

SUBSTITUTE
SEQUENCE LISTING

<110> SUNAHARA, Eiji
ISHII, Takafumi
YAMAMOTO, Koji
SATO, Shuji

<120> Novel protein and its use

<130> 3132US0P

<150> PCT/JP2003/016655
<151> 2003-12-25

<150> JP2002-378052
<151> 2002-12-26

<150> JP2003-65497
<151> 2003-03-11

<160> 25

<210> 1
<211> 837
<212> PRT
<213> Human

<400> 1

Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro Trp
5 10 15
Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu Leu Leu
20 25 30
Leu Leu Leu Gln Pro Pro Pro Pro Thr Trp Ala Leu Ser Pro Arg Ile
35 40 45
Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu Arg Phe Glu Ala
50 55 60
Glu His Ile Ser Asn Tyr Thr Ala Leu Leu Leu Ser Arg Asp Gly Arg
65 70 75 80
Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu Phe Ala Leu Ser Ser Asn
85 90 95
Leu Ser Phe Leu Pro Gly Gly Glu Tyr Gln Glu Leu Leu Trp Gly Ala
100 105 110
Asp Ala Glu Lys Lys Gln Gln Cys Ser Phe Lys Gly Lys Asp Pro Gln
115 120 125
Arg Asp Cys Gln Asn Tyr Ile Lys Ile Leu Leu Pro Leu Ser Gly Ser
130 135 140
His Leu Phe Thr Cys Gly Thr Ala Ala Phe Ser Pro Met Cys Thr Tyr
145 150 155 160
Ile Asn Met Glu Asn Phe Thr Leu Ala Arg Asp Glu Lys Gly Asn Val
165 170 175
Leu Leu Glu Asp Gly Lys Gly Arg Cys Pro Phe Asp Pro Asn Phe Lys
180 185 190
Ser Thr Ala Leu Val Val Asp Gly Glu Leu Tyr Thr Gly Thr Val Ser
195 200 205
Ser Phe Gln Gly Asn Asp Pro Ala Ile Ser Arg Ser Gln Ser Leu Arg
210 215 220

Pro Thr Lys Thr Glu Ser Ser Leu Asn Trp Leu Gln Asp Pro Ala Phe
 225 230 235 240
 Val Ala Ser Ala Tyr Ile Pro Glu Ser Leu Gly Ser Leu Gln Gly Asp
 245 250 255
 Asp Asp Lys Ile Tyr Phe Phe Ser Glu Thr Gly Gln Glu Phe Glu
 260 265 270
 Phe Phe Glu Asn Thr Ile Val Ser Arg Ile Ala Arg Ile Cys Lys Gly
 275 280 285
 Asp Glu Gly Gly Glu Arg Val Leu Gln Gln Arg Trp Thr Ser Phe Leu
 290 295 300
 Lys Ala Gln Leu Leu Cys Ser Arg Pro Asp Asp Gly Phe Pro Phe Asn
 305 310 315 320
 Val Leu Gln Asp Val Phe Thr Leu Ser Pro Ser Pro Gln Asp Trp Arg
 325 330 335
 Asp Thr Leu Phe Tyr Gly Val Phe Thr Ser Gln Trp His Arg Gly Thr
 340 345 350
 Thr Glu Gly Ser Ala Val Cys Val Phe Thr Met Lys Asp Val Gln Arg
 355 360 365
 Val Phe Ser Gly Leu Tyr Lys Glu Val Asn Arg Glu Thr Gln Gln Met
 370 375 380
 Val His Arg Asp Pro Pro Val Pro Thr Pro Arg Pro Gly Ala Cys Ile
 385 390 395 400
 Thr Asn Ser Ala Arg Glu Arg Lys Ile Asn Ser Ser Leu Gln Leu Pro
 405 410 415
 Asp Arg Val Leu Asn Phe Leu Lys Asp His Phe Leu Met Asp Gly Gln
 420 425 430
 Val Arg Ser Arg Met Leu Leu Leu Gln Pro Gln Ala Arg Tyr Gln Arg
 435 440 445
 Val Ala Val His Arg Val Pro Gly Leu His His Thr Tyr Asp Val Leu
 450 455 460
 Phe Leu Gly Thr Gly Asp Gly Arg Leu His Lys Ala Val Ser Val Gly
 465 470 475 480
 Pro Arg Val His Ile Ile Glu Glu Leu Gln Ile Phe Ser Ser Gly Gln
 485 490 495
 Pro Val Gln Asn Leu Leu Asp Thr His Arg Gly Leu Leu Tyr Ala
 500 505 510
 Ala Ser His Ser Gly Val Val Gln Val Pro Met Ala Asn Cys Ser Leu
 515 520 525
 Tyr Arg Ser Cys Gly Asp Cys Leu Leu Ala Arg Asp Pro Tyr Cys Ala
 530 535 540
 Trp Ser Gly Ser Ser Cys Lys His Val Ser Leu Tyr Gln Pro Gln Leu
 545 550 555 560
 Ala Thr Arg Pro Trp Ile Gln Asp Ile Glu Gly Ala Ser Ala Lys Asp
 565 570 575
 Leu Cys Ser Ala Ser Ser Val Val Ser Pro Ser Phe Val Pro Thr Gly
 580 585 590
 Glu Lys Pro Cys Glu Gln Val Gln Phe Gln Pro Asn Thr Val Asn Thr
 595 600 605
 Leu Ala Cys Pro Leu Leu Ser Asn Leu Ala Thr Arg Leu Trp Leu Arg
 610 615 620
 Asn Gly Ala Pro Val Asn Ala Ser Ala Ser Cys His Val Leu Pro Thr
 625 630 635 640
 Gly Asp Leu Leu Leu Val Gly Thr Gln Gln Leu Gly Glu Phe Gln Cys
 645 650 655
 Trp Ser Leu Glu Glu Gly Phe Gln Gln Leu Val Ala Ser Tyr Cys Pro
 660 665 670
 Glu Val Val Glu Asp Gly Val Ala Asp Gln Thr Asp Glu Gly Gly Ser

675	680	685
Val Pro Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly		
690	695	700
Lys Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val		
705	710	715
Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe Leu		
725	730	735
Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln Gly Glu		
740	745	750
Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu Pro Pro Glu		
755	760	765
Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr Pro Leu Asp His		
770	775	780
Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro Gly Ser Arg Val Phe		
785	790	795
Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile Gln Asp Ser Phe Val Glu		
805	810	815
Val Ser Pro Val Cys Pro Arg Pro Arg Val Arg Leu Gly Ser Glu Ile		
820	825	830
Arg Asp Ser Val Val		
835		

<210> 2
 <211> 2511
 <212> DNA
 <213> Human

<400> 2

atgctgcgca	ccgcgatggg	cctgaggagc	tggctcgccg	ccccatgggg	cgcgctgccc	60
cctcggccac	cgctgctgct	gctcctgctg	ctgctgctcc	tgctgcagcc	gcccgcctcc	120
acctggcgcc	tcagcccccg	gatcagccctg	cctctgggct	ctgaagagcg	gccattccctc	180
agattcgaag	ctgaacacat	ctccaactac	acagcccttc	tgctgagcag	ggatggcagg	240
accctgtacg	tgggtgctcg	agaggccctc	tttgcaactca	gtagcaacct	cagcttcctg	300
ccaggcgccgg	agtaccagga	gctgctttgg	ggtgcagacg	cagagaagaa	acagcagtgc	360
agcttcaagg	gcaaggaccc	acagcgcgac	tgtcaaaact	acatcaagat	cctcctgccc	420
ctcagcggca	gtcacctgtt	cacctgtggc	acagcagcct	ttagccccat	gtgtacctac	480
atcaacatgg	agaacttcac	cctggcaagg	gacgagaagg	gaaatgtcct	cctggaaagat	540
ggcaagggcc	gttgccctt	cgaccggaaat	ttcaagtcca	ctgcccctgg	ggttgatggc	600
gagctctaca	ctggAACAGT	cagcagcttc	caagggaaatg	accggccat	ctcgccggagc	660
caaaggcttc	gccccaccaa	gaccgagagc	tccctcaact	ggctgcaaga	cccagctttt	720
gtggcctcag	cctacattcc	tgagagcctg	ggcagcttgc	aaggcgatga	tgacaagatc	780
tacttttct	tcagcgagac	tggccaggaa	tttgcgttct	ttgagaacac	cattgtgtcc	840
cgcattgccc	gcatctgcaa	gggcgatgag	ggtggagagc	gggtgctaca	gcagcgcctgg	900
acctccttcc	tcaaggccca	gctgctgtgc	tcacggcccg	acgatggctt	ccccttcaac	960
gtgctgcagg	atgtcttcac	gctgagcccc	agccccccagg	actggcgtga	cacccttttc	1020
tatgggtct	tcacttccca	gtggcacagg	ggaactacag	aggctctgc	cgtctgtgtc	1080
ttcacaatga	aggatgtgca	gagagtcttc	agcggccctt	acaaggaggt	gaaccgtgag	1140
acacagcaga	tggtacaccc	tgacccaccc	gtgcccacac	ccggccctgg	agcgtgcattc	1200
accaacagtg	cccgggaaag	gaagatcaac	tcatccctgc	agctcccaga	ccgcgtctg	1260
aacttctca	aggaccactt	cctgatggac	gggcaggtcc	gaagccgcat	gctgtgtctg	1320
cagccccagg	ctcgctacca	gcccgtggct	gtacaccgcg	tccctggct	gcaccacacc	1380
tacgatgtcc	tcttcctggg	cactggtgac	ggccggctcc	acaaggcagt	gagcgtgggc	1440
ccccgggtgc	acatcattga	ggagctgcag	atcttctcat	cgggacagcc	cgtgcagaat	1500
ctgctctgg	acaccacag	ggggctgtct	tatgcggct	cacactcggg	cgttagtccag	1560
gtgcccattgg	ccaaactgcag	cctgtacccgg	agctgtgggg	actgcctct	cgcccgccgac	1620
ccctactgtg	ttggagccgg	ctccagctgc	aagcacgtca	gcctctacca	gcctcagctg	1680

