Let Al Explain Math

(Ongoing) AbductiveTP: Abduction via Analogical Divide-and-conquer Planning Facilitates Formal Mathematical Reasoning

Presented by Zory Zhang @ I

Apr 25, 2024

Is GPT Your Husband?

- ullet Me: "Show $3\mid (n^3-n)$ for any n"
- ChatGPT 3.5 (Apr 20, 2024):

If n is divisible by 3, then n^3-n is also divisible by 3 because all the terms n, n-1, and n+1 would be divisible by 3.

https://chat.openai.com/share/0d69988d-aedd-4199-9c63f5c7916c85e5

Is GPT Your Husband? (cont')

1 The Question

"How well can AI explain a mathematical statement in *formal language*"

1.1 Formal Math

- Formal math pprox a programming language
 - Compilation pass
 certifiably correct
 - \circ Proof in formal math \approx validity **no worry**
- Lean 4: programming language
- lean prover: proof assistant \approx compiler

1.1 Formal Math (cont')

Adapted from [4]:

4. Yang et, al. LeanDojo: Theorem Proving with Retrieval-Augmented Language Models. 2023.

1.3 Contribution

We show a technique that

- improves the ability of an Al system
- to explain mathematical statements
- in formal language

2 What accounts for good explanations

2.1 Explaining what?

- What does the theorem say?
 - IS useful
 - X Yet Easy given formalization in code
- ✓ "Why this is a theorem"
 - The hardest part during math courses
 - "Math maturity"

2.2 What does a good explanation look like

- Necessity: Why all assumptions are necessary
- Validity: Why conclusion follows
- Past experience: What does the audience already know
- Hierarchy/flexibility: In a moment

2.2 What does a good explanation look like (cont')

• Show $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$

2.2 What does a good explanation look like (cont')

3 Method: How to explain math

Reflection of Human Reasoning

3.1 Reflection of Human Reasoning

- Analogy
- Planning

3.1.1 Analogy

- Lecture: "Prove $2^n > n$ for any n."
 - Can be solved by having inductive hypothesis ih
 - \circ ih: $orall m \in \mathbb{N}, 2^m > m \implies 2^{m+1} > m+1$
- Homework: "Prove $3 \mid (n^3 n)$ for any n."
 - o ih:

$$orall m \in \mathbb{N}, 3 \mid (m^3-m) \implies 3 \mid ((m+1)^3-(m+1))$$

3.1.2 Planning

3 Method: How to explain math

- Reflection of human reasoning
- How to build Al systems to explain

3.2 How to build Al systems to explain

- 1. Necessity
- 2. Validity
- 3. Past experience
- 4. Hierarchy/flexibility

3.2.1 Necessity

$$A,B \implies C$$

•

$$\neg (B \implies C)$$

•

$$B \wedge \neg C$$

3.2.2 Validity: Formal Math

Write proof in formal math \approx validity checker \checkmark

3.2.3 Past experience: Analogy

- Express past experience as a knowledge corpus
- Draw analogies between the current problem and problems in the corpus
- Transfer the whole proof? X
- Transfer the **key observation/hypothesis** will be enough

3.2.3 Past experience: Analogy (cont')

Source

- \circ "Prove $2^n > n$ for any n."
- \circ have $ih: orall m \in \mathbb{N}, 2^m > m \implies 2^{m+1} > m+1$
- Target
 - \circ "Prove $3\mid (n^3-n)$ for any n."
 - o <to_be_completed>

Recall: (from [4])

A search tree from [4]

A plan tree

····· BFSer: faster every step, need lots of backtracking ····· DCSer: slower every step, more to the point Other: objectively exist but are not visited theorem Mindless trial Key observation 1 back & forth Key observation 2 \bullet redundant Insightful proof proof

3.2.3 Summary

- Necessity: drop a condition and prove the negated goal (flip quantifiers in assmptions as well)
- Validity: Formal math language
- Past experience: Analogy
- Hierarchy/flexibility: Search for the plan tree

4 Implementation

Basically, a few LLMs talking to each other.

