Unit 5: ADVANCE DATA ANALYSIS

- Graph
- The NOSQL Universe
- Overview of Graph Databases and Neo4j
- Link analysis
- High Dimensional Clustering

Data, information, knowledge

- Data Facts, observations, or perceptions.
- **Information** Subset of data, only including those data that possess context, relevance, and purpose.
- **Knowledge -** <u>A more simplistic view</u> considers knowledge as being at the highest level in a hierarchy with data (at the lowest level) and information (at the middle level).
- Data refers to bare facts void of context.
 - -A telephone number.
- Information is data in context.
 - –A phone book.
- Knowledge is information that facilitates action.
 - -Recognizing that a phone number belongs to a good client, who needs to be called once per week to get his orders.

Why NOSQL?

Driving Trends - Data Size

• Data size is increasing exponentially year after year

Driving Trends - Connectivity of Data

RDBMS Performance Curve

NOSQL Database Types

Key-Value

Column Family

Document

Graph

Graph Databases

- Data Model
- Nodes with properties
- Named relationships with properties
- Examples
- Neo4j, Sones GraphDB, OrientDB, InfiniteGraph, AllegroGraph

Graph Databases: Strengths and Weaknesses

- Strengths
- Extremely powerful data model
- Performant when querying interconnected data
- Easily to query
- Weaknesses
- Sharding
- Rewiring your brain

Typical Use Cases for Graph Databases

- Recommendations
- Business Intelligence
- Social Computing
- Master Data Management
- Geospatial

- Genealogy
- Time Series Data
- Web Analytics
- Bioinformatics
- Indexing RDBMS

Maturity of Data Models

Most NOSQL: ~6 years

Relational: 42 years

•Graph Theory: 276 years

Leonhard Euler

- Inventor of Graph Theory (1736)
- Swiss mathematician

Graph Data Model

Graph Data Model

Graph Data Model

Neo4j (...finally)

What is Neo4j?

- Leading Open Source graph database
- Embeddable and Server
- ACID compliant
- White board friendly
- Stable
 - Has been in 24/7 operation since 2003

More Reasons Why Neo4j is Great

- High performance graph operations
 - Traverse 1,000,000+ relationships/sec on commodity hardware
- •32 billion nodes & relationships per Neo4j instance
- •64 billion properties per Neo4j instance
- Small footprint
 - Standalone server is ~65mb

If NOSQL stands for Not Only SQL,

....then how do we execute queries?!

Relational Versus Graph Models

Relational Model

Graph Model

Property Graph Model Components

Nodes

The objects in the graph

Can have name-value properties

· Can be labeled

Relationships

- Relate nodes by type and direction
- Can have name-value properties

Cypher: Graph Query Language

Traversals!

MySQL vs Neo4j

Social Network Performance The Experiment: Round 1

- First rule of fight club:
 - Run a friends of friends query
- Second rule of fight club:
 - 1,000 Users
- Third rule of fight club:
 - Average of 50 friends per user
- Fourth rule of fight club:
- Limit the depth of 5
- Fifth rule of fight club:
 - Intel i7 commodity laptop w/8GB RAM

RDBMS Schema

id	name	
1	John S	
2	Kate H	
3	Aleksa V	
4	Jack T	
5	Jonas P	
5	Anne P	

T_USER_FRIEND

id	user_1	user_2	
1000	1	2	
1001	3	5	
1002	4	1	
1003	6	2	
1004	4	5	
1005	1	4	

SQL: Friends of friends at depth 3

```
select distinct uf3.* from t_user__friend uf1
inner join t_user__friend uf2 on
uf1.user__1 = uf2.user__2
inner join t_user__friend uf3 on
uf2.user__1 = uf3.user__2
where uf1.user__1 = ?
```

MySQL Results: Round 1- 1,000 Users

Depth	Execution Time (sec)	Records Returned
2	0.028	~900
3	0.213	~999
4	10.273	~999
5	92,613.150	~999

Social Graph

Neo4j Traversal API

Social Network Performance Neo4j Results: Round 1- 1,000 Users

Depth	Execution Time (sec)	Records Returned
2	0.04	~900
3	0.06	~999
4	0.07	~999
5	0.07	~999