gccaccaggc	cgtggatcca	ggacatcgag	ggagccagcg	ccaaggacct	ttgcagcg	1740
tcttcgggtt	tgtccccgtc	tttgtacca	acaggggaga	agccatgtga	gcaagtccag	1800
ttccagccca	acacagtgaa	cactttggcc	tgcccgc	tctccaaacct	ggcgacccga	1860
cctctggctac	gcaacggggc	ccccgtcaat	gcctcgcc	cctgcccacgt	gctaccact	1920
ggggacctgc	tgctgggtgg	cacccaacag	ctggggag	tccagtgt	gtcactagag	1980
gagggcgttc	agcagctgtt	agccagctac	tgcccagagg	tggtgagga	cggggtggca	2040
gaccaaacag	atgagggtgg	cagtgtaccc	gtcattatca	gcacatcg	tgtgagtgc	2100
ccagctggtg	gcaaggccag	ctgggggtgc	gacaggctt	actggaagga	gttcctgg	2160
atgtgcacgc	tctttgtgt	ggccgtg	ctcccaagttt	tattcttg	ctacccgcac	2220
cgaacacgca	tgaaagtctt	cctgaagca	ggggatgt	ccagcgt	ccccaagacc	2280
tgccctgtgg	tgctgcccc	tgagacccgc	ccactcaacg	gcctagg	ccctagcacc	2340
ccactcgatc	accgagggt	ccagtcctt	tca	gagacagcc	ccccgggtc	2400
actgagtcag	agaagaggcc	actcagc	caagacag	ct	tggtggaggt	2460
tgcccccggc	cccggtccg	cottgg	gagatcc	tg	actctgtgt	2511

<210> 3

<211> 3766

<212> DNA

<213> Human

<400> 3

gctctgcccc	agccgaggct	gcggggccgg	cgccggcggg	aggactgcgg	tgcccccgg	60
aggggctgag	tttgcagg	cccacttgc	cctgttccc	acctcccgcc	ccccagg	120
ggaggcgggg	gccccgggg	cgactcgggg	gcggaccgcg	gggcggagct	gcccgcgt	180
agtccggcc	agccac	gtca	gcccggcc	cgggacacc	tgcgtct	240
ctg	cgacc	cgatgg	ctggagct	ctgcgc	catggggc	300
cg	ccacc	tgctgt	ctgtgt	ctgtct	tgca	360
tg	ggcgtc	gccccggat	cagcctgc	ctgggtct	agagcgg	420
tt	cgaa	tttgc	tttgc	tttgc	tttgc	480
ct	gtgg	tttgc	tttgc	tttgc	tttgc	540
gg	gggg	tttgc	tttgc	tttgc	tttgc	600
gg	gggg	tttgc	tttgc	tttgc	tttgc	660
tt	caagg	tttgc	tttgc	tttgc	tttgc	720
tc	ggcgt	tttgc	tttgc	tttgc	tttgc	780
tt	tttgc	tttgc	tttgc	tttgc	tttgc	840
tt	tttgc	tttgc	tttgc	tttgc	tttgc	900
tt	tttgc	tttgc	tttgc	tttgc	tttgc	960
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1020
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1080
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1140
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1200
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1260
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1320
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1380
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1440
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1500
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1560
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1620
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1680
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1740
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1800
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1860
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1920
tt	tttgc	tttgc	tttgc	tttgc	tttgc	1980
tt	tttgc	tttgc	tttgc	tttgc	tttgc	2040
tt	tttgc	tttgc	tttgc	tttgc	tttgc	2100

tggctacgca acggggcccc cgtcaatgcc tcggccctct gccacgtgct acccactggg	2160
gacctgctgc tggggcac ccaacagctg ggggagttcc agtgctggc actagaggag	2220
ggctccagc agctggtagc cagctactgc ccagagggtgg tggaggacgg ggtggcagac	2280
caaacagatg agggtggcag tgtacccgtc attatcagca catcgcgtg gagtgcacca	2340
gctggggca aggccagctg gggtgcagac aggtccact ggaaggagtt cctggtgatg	2400
tgcacgctct ttgtgctggc cgtgctgctc ccagtttat tcttgcctca cccgcacccgg	2460
aacagcatga aagtcttctt gaagcagggg gaatgtgcca gctgtgcaccc caagacctgc	2520
cctgtggtgc tgccccctga gaccggccca ctcAACGGCC tagggccccca tagcaccggca	2580
ctcgatcacc gagggtacca gtccctgtca gacagcccccc cgggggtcccg agtcttact	2640
gagtcagaga agaggccact cagcatccaa gacagcttcg tggaggtatc cccagtgctc	2700
ccccggcccc gggtccgcct tggctcggag atccgtgact ctgtggtg agagctgact	2760
tccagaggac gctgcccctgg cttcaggggc tgtgaatgct cggagaggggta caactggacc	2820
tcccctccgc tctgctctc gtggaacacg accgtggtgc cccggcccttg ggagccttgg	2880
ggccagctgg cctgctgctc tccagtcaag tagcgaagct cctaccaccc agacacccaa	2940
acagccgtgg ccccagaggt cctggccaaa tatggggcc tgcctaggtt ggtggaaacag	3000
tgtctcttat gtaaaactgag ccctttgttt aaaaaacaat tccaaatgtg aaactagaat	3060
gagagggaaag agatagcatg gcatgcagca cacacggctg ctcagggttca tggccctccaa	3120
ggggtgctgg ggtgcatcc aaagtgggtt tctgagacag agttggaaac cctcaccac	3180
tggcctcttc accttccaca ttatccgcct gcccggct gcccgtctc actgcagatt	3240
caggaccagc ttgggctgcg tgcgttctgc cttgcagtc agccgaggat gtatgttg	3300
ctggccgtcgt cccaccaccc cagggaccag agggctaggt tggcactgcg gcccctacca	3360
ggtcctgggc tcggacccaa ctcctggacc tttccagcct gtatcaggct gtggccacac	3420
gagaggacag cgcgagctca ggagagattt cgtgacaatg tacgccttcc cctcagaatt	3480
cagggaagag actgtgcct gccttcctcc gttgtgcgt gagaacccgt gtgccccttc	3540
ccaccatatac caccctcgct ccatcttga actcaaacac gaggaactaa ctgcaccctg	3600
gtcctctccc cagtccccag ttccaccctcc atccctcacc ttccctccact ctaaggata	3660
tcaacactgc ccagcacagg ggccctgaat ttatgtggtt ttatacatt tttataataag	3720
atgcacttta tgtcatttt taataaaagtc tgaagaatta ctgttt	3766

<210> 4

<211> 837

<212> PRT

<213> Human

<400> 4

Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro Trp	
5 10 15	
Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu Leu Leu	
20 25 30	
Leu Leu Leu Gln Pro Pro Pro Thr Trp Ala Leu Ser Pro Arg Ile	
35 40 45	
Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu Arg Phe Glu Ala	
50 55 60	
Glu His Ile Ser Asn Tyr Thr Ala Leu Leu Ser Arg Asp Gly Arg	
65 70 75 80	
Thr Leu Tyr Val Gly Ala Arg Glu Ala Leu Phe Ala Leu Ser Ser Asn	
85 90 95	
Leu Ser Phe Leu Pro Gly Gly Glu Tyr Gln Glu Leu Leu Trp Gly Ala	
100 105 110	
Asp Ala Glu Lys Lys Gln Gln Cys Ser Phe Lys Gly Lys Asp Pro Gln	
115 120 125	
Arg Asp Cys Gln Asn Tyr Ile Lys Ile Leu Leu Pro Leu Ser Gly Ser	
130 135 140	
His Leu Phe Thr Cys Gly Thr Ala Ala Phe Ser Pro Met Cys Thr Tyr	
145 150 155 160	
Ile Asn Met Glu Asn Phe Thr Leu Ala Arg Asp Glu Lys Gly Asn Val	

