Dec. 1 2 3	15 15 15 15 15 15	27 33 40 46 52 59	36.75 50.36 06.71 25.66 47.11 10.98	-17 18 18 19 19 20	53 23 51 19 46 12	59.2 18.1 53.0 41.0 39.1 44.8	1.331 897 1.343 940 1.355 247 1.365 836 1.375 725 1.384 929	6.60 6.54 6.49 6.44 6.39	2.52 2.50 2.48 2.46 2.44 2.43	10 11 11 11 11 11	59 01 03 06 08 11	15 33 54 18 44 13
4 5 6 7 8 9	16 16 16 16 16	05 12 18 25 31 38	37.19 05.68 36.40 09.30 44.34 21.48	-20 21 21 21 22 22 22	37 02 25 47 08 28	55.8 09.9 25.1 39.3 50.8 57.9	1.393 464 1.401 344 1.408 583 1.415 193 1.421 185 1.426 569	6.31 6.28 6.24 6.21 6.19 6.16	2.41 2.40 2.39 2.37 2.36 2.36	11 11 11 11 11	13 16 18 21 24 26	44 17 53 30 10 52
10 11 12 13 14 15	16 16 16 17 17	45 51 58 05 11 18	00.69 41.94 25.17 10.35 57.43 46.35	-22 23 23 23 23 23 24	47 05 22 38 52 05	58.8 52.1 36.1 09.4 30.6 38.2	1.431 354 1.435 547 1.439 155 1.442 184 1.444 639 1.446 523	6.14 6.13 6.11 6.10 6.09 6.08	2.35 2.34 2.33 2.33 2.33 2.32	11 11 11 11 11	29 32 35 37 40 43	36 22 10 60 52 45
16 17 18 19 20 21	17 17 17 17 17 18	25 32 39 46 53 00	37.06 29.49 23.58 19.25 16.41 15.00	-24 24 24 24 24 24	17 28 37 45 52 57	31.0 07.4 26.3 26.3 06.1 24.5	1.447 838 1.448 587 1.448 770 1.448 387 1.447 435 1.445 913	6.07 6.07 6.07 6.07 6.08 6.08	2.32 2.32 2.32 2.32 2.32 2.32	11 11 11 11 11 12	46 49 52 55 58 01	41 38 36 37 38 41
22 23 24 25 26 27	18 18 18 18 18	07 14 21 28 35 42	14.89 16.01 18.24 21.45 25.53 30.31	-25 25 25 25 25 25 24	01 03 04 04 02 59	20.3 52.3 59.5 40.6 54.7 40.7	1.443 817 1.441 141 1.437 879 1.434 024 1.429 568 1.424 500	6.09 6.10 6.12 6.13 6.15 6.17	2.33 2.33 2.34 2.34 2.35 2.36	12 12 12 12 12 12	04 07 10 14 17 20	46 51 58 05 14 23
28 29 30 31 32	18 18 19 19	49 56 03 10 17	35.66 41.41 47.36 53.33 59.09	-24 24 24 24 -24	54 48 41 31 20	57.7 44.7 01.1 45.9 58.7	1.418 809 1.412 483 1.405 508 1.397 870 1.389 550	6.20 6.23 6.26 6.29 6.33	2.37 2.38 2.39 2.40 2.42	12 12 12 12 12	23 26 29 33 36	32 42 52 01 11

 $\begin{array}{c} \textbf{VENUS, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR 0}^{\textbf{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	e	Helioce Longit			lioce atitu	ntric ide	Radius Vector	Dat	te		ocen ıgitu		Helioce Latitu		Radius Vector
Jan.	1 3 5 7 9 11	4 26 7 37 10 48 13 59 17 10 20 22	" 07.4 08.9 16.1 29.0 47.7 12.3	-3 3 3 3 2 2	14 10 06 01 55 49	12.6 30.1 12.2 19.7 53.4 54.1	0.726 2658 0.726 0446 0.725 8149 0.725 5773 0.725 3326 0.725 0816	•	4 6 8 10	152 155 159 162 165 168	55 1 10 2 25 40	17.7 06.5	+3 17 3 20 3 21 3 23 3 23	29.8 00.2 52.2 05.2 39.1 34.0	0.718 7671 0.718 8719 0.718 9908 0.719 1233 0.719 2691 0.719 4278
	13 15 17 19 21 23	23 33 26 45 29 57 33 08 36 20 39 32	42.9 19.5 02.3 51.4 46.7 48.5	-2 2 2 2 2 2	43 36 28 20 12 03	23.1 21.4 50.3 51.1 25.2 34.2	0.724 8251 0.724 5637 0.724 2984 0.724 0300 0.723 7592 0.723 4870		16 18 20 22	172 175 178 181 185 188	24 (38) 52 4 06 :	44.8 55.0	3 21 3 19	25.1 45.4 28.3	0.719 5987 0.719 7813 0.719 9751 0.720 1794 0.720 3936 0.720 6169
Feb.	25 27 29 31 2 4	42 44 45 57 49 09 52 22 55 34 58 47	56.8 11.6 33.2 01.6 36.8 18.9	-1 1 1 1 1	54 44 34 24 14 03	19.7 43.3 46.8 32.1 01.0 15.5	0.723 2142 0.722 9416 0.722 6701 0.722 4006 0.722 1339 0.721 8708	May	28 30 2 4	191 194 198 201 204 207	48 : 02 : 15 : 28 :	33.0 06.8 30.5	2 54 2 48 2 41	59.4 20.5	0.720 8487 0.721 0883 0.721 3348 0.721 5875 0.721 8456 0.722 1082
	6 8 10 12 14 16	62 00 65 13 68 26 71 39 74 52 78 06	08.1 04.3 07.7 18.3 36.0 01.0	-0 0 0 0 -0 +0	52 41 29 18 07 04	17.7 09.5 53.0 30.4 03.9 24.4	0.721 6122 0.721 3589 0.721 1116 0.720 8713 0.720 6386 0.720 4144		10 12 14 16	210 214 217 220 223 226	07 19 32 44	19.9 50.2 09.6 18.1	2 09 2 00 1 51	20.2 45.0	0.722 3747 0.722 6440 0.722 9153 0.723 1879 0.723 4609 0.723 7334
	18 20 22 24 26 28	81 19 84 33 87 46 91 00 94 14 97 28	33.1 12.4 58.8 52.1 52.3 59.2	+0 0 0 0 1 1	15 27 38 49 00 11	52.4 17.6 38.1 51.5 55.8 48.7	0.720 1992 0.719 9939 0.719 7990 0.719 6152 0.719 4431 0.719 2833		22 24 26 28	230 233 236 239 242 246	19 3 31 4 42 3 53 3	03.1 39.8 06.5 23.4 30.7 29.0	1 10	25.4 53.7 09.4 14.3	0.724 0045 0.724 2735 0.724 5396 0.724 8018 0.725 0594 0.725 3116
Mar.	3 5 7 9	100 43 103 57 107 11 110 26 113 41 116 55	12.5 32.2 57.8 29.2 05.9 47.5	1 1 1 2	22 32 42 52 02 11	28.2 52.1 58.4 45.2 10.5 12.4	0.719 1362 0.719 0024 0.718 8822 0.718 7761 0.718 6844 0.718 6074		3 5 7 9	249 252 255 258 261 265	25 : 36 : 46 : 57	19.3	+0 27 0 15 +0 04 -0 06 0 18 0 29	45.4 28.1 49.6 05.7	0.725 5576 0.725 7967 0.726 0282 0.726 2513 0.726 4653 0.726 6697
	15 17 19 21	120 10 123 25 126 40 129 55 133 10 136 25	33.7 24.0 17.9 14.9 14.4 15.7	+2 2 2 2 2 2	19 27 35 42 49 55	49.2 59.2 40.8 52.4 32.6 40.1	0.718 5454 0.718 4985 0.718 4669 0.718 4508 0.718 4501 0.718 4648		15 17 19 21	268 271 274 277 280 284	27 4 37 4 47 1 57 1	43.2 41.5 35.8 26.8		23.6 12.7 50.1 14.0	0.726 8637 0.727 0469 0.727 2186 0.727 3783 0.727 5255 0.727 6598
Apr.	27 29 31	139 40 142 55 146 10 149 25 152 40	18.4 21.8 25.1 27.8 29.1	+3 3 3 +3	01 06 10 14 17	13.8 12.5 35.3 21.3 29.8	0.718 4950 0.718 5405 0.718 6012 0.718 6768 0.718 7671		27 29 1	287 290 293 296 299	26 36 46	28.6 11.3	-1 43 1 52 2 01 2 10 -2 19	45.5 56.9 45.8	0.727 7808 0.727 8880 0.727 9813 0.728 0602 0.728 1246

 $\begin{array}{c} \textbf{VENUS, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR } 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	te		ioce: ngiti	ntric ude		lioce atitu	ntric de	Radius Vector	Da	te		centric gitude	Helioc Latit		Radius Vector
July	3 5 7 9	296 299 303 306 309 312	55 05 15 25	" 11.3 53.9 36.9 20.8 06.0 53.0	-2 2 2 2 2 2 2	10 19 27 34 41 48	45.8 10.8 10.3 42.9 47.3 22.1	0.728 0602 0.728 1246 0.728 1742 0.728 2090 0.728 2287 0.728 2333		1 3 5 7 9 11	83 2 86 3 89 5 93 0 96 2 99 3	9 06.5 2 57.6 6 55.7 1 00.7	+0 23 0 34 0 45 0 57 1 08	3 16.9 3 39.3 5 55.5 7 03.2 8 00.4 8 44.9	0.720 0601 0.719 8592 0.719 6692 0.719 4907 0.719 3243 0.719 1705
	15 17 19 21	315 318 322 325 328 331	54 04 14 24	42.0 33.7 28.1 25.7 26.8 31.7	-2 2 3 3 3 3	54 59 04 09 13 16	26.1 58.4 57.8 23.4 14.4 30.1	0.728 2229 0.728 1973 0.728 1568 0.728 1014 0.728 0313 0.727 9467		15 17 19 21		3 54.4 8 24.5	1 39 1 49 1 58 2 08	14.5 27.3 21.2 3 54.3 3 04.7 5 50.5	0.719 0298 0.718 9027 0.718 7896 0.718 6909 0.718 6069 0.718 5378
Aug.	27 29 31 2	334 337 341 344 347 350	54 05 15 26	40.5 53.5 11.0 33.1 00.0 31.9	-3 3 3 3 3	19 21 22 23 23 23	09.9 13.3 39.8 29.2 41.2 15.8	0.727 8478 0.727 7350 0.727 6085 0.727 4687 0.727 3162 0.727 1512	Nov.	27 29 31 2	122 1 125 3 128 4 132 0 135 1 138 3	2 09.9 7 06.9 2 06.6 7 08.5	2 33 2 40 2 47 2 53	5 10.1 5 01.9 0 24.2 7 15.7 6 34.9 0 20.6	0.718 4839 0.718 4454 0.718 4223 0.718 4148 0.718 4229 0.718 4465
	8	6	57	08.8 50.9 38.3 31.2 29.7 33.7	-3 3 3 3 3	22 20 18 15 11 07	13.0 32.9 15.8 22.1 52.1 46.6	0.726 9744 0.726 7863 0.726 5873 0.726 3782 0.726 1596 0.725 9321		8 10 12 14	141 4 145 0 148 1 151 3 154 4 158 0	2 21.1 7 25.3 2 28.4 7 29.7	3 09 3 13 3 16 3 19	31.7 07.2 06.2 5 28.0 0 11.8 17.3	0.718 4857 0.718 5401 0.718 6098 0.718 6944 0.718 7937 0.718 9073
	18 20 22 24 26 28	16 19 22 25	52 03 15 26 38 50	43.4 59.0 20.5 47.9 21.4 01.1	-3 2 2 2 2 2	03 57 52 45 38 31	06.2 51.6 03.9 43.9 52.9 32.0	0.725 6964 0.725 4532 0.725 2033 0.724 9475 0.724 6865 0.724 4212		20 22 24 26	161 1 164 3 167 4 171 0 174 1 177 3	2 15.8 7 02.9 1 44.6	3 23 3 23 3 23 3 22	2 44.0 3 31.7 3 40.2 6 09.6 2 00.1 0 11.9	0.719 0349 0.719 1760 0.719 3303 0.719 4971 0.719 6760 0.719 8664
Sept.	30 1 3 5 7 9	35 38 41 44	01 13 25 37 49 02	47.0 39.2 37.9 43.1 54.9 13.5	-2 2 2 1 1 1	23 15 06 57 48 38	42.5 25.9 43.6 37.2 08.3 18.8	0.724 1523 0.723 8808 0.723 6074 0.723 3329 0.723 0584 0.722 7845	Dec.	2 4 6 8	180 4 183 5 187 1 190 2 193 4 196 5	9 25.9 3 31.9 7 29.1	3 14 3 11 3 06 3 01	45.5 41.3 00.1 5 42.7 49.8 5 22.6	0.720 0677 0.720 2792 0.720 5002 0.720 7301 0.720 9681 0.721 2134
	11 13 15 17 19 21	54 57 60 64	14 27 39 52 05 18	38.8 11.1 50.3 36.6 29.9 30.5	-1 1 1 0 0 0	28 17 07 56 45 33	10.3 44.8 04.2 10.4 05.6 51.9	0.722 5123 0.722 2425 0.721 9759 0.721 7135 0.721 4561 0.721 2044		14 16 18 20	203 2 206 3 209 4 213 0	4 49.1 7 45.8	2 43 2 36 2 29 2 21	22.1 49.6 46.5 14.0 13.7 2.47.3	0.721 4652 0.721 7228 0.721 9854 0.722 2520 0.722 5219 0.722 7942
Oct.	23 25 27 29 1	76 80	31 44 58 11 25	38.4 53.5 15.9 45.5 22.4	$^{+0}_{0}$	22 11 00 11 23	31.2 05.8 22.1 50.4 16.9	0.720 9593 0.720 7216 0.720 4920 0.720 2713 0.720 0601		26 28 30	219 2 222 3 225 4 229 0 232 1	7 43.5 9 45.6 1 37.1	1 54 1 45 1 35	42.4 5 07.6 5 13.4	0.723 0681 0.723 3427 0.723 6171 0.723 8905 0.724 1620

Date	е	Geo	paren ocentr ngituc	ric	Geo	paren ocentr atitude	ic	Date	e	Geo	paren centr ngituc	ric	Ge	oparen ocentr atitude	ic
Jan.	0 1 2 3 4 5	313 314 315 316 318 319	10 24 38 51 04 18	56.8 30.7 01.9 30.4 55.9 18.5	-1 1 1 1 1 1	50 50 49 49 48 47	47.8 20.6 48.2 10.5 27.5 39.1	Feb.	15 16 17 18 19 20	8 9 10 11 12 14	21 31 40 49 58 07	49.8 17.6 36.5 46.0 46.1 36.5	-0 +0 0 0 0	00 03 07 11 16 20	58.5 11.9 25.7 42.8 03.0 26.3
	6 7 8 9 10 11	320 321 322 324 325 326	31 44 58 11 24 37	38.0 54.3 07.3 16.9 23.0 25.5	-1 1 1 1 1	46 45 44 43 42 40	45.5 46.5 42.1 32.4 17.2 56.8		21 22 23 24 25 26	15 16 17 18 19 20	16 24 33 41 49 56	16.8 46.8 06.2 14.6 11.9 57.5	+0 0 0 0 0	24 29 33 38 43 47	52.5 21.6 53.4 27.8 04.7 43.9
	12 13 14 15 16 17	327 329 330 331 332 333	50 03 16 28 41 54	24.4 19.4 10.6 57.8 41.2 20.6	-1 1 1 1 1	39 37 36 34 32 31	30.9 59.7 23.2 41.3 54.1 01.6	Mar.	27 28 29 1 2 3	22 23 24 25 26 27	04 11 19 25 32 39	31.3 52.8 01.7 57.6 40.2 08.9	+0 0 1 1 1 1	52 57 01 06 11 16	25.4 09.0 54.6 42.0 31.0 21.7
	18 19 20 21 22 23	335 336 337 338 339 341	06 19 31 44 56 08	56.0 27.3 54.5 17.3 35.7 49.5	-1 1 1 1 1	29 27 24 22 20 17	03.9 00.8 52.6 39.1 20.4 56.6		4 5 6 7 8 9	28 29 30 32 33 34	45 51 57 02 07 12	23.4 23.1 07.8 36.8 49.7 46.0	+1 1 1 1 1	21 26 31 35 40 45	13.7 06.9 01.2 56.5 52.5 49.0
	24 25 26 27 28 29	342 343 344 345 347 348	20 33 45 56 08 20	58.6 02.6 01.6 55.2 43.2 25.6	-1 1 1 1 1	15 12 10 07 04 01	27.6 53.6 14.5 30.3 41.2 47.1		10 11 12 13 14 15	35 36 37 38 39 40	17 21 25 29 33 36	25.4 47.4 51.7 37.8 05.5 14.1	+1 1 2 2 2 2 2	50 55 00 05 10 15	46.0 43.2 40.4 37.6 34.5 30.9
Feb.	30 31 1 2 3 4	349 350 351 353 354 355	32 43 54 06 17 28	02.1 32.6 56.8 14.5 25.7 30.0	-0 0 0 0 0	58 55 52 49 46 42	48.2 44.5 35.9 22.7 04.9 42.4		16 17 18 19 20 21	41 42 43 44 45 46	39 41 43 45 46 47	03.2 32.3 40.8 28.1 53.5 56.4	+2 2 2 2 2 2 2	20 25 30 35 40 44	26.7 21.7 15.8 08.7 00.3 50.4
	5 6 7 8 9 10	356 357 359 0 1 2	39 50 00 11 22 32	27.3 17.3 59.9 34.8 01.7 20.7	-0 0 0 0 0	39 35 32 28 24 20	15.5 44.2 08.6 28.7 44.6 56.5		22 23 24 25 26 27	47 48 49 50 51 52	48 48 48 48 47 45	36.0 51.6 42.4 07.7 06.5 37.9	+2 2 2 3 3 3	49 54 59 03 08 13	38.8 25.4 09.8 52.0 31.7 08.7
	11 12 13 14 15	3 4 6 7 8	42 52 02 12 21	31.4 33.8 27.7 13.1 49.8	-0 0 0 0 -0	17 13 09 05 00	04.4 08.5 08.8 05.4 58.5	Apr.	28 29 30 31 1	53 54 55 56 57	43 41 38 34 30	41.0 14.8 18.3 50.2 49.4	+3 3 3 +3	17 22 26 31 35	42.7 13.7 41.2 05.1 25.1

Date	e	Geo	paren ocentr ngituc	ric	Geo	paren ocentr atitude	ic	Date	e	Geo	paren centr ngituc	ric	Ge	pparen ocentr atitude	ric
Apr.	1 2 3 4 5 6	57 58 59 60 61 62	30 26 21 15 08 01	" 49.4 14.8 05.0 18.7 54.6 51.2	+3 3 3 3 3 3	35 39 43 47 52 55	25.1 41.0 52.5 59.2 01.0 57.6	May	17 18 19 20 21 22	81 81 81 80 80 80	33 23 11 56 39 19	55.4 48.4 16.5 21.1 03.9 27.7	+3 3 3 3 3 3	51 43 35 27 18 08	08.2 40.9 42.1 11.7 09.6 36.0
	7 8 9 10 11 12	62 63 64 65 66 67	54 45 36 26 15 04	07.2 41.2 31.7 37.4 56.7 28.0	+3 4 4 4 4 4	59 03 07 10 14 17	48.5 33.6 12.4 44.7 10.1 28.4		23 24 25 26 27 28	79 79 79 78 78 77	57 33 07 39 09 37	36.2 34.2 27.4 22.7 27.9 52.2	+2 2 2 2 2 2 2	58 47 36 25 13 00	31.2 56.0 51.1 17.7 17.4 51.8
	13 14 15 16 17 18	67 68 69 70 70	52 38 24 09 54 37	09.7 59.9 56.7 58.3 02.5 07.2	+4 4 4 4 4	20 23 26 29 31 34	39.0 41.8 36.3 22.2 59.0 26.4	June	29 30 31 1 2 3	77 76 75 75 74 74	04 30 54 18 41 03	45.7 19.6 46.1 18.2 09.8 35.2	+1 1 1 1 0 0	48 34 21 07 53 39	02.9 53.2 25.2 41.7 45.8 40.7
	19 20 21 22 23 24	72 73 73 74 74 75	19 00 40 18 56 32	10.1 08.8 01.0 43.9 14.9 31.1	+4 4 4 4 4	36 38 40 42 44 45	43.8 51.0 47.2 32.2 05.2 25.9		4 5 6 7 8 9	73 72 72 71 70 70	25 48 10 33 57 22	49.4 07.2 43.7 53.6 51.0 49.5	+0 +0 -0 0 0	25 11 02 17 31 44	29.8 16.6 55.6 03.2 03.0 51.7
	25 26 27 28 29 30	76 76 77 77 78 78	07 41 13 44 13 41	29.6 07.3 20.9 07.2 22.6 03.7	+4 4 4 4 4	46 47 48 48 48 48	33.6 27.7 07.6 32.5 41.9 34.9		10 11 12 13 14 15	69 69 68 68 67 67	49 16 45 16 49 24	01.9 40.0 54.5 55.2 50.4 47.6	-0 1 1 1 1 2	58 11 24 37 49 01	26.3 44.2 42.7 19.6 33.0 21.2
May	1 2 3 4 5 6	79 79 79 80 80 80	07 31 54 14 33 50	06.8 28.2 04.1 50.9 44.7 42.1	+4 4 4 4 4	48 47 46 45 43 41	10.8 28.7 28.0 07.6 26.7 24.4		16 17 18 19 20 21	67 66 66 66 65 65	01 41 22 06 53 41	53.0 11.6 47.4 43.4 01.6 42.9	-2 2 2 2 2 2 3	12 23 34 43 53 02	42.9 36.9 02.4 58.8 25.8 23.1
	7 8 9 10 11 12	81 81 81 81 81	05 18 29 37 44 48	39.4 33.2 20.2 57.1 21.1 29.2	+4 4 4 4 4	38 36 32 29 25 20	59.8 11.9 59.9 22.8 19.6 49.6		22 23 24 25 26 27	65 65 65 65 65 65	32 26 22 20 20 23	47.9 16.0 06.3 17.2 46.8 33.0	-3 3 3 3 3 3	10 18 26 33 39 45	51.0 49.4 18.7 19.5 52.1 57.2
	13 14 15 16 17	81 81 81 81	50 49 46 41 33	18.9 48.0 54.7 37.4 55.4	+4 4 4 3 +3	15 10 04 58 51	51.9 25.6 30.0 04.4 08.2	July	28 29 30 1 2	65 65 65 65 66	28 35 45 56 09	33.0 44.2 03.6 28.1 54.6	-3 3 4 4 -4	51 56 01 05 09	35.5 47.6 34.4 56.4 54.7

VENUS, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren ocentr ngituc	ic	Geo	paren ocentr atitude	ic	Date	e	Geo	paren ocentr ngituc	ric	Ge	pparen ocentr atitude	ic
July	1 2 3 4 5 6	65 66 66 66 67 67	56 09 25 42 01 22	28.1 54.6 19.6 39.7 51.6 51.7	-4 4 4 4 4 4	05 09 13 16 19 22	56.4 54.7 29.8 42.6 33.9 04.5	Aug.	16 17 18 19 20 21	97 98 99 100 101 102	54 53 52 52 52 52 52	46.7 38.0 52.7 30.2 29.5 50.1	-3 3 2 2 2 2 2	06 02 57 53 49 44	29.8 16.0 59.2 39.8 17.9 53.7
	7 8 9 10 11 12	67 68 68 69 69 70	45 10 36 03 32 03	36.4 02.2 05.6 43.1 51.4 27.1	-4 4 4 4 4	24 26 27 28 29 30	15.1 06.6 39.5 54.8 53.0 34.9		22 23 24 25 26 27	103 104 105 106 107 109	53 54 55 57 59 01	31.4 32.7 53.6 33.7 32.4 49.4	-2 2 2 2 2 2 2	40 35 31 26 22 17	27.4 59.1 29.1 57.4 24.4 50.0
	13 14 15 16 17 18	70 71 71 72 72 73	35 08 43 19 56 34	26.9 47.7 26.4 19.9 25.4 40.1	-4 4 4 4 4	31 31 31 30 30 29	01.2 12.4 09.1 52.1 21.7 38.7	Sept.	28 29 30 31 1 2	110 111 112 113 114 115	04 07 10 13 17 21	24.1 16.3 25.6 51.5 33.7 31.9	-2 2 2 1 1	13 08 04 59 54 50	14.6 38.2 01.1 23.3 45.1 06.6
	19 20 21 22 23 24	74 74 75 76 77 77	14 54 35 18 01 45	01.1 26.0 52.2 17.2 38.7 54.7	-4 4 4 4 4 4	28 27 26 24 23 21	43.4 36.4 18.3 49.3 10.1 20.9		3 4 5 6 7 8	116 117 118 119 120 121	25 30 34 39 45 50	45.8 15.0 59.3 58.2 11.6 39.1	-1 1 1 1 1	45 40 36 31 26 22	28.0 49.4 10.9 32.8 55.2 18.3
	25 26 27 28 29 30	78 79 80 80 81 82	31 17 03 51 39 28	03.1 01.9 49.6 24.3 44.4 48.6	-4 4 4 4 4 4	19 17 14 12 09 07	22.2 14.4 57.8 32.8 59.7 18.8		9 10 11 12 13 14	122 124 125 126 127 128	56 02 08 14 21 28	20.4 15.1 23.0 43.7 17.0 02.3	-1 1 1 1 0 0	17 13 08 03 59 54	42.1 06.9 32.8 59.9 28.4 58.5
Aug.	31 1 2 3 4 5	83 84 85 85 86 87	18 09 00 51 44 37	35.4 03.2 10.9 57.0 20.4 19.9	-4 4 3 3 3 3	04 01 58 55 52 48	30.4 34.9 32.5 23.6 08.3 47.0		15 16 17 18 19 20	129 130 131 132 134 135	34 42 49 56 04 12	59.5 08.2 28.1 58.9 40.3 32.2	-0 0 0 0 0	50 46 41 37 32 28	30.2 03.8 39.2 16.8 56.5 38.5
	6 7 8 9 10 11	88 89 90 91 92 93	30 25 19 14 10 06	54.2 02.3 43.1 55.5 38.5 51.2	-3 3 3 3 3	45 41 38 34 30 26	20.0 47.5 09.8 27.2 39.8 47.9		21 22 23 24 25 26	136 137 138 139 140 142	20 28 37 45 54 03	34.3 46.4 08.4 40.1 21.3 11.8	-0 0 0 0 0 -0	24 20 15 11 07 03	23.0 10.0 59.7 52.1 47.3 45.5
	12 13 14 15 16	94 95 95 96 97	03 00 58 56 54	32.6 41.7 17.7 19.6 46.7	-3 3 3 -3	22 18 14 10 06	51.8 51.8 47.9 40.5 29.8	Oct.	27 28 29 30 1	143 144 145 146 147	12 21 30 40 49	11.6 20.4 38.1 04.7 40.1	+0 0 0 0 +0	00 04 08 11 15	13.2 08.7 01.0 49.9 35.3

Date	e	Geo	paren centr ngitud	ric	Geo	paren ocentr ititude	ic	Date	e	Geo	paren ocentr ngitud	ric	Ge	oparen ocentr atitude	ic
Oct.	1 2 3 4 5 6	147 148 150 151 152 153	49 59 09 19 29 39	" 40.1 24.0 16.5 17.4 26.5 43.8	+0 0 0 0 0	15 19 22 26 30 33	35.3 17.2 55.4 29.9 00.5 27.2	Nov.	16 17 18 19 20 21	203 204 205 206 208 209	08 22 36 50 04 18	" 21.3 19.3 20.1 23.6 29.8 38.5	o +1 1 1 1 1	46 46 46 46 46 45	43.3 44.3 40.4 31.6 17.9 59.6
	7 8 9 10 11 12	154 156 157 158 159 160	50 00 11 22 33 44	09.0 42.1 22.9 11.2 06.9 09.6	+0 0 0 0 0 0	36 40 43 46 49 52	49.8 08.4 22.7 32.8 38.6 39.9		22 23 24 25 26 27	210 211 213 214 215 216	32 47 01 15 29 44	49.6 03.2 19.1 37.3 57.9 20.8	+1 1 1 1 1	45 45 44 43 43 42	36.5 08.7 36.3 59.4 18.0 32.2
	13 14 15 16 17 18	161 163 164 165 166 167	55 06 17 29 41 52	19.4 35.9 59.0 28.5 04.2 46.1	+0 0 1 1 1 1	55 58 01 03 06 09	36.7 29.0 16.7 59.7 37.9 11.4	Dec.	28 29 30 1 2 3	217 219 220 221 222 224	58 13 27 42 56 11	45.9 13.3 42.8 14.5 48.3 24.2	+1 1 1 1 1	41 40 39 38 37 36	42.0 47.4 48.7 45.7 38.7 27.6
	19 20 21 22 23 24	169 170 171 172 173 175	04 16 28 40 52 04	33.9 27.5 26.8 31.6 41.8 57.3	+1 1 1 1 1 1	11 14 16 18 20 22	40.0 03.8 22.7 36.6 45.6 49.6		4 5 6 7 8 9	225 226 227 229 230 231	26 40 55 10 24 39	02.0 41.8 23.5 06.9 52.1 39.0	+1 1 1 1 1	35 33 32 31 29 28	12.5 53.6 30.9 04.4 34.3 00.6
	25 26 27 28 29 30	176 177 178 179 181 182	17 29 42 54 07 20	18.0 43.8 14.6 50.5 31.3 17.1	+1 1 1 1 1 1	24 26 28 30 31 33	48.5 42.4 31.2 14.9 53.4 26.8		10 11 12 13 14 15	232 234 235 236 237 239	54 09 24 39 53 08	27.5 17.6 09.2 02.2 56.6 52.1	+1 1 1 1 1	26 24 22 21 19 17	23.5 43.0 59.2 12.2 22.1 29.1
Nov.	31 1 2 3 4 5	183 184 185 187 188 189	33 46 59 12 25 38	07.6 02.9 03.0 07.6 16.8 30.4	+1 1 1 1 1 1	34 36 37 38 39 40	55.1 18.2 36.1 48.8 56.3 58.6		16 17 18 19 20 21	240 241 242 244 245 246	23 38 53 08 23 38	48.7 46.3 44.8 44.0 44.0 44.7	+1 1 1 1 1	15 13 11 09 07 05	33.2 34.4 33.0 29.1 22.6 13.8
	6 7 8 9 10 11	190 192 193 194 195 196	51 05 18 32 45 59	48.4 10.6 37.0 07.3 41.5 19.4	+1 1 1 1 1 1	41 42 43 44 44 45	55.7 47.6 34.3 15.8 52.2 23.4		22 23 24 25 26 27	247 249 250 251 252 254	53 08 23 38 53 09	46.0 48.1 50.9 54.4 58.5 03.3	+1 1 0 0 0 0	03 00 58 56 53 51	02.7 49.5 34.2 16.9 57.8 36.9
	12 13 14 15 16	198 199 200 201 203	13 26 40 54 08	01.0 46.1 34.6 26.4 21.3	+1 1 1 1 +1	45 46 46 46 46	49.6 10.6 26.5 37.4 43.3		28 29 30 31 32	255 256 257 259 260	24 39 54 09 24	08.7 14.8 21.6 28.9 36.8	+0 0 0 0 +0	49 46 44 41 39	14.4 50.3 24.8 58.0 29.9

 $\begin{tabular}{ll} VENUS, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	e	Ap Right	pare Asce			paren linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	3
Jan.	0 1 2 3 4 5	h 21 21 21 21 21 21	m 04 09 14 19 24 29	s 48.44 44.59 39.26 32.47 24.20 14.46	-18 18 17 17 17	37 15 53 30 07 44	42.3 56.2 40.4 55.7 42.9 02.7	1.277 918 1.272 273 1.266 598 1.260 892	6.85 6.88 6.91 6.94 6.97 7.01	6.50 6.53 6.56 6.58 6.61 6.64	h 14 14 14 14 14	m 28 29 30 31 32 33	s 53 52 49 45 39 32
	6 7 8 9 10 11	21 21 21 21 21 21	34 38 43 48 53 57	03.26 50.61 36.52 20.99 04.04 45.70	-16 15 15 15 14 14	19 55 30 05 39 13	56.0 23.5 26.1 04.6 19.7 12.3	1.243 599 1.237 776 1.231 924 1.226 044	7.04 7.07 7.10 7.14 7.17 7.21	6.68 6.71 6.74 6.77 6.80 6.84	14 14 14 14 14 14	34 35 36 36 37 38	23 13 02 49 34 19
	12 13 14 15 16 17	22 22 22 22 22 22 22	02 07 11 16 20 25	25.97 04.88 42.44 18.70 53.66 27.37	-13 13 12 12 11 11	46 19 52 25 57 29	43.2 53.1 42.8 13.1 24.8 18.6	1.208 236 1.202 245 1.196 226 1.190 179	7.24 7.28 7.31 7.35 7.39 7.43	6.87 6.90 6.94 6.97 7.01 7.04	14 14 14 14 14 14	39 39 40 41 41 42	02 43 23 02 40 16
	18 19 20 21 22 23	22 22 22 22 22 22 22	29 34 39 43 47 52	59.85 31.13 01.24 30.20 58.05 24.81	-11 10 10 9 9	00 32 03 34 04 35	55.3 15.6 20.3 10.2 46.1 08.7	1.171 871 1.165 712 1.159 524 1.153 307	7.47 7.50 7.54 7.58 7.63 7.67	7.08 7.12 7.15 7.19 7.23 7.27	14 14 14 14 14 14	42 43 43 44 45 45	52 26 58 30 01 30
	24 25 26 27 28 29	22 23 23 23 23 23 23	56 01 05 10 14 18	50.51 15.17 38.82 01.50 23.21 44.01	-8 7 7 6 6 5	05 35 05 34 04 33	18.9 17.3 04.8 42.1 10.1 29.3	1.134 479 1.128 144 1.121 778 1.115 383	7.71 7.75 7.80 7.84 7.88 7.93	7.31 7.35 7.39 7.43 7.48 7.52	14 14 14 14 14 14	45 46 46 47 47 48	59 26 53 18 43 07
Feb.	30 31 1 2 3 4	23 23 23 23 23 23 23	23 27 31 35 40 44	03.92 22.96 41.16 58.57 15.20 31.09	-5 4 4 3 2 2	02 31 00 29 58 27	40.7 44.9 42.8 35.0 22.3 05.5	1.096 018 1.089 504 1.082 960 1.076 387	7.98 8.02 8.07 8.12 8.17 8.22	7.56 7.61 7.65 7.70 7.75 7.80	14 14 14 14 14 14	48 48 49 49 49 50	30 51 13 33 53 12
	5 6 7 8 9 10	23 23 23 0 0	48 53 57 01 05 09	46.27 00.76 14.59 27.80 40.41 52.46	-1 1 0 -0 +0	55 24 52 21 09 41	45.2 22.3 57.5 31.4 55.2 21.5	1.056 495 1.049 807 1.043 093 1.036 351	8.27 8.32 8.38 8.43 8.49 8.54	7.84 7.89 7.94 8.00 8.05 8.10	14 14 14 14 14 14	50 50 51 51 51 51	30 47 04 20 36 51
	11 12 13 14 15	0 0 0 0	14 18 22 26 30	03.96 14.97 25.51 35.62 45.32	+1 1 2 2 +3	12 44 15 46 18	46.9 10.7 32.3 51.0 06.1	1.015 967 1.009 120	8.60 8.66 8.71 8.77 8.84	8.15 8.21 8.26 8.32 8.38	14 14 14 14 14	52 52 52 52 52 53	06 20 34 47 00

Date	Ap Right	pare: Asce			paren linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meri: insit	s
Feb. 15 16 17 18 19 20	h 0 0 0 0 0	m 30 34 39 43 47 51	s 45.32 54.66 03.64 12.31 20.69 28.78	+3 3 4 4 5 5	18 49 20 51 22 53	" 06.1 16.9 22.9 23.4 17.6 04.9	0.988 426 0.981 477 0.974 501 0.967 500	8.84 8.90 8.96 9.02 9.09 9.16	8.38 8.44 8.50 8.56 8.62 8.68	h 14 14 14 14 14	m 53 53 53 53 53 53	s 00 13 25 37 48 60
21 22 23 24 25 26	0 0 1 1 1 1	55 59 03 07 12 16	36.63 44.23 51.61 58.79 05.77 12.58	+6 6 7 7 8 8	23 54 24 54 24 54	44.7 16.2 38.7 51.7 54.4 46.2	0.946 340 0.939 234 0.932 102 0.924 945	9.22 9.29 9.36 9.43 9.51 9.58	8.75 8.81 8.88 8.95 9.02 9.09	14 14 14 14 14	54 54 54 54 54 55	11 22 33 43 53 04
27 28 29 Mar. 1 2 3	1 1 1 1 1	20 24 28 32 36 40	19.21 25.69 32.02 38.20 44.23 50.12	+9 9 10 10 11 11	24 53 23 52 20 49	26.4 54.3 09.3 10.7 57.9 30.2	0.903 318 0.896 059 0.888 775 0.881 466	9.66 9.74 9.81 9.89 9.98 10.06	9.16 9.23 9.31 9.38 9.46 9.54	14 14 14 14 14	55 55 55 55 55 56	14 23 33 43 52 01
4 5 6 7 8 9	1 1 1 1 2 2	44 49 53 57 01 05	55.87 01.46 06.90 12.17 17.26 22.17	+12 12 13 13 14 14	17 45 13 40 08 34	46.9 47.5 31.2 57.5 05.6 55.0	0.859 400 0.851 999 0.844 577 0.837 134	10.15 10.23 10.32 10.41 10.51 10.60	9.62 9.70 9.79 9.87 9.96 10.05	14 14 14 14 14	56 56 56 56 56 56	10 19 28 37 45 53
10 11 12 13 14 15	2 2 2 2 2 2 2	09 13 17 21 25 29	26.88 31.39 35.68 39.75 43.57 47.12	+15 15 15 16 16 17	01 27 53 18 44 08	25.2 35.4 25.2 54.0 01.4 46.8	0.814 690 0.807 173 0.799 639 0.792 089	10.70 10.79 10.89 11.00 11.10 11.21	10.14 10.24 10.33 10.43 10.53 10.63	14 14 14 14 14	57 57 57 57 57 57	01 09 17 24 31 38
16 17 18 19 20 21	2 2 2 2 2 2 2	33 37 41 45 49 54	50.39 53.33 55.92 58.12 59.87 01.15	+17 17 18 18 19 19	33 57 20 43 06 29	09.7 09.6 46.0 58.5 46.4 09.4	0.769 346 0.761 736 0.754 111 0.746 474	11.32 11.43 11.54 11.66 11.78 11.90	10.73 10.84 10.95 11.06 11.17 11.29	14 14 14 14 14	57 57 57 58 58 58	45 51 57 02 07 11
22 23 24 25 26 27	2 3 3 3 3 3	58 02 06 10 13 17	01.89 02.04 01.54 00.33 58.33 55.47	+19 20 20 20 21 21	51 12 33 54 14 34	07.0 38.7 44.0 22.6 34.0 17.8	0.723 485 0.715 798 0.708 101 0.700 395	12.03 12.16 12.29 12.42 12.56 12.70	11.41 11.53 11.65 11.78 11.91 12.04	14 14 14 14 14	58 58 58 58 58 58	15 18 21 23 23 23
28 29 30 31 Apr. 1	3 3 3 3 3	21 25 29 33 37	51.67 46.85 40.91 33.75 25.27	+21 22 22 22 +23	53 12 30 48 05	33.7 21.2 40.1 29.9 50.4	0.677 224 0.669 487 0.661 745	12.84 12.99 13.14 13.29 13.45	12.18 12.31 12.46 12.60 12.75	14 14 14 14 14	58 58 58 58 58	22 20 17 13 07

 $\begin{tabular}{ll} VENUS, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date		Ap Right	pare Asce			paren linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter		emeris ansit	s
-	1 2 3 4 5 6	h 3 3 3 3 3 3	m 37 41 45 48 52 56	s 25.27 15.36 03.91 50.79 35.88 19.04	+23 23 23 23 24 24	05 22 39 54 10 25	50.4 41.2 02.0 52.6 12.7 02.2	0.646 251 0.638 502 0.630 754 0.623 008	13.45 13.61 13.77 13.94 14.12 14.29	12.75 12.91 13.06 13.22 13.39 13.56	h 14 14 14 14 14	m 58 57 57 57 57 57	s 07 59 50 39 27 12
1 1	7 8 9 0 1	4 4 4 4 4	00 03 07 10 14 17	00.16 39.10 15.72 49.87 21.43 50.23	+24 24 25 25 25 25 25	39 53 06 19 31 43	20.6 08.1 24.3 09.3 22.9 05.2	0.599 802 0.592 084 0.584 378 0.576 686	14.48 14.66 14.85 15.05 15.25 15.46	13.73 13.90 14.09 14.27 14.46 14.66	14 14 14 14 14	56 56 56 55 55 54	55 36 15 51 24 55
1 1 1 1	3 4 5 6 7 8	4 4 4 4 4	21 24 27 31 34 37	16.10 38.89 58.42 14.51 26.96 35.57	+25 26 26 26 26 26 26	54 04 15 24 33 42	16.2 55.7 03.9 40.7 46.2 20.4	0.553 713 0.546 096 0.538 503 0.530 936	15.67 15.88 16.10 16.33 16.56 16.80	14.86 15.06 15.27 15.49 15.71 15.93	14 14 14 14 14	54 53 53 52 51 50	22 46 07 25 38 48
2 2 2 2	9 20 21 22 23 24	4 4 4 4 4 4	40 43 46 49 52 54	40.15 40.47 36.31 27.46 13.65 54.66	+26 26 27 27 27 27 27	50 57 04 11 17 22	23.3 55.1 55.7 25.2 23.6 51.1	0.508 413 0.500 974 0.493 573 0.486 213	17.05 17.30 17.55 17.82 18.09 18.36	16.17 16.40 16.65 16.90 17.15 17.41	14 14 14 14 14	49 48 47 46 45 44	53 54 51 42 29 10
2 2 2 2	25 26 27 28 29	4 5 5 5 5 5 5	57 00 02 04 06 08	30.22 00.07 23.93 41.53 52.58 56.79	+27 27 27 27 27 27 27	27 32 36 39 42 44	47.7 13.3 08.1 32.0 24.9 46.8	0.464 414 0.457 254 0.450 152 0.443 114	18.65 18.94 19.23 19.54 19.85 20.16	17.68 17.96 18.24 18.53 18.82 19.12	14 14 14 14 14	42 41 39 37 36 34	46 16 39 56 07 10
-	1 2 3 4 5 6	5 5 5 5 5 5	10 12 14 15 17 18	53.85 43.47 25.35 59.19 24.69 41.58	+27 27 27 27 27 27 27	46 47 48 49 48 47	37.6 57.1 45.1 01.2 45.3 57.0	0.422 428 0.415 693 0.409 047 0.402 496	20.49 20.82 21.16 21.50 21.85 22.20	19.43 19.74 20.06 20.39 20.72 21.06	14 14 14 14 14	32 29 27 25 22 19	07 55 36 08 33 48
1 1	7 8 9 0 1	5 5 5 5 5 5	19 20 21 22 22 23	49.57 48.41 37.85 17.64 47.56 07.43	+27 27 27 27 27 27 27	46 44 42 39 35 31	35.8 41.3 12.9 10.2 32.4 18.9	0.383 485 0.377 385 0.371 414 0.365 581	22.57 22.93 23.30 23.68 24.06 24.44	21.40 21.75 22.10 22.45 22.81 23.17	14 14 14 14 14	16 13 10 07 03 00	54 51 39 17 45 03
1 1 1	3 4 5 6 7	5 5 5 5 5	23 23 23 22 22	17.06 16.31 05.07 43.26 10.85	+27 27 27 27 +27	26 21 14 08 00	28.7 01.1 55.3 10.1 44.9	0.348 985 0.343 781 0.338 755	24.82 25.20 25.58 25.96 26.34	23.54 23.90 24.26 24.62 24.98	13 13 13 13 13	56 52 47 43 38	11 08 55 31 57

 $\begin{tabular}{ll} VENUS, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	Appare Right Asce			parent inatio		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	s
May 17 18 19 20 21 22	h m 5 22 5 21 5 20 5 19 5 18 5 16	s 10.85 27.86 34.36 30.48 16.42 52.45	+27 26 26 26 26 26 26	00 52 43 34 24 13	" 44.9 38.5 50.2 19.2 04.9 06.6	0.329 271 0.324 832 0.320 606 0.316 603	26.34 26.71 27.07 27.43 27.78 28.11	24.98 25.33 25.67 26.01 26.34 26.66	h 13 13 13 13 13 13	m 38 34 29 24 18 13	s 57 12 17 12 57 33
23 24 25 26 27 28	5 15 5 13 5 11 5 09 5 07 5 05	18.90 36.18 44.79 45.28 38.32 24.62	+26 25 25 25 25 25 24	01 48 35 21 07 52	24.2 57.7 47.2 53.5 17.5 00.7	0.306 020 0.302 998 0.300 243 0.297 762	28.43 28.74 29.02 29.29 29.53 29.75	26.96 27.25 27.52 27.78 28.01 28.22	13 13 12 12 12 12	07 02 56 50 44 38	59 16 25 27 21 09
29 30 31 June 1 2 3	5 03 5 00 4 58 4 55 4 53 4 50	04.97 40.24 11.35 39.28 05.05 29.69	+24 24 24 23 23 23	36 19 02 44 26 08	05.2 33.2 27.9 52.8 51.8 29.5	0.292 044 0.290 733 0.289 729 0.289 035	29.95 30.11 30.25 30.35 30.43 30.47	28.40 28.56 28.69 28.79 28.85 28.89	12 12 12 12 12 12	31 25 19 12 06 59	52 30 04 36 06 36
4 5 6 7 8 9	4 47 4 45 4 42 4 40 4 37 4 35	54.27 19.83 47.42 18.01 52.58 32.00	+22 22 22 21 21 21	49 31 12 53 34 15	50.8 01.0 05.7 10.6 21.4 43.9	0.288 839 0.289 403 0.290 280 0.291 466	30.47 30.45 30.39 30.30 30.17 30.02	28.90 28.87 28.82 28.73 28.61 28.47	11 11 11 11 11 11	53 46 40 33 27 21	06 38 12 50 31 19
10 11 12 13 14 15	4 33 4 31 4 29 4 27 4 25 4 23	17.10 08.63 07.26 13.57 28.06 51.17	+20 20 20 20 20 19	57 39 21 04 48 32	23.7 26.1 56.2 58.6 37.7 57.2	0.296 835 0.299 208 0.301 861 0.304 785	29.84 29.63 29.39 29.13 28.85 28.56	28.30 28.10 27.87 27.63 27.36 27.08	11 11 11 10 10	15 09 03 57 51 46	12 11 18 33 56 28
16 17 18 19 20 21	4 22 4 21 4 19 4 18 4 18 4 17	23.23 04.53 55.25 55.54 05.47 25.07	+19 19 18 18 18 18	18 03 50 37 26 15	00.3 50.1 28.6 57.9 19.1 33.3	0.315 098 0.319 019 0.323 166 0.327 530	28.24 27.91 27.57 27.21 26.85 26.48	26.78 26.47 26.14 25.81 25.46 25.11	10 10 10 10 10 10	41 35 30 26 21 16	09 59 58 07 26 54
22 23 24 25 26 27	4 16 4 16 4 16 4 16 4 16 4 16	54.30 33.10 21.38 19.00 25.82 41.68	+18 17 17 17 17 17	05 56 48 41 35 29	40.8 41.7 35.9 22.7 01.3 30.6	0.341 827 0.346 965 0.352 275 0.357 748	26.11 25.73 25.35 24.96 24.58 24.20	24.76 24.40 24.04 23.67 23.31 22.95	10 10 10 10 9 9	12 08 04 00 56 52	31 18 15 20 35 58
28 29 30 July 1 2	4 17 4 17 4 18 4 19 4 20	06.38 39.74 21.57 11.66 09.81	+17 17 17 17 +17	24 20 17 15 13	49.3 56.1 49.4 27.5 48.7	0.375 070 0.381 121 0.387 298	23.82 23.45 23.07 22.71 22.34	22.59 22.24 21.88 21.53 21.19	9 9 9 9	49 46 43 39 37	31 11 00 58 03

 $\begin{tabular}{ll} VENUS, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	Appar Right Asc			parent linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter		meri: insit	S
July 1 2 3 4 5 6	h n 4 19 4 20 4 21 4 23 4 23	9 11.66 0 09.81 1 15.81 2 29.43 3 50.47	+17 17 17 17 17 17	15 13 12 12 12 13	27.5 48.7 51.0 32.6 51.5 45.6	0.393 594 0.400 004 0.406 520 0.413 137	22.71 22.34 21.99 21.63 21.29 20.95	21.53 21.19 20.85 20.52 20.19 19.86	h 9 9 9 9	m 39 37 34 31 29 26	s 58 03 16 36 03 38
7 8 9 10 11 12	4 20 4 28 4 30 4 32 4 34 4 36	35.93 0 24.48 2 19.37 4 20.41	+17 17 17 17 17 17	15 17 19 22 25 29	12.9 11.2 38.6 32.9 52.1 34.1	0.433 534 0.440 496 0.447 531 0.454 634	20.61 20.28 19.96 19.65 19.34 19.04	19.55 19.24 18.93 18.64 18.34 18.06	9 9 9 9 9	24 22 20 18 16 14	20 08 03 04 11 23
13 14 15 16 17 18	4 38 4 40 4 43 4 44 4 48 4 5	5 58.43 3 22.10 5 50.97 8 24.86	+17 17 17 17 17 17	33 37 42 47 52 57	36.9 58.5 37.1 30.7 37.5 55.7	0.476 309 0.483 642 0.491 022 0.498 448	18.75 18.46 18.18 17.91 17.64 17.38	17.78 17.51 17.24 16.98 16.73 16.49	9 9 9 9 9	12 11 09 08 06 05	42 06 35 09 49 33
19 20 21 22 23 24	4 53 4 56 4 59 5 02 5 08	5 35.05 9 27.42 2 24.02 5 24.73	+18 18 18 18 18 18	03 08 14 20 26 32	23.5 59.2 41.2 27.7 17.3 08.5	0.520 958 0.528 531 0.536 134 0.543 765	17.13 16.88 16.64 16.40 16.17 15.95	16.24 16.01 15.78 15.56 15.34 15.12	9 9 9 9 9 8	04 03 02 01 00 59	21 14 12 14 19 29
25 26 27 28 29 30	5 12 5 14 5 18 5 22 5 24 5 28	4 50.16 8 06.03 1 25.41 4 48.21	+18 18 18 18 19 19	37 43 49 55 00 06	59.6 49.4 36.4 19.4 57.0 28.1	0.566 808 0.574 533 0.582 277 0.590 039	15.73 15.52 15.31 15.10 14.90 14.71	14.92 14.71 14.52 14.32 14.13 13.95	8 8 8 8 8	58 57 57 56 56 55	42 59 20 44 12 42
Aug. 31 2 3 4 5	5 31 5 35 5 38 5 42 5 46 5 49	5 16.13 8 51.64 2 30.10 6 11.43	+19 19 19 19 19 19	11 17 22 27 31 36	51.4 05.7 09.8 02.8 43.3 10.5	0.613 414 0.621 230 0.629 056 0.636 890	14.52 14.34 14.16 13.98 13.81 13.64	13.77 13.60 13.42 13.26 13.09 12.94	8 8 8 8 8	55 54 54 54 54 53	16 53 33 16 02 51
6 7 8 9 10	5 53 5 57 6 03 6 09 6 13	7 31.73 1 23.66 5 18.03 9 14.76	+19 19 19 19 19 19	40 44 48 51 54 57	23.2 20.4 01.3 24.7 29.9 15.9	0.660 423 0.668 273 0.676 124 0.683 973	13.48 13.32 13.16 13.01 12.86 12.71	12.78 12.63 12.48 12.34 12.19 12.06	8 8 8 8 8	53 53 53 53 53 53	42 36 32 31 32 35
12 13 14 15 16	6 17 6 25 6 26 6 33	1 18.28 5 23.64 9 30.94	+19 20 20 20 20 +20	59 01 03 04 05	42.0 47.4 31.2 52.8 51.5	0.707 504 0.715 337 0.723 164	12.57 12.43 12.29 12.16 12.03	11.92 11.79 11.66 11.53 11.41	8 8 8 8	53 53 53 54 54	41 48 58 09 22

 $\begin{tabular}{ll} VENUS, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date		Ap Right	pare Asce			paren linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meri: insit	s
1 1 2	16 17 18 19 20 21	h 6 6 6 6	m 33 37 42 46 50 54	s 40.12 51.09 03.77 18.08 33.94 51.29	+20 20 20 20 20 20 20	05 06 06 06 05 04	51.5 26.7 37.6 23.7 44.5 39.4	0.738 794 0.746 595 0.754 385 0.762 166	12.03 11.90 11.78 11.66 11.54 11.42	11.41 11.29 11.17 11.06 10.94 10.83	h 8 8 8 8 8	m 54 54 54 55 55 55	s 22 37 54 13 32 54
2	22 23 24 25 26 27	6 7 7 7 7 7	59 03 07 12 16 21	10.05 30.15 51.53 14.13 37.88 02.73	+20 20 19 19 19 19	03 01 58 55 52 48	07.9 09.6 44.1 50.9 29.8 40.3	0.785 437 0.793 170 0.800 891 0.808 598	11.31 11.20 11.09 10.98 10.88 10.77	10.72 10.62 10.51 10.41 10.31 10.22	8 8 8 8 8	56 56 57 57 57 58	16 41 06 32 60 29
2	28 29 30 31 1 2	7 7 7 7 7 7	25 29 34 38 43 47	28.62 55.48 23.27 51.91 21.37 51.57	+19 19 19 19 19	44 39 34 28 22 15	22.3 35.4 19.4 34.0 19.1 34.5	0.831 640 0.839 292 0.846 928 0.854 548	10.67 10.57 10.48 10.38 10.29 10.20	10.12 10.03 9.94 9.85 9.76 9.67	8 8 9 9 9	58 59 00 00 01 01	58 29 01 33 06 40
	3 4 5 6 7 8	7 7 8 8 8 8	52 56 01 05 10 15	22.47 54.02 26.16 58.85 32.02 05.63	+19 19 18 18 18 18	08 00 52 43 34 24	19.9 35.4 20.7 35.9 21.0 35.8	0.877 307 0.884 856 0.892 386 0.899 896	10.11 10.02 9.94 9.85 9.77 9.69	9.59 9.51 9.43 9.35 9.27 9.19	9 9 9 9 9	02 02 03 04 04 05	15 50 26 02 39 16
1 1 1	9 10 11 12 13	8 8 8 8 8	19 24 28 33 37 42	39.64 13.99 48.63 23.52 58.61 33.85	+18 18 17 17 17 17	14 03 52 40 28 15	20.5 35.2 19.8 34.6 19.7 35.2	0.922 299 0.929 722 0.937 121 0.944 497	9.61 9.54 9.46 9.38 9.31 9.24	9.12 9.04 8.97 8.90 8.83 8.76	9 9 9 9 9	05 06 07 07 08 09	54 32 10 48 27 06
1 1 1	15 16 17 18 19 20	8 8 8 9 9	47 51 56 00 05 10	09.20 44.62 20.06 55.50 30.89 06.22	+17 16 16 16 16 15	02 48 34 19 04 49	21.4 38.5 26.7 46.3 37.5 00.8	0.966 475 0.973 750 0.980 999 0.988 222	9.17 9.10 9.03 8.96 8.90 8.83	8.69 8.63 8.56 8.50 8.44 8.38	9 9 9 9 9	09 10 11 11 12 12	45 23 02 41 20 59
2	21 22 23 24 25 26	9 9 9 9 9	14 19 23 28 33 37	41.44 16.54 51.50 26.29 00.89 35.30	+15 15 14 14 14 14	32 16 59 42 24 05	56.4 24.7 26.0 00.8 09.4 52.3	1.009 736 1.016 855 1.023 948 1.031 016	8.77 8.71 8.65 8.59 8.53 8.47	8.32 8.26 8.20 8.14 8.09 8.03	9 9 9 9 9	13 14 14 15 16 16	37 16 54 33 11 48
2	27 28 29 30 1	9 9 9 9 10	42 46 51 55 00	09.50 43.48 17.22 50.73 23.99	+13 13 13 12 +12	47 28 08 48 28	09.8 02.3 30.4 34.4 14.9	1.052 060 1.059 021 1.065 955	8.41 8.36 8.30 8.25 8.20	7.98 7.93 7.88 7.82 7.77	9 9 9 9	17 18 18 19	26 03 40 17 54

Date	Ap Right	pare Asce			paren linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meri: insit	S
Oct. 1 2 3 4 5 6	h 10 10 10 10 10	m 00 04 09 14 18 23	s 23.99 57.00 29.77 02.29 34.56 06.59	+12 12 11 11 11 10	28 07 46 24 03 41	" 14.9 32.2 26.9 59.5 10.5 00.4	1.079 740 1.086 590 1.093 411 1.100 202	8.20 8.14 8.09 8.04 7.99 7.94	7.77 7.72 7.68 7.63 7.58 7.53	h 9 9 9 9	m 19 20 21 21 22 22	s 54 30 06 42 18 53
7 8 9 10 11 12	10 10 10 10 10 10	27 32 36 41 45 50	38.37 09.91 41.21 12.28 43.12 13.74	+10 9 9 9 8 8	18 55 32 09 45 21	29.8 39.2 29.3 00.5 13.6 09.0	1.120 397 1.127 066 1.133 704 1.140 309	7.90 7.85 7.80 7.76 7.71 7.67	7.49 7.44 7.40 7.36 7.31 7.27	9 9 9 9 9	23 24 24 25 25 26	28 03 38 12 47 21
13 14 15 16 17 18	10 10 11 11 11 11	54 59 03 08 12 17	44.15 14.35 44.36 14.19 43.85 13.36	+7 7 7 6 6 5	56 32 07 42 16 51	47.5 09.6 16.1 07.4 44.4 07.6	1.159 929 1.166 401 1.172 839 1.179 244	7.62 7.58 7.54 7.50 7.46 7.42	7.23 7.19 7.15 7.11 7.07 7.03	9 9 9 9 9	26 27 28 28 29 29	54 28 01 35 08 41
19 20 21 22 23 24	11 11 11 11 11	21 26 30 35 39 44	42.74 12.00 41.17 10.27 39.31 08.33	+5 4 4 4 3 3	25 59 33 06 40 13	17.7 15.4 01.4 36.3 00.8 15.6	1.198 252 1.204 520 1.210 755 1.216 956	7.38 7.34 7.30 7.26 7.23 7.19	7.00 6.96 6.92 6.89 6.85 6.82	9 9 9 9 9	30 30 31 31 32 32	13 46 19 51 24 56
25 26 27 28 29 30	11 11 11 12 12 12	48 53 57 02 06 11	37.35 06.39 35.49 04.68 33.99 03.44	+2 2 1 1 0 0	46 19 52 24 57 29	21.4 18.8 08.5 51.1 27.4 58.0	1.235 358 1.241 426 1.247 459 1.253 459	7.15 7.12 7.08 7.05 7.02 6.98	6.78 6.75 6.72 6.69 6.65 6.62	9 9 9 9 9	33 34 34 35 35 36	29 01 34 06 39 12
Nov. 1 2 3 4 5	12 12 12 12 12 12	15 20 24 29 33 38	33.08 02.93 33.03 03.41 34.09 05.12	+0 -0 0 1 1 2	02 25 52 20 48 16	23.6 15.1 57.4 42.6 30.0 18.9	1.271 253 1.277 115 1.282 942 1.288 734	6.95 6.92 6.89 6.85 6.82 6.79	6.59 6.56 6.53 6.50 6.47 6.44	9 9 9 9 9	36 37 37 38 39 39	45 19 53 26 01 35
6 7 8 9 10	12 12 12 12 13 13	42 47 51 56 00 05	36.51 08.31 40.55 13.24 46.43 20.15	-2 3 3 4 4 5	44 11 39 07 35 03	08.6 58.3 47.2 34.7 19.9 02.1	1.305 894 1.311 540 1.317 150	6.76 6.73 6.71 6.68 6.65 6.62	6.41 6.39 6.36 6.33 6.31 6.28	9 9 9 9 9	40 40 41 41 42 43	10 46 22 58 35 12
12 13 14 15 16	13 13 13 13	09 14 19 23 28	54.42 29.28 04.75 40.87 17.67	-5 5 6 6 -7	30 58 25 53 20	40.6 14.5 43.2 05.7 21.4	1.339 209 1.344 627 1.350 007	6.59 6.57 6.54 6.51 6.49	6.25 6.23 6.20 6.18 6.15	9 9 9 9	43 44 45 45 46	50 29 08 48 28

 $\begin{tabular}{ll} VENUS, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	Ap Right	pare Asce			paren linatio		True Distance from the Earth	Hor. Parallax	Semi Diameter		meri: insit	S
Nov. 16 17 18 19 20 21	h 13 13 13 13 13 13	m 28 32 37 42 46 51	s 17.67 55.17 33.40 12.38 52.15 32.74	-7 7 8 8 8 9	20 47 14 41 07 34	" 21.4 29.5 29.1 19.4 59.7 29.2	1.360 650 1.365 914 1.371 139 1.376 327	6.49 6.46 6.44 6.41 6.39 6.37	6.15 6.13 6.11 6.08 6.06 6.04	h 9 9 9 9	m 46 47 47 48 49 50	s 28 10 52 34 18 02
22 23 24 25 26 27	13 14 14 14 14 14	56 00 05 10 15 19	14.17 56.47 39.68 23.81 08.91 54.99	-10 10 10 11 11 11	00 26 52 18 43 08	47.1 52.6 44.9 23.3 47.0 55.2	1.396 703 1.401 704 1.406 668	6.34 6.32 6.30 6.27 6.25 6.23	6.01 5.99 5.97 5.95 5.93 5.91	9 9 9 9 9	50 51 52 53 53 54	48 34 21 09 58 48
28 29 30 Dec. 1 2 3	14 14 14 14 14	24 29 34 39 44 48	42.09 30.23 19.43 09.71 01.10 53.60	-12 12 13 13 14 14	33 58 22 46 10 33	47.1 21.9 39.0 37.4 16.3 35.1	1.426 153 1.430 932	6.21 6.19 6.17 6.15 6.13 6.11	5.89 5.87 5.85 5.83 5.81 5.79	9 9 9 9 9	55 56 57 58 59 00	39 31 24 18 13 10
4 5 6 7 8 9	14 14 15 15 15 15	53 58 03 08 13 18	47.24 42.04 37.99 35.12 33.43 32.92	-14 15 15 16 16 16	56 19 41 03 24 45	33.0 09.0 22.4 12.5 38.4 39.3	1.449 671 1.454 260 1.458 812 1.463 324	6.09 6.07 6.05 6.03 6.01 5.99	5.77 5.75 5.73 5.72 5.70 5.68	10 10 10 10 10 10	01 02 03 04 05 06	08 06 06 07 10
10 11 12 13 14 15	15 15 15 15 15 15	23 28 33 38 43 48	33.61 35.50 38.58 42.86 48.32 54.95	-17 17 17 18 18 18	06 26 46 05 24 42	14.5 23.1 04.4 17.6 02.1 16.9	1.476 625 1.480 980 1.485 294 1.489 569	5.97 5.96 5.94 5.92 5.90 5.89	5.66 5.65 5.63 5.62 5.60 5.58	10 10 10 10 10 10	07 08 09 10 11 12	18 24 31 39 49 59
16 17 18 19 20 21	15 15 16 16 16	54 59 04 09 14 19	02.75 11.68 21.75 32.92 45.19 58.53	-19 19 19 19 20 20	00 17 33 50 05 20	01.4 14.8 56.4 05.5 41.4 43.5	1.502 153 1.506 268 1.510 345 1.514 383	5.87 5.85 5.84 5.82 5.81 5.79	5.57 5.55 5.54 5.52 5.51 5.49	10 10 10 10 10 10	14 15 16 17 19 20	11 24 38 53 09 27
22 23 24 25 26 27	16 16 16 16 16	25 30 35 41 46 51	12.91 28.33 44.75 02.14 20.47 39.70	-20 20 21 21 21 21 21	35 49 02 15 27 38	11.0 03.4 20.1 00.4 03.9 29.9	1.526 269 1.530 155 1.534 003 1.537 815	5.78 5.76 5.75 5.73 5.72 5.70	5.48 5.46 5.45 5.44 5.42 5.41	10 10 10 10 10 10	21 23 24 25 27 28	45 04 25 46 08 31
28 29 30 31 32	16 17 17 17 17	56 02 07 13 18	59.82 20.76 42.50 04.99 28.18	-21 21 22 22 -22	49 59 08 17 26	18.0 27.6 58.3 49.7 01.2	1.549 026 1.552 689 1.556 315	5.69 5.68 5.66 5.65 5.64	5.40 5.38 5.37 5.36 5.35	10 10 10 10 10	29 31 32 34 35	55 20 46 12 39

 $\begin{array}{c} \textbf{MARS, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR 0}^{\textbf{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	e		ioce: ngiti	ntric ude		lioce atitu	ntric de	Radius Vector	Dat	te			ntric ude		ioce atitu		Radiu Vecto	
Jan.	3 5 7 9	214 215 216 217 217 218	05 03 01 59	23.9 58.0 41.8 35.5 39.1 52.9	+0 0 0 0 0 0	29 28 26 24 22 20	48.3 00.6 12.2 23.0 33.0 42.4	1.589 7929 1.587 5695 1.585 3231 1.583 0545 1.580 7641 1.578 4526	-	4 6 8 10	262 263 264 266	42 49 57 04	" 24.6 23.3 35.8 02.1 42.2 36.1	1 1 1 1	58 00 02 04 05	36.7 26.2 14.7 02.1 48.4 33.5	1.474 3 1.471 7 1.469 2 1.466 8 1.464 3 1.461 8	992 951 8063 340
	15 17 19 21	219 220 221 222 223 224	54 53 52 51	17.0 51.4 36.4 32.1 38.6 56.1	+0 0 0 0 0	18 16 15 13 11 09	51.0 59.1 06.5 13.2 19.4 25.0	1.576 1207 1.573 7688 1.571 3977 1.569 0079 1.566 6001 1.564 1751		16 18 20 22	269 270 271 272	29 37 46 55	43.7 05.0 40.0 28.6 30.7 46.3	1 1 1 1	10 12 14 15	17.4 60.0 41.2 21.0 59.3 36.2	1.459 4 1.457 0 1.454 6 1.452 2 1.449 9 1.447 5	0256 5290 2540 0015
Feb.	27 29 31 2	225 226 227 228 229 230	50 49 49 50	24.6 04.4 55.4 58.0 12.1 37.9	+0 0 0 +0 -0 0	07 05 03 01 00 02	30.2 34.7 38.9 42.6 14.1 11.2	1.561 7333 1.559 2756 1.556 8027 1.554 3151 1.551 8137 1.549 2992	May	28 30 2 4		23 33 44 54	15.3 57.7 53.3 02.0 23.9 58.6	1 1 1	20 22 23 25	11.4 45.0 16.9 47.0 15.3 41.7	1.445 2 1.442 9 1.440 7 1.438 5 1.436 3 1.434 1	9894 7372 5127 5168
	8 10 12 14	231 232 233 234 235 236	52 53 54 55	15.5 05.1 06.7 20.6 46.6 25.1	-0 0 0 0 0	04 06 08 10 12 13	08.6 06.3 04.3 02.5 00.9 59.5	1.546 7722 1.544 2337 1.541 6842 1.539 1246 1.536 5557 1.533 9783		10 12 14 16	283 284 285 287	26 37 49 01	46.1 46.3 59.1 24.3 01.7 51.2	1 1 1 1	29 30 32 33	06.2 28.6 49.0 07.3 23.4 37.3	1.432 0 1.429 9 1.427 8 1.425 8 1.423 7 1.421 8	0111 0399 0023 7993
	22 24 26	237 239 240 241 242 243	01 03 06 08	16.0 19.6 35.8 04.8 46.8 41.6	-0 0 0 0 0	15 17 19 21 23 25	58.3 57.1 56.0 54.8 53.7 52.5	1.531 3931 1.528 8010 1.526 2029 1.523 5994 1.520 9916 1.518 3801		22 24 26 28	290 291 293 294	37 49 02 14	52.6 05.7 30.4 06.5 53.7 51.9	1 1 1 1	36 38 39 40	48.9 58.2 05.1 09.5 11.4 10.8	1.419 9 1.418 0 1.416 1 1.414 3 1.412 5 1.410 8	0077 527 3371 6618
Mar.	3 5 7 9	244 245 246 247 248 249	18 21 25 29	49.5 10.6 44.8 32.4 33.3 47.6	-0 0 0 0 0	27 29 31 33 35 37	51.1 49.7 47.9 46.0 43.8 41.2	1.515 7660 1.513 1501 1.510 5333 1.507 9164 1.505 3004 1.502 6862		3 5 7 9		54 07 21 35	00.7 20.1 49.7 29.3 18.6 17.5	1 1 1 1	43 43 44 45	07.6 01.7 53.1 41.8 27.8 10.9	1.409 1 1.407 4 1.405 8 1.404 3 1.402 8 1.401 3	861 8806 8197 8042
	15 17 19 21	250 251 252 253 254 256	42 47 53 58	15.4 56.7 51.6 00.1 22.4 58.3	-0 0 0 0 0	39 41 43 45 47 49	38.3 34.9 31.0 26.6 21.7 16.1	1.500 0747 1.497 4668 1.494 8636 1.492 2658 1.489 6746 1.487 0907		15 17 19 21	305 306 307 309	17 32 46 01	25.6 42.6 08.3 42.3 24.4 14.4	1 1 1 1	47 48 48 49	51.0 28.4 02.7 34.1 02.5 27.8	1.399 9 1.398 5 1.397 2 1.395 9 1.394 7 1.393 5	378 2116 346 7075
Apr.	27 29 31	257 258 259 260 261	15 22 28	48.0 51.5 08.7 39.7 24.6	-0 0 0 0 -0	51 53 54 56 58	09.8 02.8 54.9 46.3 36.7	1.484 5154 1.481 9494 1.479 3938 1.476 8495 1.474 3177		27 29 1	314 315	46 01 16	11.7 16.2 27.5 45.2 09.1	1 1 1	50 50 50	50.0 09.2 25.2 38.1 47.8	1.392 4 1.391 3 1.390 3 1.389 3 1.388 4	316 3103 3419

 $\begin{array}{c} \textbf{MARS, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR } 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	te		ioce:	ntric ude		lioce atitu	ntric de	Radius Vector	Da	te	Helioce Longit			centric tude	Radius Vector
July	1 3 5 7 9 11	315 316 317 319 320 321	32 47 03 18	45.2 09.1 38.8 14.0 54.2 39.2	-1 1 1 1 1 1	50 50 50 50 50 50	38.1 47.8 54.3 57.6 57.7 54.5	1.389 3419 1.388 4270 1.387 5660 1.386 7595 1.386 0079 1.385 3116		1 3 5 7 9 11	13 11 14 24 15 38 16 51 18 04 19 17	10.6 21.0 20.7	1 0 1 0 1 0 0 5	6 03.9 4 08.6 2 11.8 0 13.6 8 14.0 6 13.2	1.405 2671 1.406 8540 1.408 4848 1.410 1588 1.411 8749 1.413 6325
	15 17 19 21	322 324 325 326 327 329	06 22 38 54	28.6 22.0 19.0 19.3 22.5 28.2	-1 1 1 1 1	50 50 50 50 49 49	48.1 38.5 25.6 09.5 50.1 27.6	1.384 6710 1.384 0865 1.383 5584 1.383 0870 1.382 6725 1.382 3153		13 15 17 19 21 23	20 29 21 42 22 54 24 06 25 18 26 30	13.8 28.9 32.3 23.9	0 5 0 5 0 4 0 4	4 11.1 2 08.0 0 03.7 7 58.5 5 52.3 3 45.4	1.415 4305 1.417 2681 1.419 1444 1.421 0584 1.423 0092 1.424 9958
Aug.	27 29 31 2	330 331 332 334 335 336	42 58 15 31	36.0 45.5 56.5 08.4 20.9 33.6	-1 1 1 1 1	49 48 48 47 46 46	01.7 32.7 00.5 25.0 46.4 04.7	1.382 0154 1.381 7732 1.381 5886 1.381 4619 1.381 3930 1.381 3821		25 27 29 31 2 4	32 25	16.6	0 3 0 3 0 3 0 3	1 37.6 9 29.1 7 20.0 5 10.3 3 00.1 0 49.4	1.427 0173 1.429 0727 1.431 1611 1.433 2813 1.435 4326 1.437 6137
	12 14	340	19 36 52 08	46.2 58.1 09.1 18.8 26.7 32.6	-1 1 1 1 1	45 44 43 42 41 40	19.8 31.9 40.8 46.7 49.6 49.6	1.381 4290 1.381 5339 1.381 6966 1.381 9171 1.382 1951 1.382 5306		6 8 10 12 14 16	34 45 35 55 37 05 38 15 39 24 40 33	53.0 51.6 37.2 09.5 28.6 34.2	0 2 0 2 0 2 0 1	8 38.4 6 27.1 4 15.5 2 03.8 9 51.9 7 40.0	1.439 8239 1.442 0619 1.444 3269 1.446 6178 1.448 9336 1.451 2732
	20 22 24 26	345 346 348 349 350 352	56 12 28 44	35.9 36.4 33.6 27.2 16.9 02.2	-1 1 1 1 1	39 38 37 36 35 33	46.6 40.8 32.0 20.5 06.3 49.3	1.382 9234 1.383 3732 1.383 8797 1.384 4428 1.385 0619 1.385 7369		18 20 22 24 26 28	41 42 42 51 43 59 45 07 46 15 47 23	26.5 05.2 30.4 42.0 40.0 24.3	0 1 0 1 0 0 0 0	5 28.0 3 16.2 1 04.4 8 52.8 6 41.5 4 30.4	1.453 6357 1.456 0201 1.458 4252 1.460 8502 1.463 2939 1.465 7554
Sept.	1 3 5 7	353 354 355 357 358 359	31 46 02 17	42.8 18.3 48.4 12.7 31.0 42.8	-1 1 1 1 1	32 31 29 28 26 25	29.7 07.5 42.8 15.5 45.9 13.8	1.386 4673 1.387 2527 1.388 0927 1.388 9867 1.389 9344 1.390 9351	Dec.	30 2 4 6 8 10	48 30 49 38 50 45 51 52 52 58 54 05	11.9 15.1 04.7 40.5	-0 0 +0 0 0 0 0 0	2 19.7 0 09.3 2 00.5 4 10.0 6 18.8 8 27.1	1.468 2337 1.470 7277 1.473 2364 1.475 7588 1.478 2940 1.480 8410
	11 13 15 17 19 21	2 3 4 5	47 02 17 32 46 01	47.9 45.9 36.5 19.4 54.2 20.8	-1 1 1 1 1	23 22 20 18 17 15	39.5 02.9 24.2 43.4 00.5 15.6	1.391 9883 1.393 0934 1.394 2498 1.395 4569 1.396 7140 1.398 0204		12 14 16 18 20 22	55 11 56 17 57 22 58 28 59 33 60 38	05.8 46.9 14.4 28.3	0 1 0 1 0 1 0 1	0 34.8 2 41.8 4 48.1 6 53.6 8 58.3 1 02.2	1.483 3986 1.485 9661 1.488 5423 1.491 1264 1.493 7173 1.496 3142
Oct.	23 25 27 29 1	9 10 11	15 29 43 57 11	38.7 47.8 47.7 38.2 19.0	-1 1 1 1 -1	13 11 09 07 06	28.8 40.1 49.7 57.6 03.9	1.399 3755 1.400 7785 1.402 2286 1.403 7251 1.405 2671		24 26 28 30 32	61 43 62 47 63 52 64 56 66 00	15.8	0 2 0 2 0 2	3 05.2 5 07.3 7 08.4 9 08.5 1 07.6	1.498 9160 1.501 5218 1.504 1307 1.506 7418 1.509 3541

MARS, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	е	Geo	paren centr ngituc	ric	Geo	paren ocentr atitude	ic	Date	e	Geo	paren ocentr ngituc	ic	Ge	pparen ocentr atitude	ic
Jan.	0 1 2 3 4 5	237 238 239 239 240 241	42 23 03 43 24 04	42.6 02.7 23.9 46.3 09.9 34.6	0 0 0 0 0 0	22 21 21 20 19 19	" 17.3 41.7 05.9 29.8 53.3 16.6	Feb.	15 16 17 18 19 20	268 269 270 271 271 272	58 40 21 02 43 25	52.6 06.9 22.2 38.7 56.2 14.6	-0 0 0 0 0	10 11 12 13 14 15	51.7 43.9 36.6 29.6 23.1 17.0
	6 7 8 9 10 11	241 242 243 243 244 245	45 25 05 46 26 07	00.5 27.6 56.1 25.8 56.8 29.1	+0 0 0 0 0	18 18 17 16 16 15	39.5 02.2 24.5 46.5 08.2 29.6		21 22 23 24 25 26	273 273 274 275 275 276	06 47 29 10 51 33	33.9 54.1 15.0 36.8 59.3 22.5	-0 0 0 0 0	16 17 18 18 19 20	11.3 06.0 01.1 56.7 52.6 49.0
	12 13 14 15 16 17	245 246 247 247 248 249	48 28 09 49 30 11	02.7 37.7 13.9 51.5 30.4 10.6	+0 0 0 0 0 0	14 14 13 12 12 11	50.6 11.3 31.6 51.6 11.2 30.4	Mar.	27 28 29 1 2 3	277 277 278 279 280 280	14 56 37 19 00 41	46.5 11.2 36.6 02.8 29.7 57.3	-0 0 0 0 0	21 22 23 24 25 26	45.8 43.0 40.6 38.7 37.1 36.0
	18 19 20 21 22 23	249 250 251 251 252 253	51 32 13 54 34 15	52.3 35.2 19.5 05.0 51.8 39.7	+0 0 0 0 0 0	10 10 09 08 08 07	49.3 07.8 26.0 43.8 01.2 18.3		4 5 6 7 8 9	281 282 282 283 284 284	23 04 46 27 09 50	25.7 54.9 24.8 55.5 26.9 59.1	-0 0 0 0 0	27 28 29 30 31 32	35.3 35.0 35.2 35.8 36.9 38.4
	24 25 26 27 28 29	253 254 255 255 256 257	56 37 18 59 39 20	28.7 18.7 09.8 01.9 55.0 49.0	+0 0 0 0 0	06 05 05 04 03 02	35.0 51.4 07.3 23.0 38.2 53.1		10 11 12 13 14 15	285 286 286 287 288 289	32 14 55 37 18 00	32.1 06.0 40.7 16.4 52.9 30.2	-0 0 0 0 0	33 34 35 36 37 38	40.4 42.8 45.7 49.0 52.8 57.1
Feb.	30 31 1 2 3 4	258 258 259 260 260 261	01 42 23 04 45 26	44.1 40.1 37.2 35.3 34.5 34.7	+0 0 +0 -0 0	02 01 00 00 00 01	07.7 21.9 35.7 10.9 57.8 45.1		16 17 18 19 20 21	289 290 291 291 292 293	42 23 05 47 28 10	08.2 47.0 26.3 06.1 46.4 27.0	-0 0 0 0 0	40 41 42 43 44 45	01.8 07.0 12.6 18.6 25.1 32.1
	5 6 7 8 9 10	262 262 263 264 264 265	07 48 29 10 51 32	36.1 38.6 42.2 46.9 52.8 59.8	-0 0 0 0 0	02 03 04 04 05 06	32.8 20.9 09.3 58.2 47.4 37.1		22 23 24 25 26 27	293 294 295 295 296 297	52 33 15 57 38 20	07.9 49.1 30.5 12.1 53.9 35.8	-0 0 0 0 0	46 47 48 50 51 52	39.4 47.2 55.4 04.0 13.1 22.5
	11 12 13 14 15	266 266 267 268 268	14 55 36 17 58	07.9 17.3 27.8 39.6 52.6	-0 0 0 0 -0	07 08 09 10	27.2 17.7 08.6 00.0 51.7	Apr.	28 29 30 31 1	298 298 299 300 300	02 43 25 07 49	17.8 59.8 42.0 24.2 06.4	-0 0 0 0 -0	53 54 55 57 58	32.4 42.8 53.5 04.7 16.2

MARS, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren centr ngitud	ric	Geo	paren ocentr atitude	ic	Date)	Geo	paren centr ngituc	ic	C	Appare leocent Latitud	ric
Apr.	1 2 3 4 5 6	300 301 302 302 303 304	49 30 12 54 35 17	06.4 48.6 30.8 13.0 55.1 37.2	-0 0 1 1 1 1	58 59 00 01 03 04	16.2 28.3 40.7 53.6 06.9 20.6	May	17 18 19 20 21 22	332 333 333 334 335 335	36 17 57 38 19 59	" 22.6 11.3 56.8 39.0 17.6 52.6	-2 2 2 2 2 2 2	01 03 04 06	11.4 39.6 08.1 36.7 05.6 34.6
	7 8 9 10 11 12	304 305 306 307 307 308	59 41 22 04 46 27	19.3 01.5 43.8 26.1 08.5 50.8	-1 1 1 1 1	05 06 08 09 10 11	34.8 49.5 04.5 20.0 36.0 52.3		23 24 25 26 27 28	336 337 338 338 339 340	40 20 01 41 21 01	23.8 51.0 14.2 33.2 47.8 58.0	-2 2 2 2 2 2	10 12 13 15	03.8 33.2 02.7 32.4 02.3 32.4
	13 14 15 16 17 18	309 309 310 311 311 312	09 51 32 14 56 37	33.0 14.9 56.5 37.5 18.0 57.8	-1 1 1 1 1	13 14 15 17 18 19	09.1 26.3 43.9 01.8 20.2 38.9	June	29 30 31 1 2 3	340 341 342 342 343 344	42 22 02 41 21 01	03.5 04.4 00.5 51.7 38.2 19.7	-2 2 2 2 2 2	19 21 22 24	02.5 32.9 03.3 34.0 04.7 35.5
	19 20 21 22 23 24	313 314 314 315 316 316	19 01 42 24 06 47	36.8 15.0 52.3 28.6 03.8 37.9	-1 1 1 1 1	20 22 23 24 26 27	58.1 17.6 37.4 57.6 18.2 39.1		4 5 6 7 8 9	344 345 345 346 347 347	40 20 59 39 18 57	56.2 27.6 53.7 14.5 29.5 38.7	-2 2 2 2 2 2	28 30 31 33	06.5 37.6 08.7 39.9 11.1 42.4
	25 26 27 28 29 30	317 318 318 319 320 320	29 10 52 33 15 56	10.7 42.4 12.6 41.5 08.9 34.8	-1 1 1 1 1	29 30 31 33 34 35	00.4 22.0 44.0 06.3 28.9 51.9		10 11 12 13 14 15	348 349 349 350 351 351	36 15 54 33 11 50	41.8 38.4 28.4 11.6 47.6 16.3	-2 2 2 2 2 2	37 39 40	13.7 45.1 16.4 47.7 18.9 50.2
May	1 2 3 4 5 6	321 322 323 323 324 325	37 19 00 42 23 04	59.1 21.7 42.7 02.1 19.9 36.0	-1 1 1 1 1	37 38 40 41 42 44	15.2 38.9 02.9 27.3 51.9 17.0		16 17 18 19 20 21	352 353 353 354 355 355	28 06 44 22 00 38	37.4 50.5 55.6 52.2 40.1 19.1	-2 2 2 2 2 2	46 48 49 51	21.3 52.5 23.5 54.5 25.3 56.1
	7 8 9 10 11 12	325 326 327 327 328 329	45 27 08 49 30 11	50.4 03.3 14.3 23.5 30.7 35.7	-1 1 1 1 1	45 47 48 50 51 52	42.3 08.0 33.9 00.2 26.7 53.5		22 23 24 25 26 27	356 356 357 358 358 359	15 53 30 07 44 20	48.8 09.0 19.5 19.9 10.0 49.7	-2 2 2 2 3 3	55 57 58 00	26.8 57.3 27.8 58.1 28.2 58.2
	13 14 15 16 17	329 330 331 331 332	52 33 14 55 36	38.4 38.6 36.1 30.8 22.6	-1 1 1 1 -2	54 55 57 58 00	20.6 48.0 15.5 43.3 11.4	July	28 29 30 1 2	359 0 1 1 2	57 33 09 45 21	18.8 37.1 44.4 40.5 25.3	-3 3 3 -3	04 06 07	28.1 57.7 27.2 56.5 25.5

MARS, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren ocentr ngitud	ric	Geo	paren ocentr atitude	ic	Date	e	Geo	parer ocentr ngituc	ic	Ge	pparen ocentr atitude	ic
July	1 2 3 4 5 6	1 2 2 3 4 4	45 21 56 32 07 42	40.5 25.3 58.5 19.7 28.8 25.2	° -3 3 3 3 3 3 3	07 09 10 12 13 15	56.5 25.5 54.3 22.9 51.1 19.1	Aug.	16 17 18 19 20 21	23 24 24 24 25 25	58 16 34 52 08 24	17.0 54.6 54.4 15.6 57.5 59.2	-4 4 4 4 4 4	06 07 08 08 09 10	22.8 13.8 03.0 50.2 35.3 18.3
	7 8 9 10 11 12	5 5 6 6 7 8	17 51 25 59 33 07	08.7 38.7 55.0 57.0 44.5 16.8	-3 3 3 3 3 3	16 18 19 21 22 23	46.7 14.0 40.9 07.4 33.6 59.3		22 23 24 25 26 27	25 25 26 26 26 26 26	40 54 08 22 34 46	20.1 59.7 57.3 12.3 44.1 32.0	-4 4 4 4 4	10 11 12 12 13 13	59.1 37.5 13.5 46.9 17.7 45.6
	13 14 15 16 17 18	8 9 9 10 10 11	40 13 46 18 50 22	33.6 34.3 18.7 46.0 55.9 47.8	-3 3 3 3 3	25 26 28 29 31 32	24.6 49.4 13.7 37.6 01.0 23.8	Sept.	28 29 30 31 1 2	26 27 27 27 27 27	57 07 17 26 34 41	35.3 53.4 25.5 10.9 08.9 18.8	-4 4 4 4 4	14 14 14 15 15	10.6 32.5 51.2 06.7 18.6 27.0
	19 20 21 22 23 24	11 12 12 13 13 14	54 25 56 27 57 27	21.2 35.6 30.4 05.2 19.4 12.7	-3 3 3 3 3 3	33 35 36 37 39 40	46.1 07.9 29.0 49.6 09.5 28.8		3 4 5 6 7 8	27 27 27 28 28 28	47 53 57 01 04 06	40.0 11.6 53.2 44.1 43.7 51.5	-4 4 4 4 4	15 15 15 15 15 14	31.7 32.4 29.2 21.8 10.1 53.9
	25 26 27 28 29 30	14 15 15 16 16 17	56 25 54 23 51 18	44.5 54.6 42.4 07.6 09.8 48.4	-3 3 3 3 3 3	41 43 44 45 46 48	47.4 05.3 22.4 38.7 54.3 09.0		9 10 11 12 13 14	28 28 28 28 28 28	08 08 07 06 04 01	07.0 29.9 59.8 36.5 19.8 09.7	-4 4 4 4 4	14 14 13 13 12 11	33.1 07.6 37.1 01.6 20.8 34.7
Aug.	31 1 2 3 4 5	17 18 18 19 19	46 12 39 05 30 55	03.0 53.0 17.8 16.7 49.1 54.3	-3 3 3 3 3 3	49 50 51 52 54 55	22.7 35.6 47.4 58.2 08.0 16.6		15 16 17 18 19 20	27 27 27 27 27 27 27	57 52 46 39 32 23	06.2 09.7 20.5 39.4 07.0 44.5	-4 4 4 4 4	10 09 08 07 06 04	43.0 45.7 42.5 33.3 18.0 56.5
	6 7 8 9 10 11	20 20 21 21 21 21 22	20 44 08 31 54 16	31.6 40.1 19.3 28.3 06.3 12.5	-3 3 3 4 4	56 57 58 59 00 01	24.0 30.2 35.2 38.8 41.1 42.0		21 22 23 24 25 26	27 27 26 26 26 26 26	14 04 53 42 30 17	32.8 33.3 47.3 16.1 01.2 04.3	-4 4 4 3 3 3	03 01 00 58 56 54	28.5 54.1 13.0 25.3 30.7 29.4
	12 13 14 15 16	22 22 23 23 23	37 58 19 39 58	46.0 46.1 11.9 02.5 17.0	-4 4 4 4 -4	02 03 04 05 06	41.3 39.2 35.4 30.0 22.8	Oct.	27 28 29 30 1	26 25 25 25 25 25	03 49 34 18 02	26.9 10.8 18.0 50.5 50.3	-3 3 3 3 -3	52 50 47 45 42	21.2 06.1 44.2 15.4 39.9

MARS, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren ocentr ngituc	ric	Ge	oparen ocentr atitude	ic	Date	2	Geo	paren centr ngituc	ic	Ge	pparen ocentr atitude	ric
Oct.	1 2 3 4 5 6	25 24 24 24 24 23 23	02 46 29 11 54 36	50.3 19.7 21.0 56.6 09.0 00.9	-3 3 3 3 3 3	42 39 37 34 31 28	39.9 57.6 08.6 13.1 11.3 03.2	Nov.	16 17 18 19 20 21	15 15 15 15 15 15 15	15 17 20 23 28 33	34.1 33.1 19.6 53.1 12.8 18.1	-0 0 0 0 0	47 43 40 37 34 31	20.5 57.1 37.4 21.3 08.9 00.2
	7 8 9 10 11 12	23 22 22 22 22 22 21	17 58 40 20 01 42	34.9 53.9 00.6 57.9 48.9 36.6	-3 3 3 3 3 3	24 21 18 14 10 07	49.0 29.0 03.4 32.3 56.2 15.1		22 23 24 25 26 27	15 15 15 16 16 16	39 45 53 01 09 19	08.4 42.8 00.6 01.0 43.2 06.3	-0 0 0 0 0	27 24 21 19 16 13	55.2 53.8 56.1 01.9 11.4 24.4
	13 14 15 16 17 18	21 21 20 20 20 20	23 04 45 26 07 49	24.0 14.4 10.7 16.4 34.6 08.4	-3 2 2 2 2 2 2	03 59 55 51 47 43	29.5 39.7 45.8 48.4 47.7 44.0	Dec.	28 29 30 1 2 3	16 16 16 17 17	29 39 51 03 15 28	09.5 52.0 12.9 11.5 46.8 58.0	-0 0 0 0 -0 +0	10 08 05 02 00 02	41.0 01.0 24.6 51.6 22.0 04.2
	19 20 21 22 23 24	19 19 18 18 18	31 13 55 38 22 06	01.0 15.2 53.8 59.3 34.1 40.4	-2 2 2 2 2 2 2	39 35 31 27 22 18	37.6 29.0 18.5 06.3 52.9 38.6		4 5 6 7 8 9	17 17 18 18 18 18	42 57 11 27 43 59	44.5 05.3 59.7 27.0 26.6 57.7	+0 0 0 0 0	04 06 09 11 13 15	27.1 46.7 03.1 16.3 26.3 33.2
	25 26 27 28 29 30	17 17 17 17 16 16	51 36 22 08 56 44	20.2 35.5 27.9 59.1 10.4 03.3	-2 2 2 2 1 1	14 10 05 01 57 53	23.6 08.4 53.3 38.5 24.3 11.1		10 11 12 13 14 15	19 19 19 20 20 20	16 34 52 11 30 49	59.9 32.4 34.8 06.4 06.8 35.1	+0 0 0 0 0	17 19 21 23 25 27	37.1 38.1 36.1 31.2 23.6 13.2
Nov.	31 1 2 3 4 5	16 16 16 16 15	32 21 12 02 54 46	38.9 58.2 02.1 51.5 26.9 49.0	-1 1 1 1 1	48 44 40 36 32 28	59.1 48.6 39.7 32.9 28.2 25.9		16 17 18 19 20 21	21 21 21 22 22 22 22	09 29 50 11 33 55	30.9 53.3 41.8 55.5 33.9 36.2	+0 0 0 0 0	29 30 32 34 35 37	00.2 44.6 26.5 05.9 43.0 17.6
	6 7 8 9 10 11	15 15 15 15 15 15	39 33 28 24 20 17	58.2 54.9 39.4 12.0 32.8 41.9	-1 1 1 1 1	24 20 16 12 08 05	26.1 29.1 35.0 43.9 56.0 11.4		22 23 24 25 26 27	23 23 24 24 24 25	18 40 04 27 51 15	01.9 50.2 00.6 32.4 25.1 38.0	+0 0 0 0 0	38 40 41 43 44 45	50.0 20.1 48.1 13.8 37.5 59.1
	12 13 14 15 16	15 15 15 15 15	15 14 14 14 15	39.4 25.5 00.0 23.0 34.1	-1 0 0 0 -0	01 57 54 50 47	30.1 52.4 18.1 47.5 20.5		28 29 30 31 32	25 26 26 26 27	40 05 30 55 21	10.5 02.2 12.4 40.7 26.5	+0 0 0 0 +0	47 48 49 51 52	18.6 36.2 51.8 05.5 17.3

 ${\bf MARS, 2020}$ RIGHT ASCENSION AND DECLINATION FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
Jan.	0 1 2 3 4 5	h 15 15 15 15 15	m 42 44 47 50 53 56	s 08.06 54.20 40.75 27.69 15.03 02.77	-19 19 19 19 19 19 20	17 26 36 45 54 03	07.1 41.7 07.2 23.4 30.4 27.8	2.191 642 2.184 475 2.177 274 2.170 039 2.162 772 2.155 473	4.01 4.03 4.04 4.05 4.07 4.08	2.14 2.14 2.15 2.16 2.16 2.17	h 9 9 9 9 8	m 05 03 02 01 00 59	s 10 59 50 40 31 23
	6 7 8 9 10 11	15 16 16 16 16	58 01 04 07 10 12	50.91 39.45 28.39 17.72 07.45 57.57	-20 20 20 20 20 20 20	12 20 29 37 45 53	15.8 54.1 22.8 41.6 50.5 49.5	2.148 143 2.140 783 2.133 393 2.125 973 2.118 525 2.111 049	4.09 4.11 4.12 4.14 4.15 4.17	2.18 2.19 2.19 2.20 2.21 2.22	8 8 8 8 8	58 57 55 54 53 52	14 07 59 52 46 39
	12 13 14 15 16 17	16 16 16 16 16	15 18 21 24 27 30	48.08 38.97 30.24 21.89 13.91 06.31	-21 21 21 21 21 21	01 09 16 24 31 38	38.4 17.0 45.4 03.4 10.9 07.8	2.103 545 2.096 013 2.088 454 2.080 868 2.073 255 2.065 616	4.18 4.20 4.21 4.23 4.24 4.26	2.22 2.23 2.24 2.25 2.26 2.27	8 8 8 8 8	51 50 49 48 47 46	33 28 23 18 14 10
	18 19 20 21 22 23	16 16 16 16 16	32 35 38 41 44 47	59.07 52.20 45.67 39.49 33.65 28.14	-21 21 21 22 22 22 22	44 51 57 04 10 16	54.0 29.4 54.0 07.6 10.2 01.7	2.057 950 2.050 258 2.042 540 2.034 797 2.027 030 2.019 239	4.27 4.29 4.31 4.32 4.34 4.36	2.27 2.28 2.29 2.30 2.31 2.32	8 8 8 8 8	45 44 43 41 40 39	06 03 00 57 55 53
	24 25 26 27 28 29	16 16 16 16 17 17	50 53 56 59 02 05	22.94 18.04 13.44 09.14 05.11 01.36	-22 22 22 22 22 22 22	21 27 32 37 42 47	42.0 10.9 28.5 34.6 29.1 12.0	2.011 425 2.003 589 1.995 731 1.987 853 1.979 955 1.972 038	4.37 4.39 4.41 4.42 4.44 4.46	2.33 2.34 2.35 2.35 2.36 2.37	8 8 8 8 8	38 37 36 35 34 33	52 50 49 49 48 48
Feb.	30 31 1 2 3 4	17 17 17 17 17 17	07 10 13 16 19 22	57.88 54.66 51.70 48.98 46.51 44.27	-22 22 23 23 23 23 23	51 56 00 04 07 11	43.2 02.7 10.3 06.0 49.8 21.6	1.964 103 1.956 151 1.948 182 1.940 198 1.932 200 1.924 187	4.48 4.50 4.51 4.53 4.55 4.57	2.38 2.39 2.40 2.41 2.42 2.43	8 8 8 8 8	32 31 30 29 28 27	48 49 49 50 51 52
	5 6 7 8 9 10	17 17 17 17 17 17	25 28 31 34 37 40	42.27 40.48 38.92 37.56 36.39 35.42	-23 23 23 23 23 23 23	14 17 20 23 25 28	41.4 49.1 44.8 28.3 59.6 18.7	1.916 161 1.908 122 1.900 072 1.892 010 1.883 938 1.875 854	4.59 4.61 4.63 4.65 4.67 4.69	2.44 2.45 2.46 2.47 2.48 2.49	8 8 8 8 8	26 25 24 23 23 22	54 56 58 60 02 05
	11 12 13 14 15	17 17 17 17 17	43 46 49 52 55	34.63 34.02 33.58 33.30 33.17	-23 23 23 23 -23	30 32 34 35 36	25.4 19.9 02.0 31.7 49.0	1.867 761 1.859 657 1.851 543 1.843 419 1.835 286	4.71 4.73 4.75 4.77 4.79	2.51 2.52 2.53 2.54 2.55	8 8 8 8	21 20 19 18 17	08 11 14 17 20

 ${\bf MARS, 2020}$ RIGHT ASCENSION AND DECLINATION FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meri: insit	S
Feb. 15 16 17 18 19 20	h 17 17 18 18 18	m 55 58 01 04 07 10	s 33.17 33.18 33.32 33.57 33.92 34.36	-23 23 23 23 23 23 23	36 37 38 39 39 40	" 49.0 53.8 46.2 26.1 53.5 08.4	1.835 286 1.827 143 1.818 991 1.810 831 1.802 663 1.794 487	4.79 4.81 4.83 4.86 4.88 4.90	2.55 2.56 2.57 2.58 2.60 2.61	h 8 8 8 8 8	m 17 16 15 14 13 12	s 20 24 28 31 35 39
21 22 23 24 25 26	18 18 18 18 18	13 16 19 22 25 28	34.87 35.44 36.06 36.71 37.39 38.08	-23 23 23 23 23 23 23	40 40 39 39 38 37	10.8 00.7 38.1 02.8 15.1 14.8	1.786 305 1.778 117 1.769 923 1.761 726 1.753 524 1.745 319	4.92 4.95 4.97 4.99 5.02 5.04	2.62 2.63 2.64 2.66 2.67 2.68	8 8 8 8 8	11 10 09 08 07 07	43 47 51 55 60 04
27 28 29 Mar. 1 2 3	18 18 18 18 18	31 34 37 40 43 46	38.77 39.46 40.13 40.78 41.39 41.97	-23 23 23 23 23 23 23	36 34 32 31 29 26	02.0 36.6 58.8 08.5 05.7 50.5	1.737 112 1.728 904 1.720 695 1.712 487 1.704 279 1.696 073	5.06 5.09 5.11 5.14 5.16 5.19	2.69 2.71 2.72 2.73 2.75 2.76	8 8 8 8 8	06 05 04 03 02 01	08 12 16 20 25 29
4 5 6 7 8 9	18 18 18 18 19	49 52 55 58 01 04	42.50 42.96 43.36 43.69 43.93 44.07	-23 23 23 23 23 23 23	24 21 18 15 12 09	23.0 43.1 51.0 46.6 29.9 01.1	1.687 870 1.679 670 1.671 473 1.663 280 1.655 092 1.646 909	5.21 5.24 5.26 5.29 5.31 5.34	2.77 2.79 2.80 2.81 2.83 2.84	8 7 7 7 7 7	00 59 58 57 56 55	33 36 40 44 48 51
10 11 12 13 14 15	19 19 19 19 19	07 10 13 16 19 22	44.13 44.07 43.91 43.64 43.24 42.70	-23 23 22 22 22 22 22	05 01 57 53 48 43	20.1 27.0 21.9 04.7 35.5 54.5	1.638 731 1.630 558 1.622 390 1.614 228 1.606 071 1.597 920	5.37 5.39 5.42 5.45 5.48 5.50	2.86 2.87 2.88 2.90 2.91 2.93	7 7 7 7 7 7	54 53 53 52 51 50	55 58 02 05 08 11
16 17 18 19 20 21	19 19 19 19 19	25 28 31 34 37 40	42.01 41.17 40.14 38.93 37.53 35.91	-22 22 22 22 22 22 22	39 33 28 23 17	01.6 57.0 40.7 12.9 33.5 42.7	1.589 774 1.581 635 1.573 502 1.565 375 1.557 256 1.549 145	5.53 5.56 5.59 5.62 5.65 5.68	2.94 2.96 2.97 2.99 3.01 3.02	7 7 7 7 7 7	49 48 47 46 45 44	13 16 18 21 23 24
22 23 24 25 26 27	19 19 19 19 19	43 46 49 52 55 58	34.07 31.99 29.68 27.13 24.31 21.24	-22 21 21 21 21 21 21	05 59 53 46 39 32	40.5 27.1 02.5 26.8 40.0 42.4	1.541 043 1.532 949 1.524 865 1.516 791 1.508 728 1.500 676	5.71 5.74 5.77 5.80 5.83 5.86	3.04 3.05 3.07 3.09 3.10 3.12	7 7 7 7 7 7	43 42 41 40 39 38	26 27 28 29 30 30
28 29 30 31 Apr. 1	20 20 20 20 20 20	01 04 07 10 13	17.90 14.28 10.39 06.20 01.73	-21 21 21 21 -20	25 18 10 03 55	33.9 14.8 45.1 04.9 14.3	1.492 637 1.484 610 1.476 597 1.468 598 1.460 614	5.89 5.92 5.96 5.99 6.02	3.14 3.15 3.17 3.19 3.20	7 7 7 7 7	37 36 35 34 33	30 30 30 29 28

 ${\bf MARS, 2020}$ RIGHT ASCENSION AND DECLINATION FOR $0^{\rm h}$ TERRESTRIAL TIME

Date		Ap Right	parei Asce			opare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	3
Apr.	1 2 3 4 5 6	h 20 20 20 20 20 20 20	m 13 15 18 21 24 27	s 01.73 56.96 51.89 46.51 40.83 34.83	-20 20 20 20 20 20 20 20	55 47 39 30 22 13	14.3 13.5 02.6 41.6 10.7 30.0	1.460 614 1.452 644 1.444 691 1.436 753 1.428 832 1.420 928	6.02 6.05 6.09 6.12 6.15 6.19	3.20 3.22 3.24 3.26 3.28 3.29	h 7 7 7 7 7	m 33 32 31 30 29 28	s 28 26 25 23 20 18
1	7 8 9 10 11	20 20 20 20 20 20 20	30 33 36 39 42 44	28.53 21.91 14.98 07.74 00.18 52.30	-20 19 19 19 19	04 55 46 37 27 18	39.5 39.4 29.8 10.8 42.5 05.1	1.413 040 1.405 169 1.397 315 1.389 477 1.381 656 1.373 851	6.22 6.26 6.29 6.33 6.36 6.40	3.31 3.33 3.35 3.37 3.39 3.41	7 7 7 7 7 7	27 26 25 24 23 21	15 12 08 04 00 56
1 1 1	13 14 15 16 17	20 20 20 20 20 20 21	47 50 53 56 59 01	44.09 35.53 26.62 17.36 07.73 57.72	-19 18 18 18 18 18	08 58 48 38 27 17	18.7 23.5 19.6 07.1 46.2 17.1	1.366 062 1.358 290 1.350 535 1.342 796 1.335 074 1.327 369	6.44 6.47 6.51 6.55 6.59 6.63	3.43 3.45 3.47 3.49 3.51 3.53	7 7 7 7 7 7	20 19 18 17 16 15	51 46 40 34 28 21
22 22 22 22 22 22 22 22 22 22 22 22 22	19 20 21 22 23 24	21 21 21 21 21 21	04 07 10 13 16 18	47.34 36.58 25.43 13.89 01.95 49.62	-18 17 17 17 17 17	06 55 45 34 22 11	39.8 54.6 01.5 00.8 52.6 37.0	1.319 682 1.312 013 1.304 363 1.296 731 1.289 118 1.281 525	6.66 6.70 6.74 6.78 6.82 6.86	3.55 3.57 3.59 3.61 3.63 3.65	7 7 7 7 7 7	14 13 11 10 09 08	14 07 59 51 43 34
22 22 22 22 22 22 22 22 22 22 22 22 22	25 26 27 28 29 30	21 21 21 21 21 21	21 24 27 29 32 35	36.88 23.74 10.20 56.24 41.88 27.11	-17 16 16 16 16 16	00 48 37 25 13 01	14.2 44.4 07.7 24.3 34.4 38.0	1.273 952 1.266 400 1.258 869 1.251 359 1.243 872 1.236 406	6.90 6.94 6.99 7.03 7.07 7.11	3.67 3.70 3.72 3.74 3.76 3.79	7 7 7 7 7 7	07 06 05 03 02 01	24 15 04 54 43 31
May	1 2 3 4 5 6	21 21 21 21 21 21	38 40 43 46 49 51	11.92 56.33 40.32 23.91 07.09 49.88	-15 15 15 15 15 14	49 37 25 12 00 47	35.4 26.8 12.2 51.8 25.7 54.0	1.228 963 1.221 544 1.214 147 1.206 774 1.199 424 1.192 097	7.16 7.20 7.24 7.29 7.33 7.38	3.81 3.83 3.85 3.88 3.90 3.93	7 6 6 6 6 6	00 59 57 56 55 54	20 07 55 42 28 15
1	7 8 9 10 11	21 21 21 22 22 22 22	54 57 59 02 05 07	32.26 14.26 55.85 37.05 17.85 58.23	-14 14 14 13 13	35 22 09 56 43 30	17.0 34.7 47.3 55.0 58.0 56.4	1.184 793 1.177 511 1.170 252 1.163 015 1.155 800 1.148 607	7.42 7.47 7.51 7.56 7.61 7.66	3.95 3.97 4.00 4.02 4.05 4.07	6 6 6 6 6	53 51 50 49 47 46	00 46 31 15 59 43
1 1 1	13 14 15 16 17	22 22 22 22 22 22	10 13 15 18 21	38.20 17.74 56.85 35.54 13.78	-13 13 12 12 -12	17 04 51 38 24	50.5 40.4 26.3 08.4 46.9	1.141 435 1.134 284 1.127 155 1.120 048 1.112 962	7.70 7.75 7.80 7.85 7.90	4.10 4.13 4.15 4.18 4.20	6 6 6 6	45 44 42 41 40	27 09 52 34 16

MARS, 2020 RIGHT ASCENSION AND DECLINATION FOR 0^{h} TERRESTRIAL TIME

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
May 17 18 19 20 21 22	h 22 22 22 22 22 22 22	m 21 23 26 29 31 34	s 13.78 51.59 28.94 05.85 42.31 18.31	-12 12 11 11 11 11	24 11 57 44 30 17	" 46.9 21.9 53.7 22.4 48.3 11.5	1.112 962 1.105 898 1.098 855 1.091 835 1.084 838 1.077 863	7.90 7.95 8.00 8.05 8.11 8.16	4.20 4.23 4.26 4.29 4.31 4.34	h 6 6 6 6 6	m 40 38 37 36 34 33	s 16 57 38 18 58 37
23 24 25 26 27 28	22 22 22 22 22 22 22	36 39 42 44 47 49	53.86 28.94 03.55 37.70 11.37 44.57	-11 10 10 10 10 9	03 49 36 22 08 54	32.1 50.5 06.8 21.1 33.8 44.8	1.070 911 1.063 982 1.057 077 1.050 196 1.043 338 1.036 506	8.21 8.27 8.32 8.37 8.43 8.48	4.37 4.40 4.43 4.46 4.49 4.52	6 6 6 6 6	32 30 29 28 26 25	16 55 33 10 47 24
29 30 31 June 1 2 3	22 22 22 22 23 23	52 54 57 59 02 04	17.30 49.54 21.32 52.63 23.46 53.83	-9 9 9 8 8	40 27 13 59 45 31	54.5 03.0 10.4 16.9 22.6 27.7	1.029 698 1.022 914 1.016 156 1.009 422 1.002 714 0.996 030	8.54 8.60 8.65 8.71 8.77 8.83	4.55 4.58 4.61 4.64 4.67 4.70	6 6 6 6 6	23 22 21 19 18 16	60 36 11 46 20 54
4 5 6 7 8 9	23 23 23 23 23 23 23	07 09 12 14 17 19	23.74 53.17 22.15 50.64 18.65 46.17	-8 8 7 7 7 7	17 03 49 35 21 07	32.3 36.6 40.8 45.0 49.4 54.4	0.989 370 0.982 734 0.976 122 0.969 533 0.962 966 0.956 422	8.89 8.95 9.01 9.07 9.13 9.19	4.73 4.76 4.79 4.83 4.86 4.89	6 6 6 6 6	15 13 12 11 09 08	27 60 32 04 35 06
10 11 12 13 14 15	23 23 23 23 23 23 23	22 24 27 29 31 34	13.19 39.70 05.68 31.14 56.06 20.42	-6 6 6 6 5 5	53 40 26 12 58 44	59.9 06.3 13.8 22.5 32.7 44.6	0.949 900 0.943 400 0.936 922 0.930 465 0.924 030 0.917 617	9.26 9.32 9.39 9.45 9.52 9.58	4.93 4.96 5.00 5.03 5.06 5.10	6 6 6 6 5	06 05 03 02 00 59	37 07 36 05 33 01
16 17 18 19 20 21	23 23 23 23 23 23 23	36 39 41 43 46 48	44.23 07.47 30.12 52.19 13.65 34.49	-5 5 5 4 4 4	30 17 03 49 36 22	58.3 14.1 32.2 52.8 16.1 42.3	0.911 225 0.904 854 0.898 506 0.892 179 0.885 875 0.879 593	9.65 9.72 9.79 9.86 9.93 10.00	5.14 5.17 5.21 5.25 5.28 5.32	5 5 5 5 5 5	57 55 54 52 51 49	28 55 21 46 11 35
22 23 24 25 26 27	23 23 23 23 0 0	50 53 55 57 00 02	54.71 14.30 33.23 51.50 09.10 26.02	-4 3 3 3 3 3	09 55 42 29 15 02	11.6 44.2 20.3 00.1 43.7 31.4	0.873 334 0.867 097 0.860 884 0.854 694 0.848 529 0.842 387	10.07 10.14 10.22 10.29 10.36 10.44	5.36 5.40 5.44 5.48 5.52 5.56	5 5 5 5 5 5	47 46 44 43 41 39	59 22 44 06 27 47
28 29 30 July 1 2	0 0 0 0 0	04 06 09 11 13	42.26 57.82 12.67 26.82 40.26	-2 2 2 2 -1	49 36 23 10 57	23.3 19.4 20.0 25.2 35.2	0.836 269 0.830 175 0.824 105 0.818 059 0.812 036	10.52 10.59 10.67 10.75 10.83	5.60 5.64 5.68 5.72 5.76	5 5 5 5 5	38 36 34 33 31	07 26 44 02 19

 $\label{eq:mars, 2020} \textbf{MARS, 2020}$ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME

Date		Appare t Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris nsit	S
July 1 2 3 4 5		11 13 15 18 20	s 26.82 40.26 52.98 04.96 16.18 26.63	-2 1 1 1 1 1	10 57 44 32 19 07	25.2 35.2 50.0 09.9 35.0 05.5	0.818 059 0.812 036 0.806 037 0.800 061 0.794 108 0.788 177	10.83 10.91 10.99 11.07	5.72 5.76 5.81 5.85 5.89 5.94	h 5 5 5 5 5 5	m 33 31 29 27 26 24	s 02 19 35 50 05 19
77 8 9 10 11 12		26 28 31 33	36.28 45.11 53.11 00.25 06.50 11.84	0 0 0 0 -0 +0	54 42 30 18 06 05	41.7 23.6 11.6 05.8 06.5 46.2	0.782 267 0.776 380 0.770 514 0.764 670 0.758 847 0.753 045	11.41 11.50 11.59	5.98 6.03 6.07 6.12 6.17 6.21	5 5 5 5 5 5	22 20 18 17 15 13	32 44 55 06 15 24
13 14 15 16 17 18		39 41 43 45	16.24 19.68 22.13 23.56 23.94 23.25	+0 0 0 0 1 1	17 29 40 52 03 14	32.1 11.0 42.5 06.7 23.2 31.8	0.747 265 0.741 507 0.735 770 0.730 056 0.724 364 0.718 695	11.86 11.95 12.05	6.26 6.31 6.36 6.41 6.46 6.51	5 5 5 5 5 5	11 09 07 05 03 01	32 39 45 49 53 56
19 20 21 22 23 24		51 53 55 57	21.44 18.50 14.38 09.07 02.52 54.71	+1 1 1 2 2	25 36 47 57 08 18	32.4 24.7 08.5 43.7 10.1 27.5	0.713 049 0.707 427 0.701 829 0.696 256 0.690 708 0.685 186	12.43 12.53 12.63 12.73	6.56 6.62 6.67 6.72 6.78 6.83	4 4 4 4 4 4	59 57 55 53 51 49	57 58 57 55 52 47
25 26 27 28 29 30	1 1 1 1	02 04 06 07	45.61 35.20 23.46 10.35 55.86 39.94	+2 2 2 2 3 3	28 38 48 58 07 16	35.8 34.9 24.7 05.1 35.9 57.0	0.679 691 0.674 223 0.668 783 0.663 370 0.657 986 0.652 629	13.37	6.89 6.94 7.00 7.05 7.11 7.17	4 4 4 4 4	47 45 43 41 39 36	42 35 26 17 05 53
Aug. 1 2 3 3 4 5	1 1 1 1	13 14 16 17	22.56 03.69 43.30 21.32 57.74 32.49	+3 3 3 4 4	26 35 44 52 01 09	08.4 09.8 01.1 42.2 12.9 33.0	0.647 301 0.642 002 0.636 731 0.631 489 0.626 276 0.621 092	14.04	7.23 7.29 7.35 7.41 7.47 7.54	4 4 4 4 4	34 32 30 27 25 23	39 23 06 48 27 06
6 7 8 9 10 11	1 1 1 1	22 24 25 26	05.53 36.81 06.29 33.90 59.61 23.35	+4 4 4 4 4	17 25 33 41 48 55	42.3 40.7 28.0 03.9 28.4 41.2	0.615 938 0.610 814 0.605 721 0.600 659 0.595 629 0.590 632	14.40 14.52 14.64 14.76	7.60 7.66 7.73 7.79 7.86 7.92	4 4 4 4 4	20 18 15 13 10 08	42 17 50 21 50 17
12 13 14 15 16	1 1 1	31 32 33	45.08 04.72 22.24 37.56 50.64	+5 5 5 5 +5	02 09 16 22 28	42.1 31.1 07.8 32.1 43.8	0.585 669 0.580 741 0.575 848 0.570 993 0.566 175	15.14 15.27 15.40	7.99 8.06 8.13 8.20 8.27	4 4 4 3 3	05 03 00 57 55	42 05 26 44 01

 ${\bf MARS, 2020}$ RIGHT ASCENSION AND DECLINATION FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter		emeris ansit	S
Aug. 16 17 18 19 20 21	h 1 1 1 1 1	m 34 36 37 38 39 40	s 50.64 01.40 09.80 15.78 19.28 20.26	 +5 5 5 5 5 5 	28 34 40 46 51 56	43.8 42.9 29.0 02.1 22.1 28.8	0.566 175 0.561 398 0.556 662 0.551 969 0.547 320 0.542 718	15.53 15.66 15.80 15.93 16.07 16.20	8.27 8.34 8.41 8.48 8.55 8.62	h 3 3 3 3 3 3	m 55 52 49 46 43 40	s 01 15 27 36 43 47
22 23 24 25 26 27	1 1 1 1 1	41 42 43 43 44 45	18.67 14.46 07.60 58.03 45.72 30.61	+6 6 6 6 6	01 06 10 14 18 22	22.2 02.3 28.9 42.2 42.1 28.4	0.538 163 0.533 658 0.529 204 0.524 802 0.520 454 0.516 162	16.34 16.48 16.62 16.76 16.90 17.04	8.70 8.77 8.84 8.92 8.99 9.07	3 3 3 3 3	37 34 31 28 25 22	49 49 45 39 30 18
28 29 30 31 Sept. 1 2	1 1 1 1 1	46 46 47 48 48 48	12.66 51.82 28.05 01.28 31.47 58.57	+6 6 6 6 6	26 29 32 35 37 40	01.3 20.5 26.2 18.1 56.2 20.5	0.511 926 0.507 749 0.503 631 0.499 575 0.495 581 0.491 653	17.18 17.32 17.46 17.60 17.75 17.89	9.14 9.22 9.29 9.37 9.44 9.52	3 3 3 3 3 3	19 15 12 09 05 02	04 47 26 03 37 08
3 4 5 6 7 8	1 1 1 1 1	49 49 50 50 50 50	22.54 43.32 00.88 15.16 26.13 33.75	+6 6 6 6 6	42 44 46 47 48 49	30.9 27.3 09.7 38.1 52.3 52.5	0.487 790 0.483 997 0.480 274 0.476 624 0.473 049 0.469 552	18.03 18.17 18.31 18.45 18.59 18.73	9.59 9.67 9.74 9.82 9.89 9.97	2 2 2 2 2 2 2	58 54 51 47 43 40	35 59 21 39 53 04
9 10 11 12 13 14	1 1 1 1 1	50 50 50 50 50 50	37.99 38.82 36.21 30.15 20.62 07.61	+6 6 6 6 6	50 51 51 51 51 51	38.5 10.5 28.4 32.3 22.2 58.4	0.466 135 0.462 801 0.459 553 0.456 393 0.453 325 0.450 352	18.87 19.00 19.14 19.27 19.40 19.53	10.04 10.11 10.18 10.25 10.32 10.39	2 2 2 2 2 2 2	36 32 28 24 20 16	12 17 18 16 10 01
15 16 17 18 19 20	1 1 1 1 1	49 49 49 48 48 47	51.14 31.20 07.83 41.07 10.95 37.55	+6 6 6 6 6	50 49 48 47 45 43	20.8 29.8 25.6 08.4 38.6 56.7	0.447 477 0.444 703 0.442 034 0.439 473 0.437 022 0.434 686	19.65 19.78 19.89 20.01 20.12 20.23	10.46 10.52 10.59 10.65 10.71 10.77	2 2 2 1 1 1	11 07 03 58 54 49	48 32 13 50 24 55
21 22 23 24 25 26	1 1 1 1 1	47 46 45 44 44 43	00.93 21.17 38.34 52.54 03.85 12.38	+6 6 6 6 6	42 39 37 35 32 29	03.1 58.2 42.7 16.9 41.4 56.7	0.432 467 0.430 368 0.428 392 0.426 541 0.424 817 0.423 223	20.33 20.43 20.53 20.62 20.70 20.78	10.82 10.87 10.92 10.97 11.02 11.06	1 1 1 1 1	45 40 36 31 26 21	22 46 08 26 42 54
27 28 29 30 Oct. 1	1 1 1 1	42 41 40 39 38	18.23 21.50 22.33 20.84 17.16	+6 6 6 6 +6	27 24 20 17 14	03.3 01.9 53.1 37.4 15.4	0.421 762 0.420 435 0.419 246 0.418 196 0.417 287	20.85 20.92 20.98 21.03 21.07	11.10 11.13 11.16 11.19 11.22	1 1 1 1 0	17 12 07 02 57	04 12 17 20 21

MARS, 2020 RIGHT ASCENSION AND DECLINATION FOR 0^{h} TERRESTRIAL TIME

Date		Ap Right	parei Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
	1 2 3 4 5 6	h 1 1 1 1 1	m 38 37 36 34 33 32	s 17.16 11.44 03.82 54.45 43.51 31.14	6 6 6 5 5	14 10 07 03 59 56	" 15.4 48.0 15.6 39.2 59.3 16.8	0.417 287 0.416 522 0.415 903 0.415 433 0.415 112 0.414 943	21.11 21.14 21.17 21.19	" 11.22 11.24 11.25 11.27 11.27 11.28	h 0 0 0 0 0	m 57 52 47 42 37 31	s 21 20 16 11 05 57
1	7 8 9 0 1 2	1 1 1 1 1	31 30 28 27 26 24	17.54 02.87 47.31 31.06 14.30 57.24	+5 5 5 5 5 5	52 48 45 41 37 33	32.4 46.9 01.2 16.0 32.3 50.9	0.414 928 0.415 069 0.415 367 0.415 824 0.416 441 0.417 220	21.19 21.17 21.15 21.12	11.28 11.28 11.27 11.25 11.24 11.22	0 0 0 0 0	26 21 16 11 06 00	48 38 27 15 03 51
1 1 1 1	3 4 5 6 7 8	1 1 1 1 1	23 22 21 19 18 17	40.06 22.96 06.17 49.87 34.27 19.59	+5 5 5 5 5 5	30 26 23 19 16 13	12.6 38.3 09.0 45.6 29.0 20.1	0.418 161 0.419 267 0.420 536 0.421 971 0.423 570 0.425 335	20.91 20.84 20.76	11.19 11.16 11.13 11.09 11.05 11.00	23 23 23 23 23 23 23	50 45 40 34 29 24	26 13 02 51 40 31
2 2 2 2	9 20 21 22 23 24	1 1 1 1 1	16 14 13 12 11 10	06.02 53.73 42.92 33.74 26.35 20.89	+5 5 5 5 4	10 07 04 02 00 57	19.8 29.0 48.3 18.6 00.5 54.6	0.427 264 0.429 357 0.431 613 0.434 029 0.436 606 0.439 342	20.48 20.38 20.26 20.14	10.95 10.90 10.84 10.78 10.72 10.65	23 23 23 23 22 22	19 14 09 04 59 54	24 17 13 10 09 10
2 2 2 2	5 66 27 8 8 9	1 1 1 1 1	09 08 07 06 05 04	17.49 16.28 17.38 20.88 26.89 35.48	+4 4 4 4 4	56 54 52 51 50 50	01.3 21.1 54.6 42.0 43.8 00.2	0.442 234 0.445 281 0.448 481 0.451 834 0.455 335 0.458 985	19.75 19.61 19.46	10.58 10.51 10.44 10.36 10.28 10.20	22 22 22 22 22 22 22	49 44 39 34 29 25	13 18 26 36 49 05
	1 1 2 3 4 5	1 1 1 1 1	03 03 02 01 00 00	46.75 00.75 17.55 37.21 59.77 25.26	+4 4 4 4 4	49 49 49 49 50 50	31.4 17.7 19.2 36.1 08.5 56.5	0.462 780 0.466 720 0.470 801 0.475 023 0.479 382 0.483 878	18.84 18.68 18.51 18.34	10.11 10.03 9.94 9.85 9.76 9.67	22 22 22 22 22 22 21	20 15 11 06 02 57	23 44 07 34 04 36
1	6 7 8 9 0 1	0 0 0 0 0	59 59 58 58 58 58	53.73 25.20 59.70 37.23 17.82 01.48	+4 4 4 4 5	52 53 54 56 58 01	00.0 19.2 54.0 44.4 50.4 11.9	0.488 509 0.493 271 0.498 164 0.503 186 0.508 334 0.513 606	17.83 17.65 17.48 17.30	9.58 9.49 9.39 9.30 9.21 9.11	21 21 21 21 21 21	53 48 44 40 36 31	12 50 32 16 04 54
1 1 1	2 3 4 5 6	0 0 0 0	57 57 57 57 57	48.22 38.04 30.94 26.92 25.98	+5 5 5 5 +5	03 06 09 13 16	48.9 41.4 49.2 12.4 50.9	0.519 001 0.524 517 0.530 150 0.535 899 0.541 761	16.59 16.41	9.02 8.92 8.83 8.73 8.64	21 21 21 21 21	27 23 19 15	48 45 44 47 53

 ${\bf MARS, 2020}$ RIGHT ASCENSION AND DECLINATION FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
Nov. 16 17 18 19 20 21	h 0 0 0 0 0	m 57 57 57 57 57 58	s 25.98 28.08 33.22 41.35 52.44 06.45	+5 5 5 5 5 5	16 20 24 29 33 38	50.9 44.4 52.8 16.0 53.5 45.3	0.541 761 0.547 734 0.553 814 0.560 000 0.566 288 0.572 676	16.23 16.06 15.88 15.70 15.53 15.36	8.64 8.54 8.45 8.36 8.26 8.17	h 21 21 21 21 20 20	m 11 08 04 00 56 53	s 53 02 14 28 46 06
22 23 24 25 26 27	0 0 0 0 0 1	58 58 59 59 59 00	23.33 43.05 05.55 30.78 58.71 29.27	+5 5 5 6 6 6	43 49 54 00 06 12	50.9 10.1 42.6 28.1 26.2 36.6	0.579 162 0.585 743 0.592 417 0.599 182 0.606 035 0.612 975	15.18 15.01 14.84 14.68 14.51 14.35	8.08 7.99 7.90 7.81 7.72 7.63	20 20 20 20 20 20 20	49 45 42 38 35 32	30 56 25 56 30 07
28 29 30 Dec. 1 2 3	1 1 1 1 1	01 01 02 02 03 04	02.42 38.10 16.28 56.89 39.89 25.23	+6 6 6 6 6	18 25 32 39 46 53	59.1 33.2 18.7 15.2 22.4 40.0	0.620 001 0.627 109 0.634 298 0.641 567 0.648 914 0.656 338	14.18 14.02 13.86 13.71 13.55 13.40	7.55 7.46 7.38 7.29 7.21 7.13	20 20 20 20 20 20 20	28 25 22 18 15 12	46 28 12 59 48 39
4 5 6 7 8 9	1 1 1 1 1	05 06 06 07 08 09	12.86 02.74 54.81 49.04 45.39 43.82	+7 7 7 7 7 7	01 08 16 24 32 40	07.8 45.2 32.2 28.4 33.5 47.3	0.663 837 0.671 410 0.679 056 0.686 772 0.694 559 0.702 414	13.25 13.10 12.95 12.81 12.66 12.52	7.05 6.97 6.89 6.81 6.74 6.66	20 20 20 20 19 19	09 06 03 00 57 54	32 28 25 25 27 31
10 11 12 13 14 15	1 1 1 1 1	10 11 12 13 15 16	44.29 46.77 51.23 57.64 05.95 16.13	+7 7 8 8 8 8	49 57 06 15 23 32	09.5 40.0 18.5 04.8 58.6 59.8	0.710 336 0.718 325 0.726 377 0.734 493 0.742 670 0.750 906	12.38 12.24 12.11 11.97 11.84 11.71	6.59 6.52 6.44 6.37 6.30 6.23	19 19 19 19 19	51 48 45 43 40 37	37 45 55 06 20 35
16 17 18 19 20 21	1 1 1 1 1	17 18 19 21 22 23	28.14 41.95 57.50 14.77 33.70 54.27	+8 8 9 9 9	42 51 00 10 19 29	08.0 23.1 44.7 12.6 46.4 25.9	0.759 200 0.767 550 0.775 954 0.784 410 0.792 918 0.801 475	11.58 11.46 11.33 11.21 11.09 10.97	6.16 6.10 6.03 5.97 5.90 5.84	19 19 19 19 19	34 32 29 26 24 21	53 12 32 55 19 44
22 23 24 25 26 27	1 1 1 1 1	25 26 28 29 31 32	16.43 40.15 05.40 32.13 00.31 29.90	+9 9 9 10 10 10	39 49 58 08 18 29	10.9 01.0 56.1 55.7 59.7 07.8	0.810 081 0.818 733 0.827 430 0.836 172 0.844 957 0.853 785	10.86 10.74 10.63 10.52 10.41 10.30	5.78 5.72 5.66 5.60 5.54 5.48	19 19 19 19 19	19 16 14 11 09 06	11 40 10 42 15 49
28 29 30 31 32	1 1 1 1 1	34 35 37 38 40	00.89 33.23 06.89 41.85 18.07	10 10 11	39 49 59 10 20	19.7 35.2 54.0 15.9 40.7	0.862 653 0.871 562 0.880 510 0.889 496 0.898 521	10.19 10.09 9.99 9.89 9.79	5.43 5.37 5.32 5.26 5.21	19 19 18 18 18	04 02 59 57 55	25 02 40 20 01

Dat	e		ioce ngiti	ntric ude		lioce atitu	ntric de	Radius Vector	Dat	te			ntric ude		oce ıtitu			Radius Vector
Jan.	7 9	276 276 276 276	13 23 32 42	21.3 13.4 05.7 58.2 50.8 43.6	0 0 0 0 0 0	06 06 05 05 05 05	18.6 05.2 51.8 38.3 24.9 11.4	5.227 578 5.226 849 5.226 120 5.225 391 5.224 662 5.223 932	·	4 6 8 10	283 284 284 284	50 00 10 20	" 12.4 12.3 12.3 12.5 12.9 13.4	0 0 0 0	04 04 04 04 04	" 04.1 17.7 31.4 45.0 58.6 12.3	5 5 5 5	5.193 861 5.193 126 5.192 391 5.191 655 5.190 920 5.190 185
	19 21	277 277 277 277 277 277 277	12 22 32 42	36.6 29.7 23.0 16.5 10.1 03.9	+0 0 0 0 0	04 04 04 04 04 03	58.0 44.5 31.1 17.6 04.1 50.6	5.223 202 5.222 472 5.221 741 5.221 011 5.220 280 5.219 549		16 18 20 22	284 285 285 285	50 00 10 20	14.1 15.0 16.1 17.3 18.7 20.3	0 0 0 0	05 05 06 06	25.9 39.5 53.1 06.8 20.4 34.0	5	5.189 449 5.188 714 5.187 979 5.187 244 5.186 508 5.185 773
Feb.	27 29 31 2	278	11 21 31 41	57.9 52.0 46.3 40.7 35.4 30.2	+0 0 0 0 0	03 03 03 02 02 02	37.1 23.6 10.1 56.6 43.1 29.6	5.218 817 5.218 086 5.217 354 5.216 622 5.215 890 5.215 157	May	28 30 2 4	285 286 286 286	50 00 10 20	22.0 23.9 26.0 28.2 30.7 33.3	0 0 0 0	07 07 07 07	47.6 01.3 14.9 28.5 42.2 55.8	5 5 5 5	5.185 038 5.184 303 5.183 568 5.182 834 5.182 099 5.181 364
	12 14	279 279 279 279 279 279	11 21 31 41	25.2 20.3 15.6 11.0 06.6 02.5	+0 0 0 0 0	02 02 01 01 01 01	16.1 02.6 49.0 35.5 21.9 08.4	5.214 424 5.213 692 5.212 959 5.212 226 5.211 492 5.210 759		10 12 14 16	286 287 287 287	50 00 10 20	36.0 38.9 42.1 45.4 48.8 52.4	0 0 0 0	08 08 08 09	09.5 23.1 36.7 50.3 04.0 17.6	5	5.180 630 5.179 895 5.179 161 5.178 426 5.177 692 5.176 958
	20 22 24 26		10 20 30 40	58.4 54.6 50.8 47.3 44.0 40.8	+0 0 0 0 +0 -0	00 00 00 00 00 00	54.9 41.3 27.7 14.2 00.6 13.0	5.210 025 5.209 292 5.208 558 5.207 824 5.207 090 5.206 355		22 24 26 28	287 287 288 288 288 288	51 01 11 21	04.3	0 0 0 0	09 09 10 10	31.2 44.8 58.5 12.1 25.7 39.3	5	5.176 224 5.175 491 5.174 757 5.174 023 5.173 290 5.172 557
Mar.	7 9	281 281 281 281 281 281	10 20 30 40	37.8 34.9 32.2 29.7 27.4 25.2	-0 0 0 0 0	00 00 00 01 01 01	26.5 40.1 53.7 07.3 20.9 34.4	5.205 621 5.204 887 5.204 152 5.203 417 5.202 683 5.201 948		3 5 7 9	288 288 289 289 289 289	51 01 11 21	22.6 27.6 32.8 38.1 43.6 49.3	0 0 0 0	11 11 11 11	53.0 06.6 20.2 33.8 47.4 01.0	5	5.171 824 5.171 091 5.170 358 5.169 626 5.168 894 5.168 162
	15 17 19 21		10 20 30 40	23.2 21.3 19.7 18.1 16.8 15.7	-0 0 0 0 0	01 02 02 02 02 02 02	48.0 01.6 15.3 28.9 42.5 56.1	5.201 213 5.200 478 5.199 743 5.199 008 5.198 273 5.197 538		15 17 19 21	289 290 290 290	52 02 12 22	55.2 01.2 07.4 13.8 20.4 27.1	0 0 0 0	12 12 12 13	14.6 28.3 41.9 55.5 09.1 22.7	5	5.167 430 5.166 698 5.165 967 5.165 235 5.164 504 5.163 774
Apr.	27 29 31	283 283 283	10 20 30	14.7 13.9 13.2 12.7 12.4	0	03 03 03 03 04	09.7 23.3 36.9 50.5 04.1	5.196 802 5.196 067 5.195 332 5.194 597 5.193 861		27 29 1	290 291 291	52 02 12	34.0 41.1 48.3 55.7 03.3	0 0 0	13 14 14	36.2 49.8 03.4 17.0 30.6	5	5.163 043 5.162 313 5.161 583 5.160 853 5.160 123

Dat	te		ioce: ngiti	ntric ude		lioce atitu	ntric de	Radii Vecto		Dat	te			ntric ude		ioce atitu			Radius Vector
July		291 291	23 33 43 53	55.7 03.3 11.0 19.0 27.1 35.3	-0 0 0 0 0	14 14 14 14 15 15	17.0 30.6 44.1 57.7 11.3 24.9	5.160 5.160 5.159 5.158 5.157	123 394 665 936		3 5 7 9		11 22 32 42	" 42.3 57.8 13.5 29.3 45.3 01.4	0 0 0 0	24 24 25 25 25 25	35.8 49.1 02.4 15.6 28.9 42.1	5 5 5	5.127 677 5.126 967 5.126 258 5.125 549 5.124 840 5.124 133
	15 17 19 21	292 292 292 292 292 293	23 34 44 54	43.8 52.4 01.2 10.1 19.3 28.5	-0 0 0 0 0	15 15 16 16 16 16	38.4 52.0 05.5 19.0 32.6 46.1	5.156 5.155 5.155 5.154 5.153 5.152	752 025 298 571		15 17 19 21	300	13 23 34 44	17.8 34.3 51.0 07.8 24.8 42.0	0 0 0 0	26 26 26 26	55.3 08.6 21.8 34.9 48.1 01.3	5 5 5 5	5.123 426 5.122 719 5.122 013 5.121 308 5.120 603 5.119 899
Aug.	27 29 31 2	293 293 293 293 293 294	24 34 45 55	38.0 47.7 57.5 07.5 17.7 28.0	-0 0 0 0 0	16 17 17 17 17 18	59.7 13.2 26.7 40.2 53.7 07.2	5.152 5.151 5.150 5.149 5.149 5.148	392 667 942 217	Nov.	27 29 31 2	301 301 301 301	15 25 35 46	59.3 16.9 34.5 52.4 10.4 28.7	0 0 0 0	27 27 27 28	14.5 27.6 40.8 53.9 07.0 20.1	5 5 5	5.119 196 5.118 493 5.117 791 5.117 090 5.116 389 5.115 689
	8 10 12 14	294 294 294 294 294 295	25 36 46 56	38.5 49.2 00.0 11.0 22.2 33.6	-0 0 0 0 0	18 18 18 19 19	20.7 34.2 47.7 01.2 14.6 28.1	5.147 5.147 5.146 5.145 5.144 5.144	045 322 599 876		8 10 12 14	302 302 302 302	17 27 37 48	47.0 05.6 24.3 43.1 02.2 21.4	0 0 0 0	28 28 29 29	33.2 46.3 59.4 12.4 25.5 38.5	5 5 5	5.114 990 5.114 291 5.113 593 5.112 896 5.112 200 5.111 504
	20 22 24 26	295 295 295 295 295 296	26 37 47 57	45.1 56.9 08.7 20.8 33.0 45.4	-0 0 0 0 0	19 19 20 20 20 20 20	41.6 55.0 08.5 21.9 35.4 48.8	5.143 5.142 5.141 5.141 5.140 5.139	712 991 271 551		20 22 24 26	303 303 303 303 303 304	19 29 39 50	40.8 00.4 20.1 40.0 00.0 20.3	0 0 0 0	30 30 30 30	51.5 04.5 17.5 30.5 43.5 56.4	5	5.110 809 5.110 114 5.109 421 5.108 728 5.108 036 5.107 345
Sept.	1 3 5 7	296 296 296	28 38 48 58	58.0 10.7 23.6 36.7 49.9 03.4	-0 0 0 0 0	21 21 21 21 21 21 22	02.2 15.6 29.0 42.4 55.8 09.2	5.139 5.138 5.137 5.136 5.136 5.135	394 676 958 241	Dec.	2 4 6 8	304 304 304 304	21 31 41 52	40.7 01.2 22.0 42.9 04.0 25.2	0 0 0 0	31 31 31 32	09.4 22.3 35.2 48.1 01.0 13.9	5 5 5	5.106 654 5.105 964 5.105 275 5.104 587 5.103 899 5.103 213
	13 15 17 19	297 297 297 297 298 298	29 39 49 00	17.0 30.7 44.7 58.8 13.1 27.5	-0 0 0 0 0	22 22 22 23 23 23	22.6 35.9 49.3 02.6 16.0 29.3	5.134 5.134 5.133 5.132 5.131	093 378 664 950		14 16 18 20	305 305 305 305	23 33 43 54	46.6 08.1 29.9 51.8 13.9 36.1	0 0 0 0	32 32 33 33	26.8 39.6 52.4 05.3 18.1 30.8	5	5.102 527 5.101 842 5.101 158 5.100 474 5.099 792 5.099 110
Oct.	25 27 29	298 298	30 41 51	42.2 56.9 11.9 27.0 42.3	$0 \\ 0$	23 23 24 24 24 24	42.6 55.9 09.2 22.5 35.8	5.130 5.129 5.129 5.128 5.127	811 099 388		26 28 30	306 306 306	25 35 46	58.6 21.1 43.9 06.8 29.9	0 0 0	33 34 34	43.6 56.4 09.1 21.9 34.6	5	5.098 429 5.097 749 5.097 070 5.096 391 5.095 714

Date	e	Geo	paren centr ngitud	ric	Geo	paren ocentr atitude	ic	Date	e	Geo	paren centr ngituc	ric	Ge	pparen ocentr atitude	ic
Jan.	0 1 2 3 4 5	276 276 276 277 277 277	26 40 54 07 21 35	" 22.9 12.6 02.0 51.0 39.6 27.7	0 0 0 0 0	05 05 05 05 05 05 04	24.5 18.9 13.3 07.7 02.1 56.6	Feb.	15 16 17 18 19 20	286 286 287 287 287 287	37 49 01 13 25 37	27.8 40.6 49.3 53.8 54.0 49.8	+0 0 0 0 0 0	01 01 00 00 00 00	06.3 00.4 54.5 48.6 42.7 36.8
	6 7 8 9 10 11	277 278 278 278 278 278 278	49 03 16 30 44 58	15.2 02.0 48.2 33.6 18.0 01.6	+0 0 0 0 0 0	04 04 04 04 04 04	51.0 45.4 39.9 34.4 28.8 23.3		21 22 23 24 25 26	287 288 288 288 288 288	49 01 13 24 36 47	41.0 27.6 09.5 46.5 18.5 45.5	+0 0 0 0 0 +0	00 00 00 00 00 00	30.8 24.8 18.8 12.8 06.8 00.7
	12 13 14 15 16 17	279 279 279 279 280 280	11 25 39 52 06 19	44.0 25.3 05.4 44.1 21.5 57.5	+0 0 0 0 0 0	04 04 04 04 03 03	17.8 12.2 06.7 01.2 55.6 50.1	Mar.	27 28 29 1 2 3	288 289 289 289 289 289	59 10 21 32 43 54	07.4 24.1 35.5 41.6 42.1 37.2	-0 0 0 0 0	00 00 00 00 00 00	05.4 11.5 17.6 23.8 29.9 36.1
	18 19 20 21 22 23	280 280 281 281 281 281	33 47 00 14 27 40	32.1 05.1 36.5 06.1 34.0 59.9	+0 0 0 0 0	03 03 03 03 03 03	44.5 39.0 33.4 27.8 22.2 16.7		4 5 6 7 8 9	290 290 290 290 290 290 290	05 16 26 37 47 58	26.6 10.2 48.1 19.9 45.7 05.4	-0 0 0 0 0	00 00 00 01 01 01	42.4 48.6 54.9 01.2 07.6 14.0
	24 25 26 27 28 29	281 282 282 282 282 282 283	54 07 21 34 47 00	23.7 45.4 04.8 21.8 36.3 48.4	+0 0 0 0 0	03 03 02 02 02 02	11.1 05.5 59.9 54.3 48.7 43.1		10 11 12 13 14 15	291 291 291 291 291 291	08 18 28 38 48 57	18.8 26.0 26.8 21.2 09.1 50.4	-0 0 0 0 0	01 01 01 01 01 01	20.4 26.9 33.4 39.9 46.5 53.1
Feb.	30 31 1 2 3 4	283 283 283 283 284 284	13 27 40 53 06 19	57.7 04.5 08.4 09.5 07.7 02.9	+0 0 0 0 0	02 02 02 02 02 02 02	37.4 31.8 26.2 20.6 14.9 09.3		16 17 18 19 20 21	292 292 292 292 292 292	07 16 26 35 44 53	25.0 52.7 13.5 27.1 33.5 32.5	-0 0 0 0 0	01 02 02 02 02 02 02	59.8 06.5 13.2 20.0 26.8 33.6
	5 6 7 8 9 10	284 284 284 285 285 285	31 44 57 10 22 35	55.0 44.0 29.8 12.1 51.1 26.5	+0 0 0 0 0	02 01 01 01 01 01	03.7 58.0 52.3 46.6 40.9 35.2		22 23 24 25 26 27	293 293 293 293 293 293	02 11 19 28 36 44	24.0 08.0 44.3 12.8 33.5 46.3	-0 0 0 0 0	02 02 02 03 03 03	40.5 47.4 54.4 01.4 08.4 15.5
	11 12 13 14 15	285 286 286 286 286	47 00 12 25 37	58.2 26.3 50.6 11.2 27.8	+0 0 0 0 +0	01 01 01 01 01	29.5 23.7 17.9 12.1 06.3	Apr.	28 29 30 31 1	293 294 294 294 294	52 00 08 16 23	51.0 47.7 36.1 16.2 48.0	-0 0 0 0 -0	03 03 03 03 03	22.6 29.7 36.9 44.1 51.4

Date	e	Apparent Geocentric Longitude		Geo	paren ocentr atitude	ic	Date	2	Geo	paren centr ngituc	ric	Ge	pparer cocentr atitude	ric	
Apr.	1 2 3 4 5 6	294 294 294 294 294 294	23 31 38 45 52 59	48.0 11.2 25.8 31.7 28.8 17.0	-0 0 0 0 0	03 03 04 04 04 04	51.4 58.7 06.0 13.4 20.9 28.4	May	17 18 19 20 21 22	297 297 297 297 297 297	13 13 12 11 10 09	52.4 19.2 34.6 38.6 31.3 12.6	-0 0 0 0 0	10 10 10 10 10 10	18.9 28.4 38.0 47.5 57.2 06.8
	7 8 9 10 11 12	295 295 295 295 295 295 295	05 12 18 24 31 36	56.2 26.5 47.6 59.7 02.5 56.0	-0 0 0 0 0	04 04 04 04 05 05	36.0 43.6 51.3 59.0 06.7 14.6		23 24 25 26 27 28	297 297 297 297 296 296	07 06 04 02 59 57	42.6 01.4 09.0 05.4 50.7 25.0	-0 0 0 0 0	11 11 11 11 11 11	16.5 26.2 35.9 45.6 55.4 05.2
	13 14 15 16 17 18	295 295 295 295 296 296	42 48 53 58 03 08	40.0 14.4 39.1 54.0 59.0 53.9	-0 0 0 0 0	05 05 05 05 05 05	22.5 30.4 38.4 46.4 54.4 02.6	June	29 30 31 1 2 3	296 296 296 296 296 296	54 52 49 45 42 39	48.4 00.8 02.5 53.5 34.0 04.2	-0 0 0 0 0	12 12 12 12 12 12 13	15.1 25.0 34.8 44.8 54.7 04.7
	19 20 21 22 23 24	296 296 296 296 296 296	13 18 22 26 30 34	38.6 13.2 37.5 51.5 55.0 48.1	-0 0 0 0 0	06 06 06 06 06 06	10.7 18.9 27.2 35.5 43.8 52.2		4 5 6 7 8 9	296 296 296 296 296 296	35 31 27 23 19 14	24.1 33.9 33.7 23.6 03.6 34.0	-0 0 0 0 0	13 13 13 13 13 14	14.7 24.7 34.7 44.7 54.8 04.8
	25 26 27 28 29 30	296 296 296 296 296 296	38 42 45 48 51 54	30.6 02.6 23.8 34.3 34.0 22.9	-0 0 0 0 0	07 07 07 07 07 07	00.6 09.1 17.7 26.2 34.9 43.5		10 11 12 13 14 15	296 296 296 295 295 295	09 05 00 55 49 44	54.7 06.0 08.0 00.9 44.8 20.0	-0 0 0 0 0	14 14 14 14 14 15	14.8 24.8 34.8 44.8 54.8 04.8
May	1 2 3 4 5 6	296 296 297 297 297 297	57 59 01 03 05 07	00.7 27.6 43.5 48.2 41.9 24.6	-0 0 0 0 0	07 08 08 08 08 08	52.3 01.0 09.9 18.8 27.7 36.7		16 17 18 19 20 21	295 295 295 295 295 295 295	38 33 27 21 15 09	46.7 05.0 15.3 17.7 12.5 00.0	-0 0 0 0 0	15 15 15 15 15 16	14.7 24.7 34.6 44.4 54.3 04.1
	7 8 9 10 11 12	297 297 297 297 297 297	08 10 11 12 13 13	56.1 16.6 25.9 24.0 10.8 46.3	-0 0 0 0 0	08 08 09 09 09	45.8 54.9 04.1 13.3 22.5 31.8		22 23 24 25 26 27	295 294 294 294 294 294	02 56 49 43 36 29	40.3 13.7 40.4 00.8 15.0 23.4	-0 0 0 0 0	16 16 16 16 16 17	13.9 23.6 33.3 43.0 52.7 02.3
	13 14 15 16 17	297 297 297 297 297	14 14 14 14 13	10.4 23.1 24.3 14.1 52.4	-0 0 0 0 -0	09 09 10 10	41.2 50.5 00.0 09.4 18.9	July	28 29 30 1 2	294 294 294 294 293	22 15 08 01 53	26.4 24.1 17.0 05.4 49.5	-0 0 0 0 -0	17 17 17 17 17	11.9 21.4 30.9 40.4 49.8

Date	e	Apparent Geocentric Longitude			Geo	paren ocentr atitude	ic	Date	e	Geo	paren ocentr ngitud	ric	Ge	pparen ocentr atitude	ic
July	1 2 3 4 5 6	294 293 293 293 293 293 293	01 53 46 39 31 24	05.4 49.5 29.7 06.2 39.3 09.3	-0 0 0 0 0	17 17 17 18 18 18	" 40.4 49.8 59.1 08.4 17.6 26.8	Aug.	16 17 18 19 20 21	288 288 288 288 288 288	37 32 27 23 18 14	" 42.2 43.9 54.9 15.4 45.5 25.5	-0 0 0 0 0	23 23 23 23 23 23 23 23	23.4 28.4 33.4 38.3 43.1 47.8
	7 8 9 10 11 12	293 293 293 292 292 292	16 09 01 53 46 38	36.4 00.9 23.2 43.6 02.3 19.8	-0 0 0 0 0	18 18 18 19 19	35.9 44.9 53.8 02.7 11.4 20.1		22 23 24 25 26 27	288 288 288 287 287 287	10 06 02 58 55 52	15.4 15.6 26.2 47.3 19.0 01.4	-0 0 0 0 0	23 23 24 24 24 24 24	52.4 56.9 01.4 05.7 10.0 14.2
	13 14 15 16 17 18	292 292 292 292 291 291	30 22 15 07 59 51	36.4 52.4 08.1 24.0 40.4 57.5	-0 0 0 0 0	19 19 19 19 20 20	28.7 37.2 45.6 54.0 02.2 10.3	Sept.	28 29 30 31 1 2	287 287 287 287 287 287	48 45 43 40 38 36	54.7 58.8 13.8 39.7 16.7 04.8	-0 0 0 0 0	24 24 24 24 24 24	18.3 22.3 26.2 30.0 33.8 37.4
	19 20 21 22 23 24	291 291 291 291 291 291	44 36 28 21 13 06	15.8 35.5 57.0 20.6 46.7 15.6	-0 0 0 0 0	20 20 20 20 20 20 20	18.4 26.3 34.2 42.0 49.6 57.2		3 4 5 6 7 8	287 287 287 287 287 287	34 32 30 29 27 26	04.1 14.5 36.3 09.5 54.0 50.1	-0 0 0 0 0	24 24 24 24 24 24	41.0 44.5 47.9 51.2 54.5 57.7
	25 26 27 28 29 30	290 290 290 290 290 290 290	58 51 44 36 29 22	47.6 23.1 02.4 45.9 34.0 26.8	-0 0 0 0 0	21 21 21 21 21 21 21	04.7 12.1 19.4 26.6 33.7 40.7		9 10 11 12 13 14	287 287 287 287 287 287	25 25 24 24 24 24	57.6 16.7 47.4 29.7 23.6 29.0	-0 0 0 0 0	25 25 25 25 25 25 25	00.8 03.8 06.8 09.7 12.6 15.4
Aug.	31 1 2 3 4 5	290 290 290 289 289 289	15 08 01 54 48 41	24.7 27.9 36.6 51.2 11.8 38.6	-0 0 0 0 0	21 21 22 22 22 22 22	47.7 54.5 01.2 07.7 14.2 20.6		15 16 17 18 19 20	287 287 287 287 287 287	24 25 25 26 27 29	46.1 14.7 54.9 46.8 50.3 05.4	-0 0 0 0 0	25 25 25 25 25 25 25	18.1 20.8 23.4 26.0 28.6 31.1
	6 7 8 9 10 11	289 289 289 289 289 289	35 28 22 16 10 04	12.1 52.3 39.6 34.2 36.5 46.5	-0 0 0 0 0	22 22 22 22 22 22 22	26.9 33.0 39.0 45.0 50.8 56.5		21 22 23 24 25 26	287 287 287 287 287 287	30 32 34 36 38 40	32.2 10.6 00.5 01.9 14.6 38.7	-0 0 0 0 0	25 25 25 25 25 25 25	33.6 36.0 38.4 40.7 43.0 45.3
	12 13 14 15 16	288 288 288 288 288	59 53 48 42 37	04.6 31.0 06.0 49.6 42.2	-0 0 0 0 -0	23 23 23 23 23 23	02.1 07.5 12.9 18.2 23.4	Oct.	27 28 29 30 1	287 287 287 287 287	43 46 48 52 55	14.0 00.4 57.9 06.4 25.8	-0 0 0 0 -0	25 25 25 25 25 25	47.5 49.6 51.8 53.9 55.9

Date	e	Geo	paren centr igitud	ic	Geo	paren ocentr ititude	ic	Date	e	Geo	paren centr ngituc	ric	Ge	pparen ocentratitude	ric
Oct.	1 2 3 4 5 6	287 287 288 288 288 288	55 58 02 06 10 14	25.8 56.2 37.4 29.4 32.1 45.6	-0 0 0 0 0	25 25 26 26 26 26 26	55.9 58.0 00.0 01.9 03.8 05.7	Nov.	16 17 18 19 20 21	293 293 293 293 294 294	23 33 43 54 05 15	" 06.9 26.9 53.5 26.5 06.0 51.6	-0 0 0 0 0	27 27 27 27 27 27 27	19.4 21.4 23.4 25.5 27.6 29.7
	7 8 9 10 11 12	288 288 288 288 288 288	19 23 28 33 38 43	09.6 44.2 29.2 24.6 30.2 46.1	-0 0 0 0 0	26 26 26 26 26 26	07.6 09.5 11.3 13.1 14.9 16.7		22 23 24 25 26 27	294 294 294 294 295 295	26 37 48 59 11 22	43.3 41.0 44.6 54.1 09.2 30.0	-0 0 0 0 0	27 27 27 27 27 27 27	31.8 33.9 36.1 38.3 40.5 42.7
	13 14 15 16 17 18	288 288 289 289 289 289	49 54 00 06 12 18	12.1 48.1 34.0 29.9 35.6 51.1	-0 0 0 0 0	26 26 26 26 26 26	18.5 20.3 22.0 23.8 25.6 27.3	Dec.	28 29 30 1 2 3	295 295 295 296 296 296	33 45 57 08 20 32	56.4 28.2 05.4 47.9 35.5 28.3	-0 0 0 0 0	27 27 27 27 27 27 27	45.0 47.3 49.6 51.9 54.3 56.7
	19 20 21 22 23 24	289 289 289 289 289 289	25 31 38 45 52 59	16.3 51.1 35.4 29.0 31.8 43.6	-0 0 0 0 0	26 26 26 26 26 26 26	29.1 30.8 32.6 34.3 36.1 37.8		4 5 6 7 8 9	296 296 297 297 297 297	44 56 08 20 33 45	26.0 28.6 36.0 48.0 04.7 25.9	-0 0 0 0 0	27 28 28 28 28 28	59.2 01.6 04.1 06.7 09.3 11.9
	25 26 27 28 29 30	290 290 290 290 290 290 290	07 14 22 29 37 45	04.4 34.0 12.3 59.3 54.8 58.7	-0 0 0 0 0	26 26 26 26 26 26 26	39.6 41.3 43.0 44.8 46.5 48.2		10 11 12 13 14 15	297 298 298 298 298 299	57 10 22 35 48 01	51.6 21.7 56.2 34.9 17.8 04.8	-0 0 0 0 0	28 28 28 28 28 28 28	14.6 17.3 20.1 22.9 25.7 28.6
Nov.	31 1 2 3 4 5	290 291 291 291 291 291	54 02 11 19 28 37	11.0 31.6 00.4 37.2 22.0 14.8	-0 0 0 0 0	26 26 26 26 26 26 26	50.0 51.7 53.4 55.2 56.9 58.7		16 17 18 19 20 21	299 299 299 299 300 300	13 26 39 52 05 19	55.7 50.3 48.6 50.5 55.8 04.4	-0 0 0 0 0	28 28 28 28 28 28	31.5 34.5 37.4 40.5 43.5 46.7
	6 7 8 9 10 11	291 291 292 292 292 292 292	46 55 04 14 23 33	15.3 23.5 39.2 02.4 33.0 10.9	-0 0 0 0 0	27 27 27 27 27 27 27	00.5 02.3 04.1 05.9 07.8 09.7		22 23 24 25 26 27	300 300 300 301 301 301	32 45 58 12 25 39	16.3 31.4 49.6 10.9 35.1 02.3	-0 0 0 0 0	28 28 28 28 29 29	49.8 53.0 56.2 59.5 02.8 06.1
	12 13 14 15 16	292 292 293 293 293	42 52 02 12 23	55.9 48.1 47.4 53.7 06.9	-0 0 0 0 -0	27 27 27 27 27 27	11.5 13.5 15.4 17.4 19.4		28 29 30 31 32	301 302 302 302 302 302	52 06 19 33 46	32.2 04.8 40.1 17.8 58.0	-0 0 0 0 -0	29 29 29 29 29	09.5 12.9 16.4 19.9 23.5

 $\label{eq:JUPITER, 2020} \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^{\text{h}} \, \text{TERRESTRIAL TIME}$

Date	e	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
Jan.	0 1 2 3 4 5	h 18 18 18 18 18	m 28 29 30 31 32 33	s 02.02 02.14 02.23 02.28 02.29 02.26	-23 23 23 23 23 23 23	11 10 10 09 08 08	"22.3 47.0 10.2 32.0 52.4 11.4	6.210 104 6.208 890 6.207 460 6.205 813 6.203 951 6.201 874	1.42 1.42 1.42 1.42 1.42 1.42	14.82 14.83 14.83 14.83 14.84	h 11 11 11 11 11	m 50 47 44 41 38 35	s 03 07 11 15 19 23
	6 7 8 9 10 11	18 18 18 18 18	34 35 36 37 38 39	02.17 02.02 01.81 01.54 01.19 00.75	-23 23 23 23 23 23 23	07 06 05 05 04 03	28.9 45.0 59.8 13.2 25.3 36.1	6.199 583 6.197 078 6.194 359 6.191 428 6.188 285 6.184 931	1.42 1.42 1.42 1.42 1.42 1.42	14.85 14.86 14.86 14.87 14.88 14.88	11 11 11 11 11	32 29 26 23 20 17	26 30 33 37 40 44
	12 13 14 15 16 17	18 18 18 18 18 18	40 40 41 42 43 44	00.23 59.61 58.89 58.06 57.12 56.07	-23 23 23 23 22 22	02 01 01 00 59 58	45.6 53.7 00.6 06.2 10.5 13.5	6.181 366 6.177 590 6.173 604 6.169 408 6.165 003 6.160 389	1.42 1.42 1.42 1.43 1.43	14.89 14.90 14.91 14.92 14.93 14.94	11 11 11 11 11	14 11 08 05 02 00	47 50 53 56 59 01
	18 19 20 21 22 23	18 18 18 18 18	45 46 47 48 49 50	54.89 53.60 52.16 50.60 48.88 47.01	-22 22 22 22 22 22 22	57 56 55 54 53 52	15.2 15.7 15.0 13.1 10.0 05.8	6.155 566 6.150 534 6.145 294 6.139 847 6.134 193 6.128 333	1.43 1.43 1.43 1.43 1.43	14.96 14.97 14.98 14.99 15.01 15.02	10 10 10 10 10 10	57 54 51 48 45 42	04 07 09 11 13
	24 25 26 27 28 29	18 18 18 18 18 18	51 52 53 54 55 56	44.98 42.77 40.38 37.81 35.05 32.08	-22 22 22 22 22 22 22	51 49 48 47 46 45	00.5 54.1 46.6 38.0 28.4 17.8	6.122 268 6.116 000 6.109 528 6.102 856 6.095 983 6.088 911	1.44 1.44 1.44 1.44 1.44	15.04 15.05 15.07 15.08 15.10 15.12	10 10 10 10 10 10	39 36 33 30 27 24	17 18 19 21 22 22
Feb.	30 31 1 2 3 4	18 18 18 19 19	57 58 59 00 01 02	28.91 25.53 21.93 18.12 14.07 09.80	-22 22 22 22 22 22 22	44 42 41 40 39 37	06.1 53.4 39.8 25.2 09.6 53.2	6.081 642 6.074 178 6.066 519 6.058 668 6.050 626 6.042 395	1.45 1.45 1.45 1.45 1.45 1.46	15.14 15.16 15.18 15.19 15.21 15.24	10 10 10 10 10 10	21 18 15 12 09 06	23 23 23 23 23 22
	5 6 7 8 9 10	19 19 19 19 19	03 04 04 05 06 07	05.29 00.53 55.52 50.26 44.73 38.93	-22 22 22 22 22 22 22	36 35 33 32 31 29	36.0 17.9 59.0 39.4 19.0 58.0	6.033 975 6.025 370 6.016 581 6.007 609 5.998 456 5.989 123	1.46 1.46 1.46 1.46 1.47	15.26 15.28 15.30 15.32 15.35 15.37	10 10 9 9 9	03 00 57 54 51 48	22 21 19 18 16 14
	11 12 13 14 15	19 19 19 19	08 09 10 11 12	32.85 26.49 19.84 12.91 05.68	-22 22 22 22 -22	28 27 25 24 23	36.2 13.7 50.6 26.9 02.5	5.979 611 5.969 923 5.960 059 5.950 020 5.939 809	1.47 1.47 1.48 1.48 1.48	15.40 15.42 15.45 15.47 15.50	9 9 9 9	45 42 39 36 32	12 09 06 03 59

 $\label{eq:JUPITER, 2020} \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^{\text{h}} \, \text{TERRESTRIAL TIME}$

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
Feb. 15 16 17 18 19 20	h 19 19 19 19 19	m 12 12 13 14 15 16	s 05.68 58.15 50.31 42.16 33.69 24.88	-22 22 22 22 22 22 22	23 21 20 18 17 15	" 02.5 37.6 12.2 46.3 19.9 53.2	5.939 809 5.929 425 5.918 872 5.908 150 5.897 261 5.886 207	1.48 1.48 1.49 1.49 1.49	15.50 15.53 15.55 15.58 15.61 15.64	h 9 9 9 9	m 32 29 26 23 20 17	s 59 55 51 47 42 37
21 22 23 24 25 26	19 19 19 19 19	17 18 18 19 20 21	15.73 06.22 56.37 46.15 35.56 24.59	-22 22 22 22 22 22 22	14 12 11 10 08 07	26.1 58.6 30.8 02.8 34.5 05.9	5.874 990 5.863 613 5.852 077 5.840 385 5.828 539 5.816 541	1.50 1.50 1.50 1.51 1.51 1.51	15.67 15.70 15.73 15.76 15.79 15.83	9 9 9 9 9 8	14 11 08 05 02 58	32 26 20 13 06 59
27 28 29 Mar. 1 2 3	19 19 19 19 19	22 23 23 24 25 26	13.24 01.50 49.37 36.84 23.91 10.57	-22 22 22 22 21 21	05 04 02 01 59 58	37.2 08.3 39.3 10.2 41.0 11.9	5.804 394 5.792 101 5.779 663 5.767 085 5.754 367 5.741 513	1.52 1.52 1.52 1.52 1.53 1.53	15.86 15.89 15.93 15.96 16.00 16.03	8 8 8 8 8	55 52 49 46 43 40	51 43 35 26 17 07
4 5 6 7 8 9	19 19 19 19 19	26 27 28 29 29 30	56.81 42.63 28.01 12.96 57.46 41.52	-21 21 21 21 21 21 21	56 55 53 52 50 49	42.8 13.8 44.9 16.2 47.7 19.4	5.728 526 5.715 408 5.702 161 5.688 789 5.675 294 5.661 678	1.54 1.54 1.54 1.55 1.55	16.07 16.11 16.14 16.18 16.22 16.26	8 8 8 8 8	36 33 30 27 24 21	57 47 36 24 13 00
10 11 12 13 14 15	19 19 19 19 19	31 32 32 33 34 34	25.11 08.25 50.92 33.12 14.85 56.10	-21 21 21 21 21 21 21	47 46 44 43 42 40	51.4 23.7 56.3 29.2 02.5 36.3	5.647 943 5.634 092 5.620 127 5.606 051 5.591 865 5.577 572	1.56 1.56 1.56 1.57 1.57	16.30 16.34 16.38 16.42 16.46 16.51	8 8 8 8 8	17 14 11 08 04 01	48 35 21 07 52 37
16 17 18 19 20 21	19 19 19 19 19	35 36 36 37 38 38	36.86 17.12 56.87 36.11 14.82 53.00	-21 21 21 21 21 21 21	39 37 36 34 33 32	10.6 45.4 20.8 56.8 33.5 10.9	5.563 174 5.548 674 5.534 075 5.519 380 5.504 591 5.489 713	1.58 1.58 1.59 1.59 1.60 1.60	16.55 16.59 16.64 16.68 16.72 16.77	7 7 7 7 7	58 55 51 48 45 41	22 06 49 32 15 57
22 23 24 25 26 27	19 19 19 19 19	39 40 40 41 41 42	30.64 07.74 44.28 20.26 55.68 30.53	-21 21 21 21 21 21 21	30 29 28 26 25 24	49.1 28.0 07.7 48.3 29.8 12.1	5.474 747 5.459 697 5.444 566 5.429 359 5.414 077 5.398 725	1.61 1.61 1.62 1.62 1.62 1.63	16.82 16.86 16.91 16.96 17.00 17.05	7 7 7 7 7	38 35 31 28 25 21	38 19 59 39 18 57
28 29 30 31 Apr. 1	19 19 19 19	43 43 44 44 45	04.81 38.50 11.61 44.12 16.04	-21 21 21 21 -21	22 21 20 19 17	55.5 39.9 25.3 11.8 59.5	5.383 306 5.367 824 5.352 282 5.336 684 5.321 033	1.63 1.64 1.64 1.65 1.65	17.10 17.15 17.20 17.25 17.30	7 7 7 7 7	18 15 11 08 05	35 12 49 25 01

 $\label{eq:JUPITER, 2020} \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^{h}\, \textbf{TERRESTRIAL TIME}$

Date		Ap Right	parei Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter		meris insit	S
Apr.	1 2 3 4 5 6	h 19 19 19 19 19	m 45 45 46 46 47 47	s 16.04 47.34 18.03 48.11 17.55 46.36	-21 21 21 21 21 21 21	17 16 15 14 13 12	59.5 48.4 38.5 29.9 22.5 16.5	5.321 033 5.305 333 5.289 587 5.273 798 5.257 971 5.242 109	1.65 1.66 1.66 1.67 1.67	17.30 17.35 17.40 17.46 17.51	h 7 7 6 6 6 6	m 05 01 58 54 51 47	s 01 36 10 44 17 50
1 1	7 8 9 10 11	19 19 19 19 19	48 48 49 49 50 50	14.54 42.07 08.97 35.21 00.80 25.74	-21 21 21 21 21 21	11 10 09 08 07 06	11.9 08.6 06.8 06.4 07.4 10.0	5.226 214 5.210 289 5.194 339 5.178 365 5.162 372 5.146 362	1.68 1.69 1.69 1.70 1.70	17.62 17.67 17.72 17.78 17.83 17.89	6 6 6 6 6	44 40 37 33 30 26	22 53 24 54 23 52
1 1 1	13 14 15 16 17	19 19 19 19 19	50 51 51 51 52 52	50.00 13.59 36.48 58.69 20.20 40.99	-21 21 21 21 21 21 21	05 04 03 02 01 01	14.2 20.1 27.6 36.8 47.7 00.4	5.130 339 5.114 306 5.098 267 5.082 226 5.066 186 5.050 152		17.94 18.00 18.06 18.11 18.17 18.23	6 6 6 6 6	23 19 16 12 09 05	20 47 14 40 05 30
2 2 2 2	19 20 21 22 23 24	19 19 19 19 19	53 53 53 53 54 54	01.08 20.45 39.09 57.00 14.19 30.64	-21 20 20 20 20 20 20	00 59 58 58 57 56	14.9 31.2 49.4 09.4 31.3 55.1	5.034 128 5.018 117 5.002 125 4.986 154 4.970 209 4.954 296	1.75 1.75 1.76 1.76 1.77 1.78	18.29 18.35 18.40 18.46 18.52 18.58	6 5 5 5 5 5	01 58 54 51 47 43	54 17 40 01 22 43
2 2 2 2	25 26 27 28 29	19 19 19 19 19	54 55 55 55 55 55	46.34 01.31 15.52 28.98 41.69 53.63	-20 20 20 20 20 20 20	56 55 55 54 54 54	20.9 48.6 18.4 50.3 24.2 00.2	4.938 417 4.922 577 4.906 781 4.891 032 4.875 336 4.859 696	1.78 1.79 1.79 1.80 1.80	18.64 18.70 18.76 18.82 18.88 18.94	5 5 5 5 5 5	40 36 32 28 25 21	02 21 39 56 13 29
May	1 2 3 4 5 6	19 19 19 19 19	56 56 56 56 56 56	04.80 15.21 24.84 33.70 41.78 49.09	-20 20 20 20 20 20 20	53 53 53 52 52 52	38.4 18.7 01.1 45.7 32.4 21.3	4.844 117 4.828 602 4.813 156 4.797 783 4.782 486 4.767 269	1.82 1.82 1.83 1.83 1.84 1.84	19.00 19.07 19.13 19.19 19.25 19.31	5 5 5 5 5 4	17 13 10 06 02 58	44 58 11 24 36 47
1 1	7 8 9 10 11	19 19 19 19 19	56 57 57 57 57 57	55.62 01.38 06.35 10.55 13.95 16.57	-20 20 20 20 20 20 20	52 52 52 51 51 52	12.4 05.7 01.1 58.8 58.7 01.0	4.752 137 4.737 092 4.722 139 4.707 282 4.692 523 4.677 869	1.85 1.86 1.86 1.87 1.87	19.37 19.43 19.50 19.56 19.62 19.68	4 4 4 4 4 4	54 51 47 43 39 35	58 07 16 24 32 38
1 1 1	13 14 15 16	19 19 19 19	57 57 57 57 57	18.38 19.40 19.62 19.03 17.65	-20 20 20 20 20 -20	52 52 52 52 52 52	05.4 12.2 21.2 32.5 46.0	4.663 322 4.648 888 4.634 570 4.620 374 4.606 302	1.89 1.89 1.90 1.90 1.91	19.74 19.80 19.86 19.92 19.99	4 4 4 4 4	31 27 23 19 15	44 49 53 56 59

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter		meris insit	S
May 17 18 19 20 21 22	h 19 19 19 19 19	m 57 57 57 57 57 57	s 17.65 15.46 12.47 08.68 04.10 58.73	-20 20 20 20 20 20 20 20	52 53 53 53 54 54	" 46.0 01.8 19.9 40.1 02.6 27.3	4.606 302 4.592 361 4.578 555 4.564 888 4.551 364 4.537 989	1.93	19.99 20.05 20.11 20.17 20.23 20.29	h 4 4 4 4 4 3	m 15 12 08 04 00 56	s 59 01 02 02 01 00
23 24 25 26 27 28	19 19 19 19 19	56 56 56 56 56 56	52.56 45.61 37.87 29.35 20.06 09.99	-20 20 20 20 20 20 20	54 55 55 56 57 57	54.3 23.4 54.7 28.2 03.9 41.7	4.524 767 4.511 703 4.498 800 4.486 063 4.473 498 4.461 107	1.96	20.35 20.40 20.46 20.52 20.58 20.64	3 3 3 3 3	51 47 43 39 35 31	58 55 51 47 41 35
29 30 31 June 1 2 3	19 19 19 19 19	55 55 55 55 55 54	59.15 47.54 35.18 22.08 08.23 53.65	-20 20 20 21 21 21	58 59 59 00 01 02	21.6 03.6 47.6 33.7 21.7 11.6	4.448 895 4.436 866 4.425 024 4.413 373 4.401 916 4.390 657		20.69 20.75 20.80 20.86 20.91 20.97	3 3 3 3 3 3	27 23 19 15 10 06	29 21 13 04 54 43
4 5 6 7 8 9	19 19 19 19 19	54 54 54 53 53 53	38.36 22.35 05.64 48.23 30.12 11.33	-21 21 21 21 21 21 21	03 03 04 05 06 07	03.3 57.0 52.4 49.7 48.8 49.5	4.379 599 4.368 746 4.358 102 4.347 668 4.337 450 4.327 451	2.02 2.02	21.02 21.07 21.12 21.17 21.22 21.27	3 2 2 2 2 2 2	02 58 54 49 45 41	32 20 08 54 40 26
10 11 12 13 14 15	19 19 19 19 19	52 52 52 51 51 51	51.87 31.73 10.94 49.50 27.42 04.73	-21 21 21 21 21 21 21	08 09 11 12 13 14	52.0 56.1 01.8 09.0 17.7 27.7	4.317 675 4.308 124 4.298 804 4.289 717 4.280 868 4.272 259		21.32 21.37 21.42 21.46 21.50 21.55	2 2 2 2 2 2 2	37 32 28 24 20 15	10 54 38 20 02 44
16 17 18 19 20 21	19 19 19 19 19	50 50 49 49 49 48	41.43 17.54 53.07 28.04 02.48 36.38	-21 21 21 21 21 21	15 16 18 19 20 21	39.2 51.9 05.9 21.0 37.3 54.7	4.263 895 4.255 778 4.247 913 4.240 302 4.232 950 4.225 858	2.06 2.07 2.07 2.07 2.08 2.08	21.59 21.63 21.67 21.71 21.75 21.78	2 2 2 1 1 1	11 07 02 58 54 49	25 05 45 24 03 41
22 23 24 25 26 27	19 19 19 19 19	48 47 47 46 46 45	09.77 42.67 15.09 47.06 18.58 49.69	-21 21 21 21 21 21 21	23 24 25 27 28 29	13.1 32.5 52.8 13.9 35.8 58.4	4.219 030 4.212 470 4.206 178 4.200 159 4.194 413 4.188 944		21.82 21.85 21.89 21.92 21.95 21.98	1 1 1 1 1	45 40 36 32 27 23	18 55 32 08 44 19
28 29 30 July 1 2	19 19 19 19	45 44 44 43 43	20.39 50.72 20.70 50.35 19.69	-21 21 21 21 -21	31 32 34 35 36	21.6 45.4 09.6 34.2 59.1	4.183 754 4.178 843 4.174 213 4.169 866 4.165 803	2.10 2.10 2.11 2.11 2.11	22.00 22.03 22.05 22.08 22.10	1 1 1 1	18 14 10 05 01	54 29 03 37 10

 $\label{eq:JUPITER, 2020} \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^{\text{h}} \, \text{TERRESTRIAL TIME}$

Date		Ap Right	parei Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
·	1 2 3 4 5 6	h 19 19 19 19 19	m 43 43 42 42 41 41	s 50.35 19.69 48.74 17.52 46.04 14.34	-21 21 21 21 21 21 21	35 36 38 39 41 42	34.2 59.1 24.3 49.8 15.4 41.2	4.169 866 4.165 803 4.162 025 4.158 534 4.155 331 4.152 416	2.12	22.08 22.10 22.12 22.14 22.15 22.17	h 1 0 0 0 0	m 05 01 56 52 47 43	s 37 10 44 17 50 22
1	7 8 9 0 1 2	19 19 19 19 19	40 40 39 39 38 38	42.42 10.31 38.03 05.60 33.04 00.39	-21 21 21 21 21 21 21	44 45 46 48 49 51	07.0 32.8 58.6 24.1 49.5 14.6	4.149 791 4.147 457 4.145 415 4.143 666 4.142 211 4.141 051	2.12 2.12 2.12 2.12 2.12 2.12	22.18 22.20 22.21 22.22 22.22 22.23	0 0 0 0 0	38 34 29 25 21 16	55 27 59 31 02 34
1 1 1 1	3 4 5 6 7 8	19 19 19 19 19	37 36 36 35 35 34	27.65 54.86 22.05 49.23 16.43 43.68	-21 21 21 21 21 21	52 54 55 56 58 59	39.3 03.6 27.5 50.8 13.6 35.8	4.140 186 4.139 617 4.139 345 4.139 369 4.139 691 4.140 309	2.12 2.12 2.12 2.12 2.12 2.12	22.24 22.24 22.24 22.24 22.24 22.24	0 0 0 23 23 23	12 07 03 54 49 45	05 37 08 11 43 14
2 2 2 2	9 20 21 22 23 24	19 19 19 19 19	34 33 33 32 32 31	10.99 38.40 05.93 33.59 01.42 29.43	-22 22 22 22 22 22 22	00 02 03 04 06 07	57.3 18.1 38.2 57.4 15.8 33.3	4.141 225 4.142 436 4.143 944 4.145 747 4.147 845 4.150 235	2.12 2.12 2.12 2.12 2.12 2.12	22.23 22.22 22.22 22.21 22.19 22.18	23 23 23 23 23 23 23	40 36 31 27 22 18	46 18 50 22 54 27
2 2 2 2	25 26 27 28 29	19 19 19 19 19	30 30 29 29 28 28	57.66 26.12 54.85 23.87 53.19 22.85	-22 22 22 22 22 22 22	08 10 11 12 13 14	49.9 05.3 19.8 33.1 45.2 56.2	4.152 917 4.155 889 4.159 149 4.162 695 4.166 525 4.170 638	2.12 2.12 2.11 2.11 2.11 2.11	22.17 22.15 22.13 22.12 22.10 22.07	23 23 23 23 22 22 22	13 09 05 00 56 51	59 32 06 39 13 47
Aug.	1 1 2 3 4 5	19 19 19 19 19	27 27 26 26 25 25	52.86 23.24 54.00 25.17 56.76 28.79	-22 22 22 22 22 22 22	16 17 18 19 20 21	06.0 14.6 22.0 28.1 32.9 36.4	4.175 030 4.179 700 4.184 645 4.189 864 4.195 354 4.201 113	2.10 2.10 2.10	22.05 22.03 22.00 21.97 21.94 21.91	22 22 22 22 22 22 22	47 42 38 34 29 25	22 57 32 08 45 21
1	6 7 8 9 0 1	19 19 19 19 19	25 24 24 23 23 22	01.28 34.25 07.72 41.70 16.21 51.28	-22 22 22 22 22 22 22	22 23 24 25 26 27	38.5 39.3 38.6 36.5 33.0 28.0	4.207 138 4.213 428 4.219 980 4.226 791 4.233 859 4.241 182	2.09 2.08 2.08 2.08	21.88 21.85 21.82 21.78 21.74 21.71	22 22 22 22 22 22 21	20 16 12 07 03 59	58 36 14 53 32 12
1 1 1	2 3 4 5 6	19 19 19 19	22 22 21 21 20	26.92 03.14 39.97 17.41 55.49	-22 22 22 22 -22	28 29 30 30 31	21.5 13.5 04.0 53.0 40.5	4.248 756 4.256 579 4.264 647 4.272 958 4.281 509	2.06 2.06	21.67 21.63 21.59 21.54 21.50	21 21 21 21 21	54 50 46 41 37	53 34 15 57 40

 $\label{eq:JUPITER, 2020} \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^{\text{h}} \, \text{TERRESTRIAL TIME}$

Date	Ap Right	pare Asce		A _l Dec	ppare clinat	nt ion	True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris ınsit	S
Aug. 16 17 18 19 20 21	h 19 19 19 19 19	m 20 20 20 19 19	s 55.49 34.22 13.60 53.66 34.40 15.84	-22 22 22 22 22 22 22 22	31 32 33 33 34 35	" 40.5 26.6 11.0 54.0 35.4 15.3	4.281 509 4.290 296 4.299 315 4.308 564 4.318 038 4.327 733	2.05 2.05 2.05 2.04 2.04 2.03	21.50 21.46 21.41 21.37 21.32 21.27	h 21 21 21 21 21 21	m 37 33 29 24 20 16	s 40 24 08 53 38 25
22 23 24 25 26 27	19 19 19 19 19	18 18 18 18 17	58.00 40.88 24.50 08.88 54.01 39.90	-22 22 22 22 22 22 22	35 36 37 37 38 38	53.5 30.2 05.2 38.7 10.5 40.8	4.337 646 4.347 771 4.358 105 4.368 643 4.379 381 4.390 315	2.03 2.02 2.02 2.01 2.01 2.00	21.22 21.17 21.12 21.07 21.02 20.97	21 21 21 20 20 20	12 07 03 59 55 51	12 59 48 37 27 18
28 29 30 31 Sept. 1 2	19 19 19 19 19	17 17 17 16 16	26.57 14.01 02.23 51.23 41.03 31.61	-22 22 22 22 22 22 22	39 39 40 40 40 41	09.6 36.7 02.3 26.4 48.8 09.7	4.401 440 4.412 752 4.424 248 4.435 922 4.447 771 4.459 791	2.00 1.99 1.99 1.98 1.98	20.92 20.86 20.81 20.75 20.70 20.64	20 20 20 20 20 20 20	47 43 38 34 30 26	09 02 55 48 43 38
3 4 5 6 7 8	19 19 19 19 19	16 16 16 16 15 15	23.00 15.18 08.18 01.99 56.61 52.06	-22 22 22 22 22 22 22	41 41 42 42 42 42	29.1 46.8 02.9 17.5 30.5 41.9	4.471 978 4.484 328 4.496 838 4.509 502 4.522 317 4.535 280	1.97 1.96 1.96 1.95 1.94	20.59 20.53 20.47 20.41 20.36 20.30	20 20 20 20 20 20 20	22 18 14 10 06 02	35 32 29 28 28 28
9 10 11 12 13 14	19 19 19 19 19	15 15 15 15 15 15	48.33 45.43 43.35 42.11 41.69 42.11	-22 22 22 22 22 22 22	42 43 43 43 43 43	51.7 00.0 06.7 11.9 15.6 17.7	4.548 385 4.561 629 4.575 008 4.588 518 4.602 154 4.615 912	1.93 1.93 1.92 1.92 1.91	20.24 20.18 20.12 20.06 20.00 19.94	19 19 19 19 19	58 54 50 46 42 38	29 31 33 37 41 46
15 16 17 18 19 20	19 19 19 19 19	15 15 15 15 15 16	43.36 45.44 48.35 52.09 56.66 02.07	-22 22 22 22 22 22 22	43 43 43 43 43 42	18.2 17.3 14.7 10.6 05.0 57.7	4.629 788 4.643 777 4.657 875 4.672 076 4.686 377 4.700 772	1.90 1.89 1.89 1.88 1.88	19.88 19.82 19.76 19.70 19.64 19.58	19 19 19 19 19	34 30 27 23 19 15	52 59 07 15 25 35
21 22 23 24 25 26	19 19 19 19 19	16 16 16 16 16	08.31 15.38 23.28 32.00 41.53 51.88	-22 22 22 22 22 22 22	42 42 42 42 41 41	48.9 38.4 26.5 13.0 57.9 41.4	4.715 256 4.729 826 4.744 475 4.759 199 4.773 995 4.788 858	1.87 1.86 1.85 1.85 1.84 1.84	19.52 19.46 19.40 19.34 19.28 19.22	19 19 19 19 18 18	11 07 04 00 56 52	46 58 10 24 38 53
27 28 29 30 Oct. 1	19 19 19 19	17 17 17 17 17	03.02 14.96 27.69 41.21 55.52	-22 22 22 22 -22	41 41 40 40 39	23.2 03.6 42.4 19.6 55.2	4.803 783 4.818 767 4.833 805 4.848 893 4.864 029	1.83 1.82 1.82 1.81 1.81	19.16 19.10 19.05 18.99 18.93	18 18 18 18 18	49 45 41 38 34	09 25 43 01 20

 $\label{eq:JUPITER, 2020} \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^{\text{h}} \, \text{TERRESTRIAL TIME}$

Date		Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	š
Oct.	1 2 3 4 5 6	h 19 19 19 19 19	m 17 18 18 18 19	s 55.52 10.60 26.45 43.08 00.47 18.63	-22 22 22 22 22 22 22	39 39 39 38 38 37	55.2 29.3 01.8 32.7 02.0 29.7	4.864 029 4.879 207 4.894 424 4.909 676 4.924 959 4.940 270		18.93 18.87 18.81 18.75 18.69 18.63	h 18 18 18 18 18	m 34 30 26 23 19 16	s 20 39 60 21 43 06
	7 8 9 10 11 12	19 19 19 19 19	19 19 20 20 21 21	37.54 57.20 17.61 38.76 00.63 23.24	-22 22 22 22 22 22 22	36 36 35 35 34 33	55.8 20.4 43.3 04.7 24.5 42.8	4.955 605 4.970 959 4.986 330 5.001 713 5.017 105 5.032 501	1.77 1.77 1.76 1.76 1.75 1.75	18.58 18.52 18.46 18.41 18.35 18.29	18 18 18 18 17 17	12 08 05 01 58 54	29 53 18 44 11 38
	13 14 15 16 17 18	19 19 19 19 19	21 22 22 23 23 23	46.56 10.59 35.33 00.78 26.92 53.75	-22 22 22 22 22 22 22	32 32 31 30 29 28	59.4 14.4 27.8 39.5 49.5 57.9	5.047 898 5.063 291 5.078 677 5.094 052 5.109 410 5.124 748	1.74 1.74 1.73 1.73 1.72 1.72	18.24 18.18 18.13 18.07 18.02 17.96	17 17 17 17 17 17	51 47 44 40 37 33	05 34 03 33 04 35
	19 20 21 22 23 24	19 19 19 19 19	24 24 25 25 26 26	21.28 49.48 18.36 47.89 18.07 48.89	-22 22 22 22 22 22 22	28 27 26 25 24 23	04.6 09.6 13.0 14.7 14.8 13.2	5.140 063 5.155 348 5.170 602 5.185 820 5.200 997 5.216 132	1.71 1.71 1.70 1.70 1.69 1.69	17.91 17.86 17.80 17.75 17.70 17.65	17 17 17 17 17 17	30 26 23 19 16 12	07 40 13 47 21 57
	25 26 27 28 29 30	19 19 19 19 19	27 27 28 28 29 30	20.34 52.41 25.09 58.38 32.27 06.75	-22 22 22 22 22 22 22	22 21 19 18 17 16	09.9 05.0 58.3 49.9 39.8 28.0	5.231 220 5.246 258 5.261 244 5.276 172 5.291 042 5.305 849	1.68 1.68 1.67 1.67 1.66	17.60 17.55 17.50 17.45 17.40 17.35	17 17 17 16 16 16	09 06 02 59 56 52	32 09 46 24 02 41
Nov.	31 1 2 3 4 5	19 19 19 19 19	30 31 31 32 33 33	41.81 17.45 53.67 30.45 07.78 45.67	-22 22 22 22 22 22 22	15 13 12 11 10 08	14.4 59.1 42.0 23.2 02.7 40.4	5.320 591 5.335 264 5.349 866 5.364 394 5.378 845 5.393 215	1.65 1.65 1.64 1.64 1.63	17.30 17.26 17.21 17.16 17.12 17.07	16 16 16 16 16	49 45 42 39 36 32	20 60 40 22 03 45
	6 7 8 9 10 11	19 19 19 19 19	34 35 35 36 37 37	24.10 03.05 42.54 22.54 03.05 44.06	-22 22 22 22 22 22 21	07 05 04 02 01 59	16.3 50.5 23.0 53.7 22.6 49.7	5.407 503 5.421 704 5.435 817 5.449 837 5.463 763 5.477 590	1.63 1.62 1.62 1.61 1.61	17.02 16.98 16.94 16.89 16.85 16.81	16 16 16 16 16	29 26 22 19 16 13	28 11 55 39 24 09
	12 13 14 15 16	19 19 19 19 19	38 39 39 40 41	25.56 07.56 50.05 33.01 16.44	-21 21 21 21 -21	58 56 55 53 51	15.0 38.4 00.1 19.9 37.8	5.491 316 5.504 938 5.518 451 5.531 854 5.545 143	1.60 1.60 1.59 1.59 1.59	16.76 16.72 16.68 16.64 16.60	16 16 16 16 15	09 06 03 00 57	55 41 28 15 03

 $\label{eq:JUPITER, 2020} \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^{\text{h}} \, \text{TERRESTRIAL TIME}$

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter		meris insit	8
Nov. 16 17 18 19 20 21	h 19 19 19 19 19	m 41 42 42 43 44 45	s 16.44 00.34 44.69 29.48 14.70 00.35	-21 21 21 21 21 21 21	51 49 48 46 44 42	37.8 53.9 08.3 20.8 31.5 40.4	5.545 143 5.558 314 5.571 365 5.584 293 5.597 095 5.609 769	1.59 1.58 1.58 1.57 1.57	16.60 16.56 16.52 16.49 16.45 16.41	h 15 15 15 15 15 15	m 57 53 50 47 44 41	s 03 51 39 28 17 07
22 23 24 25 26 27	19 19 19 19 19	45 46 47 48 48 49	46.40 32.85 19.71 06.95 54.57 42.57	-21 21 21 21 21 21 21	40 38 36 34 32 30	47.5 52.7 56.1 57.7 57.4 55.3	5.622 312 5.634 723 5.646 998 5.659 137 5.671 136 5.682 993	1.56 1.56 1.56 1.55 1.55	16.37 16.34 16.30 16.27 16.23 16.20	15 15 15 15 15 15	37 34 31 28 25 22	57 48 39 30 22 14
28 29 30 Dec. 1 2 3	19 19 19 19 19	50 51 52 52 53 54	30.93 19.66 08.75 58.18 47.96 38.06	-21 21 21 21 21 21 21	28 26 24 22 20 18	51.3 45.4 37.8 28.3 16.9 03.8	5.694 708 5.706 277 5.717 699 5.728 972 5.740 093 5.751 062	1.54 1.54 1.54 1.54 1.53 1.53	16.17 16.13 16.10 16.07 16.04 16.01	15 15 15 15 15 15	19 15 12 09 06 03	07 59 52 46 40 34
4 5 6 7 8 9	19 19 19 19 19	55 56 57 58 58 59	28.50 19.25 10.31 01.67 53.33 45.28	-21 21 21 21 21 21 21	15 13 11 08 06 04	48.8 32.0 13.5 53.1 30.9 06.8	5.761 876 5.772 532 5.783 030 5.793 367 5.803 542 5.813 551	1.53 1.52 1.52 1.52 1.52 1.51	15.98 15.95 15.92 15.89 15.86 15.84	15 14 14 14 14 14	00 57 54 51 48 45	28 23 18 14 09 05
10 11 12 13 14 15	20 20 20 20 20 20 20	00 01 02 03 04 05	37.51 30.03 22.82 15.89 09.21 02.79	-21 20 20 20 20 20 20	01 59 56 54 51 49	40.9 13.2 43.6 12.2 39.0 04.0	5.823 392 5.833 065 5.842 566 5.851 893 5.861 044 5.870 017	1.51 1.51 1.51 1.50 1.50	15.81 15.78 15.76 15.73 15.71 15.68	14 14 14 14 14 14	42 38 35 32 29 26	02 58 55 52 49 47
16 17 18 19 20 21	20 20 20 20 20 20 20	05 06 07 08 09 10	56.62 50.67 44.95 39.45 34.15 29.06	-20 20 20 20 20 20 20	46 43 41 38 35 32	27.2 48.7 08.4 26.4 42.7 57.2	5.878 810 5.887 422 5.895 851 5.904 095 5.912 154 5.920 025	1.50 1.49 1.49 1.49 1.49	15.66 15.64 15.61 15.59 15.57 15.55	14 14 14 14 14 14	23 20 17 14 11 08	45 43 41 39 38 37
22 23 24 25 26 27	20 20 20 20 20 20 20	11 12 13 14 15 16	24.16 19.45 14.92 10.57 06.39 02.38	-20 20 20 20 20 20 20	30 27 24 21 18 15	09.9 20.9 30.2 37.8 43.7 48.0	5.927 708 5.935 202 5.942 505 5.949 617 5.956 537 5.963 263	1.48 1.48 1.48 1.48 1.48	15.53 15.51 15.49 15.47 15.46 15.44	14 14 13 13 13 13	05 02 59 56 53 50	36 35 34 34 34 34
28 29 30 31 32	20 20 20 20 20 20	16 17 18 19 20	58.53 54.83 51.28 47.86 44.58	-20 20 20 20 -20	12 09 06 03 00	50.5 51.4 50.7 48.4 44.5	5.969 796 5.976 133 5.982 275 5.988 220 5.993 967	1.47 1.47 1.47 1.47 1.47	15.42 15.40 15.39 15.37 15.36	13 13 13 13 13	47 44 41 38 35	34 34 34 35 35

 $\begin{array}{c} \textbf{SATURN, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR } 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	e		ioce:	ntric ude		lioce atitu	ntric de	Radius Vector	Dat	te			ntric ude	Helio Lati		Radius Vector
Jan.	7 9	292 292 292 292 292 292 292	38 41 45	56.0 34.0 11.9 49.9 27.9 05.9	0 0 0 0 0 0	03 03 03 02 02 02	" 24.0 14.6 05.1 55.7 46.2 36.8	10.034 334 10.034 133 10.033 931 10.033 729 10.033 526 10.033 322	-	4 6 8 10	295	21 25 29 32	" 12.1 50.5 28.9 07.3 45.8 24.2	0 0 0 0 0 0 0 0	3 51.1 4 00.5 4 10.0 4 19.5 4 28.9 4 38.4	10.024 425 10.024 194 10.023 963 10.023 732 10.023 500 10.023 267
	17 19 21	292 293	56 59 03 07	44.0 22.0 60.0 38.0 16.1 54.1	+0 0 0 0 0	02 02 02 01 01 01	27.3 17.9 08.4 58.9 49.5 40.0	10.033 118 10.032 913 10.032 707 10.032 501 10.032 294 10.032 086		16 18 20 22	295 295 295 295	43 47 50 54	02.6 41.1 19.6 58.1 36.6 15.1	0 0 0 0 0 0 0 0	4 47.9 4 57.3 5 06.8 5 16.3 5 25.7 5 35.2	10.023 034 10.022 800 10.022 565 10.022 330 10.022 094 10.021 857
Feb.	27 29 31	293 293 293	14 18 21 25 29 32	32.2 10.3 48.4 26.5 04.6 42.7	+0 0 0 0 0	01 01 01 01 00 00	30.6 21.1 11.7 02.2 52.8 43.3	10.031 878 10.031 669 10.031 460 10.031 250 10.031 039 10.030 828	May	28 30 2 4	296	05 09 12 16	53.6 32.1 10.7 49.2 27.7 06.3	0 0 0 0 0 0 0 0	5 44.6 5 54.1 6 03.6 6 13.0 6 22.5 6 32.0	10.021 620 10.021 382 10.021 144 10.020 904 10.020 665 10.020 424
	12 14	293	47 50	20.8 58.9 37.1 15.2 53.4 31.6	+0 0 0 +0 -0 0	00 00 00 00 00 00	33.9 24.4 15.0 05.5 04.0 13.4	10.030 616 10.030 403 10.030 190 10.029 976 10.029 762 10.029 546		10 12 14 16	296 296 296 296 296 296	27 31 34 38	44.9 23.5 02.1 40.7 19.3 57.9	0 0 0 0 0 0 0 0	6 41.4 6 50.9 7 00.4 7 09.8 7 19.3 7 28.8	10.020 183 10.019 942 10.019 699 10.019 456 10.019 213 10.018 969
	22 24 26	293 294 294 294 294 294	01 05 09 12	09.7 47.9 26.1 04.3 42.6 20.8	-0 0 0 0 0	00 00 00 00 01 01	22.9 32.3 41.8 51.3 00.7 10.2	10.029 331 10.029 114 10.028 897 10.028 680 10.028 461 10.028 242		22 24 26 28	296	49 52 56 00	36.6 15.2 53.9 32.6 11.3 50.0	0 0 0 0 0 0 0 0	7 38.3 7 47.7 7 57.2 8 06.7 8 16.1 8 25.6	10.018 724 10.018 478 10.018 232 10.017 986 10.017 738 10.017 490
Mar.	1 3 5 7 9 11	294 294 294 294	23 27 30 34	59.0 37.2 15.5 53.8 32.0 10.3	-0 0 0 0 0		19.7 29.1 38.6 48.0 57.5 06.9	10.028 023 10.027 803 10.027 582 10.027 361 10.027 138 10.026 916		3 5 7 9		11 14 18 22	07.4 46.1 24.9 03.7	$\begin{array}{cccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	8 35.1 8 44.5 8 54.0 9 03.4 9 12.9 9 22.4	10.017 242 10.016 992 10.016 742 10.016 492 10.016 241 10.015 989
	15 17 19 21	294 294	45 49 52 56	48.6 26.9 05.2 43.5 21.9 00.2	-0 0 0 0 0	02 02 02 02 02 02 03	16.4 25.9 35.3 44.8 54.3 03.7	10.026 692 10.026 469 10.026 244 10.026 019 10.025 793 10.025 566		15 17 19 21	297 297 297 297	32 36 40 43	21.2 60.0 38.8 17.6 56.4 35.2	0 0 0 0 0 1 0 1	9 31.8 9 41.3 9 50.8 0 00.2 0 09.7 0 19.2	10.015 736 10.015 483 10.015 230 10.014 975 10.014 720 10.014 465
Apr.	27 29 31	295 295 295 295 295 295	07 10 14	38.6 16.9 55.3 33.7 12.1	-0 0 0 0 -0	03 03 03 03 03	13.2 22.7 32.1 41.6 51.1	10.025 339 10.025 112 10.024 883 10.024 654 10.024 425	July	27 29 1	297 298	54 58 02	14.1 52.9 31.8 10.7 49.6	0 1 0 1 0 1	0 28.6 0 38.1 0 47.6 0 57.0 1 06.5	10.014 208 10.013 951 10.013 694 10.013 436 10.013 177

 $\begin{array}{c} \textbf{SATURN, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR } 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	te		ioce:	ntric ude		lioce atitu	ntric de	Radius Vector	Da	te			ntric ude		ioce atitu		Radius Vector	
July	1 3 5 7 9 11	298 298 298 298 298 298 298	05 09 13 16	10.7 49.6 28.5 07.4 46.3 25.2	° -0 0 0 0 0	10 11 11 11 11 11	57.0 06.5 16.0 25.4 34.9 44.3	10.013 436 10.013 177 10.012 917 10.012 657 10.012 396 10.012 135		3 5 7 9		53 57 01 04	" 11.7 51.2 30.6 10.0 49.5 29.0	0 0 0 0	18 18 18 18	" 11.9 21.3 30.8 40.2 49.7 59.1	10.000 87 10.000 58 10.000 30 10.000 01 9.999 72 9.999 43	88 00 1 21
	15 17 19	298 298 298 298 298 298	27 31 35 38	04.2 43.1 22.1 01.1 40.1 19.1	-0 0 0 0 0	11 12 12 12 12 12 12	53.8 03.3 12.7 22.2 31.6 41.1	10.011 873 10.011 610 10.011 347 10.011 083 10.010 819 10.010 553		15 17 19 21	301 301 301 301	15 19 23 26	08.5 48.0 27.5 07.1 46.7 26.2	0 0 0 0	19 19 19 19	08.6 18.0 27.4 36.9 46.3 55.7	9.999 14 9.998 84 9.998 55 9.998 26 9.997 97 9.997 67	19 57 55 71
Aug.	27 29 31 2	298 298	49 53 56 00	58.1 37.1 16.2 55.2 34.3 13.4	-0 0 0 0 0	12 13 13 13 13 13	50.6 00.0 09.5 19.0 28.4 37.8	10.010 288 10.010 021 10.009 754 10.009 486 10.009 218 10.008 949	Nov.	27 29 31 2	301 301 301 301	37 41 45 48	05.8 45.4 25.0 04.6 44.2 23.9	0 0 0	20 20 20 20 20	05.2 14.6 24.0 33.4 42.9 52.3	9.997 38 9.997 08 9.996 79 9.996 49 9.996 19 9.995 90	88 93 96
	12 14	299 299 299 299 299 299	11 15 18 22	52.4 31.6 10.6 49.8 28.9 08.0	-0 0 0 0 0	13 13 14 14 14 14	47.3 56.8 06.2 15.7 25.1 34.6	10.008 679 10.008 409 10.008 138 10.007 867 10.007 595 10.007 322		8 10 12 14	301 302 302 302	59 03 07 10	03.5 43.2 22.9 02.6 42.3 22.0	0 0 0 0	21 21 21 21	01.7 11.2 20.6 30.0 39.4 48.9	9.995 60 9.995 30 9.995 00 9.994 70 9.994 40 9.994 10)5)6)6)6
	22 24 26	299 299 299 299 299 299	33 37 40 44	47.2 26.4 05.5 44.7 24.0 03.1	-0 0 0 0 0	14 14 15 15 15 15	44.1 53.5 03.0 12.4 21.8 31.3	10.007 048 10.006 774 10.006 500 10.006 224 10.005 949 10.005 672		20 22 24 26	302	21 25 29 32	01.7 41.5 21.2 01.0 40.8 20.6	0 0 0	22 22 22 22 22	58.3 07.7 17.1 26.5 36.0 45.4	9.993 80 9.993 50 9.993 19 9.992 89 9.992 59 9.992 28	00 08 04 00
Sept.	1 3 5 7	299 299 299 300 300 300	55 59 02 06	42.4 21.6 00.9 40.1 19.4 58.7	-0 0 0 0 0	15 15 15 16 16 16	40.8 50.2 59.7 09.1 18.6 28.0	10.005 395 10.005 117 10.004 839 10.004 560 10.004 280 10.004 000	Dec.	2 4 6 8	302 302 302 302 302 302	43 47 50 54	00.4 40.3 20.1 60.0 39.9 19.7	0 0 0 0	23 23 23 23	54.8 04.2 13.6 23.0 32.5 41.9	9.991 98 9.991 67 9.991 36 9.991 06 9.990 75 9.990 44	74 58 50 53
	13 15 17 19	300 300 300 300 300 300	17 20 24 28	38.0 17.3 56.7 36.0 15.3 54.7	$\begin{array}{c} 0 \\ 0 \\ 0 \end{array}$	16 16 16 17 17	37.5 46.9 56.3 05.8 15.2 24.7	10.003 719 10.003 437 10.003 155 10.002 872 10.002 589 10.002 305		14 16 18 20	303 303 303 303	05 09 12 16	59.6 39.5 19.5 59.4 39.4 19.3	0 0 0 0	24 24 24 24	51.3 00.7 10.1 19.5 28.9 38.3	9.990 13 9.989 82 9.989 51 9.989 20 9.988 89 9.988 58	26 .6 05 04
Oct.	25 27 29	300 300 300 300 300	39 42 46	34.1 13.5 52.9 32.3 11.7	-0 0 0 0 -0	17 17 17 18 18	34.1 43.6 53.0 02.5 11.9	10.002 021 10.001 735 10.001 449 10.001 163 10.000 876		26 28 30		27 31 34	59.3 39.3 19.3 59.4 39.4	0 0 0	24 25 25	47.7 57.1 06.5 15.9 25.3	9.988 26 9.987 95 9.987 64 9.987 32 9.987 01	66 12 28

SATURN, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	е	Geo	paren centr ngitud	ric	Geo	paren ocentr atitude	ic	Date	e	Geo	paren ocentr ngituc	ric	Ge	pparen ocentr atitude	ic
Jan.	0 1 2 3 4 5	291 291 291 291 291 291	16 23 30 37 44 51	40.9 41.6 43.1 45.4 48.4 52.1	0 0 0 0 0 0	03 03 03 02 02 02	10.8 06.4 02.0 57.7 53.3 49.0	Feb.	15 16 17 18 19 20	296 296 296 296 297 297	36 43 49 56 02 08	53.6 23.4 51.1 16.4 39.3 59.8	-0 0 0 0 0	00 00 00 00 00 00	77.7 12.1 16.4 20.8 25.2 29.6
	6 7 8 9 10 11	291 292 292 292 292 292 292	58 06 13 20 27 34	56.4 01.3 06.6 12.4 18.6 25.0	+0 0 0 0 0	02 02 02 02 02 02 02	44.6 40.3 36.0 31.7 27.4 23.1		21 22 23 24 25 26	297 297 297 297 297 297	15 21 27 33 40 46	17.7 33.0 45.6 55.3 02.3 06.3	-0 0 0 0 0	00 00 00 00 00 00	34.1 38.5 42.9 47.4 51.8 56.3
	12 13 14 15 16 17	292 292 292 293 293 293	41 48 55 02 09 17	31.7 38.8 43.3 50.9 57.5 03.9	+0 0 0 0 0	02 02 02 02 02 02 01	18.8 14.5 10.3 05.9 01.6 57.3	Mar.	27 28 29 1 2 3	297 297 298 298 298 298	52 58 04 09 15 21	07.3 05.4 00.4 52.3 41.0 26.5	-0 0 0 0 0	01 01 01 01 01 01	00.7 05.2 09.7 14.1 18.6 23.1
	18 19 20 21 22 23	293 293 293 293 293 293	24 31 38 45 52 59	10.2 16.2 21.9 27.2 32.1 36.4	+0 0 0 0 0	01 01 01 01 01 01	53.0 48.7 44.4 40.1 35.8 31.5		4 5 6 7 8 9	298 298 298 298 298 298	27 32 38 43 49 54	08.7 47.6 23.0 54.9 23.2 47.8	-0 0 0 0 0	01 01 01 01 01 01	27.7 32.2 36.7 41.3 45.8 50.4
	24 25 26 27 28 29	294 294 294 294 294 294	06 13 20 27 34 41	40.1 43.1 45.2 46.4 46.6 45.8	+0 0 0 0 0	01 01 01 01 01 01	27.2 22.9 18.6 14.3 10.0 05.7		10 11 12 13 14 15	299 299 299 299 299 299	00 05 10 15 20 25	08.7 25.9 39.3 49.0 54.9 56.8	-0 0 0 0 0	01 01 02 02 02 02	55.0 59.6 04.2 08.9 13.5 18.2
Feb.	30 31 1 2 3 4	294 294 295 295 295 295	48 55 02 09 16 23	43.9 40.9 36.7 31.1 24.3 16.1	+0 0 0 0 0	01 00 00 00 00 00	01.4 57.1 52.8 48.5 44.2 39.9		16 17 18 19 20 21	299 299 299 299 299 299	30 35 40 45 50 54	54.8 48.8 38.6 24.2 05.5 42.5	-0 0 0 0 0	02 02 02 02 02 02 02	22.9 27.6 32.3 37.1 41.8 46.6
	5 6 7 8 9 10	295 295 295 295 295 296	30 36 43 50 57 03	06.4 55.3 42.5 28.0 11.8 53.6	+0 0 0 0 0	00 00 00 00 00 00	35.6 31.3 27.0 22.7 18.4 14.1		22 23 24 25 26 27	299 300 300 300 300 300 300	59 03 08 12 16 20	15.1 43.2 06.8 25.8 40.3 50.1	-0 0 0 0 0	02 02 03 03 03 03	51.3 56.1 00.9 05.7 10.6 15.4
	11 12 13 14 15	296 296 296 296 296	10 17 23 30 36	33.6 11.6 47.7 21.7 53.6	+0 0 +0 -0 -0	00 00 00 00 00	09.7 05.4 01.0 03.3 07.7	Apr.	28 29 30 31 1	300 300 300 300 300	24 28 32 36 40	55.2 55.7 51.3 42.2 28.2	-0 0 0 0 -0	03 03 03 03 03	20.3 25.1 30.0 34.9 39.9

SATURN, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	е	Geo	paren centr ngituc	ic	Ge	paren ocentr atitude	ic	Date	e	Geo	parer ocentr ngituc	ric	Ge	pparen ocentr atitude	ric
Apr.	1 2 3 4 5 6	300 300 300 300 300 300 300	40 44 47 51 54 58	28.2 09.3 45.3 16.4 42.3 03.1	-0 0 0 0 0	03 03 03 03 03 04	39.9 44.8 49.7 54.7 59.7 04.7	May	17 18 19 20 21 22	301 301 301 301 301 301	55 55 54 53 52 51	45.1 08.0 25.0 36.4 42.0 42.0	-0 0 0 0 0	07 07 07 07 08 08	45.3 51.0 56.7 02.5 08.2 13.9
	7 8 9 10 11 12	301 301 301 301 301 301	01 04 07 10 13 16	18.8 29.2 34.6 34.7 29.7 19.4	-0 0 0 0 0	04 04 04 04 04 04	09.7 14.8 19.9 25.0 30.1 35.2		23 24 25 26 27 28	301 301 301 301 301 301	50 49 48 46 45 43	36.3 24.9 08.0 45.6 17.6 44.1	-0 0 0 0 0	08 08 08 08 08	19.7 25.4 31.2 37.0 42.8 48.5
	13 14 15 16 17 18	301 301 301 301 301 301	19 21 24 26 29 31	03.7 42.7 16.2 44.2 06.6 23.4	-0 0 0 0 0	04 04 04 04 05 05	40.4 45.5 50.7 55.9 01.1 06.4	June	29 30 31 1 2 3	301 301 301 301 301 301	42 40 38 36 34 32	05.1 20.7 30.9 35.9 35.6 30.3	-0 0 0 0 0	08 09 09 09 09	54.3 00.2 06.0 11.8 17.6 23.5
	19 20 21 22 23 24	301 301 301 301 301 301	33 35 37 39 41 43	34.6 40.2 40.1 34.3 22.8 05.6	-0 0 0 0 0	05 05 05 05 05 05	11.6 16.9 22.2 27.5 32.8 38.1		4 5 6 7 8 9	301 301 301 301 301 301	30 28 25 23 20 18	19.9 04.6 44.3 19.2 49.2 14.4	-0 0 0 0 0	09 09 09 09 09	29.3 35.2 41.1 46.9 52.8 58.7
	25 26 27 28 29 30	301 301 301 301 301 301	44 46 47 48 50 51	42.7 14.0 39.6 59.4 13.4 21.5	-0 0 0 0 0	05 05 05 05 06 06	43.5 48.8 54.2 59.6 05.0 10.4		10 11 12 13 14 15	301 301 301 301 301 301	15 12 10 07 04 01	34.8 50.5 01.6 08.1 10.1 07.8	-0 0 0 0 0	10 10 10 10 10 10	04.5 10.4 16.3 22.1 28.0 33.8
May	1 2 3 4 5 6	301 301 301 301 301 301	52 53 54 54 55 56	23.8 20.2 10.7 55.3 34.0 07.0	-0 0 0 0 0	06 06 06 06 06 06	15.9 21.3 26.8 32.3 37.8 43.4		16 17 18 19 20 21	300 300 300 300 300 300 300	58 54 51 48 44 41	01.3 50.5 35.7 16.9 54.3 27.9	-0 0 0 0 0	10 10 10 10 11 11	39.7 45.5 51.3 57.1 02.9 08.7
	7 8 9 10 11 12	301 301 301 301 301 301	56 56 57 57 57 57	34.1 55.5 11.1 20.8 24.8 22.9	-0 0 0 0 0	06 06 07 07 07 07	48.9 54.5 00.1 05.7 11.3 17.0		22 23 24 25 26 27	300 300 300 300 300 300 300	37 34 30 27 23 19	57.7 24.0 46.8 06.1 22.2 35.0	-0 0 0 0 0	11 11 11 11 11 11	14.5 20.3 26.1 31.9 37.6 43.4
	13 14 15 16 17	301 301 301 301 301	57 57 56 56 55	15.1 01.4 41.8 16.4 45.1	-0 0 0 0 -0	07 07 07 07 07	22.6 28.3 33.9 39.6 45.3	July	28 29 30 1 2	300 300 300 300 299	15 11 07 03 59	44.8 51.7 55.8 57.3 56.3	-0 0 0 0 -0	11 11 12 12 12	49.1 54.8 00.6 06.3 12.0

