081408-04400.ST25.txt SEOUENCE LISTING

<110		ProCh Morph Yayon	oSys	a AG	ech,	Ltd.											
		Thoma Rom, Borge	sser Erai	1-Wo] 1	Lf, E	Elisa	betl	1									
<120)> .	ANTIE	BODI	ES TE	IAT I	BLOCE	C REC	CEPTO	OR PI	ROTE	IN T	YROS:	INE I	KINAS	SE A	CTIV	ATION
<130)>	81408	3-440	00													
<150 <151		US 60 2001-			7												
<150 <151		PCT/1			94												
<160)>	106															
<170)>	Pater	ntIn	vers	sion	3.2											
<210 <211 <212 <213	!> !>	1 806 PRT Homo	san	iens													
<300		1101110	Sup.	CHS													
<308	3>	np_00															
<313		(1).															
<400)>	1															
Met 1	Gly	Ala	Pro	Ala 5	Cys	Ala	Leu	Ala	Leu 10	Cys	Val	Ala	Val	Ala 15	Ile	:	
Val	Ala	Gly	Ala 20	Ser	Ser	Glu	Ser	Leu 25	Gly	Thr	Glu	Gln	Arg 30	Val	Val		
Gly	Arg	Ala 35	Ala	Glu	Val	Pro	Gly 40	Pro	Glu	Pro	Gly	Gln 45	Gln	Glu	Gln	ı	
Leu	Val 50	Phe	Gly	Ser	Gly	Asp 55	Ala	Val	Glu	Leu	Ser 60	Cys	Pro	Pro	Pro	,	
Gly 65	Gly	Gly	Pro	Met	Gly 70	Pro	Thr	Val	Trp	Val 75	Lys	Asp	Gly	Thr	Gly 80		
Leu	Val	Pro	Ser	Glu 85	Arg	Val	Leu	Val	Gly 90	Pro	Gln	Arg	Leu	Gln 95	Val		

Leu	Asn	Ala	Ser	His	Glu	Asp	Ser	Gly	Ala	Tyr	Ser	Cys	Arg	Gln	Arg
			100					105					110		

- Leu Thr Gln Arg Val Leu Cys His Phe Ser Val Arg Val Thr Asp Ala 115 120 125
- Pro Ser Ser Gly Asp Asp Glu Asp Glu Asp Glu Asp Glu Asp Thr 130 140
- Gly Val Asp Thr Gly Ala Pro Tyr Trp Thr Arg Pro Glu Arg Met Asp 145 150 155 160
- Lys Lys Leu Leu Ala Val Pro Ala Ala Asn Thr Val Arg Phe Arg Cys 165 170 175
- Pro Ala Ala Gly Asn Pro Thr Pro Ser Ile Ser Trp Leu Lys Asn Gly 180 185 190
- Arg Glu Phe Arg Gly Glu His Arg Ile Gly Gly Ile Lys Leu Arg His 195 200 205
- Gln Gln Trp Ser Leu Val Met Glu Ser Val Val Pro Ser Asp Arg Gly 210 215 220
- Asn Tyr Thr Cys Val Val Glu Asn Lys Phe Gly Ser Ile Arg Gln Thr 225 230 235 240
- Tyr Thr Leu Asp Val Leu Glu Arg Ser Pro His Arg Pro Ile Leu Gln 245 250 255
- Ala Gly Leu Pro Ala Asn Gln Thr Ala Val Leu Gly Ser Asp Val Glu 260 265 270
- Phe His Cys Lys Val Tyr Ser Asp Ala Gln Pro His Ile Gln Trp Leu 275 280
- Lys His Val Glu Val Asn Gly Ser Lys Val Gly Pro Asp Gly Thr Pro 290 295 300
- Tyr Val Thr Val Leu Lys Thr Ala Gly Ala Asn Thr Thr Asp Lys Glu 305 310 315 320
- Leu Glu Val Leu Ser Leu His Asn Val Thr Phe Glu Asp Ala Gly Glu 325 330 335

ıyr	Inr	Cys	340	Ala	GIY	ASN	ser	345	GIY	Pne	ser	нів	350	ser	Ala
Trp	Leu	Val 355	Val	Leu	Pro	Ala	Glu 360	Glu	Glu	Leu	Val	Glu 365	Ala	Asp	Glu
Ala	Gly 370	Ser	Val	Tyr	Ala	Gly 375	Ile	Leu	ser	Tyr	Gly 380	Val	Gly	Phe	Phe
Leu 385	Phe	Ile	Leu	Val	Val 390	Ala	Ala	Val	Thr	Leu 395	Cys	Arg	Leu	Arg	Ser 400
Pro	Pro	Lys	Lys	Gly 405	Leu	Gly	Ser	Pro	Thr 410	Val	His	Lys	Ile	Ser 415	Arg
Phe	Pro	Leu	Lys 420	Arg	Gln	Val	Ser	Leu 425	Glu	Ser	Asn	Ala	Ser 430	Met	Ser
Ser	Asn	Thr 435	Pro	Leu	Val	Arg	Ile 440	Ala	Arg	Leu	Ser	Ser 445	Gly	Glu	Gly
Pro	Thr 450	Leu	Ala	Asn	Val	Ser 455	Glu	Leu	Glu	Leu	Pro 460	Ala	Asp	Pro	Lys
Trp 465	Glu	Leu	Ser	Arg	Ala 470	Arg	Leu	Thr	Leu	Gly 475	Lys	Pro	Leu	Gly	Glu 480
Gly	Сув	Phe	Gly	Gln 485	Val	Val	Met	Ala	Glu 490	Ala	Ile	Gly	Ile	Asp 495	Lys
Asp	Arg	Ala	Ala 500	Lys	Pro	Val	Thr	Val 505	Ala	Val	Lys	Met	Leu 510	Lys	Asp
Asp	Ala	Thr 515	Asp	Lys	Asp	Leu	Ser 520	Asp	Leu	Val	Ser	Glu 525	Met	Glu	Met
Met	Lys 530	Met	Ile	Gly	Lys	His 535	Lys	Asn	Ile	Ile	Asn 540	Leu	Leu	Gly	Ala
Cys 545	Thr	Gln	Gly	Gly	Pro 550	Leu	Tyr	Val	Leu	Val 555	Glu	Tyr	Ala	Ala	Lys 5 6 0
Gly	Asn	Leu	Arg	Glu 565	Phe	Leu	Arg	Ala	570	Arg Page		Pro	Gly	Leu 575	Asp