165	170	175	
Leu Leu Glu Asp Gly Lys Gly Arg Cys Pro Phe Asp Pro Asn Phe Lys			
180	185	190	
Ser Thr Ala Leu Val Val Asp Gly Glu Leu Tyr Thr Gly Thr Val Ile			
195	200	205	
Ser Phe Gln Gly Asn Asp Pro Ala Ile Ser Arg Ser Gln Ser Leu Arg			
210	215	220	
Pro Thr Lys Thr Glu Ser Ser Leu Asn Trp Leu Gln Asp Pro Ala Phe			
225	230	235	240
Val Ala Ser Ala Tyr Ile Pro Glu Ser Leu Gly Ser Leu Gln Gly Asp			
245	250	255	
Asp Asp Lys Ile Tyr Phe Phe Ser Glu Thr Gly Gln Glu Phe Glu			
260	265	270	
Phe Phe Glu Asn Thr Ile Val Ser Arg Ile Ala Arg Ile Cys Lys Gly			
275	280	285	
Asp Glu Gly Gly Glu Arg Val Leu Gln Gln Arg Trp Thr Ser Phe Leu			
290	295	300	
Lys Ala Gln Leu Leu Cys Ser Arg Pro Asp Asp Gly Phe Pro Phe Asn			
305	310	315	320
Val Leu Gln Asp Val Phe Thr Leu Ser Pro Ser Pro Gln Asp Trp Arg			
325	330	335	
Asp Thr Leu Phe Tyr Gly Val Phe Thr Ser Gln Trp His Arg Gly Thr			
340	345	350	
Thr Glu Gly Ser Ala Val Cys Val Phe Thr Met Lys Asp Val Gln Arg			
355	360	365	
Val Phe Ser Gly Leu Tyr Lys Glu Val Asn Arg Glu Thr Gln Gln Met			
370	375	380	
Val His Arg Asp Pro Pro Val Pro Thr Pro Arg Pro Gly Ala Cys Ile			
385	390	395	400
Thr Asn Ser Ala Arg Glu Arg Lys Ile Asn Ser Ser Leu Gln Leu Pro			
405	410	415	
Asp Arg Val Leu Asn Phe Leu Lys Asp His Phe Leu Met Asp Gly Gln			
420	425	430	
Val Arg Ser Arg Met Leu Leu Leu Gln Pro Gln Ala Arg Tyr Gln Arg			
435	440	445	
Val Ala Val His Arg Val Pro Gly Leu His His Thr Tyr Asp Val Leu			
450	455	460	
Phe Leu Gly Thr Gly Asp Gly Arg Leu His Lys Ala Val Ser Val Gly			
465	470	475	480
Pro Arg Val His Ile Ile Glu Glu Leu Gln Ile Phe Ser Ser Gly Gln			
485	490	495	
Pro Val Gln Asn Leu Leu Leu Asp Thr His Arg Gly Leu Leu Tyr Ala			
500	505	510	
Ala Ser His Ser Gly Val Val Gln Val Pro Met Ala Asn Cys Ser Leu			
515	520	525	
Tyr Arg Ser Cys Gly Asp Cys Leu Leu Ala Arg Asp Pro Tyr Cys Ala			
530	535	540	
Trp Ser Gly Ser Ser Cys Lys His Val Ser Leu Tyr Gln Pro Gln Leu			
545	550	555	560
Ala Thr Arg Pro Trp Ile Gln Asp Ile Glu Gly Ala Ser Ala Lys Asp			
565	570	575	
Leu Cys Ser Ala Ser Ser Val Val Ser Pro Ser Phe Val Pro Thr Gly			
580	585	590	
Glu Lys Pro Cys Glu Gln Val Gln Phe Gln Pro Asn Thr Val Asn Thr			
595	600	605	
Leu Ala Cys Pro Leu Leu Ser Asn Leu Ala Thr Arg Leu Trp Leu Arg			
610	615	620	

Asn Gly Ala Pro Val Asn Ala Ser Ala Ser Cys His Val Leu Pro Thr
 625 630 635 640
 Gly Asp Leu Leu Leu Val Gly Thr Gln Gln Leu Gly Glu Phe Gln Cys
 645 650 655
 Trp Ser Leu Glu Glu Gly Phe Gln Gln Leu Val Ala Ser Tyr Cys Pro
 660 665 670
 Glu Val Val Glu Asp Gly Val Ala Asp Gln Thr Asp Glu Gly Gly Ser
 675 680 685
 Val Pro Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly
 690 695 700
 Lys Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val
 705 710 715 720
 Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe Leu
 725 730 735
 Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln Gly Glu
 740 745 750
 Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu Pro Pro Glu
 755 760 765
 Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr Pro Leu Asp His
 770 775 780
 Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro Gly Ser Arg Val Phe
 785 790 795 800
 Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile Gln Asp Ser Phe Val Glu
 805 810 815
 Val Ser Pro Val Cys Pro Arg Pro Arg Val Arg Leu Gly Ser Glu Ile
 820 825 830
 Arg Asp Ser Val Val
 835

<210> 5
 <211> 2511
 <212> DNA
 <213> Human

<400> 5

atgctgcgca	ccgcgatggg	cctgaggagc	tggctcgccg	ccccatgggg	cgcgcgtccg	60
cctcgccac	cgctgctgt	gctcctgcta	ctgctgctcc	tgctgcagcc	accgcctccg	120
acctggcg	tcagcccccg	gatcagccctg	cctctgggct	ctgaagagcg	gccattcctc	180
agattcgaag	ctgaacacat	ctccaaactac	acagcccttc	tgctgagcag	ggatggcagg	240
accctgtacg	tgggtgctcg	agaggccctc	tttgcactca	gtagcaacct	cagttcctg	300
ccaggcg	agtaccagga	gctgctttgg	ggtgcagacg	cagagaagaa	acagcagtgc	360
agcttcaagg	gcaaggaccc	acagcgcgac	tgtcaaaaact	acatcaagat	cctcctgccc	420
ctcagcg	gtcacccgtt	cacccgttgc	acagcagcct	tcagcccat	gtgtacctac	480
atcaacatgg	agaacttcac	cctggcaagg	gacgagaagg	ggaatgtcct	cctgaaagat	540
gcacagg	gttgcaccc	cgacccgaat	ttcaagtcca	ctgccttgg	gttgcaccc	600
gagctctaca	ctggAACAGT	catcagcc	caagggatg	acccggccat	ctcgccgagc	660
caaagg	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	720
gttgcaccc	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	780
gttgcaccc	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	840
gttgcaccc	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	900
gttgcaccc	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	960
gttgcaccc	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	1020
gttgcaccc	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	1080
gttgcaccc	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	1140
gttgcaccc	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	1200
gttgcaccc	gttgcaccc	gttgcaccc	ggctgcaaga	cccagcttt	gttgcaccc	1260

aactttctca	aggaccactt	cctgatggac	gggcagggtcc	gaagccgcac	gctgctgctg	1320
cagccccagg	ctcgctacca	gcgcgtggct	gtacaccgcg	tccctggcct	gcaccacacc	1380
tacgatgtcc	tcttcctggg	cactgggtac	ggccggctcc	acaaggcagt	gagcgtggc	1440
ccccgggtgc	acatcattga	ggagctgcag	atcttctcat	cgggacagcc	cgtgcagaat	1500
ctgctcttgg	acacccacag	ggggctgtcg	tatgcggcct	cacactcggg	cgtagtccag	1560
gtgcccattgg	ccaactgcag	cctgtaccgg	agctgtgggg	actgcctcct	cggccggac	1620
ccctactgtg	cttggagcgg	ctccagctgc	aagcacgtca	gcctctacca	gcctcagctg	1680
gccaccaggc	cgtggatcca	ggacatcgag	ggagccagcg	ccaaggacct	ttgcagcgcg	1740
tcttcggttg	tgtccccgtc	ttttgtacca	acaggggaga	agccatgtga	gcaagtccag	1800
ttccagccca	acacagtcaa	cactttggcc	tgccccgtcc	tctccaaacct	ggcgaccacg	1860
ctctggctac	gcaacggggc	ccccgtcaat	gcctcggtct	cctgcccacgt	gttacccact	1920
ggggacctgc	tgctgggtggg	cacccaacag	ctgggggaggt	tccagtgtcg	gtcaactagag	1980
gagggcttcc	agcagctggt	agccagctac	tgccccagagg	tggtggagga	cggggtgtggca	2040
gaccaaacag	atgaggggtgg	cagtgtaccc	gtcatttatca	gcacatcgcg	tgtgagtgca	2100
ccagctggtg	gcaaggccag	ctggggtgca	gacaggtcct	acttggaaagga	gttcctggtg	2160
atgtgcacgc	tctttgtgct	ggccgtgtcg	ctccccagtt	tatttcttgc	ctaccggcac	2220
cggAACAGCA	.tgaaaagtctt	cctgaagcag	ggggaaatgtg	ccagcgtgca	ccccaaagacc	2280
tgccctgtgg	tgctggccccc	tgagacccgc	ccactcaacg	gccttagggcc	ccctagcacc	2340
ccactcgatc	accgagggtta	ccagtccctg	tcagacagcc	ccccgggttc	ccgagtcttc	2400
actgagtcag	agaagaggcc	actcagcatc	caagacagct	tcgtggaggt	atccccagtg	2460
tgccccccggc	cccggttcgg	ccttggctcg	gagatccgtg	actctgtgtt	g	2511

