International Rectifier

AHV28XX SERIES

28V Input, Single, Dual and Triple Output

ADVANCED ANALOG HYBRID-HIGH RELIABILITY DC/DC CONVERTERS

Description

The AHV Series of DC/DC converters are designed to replace the AHE/ATO family of converters in applications requiring compliance to MIL-STD-704A through E, in particular the input surge requirement of 80 volts specified to withstand transient input voltage of 80 volts. No input voltage or output power derating is necessary over the full military temperature range.

These converters are packaged in an extremely rugged, low profile package that meets all requirements of MIL-STD-883 and MIL-PRF-38534. Parallel seam weld sealing and the use of ceramic pin feedthru seals assure long term hermeticity after exposure to extended temperature cycling.

The basic circuit is a push-pull forward topology using power MOSFET switches. The nominal switching frequency is 500KHz. A unique current injection circuit assures current balancing in the power switches. All AHV series converters use a single stage LC input filter to attenuate input ripple current. A low power 11.5volt series regulator provides power to an epitaxial CMOS custom pulse width modulator integrated circuit. This single integrated circuit provides all PWM primary circuit functions. Power is transferred from primary to secondary through a ferrite core power transformer. An error voltage signal is generated by comparing a highly stable reference voltage with the converter output voltage and drives the PWM through a unique wideband magnetic feedback circuit. This proprietary feedback circuit provides an extremely wide bandwidth, high gain control loop, with high phase margin. The feedback control loop gain is insensitive to temperature, radiation, aging, and variations in manufacturing. The transfer function of the feedback circuit is a function of the feedback transformer turns ratio which cannot change when subjected to environmental extremes.

Manufactured in a facility fully qualified to MIL-PRF-38534, these converters are available in four screening grades to satisfy a wide range of requirements. www.irf.com

Features

- 80 Transient Input (100 msec max.)
- 50 VDC Input (Continous)
- 16 to 40 VDC Input Range
- Single, Dual and Triple Outputs
- 15 Watts Output Power (No Temperature Derating)
- Low Input / Output Noise
- Full Military Temperature Range
- Wideband PWM Control Loop
- Magnetic Feedback
- Low Profile Hermetic Package (0.405")
- Short Circuit and Overload Protection
- Constant Switching Frequency (500KHz)
- True Hermetic Package (Parallel Seam Welded, Ceramic Pin Feedthru)

The CH grade is fully compliant to the requirements of MIL-PRF-38534 for class H. The HB grade is processed and screened to the class H requirement, but may not necessarily meet all of the other MIL-PRF-38534 requirements, e.g., element evaluation and Periodic Inspection (P.I.) not required. Both grades are tested to meet the complete group "A" test specification over the full military temperature range without output power deration. Two grades with more limited screening are also available for use in less demanding applications. Variations in electrical, mechanical and screening can be accommodated. Contact Advanced Analog for special requirements.

AHV28XX Series

Specifications (Single Output Models)

International **I©R** Rectifier

 $T_{CASE} = -55$ °C to +125°C, $V_{IN} = +28V \pm 5\%$ unless otherwise specified

ABSOLUTE MAXIMUM RATINGS

Input Voltage -0.5V to 50VDC (continuous) 80V (100ms)

Power Output Internally limited, 17.5W typical

Soldering 300°C for 10 seconds (1 pin at a time) Temperature Range -55°C to +135°C Operating