SATURN, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren ocentr ngituc	ric	Geo	paren ocentr ntitude	ic	Date	e	Geo	paren ocentr ngituc	ric	Ge	pparer ocentr atitude	ic
July	1 2 3 4 5 6	300 299 299 299 299 299	03 59 55 51 47 43	57.3 56.3 53.0 47.3 39.4 29.5	-0 0 0 0 0	12 12 12 12 12 12 12	" 06.3 12.0 17.7 23.3 29.0 34.6	Aug.	16 17 18 19 20 21	296 296 296 296 296 296 296	49 45 41 38 34 31	" 16.2 35.9 59.0 25.5 55.6 29.4	-0 0 0 0 0	16 16 16 16 16 16	02.3 06.7 11.0 15.3 19.6 23.9
	7 8 9 10 11 12	299 299 299 299 299 299	39 35 30 26 22 17	17.5 03.6 47.9 30.6 11.7 51.5	-0 0 0 0 0	12 12 12 12 13 13	40.2 45.8 51.4 56.9 02.5 08.0		22 23 24 25 26 27	296 296 296 296 296 296	28 24 21 18 15 12	07.1 48.7 34.5 24.4 18.7 17.3	-0 0 0 0 0	16 16 16 16 16	28.1 32.2 36.4 40.5 44.6 48.6
	13 14 15 16 17 18	299 299 299 299 298 298	13 09 04 00 55 51	30.0 07.4 43.9 19.6 54.6 29.1	-0 0 0 0 0	13 13 13 13 13 13	13.4 18.9 24.3 29.7 35.1 40.4	Sept.	28 29 30 31 1 2	296 296 296 296 295 295	09 06 03 00 58 55	20.4 27.9 40.1 56.8 18.1 44.2	-0 0 0 0 0	16 16 17 17 17	52.6 56.6 00.6 04.5 08.3 12.2
	19 20 21 22 23 24	298 298 298 298 298 298	47 42 38 33 29 24	03.2 37.0 10.7 44.3 18.0 51.9	-0 0 0 0 0	13 13 13 14 14 14	45.7 51.0 56.3 01.5 06.7 11.9		3 4 5 6 7 8	295 295 295 295 295 295 295	53 50 48 46 44 42	15.2 51.0 31.8 17.6 08.6 04.8	-0 0 0 0 0	17 17 17 17 17 17	16.0 19.7 23.5 27.1 30.8 34.4
	25 26 27 28 29 30	298 298 298 298 298 297	20 16 11 07 02 58	26.2 01.1 36.7 13.3 50.8 29.5	-0 0 0 0 0	14 14 14 14 14 14	17.0 22.2 27.3 32.3 37.4 42.4		9 10 11 12 13 14	295 295 295 295 295 295 295	40 38 36 34 33 31	06.3 13.1 25.3 43.0 06.1 34.7	-0 0 0 0 0	17 17 17 17 17 17	38.0 41.6 45.1 48.6 52.1 55.5
Aug.	31 1 2 3 4 5	297 297 297 297 297 297	54 49 45 41 37 32	09.5 50.9 33.8 18.2 04.4 52.3	-0 0 0 0 0	14 14 14 15 15 15	47.4 52.3 57.3 02.1 07.0 11.8		15 16 17 18 19 20	295 295 295 295 295 295 295	30 28 27 26 25 24	08.8 48.5 33.9 24.9 21.7 24.4	-0 0 0 0 0	17 18 18 18 18 18	58.9 02.3 05.7 09.0 12.3 15.6
	6 7 8 9 10 11	297 297 297 297 297 297	28 24 20 16 12 08	42.2 34.1 28.2 24.7 23.6 25.2	-0 0 0 0 0	15 15 15 15 15 15	16.6 21.3 26.0 30.7 35.3 39.9		21 22 23 24 25 26	295 295 295 295 295 295 295	23 22 22 21 21 20	32.9 47.3 07.7 34.0 06.2 44.3	-0 0 0 0 0	18 18 18 18 18 18	18.9 22.1 25.3 28.5 31.7 34.8
	12 13 14 15 16	297 297 296 296 296	04 00 56 52 49	29.4 36.6 46.7 59.9 16.2	-0 0 0 0 -0	15 15 15 15 16	44.5 49.0 53.5 57.9 02.3	Oct.	27 28 29 30 1	295 295 295 295 295	20 20 20 20 20 20	28.2 18.1 13.9 15.6 23.2	-0 0 0 0 -0	18 18 18 18 18	38.0 41.1 44.1 47.2 50.2

SATURN, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren centr ngitud	ic	Geo	paren ocentr ititude	ic	Date	e	Geo	paren ocentr ngituc	ric	Ge	pparer ocentratitude	ric
Oct.	1 2 3 4 5 6	295 295 295 295 295 295 295	20 20 20 21 21 22	23.2 36.7 56.2 21.7 53.2 30.7	0 0 0 0 0	18 18 18 18 19	50.2 53.2 56.2 59.2 02.1 05.0	Nov.	16 17 18 19 20 21	297 297 297 297 297 297	10 14 19 23 28 33	" 04.2 31.2 02.9 39.0 19.6 04.4	-0 0 0 0 0	20 21 21 21 21 21 21	57.3 00.0 02.8 05.5 08.3 11.0
	7 8 9 10 11 12	295 295 295 295 295 295 295	23 24 24 26 27 28	14.2 03.7 59.1 00.5 07.9 21.1	-0 0 0 0 0	19 19 19 19 19	07.9 10.8 13.7 16.5 19.4 22.2		22 23 24 25 26 27	297 297 297 297 297 298	37 42 47 52 57 03	53.5 46.8 44.3 45.8 51.4 01.0	-0 0 0 0 0	21 21 21 21 21 21 21	13.8 16.6 19.4 22.2 25.0 27.8
	13 14 15 16 17 18	295 295 295 295 295 295 295	29 31 32 34 35 37	40.3 05.3 36.2 13.0 55.7 44.4	-0 0 0 0 0	19 19 19 19 19	25.0 27.8 30.6 33.4 36.2 39.0	Dec.	28 29 30 1 2 3	298 298 298 298 298 298	08 13 18 24 29 35	14.5 32.0 53.3 18.3 47.1 19.5	-0 0 0 0 0	21 21 21 21 21 21 21	30.6 33.4 36.3 39.1 42.0 44.9
	19 20 21 22 23 24	295 295 295 295 295 295 295	39 41 43 45 48 50	38.9 39.3 45.6 57.6 15.2 38.6	-0 0 0 0 0	19 19 19 19 19	41.8 44.5 47.3 50.0 52.7 55.5		4 5 6 7 8 9	298 298 298 298 299 299	40 46 52 58 03 09	55.5 35.0 17.8 04.1 53.6 46.4	-0 0 0 0 0	21 21 21 21 21 21 22	47.8 50.7 53.7 56.6 59.6 02.6
	25 26 27 28 29 30	295 295 295 296 296 296	53 55 58 01 03 06	07.4 41.9 21.8 07.2 58.1 54.4	-0 0 0 0 0	19 20 20 20 20 20 20	58.2 00.9 03.6 06.3 09.0 11.7		10 11 12 13 14 15	299 299 299 299 299 299	15 21 27 33 39 46	42.3 41.5 43.7 49.1 57.5 08.8	-0 0 0 0 0	22 22 22 22 22 22 22	05.6 08.7 11.7 14.8 17.9 21.0
Nov.	31 1 2 3 4 5	296 296 296 296 296 296	09 13 16 19 22 26	56.1 03.2 15.7 33.4 56.4 24.6	-0 0 0 0 0	20 20 20 20 20 20 20	14.3 17.0 19.7 22.3 25.0 27.7		16 17 18 19 20 21	299 299 300 300 300 300 300	52 58 04 11 17 24	23.0 39.8 59.2 21.2 45.6 12.5	-0 0 0 0 0	22 22 22 22 22 22 22	24.2 27.3 30.5 33.7 36.9 40.2
	6 7 8 9 10 11	296 296 296 296 296 296	29 33 37 41 45 49	58.0 36.5 20.0 08.4 01.8 00.1	-0 0 0 0 0	20 20 20 20 20 20 20	30.3 33.0 35.7 38.4 41.0 43.7		22 23 24 25 26 27	300 300 300 300 300 300 301	30 37 43 50 57 03	41.6 13.0 46.7 22.5 00.5 40.5	-0 0 0 0 0	22 22 22 22 22 22 23	43.5 46.7 50.0 53.4 56.7 00.1
	12 13 14 15 16	296 296 297 297 297	53 57 01 05 10	03.3 11.3 24.1 41.8 04.2	-0 0 0 0 -0	20 20 20 20 20 20	46.4 49.1 51.8 54.6 57.3		28 29 30 31 32	301 301 301 301 301	10 17 23 30 37	22.5 06.4 52.1 39.6 28.7	-0 0 0 0 -0	23 23 23 23 23	03.5 06.9 10.4 13.9 17.4

 $\textbf{SATURN, 2020} \\ \textbf{RIGHT ASCENSION AND DECLINATION FOR 0}^h \textbf{TERRESTRIAL TIME}$

Date	e	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter		emeris ansit	8
Jan.	0 1 2 3 4 5	h 19 19 19 19 19	m 31 32 32 33 33 34	s 57.68 27.54 57.46 27.42 57.43 27.48	-21 21 21 21 21 21 21	42 41 40 38 37 36	" 04.3 03.1 01.5 59.3 56.8 53.7	10.993 032 10.996 391 10.999 491 11.002 334 11.004 917 11.007 241	0.80 0.80 0.80 0.80 0.80 0.80	6.72 6.71 6.71 6.71 6.71 6.71	h 12 12 12 12 12 12	m 53 50 46 43 39 36	s 35 09 43 17 51 25
	6 7 8 9 10 11	19 19 19 19 19	34 35 35 36 36 37	57.56 27.68 57.82 27.99 58.17 28.37	-21 21 21 21 21 21 21	35 34 33 32 31 30	50.2 46.2 41.9 37.1 31.9 26.4	11.009 306 11.011 111 11.012 657 11.013 943 11.014 969 11.015 735	0.80 0.80 0.80 0.80 0.80 0.80	6.71 6.70 6.70 6.70 6.70 6.70	12 12 12 12 12 12	32 29 26 22 19	59 33 07 41 15 49
	12 13 14 15 16 17	19 19 19 19 19	37 38 38 39 39 40	58.58 28.80 58.84 29.09 59.26 29.42	-21 21 21 21 21 21	29 28 27 26 24 23	20.5 14.2 07.8 00.9 53.7 46.1	11.016 242 11.016 488 11.016 474 11.016 200 11.015 665 11.014 869	0.80 0.80 0.80 0.80 0.80	6.70 6.70 6.70 6.70 6.70 6.70	12 12 12 12 11 11	12 08 05 02 58 55	23 57 31 06 40 14
	18 19 20 21 22 23	19 19 19 19 19	40 41 41 42 42 43	59.54 29.65 59.72 29.77 59.77 29.73	-21 21 21 21 21 21	22 21 20 19 18 16	38.2 29.9 21.4 12.7 03.7 54.4	11.013 811 11.012 493 11.010 913 11.009 072 11.006 969 11.004 606	0.80 0.80 0.80 0.80 0.80 0.80	6.70 6.70 6.70 6.71 6.71 6.71	11 11 11 11 11 11	51 48 44 41 38 34	48 22 56 30 04 38
	24 25 26 27 28 29	19 19 19 19 19	43 44 44 45 45 46	59.63 29.47 59.25 28.95 58.58 28.13	-21 21 21 21 21 21 21	15 14 13 12 11 09	45.0 35.4 25.6 15.6 05.5 55.3	11.001 983 10.999 100 10.995 958 10.992 558 10.988 901 10.984 988	0.80 0.80 0.80 0.80 0.80 0.80	6.71 6.71 6.71 6.72 6.72 6.72	11 11 11 11 11	31 27 24 20 17 13	11 45 19 52 26 59
Feb.	30 31 1 2 3 4	19 19 19 19 19	46 47 47 48 48 49	57.59 26.97 56.25 25.43 54.52 23.50	-21 21 21 21 21 21 21	08 07 06 05 04 02	44.8 34.3 23.7 12.9 02.1 51.2	10.980 820 10.976 399 10.971 726 10.966 802 10.961 629 10.956 208	0.80 0.80 0.80 0.80 0.80 0.80	6.72 6.73 6.73 6.73 6.73 6.74	11 11 11 11 10 10	10 07 03 00 56 53	33 06 39 12 45 18
	5 6 7 8 9 10	19 19 19 19 19	49 50 50 51 51 52	52.37 21.12 49.76 18.27 46.65 14.89	-21 21 20 20 20 20 20	01 00 59 58 56 55	40.3 29.4 18.5 07.7 56.9 46.1	10.950 541 10.944 630 10.938 476 10.932 081 10.925 446 10.918 573	0.80 0.80 0.80 0.80 0.80 0.81	6.74 6.74 6.75 6.75 6.76 6.76	10 10 10 10 10 10	49 46 42 39 36 32	51 24 56 28 01 33
	11 12 13 14 15	19 19 19 19	52 53 53 54 54	42.99 10.95 38.75 06.41 33.92	-20 20 20 20 20 -20	54 53 52 51 49	35.5 24.9 14.4 04.0 53.6	10.911 464 10.904 119 10.896 541 10.888 730 10.880 689	0.81 0.81 0.81 0.81 0.81	6.77 6.77 6.77 6.78 6.78	10 10 10 10 10	29 25 22 18 15	05 37 08 40 11

SATURN, 2020 RIGHT ASCENSION AND DECLINATION FOR 0^{h} TERRESTRIAL TIME

Date	App Right A	parei Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meri: insit	s
Feb. 15 16 17 18 19 20	h 19 19 19 19 19	m 54 55 55 55 56 56	s 33.92 01.27 28.46 55.48 22.34 49.01	-20 20 20 20 20 20 20 20	49 48 47 46 45 44	53.6 43.5 33.5 23.6 14.1 04.7	10.880 689 10.872 417 10.863 918 10.855 193 10.846 244 10.837 072	0.81 0.81 0.81 0.81 0.81 0.81	6.78 6.79 6.79 6.80 6.81 6.81	h 10 10 10 10 10 9	m 15 11 08 04 01 57	s 11 43 14 45 15 46
21 22 23 24 25 26	19 19 19 19 19	57 57 58 58 58 59	15.49 41.79 07.88 33.78 59.47 24.96	-20 20 20 20 20 20 20	42 41 40 39 38 37	55.6 46.8 38.3 30.1 22.2 14.6	10.827 681 10.818 071 10.808 247 10.798 209 10.787 961 10.777 506	0.82	6.82 6.82 6.83 6.84 6.84	9 9 9 9 9	54 50 47 43 40 36	16 46 16 46 16 45
27 28 29 Mar. 1 2 3	19 20 20 20 20 20 20	59 00 00 01 01 01	50.22 15.28 40.11 04.72 29.11 53.26	-20 20 20 20 20 20 20	36 35 33 32 31 30	07.4 00.5 54.1 48.0 42.4 37.2	10.766 846 10.755 984 10.744 924 10.733 667 10.722 217 10.710 577	0.82 0.82 0.82 0.82 0.82 0.82	6.86 6.87 6.88 6.88 6.89	9 9 9 9 9	33 29 26 22 19 15	14 43 12 40 09 37
4 5 6 7 8 9	20 20 20 20 20 20 20	02 02 03 03 03 04	17.18 40.86 04.30 27.48 50.41 13.08	-20 20 20 20 20 20 20	29 28 27 26 25 24	32.5 28.3 24.6 21.5 18.9 17.0	10.698 751 10.686 741 10.674 550 10.662 181 10.649 639 10.636 925	0.82 0.82 0.82 0.82 0.83 0.83	6.90 6.91 6.92 6.92 6.93 6.94	9 9 9 9 8 8	12 08 04 01 57 54	04 32 59 26 53 20
10 11 12 13 14 15	20 20 20 20 20 20 20	04 04 05 05 06 06	35.49 57.63 19.51 41.11 02.45 23.52	-20 20 20 20 20 20 20	23 22 21 20 19 18	15.6 14.8 14.5 14.9 16.0 17.7	10.624 042 10.610 993 10.597 782 10.584 410 10.570 880 10.557 196		6.95 6.96 6.97 6.97 6.98 6.99	8 8 8 8 8	50 47 43 40 36 32	46 12 38 03 28 53
16 17 18 19 20 21	20 20 20 20 20 20 20	06 07 07 07 08 08	44.30 04.80 25.01 44.93 04.54 23.84	-20 20 20 20 20 20 20	17 16 15 14 13 12	20.0 23.2 27.0 31.7 37.1 43.3	10.543 361 10.529 377 10.515 248 10.500 978 10.486 569 10.472 027	0.83 0.84 0.84 0.84 0.84	7.00 7.01 7.02 7.03 7.04 7.05	8 8 8 8 8	29 25 22 18 14 11	18 42 07 30 54 17
22 23 24 25 26 27	20 20 20 20 20 20 20	08 09 09 09 09 10	42.84 01.52 19.89 37.94 55.66 13.06	-20 20 20 20 20 20 20	11 10 10 09 08 07	50.3 58.2 06.9 16.4 26.8 38.1	10.457 353 10.442 552 10.427 629 10.412 586 10.397 429 10.382 161	0.84	7.06 7.07 7.08 7.09 7.10 7.11	8 8 8 7 7 7	07 04 00 56 53 49	40 02 25 47 08 30
28 29 30 31 Apr. 1	20 20 20 20 20 20	10 10 11 11 11	30.14 46.88 03.30 19.37 35.11	-20 20 20 20 -20	06 06 05 04 03	50.3 03.4 17.5 32.5 48.5	10.366 786 10.351 308 10.335 732 10.320 063 10.304 303	0.85	7.12 7.13 7.14 7.15 7.16	7 7 7 7 7	45 42 38 34 31	51 11 32 52 11

 $\textbf{SATURN, 2020} \\ \textbf{RIGHT ASCENSION AND DECLINATION FOR 0}^h \textbf{TERRESTRIAL TIME}$

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter		meris ınsit	S
Apr. 1 2 3 4 5 6	h 20 20 20 20 20 20	m 11 11 12 12 12 12	s 35.11 50.51 05.55 20.25 34.59 48.57	-20 20 20 20 20 20 20 20	03 03 02 01 01 00	48.5 05.6 23.6 42.7 02.9 24.1	10.304 303 10.288 457 10.272 531 10.256 527 10.240 449 10.224 303	0.85 0.85 0.86 0.86 0.86	7.16 7.18 7.19 7.20 7.21 7.22	h 7 7 7 7 7	m 31 27 23 20 16 12	s 11 30 49 08 26 44
7 8 9 10 11 12	20 20 20 20 20 20 20	13 13 13 13 13	02.20 15.46 28.37 40.92 53.10 04.92	-19 19 19 19 19	59 59 58 57 57 56	46.4 09.8 34.2 59.7 26.2 54.0	10.208 092 10.191 818 10.175 488 10.159 103 10.142 668 10.126 187	0.86 0.86 0.86 0.87 0.87	7.23 7.24 7.25 7.27 7.28 7.29	7 7 7 6 6 6	09 05 01 57 54 50	02 19 36 52 08 24
13 14 15 16 17 18	20 20 20 20 20 20 20	14 14 14 14 14 15	16.37 27.45 38.15 48.47 58.40 07.94	-19 19 19 19 19	56 55 55 54 54 54	22.8 52.9 24.2 56.6 30.3 05.2	10.109 664 10.093 102 10.076 507 10.059 882 10.043 232 10.026 562	0.87 0.87 0.87 0.87 0.88 0.88	7.30 7.31 7.33 7.34 7.35 7.36	6 6 6 6 6	46 42 39 35 31 27	39 54 09 23 37 51
19 20 21 22 23 24	20 20 20 20 20 20 20	15 15 15 15 15 15	17.10 25.86 34.23 42.21 49.79 56.98	-19 19 19 19 19	53 53 52 52 52 52 52	41.3 18.6 57.2 37.0 18.0 00.3	10.009 876 9.993 178 9.976 475 9.959 769 9.943 066 9.926 372	0.88 0.88 0.88 0.88 0.89	7.37 7.39 7.40 7.41 7.42 7.44	6 6 6 6 6	24 20 16 12 08 05	04 16 29 41 52 03
25 26 27 28 29 30	20 20 20 20 20 20 20	16 16 16 16 16	03.77 10.17 16.16 21.76 26.96 31.75	-19 19 19 19 19	51 51 51 51 50 50	43.9 28.8 14.9 02.4 51.1 41.2	9.909 690 9.893 026 9.876 384 9.859 770 9.843 187 9.826 642	0.89 0.89 0.89 0.89 0.89	7.45 7.46 7.47 7.49 7.50 7.51	6 5 5 5 5 5 5	01 57 53 49 45 42	14 24 34 44 53 02
May 1 2 3 4 5 6	20 20 20 20 20 20 20	16 16 16 16 16	36.14 40.13 43.70 46.87 49.64 52.00	-19 19 19 19 19	50 50 50 50 50 50	32.7 25.4 19.5 14.9 11.6 09.6	9.810 138 9.793 681 9.777 274 9.760 923 9.744 631 9.728 402	0.90 0.90 0.90 0.90 0.90 0.90	7.52 7.54 7.55 7.56 7.58 7.59	5 5 5 5 5 5	38 34 30 26 22 18	10 18 26 33 40 46
7 8 9 10 11 12	20 20 20 20 20 20 20	16 16 16 16 16	53.96 55.52 56.69 57.45 57.81 57.77	-19 19 19 19 19	50 50 50 50 50 50	08.9 09.5 11.4 14.7 19.3 25.2	9.712 242 9.696 153 9.680 140 9.664 208 9.648 360 9.632 602	0.91 0.91 0.91 0.91 0.91	7.60 7.61 7.63 7.64 7.65 7.66	5 5 5 5 4 4	14 10 07 03 59 55	52 58 03 07 12 16
13 14 15 16 17	20 20 20 20 20 20	16 16 16 16 16	57.32 56.47 55.20 53.54 51.47	-19 19 19 19 -19	50 50 50 51 51	32.5 41.1 51.0 02.3 14.8	9.616 937 9.601 370 9.585 906 9.570 549 9.555 305	0.91 0.92 0.92 0.92 0.92	7.68 7.69 7.70 7.71 7.73	4 4 4 4	51 47 43 39 35	19 22 25 28 30

 $\textbf{SATURN, 2020} \\ \textbf{RIGHT ASCENSION AND DECLINATION FOR 0}^h \textbf{TERRESTRIAL TIME}$

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris ınsit	S
May 17 18 19 20 21 22	h 20 20 20 20 20 20	m 16 16 16 16 16	s 51.47 48.99 46.12 42.85 39.18 35.12	-19 19 19 19 19	51 51 51 52 52 52 52	14.8 28.7 43.8 00.3 17.9 36.9	9.555 305 9.540 178 9.525 172 9.510 293 9.495 545 9.480 933	0.92 0.92 0.92 0.92 0.93 0.93	7.73 7.74 7.75 7.76 7.77 7.79	h 4 4 4 4 4	m 35 31 27 23 19 15	s 30 31 32 33 33 33
23 24 25 26 27 28	20 20 20 20 20 20 20	16 16 16 16 16	30.67 25.83 20.61 15.00 09.01 02.64	-19 19 19 19 19	52 53 53 54 54 54	57.1 18.6 41.4 05.4 30.6 57.1	9.466 462 9.452 136 9.437 961 9.423 940 9.410 078 9.396 379	0.93 0.93 0.93	7.80 7.81 7.82 7.83 7.84 7.86	4 4 4 3 3 3	11 07 03 59 55 51	33 32 31 29 28 25
29 30 31 June 1 2 3	20 20 20 20 20 20 20	15 15 15 15 15 15	55.89 48.76 41.26 33.40 25.17 16.59	-19 19 19 19 19	55 55 56 56 57 58	24.8 53.7 23.8 55.0 27.3 00.8	9.382 849 9.369 490 9.356 307 9.343 304 9.330 484 9.317 851	0.94 0.94	7.87 7.88 7.89 7.90 7.91 7.92	3 3 3 3 3 3	47 43 39 35 31 27	23 19 16 12 08 04
4 5 6 7 8 9	20 20 20 20 20 20 20	15 14 14 14 14 14	07.67 58.39 48.78 38.83 28.54 17.92	-19 19 19 20 20 20	58 59 59 00 01 01	35.3 10.8 47.5 25.2 04.0 43.8	9.305 409 9.293 160 9.281 110 9.269 260 9.257 615 9.246 178	0.95	7.93 7.94 7.95 7.96 7.97 7.98	3 3 3 3 3 3	22 18 14 10 06 02	59 54 48 42 36 30
10 11 12 13 14 15	20 20 20 20 20 20 20	14 13 13 13 13 13	06.96 55.68 44.08 32.15 19.92 07.38	-20 20 20 20 20 20 20	02 03 03 04 05 06	24.7 06.5 49.3 33.0 17.6 03.2	9.234 953 9.223 944 9.213 154 9.202 588 9.192 248 9.182 138	0.95 0.95 0.95 0.96 0.96	7.99 8.00 8.01 8.02 8.03 8.04	2 2 2 2 2 2 2	58 54 50 46 41 37	23 16 08 00 52 44
16 17 18 19 20 21	20 20 20 20 20 20 20	12 12 12 12 12 12	54.54 41.42 28.00 14.31 00.35 46.13	-20 20 20 20 20 20 20	06 07 08 09 10 10	49.5 36.8 24.8 13.6 03.2 53.5	9.172 262 9.162 624 9.153 228 9.144 075 9.135 171 9.126 517	0.96 0.96 0.96 0.96 0.96	8.05 8.06 8.06 8.07 8.08 8.09	2 2 2 2 2 2 2	33 29 25 21 16 12	35 26 17 07 57 47
22 23 24 25 26 27	20 20 20 20 20 20 20	11 11 11 10 10	31.65 16.91 01.93 46.71 31.25 15.57	-20 20 20 20 20 20 20	11 12 13 14 15 16	44.6 36.3 28.8 21.9 15.7 10.0	9.118 118 9.109 977 9.102 095 9.094 477 9.087 124 9.080 039	0.96 0.97 0.97 0.97 0.97	8.10 8.10 8.11 8.12 8.12 8.13	2 2 2 1 1	08 04 00 56 51 47	37 26 16 04 53 42
28 29 30 July 1 2	20 20 20 20 20 20	09 09 09 09 08	59.68 43.58 27.28 10.80 54.14	-20 20 20 20 -20	17 18 18 19 20	04.9 00.3 56.1 52.4 49.1	9.073 223 9.066 680 9.060 411 9.054 416 9.048 699	0.97 0.97 0.97 0.97 0.97	8.14 8.14 8.15 8.15 8.16	1 1 1 1	43 39 35 30 26	30 18 06 54 41

 $\textbf{SATURN, 2020} \\ \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^{\text{h}} \, \textbf{TERRESTRIAL TIME}$

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
July 1 2 3 4 5 6	h 20 20 20 20 20 20	m 09 08 08 08 08	s 10.80 54.14 37.32 20.33 03.18 45.89	-20 20 20 20 20 20 20 20	19 20 21 22 23 24	52.4 49.1 46.2 43.7 41.5 39.7	9.054 416 9.048 699 9.043 261 9.038 103 9.033 227 9.028 634	" 0.97 0.97 0.97 0.97 0.97	8.15 8.16 8.16 8.17 8.17 8.18	h 1 1 1 1 1	m 30 26 22 18 14 09	s 54 41 28 16 03 49
7 8 9 10 11 12	20 20 20 20 20 20 20	07 07 06 06 06 06	28.45 10.87 53.16 35.34 17.40 59.37	-20 20 20 20 20 20 20	25 26 27 28 29 30	38.2 37.0 36.0 35.2 34.6 34.2	9.024 325 9.020 304 9.016 570 9.013 126 9.009 972 9.007 111	0.97 0.97 0.98 0.98 0.98 0.98	8.18 8.18 8.19 8.19 8.19 8.20	1 0 0 0 0	05 01 57 52 48 44	36 23 09 56 42 28
13 14 15 16 17 18	20 20 20 20 20 20 20	05 05 05 04 04 04	41.24 23.04 04.76 46.42 28.04 09.61	-20 20 20 20 20 20 20	31 32 33 34 35 36	33.8 33.5 33.3 33.0 32.8 32.5	9.004 544 9.002 271 9.000 294 8.998 615 8.997 233 8.996 150	0.98 0.98 0.98 0.98 0.98	8.20 8.20 8.20 8.20 8.20 8.21	0 0 0 0 0	40 36 31 27 23 19	14 00 46 32 18 03
19 20 21 22 23 24	20 20 20 20 20 20 20	03 03 03 02 02 02	51.15 32.66 14.16 55.65 37.15 18.65	-20 20 20 20 20 20 20	37 38 39 40 41 42	32.2 31.8 31.3 30.7 30.0 29.0	8.995 366 8.994 882 8.994 698 8.994 815 8.995 231 8.995 948	0.98 0.98 0.98 0.98 0.98	8.21 8.21 8.21 8.21 8.21 8.21	0 0 0 0 23 23	14 10 06 02 53 49	49 35 21 06 38 23
25 26 27 28 29 30	20 20 20 20 20 20 20	02 01 01 01 00 00	00.18 41.75 23.36 05.03 46.77 28.58	-20 20 20 20 20 20 20	43 44 45 46 47 48	27.8 26.3 24.5 22.3 19.8 16.9	8.996 965 8.998 280 8.999 893 9.001 803 9.004 009 9.006 510	0.98 0.98 0.98 0.98 0.98	8.20 8.20 8.20 8.20 8.20 8.20	23 23 23 23 23 23 23	45 40 36 32 28 23	09 55 41 27 13 59
Aug. 31 2 3 4 5	20 19 19 19 19	00 59 59 59 58 58	10.48 52.48 34.57 16.77 59.08 41.52	-20 20 20 20 20 20 20	49 50 51 52 52 53	13.6 09.9 05.8 01.2 56.2 50.7	9.009 304 9.012 391 9.015 769 9.019 437 9.023 394 9.027 637	0.98 0.98 0.98 0.98 0.97	8.19 8.19 8.19 8.18 8.18	23 23 23 23 23 23 22	19 15 11 07 02 58	45 31 18 04 51 38
6 7 8 9 10 11	19 19 19 19 19	58 58 57 57 57 56	24.08 06.79 49.64 32.66 15.84 59.21	-20 20 20 20 20 20 20	54 55 56 57 58 59	44.6 38.0 30.8 22.9 14.5 05.4	9.032 168 9.036 983 9.042 081 9.047 461 9.053 122 9.059 062	0.97 0.97 0.97 0.97 0.97	8.17 8.17 8.16 8.16 8.15 8.15	22 22 22 22 22 22 22	54 50 45 41 37 33	24 11 59 46 34 21
12 13 14 15 16	19 19 19 19 19	56 56 56 55 55	42.76 26.51 10.46 54.62 39.01	-20 21 21 21 -21	59 00 01 02 03	55.6 45.1 33.9 22.0 09.4	9.065 279 9.071 771 9.078 536 9.085 573 9.092 878	0.97 0.97 0.97 0.97 0.97	8.14 8.14 8.13 8.12 8.12	22 22 22 22 22 22	29 24 20 16 12	09 57 46 34 23

SATURN, 2020 RIGHT ASCENSION AND DECLINATION FOR 0^{h} TERRESTRIAL TIME

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris ınsit	S
Aug. 16 17 18 19 20 21	h 19 19 19 19 19	m 55 55 55 54 54 54	s 39.01 23.62 08.47 53.56 38.90 24.49	-21 21 21 21 21 21 21	03 03 04 05 06 06	" 09.4 56.1 42.0 27.1 11.5 55.0	9.092 878 9.100 451 9.108 288 9.116 386 9.124 743 9.133 356	" 0.97 0.97 0.97 0.96 0.96	8.12 8.11 8.10 8.10 8.09 8.08	h 22 22 22 21 21 21	m 12 08 04 59 55 51	s 23 12 01 51 40 31
22 23 24 25 26 27	19 19 19 19 19	54 53 53 53 53 53	10.35 56.49 42.91 29.63 16.64 03.97	-21 21 21 21 21 21 21	07 08 09 09 10 10	37.6 19.4 00.3 40.3 19.3 57.5	9.142 222 9.151 336 9.160 696 9.170 297 9.180 137 9.190 212	0.96 0.96 0.96 0.96 0.96	8.07 8.07 8.06 8.05 8.04 8.03	21 21 21 21 21 21	47 43 39 34 30 26	21 11 02 53 45 37
28 29 30 31 Sept. 1 2	19 19 19 19 19	52 52 52 52 52 52 51	51.60 39.54 27.80 16.38 05.29 54.53	-21 21 21 21 21 21 21	11 12 12 13 13 14	34.7 11.0 46.5 20.9 54.4 27.0	9.200 518 9.211 051 9.221 807 9.232 785 9.243 979 9.255 386	0.96 0.95 0.95 0.95 0.95	8.02 8.01 8.00 8.00 7.99 7.98	21 21 21 21 21 21	22 18 14 10 06 01	29 21 14 07 00 54
3 4 5 6 7 8	19 19 19 19 19	51 51 51 51 51 51	44.10 34.02 24.29 14.91 05.88 57.23	-21 21 21 21 21 21 21	14 15 15 16 16 17	58.6 29.1 58.7 27.2 54.7 21.2	9.267 003 9.278 826 9.290 852 9.303 076 9.315 496 9.328 108	0.95 0.95 0.95 0.95 0.94 0.94	7.97 7.96 7.95 7.94 7.92 7.91	20 20 20 20 20 20 20	57 53 49 45 41 37	48 42 37 32 27 23
9 10 11 12 13 14	19 19 19 19 19	50 50 50 50 50 50	48.94 41.03 33.49 26.34 19.57 13.19	-21 21 21 21 21 21 21	17 18 18 18 19	46.6 11.0 34.4 56.7 18.0 38.2	9.340 907 9.353 891 9.367 054 9.380 393 9.393 905 9.407 584	0.94 0.94 0.94 0.94 0.94	7.90 7.89 7.88 7.87 7.86 7.85	20 20 20 20 20 20 20	33 29 25 21 17 13	19 16 13 10 08 06
15 16 17 18 19 20	19 19 19 19 19	50 50 49 49 49	07.20 01.59 56.39 51.58 47.17 43.18	-21 21 21 21 21 21 21	19 20 20 20 21 21	57.4 15.6 32.6 48.6 03.5 17.2	9.421 427 9.435 428 9.449 584 9.463 890 9.478 341 9.492 931	0.93 0.93 0.93 0.93 0.93 0.93	7.84 7.82 7.81 7.80 7.79 7.78	20 20 20 19 19	09 05 01 57 53 49	04 03 02 02 02 03
21 22 23 24 25 26	19 19 19 19 19	49 49 49 49 49	39.60 36.44 33.69 31.36 29.44 27.94	-21 21 21 21 21 21 21	21 21 21 22 22 22 22	29.8 41.3 51.7 01.0 09.2 16.3	9.507 656 9.522 511 9.537 490 9.552 590 9.567 804 9.583 129	0.92 0.92 0.92 0.92 0.92 0.92	7.76 7.75 7.74 7.73 7.72 7.70	19 19 19 19 19	45 41 37 33 29 25	04 05 06 09 11 14
27 28 29 30 Oct. 1	19 19 19 19	49 49 49 49 49	26.86 26.18 25.93 26.08 26.66	-21 21 21 21 -21	22 22 22 22 22 22	22.3 27.3 31.1 33.8 35.4	9.598 559 9.614 091 9.629 718 9.645 438 9.661 246	0.92 0.91 0.91 0.91 0.91	7.69 7.68 7.67 7.65 7.64	19 19 19 19	21 17 13 09 05	17 21 25 30 35

 $\textbf{SATURN, 2020} \\ \textbf{RIGHT ASCENSION AND DECLINATION FOR 0}^h \textbf{TERRESTRIAL TIME}$

Date	e	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
Oct.	1 2 3 4 5 6	h 19 19 19 19 19	m 49 49 49 49 49	s 26.66 27.65 29.07 30.90 33.15 35.83	-21 21 21 21 21 21 21	22 22 22 22 22 22 22 22	35.4 35.9 35.3 33.5 30.6 26.6	9.661 246 9.677 136 9.693 105 9.709 148 9.725 260 9.741 438	0.91 0.91 0.91 0.90	7.64 7.63 7.62 7.60 7.59 7.58	h 19 19 18 18 18	m 05 01 57 53 49 46	s 35 40 46 52 59 06
	7 8 9 10 11 12	19 19 19 19 19	49 49 49 49 49 50	38.93 42.45 46.39 50.75 55.52 00.72	-21 21 21 21 21 21	22 22 22 21 21 21	21.4 15.2 07.8 59.4 49.8 39.2	9.757 676 9.773 971 9.790 317 9.806 710 9.823 146 9.839 619	0.90 0.90 0.90 0.90	7.57 7.55 7.54 7.53 7.51 7.50	18 18 18 18 18	42 38 34 30 26 22	14 22 30 39 48 57
	13 14 15 16 17 18	19 19 19 19 19	50 50 50 50 50 50	06.32 12.34 18.78 25.62 32.88 40.56	-21 21 21 21 21 21	21 21 21 20 20 20	27.4 14.6 00.6 45.6 29.3 11.9	9.856 125 9.872 659 9.889 216 9.905 791 9.922 378 9.938 973	0.89 0.89 0.89	7.49 7.48 7.46 7.45 7.44 7.43	18 18 18 18 18 18	19 15 11 07 03 00	07 18 29 40 51 03
	19 20 21 22 23 24	19 19 19 19 19	50 50 51 51 51 51	48.65 57.16 06.07 15.39 25.11 35.22	-21 21 21 21 21 21	19 19 19 18 18	53.4 33.8 13.1 51.3 28.4 04.5	9.955 571 9.972 165 9.988 752 10.005 326 10.021 883 10.038 417	0.88	7.41 7.40 7.39 7.38 7.37 7.35	17 17 17 17 17 17	56 52 48 44 41 37	16 29 42 56 10 24
	25 26 27 28 29 30	19 19 19 19 19	51 51 52 52 52 52 52	45.72 56.62 07.89 19.56 31.60 44.02	-21 21 21 21 21 21	17 17 16 16 15 15	39.5 13.3 46.1 17.9 48.5 18.0	10.054 925 10.071 402 10.087 844 10.104 246 10.120 604 10.136 914	0.87 0.87 0.87 0.87	7.34 7.33 7.32 7.31 7.29 7.28	17 17 17 17 17 17	33 29 26 22 18 14	39 54 10 26 42 59
Nov.	31 1 2 3 4 5	19 19 19 19 19	52 53 53 53 53 54	56.83 10.00 23.55 37.48 51.77 06.42	-21 21 21 21 21 21 21	14 14 13 13 12 11	46.4 13.8 40.0 05.2 29.3 52.4	10.153 171 10.169 373 10.185 513 10.201 589 10.217 597 10.233 532	0.87 0.86 0.86 0.86 0.86	7.27 7.26 7.25 7.24 7.22 7.21	17 17 17 17 16 16	11 07 03 00 56 52	16 33 51 09 28 47
	6 7 8 9 10 11	19 19 19 19 19	54 54 54 55 55 55	21.43 36.80 52.52 08.59 25.00 41.76	-21 21 21 21 21 21	11 10 09 09 08 07	14.5 35.5 55.4 14.4 32.3 49.2	10.249 390 10.265 167 10.280 859 10.296 461 10.311 971 10.327 382	0.86 0.86 0.86 0.85 0.85	7.20 7.19 7.18 7.17 7.16 7.15	16 16 16 16 16	49 45 41 38 34 30	06 26 46 06 27 48
	12 13 14 15 16	19 19 19 19 19	55 56 56 56 57	58.85 16.27 34.03 52.13 10.55	-21 21 21 21 -21	07 06 05 04 03	05.0 19.8 33.5 46.1 57.7	10.342 692 10.357 895 10.372 988 10.387 965 10.402 822	0.85 0.85 0.85 0.85 0.85	7.14 7.13 7.12 7.11 7.10	16 16 16 16	27 23 19 16 12	09 31 53 15 38

 $\textbf{SATURN, 2020} \\ \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^{\text{h}} \, \textbf{TERRESTRIAL TIME}$

Date	App Right A	parei Ascei			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter		meris insit	S
Nov. 16 17 18 19 20 21	h 19 19 19 19 19	m 57 57 57 58 58 58	s 10.55 29.31 48.37 07.75 27.44 47.42	-21 21 21 21 21 21 20	03 03 02 01 00 59	57.7 08.3 17.9 26.6 34.2 40.9	10.402 822 10.417 556 10.432 161 10.446 634 10.460 972 10.475 170	0.84 0.84 0.84	7.10 7.09 7.08 7.07 7.06 7.05	h 16 16 16 16 15	m 12 09 05 01 58 54	s 38 01 24 47 11 35
22 23 24 25 26 27	19 19 19 20 20 20	59 59 59 00 00	07.70 28.26 49.12 10.25 31.66 53.35	-20 20 20 20 20 20 20	58 57 56 55 54 54	46.6 51.3 55.1 57.8 59.6 00.5	10.489 225 10.503 133 10.516 892 10.530 498 10.543 948 10.557 238	0.84 0.83	7.04 7.03 7.02 7.01 7.00 6.99	15 15 15 15 15 15	50 47 43 40 36 33	60 25 50 15 40 06
28 29 30 Dec. 1 2 3	20 20 20 20 20 20 20	01 01 02 02 02 03	15.31 37.53 00.02 22.77 45.78 09.03	-20 20 20 20 20 20 20	53 51 50 49 48 47	00.3 59.3 57.2 54.3 50.4 45.7	10.570 366 10.583 329 10.596 123 10.608 746 10.621 194 10.633 466	0.83 0.83 0.83 0.83	6.98 6.98 6.97 6.96 6.95 6.94	15 15 15 15 15 15	29 25 22 18 15 11	32 59 25 52 19 47
4 5 6 7 8 9	20 20 20 20 20 20 20	03 03 04 04 05 05	32.53 56.26 20.23 44.42 08.84 33.48	-20 20 20 20 20 20 20	46 45 44 43 42 40	40.0 33.5 26.1 17.8 08.7 58.7	10.645 557 10.657 466 10.669 189 10.680 722 10.692 064 10.703 212	0.82 0.82 0.82	6.93 6.93 6.92 6.91 6.90 6.90	15 15 15 14 14 14	08 04 01 57 54 50	14 42 10 39 07 36
10 11 12 13 14 15	20 20 20 20 20 20 20	05 06 06 07 07 08	58.34 23.41 48.70 14.19 39.88 05.78	-20 20 20 20 20 20 20	39 38 37 36 34 33	47.8 36.0 23.3 09.8 55.5 40.3	10.714 161 10.724 909 10.735 453 10.745 791 10.755 918 10.765 832	0.82 0.82 0.82 0.82 0.82 0.82	6.89 6.88 6.88 6.87 6.86	14 14 14 14 14 14	47 43 40 36 33 29	05 34 03 33 03 33
16 17 18 19 20 21	20 20 20 20 20 20 20	08 08 09 09 10	31.86 58.13 24.56 51.17 17.94 44.87	-20 20 20 20 20 20 20	32 31 29 28 27 25	24.3 07.6 50.1 31.9 12.9 53.1	10.775 531 10.785 012 10.794 272 10.803 310 10.812 123 10.820 710	0.81	6.85 6.84 6.84 6.83 6.83 6.82	14 14 14 14 14 14	26 22 19 15 12 08	03 33 04 34 05 36
22 23 24 25 26 27	20 20 20 20 20 20 20	11 11 12 12 13 13	11.96 39.19 06.58 34.10 01.76 29.56	-20 20 20 20 20 20 20	24 23 21 20 19 17	32.6 11.4 49.4 26.6 03.2 39.1	10.829 069 10.837 197 10.845 094 10.852 758 10.860 187 10.867 380	0.81 0.81 0.81 0.81	6.82 6.81 6.81 6.80 6.80 6.79	14 14 13 13 13 13	05 01 58 54 51 47	07 38 10 41 13 45
28 29 30 31 32	20 20 20 20 20 20	13 14 14 15 15	57.49 25.54 53.72 22.00 50.39	-20 20 20 20 -20	16 14 13 11 10	14.3 48.9 22.8 56.1 28.8	10.874 335 10.881 051 10.887 527 10.893 761 10.899 752	0.81	6.79 6.78 6.78 6.78 6.77	13 13 13 13 13	44 40 37 33 30	17 49 21 53 26

 $\begin{array}{c} \textbf{URANUS, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR 0}^{\text{b}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	e	Heliocentri Longitude		Helio La	ocen titud		Radi Vec		Dat	te	Helioce Longit		Helioc Latit		Radius Vector
Jan.	1 3 5 7 9 11	35 20 37 35 21 56 35 23 15 35 24 35	3.0 7.3 5.6 5.9 5.2	0 2 0 2 0 2 0 2	29 28 28 28	" 01.2 00.4 59.6 58.7 57.9 57.1	19.8 19.8 19.8 19.8	18 61 18 36 18 12 17 87 17 63 17 38		2 4 6 8 10 12	36 20 36 21 36 22 36 24 36 25 36 26	26.0	0 28 0 28 0 28 0 28	3 22.8 3 21.9 3 21.1 3 20.2 3 19.4 3 18.6	19.807 21 19.806 96 19.806 71 19.806 46 19.806 21 19.805 96
	13 15 17 19 21 23	35 28 33 35 29 52 35 31 11 35 32 31	3.8 3.1 2.5 1.8 1.1	0 2 0 2 0 2	28 28 28 28	56.3 55.4 54.6 53.8 52.9 52.1	19.8 19.8 19.8 19.8	17 13 16 89 16 64 16 39 16 15 15 90		14 16 18 20 22 24	36 28 36 29 36 30 36 32 36 33 36 34	22.6	0 28 0 28 0 28	17.7 16.9 16.0 15.2 14.3 13.5	19.805 71 19.805 46 19.805 20 19.804 95 19.804 70 19.804 45
Feb.	25 27 29 31 2 4	35 39 07 35 40 27	9.1 3.4 7.7	0 2 0 2 0 2	28 28 28 28	51.3 50.4 49.6 48.7 47.9 47.1	19.8 19.8 19.8 19.8	15 65 15 41 15 16 14 91 14 66 14 42	May	26 28 30 2 4 6	36 36 36 37 36 38 36 39 36 41 36 42	20.8 40.3 59.8 19.2	0 28 0 28 0 28 0 28	12.6 11.8 11.0 10.1 09.3 08.4	19.804 20 19.803 95 19.803 70 19.803 45 19.803 20 19.802 95
	6 8 10 12 14 16		5.1 4.5 3.8 3.2	0 2 0 2 0 2 0 2	28 28 28 28	46.2 45.4 44.6 43.7 42.9 42.1	19.8 19.8 19.8 19.8	14 17 13 92 13 67 13 43 13 18 12 93		8 10 12 14 16 18	36 43 36 45 36 46 36 47 36 49 36 50	58.1 17.6 37.0 56.5 15.9 35.4	0 28 0 28 0 28 0 28	07.6 06.7 05.9 05.0 04.2 03.3	19.802 70 19.802 44 19.802 19 19.801 94 19.801 69 19.801 44
	18 20 22 24 26 28	35 52 21 35 53 40 35 54 60 35 56 19	1.9 1.2 1.6 1.0 1.3 13.7	0 2 0 2 0 2 0 2	28 28 28 28	41.2 40.4 39.5 38.7 37.9 37.1	19.8 19.8 19.8 19.8	12 68 12 44 12 19 11 94 11 69 11 44		20 22 24 26 28 30	36 51 36 53 36 54 36 55 36 57 36 58	54.9 14.3 33.8 53.3 12.8 32.2	0 28 0 27 0 27	02.5 01.6 00.8 59.9 59.1 58.2	19.801 19 19.800 93 19.800 68 19.800 43 19.800 18 19.799 93
Mar.	1 3 5 7 9 11		7.4 5.8 5.2 5.6	0 2 0 2 0 2	28 28 28 28	36.2 35.4 34.6 33.7 32.9 32.0	19.8 19.8 19.8 19.8	11 19 10 95 10 70 10 45 10 20 09 95		1 3 5 7 9 11	36 59 37 01 37 02 37 03 37 05 37 06	11.2 30.7 50.2 09.6	0 27 0 27 0 27 0 27	57.4 56.5 55.7 54.8 53.9 53.1	19.799 67 19.799 42 19.799 17 19.798 92 19.798 66 19.798 41
	13 15 17 19 21 23	36 06 54 36 08 13 36 09 33 36 10 52 36 12 11 36 13 31	3.8 3.1 2.5 1.9	0 2 0 2 0 2	28 28 28 28	31.2 30.4 29.5 28.7 27.8 27.0	19.8 19.8 19.8 19.8	09 70 09 45 09 20 08 95 08 70 08 45		13 15 17 19 21 23	37 07 37 09 37 10 37 11 37 13 37 14	08.1 27.7 47.1 06.6	0 27 0 27 0 27	52.2 51.4 50.5 49.7 48.8 48.0	19.798 16 19.797 91 19.797 65 19.797 40 19.797 15 19.796 89
Apr.	25 27 29 31 2	36 14 50 36 16 10 36 17 29 36 18 48 36 20 08).1).5 3.9	0 2	28 28 28	26.1 25.3 24.5 23.6 22.8	19.8 19.8 19.8	08 21 07 96 07 71 07 46 07 21		25 27 29 1 3	37 15 37 17 37 18 37 19 37 21	05.2 24.7 44.2	0 27	46.3 45.4 44.6	19.796 64 19.796 39 19.796 13 19.795 88 19.795 63

 $\begin{array}{c} \textbf{URANUS, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR 0}^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Date	Heliocentric Longitude	Heliocentric Latitude	Radius Da Vector	te	Heliocentric Longitude	Heliocentric Latitude	Radius Vector
;	0	0 27 43.7 0 27 42.9 0 27 42.0 0 27 41.2	19.795 88 Oct. 19.795 63 19.795 37 19.795 12 19.794 87 19.794 61	1 3 5 7 9 11	38 20 44.9 38 22 04.5 38 23 24.2 38 24 43.8 38 26 03.5 38 27 23.1	-0 27 04.9 0 27 04.1 0 27 03.2 0 27 02.4 0 27 01.5 0 27 00.6	19.784 12 19.783 86 19.783 60 19.783 35 19.783 09 19.782 83
1: 1: 1' 1! 2 2:	5 37 29 00.9 7 37 30 20.5 9 37 31 40.0 1 37 32 59.6	0 27 38.6 0 27 37.7 0 27 36.9 0 27 36.0	19.794 36 19.794 10 19.793 85 19.793 60 19.793 34 19.793 09	13 15 17 19 21 23	38 28 42.8 38 30 02.4 38 31 22.1 38 32 41.8 38 34 01.4 38 35 21.1	-0 26 59.8 0 26 58.9 0 26 58.0 0 26 57.1 0 26 56.3 0 26 55.4	19.782 57 19.782 31 19.782 05 19.781 80 19.781 54 19.781 28
	7 37 36 58.2 9 37 38 17.8	0 27 33.4 0 27 32.6 0 27 31.7 0 27 30.9	19.792 83 19.792 58 19.792 32 19.792 07 19.791 81 Nov. 19.791 56	25 27 29 31 2 4	38 36 40.7 38 38 00.4 38 39 20.1 38 40 39.8 38 41 59.4 38 43 19.1	-0 26 54.5 0 26 53.7 0 26 52.8 0 26 51.9 0 26 51.1 0 26 50.2	19.781 02 19.780 76 19.780 50 19.780 24 19.779 98 19.779 72
	2 37 47 34.7 4 37 48 54.3	0 27 28.3 0 27 27.4 0 27 26.6 0 27 25.7	19.791 30 19.791 05 19.790 79 19.790 54 19.790 28 19.790 03	6 8 10 12 14 16	38 44 38.8 38 45 58.5 38 47 18.1 38 48 37.8 38 49 57.5 38 51 17.2	-0 26 49.3 0 26 48.4 0 26 47.6 0 26 46.7 0 26 45.8 0 26 44.9	19.779 46 19.779 20 19.778 94 19.778 68 19.778 42 19.778 16
1; 20 2; 24 20 25	0 37 52 53.1 2 37 54 12.6 4 37 55 32.2 6 37 56 51.8	0 27 23.1 0 27 22.2 0 27 21.4 0 27 20.5	19.789 77 19.789 51 19.789 26 19.789 00 19.788 75 19.788 49	18 20 22 24 26 28	38 52 36.9 38 53 56.6 38 55 16.3 38 56 36.0 38 57 55.7 38 59 15.4	-0 26 44.1 0 26 43.2 0 26 42.3 0 26 41.5 0 26 40.6 0 26 39.7	19.777 90 19.777 64 19.777 38 19.777 12 19.776 86 19.776 60
;		0 27 17.9 0 27 17.1 0 27 16.2 0 27 15.4	19.788 23 19.787 98 Dec. 19.787 72 19.787 46 19.787 21 19.786 95	30 2 4 6 8 10	39 00 35.2 39 01 54.9 39 03 14.6 39 04 34.3 39 05 54.0 39 07 13.8	-0 26 38.8 0 26 38.0 0 26 37.1 0 26 36.2 0 26 35.3 0 26 34.4	19.776 34 19.776 08 19.775 82 19.775 56 19.775 30 19.775 04
1 1: 1: 1: 1: 2	3 38 08 48.2 5 38 10 07.9 7 38 11 27.5 9 38 12 47.1	0 27 12.8 0 27 11.9 0 27 11.0 0 27 10.2	19.786 69 19.786 44 19.786 18 19.785 92 19.785 67 19.785 41	12 14 16 18 20 22	39 08 33.5 39 09 53.2 39 11 12.9 39 12 32.7 39 13 52.4 39 15 12.2	-0 26 33.6 0 26 32.7 0 26 31.8 0 26 30.9 0 26 30.1 0 26 29.2	19.774 77 19.774 51 19.774 25 19.773 99 19.773 73 19.773 47
22 22 22 29 Oct.	5 38 16 46.0 7 38 18 05.6 9 38 19 25.3	0 27 07.6 0 27 06.7 0 27 05.8	19.785 15 19.784 89 19.784 64 19.784 38 19.784 12	24 26 28 30 32	39 16 31.9 39 17 51.7 39 19 11.4 39 20 31.1 39 21 50.9	-0 26 28.3 0 26 27.4 0 26 26.6 0 26 25.7 -0 26 24.8	19.773 21 19.772 94 19.772 68 19.772 42 19.772 16

URANUS, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren centr ngituc	ic	Ge	pparer ocentr atitude	ric	Date	e	Geo	paren centr ngitud	ric	Ge	pparer eocentr atitude	ric
Jan.	0 1 2 3 4 5	32 32 32 32 32 32 32 32	42 41 41 40 40 39	11.7 38.8 08.8 42.0 18.2 57.5	-0 0 0 0 0	29 29 29 29 29 29 29	39.2 37.4 35.5 33.6 31.7 29.8	Feb.	15 16 17 18 19 20	33 33 33 33 33 33	10 12 13 15 17	18.5 04.9 54.0 45.8 40.2 37.2	-0 0 0 0 0	28 28 28 28 28 28 28	12.1 10.4 08.6 06.9 05.2 03.5
	6 7 8 9 10 11	32 32 32 32 32 32 32	39 39 39 39 39 38	40.0 25.6 14.4 06.3 01.4 59.6	-0 0 0 0 0	29 29 29 29 29 29	27.8 25.9 24.0 22.1 20.1 18.2		21 22 23 24 25 26	33 33 33 33 33 33	21 23 25 27 29 32	36.8 38.9 43.4 50.5 59.9 11.7	-0 0 0 0 0	28 28 27 27 27 27	01.8 00.2 58.5 56.9 55.3 53.7
	12 13 14 15 16 17	32 32 32 32 32 32 32	39 39 39 39 39 39	00.9 05.3 12.8 23.3 37.0 53.8	-0 0 0 0 0	29 29 29 29 29 29	16.2 14.3 12.3 10.4 08.4 06.5	Mar.	27 28 29 1 2 3	33 33 33 33 33 33	34 36 39 41 43 46	25.9 42.5 01.4 22.6 46.0 11.8	-0 0 0 0 0	27 27 27 27 27 27	52.1 50.5 48.9 47.4 45.8 44.3
	18 19 20 21 22 23	32 32 32 32 32 32 32	40 40 41 41 42 42	13.8 37.0 03.3 32.9 05.6 41.5	-0 0 0 0 0	29 29 29 28 28 28	04.6 02.6 00.7 58.8 56.8 54.9		4 5 6 7 8 9	33 33 33 33 33 34	48 51 53 56 58 01	39.7 09.7 41.9 16.0 52.2 30.2	-0 0 0 0 0	27 27 27 27 27 27 27	42.8 41.3 39.8 38.4 37.0 35.5
	24 25 26 27 28 29	32 32 32 32 32 32 32	43 44 44 45 46 47	20.5 02.6 47.7 36.0 27.3 21.6	-0 0 0 0 0	28 28 28 28 28 28	53.0 51.0 49.1 47.2 45.3 43.4		10 11 12 13 14 15	34 34 34 34 34 34	04 06 09 12 15 17	10.1 52.0 35.6 21.2 08.7 57.9	-0 0 0 0 0	27 27 27 27 27 27 27	34.1 32.8 31.4 30.1 28.8 27.5
Feb.	30 31 1 2 3 4	32 32 32 32 32 32 32	48 49 50 51 52 53	19.0 19.4 22.9 29.4 38.9 51.4	-0 0 0 0 0	28 28 28 28 28 28	41.5 39.6 37.7 35.8 33.9 32.1		16 17 18 19 20 21	34 34 34 34 34 34	20 23 26 29 32 35	48.9 41.7 36.1 32.1 29.7 28.8	-0 0 0 0 0	27 27 27 27 27 27 27	26.2 24.9 23.7 22.5 21.2 20.1
	5 6 7 8 9 10	32 32 32 32 33 33	55 56 57 59 00 02	07.0 25.4 46.8 11.1 38.2 08.0	-0 0 0 0 0	28 28 28 28 28 28	30.2 28.3 26.5 24.6 22.8 21.0		22 23 24 25 26 27	34 34 34 34 34 34	38 41 44 47 50 53	29.3 31.3 34.7 39.4 45.5 52.9	-0 0 0 0 0	27 27 27 27 27 27 27	18.9 17.7 16.6 15.5 14.4 13.3
	11 12 13 14 15	33 33 33 33 33	03 05 06 08 10	40.6 15.9 54.0 34.9 18.5	-0 0 0 0 -0	28 28 28 28 28	19.2 17.4 15.6 13.8 12.1	Apr.	28 29 30 31	34 35 35 35 35	57 00 03 06 09	01.7 11.6 22.8 35.1 48.5	-0 0 0 0 -0	27 27 27 27 27	12.3 11.3 10.2 09.2 08.3

URANUS, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren centr ngitud	ic	Ge	paren ocentr atitude	ic	Date	e	Geo	paren centr ngitud	ric	G	apparei eocenti Latitud	ric
Apr.	1 2 3 4 5 6	35 35 35 35 35 35 35	09 13 16 19 22 26	48.5 03.0 18.5 34.8 52.0 10.1	-0 0 0 0 0	27 27 27 27 27 27 27	08.3 07.3 06.4 05.5 04.6 03.7	May	17 18 19 20 21 22	37 37 37 37 37 37 38	45 49 52 55 58 02	47.3 05.6 23.0 39.5 55.2 09.8	-0 0 0 0 0	26 26 26 26 26 26 26	46.3 46.3 46.4 46.4 46.5 46.5
	7 8 9 10 11 12	35 35 35 35 35 35 35	29 32 36 39 42 46	28.9 48.5 08.9 30.0 51.9 14.6	-0 0 0 0 0	27 27 27 27 26 26	02.9 02.1 01.3 00.5 59.7 59.0		23 24 25 26 27 28	38 38 38 38 38 38	05 08 11 14 18 21	23.6 36.3 47.9 58.5 07.8 15.9	-0 0 0 0 0	26 26 26 26 26 26	46.6 46.8 46.9 47.1 47.2 47.4
	13 14 15 16 17 18	35 35 35 35 36 36	49 53 56 59 03 06	37.8 01.6 25.9 50.7 15.8 41.3	-0 0 0 0 0	26 26 26 26 26 26 26	58.3 57.6 56.9 56.3 55.6 55.0	June	29 30 31 1 2 3	38 38 38 38 38 38	24 27 30 33 36 39	22.7 28.2 32.3 35.0 36.4 36.3	-0 0 0 0 0	26 26 26 26 26 26	47.6 47.9 48.1 48.4 48.7 49.0
	19 20 21 22 23 24	36 36 36 36 36 36	10 13 16 20 23 27	07.2 33.3 59.8 26.4 53.3 20.4	-0 0 0 0 0	26 26 26 26 26 26 26	54.4 53.9 53.3 52.8 52.3 51.8		4 5 6 7 8 9	38 38 38 38 38 38	42 45 48 51 54 57	34.9 32.0 27.7 21.9 14.5 05.4	-0 0 0 0 0	26 26 26 26 26 26	49.3 49.7 50.0 50.4 50.8 51.2
	25 26 27 28 29 30	36 36 36 36 36 36	30 34 37 41 44 48	47.7 15.1 41.4 08.9 36.3 03.4	-0 0 0 0 0	26 26 26 26 26 26 26	51.4 51.5 50.8 50.1 49.7 49.3		10 11 12 13 14 15	38 39 39 39 39 39	59 02 05 08 10 13	54.7 42.2 28.0 12.1 54.3 34.7	-0 0 0 0 0	26 26 26 26 26 26 26	51.7 52.1 52.6 53.0 53.5 54.0
May	1 2 3 4 5 6	36 36 36 37 37 37	51 54 58 01 05 08	30.4 57.0 23.4 49.5 15.2 40.6	-0 0 0 0 0	26 26 26 26 26 26 26	48.9 48.6 48.3 48.0 47.8 47.5		16 17 18 19 20 21	39 39 39 39 39 39	16 18 21 23 26 28	13.2 49.9 24.7 57.6 28.6 57.6	-0 0 0 0 0	26 26 26 26 26 26	54.6 55.1 55.6 56.2 56.8 57.4
	7 8 9 10 11 12	37 37 37 37 37 37	12 15 18 22 25 29	05.6 30.3 54.5 18.3 41.6 04.3	-0 0 0 0 0	26 26 26 26 26 26 26	47.3 47.1 47.0 46.8 46.7 46.6		22 23 24 25 26 27	39 39 39 39 39 39	31 33 36 38 40 43	24.5 49.4 12.1 32.6 50.8 06.8	-0 0 0 0 0	26 26 26 26 27 27	58.0 58.6 59.2 59.9 00.6 01.2
	13 14 15 16 17	37 37 37 37 37	32 35 39 42 45	26.4 47.8 08.4 28.3 47.3	-0 0 0 0 -0	26 26 26 26 26	46.5 46.4 46.4 46.3 46.3	July	28 29 30 1 2	39 39 39 39 39	45 47 49 51 53	20.6 32.1 41.3 48.2 52.9	-0 0 0 0 -0	27 27 27 27 27 27	01.9 02.6 03.4 04.1 04.8

URANUS, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren ocentr ngituc	ric	Geo	paren ocentr atitude	ic	Date	e	Geo	paren centr ngituc	ric	Ge	pparer ocentr atitude	ic
July	1 2 3 4 5 6	39 39 39 39 39 40	51 53 55 57 59 01	48.2 52.9 55.3 55.4 53.0 48.2	-0 0 0 0 0	27 27 27 27 27 27 27	04.1 04.8 05.6 06.4 07.2 08.0	Aug.	16 17 18 19 20 21	40 40 40 40 40 40	41 41 41 41 41 40	30.6 27.9 22.2 13.4 01.6 46.8	-0 0 0 0 0	27 27 27 27 27 27 27	45.9 46.8 47.8 48.7 49.6 50.6
	7 8 9 10 11 12	40 40 40 40 40 40	03 05 07 09 10 12	41.0 31.2 18.9 04.0 46.5 26.5	-0 0 0 0 0	27 27 27 27 27 27 27	08.8 09.6 10.4 11.2 12.1 12.9		22 23 24 25 26 27	40 40 40 40 40 40	40 40 39 39 38 38	29.0 08.3 44.7 18.2 48.8 16.6	-0 0 0 0 0	27 27 27 27 27 27 27	51.5 52.4 53.4 54.3 55.2 56.1
	13 14 15 16 17 18	40 40 40 40 40 40	14 15 17 18 20 21	03.9 38.7 10.9 40.4 07.4 31.6	-0 0 0 0 0	27 27 27 27 27 27 27	13.8 14.6 15.5 16.4 17.3 18.2	Sept.	28 29 30 31 1 2	40 40 40 40 40 40	37 37 36 35 34 34	41.6 03.6 22.8 39.2 52.7 03.3	-0 0 0 0 0	27 27 27 27 27 28 28	57.0 57.8 58.7 59.6 00.4 01.3
	19 20 21 22 23 24	40 40 40 40 40 40	22 24 25 26 27 28	53.1 11.9 27.9 41.1 51.4 58.8	-0 0 0 0 0	27 27 27 27 27 27 27	19.1 20.0 20.9 21.8 22.7 23.7		3 4 5 6 7 8	40 40 40 40 40 40	33 32 31 30 29 28	11.1 16.2 18.5 18.1 15.1 09.3	-0 0 0 0 0	28 28 28 28 28 28 28	02.1 02.9 03.7 04.5 05.2 06.0
	25 26 27 28 29 30	40 40 40 40 40 40	30 31 32 33 33 34	03.4 05.1 03.9 00.0 53.2 43.5	-0 0 0 0 0	27 27 27 27 27 27 27	24.6 25.6 26.5 27.5 28.4 29.4		9 10 11 12 13 14	40 40 40 40 40 40	27 25 24 23 22 20	01.0 50.1 36.6 20.5 01.9 40.7	-0 0 0 0 0	28 28 28 28 28 28 28	06.7 07.5 08.2 08.9 09.6 10.2
Aug.	31 1 2 3 4 5	40 40 40 40 40 40	35 36 36 37 38 38	31.0 15.7 57.4 36.2 12.0 44.8	-0 0 0 0 0	27 27 27 27 27 27 27	30.4 31.3 32.3 33.3 34.3 35.2		15 16 17 18 19 20	40 40 40 40 40 40	19 17 16 14 13	16.9 50.7 21.9 50.7 17.2 41.3	-0 0 0 0 0	28 28 28 28 28 28 28	10.9 11.5 12.1 12.7 13.3 13.9
	6 7 8 9 10 11	40 40 40 40 40 40	39 39 40 40 40 40	14.7 41.5 05.4 26.4 44.4 59.4	-0 0 0 0 0	27 27 27 27 27 27 27	36.2 37.2 38.2 39.1 40.1 41.1		21 22 23 24 25 26	40 40 40 40 40 40	10 08 06 04 03 01	03.3 23.0 40.7 56.2 09.5 20.9	-0 0 0 0 0	28 28 28 28 28 28 28	14.4 15.0 15.5 16.0 16.5 16.9
	12 13 14 15 16	40 40 40 40 40	41 41 41 41 41	11.6 20.7 27.0 30.3 30.6	-0 0 0 0 -0	27 27 27 27 27	42.0 43.0 44.0 44.9 45.9	Oct.	27 28 29 30 1	39 39 39 39	59 57 55 53 51	30.1 37.4 42.6 46.0 47.5	-0 0 0 0 -0	28 28 28 28 28	17.3 17.7 18.1 18.5 18.8

URANUS, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren centr ngituc	ric	Ge	paren ocentr atitude	ic	Date	e	Geo	paren centr ngituc	ric	Ge	pparer ocentr atitude	ric
Oct.	1 2 3 4 5 6	° 39 39 39 39 39 39	51 49 47 45 43 41	47.5 47.2 45.1 41.4 36.1 29.2	-0 0 0 0 0	28 28 28 28 28 28 28	18.8 19.1 19.4 19.7 19.9 20.2	Nov.	16 17 18 19 20 21	38 38 37 37 37 37	03 01 59 56 54 52	45.6 25.4 06.2 48.2 31.4 15.7	-0 0 0 0 0	28 28 28 28 28 28 28	06.3 05.4 04.4 03.5 02.5 01.5
	7 8 9 10 11 12	39 39 39 39 39 39	39 37 34 32 30 28	20.8 10.9 59.6 46.9 32.8 17.5	-0 0 0 0 0	28 28 28 28 28 28	20.3 20.5 20.6 20.8 20.9 20.9		22 23 24 25 26 27	37 37 37 37 37 37	50 47 45 43 41 39	01.3 48.2 36.5 26.3 17.6 10.5	-0 0 0 0 0	28 27 27 27 27 27 27	00.4 59.4 58.3 57.2 56.0 54.9
	13 14 15 16 17 18	39 39 39 39 39 39	26 23 21 19 16 14	00.8 42.9 23.8 03.7 42.6 20.6	-0 0 0 0 0	28 28 28 28 28 28	21.0 21.0 21.0 20.9 20.9 20.8	Dec.	28 29 30 1 2 3	37 37 37 37 37 37	37 35 32 30 29 27	05.0 01.3 59.4 59.3 01.1 04.7	-0 0 0 0 0	27 27 27 27 27 27 27	53.7 52.4 51.2 49.9 48.7 47.4
	19 20 21 22 23 24	39 39 39 39 39 39	11 09 07 04 02 59	57.8 34.2 10.0 45.1 19.6 53.5	-0 0 0 0 0	28 28 28 28 28 28	20.7 20.6 20.4 20.2 20.0 19.7		4 5 6 7 8 9	37 37 37 37 37 37	25 23 21 19 17 16	10.4 18.0 27.6 39.2 52.9 08.8	-0 0 0 0 0	27 27 27 27 27 27 27	46.0 44.7 43.3 41.9 40.5 39.1
	25 26 27 28 29 30	38 38 38 38 38 38	57 54 52 50 47 45	26.8 59.8 32.3 04.5 36.5 08.3	-0 0 0 0 0	28 28 28 28 28 28	19.5 19.2 18.8 18.5 18.1 17.7		10 11 12 13 14 15	37 37 37 37 37 37	14 12 11 09 08 06	26.9 47.3 10.1 35.3 03.1 33.3	-0 0 0 0 0	27 27 27 27 27 27 27	37.7 36.2 34.7 33.2 31.7 30.2
Nov.	31 1 2 3 4 5	38 38 38 38 38 38	42 40 37 35 32 30	40.0 11.7 43.5 15.3 47.4 19.7	-0 0 0 0 0	28 28 28 28 28 28	17.2 16.7 16.2 15.7 15.1 14.5		16 17 18 19 20 21	37 37 37 37 36 36	05 03 02 00 59 58	06.1 41.4 19.2 59.7 42.7 28.4	-0 0 0 0 0	27 27 27 27 27 27 27	28.7 27.1 25.5 23.9 22.3 20.7
	6 7 8 9 10 11	38 38 38 38 38 38	27 25 22 20 18 15	52.3 25.2 58.4 32.1 06.2 40.9	-0 0 0 0 0	28 28 28 28 28 28 28	13.9 13.3 12.6 11.9 11.2 10.4		22 23 24 25 26 27	36 36 36 36 36 36	57 56 55 53 52 52	16.8 07.9 01.9 58.7 58.3 00.9	-0 0 0 0 0	27 27 27 27 27 27 27	19.1 17.4 15.7 14.1 12.4 10.7
	12 13 14 15 16	38 38 38 38 38	13 10 08 06 03	16.2 52.2 29.0 06.8 45.6	-0 0 0 0 -0	28 28 28 28 28	09.6 08.8 08.0 07.1 06.3		28 29 30 31 32	36 36 36 36 36	51 50 49 48 47	06.3 14.7 26.1 40.4 57.6	-0 0 0 0 -0	27 27 27 27 27 27	09.0 07.2 05.5 03.7 02.0

Date	e	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter		emeris ansit	3
Jan.	0 1 2 3 4 5	h 2 2 2 2 2 2 2	m 02 02 02 02 02 02 02	s 42.11 39.96 38.00 36.23 34.67 33.30	+11 11 11 11 11 11	56 56 56 56 56 56	" 40.5 31.0 22.5 15.1 08.8 03.5	19.402 930 19.418 725 19.434 636 19.450 658 19.466 787 19.483 016	0.45 0.45 0.45 0.45	1.80 1.80 1.80 1.80 1.80 1.80	h 19 19 19 19 19	m 22 19 15 11 07 03	s 58 00 02 05 07 10
	6 7 8 9 10 11	2 2 2 2 2 2 2	02 02 02 02 02 02 02	32.13 31.17 30.40 29.84 29.48 29.32	+11 11 11 11 11 11	55 55 55 55 55 55	59.3 56.1 54.1 53.2 53.3 54.5	19.499 341 19.515 755 19.532 255 19.548 834 19.565 489 19.582 213		1.80 1.79 1.79 1.79 1.79 1.79	18 18 18 18 18	59 55 51 47 43 39	13 16 20 24 28 32
	12 13 14 15 16 17	2 2 2 2 2 2 2	02 02 02 02 02 02 02	29.36 29.60 30.03 30.66 31.49 32.52	+11 11 11 11 11 11	55 56 56 56 56 56	56.8 00.2 04.6 10.1 16.6 24.2	19.599 002 19.615 851 19.632 755 19.649 709 19.666 708 19.683 748		1.79 1.79 1.78 1.78 1.78 1.78	18 18 18 18 18 18	35 31 27 23 19 16	36 40 45 50 55 00
	18 19 20 21 22 23	2 2 2 2 2 2 2	02 02 02 02 02 02 02	33.75 35.19 36.83 38.68 40.73 42.98	+11 11 11 11 11 11	56 56 56 57 57	32.9 42.6 53.4 05.4 18.4 32.5	19.700 823 19.717 927 19.735 055 19.752 203 19.769 363 19.786 531	0.45 0.45	1.78 1.78 1.77 1.77 1.77	18 18 18 18 17 17	12 08 04 00 56 52	06 11 17 23 30 36
	24 25 26 27 28 29	2 2 2 2 2 2 2	02 02 02 02 02 02 03	45.43 48.08 50.93 53.97 57.21 00.65	+11 11 11 11 11 11	57 58 58 58 58 59	47.6 03.9 21.1 39.5 58.8 19.2	19.803 702 19.820 868 19.838 026 19.855 169 19.872 291 19.889 388		1.77 1.77 1.77 1.76 1.76 1.76	17 17 17 17 17 17	48 44 40 37 33 29	43 50 57 04 11 19
Feb.	30 31 1 2 3 4	2 2 2 2 2 2 2	03 03 03 03 03 03	04.28 08.10 12.12 16.34 20.75 25.35	+11 12 12 12 12 12 12	59 00 00 00 01 01	40.6 03.1 26.5 51.0 16.5 43.1	19.906 455 19.923 485 19.940 473 19.957 415 19.974 305 19.991 139	0.44	1.76 1.76 1.76 1.75 1.75	17 17 17 17 17 17	25 21 17 13 10 06	27 35 43 52 00 09
	5 6 7 8 9 10	2 2 2 2 2 2 2	03 03 03 03 03 03	30.15 35.13 40.31 45.66 51.20 56.91	+12 12 12 12 12 12 12	02 02 03 03 04 04	10.6 39.1 08.7 39.2 10.6 43.0	20.007 912 20.024 618 20.041 254 20.057 814 20.074 295 20.090 692	0.44 0.44 0.44	1.75 1.75 1.75 1.75 1.74 1.74	17 16 16 16 16 16	02 58 54 50 46 43	18 27 37 46 56 06
	11 12 13 14 15	2 2 2 2 2 2	04 04 04 04 04	02.80 08.87 15.12 21.54 28.14	12 12 12	05 05 06 07 07	16.3 50.5 25.6 01.7 38.6	20.107 001 20.123 217 20.139 336 20.155 355 20.171 267	0.44 0.44	1.74 1.74 1.74 1.74 1.74	16 16 16 16 16	39 35 31 27 23	16 26 36 47 58

Date	App Right A	oarei Ascei			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris ınsit	S
Feb. 15 16 17 18 19 20	2	m 04 04 04 04 04 05	s 28.14 34.92 41.88 49.01 56.31 03.77	+12 12 12 12 12 12 12	07 08 08 09 10 10	38.6 16.4 55.2 34.8 15.4 56.8	20.171 267 20.187 069 20.202 757 20.218 324 20.233 768 20.249 083	0.43 0.43	1.74 1.73 1.73 1.73 1.73 1.73	h 16 16 16 16 16	m 23 20 16 12 08 04	s 58 09 20 31 43 54
21 22 23 24 25 26	2 2	05 05 05 05 05 05	11.40 19.20 27.15 35.26 43.52 51.94	+12 12 12 12 12 12	11 12 13 13 14 15	39.0 22.1 06.0 50.7 36.2 22.4	20.264 264 20.279 308 20.294 209 20.308 963 20.323 566 20.338 014	0.43 0.43 0.43 0.43	1.73 1.73 1.73 1.72 1.72 1.72	16 15 15 15 15 15	01 57 53 49 45 42	06 18 30 42 55 07
27 28 29 Mar. 1 2 3	2 2	06 06 06 06 06 06	00.52 09.25 18.13 27.16 36.33 45.66	+12 12 12 12 12 12	16 16 17 18 19 20	09.4 57.2 45.8 35.1 25.1 15.8	20.352 303 20.366 428 20.380 386 20.394 173 20.407 786 20.421 220	0.43 0.43 0.43 0.43	1.72 1.72 1.72 1.72 1.72 1.71	15 15 15 15 15 15	38 34 30 26 23 19	20 33 46 59 13 26
4 5 6 7 8 9	2 2	06 07 07 07 07 07	55.12 04.72 14.46 24.33 34.33 44.45	+12 12 12 12 12 12 12	21 21 22 23 24 25	07.3 59.5 52.3 45.8 39.9 34.6	20.434 473 20.447 541 20.460 422 20.473 111 20.485 607 20.497 906	0.43 0.43	1.71 1.71 1.71 1.71 1.71 1.71	15 15 15 15 15 14	15 11 08 04 00 56	40 53 07 21 35 49
10 11 12 13 14 15	2	07 08 08 08 08 08	54.69 05.06 15.55 26.16 36.90 47.75	+12 12 12 12 12 12 12	26 27 28 29 30 31	29.9 25.8 22.3 19.3 17.0 15.1	20.510 006 20.521 904 20.533 598 20.545 084 20.556 359 20.567 421	0.43 0.43 0.43	1.71 1.71 1.71 1.70 1.70	14 14 14 14 14 14	53 49 45 41 38 34	04 18 33 48 03 17
16 17 18 19 20 21	2 2	08 09 09 09 09	58.72 09.80 20.99 32.29 43.69 55.18	+12 12 12 12 12 12 12	32 33 34 35 36 37	13.9 13.2 13.0 13.3 14.0 15.3	20.578 267 20.588 893 20.599 297 20.609 476 20.619 427 20.629 147		1.70 1.70 1.70 1.70 1.70 1.70	14 14 14 14 14 14	30 26 23 19 15	33 48 03 18 34 49
22 23 24 25 26 27	2 2 2 2 2 2 2	10 10 10 10 10 11	06.77 18.46 30.24 42.11 54.07 06.12	+12 12 12 12 12 12	38 39 40 41 42 43	17.0 19.1 21.6 24.5 27.8 31.5	20.638 634 20.647 884 20.656 896 20.665 667 20.674 195 20.682 479	0.43	1.70 1.70 1.70 1.69 1.69 1.69	14 14 14 13 13 13	08 04 00 56 53 49	05 21 37 53 09 25
28 29 30 31 Apr. 1	2 2 2 2 2	11 11 11 11 12	18.25 30.46 42.76 55.13 07.57	12 12 12	44 45 46 47 48	35.6 40.0 44.8 49.9 55.3	20.690 514 20.698 301 20.705 838 20.713 122 20.720 152	0.43 0.42 0.42 0.42 0.42	1.69 1.69 1.69 1.69 1.69	13 13 13 13 13	45 41 38 34 30	41 57 14 30 47

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	8
Apr. 1 2 3 4 5 6	h 2 2 2 2 2 2 2	m 12 12 12 12 12 13	s 07.57 20.09 32.66 45.30 58.00 10.75	+12 12 12 12 12 12 12	48 50 51 52 53 54	55.3 01.1 07.1 13.3 19.8 26.5	20.720 152 20.726 927 20.733 445 20.739 707 20.745 710 20.751 454	0.42 0.42 0.42	1.69 1.69 1.69 1.69 1.69 1.69	h 13 13 13 13 13 13	m 30 27 23 19 15	s 47 03 20 37 53 10
7 8 9 10 11 12	2 2 2 2 2 2 2	13 13 13 14 14 14	23.56 36.42 49.33 02.30 15.31 28.38	+12 12 12 12 13 13	55 56 57 58 00 01	33.4 40.5 47.7 55.1 02.8 10.6	20.756 937 20.762 160 20.767 121 20.771 819 20.776 254 20.780 424	0.42 0.42 0.42	1.69 1.69 1.69 1.69 1.69	13 13 13 12 12 12	08 04 01 57 53 49	27 44 01 18 35 52
13 14 15 16 17 18	2 2 2 2 2 2 2	14 14 15 15 15 15	41.48 54.63 07.81 21.02 34.26 47.53	+13 13 13 13 13 13	02 03 04 05 06 07	18.5 26.6 34.8 43.1 51.5 59.9	20.784 327 20.787 964 20.791 332 20.794 432 20.797 261 20.799 819	0.42 0.42 0.42	1.68 1.68 1.68 1.68 1.68	12 12 12 12 12 12	46 42 38 35 31 27	09 26 44 01 18 35
19 20 21 22 23 24	2 2 2 2 2 2 2	16 16 16 16 16 17	00.82 14.13 27.46 40.81 54.18 07.56	+13 13 13 13 13 13	09 10 11 12 13 14	08.3 16.8 25.3 33.9 42.4 50.9	20.802 106 20.804 121 20.805 862 20.807 331 20.808 527 20.809 449	0.42 0.42 0.42 0.42	1.68 1.68 1.68 1.68 1.68	12 12 12 12 12 12	23 20 16 12 09 05	53 10 28 45 02 20
25 26 27 28 29 30	2 2 2 2 2 2 2	17 17 17 18 18 18	20.96 34.38 47.72 01.14 14.55 27.95	+13 13 13 13 13 13	15 17 18 19 20 21	59.3 07.3 15.6 24.3 32.7 40.9	20.810 097 20.810 472 20.810 574 20.810 402 20.809 959 20.809 243	0.42 0.42	1.68 1.68 1.68 1.68 1.68	12 11 11 11 11	01 57 54 50 46 43	37 55 12 29 47 04
May 1 2 3 4 5 6	2 2 2 2 2 2 2	18 18 19 19 19	41.34 54.72 08.08 21.42 34.74 48.05	+13 13 13 13 13 13	22 23 25 26 27 28	48.9 56.8 04.6 12.1 19.5 26.7	20.808 256 20.806 999 20.805 472 20.803 677 20.801 614 20.799 285	0.42 0.42 0.42	1.68 1.68 1.68 1.68 1.68	11 11 11 11 11	39 35 31 28 24 20	22 39 56 14 31 48
7 8 9 10 11 12	2 2 2 2 2 2 2	20 20 20 20 20 20 21	01.33 14.59 27.83 41.05 54.23 07.37	+13 13 13 13 13 13	29 30 31 32 33 35	33.7 40.5 47.1 53.5 59.7 05.6	20.796 690 20.793 830 20.790 706 20.787 319 20.783 669 20.779 756	0.42 0.42 0.42 0.42	1.68 1.68 1.68 1.68 1.68 1.69	11 11 11 11 11 10	17 13 09 05 02 58	06 23 40 57 15 32
13 14 15 16 17	2 2 2 2 2 2	21 21 21 21 21 22	20.48 33.54 46.56 59.53 12.45	13 13 13	36 37 38 39 40	11.3 16.7 21.8 26.6 31.0	20.775 583 20.771 148 20.766 454 20.761 502 20.756 291	0.42 0.42	1.69 1.69 1.69 1.69 1.69	10 10 10 10 10	54 51 47 43 39	49 06 23 40 57

 $\mbox{\bf URANUS, 2020} \\ \mbox{\bf RIGHT ASCENSION AND DECLINATION FOR 0^{h} TERRESTRIAL TIME }$

Date	Appare Right Asce		pparent clination	True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephen Tran		
May 17 18 19 20 21 22	h m 2 22 2 22 2 22 2 22 2 23 2 23	s ° 12.45 +13 25.32 13 38.14 13 50.91 13 03.62 13 16.27 13	40 31.0 41 35.1 42 38.9 43 42.4 44 45.4 45 48.1	20.750 824 20.745 102 20.739 127 20.732 898	0.42 0.42 0.42 0.42 0.42 0.42	1.69 1.69 1.69 1.69 1.69 1.69	10 10 10 10	m 39 36 32 28 25 21	s 57 14 31 47 04 21
23 24 25 26 27 28	2 23 2 23 2 23 2 24 2 24 2 24	28.86 +13 41.38 13 53.84 13 06.23 13 18.54 13 30.78 13	46 50.5 47 52.4 48 54.0 49 55.1 50 55.9 51 56.2	20.712 716 20.705 496 20.698 033 20.690 328	0.42 0.42 0.42 0.42 0.43 0.43	1.69 1.69 1.69 1.69 1.69	10 10 10	17 13 10 06 02 58	37 54 10 27 43 59
29 30 31 June 1 2 3	2 24 2 24 2 25 2 25 2 25 2 25 2 25	42.93 +13 55.00 13 06.98 13 18.87 13 30.68 13 42.40 13	52 56.0 53 55.3 54 54.1 55 52.5 56 50.3 57 47.6	20.665 793 20.657 149 20.648 276 20.639 178	0.43 0.43 0.43 0.43 0.43	1.69 1.69 1.70 1.70 1.70	9 9 9 9	55 51 47 44 40 36	15 31 47 03 19 35
4 5 6 7 8 9	2 25 2 26 2 26 2 26 2 26 2 26 2 26	54.03 +13 05.57 13 17.01 14 28.36 14 39.61 14 50.75 14	58 44.3 59 40.6 00 36.4 01 31.6 02 26.3 03 20.5	20.610 549 20.600 569 20.590 376 20.579 970		1.70 1.70 1.70 1.70 1.70 1.70	9 9 9	32 29 25 21 17	50 06 21 37 52 07
10 11 12 13 14 15	2 27 2 27 2 27 2 27 2 27 2 27 2 27	01.79 +14 12.71 14 23.52 14 34.22 14 44.80 14 55.27 14	04 14.0 05 07.0 05 59.4 06 51.1 07 42.3 08 32.8	20.547 504 20.536 273 20.524 842 20.513 213	0.43 0.43 0.43 0.43 0.43	1.70 1.70 1.71 1.71 1.71 1.71	9 9 8 8	10 06 02 59 55 51	22 37 52 06 21 35
16 17 18 19 20 21	2 28 2 28 2 28 2 28 2 28 2 28 2 28	05.62 +14 15.85 14 25.95 14 35.94 14 45.80 14 55.53 14	09 22.6 10 11.8 11 00.4 11 48.4 12 35.6 13 22.3	20.477 167 20.464 776 20.452 201 20.439 446	0.43	1.71 1.71 1.71 1.71 1.71 1.71	8 8 8	47 44 40 36 32 28	50 04 18 32 46 60
22 23 24 25 26 27	2 29 2 29 2 29 2 29 2 29 2 29	05.13 +14 14.59 14 23.91 14 33.10 14 42.14 14 51.03 14	14 08.2 14 53.5 15 38.0 16 21.8 17 04.9 17 47.3	20.400 135 20.386 695 20.373 092 20.359 331	0.43 0.43 0.43 0.43 0.43	1.72 1.72 1.72 1.72 1.72 1.72	8 8 8	25 21 17 13 10 06	13 27 40 53 06 19
28 29 30 July 1 2	2 29 2 30 2 30 2 30 2 30 2 30	59.77 +14 08.37 14 16.82 14 25.13 14 33.29 +14	18 28.8 19 09.7 19 49.7 20 29.0 21 07.5	20.317 136 20.302 779 20.288 284	0.43 0.43	1.72 1.72 1.72 1.73 1.73	7 7 7	02 58 54 51 47	32 44 57 09 21

Date		Ap Right	parei Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris nsit	3
July	1 2 3 4 5 6	h 2 2 2 2 2 2 2	m 30 30 30 30 30 31	s 25.13 33.29 41.30 49.16 56.86 04.41	o +14 14 14 14 14 14	20 21 21 22 22 22 23	" 29.0 07.5 45.3 22.4 58.7 34.2	20.288 284 20.273 653 20.258 889 20.243 997 20.228 981 20.213 842	0.43 0.43 0.43 0.43	1.73 1.73 1.73 1.73 1.73 1.73	h 7 7 7 7 7	m 51 47 43 39 35 32	s 09 21 33 45 57 08
	7 8 9 10 11 12	2 2 2 2 2 2 2	31 31 31 31 31 31	11.79 19.01 26.06 32.95 39.67 46.22	+14 14 14 14 14 14	24 24 25 25 26 26	08.9 42.8 15.8 48.1 19.5 50.1	20.198 586 20.183 215 20.167 734 20.152 145 20.136 452 20.120 660	0.44 0.44 0.44	1.73 1.74 1.74 1.74 1.74	7 7 7 7 7 7	28 24 20 16 13 09	20 31 42 53 04 14
	13 14 15 16 17 18	2 2 2 2 2 2 2	31 31 32 32 32 32 32	52.61 58.82 04.87 10.74 16.45 21.97	+14 14 14 14 14 14	27 27 28 28 29 29	19.8 48.7 16.7 44.0 10.3 35.8	20.104 772 20.088 792 20.072 724 20.056 573 20.040 342 20.024 036	0.44 0.44 0.44	1.74 1.74 1.74 1.75 1.75 1.75	7 7 6 6 6 6	05 01 57 53 50 46	25 35 45 55 04 14
	19 20 21 22 23 24	2 2 2 2 2 2 2	32 32 32 32 32 32 32	27.33 32.50 37.49 42.29 46.91 51.34	+14 14 14 14 14 14	30 30 30 31 31 31	00.5 24.3 47.3 09.3 30.5 50.7	20.007 660 19.991 218 19.974 714 19.958 154 19.941 542 19.924 883	0.44	1.75 1.75 1.75 1.75 1.76 1.76	6 6 6 6 6	42 38 34 30 26 23	23 33 42 50 59 07
	25 26 27 28 29 30	2 2 2 2 2 2 2	32 32 33 33 33 33	55.58 59.64 03.51 07.20 10.70 14.02	+14 14 14 14 14 14	32 32 32 33 33 33	10.0 28.4 45.9 02.4 18.1 32.9	19.908 181 19.891 443 19.874 671 19.857 872 19.841 050 19.824 208	0.44 0.44 0.44 0.44 0.44	1.76 1.76 1.76 1.76 1.77	6 6 6 6 5	19 15 11 07 03 59	16 24 32 39 47 54
Aug.	31 1 2 3 4 5	2 2 2 2 2 2 2	33 33 33 33 33 33	17.15 20.09 22.84 25.40 27.76 29.93	+14 14 14 14 14 14	33 33 34 34 34 34	46.8 59.8 11.9 23.1 33.4 42.8	19.807 352 19.790 486 19.773 613 19.756 739 19.739 868 19.723 004	0.44 0.44 0.45 0.45	1.77 1.77 1.77 1.77 1.77 1.78	5 5 5 5 5 5	56 52 48 44 40 36	01 08 15 22 28 34
	6 7 8 9 10	2 2 2 2 2 2 2	33 33 33 33 33 33	31.90 33.68 35.27 36.66 37.86 38.86	+14 14 14 14 14 14	34 34 35 35 35 35	51.2 58.7 05.2 10.8 15.5 19.3	19.706 151 19.689 313 19.672 496 19.655 703 19.638 939 19.622 209	0.45 0.45	1.78 1.78 1.78 1.78 1.78 1.78	5 5 5 5 5 5	32 28 24 20 17 13	40 46 52 57 02 08
	12 13 14 15 16	2 2 2 2 2 2	33 33 33 33 33	39.68 40.30 40.73 40.96 41.00	14 14 14	35 35 35 35 35	22.1 24.1 25.1 25.2 24.4	19.605 518 19.588 870 19.572 270 19.555 722 19.539 233	0.45 0.45	1.79 1.79 1.79 1.79 1.79	5 5 5 4 4	09 05 01 57 53	12 17 22 26 30

Dat	e	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris ınsit	S
Aug.	16 17 18 19 20 21	h 2 2 2 2 2 2 2	m 33 33 33 33 33 33	s 41.00 40.85 40.49 39.94 39.19 38.24	+14 14 14 14 14 14	35 35 35 35 35 35 35	24.4 22.7 20.1 16.5 12.0 06.5	19.539 233 19.522 807 19.506 449 19.490 163 19.473 957 19.457 834	0.45 0.45	1.79 1.79 1.80 1.80 1.80 1.80	h 4 4 4 4 4	m 53 49 45 41 37 33	s 30 34 37 41 44 47
	22 23 24 25 26 27	2 2 2 2 2 2 2	33 33 33 33 33 33	37.09 35.76 34.23 32.51 30.61 28.52	+14 14 14 14 14 14	35 34 34 34 34 34	00.1 52.8 44.5 35.4 25.4 14.5	19.441 799 19.425 858 19.410 016 19.394 277 19.378 647 19.363 128	0.45 0.45 0.45 0.45	1.80 1.80 1.80 1.81 1.81	4 4 4 4 4	29 25 21 17 14 10	50 53 56 58 00 02
Sept.	28 29 30 31 1 2	2 2 2 2 2 2 2	33 33 33 33 33 33	26.25 23.79 21.13 18.30 15.27 12.06	+14 14 14 14 14 14	34 33 33 33 33 32	02.7 50.0 36.5 22.1 06.8 50.7	19.347 727 19.332 447 19.317 293 19.302 268 19.287 378 19.272 625	0.46 0.46	1.81 1.81 1.81 1.81 1.82 1.82	4 4 3 3 3 3 3	06 02 58 54 50 46	04 05 07 08 09 10
	3 4 5 6 7 8	2 2 2 2 2 2 2	33 33 33 32 32 32	08.66 05.08 01.33 57.39 53.28 49.00	+14 14 14 14 14 14	32 32 31 31 31 30	33.6 15.7 57.0 37.3 16.9 55.6	19.258 016 19.243 553 19.229 241 19.215 085 19.201 088 19.187 256	0.46 0.46 0.46 0.46	1.82 1.82 1.82 1.82 1.82 1.83	3 3 3 3 3 3	42 38 34 30 26 22	11 11 12 12 12 12
	9 10 11 12 13 14	2 2 2 2 2 2 2	32 32 32 32 32 32 32	44.55 39.92 35.13 30.17 25.04 19.75	+14 14 14 14 14 14	30 30 29 29 28 28	33.6 10.7 47.0 22.5 57.3 31.3	19.173 592 19.160 100 19.146 786 19.133 654 19.120 708 19.107 953	0.46 0.46 0.46 0.46	1.83 1.83 1.83 1.83 1.83 1.83	3 3 3 3 2	18 14 10 06 02 58	11 11 10 09 08 07
	15 16 17 18 19 20	2 2 2 2 2 2 2	32 32 32 31 31 31	14.29 08.66 02.87 56.92 50.82 44.57	+14 14 14 14 14 14	28 27 27 26 26 25	04.5 36.9 08.6 39.4 09.5 38.9	19.095 392 19.083 032 19.070 875 19.058 927 19.047 192 19.035 674	0.46 0.46 0.46	1.83 1.84 1.84 1.84 1.84 1.84	2 2 2 2 2 2 2	54 50 46 42 37 33	06 04 02 00 59 56
	21 22 23 24 25 26	2 2 2 2 2 2 2	31 31 31 31 31 31	38.17 31.63 24.95 18.13 11.18 04.09	+14 14 14 14 14 14	25 24 24 23 22 22	07.6 35.6 02.9 29.6 55.7 21.1	19.024 377 19.013 305 19.002 461 18.991 849 18.981 471 18.971 332	0.46 0.46 0.46 0.46 0.46	1.84 1.84 1.84 1.84 1.84 1.85	2 2 2 2 2 2 2	29 25 21 17 13 09	54 52 49 46 44 41
Oct.	27 28 29 30 1	2 2 2 2 2 2	30 30 30 30 30	56.86 49.50 42.02 34.41 26.68	14 14 14	21 21 20 19 19	45.9 10.1 33.6 56.6 18.9	18.961 433 18.951 779 18.942 373 18.933 216 18.924 313	0.46 0.46 0.46 0.46 0.46	1.85 1.85 1.85 1.85 1.85	2 2 1 1 1	05 01 57 53 49	37 34 31 27 24

Date	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris nsit	S
Oct. 1 2 3 4 5	2 2	m 30 30 30 30 29 29	s 26.68 18.83 10.87 02.80 54.62 46.35	0 +14 14 14 14 14 14	19 18 18 17 16 16	" 18.9 40.7 02.0 22.7 42.9 02.6	18.924 313 18.915 665 18.907 276 18.899 149 18.891 287 18.883 692		1.85 1.85 1.85 1.85 1.85 1.85	h 1 1 1 1 1	m 49 45 41 37 33 29	s 24 20 16 12 08 04
7 8 9 10 11 12	2 2 2 2	29 29 29 29 29 29 28	37.97 29.50 20.93 12.28 03.54 54.71	+14 14 14 14 14 14	15 14 13 13 12 11	21.8 40.6 58.9 16.9 34.4 51.5	18.876 367 18.869 314 18.862 538 18.856 039 18.849 821 18.843 887	0.47	1.86 1.86 1.86 1.86 1.86	1 1 1 1 1	24 20 16 12 08 04	60 56 51 47 42 37
13 14 15 16 17 18	2 2 2 2	28 28 28 28 28 28	45.79 36.80 27.73 18.59 09.39 00.13	+14 14 14 14 14 14	11 10 09 08 08 07	08.1 24.5 40.4 55.9 11.2 26.1	18.838 239 18.832 880 18.827 812 18.823 037 18.818 558 18.814 376	0.47 0.47 0.47	1.86 1.86 1.86 1.86 1.86	1 0 0 0 0	00 56 52 48 44 40	32 28 23 18 13 08
19 20 21 22 23 24	2 2 2 2	27 27 27 27 27 27 27	50.82 41.47 32.07 22.62 13.14 03.61	+14 14 14 14 14 14	06 05 05 04 03 02	40.8 55.3 09.5 23.6 37.5 51.2	18.810 494 18.806 911 18.803 631 18.800 654 18.797 980 18.795 610	0.47	1.86 1.86 1.86 1.86 1.86	0 0 0 0 0	36 31 27 23 19 15	02 57 52 47 41 36
25 26 27 28 29 30	2 2 2 2	26 26 26 26 26 26 26	54.06 44.47 34.86 25.23 15.58 05.93	+14 14 14 13 13 13	02 01 00 59 58 58	04.7 18.2 31.4 44.6 57.7 10.7	18.793 546 18.791 787 18.790 334 18.789 188 18.788 348 18.787 816	0.47 0.47 0.47 0.47 0.47 0.47	1.86 1.86 1.86 1.86 1.86	0 0 0 23 23 23	11 07 03 55 51 46	30 25 20 09 03 58
Nov. 1 2 3 4 5	2	25 25 25 25 25 25 25	56.27 46.60 36.95 27.30 17.66 08.04	+13 13 13 13 13 13	57 56 55 55 54 53	23.7 36.7 49.7 02.8 15.9 29.1	18.787 591 18.787 675 18.788 065 18.788 764 18.789 771 18.791 087	0.47 0.47 0.47 0.47 0.47 0.47	1.86 1.86 1.86 1.86 1.86	23 23 23 23 23 23 23	42 38 34 30 26 22	52 47 41 36 30 25
6 7 8 9 10	2 2 2	24 24 24 24 24 24	58.44 48.86 39.30 29.77 20.27 10.80	+13 13 13 13 13 13	52 51 51 50 49 48	42.4 55.8 09.3 23.0 36.9 50.9	18.792 710 18.794 641 18.796 879 18.799 426 18.802 279 18.805 439	0.47 0.47 0.47	1.86 1.86 1.86 1.86 1.86	23 23 23 23 23 23 22	18 14 10 06 01 57	19 14 08 03 58 52
12 13 14 15 16	2 2 2	24 23 23 23 23	01.38 52.01 42.69 33.43 24.23	13 13 13	48 47 46 45 45	05.1 19.5 34.1 49.1 04.3	18.808 906 18.812 678 18.816 755 18.821 135 18.825 817	0.47 0.47 0.47 0.47 0.47	1.86 1.86 1.86 1.86	22 22 22 22 22 22	53 49 45 41 37	47 42 37 32 27

Date	App Right A				pare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris ınsit	S
Nov. 16 17 18 19 20 21	2 2 2 2	m 23 23 23 22 22 22	s 24.23 15.10 06.05 57.06 48.15 39.32	+13 13 13 13 13 13	45 44 43 42 42 41	" 04.3 20.0 35.9 52.3 09.1 26.2	18.825 817 18.830 800 18.836 082 18.841 660 18.847 532 18.853 696	0.47 0.47 0.47 0.47 0.47 0.47	1.86 1.86 1.86 1.86 1.86 1.86	h 22 22 22 22 22 22 22	m 37 33 29 25 21 17	s 27 22 17 12 08 03
22 23 24 25 26 27	2 2 2 2	22 22 22 22 21 21	30.57 21.90 13.33 04.85 56.47 48.20	+13 13 13 13 13 13	40 40 39 38 37 37	43.8 01.7 20.2 39.1 58.5 18.4	18.860 150 18.866 892 18.873 918 18.881 226 18.888 814 18.896 679	0.47 0.47 0.47 0.47 0.47 0.47	1.86 1.86 1.86 1.85 1.85	22 22 22 22 21 21	12 08 04 00 56 52	58 54 50 45 41 37
28 29 30 Dec. 1 2 3	2 2 2 2	21 21 21 21 21 21	40.03 31.98 24.04 16.22 08.53 00.95	+13 13 13 13 13 13	36 35 35 34 34 33	38.8 59.9 21.5 43.7 06.5 29.9	18.904 818 18.913 229 18.921 908 18.930 854 18.940 063 18.949 532	0.47 0.46 0.46 0.46 0.46 0.46	1.85 1.85 1.85 1.85 1.85 1.85	21 21 21 21 21 21	48 44 40 36 32 28	33 29 26 22 19 15
4 5 6 7 8 9	2 2 2 2	20 20 20 20 20 20 20 20	53.51 46.19 39.00 31.94 25.02 18.23	+13 13 13 13 13 13	32 32 31 31 30 30	54.1 18.8 44.2 10.3 37.1 04.6	18.959 259 18.969 240 18.979 473 18.989 954 19.000 680 19.011 648	0.46 0.46 0.46 0.46 0.46 0.46	1.85 1.85 1.85 1.84 1.84	21 21 21 21 21 21	24 20 16 12 08 03	12 09 06 03 01 58
10 11 12 13 14 15	2 2 2 2	20 20 19 19 19	11.60 05.11 58.78 52.60 46.59 40.74	+13 13 13 13 13 13	29 29 28 28 27 27	32.8 01.7 31.4 01.9 33.2 05.4	19.022 856 19.034 298 19.045 972 19.057 873 19.069 998 19.082 342	0.46 0.46 0.46 0.46 0.46	1.84 1.84 1.84 1.84 1.84	20 20 20 20 20 20 20	59 55 51 47 43 39	56 54 51 50 48 46
16 17 18 19 20 21	2 2 2 2	19 19 19 19 19	35.05 29.53 24.17 18.98 13.96 09.11	+13 13 13 13 13 13	26 26 25 25 24 24	38.4 12.2 46.9 22.5 58.9 36.2	19.094 901 19.107 669 19.120 643 19.133 818 19.147 189 19.160 751	0.46 0.46 0.46 0.46 0.46 0.46	1.83 1.83 1.83 1.83 1.83 1.83	20 20 20 20 20 20 20	35 31 27 23 19 15	45 43 42 41 41 40
22 23 24 25 26 27	2 2 2 2	19 18 18 18 18	04.44 59.94 55.62 51.49 47.55 43.79	+13 13 13 13 13 13	24 23 23 23 22 22	14.4 53.4 33.4 14.3 56.2 39.0	19.174 498 19.188 428 19.202 534 19.216 812 19.231 258 19.245 865	0.46 0.46 0.46 0.46 0.46	1.83 1.83 1.82 1.82 1.82 1.82	20 20 20 19 19	11 07 03 59 55 51	40 39 39 40 40 40
28 29 30 31 32	2 2 2	18 18 18 18 18	40.22 36.84 33.65 30.65 27.84	13 13 13	22 22 21 21 21	22.7 07.5 53.2 39.9 27.6	19.260 631 19.275 549 19.290 616 19.305 826 19.321 175	0.46 0.46 0.46 0.46 0.46	1.82 1.82 1.82 1.81 1.81	19 19 19 19	47 43 39 35 31	41 42 43 44 46

NEPTUNE, 2020 HELIOCENTRIC POSITIONS FOR $0^{\rm h}$ TERRESTRIAL TIME MEAN EQUINOX AND ECLIPTIC OF DATE

Dat	e		ioce:	ntric ude		lioce atitu			dius ector		Dat	te			ntric ude		ioce atitu		Radius Vector	
Jan.	3 5 7 9	347 348 348 348 348 348	00 01 01 02	" 44.9 28.7 12.5 56.3 40.1 23.9	-1 1 1 1 1 1	02 02 02 02 02 02 02	22.4 23.5 24.5 25.6 26.7 27.8	29 29 29 29	.932 .932 .932 .932 .932	89 86 83 80	Apr.	4 6 8 10	348 348 348	34 34 35 36	" 19.5 03.3 47.1 30.9 14.7 58.5	1 1 1 1	03 03 03 03 03	" 12.2 13.3 14.4 15.4 16.5 17.6	29.931 4 29.931 4 29.931 4 29.931 3 29.931 3	43 40 36 33
	17 19 21	348 348 348 348 348 348	04 05 06 07	07.7 51.4 35.2 19.0 02.8 46.6	-1 1 1 1 1	02 02 02 02 02 02 02	28.9 30.0 31.1 32.2 33.2 34.3	29 29 29 29	.932 .932 .932 .932 .932	70 67 64 61		16 18 20 22	348	38 39 39 40	26.1 09.9 53.7 37.5	1 1 1 1	03 03 03 03	18.7 19.8 20.8 21.9 23.0 24.1	29.931 2 29.931 2 29.931 2 29.931 1 29.931 1 29.931 1	24 20 17 14
Feb.	27 29 31 2	348 348 348 348 348 348	09 09 10 11	30.4 14.2 58.0 41.7 25.5 09.3	-1 1 1 1 1	02 02 02 02 02 02 02	35.4 36.5 37.6 38.7 39.8 40.8	29 29 29 29	.932 .932 .932 .932 .932	51 48 45 41	May	28 30 2 4	348 348 348	42 43 44 45	05.2 49.0 32.8 16.6 00.4 44.2	1 1 1 1	03 03 03 03	25.1 26.2 27.3 28.4 29.4 30.5	29.931 (29.931 (29.931 (29.930 929.930	04 01 98 95
	8 10 12 14	348 348 348 348 348 348	13 14 15 15	53.1 36.9 20.7 04.5 48.3 32.1	-1 1 1 1 1	02 02 02 02 02 02 02	41.9 43.0 44.1 45.2 46.3 47.3	29 29 29 29	.932 .932 .932 .932 .932	32 29 26 22		10 12 14 16	348 348 348 348	47 47 48 49	28.0 11.8 55.6 39.4 23.2 07.1	1 1 1 1	03 03 03 03	31.6 32.7 33.7 34.8 35.9 37.0	29.930 8 29.930 8 29.930 7 29.930 7 29.930 7	85 82 79 76
	22 24 26	348 348 348 348 348 348	17 18 19 20	15.9 59.7 43.5 27.3 11.1 54.9	-1 1 1 1 1	02 02 02 02 02 02 02	48.4 49.5 50.6 51.7 52.7 53.8	29 29 29 29	.932 .932 .932 .932 .932	13 10 06 03		22 24 26 28	348 348 348 348	51 52 53 53	50.9 34.7 18.5 02.3 46.1 29.9	1 1 1 1	03 03 03 03	38.1 39.1 40.2 41.3 42.4 43.4	29.930 6 29.930 6 29.930 6 29.930 5 29.930 5	66 63 60 57
Mar.	3 5 7 9	348 348 348 348 348 348	22 23 23 24	38.7 22.5 06.3 50.1 33.9 17.7	-1 1 1 1 1	02 02 02 02 02 02 03	54.9 56.0 57.1 58.2 59.2 00.3	29 29 29 29	.931 .931 .931 .931 .931	94 91 87 84	June	3 5 7 9		55 56 57 58	13.7 57.6 41.4 25.2 09.0 52.8	1 1 1 1	03 03 03 03	44.5 45.6 46.6 47.7 48.8 49.9	29.930 5 29.930 4 29.930 4 29.930 3 29.930 3	47 44 40 37
	15 17 19 21	348 348 348 348 348 348	26 27 28 28	01.5 45.3 29.1 12.9 56.7 40.5	-1 1 1 1 1	03 03 03 03 03 03	01.4 02.5 03.5 04.6 05.7 06.8	29 29 29 29	.931 .931 .931 .931 .931	75 71 68 65		15 17 19 21	348 349 349 349 349 349	00 01 01 02	36.6 20.5 04.3 48.1 31.9 15.7	1 1 1 1	03 03 03 03	51.0 52.0 53.1 54.2 55.2 56.3	29.930 3 29.930 2 29.930 2 29.930 1 29.930 1	28 24 21 18
Apr.	27 29 31	348 348 348 348 348	31 31 32	24.3 08.1 51.9 35.7 19.5	-1 1 1 1 -1	03 03 03 03 03	07.9 09.0 10.1 11.1 12.2	29 29 29	.931 .931 .931 .931 .931	55 52 49	July	27 29 1	349 349 349	04 05 06	59.6 43.4 27.2 11.0 54.8	1 1 1	03 03 04	57.4 58.5 59.5 00.6 01.7	29.930 1 29.930 0 29.930 0 29.930 0 29.929 9	08 05 02

 $\begin{array}{c} \textbf{NEPTUNE, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR } 0^{\text{h}} \ \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	te		ioce:	ntric ude		lioce Latitu	ntric de	Radius Vector	Da	te	Helio Lon		ntric ude		ioce atitu			Radius Vector
July	7 9	349 349 349 349	06 07 08 09	11.0 54.8 38.7 22.5 06.3 50.2	o -1 1 1 1 1	04 04 04 04 04 04	"00.6 01.7 02.7 03.8 04.9 05.9	29.930 02 29.929 99 29.929 95 29.929 92 29.929 89 29.929 86		3 5 7 9	349 2 349 2 349 2 349 2 349 2	40 41 41 42		1 1 1 1	04 04 04 04 04	"49.7 50.8 51.8 52.9 54.0 55.0		29.928 51 29.928 48 29.928 44 29.928 41 29.928 38 29.928 34
	15 17 19 21	349 349 349 349 349	11 12 12 13	34.0 17.8 01.6 45.4 29.3 13.1	-1 1 1 1 1 1	04 04 04 04 04 04	07.0 08.1 09.2 10.2 11.3 12.4	29.929 83 29.929 79 29.929 76 29.929 70 29.929 66) ; ;	15 17 19 21	349 4 349 4 349 4 349 4 349 4	44 45 46 47	10.2 54.1 37.9 21.8 05.6 49.5	1 1 1 1	04 04 04 05	56.1 57.2 58.2 59.3 00.4 01.4		29.928 31 29.928 28 29.928 24 29.928 21 29.928 18 29.928 14
Aug.	27 29 31 2	349 349 349 349 349	15 16 17 17	56.9 40.7 24.6 08.4 52.2 36.1	-1 1 1 1 1 1	04 04 04 04 04 04	13.5 14.5 15.6 16.7 17.7 18.8	29.929 63 29.929 60 29.929 57 29.929 53 29.929 47) ;)) Nov.	27 29 31 2	349 4 349 3 349 3 349 3 349 3	49 50 50 51	33.3 17.1 01.0 44.8 28.7 12.5	1 1 1 1	05 05 05 05	02.5 03.5 04.6 05.6 06.7 07.8		29.928 11 29.928 08 29.928 04 29.928 01 29.927 98 29.927 94
	8 10 12 14	349 349 349 349 349	20 20 21 22	19.9 03.7 47.5 31.4 15.2 59.0	-1 1 1 1 1 1		19.9 20.9 22.0 23.1 24.1 25.2	29.929 43 29.929 40 29.929 37 29.929 34 29.929 30 29.929 27) ;	8 10 12 14	349 : 349 : 349 : 349 : 349 :	53 54 55 55	40.2 24.0 07.9 51.7	1 1 1 1	05 05 05 05	08.8 09.9 11.0 12.0 13.1 14.2		29.927 91 29.927 87 29.927 84 29.927 81 29.927 77 29.927 74
	20 22 24 26	349 349 349 349 349	24 25 25 26	42.8 26.7 10.5 54.4 38.2 22.0	-1 1 1 1 1 1	04 04 04 04 04 04	26.3 27.3 28.4 29.5 30.5 31.6	29.929 24 29.929 21 29.929 17 29.929 14 29.929 11 29.929 07	, , ,	20 22 24 26	349 3 349 3 349 3 350 0 350 0	58 58 59 00	19.4 03.3 47.1 31.0 14.8 58.6	1 1 1 1	05 05 05 05	15.2 16.3 17.3 18.4 19.4 20.5		29.927 71 29.927 67 29.927 64 29.927 60 29.927 57 29.927 54
Sept.	1 3 5 7	349 349 349 349 349	28 29 30 31	05.9 49.7 33.5 17.4 01.2 45.0	-1 1 1 1 1	04	32.7 33.7 34.8 35.9 36.9 38.0	29.929 04 29.929 01 29.928 98 29.928 94 29.928 91 29.928 88	Dec.	2 4 6 8	350 (350 (350 (350 (350 (350 (350 (350 (02 03 03 04		1 1 1 1	05 05 05 05	21.6 22.6 23.7 24.7 25.8 26.8	2	29.927 50 29.927 47 29.927 44 29.927 40 29.927 37 29.927 33
	13 15 17 19	349 349 349 349 349	33 33 34 35	28.9 12.7 56.5 40.4 24.2 08.1	-1 1 1 1 1 1	04 04 04 04 04 04	39.1 40.1 41.2 42.3 43.3 44.4	29.928 84 29.928 81 29.928 78 29.928 74 29.928 71 29.928 68	3	14 16 18 20	350 (350 (350 (350 (350 (350 (350 (350 (06 07 08 09	49.4 33.3 17.1 01.0	1 1 1 1	05 05 05 05	27.9 29.0 30.0 31.1 32.1 33.2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29.927 30 29.927 27 29.927 23 29.927 20 29.927 16 29.927 13
Oct.	25 27 29	349 349 349 349 349	37 38 39	51.9 35.7 19.6 03.4 47.2	-1 1 1 1 -1	04 04 04	45.4 46.5 47.6 48.6 49.7	29.928 64 29.928 61 29.928 58 29.928 54 29.928 51	}	26 28 30	350 350 350 350 350	11 11 12	12.6 56.4 40.3	1 1 1	05 05 05	34.2 35.3 36.4 37.4 38.5	2 2 2	29.927 10 29.927 06 29.927 03 29.926 99 29.926 96

NEPTUNE, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren ocentr ngituc	ic	Ge	pparen ocentr atitude	ic	Date	e	Geo	paren centr ngituc	ric	G	Apparer eocents Latitud	ric
Jan.	0 1 2 3 4 5	346 346 346 346 346 346	14 15 17 18 19 20	43.7 52.1 02.4 14.4 28.2 43.9	o -1 1 1 1 1	01 01 01 01 01 01	36.9 35.5 34.1 32.7 31.3 30.0	Feb.	15 16 17 18 19 20	347 347 347 347 347 347	33 35 37 39 42 44	23.0 32.1 41.9 52.4 03.6 15.3	-1 1 1 1 1	00 00 00 00 00 00	55.2 54.9 54.7 54.5 54.4 54.3
	6 7 8 9 10 11	346 346 346 346 346 346	22 23 24 26 27 28	01.3 20.5 41.5 04.2 28.6 54.6	-1 1 1 1 1 1	01 01 01 01 01 01	28.6 27.3 26.0 24.8 23.5 22.3		21 22 23 24 25 26	347 347 347 347 347 347	46 48 50 53 55 57	27.6 40.3 53.5 07.1 21.2 35.6	-1 1 1 1 1	00 00 00 00 00 00	54.2 54.1 54.1 54.1 54.2 54.3
	12 13 14 15 16 17	346 346 346 346 346 346	30 31 33 34 36 38	22.3 51.5 22.3 54.6 28.4 03.7	-1 1 1 1 1	01 01 01 01 01 01	21.1 19.9 18.7 17.5 16.4 15.3	Mar.	27 28 29 1 2 3	347 348 348 348 348 348	59 02 04 06 08 11	50.3 05.4 20.8 36.5 52.5 08.7	-1 1 1 1 1	00 00 00 00 00 00	54.4 54.5 54.7 54.9 55.2 55.4
	18 19 20 21 22 23	346 346 346 346 346 346	39 41 42 44 46 48	40.6 19.0 59.0 40.4 23.3 07.5	-1 1 1 1 1	01 01 01 01 01 01	14.2 13.2 12.2 11.2 10.2 09.3		4 5 6 7 8 9	348 348 348 348 348 348	13 15 17 20 22 24	25.2 41.8 58.5 15.2 31.9 48.2	-1 1 1 1 1	00 00 00 00 00 00	55.8 56.1 56.5 57.0 57.7 58.2
	24 25 26 27 28 29	346 346 346 346 346 346	49 51 53 55 57 59	53.2 40.1 28.4 17.8 08.5 00.4	-1 1 1 1 1	01 01 01 01 01 01	08.3 07.4 06.6 05.7 04.9 04.1		10 11 12 13 14 15	348 348 348 348 348 348	27 29 31 33 36 38	04.8 21.3 37.8 54.3 10.6 26.9	-1 1 1 1 1	00 00 00 01 01 01	58.5 59.0 59.5 00.1 00.8 01.5
Feb.	30 31 1 2 3 4	347 347 347 347 347 347	00 02 04 06 08 10	53.5 47.7 43.1 39.6 37.3 36.0	-1 1 1 1 1	01 01 01 01 01 01	03.4 02.6 01.9 01.2 00.6 00.0		16 17 18 19 20 21	348 348 348 348 348 348	40 42 45 47 49 51	43.0 58.9 14.5 29.8 44.8 59.4	-1 1 1 1 1	01 01 01 01 01	02.2 02.9 03.7 04.6 05.4 06.3
	5 6 7 8 9 10	347 347 347 347 347 347	12 14 16 18 20 22	35.8 36.7 38.5 41.2 44.8 49.2	-1 1 1 1 1	00 00 00 00 00 00	59.4 58.8 58.3 57.8 57.3 56.9		22 23 24 25 26 27	348 348 348 349 349 349	54 56 58 00 03 05	13.6 27.3 40.6 53.5 05.8 17.6	-1 1 1 1 1	01 01 01 01 01	07.2 08.2 09.2 10.2 11.3 12.3
	11 12 13 14 15	347 347 347 347 347	24 27 29 31 33	54.4 00.3 07.1 14.7 23.0	-1 1 1 1 -1	00 00 00 00 00	56.5 56.1 55.7 55.4 55.2	Apr.	28 29 30 31	349 349 349 349 349	07 09 11 13 16	28.9 39.6 49.7 59.3 08.1	-1 1 1 1 -1	01 01 01 01 01	13.5 14.6 15.8 17.0 18.3

NEPTUNE, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren centr ngitud	ic	Geo	paren ocentr atitude	ic	Date	e	Geo	paren centr ngituc	ric	(Зео	oaren centri itude	ic
Apr.	1 2 3 4 5 6	349 349 349 349 349 349	16 18 20 22 24 26	08.1 16.3 23.7 30.3 36.1 41.0	-1 1 1 1 1 1	01 01 01 01 01 01	18.3 19.5 20.8 22.2 23.6 25.0	May	17 18 19 20 21 22	350 350 350 350 350 350 350	35 36 37 38 39 40	22.2 31.6 39.3 45.3 49.5 51.9	-1 1 1 1 1		02 02 02 02 02 02 02	46.0 48.5 50.9 53.4 55.9 58.4
	7 8 9 10 11 12	349 349 349 349 349 349	28 30 32 34 36 38	45.0 48.2 50.5 51.9 52.5 52.2	-1 1 1 1 1 1	01 01 01 01 01 01	26.4 27.9 29.4 30.9 32.5 34.0		23 24 25 26 27 28	350 350 350 350 350 350	41 42 43 44 45 46	52.6 51.6 48.7 44.0 37.4 29.0	-]]] 1]		03 03 03 03 03 03	00.9 03.4 06.0 08.5 11.1 13.7
	13 14 15 16 17 18	349 349 349 349 349 349	40 42 44 46 48 50	50.8 48.5 45.2 40.7 35.1 28.3	-1 1 1 1 1	01 01 01 01 01 01	35.7 37.3 39.0 40.7 42.4 44.2	June	29 30 31 1 2 3	350 350 350 350 350 350 350	47 48 48 49 50 50	18.6 06.4 52.2 36.0 18.0 58.2	-]]] 1]		03 03 03 03 03 03	16.3 18.9 21.5 24.1 26.7 29.4
	19 20 21 22 23 24	349 349 349 349 349 350	52 54 56 57 59 01	20.3 11.2 00.8 49.3 36.5 22.4	-1 1 1 1 1	01 01 01 01 01 01	46.0 47.8 49.7 51.5 53.4 55.3		4 5 6 7 8 9	350 350 350 350 350 350	51 52 52 53 53 54	36.4 12.9 47.4 20.1 50.9 19.7	-] 1 1 1 1		03 03 03 03 03 03	32.0 34.7 37.4 40.0 42.7 45.4
	25 26 27 28 29 30	350 350 350 350 350 350	03 04 06 08 09 11	07.1 50.5 32.7 13.4 52.8 30.8	-1 1 1 1 1	01 01 02 02 02 02	57.3 59.3 01.3 03.3 05.3 07.4		10 11 12 13 14 15	350 350 350 350 350 350	54 55 55 55 56 56	46.5 11.3 34.2 55.0 13.9 30.8	-1 1 1 1 1		03 03 03 03 03 04	48.1 50.8 53.5 56.2 58.9 01.6
May	1 2 3 4 5 6	350 350 350 350 350 350	13 14 16 17 19 20	07.3 42.3 15.8 47.8 18.3 47.2	-1 1 1 1 1	02 02 02 02 02 02 02	09.5 11.6 13.8 15.9 18.1 20.3		16 17 18 19 20 21	350 350 350 350 350 350	56 56 57 57 57 57	45.7 58.8 09.8 19.0 26.2 31.5	-1 1 1 1 1		04 04 04 04 04 04	04.3 07.0 09.7 12.4 15.1 17.8
	7 8 9 10 11 12	350 350 350 350 350 350	22 23 25 26 27 29	14.7 40.7 05.1 28.1 49.4 09.1	-1 1 1 1 1	02 02 02 02 02 02 02	22.6 24.8 27.1 29.4 31.7 34.0		22 23 24 25 26 27	350 350 350 350 350 350	57 57 57 57 57 57	34.8 36.2 35.6 33.0 28.3 21.7	-1 1 1 1 1		04 04 04 04 04 04	20.5 23.1 25.8 28.5 31.2 33.8
	13 14 15 16 17	350 350 350 350 350	30 31 32 34 35	27.2 43.5 58.1 11.0 22.2	-1 1 1 1 -1	02 02 02 02 02 02	36.4 38.8 41.2 43.6 46.0	July	28 29 30 1 2	350 350 350 350 350	57 57 56 56 56	13.1 02.6 50.2 35.9 19.8	-1 1 1 1 -1		04 04 04 04 04	36.5 39.2 41.8 44.5 47.1

NEPTUNE, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	parer ocentr ngituc	ric	Geo	paren ocentr atitude	ic	Date	e	Geo	parer ocentr ngituc	ic	Ge	pparer ocentr atitude	ic
July	1 2 3 4 5 6	350 350 350 350 350 350 350	56 56 56 55 55 54	35.9 19.8 01.8 42.0 20.4 56.8	-1 1 1 1 1 1	04 04 04 04 04 04	" 44.5 47.1 49.7 52.3 54.9 57.5	Aug.	16 17 18 19 20 21	350 350 350 350 350 350 350	15 13 12 10 09 07	08.5 42.3 15.2 47.1 18.0 48.1	-1 1 1 1 1 1	06 06 06 06 06 06	26.0 27.5 29.0 30.5 32.0 33.4
	7 8 9 10 11 12	350 350 350 350 350 350	54 54 53 53 52 51	31.4 04.0 34.8 03.7 30.8 56.1	-1 1 1 1 1	05 05 05 05 05 05	00.1 02.7 05.2 07.8 10.3 12.8		22 23 24 25 26 27	350 350 350 350 350 349	06 04 03 01 00 58	17.3 45.8 13.5 40.7 07.2 33.2	-1 1 1 1 1	06 06 06 06 06 06	34.7 36.1 37.4 38.6 39.9 41.0
	13 14 15 16 17 18	350 350 350 350 350 350 350	51 50 50 49 48 47	19.5 41.2 01.2 19.5 36.0 50.9	-1 1 1 1 1	05 05 05 05 05 05	15.3 17.7 20.2 22.6 25.0 27.4	Sept.	28 29 30 31 1 2	349 349 349 349 349 349	56 55 53 52 50 48	58.5 23.4 47.7 11.4 34.7 57.6	-1 1 1 1 1	06 06 06 06 06 06	42.2 43.3 44.4 45.4 46.4 47.3
	19 20 21 22 23 24	350 350 350 350 350 350 350	47 46 45 44 43 42	04.1 15.6 25.4 33.6 40.0 44.8	-1 1 1 1 1	05 05 05 05 05 05	29.8 32.2 34.5 36.8 39.1 41.4		3 4 5 6 7 8	349 349 349 349 349 349	47 45 44 42 40 39	20.0 42.0 03.8 25.3 46.6 07.7	-1 1 1 1 1	06 06 06 06 06 06	48.2 49.1 49.9 50.7 51.5 52.2
	25 26 27 28 29 30	350 350 350 350 350 350 350	41 40 39 38 37 36	47.9 49.5 49.6 48.2 45.4 41.1	-1 1 1 1 1 1	05 05 05 05 05 05	43.6 45.8 48.0 50.2 52.3 54.5		9 10 11 12 13 14	349 349 349 349 349 349	37 35 34 32 30 29	28.7 49.6 10.5 31.3 52.1 13.0	-1 1 1 1 1	06 06 06 06 06 06	52.8 53.4 54.0 54.5 55.0 55.5
Aug.	31 1 2 3 4 5	350 350 350 350 350 350	35 34 33 32 30 29	35.5 28.4 20.0 10.2 59.0 46.4	-1 1 1 1 1 1	05 05 06 06 06 06	56.6 58.6 00.7 02.7 04.7 06.6		15 16 17 18 19 20	349 349 349 349 349 349	27 25 24 22 20 19	33.8 54.7 15.8 36.9 58.3 20.0	-1 1 1 1 1	06 06 06 06 06 06	55.9 56.3 56.6 56.9 57.1 57.3
	6 7 8 9 10 11	350 350 350 350 350 350	28 27 26 24 23 22	32.5 17.3 00.8 43.1 24.3 04.3	-1 1 1 1 1	06 06 06 06 06 06	08.5 10.4 12.3 14.1 15.9 17.7		21 22 23 24 25 26	349 349 349 349 349 349	17 16 14 12 11 09	42.1 04.6 27.6 51.0 14.9 39.3	-1 1 1 1 1	06 06 06 06 06 06	57.5 57.6 57.7 57.7 57.7 57.7
	12 13 14 15 16	350 350 350 350 350	20 19 17 16 15	43.2 21.1 57.9 33.7 08.5	-1 1 1 1 -1	06 06 06 06 06	19.4 21.1 22.7 24.4 26.0	Oct.	27 28 29 30 1	349 349 349 349 349	08 06 04 03 01	04.2 29.6 55.6 22.2 49.5	-1 1 1 1 -1	06 06 06 06 06	57.6 57.5 57.3 57.1 56.9

NEPTUNE, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren centr gitud	ic	Geo	paren ocentr atitude	ic	Date	e	Geo	paren ocentr ngituc	ric	G	apparer eocenti Latitude	ic
Oct.	1 2 3 4 5 6	349 349 348 348 348 348	01 00 58 57 55 54	49.5 17.5 46.3 15.8 46.3 17.6	-1 1 1 1 1	06 06 06 06 06 06	56.9 56.6 56.3 55.9 55.5 55.1	Nov.	16 17 18 19 20 21	348 348 348 348 348 348	12 12 11 11 11 10	38.6 13.3 50.0 28.6 09.3 51.9	-1 1 1 1 1	06 06 06 06 06 06	09.8 08.2 06.6 05.0 03.4 01.7
	7 8 9 10 11 12	348 348 348 348 348 348	52 51 49 48 47 45	49.9 23.1 57.3 32.6 08.8 46.1	-1 1 1 1 1 1	06 06 06 06 06 06	54.6 54.1 53.6 53.0 52.3 51.7		22 23 24 25 26 27	348 348 348 348 348 348	10 10 10 10 09 09	36.5 23.1 11.6 02.2 54.9 49.6	-1 1 1 1 1	06 05 05 05 05 05	00.0 58.4 56.7 55.0 53.3 51.6
	13 14 15 16 17 18	348 348 348 348 348 348	44 43 41 40 39 37	24.5 03.9 44.5 26.2 09.2 53.6	-1 1 1 1 1	06 06 06 06 06 06	51.0 50.3 49.5 48.7 47.9 47.0	Dec.	28 29 30 1 2 3	348 348 348 348 348 348	09 09 09 09 09 10	46.4 45.3 46.3 49.4 54.6 01.9	-1 1 1 1 1	05 05 05 05 05 05	49.8 48.1 46.4 44.6 42.9 41.1
	19 20 21 22 23 24	348 348 348 348 348 348	36 35 34 33 31 30	39.3 26.4 15.0 05.0 56.4 49.2	-1 1 1 1 1	06 06 06 06 06 06	46.1 45.2 44.2 43.2 42.2 41.2		4 5 6 7 8 9	348 348 348 348 348 348	10 10 10 10 11 11	11.2 22.6 36.1 51.6 09.1 28.6	-1 1 1 1 1	05 05 05 05 05 05	39.4 37.6 35.9 34.1 32.4 30.6
	25 26 27 28 29 30	348 348 348 348 348 348	29 28 27 26 25 24	43.4 39.1 36.3 35.0 35.4 37.3	-1 1 1 1 1	06 06 06 06 06 06	40.1 39.0 37.8 36.6 35.4 34.2		10 11 12 13 14 15	348 348 348 348 348 348	11 12 12 13 13 14	50.3 14.0 39.9 07.9 38.1 10.4	-1 1 1 1 1 1	05 05 05 05 05 05	28.9 27.1 25.4 23.6 21.9 20.2
Nov.	31 1 2 3 4 5	348 348 348 348 348 348	23 22 21 21 20 19	40.9 46.1 53.1 01.8 12.2 24.5	-1 1 1 1 1	06 06 06 06 06 06	33.0 31.7 30.4 29.0 27.7 26.3		16 17 18 19 20 21	348 348 348 348 348 348	14 15 15 16 17 18	44.7 21.1 59.5 39.9 22.2 06.5	-1 1 1 1 1	05 05 05 05 05 05	18.4 16.7 15.0 13.3 11.6 09.9
	6 7 8 9 10 11	348 348 348 348 348 348	18 17 17 16 15	38.5 54.2 11.8 31.1 52.2 15.1	-1 1 1 1 1	06 06 06 06 06 06	24.9 23.5 22.0 20.6 19.1 17.6		22 23 24 25 26 27	348 348 348 348 348 348	18 19 20 21 22 23	52.8 41.1 31.4 23.7 18.0 14.2	-1 1 1 1 1	05 05 05 05 05 05	08.2 06.6 04.9 03.2 01.6 00.0
	12 13 14 15 16	348 348 348 348 348	14 14 13 13 12	39.9 06.6 35.2 05.9 38.6	-1 1 1 1 -1	06 06 06 06 06	16.1 14.5 13.0 11.4 09.8		28 29 30 31 32	348 348 348 348 348	24 25 26 27 28	12.4 12.6 14.6 18.6 24.4	-1 1 1 1 -1	04 04 04 04 04	58.3 56.7 55.2 53.6 52.0

 $\begin{tabular}{ll} NEPTUNE, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	e	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meri: insit	8
Jan.	0 1 2 3 4 5	h 23 23 23 23 23 23 23	m 10 11 11 11 11	s 58.33 02.52 06.82 11.24 15.76 20.40	° -6 6 6 6 6 6	22 21 21 20 20 19	" 21.2 53.3 24.8 55.5 25.5 54.9	30.299 337 30.315 289 30.331 119 30.346 822 30.362 395 30.377 833	0.29 0.29 0.29 0.29 0.29 0.29	1.11 1.11 1.10 1.10 1.10 1.10	h 16 16 16 16 16	m 31 27 24 20 16 12	s 47 55 03 12 21 29
	6 7 8 9 10 11	23 23 23 23 23 23 23	11 11 11 11 11	25.15 30.01 34.98 40.05 45.23 50.52	-6 6 6 6 6	19 18 18 17 17	23.5 51.5 18.9 45.5 11.5 36.9	30.393 131 30.408 286 30.423 292 30.438 146 30.452 844 30.467 382	0.29 0.29	1.10 1.10 1.10 1.10 1.10 1.10	16 16 16 15 15	08 04 00 57 53 49	38 47 56 06 15 24
	12 13 14 15 16 17	23 23 23 23 23 23 23	11 12 12 12 12 12	55.90 01.38 06.96 12.63 18.40 24.26	-6 6 6 6 6	16 15 14 14 13 12	01.7 25.9 49.6 12.6 35.1 57.0	30.481 757 30.495 964 30.509 999 30.523 860 30.537 541 30.551 038		1.10 1.10 1.10 1.10 1.10 1.10	15 15 15 15 15 15	45 41 37 34 30 26	34 43 53 03 13 23
	18 19 20 21 22 23	23 23 23 23 23 23 23	12 12 12 12 12 13	30.21 36.26 42.41 48.65 54.97 01.39	-6 6 6 6 6	12 11 10 10 09 08	18.3 39.0 59.1 18.7 37.8 56.3	30.564 348 30.577 467 30.590 390 30.603 114 30.615 633 30.627 946	0.29 0.29	1.10 1.10 1.10 1.09 1.09 1.09	15 15 15 15 15 15	22 18 14 11 07 03	33 43 53 04 14 25
	24 25 26 27 28 29	23 23 23 23 23 23 23	13 13 13 13 13 13	07.89 14.47 21.13 27.86 34.68 41.56	-6 6 6 6 6	08 07 06 06 05 04	14.3 31.9 48.9 05.5 21.6 37.3	30.640 047 30.651 933 30.663 600 30.675 045 30.686 265 30.697 256	0.29 0.29	1.09 1.09 1.09 1.09 1.09	14 14 14 14 14 14	59 55 51 48 44 40	35 46 57 07 18 29
Feb.	30 31 1 2 3 4	23 23 23 23 23 23 23	13 13 14 14 14 14	48.52 55.56 02.66 09.84 17.08 24.39	-6 6 6 6 6	03 03 02 01 00 00	52.6 07.4 21.8 35.7 49.3 02.4	30.708 016 30.718 542 30.728 830 30.738 879 30.748 685 30.758 246	0.29 0.29 0.29 0.29 0.29 0.29	1.09 1.09 1.09 1.09 1.09 1.09	14 14 14 14 14 14	36 32 29 25 21 17	40 52 03 14 25 37
	5 6 7 8 9 10	23 23 23 23 23 23 23	14 14 14 14 15 15	31.77 39.21 46.72 54.28 01.89 09.56	-5 5 5 5 5 5	59 58 57 56 56 55	15.1 27.5 39.5 51.2 02.6 13.6	30.767 560 30.776 625 30.785 439 30.794 000 30.802 306 30.810 354	0.29	1.09 1.09 1.09 1.09 1.09 1.09	14 14 14 14 13 13	13 09 06 02 58 54	48 60 11 23 35 46
	11 12 13 14 15	23 23 23 23 23 23	15 15 15 15 15	17.27 25.03 32.85 40.71 48.62	-5 5 5 5 -5	54 53 52 51 51	24.4 34.9 45.2 55.1 04.7	30.818 144 30.825 673 30.832 939 30.839 940 30.846 675	0.29 0.29 0.29 0.29 0.29	1.09 1.09 1.09 1.09 1.09	13 13 13 13 13	50 47 43 39 35	58 10 22 34 46

 $\begin{tabular}{ll} NEPTUNE, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	Ap Right	parei Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meri: insit	S
Feb. 15 16 17 18 19 20	h 23 23 23 23 23 23 23	m 15 15 16 16 16	s 48.62 56.57 04.58 12.62 20.71 28.83	-5 5 5 5 5 5	51 50 49 48 47 46	"04.7 14.1 23.2 32.1 40.8 49.2	30.846 675 30.853 140 30.859 334 30.865 255 30.870 902 30.876 272	0.29 0.28 0.28 0.28	1.09 1.09 1.09 1.09 1.09 1.09	h 13 13 13 13 13 13	m 35 31 28 24 20 16	s 46 58 10 22 34 46
21 22 23 24 25 26	23 23 23 23 23 23 23	16 16 16 17 17	36.98 45.17 53.38 01.62 09.89 18.18	-5 5 5 5 5 5	45 45 44 43 42 41	57.5 05.6 13.5 21.4 29.0 36.6	30.881 363 30.886 176 30.890 707 30.894 956 30.898 922 30.902 603	0.28 0.28 0.28 0.28	1.08 1.08 1.08 1.08 1.08	13 13 13 13 12 12	12 09 05 01 57 54	59 11 23 35 48 00
27 28 29 Mar. 1 2 3	23 23 23 23 23 23 23	17 17 17 17 17 18	26.49 34.82 43.17 51.55 59.93 08.34	-5 5 5 5 5 5	40 39 38 38 37 36	44.0 51.4 58.6 05.7 12.8 19.7	30.906 000 30.909 112 30.911 937 30.914 476 30.916 728 30.918 694	0.28 0.28 0.28 0.28	1.08 1.08 1.08 1.08 1.08 1.08	12 12 12 12 12 12	50 46 42 38 35 31	13 25 37 50 02 15
4 5 6 7 8 9	23 23 23 23 23 23 23	18 18 18 18 18	16.76 25.18 33.62 42.06 50.50 58.92	-5 5 5 5 5 5	35 34 33 32 31 31	26.7 33.6 40.5 47.4 54.6 01.7	30.920 373 30.921 765 30.922 871 30.923 691 30.924 225 30.924 474	0.28 0.28 0.28 0.28	1.08 1.08 1.08 1.08 1.08	12 12 12 12 12 12	27 23 19 16 12 08	27 40 52 05 17 30
10 11 12 13 14 15	23 23 23 23 23 23 23	19 19 19 19 19	07.34 15.77 24.19 32.61 41.03 49.44	-5 5 5 5 5 5	30 29 28 27 26 25	08.5 15.5 22.6 29.7 36.9 44.2	30.924 438 30.924 117 30.923 511 30.922 621 30.921 446 30.919 988	0.28 0.28 0.28 0.28	1.08 1.08 1.08 1.08 1.08	12 12 11 11 11	04 00 57 53 49 45	42 54 07 19 32 44
16 17 18 19 20 21	23 23 23 23 23 23 23	19 20 20 20 20 20 20	57.85 06.24 14.61 22.97 31.31 39.62	-5 5 5 5 5 5	24 23 23 22 21 20	51.5 59.0 06.6 14.3 22.2 30.3	30.918 245 30.916 219 30.913 909 30.911 317 30.908 443 30.905 287	0.28 0.28 0.28	1.08 1.08 1.08 1.08 1.08	11 11 11 11 11	41 38 34 30 26 22	57 09 22 34 46 59
22 23 24 25 26 27	23 23 23 23 23 23 23	20 20 21 21 21 21	47.91 56.17 04.41 12.61 20.79 28.93	-5 5 5 5 5 5	19 18 17 17 16 15	38.6 47.1 55.7 04.6 13.7 23.0	30.901 851 30.898 136 30.894 143 30.889 874 30.885 329 30.880 511	0.28 0.28	1.08 1.08 1.08 1.08 1.08	11 11 11 11 11	19 15 11 07 04 00	11 23 36 48 00 12
28 29 30 31 Apr. 1	23 23 23 23 23 23	21 21 21 22 22	37.05 45.13 53.17 01.18 09.14	-5 5 5 5 -5	14 13 12 12 11	32.5 42.3 52.4 02.7 13.2	30.875 420 30.870 060 30.864 431 30.858 537 30.852 378	0.28 0.28 0.28	1.09 1.09 1.09 1.09 1.09	10 10 10 10 10	56 52 48 45 41	24 37 49 01 13

 $\begin{tabular}{ll} NEPTUNE, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	A _I Right	ppare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meri: insit	S
Apr. 1 2 3 4 5 6	h 23 23 23 23 23 23	m 22 22 22 22 22 22 22	s 09.14 17.07 24.94 32.77 40.55 48.28	° -5 5 5 5 5 5	11 10 09 08 07 07	" 13.2 24.1 35.3 46.9 58.8 11.1	30.852 378 30.845 958 30.839 278 30.832 341 30.825 149 30.817 705	0.29 0.29 0.29	1.09 1.09 1.09 1.09 1.09 1.09	h 10 10 10 10 10	m 41 37 33 29 26 22	s 13 25 36 48 00 12
7 8 9 10 11 12	23 23 23 23 23 23 23	22 23 23 23 23 23 23	55.95 03.57 11.13 18.65 26.11 33.51	-5 5 5 5 5	06 05 04 04 03 02	23.7 36.7 50.1 03.8 17.9 32.4	30.810 011 30.802 069 30.793 881 30.785 450 30.776 778 30.767 866	0.29 0.29 0.29	1.09 1.09 1.09 1.09 1.09 1.09	10 10 10 10 10 9	18 14 10 06 03 59	24 35 47 58 10 21
13 14 15 16 17 18	23 23 23 23 23 23 23	23 23 23 24 24 24	40.86 48.14 55.36 02.52 09.60 16.61	-5 5 5 4 4 4	01 01 00 59 58 58	47.2 02.5 18.3 34.5 51.1 08.3	30.758 717 30.749 333 30.739 716 30.729 869 30.719 794 30.709 495	0.29 0.29 0.29 0.29	1.09 1.09 1.09 1.09 1.09 1.09	9 9 9 9 9	55 51 47 44 40 36	33 44 55 06 18 29
19 20 21 22 23 24	23 23 23 23 23 23 23	24 24 24 24 24 24	23.55 30.42 37.22 43.94 50.58 57.15	-4 4 4 4 4	57 56 56 55 54 54	25.9 44.0 02.6 21.7 41.3 01.4	30.698 973 30.688 233 30.677 276 30.666 107 30.654 728 30.643 142	0.29 0.29	1.09 1.09 1.09 1.09 1.09	9 9 9 9 9	32 28 25 21 17 13	40 50 01 12 23 33
25 26 27 28 29 30	23 23 23 23 23 23 23	25 25 25 25 25 25 25	03.64 10.05 16.39 22.64 28.80 34.88	-4 4 4 4 4	53 52 52 51 50 50	22.0 43.2 04.9 27.1 49.9 13.3	30.631 354 30.619 367 30.607 184 30.594 810 30.582 247 30.569 501	0.29 0.29 0.29	1.09 1.09 1.09 1.09 1.10 1.10	9 9 9 8 8 8	09 05 02 58 54 50	44 54 05 15 25 35
May 1 2 3 4 5 6	23 23 23 23 23 23 23	25 25 25 25 26 26	40.88 46.77 52.58 58.29 03.91 09.44	-4 4 4 4 4	49 49 48 47 47 46	37.2 01.8 27.0 52.8 19.3 46.3	30.556 574 30.543 470 30.530 195 30.516 750 30.503 141 30.489 371	0.29 0.29 0.29 0.29	1.10 1.10 1.10 1.10 1.10 1.10	8 8 8 8 8	46 42 39 35 31 27	45 55 05 15 24 34
7 8 9 10 11 12	23 23 23 23 23 23 23	26 26 26 26 26 26 26	14.88 20.23 25.48 30.64 35.70 40.66	-4 4 4 4 4	46 45 45 44 44 43	13.9 42.2 11.0 40.5 10.6 41.4	30.475 443 30.461 361 30.447 128 30.432 749 30.418 226 30.403 562	0.29 0.29 0.29 0.29	1.10 1.10 1.10 1.10 1.10 1.10	8 8 8 8 8	23 19 16 12 08 04	43 53 02 11 20 29
13 14 15 16 17	23 23 23 23 23	26 26 26 26 27	45.53 50.28 54.93 59.48 03.92	-4 4 4 4 -4	43 42 42 41 41	12.9 45.0 17.8 51.4 25.6	30.388 763 30.373 831 30.358 771 30.343 586 30.328 281	0.29 0.29 0.29	1.10 1.10 1.10 1.10 1.10	8 7 7 7 7	00 56 52 49 45	38 47 56 04 13

 $\begin{tabular}{ll} NEPTUNE, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	Appa Right As	arent scension	Ap Dec	pare linati		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
May 17 18 19 20 21 22	23 2 23 2 23 2 23 2 23 2	s 03.92 27 03.92 27 08.25 27 12.48 27 16.60 27 20.61 27 24.51	o -4 4 4 4 4	41 41 40 40 39 39	25.6 00.5 36.1 12.4 49.4 27.1	30.328 281 30.312 860 30.297 327 30.281 686 30.265 942 30.250 100	0.29 0.29 0.29 0.29 0.29 0.29	" 1.10 1.11 1.11 1.11 1.11	h 7 7 7 7 7	m 45 41 37 33 29 25	s 13 21 29 37 46 53
23 24 25 26 27 28	23 2 23 2 23 2 23 2	27 28.31 27 32.00 27 35.58 27 39.04 27 42.40 27 45.63	-4 4 4 4 4	39 38 38 38 37 37	05.5 44.7 24.5 05.1 46.4 28.5	30.234 165 30.218 140 30.202 030 30.185 841 30.169 577 30.153 243	0.29 0.29 0.29 0.29 0.29 0.29	1.11 1.11 1.11 1.11 1.11 1.11	7 7 7 7 7 7	22 18 14 10 06 02	01 09 17 24 32 39
29 30 31 June 1 2 3	23 2 23 2 23 2 23 2	27 48.75 27 51.76 27 54.64 27 57.41 28 00.06 28 02.59	-4 4 4 4 4	37 36 36 36 36 35	11.3 54.9 39.3 24.4 10.3 56.9	30.136 844 30.120 385 30.103 869 30.087 303 30.070 690 30.054 035	0.29 0.29 0.29 0.29 0.29 0.29	1.11 1.11 1.11 1.11 1.11 1.11	6 6 6 6 6	58 54 50 47 43 39	46 53 60 07 13 20
4 5 6 7 8 9	23 2 23 2 23 2 23 2	28 05.02 28 07.32 28 09.52 28 11.60 28 13.56 28 15.40	-4 4 4 4 4	35 35 35 35 35 34	44.3 32.3 21.2 10.7 01.1 52.2	30.037 343 30.020 616 30.003 861 29.987 080 29.970 278 29.953 460	0.29 0.29 0.29 0.29 0.29 0.29	1.12 1.12 1.12 1.12 1.12 1.12	6 6 6 6 6	35 31 27 23 19 15	26 33 39 45 51 57
10 11 12 13 14 15	23 2 23 2 23 2 23 2	28 17.12 28 18.72 28 20.19 28 21.54 28 22.77 28 23.89	-4 4 4 4 4	34 34 34 34 34 34	44.1 36.8 30.3 24.6 19.6 15.5	29.936 630 29.919 792 29.902 950 29.886 110 29.869 276 29.852 453	0.29 0.29 0.29 0.29 0.29 0.29	1.12 1.12 1.12 1.12 1.12 1.12	6 6 6 5 5	12 08 04 00 56 52	03 08 14 19 25 30
16 17 18 19 20 21	23 2 23 2 23 2 23 2	28 24.88 28 25.75 28 26.50 28 27.13 28 27.65 28 28.04	-4 4 4 4 4	34 34 34 34 34 34	12.1 09.4 07.5 06.4 06.0 06.4	29.835 645 29.818 858 29.802 096 29.785 364 29.768 668 29.752 011	0.29 0.29 0.30 0.30 0.30	1.12 1.12 1.12 1.12 1.13 1.13	5 5 5 5 5 5	48 44 40 36 32 28	35 40 45 49 54 58
22 23 24 25 26 27	23 2 23 2 23 2 23 2	28 28.32 28 28.47 28 28.51 28 28.42 28 28.20 28 27.87	-4 4 4 4 4	34 34 34 34 34 34	07.6 09.5 12.2 15.7 20.0 25.1	29.735 401 29.718 840 29.702 335 29.685 890 29.669 511 29.653 202	0.30 0.30 0.30 0.30 0.30 0.30	1.13 1.13 1.13 1.13 1.13 1.13	5 5 5 5 5 5	25 21 17 13 09 05	03 07 11 15 19 23
28 29 30 July 1 2	23 2 23 2 23 2	28 27.41 28 26.83 28 26.14 28 25.33 28 24.41	-4 4 4 4 -4	34 34 34 34 35	30.9 37.5 44.8 52.9 01.6	29.636 968 29.620 813 29.604 742 29.588 760 29.572 870	0.30 0.30 0.30 0.30 0.30	1.13 1.13 1.13 1.13 1.13	5 4 4 4 4	01 57 53 49 45	26 30 33 36 39

 $\begin{tabular}{ll} NEPTUNE, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	A _I Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	8
July 1 2 3 4 5 6	h 23 23 23 23 23 23	m 28 28 28 28 28 28	s 25.33 24.41 23.37 22.22 20.96 19.58	-4 4 4 4 4	34 35 35 35 35 35 35	52.9 01.6 11.1 21.3 32.2 43.9	29.588 760 29.572 870 29.557 077 29.541 385 29.525 798 29.510 320	0.30 0.30 0.30 0.30	1.13 1.13 1.13 1.13 1.13 1.14	h 4 4 4 4 4	m 49 45 41 37 33 29	s 36 39 42 45 48 51
7 8 9 10 11 12	23 23 23 23 23 23 23	28 28 28 28 28 28	18.09 16.48 14.75 12.90 10.95 08.88	-4 4 4 4 4	35 36 36 36 36 37	56.3 09.4 23.3 37.9 53.2 09.2	29.494 955 29.479 708 29.464 582 29.449 583 29.434 713 29.419 978	0.30 0.30 0.30 0.30	1.14 1.14 1.14 1.14 1.14 1.14	4 4 4 4 4 4	25 21 17 14 10 06	53 56 58 01 03 05
13 14 15 16 17 18	23 23 23 23 23 23 23	28 28 28 27 27 27	06.70 04.41 02.01 59.51 56.91 54.20	-4 4 4 4 4	37 37 38 38 38 38	25.8 43.2 01.2 19.9 39.2 59.2	29.405 383 29.390 930 29.376 626 29.362 474 29.348 479 29.334 645	0.30 0.30 0.30 0.30	1.14 1.14 1.14 1.14 1.14	4 3 3 3 3 3	02 58 54 50 46 42	07 08 10 12 13 15
19 20 21 22 23 24	23 23 23 23 23 23 23	27 27 27 27 27 27 27	51.38 48.46 45.44 42.31 39.08 35.75	-4 4 4 4 4	39 39 40 40 40 41	19.8 41.1 03.0 25.5 48.8 12.6	29.320 976 29.307 478 29.294 154 29.281 010 29.268 048 29.255 273	0.30 0.30 0.30 0.30	1.14 1.14 1.14 1.14 1.14 1.15	3 3 3 3 3 3	38 34 30 26 22 18	16 17 18 19 20 21
25 26 27 28 29 30	23 23 23 23 23 23 23	27 27 27 27 27 27 27	32.31 28.78 25.15 21.43 17.63 13.73	-4 4 4 4 4	41 42 42 42 43 43	37.0 02.1 27.7 53.9 20.6 47.8	29.242 690 29.230 301 29.218 112 29.206 124 29.194 342 29.182 768	0.30 0.30 0.30 0.30	1.15 1.15 1.15 1.15 1.15 1.15	3 3 3 2 2	14 10 06 02 58 54	21 22 22 23 23 23
Aug. 31 2 3 4 5	23 23 23 23 23 23 23	27 27 27 26 26 26	09.75 05.69 01.53 57.29 52.97 48.56	-4 4 4 4 4	44 44 45 45 46 46	15.6 43.9 12.7 42.0 11.9 42.3	29.171 406 29.160 260 29.149 331 29.138 623 29.128 139 29.117 883	0.30 0.30 0.30 0.30	1.15 1.15 1.15 1.15 1.15 1.15	2 2 2 2 2 2 2	50 46 42 38 34 30	23 23 23 23 23 23 23
6 7 8 9 10 11	23 23 23 23 23 23 23	26 26 26 26 26 26	44.06 39.49 34.84 30.11 25.31 20.44	-4 4 4 4 4	47 47 48 48 49 49	13.1 44.5 16.3 48.5 21.2 54.3	29.107 856 29.098 063 29.088 506 29.079 188 29.070 113 29.061 284	0.30 0.30 0.30 0.30	1.15 1.15 1.15 1.15 1.15 1.15	2 2 2 2 2 2 2	26 22 18 14 10 06	22 22 21 21 20 19
12 13 14 15 16	23 23 23 23 23	26 26 26 26 25	15.49 10.49 05.42 00.28 55.08	-4 4 4 4 -4	50 51 51 52 52	27.8 01.6 35.9 10.5 45.5	29.052 703 29.044 374 29.036 299 29.028 482 29.020 925	0.30 0.30 0.30	1.15 1.15 1.15 1.15 1.15	2 1 1 1 1	02 58 54 50 46	18 17 16 15 14

 $\begin{tabular}{ll} NEPTUNE, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	e	Ap Right	pare Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
Aug.	16 17 18 19 20 21	h 23 23 23 23 23 23 23	m 25 25 25 25 25 25 25	s 55.08 49.82 44.50 39.12 33.69 28.19	-4 4 4 4 4	52 53 53 54 55 55	45.5 20.8 56.5 32.5 08.9 45.6	29.020 925 29.013 631 29.006 603 28.999 844 28.993 356 28.987 142	0.30 0.30	1.15 1.15 1.15 1.16 1.16 1.16	h 1 1 1 1 1	m 46 42 38 34 30 26	s 14 13 12 11 09 08
	22 23 24 25 26 27	23 23 23 23 23 23 23	25 25 25 25 25 25 24	22.64 17.05 11.41 05.73 00.01 54.26	-4 4 4 4 4	56 56 57 58 58 59	22.5 59.8 37.2 14.9 52.7 30.8	28.981 203 28.975 542 28.970 160 28.965 058 28.960 239 28.955 704	0.30 0.30 0.30	1.16 1.16 1.16 1.16 1.16 1.16	1 1 1 1 1	22 18 14 10 06 01	07 05 04 02 00 59
Sept.	28 29 30 31 1 2	23 23 23 23 23 23 23	24 24 24 24 24 24	48.47 42.64 36.78 30.89 24.96 19.01	-5 5 5 5 5 5	00 00 01 02 02 03	09.0 47.5 26.1 04.8 43.8 22.8	28.951 453 28.947 487 28.943 809 28.940 419 28.937 317 28.934 506	0.30 0.30 0.30 0.30	1.16 1.16 1.16 1.16 1.16 1.16	0 0 0 0 0	57 53 49 45 41 37	57 55 54 52 50 48
	3 4 5 6 7 8	23 23 23 23 23 23 23	24 24 24 23 23 23	13.03 07.03 01.00 54.96 48.91 42.84	-5 5 5 5 5 5	04 04 05 06 06 07	02.0 41.3 20.7 00.1 39.5 19.0	28.931 985 28.929 757 28.927 821 28.926 179 28.924 833 28.923 781		1.16 1.16 1.16 1.16 1.16 1.16	0 0 0 0 0	33 29 25 21 17 13	46 45 43 41 39 37
	9 10 11 12 13 14	23 23 23 23 23 23 23	23 23 23 23 23 23 23	36.76 30.68 24.59 18.50 12.41 06.32	-5 5 5 5 5 5	07 08 09 09 10 11	58.5 38.0 17.4 56.9 36.2 15.6	28.923 026 28.922 568 28.922 408 28.922 547 28.922 984 28.923 721	0.30 0.30 0.30	1.16 1.16 1.16 1.16 1.16 1.16	0 0 0 23 23 23	09 05 01 53 49 45	35 33 31 27 25 23
	15 16 17 18 19 20	23 23 23 23 23 23 23	23 22 22 22 22 22 22	00.23 54.14 48.06 41.98 35.92 29.87	-5 5 5 5 5 5	11 12 13 13 14 15	54.9 34.2 13.3 52.4 31.3 10.1	28.924 758 28.926 094 28.927 731 28.929 667 28.931 902 28.934 437		1.16 1.16 1.16 1.16 1.16	23 23 23 23 23 23 23	41 37 33 29 25 21	21 19 17 15 13 12
	21 22 23 24 25 26	23 23 23 23 23 23 23	22 22 22 22 22 22 21	23.85 17.85 11.88 05.93 00.01 54.13	-5 5 5 5 5 5	15 16 17 17 18 18	48.6 27.0 05.1 43.1 20.8 58.2	28.937 269 28.940 398 28.943 823 28.947 542 28.951 554 28.955 858	0.30 0.30	1.16 1.16 1.16 1.16 1.16	23 23 23 23 23 23 22	17 13 09 05 01 57	10 08 06 04 02 01
Oct.	27 28 29 30 1	23 23 23 23 23	21 21 21 21 21	48.27 42.44 36.65 30.89 25.18	-5 5 5 5 -5	19 20 20 21 22	35.5 12.5 49.2 25.6 01.8	28.960 452 28.965 334 28.970 504 28.975 960 28.981 699	0.30 0.30	1.16 1.16 1.16 1.16 1.16	22 22 22 22 22 22	52 48 44 40 36	59 57 56 54 53

 $\begin{tabular}{ll} NEPTUNE, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	Ap Right	parei Asce	nt nsion		opare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	8
Oct. 1 2 3 4 5 6	h 23 23 23 23 23 23 23	m 21 21 21 21 21 20	s 25.18 19.50 13.88 08.30 02.77 57.30	-5 5 5 5 5 5	22 22 23 23 24 24	" 01.8 37.6 13.1 48.2 22.9 57.3	28.981 699 28.987 722 28.994 025 29.000 608 29.007 469 29.014 605	0.30 0.30 0.30	1.16 1.16 1.16 1.16 1.15 1.15	h 22 22 22 22 22 22 22	m 36 32 28 24 20 16	s 53 51 50 48 47 46
7 8 9 10 11 12	23 23 23 23 23 23 23	20 20 20 20 20 20 20	51.88 46.52 41.23 35.99 30.81 25.70	-5 5 5 5 5 5	25 26 26 27 27 28	31.2 04.7 37.8 10.5 42.8 14.6	29.022 016 29.029 699 29.037 653 29.045 875 29.054 364 29.063 116	0.30 0.30 0.30 0.30	1.15 1.15 1.15 1.15 1.15 1.15	22 22 22 22 21 21	12 08 04 00 56 52	44 43 42 41 40 39
13 14 15 16 17 18	23 23 23 23 23 23 23	20 20 20 20 20 20 19	20.65 15.67 10.76 05.92 01.15 56.47	-5 5 5 5 5 5	28 29 29 30 30 31	45.9 16.8 47.3 17.2 46.6 15.4	29.072 131 29.081 405 29.090 936 29.100 721 29.110 757 29.121 041	0.30	1.15 1.15 1.15 1.15 1.15 1.15	21 21 21 21 21 21 21	48 44 40 36 32 28	38 37 37 36 35 35
19 20 21 22 23 24	23 23 23 23 23 23 23	19 19 19 19 19	51.87 47.35 42.93 38.58 34.33 30.16	-5 5 5 5 5 5	31 32 32 33 33 33	43.6 11.3 38.4 04.9 30.8 56.2	29.131 570 29.142 339 29.153 345 29.164 584 29.176 053 29.187 748	0.30 0.30	1.15 1.15 1.15 1.15 1.15 1.15	21 21 21 21 21 21	24 20 16 12 08 04	35 34 34 34 34 34
25 26 27 28 29 30	23 23 23 23 23 23 23	19 19 19 19 19	26.08 22.09 18.19 14.38 10.67 07.06	-5 5 5 5 5 5	34 34 35 35 35 36	21.0 45.1 08.6 31.5 53.8 15.4	29.199 664 29.211 799 29.224 147 29.236 706 29.249 472 29.262 441	0.30 0.30	1.15 1.15 1.15 1.15 1.15 1.14	21 20 20 20 20 20 20	00 56 52 48 44 40	34 34 35 35 36
Nov. 1 2 3 4 5	23 23 23 23 23 23 23	19 19 18 18 18	03.55 00.14 56.84 53.65 50.56 47.57	-5 5 5 5 5 5	36 36 37 37 37 38	36.3 56.6 16.1 35.0 53.1 10.5	29.275 608 29.288 971 29.302 525 29.316 266 29.330 190 29.344 294	0.30 0.30 0.30 0.30 0.30 0.30	1.14 1.14 1.14 1.14 1.14 1.14	20 20 20 20 20 20 20	36 32 28 24 20 16	37 37 38 39 40 42
6 7 8 9 10	23 23 23 23 23 23 23	18 18 18 18 18	44.70 41.94 39.28 36.74 34.30 31.98	-5 5 5 5 5 5	38 38 38 39 39 39	27.2 43.2 58.5 13.1 27.0 40.1	29.358 574 29.373 025 29.387 642 29.402 423 29.417 362 29.432 456	0.30 0.30 0.30 0.30 0.30 0.30	1.14 1.14 1.14 1.14 1.14 1.14	20 20 20 20 19 19	12 08 04 00 56 52	43 44 46 47 49 51
12 13 14 15 16	23 23 23 23 23	18 18 18 18 18	29.77 27.67 25.70 23.85 22.12	-5 5 5 5 -5	39 40 40 40 40	52.5 04.1 14.9 24.9 34.2	29.447 699 29.463 087 29.478 615 29.494 278 29.510 070	0.30 0.30 0.30 0.30 0.30	1.14 1.14 1.14 1.14 1.14	19 19 19 19	48 44 40 36 33	53 55 57 60 02

 $\begin{tabular}{ll} NEPTUNE, 2020 \\ RIGHT ASCENSION AND DECLINATION FOR 0^h TERRESTRIAL TIME \\ \end{tabular}$

Date	Ap Right	parei Asce			ppare clinat		True Distance from the Earth	Hor. Parallax	Semi Diameter	Ephe Tra	meris insit	S
Nov. 16 17 18 19 20 21	h 23 23 23 23 23 23 23	m 18 18 18 18 18	s 22.12 20.52 19.04 17.69 16.45 15.34	° -5 5 5 5 5 5 5	40 40 40 40 41 41	34.2 42.6 50.2 57.0 03.1 08.4	29.510 070 29.525 986 29.542 021 29.558 170 29.574 426 29.590 786	0.30 0.30 0.30	1.14 1.13 1.13 1.13 1.13 1.13	h 19 19 19 19 19	m 33 29 25 21 17 13	s 02 05 08 10 13 16
22 23 24 25 26 27	23 23 23 23 23 23 23	18 18 18 18 18	14.34 13.47 12.72 12.10 11.60 11.23	-5 5 5 5 5	41 41 41 41 41 41	12.9 16.6 19.5 21.6 22.9 23.4	29.607 242 29.623 791 29.640 427 29.657 144 29.673 939 29.690 805		1.13 1.13 1.13 1.13 1.13 1.13	19 19 19 18 18 18	09 05 01 57 53 49	20 23 26 30 34 38
28 29 30 Dec. 1 2 3	23 23 23 23 23 23 23	18 18 18 18 18	10.99 10.87 10.89 11.03 11.31 11.71	-5 5 5 5 5	41 41 41 41 41 41	23.1 21.9 19.9 17.1 13.5 09.0	29.707 738 29.724 733 29.741 784 29.758 888 29.776 037 29.793 229	0.30 0.30 0.30 0.30	1.13 1.13 1.13 1.13 1.13 1.12	18 18 18 18 18 18	45 41 37 33 29 26	41 46 50 54 59 03
4 5 6 7 8 9	23 23 23 23 23 23 23	18 18 18 18 18	12.24 12.90 13.68 14.59 15.62 16.78	-5 5 5 5 5 5	41 40 40 40 40 40	03.7 57.7 50.8 43.1 34.7 25.4	29.810 458 29.827 718 29.845 005 29.862 314 29.879 640 29.896 977	0.29 0.29	1.12 1.12 1.12 1.12 1.12 1.12	18 18 18 18 18	22 18 14 10 06 02	08 13 18 23 28 33
10 11 12 13 14 15	23 23 23 23 23 23 23	18 18 18 18 18	18.07 19.49 21.04 22.72 24.53 26.48	-5 5 5 5 5 5	40 40 39 39 39 39	15.3 04.4 52.7 40.1 26.7 12.5	29.914 320 29.931 664 29.949 002 29.966 331 29.983 643 30.000 933	0.29 0.29 0.29	1.12 1.12 1.12 1.12 1.12 1.12	17 17 17 17 17 17	58 54 50 46 43 39	39 44 50 56 02 08
16 17 18 19 20 21	23 23 23 23 23 23 23	18 18 18 18 18	28.55 30.75 33.07 35.51 38.08 40.77	-5 5 5 5 5 5	38 38 38 38 37 37	57.5 41.7 25.1 07.7 49.6 30.7	30.018 196 30.035 425 30.052 615 30.069 761 30.086 856 30.103 897		1.12 1.12 1.11 1.11 1.11	17 17 17 17 17 17	35 31 27 23 19 15	14 21 27 34 40 47
22 23 24 25 26 27	23 23 23 23 23 23 23	18 18 18 18 18	43.58 46.51 49.57 52.74 56.05 59.47	-5 5 5 5 5 5	37 36 36 36 35 35	11.0 50.6 29.4 07.4 44.6 21.1	30.120 878 30.137 794 30.154 639 30.171 409 30.188 099 30.204 704	0.29 0.29 0.29 0.29 0.29 0.29	1.11 1.11 1.11 1.11 1.11	17 17 17 17 16 16	11 08 04 00 56 52	54 01 09 16 23 31
28 29 30 31 32	23 23 23 23 23	19 19 19 19	03.01 06.68 10.46 14.36 18.37	-5 5 5 5 -5	34 34 34 33 33	56.8 31.8 06.1 39.6 12.4	30.221 220 30.237 642 30.253 965 30.270 185 30.286 298	0.29 0.29 0.29 0.29 0.29	1.11 1.11 1.11 1.11 1.11	16 16 16 16 16	48 44 40 37 33	39 46 54 02 11

 $\begin{array}{c} \textbf{PLUTO, 2020} \\ \textbf{HELIOCENTRIC POSITIONS FOR 0}^{\text{h}} \, \textbf{TERRESTRIAL TIME} \\ \textbf{MEAN EQUINOX AND ECLIPTIC OF DATE} \end{array}$

Dat	e		ioce ngiti	ntric ude		ioce: atitu	ntric de	Radius Vector	Da	te		ioce ngit			ioce atitu			Rad Vec		
Jan.	11 16 21	292 292 292 292 292 292 292	46 48 49 51	09.5 40.0 10.5 41.0 11.5 42.0	0 0 0 0 0	40 40 41 41 42 42	17.8 45.4 13.0 40.7 08.3 35.8	33.950 45 33.953 74 33.957 02 33.960 31 33.963 59 33.966 88	1 2 1	9 14 19 24	293 293 293 293 293 293 293	42 43 45 46	48.6 18.5 48.4 18.3 48.2 18.0	0 0 0	57 58 58 59	15.9 43.3 10.7 38.1 05.5 32.8		34.0° 34.0° 34.0° 34.0° 34.0°	75 78 82 85	49 78 08 38
Feb.	31 5 10 15 20 25	292 292 292 292 293 293	55 57 58 00	12.5 42.9 13.4 43.8 14.2 44.5	-0 0 0 0 0	43 43 43 44 44 45	03.5 31.0 58.6 26.2 53.7 21.3	33.970 16 33.973 45 33.976 73 33.980 02 33.983 31 33.986 59	5 3 2	8 13 18 23	293 293 293 293 293 293	51 52 54 55	47.9 17.7 47.5 17.3 47.1 16.9	1 1 1 1	00 00 01 01	00.2 27.6 55.0 22.3 49.7 17.0		34.09 34.09 34.19 34.19 34.19	95 98 01 05	27 57 87 17
Mar.	1 6 11 16 21 26	293 293 293 293 293 293	04 06 07 09	14.9 45.2 15.6 45.9 16.2 46.4	-0 0 0 0 0	45 46 46 47 47 48	48.9 16.4 44.0 11.5 39.0 06.6	33.989 88 33.993 17 33.996 46 33.999 75 34.003 04 34.006 33	7	7 12 17 22	293 294 294 294 294 294	00 01 03 04	46.6 16.3 46.0 15.7 45.4 15.0	1 1 1 1	03 03 04 04	44.4 11.7 39.0 06.3 33.6 01.0		34.1 34.1 34.1 34.1 34.1	15 18 21 24	06 36 66 96
Apr.	31 5 10 15 20 25		18	16.7 47.0 17.2 47.4 17.6 47.8	-0 0 0 0 0	48 49 49 49 50 50	34.1 01.6 29.1 56.6 24.1 51.6	34.009 62 34.012 91 34.016 20 34.019 49 34.022 78 34.026 07)))	7 12 17 22	294 294 294 294 294 294	09 10 12 13	44.7 14.3 43.9 13.5 43.1 12.6	1 1 1	05 06 06 07	28.2 55.5 22.8 50.1 17.4 44.7		34.13 34.13 34.14 34.14 34.14	34 38 41 44	86 17 47 77
May	30 5 10 15 20 25	293 293 293 293 293 293	22 24 25 27	17.9 48.1 18.2 48.3 18.4 48.5	-0 0 0 0 0	51 51 52 52 53 53	19.1 46.6 14.1 41.5 09.0 36.4	34.029 37 34.032 66 34.035 95 34.039 25 34.042 54 34.045 83	5 5 1	6 11 16 21	294 294 294 294 294 294	18 19 21 22	42.2 11.7 41.2 10.7 40.1 09.6	1 1 1	08 09 09 10	11.9 39.2 06.5 33.7 00.9 28.2		34.1. 34.1. 34.1. 34.1 34.1	54 57 61 64	68 98 29 59
June	30 4 9 14 19 24	293 293 293 293	30 31 33 34 36 37	18.6 48.6 18.6 48.6 18.7 48.6	-0 0 0 0 0	54 54 54 55 55 56	03.9 31.3 58.8 26.2 53.6 21.1	34.049 13 34.052 42 34.055 72 34.059 01 34.062 31 34.065 60	2	6 11 16 21	294 294 294 294 294 294	27 28 30 31	39.0 08.5 37.9 07.2 36.6 06.0	-1 1 1 1 1	11 11 12 12	55.4 22.6 49.9 17.1 44.3 11.5		34.1° 34.1° 34.1° 34.1° 34.1°	74 77 81 84	50 81 11 42
July	29 4	293 293	39 40	18.6 48.6	-0 -0	56 57	48.5 15.9	34.068 90 34.072 19		_	294 294	_	35.3 04.6	-1 -1		38.7 05.8	-	34.19 34.19		

N.B: Pluto is now classified as a dwarf planet as per resolution of IAU

PLUTO, 2020 GEOCENTRIC LONGITUDE AND LATITUDE FOR $0^{\rm h}$ TERRESTRIAL TIME

Date	e	Geo	paren centr ngituc	ic	Geo	paren ocentr atitude	ic	Date	2	Geo	paren centr gituc	ric	Ge	oparen ocentr atitude	ic
Jan.	1 6 11 16 21 26	292 292 292 292 292 293 293	23 33 43 53 03 13	08.4 04.9 07.6 11.2 13.7 11.3	0 0 0 0 0	39 39 40 40 40 41	" 10.3 36.2 02.5 29.3 56.5 24.4	July	4 9 14 19 24 29	294 293 293 293 293 293 293	01 54 46 39 32 25	17.8 10.4 56.6 41.6 29.2 22.8	-0 0 0 1 1	58 59 59 00 00 01	58.3 28.0 56.9 25.0 52.3 18.7
Feb.	31 5 10 15 20 25	293 293 293 293 293 294	22 32 41 50 59 07	59.2 34.7 54.7 54.8 33.4 46.3	-0 0 0 0 0	41 42 42 43 43 44	52.8 21.6 51.1 21.1 51.6 22.7	Aug.	3 8 13 18 23 28	293 293 293 292 292 292	18 11 05 59 53 48	27.9 46.5 22.8 21.2 43.9 35.5	-1 1 1 1 1	01 02 02 02 03 03	44.4 09.2 33.2 56.4 18.9 40.6
Mar.	1 6 11 16 21 26	294 294 294 294 294 294	15 22 29 35 40 45	30.4 44.1 23.8 28.2 55.3 42.1	-0 0 0 0 0	44 45 45 46 47 47	54.2 26.3 58.8 31.8 05.3 39.1	Sept.	2 7 12 17 22 27	292 292 292 292 292 292	43 39 36 33 31 30	58.3 54.2 26.7 37.6 28.5 02.1	-1 1 1 1 1	04 04 04 05 05 05	01.6 21.9 41.7 00.8 19.5 37.8
Apr.	31 5 10 15 20 25	294 294 294 294 294 294	49 53 55 57 59 59	48.1 12.2 52.5 50.1 03.1 31.5	-0 0 0 0 0	48 48 49 49 50 51	13.2 47.7 22.4 57.4 32.5 07.7	Oct.	2 7 12 17 22 27	292 292 292 292 292 292	29 29 30 31 33 36	17.9 17.3 01.6 29.7 43.2 40.4	-1 1 1 1 1	05 06 06 06 07 07	55.7 13.3 30.7 48.0 05.2 22.4
May	30 5 10 15 20 25	294 294 294 294 294 294	59 58 56 54 51 47	16.7 18.2 38.0 17.2 16.1 37.8	-0 0 0 0 0	51 52 52 53 54 54	43.0 18.2 53.4 28.5 03.4 38.0	Nov.	1 6 11 16 21 26	292 292 292 292 293 293	40 44 49 55 01 08	20.1 42.3 44.9 26.4 45.9 39.2	-1 1 1 1 1	07 07 08 08 08 09	39.6 57.0 14.7 32.6 51.0 09.7
June	30 4 9 14 19 24	294 294 294 294 294 294	43 38 33 27 21 15	24.3 37.5 21.6 37.8 29.8 01.8	-0 0 0 0 0	55 55 56 56 57 57	12.3 46.2 19.6 52.6 25.0 56.7	Dec.	1 6 11 16 21 26	293 293 293 293 293 293	16 24 32 41 50 59	05.0 00.9 23.0 09.9 17.3 41.5	-1 1 1 1 1	09 09 10 10 10	29.0 48.8 09.2 30.3 52.1 14.7
July	29 4	294 294	08 01	16.1 17.8	-0 -0	58 58	27.9 58.3		31 36	294 294	09 19	20.1 08.9	-1 -1	11 12	38.1 02.3

N.B : Pluto is now classified as a dwarf planet as per resolution of I.A.U

 $\begin{tabular}{ll} \textbf{PLUTO, 2020} \\ \textbf{RIGHT ASCENSION AND DECLINATION FOR } 0^h \textbf{TERRESTRIAL TIME} \\ \end{tabular}$

Dat	te	Ap Right	parer Ascer		Red. To Astrom. (J 2000.0)		ppare clinati		Red. To Astrom. (J 2000.0)	True Distance from the Earth	Hor. Parallax	Ephem Trans	
Jan.	1 6 11 16 21 26	h 19 19 19 19	m 37 37 38 39 40 40	s 09.77 52.45 35.55 18.72 01.80 44.53	s +68.83 68.82 68.89 68.90 68.94 69.02	-22 22 22 22 22 22 22	13 12 10 9 8 7	16.9 04.5 50.8 37.1 22.9 09.7	160.58 161.87 162.77 164.13	34.910 171 34.928 382 34.939 315 34.942 941 34.939 237 34.928 221	0.25 0.25 0.25 0.25 0.25 0.25	h 12 12 12 11 11	m 55 36 17 58 39 20
Feb.	31 5 10 15 20 25	19 19 19 19 19	41 42 42 43 44 44	26.57 07.72 47.76 26.40 03.51 38.80		-22 22 22 22 22 22 22	5 4 3 2 1 0	58.1 48.2 41.1 37.3 37.2 41.8	168.76 169.82 171.10	34.910 001 34.884 769 34.852 777 34.814 291 34.769 579 34.718 976		11 10 10 10 9 9	01 42 23 04 45 26
Mar.	1 6 11 16 21 26	19 19 19 19 19	45 45 46 46 47 47	12.05 43.14 11.84 38.03 01.60 22.31	+69.58 69.72 69.84 69.96 70.11 70.22	-21 21 21 21 21 21 21	59 59 58 57 57	51.3 06.3 27.6 55.1 29.6 11.5	174.31 175.13 176.27 177.18	34.662 900 34.601 824 34.536 244 34.466 641 34.393 505 34.317 397		9 8 8 8 7 7	07 48 28 09 50 31
Apr.	31 5 10 15 20 25	19 19 19 19 19	47 47 48 48 48 48	40.15 55.02 06.80 15.57 21.18 23.65	+70.37 70.54 70.67 70.85 71.01 71.15	-21 21 21 21 21 21	57 56 57 57 57 58	00.7 58.0 03.1 16.1 37.6 06.9	179.65 180.33 181.14 181.57	34.238 925 34.158 715 34.077 375 33.995 472 33.913 601 33.832 398	0.26 0.26 0.26 0.26 0.26 0.26	7 6 6 6 5 5	11 52 32 13 53 34
May	30 5 10 15 20 25	19 19 19 19 19	48 48 48 48 47 47	23.06 19.39 12.75 03.25 50.90 35.90	71.51 71.68 71.87	-21 21 22 22 22 22 22	58 59 0 1 2 3	44.2 29.5 22.1 22.1 29.1 42.2	182.86 183.33 183.47 183.47	33.752 511 33.674 558 33.599 099 33.526 663 33.457 801 33.393 066	0.26 0.26 0.26 0.26 0.26 0.26	5 4 4 4 3 3	14 54 34 15 55 35
June	30 4 9 14 19 24	19 19 19 19 19	47 46 46 46 45 45	18.41 58.55 36.61 12.69 47.04 19.95	+72.38 72.51 72.70 72.85 72.97 73.14	-22 22 22 22 22 22 22	5 6 7 9 11 12	01.6 26.3 55.6 29.5 06.5 46.4	183.27 183.16 182.64 182.28	33.332 983 33.278 009 33.228 522 33.184 889 33.147 475 33.116 614	0.26 0.26 0.26 0.27 0.27	3 2 2 2 1 1	15 55 35 15 55 35
July	29 4 9 14 19 24	19 19 19 19 19	44 44 43 43 42 42	51.59 22.31 52.37 21.95 51.43 21.06	73.37 73.50 73.56 73.65	-22 22 22 22 22 22 22	14 16 17 19 21 23	28.6 11.8 55.9 39.8 22.7 04.3	180.61 179.81 178.95 178.30	33.092 575 33.075 529 33.065 591 33.062 868 33.067 443 33.079 340	0.27 0.27 0.27 0.27 0.27 0.27	1 0 0 0 23 23	15 54 34 14 50 30
Aug.	29 3 8 13 18	19 19 19 19	41 41 40 40 40	51.11 21.94 53.72 26.74 01.31	73.87	-22 22 22 22 -22	24 26 27 29 30	43.5 19.6 52.5 21.1 45.0	175.64 174.56 173.75	33.098 493 33.124 745 33.157 921 33.197 831 33.244 247	0.27 0.27 0.27 0.26 0.26	23 22 22 22 21	10 49 29 09 49

N.B: Pluto is now classified as a dwarf planet as per resolution of I A U

Dat	e	Ap Right	paren Ascer	nsion	Red. To Astrom. (J 2000.0)	-	opare clinat	ion	Red. To Astrom. (J 2000.0)	True Distance from the Earth	Hor. Parallax	Ephem Trans	
Aug. Sept.	18 23 28 2 7 12	h 19 19 19 19	m 40 39 39 38 38 38	s 01.31 37.59 15.90 56.43 39.30 24.76	s +73.90 73.87 73.86 73.84 73.76 73.72	-22 22 22 22 22 22 22	30 32 33 34 35 36	45.0 03.9 16.8 24.0 24.7 18.5	-172.92 171.89 171.27 170.38 169.61 169.13	33.244 247 33.296 871 33.355 308 33.419 125 33.487 891 33.561 163	0.26 0.26 0.26 0.26 0.26 0.26	h 21 21 21 20 20 20	m 49 29 09 49 29 09
Oct.	17 22 27 2 7 12	19 19 19 19 19	38 38 37 37 37 37	12.95 03.98 58.05 55.11 55.28 58.64	+73.67 73.58 73.54 73.44 73.34 73.28	-22 22 22 22 22 22 22	37 37 38 38 38 39	05.6 45.3 17.6 42.7 60.0 09.8	-168.40 167.98 167.65 167.18 167.09 167.02	33.638 458 33.719 218 33.802 832 33.888 700 33.976 243 34.064 874	0.26 0.26 0.26 0.26 0.26 0.26	19 19 19 18 18	49 30 10 50 31
Nov.	17 22 27 1 6 11	19 19 19 19 19	38 38 38 38 39 39	05.12 14.83 27.66 43.51 02.39 24.15	+73.16 73.09 73.01 72.90 72.83 72.76	-22 22 22 22 22 22 22	39 39 38 38 38 37	12.4 07.1 54.8 35.3 08.7 35.7	-166.85 167.18 167.23 167.52 168.08 168.42	34.153 975 34.242 874 34.330 906 34.417 460 34.501 954 34.583 812	0.26 0.26 0.26 0.26 0.25 0.25	17 17 17 16 16	51 32 12 53 34 14
Dec.	16 21 26 1 6	19 19 19 19 19	39 40 40 41 41 42	48.68 15.91 45.55 17.50 51.59 27.54	+72.67 72.64 72.56 72.50 72.49 72.43	-22 22 22 22 22 22 22	36 36 35 34 33 32	56.0 10.3 19.0 22.1 20.5 14.6	-169.11 169.85 170.45 171.43 172.33 173.16	34.662 436 34.737 222 34.807 634 34.873 203 34.933 502 34.988 115	0.25 0.25 0.25 0.25 0.25 0.25	15 15 15 14 14 14	55 36 17 58 39 20
	16 21 26 31 36	19 19 19 19	43 43 44 45 45	05.25 44.42 24.78 06.16 48.26	+72.43 72.43 72.39 72.42 +72.43	-22 22 22 22 -22	31 29 28 27 25	04.4 51.1 34.9 16.3 56.4	-174.40 175.31 176.42 177.72 -178.71	35.036 625 35.078 668 35.113 975 35.142 348 35.163 627	0.25 0.25 0.25 0.25 0.25	14 13 13 13 12	00 41 22 04 45

N.B: Pluto is now classified as a dwarf planet as per resolution of $\ I\ A\ U$

MAJOR PLANETS, 2020 HELIOCENTRIC OSCULATING ORBITAL ELEMENTS REFERRED TO THE MEAN ECLIPTIC AND EQUINOX OF J 2000.(

Date	Julian	Inclina-	Long	itude	Mean	Daily	Eccentricity	Mean
	Date	tion	Asc. Node	Perihelion	Distance	Motion	_	Longitude
	245	i	Ω	σ	а	n	e	L
		0	0	o MER	CURY	0		0
Nov'19 23 Jan'20 2 Feb 11 Mar 23 May 2 Jun 11 Jul 21 Aug 30 Oct 9 Nov 18 Dec 28 Feb' 21 6	8800.5 8840.5 8880.5 8920.5 8960.5 9000.5 9040.5 9120.5 9160.5 9240.5	7.0038 7.0038 7.0038 7.0038 7.0038 7.0037 7.0037 7.0037 7.0037 7.0037 7.0037	48.307 48.307 48.306 48.306 48.306 48.306 48.305 48.305 48.305 48.305 48.305	77.489 77.489 77.489 77.489 77.489 77.489 77.489 77.490 77.491 77.492 77.492 77.492	0.387 098 0.387 098 0.387 097 0.387 097 0.387 099 0.387 100 0.387 110 0.387 010 0.387 099 0.387 099 0.387 098	4.092 36 4.092 36 4.092 37 4.092 37 4.092 36 4.092 31 4.092 31 4.092 34 4.092 33 4.092 34 4.092 35 4.092 36	0.205 651 0.205 651 0.205 651 0.205 652 0.205 648 0.205 647 0.205 635 0.205 633 0.205 633 0.205 637 0.205 636	64.2144 227.9086 31.6028 195.2971 358.9913 162.6855 326.3785 130.0715 293.7648 97.4582 261.1516 64.8455
				VE	NUS			
Nov'19 23 Jan' 20 2 Feb 11 Mar 23 May 2 Jun 11 Jul 21 Aug 30 Oct 9 Nov 18 Dec 28 Feb' 21 6	8800.5 8840.5 8880.5 8920.5 8960.5 9000.5 9040.5 9120.5 9160.5 9240.5	3.3946 3.3946 3.3946 3.3946 3.3946 3.3946 3.3946 3.3946 3.3946 3.3946 3.3945	76.625 76.625 76.625 76.625 76.624 76.624 76.623 76.623 76.623 76.623 76.623 76.623	131.51 131.53 131.50 131.46 131.46 131.63 131.73 131.80 131.77 131.72 131.70 131.75	0.723 331 0.723 324 0.723 326 0.723 328 0.723 327 0.723 342 0.723 336 0.723 323 0.723 325 0.723 329 0.723 325 0.723 330	1.602 14 1.602 16 1.602 15 1.602 15 1.602 15 1.602 10 1.602 12 1.602 16 1.602 15 1.602 14 1.602 15	0.006 733 0.006 744 0.006 746 0.006 745 0.006 752 0.006 772 0.006 787 0.006 791 0.006 793 0.006 786	286.2376 350.3233 54.4099 118.4955 182.5813 246.6655 310.7476 14.8333 78.9199 143.0053 207.0913 271.1773
				EAl	RTH*			
Nov'19 23 Jan' 20 2 Feb 11 Mar 23 May 2 Jun 11 Jul 21 Aug 30 Oct 9 Nov 18 Dec 28 Feb' 21 6	8800.5 8840.5 8880.5 8920.5 8960.5 9000.5 9080.5 9120.5 9160.5 9200.5	0.0026 0.0026 0.0026 0.0026 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027	176.8 176.8 176.6 176.6 176.7 177.4 176.7 176.4 176.3 176.4 176.5	103.073 103.029 103.001 102.981 102.961 102.943 102.980 103.033 103.052 103.036 103.001	0.999 996 1.000 007 1.000 008 1.000 000 0.999 994 0.999 999 1.000 021 1.000 014 0.999 997 0.999 992 0.999 997 1.000 001	0.985 62 0.985 60 0.985 60 0.985 61 0.985 62 0.985 61 0.985 58 0.985 59 0.985 61 0.985 62 0.985 62	0.016 749 0.016 754 0.016 755 0.016 750 0.016 742 0.016 728 0.016 703 0.016 706 0.016 714 0.016 717 0.016 719	51.5530 90.9764 130.3994 169.8236 209.2491 248.6754 288.1000 327.5224 6.9465 46.3717 85.7961 125.2195

^{*} Values labelled for the Earth are actually for the Earth/ Moon barycente

FORMULAS

Mean anomaly, $M = L - \varpi$

Argument of perihelion, measured from $\operatorname{node}\omega = \varpi - \Omega$ True anomaly, $v=M+(2e-e^3/4)\sin M+(5e^2/4)\sin 2M+(13e^3/12)\sin 3M+...$ in radians

True distance, $r = a (1 - e^2)/(1 + e \cos v)$ Heliocentric rectangular co- ordinates, referred to the ecliptic of date, may be computed from $x = r\{\cos(v + \omega)\cos\Omega - \sin(v + \omega)\cos i\sin\Omega\}$ $y = r\{\cos(v + \omega)\sin\Omega + \sin(v + \omega)\cos i\cos\Omega\}$

 $z = r \sin (v + \omega) \sin i$

MAJOR PLANETS, 2020
HELIOCENTRIC OSCULATING ORBITAL ELEMENTS
REFERRED TO THE MEAN ECLIPTIC AND EQUINOX OF J 2000.(

Date	Julian	Inclina-	Long	gitude	Mean	Daily	Eccentricity	Mean
Date	Date	tion	Asc. Node	Perihelion	Distance	Motion	Lecentricity	Longitude
	245	i	Ω	σ MARS	а	n	е	L
		0	0	o NIAINS)	0		0
Nov'19 23	8800.5	1.8481	49.501	336.189	1.523 60	0.524 080	0.093 505	197.5675
Jan' 20 2 Feb 11	8840.5 8880.5	1.8481 1.8480	49.501 49.501	336.184 336.169	1.523 61 1.523 65	0.524 075 0.524 055	0.093 505 0.093 495	218.5313 239.4939
Mar 23	8920.5	1.8480	49.501	336.142	1.523 72	0.524 020	0.093 482	260.4543
May 2	8960.5	1.8480	49.500	336.114	1.523 78	0.523 989	0.093 476	281.4122
Jun 11 Jul 21	9000.5 9040.5	1.8479 1.8479	49.499 49.497	336.098 336.098	1.523 79 1.523 75	0.523 982 0.524 004	0.093 463 0.093 435	302.3687 323.3270
Aug 30	9080.5	1.8479	49.496	336.104	1.523 68	0.524 004	0.093 433	344.2887
Oct 9	9120.5	1.8479	49.494	336.108	1.523 63	0.524 069	0.093 355	5.2530
Nov 18	9160.5	1.8480	49.494	336.116 336.126	1.523 61	0.524 076	0.093 334	26.2186
Dec 28 Feb' 21 6	9200.5 9240.5	1.8479 1.8479	49.494 49.494	336.126	1.523 63 1.523 67	0.524 066 0.524 048	0.093 330 0.093 332	47.1825 68.1446
	,	-1017	1	ı	ı	• • • • • •		
Nov'19 23	8800.5	1.3037	100.516	JUPITE 14.024	R 5.203 39	0.083 078	0.048 733	277.2581
Jan' 20 2	8840.5	1.3037	100.516	14.024	5.203 41	0.083 078	0.048 723	280.5801
Feb 11	8880.5	1.3036	100.516	14.019	5.203 41	0.083 077	0.048 708	283.9014
Mar 23	8920.5	1.3036	100.516	14.999	5.203 50	0.083 075	0.048 686	287.2220
May 2 Jun 11	8960.5 9000.5	1.3036 1.3036	100.516 100.516	14.961 14.925	5.203 66 5.203 81	0.083 071 0.083 067	0.048 671 0.048 664	290.5431 293.8648
Jul 21	9040.5	1.3036	100.516	14.906	5.203 90	0.083 065	0.048 665	297.1873
Aug 30	9080.5	1.3036	100.516	14.916	5.203 85	0.083 067	0.048 658	300.5094
Oct 9 Nov 18	9120.5 9160.5	1.3036 1.3036	100.516 100.516	14.929 14.937	5.203 76 5.203 68	0.083 069 0.083 070	0.048 642 0.048 618	303.8306 307.1511
Dec 28	9200.5	1.3036	100.516	14.926	5.203 69	0.083 070	0.048 599	310.4715
Feb' 21 6	9240.5	1.3036	100.516	14.915	5.203 70	0.083 070	0.048 587	313.7926
				SATUR	N			
Nov'19 23	8800.5	2.4862	113.595	92.041	9.572 3	0.033 301	0.051 794	292.7290
Jan' 20 2 Feb 11	8840.5 8880.5	2.4862 2.4862	113.595 113.595	91.920 91.806	9.572 2 9.572 0	0.033 301 0.033 302	0.051 846 0.051 906	294.0755 295.4216
Mar 23	8920.5	2.4863	113.595	91.692	9.572 1	0.033 302	0.051 900	296.7670
May 2	8960.5	2.4862	113.595	91.556	9.572 3	0.033 300	0.051 980	298.1138
Jun 11 Jul 21	9000.5 9040.5	2.4862 2.4862	113.595 113.595	91.407 91.250	9.572 6 9.572 8	0.033 299 0.033 298	0.052 014 0.052 072	299.4621 300.8122
Aug 30	9080.5	2.4862	113.595	91.112	9.572 7	0.033 298	0.052 072	302.1623
Oct 9	9120.5	2.4862	113.595	90.988	9.572 5	0.033 299	0.052 252	303.5113
Nov 18 Dec 28	9160.5	2.4863 2.4863	113.595 113.595	90.872 90.744	9.572 4 9.572 5	0.033 300 0.033 299	0.052 337 0.052 400	304.8592 306.2068
Feb' 21 6	9200.5 9240.5		113.595	90.744	9.572 7	0.033 299		307.5554
'	Į.	_!	ı	1	ı	ļ	ı	ı
Nov'19 23	8800.5	0.7706	74.083	URANU 174.12	JS 19.1473	10.011 771	0.047 739	38.1445
Feb' 20 11	8880.5	0.7705	74.085	173.89	19.154 5	0.011 765	0.047 388	39.0751
May 2	8960.5	0.7704	74.090	173.70	19.160 7	0.011 759	0.047 066	40.0033
Jul 21 Oct 9	9040.5 9120.5	0.7704 0.7704	74.093 74.093	173.39 172.98	19.169 3 19.178 6	0.011 751 0.011 742	0.046 651 0.046 283	40.9305 41.8666
Dec 28	9200.5	0.7703	74.097	172.62	19.186 2	0.011 742	0.045 987	42.8032
Mar' 21 18			74.096	172.21	19.194 9	0.011 728		43.7392
				NEPTUN	NE			
Nov'19 23	8800.5	1.7704	131.780	23.51	30.142 0	0.005 960	0.008 522	348.0054
Feb' 20 11	8880.5	1.7702	131.775	22.28	30.157 0	0.005 955	0.008 990	348.4950
May 2 Jul 21	8960.5 9040.5	1.7700 1.7698	131.771 131.765	21.06 19.92	30.171 5 30.189 7	0.005 951 0.005 946	0.009 434 0.010 014	348.9804 349.4722
Oct 9	9120.5	1.7696	131.760	19.69	30.203 7	0.005 940	0.010 523	349.9730
Dec 28	9200.5	1.7695	131.758	19.59	30.215 1	0.005 938	0.010 940	350.4698
Mar' 21 18	9280.5	1.7693	131.752	19.52	30.227 8	0.005 935	0.011 410	350.9696

Distances are in astronomical units

CENTRE OF MASS OF THE SOLAR SYSTEM, 2020

HELIOCENTRIC RECTANGULAR CO-ORDINATES EQUATORIAL RECTANGULAR CO-ORDINATES OF THE BARYCENTRES $_4$ (SUN TO MARS) AND $_{\rm S_9}$ (SUN TO PLUTO) REFERRED TO THE MEAN EQUINOX AND EQUATOR OF J 2000.0

		Е	Sarycentre S ₄		Centre of M	lass of the Sola	ır System
Date (I		(In u	nits of 10 ⁻¹⁰ a.u)			Barycentre S ₉	•
		(III u	ints of 10 a.u.		(In t	units of 10 ⁻⁹ a.u	1)
		X	y	Z	X	Y	Z
Jan.	0	+37911256	-68162195	-29801540	+3790271	-6818756	-2981143
	10	38740022	67963653	29740454	3873691	6799200	2975172
	20	39565157	67756980	29675653	3956852	6778730	2968796
	30	40386851	67542798	29607423	4039757	6757378	2962030
Feb.	9	41205424	67321819	29536101	4122413	6735180	2954890
	19	42021875	67094800	29462168	4204863	6712174	2947401
	29	+42837811	-66861652	-29385691	+4287179	-6688356	-2939565
Mar.	10	43654276	66621546	29306355	4369406	6663686	2931368
	20	44471756	66373652	29223772	4451561	6638123	2922790
	30	45290529	66117157	29137584	4533649	6611627	2913813
Apr.	9	46110699	65851191	29047404	4615668	6584156	2904418
•	19	46932095	65574846	28952834	4697602	6555665	2894586
	29	+47754206	-65287341	-28853495	+4779417	-6526117	-2884298
May	9	48576339	64988218	28749186	4861071	6495490	2873544
	19	49398236	64677261	28639887	4942543	6463775	2862324
	29	50219807	64353594	28525236	5023821	6430929	2850620
June	8	51040109	64016248	28404719	5104850	6396906	2838407
	18	51857779	63664718	28278012	5185554	6361682	2825669
	28	+52671381	-63298900	-28144992	+5265853	-6325254	-2812401
July	8	53479532	62919010	28005672	5345671	6287635	2798604
	18	54280879	62525521	27860209	5424932	6248850	2784287
	28	55074148	62119270	27708902	5503565	6208944	2769465
Aug.	7	55858391	61701569	27552350	5581514	6167984	2754169
	17	56633701	61273791	27391253	5658777	6126042	2738435
	27	+57400433	-60836501	-27225910	+5735363	-6083148	-2722279
Sept.	6	58158547	60390158	27056475	5811263	6039328	2705709
	16	58907983	59935407	26883234	5886466	5994617	2688741
	26	59648897	59472931	26706477	5960973	5949052	2671390
Oct.	6	60381588	59003330	26526504	6034790	5902666	2653673
	16	61106466	58527064	26343515	6107931	5855485	2635600
	26	+61823896	-58044604	-26157757	+6180406	-5807536	-2617185
Nov.	5	62534572	57556547	25969583	6252243	5758852	2598447
	15	63239844	57063020	25779183	6323501	5709443	2579397
	25	63940803	56563219	25586234	6394228	5659272	2560020
Dec.	5	64637713	56056245	25390279	6464429	5608298	2540294
	15	65330490	55541395	25190970	6534093	5556490	2520204
	25	+66018879	-55018068	-24987976	+6603200	-5503821	-2499734
	35	+66702414	-54485773	-24781021	+6671719	-5450271	-2478872

The heliocentric equatorial rectangular co-ordinates of the barycentre of the solar system referred to the mean equator and equinox of J 2020.5 are given by ${\bf r}=P{\bf r_0}$, where ${\bf r}$ and ${\bf r_0}$ are the column vectors of the co-ordinates X,Y, Z and X_0,Y_0,Z_0 referred to J 2020.5 and J 2000.0 respectively.

PART - II

STARS

Cat.	BS=	Star	Mag.	Lo	ngit	ude	Annual	Annual	I	atitu	de	Annual	Annual
No.	HR						Variation					Variation	Proper
FK5	No.			0		"	"	Motion	0		"	"	Motion
35	280	α Sculptoris	4.31	0	46	51.47	50.620	+0.025	-32	30	46.83	+0.040	-0.007
9		ι Ceti	3.56	1	12	10.08	50.350	-0.028	-10	01	17.64	+0.040	-0.007
82		φ Eridani	3.56	1	17	28.82	51.190	+0.110	-58	59	09.12	-0.030	-0.028
902		ω Piscium	4.01	2	52	12.75	50.340	+0.095	+6	21	44.39	-0.110	-0.062
22		β Ceti	2.04	2	52	20.22	50.710	+0.242	-20	47	00.88	+0.000	-0.167
783		η Cephei	3.43	4	58	08.98	51.240	+2.354	+71	46	56.41	+0.450	+0.369
703	1731	Песрисі	3.13	•	50	00.70	31.210	. 2.554	. , 1	10	50.11	10.130	10.507
156	1336	α Reticuli	3.35	7	48	23.17	52.760	+0.298	-78	02	23.93	+0.080	-0.015
869		o Andromedae	3.62	8	03	48.45	49.880	+0.022	+43	45		+0.080	-0.017
848	8585	α Lacertae	3.77	8	25	38.04	49.880	+0.200	+53	17	26.79	+0.040	-0.070
7	39	γ Pegasi	2.83	9	26	30.64	50.190	+0.001	+12	36	01.78	+0.110	-0.011
40	334	η Ceti	3.45	12	03	19.80	50.580	+0.151	-16	07	07.78	-0.080	-0.213
803	8162	α Cephei	2.44	13	03	35.31	49.470	+0.340	+68	54	50.25	+0.050	-0.100
836	8465	ζ Cephei	3.35	14	14	41.15	49.510	+0.028		08	52.74	+0.140	-0.008
1	15	α Andromedae*	2.06	14	35	38.35	50.140	+0.056		40	48.58	-0.050	-0.207
47		θ Ceti	3.6	16	30	44.16	50.260	-0.163	-15	46	02.73	+0.000	-0.171
723		δ Draconis	3.07	17	25	56.80	47.550	+0.757		53	12.42	+0.090	-0.093
59		τ Ceti	3.5	18	05	54.20	49.130	-1.371	-24	48	23.31	+1.650	+1.463
890	8961	λ Andromedae	3.82v	18	34	12.95	49.750	-0.133	+43	46	27.96	-0.260	-0.441
1075	704	. Enidoni	4 1 1	19	0.2	12 10	51.010	10.160	-51	42	49.88	. 0 000	0.005
1075		ι Eridani ν Ceti	4.11		03 42	43.48	51.010	+0.169	-	42		+0.090	-0.095
71 1033	585 361	ζ Piscium*	4 5.24	19 20	09	59.56 52.47	50.690 50.410	+0.134 +0.112	-31 -0	02 12	00.30 46.53	+0.120	-0.076 -0.106
20		δ Andromedae	3.24	20	05	57.72	50.200	+0.112 +0.092	+24	21	03.99	+0.090 +0.070	-0.106 -0.141
62		ζ Ceti	3.73	22	14	15.13	50.470	+0.092	-20	20	03.99	+0.070	-0.141
106		θ Eridani p	3.25	23	33	42.15	50.810	-0.051	-53	44	19.46	+0.270	+0.031
100	677	o Eridani p	3.23	23	33	72.13	30.010	-0.031	-33	77	17.40	10.270	10.030
101	841	β Fornacis	4.46	26	31	28.56	50.920	+0.212	-45	51	14.68	+0.350	+0.103
1154	2015	δ Doradus	4.35	26	48	11.39	63.160	-0.278	-88	15	08.04	+0.280	+0.030
50		η Piscium	3.62	27	06	08.14	50.280	+0.024	+5	22	44.24	+0.240	-0.015
33	269	μ Andromedae	3.87	29	27	41.03	50.250	+0.174	+29	39	36.13	+0.230	-0.038
42	337	β Andromedae	2.06	30	41	28.66	50.240	+0.126	+25	56	37.99	+0.090	-0.178
863	8694	ι Cephei	3.52	33	31	16.60	49.280	-0.304	+62	37	03.36	+0.270	-0.017
66		β Arietis*	2.64	34	15	22.82	50.300	+0.051	+8	29	17.33	+0.160	-0.138
1085		τ' Eridani	4.09	34	49	17.70	50.390	-0.198	-38	54	15.53	+0.300	+0.001
17	153	ζ Cassiopeiae	3.66	35	20	58.94	49.960	+0.016		43	17.10	+0.280	-0.018
2	21	β Cassiopeiae	2.27	35	24	11.34	50.310	+0.463	+51	12	50.39	-0.170	-0.472
809		β Cephei	3.23	35	49	36.86	49.280	+0.028	+71	09	16.11	+0.300	-0.008
64	544	α Trianguli	3.41	37	08	46.44	50.110	-0.079	+16	48	03.74	+0.090	-0.223
91	779	δ Ceti	4.07	37	51	29.91	50.390	+0.013	-14	27	35.82	+0.310	-0.008
74		α Arietis	2	37	56	57.31	50.370	+0.130	+9	57	56.75	+0.110	-0.204
21	168	α Cassiopeiae	2.23	38	04	05.66	49.960	+0.036	-	37	25.25	+0.260	-0.254
171	1465	α Doradus	3.27	38	07	25.41	51.700	+0.155	-74	34	48.59	+0.290	-0.031
104		η Eridani	3.89	39	02	14.20				32	46.36		-0.233
	1											ı	

^{*} No. 1: Alpheratz, Uttara Bhadrapada - 2 No. 66: Sheratan, Asvini No. 1033 : Revati

Cat.	BS=	Star	Mag.	Lo	ongit	ude	Annual	Annual	L	atitu	de	Annual	Annual
No.	HR						Variation					Variation	Proper
FK5	No.					"	"	Motion				"	Motion
7.5	(22	от: 1:	2	0	20			.0.124	0	24	"		0.001
75		β Trianguli	3	42	38	20.54	50.310	+0.134	+20	34	55.71	+0.260	-0.091
79 32		γ Trianguli	4.01	43 44	48 12	14.62 56.32	50.220 49.980	+0.028	+18 +48	56 49	59.72 00.51	+0.290 +0.340	-0.064
_	-	γ Cassiopeiae	var.	44 44				+0.027	-				-0.019
73	603 911	γ Andromed. p α Ceti	2.26 2.53	44	30 36	39.77 24.23	50.160	+0.024	-12	48	28.38 02.32	+0.300 +0.280	-0.065
107 155		α Horologii	3.86	46	06	47.13	50.330 50.770	-0.032 -0.073	-12 -61	43	47.95	+0.280	-0.072 -0.211
133	1320	a Holologii	3.80	40	00	47.13	30.770	-0.073	-01	43	47.93	+0.100	-0.211
48	403	δ Cassiopeiae	2.68	48	12	59.50	50.320	+0.323	+46	24	16.01	+0.170	-0.202
127		ε Eridani	3.73	48	26	56.44	49.390	-1.054	-27	42	43.20	+0.660	+0.281
100		41 Arietis*	3.63	48	29	23.21	50.280	+0.029	+10	27	03.96	+0.250	-0.132
135		δ Eridani	3.54	51	08	59.77	50.560	+0.113	-28	40	11.71	+1.130	+0.744
121		o Tauri	3.6	51	26	59.19	50.250	-0.084	-9	19	56.49	+0.340	-0.059
123		ξ Tauri	3.74	52	11	56.10	50.390	+0.049	-8	47	48.01	+0.340	-0.053
		•											
212	1922	β Doradus	3.48v	52	25	32.71	53.300	+0.072	-85	02	30.97	+0.400	+0.007
149	1231	γ Eridani	2.95	54	09	18.02	50.490	+0.039	-33	12	01.95	+0.280	-0.123
63		ε Cassiopeiae	3.38	55	02	55.23	50.060	+0.024	+47	33	01.24	+0.380	-0.034
109		ρ Persei	var.	55	11	50.19	50.310	+0.099	+20	34	34.19	+0.270	-0.139
1129		α Caeli	4.45	56	26	05.78	50.390	-0.346	-62		09.69	+0.380	-0.032
111	936	β Persei	var.	56	27	12.48	50.200	+0.003	+22	25	51.26	+0.410	-0.002
103		τ Persei	3.95	58	11	50.48	50.140	-0.003		22	25.13	+0.410	-0.005
99		η Persei	3.76	58	59	14.58	50.150	+0.013	+37	29	03.03	+0.410	-0.019
136		17 Tauri	3.7	59	41	53.70	50.290	+0.009	+4	11	31.17	+0.380	-0.049
170		v ² Eridani	3.82	60	10	21.63	50.470	-0.076	-51	48	53.23	+0.430	-0.002
151	1251	ν Tauri	3.91	60	12	21.07	50.350	+0.005	-14	26	57.41	+0.420	-0.004
139	1165	η Tauri*	2.87	60	16	43.44	50.290	+0.008	+4	03	11.10	+0.380	-0.049
108	915	γ Persei	2.93	60	18	25.47	50.160	-0.002	+34	31	57.52	+0.430	-0.004
893		γ Cephei	3.21	60	22	43.60	50.150	+0.268	+64	40	22.86	+0.550	+0.119
150		λ Tauri	3.47v	60	55	15.66	50.310	-0.009	-7	57	26.71	+0.420	-0.011
120		α Persei	1.79	62	22	00.55	50.200	+0.018	+30	07	40.10	+0.400	-0.030
144		ζ Persei	2.85	63	24	36.21	50.260	+0.004	+11	20	09.30	+0.430	-0.011
134	1135	v Persei	3.77	64	06	32.64	50.210	-0.015	+22	09	21.95	+0.440	+0.002
131	1122	δ Persei	3.01	65	05	17.15	50.240	+0.021	+27	18	14.67	+0.410	-0.040
148	1228	ξ Persei	4.04	65	15	30.96	50.260	+0.002	+14	56	46.80	+0.440	-0.000
147	1220	ε Persei	2.89	65	57	50.17	50.260	+0.013	+19	07	00.92	+0.410	-0.029
159		γ Tauri	3.65	66	05	34.32	50.420	+0.110	-5	43	47.99	+0.410	-0.044
162		δ Tauri	3.76	67	09	27.83	50.410	+0.101	-3	58	02.05	+0.400	-0.047
164	1409	ε Tauri	3.54	68	45	07.28	50.400	+0.100	-2	33	53.68	+0.400	-0.054
1.00	1457	o Touri*	0.05	70	0.4	22.01	50 240	10.026	_	27	57.17	10.260	0.107
168		α Tauri* π' Orionis	0.85	70 72	04	33.01	50.340	+0.036	-5 15	27 22	57.16	+0.260	-0.197
1134 186		ε Leporis	3.19 3.19	72	12 20	50.48 33.70	50.810 50.420	+0.481 +0.021	-15 -44	57	54.62 44.79	+0.420 +0.380	-0.046 -0.076
179		π ⁴ Orionis	3.69	72	23	14.53	50.320	-0.001	-16	46	09.45	+0.380	+0.001
	1567		3.72	72	46	38.51				00	08.90		-0.001
100	1307	7. OHOIIIS	3.12	12	70	30.31	50.550	10.000	-20	00	56.90	0.400	-0.000

^{*} No. 100 : Bharani No. 168: Aldebaran, Rohini No. 139: Alcyone, Krittika.