<210> 6
<211> 3766
<212> DNA
<213> Human

<400> 6

gctctggcca agccgaggct gccccggcgg cgccggcg aggactgcgg tgccccggg
aggggctgag tttgccaggg cccacttgac cctgtttccc acctcccgcc ccccaggtcc 60
ggaggcgggg gccccgggg cgactcgggg gcccggcg gggcgagct gcccggcg 120
agtcggcccg agccacctga gccccggcg cgccgacaccc tcgctctgc tctccgaatg 180
ctgcgcaccc cgatggccct gaggagctgg ctcgcgcgc catggggcgc gctgcgcct 240
cgccaccgc tgcgtgtct cctgctactg ctgctctgc tgcagccacc gcctccgacc 300
tgggcgtca gccccggat cagcctgcct ctgggtctg aagagccggc attcctcaga 360
ttcgaagctg aacacatctc caatacaca gccttctgc tgagcaggga tggcaggacc 420
ctgtacgtgg gtgctcgaga ggcctcttt gcactcgat gcaacccctcg cttcctgc 480
ggcggggagt accaggagct gctttgggt gcagacgcg agaagaaaaca gcagtgcagc 540
ttcaagggc aaggaccacca gcccggactgt caaaactaca tcaagatctt cctgcccgtc 600
agccggcagtc acctgttccac ctgtggcaca gcagccttca gccccatgtg tacctacatc 660
aacatggaga acttcacccct ggcaaggggac gagaaggggaa atgtccctt ggaagatggc 720
aaggggcggtt gtcccttcga cccgaatttc aagtccactg ccctgggttg tgatggcgag 780
ctctacactg gaacagtcat cagcttccaa gggaaatgacc cggccatctc gccggccaa 840
agccttcgccc ccaccaagac cgagactctcc ctcaactggc tgcaagaccc agctttgtg 900
gcctcagcct acattcctga ggcctggc agcttgcgaa gcatgtatga caagatctac 960
ttttcttca gcgagactgg ccaggaattt gagttctttt agaacaccat tggcccgcc 1020
attgcccgc a tctgcaaggg cgatgggggat ggagagcggg tgctacagca ggcgtggacc 1080
tccttcctca aggcccagct gctgtgtca cgcccgacg atggcttccc ctcaacgtg 1140
ctgcaggatg tcttcacgct gagccccagc ccccaggact ggcgtgacac cttttctat 1200
ggggcttca ctcccagtg gcacaggggaa actacagaag gctctggcg tctgtgtctc 1260
acaatgaagg atgtcagag agtcttcagc ggctctaca aggagggtgaa ccgtgagaca 1320
cagcagatgg tacaccgtga cccacccgtg cccacacccc ggcctggagc gtgcacacc 1380
aacagtgcaccc gggaaaggaa gatcaactca tccctgcgac tcccagaccg cgtgctgaac 1440
tttctcaagg accacttcct gatggacggg caggtccgaa gcccgtatgt gctgctgcag 1500
ccccaggctc gctaccagcg cgtggctgtc caccgcgtcc ctggctgc a cccacaccc 1560
qatgtctct tctctggcact tggtgacggc cggctccaca aggca gatgtag cgtggccccc 1620
qatgtctct tctctggcact tggtgacggc cggctccaca aggca gatgtag cgtggccccc 1680

<210> 7
<211> 837
<212> PRT
<213> Human

<400> 7

Asp Ala Glu Lys Lys Gln Gln Cys Ser Phe Lys Gly Lys Asp Pro Gln
 115 120 125
 Arg Asp Cys Gln Asn Tyr Ile Lys Ile Leu Leu Pro Leu Ser Gly Ser
 130 135 140
 His Leu Phe Thr Cys Gly Thr Ala Ala Phe Ser Pro Met Cys Thr Tyr
 145 150 155 160
 Ile Asn Ile Glu Asn Phe Thr Leu Ala Arg Asp Glu Lys Gly Asn Val
 165 170 175
 Leu Leu Glu Asp Gly Lys Gly Arg Cys Pro Phe Asp Pro Asn Phe Lys
 180 185 190
 Ser Thr Ala Leu Val Val Asp Gly Glu Leu Tyr Thr Gly Thr Val Ser
 195 200 205
 Ser Phe Gln Gly Asn Asp Pro Ala Ile Ser Arg Ser Gln Ser Leu Arg
 210 215 220
 Pro Thr Lys Thr Glu Ser Ser Leu Asn Trp Leu Gln Asp Pro Ala Phe
 225 230 235 240
 Val Ala Ser Ala Tyr Ile Pro Glu Ser Leu Gly Ser Leu Gln Gly Asp
 245 250 255
 Asp Asp Lys Ile Tyr Phe Phe Ser Glu Thr Gly Gln Glu Phe Glu
 260 265 270
 Phe Phe Glu Asn Thr Ile Val Ser Arg Ile Ala Arg Ile Cys Lys Gly
 275 280 285
 Asp Glu Gly Glu Arg Val Leu Gln Gln Arg Trp Thr Ser Phe Leu
 290 295 300
 Lys Ala Gln Leu Leu Cys Ser Arg Pro Asp Asp Gly Phe Pro Phe Asn
 305 310 315 320
 Val Leu Gln Asp Val Phe Thr Leu Ser Pro Ser Pro Gln Asp Trp Arg
 325 330 335
 Asp Thr Leu Phe Tyr Gly Val Phe Thr Ser Gln Trp His Arg Gly Thr
 340 345 350
 Thr Glu Gly Ser Ala Val Cys Val Phe Thr Met Lys Asp Val Gln Arg
 355 360 365
 Val Phe Ser Gly Leu Tyr Lys Glu Val Asn Arg Glu Thr Gln Gln Met
 370 375 380
 Val His Arg Asp Pro Pro Val Pro Thr Pro Arg Pro Gly Ala Cys Ile
 385 390 395 400
 Thr Asn Ser Ala Arg Glu Arg Lys Ile Asn Ser Ser Leu Gln Leu Pro
 405 410 415
 Asp Arg Val Leu Asn Phe Leu Lys Asp His Phe Leu Met Asp Gly Gln
 420 425 430
 Val Arg Ser Arg Met Leu Leu Leu Gln Pro Gln Ala Arg Tyr Gln Arg
 435 440 445
 Val Ala Val His Arg Val Pro Gly Leu His His Thr Tyr Asp Val Leu
 450 455 460
 Phe Leu Gly Thr Gly Asp Gly Arg Leu His Lys Ala Val Ser Val Gly
 465 470 475 480
 Pro Arg Val His Ile Ile Glu Glu Leu Gln Ile Phe Ser Ser Gly Gln
 485 490 495
 Pro Val Gln Asn Leu Leu Leu Asp Thr His Arg Gly Leu Leu Tyr Ala
 500 505 510
 Ala Ser His Ser Gly Val Val Gln Val Pro Met Ala Asn Cys Ser Leu
 515 520 525
 Tyr Arg Ser Cys Gly Asp Cys Leu Leu Ala Arg Asp Pro Tyr Cys Ala
 530 535 540
 Trp Ser Gly Ser Ser Cys Lys His Val Ser Leu Tyr Gln Pro Gln Leu
 545 550 555 560
 Ala Thr Arg Pro Trp Ile Gln Asp Ile Glu Gly Ala Ser Ala Lys Asp