Storage -65°C to +135°C

		Condition $-55^{\circ}C \le T_{C} \le +125^{\circ}C,$								
		$V_{IN} = 28 V_{DC} \pm 5\%, C_{L} = 0,$	Group A		2805S		2812S		2815S	
TEST	SYMBOL	unless otherwise specified	Subgroups	Min	Max	Min	Max	Min	Max	Units
STATIC CHARACTERISTICS										
OUTPUT Voltage	V _{out}	V _{IN} = 16, 28, and 40 VDC I _{OUT} = 0	1 2,3	4.95 4.90	5.05 5.10	11.88 11.76	12.12 12.24	14.85 14.70	15.15 15.30	V
Current	1	V _{IN} = 16, 28, and 40 VDC	1,2,3	0.0	3.00	0.0	1.25	0.0	1.00	Å
Ripple Voltage ¹	I _{OUT} V _{RIP}	V _{IN} = 16, 28, and 40 VDC BW = DC to 1 MHz	1,2,3	0.0	60	0.0	60	0.0	60	mVp-p
Power	Pour	V = 16, 28, and 40 VDC	1,2,3	15		15		15		w
REGULATION	OUT	V _{IN} = 10, 20, and 40 VB0	1,2,0	10		10		10		- ''
Line	VRLINE	$V_{IN} = 16, 28, \text{ and } 40 \text{ VDC}$ $I_{OUT} = 0, \text{ half load and full load}$	1 2,3		5 25		30 60		35 75	mV mV
Load	VRLOAD	VIN = 16, 28, and 40 VDC	1,2,3		50		120		150	mV
INPUT		Our 2, the test site is now								
Current	I _{IN}	$I_{OUT} = 0$, Inhibit (pin 2) = 0 $I_{OUT} = 0$, Inhibit (pin 2) = Open	1,2,3		18 50		18 50		18 50	mA mA
Ripple Current	I	I _{our} = Full load	1,2,3,		50		50		50	mAp-p
EFFICIENCY	E _{FF}	I _{out} = Full Load T _c = +25°C	1	72		72		72		%
ISOLATION	ISO	Input to output or any pin to case (except pin 8) at 500 VDC TC = +25°C	1	100		100		100		MΩ
Capacitive Load 23	C _L	No effect on DC performance TC = +25°C	4		500		200		200	μF
Load Fault										
Power Dissipation	P _D	Overload, TC = +25°C ⁴ Short Circuit, TC = +25°C	1		8.5 8.5		8,5 8.5		8.5 8.5	W
Switching Frequency	Fs	I _{ourr} = Full Load	4	450	550	450	550	450	550	KHz
DYNAMIC CHARACTERISTICS Step Load Changes Output Transient ⁶	VOT	50% Load ₁₅₅ 100% Load No Load ₁₅₅ 50%	4 4	-300 -500	+300 +500	-300 -750	+300 +750	-300 -750	+300 +750	mVpk mVpk
Recovery ^{5,6}	TT _{LOAD}	50% Load ₁₃₅ 100% No Load ₃₃₅ 50% Load 50% Load ₃₃₅ No ILoad	4 4 4	000	70 200 5	700	70 1500 5	700	70 1500 5	μs μs ms
Step Line Changes Output Transient	VOT	Input step 16 to 40 VDC ^{3,7} Input step 40 to 16 VDC ^{3,7}	4		300		500		500	mVpk
Recovery	TT _{LINE}	Input step 40 to 16 VDC *** Input step 16 to 40 VDC *** Input step 40 to 16 VDC ***	4 4 4		-1000 800 800		-1500 800 800		-1500 800 800	mVpk μs μs
TURN-ON		1 : 35 : 5 : 5 : 5	-							μο
Overshoot	VTon	I _{our} = OA and Full Load	4,5,6		550		750		750	mVpk
Delav	T on D	I _{our} = O and Full Load ⁸	4,5,6		10		10		10	ms

Notes to Specifications (Single Output Models)

- 1. Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz.
- 2. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but will interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- Parameter shall be tested as part of design characterization and after design or process changes. Thereafter shall be guaranteed to the limits specified.
 An overload is that condition with a load in excess of the rated load but less than necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
- 5. Load step transition time between 2 to 10 microseconds.
- 6. Recovery time is measured from the initiation of the transient to where V_{our} has returned to within ±1 percent of V_{our} at 50 percent load.
 7. Input step transition time between 2 and 10 microseconds.
- 8. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhinbit pin (pin 2) while power is applied to the input. Above 125°C case temperature, derate output power linearly to 0 at 135°C case.

