Invariant Set and Controller Synthesis

FEANICSES 2018 Workshop

Danylo Malyuta, Dylan Janak, Behçet Açıkmeşe May 22, 2018

Autonomous Controls Laboratory, University of Washington

Overview

Invariant Set Synthesis

Optimization-Based Methods

Set-Theoretic Methods

Invariant Controller Synthesis

Linear Quadratic Regulator (LQR)

Linear Feedback Inducing ${\mathcal X}$ Invariance

Ellipsoidal Linear Feedback

Robust Controlled Invariant Set

We consider Discrete Linear Time Invariant (DLTI) system:

$$x^+ = Ax + Bu + Dp,$$

where $x \in \mathbf{R}^n$, $p \in \mathcal{P} = \{p \in \mathbf{R}^d : Rp \le r\}$ and $u \in \mathcal{U} = \{u \in \mathbf{R}^m : Hu \le h\}$ are "specification" polytopes.

Controlled Robust Positively Invariant Set

A set \mathcal{X} is called *controlled robust positively invariant* (CRPI) if:

$$\mathcal{X} = \{ x \in \mathbf{R}^n : \exists u \in \mathcal{U} \text{ s.t. } Ax + Bu + Dp \in \mathcal{X}, \ \forall p \in \mathcal{P} \}.$$

Robust Invariant Set

Robust Controlled Invariant Set

A set \mathcal{X} is called *controlled robust positively invariant* (CRPI) if:

$$\mathcal{X} = \{ x \in \mathbf{R}^n : \exists u \in \mathcal{U} \text{ s.t. } Ax + Bu + Dp \in \mathcal{X}, \ \forall p \in \mathcal{P} \}.$$

Now consider that some control law exists and the system reduces to an autonomous one:

$$x^+ = Ax + Dp$$
.

Robust Invariant Set

A set \mathcal{X} is called *robust positively invariant* (RPI) if:

$$Ax + Dp \in \mathcal{X}, \quad \forall x \in \mathcal{X}, \ p \in \mathcal{P}.$$

Goal: find an RPI \mathcal{X} .

Two Ways to Synthesize an Invariant Set

- \bullet Optimization-based methods rely on an explicit optimization problem (LP, LMI, etc.) to find $\mathcal X$
- Set-based methods rely on polytopic operations¹, i.e. computational geometry.

¹These operations may implicitly involve an optimization, but what differentiates set-based methods is that people don't "talk" about it – they just assume that one can compute e.g. the Pontryagin difference.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Equivalent RPI Condition

$$\mathcal{X}(g) = \{x : Gx \leq g\} \text{ RPI} \Leftrightarrow \sigma(G_i \mid A\mathcal{X}(g)) + \sigma(G_i \mid D\mathcal{P}) \leq \sigma(G_i \mid \mathcal{X}(g)),$$

where $g \in \mathbf{R}^{n_g}$ and $\sigma(z \mid S) \triangleq \sup\{y^T z : y \in S\}$ is the support function of (some) set S.

Note: $\sigma(G_i \mid \mathcal{X}(g)) \leq g_i$ with $< \Leftrightarrow$ facet i is redundant.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Existence of an RPI Set

Fix G in $\mathcal{X}(g) = \{x : Gx \leq g\}$ (i.e. pick a "template"). Assumptions:

- A1. \mathcal{P} contains the origin
- A2. $\lambda < 0 \ \forall \lambda \in \operatorname{spec}(A)$
- A3. The interior of ${\mathcal X}$ contains the origin
- A4. For the chosen G, a g exists such that $\mathcal{X}(g)$ is RPI

Then there exists a g^* such that

$$\sigma(G_i \mid A\mathcal{X}(g^*)) + \sigma(G_i \mid D\mathcal{P}) = \sigma(G_i \mid \mathcal{X}(g^*)) = g^* \quad \forall i = 1, ..., n_g.$$

 $\mathcal{X}(g^*)$ is the min-volume RPI set, i.e. g^* achieves minimum $\|g^*\|_1$.

Fixed-Point Solution Uniqueness

Given assumptions A1-A4, the g^* in the above statement is unique.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Existence of an RPI Set

$$\sigma(G_i \mid A\mathcal{X}(g^*)) + \sigma(G_i \mid D\mathcal{P}) = \sigma(G_i \mid \mathcal{X}(g^*)) = g^* \quad \forall i = 1, ..., n_g.$$

 $\mathcal{X}(g^*)$ is the min-volume RPI set, i.e. g^* achieves minimum $\|g^*\|_1$.

 g^* can be computed iteratively:

Algorithm 1 Iterative computation of g^* .