														-		
1	Гуr	Ser	Phe	Asp 580	Thr	Cys	Lys	Pro	Pro 585	Glu	Glu	Gln	Leu	Thr 590	Phe	Lys
7	Asp	Leu	Val 595	Ser	Cys	Ala	Tyr	Gln 600	Val	Ala	Arg	Gly	Met 605	Glu	Tyr	Leu
F	Ala	Ser 610	Gln	Lys	Cys	Ile	His 615	Arg	Asp	Leu	Ala	Ala 620	Arg	Asn	Val	Leu
	/al 525	Thr	Glu	Asp	Asn	Val 630	Met	Lys	Ile	Ala	Asp 635	Phe	Gly	Leu	Ala	Arg 640
P	Asp	Val	His	Asn	Leu 645	Asp	Tyr	Tyr	Lys	Lys 650	Thr	Thr	Asn	Gly	Arg 655	Leu
F	Pro	Val	Lys	Trp 660	Met	Ala	Pro	Glu	Ala 665	Leu	Phe	Asp	Arg	Val 670	Tyr	Thr
H	lis	Gln	Ser 675	Asp	Val	Trp	Ser	Phe 680	Gly	Val	Leu	Leu	Trp 685	Glu	Ile	Phe
1	hr	Leu 690	Gly	Gly	Ser	Pro	Tyr 695	Pro	Gly	Ile	Pro	Val 700	Glu	Glu	Leu	Phe
	ys 05	Leu	Leu	Lys	Glu	Gly 710	His	Arg	Met	Asp	Lys 715	Pro	Ala	Asn	Cys	Thr 720
Н	lis	Asp	Leu	Tyr	Met 725	Ile	Met	Arg	Glu	Cys 730	Trp	His	Ala	Ala	Pro 735	Ser
G	ln	Arg	Pro	Thr 740	Phe	Lys	Gln	Leu	Val 745	Glu	Asp	Leu	Asp	Arg 750	Val	Leu
T	hr	Val	Thr 755	Ser	Thr	Asp	Glu	Tyr 760	Leu	Asp	Leu	Ser	Ala 765	Pro	Phe	Glu
G	ln	Tyr 770	Ser	Pro	Gly	Gly	Gln 775	Asp	Thr	Pro	Ser	Ser 780	Ser	Ser	Ser	Gly

Asp Asp Ser Val Phe Ala His Asp Leu Leu Pro Pro Ala Pro Pro Ser 785 790 795 800

Ser Gly Gly Ser Arg Thr

805

<210> <211> <212> <213>	2 32 DNA Artificial Sequ	uence				
<220> <223>	artificial prim	mer				
<400> acgtgc	2 tagc tgagtccttg	gggacggagc	ag			32
<210> <211> <212> <213>	3 55 DNA Artificial Sequ	lence				
<220> <223>	artificial prim	mer				
<400> acgtct	3 cgag ttaatggtga	tggtgatggt	gtgcatacac	acagcccgcc	tegte	55
<210> <211> <212> <213>	4 1147 DNA Homo sapiens					
<300> <308> <309> <313>	m58051 1994-11-08 (1)(1147)					
<400> gcgcgc	4 tgcc tgaggacgcc	geggeeeeeg	ccccgccat	gggegeeeet	gcctgcgccc	60
tegege	tctg cgtggccgtg	gccatcgtgg	ccggcgcctc	ctcggagtcc	ttggggacgg	120
agcagc	gegt egtggggega	gcggcagaag	tecegggeee	agagcccggc	cagcaggagc	180
agttgg	tctt cggcagcggg	gatgctgtgg	agctgagctg	tecceegece	gggggtggtc	240
ccatgg	ggcc cactgtctgg	gtcaaggatg	gcacagggct	ggtgccctcg	gagcgtgtcc	300
tggtgg	ggec ccageggetg	caggtgctga	atgcctccca	cgaggactcc	ggggcctaca	360
getgee	ggca gcggctcacg	cagcgcgtac	tgtgccactt	cagtgtgcgg	gtgacagacg	420
ctccat	cctc gggagatgac	gaagacgggg	aggacgaggc	tgaggacaca	ggtgtggaca	480
cagggg	cccc ttactggaca	cggcccgagc	ggatggacaa	gaagctgctg	gccgtgccgg	540
ccgcca	acac cgtccgcttc	cgctgcccag	ccgctggcaa	ccccactccc	tccatctcct	600
ggctga	agaa cggcagggag	ttccgcggcg	agcaccgcat		aagctgcggc	660

60

atcagcagtg	gagcctggtc	atggaaagcg	tggtgccctc	ggaccgcggc	aactacacct	720
gcgtcgtgga	gaacaagttt	ggcagcatcc	ggcagacgta	cacgctggac	gtgctggagc	780
gctccccgca	ccggcccatc	ctgcaggcgg	ggctgccggc	caaccagacg	geggtgetgg	840
gcagcgacgt	ggagttccac	tgcaaggtgt	acagtgacgc	acagececae	atccagtggc	900
tcaagcacgt	ggaggtgaac	ggcagcaagg	tgggcccgga	cggcacaccc	tacgttaccg	960
tgctcaagac	ggcgggcgct	aacaccaccg	acaaggagct	agaggttctc	tccttgcaca	1020
acgtcacctt	tgaggacgcc	ggggagtaca	cctgcctggc	gggcaattct	attgggtttt	1080
ctcatcactc	tgcgtggctg	gtggtgctgc	cagccgagga	ggagctggtg	gaggctgacg	1140
aggeggg						1147

<210> 5 <211> 5695

<212> DNA

<213> EXPRESSION VECTOR pCEP-PU/AC7

<400> 5

gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg ccqcataqtt aaqccaqtat ctqctccctg cttgtgtgtt ggaggtcgct gagtagtgcg 120 cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc 180 ttaqqqttaq qcqttttqcq ctqcttcqcg atgtacgggc cagatatacg cgttgacatt 240 300 gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tqqaqttccq cqttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc 360 cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc 420 attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt 480 atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 540 600 atgcccagta catgacetta tgggacttte ctaettggca gtaeatetae gtattagtea togotattac catggtgatg oggttttggc agtacatcaa tgggogtgga tagoggtttg 660 actcacqqqq atttccaaqt ctccacccca ttgacqtcaa tgggagtttg ttttggcacc 720 aaaatcaacq qqactttcca aaatqtcqta acaactccqc cccattqacq caaatqgqcq 780 gtaggegtgt aeggtgggag gtetatataa geagagetet etggetaaet agagaaceea 840 ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagc 900 gtttaaactt aagettggta cegagetegg atcecegteg tgcatctate gaaggtegtg 960 gagatecega ggageceaaa tettgtgaca aaaeteacae atgeecaceg tgeecageae 1020

