

Face Shape Segmentation Mask Anonymization using a Generative Adversarial Network

Candidate: Filippo Simonazzi

Supervisor: Maxim Maximov

Advisor: Prof. Dr. Laura Leal-Taixé

Technical University of Munich
Chair for Computer Vision and Artificial Intelligence

Introduction

Increased use of face detection and tracking models raises questions about privacy.

In most situations, it is not necessary to **identify** the subject, but it is sufficient to **detect** it.

How to perform face obfuscation?

Face Anonymization Task

Face Anonymization Task

Heuristic Methods

Blurring

Face Anonymization Task

- Blurring
- Pixelization

Face Anonymization Task

- Blurring
- Pixelization
- Masking

Face Anonymization Task

- Blurring
- Pixelization
- Masking

- Risk of identity leak
- Unrealistic results

Face Anonymization Task

- Ai Data D
 - Data Driven Models

- Blurring
- Pixelization
- Black Box

Face Anonymization Task

 Natural and Effective Obfuscation by Head Inpainting

Facial Landmark Generation

 Head Inpainting Conditioned on Facial Landmark

Face Anonymization Task

 No control over the generated identity

Data Driven Models

- Generated faces may have artificial poses
- Computationally expensive

Input Face Landmarks & Background

 Natural and Effective Obfuscation by Head Inpainting

15 91

2.41

Face Anonymization Task

- Identity control on the generated output
- Little identity information given to the generator

- Natural and Effective Obfuscation by Head Inpainting
- CIAGAN

Face Anonymization Task

- Identity control on the generated output
- Little identity information given to the generator

 Natural and Effective Obfuscation by Head Inpainting

No option to change the shape of the original face

CIAGAN

Shape Appearance Anonymization

Gain more control over the generated output by arbitrarily changing the shape of the original image

Shape Appearance Anonymization

Gain more control over the generated output by arbitrarily changing the shape of the original image

Segmentation Masks

THESIS INVESTIGATION

More control over the single components of the faces

Shape Appearance Anonymization

Gain more control over the generated output by arbitrarily changing the shape of the original image

Segmentation Masks

Constraints on neck and hair

THESIS INVESTIGATION

More control over the single components of the faces

Shape Appea Anonymiza

Gain mo over the output chang of the

THESIS CONTRIBUTION

Full Anonymization Pipeline

- Any input size is supported
- Shape anonymization model
 - Flexible architecture
 - Ensures diversity
- Face Generator
 - Identity control as in CIAGAN
- Applicable to video frames

Retair structu

of the face

nstraints on ck and hair

Preprocessing

Preprocessing

Generate
Segmentation
Mask and Face
Mesh

- Dlib Detector
- Face Parsing
- MediaPipe

Preprocessing

Dlib Detector

Face Parsing

I. GAN Loss

II. L1 Loss

- Reconstruction
- Negative Reconstruction
- Hair Excess

III. Diversity Contrastive Loss

I. GAN Loss

- I. GAN Loss
- II. L1 Losses
 - Reconstruction Loss

- I. GAN Loss
- L1 Losses
 - Reconstruction Loss
 - Negative Reconstruction Loss

- I. GAN Loss
- II. L1 Losses
 - 1. Reconstruction Loss
 - 2. Negative Reconstruction Loss
 - 3. Hair Excess Loss

- I. GAN Loss
- II. L1 Losses
 - 1. Reconstruction Loss
 - 2. Negative Reconstruction Loss
 - 3. Hair Excess Loss

III. Diversity Constrastive Loss

ТΙΠ

Datasets

- Aligned and cropped images
- Resolution 178 x 218
- Only identities with at least 30 images

Liu, Z., et al 2015 34

Datasets

- Aligned and cropped images
- Resolution 178 x 218
- Only identities with at least 30 images

- 30.000 High Quality images selected from CelebA (1024 x 1024)
- Corresponding facial segmentation masks with 19 classes (512 x 512)

Lee. C. et al. 2020 35

Datasets

- Aligned and cropped images
- Resolution 178 x 218
- Only identities with at least 30 images
- 30.000 High Quality images selected from CelebA (1024 x 1024)
- Corresponding facial segmentation masks with 19 classes (512 x 512)