The Experiment: Round 2

- First rule of fight club:
- Run a friends of friends query
- Second rule of fight club:
 - 1,000,000 Users
- Third rule of fight club:
 - Average of 50 friends per user
- Fourth rule of fight club:
 - Limit the depth of 5
- Fifth rule of fight club:
- Intel i7 commodity laptop w/8GB RAM

Social Network Performance MySQL Results: Round 1- 1,000,000 Users

Depth	Execution Time (sec)	Records Returned
2	0.016	~2,500
3	30.267	~125,000
4	1,543.505	~600,00
5	Did not finish after an hour	N/A

Neo4j Results: Round 1- 1,00,000 Users

Depth	Execution Time (sec)	Records Returned
2	0.010	~2,500
3	0.168	~110,000
4	1.359	~600,000
5	2.132	~800,000

Why is RDBMS performance horrible?

- To find all friends on depth 5, MySQL will create Cartesian product on t_user_friend table 5 times
 - Resulting in 50,000^5 records return
 - All except 1,000 are discarded
- Neo4j will simply traverse through the nodes in the database until there are no more nodes in which to traverse

The power of traversals

- Graphs data structures are localized
 - Count all of the people around you
 - Adding more people in the room may only slightly impact your performance to count your neighbors

Industry Leaders, Startup

- Google Knowledge Graph
 - Google Knowledge Vault
- Amazon Product Graph
- Facebook Graph API
- IBM Watson
- Microsoft Satori
 - Project Hanover/Literome
- LinkedIn Knowledge Graph
- Yandex Object Answer
- Diffbot, GraphIQ, Maana, ParseHub, Reactor Labs,
 SpazioDati

Questions?!

Categories

- Popular Nodes [7],
- Opinion Leaders [8],
- Topical Experts [9],
- Authoritative Actors [10, 11],
- Influence Spreader Or Disseminators [12].

Social Networks

• Social Network Data is a hybrid formation of user demographics, link information and the content generated by various users [1].

121. Tidke, B., G Mehta, R., & Dhanani, J. (2018). Stakeholder-Centric Influence Analysis Approach Using Social Media for Smart City. *International Journal of Computational Intelligence & IoT*, *I*(2).

Challenges

- Transformation of Raw Online Social Network (OSN) Data as Graph
- Computational Complexity
- Evolving and Heterogeneous OSN Data
- Topic Awareness for Influence Analysis
- Evaluation Metrics

[•] Tidke, B., Mehta, R., & Dhanani, J., "Evolutionary and Heterogeneous Social Network Data: A Survey on State-of-the-Art, Technologies, Challenges and Future Research Directions", World Wide Web, Springer. (SCI) (Under Review) (Impact: 1.770)

- Influential and Popular users from the Twitter based on topological network (Online Advertisements & Brand Promotions)
- Active Influential users with specific relevant background and have Opinion on the subject of matter (Scholarly Literature)
- Influential users or Topical Authoritative (Politics and Economy)
- Time Aware Influential users or Topical Authoritative and Sentiment Analysis (Smart City)

Popular Nodes

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Clustering: Rich Applications and Multidisciplinary Efforts

- Pattern Recognition
- Spatial Data Analysis
 - Create thematic maps in GIS by clustering feature spaces
 - Detect spatial clusters or for other spatial mining tasks
- Image Processing
- Economic Science (especially market research)
- WWW
 - Document classification
 - Cluster Weblog data to discover groups of similar access patterns

Examples of Clustering Applications

- <u>Marketing:</u> Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- <u>Land use:</u> Identification of areas of similar land use in an earth observation database
- <u>Insurance</u>: Identifying groups of motor insurance policy holders with a high average claim cost
- <u>City-planning:</u> Identifying groups of houses according to their house type,
 value, and geographical location
- <u>Earth-quake studies:</u> Observed earth quake epicenters should be clustered along continent faults