ctgaactcct	ggggggaccg	tcagtcttcc	tcttccccc	aaaacccaag	gacaccctca	1080
tgatctcccg	gacccctgag	gtcacatgcg	tggtggtgga	cgtgagccac	gaagaccctg	1140
aggtcaagtt	caactggtac	gtggacggcg	tggaggtgca	taatgccaag	acaaagccgc	1200
gggaggagca	gtacaacagc	acgtaccggg	tggtcagcgt	cctcaccgtc	ctgcaccagg	1260
actggctgaa	tggcaaggag	tacaagtgca	aggtctccaa	caaagccctc	ccagccccca	1320
tcgagaaaac	catctccaaa	gccaaagggc	agccccgaga	accacaggtg	tacaccctgc	1380
ccccatcccg	ggatgagctg	accaagaacc	aggtcagcct	gacctgcctg	gtcaaaggct	1440
tctatcccag	cgacatcgcc	gtggagtggg	agagcaatgg	gcagccggag	aacaactaca	1500
agaccacgcc	tcccgtgctg	gactccgacg	gctccttctt	cctctacagc	aagctcaccg	1560
tggacaagag	caggtggcag	caggggaacg	tcttctcatg	ctccgtgatg	catgaggctc	1620
tgcacaacca	ctacacgcag	aagagcctct	ccctgtctcc	gggtaaatga	tctagagggc	1680
ccgtttaaac	ccgctgatca	gcctcgactg	tgccttctag	ttgccagcca	tctgttgttt	1740
gcccctcccc	cgtgccttcc	ttgaccctgg	aaggtgccac	tcccactgtc	ctttcctaat	1800
aaaatgagga	aattgcatcg	cattgtctga	gtaggtgtca	ttctattctg	gggggtgggg	1860
tggggcagga	cagcaagggg	gaggattggg	aagacaatag	caggcatgct	ggggatgcgg	1920
tgggctctat	ggcttctgag	gcggaaagaa	ccagctgggg	ctctaggggg	tatccccacg	1980
cgccctgtag	cggcgcatta	agegeggegg	gtgtggtggt	tacgcgcagc	gtgaccgcta	2040
cacttgccag	cgccctagcg	cccgctcctt	tegetttett	cccttccttt	ctcgccacgt	2100
tegeeggett	tccccgtcaa	gctctaaatc	ggggcatccc	tttagggttc	cgatttagtg	2160
ctttacggca	cctcgacccc	aaaaaacttg	attagggtga	tggttcacgt	agtgggccat	2220
cgccctgata	gacggttttt	cgccctttga	cgttggagtc	cacgttcttt	aatagtggac	2280
tcttgttcca	aactggaaca	acactcaacc	ctatctcggt	ctattctttt	gatttataag	2340
ggattttggg	gatttcggcc	tattggttaa	aaaatgagct	gatttaacaa	aaatttaacg	2400
cgaattaatt	ctgtggaatg	tgtgtcagtt	agggtgtgga	aagtccccag	gctccccagg	2460
caggcagaag	tatgcaaagc	atgcatctca	attagtcagc	aaccaggtgt	ggaaagtccc	2520
caggctcccc	agcaggcaga	agtatgcaaa	gcatgcatct	caattagtca	gcaaccatag	2580
tcccgcccct	aactccgccc	atcccgcccc	taactccgcc	cagttccgcc	cattctccgc	2640
cccatggctg	actaatttt	tttatttatg	cagaggccga	ggccgcctct	gcctctgagc	2700
tattccagaa	gtagtgagga	ggctttttg	gaggcctagg	cttttgcaaa	aagctcccgg	2760

		0	81408-04400	.ST25.txt		
gagcttgtat	atccattttc	ggatctgatc	agcacgtgtt	gacaattaat	catcggcata	2820
gtatatcggc	atagtataat	acgacaaggt	gaggaactaa	accatggcca	agttgaccag	2880
tgccgttccg	gtgctcaccg	cgcgcgacgt	cgccggagcg	gtcgagttct	ggaccgaccg	2940
gctcgggttc	tcccgggact	tcgtggagga	cgacttcgcc	ggtgtggtcc	gggacgacgt	3000
gaccctgttc	atcagcgcgg	tccaggacca	ggtggtgccg	gacaacaccc	tggcctgggt	3060
gtgggtgcgc	ggcctggacg	agctgtacgc	cgagtggtcg	gaggtcgtgt	ccacgaactt	3120
ccgggacgcc	tccgggccgg	ccatgaccga	gatcggcgag	cagccgtggg	ggcgggagtt	3180
cgccctgcgc	gacccggccg	gcaactgcgt	gcacttcgtg	gccgaggagc	aggactgaca	3240
cgtgctacga	gatttcgatt	ccaccgccgc	cttctatgaa	aggttgggct	tcggaatcgt	3300
tttccgggac	gccggctgga	tgatcctcca	gcgcggggat	ctcatgctgg	agttcttcgc	3360
ccaccccaac	ttgtttattg	cagcttataa	tggttacaaa	taaagcaata	gcatcacaaa	3420
tttcacaaat	aaagcatttt	tttcactgca	ttctagttgt	ggtttgtcca	aactcatcaa	3480
tgtatcttat	catgtctgta	taccgtcgac	ctctagctag	agcttggcgt	aatcatggtc	3540
atagetgttt	cctgtgtgaa	attgttatcc	gctcacaatt	ccacacaaca	tacgagccgg	3600
aagcataaag	tgtaaagcct	ggggtgccta	atgagtgagc	taactcacat	taattgcgtt	3660
gegeteactg	cccgctttcc	agtcgggaaa	cctgtcgtgc	cagctgcatt	aatgaatcgg	3720
ccaacgcgcg	gggagaggcg	gtttgcgtat	tgggcgctct	teegetteet	cgctcactga	3780
ctcgctgcgc	teggtegtte	ggctgcggcg	agcggtatca	gctcactcaa	aggcggtaat	3840
acggttatcc	acagaatcag	gggataacgc	aggaaagaac	atgtgagcaa	aaggccagca	3900
aaaggccagg	aaccgtaaaa	aggccgcgtt	gctggcgttt	ttccataggc	teegeeeece	3960
tgacgagcat	cacaaaaatc	gacgctcaag	tcagaggtgg	cgaaacccga	caggactata	4020
aagataccag	gcgtttcccc	ctggaagctc	cctcgtgcgc	tctcctgttc	cgaccctgcc	4080
gcttaccgga	tacctgtccg	cctttctccc	ttcgggaagc	gtggcgcttt	ctcaatgctc	4140
acgctgtagg	tatctcagtt	cggtgtaggt	cgttcgctcc	aagctgggct	gtgtgcacga	4200
accccccgtt	cagcccgacc	gctgcgcctt	atccggtaac	tatcgtcttg	agtccaaccc	4260
ggtaagacac	gacttatcgc	cactggcagc	agccactggt	aacaggatta	gcagagcgag	4320
gtatgtaggc	ggtgctacag	agttcttgaa	gtggtggcct	aactacggct	acactagaag	4380
gacagtattt	ggtatctgcg	ctctgctgaa	gccagttacc	ttcggaaaaa	gagttggtag	4440
ctcttgatcc	ggcaaacaaa	ccaccgctgg	tagcggtggt	ttttttgttt	gcaagcagca	4500
gattacgcgc	agaaaaaaag	gatctcaaga			cggggtctga	4560
			Page	0		

