Corrigé du TD2 EDO

$\mathcal{F}.\mathcal{J}$

2023-2024

Exercice 1. Soient $I \subseteq \mathbb{R}$ un intervalle ouvert et $U \subseteq \mathbb{R}$ un ouvert. Montrer que toute fonction $f: I \times U \longrightarrow \mathbb{R}$ de classe C^1 est localement Lipschitzienne par rapport à sa deuxième variable.

Exercice 2. Soit $y_0 \in]-\infty, 4[$ et le problème de Cauchy (E) suivant :

$$\begin{cases} y' = (4 - y)^3 \\ y(0) = y_0. \end{cases}$$

1. Justifier que ce problème admet une unique solution maximale y, définie dans un intervalle $J \subseteq \mathbb{R}$. Sans calculer y, montrer que $y(t) \neq 4$, pour tout $t \in J$.

Solution : (E) est un problème de Cauchy de la forme :

$$\begin{cases} y' = f(t, y) \\ y(0) = y_0. \end{cases}$$

avec $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, (t, y) \mapsto (4 - y)^3$.

La fonction est de classe C^1 sur $\mathbb{R} \times \mathbb{R}$ donc localement lipschitzienne par rapport à sa deuxième variable (cf exo 1).

Par le théorème de Cauchy Lipschitz on est assuré qu'il existe une unique solution maximale de (E), $y_1: J \to \mathbb{R}$, définie dans un intervalle $J \subseteq \mathbb{R}$ ouvert.

Notre but est de montrer que $\forall t \in J, y(t) \neq 4$, pour cela on va montrer :

 $(i): \nexists t \in J \text{ tq } y_1 = 4$

(ii) : $\forall t \in J, y_1(t) < 4$

On a (i) \Rightarrow (ii), montrons le :

L'énoncé nous donne $y_1(t_0) = y_0 < 4$

Supposons par l'absurde que $\exists t_1 \in J \text{ tel que } y_1(t_1) \geq 4$

Or y_1 est continue, donc d'après le TVI $\exists \bar{t} \in J$ tel que $y_1(\bar{t}) = 4$ mais cela est impossible d'après (i). Ce que l'on a supposé est donc absurde.

Il nous reste a montrer (i):

Supposons par l'absurde que $\exists \bar{t} \in J$ tel que $y_1(\bar{t}) = 4$

Considérons le problème de Cauchy (E_2) suivant :

$$\begin{cases} y' = (4-y)^3 \\ y(\bar{t}) = 4. \end{cases}$$

On a $y_c \equiv 4$ solution triviale de (E_2) c'est une solution globale.

 y_1 est également solution. D'où y_1 et y_c sont deux solutions de (E_2) définient sur $\mathbb{R} \cap J = J$.

On a $y_1(\bar{t}) = 4 = y_c$ d'après le corollaire 1 on a donc $y_1 \equiv y_c$.

Mais on aurait également $y_1(t_0) = y_0 = y_c = 4$ ce qui est absurde car $y_0 < 4$. Ce que

l'on a supposé est donc absurde.

Donc $\nexists t \in J$ tel que $y_1(t) = 4$

On a donc montré que $y(t) \neq 4$ et même que y(t) < 4, $\forall t \in J$.

2. Calculer y et J. Est-ce que la solution maximale y est globale? Solution: pas globale...

Exercice 3. Considérons le problème de Cauchy

$$\begin{cases} y' = 4 - y^2 \\ y(0) = 0. \end{cases}$$

1. Justifier que ce problème admet une unique solution maximale y, définie dans un intervalle $I \subseteq \mathbb{R}$.

Solution : problème de cauchy de la forme f(t,y) avec f de classe \mathcal{C}^1 donc lispchitzienne par rapport à y_1 donc le théorème de Cauchy nous assure l'existence d'une unique solution définie dans un intervalle J de \mathbb{R} ouvert. Le théorème nous dit que c'est une solution maximale.

