МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.2.5

Вынужденные колебания в электрическом контуре

Б03-102 Куланов Александр

- Цель работы: исследование вынужденных колебаний и процессов их установления в колебательном контуре.
- В работе используются: генератор звуковых частот, вольтметр, частотомер, конденсатор, катушка индуктивности, магазин сопротивлений, осциллограф, универсальный измеритель импеданса (*LCR*-метр).

1 Теоретические сведения

Для экспериментального исследования резонансной кривой тока в последовательном колебательном контуре можно снять зависимость амплитуды напряжения на резситоре R от частоты генератора (при постоянной амплитуде выходного напряжения генератора). Но импеданс этого контура включает в себя выходной импеданс генератора. Мы должны быть уверены, что выходной импеданс генератора много меньше импеданса контура и не влияет на процессы, происходящие в этом контуре.

Для устранения этого влияния можно использовать схему, представленную на рисунке 1: синусоидальный синал с генератора подаётся на параллельный колебательный контур через небольшую разделительную ёмкость C_1 . Напряжение с ёмкости контура C поступает на вертикальный вход Θ 0.

Зависимость амплитуды этого напряжения от частоты генератора будет практически совпадать с резонансной кривой для последовательного контура, если импедансы возбуждающей и измеряющей цепей (сопротивления переменному току) намного превосходят импеданс самого контура вблизи резонанса $Z_{\rm pes} \approx L/(RC) = Q/(\Omega C)$. Разделительная ёмкость C_1 выбирается настолько малой, что в рабочем диапазоне частот её импеданс $Z_{C_1} = 1/(\Omega C_1)$ много меньше импеданса контура, поэтому в цепи генератора течёт ток практически с постоянной амплитудой, а колебательный контур выполняет роль нагрузочного сопротивления, которое, в свою очередь, зависит от частоты. Поскольку в резонансе сопротивление $Z_{\rm pes}$ параллельного контура максимально, то и напряжение на ёмкости C (неизменный ток, умноженный на максимальное сопротивление) тоже максимально. Входное сопротивление осциллографа (измеряющей цепи) достаточно велико: $R_{\Theta O} \approx 1 {\rm MOm}$.

Таким образом, при выполнении условий

$$Z_{C_1} = \frac{1}{\Omega C_1} \gg |Z| = \frac{Q}{\Omega C}, \quad R_{\Theta O} \gg \frac{Q}{\Omega C}$$
 (1)

и при условии, что действительная часть импеданса катушки много меньше её мнимой части, резонансная кривая в нашем контуре бует выглядеть так же, как в последовательном: максимум амплитуды при резонансе. Ширина резонансной кривой определяет важную характеристику контура — добротность.

Добротность контура может быть определена и другими способами, например, по скорости нарастания амплитуды вынужденных колебаний при резонансе или по скорости затухания свободных колебаний. Нарастание и затухание колебаний можно наблюдать на экране осциллографа, если на контур подаются цуги — отрезки синусоиды, разделённые интервалами, в течение которых сигнал отсутствует. Чем выше добротность, тем медленне нарастают и медленнее затухают колебания в контуре. Количественные оценки можно сделать, сли определить логарифмический декремент затухания по скорости нарастания или затухания колебаний. В условиях резонанса огибающая затухающих колебаний это перевёрнутая огибающая нарастающего участка, поэтому при расчёте логарифмического декремента по затуханию нет необходимости использовать амплитуду установившихся колебаний U_0 , которая в контуре с высокой добротностью иногда не успевает установиться за время продолжительности цуга.

2 Экспериментальная установка

Схема установки представлена на рисунке 1. Колебательный контур состоит из конденсатора с ёмкостью C, катушки с индуктивностью L и магазина сопротивлений R. Синусоидальный сигнал генерируется звуковым генератором (ЗГ), а сигнал, состоящий из отрезков синусоиды (цугов), формируется цифровым генератором электрических сигналов произвольной формы или комбинацией генератора синусоидального сигнала звукового диапазона и электронного реле, прерывающего сигнал с заданной периодичностью. Результирующие сигналы — цуги или непрерывная синусоида — поступают по отдельным каналам через одинаковые небольшие ёмкости C_1 соответственно на клеммы "цуги" и "непр.", смонтированные на панели "П", на которой расположенны также клеммы "синхр." (синхронизация) и " \bot " (земля). При подключении контура к клемме " \bot " и через амперметр Λ к клемме "непр." на него подается непрерывный сигнал — синусоида; если контур подключен "цуги" и " \bot ", то на контур поступают отрезки синусоиды.

Рис. 1: Схема установки

Эффективное значение тока $I(\omega)$, текущего к контуру от генератора в режиме непрерывного сигнала, измеряется амперметром A, а соответствующее значение тока в контуре определяется по формуле $I_C(\omega) = \omega C U_C(\omega)$, где $U_C(\omega)$ — эффективное напряжение на конденсаторе, измеряемое вольтметром V.