cgctcagtgg	aacgaaaact	cacgttaagg	gattttggte	atgagattat	caaaaaggat	462
cttcacctag	atccttttaa	attaaaaatg	aagttttaaa	tcaatctaaa	gtatatatga	468
gtaaacttgg	tctgacagtt	accaatgctt	aatcagtgag	gcacctatct	cagcgatctg	474
tctatttcgt	tcatccatag	ttgcctgact	ccccgtcgtg	tagataacta	cgatacggga	4800
gggcttacca	tctggcccca	gtgctgcaat	gataccgcga	gacccacgct	caccggctcc	4860
agatttatca	gcaataaacc	agccagccgg	aagggccgag	cgcagaagtg	gtcctgcaac	4920
tttatccgcc	tccatccagt	ctattaattig	ttgccgggaa	gctagagtaa	gtagttcgcc	4980
agttaatagt	ttgcgcaacg	ttgttgccat	tgctacaggc	atcgtggtgt	cacgctcgtc	5040
gtttggtatg	gcttcattca	geteeggtte	ccaacgatca	aggcgagtta	catgatecee	510
catgttgtgc	aaaaaagcgg	ttageteett	eggteeteeg	atcgttgtca	gaagtaagtt	516
ggccgcagtg	ttatcactca	tggttatggc	agcactgcat	aattctctta	ctgtcatgcc	522
atccgtaaga	tgettttetg	tgactggtga	gtactcaacc	aagtcattct	gagaatagtg	528
tatgcggcga	ccgagttgct	cttgcccggc	gtcaatacgg	gataataccg	cgccacatag	534
cagaacttta	aaagtgctca	tcattggaaa	acgttcttcg	gggcgaaaac	tctcaaggat	540
cttaccgctg	ttgagatcca	gttcgatgta	acccactcgt	gcacccaact	gatcttcagc	546
atcttttact	ttcaccagcg	tttctgggtg	agcaaaaaca	ggaaggcaaa	atgccgcaaa	552
aaagggaata	agggcgacac	ggaaatgttg	aatactcata	ctcttccttt	ttcaatatta	558
ttgaagcatt	tatcagggtt	attgtctcat	gageggatae	atatttgaat	gtatttagaa	564
aaataaacaa	ataggggttc	cgcgcacatt	tccccgaaaa	gtgccacctg	acgtc	569

<210> 6 <211> 235 <212> PRT <213> SYNTHETIC

<220>

<221> misc_feature
<223> Fc domain of Immunoglobulin

<400> 6

Asp Pro Glu Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro 1 $$ 10 $$ 15

Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro 20 25

Pro	Lys	Pro 35	Lys	Asp	Thr	Leu	Met 40	Ile	Ser	Arg	Thr	Pro 45	Glu	Val	Thr
Cys	Val 50	Val	Val	Asp	Val	Ser 55	His	Glu	Asp	Pro	Glu 60	Val	Lys	Phe	Asn
Trp 65	Tyr	Val	Asp	Gly	Val 70	Glu	Val	His	Asn	Ala 75	Lys	Thr	Lys	Pro	Arg 80
Glu	Glu	Gln	Tyr	Asn 85	Ser	Thr	Tyr	Arg	Val 90	Val	Ser	Val	Leu	Thr 95	Val
Leu	His	Gln	Asp 100	Trp	Leu	Asn	Gly	Lys 105	Glu	Tyr	Lys	Cys	Lys 110	Val	Ser
Asn	Lys	Ala 115	Leu	Pro	Ala	Pro	Ile 120	Glu	Lys	Thr	Ile	Ser 125	Lys	Ala	Lys
Gly	Gln 130	Pro	Arg	Glu	Pro	Gln 135	Val	Tyr	Thr	Leu	Pro 140	Pro	Ser	Arg	Asp
Glu 145	Leu	Thr	Lys	Asn	Gln 150	Val	Ser	Leu	Thr	Cys 155	Leu	Val	Lys	Gly	Phe 160
Tyr	Pro	Ser	Asp	Ile 165	Ala	Val	Glu	Trp	Glu 170	Ser	Asn	Gly	Gln	Pro 175	Glu
Asn	Asn	Tyr	Lys 180	Thr	Thr	Pro	Pro	Val 185	Leu	Asp	Ser	Asp	Gly 190	Ser	Phe
Phe	Leu	Tyr 195	Ser	Lys	Leu	Thr	Val 200	Asp	Lys	Ser	Arg	Trp 205	Gln	Gln	Gly
Asn	Val 210	Phe	Ser	Сув	Ser	Val 215	Met	His	Glu	Ala	Leu 220	His	Asn	His	Tyr
Thr 225	Gln	Lys	Ser	Leu	Ser 230	Leu	Ser	Pro	Gly	Lys 235					

<210> 7

<211> 1078 <212> DNA <213> Homo sapiens

```
<220>
<221> mutation
<222> (1046)..(1048)
       BASE PAIRS ENCODING THANATOPHORIC DYSPLASIA (TD) SUBSTITUTION IN
       FGFR3
<400> 7
tgagtccttg gggacggagc agcgcgtcgt ggggcgagcg gcagaagtcc cgggccaga
                                                                      60
                                                                     120
gcccggccag caggagcagt tggtcttcgg cagcggggat gctgtggagc tgagctgtcc
cccqccqqq qqtqqtcca tqqqqcccac tqtctqqqtc aaqqatqqca caqqqctqqt
                                                                     180
gccctcqqaq cqtqtcctqq tqqqqcccca qcqqctqcaq qtqctqaatq cctcccacqa
                                                                     240
ggactccqqq qcctacaqct qccqqcaqcq qctcacqcaq cqcqtactqt qccacttcaq
                                                                     300
tgtgcgggtg acagacgctc catcctcggg aqatgacgaa gacggggagg acgaggctga
                                                                     360
qqacacaqqt qtqqacacaq qqqcccctta ctqqacacqq cccqaqcqqa tqqacaaqaa
                                                                     420
gctgctggcc gtgccggccg ccaacaccgt ccgcttccgc tgcccagccg ctggcaaccc
                                                                     480
cactecetee ateteetqqe tqaaqaacqq caqqqaqtte eqeqqeqaqe accqcattqq
                                                                     540
aggeateaag etgeggeate ageagtggag cetggteatg gaaagegtgg tgeeetegga
                                                                     600
                                                                     660
cogoggcaac tacacotgog togtggagaa caagtttggc agcatcoggc agacgtacac
                                                                     720
gctqqacqtq ctqqaqcqct cccqcaccq qcccatcctq caqqcqqqqc tqccqqccaa
ccagacggcg gtgctgggca gcgacgtgga gttccactgc aaggtgtaca gtgacgcaca
                                                                     780
gccccacatc cagtggctca agcacgtgga ggtgaacggc agcaaggtgg gcccggacgg
                                                                     840
cacaccctac gttaccgtgc tcaagacggc gggcgctaac accaccgaca aggagctaga
                                                                     900
ggttctctcc ttgcacaacg tcacctttga ggacgccggg gagtacacct gcctggcggg
                                                                     960
caattctatt gggttttete ateaetetge gtggetggtg gtgetgeeag eegaggagga
                                                                    1020
gctgqtgqag gctgacqagg cgggctgtgt gtatgcacac catcaccatc accattaa
                                                                    1078
<210> 8
<2115
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 8
Asp Phe Leu Gly Tyr Glu Phe Asp Tyr
```