2. Justifier que la solution y est bornée et calculer un minorant et un majorant pour y. Solution: Il faut repérer les points d'équilibre de l'EDO ce qui ramène au but de cette question qui est de montrer deux choses :

(i) $\nexists t \in J$ tel que $y_1(t) = 2$ ou $y_1 = -2$ avec 2 et -2 point d'équilibre.

(ii) $\forall t \in J, f(t) \in]-2, 2[$

Le plus commode est certainement de découper en deux sous cas, de rédiger le premier pour la point d'équilibre 2 et de conclure en disant que les deux cas se traite de la même manière. $NB:(i) \Rightarrow (ii)$, une fois cette implication démontrée il ne reste plus qu'à montrer (i).

On suppose ici que la solution y est globale, i. e. que $I = \mathbb{R}$ (on verra au prochain cours un résultat permettant de le justifier).

3. Calculer les limites de y en $\pm \infty$.

Solution : On suppose la solution y_1 au problème de Cauchy est globale, c'est à dire que l'intervalle $J \subseteq R$ sur lequel la fonction solution est définie est \mathbb{R} tout entier ie $J=]-\infty,+\infty[.$

Il est facile de voir que y' est strictement positive par la question 2, donc la fonction y est strictement croissante ET bornée donc la fonction admet une limite l FINIE qui reste encore à determiner.

On peut dire que :

$$y \to l \Rightarrow y' \to 4 - l^2$$
 quand $t \to \infty$

Si
$$4 - l^2 \neq 0$$

Mais donc
$$\int_0^T y'(s)ds = y(T) - y(0) = y(T) \to \infty$$
 quand $T \to \infty$

Si $4 - l^2 \neq 0$ Alors $\int_0^T y'(s)ds$ diverge grossièrement. Mais donc $\int_0^T y'(s)ds = y(T) - y(0) = y(T) \to \infty$ quand $T \to \infty$ Ce qui est absurde car on a montré qu'il existait une limite finie l à y.

Donc
$$4 - y^2 = 0 \Rightarrow l = 2$$
 ou $l = -2$

4. Calculer y'' en fonction de y et étudier le signe de y''.

Solution: $y'' = -2y'y = -2y(4-y^2)$ avec $(4-y^2) > 0$ car $y \in]-2,2[$ et y < 0 si t < 0et y > 0 si t > 0 donc

$$\begin{cases} y'' > 0 \text{ si } t < 0 \text{ donc y est convexe sur }]-\infty, \ 0 \ [; \\ y'' < 0 \text{ si } t > 0 \text{ donc y est concave sur }]0, \ \infty[. \end{cases}$$

5. Donner une allure du graphe de la solution y.

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 et $b: \mathbb{R} \to \mathbb{R}$ une fonction continue périodique de période T. Soit $y: \mathbb{R} \to \mathbb{R}$ une solution de l'équation y' = f(y) + b(t). Montrer que y est T-périodique si et seulement si y(T) = y(0).

Solution : On a \Rightarrow qui est immédiat, occupons nous de \Leftarrow :

On suppose donc y(T) = y(0);

On a b(t+T) = b(t) car b est T-périodique;

On a y solution de y' = f(y) + b(t);

Posons F(t, y) = f(y) + b(t)

On a $f \mathcal{C}^1$, la fonction b ne dépend pas de y, F est donc lipschitzienne par rapport à y;

On veut savoir si y(t+T) = y(t)??

Posons z(t) = y(t+T) z est aussi solution de l'ED y' = f(y) + b(t);

Mais on a pour t = 0:

y(0) = z(0) = y(T) = y(0) par hypothèse.

Il existe donc un point $\bar{t} \in J = \mathbb{R}$ tel que deux solutions de l'ED y' = f(y) + b(t) sont égales. Mais d'après le corollaire 1 du cours, si il existe un point situé sur l'intersection des deux intervalles de définitions de ces solutions tel que ces deux solutions sont égales, alors elles sont égales pour tout point t de cette intersection. Donc $y \equiv z$ autrement dit $y(t) = y(t+T), \forall t \in \mathbb{R}$.