Cat.	BS=	Star	Mag.	Lo	ongit	ude	Annual	Annual	L	atitu	de	Annual	Annual
No.	HR				0		Variation					Variation	Proper
FK5	No.							Motion					Motion
				0	'	"	"	"	0	'	"	"	"
188	1666	β Eridani	2.79	75	33	42.50	50.220	-0.116	-27	51	34.30	+0.390	-0.071
1144	1702	μ Leporis	3.31v	75	40	52.57	50.410	+0.051	-39	02	51.36	+0.440	-0.030
695	6927	γ Draconis	3.57	76	10	55.35	44.150	+3.497	+83	34	17.28	+0.620	-0.501
181		ι Aurigae	2.69	76	55	32.80	50.280	+0.001	+10	27	25.36	+0.450	-0.018
194		β Orionis	0.12	77	06	58.27	50.330	+0.000	-31	07	12.48	+0.470	-0.001
195		τ Orionis	3.6	78	08	01.21	50.310	-0.018	-29	50	06.16	+0.460	-0.007
1,0	1,50		5.0	, 0	00	01.21	00.010	0.010			00.10	0.100	0.007
1137	1612	ζ Aurigae	3.75	78	55	11.00	50.280	+0.007	+18	12	17.39	+0.440	-0.023
183		ε Aurigae	var.	79	07	39.68	50.280	-0.001	+20	56	49.25	+0.460	-0.004
185		η Aurigae	3.17	79	43	57.40	50.310	+0.024	+18	17	09.98	+0.400	-0.070
204		β Leporis	2.84	79	57	32.12	50.320	-0.015	-43	54	44.60	+0.380	-0.078
204	1790	γ Orionis	1.64	81	13	58.17	50.320	-0.013	-16	48	48.55	+0.460	-0.003
178		α Camelopardi	4.29	81	15	56.99	50.270	+0.001	+43	25	17.82	+0.470	+0.006
170	1342	a Cameloparui	7.29	01	13	30.99	30.270	10.001	143	23	17.02	10.470	10.000
182	1603	β Camelopardi	4.03	81	33	14.44	50.260	-0.010	+37	26	01.03	+0.460	-0.015
207		α Leporis	2.58	81	40	01.37	50.320	+0.001	-41	03	18.43	+0.480	+0.002
193		α Aurigae	0.08	82	08	40.17	50.330	+0.046	+22	51	52.36	+0.050	-0.429
215		α Columbae	2.64	82	27	21.26	50.330	+0.009	-57	22	21.75	+0.440	-0.427
206		δ Orionis	2.23	82	40	58.49	50.330	+0.003	-22	57	10.65	+0.440	-0.027
200		β Tauri	1.65	82	51	40.96	50.310	+0.002	+5	23	12.29	+0.400	-0.002
202	1/91	praum	1.03	02	31	40.90	30.310	+0.012	73	23	12.29	+0.290	-0.176
209	1899	ι Orionis	2.77	83	17	02.15	50.300	+0.000	-29	11	50.34	+0.470	+0.001
210		ε Orionis	1.7	83	45	00.18	50.300	+0.001	-24	30	13.46	+0.470	-0.002
(GC)		λ Orionis*	3.56	83	59	35.61	50.290	-0.001	-13	22	00.40	+0.470	-0.002
211	1910	ζ Tauri	3.30	85	04	15.62	50.300	-0.001	-13	11	35.09	+0.450	-0.002
217		γ Leporis	3.6	85	07	47.67	49.850	-0.440	-45	49	03.33	+0.120	-0.359
217		ζ Leporis	3.55	86	16	21.25	50.270	-0.440	-38	12	47.36	+0.120	-0.000
219	1990	ς Lepons	3.33	80	10	21.23	30.270	-0.020	-36	12	47.30	10.470	-0.000
220	2004	κ Orionis	2.06	86	41	05.91	50.290	+0.002	-33	04	04.84	+0.470	-0.002
223		β Columbae	3.12	86	42	23.55	50.410	+0.136	-59	10	28.66	+0.870	+0.399
222		δ Leporis	3.81	87	27	18.69	50.580	+0.301	-44	17	53.27	-0.190	-0.653
907		α Ursae Mins.	2.02	88	51	16.36	50.400	+0.037	+66	06	14.10	+0.430	-0.036
224		α Orionis*	var.	89	02	27.95	50.310	+0.027	-16	01	27.48	+0.480	+0.009
226		η Leporis	3.71	89	11	09.42	50.210	-0.051	-37	36	00.44	+0.610	+0.140
220	2003	II Ecpons	3.71	0)	11	07.72	30.210	-0.031	-31	50	00.44	10.010	10.170
229	2120	η Columbae	3.96	89	53	51.41	50.260	+0.055	-66	15	05.89	+0.460	-0.014
227		β Aurigae	1.9	90	11	47.38	50.250	-0.062	+21	30	39.11	+0.470	+0.000
225		δ Aurigae	3.72	90	12	24.13	50.410	+0.095	+30	50	50.69	+0.340	-0.125
1168		κ Aurigae	4.35	93	39	02.57	50.240	-0.066	+6	06	17.27	+0.200	-0.264
241		μ Geminorum	2.88	95	35	18.92	50.360	+0.059	-0	49	05.28	+0.350	-0.109
244		8ε Monocerotis	4.44	96	32	27.58	50.250	-0.019	-18	42	53.39	+0.470	+0.010
∠ 44	2270	os monocerons	7.44	90	∠ر	21.30	30.230	-0.019	-10	74	55.59	10.470	0.010
1173	2343	v Geminorum	4.15	97	05	19.48	50.280	-0.007	-3	03	13.78	+0.440	-0.014
243		β Canis Maj.	1.98	97	28	25.33	50.200	-0.008	-41	15	03.99	+0.460	-0.000
240		ζ Canis Maj.	3.02	97	39	47.84	50.170		-53	22	12.27	+0.470	+0.003
251		γ Geminorum	1.93	99	23	28.50	50.330	+0.045	-6	44	24.50	+0.410	-0.039
	2473	•	2.98		13	30.62				04	20.81		-0.037
234	2713	o ocumiorum	1 2.70	100	13	50.02	50.270	0.003	1 2	J-T	20.01	· 0.770	0.014

^{*} No. GC: Mrgasiras.

No. 224: Betelgeuse, Mag. 0.4 to 1.3 Ardra.

Cat.	BS=	Star	Mag.	Lo	ngit	ude	Annual	Annual	L	atitu	de	Annual	Annual
No.	HR				0		Variation					Variation	Proper
FK5	No.						, 411441011	Motion				, 411441011	Motion
1110	1.0.			0	,	"	"	"	0	,	"	"	"
261	2540	θ Geminorum	3.6	101	24	35.85	50.330	+0.003	+11	01	56.81	+0.400	-0.048
256		ξ Geminorum	3.36	101	29	41.55	50.170	-0.101	-10	06	10.10	+0.250	-0.200
257		α Canis Maj cg	-1.5	104	21	50.11	49.610		-39	36	35.52	-0.810	-1.256
245	1	α Carinae	-0.7	105	14	37.71	49.730	+0.075	-75	49	16.50	+0.460	+0.024
269		ζ Geminorum	3.79v	105	16	35.43	50.280		-2	02	10.84	+0.440	-0.002
252		v Puppis	3.17	107	25	55.53	49.900	+0.008	-66	04	18.37	+0.430	-0.006
232	2131	v i uppis	5.17	107	23	33.33	17.700	.0.000	00	01	10.57	10.130	0.000
279	2777	δ Geminorum	3.53	108	48	19.84	50.270	-0.024	-0	10	33.76	+0.420	-0.016
1180	2538	к Canis Maj.	3.96	108	51	03.51	50.010	-0.013	-55	08	42.28	+0.430	+0.003
277	2763	λ Geminorum	3.58	109	03	53.48	50.230	-0.013	-55	37	58.86	+0.390	-0.043
282	2821	ι Geminorum	3.79	109	14	35.33	50.200	-0.109	+5	45	36.53	+0.330	-0.103
1187	2714	22 δ Monocerotis		109	40	49.84	50.210	-0.109	-21	44	33.13	+0.430	+0.005
287		α Gemino. Cg^*	1.95	110	31	34.76	50.210	-0.156	+10	05	51.85	+0.300	-0.126
201	2091	a denino. eg	1.93	110	31	34.70	30.170	-0.130	110	03	31.63	10.300	-0.120
268	2618	ε Canis Maj.	1.5	111	02	52.17	50.040	+0.006	-51	21	27.98	+0.430	+0.003
270	2653	o Canis Maj.	3.02	111	17	16.31	50.040	-0.007	-46	07	40.71	+0.420	+0.003
1183	2646	σ Canis Maj.	3.47	111	50	27.52	50.070	-0.007	-50	13	24.36	+0.420	+0.002
285	2845	β Canis Min.	2.9	112	28	39.10	50.200	-0.009	-13	29	06.37	+0.370	-0.046
317	3323	o Ursae Maj.		112	16	57.31	50.360		-13 +40	14	41.85		-0.046 -0.145
295			3.36		29	55.24		-0.121	+40		08.32	+0.270	
293	2990	β Geminorum	1.14	113	29	33.24	49.710	-0.614	+0	41	08.32	+0.260	-0.158
272	2602	S Conia Mai	1 06	112	40	51.20	50.020	0.006	10	27	02.00	10.420	10.004
273	2693	δ Canis Maj.	1.86	113	40	51.28	50.030	-0.006	-48	27	02.99	+0.420	+0.004
294		κ Geminorum	3.57	113	57	07.45	50.280	-0.024	+3	04	49.97	+0.350	-0.057
291	2943	α C. Min. cg	0.38	116	04		49.680		-16	01	25.42	-0.730	-1.132
263		τ Puppis	2.93	118	00	33.60	49.650		-72	51	04.88	+0.330	-0.056
293		26 α Monoceroti		119	33	57.65	50.060	-0.078	-30	27	05.52	+0.360	-0.033
283	2827	η Canis Maj.	2.45	119	49	15.43	49.960	-0.008	-50	36	23.53	+0.390	+0.004
270	2772	π Puppis	2.7	120	25	02.07	40.020	0.010	50	2.1	21.00	10.200	.0.002
278 335		π Puppis ι Ursae Maj.	2.7	120	35	03.97	49.830	-0.019	-58	31	21.99	+0.390	+0.002
	3569		3.14	123	05	05.58	50.060	-0.399	+29	34	30.79	+0.010	-0.358
341	3594	κ Ursae Maj.	3.6	124	13	26.25	50.440	-0.015	+28	58	52.49	+0.300	-0.062
312		β Cancri	3.52	124	32	35.70	50.200	-0.032	-10	17	09.08	+0.310	-0.058
321	3366	η Cancri	5.33	125	41	38.20	50.270	-0.035	+1	34	23.08	+0.300	-0.054
1204	3045	ξ Puppis	3.34	126	19	34.64	49.980	-0.003	-44	56	14.90	+0.350	-0.003
2.60	2000	TT . M	2.0	100	22	15.46	50.220	0.061	. 10	20	10.10	. 0. 000	0.260
368		v Ursae Maj.	3.8	126	33	15.46	50.320	-0.261	+42	39	10.19	+0.080	-0.269
328	1	ι Cancri	4.02	126	37	57.89	50.340	-0.013	+10	25	41.69	+0.310	-0.047
358	3775	θ Ursae Maj.	3.17	127	32	49.34	49.700	-0.820	+34	53	35.10	-0.510	-0.862
1228		γ Cancri	4.66	127	49	27.85	50.220	-0.092	+3	11	31.46	+0.280	-0.066
1194	2878	ρ Puppis	3.25	128	58	18.67	49.380	-0.262	-63	46	18.18	+0.500	+0.157
326	3461	δ Cancri*	3.94	129	00	31.04	50.340	+0.043	+0	04	40.09	+0.120	-0.225
	24.5	err 1			a -	22.2.	50 3 5 5	0.00		•	26.05		0.05:
1223		δ Hydrae	4.16	130	35	23.94	50.160	-0.064	-12	23	26.97	+0.310	-0.024
433	4434	λ Draconis	3.84	130	37	22.75	50.800	-0.026	+57	14	34.27	+0.290	-0.040
1224		σ Hydrae	4.44	131	29	44.23	50.190		-14	36	00.51	+0.310	-0.022
	3185	ρ Puppis	2.81	131	40	21.68	49.840		-43	16	05.17	+0.350	+0.023
352	3705	α Lyncis	3.13	132	07	41.60	50.180	-0.227	+17	57	55.94	+0.270	-0.054

^{*} No. 287 : Castor, Punarvasu-2, Mag. 1.95 & 2.95. No. 326 : Pusya.

No. HR FK5 No.	Cat.	BS=	Star	Mag.	Lo	ongit	ude	Annual	Annual	L	atitu	de	Annual	Annual
1239 3627 ξ Cancri 5.14 133 29 50.33 50.330 -0.000 +5 25 25.77 +0.010 +0.005								Variation					Variation	
1239 3627 ξ Cancri 5.14 133 29 50.33 50.330 -0.000 +5 25 32.57 +0.310 +0.005 50563 β Ursae Min. 4.25 133 36 44.13 50.300 +0.041 +72 59 21.200 +0.280 -0.031 337 3572 α Cancri 4.25 133 55 41.13 50.300 +0.041 +72 59 21.200 +0.280 -0.031 347 3401 α Ursae Maj. 1.79 135 29 09.03 50.640 -0.087 +49 40 52.28 +0.170 -0.125 (329) 3482 ε Hydrae m* 3.38 136 22 21.93 49.900 -0.228 +23 26 07.48 +0.190 -0.125 (329) 3482 ε Hydrae m* 3.38 136 22 21.93 49.900 -0.029 +61 45 49.17 +0.250 -0.042 416 4295 β Ursae Maj. 3.45 139 50 11.82 50.360 -0.057 +58 20 46.42 +0.280 +0.000 416 4295 β Ursae Maj. 3.45 139 50 11.82 50.360 -0.057 +58 20 46.42 +0.280 +0.000 416 4295 β Ursae Maj. 3.45 139 50 11.82 50.360 -0.057 +58 20 46.42 +0.280 +0.000 416 4295 β Ursae Maj. 3.45 139 50 11.82 50.360 -0.057 +58 20 46.42 +0.280 +0.000 416 4295 β Ursae Maj. 3.45 139 50 11.82 50.360 -0.057 +58 20 46.42 +0.280 +0.000 416 4295 β Ursae Maj. 3.45 139 50 11.82 50.360 -0.057 +58 20 46.42 +0.280 +0.000 416 4295 β Ursae Maj. 3.45 139 43 25.30 50.420 +0.224 -13 30 07.63 +0.017 -0.103 347 3665 814 40 59 29.08 50.320 -0.040 +9 43 00.17 +0.240 -0.026 40.000 40.0	FK5	No.							Motion					Motion
550 5563 β Ursae Min. 2.08 133 36 44.13 51.410 -0.044 +72 59 21.20 +0.280 -0.031 337 3572 α Cancri 4.25 133 55 41.13 50.300 +0.041 -5 04 43.55 +0.290 -0.020 -0.014 417 4301 α Ursae Maj. 1.79 135 29 09.03 50.640 -0.087 +49 40 52.28 +0.170 -0.125 -0.031 -0	1220	2627	د Comoni	5 1 4		20			0.000	_				10.005
334 3547 \$\(\chince{Q} \) \text{Acancri} \\ 334 3547 \$\(\chince{Q} \) \text{Argan} \text{Argan} \\ 311 344 5 1 40.00 \) \(50.120 \) \\ 312 417 4301 \\ 313 a \) \text{Argan} \\ 318 348 \) \text{c Hydrae m*} \\ 3.38 136 \) 22 21.93 \\ 49.900 \\ -0.228 \\ 23 26 07.48 \\ 40.917 \\ 40.900 \\ -0.010 \\ 50.120 \\ 40.90			5											
343 43547														
417 4301 α Ursae Maj. c Hydrae m* 3.38 136 22 21.93 49.900 -0.228 -23 26 07.48 +0.170 -0.125 (329) 3482 ε Hydrae m* 3.38 136 22 21.93 49.900 -0.228 -23 26 07.48 +0.190 -0.105 -0.105 472 4787 κ Draconis 3.87 y 136 32 46.72 50.900 -0.090 +61 45 49.17 +0.250 -0.042 49.255 β Ursae Maj. 2.37 139 43 25.30 50.760 +0.071 +45 08 05.83 +0.340 +0.073 383 4033 λ Ursae Maj. 3.45 139 50 11.82 50.360 -0.155 +29 53 10.66 +0.170 -0.103 347 3665 θ Hydrae 3.88 140 34 32.31 50.420 +0.224 -13 03 07.63 +0.010 -0.255 367 3873 ε Leonis 2.98 140 59 29.08 50.320 -0.040 +9 43 00.17 +0.240 -0.026 386 4069 μ Ursae Maj. 3.05 141 31 19.14 50.410 -0.101 +28 59 58.39 +0.260 -0.003 371 3905 μ Leonis 3.88 141 42 57.07 50.190 -0.188 +12 20 58.54 +0.140 -0.127 569 5735 γ Ursae Min. 3.05 141 53 33.38 15.710 -0.080 +75 14 32.95 +0.240 -0.019 42.255 α Pictoris 3.27 144 22 18.27 45.040 -1.937 83 02 15.45 +0.390 +0.148 365 3852 σ Leonis 3.52 144 31 57.44 50.150 -0.122 -3 45 22.68 +0.160 -0.081 327 3468 α Pyxidis 3.68 146 47 02.60 49.790 -0.022 -48 55 17.71 +0.230 +0.006 384 4031 ζ Leonis 3.44 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.004 4335 ψ Ursae Maj. 3.91 147 55 40.90 50.250 +0.070 -14 16 34.66 +0.170 -0.043 349 307 γ Crouns 3.52 148 11 30.13 50.330 -0.001 +4 52 00.85 +0.120 -0.051 30.9 3207 γ Crouns 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.220 +0.004 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.220 +0.004 420 4335 ψ Ursae Maj. 3.11 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 40.004 420 4335 ψ Ursae Maj. 3.11 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 40.004 420 4335 ψ Ursae Maj. 3.11 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 40.004 420 4335 ψ Ursae Maj. 3.11 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 40.004 420 4335 ψ Ursae Maj. 3.11 151 56 61 52 50.600 +0.010 +1.11 1466 21 45.64 +0.006 +0.006 42.24 41.33 β Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 -0.012 441 4518		1												
3482 ε Hydrae m* 3.38 136 22 21.93 49.900 -0.228 -23 26 07.48 +0.190 -0.105 472 4787 κ Draconis 3.87 136 32 46.72 50.900 -0.090 +61 45 49.17 +0.250 -0.042 416 4295 β Ursae Maj. 2.37 139 43 25.30 50.760 -0.071 +45 08 05.83 +0.340 +0.073 383 4033 λ Ursae Maj. 3.45 139 50 11.82 50.360 -0.155 +29 53 10.66 +0.170 -0.103 347 3665 θ Hydrae 3.88 140 34 32.31 50.420 +0.224 +13 03 07.63 +0.010 -0.255 367 3873 ε Leonis 2.98 140 59 29.08 50.320 -0.040 +9 43 00.17 +0.240 -0.026 386 4069 μ Ursae Maj. 3.05 141 31 19.14 50.410 -0.188 +12 20 58.54 +0.140 -0.127 569 5735 γ Ursae Min. 3.05 141 53 33.38 51.710 -0.080 +75 14 32.95 +0.240 -0.019 262 2550 α Pictoris 3.27 144 22 18.27 45.040 -1.937 -83 02 15.45 +0.390 +0.081 327 3468 α Pyxidis 3.68 146 47 02.60 49.790 -0.022 48 55 17.71 +0.230 +0.006 354 3748 α Hydrae 1.98 147 33 52.24 50.100 -0.026 -22 22 51.75 +0.240 +0.006 354 3748 α Hydrae 3.91 147 55 40.90 50.250 +0.070 -14 15 36.66 +0.170 -0.041 379 3975 η Leonis 3.44 147 51 08.87 50.490 +0.020 +11 51 58.61 +0.220 +0.004 340 3431 ζ Leonis 3.44 147 51 08.87 50.040 +0.020 +11 51 58.61 +0.220 +0.004 340 3435 γ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.020 +0.005 341 4518 χ Ursae Maj. 3.11 151 55 64 31.07 50.590 -0.055 +0.070 -14 16 34.66 +0.170 -0.055 342 3718 θ Pyxidis 4.72 153 20 36.85 49.390 -0.005 -0.005 +0.000 -0.005 +0.000 +0.001 441 4518 χ Ursae Maj. 3.81 56 56 57.		1												
472 4787 κ Draconis 3.87 136 32 46.72 50.900 -0.090 +61 45 49.17 +0.250 -0.042 +0.000 416 4295 β Ursae Maj. 2.37 139 43 25.30 50.760 +0.071 +45 50 65.83 +0.340 +0.073 383 4033 λ Ursae Maj. 3.45 139 50 11.82 50.360 -0.155 +29 53 10.66 +0.170 -0.103 347 3665 θ Hydrae 3.88 140 34 32.31 50.420 +0.224 -13 03 07.63 +0.010 -0.255 367 3873 ε Leonis 2.98 140 59 29.08 50.320 -0.040 +9 43 00.17 +0.240 -0.026 -0.033 371 3905 μ Leonis 3.88 141 42 57.07 50.190 -0.188 +12 20 58.54 +0.140 -0.127 +0.255 59.5755 √ Ursae Min. 3.05 141 53 33.38 51.710 -0.080 +75 14 32.95 +0.240 -0.019 -0.081 327 3468 α Pyxidis 3.68 146 47 02.60 49.790 -0.022 -48 55 17.71 +0.230 +0.081 32.37 43.493 40.31 √ Leonis 3.44 147 51 0.887 50.400 +0.020 +11 51 58.61 +0.220 +0.000 4335 ψ Ursae Maj. 3.01 149 06 0.305 50.250 +0.070 -14 16 34.66 +0.170 -0.081 43.99 3207 γ Velorum 1.78 147 37 51.79 49.410 -0.015 -64 27 46.57 +0.220 +0.004 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.250 +0.070 -14 16 34.66 +0.170 -0.041 447 4554 γ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 4377 v Ursae Maj. 3.11 151 21 17.98 50.960 +0.119 +51 39 20.55 +0.200 +0.001 441 4518 χ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 20.55 +0.200 +0.001 441 4518 χ Ursae Maj. 3.48 156 56 27.84 50.950 -0.005 +0 09 194 +0.160 -0.012 441 4518 χ Ursae Maj. 3.48 156 56 27.84 50.950 -0.005 +0 09 194 +0.160 -0.012 441 4518 χ Ursae Maj. 3.48 156 56 27.84 50.950 -0.005 +0 09 194 +0.160 -0.005 425 4377 v Ursae Maj. 3.48 156 56 27.84 50.950 -0.005 +0 09 194														
306 3165	(329)	3462	6 Hydrac III	3.30	130	22	21.93	47.700	-0.228	-23	20	07.40	10.190	-0.103
306 3165	472	4787	к Draconis	3 87v	136	32	46 72	50 900	-0.090	+61	45	49 17	+0.250	-0.042
416 4295 β Ursae Maj. 3.45 139 43 25.30 50.760 +0.071 +45 08 05.83 +0.340 +0.073 383 4033 4033 4033 4033 3.45 3.88 140 34 32.31 50.420 +0.224 -13 03 07.63 +0.010 -0.255 367 3873 ε Leonis 2.98 140 59 29.08 50.320 -0.040 +9 43 00.17 +0.240 -0.026 386 4069 μ Ursae Maj. 3.05 141 31 19.14 50.410 -0.101 +28 59 58.39 +0.260 -0.003 371 3905 μ Leonis 3.88 141 42 57.07 50.190 -0.188 +12 20 58.54 +0.140 -0.127 569 5735 γ Ursae Maj. 3.05 141 53 33.38 51.710 -0.080 +75 14 32.95 +0.240 -0.019 428 3852 α Leonis 3.52 144 31 57.44 50.150 -0.122 -3 45 22.68 +0.160 -0.081 327 3468 α Pyxidis 3.68 146 47 02.60 49.790 -0.022 -48 55 17.71 +0.230 +0.006 475 4325 4374 47 51.79 49.410 -0.015 -64 27 46.57 +0.220 +0.004 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.085 474 4554 γ Ursae Maj. 3.11 17 55 60.87 50.460 +0.020 +11 51 58 61 +0.120 -0.001 456 4660 8 Ursae Maj. 3.31 151 21 17.98 50.860 +0.104 +47 08 34.76 +0.260 +0.065 40.343 40.33 71 80 Pyxidis 4.72 53 20 36.85 49.930 -0.005 -0.054 +35 32 18.96 +0.150 -0.025 424 437 7 7 7 7 7 7 7 7 7						-								
383 4033														
347 3665 θ Hydrae 388 140 34 32,31 50,420 +0,224 -13 03 07,63 +0,010 -0,256 387														
367 3873 ε Léonis 2.98 140 59 29.08 50.320 -0.040 +9 43 00.17 +0.240 -0.026 386 4069 μ Ursae Maj. 3.05 141 31 19.14 50.410 -0.101 +28 59 58.39 +0.260 -0.003 371 3905 μ Leonis 3.88 141 42 57.07 50.190 -0.188 +12 20 58.54 +0.140 -0.127 569 5735 γ Ursae Min. 3.05 141 53 33.38 51.710 -0.080 +75 14 32.95 +0.240 -0.019 262 2550 α Pictoris 3.27 144 22 18.27 45.040 -1.937 -83 02 15.45 +0.390 +0.148 365 3852 α Leonis 3.52 144 31 57.44 50.150 -0.122 -3 45 22.68 +0.160 -0.081 337 3468 α Pyxidis 3.68 146 47 02.60 49.790 -0.022 -48 55 17.71 +0.230 +0.006 354 3748 α Hydrae 1.98 147 33 52.24 50.100 -0.026 -22 22 51.75 +0.240 +0.006 384 4031 ζ Leonis 3.41 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.004 384 4031 ζ Leonis 3.41 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.004 384 3748 α Leonis 3.91 147 55 40.90 50.250 +0.070 -14 16 34.66 +0.170 -0.044 379 3975 η Leonis 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.210 -0.001 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 1.35 150 06 51.23 50.860 +0.104 +47 08 34.76 +0.260 +0.065 303 3117 χ Carinae 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.020 +0.001 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.077 +41 32 40.56 +0.120 -0.001 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.077 +41 32 40.56 +0.120 -0.0028 442 4337 γ V Ursae Maj. 3.61 159 39 05.04 49.950 -0.005 -50 99 48.11 +0.160 -0.012 441 4518 χ Ursae Maj. 3.61 159 39 05.04 49.950 -0.005 -50 99 48.11 +0.160 -0.003 425 4377 γ V Ursae Maj. 3.61 159 39 05.04 49.950 -0.055 -50 99 48.11 +0.160 -0.0070 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.050 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.050 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -52 21 00.59 9 -0.030 -0.050 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -52 22 00 50.98 -0.030 -0.050 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -52 22 00 50.98 -0.030 -0.050 381 3994 λ Hydrae 3.61 160 23 32.24 50.170 -0.			3											
386 4069 μ Ursae Maj. 3.05 141 31 19.14 50.410 -0.101 +28 59 58.39 +0.260 -0.003 371 3905 μ Leonis 3.88 141 42 57.07 50.190 -0.188 +12 20 58.54 +0.140 -0.127 50.150 γ Ursae Min. 3.05 141 53 33.38 51.710 -0.080 +75 14 32.95 +0.240 -0.019 262 2550 α Pictoris 3.27 144 22 18.27 45.040 -1.937 -83 02 15.45 +0.390 +0.148 365 3852 ο Leonis 3.52 144 31 57.44 50.150 -0.122 -3 45 22.68 +0.160 -0.081 327 3468 α Pyxidis 3.68 146 47 02.60 49.790 -0.022 -48 55 17.71 +0.230 +0.006 384 4031 ζ Leonis 3.44 147 37 51.79 49.410 -0.015 -64 27 46.57 +0.220 +0.004 384 4031 ζ Leonis 3.44 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.004 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 303 3117 χ Carinae 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.004 420 4335 ψ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.001 451 89 4 Pyxidis 3.48 156 56 27.84 50.480 -0.020 -2.6 35 55.20 +0.150 -0.028 425 4377 ν Ursae Maj. 3.81 153 56 40 31.07 50.290 -0.002 -2.6 35 55.20 +0.160 -0.012 441 4518 χ Ursae Maj. 3.31 153 56 40 31.07 50.290 -0.005 -0.006 +0.119 +51 39 29.55 +0.260 +0.074 441 4518 χ Ursae Maj. 3.31 153 56 40 31.07 50.290 -0.005 -0.006 +0.119 +51 39 29.55 +0.260 +0.074 441 4518 χ Ursae Maj. 3.81 155 640 31.07 50.290 -0.005 -0.007 -0.21 45.04 +0.160 -0.012 441 4518 χ Ursae Maj. 3.81 153 56 40 31.07 50.290 -0.005 -0.006 +0.119 +51 39 29.55 +0.260 +0.074 441 4518 χ Ursae Maj. 3.81 155 640 31.07 50.290 -0.005 -0.006 +0.119 +51 39 29.55 +0.260 +0.074 425 4377 ν Ursae Maj. 3.81 155 640 31.07 50.290 -0.005 -0.007 40.004 +0.160 -0.012 421 4518 χ Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +2.20 94 40.140 -0.005 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +2.20 94 40.140 -0.005 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +2.20 94 40.140 -0.005 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +2.20 94 40.140 -0.005 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +2.20 94 40.140 -0.005 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +2.20 94 40.140 -0.005			2			59								
371 3905 μ Leonis 3.88 141 42 57.07 50.190 -0.188 +12 20 58.54 +0.140 -0.127 569 5735 γ Ursae Min. 3.05 141 53 33.38 51.710 -0.080 +75 14 32.95 +0.240 -0.019 262 2550 α Pictoris 3.27 144 22 18.27 45.040 -1.937 -83 02 15.45 +0.390 +0.148 365 3852 ρ Leonis 3.52 144 31 57.44 50.150 -0.122 -3 45 22.68 +0.160 -0.081 327 3468 α Pyxidis 3.68 146 47 02.60 49.790 -0.022 -48 55 17.71 +0.230 +0.006 334 3748 α Hydrae 1.98 147 33 52.24 50.100 -0.026 -22 22 51.75 +0.240 +0.026 309 3207 γ Velorum 1.78 147 37 51.79 49.410 -0.015 -64 27 46.57 +0.220 +0.004 384 4031 ζ Leonis 3.44 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.004 379 3975 η Leonis 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.210 -0.001 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 1.35 150 06 51.23 50.070 -0.235 +0 27 55.81 +0.120 -0.005 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 κ Hydrae 5.06 152 57 42.68 50.050 -0.000 -26 35 55.20 +0.150 -0.028 1243 3718 θ Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.016 52 57 42.68 50.550 -0.008 +0.009 01.94 +0.160 -0.016 52 57 42.68 50.550 -0.008 -0.008 -0.009 01.94 +0.160 -0.016 52 57 42.68 50.550 -0.008 -0.009 01.94 +0.160 -0.016 52 57 42.68 50.550 -0.008 -0.009 01.94 +0.160 -0.016 52 57 42.68 50.550 -0.008 -0.009 01.94 +0.160 -0.016 52 57 42.68 50.550 -0.008 -0.009 01.94 +0.160 -0.016 52 57 42.68 50.550 -0.008 -0.009 01.94 +0.140 -0.005 425 4377 v Ursae Maj. 3.48 156 56 27.84 50.480 -0.004 +26 09 48.11 +0.160 -0.016 52 57 42.68 50.550 -0.008 -0.009 01.94 +0.140 -0.005 425 4377 v Ursae Maj. 3.48 156 56 27.84 50.480 -0.004 +26 09 48.11 +0.160 -0.014 521 5291 α Draconis 3.65 157 44 52.10 51.220 -0.111 +66 21 45.64 +0.100 -0.037 425 4377 v Ursae Maj. 3.48 156 56 27.84 50.480 -0.004 +26 09 48.11 +0.160 -0.014 521 5291 α Draconis 3.65 157 44 52.10 51.220 -0.111 +66 21 45.64 +0.100 -0.037 425 4377 v Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.000 +0.000 +0.000 +0.000														
569 5735 γ Ursae Min. 3.05 141 53 33.38 51.710 -0.080 +75 14 32.95 +0.240 -0.019 262 2550 α Pictoris 3.27 144 22 18.27 45.040 -1.937 -83 02 15.45 +0.390 +0.148 365 3852 α Leonis 3.52 144 31 57.44 50.150 -0.022 -48 55 17.71 +0.230 +0.006 3484 3748 α Hydrae 1.98 147 33 52.24 50.100 -0.026 -22 22 51.75 +0.240 +0.026 384 4031 ζ Leonis 3.44 147 51 0.887 50.400 +0.020 +11 51 58.61 +0.220 +0.004 384 4031 ζ Leonis 3.44 147 55 40.90 50.250 +0.070 +14 63 34.66 +0.170 -0.044 379 3975 η Leonis 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.210 -0.005 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 1.35 150 06 51.23 50.070 -0.235 +0 27 55.81 +0.120 -0.082 447 4554 γ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 3438 9 Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.48 156 56 27.84 50.450 -0.040 +26 09 48.11 +0.160 +0.014 451 4518 γ Ursae Maj. 3.48 156 56 27.84 50.450 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 v Ursae Maj. 3.48 156 56 27.84 50.450 -0.040 +26 09 48.11 +0.160 +0.014 443 4905 EUrsae Maj. 3.48 156 56 27.84 50.450 -0.040 +26 09 48.11 +0.160 +0.014 443 4905 EUrsae Maj. 3.71 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.160 +0.014 422 4357 8 Leonis* 5.21 160 23 32.24 50.170 +0.150 +54 19 11.81 +0.200 +0.070 422 4357 8 Leonis* 5.21 160 23 32.24 50.170 +0.040 -55 52 12.63 +0.090 -0.031 422 4357 8 Leonis* 5.26 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062 422 4357 8 Leon	386	4069	μ Ursae Maj.	3.05	141	31	19.14	50.410	-0.101	+28	59	58.39	+0.260	-0.003
262 2550 α Pictoris 3.27 144 22 18.27 45.040 -1.937 -83 02 15.45 +0.390 +0.148 365 3852 α Leonis 3.52 144 31 57.44 50.150 -0.122 -3 45 22.68 +0.160 -0.081 327 3468 α Pyxidis 3.68 146 47 02.60 49.790 -0.022 -48 55 17.71 +0.230 +0.006 354 3748 α Hydrae 1.98 147 33 52.24 50.100 -0.026 -22 22 51.75 +0.240 +0.026 309 3207 γ Velorum 1.78 147 37 51.79 49.410 -0.015 -64 27 46.57 +0.220 +0.004 384 4031 ζ Leonis 3.44 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.000 1250 3845 1 Hydrae 3.91 147 55 40.90 50.250 +0.070 -14 16 34.66 +0.170 -0.001 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 1.35 150 06 51.23 50.070 -0.235 +0 27 55.81 +0.120 -0.082 447 4554 γ Ursae Maj. 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 & B Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 451 3718 θ Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +26 09 48.11 +0.160 +0.014 421 4370 α Draconis 3.65 157 44 52.10 51.220 -0.111 +66 21 45.64 +0.100 -0.037 483 4905 E Ursae Maj. 3.71 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 422 4357 δ Leonis* 3.65 160 33.22 50.170 -0.040 -15.88 +14 20 0.79 +0.050 -0.061 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 0.79 +0.050 -0.061 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 0.79 +0.050 -0.061 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 0.79 +0.050 -0.061 422 4357 δ Le	371	3905	μ Leonis	3.88	141	42			-0.188	+12	20	58.54	+0.140	-0.127
365 3852	569	5735	γ Ursae Min.	3.05	141	53	33.38	51.710	-0.080	+75	14	32.95	+0.240	-0.019
327 3468 α Pyxidis 3.68 146 47 02.60 49.790 -0.022 -48 55 17.71 +0.230 +0.006 354 3748 α Hydrae 1.98 147 33 52.24 50.100 -0.026 -22 22 51.75 +0.240 +0.026 309 3207 γ Velorum 1.78 147 37 51.79 49.410 -0.015 -64 27 46.57 +0.220 +0.004 384 4031 ζ Leonis 3.44 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.000 1250 3845 1 Hydrae 3.91 147 55 40.90 50.250 +0.070 -14 16 34.66 +0.170 -0.044 379 3975 η Leonis 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.210 -0.001 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 1.35 150 06 51.23 50.070 -0.235 +0 27 55.81 +0.120 -0.082 447 4554 γ Ursae Maj. 2.44 150 45 59.63 50.860 +0.104 +47 08 34.76 +0.260 +0.065 303 3117 χ Carinae 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 κ Hydrae 5.06 152 57 42.68 50.550 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.81 155 6 52 78 42.68 50.500 -0.005 +0 09 01.94 +0.160 -0.012 441 4518 χ Ursae Maj. 3.81 155 6 52 78 42.68 50.500 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.81 153 56 51.80 50.510 -0.177 +41 32 40.56 +0.120 -0.048 396 4133 ρ Leonis 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +26 09 48.11 +0.160 +0.014 483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 381 3994 λ Hydrae 4.6 158 36 35.80 50.060 -0.045 -23 10 37.56 +0.130 +0.003 483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.031 345 3634 λ Velorum 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 +0.120 +0.001 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062			α Pictoris		144		18.27	45.040	-1.937	-83	02	15.45	+0.390	+0.148
354 3748 α Hydrae 1.98 147 33 52.24 50.100 -0.026 -22 22 51.75 +0.240 +0.026 309 3207 γ Velorum 1.78 147 37 51.79 49.410 -0.015 -64 27 46.57 +0.220 +0.004 384 4031 ζ Leonis 3.44 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.000 1250 3845 1 Hydrae 3.91 147 55 40.90 50.250 +0.070 -14 16 34.66 +0.170 -0.044 379 3975 η Leonis 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.210 -0.001 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 1.35 150 06 51.23 50.070 -0.235 +0 27 55.81 +0.120 -0.082 447 4554 γ Ursae Maj. 2.44 150 45 59.63 50.860 +0.104 +47 08 34.76 +0.260 +0.065 303 3117 χ Carinae 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 κ Hydrae 5.06 152 57 42.68 50.050 -0.020 -26 35 55.20 +0.150 -0.028 1243 3718 θ Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.81 156 56 51.80 50.510 -0.077 +41 32 40.56 +0.120 -0.008 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +26 09 48.11 +0.160 +0.014 521 5291 α Draconis 3.65 157 44 52.10 51.220 -0.014 +66 21 45.64 +0.100 -0.037 483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.003 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062 +0.001	365	3852	o Leonis	3.52	144	31	57.44	50.150	-0.122	-3	45	22.68	+0.160	-0.081
309 3207 γ² Velorum 384 4031 ζ Leonis 3.44 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.000 1250 3845 1 Hydrae 3.91 147 55 40.90 50.250 +0.070 -14 16 34.66 +0.170 -0.044 379 3975 η Leonis 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.210 -0.001 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 447 4554 γ Ursae Maj. 2.44 150 45 59.63 50.860 +0.104 +47 08 34.76 +0.260 +0.065 303 3117 χ Carinae 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 κ Hydrae 5.06 152 57 42.68 50.050 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.077 +41 32 40.56 +0.120 -0.028 425 4377 ν Ursae Maj. 3.85 156 40 31.07 50.290 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 ν Ursae Maj. 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 ν Ursae Maj. 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.031 261 3970 ν² Hydrae 4.6 158 36 35.80 50.060 -0.045 -23 10 37.56 +0.130 +0.003 483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.031 345 3634 λ Velorum 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 +0.120 +0.001 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062	327	3468	α Pyxidis	3.68	146	47	02.60	49.790	-0.022	-48	55	17.71	+0.230	+0.006
309 3207 γ² Velorum 384 4031 ζ Leonis 3.44 147 51 08.87 50.400 +0.020 +11 51 58.61 +0.220 +0.000 1250 3845 1 Hydrae 3.91 147 55 40.90 50.250 +0.070 -14 16 34.66 +0.170 -0.044 379 3975 η Leonis 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.210 -0.001 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 447 4554 γ Ursae Maj. 2.44 150 45 59.63 50.860 +0.104 +47 08 34.76 +0.260 +0.065 303 3117 χ Carinae 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 κ Hydrae 5.06 152 57 42.68 50.050 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.077 +41 32 40.56 +0.120 -0.028 425 4377 ν Ursae Maj. 3.85 156 40 31.07 50.290 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 ν Ursae Maj. 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 ν Ursae Maj. 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.031 261 3970 ν² Hydrae 4.6 158 36 35.80 50.060 -0.045 -23 10 37.56 +0.130 +0.003 483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.031 345 3634 λ Velorum 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 +0.120 +0.001 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062														
384 4031	354	3748			147	33			-0.026	-22		51.75		
1250 3845 1 Hydrae 3.91 147 55 40.90 50.250 +0.070 -14 16 34.66 +0.170 -0.044 379 3975 η Leonis 3.52 148 11 30.13 50.330 -0.001 +4 52 00.87 +0.210 -0.001 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 1.35 150 06 51.23 50.070 -0.235 +0 27 55.81 +0.120 -0.082 447 4554 γ Ursae Maj. 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 κ Hydrae 5.06 152 57 42.68 50.050 -0.020 -26 35 55.20 +0.150 -0.028 1243 3718 θ Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.177 +41 32 40.56 +0.120 -0.048 396 4133 ρ Leonis 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 v Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +26 09 48.11 +0.160 +0.014 521 5291 α Draconis 3.65 157 44 52.10 51.220 -0.111 +66 21 45.64 +0.100 -0.037 483 4905 E Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062 -0.06	309	3207							-0.015					
379 3975 η Leonis 420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.001 +4 52 00.87 +0.210 -0.001 -0.055 380 3982 α Leonis* 1.35 150 06 51.23 50.070 -0.235 +0 27 55.81 +0.120 -0.082 447 4554 γ Ursae Maj. 2.44 150 45 59.63 50.860 +0.104 +47 08 34.76 +0.260 +0.065 303 3117 χ Carinae 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 β Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.002 -26 35 55.20 +0.150 -0.012 441 4518 χ Ursae Maj. 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 γ Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +26 09 48.11 +0.160 +0.014 521 5291 α Draconis 3.65 157 44 52.10 51.220 -0.111 +66 21 45.64 +0.100 -0.037 1261 3970 γ Hydrae 4.6 158 36 35.80 50.060 -0.045 -23 10 37.56 +0.130 +0.003 483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.031 345 3634 λ Velorum 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 +0.120 +0.001 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062	384	1	•								51			
420 4335 ψ Ursae Maj. 3.01 149 06 03.05 50.550 -0.054 +35 32 18.96 +0.150 -0.055 380 3982 α Leonis* 1.35 150 06 51.23 50.070 -0.235 +0 27 55.81 +0.120 -0.082 447 4554 γ Ursae Maj. 2.44 150 45 59.63 50.860 +0.104 +47 08 34.76 +0.260 +0.065 303 3117 χ Carinae 3.47 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 κ Hydrae 5.06 152 57 42.68 50.050 -0.020 -26 35 55.20 +0.150 -0.028 1243 3718 θ Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 v Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +26 09 48.11 +0.160 +0.014 521 5291 α Draconis 3.65 157 44 52.10 51.220 -0.111 +66 21 45.64 +0.100 -0.037 1261 3970 ν² Hydrae 4.6 158 36 35.80 50.060 -0.045 -23 10 37.56 +0.130 +0.003 483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 40.160 5.21 160 23 32.24 50.170 -0.040 -11 20 42.83 +0.090 -0.031 345 3634 λ Velorum 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 +0.120 +0.001 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062 -0.			•											
380 3982 α Leonis* γ Ursae Maj. 3.17 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 β Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 γ Ursae Maj. 3.71 153 56 51.80 50.510 -0.177 +41 32 40.56 +0.160 -0.012 441 4518 γ Ursae Maj. 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 γ Ursae Maj. 3.65 157 44 52.10 50.480 -0.040 +26 09 48.11 +0.160 +0.014 521 5291 α Draconis νε Hydrae 4.6 158 36 35.80 50.060 -0.045 -23 10 37.56 +0.130 +0.003 483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 342 4357 δ Hydrae δ Sextantis 5.21 160 23 32.24 50.170 -0.040 -55 52 12.63 +0.120 +0.001 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062			•											
447 4554 γ Ursae Maj.	420	4335	ψ Ursae Maj.	3.01	149	06	03.05	50.550	-0.054	+35	32	18.96	+0.150	-0.055
447 4554 γ Ursae Maj.	200	2002	T 'J		1.50	0.6	5 1 0 2	5 0.0 5 0	0.005				. 0. 10.0	0.000
303 3117 χ Carinae 34.7 151 00 28.80 48.980 -0.105 -70 19 32.00 +0.200 +0.001 456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 κ Hydrae 5.06 152 57 42.68 50.050 -0.020 -26 35 55.20 +0.150 -0.028 1243 3718 θ Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.177 +41 32 40.56 +0.120 -0.048 396 4133 ρ Leonis 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +26 09 48.11 +0.160 +0.014 521 5291 α Draconis 3.65 157 44 52.10 51.220 -0.111 +66 21 45.64 +0.100 -0.037 1261 3970 ν Hydrae 4.6 158 36 35.80 50.060 -0.045 -23 10 37.56 +0.130 +0.003 483 4905 ϵ Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.031 345 3634 λ Velorum 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 +0.120 +0.001 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062														
456 4660 δ Ursae Maj. 3.31 151 21 17.98 50.960 +0.119 +51 39 29.55 +0.260 +0.074 364 3849 κ Hydrae 5.06 152 57 42.68 50.050 -0.020 -26 35 55.20 +0.150 -0.028 1243 3718 θ Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.160 -0.012 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.177 +41 32 40.56 +0.120 -0.048 396 4133 ρ Leonis 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 +0.140 -0.005 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 +26 09 48.11 +0.160 +0.014 521 5291 α Draconis 3.65 157 44 52.10 51.220 -0.111 +66 21 45.64 +0.100 -0.037 1261 3970 ν² Hydrae 4.6 158 36 35.80 50.060 -0.045 -23 10 37.56 +0.130 +0.003 483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.159 1270 4116 δ Sextantis 5.21 160 23 32.24 50.170 -0.040 -11 20 42.83 +0.090 -0.031 345 3634 λ Velorum 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 +0.120 +0.001 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062														
364 3849 κ Hydrae 1243 3718 θ Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 +0.150 -0.012 -0			, .											
1243 3718 θ Pyxidis 4.72 153 20 36.85 49.930 -0.008 -39 02 00.64 $+0.160$ -0.012 441 4518 χ Ursae Maj. 3.71 153 56 51.80 50.510 -0.177 +41 32 40.56 $+0.120$ -0.048 396 4133 ρ Leonis 3.85 156 40 31.07 50.290 -0.005 +0 09 01.94 $+0.140$ -0.005 425 4377 ν Ursae Maj. 3.48 156 56 27.84 50.480 -0.040 $+26$ 09 48.11 $+0.160$ $+0.014$ 521 5291 α Draconis 3.65 157 44 52.10 51.220 -0.111 $+66$ 21 45.64 $+0.100$ -0.037 1261 3970 ν^2 Hydrae 4.6 158 36 35.80 50.060 -0.045 -23 10 37.56 $+0.130$ $+0.003$ 483 4905 ϵ Ursae Maj. 1.77 159 13 27.41 51.070 $+0.150$ $+54$ 19 11.81 $+0.200$ $+0.070$ 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.159 1270 4116 δ Sextantis 5.21 160 23 32.24 50.170 -0.040 -11 20 42.83 $+0.090$ -0.031 345 3634 λ Velorum 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 $+0.120$ $+0.001$ 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 $+0.188$ $+14$ 20 01.79 $+0.050$ -0.062														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1243	3/18	o Pyxidis	4.72	133	20	30.83	49.930	-0.008	-39	02	00.64	+0.100	-0.012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	441	1510	y Urana Mai	2 71	152	56	51.90	50 510	0.177	⊥ 41	22	10.56	±0.120	0.049
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			70								-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	'											
1261 3970 v² Hydrae 8 Ursae Maj.														
483 4905 ε Ursae Maj. 1.77 159 13 27.41 51.070 +0.150 +54 19 11.81 +0.200 +0.070 381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.159 1270 4116 δ Sextantis 5.21 160 23 32.24 50.170 -0.040 -11 20 42.83 +0.090 -0.031 345 3634 λ Velorum 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 +0.120 +0.001 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062														
381 3994 λ Hydrae 3.61 159 39 05.04 49.950 -0.165 -22 00 50.98 -0.030 -0.159 1270 4116 δ Sextantis 345 3634 λ Velorum 422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062			•							-				
1270 4116 δ Sextantis 345 3634 λ Velorum 422 4357 δ Leonis* 5.21 160 23 32.24 50.170 -0.040 -11 20 42.83 +0.090 -0.031 +0.001	103	1,703	2 015av 11ag.	1.//	137	1.5	۱,.⊤۱	51.070	. 0.150	. 54	.,	11.01	0.200	. 0.070
1270 4116 δ Sextantis 345 3634 λ Velorum 422 4357 δ Leonis* 5.21 160 23 32.24 50.170 -0.040 -11 20 42.83 +0.090 -0.031 +0.001	381	3994	λ Hydrae	3.61	159	39	05.04	49.950	-0.165	-22	00	50.98	-0.030	-0.159
345 3634 λ Velorum 422 4357 δ Leonis* 2.21 161 28 12.16 49.580 -0.040 -55 52 12.63 +0.120 +0.001 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062														
422 4357 δ Leonis* 2.56 161 36 16.93 50.600 +0.188 +14 20 01.79 +0.050 -0.062														
					-									
	423	4359	θ Leonis		163	42	34.98	50.350			40	27.34	-0.010	-0.096

^{*} No. 329 : Aslesa.

No. 422 : Zosma , Purva Phalguni-1.

No. 380: Regulus, Magha.

Cat.	BS=	Star	Mag.	Lo	ongit	ude	Annual	Annual	I	atitu	de	Annual	Annual
No.	HR						Variation	Proper				Variation	Proper
FK5	No.							Motion					Motion
				0	'	"	"	"	0	'	"	"	"
1227	3447	o Velorum	3.62	165	00	50.97	49.170	-0.073	-66	16	33.36	+0.080	+0.001
389	4094	μ Hydrae	3.81	165	19	16.13	49.990	-0.093	-24	40	18.32	-0.040	-0.125
497	5054	ζ Ursae Maj. pr	2.27	165	59	29.55	51.180	+0.188	+56	22	47.09	+0.150	+0.067
1304	4527	93 Leonis*	4.53v	169	15	38.64	50.300	-0.140	+17	18	33.26	-0.020	-0.065
410	4232	ν Hydrae	3.11	170	39	05.07	50.120	+0.004	-21	47	47.74	+0.260	+0.221
444	4534	β Leonis	2.14	171	54	07.72	49.980	-0.417	+12	15	54.97	-0.280	-0.306
		•											
392	4104	α Antliae	4.25	172	43	28.73	49.850	-0.089	-37	25	39.25	-0.010	-0.025
315	3307	ε Carinae	1.86	173	24	24.05	48.690	-0.093	-72	40	47.83	+0.000	-0.011
1283		α Crateris	4.08	173	58	18.52	49.580	-0.512	-22	43	00.15	-0.070	-0.074
485		α CVn sq	2.9	174	51	13.12	50.390	-0.302	+40	07	14.39	-0.070	-0.069
426	1	δ Crateris	3.56	176	58	16.87	49.940	-0.206	-17	34	18.46	+0.120	+0.139
509	1	η Ursae Maj.	1.86	177	13	20.51	50.800	-0.155		23	14.80	-0.110	-0.083
		, ,											
445	4540	β Virginis	3.61	177	27	18.37	51.090	+0.789	+0	41	39.78	+0.030	+0.047
353		к Velorum	2.5	179	10	22.64	49.320	-0.027	-63	43	18.89	-0.030	+0.000
531	5404	θ Bootis	4.05	182	54	07.97	51.260	+0.148	+60	06	21.15	-0.520	-0.456
639	1	ζ Draconis	3.17	183	41	39.13	55.090	-0.288	+84	45	39.83	-0.090	-0.014
361		N Velorum	3.13	184	29	39.68	49.280	-0.056	-64	14	20.47	-0.100	-0.020
460		η Virginis	3.89	184	35	21.18	50.260	-0.051	+2	35	19.99	-0.120	-0.042
	.005	1	5.07		50	21.10	20.200	0.001	_	50	17.77	0.120	0.0.2
492	4983	β Com	4.26	184	38	45.87	49.270	-1.319	+32	30	50.70	+0.350	+0.429
571		ι Draconis	3.29	185	14	36.43	51.590	-0.059	+71	05	35.07	-0.080	+0.004
351	1	ι Carinae	2.25	185	36	22.53	49.150	-0.048	-67	07	00.97	-0.100	-0.011
1326	1	ρ Virginis	4.88	185	48	03.60	50.520	+0.116	+13	32	31.84	-0.140	-0.049
375		φVelorum	3.54	186	13	42.23	49.470	-0.019	-59	57	03.72	-0.090	-0.005
434		ξ Hydrae	3.54	188	16	18.45	49.820	-0.193	-31	35	59.67	-0.240	-0.131
131	1130	Silyalac	3.34	100	10	10.15	17.020	0.175	51	55	37.07	0.210	0.131
488	4932	ε Virginis	2.83	190	13	33.20	50.160	-0.269	+16	12	13.48	-0.210	-0.091
457	1	γ Corvi	2.59	191	00	37.52	50.020	-0.161	-14	30	06.86	-0.170	-0.045
484	1	δ Virginis	3.38	191	44	43.21	49.940	-0.415	+8	36	40.73	-0.370	-0.232
453	1	ε Corvi	3	191	57	01.55	50.060	-0.074	-19	40	27.90	-0.150	-0.018
475	1	χ Virginis	4.66	192	26	24.03	50.210	-0.060	-3	28	09.32	-0.190	-0.052
465	1	δ Corvi*	2.95	193	44	12.41	50.060	-0.140	-12	11	54.09	-0.360	-0.211
103	1737	0 00111	2.75	173	• •	12.11	20.000	0.110	12	• •	5 1.05	0.500	0.211
319	3347	β Volantis	3.77	195	27	06.79	49.120	+0.547	-75	35	11.82	-0.250	-0.082
471	1	β Corvi	2.65	197	39	13.19	50.180	+0.026	-18	02	45.29	-0.230	-0.048
535	1	γ Bootis	3.03	197	57	04.31	50.530	-0.268		33	03.56	-0.100	+0.079
513		η Bootis	2.68	199	37	29.37	50.620	+0.095	+28	04	26.27	-0.550	-0.354
281	1	δ Volantis	3.98	199	41	30.79	47.010	-0.039	-82	28	41.93	-0.200	-0.006
501		ζ Virginis	3.37	201	58	25.73	50.090	-0.284	+9	44	33.40	-0.280	-0.066
501	2107	5 <u>6</u>	3.57	201	20	20.10	20.070	0.204	. ,		55.40	5.260	0.000
534	5429	ρ Bootis	3.58	203	04	24.31	50.490	-0.191	+42	27	03.17	-0.160	+0.066
498	1	α Virginis*	0.98	204	07	39.12	50.250	-0.028	-2	03	21.62	-0.270	-0.041
	5340	α Bootis*	-0	204	31	11.34	50.260	-0.285		43	19.32	-2.500	-2.265
555	1	β Bootis	3.5	204	32	23.92	50.830	-0.039	+54	08	57.97	-0.270	-0.044
		γ Hydrae	3	207	18	16.52			-	44	39.11		-0.017
173	10020	1113 4140	1	201	10	10.52	20.200	. 0.077	13	1-1	٠,.11	0.270	0.017

^{*} No. 1304 : Uttara Phalguni-2. No. 498 : Spica , Citra. No. 465: Algorel, Hasta. No. 526: Arcturus, Svati.

LONGITUDE AND LATITUDE OF STARS, 2020.5MEAN PLACES FOR JULY 2^d.125 TERRESTRIAL TIME

Cat. Mag BS =Star Longitude Annual Annual Latitude Annual Annual HR No. Variation Proper Variation Proper FK5 No. Motion Motion 452 4621 δ Centauri 2.6 207 45 59.05 49.880 -0.033-44 30 40.57 -0.280-0.026406 4199 28 16.65 θ Carinae 2.76 209 49.520 -0.046-62 08 26.39 -0.280-0.012β Carinae 348 3685 212 14 45.22 48.660 -0.463-72 14 18.28 -0.420-0.1331.68 496 5028 ι Centauri 2.75 213 24 44.95 49.810 -0.305-26 01 08.94 -0.510-0.219563 5681 δ Bootis 3.47 213 26 50.67 50.910 +0.189+4857 48.60 -0.360-0.069214 525 5338 ι Virginis 05 05.40 50.490 +0.14043.89 -0.409 4.08 +7 11 -0.700523 5315 κ Virginis 4.19 214 46 48.12 50.280 -0.039 54 43.28 -0.170 +0.135+2436 4467 3.13 214 47 28.27 λ Centauri 49 37.33 49.700 -0.045-56 -0.340-0.033215 455 4656 δ Crucis 56 54.19 49.820 -0.042-50 25 17.30 -0.340 -0.0332.8 γ Crucis 468 4763 1.63v 217 01 30.69 50.170 +0.257-47 50 02.94 -0.510 -0.1991371 5359 λ Virginis 4.52 217 14 18.41 50.280 -0.024+029 20.37 -0.290+0.023385 4037 217 43 15.48 23 03.86 -0.033 ω Carinae 3.32 49.410 -0.054-67 -0.350519 5287 π Hydrae 3.27 218 54 37.38 50.310 +0.092-13 03 07.39 -0.440-0.115572 5747 β Cr. Borealis 3.68 219 24 12.78 50.360 -0.286+46 03 08.33 -0.310+0.01846.900 1189 2736 γ² Volantis 3.78 220 07 34.59 -0.682 -82 37 08.06 -0.350 +0.065μ Virginis 3.88 545 5487 220 25 08.68 50.560 +0.203+9 40 07.06 -0.610 -0.268-58 30 -0.390-0.054442 4520 λ Muscae 3.64 221 16 26.75 49.580 -0.18133.09 508 5193 μ Centauri 3.04v221 49 17.43 50.100 -0.015-28 58 52.91 -0.370-0.028481 4853 **β** Crucis 1.25 221 55 47.89 49.880 -0.046 -48 38 27.50 -0.380-0.039462 4730 α Crucis A 1.33 222 09 12.98 49.840 -0.031-52 52 51.64 -0.370-0.03219 16.78 578 5793 α Cr.Borealis 2.23 2.2.2. 35 06.47 50.800 +0.201-0.044+44-0.3902.06 520 5288 θ Centauri 222 35 32.68 49.850 -0.317 -22 05 08.73 -1.020-0.672608 6092 40 27.64 49 41.00 +0.032τ Herculis 3.89 224 50.910 -0.065+65 -0.330512 5231 ζ Centauri 2.55 225 14 08.37 50.060 -0.040-32 56 44.74 -0.430 -0.062 548 5531 α² Librae* 2.75 225 22 06.97 -0.082+019 49.66 -0.450-0.09550.220 504 5132 ε Centauri 2.3 225 50 22.64 50.020 -0.023-39 35 17.66 -0.390 -0.028 23 22.05 297 3024 ζ Volantis 3.95 226 02 12.29 48.560 -0.031-79 -0.350+0.034I Carinae 22 01.02 49.650 391 4102 4 228 +0.052-67 53 07.35 -0.410-0.027564 5685 β Librae 2.61 229 39 28.22 50.250 -0.089+8 29 36.59 -0.430-0.044583 5867 β Serpentis 230 14 11.27 50.570 +0.093+3419 27.58 -0.410-0.0263.67 η Centauri -0.044537 5440 2 31 230 32 04.01 50.140 -0.023 -25 30 55.81 -0.430474 4798 α Muscae 2.69 230 28.26 49.850 33 34.11 -0.04339 -0.045-56 -0.430556 5603 σ Librae 3.29 230 58 23.20 50.200 -0.059-7 38 49.38 -0.450-0.062559 5652 ι Librae 4.54 231 17 27.28 50.260 -0.024-1 51 07.39 -0.440-0.047582 5854 α Serpentis 2.65 232 21 46.99 50.550 +25 30 22.41 -0.320 +0.079+0.134591 5933 γ Serpentis 3.85 233 04 22.94 51.240 +0.759+35 11 12.61 -1.560-1.16447 21.51 541 5469 -0.024α Lupi 2.3 233 50.140 -0.016-30 01 41.82 -0.430518 5267 β Centauri 0.61 234 04 37.66 50.030 -0.026-44 08 24.39 -0.440-0.032469 4773 γ Muscae 3.87 234 18 06.80 49.830 -0.069 -58 52 23.53 -0.450 -0.045 588 5892 234 50.520 +24 00 17.74 +0.091ε Serpentis 3.71 37 07.32 +0.121-0.320

3.13 | 235

553 | 5576 | κ Centauri

Annual rate of Precession in longitude for the middle of the year = 50".29

50.180

-0.011 -24 02 02.15

-0.440

-0.029

04 49.75

^{*} No. 548 : Zuben el Genubi, Visakha.

LONGITUDE AND LATITUDE OF STARS, 2020.5 MEAN PLACES FOR JULY 2^d .125 TERRESTRIAL TIME

Cat.	BS=	Star	Mag.	Lo	ongit	ude	Annual	Annual	I	atitu	de	Annual	Annual
No.	HR						Variation	Proper				Variation	Proper
FK5	No.							Motion					Motion
				0			"	"	0	_ '	"	"	"
552		β Lupi	2.68	235	18	40.30	50.160	-0.023	-25	02	55.57	-0.450	-0.048
577		γ Librae	3.91	235	25	29.56	50.370	+0.061	+4	23	01.36	-0.380	+0.024
585		μ Serpentis	3.54	236	13	31.56	50.280	-0.082		14	08.18	-0.460	-0.042
487		δ Muscae	3.62	236	28	35.19	50.310	+0.360	-56	46	37.22	-0.250	+0.163
566		φ' Lupi	3.56	237	46	47.31	50.160	-0.067	-17	10	52.59	-0.530	-0.105
1413	5838	κ Librae	4.74	238	02	37.22	50.280	-0.013	-0	01	20.40	-0.530	-0.109
579	5794	ν Librae	3.58	238	53	44.13	50.250	-0.010	-8	30	35.49	-0.430	+0.000
1402	5695	δ Lupi	3.22	238	56	33.95	50.210	-0.008	-21	25	42.71	-0.450	-0.029
626	6220	η Herculis	3.53	239	04	36.61	50.770	+0.116	+60	17	13.38	-0.490	-0.070
609	6095	γ Herculis	3.75	239	30	05.10	50.390	-0.072	+40	00	19.86	-0.390	+0.032
538	5460	α Centauri cg	var.	239	44	09.73	45.220	-4.888	-42	36	12.71	-1.290	-0.861
401		γ Chamaeleontis	4.11	240	42	16.75	49.760	-0.049	-68	05	12.71	-0.470	-0.040
558	5649	ζ Lupi	3.41	241	02	33.85	50.080	-0.099	-32	50	04.49	-0.540	-0.104
618	1	β Herculis	2.77	241	22	40.66	50.340			41	59.05	-0.460	-0.034
613		ω Herculis	4.57	241	51	46.44	50.490	+0.067	+35	09	56.22	-0.480	-0.050
603		δ Ophiuchi	2.74	242	35	19.52	50.330	-0.018		14	16.36	-0.590	-0.149
539		α Circini	3.19	242	38	50.51	50.000	-0.104	-46	12	24.18	-0.730	-0.292
594		δ Scorpii*	2.32	242	51	27.30	50.290	-0.001	-1	59	19.53	-0.470	-0.038
500	5044	g ::	• 00			24.10	50.300	0.006	_	•	40.00	0.450	0.007
592		π Scorpii	2.89	243	13	34.19	50.280	-0.006	-5	28	40.82	-0.470	-0.027
597		β Scorpii pr	2.62	243	28	35.11	50.300	-0.002	+1	00	18.69	-0.460	-0.020
605		ε Ophiuchi	3.24	243	47	49.88	50.430	+0.079		26	15.04	-0.380	+0.055
459		β Chamaeleontis		245	43	18.98	49.900	-0.083	-63	35	49.15	-0.480	-0.034
411	_	δ^2 Chamaeleontis		245	56	24.71	49.890	-0.030	-67	47	36.61	-0.500	-0.048
607	6084	σ Scorpii	2.89	248	05	09.26	50.280	-0.007	-4	02	24.33	-0.470	-0.022
634	6324	ε Herculis	3.92	248	36	50.27	50.390	-0.085	+53	14	45.19	-0.430	+0.019
622	6175	ζ Ophiuchi	2.56	249	30	56.88	50.330	+0.010	+11	23	20.01	-0.430	+0.028
560	5671	γ Tr. Austrini	2.89	249	40	42.69	50.070	-0.082	-48	06	20.90	-0.510	-0.056
616	6134	α Scorpii cg*	var.	250	02	54.65	50.280	-0.006	-4	34	21.57	-0.470	-0.022
620	6165	τ Scorpii	2.82	251	44	35.64	50.280	-0.005	-6	07	23.39	-0.480	-0.023
633	6299	κ Ophiuchi	3.2	252	06	22.79	50.020	-0.339	+31	49	59.84	-0.510	-0.047
589	5897	β Tr.Australis	2.85	252	07	35.26	50.100	-0.100	-41	57	03.59	-0.890	-0.435
653		β Draconis	2.79	252	15	16.46	50.620	-0.072	+75	16	31.00	-0.450	+0.011
643	1	π Herculis	3.16	252	21	16.50	50.420	-0.051	+59	32	53.47	-0.460	-0.000
542		α Apodis	3.83	254	42	55.37	50.160	-0.002	-58	14	15.55	-0.480	-0.019
641		δ Herculis	3.14	255	03	01.47	50.390	-0.004		40	55.48	-0.620	-0.158
628		ε Scorpii	2.29	255	37	05.20	49.690	-0.588	-11	44	35.01	-0.800	-0.327
1439	6247	μ¹ Scorpii	3.08v	256	26	30.73	50.270	-0.008	-15	25	33.53	-0.490	-0.026
1435		η Arae	3.76	259	11	26.65	50.320	+0.051	-36	16	45.21	-0.490	-0.020
631	6285	ζ Arae	3.13	260	06	36.24	50.320	-0.018	-33	05	40.33	-0.490	-0.023
663		ι Herculis	3.13	260	10	34.09	50.230	-0.018	+69	15	46.39	-0.460	+0.005
	6380		3.33		01	46.28				11	16.07		-0.284
038	0360	il peoibii	5.55	201	UI	+0.20	30.340	10.032	-20	11	10.07	-0.730	-0.204

^{*} No. 594 : Dschubba, Anuradha

No. 616 : Antares , Jyestha, Mag. 0.9 to 1.8.

Annual rate of Precession in longitude for the middle of the year = 50".29

LONGITUDE AND LATITUDE OF STARS, 2020.5 MEAN PLACES FOR JULY $2^{\rm d}.125$ TERRESTRIAL TIME

Cat.	BS=	Star	Mag.	Lo	ongit	ude	Annual	Annual	L	atitu	de	Annual	Annual
No.	HR						Variation					Variation	Proper
FK5	No.			0	-	"	"	Motion	0		"	,,	Motion
625	6217	α Tr. Austr.	1.92	261	10	55.85	50.290	+0.028	-46	09	15.25	-0.500	-0.031
644	6453	θ Ophiuchi	3.27	261	40	52.49	50.290	-0.002	-1	50	46.61	-0.490	-0.020
656		α Ophiuchi	2.08	262	44	09.80	50.480	+0.163	+35	49	52.60	-0.490	-0.020
611	6102	γ Apodis	3.89	262	59	19.15	50.480	-0.191	-56	00	37.37	-0.580	-0.220
649	6508	v Scorpii	2.69	264	17	56.71	50.290	+0.000	-14	00	40.33	-0.510	-0.100
645	6461	β Arae	2.85	264	29	31.90	50.280	-0.008	-32	16	04.03	-0.500	-0.031
043	0401	p Arae	2.63	204	29	31.90	30.280	-0.008	-32	10	04.03	-0.300	-0.020
658	6561	ξ Serpentis	3.54	264	49	56.02	50.260	-0.040	+7	55	54.09	-0.530	-0.060
652	6527	λ Scorpii*	1.63	264	52	19.74	50.300	-0.000	-13	47	28.66	-0.500	-0.000
671	6688	ξ Draconis	3.75	265	02	40.92	50.820	+0.525	+80	16	49.04	-0.380	+0.085
651	6510	α Arae	2.95	265	13	13.90	50.820	-0.030	-26	33	49.36	-0.540	-0.072
667		u Herculis	3.42	265	30	30.29	49.840	-0.030	+51	05	48.52	-1.230	-0.762
665		β Ophiuchi	2.77	265	37	22.25	50.240	-0.432	+27	56	16.58	-0.310	+0.158
003	0003	р Оришен	2.11	203	31	22.23	30.240	-0.031	121	50	10.56	-0.510	10.136
648	6500	δ Arae	3.62	265	50	33.61	50.240	-0.067	-37	21	33.00	-0.570	-0.099
654	6553	θ Scorpii	1.87	265	53	09.51	50.240	+0.016	-19	38	52.14	-0.370	-0.099
660	6580	к Scorpii	2.41	266	45	21.01	50.290	-0.005	-15	38	49.97	-0.500	-0.001
668	6629	γ Ophiuchi	3.75	266	55	07.59	50.270	-0.003	+26	06	29.09	-0.540	-0.027
666	6615	ι' Scorpii	3.03	267	48	32.22	50.270	+0.000	-16	43	01.83	-0.480	-0.008
669	6630	G Scorpii	3.21	268	12	16.64	50.350	+0.049	-13	37	29.34	-0.440	+0.034
009	0030	О Беогри	3.21	200	12	10.04	30.330	10.049	-13	31	29.34	-0.440	10.034
676	6705	γ Draconis	2.23	268	15	15.76	50.170	-0.028	+74	55	10.05	-0.490	-0.020
661	6582	η Pavonis	3.62	268	15	35.34	50.300	-0.017	-41	18	45.43	-0.520	-0.055
672	6695	θ Herculis	3.86	268	45	47.24	50.250	+0.009	+60	40	55.99	-0.320	+0.006
674	6703	ξ Herculis	3.7	269	28	57.49	50.380	+0.139		40	58.30	-0.470	-0.017
673	6698	v Ophiuchi	3.34	270	02	22.21	50.280	-0.007	+13	39	43.58	-0.580	-0.116
1471	6743	θ Arae	3.66	271	28	35.30	50.310	-0.007	-26	39	42.68	-0.480	-0.110
17/1	0743	o mac	3.00	2/1	20	33.30	30.310	-0.012	-20	3)	42.00	-0.400	-0.014
679	6746	γ Sagittarii	2.99	271	32	51.21	50.240	-0.056	-6	59	41.54	-0.660	-0.185
680	6771	72 Ophiuchi	3.73	272	26	45.99	50.190	-0.070	+32	59	13.77	-0.390	+0.081
681	6779	o Herculis	3.83	272	58	56.85	50.210	+0.002		10	53.53	-0.450	+0.009
682	6812	μ Sagittarii	3.86	273	29	59.63	50.290	+0.002	+2	20	21.96	-0.460	+0.001
683	6832	η Sagittarii	3.11	273	54	48.54	50.180	-0.137	-13	22	53.33	-0.630	-0.162
687	6859	δ Sagittarii*	2.7	274	52	03.21	50.340	+0.034	-6	28	30.35	-0.500	-0.029
007	000)	~ ~ &	,		-	05.21	00.0.0	0.05			20.20	0.000	0.023
691	6897	α Telescopii	3.51	275	21	36.18	50.310	-0.021	-22	39	02.89	-0.520	-0.053
689	6879	ε Sagittarii	1.85	275	21	53.29	50.270	-0.045	-11	03	18.62	-0.590	-0.122
688	6869	η Serpentis	3.26	275	57	42.70	49.650	-0.614		25	44.42	-1.140	-0.677
692	6913	λ Sagittarii	2.81	276	36	11.60	50.250	-0.053	-2	08	21.50	-0.650	-0.183
697	6951	θ Coronae Aust.	4.64	276	49	50.80	50.360	+0.031	-19	03	57.90	-0.480	-0.024
1482	6973	α Scuti	3.85	279	18	09.20	50.230	-0.037	+14	54	56.82	-0.770	-0.310
1102	37,3		3.03	[-,]	10	37.20	50.250	0.057		٥,	50.02	0.770	0.510
214	1953	γ Mensae	5.19	279	51	15.42	50.810	+1.082	-79	59	19.24	-0.760	+0.239
1487	7039	φ Sagittarii	3.17	280	28	05.15	50.360	+0.053	-3	57	23.85	-0.460	-0.004
1489	7063	β Scuti	4.22	282	39	58.26	50.250	-0.006		11	00.04		-0.016
706	7121	σ Sagittarii*	2.02	282	40	18.51	50.320	+0.008	-3	27	08.65	-0.500	-0.055
	7150		3.51		44	15.61				39	30.97		-0.015
	1	, , ,	1	1				=	ı	-	,	1	

^{*} No. 652 : Schaula, Mula. No. 687 : Purvasadha-1.

No. 706 : Nunki , Uttarasadha.

Annual rate of Precession in longitude for the middle of the year = 50".29

LONGITUDE AND LATITUDE OF STARS, 2020.5 MEAN PLACES FOR JULY 2^d .125 TERRESTRIAL TIME

Cat.	BS=	Star	Mag.	Lo	ngit	ude	Annual	Annual	I	atitu	de	Annual	Annual
No.	HR						Variation					Variation	Proper
FK5	No.							Motion					Motion
				0	'	"	"	"	0	'	"	"	"
1496	7234	τ Sagittarii	3.32	285	07	13.06	50.230	-0.083	-5	05	34.01	-0.690	-0.243
699	7001	α Lyrae	0.03	285	36	13.90	50.490	+0.505	+61	43	54.39	-0.190	+0.256
720	7264	π Sagittarii	2.89	286	32	17.38	50.290	-0.004	+1	26	03.68	-0.480	-0.035
717	7236	λ Aquilae	3.44	287	37	05.71	50.200	-0.029	+17	33	45.99	-0.530	-0.087
754	7665	δ Pavonis	3.56	287	54	25.71	51.620	+1.142	-44	42	36.34	-1.880	-1.444
712	1	ε Aquilae	4.02	288	32	50.02	50.070	-0.075	+37	33	52.14	-0.500	-0.066
	, . , .	1											
705	7106	β Lyrae	var.	289	10	06.73	50.010	+0.005	+55	58	54.07	-0.430	-0.003
810	1	v Octantis	3.76	289	58	32.53	50.400	-0.212	-57	46	58.95	-0.650	-0.217
716		ζ Aquilae	2.99	290	04	53.22	50.120	-0.023	+36	10	57.78	-0.530	-0.094
713	1	γ Lyrae	3.24	292	12	25.12	49.990	-0.003	+55	00	38.12	-0.420	+0.003
775	1	β Pavonis	3.42	292	46	53.45	50.470	-0.055	-45	57	24.57	-0.390	+0.028
730	1	δ Aquilae	3.36	293	55	30.74	50.490	+0.294	+24	48	53.75	-0.370	+0.040
750	1311	o riquitae	3.30	273	33	30.74	30.470	10.274	127	70	33.13	-0.570	10.040
764	7790	α Pavonis	1.94	294	06	16.77	50.440	-0.025	-36	16	13.75	-0.500	-0.087
751	7623	θ^{1} Sagittarii	4.37	295	09	24.35	50.350	+0.001	-14	23	17.49	-0.440	-0.037
785		β Indi	3.65	298	04	23.63	50.530	+0.001	-39	09	34.15	-0.430	-0.027
769	1	α Indi	3.11	299	23	30.66	50.510	+0.008	-27	45	20.18	-0.340	+0.048
1508		α Vulpeculae	4.44	299	47	28.41	49.810	-0.209	+45	51	20.18	-0.340	-0.048
	1												
746	7570	η Aquilae	var.	300	43	10.48	50.190	+0.010	+21	31	15.72	-0.400	-0.009
741	7525	A:1	2.72	201	12	20.25	50 140	10.020	. 21	1.4	20.00	0.200	0.005
741	1	γ Aquilae	2.72	301	13	28.25	50.140	+0.020	+31	14	28.96	-0.390	-0.005
11	98	β Hydri	2.8	301	16	34.17	53.530	+2.664	-64	47	52.75	-2.310	-1.952
1513		β Sagittae	4.37	301	29	28.16	50.070	+0.003	+38	12	56.80	-0.410	-0.033
732		β Cygni p	3.08	301	32	10.75	49.970	+0.002	+48	57	55.84	-0.380	-0.002
745		α Aquilae*	0.77	302	03	57.20	50.830	+0.697	+29	18	10.19	-0.110	+0.262
749	7602	β Aquilae	3.71	302	42	31.95	50.080	-0.064	+26	39	15.37	-0.850	-0.481
743		δ Sagittae	3.82	303	40	20.39	50.070	+0.011	+38	54	38.72	-0.360	+0.006
761		α ² Capricorni	3.57	304	08	42.57	50.320	+0.063	+6	55	40.90	-0.380	-0.011
762	7776	β Capricorni	3.08	304	20	02.01	50.320	+0.042	+4	35	11.50	-0.370	-0.008
756	7710	θ Aquilae	3.23	305	35	54.09	50.220	+0.041	+20	19	30.08	-0.370	-0.005
752	7635	γ Sagittae	3.47	307	19	44.64	50.120	+0.090	+39	11	17.79	-0.350	+0.006
1550	8039	γ Microscopii	4.67	308	43	06.04	50.380	-0.000	-14	40	02.00	-0.340	+0.006
841	8502	α Tucanae	2.86	309	57	32.37	50.510	-0.120	-45	24	20.47	-0.340	-0.000
146	1208	γ Hydri	3.24	310	46	09.98	52.140	+0.537	-76	45	33.29	-0.410	-0.010
781	7950	ε Aquarii	3.77	312	00	34.12	50.280	+0.024	+8	04	42.50	-0.360	-0.042
1547	7990	μ Aquarii	4.73	313	20	39.85	50.280	+0.035	+8	14	16.67	-0.350	-0.041
768		ε Delphini	4.03	314	20	46.93	50.100	+0.007	+29	04	16.55	-0.340	-0.024
726	1	к Cygni	3.77	315	11	59.36	49.440	+0.396	+73	48	03.60	-0.220	+0.080
, 20	,520		5.,,	510		07.50	.,	0.570	,,,		02.00	0.220	0.000
829	8425	α Gruis	1.74	316	11	42.45	50.590	+0.064	-32	54	57.83	-0.480	-0.191
(771)		β Delphini m*	3.64	316	37	36.56	50.130	+0.070	+31	54	57.19	-0.370	-0.069
806		ζ Capricorni	3.74	317	13	25.03	50.150	+0.008	-6	59	32.91	-0.260	+0.022
774		α Delphini	3.77	317	39	57.65	50.330	+0.008	+33	01	13.86	-0.200	-0.022
	8353		3.01		42	25.75				03	08.15		-0.022
022	0333	y Gluis	3.01	31/	42	43.13	30.330	±0.093	-23	03	00.13	-0.530	-0.038

* No. 745 : Altair, Sravana.

No. 771: Rotanev, Dhanistha-1.

Annual rate of Precession in longitude for the middle of the year = 50".29

LONGITUDE AND LATITUDE OF STARS, 2020.5 MEAN PLACES FOR JULY $2^{\rm d}$.125 TERRESTRIAL TIME

Cat.	BS=	Star	Mag.	Lo	ongit	ude	Annual	Annual	I	atitu	de	Annual	Annual
No.	HR		_		_		Variation	Proper				Variation	Proper
FK5	No.							Motion					Motion
				0	'	"	"	"	0	'	"	"	"
733		ι Cygni	3.79	318	14	59.92	49.420	+0.252	+71	27	00.18	-0.180	+0.104
778	1	δ Delphini	4.43	318	24	04.01	50.020	-0.037	+31	56	30.53	-0.310	-0.035
1541	7948	γ Delphini sq	4.27	319	39	10.44	49.940	-0.109	+32	41	59.05	-0.450	-0.177
860		ε Gruis	3.49	321	01	07.09	50.700	+0.077	-39	47	23.87	-0.370	-0.115
846	8556	δ¹ Gruis	3.97	321	53	25.46	50.570	+0.027	-31	20	56.42	-0.270	-0.017
812	8278	γ Capricorni	3.68	322	04	41.71	50.480	+0.172	-2	33	33.31	-0.340	-0.084
856	8636	β Gruis	2.11v	322	36	58.12	50.720	+0.145	-35	26	02.30	-0.330	-0.071
800		α Equulei	3.92	323	24	10.70	50.170	+0.029	+20	07	11.46	-0.350	-0.071
808		β Aquarii	2.91	323	40	52.44	50.170	+0.029	+8	36	48.66	-0.330	-0.102
		, 1		323	49	47.69	50.470	+0.017	+8 -2		18.63		-0.013
819		δ Capricorni	2.87		24					36 57		-0.610	
1569		ξ Aquarii	4.69	324		18.94	50.350	+0.103	+5		21.42	-0.310	-0.062
765	7796	γ Cygni	2.2	325	07	27.73	49.670	+0.007	+57	07	23.08	-0.230	-0.001
780	7949	ε Cygni	2.46	328	01	59.64	50.510	+0.705	+49	25	18.89	-0.060	+0.155
815	8308	ε Pegasi	var.	332	10	13.77	50.150	+0.031	+22	05	55.47	-0.200	-0.011
849	8592	v Aquarii	5.2	332	49	48.58	50.530	+0.154	-10	54	11.55	-0.390	-0.218
797	8115	ζ Cygni	3.2	333	19	30.96	49.840	-0.031	+43	41	36.38	-0.230	-0.051
827	1	α Aquarii	2.96	333	52	13.26	50.220	+0.015	+11	15	29.98	-0.190	-0.016
867		α PsA	1.16	334	08	56.69	50.720	+0.253	-21	08	17.65	-0.450	-0.287
777		α Cygni	1.25	335	36	40.75	49.540	+0.007		54	18.98	-0.160	+0.001
842	8518	γ Aquarii	3.84	337	00	02.82	50.350	+0.126	+8	14	02.68	-0.190	-0.042
834	8450	θ Pegasi	3.53	337	07	13.14	50.440	+0.278	+16	20	21.63	-0.220	-0.077
861	8679	τ Aquarii	4.01	338	52	56.12	50.320	-0.026	-5	39	55.60	-0.160	-0.030
866	8709	δ Aquarii	3.27	339	09	35.91	50.310	-0.047	-8	11	31.67	-0.140	-0.008
3	25	ε Phoenicis	3.88	339	56	12.72	50.720	+0.011	-41	57	28.89	-0.350	-0.220
950	9507	n Aquarii	4.02	340	16	12.65	50.200	10.064	10	21	10 07	0.210	0.007
850	1	η Aquarii	4.02		46	42.65	50.300	+0.064	+8	21	48.87	-0.210	-0.087
792		ξ Cygni	3.72	341	04	55.37	49.620			34	52.89	-0.120	-0.003
864	1	λ Aquarii*	3.74	341	51	45.49	50.320	+0.025	-0	23	13.46	-0.080	+0.030
72	591	α Hydri	2.86	342	24	44.21	51.660	+0.420	-64	14	37.86	-0.300	-0.194
831	8430	ι Pegasi	3.76	344	41	42.84	50.320	+0.339	+34	15	15.78	-0.190	-0.104
54	472	α Eridani	0.46	345	36	09.69	51.160	+0.084	-59	22	44.76	-0.170	-0.092
12	99	α Phoenicis	2.39	345	46	55.61	50.650	-0.042	-40	38	09.83	-0.520	-0.444
855	8634	ζ Pegasi	3.4	346	26	15.38	50.220	+0.072	+17	40	43.62	-0.110	-0.043
141	1175	β Reticuli	3.85	351	41	47.56	52.990		-76	05	22.95	-0.290	-0.260
878		γ Piscium	3.69	351	44	36.02	50.950	+0.713	+7	15	19.11	-0.310	-0.285
871	8781	α Pegasi	2.49	353	46	16.69	50.170	+0.043	+19	24	20.07	-0.070	-0.065
1044		δ Phoenicis	3.95	353	54	49.96	51.250	+0.337	-52	34	57.05	+0.030	+0.035
862		μ Pegasi	3.48	354	40	17.63	50.160	+0.130		23	10.57	-0.110	-0.102
857	8650	η Pegasi	2.94	355	59	52.00	49.960	+0.002	+35	06	28.98	-0.020	-0.029
68	566	χ Eridani	3.7	356	32	43.08	52.320	+1.308	-57	01	06.79	-0.190	-0.210
49	429	γ Phoenicis	3.41	358	25	54.41	50.630	-0.186	-47	35	09.06	-0.140	-0.167
870	8775	β Pegasi*	2.42v	359	39	37.89	50.280	+0.270	+31	08	27.40	+0.070	+0.037

* No. 864 : Satabhisaj.

No. 870: Scheat, Purva Bhadrapada-2.

BS = Bright Star Catalogue HR = Havard Revised Catalogue FK5 = Fifth Fundamental Catalogue

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR No.	Star	Mag.	Spec- tral Type	Rig	ght As	cension	Annual Variation	Annual Proper motion	Dec	clination	Annual Variation	Annual Proper motion
1 2 3 7 9	15 21 25 39 74	α Andromedae* β Cassiopeiae* ε Phoenicis γ Pegasi* ι Ceti β Hydri	2.06 2.27 3.88 2.83 3.56 2.80	B9 II F2 IV K0 III B2 IV K1.5 III G0V	h 0 0 0 0	m 09 10 10 14 20 26	s 27.1 17.1 26.7 17.6 28.3 48.0	s 3.117 3.245 3.025 3.098 3.056 3.056	s (0.0001) +104 +685 +118 +2 -9 +6633	+29 +59 -45 +15 -8 -77	12 12.79 15 45.97 38 04.02 17 50.68 42 37.57 08 20.60	+19.86 19.84 19.84 19.99 19.93 20.23	" (0.001) -163 -181 -181 -12 -36 +324
12 17 20 21 22 33	99 153 165 168 188	α Phoenicis ζ Cassiopeiae δ Andromedae α Cassiopeiae* β Ceti* μ Andromedae	2.39 3.66 3.27 2.23 2.04 3.87	K0.5 III b B2 IV K3 III K0- IIIa K0III A5 V	0 0 0 0 0	27 38 40 41 44 57	17.5 07.5 25.8 41.0 37.1 53.9	2.950 3.382 3.227 3.449 3.008 3.355	+183 +22 +106 +64 +164 +130	-42 +54 +30	11 41.86 00 34.10 58 22.21 38 58.08	+19.50 19.76 19.64 19.68 19.70 19.44	-396 -9 -92 -32 +32 +33
32 35 40 42 1033 47	280 334 337 361	γ Cassiopeiae* α Sculptoris η Ceti β Andromedae* ζ Piscium* θ Ceti	2.47 4.31 3.45 2.06 5.24 3.60	B0 IVpe B7IIIp K1 III M0III A7IV K0 III	0 0 1 1 1 1	57 59 09 10 14 25	57.8 35.5 37.3 53.2 48.3 02.9	3.678 2.885 3.019 3.382 3.143 3.001	+36 +17 +147 +146 +97 -53	-29		+19.40 19.37 18.99 18.98 18.93 18.46	-5 +4 -138 -114 -56 -218
48 49 1044 50 54 52	429 440 437 472	δ Cassiopeiae γ Phoenicis δ Phoenicis η Piscium α Eridani* 51 Andromedae	2.68 3.41 3.95 3.62 0.46 3.57	A5 III-IVv Mo- IIIa G9 III G7 IIa B6Vep K3 III	1 1 1 1 1	27 29 32 32 38 39	10.5 15.2 06.2 35.0 28.5 15.7	3.987 2.597 2.489 3.222 2.226 3.721	+400 -13 +144 +19 +117 +65	+15	20 27.86 12 49.53 58 00.24 27 02.88 07 59.09 43 52.63	+18.56 18.33 18.60 18.42 18.18 18.08	-52 -208 +151 -6 -35 -113
59 62 64 66 63 68	539 544 553 542	τ Ceti ζ Ceti α Trianguli β Arietis* ε Cassiopeiae χ Eridani	3.50 3.73 3.41 2.64 3.38 3.70	G8.5 V K0 III F5III A5 V B3III G8IV	1 1 1 1 1	45 52 54 55 55 56	01.3 28.4 15.4 46.6 53.6 45.2	2.789 2.964 3.440 3.329 4.394 2.329	-1190 +28 +9 +68 +48 +730		49 48.46 14 04.20 40 40.36 54 11.95 46 26.58 30 26.97	+18.83 17.64 17.37 17.43 17.51 17.79	+858 -39 -235 -111 -21 +291
72 71 73 70 74 75	585 603 580 617	α Hydri v Ceti γ Andromed.* p 50 Cassiopeiae α Arietis* β Trianguli	2.86 4.00 2.26 3.98 2.00 3.00	F0IV F7III K3- IIB A2V K2 III A5 III	1 2 2 2 2 2 2	59 00 05 05 08 10	24.9 58.3 10.0 13.7 20.0 46.2	1.889 2.827 3.714 5.270 3.399 3.594	+368 +97 +40 -99 +138 +122	+72	25 09.02	+17.41 17.29 17.07 17.15 16.83 16.83	+26 -24 -52 +22 -149 -40
82 79 91	664	φ Eridani γ Trianguli δ Ceti	3.56 4.01 4.07	B8IV- V A1Vnn B2 IV	2 2 2	17 18 40	14.5 32.4 32.1	2.142 3.590 3.083	+102 +38 +9	-51 +33 +0	25 04.85 56 27.63 24 59.95	+16.53 16.44 +15.32	-27 -51 -4

No. 1: Alpheratz, Uttara Bhadrapada - 2 No. 2: Caph No. 7: Algenib, Uttara Bhadrapada - 1 No. 21: Schedar . Mag. 2.1 to 2.6 No. 22: Deneb Kaitos or Diphda No. 32: Cih . Mag. 1.6 to 3.2

No. 42: Mirach No. 1033 : Revati No. 54 : Achernar

No. 66: Sheratan, Asvini No. 73: Almach, Mag. f. 5.1 No. 74: Hamal

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR	Star	Mag.	Spec- tral Type	Rig	ght As	scension	Annual Variation	Annual Proper motion	Dec	clina	tion	Annual Variation	Annual Proper motion
1075 94 101 100 99 103	801 841 838 834	ι Eridani 35 Arietis β Fornacis 41 Arietis* η Persei τ Persei	4.11 4.66 4.46 3.63 3.76 3.95	K0III B3 V G8 5 IIIb B8 Vn K31b G4 III+	h 2 2 2 2 2 2	m 41 44 49 51 52 55	\$ 28.6 39.6 56.9 11.8 12.5 43.5	s 2.367 3.539 2.512 3.550 4.429 4.299	s (0.0001) +120 +6 +71 +50 +20	-39 +27 -32 +27 +55 +52	47 19 20 58	57.23 06.69 35.46 14.71 37.61 41.65	+15.24 15.08 14.93 14.59 14.63 +14.43	(0.001) -32 -12 +155 -118 -14 -5
104 907 106 1085 107 108	424 897 919 911	η Eridani α Ursae Mins.* θ Eridani* p τ' Eridani α Ceti* γ Persei	3.89 2.02 3.25 4.09 2.53 2.93	K1 III F7:Ib-Iiv A3 IV-V A3IV- V M1.5 IIIa G8 III+	2 2 2 3 3 3	57 57 59 03 03 06	25.8 48.5 02.3 17.8 21.2 17.7	2.936 85.762 2.276 2.647 3.145 4.391	+53 +2140 -39 -105 -6 0		20 13 32 10	03.51 44.67 24.34 08.26 42.19 06.61	14.11 14.29 14.25 13.91 13.88 13.77	-220 -19 +19 -53 -78 -5
109 111 120 121 123 127	936 1017 1030 1038	p Persei* β Persei* α Persei* ο Tauri ξ Tauri ε Eridani	3.39 2.12 1.79 3.60 3.74 3.73	M4 II B8V F5 Iab G6 III B9 Vn K2 Vk	3 3 3 3 3	06 09 25 25 28 33	29.9 30.6 47.8 55.2 17.0 53.9	3.871 3.931 4.320 3.238 3.261 2.832	+111 +3 +25 -45 +40 -658	+41 +49 +9 +9	01 55 05 48	05.88 59.52 56.92 58.93 10.27 24.04	+13.66 13.57 12.47 12.40 12.28 11.95	-106 -1 -25 -78 -39 +23
135 131 141 136 134 146	1122 1175 1142 1135	δ Eridani δ Persei β Reticuli 17 Tauri ν Persei γ Hydri	3.54 3.01 3.85 3.70 3.77 3.24	B1III-IV B5 III K2 III B6 IIIe F5 Iab M2 III	3 3 3 3 3	44 44 46 46 46	13.9 23.6 27.8 05.8 35.7 56.6	2.880 4.303 0.773 3.577 4.102 -0.855	-61 +28 +490 +14 -13 +116	+24	51 44 10 38	04.86 42.84 34.27 34.60 29.60 32.79	+11.94 11.14 11.25 11.01 11.02 11.11	+745 -34 +75 -46 -2 +114
139 142 144 149 147 148	1178 1203 1231 1220	η Tauri* 27 Tauri ζ Persei γ Eridani ε Persei ξ Persei	2.87 3.63 2.85 2.95 2.89 4.04	B7 III B8 III B1 Ib M 1 IIIb B 0.5 V+ O 7.5 IIIe	3 3 3 3 4	48 50 55 58 59 00	42.4 23.1 25.5 59.2 14.2 18.0	3.581 3.582 3.789 2.803 4.048 3.912	+14 +13 +4 +42 +16 +2	+31 -13	06 56 27 04	01.07 52.38 34.29 03.88 05.25 53.59	+10.82 10.69 10.35 9.99 10.05 10.00	-46 -47 -10 -112 -26 0
150 151 152 155 156 159	1251 1273 1326 1336	λ Tauri ν Tauri 48 Persei α Horologii α Reticuli γ Tauri	3.47v 3.91 4.04 3.86 3.35 3.65	B3 V+ A0.5 Va B3 Ve K2 III G8II-III K0III	4 4 4 4 4	01 04 10 14 14 20	49.1 14.9 09.5 41.0 41.6 57.8	3.334 3.200 4.383 1.992 0.789 3.424	-4 +3 +20 +41 +65 +80	+6 +47 -42 -62	02 45 14 25	48.48 41.07 55.12 41.50 22.50 31.92	+9.87 9.69 9.21 8.68 8.93 8.37	-12 -3 -31 -209 +45 -25
162 1121 164 171 170	1393 1409 1465	δ Tauri 43 Eridani ε Tauri α Doradus ν Éridani	3.76 3.96 3.54 3.27 3.82	K0III K4 III G9.5 III A0IIIs G8IIIa	4 4 4 4 4	24 24 29 34 36	07.2 48.5 49.0 26.5 20.9	3.470 2.257 3.513 1.304 2.336			58 13 00	20.26 13.30 27.21 12.07 17.35	+8.11 8.14 7.65 7.31 +7.14	-30 +50 -38 -4 -12

No. 907 : (Nb) : *Polaris*, Dhruva No. 100 : Bharani No. 106 : Acamar. No. 107 : *Menkar* No. 109 : Mag. 3.3 to 4.0.

No. 111 : *Algol* , Mag. 2.1 to 3.4. No. 120 : *Mirphak*. No. 139 : *Alcyone* , Krittika.

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR No.	Star	Mag.	Spec- tral Type	Rig	tht As	cension	Annual Variation	Annual Proper motion	Dec	clination	Annual Variation	Annual Proper motion
168 172 1129 1134 179 180	1481 1502 1543 1552	α Tauri* 53 Eridani α Caeli π' Orionis π' Orionis π' Orionis	0.85 3.87 4.45 3.19 3.69 3.72	K5III K1III F2 V F6 V B2 III+ B3 III+	h 4 4 4 4 4	m 37 39 41 50 52 55	s 06.0 07.2 13.4 57.3 18.0 19.3	s 3.451 2.751 1.937 3.263 3.201 3.131	s (0.0001) +44 -52 -126 +313 -1 0	+16 -14 -41 +6 +5 +2	32 55.89 15 54.52 49 32.29 59 43.64 38 18.87 28 28.59	+6.90 6.77 6.68 5.96 5.84 5.58	(0.001) -190 -155 -77 +11 +1 0
178 181 183 1137 182 186	1577 1605 1612 1603	α Camelopardi 1 Aurigae 2 Aurigae* 4 Aurigae 5 Aurigae β Camelopardi 2 Leporis	4.29 2.69 2.99V 3.75 4.03 3.19	O9.5 I ae K3 II A8 Iab K4Ib-II+ G1Ib-II K4 III	4 4 5 5 5 5	56 58 03 03 05 06	06.1 19.9 26.7 54.9 15.0 19.8	6.012 3.918 4.320 4.207 5.366 2.543	-1 +3 -1 +8 -9 +18	+66 +33 +43 +41 +60 -22	22 21.67 11 47.94 51 05.40 06 13.30 28 10.53 20 41.22	+5.52 5.31 4.89 4.83 4.73 4.58	+6 -18 -4 -22 -16 -74
185 188 1144 194 193 195	1666 1702 1713 1708	η Aurigae β Eridani* μ Leporis β Orionis* α Aurigae* τ Orionis	3.17 2.79 3.31 0.12 0.08 3.60	B3 V A3III B9IV B8 Iab G5IIIe+ B5 III	5 5 5 5 5 5	07 08 13 15 18	57.4 51.5 51.2 31.4 12.4 36.2	4.220 2.954 2.698 2.887 4.444 2.917	+26 -63 +30 0 +72 -10	+41 -5 -16 -8 +46 -6	15 36.52 03 41.08 10 57.52 10 45.91 01 00.04 49 25.34	+4.44 4.35 3.98 3.86 3.21 3.59	-68 -81 -26 -1 -425 -8
1147 201 202 204 214 206	1790 1791 1829 1953	22 Orionis γ Orionis* β Tauri* β Leporis γ Mensae δ Orionis*	4.73 1.64 1.65 2.84 5.19 2.23	B2IV-V B2 III B7 III G5 II K2 III O9.5 II+	5 5 5 5 5 5	22 26 27 29 31 33	49.0 13.9 35.4 07.5 04.9 03.6	3.085 3.222 3.799 2.574 -2.340 3.083	0 -6 +17 -3 +320 +1	-0 +6 +28 -20 -76	23 49.78 21 59.75 37 22.14 44 39.94 19 30.87 18 07.80	+3.24 2.93 2.65 2.60 2.80 2.35	-1 -14 -175 -89 +282 -2
207 212 (GC) 209 210 211	1922 1879 1899 1903	α Leporis* β Doradus λ Orionis* ι Orionis ε Orionis* ζ Tauri	2.58 3.76v 3.54 2.77 1.70 3.00	F0 Ib F6Ia O8 III O9 III B0 Iab B2IV	5 5 5 5 5 5	33 33 36 36 37 38	38.1 48.3 16.1 26.2 15.3 52.3	2.649 0.528 3.308 2.938 3.048 3.590	+1 +3 -1 0 +1	-17 -62 +9 -5 -1 +21	48 32.25 28 36.28 56 46.41 53 52.52 11 25.43 09 11.55	+2.30 2.29 2.07 2.06 1.98 1.82	+2 +9 -2 +1 -2 -21
215 1154 217 219 220 223	2015 1983 1998 2004	α Columbae* δ Doradus γ Leporis ζ Leporis κ Orionis* β Columbae	2.06	B7 IVe A7V F6 V A2 IV-V(n) B0Iab K1 IIICN+1	5 5 5 5 5 5	40 44 45 47 48 51	23.5 48.7 19.1 53.1 43.8 41.0	2.176 0.114 2.503 2.721 2.848 2.119	+5 -49 -212 -11 +1 +49	-34 -65 -22 -14 -9 -35	03 51.78 43 34.82 26 40.54 48 56.59 39 49.73 45 42.41	+1.69 1.34 0.91 1.06 0.98 1.13	-26 +8 -369 -1 -2 +401
222 224		δ Leporis α Orionis*	3.81 0.5	K1IVFe M2Iab	5 5	52 56	12.2 16.9	2.582 3.251	+161 +17	-20 +7	52 43.43 24 33.19	+0.03 +0.33	-649 +9

No. 168: Aldebaran, Rohini

No. 168 : Aldebaran, Rohim
No. 183 : Mag. 2.9 to 3.8.
No. 188 : Cursa .
No. 194 : Rigel.
No. 193 : Capella , Brahmahridaya.
No. 201 : Bellatrix.
No. 202 : El Nath , Agni. No. 206: Mintaka.

No. 207: Arneb. No. GC: Mrgasiras. No. 210: Alnilam. No. 215: Phakt.

No. 220 : Saiph . No. 224 : Betelgeuse , Mag. 0.4 to 1.3 Ardra.

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR No.	Star	Mag.	Spec- tral Type	Rig	ght As	cension	Annual Variation	Annual Proper motion	Dec	clination	Annual Variation	Annual Proper motion
226 229 227 225 1163 1168	2120 2088 2077 2134	η Leporis η Columbae β Aurigae* δ Aurigae* 1 Geminorum κ Aurigae	3.71 3.96 1.90 3.72 4.16 4.35	F2 V K01II A2IV+ K0 III G5III G8.5IIIb	h 5 5 6 6 6 6	m 57 59 01 01 05 16	s 20.4 46.5 02.0 13.0 22.0 41.1	s 2.735 1.839 4.404 4.943 3.649 3.823	s (0.0001) -28 +20 -54 +92 -6 -57	-14 -42 +44 +54 +23 +29	09 55.41 48 54.16 56 50.28 17 01.71 15 37.61 29 18.86	+0.37 +0.01 -0.09 0.23 0.57 1.72	" (0.001) +139 -14 0 -126 -100 -262
240 243 241 245 244 1173	2294 2286 2326 2298	ζ Canis Maj. β Canis Maj.* μ Geminorum α Carinae* 8ε Monocerotis ν Geminorum	3.02 1.98 2.88 -0.72 4.44 4.15	B2.5V B1 II/III M3 III F0II A5 IV B6 IIIe	6 6 6 6 6	21 23 24 24 24 30	06.1 36.2 12.0 24.5 51.3 10.8	2.306 2.644 3.630 1.333 3.181 3.562	+7 -4 +39 +25 -12 -5	-30 -17 +22 -52 +4 +20	04 25.28 58 02.80 30 04.31 42 50.96 34 27.34 11 50.41	2.06 2.22 2.11	+3 0 -111 +21 +11 -14
252 251 254 257 256 262	2421 2473 2491 2484	v Puppis γ Geminorum* ε Geminorum α Canis Maj* cg ξGeminorum α Pictoris	3.17 1.93 2.98 -1.46 3.36 3.27	B8 III A0 IV G8 Ib A1V F5 IV A8VmkA6	6 6 6 6 6	38 38 45 46 46 48	23.3 53.8 11.6 03.0 26.4 24.0	1.838 3.465 3.689 2.643 3.366 0.612	+2 +29 -4 -386 -79 -96	+12	12 48.23 22 53.57 06 32.25 44 43.90 52 18.42 57 49.38	3.43 3.94 5.20 4.22	-6 -42 -13 -1204 -191 +269
263 1180 261 268 1183 270	2538 2540 2618 2646	τ Puppis κ Canis Maj. θ Geminorum ε Canis Maj.* σ Canis Maj. ο ´ Canis Maj.	2.93 3.96 3.60 1.50 3.47 3.02	K1 III B1.5IVe A3III B2 Iab M1.5Iab B3 Ia	6 6 6 6 7 7	50 50 54 59 02 03	26.7 36.4 08.3 25.9 32.2 52.8	1.490 2.243 3.949 2.360 2.392 2.507	+38 -5 -2 +3 -4 -3	-50 -32 +33 -29 -27 -23	38 59.84 31 23.42 56 04.47 00 04.10 57 55.37 51 52.20	4.39 4.74 5.14 5.40	-70 +4 -48 +3 +5 +3
269 1189 273 1187 281 278	2736 2693 2714 2803	ζ Geminorum* γ^2 Volantis δ Canis Maj. 22δ Monocerotis δ Volantis π Puppis	3.79v 3.78 1.86 4.15 3.98 2.70	G0Ibv K0III F8 Iab A2V F6II K3Ib	7 7 7 7 7	05 08 09 12 16 17	19.4 34.0 13.5 55.1 48.9 52.0	3.555 -0.532 2.441 3.085 -0.048 2.121	-6 +47 -2 -1 -12 -8	+20 -70 -26 -0 -67 -37	32 18.51 31 36.97 25 55.41 26 41.50 59 41.09 08 07.31	-5.64 5.80 5.96 6.26 6.59 6.67	0 +106 +4 +5 +5 +4
277 279 283 282 285 1194	2777 2827 2821 2845	λ Geminorum δ Geminorum η Canis Maj. ι Geminorum β Canis Min.* ρ Puppis	3.58 3.53 2.45 3.79 2.90 3.25	A3V F0 IV B5 Ia G9 IIIb B8Ve K5 III	7 7 7 7 7	19 21 24 26 28 29	16.2 20.7 54.4 59.9 15.7 52.9	3.444 3.578 2.375 3.719 3.251 1.905	-33 -19 -3 -93 -35 -50	+16 +21 -29 +27 +8 -43	30 06.26 56 34.28 20 39.20 45 20.03 14 47.29 20 37.96	6.98 7.25 7.51 7.57	-37 -12 +5 -86 -38 +187
287 291 297	2943	α Gemino.* cg α C. Min.* cg ζ Volantis	1.95 0.38 3.95	A2Vm F5 IV-V K0III	7 7 7	35 40 41	54.3 22.4 33.3	3.820 3.137 -0.783	-135 -477 +67	+31 +5 -72	50 30.62 10 15.73 39 01.04	9.52	-98 -1022 +18

No. 225 : Prajapati. No. 227 : Menkalinam . No. 243 : Mirzam.

No. 245 : Canopus , Agastya. No. 251 : Alhena .

No. 257 : *Sirius* , Lubdhaka Mag. - 1.46. No. 268 : *Adhara*. No. 269 : Mekbuda Mag. 3.7 to 4.1.

No. 285 : Gomeisa. No. 287 : Castor, Punarvasu-2, Mag. 1.95 & 2 No. 291 : Procyon, Mag. 0.38 & 11.3.

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR No.	Star	Mag.	Spec- tral Type	Rig	ght As	scension	Annual Variation	Annual Proper motion	Dec	clination	Annual Variation	Annual Proper motion
293 294 295 1204 301 303	2985 2990 3045 3080	26α Monocerotis κ Geminorum β Geminorum* ξ Puppis 213 G. Puppis χ Carinae	3.93 3.57 1.14 3.34 3.73 3.47	G9 III G8 III K0IIIb G6 Ia K1/2II+ B3IVp	h 7 7 7 7 7	m 42 45 46 50 52 57	s 13.6 41.0 34.1 09.4 55.4 18.0	s 2.867 3.614 3.662 2.525 2.064 1.524	s (0.0001) -49 -24 -474 -2 -8 -32		36 17.8 20 49.8 58 30.1 54 44.6 37 46.8 02 16.8	8.97 9.03 9.27 9.48	(0.001) -19 -52 -45 -2 +3 +21
306 308 309 312 315 319	3185 3207 3249 3307	ζ Puppis ρ Puppis γ´ Velorum β Cancri ε Carinae β Volantis	2.25 2.81 1.78 3.52 1.86 3.77	O4If(m)p F6IIp WC8+O7.5 K 3:IIIv K2III K2 III	8 8 8 8 8	04 08 10 17 22 25	18.3 25.1 09.9 37.6 56.0 57.2	2.111 2.557 1.850 3.249 1.225 0.633	-24 -61 -4 -30 -35 -60	-24 -47 +9	03 42.9 21 52.1 23 52.3 07 15.5 34 33.8 12 28.2	1 10.60 1 10.77 6 11.37 6 11.69	+12 +49 +6 -49 +14 -155
316 317 321 1223 1224 1227	3323 3366 3410 3418	Br 1197 Hydrae ο Ursae Maj. η Cancri δ Hydrae σ Hydrae ο Velorum	3.90 3.36 5.33 4.16 4.44 3.62	A0V G5 III K3 III A1Vnn K1 III B3 IV	8 8 8 8 8	26 31 33 38 39 40	41.1 57.1 53.5 44.4 49.7 52.8	2.996 4.930 3.460 3.172 3.133 1.719	-44 -182 -34 -44 -12 -24		58 20.3 38 51.5 22 12.4 37 51.6 16 05.4 59 43.6	12.44 12.51 12.80 12.89	-23 -107 -43 -7 -18 +20
1226 327 1228 326 (329) 328	3468 3449 3461 3482	53 G. Velorum α Pyxidis γ Cancri δ Cancri* ε Hydrae* m ι Cancri	3.84 3.68 4.66 3.94 3.38 4.02	F3 Ia B1.5 III A1IV K0 III G5III G8Iab	8 8 8 8 8	41 44 44 45 47 47	18.5 25.0 28.1 50.8 51.5 56.0	1.994 2.414 3.462 3.401 3.170 3.617	0 -9 -76 -13 -155 -19	-33 +21 +18	43 20.9 15 36.3 23 40.3 04 39.5 20 00.8 41 32.8	3 13.17 5 13.22 1 13.50 1 13.44	+3 +11 -39 -228 -40 -42
336 334 337 335 342 341	3547 3572 3569 3614	108 G. Carinae ζ Hydrae α Cancri* ι Ursae Maj. 97 G. Velorum κ Ursae Maj.	3.84 3.11 4.25 3.14 3.75 3.60	B8.5II G9 II-III A5 m A7 V K2 III A1Vn	8 8 8 9 9	55 56 59 00 04 05	30.6 28.6 36.4 36.1 51.8 01.0	1.355 3.167 3.275 4.076 2.073 4.065	-28 -66 +23 -443 -44 -32	-60 +5 +11 +47 -47	43 24.4 51 58.8 46 37.8 57 35.0 10 26.5 04 48.4	13.94 14.18 14.43 14.48	+38 +15 -31 -225 -13 -54
345 1239 348 347 351 352	3627 3685 3665 3699	λ Velorum ξ Cancri β Carinae θ Hydrae ι Carinae α Lyncis	2.21 5.14 1.68 3.88 2.25 3.13	K4 Ib-II G9 III A2IV B9.5 V A8 Ib K7 III	9 9 9 9 9	08 10 13 15 17 22	45.1 32.1 25.0 25.8 38.3 17.9	2.211 3.438 0.631 3.118 1.605 3.636	-17 +1 -311 +86 -26 -179	-43 +21 -69 +2 -59 +34	30 58.0 57 40.8 48 06.6 13 36.0 21 42.5 18 16.9	14.80 14.87 15.40 15.21	+13 +5 +108 -310 +8 +19
1243 353 354 361 355 358	3734 3748 3803 3757	θ Pyxidis κ Velorum* α Hydrae* N Velorum 23 Ursae Maj. θ Ursae Maj.	4.72 2.50 1.98 3.13 3.67 3.17	M0 III B2 IV-V K3 II-III K5 III F0 IV F7V	9 9 9 9 9	22 22 28 31 33 34	24.1 45.0 35.7 50.8 07.4 13.0	2.660 1.861 2.948 1.826 4.657 3.974	-8 -10 -9 -39 +160 -1024	-26 -55 -8 -57 +62 +51	03 12.8 05 55.9 44 54.3 07 31.4 58 14.7 34 57.7	15.50 15.79 15.99 16.04	-8 +9 +33 +4 +27 -530

No. 295 : *Pollux*, Punarvasu-1. No. 326 : Pusya. No. 329 : Aslesa.

No. 337 : Acubens. (Aslesa.) No. 353 : *Markeb* . No. 354 : *Alphard* .

MEAN PLACES OF STARS, J 2020.5FOR JULY 2^d.125 TERRESTRIAL TIME
(The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR No.	Star	Mag.	Spec- tral Type	Rig	ght As	scension	Annual Variation	Annual Proper motion	Dec	clination	Annual Variation	Annual Proper motion
1250 364 365 367 368 371	3849 3852 3873 3888	ι Hydrae κ Hydrae ο Leonis ε Leonis ν Ursae Maj. μ Leonis	3.91 5.06 3.52 2.98 3.80 3.88	K2.5 III B4IV/V F5I+ G1 II F2 IV K2 III	h 9 9 9 9	m 40 41 42 47 52 53	\$ 54.1 17.4 14.6 00.7 25.8 55.5	s 3.062 2.878 3.196 3.393 4.210 3.399	s (0.0001) +32 -19 -96 -34 -379 -160	-1 -14 +9 +23 +58 +25	14 12.64 25 34.18 47 53.24 40 43.94 56 28.20 54 34.07	16.50 16.57 16.77 17.17	(0.001) -64 -20 -37 -11 -151 -56
375 1261 379 380 381 385	3970 3975 3982 3994	φVelorum ν ' Hydrae η Leonis α Leonis* λ Hydrae ω Carinae	3.54 4.60 3.52 1.35 3.61 3.32	B5 Ib B8 V A0 Ib B7 V K0IIICN+1 B8 IIIe	9 10 10 10 10 10	57 06 08 09 11 14	35.1 07.4 26.9 27.7 35.3 13.3	2.115 2.924 3.262 3.189 2.927 1.420	-12 -25 -1 -169 -138 -76	-13 +16 +11 -12	39 57.40 09 53.24 39 42.85 51 58.48 27 21.87 08 24.11	17.60 17.71 17.75 17.93	+3 +18 0 +7 -88 +7
382 1264 384 383 1268 386	4050 4031 4033 4080	191 G.Velorum 187 G. Carinae ζ Leonis λ Ursae Maj. 204 G.Velorum μ Ursae Maj.	3.85 3.40 3.44 3.45 4.83 3.05	A2 Va K3 II a F0 III A2 IV K1 III M0 III	10 10 10 10 10 10	15 17 17 18 23 23	36.0 46.2 49.6 19.5 12.6 32.6	2.529 2.013 3.325 3.592 2.585 3.549	-131 -34 +13 -149 -20 -72	-42 -61 +23 +42 -41 +41	13 27.0 ⁴ 26 51.85 18 06.68 48 40.42 45 13.55 23 44.40	18.08 18.09 18.14 18.22	+45 +5 -7 -38 +56 +35
391 389 392 393 1270 397	4094 4104 4114 4116	I Carinae μ Hydrae α Antliae 196 G. Carinae δ Sextantis 203 G. Carinae	4.00 3.81 4.25 3.82 5.21 3.32	F3 V K4III K4 III F2II B9.5 V B4 Vne	10 10 10 10 10 10	24 27 28 28 30 32	47.8 05.0 05.6 38.1 31.2 45.4	1.173 2.906 2.754 2.216 3.047 2.147	-52 -89 -58 -17 -32 -27	-74 -16 -31 -58 -2 -61	08 10.12 56 29.69 10 21.83 50 40.49 50 40.71 47 28.35	18.50 18.44 18.47 18.55	-26 -80 +11 0 -14 +9
396 401 406 411 410 412	4174 4199 4234 4232	ρ Leonis γ Chamaeleontis θ Carinae δ ² Chamaeleontis ν Hydrae 46 Leonis Min.	3.85 4.11 2.76 4.45 3.11 3.83	B1 Iab M0 III B0Vp B2.5 IV K0/K1III K0IIIV	10 10 10 10 10 10	33 35 43 45 50 54	53.3 41.6 41.5 56.9 38.3 27.2	3.154 0.653 2.156 0.479 2.965 3.338	-4 -143 -35 -201 +66 +70	-80 -16	12 01.76 42 50.99 30 07.96 38 54.05 18 05.08 06 13.94	18.69 18.93 19.00 18.93	-3 +14 +10 +8 +200 -279
1283 416 417 1289 420 422	4295 4301 4337 4335	α Crateris β Ursae Maj.* α Ursae Maj.* 260 G. Carinae ψ Ursae Maj. δ Leonis*	4.08 2.37 1.80 3.91 3.01 2.56	K1III A1V K0 Iab G0Iab K1 III A4V	11 11 11 11 11	00 03 04 09 10 15	46.5 03.9 58.6 28.3 48.5 11.8	2.929 3.577 3.647 2.586 3.348 3.182	-323 +99 -167 -9 -60 +101	-18 +56 +61 -59 +44 +20	24 29.97 16 19.37 38 23.04 05 10.99 23 12.81 24 39.79	19.39 19.53 19.56 19.61	+130 +34 -66 0 -28 -130
423 425 426 433 434 436	4377 4382 4434 4450	θ Leonis* v Ursae Maj. δ Crateris λ Draconis ξ Hydrae λ Centauri	3.34 3.48 3.56 3.84 3.54 3.13	A2V K3 III K0III M0 III G7 III B9III	11 11 11 11 11 11	15 19 20 32 34 36	18.8 34.9 22.1 36.0 00.9 44.2	3.142 3.225 3.006 3.488 2.965 2.802	-42 -20 -84 -73 -162 -61	+15 +32 -14 +69 -31 -63	19 01.86 58 55.76 53 23.15 13 03.72 58 16.44 08 00.08	19.70 19.53 19.92 19.95	-79 +28 +208 -17 -39 -5

No. 380 : Regulus , Magha. No. 416 : Merak , Pulaha.

No. 417 : *Dubhe* , Kratu. No. 422 : *Zosma* , Purva Phalguni-1. No. 423 : Purva Phalguni-2.

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR No.	Star	Mag.	Spec- tral Type	Rig	ght As	cension	Annual Variation	Annual Proper motion	Dec	clination	Annual Variation	Annual Proper motion
442 441 1304 444 445 447	4518 4527 4534 4540	λ Muscae χ Ursae Maj. 93 Leonis* β Leonis* β Virginis γ Ursae Maj.*	3.64 3.71 4.53v 2.14 3.61 2.44	A7 V K0.5 IIIb A7V+ A3 V F9 V A0 Ve	h 11 11 11 11 11	m 46 47 49 50 51 54	s 35.2 07.5 02.5 06.2 45.8 54.0	s 2.875 3.144 3.088 3.056 3.126 3.126	s (0.0001) -174 -136 -106 -342 +495 +107	-66 +47 +20 +14 +1 +53	50 32.82 39 56.34 06 17.70 27 26.57 38 56.74 34 50.63	20.02 20.14 20.30	(0.001) +37 +30 -3 -114 -271 +12
452 453 455 456 457 459	4630 4656 4660 4662	δ Centauri ε Corvi δ Crucis δ Ursae Maj.* γ Corvi* β Chamaeleontis	2.60 3.00 2.80 3.31 2.59 4.26	B2 IV ne K2III B2 IV A3 V B8III B5 Vn	12 12 12 12 12 12	09 11 16 16 16 19	25.8 11.0 14.7 25.9 51.8 35.5	3.139 3.098 3.227 2.941 3.095 3.669	-36 -51 -53 +127 -112 -174	-17	50 11.47 44 01.29 51 46.16 55 07.74 39 20.31 25 33.03	20.00 20.00 19.98 19.96	-8 +13 -9 +9 +23 +17
460 462 465 468 469 472	4730 4757 4763 4773	η Virginis α Crucis*A δ Corvi* γ Crucis γ Muscae κ Draconis	3.89 1.33 2.95 1.63v 3.87 3.87v	A2 IV+ B0.5 IV A0IV(m)kB9 M3.5 III B5V B6IIIp	12 12 12 12 12 12	20 27 30 32 33 34	57.3 45.2 55.7 18.9 43.0 20.8	3.070 3.390 3.114 3.370 3.674 2.526	-42 -53 -146 +29 -126 -112	-0 -63 -16 -57 -72 +69	32 50.12 12 44.81 37 45.66 13 39.81 14 45.28 40 31.49	19.91 20.00 20.10 19.83	-18 -12 -138 -262 -2 +12
471 474 475 1326 481 483	4798 4813 4828 4853	β Corvi α Muscae χ Virginis ρ Virginis β Crucis ε Ursae Maj.*	2.65 2.69 4.66 4.88 1.25 1.77	G5 II B2 IV-V K2 III A0 V B0.5 IV A0p	12 12 12 12 12 12	35 38 40 42 48 54	28.1 25.6 18.4 55.3 56.0 55.5	3.165 3.655 3.104 3.037 3.555 2.621	+2 -90 -51 +57 -63 +132	-23 -69 -8 +10 -59 +55	30 35.52 14 53.51 06 29.43 07 22.43 48 01.50 50 56.04	19.77 19.76 19.78 19.60	-54 -13 -25 -90 -14 -6
484 485 488 487 492 495	4915 4932 4923 4983	δ Virginis* α CVn sq* ε Virginis* δ Muscae β Com γ Hydrae	3.38 2.90 2.83 3.62 4.26 3.00	M3III A0spe G8 III K2 III G0 V G8 III	12 12 13 13 13 13	56 56 03 03 12 20	38.2 59.0 11.8 42.7 49.7 02.4	3.025 2.797 2.987 4.236 2.795 3.277	-313 -198 -185 +543 -604 +47	+3 +38 +10 -71 +27 -23	17 11.03 12 28.93 50 57.70 39 31.75 46 28.91 16 44.98	19.37 19.26 19.29 18.16	-54 +56 +20 -20 +881 -45
496 497 498 501 504 509	5054 5056 5107 5132	ι Centauri ζ Ursae Maj.*pr α Virginis* ζ Virginis ε Centauri η Ursae Maj.*	2.75 2.27 0.98 3.37 2.30 1.86	kA15hA3nA3va A2V B1 III-IV+ A3V B1 III B3 V	13 13 13 13 13 13	21 24 26 35 41 48	45.4 44.9 16.6 44.1 12.0 20.8	3.396 2.404 3.170 3.052 3.846 2.358	-284 +141 -28 -190 -32 -125	-36 +54 -11 -0 -53 +49	49 11.43 49 07.61 16 03.74 28 00.44 34 11.29 12 41.59	18.71 18.67 18.28 18.14	-86 -20 -28 +42 -17
508 513 512	5235	μ Centauri η Bootis ζ Centauri	3.04 2.68 2.55	B2Vmpe G0 IV B2.5 IV	13 13 13	50 55 56	51.6 39.6 49.7	3.644 2.857 3.778	-44	-42 +18 -47	34 30.18 17 44.31 23 18.18	17.90	-20 -358 -42

No. 1304 : Uttara Phalguni-2. No. 444 : *Denebola*, Uttara Phalguni-1. No. 447 : *Phecda or Phad*, Pulastya.

No. 456: *Megrez,* Atri. No. 457: *Minkar*. No. 462: *Acrux*.

No. 465: Algorel, Hasta.

No. 483 : *Alioth*, Angira. No. 484 : Minelauva. No. 485 : 12 Canum Venaticorum, Mag. *p* 2.9

No. 488: Vindemiatrix.
No. 497: Mizar, Vasista. Mag. f. 4.0.
No. 498: Spica, Citra.
No. 509: Alkaid, Benetnasch, Marichi.

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No.	BS =HR	Star	Mag.	Spec- tral Type	Rig	tht As	scension	Annual Variation	Annual Proper	Dec	clination	Annual Variation	Annual Proper
FK5	No.			trai Type				v arration	motion			variation	motion
521 518 519 520 523 526	5267 5287 5288 5315	α Draconis* β Centauri* π Hydrae θ Centauri κ Virginis α Bootis*	3.65 0.61 3.27 2.06 4.19 -0.04	A0 III B1 III K1III-IV K0 III K2.5 III K1.5 III	h 14 14 14 14 14	m 04 05 07 07 13 16	s 56.7 17.3 32.7 53.8 59.5 35.8	s 1.629 4.297 3.435 3.555 3.211 2.739	s (0.0001) -84 -43 +33 -429 +5 -769	-36 -10	16 14.85 28 41.86 46 48.79 28 11.78 22 05.73 04 35.24	-17.12 17.14 17.16 17.52 16.57 18.59	" (0.001) +18 -19 -139 -520 +140 -2000
525 1371 531 534 535 537	5359 5404 5429 5435	t Virginis λ Virginis θ Bootis ρ Bootis γ Bootis η Centauri	4.08 4.52 4.05 3.58 3.03 2.31	F7IV A1V F7 V K3 III A7 III B1.5 IVne	14 14 14 14 14 14	17 20 25 32 32 36	05.6 13.4 53.7 42.8 54.2 49.1	3.155 3.258 2.042 2.585 2.415 3.839	-2 -11 -253 -77 -97 -31		05 50.96 27 52.28 45 23.86 16 56.10 13 09.65 14 48.22	16.38 16.51	-432 +30 -398 +119 +153 -35
538 541 545 539 544 547	5469 5487 5463 5485	α Centauri* cg α Lupi μ Virginis α Circini 371 G.Cen 109 Virginis	0.00 2.30 3.88 3.19 4.05 3.72	G+ B1.5 III F2 V A 7VpSrCrEu K5 III A0 V	14 14 14 14 14 14	41 43 44 44 44 47	00.3 18.2 08.6 11.3 55.1 17.2	4.128 4.026 3.171 4.932 3.693 3.040	-4998 -21 +73 -302 -52 -76	-65	55 07.57 28 29.59 44 46.59 03 46.12 15 38.81 48 26.81		+692 -18 -316 -232 -180 -27
542 550 548 552 553 555	5563 5531 5571 5576	α Apodis β Ursae Min.* α [*] Librae* β Lupi κ Centauri β Bootis	3.83 2.08 2.75 2.68 3.13 3.50	K2.5 III K4 III A2HA5MA4IV B2 III B2 IV G8 IIIa	14 14 14 14 15 15	50 50 52 59 00 02	30.2 40.0 01.0 53.0 30.2 43.1	7.783 -0.105 3.331 3.959 3.932 2.261	-41 -76 -73 -32 -17 -36	+74 -16 -43 -42	07 45.38 04 17.94 07 32.95 12 54.73 11 06.61 18 37.97	-14.76 14.72 14.72 14.22 14.16 14.03	-16 +12 -67 -39 -24 -28
556 559 558 563 564 560	5652 5649 5681 5685	σ Librae ι Librae* ζ Lupi δ Bootis β Librae* γ Tr. Austrini	3.29 4.54 3.41 3.47 2.61 2.89	M3/M4III B9IV pSc G7 III G8 III B8 IV A1 IV		05 13 13 16 18 20	16.5 23.6 46.2 19.8 06.8 51.2	3.528 3.434 4.351 2.421 3.238 5.703	-54 -25 -122 +69 -65 -132	+33 -9	21 40.55 52 04.90 10 32.43 14 21.34 27 26.37 45 11.28	13.37 13.24 13.03	-43 -39 -73 -112 -19 -31
569 1402 566 571 572 578	5695 5705 5744 5747	γ Ursae Min. 8 Lupi φ' Lupi ι Draconis β Cr. Borealis α Cr.Borealis*	3.05 3.22 3.56 3.29 3.68 2.23	A 3 Iab B1.5 IV K5 III K2 III F0p A0 V	15 15 15 15 15 15	20 22 23 25 28 35	42.7 43.5 06.8 23.3 40.5 33.4	-0.043 3.964 3.829 1.345 2.476 2.543	-40 -13 -74 -12 -137 +91	+58 +29	45 39.79 43 13.20 20 03.47 53 41.24 02 09.76 38 48.35	12.76 12.50 12.21	+20 -26 -84 +17 +86 -88
577 579 1413 582	5794 5838	γ Librae ν Librae κ Librae α Serpentis*	3.91 3.58 4.74 2.65	K0III K5 III K5III K2 III b	15 15 15 15	36 38 43 45	40.6 16.4 07.9 16.8	3.367 3.658 3.469 2.961	+45 -7 -26 +92	-28 -19	51 23.57 12 05.20 44 37.91 21 44.67	11.37	+9 +3 -103 +47

No. 518 : Agena . No. 521 : Thuban .

No. 526 : Arcturus , Svati. No. 538 : Rigil Kentaurus Mag. 0.33 & 1.70. No. 548 : Zuben el Genubi, Visakha.

No. 550: Kochab. No. 559: Visakha. No. 564: Zuben es Chamali. No. 578: Margarita, Alphecca. No. 582: Unukalhaly.

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR No.	Star	Mag.	Spec- tral Type	Rig	ght As	scension	Annual Variation	Annual Proper motion	Dec	clination	Annual Variation	Annual Proper motion
583 585 588 589 591 592	5867 5881 5892 5897 5933	β Serpentis μ Serpentis ε Serpentis β Tr.Australis γ Serpentis π Scorpii	3.67 3.54 3.71 2.85 3.85 2.89	A3V A0 V A2 m F1V F6 V B1 V+	h 15 15 15 15 15 16	m 47 50 51 56 57 00	s 08.1 41.5 50.4 58.0 24.1 05.8	s 2.773 3.138 2.996 5.349 2.776 3.643	s (0.0001) +46 -57 +86 -283 +217 -8	-63	21 31.86 29 29.82 25 02.38 29 30.06 35 45.43 10 17.52	10.74 10.57 10.65 11.50	(0.001) -45 -24 +63 -398 -1281 -26
594 597 603 605 608 607	5984 6056 6075 6092	δ Scorpii* β Scorpii*pr δ Ophiuchi ε Ophiuchi τ Herculis σ Scorpii	2.32 2.62 2.74 3.24 3.89 2.89	B0.2 Ive B0.5 V M0.5 III G9.5 IIIb B5 IV B1 III	16 16 16 16 16	01 06 15 19 20 22	33.0 37.9 25.3 24.5 21.5 26.3	3.560 3.500 3.151 3.181 1.808 3.659	-8 -4 -29 +57 -11 -8		40 42.46 51 35.88 44 44.39 44 27.63 15 55.47 38 25.28	9.53 8.97 8.48 8.40	-22 -19 -143 +41 +40 -21
609 613 616 618 611 620	6117 6134 6148 6102	γ Herculis ω Herculis α Scorpii* eg β Herculis γ Apodis τ Scorpii	3.75 4.57 0.96 2.77 3.89 2.82	B9 III B9 p M1.5 Iab-b G7 III a G8III B0.2 V	16 16 16 16 16	22 26 30 31 36 37	49.5 21.8 40.1 06.1 39.5 09.7	2.650 2.773 3.690 2.582 9.418 3.746	-33 +30 -7 -70 -452 -6	+19 +13 -26 +21 -78 -28	06 22.31 59 14.52 28 32.74 26 46.12 56 20.05 15 24.54	7.60 7.21	+43 -59 -20 -15 -77 -22
622 626 625 1438 628 1435	6220 6217 6243 6241	ζ Ophiuchi η Herculis α Tr. Austr.* 20 Ophiuchi ε Scorpii η Arae	2.56 3.53 1.92 4.65 2.29 3.76	O9V G7 .5IIIb K2 II-III F7 V K1 III K5 III	16 16 16 16 16 16	38 43 50 50 51 51	17.4 36.0 51.2 58.2 29.7 33.9	3.311 2.060 6.412 3.326 3.898 5.212	+9 +32 +26 +65 -493 +49	-34	36 25.37 53 03.57 03 44.48 49 32.11 19 03.67 04 43.10	6.64 5.99 6.04 6.16	+26 -82 -34 -93 -257 -28
1439 633 631 634 635 639	6299 6285 6324 6355	μ' Scorpii κ Ophiuchi ζ Arae ε Herculis 60 Herculis ζ Draconis	3.08v 3.20 3.13 3.92 4.91 3.17	B1.5Vp+ K2 III K3III A0 V A4 IV B6 III	16 16 17 17 17 17	53 58 00 01 06 08	15.8 38.4 19.4 04.5 19.8 51.0	4.077 2.844 4.989 2.298 2.786 0.188	-9 -197 -23 -36 +35 -33	+30 +12	04 50.40 20 40.34 01 12.51 53 50.51 42 50.65 41 22.24	5.31 5.20 5.07 4.66	-25 -11 -36 +27 -10 +22
638 643 641 644 645 1457	6418 6410 6453 6461	η Scorpii π Herculis δ Herculis θ Ophiuchi β Arae 44 Ophiuchi	3.33 3.16 3.14 3.27 2.85 4.17	F5IV K3 Ib A3IV B2 IV K3 Ib-II kA5hA9mF1III	17 17 17 17 17 17	13 15 15 23 27 27	37.5 45.7 52.5 16.2 00.5 37.4	4.309 2.093 2.467 3.691 5.002 3.670	+23 -22 -15 -3 -10 0	-43 +36 +24 -25 -55 -24	15 50.73 47 58.59 48 13.64 01 05.34 32 48.59 11 32.48	3.22 2.90	-287 +4 -157 -20 -25 -116
653 649 648 651 652 656	6508 6500 6510 6527	β Draconis v Scorpii δ Arae α Arae λ Scorpii* α Ophiuchi*	2.79 2.69 3.62 2.95 1.63 2.08	G2Iab B2 IV B8 Vn B2 Vne B2 IV+ A5 III	17 17 17 17 17 17	30 32 32 33 35 35	53.8 09.6 57.2 25.8 00.2 53.2	1.360 4.086 5.432 4.648 4.080 2.788	-17 -1 -80 -32 -1 +83	-49 -37	17 12.98 18 36.69 41 53.69 53 24.67 07 00.29 32 47.50	2.46 2.46 2.39 2.21	+15 -31 -96 -70 -29 -226

* No. 594 : *Dschubba*, Anuradha No. 597 : *Graffias*, Mag. 2.9, 5.1 No. 616 : *Antares* , Jyestha, Mag. 0.9 to 1.8. No. 625 : *Atria*. No. 652 : *Schaula* , Mula. No. 656 : *Ras Alhague*.

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR	Star	Mag.	Spec- tral Type	Rig	ght As	scension	Annual Variation	Annual Proper	De	clination	Annual Variation	1
658 654 663 660 665 667	6553 6588 6580 6603	ξ Serpentis θ Scorpii ι Herculis κ Scorpii β Ophiuchi μ Herculis	3.54 1.87 3.80 2.41 2.77 3.42	A9IIIpSr F1 II B3 IV B1.5 III K2 III G5IV	h 17 17 17 17	m 38 38 40 43 44 47	s 45.7 47.6 02.7 54.5 29.2 15.7	s 3.439 4.318 1.697 4.156 2.966 2.351	-	-15 -43 +45 -39 +4 +27	24 31.53 00 35.04 59 46.76 02 18.73 33 36.83 42 50.64	1.85 1.74 1.43 1.20	motion " (0.001) -58 -2 +5 -27 +159 -752
661 668 666 669 671 672	6582 6629 6615 6630 6688	η Pavonis γ Ophiuchi ι' Scorpii G Scorpii ξ Draconis θ Herculis	3.62 3.75 3.03 3.21 3.75 3.86	K2II A0 V F2 I ae K2 III K2 III K1 IIaCn+	17 17 17 17 17	47 48 49 51 53 56	44.9 55.3 01.2 15.3 53.0 57.4	5.900 3.011 4.200 4.087 1.040 2.060	-21 -15 -0 +41 +114 +4	-64 +2 -40 -37	43 35.40 42 58.49 07 03.90 02 52.10	-1.13 1.04 0 0.97 0 0.73 0 0.45	-54 -74 -8 +33 +80 +6
676 674 673 677 679 1471	6703 6698 6714 6746	γ Draconis* ξ Herculis ν Ophiuchi 67 Ophiuchi γ Sagittarii θ Arae	2.23 3.70 3.34 3.97 2.99 3.66	K5 III G8 III G 9 III B5 Ib K1III B2 Ib	17 17 18 18 18 18	57 58 00 01 07 08	05.0 33.7 09.3 40.4 07.5 13.6	1.396 2.334 3.305 3.007 3.855 4.671	-8 +64 -4 +1 -41 -10	+51 +29 -9 +2 -30 -50	29 14.10 14 48.82 46 28.22 55 55.53 25 18.90 05 16.54	0.14 -0.10 +0.14 0.44	-19 -17 -116 -8 -185 -14
680 681 682 683 695 687	6779 6812 6832 6927	72 Ophiuchi σ Herculis μ Sagittarii η Sagittarii χ Draconis δ Sagittarii*	3.73 3.83 3.86 3.11 3.57 2.70	A4IVs B9.5V B2III M3.5 III F7 V K3IIIa	18 18 18 18 18 18	08 08 14 19 20 22	19.3 20.6 59.4 00.9 41.1 18.4	2.846 2.342 3.589 4.059 -1.088 3.840	-41 +1 +1 -106 +1200 +27	+9 +28 -21 -36 +72 -29	34 05.55 45 59.44 03 06.0 45 12.7 44 03.15 49 28.56	0.74 1.31 1.49 1.46	+80 +10 +1 -167 -346 -28
688 690 689 691 692 697	6895 6879 6897 6913	η Serpentis 109 Herculis ε Sagittarii* α Telescopii λ Sagittarii θ Coronae Aust.	3.26 3.84 1.85 3.51 2.81 4.64	K0 III-IV K2 III B9.5III B3 IV K0IV G8 III	18 18 18 18 18 18	22 24 25 28 29 34	22.3 34.3 31.9 29.5 14.1 57.9	3.106 2.559 3.981 4.445 3.702 4.280	-364 +141 -31 -15 -32 +28	-2 +21 -34 -45 -25 -42	53 31.0 46 49.3 22 22.8 57 17.9 24 30.8 17 44.4	1.90 2.10 2.43 2.36	-701 -242 -124 -54 -185 -22
1482 699 1487 1489 705 706	7001 7039 7063 7106	α Scuti α Lyrae* φ Sagittarii β Scuti β Lyrae* σ Sagittarii*	3.85 0.03 3.17 4.22 3.45 2.02	K3 III A0 V B8 III G4 IIa B7 Ve+ B2V	18 18 18 18 18	36 37 46 48 50 56	19.4 38.0 56.2 15.7 50.2 32.1	3.265 2.033 3.745 3.183 2.217 3.716	-10 +172 +40 -3 +3 +10	-8 +38 -26 -4 +33 -26	13 41.17 48 13.59 58 04.38 43 27.77 23 15.32 16 10.12	3.56 4.08 4.17 4.41	-312 +287 +1 -16 -3 -54
710 713 712 716 717 1496	7178 7176 7235 7236	ξ ² Sagittarii γ Lyrae ε Aquilae ζ Aquilae λ Aquilae τ Sagittarii	3.51 3.24 4.02 2.99 3.44 3.32	G9II/III B9 III K1 III A0 Vn B9Vn K1III	18 18 19 19 19	58 59 00 06 07 08	57.1 42.7 33.2 21.2 20.2 13.1	3.576 2.246 2.724 2.758 3.183 3.740	+24 -2 -35 -3 -11 -40	-21 +32 +15 +13 -4 -27	04 40.74 43 07.64 05 50.79 53 42.99 51 00.93 38 19.30	5.16 5.16 5.63 5.71	-12 +2 -74 -96 -90 -251

No. 676 : Eltanin. No. 687 : Purvasadha-1.

No. 689 : Kaus Australis , Purvasadha-2.

No. 699 : *Vega* , Abhijit. No. 705 : Sheliak Mag. 3.3 to 4.3. No. 706 : *Nunki* , Uttarasadha.

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR No.	Star	Mag.	Spec- tral Type	Rig	tht As	cension	Annual Variation	Annual Proper motion	Dec	clina	tion	Annual Variation	Annual Proper motion
720 723 726 730 1508 733	7264 7310 7328 7377 7405	π Sagittarii δ Draconis κ Cygni δ Aquilae α Vulpeculae ι Cygni	2.89 3.07 3.77 3.36 4.44 3.79	F2 II/III G9 III G9 III F0IV M0III A5V	h 19 19 19 19 19	m 10 12 17 26 29 30	s 58.9 33.3 34.5 31.9 33.5 13.3	3.564 -0.004 1.384 3.024 2.498 1.511	s (0.0001) 0 +164 +66 +171 -92 +22	-20 +67 +53 +3 +24 +51	41 24 09 42	21.60 51.38 25.13 25.47 27.28 27.09	+6.07 6.33 6.78 7.47 7.53 7.82	(0.001) -35 +93 +125 +83 -106 +130
732 1513 741 743 745 746	7488 7525 7536 7557	β Cygni*p β Sagittae γ Aquilae δ Sagittae α Aquilae* η Aquilae	3.08 4.37 2.72 3.82 0.77 3.90V.	K3II+ G8III a K3 II M2 II+ A7 V F6Iab	19 19 19 19 19	31 41 47 48 51 53	32.9 58.2 14.1 18.1 47.0 31.0	2.421 2.695 2.852 2.676 2.926 3.054	+2 +7 +12 +5 +362 +7	+28 +17 +10 +18 +8 +1	31 39 35 55	13.90 29.18 52.26 09.79 25.71 34.69	+7.79 8.59 9.04 9.13 9.78 9.52	-2 -32 -2 +8 +387 -7
749 752 751 754 756 757	7635 7623 7665 7710	β Aquilae* γ Sagittae θ' Sagittarii δ Pavonis θ Aquilae 31 ο ΄ Cygni	3.71 3.47 4.37 3.56 3.23 3.79	G9.5IV M0 III B3 IV G8 IV B9.5 III+ K2II+	19 19 20 20 20 20	56 59 01 10 12 14	19.2 40.1 04.0 43.0 21.0 16.7	2.946 2.669 3.890 5.816 3.061 1.890	+33 +46 +5 +1997 +26 +4	-0	32 13 07 52	33.32 56.49 09.22 38.25 33.69 15.63	+9.26 10.02 10.08 9.70 10.95 11.08	-482 +24 -26 -1126 +4 +3
761 762 765 764 768 (771)	7776 7796 7790 7852	α Capricorni* β Capricorni γ Cygni α Pavonis ε Delphini β Delphini*m	3.57 3.08 2.20 1.94 4.03 3.64	G8.5III-IV K0:II:+ F8 I ab B2IV B6 III F5 IV	20 20 20 20 20 20 20	19 22 22 27 34 38	11.4 09.7 57.9 15.4 11.5 30.6	3.323 3.364 2.155 4.703 2.866 2.814	+44 +29 +4 +9 +9	-12 -14 +40 -56 +11 +14	42 19 40 22	47.72 54.97 23.61 03.16 26.72 02.72	+11.44 11.65 11.71 11.92 12.47 12.73	+4 +2 0 -89 -22 -48
769 774 777 778 783 775	7906 7924 7928 7957	α Indi α Delphini* α Cygni* δ Delphini η Cephei β Pavonis	3.11 3.77 1.25 4.43 3.43 3.42	K0 III-IV B9 IV A2 Iae A7IIIp K0 IV A7III	20 20 20 20 20 20 20 20	39 40 42 44 45 46	00.0 35.4 07.9 25.0 42.2 46.8	4.191 2.787 2.047 2.801 1.210 5.322	+52 +46 +3 -13 +120 -76	+61	59 21 08 55	06.33 07.50 15.90 57.00 39.13 08.00	+12.88 12.92 13.03 13.13 14.08 13.34	+66 -2 +2 -43 +819 +11
780 1541 781 1547 785 1550	7948 7950 7990 7986	ε Cygni γ Delphini sq ε Aquarii μ Aquarii β Indi γ Microscopii	2.46 4.27 3.77 4.73 3.65 4.67	K0 III K1 IV A1.5V A3m K1 II G6III	20 20 20 20 20 20 21	47 47 48 53 56 02	02.5 36.6 47.0 45.5 23.8 32.6	2.430 2.784 3.242 3.230 4.636 3.663	+286 -22 +24 +30 +21 -2	+34 +16 -9 -8 -58 -32	11 25 54 22	52.74 57.16 10.21 18.76 30.64 34.87	+13.68 13.19 13.43 13.75 13.92 14.33	+329 -197 -34 -30 -26 +5
792 797 800 803 806	8115 8131 8162	ξ Cygni ζ Cygni α Equulei α Cephei* ζ Capricorni	3.72 3.20 3.92 2.44 3.74	G8III G0III+ A7IV	21 21 21 21 21 21	05 13 16 19 27	40.7 48.6 50.9 04.0 50.0	2.186 2.557 2.998 1.427 3.413	+8 +1 +39 +219 +1	+44 +30 +5 +62 -22	18 20 40	37.47 42.89 00.93 22.48 17.39	+14.52 14.94 15.09 15.35 +15.81	+1 -56 -88 +50 +23

No. 732 : Albireo ., Mag. f. 5.4.

No. 745 : *Altair* , Sravana. No. 749 : *Alshain* . No. 761 : Giedi or Algedi.

No. 771: Rotanev, Dhanistha-1. No. 774 : Saulocin, Dhanistha-2. No. 777 : Deneb. No. 803 : Alderamin.

FOR JULY 2^d.125 TERRESTRIAL TIME (The Annual Variations are for the middle of the year)

Cat. No. FK5	BS =HR No.	Star	Mag.	Spec- tral Type	Rig	ght Ascens	sion	Annual Variation	Annual Proper motion	Dec	clination	Annual Variation	Annual Proper motion
809 808 1569 812 810 815	8232 8264 8278 8254	β Cephei β Aquarii* ξ Aquarii γ Capricorni ν Octantis ε Pegasi*	3.23 2.91 4.69 3.68 3.76 2.34	B2 IIIev G0 lb A7 V A7 mp K1 III K2 lb	h 21 21 21 21 21 21	28 5 32 3 38 5 41 1 43 4	s 55.0 38.2 50.5 3.4 10.7 1.6	s 0.747 3.154 3.188 3.315 6.411 2.947	s (0.0001) +21 +14 +78 +132 +140 +21	+70 -5 -7 -16 -77 +9	39 03.39 28 48.18 45 40.92 34 07.64 17 49.91 58 11.22	+15.85 16.03 16.33 16.45 16.36 16.67	" (0.001) +7 -8 -25 -23 -240 -1
819 822 827 831 829 834	8353 8414 8430 8425	δ Capricorni γ Gruis α Aquarii* ι Pegasi α Gruis* θ Pegasi	2.87 3.01 2.96 3.76 1.74 3.53	kA5hF0mF2III B8III G2 Ib F5 V B6V A1Va	21 21 22 22 22 22 22	55 0 06 5 07 5 09 3	0.2 09.8 50.0 58.0 30.9 4.0	3.303 3.611 3.072 2.799 3.749 3.026	+183 +86 +13 +220 +126 +185	-46	02 00.15 16 03.20 24 10.33 26 45.17 51 39.18 17 57.85	+16.52 17.12 17.64 17.72 17.61 17.85	-296 -21 -10 +25 -151 +27
836 841 842 846 848 849	8502 8518 8556 8585	ζ Cephei α Tucanae γ Aquarii δ' Gruis α Lacertae v Aquarii	3.35 2.86 3.84 3.97 3.77 5.20	K1.5 Iab K3 III A0V G7III A1 V F7 V	22 22 22 22 22 22 22	19 5 22 4 30 2 32 0	34.1 53.3 12.9 29.2 18.4 18.7	2.091 4.051 3.096 3.559 2.486 3.272	+19 -96 +88 +26 +144 +158	-43	18 10.02 09 23.72 17 00.29 23 24.73 23 18.19 36 09.42	+17.84 18.12 18.27 18.53 18.61 18.56	+4 -43 +7 -5 +19
850 855 856 857 860 863	8634 8636 8650 8675	η Aquarii ζ Pegasi β Gruis η Pegasi ε Gruis ι Cephei	4.02 3.40 2.10 2.94 3.49 3.52	B9 IV-V:n B8V M5 III G2II-III+ A2IVnSB2 K0III	22 22 22	42 2 43 5 43 5 49 4	24.5 29.1 53.0 58.0 17.0 24.9	3.080 2.995 3.552 2.822 3.588 2.154	+61 +55 +133 +11 +115 -108	+30 -51	12 40.65 56 19.88 46 36.80 19 44.18 12 30.80 18 02.30	+18.67 18.89 18.94 18.92 19.04 19.00	-56 -12 -8 -25 -71 -125
861 862 864 866 867 869	8684 8698 8709 8728	τ Aquarii μ Pegasi λ Aquarii* δ Aquarii α PsA* ο Andromedae	4.01 3.48 3.74 3.27 1.16 3.62	K5III G8 III M2 III A3 V A4 V B6III pe+	22 22 22 22 22 22 23	50 5 53 4 55 4 58 4	10.5 59.7 11.0 14.2 16.8 52.1	3.170 2.904 3.126 3.177 3.300 2.776	-8 +108 +8 -28 +255 +20	-7 -15 -29	29 30.82 42 36.97 28 12.33 42 40.92 30 47.45 26 11.33	+19.09 19.10 19.25 19.23 19.17 19.42	-38 -42 +37 -25 -164 -6
870 871 873 878 890 893	8781 8812 8852 8961	β Pegasi* α Pegasi* 88 Aquarii γ Piscium λ Andromedae γ Cephei	2.42 2.49 3.66 3.69 3.82v 3.21	M2.5 II-III B9III K1III G9 III G8 III K1 IV	23 23 23 23 23 23 23	05 4 10 3 18 1 38 3	16.3 17.0 12.2 13.7 14.5 12.4	2.919 2.994 3.189 3.112 2.959 2.523	+143 +44 +40 +509 +157 -212	-21 +3 +46	11 39.70 18 57.24 03 38.87 23 40.42 34 09.78 44 49.16	+19.60 19.44 19.61 19.73 19.53 20.12	+138 -42 +31 +17 -421 +151
902	9072	ω Piscium	4.01	F4V	0	00 2	22.0	3.086	+103	+6	58 36.33	+19.93	-115

BS = Bright Star Catalogue

HR = Havard Revised Catalogue FK5 = Fifth Fundamental Catalogue

No. 808: Sadalsuud.

No. 815 : Enif . Mag. 0.7 to 3.5. No. 827 : Sadalmelik. No. 829 : Al Nair.

No. 864 : Satabhisaj. No. 867 : Fomalhaut .

No. 870 : Scheat , Purva Bhadrapada-2. No. 871 : Markab , Purva Bhadrapada-1.

Nan	ne	γ Pegasi						FOR α		rerici		IXI	L I	IIVIL	βС	Ceti				βА	ndr	omed	ae		
Mag. S	Spect.	2.83 B2 IV				2	2.39			(0 III	[2	2.04	•		O III	[2	2.06			10 II	I		
117	r	R	Right Decli			inat	ion	F	Right	:	Dec	linati	ion	F	Right		Dec	linati	ion	R	light		Dec	linat	ion
U.T	١.	Asc	ensi	on					ensi						ensi						ensi				
		h	m	S	0	,	"	h	m	S	0	,	"	h	m	S	0	,	"	h	m	S	0	•	"
Jan.	1	0	14	15	+15	17	38	0	27	15	-42	12	11	0	44	35	-17	52	51	1	10	51	+35	43	38
	11	0	14	15	15	17	37	0	27	15	42	12	11	0	44	34	17	52	52	1	10	51	35	43	38
	21	0	14	15	15	17	36	0	27	15	42	12	11	0	44	34	17	52	52	1	10	50	35	43	37
	31	0	14	15	15	17	35	0	27	15	42	12	10	0	44	34	17	52	52	1	10	50	35	43	36
Feb.	10	0	14	15	15	17	34	0	27	14	42	12	08	0	44	34	17	52	52	1	10	50	35	43	35
	20	0	14	15	15	17	33	0	27	14	42	12	07	0	44	34	17	52	51	1	10	50	35	43	33
Mar.	1	0	14	14	+15	17	32	0	27	14	-42	12	05	0	44	34	-17	52	51	1	10	50	+35	43	31
	11	0	14	14	15	17	32	0	27	14	42	12	02	0	44	34	17	52	49	1	10	50	35	43	30
	21	0	14	14	15	17	31	0	27	14	42	12	01	0	44	34	17	52	48	1	10	50	35	43	28
	31	0	14	15	15	17	30	0	27	14	42	11	57	0	44	34	17	52	47	1	10	50	35	43	27
Apr.	10	0	14	15	15	17	30	0	27	14	42	11	54	0	44	34	17	52	45	1	10	50	35	43	25
	20	0	14	15	15	17	31	0	27	14	42	11	51	0	44	34	17	52	43	1	10	50	35	43	24
	30	0	14	15	+15	17	31	0	27	15	-42	11	48	0	44	34	-17	52	40	1	10	50	+35	43	23
May	10	0	14	15	15	17	32	0	27	15	42	11	45	0	44	35	17	52	38	1	10	50	35	43	23
	20	0	14	15	15	17	33	0	27	15	42	11	42	0	44	35	17	52	36	1	10	50	35	43	23
	30	0	14	16	15	17	34	0	27	16	42	11	39	0	44	35	17	52	33	1	10	51	35	43	23
June	9	0	14	16	15	17	36	0	27	16	42	11	36	0	44	35	17	52	31	1	10	51	35	43	24
	19	0	14	16	15	17	38	0	27	16	42	11	34	0	44	36	17	52	29	1	10	51	35	43	25
	29	0	14	17	+15	17	40	0	27	17	-42	11	32	0	44	36	-17	52	26	1	10	52	+35	43	26
July	9	0	14	17	15	17	42	0	27	17	42	11	31	0	44	36	17	52	24	1	10	52	35	43	28
	19	0	14	17	15	17	44	0	27	17	42	11	30	0	44	37	17	52	23	1	10	53	35	43	30
	29	0	14	18	15	17	46	0	27	18	42	11	30	0	44	37	17	52	22	1	10	53	35	43	32
Aug.	8	0	14	18	15	17	48	0	27	18	42	11	29	0	44	37	17	52	20	1	10	53	35	43	34
	18	0	14	18	15	17	51	0	27	18	42	11	30	0	44	37	17	52	20	1	10	54	35	43	37
	28	0	14	18	+15	17	52	0	27	19	-42	11	31	0	44	38	-17	52	19	1	10	54		43	39
Sept.	7	0	14	18	15	17	54	0	27	19	42	11	32	0	44	38	17	52	20	1	10	54	35	43	41
	17	0	14	19	15	17	56	0	27	19	42	11	34	0	44	38	17	52	20	1	10	54	35	43	44
0 /	27	0	14	19	15	17	57	0	27	19	42	11	36	0	44	38	17	52	20	1	10	54	35	43	46
Oct.	7 17	0	14 14	19 19	15 15	17 17	58 59	0	27 27	19 19	42 42	11 11	38 40	0	44 44	38 38	17 17	52 52	22 23	1	10 10	54 54	35 35	43 43	48 50
Nov.	27	0	14		+15	17	60	0	27		-42 42	11	42	0	44		-17	52	24	1	10		+35	43	52
INOV.	6	0	14	19	15	17	60	0	27	19	42	11	45	0	44	38	17	52	25	1	10	55	35	43	54
	16	0	14	19	15	17	60	0	27	19	42	11	47	0	44	38	17	52	27	1	10	54		43	55
Dec	26	0	14	18	15	18	00	0	27	19	42	11	48	0	44	38	17	52	28	1	10	54	35	43	56
Dec.	6 16	0	14 14	18 18	15 15	17 17	60 59	0	27 27	19 18	42 42	11 11	50 51	0	44 44	38 38	17 17	52 52	29 30	1 1	10 10	54 54		43 43	57 58
	26	0	14	18	+15	17	59	0	27	18	-42	11	51	0	44	38	-17	52	31	1	10	5/1	+35	43	58
	36																								
	30	0	14	10	+15	1 /	30	U	41	10	-42	11	31	U	44	30	-17	34	31	1	10	54	+35	43	26

Nan	ne	ζ Ceti				101	νC	eti					αΑι	rietis					αΟ	Ceti					
Mag. S	Spect.	3	3.73	-		.0 III	[4	4.00			7111		2	2.00			2 III	[2	2.53			.5II	Ia
117	r	F	Right		Decl	linati	ion	F	Right		Dec	linat	ion	F	Right		Dec	linat	ion	F	light		Dec	linat	ion
U.T	L.		ensi					Aso	ensi	on				Asc	ensi	on				Asc	ensi	on			
		h	m	S	0	,	"	h	m	S	0	,	"	h	m	S	0	,	"	h	m	S	0	1	"
Jan.	1	1	52	26	-10	14	24	2	00	56	-20	59	08	2	08	18	+23	33	22	3	03	19	+4	09	55
	11	1	52	26	10	14	25	2	00	56	20	59	09	2	08	18	23	33	21	3	03	19	4	09	55
	21	1	52	26	10	14	25	2	00	56	20	59	10	2	08	18	23	33	21	3	03	19	4	09	54
	31	1	52	26	10	14	25	2	00	56	20	59	10	2	08	17	23	33	21	3	03	19	4	09	54
Feb.	10	1	52	26	10	14	25	2	00	56	20	59	10	2	08	17	23	33	20	3	03	19	4	09	53
	20	1	52	26	10	14	25	2	00	56	20	59	09	2	08	17	23	33	19	3	03	19	4	09	53
Mar.	1	1	52	26	-10	14	25	2	00	56	-20	59	09	2	08	17	+23	33	18	3	03	19	+4	09	53
	11	1	52	26	10	14	25	2	00	55	20	59	07	2	08	17	23	33	17	3	03	19	4	09	53
	21	1	52	25	10	14	24	2	00	55	20	59	06	2	08	17	23	33	16	3	03	18	4	09	53
	31	1	52	25	10	14	23	2	00	55	20	59	05	2	08	17	23	33	15	3	03	18	4	09	53
Apr.	10	1	52	25	10	14	21	2	00	55	20	59	03	2	08	17	23	33	15	3	03	18	4	09	53
- F	20	1	52	25	10	14	20	2	00	55	20	59	00	2	08	17	23	33	15	3	03	18	4	09	54
	30	1	52	26	-10	14	18	2	00	55	-20	58	58	2	08		+23	33	14	3	03	18	+4	09	55
May	10	1	52	26	10	14	16	2	00	56	20	58	56	2	08	17	23	33	14	3	03	18	4	09	56
	20	1	52	26	10	14	14	2	00	56	20	58	53	2	08	17	23	33	14	3	03	18	4	09	57
_	30	1	52	26	10	14	12	2	00	56	20	58	50	2	08	17	23	33	15	3	03	19	4	09	59
June	9	1	52	26	10	14	09	2	00	56	20	58	48	2	08	18	23	33	16	3	03	19	4	09	60
	19	1	52	27	10	14	07	2	00	56	20	58	45	2	08	18	23	33	17	3	03	19	4	10	02
	29	1	52	27	-10	14	05	2	00	57	-20	58	43	2	08	18	+23	33	18	3	03	19	+4	10	03
July	9	1	52	27	10	14	03	2	00	57	20	58	40	2	08	19	23	33	20	3	03	20	4	10	05
	19	1	52	28	10	14	01	2	00	57	20	58	39	2	08	19	23	33	21	3	03	20	4	10	07
	29	1	52	28	10	14	01	2	00	58	20	58	37	2	08	19	23	33	23	3	03	20	4	10	09
Aug.	8	1	52	28	10	13	58	2	00	58	20	58	36	2	08	20	23	33	25	3	03	21	4	10	10
	18	1	52	28	10	13	56	2	00	58	20	58	35	2	08	20	23	33	27	3	03	21	4	10	12
	28	1	52	29	-10	13	56	2	00	59	-20	58	34	2	08	20	+23	33	29	3	03	21	+4	10	13
Sept.	7	1	52	29	10	13	55	2	00	59	20	58	34	2	08	20	23	33	30	3	03	21	4	10	14
1	17	1	52	29	10	13	55	2	00	59	20	58	34	2	08	21	23	33	32	3	03	22	4	10	15
	27	1	52	29	10	13	55	2	00	59	20	58	35	2	08	21	23	33	34	3	03	22	4	10	15
Oct.	7	1	52	29	10	13	56	2	00	59	20	58	36	2	08	21	23	33	35	3	03	22	4	10	15
	17	1	52	30	10	13	56	2	00	60	20	58	38	2	08	21	23	33	36	3	03	22	4	10	16
	27	1	52	30	-10	13	57	2	00	60	-20	58	39	2	08	2.1	+23	33	37	3	03	22	+4	10	15
Nov.	6		52		10				00	60		58	41	2				33			03			10	15
	16	1		30	10	14	00	2	00	60	20	58	43	2	08	21	23	33	39	3	03	23	4	10	14
	26	1	52	30	10	14	01	2	00	60	20	58	44	2	08	21	23	33	40	3	03	23	4	10	14
Dec.	6	1		30	10	14		2	00	60	20	58	46	2	08	21	23	33	40	3	03	23	4	10	13
	16	1		30	10	14		2		60	20	58	47	2	08	21	23	33	40	3	03	23	4	10	13
	26	1	52	29	-10	14	04	2	00	50	-20	58	40	2	08	21	+23	33	40	3	03	23	+4	10	12
	36				-10			2			-20						+23		40				+4		11
L	30	1	32	29	-10	14	US		UU	39	-20	20	49		00	41	⊤2 3	23	40	3	US	23	-74	10	11

Nan	ne	η Tauri							FOR	αΤ	<u>TERF</u> auri	CES I	IXIZ	LL I.	IME 1	3 Eri	dani					v Or	ionis		
Mag. S	pect.	2.87 B7 III					(0.85			.5 III	[2	2.79			(4 III	I		1.64			32 II	I	
117	,	Right Declination				F	Right		Dec	linati	ion	F	Right		Dec	linat	ion	F	Right		Dec	linat	tion		
U.T		Ascension h m s ° ' "				Aso	ensi	on				Asc	ensi	on				Aso	censi	on					
		h	11 111 5			h	m	S	0	'	=	h	m	S	0	'	=	h	m	S	0	'	"		
Jan.	1	3	48	41	+24	09	55	4	37	04	+16	32	50	5	08	50	-5	03	48	5	26	13	+6	21	55
	11	3	48	41	24	09	55	4	37	04	16	32	50	5	08	50	5	03	49	5	26	13	6	21	54
	21	3	48	40	24	09	55	4	37	04	16	32	50	5	08	50	5	03	50	5	26	13	6	21	54
	31	3	48	40	24	09	55	4	37	04	16	32	50	5	08	50	5	03	51	5	26	13	6	21	53
Feb.	10	3	48	40	24	09	55	4	37	04	16	32	50	5	08	50	5	03	52	5	26	12	6	21	53
	20	3	48	40	24	09	55	4	37	04	16	32	49	5	08	50	5	03	52	5	26	12	6	21	52
Mar.	1	3	48	40	+24	09	54	4	37	04	+16	32	49	5	08	50	-5	03	53	5	26	12	+6	21	52
	11	3	48	40	24	09	54	4	37	04	16	32	49	5	08	50	5	03	53	5	26	12	6	21	52
	21	3	48	40	24	09	54	4	37	03	16	32	49	5	08	49	5	03	53	5	26	12	6	21	52
	31	3	48	39	24	09	53	4	37	03	16	32	49	5	08	49	5	03	52	5	26	12	6	21	52
Apr.	10	3	48	39	24	09	52	4	37	03	16	32	49	5	08	49	5	03	52	5	26	11	6	21	53
	20	3	48	39	24	09	52	4	37	03	16	32	49	5	08	49	5	03	51	5	26	11	6	21	53
	30	3	48	39	+24	09	52	4	37	03	+16	32	49	5	08	49	-5	03	50	5	26	11	+6	21	53
May	10	3	48	39	24	09	51	4	37	03	16	32	49	5	08	49	5	03	49	5	26	11	6	21	54
	20	3	48	39	24	09	51	4	37	03	16	32	49	5	08	49	5	03	47	5	26	11	6	21	55
T.	30	3	48	39	24	09	52	4	37	03	16	32	50	5	08	49	5	03	46	5	26	11	6	21	56
June	9	3	48	40	24	09	52	4	37	03	16	32	50	5	08	49	5	03	44	5	26	11	6	21	57
	19	3	48	40	24	09	52	4	37	03	16	32	51	5	08	49	5	03	42	5	26	11	6	21	58
	29	3	48	40	+24	09	53	4	37	04	+16	32	52	5	08	49	-5	03	40	5	26	12	+6	21	59
July	9	3	48	40	24	09	54	4	37	04	16	32	53	5	08	50	5	03	38	5	26	12	6	22	01
	19	3	48	41	24	09	55	4	37	04	16	32	54	5	08	50	5	03	37	5	26	12	6	22	02
	29	3	48	41	24	09	56	4	37	04	16	32	55	5	08	50	5	03	35	5	26	12	6	22	03
Aug.	8	3	48	41	24	09	57	4	37	05	16	32	56	5	08	50	5	03	33	5	26	12	6	22	04
	18	3	48	42	24	09	58	4	37	05	16	32	57	5	08	51	5	03	32	5	26	13	6	22	05
	28	3	48	42	+24	09	59	4	37	05	+16	32	58	5	08	51	-5	03	31	5	26	13	+6	22	06
Sept.	7	3	48	42	24	10	01	4	37	06	16	32	58	5	08	51	5	03	30	5	26	13	6	22	07
	17	3	48	43	24	10	02	4	37	06	16	32	59	5	08	51	5	03	29	5	26	14	6	22	07
	27	3	48	43	24	10	03	4	37	06	16	32	60	5	08	52	5	03	29	5	26	14	6	22	07
Oct.	7	3	48	43	24	10	04	4	37	06	16	32	60	5	08	52	5	03	30	5	26	14	6	22	07
	17	3	48	43	24	10	05	4	37	07	16	33	00	5	08	52	5	03	30	5	26	14	6	22	07
	27	3	48	44	+24	10	06	4	37	07	+16	33	01	5	08	52	-5	03	31	5	26	15	+6	22	07
Nov.	6	3	48	44	24	10	06	4	37	07	16	33	01	5	08	53	5	03	32	5	26	15	6	22	06
	16	3	48	44	24	10	07	4	37	07	16	33	00	5	08	53	5	03	34	5	26	15	6	22	05
	26	3	48	44	24	10	07	4	37	08	16	33	01	5	08	53	5	03	35	5	26	15	6	22	04
Dec.	6	3	48	44	24	10		4	37	08	16	33	00	5	08	53	5	03	37	5	26	16	6	22	03
	16	3	48	44	24	10	08	4	37	08	16	33	00	5	08	53	5	03	38	5	26	16	6	22	02
	26	3	48	44	+24	10	08	4	37	08	+16	32	60	5	08	53	-5	03	40	5	26	16	+6	22	01
	36	3	48	44	+24	10	09	4	37	08	+16	32	60	5	08	53	-5	03	41	5	26	16	+6	22	01

Nan	ne	β Leporis						ı Ori	onis				α	Colı	ımba	е			1	c Or	ionis				
Mag. S	Spect.	2.84 G5 II				2	2.77			9 III	[2	2.64			5 Ive		2	2.06		В	0Iał)		
***		Right Declina			linati	ion	F	Right		Dec	linati	ion	F	Right		Dec	linat	ion	F	light		Dec	linat	ion	
U.7	Ι.		Ascension						ensi						ensi						ensi				
		h	m	S	0	,	"	h	m	S	0	,	"	h	m	S	o	'	"	h	m	S	0	'	"
Jan.	1	5	29	07	-20	44	46	5	36	25	-5	53	57	5	40	23	-34	03	58	5	48	43	-9	39	53
	11	5	29	07	20	44	49	5	36	25	5	53	59	5	40	23	34	04	01	5	48	43	9	39	55
	21	5	29	07	20	44	50	5	36	25	5	54	00	5	40	23	34	04	03	5	48	43	9	39	57
	31	5	29	07	20	44	52	5	36	25	5	54	01	5	40	23	34	04	05	5	48	43	9	39	58
Feb.	10	5	29	07	20	44	53	5	36	25	5	54	02	5	40	23	34	04	07	5	48	43	9	39	59
	20	5	29	06	20	44	54	5	36	25	5	54	03	5	40	23	34	04	08	5	48	43	9	40	00
Mar.	1	5	29	06	-20	44	55	5	36	25	-5	54	03	5	40	23	-34	04	09	5	48	42	-9	40	00
	11	5	29	06	20	44	55	5	36	24	5	54	03	5	40	22	34	04	09	5	48	42	9	40	00
	21	5	29	06	20	44	55	5	36	24	5	54	03	5	40	22	34	04	09	5	48	42	9	40	00
	31	5	29	06	20	44	54	5	36	24	5	54	03	5	40	22	34	04	08	5	48	42	9	40	00
Apr.	10	5	29	05	20	44	53	5	36	24	5	54	02	5	40	22	34	04	07	5	48	42	9	40	01
	20	5	29	05	20	44	52	5	36	24	5	54	01	5	40	21	34	04	06	5	48	41	9	39	59
	30	5	29	05	-20	44	51	5	36	24	-5	54	00	5	40	21	-34	04	04	5	48	41	-9	39	58
May	10	5	29	05	20	44	49	5	36	24	5	54	01	5	40	21	34	04	02	5	48	41	9	39	57
	20	5	29	05	20	44	47	5	36	24	5	53	58	5	40	21	34	04	01	5	48	41	9	39	55
	30	5	29	05	20	44	45	5	36	24	5	53	56	5	40	21	34	03	57	5	48	41	9	39	53
June	9	5	29	05	20	44	42	5	36	24	5	53	55	5	40	21	34	03	54	5	48	41	9	39	51
	19	5	29	05	20	44	40	5	36	24	5	53	53	5	40	21	34	03	51	5	48	41	9	39	50
	29	5	29	05	-20	44	37	5	36	24	-5	53	51	5	40	21	-34	03	48	5	48	41	-9	39	47
July	9	5	29	05	20	44	35	5	36	24	5	53	49	5	40	21	34	03	45	5	48	42	9	39	45
	19	5	29	06	20	44	32	5	36	24	5	53	47	5	40	22	34	03	42	5	48	42	9	39	44
	29	5	29	06	20	44	30	5	36	25	5	53	46	5	40	22	34	03	40	5	48	42	9	39	42
Aug.	8	5	29	06	20	44	28	5	36	25	5	53	44	5	40	22	34	03	37	5	48	42	9	39	40
	18	5	29	06	20	44	26	5	36	25	5	53	43	5	40	22	34	03	35	5	48	43	9	39	39
	28	5	29	07	-20	44	25	5	36	25	-5	53	42	5	40	23	-34	03	34	5	48	43	-9	39	37
Sept.	7	5	29	07	20	44	24	5	36	26	5	53	41	5	40	23	34	03	33	5	48	43	9	39	37
	17	5	29	07	20	44	23	5	36	26	5	53	40	5	40	23	34	03	32	5	48	43	9	39	36
	27	5	29	08	20	44	24	5	36	26	5	53	40	5	40	24	34	03	32	5	48	44	9	39	36
Oct.	7	5	29	08	20	44	24	5	36	26	5	53	41	5	40	24	34	03	33	5	48	44	9	39	36
	17	5	29	08	20	44	25	5	36	27	5	53	41	5	40	24	34	03	34	5	48	44	9	39	37
	27	5	29	08	-20	44	26	5	36	27	-5	53	42	5	40	25	-34	03	35	5	48	45	-9	39	38
Nov.	6	5			20				36		5		43				34				48			39	
	16	5	29	09	20	44	30	5	36	27	5	53	45	5	40	25	34	03	40	5	48	45	9	39	41
	26	5	29	09	20	44	32	5	36	28	5	53	46	5	40	25	34	03	43	5	48	45	9	39	43
Dec.	6	5	29	09	20	44	35	5	36	28	5	53	48	5	40	25	34	03	46	5	48	45	9	39	45
	16	5	29	09	20	44	37	5	36	28	5	53	50	5	40	26	34	03	49	5	48	46	9	39	47
	26	5			-20		40		36			53					-34		52		48	46	-9	39	48
	36	5	29	09	-20	44	42	5	36	28	-5	53	53	5	40	26	-34	03	54	5	48	46	-9	39	50

Nar	me			v Or	ionis				ror rc		Majo		1017	11.		, Ca	rinae				~ (lam:	nor	m	\neg
Mag. S		0.7	0 .1 - 1			[2]ab	,	,	ر ک 3.02	ams	,	1115 2.5V	,	. 1	0.72	ı Cd		FOII		1	γC 1.93	Jem1	inorui A	m .0 IV	,
iviag.	эресі.		Right		Dec		_		Right			linati	_		light		Dec		ion		light		Dec		
U.	Т.		ensi		Dec	iiiati	1011		censi		Dec	iiiai	1011		ensi		Dec	maı	1011		ensi		Dec	ımaı	1011
		-			0	-	"				0		"				0		"	_			0	-	- "
T		h	m	S		2.4		h	m	S		0.2		h	m	S		40		h	m	S			47
Jan.	1	5	56	16	+7	24	30	6	21	36	+30	03	10	6	24	26	-52	42	28	6	38	52	+16	22	47
	11	5	56	16	7	24	29	6	21	36	30	03	10	6	24	26	52	42	32	6	38	52	16	22	47
	21	5	56	16	7	24	29	6	21	36	30	03	11	6	24	26	52	42	35	6	38	52	16	22	47
	31	5	56	16	7	24	28	6	21	36	30	03	12	6	24	25	52	42	37	6	38	52	16	22	47
Feb.	10	5	56	16	7	24	28	6	21	36	30	03	12	6	24	25	52	42	40	6	38	52	16	22	47
	20	5	56	15	7	24	28	6	21	36	30	03	13	6	24	25	52	42	42	6	38	52	16	22	47
Mar.	1	5	56	15	+7	24	28	6	21	36	+30	03	14	6	24	25	-52	42	43	6	38	52	+16	22	47
	11	5	56	15	7	24	28	6	21	36	30	03	14	6	24	24	52	42	44	6	38	52	16	22	47
	21	5	56	15	7	24	28	6	21	35	30	03	14	6	24	24	52	42	45	6	38	52	16	22	47
	31	5	56	15	7	24	28	6	21	35	30	03	14	6	24	24	52	42	45	6	38	52	16	22	47
Apr.	10	5	56	15	7	24	28	6	21	35	30	03	14	6	24	23	52	42	44	6	38	51	16	22	48
	20	5	56	14	7	24	28	6	21	35	30	03	14	6	24	23	52	42	43	6	38	51	16	22	48
	30	5	56	14	+7	24	29	6	21	35	+30	03	14	6	24	23	-52	42	42	6	38	51	+16	22	48
May	10	5	56	14	7	24	29	6	21	35	30	03	14	6	24	22	52	42	40	6	38	51	16	22	48
	20	5	56	14	7	24	30	6	21	35	30	03	13	6	24	22	52	42	37	6	38	51	16	22	49
	30	5	56	14	7	24	31	6	21	35	30	03	13	6	24	22	52	42	34	6	38	51	16	22	49
June	9	5	56	14	7	24	32	6	21	35	30	03	12	6	24	22	52	42	31	6	38	51	16	22	49
	19	5	56	14	7	24	33	6	21	35	30	03	12	6	24	22	52	42	28	6	38	51	16	22	49
	29	5	56	15	+7	24	34	6	21	35	+30	03	12	6	24	22	-52	42	25	6	38	51	+16	22	50
July	9	5	56	15	7	24	35	6	21	35	30	03	11	6	24	22	52	42	21	6	38	51	16	22	50
5 525	19	5	56	15	7	24	36	6	21	35	30	03	11	6	24	22	52	42	18	6	38	51	16	22	51
	29	5	56	15	7	24	37	6	21	35	30	03	11	6	24	22	52	42	15	6	38	52	16	22	51
Aug.	8	5	56	15	7	24	38	6	21	36	30	03	11	6	24	23	52	42	12	6	38	52	16	22	52
	18	5	56	16	7	24	39	6	21	36	30	03	11	6	24	23	52	42	10	6	38	52	16	22	52
	28	5	56	16	+7	24	39	6	21	36	+30	03	10	6	24	23	-52	42	08	6	38	52	+16	22	52
Sept.	7	5	56	16	7	24	40	6	21	37	30	03	10	6	24	24	52	42	06	6	38	53	16	22	52
Sept.	17	5	56	17	7	24	41	6	21	37	30	03	10	6	24	24	52	42	05	6	38	53	16	22	52
	27	5	56	17	7	24	41	6	21	37	30	03	10	6	24	24	52	42	05	6	38	53	16	22	52
Oct.	7	5	56	17	7	24	40	6	21	38	30	03	10	6	24	25	52	42	05	6	38	54	16	22	52
Oct.	17	5	56	17	7	24	40	6	21	38	30	03	10	6	24	25	52	42	06	6	38	54	16	22	51
		_			_					•	•										• •				
No	27	5	56	18	+7	24	40	6	21		+30	03	10	6	24	26	-52	42	07	6	38		+16	22	51
Nov.	6		56	18	7		39	6			30			6			52						16		50
	16	5	56	18	7	24	38	6	21	39	30	03	10	6	24	26	52	42	12	6	38	55	16	22	49
D.	26	5	56	18	7	24	37	6	21	39	30	03	10	6	24	26	52	42	15	6	38	55	16	22	49
Dec.	6 16	5 5	56 56	19 19	7 7	24 24	36 35	6	21 21	40 40	30 30	03 03	10 10	6	24 24	27 27	52 52	42 42	18 22	6	38 38	55 56	16 16	22 22	48 47
	10	5	20	-/	,		55			10	50	0.5		Ü			32			Ü	20	50	10		.,
	26	5	56	19	+7	24	34	6	21	40	+30	03	11	6	24	27	-52	42	25	6	38	56	+16	22	47
	36	5	56	19	+7	24	33	6	21	40	+30	03	11	6	24	27	-52	42	29	6	38	56	+16	22	47

 $FO\underline{R} \hspace{0.1cm} 0^h \hspace{0.1cm} \underline{TE}\underline{RRESTRIAL} \hspace{0.1cm} \underline{TIME}$

Nar	ne	α Canis Majoris A									Maj		ICIZ	LL I		anis	Mino	ris		(ı Ca	nis N	Ainor	is A	
Mag. S		-1.46 A1V						3.02	aiiis		33 Ia		2	2.90			8Ve).38			IV-		
			Right Declinati				ion		Right	:		linat			Right		Dec				Right		Dec		
U.T	Γ.		ensi						ensi						ensi						ensi				
		h	m	S	0	,	"	h	m	S	o	,	"	h	m	S	0	,	"	h	m	S	0	1	"
Jan.	1	6	46	02	-16	44	43	7	03	52	-23	51	49	7	28	14	+8	14	50	7	40	21	+5	10	19
	11	6	46	02	16	44	45	7	03	52	23	51	51	7	28	15	8	14	49	7	40	21	5	10	18
	21	6	46	02	16	44	47	7	03	52	23	51	54	7	28	15	8	14	48	7	40	21	5	10	17
	31	6	46	02	16	44	49	7	03	52	23	51	56	7	28	15	8	14	48	7	40	21	5	10	16
Feb.	10	6	46	02	16	44	50	7	03	52	23	51	58	7	28	15	8	14	47	7	40	21	5	10	15
	20	6	46	02	16	44	52	7	03	52	23	52	00	7	28	15	8	14	47	7	40	21	5	10	15
Mar.	1	6	46	02	-16	44	53	7	03	52	-23	52	01	7	28	14	+8	14	46	7	40	21	+5	10	15
	11	6	46	02	16	44	53	7	03	52	23	52	02	7	28	14	8	14	47	7	40	21	5	10	15
	21	6	46	02	16	44	54	7	03	52	23	52	03	7	28	14	8	14	46	7	40	21	5	10	14
	31	6	46	02	16	44	54	7	03	52	23	52	03	7	28	14	8	14	47	7	40	21	5	10	15
Apr.	10	6	46	01	16	44	53	7	03	51	23	52	02	7	28	14	8	14	47	7	40	21	5	10	15
	20	6	46	01	16	44	53	7	03	51	23	52	02	7	28	14	8	14	47	7	40	21	5	10	15
	30	6	46	01	-16	44	52	7	03	51	-23	52	01	7	28	14	+8	14	48	7	40	20	+5	10	15
May	10	6	46	01	16	44	51	7	03	51	23	52	00	7	28	13	8	14	48	7	40	20	5	10	16
	20	6	46	01	16	44	49	7	03	51	23	51	58	7	28	13	8	14	49	7	40	20	5	10	17
	30	6	46	01	16	44	47	7	03	51	23	51	56	7	28	13	8	14	49	7	40	20	5	10	17
June	9	6	46	01	16	44	46	7	03	51	23	51	54	7	28	13	8	14	50	7	40	20	5	10	18
	19	6	46	01	16	44	43	7	03	51	23	51	52	7	28	13	8	14	51	7	40	20	5	10	19
	29	6	46	01	-16	44	41	7	03	51	-23	51	50	7	28	13	+8	14	52	7	40	20	+5	10	20
July	9	6	46	01	16	44	39	7	03	51	23	51	47	7	28	13	8	14	52	7	40	20	5	10	21
	19	6	46	01	16	44	37	7	03	51	23	51	45	7	28	14	8	14	53	7	40	20	5	10	21
	29	6	46	01	16	44	35	7	03	51	23	51	42	7	28	14	8	14	54	7	40	20	5	10	22
Aug.	8	6	46	01	16	44	33	7	03	51	23	51	40	7	28	14	8	14	54	7	40	21	5	10	23
	18	6	46	02	16	44	32	7	03	51	23	51	38	7	28	14	8	14	55	7	40	21	5	10	24
	28	6	46	02	-16	44	30	7	03	52	-23	51	37	7	28	14	+8	14	55	7	40	21	+5	10	24
Sept.	7	6	46	02	16	44	29	7	03	52	23	51	35	7	28	14	8	14	55	7	40	21	5	10	24
	17	6	46	02	16	44	29	7	03	52	23	51	34	7	28	15	8	14	55	7	40	21	5	10	24
	27	6	46	03	16	44	29	7	03	52	23	51	34	7	28	15	8	14	55	7	40	22	5	10	24
Oct.	7	6	46	03	16	44	29	7	03	53	23	51	34	7	28	15	8	14	55	7	40	22	5	10	24
	17	6	46	03	16	44	29	7	03	53	23	51	35	7	28	16	8	14	54	7	40	22	5	10	23
	27	6	46		-16	44	31	7	03		-23	51	36	7	28	16	+8	14	53	7	40	23	+5	10	22
Nov.	6	6	46	04	16	44	32	7	03	54	23		38	7	28	16	8	14	52	7	40	23	5	10	21
	16	6	46	04	16	44	34	7	03	54	23	51	40	7	28	17	8	14	51	7	40	23	5	10	19
_	26	6	46	04	16	44	36	7	03	54	23	51	42	7	28	17	8	14	50	7	40	24	5	10	18
Dec.	6	6	46	05	16	44	39	7	03	54	23	51	44	7	28	17	8	14	48	7	40	24	5	10	16
	16	6	46	05	16	44	41	7	03	55	23	51	47	7	28	17	8	14	47	7	40	24	5	10	15
	26	6	46		-16						-23				28			14	46	7	40	24		10	13
	36	6	46	05	-16	44	46	7	03	55	-23	51	52	7	28	18	+8	14	45	7	40	24	+5	10	12

 $FO\underline{R} \hspace{0.1cm} 0^h \hspace{0.1cm} \underline{TE}\underline{RRESTRIAL} \hspace{0.1cm} \underline{TIME}$

Nai	me	β Geminorum							FUR		ppis	CLOI	ICIZ	LL I		ρ Pu	ppis				į	L Hv	drae		
Mag. S		1.14 K0IIIb						3.34	-		66 Ia		2	2.81			6IIp		3	3.11	5)		II-I	II	
		F	Right Declinat					F	Right	:	Dec			F	Right		Dec			F	Right		Dec	linat	ion
U.	Τ.		ensi						ensi						ensi						ensi				
		h				'	"	h	m	S	0	,	"	h	m	S	0	'	"	h	m	S	0	•	"
Jan.	1	7	46	33	+27	58	32	7	50	09	-24	54	36	8	08	24	-24	21	42	8	56	27	+5	52	07
	11	7	46	33	27	58	32	7	50	09	24	54	39	8	08	25	24	21	45	8	56	27	5	52	05
	21	7	46	33	27	58	32	7	50	09	24	54	42	8	08	25	24	21	48	8	56	27	5	52	04
	31	7	46	33	27	58	33	7	50	09	24	54	44	8	08	25	24	21	50	8	56	28	5	52	03
Feb.	10	7	46	33	27	58	34	7	50	09	24	54	46	8	08	25	24	21	53	8	56	28	5	52	02
	20	7	46	33	27	58	34	7	50	09	24	54	48	8	08	25	24	21	55	8	56	28	5	52	01
Mar.	1	7	46	33	+27	58	35	7	50	09	-24	54	50	8	08	25	-24	21	56	8	56	28	+5	52	01
	11	7	46	33	27	58	36	7	50	09	24	54	51	8	08	24	24	21	58	8	56	28	5	52	01
	21	7	46	32	27	58	37	7	50	09	24	54	52	8	08	24	24	21	59	8	56	28	5	52	01
	31	7	46	32	27	58	37	7	50	08	24	54	53	8	08	24	24	22	01	8	56	27	5	52	01
Apr.	10	7	46	32	27	58	38	7	50	08	24	54	53	8	08	24	24	22	00	8	56	27	5	52	02
p	20	7	46	32	27	58	38	7	50	08	24	54	53	8	08	24	24	22	00	8	56	27	5	52	02
	30	7	46	32	+27	58	38	7	50	08	-24	54	52	8	08	23	-24	22	01	8	56	27	+5	52	02
May	10	7	46	32	27	58	38	7	50	08	24	54	51	8	08	23	24	21	59	8	56	27	5	52	03
	20	7	46	31	27	58	38	7	50	07	24	54	50	8	08	23	24	21	57	8	56	27	5	52	03
	30	7	46	31	27	58	38	7	50	07	24	54	49	8	08	23	24	21	56	8	56	27	5	52	04
June	9	7	46	31	27	58	38	7	50	07	24	54	47	8	08	23	24	21	54	8	56	27	5	52	05
	19	7	46	31	27	58	38	7	50	07	24	54	45	8	08	23	24	21	52	8	56	26	5	52	05
	29	7	46	31	+27	58	37	7	50	07	-24	54	42	8	08	23	-24	21	50	8	56	26	+5	52	06
July	9	7	46	31	27	58	37	7	50	07	24	54	40	8	08	23	24	21	48	8	56	26	5	52	07
	19	7	46	32	27	58	36	7	50	07	24	54	38	8	08	23	24	21	46	8	56	26	5	52	07
	29	7	46	32	27	58	36	7	50	07	24	54	36	8	08	23	24	21	44	8	56	27	5	52	08
Aug.	8	7	46	32	27	58	35	7	50	08	24	54	33	8	08	23	24	21	41	8	56	27	5	52	08
	18	7	46	32	27	58	34	7	50	08	24	54	31	8	08	23	24	21	40	8	56	27	5	52	09
	28	7	46	32	+27	58	34	7	50	08	-24	54	30	8	08	23	-24	21	38	8	56	27	+5	52	09
Sept.	7	7	46	33	27	58	33	7	50	08	24	54	28	8	08	24	24	21	36	8	56	27	5	52	09
-	17	7	46	33	27	58	32	7	50	08	24	54	27	8	08	24	24	21	35	8	56	27	5	52	09
	27	7	46	33	27	58	31	7	50	09	24	54	27	8	08	24	24	21	35	8	56	28	5	52	08
Oct.	7	7	46	34	27	58	31	7	50	09	24	54	26	8	08	24	24	21	34	8	56	28	5	52	08
	17	7	46	34	27	58	30	7	50	09	24	54	27	8	08	25	24	21	35	8	56	28	5	52	07
	27	7	46	34	+27	58	29	7	50	10	-24	54	28	8	08	25	-24	21	35	8	56	28	+5	52	05
Nov.	6	7	46			58	28	7		10	24		29	8	08		24		37	8	56		5	52	04
	16	7	46	35	27	58	27	7	50	10	24	54	31	8	08	26	24	21	39	8	56	29	5	52	03
	26	7	46	35	27	58	27	7	50	10	24	54	33	8	08	26	24	21	41	8	56	29	5	52	01
Dec.	6	7	46	36	27	58	26	7	50	11	24	54	36	8	08	26	24	21	43	8	56	30	5	51	59
	16	7	46	36	27	58	26	7	50	11	24	54	38	8	08	27	24	21	46	8	56	30	5	51	57
	26	7	46	36	+27	58	26	7	50	11	-24	54	41	8	08	27	-24	21	49	8	56	30	+5	51	56
	36	7	46	36	+27	58	26	7	50	11	-24	54	44	8	08	27	-24	21	51	8	56	30	+5	51	54

Nar	me	λ Velorum							FUR		drae	CLO.				αIε	eonis				-	уДг	ıtliae		
Mag. S		2.21 K4 Ib-I				п		1.98	~ 11y		B II-I	п		1.35	u L(37 V			4.25	~ АП		4 III	ſ	
	•		ight		Decl				Right		Dec				Right			linat			Right	:	Dec		
U.	Γ.		ensi		Бссі	iiiiat			ensi		Dec	iiiut	1011		censi		БСС	mi	1011		censi		Всс	iiiu	1011
		h	m	S	o	,	"	h	m	S	0	,	"	h	m	S	o	,	"	h	m	S	o	1	"
Jan.	1	9	08	45	-43	30	38	9	28	34	-8	44	40	10	09	26	+11	52	08	10	28	04	-31	09	58
	11	9	08	45	43	30	42	9	28	35	8	44	43	10	09	26	11	52	06	10	28	05	31	10	01
	21	9	08	45	43	30	45	9	28	35	8	44	45	10	09	26	11	52	05	10	28	05	31	10	04
	31	9	08	45	43	30	49	9	28	35	8	44	47	10	09	27	11	52	04	10	28	05	31	10	07
Feb.	10	9	08	45	43	30	52	9	28	35	8	44	49	10	09	27	11	52	03	10	28	05	31	10	10
	20	9	08	45	43	30	55	9	28	35	8	44	50	10	09	27	11	52	03	10	28	05	31	10	13
	20		00		.5	50				50	Ü				•		• •		0.5			0.0	0.		
Mar.	1	9	08	45	-43	30	58	9	28	35	-8	44	51	10	09	27	+11	52	03	10	28	05	-31	10	16
	11	9	08	45	43	31	00	9	28	35	8	44	52	10	09	27	11	52	03	10	28	05	31	10	18
	21	9	08	45	43	31	03	9	28	35	8	44	53	10	09	27	11	52	03	10	28	05	31	10	20
	31	9	08	45	43	31	04	9	28	35	8	44	54	10	09	27	11	52	04	10	28	05	31	10	22
Apr.	10	9	08	45	43	31	06	9	28	35	8	44	54	10	09	27	11	52	05	10	28	05	31	10	23
-	20	9	08	44	43	31	07	9	28	35	8	44	54	10	09	27	11	52	05	10	28	05	31	10	25
	30	9	08	44	-43	31	07	9	28	34	-8	44	54	10	09	26	+11	52	06	10	28	05	-31	10	25
May	10	9	08	44	43	31	07	9	28	34	8	44	53	10	09	26	11	52	06	10	28	05	31	10	26
	20	9	08	44	43	31	06	9	28	34	8	44	53	10	09	26	11	52	07	10	28	04	31	10	26
	30	9	08	43	43	31	05	9	28	34	8	44	52	10	09	26	11	52	08	10	28	04	31	10	26
June	9	9	08	43	43	31	04	9	28	34	8	44	51	10	09	26	11	52	08	10	28	04	31	10	25
	19	9	08	43	43	31	02	9	28	34	8	44	50	10	09	26	11	52	09	10	28	04	31	10	24
	29	9	08	43	-43	31	00	9	28	34	-8	44	49	10	09	26	+11	52	09	10	28	04	-31	10	23
July	9	9	08	43	43	30	58	9	28	34	8	44	48	10	09	26	11	52	09	10	28	04	31	10	21
	19	9	08	43	43	30	55	9	28	34	8	44	47	10	09	26	11	52	10	10	28	04	31	10	19
	29	9	08	43	43	30	53	9	28	34	8	44	45	10	09	26	11	52	10	10	28	04	31	10	17
Aug.	8	9	08	43	43	30	50	9	28	34	8	44	44	10	09	26	11	52	10	10	28	04	31	10	15
	18	9	08	43	43	30	47	9	28	34	8	44	43	10	09	26	11	52	09	10	28	04	31	10	13
	28	9	08	43	-43	30	45	9	28	34	-8	44	42	10	09	26	+11	52	09	10	28	04	-31	10	11
Sept.	7	9	08	43	43	30	42	9	28	34	8	44	41	10	09	26	11	52	09	10	28	04	31	10	09
	17	9	08	43	43	30	40	9	28	34	8	44	41	10	09	26	11	52	08	10	28	04	31	10	08
	27	9	08	44	43	30	39	9	28	34	8	44	41	10	09	26	11	52	07	10	28	04	31	10	07
Oct.	7	9	08	44	43	30	38	9	28	35	8	44	41	10	09	27	11	52	06	10	28	04	31	10	05
	17	9	08	44	43	30	37	9	28	35	8	44	41	10	09	27	11	52	05	10	28	04	31	10	05
		_						_	<u></u>		_		,_												
NI-	27	9	08		-43	30	37	9	28	35	-8	44	42	10	09		+11	52	03	10	28		-31	10	05
Nov.	6	9	08	45	43	30	38	9	28	36	8	44	43	10		27	11		01	10			31	10	05
	16	9	08	45	43	30	39	9	28	36	8	44	45	10	09	28	11	51	59	10	28	05	31	10	06
D-	26	9	08	46	43	30	41	9	28	36	8	44	47	10	09	28	11	51	58	10	28	06	31	10	07
Dec.	6	9	08	46	43	30	43	9	28	37	8	44	49	10	09	28	11	51	56	10	28	06	31	10	09
	16	9	08	47	43	30	46	9	28	37	8	44	51	10	09	29	11	51	54	10	28	06	31	10	12
	26	0	00	47	42	20	40	0	20	27	o	4.4	52	10	00	20	111	<i>5</i> 1	50	10	20	07	21	10	1.4
	26	9	08		-43	30	49	9	28	37	-8	44	53	10	09		+11		52				-31	10	14
<u> </u>	36	9	Uδ	47	-43	30	33	9	28	51	-8	44	55	10	09	29	+11	31	51	10	28	07/	-31	10	17

 $FO\underline{R} \hspace{0.1cm} 0^h \hspace{0.1cm} \underline{TE}\underline{RRESTRIAL} \hspace{0.1cm} \underline{TIME}$

Naı	me		٠,	, Hv	drae				FOR		TERI drae	(ES	IXIZ	LL I		R Le	onis					γ С	orvi		
Mag. S		3	3.11	, 11y		/K1I	II		3.54	5 11 <i>y</i>		67 III	ſ		2.14	рЕС		13 V			2.59	700		38III	
	•		Right		Decl				Right	:		linat			Right	:		linat			Right	:	Dec		_
U.	Γ.		ensi						ensi						censi				-		ensi				
		h	m	S	o	,	"	h	m	S	0	'	"	h	m	S	o	'	"	h	m	S	o	,	"
Jan.	1	10	50	37	-16	17	45	11	33	59	-31	57	50	11	50	04	+14	27	37	12	16	49	-17	38	58
	11	10	50	37	16	17	47	11	33	59	31	57	52	11	50	04	14	27	35	12	16	50	17	39	00
	21	10	50	37	16	17	50	11	33	60	31	57	55	11	50	05	14	27	34	12	16	50	17	39	02
	31	10	50	37	16	17	52	11	33	60	31	57	58	11	50	05	14	27	32	12	16	50	17	39	05
Feb.	10	10	50	37	16	17	55	11	34	00	31	58	01	11	50	05	14	27	31	12	16	51	17	39	07
	20	10	50	38	16	17	57	11	34	00	31	58	04	11	50	05	14	27	31	12	16	51	17	39	09
Mar.	1	10	50	38	-16	17	58	11	34	00	-31	58	06	11	50	05	+14	27	31	12	16	51	-17	39	11
	11	10	50	38	16	18	00	11	34	00	31	58	09	11	50	06	14	27	31	12	16	51	17	39	13
	21	10	50	38	16	18	02	11	34	01	31	58	11	11	50	06	14	27	31	12	16	51	17	39	14
	31	10	50	38	16	18	03	11	34	01	31	58	13	11	50	06	14	27	32	12	16	51	17	39	16
Apr.	10	10	50	38	16	18	03	11	34	00	31	58	15	11	50	06	14	27	33	12	16	51	17	39	17
	20	10	50	38	16	18	04	11	34	00	31	58	17	11	50	06	14	27	34	12	16	51	17	39	18
	30	10	50	37	-16	18	04	11	34	00	-31	58	18	11	50	06	+14	27	35	12	16	51	-17	39	18
May	10	10	50	37	16	18	05	11	34	00	31	58	19	11	50	05	14	27	36	12	16	51	17	39	19
	20	10	50	37	16	18	04	11	34	00	31	58	19	11	50	05	14	27	37	12	16	51	17	39	19
	30	10	50	37	16	18	04	11	33	60	31	58	19	11	50	05	14	27	38	12	16	51	17	39	19
June	9	10	50	37	16	18	03	11	33	60	31	58	19	11	50	05	14	27	38	12	16	51	17	39	19
	19	10	50	37	16	18	02	11	33	60	31	58	19	11	50	05	14	27	39	12	16	51	17	39	18
	29	10	50	37	-16	18	02	11	33	59	-31	58	18	11	50	05	+14	27	40	12	16	51	-17	39	17
July	9	10	50	37	16	18	01	11	33	59	31	58	17	11	50	05	14	27	40	12	16	51	17	39	17
	19	10	50	37	16	18	01	11	33	59	31	58	16	11	50	05	14	27	40	12	16	50	17	39	16
	29	10	50	36	16	17	58	11	33	59	31	58	14	11	50	05	14	27	40	12	16	50	17	39	15
Aug.	8	10	50	36	16	17	57	11	33	59	31	58	13	11	50	05	14	27	40	12	16	50	17	39	14
	18	10	50	36	16	17	55	11	33	59	31	58	11	11	50	05	14	27	40	12	16	50	17	39	13
	28	10	50	36	-16	17	54	11	33	59	-31	58	09	11	50	05	+14	27	39	12	16	50	-17	39	12
Sept.	7	10	50	37	16	17	53	11	33	59	31	58	07	11	50	05	14	27	38	12	16	50	17	39	11
	17	10	50	37	16	17	52	11	33	59	31	58	06	11	50	05	14	27	37	12	16	50	17	39	10
	27	10	50	37	16	17	52	11	33	59	31	58	04	11	50	05	14	27	36	12	16	50	17	39	10
Oct.	7	10	50	37	16	17	51	11	33	59	31	58	03	11	50	05	14	27	35	12	16	50	17	39	09
	17	10	50	37	16	17	51	11	33	59	31	58	02	11	50	05	14	27	33	12	16	50	17	39	09
	27	10	50	37	-16	17	52	11	33	60	-31	58	02	11			+14	27	31	12	16	51	-17	39	09
Nov.	6	10	50	38	16	17	53	11	33	60	31	58	01	11	50	05	14	27	29	12	16	51	17	39	09
	16	10	50	38	16	17	54	11	34	00	31	58	02	11		06	14	27	27		16	51	17	39	10
	26	10	50	38	16		55	11	34	01	31	58	03	11	50	06	14	27	24	12	16	51	17	39	11
Dec.	6	10	50	39	16	17		11	34	01	31	58	04	11	50	06		27	22	12	16	52	17	39	13
	16	10	50	39	16	18	01	11	34	01	31	58	06	11	50	07	14	27	20	12	16	52	17	39	15
	26		50		-16												+14		18				-17		17
	36	10	50	40	-16	18	04	11	34	02	-31	58	11	11	50	07	+14	27	16	12	16	53	-17	39	19

Nan	ne			βСα	orvi				FOR		ginis	CLO.	101	11.		: Vir	ginis				1	Cen	tauri		
Mag. S		2	2.65			35 II		3	3.38		_	13III	[2	2.83		_	11 86	[2	2.75		kA15	nA3n/	A3va
	•	R	ight		Decl	inati	on	F	light		Dec	linati	ion	F	Right		Dec	linat	ion	F	Right	:	Dec	linat	ion
U.T	1.	Asc	ensi	on				Asc	ensi	on				Asc	ensi	on					censi				
		h	m	S	o	'	"	h	m	S	o	'	=	h	m	S	o	'	=	h	m	S	o	'	"
Jan.	1	12	35	26	-23	30	11	12	56	36	+3	17	25	13	03	09	+10	51	09	13	21	42	-36	48	43
	11	12	35	26	23	30	13	12	56	36	3	17	23	13	03	10	10	51	07	13	21	43	36	48	45
	21	12	35	26	23	30	15	12	56	36	3	17	21	13	03	10	10	51	05	13	21	43	36	48	47
	31	12	35	27	23	30	18	12	56	37	3	17	19	13	03	10	10	51	03	13	21	43	36	48	49
Feb.	10	12	35	27	23	30	20	12	56	37	3	17	18	13	03	10	10	51	02	13	21	44	36	48	52
	20	12	35	27	23	30	23	12	56	37	3	17	17	13	03	11	10	51	01	13	21	44	36	48	54
Mar.	1	12	35	27	-23	30	25	12	56	37	+3	17	16	13	03	11	+10	51	01	13	21	44	-36	48	56
	11	12	35	27	23	30	27	12	56	37	3	17	15	13	03	11	10	51	01	13	21	45	36	48	59
	21	12	35	28	23	30	29	12	56	38	3	17	15	13	03	11	10	51	01	13	21	45	36	49	01
	31	12	35	28	23	30	30	12	56	38	3	17	15	13	03	11	10	51	01	13	21	45	36	49	04
Apr.	10	12	35	28	23	30	32	12	56	38	3	17	15	13	03	11	10	51	02	13	21	45	36	49	06
	20	12	35	28	23	30	33	12	56	38	3	17	15	13	03	11	10	51	03	13	21	45	36	49	08
	30	12	35	28	-23	30	34	12	56	38	+3	17	16	13	03	11	+10	51	04	13	21	45	-36	49	10
May	10	12	35	28	23	30	35	12	56	38	3	17	17	13	03	11	10	51	05	13	21	45	36	49	11
	20	12	35	27	23	30	35	12	56	38	3	17	17	13	03	11	10	51	06	13	21	45	36	49	12
T	30	12	35	27	23	30	35	12	56	38	3	17	18	13	03	11	10	51	07	13	21	45	36	49	13
June	9	12	35	27	23	30	35	12	56	38	3	17	19	13	03	11	10	51	08	13	21	45	36	49	14
	19	12	35	27	23	30	35	12	56	37	3	17	20	13	03	11	10	51	09	13	21	45	36	49	14
	29	12	35	27	-23	30	35	12	56	37	+3	17	20	13	03	11	+10	51	09	13	21	45	-36	49	15
July	9	12	35	27	23	30	34	12	56	37	3	17	21	13	03	11	10	51	10	13	21	44	36	49	15
	19	12	35	27	23	30	33	12	56	37	3	17	21	13	03	11	10	51	10	13	21	44	36	49	14
	29	12	35	27	23	30	32	12	56	37	3	17	22	13	03	11	10	51	11	13	21	44	36	49	13
Aug.	8	12	35	27	23	30	31	12	56	37	3	17	22	13	03	11	10	51	11	13	21	44	36	49	13
	18	12	35	27	23	30	30	12	56	37	3	17	22	13	03	11	10	51	11	13	21	44	36	49	11
	28	12	35	26	-23	30	29	12	56	37	+3	17	22	13	03	10	+10	51	10	13	21	44	-36	49	10
Sept.	7	12	35	26	23	30	28	12	56	37	3	17	22	13	03	10	10	51	10	13	21	44	36	49	08
	17	12	35	26	23	30	27	12	56	37	3	17	22	13	03	10	10	51	09	13	21	43	36	49	07
	27	12	35	26	23	30	26	12	56	37	3	17	21	13	03	10	10	51	08	13	21	43	36	49	05
Oct.	7	12	35	26	23	30	25	12	56	37	3	17	20	13	03	10	10	51	07	13	21	43	36	49	04
	17	12	35	27	23	30	24	12	56	37	3	17	19	13	03	10	10	51	05	13	21	43	36	49	02
	27	12	35	27	-23	30	24	12	56	37	+3	17	18	13	03	11	+10	51	03	13	21	44	-36	49	01
Nov.	6	12	35	27	23	30	24	12	56	37	3	17	16	13	03	11	10	51	02	13	21	44	36	49	00
	16	12	35	27	23	30	25	12	56	37	3	17	15	13	03	11	10	50	59	13	21	44	36	49	00
	26	12	35	27	23	30	26	12	56	38	3	17	13	13	03	11	10	50	57	13	21	44	36	49	00
Dec.	6		35	28	23	30		12	56	38	3	17	10	13	03	11	10	50	55		21	45	36	49	00
	16	12	35	28	23	30	28	12	56	38	3	17	08	13	03	12	10	50	52	13	21	45	36	49	01
	26	12	35	28	-23	30	30	12	56	38	+3	17	06	13	03	12	+10	50	50	13	21	45	-36	49	02
	36	12	35	29	-23	30	32	12	56	39	+3	17	04	13	03	12	+10	50	48	13	21	46	-36	49	04

 $FO\underline{R} \hspace{0.1cm} 0^h \hspace{0.1cm} \underline{TE}\underline{RRESTRIAL} \hspace{0.1cm} \underline{TIME}$

Nar	ne		0	Vir	ginis				FOR		i EKF itauri		TCI	11.		.2 т	ibrae					βL	uni		
Mag. S		(0.98	. 111		III-V	/+	,	2.06	CCI		0 III	ſ		2.75	X L	югае казн	A5MA4	IIV-V		2.68	рЪ		2 III	ſ
			Right		Dec		_		Right		Dec				Right		Dec				Right		Dec		
U.	Γ.		ensi		Dec	iiiiai	1011		censi		Dec	iiiut	1011		ensi		Dec	mu	1011		ensi		Dec	iiiut	1011
		h	m	S	o	,	"	h	m	S	0	,	=	h	m	S	o	,	"	h	m	S	0	,	=
Jan.	1	13	26	14	-11	15	44	14	07	50	-36	27	45	14	51	57	-16	07	15	14	59	49	-43	12	30
o carr.	11	13	26	14	11	15	46	14	07	51	36	27	46	14	51	58	16	07	17	14	59	49	43	12	31
	21	13	26	14	11	15	48	14	07	51	36	27	48	14	51	58	16	07	18	14	59	50	43	12	31
	31	13	26	15	11	15	50	14	07	51	36	27	50	14	51	58	16	07	20	14	59	50	43	12	33
Feb.	10	13	26	15	11	15	52	14	07	52	36	27	52	14	51	59	16	07	22	14	59	50	43	12	34
100.	20	13	26	15	11	15	54	14	07	52	36	27	54	14	51	59	16	07	23	14	59	51	43	12	36
	20						٠.	• •	0,		50		٠.		0.		10	0,	20	• •			.5		50
Mar.	1	13	26	15	-11	15	55	14	07	52	-36	27	56	14	51	59	-16	07	25	14	59	51	-43	12	38
iviai.	11	13	26	16	11	15	57	14	07	53	36	27	58	14	51	60	16	07	26	14	59	51	43	12	40
	21	13	26	16	11	15	58	14	07	53	36	28	01	14	51	60	16	07	27	14	59	52	43	12	42
	31	13	26	16	11	15	59	14	07	53	36	28	03	14	52	00	16	07	28	14	59	52	43	12	44
Apr.	10	13	26	16	11	16	01	14	07	53	36	28	05	14	52	00	16	07	29	14	59	52	43	12	46
ripr.	20	13	26	16	11	16	00	14	07	53	36	28	07	14	52	00	16	07	30	14	59	53	43	12	48
	20	13	20	10		10	00	• •	0,	55	30	20	07	• •	32	00	10	07	50	• •	3)	55	13	12	.0
	30	13	26	16	-11	16	00	14	07	53	-36	28	08	14	52	01	-16	07	30	14	59	53	-43	12	50
May	10	13	26	16	11	16	00	14	07	54	36	28	10	14	52	01	16	07	30	14	59	53	43	12	52
	20	13	26	16	11	16	00	14	07	54	36	28	11	14	52	01	16	07	30	14	59	53	43	12	53
	30	13	26	16	11	16	00	14	07	54	36	28	13	14	52	01	16	07	31	14	59	53	43	12	55
June	9	13	26	16	11	16	00	14	07	53	36	28	13	14	52	01	16	07	31	14	59	53	43	12	56
b diric	19	13	26	16	11	16	01	14	07	53	36	28	14	14	52	01	16	07	30	14	59	53	43	12	58
	17	13	20	10		10	01	• •	0,	55	30	20		• •	32	01	10	07	50	• •	3)	55	13	12	50
	29	13	26	16	-11	16	01	14	07	53	-36	28	15	14	52	01	-16	07	30	14	59	53	-43	12	59
July	9	13	26	16	11	15	59	14	07	53	36	28	15	14	52	01	16	07	30	14	59	53	43	13	01
	19	13	26	16	11	15	58	14	07	53	36	28	15	14	52	01	16	07	30	14	59	53	43	13	00
	29	13	26	15	11	15	57	14	07	53	36	28	14	14	52	00	16	07	29	14	59	52	43	13	00
Aug.	8	13	26	15	11	15	57	14	07	53	36	28	14	14	52	00	16	07	29	14	59	52	43	13	00
	18	13	26	15	11	15	56	14	07	52	36	28	13	14	52	00	16	07	29	14	59	52	43	13	01
	10				• •			• •	0,	-	50			• •	-	00		0,		• •		-	.5		0.
	28	13	26	15	-11	15	56	14	07	52	-36	28	12	14	51	60	-16	07	28	14	59	52	-43	12	59
Sept.	7	13	26	15	11	15	55	14	07	52	36	28	11	14	51	60	16	07	28	14	59	52	43	12	58
1	17	13	26	15	11	15	55	14	07	52	36	28	10	14	51	60	16	07	27	14	59	51	43	12	57
	27	13	26	15	11	15	55	14	07	52	36	28	08	14	51	60	16	07	27	14	59	51	43	12	55
Oct.	7	13	26	15	11	15	54	14	07	52	36	28	07	14	51	60	16	07	26	14	59	51	43	12	54
	17	13	26	15	11	15	55	14	07	52	36	28	05	14	51	59	16	07	26	14	59	51	43	12	52
	27	13	26	15	-11	15	55	14	07	52	-36	28	04	14	51	60	-16	07	27	14	59	51	-43	12	51
Nov.	6	13		15			56										16				59			12	49
	16	13	26	15	11	15		14	07	52	36	28	03	14	51	60	16	07	27	14	59	51	43	12	48
	26	13	26	16	11	15		14		53	36	28	02	14	51	60	16	07	28	14	59	51	43	12	47
Dec.	6	13	26	16	11		01	14	07		36	28	03	14	52	00	16	07	29	14	59	52	43	12	47
	16	13	26	16	11		01		07			28	03		52	00	16	07	30	14	59	52	43	12	46
	26	13	26	17	-11	16	03	14	07	53	-36	28	04	14	52	01	-16	07	31	14	59	52	-43	12	46
	36																						-43		