565	570	575
Leu Cys Ser Ala Ser Ser Val Val Ser Pro Ser Phe Val Pro Thr Gly		
580	585	590
Glu Lys Pro Cys Glu Gln Val Gln Phe Gln Pro Asn Thr Val Asn Thr		
595	600	605
Leu Ala Cys Pro Leu Leu Ser Asn Leu Ala Thr Arg Leu Trp Leu Arg		
610	615	620
Asn Gly Ala Pro Val Asn Ala Ser Ala Ser Cys His Val Leu Pro Thr		
625	630	635
Gly Asp Leu Leu Leu Val Gly Thr Gln Gln Leu Gly Glu Phe Gln Cys		
645	650	655
Trp Ser Leu Glu Glu Gly Phe Gln Gln Leu Val Ala Ser Tyr Cys Pro		
660	665	670
Glu Val Val Glu Asp Gly Val Ala Asp Gln Thr Asp Glu Gly Gly Ser		
675	680	685
Val Pro Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly		
690	695	700
Lys Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val		
705	710	715
Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe Leu		
725	730	735
Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln Gly Glu		
740	745	750
Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu Pro Pro Glu		
755	760	765
Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr Pro Leu Asp His		
770	775	780
Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro Gly Ser Arg Val Phe		
785	790	795
Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile Gln Asp Ser Phe Val Glu		
805	810	815
Val Ser Pro Val Cys Pro Arg Pro Arg Val Arg Leu Gly Ser Glu Ile		
820	825	830
Arg Asp Ser Val Val		
835		

<210> 8
 <211> 2511
 <212> DNA
 <213> Human

<400> 8

atgcgtcgca	ccgcgatggg	cctgaggagc	tggctcgccg	ccccatgggg	cgcgtgccg	60
cctcggccac	cgctgctgct	gctcctgctg	ctgctgctcc	tgctgcagcc	gccgcctccg	120
acctgggcgc	tcagcccccg	gatcagcccta	cctctggct	ctgaagagcg	gccattcctc	180
agattcgaag	ctgaacacat	ctccaaactac	acagcccttc	tgctgagcag	ggatggcagg	240
accctgtacg	tgggtgctcg	agagggccctc	tttgactca	gtagcaact	cagttcctg	300
ccaggcgggg	agtaccagga	gctgttttg	ggtgcagacg	cagagaagaa	acagcagtgc	360
agcttcaagg	gcaaggaccc	acagcgcgac	tgtcaaaaact	acatcaagat	cctcctgccc	420
ctcagcggca	gtcacctgtt	cacctgtggc	acagcagcct	tcagcccat	gtgtacctac	480
atcaacatag	agaacttcac	cctggcaagg	gacgagaagg	ggaatgttct	cctgaaagat	540
ggcaaggggcc	gttgtccctt	cgaccgcata	ttcaagtcca	ctgcctgtt	ggttgcgttgc	600
gagctctaca	ctggAACAGT	cagcagcttc	caaggaaatg	acccggccat	ctcgccggagc	660
caaaggcctc	gccccaccaa	gaccgagagc	tccctcaact	ggctgcaaga	cccagcttt	720
gtggccttag	cctacattcc	tgagagctg	ggcagctgc	aaggcgatga	tgacaagatc	780
tactttttct	tcagcgagac	tggccaggaa	tttgagttct	ttgagaacac	cattgtgtcc	840

cgcatgtccc	gcatctgcaa	gggcgatgag	ggtgagagc	gggtgctaca	gcagcgctgg	900
accccttcc	tcaaggccca	gctgctgtgc	tcacggcccg	acgatggctt	cccccctaacc	960
gtgctgcagg	atgtctcac	gctgagcccc	agccccccagg	actggcgtga	cacccttttc	1020
tatgggtct	tcacttccca	gtggcacagg	ggaactacag	aaggctctgc	cgtctgtgtc	1080
ttcacaatga	aggatgtgca	gagagtcttc	agcggccctct	acaaggaggt	gaaccgttag	1140
acacagcaga	tggtacaccg	tgacccaccc	gtgcccacac	cccggcctgg	agcgtgcac	1200
accaacagt	cccgaaaag	gaagatcaac	tcatccctgc	agctcccaga	ccgcgtgctg	1260
aacttcctca	aggaccactt	cctgatggac	gggcagggtcc	gaagccgcat	gctgctgctg	1320
cagcccccagg	ctcgctacca	gcccgtggct	gtacaccgcg	tccctggcct	gcaccacacc	1380
tacgatgtcc	tcttcctggg	cactgggtac	ggccggctcc	acaaggcagt	gagcgtgggc	1440
cccccgggtgc	acatcattga	ggagctgcag	atcttctcat	cgggacagcc	cgtgcagaat	1500
ctgctcctgg	acacccacag	ggggctgctg	tatgcccct	cacactcggg	cgtagtcag	1560
gtgcccattgg	ccaactgcag	cctgtacagg	agctgtgggg	actgcctcct	cgcggggac	1620
ccctactgtg	cttggagcgg	ctccagctgc	aagcacgtca	gcctctacca	gcctcagctg	1680
gccaccaggc	cgtggatcca	ggacatcgag	ggagccagcg	ccaaggacct	ttgcagcgcg	1740
tcttcgggttgc	tgtccccgtc	tttgtacca	acaggggaga	agccatgtga	gcaagtccag	1800
ttccagccca	acacagtcaa	cactttggcc	tgcccgctcc	tctccaaacct	ggcggacccga	1860
ctctggctac	gcaacggggc	ccccgtcaat	gcctcggcct	cctgcccacgt	gctaccact	1920
ggggacctgc	tgctgggtgg	cacccaacag	ctgggggagt	tccagtgcgt	gtcactagag	1980
gagggttcc	agcagctgtt	agccagctac	tgcggcagg	ttgtggagga	cgggggtggca	2040
gaccaaacag	atgaggggtgg	cagtgtaccc	gtcattatca	gcacatcgcg	tgtgaatgca	2100
ccagctgggt	gcaaggccag	ctgggggtgca	gacaggctct	actggaaagg	tttcctgggt	2160
atgtgcacgc	tctttgtct	ggccgtgctg	ctcccagttt	tattcttgc	ctaccggcac	2220
cggAACAGCA	tgaaaagtctt	cctgaagcag	ggggaaatgtg	ccagcgtgc	ccccaaagacc	2280
tgccctgtgg	tgctgggggg	tgagacccgc	ccactcaacg	gcctagggcc	ccctagcacc	2340
ccgctcgatc	accggggta	ccagtcctg	tcagacagcc	ccccggggtc	ccgagtcctc	2400
actgagtca	agaagaggcc	actcagcatc	caagacagct	tcgtggaggt	atccccagtg	2460
tgccccggc	cccggttcgg	ccttggctcg	gagatccgtg	actctgtgt	g	2511

<210> 9
 <211> 3766
 <212> DNA
 <213> Human

<400> 9

gctctgccc	agccgaggct	gcggggccgg	cgccggcg	aggactgcgg	tgcccgccgg	60
aggggcttag	tttgcaccc	ccacttgc	cctgtttccc	acccctcc	ccccaggtcc	120
ggaggcgccc	ccccccgggg	cactcgccc	gcccggccg	ggccggagct	gccggccgtg	180
agtccggcc	agccacactg	gcccggccg	cgggacaccg	tcgtcctgc	tctccgaatg	240
ctgcgcaccc	cgatgggcct	gaggagctgg	ctccggcc	catggggcgc	gctggccct	300
cgccacccgc	tgctgctgt	cctgctgt	ctgtcctgc	tgcagccg	gcctccgacc	360
tggcgctca	ccccccggat	cagcctactt	ctgggtctg	aagagccg	attccctaga	420
tgcgaagctg	aacacatctc	caactacaca	gccttctgc	tgagcagg	tggcaggacc	480
ctgtacgtgg	gtgctcgaga	ggccctctt	gcactcagta	gcaacctc	tttcctgcca	540
ggcggggag	accaggagct	gtttgggt	gcagacgcag	agaagaaaca	gcagtgcac	600
ttcaaggggca	aggacccaca	gcccggactgt	caaaactaca	tcaagatctt	cctgcccgtc	660
agcggcagtc	acctgttac	ctgtggcaca	gcagccttca	gccccatgtg	tacccatc	720
aacatagaga	acttcaccc	ggcaaggggac	gagaagggg	atgttctct	ggaagatggc	780
aaggggccgtt	gtcccttcga	cccgaattt	aagtccactg	ccctgggtgt	tgatggcgag	840
ctctacactg	gaacagtca	cagcttccaa	gggaatgacc	cggccatctc	gcccggccaa	900
agccctcgcc	ccaccaagac	cgagagctcc	ctcaactggc	tgcaagaccc	agctttgt	960
gcctcagcct	acattcctga	gagcctgggc	agcttgcag	gcgtatgt	caagatctac	1020
tttttcttca	gcgagactgg	ccaggaattt	gagttcttgc	agaacaccat	tgtgtccgc	1080
attgcccgc	tctgcaaggg	cgatgggggt	ggagagccgg	tgctacagca	gcgtggacc	1140
tccttcctca	aggcccagct	gctgtgc	cggcccgac	atggcttccc	cttcaacgt	1200
ctgcaggatg	tcttcacgt	gagccccagc	ccccaggact	ggcgtgacac	ccttttctat	1260