International TOR Rectifier

Specifications (Dual Output Models)

 T_{CASE} = -55°C to +125°C, V_{IN} = +28V ± 5% unless otherwise specified

ABSOLUTE MAXIMUM RATINGS

Input Voltage -0.5V to 50VDC (continuous) 80V (100ms)

Power Output Internally limited, 17.5W typical Soldering 300°C for 10 seconds (1 pin at a time)
Temperature Range Operating -55°C to +135°C

Storage

Condition $-55^{\circ}C \leq T_{_{\scriptsize C}} \leq +125^{\circ}C,$ Group A AHV2812D AHV2815D $V_{IN} = 28 V_{DC} \pm 5\%, C_{L} = 0,$ unless otherwise specified SYMBOL TEST Subgroups Min Max Min Max Units STATIC CHARACTERISTICS OUTPUT $I_{OUT} = 0$ Voltage ±15.15 ±11.88 ±12.12 ±14.85 V_{out} 2,3 ±11.76 +12 24 +14 70 +15.30 Current 1,2 V_{IN} = 16, 28, and 40 VDC 1,2,3 0.0 ±625 mΑ ±500 I_{OUT} V_{RIP} Ripple Voltage 1,3 V_{IN} = 16, 28, and 40 VDC 1,2,3 mVp-p BW = DC to 2 MHz Power 1,2,4
REGULATION $V_{IN} = 16, 28, \text{ and } 40 \text{ VDC}$ 1,2,3 w 15 15 $\mathsf{VR}_{\mathsf{LINE}}$ V_{IN} = 16, 28, and 40 VDC 30 ${\rm VR}_{\rm \tiny LOAD}^{\cdot \cdot}$ I_{OUT} = 0, half load and full load VIN = 16, 28, and 40 VDC 2,3 1,2,3 60 120 75 150 mV Load 1 m۷ I = 0, half load and full load INPUT Current $I_{\rm IN}$ $I_{OUT} = 0$, Inhibit (pin 2) 1,2,3 18 18 mΑ Tied to input return (pin 10) $I_{OUT} = 0$, Inhibit (pin 2) = Open 65 mΑ 65 _{out} = Full load Ripple Current 3 1,2,3, mAp-p I_{RIP} BW = DC to 2MHz $I_{OUT} = Full Load$ $T_{C} = +25^{\circ}C$ EFFICIENCY 72 72 E_{FF} ISOLATION ISO Input to output or any pin to 100 100 МΩ case (except pin 8) at 500 VDC, $TC = +25^{\circ}C$ No effect on DC performance $C_{\scriptscriptstyle L}$ 200 200 Capacitive Load 6 4 μF $TC = +25^{\circ}C$ Load Fault P_{D} Overload, TC = +25°C8 Power Dissipation 8,5 8.5 8.5 Short Circuit, TC = +25°C W Switching Frequency I_{out} = Full Load 450 550 450 550 KHz F. 4 DYNAMIC CHARACTERISTICS Step Load Changes 50% Load ₁₃₈ 100% Load No Load ₁₃₈ 50% 50% Load ₁₃₈ 100% No Load ₃₃₆ 50% Load 50% Load ₃₃₆ No ILoad -300 -500 Output Transient 5 VOT_{LOAD} -300 +300 +300 mVpk mVpk 4 -500 +500 +500 Recovery 9,10 $\mathsf{TT}_{\mathsf{LOAD}}$ 70 70 μŚ 4 4 1500 1500 μS Step Line Changes Output Transient 7,11 $\mathsf{VOT}_{\mathsf{LINE}}$ Input step 16 to 40 VDC 1200 1500 mVpk Input step 40 to 16 VDC -1500 -1500 mVpk Recovery 7,10,11 $\mathsf{TT}_{\mathsf{LINE}}$ Input step 16 to 40 VDC 4 μs Input step 40 to 16 VDC 4 4 4 μs TURN-ON I_{OUT} = O and Full Load Overshoot 1 VTon_{os} T on D 456 600 600 mVpk T = O and Full Load ms Load Fault Recovery 4,5,6 ms

-65°C to +135°C

AHV28XX Series

International IOR Rectifier

Specifications (Triple Output Models)

 $T_{CASE} = -55^{\circ}C$ to +125°C, $V_{IN} = +28V \pm 5\%$ unless otherwise specified