<210> 9

081408-04400.ST25.txt <211> 9 <212> PRT <213> Artificial Sequence <220> <223> CDR domain from phage library <400> 9 Gln Ser Tyr Asp Tyr Ser Ala Asp Tyr <210> 10 <211> 17 <212> PRT <213> Artificial Sequence <223> CDR domain from phage library <400> 10 Tyr Tyr Gly Ser Ser Leu Tyr His Tyr Val Phe Gly Gly Phe Ile Asp Tvr <210> 11 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> CDR domain from phage library <400> 11 Gln Ser His His Phe Tyr Glu

```
<400> 12
Tyr His Ser Trp Tyr Glu Met Gly Tyr Tyr Gly Ser Thr Val Gly Tyr
1 10 15
```

<210> 12

<211> 20
<212> PRT
<213> Artificial Sequence

<223> CDR domain from phage library

```
Met Phe Asp Tyr
<210> 13
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 13
Gln Ser Tyr Asp Phe Asp Phe Ala
<210> 14
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 14
Asp Asn Trp Phe Lys Pro Phe Ser Asp Val
<210> 15
<211> 8
<212> PRT
<213> Artificial Sequence
<223> CDR domain from phage library
<400> 15
Gln Gln Tyr Asp Ser Ile Pro Tyr
<210> 16
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 16
Val Asn His Trp Thr Tyr Thr Phe Asp Tyr
```

```
<210> 17
<211> 8
<212> PRT
<213> Artificial Sequence
<223> CDR domain from phage library
<400> 17
Gln Gln Met Ser Asn Tyr Pro Asp
<210> 18
<210> 16
<211> 17
<212> PRT
<213> Artificial Sequence
<223> CDR domain from phage library
<400> 18
Gly Tyr Trp Tyr Ala Tyr Phe Thr Tyr Ile Asn Tyr Gly Tyr Phe Asp
Asn
<210> 19
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 19
Gln Ser Tyr Asp Asn Asn Ser Asp Val
                5
<210> 20
<211> 18
<212> PRT
<213> Artificial Sequence
<223> CDR domain from phage library
<400> 20
Thr Trp Gln Tyr Ser Tyr Phe Tyr Tyr Leu Asp Gly Gly Tyr Tyr Phe
                                      10
```

```
Asp Ile
<210> 21
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 21
Gln Gln Thr Asn Asn Ala Pro Val
<210> 22
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 22
Asn Met Ala Tyr Thr Asn Tyr Gln Tyr Val Asn Met Pro His Phe Asp
                                   10
Tyr
<210> 23
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 23
Gln Ser Tyr Asp Tyr Phe Lys Leu
<210> 24
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
```

```
<400> 24
Ser Tyr Tyr Pro Asp Phe Asp Tyr
<210> 25
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 25
Gln Ser Tyr Asp Gly Pro Asp Leu Trp
<210> 26
<210> 26
<211> 15
<212> PRT
<213> Artificial Sequence
<223> CDR domain from phage library
<400> 26
Gly Gly Gly Trp Val Ser His Gly Tyr Tyr Tyr Leu Phe Asp Leu
<210> 27
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> CDR domain from phage library
<400> 27
Phe Gln Tyr Gly Ser Ile Pro Pro
                5
<210> 28
<211> 17
<212> PRT
<213> Artificial Sequence
<223> CDR domain from phage library
<400> 28
```

```
081408-04400.ST25.txt
Ser Met Asn Ser Thr Met Tyr Trp Tyr Leu Arg Arg Val Leu Phe Asp
His
<210> 29
<211> 9
<212> PRT
<213> Artificial Sequence
<223> CDR domain from phage library
<400> 29
Gln Ser Tyr Asp Met Tyr Met Tyr Ile
<210> 30
<210  30
<211  27
<212  DNA
<213  Artificial Sequence</pre>
<223> polynucleotide sequence of CDR domain from phage library
                                                                         27
gattttcttq qttatgaqtt tgattat
<210> 31
<211> 27
<212> DNA
<213> Artificial Sequence
<223> polynucleotide sequence of CDR domain from phage library
<400> 31
                                                                         27
cagagetatg actattetge tgattat
<210> 32
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> polynucleotide sequence of CDR domain from phage library
tattatggtt cttctcttta tcattatgtt tttggtggtt ttattgatta t
                                                                        51
<210> 33
```

081408-04400 ST25 byt

	081408-04400.S125.EXC	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	polynucleotide sequence of CDR domain from phage library	
<400>	33	
cagtete	catc atttttatga g	21
	2.4	
<210>	34	
<211> <212>	60 DV2	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	polynucleotide sequence of CDR domain from phage library	
(223)	polyhucieotide sequence of CDR domain from phage fibrary	
<400>	34	
	tett ggtatgagat gggttattat ggttetaetg ttggttatat gtttgattat	60
caccac	cere ggeargagae gggeraceae ggereraceg reggeracae geregareae	00
<210>	35	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	polynucleotide sequence of CDR domain from phage library	
<400>	35	
cagage	tatg actttgattt tgct	24
<210>	36"	
<211>	30	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	polynucleotide sequence of CDR domain from phage library	
<400>	36	
gataat	tggt ttaageettt ttetgatgtt	30
	27	
<210>	37	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	polynucleotide sequence of CDR domain from phage library	
-2237	polymetrociae sequence of cox domain from phage library	
<400>	37	
	tatg attetattee ttat	24

081408-04400 ST25 txt

	081408-04400.3123.CAC	
<210> <211> <212>	38 30 DNA	
<213>	Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> gttaat	38 Satt ggacttatac ttttgattat	30
-		
<210><211><211><212><213>		
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400>	39	
cagcag	atgt ctaattatcc tgat	24
<210>	40	
<211>	51	
<212>		
	Artificial Sequence	
	ALCITICIAL SEQUENCE	
<220>		
	polynucleotide sequence of CDR domain from phage library	
(223)	polyhucieociue sequence of cbk domain from phage library	
<400>	40	
	ggt atgettattt taettatatt aattatggtt attttgataa t	51
ggccac	acception acceptance and accepting acceptance to	31
.210.	41	
<210>	41	
<211>	27	
<212>		
<213>	Artificial Sequence	
<220>	5 000 3 115	
<223>	polynucleotide sequence of CDR domain from phage library	
	43	
<400>	41	
cagage	atg acaataatto tgatgtt	27
	**	
<210>	42	
<211>	45	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	polynucleotide sequence of CDR domain from phage library	
<400>	42	
ggtggt	ggtt gggtttetea tggttattat tatetttttg atett	45

