- 1. Consider the circuit shown below.
  - a) Find  $V_x$ . (ans  $\sim 12V$ )
  - b) Find the total power absorbed by the resistors. (ans ~20W)



Ohm's Law:  $v = 0.5 \times 12 = 6 \text{ V}$ Ohm's Law: Current through the  $6 \Omega = 6/1 = 1 \text{A}$  $v_s = 3 \Omega \times 1.5 \text{ A} + 6 \text{ V} + 2 \Omega \times 1.5 \text{ A} = 13.5 \text{ V}$ Power = i  $v_s = 1.5 \text{ A} \times 13.5 \text{ V} = 20.3 \text{ W}$ 

2. Find the equivalent resistance between terminals a and b in both of the following circuits: (ans  $\sim 20\Omega$ ;  $10\Omega$ )



Working from right→left:

60 | | 15 = 12 
$$\Omega$$
  
12 + 6 = 18  $\Omega$   
18 | | 9 = 6  $\Omega$   
6 + 6 = 12  $\Omega$   
12 | | 24 = 8  $\Omega$   
10 + 8 + 5 = 23  $\Omega$ 



3. Find  $i_1$  and  $i_2$  in the circuit below. (ans  $i_1 = \sim 1$  A)



8 | | 8 = 4 
$$\Omega$$
  
6 + 6 = 10  $\Omega$   
 $i_1$  = 10 V / 10  $\Omega$  = 1 A  
 $i_2$  = 4 V / 8  $\Omega$  = 0.5 A

4. The 9-V battery in the circuit below is delivering 2.43 W of power to three robot sensors represented by the resistors. All the sensors are identical with resistance R. Find the value of R. (ans:  $\sim 20\Omega$ )



R | | R = R/2  
R + R/2 = 1.5R  

$$i = 9 \text{ V } / 1.5R$$
  
 $p = 9 \text{ V } i = 81 \text{ V}^2 / 1.5R = 2.43W$   
 $R = 81 \text{ V}^2 / (1.5 \times 2.43 \text{ W}) = 22 \Omega$ 

5. You may want to review the class notes to solve this problem. A robot line-following sensor uses a photo resistor whose resistance changes from  $10~\mathrm{k}\Omega$  (LIGHT) to  $250~\mathrm{k}\Omega$  (DARK). Design an electronic circuit (with a 5 V source for all circuits) such that the output voltage is 0 V on WHITE and 5 V on BLACK. For purposes of limiting the current in the photo resistor loop, you decide to use a  $100~\mathrm{k}\Omega$  resistor in series with it. For similar current considerations, you pick a  $100~\mathrm{k}\Omega$  variable resistor ("potentiometer") for the reference circuit. Clearly draw your complete circuit diagram (to include the photo resistor, the op amp, the reference voltage loop with  $100~\mathrm{k}\Omega$  potentiometer, and the  $100~\mathrm{k}\Omega$  series resistor). Specify and explain the reference voltage selected. (ans  $\sim\!2\mathrm{V}$ )

First find the voltage variation of the photo resistant  $R = 100 \, \text{kg}$   $V_0 = \left(\frac{250 \, \text{kg}}{250 \, \text{kg}}\right) 5 \, \text{V} = 3.6 \, \text{N}$   $V_0 = \left(\frac{10 \, \text{kg}}{10 \, \text{kg}}\right) 5 \, \text{V} = 0.5 \, \text{N}$ Note that the average is as  $2 \, \text{N}$ 

We want to choose a reference voltage that gives as much swins as possible between light and donk.