Set
$$g \leftarrow 0$$
while True do
$$g_i^* \leftarrow \sigma(G_i \mid A\mathcal{X}(g)) + \sigma(G_i \mid D\mathcal{P}) \ i = 1,...,n_g$$
if $\|g - g^*\|_{\infty} < \epsilon_{\mathsf{tol}}$ then
return g^*

$$g \leftarrow g^*$$

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

- g^* can also be computed as a one-shot LP (main contribution of [1])
- Let $c_i(g) = \sigma(G_i \mid A\mathcal{X}(g)), d_i = \sigma(G_i \mid D\mathcal{P}), b_i(g) = \sigma(G_i \mid \mathcal{X}(g)).$ Core realization (thanks to uniqueness of g^*):

$$g^* = \arg\min_{g} \{ \|g\|_1 : c(g) + d = b(g) \} = \arg\max_{g} \{ \|g\|_1 : c(g) + d = b(g) \}$$

• Recalling that $b(g) \le g$, the above is readily converted to an LP:

$$\begin{split} g^* &= c^* + d^*, \text{ where } (c^*, d^*) = \underset{\substack{\{c_i, d_i, \xi^i, \omega^i\} \\ \forall i \in \{1, \dots, n_g\}}}{\text{subject to}} & \sum_{i=1}^{n_g} c_i + d_i \\ & c_i \leq c_i + d_i \\ & c_i \leq G_i A \xi^i \\ & G \xi^i \leq c + d \\ & d_i \leq G_i D \omega^i \\ & F \omega^i \leq g. \end{split}$$

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Let
$$c_i(g) = \sigma(G_i \mid A\mathcal{X}(g)), \ d_i = \sigma(G_i \mid D\mathcal{P}), \ b_i(g) = \sigma(G_i \mid \mathcal{X}(g))$$

$$g^* = c^* + d^*, ext{ where } (c^*, d^*) = ext{arg maximize } \begin{cases} \sum\limits_{\{c_i, d_i, \xi^i, \omega^i\} \\ \forall i \in \{1, \dots, n_g\} \end{cases}} \sum_{i=1}^{n_g} c_i + d_i$$
 subject to $c_i \leq G_i A \xi^i$ $G \xi^i \leq c + d$ $d_i \leq G_i D \omega^i$ $F \omega^i \leq g$.

The first two constraints evaluate $c_i(g)$ and the last two evaluate d_i . The first constraint holds with equality at optimality, since we want to maximize c_i . The RHS of the second constraint $= g^*$ at optimality, therefore the second constraint enforces $P\xi^i \leq g^*$, i.e. the definition of $b(g^*)$.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Image credit: NASA/JPL-Caltech

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Parameters [2]:

$$m_{
m wet} = 1905 \
m kg$$
 $g = -3.7114 \
m m/s^2$ $g_{
m e} = 9.81 \
m m/s^2$ $I_{
m sp} = 225 \
m s$ $T_{
m max} = 3.1 \
m kN$ $\phi = 27 \
m deg$ $n = 6$

$$(\dot{x},\dot{y})=(v_x,v_y)$$

$$(\dot{v}_x, \dot{v}_y) = (T_x, T_y)/m + g$$

$$\dot{m} = -\frac{\|(T_x, T_y)\|_2}{L g \cos \phi}$$

Letting $T \leftarrow T + mg$ be the gravity compensated control, the system is linearized about $(\bar{x}, \bar{y}, \bar{v}_x, \bar{v}_y, \bar{m}) = (0, 0, 0, 0, m_{\text{wet}})$ and $(\bar{T}_x, \bar{T}_y) = (0, 0)$.

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Synthesize an LQR stabilizing controller:

- State scaling: $D_x = \begin{bmatrix} 1 & 1 & 0.05 & 0.05 & 0.1 \end{bmatrix}$
- Input scaling: $D_u = \begin{bmatrix} nT_{\text{max}}\cos\phi\sin\alpha_{\text{max}} & nT_{\text{max}}\cos\phi \end{bmatrix}$
- State penalty $Q = D_x^{-1} \hat{Q} D_x$ with $\hat{Q} \in \{\emph{I}_5, 10\emph{I}_5\}$
- Input penalty $R = D_{\scriptscriptstyle X}^{-1} \hat{R} D_{\scriptscriptstyle X}$ with $\hat{R} = I_2$

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

Direct application of LP on slide 10 ($\hat{Q} = I_5$, $\hat{Q} = 10I_5$):

Trodden, "A One-Step Approach to Computing a Polytopic Robust Invariant Set", 2016. [1]

The one-shot LP of slide 10 and the iterative algorithm of slide 8 are identical...