 $FO\underline{R} \hspace{0.1cm} 0^h \hspace{0.1cm} \underline{TE}\underline{RRESTRIAL} \hspace{0.1cm} \underline{TIME}$

Naı	me			βLi	brae				FOR		rentis		IKIZ	AL I.		δ Sc					δ	Onh	niuchi	i	\neg
Mag.		2	2.61	p Li		8 IV		2	2.65	Serj		2 III	b	2	2.32	0 500	-	.2 Iv	e l	2	2.74	Opi		0.5 I	П
	•		Right		Decl		_		Right		Dec				Right	:	Dec				Right		Dec		
U.	Γ.		ensi						ensi				-		ensi						ensi				
		h	m	S	0	,	"	h	m	S	0	'	"	h	m	S	0	'	"	h	m	S	o	,	"
Jan.	1	15	18	03	-9	27	12	15	45	13	+6	21	52	16	01	29	-22	40	29	16	15	22	-3	44	35
	11	15	18	04	9	27	14	15	45	14	6	21	50	16	01	29	22	40	29	16	15	22	3	44	37
	21	15	18	04	9	27	15	15	45	14	6	21	48	16	01	30	22	40	30	16	15	22	3	44	38
	31	15	18	04	9	27	17	15	45	14	6	21	46	16	01	30	22	40	32	16	15	22	3	44	40
Feb.	10	15	18	05	9	27	19	15	45	15	6	21	45	16	01	30	22	40	33	16	15	23	3	44	42
	20	15	18	05	9	27	20	15	45	15	6	21	43	16	01	31	22	40	34	16	15	23	3	44	43
Mar.	1	15	18	05	-9	27	21	15	45	15	+6	21	42	16	01	31	-22	40	35	16	15	23	-3	44	44
	11	15	18	05	9	27	22	15	45	15	6	21	42	16	01	31	22	40	36	16	15	24	3	44	45
	21	15	18	06	9	27	23	15	45	16	6	21	42	16	01	31	22	40	37	16	15	24	3	44	45
	31	15	18	06	9	27	23	15	45	16	6	21	42	16	01	32	22	40	38	16	15	24	3	44	45
Apr.	10	15	18	06	9	27	24	15	45	16	6	21	42	16	01	32	22	40	39	16	15	24	3	44	45
	20	15	18	06	9	27	24	15	45	16	6	21	43	16	01	32	22	40	39	16	15	25	3	44	45
	30	15	18	06	-9	27	24	15	45	16	+6	21	44	16	01	32	-22	40	40	16	15	25	-3	44	44
May	10	15	18	06	9	27	24	15	45	17	6	21	45	16	01	33	22	40	40	16	15	25	3	44	44
	20	15	18	07	9	27	24	15	45	17	6	21	46	16	01	33	22	40	41	16	15	25	3	44	43
_	30	15	18	07	9	27	23	15	45	17	6	21	48	16	01	33	22	40	41	16	15	25	3	44	42
June	9	15	18	07	9	27	23	15	45	17	6	21	49	16	01	33	22	40	41	16	15	25	3	44	41
	19	15	18	07	9	27	22	15	45	17	6	21	50	16	01	33	22	40	42	16	15	25	3	44	41
	29	15	18	07	-9	27	22	15	45	17	+6	21	51	16	01	33	-22	40	42	16	15	25	-3	44	40
July	9	15	18	07	9	27	22	15	45	17	6	21	52	16	01	33	22	40	42	16	15	25	3	44	39
	19	15	18	06	9	27	21	15	45	17	6	21	53	16	01	33	22	40	42	16	15	25	3	44	38
	29	15	18	06	9	27	21	15	45	17	6	21	54	16	01	33	22	40	42	16	15	25	3	44	38
Aug.	8	15	18	06	9	27	21	15	45	16	6	21	54	16	01	33	22	40	42	16	15	25	3	44	38
	18	15	18	06	9	27	20	15	45	16	6	21	55	16	01	32	22	40	42	16	15	25	3	44	37
	28	15	18	06	-9	27	20	15	45	16	+6	21	55	16	01	32	-22	40	42	16	15	25	-3	44	37
Sept.	7	15	18	06	9	27	20	15	45	16	6	21	55	16	01	32	22	40	41	16	15	25	3	44	37
	17	15	18	06	9	27	19	15	45	16	6	21	55	16	01	32	22	40	41	16	15	25	3	44	37
	27	15	18	06	9	27	19	15	45	16	6	21	54	16	01	32	22	40	41	16	15	24	3	44	37
Oct.	7	15	18	05	9	27	19	15	45	16	6	21	54	16	01	32	22	40	40	16	15	24	3	44	37
	17	15	18	05	9	27	20	15	45	15	6	21	52	16	01	32	22	40	40	16	15	24	3	44	38
	27	15	18	05	-9	27	20	15	45	15	+6	21	51	16	01		-22	40	40	16	15	24	-3	44	38
Nov.	6		18	05	9	27	21	15	45	15	6	21	50		01	32	22	40	39	16	15	24	3	44	39
	16			05	9		21			15	6		48			32		40	39		15	24	3	44	40
D	26		18	06	9	27	22	15	45	16	6	21	46	16	01	32	22	40	39	16	15	24	3	44	42
Dec.	6	15	18	06	9		24	15	45	16	6	21	44	16	01	32		40	40	16	15	24	3	44	43
	16	15	18	06	9	27	25	15	45	16	6	21	42	16	01	32	22	40	40	16	15	24	3	44	44
	26		18		-9		27				+6						-22		41		15				46
<u> </u>	36	15	18	07	-9	27	28	15	45	16	+6	21	37	16	01	33	-22	40	42	16	15	25	-3	44	48

Nar	ne		α	Sco	rpii A				FUR ح		iuch		IXIZ	1L I		ε Sc	rnii				θ	Onh	iuchi		
Mag. S		0.9	ى .1 - 9		M1.		n-h	,	ج 2.56	Opi)9V			2.29	6 500	•	1 III			3.27	Opi		32 IV	,
	•		Right		Decl				Right		Dec				Right		Dec		_		Right			linat	
U.T	Γ.		ensi		Бссі	iiiiat	1011		ensi		Dec	iiiu	1011		ensi		Dec	iiiiu	1011		ensi		Dec	iiiiat	1011
		h	m	S	0	•	"	h	m	S	0	•	=	h	m	S	0	•	"	h	m	S	o	,	"
Jan.	1	16	30	36	-26	28	20	16	38	13	-10	36	17	16	51	25	-34	19	31	17	23	12	-25	00	59
0 411.	11	16	30	36	26	28	21	16	38	14	10	36	18	16	51	25	34	19	31	17	23	12	25	00	59
	21	16	30	36	26	28	21	16	38	14	10	36	19	16	51	26	34	19	31	17	23	12	25	01	01
	31	16	30	37	26	28	22	16	38	14	10	36	20	16	51	26	34	19	32	17	23	13	25	01	00
Feb.	10	16	30	37	26	28	23	16	38	15	10	36	22	16	51	26	34	19	32	17	23	13	25	01	00
1 00.	20	16	30	37	26	28	24	16	38	15	10	36	23	16	51	27	34	19	33	17	23	13	25	01	01
	20	10	50	51	20	20	- '	10	50	13	10	50	23	10	51		٠.	17	33	1,	23	13	23	01	01
Mar.	1	16	30	38	-26	28	25	16	38	15	-10	36	24	16	51	27	-34	19	33	17	23	14	-25	01	01
	11	16	30	38	26	28	26	16	38	16	10	36	24	16	51	27	34	19	34	17	23	14	25	01	02
	21	16	30	38	26	28	27	16	38	16	10	36	25	16	51	28	34	19	35	17	23	14	25	01	02
	31	16	30	39	26	28	27	16	38	16	10	36	25	16	51	28	34	19	36	17	23	14	25	01	02
Apr.	10	16	30	39	26	28	28	16	38	16	10	36	25	16	51	28	34	19	37	17	23	15	25	01	03
1	20	16	30	39	26	28	29	16	38	17	10	36	25	16	51	29	34	19	37	17	23	15	25	01	03
	30	16	30	39	-26	28	29	16	38	17	-10	36	25	16	51	29	-34	19	38	17	23	15	-25	01	03
May	10	16	30	40	26	28	30	16	38	17	10	36	25	16	51	29	34	19	39	17	23	16	25	01	03
	20	16	30	40	26	28	31	16	38	17	10	36	24	16	51	29	34	19	40	17	23	16	25	01	04
	30	16	30	40	26	28	31	16	38	17	10	36	24	16	51	30	34	19	41	17	23	16	25	01	04
June	9	16	30	40	26	28	31	16	38	17	10	36	23	16	51	30	34	19	42	17	23	16	25	01	04
	19	16	30	40	26	28	32	16	38	17	10	36	23	16	51	30	34	19	43	17	23	16	25	01	04
	29	16	30	40	-26	28	32	16	38	18	-10	36	22	16	51	30	-34	19	44	17	23	16	-25	01	05
July	9	16	30	40	26	28	33	16	38	18	10	36	22	16	51	30	34	19	44	17	23	16	25	01	05
	19	16	30	40	26	28	33	16	38	17	10	36	21	16	51	30	34	19	45	17	23	16	25	01	05
	29	16	30	40	26	28	33	16	38	17	10	36	21	16	51	30	34	19	46	17	23	16	25	01	06
Aug.	8	16	30	40	26	28	33	16	38	17	10	36	21	16	51	30	34	19	46	17	23	16	25	01	06
	18	16	30	40	26	28	33	16	38	17	10	36	21	16	51	29	34	19	46	17	23	16	25	01	06
	28	16	30	40	-26	28	33	16	38	17	-10	36	20	16	51	29	-34	19	47	17	23	16	-25	01	06
Sept.	7	16	30	39	26	28	33	16	38	17	10	36	20	16	51	29	34	19	47	17	23	16	25	01	06
	17	16	30	39	26	28	33	16	38	17	10	36	20	16	51	29	34	19	47	17	23	16	25	01	06
	27	16	30	39	26	28	33	16	38	17	10	36	20	16	51	29	34	19	46	17	23	16	25	01	06
Oct.	7	16	30	39	26	28	32	16	38	16	10	36	20	16	51	28	34	19	45	17	23	15	25	01	06
	17	16	30	39	26	28	32	16	38	16	10	36	21	16	51	28	34	19	45	17	23	15	25	01	06
.,	27	16	30	39	-26	28	31	16	38		-10		21	16	51	28	-34	19	44	17	23		-25	01	06
Nov.	6	16			26		31				10						34						25		
	16	16	30	39	26	28	30	16	38	16	10	36	22	16	51	28	34	19	43	17	23	15	25	01	05
_	26	16	30	39	26	28	30	16	38	16	10	36	23	16	51	28	34	19	42	17	23	15	25	01	05
Dec.	6	16	30	39	26	28	30	16	38	16	10	36	23	16	51	28	34	19	41	17	23	15	25	01	05
	16	16	30	39	26	28	30	16	38	16	10	36	24	16	51	29	34	19	41	17	23	15	25	01	05
																			, .						
	26	16				28					-10						-34						-25		05
	36	16	30	40	-26	28	31	16	38	17	-10	36	27	16	51	29	-34	19	40	17	23	16	-25	01	05

Nan	ne		7	λSc	orpii				α		hiuch					Oph	iuch	i			δ	Sag	ittarii		
Mag. S			1.63			2 IV-	+	,	2.08	1		.5 III	[,	2.77	1		2 III	[2	2.70	U		3III	a
		F	Right	:	Dec	linati	ion	F	Right	:	Dec	linati	ion	F	Right		Dec	linat	ion	F	light		Dec	linat	ion
U.T	١.	Aso	ensi	on				Aso	ensi	on					ensi					Asc	ensi	on			
		h	m	S	o	,	"	h	m	S	0	,	"	h	m	S	0	,	"	h	m	S	0	'	=
Jan.	1	17	34	55	-37	06	54	17	35	50	+12	32	48	17	44	25	+4	33	38	18	22	14	-29	49	02
	11	17	34	55	37	06	53	17	35	50	12	32	46	17	44	26	4	33	36	18	22	14	29	49	02
	21	17	34	56	37	06	53	17	35	50	12	32	44	17	44	26	4	33	34	18	22	14	29	49	02
	31	17	34	56	37	06	53	17	35	50	12	32	42	17	44	26	4	33	32	18	22	14	29	49	02
Feb.	10	17	34	56	37	06	53	17	35	51	12	32	40	17	44	26	4	33	31	18	22	15	29	49	02
	20	17	34	57	37	06	52	17	35	51	12	32	39	17	44	27	4	33	30	18	22	15	29	49	01
Mar.	1	17	34	57	-37	06	53	17	35	51	+12	32	38	17	44	27	+4	33	29	18	22	15	-29	49	01
	11	17	34	57	37	06	53	17	35	51	12	32	37	17	44	27	4	33	28	18	22	16	29	49	01
	21	17	34	58	37	06	53	17	35	52	12	32	37	17	44	27	4	33	28	18	22	16	29	49	01
	31	17	34	58	37	06	54	17	35	52	12	32	37	17	44	28	4	33	28	18	22	16	29	49	01
Apr.	10	17	34	59	37	06	54	17	35	52	12	32	38	17	44	28	4	33	29	18	22	17	29	49	01
- P	20	17	34	59	37	06	55	17	35	52	12	32	39	17	44	28	4	33	29	18	22	17	29	49	01
	20	1,	٥.	5)	31	00	33	1,	55	32	12	32	37	1,	• •	20	•	55		10		1,		.,	01
	30	17	34	59	-37	06	55	17	35	53	+12	32	40	17	44	29	+4	33	31	18	22	17	-29	49	01
May	10	17	34	59	37	06	56	17	35	53	12	32	42	17	44	29	4	33	32	18	22	18	29	49	00
iviay	20	17	34	60	37	06	57	17	35	53	12	32	43	17	44	29	4	33	33	18	22	18	29	49	01
	30	17	34	60	37	06	58	17	35	53	12	32	45	17	44	29	4	33	35	18	22	18	29	49	01
June	9	17	35	00	37	06	58	17	35	53	12	32	47	17	44	29	4	33	36	18	22	18	29	49	01
June	19	17	35	00	37	07	01	17	35	54	12	32	49	17	44	29	4	33	38	18	22	18	29	49	01
	19	1 /	33	00	31	07	01	1 /	33	34	12	32	47	1 /	44	29	4	33	30	10	22	10	29	47	01
	29	17	35	00	-37	07	00	17	35	54	+12	32	51	17	44	29	+4	33	39	18	22	19	-29	49	02
July	9	17	35	00	37	07	01	17	35	54	12	32	52	17	44	30	4	33	40	18	22	19	29	49	02
July	19	17	35	00	37		02	17	35	54	12	32	54	17	44	30	4	33	42	18	22	19	29	49	02
						07																			
Aug	29	17 17	35 35	00	37 37	07 07	03 04	17 17	35 35	54 53	12 12	32 32	55 56	17 17	44 44	29 29	4	33	43 43	18 18	22 22	19 19	29 29	49 49	03 04
Aug.	8								35			32						33							
	18	17	35	00	37	07	05	17	33	53	12	32	57	17	44	29	4	33	44	18	22	19	29	49	05
	20	17	2.4	CO	27	07	0.5	1.7	2.5	52	. 10	22		1.7	4.4	20		22	4.5	1.0	22	10	20	40	0.5
Cont	28	17	34	60	-37	07	05	17	35			32	58	17	44	29	+4	33	45	18	22	19	-29	49	05
Sept.	7	17	34	60	37	07	05	17	35	53	12	32	58	17	44	29	4	33	45	18	22	18	29	49	06
	17	17	34	60	37	07	06	17	35	53	12	32	58	17	44	29	4	33	45	18	22	18	29	49	06
0-4	27	17	34	59	37	07	05	17	35	53	12	32	58	17	44	29	4	33	45	18	22	18	29	49	06
Oct.	7	17	34	59	37	07	05	17	35	52	12	32	58	17	44	28	4	33	45	18	22	18	29	49	06
	17	17	34	59	37	07	05	17	35	52	12	32	57	17	44	28	4	33	44	18	22	18	29	49	06
	27	17	2.4	50	27	0.7	0.4	1.7	2.5	50	. 12	22		17	4.4	20		22	43	10	22	17	20	40	0.0
No	27	17	34	59	-37	07	04		35		+12	32	56	17	44	28	+4	33	43	18	22	17	-29	49	06
Nov.	6	17	34		37						12				44		-	33		18		17	29	49	06
	16	17	34	59	37		02	17		52		32	53	17	44	28	4	33	41	18	22	17	29	49	05
D.	26	17	34	59	37	07	02	17	35	52	12	32	51	17	44	28	4	33	40	18	22	17	29	49	05
Dec.	6	17	34	59	37	07		17		52	12		49	17		28	4	33	38	18	22	17	29	49	05
	16	17	34	59	37	07	00	17	35	52	12	32	47	17	44	28	4	33	36	18	22	17	29	49	04
																20		2.2					•	40	
	26				-37						+12							33					-29		04
	36	17	34	59	-37	06	59	17	35	52	+12	32	42	17	44	28	+4	33	33	18	22	18	-29	49	04

Nan	ne		3	Sagi	ittarii				FOR σ		ittari		KIZ	L I		, Aq	uilae					· Aq	uilae		
Mag. S	spect.]	1.85	J		9.5II	I	2	2.02			32V		2	2.99	,		0 Vr	1	,	2.72	1		9.51	V
117	r	R	light		Decl	linati	ion	F	Right		Dec	linati	ion	F	Right		Dec	linat	ion	F	Right		Dec	linat	ion
U.T	١.	Asc	ensi	on				Asc	ensi	on				Asc	ensi	on				Aso	ensi	on			
		h	m	S	0	'	=	h	m	S	0	'		h	m	S	o	'	=	h	m	S	o	'	"
Jan.	1	18	25	27	-34	22	22	18	56	28	-26	16	14	19	06	17	+13	53	39	19	47	10	+10	39	46
	11	18	25	27	34	22	22	18	56	28	26	16	13	19	06	18	13	53	37	19	47	10	10	39	44
	21	18	25	27	34	22	21	18	56	28	26	16	13	19	06	18	13	53	35	19	47	11	10	39	42
	31	18	25	28	34	22	21	18	56	28	26	16	13	19	06	18	13	53	33	19	47	11	10	39	41
Feb.	10	18	25	28	34	22	20	18	56	28	26	16	13	19	06	18	13	53	31	19	47	11	10	39	39
	20	18	25	28	34	22	20	18	56	29	26	16	12	19	06	18	13	53	30	19	47	11	10	39	38
Mar.	1	18	25	29	-34	22	20	18	56	29	-26	16	12	19	06	19	+13	53	28	19	47	11	+10	39	37
	11	18	25	29	34	22	20	18	56	29	26	16	12	19	06	19	13	53	28	19	47	11	10	39	36
	21	18	25	29	34	22	19	18	56	30	26	16	11	19	06	19	13	53	27	19	47	12	10	39	35
	31	18	25	30	34	22	19	18	56	30	26	16	11	19	06	19	13	53	27	19	47	12	10	39	36
Apr.	10	18	25	30	34	22	19	18	56	30	26	16	11	19	06	20	13	53	28	19	47	12	10	39	36
	20	18	25	30	34	22	19	18	56	31	26	16	10	19	06	20	13	53	29	19	47	13	10	39	37
	30	18	25	31	-34	22	19	18	56	31	-26	16	10	19	06	20	+13	53	30	19	47	13	+10	39	38
May	10	18	25	31	34	22	19	18	56	31	26	16	09	19	06	21	13	53	32	19	47	13	10	39	39
	20	18	25	31	34	22	20	18	56	31	26	16	09	19	06	21	13	53	33	19	47	13	10	39	41
	30	18	25	32	34	22	20	18	56	32	26	16	09	19	06	21	13	53	35	19	47	14	10	39	43
June	9	18	25	32	34	22	20	18	56	32	26	16	08	19	06	21	13	53	37	19	47	14	10	39	45
	19	18	25	32	34	22	21	18	56	32	26	16	08	19	06	21	13	53	40	19	47	14	10	39	47
	29	18	25	32	-34	22	22	18	56	32	-26	16	09	19	06		+13	53	42	19	47	14		39	49
July	9	18	25	32	34	22	22	18	56	33	26	16	09	19	06	22	13	53	44	19	47	15	10	39	51
	19	18	25	32	34	22	23	18	56	33	26	16	09	19	06	22	13	53	46	19	47	15	10	39	53
	29	18	25	32	34	22	24	18	56	33	26	16	09	19	06	22	13	53	47	19	47	15	10	39	55
Aug.	8	18	25	32	34	22	25	18	56	33	26	16	10	19	06	22	13	53	49	19	47	15	10	39	56
	18	18	25	32	34	22	26	18	56	33	26	16	10	19	06	22	13	53	50	19	47	15	10	39	58
	28	18	25	32	-34	22	26	18	56	32	-26	16	11	19	06	22	+13	53	52	19	47	15	+10	39	59
Sept.	7	18	25	32	34	22	27	18	56	32	26	16	11	19	06	21	13	53	52	19	47	15	10	39	60
	17	18	25	32	34	22	27	18	56	32	26	16	12	19	06	21	13	53	53	19	47	14	10	40	01
	27	18	25	32	34	22	28	18	56	32	26	16	12	19	06	21	13	53	53	19	47	14	10	40	01
Oct.	7	18	25	31	34	22	28	18	56	32	26	16	12	19	06	21	13	53	53	19	47	14	10	40	01
	17	18	25	31	34	22	28	18	56	32	26	16	13	19	06	21	13	53	53	19	47	14	10	40	01
	27	18	25	31	-34	22	27	18	56	31	-26	16	13	19	06	21	+13	53	52	19	47	14	+10	40	01
Nov.	6	18	25	31	34	22	27	18	56	31	26	16	13	19	06	20	13	53	51	19	47	14	10	40	00
	16	18	25	31	34	22	26	18	56	31	26	16	13	19	06	20	13	53	50	19	47	13	10	39	59
	26	18	25	31	34	22	26	18	56	31	26	16	13	19	06	20	13	53	49	19	47	13	10	39	58
Dec.	6	18	25	31	34	22	25	18	56	31	26	16	12	19	06	20	13	53	47	19	47	13	10	39	57
	16	18	25	31	34	22	24	18	56	31	26	16	12	19	06	20	13	53	45	19	47	13	10	39	55
	26	18	25	31	-34	22	24	18	56	31	-26	16	12	19	06	20	+13	53	43	19	47	13	+10	39	53
	36	18	25	31	-34	22	23	18	56	31	-26	16	12	19	06	20	+13	53	41	19	47	13	+10	39	51

Nan	ne		C	ιAq	uilae					γCy			ICIZ			αC	ygni				ſ	3 Aq	uarii		
Mag. S	Spect.	().77	_		7 V		2	2.20			3 I al)					2 Iae	2	2	2.91		A	1.5\	7
117	г	F	Right		Decl	inati	ion	F	Right		Dec	linat	ion	F	Right		Dec	linati	ion	R	Right		Dec	linat	ion
U.T	1.	Aso	ensi	on				Aso	ensi	on				Asc	ensi	on				Asc	ensi	on			
		h	m	S	0	'	"	h	m	S	0	'	=	h	m	S	0	,	"	h	m	S	0	'	"
Jan.	1	19	51	43	+8	55	19	20	22	55	+40	19	20	20	42	05	+45	21	13	21	32	35	-5	29	02
	11	19	51	43	8	55	17	20	22	55	40	19	17	20	42	05	45	21	10	21	32	35	5	29	03
	21	19	51	43	8	55	15	20	22	55	40	19	14	20	42	05	45	21	07	21	32	35	5	29	04
	31	19	51	44	8	55	14	20	22	55	40	19	11	20	42	05	45	21	04	21	32	35	5	29	04
Feb.	10	19	51	44	8	55	12	20	22	55	40	19	08	20	42	05	45	21	01	21	32	35	5	29	04
	20	19	51	44	8	55	11	20	22	55	40	19	06	20	42	05	45	20	58	21	32	35	5	29	05
Mar.	1	19	51	44	+8	55	10	20	22	55	+40	19	03	20	42	05	+45	20	55	21	32	35	-5	29	05
	11	19	51	44	8	55	09	20	22	55	40	19	01	20	42	05	45	20	53	21	32	35	5	29	05
	21	19	51	45	8	55	09	20	22	56	40	19	00	20	42	06	45	20	52	21	32	35	5	29	04
	31	19	51	45	8	55	09	20	22	56	40	18	59	20	42	06	45	20	51	21	32	35	5	29	04
Apr.	10	19	51	45	8	55	10	20	22	56	40	18	59	20	42	06	45	20	50	21	32	36	5	29	03
P	20	19	51	46	8	55	10	20	22	57	40	18	59	20	42	07	45	20	50	21	32	36	5	29	02
	30	19	51	46	+8	55	12	20	22	57	+40	19	00	20	42	07	+45	20	51	21	32	36	-5	29	00
May	10	19	51	46	8	55	13	20	22	57	40	19	02	20	42	07	45	20	52	21	32	37	5	28	59
	20	19	51	46	8	55	15	20	22	58	40	19	03	20	42	08	45	20	54	21	32	37	5	28	57
	30	19	51	47	8	55	17	20	22	58	40	19	06	20	42	08	45	20	56	21	32	37	5	28	55
June	9	19	51	47	8	55	19	20	22	58	40	19	08	20	42	08	45	20	59	21	32	38	5	28	53
	19	19	51	47	8	55	21	20	22	59	40	19	11	20	42	09	45	21	01	21	32	38	5	28	52
	29	19	51	47	+8	55	23	20	22	59	+40	19	14	20	42	09	+45	21	04	21	32	38	-5	28	50
July	9	19	51	47	8	55	25	20	22	59	40	19	18	20	42	09	45	21	08	21	32	38	5	28	48
,	19	19	51	48	8	55	27	20	22	59	40	19	21	20	42	09	45	21	11	21	32	39	5	28	47
	29	19	51	48	8	55	28	20	22	59	40	19	24	20	42	09	45	21	14	21	32	39	5	28	46
Aug.	8	19	51	48	8	55	30	20	22	59	40	19	27	20	42	09	45	21	17	21	32	39	5	28	45
	18	19	51	48	8	55	31	20	22	59	40	19	30	20	42	09	45	21	21	21	32	39	5	28	44
	28	19	51	48	+8	55	32	20	22	59	+40	19	32	20	42	09	+45	21	23	21	32	39	-5	28	44
Sept.	7	19	51	47	8	55	33	20	22	59	40	19	34	20	42	09	45	21	26	21	32	39	5	28	43
	17	19	51	47	8	55	34	20	22	59	40	19	36	20	42	09	45	21	28	21	32	39	5	28	43
	27	19	51	47	8	55	34	20	22	58	40	19	38	20	42	09	45	21	30	21	32	39	5	28	43
Oct.	7	19	51	47	8	55	34	20	22	58	40	19	39	20	42	08	45	21	31	21	32	39	5	28	43
	17	19	51	47	8	55	34	20	22	58	40	19	39	20	42	08	45	21	32	21	32	39	5	28	44
	27	19	51	47	+8	55	34	20	22	58	+40	19	39	20	42	08	+45	21	33	21	32	38	-5	28	44
Nov.	6			47		55					40		39				45		33			38	5		44
	16	19	51	46	8	55	32	20		57	40	19	38	20	42	07	45	21	32	21	32	38	5	28	45
	26	19	51	46	8	55	31	20	22	57	40	19	37	20	42	07	45	21	31	21	32	38	5	28	46
Dec.	6	19	51	46	8		30	20		57	40	19	35	20	42	07	45	21	29	21	32	38	5	28	46
	16	19	51	46	8		28		22			19	33		42			21	28	21	32	38	5	28	47
	26	19	51	46	+8	55	27	20	22	57	+40	19	31	20	42	07	+45	21	25	21	32	38	-5	28	48
	36		51				25		22			19					+45		22	21		38		28	

Nan	ne			ε Pe	gasi				FUR (uarii	CLO.	TCI	11.		δ Aq	uarii					α Ρε	egasi		
Mag. S		0.7	7 - 3.		_	2 Ib		2	2.96	. 1		2 Ib			3.27	. ,		13 V		2	2.49		_	39III	
			Right		Decl			F	Right		Dec			F	Right	:	Dec			F	Right		Dec	linat	ion
U.7	Γ.		ensi						ensi						censi						censi				
		h	m	S	o	,	"	h	m	S	o	'	"	h	m	S	o	'	"	h	m	S	o	•	"
Jan.	1	21	45	08	+9	57	60	22	06	47	-0	13	25	22	55	41	-15	43	02	23	05	44	+15	18	45
	11	21	45	08	9	57	58	22	06	47	0	13	26	22	55	41	15	43	02	23	05	44	15	18	44
	21	21	45	08	9	57	57	22	06	47	0	13	26	22	55	41	15	43	02	23	05	44	15	18	43
	31	21	45	08	9	57	56	22	06	47	0	13	27	22	55	41	15	43	02	23	05	44	15	18	41
Feb.	10	21	45	08	9	57	54	22	06	47	0	13	28	22	55	41	15	43	02	23	05	44	15	18	40
100.	20	21	45	08	9	57	53	22	06	47	0	13	28	22	55	41	15	43	01	23	05	44	15	18	39
										.,	-														
Mar.	1	21	45	08	+9	57	52	22	06	47	-0	13	29	22	55	41	-15	43	01	23	05	44	+15	18	38
	11	21	45	09	9	57	51	22	06	47	0	13	29	22	55	41	15	43	00	23	05	44	15	18	37
	21	21	45	09	9	57	51	22	06	47	0	13	28	22	55	41	15	42	58	23	05	44	15	18	36
	31	21	45	09	9	57	51	22	06	47	0	13	28	22	55	41	15	42	57	23	05	44	15	18	36
Apr.	10	21	45	09	9	57	51	22	06	48	0	13	27	22	55	41	15	42	56	23	05	44	15	18	36
p	20	21	45	09	9	57	52	22	06	48	0	13	26	22	55	42	15	42	54	23	05	44	15	18	36
	20	21	43	09	,	31	32	22	00	40	U	13	20	22	33	42	13	42	54	23	03		13	10	30
	30	21	45	10	+9	57	53	22	06	48	-0	13	25	22	55	42	-15	42	52	23	05	45	+15	18	37
May	10	21	45	10	9	57	54	22	06	48	0	13	23	22	55	42	15	42	50	23	05	45	15	18	38
iviay	20	21	45	10		57	56	22	06	49	0		22	22	55	42	15	42	48	23	05	45	15	18	39
	30	21	45	11	9	57	58	22	06	49	0	13 13	20	22	55	43	15	42	46	23	05	46	15	18	41
June	9	21	45	11	9	58	00	22	06	49	0	13	18	22	55	43	15	42	44	23	05	46	15	18	
June	19	21	45	11	9	58	02	22	06	50	0	13	16	22	55	43	15	42	42	23	05	46	15	18	43 45
	19	21	43	11	7	30	02	22	00	30	U	13	10	22	33	43	13	42	42	23	03	40	13	10	43
	29	21	45	11	+9	58	04	22	06	50	-0	13	14	22	55	44	-15	42	41	23	05	47	+15	18	47
July	9	21	45	12	9	58	07	22	06	50	0	13	12	22	55	44	15	42	39	23	05	47	15	18	49
July	19	21	45	12	9	58	07	22	06	50	0	13	11	22	55	44	15	42	38	23	05	47	15	18	51
	29				9								09												
Aug	8	21 21	45	12 12	9	58	11	22 22	06	51 51	0	13		22 22	55	44	15 15	42	37	23	05	47	15	18	54
Aug.	_		45		9	58	12		06		0	13	08		55	45		42	36	23	05	48	15	18	56
	18	21	45	12	9	58	14	22	06	51	0	13	06	22	55	45	15	42	36	23	05	48	15	18	58
	20	21	15	12	. 0	50	1.0	22	06	<i>5</i> 1	0	12	0.5	22		15	1.5	42	26	22	0.5	40	.15	10	(0
Cont	28	21	45	12	+9	58	16	22	06	51	-0	13	05	22	55	45	-15	42	36	23	05	48		18	60
Sept.	7	21	45	12	9	58	17	22	06	51	0	13	05	22	55	45	15	42	36	23	05	48	15	19	01
	17	21	45	12	9	58	18	22	06	51	0	13	04	22	55	45	15	42	36	23	05	48	15	19	03
Oat	27	21	45	12	9	58	19	22	06	51	0	13	04	22	55	45	15	42	37	23	05	48	15	19	04
Oct.	7	21	45	12	9	58	19	22	06	51	0	13	04	22	55	45	15	42	37	23	05	48	15	19	05
	17	21	45	12	9	58	19	22	06	51	0	13	04	22	55	45	15	42	38	23	05	48	15	19	06
	27	21	4.5	10		50	20	22	0.0	<i>5</i> 1	^	12	0.4	22		4.5	1.5	10	20	22	0.5	40	. 1 -	10	07
Nov	27	21	45	12	+9	58	20	22	06	51	-0	13	04	22	55		-15	42	39	23	05		+15	19	07 07
Nov.	6	21	45	12	9	58	19	22	06	50	0	13	05			45	15	42	40		05	48	15	19	
	16	21	45	12	9		19		06	50		13	05		55	45	15	42	41		05	48	15	19	
D-	26	21	45	11	9	58	18	22	06	50	0	13	06	22	55	45	15	42	42	23	05	47	15	19	07
Dec.	6	21	45	11	9	58	18	22	06	50	0	13	06	22	55	44	15	42	42	23	05	47	15	19	06
	16	21	45	11	9	58	17	22	06	50	0	13	07	22	55	44	15	42	43	23	05	47	15	19	06
							, _		0.5	.	^					, .		,-	, .					10	
	26		45		+9		15		06			13					-15		43				+15	19	04
	36	21	45	11	+9	58	14	22	06	50	-0	13	09	22	55	44	-15	42	44	23	05	47	+15	19	03

BESSELIAN DAY NUMBERS, 2020.5

FOR $0^{\rm h}$ TERRESTRIAL TIME

Da	te	τ	A	В	C	D	Е	dψ	dε
			"	"	"	"	(0.0001)		
Jan.	0 1 2 3 4 5	-0.5041 0.5014 0.4986 0.4959 0.4932 0.4904	-16.652 16.608 16.573 16.541 16.508 16.466	+1.752 1.707 1.674 1.656 1.653 1.663	-3.025 3.355 3.684 4.012 4.338 4.662	+20.591 20.529 20.460 20.386 20.304 20.217	-21 21 22 22 22 22 22	+0.212 0.140 +0.046 -0.058 0.155 0.232	+0.042 0.071 0.088 0.089 0.075 +0.047
	6	-0.4877	-16.412	+1.683	-4.985	+20.124	-22	-0.274	+0.008
	7	0.4849	16.340	1.706	5.306	20.024	22	0.272	0.035
	8	0.4822	16.250	1.725	5.625	19.919	22	0.224	0.074
	9	0.4795	16.143	1.730	5.942	19.808	21	0.134	0.100
	10	0.4767	16.027	1.716	6.257	19.691	21	-0.018	0.106
	11	0.4740	15.911	1.677	6.570	19.569	21	+0.098	0.089
	12	-0.4713	-15.807	+1.616	-6.881	+19.441	-21	+0.187	-0.051
	13	0.4685	15.723	1.542	7.190	19.307	21	0.225	-0.000
	14	0.4658	15.663	1.468	7.497	19.168	21	0.203	+0.051
	15	0.4630	15.625	1.406	7.803	19.023	21	0.129	0.089
	16	0.4603	15.598	1.365	8.106	18.873	21	+0.026	0.105
	17	0.4576	15.573	1.350	8.408	18.716	21	-0.076	0.096
	18	-0.4548	-15.536	+1.355	-8.707	+18.553	-21	-0.152	+0.065
	19	0.4521	15.483	1.374	9.004	18.385	21	0.183	+0.021
	20	0.4493	15.410	1.394	9.298	18.210	21	0.163	-0.025
	21	0.4466	15.320	1.406	9.589	18.029	21	0.099	0.064
	22	0.4439	15.220	1.402	9.878	17.843	21	-0.008	0.087
	23	0.4411	15.117	1.378	10.163	17.650	21	+0.092	0.090
	24 25 26 27 28 29	-0.4384 0.4357 0.4329 0.4302 0.4274 0.4247	-15.020 14.935 14.867 14.816 14.780 14.756	+1.335 1.278 1.212 1.146 1.085 1.036	-10.445 10.723 10.998 11.269 11.536 11.799	+17.452 17.247 17.038 16.822 16.602 16.376	-20 20 20 20 20 20 20	+0.178 0.235 0.252 0.227 0.165 +0.077	-0.075 0.045 -0.008 +0.030 0.063 0.083
Feb.	30	-0.4220	-14.738	+1.001	-12.058	+16.145	-21	-0.025	+0.090
	31	0.4192	14.720	0.981	12.312	15.910	21	0.127	0.081
	1	0.4165	14.696	0.976	12.563	15.670	21	0.212	0.057
	2	0.4138	14.662	0.982	12.809	15.425	21	0.268	+0.022
	3	0.4110	14.612	0.994	13.051	15.175	21	0.285	-0.019
	4	0.4083	14.546	1.005	13.288	14.922	21	0.258	0.060
	5 6 7 8 9 10	-0.4055 0.4028 0.4001 0.3973 0.3946 0.3919	-14.463 14.367 14.266 14.171 14.093 14.039	+1.008 0.995 0.959 0.900 0.823 0.739	-13.521 13.750 13.974 14.194 14.410 14.622	+14.664 14.402 14.137 13.867 13.594 13.318	-21 21 20 20 20 20 20	-0.187 -0.082 +0.037 0.143 0.208 0.214	-0.092 0.108 0.101 0.071 -0.022 +0.033
	11	-0.3891	-14.010	+0.664	-14.829	+13.038	-20	+0.158	+0.080
	12	0.3864	13.998	0.610	15.032	12.754	20	+0.062	0.105
	13	0.3836	13.991	0.583	15.231	12.466	21	-0.045	0.104
	14	0.3809	13.976	0.582	15.426	12.175	21	0.130	0.077
	15	-0.3782	-13.944	+0.598	-15.616	+11.879	-21	-0.171	+0.034

BESSELIAN DAY NUMBERS, 2020.5

FOR $0^{\rm h}$ TERRESTRIAL TIME

Da	te	τ	A	В	C	D	E	dψ	dε
			"	"	"	"	(0.0001)		
Feb.	15	-0.3782	-13.944	+0.598	-15.616	+11.879	-21	-0.171	+0.034
	16	0.3754	13.891	0.618	15.802	11.580	21	0.160	-0.014
	17	0.3727	13.821	0.633	15.983	11.277	21	0.103	0.055
	18	0.3700	13.740	0.633	16.159	10.970	21	-0.015	0.082
	19	0.3672	13.655	0.614	16.330	10.660	21	+0.083	0.090
	20	0.3645	13.574	0.578	16.495	10.346	20	0.172	0.079
	21	-0.3617	-13.504	+0.526	-16.656	+10.028	-20	+0.235	-0.053
	22	0.3590	13.450	0.465	16.811	9.708	20	0.261	-0.017
	23	0.3563	13.412	0.402	16.960	9.385	20	0.246	+0.021
	24	0.3535	13.390	0.344	17.104	9.058	21	0.193	0.055
	25	0.3508	13.380	0.296	17.242	8.730	21	0.110	0.080
	26	0.3480	13.377	0.262	17.374	8.398	21	+0.009	0.090
Mar.	27	-0.3453	-13.377	+0.244	-17.501	+8.065	-21	-0.094	+0.085
	28	0.3426	13.372	0.242	17.622	7.729	21	0.185	0.066
	29	0.3398	13.357	0.252	17.737	7.391	21	0.252	+0.034
	1	0.3371	13.329	0.270	17.847	7.051	21	0.283	-0.006
	2	0.3344	13.285	0.290	17.950	6.710	22	0.273	0.046
	3	0.3316	13.225	0.305	18.048	6.367	22	0.221	0.081
	4	-0.3289	-13.150	+0.308	-18.141	+6.023	-21	-0.134	-0.103
	5	0.3261	13.068	0.292	18.227	5.678	21	-0.026	0.106
	6	0.3234	12.986	0.255	18.309	5.332	21	+0.083	0.087
	7	0.3207	12.914	0.196	18.384	4.985	21	0.167	-0.046
	8	0.3179	12.863	0.126	18.455	4.638	21	0.200	+0.008
	9	0.3152	12.836	0.056	18.520	4.289	21	0.171	0.062
	10 11 12 13 14 15	-0.3125 0.3097 0.3070 0.3042 0.3015 0.2988	-12.831 12.837 12.838 12.824 12.787 12.729	+0.003 -0.022 -0.018 +0.009 0.046 0.080	-18.580 18.635 18.684 18.729 18.768 18.802	+3.940 3.590 3.239 2.887 2.534 2.180	-21 22 22 22 22 22 22	+0.089 -0.019 0.117 0.173 0.174 0.121	+0.099 0.110 0.091 0.051 +0.000 -0.046
	16 17 18 19 20 21	-0.2960 0.2933 0.2906 0.2878 0.2851 0.2823	-12.657 12.579 12.503 12.438 12.388 12.354	+0.101 0.102 0.085 0.052 +0.009 -0.037	-18.830 18.852 18.869 18.880 18.885 18.884	+1.826 1.470 1.114 0.758 0.402 +0.045	-22 22 22 22 22 22 22	-0.032 +0.072 0.169 0.240 0.275 0.269	-0.077 0.090 0.083 0.059 -0.025 +0.014
	22	-0.2796	-12.335	-0.080	-18.877	-0.312	-22	+0.223	+0.050
	23	0.2769	12.329	0.114	18.864	0.668	22	0.146	0.076
	24	0.2741	12.332	0.133	18.846	1.024	22	+0.047	0.091
	25	0.2714	12.336	0.137	18.821	1.379	23	-0.057	0.089
	26	0.2687	12.338	0.126	18.790	1.734	23	0.154	0.073
	27	0.2659	12.330	0.100	18.754	2.087	23	0.228	0.044
Apr.	28	-0.2632	-12.310	-0.066	-18.711	-2.440	-23	-0.270	+0.006
	29	0.2604	12.273	0.027	18.663	2.791	23	0.272	-0.035
	30	0.2577	12.220	0.007	18.610	3.140	23	0.234	0.071
	31	0.2550	12.153	0.032	18.550	3.489	23	0.160	0.097
	1	-0.2522	-12.076	-0.040	-18.485	-3.835	-23	-0.063	-0.106

Da	te	τ	A	В	C	D	E	dψ	dε
			"	"	"	"	s (0.0001)		
Apr.	1 2 3 4 5 6	-0.2522 0.2495 0.2467 0.2440 0.2413 0.2385	-12.076 11.997 11.924 11.865 11.828 11.813	-0.040 0.029 0.002 0.049 0.101 0.144	-18.485 18.415 18.339 18.258 18.173 18.082	-3.835 4.179 4.522 4.862 5.200 5.537	-23 23 23 23 23 23 23	-0.063 +0.039 0.126 0.175 0.170 0.109	-0.106 0.095 0.063 -0.015 +0.038 0.084
	7 8 9 10 11 12	-0.2358 0.2331 0.2303 0.2276 0.2248 0.2221	-11.813 11.816 11.807 11.775 11.718 11.641	-0.165 0.156 0.119 0.065 -0.009 +0.037	-17.986 17.886 17.782 17.672 17.558 17.439	-5.871 6.203 6.533 6.861 7.187 7.512	-23 23 24 24 24 24 24	+0.008 -0.100 0.179 0.202 0.163 -0.076	+0.108 0.103 0.070 +0.020 -0.032 0.072
	13 14 15 16 17 18	-0.2194 0.2166 0.2139 0.2112 0.2084 0.2057	-11.554 11.467 11.390 11.326 11.280 11.249	+0.062 0.066 0.052 +0.026 -0.006 0.036	-17.315 17.186 17.051 16.912 16.768 16.618	-7.834 8.155 8.473 8.788 9.102 9.412	-23 23 23 23 23 23 23	+0.036 0.147 0.234 0.283 0.289 0.253	-0.091 0.089 0.068 -0.035 +0.005 0.042
	19 20 21 22 23 24	-0.2029 0.2002 0.1975 0.1947 0.1920 0.1893	-11.232 11.224 11.220 11.213 11.198 11.171	-0.058 0.067 0.061 0.039 -0.003 +0.043	-16.464 16.304 16.140 15.970 15.796 15.617	-9.720 10.024 10.326 10.624 10.918 11.209	-23 24 24 24 24 24 24	+0.182 +0.086 -0.019 0.120 0.201 0.252	+0.073 0.090 0.093 0.080 0.054 +0.017
	25 26 27 28 29 30	-0.1865 0.1838 0.1810 0.1783 0.1756 0.1728	-11.127 11.066 10.991 10.904 10.814 10.728	+0.094 0.142 0.182 0.205 0.210 0.195	-15.433 15.245 15.053 14.856 14.655 14.450	-11.497 11.780 12.059 12.335 12.606 12.873	-24 24 24 24 24 24	-0.264 0.235 0.170 -0.079 +0.020 0.107	-0.024 0.062 0.091 0.105 0.099 0.073
May	1 2 3 4 5 6	-0.1701 0.1674 0.1646 0.1619 0.1591 0.1564	-10.654 10.599 10.563 10.545 10.535 10.518	+0.164 0.124 0.087 0.066 0.070 0.102	-14.241 14.028 13.812 13.593 13.370 13.144	-13.135 13.393 13.647 13.896 14.141 14.382	-24 24 24 24 24 24	+0.162 0.171 0.126 +0.036 -0.073 0.170	-0.031 +0.019 0.067 0.099 0.106 0.085
	7 8 9 10 11 12	-0.1537 0.1509 0.1482 0.1454 0.1427 0.1400	-10.483 10.423 10.337 10.236 10.129 10.029	+0.156 0.220 0.279 0.319 0.336 0.331	-12.915 12.683 12.448 12.209 11.967 11.721	-14.619 14.852 15.081 15.306 15.526 15.743	-24 24 24 24 24 24	-0.221 0.209 0.137 -0.026 +0.097 0.203	+0.041 -0.012 0.060 0.090 0.096 0.081
	13 14 15 16 17	-0.1372 0.1345 0.1318 0.1290 -0.1263	-9.942 9.873 9.822 9.786 -9.761	+0.309 0.278 0.248 0.223 +0.210	-11.472 11.220 10.964 10.705 -10.443	-15.956 16.164 16.367 16.566 -16.760	-24 24 24 24 -24	+0.273 0.297 0.275 0.213 +0.123	-0.049 -0.009 +0.032 0.066 +0.088

Da	te	τ	A	В	C	D	Е	dψ	dε
			"	"	"	"	(0.0001)		
May	17 18 19 20 21 22	-0.1263 0.1235 0.1208 0.1181 0.1153 0.1126	-9.761 9.741 9.720 9.693 9.654 9.599	+0.210 0.211 0.228 0.260 0.303 0.351	-10.443 10.178 9.910 9.638 9.364 9.087	-16.760 16.949 17.133 17.313 17.486 17.655	-24 24 24 24 24 24	+0.123 +0.019 -0.085 0.174 0.234 0.257	+0.088 0.096 0.087 0.064 +0.029 -0.012
	23 24 25 26 27 28	-0.1099 0.1071 0.1044 0.1016 0.0989 0.0962	-9.527 9.439 9.339 9.234 9.132 9.040	+0.399 0.438 0.463 0.468 0.452 0.419	-8.807 8.525 8.240 7.954 7.665 7.374	-17.818 17.976 18.128 18.274 18.415 18.550	-24 24 24 24 23 23	-0.237 0.179 -0.091 +0.010 0.101 0.164	-0.052 0.085 0.103 0.102 0.081 -0.042
June	29 30 31 1 2 3	-0.0934 0.0907 0.0880 0.0852 0.0825 0.0797	-8.967 8.913 8.877 8.852 8.826 8.786	+0.375 0.332 0.300 0.288 0.303 0.340	-7.082 6.788 6.492 6.196 5.898 5.600	-18.679 18.802 18.920 19.032 19.139 19.241	-23 23 23 23 24 24	+0.182 0.148 +0.069 -0.038 0.143 0.215	+0.006 0.054 0.090 0.105 0.093 0.058
	4 5 6 7 8 9	-0.0770 0.0743 0.0715 0.0688 0.0661 0.0633	-8.724 8.637 8.529 8.411 8.294 8.188	+0.392 0.444 0.484 0.501 0.493 0.465	-5.300 4.999 4.697 4.394 4.090 3.784	-19.337 19.428 19.515 19.596 19.672 19.743	-24 23 23 23 23 23 23	-0.232 0.187 -0.091 +0.032 0.151 0.242	+0.008 -0.043 0.082 0.099 0.092 0.065
	10 11 12 13 14 15	-0.0606 0.0578 0.0551 0.0524 0.0496 0.0469	-8.100 8.030 7.979 7.941 7.910 7.881	+0.424 0.379 0.338 0.307 0.290 0.288	-3.477 3.169 2.860 2.550 2.239 1.927	-19.809 19.869 19.924 19.974 20.017 20.055	-23 22 23 23 23 23	+0.287 0.284 0.237 0.155 +0.053 -0.053	-0.026 +0.017 0.056 0.083 0.096 0.093
	16 17 18 19 20 21	-0.0441 0.0414 0.0387 0.0359 0.0332 0.0305	-7.848 7.805 7.747 7.673 7.582 7.478	+0.302 0.328 0.362 0.397 0.425 0.440	-1.614 1.301 0.987 0.673 0.358 -0.043	-20.088 20.114 20.135 20.150 20.158 20.161	-23 23 23 23 23 23 22	-0.148 0.218 0.253 0.245 0.196 0.113	+0.073 0.041 +0.001 -0.041 0.077 0.100
	22 23 24 25 26 27	-0.0277 0.0250 0.0222 0.0195 0.0168 0.0140	-7.365 7.254 7.153 7.069 7.007 6.964	+0.435 0.409 0.364 0.305 0.244 0.192	+0.272 0.587 0.901 1.215 1.528 1.840	-20.157 20.148 20.132 20.110 20.082 20.048	-22 22 22 22 22 22 22	-0.010 +0.090 0.166 0.197 0.175 0.105	-0.105 0.088 0.053 -0.005 +0.044 0.084
July	28 29 30 1 2	-0.0113 0.0086 0.0058 0.0031 -0.0003	-6.934 6.906 6.869 6.814 -6.735	+0.160 0.151 0.166 0.197 +0.233	+2.151 2.461 2.770 3.077 +3.384	-20.009 19.964 19.913 19.857 -19.796	-22 22 22 22 22 -22	+0.002 -0.106 0.191 0.228 -0.207	+0.104 0.098 0.069 +0.024 -0.027

Dat	te	τ	A	В	C	D	E	dψ	dε
			"	"	"	"	(0.0001)		
July	1 2 3 4 5 6	-0.0031 -0.0003 +0.0024 0.0051 0.0079 0.0106	-6.814 6.735 6.635 6.521 6.404 6.294	+0.197 0.233 0.260 0.269 0.254 0.217	+3.077 3.384 3.689 3.993 4.296 4.598	-19.857 19.796 19.730 19.658 19.582 19.500	-22 22 22 22 22 21 21	-0.228 0.207 0.132 -0.021 +0.100 0.202	+0.024 -0.027 0.070 0.095 0.098 0.078
	7	+0.0133	-6.199	+0.164	+4.899	-19.414	-21	+0.266	-0.042
	8	0.0161	6.124	0.102	5.199	19.322	21	0.283	+0.001
	9	0.0188	6.068	+0.041	5.498	19.225	21	0.251	0.042
	10	0.0216	6.028	-0.010	5.795	19.123	21	0.180	0.075
	11	0.0243	5.999	0.049	6.091	19.015	21	+0.084	0.093
	12	0.0270	5.974	0.072	6.386	18.903	21	-0.023	0.095
	13	+0.0298	-5.947	-0.079	+6.680	-18.784	-21	-0.123	+0.081
	14	0.0325	5.912	0.072	6.972	18.660	21	0.203	0.053
	15	0.0352	5.864	0.056	7.262	18.531	21	0.250	+0.015
	16	0.0380	5.801	0.036	7.550	18.397	21	0.257	-0.027
	17	0.0407	5.722	0.020	7.837	18.256	21	0.222	0.066
	18	0.0435	5.627	0.014	8.121	18.111	21	0.148	0.095
	19	+0.0462	-5.523	-0.027	+8.404	-17.959	-21	-0.048	-0.106
	20	0.0489	5.416	0.060	8.684	17.803	21	+0.059	0.097
	21	0.0517	5.317	0.115	8.962	17.640	21	0.150	0.066
	22	0.0544	5.233	0.186	9.236	17.472	21	0.200	-0.020
	23	0.0572	5.172	0.263	9.509	17.299	21	0.196	+0.032
	24	0.0599	5.133	0.333	9.778	17.121	21	0.139	0.077
	25	+0.0626	-5.110	-0.384	+10.043	-16.937	-21	+0.041	+0.103
	26	0.0654	5.092	0.411	10.306	16.749	21	-0.068	0.104
	27	0.0681	5.068	0.413	10.565	16.556	21	0.160	0.080
	28	0.0708	5.028	0.397	10.821	16.359	21	0.210	+0.037
	29	0.0736	4.966	0.373	11.074	16.157	21	0.205	-0.013
	30	0.0763	4.884	0.354	11.323	15.951	21	0.146	0.058
Aug.	31	+0.0791	-4.786	-0.351	+11.569	-15.741	-21	-0.047	-0.089
	1	0.0818	4.682	0.369	11.812	15.527	21	+0.067	0.098
	2	0.0845	4.583	0.409	12.052	15.309	21	0.173	0.085
	3	0.0873	4.496	0.467	12.289	15.087	20	0.248	0.054
	4	0.0900	4.427	0.535	12.523	14.860	20	0.279	-0.013
	5	0.0927	4.378	0.605	12.753	14.630	20	0.262	+0.029
	6	+0.0955	-4.347	-0.668	+12.980	-14.396	-20	+0.203	+0.065
	7	0.0982	4.328	0.719	13.204	14.158	21	0.113	0.089
	8	0.1010	4.315	0.754	13.425	13.915	21	+0.008	0.096
	9	0.1037	4.303	0.772	13.642	13.669	21	-0.096	0.087
	10	0.1064	4.285	0.776	13.856	13.418	21	0.184	0.063
	11	0.1092	4.257	0.768	14.066	13.163	21	0.244	+0.028
	12 13 14 15 16	+0.1119 0.1146 0.1174 0.1201 +0.1229	-4.214 4.154 4.080 3.994 -3.902	-0.754 0.740 0.734 0.743 -0.771	+14.273 14.476 14.675 14.870 +15.061	-12.904 12.641 12.374 12.103 -11.828	-21 21 21 21 21 -21	-0.266 0.246 0.187 -0.096 +0.010	-0.013 0.054 0.087 0.105 -0.104

FOR $0^{\rm h}$ TERRESTRIAL TIME

Da	te	τ	A	В	C	D	E	dψ	dε
			"	"	"	"	(0.0001)		
Aug.	16	+0.1229	-3.902	-0.771	+15.061	-11.828	-21	+0.010	-0.104
	17	0.1256	3.813	0.821	15.248	11.549	21	0.110	0.081
	18	0.1283	3.737	0.889	15.430	11.266	21	0.180	-0.038
	19	0.1311	3.681	0.968	15.608	10.979	21	0.200	+0.014
	20	0.1338	3.648	1.044	15.781	10.688	21	0.162	0.065
	21	0.1366	3.636	1.104	15.949	10.394	21	+0.075	0.099
	22	+0.1393	-3.633	-1.139	+16.112	-10.097	-21	-0.034	+0.109
	23	0.1420	3.626	1.146	16.271	9.797	21	0.134	0.091
	24	0.1448	3.605	1.130	16.424	9.494	21	0.195	+0.050
	25	0.1475	3.562	1.104	16.572	9.189	21	0.201	-0.000
	26	0.1502	3.498	1.080	16.715	8.881	21	0.151	0.048
	27	0.1530	3.417	1.069	16.854	8.571	21	-0.059	0.082
Sept.	28	+0.1557	-3.329	-1.078	+16.987	-8.259	-21	+0.053	-0.096
	29	0.1585	3.243	1.109	17.116	7.944	21	0.160	0.089
	30	0.1612	3.168	1.157	17.240	7.628	21	0.241	0.062
	31	0.1639	3.109	1.218	17.360	7.309	21	0.282	-0.024
	1	0.1667	3.069	1.282	17.475	6.988	21	0.277	+0.019
	2	0.1694	3.047	1.341	17.586	6.666	21	0.227	0.057
	3 4 5 6 7 8	+0.1721 0.1749 0.1776 0.1804 0.1831 0.1858	-3.039 3.039 3.041 3.038 3.026 3.000	-1.388 1.420 1.435 1.434 1.420 1.398	+17.691 17.792 17.889 17.980 18.067 18.149	-6.341 6.014 5.685 5.355 5.022 4.687	-21 21 22 22 22 22 22	+0.144 +0.041 -0.065 0.160 0.230 0.265	+0.084 0.096 0.092 0.072 +0.039 -0.000
	9 10 11 12 13 14	+0.1886 0.1913 0.1940 0.1968 0.1995 0.2023	-2.959 2.902 2.833 2.755 2.677 2.606	-1.375 1.356 1.348 1.357 1.386 1.435	+18.226 18.298 18.364 18.426 18.482 18.533	-4.351 4.013 3.673 3.331 2.987 2.642	-22 22 22 22 22 22 22	-0.260 0.216 0.139 -0.041 +0.059 0.141	-0.041 0.077 0.100 0.107 0.092 0.058
	15 16 17 18 19 20	+0.2050 0.2077 0.2105 0.2132 0.2159 0.2187	-2.551 2.519 2.508 2.512 2.517 2.510	-1.498 1.564 1.620 1.653 1.656 1.631	+18.578 18.617 18.651 18.678 18.700 18.716	-2.296 1.948 1.599 1.249 0.898 0.547	-22 22 22 22 22 22 23	+0.182 0.169 +0.100 -0.005 0.114 0.190	-0.009 +0.045 0.089 0.110 0.102 0.067
	21	+0.2214	-2.481	-1.590	+18.726	-0.196	-23	-0.211	+0.016
	22	0.2242	2.426	1.547	18.730	+0.155	23	0.169	-0.036
	23	0.2269	2.353	1.515	18.728	0.505	23	-0.079	0.076
	24	0.2296	2.269	1.503	18.721	0.856	22	+0.037	0.096
	25	0.2324	2.186	1.514	18.709	1.206	22	0.151	0.092
	26	0.2351	2.112	1.543	18.691	1.555	22	0.242	0.069
Oct.	27	+0.2379	-2.054	-1.585	+18.668	+1.904	-22	+0.292	-0.033
	28	0.2406	2.014	1.633	18.639	2.252	22	0.297	+0.010
	29	0.2433	1.992	1.677	18.606	2.600	22	0.256	0.049
	30	0.2461	1.985	1.711	18.567	2.947	23	0.180	0.080
	1	+0.2488	-1.986	-1.730	+18.523	+3.294	-23	+0.079	+0.096

FOR $0^{\rm h}$ TERRESTRIAL TIME

Dat	te	τ	A	В	C	D	E	dψ	dε
			"	"	"	"	(0.0001)		
Oct.	1	+0.2488	-1.986	-1.730	+18.523	+3.294	-23	+0.079	+0.096
	2	0.2515	1.991	1.732	18.474	3.640	23	-0.029	0.096
	3	0.2543	1.992	1.718	18.420	3.985	23	0.129	0.080
	4	0.2570	1.984	1.689	18.361	4.330	23	0.207	0.050
	5	0.2598	1.962	1.651	18.296	4.673	23	0.253	+0.012
	6	0.2625	1.926	1.610	18.226	5.016	24	0.260	-0.029
	7	+0.2652	-1.873	-1.572	+18.151	+5.358	-24	-0.229	-0.067
	8	0.2680	1.807	1.543	18.070	5.699	24	0.164	0.094
	9	0.2707	1.732	1.529	17.985	6.039	23	-0.076	0.106
	10	0.2734	1.653	1.534	17.893	6.378	23	+0.019	0.099
	11	0.2762	1.579	1.557	17.797	6.716	23	0.103	0.073
	12	0.2789	1.516	1.596	17.694	7.052	23	0.156	-0.030
	13	+0.2817	-1.472	-1.644	+17.586	+7.387	-23	+0.162	+0.022
	14	0.2844	1.448	1.688	17.473	7.721	23	0.115	0.071
	15	0.2871	1.442	1.715	17.353	8.052	24	+0.022	0.103
	16	0.2899	1.444	1.714	17.228	8.382	24	-0.091	0.109
	17	0.2926	1.438	1.684	17.097	8.709	24	0.187	0.084
	18	0.2953	1.412	1.630	16.960	9.034	24	0.232	+0.037
	19	+0.2981	-1.358	-1.566	+16.818	+9.356	-24	-0.210	-0.019
	20	0.3008	1.280	1.511	16.670	9.675	24	0.126	0.067
	21	0.3036	1.185	1.474	16.518	9.990	24	-0.004	0.096
	22	0.3063	1.088	1.463	16.360	10.303	24	+0.124	0.099
	23	0.3090	0.998	1.474	16.197	10.612	24	0.231	0.079
	24	0.3118	0.924	1.500	16.029	10.918	24	0.298	0.044
	25	+0.3145	-0.869	-1.534	+15.857	+11.220	-24	+0.316	-0.001
	26	0.3172	0.832	1.566	15.680	11.519	24	0.287	+0.041
	27	0.3200	0.810	1.589	15.498	11.815	24	0.217	0.075
	28	0.3227	0.799	1.599	15.313	12.107	24	0.121	0.096
	29	0.3255	0.792	1.593	15.122	12.396	24	+0.012	0.100
	30	0.3282	0.782	1.570	14.927	12.682	24	-0.092	0.087
Nov.	31	+0.3309	-0.764	-1.532	+14.728	+12.964	-24	-0.178	+0.060
	1	0.3337	0.734	1.484	14.525	13.242	24	0.233	+0.024
	2	0.3364	0.688	1.431	14.317	13.517	24	0.250	-0.018
	3	0.3392	0.625	1.380	14.105	13.789	24	0.229	0.057
	4	0.3419	0.548	1.338	13.889	14.056	24	0.172	0.088
	5	0.3446	0.461	1.310	13.668	14.320	24	-0.091	0.104
	6	+0.3474	-0.369	-1.300	+13.443	+14.581	-24	+0.000	-0.102
	7	0.3501	0.279	1.309	13.214	14.837	24	0.084	0.081
	8	0.3528	0.199	1.334	12.980	15.090	24	0.141	-0.044
	9	0.3556	0.135	1.370	12.742	15.338	24	0.158	+0.003
	10	0.3583	0.089	1.407	12.499	15.582	24	0.126	0.052
	11	0.3611	0.062	1.434	12.253	15.822	24	+0.048	0.090
	12	+0.3638	-0.045	-1.439	+12.001	+16.058	-24	-0.061	+0.107
	13	0.3665	-0.028	1.417	11.746	16.289	24	0.169	0.096
	14	0.3693	+0.004	1.367	11.486	16.514	24	0.242	0.058
	15	0.3720	0.061	1.302	11.222	16.735	24	0.253	+0.004
	16	+0.3747	+0.148	-1.236	+10.954	+16.950	-24	-0.193	-0.051

Dat	te	τ	A	В	C	D	E	dψ	dε
			"	"	"	"	(0.0001)		
Nov.	16 17 18 19 20 21	+0.3747 0.3775 0.3802 0.3830 0.3857 0.3884	+0.148 0.256 0.376 0.491 0.592 0.674	-1.236 1.186 1.161 1.163 1.186 1.220	+10.954 10.683 10.408 10.129 9.848 9.564	+16.950 17.160 17.363 17.562 17.754 17.941	-24 24 24 24 23 23	-0.193 -0.078 +0.062 0.191 0.282 0.322	-0.051 0.090 0.105 0.092 0.059 -0.015
	22 23 24 25 26 27	+0.3912 0.3939 0.3966 0.3994 0.4021 0.4049	+0.735 0.778 0.809 0.834 0.860 0.892	-1.256 1.285 1.302 1.303 1.287 1.256	+9.277 8.987 8.695 8.400 8.103 7.803	+18.122 18.297 18.467 18.632 18.790 18.943	-23 23 23 23 24 24	+0.310 0.251 0.161 +0.053 -0.054 0.146	+0.030 0.068 0.093 0.102 0.094 0.070
Dec.	28 29 30 1 2 3	+0.4076 0.4103 0.4131 0.4158 0.4185 0.4213	+0.936 0.995 1.070 1.161 1.263 1.371	-1.214 1.167 1.120 1.081 1.056 1.049	+7.501 7.197 6.891 6.582 6.272 5.959	+19.091 19.233 19.369 19.500 19.625 19.745	-24 24 24 24 23 23	-0.211 0.238 0.226 0.176 0.099 -0.008	+0.035 -0.006 0.047 0.080 0.101 0.104
	4 5 6 7 8 9	+0.4240 0.4268 0.4295 0.4322 0.4350 0.4377	+1.478 1.576 1.659 1.723 1.770 1.803	-1.062 1.092 1.134 1.180 1.220 1.242	+5.645 5.328 5.009 4.689 4.366 4.042	+19.859 19.967 20.070 20.166 20.257 20.342	-23 23 23 23 23 23 23	+0.079 0.143 0.168 0.146 +0.078 -0.024	-0.087 0.054 -0.009 +0.039 0.079 0.102
	10 11 12 13 14 15	+0.4405 0.4432 0.4459 0.4487 0.4514 0.4541	+1.833 1.871 1.929 2.015 2.126 2.254	-1.241 1.214 1.168 1.115 1.070 1.047	+3.715 3.387 3.057 2.726 2.394 2.061	+20.420 20.492 20.558 20.616 20.668 20.713	-23 23 23 23 23 23 22	-0.136 0.227 0.269 0.243 0.153 -0.020	+0.101 0.073 +0.026 -0.030 0.077 0.104
	16 17 18 19 20 21	+0.4569 0.4596 0.4624 0.4651 0.4678 0.4706	+2.386 2.508 2.611 2.691 2.750 2.794	-1.051 1.082 1.130 1.184 1.235 1.274	+1.727 1.392 1.057 0.723 0.388 +0.053	+20.751 20.782 20.806 20.824 20.835 20.839	-22 22 22 22 22 22 22	+0.121 0.237 0.305 0.316 0.275 0.194	-0.104 0.078 -0.036 +0.012 0.056 0.087
	22 23 24 25 26 27	+0.4733 0.4760 0.4788 0.4815 0.4843 0.4870	+2.829 2.862 2.899 2.945 3.006 3.082	-1.297 1.304 1.295 1.274 1.245 1.215	-0.281 0.615 0.949 1.282 1.614 1.946	+20.836 20.828 20.812 20.791 20.763 20.729	-22 22 22 22 22 22 22	+0.090 -0.019 0.117 0.190 0.229 0.228	+0.101 0.099 0.080 0.048 +0.007 -0.035
	28 29 30 31 32	+0.4897 0.4925 0.4952 0.4979 +0.5007	+3.174 3.278 3.390 3.502 +3.607	-1.191 1.180 1.186 1.213 -1.259	-2.277 2.607 2.936 3.265 -3.592	+20.689 20.643 20.591 20.532 +20.468	-22 22 21 21 -21	-0.188 0.115 -0.023 +0.070 +0.145	-0.072 0.097 0.105 0.093 -0.063

SECOND-ORDER DAY NUMBERS, 2020 J FOR NORTHERN DECLINATIONS FOR $0^{\rm h}$ TT AND EQUINOX J 2020.5

							RIGHT	ASCEN	NSION					
Date	e	0 ^h 12 ^h	1 ^h 13 ^h	2 ^h 14 ^h	3 ^h 15 ^h	4 ^h 16 ^h	5 ^h 17 ^h	6 ^h 18 ^h	7 ^h 19 ^h	8 ^h 20 ^h	9 ^h 21 ^h	10 ^h 22 ^h	11 ^h 23 ^h	12 ^h 24 ^h
Jan. Feb.	2 12 22 1 11	-2 -1 -1 -1 0	+3 -1 -2 -2 -2 -1	+7 -1 -2 -3	+9 -1 -2 -3 -4	+8 0 -1 -2 -4	+5 0 0 -1 -2	+1 0 0 0 -1	-4 0 +1 +1 +1	-8 0 +1 +2 +2	-10 0 +1 +2 +3	-9 -1 0 +1 +3	-6 -1 -1 0 +1	-2 -1 -1 -1
Mar.	21 2 12 22	+1 +3 +5 +7	+1 +2 +5	-2 -3 -3 -3 -2 -1 +1	-2 -3 -4 -5 -5 -5	-5 -6 -7 -7	-4 -6 -8 -9	-2 -4 -6 -8	0 -2 -3 -6	+2 +1	+4 +4 +4 +3	+4 +5 +6 +6	+3 +5 +7 +8	0 +1 +3 +5 +7
Apr.	1 11 21	+9 +10 +11	+7 +9 +11	+3 +6 +8	-4 -2 0 +3	-6 -5 -3	-9 -9 -9 -7	-10 -11 -12	-8 -10 -12	-2 -4 -7 -9	+1 -1 -4	+5 +4 +2	+8 +8 +8	+9 +10 +11
May	1 11 21 31	+10 +9 +7	+12 +12 +12 +10	+10 +12 +13 +13	+5 +8 +10 +11	-1 +2 +5 +7	-7 -5 -2 +1	-11 -10 -8	-13 -13 -13 -11	-11 -13 -14 -14	-6 -9 -11 -12	0 -3 -6 -8	+6 +4 +1	+10 +9 +7 +5
June	10 20 30	+5 +2 -1 -3	+10 +8 +6 +3	+13 +12 +10 +8	+11 +12 +12 +11	+9 +10 +11	+1 +3 +6 +7	-6 -3 0 +2	-11 -9 -7 -4	-13 -11 -9	-13 -13 -12	-10 -11 -12	+1 -2 -4 -7 -8	+2
July	10 20 30	-3 -5 -7 -8 -8	0 -2 -4 -6 -7 -7	+6 +3 0 -2	+9 +7 +5	+10 +9 +8	+8 +9 +8	+4 +6 +7	-1 +1 +3	-7 -4 -1	-10 -8 -6	-11 -10 -9	-9 -10 -9 -8	-1 -3 -5 -7 -8 -8 -7 -6 -5 -3 0 +2 +3 +5
Aug.	9 19 29 8	-8 -7 -6	-6 -7 -7	-2 -4 -5	+2 0 -3	+5 +3 +1	+7 +6 +3 +1	+7 +6 +5 +4	+5 +6 +6 +5	+1 +3 +4 +5	-3 -1 +2 +3	-6 -4 -2 +1	-7	-8 -7 -6
Sept. Oct.	18 28 8	-6 -5 -3 0 +2 +3	-6 -5 -3 -1	-4 -5 -6 -5 -4 -3 -1	0 -3 -4 -5 -5 -5	-2 -3 -5	-1 -3	+4 +2 -1 -3	+3 +4 +2 0	+3 +4 +3 +2	+3 +4 +4 +4	+1 +2 +4 +4	-4 -2 0 +2 +3	-3 -3 0
Nov.	18 28 7	+3 +5 +5	+1 +3 +5	-1 +1 +3	-3 -1 +1	-5 -5 -4 -2 0	-4 -5 -5 -5 -3	-4 -6 -6	-2 -4	0 -2 -4	+2 0 -2 -4	+4 +3 +1	+3 +4 +4 +4	+3 +5 +5
Dec.	17 27	+5 +4 +2	+6 +6 +5	+5 +7 +7	+3 +5 +7	0 +2 +5	-3 -1 +1	-6 -5 -3	-6 -7 -7 -6	-6 -8 -8	-4 -6 -8 -9	-1 -3 -6	+2	+5 +5 +4 +2
_ ***	7 17 27 37	-3 -6	+4 +2 -1	+7 +6 +4	+8 +9 +8	+7 +9 +9	+4 +6 +8	-1 +2 +5	-6 -5 -3 0	-8 -7 -5	-9 -10 -9	-8 -10 -10	-2 -5 -7 -9	-3 -6

The second-order day number J given in this table in units of 0^s.00001

The apparent right ascension of a star is given by:

$$\alpha = \alpha_1 + \tau \mu_{\alpha}/100 + Aa + Bb + Cc + Dd + E + J \tan^2 \delta_1$$

Where the position (α_1,δ_1) and centennial proper motion in right ascension (μ_α) are referred to the mean equator and equinox of J 2020.5

SECOND-ORDER DAY NUMBERS, 2020 J' FOR NORTHERN DECLINATIONS FOR 0^h TT AND EQUINOX J 2020.5

]	RIGHT	ASCE	NSION					
Date	0 ^h 12 ^h	1 ^h 13 ^h	2 ^h 14 ^h	3 ^h 15 ^h	4 ^h 16 ^h	5 ^h 17 ^h	6 ^h 18 ^h	7 ^h 19 ^h	8 ^h 20 ^h	9 ^h 21 ^h	10 ^h 22 ^h	11 ^h 23 ^h	12 ^h 24 ^h
Jan. 2 12 22 Feb. 1	-1	-1 0	-3 -1	-6 -1	-10 -1	-13 -1	-14 -1	-14 0	-12 0	-9 0	-5 0	-2 0	-1 0
Feb. 1	-1 -4 -5	-1 -3 -5 -7 -9	0 -2 -4	-1 -1 -3	-1 0 -2 -3	-1 0 -1	-1 -1 -1	-1 -1 -1	0 -2 -2 -1	-2 -2 -3	0 -2 -3 -4	-1 -4 -5	-1 -3 -5
Mar. 21 Mar. 22 12 22 Apr. 1	-7 -8 -9 -9	-7 -9 -11 -12	-6 -9 -11 -13	-3 -5 -8 -10 -13	-3 -6 -8 -11	-1 -2 -3 -5 -8	-1 -2 -3	-1 -1	-1 -1 -1 -1	0 -2 -2 -3 -2 -2 -2	-4 -4 -4 -3	-6 -6 -6	0 -1 -3 -5 -7 -8 -9 -9 -9 -8 -7 -5 -4
11	-9 -8	-12 -12	-14 -15	-15 -17	-13 -16	-10 -13	-4 -7 -9 -12	-1 -2 -3 -5 -7	-1	-1 -1	-2 -1	-6 -5 -4	-9 -8
May 1 11 21	-5 -4 -2	-11 -10 -8 -7	-15 -15 -13 -12	-18 -18 -17 -16	-18 -19 -20 -20	-16 -18 -19 -20	-14 -16 -18	-10 -12 -14	-2 -3 -5 -7 -9	-1 -2 -3 -4	-1 -1 -1	-4 -3 -2 -1	-7 -5 -4 -2 -1
June 10 20	-1 -1	-5 -3 -2 -1	-9 -7 -5 -3 -2 -1	-15 -12 -10	-18 -17 -14	-20 -19 -18	-19 -19 -19 -18	-16 -17 -18	-11 -13 -15	-4 -6 -8 -10	-2 -4 -5 -7	-1 -1 -2 -3	-1 -1
July 10 20 30		-1 -1 -1 -1	-3 -2 -1 -1	-7 -5 -3 -2 -1	-12 -9 -7	-16 -13 -10	-18 -16 -14 -11	-18 -17 -15 -13	-15 -15 -15 -14	-11 -12 -13 -13	-7 -8 -9 -10	-3 -4 -5	-1 -1 -2
Aug. 9	-5 -6	-2 -3	-1 -1	-2 -1 -1 -1	-4 -3 -1 -1	-8 -5 -3 -2 -1	-11 -8 -6 -4	-13 -11 -8 -6	-12 -10 -8	-12 -11 -9	-10 -10 -10	-4 -5 -7 -8 -8 -9 -9	-1 -2 -3 -5 -6
Sept. 8	-7 -8	-4 -5 -6 -7 -7	-2 -3 -5 -6 -7	-1 -3 -4	-1 -1	-1	-4 -2 -1 -1	-4 -2 -1	-6 -4	-8	-10 -9 -7 -6	-9 -9 -8	-7 -7 -8 -8 -7
Oct. 8	-6 -7	-7 -7 -7 -7	-7 -8	-6 -7	-2 -4 -5 -7 -9	-1 -2 -4	-1 -2	-1 -1	-2 -1 -1	-6 -4 -2 -1	-4 -3	-6	-6 -5
Nov. 7	-6 -5 -4 -3 -2	-6 -5	-8 -8 -8	-6 -7 -8 -9 -9	-10	-6 -8 -10	-4 -6 -8	-2 -3 -6	-1 -2 -3 -5	-1 -1 -1	-1 -1 -1	-4 -3 -2 -1	-6 -5 -4 -3 -2
Dec. 7	-1 -1	-4 -2 -1	-6 -5 -4	-8 -7	-11 -11 -11	-11 -12 -13	-10 -12 -14	-8 -10 -13	-8 -10	-1 -3 -5 -7	-1 -2 -4	-1 -1 -1	-1 -1
27 37	-1 -2	-1 -1	-3 -1	-6 -4	-9 -8	-12 -12	-14 -14	-14 -15	-12 -15	-9 -12	-6 -8	-3 -4	-1 -2

The second-order day number J' given in this table in units of 0".0001

The apparent declination of a star is given by:

$$\delta = \delta_1 + \tau \mu_\delta / 100 + Aa' + Bb' + Cc' + J' \tan \delta_1$$

Where the declination (δ_I) and centennial proper motion in declination (μ_δ) are referred to the mean equator and equinox of J 2020.5

SECOND-ORDER DAY NUMBERS, 2020 J FOR SOUTHERN DECLINATIONS FOR $0^{\rm h}$ TT AND EQUINOX J 2020.5

]	RIGHT	ASCEN	NSION					
Date	0 ^h 12 ^h	1 ^h	2 ^h 14 ^h	3 ^h 15 ^h	4 ^h 16 ^h	5 ^h 17 ^h	6 ^h 18 ^h	7 ^h 19 ^h	8 ^h 20 ^h	9 ^h 21 ^h	10 ^h 22 ^h	11 ^h 23 ^h	12 ^h 24 ^h
Jan. 2	-3 -10	-1 1	+2 11	+4 18	+5 21	+4 17	+2	0 -2	-3 -12	-5 -19	-6 -22	-5 -18	-3 -10
Feb. 1 11	-13 -14 -14	-3 -6 -8	+7 +3 0	+15 +11 +7	+19 +16 +13	+18 +17 +15	+12 +13 +13	+2 +5 +7	-8 -4 -1	-16 -12 -8	-20 -17 -14	-19 -18 -16	-13 -14 -14
Mar. 2 12 22	-14 -12 -10 -8	-10 -10 -10 -9	-3 -5 -7 -7	+4 +1 -2 -4	+10 +6 +3	+13 +10 +7 +4	+13 +11 +9 +7	+9 +9 +9 +8	+2 +4 +6 +6	-5 -2 +1 +3	-11 -7 -4 -1	-14 -11 -8 -5	-14 -12 -10 -8
Apr. 1	-8 -5 -3	-7 -5 -3	-7 -6	-5 -5 -5	-2 -3	+2 -1	+4 +2	+6 +4	+6 +5	+4 +4	$^{+1}_{+2}$	-3 0	-8 -5 -3 -1
May 1 11 21 31	-1 +1 +2 +2	-1 0 +1	-4 -3 -1 0	-4 -2 -1	-4 -4 -3 -2 -1	-2 -3 -3 -3	0 -2 -3 -3 -3 -2	+2 0 -1 -2	+3 +2 0 -1	+4 +3 +1 0	+3 +2 +1	+1 +2 +2 +2	+1 +2 +2
June 10 20	+2 +1 0	+2 +2 +1	+1 +2 +2	0 +1 +2	$^{0}_{+2}$	-3 -2 -1 0	-1	-2 -3 -3 -2	-2 -3 -3 -2	-1 -2 -3	0 -1 -3 -3	+1 0 -1	+2 +1 0
July 10 20 30	-2 -3 -4 -5 -5 -4 -3 -2 0 +2	0 -2 -3 -4 -5	+1 0 -1 -3	+2 +2 +1 -1	+2 +3 +2 +1	+2 +3 +3 +3	+1 +2 +3 +4	-1 +1 +2 +3	-2 -1 0 +2	-2 -3 -3 -3 -2 0	-3 -4 -3 -2	-3 -4 -4	0 -2 -3 -4 -5 -5 -4 -3 -2 0 +2
Aug. 9 19	-5 -4	-6	-4 -6	-2 -4	0 -2	+2 +1 -1	+4 +3 +2	+4 +5	+3 +5 +5	+1 +3 +5	-1 +1 +2	-4 -3 -2 0	-5 -4
Sept. 8 18	-3 -2 0	-5 -4 -3	-6 -6 -6	-6 -7 -7	-3 -5 -7 -7	-3 -5	+1 -1	+4 +3 +2	+5 +5	+6 +6	+4 +6	+2 +4	-3 -2 0
28 Oct. 8 18	+4 +6	-1 +1 +3	-5 -3 -1	-7 -6 -4	-7 -7	-6 -7 -8	-3 -5 -7	0 -2 -4	+4 +2 0	+6 +5 +3	+6 +6 +6	+5 +6 +7	+4 +6
28 Nov. 7 17	+7 +7 +6	+5 +6 +6	+1 +3 +5	-2 0 +2	-6 -4 -2	-8 -7 -5	-8 -8 -7	-6 -7 -7	-2 -4 -6	+1 -1 -3	+5 +3 +1	+7 +6 +4	+7 +7 +6
Dec. 7 17	+5 +3 +1	+6 +5 +3	+6 +6 +5	+3 +4 +5	0 +2 +3	-3 -1 +1	-6 -4 -2	-7 -6 -4	-7 -7 -6	-4 -5 -6	-1 -3 -4	+2 0 -2	+5 +3 +1
27 37	-1 -2	+2	+4 +2	+5 +4	+4 +4	+2 +3	$0 \\ +1$	-3 -1	-5 -3	-6 -5	-5 -5	-3 -4	-1 -2

The second-order day number J given in this table in units of 0^{s} .00001

The apparent right ascension of a star is given by: $\alpha = \alpha_1 + \tau \mu_\alpha / 100 + Aa + Bb + Cc + Dd + E + J \tan^2 \delta_1$

Where the position (α_1,δ_1) and centennial proper motion in right ascension (μ_α) are referred to the mean equator and equinox of J 2020.5

SECOND-ORDER DAY NUMBERS, 2020 J' FOR SOUTHERN DECLINATIONS FOR $0^{\rm h}$ TT AND EOUINOX J 2020.5

						F	RIGHT	ASCE	NSION					
Date		0 ^h 12 ^h	1 ^h 13 ^h	2 ^h 14 ^h	3 ^h 15 ^h	4 ^h 16 ^h	5 ^h 17 ^h	6 ^h 18 ^h	7 ^h 19 ^h	8 ^h 20 ^h	9 ^h 21 ^h	10 ^h 22 ^h	11 ^h 23 ^h	12 ^h 24 ^h
Jan.	2 12 22	-1 -2	-1 -1	-1 -3	-2 -9	-4 -17	-6 -25	-7 -31	-8 -32	-8 -30	-7 -24	-5 -16	-3 -8	-1 -2
Feb.	1 11	-4 -5 -6	-1 -1 -2 -3	-2 -1 -1	-6 -4 -2 -1	-13 -10 -6	-21 -17 -12	-27 -23 -18	-30 -27 -23	-29 -27 -24	-24 -24 -22	-17 -18 -18	-10 -11 -12	-4
Mar.	21 2 12 22	-8 -9 -9 -9 -9 -8	-3 -4 -5 -6	-1 -1 -2 -3 -4	-1 -1 -1 -1	-4 -2 -1 -1	-9 -6 -3 -2	-14 -10 -7 -4	-18 -15 -11 -7	-21 -17 -14 -10	-21 -18 -15 -12	-18 -17 -15 -13	-13 -13 -12 -11	-5 -6 -8 -9 -9
Apr.	22 1 11	-9 -8	-7 -7	-4 -5	-1 -2 -3 -3	-1 -1	-1 -1	-2 -1	-4 -2 -1	-7 -4	-9 -6	-10 -8	-10 -8 -7	-9 -9 -8 -7
May	21 1 11 21	-7 -6 -4 -3 -2 -1	-6 -6 -5 -4	-5 -5 -5 -5 -4 -3 -3	-4 -4 -4	-2 -3 -3 -4	-1 -1 -2 -3	-1 -1 -1 -2 -3	-1 -1 -1	-2 -1 -1 -1	-4 -2 -1 -1	-6 -4 -2 -1	-7 -5 -3 -2 -1	-7 -6 -4 -3 -2 -1
June	31 10 20 30	-2 -1 -1 -1	-3 -2 -1 -1	-3 -3 -2 -1	-4 -3 -3 -2	-4 -4 -4	-4 -4 -4	-3 -4 -4 -5	-2 -3 -4	-1 -2 -3 -4	-1 -1 -2	-1 -1 -1 -2	-1 -1 -1 -1	-2 -1 -1 -1
July	10 20 30	-1	-1 -1 -2	-1 -1 -1	-1 -1 -1	-4 -3 -2 -1 -1	-4 -3 -2	-5	-4 -5 -5 -5 -5	-5 -6 -6	-2 -3 -5 -6 -7 -7 -7	-4 -5 -6	-1 -2 -4 -5 -7	-1 -2
Aug.	9 19 29	-2 -4 -6 -7 -9	-4 -5 -7	-2 -3 -5 -7	-1 -2 -3	-1 -1 -1	-1 -1 -1	-4 -3 -3 -2 -1	-4 -4	-6 -6 -5	-7 -7 -7	-8 -8 -8 -8	-7 -8 -9	-4 -6 -7 -9
Sept.	8 18	-10 -11 -10	-9 -10 -11	-7 -9 -10	-4 -6 -8	-2	-1 -2 -3	-1 -1 -1	-3 -2 -1 -1	-4 -2 -2	-6 -5 -4 -2 -1		-10 -10	-10 -11 -10
Oct.	28 8 18	-10 -9 -7	-11 -11	-11 -12	-9 -11	-4 -5 -7 -9	-4 -6	-2 -3	-1 -1	-1 -1		-6 -5 -3 -2	-9 -8 -6	-10 -9
Nov.	28 7 17	-7 -6 -4 -2	-10 -8 -7	-11 -10 -9	-11 -11 -11	-10 -11 -11	-7 -9 -10	-5 -6 -7	-2 -3 -5	-1 -1 -2 -3	-1 -1 -1	-1 -1	-6 -5 -3 -2	-7 -6 -4
Dec.	27 7 17	-1 -1	-5 -3 -2	-7 -5 -4	-9 -8 -6	-10 -9 -8	-10 -10 -9	-8 -9 -9	-6 -7 -8	-5 -6	-1 -2 -4	-1 -1 -2	-1 -1 -1	-2 -1 -1
	27 37	-1 -1	-1 -1	-2 -1	-4 -2	-6 -4	-7 -6	-8 -7	-8 -7	-6 -7	-5 -5	-3 -4	-1 -2	-1 -1

The second-order day number J' given in this table in units of 0".0001

The apparent declination of a star is given by: $\delta = \delta_1 + \tau \mu_\delta/100 + \textit{Aa'} + \textit{Bb'} + \textit{Cc'} + \textit{J'} \tan \delta_1$

Where the declination (δ_1) and centennial proper motion in declination (μ_δ) are referred to the mean equator and equinox of J 2020.5

Date 0 ^h T.D.	.B.	X	Y	Z	X	· Y	Z
Jan.	0 1 2 3 4 5	-0.152 871 14 0.170 144 39 0.187 364 42 0.204 525 83 0.221 623 30 0.238 651 57	0 0.895 983 83 2 0.893 107 92 3 0.889 956 13 0 0.886 529 71	0.388 436 66 0.387 190 45 0.385 824 50 0.384 339 34	-1729 8043 1724 7546 1719 1615 1713 320 1706 3736 1699 1940	-245 9990 273 7580 301 4054 328 9322 356 3296 383 5892	-106 5702 118 6171 130 6168 142 5646 154 4564 166 2880
	6 7 8 9 10 11	-0.255 605 47 0.272 479 91 0.289 269 90 0.305 970 53 0.322 576 97 0.339 084 48	0.874 616 42 0.870 105 58 0.865 327 48 0.860 283 70	0.379 174 68 0.377 218 92 0.375 147 22 0.372 960 31	-1691 5013 1683 3042 1674 6119 1665 4332 1655 7764 1645 6471	-410 7039 437 6671 464 4738 491 1210 517 6076 543 9343	-178 0556 189 7555 201 3853 212 9426 224 4264 235 8369
	12 13 14 15 16 17	-0.355 488 35 0.371 783 89 0.387 966 38 0.404 031 05 0.419 973 05 0.435 787 45	0.843 574 31 0.837 483 73 0.831 135 36 0.824 530 83	0.365 715 68 0.363 075 24 0.360 323 21 0.357 460 30	-1635 0486 1623 9804 1612 4379 1600 4148 1587 9031 1574 8948	-570 1033 596 1164 621 9737 647 6726 673 2072 698 5683	-247 1746 258 4405 269 6355 280 7594 291 8108 302 7869
	18 19 20 21 22 23	-0.451 469 27 0.467 013 44 0.482 414 89 0.497 668 54 0.512 769 31 0.527 712 19	0.803 197 59 0.795 586 42 0.787 728 80 0.779 627 13	0.348 213 86 0.344 915 22 0.341 509 85 0.337 998 75	-1561 3839 1547 3662 1532 8396 1517 8050 1502 2658 1486 2275	-723 7435 748 7187 773 4783 798 0060 822 2855 846 3008	-313 6836 324 4954 335 2166 345 8407 356 3608 366 7701
	24 25 26 27 28 29	-0.542 492 22 0.557 104 54 0.571 544 37 0.585 807 07 0.599 888 10 0.613 783 05	0.753 884 21 0.744 833 46 0.735 552 91 0.726 045 76	0.326 842 17 0.322 919 56 0.318 897 24 0.314 776 56	-1469 6977 1452 6861 1435 2033 1417 2612 1398 8716 1380 0469	-870 0369 893 4802 916 6179 939 4394 961 9352 984 0970	-377 0621 387 2304 397 2692 407 1732 416 9378 426 5590
Feb.	30 31 1 2 3 4	-0.627 487 63 0.640 997 67 0.654 309 11 0.667 418 03 0.680 320 62 0.693 013 21	0.696 198 12 0.685 818 32 0.675 229 10 0.664 434 08	0.301 838 80 0.297 339 26 0.292 748 80 0.288 069 00	-1360 7991 1341 1404 1321 0826 1300 6380 1279 8191 1258 6384	-1005 9176 1027 3907 1048 5106 1069 2722 1089 6713 1109 7045	-436 0329 445 3562 454 5261 463 5396 472 3944 481 0884
	5 6 7 8 9 10	-0.705 492 23 0.717 754 27 0.729 796 02 0.741 614 30 0.753 205 99 0.764 568 03	0.630 850 72 0.619 269 07 0.607 499 91 0.595 546 82	0.273 509 59 0.268 488 52 0.263 386 20 0.258 204 21	-1237 1090 1215 2436 1193 0540 1170 5499 1147 7375 1124 6189	1148 6681 1167 6006 1186 1718 1204 3874	-489 6203 497 9895 506 1962 514 2420 522 1294 529 8610
	11 12 13 14 15	0.786 590 82 0.797 245 31 0.807 657 57 -0.817 824 37	2 0.558 619 09 0.545 965 29 7 0.533 145 11 7 +0.520 162 21	0.236 710 72 0.231 153 63	1077 4515 1053 3916	-1239 7702 1256 9407 1273 7590 1290 2165 -1306 3013	-537 4390 544 8647 552 1373 559 2544 -566 2120
		X,	Ý, Ž	are in units of 10	⁻⁹ a.u. per day		

Dat 0 ^h T		M ₁₁ - 1	M_{12}	M_{13}	M_{21}	M ₂₂ - 1	M ₂₃	M_{31}	M ₃₂ 1	M ₃₃ - 1
Jan.	0 1 2 3 4 5	-1150 1150 1150 1150 1151 1151	-439 823 439 873 439 912 439 947 439 984 440 030	-191 099 191 121 191 138 191 153 191 169 191 190	+439 825 439 874 439 913 439 948 439 986 440 032	967 968 968 968	+432 411 395 386 384 389	+191 096 191 117 191 134 191 150 191 166 191 186	-1273 1251 1236 1227 1225 1230	-183 183 183 183 183 183
	6 7 8 9 10	-1151 1152 1152 1153 1153 1154	-440 091 440 171 440 272 440 391 440 520 440 650	-191 216 191 251 191 295 191 346 191 402 191 459	+440 093 440 173 440 274 440 392 440 522 440 652	969 969 970 970	+398 409 418 421 413 394	+191 213 191 247 191 291 191 342 191 399 191 455	-1240 1251 1260 1263 1257 1238	-183 183 183 183 183 183
	12 13 14 15 16 17	-1155 1155 1156 1156 1156 1156	-440 767 440 861 440 928 440 971 441 000 441 029	-191 509 191 550 191 579 191 598 191 611 191 623	+440 769 440 862 440 929 440 972 441 001 441 030	972 972 972 972 972	+365 329 292 262 242 235	+191 506 191 547 191 576 191 595 191 608 191 620	-1209 1173 1137 1107 1087 1080	-183 183 184 184 184 184
	18 19 20 21 22 23	-1156 1157 1157 1158 1158 1159	-441 069 441 128 441 209 441 310 441 422 441 537	-191 640 191 666 191 702 191 745 191 794 191 844	+441 070 441 129 441 211 441 311 441 423 441 539	973 973 974 974	+238 246 256 262 259 248	+191 638 191 663 191 699 191 742 191 791 191 841	-1083 1092 1102 1108 1106 1095	-184 184 184 184 184 184
	24 25 26 27 28 29	-1159 1160 1160 1161 1161 1161	-441 646 441 740 441 817 441 873 441 913 441 940	-191 891 191 932 191 965 191 990 192 007 192 019	+441 647 441 742 441 818 441 874 441 914	976 976 976 976	+227 199 167 135 105 81	+191 888 191 929 191 963 191 987 192 005 192 017	-1074 1047 1015 0983 0954 0930	-184 184 184 184 184 184
Feb.	30 31 1 2 3 4	-1161 1161 1161 1161 1162 1162	-441 960 441 980 442 007 442 045 442 100 442 174	-192 028 192 036 192 048 192 065 192 089 192 121	+441 961 441 981 442 008 442 046 442 101 442 175	977 977 977 977	+64 55 52 55 60 66	+192 026 192 034 192 046 192 063 192 086 192 119	-0913 0903 0901 0904 0910 0915	-184 184 184 184 184 185
	5 6 7 8 9 10	-1163 1163 1164 1164 1165 1165	-442 267 442 374 442 487 442 593 442 680 442 741	-192 161 192 207 192 256 192 302 192 340 192 367	+442 268 442 375 442 487 442 594 442 681 442 741	978 979 979 980	+67 61 43 +15 -23 64	+192 159 192 205 192 254 192 301 192 339 192 365	-0917 0911 0894 0866 0828 0788	-185 185 185 185 185 185
	11 12 13 14 15	-1165 1165 1165 1165 -1166	-442 773 442 786 442 794 442 811 -442 846	-192 381 192 387 192 390 192 397 -192 413	+442 774 442 787 442 795 442 811 +442 847	980 980 980	-100 127 140 140 -133	+192 379 192 385 192 389 192 396 +192 411	-0751 0725 0712 0712 -0720	-185 185 185 185 -185

Date 0 ^h T.I).B.	X	Y	Z	·X	· Y	Z
Feb.	15 16 17 18 19 20	-0.817 824 37 0.827 742 42 0.837 408 50 0.846 819 43 0.855 972 10 0.864 863 53	0.507 020 37 0.493 723 53 0.480 275 75 0.466 681 22	+0.225 526 16 0.219 829 94 0.214 066 63 0.208 237 96 0.202 345 70 0.196 391 70	-1004 2967 979 2604 953 9028 928 2310 902 2539 875 9825	-1306 3013 1322 0002 1337 2996 1352 1863 1366 6481 1380 6738	-566 2120 573 0051 579 6283 586 0763 592 3437 598 4256
	21 22 23 24 25 26	-0.873 490 81 0.881 851 21 0.889 942 09 0.897 760 97 0.905 305 53 0.912 573 57	0.425 060 69 0.410 923 20 0.396 661 42 0.382 280 05	+0.190 377 83 0.184 306 00 0.178 178 19 0.171 996 38 0.165 762 60 0.159 478 91	-849 4289 822 6062 795 5283 768 2096 740 6650 712 9092	-1394 2536 1407 3788 1420 0416 1432 2364 1443 9580 1455 2028	-604 3174 610 0149 615 5146 620 8131 625 9079 630 7967
Mar.	27 28 29 1 2 3	-0.919 563 05 0.926 272 10 0.932 698 95 0.938 842 01 0.944 699 80 0.950 271 03	0.338 466 09 0.323 654 16 0.308 746 62 0.293 748 30	+0.153 147 36 0.146 770 05 0.140 349 07 0.133 886 51 0.127 384 50 0.120 845 13	-684 9569 656 8227 628 5210 600 0659 571 4718 542 7527	-1465 9680 1476 2519 1486 0538 1495 3732 1504 2111 1512 5691	-635 4777 639 9498 644 2119 648 2634 652 1043 655 7346
	4 5 6 7 8 9	-0.955 554 49 0.960 549 16 0.965 254 11 0.969 668 56 0.973 791 80 0.977 623 16	0.248 256 57 0.232 942 87 0.217 562 04 0.202 118 60	+0.114 270 51 0.107 662 72 0.101 023 85 0.094 355 92 0.087 660 94 0.080 940 88	-513 9227 484 9953 455 9828 426 8956 397 7405 368 5201	-1520 4504 1527 8594 1534 8026 1541 2885 1547 3266 1552 9259	-659 1550 662 3674 665 3740 668 1782 670 7842 673 1967
	10 11 12 13 14 15	-0.981 161 98 0.984 407 56 0.987 359 17 0.990 015 98 0.992 377 17 0.994 441 91	0.155 456 52 0.139 806 27 0.124 115 10 0.108 387 42	+0.074 197 64 0.067 433 10 0.060 649 13 0.053 847 58 0.047 030 36 0.040 199 38	-339 2325 309 8726 280 4345 250 9140 221 3100 191 6260	-1558 0939 1562 8338 1567 1436 1571 0168 1574 4438 1577 4139	-675 4200 677 4565 679 3071 680 9703 682 4428 683 7207
	16 17 18 19 20 21	-0.996 209 45 0.997 679 09 0.998 850 29 0.999 722 58 1.000 295 68 1.000 569 41	0.061 031 01 0.045 203 48 0.029 362 98 +0.013 514 42	+0.033 356 61 0.026 504 05 0.019 643 77 0.012 777 83 0.005 908 34 +0.000 962 58	-161 8695 132 0504 102 1807 72 2736 42 3429 -12 4027	-1579 9162 1581 9420 1583 4835 1584 5352 1585 0926 1585 1526	-684 7999 685 6761 686 3461 686 8068 687 0562 687 0923
	22 23 24 25 26 27	-1.000 543 75 1.000 218 82 0.999 594 89 0.998 672 37 0.997 451 83 0.995 933 96	0.034 029 82 0.049 860 78 0.065 674 85 0.081 467 05	-0.007 832 79 0.014 700 14 0.021 562 47 0.028 417 62 0.035 263 43 0.042 097 74	47 4486 77 3304 107 1636 136 9335	-1584 7135 1583 7742 1582 3347 1580 3964 1577 9611 1575 0322	-686 9139 686 5199 685 9098 685 0837 684 0418 682 7849
Apr.	28 29 30 31 1	-0.994 119 62 0.992 009 78 0.989 605 57 0.986 908 24 -0.983 919 16	0.128 663 08 0.144 318 66 0.159 928 05	-0.048 918 41 0.055 723 32 0.062 510 34 0.069 277 40 -0.076 022 42	225 7221 255 0990 284 3446	-1571 6135 1567 7099 1563 3273 1558 4724 -1553 1534	-681 3143 679 6315 677 7386 675 6380 -673 3330
		X,	Y, Ż	are in ur	its of 10 ⁻⁹ a.u	. per day	

Dat 0 ^h T		M ₁₁ - 1	M_{12}	M_{13}	M ₂₁	M ₂₂ - 1	M ₂₃	M_{31}	M_{32}	M ₃₃ - 1
Feb.	15 16 17 18 19 20	-1166 1166 1166 1167 1167 1168	-442 846 442 905 442 983 443 074 443 169 443 259	-192 413 192 438 192 472 192 511 192 553 192 592	+442 847 442 905 442 983 443 074 443 169 443 259	981 981 982 982	-133 123 116 116 125 143	+192 411 192 437 192 471 192 510 192 551 192 591	-0720 0730 0737 0737 0728 0711	-185 185 185 185 185 185
	21 22 23 24 25 26	-1168 1169 1169 1169 1169 1169	-443 337 443 398 443 440 443 465 443 476 443 478	-192 626 192 652 192 671 192 681 192 686 192 687	+443 337 443 398 443 441 443 465 443 476	983 983 983 983 983	-168 198 228 257 280 296	+192 625 192 651 192 670 192 681 192 686 192 687	-0686 0656 0626 0598 0574 0558	-186 186 186 186 186 186
Mar.	27 28 29 1 2	-1169 1169 1169 1169 1170 1170	-443 479 443 485 443 501 443 532 443 581 443 649	-192 688 192 690 192 697 192 711 192 732 192 762	+443 479 443 485 443 501 443 532 443 582 443 649	983 983 984 984	-305 306 301 292 283 276	+192 687 192 690 192 697 192 710 192 732 192 761	-0550 0548 0553 0562 0572 0580	-186 186 186 186 186 186
	4 5 6 7 8 9	-1170 1171 1171 1172 1172 1172	-443 731 443 823 443 915 443 995 444 052 444 082	-192 797 192 837 192 877 192 912 192 937 192 950	+443 732 443 824 443 915 443 995 444 052 444 082	985 985 986 986	-274 282 301 329 363 397	+192 797 192 837 192 877 192 911 192 937 192 950	-0581 0574 0556 0528 0494 0460	-186 186 186 186 186 186
	10 11 12 13 14 15	-1172 1172 1172 1172 1172 1173	-444 088 444 082 444 080 444 096 444 137 444 201	-192 953 192 950 192 949 192 956 192 974 193 002	+444 088 444 082 444 080 444 096 444 137 444 202	986 986 986 986	-423 435 433 420 402 385	+192 953 192 950 192 949 192 956 192 974 193 002	-0434 0422 0424 0437 0455 0472	-186 186 186 186 186 186
	16 17 18 19 20 21	-1173 1174 1174 1175 1175 1175	-444 282 444 369 444 453 444 526 444 582 444 620	-193 037 193 075 193 111 193 143 193 167 193 184	+444 282 444 369 444 453 444 526 444 582 444 620	987 988 988 988	-376 375 383 399 420 443	+193 037 193 075 193 111 193 143 193 167 193 184	-0482 0483 0475 0459 0438 0416	-186 186 186 187 187
	22 23 24 25 26 27	-1175 1175 1175 1175 1175 1175	-444 641 444 648 444 645 444 639 444 638 444 646	-193 193 193 196 193 195 193 192 193 192 193 195	+444 641 444 648 444 645 444 638 444 646	989 989 989 989	-464 480 490 492 486 474	+193 193 193 196 193 195 193 193 193 192 193 196	-0395 0379 0369 0367 0373 0385	-187 187 187 187 187 187
Apr.	28 29 30 31 1	-1175 1176 1176 1176 -1177	-444 669 444 710 444 769 444 844 -444 930	-193 205 193 223 193 249 193 281 -193 319	+444 669 444 710 444 769 444 844 +444 930	989 989 989	-457 438 422 410 -406	+193 206 193 223 193 249 193 281 +193 318	-0402 0421 0438 0450 -0454	-187 187 187 187 -187

Date 0 ^h T.D.	.В.	X	Y	Z	· X	· Y	· Z
Apr.	1 2 3 4 5 6	-0.983 919 16 0.980 639 82 0.977 071 83 0.973 216 86 0.969 076 68 0.964 653 04	0.190 989 60 0.206 432 67 0.221 811 37 0.237 121 44	-0.076 022 42 0.082 743 39 0.089 438 31 0.096 105 24 0.102 742 31 0.109 347 68	+313 4467 342 3939 371 1766 399 7870 428 2208 456 4772	-1553 1534 1547 3792 1541 1605 1534 5089 1527 4372 1519 9570	-673 3330 670 8271 668 1248 665 2310 662 1517 658 8928
	7 8 9 10 11 12	-0.959 947 71 0.954 962 40 0.949 698 75 0.944 158 33 0.938 342 68 0.932 253 35	0.297 594 08 0.312 500 55 0.327 314 41	-0.115 919 58 0.122 456 30 0.128 956 13 0.135 417 40 0.141 838 39 0.148 217 40	+484 5597 512 4747 540 2294 567 8290 595 2754 622 5652	-1512 0781 1503 8066 1495 1431 1486 0838 1476 6215 1466 7478	-655 4593 651 8555 648 0831 644 1416 640 0292 635 7424
	13 14 15 16 17 18	-0.925 891 93 0.919 260 11 0.912 359 70 0.905 192 63 0.897 760 95 0.890 066 86	0.371 159 30 0.385 561 32 0.399 849 74 0.414 020 28	-0.154 552 65 0.160 842 36 0.167 084 72 0.173 277 90 0.179 420 07 0.185 509 40	+649 6909 676 6424 703 4073 729 9729 756 3259 782 4537	-1456 4553 1445 7385 1434 5937 1423 0197 1411 0169 1398 5868	-631 2781 626 6339 621 8076 616 7981 611 6053 606 2289
	19 20 21 22 23 24	-0.882 112 67 0.873 900 83 0.865 433 91 0.856 714 59 0.847 745 71 0.838 530 19	0.455 781 89 0.469 438 32 0.482 955 76 0.496 330 11	-0.191 544 04 0.197 522 18 0.203 442 01 0.209 301 73 0.215 099 54 0.220 833 71	+808 3433 833 9821 859 3578 884 4579 909 2701 933 7822	-1385 7319 1372 4556 1358 7623 1344 6568 1330 1449 1315 2337	-600 6696 594 9287 589 0069 582 9062 576 6284 570 1759
	25 26 27 28 29 30	-0.829 071 10 0.819 371 62 0.809 435 02 0.799 264 70 0.788 864 12 0.778 236 84	0.535 554 67 0.548 317 14 0.560 917 20 0.573 351 30	-0.226 502 49 0.232 104 18 0.237 637 12 0.243 099 69 0.248 490 30 0.253 807 43	+957 9825 981 8596 1005 4033 1028 6039 1051 4528 1073 9433	-1299 9310 1284 2453 1268 1869 1251 7665 1234 9958 1217 8875	-563 5517 556 7591 549 8020 542 6846 535 4119 527 9892
May	1 2 3 4 5 6	-0.767 386 46 0.756 316 66 0.745 031 08 0.733 533 39 0.721 827 19 0.709 916 02	0.609 624 05 0.621 361 21 0.632 916 54 0.644 287 24	-0.259 049 60 0.264 215 41 0.269 303 52 0.274 312 63 0.279 241 53 0.284 089 04	+1096 0701 1117 8301 1139 2238 1160 2540 1180 9268 1201 2509	-1200 4548 1182 7116 1164 6715 1146 3469 1127 7482 1108 8816	-520 4224 512 7178 504 8817 496 9204 488 8398 480 6436
	7 8 9 10 11 12	-0.697 803 31 0.685 492 44 0.672 986 71 0.660 289 45 0.647 403 99 0.634 333 75	0.687 870 06 0.698 277 30 0.708 483 60	-0.288 854 02 0.293 535 35 0.298 131 89 0.302 642 48 0.307 065 95 0.311 401 10	+1221 2346 1240 8849 1260 2047 1279 1924 1297 8427 1316 1464	-1089 7494 1070 3493 1050 6764 1030 7243 1010 4883 989 9649	-472 3344 463 9122 455 3759 446 7230 437 9511 429 0587
	13 14 15 16 17	-0.621 082 25 0.607 653 11 0.594 050 07 0.580 276 97 -0.566 337 74	0.737 868 22 0.747 242 10	-0.315 646 72 0.319 801 59 0.323 864 50 0.327 834 25 -0.331 709 65	+1334 0933 1351 6722 1368 8722 1385 6829 +1402 0944	-969 1534 948 0554 926 6742 905 0148 -883 0822	-420 0446 410 9090 401 6528 392 2771 -382 7839
		X,	Ý, Ž	are in u	nits of 10 ⁻⁹ a.u	. per day	

Date $0^{\rm h}$ T		M ₁₁ - 1	M_{12}	M ₁₃	M_{21}	M ₂₂ - 1	M ₂₃	M_{31}	M_{32}	M ₃₃ - 1
Apr.	1 2 3 4 5 6	-1177 1177 1178 1178 1178 1178	-444 930 445 018 445 100 445 165 445 207 445 224	-193 319 193 357 193 392 193 421 193 439 193 446	445 1 445 1	990 00 991 65 991 07 991	-406 411 427 449 474 495	+193 318 193 357 193 392 193 421 193 439 193 447	-0454 0449 0434 0412 0387 0366	-187 187 187 187 187 187
	7 8 9 10 11 12	-1178 1178 1178 1178 1179 1179	-445 224 445 220 445 230 445 266 445 329 445 415	-193 446 193 445 193 449 193 465 193 492 193 530		20 991 30 991 66 991 29 992	-506 502 484 457 430 408	+193 447 193 445 193 450 193 465 193 492 193 530	-0356 0360 0378 0404 0432 0454	-187 187 187 187 187 187
	13 14 15 16 17 18	-1180 1180 1181 1181 1181 1182	-445 512 445 609 445 696 445 767 445 819 445 853	-193 572 193 614 193 652 193 682 193 705 193 720	445 7	609 993 696 993 667 994 619 994	-396 394 401 414 430 444	+193 572 193 614 193 651 193 682 193 705 193 720	-0466 0469 0462 0449 0434 0419	-187 187 188 188 188 188
	19 20 21 22 23 24	-1182 1182 1182 1182 1182 1182	-445 872 445 880 445 885 445 893 445 909 445 940	-193 728 193 732 193 734 193 737 193 744 193 758	445 8	80 994 85 994 93 994 09 994	-455 460 457 446 429 406	+193 728 193 732 193 734 193 737 193 744 193 758	-0409 0404 0407 0418 0435 0458	-188 188 188 188 188 188
	25 26 27 28 29 30	-1182 1183 1183 1184 1184 1185	-445 989 446 056 446 141 446 237 446 338 446 434	-193 779 193 808 193 845 193 887 193 931 193 972	+445 9 446 0 446 1 446 2 446 3 446 4	41 995 37 996 38 996	-382 358 339 328 326 333	+193 779 193 808 193 845 193 886 193 930 193 972	-0483 0506 0526 0537 0540 0533	-188 188 188 188 188 188
May	1 2 3 4 5 6	-1185 1185 1186 1186 1186 1186	-446 516 446 579 446 618 446 638 446 650 446 668	-194 008 194 035 194 052 194 061 194 066 194 074	+446 5 446 5 446 6 446 6 446 6	79 997 518 997 539 997 550 997	-348 368 386 396 395 379	+194 008 194 035 194 052 194 061 194 066 194 074	-0518 0499 0481 0470 0472 0488	-188 188 188 188 188 188
	7 8 9 10 11 12	-1186 1186 1187 1188 1188 1189	-446 707 446 774 446 870 446 983 447 102 447 215	-194 091 194 120 194 162 194 211 194 263 194 311	+446 7 446 7 446 8 446 9 447 1 447 2	75 998 70 998 84 999	-353 322 294 274 266 269	+194 091 194 120 194 161 194 210 194 262 194 311	-0514 0545 0574 0594 0602 0600	-188 188 188 189 189 189
	13 14 15 16 17	-1189 1190 1190 1190 -1190	-447 311 447 388 447 445 447 486 -447 514	-194 353 194 387 194 412 194 429 -194 441	+447 3 447 4 447 4 +447 5	89 1001 46 1001 86 1001	-280 295 310 322 -328	+194 353 194 386 194 411 194 429 +194 441	-0590 0575 0560 0548 -0542	-189 189 189 189 -189

Date 0 ^h T.I	D.B.	X	Y		Z	· X	· Y	Z
May	17 18 19 20 21 22	-0.566 337 7 0.552 236 4 0.537 977 2 0.523 564 2 0.509 001 8 0.494 294 5	4 0.774 061 0 0.782 558 4 0.790 829 9 0.798 871	53 28 16 70	-0.331 709 65 0.335 489 54 0.339 172 78 0.342 758 25 0.346 244 86 0.349 631 55	+1402 0944 1418 0968 1433 6812 1448 8381 1463 5582 1477 8328	-883 0822 860 8828 838 4237 815 7121 792 7562 769 5653	-382 7839 373 1753 363 4537 353 6219 343 6827 333 6397
	23 24 25 26 27 28	-0.479 446 7 0.464 463 0 0.449 348 0 0.434 106 6 0.418 743 3 0.403 263 1	4 0.821 605 8 0.828 712 1 0.835 578 7 0.842 204	78 00 96 87	-0.352 917 32 0.356 101 17 0.359 182 18 0.362 159 47 0.365 032 23 0.367 799 69	+1491 6533 1505 0116 1517 9007 1530 3152 1542 2513 1553 7070	698 6903 674 6727 650 4819	-323 4967 313 2582 302 9293 292 5155 282 0231 271 4582
June	29 30 31 1 2 3	-0.387 670 8 0.371 971 1 0.356 168 7 0.340 268 4 0.324 274 8 0.308 192 3	2 0.860 620 7 0.866 266 9 0.871 665 6 0.876 815	42 97 58 23	-0.370 461 17 0.373 016 05 0.375 463 76 0.377 803 82 0.380 035 78 0.382 159 23	+1564 6828 1575 1817 1585 2086 1594 7714 1603 8794 1612 5426	502 4863	-260 8278 250 1383 239 3963 228 6076 217 7770 206 9082
	4 5 6 7 8 9	-0.292 025 4 0.275 778 3 0.259 455 4 0.243 060 7 0.226 598 6 0.210 073 4	9 0.890 761 1 0.894 905 7 0.898 796 9 0.902 433	20 81 78 12	-0.384 173 82 0.386 079 17 0.387 874 93 0.389 560 70 0.391 136 10 0.392 600 70	+1620 7712 1628 5727 1635 9512 1642 9074 1649 4377 1655 5358	-452 3258 427 1085 401 7956 376 3829 350 8666 325 2452	-196 0029 185 0615 174 0828 163 0654 152 0072 140 9073
	10 11 12 13 14 15	-0.193 489 4 0.176 851 0 0.160 162 8 0.143 429 4 0.126 655 5 0.109 845 7	7 0.911 803 8 0.914 411 7 0.916 758 1 0.918 846	82 21 92 07	-0.393 954 10 0.395 195 87 0.396 325 60 0.397 342 90 0.398 247 40 0.399 038 76	+1661 1940 1666 4039 1671 1574 1675 4472 1679 2662 1682 6080	273 6930 247 7698 221 7566 195 6603	-129 7652 118 5816 107 3579 96 0961 84 7985 73 4681
	16 17 18 19 20 21	-0.093 004 9 0.076 138 0 0.059 249 8 0.042 345 4 0.025 429 7 -0.008 507 9	3 0.923 536 6 0.924 574 4 0.925 348 9 0.925 858	66 48 61 73	-0.399 716 66 0.400 280 82 0.400 730 99 0.401 066 96 0.401 288 55 0.401 395 63	+1685 4670 1687 8370 1689 7124 1691 0878 1691 9579 1692 3179	116 9514 90 6041 64 2176 37 8030	-62 1076 50 7204 39 3100 27 8801 16 4354 -4 9806
	22 23 24 25 26 27	+0.008 414 8 0.025 333 6 0.042 243 0 0.059 138 2 0.076 013 9 0.092 865 1	0 0.925 803 9 0.925 256 1 0.924 446 0 0.923 372	50 75 32 72	-0.401 388 14 0.401 266 07 0.401 029 46 0.400 678 44 0.400 213 20 0.399 634 00	+1692 1649 1691 4972 1690 3158 1688 6243 1686 4288 1683 7379	41 4766 67 8661 94 2114 120 4982	+6 4786 17 9358 29 3842 40 8169 52 2270 63 6079
July	28 29 30 1 2	+0.109 687 0 0.126 474 8 0.143 223 7 0.159 929 4 +0.176 587 2	1 0.918 579 7 0.916 461 0 0.914 083	99 31 67	-0.398 941 15 0.398 135 05 0.397 216 09 0.396 184 71 -0.395 041 39	1676 9136 1672 8045 1668 2464	198 8872 224 8324 250 6786	+74 9541 86 2606 97 5243 108 7426 +119 9147
		x,	Ý, Ž		are in ur	nits of 10 ⁻⁹ a.u	. per day	

Dat 0 ^h T		M ₁₁ - 1	M_{12}	M_{13}	M_{21}	M ₂₂ - 1	M ₂₃	M_{31}	M_{32}	M ₃₃ - 1
May	17 18 19 20 21 22	-1190 1191 1191 1191 1191 1191	-447 514 447 536 447 559 447 589 447 633 447 693	-194 441 194 451 194 461 194 474 194 493 194 520	+447 514 447 536 447 559 447 633 447 694	5 1001 9 1002 9 1002 3 1002	-328 328 320 304 284 260	+194 441 194 451 194 461 194 474 194 493 194 519	-0542 0542 0551 0566 0587 0611	-189 189 189 189 189 189
	23 24 25 26 27 28	-1192 1192 1193 1194 1194 1195	-447 774 447 872 447 983 448 101 448 215 448 317	-194 554 194 597 194 646 194 697 194 746 194 790	+447 774 447 872 447 984 448 102 448 216 448 312	2 1003 4 1003 1 1004 5 1004	-237 218 206 204 212 228	+194 554 194 596 194 645 194 695 194 745 194 789	-0634 0653 0666 0668 0661 0645	-189 189 189 190 190
June	29 30 31 1 2 3	-1195 1195 1196 1196 1196 1196	-448 400 448 459 448 499 448 528 448 557 448 600	-194 826 194 852 194 870 194 882 194 894 194 913	+448 400 448 460 448 500 448 528 448 603	1006 1006 1006 1006 7 1006	-250 271 287 292 286 267	+194 825 194 851 194 869 194 881 194 894 194 913	-0624 0603 0587 0582 0589 0607	-190 190 190 190 190 190
	4 5 6 7 8 9	-1197 1197 1198 1198 1199 1200	-448 669 448 766 448 887 449 019 449 150 449 268	-194 943 194 986 195 038 195 095 195 152 195 203	+448 669 448 767 448 887 449 019 449 150 449 269	7 1007 7 1008 9 1008 0 1009	-242 217 198 190 194 208	+194 942 194 985 195 037 195 094 195 151 195 202	-0632 0658 0677 0686 0682 0669	-190 190 190 190 190 191
	10 11 12 13 14 15	-1200 1201 1201 1201 1201 1202	-449 367 449 444 449 502 449 544 449 578 449 610	-195 246 195 280 195 305 195 323 195 338 195 352	+449 367 449 445 449 502 449 545 449 610	5 1010 2 1010 5 1010 8 1011	-228 250 270 285 294 294	+195 245 195 279 195 304 195 323 195 337 195 351	-0649 0628 0608 0593 0585 0584	-191 191 191 191 191
	16 17 18 19 20 21	-1202 1202 1202 1203 1203 1204	-449 647 449 695 449 759 449 842 449 943 450 060	-195 368 195 389 195 417 195 453 195 497 195 547	+449 641 449 695 449 759 449 842 449 944 450 065	5 1011 9 1011 2 1012 4 1012	-288 275 259 243 229 222	+195 367 195 388 195 416 195 452 195 496 195 546	-0591 0603 0620 0637 0651 0658	-191 191 191 191 191
	22 23 24 25 26 27	-1205 1205 1206 1206 1207 1207	-450 185 450 310 450 423 450 516 450 586 450 634	-195 602 195 656 195 705 195 745 195 776 195 796	+450 186 450 310 450 423 450 516 450 586 450 634	1014 3 1014 5 1015 6 1015	-224 237 259 288 318 343	+195 601 195 655 195 704 195 745 195 775 195 796	-0656 0644 0622 0594 0564 0539	-191 191 192 192 192 192
July	28 29 30 1 2	-1207 1207 1208 1208 -1208	-450 667 450 698 450 739 450 800 -450 888	-195 811 195 824 195 842 195 869 -195 907	+450 667 450 698 450 739 450 80 +450 888	3 1016 9 1016 1 1016	-359 363 356 341 -324	+195 811 195 824 195 842 195 868 +195 906	-0524 0519 0527 0542 -0559	-192 192 192 192 -192

Date 0 ^h T.D.B.	X	Y	Z	· X	· Y	Z
July 1 2 3 4 5	0.176 587 24 0.193 192 96 0.209 742 29 0.226 230 98	0.911 448 07 0.908 555 48 0.905 406 87 0.902 003 14	-0.396 184 71 0.395 041 39 0.393 786 57 0.392 420 72 0.390 944 28 0.389 357 66	+1668 2464 1663 2500 1657 8232 1651 9712 1645 6957 1638 9955	+250 6786 276 4257 302 0757 327 6320 353 0979 378 4758	+108 7426 119 9147 131 0408 142 1221 153 1600 164 1558
7 8 9 10 11 12	0.275 290 69 0.291 494 12 0.307 615 34 0.323 649 91	0.890 270 18 0.885 854 88 0.881 188 97 0.876 273 46	-0.387 661 30 0.385 855 59 0.383 940 96 0.381 917 84 0.379 786 66 0.377 547 89	+1631 8672 1624 3060 1616 3067 1607 8642 1598 9742 1589 6330	+403 7661 428 9676 454 0768 479 0883 503 9959 528 7922	+175 1103 186 0236 196 8950 207 7230 218 5052 229 2393
13 14 15 16 17	0.371 188 55 0.386 831 22 0.402 364 46 0.417 783 64	0.860 040 46 0.854 138 09 0.847 992 30 0.841 604 61	-0.375 202 04 0.372 749 63 0.370 191 21 0.367 527 37 0.364 758 75 0.361 886 02	+1579 8372 1569 5846 1558 8725 1547 6985 1536 0607 1523 9569	+553 4692 578 0189 602 4322 626 7000 650 8122 674 7575	+239 9223 250 5513 261 1229 271 6334 282 0793 292 4560
19 20 21 22 23 24	0.463 310 28 0.478 226 65 0.493 005 70 0.507 642 89	0.821 006 79 0.813 668 82 0.806 098 33 0.798 297 61	-0.358 909 88 0.355 831 12 0.352 650 55 0.349 369 09 0.345 987 71 0.342 507 43	+1511 3862 1498 3489 1484 8474 1470 8869 1456 4764 1441 6272	+698 5235 722 0961 745 4604 768 6007 791 5020 814 1511	+302 7584 312 9808 323 1167 333 1592 343 1011 352 9359
25 26 27 28 29 30	0.550 659 48 0.564 686 14 0.578 550 15 0.592 247 78	0.773 539 29 0.764 843 34 0.755 930 37 0.746 803 14	-0.338 929 37 0.335 254 66 0.331 484 52 0.327 620 14 0.323 662 76 0.319 613 59	+1426 3538 1410 6717 1394 5964 1378 1426 1361 3232 1344 1488	+836 5369 858 6521 880 4923 902 0558 923 3436 944 3583	+362 6578 372 2624 381 7465 391 1086 400 3480 409 4654
Aug. 31 2 3 4 5		0.718 163 23 0.708 206 12 0.698 048 16 0.687 691 97	-0.315 473 85 0.311 244 75 0.306 927 46 0.302 523 17 0.298 033 04 0.293 458 22	+1326 6273 1308 7643 1290 5624 1272 0225 1253 1437 1233 9242	+965 1032 985 5817 1005 7970 1025 7511 1045 4442 1064 8750	+418 4620 427 3391 436 0981 444 7406 453 2671 461 6778
6 7 8 9 10 11	0.707 464 79 0.719 308 37 0.730 947 69 0.742 379 28	0.655 460 24 0.644 337 54 0.633 030 04 0.621 540 60	-0.288 799 87 0.284 059 17 0.279 237 29 0.274 335 45 0.269 354 88 0.264 296 83	+1214 3623 1194 4555 1174 2028 1153 6035 1132 6573 1111 3647	1102 9364 1121 5567 1139 8952 1157 9447	+469 9721 478 1487 486 2058 494 1413 501 9526 509 6369
12 13 14 15 16	0.775 393 06 0.785 959 15	0.586 010 25 0.573 823 08 0.561 469 41	-0.259 162 58 0.253 953 45 0.248 670 78 0.243 315 97 -0.237 890 43	1067 7436 1045 4171 1022 7486	+1193 1464 1210 2826 1227 0973 1243 5803 +1259 7202	+517 1912 524 6126 531 8974 539 0417 +546 0409
	X,	Ý, Ž	are in u	nits of 10 ⁻⁹ a.u.	per day	

Dat 0 ^h T	te T	M ₁₁ - 1	\mathbf{M}_{12}	M_{13}	M ₂₁	M ₂₂ - 1	M ₂₃	M_{31}	M_{32}	M ₃₃ - 1
July	1 2 3 4 5 6	-1208 1208 1209 1210 1210 1211	-450 800 450 888 450 999 451 127 451 258 451 381	-195 869 195 907 195 955 196 011 196 068 196 121	+450 801 450 888 451 000 451 127 451 258 451 381	1017 1017 1018 1018	-341 324 311 307 314 332	+195 868 195 906 195 955 196 010 196 067 196 120	-0542 0559 0573 0577 0571 0553	-192 192 192 192 192 192
	7 8 9 10 11 12	-1212 1212 1212 1213 1213 1213	-451 487 451 571 451 633 451 677 451 710 451 738	-196 167 196 203 196 230 196 249 196 264 196 276	+451 487 451 571 451 633 451 677 451 710 451 738	1020 1020 1020 1020	-359 388 418 443 462 473	+196 166 196 203 196 230 196 249 196 264 196 276	-0527 0498 0468 0443 0425 0414	-192 192 193 193 193 193
	13 14 15 16 17 18	-1213 1213 1214 1214 1214 1215	-451 768 451 806 451 859 451 929 452 018 452 123	-196 289 196 306 196 329 196 359 196 398 196 443	+451 768 451 806 451 859 451 929 452 018 452 123	1021 1021 1021 1022	-477 473 466 456 449 446	+196 289 196 306 196 329 196 359 196 398 196 443	-0410 0413 0421 0431 0439 0442	-193 193 193 193 193 193
	19 20 21 22 23 24	-1216 1216 1217 1217 1218 1218	-452 240 452 359 452 470 452 563 452 632 452 675	-196 494 196 546 196 594 196 634 196 664 196 683	+452 240 452 359 452 470 452 563 452 675	1023 1024 1024 1024	-452 469 495 530 567 601	+196 494 196 546 196 594 196 635 196 665 196 684	-0436 0420 0394 0360 0323 0289	-193 193 193 193 193 193
	25 26 27 28 29 30	-1218 1218 1218 1219 1219 1219	-452 701 452 721 452 747 452 792 452 861 452 953	-196 694 196 703 196 714 196 734 196 764 196 804	+452 701 452 720 452 747 452 792 452 860 452 952	1025 1025 1025 1025 1025	-627 640 641 633 621 613	+196 695 196 704 196 715 196 735 196 764 196 804	-0264 0251 0250 0258 0270 0279	-193 193 193 194 194 194
Aug.	31 1 2 3 4 5	-1220 1221 1221 1222 1222 1223	-453 062 453 178 453 289 453 386 453 463 453 517	-196 851 196 901 196 949 196 992 197 025 197 049	+453 062 453 177 453 288 453 385 453 462 453 517	1027 1027 1028 1028	-611 620 639 668 701 735	+196 852 196 902 196 950 196 993 197 026 197 050	-0281 0272 0253 0225 0193 0159	-194 194 194 194 194 194
	6 7 8 9 10	-1223 1223 1223 1223 1223 1223	-453 552 453 573 453 587 453 600 453 620 453 652	-197 064 197 073 197 079 197 085 197 094 197 108	+453 552 453 573 453 586 453 600 453 651	1029 1029 1029 1029	-766 790 807 816 818 814	+197 065 197 075 197 081 197 087 197 095 197 109	-0128 0103 0086 0078 0076 0080	-194 194 194 194 194 194
	12 13 14 15 16	-1224 1224 1224 1225 -1225	-453 700 453 766 453 849 453 945 -454 048	-197 128 197 157 197 193 197 235 -197 279	+453 699 453 765 453 848 453 944 +454 047	1030 1030 1030	-808 801 799 803 -817	+197 130 197 158 197 194 197 236 +197 281	-0087 0093 0096 0092 -0079	-194 194 194 195 -195

Date 0 ^h T.D).B.	X	[Y	7		7	Z		Х		Y		Z	
Aug.	16 17 18 19 20 21	+0.806 0.816 0.825 0.835 0.844 0.853	293 939 347 513	95 79 28 25	-0.548 0.536 0.523 0.510 0.497 0.484	276 443 459 326	19 76 09 09	-0.237 0.232 0.226 0.221 0.215 0.209	395 833 204 511	65 16 55 50	976 952 928 904	7400 3952 7201 7240 4199 8247	1290 1305 1320	5045 9191 9498	552 559 566 572	0409 8897 5819 1111 4706 6545
	22 23 24 25 26 27	+0.862 0.870 0.878 0.886 0.894 0.901	533 704 621 282	01 79 94 35	-0.470 0.457 0.443 0.429 0.415 0.401	077 392 579 643	86 60 72 35	-0.203 0.198 0.192 0.186 0.180 0.174	063 130 141 099	17 04 45 23	829 804 778 753	9571 8370 4832 9119 1365 1674	1374 1387 1399	6166 0058 9761 5308 6751 4148	596 601 606	6584 4795 1166 5707 8432 9362
Sept.	28 29 30 31 1 2	+0.908 0.915 0.922 0.928 0.934 0.940	703 317 666 746	66 99 30 85	-0.387 0.373 0.358 0.344 0.329 0.314	133 743 249 656	78 66 94 48	-0.167 0.161 0.155 0.149 0.142 0.136	668 429 146 819	72 79 04 16	674 648 621 594	0117 6752 1612 4718 6085 5721	1444 1454 1464	7553 7013 2567 4237 2034 5957	626 630 634	8523 5938 1626 5602 7878 8460
	3 4 5 6 7 8	+0.946 0.951 0.956 0.961 0.965 0.969	364 356 072 510	58 80 66 49	-0.300 0.285 0.270 0.255 0.240 0.225	316 362 329 219	49 98 30 50	-0.130 0.123 0.117 0.110 0.104 0.097	596 114 597 047	72 31 28 37	512 485 457 429	3632 9826 4316 7121 8265 7776	1499 1507 1514	5990 2103 4260 2413 6515 6510	650 653 656	7346 4532 0008 3758 5766 6013
	9 10 11 12 13 14	+0.973 0.977 0.980 0.983 0.986 0.988	139 449 472 209	50 08 75 06	-0.209 0.194 0.179 0.163 0.148 0.132	474 101 673 194	38 44 38 62	-0.090 0.084 0.077 0.070 0.064 0.057	217 554 866 157	98 28 69 08	345 316 288 259	5690 2042 6872 0225 2154 2726	1540 1545 1550	2337 3933 1230 4151 2607 6495	667 669 671	4478 1135 5959 8919 9978 9094
	15 16 17 18 19 20	+0.990 0.992 0.994 0.995 0.996 0.997	680 254 534 521	28 13 74 44	-0.117 0.101 0.085 0.070 0.054 0.038	499 864 202 517	87 56 21 81	-0.050 0.043 0.037 0.030 0.023 0.016	915 137 347 548	63 67 82 22	172 142 113 83	2028 0185 7358 3748 9581 5082	1564 1567 1569	5708 0130 9657 4212 3763 8324	677 678 679 680	6216 1291 4263 5088 3737 0203
	21 22 23 24 25 26	+0.997 0.997 0.997 0.997 0.996 0.995	714 523 037 258	72 39 78 20	-0.023 -0.007 +0.008 0.024 0.039 0.055	382 341 062 776	05 11 00 01	-0.009 -0.003 +0.003 0.010 0.017 0.024	112 704 520 332	78 09 00 90	-4 33 63 92	4117 8518 2651 6452	1572 1571 1570	2747 2799 8210 9064	681 681 681	4502 6663 6729 4742 0740 4761
Oct.	27 28 29 30 1	+0.993 0.992 0.990 0.987 +0.985	159 207 964	36 79 34	+0.071 0.086 0.102 0.118 +0.133	831 473 086	90 76 63	+0.030 0.037 0.044 0.051 +0.058	733 515 283	84 10 65	180 209 238	5472 7589 9222		4910 8090 6925	677	6980 5221 1570
		X,			Ý,	ż			are i	n un	its of 1	0 ⁻⁹ a.u.	. per da	y		

Dat 0 ^h T		M ₁₁ - 1	M_{12}	M_{13}	M_{21}	M ₂₂ - 1	M ₂₃	M_{31}	M_{32}	M ₃₃ - 1
Aug.	16 17 18 19 20 21	-1225 1226 1226 1227 1227 1227	-454 048 454 147 454 233 454 295 454 331 454 345	-197 279 197 322 197 360 197 387 197 402 197 409	+454 047 454 146 454 232 454 294 454 330 454 344	1031 1032 1032 1032	-817 841 874 913 950 979	+197 281 197 324 197 361 197 389 197 405 197 411	-0079 0055 -0022 +0016 0053 0082	-195 195 195 195 195 195
	22 23 24 25 26 27	-1227 1227 1227 1227 1228 1228	-454 348 454 355 454 378 454 426 454 498 454 588	-197 410 197 413 197 423 197 444 197 475 197 514	+454 347 454 354 454 377 454 425 454 497 454 587	1032 1032 1033 1033	-996 999 991 979 967 962	+197 412 197 415 197 426 197 446 197 477 197 516	+0099 0102 0094 0082 0070 0064	-195 195 195 195 195 195
Sept.	28 29 30 31 1 2	-1229 1229 1230 1230 1230 1231	-454 686 454 782 454 866 454 932 454 977 455 001	-197 557 197 598 197 635 197 663 197 683 197 694	+454 685 454 781 454 865 454 931 454 975 455 000	1034 1035 1035 1035	-967 982 1006 1035 1066 1095	+197 559 197 601 197 637 197 666 197 686 197 697	+0069 0083 0107 0136 0167 0195	-195 195 195 195 195 195
	3 4 5 6 7 8	-1231 1231 1231 1231 1231 1231	-455 010 455 010 455 008 455 011 455 024 455 053	-197 698 197 698 197 697 197 698 197 704 197 716	+455 009 455 009 455 006 455 023 455 052	1035 1035 1035 1035	-1118 1134 1141 1140 1134 1123	+197 701 197 701 197 700 197 701 197 707 197 719	+0218 0234 0241 0241 0234 0223	-195 195 195 195 195 195
	9 10 11 12 13 14	-1231 1231 1232 1232 1233 1233	-455 099 455 162 455 240 455 326 455 414 455 493	-197 736 197 764 197 797 197 835 197 873 197 908	+455 098 455 161 455 238 455 325 455 413 455 492	1036 1036 1037 1037	-1112 1103 1099 1103 1118 1142	+197 739 197 767 197 800 197 838 197 876 197 911	+0212 0202 0198 0203 0217 0240	-196 196 196 196 196 196
	15 16 17 18 19 20	-1234 1234 1234 1234 1234 1234	-455 555 455 591 455 603 455 598 455 592 455 600	-197 934 197 950 197 955 197 953 197 951 197 954	+455 553 455 590 455 601 455 597 455 598	1038 1038 1038 1038	-1172 1205 1232 1248 1249 1237	+197 938 197 954 197 959 197 957 197 954 197 958	+0271 0303 0330 0346 0347 0335	-196 196 196 196 196 196
	21 22 23 24 25 26	-1234 1234 1235 1235 1236 1236	-455 633 455 693 455 775 455 869 455 962 456 044	-197 968 197 995 198 030 198 071 198 111 198 147	+455 631 455 692 455 774 455 867 455 960 456 042	1038 1039 1039 1040	-1217 1196 1181 1176 1181 1195	+197 972 197 998 198 034 198 074 198 115 198 150	+0315 0294 0279 0273 0277 0292	-196 196 196 196 196 196
Oct.	27 28 29 30 1	-1237 1237 1237 1237 -1237	-456 109 456 153 456 178 456 186 -456 185	-198 175 198 195 198 205 198 209 -198 208	+456 107 456 152 456 176 456 185 +456 183	1040 1040 1041	-1216 1239 1260 1277 -1286	+198 179 198 198 198 209 198 213 +198 212	+0312 0335 0356 0373 +0382	-196 196 196 196 -196

Date 0 ^h T.D.I	B. X		Y	:	Z	·X		· Y		Z	
Oct.	1 +0.985 4 2 0.982 6 3 0.979 4 4 0.976 6 5 0.972 3 6 0.968 4	603 82 0 487 82 0 082 08 0 387 22 0	.133 666 1 .149 208 0 .164 707 8 .180 161 3 .195 564 1 .210 911 8	3 0.064 9 0.071 9 0.078 6 0.084	037 61 775 10 494 25 193 17 870 00 522 84	-268 297 326 355 383 412	0940 0971 0407 9213	+1556 1552 1547 1542 1537 1531	1587 7405 8862 5939	670 668 666	6038 8628 9346 8188 5151 0227
	7 +0.964 1 8 0.959 5 9 0.954 7 10 0.949 6 11 0.944 1 12 0.938 4	574 63 0 730 26 0 600 53 0 186 37 0	.226 199 9 .241 424 0 .256 579 6 .271 662 2 .286 667 2 .301 589 9	0 0.104 1 0.111 1 0.117 1 0.124	149 82 749 02 318 53 856 43 360 75 829 53	-441 470 498 527 555 583	1393 7198 2106 6047	+1525 1519 1511 1504 1496 1488	0608 9865 4569 4666	655 652 648	3406 4679 4027 1435 6882 0338
	13 +0.932 5 14 0.926 2 15 0.919 7 16 0.912 8 17 0.905 7 18 0.898 4	247 91 0 707 24 0 888 44 0 793 34 0	.316 425 8 .331 169 9 .345 817 5 .360 363 8 .374 803 7 .389 132 5	8 0.143 9 0.150 1 0.156 3 0.162	260 75 652 38 002 34 308 52 568 80 781 06	-612 640 668 695 723 750	1072 0014 7271 2606	+1479 1469 1459 1449 1438 1427	6692 7730 3881 5163	632 628 623	1770 1143 8423 3585 6621 7548
	19 +0.890 7 20 0.882 8 21 0.874 6 22 0.866 2 23 0.857 5 24 0.848 5	871 56 0 693 58 0 251 28 0 547 38 0	.403 345 4 .417 437 8 .431 405 3 .445 243 5 .458 948 3 .472 515 5	9 0.181 7 0.187 7 0.193 3 0.199	943 21 053 20 109 05 108 85 050 74 932 94	-777 804 831 857 883 909	4920 0590 3558 3786	+1415 1403 1390 1377 1363 1349	0687 3550 2168 6663	602 597 591	6403 3244 8139 1152 2341 1755
	25 +0.839 3 26 0.829 8 27 0.820 1 28 0.810 2 29 0.799 9 30 0.789 5	893 70 0 171 10 0 200 85 0 985 77 0	.485 941 2 .499 221 6 .512 352 6 .525 330 6 .538 151 8 .550 812 4	0 0.216 5 0.222 4 0.227 2 0.233	753 68 511 25 203 98 830 21 388 32 876 69	-934 959 984 1009 1033 1057	7820 6898 3142 6536	+1335 1320 1305 1290 1274 1257	6319 5150 0207 1527	565 559 552	9439 5428 9753 2438 3507 2981
Nov.	31 +0.778 8 1 0.767 9 2 0.756 7 3 0.745 3 4 0.733 7 5 0.721 8	900 35 0 734 86 0 339 12 0 716 15 0	.563 308 8 .575 637 4 .587 794 4 .599 776 2 .611 579 2	1 0.249 0 0.254 2 0.260 4 0.265	293 75 637 92 907 64 101 36 217 54 254 64	-1081 1104 1128 1150 1173 1195	9373 1114 9863 5580	+1241 1224 1207 1189 1171 1152	3368 0012 3024 2410	523 515 507	0875 7205 1979 5207 6892 7036
	6 +0.709 8 7 0.697 5 8 0.685 0 9 0.672 3 10 0.659 3 11 0.646 2	514 61 0 013 79 0 301 61 0	.634 634 3 .645 879 2 .656 930 6 .667 785 1 .678 438 9	0 0.280 8 0.284 7 0.289 6 0.294	211 10 085 40 875 97 581 27 199 72 729 74	-1217 1239 1260 1281 1302 1322	4029 7060 6729 2927	1114 1095 1075 1055	8771 3597 4752 2219	474 466 457	5639 2694 8196 2136 4499 5273
- - - -	12 +0.632 9 13 0.619 4 14 0.605 6 15 0.591 7 16 +0.577 7	694 67 0 791 22 0 703 68 +0	.699 129 6 .709 159 2 .718 973 3 .728 568 5 .737 941 3	4 0.307 8 0.311 5 0.315	518 10 773 25 933 62	-1342 1361 1380 1399 -1417	9209 9913 6252	992 970 948	2444 5237 4544		2023 8016 2463
	X,	Ý,	ż		are in ur	nits of 10	⁻⁹ a.u.	per day	У		

Dat 0 ^h T		M ₁₁ - 1	M_{12}	M_{13}	M ₂₁	M ₂₂ - 1	M ₂₃	M_{31}	M ₃₂	M ₃₃ - 1
Oct.	1 2 3 4 5 6	-1237 1237 1237 1237 1237 1237	-456 185 456 180 456 179 456 187 456 211 456 252	-198 208 198 206 198 206 198 210 198 220 198 238	+456 183 456 178 456 177 456 186 456 209 456 250	3 1041 7 1041 6 1041 0 1041	-1286 1288 1281 1267 1248 1228	+198 212 198 210 198 210 198 213 198 224 198 241	+0382 0383 0376 0363 0344 0324	-196 196 196 196 196 196
	7 8 9 10 11 12	-1238 1238 1239 1239 1239 1240	-456 310 456 384 456 468 456 556 456 639 456 710	-198 263 198 295 198 332 198 370 198 406 198 437	+456 309 456 382 456 467 456 555 456 638 456 708	2 1041 7 1042 6 1042 8 1043	-1210 1196 1190 1192 1203 1223	+198 267 198 298 198 335 198 373 198 409 198 440	+0305 0291 0284 0286 0297 0316	-197 197 197 197 197 197
	13 14 15 16 17 18	-1240 1240 1240 1240 1240 1240	-456 759 456 786 456 792 456 790 456 796 456 826	-198 458 198 470 198 472 198 472 198 474 198 487	+456 758 456 784 456 790 456 795 456 824	1043 1043 1043 1043 1043	-1246 1267 1281 1281 1266 1239	+198 462 198 473 198 476 198 476 198 478 198 491	+0339 0361 0374 0374 0359 0332	-197 197 197 197 197 197
	19 20 21 22 23 24	-1241 1241 1242 1242 1243 1243	-456 885 456 973 457 079 457 187 457 287 457 370	-198 513 198 551 198 597 198 644 198 688 198 724	+456 884 456 972 457 077 457 186 457 286 457 369	2 1044 7 1045 6 1045 6 1046	-1209 1182 1165 1159 1165 1177	+198 517 198 555 198 600 198 647 198 691 198 727	+0302 0275 0257 0251 0256 0269	-197 197 197 197 197 197
	25 26 27 28 29 30	-1244 1244 1244 1244 1244 1244	-457 432 457 473 457 497 457 510 457 518 457 529	-198 750 198 768 198 779 198 785 198 788 198 793	+457 431 457 472 457 496 457 509 457 517 457 527	2 1046 5 1047 0 1047 7 1047	-1194 1210 1221 1226 1223 1212	+198 754 198 772 198 782 198 788 198 792 198 796	+0285 0300 0312 0317 0314 0302	-198 198 198 198 198 198
Nov.	31 1 2 3 4 5	-1244 1245 1245 1245 1246 1246	-457 549 457 583 457 634 457 704 457 790 457 887	-198 801 198 816 198 839 198 869 198 906 198 948	+457 547 457 581 457 633 457 703 457 788 457 886	1047 3 1047 3 1047 3 1048	-1194 1170 1145 1120 1100 1087	+198 805 198 819 198 842 198 872 198 909 198 951	+0284 0261 0235 0210 0190 0176	-198 198 198 198 198 198
	6 7 8 9 10 11	-1247 1247 1248 1248 1248 1249	-457 990 458 090 458 180 458 252 458 303 458 334	-198 993 199 036 199 075 199 107 199 129 199 142	+457 989 458 089 458 178 458 250 458 301 458 332	1049 1050 1050 1050	-1082 1087 1099 1117 1135 1148	+198 996 199 039 199 078 199 110 199 132 199 145	+0171 0175 0187 0204 0222 0235	-198 198 198 198 198 198
	12 13 14 15 16	-1249 1249 1249 1249 -1250	-458 352 458 371 458 406 458 470 -458 567	-199 150 199 159 199 174 199 202 -199 244	+458 351 458 370 458 405 458 469 +458 565	1051 1051 1051	-1151 1140 1116 1084 -1053	+199 153 199 162 199 177 199 205 +199 246	+0238 0227 0203 0171 +0139	-198 198 198 198 -198

Date 0 ^h T.D.B	. X		Y		Z			Х		· Y		Z	
1 1 1 2	6 +0.577 70 7 0.563 43 8 0.548 99 9 0.534 33 0 0.519 60 1 0.504 60	36 68 0 94 91 0 83 16 0 06 19 0	0.737 941 0.747 088 0.756 007 0.764 694 0.773 147 0.781 363	57 14 23 18	+0.319 0.323 0.327 0.331 0.335 0.338	964 0 831 2 598 0 263 2	00 1- 21 1- 22 1- 26 1-	435 452 469 485	8049 5176 7555 5157 7986 6060	880 857 833	0529 3380 3293 0450 5011 7104	381 371 361	5426 6983 7218 6217 4056 0799
2 2 2 2	22 +0.489 5° 23 0.474 3° 24 0.458 9° 25 0.443 40° 26 0.427 7° 27 0.411 9°	31 54 0 41 16 0 09 19 0 40 31 0	0.789 340 0.797 076 0.804 568 0.811 814 0.818 813 0.825 561	35 46 77 20	+0.342 0.345 0.348 0.352 0.355 0.357	638 4 886 6 028 0 061 9	15 1 51 1 08 1 04 1	531 546 560 573	9400 8028 1959 1202 5764 5650	736 712 687	6836 4297 9565 2711 3800 2892	319 308 297	6503 1212 4969 7809 9765 0872
Dec. 2	28 +0.396 0 29 0.379 9: 30 0.363 7: 1 0.347 50 2 0.331 1 3 0.314 6	59 05 0 89 31 0 06 03 0 13 88 0	0.832 058 0.838 301 0.844 288 0.850 018 0.855 488 0.860 697	17 34 02 42	+0.360 0.363 0.366 0.368 0.370 0.373	509 3 104 4 587 8 958 8	37 1 4 1 34 1 34 1	611 622 633 644	0864 1409 7287 8492 5020 6850	585 560 534	0045 5309 8727 0337 0168 8243	253 242 231	1156 0644 9361 7323 4546 1042
	4 +0.298 02 5 0.281 33 6 0.264 53 7 0.247 63 8 0.230 73 9 0.213 7	31 24 0 50 78 0 85 25 0 39 57 0	0.865 644 0.870 326 0.874 742 0.878 890 0.882 768 0.886 375	36 15 02 27	+0.375 0.377 0.379 0.381 0.382 0.384	390 0 304 2 102 3 783 7	09 1 20 1 31 1 71 1	673 682 690 698	3954 6294 3810 6434 4077 6631	428 401 374	4581 9198 2112 3338 2904 0844	185 173 162	6818 1880 6231 9872 2811 5051
1 1 1 1	0 +0.196 60 1 0.179 40 2 0.162 20 3 0.144 90 4 0.127 60 5 0.110 3	72 64 0 57 99 0 89 67 0 73 39 0	0.889 709 0.892 769 0.895 553 0.898 059 0.900 288 0.902 237	21 16 97 52	+0.385 0.387 0.388 0.389 0.390 0.391	120 6 328 3 416 0 383 1	59 1° 37 1° 33 1° .3 1°	718 724 729 733	3968 5948 2424 3259 8340 7597	264 236 208	7212 2088 5586 7857 9089 9490	114 102 90	6605 7497 7764 7460 6661 5454
1 1 1 2	6 +0.092 92 7 0.075 49 8 0.058 04 9 0.040 5 00 0.023 09 11 0.005 60	94 85 0 44 84 0 75 84 0 93 50 0	0.903 907 0.905 296 0.906 404 0.907 231 0.907 778 0.908 043	28 49 76 05	+0.391 0.392 0.393 0.393 0.393 0.393	557 0 038 2 397 6 635 0	01 1° 27 1° 51 1° 00 1°	743 746 747 748	1013 8612 0451 6604 7149 2158	96 68 40	9272 8638 7757 6775 5811 4961	54 42 29 17	3933 2191 0312 8366 6415 4510
2 2 2 2	22 -0.011 83 33 0.029 33 44 0.046 83 55 0.064 33 66 0.081 77 77 0.099 19	78 21 0 58 87 0 25 66 0 73 29 0	0.908 028 0.907 732 0.907 156 0.906 300 0.905 164 0.903 750	14 03 11 82	+0.393 0.393 0.393 0.392 0.392 0.391	615 8 366 1 994 9 502 5	39 1° 22 1° 33 1° 33 1°	748 747 745 743	1699 5832 4608 8081 6301 9317	43 71 99	5689 6060 6082 5685 4803 3380	18 31 43 55	7304 8992 0513 1834 2924 3752
2 3 3	28 -0.116 59 29 0.133 94 30 0.151 20 31 0.168 54 32 -0.185 70	49 18 (0 68 38 (0 42 75 (0	0.902 058 0.900 088 0.897 841 0.895 317 0.892 518	17 07 64	+0.391 0.390 0.389 0.388 +0.387	300 6 326 1 231 9	59 1° .8 1° .93 1°	733 729 725	7179 9934 7623 0273 7901	210 238 266	1362 8707 5382 1361 6627	91 103 115	4293 4526 4435 4006 3237
•	X,	Ý,	, ż			are in	units o	of 10) ⁻⁹ a.u.	per da	y		

Dat 0 ^h T		M ₁₁ - 1	M_{12}	M_{13}	M ₂₁	M ₂₂ - 1	M ₂₃	M_{31}	M_{32}	M ₃₃ - 1
Nov.	16 17 18 19 20 21	-1250 1251 1251 1252 1253 1253	-458 567 458 688 458 822 458 951 459 064 459 155	-199 244 199 296 199 354 199 410 199 459 199 499	+458 565 458 687 458 821 458 950 459 063 459 154	1052 1053 1053 1054	-1053 1029 1017 1018 1029 1046	+199 246 199 299 199 357 199 413 199 462 199 502	+0139 0114 0102 0103 0114 0130	-198 199 199 199 199
	22 23 24 25 26 27	-1253 1254 1254 1254 1254 1254	-459 223 459 271 459 306 459 334 459 363 459 398	-199 528 199 549 199 565 199 577 199 589 199 605	+459 222 459 270 459 305 459 333 459 361 459 397	1055 1055 1055 1055	-1064 1078 1086 1087 1079 1064	+199 531 199 552 199 567 199 580 199 592 199 608	+0147 0161 0170 0170 0162 0147	-199 199 199 199 199 199
Dec.	28 29 30 1 2 3	-1255 1255 1256 1256 1257 1257	-459 447 459 513 459 597 459 698 459 812 459 933	-199 626 199 655 199 691 199 735 199 785 199 837	+459 446 459 512 459 596 459 697 459 811 459 932	1056 1056 1057 1057	-1044 1021 999 980 968 965	+199 629 199 657 199 694 199 737 199 787 199 839	+0127 0104 0081 0062 0049 0046	-199 199 199 199 200 200
	4 5 6 7 8 9	-1258 1259 1259 1260 1260 1260	-460 052 460 162 460 255 460 327 460 379 460 416	-199 889 199 936 199 977 200 008 200 030 200 047	+460 051 460 161 460 254 460 326 460 378 460 415	1059 1059 1060 1060	-971 986 1007 1029 1049 1060	+199 891 199 939 199 979 200 011 200 033 200 049	+0052 0066 0086 0109 0128 0139	-200 200 200 200 200 200 200
	10 11 12 13 14 15	-1260 1260 1261 1261 1262 1263	-460 449 460 492 460 557 460 652 460 776 460 919	-200 061 200 080 200 108 200 149 200 203 200 265	+460 448 460 491 460 556 460 650 460 775 460 918	1060 1061 1061 1062	-1059 1046 1024 998 977 966	+200 064 200 082 200 110 200 151 200 205 200 267	+0138 0125 0103 0076 0054 0043	-200 200 200 200 200 200 201
	16 17 18 19 20 21	-1264 1264 1265 1265 1266 1266	-461 067 461 203 461 318 461 408 461 474 461 523	-200 329 200 388 200 438 200 477 200 506 200 527	+461 065 461 202 461 317 461 406 461 473 461 522	1064 1064 1064 1065	-969 984 1007 1034 1058 1077	+200 331 200 391 200 441 200 480 200 509 200 530	+0045 0059 0082 0109 0133 0152	-201 201 201 201 201 201
	22 23 24 25 26 27	-1266 1266 1267 1267 1267 1268	-461 562 461 598 461 639 461 691 461 759 461 844	-200 544 200 560 200 578 200 600 200 630 200 667	+461 560 461 597 461 638 461 690 461 758 461 843	1065 1066 1066 1066	-1089 1092 1088 1078 1064 1050	+200 547 200 563 200 581 200 603 200 632 200 669	+0163 0167 0162 0152 0138 0123	-201 201 201 201 201 201
	28 29 30 31 32	-1268 1269 1270 1270 -1271	-461 946 462 063 462 188 462 313 -462 430	-200 711 200 762 200 816 200 870 -200 921	+461 945 462 062 462 187 462 312 +462 429	1068 1068 1069	-1038 1033 1036 1049 -1072	+200 714 200 764 200 819 200 873 +200 924	+0111 0105 0108 0121 +0143	-201 202 202 202 -202

APPARENT PLACES OF POLARIS, 2020

		αU	rsae	Mine	oris				OK	0" TE			2.02	TIM	E					Sp. F	78v			
				JARY				FF	EBRU	UAR`		- 0]	MAI	RCH				1	API	RIL		
	R	Right		Dec	linat	ion	F	Right		Dec	linat	ion	R	Right		Dec	linati	ion	F	Right		Dec	linati	ion
Date	Asc	ensi	on				Asc	ensi	on				Asc	ensi	on				Asc	censio	on			
	h	m	S	О	•	"	h	m	S	О	'	"	h	m	S	0	1	"	h	m	S	0	'	"
1	2	57	56	+89	21	04	2	57	02	+89	21	09	2	56	08	+89	21	08	2	55	25	+89	21	01
2	2	57	54	+89	21	04	2	57	01	+89	21	09	2	56	06	+89	21	08	2	55	24	+89	21	01
3	2	57	53	+89	21	04	2	56	59	+89	21	09	2	56	04	+89	21	07	2	55	23	+89	21	01
4	2	57	51	+89	21	05	2	56	57	+89	21	09	2	56	03	+89	21	07	2	55	22	+89	21	01
5	2	57	50	+89	21	05	2	56	55	+89	21	09	2	56	02	+89	21	07	2	55	21	+89	21	00
6	2	57	48	+89	21	05	2	56	54	+89	21	09	2	55	60	+89	21	07	2	55	20	+89	21	00
7	2	57	47	+89	21	05	2	56	52	+89	21	09	2	55	58	+89	21	07	2	55	19	+89	20	60
8	2	57	46	+89	21	05	2	56	50	+89	21	09	2	55	56	+89	21	07	2	55	18	+89	20	60
9	2	57	44	+89	21	06	2	56	48	+89	21	09	2	55	55	+89	21	07	2	55	17	+89	20	59
10	2	57	43	+89	21	06	2	56	46	+89	21	09	2	55	53	+89	21	07	2	55	17	+89	20	59
11	2	57	42	+89	21	06	2	56	44	+89	21	09	2	55	51	+89	21	06	2	55	16	+89	20	59
12	2	57	40	+89	21	06	2	56	41	+89	21	09	2	55	49	+89	21	06	2	55	16	+89	20	58
13	2	57	38	+89	21	07	2	56	39	+89	21	09	2	55	48	+89	21	06	2	55	16	+89	20	58
14	2	57	36	+89	21	07	2	56	37	+89	21	09	2	55	47	+89	21	06	2	55	15	+89	20	58
15	2	57	34	+89	21	07	2	56	36	+89	21	09	2	55	45	+89	21	05	2	55	15	+89	20	58
16	2	57	32	+89	21	07	2	56	34	+89	21	09	2	55	44	+89	21	05	2	55	14	+89	20	57
17	2	57	30	+89	21	07	2	56	32	+89	21	09	2	55	43	+89	21	05	2	55	14	+89	20	57
18	2	57	29	+89	21	07	2	56	31	+89	21	09	2	55	42	+89	21	05	2	55	13	+89	20	57
19	2	57	27	+89	21	07	2	56	29	+89	21	09	2	55	40	+89	21	05	2	55	13	+89	20	56
20	2	57	25	+89	21	08	2	56	27	+89	21	09	2	55	39	+89	21	05	2	55	12	+89	20	56
21	2	57	24	+89	21	08	2	56	25	+89	21	09	2	55	37	+89	21	04	2	55	11	+89	20	56
22	2	57	22	+89	21	08	2	56	23	+89	21	09	2	55	36	+89	21	04	2	55	11	+89	20	55
23	2	57		+89	21	08	2	56		+89	21	09	2	55		+89	21	04	2	55	11	+89	20	55
24	2	57	19	+89	21	08	2	56	19	+89	21	09	2	55	33	+89	21	04	2	55	11	+89	20	55
25	2	57	17	+89	21	08	2	56	17	+89	21	08	2	55	31	+89	21	03	2	55	11	+89	20	54
26	2	57	15	+89	21	08	2	56	15	+89	21	08	2	55		+89	21	03	2	55	11	+89	20	54
27	2	57		+89	21	09	2	56		+89	21	08	2	55	29	+89	21	03	2	55		+89	20	54
28	2	57		+89	21	09	2	56		+89	21	08	2	55		+89	21	02	2	55		+89	20	53
29	2	57		+89	21	09	2	56	9.2	89	21	7.9	2	55		+89	21	02	2	55		+89	20	53
30	2	57	06	+89	21	09							2	55	26	+89	21	02	2	55	11	+89	20	53
31	2	57	04	+89	21	09							2	55	25	+89	21	02						

APPARENT PLACES OF POLARIS, 2020

		αU	rsae 1	Mino	oris				OK	O"TE			2.02	TIM	E					Sp. I	F8v			
			MA						JUI	NE		U			JU	LY				I	AUG	UST		
ъ.	R	light		Decl	linati	on	R	light		Dec	linati	on	R	Right		Dec	linati	ion	F	Right		Dec	linat	ion
Date	Asc	ensi	on					ensi					Asc	ensi	on				Asc	ensi	on			
	h	m	S	0	'	"	h	m	S	0	'	"	h	m	S	0	'	"	h	m	S	0	,	"
1	2	55	11	+89	20	53	2	55	30	+89	20	44	2	56	13	+89	20	39	2	57	14	+89	20	38
2	2	55	11	+89	20	52	2	55	31	+89	20	44	2	56	15	+89	20	39	2	57	16	+89	20	38
3	2	55	11	+89	20	52	2	55	32	+89	20	44	2	56	17	+89	20	38	2	57	18	+89	20	38
4	2	55	11	+89	20	52	2	55	33	+89	20	43	2	56	20	+89	20	38	2	57	20	+89	20	38
5	2	55	11	+89	20	52	2	55	35	+89	20	43	2	56	22	+89	20	38	2	57	22	+89	20	38
6	2	55	11		20	51	2	55	36	+89	20	43	2	56		+89	20	38	2	57	24	+89	20	38
7	2	55	12		20	51	2	55		+89	20	43	2	56		+89	20	38	2	57		+89	20	38
8	2	55	12		20	51	2	55		+89	20	42	2	56		+89	20	38	2	57		+89	20	38
9	2	55	13		20	50	2	55		+89	20	42	2	56		+89	20	38	2	57	29	+89	20	38
10	2	55	14	+89	20	50	2	55	42	+89	20	42	2	56	30	+89	20	38	2	57	31	+89	20	38
11	2		1.4	. 00	20	50	2		12	. 00	20	42	2	56	22	. 00	20	38	2	57	22	. 00	20	20
11 12	2 2	55 55	14 15		20 20	50 49	2 2	55 55		+89 +89	20 20	42 42	2 2	56		+89 +89	20 20	38	2	57 57	35	+89 +89	20 20	38 38
13	2	55	15		20	49	2	55		+89	20	42	2	56		+89	20	38	2	57			20	39
14	2	55	16		20	49	2	55		+89	20	41	2	56		+89	20	38	2	57		+89	20	39
15	2	55	16		20	49	2	55		+89	20	41	2	56		+89	20	38	2	57		+89	20	39
13		33	10	107	20	7)	_	33	7,	107	20	71	2	50	37	107	20	30	2	31	72	107	20	37
16	2	55	16	+89	20	48	2	55	49	+89	20	41	2	56	41	+89	20	38	2	57	44	+89	20	39
17	2	55	17	+89	20	48	2	55	50	+89	20	41	2	56	43	+89	20	37	2	57	46	+89	20	39
18	2	55	17	+89	20	48	2	55	52	+89	20	40	2	56	46	+89	20	37	2	57	48	+89	20	39
19	2	55	18	+89	20	47	2	55	54	+89	20	40	2	56	48	+89	20	37	2	57	50	+89	20	39
20	2	55	18	+89	20	47	2	55	55	+89	20	40	2	56	50	+89	20	37	2	57	52	+89	20	40
21	2	55	19	+89	20	47	2	55	57	+89	20	40	2	56	52	+89	20	37	2	57	54	+89	20	40
22	2	55	20	+89	20	47	2	55	59	+89	20	40	2	56	54	+89	20	38	2	57	55	+89	20	40
23	2	55	21	+89	20	46	2	56	01	+89	20	40	2	56	56	+89	20	38	2	57	57	+89	20	40
24	2	55	22	+89	20	46	2	56		+89	20	40	2	56		+89	20	38	2	57	59	+89	20	40
25	2	55	23	+89	20	46	2	56	04	+89	20	40	2	56	59	+89	20	38	2	58	01	+89	20	40
					• •						•	•					•.	•					•	
26	2	55	24		20	45	2	56		+89	20	39	2	57		+89	20	38	2	58		+89	20	40
27	2	55	25		20	45	2	56		+89	20	39	2	57		+89	20	38	2	58		+89	20	41
28	2	55 55	26		20	45	2	56		+89	20	39	2	57 57		+89	20	38	2	58		+89	20	41
29 30	2 2	55 55	27		20 20	45 45	2 2	56 56		+89 +89	20 20	39 39	2	57 57		+89 +89	20 20	38 38	2 2	58 58			20 20	41 41
30	2	33	28	+07	20	43	2	30	11	+09	20	39	2	31	09	+09	20	36	2	30	12	+89	20	41
31	2	55	29	+89	20	44							2	57	12	+89	20	38	2	58	14	+89	20	41

APPARENT PLACES OF POLARIS, 2020

NOVEMBER Right Declination Right Right Right Declination Right Right Right Right Declination Right Rig			αU	rsae	Mino	oris			- 1	OK	0" TE			2.02	TIM	E					Sp. F	78v			
Date Right Declination Right Ascension Right Ascension Ascensi									0	CTC	BER				NC	OVE	MBE	R			1		MBE	R	
Nacession Ascension Asce	_	R	ight		Dec	linati	on	R	light		Dec	linati	on	R					ion	F	Right		Dec	linat	ion
1	Date		_	on					_						-						_	on			
2 2 58 17 +89 20 42 2 59 06 +89 20 50 2 59 36 +89 21 00 2 59 38 +89 21 4 2 58 19 +89 20 42 2 59 07 +89 20 50 2 59 37 +89 21 01 2 59 38 +89 21 5 2 58 22 +89 20 42 2 59 10 +89 20 50 2 59 38 +89 21 01 2 59 37 +89 21 5 2 58 22 +89 20 42 2 59 10 +89 20 50 2 59 38 +89 21 01 2 59 37 +89 21 5 2 58 22 +89 20 42 2 59 11 +89 20 51 2 59 39 +89 21 01 2 59 37 +89 21 6 2 58 24 +89 20 43 2 59 11 +89 20 51 2 59 39 +89 21 02 2 59 36 +89 21 6 2 59 25 8 28 +89 20 43 2 59 11 +89 20 51 2 59 40 +89 21 02 2 59 35 +89 21 10 2 58 26 +89 20 43 2 59 14 +89 20 51 2 59 40 +89 21 03 2 59 34 +89 21 10 2 58 31 +89 20 43 2 59 16 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 10 2 58 33 +89 20 43 2 59 17 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 11 2 58 37 +89 20 44 2 59 18 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 11 2 58 37 +89 20 44 2 59 18 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 13 2 58 37 +89 20 44 2 59 20 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 13 2 58 37 +89 20 44 2 59 20 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 13 2 58 37 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 14 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 14 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 15 2 58 43 +89 20 45 2 59 22 +89 20 54 2 59 41 +89 21 05 2 59 30 +89 21 16 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 16 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 21 +89 20 54 2 59 41 +89 21 05 2 59 25 9 29 +89 21 16 2 58 43 +89 20 45 2 59 22 +89 20 54 2 59 41 +89 21 05 2 59 25 9 29 +89 21 16 2 58 43 +89 20 45 2 59 25 +89 20 54 2 59 41 +89 21 05 2 59 25 9 29 +89 21 16 2 58 43 +89 20 46 2 59 25 +89 20 55 2 59 42 +89 21 07 2 59 26 +89 21 20 2 58 44 +89 20 46 2 59 25 +89 20 55 2 59 42 +89 21 07 2 59 25 9 24 +89 21 22 2 58 55 +89 20 46 2 59 25 +89 20 55 2 59 42 +89 21 07 2 59 25 9 29 +89 21 22 2 58 55 48 9 20 47 2 59 31 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 22 2 58 55 48 9 20 47 2 59 31 +89 20 55 2 59 44 +89 21 09 2 59 25 9 20 +89 21 22 2 58 55 48 9 20 47 2 59 31 +89 20					0	•	"				0	•	"				0	•	"				0	,	"
2 2 58 17 +89 20 42 2 59 06 +89 20 50 2 59 36 +89 21 00 2 59 38 +89 21 4 2 58 19 +89 20 42 2 59 07 +89 20 50 2 59 37 +89 21 01 2 59 38 +89 21 5 2 58 20 +89 20 42 2 59 10 +89 20 50 2 59 38 +89 21 01 2 59 37 +89 21 5 2 58 22 +89 20 42 2 59 10 +89 20 50 2 59 39 +89 21 01 2 59 37 +89 21 6 6 2 58 24 +89 20 43 2 59 11 +89 20 51 2 59 39 +89 21 02 2 59 36 +89 21 7 2 58 26 +89 20 43 2 59 11 +89 20 51 2 59 40 +89 21 02 2 59 36 +89 21 7 2 58 26 +89 20 43 2 59 11 +89 20 51 2 59 40 +89 21 03 2 59 33 +89 21 10 2 58 31 +89 20 43 2 59 16 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 10 2 58 31 +89 20 43 2 59 17 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 11 2 58 33 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 33 +89 21 11 2 58 37 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 13 2 58 37 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 13 2 58 37 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 13 2 58 37 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 14 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 14 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 14 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 16 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 16 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 16 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 16 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 20 59 20 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 16 2 58 39 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 07 2 59 24 +89 21 16 2 58 39 +89 21 16 2 58 39 +89 20 44 2 59 20 58 2 59 40 +89 21 07 2 59 26 +89 21 16 2 58 39 +89 21 10 2 59 26 +89 21 16 2 58 39 +89 21 10 2 59 26 +89 21 10 2 58 48 48 48 20 46 2 59 25 48 89 20 55 2 59 42 +89 21 07 2 59 26 +89 21 12 2 58 36 48 +89 20 46 2 59 25 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 22 2 58 50 48 89 20 47 2 59 31 +89 20 57 2 59 41 +89 21 09 2 59 18 +89 21 22 2 58 55 48 89 20 47 2 59 31 +89 20 57 2 59	1	2	58	15	+89	20	42	2	59	05	+89	20	49	2	59	36	+89	20	60	2	59	38	+89	21	11
3	2	2	58			20	42	2	59			20	50	2	59	36	+89	21	00	2	59			21	11
4 2 58 20 42 2 59 09 +89 20 50 2 59 38 +89 21 01 2 59 37 +89 21 6 2 58 22 +89 20 42 2 59 10 +89 20 50 2 59 39 +89 21 01 2 59 37 +89 21 6 2 58 24 +89 20 43 2 59 11 +89 20 51 2 59 40 +89 21 02 2 59 36 +89 21 7 2 58 26 +89 20 43 2 59 14 +89 20 51 2 59 40 +89 21 03 2 59 33 +89 21 10 2 58 31		2						2	59					2	59					2					12
6 2 2 58 24 +89 20 43 2 59 11 +89 20 51 2 59 39 +89 21 02 2 59 36 +89 21 7 2 2 58 26 +89 20 43 2 59 13 +89 20 51 2 59 40 +89 21 02 2 59 35 +89 21 8 2 58 28 +89 20 43 2 59 16 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 10 2 2 58 31 +89 20 43 2 59 16 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 10 2 58 31 +89 20 43 2 59 17 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 10 2 58 31 +89 20 43 2 59 18 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 11 2 2 58 33 +89 20 44 2 59 19 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 12 2 58 35 +89 20 44 2 59 19 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 12 2 58 37 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 14 2 58 39 +89 20 44 2 59 21 +89 20 54 2 59 40 +89 21 04 2 59 31 +89 21 14 2 58 39 +89 20 44 2 59 21 +89 20 54 2 59 40 +89 21 04 2 59 31 +89 21 15 2 58 41 +89 20 45 2 59 22 +89 20 54 2 59 41 +89 21 05 2 59 30 +89 21 15 2 58 43 +89 20 45 2 59 22 +89 20 54 2 59 41 +89 21 05 2 59 29 +89 21 16 2 58 43 +89 20 45 2 59 24 +89 20 54 2 59 41 +89 21 05 2 59 29 +89 21 17 2 58 43 +89 20 45 2 59 26 +89 20 55 2 59 42 +89 21 06 2 59 28 +89 21 18 2 58 45 +89 20 46 2 59 26 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 20 2 58 46 +89 20 46 2 59 26 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 20 2 58 55 48 89 80 20 46 2 59 27 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 20 2 58 55 48 89 20 46 2 59 27 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 20 2 2 58 55 489 20 46 2 59 27 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 22 2 58 55 489 20 46 2 59 27 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 22 2 2 58 55 489 20 46 2 59 30 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 22 2 2 58 55 489 20 46 2 59 31 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 22 2 2 58 55 489 20 46 2 59 33 489 20 55 2 59 42 +89 21 07 2 59 24 +89 21 22 2 2 58 55 489 20 46 2 59 31 +89 20 57 2 59 41 +89 21 08 2 59 29 489 21 22 2 2 58 55 489 20 46 2 59 33 489 20 57 2 59 41 489 21 09 2 59 18 489 21 22 2 2 58 55 489 20 47 2 59 31 489 20 57 2 59 41 489 21 09 2 59 18 489 21 22 2 2 58 57 489 20 47 2 59 31 489 20 57 2 59 40 489 21 09 2 59 18 489 21 22	4	2	58	20	+89	20	42	2	59	09	+89	20	50	2	59	38	+89	21	01	2	59	37	+89	21	12
7	5	2	58	22	+89	20	42	2	59	10	+89	20	50	2	59	39	+89	21	01	2	59	37	+89	21	12
7																									
8 2 58 28 88 9 20 43 2 59 14 +89 20 51 2 59 40 +89 21 03 2 59 34 +89 21 10 2 58 31 +89 20 43 2 59 16 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 11 2 58 31 +89 20 44 2 59 18 +89 20 52 2 59 40 +89 21 04 2 59 33 +89 21 11 2 58 35 +89 20 44 2 59 19 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 11 2 58 37 +89 20 44 2 59 21 +89 <t< td=""><td>6</td><td>2</td><td>58</td><td>24</td><td>+89</td><td>20</td><td>43</td><td>2</td><td>59</td><td>11</td><td>+89</td><td>20</td><td>51</td><td>2</td><td>59</td><td>39</td><td>+89</td><td>21</td><td>02</td><td>2</td><td>59</td><td>36</td><td>+89</td><td>21</td><td>13</td></t<>	6	2	58	24	+89	20	43	2	59	11	+89	20	51	2	59	39	+89	21	02	2	59	36	+89	21	13
9	7	2	58	26	+89	20	43	2	59	13	+89	20	51	2	59	40	+89	21	02	2	59	35	+89	21	13
10 2 58 31 +89 20 43 2 59 17 +89 20 52 2 59 40 +89 21 03 2 59 33 +89 21 11 2 58 33 +89 20 44 2 59 19 +89 20 52 2 59 40 +89 21 04 2 59 32 +89 21 12 2 58 35 +89 20 44 2 59 20 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 13 2 58 37 +89 20 44 2 59 21 +89 20 53 2 59 40 +89 21 04 2 59 31 +89 21 14 2 58 39 +89 20 44 2 59 21 +89 20 54 2 59 40 +89 21 05 2 59 30 +89 21 15 2 58 41 +89 20 45 2 59 22 +89 20 54 2 59 41 +89 21 05 2 59 29 +89 21 16 2 58 42 +89 20 45 2 59 23 +89 20 54 2 59 41 +89 21 05 2 59 29 +89 21 18 2 58 43 +89 20 46 2 59 25 +89 20 55 2 59 42 +89 21 06 2 59 27 +89 21 18 2 58 45 +89 20 46 2 59 26 +89 20 55 2 59 42 +89 21 07 2 59 26 +89 21 20 2 58 48 +89 20 46 2 59 27 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 21 2 58 50 +89 20 46 2 59 27 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 21 2 58 50 +89 20 46 2 59 30 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 22 58 50 +89 20 46 2 59 27 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 21 2 58 50 +89 20 46 2 59 30 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 22 2 58 50 +89 20 46 2 59 27 +89 20 55 2 59 42 +89 21 07 2 59 24 +89 21 23 2 58 57 +89 20 47 2 59 31 +89 20 57 2 59 41 +89 21 09 2 59 19 +89 21 24 2 58 55 +89 20 47 2 59 31 +89 20 57 2 59 41 +89 21 09 2 59 19 +89 21 25 2 58 57 +89 20 47 2 59 31 +89 20 57 2 59 41 +89 21 09 2 59 19 +89 21 26 2 58 59 +89 20 48 2 59 33 +89 20 57 2 59 40 +89 21 09 2 59 18 +89 21 26 2 58 57 +89 20 48 2 59 33 +89 20 57 2 59 40 +89 21 00 2 59 18 +89 21 26 2 58 59 +89 20 48 2 59 33 +89 20 57 2 59 40 +89 21 10 2 59 15 +89 21 28 2 59 01 +89 20 48 2 59 33 +89 20 58 2 59 39 +89 21 10 2 59 15 +89 21 29 2 59 04 +89 20 49 2 59 34 +89 20 59 2 59 39 +89 21 10 2 59 15 +89 21 29 2 59 04 +89 20 49 2 59 35 +89 20 59 2 59 39 +89 21 10 2 59 15 +89 21 20 2 59 04 +89 20 49 2 59 35 +89 20 59 2 59 39 +89 21 10 2 59 15 +89 21 29 2 59 04 +89 20 49 2 59 35 +89 20 59 2 59 39 489 21 11 2 59 15 +89 21	8	2	58	28	+89	20	43	2	59	14	+89	20	51	2	59	40	+89	21	03	2	59	34	+89	21	14
11	9	2	58	29	+89	20	43	2	59	16	+89	20	52	2	59	40	+89	21	03	2	59	33	+89	21	14
12	10	2	58	31	+89	20	43	2	59	17	+89	20	52	2	59	40	+89	21	03	2	59	33	+89	21	14
12																									
13	11	2	58	33	+89	20	44	2	59	18	+89	20	52	2	59	40	+89	21	04	2	59	32	+89	21	14
14	12	2	58	35	+89	20	44	2	59	19	+89	20	53	2	59	40	+89	21	04	2	59	31	+89	21	15
15	13	2	58	37	+89	20	44	2	59	20	+89	20	53	2	59	40	+89	21	04	2	59	31	+89	21	15
16	14	2	58	39	+89	20	44	2	59	21	+89	20	54	2	59	40	+89	21	05	2	59	30	+89	21	15
17	15	2	58	41	+89	20	45	2	59	22	+89	20	54	2	59	41	+89	21	05	2	59	29	+89	21	16
17																									
18 2 58 45 +89 20 46 2 59 25 +89 20 55 2 59 42 +89 21 06 2 59 27 +89 21 19 2 58 46 +89 20 46 2 59 26 +89 20 55 2 59 42 +89 21 07 2 59 26 +89 20 55 2 59 42 +89 21 07 2 59 26 +89 21 20 2 58 48 +89 20 46 2 59 29 +89 20 56 2 59 42 +89 21 07 2 59 23 +89 21 21 2 58 50 +89 20 46 2 59 30 +89 20 56 2 59 41 +89 21 08 2 59 22 +89 21	16	2	58	42	+89	20	45	2	59	23	+89	20	54	2	59	41	+89	21	05	2	59			21	16
19	17	2	58	43	+89	20	45	2	59	24	+89	20	54	2	59	41	+89	21	06		59	28	+89	21	16
20							46																		17
21	-		58				46															26	+89		17
22	20	2	58	48	+89	20	46	2	59	27	+89	20	55	2	59	42	+89	21	07	2	59	24	+89	21	17
22																									
23																									18
24		_																							18
25	_	_																							18
26																									18
27 2 58 60 +89 20 48 2 59 33 +89 20 58 2 59 39 +89 21 10 2 59 16 +89 21 28 2 59 01 +89 20 48 2 59 34 +89 20 59 2 59 39 +89 21 10 2 59 15 +89 21 29 2 59 02 +89 20 49 2 59 34 +89 20 59 2 59 39 +89 21 10 2 59 13 +89 21 30 2 59 04 +89 20 49 2 59 35 +89 20 59 2 59 39 +89 21 10 2 59 13 +89 21 30 2 59 04 +89 20 49 2 59 35 +89 20 59 2 59 39 +89 21 11 2 59 12 +89 21	25	2	58	57	+89	20	41/	2	59	32	+89	20	57	2	59	40	+89	21	09	2	59	18	+89	21	19
27 2 58 60 +89 20 48 2 59 33 +89 20 58 2 59 39 +89 21 10 2 59 16 +89 21 28 2 59 01 +89 20 48 2 59 34 +89 20 59 2 59 39 +89 21 10 2 59 15 +89 21 29 2 59 02 +89 20 49 2 59 34 +89 20 59 2 59 39 +89 21 10 2 59 13 +89 21 30 2 59 04 +89 20 49 2 59 35 +89 20 59 2 59 39 +89 21 10 2 59 13 +89 21 30 2 59 04 +89 20 49 2 59 35 +89 20 59 2 59 39 +89 21 11 2 59 12 +89 21	26	2	50	50	. 90	20	10	2	50	22	. 20	20	50	2	50	40	. 90	21	00	2	50	17	. 90	21	19
28																									19
29																									19
30 2 59 04 +89 20 49 2 59 35 +89 20 59 2 59 39 +89 21 11 2 59 12 +89 21 :																									20
																									20
]	50	2	37	04	107	20	マク	_	59	33	109	20	39	4	37	37	109	21	11		53	12	102	41	20
31 2 59 35 +89 20 60 2 59 11 +89 21	31							2	59	35	+89	20	60							2	59	11	+89	21	20
	-							-	57	55	. 07	20	55							_					21

POLARIS TABLE, 2020

LST	0^{h}		1 ^h		2 ^h		3 ^h	ì	4 ^h	ı	5 ^h	
	a_0	b_0	a_0	b_0	a_0	b_0	a_0	b_0	a_0	b_0	a_0	b_0
m 0 3 6 9	-27.8 28.2 28.5 28.9 29.2	+27.6 27.2 26.8 26.5 26.1	-34.0 34.3 34.5 34.7 35.0	, +19.4 18.9 18.5 18.0 17.5	-37.8 38.0 38.1 38.2 38.3	, +9.8 9.3 8.8 8.3 7.8	-39.1 39.1 39.0 39.0 39.0	-0.5 1.0 1.5 2.0 2.5	37.3 37.2	, -10.7 11.2 11.7 12.2 12.7	-33.5 33.3 33.0 32.7 32.4	-20.2 20.6 21.0 21.5 21.9
15 18 21 24 27	-29.6 29.9 30.2 30.6 30.9	+25.7 25.3 24.9 24.5 24.1	-35.2 35.4 35.6 35.8 36.0	+17.1 16.6 16.1 15.7 15.2	-38.4 38.5 38.6 38.7 38.7	+7.3 6.8 6.3 5.7 5.2	-39.0 38.9 38.9 38.8 38.7	-3.1 3.6 4.1 4.6 5.1	36.6 36.5 36.3	-13.2 13.6 14.1 14.6 15.1	-32.2 31.9 31.6 31.2 30.9	-22.3 22.8 23.2 23.6 24.0
30 33 36 39 42	-31.2 31.5 31.8 32.1 32.4	+23.7 23.3 22.8 22.4 22.0	-36.2 36.4 36.6 36.8 37.0	+14.7 14.2 13.7 13.3 12.8	-38.8 38.9 38.9 39.0 39.0	+4.7 4.2 3.7 3.2 2.6	-38.7 38.6 38.5 38.4 38.3	-5.6 6.1 6.7 7.2 7.7	35.7 35.5 35.2	-15.6 16.0 16.5 17.0 17.4	-30.6 30.3 30.0 29.6 29.3	-24.4 24.8 25.2 25.6 26.0
45 48 51 54 57 60	-32.7 32.9 33.2 33.5 33.7 -34.0	+21.6 21.1 20.7 20.3 19.8 +19.4	-37.1 37.3 37.4 37.6 37.7 -37.8	+12.3 11.8 11.3 10.8 10.3 +9.8	-39.0 39.0 39.1 39.1 39.1 -39.1	+2.1 1.6 1.1 +0.6 0.1 -0.5	-38.2 38.1 38.0 37.9 37.7 -37.6	-8.2 8.7 9.2 9.7 10.2 -10.7	34.6 34.3 34.1 33.8	-17.9 18.4 18.8 19.3 19.7 -20.2	-29.0 28.6 28.3 27.9 27.5 -27.2	-26.4 26.7 27.1 27.5 27.9 -28.2
Lat.	a_1	b_1	a_1	<i>b</i> ₁	a_1	b_1	a_1	b_1	a_1	<i>b</i> ₁	a_1	b_1
0 10 20 30	1 1 1 1	3 2 2 1	1 1 .0 .0	2 2 2 1	.0 .0 .0	1 1 1 1	.0 .0 .0	.0 .0 .0	.0 .0	+.1 +.1 +.1 +.1	1 1 .0 .0	+.2 +.2 +.2 +.1
40 45 50 55	.0 .0 .0	1 .0 .0 +.1	.0 .0 .0	1 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0	.0 .0 .0	.0 .0 .0	+.1 .0 .0 .0
60 62 64 66	+.1 +.1 +.1 +.1	+.1 +.2 +.2 +.2	.0 .0 .0 +.1	+.1 +.1 +.2 +.2	.0 .0 .0	+.1 +.1 +.1 +.1	.0 .0 .0	.0 .0 .0	.0	1 1 1 1	.0 .0 +.0 +.1	1 1 2 2
Month	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	b_2
Jan. Feb. Mar.	+.2 +.1 1	1 2 3	+.2 +.1 .0	1 2 3	+.2 +.2 +.1	.0 2 3	+.2 +.2 +.2	.0 1 3	+.2	+.1 1 2	+.1 +.3 +.3	+.1 .0 1
Apr. May June	2 3 3	3 2 .0	1 3 3	3 2 1	1 2 3	3 3 2	.0 1 2	3 3 3	+.1 .0 2	3 4 3	+.2 +.1 1	3 4 3
July Aug. Sept.	3 1 .0	+.1 +.2 +.3	3 2 .0	.1 +.2 +.3	3 2 1	.0 +.1 +.3	3 3 2	1 +.1 +.2	3 3 2	2 .0 +.2	2 3 3	2 1 +.1
Oct. Nov. Dec.	+.2 +.4 +.5	+.3 +.2 .0	+.2 +.3 +.5	+.3 +.3 +.1	+.1 +.3 +.4	+.3 +.3 +.3	.0 +.2 +.3	+.3 +.4 +.4	.1	+.3 +.4 +.4	2 1 +.1	+.3 +.4 +.5

POLARIS TABLE, 2020

LST	6 ^h		7 ^h		8 ^h		9 ^h		10 ^l	h	11 ¹	1
	a_0	b_0	a_0	b_0	a_0	b_0	a_0	b_0	a_0	b_0	a_0	b_0
m 0 3 6 9	-27.2 26.8 26.4 26.0 25.7	, -28.2 28.6 28.9 29.3 29.6	-18.9 18.5 18.0 17.6 17.1	, -34.3 34.5 34.8 35.0 35.2	, -9.4 8.9 8.4 7.9 7.4	, -38.0 38.1 38.2 38.3 38.4	+0.7 1.2 1.7 2.3 2.8	, -39.1 39.1 39.0 39.0 39.0	+10.8 11.3 11.8 12.3 12.7	, -37.5 37.3 37.2 37.0 36.9	+20.1 20.6 21.0 21.4 21.8	-33.4 33.1 32.8 32.6 32.3
15 18 21 24 27	-25.3 24.9 24.5 24.1 23.7	-29.9 30.3 30.6 30.9 31.2	-16.7 16.2 15.7 15.3 14.8	-35.5 35.7 35.9 36.1 36.3	-6.9 6.4 5.9 5.4 4.9	-38.5 38.6 38.7 38.7 38.8	+3.3 3.8 4.3 4.8 5.3	-38.9 38.9 38.8 38.8 38.7	+13.2 13.7 14.2 14.7 15.1	-36.7 36.5 36.3 36.1 35.9	+22.3 22.7 23.1 23.5 23.9	-32.0 31.7 31.4 31.1 30.8
30 33 36 39 42	-23.3 22.8 22.4 22.0 21.6	-31.5 31.8 32.1 32.4 32.7	-14.3 13.8 13.3 12.9 12.4	-36.5 36.6 36.8 37.0 37.1	-4.4 3.9 3.4 2.9 2.3	-38.9 38.9 39.0 39.0 39.0	+5.8 6.3 6.8 7.3 7.8	-38.6 38.5 38.4 38.3 38.2	+15.6 16.1 16.5 17.0 17.4	-35.7 35.5 35.3 35.1 34.9	+24.3 24.7 25.1 25.5 25.9	-30.5 30.1 29.8 29.5 29.2
45 48 51 54 57 60	-21.1 20.7 20.3 19.8 19.4 -18.9	-33.0 33.3 33.5 33.8 34.0 -34.3	-11.9 11.4 10.9 10.4 9.9 -9.4	-37.3 37.5 37.6 37.7 37.9 -38.0	-1.8 1.3 -0.8 -+0.3 0.2 +0.7	-39.0 39.1 39.1 39.1 39.1 -39.1	+8.3 8.8 9.3 9.8 10.3 +10.8	-38.1 38.0 37.9 37.8 37.6 -37.5	+17.9 18.4 18.8 19.2 19.7 +20.1	-34.6 34.4 34.1 33.9 33.6 -33.4	+26.3 26.6 27.0 27.4 27.7 +28.1	-28.8 28.5 28.1 27.8 27.4 -27.0
Lat.	a_1	<i>b</i> ₁	a_1	<i>b</i> ₁	a_1	<i>b</i> ₁	a_1	<i>b</i> ₁	a_1	<i>b</i> ₁	a_1	<i>b</i> ₁
0 10 20 30	1 1 1 1	+.3 +.2 +.2 +.1	2 2 1 1	+.2 +.2 +.2 +.1	2 2 2 1	+.1 +.1 +.1 +.1	3 2 2 1	.0 .0 .0	2 2 2 1	1 1 1 1	2 2 1 1	2 2 2 1
40 45 50 55	.0 .0 .0	+.1 .0 .0 1	1 .0 .0 .0	+.1 .0 .0	1 .0 .0 +.0	.0 .0 .0	1 .0 .0 +.1	.0 .0 .0	1 .0 .0 .0	.0 .0 .0	1 .0 .0 .0	1 .0 .0 .0
60 62 64 66	+.1 +.1 +.1 +.1	1 2 2 2	+.1 +.1 +.1 +.2	1 1 2 2	+.1 +.1 +.2 +.2	1 1 1 1	+.1 +.2 +.2 +.2	.0 .0 .0	+.1 +.1 +.2 +.2	+.1 +.1 +.1 +.1	+.1 +.1 +.1 +.2	+.1 +.1 +.2 +.2
Month	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	b_2
Jan. Feb. Mar.	+.1 +.2 +.3	+.2 +.1 1	+.1 +.2 +.3	+.2 +.1 1	.0 +.2 +.3	+.2 +.2 +.1	.0 +.1 +.3	+.2 +.2 +.2	1 +.1 +.2	+.2 +.2 +.2	1 .0 +.1	+.1 +.3 +.3
Apr. May June	+.3 +.2 .0	2 3 3	+.3 +.2 +.1	2 3 3	+.3 +.3 +.2	1 2 3	+.4 +.3 +.3	.0 1 2	+.3 +.4 +.3	+.1 .0 2	+.3 +.4 +.3	+.2 +.1 1
July Aug. Sept.	1 2 3	3 1 .0	1 2 3	3 1 .0	.0 1 3	3 2 1	+.1 1 2	3 3 2	+.2 .0 2	3 3 2	+.2 +.1 1	2 3 3
Oct. Nov. Dec.	3 2 .0	+.2 +.4 +.5	3 3 1	+.2 +.4 +.5	3 3 3	+.1 +.3 +.4	3 4 4	.0 +.2 +.3	3 4 4	1 .1 +.2	3 4 5	2 1 +.1

POLARIS TABLE, 2020

LST	12 ^h	I	13 ^h	1	14 ^l	1	15	h	16	h	17	h
	a_0	b_0	a_0	b_0	a_0	b_0	a_0	b_0	a_0	b_0	a_0	b_{0}
m 0 3 6 9 12	+28.1 28.4 28.8 29.1 29.5	-27.0 26.7 26.3 25.9 25.5	+34.1 34.4 34.6 34.8 35.1	-18.9 18.5 18.0 17.6 17.1	+37.9 38.0 38.1 38.2 38.3	, -9.5 9.1 8.6 8.1 7.6	+39.1 39.1 39.0 39.0 39.0	+0.5 1.0 1.5 2.0 2.5	+37.6 37.5 37.4 37.2 37.0	+10.4 10.9 11.4 11.9 12.3	+33.7 33.4 33.2 32.9 32.6	+19.7 20.1 20.6 21.0 21.4
15 18 21 24 27	+29.8 30.1 30.4 30.8 31.1	-25.2 24.8 24.4 24.0 23.6	+35.3 35.5 35.7 35.9 36.1	-16.7 16.2 15.7 15.3 14.8	+38.4 38.5 38.6 38.7 38.7	-7.1 6.6 6.1 5.6 5.1	+39.0 38.9 38.9 38.8 38.8	+3.0 3.5 4.0 4.5 5.0	+36.9 36.7 36.5 36.4 36.2	+12.8 13.3 13.8 14.2 14.7	+32.3 32.0 31.7 31.4 31.1	+21.8 22.3 22.7 23.1 23.5
30 33 36 39 42	+31.4 31.7 32.0 32.3 32.5	-23.2 22.8 22.3 21.9 21.5	+36.3 36.5 36.7 36.8 37.0	-14.3 13.9 13.4 12.9 12.5	+38.8 38.9 38.9 39.0 39.0	-4.6 4.1 3.6 3.1 2.6	+38.7 38.6 38.5 38.4 38.3	+5.5 6.0 6.5 7.0 7.5	+36.0 35.8 35.6 35.3 35.1	+15.2 15.6 16.1 16.6 17.0	+30.8 30.5 30.2 29.9 29.5	+23.9 24.3 24.7 25.1 25.5
45 48 51 54 57 60	+32.8 33.1 33.4 33.6 33.9 +34.1	-21.1 20.7 20.2 19.8 19.4 -18.9	+37.2 37.3 37.5 37.6 37.7 +37.9	-12.0 11.5 11.0 10.5 10.0 -9.5	+39.0 39.0 39.1 39.1 39.1 +39.1	-2.1 1.6 1.1 -0.6 -+0.1 +0.5	+38.2 38.1 38.0 37.9 37.8 +37.6	+8.0 8.5 8.9 9.4 9.9 +10.4	+34.9 34.7 34.4 34.2 33.9 +33.7	+17.5 17.9 18.4 18.8 19.3 +19.7	+29.2 28.9 28.5 28.2 27.8 +27.4	+25.8 26.2 26.6 27.0 27.3 +27.7
Lat.	a_1	b_1	a_1	b_1	a_1	b_1	a_1	<i>b</i> ₁	a_1	<i>b</i> ₁	a_1	b_1
0 10 20 30	1 1 1 1	3 2 2 1	1 1 .0 .0	2 2 2 1	.0 .0 .0	1 1 1 1	.0 .0 .0	.0 .0 .0	.0 .0 .0	+.1 +.1 +.1 +.1	1 1 .0 .0	+.2 +.2 +.1
40 45 50 55	.0 .0 .0	1 .0 .0 +.1	.0 .0 .0	1 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0	+.1 .0 .0 .0
60 62 64 66	+.1 +.1 +.1 +.1	+.1 +.2 +.2 +.2	.0 .0 .0 +.1	+.1 +.1 +.2 +.2	.0 .0 .0	+.1 +.1 +.1 +.1	.0 .0 .0	.0 .0 .0	.0 .0 .0	1 1 1 1	.0 .0 +.0 +.1	1 1 2 2
Month	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂
Jan. Feb. Mar.	2 1 +.1	+.1 +.2 +.3	2 1 .0	+.1 +.2 +.3	2 2 1	.0 +.2 +.3	2 2 2	.0 +.1 +.3	2 2 2	1 +.1 +.2	1 3 3	1 .0 +.1
Apr. May June	+.2 +.3 +.3	+.3 +.2 .0	+.1 +.3 +.3	+.3 +.2 +.1	.1 +.2 +.3	+.3 +.3 +.2	.0 +.1 +.2	+.4 +.3 +.3	1 .0 +.2	+.3 +.4 +.3	2 1 +.1	+.3 +.4 +.3
July Aug. Sept.	+.3 +.1 .0	1 2 3	+.3 +.2 .0	1 2 3	+.3 +.2 +.1	.0 1 3	+.3 +.3 +.2	+.1 1 2	+.3 +.3 +.2	+.2 .0 2	+.2 +.3 +.3	+.2 +.1 1
Oct. Nov. Dec.	2 4 5	3 2 .0	3	3 3 1	1 3 4	3 3 3	.0 2 3	3 4 4	+.1 1 2	3 4 4	+.2 +.1 1	3 4 5

POLARIS TABLE, 2020

LST	18 ^l	h	19 ^l	1	20	h	21	h	22	h	23	h
	a_0	b_0	a_0	b_0	a_0	b_{0}	a_0	b_0	a_0	b_0	a_0	b_0
m 0 3 6 9	+27.4 27.1 26.7 26.3 26.0	, +27.7 28.0 28.4 28.7 29.1	+19.3 18.9 18.5 18.0 17.5	, +33.8 34.1 34.3 34.6 34.8	, +9.9 9.4 8.9 8.4 7.9	, +37.7 37.9 38.0 38.1 38.2	-0.2 0.7 1.2 1.7 2.2	, +39.1 39.1 39.1 39.1 39.0	-10.3 10.8 11.3 11.8 12.3	+37.8 37.6 37.5 37.3 37.2	-19.7 20.2 20.6 21.1 21.5	+33.8 33.6 33.3 33.0 32.8
15 18 21 24 27	+25.6 25.2 24.8 24.4 24.0	+29.4 29.7 30.1 30.4 30.7	+17.1 16.6 16.2 15.7 15.2	+35.0 35.3 35.5 35.7 35.9	+7.4 6.9 6.4 5.9 5.4	+38.3 38.4 38.5 38.6 38.7	-2.7 3.3 3.8 4.3 4.8	+39.0 39.0 38.9 38.9 38.8	-12.8 13.2 13.7 14.2 14.7	+37.0 36.9 36.7 36.5 36.3	-21.9 22.3 22.8 23.2 23.6	+32.5 32.2 31.9 31.6 31.3
30 33 36 39 42	+23.6 23.2 22.8 22.4 21.9	+31.0 31.3 31.6 31.9 32.2	+14.8 14.3 13.8 13.3 12.9	+36.1 36.3 36.5 36.7 36.8	+4.9 4.4 3.9 3.4 2.9	+38.7 38.8 38.9 38.9 39.0	-5.3 5.8 6.3 6.8 7.3	+38.8 38.7 38.6 38.5 38.4	-15.2 15.6 16.1 16.6 17.0	+36.1 35.9 35.7 35.5 35.3	-24.0 24.4 24.8 25.2 25.6	+31.0 30.7 30.3 30.0 29.7
45 48 51 54 57 60	+21.5 21.1 20.7 20.2 19.8 +19.3	+32.5 32.8 33.1 33.3 33.6 +33.8	+12.4 11.9 11.4 10.9 10.4 +9.9	+37.0 37.2 37.3 37.5 37.6 +37.7	+2.4 1.9 1.3 0.8 +0.3 -0.2	+39.0 39.0 39.0 39.1 39.1 +39.1	-7.8 8.3 8.8 9.3 9.8 -10.3	+38.3 38.2 38.1 38.0 37.9 +37.8	-17.5 17.9 18.4 18.8 19.3 -19.7	+35.1 34.8 34.6 34.3 34.1 +33.8	-26.0 26.3 26.7 27.1 27.5 -27.8	+29.3 29.0 28.6 28.3 27.9 +27.6
Lat.	a_1	b_1	a_1	b_1	a_1	b_1	a_1	b_1	a_1	<i>b</i> ₁	a_1	b_1
0 10 20 30	1 1 1 1	+.3 +.2 +.2 +.1	2 2 1 1	+.2 +.2 +.2 +.1	2 2 2 1	+.1 +.1 +.1 +.1	3 2 2 1	.0 .0 .0	2 2 2 1	1 1 1 1	2 2 1 1	2 2 2 1
40 45 50 55	.0 .0 .0	+.1 .0 .0 1	1 .0 .0 .0	+.1 .0 .0	1 .0 .0 +.0	.0 .0 .0	1 .0 .0 +.1	.0 .0 .0	1 .0 .0 .0	.0 .0 .0	1 .0 .0 .0	1 .0 .0 .0
60 62 64 66	+.1 +.1 +.1 +.1	1 2 2 2	+.1 +.1 +.1 +.2	1 1 2 2	+.1 +.1 +.2 +.2	1 1 1 1	+.1 +.2 +.2 +.2	.0 .0 .0	+.1 +.1 +.2 +.2	+.1 +.1 +.1 +.1	+.1 +.1 +.1 +.2	+.1 +.1 +.2 +.2
Month	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	<i>b</i> ₂	a_2	b_2
Jan. Feb. Mar.	1 2 3	2 1 +.1	1 2 3	2 1 .0	.0 2 3	2 2 1	.0 1 3	2 2 2	+.1 1 2	2 2 2	+.1 .0 1	1 3 3
Apr. May June	3 2 .0	+.2 +.3 +.3	3 2 1	+.1 +.3 +.3	3 3 2	.1 +.2 +.3	4 3 3	.0 +.1 +.2	3 4 3	1 .0 +.2	3 4 3	2 1 +.1
July Aug. Sept.	+.1 +.2 +.3	+.3 +.1 .0	.1 +.2 +.3	+.3 +.2 .0	.0 +.1 +.3	+.3 +.2 +.1	1 +.1 +.2	+.3 +.3 +.2	2 .0 +.2	+.3 +.3 +.2	2 1 +.1	+.2 +.3 +.3
Oct. Nov. Dec.	+.3 +.2 .0	2 4 5	+.3 +.3 +.1	2 3 5	+.3 +.3 +.3	1 3 4	+.3 +.4 +.4	.0 2 3	+.3 +.4 +.4	+.1 1 2	+.3 +.4 +.5	+.2 +.1 1

PART - III

SUNRISE, SUNSET AND MOONRISE, MOONSET

SUNRISE, 2020

LOCAL MEAN TIME OF SUNRISE (SUN'S UPPER LIMB) AND BEGINNING OF MORNING TWILIGHT ON THE MERIDIAN OF GREENWICH

To obtain the standard time at any station, add four minutes for each degree if the station is west of the standard meridian, or deduct four minutes for each degree if the station is east of the standard meridian.

In India, to obtain I.S.T., add 4 x ($82^{\circ}.5$ - λ) mins. or deduct 4 x (λ - $82^{\circ}.5$) mins. as the station is west or east of $82^{\circ}.5$ E. Longitude.

Date	Lat.	0°	10°	20°	30°	35°	40°	45°	50°	52°	54°	56°	58°	60°
		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
Jan.	1	6 00	6 17	6 35	6 56	7 08	7 22	7 38	7 59	8 08	8 19	8 31	8 46	9 02
	5	6 01	6 18	6 36	6 57	7 08	7 22	7 38	7 58	8 07	8 18	8 30	8 44	9 00
	9	6 03	6 20	6 37	6 57	7 09	7 22	7 37	7 57	8 06	8 16	8 27	8 41	8 56
	13	6 05	6 21	6 38	6 57	7 08	7 21	7 36	7 54	8 03	8 13	8 24	8 37	8 51
	17	6 06	6 22	6 38	6 56	7 07	7 19	7 34	7 51	8 00	8 09	8 19	8 31	8 45
	21	6 08	6 22	6 38	6 55	7 06	7 17	7 31	7 48	7 56	8 04	8 14	8 25	8 38
Feb.	25	6 09	6 23	6 37	6 54	7 04	7 15	7 28	7 43	7 51	7 59	8 08	8 18	8 30
	29	6 09	6 23	6 36	6 52	7 01	7 12	7 24	7 38	7 45	7 53	8 01	8 11	8 22
	2	6 10	6 22	6 35	6 50	6 59	7 08	7 19	7 33	7 39	7 46	7 54	8 03	8 13
	6	6 11	6 22	6 34	6 47	6 55	7 04	7 14	7 27	7 33	7 39	7 46	7 54	8 03
	10	6 11	6 21	6 32	6 45	6 52	7 00	7 09	7 20	7 26	7 31	7 38	7 45	7 53
	14	6 11	6 20	6 30	6 41	6 48	6 55	7 03	7 13	7 18	7 23	7 29	7 35	7 42
Mar.	18	6 11	6 19	6 28	6 38	6 43	6 50	6 57	7 06	7 10	7 15	7 20	7 25	7 31
	22	6 10	6 18	6 25	6 34	6 39	6 44	6 51	6 59	7 02	7 06	7 10	7 15	7 20
	26	6 10	6 16	6 22	6 30	6 34	6 39	6 44	6 51	6 54	6 57	7 00	7 04	7 09
	1	6 09	6 14	6 20	6 26	6 29	6 33	6 37	6 43	6 45	6 48	6 51	6 54	6 57
	5	6 08	6 12	6 16	6 21	6 24	6 27	6 30	6 34	6 36	6 38	6 40	6 43	6 46
	9	6 07	6 10	6 13	6 17	6 18	6 21	6 23	6 26	6 27	6 28	6 30	6 32	6 34
Apr.	13	6 06	6 08	6 10	6 12	6 13	6 14	6 16	6 17	6 18	6 19	6 20	6 21	6 22
	17	6 05	6 06	6 06	6 07	6 07	6 08	6 08	6 09	6 09	6 09	6 09	6 09	6 10
	21	6 04	6 03	6 03	6 02	6 02	6 01	6 01	6 00	6 00	5 59	5 59	5 58	5 57
	25	6 03	6 01	5 59	5 57	5 56	5 55	5 53	5 51	5 50	5 49	5 48	5 47	5 45
	29	6 01	5 59	5 56	5 53	5 51	5 48	5 46	5 42	5 41	5 39	5 38	5 36	5 33
	2	6 00	5 57	5 53	5 48	5 45	5 42	5 38	5 34	5 32	5 30	5 27	5 24	5 21

BEGINNING OF MORNING TWILIGHT

		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
Jan.	1 9	4 45 4 49	5 01 5 05	5 16 5 19	5 31 5 32	5 37 5 39	5 45 5 45			6 03 6 02	6 06 6 05	6 10 6 08	6 14 6 12	6 18 6 16
Feb.	17 25 2	4 53 4 56 4 58	5 07 5 09 5 10	5 21 5 21 5 20	5 33 5 31 5 28	5 38 5 36 5 32		5 50 5 45 5 39	5 50	5 58 5 52 5 43	6 01 5 54 5 44	6 04 5 56 5 45	6 06 5 58 5 46	6 09 6 00 5 47
	10	5 00		5 17	5 24	5 26	5 28	5 30	5 31	5 31	5 31	5 31	5 31	5 30
Mar.	18 26 5	5 00 5 00 4 59	5 08 5 06 5 02	5 14 5 09 5 03	5 18 5 10 5 02	5 19 5 10 5 00	5 09	5 19 5 07 4 53	5 03	5 17 5 01 4 44	5 16 4 59 4 40	5 15 4 57 4 36	5 13 4 54 4 32	5 12 4 50 4 26
	13 21	4 57 4 55	4 58 4 54	4 57 4 50	4 52 4 43	4 49 4 37	4 44 4 30	4 38 4 22	4 29 4 10	4 25 4 04	4 20 3 58	4 14 3 50	4 08 3 41	4 00 3 31
Apr.	29 6	4 53 4 50	-	4 42 4 35	4 32 4 21	4 25 4 13	4 16 4 02	4 05 3 47	3 50 3 29	3 42 3 19	3 34 3 08	3 24 2 56	3 12 2 40	2 59 2 21

SUNSET, 2020

LOCAL MEAN TIME OF SUNSET (SUN'S UPPER LIMB) AND ENDING OF EVENING TWILIGHT ON THE MERIDIAN OF GREENWICH

To obtain the standard time at any station, add four minutes for each degree if the station is west of the standard meridian, or deduct four minutes for each degree if the station is east of the standard meridian.

In India, to obtain I.S.T., add 4 x ($82^{\circ}.5$ - λ) mins. or deduct 4 x (λ - $82^{\circ}.5$) mins. as the station is west or east of $82^{\circ}.5$ E. Longitude.