ABSOLUTE MAXIMUM RATINGS

-0.5V to 50VDC (continuous) 80V (100ms) Internally limited, 17.5W typical Input Voltage Power Output 300°C for 10 seconds (1 pin at a time) Soldering -55°C to +135°C -65°C to +135°C Temperature Range Operating Storage

		Condition $-55^{\circ}C \le T_{C} \le +125^{\circ}C,$	Group A	AHV2	2812T	AHV2815T		
TEST	SYMBOL	$V_{IN} = 28 V_{DC} \pm 5\%, C_{L} = 0,$ unless otherwise specified	Subgroups	Min	Max	Min	Max	Units
STATIC CHARACTERISTICS OUTPUT								
Voltage ¹	V_{out}	I _{out} = 0 (main)	1 2,3	4.95 4.90	5.05 5.10	4.95 4.90	5.05 5.10	V
		$I_{OUT} = 0 (dual)^1$	1 2,3	±11.88 ±11.76	±12.12 ±12.24	±14.85 ±14.70	±15.15 ±15.30	V
Current 1,2,3	I _{out}	$V_{IN} = 16, 28, \text{ and } 40 \text{ VDC (main)}$ $V_{IN} = 16, 28, \text{ and } 40 \text{ VDC (dual)}^1$	1,2,3 1,2,3	0.0 0.0	2000 ±208	0.0 0.0	2000 ±167	mA mA
Ripple Voltage 1,4	V_{RIP}	V _{IN} = 16, 28, and 40 VDC BW = DC to 2 MHz (main)	1,2,3		80		80	mVp-p
Power 1,2,3		V _{IN} = 16, 28, and 40 VDC BW = DC to 2 MHz (main)	1,2,3	40	40	40	40	mVp-p
Power	Роит	V _{IN} = 16, 28, and 40 VDC (main) (+dual) (-dual)	1,2,3 1,2,3 1,2,3	10 2.5 2.5		10 2.5 2.5		W W W
REGULATION		(total)	1,2,3	15		15		W
Line 1,3	$VR_{\text{\tiny LINE}}$	V _{IN} = 16, 28, and 40 VDC I _{OUT} = 0, 50%, and 100% load (main)	1,2,3		25		25	mV
Load 1,3	VR _{LOAD}	$\begin{split} &I_{\text{OUT}} = 0, 50\%, \text{ and } 100\% \text{ load (dual)} \\ &V_{\text{IN}} = 16, 28, \text{ and } 40 \text{ VDC} \\ &I_{\text{OUT}} = 0, 50\%, \text{ and } 100\% \text{ load (main)} \\ &I_{\text{OUT}} = 0, 50\%, \text{ and } 100\% \text{ load (dual)} \end{split}$			±60 50 ±60		±75 50 ±75	mV mV mV
INPUT Current	I _{IN}	I _{our} = 0, Inhibit (pin 8)	1.2.3		15		15	mA
	114	Tied to input return (pin 10) $I_{\text{out}} = 0$	1,2,3		50		50	mA
Ripple Current ⁴	I _{RIP}	Inhibit (pin 2) = open I_{OUT} = 2000 mA (main) I_{OUT} = ±208mA (±12V) I_{OUT} = ±167mA (±15V) BW = DC to 2MHz	1,2,3		50		50	mAp-p
EFFICIENCY	E _{FF}	$I_{\text{OUT}} = 2000\text{mA (main)}$ $I_{\text{OUT}} = \pm 208\text{mA (±12V)}$ $I_{\text{OUT}} = \pm 167\text{mA (±15V)}$	1	72		72		%
ISOLATION	ISO	Input to output or any pin to case (except pin 7) at 500 VDC, TC = +25°C	1	100		100		ΜΩ
Capacitive Load 6,7	C _L	No effect on DC performance TC = +25°C (main) (dual)	4		500 200		500 200	μF μF
Load Fault Power Dissipation ³	P _D	Overload, TC = +25°C ⁵ Short Circuit, TC = +25°C	1 1		8.5 8.5		8.5 8.5	W W
Switching Frequency ¹	F _s	$I_{out} = 2000$ mA (main) $I_{out} = \pm 208$ mA (± 12 V) $I_{out} = \pm 167$ mA (± 15 V)	4	450	550	450	550	KHz