Exercice 5. Soient $t_0, y_0 \in \mathbb{R}$ et le problème de Cauchy

(*)
$$\begin{cases} y' = y(y-1)(y-t) \\ y(t_0) = y_0. \end{cases}$$

1. Justifier que quelque soit (t_0, y_0) , le problème (*) admet une unique solution maximale $y: J \longrightarrow \mathbb{R}$, définie dans un intervalle ouvert $J \subseteq \mathbb{R}$ tel que $t_0 \in J$.

Solution : le problème (*) est de la forme

$$\begin{cases} y' = f(t, y) \\ y(t_0) = y_0. \end{cases}$$

Avec f une fonction de classe \mathcal{C}^1 donc lipschitzienne par rapport à y, le théorème de Cauchy Lipschitz nous assure l'existence d'une solution unique maximale y_1 définie sur sur un intervalle ouvert $J \subseteq \mathbb{R}$

2. Donner les solutions constantes de l'équation y' = y(y-1)(y-t).

Solution : Cherchons les solutions constante, pour cela posons $y = K \in \mathbb{R}$ on a donc y' = 0 d'où : $0 = K(K - 1)(K - t) \Rightarrow K = 0$ et $K = 1 \forall t \in J$.

Donc les solutions constante sont y = 0 et y = 1 ce sont les points d'équilibre.

Par la suite, y désigne la solution maximale de (*) et J l'intervalle où elle est définie. On va s'intéresser aux cas où où $t_0 > 1$ et $y_0 \in]0, t_0[$.

3. Supposons $y_0 \in]0,1[$. Montrer que y est bornée sur J.

Solution : On a donc deux points d'équilibre $y_{c1} \equiv 1$ et $y_{c0} \equiv 0$ donc pour $y_0 \in]0,1[$ on va montrer que la fonction solution y_1 est bornée entre y_{c1} et y_{c0} . Ce qui nous ramène à montrer deux choses :

- (i) $\nexists t \in J \text{ tq } y_1(t) = 0 \text{ ou } y_1(t) = 1;$
- (ii) $\forall t \in J, 0 < y_1(t) < 1$ On montre $y_1(t) < 1, \forall t \in J$, le fait que $y(t) > 0 \forall t \in J$ provient d'un raisonnement tout à fait analogue. Montrons donc $y(t) < 1 \forall t \in J$: \rightarrow cf le raisonnement de l'exercice 2 qui est exactement le même!

4. Supposons que $t_0 > 1$ et que $y_0 \in]1, t_0[$. Montrer que pour tout $t \in J$, $t > t_0$, on a 1 < y(t) < t.

Solution : Pour $y(t) > 1, \forall t \in J$ même raisonnement que d'habitude, pour $y(t) < t, \forall t \in J, t > t_0$, raisonnement par l'absurde :

Supposons que $\exists \bar{t} \in J$ tel que $y(\bar{t}) = \bar{t}$, l'ensemble $\{t \in J \mid y(t) = t\}$ est un ensemble fermé, il est non vide par hypothèse, on peut donc prendre son minimum : t_{min} . On a ainsi $1 < t_0 < t_{min}$, mais pour tout les $t \in J, t \leq t_{min}$ on a $y' \geq 0$ c'est à dire que y décroit, donc $t_0 > y_0 = y(t_0) > y(t_{min}) = t_{min}$, ce qui est absurde. Donc $y(t) < t, \forall t \in J, t > t_0$.

- 5. Supposons que J est un intervalle de la forme $]T^-, T^+[$, où $T^-, T^+ \in \mathbb{R} \cup \{-\infty, +\infty\}$. On veut justifier que si $t_0 > 1$ et $y_0 \in]0, t_0[$, alors la solution maximale y de (*) est globale à droite, c'est-à-dire que $T^+ = +\infty$.
 - (a) Supposons $y_0 = 1$. Justifier que y est globale, c'est-à-dire que $J = \mathbb{R}$.
 - (b) Soit $t_0 > 1$ et $y_0 \in]0,1[$ ou $y_0 \in]1,t_0[$. On va montrer par l'absurde que l'on ne peut pas avoir $T^+ < +\infty$.
 - i. Supposons que $T^+ < +\infty$. Justifier qu'il existe la limite

$$\lim_{t \to T^+, t < T^+} y(t),$$

et que cette limite est finie.