	Lat.				00		00	26			70	4	00				00		20		40	_	. 0		20		
Date		()°	1	0°	20	0°	30)°	35	,0	40	0°	4:	5°	50)°	5.	2°	54	4°	56	5°	5	8°	6	0°
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Jan.	17	18 18 18 18	09 11 12 14	17 17 17 17	52 54 56 58	17 17 17 17	34 37 40 42	17 17 17 17	14 17 20 24	17 17 17 17	02 05 09 13	16 16 16 17	48 52 56 01	16 16 16 16	32 37 41 46	16 16 16 16	13 17 23 29	16 16 16 16	03 08 14 20	15 15 16 16	53 58 04 11	15 15 15 15 16 16	41 47 54 01	15 15 15 15	27 34 41 49	15 15 15 15	11 18 26 35
Feb.	29 2 6 10	_	17 17 18 18	18 18 18 18	04 05 06 07	17 17 17 17	50 52 54 57	17 17 17 17	34 38 41 44	17 17 17 17	25 29 33 37	17 17 17 17	15 20 24 29	17 17 17 17	03 08 14 20	16 16 17 17	48 55 02 09	16 16 16 17	41 49 56 04	16 16 16 16	34 42 50 58	16 16 16 16 16 17	25 34 43 52	16 16 16 16	16 25 35 45	16 16 16 16	05 15 26 36
Mar.	22 26 1 5	18	17 16 16 15	18 18 18 18	10 10 11 11	18 18 18 18	02 04 05 07	17 17 17 18	54 57 59 02	17 17 17 17	49 52 56 59	17 17 17 17	43 48 52 57	17 17 17 17	37 42 48 53	17 17 17 17	29 36 43 49	17 17 17 17	26 33 40 48	17 17 17 17	22 30 38 46	17	18 26 35 44	17 17 17 17	13 23 32 41	17 17 17 17	08 18 28 39
Apr.	17 21 25 29	18 18 18 18	11 10 09 08	18 18 18 18	11 11 11 11	18 18 18 18	10 11 13 14	18 18 18 18	10 12 15 17	18 18 18 18	10 13 16 19	18 18 18 18	09 13 18 22	18 18 18 18	09 14 19 24	18 18 18 18	09 15 21 28	18 18 18 18	09 16 23 29	18 18 18 18	09 16 24 31	18 18 18 18 18	08 17 25 33	18 18 18 18	08 17 26 35	18 18 18 18	08 18 28 38

END OF EVENING TWILIGHT

		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Jan.						18																					
						18																					
	17	19	27	19	12	18	59	18	48	18	42	18	36	18	30	18	24	18	22	18	19	18	17	18	14	18	11
	25	19	29	19	15	19	04	18	54	18	49	18	44	18	40	18	35	18	33	18	31	18	29	18	28	18	26
Feb.	2	19	29	19	17	19	08	18	59	18	56	18	52	18	49	18	46	18	45	18	44	18	43	18	43	18	42
	10	19	29	19	19	19	11	19	05	19	03	19	01	18	59	18	58	18	58	18	58	18	58	18	59	18	59
Mar.	26 5 13 21	19 19 19 19	26 24 21 19	19 19 19 19	20 21 21 21	19 19 19 19	17 20 22 25	19 19 19 19	16 21 27 32	19 19 19 19	17 24 30 38	19 19 19 19	18 27 35 45	19 19 19 19	20 31 42 54	19 19 19 20	24 37 51 05	19 19 19 20	26 40 55 11	19 19 20 20	28 44 00 18	19 19 20 20	31 48 06 26	19 19 20 20	34 53 13 35	19 19 20 20	37 58 21 46
A						19																					
Apr.	О	19	13	19	21	19	50	19	44	19	23	20	04	20	19	20	38	20	4/	20	28	21	12	21	21	21	4/

SUNRISE, 2020

LOCAL MEAN TIME OF SUNRISE (SUN'S UPPER LIMB) AND BEGINNING OF MORNING TWILIGHT ON THE MERIDIAN OF GREENWICH

To obtain the standard time at any station, add four minutes for each degree if the station is west of the standard meridian, or deduct four minutes for each degree if the station is east of the standard meridian.

In India, to obtain I.S.T., add 4 x ($82^{\circ}.5$ - λ) mins. or deduct 4 x (λ - $82^{\circ}.5$) mins. as the station is west or east of $82^{\circ}.5$ E. Longitude.

Date	Lat.	0°	10°	20°	30°	35°	40°	45°	50°	52°	54°	56°	58°	60°
Date		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
Apr.	2 6 10 14 18 22	6 00 5 59 5 58 5 57 5 56 5 55	5 57 5 54 5 52 5 50 5 48 5 46	5 53 5 49 5 46 5 43 5 39 5 37	5 48 5 43 5 38 5 34 5 30 5 25	5 45 5 40 5 34 5 29 5 24 5 19	5 42 5 36 5 29 5 23 5 17 5 12	5 38 5 31 5 24 5 17 5 10 5 03	5 34 5 25 5 17 5 08 5 00 4 53	5 32 5 23 5 14 5 05 4 56 4 48	5 30 5 20 5 10 5 01 4 51 4 42	5 27 5 17 5 06 4 56 4 46 4 36	5 24 5 13 5 02 4 51 4 40 4 30	5 21 5 09 4 57 4 45 4 34 4 22
May	26 30 4 8 12 16	5 54 5 54 5 53 5 53 5 53 5 53	5 44 5 43 5 42 5 40 5 39 5 39	5 34 5 31 5 29 5 27 5 25 5 23	5 22 5 18 5 14 5 11 5 08 5 06	5 14 5 10 5 06 5 02 4 59 4 56	5 06 5 01 4 56 4 52 4 47 4 44	4 57 4 50 4 45 4 39 4 34 4 30	4 45 4 38 4 31 4 24 4 18 4 12	4 39 4 32 4 24 4 17 4 10 4 04	4 33 4 25 4 17 4 09 4 02 3 55	4 27 4 18 4 09 4 00 3 52 3 45	4 19 4 09 3 59 3 50 3 41 3 33	4 11 4 00 3 49 3 39 3 29 3 19
Jun.	20 24 28 1 5 9	5 53 5 53 5 54 5 54 5 55 5 56	5 38 5 38 5 38 5 38 5 38 5 39	5 22 5 21 5 20 5 20 5 20 5 20	5 04 5 02 5 00 4 59 4 59 4 58	4 53 4 51 4 49 4 47 4 46 4 46	4 40 4 37 4 35 4 33 4 32 4 31	4 25 4 22 4 19 4 16 4 15 4 13	4 07 4 03 3 59 3 56 3 53 3 51	3 59 3 54 3 49 3 46 3 43 3 41	3 49 3 43 3 39 3 35 3 31 3 29	3 38 3 32 3 26 3 22 3 18 3 15	3 25 3 18 3 12 3 07 3 02 2 59	3 10 3 02 2 55 2 49 2 44 2 40
	13 17 21 25 29	5 57 5 57 5 58 5 59 6 00	5 39 5 40 5 41 5 42 5 43	5 20 5 21 5 22 5 23 5 24	4 58 4 59 5 00 5 01 5 02	4 46 4 46 4 47 4 48 4 49	4 31 4 31 4 33 4 34	4 13 4 13 4 13 4 15 4 16	3 50 3 50 3 51 3 52 3 54	3 40 3 39 3 40 3 41 3 43	3 28 3 27 3 28 3 29 3 31	3 14 3 13 3 13 3 15 3 17	2 57 2 56 2 56 2 58 3 01	2 37 2 36 2 36 2 38 2 41
July	3	6 01	5 44	5 25	5 04	4 51	4 36	4 19	3 57	3 46	3 34	3 21	3 05	2 45

BEGINNING OF MORNING TWILIGHT

		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
Apr.	6 14 22	4 50 4 47 4 45	4 39 4 34	4 35 4 27 4 20	4 21 4 11 4 01	4 13 4 00 3 48	3 47 3 32	3 47 3 30 3 12	3 06 2 43	2 55 2 29	2 41 2 11	2 56 2 24 1 48	2 40 2 03 1 14	2 21 1 34
May	30 8 16	4 43 4 41 4 40	4 30 4 26 4 24	4 14 4 08 4 03	3 51 3 42 3 35	3 36 3 26 3 16	3 05	2 54 2 36 2 20	2 19 1 54 1 27	2 00 1 28 0 47	1 36 0 48	0 58		
June	24 1 9 17	4 40 4 40 4 41 4 42	4 22 4 21 4 21 4 22	3 59 3 57 3 56 3 57	3 29 3 25 3 22 3 22	3 09 3 03 3 00 2 59	2 34 2 29	2 05 1 52 1 44 1 40	0 56					
July	25 3 11	4 44 4 46 4 48	4 24 4 26 4 29		3 24 3 28 3 33	3 01	2 29	1 42 1 49 2 01						

SUNSET, 2020

LOCAL MEAN TIME OF SUNSET (SUN'S UPPER LIMB) AND ENDING OF EVENING TWILIGHT ON THE MERIDIAN OF GREENWICH

To obtain the standard time at any station, add four minutes for each degree if the station is west of the standard meridian, or deduct four minutes for each degree if the station is east of the standard meridian.

In India, to obtain I.S.T., add 4 x ($82^{\circ}.5$ - λ) mins. or deduct 4 x (λ - $82^{\circ}.5$) mins. as the station is west or east of $82^{\circ}.5$ E. Longitude.

	Lat.	C)°	10	0°	20)°	30)°	35	5°	4	0°	4:	5°	50)°	5	2°	54	4°	56	5°	58	8°	60	0°
Date																											
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Apr.	6 10 14 18	18 18 18 18	06 04 03 03	18 18 18 18	10 10 10 11	18 18 18 18	16 17 18 19	18 18 18 18	22 24 27 29	18 18 18 18	26 29 32 35	18 18 18 18	30 34 38 42	18 18 18 18	35 40 45 50	18 18 18 18	40 47 53 59	18 18 18 19	43 50 57 04	18 18 19 19	46 53 01 08	18 18 18 19 19	49 57 06 14	18 19 19 19	53 02 11 20	18 19 19 19	57 07 17 27
May	30 4 8 12	18 18 18 18	01 00 00 00	18 18 18 18	12 12 13 13	18 18 18 18	23 25 26 28	18 18 18 18	37 40 42 45	18 18 18 18	45 48 51 55	18 18 19 19	54 58 02 06	19 19 19 19	05 10 15 19	19 19 19 19	18 24 30 36	19 19 19 19	24 31 37 43	19 19 19 19	31 38 45 52	19 19 19 19 20 20	38 46 54 02	19 19 20 20	47 56 04 13	19 20 20 20	56 06 16 26
June	24 28 1 5	18 18 18 18	00 01 02 02	18 18 18 18	16 17 18 19	18 18 18 18	33 34 36 37	18 18 18 18	52 55 57 59	19 19 19 19	04 06 09 11	19 19 19 19	17 20 23 26	19 19 19 19	32 36 40 43	19 19 20 20	52 57 01 04	20 20 20 20	01 06 11 15	20 20 20 20	11 17 22 27	20 20 20 20 20 20 20	23 29 35 40	20 20 20 20	37 44 50 56	20 21 21 21	53 01 08 15
July	17 21 25 29	18 18 18 18	05 06 06 07	18 18 18 18	22 23 24 25	18 18 18	41 42 43 43	19 19 19 19	03 04 05 05	19 19 19 19	16 17 18 18	19 19 19 19	31 32 33 33	19 19 19 19	49 50 51 51	20 20 20 20	12 13 13 13	20 20 20 20	23 24 24 24	20 20 20 20	35 36 36 36	20 20 20 20 20 20 20	49 50 51 50	21 21 21 21	06 07 07 06	21 21 21 21	27 28 28 26

END OF EVENING TWILIGHT

		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Apr.	6	19	15	19	21	19	30	19	44	19	53	20	04	20	19	20	38	20	47	20	58	21	12	21	27	21	47
-	14	19	13	19	22	19	34	19	50	20	01	20	15	20	32	20	56	21	08	21	22	21	39	22	01	22	32
	22	19	12	19	23	19	37	19	57	20	10	20	26	20	47	21	16	21	31	21	49	22	14	22	49		
	30	19	12	19	25	19	41	20	04	20	19	20	38	21	02	21	38	21	57	22	23	23	04				
May	8	19	12	19	27	19	46	20	11	20	28	20	50	21	18	22	02	22	28	23	14						
	16	19	13	19	29	19	50	20	18	20	37	21	01	21	35	22	29	23	13								
	24	19	14	19	32	19	55	20	25	20	46	21	13	21	50	23	03										
June	1	19	16	19	35	19	59	20	32	20	54	21	22	22	05												
	9	19	18	19	38	20	03	20	37	21	00	21	30	22	16												
	17	19	20	19	40	20	05	20	40	21	03	21	35	22	23												
	25	19	22	19	42	20	07	20	41	21	05	21	36	22	24												
July	3	19	23	19	42	20	07	20	41	21	04	21	34	22	19												
,	11	19	23	19	42	20	06	20	38	21	00	21	28	22	09	23	51										

SUNRISE, 2020

LOCAL MEAN TIME OF SUNRISE (SUN'S UPPER LIMB) AND BEGINNING OF MORNING TWILIGHT ON THE MERIDIAN OF GREENWICH

To obtain the standard time at any station, add four minutes for each degree if the station is west of the standard meridian, or deduct four minutes for each degree if the station is east of the standard meridian.

In India, to obtain I.S.T., add 4 x ($82^{\circ}.5$ - λ) mins. or deduct 4 x (λ - $82^{\circ}.5$) mins. as the station is west or east of $82^{\circ}.5$ E. Longitude.

Date	Lat.	0°	10°	20°	30°	35°	40°	45°	50°	52°	54°	56°	58°	60°
		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
July	3	6 01	5 44	5 25	5 04	4 51	4 36	4 19	3 57	3 46	3 34	3 21	3 05	2 45
	7	6 01	5 45	5 26	5 05	4 53	4 38	4 21	4 00	3 50	3 38	3 25	3 09	2 51
	11	6 02	5 46	5 28	5 07	4 55	4 41	4 24	4 04	3 54	3 43	3 30	3 15	2 57
	15	6 02	5 47	5 29	5 09	4 58	4 44	4 28	4 08	3 58	3 48	3 36	3 21	3 04
	19	6 03	5 47	5 31	5 12	5 00	4 47	4 32	4 13	4 04	3 53	3 42	3 28	3 13
	23	6 03	5 48	5 32	5 14	5 03	4 51	4 36	4 18	4 09	3 59	3 48	3 36	3 21
Aug.	27	6 03	5 49	5 34	5 16	5 06	4 54	4 40	4 23	4 15	4 06	3 56	3 44	3 30
	31	6 03	5 50	5 35	5 19	5 09	4 58	4 45	4 28	4 21	4 12	4 03	3 52	3 39
	4	6 03	5 50	5 37	5 21	5 12	5 02	4 49	4 34	4 27	4 19	4 10	4 00	3 49
	8	6 02	5 51	5 38	5 23	5 15	5 05	4 54	4 40	4 33	4 26	4 18	4 09	3 58
	12	6 02	5 51	5 39	5 26	5 18	5 09	4 59	4 46	4 40	4 33	4 26	4 17	4 08
	16	6 01	5 51	5 40	5 28	5 21	5 13	5 03	4 52	4 46	4 40	4 34	4 26	4 18
Sept.	20	6 00	5 51	5 42	5 31	5 24	5 17	5 08	4 58	4 53	4 47	4 42	4 35	4 27
	24	5 59	5 51	5 43	5 33	5 27	5 21	5 13	5 04	4 59	4 55	4 49	4 44	4 37
	28	5 58	5 51	5 44	5 35	5 30	5 24	5 18	5 10	5 06	5 02	4 57	4 52	4 46
	1	5 57	5 51	5 45	5 37	5 33	5 28	5 22	5 16	5 12	5 09	5 05	5 01	4 56
	5	5 55	5 51	5 45	5 39	5 36	5 32	5 27	5 21	5 19	5 16	5 13	5 09	5 05
	9	5 54	5 50	5 46	5 42	5 39	5 36	5 32	5 27	5 25	5 23	5 21	5 18	5 15
Oct.	13	5 53	5 50	5 47	5 44	5 42	5 39	5 37	5 33	5 32	5 30	5 28	5 26	5 24
	17	5 51	5 50	5 48	5 46	5 45	5 43	5 41	5 39	5 38	5 37	5 36	5 35	5 33
	21	5 50	5 49	5 49	5 48	5 48	5 47	5 46	5 45	5 45	5 45	5 44	5 43	5 43
	25	5 48	5 49	5 50	5 50	5 50	5 51	5 51	5 51	5 52	5 52	5 52	5 52	5 52
	29	5 47	5 49	5 50	5 52	5 53	5 55	5 56	5 57	5 58	5 59	6 00	6 01	6 02
	3	5 46	5 49	5 51	5 55	5 57	5 59	6 01	6 04	6 05	6 06	6 08	6 09	6 11

BEGINNING OF MORNING TWILIGHT

		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
July	3 11 19	4 46 4 48 4 49	4 26 4 29 4 31	-		3 11	2 42	1 49 2 01 2 15	1 06					
Aug.	27 4 12	4 50 4 51 4 50	4 34 4 36 4 38	4 18				2 30 2 46 3 02		1 38	0 57	1 05		
Sept.	20 28 5 13 21 29	4 50 4 48 4 46 4 44 4 41 4 38	4 40	4 28 4 31 4 33 4 35	4 06 4 12 4 18 4 23 4 28 4 33	4 01 4 09 4 16 4 23	3 48 3 58 4 07 4 16	3 16 3 30 3 43 3 56 4 07 4 18	3 07 3 24	2 55 3 15 3 33 3 49	2 41 3 04 3 24 3 43	1 52 2 25 2 51 3 14 3 35 3 54	2 03 2 36 3 02 3 26	1 34 2 16 2 48
Oct.	7	4 35	4 38						4 22			4 11	4 07	4 01

SUNSET, 2020

LOCAL MEAN TIME OF SUNSET (SUN'S UPPER LIMB) AND ENDING OF EVENING TWILIGHT ON THE MERIDIAN OF GREENWICH

To obtain the standard time at any station, add four minutes for each degree if the station is west of the standard meridian, or deduct four minutes for each degree if the station is east of the standard meridian.

In India, to obtain I.S.T., add 4 x ($82^{\circ}.5$ - λ) mins. or deduct 4 x (λ - $82^{\circ}.5$) mins. as the station is west or east of $82^{\circ}.5$ E. Longitude.

$\overline{}$	Lat.		١0	1.	00	2	00	20	0	2.5	·0	4	00	4	7 0	-	20		30	~	40	_	CO	~.	20		20
Date		()°	1	0°	20	0°	30)°	35) "	4	0°	43	5°	50)°	52	2°	54	4°	56	o°	58	8°	60	J°
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
July	7 11 15 19	18 18 18 18	09 09 10 10	18 18 18 18	25 26 25 25	18 18 18 18	44 43 43 42	19 19 19 19	05 04 02 01	19 19 19 19	17 16 14 12	19 19 19 19	31 30 28 25	19 19 19 19	48 46 44 40	20 20 20 19	10 07 03 59	20 20 20 20 20	20 17 13 08	20 20 20 20 20	31 28 23 18	20 20 20 20 20 20 20	44 40 36 30	21 20 20 20	00 55 50 43	21 21 21 20	18 13 06 59
Aug.	31 4 8 12	18 18 18 18	10 09 09 08	18 18 18 18	23 22 21 19	18 18 18 18	37 35 33 30	18 18 18 18	54 51 47 44	19 19 18 18	03 00 56 51	19 19 19 19	14 10 05 00	19 19 19 19	27 22 17 11	19 19 19 19	43 37 30 23	19 19 19 19	51 44 37 29	19 19 19 19	59 52 44 36	20 20 20 19 19	09 00 52 43	20 20 20 19	19 10 01 51	20 20 20 20	32 22 11 00
Sept.	24 28 1 5	18 18 18 18	06 04 03 02	18 18 18 18	13 11 09 06	18 18 18 18	22 18 15 11	18 18 18 18	31 27 22 17	18 18 18 18	37 32 26 21	18 18 18 18	43 37 31 25	18 18 18 18	51 44 36 29	19 18 18 18	00 52 43 35	19 18 18 18	04 55 46 37	19 18 18 18	09 59 50 40	19 19 19 18 18 18	14 04 53 43	19 19 18 18	20 09 58 46	19 19 19 18	26 14 02 50
Oct.	17 21 25 29	17 17 17 17	58 56 55 53	17 17 17 17	59 56 54 51	18 17 17 17	00 57 53 50	18 17 17 17	02 57 52 47	18 17 17 17	04 58 52 46	18 17 17 17	05 58 52 45	18 17 17 17	06 59 51 44	18 17 17 17	08 59 51 42	18 18 17 17	09 00 51 41	18 18 17 17	10 00 50 40	18 18 18 17 17 17	11 01 50 39	18 18 17 17	12 01 50	18 18 17 17	14 02 50

END OF EVENING TWILIGHT

		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
July	-		-			20					-		-		-												
						20 20																					
						19													10								
Aug.						19																	50				
	12	19	19	19	32	19	48	20	10	20	25	20	43	21	07	21	40	21	39	22	23	22	58				
																						22					
a .																						21					
Sept.																						21 20					
																						20					
																						19					
Oct.																						19					

SUNRISE, 2020

LOCAL MEAN TIME OF SUNRISE (SUN'S UPPER LIMB) AND BEGINNING OF MORNING TWILIGHT ON THE MERIDIAN OF GREENWICH

To obtain the standard time at any station, add four minutes for each degree if the station is west of the standard meridian, or deduct four minutes for each degree if the station is east of the standard meridian.

In India, to obtain I.S.T., add 4 x ($82^{\circ}.5$ - λ) mins. or deduct 4 x (λ - $82^{\circ}.5$) mins. as the station is west or east of $82^{\circ}.5$ E. Longitude.

Date	Lat.	0°	10°	20°	30°	35°	40°	45°	50°	52°	54°	56°	58°	60°
		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
Oct.	3 7 11 15 19 23	5 46 5 44 5 43 5 42 5 42 5 41	5 49 5 48 5 48 5 49 5 49	5 51 5 53 5 54 5 55 5 56 5 58	5 55 5 57 6 00 6 02 6 05 6 08	5 57 6 00 6 03 6 06 6 10 6 13	5 59 6 03 6 07 6 11 6 15 6 19	6 01 6 06 6 11 6 16 6 21 6 27	6 04 6 10 6 16 6 22 6 29 6 35	6 05 6 12 6 18 6 25 6 32 6 39	6 06 6 14 6 21 6 29 6 36 6 44	6 08 6 16 6 24 6 32 6 40 6 49	6 09 6 18 6 27 6 36 6 45 6 54	6 11 6 21 6 30 6 40 6 50 7 00
Nov.	27	5 40	5 50	5 59	6 10	6 17	6 24	6 32	6 42	6 47	6 52	6 57	7 03	7 10
	31	5 40	5 50	6 01	6 13	6 20	6 28	6 38	6 49	6 54	6 59	7 06	7 13	7 21
	4	5 40	5 51	6 03	6 16	6 24	6 33	6 43	6 55	7 01	7 07	7 14	7 22	7 31
	8	5 40	5 52	6 05	6 20	6 28	6 37	6 49	7 02	7 08	7 15	7 23	7 31	7 41
	12	5 41	5 54	6 07	6 23	6 32	6 42	6 54	7 08	7 15	7 23	7 31	7 41	7 51
	16	5 41	5 55	6 10	6 26	6 36	6 47	6 59	7 15	7 22	7 30	7 39	7 50	8 01
Dec	20	5 42	5 57	6 12	6 29	6 40	6 51	7 05	7 21	7 29	7 38	7 47	7 58	8 11
	24	5 43	5 58	6 14	6 33	6 43	6 56	7 10	7 27	7 36	7 45	7 55	8 07	8 21
	28	5 44	6 00	6 17	6 36	6 47	7 00	7 15	7 33	7 42	7 51	8 02	8 15	8 30
	2	5 46	6 02	6 19	6 39	6 51	7 04	7 19	7 39	7 48	7 58	8 09	8 22	8 38
	6	5 47	6 04	6 22	6 42	6 54	7 08	7 24	7 43	7 53	8 03	8 15	8 29	8 45
	10	5 49	6 06	6 24	6 45	6 57	7 11	7 28	7 48	7 57	8 08	8 20	8 35	8 51
	14	5 51	6 08	6 27	6 48	7 00	7 14	7 31	7 51	8 01	8 12	8 25	8 39	8 56
	18	5 53	6 10	6 29	6 50	7 03	7 17	7 34	7 54	8 04	8 15	8 28	8 43	9 00
	22	5 55	6 13	6 31	6 52	7 05	7 19	7 36	7 57	8 06	8 18	8 30	8 45	9 03
	26	5 57	6 14	6 33	6 54	7 06	7 21	7 37	7 58	8 08	8 19	8 31	8 46	9 03
	30	5 59	6 16	6 34	6 55	7 08	7 22	7 38	7 59	8 08	8 19	8 32	8 46	9 03
	34	6 01	6 18	6 36	6 56	7 08	7 22	7 38	7 58	8 08	8 18	8 30	8 44	9 01

BEGINNING OF MORNING TWILIGHT

		h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
Oct.	7 15 23	4 33 4 31	4 38 4 38 4 38	4 41 4 44	4 38 4 42 4 47	4 42 4 48	4 41 4 49	4 28 4 38 4 48	4 22 4 35 4 47	4 33 4 46	4 31 4 45	4 11 4 28 4 44	4 07 4 25 4 42	4 01 4 21 4 40
Nov.	31 8 16	4 29 4 28 4 29	4 39 4 40 4 42	4 46 4 50 4 53	4 52 4 58 5 03		4 57 5 05 5 13	4 58 5 08 5 17	4 59 5 11 5 22	5 12	5 12	4 59 5 13 5 27	4 59 5 14 5 29	4 58 5 15 5 31
Dec.	24 2 10 18	4 30 4 32 4 34 4 38	4 44 4 47 4 51 4 55	5 02 5 06	-	5 21 5 27	5 20 5 27 5 34 5 39	5 26 5 34 5 41 5 47	5 32 5 41 5 49 5 55	5 44 5 52	5 47 5 56	5 39 5 50 5 59 6 06	5 54 6 03	5 57 6 07
	26 34 42	4 42 4 46 4 50		5 17	5 29 5 31 5 33	5 38	5 45	5 51 5 52 5 52	5 59 6 00 5 58	6 03	6 06 6 06 6 04	6 09 6 10 6 07		6 18 6 18 6 14

SUNSET, 2020

LOCAL MEAN TIME OF SUNSET (SUN'S UPPER LIMB) AND ENDING OF EVENING TWILIGHT ON THE MERIDIAN OF GREENWICH

To obtain the standard time at any station, add four minutes for each degree if the station is west of the standard meridian, or deduct four minutes for each degree if the station is east of the standard meridian.

In India, to obtain I.S.T., add 4 x ($82^{\circ}.5$ - λ) mins. or deduct 4 x (λ - $82^{\circ}.5$) mins. as the station is west or east of $82^{\circ}.5$ E. Longitude.

Date	Lat.	C)°	1	0°	20	0°	30)°	35	5°	40)°	4:	5°	50)°	5	2°	54	4°	50	5°	5	8°	6	0°
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Oct.	7 11 15 19	17	51 50 49 48	17 17 17 17	47 45 43 41	17 17 17 17	43 39 36 33	17 17 17 17	29	17 17 17 17	35 30 25 20	17 17 17 17	32 26 20 14	17 17 17 17	29 22 15 08	17 17 17 17	25 16 08 00	17 17 17 16	23 14 05 57	17 17 17 16	21 11 02 53	17 17 16 16	19 08 58 49	17 17 16 16	16 05 54 44	17 17 16 16	13 02 50 38
Nov.	31 4 8 12	17 17 17	47 47 47 48	17 17 17 17	37 36 35 35	17 17 17 17	26 24 22 21	17 17 17 17	10 08	17 17 16 16	06 03 59 56	16 16 16 16	58 54 50 46	16 16 16 16	49 44 38 34	16 16 16 16	38 31 25 19	16 16 16 16	33 26 19 13	16 16 16 16	27 19 12 05	16 16 16 15	21 12 04 57	16 16 15 15	14 04 55 47	16 15 15 15	06 55 46 36
Dec.	24 28 2 6	17 17 17 17	50 52 53 55	17 17 17 17	35 36 37 38	17 17 17	19 19 20 20	17 17 17 17	02 01 00 00 00 01	16 16 16 16	50 49 48 48	16 16 16 16	38 36 35 35	16 16 16 16	23 21 19 19	16 16 16 15	06 03 00 59	15 15 15 15	58 54 51 49	15 15 15 15	48 44 41 39	15 15 15 15	38 33 30 27	15 15 15 15	26 21 17 13	15 15 15 14	20 12 06 01 57 54
	18 22 26 30	18 18 18 18	01 03 05 06	17 17 17 17	43 45 47 49	17 17 17 17	25 27 29 31	17 17 17 17		16 16 16 16	51 53 55 58	16 16 16 16	37 39 41 44	16 16 16 16	20 22 24 27	15 16 16 16	59 01 04 07	15 15 15 15	49 51 54 57	15 15 15 15	38 40 43 47	15 15 15 15	26 27 30 34	15 15 15 15	11 13 16 20	14 14 14 15	53 55

END OF EVENING TWILIGHT

		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Oct.																						19 19					
	23	18	58	18	50	18	45	18	41	18	40	18	39	18	39	18	40	18	41	18	42	18	44	18	45	18	47
Nov.	8	18	59	18	47	18	38	18	29	18	26	18	22	18	19	18	16	18	15	18	14		13	18	12	18	12
			-																			18	-				
Dec.																						17 17					
																						17 17					
																						17 18					
																						18					

DURATION OF TWILIGHT, 2020MORNING AND EVENING TWILIGHT: CIVIL (6°), NAUTICAL (12°) AND ASTRONOMICAL (18°)

Date	Lat.	Civ.	0° Nt.	Ast.	Civ.	10° Nt.	Ast.	Civ.	20° Nt.	Ast.	Civ.	30° Nt.	Ast.	Civ.	40° Nt.	Ast.
Jan.	0 8 16	m 23 22 22	m 49 48 48	m 75 74 74	m 23 23 22	m 49 49 48	m 75 75 74	m 24 24 24	m 51 51 51	m 79 78 77	m 26 26 26	m 56 56 55	m 85 85 84	m 30 30 30	m 64 64 63	m 97 96 95
Feb.	24 1 9 17 25	22 22 21 21 21	47 47 46 46 45	73 72 71 70 70	22 22 22 21 21	48 47 47 46 46	73 73 72 71 70	23 23 23 22 22	50 49 49 48 48	76 76 75 74 74	25 25 25 24 24	54 54 53 52 52	83 82 81 80 80	29 29 28 28 27	62 61 60 59 59	94 93 92 91 90
Mar.	5 13 21 29	21 21 21 21	45 45 45 45	69 69 69 69	21 21 21 21	46 45 45 46	70 70 70 70	22 22 22 22 22	48 48 48 48	73 73 73 74	24 24 24 24	52 52 52 52 52	79 80 80 81	27 27 27 27	59 58 59 59	90 90 91 92
Apr.	6 14 22 30	21 21 21 21	45 45 46 46	69 70 70 71	21 21 22 22	46 46 47 47	71 71 72 73	22 23 23 23	48 49 50 50	75 76 77 77	24 25 25 25	53 54 55 55	82 83 85 87	28 28 29 29	61 62 63 65	95 97 100 103
May	8 16 24	22 22 22	47 47 48	72 73 74	22 22 23	48 49 49	74 75 76	23 24 24	51 52 53	79 81 82	26 26 27	57 58 59	89 91 93	30 31 32	67 69 71	108 112 116
June July	1 9 17 25 3	22 23 23 23 23 23	48 49 49 49 49	74 75 75 75 75	23 23 23 23 23 23	50 50 50 50 50	77 77 78 78 77	24 25 25 25 25 24	53 54 54 54 54	83 84 84 84 84	27 27 28 27 27	60 61 61 61 60	95 96 97 97 96	32 33 33 33 33	73 74 75 75 74	119 122 123 123 122
July	11 19	22 22	48 48	74 74	23 23	50 49	77 76	24 24	53 53	83 82	27 27	60 59	95 93	32 32	73 71	119 115
Aug.	27 4 12 20 28	22 22 21 21 21	47 47 46 46 45	73 72 71 70 70	22 22 22 22 21	49 48 47 47 46	75 74 73 72 71	24 23 23 23 22	52 51 50 49 49	80 79 78 76 75	26 26 25 25 25 25	58 56 55 54 53	91 88 86 85 83	31 30 29 29 29	69 67 65 63 61	111 106 103 99 96
Sept.	5	21	45	69	21	46	71	22	48	74	24	53	82	28	60	94
Oct.	13 21 29 7 15 23 31	21 21 21 21 21 21 21 21	45 45 45 45 45 46 46	69 69 69 70 70 71	21 21 21 21 21 21 21 22	46 45 45 46 46 46 47	70 70 70 70 70 71 72	22 22 22 22 22 22 22 22 23	48 48 48 48 48 49	74 73 73 73 74 74 75	24 24 24 24 24 24 25	52 52 52 52 52 52 52 53	81 80 79 79 80 80 81	27 27 27 27 27 27 28 28	59 58 58 59 59 60	92 91 90 90 90 91
Nov.	8	22	47	72	22	47	73	23	49	76	25	54	82	29	61	93
Dec.	16 24 2 10 18 26 34	22 22 22 23 23 23 23 23	47 48 48 49 49 49	73 74 74 75 75 75 75	22 22 23 23 23 23 23 23	48 48 49 49 49 49	73 74 75 75 75 75 75	23 24 24 24 24 24 24 24	50 51 51 51 52 52 51	76 77 78 78 79 79 78	25 26 26 26 26 26 26 26	54 55 56 56 56 56 56	83 84 85 85 86 85	29 30 30 30 31 31 31	62 63 64 64 65 65 64	94 95 96 97 98 98

DURATION OF TWILIGHT, 2020MORNING AND EVENING TWILIGHT: CIVIL (6°), NAUTICAL (12°)
AND ASTRONOMICAL (18°)

Date	Lat.	Civ.	45° Nt.	Ast.	Civ.	50° Nt.	Ast.	Civ.	55° Nt.	Ast.	Civ.	60° Nt.	Ast.
Jan.	0 8 16	m 34 33 33	m 71 70 69	m 106 105 104	m 38 38 37	m 80 78 77	m 119 117 116	m 45 44 43	m 93 91 88	m 137 135 132	m 57 55 52	m 113 111 106	m 165 161 156
Feb.	24 1 9 17 25	32 31 31 30 30	68 67 65 64 64	102 101 100 98 98	36 35 34 33 33	75 74 72 71 70	113 112 110 108 108	41 40 39 38 37	86 84 82 80 79	129 126 124 122 121	50 48 45 44 42	102 98 95 92 91	151 147 143 140 139
Mar.	5 13 21 29	29 29 29 30	63 64 64 65	98 98 99 101	32 32 32 33	70 70 71 72	108 108 110 113	36 36 36 37	78 79 80 81	121 121 125 130	42 42 42 43	90 90 92 95	140 142 147 155
Apr.	6 14 22 30	30 31 32 32	66 68 70 72	104 108 112 117	33 34 35 36	74 77 80 83	117 123 130 139	38 39 41 43	85 89 94 100	137 147 161 184	44 46 50 53	100 107 119 135	169 193 **
May	8 16 24	33 35 36	76 79 82	123 130 137	38 40 42	88 93 99	151 167 188	46 49 52	110 121 136	** **	59 65 74	169 **	** ** **
June	1 9 17	36 37 37 37	84 86 87 87	144 150 153 153	43 44 45 45	104 108 110 110	** ** **	54 57 58 58	156 194 **	** ** **	85 96 106 105	** ** **	** ** **
July	25 3	37	86	150	44	107	**	57	187	**	95	**	**
Aug.	11 19 27 4 12 20 28 5	36 35 34 33 32 31 31 30	84 81 78 75 72 69 67 66	144 137 129 123 116 111 107 104	43 41 40 38 36 35 34 33	103 98 93 87 82 79 76 74	** 186 165 149 138 129 122 117	54 51 48 45 42 41 39 38	154 134 120 109 100 93 88 84	** ** 182 160 146 136	83 73 64 58 53 49 46 44	** ** 165 134 118 107 100	** ** ** ** ** 192 168
Oct.	13 21 29 7 15 23 31 8	30 29 29 29 30 30 31 31	65 64 63 63 64 64 65 66	101 99 98 97 98 98 98 99	33 32 32 32 33 33 34 35	72 71 70 70 70 71 72 74	113 110 108 107 107 108 109 111	37 36 36 36 37 37 38 40	81 79 78 78 78 78 80 81 84	130 125 122 121 121 121 123 126	43 42 41 42 42 43 45 47	95 92 90 90 90 92 94 98	155 147 142 139 139 140 142 146
Dec.	16 24 2 10 18 26 34	32 33 33 34 34 34 34	68 69 70 71 71 71 71	102 104 105 106 107 107 106	36 37 38 38 39 38 38	75 77 78 80 80 80 79	113 116 117 119 120 119 119	41 43 44 45 46 46 45	86 88 91 92 93 93	129 132 135 137 138 138 138	50 52 55 57 58 58 56	102 106 110 113 115 114 112	151 156 161 164 166 166 163

SUNRISE, SUNSET AND TWILIGHT, 2020 CORRECTION FOR SOUTHERN LATITUDES

For	Use	Add	For	Use	Add	For	Use	Add	For	Use	Add	For	Use	Add
July 1 July 2 3 4	Dec. 31 Jan. 0 1 2	m +1 +1 0 0	Aug. 7 8 9 10 11	Feb. 3 4 5 6 7	m -8 8 9 9	Sept. 12 13 14 15 16	Mar. 10 11 12 13 14	m -14 14 14 14	Oct. 19 20 21 22 23	Apr. 16 17 18 19 20	m -15 15 15 15 15	Nov. 26 27 28 29 30	May 25 26 27 28 29	m -10 9 9 9
5 6 7 8 9 10	3 4 5 6 7 8	0 -1 1 1 1 2	12 13 14 15 16 17	8 9 10 11 12 13	9 10 10 10	17 18 19 20 21 22	15 16 17 18 19 20	15 15 15 15 15 15	24 25 26 27 28 29	21 22 23 24 25 26	14 14 14 14 14	Dec. 1 2 Dec. 3 4	May 30 31 June 1 2	8 8 8
11 12 13 14 15 16	9 10 11 12 13 14	2 2 2 3 3 3	18 19 20 21 22 23	14 15 16 17 18 19	10 11 11 11 11 11	23 24 25 26 27 28	21 22 23 24 25 26	15 15 15 15 15 15	30 31 Nov. 1 2 Nov.	27 28 Apr. 29 30 May	14 14 14 14	5 6 7 8 9 10	3 5 6 7 8 9	7 7 7 7 6 6
17 18 19 20 21 22	15 16 16 17 18 19	3 4 4 4 4	24 25 26 27 28 29	19 20 21 22 23 24	12 12 12 12 12 12	29 30 Oct. 1 2 3	26 27 Mar. 28 29 30	15 15 15 15 15	3 4 5 6 7 8	1 2 3 4 5 6	13 13 13 13 13 13	11 12 13 14 15 16	10 11 12 13 14 15	6 6 5 5 5 5
23 24 25 26 27 28	20 21 22 23 24 25	5 5 6 6 6	30 31 Sept. 1 2	25 26 Feb. 27 28	13 13 13 13	4 Oct. 5 6 7 8	31 Apr. 1 2 3 4	15 16 16 16 15	9 10 11 12 13 14	7 8 9 10 11 12	13 12 12 12 12 12	17 18 19 20 21 22	16 17 18 19 21 22	4 4 4 4 3 3
29 30 31 Aug. 1 2	26 27 28 Jan. 29 30	6 7 7 7 7	Sept. 3 4 5 6 7	Mar. 1 2 3 4 5	13 13 13 14 14	9 10 11 12 13 14	5 6 7 9 10 11	15 15 15 15 15 15	15 16 17 18 19 20	13 14 15 17 18 19	12 12 11 11 11 11	23 24 25 26 27 28	23 24 25 26 27 28	3 3 2 2 2 2 2
3 4 Aug. 5 6	30 31 Feb. 1 2	7 8 8 -8	8 9 10 11 12	6 7 8 9 10	14 14 14 14 -14	15 16 17 18 19	12 13 14 15 16	15 15 15 15 -15	21 22 23 24 25	20 21 22 23 24	11 10 10 10 -10	29 30 Dec. 31 32	29 30 July 1 2	1 1 -1 0

To obtain the times of sunrise, sunset and twilight for southern latitudes for any date, use the tables for the same northern latitude for the corresponding date given above, and apply to the times so obtained the correction given in the column headed 'Add'.

In the case of duration of twilight, however, take only the figures for the corresponding date without correction.

SUNRISE, SUNSET AND TWILIGHT, 2020 CORRECTION FOR SOUTHERN LATITUDES

_															
_	For	Use	Add	For	Use	Add	For	Use	Add	For	Use	Add	For	Use	Add
	Jan. 0 1 2	July 1 3 4	m 0 0	Feb. 5 6 7 8	Aug. 9 10 11 12	m +9 9 9	Mar. 13 14 15 16	Sept. 15 16 17 18	m +14 14 14 15	Apr. 19 20 21 22	Oct. 22 23 24 25	m +15 15 14 14	May 25 26 27 28	Nov. 26 27 28 29	m +10 9 9
	3 4 5 6 7	5 6 7 8 9	$0 \\ +1 \\ 1 \\ 1 \\ 1 \\ 1$	9 10 11 12 13	13 14 15 16 17	9 10 10 10	17 18 19 20 21	19 20 21 22 23	15 15 15 15 15	23 24 25 26 27	26 27 28 29 30	14 14 14 14 14	29 May 30 31 June	30 Dec. 1 2 Dec.	9 8 8
	8 9 10 11 12	10 11 12 13 14	2 2 2 2 3	14 15 16 17 18	18 19 20 21 22	10 11 11 11 11	22 23 24 25 26	24 25 26 27 29	15 15 15 15 15	28 Apr. 29 30 May	31 Nov. 1 2 Nov.	14 14 14	1 2 3 4 5	3 4 5 5 6	8 8 7 7 7
	13 14 15 16 17	15 16 17 18 19	3 3 4 4	19 20 21 22 23	23 25 26 27 28	11 12 12 12 12	27 Mar. 28 29 30	30 Oct. 1 2 3	15 15 15 15	1 2 3 4 5	3 4 5 6 7	13 13 13 13 13	6 7 8 9 10	7 8 9 10 11	7 7 6 6 6
	18 19 20 21 22	21 22 23 24 25	4 5 5 5 5	24 25 26 Feb.	29 30 31 Sept.	12 13 13	31 Apr. 1 2 3	4 Oct. 5 6 7	16 16 16	6 7 8 9 10	8 9 10 11 12	13 13 12 12 12	11 12 13 14 15	12 13 14 15 16	6 5 5 5 5
	23 24 25 26 27	26 27 28 29 30	6 6 6 7	27 28 Mar. 1 2	1 2 Sept. 3 4	13 13 13	4 5 6 7 8	7 8 9 10 11	15 15 15 15 15	11 12 13 14 15	13 14 15 16 16	12 12 12 12 12	16 17 18 19 20	17 18 19 20 21	4 4 4 4 3
	28 Jan. 29 30 31	31 Aug. 1 2 3	7 7 7 7	3 4 5 6 7	5 6 7 8 9	13 14 14 14 14	9 10 11 12 13	12 13 14 15 16	15 15 15 15 15	16 17 18 19 20	17 18 19 20 21	11 11 11 11 11	21 22 23 24 25	21 22 23 24 25	3 3 3 2
	Feb. 1 2 3 4	Aug. 5 6 7 8	8 8 8 +9	8 9 10 11 12	10 11 12 13 14	14 14 14 14 +14	14 15 16 17 18	17 18 19 20 21	15 15 15 15 +15	21 22 23 24 25	22 23 24 25 26	10 10 10 10 +10	26 27 28 29 30	26 27 28 29 30	2 2 1 1 +1

To obtain the times of sunrise, sunset and twilight for southern latitudes for any date, use the tables for the same northern latitude for the corresponding date given above, and apply to the times so obtained the correction given in the column headed 'Add'.

In the case of duration of twilight, however, take only the figures for the corresponding date without correction.

SUNRISE AND SUNSET, 2020 INDIAN STANDARD TIME OF SUNRISE AND SUNSET (SUN'S UPPER LIMB) FOR CERTAIN STATIONS IN INDIA

Da	te		Kol 22° l	kata N 32	,		Vara 25°				Chei		,		De: 28° N		,		Mur 18° N		
		R	lise	S	et	R	lise	S	Set	R	Rise	S	et	R	ise	S	Set	R	ise	S	et
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Jan.	1 3 5 7 9 11	6 6 6 6 6	16.5 17.1 17.7 18.1 18.5 18.7	17 17 17 17	03.2 04.5 05.8 07.2 08.5 09.9	6 6 6	43.5 44.1 44.5 44.9 45.2 45.4	17 17 17 17	18.9 20.3 21.7 23.1 24.6 26.0	6 6 6	31.1 32.0 32.7 33.3 33.9 34.4	17 17 17 17	53.4 54.8 56.0 57.1 58.2 59.3	7 7 7 7 7	14.2 14.7 15.1 15.4 15.6 15.6	17 17 17 17	35.0 36.6 38.1 39.6 41.1 42.7	7 7 7 7	12.0 12.6 13.2 13.7 14.2 14.5	18 18 18 18	11.9 13.3 14.5 15.8 17.0 18.3
	13 15 17 19 21 23	6 6 6 6 6	18.9 19.0 19.0 18.9 18.7 18.4	17 17 17 17	11.3 12.8 14.2 15.6 17.0 18.4	6 6 6	45.5 45.4 45.4 45.1 44.8 44.4	17 17 17 17	27.5 29.0 30.5 32.1 33.6 35.1	6 6 6 6 6	34.9 35.3 35.6 35.8 36.0 36.1	18 18 18 18	00.4 01.5 02.5 03.6 04.6 05.6	7 7 7 7	15.6 15.5 15.2 14.9 14.4 13.9	17 17 17 17	44.3 45.9 47.5 49.1 50.8 52.4	7 7 7 7	14.8 15.0 15.1 15.2 15.1 15.0	18 18 18 18	19.6 20.9 22.1 23.4 24.7 25.9
Feb.	25 27 29 31 2	6 6 6 6	18.0 17.6 17.0 16.4 15.7	17 17 17	19.8 21.2 22.5 23.9 25.2	6 6 6	43.9 43.3 42.6 41.8 40.9	17 17 17	36.6 38.1 39.6 41.1 42.5	6 6 6 6	36.1 36.1 35.9 35.7 35.5	18 18 18	06.5 07.5 08.4 09.2 10.1	7 7 7 7	13.2 12.4 11.5 10.6 09.5	17 17 17	54.1 55.7 57.4 59.0 00.6	7 7 7	14.8 14.5 14.1 13.6 13.0	18 18 18	27.1 28.3 29.5 30.7 31.8
	4 6 8 10 12 14 16	6 6 6 6 6 6	14.8 14.0 13.0 12.0 10.8 09.7 08.4	17 17 17 17 17	26.5 27.7 29.0 30.2 31.3 32.5 33.6	6 6 6 6	40.0 38.9 37.8 36.6 35.3 33.9 32.5	17 17 17 17 17	43.9 45.3 46.7 48.0 49.3 50.6 51.9	6 6 6 6	35.1 34.7 34.2 33.7 33.1 32.4 31.7	18 18 18 18	10.9 11.6 12.3 13.0 13.6 14.2 14.8	7 7 7 7 7	08.3 07.1 05.7 04.3 02.8 01.2 00.0	18 18 18 18	02.2 03.7 05.3 06.8 08.3 09.8 11.3	7 7 7 7 7	12.4 11.7 10.9 10.0 09.1 08.1 07.1	18 18 18 18	32.9 33.9 35.0 36.0 36.9 37.9 38.8
	18 20 22 24 26 28	6 6 6 6 6	07.1 05.7 04.3 02.8 01.3 00.0	17 17 17 17	34.6 35.7 36.7 37.7 38.6 39.5	6 6 6	31.0 29.4 27.8 26.1 24.4 22.6	17 17 17 17	53.1 54.3 55.4 56.6 57.7 58.8	6 6 6	30.9 30.0 29.1 28.2 27.2 26.1	18 18 18 18	15.3 15.8 16.3 16.7 17.1 17.4	6 6 6 6 6	57.8 56.0 54.2 52.2 50.3 48.2	18 18 18 18	12.7 14.1 15.5 16.9 18.2 19.5	7 7 7 7	05.9 04.7 03.5 02.2 00.8 59.4	18 18 18 18	39.6 40.4 41.2 42.0 42.7 43.5
Mar.	1 3 5 7 9 11	5 5 5 5 5 5	58.1 56.5 54.8 53.0 51.3 49.5	17 17 17 17	40.4 41.3 42.1 42.9 43.7 44.5	6 6 6 6	20.8 18.9 17.0 15.1 13.1 11.1	18 18 18 18	00.0 00.9 01.9 02.8 03.8 04.8	6 6 6	25.1 23.9 22.8 21.6 20.4 19.2	18 18 18 18	17.8 18.1 18.3 18.6 18.8 19.0	6 6 6	46.2 44.1 41.9 39.7 37.5 35.3	18 18 18 18	20.8 22.1 23.4 24.6 25.8 27.0	6 6 6	58.0 56.5 55.0 53.4 51.9 50.3	18 18 18 18	44.1 44.8 45.4 46.0 46.6 47.2
	13 15 17 19 21 23	5 5 5 5 5 5	47.7 45.8 43.9 42.1 40.2 38.3	17 17 17 17	45.3 46.0 46.8 47.5 48.2 48.9	6 6 6 6	09.1 07.1 05.1 03.0 01.0 59.0	18 18 18 18	05.7 06.6 07.5 08.4 09.3 10.2	6 6 6	12.7	18 18 18 18	19.5 19.7	6 6 6	33.0 30.7 28.4 26.1 23.8 21.5	18 18 18 18	28.2 29.3 30.5 31.6 32.8 33.9	6 6 6	48.6 47.0 45.3 43.6 41.9 40.2	18 18 18 18	47.7 48.2 48.7 49.2 49.7 50.2
Apr.	25 27 29 31 2	5 5 5 5 5	36.4 34.5 32.5 30.6 28.8	17 17 17	49.6 50.3 51.0 51.7 52.4	5 5 5	56.9 54.8 52.8 50.7 48.7	18 18 18	11.1 12.0 12.8 13.7 14.6	6 6 6	10.1 08.8 07.5 06.2 04.9	18 18 18	20.0 20.2 20.3 20.4 20.5	6 6 6	19.2 16.9 14.6 12.3 10.0	18 18 18	35.0 36.1 37.3 38.4 39.5	6 6	38.6 36.9 35.2 33.5 31.8	18 18 18	50.7 51.2 51.7 52.1 52.6

SUNRISE AND SUNSET, 2020 INDIAN STANDARD TIME OF SUNRISE AND SUNSET (SUN'S UPPER LIMB) FOR CERTAIN STATIONS IN INDIA

Dat	te.		Kol 22° N				Vara 25° N				Chei				De: 28° N		,		Mur 18° N		
Du		F	Rise		et	R	ise		Set	R	lise		et	R	ise		Set	R	ise		et
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Apr.	2 4 6 8 10 12	5 5 5 5 5 5	28.8 26.9 25.0 23.2 21.4 19.6	17 17 17 17 17	52.4 53.1 53.8 54.5 55.2 55.9	5 5 5 5 5	48.7 46.7 44.7 42.7 40.7 38.7	18 18 18 18 18	14.6 15.5 16.3 17.2 18.1 19.0	6 6 6 6 6 5		18 18 18 18 18	20.5 20.7 20.8 21.0 21.1 21.3	6 6 6 6 6 5	10.0 07.8 05.6 03.4 01.2 59.1	18 18 18 18 18	39.5 40.6 41.7 42.8 44.0 45.1	6 6 6 6	31.8 30.2 28.5 26.9 25.3 23.8	18 18 18 18 18	52.6 53.1 53.6 54.1 54.6 55.1
	14 16 18 20 22 24	5 5 5 5 5	17.8 16.1 14.4 12.7 11.1 09.6	17 17 17 18	56.6 57.4 58.1 58.9 00.0 00.4	5 5 5 5 5 5	36.8 34.9 33.1 31.3 29.5 27.8	18 18 18 18	19.9 20.9 21.8 22.7 23.7 24.7	5 5 5 5 5 5	57.5 56.4 55.2 54.2 53.1 52.1	18 18 18 18	21.5 21.7 21.9 22.2 22.5 22.7	5 5 5 5 5 5	57.0 54.9 52.9 50.9 49.0 47.1	18 18 18 18	46.3 47.4 48.6 49.7 50.9 52.1	6 6 6	22.3 20.8 19.3 17.9 16.5 15.2	18 18 18 18	55.7 56.2 56.8 57.3 57.9 58.5
May	26 28 30 2 4 6	5 5 5 5 5 5	08.1 06.6 05.2 03.8 02.6 01.3	18 18 18 18	01.2 02.1 02.9 03.7 04.6 05.5	5 5 5 5	26.2 24.5 23.0 21.5 20.1 18.7	18 18 18 18	25.6 26.6 27.6 28.6 29.7 30.7	5 5 5 5 5 5	51.1 50.2 49.3 48.5 47.7 47.0	18 18 18 18	23.1 23.4 23.7 24.1 24.5 24.9	5 5 5 5 5 5	45.2 43.5 41.7 40.1 38.4 36.9	18 18 18 18	53.3 54.5 55.7 56.9 58.2 59.4	6 6 6	13.9 12.7 11.5 10.4 09.3 08.3	19 19 19 19	59.2 00.0 00.5 01.1 01.8 02.5
	8 10 12 14 16 18	5 4 4 4 4 4	00.2 59.1 58.1 57.1 56.3 55.4	18 18 18 18	06.3 07.2 08.1 09.0 09.9 10.8	5 5 5 5 5 5	17.4 16.2 15.0 13.9 12.9 12.0	18 18 18 18	31.7 32.8 33.8 34.9 35.9 37.0	5 5 5 5 5 5	46.3 45.6 45.1 44.5 44.1 43.7	18 18 18 18	25.4 25.9 26.3 26.9 27.4 27.9	5 5 5 5 5 5	35.4 34.1 32.7 31.5 30.3 29.3	19 19 19 19	00.6 01.8 03.1 04.3 05.5 06.7	6 6 6	07.3 06.5 05.6 04.9 04.2 03.5	19 19 19 19	03.3 04.0 04.8 05.5 06.3 07.1
	20 22 24 26 28 30	4 4 4 4 4 4	54.7 54.1 53.5 53.0 52.6 52.2	18 18 18 18	11.8 12.7 13.6 14.5 15.3 16.2	5 5	11.2 10.4 09.7 09.1 08.6 08.2	18 18 18 18	38.0 39.1 40.1 41.1 42.1 43.0	5 5 5 5 5 5	43.3 43.0 42.8 42.6 42.5 42.4	18 18 18 18	28.5 29.1 29.6 30.2 30.8 31.5	5 5 5 5 5 5	28.3 27.4 26.6 25.9 25.2 24.7	19 19 19 19	07.9 09.1 10.2 11.4 12.5 13.5	6 6 6	03.0 02.5 02.1 01.7 01.4 01.2	19 19 19 19	07.9 08.6 09.4 10.2 11.0 11.8
June	1 3 5 7 9 11	4 4 4 4 4	52.0 51.8 51.7 51.6 51.6 51.7	18 18 18 18	17.0 17.9 18.6 19.4 20.1 20.8	5 5 5 5	07.8 07.6 07.4 07.3 07.3 07.3	18 18 18 18	44.0 44.9 45.7 46.6 47.3 48.1	5 5 5 5 5 5	42.4 42.4 42.5 42.7 42.8 43.1	18 18 18 18	32.1 32.7 33.3 33.9 34.4 35.0	5 5 5 5 5 5	24.2 23.9 23.6 23.4 23.4 23.4	19 19 19 19	14.6 15.6 16.5 17.4 18.3 19.1	6 6 6	01.0 00.9 00.9 00.9 01.0 01.2	19 19 19 19	12.5 13.3 14.0 14.7 15.4 16.0
	13 15 17 19 21 23	4 4 4 4 4 4	51.9 52.1 52.4 52.8 53.2 53.7	18 18 18 18	21.5 22.1 22.6 23.1 23.6 24.0	5 5 5 5	07.5 07.7 07.9 08.3 08.7 09.2	18 18 18 18	48.8 49.4 50.0 50.5 51.0 51.3	5	43.3 43.7 44.0 44.4 44.8 45.3	18 18 18 18	35.6 36.1 36.6 37.1 37.5 37.9		23.6 23.9 24.2	19 19 19 19	21.1	6 6 6	01.4 01.6 01.9 02.3 02.7 03.2	19 19 19 19	16.6 17.2 17.7 18.2 18.7 19.1
July	25 27 29 1 3	4 4 4 4 4	54.2 54.8 55.4 56.0 56.7	18 18 18	24.3 24.5 24.7 24.9 24.9	5 5 5	09.7 10.3 10.9 11.6 12.3	18 18 18	51.7 51.9 52.1 52.1 52.1	5 5 5 5 5	45.7 46.2 46.7 47.3 47.8	18 18 18	38.3 38.6 38.9 39.1 39.3		25.6 26.2 26.9 27.6 28.4	19 19 19	23.1	6 6 6	03.7 04.2 04.7 05.3 06.0	19 19 19	19.4 19.7 19.9 20.1 20.2

SUNRISE AND SUNSET, 2020 INDIAN STANDARD TIME OF SUNRISE AND SUNSET (SUN'S UPPER LIMB) FOR CERTAIN STATIONS IN INDIA

Dat	te		Kol 22° N				Vara				Chei				De 28° N		,		Mur 18° N		
		R	Rise	S	et	R	ise	S	Set	R	lise	S	Set	R	lise	S	Set	R	ise	S	et
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
July	1 3 5 7 9 11	4 4 4 4 4 5	56.0 56.7 57.4 58.2 59.0 00.0	18 18 18 18	24.9 24.9 24.9 24.8 24.6 24.4	5 5 5 5	11.6 12.3 13.1 13.9 14.8 15.6	18 18 18 18	52.1 52.1 52.1 51.9 51.6 51.3	5 5 5 5 5 5	47.3 47.8 48.4 48.9 49.5 50.0	18 18 18 18	39.1 39.3 39.5 39.6 39.6 39.6	5 5 5 5 5 5	27.6 28.4 29.3 30.1 31.1 32.0	19 19 19 19	23.1 23.0 22.9 22.6 22.3 21.9	6 6 6	05.3 06.0 06.6 07.3 07.9 08.6	19 19 19 19	20.1 20.2 20.3 20.2 20.1 20.0
	13 15 17 19 21 23	5 5 5 5 5 5	00.6 01.4 02.3 03.1 04.0 04.8	18 18 18 18	24.0 23.6 23.1 22.6 21.9 21.2	5 5 5	16.5 17.5 18.4 19.3 20.3 21.3	18 18 18 18	50.9 50.4 49.8 49.1 48.4 47.5	5 5 5 5 5 5	50.6 51.1 51.7 52.2 52.7 53.2	18 18 18 18	39.5 39.4 39.2 38.9 38.6 38.2	5 5 5 5 5 5	33.0 34.0 35.1 36.1 37.2 38.3	19 19 19 19	21.3 20.7 20.0 19.2 18.3 17.3	6 6 6	09.3 10.0 10.7 11.5 12.2 12.9	19 19 19 19	19.7 19.4 19.1 18.6 18.1 17.5
Aug.	25 27 29 31 2 4	5 5 5 5 5 5	05.7 06.5 07.4 08.2 09.1 09.9	18 18 18 18	20.4 19.5 18.6 17.6 16.5 15.3	5 5 5 5	22.2 23.2 24.2 25.1 26.1 27.1	18 18 18 18	46.6 45.6 44.5 43.3 42.1 40.8	5 5 5 5 5 5	53.7 54.1 54.6 55.0 55.4 55.8	18 18 18 18	37.8 37.3 36.7 36.1 35.4 34.7	5 5 5 5 5 5	39.4 40.5 41.7 42.8 43.9 45.0	19 19 19 19	16.2 15.1 13.8 12.5 11.1 09.6	6 6 6	13.6 14.3 14.9 15.6 16.2 16.9	19 19 19 19	16.8 16.1 15.3 14.4 13.5 12.5
	6 8 10 12 14 16	5 5 5 5 5 5	10.7 11.5 12.3 13.0 13.8 14.5	18 18 18 18	14.1 12.8 11.5 10.1 08.6 07.1	5	28.0 28.9 29.9 30.8 31.7 32.6	18 18 18 18	39.4 37.9 36.4 34.8 33.2 31.5	5 5 5 5 5 5	56.1 56.4 56.7 57.0 57.3 57.5	18 18 18 18	33.9 33.1 32.2 31.3 30.3 29.2	5 5 5 5 5 5	46.1 47.2 48.3 49.4 50.5 51.6	19 19 19 19	08.0 06.4 04.6 02.9 01.0 59.1	6 6 6	17.5 18.1 18.7 19.2 19.8 20.3	19 19 19 19	11.4 10.3 09.1 07.9 06.6 05.2
	18 20 22 24 26 28	5 5 5 5 5 5	15.2 15.9 16.6 17.3 17.9 18.6	18 18 18 17	05.5 03.9 02.3 00.6 58.9 57.1	5 5 5	33.4 34.3 35.1 35.9 36.8 37.6	18 18 18 18	29.8 28.0 26.1 24.2 22.3 20.3	5 5 5 5 5 5	57.7 57.8 58.0 58.1 58.2 58.3	18 18 18 18	28.1 27.0 25.9 24.7 23.4 22.2	5 5 5 5 5 5	52.6 53.7 54.7 55.7 56.7 57.7	18 18 18 18	57.1 55.1 53.0 50.9 48.7 46.5	6 6 6	20.8 21.3 21.8 22.2 22.7 23.1	19 19 18 18	03.8 02.4 00.9 59.4 57.8 56.2
Sept.	30 1 3 5 7 9	5 5 5 5 5 5	19.2 19.8 20.4 21.0 21.6 22.2	17 17 17 17	55.3 53.5 51.6 49.7 47.8 45.8	5 5 5 5	38.3 39.1 39.9 40.7 41.4 42.2	18 18 18 18	18.3 16.3 14.2 12.2 10.1 08.0	5 5 5 5 5 5	58.4 58.5 58.5 58.6 58.6 58.6	18 18 18 18	20.9 19.6 18.2 16.9 15.5 14.1	5 6 6 6 6	58.7 00.0 00.6 01.6 02.6 03.5	18 18 18 18	44.3 42.0 39.7 37.4 35.0 32.7	6 6 6	23.5 23.9 24.3 24.6 25.0 25.3	18 18 18 18	54.5 52.9 51.2 49.5 47.7 46.0
	11 13 15 17 19 21	5 5 5 5 5 5	22.7 23.3 23.9 24.5 25.0 25.6	17 17 17 17	43.9 41.9 39.9 37.9 35.9 33.9	5 5 5 5	42.9 43.6 44.4 45.1 45.9 46.6	18 18 17 17	05.8 03.7 01.6 59.4 57.3 55.2	5 5 5	58.6	18 18 18 18	12.7 11.3 09.9 08.5 07.1 05.7	6 6 6	04.5 05.4 06.4 07.3 08.3 09.3	18 18 18 18	30.3 27.9 25.5 23.1 20.7 18.3	6 6 6	25.7 26.0 26.4 26.7 27.1 27.4	18 18 18 18	44.2 42.4 40.6 38.8 37.0 35.3
Oct.	23 25 27 29 1	5 5 5 5 5	26.2 26.8 27.4 28.0 28.7	17 17 17	31.9 29.9 28.0 26.0 24.0	5 5 5	47.4 48.2 48.9 49.7 50.5	17 17 17	53.0 50.9 48.8 46.7 44.6	5 5 5 5 5	58.6 58.7 58.7 58.7 58.8	18 18 18	04.3 02.9 01.5 00.1 58.8	6 6 6	10.2 11.2 12.2 13.3 14.3	18 18 18	15.9 13.5 11.2 08.9 06.6	6 6 6	27.8 28.2 28.6 29.0 29.4	18 18 18	33.5 31.7 30.0 28.2 26.5

SUNRISE AND SUNSET, 2020 INDIAN STANDARD TIME OF SUNRISE AND SUNSET (SUN'S UPPER LIMB) FOR CERTAIN STATIONS IN INDIA

Dat	te.		Kol 22° N				Vara				Chei 13° N				De 28° N		,		Mur 18° N		
Du		R	Rise		et	R	ise		Set	R	ise		Set	R	ise		Set	R	ise		et
-		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Oct.	1 3 5 7 9 11	5 5 5 5 5 5	28.7 29.2 29.8 30.5 31.2 32.0	17 17 17 17 17	24.0 22.6 20.7 18.8 17.0 15.2	5 5 5 5 5	50.5 51.2 52.0 52.8 53.7 54.6	17 17 17 17 17	44.6 43.0 40.9 38.9 36.9 34.9	5 5 5 5 5 5 5	58.8 58.6 58.7 58.8 59.0 59.1	17 17 17 17 17	58.8 57.6 56.3 55.0 53.7 52.5	6 6 6 6	14.3 15.0 16.1 17.2 18.3 19.4	18 18 18 18 17	06.6 04.8 02.5 00.3 58.1 55.9	6 6 6 6	29.4 29.6 30.1 30.5 31.0 31.6	18 18 18 18 18	26.5 25.2 23.5 21.9 20.2 18.7
	13 15 17 19 21 23	5 5 5 5 5 5	32.7 33.5 34.3 35.2 36.0 36.9	17 17 17 17	13.4 11.7 10.0 08.3 06.7 05.2	5 5 5 5	55.5 56.5 57.5 58.5 59.5 00.5	17 17 17 17	33.0 31.1 29.2 27.4 25.7 24.0	5 5 6 6 6	59.3 59.6 59.8 00.1 00.4 00.8	17 17 17 17	51.3 50.2 49.1 48.0 47.0 46.0	6 6 6 6 6	20.6 21.8 23.0 24.2 25.5 26.8	17 17 17 17	53.8 51.7 49.7 47.7 45.8 43.9	6 6 6 6	32.1 32.7 33.3 33.9 34.6 35.3	18 18 18 18	17.1 15.7 14.2 12.8 11.5 10.2
Nov.	25 27 29 31 2 4	5 5 5 5 5 5	37.9 38.8 39.8 40.9 41.9 43.0	17 17 16 16	03.8 02.4 01.0 59.8 58.6 57.5	6 6 6	01.6 02.7 03.9 05.1 06.3 07.5	17 17 17 17	22.4 20.8 19.3 17.9 16.6 15.3	6 6 6	01.2 01.6 02.1 02.6 03.2 03.7	17 17 17 17	45.1 44.3 43.5 42.8 42.1 41.5	6 6 6 6 6	28.1 29.4 30.8 32.2 33.7 35.1	17 17 17 17	42.1 40.3 38.6 37.0 35.5 34.0	6 6 6	36.0 36.8 37.6 38.4 39.3 40.2	18 18 18 18	09.0 07.8 06.7 05.7 04.7 03.8
	6 8 10 12 14 16	5 5 5 5 5 5	44.1 45.3 46.5 47.7 48.9 50.2	16 16 16 16	56.4 55.5 54.6 53.8 53.1 52.5	6 6 6	08.8 10.1 11.4 12.8 14.1 15.5	17 17 17 17	14.1 13.0 12.0 11.0 10.2 09.5	6 6 6 6 6	04.4 05.1 05.8 06.5 07.3 08.2	17 17 17	40.9 40.5 40.1 39.8 39.5 39.3	6 6 6 6 6	36.6 38.2 39.7 41.3 42.8 44.4	17 17 17 17	32.6 31.3 30.1 29.0 28.0 27.1	6 6 6	41.1 42.1 43.2 44.2 45.3 46.4	18 18 18 18	03.0 02.3 01.6 01.0 00.5 00.1
	18 20 22 24 26 28	5 5 5 5 5 5	51.4 52.7 54.0 55.4 56.7 58.0	16 16 16 16	52.0 51.6 51.3 51.1 50.9 50.9	6 6 6	16.9 18.4 19.8 21.2 22.7 24.1	17 17 17 17	08.8 08.3 07.9 07.5 07.3	6 6 6 6 6	09.0 09.9 10.9 11.9 12.9 13.9	17 17 17 17	39.2 39.2 39.3 39.4 39.6 39.9	6	46.0 47.6 49.3 50.9 52.5 54.1	17 17 17 17	26.3 25.6 25.0 24.6 24.2 23.9	6 6 6	47.5 48.7 49.9 51.1 52.3 53.6	17 17 17	59.5 59.3 59.3
Dec.	30 2 4 6 8 10	5 6 6 6 6	59.3 00.6 01.9 03.2 04.5 05.8	16 16 16 16	51.0 51.1 51.4 51.7 52.1 52.7	6 6 6 6	25.6 27.0 28.4 29.8 31.2 32.5	17 17 17 17	07.1 07.2 07.4 07.6 08.0 08.5	6 6 6 6 6	14.9 16.0 17.1 18.1 19.2 20.3	17 17 17 17	40.2 40.6 41.1 41.7 42.3 43.0	6 6 7 7 7	55.7 57.2 58.8 00.3 01.7 03.1	17 17 17 17	23.8 23.7 23.8 24.0 24.3 24.7	6 6 6	54.8 56.1 57.3 58.6 59.8 01.0	17 18 18 18	59.5 59.8 00.1 00.5 01.0 01.6
	12 14 16 18 20 22	6 6 6	07.0 08.2 09.3 10.4 11.5 12.5	16 16 16 16	53.3 54.0 54.7 55.6 56.5 57.5	6 6 6	33.8 35.1 36.3 37.4 38.5 39.6	17 17 17 17	09.0 09.7 10.4 11.3 12.2 13.2	6 6 6	21.4 22.5 23.6 24.6 25.7 26.7	17 17 17 17	45.4	7 7 7 7		17 17 17 17	25.2 25.8 26.5 27.3 28.2 29.2	7 7 7 7	02.2 03.4 04.5 05.7 06.7 07.8	18 18 18 18	02.3 03.0 03.8 04.6 05.5 06.5
	24 26 28 30 32	6 6 6	13.5 14.4 15.2 15.9 16.6	16 17 17	58.6 59.7 00.9 02.1 03.3	6 6 6		17 17 17	14.2 15.4 16.5 17.8 19.1	6 6 6	27.7 28.6 29.5 30.4 31.2	17 17 17	52.4	7	11.4 12.3 13.0 13.7 14.3	17 17 17	33.9	7 7 7	08.7 09.7 10.5 11.3 12.1	18 18 18	07.5 08.6 09.7 10.9 12.0

MOONRISE, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONRISE (MOON'S UPPER LIMB)

FC	R TI	НЕ СЕ	ENTR	AL M	IERII	DIAN	OF I	NDIA	. (82	°.5 E)	IN L	. М. Т	۲.		FO	R CEI IN II		N STA		NS	—
Date	Lat.	0)	10)°	20)°	30)°	40	o	50	o	Kolk	cata	Cher		Del		Mun	ıbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Jan.	0 1 2 3 4 5 6 7 8	10 10 11 12 12 13 14 15 15	03 46 27 08 49 31 17 05 57 53	10 10 11 12 12 13 14 14 15 16	13 52 30 07 45 24 06 51 41 36	10 10 11 12 12 13 13 14 15 16	23 59 33 07 41 17 55 37 24 17	10 11 11 12 12 13 13 14 15 15	35 07 37 07 37 08 42 21 05 55	10 11 11 12 12 12 13 14 14 15	50 17 42 07 31 58 27 00 40 28	11 11 12 12 12 13 13 14 14	09 30 49 06 24 43 06 32 06 49	10 10 11 11 12 12 13 14 14 15	02 37 11 43 16 51 28 09 55 47	10 11 11 12 12 13 14 14 15 16	25 04 41 17 53 32 12 57 46 40	10 11 11 12 12 13 14 14 15 16	55 28 59 29 59 31 06 45 30 21	11 11 12 12 13 13 14 15 16	02 38 13 47 21 57 36 18 06 59
	10 11 12 13 14 15 16 17 18 19	17 18 19 20 21 22 23 ** 0	52 52 51 48 42 33 24 ** 13 03	17 18 19 20 21 22 23 ** 0	34 35 36 36 34 30 25 ** 19	17 18 19 20 21 22 23 ** 0	15 17 20 24 26 27 26 ** 24 22	16 17 19 20 21 22 23 ** 0	53 56 02 10 17 23 27 ** 30 33	16 17 18 19 21 22 23 ** 0	25 29 40 53 06 18 29 ** 38 47	15 16 18 19 20 22 23 ** 0 2	45 52 08 29 50 11 31 ** 49 07	16 17 18 19 21 22 23 ** 0 1	45 47 52 56 00 01 02 ** 01 01	17 18 19 20 21 22 23 ** 0 1	38 39 41 42 42 39 35 ** 30 25	17 18 19 20 21 22 23 ** 0	18 21 28 35 41 46 49 ** 52 54	17 18 20 21 22 23 ** 0 1 2	57 59 02 05 07 07 ** 06 04 01
	20 21 22 23 24 25 26 27 28 29	1 2 3 4 5 6 7 7 8 9	55 48 42 36 30 21 10 57 41 22	2 3 3 4 5 6 7 8 8	07 03 59 54 47 37 24 08 48 27	2 3 4 5 6 6 7 8 8	21 19 17 13 06 55 39 20 57 32	2 3 4 5 6 7 7 8 9	36 38 39 36 28 15 56 33 06 37	2 4 5 6 6 7 8 8 9	56 02 06 04 55 39 17 50 18 44	3 4 5 6 7 8 8 9 9	23 36 44 44 34 14 46 12 34 53	2 3 3 4 5 6 7 7 8 9	00 00 58 54 47 35 19 59 35 09	2 3 4 5 6 6 7 8 9	21 17 14 09 02 52 38 21 00 38	2 3 4 5 6 7 8 8 9	56 58 58 54 47 34 16 53 27 59	3 3 4 5 6 7 8 8 9	00 58 56 51 44 33 17 58 36
Feb.	30 31 1 2 3 4 5 6 7 8	10 10 11 12 12 13 14 15 16 17	03 44 25 08 54 44 37 34 33 33	10 10 11 11 12 13 14 15 16 17	04 42 20 59 42 29 20 16 15 17	10 10 11 11 12 13 14 14 15 17	06 39 13 50 29 13 02 56 56 00	10 10 11 11 12 12 13 14 15 16	07 36 06 39 14 54 41 34 34 40	10 10 10 11 11 12 13 14 15 16	09 33 58 25 56 32 15 06 07 15	10 10 10 11 11 12 12 13 14 15	11 28 47 07 31 00 38 26 27 40	9 10 10 11 12 12 13 14 15 16	42 15 48 23 01 44 32 27 27 31	10 10 11 12 12 13 14 15 16 17	14 50 27 06 48 34 24 20 19 22	10 10 11 12 12 13 14 15 16 17	29 59 30 02 39 19 06 00 00 06	10 11 11 12 13 13 14 15 16 17	45 19 53 30 10 54 43 38 38 42
	9 10 11 12 13 14 15	18 19 20 21 22 23 23	32 29 24 17 08 00 52	18 19 20 21 22 23 **	19 20 19 16 12 08 **	18 19 20 21 22 23 **	05 10 14 16 16 16 **	17 18 20 21 22 23 **	49 59 08 15 21 26 **	17 18 20 21 22 23 **	29 45 00 14 27 38 **	17 18 19 21 22 23 **	01 26 50 13 35 55 **	17 18 19 20 21 22 23	37 43 48 51 53 54 55	18 19 20 21 22 23 **	25 27 27 26 23 20 **	18 19 20 21 22 23 **	14 23 31 38 43 47 **	18 19 20 21 22 23 **	47 52 55 56 56 56 **

MOONSET, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONSET (MOON'S UPPER LIMB)

FC	OR TI	НЕ СЕ	ENTR	AL N	1ERII	DIAN	OF I	NDIA	. (82	°.5 E)	IN L	. M. 7	Γ.		FOF	R CEI IN II		N ST		ONS	
Date	Lat.	0)	10)°	20)°	30)°	40)°	50)°	Kol	kata	Che	nnai	De	lhi	Mun	ıbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Jan.	0 1 2 3 4 5 6 7 8	22 23 23 ** 0 1 1 2 3 4	24 06 47 ** 27 09 53 39 30 24	22 23 23 ** 0 1 2 2 3 4	15 01 45 ** 29 15 02 52 45 41	22 22 23 ** 0 1 2 3 4 4	06 55 43 ** 31 20 11 04 01 59	21 22 23 ** 0 1 2 3 4 5	56 49 42 ** 34 27 22 19 19 20	21 22 23 ** 0 1 2 3 4 5	44 42 39 ** 37 35 36 38 42 46	21 22 23 ** 0 1 2 4 5 6	26 31 36 ** 41 47 54 04 15 24	21 22 23 ** 0 0 1 2 3 4	40 29 19 ** 08 58 50 44 41 40	22 23 23 ** 0 1 2 3 4	22 08 54 ** 40 26 14 05 59 56	22 23 ** 0 0 1 2 3 4 5	20 12 ** 04 56 48 43 40 39 39	22 23 ** 0 1 2 2 3 4 5	47 36 ** 23 11 00 50 43 39 37
	10 11 12 13 14 15 16 17 18	5 6 7 8 9 10 10 11 12 13	21 21 20 18 14 07 57 47 37 28	5 6 7 8 9 10 10 11 12 13	39 38 36 31 23 12 59 44 30 17	5 6 7 8 9 10 11 11 12 13	58 57 53 45 33 17 00 41 22 06	6 7 8 9 10 11 11 12 12	21 19 12 01 44 24 01 37 14 52	6 7 8 9 10 11 11 12 12	49 46 37 20 58 32 03 33 03 36	7 8 9 9 10 10 11 11 11 12	29 24 10 47 17 42 05 27 49 14	5 6 7 8 9 10 11 11 12	39 38 33 25 12 55 36 16 56 38	5 6 7 8 9 10 11 11 12 13	54 53 51 45 36 23 08 53 37 23	6 7 8 9 10 10 11 12 12 13	40 38 32 21 05 45 23 00 37 17	6 7 8 9 10 10 11 12 13 13	37 35 31 24 12 57 39 21 03 46
	20 21 22 23 24 25 26 27 28 29	14 15 16 17 17 18 19 20 21 21	20 13 08 02 55 45 33 18 01 42	14 14 15 16 17 18 19 20 20 21	06 57 50 44 38 30 20 09 55 39	13 14 15 16 17 18 19 19 20 21	51 40 31 25 19 14 07 58 48 36	13 14 15 16 16 17 18 19 20 21	34 19 09 02 58 55 51 47 40 33	13 13 14 15 16 17 18 19 20 21	13 54 42 34 32 31 32 32 31 29	12 13 14 14 15 16 18 19 20 21	44 19 02 54 54 58 05 12 18 23	13 14 15 15 16 17 18 19 20 21	23 11 02 55 50 45 39 31 22 11	14 15 15 16 17 18 19 20 21 21	11 02 54 48 42 35 26 15 02 48	13 14 15 16 17 18 19 20 21 21	59 45 35 28 24 20 16 11 04 56	14 15 16 17 18 18 19 20 21 22	32 21 13 07 01 55 48 39 28 16
Feb.	30 31 1 2 3 4 5 6 7 8	22 23 23 ** 0 1 2 3 4 5	23 04 46 ** 30 17 09 04 02 02	22 23 23 ** 0 1 2 3 4 5	24 08 53 ** 41 31 25 21 20 19	22 23 ** 0 0 1 2 3 4 5	24 12 ** 01 52 46 42 40 39 37	22 23 ** 0 1 2 3 4 5 5	25 17 ** 11 06 03 02 02 01 57	22 23 ** 0 1 2 3 4 5 6	26 23 ** 22 22 24 27 30 29 23	22 23 ** 0 1 2 4 5 6 7	27 32 ** 38 45 54 03 09 09	22 22 23 ** 0 1 2 3 4 5	00 49 39 ** 31 26 22 21 20 17	22 23 ** 0 0 1 2 3 4 5	33 19 ** 05 54 45 39 36 35 34	22 23 ** 0 1 2 3 4 5 6	47 39 ** 32 26 23 21 21 20 17	23 23 ** 0 1 2 3 4 5 6	04 52 ** 40 31 25 20 18 17 15
	9 10 11 12 13 14 15	6 7 7 8 9 10	02 00 56 49 41 33 24	6 7 8 8 9 10 11	16 11 03 52 40 27 15	6 7 8 8 9 10 11	32 23 10 55 38 21 04	6 7 8 8 9 10 10	49 36 19 58 36 14 52	7 7 8 9 9 10 10	11 53 29 02 34 05 38	7 8 8 9 9 9	41 15 43 07 30 53 18	6 7 7 8 9 9	12 02 48 32 14 55 37	6 7 8 9 9 10 11	30 24 15 03 49 35 21	7 7 8 9 9 10 11	09 56 40 20 58 37 16	7 8 8 9 10 11	10 01 49 34 18 01 45

MOONRISE, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONRISE (MOON'S UPPER LIMB)

FC	R TI	НЕ СЕ	ENTR	RAL M	IERI	DIAN	OF I	NDIA	. (82	°.5 E)	IN L	. М. Т	Γ.		FO	R CEI IN II		N STA		NS	
Date	Lat.	0	o	10)°	20)°	30	Jo	40)°	50)°	Kolk	ata	Cher	nnai	Del	hi	Mun	nbai
Feb.	15 16 17 18 19 20 21 22 23 24	h 23 ** 0 1 2 3 4 5 6	m 52 ** 44 38 32 25 16 06 53 37	h *** 0 0 1 2 3 4 5 6	** 03 59 55 50 43 33 21 05 46	h *** 0 1 2 3 4 4 5 6 6	m ** 16 15 13 09 02 51 36 18 56	h ** 0 1 2 3 4 5 6 7	** 30 33 34 31 24 12 54 32 07	h ** 0 1 3 3 4 5 6 7	m ** 48 56 00 59 52 38 17 51 20	h ** 1 2 3 4 5 6 7 7	m ** 13 28 38 40 32 14 48 15 38	h 23 ** 0 1 2 3 4 5 6	m 55 ** 55 53 50 43 32 17 57 34	h *** 0 1 2 3 3 4 5 6	m ** 17 13 10 05 58 48 35 18 59	h ** 0 1 2 3 4 5 6 6 7	** 50 53 50 43 31 14 52 27	h *** 0 1 2 3 4 5 6 6 7	** 55 53 51 47 40 29 15 56 34
Mar.	25 26 27 28 29 1 2 3 4 5	7 8 8 9 10 10 11 12 13 14	20 01 41 22 04 48 35 25 18 15	7 8 8 9 9 10 11 12 13 13	25 03 40 17 56 37 21 08 01 57	7 8 8 9 9 10 11 11 12 13	31 05 39 12 47 25 06 51 42 37	7 8 8 9 9 10 10 11 12 13	38 08 37 07 38 11 49 31 20 15	7 8 8 9 9 10 11 11 12	47 11 36 00 26 55 27 06 52 47	7 8 8 8 9 9 9 10 11 12	58 16 33 51 10 32 58 31 13 06	7 7 8 8 9 9 10 11 12 13	09 42 15 47 21 58 38 22 12 08	7 8 8 9 10 10 11 12 13 14	37 13 49 26 03 43 26 13 05 01	7 8 9 9 10 10 11 11 12 13	59 30 00 30 01 35 13 56 45 41	8 9 9 10 11 11 12 13 14	10 45 18 52 28 06 47 32 23 19
	6 7 8 9 10 11 12 13 14 15	15 16 17 18 19 19 20 21 22 23	14 13 11 07 02 56 49 43 37 32	14 15 16 18 18 19 20 21 22 23	56 58 59 00 59 58 56 54 51 49	14 15 16 17 18 20 21 22 23 **	38 42 47 52 57 00 03 05 06 **	14 15 16 17 18 20 21 22 23 **	17 24 33 43 53 02 10 18 23 **	13 15 16 17 18 20 21 22 23 **	50 01 16 32 49 05 20 34 45 **	13 14 15 17 18 20 21 22 **	12 29 52 17 44 09 34 56 **	14 15 16 17 18 19 20 21 22 23	09 13 19 26 31 36 40 43 46 47	15 16 17 18 19 20 21 22 23 **	01 03 05 07 08 08 07 06 05 **	14 15 16 18 19 20 21 22 23 **	43 49 58 07 16 24 32 38 43 **	15 16 17 18 19 20 21 22 23 **	20 24 29 33 37 40 42 44 45 **
	16 17 18 19 20 21 22 23 24 25	** 0 1 2 3 3 4 5 6 6	** 27 21 14 04 51 36 18 00 40	** 0 1 2 3 4 4 5 6 6	** 45 40 31 19 04 46 25 03 40	0 1 1 2 3 4 4 5 6	07 04 59 50 36 18 56 32 07 40	0 1 2 3 3 4 5 5 6 6	27 27 22 11 55 34 09 41 11 40	0 1 2 3 4 4 5 5 6 6	53 55 50 38 19 53 24 51 16 40	1 2 3 4 4 5 5 6 6	30 35 31 16 52 21 44 04 22 40	** 0 1 2 3 3 4 5 6	** 46 40 31 16 58 35 10 44 16	0 1 1 2 3 4 4 5 6	04 00 55 46 34 18 58 37 14 50	0 1 2 3 4 4 5 6 6 7	46 46 41 30 14 53 29 01 32 02	0 1 2 3 4 4 5 6 6 7	45 43 37 28 14 56 35 11 46 19
Apr.	26 27 28 29 30 31 1	7 8 8 9 10 11 12	21 02 45 31 19 10 04	7 7 8 9 10 10	17 55 35 18 03 53 46	7 7 8 9 9 10 11	13 48 24 03 46 34 26	7 7 8 8 9 10 11	09 39 12 47 27 12 04	7 7 7 8 9 9	04 29 56 27 03 45 35	6 7 7 7 8 9	57 15 35 59 29 06 54	6 7 7 8 9 10 10	48 22 57 35 18 05 57	7 8 8 9 10 10	26 03 41 23 08 57 50	7 8 8 9 9 10 11	32 03 36 12 52 38 29	7 8 9 9 10 11 12	53 28 05 44 28 16 08

MOONSET, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONSET (MOON'S UPPER LIMB)

FC	OR TI	НЕ СЕ	ENTR	AL N	IERII	DIAN	OF I	NDIA	(82	°.5 E)	IN L	. М. Т	Γ.		FOI	R CEI IN II		IN ST		ONS	
Date	Lat.	0	o	10	m h m 15 11 04 03 11 49 54 12 37			30)°	40)°	50	o	Kol	kata	Che	nnai	De	lhi	Mun	ıbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Feb.	15 16 17 18 19 20 21 22 23 24	11 12 13 14 14 15 16 17 18	24 17 10 04 57 50 41 29 14 58	11 12 12 13 14 15 16 17 18	03	11	49	10 11 12 13 13 14 15 16 17 18	52 33 18 06 57 52 48 44 39 33	10 11 11 12 13 14 15 16 17 18	38 13 53 39 29 24 23 23 23 22	10 10 11 12 12 13 14 15 17 18	18 46 19 00 49 45 48 53 00 06	10 11 12 12 13 14 15 16 17 18	37 21 08 58 50 44 39 33 25 16	11 12 12 13 14 15 16 17 18 18	21 09 59 50 43 37 29 21 10 58	11 11 12 13 14 15 16 17 18 18	16 58 43 31 23 18 13 09 04 57	11 12 13 14 15 15 16 17 18	45 30 18 09 02 55 49 42 33 23
Mar.	25 26 27 28 29 1 2 3 4 5	19 20 21 21 22 23 23 ** 0	40 20 01 42 25 10 58 ** 50 45	19 20 21 21 22 23 ** 0 1 2	36 20 04 49 35 23 ** 14 07 03	19 20 21 21 22 23 ** 0 1 2	31 19 07 55 45 37 ** 30 26 23	19 20 21 22 22 23 ** 0 1 2	26 19 11 03 57 52 ** 49 47 45	19 20 21 22 23 ** 0 1 2 3	20 18 15 13 12 ** 12 13 14 14	19 20 21 22 23 ** 0 1 2 3	12 17 21 26 32 ** 39 47 53 54	19 19 20 21 22 23 ** 0 1 2	06 55 44 33 24 16 ** 11 07 04	19 20 21 22 22 23 ** 0 1 2	44 29 14 00 47 36 ** 28 22 19	19 20 21 22 23 ** 0 1 2 3	49 41 32 24 17 ** 12 09 06 04	20 20 21 22 23 ** 0 1 2	11 59 47 35 24 ** 15 09 04 01
	6 7 8 9 10 11 12 13 14 15	2 3 4 5 6 7 8 9 10	43 42 40 38 33 28 21 15 09 04	3 3 4 5 6 7 8 9 9	01 58 53 47 38 28 17 06 57 48	3 4 5 5 6 7 8 8 9	20 15 07 57 44 28 13 57 44 32	3 4 5 6 6 7 8 8 9	42 35 23 08 49 29 08 47 29 13	4 4 5 6 6 7 8 8 9	09 59 43 22 57 29 02 35 11 50	4 5 6 6 7 7 7 8 8 9	48 33 10 40 06 30 53 18 46 18	3 3 4 5 6 7 7 8 9 10	01 55 47 35 21 05 48 31 16 03	3 4 5 5 6 7 8 9 10	16 12 07 59 49 38 25 13 03 53	4 4 5 6 7 7 8 9 9	01 54 43 29 11 51 31 11 53 39	3 4 5 6 7 8 8 9 10 11	58 53 46 36 23 08 53 38 25 13
	16 17 18 19 20 21 22 23 24 25	11 12 13 14 15 16 16 17 18	59 53 47 38 27 13 56 38 19 00	11 12 13 14 15 16 16 17 18	41 35 29 21 12 01 48 33 18 02	11 12 13 14 14 15 16 17 18	23 16 09 04 57 49 39 28 16 04	11 11 12 13 14 15 16 17 18	01 53 47 43 39 34 28 21 14 06	10 11 12 13 14 15 16 17 18	35 24 19 17 16 16 15 14 11 09	9 10 11 12 13 14 15 17 18	57 44 39 40 45 51 57 03 08 13	10 11 12 13 14 15 16 17 17 18	54 46 40 34 28 21 12 02 51 40	11 12 13 14 15 16 16 17 18 19	46 39 33 26 17 07 55 41 27 12	11 12 13 14 15 15 16 17 18 19	27 19 13 08 04 59 52 45 36 28	12 12 13 14 15 16 17 18 18	04 57 51 45 38 30 20 08 56 43
Apr.	26 27 28 29 30 31	19 20 21 21 22 23 **	41 23 07 54 43 36 **	19 20 21 22 23 23 **	46 32 19 09 00 54 **	19 20 21 22 23 **	52 41 32 24 18 ** 14	19 20 21 22 23 **	59 52 47 43 39 ** 36	20 21 22 23 ** 0 1	07 05 05 05 ** 06 05	20 21 22 23 ** 0 1	18 24 30 38 ** 43 45	19 20 21 22 22 23 **	29 20 11 04 59 55 **	19 20 21 22 23 **	57 44 32 23 15 **	20 21 22 23 23 **	20 13 07 02 59 ** 55	20 21 22 23 23 **	31 20 11 03 57 ** 52

MOONRISE, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONRISE (MOON'S UPPER LIMB)

FO	R TI	НЕ СЕ	ENTR	AL M	IERII	DIAN	OF I	NDIA	(82	P.5 E)	IN L	. М. Т	Γ.		FO	R CEI IN II		N STA		NS	
Date	Lat.	0	o	10)°	20)°	30)°	40)°	50)°	Kolk	cata	Cher	nnai	Del	hi	Mun	ıbai
Apr.	1	h 12	m 04	h 11	m 46	h 11	m 26	h 11	m 04	h 10	m 35	h 9	m 54	h 10	m 57	h 11	m 50	h 11	m 29	h 12	m 08
Apr.	2 3 4 5 6 7 8 9	13 13 14 15 16 17 18 19 20	00 57 54 50 44 39 33 27 23	11 12 13 14 15 16 17 18 19 20	42 41 41 40 39 38 37 36 36	11 12 13 14 15 16 17 18 19 20	23 24 26 30 34 37 41 45 49	11 12 13 14 15 16 17 18 19 21	01 04 10 18 27 37 46 56 05	11 12 13 15 16 17 18 20 21	33 38 49 04 19 36 53 09 24	10 12 13 14 16 17 19 20 21	53 03 21 44 09 35 01 27 52	11 12 13 15 16 17 18 19 20	54 55 58 03 08 13 18 23 29	11 12 13 14 15 16 17 18 19 20	47 46 46 47 47 47 48 48 49	11 12 13 14 15 16 17 19 20 21	27 29 35 43 51 59 08 17 25	13 14 15 16 17 18 19 20 21	05 05 08 11 14 18 21 25 28
	11 12 13 14 15 16 17 18 19 20	21 22 23 ** 0 1 1 2 3 3	20 17 14 ** 08 00 49 34 18 59	21 22 23 ** 0 1 2 2 3 4	36 35 32 ** 26 17 03 46 26 04	21 22 23 ** 0 1 2 2 3 4	53 54 52 ** 46 34 18 57 34 08	22 23 ** 0 1 1 2 3 3 4	12 16 ** 15 08 54 35 11 44 14	22 23 ** 0 1 2 2 3 3 4	37 44 ** 44 36 20 56 28 56 21	23 ** 0 1 2 2 3 3 4 4	12 ** 24 26 16 55 26 51 12 30	21 22 23 ** 0 1 1 2 3 3	33 35 33 ** 27 15 58 37 12 46	21 22 23 ** 0 1 2 2 3 4	50 50 48 ** 42 31 17 59 38 15	22 23 ** 0 1 2 2 3 4 4	32 35 ** 34 27 13 55 31 04 35	22 23 ** 0 1 2 2 3 4 4	31 33 ** 30 24 12 56 36 13 47
	21 22 23 24 25 26 27 28 29 30	4 5 6 6 7 8 9 10 10	40 20 01 44 29 16 07 00 54 49	4 5 5 6 7 8 8 9 10 11	41 18 55 35 16 01 49 41 36 32	4 5 5 6 7 7 8 9 10 11	42 15 49 25 03 45 31 21 16 14	4 5 5 6 6 7 8 8 9	43 12 42 13 48 26 09 58 53 53	4 5 5 5 6 7 7 8 9 10	45 08 33 59 29 03 43 30 24 26	4 5 5 5 6 6 7 7 8 9	47 04 21 41 03 31 05 49 43 48	4 4 5 5 6 7 8 8 9	18 50 23 58 35 16 02 52 46 45	4 5 6 6 7 8 8 9 10 11	51 26 03 41 22 06 54 45 40 37	5 6 6 7 7 8 9 10 11	05 34 05 37 12 51 35 24 19 18	5 5 6 7 7 8 9 10 10	21 55 29 05 44 26 12 03 58 56
May	1 2 3 4 5 6 7 8 9 10	12 13 14 15 16 17 18 19 20 21	44 39 32 24 17 10 05 02 01 00	12 13 14 15 16 17 18 19 20 21	30 27 24 21 18 16 16 17 18	12 13 14 15 16 17 18 19 20 21	14 15 16 18 20 23 27 32 36 38	11 13 14 15 16 17 18 19 20 22	56 01 07 14 22 31 40 50 58 01	11 12 13 15 16 17 18 20 21 22	33 44 56 10 25 40 57 12 24 30	11 12 13 15 16 17 19 20 22 23	01 20 41 04 28 54 19 44 03 12	11 12 13 14 15 17 18 19 20 21	45 47 50 53 56 01 06 12 17	12 13 14 15 16 17 18 19 20 21	35 33 32 30 29 28 29 31 33 34	12 13 14 15 16 17 19 20 21 22	21 26 31 38 44 52 01 10 17 20	12 13 14 15 17 18 19 20 21 22	56 56 57 59 00 03 06 11 15 16
	11 12 13 14 15 16 17	21 22 23 ** 0 1	57 52 43 ** 31 15 57	22 23 23 ** 0 1 2	16 09 58 ** 43 24 03	22 23 ** 0 0 1 2	36 28 ** 15 56 34 10	22 23 ** 0 1 1 2	59 49 ** 33 12 46 17	23 ** 0 0 1 1 2	28 ** 16 57 30 59 25	** 0 0 1 1 2 2	** 10 54 29 56 18 37	22 23 23 ** 0 1	17 09 55 ** 36 13 47	22 23 ** 0 0 1 2	31 24 ** 13 57 37 15	23 ** 0 0 1 2 2	18 ** 08 53 31 06 38	23 ** 0 0 1 2 2	14 ** 06 53 35 13 48

MOONSET, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONSET (MOON'S UPPER LIMB)

FC	OR TH	IE CE	ENTR	AL M	IERII	DIAN	OF I	NDIA	. (82	°.5 E)	IN L	. M. 7	Γ.		FOF	R CEI IN II		N ST		ONS	
Date	Lat.	0)	10	o	20)°	30	0	40)o	50)°	Kol	kata	Che	nnai	De	lhi	Mun	ıbai
Apr.	1 2 3 4 5 6 7 8	h ** 0 1 2 3 4 5 6 6	m ** 31 28 24 21 16 10 04 58	h ** 0 1 2 3 4 5 6 6	m ** 49 45 39 32 23 13 02 52	h 0 1 2 2 3 4 5 6 6	m 14 09 03 55 44 31 16 00 45	h 0 1 2 3 3 4 5 6	m 36 32 24 13 58 40 19 58 38	h 1 2 2 3 4 4 5 6	m 05 00 50 35 15 50 24 56 29	h 1 2 3 4 4 5 5 6	m 45 41 27 06 38 05 29 52 16	h ** 0 1 2 3 4 4 5 6	** 50 44 35 23 09 53 36 20	h 0 1 2 2 3 4 5 6 7	m 09 05 00 53 45 35 23 11 00	h 0 1 2 3 4 5 6 7	m 55 50 43 32 18 01 41 21 01	h 0 1 2 3 4 5 6 7	m 52 47 41 33 23 10 55 40 26
	10 11 12 13 14 15 16 17 18 19 20	7 8 9 10 11 12 13 14 14 15 16	54 50 48 45 40 34 24 11 55 38 19	7 8 9 10 11 12 13 13 14 15 16	36 31 26 22 16 08 58 46 31 16	7 8 9 10 11 11 12 13 14 15 16	32 21 13 07 02 57 52 45 35 25 13	7 8 8 9 10 11 12 13 14 15 16	19 04 52 44 39 36 33 29 23 17 09	7 8 9 10 11 12 13 14 15 16	04 42 26 16 10 08 09 09 09 07 05	6 7 7 8 9 10 11 12 13 14 15	13 50 35 29 29 35 41 48 54 59	7 8 9 10 11 12 13 14 14 15	53 44 37 32 28 23 17 08 59 48	7 8 9 10 11 12 13 14 14 15 16	50 41 35 30 26 20 13 04 52 39 25	8 9 10 11 12 12 13 14 15 16	43 29 18 10 05 02 58 54 48 40 32	9 9 10 11 12 13 14 15 16	13 02 54 49 44 39 33 26 16 05 53
	21 22 23 24 25 26 27 28 29 30	16 17 18 19 19 20 21 22 23 **	59 40 22 05 51 40 32 26 21 **	17 17 18 19 20 20 21 22 23 **	00 44 29 16 06 57 50 44 39 **	17 17 18 19 20 21 22 23 23 **	01 49 38 28 21 14 09 04 58 **	17 17 18 19 20 21 22 23 **	01 54 47 42 38 35 32 27 ** 20	17 18 18 19 21 22 23 23 **	03 00 59 59 00 01 00 56 **	17 18 19 20 21 22 23 **	04 09 15 22 30 37 41 ** 38 26	16 17 18 19 20 20 21 22 23 **	37 26 16 07 01 55 50 45 39 **	17 17 18 19 20 21 22 23 23 **	10 55 41 29 19 12 05 00 54 **	17 18 19 20 20 21 22 23 **	24 15 08 02 58 54 51 46 ** 39	17 18 19 20 20 21 22 23 **	40 28 17 07 59 53 48 42 ** 36
May	1 2 3 4 5 6 7 8 9	0 1 2 2 3 4 5 6 7 8	16 10 04 57 49 42 36 32 30 29	0 1 2 3 3 4 5 6 7 8	32 23 13 02 50 38 28 20 14 11	0 1 2 3 3 4 5 6 6 7	49 37 23 07 50 34 19 07 58 52	1 1 2 3 3 4 5 5 6 7	08 53 34 13 51 29 09 51 38 30	1 2 2 3 3 4 4 5 6 7	33 13 48 21 52 23 56 33 14 02	2 2 3 3 4 4 5 5	07 39 07 31 53 15 40 07 41 23	0 1 2 2 3 4 4 5 6 7	29 17 02 45 26 09 52 39 29 23	0 1 2 3 3 4 5 6 7 8	46 37 26 13 59 46 35 26 19	1 2 2 3 4 4 5 6 7	28 13 55 34 13 52 32 16 04 56	1 2 3 3 4 5 5 6 7 8	27 16 02 46 30 14 59 48 39 34
	11 12 13 14 15 16 17	9 10 11 12 12 13 14	28 24 17 06 52 36 17	9 10 11 11 12 13 14	09 06 00 52 41 28 13	8 9 10 11 12 13 14	49 46 43 37 30 20 09	8 9 10 11 12 13 14	25 23 22 20 16 10 03	7 8 9 10 11 12 13	56 55 56 58 59 59 57	7 8 9 10 11 12 13	14 14 19 28 36 43 48	8 9 10 11 12 12 13	19 16 14 09 02 53 43	9 10 11 11 12 13 14	13 10 05 58 48 35 21	8 9 10 11 12 13 14	51 49 48 45 41 34 27	9 10 11 12 13 14 14	31 28 24 19 11 00 49

MOONRISE, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONRISE (MOON'S UPPER LIMB)

FC	R TI	НЕ СЕ	ENTR	AL N	IERII	DIAN	OF I	NDIA	. (82	°.5 E)	IN L	. М. Т	Γ.		FO	R CEI IN II		N STA		NS	
Date	Lat.	0	o	10)°	20)°	30)°	40	o	50)°	Kolk	cata	Cher	nnai	Del	hi	Mun	nbai
	,	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
May	17 18 19 20 21 22 23 24 25 26	1 2 3 3 4 5 6 7 7 8	57 38 19 59 42 26 13 03 56 50	2 2 3 3 4 5 5 6 7 8	03 41 17 55 33 14 58 46 37 32	2 2 3 3 4 5 5 6 7 8	10 43 16 50 25 02 43 28 18 11	2 2 3 3 4 4 5 6 6 7	17 46 15 44 15 48 25 07 55 48	2 2 3 3 4 4 5 5 6 7	25 49 13 37 03 31 03 42 27 19	2 2 3 3 4 4 5 5 6	37 54 11 28 46 07 33 05 46 37	1 2 2 3 3 4 5 6 7	47 20 52 24 58 35 15 59 48 42	2 2 3 4 4 5 6 6 7 8	15 51 27 03 40 20 03 50 41 35	2 3 4 4 5 5 6 7 8	38 08 37 07 38 12 50 33 21 14	2 3 4 5 5 6 7 7 8	48 22 56 30 05 43 24 09 59 53
June	27 28 29 30 31 1 2 3 4 5	9 10 11 12 13 14 14 15 16 17	46 40 34 26 17 07 59 51 46 44	9 10 11 12 13 14 15 16 16	28 25 21 17 12 07 03 00 59 59	9 10 11 12 13 14 15 16 17 18	09 08 08 08 07 07 07 09 12 16	8 9 10 11 13 14 15 16 17 18	47 49 52 57 01 06 12 19 28 36	8 9 10 11 12 14 15 16 17 19	19 24 33 43 54 06 19 33 47 01	7 8 10 11 12 14 15 16 18 19	39 50 06 25 45 06 28 51 14 36	8 9 10 11 12 13 14 15 16 17	39 40 41 41 42 44 47 52 57	9 10 11 12 13 14 15 16 17 18	32 30 27 24 20 17 14 12 12	9 10 11 12 13 14 15 16 17 18	13 14 17 21 25 29 34 40 48 56	9 10 11 12 13 14 15 16 17 18	51 50 49 49 48 47 47 48 51 55
	6 7 8 9 10 11 12 13 14 15	18 19 20 21 22 23 23 ** 0	42 41 39 33 23 10 53 ** 35 16	19 20 20 21 22 23 ** 0 0	00 00 57 49 37 20 ** 01 39 16	19 20 21 22 22 23 ** 0 0	20 20 16 07 52 32 ** 09 43 16	19 20 21 22 23 23 ** 0 0	42 44 39 27 08 45 ** 17 47 16	20 21 22 22 23 ** 0 0 0	11 13 07 52 29 ** 01 28 53 17	20 21 22 23 23 ** 0 0 1	51 56 48 27 58 ** 23 43 01 17	19 20 20 21 22 23 23 ** 0	01 02 58 47 32 11 47 ** 20 52	19 20 21 22 22 23 ** 0 0	16 16 12 04 51 33 ** 13 50 25	20 21 21 22 23 ** 0 0 1	01 03 58 46 28 ** 05 38 09 38	19 20 21 22 23 ** 0 0 1	58 59 55 45 30 ** 10 47 22 55
	16 17 18 19 20 21 22 23 24 25	1 2 3 4 4 5 6 7 8 9	56 38 21 07 56 48 43 40 36 31	1 2 3 3 4 5 6 7 8 9	53 31 11 53 40 31 25 22 19 17	1 2 3 3 4 5 6 7 8 9	49 23 00 39 23 11 05 02 02 02	1 2 2 3 4 4 5 6 7 8	45 15 47 23 03 49 42 39 41 45	1 2 2 3 3 4 5 6 7 8	40 05 32 03 39 22 12 11 16 24	1 1 2 2 3 3 4 5 6 7	34 51 11 35 05 42 30 30 39 55	1 1 2 3 3 4 5 6 7 8	24 57 33 11 54 42 35 32 33 34	2 2 3 3 4 5 6 7 8 9	01 38 17 59 45 35 29 26 24 22	2 2 3 3 4 5 6 7 8 9	08 38 11 48 29 15 07 05 07 11	2 3 3 4 5 6 7 8 9	29 04 40 20 04 53 47 44 44 44
July	26 27 28 29 30 1 2	10 11 12 12 13 14 15	23 14 04 54 44 37 31	10 11 12 12 13 14 15	13 08 02 56 51 48 46	10 11 12 12 13 14 16	02 02 00 59 59 59 02	9 10 11 13 14 15 16	50 54 58 02 07 13 20	9 10 11 13 14 15 16	35 45 56 06 18 30 42	9 10 11 13 14 15 17	13 33 52 12 33 54 14	9 10 11 12 13 14 15	35 36 36 36 36 38 41	10 11 12 13 14 15 16	20 16 11 07 03 01 00	10 11 12 13 14 15 16	14 18 21 24 28 33 39	10 11 12 13 14 15 16	44 42 41 39 38 38 40

MOONSET, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONSET (MOON'S UPPER LIMB)

FC	OR TI	IE CE	ENTR	AL N	IERII	DIAN	OF I	NDIA	. (82°	°.5 E)	IN L	М. Т	Γ.		FOI	R CEI IN II		IN ST		ONS	
Date	Lat.	0)	10)°	20)°	30)°	40)°	50	o	Kol	kata	Che	nnai	De	lhi	Mun	nbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
May	17 18 19 20 21 22 23 24 25 26	14 14 15 16 17 17 18 19 20 21	17 58 38 20 03 48 37 28 22 17	14 14 15 16 17 18 18 19 20 21	13 57 41 26 13 01 52 46 40 35	14 14 15 16 17 18 19 20 21 21	09 56 44 33 23 15 09 05 00 55	14 14 15 16 17 18 19 20 21 22	03 56 48 41 36 32 29 27 23 17	13 14 15 16 17 18 19 20 21 22	57 55 52 51 51 52 54 55 53 46	13 14 15 17 18 19 20 21 22 23	48 53 59 04 12 20 28 34 35 26	13 14 15 16 17 17 18 19 20 21	43 32 21 11 02 55 50 46 42 36	14 15 15 16 17 18 19 20 20 21	21 06 52 38 25 15 07 01 56 50	14 15 16 17 17 18 19 20 21 22	27 18 10 02 56 51 48 46 42 36	14 15 16 17 18 18 19 20 21 22	49 36 24 12 02 54 48 43 38 33
June	27 28 29 30 31 1 2 3 4 5	22 23 23 ** 0 1 2 3 4 5	12 06 59 ** 50 41 32 23 17 13	22 23 ** 0 0 1 2 3 4	29 20 ** 10 57 43 30 17 06 59	22 23 ** 0 1 1 2 3 3 4	47 35 ** 21 04 46 28 10 55 44	23 23 ** 0 1 1 2 3 3 4	07 53 ** 34 12 49 25 03 43 27	23 ** 0 0 1 1 2 2 3 4	33 ** 14 50 22 53 22 53 27 05	** 0 0 1 1 1 2 2 3 3	** 09 43 12 36 57 18 41 06 35	22 23 ** 0 0 1 2 2 3 4	27 15 ** 00 42 23 03 44 28 16	22 23 ** 0 1 1 2 3 4 5	44 34 ** 23 09 54 39 25 13 04	23 ** 0 0 1 2 2 3 4 4	26 ** 12 54 33 11 48 26 07 51	23 ** 0 1 1 2 3 3 4 5	25 ** 14 00 43 25 07 51 36 25
	6 7 8 9 10 11 12 13 14 15	6 7 8 9 9 10 11 12 12 13	12 11 09 05 57 46 31 14 55 35	5 6 7 8 9 10 11 12 12 13	54 52 51 48 42 34 22 08 53 37	5 6 7 8 9 10 11 12 12 13	36 32 30 29 26 20 12 02 50 38	5 6 7 8 9 10 11 11 12 13	15 09 07 07 07 05 01 55 48 40	4 5 6 7 8 9 10 11 12 13	49 40 38 40 43 46 47 47 45 43	4 4 5 7 8 9 10 11 12 13	12 59 55 00 09 19 28 35 41 46	5 6 7 7 8 9 10 11 12 13	07 03 01 59 57 52 45 36 26 15	5 6 7 8 9 10 11 12 13 13	59 56 54 52 47 39 29 16 02 47	5 6 7 8 9 10 11 12 13 14	41 35 33 32 30 25 19 11 02	6 7 8 9 10 11 11 12 13 14	18 14 12 11 07 02 53 42 30 18
	16 17 18 19 20 21 22 23 24 25	14 14 15 16 17 18 19 20 21 21	16 58 43 30 21 15 10 07 02 56	14 15 15 16 17 18 19 20 21 22	21 07 55 45 38 33 29 24 17 08	14 15 16 17 17 18 19 20 21 22	27 16 07 01 56 53 49 43 33 20	14 15 16 17 18 19 20 21 21 22	33 27 22 19 18 16 12 04 52 35	14 15 16 17 18 19 20 21 22 22	41 40 40 42 45 45 41 31 15 52	14 15 17 18 19 20 21 22 22 23	51 58 06 15 23 26 22 09 46 16	14 14 15 16 17 18 19 20 21 22	04 54 47 41 37 34 30 24 14 00	14 15 16 16 17 18 19 20 21 22	32 19 08 59 53 49 44 39 32 21	14 15 16 17 18 19 20 21 22 22	54 47 42 39 37 35 31 23 11 55	15 15 16 17 18 19 20 21 22 22	06 55 46 39 35 31 27 21 12 59
July	26 27 28 29 30 1 2	22 23 ** 0 1 2 3	48 38 ** 28 17 09 02	22 23 ** 0 1 2 2	56 42 ** 27 13 00 50	23 23 ** 0 1 1 2	04 46 ** 27 08 50 36	23 23 ** 0 1 1 2	14 51 ** 26 02 39 20	23 23 ** 0 0 1 2	26 56 ** 25 55 26 01	23 ** 0 0 0 1 1	42 ** 04 24 45 08 35	22 23 ** 0 0 1 2	43 23 ** 02 42 24 08	23 23 ** 0 1 2 2	08 53 ** 37 21 07 55	23 ** 0 0 1 2 2	35 ** 12 48 25 03 45	23 ** 0 1 1 2 3	43 ** 25 06 48 31 17

MOONRISE, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONRISE (MOON'S UPPER LIMB)

FC	R TI	HE CE	ENTR	AL M	IERII	DIAN	OF I	NDIA	. (82	°.5 E)	IN L	. М. Т	Γ.		FO	R CEI IN II		N STA		NS	
Date	Lat.	0)	10)°	20)°	30)°	40	o	50)°	Kolk	cata	Cher	nnai	Del	hi	Mum	ıbai
July	1 2	h 14 15	m 37 31	h 14 15	m 48 46	h 14 16	m 59 02	h 15 16	m 13 20	h 15 16	m 30 42	h 15 17	m 54 14	h 14 15	m 38 41	h 15 16	m 01 00	h 15 16	m 33 39	h 15 16	m 38 40
	2 3 4 5 6 7 8 9 10	16 17 18 19 20 21 21 22	28 27 25 20 13 02 47 30	16 17 18 19 20 21 21 22	46 45 43 38 28 14 56 35	17 18 19 19 20 21 22 22	04 05 03 56 44 27 05 41	17 18 19 20 21 21 22 22	25 28 26 18 03 42 16 47	17 18 19 20 21 22 22 22	52 58 55 45 25 00 29 55	18 19 20 21 21 22 22 23	31 40 37 22 57 25 47 05	16 17 18 19 20 21 21 22	45 46 45 37 24 06 44 19	17 18 18 19 20 21 22 22	01 01 59 53 42 27 08 47	17 18 19 20 21 22 22 23	45 47 45 37 22 01 36 08	17 18 19 20 21 22 22 23	42 44 41 35 22 05 44 20
	11	23	11	23	13	23	15	23	17	23	19	23	23	22	51	23	23	23	38	23	54
	12	23	52	23	50	23	48	23	46	23	43	23	39	23	23	23	59	**	**	**	**
	13	**	**	**	**	**	**	**	**	**	**	23	56	23	56	**	**	0	08	0	27
	14	0	33	0	27	0	21	0	15	0	07	**	**	**	**	0	35	0	38	1	01
	15	1	15	1	06	0	56	0	46	0	33	0	15	0	30	1	13	1	09	1	37
	16	1	59	1	47	1	34	1	20	1	01	0	37	1	07	1	53	1	44	2	15
	17	2	47	2	32	2	16	1	58	1	35	1	03	1	48	2	37	2	23	2	57
	18	3	38	3	21	3	02	2	41	2	15	1	37	2	33	3	25	3	07	3	44
	19	4	32	4	14	3	54	3	31	3	02	2	21	3	24	4	18	3	57	4	36
	20	5	29	5	10	4	50	4	27	3	58	3	16	4	21	5	14	4	53	5	32
	21	6	26	6	09	5	50	5	29	5	02	4	23	5	21	6	13	5	55	6	32
	22	7	23	7	08	6	52	6	34	6	11	5	39	6	24	7	13	6	59	7	34
	23	8	18	8	06	7	54	7	40	7	23	6	59	7	27	8	13	8	05	8	36
	24	9	10	9	03	8	55	8	46	8	35	8	20	8	29	9	10	9	10	9	36
	25	10	01	9	58	9	55	9	51	9	47	9	41	9	30	10	07	10	14	10	35
	26	10	51	10	53	10	54	10	56	10	58	11	01	10	30	11	03	11	18	11	34
	27	11	41	11	47	11	53	12	00	12	09	12	21	11	31	11	59	12	22	12	33
	28	12	33	12	42	12	53	13	05	13	20	13	41	12	32	12	55	13	26	13	32
	29	13	26	13	39	13	54	14	10	14	31	15	01	13	33	13	53	14	30	14	32
	30	14	21	14	37	14	55	15	15	15	41	16	18	14	35	14	52	15	34	15	33
Aug.	31	15	17	15	36	15	55	16	18	16	47	17	28	15	36	15	51	16	37	16	33
	1	16	14	16	33	16	53	17	17	17	46	18	29	16	35	16	49	17	35	17	31
	2	17	10	17	28	17	48	18	10	18	38	19	18	17	29	17	44	18	29	18	26
	3	18	04	18	20	18	37	18	57	19	21	19	56	18	18	18	34	19	16	19	15
	4	18	54	19	07	19	21	19	38	19	58	20	26	19	01	19	21	19	57	20	00
	5	19	41	19	51	20	2	20	14	20	29	20	50	19	41	20	04	20	34	20	40
	6	20	25	20	31	20	38	20	47	20	56	21	9	20	17	20	43	21	07	21	17
	7	21	07	21	10	21	13	21	17	21	21	21	27	20	50	21	20	21	38	21	52
	8	21	48	21	47	21	46	21	46	21	45	21	44	21	22	21	56	22	08	22	26
	9	22	28	22	24	22	20	22	15	22	08	22	00	21	54	22	32	22	37	22	59
	10	23	09	23	02	22	54	22	44	22	33	22	18	22	28	23	09	23	08	23	34
	11	23	52	23	42	23	30	23	17	23	00	22	38	23	03	23	48	23	41	**	**
	12	**	**	**	**	**	**	23	52	23	31	23	02	23	41	**	**	**	**	0	11
	13	0	38	0	24	0	09	**	**	**	**	23	32	**	**	0	29	0	17	0	50
	14	1	27	1	10	0	53	0	33	0	08	**	**	0	24	1	15	0	58	1	34
	15	2	19	2	01	1	41	1	19	0	51	0	11	1	12	2	05	1	45	2	23
	16	3	14	2	56	2	35	2	12	1	43	1	01	2	06	2	59	2	38	3	17

MOONSET, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONSET (MOON'S UPPER LIMB)

FC	OR TH	IE CE	ENTR	AL M	IERII	DIAN	OF I	NDIA	. (82°	°.5 E)	IN L	. M. 7	Γ.		FOI	R CEI IN II		N ST		ONS	
Date	Lat.	0)	10)°	20)°	30	0	40)°	50)°	Kol	kata	Che	nnai	De	lhi	Mun	ıbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
July	1 2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 9	09 02 58 56 55 52 46 37 24 08	2 2 3 4 5 6 7 8 9	00 50 42 38 36 34 30 23 14 01	1 2 3 4 5 6 7 8 9	50 36 25 19 16 14 12 08 02 54	1 2 3 3 4 5 6 7 8 9	39 20 06 57 52 51 52 51 49 45	1 2 2 3 4 5 6 7 8 9	26 01 42 29 23 23 26 30 33 34	1 1 2 2 3 4 5 7 8 9	08 35 08 49 40 42 50 00 11 19	1 2 2 3 4 5 6 7 8 9	24 08 57 49 46 44 43 40 35 27	2 2 3 4 5 6 7 8 9	07 55 47 42 40 38 34 29 20 09	2 3 4 5 6 7 8 9 10	03 45 31 22 18 17 17 17 14 09	2 3 4 5 5 6 7 8 9	31 17 07 01 58 56 54 50 43 34
	11 12 13 14 15 16 17 18 19 20	10 11 12 12 13 14 15 16 16	50 31 11 53 36 22 11 04 59 56	10 11 12 13 13 14 15 16 17 18	47 31 15 00 47 36 27 22 18 14	10 11 12 13 13 14 15 16 17 18	43 31 19 08 58 50 45 41 38 34	10 11 12 13 14 15 16 17 18	39 31 24 17 11 07 05 04 01 56	10 11 12 13 14 15 16 17 18	33 31 29 28 27 28 30 32 30 24	10 11 12 13 14 15 17 18 19 20	26 32 37 43 50 58 06 12 12 04	10 11 11 12 13 14 15 16 17 18	18 07 56 46 37 30 25 22 19 15	10 11 12 13 13 14 15 16 17 18	55 41 26 12 59 49 42 37 33 30	11 11 12 13 14 15 16 17 18 19	02 54 45 38 31 27 24 22 20 15	11 12 12 13 14 15 16 17 18	23 11 59 47 37 29 23 19 16 12
	21 22 23 24 25 26 27 28 29 30	18 19 20 21 22 23 ** 0 0	54 49 43 35 25 15 ** 06 58 52	19 20 20 21 22 23 23 ** 0	10 02 52 40 26 11 58 ** 46 37	19 20 21 21 22 23 23 *** 0	27 16 02 45 27 08 49 ** 33 21	19 20 21 21 22 23 23 ** 0	46 32 13 51 28 03 40 ** 19 02	20 20 21 21 22 22 23 ** 0	11 52 27 59 29 58 29 ** 02 39	20 21 21 22 22 22 23 23 **	45 18 46 09 30 51 13 38 **	19 19 20 21 22 22 23 ** 0	07 56 41 23 03 43 23 ** 06 52	19 20 21 21 22 23 ** 0 0	24 16 05 51 36 20 ** 05 52 42	20 20 21 22 22 23 ** 0 0	06 52 34 13 50 26 ** 04 44 27	20 20 21 22 23 23 ** 0 1 2	05 55 41 24 06 48 ** 30 14 02
Aug.	31 1 2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 8 9	48 45 41 36 28 17 02 45 26 07	2 3 4 5 6 7 7 8 9	30 26 23 19 13 05 54 40 25 09	2 3 4 5 5 6 7 8 9	12 06 03 01 57 52 45 35 24 12	1 2 3 4 5 6 7 8 9	50 43 40 39 39 38 34 29 22 15	1 2 3 4 5 6 7 8 9	23 14 11 12 16 19 21 22 20 18	0 1 2 3 4 5 7 8 9	45 32 28 33 43 54 04 11 18 23	1 2 3 4 5 6 7 8 8	42 36 33 31 29 25 18 09 59 49	2 3 4 5 6 7 8 8 9	34 30 27 23 18 11 01 48 34 20	2 3 4 5 6 7 7 8 9 10	16 09 06 05 04 02 58 52 45 37	2 3 4 5 6 7 8 9 10	53 48 45 42 39 33 25 15 04 52
	10 11 12 13 14 15 16	10 11 12 13 13 14 15	48 30 14 01 52 45 42	10 11 12 13 14 15 16	54 39 27 17 09 04 00	11 11 12 13 14 15 16	00 49 40 33 28 24 20	11 12 12 13 14 15 16	07 01 56 52 50 47 43	11 12 13 14 15 16 17	16 15 15 16 17 16 12	11 12 13 14 15 16 17	29 35 42 50 56 58 53	10 11 12 13 14 15 16	38 28 20 13 09 05 01	11 11 12 13 14 15 16	05 52 40 31 24 19 16	11 12 13 14 15 16 17	29 21 16 11 09 06 02	11 12 13 14 15 16 16	39 28 19 11 06 02 58

MOONRISE, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONRISE (MOON'S UPPER LIMB)

FC	R TI	HE CE	ENTR	AL M	IERII	DIAN	OF I	NDIA	(82	°.5 E)	IN L	. М. Т	Γ.		FO	R CEI IN II		N STA		NS	
Date	Lat.	0)	10)°	20)°	30)°	40)°	50)°	Kolk	cata	Cher	nnai	Del	lhi	Mun	nbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Aug.	16 17 18 19 20 21 22 23 24 25	3 4 5 6 7 7 8 9 10 11	14 12 09 06 01 54 45 37 29 22	2 3 4 5 6 7 8 9 10 11	56 53 53 53 52 49 45 41 38 35	2 3 4 5 6 7 8 9 10 11	35 34 36 39 42 44 45 46 47 48	2 3 4 5 6 7 8 9 10 12	12 12 16 23 31 38 45 52 58 04	1 2 3 5 6 7 8 9 11 12	43 43 51 03 17 31 45 58 11 23	1 2 3 4 5 7 8 10 11 12	01 03 15 35 58 22 45 08 30 51	2 3 4 5 6 7 8 9 10 11	06 04 07 11 15 18 21 23 25 27	2 3 4 5 6 7 8 9 10 11	59 57 58 58 59 57 55 52 50 48	2 3 4 5 6 8 9 10 11 12	38 38 41 48 55 02 08 13 19 24	3 4 5 6 7 8 9 10 11 12	17 16 18 20 23 25 26 26 26 27
Sept.	26 27 28 29 30 31 1 2 3 4	12 13 14 15 15 16 17 18 19	17 12 09 04 58 49 36 21 3 44	12 13 14 15 16 17 17 18 19	32 31 28 23 15 03 47 29 8 45	12 13 14 15 16 17 17 18 19	49 50 48 43 33 18 59 37 12 46	13 14 15 16 16 17 18 18 19	09 12 12 06 54 36 13 47 17 47	13 14 15 16 17 17 18 18 19	34 40 41 34 20 58 30 58 24 48	14 15 16 17 17 18 18 19 19	09 21 24 16 56 28 53 14 32 49	12 13 14 15 16 16 17 18 18	30 31 29 24 14 59 39 15 50 22	12 13 14 15 16 17 18 18 19	47 46 43 38 30 17 00 41 18 55	13 14 15 16 17 17 18 19 19 20	28 31 30 24 13 55 33 07 39 08	13 14 15 16 17 17 18 19 19 20	28 28 26 21 11 57 38 16 51 25
	5 6 7 8 9 10 11 12 13 14	20 21 21 22 23 ** 0 1 1 2	25 06 48 32 19 ** 08 01 56 53	20 20 21 22 23 23 ** 0 1 2	22 59 38 19 03 51 ** 42 38 36	20 20 21 22 22 23 ** 0 1 2	19 52 27 05 46 32 ** 22 18 17	20 20 21 21 22 23 23 ** 0	15 45 15 49 27 10 59 ** 54 55	20 20 21 21 22 22 23 ***	11 35 01 30 03 42 29 ** 25 28	20 20 20 21 21 22 22 23 **	5 22 41 03 30 04 47 43 ** 50	19 20 21 21 22 23 23 ** 0	54 27 01 37 18 02 52 ** 48 48	20 21 21 22 23 23 ** 0 1 2	31 07 44 24 08 55 ** 46 41 40	20 21 21 22 22 23 ** 0 1 2	38 08 39 14 52 35 ** 25 20 21	20 21 22 22 23 ** 0 1 2	59 32 08 46 27 ** 13 04 00 59
	15 16 17 18 19 20 21 22 23 24	3 4 5 6 7 8 9 10 11 12	49 45 40 33 26 19 14 10 07 04	3 4 5 6 7 8 9 10 11 12	35 34 33 31 29 27 25 25 25 25 23	3 4 5 6 7 8 9 10 11 12	19 22 26 29 31 34 38 41 44 44	3 4 5 6 7 8 9 11 12 13	01 09 17 26 35 43 52 00 06 07	2 3 5 6 7 8 10 11 12 13	38 52 07 23 39 54 10 23 33 37	2 3 4 6 7 9 10 11 13 14	06 28 53 18 44 10 34 57 13 20	2 3 4 6 7 8 9 10 11 12	50 55 59 04 08 12 17 21 24 25	3 4 5 6 7 8 9 10 11 12	40 40 40 40 39 39 39 39 40 39	3 4 5 6 7 9 10 11 12 13	26 33 41 49 57 04 12 19 25 26	4 5 6 7 8 9 10 11 12 13	01 04 06 09 11 14 17 20 22 22
Oct.	25 26 27 28 29 30 1	13 13 14 15 16 17 17	01 55 46 34 19 01 43	13 14 15 15 16 17 17	20 12 01 46 28 07 45	13 14 15 16 16 17 17	40 31 18 00 38 13 47	14 14 15 16 16 17	03 53 37 15 49 20 49	14 15 16 16 17 17	33 20 00 33 02 28 52	15 15 16 16 17 17	16 59 33 59 21 39 56	13 14 14 15 16 16	21 12 58 39 16 51 23	13 14 15 16 16 17 17	35 28 16 00 40 18 55	14 15 15 16 17 17	22 12 56 34 09 41	14 15 15 16 17 17	18 09 56 38 16 52 26

MOONSET, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONSET (MOON'S UPPER LIMB)

FC	OR TH	IE CE	NTR	AL N	IERII	DIAN	OF I	NDIA	. (82	°.5 E)	IN L	. M. 7	Γ.		FOI	R CEI IN II		N ST		ONS	
Date	Lat.	0)	10)°	20)°	30	0	40)°	50)°	Kol	kata	Che	nnai	De	lhi	Mun	nbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Aug.	16 17 18 19 20 21 22 23 24 25	15 16 17 18 19 20 21 22 22 23	42 39 36 32 26 18 10 01 54 48	16 16 17 18 19 20 21 21 22 23	00 56 51 43 33 21 08 55 43 33	16 17 18 18 19 20 21 21 22 23	20 15 06 55 40 23 05 48 32 18	16 17 18 19 19 20 21 21 22 23	43 36 24 08 48 26 03 40 19 01	17 18 18 19 19 20 20 21 22 22	12 02 46 24 58 29 59 30 03 39	17 18 19 19 20 20 20 21 21 21	53 39 16 46 11 34 55 17 41	16 16 17 18 19 20 20 21 22 22	01 56 46 34 18 00 41 22 05 50	16 17 18 18 19 20 21 22 22 23	16 11 05 56 45 31 17 02 49 39	17 17 18 19 20 20 21 22 22 23	02 55 44 28 09 48 25 03 43 26	16 17 18 19 20 21 21 22 23 24	58 53 45 33 19 03 45 28 13 00
Sept.	26 27 28 29 30 31 1 2 3	** 0 1 2 3 4 5 6 7	** 43 40 36 31 23 12 58 41 23	** 0 1 2 3 4 4 5 6 7	** 26 21 17 13 07 59 48 35 21	** 0 1 1 2 3 4 5 6 7	** 08 01 57 53 50 45 38 29 18	23 ** 0 1 2 3 4 5 6 7	47 ** 38 33 31 30 29 26 21 15	23 ** 0 1 2 3 4 5 6 7	21 ** 09 04 03 05 08 11 12 11	22 23 ** 0 1 2 3 4 5 7	44 28 ** 21 23 30 40 50 59 06	23 ** 0 1 2 3 4 5 6 6	39 ** 31 27 24 21 17 11 03 53	** 0 1 2 3 4 5 6 7	** 31 25 21 17 12 04 55 43 29	** 0 1 1 2 3 4 5 6 7	** 13 04 59 57 56 54 50 45 38	** 0 1 2 3 4 5 6 7 7	** 50 43 39 35 31 26 19 09 58
	5 6 7 8 9 10 11 12 13 14	8 9 10 10 11 12 13 14 15	04 44 26 09 54 42 33 27 23 20	8 9 10 11 11 12 13 14 15	05 49 34 20 09 59 52 46 42 36	8 9 10 11 12 13 14 15 15	06 54 43 33 24 17 12 07 01 53	8 9 9 10 11 12 13 14 15 16	08 00 53 47 42 38 35 30 23 13	8 9 10 11 12 13 14 15 15 16	09 07 06 05 04 05 04 00 51 37	8 9 10 11 12 13 14 15 16 17	12 17 23 29 36 42 45 42 31	7 8 9 10 11 11 12 13 14 15	42 32 21 12 04 58 53 48 42 34	8 9 10 11 12 13 14 14 15	15 00 46 33 23 14 07 02 57 51	8 9 10 11 12 12 13 14 15 16	30 22 14 07 02 57 54 49 42 32	8 9 10 11 12 12 13 14 15 16	46 34 22 11 03 55 50 45 39 32
	15 16 17 18 19 20 21 22 23 24	16 17 18 18 19 20 21 22 23 **	16 11 05 58 51 45 40 37 34 **	16 17 18 18 19 20 21 22 23 **	29 20 10 58 46 36 27 21 16 **	16 17 18 18 19 20 21 22 22 23	43 30 14 58 41 26 13 03 56 52	16 17 18 18 19 20 20 21 22 23	58 40 20 57 35 15 57 43 33 28	17 17 18 18 19 20 20 21 22 22	18 54 26 57 28 01 37 18 05 58	17 18 18 18 19 19 20 20 21 22	44 11 35 57 19 42 09 43 24 15	16 17 17 18 19 19 20 21 22 23	22 08 52 34 16 59 45 34 27 22	16 17 18 19 19 20 21 22 23 **	43 33 21 07 54 43 33 25 20 **	17 18 18 19 19 20 21 22 22 23	18 01 41 20 58 39 22 08 59 54	17 18 18 19 20 21 21 22 23 **	21 09 54 37 21 07 54 45 38 **
Oct.	25 26 27 28 29 30 1	0 1 2 3 3 4 5	32 27 20 09 56 40 22	0 1 2 2 3 4 5	12 08 03 55 45 32 18	** 0 1 2 3 4 5	** 49 45 40 33 24 14	** 0 1 2 3 4 5	** 26 24 23 20 15 09	23 ** 0 2 3 4 5	57 ** 58 01 03 04 03	23 ** 0 1 2 3 4	14 ** 21 30 40 48 55	** 0 1 2 3 4	** 19 16 12 06 58 48	0 1 2 3 3 4 5	16 12 08 01 51 40 26	** 0 1 2 3 4 5	** 52 50 48 44 39 32	0 1 2 3 4 5 5	34 31 27 22 14 05 54

MOONRISE, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONRISE (MOON'S UPPER LIMB)

FO	R TI	HE CE	ENTR	AL N	1ERII	DIAN	OF I	NDIA	(82	°.5 E)	IN L	. M. T	Γ.		FO	R CEI IN II		N STA		ONS	
Date	Lat.	0)	10)°	20)°	30)°	40)°	50)°	Kolk	cata	Cher	nnai	Del	hi	Mun	nbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Oct.	1 2 3 4 5 6 7 8 9 10	17 18 19 19 20 21 22 22 23 **	43 23 04 45 29 14 02 53 46 **	17 18 18 19 20 20 21 22 23 **	45 21 58 36 16 59 45 34 27 **	17 18 18 19 20 20 21 22 23 **	47 20 53 27 04 43 26 14 06 **	17 18 18 19 19 20 21 21 22 23	49 17 46 16 49 25 05 51 42 40	17 18 18 19 19 20 20 21 22 23	52 15 38 03 31 02 38 22 12 11	17 18 18 18 19 19 20 20 21 22	56 12 28 46 06 30 01 40 29 30	17 17 18 19 19 20 20 21 22 23	23 55 27 01 36 15 57 44 36 33	17 18 19 19 20 21 21 22 23 **	55 30 06 43 22 04 49 38 30 **	18 18 19 19 20 20 21 22 23 **	11 40 09 40 13 50 31 17 09 **	18 18 19 20 20 21 22 22 23 **	26 59 33 07 44 24 08 56 48 **
	11 12 13 14 15 16 17 18 19 20	0 1 2 3 4 5 6 6 7 8	40 35 30 24 17 10 03 59 56 55	0 1 2 3 4 5 6 7 8 9	22 19 17 14 12 10 08 08 10 12	0 1 2 3 4 5 6 7 8 9	02 02 03 05 07 10 14 18 24 30	** 0 1 2 4 5 6 7 8 9	** 41 46 53 01 10 20 30 41 51	** 0 1 2 3 5 6 7 9 10	** 16 26 39 54 10 27 45 02 17	23 ** 0 2 3 5 6 8 9 10	40 ** 58 20 44 10 37 05 32 56	** 0 1 2 3 4 5 6 8 9	** 33 34 38 41 45 51 57 04 10	0 1 2 3 4 5 6 7 8 9	26 24 22 21 20 19 20 21 23 27	0 1 2 3 4 5 6 7 9 10	06 07 11 18 25 32 41 51 01	0 1 2 3 4 5 6 7 9	44 43 44 46 48 50 53 58 03 08
	21 22 23 24 25 26 27 28 29 30	9 10 11 12 13 14 15 15 16 17	54 53 50 43 32 18 01 42 23 03	10 11 12 12 13 14 15 15 16	13 13 08 59 46 28 08 45 22 59	10 11 12 13 14 14 15 15 16	34 33 28 17 00 39 15 49 22 54	10 11 12 13 14 14 15 15 16	57 57 51 37 17 52 23 53 21 49	11 12 13 14 14 15 15 15 16 16	27 28 19 02 37 07 33 57 20 43	12 13 14 14 15 15 15 16 16	10 12 00 37 05 28 47 03 19 35	10 11 12 12 13 14 14 15 15	15 15 09 57 40 18 53 26 58 29	10 11 12 13 13 14 15 15 16 17	29 28 24 14 59 41 19 56 31 07	11 12 13 13 14 15 15 16 16 17	16 16 09 56 36 12 44 14 43 12	11 12 13 13 14 15 15 16 17	12 11 06 55 38 18 54 28 01 34
Nov.	31 1 2 3 4 5 6 7 8 9	17 18 19 19 20 21 22 23 **	44 27 12 59 49 41 34 27 ** 20	17 18 18 19 20 21 22 23 **	36 16 57 42 30 21 15 10 **	17 18 18 19 20 21 21 22 23 **	28 4 42 24 10 01 55 51 50 **	17 17 18 19 19 20 21 22 23 **	19 50 25 04 47 37 31 30 32 **	17 17 18 18 19 20 21 22 23 **	07 34 03 38 19 06 01 03 09 **	16 17 17 18 18 19 20 21 22 23	52 11 34 02 38 23 19 24 37 55	17 17 18 18 19 20 21 22 23 **	02 37 14 55 41 31 25 22 21 **	17 18 19 19 20 21 22 23 **	43 22 03 47 34 25 19 14 **	17 18 18 19 20 21 21 22 23 **	42 14 50 29 13 03 57 56 57 **	18 18 19 20 20 21 22 23 **	08 44 23 06 52 43 37 33 **
	10 11 12 13 14 15 16	1 2 2 3 4 5 6	12 04 55 46 40 36 35	1 1 2 3 4 5 6	01 57 52 49 47 48 51	0 1 2 3 4 6 7	49 49 50 51 55 00 07	0 1 2 3 5 6 7	36 41 47 54 03 14 26	0 1 2 3 5 6 7	19 30 43 58 14 32 50	** 1 2 4 5 6 8	** 15 38 02 29 57 25	0 1 2 3 4 5 6	22 23 24 27 32 39 47	1 2 3 3 4 6 7	07 04 01 59 59 01 05	1 2 3 4 5 6 7	00 04 10 16 25 35 46	1 2 3 4 5 6 7	31 30 30 31 34 39 46

MOONSET, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONSET (MOON'S UPPER LIMB)

FC	OR TH	IE CE	ENTR	AL M	IERII	DIAN	OF I	NDIA	. (82°	°.5 E)	IN L	. M. 7	Γ.		FOI	R CEI IN II		N ST		ONS	
Date	Lat.	0)	10)°	20)°	30	0	40)°	50)°	Kol	kata	Che	nnai	De	lhi	Mun	ıbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Oct.	1 2 3 4 5 6 7 8 9	5 6 6 7 8 8 9 10 11 12	22 02 43 24 06 50 37 26 18 12	5 6 6 7 8 9 9 10 11 12	18 02 46 31 17 04 53 45 37 31	5 6 6 7 8 9 10 11 11 12	14 02 50 39 28 19 11 04 58 51	5 6 6 7 8 9 10 11 12 13	09 02 55 47 41 35 31 27 22 14	5 6 7 7 8 9 10 11 12 13	03 02 00 58 57 57 56 55 52 44	4 6 7 8 9 10 11 12 13 14	55 02 07 13 19 26 33 36 35 26	4 5 6 7 8 8 9 10 11 12	48 38 27 17 07 58 51 45 39 32	5 6 6 7 8 9 10 11 11 12	26 12 57 43 29 18 08 00 53 46	5 6 7 8 9 9 10 11 12 13	32 24 16 08 01 55 50 46 40 33	5 6 7 8 9 9 10 11 12 13	54 42 30 18 07 57 49 42 36 29
	11 12 13 14 15 16 17 18 19 20	13 14 14 15 16 17 18 19 20 21	07 01 55 49 42 35 29 26 24 23	13 14 15 15 16 17 18 19 20 21	24 16 07 56 44 33 22 14 08 05	13 14 15 16 16 17 18 19 19 20	43 32 18 03 47 30 15 02 52 46	14 14 15 16 16 17 18 18 19 20	04 50 32 11 49 27 06 48 33 24	14 15 15 16 16 17 17 18 19	31 12 48 21 53 23 55 30 10 56	15 15 16 16 16 17 17 18 18 19	08 42 11 35 57 18 41 07 38 16	13 14 14 15 16 17 17 18 19 20	24 12 58 41 23 05 48 34 23 16	13 14 15 16 16 17 18 19 20 21	39 30 20 07 54 41 30 20 13	14 15 15 16 17 17 18 19 19 20	23 09 52 32 11 50 29 12 58 50	14 15 15 16 17 18 18 19 20 21	21 10 57 42 26 10 55 43 34 28
	21 22 23 24 25 26 27 28 29 30	22 23 ** 0 1 1 2 3 4	23 21 ** 16 07 54 39 21 02 42	22 23 23 ** 0 1 2 3 4	03 02 58 ** 52 42 30 16 00 44	21 22 23 ** 0 1 2 3 3 4	43 41 39 ** 35 29 21 11 59 47	21 22 23 ** 0 1 2 3 3 4	19 17 17 ** 17 14 10 04 57 50	20 21 22 23 ** 0 1 2 3 4	49 47 50 53 ** 56 57 57 55 53	20 21 22 23 ** 0 1 2 3 4	05 04 10 19 ** 30 39 46 53 58	21 22 23 ** 0 1 1 2 3 4	13 11 10 ** 07 02 54 45 34 23	22 23 ** 0 0 1 2 3 4 4	07 05 ** 02 57 48 37 24 10 55	21 22 23 ** 0 1 2 3 4 5	45 44 43 ** 42 39 34 28 20 12	22 23 ** 0 1 2 3 3 4 5	25 23 ** 21 17 11 02 51 39 26
Nov.	31 1 2 3 4 5 6 7 8 9	5 6 6 7 8 9 10 11 11 12	23 04 48 34 23 14 06 00 53 45	5 6 7 7 8 9 10 11 12 12	29 14 01 50 41 33 26 18 09 58	5 6 7 8 9 9 10 11 12 13	35 24 15 07 00 53 46 37 26 12	5 6 7 8 9 10 11 12 12 13	42 36 30 26 22 17 10 00 45 27	5 6 7 8 9 10 11 12 13 13	52 51 50 50 50 47 40 28 10 47	6 7 8 9 10 11 12 13 13	04 11 18 25 30 30 23 08 44 13	5 6 6 7 8 9 10 11 12 12	13 03 54 47 41 35 28 18 06 51	5 6 7 8 8 9 10 11 12 13	40 27 15 04 56 48 41 33 23 12	6 6 7 8 9 10 11 12 13 13	04 56 50 45 41 36 29 18 05 47	6 7 7 8 9 10 11 12 13 13	14 03 53 45 38 31 24 15 04 50
	10 11 12 13 14 15 16	13 14 15 16 17 18 19	37 28 19 12 06 04 04	13 14 15 16 16 17 18	46 32 19 07 57 50 47	13 14 15 16 16 17 18	55 37 19 02 47 36 29	14 14 15 15 16 17 18	06 43 19 57 36 20 08	14 14 15 15 16 16 17	19 50 19 50 22 59 43	14 14 15 15 16 16 17	37 59 20 41 04 31 06	13 14 14 15 16 17 18	34 15 55 37 20 08 00	13 14 15 16 17 17 18	58 44 29 15 04 56 52	14 15 15 16 17 17 17	27 04 41 19 00 44 34	14 15 15 16 17 18 19	34 17 59 42 28 17 11

MOONRISE, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONRISE (MOON'S UPPER LIMB)

FC	R TI	HE CE	ENTR	AL N	IERII	DIAN	OF I	NDIA	. (82	°.5 E)	IN L	. М. Т	Γ.		FO	R CEI IN II		N STA		NS	
Date	Lat.	0)	10)°	20)°	30)°	40	o	50)°	Kolk	cata	Cher	nnai	Del	lhi	Mun	ıbai
N	1.0	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Nov.	16 17 18 19 20 21 22 23 24 25	6 7 8 9 10 11 12 12 13 14	35 36 38 38 34 27 15 59 41 22	6 7 8 9 10 11 12 13 13 14	51 54 57 57 52 41 26 07 46 22	7 8 9 10 11 11 12 13 13 14	07 14 18 18 11 57 39 16 50 23	7 8 9 10 11 12 12 13 13 14	26 37 42 41 32 15 53 26 56 24	7 9 10 11 11 12 13 13 14 14	50 05 13 11 59 38 10 38 02 25	8 9 10 11 12 13 13 13 14 14	25 47 58 54 37 09 34 54 11 27	6 7 9 10 11 12 12 13 14	47 55 00 59 52 38 18 54 28 00	7 8 9 10 11 11 12 13 13 14	05 10 13 13 07 56 39 19 57 32	7 8 10 11 11 12 13 13 14 14	46 56 01 00 51 35 13 46 17 46	7 8 9 10 11 12 13 13 14 15	46 52 56 56 49 35 17 55 29 03
Dec.	26 27 28 29 30 1 2 3 4 5	15 16 17 17 18 19 20 21 22	02 42 24 09 56 45 37 30 24 16	14 15 16 16 17 18 19 20 21 22	59 36 14 55 39 27 18 11 06 01	14 15 16 16 17 18 18 19 20 21	56 29 04 41 22 08 57 50 46 44	14 15 15 16 17 17 18 19 20 21	52 21 52 25 3 45 33 26 24 25	14 15 15 16 16 17 18 18 19 21	48 12 37 05 38 17 03 56 56 00	14 14 15 15 16 16 17 18 19 20	43 59 17 38 4 37 20 12 15 26	14 15 15 16 16 17 18 19 20 21	31 03 37 14 54 38 27 20 17 15	15 16 17 17 18 19 20 21 22	08 43 21 01 44 31 21 15 10 05	15 16 16 17 18 18 19 20 21	15 44 16 50 28 11 59 52 50 50	15 16 16 17 18 18 19 20 21 22	36 09 44 22 04 49 39 32 28 26
	6 7 8 9 10 11 12 13 14 15	23 23 ** 0 1 2 3 4 5 6	08 58 ** 47 36 27 19 16 15	22 23 ** 0 1 2 3 4 5 6	55 49 ** 42 36 31 29 29 32 36	22 23 ** 0 1 2 3 4 5 6	42 40 ** 38 36 36 39 43 50 56	22 23 ** 0 1 2 3 5 6 7	27 29 ** 33 37 42 50 00 11 20	22 23 ** 0 1 2 4 5 6 7	07 16 ** 26 37 50 04 21 37 50	21 22 ** 0 1 3 4 5 7 8	41 58 ** 17 37 00 24 51 15 33	22 23 ** 0 1 2 3 4 5 6	14 13 ** 12 12 13 17 23 30 37	23 23 ** 0 1 2 3 4 5 6	01 56 ** 51 46 42 41 43 47 51	22 23 ** 0 1 3 4 5 6 7	51 53 ** 56 59 04 11 20 30 39	23 ** 0 1 2 3 4 5 6 7	23 ** 21 18 16 16 18 22 29 34
	16 17 18 19 20 21 22 23 24 25	7 8 9 10 10 11 12 12 13 14	19 19 15 06 53 37 19 59 39 21	7 8 9 10 11 11 12 12 13 14	38 37 31 19 03 43 21 58 34 12	7 8 9 10 11 11 12 12 13 14	59 57 48 33 13 49 23 56 29 03	8 9 10 10 11 11 12 12 13 13	24 20 08 49 25 57 26 54 23 52	8 9 10 11 11 12 12 12 13 13	54 49 33 09 39 05 29 52 15 40	9 10 11 11 11 12 12 12 13 13	39 30 08 36 59 17 34 49 05 22	7 8 9 10 10 11 12 12 13 13	41 38 29 13 52 27 00 32 03 36	7 8 9 10 11 11 12 13 13 14	54 53 46 33 15 54 31 07 42 19	8 9 10 11 11 12 12 13 13 14	42 39 27 09 45 17 47 16 46 16	8 9 10 11 11 12 13 13 14 14	37 35 26 12 52 28 02 36 09 43
	26 27 28 29 30 31 32	15 15 16 17 18 19 20	04 50 39 30 24 18 12	14 15 16 17 18 19	52 35 21 11 05 00 56	14 15 16 16 17 18 19	39 19 03 51 44 40 38	14 15 15 16 17 18 19	25 00 41 28 20 17 18	14 14 15 15 16 17 18	07 38 14 58 49 48 52	13 14 14 15 16 17 18	42 06 37 16 05 06 15	14 14 15 16 17 18 19	12 50 33 21 14 10 09	14 15 16 17 18 19 20	58 40 25 15 08 04 00	14 15 16 16 17 18 19	49 25 07 54 46 43 43	15 16 16 17 18 19 20	20 00 44 33 26 22 20

MOONSET, 2020 LOCAL MEAN TIME AND INDIAN STANDARD TIME OF MOONSET (MOON'S UPPER LIMB)

FC	OR TI	IE CE	ENTR	AL N	IERII	DIAN	OF I	NDIA	(82	°.5 E)	IN L	. M. T	Γ.		FOI	R CEI IN II		IN ST		ONS	
Date	Lat.	0)	10)°	20)°	30)°	40	0	50)°	Kol	kata	Che	nnai	De	lhi	Mun	ıbai
		h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m	h	m
Nov.	16 17 18 19 20 21 22 23 24 25	19 20 21 22 23 23 ** 0 1 2	04 06 07 05 00 50 ** 36 20 01	18 19 20 21 22 23 ** 0 1	47 47 47 47 44 37 ** 26 13 58	18 19 20 21 22 23 ** 0 1	29 26 26 27 26 22 ** 16 06 55	18 19 20 21 22 23 ** 0 0	08 03 02 04 06 06 ** 03 59 52	17 18 19 20 21 22 23 ** 0 1	43 33 31 35 40 45 48 ** 49 48	17 17 18 19 21 22 23 ** 0	06 51 47 52 03 16 27 ** 36 42	18 18 19 20 21 22 23 ** 0 1	00 57 56 57 57 54 49 ** 40 30	18 19 20 21 22 23 ** 0 1 2	52 50 51 51 48 42 ** 33 21 07	18 19 20 21 22 23 ** 0 1 2	34 29 28 30 31 31 ** 28 22 15	19 20 21 22 23 ** 0 0 1 2	11 08 08 09 08 ** 04 57 47 35
Dec.	26 27 28 29 30 1 2 3 4 5	2 3 4 4 5 6 7 8 8	41 21 03 46 31 19 10 03 56 49	2 3 4 4 5 6 7 8 9	42 26 11 57 46 36 29 22 15 06	2 3 4 5 6 6 7 8 9	43 31 20 10 02 55 49 43 35 24	2 3 4 5 6 7 8 9 9	44 37 30 24 20 16 12 07 58 45	2 3 4 5 6 7 8 9 10 11	46 44 43 42 43 43 42 37 27 10	2 3 5 6 7 8 9 10 11 11	48 54 00 07 15 22 25 21 08 47	2 3 3 4 5 6 7 8 9 10	19 08 58 49 42 36 30 24 16 05	2 3 4 5 6 6 7 8 9	52 37 23 11 00 51 44 38 30 21	3 3 4 5 6 7 8 9 10 11	07 58 51 44 39 35 31 25 17 04	3 4 4 5 6 7 8 9 10 11	23 10 59 49 40 33 27 21 13 02
	6 7 8 9 10 11 12 13 14 15	10 11 12 13 14 14 15 16 17 18	41 32 21 10 00 51 46 43 44 46	10 11 12 13 13 14 15 16 17 18	55 42 27 12 57 44 34 28 26 27	11 11 12 13 13 14 15 16 17 18	10 53 34 14 55 37 22 12 07 06	11 12 12 13 13 14 15 15 16 17	27 06 42 17 52 29 09 54 45 42	11 12 12 13 13 14 14 15 16 17	48 21 51 20 48 18 52 30 17 11	12 12 13 13 13 14 14 14 15 16	17 42 04 24 43 04 29 58 37 27	10 11 12 12 13 14 14 15 16 17	50 32 12 51 30 11 55 43 37 36	11 11 12 13 14 14 15 16 17 18	09 55 39 22 06 52 40 33 30 31	11 12 13 13 14 14 15 16 17 18	47 26 03 39 14 52 33 19 10 08	11 12 13 13 14 15 16 16 17 18	48 32 13 54 35 17 03 54 49 48
	16 17 18 19 20 21 22 23 24 25	19 20 21 22 23 23 ** 0 1	48 46 40 29 15 57 ** 38 18 59	19 20 21 22 23 23 ** 0 1 2	29 28 25 18 07 53 ** 38 22 06	19 20 21 22 22 23 ** 0 1 2	08 10 09 05 58 49 ** 37 25 14	18 19 20 21 22 23 ** 0 1 2	44 48 51 51 49 44 ** 37 30 22	18 19 20 21 22 23 ** 0 1 2	13 20 27 33 37 37 ** 36 35 33	17 18 19 21 22 23 ** 0 1 2	29 40 55 09 20 29 ** 36 41 47	18 19 20 21 22 23 ** 0 1	38 40 40 38 32 23 ** 13 02 52	19 20 21 22 23 ** 0 0 1 2	32 33 30 24 14 ** 01 47 32 18	19 20 21 22 23 ** 0 0 1 2	10 14 16 16 13 ** 07 59 51 43	19 20 21 22 23 ** 0 1 2	50 52 51 47 39 ** 29 17 05 53
	26 27 28 29 30 31 32	2 3 4 5 5 6 7	41 26 13 03 56 50 45	2 3 4 5 6 7 8	52 40 30 22 15 09 02	3 3 4 5 6 7 8	03 54 47 41 36 30 21	3 4 5 6 7 7 8	16 11 07 04 00 53 42	3 4 5 6 7 8 9	32 32 33 33 31 23 09	3 5 6 7 8 9	54 02 09 15 14 06 48	2 3 4 5 6 7 8	42 34 28 23 18 11 02	3 3 4 5 6 7 8	05 53 44 37 31 25 17	3 4 5 6 7 8 9	36 31 27 23 19 12 01	3 4 5 6 7 8 8	42 33 25 20 14 08 59

MOONRISE AND MOONSET REDUCTION OF THE L.M.T. OF RISING OR SETTING FOR THE MERIDIAN OF 82°.5 E. LONGITUDE TO THE L.M.T. OF OTHER MERIDIANS

LONGITUDE EAST OF GREENWICH Daily 0° 30° 68° 72° 80° 88° 92° 96° 120° 150° Variation 60° 76° 84° in Rising or Setting m m m m m m m m m m m m +0.8+0.20.7 28 +6.44.1 + 1.81.1 0.5 0.1 0.4 1.1 2.9 - 5.3 29 6.6 4.2 1.8 1.2 0.8 0.5 0.2 0.1 0.4 0.8 1.1 3.0 5.4 30 6.9 4.4 1.9 1.2 0.9 0.5 0.2 0.1 0.5 0.8 1.1 3.1 5.6 4.5 1.9 31 7.1 1.2 0.9 0.6 0.2 0.1 0.5 0.8 1.2 3.2 5.8 2.0 7.3 4.7 0.9 0.2 0.5 0.8 32 1.3 0.6 0.1 1.2 3.3 6.0 0.2 0.9 33 7.6 4.8 2.1 1.3 1.0 0.6 0.1 0.5 1.2 6.2 3.4 34 6.4 7.8 5.0 2.1 1.4 1.0 0.6 0.2 0.1 0.5 0.9 1.3 3.5 35 8.0 5.1 2.2 1.4 1.0 0.6 0.2 0.1 0.5 0.9 1.3 3.6 6.6 2.3 36 8.2 5.2 1.4 1.0 0.6 0.2 0.1 0.5 0.9 3.7 6.8 1.4 8.5 2.3 0.7 0.3 1.0 3.9 37 5.4 1.5 1.1 0.2 0.6 1.4 6.9 38 8.7 5.5 2.4 1.5 1.1 0.7 0.3 0.2 0.6 1.0 1.4 4.0 7.1 39 8.9 5.7 2.4 1.6 1.1 0.70.3 0.2 0.6 1.0 1.5 4.1 7.3 - 0.2 40 +9.2+5.8+2.5+1.2+0.7+0.3- 0.6 - 1.1 - 1.5 - 4.2 - 7.5 + 1.6 1.2 9.4 2.6 1.7 0.7 0.2 1.5 4.3 7.7 41 6.0 0.3 0.6 1.1 9.6 2.6 1.2 0.2 42 6.1 1.7 0.8 0.3 0.6 1.1 1.6 4.4 7.9 9.9 2.7 1.3 0.3 0.2 4.5 8.1 43 1.7 0.8 0.7 1.1 1.6 6.3 10.1 2.8 0.2 1.2 44 1.3 0.3 0.7 1.7 8.3 6.4 1.8 0.8 4.6 45 10.3 6.6 2.8 1.8 1.3 0.8 0.3 0.2 0.7 1.2 1.7 4.7 8.4 2.9 46 10.5 6.7 1.9 1.3 0.8 0.3 0.2 0.7 1.2 1.7 4.8 8.6 2.9 47 10.8 6.9 1.9 1.4 0.8 0.3 0.2 0.7 1.2 1.8 4.9 8.8 5.0 7.0 3.0 1.9 0.9 0.3 0.2 0.7 1.3 9.0 48 11.0 1.4 1.8 49 3.1 2.0 0.9 0.3 0.2 0.7 9.2 11.2 7.1 1.4 1.3 1.8 5.1 50 + 11.5 +7.3+ 3.1+ 2.0+ 1.5+0.9+0.3- 0.2 - 0.8 - 1.3 1.9 - 5.2 - 9.4 51 11.7 7.4 3.2 2.1 1.5 0.9 0.4 0.2 0.8 1.3 1.9 5.3 9.6 52 3.3 2.1 1.5 0.8 2.0 9.8 11.9 7.6 0.9 0.4 0.2 1.4 5.4 53 12.1 7.7 3.3 2.1 1.5 1.0 0.4 0.2 0.8 1.4 2.0 5.5 9.9 1.6 0.2 54 12.4 7.9 3.4 2.2 1.0 0.4 0.8 1.4 2.0 5.6 10.1 55 3.4 2.2 0.2 12.6 8.0 1.6 1.0 0.4 0.8 1.5 2.1 5.7 10.3 56 12.8 8.2 3.5 2.3 0.4 0.2 0.9 1.6 1.0 1.5 2.1 5.8 10.5 57 13.1 8.3 3.6 2.3 1.7 1.0 0.4 0.2 0.9 1.5 2.1 5.9 10.7 58 13.3 8.5 3.6 2.3 1.7 1.0 0.4 0.2 0.9 1.5 2.2 6.0 10.9 59 13.5 8.6 3.7 2.4 1.7 1.1 0.4 0.2 0.9 1.6 2.2 6.1 11.1 60 +13.7+8.7+3.8+2.4+1.7+1.1+0.4-0.2- 0.9 - 1.6 -2.3- 6.2 - 11.3 2.5 61 14.0 8.9 3.8 1.8 1.1 0.4 0.3 0.9 1.6 2.3 6.4 11.4 2.5 62 14.2 9.0 3.9 1.8 1.1 0.4 0.3 0.9 1.6 2.3 6.5 11.6 3.9 14.4 63 9.2 2.5 1.8 1.1 0.4 0.3 1.0 1.7 2.4 6.6 11.8 14.7 9.3 4.0 2.6 1.9 0.3 1.7 2.4 64 1.2 0.4 1.0 6.7 12.0 14.9 2.6 1.9 1.2 1.7 12.2 65 9.5 4.1 0.5 0.3 1.0 2.4 6.8 2.7 1.2 2.5 15.1 9.6 4.1 1.9 0.5 0.3 1.7 12.4 1.0 6.9 66 15.4 1.2 2.5 9.8 4.2 2.7 2.0 0.5 0.3 1.8 7.0 12.6 67 1.0 15.6 9.9 4.3 2.7 2.0 1.2 0.5 0.3 1.0 1.8 2.6 7.1 12.8 68 69 15.8 10.1 4.3 2.8 2.0 1.2 0.5 0.3 1.1 1.8 2.6 7.2 12.9 70 -0.3- 7.3 + 16.0+ 10.2+4.4+2.8+ 2.0+1.3+0.5- 1.1 - 1.8 - 2.6 - 13.1 71 4.4 2.9 2.1 0.5 0.3 1.9 2.7 7.4 13.3 16.3 10.4 1.3 1.1 2.1 0.5 2.7 72 16.5 10.5 4.5 2.9 1.3 0.3 1.1 1.9 7.5 13.5 2.9 73 16.7 10.6 4.6 2.1 1.3 0.5 0.3 1.9 2.7 7.6 13.7 1.1 +17.0 + 10.8 + 4.6 + 3.0 + 2.2 + 1.3 + 0.574 - 0.3 - 1.1 - 2.0 - 2.8 - 7.7 - 13.9

SUNRISE, SUNSET AND MOONRISE, MOONSET CORRECTION FOR LATITUDE

VARIATION PER 10° OF LATITUDE OF THE TIMES OF SUNRISE, SUNSET AND MOONRISE, MOONSET DISTRIBUTED OVER EACH DEGREE OF LATITUDE

MOONSET DISTRIBUTED OVER EACH DEGREE OF LATITUDE													
Var. per 10° of Lat.	1°	2°	3°	4°	5°	6°	7°	8°	9°	10°	15'	30'	45'
	m	m	m	m	m	m	m	m	m	m	m	m	m
m 5	m 0.5	m	m 1.5	2.0	m 2.5	m 3.0	3.5	m 4.0	m 4.5	5.0	m 0.1	m 0.3	m 0.4
	0.5	1.0 1.2	1.8				4.2	4.0 4.8		6.0	0.1	0.3	0.4
6				2.4	3.0	3.6			5.4				
7	0.7	1.4	2.1	2.8	3.5	4.2	4.9	5.6	6.3	7.0	0.2	0.4	0.5
8	0.8	1.6	2.4	3.2	4.0	4.8	5.6	6.4	7.2	8.0	0.2	0.4	0.6
9	0.9	1.8	2.7	3.6	4.5	5.4	6.3	7.2	8.1	9.0	0.2	0.5	0.7
10	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	0.3	0.5	0.8
11	1.1	2.2	3.3	4.4	5.5	6.6	7.7	8.8	9.9	11.0	0.3	0.6	0.8
12	1.2	2.4	3.6	4.8	6.0	7.2	8.4	9.6	10.8	12.0	0.3	0.6	0.9
13	1.3	2.6	3.9	5.2	6.5	7.8	9.1	10.4	11.7	13.0	0.3	0.7	1.0
14	1.4	2.8	4.2	5.6	7.0	8.4	9.8	11.2	12.6	14.0	0.4	0.7	1.1
15	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	13.5	15.0	0.4	0.8	1.1
16	1.6	3.2	4.8	6.4	8.0	9.6	11.2	12.8	14.4	16.0	0.4	0.8	1.2
17	1.7	3.4	5.1	6.8	8.5	10.2	11.9	13.6	15.3	17.0	0.4	0.9	1.3
18	1.8	3.6	5.4	7.2	9.0	10.8	12.6	14.4	16.2	18.0	0.5	0.9	1.4
19	1.9	3.8	5.7	7.6	9.5	11.4	13.3	15.2	17.1	19.0	0.5	1.0	1.4
20	2.0	4.0	6.0	8.0	10.0	12.0	14.0	16.0	18.0	20.0	0.5	1.0	1.5
21	2.1	4.2	6.3	8.4	10.5	12.6	14.7	16.8	18.9	21.0	0.5	1.1	1.6
22	2.2	4.4	6.6	8.8	11.0	13.2	15.4	17.6	19.8	22.0	0.6	1.1	1.7
23	2.3	4.6	6.9	9.2	11.5	13.8	16.1	18.4	20.7	23.0	0.6	1.2	1.7
24	2.4	4.8	7.2	9.6	12.0	14.4	16.8	19.2	21.6	24.0	0.6	1.2	1.8
25	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0	22.5	25.0	0.6	1.3	1.9
26	2.6	5.2	7.8	10.4	13.0	15.6	18.2	20.8	23.4	26.0	0.7	1.3	2.0
27	2.7	5.4	8.1	10.8	13.5	16.2	18.9	21.6	24.3	27.0	0.7	1.4	2.0
28	2.8	5.6	8.4	11.2	14.0	16.8	19.6	22.4	25.2	28.0	0.7	1.4	2.1
29	2.9	5.8	8.7	11.6	14.5	17.4	20.3	23.2	26.1	29.0	0.7	1.5	2.2
30	3.0	6.0	9.0	12.0	15.0	18.0	21.0	24.0	27.0	30.0	0.8	1.5	2.3
31	3.1	6.2	9.3	12.4	15.5	18.6	21.7	24.8	27.9	31.0	0.8	1.6	2.3
32	3.2	6.4	9.6	12.8	16.0	19.2	22.4	25.6	28.8	32.0	0.8	1.6	2.4
33	3.3	6.6	9.9	13.2	16.5	19.8	23.1	26.4	29.7	33.0	0.8	1.7	2.5
34	3.4	6.8	10.2	13.6	17.0	20.4	23.8	27.2	30.6	34.0	0.9	1.7	2.6
35	3.5	7.0	10.5	14.0	17.5	21.0	24.5	28.0	31.5	35.0	0.9	1.8	2.6
36	3.6	7.2	10.8	14.4	18.0	21.6	25.2	28.8	32.4	36.0	0.9	1.8	2.7
37	3.7	7.4	11.1	14.8	18.5	22.2	25.9	29.6	33.3	37.0	0.9	1.9	2.8
38	3.8	7.6	11.4	15.2	19.0	22.8	26.6	30.4	34.2	38.0	1.0	1.9	2.9
39	3.9	7.8	11.7	15.6	19.5	23.4	27.3	31.2	35.1	39.0	1.0	2.0	2.9
40	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	40.0	1.0	2.0	3.0
41	4.1	8.2	12.3	16.4	20.5	24.6	28.7	32.8	36.9	41.0	1.0	2.1	3.1
42	4.2	8.4	12.6	16.8	21.0	25.2	29.4	33.6	37.8	42.0	1.1	2.1	3.2
43	4.3	8.6	12.9	17.2	21.5	25.8	30.1	34.4	38.7	43.0	1.1	2.2	3.2
44	4.4	8.8	13.2	17.6	22.0	26.4	30.8	35.2	39.6	44.0	1.1	2.2	3.3
45	4.5	9.0	13.5	18.0	22.5	27.0	31.5	36.0	40.5	45.0	1.1	2.3	3.4
46	4.6	9.2	13.8	18.4	23.0	27.6	32.2	36.8	41.4	46.0	1.2	2.3	3.5
47	4.7	9.4	14.1	18.8	23.5	28.2	32.9	37.6	42.3	47.0	1.2	2.4	3.5
48	4.8	9.6	14.4	19.2	24.0	28.8	33.6	38.4	43.2	48.0	1.2	2.4	3.6
49	4.9	9.8	14.7	19.6	24.5	29.4	34.3	39.2	44.1	49.0	1.2	2.5	3.7
50	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	1.3	2.5	3.8

REDUCTION OF TIME

REDUCTION OF LOCAL MEAN TIME OF A PLACE INTO THE INDIAN STANDARD TIME

A-CORRECTION TO BE ADDED TO L.M.T. TO OBTAIN I.S.T.

Γ	LONGITUDE OF PLACE (EAST OF GREENWICH)																
F		67°	68°	69°	70°	71°	72°	73°	74°	75°	76°	77°	78°	79°	80°	81°	82°
F																	
		m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m
	0	62.0	58.0	54.0	50.0	46.0	42.0	38.0	34.0	30.0	26.0	22.0	18.0	14.0	10.0	6.0	2.0
	3	61.8	57.8	53.8	49.8	45.8	41.8	37.8	33.8	29.8	25.8	21.8	17.8	13.8	9.8	5.8	1.8
	6	61.6	57.6	53.6	49.6	45.6	41.6	37.6	33.6	29.6	25.6	21.6	17.6	13.6	9.6	5.6	1.6
	9	61.4	57.4	53.4	49.4	45.4	41.4	37.4	33.4	29.4	25.4	21.4	17.4	13.4	9.4	5.4	1.4
	12	61.2	57.2	53.2	49.2	45.2	41.2	37.2	33.2	29.2	25.2	21.2	17.2	13.2	9.2	5.2	1.2
	15	61.0	57.0	53.0	49.0	45.0	41.0	37.0	33.0	29.0	25.0	21.0	17.0	13.0	9.0	5.0	1.0
	18	60.8	56.8	52.8	48.8	44.8	40.8	36.8	32.8	28.8	24.8	20.8	16.8	12.8	8.8	4.8	0.8
	21	60.6	56.6	52.6	48.6	44.6	40.6	36.6	32.6	28.6	24.6	20.6	16.6	12.6	8.6	4.6	0.6
	24	60.4	56.4	52.4	48.4	44.4	40.4	36.4	32.4	28.4	24.4	20.4	16.4	12.4	8.4	4.4	0.4
	27	60.2	56.2	52.2	48.2	44.2	40.2	36.2	32.2	28.2	24.2	20.2	16.2	12.2	8.2	4.2	0.2
	30	60.0	56.0	52.0	48.0	44.0	40.0	36.0	32.0	28.0	24.0	20.0	16.0	12.0	8.0	4.0	0.0
	33	59.8	55.8	51.8	47.8	43.8	39.8	35.8	31.8	27.8	23.8	19.8	15.8	11.8	7.8	3.8	
	36	59.6	55.6		47.6	43.6	39.6	35.6	31.6	27.6	23.6	19.6	15.6	11.6	7.6	3.6	
	39	59.4	55.4	51.4	47.4	43.4	39.4	35.4	31.4	27.4	23.4	19.4	15.4	11.4	7.4	3.4	
	42	59.2	55.2	51.2	47.2	43.2	39.2	35.2	31.2	27.2	23.2	19.2	15.2	11.2	7.2	3.2	
	45	59.0	55.0	51.0	47.0	43.0	39.0	35.0	31.0	27.0	23.0	19.0	15.0	11.0	7.0	3.0	
	48	58.8	54.8	50.8	46.8	42.8	38.8	34.8	30.8	26.8	22.8	18.8	14.8	10.8	6.8	2.8	
	51	58.6	54.6	50.6	46.6	42.6	38.6	34.6	30.6	26.6	22.6	18.6	14.6	10.6	6.6	2.6	
	54	58.4	54.4	50.4	46.4	42.4	38.4	34.4	30.4	26.4	22.4	18.4	14.4	10.4	6.4	2.4	
	5 7	58.2	54.2	50.4	46.2	42.4	38.2	34.4	30.4	26.2	22.4	18.2	14.2	10.4	6.2	2.2	
		58.0															
L	60	38.0	54.0	50.0	46.0	42.0	38.0	34.0	30.0	26.0	22.0	18.0	14.0	10.0	6.0	2.0	

B- CORRECTION TO BE SUBTRACTED FROM L.M.T. TO OBTAIN I.S.T.

	LONGITUDE OF PLACE (EAST OF GREENWICH)															
	82°	83°	84°	85°	86°	87°	88°	89°	90°	91°	92°	93°	94°	95°	96°	97°
	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m
0		2.0	6.0	10.0	14.0	18.0	22.0	26.0	30.0	34.0	38.0	42.0	46.0	50.0	54.0	58.0
3		2.2	6.2	10.2	14.2	18.2	22.2	26.2	30.2	34.2	38.2	42.2	46.2	50.2	54.2	58.2
6		2.4	6.4	10.4	14.4	18.4	22.4	26.4	30.4	34.4	38.4	42.4	46.4	50.4	54.4	58.4
9		2.6	6.6	10.6	14.6	18.6	22.6	26.6	30.6	34.6	38.6	42.6	46.6	50.6	54.6	58.6
12		2.8	6.8	10.8	14.8	18.8	22.8	26.8	30.8	34.8	38.8	42.8	46.8	50.8	54.8	58.8
15		3.0	7.0	11.0	15.0	19.0	23.0	27.0	31.0	35.0	39.0	43.0	47.0	51.0	55.0	59.0
18		3.2	7.2	11.2	15.2	19.2	23.2	27.2	31.2	35.2	39.2	43.2	47.2	51.2	55.2	59.2
21		3.4	7.4	11.4	15.4	19.4	23.4	27.4	31.4	35.4	39.4	43.4	47.4	51.4	55.4	59.4
24		3.6	7.6	11.6	15.6	19.6	23.6	27.6	31.6	35.6	39.6	43.6	47.6	51.6	55.6	59.6
27		3.8	7.8	11.8	15.8	19.8	23.8	27.8	31.8	35.8	39.8	43.8	47.8	51.8	55.8	59.8
30	0.0	4.0	8.0	12.0	16.0	20.0	24.0	28.0	32.0	36.0	40.0	44.0	48.0	52.0	56.0	60.0
33	0.2	4.2	8.2	12.2	16.2	20.2	24.2	28.2	32.2	36.2	40.2	44.2	48.2	52.2	56.2	60.2
36	0.4	4.4	8.4	12.4	16.4	20.4	24.4	28.4	32.4	36.4	40.4	44.4	48.4	52.4	56.4	60.4
39	0.6	4.6	8.6	12.6	16.6	20.6	24.6	28.6	32.6	36.6	40.6	44.6	48.6	52.6	56.6	60.6
42	0.8	4.8	8.8	12.8	16.8	20.8	24.8	28.8	32.8	36.8	40.8	44.8	48.8	52.8	56.8	60.8
45	1.0	5.0	9.0	13.0	17.0	21.0	25.0	29.0	33.0	37.0	41.0	45.0	49.0	53.0	57.0	61.0
48	1.2	5.2	9.2	13.2	17.2	21.2	25.2	29.2	33.2	37.2	41.2	45.2	49.2	53.2	57.2	61.2
51	1.4	5.4	9.4	13.4	17.4	21.4	25.4	29.4	33.4	37.4	41.4	45.4	49.4	53.4	57.4	61.4
54	1.6	5.6	9.6	13.6	17.6	21.6	25.6	29.6	33.6	37.6	41.6	45.6	49.6	53.6	57.6	61.6
57	1.8	5.8	9.8	13.8	17.8	21.8	25.8	29.8	33.8	37.8	41.8	45.8	49.8	53.8	57.8	61.8
60	2.0	6.0	10.0	14.0	18.0	22.0	26.0	30.0	34.0	38.0	42.0	46.0	50.0	54.0	58.0	62.0

METHOD OF CALCULATION

Sunrise and Sunset

The local mean times of Sunrise and Sunset for latitudes 0° to 60° North at intervals of 4 days during the year have been given on pages 280 to 287. The timings relate to the visibility of the upper limb of the Sun on the horizon. From these tables the L.M.T. of rise or set for any day of the year and for any latitude of place can be obtained by simple interpolation. If the place is in the southern hemisphere, the corrections given on pages 290 to 291 will then have to be applied to the timings for the corresponding northern latitude. For a station in India, the timings of Sunrise and Sunset so obtained which are in L.M.T. can be reduced to I.S.T. by applying the correction given on page 314 according to the longitude of the station.

In addition to the above details given in the publication, the timings of Sunrise and Sunset of five important cities of India, viz., Kolkata, Varanasi, Chennai, Delhi and Mumbai have been specially calculated and given in I.S.T. on pages 292 to 295.

Sunrise and Sunset for Southern Latitudes

The timings of Sunrise and Sunset for southern latitudes, which have not been tabulated separately, can be deduced from those for the corresponding northern latitudes by applying the corrections given on pages 290 and 291.

Twilight

The timings of the beginning of morning twilight and ending of evening twilight have been given for latitudes 0° to 60° North on pages 280 to 287. The timings relate to the instant when the center of the Sun is 18° below the horizon. This is now known as astronomical twilight. The period of twilight has been divided into three parts - Civil when the Sun is 6° below the horizon, Nautical when 12° and Astronomical when 18° - and their durations have been given separately on pages 288 and 289 at an interval of 8 days. The figures for any intermediate date can be worked out from the tables by simple interpolation.

Moonrise and Moonset

The local mean times of Moonrise and Moonset for latitudes 0° to 50° North at 10- degrees interval together with the timings of these events in I.S.T. for four important stations in India, Viz., Kolkata, Chennai, Delhi and Mumbai for each day of the year have been given on pages 296 to 311 along with some supplementary tables on pages 312 to 313. A detailed method of calculation for any station is given below.

To find the time of Moonrise and Moonset for any station the figure for the phenomena concerned given against the date is to be taken from the table (pages 296 to 311) for the latitude just lower than the latitude of the station, to which the following corrections will have to be applied:

- (a) Correction for difference in latitude;
- (b) Correction for longitude, if the place is not on the Central Meridian of India (i.e., 82°.5 E. Long);
- (c) Correction for converting L.M.T. into I.S.T., when and where necessary.

These corrections are detailed below:

(a) Correction for difference in latitude - The timings of Moonrise and Moonset have been given for latitudes 0° , 10° , 20° , 30° , 40° and 50° North, and in local mean time. The timing for any particular latitude of place falling within the above limits can be obtained by simple interpolation between figures for the two latitudes, one below and the other above the latitude of the given place. For this purpose the table on page 313 can be conveniently used wherein corrections for latitude are shown according to the variation per 10° of latitude of the timings of Moonrise or Moonset distributed over each degree of latitude. The correction can also be calculated directly by multiplying one-tenth of the time difference between the figures for two consecutive given latitudes by the excess of the latitude of the station over the given lower latitude.

.

METHOD OF CALCULATION

- (b) Correction for difference in longitude The timings thus obtained are exact for the Central Meridian of India, i.e, for longitude 82° .5 East of Greenwich. For other longitudes the correction given on page 312 should be applied according to :
 - (i) the longitude of the station, and
 - (ii) the daily variation of the timings of rising or setting, as the case may be, between two consecutive dates.

If greater accuracy is not required, the daily variation may be assumed to be a constant (i.e., 50 minutes) for all dates and corrections from the following table may be applied instead of taking the corrections from the table on page 312.

Longitude of Station	Correction	Longitude of Station	Correction
(East)	m	(East)	m
0°	+ 11.5	84°	- 0.2
30°	+ 7.3	88°	- 0.8
60°	+ 3.1	92°	- 1.3
68°	+ 2.0	96°	- 1.9
72°	+ 1.5	120°	- 5.2
76°	+ 0.9	150°	- 9.4
80°	+ 0.3	180°	- 13.5

The timing thus obtained by the above two operations is in L.M.T. of the station

(c) Correction for converting L.M.T. into I.S.T. - The figures obtained by the operations (a) and (b) above would give the local mean time of Moonrise or Moonset for the given station. The local mean time can be reduced to the Indian Standard Time by the help of the reduction table on page 314. In other way to obtain the I.S.T., the L.M.T. may be increased at the rate of 4 minutes per degree of longitude if the station is to the west of 82° .5 East and decreased at the same rate if the station is to the east of 82° .5 East Longitude.

In practice, however, when dealing with the same station, it will be convenient to combine corrections (b) and (c) above, as these are constant day after day, and add this constant to the daily times corrected for latitude only.

Moonrise and Moonset for southern Latitudes

The times of Moonrise and Moonset for southern latitudes have not been given separately. The timings for a station in southern latitude can, however, be deduced from those for the corresponding northern latitude by the following formula:

Timings for a southern latitude = $2 \times \text{Timing for } 0^{\circ} \text{ latitude}$ - Timing for the same northern latitude.

In this case the local mean time for the same latitude north will have to be calculated first by applying the latitude correction (a) above, and the corresponding time for the southern latitude will have to be deduced by the above formula by utilising the published figure for 0° latitude. The exact L.M.T. of rising or setting for the place in question will, however, be obtained by applying the correction (b) above to the time so deduced.

If necessary, the timings thus obtained may be reduced to I.S.T. by the usual method.

PHASES OF THE MOON, 2020

(Time in I.S.T.)

		d	h	m			d	h	m
Full Moon	Dec,19	12	10	42	Full Moon	Jul	05	10	14
Last Quarter	Dec,19	19	10	27	Last Quarter	Jul	13	04	59
New Moon	Dec,19	26	10	43	New Moon	Jul	20	23	03
First Quarter	Jan, 20	03	10	15	First Quarter	Jul	27	18	03
Full Moon	Jan	11	00	51	Full Moon	Aug	03	21	29
Last Quarter	Jan	17	18	28	Last Quarter	Aug	11	22	15
New Moon	Jan	25	03	12	New Moon	Aug	19	08	12
First Quarter	Feb	02	07	12	First Quarter	Aug	25	23	28
Full Moon	Feb	09	13	03	Full Moon	Sep	02	10	52
Last Quarter	Feb	16	03	47	Last Quarter	Sep	10	14	56
New Moon	Feb	23	21	02	New Moon	Sep	17	16	30
First Quarter	Mar	03	01	27	First Quarter	Sep	24	07	25
Full Moon	Mar	09	23	18	Full Moon	Oct	02	02	35
Last Quarter	Mar	16	15	04	Last Quarter	Oct	10	06	10
New Moon	Mar	24	14	58	New Moon	Oct	17	01	01
First Quarter	Apr	01	15	51	First Quarter	Oct	23	18	53
Full Moon	Apr	08	08	05	Full Moon	Oct	31	20	19
Last Quarter	Apr	15	04	26	Last Quarter	Nov	08	19	16
New Moon	Apr	23	07	56	New Moon	Nov	15	10	37
First Quarter	May	01	02	08	First Quarter	Nov	22	10	15
Full Moon	May	07	16	15	Full Moon	Nov	30	15	00
Last Quarter	May	14	19	33	Last Quarter	Dec	08	06	07
New Moon	May	22	23	09	New Moon	Dec	14	21	47
First Quarter	May	30	09	00	First Quarter	Dec	22	05	11
Full Moon	Jun	06	00	42	Full Moon	Dec	30	08	58
Last Quarter	Jun	13	11	54	Last Quarter	Jan,21	06	15	07
New Moon	Jun	21	12	11	New Moon	Jan,21	13	10	30
First Quarter	Jun	28	13	46	First Quarter	Jan,21	21	02	32
-					-				

PART - IV ECLIPSES AND OCCULTATIONS

In the year 2020, there are two eclipses of the Sun.

I	June	21	Annular eclipse of the Sun	320-329
II	December	14	Total eclipse of the Sun	330–333

In addition, there are four penumbral	January 10	334
eclipses of the Moon	June 5	335
	July 5	336
	November 30	337

I- Annular eclipse of the Sun, June 21, 2020, Sunday.

Visible in India.

Area of Visibility

The eclipse is visible in the region covering Africa (except W. and S. parts), S. E. Europe, Middle East, Asia (except N and E. Russia), Indonesia, Micronesia.

ELEMENTS OF THE ECLIPSE											
Universal Time of Conjunction in	Right As	censio	on : January	7 21 ^d (6 ^h 41 ¹	^m 24 ^s .21					
MOON SUN											
h m s h m s											
Right Ascension	6	01	33.22	6	01	33.22					
Hourly Motion			141.00			10.40					
	0	•	"	0	•	"					
Declination	23	32	59.68	23	26	09.7					
Hourly Motion		2	55.55			-0.37					
Equatorial Horizontal Parallax 56 31.12 08.65											
True Semi-diameter		15	23.70		15	44.23					

	CIRCUMSTANCES OF THE ECLIPSE											
Universal Indian Latitude Longitude												
Time Standard Time												
d h m d h m ° ' ° '												
Eclipse begins	21	03	46.1	21	09	16.1	-1	01.9	+34	23.0		
Central eclipse begins	21	04	48.5	21	10	18.5	+1	16.1	+17	47.9		
Greatest eclipse*	21	06	40.1	21	12	10.1	+30	31.1	+79	40.1		
Central eclipse ends 21 08 31.7 21 14 01.7 +11 28.0 +147 35.3										35.3		
Eclipse ends 21 09 34.0 21 15 04.0 +9 10.5 +130 59.6												

^{*}Magnitude of the eclipse = 0.9936, Maximum duration of annular phase = 1 min 17 s

ANNULAR SOLAR ECLIPSE OF JUNE 21, 2020

The timings of beginning and ending are expressed in UT

BESSELIAN ELEMENTS OF THE ANNULAR ECLIPSE OF THE SUN JUNE 21

Terr	estrial	Co-ordinates	of the Centre						Radius of Penumbra and		
	ime		ow on the	Direc	tion of the Axis	of Shao	low *		Umbra on the		
	TT)	Fundame	ntal Plane						Pla		
h	m	X	у	sin d	cos d		μ		11	12	
			-			0	•	"			
3	40	-1.615715	-0.036646	+0.397731	+0.917502	234	32	18.5	+0.551682	+0.006661	
	50	-1.527255	-0.027912	+0.397730	+0.917502	237	02	18.0	+0.551673	+0.006652	
4	00	-1.438790	-0.019186	+0.397730	+0.917503	239	32	17.5	+0.551664	+0.006643	
	10	-1.350320	-0.010469	+0.397729	+0.917503	242	02	16.9	+0.551654	+0.006633	
	20	-1.261845	-0.001761	+0.397728	+0.917503	244	32	16.4	+0.551643	+0.006622	
	30	-1.173365	+0.006939	+0.397728	+0.917503	247	02	15.8	+0.551632	+0.006611	
	40	-1.084881	+0.015630	+0.397727	+0.917504	249	32	15.3	+0.551620	+0.006599	
	50	-0.996392	+0.024312	+0.397727	+0.917504	252	02	14.8	+0.551608	+0.006587	
5	00	-0.907900	+0.032985	+0.397726	+0.917504	254	32	14.2	+0.551595	+0.006574	
	10	-0.819404	+0.041650	+0.397726	+0.917504	257	02	13.7	+0.551581	+0.006560	
	20	-0.730904	+0.050305	+0.397725	+0.917505	259	32	13.2	+0.551567	+0.006546	
	30	-0.642401	+0.058952	+0.397725	+0.917505	262	02	12.6	+0.551553	+0.006532	
	40	-0.553894	+0.067590	+0.397724	+0.917505	264	32	12.1	+0.551537	+0.006516	
	50	-0.465384	+0.076219	+0.397723	+0.917505	267	02	11.5	+0.551521	+0.006500	
6	00	-0.376872	+0.084840	+0.397723	+0.917506	269	32	11.0	+0.551505	+0.006484	
	10	-0.288356	+0.093451	+0.397722	+0.917506	272	02	10.5	+0.551488	+0.006467	
	20	-0.199838	+0.102053	+0.397722	+0.917506	274	32	09.9	+0.551470	+0.006449	
	30	-0.111318	+0.110646	+0.397721	+0.917506	277	02	09.4	+0.551452	+0.006431	
	40	-0.022796	+0.119231	+0.397721	+0.917507	279	32	08.9	+0.551433	+0.006412	
	50	+0.065729	+0.127806	+0.397720	+0.917507	282	02	08.3	+0.551413	+0.006393	
7	00	+0.154255	+0.136372	+0.397719	+0.917507	284	32	07.8	+0.551393	+0.006372	
	10	+0.242783	+0.144929	+0.397719	+0.917507	287	02	07.3	+0.551373	+0.006352	
	20	+0.331312	+0.153477	+0.397718	+0.917508	289	32	06.7	+0.551351	+0.006330	
	30	+0.419843	+0.162016	+0.397717	+0.917508	292	02	06.2	+0.551330	+0.006309	
	40	+0.508374	+0.170546	+0.397717	+0.917508	294	32	05.6	+0.551307	+0.006286	
	50	+0.596907	+0.179066	+0.397716	+0.917508	297	02	05.1	+0.551284	+0.006263	
8	00	+0.685440	+0.187578	+0.397716	+0.917509	299	32	04.6	+0.551260	+0.006239	
	10	+0.773973	+0.196080	+0.397715	+0.917509	302	02	04.0	+0.551236	+0.006215	
	20	+0.862507	+0.204573	+0.397714	+0.917509	304	32	03.5	+0.551211	+0.006190	
	30	+0.951042	+0.213056	+0.397714	+0.917509	307	02	03.0	+0.551186	+0.006165	
	40	+1.039576	+0.221530	+0.397713	+0.917510	309	32	02.4	+0.551160	+0.006139	
	50	+1.128109	+0.229995	+0.397712	+0.917510	312	02	01.9	+0.551133	+0.006112	
9	00	+1.216643	+0.238451	+0.397712	+0.917510	314	32	01.3	+0.551106	+0.006085	
	10	+1.305175	+0.246897	+0.397711	+0.917511	317	02	8.00	+0.551078	+0.006057	
	20	+1.393707	+0.255334	+0.397710	+0.917511	319	32	00.3	+0.551049	+0.006028	
	30	+1.482238	+0.263761	+0.397710	+0.917511	322	01	59.7	+0.551020	+0.005999	
L	40	+1.570768	+0.272179	+0.397709	+0.917511	324	31	59.2	+0.550991	+0.005970	
, 0	0.0	0460024			•					- 0.00459542	

tanf1 = 0.00460834tanf2= 0.00458542

TT		d		Variations per minute						
hr	0	u ,	"	x	y	, ŀ	ι' "			
4	23	26	11	+0.008 847	0.000 872	15	00			
5	23	26	10	+0.008 850	0.000 866	15	00			
6	23	26	09	+0.008 852	0.000 861	15	00			
7	23	26	08	+0.008 853	0.000 856	15	00			
8	23	26	07	+0.008 853	0.000 850	15	00			
9	23	26	06	+0.008 853	0.000 845	15	00			

 $[\]xi' = 0.004364 \text{ pcos } \phi'\cos(\mu + \lambda)$ $\eta' = 0.004364 \text{ } \xi\sin d$ *d stands for declination and μ stands for hour angle

PATH OF CENTRAL PHASE DURING THE ANNULAR ECLIPSE OF THE SUN

JUNE 21

Central Line Terrestrial Northern Limit Southern Limit Central Line Time (TT) Latitude Longitude Latitude Longitude Latitude Longitude Duration of Annularity 0 m s Limit +1 35.4 +17 36.4 +1 16.1 +17 47.9 -1 02.1 +34 24.7 ----h m 50 +05 08.9 +25 20.1 +05 06.9 +26 04.8 +05 03.8 +26 46.0 1 21 5 00 +38 38.0 +39 12.1 +12 07.1+1157.6 +38 55.2 +11 48.1 12 45 30.7 45 42.9 45 54.9 1 07 10 16 03.0 15 53.7 15 44.3 02 20 19 02.9 50 43.2 18 54.1 50 52.6 18 45.3 51 02.0 1 55 07.0 58 30 21 30.3 21 22.0 55 14.6 21 13.8 55 22.1 0 40 34.5 59 03.1 59 09.2 59 15.3 54 23 23 26.7 23 18.9 0 50 +25 20.2 +25 12.8 +62 47.2 +25 05.5 +62 52.1 0 51 +62 42.3 6 00 +26 36.3 +66 19.2 49 +26 50.3 +66 11.2 +2643.3 +66 15.2 28 06.2 69 40.7 10 69 34.4 27 59.5 69 37.6 27 52.8 0 47 20 29 09.1 72 54.9 29 02.6 72 57.3 56.0 72 59.8 0 45 28 30 29 59.4 76 15.1 29 52.9 76 16.9 29 46.5 18.7 0 44 76 0 43 40 30 37.2 79 37.0 30 30.8 79 38.2 30 24.4 79 39.4 +30 49.6 50 +31 02.5 +83 02.3 +83 02.9 +8303.4 43 +30 56.1 0 7 00 +86 32.6 +3108.5 +86 32.5 +31 01.9 +86 32.4 44 +31 15.1 90 09.6 31 07.4 90 08.8 00.6 90 08.1 0 45 10 31 14.2 31 20 30 59.2 93 55.5 93 53.9 93 52.3 46 30 52.0 30 44.9 0 97 52.8 97 50.2 48 30 30 28.5 30 21.0 30 13.4 97 47.7 0 102 01.8 40 29 40.4 102 05.5 29 32.4 29 24.3 101 58.1 0 51 50 +106 34.4 +28 31.8+106 39.6 +28 23.2 14.6 +106 29.2 54 +280 8 00 +26 57.6 +111 45.4 +26 48.4 +111 38.2 +26 39.2 +111 31.1 0 57 10 24 48.2 117 43.1 24 38.4 117 33.0 24 28.7 117 23.1 1 02 20 21 40.0 125 23.4 21 30.1 125 08.1 21 20.1 124 53.1 1 07 30 +15 29.8 +139 21.4 +15 27.0+138 39.6 +15 23.2 +138 0.8 1 15 Limit +11 46.1 +147 46.4 +11 28.2+147 35.2 +11 10.4 +147 24.3

THE ANNULAR ECLIPSE OF THE SUN, JUNE 21 $\,$

LOCAL CIRCUMSTANCES RELATING TO INDIA

BEGINNING OF ECLIPSE FOR STATIONS IN INDIA TIME IN I.S.T.

			L	ongitude Ea	st of Greenw	ich Beginnir	ng		
Lat	68°	72°	76°	80°	84°	88°	92°	96°	100°
(North)	h m	h m	h m	h m	h m	h m	h m	h m	h m
36°	10 18.0	10 23.4	10 29.8	10 37.1	10 45.4	10 54.5	11 04.2	11 14.3	11 24.6
32°	10 09.8	10 15.7	10 22.7	10 30.8	10 39.9	10 50.0	11 00.7	11 11.9	11 23.2
28°	10 02.7	10 09.1	10 16.8	10 25.7	10 35.8	10 46.9	10 58.7	11 11.0	11 23.2
24°	9 56.8	10 03.8	10 12.2	10 22.0	10 33.1	10 45.4	10 58.4	11 11.8	11 25.0
20°	9 52.2	9 59.9	10 09.1	10 19.9	10 32.2	10 45.8	11 00.2	11 14.7	11 28.8
16°	9 49.1	9 57.6	10 07.8	10 19.8	10 33.6	10 48.7	11 04.4	11 20.0	11 34.8
12°	9 47.7	9 57.2	10 08.6	10 22.2	10 37.7	10 54.6	11 11.8	11 28.4	11 43.5
8°	9 48.3	9 59.1	10 12.2	10 27.9	10 45.7	11 04.7	11 23.5	11 40.6	11 55.5

ENDING OF ECLIPSE FOR STATIONS IN INDIA TIME IN I.S.T.

			I	ongitude Ea	ast of Greenw	ich Beginnir	ng		
Lat	68°	72°	76°	80°	84°	88°	92°	96°	100°
(North)	h m	h m	h m	h m	h m	h m	h m	h m	h m
36°	13 21.8	13 32.3	13 42.3	13 51.6	14 00.2	14 08.0	14 14.8	14 20.6	14 25.5
32°	13 22.5	13 33.7	13 44.5	13 54.7	14 04.0	14 12.5	14 19.8	14 26.2	14 31.5
28°	13 21.4	13 33.4	13 45.0	13 56.0	14 06.2	14 15.3	14 23.4	14 30.3	14 36.1
24°	13 18.5	13 31.0	13 43.4	13 55.3	14 16.4	14 25.2	14 32.8	14 32.8	14 39.2
20°	13 13.4	13 26.5	13 39.6	13 52.3	14 04.3	14 15.3	14 25.0	14 33.5	14 40.5
16°	13 06.0	13 19.3	13 33.0	13 46.6	13 59.6	14 11.8	14 22.6	14 32.0	14 40.0
12°	12 56.2	13 09.3	13 23.2	13 37.5	13 51.6	14 05.1	14 17.3	14 28.1	14 37.2
8°	12 43.8	12 56.1	13 09.6	13 24.1	13 39.2	13 54.2	14 08.3	14 20.8	14 31.5

The timings of beginning and ending are expressed in IST

THE ANNULAR ECLIPSE OF THE SUN, JUNE 21 PHASES OF ECLIPSE VISIBLE FROM CERTAIN PLACES OF

INDIA AND ITS NEIGHBOURHOOD

Places	Partial Eclipse Begins (IST)	Position Angles at Eclipse Begins	Annular phase Begins (IST)	Greatest Eclipse (IST)	Magni- tude	Max- imum Obscu- ration	Annular phase Ends (IST)	Partial Eclipse Ends (IST)	Position Angles at Eclipse Ends	Duration of Eclipse
	h m	P V	h m	h m			h m	h m	P V	h m
Agartala	10 56.0	275 1		12 45.1	0.771	71.1%		14 23.6	77 356	3 28
Ahmadabad	10 04.0	263 346	-	11 42.2	0.823	77.4%		13 32.2	70 340	3 28
Aijwal	11 00.9	276 3		12 49.8	0.770	70.9%		14 26.7	77 357	3 26
Ajmer	10 11.9	260 337	-	11 51.9	0.906	87.9%	-	13 40.6	76 0	3 29
Allahabad	10 27.6	267 347		12 13.6	0.831	78.4%		14 00.6	75 356	3 33
Amritsar	10 20.0	252 319	-	11 57.7	0.935	91.5%		13 41.6	85 27	3 22
Bangalore	10 13.2	285 29	1	11 47.6	0.473	36.5%	1	13 31.5	50 290	3 18
Bhagalpur	10 42.4	270 350	-	12 30.9	0.811	76.0%		14 13.8	77 358	3 31
Bhopal	10 14.7	267 351	1	11 57.4	0.789	73.2%	-	13 47.0	70 344	3 32
Bhubaneswar	10 38.3	279 17		12 26.1	0.655	57.0%		14 09.7	67 338	3 31
Cannanore	10 06.7	285 28	-	11 37.5	0.461	35.2%		13 20.4	47 274	3 14
*Chamoli	10 27.1	257 325	12 08.7	12 09.1	0.997	98.6%	12 09.4	13 53.7	84 16	3 27
Chandigarh	10 24.4	254 322		12 04.5	0.965	95.4%		13 48.7	85 21	3 24
Chennai	10 22.0	288 35		11 58.5	0.453	34.4%		13 40.8	50 298	3 19
Cochin	10 11.0	290 37		11 38.9	0.396	28.4%		13 17.7	43 267	3 07
Cooch Behar	10 50.5	270 342		12 39.0	0.846	80.3%		14 19.2	80 3	3 29
Cuttack	10 38.6	278 16		12 26.6	0.661	57.8%		14 10.1	68 339	3 31
Darjeeling	10 47.2	268 339		12 35.2	0.868	83.1%		14 16.3	81 5	3 29
*Dehradun	10 24.2	256 325	12 05.0	12 05.3	0.996	98.6%	12 05.6	13 50.4	83 17	3 26
Delhi	10 20.1	258 332		12 01.6	0.952	93.7%		13 48.4	80 9	3 28
Dibrugarh	11 07.9	270 282		12 54.7	0.896	86.5%		14 29.1	85 11	3 21
Dwarka	9 56.6	262 344		11 31.1	0.840	79.5%		13 20.1	69 328	3 24
Gandhinagar	10 04.3	263 346		11 42.6	0.827	77.9%		13 32.6	70 341	3 28
Gangtok	10 48.3	268 336		12 36.2	0.877	84.2%		14 17.0	81 6	3 28
Gaya	10 36.2	270 352		12 24.2	0.799	74.4%		14 08.9	75 355	3 33
Guwahati	10 57.0	271 338		12 45.5	0.842	79.8%		14 23.6	81 4	3 27
Haridwar	10 24.9	256 324		12 06.0	0.990	98.6%		13 50.8	84 18	3 26
Hazaribagh	10 37.2	272 356		12 25.4	0.774	71.4%		14 09.9	74 352	3 33
Hubli	10 06.0	277 13		11 42.6	0.586	49.1%		13 30.8	56 301	3 25
Hyderabad	10 15.0	278 14		11 55.8	0.602	50.8%		13 43.9	59 316	3 29
Imphal	11 04.6	275 342		12 53.0	0.804	75.0%		14 28.7	80 1	3 24
Itanagar	11 03.5	270 311		12 51.1	0.879	84.4%		14 26.9	84 9	3 23
Jaipur	10 14.8	260 337		11 55.8	0.908	88.1%		13 44.2	77 1	3 29
Jalandhar	10 22.7	252 318		12 01.0	0.931	91.0%		13 44.5	86 27	3 22
Jammu	10 21.7	250 316		11 58.5	0.904	87.5%		13 41.2	87 32	3 20
*Joshimath	10 27.8	257 325	12 09.5	12 09.8	0.997	98.6%	12 10.2	13 54.3	84 17	3 27

^{&#}x27; - - ' indicates annular phase of eclipse is not visible corresponding to the places where only partial eclipse occurs

^{&#}x27;*' Places where annular phase of eclipse occurs

THE ANNULAR ECLIPSE OF THE SUN, JUNE 21

PHASES OF ECLIPSE VISIBLE FROM CERTAIN PLACES OF INDIA AND ITS NEIGHBOURHOOD

Places	Partial	Position	Annular	Greatest	Magni-	Max-	Annular	Partial	Position	Dura-
	Eclipse	Angles	phase	Eclipse	tude	imum	phase	Eclipse	Angles at	tion
	Begins	at Eclipse	Begins (IST)	(IST)		Obscu-	Ends (IST)	Ends (IST)	Eclipse	of Eclipse
	(IST)	Begins	(151)			ration	(151)	(151)	Ends	Echpse
	h m	P V	h m	h m			h m	h m	P V	h m
Kanyakumari	10 17.7	295 47		11 41.9	0.329	21.9%		13 15.3	38 260	2 58
Kavalur	10 19.2	287 33		11 55.1	0.458	34.9%		13 37.9	50 295	3 19
Kavaratti	10 00.3	284 26		11 28.0	0.460	35.1%		13 09.7	45 256	3 09
Kohima	11 05.3	273 320		12 53.3	0.835	78.9%		14 28.8	81 4	3 23
Kolhapur	10 03.2	275 9		11 39.5	0.617	52.6%		13 28.3	57 301	3 25
Kolkata	10 46.4	276 8		12 35.5	0.725	65.5%		14 17.0	73 349	3 31
Koraput	10 28.2	279 17		12 13.5	0.619	52.8%		13 59.4	63 329	3 31
Kozikode	10 08.4	287 31		11 38.5	0.439	32.9%		13 20.2	46 273	3 12
Kurnool	10 13.8	280 19		11 52.6	0.554	45.4%		13 39.6	56 307	3 26
*Kurukshetra	10 21.3	256 326	12 01.4	12 01.8	0.997	98.6%	12 02.1	13 47.4	83 16	3 26
Lucknow	10 26.8	264 40		12 11.8	0.879	84.4%		13 58.5	78 1	3 32
Madurai	10 17.6	292 42		11 46.5	0.377	26.6%		13 24.3	43 274	3 07
Mangalore	10 04.9	283 23		11 37.1	0.498	39.1%		13 21.8	49 279	3 17
Midnapore	10 43.0	276 7		12 32.0	0.722	65.0%		14 14.5	72 348	3 31
Mount Abu	10 05.9	261 341		11 44.3	0.868	83.0%		13 33.8	72 350	3 28
Mumbai	10 00.9	270 360		11 37.5	0.697	62.1%		13 27.5	62 311	3 27
Murshidabad	10 47.0	273 357		12 36.1	0.782	72.4%		14 17.5	76 356	3 30
Muzaffarpur	10 38.3	268 345		12 26.0	0.841	79.7%		14 10.0	78 360	3 32
Mysore	10 10.7	286 29		11 43.4	0.461	35.2%		13 26.5	48 283	3 16
Nagpur	10 17.9	272 1		12 01.6	0.711	63.7%		13 50.7	67 335	3 33
Nalgonda	10 17.3	279 17		11 58.4	0.582	48.6%		13 45.8	58 316	3 28
Nasik	10 03.8	269 357		11 42.0	0.720	64.8%		13 32.3	64 321	3 29
Nellore	10 20.4	285 29		11 59.0	0.499	39.3%		13 43.4	53 305	3 23
Nowgong	10 21.4	266 346		12 05.8	0.830	78.3%		13 54.1	74 353	3 33
Panaji	10 03.3	277 12		11 38.8	0.589	49.3%		13 26.9	55 296	3 24
Patna	10 37.1	269 348		12 24.9	0.825	77.7%		14 09.3	77 358	3 32
Pondicherry	10 21.7	290 39		11 56.0	0.423	31.2%		13 36.7	48 291	3 15
Port Blair	11 15.6	301 114		12 53.4	0.393	28.1%		14 18.8	54 316	3 03
Pune	10 03.0	272 2		11 40.5	0.675	59.5%		13 30.3	61 312	3 27
Puri	10 38.3	279 19		12 26.0	0.641	55.4%		14 09.3	66 337	3 31
Raipur	10 25.1	274 5		12 10.9	0.699	62.3%		13 58.4	68 338	3 33
Rajamundry	10 27.1	282 24		12 10.6	0.564	46.5%		13 55.7	59 321	3 29
Rajkot	9 59.6	263 346		11 35.8	0.819	77.0%		13 25.5	68 332	3 26
Ranchi	10 36.8	273 360		12 25.0	0.753	68.8%		14 09.6	73 349	3 33
Sambalpur	10 32.2	275 7		12 19.6	0.697	62.1%		14 05.3	69 341	3 33
Shillong	10 58.0	272 343		12 46.6	0.826	77.8%		14 24.5	80 2	3 27

^{&#}x27;- - 'indicates annular phase of eclipse is not visible corresponding to the places where only partial eclipse occurs

^{&#}x27;*' Places where annular phase of eclipse occurs

THE ANNULAR ECLIPSE OF THE SUN, JUNE 21 PHASES OF ECLIPSE VISIBLE FROM CERTAIN PLACES OF INDIA AND ITS NEIGHBOURHOOD

Places	Partial Eclipse Begins (IST)	Position Angles at Eclipse Begins	Annular phase Begins (IST)	Greatest Eclipse (IST)	Magni- tude	Max- imum Obscu- ration	Annular phase Ends (IST)	Partial Eclipse Ends (IST)	Position Angles at Eclipse Ends	Duration of Eclipse
	h m	PV	h m	h m			h m	h m	P V	h m
Shimla	10 23.5	254 322		12 03.4	0.967	95.6%		13 47.9	85 21	3 24
Sibsagar	11 06.7	271 294		12 54.0	0.879	84.4%		14 28.8	84 9	3 22
Silchar	11 01.0	274 349		12 49.7	0.803	74.9%		14 26.6	79 0	3 26
Siliguri	10 47.3	269 341		12 35.5	0.856	81.6%		14 16.7	80 4	3 29
Silvassa	10 02.4	268 355		11 40.1	0.741	67.4%		13 30.4	65 322	3 28
*Sirsa	10 16.9	255 327	11 55.9	11 56.1	0.996	98.6%	11 56.6	13 42.3	82 16	3 25
Srinagar	10 24.2	248 310		11 59.7	0.861	82.2%		13 40.6	90 39	3 16
Sringeri	10 06.7	282 22	1	11 40.6	0.514	40.9%		13 26.2	51 287	3 20
*Suratgarh	10 14.5	255 327	11 52.5	11 52.9	0.998	98.6%	11 53.3	13 39.2	81 17	3 25
Tamelong	11 04.8	274 335		12 53.1	0.814	76.4%		14 28.7	80 2	3 24
Thanjavur	10 20.3	291 41		11 51.8	0.394	28.3%		13 30.8	45 283	3 10
Thiruvanantapuram	10 15.1	294 44		11 40.0	0.346	23.5%		13 14.9	39 260	3 00
Tiruneveil	10 18.6	293 45	1	11 45.9	0.356	24.5%		13 21.9	41 270	3 03
Trichur	10 10.7	288 34	-	11 40.5	0.420	30.9%		13 21.2	45 273	3 10
Udaipur	10 07.8	262 343		11 47.2	0.858	81.8%		13 36.8	72 350	3 29
Ujjain	10 10.9	266 350	1	11 52.1	0.798	74.3%		13 42.2	70 342	3 31
Vadodara	10 04.6	265 349		11 43.2	0.795	73.9%		13 33.5	68 335	3 29
Varanasi	10 31.0	268 348		12 17.8	0.821	77.2%		14 04.0	76 356	3 33
Vijayawada	10 21.7	281 22		12 03.4	0.558	45.9%		13 49.5	58 316	3 28
Chittagong	10 59.9	277 11	-	12 49.0	0.749	68.3%		14 26.1	76 355	3 26
Colombo	10 30.8	300 60		11 54.6	0.286	18.0%		13 23.8	37 268	2 53
Dhaka	10 54.1	274 358	-	12 43.3	0.779	72.0%		14 22.4	77 357	3 28
Islamabad	10 21.8	247 310		11 56.0	0.848	80.5%		13 36.5	90 43	3 15
Karachi	9 57.2	255 333		11 30.0	0.952	93.6%		13 16.7	75 17	3 19
Kathmandu	10 39.5	264 335		12 26.1	0.906	87.8%		14 09.3	82 7	3 30
Lahore	10 19.9	251 318	-	11 57.0	0.922	89.8%		13 40.5	86 29	3 21
Rwalpindi	10 21.1	247 310		11 55.3	0.852	81.1%		13 36.1	90 43	3 15
Thimpu	10 52.6	267 330		12 40.3	0.893	86.1%		14 19.6	83 8	3 27
Yangon	11 19.0	290 135		13 04.1	0.585	48.8%		14 33.3	68 341	3 14

^{&#}x27;- - ' indicates annular phase of eclipse is not visible corresponding to the places where only partial eclipse occurs

^{&#}x27;*' Places where annular phase of eclipse occurs

ANNULAR SOLAR ECLIPSE, JUNE 21, 2020 LOCAL CIRCUMSTANCES RELATING TO PLACES FROM WHERE ANNULAR PHASE IS VISIBLE

Places	Annular phase Begins (IST)	Greatest Eclipse (IST)	Maximum Obscuration	Annular phase Ends (IST)	Duration of Annularity
	h m	h m		h m	m s
Chamoli	12 08.7	12 09.1	98.6%	12 09.4	0 38
Dehradun	12 05.0	12 05.3	98.6%	12 05.6	0 31
Joshimath	12 09.5	12 09.8	98.6%	12 10.2	0 39
Kurukshetra	12 01.4	12 01.8	98.6%	12 02.1	0 39
Sirsa	11 55.9	11 56.1	98.6%	11 56.4	0 36
Suratgarh	11 52.5	11 52.9	98.6%	11 53.3	0 45

II- Total eclipse of the Sun December 14, 2020, Monday

Not Visible in India.