For Notes to Specifications, refer to page 5

Specifications (Triple Output Models) - continued

	, ,	<u> </u>						
TEST	SYMBOL	Condition $-55^{\circ}C \le T_{C} \le +125^{\circ}C,$ $V_{IN} = 28 \ V_{DC} \pm 5\%, \ C_{L} = 0,$ unless otherwise specified	Group A Subgroups	AHV2 Min	2812T Max	AHV2 Min	2815T Max	Units
DYNAMIC CHARACTERISTICS Step Load Changes Output Transient ⁹ Recovery ^{9,10}	VOT _{LOAD}	50% Load ₁₃₅ 100% Load No Load ₁₃₅ 50% 50% Load ₁₃₅ 100% No Load ₃₃₅ 50% Load 50% Load ₃₃₅ No ILoad	4 4 4 4	-300 -400	+300 +400 100 2000 5	-300 -400	+300 +400 100 2000 5	mVpk mVpk μS μS ms
Step Line Changes Output Transient Recovery 7,10, 11	VOT _{LINE}	Input step 16 to 40 VDC Input step 40 to 16 VDC Input step 16 to 40 VDC Input step 40 to 16 VDC	4 4 4 4		1200 -1500 4 4		1200 -1500 4 4	mVpk mVpk μs μs
TURN-ON Overshoot Delay Load Fault Recovery	VTon _{os} T on D TR _{IF}	I_{out} = O and ±625mA I_{out} = O and ±625mA	4 4 4		750 15 15		750 15 15	mVpk ms ms

Notes to Specifications (Triple Output Models)

- 1. Tested at each output.
- 2. Parameter guaranteed by line and load regulation tests.
- 3. At least 25 percent of the total power should be taken from the (+5 volt) main output.
- 4. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
- An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
- 6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- 7. Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
- 8. Above 125°C case temperature, derate output power linearly to 0 at 135°C case.
- 9. Load step transition time between 2 and 10 microseconds.
- 10. Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1 percent of V_{OUT} at 50 percent load.
- 11. Input step transition time between 2 and 10 microseconds.
- 12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 8) while power is applied to the input.

Notes to Specifications (Dual Output Models)

- 1. Tested at each output.
- 2. Parameter guaranteed by line and load regulation tests.
- 3. Bandwidth guaranteed by design. Tested for 20KHz to 2MHz.
- Total power at both outputs.
- 5. When operating with unbalanced loads, at least 25% of the load must be on the positive output to maintain regulation.
- 6. Capacitive load may be any value from 0 to the maximum limit without affecting dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn-on.
- Parameter shall be tested as part of design characterization and after design or process changes. Thereafter parameters shall be guaranteed to the limits specified.
- An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation.
- Load step transition time between 2 and 10 microseconds.
- Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1 percent of V_{OUT} at 50 percent load.
- 11. Input step transition time between 2 and 10 microseconds.
- 12. Turn on delay time measurement is for either a step application of power at input or the removal of a ground signal from the inhibit pin (pin 2) while power is applied to the input.
- 13. Above 125°C case temperature, derate output power linearly to 0 at 135°C.

AHV28XX (Single Output) Block Diagram

AHV28XX (Dual Output) Block Diagram

AHV28XX (Triple Output) Block Diagram

Application Information

Inhibit Function

Connecting the inhibit pin (Pin 2 of single and dual models, pin 8 of triple models) to the input return (pin 10) will cause the converter to shutdown and operate in a low power standby mode. Power consumption in this mode is calculated by multiplying Vin times the input current inhibited, typically 225mW at Vin equal to 28 volts. The input current inhibited is relatively constant with changes in Vin. The open circuit inhibit pin voltage is typically 11.5 volts and can be conveniently driven by an open collector driver. An internal pull-up resistor enables the user to leave this pin floating if the inhibit function is not used in their particular application. All models use identical inhibit internal circuits. Forcing inhibit pin to any voltage between 0 and 6 volts will assure the converter is inhibited. The input current to this pin is 500µA maximum at Vpin2 = to 0 volts. The converter can be turned on by opening Pin 2 or forcing a voltage from 10 to 50 volts. Inhibit pin current from 10 to 50 volts is less than ±50µA.