Face Forensics ++

- 1.000 video sequences
- Trackable face without occlusions

36

Results

Hair - Neck

Identity

Source

Results

Constraints

Hair Neck Eyes Eyebrows Nose

Mouth Lips

Source

Evaluation - Main Results

Models	Detect	sion (\uparrow)	Identification (\downarrow)		
	Dlib	SSH	FaceNet		
Original	100	100	95.44		
Pixelization 8 by 8	0	0	0.43		
Blur 9 by 9	93.58	33.87	73.34		
Blur 17 by 17	82.05	0.33	24.67		
CIAGAN Baseline	99.73	54.38	2.94		
Thesis Model	99.80	65.43	1.20		

Evaluation - Main Results

Wanted Parts	Detect Dlib	sion (†) SSH	$\begin{array}{c} \textbf{Identification}(\downarrow) \\ \textbf{FaceNet} \end{array}$	$\mathrm{FID}\ (\downarrow)$	$ ext{LPIPS}(\uparrow)$	
Hair, Neck	99.80	65.43	1.20	67.11	0.025	
Mouth, Lips	99.61	72.10	1.08	94.77	0.141	
Eyes, Eyebrows	99.85	72.15	0.82	83.94	0.214	
Everything	99.78	69.89	1.27	68.85	0.021	
Nothing	99.72	67.14	0.73	88.44	0.226	
CIAGAN Baseline	99.73	54.38	2.85	71.95	0.107	

Evaluation - Ablation Study

Models Evaluation on Neck, Hair	$\begin{array}{c} \textbf{Detection} \ (\uparrow) \\ \textbf{Dlib} \end{array}$	Identification (\downarrow)	$\mathrm{FID}\ (\downarrow)$	LPIPS (\uparrow)
Thesis Model	99.80	1.20	67.11	0.025
Full Segmentation Mask	99.18	1.20	71.70	0.049
No Face Mesh	1.09	0.22	142.72	0.229
No Orientation Landmarks	99.59	0.46	71.93	0.103
No Reconstruction Loss	0.41	0.33	274.77	0.225
No Inverse Reconstruction Loss	99.61	1.15	72.77	0.065
No Diversity Loss	99.92	0.29	85.55	0.045

Evaluation - Ablation Study

\mathbf{Models}	Hair, Neck Mouth, Lips		Eyes, Eyebrows		Everything		Nothing			
Evaluation on Neck, Hair	FID (\downarrow)	LPIPS (\uparrow)	FID	LPIPS	FID	LPIPS	FID	LPIPS	FID	LPIPS
Thesis Model	67.11	0.025	94.77	0.141	83.94	0.214	66.85	0.021	88.44	0.226
Full Segmentation Mask	71.70	0.049	72.11	0.050	72.35	0.051	74.60	0.051	75.00	0.051
No Face Mesh	142.72	0.229	204.33	0.356	266.22	0.362	132.93	0.134	253.08	0.345
No Orientation Landmarks	71.93	0.103	89.75	0.173	86.66	0.192	73.02	0.074	85.53	0.196
No Reconstruction Loss	274.77	0.225	277.76	0.277	274.21	0.278	274.98	0.213	274.34	0.282
No Inverse Reconstruction Loss	72.77	0.065	95.09	0.095	85.13	0.144	71.75	0.036	85.36	0.147
No Diversity Loss	85.55	0.045	106.39	0.035	91.46	0.048	100.42	0.018	96.58	0.064

Evaluation - Video

Models Evaluation on Neck, Hair	$\mathbf{PSNR}\ (\uparrow)$	$\text{LPIPS }(\downarrow)$	$\mathrm{tOF}\ (\downarrow)$	$\mathrm{tLP}\ (\downarrow)$
Thesis Model	21.66	0.133	1.02	5.97
CIAGAN Baseline	25.99	0.077	0.22	1.65

Conclusion

- Full Anonymization Pipeline
- Good detection and de-identification rates

- Flexible shape anonymization model to improve control over the generated images, including on neck and hair
- The pipeline generates realistic faces, however the blending step could be improved

THANK YOU

Candidate: Filippo Simonazzi

Supervisor: Maxim Maximov

Advisor: Prof. Dr. Laura Leal-Taixe

Technical University of Munich
Chair for Computer Vision and Artificial Intelligence

