图论作业 (第八周)

PB20000113 孔浩宇

October 25, 2022

Ch4

1.

Proof.

- (1) $K_5 e$ 中四个顶点度为 4,一个顶点度为 3,无法收缩为顶点度均为 4 的 K_5 和顶点度均为 3 的 $K_{3,3}$.
- (2) $K_{3,3} e$ 中五个顶点度为 3,一个顶点度为 2,无法收缩为顶点度均为 4 的 K_5 和顶点度均为 3 的 $K_{3,3}$. 即证.

4.

$$\phi = 2 - \nu + \varepsilon = 2 - 8 + \frac{8 \times 4}{2} = 10.$$

6.

(1) Proof. 取 G 的任意连通片 G_1 , 记 $\phi(G_1) = \phi_1$, $\nu(G_1) = \nu_1$, $\varepsilon(G_1) = \varepsilon_1$.

$$\left\{ \begin{array}{ccc} \nu_1 - \varepsilon_1 + \phi_1 &= 2 \\ \phi_1 &< 12 \end{array} \right. \Rightarrow \left. \nu_1 > \varepsilon_1 - 10 \right. \xrightarrow{2\varepsilon_1 = \sum \deg(v) \geq 3\nu_1} \varepsilon_1 < 30.$$

if
$$\forall f \in G_1$$
, $\deg(f) \ge 5 \implies 2\varepsilon_1 \ge 5\phi_1 = 60 \implies \varepsilon_1 \ge 30$,

矛盾,即证 $\exists f \in G, \deg(f) \leq 4$.

(2) 如图.

7.

Proof.

- (1) $\nu \le 5$, 显然成立.
- (2) $\nu \geq 6$. 假设 $\delta \geq 5$.

$$\begin{cases} 2\varepsilon & \geq 5\nu \\ \varepsilon & \leq 3\nu - 6 \end{cases} \Rightarrow \nu \geq 12 \Rightarrow \varepsilon \geq \frac{5\nu}{2} = 30.$$

$$V(G), \deg(v) \leq 4.$$

矛盾,即证 $\delta \leq 4$,即 $\exists \ v \in V(G), \ \deg(v) \leq 4$.

Ch5

2.

Proof. 假设存在两个不同的完备匹配 M_1 和 M_2 ,则 $\exists u \in G, up_0 \in M_1, uq_0 \in M_2 (p_0 \neq q_0)$.

- (1) $\exists p_0q_1 \in M_2, q_0p_1 \in M_1, 若 p_1 = q_1, 则 up_0q_1q_0u$ 构成圈,与树矛盾。
- (2) 若 $p_1 \neq q_1$, 则 $\exists p_1 q_2 \in M_2$, $q_1 p_2 \in M_1$. 以此类推,若 $\exists p_i = q_j$,则

$$\begin{cases} up_0q_1 \cdots p_iq_jp_{j-1} \cdots q_0u & (i, j = 2k) \\ up_0q_1 \cdots q_jp_iq_{i-1} \cdots q_0u & (i, j = 2k+1) \\ q_jp_{j+1} \cdots p_iq_j & (j-i = 2k+1, j > i) \\ p_iq_{i+1} \cdots q_jp_i & (i-j = 2k+1, i > j) \end{cases}$$

又 G 存在完备匹配,则 $\nu = 2k$,总会有 $p_i = q_i$.即证矛盾,树至多存在一个完备匹配。

4.

Proof.

(1) ⇒: 假设 G 中有完备匹配 M.

记第一个人第 i 次选的为 p_i ,每选出一个 p_i ,第二个人均可找到 q_i ,使得 $p_iq_i\in M$. 无论如何取 p_i ,总有 q_i 与之相对应,故第二个人有必胜策略。即证当第一个人有必胜策略时,G 中无完备匹配。

(2) ⇐: 假设 G 中没有完备匹配,最大匹配为 M.

取 $p_1 \notin E(M)$,若 $\exists q_1 \notin E(M)$, $p_1q_1 \in E(G)$,则 $p_1q_1 \in M$,矛盾。故 $q_1 \in E(M)$,则此时等价于以 M 对应的子图为图,原来的第二个人首次选,则原来的第一个人有必胜策略(见上一问)。 即证当 G 中无完备匹配时,第一个人有必胜策略。

6.

如图,将正方形方格用红黄相间覆盖,不妨设去除的两个对角为黄色(必同色)。

将每个格视为一个点,取 $E = \{pq | p, q$ 在图中相邻 $\}$,

$$X = \{p | p$$
在黄色格子 $\}, Y = \{q | q$ 在红色格子 $\}.$

则 X, Y 为图的一个二分划分。由于 |N(Y)| = |X| < |Y|,故不存在完备匹配。即证不能覆盖。

7.

Proof.
$$\exists V(G) = X \cup Y, \ X \cap Y = \phi, \ S_X = S \cap X, \ S_Y = S \cap Y.$$

 $(1) \Rightarrow :$

二分图
$$G$$
有完备匹配 $\Rightarrow X, Y$ 中的顶点均被许配 $\Rightarrow |N(S_X)| \geq |S_X|, |N(S_Y)| \geq |S_Y|$ $\Rightarrow |N(S)| = |N(S_X)| + |N(S_Y)| \geq |S_X| + |S_Y| = |S|.$

 $(2) \Leftarrow$:

$$\left\{\begin{array}{ll} |X|\geq |N(X)| & \geq |Y| \\ |X|\geq |N(Y)| & \geq |X| \end{array}\right. \Rightarrow \left\{\begin{array}{ll} |X| & = |Y| \\ N(X) & = Y \end{array}\right. \Rightarrow G$$
中存在将 X 的点与 Y 的点——相配的完备匹配。
$$N(Y) = X$$

(3) 对一般图不成立,如 K_3 满足 $\forall S \subseteq V(K_3), |N(S)| \ge |S|$,但没有完备匹配。

3