... but iterative takes \approx 315 s while one-shot takes \approx 0.2 s!

We consider Discrete Linear Time Invariant (DLTI) system:

$$x^+ = Ax + Bu + Dp,$$

where $x \in \mathbf{R}^n$, $p \in \mathcal{P} = \{p \in \mathbf{R}^d : Rp \le r\}$ and $u \in \mathcal{U} = \{u \in \mathbf{R}^m : Hu \le h\}$ are "specification" polytopes.

Controlled Robust Positively Invariant Set

A set \mathcal{X} is called *controlled robust positively invariant* (CRPI) if:

$$\mathcal{X} = \{x \in \mathbf{R}^n : \exists u \in \mathcal{U} \text{ s.t. } Ax + Bu + Dp \in \mathcal{X}, \ \forall p \in \mathcal{P}\}.$$

Maximal CRPI Set

A set $\mathcal{X}_{\infty} \subseteq \mathcal{X}$ is called *maximal CRPI* (maxCRPI) if it is CRPI and contains all other CRPI sets in \mathcal{X} , i.e. $\mathcal{X}_{\mathsf{CRPI}} \subseteq \mathcal{X}_{\infty} \ \forall \mathcal{X}_{\mathsf{CRPI}} \subseteq \mathcal{X}$ RCPI [3].

maxCRPI Set Convexity

Given the system $x^+ = Ax + Bu + Dp$ where $p \in \mathcal{P}$, $u \in \mathcal{U}$, consider \mathcal{X} the set of "safe" states. If $\mathcal{X}, \mathcal{P}, \mathcal{U}$ are convex then the associated maxCRPI set \mathcal{X}_{∞} is convex.

Recall the maxCRPI set definition:

$$\mathcal{X}_{\infty} = \{ x \in \mathbf{R}^n : \exists u \in \mathcal{U} \text{ s.t. } Ax + Bu + Dp \in \mathcal{X}_{\infty}, \ \forall p \in \mathcal{P} \}.$$

The definition is recursive $(\mathcal{X}_{\infty} \text{ on both sides}) \Rightarrow \text{compute } \mathcal{X}_{\infty} \text{ iteratively.}$ Core step: preimage set computation.

Maximal RCI Computation

Kvasnica et al., "Reachability Analysis and Control Synthesis for Uncertain Linear Systems...", 2015. [3]

Preimage Set

 $Pre(\mathcal{S}) \triangleq \{x \mid \exists u \in \mathcal{U}, \ Ax + Bu + Dp \in \mathcal{S} \ \forall p \in \mathcal{P}\}\$

Remark: $S CRPI \Leftrightarrow S \subseteq Pre(S)$.

Maximal RCI Computation

Kvasnica et al., "Reachability Analysis and Control Synthesis for Uncertain Linear Systems...", 2015. [3]

maxCRPI Iterative Computation

Execute the following dynamic programming-type algorithm:

$$\begin{split} \mathcal{I}_0 &= \mathcal{X} \\ \mathcal{I}_{k+1} &= \mathsf{Pre} \big(\mathcal{I}_k \big) \cap \mathcal{I}_k \quad k = 0, 1, 2, \dots \end{split}$$

STOP if $\mathcal{I}_{k+1} = \mathcal{I}_k$. Then, $\mathcal{I}_k = \mathcal{I}_{\infty}$ is the maxCRPI set.

(Proxy for convergence: distance between the islands.)

Preimage Set Computation

$$\mathsf{Pre}(\mathcal{S}) = ((\mathcal{S} \ominus (D\mathcal{P})) \oplus (-B\mathcal{U}))A$$

where²:

- Minkowski sum: $A \oplus B = \{a + b : a \in A, b \in B\}, \mathcal{O}(c^n)$
- Pontryagin difference: $A \ominus B = \{a : a + b \in A, \forall b \in B\}, O(n^c)$
- Direct mapping: $MA = \{Ma : a \in A\}, O(c^n)$
- Inverse mapping: $AM = \{a : Ma \in A\}, O(n^c)$

Minkowski sum is the most expensive operation (highest facet count, cannot be pre-computed).

 $^{^{2}}n$ is the polytope facet count and c is a coefficient.