5 Experiment

- Dataset = mathlib: a unified library of formalized mathematics definitions & theorems in Lean, proven by human experts.
- Pass@1: time limit=10min per theorem, the percentage of theorems proven

5 Experiment (cont')

	Pass@1 on test set
GPT-4	7.4%
BFSer (ReProver) [4]	30%
DCSer[v1]	25%

6 Implication

Help with your homework

1. By producing lean proof (VScode extension called LeanDojo [4])

```
### AExample.lean ● 
### AExample.lean > ...

-- Lean Copilot is open-sourced at <a href="https://github.com/lean-dojo/LeanCopilot">https://github.com/lean-dojo/LeanCopilot</a>

import LeanCopilot
import Mathlib.Data.Set.Basic

### Tactic state

No goals

**Suggestion

Try this:
intro a b c
apply Nat.add_right_comm
```

4. Yang et, al. LeanDojo: Theorem Proving with Retrieval-Augmented Language Models. 2023.

6 Implication (cont')

2. By ChatGPT Extension

To resolve this, we can apply the 'add_assoc' lemma again to remove the parentheses on the left-hand side. This will make the left-hand side and the right-hand side syntactically identical, allowing us to apply the `refl` tactic. **REQUEST TO LEANDOJO** "state_id": 2, "tactic": "rw ←add_assoc" RESPONSE FROM LEANDOJO (i) "{'proof_finished': True}" After applying the `add_assoc` lemma again to remove the parentheses, we have: For any three integers `a`, `b`, and `c`, the sum `a + c + b` is equal to the sum `a + c + Now, the left-hand side and the right-hand side of the equation are syntactically identical. Therefore, the theorem is proved. The proof is finished.

LeanDojo paper.

Takeaway

Hierarchical divide-and-conquer planning improves the ability of an AI system to explain mathematical statements in formal language.

Acknowledgement

Supervisor: Dr. Jiaxuan You @ I

Joint work with:

Ziyu Zhou https://subfishzhou.github.io/

Haoran Zhao https://haoranzhao4 19.github.io/

Yicheng Wang https://ywangmy.git hub.io/

Yan Li @yan-li-8a2205225 on linkedin

Q&A

- Thank you for listening!
- Please contact Zory if you're willing to preview the paper draft / want to have copy of the slides.
- Get notified when it's on arxiv / the open-source software is out? Just follow @zory_zhang on X.

Backup slides

Is GPT Your Husband? (cont')

- ullet Me: "Show $5 \mid (n^5-5n^3+4n)$ for any n"
- Claude 3 Sonnet (Apr 20, 2024):

First, let's factor the expression:

$$n^5 - 5n^3 + 4n = n(n^4 - 5n^2 + 4)$$

Now, we need to show that $(n^4 - 5n^2 + 4)$ is divisible by 5 for any integer n.

We can do this by substituting n = 5 into the expression:

$$(5^4 - 5(5)^2 + 4) = (625 - 125 + 4) = 504$$

Since 504 is divisible by 5, we have shown that $(n^4 - 5n^2 + 4)$ is divisible by 5 when n = 5.

1.1 Why explain

- 1. Human (Education):
 - Learn through the process of explanation [1]
 - Understanding: Evoke category, causal & *mechanistic* thinking
 - Updating: Incomplete & inconsistent knowledge from the past

1.1 Why explain (cont')

- 1. Human (Education):
 - Learn through the process of explanation
 - Inference based on explanation [1]
 - Q: Why can't I find my key?
 - Explanation: It must be in the car (therefore I can't find)
 - Inference: I should check the car
 - 1. Lombrozo. Explanation and Abductive Inference. In The Oxford Handbook of Thinking. 2012.

 Communication & retention: highlight the Key points

1.1 Why explain (cont')

- 1. Human (Education)
- 2. Al (Scientific advances)
 - Explanation-based learning (EBL) [2]
 - Emulate "learning through the process of explanation"
 - Explanations (the product) as knowledge corpus [3]
 - 2. Dejong Solvernewantion demisably transfering exercit.
- 3. E.g. Yoeard Figher Finger Formation over Explanations and Problem-Solving Experience. 1944.