- ii. Soit $y^+ \in \mathbb{R}$ la limite précédente. En considérant le problème de Cauchy pour l'EDO y' = y(y-1)(y-t), de donnée initiale (T^+, y^+) , montrer que y admet un prolongement. Conclure.
- (c) Calculer, selon que $y_0 \in]0,1]$ ou que $y_0 \in]1,t_0[$, avec $t_0 > 1$, $\lim_{t \to +\infty} y(t)$.

Exercice 6. Soit le système d'équations différentielles

(S)
$$\begin{cases} x' = x(1 - x - y/2) \\ y' = y(1 - y - x/2). \end{cases}$$

1. Écrire le système (S) sous la forme Y' = F(t, Y), avec $Y = \begin{pmatrix} x \\ y \end{pmatrix}$, en explicitant la fonction F et son domaine de définition.

Solution : On a le système (S) que l'on peut écrire : Y' = F(t,Y) avec $F(t,Y) = (F_1(t,(x,y)), F_2(t,(x,y)))^T$ avec $F_1(t,(x,y)) = x(1-x-y/2)$ et $F_2(t,(x,y)) = y(1-y-x/2)$ F est de classe C^1 sur $\mathbb{R} \times \mathbb{R}^2$ donc localement lipscitzienne par rapport à (x,y).

2. Soit $\left(J, t \in J \mapsto \left(\begin{array}{c} x(t) \\ y(t) \end{array}\right)\right)$ une solution maximale de (S). Montrer que $\left(J, t \in J \mapsto \left(\begin{array}{c} y(t) \\ x(t) \end{array}\right)\right)$ est aussi solution maximale de (S).

Solution: $(x_1(t), y_1(t))^T$ est solution de (S) montrons que $(y_1(t), x_1(t))^T$ est aussi solution de (S). Posons $Z(t) = (z_1(t), z_2(t))^T$ tel que $z_1(t) = y_1(t)$ et $z_2(t) = x_1(t)$ a t-on

$$(S_1) \begin{cases} z_1' \stackrel{?}{=} z_1 (1 - z_1 - z_2/2) \\ z_2' \stackrel{?}{=} z_2 (1 - z_2 - z_1/2) \end{cases}$$

$$(S_1) \iff (S_2) \begin{cases} y_1' = y_1 (1 - y_1 - x_1/2) \\ x_1' = x_1 (1 - y_1 - x_1/2). \end{cases} \quad O$$

- 1. Soient $t_0 \in \mathbb{R}$ et $(x_0, y_0) \in \mathbb{R}^2$. Justifier l'existence et l'unicité d'une solution maximale du problème de Cauchy pour (S), de donnée initiale $(x(t_0), y(t_0)) = (x_0, y_0)$. Solution: On a vu dans la question 1 que F répondait aux hypothèses du Théorème de Cauchy Lipschitz donc on est assuré de l'existence d'une unique solution maximale (x_1, y_1) définie dans un intervalle ouvert $J \subseteq \mathbb{R}$
- 2. Supposons $x_0 = y_0$. Soit $\left(J, t \in J \mapsto \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}\right)$ la solution maximale du problème de Cauchy pour (S), de donnée initiale $(x(t_0), y(t_0)) = (x_0, y_0)$. Justifier que x(t) = y(t) pour tout $t \in J$, et calculer la solution $t \mapsto \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

Solution : On a montrer dans la question 2 que si $\begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ était solution de (S), alors $\begin{pmatrix} y(t) \\ x(t) \end{pmatrix}$ est aussi solution de (S), on considère le PC :

$$\begin{cases} (S) \\ (x(t_0), y(t_0)) = (x_0, x_0). \end{cases}$$

On a $\binom{x(t)}{y(t)}$ solution maximale de PC, mais $\binom{y(t)}{x(t)}$ aussi, ces deux solutions maximales ont la même condition initiale donc sont égales, c'est à dire :

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} y(t) \\ x(t) \end{pmatrix}, \ \forall t \in J;$$

D'où $x \equiv y \text{ sur } J$.