Maximal RCI Computation

Kvasnica et al., "Reachability Analysis and Control Synthesis for Uncertain Linear Systems...", 2015. [3]

$$\mathsf{Pre}(\mathcal{S}) = [(\mathcal{S} \ominus (D \circ \mathcal{P})) \ominus (-B \circ \mathcal{U})] \circ \mathcal{A}$$

For independent disturbances, Pontryagin difference $(\mathcal{O}(n^c))$ and especially Minkowski sum $(\mathcal{O}(c^n))$ are expensive³.

 $^{^{3}}n$ is the polytope facet count and c is a coefficient.

However, may wish to render invariant only part of the state. Examples:

- Some states do not make physical sense to render invariant (our case: skycrane mass)
- Some states may correspond to the controller (e.g. integrator)

In this case we want to render invariant the output y = Cx.

Controlled Robust Positively Output Invariant Set

The set \mathcal{X} is Controlled Robust Positively Output Invariant (CRPOI) if:

$$\mathcal{Y} = \{ y : \exists u \in \mathcal{U} \text{ s.t. } Ax + Bu + Dp \in \mathcal{Y} \ \forall x \text{ s.t. } y = Cx, \forall p \in \mathcal{P} \}$$

Controlled Robust Positively Output Invariant Set

The set \mathcal{Y} is Controlled Robust Positively Output Invariant (CRPOI) if:

$$\mathcal{Y} = \{ y : \exists u \in \mathcal{U} \text{ s.t. } C(Ax + Bu + Dp) \in \mathcal{Y} \ \forall x \text{ s.t. } y = Cx, \forall p \in \mathcal{P} \}$$

Using C^{\dagger} the pseudoinverse of C, we can write:

$$\mathcal{Y} = \{ y : \exists u \in \mathcal{U} \text{ s.t. } C(A(C^{\dagger}y + \mathcal{N}(C)) + Bu + Dp) \subseteq \mathcal{Y} \ \forall p \in \mathcal{P} \},$$

where $\mathcal{N}(C)$ is the nullspace of C, i.e. $\mathcal{N}(C) = \{z : Cx = 0\}$ (which is a polytope!). The preimage set can be computed similarly to before:

$$\mathsf{Pre}(\mathcal{Y}) = ((\mathcal{Y} \ominus (\mathit{CDP} \oplus \mathit{CAN}(\mathit{C}))) \oplus (-\mathit{CBU})) \mathit{CAC}^{\dagger}$$

The following algorithm summarizes maxCRPOI set computation⁴.

Algorithm 2 Iterative computation of maxCRPOI set \mathcal{Y}_{∞} .

Set ${\mathcal Y}$ to the "safe outputs" specification

$$\begin{split} \operatorname{Pre}(\mathcal{Y}) &\leftarrow ((\mathcal{Y} \ominus (\mathit{CDP} \oplus \mathit{CAN}(C))) \oplus (-\mathit{CBU})) \mathit{CAC}^\dagger \\ \mathcal{Y}^+ &= \mathcal{Y} \cap \operatorname{Pre}(\mathcal{Y}) \\ \text{if } \mathcal{Y} \subseteq \mathcal{Y}^+_{\epsilon_{\mathsf{tol}}} \text{ and } \mathcal{Y}^+ \subseteq \mathcal{Y}_{\epsilon_{\mathsf{tol}}} \text{ then} \\ &\quad \text{return } \mathcal{Y}_\infty \leftarrow \mathcal{Y}^+ \\ \mathcal{Y} \leftarrow \mathcal{Y}^+ \end{split}$$

⁴If $S = \{x : Px \le p\}$, we denote $S_{\epsilon_{\mathsf{tol}}} = \{x : Px \le p + \epsilon_{\mathsf{tol}}\}$ the ϵ_{tol} -dilation of S. In practical, dilation is a more robust stopping criterion than equality $(\mathcal{Y}^+ = \mathcal{Y})$ which is prone to numerical inaccuracy.