ggggtcttca cttcccagtg gcacagggga actacagaag gctctgccgt ctgtgtttc 1320
 acaatgaagg atgtgcagag agtcttcagc ggcctctaca agagagtgaa cctgtgagaca 1380
 cagcagatgg tacaccgtga cccacccgtg cccacacccc ggcctggagc gtgcattcacc 1440
 aacagtgtccc gggaaaggaa gatcaactca tccctgcagc tcccaagaccg cgtgctgaac 1500
 ttccctcaagg accacttctt gatggacggg caggtccgaa gccgcattgtcgtcgtcag 1560
 ccccaggctc gctaccagcg cgtggctgtc caccgcgtcc ctggcctgc ccacaccc 1620
 gatgtcctct tcctggcac tggtaacggc cggctccaca aggcagttag cgtggccccc 1680
 cgggtgcaca tcattgagga gctgcagatc ttctcatcg gacagcccg gcaaatctg 1740
 ctccctggaca cccacagggg gctgctgtat gccgcctcac actcggcgt agtccagggtg 1800
 cccatggcca actgcagcct gtacaggagc tggggact gctcctcgc cccggacccc 1860
 tactgtgtt ggagcggctc cagctgcaag cacgtcagcc tctaccagcc tcagctggcc 1920
 accaggccgt ggttccagga catcgaggga gccagcgcca aggacccctt cagcgcgtct 1980
 tcgggtgtt cccctt tggtaaccaca ggggagaagc catgtgagca agtccagggtc 2040
 cagcccaaca cagttaacac tttggccttc cccgttctt ccaacctggc gacccactgg 2100
 tggctacgc acggggccccc cgtcaatgcc tggcctctt gccacgtgtc acccactggg 2160
 gacctgctgc tggtaacggc ccaacagctg ggggagttcc agtgcgtggc actagaggag 2220
 ggcttccagc agtggtagc cagctactgc ccagagggttgg tggaggacgg ggtggcagac 2280
 caaacatggat agggtggcag tggtaaccgtt attatcagca catgcgtgt gagtgcacca 2340
 gctgggtggca aggccagctg gggtaacggc aggtctact ggaaggagtt cttgggtatg 2400
 tgcacgtctt ttgtgtggc cgtgtgtc ccagttttt tcttgctcta cccggcaccgg 2460
 aacagcatga aagtcttctt gaagcagggg gaatgtgcca gctgtgcaccc caagacactgc 2520
 cctgtgggtc tggcccttga gacccggcca ctcaacggcc tagggccccc tagcaccgg 2580
 ctgcgttccacc gagggtacca gtcggcgttca gacagccccc cggggtcccg agtcttca 2640
 gagtcagaga agaggccact cagcatccaa gacagcttgc tggaggtatc cccagtgtgc 2700
 ccccgccccc ggggtccgtt tggctggag atccgtact ctgtgggtgt agagctgact 2760
 tccagaggac gtcggcctgg cttcaggggc tggtaatgtc cggagagggt caactggacc 2820
 tccctccgc tctgttctt gttggaaacacg accgtgggtc cccggccttg ggagcccttg 2880
 ggccagctgg cctgtgtc tccagtcaag tagcaagact cctaccaccc agacacccaa 2940
 acagccgtgg ccccaagggg cttggccaaa tatggggcc tgccttaggtt ggtggaaacag 3000
 tgctccttat gtaaaactgag ccctttttt aaaaaacaat tccaaatgtg aaactagaat 3060
 gagagggaag agatagcatg gcatgcagca cacacggctg ctccgttca tggcctccca 3120
 ggggtgtgg ggtatgcatttca aagtgggtt tctggagacag agttggaaac cctcacaac 3180
 tggccttcc accttccaca ttatcccgtt gccacggct gccctgttca actgcagatt 3240
 caggaccagc ttgggtctgc tgcgttcttgc cttggcgttcc agccgaggat gtagttgtt 3300
 ctgcgtcggtt cccaccaccc caggggaccag agggcttaggt tggcactgcg gccctcacca 3360
 ggtcctggc tcggacccaa ctccctggacc tttccaggctt gtagtgcgtt gttggccacac 3420
 gagaggacag cgcgagctca ggagagattt cgtgacaatg tacgccttcc cctcagaatt 3480
 cagggaagag actgtcgctt gtcgttcttcc gttgggtcggt gagaaccggc gtgcctcc 3540
 ccaccatatc caccctcgctt ccatctttga actcaaacac gaggaactaa ctgcaccctg 3600
 gtcctctccc cagtccccag ttcaccctcc atccctcacc ttcttccact ctaaggata 3660
 tcaacactgc ccagcacagg ggcctgtaaat ttatgtgggtt ttatacatt tttataataag 3720
 atgcacttta tgcattttt taataaaatgtc tgaagaattt ctgtttt 3766

<210> 10

<211> 837

<212> PRT

<213> Human

<400> 10

Met Leu Arg Thr Ala Met Gly Leu Arg Ser Trp Leu Ala Ala Pro Trp
 5 10 15
 Gly Ala Leu Pro Pro Arg Pro Pro Leu Leu Leu Leu Leu Leu
 20 25 30
 Leu Leu Leu Gln Pro Pro Pro Thr Trp Ala Leu Ser Pro Arg Ile
 35 40 45
 Ser Leu Pro Leu Gly Ser Glu Glu Arg Pro Phe Leu Arg Phe Glu Ala

50	55	60													
Glu	His	Ile	Ser	Asn	Tyr	Thr	Ala	Leu	Leu	Leu	Ser	Arg	Asp	Gly	Arg
65					70				75					80	
Thr	Leu	Tyr	Val	Gly	Ala	Arg	Glu	Ala	Leu	Phe	Ala	Leu	Ser	Ser	Asn
					85				90					95	
Leu	Ser	Phe	Leu	Pro	Gly	Gly	Glu	Tyr	Gln	Glu	Leu	Leu	Trp	Gly	Ala
					100				105					110	
Asp	Ala	Glu	Lys	Lys	Gln	Gln	Cys	Ser	Phe	Lys	Gly	Lys	Asp	Pro	Gln
					115				120					125	
Arg	Asp	Cys	Gln	Asn	Tyr	Ile	Lys	Ile	Leu	Leu	Pro	Leu	Ser	Gly	Ser
					130				135					140	
His	Leu	Phe	Thr	Cys	Gly	Thr	Ala	Ala	Phe	Ser	Pro	Met	Cys	Thr	Tyr
					145				150					160	
Ile	Asn	Met	Glu	Asn	Phe	Thr	Leu	Ala	Arg	Asp	Glu	Lys	Gly	Asn	Val
					165				170					175	
Leu	Leu	Glu	Asp	Gly	Lys	Gly	Arg	Cys	Pro	Phe	Asp	Pro	Asn	Phe	Lys
					180				185					190	
Ser	Thr	Ala	Leu	Val	Val	Asp	Gly	Glu	Leu	Tyr	Thr	Gly	Thr	Val	Ser
					195				200					205	
Ser	Phe	Gln	Gly	Asn	Asp	Pro	Ala	Ile	Ser	Arg	Ser	Gln	Ser	Leu	Arg
					210				215					220	
Pro	Thr	Lys	Thr	Glu	Ser	Ser	Leu	Asn	Trp	Leu	Gln	Asp	Pro	Ala	Phe
					225				230					240	
Val	Ala	Ser	Ala	Tyr	Ile	Pro	Glu	Ser	Leu	Gly	Ser	Leu	Gln	Gly	Asp
					245				250					255	
Asp	Asp	Lys	Ile	Tyr	Phe	Phe	Ser	Glu	Thr	Gly	Gln	Glu	Phe	Glu	
					260				265					270	
Phe	Phe	Glu	Asn	Thr	Ile	Val	Ser	Arg	Ile	Ala	Arg	Ile	Cys	Lys	Gly
					275				280					285	
Asp	Glu	Gly	Gly	Glu	Arg	Val	Leu	Gln	Gln	Arg	Trp	Thr	Ser	Phe	Leu
					290				295					300	
Lys	Ala	Gln	Leu	Leu	Cys	Ser	Arg	Pro	Asp	Asp	Gly	Phe	Pro	Phe	Asn
					305				310					320	
Val	Leu	Gln	Asp	Val	Phe	Thr	Leu	Ser	Pro	Ser	Pro	Gln	Asp	Trp	Arg
					325				330					335	
Asp	Thr	Leu	Phe	Tyr	Gly	Val	Phe	Thr	Ser	Gln	Trp	His	Arg	Gly	Thr
					340				345					350	
Thr	Glu	Gly	Ser	Ala	Val	Cys	Val	Phe	Thr	Met	Asn	Asp	Val	Gln	Arg
					355				360					365	
Val	Phe	Ser	Gly	Leu	Tyr	Lys	Glu	Val	Asn	Arg	Glu	Thr	Gln	Gln	Met
					370				375					380	
Val	His	Arg	Asp	Pro	Pro	Val	Pro	Thr	Pro	Arg	Pro	Gly	Ala	Cys	Ile
					385				390					400	
Thr	Asn	Ser	Ala	Arg	Glu	Arg	Lys	Ile	Asn	Ser	Ser	Leu	Gln	Leu	Pro
					405				410					415	
Asp	Arg	Val	Leu	Asn	Phe	Leu	Lys	Asp	His	Phe	Leu	Met	Asp	Gly	Gln
					420				425					430	
Val	Arg	Ser	Arg	Met	Leu	Leu	Leu	Gln	Pro	Gln	Ala	Arg	Tyr	Gln	Arg
					435				440					445	
Val	Ala	Val	His	Arg	Val	Pro	Gly	Leu	His	His	Thr	Tyr	Asp	Val	Leu
					450				455					460	
Phe	Leu	Gly	Thr	Gly	Asp	Gly	Arg	Leu	His	Lys	Ala	Val	Ser	Val	Gly
					465				470					480	
Pro	Arg	Val	His	Ile	Ile	Glu	Glu	Leu	Gln	Ile	Phe	Ser	Ser	Gly	Gln
					485				490					495	
Pro	Val	Gln	Asn	Leu	Leu	Leu	Asp	Thr	His	Arg	Gly	Leu	Leu	Tyr	Ala
					500				505					510	