Area of Visibility

The eclipse is visible in the region covering Southern Pacific Ocean, Galapogos Islands, South America, (except N. Parts), Parts of Antarctica and parts of S.W. Africa.

ELEMENTS OF THE ECLIPSE											
Universal Time of Conjunction in Right Ascension: December 14 ^d 16 ^h 18 ^m 12 ^s .35											
	MOON SUN										
	h	m	S	h	m	S					
Right Ascension	17	30	06.77	17	30	06.77					
Hourly Motion			158.63			11.06					
	0	'	"	0	'	"					
Declination	- 23	33	22.44	-23	15	32.89					
Hourly Motion		-5	14.32.			-7.89					
Equatorial Horizontal Parallax		60	10.30			08.93					
True Semi-diameter		16	23.40		16	14.49					

CIRCUMSTANCES OF THE ECLIPSE												
	U	Jniver	sal		India		Latit	tude	Long	itude		
Time Standard Time												
	d	h	m	d	h	m	0	•	0	•		
Eclipse begins	14	13	34.0	14	19	04.0	-2	06.5	-115	40.8		
Central eclipse begins	14	14	32.8	14	20	02.8	-7	46.0	-132	50.4		
Greatest eclipse* 14 16 13.5 14 21 43.5 -40 20.2 -67 57.								57.5				
Central eclipse ends	14	17	54.1	14	23	24.1	-23	37.0	+11	02.9		
Eclipse ends 14 18 53.0 15 00 23.0 -18 01.8 -06 28.2							28.2					

^{*}Magnitude of the eclipse = 1.0245, Maximum duration of total phase = 2 min 14s

TOTAL SOLAR ECLIPSE OF DECEMBER 14, 2020

The timings of beginning and ending are expressed in UT

BESSELIAN ELEMENTS OF THE TOTAL ECLIPSE OF THE SUN DECEMBER 14

Terre	estrial	Co-ordinates	of the Centre	entre Radius of Penumbra an						numbra and
Ti	me	of Shado	ow on the	Direc	tion of the Axis	of Shac	low *		Umbra on the	Fundamental
(1	T)	Fundame	ntal Plane						Pla	
h	m	X	у	sin d	cos d		μ		11	12
						0	•	"		
13	00	-1.871460	-0.010551	-0.394772	+0.918779	16	16	34.8	+0.542564	-0.002457
	10	-1.777628	-0.025029	-0.394777	+0.918777	18	46	32.7	+0.542592	-0.002429
	20	-1.683790	-0.039498	-0.394783	+0.918775	21	16	30.6	+0.542620	-0.002402
	30	-1.589947	-0.053957	-0.394788	+0.918772	23	46	28.5	+0.542647	-0.002375
	40	-1.496100	-0.068407	-0.394793	+0.918770	26	16	26.4	+0.542673	-0.002349
	50	-1.402248	-0.082846	-0.394799	+0.918768	28	46	24.3	+0.542698	-0.002323
14	00	-1.308391	-0.097276	-0.394804	+0.918765	31	16	22.2	+0.542723	-0.002298
	10	-1.214531	-0.111696	-0.394810	+0.918763	33	46	20.1	+0.542747	-0.002274
	20	-1.120667	-0.126106	-0.394815	+0.918761	36	16	18.0	+0.542771	-0.002250
	30	-1.026799	-0.140506	-0.394820	+0.918758	38	46	15.9	+0.542794	-0.002228
	40	-0.932929	-0.154896	-0.394826	+0.918756	41	16	13.8	+0.542816	-0.002205
	50	-0.839055	-0.169275	-0.394831	+0.918754	43	46	11.7	+0.542837	-0.002184
15	00	-0.745178	-0.183645	-0.394836	+0.918751	46	16	09.6	+0.542858	-0.002163
	10	-0.651299	-0.198005	-0.394842	+0.918749	48	46	07.5	+0.542878	-0.002143
	20	-0.557418	-0.212354	-0.394847	+0.918747	51	16	05.4	+0.542898	-0.002123
	30	-0.463535	-0.226693	-0.394852	+0.918745	53	46	03.3	+0.542917	-0.002105
	40	-0.369650	-0.241022	-0.394858	+0.918742	56	16	01.2	+0.542935	-0.002086
	50	-0.275764	-0.255340	-0.394863	+0.918740	58	45	59.1	+0.542953	-0.002069
16	00	-0.181876	-0.269648	-0.394868	+0.918738	61	15	57.0	+0.542969	-0.002052
	10	-0.087988	-0.283946	-0.394873	+0.918736	63	45	54.9	+0.542986	-0.002036
	20	+0.005901	-0.298233	-0.394879	+0.918733	66	15	52.8	+0.543001	-0.002020
	30	+0.099791	-0.312509	-0.394884	+0.918731	68	45	50.7	+0.543016	-0.002005
	40	+0.193680	-0.326776	-0.394889	+0.918729	71	15	48.6	+0.543031	-0.001991
	50	+0.287570	-0.341031	-0.394895	+0.918726	73	45	46.5	+0.543044	-0.001977
17	00	+0.381459	-0.355276	-0.394900	+0.918724	76	15	44.4	+0.543057	-0.001964
	10	+0.475347	-0.369510	-0.394905	+0.918722	78	45	42.3	+0.543070	-0.001952
	20	+0.569235	-0.383733	-0.394910	+0.918720	81	15	40.2	+0.543081	-0.001940
	30	+0.663121	-0.397946	-0.394916	+0.918717	83	45	38.1	+0.543092	-0.001929
	40	+0.757006	-0.412148	-0.394921	+0.918715	86	15	36.0	+0.543103	-0.001918
	50	+0.850889	-0.426339	-0.394926	+0.918713	88	45	33.9	+0.543113	-0.001909
18	00	+0.944771	-0.440519	-0.394931	+0.918711	91	15	31.8	+0.543122	-0.001899
	10	+1.038650	-0.454688	-0.394937	+0.918708	93	45	29.7	+0.543131	-0.001891
	20	+1.132526	-0.468846	-0.394942	+0.918706	96	15	27.6	+0.543139	-0.001883
	30	+1.226400	-0.482994	-0.394947	+0.918704	98	45	25.5	+0.543146	-0.001875
	40	+1.320271	-0.497130	-0.394952	+0.918702	101	15	23.4	+0.543153	-0.001869
	50	+1.414139	-0.511255	-0.394957	+0.918700	103	45	21.3	+0.543159	-0.001863
19	00	+1.508003	-0.525368	-0.394963	+0.918697	106	15	19.2	+0.543164	-0.001857
, (1	0.0	0475704		tonf2-0.0047241						

tanf1 = 0.00475784tanf2 = 0.00473417

	TT				Vari	iations per mi	nute		
	hr	0	d '	"	x	y	ļμ	' "	
	13	-23	15	06	+0.009 383	-0.001 448	15	00	
	14	-23	15	14	+0.009 386	-0.001 442	15	00	
	15	-23	15	21	+0.009 388	-0.001 436	15	00	
	16	-23	15	28	+0.009 389	-0.001 430	15	00	
	17	-23	15	35	+0.009 389	-0.001 423	15	00	
	18	-23	15	42	+0.009 388	-0.001 417	15	00	
ξ' =	0.004364	ρ cos φ' c	cos (μ+λ	.)	η΄	= 0.004364	ξsin d		
*d s	*d stands for declination and μ stands for hour angle								

DECEMBER 14

PATH OF CENTRAL PHASE DURING THE TOTAL ECLIPSE OF THE SUN

Terrestrial Northern Limit Central Line Southern Limit Central Line Time (TT) Latitude Longitude Latitude Longitude Latitude Longitude Duration of totality 0 1 0 0 1 0 1 0 1 m s -7 37.3 -132 44.6 -7 46.0 -132 50.4 -7 54.7 -132 56.2 Limit ----h m 29.3 -16 34.3 14 40 -16 -114 59.1 -115 21.3 -16 39.1 -115 43.6 0 53 33.0 -21 42.3 -21 51.4 50 21 -106 24.7 -106 45.2 -107 05.8 1 10 15 00 -25 17.4 -100 19.0 -25 29.5 -100 39.0 - 25 41.5 -100 59.0 1 23 21.8 13.9 28 36.2 95 33.2 28 50.4 95 52.7 1 34 10 28 95 20 30 59.2 90 39.1 31 15.5 90 57.7 31 31.7 91 16.4 43 1 30 15.7 20.1 33 33.7 37.5 51.6 86 55.1 33 86 86 33 1 51 35 33.9 23.9 40 35 14.4 82 08.0 82 35 53.3 82 40.0 57 1 50 36 56.9 77 57.0 37 17.7 78 11.0 37 38.4 78 25.2 2 01 16 00 -38 -39 -74 06.5 2 04 -38 24.0 -73 42.9 45.8 -73 54.6 07.6 39 35.9 22.5 39 58.5 31.5 40 21.1 69 40.7 2 06 10 69 69 32.2 53.2 40 55.3 59.2 18.4 20 40 41 65 05.3 2 05 64 64 12.3 12.9 35.5 15.6 58.7 18.3 30 41 60 41 60 41 60 2 03

19.5

10.8

43.8

53.9

33.0

25.0

51.1

20.0

41

-41

41

39

37

35

58.1

43.1

00.3

47.9

57.1

08.3

30 09.5

-23 36.8

42 01.3

55

50

-44

38

32

25

16

-3

+11

18.7

06.4

35.8

42.6

18.7

08.1

31.8

56.3

03.0

42

42 23.6

-42

41

40

38

35

30

21.0

04.2

19.7

05.1

11.4

18.7

12.9

-23 44.4

55

-44

38

32

24

16

-3

+11 08.7

17.8

27.7

31.1

04.2

51.0

32.4

12.4

50 01.8

2 00

1 55

1 48

1 39

1 17

1 02

0 42

1 29

55

50

-44

38

32

25

16

-4

+10 57.3

40

50

10

20

30

40

50

Limit

17 00

41

41

-41

40

39

37

34

30

35.1

39.0

22.0

40.8

30.6

42.7

57.8

05.8

-23 29.3

PENUMBRAL ECLIPSE OF THE MOON, January 10, 2020, Friday

	CIRCUMSTANCES OF THE ECLIPSE											
	Ţ	Universal		Indian		ın	Position Angle	T	he Mo	oon be	eing	
	Time		Standard			from the North	in the 2		Zenith	ı in		
				Time			Point of Moon's	Latitude		Longitud		
							Limb (N.E.S.W)**					
	d	h	m	d	h	m	0	0	'	0	1	
Moon enters penumbra 1		17	06.0	10	22	36.0	136	23	04	104	28	
Middle of the eclipse*	10 19 10.2		11	00	40.2	-	22	58	75	18		
Moon leaves penumbra 10 21 14.4		11	02	44.4	230	22	50	46	08			

* Penumbral magnitude of eclipse: 0.921

** N.E.S.W stands for North, East, South and West

PENUMBRAL ECLIPSE OF THE MOON, June 5, 2020, Friday

	CIR	.CUM	STAN	ICES	S OI	F TH	E ECLIPSE				
	Ţ	Universal			India	ın	Position Angle	T	he Mo	oon be	eing
	Time		Standard		ard	from the North	in the		Zenitł	ı in	
				Time			Point of Moon's			Longitud	
				l			Limb (N.E.S.W)**				
	d	h	m	d	h	m	0	0	'	0	1
Moon enters penumbra	05	17	43.5	05	23	13.5	154	-21	15	93	22
Middle of the eclipse*	05	05 19 25.1		06	00	55.1	-	-21	34	69	35
Moon leaves penumbra 05 21 06.7		06	02	36.7	229	-21	52	45	49		

^{*} Penumbral magnitude of eclipse: 0.593

^{**} N.E.S.W stands for North, East, South and West

PENUMBRAL ECLIPSE OF THE MOON, July 5, 2020, Sunday

CIRCUMSTANCES OF THE ECLIPSE											
	Universal			Indian		Position Angle	T	he Mo	oon be	eing	
	Time		Standard		ard	from the North	in the 2		Zenitł	ı in	
			Time		-	Point of Moon's	Latitude		Long	gitude	
							Limb (N.E.S.W)**				_
	d	h	m	d	h	m	0	0	'	0	•
Moon enters penumbra	5	03	04.5	5	08	34.5	29	-24	04	-46	07
Middle of the eclipse*	5 04 30.0		5	10	0.00	-	-24	03	-65	25	
Moon leaves penumbra	Moon leaves penumbra 5 05 55.5		5	11	35.5	330	-24	00	-84	44	

^{*} Penumbral magnitude of eclipse: 0.380

^{**} N.E.S.W stands for North, East, South and West

PENUMBRAL ECLIPSE OF THE MOON, November 30, 2020. Monday

	CIRCUMSTANCES OF THE ECLIPSE											
	U	Universal		Indian		ın	Position Angle	T	he M	oon be	eing	
	Time		Standard			from the North	in the 2		Zenith	in		
				Time		-	Point of Moon's	Latitude		Long	gitude	
							Limb (N.E.S.W)**					
	d	h	m	d	h	m	0	0	1	0	•	
Moon enters penumbra 30		07	29.9	30	12	59.9	30	20	28	-115	47	
Middle of the eclipse*	30 09 42.9		30	15	12.9	-	20	52	-147	26		
Moon leaves penumbra	30	11	55.9	30	17	25.9	300	21	15	-179	05	

^{*} Penumbral magnitude of eclipse: 0.855

^{**} N.E.S.W stands for North, East, South and West

OCCULTATIONS, 2020 PLANETS BY THE MOON

Sl.	Date and In	gress - Egress		Magnitude	
No		s (U.T.)	Planet	of	Area of Visibility
				Planet	
1.	Jan – 23	h h 00.5 - 04.9	Jupiter	- 1.9	Madagascar, Kerguelen Islands, southern and eastern Australia, New Zealand, south and eastern Melanesia, south western Polynesia.
2.	Feb – 18	11.6 – 15.3	Mars	1.2	North America (except north western Canada and Alaska), most of Central America, Caribbean, northernmost South America, Southernmost tip of Greenland, Azores.
3.	Feb – 19	18.3 – 21.1	Jupiter	-1.9	Antarctica, southernmost South America.
4.	Feb – 20	06.3 – 09.8	Pluto	14.4	South easternmost South America, Antarctica, Kerguelen Islands, south westernmost tip of Australia.
5.	Mar – 18	06.6 – 10.3	Mars	0.9	Southernmost South America, South Georgia, Antarctica, Kerguelen Islands.
6.	Mar – 18	13.4 – 16.1	Pluto	14.3	Most of Antarctica.
7.	Apr – 14	21.5 – 22.2	Pluto	14.3	Part of Antarctic Peninsula.
8.	Jun – 19	06.8 – 10.3	Venus	-4.4	Azores, Canary Islands, north and eastern Canada, Greenland, north western half of Europe, northern and central Russia, northern Mongolia.
9.	Aug – 02	05.0 – 06.6	Pluto	14.3	Most of East Antarctica.
10.	Aug – 09	06.7 – 10.6	Mars	-1.3	Most of West Antarctica, south eastern South America, Ascension Island.
11.	Aug – 29	10.4 – 11.7	Pluto	14.3	Queen Maud Land, most of West Antarctica.
12.	Sep – 06	02.4 – 07.1	Mars	-1.9	Central and north eastern South America, Cape Verde Is., northern Africa, southernmost Europe.
13.	Oct – 03	02.2 – 05.9	Mars	-2.5	South and south easternmost South America, most of West Antarctica, Ascension Island, south western Africa.
14.	Dec – 12	19.3 – 23.0	Venus	-3.9	Easternmost Russia, Hawaii, western North America.

OCCULTATIONS, 2020 ELEMENTS OF OCCULTATIONS OF PLANETS

Sl.		T_0		ŀ	I_0	Y	x'	y'			Body C	Occulte	ed	
No.	(U.T. of C	onj. in	R.A.)						Rig	ht Asc	ension	D	eclina	tion
	d	h	m	h	m				h	m	S	0	,	"
1.	Jan – 23	02	41.1	-08	00.9	-0.3820	0.5623	-0.0029	18	50	53.6	-22	-51	-58.5
2.	Feb – 18	13	17.1	05	04.0	0.8008	0.5383	-0.0442	18	06	13.5	-23	-39	-42.8
3.	Feb – 19	19	35.7	10	17.4	-0.9986	0.5551	0.0230	19	16	15.5	-22	-16	-09.1
4.	Feb – 20	07	51.7	-01	52.3	-0.8065	0.5594	0.0502	19	44	05.9	-22	-01	-33.4
5.	Mar – 18	08	18.4	00	32.3	-0.7957	0.5304	0.0370	19	32	42.2	-22	-26	-48.3
6.	Mar – 18	14	33.8	06	34.5	-1.0209	0.5566	0.0544	19	46	50.7	-21	-57	-40.9
7.	Apr – 14	21	37.1	15	24.1	-1.2618	0.5610	0.0568	19	48	15.4	-21	-57	-15.8
8.	Jun – 19	08	54.0	22	28.7	0.8049	0.5588	0.1528	04	18	35.8	18	33	32.1
9.	Aug – 02	05	36.2	06	41.0	-1.1944	0.5767	0.0520	19	41	26.4	-22	-26	-05.1
10.	Aug – 09	08	00.1	27	48.3	-0.8369	0.4851	0.2160	01	26	02.8	04	43	33.8
11.	Aug – 29	10	50.8	13	45.2	-1.2269	0.5712	0.0508	19	39	10.0	-22	-33	-36.9
12.	Sep – 06	04	46.1	25	60.0	0.0297	0.5022	0.2174	01	50	17.6	06	47	54.0
13.	Oct - 03	03	25.7	02	40.2	-0.8065	0.5175	0.2272	01	35	54.0	06	06	44.8
14.	Dec – 12	20	39.8	10	31.0	0.7851	0.5343	-0.1789	15	38	00.7	-18	-02	-40.0

OCCULTATIONS, 2020

ELEMENTS (contd.)

Sl.	l	а
No.		
1.		
	0.2726	1.00
2.	0.2729	1.00
3.	0.2726	1.00
4.	0.2725	1.00
5.	0.2730	1.00
6.	0.2725	1.00
7.	0.2725	1.00
8.	0.2747	1.00
9.	0.2725	1.00
10.	0.2737	1.00
11.	0.2725	1.00
12.	0.2741	1.00
13.	0.2743	1.00
14.	0.2729	1.00

PART - V

ASTRONOMICAL PHENOMENA AND MISCELLANEOUS TABLES

PHENOMENA, 2020ELONGATIONS AND MAGNITUDES OF PLANETS AT (* U.T.

			<i>M</i> ercu			Venu				N	/lercu		Venu		
Date		Eloi	ng.	Mag.	El	ong.	Mag.	Dat	e	Elor	ıg.	Mag.	Elc	ng.	Mag.
Jan.	-3 2 7 12 17	W.	8 5 3 2 5	-0.8 -1.0 -1.2 -1.4 -1.3	E.	34 35 36 37 38	-3.9 -4.0 -4.0 -4.0	June July	30 5 10 15 20	E.	5 8 13 18 20	+4.7 +2.9 +1.6 +0.6	E.	33 37 39 41 43	-4.7 -4.7 -4.7 -4.7 -4.6
Feb.	22 27 1 6 11	W.	8 11 14 17 18	-1.1 -1.1 -1.0 -0.9 -0.6	E.	39 39 40 41 42	-4.1 -4.1 -4.1 -4.2	Aug.	25 30 4 9 14	E. W.	20 18 14 9 4	-0.1 -0.7 -1.1 -1.4 -1.8	E.	44 45 45 46 46	-4.6 -4.6 -4.5 -4.5 -4.4
Mar.	16 21 26 2 7	W. E.	16 10 4 11 18	+0.4 +2.6 +3.3 +1.6	E.	43 43 44 45 45	-4.2 -4.2 -4.3 -4.3	Sept.	19 24 29 3 8	W.	2 6 11 14 18	-1.9 -1.3 -0.8 -0.5 -0.3	E.	46 45 45 45 44	-4.4 -4.3 -4.3 -4.3
Apr.	12 17 22 27 1	E. W.	24 26 28 28 27	+0.8 +0.4 +0.2 +0.1	E.	46 46 46 46	-4.4 -4.4 -4.5 -4.5 -4.6	Oct.	13 18 23 28 3	W. E.	20 23 24 26 26	-0.2 -0.1 -0.1 +0.0 +0.0	E.	43 43 42 41 40	-4.2 -4.2 -4.1 -4.1
	6 11 16 21 26	W.	25 22 19 15 10	-0.1 -0.2 -0.4 -0.7 -1.1	E.	46 45 44 43 41	-4.6 -4.6 -4.7 -4.7		8 13 18 23 28	E.	25 22 16 6 5	+0.1 +0.4 +1.5 +4.1 +4.5	E. W.	39 38 37 36 35	-4.1 -4.0 -4.0 -4.0 -4.0
May	1 6 11 16 21	W.	5 1 7 13 18	-1.8 -2.3 -1.6 -1.1 -0.7	E.	38 35 31 26 20	-4.7 -4.7 -4.7 -4.6 -4.4	Nov.	2 7 12 17 22	E.	14 18 19 18 15	+1.1 -0.3 -0.7 -0.7	W.	34 33 32 31 30	-4.0 -4.0 -3.9 -3.9 -3.9
June	26 31 5 10 15	W. E.	21 23 24 23 20	-0.4 +0.0 +0.5 +1.0 +1.7	E.	14 6 2 10 17	-4.1 -4.1 -4.2	Dec.	27 2 7 12 17	W.	13 10 7 5 2	-0.7 -0.8 -0.9 -1.0 -1.2	W.	29 27 26 25 24	-3.9 -3.9 -3.9 -3.9
	20 25 30	Е. Е.	16 10 5	+2.7 +4.1	E.	23 29 33	-4.4 -4.6 -4.7		22 27 32	W. W.	2 4 7	-1.3 -1.1 -1.0	W. W.	23 22 20	-3.9 -3.9 -3.9
Conjunction Superior: Inferior: F	Jan. 1 Feb. 2	26 02 .	Jul.	d h 4 22 1 03		Jun. 3	h 18	Aug. 17 Oct. 25	18		d c. 20		6	d 	

N.B.- E. means that the planet is in the east of the Sun and W. means that it is in the west of the Sun by the amount of the arc stated.

 $\begin{array}{c} \textbf{PHENOMENA, 2020} \\ \textbf{ELONGATIONS AND MAGNITUDES OF PLANETS AT (}^n & \textbf{UT} \end{array}$

		Mars			Jupite			Saturi			anus		ptune		Pluto
Date	Elo	ng.	Mag.	Elo	ng.	Mag.	Elc	ng.	Mag.	Ele	ong.	El	long.	Е	long.
Jan8 2 12 22 Feb. 1	W.	38 42 45 49 52	+1.6 +1.5 +1.4 +1.4	W.	4 4 12 20 28	-1.8 -1.8 -1.8 -1.9 -1.9	W.	20 10 1 8 17	+0.5 +0.5 +0.6 +0.6	E.	122 112 101 91 81	E.	75 65 55 45 36	E. W.	21 11 2 8 18
11 21 Mar. 2 12 22	W.	55 59 62 65 68	+1.3 +1.2 +1.1 +1.0 +0.9	W.	36 44 52 60 69	-1.9 -1.9 -2.0 -2.0 -2.1	W.	26 35 44 53 62	+0.6 +0.7 +0.7 +0.7 +0.7	E.	71 62 52 42 33	E.	26 16 6 3 13	W.	28 38 48 57 67
Apr. 1 11 21 May 1 11	W.	71 74 77 79 82	+0.8 +0.7 +0.5 +0.4 +0.3	W. E.	77 86 95 104 114	-2.1 -2.2 -2.3 -2.3 -2.4	W.	71 80 90 99 109	+0.7 +0.6 +0.6 +0.6 +0.5	E. W.	23 14 5 4 13	W.	22 32 41 51 60	W.	77 87 96 106 116
June 21 31 20 30	W.	85 88 91 94 98	+0.1 +0.0 -0.2 -0.3 -0.5	E.	123 133 143 154 165	-2.5 -2.6 -2.6 -2.7 -2.7	W. E.	119 128 138 148 159	+0.5 +0.4 +0.4 +0.3 +0.2	W.	22 32 41 50 59	W.	70 79 89 98 108	W.	126 135 145 155 165
July 10 20 30 Aug. 9	W. E.	101 105 110 115 122	-0.7 -0.8 -1.0 -1.3 -1.5	E.	175 174 163 152 142	-2.7 -2.7 -2.7 -2.7 -2.6	E.	169 179 171 160 150	+0.2 +0.1 +0.1 +0.2 +0.2	W.	68 77 87 96 106	W.	117 127 137 146 156	W. E.	174 176 166 156 146
Sept. 8 18 28 Oct. 8	E.	129 138 148 159 171	-1.7 -2.0 -2.2 -2.4 -2.6	E.	132 122 112 102 93	-2.6 -2.5 -2.4 -2.4 -2.3	E.	140 130 120 110 100	+0.3 +0.3 +0.4 +0.4 +0.5	W.	116 125 135 145 156	W. E.	166 176 174 164 154	E.	137 127 117 107 97
18 28 Nov. 7 17 27	E.	174 162 151 140 131	-2.6 -2.3 -1.9 -1.6 -1.3	E. W.	84 75 67 58 50	-2.3 -2.2 -2.1 -2.1 -2.0	E.	91 81 72 62 53	+0.5 +0.6 +0.6 +0.6 +0.6	W. E.	166 176 173 163 152	E.	144 133 123 113 103		87 78 68 58 48
Dec. 7 17 27 37	E.	123 116 110 104	-1.0 -0.7 -0.4 -0.1	W.	42 34 26 18	-2.0 -2.0 -2.0 -2.0	E.	44 34 25 16	+0.6 +0.6 +0.6		142 132 121 111	E. E.	93 83 73 63		38 28 18 9
Conjunction: Opposition:			d h 13 23	Ju	d ec. 27 l. 14	h 18 08	Ju	d an. 13 il. 20	15 22	Oct. 3	d h 26 09 31 16	Sept.			d h 13 13 15 19

Magnitudes at opposition: Uranus +5.7; Neptune +7.8; Pluto +14.5

N.B. - E. means that the planet is in the east of the Sun and W. means that it is in the west of the Sun by the amount of the arc stated.

PHENOMENA, 2020

CONJUNCTIONS, OPPOSITIONS ETC. OF PLANETS WITH THE SUN (IN LONGTITUDE)

					MERCUR	Y							
		d	h	m				d	h	m			
Superior conjunction	Jan.	10	15	17			Aug.	17	15	10			
Heliacal rising E.	Jan.	26	00	02			Sept.	2	03	29			
Greatest elongation E.	Feb.	10	13	56	(18°.2)		Oct.	1	16	06 (25°.8	3)		
Retrograde	Feb.	17	00	54			Oct.	14	00	50			
Heliacal setting E.	Feb.	20	21	07			Oct.	17	08	41			
Inferior conjunction	Feb.	26	01	44			Oct.	25	18	23			
Heliacal rising W.	Mar.	2	11	47			Oct.	30	13	16			
Direct	Mar.	10	03	58			Nov.	3	17	58			
Greatest elongation W.	Mar.	24	02	06	(27°.8)		Nov.	10	17	03 (19°.1	1)		
Heliacal setting W.	Apr.	18	05	49			Dec.		17				
· ·	•												
Superior conjunction	May	4	21	41			Dec.	20	03	25			
Heliacal rising E.	May	13	08	32									
Greatest elongation E.	June	4	13	07	(23°.6)								
Retrograde	June	18	05	01	, ,								
Heliacal setting E.	June	22	01	24									
Inferior conjunction	July	1	02	53									
Heliacal rising W.	July		04	26									
Direct	July		08	22									
Greatest elongation W.	•	22	15	12	(20°.1)								
Heliacal setting W.	Aug.	8	09	17	, ,								
<i>8</i> ····													
					VENUS								
		d	h	m				d	h	m			
Superior conjunction													
Heliacal rising E.													
Greatest elongation E.	Mar.	24	22	13	(46°.1)								
Retrograde	May	13	06	42									
Heliacal setting E.	May	31	00	12									
Inferior conjunction	June	3	17	44									
Heliacal rising W.	June	8	13	52									
Direct	June	25	06	51									
Greatest elongation W.	Aug.	13	00	14	(45°.8)								
Heliacal setting W.	Ü												
•													
					EARTH								
		d	h	m			d	h	m		d	h	m
Perihelion	Jan.	5	07	37	Equinoxes	Mar.	20	03	50	Sept.	22	13	31
Aphelion	July	4	11	17	Solstices	June	20	21	44	Dec.	21	10	02
			S	SUP	ERIOR PLA	NET	S						
		MAR	S				JUPITE				SATU	₹N	
		d	h	m					m		d	h	m
Conjunction						Dec.		18		Jan.	13	15	16
Heliacal rising W.						Jan.		01		Jan.	30	00	21
Retrograde	Sept.	9	22	21		May		14		May	11	04	09
Opposition	Oct.	13	23	26		July	14	07	59	July	20	22	28
Direct	Nov.	14	00	36		Sept.	13	00	41	Sept.	29	05	12
Heliacal setting E.													

PHENOMENA, 2020

CONJUNCTIONS, OPPOSITIONS ETC. OF PLANETS WITH THE SUN (IN LONGITUDE)

UNIVERSAL TIME SUPERIOR PLANETS

	Ul	RANUS	NE	EPTUNE	PLUTO			
		d h m		d h m		d h m		
Conjunction	Apr.	26 09 01	Mar.	8 12 24	Jan.	13 13 17		
Retrograde	Aug.	15 14 26	June	23 04 31	Apr.	25 18 52		
Opposition	Oct.	31 15 53	Sept.	11 20 26	July	15 19 09		
Direct	Jan.	11 01 48	Nov.	29 00 37	Oct.	4 13 33		

N.B.- The heliacal risings and settings have been calcuted for 23° 11' north latitude. Here E. means east of the Sun or the western horizon and W. means west of the Sun or the eastern horizon.

PHENOMENA, 2020

CONJUNCTION OF PLANETS WITH THE MOON AND OTHER PLANETS (IN LONGITUDE)

	d h m		1	d h m	
Jan.	2 16 42	Mercury conj. Jupiter	May	12 10 30	Moon conj. Jupiter
Jan.	12 09 51	Mercury conj. Saturn	Iviay	12 10 30	Moon conj. Saturn
	20 19 47	Moon conj. Mars		15 04 06	Moon conj. Mars
	23 02 45	Moon conj. Jupiter		22 08 41	Mercury conj. Venus
	24 02 08	Moon conj. Saturn		24 03 15	Moon conj. Venus
	25 19 07	Moon conj. Mercury		24 11 09	Moon conj. Mercury
	28 11 02	Moon conj. Venus	June	8 18 06	Moon conj. Jupiter
Feb.	18 13 17	Moon conj. Mars	June	9 03 17	Moon conj. Saturn
100.	19 19 50	Moon conj. Jupiter		13 02 13	Moon conj. Mars
	20 14 18	Moon conj. Saturn		19 08 40	Moon conj. Venus
	20 14 16	Wioon conj. Saturn		19 00 40	Woon conj. Venus
	24 00 39	Moon conj. Mercury		22 08 01	Moon conj. Mercury
	27 17 06	Moon conj. Venus	July	5 22 13	Moon conj. Jupiter
Mar.	18 08 33	Moon conj. Mars		6 09 35	Moon conj. Saturn
	18 10 48	Moon conj. Jupiter		11 21 16	Moon conj. Mars
	19 00 48	Moon conj. Saturn		17 06 41	Moon conj. Venus
	20 11 35	Mars conj. Jupiter		19 04 19	Moon conj. Mercury
	21 20 39	Moon conj. Mercury	Aug.	1 23 57	Moon conj. Jupiter
	28 14 21	Moon conj. Venus		2 13 59	Moon conj. Saturn
	31 18 31	Mars conj. Saturn		9 08 36	Moon conj. Mars
Apr.	14 23 47	Moon conj. Jupiter		15 13 27	Moon conj. Venus
•		*			
	15 10 21	Moon conj. Saturn		19 05 38	Moon conj. Mercury
	16 05 42	Moon conj. Mars		29 01 56	Moon conj. Jupiter
	21 20 06	Moon conj. Mercury		29 17 18	Moon conj. Saturn
	26 16 39	Moon conj. Venus	Sept.	6 04 45	Moon conj. Mars

PHENOMENA, 2020 --- contd.CONJUNCTION OF PLANETS WITH THE MOON AND OTHER PLANETS (IN LONGITUDE)

UNIVERSAL TIME

d h m		d h m	
Sept. 14 06 53	Moon conj. Venus	Nov. 12 23 31	Moon conj. Venus
19 02 08	Moon conj. Mercury	13 21 44	Moon conj. Mercury
25 07 12	Moon conj. Jupiter	19 09 43	Moon conj. Jupiter
25 21 26	Moon conj. Saturn	19 15 51	Moon conj. Saturn
Oct. 3 03 57	Moon conj. Mars	25 23 39	Moon conj. Mars
14 02 55	Moon conj. Venus	Dec. 12 20 59	Moon conj. Venus
17 21 52	Moon conj. Mercury	14 10 41	Moon conj. Mercury
22 17 44	Moon conj. Jupiter	17 05 34	Moon conj. Jupiter
23 04 35	Moon conj. Saturn	17 06 28	Moon conj. Saturn
29 18 33	Moon conj. Mars	21 18 21	Jupiter conj. Saturn
		23 22 51	Moon conj. Mars

CONJUNCTIONS OF PLANETS WITH BRIGHT STARS (IN R.A.)

	d h m			d h m	
Jan.	17 04 05	Mars 4°.82 N. of Antares	Sept.	1 16 57	Venus 8°.68 S. of <i>Pollux</i>
Apr.	17 19 48	Venus 10°.13 N. of Aldebaran	Sept.	22 08 52	Mercury 0°.30 N. of Spica
May	17 08 52	Mercury 7°.36 N. of Aldebaran	Oct.	3 23 41	Venus 0°.09 S. of Regulus
June	8 08 20	Venus 4°.92 N. of Aldebaran	Nov.	15 13 23	Venus 4°.13 N. of <i>Spica</i>
July	12 06 39	Venus 0°.96 N. of Aldebaran	Dec.	7 20 00	Mercury 4°.39 N. of Antares
Aug.	2 05 30	Mercury 6°.64 S. of <i>Pollux</i>	Dec.	23 00 48	Venus 5°.65 N. of Antares
Aug.	19 20 56	Mercury 1°.36 N. of Regulus			

	d	h	m			d	h	m	
Jan.	2	1	30	Moon at apogee	Feb.		19	36	Jupiter 0.9° N of Moon
0 44111	2	10	27	Moon greatest lat. S 5° 16'	100.	• /		-	Occultation
	2	15	16	Mercury 1.5° S of Jupiter		20	13	39	Saturn 1.8° N of Moon
	3	04	45	FIRST QUARTER		22	10	17	Mercury greatest helio lat. N.
	4	18	22	Uranus 4.7° N of Moon		23	15	32	NEW MOON
	5	07	37	Earth at Perihelion		23	18	43	Mercury 8.6° N of Moon
	9	23	29	Moon in ascending node		24	15	14	Neptune 4.1° N of Moon
	10	15	17	Mercury in superior conjunction			15	46	Moon greatest lat. S 5° 00'
	10	13	1 /	1° 56' S of Sun		25	15	56	Jupiter in descending node
	10	19	21	FULL MOON			01	44	Mercury in inferior conjunction
	10	19	21			20	UI	44	3° 43' N of Sun
				Penumbral Lunar Eclipse					5 45 N OI Sull
	11	07	22	Uranus stationary in RA		26	11	34	Moon at apogee
	12		31	Mercury 2.1° S of Saturn		27	11	52	Venus 6.3°N of Moon
	13		17	Pluto in conjunction with Sun			11	51	Uranus 4.3° N of Moon
	13		16	Saturn in conjunction with Sun	Mar.	2	19	57	FIRST QUARTER
	13		20	Moon at perigee	iviai.	4	14	59	Moon in ascending node
		14	50	Moon greatest lat. N 5°12'		8	12	24	Neptune in conjunction with Sun
	17		05	Mars 4.8° N. of Antares		9	08	11	Mercury stationary in RA
	17		58	LAST QUARTER		9	14	33	Venus 2.4°N. of Uranus
	19		36	Mercury greatest helio lat. S.		9	17	48	FULL MOON
	20		12	Mars 2.3° S of Moon		10	06	28	
	20	19	12	Mars 2.3 3 of Moon		10	00	20	Moon at perigee
	22	20	32	Moon in descending node		10	09	06	Moon greatest lat. N 4°57'
	23		41	Jupiter 0.4° N of Moon			09	34	LAST QUARTER
	23	02	71	Occultation			19	58	Mercury in descending node
	23	06	54	Uranus in square with Sun			01	00	Moon in descending node
	24		42	NEW MOON		18	08	18	Mars 0.7° N of Moon
	24		39	Saturn 1.5° N of Moon		10	00	10	Occultation
	25		13	Mercury 1.3° N of Moon		18	10	18	Jupiter 1.5 ° N of Moon
	27		25	Venus 0.1° S of Neptune			23	56	Saturn 2.1 ° N of Moon
	28	06	20	Neptune 4.1° N of Moon		20	02	08	Venus at perihelion
	28		28	Venus 4.1 ° N of Moon			03	50	Vernal Equinox
	20	0,	20	venus III IV of IVoor		20	05	50	Vernat Equition
	29	13	55	Moon greatest lat. S 5° 10'		20	06	22	Mars 0.7° S of Jupiter
	29	21	27	Moon at apogee		21	17	48	Mercury 3.6° N of Moon
Feb.	1	03	01	Uranus 4.6° N of Moon		22	23	23	Neptune 4.1° N of Moon
100.	1	16	60	Mars in descending node		23	16	12	Moon greatest lat. S 4° 56'
	2	01	42	FIRST QUARTER		24	02	06	Mercury greatest elong. W. (27.8°)
	6	08	58	Moon in ascending node			09	28	NEW MOON
	7	13	02	Mercury in ascending node		24	15	24	Moon at apogee
	9	07	33	FULL MOON		24	22	13	Venus greatest elong. E. (46.1°)
	10	13	56	Mercury greatest elong. E. (18.2°)		26	20	42	Uranus 4.1° N of Moon
	10	20	27	Moon at perigee			04	43	Mercury at aphelion
				and the first					,
	11	17	47	Moon greatest lat. N 5°03'		28	10	39	Venus 6.8° N of Moon
	12		05	Mercury at perihelion		30	09	31	Venus 1.9° N of Moon
	12		37	Saturn in descending node		31	16	52	Moon in ascending node
	15		33	Venus in ascending node		31	10	58	Mars 0.9° S of Saturn
	15		17	LAST QUARTER	Apr.	1	10	21	FIRST QUARTER
		10	15	Mercury stationary in RA	1	3	15	13	Mercury 1.4° S of Neptune.
		13	17	Mars 0.8° S of Moon		6	12	20	Moon greatest lat. N 5°01'
				Occultation		7	18	07	Moon at perigee
	19	00	12	Moon in descending node		8	02	35	FULL MOON

	d	h	m			d	h	m	
Apr.		17	40	Venus greatest helio lat. N.	May	30		30	FIRST QUARTER
p		02	59	Moon in descending node	1.143		06	38	Moon greatest lat. N 5°10'
	14		03	Pluto in square with Sun	Jun.	3	03	28	Moon at perigee
	14		56	LAST QUARTER	Juii.	3	17	44	Venus in inferior conjunction
		23	05	Jupiter 2.0° N of Moon		5	1 /	77	0° 29' N of Sun
		09	18	Saturn 2.5° N of Moon		4	13	07	Mercury greatest elong. E. (23.6°)
	15	10	58	Jupiter in square with Sun		5	19	06	Venus in descending node
	16	04	33	Mars 2.0° N of Moon		5	19	12	FULL MOON
	16	10	49	Mercury greatest helio lat. S.					Penumbral Lunar Eclipse
	17	19	48	Venus 10.1° N. of Aldebaran		6	18	11	Moon in descending node
		07	09	Neptune 4.2° N of Moon		6	19	11	Mars in square with Sun
		16	38	Moon greatest lat. S 5° 00'		8	08	20	Venus 5.0° N. of Aldebaran
		19	00	Moon at apogee		8	17	21	Jupiter 2.2° N of Moon
	21		00	Saturn in square with Sun		9	02	12	Saturn 2.7° N of Moon
		17	16	Mercury 3.1° N of Moon		11	09	38	Neptune in square with Sun
		02	26	NEW MOON Uranus 4.0° N of Moon		12		18 55	Neptune 4.5° N of Moon Mars 2.8° N of Moon
		05	51				23		
		09 12	01 58	Uranus in conjunction with Sun			12 19	24 08	Mars 1.7° S. of Neptune
		15	25	Pluto stationary in RA Venus 6.1° N of Moon			06	24	Mercury in descending node LAST QUARTER
	20	13	23	venus 6.1 IN 61 MOOII		13	00	24	LASI QUARTER
	27	17	55	Moon in ascending node		13	09	42	Moon greatest lat. S 5° 15'
		20	38	FIRST QUARTER			00	57	Moon at apogee
May	1	02	24	Mercury 0.3° S of Uranus			01	48	Uranus 3.9° N of Moon
	3	15	33	Moon greatest lat. N 5°04'		17	19	35	Mercury stationary in RA
	4	21	41	Mercury in superior conjunction		19	08	54	Venus 0.7° S of Moon
				0° 06' S of Sun					Occultation
	5	12	22	Mercury in ascending node		20	21	44	Summer solstice
	6	03	02	Moon at perigee		21	04	23	Moon in ascending node
	7	10	45	FULL MOON		21	06	41	NEW MOON, Solar Eclipse
	7	10	53	Mars 7.3° N of Moon		22	07	18	Mercury 3.9° N of Moon
	10	0.4	20	Manageratus		22	02	50	Management autholicus
	10	04	20	Mercury at perihelion Moon in descending node			03	58 25	Mercury at aphelion Neptune stationary in RA
		09 09	02 26	Saturn stationary in RA			18 18	11	Venus stationary in RA
		09	41	Jupiter 2.3° N of Moon			09	20	Moon greatest lat. N 5°13'
		18	11	Saturn 2.7° N of Moon			08	16	FIRST QUARTER
		10	15	Venus stationary in RA			02	15	Moon at perigee
		14	03	LAST QUARTER	July	1	02	53	Mercury in inferior conjunction
		18	27	Jupiter stationary in RA	o ary	•	~_	00	4° 27' S of Sun
		02	01	Mars 2.8° N of Moon		4	03	18	Moon in descending node
	16	15	03	Neptune 4.4° N of Moon		4	11	17	Earth at Aphelion
		06	24	Moon greatest lat. S 5° 08'		5	04	44	FULL MOON
	17		52	Mercury 7.4° N. of <i>Aldebaran</i>		_	21	20	Penumbral Lunar Eclipse
	18		44	Moon at apogee		5	21	39	Jupiter 1.9° N of Moon
	20		34	Mercury greatest helio lat. N.		6	08	38	Saturn 2.5° N of Moon
		15	35	Uranus 3.9° N of Moon		8	01	19	Mars greatest helio lat. S.
		07	56	Mercury 0.9° S. of Venus		10	07	28	Neptune 4.4° N of Moon
	22		39	NEW MOON Verye 2.7° N of Moon			13	32 35	Moon greatest lat. S 5° 13' Venus at aphelion
		02 10	42 52	Venus 3.7° N of Moon Mercury 2.8° N of Moon		10	14 19	38	Mars 2.0° N of Moon
	24			Moon in ascending node			06	38 39	
I	4	∠ I	35	wioon in ascending flode	Ī	14	OO	39	Venus 1.0° N. of <i>Aldebaran</i>

	d	h	m			d	h	m	
July	12	06	50	Mercury stationary in RA	Sept.	1	16	57	Venus 8.7° S. of <i>Pollux</i>
		19	26	Moon at apogee	· · · ·	2	05	22	FULL MOON
	12	23	29	LAST QUARTER		2	20	55	Neptune 4.2° N of Moon
	13	10	02	Mercury greatest helio lat. S.		3	06	08	Moon greatest lat. S 4° 57'
	14	07	59	Jupiter in opposition with Sun		6	04	46	Mars 0.03° N of Moon
	14	11	52	Uranus 3.8° N of Moon					Occultation
	15	19	09	Pluto in opposition with Sun		6	06	29	Moon at apogee
	17	07	26	Venus 3.1° S of Moon		7	03	54	Uranus 3.3° N of Moon
	18	12	33	Moon in ascending node		8	18	27	Mercury in descending node
	19	03	54	Mercury 3.9° S of Moon					g
				,		9	17	46	Mars stationary in RA
	20	17	33	NEW MOON		10	09	26	LAST QUARTER
	20	22	28	Saturn in opposition with Sun		10	23	06	Moon in ascending node
	22	09	00	Saturn 0.0° S of Moon		11	20	26	Neptune in opposition with Sun
	22	15	12	Mercury greatest elong. W. (20.1°)		12	23	55	Jupiter stationary in RA
	24	11	49	Moon greatest lat. N 5°11'		14	04	43	Venus 4.5° S of Moon
	25	05	00	Moon at perigee		16	17	04	Moon greatest lat. N 4°55'
	27	12	33	FIRST QUARTER		17	11	00	NEW MOON
	31	09	32	Moon in descending node		18	06	23	Uranus 0.4° N of Moon
Aug.	1	11	45	Mercury in ascending node					
	1	15	31	Venus greatest helio lat. S.		18	13	47	Moon at perigee
						18	21	53	Mercury 6.4° S of Moon
	1	23	33	Jupiter 1.5° N of Moon			03	15	Mercury at aphelion
	2	05	30	Mercury 6.6° S. of <i>Pollux</i>		22		52	Mercury 0.3° N. of <i>Spica</i>
	2	11	18	Uranus in square with Sun			13	31	Autumnal Equinox
	2	13	10	Saturn 2.3° N of Moon		23	12	33	Moon in descending node
	3	09	00	Mars at perihelion		24	01	55	FIRST QUARTER
	3	15 03	59 37	FULL MOON Mercury at perihelion		25 25	06 20	48 38	Jupiter 1.6° N of Moon Saturn 2.3° N of Moon
	6 6	14	51	Neptune 4.3° N of Moon		23	20	30	Saturn 2.3 IN OF MOOR
	6	16	35	Moon greatest lat. S 5° 04'		26	17	51	Venus 7.8° S of Moon
	9	08	00	Mars 0.8° N of Moon		26	22	30	Venus in ascending node
		00	00	Occultation			02	52	Saturn stationary in RA
				occuration.			01	44	Neptune 4.2° N of Moon
	9	13	49	Moon at apogee			06	39	Moon greatest lat. S 4° 57'
	10	20	51	Uranus 3.5° N of Moon	Oct.	1	16	06	Mercury greatest elong. E. (25.8°)
	11	16	45	LAST QUARTER		1	21	05	FULL MOON
	13	00	14	Venus greatest elong. W. (45.8°)		3	03	26	Mars 0.7° N of Moon
	14	19	24	Moon in ascending node					Occultation
	15	13	00	Venus 4.0° S of Moon					
	15	16	53	Uranus stationary in RA		3	17	22	Moon at apogee
	16	08	51	Mercury greatest helio lat. N.		3	23	41	Venus 0.1° S. of <i>Regulus</i>
	17	15	10	Mercury in superior conjunction		4	05	42	Pluto stationary in RA
				1° 46' N of Sun		4	08	57	Uranus 3.2° N of Moon
						6	14	17	Mars nearest to Earth
	19		42	NEW MOON		8	00	30	Moon in ascending node
		03	46	Mercury 2.8° N of Moon		9	09	16	Mercury greatest helio lat. S.
	19	20	56	Mercury 1.4° N. of <i>Regulus</i>				40	LAST QUARTER
	20	14	16	Moon greatest lat. N 5°01'		11	13	35	Jupiter in square with Sun
	21	10	56	Moon at perigee		12	22	26	Manain annaition mit Com
		17	58	FIRST QUARTER			23	26	Mars in opposition with Sun
	27	11	53	Moon in descending node		13	23 04	56	Venus 4.4° S of Moon
	29	01	36	Jupiter 1.4° N of Moon Saturn 2.2° N of Moon				18	Mercury stationary in RA
	29	16	32	Saturn 2.2 IN OI MIOON	l	14	08	22	Moon greatest lat. N 5°00'

	d	h	m			d	h	m	
Oct.	15		12	Pluto in square with Sun	Nov.		04	45	FIRST QUARTER
	16		31	NEW MOON			12	01	Neptune 4.5° N of Moon
	16		47	Moon at perigee			09	45	Moon greatest lat. S 5° 14'
	17		36	Mercury 6.8° S of Moon			19	47	Mars 4.9° N of Moon
	18		58	Saturn in square with Sun		27	24	28	Moon at apogee
	20	15	55	Moon in descending node		27	16	59	Uranus 3.3° N of Moon
	22	17	12	Jupiter 2.0° N of Moon		29	09	02	Neptune stationary in RA
	23	03	42	Saturn 2.6° N of Moon		30	09	30	FULL MOON
	23	13	23	FIRST QUARTER					Penumbral Lunar Eclipse
				-					•
	25	18	23	Mercury in inferior conjunction	Dec.	1	07	46	Moon in ascending node
			-	0° 55' S of Sun		2	03	28	Mars in ascending node
	27	06	16	Neptune 4.4° N of Moon		5	17	41	Mercury in descending node
	27	07	28	Moon greatest lat. S 5° 04'		7	15	17	Moon greatest lat. N 5°14'
	28	11	03	Mercury in ascending node		7	20	00	Mercury 4.4° N of Antares.
	29	16	17	Mars 3.0° N of Moon		8	00	37	LAST QUARTER
	30	18	45	Moon at apogee		9	19	41	Neptune in square with Sun
	30	23	03	Venus at perihelion		12	20	40	Venus 0.8° S of Moon
	31	12	50	Uranus 3.2° N of Moon					Occultation
	31		49	FULL MOON		12		41	Moon at perigee
	31		53	Uranus in opposition with Sun			10	33	Mercury 1.0° S of Moon
Nov.	2	02	53	Mercury at perihelion			11	03	Moon in descending node
	3	08	25	Mercury stationary in RA			16	17	NEW MOON, Solar Eclipse
	4	02	40	Moon in ascending node			02	31	Mercury at aphelion
	8	13	46	LAST QUARTER			04	29	Jupiter 2.9° N of Moon
	10		55	Moon greatest lat. N 5°13'		17	05	19	Saturn 3.1° N of Moon
	10 12	17	03	Mercury greatest elong. W. (19.1°)		20	03	25	Mercury in superior conjunction
	12	08	08	Mercury greatest helio lat. N.					1° 27' S of Sun
	12	21	30	Venus 3.1° S of Moon		20	20	05	Neptune 4.6° N of Moon
	13		44	Mercury 1.7° S of Moon			13	26	Moon greatest lat. S 5° 16'
	14		43	Moon at perigee			10	02	Winter solstice
	15		07	NEW MOON			13	31	Jupiter 0.1° S of Saturn
	15		23	Venus 4.1° N. of <i>Spica</i>		21	23	41	FIRST QUARTER
	15		25	Mars stationary in RA			00	48	Venus 5.7° N. of Antares
	17		07	Moon in descending node			18	32	Mars 5.6° N of Moon
	19		56	Jupiter 2.5° N of Moon			16	30	Moon at apogee
		14	51	Saturn 2.9° N of Moon		24	22	40	Uranus 3.4° N of Moon
	21	10	31	Venus greatest helio lat. N.		28	15	03	Moon in ascending node
				-		30	03	28	FULL MOON

TABLE-I
CONVERSION OF MEAN SOLAR INTO SIDEREAL TIME
CORRECTION TO BE ADDED TO A MEAN TIME INTERVAL

MINITITE

]	<u>HOURS</u>			MIN	<u>UTES</u>		<u>SECONDS</u>					
Mean	Cor	rrection	Mean	Correction	Mean	Correction	Mean	Correction	Mean	Correction		
Time			Time		Time		Time		Time			
h	m	S	m	s	m	S	S	S	S	S		
1	0	09.856	1	0.164	31	5.093	1	.003	31	.085		
2	0	19.713	2	0.329	32	5.257	2	.005	32	.088		
3	0	29.569	3	0.493	33	5.421	3	.008	33	.090		
4	0	39.426	4	0.657	34	5.585	4	.011	34	.093		
5	0	49.282	5	0.821	35	5.750	5	.014	35	.096		
6	0	59.139	6	0.986	36	5.914	6	.016	36	.099		
7	1	08.995	7	1.150	37	6.078	7	.019	37	.101		
8	1	18.852	8	1.314	38	6.242	8	.022	38	.104		
9	1	28.708	9	1.478	39	6.407	9	.025	39	.107		
10	1	38.565	10	1.643	40	6.571	10	.027	40	.110		
11	1	48.421	11	1.807	41	6.735	11	.030	41	.112		
12	1	58.278	12	1.971	42	6.900	12	.033	42	.115		
13	2	08.134	13	2.136	43	7.064	13	.036	43	.118		
14	2	17.991	14	2.300	44	7.228	14	.038	44	.120		
15	2	27.847	15	2.464	45	7.392	15	.041	45	.123		
16	2	37.704	16	2.628	46	7.557	16	.044	46	.126		
17	2	47.560	17	2.793	47	7.721	17	.047	47	.129		
18	2	57.417	18	2.957	48	7.885	18	.049	48	.131		
19	3	07.273	19	3.121	49	8.049	19	.052	49	.134		
20	3	17.129	20	3.285	50	8.214	20	.055	50	.137		
21	3	26.986	21	3.450	51	8.378	21	.057	51	.140		
22	3	36.842	22	3.614	52	8.542	22	.060	52	.142		
23	3	46.699	23	3.778	53	8.707	23	.063	53	.145		
24	3	56.555	24	3.943	54	8.871	24	.066	54	.148		
			25	4.107	55	9.035	25	.068	55	.151		
			26	4.271	56	9.199	26	.071	56	.153		
			27	4.435	57	9.364	27	.074	57	.156		
			28	4.600	58	9.528	28	.077	58	.159		
			29	4.764	59	9.692	29	.079	59	.162		
			30	4.928	60	9.856	30	.082	60	.164		

Local Apparent Sidereal time for any given local mean time

- = mean Sid. Time for 0^h U.T. (Pages 13 to 16)
- reduction for longitude of place
- + local mean time reckoned from midnight
- + correction for local mean time added (Table-I)
- + Equation of Equinoxes.

HOLDO

Local apparent Sidereal Time for any hour of Universal Time.

= Sid. Time for 0^h U.T. (Pages 13 to 16)

CECONDO

- + longitude of place (in time)
- + Universal Time
- + correction for U.T. added (Table-I)
- + Equation of Equinoxes.

N.B. The longitude of place is to be taken in time and regarded *positive* for places East of Greenwich. The reduction of Sidereal Time for the longitude of place may be taken from the above table and with the same sign as that of longitude. The correction for the L.M.T. or U.T. added should also be taken from the above table. For details, see the examples given under the EXPLANATION.

MINITER

TABLE-II
CONVERSION OF SIDEREAL INTO MEAN SOLAR TIME
CORRECTION TO BE SUBTRACTED FROM A SIDEREAL TIME INTERVAL

<u>HOURS</u>			<u>M</u>	<u>INUTES</u>		<u>SECONDS</u>					
Sidereal Correction		Sidereal Correction		Sidereal	Correction	Sidereal Correction Sidereal Correction					
Time		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Time		Time	00110011011	Time		Time	Control	
h	m	S	m	S	m	S	S	S	S	S	
1	0	09.830	1	0.164	31	5.079	1	.003	31	.085	
2	0	19.659	2	0.328	32	5.242	2	.005	32	.087	
3	0	29.489	3	0.491	33	5.406	3	.008	33	.090	
4	0	39.318	4	0.655	34	5.570	4	.011	34	.093	
5	0	49.148	5	0.819	35	5.734	5	.014	35	.096	
6	0	58.977	6	0.983	36	5.898	6	.016	36	.098	
7	1	08.807	7	1.147	37	6.062	7	.019	37	.101	
8	1	18.636	8	1.311	38	6.225	8	.022`	38	.104	
9	1	28.466	9	1.474	39	6.389	9	.025	39	.106	
10	1	38.296	10	1.638	40	6.553	10	.027	40	.109	
11	1	48.125	11	1.802	41	6.717	11	.030	41	.112	
12	1	57.955	12	1.966	42	6.881	12	.033	42	.115	
13	2	07.784	13	2.130	43	7.045	13	.035	43	.117	
14	2	17.614	14	2.294	44	7.208	14	.038	44	.120	
15	2	27.443	15	2.457	45	7.372	15	.041	45	.123	
16	2	37.273	16	2.621	46	7.536	16	.044	46	.126	
17	2	47.103	17	2.785	47	7.700	17	.046	47	.128	
18	2	56.932	18	2.949	48	7.864	18	.049	48	.131	
19	3	06.762	19	3.113	49	8.027	19	.052	49	.134	
20	3	16.591	20	3.277	50	8.191	20	.055	50	.137	
21	3	26.421	21	3.440	51	8.355	21	.057	51	.139	
22	3	36.250	22	3.604	52	8.519	22	.060	52	.142	
23	3	46.080	23	3.768	53	8.683	23	.063	53	.145	
24	3	55.909	24	3.932	54	8.847	24	.066	54	.147	
			25	4.096	55	9.010	25	.068	55	.150	
			26	4.259	56	9.174	26	.071	56	.153	
			27	4.423	57	9.338	27	.074	57	.156	
			28	4.587	58	9.502	28	.076	58	.158	
			29	4.751	59	9.666	29	.079	59	.161	
			30	4.915	60	9.830	30	.082	60	.164	

Local Mean Time for any given local apparent Sidereal Time

= Time of preceding transit of First Point of Aries (pages 13 to 16)

+ reduction for longitude of place

HOUDE

- + given local apparent Sidereal Time Equation of Equinoxes
- correction for Sidereal Time added (Table-II).

Otherwise, L.M.T. for any given Sidereal Time may be obtained as follows:-

Given Sidereal Time

— Sidereal Time for 0^h U.T. (pages 13 to

araonina

- + reduction for longitude of place
 - = Sidereal interval since 0^h L.M.T.

This Sidereal interval corrected by the above table gives the required local mean time.

or, Universal Time for any given Sidereal Time may be obtained as follows:-

Given Sidereal Time —longitude of place —Sidereal Time for 0^h U.T. = Sidereal interval since 0^h U.T. This interval converted into Mean Solar Time by the above table gives the Universal Time required.

N.B. The reduction for longitude of place is of the same sign as that of the longitude, i.e. *positive* for places East of Greenwich and *negative* for West. See Example under EXPLANATION.

TABLE-III CONVERSION OF ARC TO TIME

DEGREES						MI	MINUTES SECONDS						
0	h m	0	h m	0	h m	,	m s	"	S	"	S	"	S
0	0 00	49	3 16	98	6 32	0	0 00	0	0.000	0.00	0.000	0.50	0.033
1	0 04	50	3 20	99	6 36	1	0 04	. 1	0.067	.01	.001	.51	.034
2	0 08	51	3 24	100	6 40	2	0 08		0.133	.02	.001	.52	.035
3	0 12	52	3 28	101	6 44	3	0 12		0.200	.03	.002	.53	.035
4	0 16	53	3 32	102	6 48	4	0 16		0.267	.04	.003	.54	.036
5	0 20	54	3 36	103	6 52	5	0 20		0.333	.05	.003	.55	.037
6	0 24	55	3 40	104	6 56	6	0 24		0.400	.06	.004	.56	.037
7	0 28	56	3 44	105	7 00	7	0 28		0.467	.07	.005	.57	.038
8	0 32	57	3 48	106	7 04	8	0 32		0.533	.08	.005	.58	.039
9	0 36	58	3 52	107	7 08	9	0 36		0.600	.09	.006	.59	.039
10	0 40	59	3 56	108	7 12	10	0 40		0.667	0.10	0.007	0.60	0.040
11	0 44	60	4 00	109	7 16	11	0 44		0.733	.11	.007	.61	.041
12	0 48	61	4 04	110	7 20	12	0 48		0.800	.12	.008	.62	.041
13	0 52	62	4 08	111	7 24	13	0 52		0.867	.13	.009	.63	.042
14	0 56	63	4 12	112	7 28	14	0 56		0.933	.14	.009	.64	.043
15	1 00	64	4 16	113	7 32	15	1 00		1.000	.15	.010	.65	.043
16	1 04	65	4 20	114	7 36	16	1 04		1.067	.16	.011	.66	.044
17	1 08	66	4 24	115	7 40	17	1 08		1.133	.17	.011	.67	.045
18	1 12	67	4 28	116	7 44	18	1 12		1.200	.18	.012	.68	.045
19	1 16	68	4 32	117	7 48	19	1 16		1.267	.19	.013	.69	.046
20	1 20	69	4 36	118	7 52	20	1 20		1.333	0.20	0.013	0.70	0.047
21	1 24	70	4 40	119	7 56	21	1 24		1.400	.21	.014	.71	.047
22	1 28	71	4 44	120	8 00	22	1 28		1.467	.22	.015	.72	.048
23	1 32	72	4 48	121	8 04	23	1 32		1.533	.23	.015	.73	.049
24	1 36	73	4 52	122	8 08	24	1 36		1.600	.24	.016	.74	.049
25	1 40	74	4 56	123	8 12	25	1 40		1.667	.25	.017	.75	.050
26	1 44	75	5 00	124	8 16	26	1 44		1.733	.26	.017	.76	.051
27	1 48	76	5 04	125	8 20	27	1 48		1.800	.27	.018	.77	.051
28	1 52	77	5 08	126	8 24	28	1 52		1.867	.28	.019	.78	.052
29	1 56	78	5 12	127	8 28	29	1 56		1.933	.29	.019	.79	.053
30	2 00	79	5 16	128	8 32	30	2 00		2.000	0.30	0.020	0.80	0.053
31	2 04	80	5 20	129	8 36	31	2 04		2.067	.31	.021	.81	.054
32	2 08	81	5 24	130	8 40	32	2 08		2.133	.32	.021	.82	.055
33	2 12	82	5 28	131	8 44	33	2 12		2.200	.33	.022	.83	.055
34	2 16	83	5 32	132	8 48	34	2 16		2.267	.34	.023	.84	.056
35	2 20	84	5 36	133	8 52	35	2 20		2.333	.35	.023	.85	.057
36	2 24	85	5 40	134	8 56	36	2 24		2.400	.36	.024	.86	.057
37	2 28	86	5 44	135	9 00	37	2 28		2.467	.37	.025	.87	.058
38	2 32	87	5 48	136	9 04	38	2 32		2.533	.38	.025	.88	.059
39	2 36	88	5 52	137	9 08	39	2 36		2.600	.39	.026	.89	.059
40	2 40	89	5 56	138	9 12	40	2 40		2.667	0.40	0.027	0.90	0.06
41	2 44	90	6 00	139	9 16	41	2 44		2.733	.41	.027	.91	.061
42	2 48	91	6 04	140	9 20	42	2 48		2.800	.42	.028	.92	.061
43	2 52	92	6 08	141	9 24	43	2 52		2.867	.43	.029	.93	.062
44	2 56	93	6 12	142	9 28	44	$\frac{2}{2}$ $\frac{32}{56}$		2.933	.44	.029	.94	.063
45	3 00	94	6 16	143	9 32	45	3 00		3.000	.45	.030	.95	.063
46	3 04	95	6 20	144	9 36	46	3 04		3.067	.46	.031	.96	.064
47	3 08	96	6 24	145	9 40	47	3 08		3.133	.47	.031	97	.065
48	3 12	97	6 28	146	9 44	48	3 12		3.200	.48	.032	.98	.065

TABLE-III ---- contd.
CONVERSION OF ARC TO TIME

		DEGR	EES			MIN	IUTES			SEC	CONDS		
c	h m	0	h m	0	h m	,	m s	"	S	"	S	"	S
147	9 48	158	10 32	169	11 16	49	3 16	49	3.267	0.49	0.033	0.99	0.066
148	9 52	159	10 36	170	11 20	50	3 20	50	3.333	0.50	0.033	1.00	0.067
149	9 56	160	10 40	171	11 24	51	3 24	51	3.400				
150	10 00	161	10 44	172	11 28	52	3 28	52	3.467				
151	10 04	162	10 48	173	11 32	53	3 32	53	3.533				
152	10 08	163	10 52	174	11 36	54	3 36	54	3.600				
153	10 12	164	10 56	175	11 40	55	3 40	55	3.667				
154	10 16	165	11 00	176	11 44	56	3 44	56	3.733				
155	10 20	166	11 04	177	11 48	57	3 48	57	3.800				
156	10 24	167	11 08	178	11 52	58	3 52	58	3.867				
157	10 28	168	11 12	179	11 56	59	3 56	59	3.933				

TABLE-IV CONVERSION OF TIME TO ARC

	$0^{\rm h}$	1 ^h	2 h	3 h	4 ^h	5 h	SECONDS					
m	o '	o ,	o ,	0 /	o ,	0 /	S	' "	S	"	s	"
0	0 00	15 00	30 00	45 00	60 00	75 00	0	0 00	0.00	0.00	0.50	7.50
1	0 15	15 15	30 15	45 15	60 15	75 15	1	0 15	.01	0.15	.51	7.65
2	0 30	15 30	30 30	45 30	60 30	75 30	2	0 30	.02	0 30	.52	7.80
3	0 45	15 45	30 45	45 45	60 45	75 45	3	0 45	.03	0.45	.53	7.95
4	1 00	16 00	31 00	46 00	61 00	76 00	4	1 00	.04	0.60	.54	8.10
5	1 15	16 15	31 15	46 15	61 15	76 15	5	1 15	.05	0.75	.55	8.25
6	1 30	16 30	31 30	46 30	61 30	76 30	6	1 30	.06	0.90	.56	8.40
7	1 45	16 45	31 45	46 45	61 45	76 45	7	1 45	.07	1.05	.57	8.55
8	2 00	17 00	32 00	47 00	62 00	77 00	8	2 00	.08	1.20	.58	8.70
9	2 15	17 15	32 15	47 15	62 15	77 15	9	2 15	.09	1.35	.59	8.85
10	2 30	17 30	32 30	47 30	62 30	77 30	10	2 30	0.10	1.50	0.60	9.00
11	2 45	17 45	32 45	47 45	62 45	77 45	11	2 45	.11	1.65	.61	9.15
12	3 00	18 00	33 00	48 00	63 00	78 00	12	3 00	.12	1.80	.62	9.30
13	3 15	18 15	33 15	48 15	63 15	78 15	13	3 15	.13	1.95	.63	9.45
14	3 30	18 30	33 30	48 30	63 30	78 30	14	3 30	.14	2.10	.64	9.60
15	3 45	18 45	33 45	48 45	63 45	78 45	15	3 45	.15	2.25	.65	9.75
16	4 00	19 00	34 00	49 00	64 00	79 00	16	4 00	.16	2.40	.66	9.90
17	4 15	19 15	34 15	49 15	64 15	79 15	17	4 15	.17	2.55	.67	10.05
18	4 30	19 30	34 30	49 30	64 30	79 30	18	4 30	.18	2.70	.68	10.20
19	4 45	19 45	34 45	49 45	64 45	79 45	19	4 45	.19	2.85	.69	10.35
20	5 00	20 00	35 00	50 00	65 00	80 00	20	5 00	.20	3.00	0.70	10.50
21	5 15	20 15	35 15	50 15	65 15	80 15	21	5 15	.21	3.15	.71	10.65
22	5 30	20 30	35 30	50 30	65 30	80 30	22	5 30	.22	3.30	.72	10.80
23	5 45	20 45	35 45	50 45	65 45	80 45	23	5 45	.23	3.45	.73	10.95
24	6 00	21 00	36 00	51 00	66 00	81 00	24	6 00	.24	3.60	.74	11.10
25	6 15	21 15	36 15	51 15	66 15	81 15	25	6 15	.25	3.75	.75	11.25
26	6 30	21 30	36 30	51 30	66 30	81 30	26	6 30	.26	3.90	.76	11.40
27	6 45	21 45	36 45	51 45	66 45	81 45	27	6 45	.27	4.05	.77	11.55
28	7 00	22 00	37 00	52 00	67 00	82 00	28	7 00	.28	4.20	.78	11.70
29	7 15	22 15	37 15	52 15	67 15	82 15	29	7 15	.29	4.35	.79	11.85
30	7 30	22 30	37 30	52 30	67 30	82 30	30	7 30	.30	4.50	0.80	12.00

TABLE-IV ---- contd.
CONVERSION OF TIME TO ARC

	0 h	1 h	2 h	3 h	4 h	5 h			SEC	ONDS		
m	0 1	0 /	o /	0 1	0 1	0 /	S	' "	S	"	S	"
31	7 45	22 45	37 45	52 45	67 45	82 45	31	7 45	0.31	4.65	0.81	12.15
32	8 00	23 00	38 00	53 00	68 00	83 00	32	8 00	.32	4.80	.82	12.30
33	8 15	23 15	38 15	53 15	68 15	83 15	33	8 15	.33	4.95	.83	12.45
34	8 30	23 30	38 30	53 30	68 30	83 30	34	8 30	.34	5.10	.84	12.60
35	8 45	23 45	38 45	53 45	68 45	83 45	35	8 45	.35	5.25	.85	12.75
36	9 00	24 00	39 00	54 00	69 00	84 00	36	9 00	.36	5.40	.86	12.90
37	9 15	24 15	39 15	54 15	69 15	84 15	37	9 15	.37	5.55	.87	13.05
38	9 30	24 30	39 30	54 30	69 30	84 30	38	9 30	.38	5.70	.88	13.20
39	9 45	24 45	39 45	54 45	69 45	84 45	39	9 45	.39	5.85	.89	13.35
40	10 00	25 00	40 00	55 00	70 00	85 00	40	10 00	.40	6.00	.90	13.50
41	10 15	25 15	40 15	55 15	70 15	85 15	41	10 15	.41	6.15	.91	13.65
42	10 30	25 30	40 30	55 30	70 30	85 30	42	10 30	.42	6.30	.92	13.80
43	10 45	25 45	40 45	55 45	70 45	85 45	43	10 45	.43	6.45	.93	13.95
44	11 00	26 00	41 00	56 00	71 00	86 00	44	11 00	.44	6.60	.94	14.10
45	11 15	26 15	41 15	56 15	71 15	86 15	45	11 15	.45	6.75	.95	14.25
46	11 30	26 30	41 30	56 30	71 30	86 30	46	11 30	.46	6.90	.96	14.40
47	11 45	26 45	41 45	56 45	71 45	86 45	47	11 45	.47	7.05	.97	14.55
48	12 00	27 00	42 00	57 00	72 00	87 00	48	12 00	.48	7.20	.98	14.70
49	12 15	27 15	42 15	57 15	72 15	87 15	49	12 15	.49	7.35	0.99	14.85
50	12 30	27 30	42 30	57 30	72 30	87 30	50	12 30	0.50	7.50	1.00	15.00
51	12 45	27 45	42 45	57 45	72 45	87 45	51	12 45				
52	13 00	28 00	43 00	58 00	73 00	88 00	52	13 00				
53	13 15	28 15	43 15	58 15	73 15	88 15	53	13 15				
54	13 30	28 30	43 30	58 30	73 30	88 30	54	13 30		h	0	
55	13 45	28 45	43 45	58 45	73 45	88 45	55	13 45		6 =	90	
56	14 00	29 00	44 00	59 00	74 00	89 00	56	14 00		12 =	180	
57	14 15	29 15	44 15	59 15	74 15	89 15	57	14 15		18 =	270	
58	14 30	29 30	44 30	59 30	74 30	89 30	58	14 30				
59	14 45	29 45	44 45	59 45	74 45	89 45	59	14 45				

TABLE - V CONVERSION OF HOURS, MINUTES AND SECONDS TO DECIMALS OF A DAY

	0 h	1 ^h	2 h	3 h	4 ^h	5 h	SI	ECONDS
m	d	d	d	d	d	d	S	d
0	0.000 000	0.041 667	0.083 333	0.125 000	0.166 667	0.208 333	0	0.000 000
1	.000 694	.042 361	.084 028	.125 694	.167 361	.209 028	1	.000 012
2	.001 389	.043 056	.084 722	.126 389	.168 056	.209 722	2	.000 023
3	.002 083	.043 750	.085 417	.127 083	.168 750	.210 417	3	.000 035
4	.002 778	.044 444	.086 111	.127 778	.169 444	.211 111	4	.000 046
5	.003 472	.045 139	.086 806	.128 472	.170 139	.211 806	5	.000 058
6	.004 167	.045 833	.087 500	.129 167	.170 833	.212 500	6	.000 069
7	.004 861	.046 528	.088 194	.129 861	.171 528	.213 194	7	.000 081
8	.005 556	.047 222	.088 889	.130 556	.172 222	.213 889	8	.000 093
9	.006 250	.047 917	.089 583	.131 250	.172 917	.214 583	9	.000 104
10	0.006 944	0.048 611	0.090 278	0.131 944	0.173 611	0.215 278	10	0.000 116
11	.007 639	.049 306	.090 972	0.132 639	.174 306	.215 972	11	.000 127

TABLE - V ---- contd.
CONVERSION OF HOURS, MINUTES AND SECONDS TO DECIMALS OF A DAY

	0 h	1 h	2 h	3 h	4 h	5 h	Sl	ECONDS
m	d	d	d	d	d	d	S	d
12	0.008 333	0.050 000	0.091 667	0.133 333	0.175 000	0.216 667	12	0.000 139
13	.009 028	.050 694	.092 361	.134 028	.175 694	.217 361	13	.000 150
14	.009 722	.051 389	.093 056	.134 722	.176 389	.218 056	14	.000 162
15	.010 417	.052 083	.093 750	.135 417	.177 083	.218 750	15	.000 174
16	.011 111	.052 778	.094 444	.136 111	.177 778	.219 444	16	.000 185
17	.011 806	.053 472	.095 139	.136 806	. 178 472	.220 139	17	.000 197
18	.012 500	.054 167	.095 833	.137 500	.179 167	.220 833	18	.000 208
19	.013 194	.054 861	.096 528	.138 194	.179 861	.221 528	19	.000 220
20	0.013 889	0.055 556	0.097 222	0.138 889	0.180 556	0.222 222	20	0.000 231
21	.014 583	056 250	.097 917	.139 583	.181 250	.222 917	21	.000 243
22	.015 278	.056 944	.098 611	.140 278	.181 944	.223 611	22	.000 255
23	.015 972	.057 639	.099 306	.140 972	182 639	.224 306	23	.000 266
24	.016 667	.058 333	.100 000	.141 667	.183 333	.225 000	24	.000 278
25	.017 361	.059 028	.100 694	.142 361	.184 028	.225 694	25	.000 289
26	.018 056	.059 722	.101 389	.143 056	.184 722	.226 389	26	.000 301
27	.018 750	.060 417	.102 083	.143 750	.185 417	.227 083	27	.000 312
28	.019 444	.061 111	.102 778	.144 444	.186 111	.227 778	28	.000 324
29	.020 139	.061 806	.103 472	.145 139	.186 806	.228 472	29	.000 336
30	0.020 833	0.062 500	0.104 167	0.145 833	0.187 500	0.229 167	30	0.000 347
31	.021 528	.063 194	.104 861	.146 528	.188 194	.229 861	31	.000 359
32	.022 222	.063 889	.105 556	.147 222	.188 889	.230 556	32	.000370
33	.022 917	.064 583	.106 250	.147 917	.189 583	.231 250	33	.000 382
34	.023 611	.065 278	.106 944	.148 611	.190 278	.231 944	34	.000 394
35	.024 306	.065 972	.107 639	.149 306	.190 972	.232 639	35	.000 405
36	.025 000	.066 667	.108 333	.150 000	.191 667	.233 333	36	.000 417
37	.025 694	.067 361	.109 028	.150 694	.192 361	.234 028	37	.000 428
38	.026 389	.068 056	.109 722	.151 389	.193 056	.234 722	38	.000 440
39	.027 083	.068 750	.110 417	.152 083	.193 750	.235 417	39	.000 451
40	0.027 778	0.069 444	0.111 111	0.152 778	0.194 444	0.236 111	40	0.000 463
41	.028 472	.070 139	.111 806	.153 472	.195 139	.236 806	41	.000 475
42	.029 167	.070 833	.112 500	.154 167	.195 833	.237 500	42	.000 486
43	.029 861	.071 528	.113 194	.154 861	.196 528	.238 194	43	.000 498
44	.030 556	.072 222	.113 889	.155 556	.197 222	.238 889	44	.000 509
45	.031 250	.072 917	.114 583	.156 250	.197 917	.239 583	45	.000 521
46	.031 944	.073 611	.115 278	.156 944	.198 611	.240 278	46	.000 532
47	.032 639	.074 306	.115 972	.157 639	.199 306	.240 972	47	.000 544
48	.033 333	.075 000	.116 667	.158 333	.200 000	.241 667	48	.000 556
49	.034 028	.075 694	.117 361	.159 028	.200 694	.242 361	49	.000 567
50	0.034 722	0.076 389	0.118 056	0.159 722	0.201 389	0.243 056	50	0.000 579
51	.035 417	.077 083	.118 750	.160 417	.202 083	.243 750	51	.000 590
52	.036 111	.077 778	.119 444	.161 111	.202 778	.244 444	52	.000 602
53	.036 806	.078 472	.120 139	.161 806	.203 472	.245 139	53	.000 613
54	.037 500	.079 167	.120 833	.162 500	.204 167	.245 833	54	.000 625
55	.038 194	.079 861	.121 528	.163 194	.204 861	.246 528	55	.000 637
56	.038 889	.080 556	.122 222	.163 889	.205 556	.247 222	56	.000 648
57	.039 583	.081 250	.122 917	.164 583	.206 250	.247 917	57	.000 660
58	.040 278	.081 944	.123 611	.165 278	.206 944	.248 611	58	.000 671
59	0.040 972	0.082 639	0.124 306	0.165 972	0.207 639	0.249 306	59	0.000 683

 ${\bf TABLE - V \textit{----} contd.} \\ {\bf CONVERSION OF HOURS, MINUTES AND SECONDS TO DECIMALS OF A DAY} \\$

	6 h	7 ^h	8 h	9 h	10 h	11 ^h	SE	ECONDS
m	d	d	d	d	d	d	S	d
0	0.250 000	0.291 667	0.333 333	0.375 000	0.416 667	0.458 333	0	0.000 000
1	.250 694	.292 361	.334 028	.375 694	. 417 361	.459 028	1	.000 012
2	.251 389	.293 056	.334 722	.376 389	.418 056	.459 722	2	.000 023
3	.252 083	.293 750	.335 417	.377 083	.418 750	.460 417	3	.000 035
4	.252 778	.294 444	.336 111	.377 778	.419 444	.461 111	4	.000 046
5	.253 472	.295 139	.336 806	.378 472	.420 139	.461 806	5	.000 058
6	.254 167	.295 833	.337 500	.379 167	.420 833	.462 500	6	.000 069
7	.254 861	.296 528	338 194	.379 861	.421 528	. 463 194	7	.000 081
8	.255 556	.297 222	.338 889	.380 556	.422 222	. 463 889	8	.000 093
9	.256 250	.297 917	.339 583	.381 250	.422 917	.464 583	9	.000 104
10	0.256 944	0.298 611	0.340 278	0.381 944	0.423 611	0.465 278	10	0.000 116
11	.257 639	.299 306	.340 972	.382 639	.424 306	.465 972	11	.000 110
12	.258 333	.300 000	.341 667	.383 333	.425 000	.466 667	12	.000 127
13	.259 028	.300 694	.342 361	384 028	.425 694	.467 361	13	.000 150
14	.259 722	.301 389	.343 056	.384 722	.426 389	.468 056	14	.000 160
15	.260 417	.302 083	.343 750	.385 417	.427 083	.468 750	15	.000 102
16	.261 111	.302 778	.344 444	.386 111	.427 778	.469 444	16	.000 174
17	.261 806	.303 472	.345 139	.386 806	.428 472	.470 139	17	.000 103
18	.262 500	.304 167	.345 833	.387 500	.429 167	.470 833	18	.000 197
19	.263 194	.304 861	.346 528	.388 194	.429 861	.471 528	19	.000 200
20	0.263 889	0.305 556	0.347 222	0.388 889	0.430 556	0.472 222	20	0.000 231
21	.264 583	.306 250	.347 917	.389 583	.431 250	.472 917	21	.000 243
22	.265 278	.306 944	.348 611	.390 278	.431 944	.473 661	22	.000 255
23	.265 972	.307 639	.349 306	.390 972	.432 639	.474 306	23	.000 266
24	.266 667	.308 383	.350 000	.391 667	.433 333	.475 000	24	.000 278
25	.267 361	.309 028	.350 694	.392 361	.434 028	.475 694	25	.000289
26	.268 056	.309 722	.351 389	.393 056	.434 722	.476 389	26	.000 301
27	.268 750	.310 417	.352 083	.393 750	.435 417	.477 083	27	.000 312
28	.269 444	.311 111	.352 778	.394 444	.436 111	.477 778	28	.000 324
29	.270 139	.311 806	.353 472	.395 139	.436 806	.478 472	29	.000 336
30	0.270 833	0.312 500	0.354 167	0.395 833	0.437 500	0.479 167	30	0.000 347
31	.271 528	.313 194	.354 861	.396 528	.438 194	.479 861	31	.000 359
32	.272 222	.313 889	.355 556	.397 222	.438 889	.480 556	32	.000 370
33	.272 917	.314 583	.356 250	.397 917	.439 583	.481 250	33	.000 382
34	.273 611	.315 278	.356 944	.398 611	.440 278	.481 944	34	.000 394
35	.274 306	.315 972	.357 639	.399 306	.440 972	.482 639	35	.000 405
36	.275 000	.316 667	.358 333	.400 000	.441 667	.483 333	36	.000 417
37	.275 694	.317 361	.359 028	.400 694	.442 361	.484 028	37	.000 428
38	276 389	.318 056	.359 722	.401 389	.443 056	.484 722	38	.000 440
39	.277 083	.318 750	.360 417	.402 083	.443 750	.485 417	39	.000 451
40	0.277 778	0.319 444	0.361 111	0.402 778	0.444 444	0.486 111	40	0.000 463
41	.278 472	.320 139	.361 806	.403 472	.445 139	.486 806	41	.000 475
42	279 167	.320 833	.362 500	.404 167	.445 833	.487 500	42	.000 486
43	.279 861	.321 528	.363 194	.404 861	.446 528	.488 194	43	.000 498
44	.280 556	.322 222	.363 889	.405 556	.447 222	.488 889	44	.000 509
45	.281 250	.322 917	.364 583	.406 250	.447 917	.489 583	45	.000 521
46	0.281 944	0.323 611	0.365 278	0.406 944	0.448 611	0.490 278	46	0.000 532

TABLE - V ---- contd.
CONVERSION OF HOURS, MINUTES AND SECONDS TO DECIMALS OF A DAY

	6 h	7 ^h	8 h	9 ^h	10 ^h	11 ^h	SE	ECONDS
m	d	d	d	d	d	d	S	d
47	0.282 639	0.324 306	0.365 972	0.407 639	0.449 306	0.490 972	47	0.000 544
48	.283 333	.325 000	.366 667	.408 333	.450 000	.491 667	48	.000 556
49	.284 028	.325 694	.367 361	.409 028	.450 694	.492 361	49	.000 567
50	0.284 722	0.326 389	0.368 056	0.409 722	0.451 389	0.493 056	50	0.000 579
51	.285 417	.327 083	.368 750	.410 417	.452 083	.493 750	51	.000 590
52	.286 111	.327 778	.369 444	.411 111	.452 778	.494 444	52	.000 602
53	.286 806	.328 472	. 370 139	.411 806	.453 472	.495 139	53	.000 613
54	.287 500	.329 167	.370 833	.412 500	.454 167	.495 833	54	.000 625
55	.288 194	.329 861	.371 528	.413 194	.454 861	.496 528	55	.000 637
56	.288 889	.330 556	.372 222	.413 889	.455 556	.497 222	56	.000 648
57	.289 583	.331 250	.372 917	.414 583	.456 250	.497 917	57	.000 660
58	.290 278	.331 944	.373 611	.415 278	.456 944	.498 611	58	.000 671
59	0.290 972	0.332 639	0.374 306	0.415 972	0.457 639	0.499 306	59	0.000 683

TABLE - VI CONVERSION OF MINUTES AND SECONDS TO DECIMALS OF A DEGREE

	0′	1′	2′	3′	4′	5′		
"	0	0	0	0	0	0	"	0
0	0.00000	0.01667	0.03333	0.05000	0.06667	0.08333	0	0.0
1	0028	1694	3361	5028		8361	6	0.0
2	0056	1722	3389	5056	6722	8389	12	0.1
3	0083	1750	3417	5083	6750	8417	18	0.3
4	0111	1778	3444	5111	6778	8444	24	0.4
5	0139	1806	3472	5139	6806	8472	30	0.5
6	0167	1833	3500	5167	6833	8500	36	0.6
7	0194	1861	3528	5194	6861	8528	42	0.7
8	0222	1889	3556	5222	6889	8556	48	0.8
9	0250	1917	3583	5250	6917	8583	54	0.9
10	0.00278	0.01944	0.03611	0.05278	0.06944	0.08611		
11	0306	1972	3639	5306	6972	8639		
12	0333	2000	3667	5333	7000	8667		
13	0361	2028	3694	5361	7028	8694		
14	0389	2056	3722	5389	7056	8722		
15	0417	2083	3750	5417	7083	8750		
16	0444	2111	3778	5444	7111	8778		
17	0472	2139	3806	5472	7139	8806		
18	0500	2167	3833	5500	7167	8833		
19	0528	2194	3861	5528	7194	8861		
20	0.00556	0.02222	0.03889	0.05556	0.07222	0.08889		
21	0583	2250	3917	5583	7250	8917		
22	0611	2278	3944	5611	7278	8944		
23	0639	2306	3972	5639	7306	8972		
24	0667	2333	4000	5667	7333	9000		
25	0.00694	0.02361	0.04028	0.05694	0.07361	0.09028		

TABLE - VI ---- contd.
CONVERSION OF MINUTES AND SECONDS TO DECIMALS OF A DEGREE

							т .	C .1
							In units	
	0'	1'	2'	3'	4′	5'	fifth deci	mal of a
	_		_		_		Degree.	
"	0	0	0	0	0	0	"	0
26	0.00722	0.02389	0.04056	0.05722	0.07389	0.09056	0.00	0
27	0750	2417	4083	5750	7417	9083	.01	1
28	0778	2444	4111	5778	7444	9111	.05	2
29	0806	2472	4139	5806	7472	9139	.09	3
30	0.00833	0.02500	0.04167	0.05833	0.07500	0.09167	.12	4
31	0861	2528	4194	5861	7528	9194	.16	5
32	0889	2556	4222	5889	7556	9222	.19	6
33	0917	2583	4250	5917	7583	9250	.23	7
34	0944	2611	4278	5944	7611	9278	.26	8
35	0972	2639	4306	5972	7639	9306	.30	9
36	1000	2667	4333	6000	7667	9333	.34	10
37	1028	2694	4361	6028	7694	9361	.37	11
38	1056	2722	4389	6056	7722	9389	.41 .45	12
39	1083	2750	4417	6083	7750	9417	.43 .48	13
40	0.01111	0.02778	0.04444	0.06111	0.07778	0.09444	.52	14
41	1139	2806	4472	6139	7806	9472	.55	15
42	1167	2833	4500	6167	7833	9500	.59	16
43	1194	2861	4528	6194	7861	9528		17
44	1222	2889	4556	6222	7889	9556		18
45				6250				19
								20
					7972			21
					8000			22
								23
								24
							.91	25
							.95	26
							0.98	27
							1.00	28
							In cri	tical
							22	
	1194 1222 1250 1278 1306 1333 1361 0.01389 1417 1444 1472 1500 1528 1556 1583 1611 0.01639	2861 2889 2917 2944 2972 3000 3028 0.03056 3083 3111 3139 3167 3194 3222 3250 3278 0.03306	4528 4556 4583 4611 4639 4667 4694 0.04722 4750 4778 4806 4833 4861 4889 4917 4944 0.04972		7889 7917 7944	9528 9556 9583 9611 9639 9667 9694 0.09722 9750 9778 9806 9833 9861 9889 9917 9944 0.09972	.95 0.98	tical

TABLE - VII INTERPOLATION COEFFICIENTS

n	В"	E_0 "	E_{I}''	n	B"	E_0 "	E_{I}''
0.00	0.00000	0.00000	0.00000	0.05	0.01188	0.01544	0.00831
.01	.00248	.00328	.00167	.06	0.01410	0.01824	0.00996
.02	.00490	.00647	.00333	.07	.01628	.02094	.01161
.03	.00728	.00955	.00500	.08	.01840	.02355	.01325
.04	.00960	.01254	.00666	.09	.02048	.02607	.01488
0.05	0.01188	0.01544	0.00831	0.10	0.02250	0.02850	0.01650

TABLE - VII ---- contd.
INTERPOLATION COEFFICIENTS

					1		
n	B"	$E_0{''}$	$E_{I}^{\prime\prime}$	n	B"	$E_0{''}$	$E_I{''}$
0.10	0.02250	0.02850	0.01650	0.55	0.06188	0.05981	0.06394
.11	.02448	.03084	.01811	.56	0.06160	0.05914	0.06406
.12	.02640	.03309	.01971	.57	.06128	.05842	.06413
.13	.02828	.03525	.02130	.58	.06090	.05765	.06415
.14	.03010	.03732	.02288	.59	.06048	.05685	.06410
.15	.03010	.03931	.02444	0.60	0.06000	0.05600	0.06400
.16	.03166	.04122	.02598	.61	.05948	.05511	.06384
.17	.03528	.04304	.02398	.62	.05890	.05419	.06361
.18	.03528	.04477	.02731	.63	.05828	.05322	.06333
.19	.03848	.04643	.03052	.64	.05760	.05222	.06298
0.20	0.04000	0.04800	0.03200	.65	.05688	.05222	.06256
.21	.04148	.04949	.03346	.66	.05610	.05012	.06208
.22	.04290	.05091	.03489	.67	.05528	.04901	.06154
.23	.04428	.05224	.03631	.68	.05440	.04787	.06093
.24	.04560	.05350	.03770	.69	.05348	.04670	.06025
.25	.04688	.05469	.03906	0.70	0.05250	0.04550	0.05950
.26	.04810	.05580	.04040	.71	.05148	.04427	.05868
.27	.04928	.05683	.04172	.72	.05040	.04301	.05779
.28	.05040	.05779	.04301	.73	.04928	.04172	.05683
.29	.05148	.05868	.04427	.74	.04810	.04040	.05580
0.30	0.05250	0.05950	0.04550	.75	.04688	.03906	.05469
.31	.05348	.06025	.04670	.76	.04560	.03770	.05350
.32	.05440	.06093	.04787	.77	.04428	.03631	.05224
.33	.05528	.06154	.04901	.78	.04290	.03489	.05091
.34	.05610	.06208	.05012	.79	.04148	.03346	.04949
.35	.05688	.06256	.05119	0.80	0.04000	0.03200	0.04800
.36	.05760	.06298	.05222	.81	. 03848	.03052	.04643
.37	.05828	.06333	.05322	.82	.03690	.02903	.04477
.38	.05890	.06361	.05419	.83	.03528	.02751	.04304
.39	.05948	.06384	.05511	.84	.03360	.02598	.04122
0.40	0.06000	0.06400	0.05600	.85	.03188	.02444	.03931
.41	.06048	.06410	.05685	.86	.03010	.02288	.03732
.42	.06090	.06415	.05765	.87	.02828	.02130	.03525
.43	.06128	.06413	.05842	.88	.02640	.01971	.03309
.44	.06160	.06406	.05914	.89	.02448	.01811	.03084
.45	.06188	.06394	.05981	0.90	0.02250	0.01650	0.02850
.46	.06210	.06376	.06044	.91	.02048	.01488	.02607
.47	.06228	.06352	.06103	.92	.01840	.01325	.02355
.48	.06240	.06323	.06157	.93	.01628	.01161	.02094
.49	.06248	.06289	.06206	.94	.01410	.00996	.01824
0.50	0.06250	0.06250	0.06250	.95	.01188	.00831	.01544
.51	.06248	.06206	.06289	.96	.00960	.00666	.01254
.52	.06240	.06157	.06323	.97	.00728	.00500	.00955
.53	.06228	.06103	.06352	.98	.00490	.00333	.00647
.54	.06210	.06044	.06376	0.99	.00248	.00167	.00328
0.55	0.06188	0.05981	0.06394	1.00	0.00000	0.00000	0.00000

 $\it N.B.-$ The coefficients are all $\it negative.$ For details about Bessel's and Everett's interpolation formula, please $\it see$ Explanation

TABLE - VIII
EVERETT COEFFICIENTS OF THE SECOND DIFFERENCES

(The coefficients are all negative)

n	E_0 "	E_1''		n	E_0 "	E_1''		n	E_0 "	E_1''	
0.000			1.000	0.050		0.0004	0.950	0.100		0.0166	0.900
.001	0.0002	0.0001	0.999	.051	0.0156	0.0084	.949	.101	0.0286		.899
.002	.0005	.0002	.998	.052	.0159	.0086	.948	.102	.0289	.0167	.898
.003	.0008	.0004	.997	.053	.0161	.0087	.947	.103	.0291	.0169	.897
.004	.0012	.0006	.996	.054	.0164	.0089	.946	.104	.0293	.0171	.896
.005	.0015	.0007	.995	.055	.0167	.0091	.945	.105	.0296	.0172	.895
.006	.0018	.0009	.994	.056	.0170	.0092	.944	.106	.0298	.0174	.894
.007	.0021	.0011	.993	.057	.0173	.0094	.943	.107	.0300	.0175	.893
.007	.0025	.0012	.992	.058	.0175	.0096	.942	.107	.0303	.0177	.892
.008	.0028	.0014	.991	.059	.0178	.0097	.942	.108	.0305	.0179	.892
.010	.0031	.0016	.990	.060	.0181	.0099	.941	.110	.0307	.0180	.890
	.0034	.0017			.0184	.0100			.0310	.0182	
.011	.0038	.0019	.989	.061	.0186	.0102	.939	.111	.0312	.0184	.889
.012	.0041	.0021	.988	.062	.0189	.0104	.938	.112	.0314	.0185	.888
.013	.0044	.0022	.987	.063	.0192	.0105	.937	.113	.0316	.0187	.887
.014	.0047	.0024	.986	.064	.0195	.0107	.936	.114	.0319	.0188	.886
.015	.0050	.0026	.985	.065	.0197	.0109	.935	.115	.0321	.0190	.885
.016	.0054	.0027	.984	.066	.0200	.0110	.934	.116	.0323	.0192	.884
.017	.0057	.0029	.983	.067	.0203	.0112	.933	.117	.0325	.0193	.883
.018	.0060	.0031	.982	.068	.0205	.0114	.932	.118	.0328	.0195	.882
.019	.0063	.0031	.981	.069	.0208	.0115	.931	.119	.0330	.0196	.881
.020	.0066	.0032	.980	.070	.0203	.0117	.930	.120	.0332	.0198	.880
.021	.0069	.0034	.979	.071	.0211	.0117	.929	.121	.0334	.0200	.879
.022		.0030	.978	.072	.0213	.0119	.928	.122	.0334	.0200	.878
.023	.0072		.977	.073			.927	.123			.877
.024	.0076	.0039	.976	.074	.0219	.0122	.926	.124	.0339	.0203	.876
.025	.0079	.0041	.975	.075	.0221	.0123	.925	.125	.0341	.0204	.875
.026	.0082	.0042	.974	.076	.0224	.0125	.924	.126	.0343	.0206	.874
.027	.0085	.0044	.973	.077	.0226	.0127	.923	.127	.0345	.0207	.873
.028	.0088	.0046	.972	.078	.0229	.0128	.922	.128	.0347	.0209	.872
.029	.0091	.0047	.971	.079	.0232	.0130	.921	.129	.0349	.0211	.871
.030	.0094	.0049	.970	.080	.0234	.0132	.920	.130	.0351	.0212	.870
.031	.0097	.0051	.969	.081	.0237	.0133	.919	.131	.0354	.0214	.869
.032	.0100	.0052	.968	.082	.0239	.0135	.918	.132	.0356	.0215	.868
.032	.0103	.0054	.967	.083	.0242	.0137	.917	.132	.0358	.0217	.867
.034	.0106	.0056	.966	.084	.0244	.0138	.916	.133	.0360	.0219	.866
.034	.0109	.0057	.965	.085	.0247	.0140	.915	.135	.0362	.0220	.865
.033	.0112	.0059	.963	.085	.0249	.0141	.913	.135	.0364	.0222	.864
.036	.0115	.0061	.963	.086	.0252	.0143	.914	.130	.0366	.0223	.863
	.0118	.0062			.0255	.0145			.0368	.0225	
.038	.0121	.0064	.962	.088	.0257	.0146	.912	.138	.0370	.0226	.862
.039	.0124	.0066	.961	.089	.0259	.0148	.911	.139	.0372	.0228	.861
.040	.0127	.0067	.960	.090	.0262	.0150	.910	.140	.0374	.0230	.860
.041	.0130	.0069	.959	.091	.0264	.0151	.909	.141	.0376	.0231	.859
.042	.0133	.0071	.958	.092	.0267	.0153	.908	.142	.0378	.0233	.858
.043	.0136	.0072	.957	.093	.0269	.0154	.907	.143	.0380	.0234	.857
.044	.0139	.0074	.956	.094	.0272	.0156	.906	.144	.0382	.0236	.856
.045	.0141	.0074	.955	.095	.0274	.0158	.905	.145	.0384	.0237	.855
.046	.0144	.0077	.954	.096	.0277	.0159	. 904	.146	.0386	.0237	.854
.047	.0144	.0077	.953	.097	.0277	.0159	.903	.147	.0388	.0239	.853
.048	.0150	.0079	.952	.098	.0279	.0163	.902	.148	.0390	.0240	.852
.049	0.0153	0.0081	.951	.099	0.0284	0.0164	.901	.149	0.0390		.851
0.050	0.0155	0.0062	0.950	0.100	0.0264	0.0104	0.900	0.150	0.0392	0.0244	0.850
	E_1''	E_0 "	n		E_1''	E_0 "	n		E_1''	E_0 "	n

Formula : $f_n = f_0 + n \Delta_{1/2} + E_0'' \Delta_0'' + E_I'' \Delta_1''$

TABLE - VIII ---- contd. EVERETT COEFFICIENTS OF THE SECOND DIFFERENCES

(The coefficients are all negative)

n	E_{o}''	E_{I}''		n	E_{o}''	E_I "		n	E_0''	E_1''	
0.150	0.0394	0.0245	0.850	0.200	0.0482	0.0321	0.800	0.300	0.0597	0.0457	0.700
.151	.0396	.0247	.849	.202	.0485	.0324	.798	.304	.0600	.0462	.696
.152			.848	.204		.0324	.796	.308			.692
.153	.0398	.0248	.847	.206	.0488 .0491		.794	.312	.0602	.0467 .0472	.688
.154	.0400		.846	.208		.0330	.792	.316	.0605		.684
.155	.0402	.0251	.845	.210	.0493	.0333	.790	.320	.0608	.0476	.680
.156	.0404	.0253	.844	.212	.0496	.0336	.788	.324	.0611	.0481	.676
.157	.0406	.0254	.843	.214	.0499	.0339	.786	.328	.0613	.0486	.672
.158	.0407	.0256	.842	.216	.0502	.0342	.784	.332	.0615	.0490	.668
.159	.0409	.0258	.841	.218	.0505	.0345	.782	.336	.0618	.0495	.664
.160	.0411	.0259	.840	.220	.0508	.0347	.780	.340	.0620	.0499	.660
.161	.0413	.0261	.839	.222	.0510	.0350	.778	.344	.0622	.0503	.656
.162	.0415	.0262	.838	.224	.0513	.0353	.776	.348	.0624	.0508	.652
.163	.0417	.0264	.837	.226	.0516	.0356	.774	.352	.0626	.0512	.648
.164	.0419	.0265	.836	.228	.0519	.0359	.772	.356	.0627	.0516	.644
.165	.0420	.0267	.835	.230	.0521	.0362	.770	.360	.0629	.0520	.640
.166	.0422	.0268	.834	.232	.0524	.0364	.768	.364	.0631	.0524	.636
.167	.0424	.0270	.833	.234	.0526	.0367	.766	.368	.0632	.0528	.632
.168	.0426	.0271	.832	.234	.0529	.0370	.764	.372	.0633	.0532	.628
.169	.0428	.0273	.831	.238	.0531	.0373	.762	.376	.0634	.0536	.624
.170	.0429	.0274	.830	.240	.0534	.0376	.760	.380	.0636	.0540	.620
.170	.0431	.0276	.829	.242	.0536	.0378	.758	.384	.0637	.0544	.616
.171	.0433	.0277	.829	.242	.0539	.0381	.756	.388	.0638	.0547	.612
.172	.0435	.0279		.244	.0541	.0384	.754	.392	.0638	.0551	.608
	.0437	.0280	.827		.0543	.0387			.0639	.0555	
.174	.0438	.0282	.826	.248	.0546	.0389	.752	.396	.0640	.0558	.604
.175	.0440	.0283	.825	.250 .252	.0548	.0392	.750	.400 .404	.0640	.0562	.600
.176	.0442	.0285	.824		.0550	.0395	.748		.0641	.0565	.596
.177	.0443	.0287	.823	.254	.0553	.0397	.746	.408	.0641	.0568	.592
.178	.0445	.0288	.822	.256	.0555	.0400	.744	.412	.0641	.0572	.588
.179	.0447	.0290	.821	.258	.0557	.0403	.742	.416	.0641	.0575	.584
.180	.0449	.0291	.820	.260	.0559	.0405	.740	.420	.0641	.0578	.580
.181	.0450	.0293	.819	.262	.0561	.0408	.738	.424	.0641	.0581	.576
.182	.0452	.0294	.818	.264	.0563	.0411	.736	.428	.0641	.0584	.572
.183	.0454	.0296	.817	.266	.0565	.0413	.734	.432	.0641	.0587	.568
.184	.0455	.0297	.816	.268	.0567	.0416	.732	.436	.0641	.0590	.564
.185	.0457	.0299	.815	.270	.0569	.0418	.730	.440	.0640	.0593	.560
.186	.0459	.0300	.814	.272	.0571	.0421	.728	.444	.0640	.0595	.556
.187	.0460	.0302	.813	.274	.0573	.0424	.726	.448	.0639	.0598	.552
.188	.0462	.0303	.812	.276	.0575	.0426	.724	.452	.0639	.0601	.548
.189	.0463	.0304	.811	.278	.0577	.0429	.722	.456	.0638	.0603	.544
.190	.0465	.0306	.810	.280	.0579	.0431	.720	.460	.0637	.0606	.540
.191	.0467	.0307	.809	.282	.0581	.0434	.718	.464	.0636	.0608	.536
.192	.0468	.0309	.808	.284	.0582	.0436	.716	.468	.0635	.0610	.532
.193	.0470	.0310	.807	.286	.0584	.0439	.714	.472	.0634	.0613	.528
.194	.0471	.0312	.806	.288	.0586	.0441	.712	.476	.0633	.0615	.524
.195	.0473	.0312	.805	.290	.0588	.0444	.710	.480	.0632	.0617	.520
.196	.0475	.0315	.804	.292	.0589	.0446	.708	.484	.0630	.0619	.516
.197	.0476	.0316	.803	.294	.0591	.0449	.706	.488	.0629	.0621	.512
.198	.0478	.0318	.802	.296	.0593	.0451	.704	.492	.0627	.0622	.508
.199	0.0479	0.0319	.801	.298	0.0594	0.0454	.702	.496	0.0626		.504
0.200			0.800	0.300			0.700	0.500			0.500
	E_1''	E_0''	n		E_{I}''	E_0''	n		E_1''	E_0''	n

N. B. -- The table is to be used like a critical table without interpolation

TABLE - IX JULIAN DAY NUMBER

DAYS ELAPSED AT GREENWICH NOON OF JANUARY 0

Yr. A.D.	100	200	300	400	500	600	700	800	900	1000
0	175 7582	179 4107	183 0632	186 7157	190 3682	194 0207	197 6732	201 3257	204 9782	208 6307
20	176 4887	180 1412	183 7937	187 4462	191 0987	194 7512	198 4037	202 0562	205 7087	209 3612
40	177 2192	180 8717	184 5242	188 1767	191 8292	195 4817	199 1342	202 7867	206 4392	210 0917
60	177 9497	181 6022	185 2547	188 9072	192 5597	196 2122	199 8647	203 5172	207 1697	210 8222
80	178 6802	182 3327	185 9852	189 6377	193 2902	196 9427	200 5952	204 2477	207 9002	211 5527
Yr. A.D.	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
							*	*	*	
0	212 2832	215 9357	219 5882	223 2407	226 8932	230 5447	234 1971	237 8495	241 5020	245 1544
20	213 0137	216 6662	220 3187	223 9712	227 6237	231 2752	234 9276	238 5806	242 2324	245 8849
40	213 7442	217 3967	221 0492	224 7017	228 3542	232 0057	235 6581	239 3105	242 9629	246 6154
60	214 4747	218 1272	221 7797	225 4322	229 0847	232 7362	236 3886	240 0410	243 6934	247 3459
80	215 2052	218 8577	222 5102	226 1627	229 8152	233 4667	237 1191	240 7715	244 4239	248 0764
					†					
100	215 9357	219 5882	223 2407	226 8932	230 5447	234 1971	237 8495	241 5020	245 1544	248 8069

NUMBER OF DAYS TO BE ADDED TO REDUCE TO THE BEGINNING OF EACH MONTH

Year	Jan. 0	Feb. 0	Mar. 0	Apr. 0	May 0	Jun. 0	July 0	Aug. 0	Sept. 0	Oct. 0	Nov. 0	Dec. 0
	*	*										
0	0	31	60	91	121	152	182	213	244	274	305	335
1	366	397	425	456	486	517	547	578	609	639	670	700
2	731	762	790	821	851	882	912	943	974	1004	1035	1065
3	1096	1127	1155	1186	1216	1247	1277	1308	1339	1369	1400	1430
4	1461	1492	1521	1552	1582	1613	1643	1674	1705	1735	1766	1796
5	1827	1858	1886	1917	1947	1978	2008	2039	2070	2100	2131	2161
6	2192	2223	2251	2282	2312	2343	2373	2404	2435	2465	2496	2526
7	2557	2588	2616	2647	2677	2708	2738	2769	2800	2830	2861	2891
8	2922	2953	2982	3013	3043	3074	3104	3135	3166	3196	3227	3257
9	3288	3319	3347	3378	3408	3439	3469	3500	3531	3561	3592	3622
10	3353	3684	3712	3743	3773	3804	3834	3865	3896	3926	3957	3987
11	4018	4049	4077	4108	4138	4169	4199	4230	4261	4291	4322	4352
12	4383	4414	4443	4474	4504	4535	4565	4596	4627	4657	4688	4718
13	4749	4780	4808	4839	4869	4900	4930	4961	4992	5022	5053	5083
14	5114	5145	5173	5204	5234	5265	5295	5326	5357	5387	5418	5448
15	5479	5510	5538	5569	5599	5630	5660	5691	5722	5752	5783	5813
16	5844	5875	5904	5935	5965	5996	6026	6057	6088	6118	6149	6179
17	6210	6241	6269	6300	6330	6361	6391	6422	6453	6483	6514	6544
18	6575	6606	6634	6665	6695	6726	6756	6787	6818	6848	6879	6909
19	6940	6971	6999	7030	7060	7091	7121	7152	7183	7213	7244	7274

[†] From 1582 October 15 to 1599 December 31 inclusive, Gregorian calendar, the numbers given by the above tables must be diminished by 10.

N.B. To find the Julian Day Number for a B.C. date, first express the year astronomically, i.e. diminish it by 1 and put a negative sign before it. Then make the number positive by adding the smallest multiple of 1000. The Julian Day Number for the date thus obtained diminished by 365250 for each multiple of 1000 added will give the required Julian Day Number for the B.C. date in question.

The Julian Day is completed at noon. In order to obtain the Julian Day Number for 0^h U.T., diminish the figure obtained from the above tables by 0.5.

The tables give the Day Numbers upto 1582, Oct. 4 for the Julian calendar and from 1582, Oct. 15 onward for the Gregorian calendar.

^{*} The numbers given for the years 1700, 1800 and 1900 which are not leap years, are for January - 1 and consequently the numbers 0 and 31 for January 0 and February 0 of these years must be increased by 1 and read as 1 and 32 respectively.

TABLE – X
ATMOSPHERIC REFRACTION
MEAN REFRACTION FOR TEMPERATURE 25° C AND PRESSURE 1000 mb

Apparent	Mean	Apparent	Mean	Apparent	Mean	Apparent	Mean
Altitude	Refraction	Altitude	Refraction	Altitude	Refraction	Altitude	Refraction
0 /	, "	0 1	, ,,	0 /	' "	0	' "
-1 00	46 17.5	6 10	7 39.0	17 30	2 49.6	53	0 40.8
0 00	30 59.6	20	7 28.5	18 00	2 44.7	54	39.3
+0 10	29 09.3	30	7 18.5	18 30	2 40.0	55	37.9
20	27 28.9	40	7 08.9	19 00	2 35.6	56	36.5
30	25 57.8	6 50	6 59.7	19 30	2 31.4	57	35.1
0 40	24 34.6	7 00	6 50.8	20 00	2 27.3	58	33.8
0 50	23 18.3	7 10	6 42.3	21 00	2 19.8	59	0 32.6
1 00	22 07.9	20	6 34.1	22 00	2 12.9	60	31.2
10	21 02.6	30	6 26.3	23 00	2 06.6	61	30.0
20	20 02.4	40	6 18.7	24 00	2 00.8	62	28.8
30	19 07.0	7 50	6 11.4	25 00	1 55.4	63	27.6
1 40	18 15.6	8 00	6 04.4	26 00	1 50.4	64	26.4
1 50	17 28.2	8 10	5 57.6	27 00	1 45.7	65	0 25.2
2 00	16 44.0	20	5 51.2	28 00	1 41.3	66	24.1
10	16 02.6	30	5 44.7	29 00	1 37.2	67	23.0
20	15 24.0	40	5 38.6	30 00	1 33.4	68	21.9
30	14 48.0	8 50	5 32.6	31 00	1 29.8	69	20.8
2 40	14 14.4	9 00	5 26.8	32 00	1 26.3	70	19.7
2 50	13 42.9	9 10	5 21.3	33 00	1 23.1	71	0 18.6
3 00	13 13.5	20	5 15.9	34 00	1 20.0	72	17.6
10	12 45.8	30	5 10.6	35 00	1 17.1	73	16.5
20	12 19.6	40	5 05.5	36 00	1 14.3	74	15.5
30	11 55.0	9 50	5 00.6	37 00	1 11.7	75	14.5
3 40	11 31.9	10 00	4 55.9	38 00	1 09.1	76	13.5
3 50	11 10.0	10 30	4 42.4	39 00	1 06.8	77	0 12.5
4 00	10 49.5	11 00	4 30.0	40 00	1 04.4	78	11.5
10	10 30.1	11 30	4 18.7	41 00	1 02.2	79	10.5
20	10 11.7	12 00	4 08.1	42 00	1 00.0	80	09.5
30	9 54.2	12 30	3 58.4	43 00	0 57.9	81	08.6
4 40	9 37.5	13 00	3 49.3	44 00	0 56.0	82	07.6
4 50	9 21.6	13 30	3 40.8	45 00	0 54.1	83	0 06.6
5 00	9 06.5	14 00	3 32.9	46 00	0 52.2	84	05.7
10	8 52.1	14 30	3 25.6	47 00	0 50.4	85	04.7
20	8 38.6	15 00	3 18.6	48 00	0 48.7	86	03.8
30	8 25.5	15 30	3 12.1	49 00	0 47.0	87	02.8
5 40	8 13.0	16 00	3 06.0	50 00	0 45.4	88	01.9
5 50	8 01.2	16 30	3 00.2	51 00	0 43.8	89	0 00.9
6 00	7 49.8	17 00	2 54.8	52 00	0 42.2	90	0.00
6 10	7 39.0	17 30	2 49.6	53 00	0 40.8		

Rule: True altitude of a celestial object = Its apparent or observed altitude - refraction.

N.B.-The figures of mean refraction given in the above table are for temperature 25° C and pressure 1000 mb. (750.06 mm. Or 29.530 inches of mercury barometer). For other values of temperature and pressure, corrections form the tables on the following two pages are to be taken and applied to the mean refraction.

TABLE - Xa
ATMOSPHERIC REFRACTION
CORRECTION OF MEAN REFRACTION FOR DIFFERENT VALUES OF TEMPERATURE

Appa	rent	- 10	0° C	0	° C	10)° C	20	° C	2	5° C	3	0° C	40	° C	50)° C
Altitu	ude	(14	4° F)	(32	2° F)	(50)° F)	(68	°F)	(7	7° F)	(8	66° F)	(104	4° F)	(12	2° F)
0	,	,	"	,	"	,	"	,	"	,	"	,	"	,	"	,	"
- 1	00	+ 13	31.7	+ 9	17.8	+ 5	13.4	+ 1	37.7	0	0.00	- 1	32.6	- 4	22.5	- 6	54.8
0	00	7	16.3	5	04.8	2	53.4	0	54.8	0	0.00	0	52.1	2	29.6	3	58.2
+ 0	30	5	39.4	3	57.4	2	15.6	0	42.8	0	0.00	0	41.2	1	58.4	3	09.1
1	00	4	27.7	3	07.8	1	47.8	0	34.7	0	0.00	0	32.1	1	33.8	2	30.7
1	30	3	38.4	2	33.1	1	27.9	0	27.8	0	0.00	0	27.1	1	18.1	2	05.2
2	00	3	00.9	2	07.0	1	13.1	0	23.4	0	0.00	0	22.4	1	05.0	1	44.5
2	30	+ 2	32.9	+ 1	48.1	+ 1	02.1	+ 0	19.6	0	0.00	- 0	19.5	- 0	56.0	- 1	29.9
3	00	2	12.7	1	33.2	0	53.8	0	17.2	0	0.00	0	16.7	0	48.2	1	17.5
3	30	1	56.6	1	21.9	0	47.3	0	15.1	0	0.00	0	14.6	0	42.4	1	08.3
4	00	1	43.2	1	12.5	0	42.0	0	13.5	0	0.00	0	12.9	0	37.6	1	00.6
4	30	1	32.5	1	05.0	0	37.9	0	12.0	0	0.00	0	11.7	0	33.9	0	54.5
5	00	1	23.7	0	58.9	0	35.0	0	10.9	0	0.00	0	10.6	0	30.7	0	49.5
6	00	+ 1	10.2	+ 0	49.4	+ 0	30.0	+ 0	09.1	0	0.00	- 0	09.0	- 0	25.8	- 0	41.5
7	00	1	00.3	0	42.5	0	25.6	0	07.9	0	0.00	0	07.6	0	22.1	0	35.7
8	00	0	52.7	0	37.1	0	21.4	0	06.9	0	0.00	0	06.6	0	19.4	0	31.3
9	00	0	46.8	0	32.9	0	19.1	0	06.1	0	0.00	0	05.9	0	17.2	0	27.8
10	00	0	43.0	0	29.6	0	17.1	0	05.4	0	0.00	0	05.3	0	15.5	0	25.0
11	00	0	39.4	0	26.9	0	15.6	0	05.0	0	0.00	0	04.8	0	14.1	0	22.8
12	00	+ 0	35.7	+ 0	24.3	+ 0	14.2	+ 0	04.6	0	0.00	- 0	04.4	- 0	12.8	- 0	20.7
13	00	0	33.1	0	22.6	0	13.2	0	04.2	0	0.00	0	04.0	0	11.9	0	19.2
14	00	0	30.4	0	21.0	0	12.1	0	03.9	0	0.00	0	03.7	0	11.0	0	17.7
15	00	0	28.4	0	19.6	0	11.3	0	03.6	0	0.00	0	03.5	0	10.2	0	16.5
16	00	0	26.4	0	18.2	0	10.3	0	03.4	0	0.00	0	03.3	0	09.5	0	15.4
17	00	0	24.8	0	17.2	0	09.9	0	03.2	0	0.00	0	03.1	0	08.9	0	14.4
18	00	+ 0	23.3	+ 0	16.2	+ 0	09.3	+ 0	03.0	0	0.00	- 0	02.9	- 0	08.4	- 0	13.5
19	00	0	22.1	0	15.2	0	08.8	0	02.7	0	0.00	0	02.7	0	07.9	0	12.8
20	00	0	20.9	0	14.3	0	08.3	0	02.5	0	0.00	0	02.6	0	07.5	0	12.1
25	00	0	16.3	0	11.2	0	06.5	0	02.1	0	0.00	0	02.0	0	05.9	0	09.4
30	00	0	13.1	0	09.0	0	05.2	0	01.7	0	0.00	0	01.6	0	04.7	0	07.6
35	00	0	10.8	0	07.4	0	04.3	0	01.4	0	0.00	0	01.3	0	03.9	0	06.3
40	00	+ 0	09.0	+ 0	06.2	+ 0	03.6	+ 0	01.2	0	0.00	- 0	01.1	- 0	03.2	- 0	05.2
45	00	0	07.5	0	05.2	0	03.0	0	01.0	0	0.00	0	00.9	0	02.7	0	04.4
50	00	0	06.0	0	04.4	0	02.5	0	00.8	0	0.00	0	00.8	0	02.3	0	03.7
55	00	0	05.3	0	03.6	0	02.1	0	00.7	0	0.00	0	00.7	0	02.0	0	03.1
60	00	0	04.4	0	03.0	0	01.8	0	00.6	0	0.00	0	00.6	0	01.6	0	02.5
65	00	0	03.6 02.8	0	02.4 01.9	0	01.4	0	00.5	0	0.00	0	00.5	0	01.3	0	02.1
70	00	+ 0		+ 0		+ 0	01.1	+ 0	00.4	0	0.00	- 0	00.4	- 0	01.0	- 0	01.6
75	00	0	02.0	0	01.4	0	00.8	0	00.3	0	0.00	0	00.3	0	00.7	0	01.2
80	00	0	01.4 00.7	0	00.9 00.4	0	00.5	0	00.2	0	0.00	0	00.2	0	00.4	0	00.8
85 90	00 00	0		0		0	00.2	0	00.1	0	0.00	0	00.1	0	00.2	0	00.4
90	UU	+ 0	0.00	+ 0	0.00	+ 0	0.00	+ 0	0.00	0	0.00	- 0	0.00	- 0	0.00	- 0	0.00

TABLE - Xb

ATMOSPHERIC REFRACTION

PRESSURE CORRECTION OF REFRACTION FOR DIFFERENT VALUES OF PRESSURE

				AMOU	JNT OF	REFF	RACTI	ON C	ORRE	ЕСТЕ	D FOR	PRES	SSURI	Ξ	
P	RESSUI	RE	1′	2'	3′		5′		10′		20′	3	0'	60	0′
mb	mm	Inch	"	"	"	,	"	,	"	,	"	,	"	,	"
660	495.0	19.49	- 20.4	- 40.8	- 61.3	- 1	42.3	- 3	26.5	- 7	04.9	- 10	59.1	- 24	19
670	502.5	19.79	19.8	39.7	59.5	1	39.3	3	20.4	6	52.5	10	39.8	23	36
680	510.0	20.08	19.2	38.4	57.7	1	36.3	3	14.3	6	39.8	10	20.2	22	53
690	517.5	20.38	18.6	37.2	55.9	1	33.3	3	08.2	6	27.4	10	00.9	22	10
700	525.0	20.67	18.0	36.0	54.1	1	30.3	3	02.2	6	14.9	9	41.5	21	27
710	532.5	20.97	17.4	34.8	52.3	1	27.3	2	56.1	6	02.5	9	22.2	20	45
720	540.0	21.26	- 16.8	- 33.5	- 50.6	- 1	24.3	- 2	50.0	- 5	50.0	- 9	02.8	- 20	01
730	547.5	21.56	16.2	32.4	48.7	1	21.2	2	43.9	5	37.4	8	43.3	19	18
740	555.0	21.85	15.6	31.2	46.9	1	18.2	2	37.8	5	24.9	8	23.9	18	35
750	562.6	22.15	15.0	30.0	45.1	1	15.2	2	31.8	5	12.4	8	04.6	17	53
760	570.1	22.44	14.4	28.9	43.3	1	12.3	2	25.8	5	00.2	7	45.6	17	21
770	577.6	22.74	13.8	27.6	41.5	1	09.2	2	19.7	4	47.5	7	25.9	16	27
780	585.1	23.03	- 13.2	- 26.4	- 39.7	- 1	06.2	- 2	13.6	- 4	35.0	- 7	06.5	- 15	44
790	592.6	23.33	12.6	25.2	37.9	1	03.2	2	07.6	4	22.5	6	47.2	15	01
800	600.1	23.62	12.0	24.0	36.0	1	00.2	2	01.4	4	09.9	6	27.6	14	18
810	607.6	23.92	11.4	22.8	34.3	0	57.2	1	55.4	3	57.5	6	08.3	13	35
820	615.1	24.22	10.8	21.6	32.4	0	54.2	1	49.3	3	44.9	5	48.9	12	52
830	622.6	24.51	10.2	20.4	30.7	0	51.2	1	43.3	3	32.5	5	29.6	12	10
840	630.1	24.81	- 9.6	- 19.2	- 28.9	- 0	48.2	- 1	37.2	- 3	20.0	- 5	10.2	- 11	27
850	637.6	25.10	9.0	18.0	27.0	0	45.1	1	31.1	3	07.4	4	50.7	10	43
860	645.1	25.40	8.4	16.8	25.2	0	42.1	1	25.0	2	54.9	4	31.3	10	01
870	652.6	25.69	7.8	15.6	23.4	0	39.1	1	19.0	2	42.5	4	12.0	9	18
880	660.1	25.99	7.2	14.4	21.6	0	36.1	1	12.9	2	30.0	3	52.6	8	35
890	667.6	26.28	6.6	13.2	19.8	0	33.1	1	06.8	2	17.5	3	33.3	7	52
900	675.1	26.58	- 6.0	- 12.0	- 18.0	- 0	30.1	- 1	00.7	- 2	04.9	- 3	13.7	- 7	09
910	682.6	26.87	5.4	10.8	16.2	0	27.1	0	54.7	1	52.5	2	54.3	6	26
920	690.1	27.17	4.8	9.6	14.4	0	24.1	0	48.6	1	39.9	2	35.0	5	43
930	697.6	27.46	4.2	8.4	12.6	0	21.1	0	42.5	1	27.5	2	15.7	5	01
940	705.1	27.76	3.6	7.2	10.8	0	18.1	0	36.4	1	15.0	1	50.3	4	17
950	712.6	28.05	3.0	6.0	9.0	0	15.0	0	30.3	1	02.4	1	36.9	3	34
960	720.1	28.35	- 2.4	- 4.8	- 7.2	- 0	12.0	- 0	24.3	- 0	49.9	- 1	17.4	- 2	51
970	727.6	28.64	1.8	3.6	5.4	0	09.0	0	18.2	0	37.5	0	58.2	2	09
980	735.1	28.94	1.2	2.4	3.6	0	06.0	0	12.1	0	25.0	0	38.7	1	26
990	742.6	29.24	- 0.6	- 1.2	- 1.8	- 0	03.0	- 0	06.1	- 0	12.5	- 0	19.4	- 0	43
1000	750.1	29.53	0.0	0.0	0.0	0	0.00	0	0.00	0	0.00	0	0.00	0	00
1010	757.6	29.83	+ 0.6	+ 1.2	+ 1.8	+ 0	03.1	+ 0	06.1	+ 0	12.5	+ 0	19.5	+ 0	43
1020	765.1	30.12	1.2	2.4	3.6	0	06.0	0	12.2	0	25.1	0	38.9	1	26
1030	772.6	30.42	1.8	3.6	5.4	0	09.0	0	18.2	0	37.5	0	58.2	2	09
1040	780.1	30.71	2.4	4.8	7.2	0	12.0	0	24.3	0	50.0	0	77.6	2	52
1050	787.6	31.01	+ 3.0	+ 6.0	+ 9.0	+ 0	15.0	+ 0	30.3	+0	62.4	+0	96.9	+ 3	24

TABLE - XI FACTORS FOR COMPUTING THE GEOCENTRIC COORDINATES OF A PLACE

ф	S	C	ф	S	C
0			0		
0	0.993306	1.000000	45	0.994972	1.001678
1	0.993307	1.000001	46	0.995031	1.001737
2	0.993310	1.000004	47	0.995089	1.001795
3	0.993315	1.000009	48	0.995147	1.001854
4	0.993322	1.000016	49	0.995205	1.001912
5	0.993331	1.000025	50	0.995262	1.001970
6	0.993342	1.000037	51	0.995320	1.002028
7	0.993355	1.000050	52	0.995377	1.002085
8	0.993370	1.000065	53	0.995433	1.002142
9	0.993387	1.000082	54	0.995489	1.002198
10	0.993406	1.000101	55	0.995544	1.002254
11	0.993427	1.000122	56	0.995599	1.002309
12	0.993449	1.000145	57	0.995652	1.002363
13	0.993474	1.000169	58	0.995705	1.002416
14	0.993500	1.000196	59	0.995758	1.002468
15	0.993528	1.000224	60	0.995809	1.002520
16	0.993558	1.000254	61	0.995859	1.002570
17	0.993590	1.000286	62	0.995908	1.002620
18	0.993623	1.000320	63	0.995956	1.002668
19	0.993658	1.000355	64	0.996002	1.002715
20	0.993695	1.000392	65	0.996048	1.002761
21	0.993733	1.000430	66	0.996092	1.002805
22	0.993773	1.000470	67	0.996135	1.002848
23	0.993814	1.000511	68	0.996176	1.002890
24	0.993856	1.000554	69	0.996216	1.002930
25	0.993900	1.000598	70	0.996255	1.002969
26	0.993945	1.000644	71	0.996291	1.003006
27	0.993992	1.000691	72	0.996327	1.003041
28	0.994039	1.000739	73	0.996360	1.003075
29	0.994088	1.000788	74	0.996392	1.003107
30	0.994138	1.000838	75	0.996422	1.003138
31	0.994189	1.000889	76	0.996451	1.003166
32	0.994241	1.000941	77	0.996477	1.003193
33	0.994293	1.000994	78	0.996502	1.003218
34	0.994347	1.001048	79	0.996525	1.003241
35	0.994401	1.001103	80	0.996546	1.003262
36	0.994456	1.001158	81	0.996565	1.003281
37	0.994512	1.001214	82	0.996582	1.003299
38	0.994568	1.001271	83	0.996597	1.003314
39	0.994625	1.001328	84	0.996610	1.003327
40	0.994682	1.001386	85	0.996622	1.003338
41	0.994740	1.001444	86	0.996631	1.003348
42	0.994798	1.001502	87	0.996638	1.003355
43	0.994856	1.001560	88	0.996643	1.003360
44	0.994914	1.001619	89	0.996646	1.003363
45	0.994972	1.001678	90	0.996647	1.003364

 $\rho \sin \phi' = (S+H) \sin \phi$ $H = 0.156779 \times \text{elevation in meters} \times 10^{-6}$

 $\rho \cos \phi' = (C+H) \cos \phi$ $H = 0.047786 \times \text{elevation in feet } \times 10^{-6}$

TABLE - XII CONVERSION OF GEOGRAPHIC TO GEOCENTRIC COORDINATES

			ONE DEC	GREE OF				ONE DEC	GREE OF
φ	φ' - φ	ρ		Longitude	φ	φ' - φ	ρ	Latitude	Longitude
0	, "		Kilometers	Kilometers	0	, ,,		Kilometers	Kilometers
0	0.00.0	1.000000	110.57	111.32	45	- 11 32.7	0.998331	111.13	78.85
1	- 0 24.1	0.999999	110.58	111.30	46	11 32.4	0.998272	111.15	77.46
2	0 48.2	0.999996	110.58	111.25	47	11 31.2	0.998214	111.17	76.06
3	1 12.2	0.999991	110.58	111.17	48	11 29.2	0.998155	111.19	74.63
4	1 36.1	0.999984	110.58	111.05	49	11 26.3	0.998097	111.21	73.17
5	1 59.9	0.999975	110.58	110.90	50	11 22.6	0.998039	111.23	71.70
6	2 23.6	0.999964	110.59	110.71	51	11 18.1	0.997982	111.25	70.20
7	2 47.0	0.999951	110.59	110.50	52	11 12.7	0.997925	111.27	68.68
8	3 10.3	0.999936	110.60	110.24	53	11 06.5	0.997868	111.29	67.14
9	3 33.4	0.999919	110.60	109.96	54	10 59.5	0.997812	111.31	65.58
10	- 3 56.2	0.999900	110.61	109.64	55	- 10 51.7	0.997756	111.32	63.99
11	4 18.7	0.999879	110.62	109.29	56	10 43.1	0.997702	111.34	62.39
12	4 40.9	0.999856	110.62	108.90	57	10 33.7	0.997648	111.36	60.77
13	5 02.8	0.999832	110.63	108.49	58	10 23.5	0.997594	111.38	59.13
14	5 24.3	0.999805	110.64	108.03	59	10 12.6	0.997542	111.40	57.48
15	5 45.4	0.999777	110.65	107.55	60	10 00.9	0.997491	111.41	55.80
16	6 06.0	0.999747	110.66	107.03	61	9 48.5	0.997440	111.43	54.11
17	6 26.3	0.999716	110.67	106.49	62	9 35.4	0.997391	111.45	52.40
18	6 46.1	0.999682	110.68	105.91	63	9 21.5	0.997343	111.46	50.67
19	7 05.4	0.999647	110.69	105.29	64	9 07.0	0.997296	111.48	48.93
20	- 7 24.1	0.999611	110.70	104.65	65	- 8 51.8	0.997250	111.49	47.18
21	7 42.4	0.999573	110.72	103.97	66	8 36.0	0.997206	111.51	45.40
22	8 00.0	0.999533	110.73	103.26	67	8 19.5	0.997163	111.52	43.62
23	8 17.1	0.999492	110.74	102.52	68	8 02.4	0.997121	111.54	41.82
24	8 33.6	0.999449	110.76	101.75	69	7 44.7	0.997081	111.55	40.01
25	8 49.5	0.999405	110.77	100.95	70	7 26.4	0.997042	111.56	38.19
26	9 04.7	0.999360	110.79	100.12	71	7 07.6	0.997005	111.57	36.35
27	9 19.3	0.999314	110.80	99.26	72	6 48.3	0.996970	111.59	34.50
28	9 33.2	0.999266	110.82	98.36	73	6 28.4	0.996936	111.60	32.65
29	9 46.4	0.999217	110.84	97.44	74	6 08.1	0.996904	111.61	30.78
30	- 9 58.9	0.999167	110.85	96.49	75	- 5 47.4	0.996874	111.61	28.90
31	10 10.7	0.999116	110.87	95.50	76	5 26.2	0.996845	111.62	27.02
32	10 21.7	0.999064	110.89	94.49	77	5 04.6	0.996818	111.63	25.12
33	10 32.0	0.999011	110.90	93.45	78	4 42.6	0.996793	111.64	23.22
34	10 41.5	0.998958	110.92	92.39	79	4 20.3	0.996770	111.65	21.31
35	10 50.2	0.998903	110.94	91.29	80	3 57.7	0.996749	111.66	19.39
36	10 58.1	0.998848	110.96	90 16	81	3 34.7	0.996730	111.67	17.47
37	11 05.3	0.998792	110.98	89.01	82	3 11.6	0.996713	111.67	15.54
38	11 11.6	0.998736	111.00	87.83	83	2 48.1	0.996697	111.68	13.61
39	11 17.1	0.998679	111.02	86.63	84	2 24.5	0.996684	111.68	11.67
40	-11 21.8	0.998622	111.03	85.39	85	-2 00.7	0.996673	111.69	9.73
41	11 25.7	0.998564	111.05	84.14	86	1 36.7 1 12.7	0.996664	111.69 111.69	7.79
42	11 28.7 11 30.9	0.998506	111.07	82.85	87		0.996656 0.996651		5.85
43	11 30.9 11 32.2	0.998447 0.998389	111.09 111.11	81.54 80.21	88 89	0 48.5	0.996648	111.69 111.69	3.90 1.95
45							0.996647		
43	-11 32.7	0.998331	111.13	78.85	90	0.00.0	0.99004/	111.69	0.00

 ϕ and ϕ' are the geographic and geocentric latitude respectively ρ = radius of the earth.

¹ kilometre = 0.621372 miles.

			Lon	gitude	Reduction	Reduction		
Place	Altitude	Latitude	231		of	of L.M.T.	ρ sin φ'	ρ cos φ'
1 face	(Metre)	Latitude	In arc	In time	Greenwich	to Indian	ρ зні ψ	ρ cos φ
	(IVICUE)		III are	III tillic	Sid. Time	Standard		
					Sid. Tillic	Time		
		0 /	0 /	h m s	S			
Agartala	16	+23 31.8			+59.89	m s -34 36	+0.39677	0.91734
Agra	160	+27 05.6			+50.98	+19 51	+0.45272	0.89091
Ahmedabad	49		+ 72 40.2		+47.75	+39 19	+0.38912	0.92064
Aizawl			+ 92 43.2		+60.93	-40 53	+0.39540	0.91812
Ajmer			+ 74 22.2		+48.87	+32 31	+0.43996	0.89738
Alibag (Obs.)	7		+ 74 22.2		+47.65	+32 31 +39 58	+0.43990	0.89738
Mumbai,	, ,	+19 00.0	+ 12 30.0	+4 30 02	+47.03	+39 36	+0.55550	0.94360
	107	127 21 0	. 79 2 44	.5 12 10	.51.20	+17 47	.0.45046	0.00742
Allahahad	187	+27 31.8			+51.28		+0.45946	0.88743
Allahabad	96	+25 16.2			+53.51	+04 14	+0.42429	0.90487
Amritsar	231	+31 22.8			+48.97	+31 55	+0.51771	0.85454
Bangalore	921	+12 34.8			+50.83	+20 36	+0.21641	0.97629
Bangkok, Thailand			+100 18.0		+65.91	- 71 12	+0.23052	0.97289
Baroda				+4 52 38	+48.07	+37 22	+0.37549	0.92632
Bhopal		+23 10.2			+50.73	+21 10	+0.39106	0.91989
Bhuj	105	+23 09.0	+ 69 24.0		+45.60	+52 24	+0.39072	0.91997
Bhubaneswar	46	+20 00.0	+ 85 30.0	+5 42 00	+56.18	- 12 00	+0.33987	0.94007
Bikaner	224	+28 01.0	+ 73 10.8	+4 52 43	+48.09	+37 17	+0.46695	0.88349
Bilaspur,(H.P)	502	+31 11.4	+ 76 30.0	+5 06 00	+50.27	+24 00	+0.51491	0.85629
Buenos Aires	6	-34 21.0	- 58 12.0		-38.24		-0.56107	0.82649
(Naval Obs.),	i							
Argentina								
Cairo	68	+30 01.0	+ 31 09.0	+2 04 36	+20.47		+0.49733	0.86662
Canberra (Mount	767		+149 10.5		+98.02		-0.57285	0.81845
Stromlo), Australia								
Cape Town (Ast.	18	-33 33.6	+ 18 15.0	+1 13 00	+11.99		-0.54967	0.83416
Obs.), S. Africa								
Chandigarh	347	+30 25 2	+ 76 32.0	+5 06 08	+50.29	+23 52	+0.50340	0.86312
Chennai (or	7		+ 80 06.6		+52.64	+ 9 34	+0.22348	0.97454
Madras) Obs.	, ,	113 00.0	00 00.0	13 20 20	132.04	1 / 54	10.22540	0.77434
Chittagong,	27	122 12 6	+ 91 31.8	16 06 07	+60.14	- 36 07	+0.37565	0.92625
Bangladesh	21	TZZ 1Z.0	T 71 31.0	+0 00 07	+00.14	- 30 07	+0.57505	0.72023
Colaba Obs.	14	+19 04 2	+ 72 31 0	+4 50 04	+47.65	+39 56	+0.32465	0.94546
Mumbai, (Bombay)		117 01.2	72 31.0	30 01	147.03	137 30	10.32103	0.51510
Colombo (Obs.),		+ 6 33 6	+ 79 33.6	+5 18 14	+52.28	+11 46	+011348	0.99350
Srilanka	. 0	1 0 33.0	1 77 33.0	13 10 14	132.20	111 40	1011340	0.77330
Cuttack	26	120 16 8	+ 85 33.6	+5 42 14	156.42	- 12 14	+0.34443	0.93839
Dacca,Bangladesh		+20 16.8 +23 25.8			+56.42	- 12 14		
					+59.31		+0.39518	0.91803
Darjeeling	2128	+27 02.0			+57.94	- 22 43	+0.45193	0.89166
Dehra Dun	682	+30 11.3			+51.27	+17 55	+0.49995	0.86520
Delhi	220	+28 21.0			+50.68	+21 31	+0.47205	0.88076
Dibrugarh	106	+27 17.4			+61.83	- 46 24	+0.45575	0.88734
Gangtok	1768	+27 12.0			+58.07	- 23 29	+0.45448	0.89029
Guwahati		+26 3.6.0			+60.03	- 35 24	+0.43666	0.89892
Gauribidanur	686	+13 36.2	+ 77 26.1	+5 09 44	+50.88	+20 16	+0.23369	0.97223
100 11 1 0								
(Radio Astr. Obs.)			+ 84 34.2			- 8 17	+0.41137	0.91086

1 metre = 3.2808 feet

				Lon	gitu	de		Reduction	Redu	ction		
Place	Altitude	Latitude		2011	المدي			of	of L.I		ρ sin φ'	ρ cos φ'
1 face	(Metre)			In arc		In tii	ma	Greenwich			ρ επι ψ	ρ cos ψ
	(IVICTIC)			III aic		шш	iic	Sid. Time	Stand			
								Sid. Tille	Tir			
		0 1	-	0 /	-							
G (01)	4.5				h	m	S	S	m	S	0.51500	0.50420
Geneva (Obs.),	465	+46 07.8	+	6 04.2	+0	24	17	+ 3.99		••	+0.71739	0.69428
Switzerland					<u> </u>							
Greenwich (Royal	47	+51 28.6		0 00	0	00	0.00	0.00	••	••	+0.77872	0.62412
Obs.).												
Hanle/	4467	+32 46.8	+ '	78 57.9	+5	15	51.6	+51.89	+14	8.4	+0.53870	0.84217
Mt.Saraswati												
(Indian Ast. Obs.)												
Haridwar	274	+29 34.8	+ '	78 08.0	+5	12	32.0	+51.34	+ 17	28	+0.49076	0.87041
Heidelberg Obs.,	570	+49 14.0	_	8 25.2	+0	33	41.0				+0.75382	0.65430
Germany												
Helwan (Obs.),	116	+29 51.5	+ 1	31 22.8	+2	05	31.2	+20.62			+0.49494	0.86800
Egypt	110	. 27 6116	'	J	-	0.0	01.2	. 20.02		••		0.0000
Herstmonceux	31	+50 52.0	+	0 20.3	+0	01	21.0	+ 0.22			+0.77205	0.63241
(Royal Obs.),	31	130 32.0		0 20.3	10	01	21.0	1 0.22	••	••	10.77203	0.03241
Sussex, U.K.												
Hyderabad	554	+17 25.9	١.,	79 27 2	. 5	12	49.0	+51.55	+ 16	11	+0.29768	0.95444
	334	+17 23.9		10 21.2	+3	13	49.0	+31.33	+ 10	11	+0.29708	0.93444
(Nizamiah Obs.)	001	.24.26.4	· .	22.24.0		1.4	10.0	. (1.40	4.4	10	.0.41126	0.01102
Imphal	801	+24 26.4			+6		19.0	+61.49	- 44	19	+0.41126	0.91103
India, Central	-	+23 11.0	+ 3	82 30.0	+5	30	0.00	+54.21	0	00	+0.39124	0.91973
Station of		22.25.4	٠.	77. 20.0	-	0.0	00.0	10.51	20	0.0	0.25020	0.02404
Indore	556	+22 26.4		75 30.0	+5		0.00	+49.61	+ 28	00	+0.37938	0.92481
Istambul (Univ.	65	+41 00.7	+ 2	28 57.9	+1	55	51.6	+19.03			+0.65277	0.75567
Obs.), Turkey												
IUCAA Giravali	1000	+18 19.2	+ ′	73 30.6	+4	54	02.0	+48.3	+35	58	+0.31237	0.94978
Obs., Pune												
Jabalpur	393	+23 07.2		79 34.2	+5	18	17.0	+52.29	+ 11	43	+0.39026	0.92022
Jaipur	436	+26 33.0	+ '	75 31.2	+5	02	05.0	+49.62	+ 27	55	+0.44431	0.89520
Jakarta, Indonesia	23	- 6 07.2	+10	06 30.0	+7	06	0.00	+69.98			-0.10590	0.99434
Jamshedpur	152	+22 29.4	+ 8	86 06.6	+5	44	26.0	+56.58	- 14	26	+0.38016	0.92442
Japal Rangapur	695	+17 05.9	+ ′	78 43.7	+5	14	55.0	+51.73	+ 15	05	+0.29216	0.95618
(Obs.),												
Jodhpur	224	+26 10.8	+ '	73 00.6	+4	52	02.0	+47.97	+ 37	58	+0.43854	0.89803
Johannesberg,	1806	- 26 10.9	+ 2	28 04.5	+1	52	18.0	+18.45			-0.43868	0.89824
South Africa												
Kabul, Afghanistan	1766	+34 18.0) + (59 10.8	+4	36	43.0	+45.46	+ 53	17	+0.56051	0.82721
Kanchipuram	76	+12 30.0	_	79 27.0	+5	17	48.0		+ 12	12	+0.21503	0.97646
Kanpur	126			80 13.2	+5	20	53.0		+ 9		+0.43978	0.89740
Karachi, Pakistan	4		_	67 02.4	+4	28	10.0		+ 61	50	+0.41836	0.90763
Kathmandu, Nepal	1324	+27 23.2		85 07.2	+5	40	29.0		- 10		+0.45733	0.88874
Kavalur (Vainu	725	+12 34.6	_		+5	15	18.0		+ 14		+0.43733	0.97627
Bappu Obs.),	123	+12 34.0	_	76 49.0	+3	13	10.0	+31.60	+ 14	42	+0.21033	0.97027
	2242	10 12 0		77 20 1	. 5	00	52.0	±50.00	+ 20	00	+0.17640	0.09457
Kodaikanal (Solar Obs.)	2343	+10 13.8	+	11 48.1	+5	09	52.0	+50.90	+ 20	Uð	+0.17649	0.98457
` /	1405	125 240		24 04 0		1.0	10.0	LE1 00	10	10	10.42642	0.00400
Kohima	1405	+25 24.0	_		+6		19.0		- 46		+0.42642	0.90409
Kolkata (Alipore	6	+22 19.2	+ 3	88 12.0	+5	52	48.0	+57.96	- 22	48	+0.37742	0.92553
Obs.), (Calcutta)		22.22		20.4.7	1_		05.5	#6.00	-	0.5	0.0505	0.00707
Kolkata (Presi.	12	+22 23.4	+ 8	88 16.2	+5	53	05.0	+58.00	- 23	05	+0.37854	0.92506
Coll. Obs.)												
Kurnool	281	+15 30.0	+ '	78 03.0 1 metre					+ 17	48	+0.26552	0.96390

1 metre = 3.2808 feet

			Lon	gitude		Reduction	Reduction		
Place	Altitude	Latitude				of	of L.M.T.	ρ sin φ'	ρ cos φ'
	(Metre)		In arc	In time	e (Greenwich	to Indian	βυτιφ	ρουσφ
	` ′				-	Sid. Time	Standard		
						2101 111110	Time		
		0 1	0 1	h m	s	S	m s		
Kyoto (Univ. Ast.	86	±35 00 6	+135 20.4		22.0	+88.93		+0.57052	0.81997
Dept. Obs.), Japan	00	+33 00.0	+133 20.4		22.0	100.73		. 0.0 / 002	0.01///
Lahore, Pakistan	214	+31 22.2	+ 74 15.6	+4 57 (02.0	+48.80	+ 32 58	+0.51756	0.85269
Lucknow	113	+26 31.2			14.0	+52.94	+ 7 46	+0.44383	0.89539
Maitri (Indian base	132		+ 11 45.0		0.00	+ 7.72		-0.94069	0.33041
station at	132	-70 +0.0	11 43.0	10 47	50.0	1 7.72		-0.7-007	0.55041
Antarctica)									
Mangalore	22	12 33 0	+ 74 31.8	14 58 (07.0	+48.97	+ 31 53	+0.21587	0.97626
Moscow (Sternberg	195		+ 37 22.2		29.0	+24.56		+0.82001	0.56843
State Ast. Inst.),	193	+33 21.0	+ 31 22.2	HZ Z9 Z	29.0	+24.30		+0.82001	0.30643
Russia									
Mount Abu	1700	124 22 4	+ 72 25.8	14 40 /	43.0	+47.59	+40 17	+0.41053	0.91152
(Gurushikhar Obs.)	1700	+24 23.4	+ 12 23.8	+4 49 4	+3.0	+47.39	+40 17	+0.41033	0.91132
Mount Palomar	1706	+33 21.4	116 51 0	- 7 47 2	27.2	-76.79		+054687	0.83633
	1700	+33 21.4	-110 31.8	- / 4/ 2	21.2	-70.79		+034067	0.63033
(Obs.), U.S.A. Mount Wilson	1740	.24 120	110 02 6	- 7 52 1	1.4.4	77.50		.0.55021	0.02002
	1742	+34 13.0	-118 03.6	- / 32 1	14.4	-77.58		+0.55931	0.82802
(Obs.), U.S.A.	7.7	. 12 10 0	. 76 25 2	.5 05 /	41.0	. 50.22	. 24 10	.0.20062	0.07775
Mysore	767		+ 76 25.2		41.0	+50.22	+ 24 19	+0.20963	0.97775
Nagpur	312	+21 05.4				+51.96	+ 13 43	+0.35760	0.93347
Nainital	1927	+29 13.8	+ 79 18.0	+5 17 1	12.0	+52.11	+ 12 48	+0. 48558	0.87363
(Aryabhatta Res.									
Inst. Of Obs. Sci.)		10.000				10.10		0.44700	0 = 1220
New York	25	+40 25.8	- 74 00.6	-4 56 ()2.0	-48.63		+0.64509	0.76228
(Rutherford Obs.),									
U.S.A.									
Ottawa, Canada	87	+45 16.2			29.0	-49.53		+0.70688	0.70497
Panaji	56	+15 18.0			12.0	+48.33	+ 35 48	+0.26217	0.96479
Paris (Obs.), France	67	+48 30.0			19.0	+ 1.45		+0.74535	0.66387
Patiala	251	+30 12.0			0.00	+50.10	+ 25 00	+0.50010	0.86504
Patna	53		+ 85 03.6		14.0	+55.89	- 10 14	+0.42570	0.90420
Peshawar, Pakistan	358	+34 01.0			15.0	+47.03	+ 43 45	+0.55630	0.82979
Pondicherry	6		+ 79 29.4		58.0	+52.23	+ 12 02	+0. 19942	0.97978
Pune	559	+18 19.0	+ 73 30.0	+4 54 (0.00	+48 .30	+ 36 00	+0.31230	0.94973
Porbandar	7	+21 22.2	+ 69 29.4	+4 37 5	58.0	+45.66	+ 52 02	+0.36211	0.93166
Port Blair	79		+ 92 25.8		13.0	+60.74	- 39 43	+0.19636	0.98041
Puri	6	+19 28.8	+ 85 29.4	+5 41 5	58.0	+56.18	- 11 58	+0.33137	0.94311
Quetta, Pakistan	1673	+30 07.2	+ 67 00.0	+4 28 (0.00	+44.03	+62 00	+0.49901	0.86593
Rajkot	132	+22 10.8	+ 70 33.6	+4 42 1	14.0	+46 .36	+ 47 46	+0.37518	0.92646
Rawalpindi,	510	+33 22.2	+ 73 03.6	+4 52 1	14.0	+48.01	+ 37 46	+0.54696	0.83605
Pakistan									
Rome (Obs.), Italy	152	+41 33.0	+ 12 16.8	+0 49 (07.2	+ 8.07		+0.65982	0.74950
San Fernando	27	+36 28.0			18.8	- 4.08		+0.59108	0.80516
(Naval Obs.), Spain									
Shillong	1500	+25 20.4	+ 91 33.6	+6 06 1	14.0	+61.16	- 36 14	+0.42549	0.90455

1 metre = 3.2808 feet

			Lon	gitude	Reduction	Reduction		
Place	Altitude	Latitude			of	of L.M.T.	ρ sin φ'	ρ cos φ'
	(Metre)		In arc	In time	Greenwich	to Indian		
					Sid. Time	Standard		
						Time		
		0 1	0 /	h m s	S	m s		
Sholapur	476	+17 24.0	+ 75 33.6	+5 02 14	+49.65	+ 27 46	+0.29715	0.95460
Siliguri	127	+26 24.0	+ 88 13.2	+5 52 53	+57.97	- 22 53	+0.44196	0.89632
Simla	2202	+31 03.6	+ 77 07.8	+5 08 31	+50.68	+ 21 29	+0.51312	0.85769
Singapore	18	+ 1 10.2	+103 30.6	+6 54 02	+68.02		+0.02028	0.99980
Srinagar	1586	+34 03.6	+ 74 30.6	+4 58 02	+48.96	+ 31 58	+0.55704	0.82953
St. Petersburg	3	+59 56.5	+ 30 17.7	+2 01 11	+19.91		+0.86189	0.50214
Univ. Obs., Russia								
Tehran, Iran	1200	+35 24.6	+ 51 15.0	+3 25 00	+33.68		+0.57630	0.81610
Tokyo	41	+35 24.0	+138 27.0	+9 13 48	+90.98		+0.57605	0.81605
(Hydrographic								
Obs.), Japan								
Thiruvanantapuram	61	+ 8 17.4	+ 76 34.2	+5 06 17	+50.31	+ 23 43	+0.14323	0.98963
Udaipur (Solar	301	+24 21.0	+ 73 25.2	+4 53 41	+48.24	+ 36 19	+0.40980	0.91161
Obs.)								
Udhagamandalam	2150	+11 22.9	+ 76 40.0	+5 06 40	+50.38	+ 23 20	+0.19611	0.98079
(Ooty) (Rad.								
Astr.Centre)								
Ujjain	496	+23 06.3		+5 01 53	+49.59	+ 28 07	+0.39002	0.92033
Varanasi	76	+25 10.8		+5 32 00	+54.54	- 2 00	+0.42288	0.90554
Visakhapatnam	38	+17 25.8		+5 32 34	+54.63	- 2 34	+0.29763	0.95438
Washington	92	+38 33.0	- 77 02.4	- 5 08 10	-50.62		+0.61984	0.78309
(U. S. Naval Obs.),								
U.S.A.								
Yangon, Myanmar	28	+16 27.0	+ 96 7.20	+6 24 29	+63.16	- 54 29	+0.28136	0.95933

1 metre = 3.2808 feet

SEMI-DIURNAL AND SEMI-NOCTURNAL ARCS

(FOR TRUE ALTITUDE = 0)

Lat.	0°	10°	20°	30°	35°	40°	45°	50°	52°	54°	56°	58°	60°
Decli.													
0 1	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
0 00	6 00	6 00	6 00	6 00	6 00	6 00	6 00	6 00	6 00	6 00	6 00	6 00	6 00
5 00	6 00	6 04	6 07	6 12	6 14	6 17	6 20	6 24	6 26	6 28	6 30	6 32	6 35
10 00	6 00	6 07	6 15	6 23	6 28	6 34	6 41	6 49	6 52	6 56	7 01	7 06	7 11
15 00	6 00	6 11	6 22	6 36	6 43	6 52	7 02	7 14	7 20	7 27	7 34	7 42	7 51
20 00	6 00	6 15	6 30	6 49	6 59	7 11	7 25	7 43	7 51	8 00	8 11	8 22	8 36
23 00	6 00	6 18	6 36	6 58	7 11	7 25	7 43	8 05	8 15	8 27	8 40	8 56	9 15
25 00	6 00	6 19	6 39	7 02	7 16	7 32	7 51	8 15	8 27	8 40	8 55	9 13	9 35
28 00	6 00	6 22	6 45	7 12	7 27	7 46	8 08	8 37	8 52	9 08	9 28	9 59	10 28
30 00	6 00	6 23	6 49	7 18	7 35	7 56	8 21	8 54	9 11	9 30	9 55	10 30	12 00

When the latitude of the place and the declination of the heavenly body are of the same sign then the figure represent semi-diurnal arc, when of opposite signs then semi-nocturnal arc.

AMPLITUDE OF RISING AND SETTING

(FOR TRUE ALTITUDE = 0)

I	Lat.	0	О	10	0°	2	0°	30)°	3:	5°	40	0°	4:	5°	5	0°	5:	2°	5	4°	5	6°	5	8°	6	0°
Decli.																											
0	'	0	'	0	'	0	'	0	'	0	'	0	'	0	'	0	'	0	'	0	'	0	'	0	'	0	'
0	00	0	00	0	00	0	00	0	00	0	00	0	00	0	00	0	00	0	00	0	00	0	00	0	00	0	00
5	00	5	00	5	05	5	19	5	47	6	06	6	32	7	05	7	48	8	08	8	32	8	58	9	28	10	02
10	00	10	00	10	09	10	39	11	34	12	14	13	06	14	13	15	40	16	23	17	11	18	05	19	08	20	19
15	00	15	00	15	14	15	59	17	23	18	25	19	45	21	28	23	45	24	52	26	07	27	34	29	14	31	10
20	00	20	00	20	19	21	21	23	16	24	41	26	31	28	56	32	09	33	45	35	35	37	42	40	12	43	10
23	00	23	00	23	50	25	03	27	21	29	04	31	18	34	15	38	15	40	16	42	37	45	22	48	40	52	44
25	00	25	00	25	25	26	44	29	13	31	04	33	29	36	42	41	06	43	21	45	58	49	06	52	54	57	42
28	00	28	00	28	28	29	58	32	50	34	58	37	48	41	36	46	55	49	41	53	00	57	06	62	22	69	52
30	00	30	00	30	31	32	09	35	16	37	37	40	45	45	00	51	04	54	18	58	17	63	24	70	39	90	00

The amplitude of rising and setting points of a heavenly body is measured from the East or the West point of the horizon towards the northern or southern direction as the case may be. The amplitude is of the same sign as that of declination of the body.

Note - If true zenith distance of the heavenly body at the time of rising or setting be $90^{\circ} + h$, then the figures of the above two tables would require some correction according to the value of h (vide Explanation).

AUGMENTATION OF MOON'S SEMI-DIAMETER

Moon 's Apparent Altitude

Semi- diame- ter	0°	6°	12°	18°	24°	30°	36°	42°	48°	54°	60°	66°	72°	78°	84°	90°
′ ″	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"
14 30	0.1	1.5	2.9	4.3	5.6	6.9	8.1	9.2	10.2	11.1	11.8	12.5	13.0	13.4	13.6	13.7
15 00	0.1	1.6	3.1	4.6	6.0	7.3	8.6	9.8	10.9	11.8	12.7	13.4	13.9	14.3	14.6	14.6
15 30	0.1	1.7	3.3	4.9	6.4	7.9	9.2	10.5	11.6	12.7	13.5	14.3	14.9	15.3	15.6	15.6
16 00	0.1	1.9	3.6	5.2	6.8	8.4	9.8	11.2	12.4	13.5	14.4	15.2	15.9	16.3	16.6	16.7
16 30	0.2	2.0	3.8	5.6	7.3	8.9	10.5	11.9	13.2	14.4	15.4	16.2	16.9	17.4	17.6	17.7
17 00	0.2	2.1	4.0	5.9	7.7	9.5	11.1	12.6	14.0	15.3	16.3	17.2	17.9	18.4	18.7	18.8

The visible or apparent semi-diameter of the moon is augmented over the tabulated value due to moon's altitude above the horizon.

NATURAL TRIGONOMETRIC FUNCTIONS

1	AN	NGLE	Sin	Cos	Tan	Cot	Sec	Cosec		
1	Arc	Time								
1	0	h m							h m	0
2 0 08 .03490 .99939 .03492 28.63625 .00061 28.65371 5 52 3 0 12 .05234 .99863 .05241 19.0814 .00137 19.10732 5 48 4 0 16 .06976 .99756 .06993 14.30067 .00244 14.33559 5 44 5 0 20 .08716 .99619 .08749 11.43005 .00382 11.47371 5 40 6 0 24 .10453 .99452 .10510 9.51436 .00551 9.56667 36 7 0 28 .12187 .99255 .12278 8.14435 .00751 8.20551 5 32 8 0 32 .13917 .99027 .14054 7.11537 .00983 7.18530 5 28 10 0 40 .17365 .98481 .17633 5.67128 .01543 5.75877	0	0 00	0.00000	1.00000	0.00000	Infinity	1.00000	Infinity	6 00	90
3 0 12 .05234 .99863 .05241 19.08114 .00137 19.10732 5 48 4 0 16 .06976 .99756 .06993 14.3005 .00244 14.33559 5 44 5 0 20 .08716 .99619 .08749 11.43005 .00382 11.47371 5 40 6 0 24 .10453 .99452 .10510 9.51436 .00551 9.56667 5 36 7 0 28 .12187 .99255 .12278 8.14435 .00751 8.20551 5 32 8 0 32 .13917 .99027 .14054 7.11537 .00983 7.18530 5 24 10 0 40 .17365 .98481 .17633 5.67128 .01547 6.39245 5 24 11 0 44 0.19081 0.98163 0.19438 5.14455 1.01872 <td< td=""><td>1</td><td>0 04</td><td>.01745</td><td>0.99985</td><td>.01746</td><td>57.28996</td><td>.00015</td><td>57.29869</td><td>5 56</td><td>89</td></td<>	1	0 04	.01745	0.99985	.01746	57.28996	.00015	57.29869	5 56	89
4 0 16 .06976 .99756 .06993 14.30067 .00244 14.33559 5 44 5 0 20 .08716 .99619 .08749 11.43005 .00382 11.47371 5 40 6 0 24 .10453 .99452 .10510 .951436 .00551 .956667 5 36 7 0 28 .12187 .99255 .12278 8.14435 .00751 8.20551 5 32 8 0 32 .13917 .99027 .14054 7.11537 .00983 7.18530 5 28 10 0 40 .17365 .98481 .17633 5.67128 .01543 5.75877 5 20 11 0 44 .0.19081 .0.98163 .0.19438 5.14455 1.01872 5.24084 5 16 12 0 48 .20791 .97815 .21256 4.70463 .02234	2	0 08	.03490	.99939	.03492	28.63625	.00061	28.65371	5 52	88
5 0 20 .08716 .99619 .08749 11.43005 .00382 11.47371 5 40 6 0 24 .10453 .99452 .10510 9.51436 .00551 9.56667 5 36 7 0 28 .12187 .99255 .12278 8.14435 .00751 8.20551 5 32 8 0 32 .13917 .99027 .14054 7.11537 .00983 7.18330 5 28 9 0 36 .15643 .98769 .15838 6.31375 .01247 6.39245 5 24 10 0 40 .17365 .98481 .17633 5.67128 .01543 5.75877 5 20 11 0 44 0.19081 .998163 0.19438 5.14455 1.01872 5.24084 5 16 12 0 48 .20791 .97815 .21256 4.70463 .02234 4	3	0 12	.05234	.99863	.05241	19.08114	.00137	19.10732	5 48	87
6 0 24 .10453 .99452 .10510 9.51436 .00551 9.56667 5 36 7 0 28 .12187 .99255 .12278 8.14435 .00751 8.20551 5 32 9 0 36 .15643 .98769 .15838 6.31375 .01247 6.39245 5 24 10 0 40 .17365 .98481 .17633 5.67128 .01543 5.75877 5 20 11 0 44 .0.19081 .0.98163 0.19438 5.14455 1.01872 5.24084 5 16 12 0 48 .20791 .97815 .21256 4.70463 .02234 4.80973 5 12 13 0 52 .22495 .97437 .23087 4.33148 .02630 4.44541 5 08 14 0 56 .24192 .97030 .24933 4.01078 .03061 <td< td=""><td>4</td><td>0 16</td><td>.06976</td><td>.99756</td><td>.06993</td><td>14.30067</td><td>.00244</td><td>14.33559</td><td>5 44</td><td>86</td></td<>	4	0 16	.06976	.99756	.06993	14.30067	.00244	14.33559	5 44	86
7 0 28 .12187 .99255 .12278 8.14435 .00751 8.20551 5 32 8 0 32 .13917 .99027 .14054 7.11537 .00983 7.18530 5 28 9 0 36 .15643 .98769 .15838 6.31375 .001247 6.39245 5 24 10 0 40 .17365 .98481 .17633 5.67128 .01543 5.75877 5 20 11 0 44 0.19081 0.98163 0.19438 5.14455 1.01872 5.24084 5 16 12 0 48 .20791 .97815 .21256 4.70463 .02234 4.80973 5 12 13 0 52 .22495 .97437 .23087 4.33148 .02630 4.4844541 5 08 14 0 56 .24192 .97030 .24933 4.01078 .03061 <t< td=""><td>5</td><td>0 20</td><td>.08716</td><td>.99619</td><td>.08749</td><td>11.43005</td><td>.00382</td><td>11.47371</td><td>5 40</td><td>85</td></t<>	5	0 20	.08716	.99619	.08749	11.43005	.00382	11.47371	5 40	85
8 0 32 .13917 .99027 .14054 7.11537 .00983 7.18530 5 28 9 0 36 .15643 .98769 .15838 6.31375 .01247 6.39245 5 24 10 0 40 .17365 .98481 .17633 5.67128 .01543 5.75877 5 20 11 0 44 .019081 .098163 0.19438 5.14455 1.01872 5.24084 5 16 12 0 48 .20791 .97815 .21256 4.70463 .02234 4.80973 5 12 13 0 52 .22495 .97437 .23087 4.33148 .02630 4.44541 5 08 14 0 56 .24192 .97030 .24933 4.01078 .03601 4.13357 5 04 15 1 0 .25882 .96593 .26795 3.73205 .03528 3	6	0 24	.10453	.99452	.10510	9.51436	.00551	9.56667	5 36	84
9 0 36 .15643 .98769 .15838 6.31375 .01247 6.39245 5 24 10 0 40 .17365 .98481 .17633 5.67128 .01543 5.75877 5 20 11 0 44 0.19081 0.98163 0.19438 5.14455 1.01872 5.24084 5 16 12 0 48 20791 .97815 .21256 4.70463 .02234 4.80973 5 12 13 0 52 .22495 .97437 .23087 4.33148 .02630 4.44541 5 08 14 0 56 .24192 .97030 .24933 4.01078 .03061 4.13357 5 04 15 1 00 .25882 .96593 .26795 3.73205 .03528 3.86370 5 00 16 1 04 .27564 .96126 .28675 3.48741 .04030	7	0 28	.12187	.99255	.12278	8.14435	.00751	8.20551	5 32	83
10	8	0 32	.13917	.99027	.14054	7.11537	.00983	7.18530	5 28	82
11 0 44 0.19081 0.98163 0.19438 5.14455 1.01872 5.24084 5 16 12 0 48 .20791 .97815 .21256 4.70463 .02234 4.80973 5 12 13 0 52 .22495 .97437 .23087 4.33148 .02630 4.44541 5 08 14 0 56 .24192 .97030 .24933 4.01078 .03061 4.13357 5 04 15 1 00 .25882 .96593 .26795 3.73205 .03528 3.86370 5 00 16 1 04 .27564 .96126 .28675 3.48741 .04030 3.62796 4 56 17 1 08 .29237 .95630 .30573 3.27885 .05146 3.23607 4 48 19 1 16 .32557 .94552 .34433 2.90421 .05762 <t< td=""><td>9</td><td>0 36</td><td>.15643</td><td>.98769</td><td>.15838</td><td>6.31375</td><td>.01247</td><td>6.39245</td><td>5 24</td><td>81</td></t<>	9	0 36	.15643	.98769	.15838	6.31375	.01247	6.39245	5 24	81
12 0 48 .20791 .97815 .21256 4.70463 .02234 4.80973 5 12 13 0 52 .22495 .97437 .23087 4.33148 .02630 4.44541 5 08 14 0 .56 .24192 .97030 .24933 4.01078 .03061 4.13357 5 04 15 1 00 .25882 .96593 .26795 3.73205 .03528 3.86370 5 00 16 1 04 .27564 .96126 .28675 3.48741 .04030 3.62796 4 56 17 1 08 .29237 .95630 .30573 3.27085 .04569 3.42030 4 52 18 1 12 .309020 .95106 .32492 3.07768 .05146 3.23607 4 48 19 1 16 .32557 .94552 .34433 .290441 .05762	10	0 40	.17365	.98481	.17633	5.67128	.01543	5.75877	5 20	80
13 0 52 .22495 .97437 .23087 4.33148 .02630 4.44541 5 08 14 0 56 .24192 .97030 .24933 4.01078 .03061 4.13357 5 04 15 1 00 .25882 .96593 .26795 3.73205 .03528 3.86370 5 00 16 1 04 .27564 .96126 .28675 3.73205 .03528 3.86370 5 0 17 1 08 .29237 .95630 .30573 3.27085 .04569 3.42030 4 52 18 1 12 .30902 .95106 .32492 3.07768 .05146 3.23607 4 48 19 1 16 .32557 .94552 .34433 2.90421 .05762 3.07155 4 44 20 1 20 .34202 .93958 .038386 2.60509 1.07115 2	11	0 44	0.19081	0.98163	0.19438	5.14455	1.01872	5.24084	5 16	79
14 0 56 .24192 .97030 .24933 4.01078 .03061 4.13357 5 04 15 1 00 .25882 .96593 .26795 3.73205 .03528 3.86370 5 00 16 1 04 .27564 .96126 .28675 3.48741 .04030 3.62796 4 56 17 1 08 .29237 .95630 .30573 3.27085 .04569 3.42030 4 52 18 1 12 .30902 .95106 32492 3.07768 .05146 3.23607 4 48 19 1 16 .32557 .94552 .34433 2.90421 .05762 3.07155 4 44 20 1 20 .34202 .93969 .36397 2.74748 .06418 2.92380 4 40 21 1 24 .0.35837 0.93358 0.38386 2.60509 1.07115 <t< td=""><td>12</td><td>0 48</td><td>.20791</td><td>.97815</td><td>.21256</td><td>4.70463</td><td>.02234</td><td>4.80973</td><td>5 12</td><td>78</td></t<>	12	0 48	.20791	.97815	.21256	4.70463	.02234	4.80973	5 12	78
15 1 00 .25882 .96593 .26795 3.73205 .03528 3.86370 5 00 16 1 04 .27564 .96126 .28675 3.48741 .04030 3.62796 4 56 17 1 08 .29237 .95630 .30573 3.27085 .04569 3.42030 4 52 18 1 12 .30902 .95106 .32492 3.07768 .05146 3.23607 4 48 19 1 16 .32557 .94552 .34433 2.90421 .05762 3.07155 4 44 20 1 20 .34202 .93969 .36397 2.74748 .06418 2.92380 4 40 21 1 24 0.35837 0.93358 0.38386 2.60509 1.07115 2.79043 4 36 22 1 28 .37461 .92718 .40403 2.47509 .07853 <t< td=""><td>13</td><td>0 52</td><td>.22495</td><td>.97437</td><td>.23087</td><td>4.33148</td><td>.02630</td><td>4.44541</td><td>5 08</td><td>77</td></t<>	13	0 52	.22495	.97437	.23087	4.33148	.02630	4.44541	5 08	77
16 1 04 .27564 .96126 .28675 3.48741 .04030 3.62796 4 56 17 1 08 .29237 .95630 .30573 3.27085 .04569 3.42030 4 52 18 1 1 .30902 .95106 .32492 3.07768 .05146 3.23607 4 48 19 1 16 .32557 .94552 .34433 2.90421 .05762 3.07155 4 44 20 1 20 .34202 .93969 .36397 2.74748 .06418 2.92380 4 40 21 1 24 0.35837 0.93358 0.38386 2.60509 1.07115 2.79043 4 36 22 1 28 .37461 .92718 .40403 2.47509 .07853 2.66947 4 32 23 1 32 .39073 .92050 .42447 2.35585 .08636 <td< td=""><td>14</td><td>0 56</td><td>.24192</td><td>.97030</td><td>.24933</td><td>4.01078</td><td>.03061</td><td>4.13357</td><td>5 04</td><td>76</td></td<>	14	0 56	.24192	.97030	.24933	4.01078	.03061	4.13357	5 04	76
17 1 08 .29237 .95630 .30573 3.27085 .04569 3.42030 4 52 18 1 12 .30902 .95106 .32492 3.07768 .05146 3.23607 4 48 19 1 16 .32557 .94552 .34433 2.90421 .05762 3.07155 4 44 20 1 20 .34202 .93969 .36397 2.74748 .06418 2.92380 4 40 21 1 24 0.35837 0.93358 0.38386 2.60509 1.07115 2.79043 4 36 22 1 28 .37461 .92718 .40403 2.47509 .07853 2.666947 4 32 23 1 32 .39073 .92050 .42447 2.35585 .08636 2.55930 4 24 25 1 40 .42262 .90631 .46631 2.14451 .10338 <	15	1 00	.25882	.96593	.26795	3.73205	.03528	3.86370	5 00	75
18 1 12 .30902 .95106 .32492 3.07768 .05146 3.23607 4 48 19 1 16 .32557 .94552 .34433 2.90421 .05762 3.07155 4 44 20 1 20 .34202 .93969 .36397 2.74748 .06418 2.92380 4 40 21 1 24 .0.35837 0.93358 0.38386 2.60509 1.07115 2.79043 4 36 22 1 28 .37461 .92718 .40403 2.47509 .07853 2.66947 4 32 23 1 32 .39073 .92050 .42447 2.35585 .08636 2.55930 4 28 24 1 36 .40674 .91355 .44523 2.24604 .09464 2.45859 4 24 25 1 40 .42262 .90631 .46631 2.1451 .10338 <t< td=""><td>16</td><td>1 04</td><td>.27564</td><td>.96126</td><td>.28675</td><td>3.48741</td><td>.04030</td><td>3.62796</td><td>4 56</td><td>74</td></t<>	16	1 04	.27564	.96126	.28675	3.48741	.04030	3.62796	4 56	74
19 1 16 .32557 .94552 .34433 2.90421 .05762 3.07155 4 44 20 1 20 .34202 .93969 .36397 2.74748 .06418 2.92380 4 40 21 1 24 0.35837 0.93358 0.38386 2.60509 1.07115 2.79043 4 36 22 1 28 .37461 .92718 .40403 2.47509 .07853 2.66947 4 32 23 1 32 .39073 .92050 .42447 2.35585 .08636 2.55930 4 28 24 1 36 .40674 .91355 .44523 2.24604 .09464 2.45859 4 24 25 1 40 .42262 .90631 .46631 2.14451 .10338 2.36620 4 20 26 1 44 .43837 .89879 .48773 2.05030 .11260 2.28117 4 16 27 1 48 .45399 .89101 .50953 1.96261 1.2233 2.02069 <th< td=""><td>17</td><td>1 08</td><td>.29237</td><td>.95630</td><td>.30573</td><td>3.27085</td><td>.04569</td><td>3.42030</td><td>4 52</td><td>73</td></th<>	17	1 08	.29237	.95630	.30573	3.27085	.04569	3.42030	4 52	73
20 1 20 .34202 .93969 .36397 2.74748 .06418 2.92380 4 40 21 1 24 0.35837 0.93358 0.38386 2.60509 1.07115 2.79043 4 36 22 1 28 .37461 .92718 .40403 2.47509 .07853 2.66947 4 32 23 1 32 .39073 .92050 .42447 2.35585 .08636 2.55930 4 28 24 1 36 .40674 .91355 .44523 2.24604 .09464 2.45859 4 24 25 1 40 .42262 .90631 .46631 2.14451 .10338 2.36620 4 20 26 1 44 .43837 .89879 .48773 2.05030 .11260 2.28117 4 16 27 1 48 .45399 .89101 .50953 1.96261 .12233 <t< td=""><td>18</td><td>1 12</td><td>.30902</td><td>.95106</td><td>.32492</td><td>3.07768</td><td>.05146</td><td>3.23607</td><td>4 48</td><td>72</td></t<>	18	1 12	.30902	.95106	.32492	3.07768	.05146	3.23607	4 48	72
21 1 24 0.35837 0.93358 0.38386 2.60509 1.07115 2.79043 4 36 22 1 28 .37461 .92718 .40403 2.47509 .07853 2.66947 4 32 23 1 32 .39073 .92050 .42447 2.35585 .08636 2.55930 4 28 24 1 36 .40674 .91355 .44523 2.24604 .09464 2.45859 4 24 25 1 40 .42262 .90631 .46631 2.14451 .10338 2.36620 4 20 26 1 44 .43837 .89879 .48773 2.05030 .11260 2.28117 4 16 27 1 48 .45399 .89101 .50953 1.96261 .12233 2.20269 4 12 28 1 52 .46947 .88295 .53171 1.88073 .13257 <t< td=""><td>19</td><td>1 16</td><td>.32557</td><td>.94552</td><td>.34433</td><td>2.90421</td><td>.05762</td><td>3.07155</td><td>4 44</td><td>71</td></t<>	19	1 16	.32557	.94552	.34433	2.90421	.05762	3.07155	4 44	71
22 1 28 .37461 .92718 .40403 2.47509 .07853 2.66947 4 32 23 1 32 .39073 .92050 .42447 2.35585 .08636 2.55930 4 28 24 1 36 .40674 .91355 .44523 2.24604 .09464 2.45859 4 24 25 1 40 .42262 .90631 .46631 2.14451 .10338 2.36620 4 20 26 1 44 .43837 .89879 .48773 2.05030 .11260 2.28117 4 16 27 1 48 .45399 .89101 .50953 1.96261 .12233 2.20269 4 12 28 1 52 .46947 .88295 .53171 1.88073 .13257 2.13005 4 08 29 1 56 .48481 .87462 .55431 1.80405 .14335 2.	20	1 20	.34202	.93969	.36397	2.74748	.06418	2.92380	4 40	70
22 1 28 .37461 .92718 .40403 2.47509 .07853 2.66947 4 32 23 1 32 .39073 .92050 .42447 2.35585 .08636 2.55930 4 28 24 1 36 .40674 .91355 .44523 2.24604 .09464 2.45859 4 24 25 1 40 .42262 .90631 .46631 2.14451 .10338 2.36620 4 20 26 1 44 .43837 .89879 .48773 2.05030 .11260 2.28117 4 16 27 1 48 .45399 .89101 .50953 1.96261 .12233 2.20269 4 12 28 1 52 .46947 .88295 .53171 1.88073 .13257 2.13005 4 08 29 1 56 .48481 .87462 .55431 1.80405 .14335 2.	21	1 24	0.35837	0.93358	0.38386	2.60509	1.07115	2.79043	4 36	69
24 1 36 .40674 .91355 .44523 2.24604 .09464 2.45859 4 24 25 1 40 .42262 .90631 .46631 2.14451 .10338 2.36620 4 20 26 1 44 .43837 .89879 .48773 2.05030 .11260 2.28117 4 16 27 1 48 .45399 .89101 .50953 1.96261 .12233 2.20269 4 12 28 1 52 .46947 .88295 .53171 1.88073 .13257 2.13005 4 08 29 1 56 .48481 .87462 .55431 1.80405 .14335 2.06267 4 04 30 2 00 .50000 .86603 .57735 1.73205 .15470 2.00000 4 00 31 2 04 0.51504 0.85717 0.60086 1.66428 1.16663 <t< td=""><td>22</td><td>1 28</td><td>.37461</td><td></td><td>.40403</td><td></td><td>.07853</td><td>2.66947</td><td>4 32</td><td>68</td></t<>	22	1 28	.37461		.40403		.07853	2.66947	4 32	68
24 1 36 .40674 .91355 .44523 2.24604 .09464 2.45859 4 24 25 1 40 .42262 .90631 .46631 2.14451 .10338 2.36620 4 20 26 1 44 .43837 .89879 .48773 2.05030 .11260 2.28117 4 16 27 1 48 .45399 .89101 .50953 1.96261 .12233 2.20269 4 12 28 1 52 .46947 .88295 .53171 1.88073 .13257 2.13005 4 08 29 1 56 .48481 .87462 .55431 1.80405 .14335 2.06267 4 04 30 2 00 .50000 .86603 .57735 1.73205 .15470 2.00000 4 00 31 2 04 0.51504 0.85717 0.60086 1.66428 1.16663 <t< td=""><td>23</td><td>1 32</td><td>.39073</td><td>.92050</td><td>.42447</td><td>2.35585</td><td>.08636</td><td>2.55930</td><td>4 28</td><td>67</td></t<>	23	1 32	.39073	.92050	.42447	2.35585	.08636	2.55930	4 28	67
26 1 44 .43837 .89879 .48773 2.05030 .11260 2.28117 4 16 27 1 48 .45399 .89101 .50953 1.96261 .12233 2.20269 4 12 28 1 52 .46947 .88295 .53171 1.88073 .13257 2.13005 4 08 29 1 56 .48481 .87462 .55431 1.80405 .14335 2.06267 4 04 30 2 00 .50000 .86603 .57735 1.73205 .15470 2.00000 4 00 31 2 04 0.51504 0.85717 0.60086 1.66428 1.16663 1.94160 3 56 32 2 08 .52992 .84805 .62487 1.60033 .17918 1.88708 3 52 33 2 12 .54464 .83867 .64941 1.53987 .19236 <t< td=""><td>24</td><td>1 36</td><td>.40674</td><td>.91355</td><td>.44523</td><td>2.24604</td><td>.09464</td><td></td><td>4 24</td><td>66</td></t<>	24	1 36	.40674	.91355	.44523	2.24604	.09464		4 24	66
27 1 48 .45399 .89101 .50953 1.96261 .12233 2.20269 4 12 28 1 52 .46947 .88295 .53171 1.88073 .13257 2.13005 4 08 29 1 56 .48481 .87462 .55431 1.80405 .14335 2.06267 4 04 30 2 00 .50000 .86603 .57735 1.73205 .15470 2.00000 4 00 31 2 04 0.51504 0.85717 0.60086 1.66428 1.16663 1.94160 3 56 32 2 08 .52992 .84805 .62487 1.60033 .17918 1.88708 3 52 33 2 12 .54464 .83867 .64941 1.53987 .19236 1.83608 3 48 34 2 16 .55919 .82904 .67451 1.48256 .20622 <t< td=""><td>25</td><td>1 40</td><td>.42262</td><td>.90631</td><td>.46631</td><td>2.14451</td><td>.10338</td><td>2.36620</td><td>4 20</td><td>65</td></t<>	25	1 40	.42262	.90631	.46631	2.14451	.10338	2.36620	4 20	65
28 1 52 .46947 .88295 .53171 1.88073 .13257 2.13005 4 08 29 1 56 .48481 .87462 .55431 1.80405 .14335 2.06267 4 04 30 2 00 .50000 .86603 .57735 1.73205 .15470 2.00000 4 00 31 2 04 0.51504 0.85717 0.60086 1.66428 1.16663 1.94160 3 56 32 2 08 .52992 .84805 .62487 1.60033 .17918 1.88708 3 52 33 2 12 .54464 .83867 .64941 1.53987 .19236 1.83608 3 48 34 2 16 .55919 .82904 .67451 1.48256 .20622 1.78829 3 44 35 2 20 .57358 .81915 .70021 1.42815 .22077 <t< td=""><td>26</td><td>1 44</td><td>.43837</td><td>.89879</td><td>.48773</td><td>2.05030</td><td>.11260</td><td>2.28117</td><td>4 16</td><td>64</td></t<>	26	1 44	.43837	.89879	.48773	2.05030	.11260	2.28117	4 16	64
29 1 56 .48481 .87462 .55431 1.80405 .14335 2.06267 4 04 30 2 00 .50000 .86603 .57735 1.73205 .15470 2.00000 4 00 31 2 04 0.51504 0.85717 0.60086 1.66428 1.16663 1.94160 3 56 32 2 08 .52992 .84805 .62487 1.60033 .17918 1.88708 3 52 33 2 12 .54464 .83867 .64941 1.53987 .19236 1.83608 3 48 34 2 16 .55919 .82904 .67451 1.48256 .20622 1.78829 3 44 35 2 20 .57358 .81915 .70021 1.42815 .22077 1.74345 3 40 36 2 24 .58779 .80902 .72654 1.37638 .23607 <t< td=""><td>27</td><td>1 48</td><td>.45399</td><td>.89101</td><td>.50953</td><td>1.96261</td><td>.12233</td><td>2.20269</td><td>4 12</td><td>63</td></t<>	27	1 48	.45399	.89101	.50953	1.96261	.12233	2.20269	4 12	63
30 2 00 .50000 .86603 .57735 1.73205 .15470 2.00000 4 00 31 2 04 0.51504 0.85717 0.60086 1.66428 1.16663 1.94160 3 56 32 2 08 .52992 .84805 .62487 1.60033 .17918 1.88708 3 52 33 2 12 .54464 .83867 .64941 1.53987 .19236 1.83608 3 48 34 2 16 .55919 .82904 .67451 1.48256 .20622 1.78829 3 44 35 2 20 .57358 .81915 .70021 1.42815 .22077 1.74345 3 40 36 2 24 .58779 .80902 .72654 1.37638 .23607 1.70130 3 36 37 2 28 .60182 .79864 .75355 1.32704 .25214 <t< td=""><td>28</td><td>1 52</td><td>.46947</td><td>.88295</td><td>.53171</td><td>1.88073</td><td>.13257</td><td>2.13005</td><td>4 08</td><td>62</td></t<>	28	1 52	.46947	.88295	.53171	1.88073	.13257	2.13005	4 08	62
31 2 04 0.51504 0.85717 0.60086 1.66428 1.16663 1.94160 3 56 32 2 08 .52992 .84805 .62487 1.60033 .17918 1.88708 3 52 33 2 12 .54464 .83867 .64941 1.53987 .19236 1.83608 3 48 34 2 16 .55919 .82904 .67451 1.48256 .20622 1.78829 3 44 35 2 20 .57358 .81915 .70021 1.42815 .22077 1.74345 3 40 36 2 24 .58779 .80902 .72654 1.37638 .23607 1.70130 3 36 37 2 28 .60182 .79864 .75355 1.32704 .25214 1.66164 3 32 38 2 32 .61566 .78801 .78129 1.27994 .26902 <t< td=""><td>29</td><td>1 56</td><td>.48481</td><td>.87462</td><td>.55431</td><td>1.80405</td><td>.14335</td><td>2.06267</td><td>4 04</td><td>61</td></t<>	29	1 56	.48481	.87462	.55431	1.80405	.14335	2.06267	4 04	61
32 2 08 .52992 .84805 .62487 1.60033 .17918 1.88708 3 52 33 2 12 .54464 .83867 .64941 1.53987 .19236 1.83608 3 48 34 2 16 .55919 .82904 .67451 1.48256 .20622 1.78829 3 44 35 2 20 .57358 .81915 .70021 1.42815 .22077 1.74345 3 40 36 2 24 .58779 .80902 .72654 1.37638 .23607 1.70130 3 36 37 2 28 .60182 .79864 .75355 1.32704 .25214 1.66164 3 32 38 2 32 .61566 .78801 .78129 1.27994 .26902 1.62427 3 28 39 2 36 .62932 .77715 .80978 1.23490 .28676 1.	30	2 00	.50000	.86603	.57735	1.73205	.15470	2.00000	4 00	60
32 2 08 .52992 .84805 .62487 1.60033 .17918 1.88708 3 52 33 2 12 .54464 .83867 .64941 1.53987 .19236 1.83608 3 48 34 2 16 .55919 .82904 .67451 1.48256 .20622 1.78829 3 44 35 2 20 .57358 .81915 .70021 1.42815 .22077 1.74345 3 40 36 2 24 .58779 .80902 .72654 1.37638 .23607 1.70130 3 36 37 2 28 .60182 .79864 .75355 1.32704 .25214 1.66164 3 32 38 2 32 .61566 .78801 .78129 1.27994 .26902 1.62427 3 28 39 2 36 .62932 .77715 .80978 1.23490 .28676 1.	31	2 04	0.51504	0.85717	0.60086	1.66428	1.16663	1.94160	3 56	59
34 2 16 .55919 .82904 .67451 1.48256 .20622 1.78829 3 44 35 2 20 .57358 .81915 .70021 1.42815 .22077 1.74345 3 40 36 2 24 .58779 .80902 .72654 1.37638 .23607 1.70130 3 36 37 2 28 .60182 .79864 .75355 1.32704 .25214 1.66164 3 32 38 2 32 .61566 .78801 .78129 1.27994 .26902 1.62427 3 28 39 2 36 .62932 .77715 .80978 1.23490 .28676 1.58902 3 24 40 2 40 .64279 .76604 .83910 1.19175 .30541 1.55572 3 20 41 2 44 0.65606 0.75471 0.86929 1.15037 1.32501 <t< td=""><td>32</td><td>2 08</td><td>.52992</td><td>.84805</td><td>.62487</td><td>1.60033</td><td>.17918</td><td>1.88708</td><td>3 52</td><td>58</td></t<>	32	2 08	.52992	.84805	.62487	1.60033	.17918	1.88708	3 52	58
35 2 20 .57358 .81915 .70021 1.42815 .22077 1.74345 3 40 36 2 24 .58779 .80902 .72654 1.37638 .23607 1.70130 3 36 37 2 28 .60182 .79864 .75355 1.32704 .25214 1.66164 3 32 38 2 32 .61566 .78801 .78129 1.27994 .26902 1.62427 3 28 39 2 36 .62932 .77715 .80978 1.23490 .28676 1.58902 3 24 40 2 40 .64279 .76604 .83910 1.19175 .30541 1.55572 3 20 41 2 44 0.65606 0.75471 0.86929 1.15037 1.32501 1.52425 3 16	33	2 12	.54464	.83867	.64941	1.53987	.19236	1.83608	3 48	57
36 2 24 .58779 .80902 .72654 1.37638 .23607 1.70130 3 36 37 2 28 .60182 .79864 .75355 1.32704 .25214 1.66164 3 32 38 2 32 .61566 .78801 .78129 1.27994 .26902 1.62427 3 28 39 2 36 .62932 .77715 .80978 1.23490 .28676 1.58902 3 24 40 2 40 .64279 .76604 .83910 1.19175 .30541 1.55572 3 20 41 2 44 0.65606 0.75471 0.86929 1.15037 1.32501 1.52425 3 16	34	2 16	.55919	.82904	.67451	1.48256	.20622	1.78829	3 44	56
37 2 28 .60182 .79864 .75355 1.32704 .25214 1.66164 3 32 38 2 32 .61566 .78801 .78129 1.27994 .26902 1.62427 3 28 39 2 36 .62932 .77715 .80978 1.23490 .28676 1.58902 3 24 40 2 40 .64279 .76604 .83910 1.19175 .30541 1.55572 3 20 41 2 44 0.65606 0.75471 0.86929 1.15037 1.32501 1.52425 3 16	35	2 20	.57358	.81915	.70021	1.42815	.22077	1.74345	3 40	55
38 2 32 .61566 .78801 .78129 1.27994 .26902 1.62427 3 28 39 2 36 .62932 .77715 .80978 1.23490 .28676 1.58902 3 24 40 2 40 .64279 .76604 .83910 1.19175 .30541 1.55572 3 20 41 2 44 0.65606 0.75471 0.86929 1.15037 1.32501 1.52425 3 16	36	2 24							3 36	54
38 2 32 .61566 .78801 .78129 1.27994 .26902 1.62427 3 28 39 2 36 .62932 .77715 .80978 1.23490 .28676 1.58902 3 24 40 2 40 .64279 .76604 .83910 1.19175 .30541 1.55572 3 20 41 2 44 0.65606 0.75471 0.86929 1.15037 1.32501 1.52425 3 16	37	2 28	.60182	.79864	.75355	1.32704	.25214	1.66164	3 32	53
39 2 36 .62932 .77715 .80978 1.23490 .28676 1.58902 3 24 40 2 40 .64279 .76604 .83910 1.19175 .30541 1.55572 3 20 41 2 44 0.65606 0.75471 0.86929 1.15037 1.32501 1.52425 3 16	38	2 32	.61566	.78801	.78129	1.27994	.26902	1.62427	3 28	52
40 2 40 .64279 .76604 .83910 1.19175 .30541 1.55572 3 20 41 2 44 0.65606 0.75471 0.86929 1.15037 1.32501 1.52425 3 16	39	2 36		.77715	.80978	1.23490	.28676	1.58902	3 24	51
41 2 44 0.65606 0.75471 0.86929 1.15037 1.32501 1.52425 3 16	40	2 40							3 20	50
	41	2 44	0.65606			1.15037			3 16	49
	42	2 48	.66913	.74314	.90040	1.11061	.34563	1.49448	3 12	48
43 2 52 .68200 .73135 .93252 1.07237 .36733 1.46628 3 08	43	2 52					.36733	1.46628	3 08	47
	44	2 56		.71934		1.03553			3 04	46
45 3 00 0.70711 0.70711 1.00000 1.00000 1.41421 1.41421 3 00	45	3 00	0.70711	0.70711	1.00000	1.00000	1.41421	1.41421	3 00	45
Cos Sin Cot Tan Cosec Sec Time			Cos	Sin	Cot	Tan	Cosec	Sec	Time	Arc
ANGLI									ANG	LE

Country or Area	Standard Time	at 12	S.T h U.T	Country or Area	Standard Time	at 12	.S.T 2h U.T
			7-30 S.T.				17-30 S.T.
	h	h	m		h	h	m
Aden	+ 3	15	00	Belgium	+ 1	13	00
Afghanistan	+ 4 1/2	16	30	Belize	- 6Ψ	06	Ψ00
Alaska	-9	03	00	Bermuda	- 4	08	00
- Day light Saving Time	- 8	04	00	Bhutan	+ 6	18	00
Albania	+ 1	13	00	Bolivia	- 4	08	00
- Day light Saving Time	+ 2	14	00	Brazil-			
Aleutian Islands	- 10	02	00	Eastern (including coast)	- 3*	09	00*
Algeria	0	12	00	Western	- 3*	09	00*
Angola	+ 1	13	00	Territory of Acre	- 4*	08	00*
Argentina	- 3	09	00	Bulgaria	+ 2	14	00
Ascension Islands	0	12	00	Cambodia	+ 7	19	00
Australia-				Cameroon	+ 1	13	00
Capital Territory (Canberra), Victoria, New South Wales,	+ 10	22	00	Canada- Newfoundland	- 3 1/2*	08	30*
Queensland, Tasmania.	0.1/2		20		Auto	0.0	o o d
South Australia, Northern Territory, Broken Hill Area	+ 9 1/2	21	30	East of Long. 63° W N W Territories (Ea-	- 4*	08	00*
- Day light Saving Time	+ 10 1/2	22	30	St of Long. 68° W), New Brunswick Nova Scotia, Prince Edward Island			
Western Australia	+ 8	20	00	Quebec (West of	- 5*	07	*00
- Day light Saving Time	+ 9	21	00	Long.63°W), Ontario (East of Long 90° W) (Ottawa), Nunavut (East) and NW Territories (Long W 68°-85°)			
Austral Islands	- 10	02	00	Ontario (West of Long. 90° W), Manitoba, NW Territories (Long. W 85°-102°), East Saskatchewan, Nunavut (Central)	- 6*	06	00*
Austria	+ 1	13	00	Alberta	- 7*	05	00*
Azores	- 1	11	00	Yukon Time	- 8	04	00
Bahrain	+ 3	15	00	Canary Island	+ 1	13	00
Bangladesh	+ 6	18	00	Cape Verde Islands	- 1	11	00

Country or Area	Standard Time	at 12	S.T 2h U.T	Country or Area	Standard Time	at 12	S.T h U.T
			17-30				7-30
		1.3	S.T.			1.5	S.T.
	h	h	m		h	h	m
Caroline Islands-	+ 11	23	00	Ghana	0	12	00
Truk, Ponape	+ 11	23	00	Gibraltar	+ 1↓	13	00
Central African Republic	+ 1	13	00	Greece	+ 1	14	00
Chile	- 4*	08	00*	Greenland	1 2	17	00
China, People's Republic of	+ 8	20	00	Angmagssalik, W. Coast	- 3	09	00
Cocos-keeling Islands	+ 6 1/2	18	30	Thule Area	- 4	08	00
Colombia	- 5	07	00	Guam	+ 10	22	00
Congo Republic	+ 1	13	00	Guatemala	- 6	06	00
Cook Islands	- 10	02	00	Guiana			
				Dutch (Surinam)	- 3	09	00
Corsica	+ 1↓	13	00↓	French	- 3	09	00
Costa Rica	- 6	06	00	Guyana Republic	- 4	08	00
Croatia	+1	13	00	Haiti	- 5	07	00
Cuba	- 5*	07	00*	Hawaiian Islands	- 10	02	00
Czech Republic	+1	13	00	Honduras	- 6	06	00
Cyprus	+ 2	14	00	Hong Kong	+ 8*	20	00*
Dahomey Republic (Africa)	+ 1	13	00	Hungary	+ 1	13	00
Denmark	+ 1	13	00	Iceland	0	12	00
Ecuador	- 5	07	00	India	+ 5 1/2	17	30
Egypt	+ 2*	14	00*	Indonesia, Republic of-			
Estonia	+ 2	14	00	Sumatra, Java, West	+ 7	19	00
				& Central			
				Kalimantan			
El Salvador	- 6	06	00	Bali, South & East	+ 8	20	00
	_			Kalimantan	_		
Ethiopia	+ 3	15	00	Irian Jaya, Maluku	+ 9	21	00
Falkland Islands	-4	08	00	Iran	+ 3 1/2	15	30
Fiji	+12	24	00	Iraq	+ 3	15	00
Finland	+2	14	00	Ireland, Republic of	0	12	00
France	+1↓	13	00↓	Israel	+2	14	00
Germany	+1	13	00	Italy	+1*	13	00*

Country or Area	Standard	L.	S.T	Country or Area	Standard	L.S	S.T
	Time	at 12	h U.T	,	Time	at	12h
		or 1	7-30			U	.T
			S.T.				7-30
							.Т.
	h	h	m		h	h	m
Ivory Coast	0	12	00	Monaco	+ 1	13	00
Japan (and Japan Is.)	+ 9	21	00	Mongolia	+ 8	20	00
Jordan	+ 2	14	00	Morocco	0*	12	00*
Kenya	+ 3	15	00	Mozambique	+ 2	14	00
Korea (North & South)	+ 9	21	00	Nepal	+ 5 3/4	17	45
Kuwait	+ 3	15	00	Netherlands	+ 1	13	00
				(Holland)			
Laos	+ 7	19	00	New Caledonia	+ 11	23	00
Latvia	+ 2	14	00	New Hebrides	+ 11	23	00
Lebanon	+ 2*	14	00*	New Zealand	+ 12	24	00
Liberia	0	12	00	Nicaragua	- 6	06	00
Libya	+ 2	14	00	Niger	+ 1	13	00
Lithuania	+ 3	15	00	Nigeria	+ 1	13	00
Luxembourg	+ 1↓	13	00↓	Norfolk Island	+ 11 1/2	23	30
Madagascar	+ 3	15	00	Norway	+ 1*	13	00*
Madeira	- 1*	11	00*	Oman (Masira,	+ 4	16	00
				Muscat, Salalah)			
Malawi	+ 2	14	00	Pakistan	+ 5	17	00
Malaysia	+ 8	20	00	Papua New Guinea	+ 10	22	00
Maldives Island	+ 5	17	00	Paraguay	- 4	08	00
Malta	+ 1	13	00	Peru	- 5	07	00
Manchuria (China)	+ 8	20	00	Philippines	+ 8	20	00
Mariana Island	+ 10	22	00	Poland	+ 1*	13	00*
Marquesas Islands	- 9 1/2	02	30	Portugal	+ 1	13	00
Marshall Islands	+ 12	24	00	Puerto Rico	- 4	08	00
Mauritania	0	12	00	Reunion	+ 4	16	00
Mauritius	+ 4	16	00	Romania	+ 2	14	00
Mayanmar	+ 6 1/2	18	30	Sakhalin	+ 11	23	00
Mexico-				Samoa	- 11	01	00
Mexico City	- 6	06	00	Sardinia	+ 1	13	00
Sonora, Sinaloa,	- 7	05	00				
Nayarit, Baja							
California Sur							
Baja California	- 8	04	00				

Country or Area	Standard	L.	S.T	Country or Area	Standard	L.S	S.T
_	Time	at 12	h U.T	-	Time	at 121	n U.T
		or 1	7-30			or 1'	7-30
		I.S	S.T.			I.S	.Т.
	h	h	m		h	h	m
Saudi Arabia-				Tangier	0	12	00
Jeddah	+ 3	15	00	Thailand	+ 7	19	00
Dhahran	+ 4	16	00	Uganda	+ 3	15	00
Senegal	0	12	00	Ukraine	+ 2	14	00
Serbia	+ 1	13	00	United Arab	+ 4	16	00
				Emirates			
Sierra Leone	0	12	00	USA Aleutian	- 10*	02	00*
Singapore	+ 8	20	30	USA Hawaii	- 10*	02	00*
Solomon Islands	+ 11	23	00	USA Pacific	- 8*	04	00*
Somalia	+ 3	15	00	USA Mountain	- 7*	05	00*
South Africa	+ 2	14	00	USA Arizona	- 7*	05	00*
Spain	+ 1↓	13	\downarrow	USA Central	- 6*	06	00*
Sri Lanka	+ 5 1/2	17	30	USA Eastern	- 5*	07	00*
Sudan	+ 2	14	00	Uruguay	- 3	09	00
Sweden	+ 1	13	00	Uzbekistan	+ 5	17	00
Switzerland	+ 1	13	00	Zambia	+ 2	14	00
Syria	+ 2*	14	00*	Zimbabwe	+ 2	14	00
Tanzania	+ 3	15	00				•

^{*} During summer seasons clock time differs from Standard time.

Ψ Winter time may be kept in these countries.

[↓] This time is used throughout the year, but may differ from legal time.

PART - VI

INDIAN CALENDAR AND EXPLANATION

INDIAN CALENDAR EXPLANATORY NOTE

The astronomical data included in this section on Indian Calendar have been calculated in accordance with the recommendations of the Calendar Reform Committee, as outlined in its report, and the calculations have been done on the basis of the positions of the Sun, Moon and Planets, as contained in the main tables of the Ephemeris. However, the information on Luni- Solar Calendar in this section have been calculated on the basis of traditional Nirayana Calendric system following the Government's decision not to disturb the traditional procedure in fixing the days of religious festivals. Certain additional data, which are required for the compilation of an Indian Panchang (Almanac), have also been furnished to meet the requirements of the numerous Panchang makers of this country. The tables of this section have been extended beyond December, 2020 and materials up to April 20, 2021 have been furnished in order to facilitate preparation of Almanacs for one complete Indian year. The longitudes of the Sun, Moon and Planets and certain other data relating to their positions for the period of 2021 covered by this calendar have also been given in separate table for the same purpose.

All calculations contained in this section have been done for an adopted Central Station of India situated at 82°30′ longitude East of Greenwich and 23° 11′ latitude North (latitude of Ujjain) and accordingly the timings have been expressed in the local mean time of this Central Station, which is also the Indian Standard Time. This time (I.S.T.) is 5^h 30 ^m ahead on the Universal Time or Greenwich Mean Time.

The Calendar used in this section is the 'National Calendar' of India as recommended by the Calendar Reform Committee and introduced by the Government of India with effect from the 22 nd March 1957, corresponding to the 1st of Chaitra, 1879 Saka Era. Thereafter, Govt. of India has decided to introduce an all India Nirayana Solar Calendar in addition to the existing National Calendar. This new Calendar has been introduced with effect from 14th April, 2004 corresponding to 1st Vaisakha of 5105 Kali, Kali Era being the Era of this new Calendar and this Calendar have fixed number of days for its months. Dates of the Nirayana Calendar have been indicated in addition to the existing National Calendar. The months of these Calendars, the number of days assigned to each month of the two Calendars, and the dates of the Gregorian calendar corresponding to the first day of each month of both the Calendars are as follows:-

Months of the	Gregorian date for	Months of the	Gregorian date for
National Calendar	1st of the month	Nirayana Calendar	1st of the month
Chaitra (30 days;	March 22 (March 21	Vaisakha (31 days)	April 14
31 days in a leap-year)	in a leap-year)	Jyaishtha (31 days)	May 15
Vaisakha (31 days)	April 21	Ashadha (31 days)	June 15
Jyaishtha (31 days)	May 22	Sravana (31 days)	July 16
Ashadha (31 days)	June 22	Bhadra (31 days)	August 16
Sravana (31 days)	July 23	Asvina (30 days)	September 16
Bhadra (31 days)	August 23	Kartika (30 days)	October 16
Asvina (30 days)	September 23	Agrahayana (30 days)	November 15
Kartika (30 days)	October 23	Pausha (30 days)	December 15
Agrahayana (30 days)	November 22	Magha (30 days)	January 14
Pausha (30 days)	December 22	Phalguna (30 days;	February 13
Magha (30 days)	January 21	31 days in a leap-year)	
Phalguna (30 days)	February 20	Chaitra (30 days)	March 15

Different items included in this section are elaborated below:-

The Sunrise and Sunset times, calculated for the Central Station, relate respectively to the appearance and disappearance of the upper limb of the Sun on the horizon. The amount of horizontal refraction taken for this purpose is 31^{7} and the semi-diameter of the Sun as 16^{7} , so that at the given times of Sunrise and Sunset, the centre of the Sun actually 47^{7} below the horizon.

The apparent noon is the local mean time of the sun's meridian passage, i.e., the mid-day reduced to the above standard meridian of India (82½ E. Longitude).

The ending moments of tithis, nakshatras and yogas have been given in Indian Standard Time and shown against their ordinal numbers. The phenomena being geocentric ones, their timings in I.S.T. are applicable for the whole of India without any modification. These timings reduced by a deduction of $5^{\rm h}\,30^{\rm m}$ would give the G.M.T. applicable for all places on the earth.

The tithi is based on the difference of longitude of the Moon and that of the Sun. A tithi is completed when the longitude of the Moon gains exactly 12^0 or its integral multiple on that of the Sun and as such there are 30 tithis in lunar month. A difference in longitude of 12^0 indicates the ending of the 1st tithi, 24^0 that of the 2nd tithi and so on. The number of tithis have been shown from Sukla 1 to Sukla 15 (full-moon) and again from Krishna 1 to Krishna 14 and Krishna 30 (new moon), using the symbols S and K for Sukla paksha (waxing Moon)and Krishna paksha (waning Moon) respectively.

A nakshatra is completed when the nirayana longitude of the Moon as measured from the initial point attains a value of $13^{\circ} 20'$ or an integral multiple thereof. When this longitude is $13^{\circ} 20'$ the 1st nakshatra ends and so on. There are thus 27 nakshatras in a sidereal month and the nakshatra divisions occupy fixed positions in the sphere of stars. In the case of the Sun the calculation also has been done on the same basis. But in this case, the time of Sun's entry into a nakshatra-division has been stated, whereas in the case of the Moon, the time of its exit from the division has been given.

Like nakshatras, there are 27 yogas. Yoga is calculated from the sum of nirayana longitudes of the Sun and the Moon. When the sum amounts to 13° 20′, the first yoga ends; when it amounts to 26° 40′, the second yoga ends, and so on. Thus, in all 27 yogas cover 360° . Names of the nakshatras and yogas have been given at the bottom of the table. It will be seen that two of the names Vyatipata and Vaidhriti occur also under Phenomena, where they have been treated as special yogas and calculated by a somewhat different rule. The 27 yogas which have got very little astronomical significance have been included in this publication only to meet the needs of Panchang where the yoga is also one of the components.

For the purpose of calculation of rasis, nakshatras and yogas, an initial point which occupies a fixed position on the ecliptic has been adopted as the origin for the measurement of longitudes. The position of this initial point coincides with the vernal equinoctial point of vernal equinox day of $285 \, \text{A.D.}$ For the purpose of assigning a precise position to it, the tropical longitude of this initial point has been adopted as $23^{\circ} \, 15' \, 00''$ for 0^{h} on $21 \, \text{st}$ March, 1956. The tropical longitude of this fixed initial point for any day is known as ayanamsa. The longitude of a celestial body measured from this initial point is known as nirayana longitude.

The entry into different rasis of the Moon and of the Sun have been shown at the bottom of the relevant pages of the calendar and the calculations have been done on the same basis as in the case of nakshatras, utilising the nirayana longitudes. Rasis, which cover arc of 30° of the zodiac belt, are measured along the ecliptic from the above-mentioned initial point.

The tithi, nakshatra and yoga as are current at Sunrise at the Central Station, have been shown against the date with their ending moments in I. S. T. When the time of these or any other phenomena falls after midnight and before the next Sunrise, the time has been expressed after adding 24^h to the I.S.T. without changing the date after midnight in order to maintain continuity of time-reckoning from one Sunrise to the next, in conformity with the system followed in Indian religious calendars.

The solar months recommended for the religious calendar, such as, Saura Vaisakha, Saura Jyaishtha, etc., by the Calendar Reform Committee in 1955 have been reckoned from the moments when the apparent longitude of the Sun equals 23° 15', 53° 15' and so on. The calculation for this purpose thus has not been done with a variable ayanamsa, as in the case of rasis and nakshatras, but with a fixed ayanamsa of 23° 15'. These months are shown for purpose of illustration only, but are not used in practice for actual luni-solar adjustment.

The lunar months for determining the dates of religious festivals are reckoned from one New-Moon to the next (Sukladi system or mukhya mana). The lunar month for this purpose is named after the Nirayana or Sidereal solar month in which the initial New-Moon from which the month starts, falls.

Phenomena mentioned in the table include New-Moon, Full-Moon, Sayana Vyatipata (when the sum of the tropical longitudes of the Sun and the Moon equals 180°), Sayana Vaidhriti (when the above sum amounts to 360°), eclipses, heliacal rising and setting of Venus, Mars and Jupiter and Jupiter's transit into rasis.

The principal festivals of different states have been fixed on the basis of the criterion stated here, but in doing so, the rules and conventions of the states concerned have been followed as far as practicable.

LIST OF HOLIDAYS

The list of holidays for the Government of India as well as for the State Governments have been prepared in a consolidated form and the dates fixed for them, have been shown in a separate table under the head 'Principal Festivals for Holidays'. The principal festivals of Moslems, Parsis, Jewish and Christians have also been shown separately.

AYANAMSA

The value of ayanamsa has been given in the calendar for the first day of the month and also in a separate table at the end at interval of three days.

The Sayana Vyatipata and Sayana Vaidhriti, reported under the column "Phenomena", are calculated on the basis of defination given in the report of Calendar Reform Committee. These are classified as the Calendar Reform Committee view and no way related to the 'mahapata yoga' defined in some Indian traditional texts (siddhantic treatises).

HELIACAL RISING AND SETTING OF PLANETS, 2021 (JANUARY TO APRIL)

Planet	Nationa	l Date	Nirayana	Date	Grego	orian Date	Time	(I.S.T)
							h	m
Mercury rises in the West	Pausha	17, 1942 Saka	Pausha	24, 5121 Kali	Jan.	7, 2021	11	36
Mercury sets in the West	Magha	14, 1942 Saka	Magha	21,5121 Kali	Feb.	3, 2021	23	18
Mercury rises in the East	Magha	24, 1942 Saka	Phalguna	1,5121 Kali	Feb.	13, 2021	14	04
Mercury sets in the East	Chaitra	10, 1943 Saka	Chaitra	17,5121 Kali	Mar.	31, 2021	25	52
Venus sets in the East	Magha	28, 1942 Saka	Phalguna	5, 5121 Kali	Feb.	17, 2021	10	10
Venus rises in the West	Chaitra	18, 1943 Saka	Vaisakha	5, 5122 Kali	Apr.	19, 2021	5	41
Jupiter sets in the West	Pausha	26, 1942 Saka	Magha	3, 5121 Kali	Jan.	16, 2021	26	45
Jupiter rises in the East	Magha	23, 1942 Saka	Magha	30, 5121 Kali	Feb.	12, 2021	10	06
Saturn sets in the West	Pausha	19, 1942 Saka	Pausha	26, 5121 Kali	Jan.	9, 2021	15	37
Saturn rises in the East	Magha	20, 1942 Saka	Magha	27, 5121 Kali	Feb.	9, 2021	26	00

N.B.- Here East means the eastern horizon or west of the Sun and West means the western horizon or east of the Sun.