Maximal RCI Computation

Kvasnica et al., "Reachability Analysis and Control Synthesis for Uncertain Linear Systems...", 2015. [3]

Going back to the skycrane example, consider the specifications:

- ± 10 cm position error (in both x and y)
- ± 10 cm/s velocity error in x, ± 1 cm/s velocity error in y
- ± 400 N disturbance force (in both x and y)
- Input constraint set given by the rocket motor specs [2] (visualized below)

Maximal RCI Computation

Kvasnica et al., "Reachability Analysis and Control Synthesis for Uncertain Linear Systems...", 2015. [3]

Direct application of algorithm on slide 23:

Maximal RCI Computation With Dependent Noise

Rakovic et al., "Reachability Analysis of Discrete-Time Systems With Disturbances", 2006. [4]

What happens if the disturbance is state and/or input dependent?

$$p \in \operatorname{Proj}_{p} \mathcal{P}(x, u) = \{\theta = (p, x, u) \in \mathbf{R}^{d+n+m} : R\theta \le r\}$$

In this case Pre(X) can be computed in several steps:

$$\mathcal{Z} \triangleq \mathcal{X} \times \mathcal{U}$$

$$\mathcal{W} \triangleq \{(x, u, p) : (x, u) \in \mathcal{Z}, p \in \mathcal{P}(x, u)\}$$

$$\Phi \triangleq \{(x, u, p) : Ax + Bu + Dp \in \mathcal{S}\}$$

$$\Sigma \triangleq \{(x, u) \in \mathcal{Z} \mid Ax + Bu + Dp \in \mathcal{S} \ \forall p \in \mathcal{P}(x, u)\}$$

$$= \mathcal{Z} \setminus \mathsf{Proj}_{x, u}(\mathcal{W} \setminus \Phi)$$

$$\Rightarrow \mathsf{Pre}(\mathcal{S}) = \mathsf{Proj}_{x}(\Sigma)$$

When sets are polytopes, all operations are possible via computational geometry.

Maximal RCI Computation With Dependent Noise

Rakovic et al., "Reachability Analysis of Discrete-Time Systems With Disturbances", 2006. [4]

$$\Sigma = \mathcal{Z} \setminus \mathsf{Proj}_{x,u}(\mathcal{W} \setminus \Phi).$$

Regiondiff operation (\setminus) [5]) generates a union of polytopes, which suffers from severe "fracturing" of convex regions.

Furthermore, $Proj_{x,u}$ is expensive when dim(W) is large!

Overview

Invariant Set Synthesis

Optimization-Based Methods

Set-Theoretic Methods

Invariant Controller Synthesis

Linear Quadratic Regulator (LQR)

Linear Feedback Inducing ${\mathcal X}$ Invariance

Ellipsoidal Linear Feedback

The Control Problem

The Control Problem for Independent Uncertainty

Consider a given DLTI system:

$$x^{+} = Ax + Bu + Dp, (DLTI)$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $p \in \mathbb{R}^d$. Consider given polytopic sets ("specifications"):

$$\mathcal{X} \triangleq \{ x \in \mathbf{R}^n \mid Gx \le g \} \qquad \mathcal{U} \triangleq \{ u \in \mathbf{R}^m \mid Hu \le h \}$$
$$\mathcal{P} \triangleq \{ p \in \mathbf{R}^d \mid Rp \le r \}.$$

The control problem is to design a control policy $u = \mu(x)$ which ensures that $x^+ \in \mathcal{X}$ and $u \in \mathcal{U}$ for all $p \in \mathcal{P}$.

Linear Quadratic Regulator (LQR)

Solves an infinite-horizon deterministic optimal control problem:

$$\min_{u,x} \sum_{k=0}^{\infty} x_k^T Q x_k + u_k^T R u_k, \text{ s.t. } x_{k+1} = A x_k + B u_k,$$

where $Q \succeq 0$, $R \succ 0$. The control policy is given by:

$$u[k] = \mu_k(z[k]) \triangleq Kz[k],$$

where:

$$K = -(R + B^{T}PB)^{-1}B^{T}PA,$$

 $P = Q + A^{T}PA - A^{T}PB(R + B^{T}PB)^{-1}B^{T}PA.$ (DARE)

- Easy to compute and to implement
- Does not handle uncertainty, so no guarantee of satisfying $x[k] \in \mathcal{X} \ \forall k$, nor $u[k] \in \mathcal{U}$ for that matter!

Linear Feedback Inducing ${\mathcal X}$ Invariance

- Consider a linear feedback control law $u[k] = \mu_k(z[k]) = Kz[k]$.
- ullet K makes ${\mathcal X}$ robustly invariant if and only if:

maximize
$$G_i((A+BK)z+Dp)-g_i \leq 0 \quad \forall i=1,...,n_g$$
 subject to $G(z-p_v) \leq g, \ Rp \leq r, \ HKz \leq h,$

where $p = (p_w, p_e, p_v)$ and $p_v = E_v p = \begin{bmatrix} 0 & 0 & I \end{bmatrix} p$ corresponds to estimation error. K can be found via the one-shot dual problem:

minimize
$$\|K\|_2$$
 (or another norm or 0) subject to $Yg + Mr \le g$
$$YG = G(A + BK)$$

$$MR = GD + YGE_v$$

$$SG = HK, \quad Sg \le h$$

$$Y, M, S > 0.$$

• K is neither guaranteed to exist nor to be fuel optimal!