Для визуального наблюдения за процессом колебаний напряжение с ёмкости контура C подаётся на вход электронного осциллографа. Чтобы картина на экране была устойчивой, частота развёртки осциллографа принудительно синхронизируется с частотой повторения цугов. Для этого на генератор 90 подаются следующие с частотой повторения цугов управляющие импульсы, формируемые в блоке электронного реле, клемма "синхр." которого смонтирована на панели " Π ".

Используя представленную схему в режиме непрерывного синусоидального сигнала, можно по показаниям приборов и известных параметров элементов цепи измерить амплитудно-частотную характеристику (резонансную кривую) $I_C(\omega)$ в необходимом диа-

пазоне частот. Сравнивая результат измерения с теоретической кривой, можно определить характеристики контура $\omega_m \approx \omega_0$ и Q.

3 Обработка результатов

3.1 Метод резонансных кривых

Данные зависимости U и I от частоты ν приведены в таблице 1

$ m R=100~O_{M}$			$ m R=0~O_M$		
ν, Гц	U, мВ	І, мА	ν, Гц	U, мВ	І, мА
855	30	22,29	1338	30	9,51
1140	60	30	1441	60	10,71
1266	90	33,73	1476	90	11,46
1340	120	35,92	1497	120	11,95
1388	150	37,44	1511	150	12,39
1424	180	38,51	1520	180	12,73
1454	210	39,31	1528	210	12,92
1464	222	39,54	1535	240	12,92
1478	240	39,83	1544	270	12,46
1490	252	39,97	1556	288	10,82
1506	270	40,05	1563	270	9,68
1518	282	40,03	1571	240	8,74
1551	300	39,6	1578	210	8,37
1602	282	39,04	1587	180	8,33
1616	270	39,1	1598	150	8,51
1637	252	39,36	1614	120	8,92
1646	240	39,59	1642	90	9,51
1671	210	40,1	1697	60	10,37
1686	180	40,49	1926	30	12,43
1730	150	41,75			
1906	120	47,01			
2243	90	56,06			

Таблица 1: Данные

Найдём собственную частоту контура:

$$\nu_0 = \frac{1}{2\pi\sqrt{LC}} = 1592 \, \Gamma \mathrm{II} \tag{2}$$

Построим графики зависимости $\frac{U}{U_m}=f(\frac{\nu}{\nu_m}),$ где U_m,ν_m — параметры при резонансе: рис. 2.

Далее, по графику и формуле $Q=\nu_0/2\Delta\nu$ определим добротность контура:

$$Q_{100\Omega} = 7.34 \pm 2.1 \tag{3}$$

$$Q_{0\Omega} = 25.45 \pm 7.2 \tag{4}$$

3.2 Метод исследования затухания и установления колебаний

Определим теперь добротность по скорости затухания колебаний. Для этого воспользуемся формулами:

$$Q = \frac{\pi}{\Theta},\tag{5}$$

где для нарастания колебаний

$$\Theta = \frac{1}{n} \ln \left(\frac{U_0 - U_k}{U_0 - U_{k+n}} \right),\tag{6}$$

а для затухания

$$\Theta = \frac{1}{n} \ln \left(\frac{U_k}{U_{k+n}} \right), \tag{7}$$

Результаты расчетов:

R, Ом	Q, возр.	σ	Q, убыв	σ
0	24.2	8.1	29.3	7.4
100	5.8	1.8	6.9	0.8

Таблица 2: Добротности контуров

3.3 Теоретический метод

Теоретически рассчитать добротность можно по формуле. Значение индуктивности определим по RLC-метру, C=1 мк Φ :

$$Q = \frac{\sqrt{L}}{R\sqrt{C}} \tag{8}$$

Посчитаем и занесём всё в сводную таблицу 3 (см. далее)

4 Вывод

В ходе работы было изучено, как узнать добротность контура тремя разными способами: методом резонансных кривых, методом затухающих и нарастающих колебаний, и теоретическим методом.

R, Om	Q, рез. кривые	Q, уст. колеб.	Q, затух. колеб.	Q, теор.
0	25.4	24.1	29.3	32.3
100	7.3	5.8	6.9	7.6

Таблица 3: Сводная таблица

Результаты измерения добротности колебательного контура разными методами не сошлись между собой. Вероятно, где-то были допущены ошибки при выполнении или при расчетах. Также, нельзя исключать наличие в контуре дополнительных сопротивлений, ёмкостей и индуктивностей.

5 Приложение

Рис. 2:
$$\frac{U}{U_m} = f(\frac{\nu}{\nu_m})$$