<210> <211> <212> <213>	43 24 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> tttcag	43 tatg gttctattcc tcct	24
<210>	44	
<211> <212> <213>		
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400>	44	
acttgg	cagt attottattt ttattatott gatggtggtt attattttga tatt	54
<210> <211>		
<212> <213>	DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> cagcag	45 acta ataatgetee tgtt	24
<210>	46	
<211> <212>	51	
	Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400> aatatg	46 gott atactaatta toagtatgtt aatatgooto attttgatta t	51
<210> <211>	47 24	
<212>	DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of CDR domain from phage library	
<400>	47	
cagage	atg actattttaa gett	24

<210>	48	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	polynucleotide sequence of CDR domain from phage library	
<400>	48	
tctatg	aatt ctactatgta ttggtatett egtegtgtte tttttgatea t	51
<210>	49	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	polynucleotide sequence of CDR domain from phage library	
<400>	49	
cagage	tatg acatgtataa ttatatt	27
<210>	50	
	24	
<212>		
	Artificial Sequence	
(213)	Artificial Sequence	
200		
<220>		
<223>	polynucleotide sequence of CDR domain from phage library	
<400>		
tcttat	tatc ctgattttga ttat	24
<210>	51	
<211>		
<212>		
	Artificial Sequence	
<220>		
	nolymuslectide seguence of CDB domain from phase library	
\223 >	polynucleotide sequence of CDR domain from phage library	
-400-	r1	
<400>	51	_
cagage	tatg acggtcctga tctttgg	27
<210>	52	
<211>	5020	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	polynucleotide sequence of cloning vector	
	portmentocrac bequence of crossing vector	
<300>		
<2002		

<301> Knappik et al <302> Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides.

<303> J Mol Biol

-304> 296 <305> 1

<306> 57-86

<307> 2000-02-11

pubmed/10656818 -3085

2000-02-11 -3095

<313> (1)..(5020)

<400 > 52 atogtgotga cocagoogoo ttoagtgagt ggogcaccag gtoagogtgt gaccatotog 60 tqtaqcqqca qcaqcaqcaa cattqqcaqc aactatqtqa qctgqtacca qcaqttqccc 120 gggacggcccgaaactgct gatttatgat aacaaccagc gtccctcagg cgtgccggat 180 cqttttaqcq qatccaaaaq cqqcaccagc gcgagccttg cgattacggg cctgcaaagc 240 qaaqacqaaq cqqattatta ttqccaqaqc tatqacatqc ctcaqqctqt qtttqqcqqc 300 ggcacqaagt ttaaccqttc ttggccagcc gaaagccqca ccgagtgtga cgctgtttcc 360 qccqaqcaqc qaaqaattqc aqqcqaacaa aqcqaccctq qtqtqcctqa ttaqcqactt 420 ttatccggga gccgtgacag tggcctggaa ggcagatagc agccccgtca aggcgggagt 480 qqaqaccacc acaccctcca aacaaaqcaa caacaaqtac qcqqccaqca qctatctgaq 540 cctgacgcct gagcagtgga agtcccacag aagctacagc tgccaggtca cgcatgaggg 600 660 qaqcaccqtq qaaaaaaccq ttqcqccqac tqaqqcctqa taagcatqcq taggagaaaa taaaatgaaa caaagcacta ttgcactggc actcttaccg ttgctcttca cccctgttac 720 780 caaaqcccaq qtqcaattqa aagaaaqcgg cccggccctg gtgaaaccga cccaaaccct qaccetqace tqtacetttt ceqqatttaq cetqtecacq tetqqcqttq qeqtqqctq 840 gattegeeag eegeetggga aageeetega gtggetgget etgattgatt gggatgatga 900 960 taaqtattat aqcaccaqcc tqaaaacgcg tctgaccatt agcaaagata cttcgaaaaa tcaggtggtg ctgactatga ccaacatgga cccggtggat acggccacct attattgcgc 1020 gcqttctcct cqttatcqtq qtqcttttqa ttattggggc caaggcaccc tggtgacggt 1080 tagetcageg tegaceaaag gtecaagegt gttteegetg getcegagea geaaaageae 1140 cagcggcggc acggctgccc tgggctgcct ggttaaagat tatttcccgg aaccagtcac 1200 1260 cgtgagctgg aacagcgggg cgctgaccag cggcgtgcat acctttccgg cggtgctgca aagcagcggc ctqtatagcc tgagcagcgt tgtgaccgtg ccgagcagca gcttaggcac 1320 tcagacctat atttgcaacg tgaaccataa accgagcaac accaaagtgg ataaaaaagt 1380

ggaaccgaaa	agcgaattcg	actataaaga	tgacgatgac	aaaggcgcgc	cgtggagcca	1440
cccgcagttt	gaaaaatgat	aagcttgacc	tgtgaagtga	aaaatggcgc	agattgtgcg	1500
acatttttt	tgtctgccgt	ttaattaaag	999999999	gccggcctgg	gggggggtgt	1560
acatgaaatt	gtaaacgtta	atattttgtt	aaaattcgcg	ttaaattttt	gttaaatcag	1620
ctcattttt	aaccaatagg	ccgaaatcgg	caaaatccct	tataaatcaa	aagaatagac	1680
cgagataggg	ttgagtgttg	ttccagtttg	gaacaagagt	ccactattaa	agaacgtgga	1740
ctccaacgtc	aaagggcgaa	aaaccgtcta	tcagggcgat	ggcccactac	gagaaccatc	1800
accctaatca	agtttttgg	ggtcgaggtg	ccgtaaagca	ctaaatcgga	accctaaagg	1860
gagececega	tttagagctt	gacggggaaa	gccggcgaac	gtggcgagaa	aggaagggaa	1920
gaaagcgaaa	ggagcgggcg	ctagggcgct	ggcaagtgta	gcggtcacgc	tgcgcgtaac	1980
caccacaccc	gccgcgctta	atgcgccgct	acagggcgcg	tgctagacta	gtgtttaaac	2040
cggaccgggg	gggggcttaa	gtgggctgca	aaacaaaacg	gcctcctgtc	aggaagccgc	2100
ttttatcggg	tagcctcact	gcccgctttc	cagtcgggaa	acctgtcgtg	ccagctgcat	2160
cagtgaatcg	gccaacgcgc	ggggagaggc	ggtttgcgta	ttgggagcca	gggtggtttt	2220
tettttcacc	agtgagacgg	gcaacagctg	attgcccttc	accgcctggc	cctgagagag	2280
ttgcagcaag	cggtccacgc	tggtttgccc	cagcaggcga	aaatcctgtt	tgatggtggt	2340
cagcggcggg	atataacatg	agetgteete	ggtatcgtcg	tatcccacta	ccgagatgtc	2400
cgcaccaacg	cgcagcccgg	actcggtaat	ggcacgcatt	gcgcccagcg	ccatctgatc	2460
gttggcaacc	agcatcgcag	tgggaacgat	gccctcattc	agcatttgca	tggtttgttg	2520
aaaaccggac	atggcactcc	agtcgccttc	ccgttccgct	atcggctgaa	tttgattgcg	2580
agtgagatat	ttatgccagc	cagccagacg	cagacgcgcc	gagacagaac	ttaatgggcc	2640
agctaacagc	gcgatttgct	ggtggcccaa	tgcgaccaga	tgctccacgc	ccagtcgcgt	2700
accgtcctca	tgggagaaaa	taatactgtt	gatgggtgtc	tggtcagaga	catcaagaaa	2760
taacgccgga	acattagtgc	aggcagcttc	cacagcaata	gcatcctggt	catccagcgg	2820
atagttaata	atcagcccac	tgacacgttg	cgcgagaaga	ttgtgcaccg	ccgctttaca	2880
ggcttcgacg	ccgcttcgtt	ctaccatcga	cacgaccacg	ctggcaccca	gttgatcggc .	2940
gcgagattta	atcgccgcga	caatttgcga	cggcgcgtgc	agggccagac	tggaggtggc	3000
aacgccaatc	agcaacgact	gtttgcccgc	cagttgttgt	gccacgcggt	taggaatgta	3060
attcagctcc	gccatcgccg	cttccacttt	ttcccgcgtt	ttcgcagaaa	cgtggctggc	3120