Ala Ser His Ser Gly Val Val Gln Val Pro Met Ala Asn Cys Ser Leu
 515 520 525
 Tyr Arg Ser Cys Gly Asp Cys Leu Leu Ala Arg Asp Pro Tyr Cys Ala
 530 535 540
 Trp Ser Gly Ser Ser Cys Lys His Val Ser Leu Tyr Gln Pro Gln Leu
 545 550 555 560
 Ala Thr Arg Pro Trp Ile Gln Asp Ile Glu Gly Ala Ser Ala Lys Asp
 565 570 575
 Leu Cys Ser Ala Ser Ser Val Val Ser Pro Ser Phe Val Pro Thr Gly
 580 585 590
 Glu Lys Pro Cys Glu Gln Val Gln Phe Gln Pro Asn Thr Val Asn Thr
 595 600 605
 Leu Ala Cys Pro Leu Leu Ser Asn Leu Ala Thr Arg Leu Trp Leu Arg
 610 615 620
 Asn Gly Ala Pro Val Asn Ala Ser Ala Ser Cys His Val Leu Pro Thr
 625 630 635 640
 Gly Asp Leu Leu Leu Val Gly Thr Gln Gln Leu Gly Glu Phe Gln Cys
 645 650 655
 Trp Ser Leu Glu Glu Gly Phe Gln Gln Leu Val Ala Ser Tyr Cys Pro
 660 665 670
 Glu Val Val Glu Asp Gly Val Ala Asp Gln Thr Asp Glu Gly Gly Ser
 675 680 685
 Val Pro Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly
 690 695 700
 Lys Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val
 705 710 715 720
 Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe Leu
 725 730 735
 Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln Gly Glu
 740 745 750
 Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu Pro Pro Glu.
 755 760 765
 Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr Pro Leu Asp His
 770 775 780
 Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro Gly Ser Arg Val Phe
 785 790 795 800
 Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile Gln Asp Ser Phe Val Glu
 805 810 815
 Val Ser Pro Val Cys Pro Arg Pro Arg Val Arg Leu Gly Ser Glu Ile
 820 825 830
 Arg Asp Ser Val Val
 835

<210> 11
 <211> 2511
 <212> DNA
 <213> Human

<400> 11

atgctgcgca ccgcgatggg cctgaggagc tggctgcgg ccccatgggg cgcgctgccc 60
 cctcgccac cgctgctgct gctctgctg ctgctgctcc tgctgcagcc gccgcctccg 120
 acctggcgcc tcagcccccg gatcagccctg cctctggct ctgaagagcg gccattccctc 180
 agattcgaag ctgaacacat ctccaactac acagcccttc tgctgagcag ggatggcagg 240
 accctgtacg tgggtgctcg agaggccctc tttgcactca gttagcaacct cagttcctg 300
 ccaggcgggg agtaccagga gctgcttgg ggtgcagacg cagagaagaa acagcagtgc 360
 agcttcaagg gcaaggaccc acagcgcgac tgtcaaaaact acatcaagat cctcctgccc 420

ctcagcggca	gtcacctgtt	cacctgtggc	acagcagcct	tcagccccat	gtgtacctac	480
atcaacatgg	agaacttcac	cctggcaagg	gacgagaagg	ggaatgtcct	cctggaaagat	540
ggcaaggggcc	gttgcctt	cgaccgcata	ttcaagtcca	ctgcctgtt	ggttgcgtgc	600
gagctctaca	ctggAACAGT	cagcagcttc	caagggaaatg	accggccat	ctcgccgagc	660
caaaggccttc	gccccaccaa	gaccgagaggc	tccctcaact	ggtgcaaga	cccagcttt	720
gtggcctcag	cctacattcc	tgagagcctg	ggcagcttc	aaggcgatga	tgacaagatc	780
tacttttct	tcagcgagac	tgccaggaa	tttgaggttct	ttgagaacac	cattgtgtcc	840
cgcatattggcc	gcatctgaa	gggcgtatgg	ggtggagagc	ggtgtctaca	gcagcgctgg	900
accccttcc	tcaaggccca	gctgctgtgc	tcacggcccg	acgatggctt	cccccttcaac	960
gtgctgcagg	atgtcttcac	gctgagcccc	agccccccagg	actggcgtga	caccctttc	1020
tatggggct	tcacttccca	gtggcacagg	ggaactacag	aaggctctgc	cgtctgtgtc	1080
ttcacaatga	atgatgtca	gagagtcttc	agcggctct	acaaggaggt	gaaccgtgag	1140
acacagcaga	tggtacaccg	tgacccaccc	gtgcccacac	cccggcctgg	agcgtgcata	1200
accaacagt	cccccggaaag	gaagatcaac	tcatccctgc	agctcccaga	ccgcgtgctg	1260
aactttctca	aggaccactt	cctgatggac	gggcagggtcc	gaagccgcat	gctgctgctg	1320
cagccccagg	ctcgctacca	gwgctggct	gtacaccgcg	tccctggct	gcaccacacc	1380
tacgatgtcc	tcttcctggg	cactgggtac	ggccggctcc	acaaggcagt	gagcgtgggc	1440
ccccgggtgc	acatcattga	ggagctgcag	atcttctcat	cgggacagcc	cgtcagaat	1500
ctgctcctgg	acacccacag	ggggctgctg	tatggggct	cacactcggt	cgtagtcag	1560
gtgcccattgg	ccaaactgcag	cctgtaccgg	agctgtgggg	actgcctct	cgcccccggac	1620
cctactgtg	cttggagcgg	ctccagctgc	aagcacgtca	gcctctacca	gcctcagctg	1680
gcccaccaggc	cgtggatcca	ggacatcgag	ggagccagcg	ccaaggacct	ttgcagcgcg	1740
tcttcgggtt	tgtccccgtc	ttttgtacca	acaggggaga	agccatgtga	gcaagtccag	1800
ttccagccca	acacagtcaa	cacttggcc	tgccccctcc	tctccaaacct	ggcgacccga	1860
ctctggctac	gcaacggggc	ccccgtcaat	gcctcgccct	cctgccacgt	gctaccact	1920
ggggacactgc	tctttgtgt	gccccatgg	ctggggaggt	tccagtgtc	gtcactagag	1980
gagggttcc	agcagctgg	agccagctac	tgccccagagg	ttgtggagga	cggggtggca	2040
gaccacaaacag	atgaggggtgg	cagtgtaccc	gtcattatca	gcacatcgcc	tgtgagtgc	2100
ccagctgggt	gcaaggccag	ctgggggtgca	gacaggtcct	actggaaagga	gttcctgggt	2160
atgtgcacgc	tctttgtgt	gccccgtgc	ctcccagttt	tattttgtc	ctaccggcac	2220
cggaacacgc	tgaaagtctt	cctgaagcag	ggggaaatgt	ccagcgtgca	ccccaaagacc	2280
tgccctgtgg	tgctggccccc	tgagacccgc	ccactcaacg	gcctaggggcc	ccctagcacc	2340
ccactcgatc	accgagggta	ccagtcctg	tcagacagcc	ccccggggcc	ccgagtcctc	2400
actgagtcag	agaagaggcc	actcagcatc	caagacagct	tcgtggaggt	atccccagtg	2460
ttcccccggc	cccggttccg	cctggctcg	gagatccgt	actctgtgt	g	2511