EMI Filter

An optional EMI filter (AFC461) will reduce the input ripple current to levels below the limits imposed by MIL-STD-461 CEO3.

The output voltage of the AHV28XXS can be adjusted upward by connecting a resistor between the Output Adjust (Pin 3) and the Output Common (Pin 4) as shown in Table 1.

Table 1: Output Adjustment Resistor Values

* Resistance (Ohms)	Output Voltage Increase (%)				
Pin 3 to 4	5V	12V	15V		
None	0	0	0		
390 K	+1.0%	+1.6%	+1.7%		
145 K	+2.0%	+3.2%	+3.4%		
63 K	+3.1%	+4.9%	+5.1%		
22 K	+4.1%	+6.5%	+6.8%		
Ö	+5.0%	+7.9%	+8.3%		

^{*} Output Adjust (Single Output Models Only)

International TOR Rectifier

AHV28XX Case Outlines

Pin Designation

2 oo. g							
	SIGNAL DESIGNATION						
PIN#	SINGLE OUTPUT	DUAL OUTPUT	TRIPLE OUTPUT				
1	Positive Input	Positive Input	Positive Input				
2	Enable Input	Enable Input	+5VDC Output				
3	Output Adjust*	Positive Output	Output Common				
4	Output Common	Output Common	Neg. Dual Output (12/15 VDC)				
5	Positive Output	Negative Output	Pos. Dual Output (12/15 VDC)				
6	N/C	N/C	N/C				
7	N/C	N/C	Case Ground				
8	Case Ground	Case Ground	Enable Input				
9	N/C	N/C	N/C				
10	Input Common	Input Common	Input Common				

* Output Adjust (Single Output Models Only)

Part Numbering

	•
<u>AHV 28 15 </u>	<u>T F / CH</u>
Model	Screening -, ES, HB, CH
Input Voltage 28 = 28V Nominal	Package Style F = Flange
Output Voltage ———	Outputs
Single - 05, 12, 15V	S = Single
Dual - $12 = \pm 12V$, $15 = \pm 15V$	D = Dual
Triple - $12 = 5V$, $\pm 12V$ $15 = 5V$, $\pm 15V$	T = Triple
,	

Available Screening Levels and Process Variations for AHV28XX Series

Requirement	MIL-STD-883 Method	No Suffix	ES Suffix	HB Suffix	CH Suffix
Temperature Range		-20°C to +85°C	-55°C to +125°C	-55°C to +125°C	-55°C to +125°C
Element Evaluation					MIL-PRF-38534
Internal Visual	2017	*	Yes	Yes	Yes
Temperature Cycle	1010		Cond B	Cond C	Cond C
Constant Acceleration	2001		500g	Cond A	Cond A
Burn-in	1015	48hrs @ 85°C	48hrs @ 125°C	160hrs @ 125°C	160hrs @ 125°C
Final Electrical (Group A)	MIL-PRF-38534 & Specification	25°C	25°C	-55, +25, +125°C	-55, +25, +125°C
Seal, Fine & Gross	1014	Cond A	Cond A, C	Cond A, C	Cond A, C
External Visual	2009	*	Yes	Yes	Yes

^{*} Per Commercial Standards

Available Standard Military Drawing (SMD) Cross Reference

Standardized Military Drawing Pin	Vendor CAGE Code	Vendor Similar Pin
AHV2805SF/CH	52467	5962-9177301
AHV2812SF/CH	52467	5962-9211201
AHV2815SF/CH	52467	5962-9211301
AHV2812DF/CH	52467	5962-9211401
AHV2815DF/CH	52467	5962-9177401
AHV2812TF/CH	52467	5962-9211501
AHV2815TF/CH	52467	5962-9211601

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500 Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 11/02