CSC 411

Computer Organization (Fall 2024)
Lecture 4: Integers (signed, unsigned)

Prof. Marco Alvarez, University of Rhode Island

The C Language

- Developed by Dennis Ritchie at Bell Labs in the early 1970s
- Many operating systems, including Unix and its variants (Linux), are written in C
- Allows low-level access to memory, making it efficient for system programming
- C programs are generally portable across different platforms with minimal modification
- C follows a traditional compilation process, where the source code is translated into machine code by a compiler

TIOBE Index for September 2024

- Indicator of the popularity of programming languages
 - popular search engines such as Google, Bing, Yahoo!, Wikipedia, Amazon, YouTube and Baidu are used to calculate the ratings.

Sep 2024	Sep 2023	Change	Programming Language	Ratings	Change
1	1		Python	20.17%	+6.01%
2	3	^	⊘ C++	10.75%	+0.09%
3	4	^	Java	9.45%	-0.04%
4	2	•	G c	8.89%	-2.38%
5	5		© C#	6.08%	-1.22%
6	6		JS JavaScript	3.92%	+0.62%
7	7		VB Visual Basic	2.70%	+0.48%
8	12	*	⊸so Go	2.35%	+1.16%
9	10	^	SQL SQL	1.94%	+0.50%
10	11	^	F Fortran	1.78%	+0.49%

https://www.tiobe.com/tiobe-index/

Representing data

Representing data

- ► In memory, all values are stored as "bit-vectors"
 - data types are used to interpret the bits (provide meaning)
 - · each possible bit-vector assigned exclusively to one meaning
- In a bit sequence of n bits, we can represent 2^n different values
 - <u>number of permutations with repetition</u> (given *n* digits, there are two ways to choose each digit)
 - example: how many different sequences can be represented in 4 bits?

0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1

1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1
-	-		

$$2^4 = 16$$

Show me the code

Unsigned integers

Unsigned integers

- Bits represent the number directly
 - same as binary-to-decimal conversion

0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7

1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Range for *n* bits: $[0,2^n-1]$

Advantages

- simple representation
- · full positive range utilization
- straightforward arithmetic operations

Drawbacks

- · cannot represent negative numbers
- · overflow not easily detected

Practice

- Provide the range for the following data types:
 - unsigned char (8 bits)
 - unsigned short int (16 bits)
 - unsigned int (32 bits)

Unsigned integer arithmetic

- Addition
 - align numbers and add digits from right to left
 - carry over when sum is greater or equal than the base (2 for binary)

Overflow

- Definition
 - occurs when the result of an arithmetic operation exceeds the maximum representable value for the bit-width
- Behavior
 - when it occurs, the arithmetic " $\underline{\text{wraps around}}$ ", equivalent to performing arithmetic modulo 2^n
 - basically taking the result $\mod 2^n$ (truncating the bits and retaining the n least significant bits)
 - e.g., adding 1 to 255 in an 8-bit system results in 0
 - in C, the <u>runtime does not produce errors</u>, values just "wrap"
 - this wrapping around behavior can be useful in certain situations

Overflow

- Can have consequences if not handled properly
 - · incorrect calculations
 - program crashes due to unexpected behavior
 - · security vulnerabilities
- To prevent overflow
 - · choose appropriate data types with sufficient range
 - · implement checks and validations within the code

Gangnam Style music video 'broke' YouTube view limit

3 4 December 2014

YouTube said the video - its most watched ever - has been viewed more than **2,147,483,647** times. It has now changed the maximum view limit to **9,223,372,036,854,775,807**, or more than nine quintillion.

Zero-Day Alert: Google Chrome Under Active Attack, Exploiting New Vulnerability

Google has rolled out security updates to fix seven security issues in its Chrome browser, including a zero-day that has come under active exploitation in the wild.

Tracked as CVE-2023-6345, the high-severity vulnerability has been described as an integer overflow bug in Skia, an open source 2D graphics library.

Unsigned integer arithmetic

- Multiplication
 - · multiply each digit of multiplier with multiplicand
 - shift partial products left based on multiplier digit position
 - · sum all partial products

Signed integers

Using the MSB

1 1 0 0 1 0 1

Positive number

1 0 0 1 1 0

Negative number

Sign magnitude

- ▶ Trivial approach (not used)
 - use MSB as the sign bit, 0 for positive, 1 for negative
 - · remaining bits represent magnitude
- Example
 - e.g. all possibilities using n=3 bits

0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	-0
1	0	1	-1
1	1	0	-2
1	1	1	-3

Range:
$$[-2^{n-1} + 1, 2^{n-1} - 1]$$

Advantages

- intuitive representation
- easy negation (flip sign bit)