ctggttca	.cc acgcgggaaa		81408-04400 agagacaccg		cgacatcgta	3180
taacgtta	ct ggtttcacat	tcaccaccct	gaattgactc	tcttccgggc	gctatcatgc	3240
cataccgo	ga aaggttttgc	gccattcgat	gctagccatg	tgagcaaaag	gccagcaaaa	3300
ggccagga	ac cgtaaaaagg	ccgcgttgct	ggcgtttttc	cataggctcc	gcccccctga	3360
cgagcato	ac aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	gactataaag	3420
ataccago	eg tttececetg	gaagctccct	cgtgcgctct	cctgttccga	ccctgccgct	3480
taccggat	ac ctgtccgcct	ttctcccttc	gggaagcgtg	gcgctttctc	atagctcacg	3540
ctgtaggt	at ctcagttcgg	tgtaggtcgt	tcgctccaag	ctgggctgtg	tgcacgaacc	3600
ccccgttc	ag cccgaccgct	gcgccttatc	cggtaactat	cgtcttgagt	ccaacccggt	3660
aagacacg	ac ttatcgccac	tggcagcagc	cactggtaac	aggattagca	gagcgaggta	3720
tgtaggcg	gt gctacagagt	tcttgaagtg	gtggcctaac	tacggctaca	ctagaagaac	3780
agtatttg	gt atctgcgctc	tgctgtagcc	agttaccttc	ggaaaaagag	ttggtagctc	3840
ttgatccg	gc aaacaaacca	ccgctggtag	cggtggtttt	tttgtttgca	agcagcagat	3900
tacgcgca	ga aaaaaaggat	ctcaagaaga	tcctttgatc	ttttctacgg	ggtctgacgc	3960
tcagtgga	ac gaaaactcac	gttaagggat	tttggtcaga	tctagcacca	ggcgtttaag	4020
ggcaccaa	ita actgccttaa	aaaaattacg	ccccgccctg	ccactcatcg	cagtactgtt	4080
gtaattca	itt aagcattctg	ccgacatgga	agccatcaca	aacggcatga	tgaacctgaa	4140
tegecage	gg catcagcacc	ttgtcgcctt	gcgtataata	tttgcccata	gtgaaaacgg	4200
gggcgaag	aa gttgtccata	ttggctacgt	ttaaatcaaa	actggtgaaa	ctcacccagg	4260
gattggct	ga gacgaaaaac	atattctcaa	taaacccttt	agggaaatag	gccaggtttt	4320
caccgtaa	ca cgccacatct	tgcgaatata	tgtgtagaaa	ctgccggaaa	tcgtcgtggt	4380
attcacto	ca gagcgatgaa	aacgtttcag	tttgctcatg	gaaaacggtg	taacaagggt	4440
gaacacta	tc ccatatcacc	agctcaccgt	ctttcattgc	catacggaac	tccgggtgag	4500
cattcato	ag gegggeaaga	atgtgaataa	aggccggata	aaacttgtgc	ttatttttct	4560
ttacggto	tt taaaaaggcc	gtaatatcca	gctgaacggt	ctggttatag	gtacattgag	4620
caactgad	tg aaatgeetea	aaatgttctt	tacgatgcca	ttgggatata	tcaacggtgg	4680
tatatcca	gt gattttttc	tccattttag	cttccttagc	tcctgaaaat	ctcgataact	4740
caaaaaat	ac gcccggtagt	gatcttattt	cattatggtg	aaagttggaa	cctcacccga	4800
cgtctaat	gt gagttagctc	actcattagg	caccccaggc	tttacacttt	atgcttccgg	4860
ctcgtate	tt gtgtggaatt	gtgagcggat	aacaatttca Page		agctatgacc	4920

atgattacga atttctagat aacgagggca aaaaatgaaa aagacagcta tcgcgattgc 4980	0
agtggcactg gctggtttcg ctaccgtagc gcaggccgat 5020	0
<210> 53 <211> 4151	
<212> DNA	
<213> Artificial Sequence	
<220> <223> polynucleotide sequence of cloning vector	
<300> <301> knappik et al	
<301> khappik et al <302> Fully synthetic human combinatorial antibody libraries (HuCAL)	
based on modular consensus frameworks and CDRs randomized with	
trinucleotides. <303> j mol biol	
<304> 296	
<305> 1	
<306> 57-86	
<307> 2000-02-11 <308> pubmed/10656818	
<309> 2000-02-11	
<313> (1)(4151)	
<400> 53	
totagataac gagggcaaaa aatgaaaaag acagctatcg cgattgcagt ggcactggct 6	0
ggtttegeta cegtagegea ggeegatate gtgetgaeee agageeegge gaeeetgage 12	0
ctgtctccgg gcgaacgtgc gaccctgagc tgcagagcga gccagagcgt gagcagcagc 18	0
tatetggegt ggtaceagea gaaaceaggt caageacege gtetattaat ttatggegeg 24	0
agcagecgtg caactggggt eceggegegt tttagegget etggateegg caeggatttt 30	0
accetgacea trageageet ggaacetgaa gaettrgegg tgtattattg eeageageat 360	0
tataccaccc cgccgacctt tggccagggt acgaaagttg aaattaaacg tacggtggct 42	0
gctccgagcg tgtttatttt tccgccgagc gatgaacaac tgaaaagcgg cacggcgagc 48	0
gtggtgtgcc tgctgaacaa cttttatccg cgtgaagcga aagttcagtg gaaagtagac 540	0
aacgcgctgc aaagcggcaa cagccaggaa agcgtgaccg aacaggatag caaagatagc 60	0
acctattctc tgagcagcac cctgaccctg agcaaagcgg attatgaaaa acataaagtg 66	0
tatgcgtgcg aagtgaccca tcaaggtctg agcagcccgg tgactaaatc ttttaatcgt 72	0
ggcgaggcct gataagcatg cgtaggagaa aataaaatga aacaaagcac tattgcactg 78	0
gcactettac egitgetett caccectgit accaaageeg aagigeaati ggiggaaage 84	0
ggcggcggcc tggtgcaacc gggcggcagc ctgcgtctga gctgcgcggc ctccggattt 90	υ