RETROGRESSION OF PLANETS, 2021 (JANUARY TO APRIL)

Planet		National I	Date	Nirayana	Date	Gregorian Date	Time (I.S.T)	
							h	m
Mercury	Retrograde	Magha	10, 1942 Saka	Magha	17,5121 Kali	Jan. 30, 2021	21	19
Mercury	Direct	Phalguna	2, 1942 Saka	Phalguna	9,5121 Kali	Feb. 21, 2021	6	35
Uranus	Direct	Pausha	24, 1942 Saka	Magha	1,5121 Kali	Jan. 14, 2021	14	08

MEAN RAHU, 2021

Date		Longitude	Date	Longitude	Date		Longitude
		0 / //		0 / //			0 / //
Jan.	-2	54 52 17	Feb. 7	52 45 06	Mar.	19	50 37 55
	8	54 20 29	17	52 13 18		29	50 06 07
	18	53 48 41	27	51 41 30	Apr.	8	49 34 20
Jan.	28	53 16 54	Mar. 9	51 09 43		18	49 02 32
						28	48 30 44

ECLIPSES, 2021 (JANUARY TO APRIL)

_

SAKA ERA 1941

Month of PAUSHA (30 days)

Makara : Tapas Winter (Sisira), 1st Month

(Nirayana) 8 Pausha, 5120 Kali Era to (Nirayana) 7 Magha, 5120 Kali Era

		1	(1111	иуини)	1 44	311a, 312	Txai	1 Lia to	(Nirayana) / Niagna, 5120 Kan Era									
									Tithi			ithi		Nakshatra		Yoga		
Date	Week	Gregorian	Su	Sunrise		Apparent		Sunset		No.		Ending		. Ending		No.	En	ding
	Day	Date			N	loon					Moment			Mo	ment		Mo	ment
			h	m	h	m	h	m			h	m		h	m		h	m
		2019 A.D.																
1	Sun	Dec. 22	6	37.3	11	58.3	17	19.5	K	11	15	22.4	15	18	37.7	6	8	39.0
																(7	30	00.6)
2	Mon	23	6	37.8	11	58.8	17	20.0		12	13	42.0	16	17	39.6	8	27	34.6
3	Tue	24	6	38.3	11	59.3	17	20.5		13	12	18.8	17	16	59.1	9	25	24.5
4	Wed	25	6	38.7	11	59.8	17	21.1		14	11	17.6	18	16	41.1	10	23	33.7
5	Thu	26	6	39.2	12	00.3	17	21.6	K	30	10	43.1	19	16	50.1	11	22	05.6
6	Fri	27	6	39.6	12	00.8	17	22.2	S	1	10	39.7	20	17	30.0	12	21	02.7
7	Sat	28	6	40.0	12	01.3	17	22.8		2	11	10.2	21	18	43.1	13	20	26.4
8	Sun	29	6	40.4	12	01.8	17	23.4		3	12	15.9	22	20	29.7	14	20	16.4
9	Mon	30	6	40.7	12	02.3	17	24.0		4	13	54.8	23	22	46.6	15	20	30.4
10	Tue	31	6	41.1	12	02.7	17	24.6	S	5	16	01.7	24	25	27.6	16	21	03.8
		2020 A.D.																
11	Wed	Jan. 1	6	41.4	12	03.2	17	25.3		6	18	27.6	25	28	22.7	17	21	49.8
12	Thu	2	6	41.7	12	03.7	17	25.9		7	21	00.6	26	-	-	18	22	39.8
13	Fri	3	6	42.0	12	04.1	17	26.6		8	23	26.8	26	7	19.8	19	23	24.1
14	Sat	4	6	42.3	12	04.6	17	27.2		9	25	32.8	27	10	05.4	20	23	53.5
15	Sun	5	6	42.5	12	05.0	17	27.9	S	10	27	07.3	1	12	27.2	21	23	59.5
16	Mon	6	6	42.7	12	05.6	17	28.6		11	28	02.5	2	14	15.4	22	23	37.2
17	Tue	7	6	42.9	12	06.0	17	29.3		12	28	14.8	3	15	23.9	23	22	42.1
18	Wed	8	6	43.1	12	06.4	17	30.0		13	27	44.4	4	15	50.8	24	21	13.8
19	Thu	9	6	43.3	12	06.8	17	30.6		14	26	34.7	5	15	37.6	25	19	13.9
20	Fri	10	6	43.4	12	07.2	17	31.3	S	15	24	51.3	6	14	48.5	26	16	45.8
21	Sat	11	6	43.5	12	07.6	17	32.0	K	1	22	41.2	7	13	30.0	27	13	54.4
22	Sun	12	6	43.6	12	08.0	17	32.8		2	20	12.3	8	11	49.6	1	10	45.3
23	Mon	13	6	43.6	12	08.4	17	33.5		3	17	32.6	9	9	55.3	2	7	24.6
																(3	27	58.4)
24	Tue	14	6	43.7	12	08.7	17	34.2		4	14	49.7	10	7	55.2	4	24	32.6
													(11	29	56.8)			
25	Wed	15	6	43.7	12	09.1	17	34.9	K	5	12	10.7	12	28	06.8	5	21	12.3
26	Thu	16	6	43.7	12	09.6	17	35.6		6	9	41.8	13	26	30.6	6	18	02.1
27	Fri	17	6	43.6	12	10.0	17	36.3		7	7	28.2	14	25	12.6	7	15	05.5
										(8	29	33.7)						
28	Sat	18	6	43.6	12	10.2	17	37.0		9	28	01.0	15	24	15.6	8	12	24.9
29	Sun	19	6	43.5	12	10.5	17	37.8	K	10	26	51.6	16	23	41.2	9	10	02.2
30	Mon	20	6	43.4	12	10.8	17	38.5	1	11	26	06.2	17	23	30.3	10	7	58.0
							-	- 5.0						~		(11	30	12.9)
		<u> </u>			1								1				_ ~	

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}$ °E. Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Names of Yogas:- 1.Viskumbha 2.Priti 3.Ayusman 4.Saubhagya 5.Sobhana 6.Atiganda 7.Sukarma 8.Dhriti 9.Sula 10.Ganda 11. Vriddhi 12.Dhruva 13.Vyaghata 14.Harshana 15.Vajra 16.Siddhi (Asrik) 17.Vyatipata 18.Variyan 19.Parigha 20.Siva 21.Siddha 22.Sadhya 23.Subha 24.Sukla (Sukra) 25.Brahma 26.Indra 27.Vaidhriti

SAKA ERA 1941

Uttarayana Dakshina Gola

Month of PAUSHA (30 days)

Ayanamsa on 1st : 24° 07′ 53″

(Nirayana) 8 Pausha, 5120 Kali Era to (Nirayana) 7 Magha, 5120 Kali Era

				3 Pausha, 5120 Kali Era t	· · · · · · · · · · · · · · · · · · ·	
Date		Solar	Lunar	Transit of the Sun	Phenomena	Festivals
	Date	Month	Month ∢ ∢			
1 2 3 4	2019 A.D. Dec. 22 23 24 25		C H A A N D R A MARGASHIRSHA	1- Enters Tropical Capricornus (9h49m,4)	4- Sayana Vyatipata	 Uttarayana day, Saphala Ekadasi. Birthday of Sadhu T. L. Vaswani (Sindhi), Vakula Amavasya (Odisha).
5	26		C H A MARC	•	(20 ^h 56 ^m .8) 5- New Moon (10 ^h 43 ^m .1)	5- Jor Mela- 3 days (Punjab).
6 7 8 9 10	27 28 29 30 31 2020A.D. Jan. 1	S H A		8- Enters Purvashadha nak. (17 ^h 36 ^m .1)	5- Solar Eclipse (visible in India)	
12 13 14 15	2 3 4 5	P A U				12- Guru Govind Singh's Birthday (according to tithi). 15- Samba Dasami (Odisha).
16 17 18 19	6 7 8 9	SAURA			18- Jupiter rises in the East (30h 33m) 18- Sayana Vaidhriti	16- Putrada ekadasi, Vaikuntha Ekadasi (S India).
20	10				(7 ^h 19 ^m .0) 20- Full Moon	20- Arudra Darshanam
21 22	11 12		SHA	21- Enters Uttarashadha	(24 ^h 51 ^m .3)	(Purvarunodaya) (S. India), Paushi Purnima, Pushyabhisheka Yatra.
23	13		A U	nak. (19 ^h 35 ^m .5) 23- Saura		23- Lohri (Punjab,J&K), Ganesha
24	14		Ъ	Maghadi (29 ^h 20 ^m .3)		Sankashta Chaturthi. 24- Bhogi(S. India), Birthday of Sant Paramanand (Sindhi).
25	15	M A G H A	HAANDRA			25- Pongal (S. India), Makara Snana, Tila Samkranti, Tai Pongal (Kerala), Tamil New Year's Day, Magha Bihu (Assam), Makara Samkranti (N.India), Makara Samkranti.
26 27 28 29 30	16 17 18 19 Jan. 20	SAURA M	C H A	30- Enters Tropical Aquarius (20 ^h 24 ^m .6)	29- Sayana Vyatipata (29 ^h 19 ^m .3)	26- Mattu Pongal or Kanuvu(S. India), 27- Birthday of Swami Vivekananda (according to tithi), Ashtaka (Mamashtaka). 30- Sattila Ekadasi.

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82^{1/2}{}^{\circ}$ E. Long. Moon enters :- Vrischika 2, $11^{\rm h}$ $52^{\rm m}$.7; Dhanus 4, $16^{\rm h}$ $41^{\rm m}$.1; Makara 6, $23^{\rm h}$ $45^{\rm m}$.1; Kumbha 9, $9^{\rm h}$ $34^{\rm m}$.6; Mina 11, $21^{\rm h}$ $38^{\rm m}$.3; Mesha 14, $10^{\rm h}$ $05^{\rm m}$.4; Vrisha 16, $20^{\rm h}$ $36^{\rm m}$.4; Mithuna 18, $27^{\rm h}$ $49^{\rm m}$.1; Karkata 21, $7^{\rm h}$ $52^{\rm m}$.0; Simha 23, $9^{\rm h}$ $55^{\rm m}$.3; Kanya 25, $11^{\rm h}$ $28^{\rm m}$.3; Tula 27, $13^{\rm h}$ $49^{\rm m}$.2; Vrischika 29, $17^{\rm h}$ $47^{\rm m}$.6; Sun enters: - Nirayana Makara 24, $26^{\rm h}$ $08^{\rm m}$.1.

SAKA ERA 1941

Month of MAGHA (30 days)

Kumbha : Tapasya Winter (Sisira), 2nd Month

(Nirayana) 8 Magha, 5120 Kali Era to (Nirayana) 7 Phalguna, 5120 Kali Era

				(1111	ayana)	Wias	311a, 312		1 Lia to	(11111				Nolsohotro						
										Tithi			Nakshatra			Yoga				
Date	Week	Gregor	rian	Sunrise		Apparent		Su	nset	No.		Ending		No.	En	ding	No.	En	ding	
	Day	Date	e			N	oon					Mo	Moment		Moment			Mo	ment	
				h	m	h	m	h	m			h	m		h	m		h	m	
		2020A	.D.																	
1	Tue	Jan.	21	6	43.3	12	11.0	17	39.2	K	12	25	45.3	18	23	43.1	12	28	46.8	
2	Wed		22	6	43.1	12	11.4	17	39.9		13	25	49.1	19	24	19.8	13	27	39.8	
3	Thu		23	6	43.0	12	11.6	17	40.6		14	26	17.9	20	25	20.6	14	26	52.0	
4	Fri		24	6	42.8	12	11.9	17	41.3	K	30	27	12.0	21	26	45.9	15	26	23.7	
5	Sat		25	6	42.6	12	12.1	17	42.0	S	1	28	31.6	22	28	35.5	16	26	14.7	
6	Sun		26	6	42.3	12	12.4	17	42.7		2	30	15.9	23	-	-	17	26	24.3	
7	Mon		27	6	42.1	12	12.6	17	43.4		3	-	-	23	6	48.7	18	26	51.3	
8	Tue		28	6	41.8	12	12.8	17	44.1		3	8	22.4	24	9	22.9	19	27	31.6	
9	Wed		29	6	41.5	12	13.0	17	44.8		4	10	46.3	25	12	13.3	20	28	21.1	
10	Thu		30	6	41.1	12	13.2	17	45.5	S	5	13	19.7	26	15	12.4	21	29	12.9	
11	Fri		31	6	40.8	12	13.3	17	46.2		6	15	52.2	27	18	09.8	22	29	58.6	
12	Sat	Feb.	1	6	40.4	12	13.5	17	46.8		7	18	11.2	1	20	53.5	23	30	29.4	
13	Sun		2	6	40.0	12	13.6	17	47.5		8	20	04.1	2	23	11.2	24	30	36.5	
14	Mon		3	6	39.6	12	13.7	17	48.2		9	21	19.6	3	24	52.3	25	30	12.7	
15	Tue		4	6	39.1	12	13.8	17	48.8	S	10	21	50.0	4	25	49.2	26	29	12.9	
16	Wed		5	6	38.7	12	13.9	17	49.5		11	21	31.3	5	25	58.5	27	27	34.9	
17	Thu		6	6	38.2	12	14.0	17	50.1		12	20	23.9	6	25	20.9	1	25	19.3	
18	Fri		7	6	37.7	12	14.0	17	50.7		13	18	31.9	7	24	00.6	2	22	29.1	
19	Sat		8	6	37.2	12	14.1	17	51.3		14	16	02.1	8	22	05.0	3	19	09.8	
20	Sun		9	6	36.6	12	14.2	17	52.0	S	15	13	03.2	9	19	43.2	4	15	28.0	
21	Mon		10	6	36.1	12	14.2	17	52.6	K	1	9	45.2	10	17	05.7	5	11	31.6	
21	IVIOII		10	U	50.1	12	17.2	17	32.0	11	(2	30	18.5)	10	17	03.7		11	31.0	
22	Tue		11	6	35.5	12	14.2	17	53.2		3	26	53.3	11	14	23.2	6	7	28.7	
	Tuc		11	O	33.3	12	17,2	17	33.2		J	20	55.5	11	17	23,2	7	27	27.7)	
23	Wed		12	6	34.9	12	14.2	17	53.8		4	23	39.8	12	11	46.3	8	23	36.5	
24	Thu		13	6	34.3	12	14.2	17	54.3	K	5	20	46.8	13	9	24.9	9	20	02.1	
25	Fri		14		33.7	12	14.2	17	54.9	IX	6	18	21.5	14	7	27.6	10	16	50.1	
20	1111		14	U	33.1	12	14,2	17	34.7		U	10	21.5	(15	30	00.9)	10	10	50.1	
														(13	30	00.7)				
26	Sat		15	6	33.0	12	14.1	17	55.5		7	16	29.6	16	29	09.0	11	14	04.8	
27	Sun		16	6	32.4	12	14.1	17	56.1		8	15	14.2	17	28	53.6	12	11	48.4	
28	Mon		17	6	31.7	12	14.0	17	56.6		9	14	35.9	18	29	13.7	13	10	01.4	
29	Tue		18	6	31.0	12	13.9	17	57.2	K	10	14	33.1	19	30	06.4	14	8	42.6	
30	Wed		19	6	30.3	12	13.9	17	57.7	1	11	15	02.6	20	_	-	15	7	49.5	

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}$ °E. Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Names of Yogas:- 1.Viskumbha 2.Priti 3.Ayusman 4.Saubhagya 5.Sobhana 6.Atiganda 7.Sukarma 8.Dhriti 9.Sula 10.Ganda 11. Vriddhi 12.Dhruva 13.Vyaghata 14.Harshana 15.Vajra 16.Siddhi (Asrik) 17.Vyatipata 18.Variyan 19.Parigha 20.Siva 21.Siddha 22.Sadhya 23.Subha 24.Sukla (Sukra) 25.Brahma 26.Indra 27.Vaidhriti

Uttarayana Dakshina Gola SAKA ERA 1941 Month of MAGHA (30 days)

Ayanamsa on 1st : 24° 07′ 58″

(Nirayana) 8 Magha, 5120 Kali Era to (Nirayana) 7 Phalguna, 5120 Kali Era

			ayana) 8	Magha, 5120 Kali Era to	(Nirayana) / Phaigu	na, 5120 Kali Era
Date	Gregorian Date	Solar Month	Lunar Month	Transit of the Sun	Phenomena	Festivals
Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	Gregorian Date 2020 A.D. Jan. 21 22 23 24 25 26 27 28 29 30 31 Feb. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Solar Month A H A M A B H A Solar Month	Lunar	Transit of the Sun	i	1- Martyrdom Day of Hemu Kalani (Sindhi). 2- Meru Trayodasi (Jain). 3- Netaji's Birthday, Ratanti Kalika Puja. 4- Mauni Amavasya, Tai Amavasya, Makara Vavu (Kerala). 5- Magha Sukladi. 6- Republic Day. 8- Birthday of Lala Lajpat Rai, Varada Chaturthi, Tila Chaturthi, Kunda Chaturthi, Ganesa Puja (Bengal). 10- Martyr's Day (Mahatma Gandhi Commemoration Day), Vasanta Panchami, Sarasvati Puja, Sri Panchami. 12- Ratha Saptami (Purvarunodaya), Vidhana Saptami, Arogya Saptami. 13- Bhismashtami. 16- Jaya Ekadasi, Bhaimi Ekadasi (Bengal). 17- Bhishma Dvadasi. 18- Desert Festival- 3 days(Jaisalmer). 19- Floating Festival (Tai Poosam). 20- Maghi Purnima, Guru Ravi Das's Birthday (according to tithi).
30	Feb. 19	SAURA PHALGUNA		30- Enters Trop. Pisces (10h 27m.0) 30- Enters Satabhisaj (29h 29m.7)		Saraswati (Founder of Arya

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of 82½° E. Long.

 $\begin{array}{l} Moon\ enters:-\ Dhanus\ 1,\ 23^{h}\ 43^{m}.1;\ Makara\ 4,\ 7^{h}\ 39^{m}.6;\ Kumbha\ 6,\ 17^{h}\ 39^{m}.3;\ Mina\ 8,\ 29^{h}\ 29^{m}.5;\ Mesha\ 11,\ 18^{h}\ 09^{m}.8;\ Vrisha\ 13,\ 29^{h}\ 40^{m}.3;\ Mithuna\ 16,\ 13^{h}\ 59^{m}.8;\ Karkata\ 18,\ 18^{h}\ 24^{m}.3;\ Simha\ 20,\ 19^{h}\ 43^{m}.2;\ Kanya\ 22,\ 19^{h}\ 43^{m}.0;\ Tula\ 24,\ 20^{h}\ 22^{m}.9;\ Vrischika\ 26,\ 23^{h}\ 18^{m}.7;\ Dhanus\ 28,\ 29^{h}\ 13^{m}.7; \\ \underline{Sun\ enters}:-\ Nirayana\ Kumbha\ 24,\ 15^{h}\ 03^{m}.6. \\ \underline{Sun\ enters}:-\ Nirayana\ Nir$

SAKA ERA 1941

Mina : Madhu Spring (Vasanta), 1st Month

Month of PHALGUNA (30 days)

(Nirayana) 8 Phalguna, 5120 Kali Era to (Nirayana) 7 Chaitra, 5120 Kali Era

				(Nirayana) 8 Filaigulla, 3120 Kali Eta (in Liu to	Tithi				Nakshatra			Voge			
																		Yoga	
Date		Grego		Su	nrise		parent	Su	nset	No	No. Ending		No. Ending		No.				
	Day	Dat	te				loon					Moment				ment			oment
				h	m	h	m	h	m			h	m		h	m		h	
		2020 A	A.D.																
1	Thu	Feb.	20	6	29.6	12	13.8	17	58.2	K	12	16	00.1	20	7	27.7	16	7	18.9
2	Fri		21	6	28.8	12	13.7	17	58.8		13	17	21.5	21	9	13.4	17	7	07.7
3	Sat		22	6	28.1	12	13.6	17	59.3		14	19	03.2	22	11	19.4	18	7	12.9
4	Sun		23	6	27.3	12	13.4	17	59.8	K	30	21	02.0	23	13	42.7	19	7	32.0
5	Mon		24	6	26.5	12	13.3	18	00.3	S	1	23	15.4	24	16	20.7	20	8	03.2
6	Tue		25	6	25.7	12	13.1	18	8.00		2	25	40.2	25	19	10.4	21	8	44.5
7	Wed		26	6	24.9	12	13.0	18	01.8		3	28	12.2	26	22	08.1	22	9	33.4
8	Thu		27	6	24.1	12	12.8	18	01.8		4	_	_	27	25	08.2	23	10	26.4
9	Fri		28	6	23.3	12	12.7	18	02.3		4	6	44.9	1	28	02.7	24	11	18.9
10	Sat		29	6	22.4	12	12.5	18	02.7	S	5	9	09.8	2	_	-	25	12	04.3
			_										0,710						
11	Sun	Mar.	1	6	21.6	12	12.3	18	03.2		6	11	16.3	2	6	42.0	26	12	35.3
12	Mon		2	6	20.7	12	12.1	18	03.7		7	12	53.3	3	8	55.1	27	12	43.8
13	Tue		3	6	19.8	12	11.9	18	04.1		8	13	50.5	4	10	31.6	1	12	22.2
14	Wed		4	6	19.0	12	11.7	18	04.6		9	14	00.4	5	11	23.4	2	11	24.7
15	Thu		5	6	18.1	12	11.4	18	05.0	S	10	13	19.2	6	11	25.8	3	9	47.7
15	1110		5		10.1	12	11.1	10	05.0		10	13	17.2		11	25.0		_	17.7
16	Fri		6	6	17.2	12	11.2	18	05.4		11	11	47.4	7	10	38.4	4	7	30.4
10	***		O		17.2	12	11.2	10	05.1		11	-11	17.1	′	10	50.1	(5	28	35.1)
17	Sat		7	6	16.3	12	11.0	18	05.9		12	9	29.2	8	9	04.9	6	25	06.3
18	Sun		8	6	15.3	12	10.7	18	06.3		13	6	31.7	9	6	52.2	7	21	10.9
10	Sun		O	0	13.3	12	10.7	10	00.5		(14	27	04.2)	(10	28	09.8)	'	21	10.7
19	Mon		9	6	14.4	12	10.5	18	06.7	S	15	23	17.7	11	25	08.8	8	16	57.2
20	Tue		10	6	13.5	12	10.3	18	07.1	K	1	19	23.7	12	22	01.5	9	12	34.3
20	Tue		10	0	13.3	12	10.2	10	07.1	IX.	1	19	23.1	12		01.5	"	12	34.3
21	Wed		11	6	12.6	12	10.0	18	07.5		2	15	33.9	13	18	59.9	10	8	11.5
21	WCu		11	0	12.0	12	10.0	10	07.5		_	13	33.9	15	10	39.9	(11	27	58.3)
22	Thu		12	6	11.6	12	09.7	18	07.9		3	11	59.5	14	16	15.7	12	24	03.5
23	Fri		13	6	10.7	12	09.7	18	08.3		4	8	51.0	15	13	59.5	13	20	34.5
23 24			13		09.7	12	09.4	18	08.7	K	5	6	17.4	16	12	20.0	14	17	37.3
24	Sat		14	6	09.7	12	09.1	10	08.7	V				10	12	20.0	14	1/	37.3
25	G		15		00.0	10	00.0	10	00.1		(6	28	25.7)	17	11	22.4	1.5	15	157
25	Sun		15	6	08.8	12	08.8	18	09.1		7	27	19.7	17	11	23.4	15	15	15.7
26	Mar		16		07.9	12	00.6	10	00.5		O	27	00.2	10	11	10.2	16	12	21.2
26	Mon		16	6	07.8	12	08.6	18	09.5		8	27	00.2	18	11	12.3	16	13	31.2
27	Tue		17	6	06.8	12	08.3	18	09.9	177	9	27	24.3	19	11	46.1	17	12	22.6
28	Wed		18	6	05.9	12	08.0	18	10.3	K	10	28	26.7	20	13	00.7	18	11	46.6
29	Thu		19	6	04.9	12	07.7	18	10.7	**	11	29	59.9	21	14	49.6	19	11	38.2
30	Fri		20	6	03.9	12	07.4	18	11.1	K	12	-	-	22	17	05.0	20	11	51.7

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}$ °E. Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Names of Yogas:- 1.Viskumbha 2.Priti 3.Ayusman 4.Saubhagya 5.Sobhana 6.Atiganda 7.Sukarma 8.Dhriti 9.Sula 10.Ganda 11. Vriddhi 12.Dhruva 13.Vyaghata 14.Harshana 15.Vajra 16.Siddhi (Asrik) 17.Vyatipata 18.Variyan 19.Parigha 20.Siva 21.Siddha 22.Sadhya 23.Subha 24.Sukla (Sukra) 25.Brahma 26.Indra 27.Vaidhriti

SAKA ERA 1941

Uttarayana Month of PHALGUNA (30 days) Ayanamsa on 1st: 24°08′02″ Dakshina Gola

(Nirayana) 8 Phalguna, 5120 Kali Era to (Nirayana) 7 Chaitra, 5120 Kali Era										
Date		Solar	Lunar	Transit of the Sun	Phenomena	Festivals				
	Date	Month								
	2020 A.D.		CHAANDRA M A G H A							
. 1	Feb. 20		HAANDR. MAGHA			1- Maha Sivaratri (Kashmir).				
2	21		AA A			2- Maha Sivaratri, Sivaratri				
3	22		HAH M			(S. India).				
4	23		5 ~		4 New Moon					
5	24				(21 ^h 02 ^m .0)					
					(== == ==)					
6	25	∢				6- Birthday of Sri Ramakrishna				
7	26	z				(according to tithi).				
8	27				8- Sayana Vaidhriti	(according to titin).				
	l	D 1			1 *					
9	28	Ü			$(19^{\rm h}53^{\rm m}.1)$					
10	29]								
11		≪								
11	Mar. 1	H				10 11 1 1				
12	2	Ь				12- Holashtaka.				
13	3		₹							
14	4		Z	14-Enters Purva						
15	5		ם	Bhadrapada nak.						
		~		$(11^{\rm h} 42^{\rm m}.6)$						
16	6	D	Ü			16- Amlaki Ekadasi, Govinda				
17	7	< <	l			Dvadasi.				
18	8	\sim	⋖			18- Masi Magham.				
19	9				19- Full Moon	19- Holikadahana,Birthday of Sri				
			H		(23 ^h 17 ^m .7)	Chaitanya, Dolyatra.				
20	10		Ъ		20- Sayana	20- Holi, Hola, Vasantotsava.				
	10				Vyatipata					
21	11		∢		(29 ^h 49 ^m .8)					
22	12		`		(2) 4) .0)					
23	13		~	23-Saura Chaitradi		23- Ranga Panchami.				
24	13		Д	(14 ^h 36 ^m .0)		24- Bijoy Govindaji Halangkar				
	l		1	(14 300)						
25	15		Z			(Manipur).				
26			₹			26 Vanitan anamkli (Isla)				
26	16		₹	25.5		26- Varsitaparambha (Jain),				
27	17		H	27-Enters Uttara		Sitalashtami.				
28	18			Bhadrapada nak.						
		₹ ₹	C	$(20^{\rm h}\ 13^{\rm m}.5)$						
29	19	JR TF		29-Enters Trop.		29- Papamochani Ekadasi (Smarta).				
30	Mar. 20	SAURA HAITR		Aries		30- Indian Year Ending day, Vanjuli				
		SAURA CHAITRA		(9 ^h 19 ^m .6)		Mahadvadasi, Mahavishuva				
	1942 S.E.	C				day, Ekadasi (Vaishnava &				
Chtr.						Vidhava).				
1	Mar. 21					1- Indian New Year's Day,				
						MahaVaruni (after 19 ^h 40 ^m .0).				

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of 82½ E. Long. Moon enters :- Makara 1, 13^h 52^m.0; Kumbha 3, 24^h 29^m.1; Mina 6, 12^h 27^m.1; Mesha 8, 25^h 08^m.2; Vrisha 11, 13^h 18^m.2; Mithuna 13, 23^h 03^m.5; Karkata 15, 28^h 54^m.9; Simha 18, 6^h 52^m.2; Kanya 20, 6^h 22^m.1; Tula 21, 29^h 34^m.8; Vrischika 24, 6^h 41^m.0; Dhanus 26, 11^h 12^m.3; Makara 28, 19^h 25^m.0; Sun enters: Nirayana Mina 24, 11^h 53^m.8.

SAKA ERA 1942

Month of CHAITRA(31 days)

Mesha : Madhava Spring (Vasanta), 2nd Month

(Nirayana) 7 Chaitra, 5120 Kali Era to (Nirayana) 7 Vaisakha, 5121 Kali Era

							·				,	Tithi			Naks	hatra	,	Yoga	
Doto	Wook	Gregor	ion	Ç.,	nrise	Ant	oarent	Ç	nset	No			nding	No.		ding	No.		nding
Date	Day	Date		Su	illise	_ ^ ^	loon	Sui	iiset	INC).		oment	NO.		ment	INO.		oment
	Day	Date		h	m	h	m	h	m			h	m		h	m		h	m
		2020A	D	- 11	111		111		111			- 11							
1	Sat	Mar.	.D. 21	6	03.0	12	07.1	18	11.4	K	12	7	56.2	23	19	39.5	21	12	21.5
2	Sun	iviai.	22	6	02.0	12	06.8	18	11.4	IX.	13	10	08.4	24	22	26.6	22	13	02.4
3	Mon		23	6	01.0	12	06.5	18	12.2		14	12	30.6	25	25	21.1	23	13	50.5
4	Tue		24	6	00.0	12	06.2	18	12.2	K	30	14	58.2	26	28	18.9	24	14	42.6
5	Wed		25	5	59.1	12	05.9	18	12.9	S	1	17	27.3	27	26	10.9	25	15	36.0
5	Wea		20		37.1	12	03.7	10	12.7	5	1	17	21.5	21	_	_		15	30.0
6	Thu		26	5	58.1	12	05.6	18	13.3		2	19	53.8	27	7	16.3	26	16	27.9
7	Fri		27	5	57.1	12	05.3	18	13.7		3	22	12.9	1	10	09.2	27	17	14.9
8	Sat		28	5	56.1	12	05.0	18	14.1		4	24	18.2	2	12	52.0	1	17	52.7
9	Sun		29	5	55.2	12	04.7	18	14.4	S	5	26	01.8	3	15	17.5	2	18	15.3
10	Mon		30	5	54.2	12	04.4	18	14.8		6	27	15.1	4	17	17.7	3	18	18.0
11	Tue		31	5	53.2	12	04.1	18	15.2		7	27	50.2	5	18	43.9	4	17	53.1
12	Wed	Apr.	1	5	52.3	12	03.8	18	15.5		8	27	40.6	6	19	29.0	5	16	55.5
13	Thu		2	5	51.3	12	03.5	18	15.9		9	26	43.4	7	19	28.3	6	15	21.4
14	Fri		3	5	50.3	12	03.2	18	16.3	S	10	24	58.7	8	18	40.5	7	13	09.2
15	Sat		4	5	49.4	12	02.9	18	16.7		11	22	30.4	9	17	08.1	8	10	19.9
16	Sun		5	5	48.4	12	02.6	18	17.0		12	19	25.3	10	14	57.1	9	6	57.3
				_													(10	27	07.1)
17	Mon		6	5	47.5	12	02.4	18	17.4		13	15	52.3	11	12	16.0	11	22	56.7
18	Tue		7	5	46.6	12	02.1	18	17.8	_	14	12	01.8	12	9	15.4	12	18	35.1
19	Wed		8	5	45.6	12	01.8	18	18.2	S	15	8	05.1	13	6	06.9	13	14	11.6
20	- TD1		0	_	44.7	10	01.5	10	10.5	(K		28	13.7)	(14	27	02.7)	1.4		
20	Thu		9	5	44.7	12	01.5	18	18.5		2	24	39.2	15	24	14.9	14	9	55.5
21	Fri		10	5	43.8	12	01.3	18	18.9		3	21	32.2	16	21	54.7	15	5	56.0
21	FII		10)	45.8	12	01.5	10	16.9		3	21	32.2	10	21	34.7	(16	26	21.7)
22	Sat		11	5	42.9	12	0.00	18	19.3		4	19	02.1	17	20	11.5	17	23	19.3
23	Sun		12	5	42.9	12	00.7	18	19.7	K	5	17	16.2	18	19	12.7	18	20	53.9
24	Mon		13	5	41.1	12	00.7	18	20.1	IX	6	16	19.1	19	19	02.3	19	19	07.9
25	Tue		14	5	40.2	12	00.2	18	20.1		7	16	11.8	20	19	40.7	20	18	01.3
20	Tuc		1+		40.2	12	00.2	10	20.3		,	10	11.0	20	19	40.7	20	10	01.5
26	Wed		15	5	39.3	12	0.00	18	20.9		8	16	51.8	21	21	04.1	21	17	31.2
27	Thu		16	5	38.4	11	59.7	18	21.3		9	18	12.0	22	23	05.6	22	17	32.5
28	Fri		17	5	37.6	11	59.5	18	21.7	K	10	20	04.1	23	25	35.7	23	17	58.2
29	Sat		18	5	36.7	11	59.3	18	22.1		11	22	17.9	24	28	24.6	24	18	41.0
30	Sun		19	5	35.9	11	59.1	18	22.5		12	24	43.4	25	_	-	25	19	33.8
31	Mon		20	5	35.1	11	58.9	18	22.9	K	13		12.3	25	7	22.8	26	20	30.4

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}$ °E. Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

SAKA ERA 1942

Uttarayana Ayanamsa on 1st: 24°08′06″ Month of CHAITRA (31 days) Uttara Gola (Nirayana) 7 Chaitra, 5120 Kali Era to (Nirayana) 7 Vaisakha, 5121 Kali Era

				ayana) 7	Chaitra, 5120 Kali Era t		, 5121 Kali Era
Date	Gregor			Lunar	Transit of the Sun	Phenomena	Festivals
	Date		Month	Month			
1 2 3	2020 A Mar.			CHANDRA PHALGUNA		3 -SayanaVaidhriti (23h 17m.1)	 Indian New Year's Day, Maha Varuni (after 19^h 40^m.0). Madhukrishna Trayodasi, Varuni (upto 10^h 08^m.4)
4		24 25		- F		4- New Moon (14 ^h 58 ^m .2)	5 Chaitea Culdadi (Cudi Dadaya
5 6		26				(14" 36".2)	5- Chaitra Sukladi (Gudi Padava, Ugadi),Telugu New Year's Day, Vasanta Navaratrarambha, Cheti Chand (Sindhi New Year's
7 8 9 10		27 28 29 30	Y A			9- Jupiter enters Makara (27h 54m.2)	Day). 7- Gauri Tritiya (Gangaur), Sarhul (Bihar), Andolana Tritiya. 9- Sri (Lakshmi) Panchami. 10- Skanda Shashthi.
11		31	T R		11-Enters Revati	(27 34 .2)	11- Vasanti Pujarambha, Oli
12	Apr.	1	A I	4	nak. (6 ^h 57 ^m .9)		begins(Jain). 12- Asokashtami,Annapurna Puja, Mela Bahu Fort (Jammu).
13 14 15		2 3 4	СН	T R			13- Rama Navami. 15- Kamada Ekadasi.
16		5		A I		16-Sayana	16- Birthday anniversary of Swami
17		6	J R A	СН		Vyatipata (24 ^h 40 ^m .1)	Leela Shah (Sindhi). 17- Ananga Trayodasi, Mahavira Jayanti (Jain), Damanaka
18 19 20 21		7 8 9	SAU	R A 0		19-Full Moon (8 ^h 05 ^m .1)	Chaturdasi. 18- Panguni Uttiram. 19- Chaitri Purnima, Hanumat Jayanti (S. India), Oli ends(Jain), Trivandrum Arat (Kerala).
22 23		11 12		Q Z	23-Saura Vaisakhadi		
24		13		СНАА	(22 ^h 41 ^m .9) 24-Enters Asvini nak. (20 ^h 23 ^m .0)		24- Chaitra Samkranti, Chadaka Puja (Bengal), Cheiraoba (Manipur), Visu (Kerala), Vaisakhi (H.P, Punjab, Haryana,Delhi,Odisha), Mesha Samkranti (Odisha),
25 26 27 28 29 30		14 15 16 17 18 19	S AUR A AISAKHA		30-Enters Trop.	28-Sayana Vaidhriti (27 ^h 20 ^m .2)	Rangali Bihu (Assam). 25- Dr. B.R.Ambedkar Jayanti, Bahag Bihu (Assam), Shilhenba (Manipur), Vaisakhadi(Bengal), Mesadi (T.N.), Beginning of Nirayana 5121 KE. 29- Varuthini Ekadasi, Sri Vallabhacharya Jayanti.
31	Apr.	20	^ >		Taurus (20 ^h 15 ^m .5)		Janagara

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of 821/2° E. Long. Moon enters :- Kumbha 1, 6^h 20^m.4; Mina 3, 18^h 37^m.0; Mesha 6, 7^h 16^m.3; Vrisha 8, 19^h 30^m.3; Mithuna 11, 6^h 05^m.5; Karkata 13, 13^h 32^m.9; Simha 15, 17^h 08^m.1; Kanya 17, 17^h 32^m.2; Tula 19, 16^h 33^m.6; Vrischika 21, 16^h 26^m.6; Dhanus 23, 19^h12^m.7;Makara 25, 25^h57^m.6;Kumbha 28,12^h 17^m.7;Mina 30,24^h37^m.8;Sun enters: Nirayana Mesha 24, 20^h23^m.0.

SAKA ERA 1942

Month of VAISAKHA (31 days)

Summer (Grishma), 1st Month

Vrisha: Sukra

(Nirayana) 8 Vaisakha, 5121 Kali Era to (Nirayana) 7 Jyaishtha, 5121 Kali Era

										Ì	,	Tithi			Naksl	hatra		Yoga	
Date	Week	Gregori	an	Su	nrise	Apr	oarent	Su	nset	No			nding	No.		ding	No.		nding
	Day	Date	- 1			_ ^ ^	loon						oment			ment			oment
				h	m	h	m	h	m			h	m		h	m		h	m
		2020 A.I	D.																
1	Tue	Apr.	21	5	34.2	11	58.7	18	23.3	K	14	-	-	26	10	22.5	27	21	25.9
2	Wed	2	22	5	33.4	11	58.5	18	23.7		14	5	38.1	27	13	18.0	1	22	16.4
3	Thu	2	23	5	32.6	11	58.3	18	24.2	K	30	7	55.8	1	16	04.7	2	22	59.2
4	Fri	2	24	5	31.9	11	58.1	18	24.6	S	1	10	01.8	2	18	39.2	3	23	31.5
5	Sat	2	25	5	31.1	11	57.9	18	25.0		2	11	52.2	3	20	57.6	4	23	50.7
6	Sun	2	26	5	30.3	11	57.8	18	25.4		3	13	23.3	4	22	55.9	5	23	53.5
7	Mon		27	5	29.6	11	57.6	18	25.9		4	14	30.3	5	24	29.3	6	23	36.4
8	Tue		28	5	28.9	11	57.5	18	26.3	S	5	15	08.3	6	25	32.7	7	22	55.4
9	Wed		29	5	28.2	11	57.3	18	26.8		6	15	12.6	7	26	01.5	8	21	47.0
10	Thu	3	30	5	27.5	11	57.2	18	27.2		7	14	39.5	8	25	52.6	9	20	08.5
11	Fri	May	1	5	26.8	11	57.1	18	27.6		8	13	27.2	9	25	04.8	10	17	58.4
12	Sat		2	5	26.1	11	57.0	18	28.1		9	11	36.2	10	23	40.0	11	15	17.5
13	Sun		3	5	25.4	11	56.9	18	28.5	S	10	9	09.7	11	21	42.6	12	12	08.3
14	Mon		4	5	24.8	11	56.8	18	29.0		11	6	13.2	12	19	19.3	13	8	35.1
											(12	26	54.2)				(14	28	44.1)
15	Tue		5	5	24.2	11	56.7	18	29.5		13	23	21.6	13	16	38.9	15	24	42.3
16	Wed		6	5	23.6	11	56.6	18	29.9		14	19	45.2	14	13	51.4	16	20	38.1
17	Thu		7	5	23.0	11	56.5	18	30.4	S	15	16	15.3	15	11	07.4	17	16	39.7
18	Fri		8	5	22.4	11	56.5	18	30.8	K	1	13	02.2	16	8	37.8	18	12	55.6
19	Sat		9	5	21.8	11	56.4	18	31.3		2	10	15.6	17	6	33.1	19	9	33.5
•	_		.	_		l		1.0	24.0		_		0.4.4	(18	29	02.4)			40.4
20	Sun		10	5	21.3	11	56.4	18	31.8		3	8	04.4	19	28	13.1	20	6	40.4
																	(21	28	21.7)
21	Mon		11	5	20.8	11	56.4	18	32.2		4	6	35.6	20	28	09.9	22	26	40.6
22	Tue		12	5	20.2	11	56.4	18	32.7	K	5	5	53.6	21	28	54.0	23	25	37.7
23	Wed		13	5	19.8	11	56.3	18	33.2		6	5	59.8	22	-	-	24	25	11.3
24	Thu		14	5	19.3	11		18	33.7		7	6	51.6	22	6	22.7	25	25	16.8
25	Fri		15	5	18.8	11	56.4	18	34.1		8	8	22.6	23	8	29.7	26	25	47.5
26	Sat		16	5	18.4	11	56.4	18	34.6		9	10	23.4	24	11	05.3	27	26	35.3
27	Sun		17	5	18.0	11	56.4	18	35.1	K	10	12	42.7	25	13	58.5	1	27	31.7
28	Mon		18	5	17.6	11	56.4	18	35.6		11	15	09.0	26	16	57.8	2	28	28.9
29	Tue		19	5	17.2	11	56.5	18	36.0		12	17	31.8	27	19	53.4	3	-	-
30	Wed		20	5	16.9	11	56.6	18	36.5		13	19	43.0	1	22	37.1	3	5	20.1
31	Thu	May 2	21	5	16.5	11	56.6	18	37.0	K	14	21	36.6	2	25	03.6	4	6	00.3

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}$ °E. Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

SAKA ERA 1942

Uttarayana Ayanamsa on 1st: 24° 08′ 08″ Month of VAISAKHA (31 days) Uttara Gola (Nirayana) 8 Vaisakha, 5121 Kali Era to (Nirayana) 7 Jyaishtha, 5121 Kali Era

Date	Gregor	ian		Lunar	Transit of the Sun	Phenomena	
Date	Date			Month	Transit of the Sun	1 lichomena	Festivals
		-	Month	Monui			
1 2 3	2020 A Apr.	21 22 23		CHANDRA CHAITRA		3- New Moon (7 ^h 55 ^m .8)	3- Babu Kuer Singh Day (Bihar), Tithi of Sri Deva Damodara
4 5		2425				(7" 33".8)	(Assam) 5- Parasuram Jayanti
6		26	4				6- Akshaya Tritiya, Varshitapa Samapanna (Jain), Kedar Badri
7 8		27 28	АКНА		7- Enters Bharani nak. (12 ^h 8 ^m .4)		Yatra. 8- Sri Shankaracharya Jayanti, Sri Ramanujacharya
9 10		29 30	V A I S				Jayanti (S.India) 9- Sri Ramanujacharya Jayanti. 10- Gangotpatti.
11 12	May	1 2	A			11- Sayana Vyatipata (15 ^h 17 ^m .8)	11- May Day 12- Sita Navami, Trichur Pooram (Kerala).
13		3	A U R	АКНА			13- Mohini Ekadasi(Smarta), Birthday Anniversary of Dada Chellaram (Sindhi).
14 15		4 5	S	A I S A			14- Mohini Ekadasi(Vaishnava & Vidhava), Minakshi Kalyanam, Trisprisa Mahadvadasi
16 17		6 7		A V		17-Full Moon (16 ^h 15 ^m .3)	16- Nrisimha Chaturdasi. 17- Vaisakhi Purnima, Buddha Purnima.
18 19 20		8 9 10		A N D R		(10 15 15)	18- Birthday of Rabindranath Tagore
21 22		11 12		НА	21-Enters Krittika nak. (6 ^h 22 ^m .7)		
23 24 25		13 14 15		C	23-Saura Jyaishthadi (19h 12m .8)	23-Sayana Vaidhriti (10 ^h 33 ^m .0)	
26 27 28 29 30 31		16 17 18 19 20 21	SAURA JYAISHTHA		30-Enters Trop. Gemini		28- Apara Ekadasi, Bhadrakali Ekadasi(Punjab) 31- Savitri Chaturdasi, Phalaharini
					$(19^{\rm h}19^{\rm m}.2)$	l	Kalika puja

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of 82½° E. Long.

Moon enters: - Mesha 2, 13^h 18^m.0;Visha 4, 25^h15^m.4; Mithuna 7, 11^h46^m.1; Karkata 9, 19^h57^m.8; Simha 11, 25^h04^m.8; Kanya 13, 27^h08^m.9; Tula 15,27^h 15^m.4; Vrishchika 17, 27^h 13^m.3; Dhanush 19, 29^h 02^m.4; Makara 22, 10^h16^m.5; Kumbha 24, 19^h 22^m.0; Mina 27, 7^h 14^m.2; Mesha 29, 19^h 53^m.4; Sun enters: Nirayana Vrisha 24, 17^h 16^m.2.

SAKA ERA 1942

Mithuna : Suchi Summer (Grishma), 2nd Month

Month of JYAISHTHA (31 days)

(Nirayana) 8 Jyaishtha, 5121 Kali Era to (Nirayana) 7 Ashadha, 5121 Kali Era

				(Iviray	unu) o	J y aisi	itiia, 512	1 Kai	i Lia to	(1111)			Ashauna,				<u> </u>		
												Tithi			Naksl	natra	· ·	Yoga	
Date	Week	Gregor	ian	Su	nrise	App	parent	Su	nset	No).	Eı	nding	No.	En	ding	No.	Er	nding
	Day	Date	9			N	oon					Mo	oment		Mo	ment		Mo	ment
				h	m	h	m	h	m			h	m		h	m		h	m
		2020 A	D																
1	Fri	May	22	5	16.2	11	56.7	18	37.4	K	30	23	08.8	3	27	09.2	5	6	25.8
2	Sat	wiay	23	5	15.9	11	56.8	18	37.9	S	1	24	17.5	4	28	51.7	6	6	34.3
3			24	5	15.6	11	56.9	18	38.4	3		25	01.1	5	20	31.7	7	_	24.2
	Sun					1					2			1	_	-		6	
4	Mon		25	5	15.4	11	57.0	18	38.8		3	25	18.6	5	6	09.6	8	5	54.5
_	_			_				1.0							_		(9	29	04.2)
5	Tue		26	5	15.1	11	57.1	18	39.3		4	25	09.3	6	7	02.1	10	27	52.7
						l								_	_				
6	Wed		27	5	14.9	11	57.2	18	39.7	S	5	24	32.4	7	7	28.0	11	26	19.2
7	Thu		28	5	14.7	11	57.3	18	40.2		6	23	27.7	8	7	26.8	12	24	23.5
8	Fri		29	5	14.5	11	57.5	18	40.6		7	21	55.7	9	6	58.1	13	22	05.7
9	Sat		30	5	14.3	11	57.6	18	41.1		8	19	57.9	10	6	02.8	14	19	27.0
														(11	28	42.6)			
10	Sun		31	5	14.2	11	57.7	18	41.5		9	17	37.2	12	27	01.1	15	16	29.5
11	Mon	June	1	5	14.1	11	57.9	18	41.9	S	10	14	57.7	13	25	02.9	16	13	16.3
12	Tue		2	5	13.9	11	58.1	18	42.4		11	12	05.0	14	22	54.5	17	9	51.7
13	Wed		3	5	13.9	11	58.2	18	42.8		12	9	05.5	15	20	43.0	18	6	20.9
10					10.5		20.2						00.0	10			(19	26	49.8)
14	Thu		4	5	13.8	11	58.4	18	43.2		13	6	06.5	16	18	36.5	20	23	24.9
17	liiu		7		15.0	11	50.4	10	73.2		(14	27	16.1)	10	10	30.3	20	23	27.7
15	Fri		5	5	13.7	11	58.6	18	43.6	S	15	24	42.4	17	16	43.5	21	20	12.6
13	111		5		13.7	111	36.0	10	45.0	3	13	24	42.4	17	10	45.5	21	20	12.0
16	Sat		6	5	13.7	11	58.7	18	44.0	K	1	22	33.4	18	15	12.3	22	17	19.3
17	Sun		7	5	13.7	11	58.9	18	44.4	IX.	2	20	56.2	19	14	10.7	23	14	50.8
						1		1			3								
18	Mon		8	5	13.7	11	59.1	18	44.7			19	56.8	20	13	45.1	24	12	52.0
19	Tue		9	5	13.7	11	59.3	18	45.1		4	19	39.4	21	14	00.2	25	11	26.2
20	Wed		10	5	13.7	11	59.5	18	45.4	K	5	20	05.0	22	14	57.5	26	10	34.5
				_	4.00	l		1.0											
21	Thu		11	5	13.8	11	59.7	18	45.8		6	21	11.5	23	16	35.4	27	10	16.1
22	Fri		12	5	13.9	11	59.9	18	46.1		7	22	52.8	24	18	48.5	1	10	27.2
23	Sat		13	5	14.0	12	00.1	18	46.4		8	24	59.5	25	21	27.7	2	11	01.7
24	Sun		14	5	14.1	12	00.3	18	46.7		9	27	19.8	26	24	21.5	3	11	51.6
25	Mon		15	5	14.2	12	00.5	18	47.0	K	10	-	-	27	27	17.5	4	12	47.8
26	Tue		16	5	14.3	12	00.8	18	47.3		10	5	40.8	1	-	-	5	13	41.2
27	Wed		17	5	14.5	12	01.0	18	47.6		11	7	50.7	1	6	03.8	6	14	23.6
28	Thu		18	5	14.7	12	01.2	18	47.8		12	9	39.9	2	8	30.6	7	14	48.7
29	Fri		19	5	14.8	12	01.4	18	48.1		13	11	01.6	3	10	31.2	8	14	51.8
30	Sat		20	5	15.0	12	01.6	18	48.3		14	11	52.4	4	12	01.8	9	14	30.6
31		June	21	5	15.3	12	01.9	18	48.5	K	30	12	11.4	5	13	01.4	10	13	44.4
	~ 411				10.0		U 2.17				20					V 2			

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}$ °E. Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Uttarayana Uttara Gola

SAKA ERA 1942 Month of JYAISHTHA (31 days) Ayanamsa on $1st: 24^{\circ}08/12''$

(Nirayana) 8 Jyaishtha, 5121 Kali Era to (Nirayana) 7 Ashadha, 5121 Kali Era

			(Nire	ayana) 8 Jy	yaisht	ha, 5121 Kali Era	to (N	irayana) 7 Ashadha,	5121 Kali Era
Date	Gregoria	an	Solar	Lunar	Tra	nsit of the Sun	F	Phenomena	Festivals
	Date		Month	Month					
· 2 3 4		D. 22 23 24 25		Chandra Vaisakha	3-	Enters Rohini nak.(26 ^h 33 ^m .4)	1-	New Moon (23h08m.8)	1- Vata Savitri Vrata(Amavasya Paksha).4- Rambha Tritiya,
5		26	A			nak.(20 33 .4)	5-	Sayana Vyatipata	Pratap Jayanti (Rajasthan). 5- Guru Arjan Dev's Martyrdom Day (Sikh).
6 7 8	1	27 28 29	нтн					(25 ^h 7 ^m .0)	7- Vindhyavasini Puja, Aranya Shashthi, Jamatri Shashthi (Bengal).
9 10		30 31	/ A I S				10-	Venus sets in the East	9- Mela Kshir Bhawani (Kashmir) 11- Ganga Dasahara
11 12 13 14	June	1 2 3	A J Y	Н А				(05 ^h 42 ^m)	(hasta upto 25 ^h 03 ^m) 12- Nirjala Ekadasi. 13- Champaka Dvadasi.
15		5	U R	H T			15-	Full Moon (24 ^h 42 ^m .4)	15- Vata Savitri Vrata (Purnima Paksha), Deva Snana Purnima. 16- Guru Hargobind's Birthday(J&K)
17		6 7 8	S	S I S	17-	Enters Mrigasiras nak.(24 ^h 28 ^m .3)		Sayana Vaidhriti (23 ^h 11 ^m .8)	10- Guru Hargoomu s Birtiiday(J&K)
19 20		9 10		J Y			18-	Venus rises in the West (19 ^h 22 ^m)	
21 22 23 24 25	- - - - -	11 12 13 14 15		R A	23-	Saura Ashadhadi (25 ^h 35 ^m .3)			24- Rajas Samkranti (Odisha).
26 27 28 29 30		16 17 18 19 20	A	H A N D	30-	Enters Trop.			27- Jogini Ekadasi.
31	June 2	21	S A U R A A S H A D H	כ		Cancer (27 ^h 13 ^m .6) Enters Ardra tak.(23 ^h 28 ^m .0)	31-	Sayana Vyatipata (10h55m.1) Annular Solar Eclipse (visible in India) New Moon (12h11m.4)	31- Dakshinayana Day, Chudamani Yoga

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of 821/2° E. Long.

 $Moon\ enters: -\ Vrisha\ 1,\ 7^h\ 37^m.1; Mithuna\ 3,17^h\ 33^m.8; Karkata\ 5,\ 25^h\ 24^m.1; Simha\ 8,\ 6^h\ 58^m.1; Kanya\ 10,\ 10^h\ 19^m.0; Tula\ 12,$ 11^h 59^m.6; Vrischika 14, 13^h 07^m.2; Dhanus 16, 15^h 12^m.3, Makara 18, 19^h 45^m.0; Kumbha 20, 27^h 41^m.6; Mina 23, 14^h 46^m.0; Mesha 25, 27^h 17^m.5; Vrisha 28, 15^h 03^m.4; Mithuna 30, 24^h 35^m.4; Sun enters:-Nirayana Mithuna 24, 23^h 53^m.9.

SAKA ERA 1942

Month of ASHADHA (31 days)

Karkata :Nabhas Rains (Varsa), 1st Month

(Nirayana) 8 Ashadha, 5121 Kali Era to (Nirayana) 7 Sravna, 5121 Kali Era

										,	Tithi			Naksl	hatra	ļ ,	Yoga	
Data	Wook	Gregorian	S ₁₁₁	nrise	Ant	oarent	Sur	nset	No			nding	No.		ding	No.		ding
Date	Day	Date	Su	illisc		loon	Su	liset	110).		oment	110.		ment	110.		ment
	Day	Date	h	m	h	m	h	m			h	m		h	m		h	m
		2020 A.D.																
1	Mon	June 22	5	15.5	12	02.1	18	48.7	S	1	11	59.7	6	13	30.9	11	12	34.0
2	Tue	23	5	15.7	12	02.1	18	48.9		2	11	19.7	7	13	32.8	12	11	01.1
3	Wed	24	5	16.0	12	02.5	18	49.1		3	10	14.6	8	13	10.2	13	9	08.0
4	Thu	25	5	16.3	12	02.7	18	49.2		4	8	48.0	9	12	26.6	14	6	57.3
-										-						(15	28	31.8)
5	Fri	26	5	16.5	12	02.9	18	49.4	S	5	7	03.4	10	11	25.8	16	25	54.1
										(6	29	04.2)						
										`								
6	Sat	27	5	16.8	12	03.1	18	49.5		7	26	54.0	11	10	11.1	17	23	06.8
7	Sun	28	5	17.1	12	03.3	18	49.6		8	24	35.9	12	8	46.1	18	20	12.7
8	Mon	29	5	17.4	12	03.5	18	49.7		9	22	13.3	13	7	14.1	19	17	14.3
9	Tue	30	5	17.8	12	03.7	18	49.7	S	10	19	50.0	14	5	38.8	20	14	14.6
													(15	28	04.0)			
10	Wed	July 1	5	18.1	12	03.9	18	49.8		11	17	29.9	16	26	34.1	21	11	16.6
	-		_	10.4	1.0	0.1.1	10	40.0		10		150			10.5			22.0
11	Thu	2	5	18.4	12	04.1	18	49.8		12	15	17.3	17	25	13.7	22	8	23.9
12	Fri	3	5	18.8	12	04.3	18	49.8		13	13	17.0	18	24	07.9	23	5	40.0
13	Sat	4	_	19.2	12	04.5	18	49.8		14	11	34.3	19	23	22.2	(24 25	27 24	09.0) 55.0
14	Sun	4 5	5	19.2	12	04.5	18	49.8	S	15	11 10	34.3 14.4	20	23	02.0	26	23	02.1
15	Mon	6	5	19.9	12	04.7	18	49.7	K	13	9	22.5	21	23	12.0	27	21	33.8
13	IVIOII			17.7	12	04.0	10	77.1	IX.	1		22.3	21		12.0	21	21	33.0
16	Tue	7	5	20.3	12	05.0	18	49.6	200	2	9	03.1	22	23	55.9	1	20	32.8
17	Wed	8	5	20.7	12	05.1	18	49.5	900	3	9	19.2	23	25	15.4	2	20	00.5
18	Thu	9	5	21.1	12	05.3	18	49.4		4	10	11.7	24	27	09.3	3	19	56.2
19	Fri	10	5	21.5	12	05.4	18	49.3	K	5	11	38.5	25	_	-	4	20	17.1
20	Sat	11	5	21.9	12	05.6	18	49.1		6	13	33.8	25	5	33.0	5	20	57.9
21	Sun	12	5	22.3	12	05.7	18	49.0		7	15	48.3	26	8	18.3	6	21	50.8
22	Mon	13	5	22.7	12	05.8	18	48.8		8	18	09.8	27	11	13.9	7	22	46.7
23	Tue	14	5	23.1	12	05.9	18	48.6		9	20	24.7	1	14	06.6	8	23	35.8
24	Wed	15	5	23.5	12	06.0	18	48.3	K	10	22	20.1	2	16	43.3	9	24	08.7
25	Thu	16	5	24.0	12	06.1	18	48.1		11	23	45.4	3	18	52.9	10	24	17.9
25		4=	_	24.1	1.2	0.63	10	45.0		10	2.4	22.5		20	27		22	FC 1
26	Fri	17	5	24.4	12	06.2	18	47.8		12	24	33.6	4	20	27.6	11	23	58.1
27	Sat	18	5	24.8	12	06.3	18	47.5		13	24	41.8	5	21	23.4	12	23	06.7
28	Sun	19	5	25.3	12 12	06.3	18	47.2	IV.	14	24	10.4	6	21	40.1	13	21	43.8
29 30	Mon Tue	20 21	5	25.7 26.1	12	06.4 06.4	18 18	46.9 46.5	K S	30 1	23 21	02.9 24.8	8	21 20	20.6 30.2	14 15	19 17	51.5 33.6
31	Wed	21 22	5	26.1 26.6	12	06.4	18	46.3	S	2	21 19	24.8 22.6	9	19	30.2 15.6	16	17	55.0 55.1
_31	vveu		<u> </u>	∠∪.0	14	00.3	10	40.4	_ Տ_		19	22.0	<u> </u>	19	13.0	10	14	

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $\,821\!/\!_2^\circ\,E.$ Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Dakshinayana Uttara Gola SAKA ERA 1942 Month of ASHADHA (31 days)

Ayanamsa on 1st : 24⁰08/18//

(Nirayana) 8 Ashadha, 5121 Kali Era to (Nirayana) 7 Sravana, 5121 Kali Era

Date Month Month Month	Date	Gregorian	Solar	Lunar	Transit of the Sun	Phenomena	Festivals
1	Date	_			Transit of the Sun	T ilcilomena	restivats
1			IVIOIILII	William			
Vrata (Bengal). 2	1	I					1- Manoratha Dvitiva
2 23	-	June 22					•
3	2	73					
1		1					2- Ratnayatra.
5		I					
6		I					
7	5	26					5- Kumara Shashthi (Vrata).
7	_						
S		I					-
Section Sect		I					
9 July 1	8	29	⋖				8- Mela Sharik Bhagwati
D				⋖			(Kashmir).
10	9	30	#	l _		9- Jupiter	9- Punaryatra(Smarta).
11	10	July 1	_	==		enters into	10- Harisayani Ekadasi, Ultarath
11						Dhanus	(Odisha), Bahudha Yatra.
11			⋖			(5 ^h 22 ^m .2)	
13	11	2	_	⋖			
13	12	3	11			12- Savana	
14		4	∞	H			13- Mela Iwalamukhi (Kashmir)
14			_			I .	15 Wiches Walantakin (Rushim).
15	14	5	`	∞	14- Enters	` ′	14 Guru Durnima Vyaca Duja
15 6	11						
16	15	6	⋖	⋖	1	(10 14 .4)	Ashadin Furnina.
16	13	"			mak.(25 05 .0)		
17	16		~				
18		I		⋖			
19		I	· ·	_ ~			
20		I	⋖				
21		I	70	Ω			19- Naga Panchami (Bengal).
21	20		•	-			
22	0.1			~			
23		1		< <			
24 15 ± 24 Saura 25 Sayana 25 Kamika Ekadasi, Manasa Puja begins 25 Kamika Ekadasi, Manasa Puja begins 25 Kamika Ekadasi, Manasa Puja begins 26 Kamika Ekadasi, Manasa Puja begins 27 Kamika Ekadasi, Manasa Puja begins 28 Puja begins 29 Enters Pushya Puja begins 29 New Moon 29 Chitalagi Amavasya (Odisha), Adi Amavasya (Tamil Nadu), Adi Amavasya (Tamil Nadu), Karkataka Vavu (Kerala).		I					
24 15 24 Saura Sravanadi 25 Sayana Vyatipata Puja begins 25 Kamika Ekadasi, Manasa Puja begins 25 Kamika Ekadasi, Manasa Puja begins 26 Table Table		I		4			23- Ker puja(Tripura).
25 16 C Sravanadi (12h24m.7) 25- Sayana Vyatipata (21h20m.9) 25- Kamika Ekadasi, Manasa Puja begins 25- Kamika Ekadasi, Manasa Puja begins 25- Kamika Ekadasi, Manasa Puja begins 27- Sayana 28- Sayana Vyatipata (21h20m.9) 28- Sayana Vyatipata (21h20m.9) 29- Sayana Puja begins 25- Kamika Ekadasi, Manasa 25-		I		H	1		
26	25	16		-	1	25- Sayana	25- Kamika Ekadasi, Manasa
26					$(12^{h}24^{m}.7)$	Vyatipata	Puja begins
27	26	17				(21 ^h 20 ^m .9)	
29 20 20 20 21 22 22 23 29- New Moon (23h02m.9) 29- Chitalagi Amavasya(Odisha), Adi Amavasya(Tamil Nadu), Karkataka Vavu(Kerala).	27	18					
29 20 20 20 20 20 20 20 20 20 20 20 20 20	28	19	A R		29- Enters Pushya		
30 July 22 CHANDRA SRAVANA 31- Enters Trop. (23h02m.9) Adi Amavasya(Tamil Nadu), Karkataka Vavu(Kerala).	29	20	,		1	29- New Moon	29- Chitalagi Amavasva(Odisha).
31 July 22 CHANDRA SRAVANA 31- Enters Trop. Karkataka Vavu(Kerala).		I			†		
SKAVANA 1		I	"		31- Enters Trop.	(== 0,2 1)	• •
	-		•	SRAVANA			TXAIRAIANA YAVU(IXCIAIA).

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of 82½°E. Long.

Moon enters:- Karkata 2, 7h 34m.7; Simha 4, 12h 26m.6; Kanya 6, 15h 50m.7; Tula 8, 18h 26m.6; Vrischika 10, 20h 55m.9;

Dhanus 12, 24h 07m.9; Makara 14, 29h 01m.4; Kumbha 17, 12h 31m.2; Mina 19, 22h 54m.7; Mesha 22,11h 13m.9; Vrisha 24,23h 18m.7; Mithuna 27,9h 00m.5; Karkata 29,15h 28m.6; Simha 31, 19h 15m.6; Sun enters:-Nirayana Karkata 25, 10h47m.1;

SAKA ERA 1942

Month of SRAVANA (31 days)

Simha : Nabhasya Rains (Varsa), 2nd Month

(Nirayana) 8 Sravana, 5121 Kali Era to (Nirayana) 7 Bhadra, 5121 Kali Era

			-	(IVIII	ayana) (o srav	ana, 312	ı Ka	Tithi								 	K 7	
															Naks			Yoga	
Date		Gregori	- 1	Su	nrise		parent	Su	nset	No).		nding	No.		ding	No.		nding
	Day	Date					loon						oment			ment			ment
				h	m	h	m	h	m			h	m		h	m		h	m
		2019 A.I	D.																
1	Thu	Jul.	23	5	27.0	12	06.5	18	45.8	S	3	17	03.6	10	17	44.0	17	12	01.5
2	Fri	2	24	5	27.5	12	06.5	18	45.4		4	14	34.7	11	16	02.7	18	8	58.3
3	Sat	2	25	5	27.9	12	06.5	18	44.9	S	5	12	02.5	12	14	18.5	19	5	51.1
																	(20	26	44.6)
4	Sun		26	5	28.3	12	06.5	18	44.5		6	9	32.7	13	12	37.2	21	23	42.8
5	Mon		27	5	28.8	12	06.5	18	44.0		7	7	10.0	14	11	03.7	22	20	49.0
											(8	28	58.2)						
6	Tue	,	28	5	29.2	12	06.5	18	43.5		9	26	59.7	15	9	41.5	23	18	05.5
7	Wed		20 29	5	29.2	12	06.5	18	43.0	S	10	25	16.6	16	8	33.1	24	15	33.9
8	Thu		30	5	30.1	12	06.4	18	42.5	5	11	23	50.4	17	7	40.5	25	13	15.6
9	Fri		31	5	30.5	12	06.4	18	42.0		12	22	42.5	18	7	05.1	26	11	11.6
10	Sat	Aug.	1	5	30.9	12	06.3	18	41.4		13	21	54.8	19	6	48.4	27	9	23.1
11	Sun		2	5	31.3	12	06.3	18	40.8		14	21	29.4	20	6	52.2	1	7	51.5
12	Mon		3	5	31.8	12	06.2	18	40.3	S	15	21	28.8	21	7	18.9	2	6	38.4
13	Tue		4	5	32.2	12	06.1	18	39.6	K	1	21	55.4	22	8	10.9	3	5	45.8
																	(4	29	15.0)
14	Wed		5	5	32.6	12	06.0	18	39.0		2	22	50.8	23	9	30.4	5	29	06.9
15	Thu		6	5	33.0	12	05.9	18	38.4		3	24	15.4	24	11	18.2	6	29	21.1
16	Fri		7	5	33.4	12	05.7	18	37.7		4	26	06.7	25	13	33.4	7	_	
17	Sat		8	5	33.8	12	05.6	18	37.0	K	5	28	19.1	26	16	11.9	7	5	55.2
18	Sun		9	5	34.2	12	05.5	18	36.3	11	6		-	27	19	06.2	8	6	44.5
19	Mon		10	5	34.6	12	05.3	18	35.6		6	6	43.4	1	22	05.6	9	7	41.9
20	Tue		11	5	35.0	12	05.2	18	34.9		7	9	07.3	2	24	56.8	10	8	38.6
21	Wed		12	5	35.4	12	05.0	18	34.2		8	11	16.9	3	27	26.4	11	9	24.6
22	Thu		13	5	35.8	12	04.8	18	33.4		9	12	58.9	4	29	22.2	12	9	50.0
23	Fri		14	5	36.2	12	04.6	18	32.7	K	10	14	02.4	5	-	-	13	9	46.4
24	Sat		15	5	36.6	12	04.4	18	31.9		11	14	20.5	5	6	35.8	14	9	08.0
25	Sun		16	5	37.0	12	04.2	18	31.1		12	13	50.9	6	7	02.9	15	7	52.0
26	Mon		17	5	37.3	12	04.0	18	30.3		13	12	35.7	7	6	44.0	16	5	58.7
20	WIOII		1/	3	31.3	12	04.0	10	30.3		13	12	33.1	′	0	44.0	(17	27	31.0)
27	Tue		18	5	37.7	12	03.8	18	29.5		14	10	40.0	8	5	43.4	18	24	34.2
21	Tuc		10	5	31.1	12	05.0	10	27.5		17	10	40.0	(9	28	08.1)	10	27	54.2
28	Wed		19	5	38.1	12	03.6	18	28.6	K	30	8	11.6	10	26	07.2	19	21	15.1
-				-		-				(S	1	29	19.6)					-	
29	Thu	2	20	5	38.4	12	03.3	18	27.8	<u> </u>	2	26	13.5	11	23	50.8	20	17	41.3
30	Fri	2	21	5	38.8	12	03.1	18	26.9		3	23	03.2	12	21	28.9	21	14	00.6
31	Sat		22	5	39.1	12	02.8	18	26.1	S	4	19	57.7	13	19	11.2	22	10	20.6

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}$ °E. Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Dakshinayana Uttara Gola

SAKA ERA 1942 Month of SRAVANA (31 days)

Ayanamsa on 1st : 24⁰08/23//

(Nirayana) 8 Sravana, 5121 Kali Era to (Nirayana) 7 Bhadra, 5121 Kali Era

Date	Gergorian	Solar	Lunar	Transit of the Sun	Phenomena	Festivals
	Date		Month	11411510 01 0110 2011	1 11011011101110	2 2512 7415
1 2 3 4 5	2020A.D. July 23 24 25 26 27					 Madhusrava Tritiya (Teej), Adi Puram (S. India). Naga Panchami. Goswami Tulasi Das Jayanti.
6 7 8	28 29 30		A		6- Sayana Vaidhriti (26 ^h 13 ^m .1)	9 Davitus Ekodosi Ibulana
9 10	31 Aug. 1	₹ Z	A N			 8- Pavitra Ekadasi, Jhulana Yatrarambha. 9- Vara Mahalakshmi Vrata (S. India). 10- Tilak Commemoration Day.
11 12	2 3	A V A	A V	11- Enters Aslesha nak. (21 ^h 28 ^m .7)	12- Full Moon (21 ^h 28 ^m .8)	12- Raksha Bandhana, Jhulana Yatra Samapanna, Naroli Purnima, Balabhadra Puja(Odisha),
13 14	4 5 6	S R	A S R			Amarnath yatra, Solono (Rakhi Bandhan-Delhi), Avani Avittam (S. India), Jaju Upakarma, Sravani Purnima. 13- Gayatri Japam, Rik Upakarma.
15	6	R A	\ \ \			15- Teejri (Sindhi).
16	7	U	Д			16- Bahula Chaturthi (Sankashtha Chaturthi).
17 18 19	8 9 10	S A I	Z Z			17- Raksha Panchami (Odisha).
20 21 22 23	11 12 13	51	СН		20- Sayana Vyatipata (5 ^h 37 ^m .7)	20- Janmashtmi(Smarta), Vadi Thadri (Sindhi). 21- Janmashtmi(Vaishnava), Gokulashtami(Nandotsava).
23 24	14 15			24- Saura Bhadrapadadi		24- Independence Day, Paryushana Parvarambha (Chaturthi Paksha)
25	16			(20 ^h 57 ^m .2) 25- Enters Magha nak. (19 ^h 11 ^m .4)		(Jain), Aja Ekadasi. 25- Paryusana Parvarambha(Panchami Paksha) (Jain), Manasa Puja
26	17	D A				ends(Bengal). 26- Simhadi(Kerala), Aghora Chaturdasi., Kailash yatra
27	18	A P A				- 2 days 27- Saptapuri Amavasya(Odisha),
28 29	19 20	AUR, DRA	45 A C		28- New Moon (8 ^h 11 ^m .6)	Pithori. 28- Kusotpatini, Jain Festival. 29- Tithi of Sri Sankara Deva
30 31	21 Aug. 22	SA BHAI	CHANDRA	31- EntersTrop. Virgo (21 ^h 14 ^m .9)		(Assam). 30- Haritalika Gauri Tritya. 31- Samaveda Upakarma, Haritalika Chaturthi, Vinayak Chaturthi(T.N.), Ganesha Chaturthi, Samvatsari (Chaturthi Paksha - Jain)

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}^{\circ}$ E. Long. Moon enters :- Kanya 2, 21^{h} 36^{m} .7; Tula 4, 23^{h} 49^{m} .3; Vrischika 6, 26^{h} 48^{m} .1; Dhanus 9, 07^{h} 05^{m} .1; Makara 11, 12^{h} 56^{m} .7; Kumbha 13, 20^{h} 47^{m} .2; Mina 16, 6^{h} 57^{m} .1; Mesha 18, 19^{h} 06^{m} .2; Vrisha 21, 7^{h} 36^{m} .8; Mithuna 23, 18^{h} 05^{m} .0; Karkata 25, 24^{h} 52^{m} .9; Simha 27, 28^{h} 08^{m} .1; Kanya 29, 29^{h} 15^{m} .4:; Sun enters: - Nirayana Simha 25, 19^{h} 11^{m} .4.

SAKA ERA 1942

Month of BHADRA (31 days)

Kanya: Isha Autumn (Sarat), 1st Month

(Nirayana) 8 Bhadra, 5121 Kali Era to (Nirayana) 7 Asvina, 5121 Kali Era

									Ì	,	Tithi			Naksl	hatra	,	Yoga	
Date	Week	Gregorian	Su	nrise	App	parent	Su	nset	No).	Eı	nding	No.		ding	No.	En	ding
	Day	Date			N	loon					Mo	oment		Mo	ment		Mo	ment
			h	m	h	m	h	m			h	m		h	m		h	m
		2019 A.D.																
1	Sun	Aug. 23	5	39.5	12	02.6	18	25.2	S	5	17	05.0	14	17	06.1	23	6	48.3
																24	27	29.6
2	Mon	24	5	39.8	12	02.3	18	24.3		6	14	31.6	15	15	20.3	25	24	29.0
3	Tue	25	5	40.2	12	02.0	18	23.4		7	12	22.3	16	13	58.8	26	21	49.3
4	Wed	26	5	40.5	12	01.7	18	22.5		8	10	39.9	17	13	04.1	27	19	32.0
5	Thu	27	5	40.9	12	01.5	18	21.6		9	9	25.6	18	12	37.2	1	17	37.1
6	Fri	28	5	41.2	12	01.2	18	20.6	S	10	8	38.7	19	12	37.3	2	16	03.9
7	Sat	29	5	41.5	12	00.9	18	19.7		11	8	18.0	20	13	02.8	3	14	51.1
8	Sun	30	5	41.9	12	00.5	18	18.8		12	8	21.9	21	13	52.0	4	13	57.3
9	Mon	31	5	42.2	12	00.2	18	17.8		13	8	49.2	22	15	03.9	5	13	21.6
10	Tue	Sept. 1	5	42.5	11	59.9	18	16.8		14	9	39.3	23	16	37.9	6	13	03.6
11	Wed	2	5	42.8	11	59.6	18	15.9	S	15	10	52.1	24	18	33.7	7	13	03.0
12	Thu	3	5	43.1	11	59.3	18	14.9	K	1	12	27.4	25	20	50.9	8	13	19.6
13	Fri	4	5	43.4	11	58.9	18	13.9		2	14	24.1	26	23	28.0	9	13	52.4
14	Sat	5	5	43.8	11	58.6	18	12.9		3	16	39.3	27	26	21.1	10	14	39.2
15	Sun	6	5	44.1	11	58.3	18	12.0		4	19	07.3	1	29	23.7	11	15	36.0
16	Mon	7	5	44.4	11	57.9	18	11.0	K	5	21	39.2	2	-	-	12	16	36.7
17	Tue	8	5	44.7	11	57.6	18	10.0		6	24	03.2	2	8	25.8	13	17	33.2
18	Wed	9	5	45.0	11	57.2	18	09.0		7	26	06.2	3	11	15.3	14	18	16.1
19	Thu	10	5	45.3	11	56.9	18	07.9		8	27	35.3	4	13	39.0	15	18	35.8
20	Fri	11	5	45.6	11	56.5	18	06.9		9	28	20.1	5	15	25.1	16	18	23.9
21	Sat	12	5	45.9	11	56.2	18	05.9	K	10	28	14.5	6	16	24.7	17	17	34.1
22	Sun	13	5	46.2	11	55.8	18	04.9		11	27	16.8	7	16	33.6	18	16	03.3
23	Mon	14	5	46.5	11	55.5	18	03.9		12	25	30.0	8	15	52.2	19	13	51.5
24	Tue	15	5	46.8	11	55.1	18	02.9		13	23	00.4	9	14	25.2	20	11	02.0
25	Wed	16	5	47.1	11	54.8	18	01.9		14	19	57.0	10	12	20.5	21 (22	7 27	40.4 54.0)
																`		ŕ
26	Thu	17		47.4	11	54.4	18	00.8		30	16	30.2	11	9	48.2	23	23	51.5
27	Fri	18	5	47.8	11	54.0	17	59.8	S	1	12	51.0	12	6	59.7	24	19	42.0
													(13	28	06.7)			
28	Sat	19	5	48.1	11	53.7	17	58.8		2	9	10.5	14	25	20.5	25	15	34.5
200		20	_	40.4	1.	<i>50.0</i>	17	<i></i>		(3	29	39.4)	1.5	22	51.5	2-	11	27.4
29	Sun	20	5	48.4	11	53.3	17	57.8		4	26	27.5	15	22	51.7	26	11	37.4
30	Mon	21	5	48.7	11	53.0	17	56.8	S	5	23	42.8	16	20	48.8	27	7	58.2
31	Tue	22		49.0	11	52.6	17	55.7	S	6	21	31.5	17	19	18.6	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	28 25	43.0) 56.0
31	1 ue	22		47.0	11	J2.0	1/	55.1	S	U		31.3	1/	17	10.0		Δ)	50.0

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $\,821\!/\!2^{\circ}E.$ Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

SAKA ERA 1942

Uttara Gola Month of BHADRA (31 days)

Dakshinayana

Ayanamsa on 1st : 24⁰08/27//

(Nirayana) 8 Bhadra, 5121 Kali Era to (Nirayana) 7 Asvina, 5121 Kali Era

Date	Gregorian	Solar	Lunar	Transit of the Sun	Phenomena	Festivals
	Date	1	Month			
1 2 3	2020 A.D. Aug. 23		A O		1- Sayana Vaidhriti (14 ^h 39 ^m .2)	 Samvatsari (Panchami Paksha- Jain), Rishi Panchami, Mela Pat-3 days(J&K). Surya Shashthi. Mahalakshmi Vratarambha.
4 5	26 27		A D			Durvashtami. 4 Radhashtami, Durvashtami(Bengal).
6 7	28 29	<	R A P			7- Dol Gyaras (MP), Heikru
8 9 10	30 31 Sept. 1	RAPAD	B H A D F	8- Enters PurvaPhalguni nak. (15 ^h 06 ^m .8)		Hidongba (Manipur), Parsvaparivartani Ekadasi, Sakrotthana, Vamana Jayanti. First Onam Day. Onam or Thiru Onam Day (Kerala). Io- Indra Purnima, Ananta Chaturdasi, Third Onam Day (Kerala).
11	3	I A D R	R A		11- Full Moon (10 ^h 52 ^m .1)	11- Fourth Onam Day, Sri Narayana Guru Deva's Birthday (Kerala), Pitri Paksha Tarpana begins. 12- Keil Muhurth (Coorg).
13 14 15	4 5 6	ВН	A N D		14- Sayana	Ten Munum (Coorg).
16 17 18	7 8 9	R A	НА		Vyatipata (11 ^h 39 ^m .2)	16- Tithi of Sri Madhava Deva (Assam).
19 20	10	S A U	D D			19- Mahalakshmi Vrata Samapanna, Sri Jayanti (Ramanuja), Sri Krishna Jayanti (T.N., Assam & Kerala). 20- Matri Navami.
21 22 23 24	12 13 14 15			22- Enters U. Phalguni nak. (9 ^h 03 ^m .0)		22- Indira Ekadasi. 24- Magha Trayodasi
25	16			24- Saura		(Magha after 14 ^h 25 ^m). 25- Visvakarma Puja.
26	17			Asvinadi (21 ^h 11 ^m .2)	26- New Moon (16 ^h 30 ^m .2)	26- Mahalaya Amavasya, Sarvapitri Amavasya (Odisha), Tarpana Layba (Manipur).
27 28 29 30 31	18 19 20 21 Sept. 22	SAURA ASVINA	CHAANDRA ASVINA MALA	31- Enters Trop. Libra (19 ^h 01 ^m .7)	27- Sayana Vaidhriti (7 ^h 22 ^m .7)	30- Samadhi day of Narayana Guru (Kerala).

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of 82½° E. Long.

Moon enters: Tula 1, 6^h 06^m.5; Vrischika 3, 08^h 16^m.7; Dhanus 5, 12^h 37^m.2; Makara 7,19^h 12^m.9; Kumbha 9, 27^h 48^m.2; Mina 12, 14^h 14^m.6; Mesha 14, 26^h 21^m.2; Vrisha 17,15^h 09^m.9; Mithuna 19, 26^h 37^m.4; Karkata 22, 10^h 36^m.2; Simha 24, 14^h 25^m.2; Kanya 26, 15^h 07^m.2; Tula 28, 14^h 42^m.1; Vrischika 30, 15^h 16^m.6; Sun enters:-Nirayana Kanya 25, 19^h 07^m.7.

SAKA ERA 1942

Month of ASVINA (30 days)

Tula: Urja Autumn (Sarat), 2nd Month

(Nirayana) 8 Asvina, 5121 Kali Era to (Nirayana) 7 Kartika, 5121 Kali Era

									Ì	,	 Tithi			Naksl	hatra	,	Yoga	,
Date	Week	Gregorian	Sı	ınrise	App	parent	Su	nset	No	o.	Eı	nding	No.		ding	No.	Er	nding
	Day	Date			N	loon						oment		Mo	ment			ment
			h	m	h	m	h	m			h	m		h	m		h	m
		2020 A.D.																
1	Wed	Sep. 23	5	49.3	11	52.3	17	54.7	S	7	19	57.5	18	18	25.1	3	23	39.5
2	Thu	24	5	49.6	11	51.9	17	53.7		8	19	02.0	19	18	09.6	4	21	53.7
3	Fri	25	5	50.0	11	51.6	17	52.7		9	18	44.0	20	18	30.9	5	20	37.2
4	Sat	26	5	50.3	11	51.2	17	51.7	S	10	19	00.3	21	19	25.7	6	19	47.4
5	Sun	27	5	50.6	11	50.9	17	50.7		11	19	46.8	22	20	49.6	7	19	20.8
			_	= 0.0		= 0 -					•••							
6	Mon	28	5	50.9	11	50.6	17	49.7		12	20	59.2	23	22	38.3	8	19	14.1
7	Tue	29	5	51.3	11	50.2	17	48.7		13	22	33.5	24	24	47.8	9	19	24.2
8	Wed	30	5	51.6	11	49.9	17	47.7		14	24	26.4	25	27	14.9	10	19	48.7
9	Thu	Oct. 1	5	51.9	11	49.6	17	46.7	S	15	26	35.3	26		-	11	20	25.4
10	Fri	2	5	52.3	11	49.3	17	45.7	K	1	28	57.1	26	5	56.8	12	21	12.4
11	Sat	3	5	52.6	11	48.9	17	44.8		2	_	_	27	8	50.6	13	22	07.0
12	Sun	4	5	53.0	11	48.6	17	43.8		2	7	28.1	1	11	52.4	14	23	05.9
13	Mon	5		53.4	11	48.3	17	42.8		3	10	02.6	2	14	56.2	15	24	03.8
14	Tue	6	5	53.7	11	48.0	17	41.9		4	12	32.5	3	17	54.0	16	24	54.4
15	Wed	7	5	54.1	11	47.7	17	40.9	K	5	14	47.8	4	20	35.7	17	25	30.0
16	Thu	8	5	54.5	11	47.5	17	40.0		6	16	37.1	5	22	50.0	18	25	42.2
17	Fri	9		54.8	11	47.2	17	39.1		7	17	49.8	6	24	26.7	19	25	23.7
18	Sat	10	5	55.2	11	46.9	17	38.2		8	18	17.0	7	25	17.7	20	24	28.3
19	Sun	11	5	55.6	11	46.7	17	37.2		9	17	53.8	8	25	18.6	21	22	52.7
20	Mon	12	5	56.0	11	46.4	17	36.3	K	10	16	39.1	9	24	29.5	22	20	36.3
21	Tue	13	5	56.4	11	46.2	17	35.5		11	14	36.1	10	22	54.4	23	17	41.7
22	Wed	14		56.9	11	45.9	17	34.6		12	11	51.3	11	20	40.7	24	14	13.7
23	Thu	15	5	57.3	11	45.7	17	33.7		13	8	33.5	12	17	58.1	25	10	19.4
										(14	28	53.0)						
24	Fri	16	5	57.7	11	45.5	17	32.9	K	30	25	01.0	13	14	57.8	26	6	07.0
																27	25	45.4
25	Sat	17	5	58.1	11	45.3	17	32.0	S	1	21	09.0	14	11	51.6	1	21	24.1
26	Sun	18	5	58.6	11	45.1	17	31.2		2	17	28.0	15	8	51.3	2	17	12.1
27	Mon	19	5	59.0	11	44.9	17	30.4		3	14	08.4	16	6	08.3	3	13	17.6
													(17	27	52.5)			
28	Tue	20	5	59.5	11	44.7	17	29.6		4	11	19.3	18	26	12.3	4	9	47.9
29	Wed	21	6	0.00	11	44.6	17	28.8	S	5	9	08.1	19	25	13.4	5	6	48.8
																(6	28	24.0)
30	Thu	22	6	00.4	11	44.4	17	28.1	S	6	7	40.1	20	24	58.6	7	26	35.2

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $\,821\!/\!2^{\circ}E.$ Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Dakshinayana Dakshina Gola

SAKA ERA 1942 Month of ASVINA (30 days)

Ayanamsa on 1st: 24°08′31″

(Nirayana) 8 Asvina, 5121 Kali Era to (Nirayana) 7 Kartika, 5121 Kali Era

	la .			Asvina, 5121 Kali Era te		
Date	_		Lunar	Transit of the Sun	Phenomena	Festivals
	Date	Month	Month			
1	2020 A.D.					1- Jalavisuva Day.
1	Sept. 23	1				1- Jaiavisuva Day.
2	24	1				
3	25	1				
4	26			4- Enters Hasta		
5	27			nak.(24 ^h 29 ^m .1)		5- Padmini Ekadasi (Purushottami).
6	28	1				
7	29	1 '				
8	30	z			8- Sayana	
			⋖		Vyatipata	
			Г		$(16^{\rm h}51^{\rm m}.8)$	
9	Oct. 1	>	MALA		9- Full Moon	
10	2	\ \sigma	2		$(26^{\rm h}35^{\rm m}.3)$	10- Mahatma Gandhi's Birthday.
11	3	-	4			
12	4	.	SVINA			
13	5					
14	6	;	>			
15	7		A S			
16	8					
17	9		⋖			
18	10	1	~	18- Enters Chitra		
19	11		Ω	nak. (13 ^h 34 ^m .5)		
20	12		Z	Huki (13 3 1 13)		
	"		∀			
21	13		C H A A N D R A		21- Sayana	21- Kamala Ekadasi (Purushottami).
22	14		C		Vaidhriti	(2 0.00000000000000000000000000000000000
23	15	1			(25 ^h 28 ^m .8)	
24	16			24- Saura	24- New Moon	
25	17	1			(25 ^h 01 ^m .0)	25- Saradiya Navaratrarambha,
40	1/			Kartikadi (9 ^h 30 ^m .5)	(23 01 .0)	Kaveri Samkramana Snana,
26	18		T A H	(9"30".3)		Maharaja Agrasen Jayanti.
27	19	1	R A D H			Trianaraja Agrason Jayanu.
	l	M A				28 Upanga LalitaVrete
28	20					28- Upanga Lalita Vrata (Lalita Panchami).
~		U	₹Ż			· ·
29	21	S A A R	H .			29- Saraswati Avahana.
30	Oct. 22	N S X	C A S V	30- Enters Trop.		
				Scorpio		
				(28 ^h 29 ^m .5)		

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82^{1}\!/2^{\circ}$ E. Long. Moon enters :- Dhanus 1, $18^{\rm h}$ $25^{\rm m}$.1; Makara 3, $24^{\rm h}$ $41^{\rm m}$.6; Kumbha 6, $9^{\rm h}$ $41^{\rm m}$.2; Mina 8, $20^{\rm h}$ $36^{\rm m}$.6; Mesha 11, $8^{\rm h}$ $50^{\rm m}$.6; Vrisha 13, $21^{\rm h}$ $41^{\rm m}$.6; Mithuna 16, $9^{\rm h}$ $46^{\rm m}$.9; Karkata 18, $19^{\rm h}$ $09^{\rm m}$.5; Simha 20,24 $^{\rm h}$ $29^{\rm m}$.5; Kanya 22, $26^{\rm h}$ $02^{\rm m}$.4; Tula 24, $25^{\rm h}$ $24^{\rm m}$.7; Vrischika 26, $24^{\rm h}$ $46^{\rm m}$.9; Dhanus 28, $26^{\rm h}$ $12^{\rm m}$.3; Sun enters :- Nirayana Tula 25, $07^{\rm h}$ $05^{\rm m}$.5.

INDIAN CALENDAR SAKA ERA 1942

Month of KARTIKA (30 days)

Vrischika : Sahas Hemanta, 1st Month

(Nirayana) 8 Kartika, 5121 Kali Era to (Nirayana) 7 Agrahayana, 5121 Kali Era

					,		.,		(-			Tithi	anay ana,		Naks	hatra	,	Yoga	<u> </u>
Date		Gregor		Su	nrise		parent	Su	nset	No	Э.		nding	No.		ding	No.	1	nding
	Day	Dat	e	h	122	h	loon	h	122			h	oment		h	ment		h	ment
				11	m	11	m	11	m			11	m		11	m		11	m
		2020 A																	
1	Fri	Oct.	23	6	00.9	11	44.3	17	27.3	S	7	6	57.4	21	25	27.8	8	25	21.5
2	Sat		24	6	01.4	11	44.2	17	26.6		8	6	59.3	22	26	37.8	9	24	40.5
3	Sun		25	6	01.9	11	44.0	17	25.8	_	9	7	42.3	23	28	23.0	10	24	27.9
4	Mon		26	6	02.4	11	43.9	17	25.1	S	10	9	00.5	24	-	-	11	24	38.4
5	Tue		27	6	02.9	11	43.8	17	24.4		11	10	47.0	24	6	36.5	12	25	06.8
6	Wed		28	6	03.4	11	43.8	17	23.8		12	12	54.4	25	9	11.0	13	25	47.9
7	Thu		29	6	04.0	11	43.7	17	23.1		13	15	16.1	26	11	59.8	14	26	37.3
8	Fri		30	6	04.5	11	43.6	17	22.5		14	17	46.1	27	14	57.1	15	27	31.0
9	Sat		31	6	05.1	11	43.6	17	21.8	S	15	20	19.2	1	17	57.8	16	28	25.6
10	Sun	Nov.	1	6	05.6	11	43.6	17	21.2	K	1	22	50.4	2	20	57.0	17	29	17.4
11	Mon		2	6	06.2	11	43.5	17	20.6		2	25	14.3	3	23	49.7	18	30	02.7
12	Tue		3	6	06.7	11	43.5	17	20.1		3	27	24.9	4	26	29.9	19	-	-
13	Wed		4	6	07.3	11	43.6	17	19.5		4	29	15.0	5	28	50.7	19	6	37.0
14	Thu		5	6	07.9	11	43.6	17	19.0	K	5	-	-	6	-	-	20	6	55.1
15	Fri		6	6	08.5	11	43.6	17	18.5	K	5	6	37.0	6	6	44.8	21	6	51.4
16	Sat		7	6	09.1	11	43.7	17	18.0		6	7	23.8	7	8	04.9	22	6	20.8
17			0		00.7	11	10.7	17	17.6		7		20.7			45.0	(23	29	18.7)
17 18	Sun		8	6	09.7	11 11	43.7 43.8	17 17	17.6		7 8	7 6	29.7 51.2	8 9	8	45.3 42.4	24 25	27 25	42.0
10	Mon		9	0	10.3	111	43.8	17	17.1		9	29	28.2)	9	0	42.4	Δ	23	30.0
19	Tue		10	6	10.9	11	43.9	17	16.7	K	,	27	23.1	10	7	55.9	26	22	43.7
20	Wed		11	6	11.6	11	44.0	17	16.7	11	11	24	41.3	11	6	28.3	27	19	26.6
20	, vea		11		11.0	11	11.0	1,	10.5		11	21	11.5	(12	28	25.2)	2,		20.0
21	Thu		12	6	12.2	11	44.2	17	15.9		12	21	30.4	13	25	54.5	1	15	44.1
22	Fri		13	6	12.8	11	44.3	17	15.6		13	17	59.4	14	23	05.6	2	11	42.8
23	Sat		14	6	13.5	11	44.4	17	15.3		14	14	18.2	15	20	09.1	3	7	30.4
1																	(4	27	15.2)
24	Sun		15	6	14.1	11	44.6	17	14.9	K	30	10	37.2	16	17	15.8	5	23	05.6
25	Mon		16	6	14.8	11	44.8	17	14.7	S	1	7	06.9	17	14	36.6	6	19	10.0
											(2	27	57.3)						
26	Tue		17	6	15.5	11	45.0	17	14.4		3	25	18.0	18	12	21.5	7	15	35.9
27	Wed		18	6	16.1	11	45.2	17	14.2		4	23	16.7	19	10	39.7	8	12	29.9
28	Thu		19	6	16.8	11	45.4	17	14.0	S	5	21	59.7	20	9	38.4	9	9	57.2
29	Fri		20	6	17.5	11	45.7	17	13.8		6	21	30.3	21	9	22.4	10	8	01.1
30	Sat		21	6	18.1	11	45.9	17	13.6	S	7	21	48.8	22	9	53.3	11	6	42.7
																	(12	30	00.6)

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $\,821\!/\!2^{\circ}E.$ Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Dakshinayan Dakshina Gola SAKA ERA 1942 Month of KARTIKA (30 days)

Ayanamsa on $1st:24^{\circ}08/34''$

(Nirayana) 8 Kartika, 5121 Kali Era to (Nirayana) 7 Agrahayana, 5121 Kali Era

				artika, 5121 Kali Era to		
Date	l -		Lunar	Transit of the Sun	Phenomena	Festivals
	Date	Month	Month			
1 2		3 44		1- Enters Svati nak. (24 ^h 00 ^m .0)		 Durga Puja begins(Saptami), Oli begins. Saraswati Visarjana, Mahashtami, Maha Navami, Ayudha puja, Trivandrum Arat (Kerala)
3	2 2 2	5 6 7	A		3- Sayana Vyatipata (21 ^h 35 ^m .9)	 3- Mahanavami (Bengal), Dussehara/ Dasahara 4- Vijaya Dasami (Bengal & Kerela), Madhvacharya Jayanti, Bharat Milap
5 6 7 8		8 9 0 1	р р н			5- Papankusa Ekadasi (Pasaukusa Ekadasi)
9		21 ×	n s		9- Full Moon (20 ^h 19 ^m .2)	8- Kojagor(Lakshimndra Puja), Kojagori Lakshmi Puja, Sarat Purnima 9- Kumara Purnima (Odisha), Maharshi Valmiki's Birthday,
10 11 12	Nov.	1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I N A			Oli ends(Jain). 10- Martyrdom day of Bhagat Kanwar Ram (Sindhi).
13 14 15		5 6 D	A S V	15- Enters Visakha nak.		13- Karaka Chaturthi, Dasaratha Chaturthi.
16 17 18 19		7	A	(8 ^h 14 ^m .0)	17- Sayana Vaidhriti (13h46m.6)	17- Ahoyi Ashtami, Karashtami.
20	1	1	N N			20- Rama Ekadasi.
21 22 23	1 1	2 3 4 4	C H A A N D			21- Govatsa Dvadasi. 22- Dhana Trayodasi, Kali Chaturdasi. 23- Hanumajjanma (N. India)(Purvarunodaya), Naraka Chaturdasi (Purvarunodaya), Kali Puja,Dipavali, Lakshmi Puja, Kaumudi Dipam, Lakshmi Dipam, Kedar Gauri Vrata (S. India), Mahavira Nirvana(Jain), Children's Day (Nehru's Birthday).
24	1	5		24- Saura	24- New Moon (10 ^h 37 ^m .2)	24- Govardhana Puja, Bali Puja, Annakuta.
25		6 YE	R A K A	Margasirshadi (9 ^h 37 ^m .4)	(10 37 .2)	25- Kartika Sukladi, Yama Dvitiya, Visvakarma Day, Bhratri Dvitiya (Bengal), Dwat Puja (Bihar), Kartika Puja.
26 27 28	1	SAU R A MARGASIRSHA	AND	28- Enters Anuradha nak. (14 ^h 12 ^m .3)	28- Sayana Vyatipata (28h 18m.3)	26- Death anniversary of Lala Lajpat Rai. 28- Jnana Panchami (Jain)
29 30	Nov. 2	MAR S	СНАКА	30- Enters Tropical Sagittarius (26 ^h 09 ^m .7)	29- Jupiter enters Makara (13 ^h 22 ^m .9)	29- Pratihara Shashthi or Surya Shashthi (Chhat -Bihar), Birthday celebration of Prof. Ram Panjwani (Sindhi)

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82^{1}\!/2^{\circ}$ E. Long. Moon enters: Makara $1,07^{\rm h}\,01^{\rm m}.8$; Kumbha $3,15^{\rm h}\,26^{\rm m}.3$;Mina $5,26^{\rm h}\,30^{\rm m}.8$; Mesha $8,14^{\rm h}\,57^{\rm m}.1$;Vrisha $10,27^{\rm h}\,41^{\rm m}.0$; Mithuna $13,15^{\rm h}\,43^{\rm m}.2$;Karkata $15,25^{\rm h}\,48^{\rm m}.4$;Simha $18,8^{\rm h}\,42^{\rm m}.4$;Kanya $20,12^{\rm h}\,00^{\rm m}.5$;Tula $22,12^{\rm h}\,31^{\rm m}.7$;Vrischika $24,11^{\rm h}\,58^{\rm m}.2$;Dhanus $26,12^{\rm h}\,21^{\rm m}.5$;Makara $28,15^{\rm h}\,30^{\rm m}.1$;Kumbha $30,22^{\rm h}25^{\rm m}.9$;Sun enters: - Nirayana Vrischika $25,6^{\rm h}\,54^{\rm m}.0$.

SAKA ERA 1942

Month of AGRAHAYANA (30 days)

Dhanus: Sahasya Hemanta, 2nd Month

(Nirayana) 8 Agrahayana, 5121 Kali Era to (Nirayana) 7 Pausha, 5121 Kali Era

						ay ama, o				,	Tithi]	Naksl	hatra	,	Yoga	
Date		Gregorian	Su	nrise		parent	Su	nset	No).		nding	No.		ding	No.		ding
	Day	Date	h	***	_	loon	h	m			h	oment		h	ment		h	ment
			h	m	h	m	h	m			11	m		П	m		11	<u>m</u>
		2019 A.D.																
1	Sun	Nov. 22	6	18.8	11	46.2	17	13.5	S	8	22	51.8	23	11	09.2	13	29	50.6
2	Mon	23	6	19.5	11	46.5	17	13.3		9	24	32.8	24	13	04.7	14	30	00.8
3	Tue	24	6	20.2	11	46.7	17	13.2	S	10	26	42.6	25	15	31.7	15	-	-
4	Wed	25	6	20.9	11	47.0	17	13.2		11	29	10.8	26	18	20.3	15	6	44.9
5	Thu	26	6	21.6	11	47.4	17	13.1		12	-	-	27	21	20.4	16	7	34.1
6	Fri	27	6	22.2	11	47.7	17	13.1		12	7	47.0	1	24	22.5	17	8	28.5
7	Sat	28	6	22.9	11	48.0	17	13.1		13	10	21.9	2	27	18.8	18	9	21.8
8	Sun	29	6	23.6	11	48.4	17	13.1		14	12	48.1	3	30	03.1	19	10	08.6
9	Mon	30	6	24.3	11	48.7	17	13.2	S	15	14	59.7	4	-	-	20	10	45.0
10	Tue	Dec. 1	6	25.0	11	49.1	17	13.2	K	1	16	52.3	4	8	30.6	21	11	07.6
11	Wed	2	6	25.6	11	49.5	17	13.3		2	18	22.5	5	10	37.7	22	11	13.8
12	Thu	3	6	26.3	11	49.9	17	13.5		3	19	27.3	6	12	21.3	23	11	01.4
13	Fri	4	6	27.0	11	50.3	17	13.6		4	20	04.1	7	13	38.8	24	10	28.4
14	Sat	5	6	27.7	11	50.7	17	13.8	K	5	20	10.7	8	14	27.6	25	9	32.8
15	Sun	6	6	28.3	11	51.1	17	14.0		6	19	45.4	9	14	45.9	26	8	13.1
																(27	30	28.1)
16	Mon	7	6	29.0	11	51.5	17	14.2		7	18	47.6	10	14	32.5	1	28	17.4
17	Tue	8	6	29.6	11	52.0	17	14.4		8	17	17.7	11	13	47.5	2	25	41.9
18	Wed	9	6	30.3	11	52.4	17	14.7		9	15	17.9	12	12	32.6	3	22	43.2
19	Thu	10	6	30.9	11	52.9	17	15.0	K	10	12	51.8	13	10	51.2	4	19	24.7
20	Fri	11	6	31.5	11	53.3	17	15.3		11	10	04.5	14	8	48.2	5	15	50.4
													(15	30	30.1)			
21	Sat	12	6	32.1	11	53.8	17	15.6		12	7	02.5	16	28	04.5	6	12	05.6
										(13	27	53.2)						
22	Sun	13	6	32.8	11	54.3	17	15.9		14	24	45.0	17	25	40.1	7	8	16.6
																(8	28	29.7)
23	Mon	14	6	33.4	11	54.7	17	16.3	K	30	21	46.6	18	23	25.9	9	24	52.3
24	Tue	15	6	33.9	11	55.2	17	16.7	S	1	19	07.0	19	21	30.9	10	21	31.0
25	Wed	16	6	34.5	11	55.7	17	17.1		2	16	54.9	20	20	04.1	11	18	32.7
26	Thu	17	6	35.1	11	56.2	17	17.5		3	15	18.2	21	19	13.1	12	16	02.9
27	Fri	18	6	35.6	11	56.7	17	17.9		4	14	23.4	22	19	04.0	13	14	06.5
28	Sat	19	6	36.2	11	57.2	17	18.4	S	5	14	14.7	23	19	40.1	14	12	45.9
29	Sun	20	6	36.7	11	57.7	17	18.9		6	14	53.2	24	21	01.2	15	12	01.5
30	Mon	21	6	37.2	11	58.2	17	19.4	S	7	16	15.6	25	23	03.0	16	11	51.0

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $\,821\!/\!2^{\circ}E.$ Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11. Purva Phalguni 12. Uttara Phalguni 13. Hasta 14. Chitra 15. Svati 16. Visakha 17. Anuradha 18. Jyestha 19. Mula 20. Purvasadha 21. Uttarasadha 22. Sravana 23. Dhanistha 24. Satabhisaj 25. Purva Bhadrapada 26. Uttara Bhadrapada 27. Revati Names of Yogas:- 1. Viskumbha 2. Priti 3. Ayusman 4. Saubhagya 5. Sobhana 6. Atiganda 7. Sukarma 8. Dhriti 9. Sula 10. Ganda 11. Vriddhi 12. Dhruva 13. Vyaghata 14. Harshana 15. Vajra 16. Siddhi (Asrik) 17. Vyatipata 18. Variyan 19. Parigha 20. Siva 21. Siddha 22. Sadhya 23. Sobhana 24. Satha 24. Satha 24. Satha 24. Satha 25. Parkara 27. Visibla idi.

23.Subha 24.Sukla (Sukra) 25.Brahma 26.Indra 27.Vaidhriti

Dakshinayana Dakshina Gola

SAKA ERA 1942 Month of AGRAHAYANA (30 days)

Ayanamsa on 1st: 24°08′38″

(Nirayana) 8 Agrahayana, 5121 Kali Era to (Nirayana) 7 Pausha, 5121 Kali Era

Doto	Gragorian			Transit of the Sun		Festivals
Date	_	Solar Month	Lunar Month	Transit of the Sun	Phenomena	resuvais
1	Date 2020 A.D.	wionth	Month			1- Gopashtami or Gosthashtami.
2 3	Nov. 22 23 24					2- Jagaddhatri Puja, Akshya Navami.3- Guru Tegh Bahadur's Martyrdom
4	25					Day. 4- Deva Probodhani Ekadasi.
5	26		⋖			5- Tulasi Vivaha, Vanjuli Mahadvadasi.
6 7	27 28	H A	I K			7- Vaikuntha Chaturdasi, Bharani Dipam.
8	29	N	Н			8- Krittika Dipam, Rasayatra (Smarta),
9 10	30 Dec. 1	I R	A R		9- Full Moon (15 ^h 00 ^m .0)	Tripurotsava. 9- Rasayatra (Vaishnava), Kartiki Purnima, Rathayatra (Jain),
11 12	2 3	A S	⋈	11- Enters Jyeshtha nak.	, ,	Guru Nanak's Birthday, Pushkar Fair (Ajmer), Huthri-3 days(Coorg).
13	4	Ü		(18 ^h 33 ^m .6)	12- Sayana Vaidhriti	
14 15	5 6	R	⋖		$(19^{h}53^{m}.6)$	
16	7	⋖	~			16- Kalashtami.
17	8	Σ	Ω			17- Prathamashtami (Odisha),
18 19	9 10		Z			Vaikkatashtami (Kerela).
20	11	< <	∢			20- Utpanna Ekadasi.
21	12	X	Н			
22 23	13 14	A U	C	23- Saura Paushadi (24 ^h 25 ^m .9)	23- New	
	17	S		(24 25 .))	Moon (21 ^h 46 ^m .6)	
					23-Total Solar	
					Eclipse	
					(not visible in	
			A	24 Entono M11	India)	
24	15		H	24- Enters Mula nak. (21 ^h 32 ^m .3)	24- Sayana Vyatipata	
25	16	⋖	R A R S		$(19^{\rm h}02^{\rm m}.6)$	
26	17	Н				
27 28	18 19	S	N I S S			28- Subrahmanya Shasthi
		J R	H A			(South India).
29	20	A V	C H A R (29- Guha Shashthi, Champa Shasthi (Maharashtra), Mulukrupini
30	Dec. 21	S A P	M	30- Enters Trop. Capricorn (15 ^h 32 ^m .3)		Shashthi. 30- Mitra Saptami, Uttarayana Day.

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}$ ° E. Long. Moon enters :- Mina 3, 8^h 52^m.5; Mesha 5, 21^h 20^m.4; Vrisha 8, 10^h 01^m.2; Mithuna 10, 21^h 36^m.9; Karkata 13, 7^h 22^m.0; Simha 15, 14^h 45^m.9; Kanya 17, 19^h 31^m.5; Tula 19, 21^h 52^m.0; Vrischika 21, 22^h 41^m.1; Dhanus 23, 23^h 25^m.9; Makara 25, 25^h 47^m.7; Kumbha 28, 7^h 16^m.3; Mina 30, 16^h 29^m.1; Sun enters: - Nirayana Dhanus 24, 21^h 32^m.3.

SAKA ERA 1942

Month of PAUSHA (30 days)

Makara : Tapas Winter (Sisira), 1st Month

(Nirayana) 8 Pausha, 5121 Kali Era to (Nirayana) 7 Magha, 5121 Kali Era

			Ì						Ì	-	Tithi	rugiru, o		Naks	hatra	,	Yoga	
Date	1	Gregorian	Su	nrise		parent	Su	nset	No	Э.		nding	No.		ding	No.	l	ding
	Day	Date			N	loon						oment			ment			ment
			h	m	h	m	h	m			h	m		h	m		h	m
		2020 A.D.																
1	Tue	Dec. 22	6	37.7	11	58.7	17	19.9	S	8	18	14.8	26	25	37.4	17	12	09.3
2	Wed	23	6	38.2	11	59.2	17	20.4		9	20	39.9	27	28	32.8	18	12	48.8
3	Thu	24	6	38.6	11	59.7	17	21.0	S	10	23	17.7	1	-	-	19	13	40.7
4	Fri	25	6	39.1	12	00.2	17	21.5		11	25	54.7	1	7	36.3	20	14	35.5
5	Sat	26	6	39.5	12	00.7	17	22.1		12	28	18.8	2	10	35.3	21	15	24.4
6	Sun	27	6	39.9	12	01.2	17	22.7		13	30	20.8	3	13	19.0	22	15	59.9
7	Mon	28	6	40.3	12	01.6	17	23.3		14	-	-	4	15	39.5	23	16	16.7
8	Tue	29	6	40.7	12	02.1	17	23.9		14	7	54.8	5	17	32.1	24	16	11.5
9	Wed	30	6	41.0	12	02.6	17	24.5	S	15	8	58.2	6	18	55.0	25	15	42.9
10	Thu	31	6	41.3	12	03.1	17	25.1	K	1	9	30.7	7	19	48.8	26	14	51.0
		2021 A.D.																
11	Fri	Jan. 1	6	41.6	12	03.6	17	25.8		2	9	33.9	8	20	15.2	27	13	36.9
12	Sat	2	6	41.9	12	04.0	17	26.4		3	9	10.4	9	20	16.9	1	12	02.5
13	Sun	3	6	42.2	12	04.5	17	27.1		4	8	22.9	10	19	56.6	2	10	09.6
14	Mon	4	6	42.4	12	04.9	17	27.7		5	7	14.3	11	19	17.0	3	8	00.4
										(6	29	47.3)				4	29	36.6
15	Tue	5	6	42.7	12	05.4	17	28.4		7	28	04.2	12	18	20.6	5	27	0.00
16	Wed	6	6	42.9	12	05.8	17	29.1		8	26	07.0	13	17	09.4	6	24	12.2
17	Thu	7	6	43.1	12	06.3	17	29.8		9	23	58.3	14	15	45.8	7	21	14.8
18	Fri	8	6	43.2	12	06.7	17	30.5	K	10	21	40.6	15	14	12.4	8	18	10.0
19	Sat	9	6	43.4	12	07.1	17	31.2		11	19	17.5	16	12	32.3	9	15	00.3
20	Sun	10	6	43.5	12	07.5	17	31.9		12	16	53.1	17	10	49.6	10	11	49.0
21	Mon	11	6	43.6	12	07.9	17	32.6		13	14	32.9	18	9	09.3	11	8	39.8
																(12	29	37.5)
22	Tue	12	6	43.6	12	08.3	17	33.3		14	12	23.0	19	7	37.7	13	26	47.2
													(20	30	21.5)			
23	Wed	13	6	43.7	12	08.7	17	34.0	K	30	10	30.2	21	29	28.0	14	24	14.4
24	Thu	14	6	43.7	12	09.1	17	34.7	S	1	9	01.9	22	29	04.4	15	22	04.5
25	Fri	15	6	43.7	12	09.4	17	35.4		2	8	05.2	23	29	16.8	16	20	22.2
26	Sat	16	6	43.7	12	09.8	17	36.2		3	7	46.2	24	30	09.3	17	19	11.1
27	Sun	17	6	43.6	12	10.1	17	36.9		4	8	08.9	25	-	-	18	18	32.8
28	Mon	18	6	43.5	12	10.4	17	37.6	S	5	9	14.4	25	7	43.0	19	18	26.2
29	Tue	19	6	43.5	12	10.7	17	38.3		6	10	59.2	26	9	54.6	20	18	47.5
30	Wed	20	6	43.3	12	11.0	17	39.0	S	7	13	15.5	27	12	36.3	21	19	29.7

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $\,821\!/\!2^{\circ}E.$ Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Uttarayana Dakshina Gola SAKA ERA 1942 Month of PAUSHA (30 days)

Ayanamsa on 1st : 24° 08′ 44″

(Nirayana) 8 Pausha, 5121 Kali Era to (Nirayana) 7 Magha, 5121 Kali Era

	l			Pausha, 5121 Kali Era	· · · · · · · · · · · · · · · · · · ·	
Date	1 –	Solar	Lunar	Transit of the Sun	Phenomena	Festivals
	Date	Month	Month			
1	2020 A.D.					
1 2	Dec. 22 23					
3	24					
4	25					
	_		⋖			4- Mauna Ekadasi (Jain), Gita jayanti,
			H			Vaikuntha Ekadasi (S India),
			\sim			Mokshada Ekadasi,
			_ ~			Birthday of Sadhu T. L. Vaswani
5	26		_			(Sindhi)
6	27	∢	∞			5- Akhanda Dvadasi, Jor mela-3days (Punjab)
7	28	H	∢	7- Enters	7- Sayana	(Funjao)
8	29	\ \sigma	5	Purvashadha	Vaidhriti	8- Shri Dutta Jayanti(Maharashtra),
				nak. (23 ^h 45 ^m .0)	$(25^{\rm h}20^{\rm m}.4)$	Dutts Treya Jayanti.
9	30	n 1	~		9- Full Moon	9- Margi Purnima, Arudra Darshanam
10	31	P A	< <		$(8^{h}58^{m}.2)$	(Purvarunodaya) (S. India)
11	2021A.D.	"	Σ			
11 12	Jan. 1 2					
13	3	⋖	∢			
14	4	~	X			
15	5	n				
		< ✓				
16	6	\sim	Z			16- Ashtaka(Pupashtaka)
17 18	7 8		⋖			18- Birthday of Parsvanath (Jain).
19	9		H			19- Saphla Ekadasi.
20	10		l	20- Enters	20- Sayana	Supring Singulari
			D D	Uttarashadha	Vyatipata	
21	11			nak. (25 ^h 45 ^m .4)	$(9^{\rm h}16^{\rm m}.9)$	
22	12			100 G	22 17 16	22- Vahula Amavasya (Odisha).
23	13			23- Saura	23- New Moon	23- Lohri (Punjab,J&K), Bhogi
24	14		⋖	Maghadi (11 ^h 08 ^m .0)	$(10^{\rm h}30^{\rm m}.2)$	(S. India). 24- Birthday of Sant Paramanand
24	14		H	(11 00 .0)		(Sindhi), Magha Bihu (Assam),
			S			Makara Samkranti (N.India),
		< <	n 1			Makara Samkranti(Bengal), Pongal
		Н	P A			(S. India), Makara Snana, Tila
		G 1	-			Samkranti, Tai Pongal(Kerala),
2.5						Tamil New Year's Day.
25	15	M A	⋖			25- Mattu Pongal or Kanuvu(S. India)
26	16		8			
27	17	< <	Ω		27- Jupiter sets	
28	18	~	N		in the East	
29	19	n	⋖	29- Enters Tropical	(26 ^h 45 ^m)	
30	Jan. 20	A A	⋖	Aquarius		30- Guru Govind Singh's Birthday.
		N	H	$(26^{\rm h}09^{\rm m}.8)$		
	<u> </u>		Ŋ			

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82^{1/2}{}^{\circ}$ E. Long. Moon enters :- Mesha 2, $28^{\rm h}$ $32^{\rm m}$.8; Vrisha 5, $17^{\rm h}$ $18^{\rm m}$.0; Mithuna 7, $28^{\rm h}$ $39^{\rm m}$.5; Karkata 10, $13^{\rm h}$ $38^{\rm m}$.0; Simha 12, $20^{\rm h}$ $16^{\rm m}$.9; Kanya 14, $25^{\rm h}$ $04^{\rm m}$.4; Tula 16, $28^{\rm h}$ $29^{\rm m}$.1; Vrischika 19, $6^{\rm h}$ $57^{\rm m}$.7; Dhanus 21, $9^{\rm h}$ $09^{\rm m}$.3; Makara 23, $12^{\rm h}$ $05^{\rm m}$.7; Kumbha 25, $17^{\rm h}$ $05^{\rm m}$.9; Mina 27, $25^{\rm h}$ $15^{\rm m}$.9; Mesha 30, $12^{\rm h}$ $36^{\rm m}$.3; Sun enters: - Nirayana Makara 24, $8^{\rm h}$ $14^{\rm m}$.9.

SAKA ERA 1942

Month of MAGHA (30 days)

Kumbha : Tapasya Winter (Sisira), 2nd Month

(Nirayana) 8 Magha, 5121 Kali Era to (Nirayana) 7 Phalguna, 5121 Kali Era

				(1111	ayana)	T IVIA	311a, 312		ı Lia to	11111			naiguna,				1		
												Tithi			Naksl	hatra	<u> </u>	Yoga	
Date	Week	Grego	rian	Su	nrise	App	parent	Su	nset	No	ο.	Eı	nding	No.	En	ding	No.	En	ding
	Day	Dat	te			N	oon					Mo	oment		Mo	ment		Mo	ment
				h	m	h	m	h	m			h	m		h	m		h	m
		2021 A	A.D.																
1	Thu	Jan.	21	6	43.2	12	11.3	17	39.7	S	8	15	50.7	1	15	36.3	22	20	23.4
2	Fri		22	6	43.0	12	11.6	17	40.4	_	9	18	29.6	2	18	40.1	23	21	18.0
3	Sat		23	6	42.8	12	11.8	17	41.2	S	10	20	56.7	3	21	32.5	24	22	02.8
4	Sun		24	6	42.6	12	12.1	17	41.9		11	22	58.4	4	24	00.8	25	22	28.3
5	Mon		25	6	42.4	12	12.3	17	42.6		12	24	25.0	5	25	55.5	26	22	27.8
5	IVIOII		20		72,7	12	12.5	17	72.0		12	27	25.0		20	33.3	20		27.0
6	Tue		26	6	42.1	12	12.5	17	43.2		13	25	11.6	6	27	11.7	27	21	57.2
7	Wed		27	6	41.8	12	12.7	17	43.9		14	25	17.7	7	27	49.1	1	20	55.6
8	Thu		28	6	41.5	12	12.9	17	44.6	S	15	24	46.2	8	27	50.5	2	19	24.2
9	Fri		29	6	41.2	12	13.1	17	45.3	K	1	23	42.4	9	27	21.2	3	17	26.7
10	Sat		30	6	40.9	12	13.3	17	46.0		2	22	13.0	10	26	28.0	4	15	07.5
11	Sun		31	6	40.5	12	13.4	17	46.7		3	20	25.1	11	25	17.9	5	12	31.8
12	Mon	Feb.	1	6	40.1	12	13.6	17	47.3		4	18	25.3	12	23	57.4	6	9	44.8
13	Tue		2	6	39.7	12	13.7	17	48.0	K	5	16	19.6	13	22	32.4	7	6	51.4
																	(8	27	55.5)
14	Wed		3	6	39.2	12	13.8	17	48.6		6	14	12.6	14	21	07.3	9	25	00.2
15	Thu		4	6	38.8	12	13.9	17	49.3		7	12	07.9	15	19	45.3	10	22	07.8
16	Fri		5	6	38.3	12	14.0	17	49.9		8	10	07.7	16	18	28.3	11	19	19.7
17	Sat		6	6	37.8	12	14.0	17	50.5		9	8	13.5	17	17	17.7	12	16	36.7
										(K	10	30	26.5)						
18	Sun		7	6	37.3	12	14.1	17	51.2	`	11	28	48.0	18	16	14.6	13	13	59.9
19	Mon		8	6	36.8	12	14.1	17	51.8		12	27	20.0	19	15	20.8	14	11	30.4
20	Tue		9	6	36.2	12	14.2	17	52.4		13	26	05.8	20	14	38.6	15	9	10.1
21	Wed		10	6	35.7	12	14.2	17	53.0		14	25	09.4	21	14	11.9	16	7	01.3
																	(17	29	07.4)
22	Thu		11	6	35.1	12	14.2	17	53.6	K	30	24	35.7	22	14	05.0	18	27	32.1
23	Fri		12	6	34.5	12	14.2	17	54.2	S	1	24	30.0	23	14	23.2	19	26	19.2
24	Sat		13	6	33.8	12	14.2	17	54.8		2	24	57.0	24	15	11.3	20	25	31.7
25	Sun		14	6	33.2	12	14.1	17	55.4		3	25	59.5	25	16	32.8	21	25	11.4
~	~ 311		- '		22.2			"	20.1		٥	~	0,10	~	10	22.0			
26	Mon		15	6	32.5	12	14.1	17	55.9		4	27	37.5	26	18	28.8	22	25	18.1
27	Tue		16	6	31.9	12	14.0	17	56.5	S	5	29	46.7	27	20	56.5	23	25	48.8
28	Wed		17	6	31.2	12	14.0	17	57.0		6		-	1	23	48.8	24	26	37.4
29	Thu		18	6	30.5	12	13.9	17	57.6		6	8	18.2	2	26	54.0	25	27	35.2
30	Fri		19	6	29.7	12	13.8	17	58.1	S	7	10	58.7	3	29	57.4	26	28	31.3
	1		1)		27.1	12	15.0	1,	50.1		,	10	50.1			J1.T			

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $82\frac{1}{2}$ °E. Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

Uttarayana SAKA ERA 1942

Dakshina Gola Month of MAGHA (30 days) Ayanamsa on $1st: 24^{\circ}08/48''$

(Nirayana) 8 Magha, 5121 Kali Era to (Nirayana) 7 Phalguna, 5121 Kali Era

	. ·			Magha, 5121 Kali Era to		
Date	Gregorian Date	Solar Month	Lunar Month	Transit of the Sun	Phenomena	Festivals
1 2 3	2021 A.D. Jan. 21 22 23	WORL	Wonth	3- Enters Sravana nak. (27 ^h 59 ^m .1)	2- Sayana Vaidhriti (30 ^h 40 ^m .5)	 Martyrdom Day of Hemu Kalani (Sindhi). Samba Dasami (Odisha), Netaji's Birthday. Putrada Ekadasi.
5 6 7 8 9 10 11 12	25 26 27 28 29 30 31 Feb. 1	M A G H A	A PAUSHA		8- Full Moon (24 ^h 46 ^m .2)	 6- Republic Day. 8- Paushi Purnima, Pusyabhisheka Yatra, Floating Festival/Tai Poosam, Birthday of Lala Lajpat Rai. 10- Martyr's Day (Mahatma Gandhi Commemoration Day) 11- Ganesha Sankastha Chaturthi.
13 14 15 16 17 18 19	2 3 4 5 6 7 8	SAURA	C H ANDR	17- Enters Dhanishtha nak. (7 ^h 12 ^m .1)	15- Sayana Vyatipata (19 ^h 33 ^m .4)	15- Birthday of Swami Vivekananda (according to tithi), Astaka (Mamashtaka) 18- Sattila Ekadasi (Smarta). 19- Sattila Ekadasi (Vaishnava and Vidhava). 20- Meru Trayodasi (Jain).
21 22 23 24	10 11 12 13		V	22- Saura Phalgunadi (23 ^h 54 ^m .2)	22- New Moon (24 ^h 35 ^m .7) 24- Jupiter rises	21- Ratanti Kalika Puja. 22- Mauni Amavasya, Tai Amavasya, Makara Vavu (Kerala). 23- Magha Sukladi.
25	14		G H		in the West (10 ^h 06 ^m)	
26 27 28	15 16 17	A N A	M A 0			26- Varada Chaturthi, Tila Chaturthi, Kunda Chaturthi, Ganesa Puja (Bengal). 27- Sri Panchami, Saraswati Puja,
29	18	SAURA PHALGU	ANDRA	29- Enters Trop.	28- Venus sets in the West (10 ^h 10 ^m) 28- Sayana Vaidhriti (11 ^h 10 ^m .6)	Vasanta Panchami. 29- Arogya Saptami, Vidhana Saptami.
30 N_R	Feb. 19		СНА	Pisces (16h13m.9) 30- Enters Satabhisaj nak.(11h37m.0) Torthe local mean ti		30- Shivaji Jayanti, Ratha Saptami (Purvarunodaya).

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of 82½° E. Long.

Moon enters :- Vrisha 2, $25^{\rm h}$ $24^{\rm m}$.8; Mithuna 5, $13^{\rm h}$ $02^{\rm m}$.7; Karkata 7, $21^{\rm h}$ $43^{\rm m}$.3; Simha 9, $27^{\rm h}$ $21^{\rm m}$.2; Kanya 12, $6^{\rm h}$ $58^{\rm m}$.5; Tula 14, $9^{\rm h}$ $49^{\rm m}$.7; Vrischika 16, $12^{\rm h}$ $47^{\rm m}$.0; Dhanus 18, $16^{\rm h}$ $14^{\rm m}$.6; Makara 20, $20^{\rm h}$ $30^{\rm m}$.3; Kumbha 22, $26^{\rm h}$ $10^{\rm m}$.6; Mina 25, $10^{\rm h}$ $09^{\rm m}$.1; Mesha 27, $20^{\rm h}$ $56^{\rm m}$.5; Vrisha 30, $9^{\rm h}$ $40^{\rm m}$.6; Sun enters :- Nirayana Kumbha 23, $21^{\rm h}$ $12^{\rm m}$.4.

SAKA ERA 1942

Mina : Madhu Spring (Vasanta), 1st Month

Month of PHALGUNA (30 days)

(Nirayana) 8 Phalguna, 5121 Kali Era to (Nirayana) 7 Chaitra, 5121 Kali Era

		1		(IVIII	iyana) 6	1 marg	guiia, 512	21 Ka	in Era io	1111			Chaina, .					\$7	
												Tithi				hatra		Yoga	
Date		Grego		Su	nrise		parent	Su	nset	No	Э.		nding	No.		ding	No.		nding
	Day	Da	te				loon						oment			ment			ment
				h	m	h	m	h	m			h	m		h	m		h	m
		2021 A	A.D.																
1	Sat	Feb.	20	6	29.0	12	13.7	17	58.7	S	8	13	32.2	4	-	-	27	29	14.3
2	Sun		21	6	28.3	12	13.6	17	59.2		9	15	42.7	4	8	43.4	1	29	34.0
3	Mon		22	6	27.5	12	13.5	17	59.7	S	10	17	16.8	5	10	57.8	2	29	22.2
4	Tue		23	6	26.7	12	13.3	18	00.2		11	18	05.7	6	12	30.8	3	28	34.2
5	Wed		24	6	25.9	12	13.2	18	00.7		12	18	06.0	7	13	17.2	4	27	08.6
6	Thu		25	6	25.1	12	13.0	18	01.2		13	17	19.1	8	13	17.2	5	25	07.3
7	Fri		26	6	24.3	12	12.9	18	01.7		14	15	50.2	9	12	35.1	6	22	34.7
8	Sat		27	6	23.5	12	12.7	18	02.1	S	15	13	47.3	10	11	18.2	7	19	36.9
9	Sun		28	6	22.6	12	12.5	18	02.6	K	1	11	19.4	11	9	35.6	8	16	21.1
10	Mon	Mar	1	6	21.8	12	12.3	18	03.1		2	8	36.1	12	7	36.9	9	12	54.7
10	1,1011	112021	-		-110	12	12.0		00.1		(3	29	46.7)	(13	29	31.8)		12	·
											(5		10.77	(15		31.0)			
11	Tue		2	6	20.9	12	12.1	18	03.5		4	26	59.7	14	27	29.0	10	9	24.9
11	Tuc		_		20.7	12	12.1		03.5			20	37.1	11	2,	25.0	(11	29	58.1)
12	Wed		3	6	20.0	12	11.9	18	04.0	K	5	24	22.1	15	25	35.7	12	26	39.7
13	Thu		4	6	19.2	12	11.7	18	04.4	11	6	21	59.3	16	23	57.4	13	23	33.9
14	Fri		5	6	18.3	12	11.5	18	04.9		7	19	54.9	17	22	37.6	14	20	43.1
15	Sat		6	6	17.4	12	11.2	18	05.3		8	18	10.8	18	21	38.0	15	18	08.7
15	Sai		U	0	17.4	12	11.2	10	05.5		O	10	10.6	10	21	36.0	13	10	00.7
16	Sun		7	6	16.5	12	11.0	18	05.7		9	16	47.5	19	20	59.0	16	15	51.0
17	Mon		8	6	15.6	12	10.8	18	06.2	v	10	15	44.9	20	20	40.3	17	13	49.9
18	Tue		9	6	14.6	12	10.5	18	06.6	K	11	15	02.6	21	20	41.4	18	12	04.9
19	Wed		10	6	13.7	12	10.3	18	07.0			13	40.7	22	21	02.7	19	10	35.9
				~		1		1			12								
20	Thu		11	6	12.8	12	10.0	18	07.4		13	14	40.3	23	21	45.3	20	9	23.6
21	E.J		12		11.0	12	00.7	10	07.0		1.4	15	02.0	24	m	<i>5</i> 1.0	21	0	20.1
21	Fri		12	6	11.8	12	09.7	18	07.8	IZ.	14	15	03.0	24	22	51.0	21	8	29.1
22	Sat		13	6	10.9	12	09.5	18	08.2	K		15	51.2	25	24	21.9	22	7	53.7
23	Sun		14	6	09.9	12	09.2	18	08.6	S	1	17	06.7	26	26	19.5	23	7	39.1
24	Mon		15	6	09.0	12	08.9	18	09.0		2	18	50.0	27	28	43.5	24	7	45.7
25	Tue		16	6	08.0	12	08.6	18	09.4		3	20	59.4	1	-	-	25	8	13.1
					0= 1		00.2	10	06.5				20.5		_	20.0			70.
26	Wed		17	6	07.1	12	08.3	18	09.8		4	23	29.2	1	7	30.8	26	8	58.3
27	Thu		18	6	06.1	12	08.1	18	10.2	S	5	26	10.0	2	10	34.5	27	9	56.2
28	Fri		19	6	05.1	12	07.8	18	10.6		6	28	48.7	3	13	44.0	1	10	58.8
29	Sat		20	6	04.1	12	07.5	18	10.9		7	-	-	4	16	45.5	2	11	56.6
30	Sun		21	6	03.2	12	07.2	18	11.3	S	7	7	10.5	5	19	24.5	3	12	38.7

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $\,821\!/\!_2^\circ\,E.$ Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

SAKA ERA 1942

Uttarayana Ayanamsa on 1st: 24°08′53″ Month of PHALGUNA (30 days) Dakshina Gola

(Nirayana) 8 Phalguna, 5121 Kali Era to (Nirayana) 7 Chaitra, 5121 Kali Era

					Phalguna, 5121 Kali Era		
Date	Gregori		Solar	Lunar	Transit of the Sun	Phenomena	Festivals
	Date		Month	Month			
	2021 A.	D.					
. 1	Feb.	20					1- Bhishmashtami.
2		21					
3		22					
4	l	23					4- Jaya Ekadasi, Bhaimi Ekadasi
		20					(Bengal).
5		24					5- Bhishma Dvadasi.
3		24					5- Bilisiilia Dvadasi.
			⋖				
6		25	Z				6- Desert Festival - 3 days
7		26	n	< <			(Jaislmer).
8		27	IJ	H		8- Full Moon	8- Guru Rabi Das's Birthday
9		28	L (U U		$(13^{\rm h}47^{\rm m}.3)$	(according to tithi),
10	Mar.	1	Y	< <			Maghi Purnima
			Н	×			Masi Magham.
11		2				11- Sayana	
12		3	Ь			Vyatipata	
13		4			13-Enters Purva	(6 ^h 54 ^m .5)	
14		5	⋖	R A	Bhadrapada nak.	(0.0.1.0)	14- Vaikkatashtami (Kerela).
15			2		(17 ^h 59 ^m .7)		15- Ashtaka (Sakashtak), Janaki
13		6	n	Q P	(17 39 .7)		Janma.
16		_	. ∀	Z			Janna.
16		7	\sim	НА			17 P: 4.1 CG : P 1
17		8	"	CF			17- Birthday of Swami Dayananda
							Saraswati (Founder of Arya
							Samaj).
18		9					18- Vijaya Ekadasi.
19		10					19- Maha Sivratri (Kashmir).
20		11					20- Maha Sivaratri, Maha Sivaratri
21		12					(S. India).
22		13			22-Saura Chaitradi	22- New Moon	
					(20 ^h 26 ^m .0)	(15 ^h 51 ^m .2)	
23		14		A Z	(20 20 .0)	23- Sayana Vaidhriti	
24		15		PH ALG UN		(16 ^h 45 ^m .5)	24- Birthday of Sri Ramakrishna
25				D7		(10 13 .3)	(according to tithi).
20		16		HA H			(according to titili).
2-			R.⁄	PF	26 F		
26		17	UF		26-Enters Uttara		
27		18	SAURA HAITR	R/	Bhadrapada nak.		
28		19	SAURA CHAITRA		(26 ^h 21 ^m .6)		
29		20		A	29-Enters Trop.		29- Mahavishuva Day.
30	Mar.	21		CHAANDRA	Aries		30- Indian Year Ending day,
				CF	$(15^{\rm h}\ 07^{\rm m}.4)$		Holastaka

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of 821/20 E. Long. Moon enters :- Mithuna 2, 21^h 55^m.3; Karkata 5, 7^h 10^m.1; Simha 7, 12^h 35^m.1; Kanya 9, 15^h07^m.0; Tula 11, 16^h 29^m.7; Vrischika 13, 18^h 20^m.4; Dhanus 15, 21^h 38^m.0; Makara 17, 26^h 38^m.7; Kumbha 20, 9^h 21^m.2; Mina 22, 17^h 56^m.7; Mesha 24, 28^h 43^m.5; Vrisha 27, 17^h 21^m.9; Mithuna 30, 6^h 08^m.7; Sun enters: Nirayana Mina 23, 18^h 03^m.6.

PRINCIPAL FESTIVALS AND ANNIVERSARIES FOR HOLIDAYS

77. Guru Gobind Singh's Birthday 78. Vaikuntha Ekadasi (S.India) 79. Bhogi (S. India) 79. Bho	Festivals	Criterion	Date
78. Vaikuntha Ekadasi (S.India) 78. Vaikuntha Ekadasi (S.India) 78. Naikuntha Ekadasi (S.India) 78. Palbogi (S. India) 78. Palbogi (S. India) 79. Bhogi (S. India) 79. Pausha 12 / Pausha 12 / Jan 15 79. Washa 23 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 25 / Magha 2 / Jan 15 79. Washa 26 / Magha 3 / Jan 16 79. Washa 26 / Magha 3 / Jan 16 79. Washa 26 / Magha 3 / Jan 16 79. Washa 26 / Magha 3 / Jan 16 79. Washa 26 / Magha 3 / Jan 16 79. Washa 26 / Magha 3 / Jan 16 79. Washa 26 / Magha 16 / Magha 17 / Jan 30 79. Washa Siraji Jayanti 79. Washa Siraji Jayanti 79. Washa Siraji Jayanti 79. Holikadahana 79. Washa Siraji Jayanti 79. Washa Siraji			
77. Guru Gobind Singh's Birthday 78. Naikumba Ekadasi (S.India) 79. Bhogi (S.India) 80. Makara Samkranti (Bengal) Magha Bihu (Assam) 81. Pongal (S.India), Tai Pongal (Kerala) Tamil New Year's day, Tila Samkranti, Makara Samkranti (N.India), Makaradi Sanaa 82. Mattu Pongal or Kanuvu 83. Netaji's Birthday 84. Republic Day 84. Republic Day 85. Sri Panchami, Vasanta Panchami 86. Guru Ravidas's Birthday 85. Sri Panchami, Vasanta Panchami 86. Guru Ravidas's Birthday 86. Sri Panchami, Vasanta Panchami 86. Guru Ravidas's Birthday 87. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samaj) 88. Sivaji Jayanti 90. Maha Sivaratri (Kashmir) 91. Holikadahana 91. Holikadahana 92. Dolyatra 94. Hola, Vasantotsava 95. Maha Visvaratri 95. MahaVishuva day 95. MahaVishuva day 96. Chaitra Shukladi (Gudi Padava, Ugadi), Cheti Chand (Sindhi New Year's Day), Cheti Chand (Sindhi New Year's Day), Cheit Chand (Sindhi New Year's Day), Cheit Chand (Sindhi New Year's Day), Cheit Chand (Sindhi New Year's Day), Chaitra S 1 1. Indian New Year's Day 1. Indian New Year's Day 1. Chaitra S 1 2. Chaitra Shukladi (Gudi Padava, Ugadi), Cheit Chand (Sindhi New Year's Day), Chaitra S 1 3. Sarhul (Bihar) 4. Oli ends (Jain) 5. Kama Navami 6. Guru Quishi (Sunise Rule) 6. Mahavira Jayanti 6. Manavira Jayanti 6. Manavira Jayanti 6. Manavira Jayanti 6. Manavira Jayanti 7. Chaitra S 1 Chaitra S 7 Chaitra S 7 Chaitra S 10 (Chaitra S 1) Chaitra S 1 Chaitra S 7			
79. Bhogi (S.India) 80. Makara Samkranti (Bengal) Magha Bihu (Assam) 81. Pongal (S.India), Tair Pongal (Kerala) Tamil New Year's day, Tila Samkranti, Makara Samkranti (N.India), Makaradi Sanan 82. Mattu Pongal or Kanuvu Sanana 82. Mattu Pongal or Kanuvu Sanana 83. Netaji's Birhday 84. Republic Day 85. Sri Panchami, Vasanta Panchami 85. Sri Panchami, Vasanta Panchami 86. Guru Ravidas' s Birthday 87. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samaj) 88. Sivaji Jayanti 99. Maha Sivaratri (Kashmir) 90. Maha Sivaratri 91. Holikadahana 94. Hola, Vasantotsava 95. Maha Vishuva day 95. Maha Vishuva day 95. Maha Vishuva day 96. Maha Vishuva day 97. Holikadahana 98. Maha Sivaratri 99. Maha Sivaratri 91. Indian New Year's Day, Vasanta Navaratrarambha, Telugu New Year's Day 9. Kanan Navaratrarambha, Telugu New Year's Day 9. Kanan Navaratrarambha, Telugu New Year's Day 9. Vaisakhai (Bunja), Haryana, H.P.Delhi 80. Vaisakhi (Punjab.Haryana, H.P.Delhi 80. Vaisakhi (Punjab.Haryana, H.P.Delhi 80. Vaisakhi (Punjab.Haryana, H.P.Delhi 80. Vaisakhi (Punjab.Haryana, H.P.Delhi 80. Vaisakhai (Sunise Rule) 80. Maha Sivaratri 80. Maha Sivaratri 80. Maha Sivaratri 81. Oli ends (Jain) 81. Vaisakhi (Punjab.Haryana, H.P.Delhi 82. Vaisakhai (Sunise Rule) 83. Vaisakhi (Punjab.Haryana, H.P.Delhi 84. Republic Day 84. Republic Day 85. Sri Panchami, Vasantotsava 86. Gura Ravidas' Sirithday 86. Gura Ravidas' Sirithday 86. Gura Ravidas' Sirithday 86. Siri Panchami, Vasantotsava 96. Mahaviratrari (Kashmir) 96. Mahaviratrarambha, Telugu Nay of Sun's entry into Trop. Aries (Midnight rule) 85. Kata 1942/Kali 5120/2020 A.D. 86. Chaitra Sirithday 86. Chaitra Sirithday 86. Sirithday 86. Siri Panchami, Vasantotsava 96. Mahaviratrarambha, Telugu Nay of Sun's entry into Trop. Aries (Midnight rule) 97. Chaitra Sirithday 98. Ala Sirithday 98. Maha Sivaratrarambha, Telugu Nay of Sun's entry into Trop. Aries (Midnight Rule) 98. Vaisakhi (Punjab.Haryana, H.P.Delhi 99. Vaisakha (Sunsi Rule) 90. Maha Sivaratrarambha, Telugu Nay of Sun's entry into Tro		Pausha S 7	
Saura Maghadi (Midnight Rule) Pausha 25 / Magha 2 / Jan. 15 Pausha 26 / Magha 16 / Magha 16 / Magha 18 Pausha 26 / Pausha 2	1	S 11 of Saura Pausha	Pausha 16 / Pausha 23 / Jan 06
Magha Bihu (Assam) Si Pongal (Si India), Tair Dongal(Kerala) Tamil New Year's day, Tila Samkranti, Makara Samkranti (N.India), Makaradi Sanan 82. Mattu Pongal or Kanuvu Bay after Pongal Fixed Magha S 5, Sri Panchami, Vasanta Panchami 85. Sri Panchami, Vasanta Panchami 86. Guru Ravidas's Birthday Saraswati (Founder of Arya Sama) 88. Sivaji Jayanti 89. Maha Sivaratri (Kashmir) 90. Maha Sivaratri Magha S 15 Magha L 10 (Purnimanta) Fixed Magha S 15 Magha 10 / Magha 17 / Jan 30 Magha S 15 Magha 29 / Phalguna 6 / Feb 18 Magha 30 / Phalguna 7 / Feb 19 Phalguna S 15 (night) Phalguna S 15 Magha 10 / Magha 17 / Jan 30 Magha S 19 Magh			Pausha 24 / Magha 1 / Jan.14
81. Pongal (S.India), Tai Pongal (Kerala) Tamil New Year's day Tila Samkranti Makara Samkranti (N.India), Makarati 82. Mattu Pongal or Kanuvu 83. Netaji's Birthday 84. Republic Day 85. Sir Panchami, Vasanta Panchami 86. Guru Ravidas's Birthday 87. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samaj) 88. Sivaji Jayanti 89. Maha Sivaratri (Kashmir) 80. Maha Sivaratri 80. Maha Sivaratri 80. Maha Sivaratri 81. Polikadahana 82. Phalguna K 10 (Purnimanta) 83. Rejublic Day 84. Republic Day 85. Sir Panchami, Vasanta Panchami 86. Guru Ravidas's Birthday 87. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samaj) 88. Sivaji Jayanti 89. Maha Sivaratri 89. Maha K 13 89. Maha Sivaratri 89. Maha K 13 89. Maha Sivaratri 89. Maha Sivaratri 89. Maha K 13 89. Maha Sivaratri 89. Maha K 13 89. Maha K 13 89. Maha Sivaratri			
Tamil New Year's day, Tila Samkranti, Makara Si Makara Samkranti (N.India), Makaradi Snana 82. Mattu Pongal or Kanuvu Day after Pongal Fixed Magha 3 / Magha 10 / Jan. 15 83. Netaji's Birthday Fixed Magha 3 / Magha 10 / Jan. 23 84. Republic Day Fixed Magha 5 5 Magha 10 / Magha 17 / Jan. 30 86. Guru Ravidas's Birthday Magha 5 5 Magha 10 / Magha 17 / Jan. 30 87. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samai) 88. Siviji Jayanti Magha 17 / Feb 9 89. Maha Sivaratri (Kashmir) Magha K 13 Magha 10 / Magha 27 / Feb 18 89. Maha Sivaratri (Kashmir) Magha K 13 Phalguna 7 / Feb 19 90. Maha Sivaratri (Mashmir) Magha K 14 (Prodosa & Nishithayapini) 91. Holikadahana Phalguna S 15 Phalguna 17 Phalguna 9 / Feb 21 92. Olojatra Phalguna S 15 Phalguna 19 / Phalguna 26 / March 19 93. Holi Day after Holikadahana Phalguna S 15 Phalguna 19 / Phalguna 27 / March 10 94. Hola, Vasantotsava Phalguna S 1 95. Maha Vishuva day Day of Sun's entry into Trop Aries (Midnight rule) 1. Indian New Year's Day Chaitra 5 / Chaitra 17 / Mar. 21 1. Indian New Year's Day Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 1. Cheitr Chand (Sindhi New Year's Day) Vasanta Navaratrarambha, Telugu New Year's Day Chaitra S 1 1. Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 1. Rama Navami Chaitra S 1 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Rama Navami Chaitra S 1 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Chaitra 11 / Mar. 25 1. Chaitra 5 / Cha			
Makara Samkranti (N.India), Makaradi Sanana 22. Mattu Pongal or Kanuvu 33. Netaji's Birthday 34. Republic Day 35. Pirked 36. Guru Ravidas's Birthday 36. Guru Ravidas's Birthday 37. Birth Day of Swami Dayananda 38. Saraswati (Founder of Arya Samaj) 38. Sivaji Jayanti 39. Maha Sivaratri (Kashmir) 39. Maha Sivaratri (Kashmir) 39. Maha Sivaratri 39. Holikadahana 39. Holikadahana 39. Holikadahana 39. Holikadahana 39. Holikadahana 39. Holikadahana 39. Holaka Saraswata (Founder of Arya Samaj) 39. Holi Day of Swami Dayananda 39. Holikadahana 39. Holikadahana 39. Holikadahana 39. Holikadahana 39. Holikadahana 39. Holaka Sivari (Kashmir) 49. Holaka Nasantotsava 40. Holaka Nasantotsava 40. Holaka Navaratrarambha, Telugu 30. Nawa Yaratrarambha, Telugu 30. Sarhul (Bihar) 40. Holaka Navaratrarambha, Telugu 40. Nawaratrarambha, Telugu 40. Chaitra Si Chaitra Si Chaitra Si Chaitra II Mar. 25 40. Holaka Navaratrarambha, Telugu 40. Nawaratrarambha, Telugu 40. Chaitra Si Ch			
S. Matu Pongal or Kanuvu B. Matu Pongal or Kanuvu B. Matu Pongal or Kanuvu B. Matu Pongal or Kanuvu Fixed Magha 3 / Magha 10 / Magha 13 / Jan. 26 Magha 6 / Magha 13 / Jan. 26 Magha 20 / Magha 27 / Feb 9 Magha 8 / Birth Day Magha 8 / S Magha 10 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Magha 8 / Magha 20 / Magha 27 / Feb 9 Phalguna 20 / Phalguna 26 / March 9 Phalguna 20 / Phalguna 26 / March 9 Phalguna 20 / Phalguna 27 / March 10 Phalguna 20 / P		,	
82. Mattu Pongal or Kanuvu 83. Netaji's Birihday Fixed Magha 3 / Magha 10 / Jan. 23 84. Republic Day Fixed Magha 6 / Magha 13 / Jan. 16 85. Sri Panchami, Vasanta Panchami Magha S 5 Magha 10 / Jan. 23 Magha 10 / Jan. 23 Magha 10 / Jan. 23 Magha 10 / Magha 10 / Jan. 23 Magha 10 / Magha 17 / Jan 30 Magha 20 / Magha 27 / Feb 9 87. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samaj) 88. Sivaji Jayanti 89. Maha Sivaratri (Kashmir) 90. Maha Sivaratri (Kashmir) 91. Holikadahana 91. Holikadahana 92. Dolyatra 93. Holi 93. Holi 94. Hola, Vasantotsava 94. Hola, Vasantotsava 94. Hola, Vasantotsava 95. Maha Vishuva day 95. Maha Vishuva day 96. Maha Vishuva day 97. Day of Sun's entry into Trop. Aries (Midnight rule) Fixed 11. Indian New Year's Day 12. Chaitra Shukladii (Gudi Padava, Ugadi), Chaitra 5 1 13. Sarhul (Bihar) 14. Oli begins (Jain) 15. Rama Navaratrarambha, Telugu New Year's Day 16. Magha K 10 (Purnimanta) 17. Mar. 25 Chaitra 1 / Chaitra 7 / Mar. 21 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 1 S / Chaitra 11 / Mar. 25 Chaitra 1 S / Chaitra 11 / Mar. 25 Chaitra 1 S / Chaitra 11 / Mar. 25 Chaitra 3 S / Chaitra 1 S / Ch		-do-	Pausha 25 / Magha 2 / Jan. 15
83. Netaji's Birthday Fixed Magha 10 / Jan. 23 44. Republic Day Fixed Magha 6 / Magha 10 / Jan. 26 85. Sri Panchami, Vasanta Panchami Magha S 5 Magha 10 / Magha 27 / Feb 9 86. Guru Ravidas's Birthday Magha S 15 Magha 10 / Magha 27 / Feb 9 87. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samaj) Phalguna K 10 (Purnimanta) Magha 20 / Magha 27 / Feb 9 88. Sivaji Jayanti Fixed Magha K 13 Phalguna 6 / Feb 18 88. Sivaji Jayanti Magha K 13 Phalguna 6 / Feb 18 Magha S 15 Phalguna 1 / Phalguna 6 / Feb 19 90. Maha Sivaratri (Kashmir) Magha K 14 (Prodosa & Phalguna 1 / Phalguna 8 / Feb 20 91. Holikadahana Phalguna S 15 (night) Phalguna 19 / Phalguna 26 / March 9 92. Dolyatra Phalguna S 15 (night) Phalguna 19 / Phalguna 26 / March 9 93. Holi Day After Holikadahana Phalguna 20 / Phalguna 27 / March 10 94. Hola, Vasantotsava Phalguna K 1 95. Maha Vishuva day Para S Day Aries (Midnight rule) 1. Indian New Year's Day Aries (Midnight rule) 1. Indian New Year's Day Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Cheti Chand (Sindhi New Year's Day) Chaitra S 1 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 7 / Chaitra 17 / Mar. 31 Chaitra S 1 Chaitra 7 / Chaitra 17 / Mar. 31 Chaitra S 1 Chaitra 17 / Chaitra 17 / Mar. 31 Chaitra S 1 Chaitra 17 / Chaitra 17 / Mar. 31 Chaitra S 1 Chaitra 17 / Chaitra 17 / Mar. 31 Chaitra 17 / Chaitra 19 / Apr. 2 4. Oli begins (Jain) Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 17 / Chaitra 10 / Apr. 2 Chaitra 18 13 Chaitra 11 / Chaitra 30 / April 13 Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisak		D 6 D 1	D 1 05/15 1 0/5 15
See S. Sri Panchami, Vasanta Panchami Magha S 5 Magha 10 / Magha 17 / Jan 30			
85. Sri Panchami, Wasanta Panchami Magha S 5 Magha 10 / Magha 17 / Jan 30 Magha 20 / Magha 27 / Feb 9 87. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samaj) Phalguna K 10 (Purnimanta) Fixed Magha 20 / Magha 27 / Feb 19 Phalguna fixed			
86. Guru Ravidas's Birthday 87. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samaj) 88. Sivaji Jayanti 89. Maha Sivaratri (Kashmir) 90. Maha Sivaratri 91. Holikadahana 92. Phalguna K 10 (Purnimanta) 93. Holi 94. Hola, Vasantotsava 95. Maha Sivaratri 95. Maha Vishuva day 96. Maha Sivaratri 97. Magha K 13 98. Holi 98. Dolyatra 98. Holi 99. Dolyatra 99. Holikadahana 99. Halguna S 15 (night) 99. Holikadahana 99. Halguna S 15 90. Maha Vishuva day 90. Maha Vishuva day 91. Indian New Year's Day 92. Chaitra Shukladi (Gudi Padava, Ugadi), Chaitra S 1 Cheti Chand (Sindhi New Year's Day) Vasanta Navaratrarambha, Telugu New Year's Day 10. Indian New Year's Day 11. Indian New Year's Day 12. Chaitra Shukladi (Gudi Padava, Ugadi), Chaitra S 1 Cheti Chand (Sindhi New Year's Day) Vasanta Navaratrarambha, Telugu New Year's Day 13. Sarhul (Bihar) 14. Oli begins (Jain) 15. Rama Navami 16. Magha 27 / Feb 19 16. Magha K 13 17. Oli ends (Jain) 17. Chaitra S 1 18. Chaitra S 1 18. Chaitra S 1 19. Chaitra S 1 20. Ghaitra 1 / Chaitra 1 / Chaitra 1 / Mar. 25 21. Mahavira Jayanti 22. Chaitra Sankranti, Chaitra S 1 23. Sarka 1942/Kali 5120 /2020 A.D. 24. Oli begins (Jain) 25. Chaitra S 1 26. Mahavira Jayanti 26. Mahavira Jayanti 27. Oli ends (Jain) 28. Sarba 1942/Kali 5120 /2020 A.D. 29. Vaisakhadi (Punjab, Haryana, H.P.Delhi & Odisha), Visu (Kerala), Chaitra S 1 29. Vaisakhadi (Punjab, Haryana, H.P.Delhi & Saura Vaisakhadi (Sunrise Rule) 29. Vaisakhadi (Bengal), Bahag Bihu (Assam) 29. Vaisakhadi (Bengal), Bahag Bihu (Assam) 30. Vaisakhadi (Sunrise Rule) 31. Akshaya Tritiya 32. Sarbudha Purnima 33. Buddha Purnima 34. Oli Ordina Saura Vaisakhadi (Sunrise Rule) 35. Sarba Vaisakhadi (Namipur), Meshadi (T.N.), Saura Vaisakhadi (Sunrise Rule) 36. Mahavira Jayanti 37. Oli ends Qainin Saura Vaisakhadi (Sunrise Rule) 38. Saura Vaisakhadi (Sunrise Rule) 39. Vaisakha 1 / Apr. 14 39. Vaisakha 1 / Apr. 14 30. April 13 30. Chaitra 24 / Chaitra 30 / April 13 30. Chaitra 24 / Chaitra 30 / April 13 30. Chaitra 24 / Chaitra 30 / April 13 30. Chai			
S7. Birth Day of Swami Dayananda Saraswati (Founder of Arya Samaj) Phalguna K 10 (Purnimanta) Magha 29 / Phalguna 6 / Feb 18 Magha 30 / Phalguna 7 / Feb 19 90. Maha Sivaratri (Kashmir) Magha K 13 Phalguna 8 / Feb 20 Phalguna 2 / Phalguna 9 / Feb 21 Phalguna S 15 Phalguna 2 / Phalguna 9 / Feb 21 Phalguna 2 / Phalguna 9 / Feb 20 Phalguna 2 / Phalguna 9 / Feb 20 Phalguna 2 / Phalguna 2 / Phalguna 9 / Feb 20 Phalguna 2 / Phalguna 2			
Saraswati (Founder of Árya Samaj) 88. Sivaji Jayanti 89. Maha Sivaratri (Kashmir) 90. Maha Sivaratri (Kashmir) 91. Holikadahana 93. Holi 92. Dolyatra 93. Holi 94. Hola, Vasantotsava 95. Maha Vishuva day 95. Maha Vishuva day 96. Chaitra Shukladi(Gudi Padava, Ugadi). 18. Indian New Year's Day 18. Chaitra Shukladi(Gudi Padava, Ugadi). 18. Vasanta Navaratratrarambha, Telugu New Year's Day 18. Oli begins (Jain) 18. Vaisakhai (Punjab,Haryana, H.P,Delhi 28. Vaisakhai (Punjab,Haryana, H.P,Delhi 29. Oli ends (Jain) 19. Chaitra Shukladi (Sunrise Rule) 19. Magha K 14(Prodosa & Phalguna 2/		Wagna S 13	Magna 20 / Magna 27 / Feb 9
88. Sivaji Jayanti Fixed Magha K 13 Phalguna 7 / Feb 19 89. Maha Sivaratri (Kashmir) Magha K 13 Phalguna 2 / Phalguna 7 / Feb 19 89. Maha Sivaratri Magha K 14(Prodosa & Nishithavyapini) 91. Holikadahana Phalguna S 15 (night) Phalguna 2 / Phalguna 2 / March 9 92. Dolyatra Phalguna S 15 Phalguna S 19 Phalguna 2 / March 10 94. Hola, Vasantotsava Phalguna K 1 Phalguna 2 / Phalguna 2 / March 10 95. Maha Vishuva day Phalguna K 1 Phalguna 2 / Phalguna 2 / March 10 96. Maha Vishuva day Phalguna K 1 Phalguna 2 / Phalguna 2 / March 10 97. Aries (Midnight rule) 98. Aries (Midnight rule) 199. Lindian New Year's Day Fixed Chaitra S 1 Chaitra 5 / Chaitra 7 / Mar. 2 1 190. Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 Chaitra 5 / Chaitra 1 / Mar. 2 5 190. Cheti Chand (Sindhi New Year's Day) Chaitra S 1 Chaitra 5 / Chaitra 1 / Mar. 2 5 190. Sarhul (Bihar) Chaitra S 1 Chaitra 5 / Chaitra 1 / Mar. 2 5 190. Mahavira Jayanti Chaitra S 9 Chaitra S 1 190. Mahavira Jayanti Chaitra S 9 Chaitra S 1 190. Mahavira Jayanti Chaitra S 9 Chaitra 1 / Chaitra 1 / Mar. 2 5 190. Mahavira Jayanti Chaitra S 1 Chaitra 1 / Chaitra 1 / Mar. 2 5 190. Mahavira Jayanti Chaitra S 1 Chaitra 1 / Chaitra 1		Phalauna K 10 (Purnimanta)	Magha 20 / Phalauna 6 / Eah 19
89. Maha Sivaratri (Kashmir) 90. Maha Sivaratri (Kashmir) 91. Holikadahana 93. Holi Phalguna S 15 (night) 92. Dolyatra 93. Holi 94. Hola, Vasantotsava 95. Maha Vishuva day 95. Maha Vishuva day 96. Maha Vishuva day 97. Maha Vishuva day 98. Moli Phalguna S 15 99. Maha Vishuva day 90. Maha Vishuva day 90. Maha Vishuva day 91. Maha Vishuva day 92. Dolyatra 94. Hola, Vasantotsava 95. Maha Vishuva day 95. Maha Vishuva day 96. Maha Vishuva day 97. March 10 98. Maha Vishuva day 98. Maha Sinatra Vishuka Mahavishuva day 99. Maha Sivaratri (Midnight rule) 99. Maha Vishuva day 99. Maha Sivaratri (Kashmir) 99. Vaisakha (Punjab, Haryana, H.P,Delhi & Odisha), Visu (Kerala), Chaitra S 15 (Ldayvyapini) 99. Vaisakha (Punjab, Haryana, H.P,Delhi & Saura Vaisakhadi (Sunrise Rule) 99. Vaisakha (Punjab, Haryana, H.P,Delhi & Saura Vaisakhadi (Midnight Rule) 109. Maha K 13 100. Maha Visara Visara Visashhadi (Sunrise Rule) 109. Vaisakha (Hanipur), Day of Saura Vaisakhadi (Sunrise Rule) 109. Vaisakhadi (Bengal), Bahag Bihu (Assam) 109. Vaisakhadi (Bengal), Bahag Bihu (Assam) 100. Rangali Bihu (Assam) 100. Rangali Bihu (Assam) 100. Rangali Bihu (Assam) 100. Vaisakhadi (Sunrise Rule) 100. Vaisakhadi (Bengal), Bahag Bihu (Assam) 100. Vaisakhadi (Sunrise Rule) 100. Vaisakhadi (Sunrise Rule) 100. Vaisakhadi (Bengal), Bahag Bihu (Assam) 100. Vaisakhadi (Sunrise Rule) 100. Vaisakhadi (Bengal), Bahag Bihu (Assam) 100. Vaisakhadi (Sunrise Rule) 100. Vaisakhadi (Bengal), Bahag Bihu (Assam) 100. Vaisakhadi (Sunrise Rule) 100. Vaisakhadi (Bengal), Bahag Bihu (Assam) 100. Vaisakhadi (Sunrise Rule) 100			
90. Maha Sivaratri Nagha K 14(Prodosa & Nishithavyapini) 91. Holikadahana Phalguna S 15 (night) Phalguna S 15 Day after Holikadahana Phalguna S 15 Phalguna 19/ Phalguna 26/ March 9 Phalguna 19/ Phalguna 26/ March 9 Phalguna 20/ Phalguna 27/March 10 Phalguna 20/ Phalguna 27/March 10 Phalguna 20/ Phalguna 20/ Phalguna 27/March 10 Phalguna 20/Phalguna 27/March 20 Chaitra 5/ Chaitra 1/ Chaitra			
Nishithavyapini) 91. Holikadahana Phalguna S 15 (night) Phalguna 19/ Phalguna 26/ March 9 Phalguna 27/March 10 Phalguna 26/ March 9 Phalguna 20/Phalguna 27/March 10 Phalguna 30/ Chaitra 6/ March 20 Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 Chaitra 5/ Chaitra 1/ Mar. 21 Chaitra 5/ Chaitra 1/ Mar. 25 Cheti Chand (Sindhi New Year's Day) Vasanta Navaratrarambha, Telugu New Year's Day Chaitra S 1 Chaitra 5 Chaitra 1/ Mar. 25 Chaitra 5 Chaitra 5 Chaitra 1/ Mar. 25 Chaitra 7 Chaitra 7 Chaitra 7 Chaitra 7 Chaitra 7 Chaitra 17 Mar. 25 Chaitra 17 Chaitra 17 Mar. 25 Chaitra 17 Chaitra 17 Mar. 25 Chaitra 17 Chaitra 17 Chaitra 17 Mar. 25 Chaitra 17 Chaitra 17 Chaitra 17 Mar. 25 Chaitra 17 Chait			
91. Holikadahana Phalguna S 15 (night) Phalguna 19/ Phalguna 26/ March 9 92. Dolyatra Phalguna S 15 (night) Phalguna 19/ Phalguna 26/ March 9 93. Holi Day after Holikadahana Phalguna K 1 94. Hola, Vasantotsava Phalguna K 1 95. Maha Vishuva day Day of Sun's entry into Trop Aries (Midnight rule) 1. Indian New Year's Day Fixed Chaitra S 1 Cheti Chand (Sindhi New Year's Day), Vasanta Navaratrarambha, Telugu New Year's Day Chaitra S 1 Cheti Chand (Sindhi New Year's Day), Vasanta Navaratrarambha, Telugu New Year's Day Chaitra S 1 Chaitra S 1 Chaitra 5 / Chaitra 11/ Mar. 25 Choti Chand (Sindhi New Year's Day), Chaitra S 1 Chaitra S 1 Chaitra 5 / Chaitra 11/ Mar. 25 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 5 / Chaitra 11/ Chaitra 7 / Chaitra 11/ Chaitra 7 / Chaitra 11/ Chaitra 17 / Chait	Joi Mana Sivarani		1 Harguna 2/ 1 Harguna 9/ 1 CO 21
92. Dolyatra 93. Holi 94. Hola, Vasantotsava Phalguna S 15 Day after Holikadahana Phalguna K 1 Phalguna 26/March 19 Phalguna 27/March 10 Phalguna 20/Phalguna 20/Phalgun	91. Holikadahana		Phalouna 19/ Phalouna 26/ March 9
93. Holi 94. Hola, Vasantotsava 95. MahaVishuva day Phalguna K 1 Day of Sun's entry into Trop. Aries (Midnight rule) Phalguna 20/Phalguna 27/March 10 Phalguna 20/Phalguna 27/March 10 Phalguna 20/Phalguna 27/March 10 Phalguna 30 / Chaitra 6 / March 20 Phalguna 20/Phalguna 27/March 10 Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 27/March 10 Phalguna 20/Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 26 Phalguna 20/Phalguna 26 Phalgu			
94. Hola, Vasantotsava 95. MahaVishuva day 15. MahaVishuva day 16. Indian New Year's Day 16. Indian New Year's Day 17. Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 18. Chetic Chand (Sindhi New Year's Day), Vasanta Navaratrarambha, Telugu New Year's Day 18. Sarhul (Bihar) 19. Vaisakhadi (Budi Padava, Ugadi), Chaitra S 1 19. Vaisakhadi (Budi Padava, Ugadi), Chaitra S 1 20. Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 21. Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 22. Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 23. Chaitra Shukladi (Bihar) New Year's Day New Year's			
95. MahaVishuva day Aries (Midnight rule) 1. Indian New Year's Day Fixed Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Cheti Chand (Sindhi New Year's Day), Vasanta Navaratrarambha, Telugu New Year's Day Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 13 / Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 13 / Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 13 / Chaitra 14 / Chaitra 13 / Chaitra 17 / Chaitra 13 / Chaitra 17 / Chaitra 13 / Chaitra 14 / Chaitra 14 / Chaitra 15 / Chaitra 15 / Chaitra 15 / Chaitra 15 / Chaitra 16 / Chaitra 17 / Chaitra 17 / Mar. 25 Chaitra 17 / Chaitra 17 / Mar. 25 Chaitra 17 / Chaitra 17 / Mar. 25 Chaitra 13 / Chaitra 17 / Chaitra 18 / Chaitra 18 / Chaitra 18 / Chaitra 19 / Apr. 2 Chaitra 18 / Chaitra 19 / Apr. 2 Chaitra 18 / Chaitra 19 / Apr. 2 Chaitra 18 / Chaitra 19 / Chaitra 24 / Chaitra 26 / Chaitra 19 / Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / Apr. 14 Vaisakha 1 / Vaisakha 1 / Apr. 14 Vaisakha 1 / Vaisa		Phalguna K 1	
Aries (Midnight rule) Aries (Midnight rule) Aries (Midnight rule) Saka 1942/Kali 5120 /2020 A.D. Chaitra I / Chaitra 7 / Mar. 21 Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 Cheti Chand (Sindhi New Year's Day), Chaitra S 1 Cheti Chand (Sindhi New Year's Day), Chaitra S 1 Cheti Chand (Sindhi New Year's Day), Chaitra S 1 Cheti Chand (Sindhi New Year's Day), Chaitra S 1 Cheti Chand (Sindhi New Year's Day), Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 5 / Chaitra 11 / Chaitra 12 / Chaitra 13 / Chaitra 14 / Chaitra 14 / Mar. 25 Chaitra 5 / Chaitra 17 / Chaitra 13 / Chaitra 17 / Chaitra 13 / Chaitra 17 / Chaitra 13 / Chaitra 17 / Chaitra			
1. Indian New Year's Day 2. Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 Cheti Chand (Sindhi New Year's Day), Vasanta Navaratrarambha, Telugu New Year's Day 3. Sarhul (Bihar) 4. Oli begins (Jain) 5. Rama Navami 6. Mahavira Jayanti 7. Oli ends (Jain) 8. Vaisakhi (Punjab, Haryana, H.P,Delhi & Odisha), Visu (Kerala), Chaitra S 1 Chaitra S 15(Udayvyapini) 8. Vaisakhi (Punjab, Haryana, H.P,Delhi & Saura Vaisakhadi(Sunrise Rule) Chaitra Samkranti (Odisha), Saura Vaisakhadi (Midnight Rule) Chaitra Samkranti (Odisha), Saura Vaisakhadi (Sunrise Rule) Rangali Bihu (Assam) 9. Vaisakhadi (Bengal) , Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Dr. B. R. Ambedkar Jayanti 10. Babu Kuer Singh Day (Bihar), Tixel Tithi of Deva Damodara (Assam) 11. Akshaya Tritiya 12. May Day 13. Buddha Purnima 15. Chaitra 17 (Chaitra 11/ Mar. 25 Chaitra 5 / Chaitra 11/ Mar. 25 Chaitra 7 / Chaitra 13 / Mar. 27 Chaitra 2 / Chaitra 13 / Mar. 27 Chaitra 13 / Chaitra 13 / Apr. 27 Chaitra 29 Chaitra 13 / Chaitra 24 / Chaitra 25 / April 8 Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 10 / April 23 Vaisakha 3 / Vaisakha 10 / April 23 Vaisakha 17 / Vaisakha 13 / April 26 Vaisakha 17 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 17 / Vaisakha 1 / Apr. 14 Vaisakha 17 / Vaisakha 1 / Apr. 14 Vaisakha 17 / Vaisakha 1 / Apr. 14 Vaisakha 17 / Vaisakha 1			
2. Chaitra Shukladi(Gudi Padava, Ugadi), Chaitra S 1 Cheti Chand (Sindhi New Year's Day), Chaitra S 1 Vasanta Navaratrarambha, Telugu New Year's Day Chaitra S 1 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra S 1 Chaitra 7 / Chaitra 13 / Mar. 27 Chaitra S 1 Chaitra S 1 Chaitra 17 / Chaitra 17 / Mar. 31 Chaitra S 13 Chaitra 13 / Chaitra 17 / Chaitra 18 / Chaitra 19 / Chaitra 18 / Chaitra 19 / Chaitra 24 / Chaitra 24 / Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 24 / Chaitra 30 / April 13 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vaisakha 1 / Apr. 14 & Chaitra 25 / Vai		_	Saka 1942/Kali 5120 /2020 A.D.
Cheti Chand (Sindhi New Year's Ďay), Vasanta Navaratrarambha, Telugu New Year's Day Chaitra S 1 Chaitra 5 / Chaitra 11 / Mar. 25 Chaitra 11 / Chaitra S 3 Chaitra 7 / Chaitra 11 / Mar. 27 Chaitra 13 / Chaitra 17 / Chaitra 11 / Mar. 27 Chaitra 13 / Chaitra 17 / Chaitra 18 / Chaitra 19 / Apr. 2 Chaitra 13 / Chaitra 19 / Apr. 2 Chaitra 13 / Chaitra 19 / Apr. 2 Chaitra 19 / Chaitra 24 / Chaitra 25 / April 8 Chaitra Samkranti, Chadak Puja(Bengal), Saura Vaisakhadi(Sunrise Rule) Chaitra 24 / Chaitra 30 / April 13 Chaitra Samkranti (Odisha), Saura Vaisakhadi (Midnight Rule) Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / Apr. 14 (Assam), Shilhenba (Manipur), Meshadi (T.N.), Saura Vaisakhadi (Sunset Rule) Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 (Chaitra 25 / Vaisakh			Chaitra 1 / Chaitra 7 / Mar. 21
Vasanta Navaratrarambha, Telugu New Year's Day Chaitra S 1 Chaitra S 1 Chaitra S 7 Chaitra 11/ Mar. 25 Sarhul (Bihar) Chaitra S 3 Chaitra 7 / Chaitra 13/ Mar. 27 4. Oli begins (Jain) Chaitra S 7 Chaitra 13 / Chaitra 17 / Mar. 31 Chaitra S 9 Chaitra 13 / Chaitra 17 / Chaitra 18 / Chaitra 18 / Chaitra 19 / Chaitra 19 / Chaitra 17 / Chaitra 19 / Chaitra 19 / Chaitra 19 / Chaitra 19 / Chaitra 24 / Chaitra 30 / April 13 Chaitra Samkranti, Chaitra Samkranti, Chaitra Samkranti, Chaitra Samkranti, Chaitra Samkranti, Chaitra Samkranti (Odisha), Rangali Bihu(Assam) Saura Vaisakhadi (Sunrise Rule) P. Vaisakhadi (Bengal) , Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Saura Vaisakhadi (Sunset Rule) Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / Apr. 14 (Chaitra 25 / Vaisakha 1 / Apr. 14			Chaitra 5 / Chaitra 11 / Mar. 25
New Year's Day 3. Sarhul (Bihar) 4. Oli begins (Jain) 5. Rama Navami 6. Mahavira Jayanti 7. Oli ends (Jain) 8. Vaisakhi (Punjab, Haryana, H.P,Delhi & Odisha), Visu (Kerala), Chaitra Saura Vaisakhadi (Sunrise Rule) Chaitra Samkranti, Chaitra Saura Vaisakhadi (Sunrise Rule) Chaitra Samkranti (Odisha), Rangali Bihu (Assam) 9. Vaisakhadi (Bengal), Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Dr. B. R. Ambedkar Jayanti 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) 13. Buddha Purnima 14. Chaitra S 1 (Chaitra 17 / Chaitra 17 / Chaitra 19 / Chaitra 23 / Apr. 6 Chaitra S 15(Udayvyapini) Saura Vaisakhadi (Sunrise Rule) Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 1 / April 26 Vaisakha 1 / Vaisakha 1 / April 26 Vaisakha 1 / Vaisakha			
3. Sarhul (Bihar) Chaitra S 3 Chaitra 7 / Chaitra 13 / Mar. 27 4. Oli begins (Jain) Chaitra S 7 Chaitra 11 / Chaitra 17 / Mar. 31 5. Rama Navami Chaitra S 9 Chaitra 13 / Chaitra 19 / Apr. 2 6. Mahavira Jayanti Chaitra S 13 Chaitra 13 / Chaitra 19 / Apr. 2 6. Mahavira Jayanti Chaitra S 15 (Udayvyapini) Chaitra 19 / Chaitra 23 / Apr. 6 7. Oli ends (Jain) Saura Vaisakhadi(Sunrise Rule) & Chaitra 19 / Chaitra 25 / April 8 6. Vaisakhi (Punjab, Haryana, H.P,Delhi & Saura Vaisakhadi(Sunrise Rule) Chaitra 24 / Chaitra 30 / April 13 6. Chaitra Samkranti, Saura Vaisakhadi(Sunrise Rule) Chaitra 24 / Chaitra 30 / April 13 6. Chaitra Samkranti, Saura Vaisakhadi(Midnight Rule) Chaitra 24 / Chaitra 30 / April 13 6. Chaitra Samkranti, Saura Vaisakhadi (Midnight Rule) Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 24 / Chaitra 30 / April 13 6. Chaitra 25 / Vaisakha 1 / Apr. 14 6. Chaitra 25 / Vaisakha 1 / Apr. 14 6. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25 / Vaisakha 1 / Apr. 14 7. Oraitra 25			
4. Oli begins (Jain) 5. Rama Navami 6. Mahavira Jayanti 7. Oli ends (Jain) 8. Vaisakhi (Punjab,Haryana, H.P,Delhi & Odisha), Visu (Kerala), Chaitra S 15(Udayvyapini) Chaitra S 15(Udayvyapini) 8. Vaisakhi (Punjab,Haryana, H.P,Delhi & Odisha), Visu (Kerala), Chaitra Samkranti, Chadak Puja(Bengal), Cheiraoba (Manipur), Mesha Samkranti (Odisha), Rangali Bihu(Assam) 9. Vaisakhadi (Bengal) , Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Dr. B. R. Ambedkar Jayanti 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) Tito Deva Damodara(Assam) 13. Buddha Purnima 14. Oli ends (Jain) Chaitra S 15(Udayvyapini) Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 3 / Vaisakha 3 / Vaisakha 10 / Aprl. 23 Vaisakha 3 / Vaisakha 1 / Aprl. 23 Vaisakha 6 / Vaisakha 1 / Aprl. 23 Vaisakha 6 / Vaisakha 1 / Vai			
5. Rama Navami Chaitra S 9 Chaitra 13 / Chaitra 19 / Apr. 2 6. Mahavira Jayanti Chaitra S 13 Chaitra 17 / Chaitra 23 / Apr. 6 7. Oli ends (Jain) Chaitra S 15(Udayvyapini) Chaitra 19 / Chaitra 25 / April 8 8. Vaisakhi (Punjab, Haryana, H.P,Delhi & Odisha), Visu (Kerala), Chaitra S amkranti, Chadak Puja (Bengal), Cheiraoba (Manipur), Mesha Samkranti (Odisha), Rangali Bihu (Assam) 9. Vaisakhadi (Bengal), Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Dr. B. R. Ambedkar Jayanti Fixed Chaitra 25 / Vaisakha 1 / Apr. 14 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara (Assam) S1 of Saura Vaisakha S 15 12. May Day Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
6. Mahavira Jayanti Chaitra S 13 Chaitra 17/ Chaitra 23/ Apr. 6 7. Oli ends (Jain) Chaitra S 15(Udayvyapini) Chaitra 19 / Chaitra 25 / April 8 8. Vaisakhi (Punjab, Haryana, H.P,Delhi & Odisha), Visu (Kerala), Chaitra S amkranti, Chadak Puja (Bengal), Cheiraoba (Manipur), Mesha Samkranti (Odisha), Rangali Bihu (Assam) Shilhenba (Manipur), Meshadi (T.N.), Dr. B. R. Ambedkar Jayanti Pr. B. R. Ambedkar Jayanti Tithi of Deva Damodara (Assam) S1 of Saura Vaisakha S1 6. Mahavira Jayanti Chaitra S 13 Chaitra 17 / Chaitra 23 / Apr. 6 7. Oli ends (Jain) Chaitra S 15(Udayvyapini) Chaitra 19 / Chaitra 25 / April 8 7. Chaitra 17 / Chaitra 25 / April 8 7. Chaitra 17 / Chaitra 25 / April 8 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 7. Chaitra 24 / Chaitra 30 / April 13 8. Saka 1942/Kali 5121 / 2020 A.D. 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25 / Vaisakha 1 / Apr. 14 7. Chaitra 25			
7. Oli ends (Jain) 8. Vaisakhi (Punjab, Haryana, H.P,Delhi & Odisha), Visu (Kerala), Chaitra S 15(Udayvyapini) Saura Vaisakhadi(Sunrise Rule) Chaitra S 24 / Chaitra 30 / April 13 Chadak Puja(Bengal), Cheiraoba (Manipur), Mesha Samkranti (Odisha), Rangali Bihu(Assam) 9. Vaisakhadi (Bengal) , Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Dr. B. R. Ambedkar Jayanti 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) Tithi of Deva Damodara(Assam) 7. Oli ends (Jain) Saura Vaisakhadi(Sunrise Rule) Saura Vaisakhadi(Sunrise Rule) Saura Vaisakhadi (Midnight Rule) Chaitra 24 / Chaitra 30 / April 13 Saka 1942/Kali 5121 / 2020 A.D. Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Tixed Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 10 / April 23 Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 10 / April 26 Vaisakha 1 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 17 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 17 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 18 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
8. Vaisakhi (Punjab, Haryana, H.P,Delhi & Odisha), Visu (Kerala), Chaitra Samkranti, Chadak Puja(Bengal), Cheiraoba (Manipur), Mesha Samkranti (Odisha), Rangali Bihu(Assam) 9. Vaisakhadi (Bengal), Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Dr. B. R. Ambedkar Jayanti 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) Tithi of Deva Damodara(Assam) 8. Vaisakhadi (Sunrise Rule) Saura Vaisakhadi (Sunrise Rule) Saura Vaisakhadi (Sunrise Rule) Saura Vaisakhadi (Sunrise Rule) Saura Vaisakhadi (Sunrise Rule) Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 3 / Vaisakha 10 / Aprl. 23 Vaisakha 6 / Vaisakha 10 / Aprl. 23 Vaisakha 6 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisak			
& Odisha), Visu (Kerala), Chaitra Samkranti, Chaitra Samkranti, Chaitra Samkranti, Chadak Puja(Bengal), Cheiraoba (Manipur), Mesha Samkranti (Odisha), Rangali Bihu(Assam) 9. Vaisakhadi (Bengal), Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Dr. B. R. Ambedkar Jayanti 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) 11. Akshaya Tritiya 22. May Day 13. Baura Vaisakhadi (Sunrise Rule) Saura Vaisakhadi (Midnight Rule) Day of Saura Vaisakhadi (Midnight Rule) Day of Saura Vaisakhadi Saura Vaisakhadi (Sunrise Rule) Day Following Saura Vaisakhadi Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / April 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 10 / Aprl. 23 Vaisakha 6 / Vaisakha 10 / Aprl. 23 Vaisakha 6 / Vaisakha 13 / April 26 Vaisakha 11 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 24 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the		Chaitra S 15(Udayvyapini)	
Chaitra Samkranti, Chadak Puja(Bengal), Saura Vaisakhadi(Midnight Rule) Chaitra 24 / Chaitra 30 / April 13 Cheiraoba (Manipur), Day of Saura Vaisakhadi (Midnight Rule) Chaitra 24 / Chaitra 30 / April 13 Chaitra 25 / Vaisakha 1 / April 14 (Assam), Shilhenba (Manipur), Meshadi (Bengal), Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Saura Vaisakhadi (Sunset Rule) Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / A			
Chadak Puja(Bengal), Saura Vaisakhadi(Midnight Rule) Chaitra 24 / Chaitra 30 / April 13 Cheiraoba (Manipur), Day of Saura Vaisakhadi Chaitra 24 / Chaitra 30 / April 13 Mesha Samkranti (Odisha), Rangali Bihu(Assam) Saura Vaisakhadi (Sunrise Rule) Chaitra 24 / Chaitra 30 / April 13 Chaitra 24 / Chaitra 30 / April 13 Chaitra 24 / Chaitra 30 / April 13 Saka 1942/Kali 5121 / 2020 A.D. Chaitra 24 / Chaitra 30 / April 13 Saka 1942/Kali 5121 / 2020 A.D. Chaitra 25 / Vaisakha 1 / Apr. 14 Dr. B. R. Ambedkar Jayanti Fixed Chaitra 25 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Or. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) S1 of Saura Vaisakha Vaisakha 3 / Vaisakha 10 / Aprl. 23 Vaisakha S 3 Vaisakha 10 / Aprl. 23 Vaisakha S 3 Vaisakha 1 / April 26 Vaisakha S 15 Vaisakha 11 / Vaisakha 18 / May 1 Vaisakha S 15 Vaisakha 17 / Vaisakha 24 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
Cheiraoba (Manipur), Bay of Saura Vaisakhadi Chaitra 24 / Chaitra 30 / April 13 Chaitra 24 / Chaitra 24 / Chaitra 30 / April 13 Chaitra 24 / Chaitra 25 / April 13 Chaitra 24 / Chaitra 26 / Chaitra 25 / April 13 Chaitra 25 / Chaitra 26 / Chaitra 27 / Chaitra 27 / Chaitra 27 / Vaisakha 1 / Apr. 14 Chaitra 25 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 1 / Apr. 14 Vaisakha 3 / Vaisakha 10 / Aprl. 23 Vaisakha 10 / Aprl. 23 Vaisakha 3 / Vaisakha 10 / Aprl. 23 Vaisakha 6 / Vaisakha 13 / April 26 Vaisakha 11 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 18 / May 1 Vaisakha 17 / Vaisakha 24 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the		Saura Vaisakhadi(Midnight Pula)	Chaitra 24 / Chaitra 30 / April 13
Mesha Samkranti (Odisha), Rangali Bihu(Assam) 9. Vaisakhadi (Bengal), Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Dr. B. R. Ambedkar Jayanti 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) 11. Akshaya Tritiya 12. May Day Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
Rangali Bihu(Assam) 9. Vaisakhadi (Bengal) , Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Saura Vaisakhadi (Sunset Rule) 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) 11. Akshaya Tritiya 12. May Day Fixed Vaisakha S 15 Vaisakha 1/ Apr. 14 Vaisakha 3/ Vaisakha 1/ Apr. 123 Vaisakha 3/ Vaisakha 10/ Aprl. 23 Vaisakha 3/ Vaisakha 10/ Aprl. 23 Vaisakha 6/ Vaisakha 13/ April 26 Vaisakha 11/ Vaisakha 18/ May 1 Vaisakha S 15 Vaisakha 17/ Vaisakha 24/ May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
9. Vaisakhadi (Bengal) , Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Saura Vaisakhadi (Sunset Rule) Day Following Saura Vaisakhadi (Chaitra 25/Vaisakha 1 / Apr. 14 Chaitra 25/Vaisakha 1 / Apr. 14 Dr. B. R. Ambedkar Jayanti Fixed Chaitra 25/Vaisakha 1 / Apr. 14 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) Tithi of Deva Damodara(Assam) S1 of Saura Vaisakha Vaisakha 3 / Vaisakha 10 / Aprl. 23 Vaisakha 3 / Vaisakha 10 / Aprl. 23 Vaisakha 3 / Vaisakha 10 / Aprl. 23 Vaisakha 7 / Vaisakha 13 / April 26 12. May Day Fixed Vaisakha S1 Vaisakha 11 / Vaisakha 18 / May 1 Vaisakha Purnima Vaisakha S15 Vaisakha 17/ Vaisakha 24 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the		Saura vaisakiiadi (Suimise Ruie)	
9. Vaisakhadi (Bengal), Bahag Bihu (Assam), Shilhenba (Manipur), Meshadi (T.N.), Saura Vaisakhadi (Sunset Rule) Chaitra 25/ Vaisakha 1 / Apr. 14 Dr. B. R. Ambedkar Jayanti Fixed Chaitra 25/ Vaisakha 1 / Apr. 14 10. Babu Kuer Singh Day (Bihar), Tithi of Deva Damodara(Assam) S1 of Saura Vaisakha S3 Vaisakha 10/Aprl.23 11. Akshaya Tritiya Vaisakha S3 Vaisakha 11/April 26 12. May Day Fixed Vaisakha 11/Vaisakha 18/May 1 13. Buddha Purnima Vaisakha S15 Vaisakha 17/Vaisakha 18/May 1 14. Chaitra 25/ Vaisakha 1/Apr. 14 15. Chaitra 25/ Vaisakha 1/Apr. 14 16. Chaitra 25/ Vaisakha 1/Apr. 14 17. Vaisakha 3/ Vaisakha 10/Aprl.23 18. Vaisakha 3/ Vaisakha 10/Aprl.23 19. Vaisakha S3 Vaisakha 10/Aprl.23 11. Akshaya Tritiya Vaisakha S3 Vaisakha 11/ Vaisakha 18/May 1 13. Buddha Purnima Vaisakha S15 Vaisakha 17/ Vaisakha 24/ May 7 15. Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the	Rangan Bina(185am)		
(Assam), Shilhenba (Manipur), (Midnight Rule) Chaitra 25/Vaisakha 1 / Apr. 14 Meshadi (T.N.), Saura Vaisakhadi (Sunset Rule) Chaitra 25/Vaisakha 1 / Apr. 14 Dr. B. R. Ambedkar Jayanti Fixed Chaitra 25/Vaisakha 1 / Apr. 14 10. Babu Kuer Singh Day (Bihar), Fixed Vaisakha 3 / Vaisakha 1 / Apr. 14 11. Akshaya Tritiya Vaisakha S 3 Vaisakha 3 / Vaisakha 10 / Aprl. 23 11. Akshaya Tritiya Vaisakha S 3 Vaisakha 6 / Vaisakha 13 / April 26 12. May Day Fixed Vaisakha 11 / Vaisakha 18 / May 1 13. Buddha Purnima Vaisakha S 15 Vaisakha 17/ Vaisakha 24 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the	9. Vaisakhadi (Bengal) . Bahag Bihu	Day Following Saura Vaisakhadi	
Meshadi (T.N.), Saura Vaisakhadi (Sunset Rule) Chaitra 25/ Vaisakha 1 / Apr. 14 Dr. B. R. Ambedkar Jayanti Fixed Chaitra 25/ Vaisakha 1 / Apr. 14 10. Babu Kuer Singh Day (Bihar), Fixed Vaisakha 3 / Vaisakha 10 / Aprl. 23 Tithi of Deva Damodara(Assam) S1 of Saura Vaisakha Vaisakha 3 / Vaisakha 10 / Aprl. 23 11. Akshaya Tritiya Vaisakha S3 Vaisakha 6 / Vaisakha 13 / April 26 12. May Day Fixed Vaisakha 11 / Vaisakha 18 / May 1 13. Buddha Purnima Vaisakha S 15 Vaisakha 17/ Vaisakha 24 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
Dr. B. R. Ambedkar Jayanti Fixed Chaitra 25/ Vaisakha 1 / Apr. 14 10. Babu Kuer Singh Day (Bihar), Fixed Vaisakha 3 / Vaisakha 10 / Aprl. 23 Tithi of Deva Damodara(Assam) S1 of Saura Vaisakha Vaisakha 3 / Vaisakha 10 / Aprl. 23 11. Akshaya Tritiya Vaisakha S 3 Vaisakha 6 / Vaisakha 13 / April 26 12. May Day Fixed Vaisakha 11 / Vaisakha 18 / May 1 13. Buddha Purnima Vaisakha S 15 Vaisakha 17/ Vaisakha 24 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
10. Babu Kuer Singh Day (Bihar), Fixed Vaisakha 3/Vaisakha 10/Aprl.23 Tithi of Deva Damodara(Assam) S1 of Saura Vaisakha Vaisakha 3/Vaisakha 10/Aprl.23 11. Akshaya Tritiya Vaisakha S3 Vaisakha 6/Vaisakha 13/April 26 12. May Day Fixed Vaisakha 11/Vaisakha 18/May 1 13. Buddha Purnima Vaisakha S15 Vaisakha 17/Vaisakha 24/May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
Tithi of Deva Damodara(Assam) S1 of Saura Vaisakha Vaisakha 3/Vaisakha 10/Aprl.23 11. Akshaya Tritiya Vaisakha S3 Vaisakha 6/Vaisakha 13/April 26 12. May Day Fixed Vaisakha 11/Vaisakha 18/May 1 13. Buddha Purnima Vaisakha S15 Vaisakha 17/Vaisakha 24/May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
11. Akshaya Tritiya Vaisakha S 3 Vaisakha 6/Vaisakha 13/April 26 12. May Day Fixed Vaisakha 11/Vaisakha 18/ May 1 13. Buddha Purnima Vaisakha S 15 Vaisakha 17/ Vaisakha 24/ May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
12. May Day Fixed Vaisakha 11 / Vaisakha 18 / May 1 13. Buddha Purnima Vaisakha S 15 Vaisakha 17 / Vaisakha 24 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
13. Buddha Purnima Vaisakha S 15 Vaisakha 17/ Vaisakha 24 / May 7 Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the			
Festivals numbered 77 to 95 are repetition of the same for Pausha to Phalguna, 1941 S.E., published in the	13. Buddha Purnima	Vaisakha S 15	
	Festivals numbered 77 to 95 are repo	etition of the same for Pausha to F	
	previous year.		

PRINCIPAL FESTIVALS AND ANNIVERSARIES FOR HOLIDAYS

Festivals	Criterion	Date
		National/Nirayana/Gregorian
14. Birthday of Rabindranath	25 Voiselshe of Pana Calander	Saka 1942/Kali 5121/2020 A.D.
15. Pratap Jaynati	25 Vaisakha of Beng. Calendar Jyaishtha S 3	Vaisakha 18 / Vaisakha 25 /May 8 Jyaishtha 4/Jyaishtha 11/ May 25
16.Guru Arjan Dev's Martyrdom Day	Jyaishtha S 4	Jyaishtha 5/Jyaishtha 12/ May 26
(Sikh)	- y	
17. Rajas Samkranti (Odisha)	Saura Ashadhadi (Sunrise Rule)	Jyaishtha 24/Jyaishtha 31/June14
18. Rathayatra	Ashadha S 2	Ashadha 2/ Ashadha 9 / June 23
19. Kharchi Puja (Tripura) 20. Punaryatra (Smarta)	Ashadha S 8	Ashadha 7/ Ashadha 14/June 28
21. Ultarath, Bahudha Yatra	Ashadha S 10 9th day from Rathyatra	Ashadha 9/ Ashadha 16/June 30 Ashadha 10/ Ashadha 17/ July1
22. Ker Puja (Tripura)	First Tues. or Sat.day after 14 days	
J \ 1 /	from Kharchi Puja not falling on	1151144114 20, 1151144114 00,0419 11.
20 77 1 1 1 77 (77 1)	K 10	
23. Karkataka Vavu (Kerela)	K 30 of Saura Sravana	Ashadha 29/ Sravana 5/ July 20
24. Jhulana Yatrarambha	Sravana S 11	Sravana 8 / Sravana 15 / July 30
25. Tilak Commemoration Day 26. Raksha Bandhana , Amar nath yatra,	Fixed	Sravana 10/ Sravana 17/ Aug 1
Solono (Rakhi Bandhan), Naroli	Sravana S 15 Sravana S 15	Sravana 12 / Sravana 19 / Aug 3 Sravana 12 / Sravana 19 / Aug 3
Purnima, Balabhadra Puja (Odisha),	Sravana S 15	Sravana 12 / Sravana 19 / Aug 3
Sravani Purnima, Avani Avittam	Sravana S 15	Sravana 12 / Sravana 19 / Aug 3
(S. India), Jaju Upakarma,	Sravana S 15	Sravana 12 / Sravana 19 / Aug 3
Jhulana Yatrasamapanna	Sravana S 15	Sravana 12 / Sravana 19 / Aug 3
27. Rik Upakarma	Sravana nak . of Chandra Sravana	Sravana 13 / Sravana 20 / Aug. 4
28. Raksha Panchami (Odisha)	Sravana K 5	Sravana 17 / Sravana 24 / Aug.8
29. Janmashtami (Smarta) 30. Janmashtami (Vaishnava),	Sravana K 8 (Nishitha)	Sravana 20 / Sravana 27 / Aug. 11
Gokulashtami (Nandotsava)	Sravana K 8 Sravana K 8	Sravana 21 / Sravana 28 / Aug. 12 Sravana 21 / Sravana 28 / Aug. 12
31. Independence Day,	Fixed	Sravana 24 / Sravana 31 / Aug. 15
Paryusana Parvarambha (Chaturthi	7 days before Samvatsari	Sravana 24 / Sravana 31 / Aug. 15
Paksha –Jain)	(Chaturthi paksha)	
32. Paryusana Parvarambha (Panchami	7 days before Samvatsari	Sravana 25 / Bhadra 1 / Aug.16
Paksha – Jain)	(Panchami paksha)	G 01/Pl 1 7/4 00
33. Vinayak Chaturthi (T.N),Ganesh	S4 of Saura Bhadra	Sravana 31 / Bhadra 7 / Aug. 22
Chaturthi, Samvatsari(Chaturthi paksha - Jain),	Bhadra S 4 (Udayavyapini)	Sravana 31 / Bhadra 7 / Aug.22
Sama Veda Upakarma	Hasta in Chandra Bhadra	Sravana 31 / Bhadra 7 / Aug.22
34. Samvatsari(Panchami paksha - Jain)	Bhadra S 5 current at Sunset	Bhadra 1/ Bhadra 8/ Aug 23
35. Radhashtami	Bhadra S 8	Bhadra 4/ Bhadra 11/ Aug 26
36. First Onam Day	Day before Thiru Onam Day	Bhadra 8/ Bhadra 15/ Aug 30
37. Onam or Thiru Onam Day	Sravana nak.of Saura Bhadra	Bhadra 9/Bhadra 16/Aug 31
38. Ananta Chaturdasi Third Onam day	Bhadra S 14	Bhadra 10/Bhadra 17/ Sept 1
39. Fourth Onam day	Day after Thiru Onam day 2 days after Thiru Onam day	Bhadra 10/ Bhadra 17/ Sept 1 Bhadra 11/ Bhadra 18/ Sept 2
40. Tithi of Sri Madhava Deva (Assam)	K 5 of Saura Bhadra	Bhadra 16/ Bhadra 23/ Sept 7
41. Sri Krishna Jayanti (T.N., Kerala,	K8 of Saura Bhadra	Bhadra 19/ Bhadra 26/ Sept 10
Assam),		· · · · · · · · · · · · · · · · · · ·
Sri Jayanti (Ramanuja).		Bhadra 19/ Bhadra 26/ Sept 10
42. Mahalaya Amavasya ,Sarvapitri	Bhadra K 30	Bhadra 26 / Asvina 2 / Sept 17
Amavasya (Odisha) 43. Mahatma Gandhi's Birthday	Einad	Agrino 10/ Agrino 17 / Oct 2
44. Sthapana Navaratrarambha (Saradia)	Fixed Asvina S1	Asvina 10/ Asvina 17 / Oct 2 Asvina 25 / Kartika 2 / Oct 17
45. Durga Puja (Saptami)	Asvina S1 Asvina S 7	Kartika 1/ Kartika 8/Oct 23
Oli begins (Jain)	8 days before Oli ends	Kartika 1/ Kartika 8/Oct 23
46. Durga Puja (Maha Astami),	Asvina S 8	Kartika 2/ Kartika 9/Oct 24
Durga Puja (Maha Navami),	Asvina S 9	Kartika 2/ Kartika 9/Oct 24
Trivandram Arat	Sravana Nakshatra of Saura Kartika	
47. Ayudha Puja, Mahanavami	Day before Vijaya Dasami	Kartika 3/Kartika 10/Oct 25
(Bengal & Kerela), Dussehara or Dasahara	Day before Vijaya Dasami	Kartika 3/Kartika 10/Oct 25
Dusschara of Dasallara	Asvina S 10 (Aparahnavyapini) with Sravana Nakshatra	Kartika 3/ Kartika 10 /Oct 25
48. Vijaya Dasami (Bengal & kerala)	Asvina S 10	Kartika 4 / Kartika 11 / Oct 26
49. Kojagori Lakshmi Puja (Bengal)	Asvina S 10 Asvina S 15 (Pradosa)	Kartika 4/ Kartika 11 / Oct 20 Kartika 8/ Kartika 15/ Oct 30
50. Kumara Purnima (Odisha)	Asvina S 15	Kartika 9 / Kartika 16 / Oct 31
Maharsi Valmiki's Birthday (according to tithi), Oli ends	Asvina S 15 (Udayavyapini) Asvina S 15 (Udayavyapini)	Kartika 9 / Kartika 16 / Oct 31 Kartika 9 / Kartika 16 / Oct 31

PRINCIPAL FESTIVALS AND ANNIVERSARIES FOR HOLIDAYS

Festivals	Criterion	Date
		National/Nirayana/Gregorian
51. Naraka Chaturdasi (Purvarunodaya)	Asvina K 14(Purvarunodaya)	Saka 1942/Kali 5121/2020 A.D. Kartika 23/ Kartika 30/Nov. 14
(S. India)	•	
Kali Puja,	Asvina K 30(Nisithavyapini)	Kartika 23/ Kartika 30 /Nov. 14
Dipavali 52. Govardhan Puja,	Asvina K 14 Kartika S 1	Kartika 23/ Kartika 30 /Nov. 14 Kartika 24 / Agrahn. 1 / Nov 15
Bali Puja	Kartika S 1	Kartika 24 / Agrahn.1 / Nov 15
Annakuta	Kartika S 1	Kartika 24 / Agrahn. 1 / Nov 15
53. Kartika Sukladi 54. Bhratri Dvitiya, Dwat Puja, Tikka	Kartika S 1 Kartika S 2 (Aparhna)	Kartika 25/ Agrahn.2 /Nov 16 Kartika 25/ Agrahn.2 /Nov 16
Ceremony, Bhai Duj	Katuka S 2 (Apanina)	Kartika 25/Agrahn.2 /Nov 16
Bhratri Dvitiya (Bengal)	Kartika S 2 (Madhyahna)	Kartika 25/ Agrahn.2 /Nov 16
55. Pratihar Shasthi or Surya Shashthi, Chhat-Bihar	Kartika S 6	Kartika 29 / Agrahn.6 / Nov 20
56. Goshtashtami or Gopashtami	Kartika S 8	Agrahayana 1/Agrahn. 8/Nov22
57. Guru Teg Bahadur's Martyrdom Day	Fixed	Agrahayana 3/Agrahn. 10 / Nov 24
58. Rasayatra (Smarta) 59. Rasayatra (Vaishnava)	Kartika S 15 (Nisithavyapini)	Agrahayana 8/Agrahn. 15 / Nov 29
60. Guru Nanak's Birthday	Kartika S 15 (Udayavyapini) Kartika S 15 (Udayavyapini)	Agrahayana 9/Agrahn. 16 / Nov 30 Agrahayana 9/Agrahn. 16 / Nov 30
Ratha Yatra (Jain),	Kartika S 15 (Udayavyapini)	Agrahayana 9/Agrahn. 16 / Nov 30
Kartiki Purnima,	Kartika S 15	Agrahayana 9/Agrahn. 16 / Nov 30
Pushkar Fair Huthri –(3 days.) Coorg	Kartika S 15 S 15 to K 2 of Saura Margasirsa	Agrahayana 9/Agrahn. 16 / Nov 30 Agrahayana 9/Agrahn. 16 / Nov 30
61. Prathamashtami (Odisha)	Kartika K 8	Agrahayana 9/Agrahn. 16 / Nov 30 Agrahayana 17/Agrahn. 24 / Dec 8
62. Vaikuntha Ekadasi (S.India)	S 11 of Saura Pausha	Pausha 4 / Pausha 11 / Dec 25
63. Jor Mela-3 days- (Punjab)	Fixed	Pausha 5 / Pausha 12 / Dec 26 Saka 1942/Kali 5121 /2021 A.D.
64. Bhogi (S. India)	Day before Pongal	Pausha 23 / Pausha 30 / Jan 13
65. Makara Samkranti (Bengal)	Saura Maghadi (Midnight Rule)	Pausha 24 / Magha 1 / Jan.14
Magha Bihu (Assam) 66. Pongal (S.India),Tai Pongal(Kerala)	Saura Maghadi (Midnight Rule) The day of Saura Maghadi	Pausha 24 / Magha 1 / Jan.14 Pausha 24 / Magha 1 / Jan.14
Tamil New Year's day ,Tila Samkranti,	The day of Saura Maghadi	Pausha 24 / Magha 1 / Jan.14
Makara Samkranti (N. India)	The day of Saura Maghadi	Pausha 24 / Magha 1 / Jan.14
Makaradi snana 67. Mattu Pongal or Kanuvu	The day of Saura Maghadi	Pausha 24 / Magha 1 / Jan.14
68. Guru Gobind Singh's Birth Day	Day after Pongal Pausha S 7	Pausha 25 / Magha 2 / Jan.15 Pausha 30 / Magha 7 / Jan.20
69. Netaji's Birthday	Fixed	Magha 3/ Magha 10/ Jan.23
70. Republic Day 71. Sri Panchami, Vasanta Panchami	Fixed	Magha 6/ Magha 13/ Jan.26
72. Sivaji Jayanti	Magha S 5 Fixed	Magha 27 / Phalguna 4 / Feb 16 Magha 30 / Phalguna 7 / Feb 19
73. Guru Ravidas's Birthday	Magha S 15	Phalguna 8 / Phalguna 15 / Feb 27
74. Birth Day of Swami Dayananda	Phalguna K 10 (Purnimanta)	Phalguna 17/ Phalguna 24 / Mar 8
Saraswati (Founder of Arya Samaj") 75. Maha Sivaratri (Kashmir)	Magha K 13	Phalguna 19/ Phalguna 26/March 10
76. Maha Sivaratri, Maha Sivaratri (S.India)Magha K 14 (Prodosa &	Phalguna 20 /Phalguna 27/March 11
	Nishithavyapini)	Phalguna 20/Phalguna 27/March 11
77. MahaVishuva day	Day of Sun's entry into Trop.	Phalguna 29 / Chaitra 6 / March 20
	Aries (Midnight rule)	Saka 1943/Kali 5121 /2021 A.D.
78. Indian New Year's Day	Fixed	Chaitra 1/ Chaitra 8 / March 22
79. Holikadahan, Dolyatra 80. Holi, Hola,	Phalguna S 15 (night) Day after Holikadahana,	Chaitra 7/ Chaitra 14 / March 28
Vasantotsava	Phalguna K 1	Chaitra 8/ Chaitra 15 / March 29
Specia	l Festivals for Jammu and Kashm	
•		National/Nirayana/Gregorian
		Saka 1941/ Kali 5120/ 2020 A.D.
7. Lohri	Day before Saura Maghadi	Pausha 23/ Pausha 30/ Jan. 13
	(Sunrise Rule)	
	~	Saka 1942/ Kali 5120/ 2020 A.D.
1. Mela Bahu Fort	Chaitra S 8	Chaitra 12/Chaitra 18/April 1
	1 11 60	Saka 1942 / Kali 5121 / 2020 A.D
2. Mela Kshir Bhawani (2 days)	Jyaishtha S 8	Jyaishtha 9 / Jyaishtha 16/May 30
3. Guru Hargobind's Birthday	Jyaishtha K 1	Jyaishtha 16 / Jyaishtha 23 / June 6
4. Martyr's Day	Fixed	Asadha 22 / Asadha 29 / July 13
5. Kailas Yatra	Sravana K 13, K 14 Bhadra S 5 to S 7	Sravana 26 / Bhadra 2 / Aug 17 Bhadra 1 / Bhadra 8 / Aug 23
6. Mela Pat	DHAUFA 5 3 10 5 /	Bhadra 1 / Bhadra 8 / Aug 23 Saka 1942/ Kali 5121 / 2021 A.D.
7. Lohri	Day before Saura Maghadi	Pausha 23 / Pausha 30 / Jan. 13
/. LOIIII	(Sunrise Rule)	i ausiia 25 / 1 ausiia 30 / Jaii. 13
	(Builtise Kule)	

MOSLEM FESTIVALS, 2020-2021 A.D.

Festivals	Criterion	Date
		National/Nirayana/Gregorian Saka 1942 / Kali 5120/2020 A.D
1. Sab-e-Miraj *	27 Rajab	Chaitra 3 / Chaitra 9 / Mar 23
2. Sab-e-Barat*	15 Shaban	Chaitra 20 / Chaitra 26 / April 9
2. Suo e Burut		Saka 1942 / Kali 5121 / 2020 A.D
3. First day of Ramadan	1 Ramadan	Chaitra 24 / Vaisakha 1 / April 14
4. Shahadat-e-Hazrat Ali	21 Ramadan	Vaisakha 25 / Jyaishtha 1 / May 15
5. Sab -e- Oadr *.	27 Ramadan	Vaisakha 31 / Jyaishtha 7/ May 21
6. Jumat Ul Vida	Last Friday of Ramadan	Jyaishtha 1 / Jyaishtha 8/ May 22
7. Id-ul -Fitr	1 Shawwal	Jyaishtha 4 / Jyaishtha 11/ May 25
8. Id-uz -Zuha (Bakrid)	10 Zulhijja	Sravana 10 / Sravana 17 / Aug. 1
9. Muharram	10 Muharram	Bhadra 8 /Bhadra 15 / Aug. 30
10. Chelhum	Fortieth day from (39 days after 10 Muharram	
11. Akheri Chahar Shumba	Last Wednesday of Safar	Asvina 22 / Asvina 29 / Oct 14
12. Shahadat -e- Iman Hasan	28 Safar	Asvina 24 / Kartika 1 / Oct. 16
13. Milad-un Nabi or Id-e-Milad(Birth Day of the Prophet), Fateha Dwaz Daham or Bara Wafat	12 Rabiu'l awwal	Kartika 8 / Kartika 15 / Oct.30
14. Id-e-Maulad	17 Rabiu'l awwal	Kartika 13 / Kartika 20 /Nov. 4
15. Fateha Yazdadham (Giarhween Sharif)	11 Rabius Sani	Agrah. 6/Agrahayana 13 / Nov. 27 Saka 1942 / Kali 5121 / 2021 A.D
16. Hazrat ali's Birthday	13 Rajab	Phalguna 7 / Phalguna 14 /Feb 26
17. Sab-e-Miraj *	27 Rajab	Phalguna 21 / Phalguna 28 /Mar 12
17. Sue C Wing	3	Saka 1943 / Kali 5121 / 2021 A.D
1. Sab-e-Barat *	15 Shaban	Chaitra 9 / Chaitra 16 / Mar 30
		Saka 1943 / Kali 5122 / 2021 A.D
2. First day of Ramadan	1 Ramadan	Chaitra 24 / Vaisakha 1 / April 14
,		Charta 247 Valsakila 1771pm 14
	ivelia chaemied in the muse dina	

^{*} The festival is observed in the preceding night

THE ISLAMIC CALENDAR 2020-2021 A.D. (Hejira: 1441-1442 A.H.)

The beginning dates of the different months of the Islamic Calendar for the year 2020-2021 A.D. determined on the basis of the first visibility of the lunar crescent after the New-Moon day culculated for the Central Station of India are as follows:-

Jumadu's sani	1441A	. н .Jan. 27	2020	(30)	Safar	1441A	. н. Sept. 19	2020	(30)
Rajab	"	Feb. 26	"	(29)	Rabiu'l awwal	"	Oct. 19	"	(29)
Shaban	"	Mar. 26	"	(30)	Rabiu's sani	"	Nov. 17	"	(30)
Ramadan	"	Apr. 25	"	(30)	Jumadu'l awwal	"	Dec. 17	"	(29)
Shawwal	"	May 25	"	(29)	Jumadu's sani	"	Jan. 15	2021	(30)
Zu'lqada	"	June 23	"	(30)	Rajab	"	Feb. 14	"	(30)
Zulhijja	"	July 23	"	(29)	Shaban	"	Mar. 16	"	(29)
MUHARRAM	1442A	. H .Aug. 21	"	(29)	Ramadan	"	April 14	"	(30)

N.B.-Actually the months begin from sunset of the preceding day when the Moon becomes first visible.

Fixed Calendar

According to the Fixed Calendar the beginning dates of different months are as follows: 2020 - Jan. 27, Feb. 25, Mar. 26, Apr. 24, May 24, June 22, July 22, Aug. 20, Sept. 19, Oct. 18, Nov. 17, Dec. 16 2021 - Jan. 15, Feb. 13, Mar. 15, Apr. 12.

THE PARSI (SHAHENSHAHI) CALENDAR, 2020 - 2021 A.D.

(As used by the Indian Parsis) Yazdejardi Era: 1389 - 1390

The beginning dates of different months of the Parsi Shahenshahi Calendar are as follows: As regards the Parsi Kadmi Calendar, the months are the same but they begin 30 days earlier.

Shahrivar	1389	Jan. 14	2020	(30)	Ardibehesht	1390	Sept. 15	2020	(30)
Meher	"	Feb. 13	"	(30)	Khordad	"	Oct. 15	"	(30)
Avan	"	Mar. 14	"	(30)	Tir	"	Nov. 14	"	(30)
Adar	"	Apr. 13	"	(30)	Amardad	"	Dec. 14	"	(30)
Dei	"	May 13	"	(30)	Shahrivar	"	Jan. 13	2021	(30)
Bahman	"	June 12	"	(30)	Meher	"	Feb. 12	"	(30)
Aspandad	"	July 12	"	(30)	Avan	"	Mar. 14	"	(30)
Gathas(I-V)	"	Aug. 11	"	(5)	Adar	"	Apr. 13	"	(30)
FARVARDIN	1390	Aug. 16	"	(30)	Dei	"	May 13	"	(30)

PARSI FESTIVALS 2020-2021 A.D.

TARSI TESTIVALS 2020-2021A.D.											
Festivals	Criterion	Shahenshahi	Kadmi								
		National / Nirayana / Gregorian	National / Nirayana / Gregorian								
		Saka 1942/ Kali 5121/ 2020 A.D.	<u>Saka 1942/ Kali 5121/ 2020 A.D.</u>								
Zarthost-no-Diso	11 Dei	Jyaishtha 2/ Jyaishtha 9/ May 23	Vaisakha 3/ Vaisakha 10/ Apr. 23								
Gatha Gahambar	Gatha III	Sravana 22/ Sravana 29/ Aug. 13	Ashadha 23/ Ashadha 30/ July 14								
Parsi New Year Eve	Gatha V	Sravana 24/ Sravana 31/ Aug. 15	Ashadha 25/ Sravana 1/ July 16								
Parsi New Year's Day	1 Farvardin	Sravana 25/ Bhadra 1/ Aug. 16	Ashadha 26/ Sravana 2/ July 17								
Khordad Sal (Birthday	6 Farvardin	Shravana 30/ Bhadra 6/ Aug. 21	Ashadha 31/ Sravana 7/ July 22								
of Prophet Zarthost)											

N.B.- Jamshedi Naoroj falls on March 21 every year

THE JEWISH CALENDAR, 2020 - 2021 A.D.

Jewish Era: 5780 - 81 A.M.