Drawbacks

- two representations of zero (+0 and -0)
- complicates arithmetic circuits (try adding 001 and 110)
- wastes one pattern

One's complement

- Positive numbers
 - · same representation as unsigned integers
- Negative numbers
 - bitwise NOT of the positive counterpart ($\sim x$)
- x + -x = 11...11 (complement)
- Example
 - e.g. all possibilities using n=3 bits

0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	-3
1	0	1	-2
1	1	0	-1
1	1	1	-0

Range: $[-2^{n-1} + 1, 2^{n-1} - 1]$

Advantages

- easy negation (bitwise NOT)
- · symmetric range

Drawbacks

- two representations of zero (+0 and -0)
- complex addition requires end-around
- carry (try adding 011 + 101)
- · not widely used in modern systems

Two's complement

- Positive numbers
 - · same representation as unsigned integers
- $-b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i$

- Negative numbers
 - bitwise NOT of the positive counterpart plus 1 ($\sim x + 1$)
- x + -x = 00...00
- Example
 - e.g. all possibilities using n=3 bits

0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	-4
1	0	1	-3
1	1	0	-2
1	1	1	-1

Range: $[-2^{n-1}, 2^{n-1} - 1]$

Advantages

- single zero representation
- arithmetic uses same hardware as unsigned representation
- · does not waste a pattern
- most widely used representation in modern computers

Drawbacks

- · asymmetric range
- slightly more complex negation than one's complement

$$-b_{n-1}2^{n-1} + \sum_{i=0}^{n-2} b_i 2^i$$

$$\frac{-2^7 \quad 2^6 \quad 2^5 \quad 2^4 \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0}{1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1}$$

$$-1 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

$$-128 + 64 + 4 + 1 = -59$$

Example using n = 4 bits

Binary	Unsigned	One's complement	Two's complement
0000	0	+0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	8	-7	-8
1001	9	-6	-7
1010	10	-5	-6
1011	11	-4	-5
1100	12	-3	-4
1101	13	-2	-3
1110	14	-1	-2
1111	15	-0	-1

Practice

Convert from x to -x using two's complement

$$0 \ 0 \ 1 \ 1 =$$

Practice

Convert from two's complement to decimal

$$-2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$$

The most negative number

- Exceptions to $\sim x + 1$
 - zero becomes zero (overflow)
 - the most negative number does not have a positive counterpart impossible to represent (overflow)
- Can lead to unexpected programming bugs
 - · in C these behaviors are undefined:

expression	eval
-(-128)	-128
abs (-128)	-128
-128 * -1	-128
-128 / -1	-128

assume values are signed chars

Practice

· Calculate addition using two's complement

$$1000 + 1000 =$$

Practice

- Provide the range in decimal and hexadecimal for the following data types:
 - unsigned char (8-bit)
 - char (8-bit two's complement)
 - unsigned short int (16-bit)
 - short int (16-bit two's complement)

Further considerations

Overflow

- ► In the **context of two's complement** addition
 - overflow happens if:
 - then overflow occurs if and only if the result has the opposite sign.
 Overflow never occurs when adding operands with different signs.
 - signs of both operands are the same (both positive or both negative), and the result has the opposite sign
 - adding a negative and positive does not produce overflow

$$(-7)$$
 1 0 0 1 +

• assume n=4

$$(-7)$$
 1 0 0 1

(2) 0 0 1 0

Subtraction

- Subtracting two numbers in two's complement
 - assume x y
 - perform the addition of x and the two's complement of y

$$\cdot x - y = x + (-y)$$

Sign extension with two's complement

- Sign extension preserves the value of a number when increasing its bit-width (e.g. casting)
 - · for positive values extend with 0s
 - for negative values extend with 1s

```
8-bit to 16-bit

01011010 => 000000001011010
11011010 => 1111111111011010
```

- Why it works?
 - · maintains relative position of bits in the original number
 - preserves the sign bit
 - arithmetic operations produce correct results across different bit widths

Range of values

Data type	Size	Format	Value range
character	8	signed	-128 to 127
		unsigned	0 to 255
	16	signed	-32768 to 32767
		unsigned	0 to 65535
intono	32	signed	-2,147,483,648 to 2,147,483,647
integer		unsigned	0 to 4,294,967,295
	64	signed	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
		unsigned	0 to 18,446,744,073,709,551,615

https://en.cppreference.com/w/cpp/language/types

Basic data types in C

- The C standard does not define the size of "integer" types, except char
 - much safer to use intN_t and uintN_t for signed and unsigned integers of different sizes (stdint.h)
- The type of each variable tells the compiler how many bits are necessary in memory
 - · necessary for translation of high level code into machine code