Ellipsoidal Linear Feedback

Bertsekas, "Infinite time reachability of state-space regions by using feedback control", 1972. [6]

Works on ellipsoidal sets, so reformulate \mathcal{X} , \mathcal{U} and \mathcal{P} as maximal inscribed ellipsoids of their polytopic specifications⁵:

$$\mathcal{X} \triangleq \{ x \in \mathbf{R}^n \mid x^T G x \le 1 \} \qquad \mathcal{U} \triangleq \{ u \in \mathbf{R}^m \mid u^T H u \le 1 \}$$
$$\mathcal{P} \triangleq \{ p \in \mathbf{R}^{d+n+m} \mid p^T R p \le 1 \}.$$

Linear Control Law Sufficient for Invariance [6]

A sufficient condition for $\mathcal X$ to be invariant is that $\exists \psi \succ 0$ and $\beta \in (0,1)$ such that

$$G = A^{T} (F^{-1} + BH^{-1}B^{T})^{-1}A + \psi$$
, where
$$F = \left[(1 - \beta)G^{-1} - \frac{1 - \beta}{\beta}DR^{-1}D^{T} \right]^{-1} \succ 0.$$

A linear time-invariant control law achieves invariance:

$$u[k] = \mu_k(z[k]) = Kz[k] = -(H + B^T GB)^{-1}B^T FAz[k].$$

⁵ G, H, R matrices here are different from their polytope counterparts.

Linear Feedback from Bertsekas (1972)

- ullet The control law is asymptotically stable, so can be turned on outside ${\mathcal X}$ and will drive the system to inside ${\mathcal X}$, if possible
- If the system is stabilizable, Algorithm 3 finds a solution. At termination, satisfaction of original \mathcal{X} , \mathcal{U} is not guaranteed!

Algorithm 3 Algorithm for determining X invariance-inducing control gain.

```
1: Choose \rho \in (0,1) relaxation factor
 2: while i < maximum number of relaxations do
 3:
          Initialize \psi \leftarrow G, G_0 \leftarrow \psi, i \leftarrow 0
          while i < maximum number of inner iterations do
 4.
               F_i \leftarrow \left[ (1-\beta)G_i^{-1} - \frac{1-\beta}{\beta}DR^{-1}D^T \right]^{-1}
 5.
               G_{i+1} \leftarrow A^T (F_i^{-1} + BH^{-1}B^T)^{-1}A + \psi
 6:
 7.
              i \leftarrow i + 1
 8:
               if ||G_{i+1} - G_i||_{\infty} < \text{convergence tolerance then}
                    return -(H + B^T G_{i+1} B)^{-1} B^T F_i A \triangleright \text{Invariance-sufficient control gain}
 9:
10:
          Relax H \leftarrow \rho H, \psi \leftarrow \rho \psi
                                                Grows the state and input constraint sets
```

Thank You For Your Attention!

Appendix

Overview

Bibliography

Bibliography

- P. Trodden, "A one-step approach to computing a polytopic robust positively invariant set," *IEEE Transactions on Automatic Control*, vol. 61, pp. 4100–4105, dec 2016.
- [2] B. Acikmese and S. R. Ploen, "Convex programming approach to powered descent guidance for mars landing," *Journal of Guidance, Control, and Dynamics*, vol. 30, pp. 1353–1366, sep 2007.
- [3] M. Kvasnica, B. Takács, J. Holaza, and D. Ingole, "Reachability analysis and control synthesis for uncertain linear systems in MPT," *IFAC-PapersOnLine*, vol. 48, no. 14, pp. 302–307, 2015.
- [4] S. Rakovic, E. Kerrigan, D. Mayne, and J. Lygeros, "Reachability analysis of discrete-time systems with disturbances," *IEEE Transactions on Automatic Control*, vol. 51, pp. 546–561, apr 2006.
- [5] M. Baotić, "Polytopic Computations in Constrained Optimal Control," Automatika, Journal for Control, Measurement, Electronics, Computing and Communications, vol. 50, pp. 119–134, 2009.
- [6] D. Bertsekas, "Infinite time reachability of state-space regions by using feedback control," *IEEE Transactions on Automatic Control*, vol. 17, pp. 604–613, oct 1972.