To beginning dates of different months of the Jewish Calendar are as follows:

5780	Jan.	27	2020	(30)	TISHRI	5781	Sept.	19	2020	(30)
"	Feb.	26	"	(29)	Heshvan	"	Oct.	19	"	(29)
"	Mar.	26	"	(30)	Kislev	"	Nov.	17	"	(29)
"	Apr.	25	"	(29)	Tebeth	"	Dec.	16	"	(29)
"	May	24	"	(30)	Shebat	"	Jan.	14	2021	(30)
"	June	23	"	(29)	Adar		Feb.	13	"	(29)
"	July	22	"	(30)	Nisan	"	Mar.	14	"	(30)
"	Aug.	21	"	(29)	Iyar	"	Apr.	13	"	(29)
	0 0 0 0	" Feb. " Mar. " Apr. " May " June " July	" Feb. 26 " Mar. 26 " Apr. 25 " May 24 " June 23 " July 22	" Feb. 26 " " Mar. 26 " " Apr. 25 " " May 24 " June 23 " " July 22 "	" Feb. 26 " (29) " Mar. 26 " (30) " Apr. 25 " (29) " May 24 " (30) " June 23 " (29) " July 22 " (30)	" Feb. 26 " (29) Heshvan " Mar. 26 " (30) Kislev " Apr. 25 " (29) Tebeth " May 24 " (30) Shebat " June 23 " (29) Adar " July 22 " (30) Nisan	" Feb. 26 " (29) Heshvan " Kislev " Tebeth " May 24 " (30) Shebat " June 23 " (29) Adar " July 22 " (30) Nisan "	" Feb. 26 " (29) Heshvan " Oct. " Mar. 26 " (30) Kislev " Nov. " Apr. 25 " (29) Tebeth " Dec. " May 24 " (30) Shebat " Jan. " June 23 " (29) Adar Feb. " July 22 " (30) Nisan " Mar.	" Feb. 26 " (29) Heshvan " Oct. 19 " Mar. 26 " (30) Kislev " Nov. 17 " Apr. 25 " (29) Tebeth " Dec. 16 " May 24 " (30) Shebat " Jan. 14 " June 23 " (29) Adar Feb. 13 " July 22 " (30) Nisan " Mar. 14	" Feb. 26 " (29) Heshvan " Oct. 19 " " Mar. 26 " (30) Kislev " Nov. 17 " " Apr. 25 " (29) Tebeth " Dec. 16 " " May 24 " (30) Shebat " Jan. 14 2021 " June 23 " (29) Adar Feb. 13 " " July 22 " (30) Nisan " Mar. 14 "

JEWISH FESTIVALS 2020-2021 A.D.

Festivals	Criterion	Date
First day of Passover (Pesach)	15 Nisan	National/Nirayana/Gregorian Saka 1942/Kali 5120 / 2020 A.D. Chaitra 20 / Chaitra 26 / April 9 Saka 1942/Kali 5121 / 2020 A.D.
Feast of Weeks (Shebuoth) Tishabeab Jewish New Year (Rosh Hashanah) Day of Atonement (Yom Kippur) First day of Tabernacles (Succoth) Last day of Succoth (SimhathTorah) Hanukah	6 Sivan 9 Ab 1 Tishri 10 Tishri 15 Tishri 23 Tishri 25 Kislev	Jyaishtha 8 / Jyaishtha 15 / May 29 Sravana 8 / Sravana 15 / July 30 Bhadra 28 / Asvina 4 / Sept 19 Asvina 6 / Asvina 13 / Sept 28 Asvina 11 / Asvina 18 / Oct 3 Asvina 19 / Asvina 26 / October 11 Arghayana 20 / Argh. 27 / Dec 11
Purim	14 Adar	Saka 1942/Kali 5121 / 2021 A.D. Phalguna 7/ Phalguna 14 / Feb 26 Saka 1943/Kali 5121 / 2021 A.D.
First day of Passover (Pesach)	15 Nisan	Chaitra 7/ Chaitra 14 / March 28

CHRISTIAN FESTIVALS, 2020-2021 A.D.											
Festivals	Criterion	Date									
		National/Nirayana/Gregorian									
	T	Saka 1941 / Kali 5120/ 2020 A.D.									
1. Christian (English) New Year's Day	Fixed	Pausha 11 / Pausha 18 / Jan. 01									
2. Epiphany	Fixed	Pausha 16 / Pausha 23 / Jan. 06									
3. Septuagesima Sunday	63 days before Easter Sunday	Magha 20 / Magha 27 / Feb 09									
4. Quinquagesima (Shrove) Sunday	49 days before Easter Sunday	Phalguna 04/Phalguna 11/Feb 23									
5. Ash Wednesday	46 days before Easter Sunday	Phalguna 07 /Phalguna 14/Feb 26									
6 Dolm Cundou	7 days before Freter Conden	Saka 1942/ Kali 5120 / 2020 A.D.									
6. Palm Sunday 7. Good Friday	7 days before Easter Sunday 2 days before Easter Sunday	Chaitra 16/Chaitra 22 / April 05									
8. Easter (Holy) Saturday		Chaitra 21/ Chaitra 27/ April 10									
9. Easter Sunday	Day before Easter Sunday	Chaitra 22/ Chaitra 28/ April 11									
9. Easter Sunday	First Sunday after the 14 th day of the Moon (nearly Full Moon)	Chaitra 23/ Chaitra 29/ April 12									
	occurring on or immediately after										
	March 21										
	Maich 21	Saka 1942/ Kali 5121 / 2020 A.D.									
10. Low Sunday	7 days after Easter Sunday	Chaitra 30/Vaisakha 6/April 19									
11. Rogation Sunday	35 days after Easter Sunday	Vaisakha 27/Jyaishtha 3 / May 17									
12. Ascension Day-Holy Thursday	39 days after Easter Sunday	Vaisakha 31 /Jyaishtha 7 / May 21									
13. Ascension Sunday	3 days after Ascension day	Jyaishtha 3/Jyaishtha 10/ May 24									
14. Whit Sunday-Pentecost	49 days after Easter Sunday	Jyaishtha 10/Jyaishtha 17 /May 31									
15. Trinity Sunday	56 days after Easter Sunday	Jyaishtha 17 / Jyaishtha 24/June 7									
16. Corpus Christi (Thursday)	60 days after Easter Sunday	Jyaishtha 21/ Jyaishtha 28/June 11									
17. First Sunday in Advent	Fourth Sunday before Christmas,	Agrahn. 8 / Agrahn. 15 / Nov 29									
	i.e., Sunday nearest to Nov. 30.										
18. Christmas Eve	Day before Christmas	Pausha 03 / Pausha 10 / Dec. 24									
19. Christmas Day	Fixed	Pausha 04 / Pausha 11 / Dec. 25									
20. New Year Eve	Fixed	Pausha 10 / Pausha 17 / Dec. 31									
		Saka 1942/ Kali 5121 / 2021 A.D.									
1. Christian (English) New Year's Day	Fixed	Pausha 11 / Pausha 18 / Jan 01									
2 Epiphany	Fixed	Pausha 16 / Pausha 23 / Jan 06									
3. Septuagesima Sunday	63 days before Easter Sunday	Magha 11 / Magha 18 / Jan 31									
4. Quinquagesima (Shrove) Sunday	49 days before Easter Sunday	Magh 25/ Phalguna 2 / Feb 14									
5. Ash Wednesday	46 days before Easter Sunday	Magh 28/ Phalguna 5 / Feb 17									
		Saka 1943 / Kali 5121/ 2021 A.D.									
6. Palm Sunday	7 days before Easter Sunday	Chaitra 7/ Chaitra 14 / March 28									
7. Good Friday	2 days before Easter Sunday	Chaitra 12/ Chaitra 19 / April 2									
8. Easter (Holy) Saturday	Day before Easter Sunday	Chaitra 13/ Chaitra 20 / April 3									
9. Easter Sunday	First Sunday after the 14th day of	Chaitra 14 / Chaitra 21 / April 4									
	the Moon (nearly Full Moon)										
	occurring on or immediately after										
10.1	March 21	Cl. 1: 21/Cl. 1: 20 /4 1111									
10. Low Sunday	7 days after Easter Sunday	Chaitra 21/ Chaitra 28 / April 11									

THE INDIAN LUNAR CALENDAR TIME OF NEW MOON (IN I.S.T.) MARKING THE COMMENCEMENT OF LUNAR MONTHS

		2003		\	2006	2009 (1930 - 31 S.E.)				
	((1924 - 25			(1927 - 28 S.E.)	(19.				
Pausha Magha Phalguna Chaitra Vaisakha	Jan. Feb. Mar. Apr. May	1 3 1	h 25 16 08 24 17	m 53 19 05 48 44	d h m Jan. 29 19 45 Feb. 27 30 01 Mar. 29 15 45 Apr. 27 25 14	Jan. Feb. Mar. Apr.	d 26 25 26 25	h 13 07 21 08	m 25 05 36 53	
Jyaishtha Ashadha Sravana Bhadra Asvina	May June July Aug. Sept	29 29 27	09 24 12 22 08	49 07 21 54 37	May 27 10 56 June 25 21 35 July 25 10 01 Aug. 23 24 40 Sept. 22 17 15	May June July Aug. Sept.	24 22 22 20 18	17 25 08 15 24	41 05 05 05 32 14	
Kartika Margasirsha Pausha	Oct. Nov. Dec.	23	18 28 15	19 28 13	Oct. 22 10 44 Nov. 20 27 48 Dec. 20 19 31	Oct. Nov. Dec.	18 16 17	11 24 17	03 44 32	
	(2004 (1925 - 26		.)	2007 (1928 - 29 S.E.)	(193	2010 31 - 3		.)	
Pausha Magha Phalguna Chaitra Vaisakha	Jan. Feb. Mar. Apr.	20 20	26 14 28 18	35 48 11 51	Jan. 19 09 31 Feb. 17 21 44 Mar. 19 08 13 Apr. 17 17 06	Jan. Feb. Mar. <i>Apr</i> .	15 14 15 14	12 08 26 17	41 21 31 59	
Jyaishtha	May	19	10	22	May 16 24 57 June 15 08 43	May June	14 12	06 16	34 45	
Ashadha Sravana	June July Aug.	17	29 16 06	57 54 54	July 14 17 34 Aug. 12 28 33	July Aug.	11 10	25 08	10 38	
Bhadra Asvina	Sept. Oct.	14	19 08	59 18	Sept. 11 18 14 Oct. 11 10 31	Sept. Oct.	8	16 24	00 15	
Kartika Margasirsha Pausha	Nov. Dec	12	19 06 	57 59	Nov. 9 28 33 Dec. 9 23 10	Nov. Dec.	6 5	10 23	22 06	
	(2005 1926 - 27)	2008 (1929 - 30 S.E.)	(19	201 32 - 3		.)	
Pausha Magha Phalguna Chaitra Vaisakha Jyaishtha	Jan. Feb. Mar. Apr. May June	8 10 8 8	17 27 14 26 14 27	33 58 40 02 15 25	Jan. 8 17 17 Feb. 7 09 14 Mar. 7 22 44 Apr. 6 09 25 May 5 17 48 June 3 24 53	Jan. Feb. Mar. Apr. May June	4 3 4 3 3 1	14 08 26 20 12 26	33 01 16 02 21 33	
Ashadha Sravana Bhadra Asvina Kartika	July Aug. Sept Oct. Nov.	5 3 3	17 08 24 15 06	33 35 15 58 55	July 3 07 49 Aug. 1 15 43 Aug. 30 25 28 Sept. 29 13 42 Oct. 28 28 44	July July Aug. Sept. Oct.		14 24 08 16 25	24 10 34 39 26	
Margasirsha Pausha	Dec. Dec.		20 08	31 42	Nov. 27 22 25 Dec. 27 17 52	Nov. Dec.	25 24	11 23	40 36	

N.B.- The figures in the italics show the beginning of the intercalary (mala or adhika) month followed by the normal (suddha or nija) month of the same name.

THE INDIAN LUNAR CALENDAR TIME OF NEW MOON (IN I.S.T.) MARKING THE COMMENCEMENT OF LUNAR MONTHS

		201	2.	C	OWINE	20		1 01	LUNA	IIX I	2018					202	1	
	(19:	33 - 3		.)	(1936 - 37 S.E.)					(1939 - 40 S.E)					(1942 - 43 S.E)			
	`	d	h	m		d	h	m			d	h	m		(1)	d	h	m
Pausha Magha Phalguna Chaitra Vaisakha	Jan. Feb. Mar. Apr.	23 21 22 21	13 28 20 12	09 05 07 48	Jan. Feb. Mar. Apr.	20 18 20 18	18 29 15 24	44 17 06 27	Jai Fe Ma Ap	b. ar.	17 15 17 16	07 26 18 07	47 35 42 27		Jan. Feb. Mar. Apr.	13 11 13 12	10 24 15 08	30 36 51 01
Jyaishtha	May	20	05	17	May	18	09	43	<i>Mo</i> Jui	-	15 13	17 25	18 13		May June	11 10	24 16	30 23
Ashadha	June	19	20	32	<i>June</i> July	16 16	19 06	35 54	Jul		13	08	18		July	10	06	47
Sravana Bhadra	July <i>Aug</i> . Sept.	19 17 16	09 21 07	54 2 <i>4</i> 41	Aug. Sept	14 13	20 12	23 11	Au Se	_	11 09	15 23	28 32		Aug. Sept.	08 07	19 06	20 22
Asvina Kartika Margasirsha Pausha	Oct. Nov. Dec.	15 13 13	17 27 14	33 38 12	Oct. Nov. Dec.	12 11 11	29 23 15	36 17 59	Oc No De	OV.	09 07 07	09 21 12	17 32 50		Oct. Nov. Dec.	06 04 04	16 26 13	35 45 13
		201			(1	20 - 937)16	E)		(1)		19	.		/1/	20		
	(19:	34 - 3			_ `				_	•	940 -		,		,		44 S.I	·
Pausha Magha Phalguna Chaitra Vaisakha	Jan. Feb. Mar. Apr. May	11 10 11 10 10	25 12 25 15 05	14 50 21 05 58	Jan. Feb. Mar. Apr. May	10 8 9 7 6	07 20 07 16 25	01 09 25 54 00	Jar Fe Ma A _I M	b. ar.	6 4 6 5 4	06 26 21 14 28	58 34 34 21 16		Jan. Feb. Mar. Apr. Apr.	2 1 2 1 30	24 11 23 11 25	04 16 05 54 58
Jyaishtha	June	8	21	26	June	5	08	30	Ju	ne	3	15	32		May	30	17	00
Ashadha Sravana	July Aug.	8 6	12 27	44 21	July Aug.	4 2	16 26	31 15	Ju At	ly ug.	2	24 08	46 42		June July	29 28	08 23	22 25
Bhadra Asvina	Sept. Oct.	5 5	17 06	06 05	Sept. Sept.	1 30	14 29	33 41		ug. ept.	30 28	16 23	07 56		Aug. Sept.	27 25	13 27	47 25
Kartika Margasirsha Pausha	Nov. Dec.	3 2	18 29	20 52	Oct. Nov. Dec.	30 29 29 20	23 17 12	08 48 23	Oc No De	ov.	28 26 26	09 20 10	09 36 43		Oct. Nov. Dec.	25 23 23	16 28 15	19 27 47
	(19	201 35 - 36		.)	(19	20 2-838		E.)		(19	202 2-1941 -		Ξ.)					
Pausha Magha Phalguna Chaitra Vaisakha	Jan. Jan Mar. Mar. Apr.	1 30 1 30 29	16 27 13 24 11	.9 44 09 30 15 44	Jan. Feb. Mar. Apr.	27 26 28 26	29 20 08 17	37 28 27 46	Fo M	an. eb. Iar. pr.	24 23 24 23	27 21 14 07	12 02 58 56					
Jyaishtha Ashadha Sravana Bhadra Asvina	May June July Aug. Sept.	24	24 13 28 19 11	10 39 12 43 44	May June July Aug. Sept.	24 23 21 20	25 08 15 24 11	14 01 16 00 00	Ju Ju A Se O	lay ine ily iug. ept. oct.	17 16	25	09 11 03 12 30 01					
Kartika Margasirsha Pausha	Oct. Nov. Dec.	23 22 22	27 18 07	27 02 06	Oct. Nov. Dec.	19 18 18	24 17 12	42 12 00		ov. ec.	15 14	10 21 	37 47					

N.B.- The figures in the italics show the beginning of the intercalary ($mala\ or\ adhika$) month followed by the normal ($suddha\ or\ nija$) month of the same name.

SAKA ERA 1943

Month of CHAITRA (30 days)

Mesha : Madhava Spring (Vasanta), 2nd Month

(Nirayana) 8 Chaitra, 5121 Kali Era to (Nirayana) 7 Vaisakha, 5122 Kali Era

									Tithi N					Naksl	hatra	,	Yoga			
Date	Week Day	Gregorian Date	Su	nrise		oarent Ioon	Su	nset	No).		nding oment	No.		ding ment			nding oment		
			h	m	h	m	h	m			h	m		h	m		h	m		
		2021 A.D.																		
1	Mon	Mar. 22	6	02.2	12	06.9	18	11.7	S	8	9	00.7	6	21	27.7	4	12	55.0		
2	Tue	23	6	01.2	12	06.6	18	12.1	_	9	10	07.6	7	22	45.2	5	12	37.4		
3	Wed	24	6	00.3	12	06.3	18	12.5	S	10	10	23.9	8	23	12.2	6	11	40.5		
4	Thu	25	5	59.3	12	06.0	18	12.8		11	9	47.7	9	22	48.7	7	10	02.6		
5	Fri	26	5	58.3	12	05.7	18	13.2		12	8	21.6	10	21	39.2	8	7	45.2		
																(9	28	52.5)		
6	Sat	27	5	57.3	12	05.4	18	13.6		13	6	12.0	11	19	51.6	10	25	31.1		
									l	(14	27	27.4)								
7	Sun	28	5	56.4	12	05.1	18	14.0	S	15	24	18.1	12	17	35.6	11	21	48.5		
8	Mon	29	5	55.4	12	04.8	18	14.3	K	1	20	54.8	13	15	02.0	12	17	53.4		
9	Tue	30	5	54.4	12	04.5	18	14.7		2	17	27.7	14	12	21.7	13	13	53.9		
10	Wed	31	5	53.5	12	04.2	18	15.1		3	14	06.6	15	9	45.2	14	9	58.2		
11	Thu	Apr. 1	5	52.5	12	03.9	18	15.4		4	11	00.3	16	7	21.7	15	6	13.4		
12	Touri	_	_	<i>E</i> 1 <i>E</i>	12	02.6	10	150	1/	_	0	15.0	(17	29	19.2)	(16	26	45.6)		
12 13	Fri Sat	2 3	5	51.5 50.6	12 12	03.6 03.3	18 18	15.8 16.2	K	5 6	8 5	15.9 59.0	18 19	27 26	43.6 38.5	17 18	23 20	39.4 57.8		
13	Sai	3		30.0	12	05.5	10	10.2		(7	28	13.2)	19	20	30.3	10	20	31.0		
14	Sun	4	5	49.6	12	03.0	18	16.5		8	27	0.00	20	26	05.6	19	18	42.3		
15	Mon	5	5	48.7	12	02.7	18	16.9		9	26	19.3	21	26	04.8	20	16	53.0		
16	Tue	6	5	47.7	12	02.4	18	17.3	K	10	26	09.7	22	26	34.6	21	15	29.0		
17	Wed	7	5	46.8	12	02.1	18	17.7		11	26	29.4	23	27	32.9	22	14	28.7		
18	Thu	8	5	45.8	12	01.8	18	18.1		12	27	16.2	24	28	57.4	23	13	50.4		
19	Fri	9	5	44.9	12	01.6	18	18.4		13	28	28.2	25	-	-	24	13	32.5		
20	Sat	10	5	44.0	12	01.3	18	18.8		14	-	-	25	6	46.1	25	13	33.5		
21	Sun	11	5	43.1	12	01.0	18	19.2		14	6	03.7	26	8	57.5	26	13	52.1		
22	Mon	12	5	42.2	12	00.8	18	19.6	K	30	8	00.8	27	11	29.4	27	14	26.7		
23	Tue	13	5	41.3	12	00.5	18	20.0	S	1	10	17.1	1	14	19.3	1	15	15.2		
24	Wed	14	5	40.4	12	00.3	18	20.4		2	12	48.2	2	17	22.5	2	16	14.3		
25	Thu	15	5	39.5	12	0.00	18	20.8		3	15	27.5	3	20	32.5	3	17	18.9		
26	Fri	16	5	38.6	11	59.8	18	21.2		4	18	06.2	4	23	39.9	4	18	22.7		
27	Sat	17	5	37.8	11	59.6	18	21.6	S	5	20	32.9	5	26	33.5	5	19	17.5		
28	Sun	18	5	36.9	11	59.4	18	22.0		6	22	35.3	6	29	01.5	6	19	54.5		
29	Mon	19	5	36.1	11	59.1	18	22.4		7	24	02.0	7	-	-	7	20	05.4		
30	Tue	20	5	35.3	11	58.9	18	22.8	S	8	24	43.8	7	6	52.6	8	19	42.7		

N.B. - All timings are given in I.S.T. or the local mean time of the meridian of $\,821\!/\!2^{\circ}E.$ Long.

Names of Nakshatras:- 1.Asvini 2.Bharani 3.Krittika 4.Rohini 5.Mrigasiras 6.Ardra 7.Punarvasu 8.Pushya 9.Aslesha 10.Magha 11.Purva Phalguni 12.Uttara Phalguni 13.Hasta 14.Chitra 15.Svati 16.Visakha 17.Anuradha 18.Jyestha 19.Mula 20.Purvasadha 21.Uttarasadha 22.Sravana 23.Dhanistha 24.Satabhisaj 25.Purva Bhadrapada 26.Uttara Bhadrapada 27.Revati

AYANAMSA, 2020-2021 TRUE AYANAMSA FOR 5^h 29^m.0 I.S.T.

Date	;	A	yanan	nsa	Date	A	Ayanar	nsa	Date	•	1	Ayanan	nsa	Date	A	Ayana	msa
2020					2020				2020)				2020-21			
		0	/	//		0	/	//			0	/	//		0	/	//
Jan.	1	24	07	54.8	Apr. 30	24	08	09.5	Aug.	28	24	08	28.1	Dec.26	24	08	44.0
	4	24	07	55.0	May 3	24	08	10.0		31	24	08	28.7	29	24	08	44.7
	7	24	07	55.5	6	24	08	10.1	Sept.	3	24	08	28.8	Jan. 1	24	08	45.5
	10	24	07	56.3	9	24	08	10.5		6	24	08	28.8	4	24	08	46.1
	13	24	07	57.0	12	24	08	11.3		9	24	08	29.0	7	24	08	46.3
	16	24	07	57.3	15	24	08	11.8		12	24	08	29.6	10	24	08	46.8
	19	24	07	57.6	18	24	08	12.0		15	24	08	30.1	13	24	08	47.8
	22	24	07	58.3	21	24	08	12.2		18	24	08	30.2	16	24	08	48.4
	25	24	07	59.0	24	24	08	12.8		21	24	08	30.2	19	24	08	48.6
	28	24	07	59.4	27	24	08	13.6		24	24	08	30.8	22	24	08	48.9
	31	24	07	59.5	30	24	08	14.1		27	24	08	31.3	25	24	08	49.4
Feb.	3	24	07	59.8	June 2	24	08	14.3		30	24	08	31.5	28	24	08	50.2
	6	24	08	00.4	5	24	08	14.8	Oct.	3	24	08	31.5	31	24	08	50.7
	9	24	08	01.1	8	24	08	15.7		6	24	08	31.6	Feb. 3	24	08	50.8
	12	24	08	01.3	11	24	08	16.3		9	24	08	32.1	6	24	08	51.2
	15	24	08	01.5	14	24	08	16.6		12	24	08	32.7	9	24	08	07.1
	18	24	08	02.0	17	24	08	16.9		15	24	08	32.9	12	24	08	07.5
	21	24	08	02.6	20	24	08	17.4		18	24	08	32.9	15	24	08	07.9
	24	24	08	02.9	23	24	08	18.3		21	24	08	33.5	18	24	08	08.3
	27	24	08	02.9	26	24	08	18.9		24	24	08	34.2	21	24	08	08.7
Mar.	1	24	08	03.0	29	24	08	19.1		27	24	08	34.4	24	24	08	09.1
	4	24	08	03.5	July 2	24	08	19.6		30	24	08	34.5	27	24	08	09.5
	7	24	08	04.1	5	24	08	20.4	Nov.	2	24	08	34.7	Mar. 2	24	08	09.9
	10	24	08	04.3	8	24	08	21.1		5	24	08	35.3	5	24	08	10.4
	13	24	08	04.3	11	24	08	21.4		8	24	08	36.0	8	24	08	10.8
	16	24	08	04.7	14	24	08	21.6		11	24	08	36.3	11	24	08	11.2
	19	24	08	05.3	17	24	08	22.1		14	24	08	36.5	14	24	08	11.6
	22	24	08	05.5	20	24	08	22.9		17	24	08	37.1	17	24	08	12.0
	25	24	08	05.5	23	24	08	23.5		20	24	08	38.0	20	24	08	12.4
	28	24	08	05.6	26	24	08	23.7		23	24	08	38.4	23	24	08	12.8
	31	24	08	06.0	29	24	08	24.0		26	24	08	38.6	26	24	08	13.2
Apr.	3	24	08	06.5	Aug. 1	24	08	24.7	_	29	24	08	39.0	29	24	08	13.7
	6	24	08	06.8	4	24	08	25.4	Dec.	2	24	08	39.6	Apr. 1	24	08	14.1
	9	24	08	06.8	7	24	08	25.6		5	24	08	40.4	4	24	08	14.5
	12	24	08	07.3	10	24	08	25.7		8	24	08	40.9	7	24	08	14.9
	15	24	08	07.9	13	24	08	26.0		11	24	08	41.2	10	24	08	15.3
	18	24	08	08.2	16	24	08	26.7		14	24	08	41.8	13	24	08	15.7
	21	24	08	08.3	19	24	08	27.2		17	24	08	42.8	16	24	08	16.1
	24	24	08	08.4	22	24	08	27.4		20	24	08	43.4	19	24	08	16.6
,	27	24	08	08.9	25	24	08	27.5		23	24	08	43.7	22	24	08	17.0
Apr.	30	24	08	09.5	Aug.28	24	08	28.1	Dec.	26	24	08	44.0	Apr. 25	24	08	17.4

Mean Ayanamsa = $23^{\circ} + 51' + 25'' \cdot .53 + \text{precession in longitude from } 2000.0 \text{ to date}$

True Ayanamsa = Mean Ayanamsa + Nutation in longitude

 $^{= 24^{\}circ} + 08^{\circ} + 11^{\circ}.46 + \text{precession in longitude from } 2020.0 \text{ to date}$

 $^{= 24^{0} + 09&#}x27; + 01''.72 +$ precession in longitude from 2021.0 to date

LONGITUDE OF SUN, MOON AND PLANETS, 2021

APPARENT GEOCENTRIC LONGITUDE FOR 5^h 29^m.0 I.S.T.

Dat	Date Sun				Moon			Mercury			Venus			N	Iars		Jupiter			Sa		
		0 1 11		" 0 ' "		0 1 11		0 1 11			0 1 "			0 ' "			0 1 1					
Jan.	0	279	45	36	109	46	19	286	05	16	259	09	29	26	55	41	302	33	18	301	30	40
	1	280	46	44	122	43	29	287	42	50	260	24	37	27	21	27	302	46	58	301	37	29
	2	281	47	53	135	54	26	289	20	37	261	39	45	27	47	29	303	00	41	301	44	19
	3	282	49	01	149	18	24	290	58	37	262	54	54	28	13	49	303	14	25	301	51	12
	4	283	50	10	162	54	25	292	36	49	264	10	04	28	40	24	303	28	12	301	58	05
	5	284	51	19	176	41	25	294	15	11	265	25	14	29	07	16	303	42	01	302	05	01
	6	285	52	28	190	38	20	295	53	39	266	40	25	29	34	23	303	55	53	302	11	57
	7	286	53	37	204	44	03	297	32	11	267	55	36	30	01	45	304	09	46	302	18	55
	8	287	54	47	218	57	08	299	10	43	269	10	48	30	29	22	304	23	41	302	25	54
	9	288	55	57	233	15	39	300	49	09	270	25	60	30	57	14	304	37	38	302	32	54
	10	289	57	07	247	36	55	302	27	23	271	41	13	31	25	20	304	51	37	302	39	55
	11	290	58	16	261	57	22	304	05	18	272	56	26	31	53	41	305	05	37	302	46	58
	12	291	59	26	276	12	41	305	42	44	274	11	39	32	22	14	305	19	40	302	54	01
	13	293	00	36	290	18	09	307	19	31	275	26	52	32	51	02	305	33	43	303	01	06
	14	294	01	45	304	09	17	308	55	26	276	42	06	33	20	02	305	47	48	303	08	11
	15	295	02	54	317	42	27	310	30	14	277	57	19	33	49	15	306	01	54	303	15	17
	16	296	04	02	330	55	21	312	03	37	279	12	33	34	18	40	306	16	02	303	22	23
	17	297	05	09	343	47	23	313	35	14	280	27	46	34	48	17	306	30	10	303	29	30
	18	298	06	16	356	19	39	315	04	42	281	42	59	35	18	06	306	44	19	303	36	37
	19	299	07	21	8	34	45	316	31	34	282	58	12	35	48	06	306	58	30	303	43	45
	20	300	08	26	20	36	29	317	55	18	284	13	25	36	18	17	307	12	41	303	50	53
	21	301	09	31	32	29	26	319	15	21	285	28	38	36	48	39	307	26	53	303	58	01
	22	302	10	34	44	18	44	320	31	02	286	43	50	37	19	11	307	41	05	304	05	10
	23	303	11	36	56	09	37	321	41	39	287	59	03	37	49	53	307	55	18	304	12	19
	24	304	12	37	68	07	12	322	46	28	289	14	15	38	20	45	308	09	32	304	19	27
	25	305	13	38	80		05	323	44	37	290	29	27	38	51	46		23	46	304		35
	26	306	14	37	92	40	10	324	35	19	291	44	40	39	22	57	308	38	01	304	33	44
	27	307	15	36	105	22	12	325	17	40	292	59	51	39	54	16	308	52	16	304	40	53
	28	308	16	33	118	23	34	325	50	53	294	15	03	40	25	44	309	06	31	304	48	02
	29	309	17	30	131	44	05	326	14	13	295	30	15	40	57	20	309	20	46	304	55	10
	30	310	18	25	145	21	56	326	27	01	296	45	26	41	29	04	309	35	00	305	02	18
	31	311	19	20	159	13	58	326	28	49	298	00	37	42	00	56	309	49	16	305	09	25

LONGITUDE OF SUN, MOON AND PLANETS, 2021

APPARENT GEOCENTRIC LONGITUDE FOR $5^{\rm h}$ $29^{\rm m}$.0 I.S.T.

Date Sun			Moon			Mercury			V	enus		N	lars		Jupiter			Saturn			
	0 ' "		' " 0 ' "		0 ' "		0 ' "			0 ' "			0 1 11			0	0 !				
Feb. 1	312	20	13	173	16	11	326	19	22	299	15	48	42	32	55	310	03	31	305	16	32
2	313	21	06	187	24	23	325	58	41	300	30	59	43	05	02	310	17	45	305	23	38
3	314	21	58	201	34	50	325	27	08	301	46	10	43	37	16	310	32	00	305	30	44
4	315	22	49	215	44	36	324	45	22	303	01	21	44	09	38	310	46	15	305	37	49
5	316	23	40	229	51	48	323	54	27	304	16	31	44	42	07	311	00	29	305	44	54
6	317	24	29	243	55	16	322	55	46	305	31	42	45	14	43	311	14	42	305	51	57
7	318	25	18	257	54	16	321	50	59	306	46	53	45	47	25	311	28	56	305	59	00
8	319	26	06	271	47	58	320	41	58	308	02	03	46	20	15	311	43	08	306	06	02
9	320	26	53	285	35	08	319	30	43	309	17	13	46	53	11	311	57	20	306	13	04
10	321	27	39	299	13	58	318	19	14	310	32	23	47	26	14	312	11	31	306	20	03
11	322	28	23	312	42	12	317	09	24	311	47	32	47	59	23	312	25	42	306	27	02
12	323	29	06	325	57	30	316	02	54	313	02	41	48	32	37	312	39	51	306	33	60
13	324	29	48	338	57	51	315	01	11	314	17	50	49	05	58	312	53	59	306	40	56
14	325	30	28	351	42	03	314	05	24	315	32	58	49	39	25	313	08	06	306	47	51
15	326	31	07	4	10	06	313	16	25	316	48	05	50	12	57	313	22	12	306	54	44
16	327	31	44	16	23	17	312	34	46	318	03	12	50	46	35	313	36	16	307	01	36
17	328	32	19	28	24	13	312	00	48	319	18	18	51	20	18	313	50	19	307	08	26
18	329	32	53	40	16	35	311	34	36	320	33	23	51	54	07	314	04	20	307	15	14
19	330	33	25	52	05	02	311	16	07	321	48	28	52	27	60	314	18	20	307	22	01
20	331	33	55	63	54	45	311	05	08	323	03	32	53	01	58	314	32	19	307	28	46
21	332	34	23	75	51	16	311	01	23	324	18	36	53	36	01	314	46	15	307	35	30
22	333	34	49	88	00	06	311	04	30	325	33	39	54	10	08	315	00	10	307	42	11
23	334	35	14	100	26	18	311	14	07	326	48	41	54	44	19	315	14	03	307	48	51
24	335	35	37	113	14	01	311	29	50	328	03	42	55	18	35	315	27	54	307	55	28
25	336	35	58	126	25	54	311	51	14	329	18	43	55	52	55	315	41	43	308	02	03
26	337	36	16	140	02	33	312	17	57	330	33	43	56	27	18	315	55	30	308	08	36
27	338	36	34	154	02	08	312	49	35	331	48	42	57	01	46	316	09	15	308	15	07
28	339	36	49	168	20	24	313	25	47	333	03	41	57	36	16	316	22	57	308	21	36

LONGITUDE OF SUN, MOON AND PLANETS, 2021

APPARENT GEOCENTRIC LONGITUDE FOR 5^h 29^m.0 I.S.T.

Date	е	S	Sun		M	loon		Me	rcur	y	V	enus		N	Iars		Ju	piter		Sa	turn	
		0	'	"	0	'	"	0	'	"	0	'	"	0	'	"	0	'	"	0	'	"
Mar	1	340	37	02	182	51	08	314	06	14	334	18	38	58	10	51	316	36	37	308	28	02
	2	341	37	14	197	27	07	314	50	37	335	33	36	58	45	29	316	50	15	308	34	25
	3	342	37	24	212	01	29	315	38	40	336	48	32	59	20	10	317	03	50	308	40	47
	4	343	37	33	226	28	39	316	30	06	338	03	28	59	54	55	317	17	23	308	47	06
	5	344	37	41	240	44	55	317	24	41	339	18	24	60	29	43	317	30	53	308	53	22
	6	345	37	46	254	48	30	318	22	14	340	33	19	61	04	34	317	44	21	308	59	36
	7	346	37	51	268	39	04	319	22	31	341	48	14	61	39	29	317	57	46	309	05	47
	8	347	37	54	282	17	11	320	25	23	343	03	08	62	14	27	318	11	08	309	11	55
	9	348	37	55	295	43	36	321	30	40	344	18	01	62	49	29	318	24	27	309	18	00
	10	349	37	54	308	58	57	322	38	13	345	32	53	63	24	33	318	37	43	309	24	03
	11	350	37	52	322	03	22	323	47	55	346	47	45	63	59	40	318	50	56	309	30	02
	12	351	37	48	334	56	36	324	59	40	348	02	36	64	34	51	319	04	05	309	35	58
	13	352	37	42	347	38	10	326	13	20	349	17	26	65	10	04	319	17	11	309	41	51
	14	353	37	34	0	07	42	327	28	51	350	32	15	65	45	20	319	30	14	309	47	41
	15	354	37	24	12	25	15	328	46	08	351	47	03	66	20	39	319	43	13	309	53	28
	16	355	37	12	24	31	38	330	05	07	353	01	50	66	56	01	319	56	09	309	59	11
	17	356	36	58	36	28	34	331	25	44	354	16	37	67	31	25	320	09	01	310	04	51
	18	357	36	41	48	18	44	332	47	56	355	31	22	68	06	51	320	21	49	310	10	27
	19	358	36	23	60	05	46	334	11	40	356	46	06	68	42	20	320	34	34	310	16	00
	20	359	36	02	71	54	10	335	36	54	358	00	50	69	17	52	320	47	14	310	21	30
	21	0	35	40	83	49	00	337	03	36	359	15	32	69	53	25	320	59	51	310	26	56
	22	1	35	14	95	55	44	338	31	44	0	30	13	70	29	01	321	12	23	310	32	18
	23	2	34 34	47	108	19 06	49	340	01	17	1 2	44 59	53 32	71	04	39	321	24	51	310 310	37 42	36 51
	2425	3	33	17 45	121 134	18	16 57	341 343	32 04	14 34	4	39 14	32 09	71 72	40 15	18 60	321 321	37 49	15 35	310	48	01
			33		134	59	53	344	38			28			51	43	322				53	08
	2627	5 6	32	11 34	162	08	32	346	13	16 20	5 6	43	46 21	72 73	27	28	322	01 14	50	310 310	58	11
	28	7	31	56	176	41	17	347	49	46	7	57	55	73	03	14	322	26	06	311	03	10
	29	8	31	15	191	31	36	349	27	35	9	12	28	74	39	02	322	38	08	311	08	04
	30	9	30	32	206	30	50	351	06	45	10	27	00	75	14	52	322	50	04	311	12	55
	31	10	29	47	221	29	42	352	47	18	11	41	31	75	50	43	323	01	56	311	17	41

LONGITUDE OF SUN, MOON AND PLANETS, 2021

APPARENT GEOCENTRIC LONGITUDE FOR 5^h 29^m.0 I.S.T.

Date	S	Sun		M	loon		Me	rcur	y	V	enus		N	Iars		Ju	piter	•	Sa	aturn	
	0	'	"	0	'	"	0	'	"	0	'	"	0	'	"	0	'	"	0	•	"
Apr 1	11	29	00	236	19	46	354	29	15	12	56	02	76	26	36	323	13	43	311	22	24
2	12	28	12	250	54	44	356	12	35	14	10	31	77	02	31	323	25	25	311	27	02
3	13	27	21	265	10	52	357	57	19	15	24	59	77	38	27	323	37	02	311	31	36
4	14	26	30	279	06	49	359	43	29	16	39	27	78	14	24	323	48	34	311	36	05
5	15	25	36	292	43	01	1	31	04	17	53	53	78	50	24	324	00	00	311	40	30
6	16	24	41	306	00	60	3	20	05	19	08	19	79	26	24	324	11	22	311	44	51
7	17	23	43	319	02	46	5	10	33	20	22	44	80	02	27	324	22	37	311	49	07
8	18	22	44	331	50	18	7	02	27	21	37	07	80	38	30	324	33	47	311	53	18
9	19	21	43	344	25	21	8	55	49	22	51	30	81	14	36	324	44	52	311	57	24
10	20	20	41	356	49	19	10	50	38	24	05	51	81	50	42	324	55	50	312	01	26
11	21	19	36	9	03	23	12	46	54	25	20	12	82	26	50	325	06	43	312	05	23
12	22	18	29	21	08	37	14	44	36	26	34	31	83	02	60	325	17	29	312	09	15
13	23	17	20	33	06	15	16	43	41	27	48	49	83	39	11	325	28	10	312	13	03
14	24	16	10	44	57	54	18	44	09	29	03	06	84	15	23	325	38	44	312	16	45
15	25	14	57	56	45	39	20	45	56	30	17	22	84	51	37	325	49	13	312	20	22
16	26	13	42	68	32	17	22	48	57	31	31	37	85	27	51	325	59	34	312	23	55
17	27	12	25	80	21	13	24	53	08	32	45	51	86	04	07	326	09	50	312	27	22
18	28	11	06	92	16	34	26	58	22	34	00	03	86	40	24	326	19	59	312	30	45
19	29	09	45	104	22	56	29	04	32	35	14	15	87	16	42	326	30	01	312	34	02
20	30	08	22	116	45	12	31	11	26	36	28	24	87	53	01	326	39	56	312	37	14

 ${\bf SUN~AND~MOON, 2021}$ DECLINATION OF SUN, LATITUDE AND DECLINATION OF MOON FOR 5 h 29 m .0 I.S.T.

Da	ate		nation	Lati			nation	Date		nation	Lati		Decli	nation
		of	Sun	of N	1oon	of N	Aoon .		of	Sun	of M	Ioon	of N	I oon
		0	•	0		0	•		0	•	0	•	0	•
Jan.	0	-23	04.7	+2	37.1	+24	34.2	Feb. 1	-17	05.9	+5	04.7	+7	20.0
	1	22	60.0	3	34.3	23	01.5	2	16	48.7	4	49.1	+1	29.3
	2	22	54.8	4	21.2	20	13.1	3	16	31.2	4	15.9	-4	27.2
	3	22	49.2	4	54.6	16	18.5	4	16	13.4	3	27.0	10	10.7
	4	22	43.1	5	12.0	11	30.7	5	15	55.3	2	25.6	15	21.9
	5	22	36.6	5	11.9	6	05.1	6	15	36.9	1	15.6	19	41.6
	6	22	29.6	4	53.5	+0	17.4	7	15	18.3	+0	01.6	22	51.6
	7	22	22.2	4	17.4	-5	35.1	8	14	59.4	-1	12.0	24	37.5
	8	22	14.3	3	25.3	11	14.2	9	14	40.3	2	20.7	24	51.3
	9	22	06.0	2	20.1	16	19.5	10	14	20.9	3	20.3	23	34.5
	10	21	57.3	1	06.0	20	29.6	11	14	01.3	4	07.9	20	57.3
	11	21	48.1	0	12.2	23	23.7	12	13	41.4	4	41.1	17	16.1
	12	21	38.5	1	29.0	24	46.3	13	13	21.3	4	58.9	12	49.2
	13	21	28.5	2	39.3	24	31.6	14	13	01.0	5	01.3	7	54.2
	14	21	18.1	3	38.8	22	45.4	15	12	40.5	4	49.1	-2	46.0
	15	21	07.2	4	24.5	19	43.1	16	12	19.8	4	23.8	+2	22.9
	16	20	56.0	4	54.8	15	44.0	17	11	58.9	3	47.1	7	22.0
	17	20	44.4	5	09.2	11	07.6	18	11	37.8	3	00.8	12	02.2
	18	20	32.3	5	08.2	6	10.3	19	11	16.5	2	07.0	16	14.5
	19	20	19.9	4	53.0	-1	05.3	20	10	55.0	1	07.6	19	49.4
	20	20	07.1	4	25.1	+3	57.0	21	10	33.4	-0	04.7	22	36.5
	21	19	53.9	3	46.1	8	47.7	22	10	11.6	+0	59.4	24	24.7
	22	19	40.4	2	57.6	13	18.2	23	9	49.7	2	02.1	25	03.4
	23	19	26.5	2	01.4	17	19.4	24	9	27.6	3	00.4	24	24.0
	24	19	12.2	-0	59.4	20	40.9	25	9	05.3	3	50.8	22	23.2
	25	18	57.6	+0	06.1	23	10.9	26	8	43.0	4	29.8	19	03.7
	26	18	42.6	1	12.5	24	37.1	27	8	20.5	4	53.7	14	35.1
	27	18	27.3	2	16.7	24	48.9	28	-7	57.8	+5	0.00	+9	12.6
	28	18	11.7	3	15.3	23	40.1							
	29	17	55.7	4	04.6	21	10.8							
	30	17	39.4	4	41.1	17	28.3							
	31	-17	22.8	+5	01.8	+12	45.8							

 ${\bf SUN~AND~MOON,2021}$ DECLINATION OF SUN, LATITUDE AND DECLINATION OF MOON FOR $5^h~29^m.0~I.S.T.$

Date	LC		nation	Lati			nation	Date Date		nation	Lati			nation
		of	Sun		Ioon	of N	Aoon .		of	Sun	of M	Ioon	of N	Aoon .
		0	,	0		0	•		0	,	0	•	0	,
Mar.	1	-7	35.1	+4	47.2	+3	15.5	Apr 1	+4	32.5	+1	25.5	-17	56.6
	2	7	12.3	4	15.7	-2	54.7	2	4	55.6	+0	08.7	21	56.1
	3	6	49.3	3	27.5	8	55.7	3	5	18.6	-1	07.1	24	28.1
	4	6	26.3	2	26.2	14	25.6	4	5	41.6	2	17.3	25	24.4
	5	6	03.1	1	16.4	19	03.6	5	6	04.4	3	17.9	24	46.6
	6	5	39.9	+0	02.9	22	31.4	6	6	27.1	4	06.4	22	44.6
	7	5	16.6	-1	09.7	24	35.5	7	6	49.8	4	41.0	19	33.4
	8	4	53.2	2	17.1	25	08.7	8	7	12.3	5	00.8	15	29.8
	9	4	29.8	3	15.9	24	12.2	9	7	34.6	5	05.6	10	49.6
	10	4	06.3	4	03.1	21	54.9	10	7	56.9	4	55.9	-5	47.3
	11	3	42.8	4	36.7	18	30.9	11	8	19.0	4	32.7	+0	35.3
	12	3	19.2	4	55.7	14	16.7	12	8	41.0	3	57.3	4	34.8
	13	2	55.5	4	59.6	9	28.7	13	9	02.9	3	11.8	9	32.4
	14	2	31.9	4	48.9	-4	22.0	14	9	24.6	2	18.1	14	07.4
	15	2	08.2	4	24.8	+0	50.5	15	9	46.1	1	18.6	18	09.4
	16	1	44.4	3	49.0	5	57.0	16	10	07.5	-0	15.7	21	28.0
	17	1	20.7	3	03.4	10	47.3	17	10	28.7	+0	48.2	23	53.3
	18	0	57.0	2	10.1	15	11.7	18	10	49.7	1	50.7	25	15.8
	19	0	33.3	1	11.3	19	00.4	19	11	10.5	2	49.3	25	28.0
:	20	-0	09.5	-0	09.3	22	03.7	20	+11	31.2	+3	41.4	+24	25.4
,	21	+0	14.2	+0	53.8	24	11.4							
:	22	0	37.9	1	55.6	25	13.8							
,	23	1	01.6	2	53.4	25	02.8							
:	24	1	25.2	3	44.3	23	33.4							
,	25	1	48.8	4	25.1	20	45.5							
:	26	2	12.4	4	52.4	16	44.2							
,	27	2	35.9	5	03.0	11	40.1							
,	28	2	59.3	4	54.6	5	49.2							
	29	3	22.7	4	26.4	+0	28.2							
	30	3	46.1	3	39.7	-6	48.7							
	31	+4	09.3	+2	37.8	-12	46.6							

PLANETS, 2021 GEOCENTRIC LATITUDE AND DECLINATION FOR $5^{\rm h}$ $29^{\rm m}$.0 I.S.T.

Da	te		Mei	rcury			Ve	enus			M	lars			Jup	oiter			Sa	turn	
	•	Lat	itude	Decli	nation	Lat	titude	Decli	nation	La	titude	Decli	nation	La	titude	Decli	nation	Lat	titude	Decli	nation
		0	'	0	•	0	,	0	,	0	'	0	1	0	'	0	,	0	,	0	•
Jan.	0	-2	04.6	-24	31.8	+0	42.0	-22	17.8	+0	51.1	+11	10.3	+0	29.3	-20	03.8	+0	23.2	-20	11.9
	2	2	07.4	24	08.6	0	37.0	22	33.5	0	53.5	11	31.1	0	29.5	19	57.6	0	23.3	20	09.0
	4	2	08.7	23	39.3	0	32.0	22	46.5	0	55.7	11	52.2	0	29.6	19	51.4	0	23.5	20	06.1
	6	2	08.1	23	03.8	0	26.9	22	56.8	0	57.8	12	13.3	0	29.7	19	45.0	0	23.6	20	03.1
	8	2	05.6	22	22.1	0	21.8	23	04.3	0	59.8	12	34.6	0	29.8	19	38.6	0	23.7	20	0.00
	10	2	00.9	21	34.3	0	16.7	23	08.9	1	01.7	12	56.0	0	30.0	19	32.0	0	23.8	19	56.9
	12	1	53.8	20	40.8	0	11.5	23	10.7	1	03.6	13	17.4	0	30.1	19	25.3	0	24.0	19	53.8
	14	1	44.0	19	41.8	0	06.4	23	09.7	1	05.3	13	38.8	0	30.2	19	18.6	0	24.1	19	50.7
	16	1	31.2	18	38.1	0	01.3	23	05.8	1	06.9	14	00.3	0	30.4	19	11.7	0	24.2	19	47.5
	18	1	15.3	17	30.6	0	03.8	22	59.0	1	08.4	14	21.8	0	30.5	19	04.8	0	24.4	19	44.4
	20	0	55.8	16	20.7	0	08.9	22	49.5	1	09.9	14	43.2	0	30.7	18	57.7	0	24.5	19	41.1
	22	0	32.8	15	10.1	0	13.8	22	37.1	1	11.3	15	04.6	0	30.9	18	50.6	0	24.6	19	37.9
	24	-0	06.1	14	01.2	0	18.7	22	22.0	1	12.6	15	25.9	0	31.0	18	43.4	0	24.8	19	34.7
	26	+0	24.0	12	56.9	0	23.5	22	04.1	1	13.8	15	47.0	0	31.2	18	36.2	0	24.9	19	31.4
	28	0	56.9	12	00.6	0	28.2	21	43.6	1	15.0	16	08.1	0	31.3	18	28.8	0	25.1	19	28.1
	30	1	31.5	11	15.8	0	32.8	21	20.4	1	16.1	16	28.9	0	31.5	18	21.4	0	25.2	19	24.8
Feb.	1	2	06.3	10	45.6	0	37.3	20	54.7	1	17.2	16	49.6	0	31.7	18	13.9	0	25.4	19	21.5
	3	2	39.0	10	32.3	0	41.6	20	26.4	1	18.1	17	10.1	0	31.9	18	06.4	0	25.5	19	18.2
	5	3	06.9	10	36.5	0	45.8	19	55.8	1	19.1	17	30.4	0	32.1	17	58.8	0	25.7	19	14.8
	7	3	27.6	10	56.7	0	49.9	19	22.8	1	19.9	17	50.4	0	32.2	17	51.1	0	25.8	19	11.5
	9	3	39.3	11	29.6	0	53.7	18	47.6	1	20.7	18	10.1	0	32.4	17	43.4	0	26.0	19	08.2
	11	3	41.3	12	10.5	+0	57.4	18	10.1	1	21.5	18	29.6	0	32.6	17	35.7	0	26.1	19	04.9
	13	3	34.3	12	54.7	-1	00.9	17	30.6	1	22.2	18	48.8	0	32.8	17	27.9	0	26.3	19	01.5
	15	3	19.9	13	38.3	1	04.2	16	49.2	1	22.9	19	07.7	0	33.0	17	20.0	0	26.5	18	58.2
	17	3	00.1	14	18.3	1	07.3	16	05.8	1	23.5	19	26.2	0	33.3	17	12.2	0	26.7	18	54.9
	19	2	36.7	14	52.9	1	10.2	15	20.6	1	24.1	19	44.4	0	33.5	17	04.3	0	26.8	18	51.6
	21	2	11.5	15	21.2	1	12.8	14	33.7	1	24.6	20	02.2	0	33.7	16	56.3	0	27.0	18	48.3
	23	1	45.6	15	42.7	1	15.3	13	45.2	1	25.1	20	19.7	0	33.9	16	48.4	0	27.2	18	45.1
	25	1	19.7	15	57.4	1	17.5	12	55.3	1	25.6	20	36.7	0	34.2	16	40.4	0	27.4	18	41.9
	27	+0	54.6	-16	05.2	-1	19.4	-12	03.9	+1	26.0	+20	53.3	+0	34.4	-16	32.4	+0	27.5	-18	38.6

 $\label{eq:planets} \textbf{PLANETS, 2021}$ GEOCENTRIC LATITUDE AND DECLINATION FOR 5^{h} $29^{\text{m}}.0$ I.S.T.

Da	te		Me	rcury	JCEN			enus				lars				oiter	11,511		Sa	turn	
		Lat	itude	Decli	nation	Lat	itude	Decli	nation	La	titude	Decli	nation	La	titude	Decli	nation	Lat	itude	Decli	nation
		0	•	0		0	•	0	,	0	,	0	'	0	,	0	,	0	•	0	'
Mar.	1	+0	30.5	-16	06.5	-1	21.1	-11	11.3	+1	26.4	+21	09.4	+0	34.6	-16	24.4	+0	27.7	-18	35.5
	3	0	07.7	16	01.3	1	22.6	10	17.4	1	26.8	21	25.1	0	34.9	16	16.4	0	27.9	18	32.3
	5	+0	13.6	15	49.9	1	23.8	9	22.5	1	27.1	21	40.3	0	35.1	16	08.4	0	28.1	18	29.2
	7	-0	33.4	15	32.3	1	24.8	8	26.5	1	27.4	21	55.1	0	35.4	16	00.5	0	28.3	18	26.1
	9	0	51.7	15	08.9	1	25.5	7	29.6	1	27.7	22	09.3	0	35.7	15	52.5	0	28.5	18	23.1
	11	1	08.3	14	39.7	1	26.0	6	32.0	1	27.9	22	23.1	0	35.9	15	44.5	0	28.7	18	20.1
	13	1	23.3	14	04.9	1	26.2	5	33.6	1	28.1	22	36.3	0	36.2	15	36.6	0	28.9	18	17.1
	15	1	36.7	13	24.7	1	26.2	4	34.7	1	28.3	22	48.9	0	36.5	15	28.7	0	29.1	18	14.2
	17	1	48.3	12	39.1	1	25.9	3	35.2	1	28.5	23	01.1	0	36.8	15	20.8	0	29.3	18	11.3
	19	1	58.3	11	48.4	1	25.3	2	35.4	1	28.6	23	12.6	0	37.1	15	13.0	0	29.6	18	08.5
	21	2	06.5	10	52.5	1	24.5	1	35.2	1	28.7	23	23.6	0	37.3	15	05.2	0	29.8	18	05.8
	23	2	13.0	9	51.7	1	23.4	-0	34.8	1	28.8	23	34.0	0	37.7	14	57.4	0	30.0	18	03.1
	25	2	17.7	8	46.1	1	22.1	+0	25.6	1	28.9	23	43.8	0	38.0	14	49.8	0	30.2	18	00.4
	27	2	20.6	7	35.7	1	20.6	1	26.1	1	28.9	23	53.0	0	38.3	14	42.1	0	30.4	17	57.9
	29	2	21.6	6	20.6	1	18.8	2	26.5	1	28.9	24	01.6	0	38.6	14	34.6	0	30.7	17	55.4
	31	2	20.8	5	01.0	1	16.8	3	26.7	1	28.9	24	09.5	0	38.9	14	27.1	0	30.9	17	53.0
Apr.	2	2	18.0	3	37.1	1	14.5	4	26.7	1	28.9	24	16.9	0	39.3	14	19.7	0	31.1	17	50.6
	4	2	13.3	2	08.9	1	12.0	5	26.3	1	28.9	24	23.5	0	39.6	14	12.4	0	31.4	17	48.3
	6	2	06.6	-0	36.7	1	09.3	6	25.4	1	28.8	24	29.6	0	40.0	14	05.1	0	31.6	17	46.1
	8	1	57.9	+0	59.4	1	06.4	7	24.0	1	28.7	24	34.9	0	40.3	13	58.0	0	31.8	17	44.0
	10	1	47.1	2	38.9	1	03.3	8	21.9	1	28.6	24	39.7	0	40.7	13	51.0	0	32.1	17	42.0
	12	1	34.3	4	21.6	1	0.00	9	19.0	1	28.5	24	43.7	0	41.0	13	44.0	0	32.3	17	40.0
	14	1	19.6	6	06.8	0	56.5	10	15.3	1	28.4	24	47.1	0	41.4	13	37.2	0	32.6	17	38.2
	16	1	03.0	7	53.8	0	52.9	11	10.7	1	28.3	24	49.8	0	41.8	13	30.5	0	32.8	17	36.4
	18	0	44.7	9	41.9	0	49.0	12	04.9	1	28.1	24	51.8	0	42.2	13	24.0	0	33.1	17	34.7
	20	-0	25.0	+11	29.8	-0	45.0	+12	58.1	+1	28.0	+24	53.2	+0	42.6	-13	17.5	+0	33.4	-17	33.1

URANUS, NEPTUNE AND PLUTO, 2021

APPARENT GEOCENTRIC LONGITUDE FOR $5^{\rm h}$ $29^{\rm m}$.0 I.S.T.

Date		Ur	anus			ptun			luto		Date		1	anus			ptun	e	P	luto	
		0	•	"	0	,		0	•	"			0	,	"	0	,	"	0	•	"
Jan.	0	36	48	40	348	27	19	294	09	20	Feb. 2	25	37	27	30	350	06	17	295	55	29
0 4111	2	36	47	18		29	32	294		15		27	37	31	41	350		45	295		39
	4	36	46	07	348		53	294	17	11	Mar.	1	37	36	01	350	15	15	296	01	44
	6	36	45	08	348	34	20	294	21	08		3	37	40	31	350	19	45	296	04	45
	8	36	44	22	348	36	55	294	25	06		5	37	45	10	350	24	17	296	07	41
1	0	36	43	48	348	39	37	294	29	05		7	37	49	58	350	28	50	296	10	32
1	12	36	43	27	348	42	26	294	33	05		9	37	54	55	350	33	23	296	13	18
1	4	36	43	19	348	45	22	294	37	05	1	11	38	00	00	350	37	57	296	15	58
1	16	36	43	23	348	48	24	294	41	04	1	13	38	05	14	350	42	30	296	18	33
1	8	36	43	39	348	51	32	294	45	04	1	15	38	10	35	350	47	03	296	21	02
2	20	36	44	08	348	54	46	294	49	03	1	17	38	16	04	350	51	36	296	23	25
2	22	36	44	50	348	58	06	294	53	02	1	19	38	21	40	350	56	08	296	25	42
2	24	36	45	45	349	01	31	294	56	59	2	21	38	27	24	351	00	39	296	27	54
2	26	36	46	52	349	05	03	295	00	56	2	23	38	33	14	351	05	09	296	29	59
2	28	36	48	12	349	08	39	295	04	52	2	25	38	39	10	351	09	37	296	31	58
3	30	36	49	44	349	12	21	295	08	46	2	27	38	45	12	351	14	04	296	33	50
Feb.	1	36	51	28	349	16	07	295	12	38	2	29	38	51	20	351	18	28	296	35	36
	3	36	53	24	349	19	58	295	16	28	3	31	38	57	33	351	22	51	296	37	15
	5		55	32				295			Apr.	2		03		351		11	296		
	7		57	53	349	27	52			01		4	39	10	15	351		29	296		15
	9		00	25	349			295				6		16	43	351		44	296		34
	1	37	03	09	349		03	295	31	25		8	39	23	14	351		55	296		47
	13	37	06	05	349	40	14	295				10		29	50	351		04	296		
	15	37	09	12	349	44	28	295	38	36]	12	39	36	28	351	48	08	296	44	51
	7	27	12	20	240	40	15	205	12	06	,	1.4	20	12	10	251	50	00	200	15	42
	17				349							14							296		
	19				349							16 18		49 56							
	21		19					295				18									
	23				350			295				20 22		03		352 352					
2	25	31	21	30	350	U6	1 /	295	22	29	- 4	22	40	10	<i>2</i> 4	352	U/	55	296	48	UU

In the following pages, a short explanation of the terms used in this Ephemeris has been given and the scope and limitations of the information furnished have been stated in a concise form. The values of the different constants and other data upon which the tabulated quantities are based have also been given in some cases in order to facilitate the use of this Ephemeris. It is not intended to furnish here any detailed explanation about the compilation of the tabular matter for which the reader is referred to the relevant literature.

Many changes have been incorporated in this publication from time to time including several recomendations of IAU at its General Assembly.

THE STANDARD EPOCH AND TIME SCALES

There are two classes of time scales used in Astronomy, one based on the Systeme International (SI) - the atomic second, the other based on the rotation of the Earth. Time scales based on the SI second include TAI and TT for practical applications. Time scale based on the rotation of the Earth include mean and apparent sidereal time and UT1. Because of irregularites in the Earth's rotation and its tidal deceleration, Earth's rotation based time scales do not advance at a uniform rate, and they increasingly lag behind the SI-second-based time scales. The widely disseminated time scale UTC is a hybrid, it advances by SI seconds but is subject to one-second corrections (leap seconds) to keep it within 0^{s} .9 of UT1.

The standard epoch J 2000.0 corresponds to 2000 January 1, 12^h TT (JD 245 1545.0 TT). A date may be expressed in years as a Julian epoch or for some purposes as a Besselian epoch.

Julian epoch = J [2000.0 + (JD - 245 1545.0)/365.25]

Where the quantity in the denominator is the Julian year.

Besselian epoch= B [1900.0+(JD-241 5020.313 52)/365.242 198 781]

Where the quantity in the denominator is the length of tropical year.

Prefixes J and B stand for the Julian and Besselian epochs respectively.

Various time systems used in this publication and their inter-relationships are described below :

Sidereal time system is derived from the Earth's rotation with respect to the stars. Local sidereal time is defined as the local hour angle of the vernal equinox. It is 0^h at the instant when the vernal equinox is at the upper transit of the local meridian. It is determined from observation of meridian transits of known stars. As the equinox oscillates about its mean position due to the effect of nutation, it gives rise to two kinds of sidereal time: the apparent sidereal time which is the hour angle of the true equinox of date and the mean sidereal time which is the hour angle of the mean equinox of date. The relation between the two is:

Apparent sidereal time = Mean sidereal time + Equation of Equinoxes

Equation of equinoxes is the total nutation in longitude multiplied by the cosine of the obliquity of the ecliptic. Its value varies within ± 1.2 seconds of time in a period of about 18.6 years.

Sidereal time on the geographic meridian of Greenwich is known as Greenwich sidereal time. Local sidereal time is related to Greenwich sidereal time (mean or apparent as appropriate) as follows:

Local sidereal time = Greenwich sidereal time + λ , where λ is the observer's longitude measured positively to the east (from 1985 onwards the sign convention for east terrestrial longitude to be positive has been adopted).

International Atomic Time (TAI) is a highly precise time scale given by atomic clocks. It is now being used as a standard in astronomy as it is independent of the Earth's rotation. Its fundamental unit, the SI second, is

defined as the duration of 9 192 631 770 cycles of the radiation corresponding to the transition between two hyperfine levels of the ground state of the Cesium 133 atom. This time scale results from analysis of data from atomic time standards of many countries carried out at the Bureau International de l. Heure in Paris.

Universal Time (UT) is used for civil time keeping. It is an outgrowth of the mean solar time system derived from the Earth's rotation with respect to the Sun. It has been formally defined through a strict relationship with the Greenwich mean sidereal time and is, therefore, determined from observation of star transits. The universal time directly derived from observation is designated UT_o. It contains nonuniformities due to variations in the rotation of the Earth and is peculiar to the observer's geographic location because of polar motion. When UT_o is corrected for Earth's polar motion, it is called UT1. When UT1 is further corrected for seasonal variation in the Earth's rotation, it is called UT2. Both UT_o and UT2 are not for general usage. Instead, the national time services provide what is known as co-ordinated universal time (UTC). It is a smoothed version of UT2 and differs from TAI by an integral number of seconds. It contains step adjustments of exactly one second (leap seconds) in order to keep it always within 0.90 seconds of UT1. Beginning with 1972, the step adjustments are usually inserted after the 60th second of the last minute of December 31 or June 30. In this publication, UT1 has been used in computations relating to hour angles, etc., unless otherwise stated.

Dynamical Time replaces ephemeris time (ET) as argument of ephemerides with effect from 1985 in this publication. The concept of different dynamical times for observers in different frames of reference arises out of general theory of relativity. In this publication, terrestrial time (TT) is the tabular argument of the fundamental geocentric ephemerides and barycentric dynamical time (TDB) is the arguments of ephemerides referred to the barycentre of the solar system. The former corresponds to proper time and the latter to co-ordinate time in terms of the general theory of relativity. Both TT and TDB are independent of the Earth's rotation. These scales are so defined that the difference between them is purely periodic. Their difference is given by:-

 $TDB = TT + 0^{s}.001\ 657\ sin\ g + 0^{s}.000\ 022\ sin\ (L - L_{J})$, where higher order terms have been neglected. Here g is the mean anomaly of the Earth in its orbit around the Sun and is given by:-

g =
$$357^{\circ}.53 + 0^{\circ}.98560028 \text{ (JD} - 2451545.0)$$

L-L_I = $246^{\circ}.11 + 0.90251792 \text{ (JD} - 2451545.0)$

Where $L-L_{\rm J}$ is the difference in the mean longitude of the Sun and Jupiter.

Relationship Between universal time and sidereal time

Universal time is defined in terms of Greenwich mean sidereal time by:

GMST at
$$0^{h}$$
 UT1 = 6^{h} 41^{m} 50^{s} .549 377 + 864 018 4^{s} .704 478 T_{u} + 0^{s} .092 772 T_{u}^{2} - 2^{s} .93 × 10^{-8} T_{u}^{3} - 1^{s} .997 × 10^{-6} T_{u}^{4} - 2^{s} .5 × 10^{-9} T_{u}^{5}

where T_u is the number of Julian centuries of 36525 days of universal time elapsed since 1 January, 2000,12^h UT (JD 245 154 5.0). In other words,

$$T_{y} = (JD - 245 1545.0)/36525$$

The above expression implies that the ratio of UT1 to GMST at the epoch J2000.0 is $0.997\ 269\ 566\ 329\ 084$ and its inverse is $1.002\ 737\ 909\ 350\ 795$.

The following relationship holds during 2020:

On day of year d at t UT1 GMST =
$$6^h.6090775 + 0^h.0657098246d + 1^h.00273791t$$

where day of the year d is tabulated on pages 4 to 12.

In 2020:

1 mean solar day = 1.00273790935 mean sidereal days = $24^h 03^m 56^s.55537$ of mean sidereal time 1 mean sidereal day = 0.99726956633 mean solar days = $23^h 56^m 04^s.09053$ of mean solar time

Conversion of local mean time to local sidereal time

Calculate local sidereal time at 15^h 54^m 42^s L.M.T. on 2020 January 1, for Delhi longitude,

 $\lambda = 77^{\circ} 13' 00'' \text{ East } (5^{\text{h}} 08^{\text{m}})$ m \mathbf{S} Universal time = Local mean time $-\lambda$ 1. 10 45 50 2. Greenwich mean sidereal time at 0h U.T. on 40 29.234 January 1, 2020 (Page 13). h m 3. Add equivalent mean sidereal time for 10 45 50 36.094 10 47 (UT×1.0027379093). 4. Greenwich mean sidereal time at desired L.M.T. 17 28 5.328285 Add equation of equinoxes at UT=0^d. 45 (second 5. -1.010 order interpolation may be used). Greenwich apparent sidereal time 6. 17 28 4.318 7. Add longitude (east positive) 5 08 52.000 8. Local apparent sidereal time 22 56.318 36

For local mean sidereal time, the above process may be repeated by neglecting the equation of equinoxes.

Conversion of local sidereal time to local mean time

Calculate local mean time at 22^h 38^m $51^s.206$ local apparent sidereal time on 2020 January 1, for Delhi longitude, λ = 77° 13' 00" East (5^h 08^m 52^s)

		h	m	S	
1.	Local apparent sidereal time	22	36	56.318	
2.	Subtract longitude (east positive)	5	08	52.000	
3.	Greenwich apparent sidereal time	17	28	4.318	_
4.	Subtract equation of equinox at 0 ^h U.T.			-1.009	
5.	Greenwich mean sidereal time (provisional)	17	28	5.327	_
6.	Subtract Greenwich mean sidereal time at 0 ^h U.T.	6	40	29.234	
7.	Mean sidereal time interval (provisional) M.S.T. (P)	10	47	36.093	_

7.	Mean sidereal time interval (provisional) M.S.T. (P)	10	47	36.096
8.	Mean time interval in days corresponding to (7) above = (M.S.T. (P) \times 0.997 269 566) = 0 ^d .45 (UT). Subtract the increment to equation of equinoxes for 0 ^d .45 UT (using second order interpolation)	(-)		0.00310
9. 10. 11.	Mean sidereal time Equivalent UT (MST \times 0.997 269 566) Local mean time = UT + λ	10 10 15	47 45 54	36.096 50.002 42.002

The mean time from the local mean sidereal time may be worked out on similar lines as above by neglecting the equation of equinoxes.

Notation for time-scales and related quantities

UT1	Universal time (also UT); counted from 0 ^h (mid night); unit is second of mean solar time, affected
	by iregularities in the Earth's rate of rotation.
UT0	local approximation to universal time; not corrected for polar motion (rarely used).
GMST	Greenwich mean sidereal time; GHA of mean equinox of date.
GAST	Greenwich apparent sidereal time; GHA of true Eqinox of date.
TAI	international atomic time; unit is the SI second of geoid.
UTC	coordinated universal time; differs from TAI by an integral number of seconds, and is the basis of most radio time signals and national and/ or legal time systems.
ALTT	
ΔUT	= UT1 – UTC; increment to be applied to UTC to give UT1
TDB	barycentric dynamical time; used as time-scale of ephemerides, referred to the barycentre of the solar system.
T_{eph}	the independent variable of the equations of motion used by the JPL ephemerides, in particular DE405/LE405. T _{eph} and TDB may be considered to be equivalent.
TT	terrestrial time; used as time-scale of ephemerides for observations from the Earth's surface
	(geoid).
TT	$= TAI + 32^{s}.184.$
ΔT	= TT – UT1; increment to be applied to UT1 to give TT.
	$= TAI + 32^{s}.184 - UT1$
ΔAT	= TAI –UT1; increment to be applied to UTC to give TAI; an integral number of seconds.
ΔTT	= TT – UTC = Δ AT + 32 ^s .184; increment to be applied to UTC to give TT.
UT1 - UT0	$= -(x \sin \lambda + y \cos \lambda) \tan \phi/15$
	where λ and ϕ are usual geodetic longitude and latitude of the place, and x and y are the
	co-ordinates of the pole with respect to the geodetic system, in arcseconds.
GAST	= GMST + $\varepsilon_{\gamma}/15$, ε_{γ} is equation of equinox.
To and an	to convert the television for 0 TTto 0 TTto 0 ITT and more intermediate to ATS (1) where his the television

In order to convert the tabulations for 0^n TT to 0^n UT, one may interpolate to $\Delta T \, \delta_{1/2} / h$ where h is the tabular interval and $\delta_{1/2}$ is the first difference of the tabular values.

REDUCTION OF TIME SCALES, 1620-1644

				$\Delta \mathbf{T}$	$= \mathbf{ET} - \mathbf{T}$	UT			
Year	ΔT	Year	ΔT	Year	ΔT	Year	ΔT	Year	ΔT
	S		S		S		S		S
1620.0	+124	1625.0 +	102	1630.0	+85	1635.0	+72	1640.0	+62
1621	119	1626	98	1631	82	1636	70	1641	60
1622	115	1627	95	1632	79	1637	67	1642	58
1623	110	1628	91	1633	77	1638	65	1643	57
1624	+ 106	1629 +	- 88	1634	+74	1639	+63	1644	+55

REDUCTION OF TIME SCALES, 1645-1819

				$\Delta T =$	ET - UT				
Year	$\Delta \mathrm{T}$	Year	$\Delta \mathrm{T}$	Year	$\Delta \mathrm{T}$	Year	$\Delta \mathrm{T}$	Year	$\Delta \mathrm{T}$
	S		S		S		S		S
1645.0	+ 54	1680.0	+ 16	1715.0	+ 10	1750.0	+ 13	1785.0	+ 17
1646	53	1681	15	1716	10	1751	14	1786	17
1647	51	1682	14	1717	11	1752	14	1787	17
1648	50	1683	14	1718	11	1753	14	1788	17
1649	49	1684	13	1719	11	1754	14	1789	17
1650.0	+ 48	1685.0	+ 12	1720.0	+ 11	1755.0	+ 14	1790.0	+ 17
1651	47	1686	12	1721	11	1756	14	1791	17
1652	46	1687	11	1722	11	1757	14	1792	16
1653	45	1688	11	1723	11	1758	15	1793	16
1654	44	1689	10	1724	11	1759	15	1794	16
1655.0	+ 43	1690.0	+ 10	1725.0	+ 11	1760.0	+ 15	1795.0	+ 16
1656	42	1691	10	1726	11	1761	15	1796	15
1657	41	1692	9	1727	11	1762	15	1797	15
1658	40	1693	9	1728	11	1763	15	1798	14
1659	38	1694	9	1729	11	1764	15	1799	14
1660.0	+ 37	1695.0	+ 9	1730.0	+ 11	1765.0	+ 16	1800.0	+ 13.7
1661	36	1696	9	1731	11	1766	16	1801	13.4
1662	35	1697	9	1732	11	1767	16	1802	13.1
1663	34	1698	9	1733	11	1768	16	1803	12.9
1664	33	1699	9	1734	12	1769	16	1804	12.7
1665.0	+ 32	1700.0	+ 9	1735.0	+ 12	1770.0	+ 16	1805.0	+ 12.6
1666	31	1701	9	1736	12	1771	16	1806	12.5
1667	30	1702	9	1737	12	1772	16	1807	12.5
1668	28	1703	9	1738	12	1773	16	1808	12.5
1669	27	1704	9	1739	12	1774	16	1809	12.5
1670.0	+ 26	1705.0	+ 9	1740.0	+ 12	1775.0	+ 17	1810.0	+ 12.5
1671	25	1706	9	1741	12	1776	17	1811	12.5
1672	24	1707	9	1742	12	1777	17	1812	12.5
1673	23	1708	10	1743	12	1778	17	1813	12.5
1674	22	1709	10	1744	13	1779	17	1814	12.5
1675.0		1710.0	+ 10	1745.0	+ 13	1780.0	+ 17	1815.0	+ 12.5
1676	20	1711	10	1746	13	1781	17	1816	12.5
1677	19	1712	10	1747	13	1782	17	1817	12.4
1678	18	1713	10	1748	13	1783	17	1818	12.3
1679	+ 17	1714	+ 10	1749	+ 13	1784	+ 17	1819	+ 12.2

This table is based on an adopted value of -26"/cy 2 for the tidal term ($\dot{\mathbf{n}}$) in the mean motion of the Moon from the results of analyses of observations of lunar occultations of stars, eclipses of the Sun and transits of Mercury. (see F.R. Stephenson and L.V. Morrison, 1984 *PhD* Trans, R, Soc. London, Ser A, 313, 47-70).

To calculate the values of ΔT for a different value of the tidal term $(\dot{\bf n}')$, add $-0.000\,091\,(\dot{\bf n}'+26)\,({\rm year}-1955)^2$ seconds to the tabulated values of ΔT .

REDUCTION OF TIME SCALES FROM 1820

	1820 - 1939	ο, ΔΤ =ΕΤ	-UT.		From 194	$0, \ \Delta \mathbf{T} = \mathbf{T} \mathbf{I}$	DT - UT.	
					201	$8, \Delta T = TT$	T - UT.	
Year	$\Delta ext{T}$	Year	$\Delta \mathrm{T}$	Year ΔT	Year	$\Delta ext{T}$	Year	$\Delta \mathrm{T}$
	S		S	S		S		S
1820.0	+ 12.0	1860.0	+ 7.88	1900.0 - 2.72	1940.0 +	24.33	1980.0	+ 50.54
1821	11.7	1861	7.82	1901 1.54	1941	24.83	1981	51.38
1822	11.4	1862	7.54	1902 - 0.02	1942	25.30	1982	52.17
1823	11.1	1863	6.97	1903 + 1.24	1943	25.70	1983	52.17
1824	10.6	1864	6.40	1903 + 1.24	1943 1944	26.24	1984	53.79
1825.0	10.0	1865.0	6.02	1905.0 3.86	1945.0	26.77	1985.0	54.34
1826	9.6	1866	5.41	1906 5.37	1946	27.28	1986	54.87
1827	9.1	1867	4.10	1907 6.14	1947	27.78	1987	55.32
1828	8.6	1868	2.92	1908 7.75	1948	28.25	1988	55.82
1829	8.0	1869	1.82	1909 9.13	1949	28.71	1989	56.30
102)	0.0	100)	1.02	1,0,0	17.17	20.71	1707	20.20
1830.0	+ 7.5	1870.0	+ 1.61	1910.0 + 10.46	1950.0 +	29.15	1990.0	+ 56.86
1831	7.0	1871	+ 0.10	1911 11.53	1951	29.57	1991	57.57
1832	6.6	1872 -	- 1.02	1912 13.36	1952	29.97	1992	58.31
1833	6.3	1873	1.28	1913 14.65	1953	30.36	1993	58.12
1834	6.0	1874	2.69	1914 16.01	1954	30.72	1994	59.98
1835.0	5.8	1875.0	3.24	1915.0 17.20	1955.0	31.07	1995.0	60.78
1836	5.7	1876	3.64	1916 18.24	1956	31.35	1996	61.63
1837	5.6	1877	4.54	1917 19.06	1957	31.68	1997	62.29
1838	5.6	1878	4.71	1918 20.25	1958	32.18	1998	62.97
1839	5.6	1879	5.11	1919 20.95	1959	32.68	1999	63.47
1840.0	+ 5.7	1880.0 -	- 5.40	1920.0 + 21.16	1960.0 +	33.15	2000.0	+ 63.83
1841	5.8	1881	5.42	1921 22.25	1961	33.59	2001	64.09
1842	5.9	1882	5.20	1922 22.41	1962	34.00	2002	64.30
1843	6.1	1883	5.46	1923 23.03	1963	34.47	2003	64.47
1844	6.2	1884	5.46	1924 23.49	1964	35.03	2004	64.57
1845.0	6.3	1885.0	5.79	1925.0 23.62	1965.0	35.73	2005	+ 64.69
1846	6.5	1886	5.63	1926 23.86	1966	36.54	2006	64.85
1847	6.6	1887	5.64	1927 24.49	1967	37.43	2007	65.15
1848	6.8	1888	5.80	1928 24.34	1968	38.29	2008	65.46
1849	6.9	1889	5.66	1929 24.08	1969	39.20	2009	65.78
1850.0	+ 7.1	1890.0 -	- 5.87	1930.0 + 24.02	1970.0 +	40.18	2010	+ 66.07
1851	7.2	1891	6.01	1931 24.00	1971	41.17	2011	66.32
1852	7.3	1892	6.19	1932 23.87	1972	42.23	2012	66.60
1853	7.4	1893	6.64	1933 23.95	1973	43.37	2013	66.91
1854	7.5	1894	6.44	1934 23.86	1974	44.49	2014	67.28
1855.0	7.6	1895.0	6.47	1935.0 23.93	1975.0	45.48	2015	67.64
1856	7.7	1896	6.09	1936 23.73	1976	46.46	2016	68.10
1857	7.7	1897	5.76	1937 23.92	1977	47.52	2017	68.59
1858	7.8	1898	4.66	1938 23.96	1978	48.53	2018	68.97
1859	7.8	1899	3.74	1939 24.02	1979	49.59		
			Ex	xtrapolated Value	s			
2019	+ 69.40	2021	+ 70	2023 + 71	~			
2020	+ 70		+ 71					

Difference	TAI_	IITC -	$\Lambda \Lambda T$

Date	$_{ m s}^{\Delta { m AT}}$	Date	$\mathop{\Delta}_{\mathrm{S}}$ AT	Date	$\Delta_{ m S}$	Date	$\Delta_{ m S}$
1972 Jul.1	+ 11.00	1979 Jan.1	+ 18.00	1990 Jan.1	+ 25.00	1999 Jan. 1	+ 32.00
1973 Jan.1	+ 12.00	1980 Jan.1	+ 19.00	1991 Jan.1	+ 26.00	2006 Jan. 1	+ 33.00
1974 Jan.1	+ 13.00	1981 Jul.1	+ 20.00	1992 Jul.1	+ 27.00	2009 Jan. 1	+ 34.00
1975 Jan.1 1976 Jan.1	+ 14.00	1982 Jul.1 1983 Jul.1	+ 21.00	1993 Jul.1 1994 Jul.1	+ 28.00	2012 Jul. 1 2015 Jul. 1	+ 35.00
1976 Jan.1	+ 15.00	1985 Jul.1	+ 22.00	1994 Jul.1	+ 29.00	2013 Jul. 1 2017 Jan. 1	+ 36.00
1978 Jan.1	+ 16.00	1988 Jan.1	+ 23.00	1997 Jul.1	+ 30.00	In critical cas	+ 37.00 ses descend
1979 Jan.1	+ 17.00	1990 Jan.1	+ 24.00	1999 Jan.1	+ 31.00	$\Delta ET = \Delta AT$ ΔTT	+ 32°.184

From 1990 onwards, ΔT is for Jan. 10^h UTC.

See page 2 for a summary of the notation for time-scales.

Astronomical Reference System and Reference Frames

A reference system is the complete specification of how a celestial coordinate system is to be formed. Both the origin and the orientation of the fundamental planes (or axes) are defined. A reference system also incorporates a specification of the fundamental models needed to construct the system; that is, the basis for the algorithms used to transform between observable quantities and reference data in the system. A reference frame, on the other hand, consists of a set of identifiable fiducial points on the sky along with their coordinates, which serves as the practical realization of a reference system.

For example, the fundamental plane of an astronomical reference system has conventionally been the extension of the Earth's equatorial plane, at some date, to infinity. Declination is the angular distance north or south of this plane, and right ascension is the angular distance measured eastward along the equator from some defined reference point. This reference point, the right asscension origin, has traditionally been the Equinox: the point at which the Sun, in its yearly circuit of the celestial sphere, crosses the equatorial plane moving from south to north. The Sun's apparent yearly motion lies in the ecliptic, the plane of the Earth's orbit. The equinox, therefore, is a direction in the space along the nodal line defined by the intersection of the ecliptic and equatorial planes; equivalently, on the celestial sphere, the equinox is at one of the two intersections of the great circles representing these planes. Because both of these planes are moving, the coordinate systems that they define must have a date associated with them; such a reference system must therefore be specified as "the equator and equinox of (some date)".

Of course, such a reference system is an idealization, because the theories of motion of the Earth that define how the two planes move are imperfect. In fact, the very definations of these planes are problematic for high precession work. Even if the fundamental planes of a reference system are defined without any reference to the motions of the Earth, there is no way magically to paint them on the celestial sphere at any particular time. Therefore, in practice, we use a specific reference frame - a set of fiducial objects with assigned coordinates - as the practical representation of an astronomical reference system. The scheme is completely analogous to how terrestrial reference systems are established using survey control stations (geodetic reference point) on the Earth's surface.

Most commonly, a reference frame consists of a catalog of precise positions (and motions, if measurable) of stars or extragalactic objects as seen from the solar system barycenter at a specific epoch (now usually "J2000.0", which is 12h TT on January 2000). Each object's instantaneous position, expressed as right ascension and declination, indicates the object's angular distance from the catalog's equator and origin of right ascension. Any two such objects in the catalog (if they are not coicident or antipodal) therefore uniquely orient a spherical coordinate system on the sky - a reference frame.

A modern astrometric catalog contains data on a large number of objects (N), so the coordinate system is vastly overdetermined. The quality of the reference frame defined by a catalog depends on the extent to which the coordinates of all possible pairs of objects ($N^2/2$) serve to the identical equator and right ascesion origin, within the expected random errors. Typically, every catalog contains systematic errors, that is, errors in position that are similar for objects that are in the same area of the sky, or are of the same magnitude (flux) or color (spectral index). Systematic errors mean that the reference frame is warped, or is effectively different for different classes of objects. Obviously, minimizing systematic errors when a catalog is constructed is at least as important as minimizing the random errors.

To be useful, a reference frame must be implemented at the time of actual observations, and this requires the computation of the apparent coordinates of the catalog objects at arbitrary dates and times. The accuracy with which we know the motions of the objects accross the sky is an essential factor in this computation. Astrometric star catalogs list proper motions, which are the projection of each star's space motion onto the celestial sphere, expressed as an angular rate in right ascension and declination per unit time. Because the tabulated proper motions are never perfect, any celesial reference frame deteriorates with time. Moreover, systematic errors in the proper motions can produce time-dependent warpings and spurious rotations of the frame. Therefore, the accuracy and consistency of the proper motions are critical to the overall quality, utility, and longevity of reference frames defined by stars. Even reference frames defined by extragalactic objects, which are usually considered to have zero proper motion, may deteriorate, because many of these objects show small apparent motions that are artifacts of their emission mechanisms.

The position of solar system objects can also be used to define a reference frame. For each solar system body involved, an ephemeris is used, which is simply a table of the celestial coordinates of the body as a funtion of time (or an algorithm that yields such a table). A reference frame defined by the ephemerides of one or more solar system bodies is called a dynamical reference frame. Because the ephemerides used incorporate the motion of the Earth as well as that of the other solar system bodies, dynamical reference frames embody in a very fundamental way the moving equator and ecliptic, hence the equinox. They have therefore been used to correct the orientation of star catalog reference frames (the star positions were systematically adjusted) on the basis of simultaneous observations of star and planets. In a sense, the solar system is used as a gyrocompass. However, dynamical reference frames are not very practical for establishing a coordinate system for day to day astronomical observations.

Descriptions of reference frames and reference systems often refer to three coordinate axes, which are simply the set of right-handed cartesian axes that correspond to the usual celestial spherical coordinate system. The xy-plane is the equator, the z-axis points toward the north celestial pole, and the x-axis points toward the origin of right ascension. Although in principal this allows us to specify the position of any celestial object in rectangular coordinates, the distance scale (based on stellar parallaxes) is not established to high precession beyond the solar system. What a reference system actually defines is the way in which the two coventional astronomical angular coordinates, right ascension and declination, overlay real observable points in the sky.

The fundamental celestial reference system for astronomical application is now the International Celestial Reference System (ICRS) as provided in resolution B2 of 1997. The "realization" of of the ICRS, called the International Celestial Reference Frame (ICRF), is a set of high accuracy positions of extragalactic radio sources measured by very long baseline interferometry.

The IAU Working Group on nomenclature for Fundamental Astronomy has recomended the following definations for ICRS and ICRF:

International Celestial Reference System (ICRS): The idealized barycetric co-ordinate system to which celestial positions are referred. It is kinematically non-rotating with respect to the ensemble of distant extragalactic objects. It has no intrinsic orientation but was aligned close to the mean equator and dynamical equinox of J2000.0 for continuity with previous fundamental reference systems. Its orientation is independent of epoch, ecliptic or equator and is realized by a list of adopted coordinates of extragalactic sources.

International Celestial Reference Frame (ICRF): A set of extragalactic objects whose adopted positions and uncertainties realize the ICRS axes and give the uncertainties of the axes. It is also the name of radio catalogue whose 212 defining sources are currently the most accurate realization of the ICRS. The orientation of the ICRF catalogue was carried over from earlier IERS radio catalogs and was within the errors of the standard stellar and dynamical frames at the time of adoption. Successive revision of the ICRF are intended to minimize rotation from its original orientation.

Some important reference systems and their designations as per IAU 2000 resolution B1.6, B1.7 and B1.8, and IAU 2006 resolutions 1 and 2 are listed below:

- (i) Barycentric Celestial Reference System (BCRS): a system of barycentric space-time coordinates for the solar system within the framework of General Relativity. For all practical applications, the BCRS is assumed to be oriented according to the ICRS axes, the directions of which are realized by the International Celestial Reference Frame. The ICRS is not identical to the system defined by the dynamical mean equator and equinox of J2000.0, although the difference in orientation is only about 0".02.
- (ii) The Geocentric Celestial Reference System (GCRS): is a system of geocentric space-time coordinates within the framework of General Relativity. The directions of the GCRS axes are obtained from those of the BCRS (ICRS) by a relativistic transformation. Positions of stars obtained from ICRS reference data, corrected for proper motion, parallax, light-bending, and aberration (for a geocentric observer) are with respect to the GCRS. The same is true for planetary positions, although the corrections are somewhat different.
- (iii) The J2000.0 dynamical reference system: mean equator and equinox of J2000.0; a geocentric system where the origin of right ascension is the intersection of the mean ecliptic and equator of J2000.0; the system in which the IAU 2000 precession-nutation is defined. For precise applications a small rotation (frame bias) should be made to GCRS positions before precession and nutation are applied. The J2000.0 system may also be barycentric, for example as the reference system for catalogues.
- (iv) The true system of date (t); true equator and equinox of date: a geocentric system of date, the pole of which is the celestial intermediate pole (CIP), with the origin of right ascension at the equinox on the true equator of date (intermediate equator). It is a system "between" the GCRS and the Terrestrial Intermediate Reference System that seperates the components labelled precession-nutation and polar motion.
- (v) The Celestial Intermediate Reference System (i): the IAU recomended geocentric system of date, the pole of which is the celestial intermediate pole (CIP), with the origin of right ascension at the celestial intermediate origin (CIO) which is located on the intermediate equator (true equator of date). It is a system "between" (intermediate) the GCRS and the Terrestrial Intermediate Reference System that seperates the components labelled precession-nutation and polar motion.

Precession and Nutation

The algorithms for precession were based on the IAU (1976) value for the rate of general precession in ecliptic longitude. Nutation was given by the 1980 IAU Theory of Nutation. However, IAU (1976) rate of precession had been overestimated by approximately 3 milliarcseconds per year. Further observations also revealed periodic errors of a few milliarcseconds in the 1980 IAU Theory of Nutation.

As part of the 2000 IAU resolutions, the IAU 2000A precession-nutation model was introduced, based on an updated value for the rate of precession and a completely new nutation theory. As before, the model actually consists of two parts, a precession algorithm describing the smooth secular motion of the celestial pole and a nutation algorithm describing the small periodic variations in the pole's position. The precession algorithm consists of short polynomial series for the values of certain angles. The sines and cosines of these angles, in combination, then define the elements of a precession matrix, **P**. The nutation algorithm consists of a rather long series expansion in Fourier terms for the angular offsets, in ecliptic longitude and latitude, of the actual celestial pole (as modeled) from the precession-only pole (true pole - mean pole). The sines and cosines of these offsets, in combination, then define the elements of a nutation matrix, **N**. The **P** and **N** matrices are applied to the coordinates of celestial objects, expressed as 3-vectors, to transform them from the equator and equinox of one epoch to the equator and equinox of another.

A precession transformation is applied to celestial coordinates to convert them from the mean equator and equinox of J2000.0 to the mean equator and equinox of another date, t. Nutation is applied to the resulting coordinates to transform them to the true equator and equinox of t. Generally we will start with celestial coordinates in the GCRS, which are obtained from basic ICRS data by applying the usual algoriths for proper place. Therefore before we apply precession and nutation - we must first apply the frame bias correction to transform the GCRS coordinates to the dynamical mean equator and equinox of J2000.0. Schematically,

GCRS => <u>frame bias</u> = mean equator & equinox of J2000.0 = <u>precession</u> =>

mean equator & equinox of $t = \underline{\text{nutation}} = \text{ true equator & equinox of } t$.

The reduction from a geocentric position \mathbf{r} with respect to the Geocentric Celestial Reference System (GCRS) to a position \mathbf{r} , with respect to equator and equinox of date, and vice versa, is given by;

$$\mathbf{r}_{t} = \mathbf{M} \mathbf{r}$$
 and $\mathbf{r} = \mathbf{M}^{-1} \mathbf{r}_{t}$

Using the 4-rotation Fukishma-Williams (F-W) method, the rotation matrix \mathbf{M} may be witten as

$$M = NPP$$

Since the rotation to orient the GCRS to J2000.0 system are small the following approximate matrix **B** is called frame bias matrix, accurate to $2''x 10^{-9} (1 \times 10^{-14} \text{ radians})$, may be used:

where $d\alpha_0 = -14.6$ mas, $\xi_0 = -16.6170$ mas, and $\eta_0 = -6.8192$ mas, all converted to radians (divide by 206 264 806.247).

Precession

The time argument T is given by $T = (t - 2000.0)/100 = (JD_{TT} - 2451545.0)/36525$, which is a function of TT.

The Capitine *et al.* method, the formulation of which seperates precession of the equator from precession of the ecliptic, is via the precession angles χ_A , ω_A , ψ_A , which are

$$\begin{split} &\psi_A \!=\! 5038\text{"}.481\,507\,T\text{-}1\text{"}.079\,0069\,T^2\text{-}0\text{"}.001\,140\,45\,T^3\text{+}0\text{"}.000\,132\,851\,T^4\text{-}9\text{"}.51\,X\,10^{-8}\,T^5\\ &\omega_A \!=\! \epsilon_0\text{-}0\text{"}.025\,754\,T\text{+}0\text{"}.051\,2623\,T^2\text{-}0\text{"}.007\,725\,03\,T^3\text{-}0\text{"}.000\,000\,467\,T^4\text{+}33\text{"}.37\,X\,10^{-8}\,T^5\\ &\chi_A \!=\! 10\text{"}.556\,403\,T\text{-}2\text{"}.381\,4292\,T^2\text{-}0\text{"}.001\,211\,97\,T^3\text{+}0\text{"}.000\,170\,663\,T^4\text{-}5\text{"}.60\,X\,10\text{-}8\,T^5 \end{split}$$

The mean obliquity of the ecliptic at J2000.0 (or the equivalent TDB date) is $\varepsilon_0 = 84381$ ".406

- (i) A rotation from the mean equator and equinox of J2000.0 to the mean ecliptic and equinox of J2000.0. This is simply a rotation around the x-axis (the direction toward the mean equinox of J2000.0) by the angle ε_0 , the mean obliquity of J2000.0. After the rotation, the fundamental plane is the ecliptic of J2000.0
- (ii) A rotation around the new z-axis (the direction toward the ecliptic pole of J2000.0) by the angle $-\psi_A$, the amount of precession of the equator from J2000.0 to t.
- (iii) A rotation around the new x-axis (the direction along the intersection of the mean equator of t with the ecliptic of J2000.0) by the angle ω_A , the obliquity of the mean equator of t with respect to the ecliptic of J2000.0. After the rotation, the fundamental plane is the mean equator of t.

(iv) A rotation around the new z-axis (the direction toward the mean celestial pole of t) by the angle χ_A , accounting for the precession of the ecliptic along the mean equator of t. After the rotation, the new x-axis is in the direction of the mean equinox of date.

where

$$\begin{array}{lll} S_1 = \sin \varepsilon_0 & S_2 = \sin \left(-\psi_A\right) & S_3 = \sin \left(-\omega_A\right) & S_4 = \sin \chi_A \\ C_1 = \cos \varepsilon_0 & C_2 = \cos(-\psi_A) & C_3 = \cos(-\omega_A) & C_4 = \cos \chi_A \end{array}$$

Existing applications that use the 3-angle precession formulation of Newcomb and Lieske can be easily modified for the IAU 2000A precession, by replacing the current polynomials for the angles $\zeta_{A_{A}}$ Z_{A} and θ_{A} with the following:

$$\begin{split} &\zeta_{A} = 2".650545 + 2306".083227\,T + 0".2988499\,T^{2} + 0".01801828\,T^{3} - 0".000005971\,T^{4} - 0".0000003173\,T^{5} \\ &Z_{A} = -2".650545 + 2306".077181\,T + 1".0927348\,T^{2} + 0".01826837\,T^{3} - 0".000028596\,T^{4} - 0".0000002904\,T^{5} \\ &\theta_{A} = 2004".191903\,T - 0".4294934\,T^{2} - 0".04182264\,T^{3} - 0".000007089\,T^{4} - 0".0000001274\,T^{5} \end{split}$$

The centennial (per Julian century) rates of general precession in right ascension and declination are given by:

$$m = 4612$$
".604 08 + 2".783 169 4 T + 0".108 859 95 T² - 0".000 138 268 T³ and
 $n = 2004$ ".191 903 - 0".858 986 8 T - 0".125 467 92 T² - 0".000 028 356 T³

The elements of the matrix **P** given in terms of $\ \zeta_{A_i} \ Z_{A_i} \ \theta_A$ are as follows:

$$\boldsymbol{P} = \begin{bmatrix} \cos\zeta_{A}\cos\theta_{A}\cos Z_{A} - \sin\zeta_{A}\sin Z_{A} & -\sin\zeta_{A}\cos\theta_{A}\cos Z_{A} - \cos\zeta_{A}\sin Z_{A} & -\sin\theta_{A}\cos\overline{Z_{A}} \\ \cos\zeta_{A}\cos\theta_{A}\sin Z_{A} + \sin\zeta_{A}\cos Z_{A} & -\sin\zeta_{A}\cos\theta_{A}\sin Z_{A} + \cos\zeta_{A}\cos Z_{A} & -\sin\theta_{A}\sin\overline{Z_{A}} \\ \cos\zeta_{A}\sin\theta_{A} & -\sin\zeta_{A}\sin\theta_{A} & \cos\theta_{A} \end{bmatrix}$$

The formula for reduction of precession in right ascension and declination are as follows:

$$\begin{split} \sin{(\alpha-Z_{_A})}\cos{\delta} &= \sin{(\alpha_{_o}+\zeta_{_A})}\cos{\delta_{_o}}.\\ \cos{(\alpha-Z_{_A})}\cos{\delta} &= \cos{(\alpha_{_o}+\zeta_{_A})}\cos{\theta_{_A}}\cos{\delta_{_o}} - \sin{\theta_{_A}}\sin{\delta_{_o}}\\ \sin{\delta} &= \cos{(\alpha_{_o}+\zeta_{_A})}\sin{\theta_{_A}}\cos{\delta_{_o}} + \cos{\theta_{_A}}\sin{\delta_{_o}}\\ \sin{(\alpha_{_o}+\zeta_{_A})}\cos{\delta_{_o}} &= \sin{(\alpha-Z_{_A})}\cos{\delta}\\ \cos{(\alpha_{_o}+\zeta_{_A})}\cos{\delta_{_o}} &= \cos{(\alpha-Z_{_A})}\cos{\theta_{_A}}\cos{\delta} + \sin{\theta_{_A}}\sin{\delta}\\ \sin{\delta_{_o}} &= -\cos{(\alpha-Z_{_A})}\sin{\theta_{_A}}\cos{\delta} + \cos{\theta_{_A}}\sin{\delta} \end{split}$$

Values of the angles ζ_A , Z_A , θ_A and of the elements of the matrix P for reduction from the standard epoch J 2000.0 to epoch of year are as follows:

Epoch J 2020.5

Rotation matrix P for reduction to epoch J 2020.5

The obliquity of the ecliptic of date (with respect to the mean equator of date) is given by:

$$\varepsilon = \varepsilon_0 - 46".836769T - 0".0001831T^2 + 0".0020034T^3 - 0".000000576T^4 - 0".00000000434T^5$$
 where $\varepsilon_0 = 84381".406$

The precessional motion of the ecliptic specified by the inclination (π_A) and longitude of the node (Π_A) of the ecliptic of date with respect to the ecliptic and equinox of J 2000.0 are given by:

$$\begin{array}{ll} \mathrm{Sin} \ \pi_{\mathrm{A}} \ \sin \Pi_{\mathrm{A}} &= +4\text{"}.199\ 094\ T + 0\text{"}.193\ 987\ T^2 - 0\text{"}.000\ 224\ 66\ T^3 \\ \mathrm{Sin} \ \pi_{\mathrm{A}} \ \cos \Pi_{\mathrm{A}} &= -46\text{"}.811\ 015\ T + 0\text{"}.051\ 028\ T^2 + 0\text{"}.000\ 524\ 13\ T^3 \end{array}$$

For epoch J 2020.5

$$\varepsilon = 23^{\circ} 26' 11''.80 = 23^{\circ}.436612$$

 $\pi_{A} = +9''.633 = 0^{\circ}.0026759$
 $\Pi_{A} = 174^{\circ} 49'.5 = 174^{\circ}.825$

Approximate formulae for the reduction of precession in co-ordinates and orbital elements referred to the mean equinox and equator or ecliptic of date (t) are as follows:

Reduction to J 2000.0

Reduction from J 2000.0

$$\begin{array}{llll} \alpha_o &=& \alpha - M - N \sin \alpha_m \tan \delta_m \\ \delta_o &=& \delta - N \cos \alpha_m \\ \lambda_o &=& \lambda - a + b \cos (\lambda + c') \tan \beta_o \\ \beta_o &=& \beta - b \sin (\lambda + c') \\ \Omega_o &=& \Omega - a + b \sin (\Omega + c') \cot i_o. \\ i_o &=& i - b \cos (\Omega + c') \\ \omega_o &=& \omega - b \sin (\Omega + c') \csc i_o \end{array} \qquad \begin{array}{lll} \alpha &=& \alpha_o + M + N \sin \alpha_m \tan \delta_m \\ \delta &=& \delta_o + N \cos \alpha_m \\ \lambda &=& \lambda_o + a - b \cos (\lambda_o + c) \tan \beta \\ \beta &=& \beta_o + b \sin (\lambda_o + c) \cot \beta \\ \Omega &=& \Omega_o + a - b \sin (\Omega_o + c) \cot \beta \\ i &=& i_o + b \cos (\Omega_o + c) \\ \omega &=& \omega_o + b \sin (\Omega_o + c) \csc i \end{array}$$

The precessional constants M, N etc. are given by:

$$\begin{array}{rll} M&=&1^{\circ}.281\ 155\ 668\ 9\ T\ +\ 0^{\circ}.000\ 386\ 551\ 31\ T^{2}\ +\ 0^{\circ}.000\ 010\ 079\ T^{3}\\ N&=&0^{\circ}.556\ 719\ 973\ 1\ T\ -\ 0^{\circ}.000\ 119\ 303\ 72\ T^{2}\ -\ 0^{\circ}.000\ 011\ 617\ 4\ T^{3}\\ a&=&1^{\circ}.396\ 887\ 83\ T\ +\ 0^{\circ}.000\ 307\ 065\ 22\ T^{2}\\ b&=&0^{\circ}.013\ 055\ 270\ 3\ T\ -\ 0^{\circ}.000\ 009\ 303\ 50\ T^{2}\\ c&=&5^{\circ}.125\ 890\ 67\ +\ 0^{\circ}.818\ 993\ 58\ T\ +\ 0^{\circ}.000\ 104\ 256\ 09\ T^{2}\ -\ 0^{\circ}.000\ 104\ 155\ 607\ T^{3}\\ c'&=&5^{\circ}.125\ 890\ 67\ -\ 0^{\circ}.577\ 894\ 252\ T\ -\ 0^{\circ}.000\ 164\ 504\ 28\ T^{2}\ -\ 0^{\circ}.000\ 104\ 177\ 728\ T^{3}\\ \end{array}$$
 where $T=(t-2000.0)/\ 100=(JD_{TT}-245\ 1545.0)/\ 36525$

Formulae for the reduction from the mean equinox and equator or ecliptic of the middle of year (t_1) to date (t) are as follows:

```
\begin{array}{lll} \alpha &=& \alpha_1 + \tau \, (\text{m} + \text{n} \sin \alpha_1 \, \tan \delta_1 \,) & \delta &=& \delta_1 + \tau \, \text{n} \cos \alpha_1 \\ \lambda &=& \lambda_1 + \tau \, \{ p - \pi \cos \left( \lambda_1 + 6^\circ \right) \tan \beta \} & \beta &=& \beta_1 + \tau \, \pi \sin \left( \lambda_1 + 6^\circ \right) \\ \Omega &=& \Omega_1 + \tau \, \{ p - \pi \sin \left( \Omega_1 + 6^\circ \right) \cot i \, \} & i &=& i_1 + \tau \, \pi \cos \left( \Omega_1 + 6^\circ \right) \\ \omega &=& \omega_1 + \tau \, \pi \sin \left( \Omega_1 + 6^\circ \right) \csc i & i &=& i_1 + \tau \, \pi \cos \left( \Omega_1 + 6^\circ \right) \end{array}
```

where $\tau = t - t_1$ and π is the annual rate of rotation of the ecliptic. The precessional constants p, m, etc. are as follows:

Where Π is the longitude of the instantaneous rotation axis of the ecliptic, measured from the mean equinox of date.

Nutation

The changes in the amplitudes of the nutation components are also not directly taken from the observations; instead a new nutation theory is developed and fit to observations by allowing a small number of geophysical constants to be free parameters. These parameters are constants in a "transfer function" that modifies the amplitudes of the terms from a rigid- Earth nutation development. Since there are fewer solved-for geophysical constants than the number of terms with observed amplitudes, the fit cannot be perfect. For the IAU 2000A model, 7 geophysical parameters were determined based on the observed amplitudes of 21 nutation terms (prograde and retrograde amplitudes for each) together with the apparent change in the rate of precession in longitude. Note that the number of free parameters in the model are both quite small compared to the 1365 terms in the new, full nutation series.

Nutation is conventionally expressed as two small angles, $\Delta \psi$ the nutation in longitude, and $\Delta \epsilon$, the nutation in obliquity. These angles are measured in the Ecliptic system of date, which is developed as a part of precession formulation. The angle $\Delta \psi$ is the small change in the position of the equinox along the ecliptic due to nutation, so effect of nutation on the ecliptic coordinates of a fixed point in the sky is simply to add $\Delta \psi$ to its ecliptic longitude. The angle $\Delta \epsilon$ is the small change in the obliquity of the ecliptic due to nutation. The true obliquity of date is $\epsilon' = \epsilon + \Delta \epsilon$. Nutation in obliquity reflects the orientation of the equator in space and does not affect the ecliptic coordinates of a fixed point on the sky.

Formulas for Nutation

- 1 is the mean anomaly of the Moon.
- 1' is the mean anomaly of the Sun (Earth).
- Ω is the longitude of the ascending node of the Moon's mean orbit on the ecliptic, measured from the mean equinox of date.
- D is the mean elongation of the Moon from the Sun.
- F is the difference $L-\Omega$, where L is the mean longitude of the Moon.
- $\varepsilon = \varepsilon_0 46".836769 \, T 0".0001831 \, T^2 + 0".0020034 \, T^3 0".000000576 \, T^4 0".00000000434 \, T^5$ where $\varepsilon_0 = 84381".406$

The fundamental arguments are given by:

The five arguments are the same fundamental luni - solar arguments used in previous nutation theories, but with updated expressions.

 $485\,868$ ". $249\,036 + (1325^{\mathrm{r}} + 715\,923$ ". $2178)\,\mathrm{T} + 31$ ". $8792\,\mathrm{T}^2 + 0$ ". $051\,635\,\mathrm{T}^3 - 0$ ". $000\,244\,70\,\mathrm{T}^4$ 1 = 1' = 1287104". 79304 + (99 ° + 1292581". 048) T-0". 5532 T $^2-0$ ". 000136 T $^3-0$ ". 00001149 T 4 $335\,779".\,526\,232 + (1342^{^{\mathrm{r}}} + 295\,262".\,8478)\,T - 12".\,7512\,T^2 - 0".\,001\,037\,T^3 + 0".000\,004\,17\,T^4 \\ 107\,2260".\,703\,69 + (1236^{^{\mathrm{r}}} + 110\,5601".\,209)\,T - 6".\,3706\,T^2 + 0".\,006\,593\,T^3 - 0".000\,031\,69\,T^4$ $\Omega = 450\,160^{\circ}$, 398 036 – (5^r + 482 890°, 5431) T + 7°, 722 T² + 0°, 007 702 T³ - 0°, 000 059 39 T⁴ where $1^{\rm r} = 360^{\rm o} = 129\,6000^{\rm o}$

Reduction for nutation - rigorous formulae

Nutation in longitude ($\Delta \Psi$) and obliquity ($\Delta \varepsilon$) have been calculated using IAU 2000A series definitions (order of 1 µas) with the following adjustments which are required for use at the highest precession with the IAU 2006 precession, viz:

$$\Delta \psi = \Delta \psi_{2000A} + (0.4697 \times 10^{-6} - 2.7774 \times 10^{-6} T) \Delta \psi_{2000A}$$

$$\Delta \varepsilon = \Delta \varepsilon_{2000A} - 2.7774 \times 10^{-6} \text{ T } \Delta \varepsilon_{2000A}$$

 $\Delta\epsilon = \Delta\epsilon_{2000A} - 2.7774 \ x \ 10^{-6} \ T \ \Delta\epsilon_{2000A}$ where T is measured in Julian centuries from 245 1545.0 TT. $\Delta\psi$ and $\Delta\epsilon$ together with the true obliquity of the ecliptic (ε') are tabulated daily at 0^h TT, on page 18 to 32.

Once the nutation series has been evaluated and the values of $\Delta \psi$ and $\Delta \epsilon$ are available, the nutation matrix can be constructed.

A mean place (\mathbf{r}_{m}) may be transformed to a true place (\mathbf{r}_{m}) and vice versa, as follows:

$$\begin{split} & \mathbf{r}_{_{t}} = \mathbf{N} \, \mathbf{r}_{_{m}} & \mathbf{r}_{_{m}} = \mathbf{N}^{-1} \, \mathbf{r}_{_{t}} \\ \text{where} & \mathbf{N} = \mathbf{R}_{_{1}} (-\epsilon') \, \mathbf{R}_{_{3}} (-\Delta \psi) \, \mathbf{R}_{_{1}} \, (+\epsilon) \\ & \epsilon' = \epsilon + \Delta \epsilon \\ & \mathbf{R} \ \, \text{and} \ \, \mathbf{R}_{_{3}} \ \, \text{are the standard rotations about the x and z axes respectively.} \end{split}$$

- (i) A rotation from the mean equator and equinox of t to the mean ecliptic and equinox of t. This is simply a rotation around the x - axis (the direction toward the mean equinox of t) by the angle ϵ , the mean obliquity of t.
- (ii) A rotation around the new z-axis (the direction toward the ecliptic pole of t) by the angle $\Delta \psi$, the amount of nutation in longitude at t. After the rotation, the new x- axis is in the direction of true equinox of t.
- (iii) A rotation around the new x-axis (the direction toward true equinox of t by the angle $-\epsilon'$, the true oliquity of t. After the rotation, the fundamental plane is the true equator of t, orthogonal to the computed position of the CIP at t.

The nutation matrix can be written:

$$\begin{split} \mathbf{N} &= \begin{bmatrix} \mathbf{C}_2 & \mathbf{S}_2 \mathbf{C}_1 & \mathbf{S}_2 \mathbf{S}_1 \\ -\mathbf{S}_2 \mathbf{C}_3 & \mathbf{C}_3 \mathbf{C}_2 \mathbf{C}_1 - \mathbf{S}_1 \mathbf{S}_3 & \mathbf{C}_3 \mathbf{C}_2 \mathbf{S}_1 + \mathbf{C}_1 \mathbf{S}_3 \\ \mathbf{S}_2 \mathbf{S}_3 & -\mathbf{S}_3 \mathbf{C}_2 \mathbf{C}_1 - \mathbf{S}_1 \mathbf{C}_3 & -\mathbf{S}_3 \mathbf{C}_2 \mathbf{S}_1 + \mathbf{C}_3 \mathbf{C}_1 \end{bmatrix} \\ \mathbf{S}_1 &= \sin{(\epsilon)} & \mathbf{S}_2 &= \sin{(-\Delta\psi)} & \mathbf{S}_3 &= \sin{(-\epsilon - \Delta\epsilon)} \\ \mathbf{C}_1 &= \cos{(\epsilon)} & \mathbf{C}_2 &= \cos{(-\Delta\psi)} & \mathbf{C}_3 &= \cos{(-\epsilon - \Delta\epsilon)} \end{split}$$

where

Approximate reduction for nutation for converting mean place to true place can be done with the help of the following formulae:

$$\begin{array}{lll} \Delta\alpha &=& (\cos\ \epsilon \,+\sin\ \epsilon\ \sin\ \alpha\ \tan\ \delta)\,\Delta\psi - \cos\alpha\ \tan\delta\,\Delta\epsilon \\ \Delta\delta &=& \sin\ \epsilon\ \cos\alpha\ \Delta\psi \,+\,\sin\ \alpha\,\Delta\epsilon \\ \Delta\lambda &=& \Delta\psi; & \Delta\beta &=& 0 \end{array}$$

where $\Delta \psi$ and $\Delta \epsilon$ are nutations in longitude and obliquity respectively. Mean rectangular coordinates (x,y,z) can be converted to true rectangular co-ordinates with the help of the following:

$$\Delta x = -(y\cos\varepsilon + z\sin\varepsilon)\,\Delta\psi$$

$$\Delta y = + x \, \Delta \psi cos \, \epsilon \, - z \, \Delta \epsilon$$

$$\Delta z = + x \, \Delta \psi \sin \varepsilon + y \, \Delta \varepsilon$$

where both $\Delta \psi$ and $\Delta \varepsilon$ are in radians.

The elements of the corresponding rotation matrix are:

$$\mathbf{N} = \begin{bmatrix} 1 & -\Delta\psi\cos\epsilon & -\Delta\psi\sin\overline{\epsilon} \\ +\Delta\psi\cos\epsilon & 1 & -\Delta\epsilon \\ +\Delta\psi\sin\epsilon & +\Delta\epsilon & 1 \end{bmatrix}$$

Daily values of $\Delta \Psi$ and $\Delta \varepsilon$ during 2020 are tabulated on pages 18 to 32.

Approximate reduction for precession and nutation in right ascension and declination from the standard equinox and equator of J 2000.0 to the true equinox and equator of date during 2020 can be done using the following formulae and table:

$$\begin{array}{lll} \alpha & = & \alpha_{_{o}} + f + g \sin{(G + \alpha_{_{o}})} \ \tan{\delta_{_{o}}} \\ \delta & = & \delta_{_{o}} + g \cos{(G + \alpha_{_{o}})} \end{array}$$

where the units of the correction to $\alpha_{\rm o}$ and $\delta_{\rm o}$ are in second of time and minutes of arc respectively.

Date		f	g	, g	\overline{G}		Date		f	g	g	G	
2020		S	S	,	h	m	2020		S	S	,	h	m
Jan.	- 8*	+60.4	26.2	6.56	00	02	Jun.	30	+62.0	26.9	6.73	00	01
	2	+60.5	26.3	6.57	00	01	Jul.	10 *	+62.1	27.0	6.75	00	01
	12	+60.6	26.3	6.58	00	01		20	+62.2	27.0	6.76	00	00
	22	+60.7	26.4	6.59	00	01		30	+62.3	27.1	6.77	00	00
Feb.	1 *	+60.8	26.4	6.60	00	01	Aug.	9	+62.4	27.1	6.78	00	00
	11	+60.9	26.5	6.61	00	01		19 *	+62.5	27.1	6.79	00	00
	21	+61.0	26.5	6.62	00	01		29	+62.5	27.2	6.79	00	00
Mar.	2	+61.0	26.5	6.63	00	01	Sep.	8	+62.6	27.2	6.80	00	00
	12 *	+61.1	26.5	6.63	00	01		18	+62.6	27.2	6.81	00	00
	22	+61.1	26.6	6.64	00	00		28 *	+62.7	27.3	6.81	00	00
Apr.	1	+61.2	26.6	6.65	00	01	Oct.	8	+62.8	27.3	6.82	00	00
	11	+61.2	26.6	6.65	00	01		18	+62.8	27.3	6.82	00	00
	21 *	+61.3	26.6	6.66	00	00		28	+62.9	27.3	6.83	00	00
May.	1	+61.4	26.7	6.67	00	01	Nov.	7 *	+63.0	27.4	6.84	00	00
	11	+61.5	26.7	6.68	00	01		17	+63.1	27.4	6.85	00	00
	21	+61.6	26.7	6.69	00	01		27	+63.2	27.4	6.86	00	00
	31 *	+61.7	26.8	6.70	00	01	Dec.	7	+63.3	27.5	6.88	00	00
Jun.	10	+61.8	26.8	6.71	00	01		17 * †	+63.4	27.6	6.89	00	00
	20	+61.9	26.9	6.72	00	01		27	+63.5	27.6	6.90	00	00
	30	+62.0	26.9	6.73	00	01		37	+63.6	27.6	6.91	00	00

Differential Precession and Nutation can be applied to obtain the differences in the mean place of an object relative to a comparison star for a standard epoch (J 2000.0) using the following formulae:

correction to R.A.: e tan $\delta \Delta \alpha$ – f sec² $\delta \Delta \delta$

correction to declination : f $\Delta \alpha$

where $\Delta\alpha$ and $\Delta\delta$ are the observed differences in right ascension and declination of the object relative to the comparison star and

 $e = -\cos\alpha (n t + \sin \varepsilon \Delta \psi) - \sin \alpha \Delta \varepsilon$

 $f = + \sin \alpha (n t + \sin \epsilon \Delta \psi) - \cos \alpha \Delta \epsilon$

 $\varepsilon = 23^{\circ}.44, \sin \varepsilon = 0.398$

n = 0.0000972 radian for epoch J 2020.5

t is the time in years from the standard epoch to the time of observation.

 $\Delta \psi$, $\Delta \epsilon$ are nutations in longitude and obliquity at the time of observation expressed in radians, (1" = 0.000 004 8481 rad).

Aberration

Aberration is the displacement of the position of a celestial object due to finite speed of light. The actual velocity of light in space c is the vectorial sum of its velocity relative to the observer c_r and the velocity V of the observer. Although the special theory of relativity has no provision of breaking up aberration of light into components, total effects of aberration in astronomy are broken into stellar, annual, elliptic, secular and planetary aberration for convenience of computation. In case of stars, all that can be determined is the displacement in their positions caused by the motion of the observer alone. It is calculated on the basis of the actual instantaneous motion of the Earth round the barycentre of the solar system.

Earlier, the practice was to resolve the stellar aberration into two components; one contributed by the circular motion of the Earth moving with a constant mean velocity round the Sun, and the other, a nearly constant displacement perpendicular to the major axis of the orbit arising due to ellipticity of the orbit of the Earth. The latter, known as the E-terms of aberration was included in the mean position of the stars as given in star catalogues and was omitted in the computation of day numbers. As a result, the mean places of stars differed from the catalogue mean places. This procedure was adopted to minimise the computation work for the user of star catalogues. However, this practice has caused much confusion lately because the accurate total velocity of the Earth referred to the barycentre of the solar system could not be used in computing stellar aberration. In accordance with a decision of the IAU in 1976, this occasion has been used to simplify this procedure by removing the E terms of aberration from the mean places and to include them in the reduction from mean to apparent place so that the apparent places remain unchanged. Thus, the mean places of FK5 are free from E terms. In other words, they will be the positions of the stars at epoch J 2000.0 as viewed from the barycentre of the solar system, in the co-ordinate system defined by the Earth's mean equator and equinox of J 2000.0.

The conversion of 1950.0 star catalogue positions (α,δ) to actual mean places ($\alpha+\Delta\alpha,\delta+\Delta\delta$) can be accomplished by :

$$\Delta \alpha = 0^{\text{S}} \cdot 0227 \sin{(\alpha + 11}^{\text{h}} \cdot 25) \sec{\delta}$$

 $\Delta \delta = 0^{\text{"}} \cdot .341 \cos{(\alpha + 11}^{\text{h}} \cdot .25) \sin{\delta} + 0^{\text{"}} \cdot .029 \cos{\delta}$

For solar system objects, the displacement of the light source during the time (Δt) taken by light to travel from it to the Earth combined with the effect of relative motion of the Earth and the light is known as planetary aberration. Its computation requires a knowledge of the distance and motion of the light source and can be accomplished as follows. First, the barycentric position of the body at time t- Δt is combined with the barycentric position of the Earth at time t and then the correction for annual aberration is applied. Planetary aberration may also be

computed by interpolating the geometric (geocentric) ephemeris of the body to the time t - Δt . The light time Δt is given by:

$$\Delta t$$
 (in days) = 0.005 7755 x distance in a.u.

Annual aberration for reduction from a geometric place (α_0, δ_0) to an apparent geocentric place (α, δ) is given by :

$$\alpha = \alpha_0 + (-\dot{\mathbf{X}}\sin \alpha_0 + \dot{\mathbf{Y}}\cos \alpha_0) / (\cos \delta_0)$$

 $\delta = \delta_0 + (-\dot{x}\cos\alpha_0\sin\delta_0 - \dot{y}\sin\alpha_0\sin\delta_0 + \dot{z}\cos\delta_0)/c, \text{ where } c = 173.14 \text{ a.u./day and } \dot{x}, \dot{y}, \dot{z} \text{ are the velocity components of the Earth (pages 256 to 270).}$

The reduction of observations of the radial velocity to a common origin at the barycentre is given by adding the component of the Earth's velocity in the direction (α_0, δ_0) of the object:

$$\dot{x}\;\cos\alpha_0\cos\delta_0+\dot{y}\sin\alpha_0\cos\delta_0+\dot{z}\sin\delta_0$$

Differential annual aberration corrections to be added to the observed differences of right ascension and declination (in the sense moving object minus star) to give true differences are:

(R.A.) a
$$\Delta \alpha + b \Delta \delta$$
 (in units of $0^{\rm S}$. 001); (declination) c $\Delta \alpha + d \Delta \delta$ (in units of $0^{\rm H}$.01)

Here $\Delta\alpha$ is to be taken in units of 1^m and $\Delta\delta$ in units of 1'. The coefficients a, b, c and d are defined by:

$$a = -5.701 \cos (H+\alpha) \sec \delta$$

b =
$$-0.380 \sin (H + \alpha) \sec \delta \tan \delta$$

$$c = +8.552 \sin (H+\alpha) \sin \delta$$

$$d = -0.570 \cos (H+\alpha) \cos \delta$$

$$H^h = 23.4 - (day of year/15.2)$$

(The day of year is tabulated on pages 4 to 12)

Annual parallax correction can be calculated approximately for reduction from the catalogue place (α_0, δ_0) to the geocentric place (α, δ) using the following formulae;

 $\alpha = \alpha_0 + (\pi/15\cos\delta_0) (X\sin\alpha_0 - Y\cos\alpha_0) \text{ and } \delta = \delta_0 + \pi(X\cos\alpha_0\sin\delta_0 + Y\sin\alpha_0\sin\delta_0 - Z\cos\delta_0)$ where π is the annual parallax and X, Y, Z, are the coordinates of the Earth as given on pages 256 to 270.

Deflection of light in the gravitational field of the Sun may significantly affect the apparent direction of a star or of a body in the solar system. The elongation (E) from the centre of the Sun is increased by an amount that, for a star, depends on the elongation in the following manner:

$$\Delta E = 0".004\ 07/\ tan\ (E/2)$$

$$E \qquad 0^{\circ}.25 \quad 0^{\circ}.5 \quad 1^{\circ} \quad 2^{\circ} \quad 5^{\circ} \quad 10^{\circ} \quad 20^{\circ} \quad 50^{\circ} \quad 90^{\circ}$$

$$\Delta E \qquad 1".866 \quad 0".933 \quad 0".466 \quad 0".233 \quad 0".093 \quad 0".047 \quad 0".023 \quad 0".009 \quad 0".004$$

The body disappears behind the Sun when E is less than the limiting grazing value of about 8° .25. The effects in right ascension and declination may be calculated approximately from;

$$\begin{array}{ll} \cos E = \sin \delta \sin \delta_0 + \cos \delta \cos \delta_0 \cos (\alpha - \alpha_0) \\ \Delta \alpha &= 0^s.000\,271\cos \delta_0 \sin (\alpha - \alpha_0)/\left(1 - \cos E\right)\cos \delta \\ \Delta \delta &= 0".004\,07\,[(\sin \delta \cos \delta_0 \cos (\alpha - \alpha_0) - \cos \delta \sin \delta_0]/\left(1 - \cos E\right) \\ \text{where } \alpha,\,\delta \text{ refer to the star, and } \alpha_0,\,\delta_0 \text{ to the Sun.} \end{array}$$

TABULAR DATA

PART-I-TIME SCALES AND EPHEMERIDES

Dates of year beginning in 2020 of various Indian and important foreign chronological eras are listed on page 3 followed by Gregorian calendar for the current year (pages 4 to 12). The calendar contains, besides the usual information, a count of Julian Day (JD) number for each date. The system of Julian day numbers maintains a continuous count of astronomical days, beginning with JD=0 on 1 January 4713 B.C., Julian proleptic calendar. Julian Day numbers for other years can be found from the table on page 359. Various time scales used in this publication, their inter-relationships (as given on page 2) and the basis for computation of sidereal time as tabulated on pages 13 to 16; have been discussed above under the section on time scales. The concept of equation of time defined as the difference between local apparent solar time and local mean solar time (in the sense apparent minus mean) is no longer used in astronomy and therefore, it is no more tabulated in this publication. It can, however, be obtained to a precision of about 1 second using the following relation:

Equation of time at 12^h U.T. = 12^h — tabulated value of TT of Sun's ephemeris transit (pages 19 to 33).

In this publication, the ephemeridies of the Sun and planets were reported earlier based on computation jointly made by USNO and JPL by simultaneous numerical integration designated as DE 200/ LE 200. A more recent JPL ephemeris, DE 405/ LE 405 has now come into widespread use, provide barycentric equatorial rectangular coordinates for the period 1600 to 2201. The reference frame for basic ephemerides is the ICRF; the alignment onto this frame has an estimated accuracy of 1 - 2 arcseconds. The JPL DE 405/ LE 405 ephemerides have been developed in a barycentric reference system using a barycentric coordinate time scale $T_{\rm eph}$. The present edition use the DE 405/ LE 405 ephemeridies data on the positions of the Sun, Moon and planets. The value of some astronomical constants based on previously used DE200/ LE200 ephemeridies and currently used DE 405/ LE 405 ephemerides are given below.

Constant	DE 405 Value	DE 200/ LE 200 Value
Light-time for unit distance, τ_A	499.004 783 84 s	499.0047837s
Geocentric gravitational constant,		
Œ	$3.986004418\mathrm{x}10^{14}\mathrm{m}^{3}\mathrm{s}^{-2}$	3.98600448 $x10^{14}$ m ³ s ⁻²
Heliocentric gravitational constant,	20	
CS	$1.327\ 124\ 42\ 099\ x\ 10^{20} m^3 s$	$s^{-2} 1.327 124 40x 10^{20} \text{ m}^3 \text{s}^{-2}$
Ratio of mass of Sun to that of		
Earth, (GS)/(GE)	332 946.0 487	332 946.038
Ratio of mass of Moon to that of		
Earth, μ	0.0123000371	0.012 300 034
Obliquity of the ecliptic at J2000.0, ε	23° 26′ 21″.406	23° 26′ 21″.4119
Unit distance, A	$1.495978707\mathrm{x}10^{11}\mathrm{m}$	$1.4959787066\mathrm{x}10^{11}\mathrm{m}$
Ratio of mass of Sun to that		
of Earth + Moon	328 900.5596	328 900.55
Ratio of mass of Sun to mass of		
each planet:		
Jupiter	1047.348 644	1047.350
Saturn	3497.9018	3498.0
Uranus	229 02.98	229 60
Pluto	$1.36566\mathrm{x}10^{8}$	1.3×10^{8}
Pallas	9.709×10^9	9.247×10^9
Vesta	7.407×10^9	7.253×10^9

The Sun

Mean elements of the orbit of the Sun can be calculated with the help of the following expressions for use during 2020 only:

Geometric mean longitude : $L = 279^{\circ}.141\,941 + 0.985\,647\,36\,d$ Mean longitude of perigee : $\Gamma = 283^{\circ}.281\,180 + 0.000\,047\,08\,d$ Mean anomaly : $g = 355^{\circ}.860\,761 + 0.985\,600\,28\,d$ Eccentricity : $e = 0^{\circ}.016\,701\,22 - 0.000\,000\,0012\,d$

Obliquity of the ecliptic w.r.t. mean

equator of date : $\varepsilon = 23^{\circ}.436678 - 0.00000036 d$ where d is the interval in days from 2018 January 0 at 0^h TT and is given by

d = JD - 2457387.5 = day of the year (pages 4 to 12) + fraction of day from 0^h TT.

The above angular elements are referred to the mean equinox and ecliptic of date. The position of ecliptic of date with respect to the ecliptic of the standard epoch J 2000.0 is given by the formulae given under *Precession*.

The length of the principal years at 2020.0 as derived from the Sun's mean motion are given on page 2.

Geometric longitude of the Sun with respect to the mean equinox of date is tabulated on even numbered pages 18 to 32. Apparent longitude and latitude are with respect to the true equinox and ecliptic of date respectively. The two longitudes are related as follows:

Apparent longitude = Geometric longitude + nutation in longitude -20".4955/ R.

Aberration has been computed by dividing 20".4955 by the true distance to the Sun. Precession in longitude is the total precessional displacement of a point along the ecliptic since the epoch J 2020.5. Revised value of the annual general precession $p=0^{\circ}$. 013 970 98 (for J 2020.5) has been used to compute this quantity. Components of nutation are the results of summation of the revised series of nutation. The sum of the terms with period shorter than 35 days is separately tabulated under Besselian Day numbers (pages 244 to 251).

Apparent Right Ascension and true distance (radius vector), declination (tabulated on odd numbered pages 19 to 33) of the Sun have been computed from the original barycentric rectangular co-ordinates. Although the apparent right ascension and declination have been corrected for light time, the radius vector or the true geocentric distance in astronomical units is the geometric distance at the tabular time.

The Semidiameter is based on a value of 16' 01''.18 at unit distance being inclusive of an allowance for irradiation of 1''.55. The tabular value is obtained by dividing 16' 01''.18 by the radius vector.

Ephemeris Transit is the TT of the transit of the Sun over the ephemeris meridian which according to its definition, is $1.0027379 \Delta T$ east of the Greenwich meridian. Here ΔT is the difference TT – UT. This transit time. This transit time can be interpolated to other meridians with an interpolating factor p, as follows:

$$p = -\lambda/360 + 1.0027379 \times \Delta T/86400$$

where λ is the longitude (east positive). The interpolated TT can be converted into UT by subtracting Δ T from TT.

Equatorial rectangular co-ordinates (geocentric) of the Sun, referred to the ICRS axes, are given in a.u. on pages 34 to 41. The direction of these axes have been defined by the IAU and realized in practice by the coordinates of several hundred extra galactic radio sources.

Horizontal parallax (page 17) of the Sun is the angle subtended at the Sun by the equatorial radius of the Earth. The new value of the Solar parallax $\Pi_0 = 8$ ".794 148 has been used to compute the horizontal parallax.

Mean longitude and mean anomaly (page 17) of the Sun have been computed using revised expressions for the mean motion of the Earth around the Sun as given on page 447.

Heliographic co-ordinates given on pages 42 to 45 for 0^h UT include the position angle P of the northern extremity of the axis of rotation measured eastward from the north point of the disc and the heliographic latitude B_o and longitude L_o of the central point of the disc.

The observed angular distance ρ_1 from the centre of the disc of the Sun of a feature on the Sun's surface, as seen from the Earth, can be converted into its heliocentric angular distance ρ from the centreof the Sun's disc as follows:

$$\sin(\rho + \rho_1) = \rho_1/S$$
, where S is the semi diameter of the Sun.

The observed position (ρ, θ) of a feature (Sunspot, etc.) with respect to the centre of Sun's disc can be converted into heliographic co-ordinates (L, B) as follows:

```
\begin{array}{l} \sin \; B = \sin B_{\circ} \cos \; \rho \; + \cos B_{\circ} \sin \rho \; \cos \left( P - \theta \; \right) \\ \cos B \; \sin \left( L - L_{\circ} \right) \; = \sin \rho \; \sin \left( P - \theta \; \right) \\ \cos B \; \cos \left( L - L_{\circ} \right) \; = \cos \; \rho \; \cos B_{\circ} - \sin B_{\circ} \sin \rho \; \cos \left( P - \theta \; \right) \end{array}
```

The physical ephemeris of the Sun has been calculated from the elements determined by R. C. Carrington (observation of the spots on the Sun, 1863).

The Synodic rotation numbers are given below according to R. C. Carrington's Greenwich photoheliographic series which commenced on 9 November, 1853 with number 1. The standard solar meridian from which heliographic longitudes on the surface of the Sun are measured (positive towards the west) is that which passes through the ascending node of the solar equator on the ecliptic on 1854 January 1, Greenwich mean noon. The beginning of each synodic rotation is the instant at which the standard solar meridian passes through the central point of the apparent disc of the Sun, i.e., when the heliographic longitude L_{\circ} of this central point is zero.

SYNODIC ROTATION NUMBERS, 2020

Date of						Date	e of		Date of		
Number		Commencement		Number	Commencement Number				Commencement		
2225	2019	Dec.	10.05	2230		Apr.	24.64	2235		Sept.	7.74
2226	2020	Jan.	6.38	2231		May.	21.87	2236		Oct.	5.01
2227		Feb.	2.72	2232		June.	18.07	2237		Nov.	1.30
2228		Mar.	1.06	2233	2020	July.	15.27	2238		Nov.	28.61
2229		Mar.	28.37	2234		Aug.	11.49	2239	2020	Dec.	25.93
								2240	2021	Jan.	22.27

At the date of commencement of each synodic rotation period, the value of L_{\circ} is zero; that is, the prime meridian passes through the central point of the disk.

The mean rotational elements of the Sun during 2020 are as follows:

Longitude of the ascending node of the solar equator on the ecliptic of date is $76^{\circ}.01$, and on the mean equator of date $16^{\circ}.16$. Inclination of the solar equator on the ecliptic of date is $7^{\circ}.25$, and on the mean equator of date $26^{\circ}.10$. The mean position of the pole on the solar equator is at right ascension $286^{\circ}.16$ and declination $63^{\circ}.90$. Sidereal period of rotation of the prime meridian is $14^{\circ}.1844$ per day and its mean synodic period of rotation is 27.2753 days.

The Moon

The ephemerides of the Moon reported in this publication are based on the fundamental arguments developed by Simon et. al (1994). The angular elements are referred to the mean equinox and ecliptic of date. Mean elements of the mean equator and of the orbit of the Moon (page 47) can be computed during 2020 with the help of the following expressions:-

The inclination i of the mean equator of the Moon to the true equator of the Earth is given by :

$$i = 23^{\circ}.7057 - 0.001409d - 0.00000000027d^{2}$$

The arc of the mean equator of the Moon from its ascending node on the true equator of the Earth to its ascending node on the ecliptic of date:

$$\Delta = 281^{\circ}.7746 - 0.052264d - 0.000001502d^{2}$$

The arc of the true equator of the Earth from the true equinox of date to the ascending node of the mean equator of the Moon:

$$\Omega' = -3^{\circ}.7991 - 0.000734d + 0.000001643d^2$$

The inclination (1) of the mean equator of the Moon to the ecliptic = 1° 32′ 33″.6.

The ascending node of the mean lunar equator on the ecliptic is at the descending node of the mean lunar orbit on the ecliptic that is at longitude $\Omega + 180^{\circ}$.

The above expressions give the mean elements with respect to the true equator of the Earth to a precision of about $0^{\circ}.001$.

The following expressions for the mean elements of the orbit of the Moon Γ' , Ω mean longitude of the Moon L' and elongation D are referred to the mean equinox and ecliptic of date.

Mean longitude of the Moon, measured along the ecliptic to the mean ascending node and then along the mean orbit:

$$L' = 332^{\circ}.128231 + 13.17639646d$$

Mean longitude of the Moon's perigee measured in the same way as L':

$$\Gamma' = 176^{\circ}.988452 + 0.11140341d$$

Mean longitude of the mean ascending node of the lunar orbit on the ecliptic :

$$\Omega = 98^{\circ}.296816 - 0.05295374 d$$

Mean elongation of the Moon from the Sun:

$$D = L' - L = 52^{\circ}.986290 + 12.19074910d$$

Mean inclination of the lunar orbit to the ecliptic = 5° .156 689 8

The above expressions are valid for use in 2020 only.

In all the above expressions, the time argument d is the interval in days since 0^h TT January 0, 2020 and is given by d = JD - 2458118.5

The length of the principal mean months at 2020.0 as derived from the above mean orbital elements of the Moon are given on page 2.

The apparent geocentric longitude and latitude of the Moon (pages 48 to 63) are referred to the true equinox and ecliptic of date. The true distance between the centres of the Earth and the Moon is given in a.u. Semi-diameter is derived from the horizontal parallax by $S = \sin^{-1}(k \sin \pi)$ where k = 0.2725076. The semi-diameter at mean distance is taken to be 15′ 32″.58 without making any correction for irradiation.

The right ascension and declination given on pages 64 to 79 for 0 hour & 12 hour of TT are referred to the true equator and equinox of date.

Horizontal parallax is tabulated at twelve hourly intervals on pages 64 to 79. It is derived from $\sin^{-1}(1/r)$ where r is the true distance in units of the Earth's equatorial radius. The tabulated R.A. and declination have been corrected for light time while the horizontal parallax is the geometric value for the tabular time.

The times of New Moon, First Quarter, Full Moon and Last Quarter are the moments at which the excess of the Moon's apparent longitude over that of the Sun is 0° , 90° , 180° and 270° respectively. Moon at Apogee and Perigee are the times when the Moon is at the greatest and least distance from the Earth. The timings are given in U.T. The corresponding timings in U.T. of the phases of the Moon are also given in the calendar portion on pages 4 to 12. For more precise values of the moments of New Moon and Full Moon, a reference may be made to Part VI - Indian Calendar where the times are given in I.S.T.

Moon's Age, given for 0^h TT, is the number of days elapsed since the preceding New Moon (conjunction). The times of Moon's upper and lower transit are given in TT for the ephemeris meridian. Interpolation to any other meridian by means of differences given and with the help of the ephemeris longitude will yield the local mean time of transit. The apparent geocentric declination given for the time of ephemeris transit can also be similarly interpolated.

Physical ephemeris of the Moon (pages 88 to 95) has been computed using the formulae and constants of D. Eckhardt (*The Moon and the Planets*, 25 3, 1981; *High precision Earth Rotation and Earth-Moon Dynamics*, ed. O. Calame, pages 193-198, 1982) with inclination I as given above (IAU value).

In case of the Moon, selenographic longitudes are measured for a point on the surface of the Moon from the lunar meridian that passes through the mean central point of the visible disc positive towards the west towards Mare Crisium. Selenographic latitudes are reckoned positive towards the north limb. The mean central point of the disc is defined as the point on the lunar surface intersected by the radius of the Moon directed towards the Earth, when the Moon is simultaneously at the ascending node and coincident with the mean longitude.

The Moon presents roughly the same hemisphere to the Earth. However, due to non uniformity of the revolution of the Moon around the Earth (optical libration) and an oscillation of the actual rotational motion of the Moon about its mean rotation (physical libration), about 59% of the Moon's surface can be seen from the Earth. The contribution to the Earth's selenographic longitude and latitude due to physical libration has been tabulated separately. These are geocentric values.

The tabular selenographic longitude and latitude of the Earth are the selenographic co-ordinates of the apparent central point of the Moon from which point the Earth is in selenographic zenith. These co-ordinates are the total librations (sums of optical and physical librations) in longitude and latitude respectively. When the libration in longitude, i.e. the selenographic longitude of the Earth, is positive, the mean central point of the disc is displaced eastward exposing to view a region on the west limb. When the libration in latitude, i.e. the selenographic latitude of the Earth, is positive, a region on the north limb is exposed to view.

The selenographic co-ordinates of the point on the lunar surface where the Sun is in the Zenith are the selenographic co-ordinates of the Sun. The selenographic co-longitude of the Sun tabulated in the ephemeris is obtained by subtracting the selenographic longitude of the Sun from 90° or 450° ; it is approximately 270° , 90° and 180° at new-moon, first quarter, full-moon and last quarter respectively.

The position angle of the axis is the angle that the lunar meridian through the apparent central point of the disc towards the north lunar pole forms with the declination circle through the central point, reckoned counter clockwise from the north point of the disc.

The position angle of the bright limb is the position angle of the mid point of the illuminated limb, reckoned eastward from the north point of the disc. The position angle of the two cusps may be obtained by adding \pm 90° to that of the bright limb.

The expression for calculating the selenographic altitude (a) of the Sun (above the lunar horizon) at a point at selenographic longitude l and latitude b is as follows :

 $\sin a = \sin b_{\circ} \sin b + \cos b_{\circ} \cos b \sin (c_{\circ} + l)$, where (c_{\circ}, b_{\circ}) are the Sun's co-longitude and latitude at the time.

The following expressions can be used to compute the differential corrections to be applied to the tabular geocentric librations to form the topocentric librations :

$$\Delta l = -\pi' \sin(Q - C) \sec b$$

$$\Delta b = +\pi' \cos(Q - C)$$

 $\Delta C = + \sin(b + \Delta b) \Delta l - \pi' \sin Q \tan \delta$, where Q is the geocentric parallactic angle of the Moon and π' is the topocentric horizontal parallax. The latter is obtained from the geocentric horizontal parallax (π) (pages 64 to 79) by using:

```
\pi' = \pi (\sin z + 0.0084 \sin 2 z)
```

where z is the geocentric zenith distance of the Moon. The values of z and Q may be calculated from the geocentric R.A. (α) and declination (δ) of the Moon by using :

```
\sin z \sin Q = \cos \phi \sin h

\sin z \cos Q = \cos \delta \sin \phi - \sin \delta \cos \phi \cos h

\cos z = \sin \delta \sin \phi + \cos \delta \cos \phi \cos h
```

where ϕ is the geocentric latitude of the observer and h is the local hour angle of the Moon given by:

h = local apparent sidereal time $-\alpha$

Second differences in the tabular values of the geocentric librations must be taken into account in interpolation for the time of observation.

Major Planets

The heliocentric and geocentric positions of the major planets given on pages 96 to 197 have been derived directly from the numerical integration mentioned on page 446.

The heliocentric longitude and latitude are referred to the mean equinox and ecliptic of date. The tabular argument of heliocentric ephemeris is barycentric dynamical time (TDB).

The apparent geocentric longitude and latitude are referred to the true equinox and ecliptic of date and are planetary aberration. The apparent right ascension and declination are also corrected for planetary aberration and referred to the true equinox and equator of date. The tabular argument for both the terrestrial dynamical time (TDT). The TDT of transit over the ephemeris meridian has been furnished, which may be interpolated to any other meridian to obtain the LMT of transit.

As regards Pluto, in addition to the usual data, figures have been furnished for reduction of the apparent right ascension and apparent declination to the corresponding astrometric places referred to the mean equinox and equator of J 2000.0. The astrometric ephemeris is obtained by first adding the usual planetary aberration to the

planet's true geocentric places referred to the standard equinox J 2000.0 and then subtracting the stellar aberration pertinent to the position occupied by the planet. The astrometric place is thus affected by the amount of the terms in the aberration dependent on the longitude of the Earth's perihelion as are the catalogue mean places of stars in the neighbourhood. The astrometric ephemeris is, therefore, rigorously comparable with photographic observations that are referred to catalogue mean places J 2000.0 of neighbouring stars, it being only necessary to correct the observations for geocentric parallax in case of the planets and proper motion in case of the stars.

The tabular true distance from the Earth is the actual geocentric distance at the tabulated time and not at the instant when the light left the planet.

The horizontal parallax of planets is 8".794 143 divided by the geocentric distance. As regards the semi-diameter, the tabulated value is the value at unit distance divided by the geocentric distance. The semi-diameters at unit distance are as follows: Mercury 3".36, Venus 8".34, Mars 4".68, Jupiter 98".57 (Equatorial) and 92".12 (Polar), Saturn 83".13 (Equatorial) and 74".96 (Polar), Uranus 35".24, Neptune 34".14 and Pluto 2".07.

The heliocentric osculating elements of the orbits of the major planets, including Pluto, are given at intervals of 40 days on pages 200 to 201. The osculating elements are the elements of the instantaneous ecliptic orbit of the planet around the Sun determined by its actual position and velocity components for the instant, and as such the elements are affected by the attractions of other planets. The true place of a planet deduced from these elements is thus inclusive of the planetary perturbations, which need not, therefore, be considered separately in such a deduction.

The osculating elements for the Earth refer to the Earth/Moon barycentre. The correction in ecliptic rectangular co-ordinates in conversion from the Earth/Moon barycentre to the Earth's centre is given by:

Earth's Centre = $(\text{Earth / Moon barycentre}) - (0.000\,0312\cos L,\,0.000\,2865\sin L,\,0.0000124\sin L,\,-0.00000718\sin L,0.00000657\cos L,\,0.00000285\cos L)$

where $L = 218^{\circ} + 481268^{\circ} T$, with T measured in Julian centuries from JD 2451545.0 to 5 decimals; the co-ordinates are in a.u. with reference to mean equinox and ecliptic of date.

PART II - STARS

The mean places of 482 stars, apparent places of 68 stars at 10-day intervals, daily apparent place of *Polaris* and tables for finding latitude of place from altitude of polaris and azimuth of polaris are given in this section. The ecliptic co-ordinates (mean longitude and latitude) of 451 stars have also been given. To facilitate reduction from mean to apparent place of a star, Besselian Day Numbers as well as the barycentric position and velocity components of the Earth alongwith rotation matrix elements for precession and nutation have been tabulated.

Mean Places of Stars (pages 215 to 226)

Beginning with the issue for 1988, calculation of the mean and apparent places are based directly on the basic-FK5 compiled by the A.R.I., Heidelberg.

The table for mean places of stars includes all stars of magnitude upto 3.9 as well as the component stars of the different lunar asterisms of the Hindus, Chinese and Arabian even when those are fainter than magnitude 3.9.

In case double or multiple stars, m denotes the mean position of the centre of gravity (c.g.) of the system; p the preceding component having less right ascension, f the following component and A the brighter component of the system. The magnitude of the binary stars is the integrated value for the two components.

The mean longitude and latitude of 451 important stars have been computed using the conversion from equatorial mean positions to ecliptic co-ordinates. Similarly, annual variations in longitude and latitude, etc., are the differentials of the conversion formulae. All quantities relate to the middle of the current Julian year.

Apparent Places of Stars (pages 227 to 243)

The apparent places of 68 selected stars are reported under this section. These positions are completely based on the FK5 beginning with the issue for 1988.

Smaller aberration has been computed from the total velocity of the Earth referred to the barycentre of the solar system. The E-terms of aberration are no longer included in the mean places in the FK5, but rather in the reduction from mean to apparent places.

Reductions to apparent places have been computed rigorously and directly without the intermediary of the mean place for the begining of the year. The rigorous computation also includes effects of relativistic light deflection. Because of this, the apparent places of a star when approaching very closely the Sun cannot be interpolated by the user, but these cases are of no practical interest in normal applications.

Apparent places of 68 bright stars with annual variation and annual proper motion at 10-day interval have been given on pages 227 to 243. The number, name, are taken generally from the FK5, magnitude and spectrum are taken from SIMBAD data base. Corrections for parallax have been applied where appreciable.

The right ascension and declination are referred to the true equator and equinox of date but with the omission of the short period terms of nutation. After interpolating the given apparent places to date and longitude of the station, the following corrections for the effect of short period terms of nutation are to be applied:

$$\Delta \alpha = a d\Psi + b d\varepsilon$$
 seconds of time $\Delta \delta = a' d\Psi + b' d\varepsilon$ seconds of arc

where $d\Psi$ and $d\varepsilon$ are short period terms of nutation as tabulated on pages 244 to 251. The values of a, b, a' and b' are given for each star under the apparent place.

The Apparent places of Polaris for each day of the year (pages 272 to 274) have been computed rigorously.

Besselian Day Numbers (pages 244 to 251)

All stellar data tabulations are now for the standard epoch at the middle of the current Julian year rather than the beginning of the Besselian year and accordingly the Besselian Day Numbers and second order day numbers are referred to the mean equator and equinox of the epoch, J 2020.5. Although for full precision the reduction to the apparent place has to be computed rigorously as described below, Besselian Day Numbers can still be used for less precision.

In the tabulated data, τ is the fraction of the Julian year since the standard epoch J 2020.5 A, B and E are Besselian Day Numbers designed to incorporate corrections to the position of a star on account of precession and nutation. In this case, the correction due to precession is measured from the middle of the year, and this is secured by incorporating in A the value of the precision corresponding to τ . The terms of short-period in nutation are included in A and B, which are also shown separately on pages 244 to 251.

The Besselian Day Numbers C and D, designed to include the effect of aberration, are now computed based on the total velocity of the Earth.

Second order day numbers, needed only for high declination stars for high accuracy, have been tabulated on pages 252 to 255.

The barycentric position and velocity components of the Earth and rotation matrix elements for rigorous reduction of precession and nutation have been tabulated on pages 256 to 270. Use of these data with examples is discussed below:-

Apparent place reduction with full precision (rigorous method)

Conversion of the barycentric co-ordinates of a star for the standard equinox and equator of J 2000.0 (TDB) to its apparent geocentric co-ordinates referred to the true equinox and equator of date (TT) can be done rigorously as follows:

The geocentric vector \mathbf{P} of the star at the required epoch (ignoring the distinction between TDB and TT for the stellar case) is given be by:

$$P = q + Tm - \pi E_B \dots (1)$$

Here \mathbf{q} is the barycentric direction of the star at epoch J 2000.0 referred to the standard equinox and equator of J2000.0 and is given by:-

$$\mathbf{q} = (\cos \alpha_0 \cos \delta_0, \sin \alpha_0 \cos \delta_0, \sin \delta_0)$$

where α_0 and δ_0 are the right ascension and declination for the equator, equinox and epoch of J 2000.0.

The space motion vector $\mathbf{m} = (m_x, m_y, m_z)$ of the star in equation (1), expressed in radians/century, is given by :

$$\begin{array}{llll} m_{_{\! X}} = & - \, \mu_{\alpha} \cos \delta_{\,\,0} \, \sin \alpha_{_{\! 0}} \, - \, \mu_{\delta} \sin \delta_{_{\! 0}} \, \cos \alpha_{_{\! 0}} \, + \, \nu \pi \cos \delta_{_{\! 0}} \, \cos \alpha_{_{\! 0}} \\ m_{_{\! Y}} = & \mu_{\alpha} \, \cos \delta_{\,\,0} \, \cos \alpha_{_{\! 0}} \, - \, \mu_{\delta} \sin \delta_{_{\! 0}} \, \sin \alpha_{_{\! 0}} \, + \, \nu \pi \cos \delta_{_{\! 0}} \, \sin \alpha_{_{\! 0}} \\ m_{_{\! Z}} = & \mu_{\delta} \cos \delta_{_{\! 0}} & + \, \nu \pi \sin \delta_{_{\! 0}} \end{array}$$

where these expressions take into account the radial velocity (v) in au/century (1 km/s = 21.094 952 75 a.u./ century), measured positively away from the Earth as well as proper motion(μ_{α} , μ_{δ}) in right ascension and declination in radian/century and π is the parallax in radians.

T is the interval in Julian centuries from J2000.0, given by T = (JD - 2451545.0)/36525; \mathbf{E}_B and $\mathbf{\tilde{E}_B}$ in a.u. per day are Earth's barycentric position and velocity vectors at co-ordinate time t = TDB referred to the equator and equinox of J 2000.0 (pages 256 to 270).

The heliocentric position of the Earth E is given by

$$\mathbf{E} = \mathbf{E}_{\mathrm{B}} - \mathbf{S}_{\mathrm{B}}$$
(2)

Where S_B is the barycentric position of the Sun at time t. This can be obtained from the heliocentric position of the barycentre tabulated on page 202 by reversing the sign of the respective x, y, and z.

The geocentric direction p of the star and the unit vector e can be computed from $p=P/\left|P\right|$ and $e=E/\left|E\right|$

The geocentric direction $\mathbf{p_1}$ of the star after applying the correction for light deflection in the natural frame is obtained as follows:

$$\mathbf{p_1} = \mathbf{p} + (2 \,\mu/c^2 \,\mathrm{E}) (\mathbf{e} - (\mathbf{p.e}) \,\mathbf{p}) / (1 + \mathbf{p.e})....(3)$$

Where $\mu/c^2 = 9.87 \ X \ 10^{-9}$ a.u and E = |E|, the vector $\boldsymbol{p_1}$ is a unit vector to the order of μ/c^2 and dot (.) indicates scalar product.

The proper direction $\mathbf{p_2}$ in the geocentric inertial frame, that is moving with the instantaneous velocity \mathbf{V} of the Earth relative to the natural frame, is given by:

$$\mathbf{p_2} = (\beta^{-1}\mathbf{p_1} + (1 + \mathbf{p_1} \cdot \mathbf{V})/(1 + \beta^{-1}))\mathbf{V})/(1 + \mathbf{p_1} \cdot \mathbf{V}).....(4)$$

Where $\mathbf{V} = \mathbf{\dot{E}_B}/c = 0.0057755 \,\mathbf{\dot{E}_B}$ and $\beta = (1 - V^2)^{-1/2}$; the velocity \mathbf{V} expressed in units of velocity of light and is equal to the Earth's velocity in the barycentric frame to the order of V^2 .

The apparent geocentric direction $\mathbf{p_3}$ is obtained by applying precession and nutation to the proper direction $\mathbf{p_2}$ by multiplying it row by column with the rotation matrix M=NPB (given on pages 257 to 271) as follows:

$$\mathbf{p_3} = \mathbf{M} \, \mathbf{p_2} \quad \dots \quad (5)$$

The above direction p_3 is in rectangular co- ordinates (ξ, η, ζ) . It can be converted into spherical co- ordinates (α, δ) using :

$$\alpha = \tan^{-1}(\eta/\xi)$$
 and $\delta = \tan^{-1}(\zeta/\beta)$(6)

Where
$$\beta = (\xi^2 + \eta^2)^{1/2}$$

where the quadrant of $\,\alpha$ can be determined by the signs of $\,\xi$ and $\,\eta.$

Correction for polar motion:

The apparent geocentric direction $\mathbf{p_{3,}}$ given by equation (5) above, is for the true equator and equinox with the z axis pointing towards the celestial ephemeris pole. A further correction for polar motion may be applied to $\mathbf{p_{3}}$ to obtain $\mathbf{p_{4}}$ i.e. the direction relative to the conventional terrestrial reference system in which the z-axis is in the direction of the adopted mean position of the pole, as follows:

$$p_4 = R_2(-x) R_1(-y) R_3(GAST) p_3$$

where GAST is the Greenwich apparent sidereal time at the corresponding instant of UT and

$$\mathbf{R_1}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \quad \mathbf{R_2}(\theta) = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$\mathbf{R}_{3}(\theta) = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

are the standard matrices that produce rotations through an angle θ about the x, y and z - axes respectively.

Polar motion is described by x and y, the co- ordinates of the celestial ephemeris pole with respect to the adopted origin; x and y are measured in seconds of arc from the origin along the meridians at longitudes 0° and 270° . Current values for the reduction of observations are published by the International Polar Motion Service and the Bureau International de l' Heure.

Example of stellar reduction:

Calculation of apparent position of a fictitious star on 2020, January 1 at 0^h TT from the catalogue data, mean right ascension (α_0), declination (δ_0), centennial proper motion (μ_α , μ_δ) in right ascension and declination, parallax (π) and radial velocity (ν) of a fictitious star for the standard equinox and equator of J 2000.0 (TDB) as given below:

$$\begin{array}{lll} \alpha_0 = & 14^{h} & 39^{m} & 36^{s}.087 & & \mu_{\alpha} = & -49.486 \text{ s/ century} \\ & = & -0.003 \, 598 \, 7 \, \text{rad/century} \\ \delta_0 = & -60^{\circ} & 50' & 07''.14 & & \mu_{\delta} = & +69''.60 \, \text{s/ century} \\ & = & +69''.60 \, \text{s/ century} \\ & = & +0.000 \, 337 \, 4 \, \text{rad/ century} \\ \end{array}$$

$$\begin{array}{ll} \pi = & 0''.752 & \nu = & -22.2 \, \text{km/s} \\ & = & 3.646 \, \text{X} \, 10^{-6} \, \text{rad} & \nu \pi = & -0.001 \, 707 \, 4 \, \text{rad/ century} \end{array}$$

The barycentric position vector of the Sun and the position and velocity vectors of the Earth referred to J2000.0 on 2020 January $1, 0^h$ TDB (pages 202, 256 to 270) are:

Vector Julian date Barycentric Rectangular Components $x \qquad y \qquad z \\ \mathbf{E}_{\mathrm{B}} \qquad 245\,8849.5 \qquad -0.170\,144\,389 \qquad +0.895\,983\,831 \qquad +0.388\,436\,660$

 $\dot{\mathbf{E}}_{\mathbf{B}}$ 245 8849.5 -0.017 247 546 -0.002 737 580 -0.001 186 171 $\mathbf{S}_{\mathbf{B}}$ 245 8849.5 +0.003 798 625 +0.006 816 842 +0.002 980 565

In order to calculate the geocentric vector **P** of the star at J 2000.0, using equation (1), the vectors **q** and **m** may be computed using positional data of the star.

 $\mathbf{q} = (-0.373854098, -0.312594565, -0.873222624)$ $\mathbf{m} = (+0.000712684, +0.001690102, +0.001655340)$ $\mathbf{T} = (2458849.5-2451545.0)/36525 = +0.199986311$

The geocentric vector ${\bf P}$ may be computed from equation (1) by substituting the vectors ${\bf q}$, ${\bf m}$ and ${\bf E}_{\bf B}$ and time ${\bf T}$.

 $\mathbf{P} = (-0.373\,996\,005, -0.312\,256\,567, -0.872\,891\,579)$ and $|\mathbf{P}| = 0.999\,658\,384$

The heliocentric position vector **E** of earth may be obtained using equation (2)

 $\mathbf{E} = (-0.166345764, +0.889166989, +0.385456095)$ and $|\mathbf{E}| = 0.983293063$

The unit vectors \mathbf{p} and \mathbf{e} in the direction of \mathbf{P} and \mathbf{E} respectively are as follows:

 $\mathbf{p} = (-0.374123812, -0.312363276, -0.873189875)$ $\mathbf{e} = (-0.169172112, +0.904274648, +0.392005303)$

The scalar product $\mathbf{p.e} = -0.561465937$ and $2\mu/c^2 = 1.974 \times 10^{-8}$ a. u. The second term in the equation (3) represents the correction for the light deflection in the natural frame, and is given by the following vector:

$$(2\mu/c^2\mathbf{E})(\mathbf{e} - (\mathbf{p} \cdot \mathbf{e})\mathbf{p})/(1+\mathbf{p} \cdot \mathbf{e}) = (-0.000\,000\,017, +0.000\,000\,032, -0.000\,000\,004)$$

Addition of the above correction to the unit vector \mathbf{p} gives geocentric direction \mathbf{p}_1 of the star :

$$\mathbf{p_1} = (-0.374123829, -0.312363243, -0.873189879)$$

The velocity vector $\mathbf{V} = 0.0057755 \, \mathbf{\dot{E}_B}$ and $\beta^{-1} = (1 - V^2)^{1/2}$ are as follows:

$$V = (-0.000099613, -0.000015811, -0.000068507)$$

$$\beta^{-1} = 0.9999999995$$

The scalar product $p_1 \cdot V = +0.000048188$

Now substituting quantities computed above in the equation (4), the proper direction is obtained as:

$$\mathbf{p}_2 = (-0.374205410, -0.312364000, -0.873154650)$$

The precession and nutation matrix (M) from page 257 is as follows:

$$\mathbf{M} = \begin{bmatrix} +0.999\,988\,499 & -0.004\,398\,726 & -0.001\,911\,210 \\ +0.004\,398\,742 & +0.999\,990\,325 & +0.000\,004\,106 \\ +0.001\,911\,174 & -0.000\,012\,513 & +0.999\,998\,174 \end{bmatrix}$$

Finally the apparent geocentric direction p_3 is obtained by multiplying the proper direction p_2 to the precession and nutation matrix as given by the equation (5).

Thus $\mathbf{p_3} = (-0.371\ 158\ 321, -0.314\ 010\ 597, -0.873\ 864\ 318$) and the apparent right ascension and declination:

on:

$$\alpha = \tan^{-1}(\eta/\xi) = 14^{h} + 40^{m} + 55^{s}.723; \quad \delta = \tan^{-1}(\zeta/\beta) = -60^{\circ}54'' + 39'.066$$

PART III - Tables of Sunrise, Sunset, Twilight and Moonrise, Moonset

The times of Sunrise, Sunset and Twilight, which can be obtained immediately from the given tables by simple interpolation for the desired latitude within the scope of the tables, are in local mean time of the place. Strictly speaking, the timings of these events are for places on the meridian of Greenwich. By simple interpolation for longitude, the correct time (L.M.T.) for the station can be obtained, which can thereafter be reduced to the zonal standard time by applying correction of time pertinent to the place.

At the given times of Sunrise and Sunset, the upper limb of the Sun is on the horizon; the true zenith distance of the Sun's center is then taken as 90° 50′, allowing 16′ for semi-diameter and 34′ for horizontal refraction.

The timings of the beginning of morning twilight and ending of evening twilight relate to the instants when the center of the Sun is 18° below the horizon. This is now known as astronomical twilight. The period of twilight has been divided into three parts – Civil when the Sun is 6° below the horizon, Nautical when 12° and Astronomical when 18° and their duration have been given.

The timings of rising and setting in U.T. of a body with right ascension α , declination δ and zenith distance z at latitude ϕ and east longitude λ may be computed from

UT =
$$0.99727 \left[\alpha - \lambda \pm \cos^{-1} \left((\cos z - \sin \phi \sin \delta)/(\cos \phi \cos \delta)\right) - GAST \text{ at } 0^h \text{UT}\right]$$

where each term is expressed in time measure and GAST at 0^h UT as tabulated on page 13. The negative sign in the expression corresponds to rising and positive sign to setting. If the quantity $\{(\cos z - \sin \phi \sin \delta)/(\cos \phi \cos \delta) \text{ is numerically greater than one, there is no phenomenon. However, the tabulated timings of Moonrise and Moonset have been computed by inverse by interpolation for the zenith distance at <math>z = 90^\circ$ 34′.001- 0.72755 π , where π is the horizontal parallax of the Moon at the time of phenomena. The above value includes semi-diameter and the effect of refraction.

The Sunrise and Sunset times for certain stations in India (Kolkata, Varanasi, Chennai, Delhi, Mumbai) have been separately computed and given in Indian Standard Time. In these calculations the amount of horizontal refraction has been taken as 31', the value derived from consideration of the atmospheric conditions in India, and consequently the zenith distance of the Sun's center is 90° 47' at the times given. In the section on Indian Calendar, the Sunrise and Sunset times which have been given for latitude 23° 11' North and Central Meridian of India, also relates to the times when upper limb of the Sun is on the horizon as in the general tables.

The Moonrise and Moonset times given for certain latitudes relate to the local mean time calculated for the Central Meridian of India. By simple interpolation with the help of a table given on page 313, the local mean time for any other latitude can easily be obtained. At the time given, the Moon's upper limb is on the horizon and so the true geocentric zenith distance of the Moon's center is 90° 34′ *plus* semi- diameter of the Moon *minus* the horizontal parallax, where 34′ has been allowed for horizontal refraction. Taking the mean values of the semi-diameter and the parallax, the zenith distance of the Moon at the moment is about 89° 52′, which varies from 89° 55′ to 89° 49′ as the parallax increases from 53′.6 to 61¹.9.

The times of Moonrise and Moonset for certain stations in India (Kolkata, Chennai, Delhi and Mumbai) are separately calculated and given in I.S.T.

The times of Sunrise, Sunset and Moonrise, Moonset given are for an observer on the surface of the Earth considered to be a flat surface around that point without any obstruction in the directions of rising or setting. For an observer stationed at some elevation above the surface, the rising will be further accelerated and the setting retarded according to the height of the observer. The additional arc of depression to be considered on this account is $2'.10\sqrt{h}$ where h is the height of the observer in meters above the ground level. The dip of the sensible horizon is however $1'.77\sqrt{h}$. The effect of atmospheric refraction is included in the above results, without which both the terms would have got reduced to the same value of $1'.93\sqrt{h}$.

The values of the arc of depression according to height of the observer are given below:

Height	Depression	Height	Depression	Height	Depression	Height	Depression
Meters	,	Meters	,	Meters	,	Meters	,
0	0.0	40	13.3	300	36	2000	94
2	3.0	50	14.8	400	42	3000	115
5	4.7	75	18.2	500	47	4000	133
10	6.6	100	21.0	750	58	5000	148
20	9.4	150	25.7	1000	66	6000	163
30	11.5	200	29.7	1500	81	7000	176
40	13.3	300	36.4	2000	94	8000	188

The correction to the rising and setting times due to the above height of the observer may be obtained by multiplying the arc of depression given in the table by the figures from the table below:

Latitude of Station

Decli. of Sun	0°	10°	20°	30°	35°	40°	45°	50°	52°	54°	56°	58°	60°
0 5	m	m	m	m	m	m	m	m	m	m	m	m	m
	.067	.068	.071	.077	.082	.087	.094	.104	.108	.113	.119	.126	.133
	.067	.068	.071	.077	.082	.088	.095	.105	.109	.115	.121	.127	.135
10 15	.068	.069	.072 .074	.079 .081	.082	.089	.097	.103	.113	.119 .127	.126	.133	.142
20	.071	.072	.076	.084	.090	.097	.108	.123	.130	.139	.151	.165	.183
23 27	.073	.074	.078	.087	.093	.102	.114		.142	.155	.171	.192	.223

The deviation of the rising or the setting point on the horizon (i.e., amplitude) on account of the above arc of depression h (obtained after adding to it the normal depression at rising or setting) may be found as h tan ϕ sec A, deviation being towards the north in the northern hemisphere and south in the southern hemisphere. Here A, the amplitude of the rising of setting point measured from the east or west point of the horizon, is obtained from $\sin A - \sin \delta$ sec ϕ . The values of the amplitude for certain latitudes and declinations are given in a table on page 369.

PART IV — ECLIPSES AND OCCULTATIONS

Eclipses and Occultations have been calculated on the basis of the tabulated positions of the Sun and the Moon. The semi-diameters of the Sun and the Moon used in these calculations exclude irradiation. The Sun's tabular semi-diameter which includes irradiation is diminished by 1."55 for this purpose.

The semi-diameter of the Moon given by $\sin s = k \sin \pi$, where π is the Moon's horizontal parallax is based on the adopted constant $k = 0.272\,5076$ to account for the irregularities of the lunar limb. It corresponds to the mean radius of Watt's datum as determined by observations of occultations and to the adopted radius of the Earth, introduced in 1982 and is consistent with the IAU system of Astronomical constants (1976). It is used with effect from 1986 in this publication. Refraction is neglected in calculation of eclipses of both the Sun and the Moon.

The circumstances of the phenomena are given provisionally in Universal Time, using $\Delta T (A) = +69^{s}.0$ and the points on the Earth's surface are also expressed in terms of geographic longitude measured positively to the east.

Lunar Eclipses

In the calculation of lunar eclipses, the semi-diameter of the shadow -cone has been increased by one-fiftieth to take account of the influence of the atmosphere in absorbing Sun's rays passing through it. In the calculation of rising and setting limits, the time when the centre of the Moon becomes visible on the horizon has been considered as rising or setting. Elsewhere in this book the upper limb visible on the horizon is taken as the criterion for rising or setting. The horizontal refraction used in these calculations of rising and setting is 31'.

The method of computation of a lunar eclipse is detailed below:

Let α , δ be the right ascension and declination of the Moon at an instant T_0 at or very near to the moment of opposition, and let α' , δ' be the corresponding co-ordinates of the centre of the Earth's shadow (α' = R. A. of Sun + 12^h, δ' = Sun's declination). Let π , s be parallax and semi-diameter of the Moon and π' , s' be parallax and semi-diameter of the Sun.

As the Earth is not a perfect sphere, its shadow will differ slightly from a cone. It would however, be sufficient for our purpose if we use a mean radius for the Earth, which is equivalent to submitting for π a parallax π_1 reduced to latitude 45°, so that $\pi_1 = 0.998333 \pi$.

The radius of the shadow-cone at Moon's distance is 1.02 ($\pi_1 + \pi' - s'$) for umbra, and 1.02 ($\pi_1 + \pi' + s'$) for penumbra.

Let L be the angle between the centre of the Moon and that of the shadow-cone at the desired circumstance of the eclipse, so that

$$L_1 = 1.02 (\pi_1 + \pi' - s') + s$$
 for first and last contacts

$$L_2 = 1.02 (\pi_1 + \pi' - s') - s$$
 for second and third contacts

For the penumbral eclipse,

$$L' = 1.02 (\pi_1 + \pi' + s') + s$$
 for first and last contacts

The Besselian elements x, y may be computed with sufficient accuracy with the following:

$$x = (\alpha - \alpha') \cos \delta$$
 $x' = \text{hourly variation of } (\alpha - \alpha') \cos \delta$
 $y = (\delta - \delta')$ $y' = \text{hourly variation of } (\delta - \delta')$

Let $m \sin M = x$, and $m \cos M = y$, so that $\tan M = x/y$, and $m^2 = x^2 + y^2$. The quantity m, taken always positive at all times, represents the angular distance between the centre of the Moon and of the shadow cone. The angle M may take any value from 0° to 360° .

Again, let $n \sin N = x'$, and $n \cos N = y'$, so that $n^2 = x'^2 + y'^2$, and $\tan N = x'/y'$. The angle N lies in the first or the second quadrant according as y' is positive or negative. The value of n is positive.

The time of greatest obscuration or middle of the eclipse is given by

$$T_0 - 1/n \{ m \cos(M - N) \}$$
 or $T_0 - (xx' + yy')/n^2$ (hours)

The auxiliary angle ψ is given by :

 $\sin \psi = \{ m \sin (M - N) \} / L = (x y' - y x') / nL$. The value of either L_1 , L_2 or L' should be used or L according to the circumstances of the eclipse under consideration.

Then, time of the beginning or ending = time of middle + (1/n) ($L \cos \psi$).

The value of ψ should be so taken that $\cos \psi$ may be negative for the beginning and positive for the ending of the phase. In other words, when $\sin \psi$ is positive, i.e., when (M-N) falls in the 1st or the 2nd quadrant, ψ would be in the second quadrant for the beginning and in the first quadrant for the ending; and when $\sin \psi$ is negative, i.e., when (M-N) is in the 3rd or the 4th quadrant, ψ would be in the third quadrant for the beginning and fourth quadrant for the ending.

If greater accuracy is desired, the computations may be repeated using the times obtained above as initial times.

The magnitude of the eclipse, the Moon's diameter being unity, is $(L_1 - \Delta)/2 s$,

where $\Delta = m \sin{(M-N)}$ is taken positive. When the computations are repeated for greater accuracy, the average values of L_1 , Δ and s for the first and last umbral contacts or those corresponding to the time of greatest obscurations should be used.

When Δ becomes less than L_2 , the eclipse is a total one. The computations of the beginning and ending of the total phase may be done in the same way as above using the value of L_2 .

The position angle of contact P on the Moon's limb, measured from the north point in the direction N.E.S.W. is $180^{\circ} + N + \psi$ for the first and last contacts both with umbra and penumbra as the case may be, and is $N + \psi$ for the second and third contacts in case of a total eclipse.

When M is calculated for the exact time of the phenomena, i.e., beginning or ending, then P may be obtained by considering $N + \psi = M$, i.e., $P = M + 180^{\circ}$ or P = M as the case may be.

Solar Eclipses

Computation of the elements and circumstances of solar eclipses has been done following the method of Bessel. The geometric position of the shadow of the Moon relative to the Earth is described by the Besselian elements in a system of geocentric rectangular co-ordinates. In this system, the geocentric plane perpendicular to the axis of the shadow is taken as the xy plane and called the fundamental plane. The x-axis is the intersection of the fundamental plane with the plane of equator and is positive towards east. The y-axis is positive towards the north. The z-axis is parallel to the axis of the shadow and is positive towards the Moon. The tabular values of x and y are the co-ordinates of the axis of the shadow on the fundamental plane in units of the Earth's equatorial radius. The quantities x and y specify the declination and hour angle of the point on the celestial sphere towards which the axis of the shadow is directed.

The elements l_1 and l_2 are the radii of the penumbral and umbral cones on the fundamental plane. The elements l_2 is regarded as positive for an annular eclipse and negative for a total eclipse. The elements f_1 and f_2 are the angles between the axis of the shadow and the generators of the penumbral and umbral cones respectively.

The Besselian elements x, y, sin d, cos d, μ , l_1 and l_2 are computed and tabulated at an interval of 10 minutes to facilitate the accurate computation of the circumstances of the eclipse. The given eclipse maps show the path of the eclipse, beginning and ending times of the eclipse, the area of visibility and rising and setting limits of the eclipse.

The method of computation of the local circumstances of the solar eclipse is given below:

The approximate time (U.T.) of the beginning and ending of a solar eclipse may be obtained from the corresponding eclipse map and used as estimated initial time. To obtain the geocentric rectangular co-ordinates, ξ , η , ζ of the observer located on the surface of the Earth in geographic longitude λ (measured east positive) and latitude ϕ in terms of the Besselian elements, we have;

$$\xi = \rho \cos \phi' \sin H$$

$$\eta = \rho \sin \phi' \cos d - \rho \cos \phi' \sin d \cos H$$

$$\zeta = \rho \sin \phi' \sin d + \rho \cos \phi' \cos d \cos H$$

and their variations per minute as:

$$\xi' = \mu' \rho \cos \phi' \cos H$$
$$\eta' = \mu' \xi \sin d - \zeta d'$$

where $H = \mu + \lambda$ and μ' is variation per minute in hour angle. In most of the cases, the variation ζ' is not needed and may be neglected. The values of ρ cos ϕ' and ρ sin ϕ' used above may be found for the observer's latitude ϕ using Table – XI.

The eclipse begins or ends at the station when $(x - \xi)^2 + (y - \eta)^2 = (l_1 - \zeta \tan f_1)^2$.

Now let $m \sin M = x - \xi$, $m \cos M = y - \eta$ so that $\tan M = (x - \xi)/(y - \eta)$ and $m^2 = (x - \xi)^2 + (y - \eta)^2$. The angle M may have any value from 0° to 360° and m is always positive.

Again let $n \sin N = x' - \xi'$, $n \cos N = y' - \eta'$ so that $\tan N = (x' - \xi')/(y' - \eta')$ and $n^2 = (x' - \xi')^2 + (y' - \eta')^2$. The angle N is in the first two quadrants and n is positive.

The radius of the shadow at a height ζ above the fundamental plane may be determined by $L_1 = l_1 - \zeta \tan f_1$ or $L_2 = l_2 - \zeta \tan f_2$ as the case may be.

Now the required time of the event will be obtained by applying a correction τ to the adopted initial time concerned, given by

$$\tau = -\{m\cos((M-N))\}/n + (L\cos\psi)/n \text{ (in minutes)}, \text{ where } \sin\psi = \{m\sin((M-N))\}/L$$

The value of ψ for which $\cos \psi$ is negative should be taken for the beginning of the eclipse for the beginning of the annular phase or the end of the total phase, and the value of ψ for which $\cos \psi$ is positive is to be taken for the end of the eclipse, for the end of the annular phase or the beginning of the total phase. When M - N falls within 0° to 180°, ψ is in the 2nd or the 1st quadrant according to the required phase of the eclipse, for the other half it is in the 3rd or the 4th quadrant according to the phase.

If the correction τ obtained above exceeds 3 or 4 minutes and greater accuracy is desired, the computation should be repeated using the new times now obtained as initial times.

For finding the time of greatest phase , the calculations should be started adopting a new assumed time midway between the beginning and ending times. The correction to this adopted time is given by:

$$\tau = -\{m\cos(M-N)\}/n \text{ (in minutes)}.$$

The magnitude of greatest partial eclipse is the fraction of the Sun's diameter obscured by the Moon at the time of greatest phase, and is given by : $M_1 = (L_1 - \Delta) / (2L_1 - 0.5459)$ where Δ , the minimum distance between the centres of the two bodies, is given by $m \sin(M - N)$ and is to be taken positive.

The magnitude of the central phase, in the same units, is $M_2 = (0.5459)/(2 L_1 - 0.5459)$.

The position angle of the point of contact measured from the north point of the Sun in the direction N. E. S. W. (i.e. clockwise direction) may be obtained from $P = N + \psi$ or if, measured from the vertex, from V = P - C where C, the parallactic angle, is given by $\tan C = (\xi/\eta)$.

Occultations

The occultations of visible planets and certain bright stars (*Aldebaran*, *Regulas, Spica and Antares*) by the Moon are given whenever they occur, together with the time, area of visibility and the Besselian elements. The area of visibility includes also the regions from which the occultations is visible even during day light hours. The two times given in the first table for the occultations are the times of first and last contact of the shadow cylinder with the Earth and as such the occultation may be expected to be visible only within the period between these times.

The elements are similar to those for solar eclipses and are given for T_0 , the instant of conjunction in R.A. when x = 0. The common geocentric hour angle of the bodies, or more precisely of the line passing through the center of the Earth parallel to the line joining the center of the two bodies for the Greenwich meridians is H_0 and its hourly variation is about $60^{\rm m}.16$ or $15^{\rm o}.04$. Y is the value of y for the instant of conjunction and x', y' are the hourly variations of x and y. For a place where an occultation is visible, the times of immersion and emersion can be computed with the help of these elements by a method similar to that used in computing the local circumstances of a solar eclipse as explained below:

Let φ and λ be respectively the latitude and longitude of the place. The longitude of place is to be taken in hours and minutes and as usual measured positively towards east of Greenwich.

For night visibility of an occultation, the necessary conditions are as follows:

- (1) The Sun must not be much more than an hour above the horizon at the local mean time $T_0 + \lambda$ (and it must be below the horizon at time $T_0 + \lambda + t$).
- (2) The Moon must be above the horizon by an appreciable amount, i.e., the quantity $H_0 + \lambda$, taken without regard to sign for this purpose, must be less than the semidiurnal are of the star of planet by at least one hour.

For prediction of an occultation, find the approximate time (U.T.) of local apparent connection by applying to the given T_0 a correction t (in hours) taken from the following table*:

$H_0 + \lambda$													
	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m	h m
φ	0-00	0-30	1-00	1-30	2-00	2-30	3-00	3-30	4-00	4-30	5-00	5-30	6-00
	h	h	h	h	h	h	h	h	h	h	h	h	h
0°	0.00	0.41	0.77	1.08	1.32	1.50	1.62	1.69	1.72	1.73	1.71	1.65	1.58
10°	0.00	0.40	0.75	1.06	1.29	1.47	1.59	1.66	1.70	1.70	1.69	1.63	1.56
20°	0.00	0.37	0.70	0.99	1.21	1.38	1.51	1.58	1.62	1.63	1.61	1.56	1.50
30°	0.00	0.32	0.62	0.87	1.08	1.24	1.36	1.44	1.49	1.50	1.50	1.45	1.40
40°	0.00	0.26	0.51	0.73	0.92	1.07	1.18	1.26	1.30	1.32	1.32	1.30	1.26
50°	0.00	0.20	0.40	0.58	0.73	0.86	0.96	1.03	1.08	1.11	1.11	1.10	1.07
60°	0.00	0.15	0.29	0.42	0.53	0.63	0.72	0.78	0.83	0.85	0.87	0.86	0.85

*The value of t has the same sign as that of sin ($H_0 + \lambda$).

The Besselian elements x and y at the time of local conjunctions $T_0 + t$ may be calculated as follows:

$$x = x't$$
, and $y = Y + y't$.

Occultations for which $y - \eta$ for the time local conjunction is not within ± 0.35 will not be visible at the place. In order to decide this, an estimated value of η may be used as an approximation for which the following tables are given indicating the minimum and maximum values of η .

Limiting value of η (when on meridian i.e., when $H_0 + \lambda = 0$)

The values of η has the same sign as that of φ - d.

(* The table has been constructed taking x' = 0.5773; for other values of x' the figures will vary inversely. For this purpose the figures of the table may be multiplied by 1.15 for x' = 0.50, by 1.05 for x' = 0.55, by 0.95 or x' = 0.60 and by 0.89 for x' = 0.65)

Limiting value of η *(when rising or setting i.e. when* $H_0 + \lambda + t = S.D.$ *arc)*

			Latituc	le (φ)			
d	0°	10°	20°	30°	40°	50°	60°
0°	0.00	0.17	0.34	0.50	0.64	0.76	0.86
± 9	0.00	0.17	0.34	0.50	0.65	0.77	0.87
± 18	0.00	0.18	0.36	0.52	0.67	0.80	0.91
± 27	0.00	0.19	0.38	0.56	0.72	0.86	0.97

The value of η has the same sign that of φ

For the instant $T_0 + t$, compute the following quantities in addition to x and y:

Let $H = (H + \lambda) + a t$ (converted into arc). The value of a has been given for planets under elements; it is 1.027 for stars. The observer's position on the fundamental plane is given by:

$$\xi = \rho \cos \varphi' \sin H$$
 and $\eta = \rho \sin \varphi' \cos d - \rho \cos \varphi' \sin d \cos H$

and the hourly variations;

$$\xi' = 0.2618 \ a \ \rho \cos \varphi' \cos H$$
, $\eta' = 0.2618 \ a \ \xi \sin d$.

The value of the co-efficient 0.2618 a is 0.2625 for stars.

Let
$$u = x - \xi$$
, $v = v - \eta$, $u' = x' - \xi'$, $v' = v' - \eta'$ so that $n^2 = u'^2 + v'^2$.

Now sin $\psi = (uv' - vu')$ / nl, where l = 0.2725, for stars, and for planets, it will be found under elements.

The correction τ to the time of immersion and emersion is given by :

$$\tau = -(60/ \text{ n}^2) (uu' + vv') \mp (60 l/\text{ n}) \cos \psi$$

The negative sign in the second term is to be taken for immersion or the first contact and the positive sign for emersion or the last contact.

Instant of immersion or emersion = $T_0 + t + \tau$.

If greater accuracy is desired, a second set of calculations may be done in the following way using the new times now obtained as initial times. For the revised time of immersion or emersion T, compute $H = (H + \lambda + at) + a\tau$, x, y, ξ , η , ξ' , η' ; u, v, u', v' and D = uu' + vv'. The second correction t' is given by : t' = (30/D)x [$l^2 - (u^2 + v^2)$] in mins. of time.

The final time of immersion or emersion = T + t'.

The angles of contact on the Moon's limb:

$$P = M + 180^{\circ}$$
, where $\tan M = (u + u't')/(v + v't')$, $V = P - C$, where $\tan C = (\xi + \xi't')/(\eta + \eta't')$,

where t' is to be taken in hours.

PART V - Miscellaneous Tables

Phenomena

The stellar magnitudes of planets together with their elongations from the Sun have been given under 'phenomena' at suitable intervals of days. The computation in the next portion of the phenomena has been based on longitude and that in the Astronomical Diary mainly on right ascension, with the exception that the conjunctions, squares and oppositions of planets with the Sun included in the latter have been calculated on the basis of longitudes. In the case of conjunctions in right ascension, the differences in declination between the planets or the Moon and the planet have also been given. The dates of heliacal visibility of planets (Mercury to Saturn) have also been given and these are based on the method given on page 467.

Interpolation

Interpolation Coefficients have been given on pages 355 to 358 according to the formula of both Bessel and Everett, for each hundredth part of the time-interval.

Let the tabular value of a function given at equal intervals be represented by f and the first and second differences by Δ with relevant dashes and subscripts as shown below. It is required to determine the value of the function at some intermediate point.

Function	First difference	Second difference
f_{-1}	.,	
f_0	Δ'-1/2	$\Delta^{''}_{~0}$
	$\Delta^{'}_{1/2}$	= 0
f_{I}	.'	$\Delta^{''}_{1}$
f_2	$\Delta^{'}_{1\%}$	

The epochs for which the values of the function are to be taken should be so chosen that the time for which the value of the function is required may fall within the interval f_0 and f_2 and let n be the time interval from f_0 up to the moment for which the value of the function is required. It is expressed as a fraction of the interval at which the given values of the function are tabulated. Let f_n be the value of the function for the desired time which is now required to be determined.

The two formulae for interpolation which are generally used for the purpose are as follows:

$$f_n = f_0 + n \Delta'_{1/2} + B''(\Delta''_0 + \Delta''_1).$$
 Bessel
 $f_n = f_0 + n \Delta'_{1/2} + E_0''\Delta''_0 + E_1''\Delta''_1.$ Everett

in which $f_0 + n\Delta'_{1/2}$ may be replaced by $(1-n)f_0 + nf_1$, if necessary, and where

$$B'' = n (n-1)/4$$
, $E_0'' = -n (n-1) (n-2)/6$ and $E_1'' = n (n+1) (n-1)/6$

It will be noted that in Bessel's formula the value of $\Delta''_0 + \Delta''_1$ is the same as $\Delta'_{1\frac{1}{2}} - \Delta'_{-\frac{1}{2}}$. The value of the coefficients B'', E_0 " and E_1 ", all of which are negative within the range f_0 to f_1 , will be obtained from the table on page 355 to 358 for the given value of n.

Bessel's method of interpolation is more simple, but greater accuracy is yielded by Everett's formula on account of the fact that it includes the effect of third differences also.

The more complete formula of Bessel is as follows:

$$f_n = f_0 + n\Delta'_{1/2} + \{n(n-1)(\Delta''_0 + \Delta''_1)\}/4 + \{n(n-1)(n-\frac{1}{2})\Delta'''_{1/2}\}/6 + \cdots$$

The rate of variation of the function at a point, i.e., the instantaneous motion per unit of time interval may be obtained by the following formula:

Motion =
$$\Delta'_{1/2} + C\Delta_0'' + D\Delta_1''$$
, where $C = -(3n^2 - 6n + 2)/6$ and $D = (3n^2 - 1)/6$

When
$$n = 0$$
, the motion $f_0' = \{(\Delta' - \frac{1}{2} + \Delta' \frac{1}{2})/2\} - (\Delta_1'' - \Delta_0'')/6$, when $n = \frac{1}{2}$, $f'_{1/2} = \Delta'_{1/2} - \{(\Delta_1'' - \Delta_0'')/24\}$ and when $n = 1$, $f'_{1} = \{(\Delta' \frac{1}{2} + \Delta' \frac{1}{2})/2\} - (\Delta_1'' - \Delta_0'')/6$

The stationary point (i.e., when f' = 0) occurs when $n = \frac{1}{2} - (\Delta'_{\frac{1}{2}}/\Delta''_{1})$ or $\frac{1}{2} - (\Delta'_{-\frac{1}{2}}/\Delta''_{0})$.

Geocentric Co-ordinates and other Constants

The tables given on pages 363 and 364 are for computing the geocentric co-ordinates of a place for which the geodetic, i.e., geographic or common latitude ϕ is known. From the first table, the values of ρ sin ϕ' and ρ cos ϕ' can be directly obtained, while the second table gives the values of the geocentric latitude ϕ' and the radius of the Earth ρ separately

The constants used for these tables and the others given below are the 1976 I.A.U. System of astronomical constants introduced in this publication with effect from the 1985 issue.

```
Equatorial radius (a) = 637 8140 m = 3963.20 miles.
Polar radius (b) = 635 6755 m = 3949.91 miles.
Flattening of the Earth (f) = (a-b)/a = 1/298.257 = 0.003 353 64.
Ellipticity or eccentricity (e) = 0.081 8192, e^2 = 0.006 694 39.
```

The following expressions are obtained from the above values of flattening and radius of the Earth.

$$S = 0.994\ 9743 - 0.001\ 6708\cos 2\ \phi + 0.000\ 0021\cos 4\ \phi$$
 $C = 1.001\ 6799 - 0.001\ 6820\cos 2\ \phi + 0.000\ 0021\cos 4\ \phi$
 $\rho = 0.998\ 3271 + 0.001\ 6764\cos 2\ \phi - 0.000\ 0035\cos 4\ \phi$
 $\phi' = \phi - 11'\ 32''.726\sin 2\ \phi + 1''.163\sin 4\ \phi - 0''.003\sin 6\ \phi$
One degree of longitude (in km.) = 111.4133 cos φ - 0.0935 cos 3 φ
One degree of latitude (in km.) = 111.1334 - 0.5598 cos 2 φ + 0.0012 cos 4 φ
g (cm/sec²) = 978.031 + 5.1859 sin² φ - 0.0057 sin² 2 φ - 0.000 308H. where H is the elevation in meters above sea level.

Period of Earth satellite of negligible mass = $84.489 \ 09 \ d^{3/2}$ mins., where *d* is the mean distance of the satellite from the Earth's center measured in units of 6378140 m (Earth's equatorial radius).

Invariable plane of the solar system;
$$\Omega = 106^{\circ}35' \ 01'' + 3452''T$$
, $I = 1^{\circ} \ 34' \ 59'' - 18''T$
Pole of galactic plane (1950); $\alpha = 12^{\rm h} \ 49^{\rm m}.0$, $\delta = +27^{\circ} \ 24'$
Solar apex (1950).. $\alpha = 18^{\rm h} \ 06^{\rm m}$, $\delta = +30^{\circ}$
Solar motion = 20.0 km. or 12.4 miles per sec.

Speed of the Earth moving around the Sun = 29.79 km. or 18.51 miles per sec.

Heliacal Rising and Setting of Planets

The planets Mercury to Saturn (as well as the Moon) remain invisible to the naked eyes for some days at the time of conjunction with the Sun. This phenomenon of planet's invisibility due to its proximity to the Sun is known as combust or heliacal setting of the planets, and it plays an important part in Indian Calendar. The dates of heliacal setting and rising of the planets marking the period or invisibility have been calculated assuming that the phenomenon occurs when, at the given station, the Sun attains a Zenith distance of $90^{\circ}+h$ at the time when the zenith distance of the planet is 90° . The values of h for different planets adopted for the purpose are as follows:

Mercury 10° (Direct) and 11° (Retrograde) Venus 6°, Mars 14,° Jupiter 8°.5, and Saturn 12°

The day of the first visibility of the lunar crescent after a new-moon day has also been determined in a somewhat similar way on the basis of the following values of the limiting altitude of the Moon above the horizon corresponding to its azimuth difference from the Sun, when the zenith distance of the Sun is 90°.

Azimuth difference	0°	5°	10°	15°	20°
Altitude	10°.4	10°.0	9°.3	8°.0	6°.2

When the altitude of the Moon at sunset exceeds the above limit, the Moon is likely to be visible in that evening and when the excess is more than a degree, the Moon is sure to be visible. The beginning dates of the months of the Islamic Calendar have been determined on the basis of the above calculations and indicated on the date following that of the first visibility of the Moon.

In the above calculations, the atmospheric refraction and the horizontal parallax of the Moon are neglected.

The computations of heliacal rising and setting of planets and determination of the dates of first visibility of the Moon have been done for the central station of India.

ASTRONOMICAL CONSTANTS*

Units: The units meter (m), kilogram (kg.) and second (s) are the units of length, mass and time in the International System of Unit (SI).

The astronomical unit of time is a time interval of one (D) of 86400 seconds. An interval of 36525 days is one Julian century.

The astronomical unit of mass is the mass of the Sun (*S*).

The astronomical unit of length is that length (A) for which the Gaussian gravitational constant (k) takes the value of 0.01720209895 when the units of measurement are the astronomical unit of length, mass and time. The dimensions of k^2 are those of the constant of gravitational (G), i.e. $L^3M^{-1}T^{-2}$. The term "unit distance" is also used for the length A.

Defining Constants:

1. Gaussian gravitational constant k = 0.017 202 098 952. Speed of light $c = 299 792 458 \text{ ms}^{-1}$

Primary Constants:

3. Light-time for unit distance $\tau_4 = 499.004 78384 \text{ s}$ Equatorial radius for Earth $a_e = 637 8136.6 \text{ m}$ **IIUGG** value $a_e = 637 8137 \text{ m}$ 5. Dynamical form-factor for Earth $J_2 = 0.001 082 6359$ $GE = 3.986~004~418~\mathrm{X}~10^{14}~\mathrm{m}^3~\mathrm{s}^{-2}$ 6. Geocentric gravitational constant 7. Constant of Gravitation $G = 6.674 28 \times 10^{-11} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{s}^{-2}$ 8. Ratio of mass of Moon to that of Earth $\mu = 0.0123000371$ 9. General precession in longitude, per Julian century, at standard epoch J 2000.0 P = 5028".79619510. Obliquity of the ecliptic, at standard epoch J2000.0 $\varepsilon = 23^{\circ} 26' 21".406$

Derived Constants

11. Constant of nutation at standard N = 9".2052 331 epoch J2000.0 12. Unit distance $c\tau_A = A = 1.495 978 707 \times 10^{11} \text{m}$ 13. Solar parallax $\arcsin (a_e/A) = \pi \odot = 8".794143$ 14. Constant of aberration for standard Epoch J2000.0 k = 20".49551 15. Flattening factor for the Earth f = 0.00335282 = 1/298.25642 $A^3 k^2/D^2 = GS = 1.327 \ 124 \ 42099 \ x \ 10^{20} \ m^3 \ s^{-2}$ 16. Heliocentric gravitational constant 17. Ratio of mass of Sun to that of the Earth (GS)/(GE) = S/E = 332 946.0487 $(S/E)/(1+\mu) = 328 900.5596$ 18. Ratio of mass of Sun to that of Earth + Moon $(GS)/G = S = 1.9884 \times 10^{30} \text{ kg}$ 19. Mass of the Sun 20. System of planetary masses:

Mercury 6023600 Jupiter 1047.348644 Venus 408523.719 Saturn 3497.9018 Earth + Moon 328900.5596 Uranus 22902.98 Mars 3098703.59 Neptune 19412.26

Pluto

136566000

Other quantities for use in the preparation of ephemerides :

It is recommended that the values given in the following list should normally be used in the preparation of new ephemerides.

21. Masses of minor planets in unit of the solar mass:

(Ratios of mass of Sun to those of the planets etc.)

(1) Ceres 4.72 x 10⁻¹⁰ (2) Pallas 1.03 x 10⁻¹⁰ (3) Vesta 1.35 x 10⁻¹⁰

*See page 446 also for some of the constants actually used in preparation of the ephemerides reported in the

^{*}See page 446 also for some of the constants actually used in preparation of the ephemerides reported in the publication.

22. Masses of satellites in unit of the planet's mass:

Jupiter	Io	4.704×10^{-5}
•	Europa	2.528×10^{-5}
	Ganymede	7.805×10^{-5}
	Callisto	5.667 x 10 ⁻⁵
Saturn	Titan	2.366 x 10 ⁻⁴
Neptune	Triton	2.089×10^{-4}

23. Equatorial radii in km.

Mercury	2439.7	Jupiter	71492	Pluto	1195
Venus	6051.8	Saturn	60268		
Earth	6378.1366	Uranus	25559	Moon	1737.4
Mars	3396.19	Neptune	24764	Sun	696000

24. Gravity fields of the planets.

25. Gravity field of the Moon.

$$\begin{array}{lll} \gamma &= (B-A)/C = 0.000\ 2278 & C/MR^2 = 0".392 \\ \beta &= (C-B)/B = 0.000\ 6313 & I = 5552".7 = 1°\ 32'\ 32.7" \\ C_{20} &= -0.000\ 2027 & C_{30} = -0.000\ 006 & C_{32} = +0.000\ 0048 \\ C_{22} &= +0.000\ 0223 & C_{3I} &= +0.000\ 029 & S_{32} = +0.000\ 0017 \\ S_{3I} &= +0.000\ 004 & C_{33} = +0.000\ 0018 \\ S_{33} &= -0.000\ 001 \end{array}$$

REFERENCES

- 1. Anderson, J. D. 1974. EOS Trans. of AGU 55.
- 2. Anderson, J. D. 1975 Review of Geophysics and Space Physics 13.
- 3. Anderson, J. D., Null, G. W., Wong, S. K. 1974. J. Geophys. Res. 79, 3661.
- Aoki, S., Guinot, B., Kaplan, G. H., Kinoshita, H., McCarthy, D. D., Seidelmann, P. K. 1982. Astron. Astrophys., 105, 359.
- 5. Aoki, S., Soma. M., Kinoshita, H., Inoue, K. 1983. Astron. Astrophys. 128, 263-267.
- 6. Capitaine, N., P. T. Wallace, J. Chapront, 2003. Astronomy and Astrophysics 412, 567-586
- 7. Capitaine, N., P. T. Wallace, J. Chapront, 2005. Astronomy and Astrophysics 432, 355-367
- 8. Clemence, G. M., Szebehely, V. 1967. Astron. J. 72, 1324.
- 9. Davies, M. E., Abalakin, V. K., Cross, C. A., Duncombe, R. L., Masursky, H., Morando, B., Owen, T. C., Seidelmann, P. K., Sinclair, A. T., Wilkins, G. A., Tjuflin, Y. S. 1980 *Celest. Mech.* 22, 205.
- 10. Duncombe, R. L., Klepczynski, W.J., Seidelmann, P. K. 1973, Fundamentals of Cosmic Physics 1, 119.
- 11. Duncombe, R. L., Seidelmann, P. K., Janiczek, P. M. 1974. Highlights of Astronomy 3, 223
- 12. Eckhardt, D. H. 1973. The Moon 6, 127.
- 13. Explanatory Supplement to the Ephemeris, 1974. Her Majesty's Stationery Office, London, 48 and 144.
- 14. Explanatory Supplement to the Astronomical Almanac, 1992. Nautical Almanac Office, U. S. Naval Observatory
- 15. Fricke, W. 1967. Astron. J. 72, 1368.
- 16. Fricke, W. 1971. Astron. Astrophys. 13, 298.
- 17. Fricke, W. 1977. Astron. Astrophys. 54, 363.
- 18. Fricke, W. 1981. in Reference Co-ordinate System for Earth Dynamics, E. M. Gaposchkin and B.
- 19. Kolaczek, eds., D. Reidel Publishing Company, 331.
- 20. Fricke, W. 1982. Astron. And Astrophys. 107. L13-L16.
- 21. Harrington, R. S., Christy, J. W. 1980. Astron, J. 85, 168.
- 22. Hertz, H. G. 1968. Science 160, 299.
- 23. Howard, H. T., Tyler, G. L., Esposito, P. B., Anderson, J. D., Reasenberg, R. D., Shapiro, I. I., Fjeldbo,
- 24. G., Kliore, A. J., et al. 1974. Science 185, 179.
- 25. IAG Geodetic Reference System 1967. 1971. IAG Spec. Pub. No. 3 Bulletin Geodesique.
- 26. IAG Sixteenth General Assembly (1975) proceedings, 1975. Bulletin Geodesique 118. 365.
- 27. IAU Twelfth General Assembly (1964) proceedings, 1966. Trans. IAU XII B, 116.
- 28. IAU Fifteenth General Assembly (1973) proceedings, 1974. Trans IAU XV B, 108.
- 29. IAU Sixteenth General Assembly (1976) proceedings, 1977. Trans. IAU XVI B, 58.
- 30. IAU Seventeenth General Assembly (1979) proceedings, 1980. Trans. IAU XVII B, 69.
- 31. IAU Eighteenth General Assembly (1982) proceedings, 1983. Trans. IAU XVIII B.
- 32. IAU Twenty-first General Assembly (1991) proceedings, 1992. Trans. IAU XXI B.
- 33. IAU Twenty-third General Assembly (1997) proceedings, 1999. Trans. IAU XXIII B.
- 34. IAU Twenty-fourth General Assembly (2000) proceedings, 2001. Trans. IAU XXIV B.
- 35. IAU Twenty-sixth General Assembly (2006) proceedings, 2006. Trans. IAU XXVI B.
- 36. IERS Technical Note 32, 2004.

REFERENCES

- 37. IERS Technical Note 35, 2009.
- 38. IERS Technical Note 36, 2010.
- 39. Kaplan, G. H. 1981. U. S. Naval Observatory Circular No. 163.
- 40. Kaplan, G. H. 2005. U. S. Naval Observatory Circular No. 179.
- 41. Kinoshita, H. 1977. Celest. Mech. 15, 277.
- 42. Lieske, J. H. 1979. Astron. Astrophys. 73, 282.
- 43. Lieske, J. H., Lederle, T., Fricke, W., Morando, B. 1977. Astron. Astrophys. 58, 1.
- 44. Liu, A. A., Laing. P. A. 1971. Science 173, 1017.
- 45. Misner, C. W., Thorne, K. S., Wheeler, J. A.1973. Gravitation, W. H. Freeman and Company, 184 and 1101.
- 46. Moritz, H. 1980. Bulletin Geodesique 54, 395.
- 47. Moyer, T. 1981. Celest. Mech. 23, 33 & 57.
- 48. Null, G. W., Anderson, J. D., Wong, S. K. 1975. Science 188, 476.
- 49. Schubart, J. 1974. Astron. Astrophys. 30, 289.
- 50. Schubart, J. 1975. Astron. Astrophys. 39, 147.
- 51. Scott, F. P. 1964. Astron. J. 69, 372.
- 52. Scott, F. P., Hughes, J. A. 1964. Astron. J. 69, 368.
- 53. Seidelmann, P. K. 1982, (1980). Celest. Mech. 27, 79-106.
- 54. Seidelmann, P. K., Kaplan, G. H., Van Flandern, T. C. 1981. In Reference Co-ordinate system for
- 55. Earth Dynamics, E. M. Gaposchkin and B. Kolaczek, eds., D. Reida Publishing Company, 305.
- 56. Sjogren, W. L. 1971. J. Geophys. Res. 76, 7021.
- 57. Van Flandern, T. C. 1971. Celest. Mech. 4, 182.
- 58. Van Flandern, T. C. 1981. Preprint, submitted to Astron. J.
- 59. Wade, C. M. 1976. VLA Scientific Memorandum 122.
- 60. Wahr, J. 1979. Ph. D. Thesis, University of Colorado.
- 61. Wahr, J. 1981. Geophys. J. Roy. Astr. Soc. 64, 705.
- 62. Williams, J. 1975. EOS Trans. Of AGU 56, 236.
- 63. Winkler, G. M. R., Van Flandern, T. C. 1977. Astron. J. 82, 84.
- 64. Standish, E. M. 1982. Astron. Astrophys. 115, 20-22.

INDEX

	Page		Page
A berration	18, 448	Festivals contd.	_
		Christian	419
Amplitude of Rising and Setting	373	Jewish, Parsi	418
Arc, Conversion to Time, Table III	353	Moslem	417
Augmentation of Moon's Semi-diameter	373	Geocentric co-ordinates of a place, Table XI	367
Astronomical Constants	450,472	Heliacal rising and setting of planets	344, 383,471
Astronomical, reference frame	439	I.A.U. System of Astronomical Constants	471
A tomic time	433	Interpolation co-efficients, Table VII, VIII	359, 361
Ayanamsa, values of True	423	Julian Day Number, Table IX	363
Mean	423	Jupiter	
Barycentric dynamical time (TDB)	434	Distance from the Earth	146
Barycentre	202	Elongations and Magnitudes	343
Calendar	4	E phemeris transit	146
Indian	380	Horizontal parallax	146
Islamic	417	Longitude and latitude, geocentric apparent	142
Jewish, Parsi	418	Longitude and latitude, heliocentric	140
Centre of Mass of Solar System	110	R adjus vector	140
E quatorial rect. Co-ord. of Barycentre	202	Right ascension and declination, apparent	146
Chronological Table	3	Semi-diameter	146
Conversion of hours, minutes and seconds to	3	Latitude and longitude of places	369
decimals of a day, Table V	355	Latitude of Moon for the period	30)
Conversion of minutes and seconds to	333	Jan. 0 to Apr. 20, 2021	428
decimals of a degree, Table VI	358	Latitude, geocentric of planets for the period	420
Co-ordinates, Conversion of geographic to	338	Jan. 0 to Apr. 20, 2021	430
, , , , , , , , , , , , , , , , , , , ,	368	Latitude of a place from an observed altitude	430
geocentric, Table XII	308	of Polaris	275
Day Longth of	2 425		
Length of of week	2, 435 4	Longitudes of Sun, Moon and planets for the period	424
	4	Jan. 0 to Apr. 20, 2021 Mars	424
of year			122
Day Numbers, Besselian	244, 457	Distance from the Earth	132
Declination of Sun and Moon for the period	428	E longations and Magnitudes	343
Jan. 0 to Apr. 20, 2021	428	E phemeris transit	132
Declination of planets for the period Jan. 0	420	Horizontal parallax	132
to Apr. 20, 2021	430	Longitude and latitude, geocentric apparent	
ΔT, definition	436	Longitude and latitude, heliocentric	126
Table	436-439	Radius vector	126
Dynamical Time (D. T.)	434	Right ascension and declination, apparent	132
Diary, Astronomical	347	Semi-diameter	132
Earth, barycentric co-ordinates	256	Mercury	104
Eclipses	319	Distance from the Earth	104
Besselian Elements	322, 332	E longations and Magnitudes	342
Elements	320, 330	E phemeris transit	104
Circumstances	320, 330	Horizontal parallax	104
Maps	321, 325,331	Longitude and latitude, geocentric apparent	
of the Moon	334-337	Longitude and latitude, heliocentric	96
of the Sun	320-333	R adius vector	96
Ephemeris Time	434	R ight ascension and declination, apparent	104
Epoch J-2000.0	433	Semi-diameter	104
Equinoxes	441	Month, lengths of	2
Equation of Equinoxes	13	Moon	
Festivals	414	Age	80, 454

INDEX

	Page		Page
Moon contd.		Occultations	
Apogee and perigee	46, 347	Area of visibility	338
		Elements	339-340
Ephemeris transit, upper and lower	80	Method of calculation	467
Geocentric declination, at upper		Osculating elements of planet	200
and lower transits	80	Phenomena	342
Inclination of orbit	453	Physical ephemeris of observations	
Longitude and latitude at 0 ^h and 12 ^h TT	48	of Moon	88, 454
Longitude, mean	47	of Sun	42
Mean elongation	47	Pluto	
Orbit of, Perigee and Node	47	Astrometric ephemeris	456
Parallax, horizontal	64	Distance from the Earth	198
Phases of the Moon	4, 46, 317	Elongations	343
Physical ephemeris of observations	88, 454	Ephemeris transit	198
Earth's Selenographic Long., Lat.	88	Horizontal parallax	198
Fraction illuminated	88	Longitude and latitude, geocentric apparent	197
Sun's Selenographic Co-long., Lat.	88	Longitude and latitude, heliocentric	196
Position angle of axis, bright limb	88	Radius vector	196
Right ascension and declination for 0 ^h and 12 ^h	TT 64	Reduction to astrometric places	198
S emi-diameter at 0 ^h and 12 ^h TT	48	Right ascension and declination, apparent	198
True Geoc. Distance (A. U.)	48	Polaris	
Moonrise and Moonset for lat. 0° to 50,° central		Apparent places of	272
Meridian and for some places in India	296, 297	Azimuth of	275
Correction for Latitude	313	Latitude of place from altitude of	275
Method of calculation	315	Precession	
Reduction of the L.M.T. of rising or setting		In longitude	18
for the meridian 82½° E. to the L.M.T. of		In R.A. and Declination	443
other meridians	312	Rotation Matrix	257
Nakshatras		Precessi onal elements	443
Ending moment in I.S.T.	384	Preface	III
Names of	384	Refraction, Atmospheric, Table X	364
Neptune		Saturn	
Distance from the Earth	188	Distance from the Earth	160
Elongations	343	Elongations and Magnitudes	343
Ephemeris transit	188	E phemeris transit	160
Horizontal parallax	188	Horizontal parallax	160
Longitude and latitude, geocentric apparent	184	Longitude and latitude, geocentric apparent	156
Longitude and latitude, heliocentric	182	Longitude and latitude, heliocentric	154
Radius vector	182	Radius vector	154
Right ascension and declination, apparent	188	Right ascension and declination, apparent	160
Semi-diameter	188	Semi-diameter	160
Noon, Apparent		Second-order day numbers	252
At meridian of 82½° E	384	Semi-diurnal and Semi-nocturnal arcs	373
Nutation		Solstices, dates of	344
In longitude	18, 445	Stars	
In obliquity	18, 445	Apparent places of Polaris	272
Rotation matrix	257	Apparent place, reduction of	457, 460
Obliquity of the Ecliptic		Longitude and latitude	204
Mean	451	Magnitude	204
True	18	Mean places of	215

INDEX

		Page		Page
Stars	contd.		Tithis, ending moment in I.S.T.	384
	Spectral Type	215	Trigonometric functions, natural	374
Sun			Standard Times	375
	Aberration	18	Twilight	
	Co-ordinates, rectangular	34	Correction for southern latitudes	290
	Eccentricity	451	Duration of	288
	Ephemeris transit	19	Time of beginning and ending at	
	Latitude, ecliptic of date	18	n orthern latitudes	280
	Longitude, apparent	18	Uranus	
	mean	17	Distance from the Earth	174
	geometric	18	Elongations	343
	Mean long. and anomaly	17	Ephemeris transit	174
	Parallax, horizontal	17	Longitude and latitude, geocentric apparent	170
	Physical observations	42	Longitude and latitude, heliocentric	168
	Radius Vector	451	Radius vector	168
	Right ascension and declination at 0 ^h TT	19	Right ascension and declination, apparent	174
	Semi-diameter	19	Semi-diameter	174
	S ynodic rotation number	452	Venus	
Sunrise	e and Sunset		Distance from the Earth	118
	Correction for latitude	313	Elongations and Magnitudes	342
	Correction for southern latitude	290	Ephemeris transit	118
	For certain places in India	292	Horizontal parallax	118
	For northern latitude	280	Longitude and latitude, geocentric apparent	114
	Method of calculation	315	Longitude and latitude, heliocentric	112
Time			Radius vector	112
	Conversion to Arc, Table IV	354	Right ascension and declination, apparent	118
	Ephemeris	434	Semi-diameter	118
	Equation of	450	Year	
	Greenwich mean	434	Anomalistic	2
	Reduction of L.M.T. to I.S.T. for		Eclipse	2
	certain longitudes	314	Sidereal	2
	Reduction of L.M.T. of certain places into I.S.T.	369	Tropical	2
	Sidereal, mean	13	Yogas	
	Tables of conversion of solar to sidereal and		Ending moment in I.S.T.	384
	vice versa, Tables - I and II	351, 352	Names of	384
	T.A.I. (International Atomic Time)	433		
	Terrestrial time (TT)	434		
	Time-Scales	433		
	Reduction tables	436-439		
	Universal Time	434		

PDGM . 69 . 2020 160-2019 (DSK - III)

(C)

Sale Price : Inland Rs. 600.00; Foreign £ 12.00 or \$ 15.00