2023/4/23

47

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters with
 - high <u>intra-class</u> similarity
 - low <u>inter-class</u> similarity
- The <u>quality</u> of a clustering result depends on both the similarity measure used by the method and its implementation
- The <u>quality</u> of a clustering method is also measured by its ability to discover some or all of the <u>hidden</u> patterns

2023/4/23 4

Major Clustering Approaches (I)

• <u>Partitioning approach</u>:

- Construct various partitions and then evaluate them by some criterion, e.g.,
 minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS

• <u>Hierarchical approach</u>:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
- Typical methods: Diana, Agnes, BIRCH, ROCK, CAMELEON

• <u>Density-based approach</u>:

- Based on connectivity and density functions
- Typical methods: DBSACN, OPTICS, DenClue

2023/4/23 49

Major Clustering Approaches (II)

Grid-based approach:

- based on a multiple-level granularity structure
- Typical methods: STING, WaveCluster, CLIQUE

• Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
 - Based on the analysis of frequent patterns
 - Typical methods: pCluster
- <u>User-guided or constraint-based</u>:
 - Clustering by considering user-specified or application-specific constraints
 - Typical methods: COD (obstacles), constrained clustering

Typical Alternatives to Calculate the Distance between Clusters

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = min(t_{ip}, t_{iq})$
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_i) = max(t_{ip}, t_{iq})$
- Average: avg distance between an element in one cluster and an element in the other, i.e., $dis(K_i, K_j) = avg(t_{ip}, t_{jq})$
- Centroid: distance between the centroids of two clusters, i.e., dis(K_i, K_j) = dis(C_i, C_j)
- Medoid: distance between the medoids of two clusters, i.e., dis(K_i, K_j) = dis(M_i, M_i)
 - Medoid: one chosen, centrally located object in the cluster

Hierarchical Clustering

• Use distance matrix as clustering criteria. This method does not require the number of clusters \mathbf{k} as an input, but needs a termination condition

Recent Hierarchical Clustering Methods

- Major weakness of agglomerative clustering methods
 - do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
 - can never undo what was done previously
- Integration of hierarchical with distance-based clustering
 - <u>BIRCH (1996)</u>: uses CF-tree and incrementally adjusts the quality of sub-clusters
 - ROCK (1999): clustering categorical data by neighbor and link analysis
 - <u>CHAMELEON (1999)</u>: hierarchical clustering using dynamic modeling

Clustering High-Dimensional Data

- Clustering high-dimensional data
 - Many applications: text documents, DNA micro-array data
 - Major challenges:
 - Many irrelevant dimensions may mask clusters
 - Distance measure becomes meaningless—due to equi-distance
 - Clusters may exist only in some subspaces
- Methods
 - Feature transformation: only effective if most dimensions are relevant
 - PCA & SVD useful only when features are highly correlated/redundant
 - Feature selection: wrapper or filter approaches
 - useful to find a subspace where the data have nice clusters
 - Subspace-clustering: find clusters in all the possible subspaces
 - CLIQUE, ProClus, and frequent pattern-based clustering

The Curse of Dimensionality

(graphs adapted from Parsons et al. KDD Explorations 2004)

- Data in only one dimension is relatively packed
- Adding a dimension "stretch" the points across that dimension, making them further apart
- Adding more dimensions will make the points further apart—high dimensional data is extremely sparse
- Distance measure becomes meaningless—due to equi-distance

(b) 6 Objects in One Unit Bin

(c) 4 Objects in One Unit Bin

2023/4/23

Why Subspace Clustering?

(adapted from Parsons et al. SIGKDD Explorations 2004)

56

- Clusters may exist only in some subspaces
- Subspace-clustering: find clusters in all the subspaces

Summary

- Cluster analysis groups objects based on their similarity and has wide applications
- Measure of similarity can be computed for various types of data
- Clustering algorithms can be categorized into partitioning methods, hierarchical methods, density-based methods, grid-based methods, and model-based methods
- Outlier detection and analysis are very useful for fraud detection, etc. and can be performed by statistical, distance-based or deviation-based approaches
- There are still lots of research issues on cluster analysis

2023/4/23 57

Thank You