<210> 12
 <211> 3766
 <212> DNA
 <213> Human

<400> 12

gctctggccca	agccgaggct	gccccggccgg	cgccggcgggg	aggactgggg	tgcccccgg	60
aggggcttag	tttggccagg	cccacttgac	cctgtttccc	accccccgc	ccccagggtcc	120
ggaggcgggg	gccccgggg	cgactcggg	gcccggccg	ggggggagct	ggccggccgt	180
agtccggccg	agccacacta	gccccggcc	cgggacaccc	tgcgtcttc	tctccaaatg	240
ctgcccaccc	cgatgggcct	gaggagctgg	ctcgccgccc	catggggggc	gtgcccct	300
cgcccaccc	tgcgtctgt	cctgctgtc	ctgcgtctgc	tgcagccccc	gcctccgacc	360
tggggctca	gccccggat	cagcgtccct	ctgggtctgt	aagagcggcc	attcctcaga	420
ttcgaagctg	aacacatctc	caactacaca	gccccctctc	tgagcaggga	tggcaggacc	480
ctgtacgtgg	gtgctcgaga	ggcccttctt	gcactcagta	gcaacccctc	cttccctgcca	540
ggcggggagt	accaggagct	gtttgggggt	gcagacgcag	agaagaaaca	gcagtgcagc	600
ttcaaggggca	aggacccaca	gcccggactgt	caaaactaca	tcaagatct	cctggccgtc	660
agccggcagtc	acccgttcac	ctgtggcaca	gcagcctca	gccccatgtg	tacctacatc	720
aacatggaga	acttcaccct	ggcaaggggac	gagaagggga	atgtccctct	ggaagatggc	780
aaggccgtt	gtcccttcga	cccgaaattc	aagtccactg	ccctgggtgt	tgtggcag	840

ctctacactg gaacagtcag cagcttccaa gggaatgacc cgccatctc gggagccaa
agccttcgccc ccaccaagac cgagactcc ctaactggc tgcaagaccc agctttgtg 960
gcctcagcct acattcctga ggcctggc agcttgcag ggcgtatga caagatctac 1020
tttttctca gcgagactgg ccaggaattt gagttcttgc agaacaccat tggtcccg 1080
attgcccga tctgcaaggg cgatgagggt ggagagcggg tgctacagca gogctggacc 1140
tccttcctca agggccagct gctgtctca cggccgacg atggcttccc cttcaacgtg 1200
ctgcaggatg tcttcacgct gagccccagc ccccaggact ggcgtgacac cctttctat 1260
ggggcttca cttcccagtg gcacaggga actacagaag gctctgcccgt ctgtgtcttc 1320
acaatgaatg atgtcagag agtcttcagc ggctctaca aggaggtgaa cctgtgagaca 1380
cagcagatgg tacaccgtga cccaccctg cccacacccc ggcctggacc gtgcacacc 1440
aacagtggcc gggaaaggaa gatcaactca tccctgcagc tcccagaccg cgtgctgaaac 1500
tttctcaagg accacttct gatggacggg caggtccgaa gccgcacatgct gctgctgac 1560
ccccagctc gctaccagcg cgtggctgtc caccgcgtcc ctggctgcac ccacacctac 1620
gatgtctct tcctggcac tggtgacggc cggctccaca aggcaatggc cgtggccccc 1680
cggggtgcaca tcattgagga gctgcagatc ttctcatcg gacagccctg gcagaatctg 1740
ctcctggaca cccacagggg gctgctgtat goggccctcac actcggcgat agtccagggt 1800
cccatggca actgcagcct gtaccggcgc tgggggact gcctctcgcc cccggacccc 1860
tactgtctt ggagcggcgc cagctgcagaa cacgtcagcc tctaccagcc ttagctggcc 1920
accaggccgt ggtatccagga catcgaggga gccagcggca aggacccgt cagcgcgtct 1980
tcgggtgtgt cccctgttt tggatccaca ggggagaagc catgtgagca agtccagttc 2040
cagcccaaca cagtgaacac tttggctgc cccctcttcc ccaacctggc gaccggactc 2100
tggctacgca acggggccccc cgtcaatgcc tcggctccctt gccacgtgct acccaactgg 2160
gacctgtgc tgggggac ccaacagctg ggggagttcc agtgcgtgtc actagaggag 2220
ggcttcacgc agtggtagc cagctactgc ccagagggttgg tggaggacgg ggtggcagac 2280
caaacagatg aggggtggcag tggatccgc attatcagca catcgcgtgt gatgtgacca 2340
gctggggca agggcagctg ggggtgcagac aggtcctact ggaaggagtt cctgggtatg 2400
tgcacgtct ttgtgtggc cgtgcgtctt ccagttttat tcttgcctca ccggcaccgg 2460
aacagcatga aagtcttcctt gaaagcaggga gaatgtgcac ggcgtgcaccc caagaccc 2520
cctgtgggtc tgccccctga gacccccc ctcacggcc tagggcccccc tagccccca 2580
ctcgatcacc gaggggtacca gtcctgtca gacagcccccc cggggcccccc agtcttact 2640
gagtcagaga agaggccact cagcatccaa gacagttcg tggaggatc cccagtggtc 2700
ccccggcccc gggtccggct tggctcgag atccgtact ctgtgggtgt agagctgact 2760
tccagaggac gctggccctgg cttcaggggc tggatgtgtc cggagagggt caactggacc 2820
tccccctccgc tctgccttcc tggaaacacg accgtgggtc ccggcccttgg ggagcccttgg 2880
ggccagctgg cctgcgtctc tccagtcag tagcgaagct cctaccaccc agacacccaa 2940
acagccgtgg ccccaagaggt cctggccaaa tatggggggc tgccttaggtt ggtggacag 3000
tgctccctat gtaaaactgag cccttggtt aaaaaacaaat tccaaatgtg aaactagaat 3060
gagagggaag agatagcatg gcatgcagca cacacggctg ctccagttca tggcctccca 3120
gggggtgtgg ggtatgcattt aaagtgggtt tctgagacag agtggaaac cctcaccac 3180
tggcctcttcc accttccaca ttatcccgt gccacccggct gcccgtctc actgcagatt 3240
caggaccaggc ttgggctgcg tgcgtctgc cttggccagtc agccggaggat gtgttgg 3300
ctggccgtcg cccaccaccc cagggaccag agggcttaggt tggactgcg gcccctcacc 3360
ggcctgggc tcggacccaa ctcctggacc tttccagctt gatcagggt gtggccacac 3420
gagaggacag cgcgagctca ggagagattt cgtgacaaatg tacgccttcc cctcagaatt 3480
cagggaaagag actgtcgctt gccttcctcc gttgttgcgt gagaacccgt gtgcctcc 3540
ccaccatatc caccctcgat ccatcttgc actcaaacac gaggaaactaa ctgcaccctg 3600
gtcctctccc cagttcccaat ttcaccctcc atccctcaacc ttcctccact ctaaggata 3660
tcaacactgc ccagcacagg ggccctgaat ttatgtgggtt ttatatacatt tttataataag 3720
atgcacttta tgcattttt taataaaatgc tgaagaattt ctgttt 3766

<210> 13

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 13 20
cagtgcac ctagccctct
<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 14 20
tctcccgatc caaccgtgac
<210> 15
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 15 20
caacaactac atcctcggt
<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 16 20
tcggcttcata catcaacaac
<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 17 24
cctcgcccg gaccctact gtgc
<210> 18
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 18

cttggcgctg gctccctcga tgtcctg

27

<210> 19
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 19

aattgaattc atgctgcgca ccgcgatg

28

<210> 20
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 20

aagctctaga caccacagag tcacggatct

30

<210> 21
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Primer

<400> 21

aagctctaga tcacaccaca gagtcacgga

30

<210> 22
<211> 12
<212> PRT
<213> Human

<400> 22

Asn Ser Ala Arg Glu Arg Lys Ile Asn Ser Ser Cys
5 10

<210> 23
<211> 15
<212> PRT

<213> Human

<400> 23

Ser Val Val Ser Pro Ser Phe Val Pro Thr Gly Glu Lys Pro Cys
5 10 15

<210> 24

<211> 15

<212> PRT

<213> Human

<400> 24

Pro Leu Asp His Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Cys
5 10 15

<210> 25

<211> 14

<212> PRT

<213> Human

<400> 25

Ser Arg Val Phe Thr Glu Ser Glu Lys Arg Pro Leu Ser Cys
5 10