1.2 Why (formal) math

- 1. Accurate measure of intelligence
 - (Explicitly) test abstraction ability
 - Closed-world
 - No missing information
 - No hidden common sense assumptions

1.2 Why (formal) math (cont')

- 1. Accurate measure of intelligence
- 2. *Easy* to measure
 - Unambiguous / objective
 - Formal math: a programming language
 - Can be checked automatically
 - Compilation pass
 Correctness guaranteed
- What count as explanation

2.1 What count as explanation

- Type [1]:
 - Mechanistic: "It is moving because the engine drives the wheel to spin"
 - Causal: "It is moving because the wheel is spinning"
 - Unification / subsumption: "It is moving because it's a car"
- In math: Mechanistic ✓

3.1.1 Planning

https://terrytao.wordpress.com/2023/11/18/formalizing-the-proof-of-pfr-in-lean4-using-blueprint-a-short-tour/

3.2.3 Past experience: Analogy (cont')

```
example (n : N ) : 2 ^ n > n := by
have h (m : N ) : (2 ^ m) > m → (2 ^ (m+1)) > (m+1) := by

intro h
rw [pow_succ]
linarith

induction n with
| zero => simp
| succ n ih => exact h n ih
```

Now: Prove $3 \mid (n^3 - n)$ for any n

3.2.3 Past experience: Analogy (cont')

```
example (n : \mathbb{N}) : 3 \mid n \land 3 - n := by
  have h (m : \mathbb{N}) : 3 \mid m \land 3 - m \rightarrow 3 \mid (m + 1) \land 3 - (m + 1) := by
    intro h2
    obtain (k, hk) := h2
    use m + m^2 + k
    ring_nf
    rw [Nat.mul_comm k 3, ←hk, Nat.sub_add_eq, ←Nat.add_sub_assoc]
    simp [Nat_add_comm, Nat_add_assoc]
    refine Nat_le_self_pow ?hn m
    norm_num
  induction n with
  | zero => simp [Nat.zero_eq, zero_add, forall_const]
  succ n ih => exact h n ih
```

3.2.3 Past experience: Analogy (cont')

3.2.5 Plan tree and analogy

Let's try the harder one.

3.2.5 Plan tree and analogy (cont')

3.2.5 Plan tree and analogy (cont')

Source: some other problemproof pair in the knowledge corpus

4 Implementation

- Validity: ReProver [4]
 - Lean as the verifier
- Search for plan tree
 - LLM as decomposition proposer
 - LLM as the evaluator to find the **best plan**: minimize the difficulty of the hardest subgoal after decomposition

4 Implementation (cont')

Couldn't load plugin.

4 Implementation (cont')

- Analogy:
 - LLMs: GPT4 / Llama 3 / Claude 3 haiku
 - Learning and Inference with Schemas and Analogies
 (LISA) [5]
 - Structure-Mapping Engine (SME) [6]
- 5. Hummel & Holyoak. A symbolic-connectionist theory of relational inference and generalization. 2003.
- 6. Falkenhainer, Forbus & Gentner. The structure-mapping engine: Algorithm and examples. 198954

9. Future work

- Add analogy component.
- Further improve score by careful optimization techniques.

Analogy

- Use analogical inference to suggest a hypothesis.
- Analogy is conducted by explicitly constructing a translation mapping between scenarios and translate the goal decomposition used in the target scenario back to the source scenario.
- E.g. Telescoping trick.

Planning

- Interactive proof assistant can be viewed as a world model for theorem proving that predicts consequences of proposed actions, which enables planning.
 - IOW, formal math as a special case of general planning.
 - We suggest to implement inference-to-the-bestexplanation via a new planning policy based on searching for a divide-and-conquer strategy that reduces the difficulty the most.

Planning policy

- Assume we have a objective estimator to evaluate difficulty.
- Prioritize search tree branch (tactic) that minimize the value of cost function = $\max_{\text{existing subgoals } s} \{ \text{difficulty}(s) \}$, which is defined on proof tree.

Conclusion

- While analogy provides motivation of the proof, the planning policy encourages the proof to be hierarchically structured and insightful.
- We implement this framework using a neural-symbolic architecture and show that it mitigate the gap between Al and human mathematician on the quality of the produced proof.

Design elements

Ziyu Zhou https://subfish-zhou.github.io/

Yicheng Wang https://ywangmy.github.io/

Haoran Zhao https://haoranzhao419.github.io/

Yan Li @yan-li-8a2205225 on linkedin