			81408-04400	amas		
acctttagca	gctatgcgat	gagctgggtg			tctcgagtgg	960
gtgagcgcga	ttagcggtag	cggcggcagc	acctattatg	cggatagcgt	gaaaggccgt	1020
tttaccattt	cacgtgataa	ttcgaaaaac	accctgtatc	tgcaaatgaa	cagcctgcgt	1080
gcggaagata	cggccgtgta	ttattgcgcg	cgttggggcg	gcgatggctt	ttatgcgatg	1140
gattattggg	gccaaggcac	cctggtgacg	gttagctcag	cgtcgaccaa	aggtccaagc	1200
gtgtttccgc	tggctccgag	cagcaaaagc	accagcggcg	gcacggctgc	cctgggctgc	1260
ctggttaaag	attatttccc	ggaaccagtc	accgtgagct	ggaacagcgg	ggcgctgacc	1320
agcggcgtgc	atacctttcc	ggcggtgctg	caaagcagcg	gcctgtatag	cctgagcagc	1380
gttgtgaccg	tgccgagcag	cagcttaggc	actcagacct	atatttgcaa	cgtgaaccat	1440
aaaccgagca	acaccaaagt	ggataaaaaa	gtggaaccga	aaagcgaatt	cgggggaggg	1500
agcgggagcg	gtgattttga	ttatgaaaag	atggcaaacg	ctaataaggg	ggctatgacc	1560
gaaaatgccg	atgaaaacgc	gctacagtct	gacgctaaag	gcaaacttga	ttctgtcgct	1620
actgattacg	gtgctgctat	cgatggtttc	attggtgacg	tttccggcct	tgctaatggt	1680
aatggtgcta	ctggtgattt	tgctggctct	aattcccaaa	tggctcaagt	cggtgacggt	1740
gataattcac	ctttaatgaa	taatttccgt	caatatttac	cttccctccc	tcaatcggtt	1800
gaatgtcgcc	cttttgtctt	tggcgctggt	aaaccatatg	aattttctat	tgattgtgac	1860
aaaataaact	tattccgtgg	tgtctttgcg	tttcttttat	atgttgccac	ctttatgtat	1920
gtattttcta	cgtttgctaa	catactgcgt	aataaggagt	cttgataagc	ttgacctgtg	1980
aagtgaaaaa	tggcgcagat	tgtgcgacat	tttttttgtc	tgccgtttaa	tgaaattgta	2040
aacgttaata	ttttgttaaa	attcgcgtta	aatttttgtt	aaatcagctc	attttttaac	2100
caataggccg	aaatcggcaa	aatcccttat	aaatcaaaag	aatagaccga	gatagggttg	2160
agtgttgttc	cagtttggaa	caagagtcca	ctattaaaga	acgtggactc	caacgtcaaa	2220
gggcgaaaaa	ccgtctatca	gggcgatggc	ccactacgag	aaccatcacc	ctaatcaagt	2280
tttttggggt	cgaggtgccg	taaagcacta	aatcggaacc	ctaaagggag	cccccgattt	2340
agagcttgac	ggggaaagcc	ggcgaacgtg	gcgagaaagg	aagggaagaa	agcgaaagga	2400
gcgggcgcta	gggcgctggc	aagtgtagcg	gtcacgctgc	gcgtaaccac	cacacccgcc	2460
gcgcttaatg	cgccgctaca	gggcgcgtgc	tagccatgtg	agcaaaaggc	cagcaaaagg	2520
ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	2580
agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	2640
accaggcgtt	tecccetgga	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	2700

ccggatacct gtccgcct	t ctcccttcgg	gaagcgtggc	gctttctcat	agctcacgct	2760
gtaggtatct cagttcgg	g taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	2820
ccgttcagtc cgaccgct	gc gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	2880
gacacgactt atcgccac	g gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	2940
taggeggtge tacagagt	c ttgaagtggt	ggcctaacta	cggctacact	agaagaacag	3000
tatttggtat ctgcgctc	g ctgtagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	3060
gatccggcaa acaaacca	cc gctggtagcg	gtggttttt	tgtttgcaag	cagcagatta	3120
cgcgcagaaa aaaaggat	ct caagaagatc	ctttgatctt	ttctacgggg	tctgacgctc	3180
agtggaacga aaactcac	gt taagggattt	tggtcagatc	tagcaccagg	cgtttaaggg	3240
caccaataac tgccttaaa	aa aaattacgcc	ccgccctgcc	actcatcgca	gtactgttgt	3300
aattcattaa gcattctg	cc gacatggaag	ccatcacaaa	cggcatgatg	aacctgaatc	3360
gccagcggca tcagcacc	t gtcgccttgc	gtataatatt	tgcccatagt	gaaaacgggg	3420
gcgaagaagt tgtccata	t ggctacgttt	aaatcaaaac	tggtgaaact	cacccaggga	3480
ttggctgaga cgaaaaac	at attctcaata	aaccctttag	ggaaataggc	caggttttca	3540
ccgtaacacg ccacatct	g cgaatatatg	tgtagaaact	gccggaaatc	gtcgtggtat	3600
tcactccaga gcgatgaaa	a cgtttcagtt	tgctcatgga	aaacggtgta	acaagggtga	3660
acactatccc atatcacca	ag ctcaccgtct	ttcattgcca	tacggaactc	cgggtgagca	3720
ttcatcaggc gggcaagaa	at gtgaataaag	gccggataaa	acttgtgctt	atttttcttt	3780
acggtcttta aaaaggcc	gt aatatccagc	tgaacggtct	ggttataggt	acattgagca	3840
actgactgaa atgcctcaa	a atgttctta	cgatgccatt	gggatatatc	aacggtggta	3900
tatccagtga ttttttct	c cattttagct	tccttagctc	ctgaaaatct	cgataactca	3960
aaaaatacgc ccggtagtg	ga tcttatttca	ttatggtgaa	agttggaacc	tcacccgacg	4020
tctaatgtga gttagctca	c tcattaggca	ccccaggctt	tacactttat	gcttccggct	4080
cgtatgttgt gtggaattg	gt gagcggataa	caatttcaca	caggaaacag	ctatgaccat	4140
gattacgaat t					4151

<210> 54

<2103 34
<2113 306
<212> DNA
<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VL domain

<220> <221> <222> <223>	misc_feature (253)(255) NNN=ACT OR GTT					
<400> gatato	54 caga tgacccagag	cccgtctagc	ctgagcgcga	gcgtgggtga	tcgtgtgacc	60
attacc	tgca gagcgagcca	gggcattagc	agctatctgg	cgtggtacca	gcagaaacca	120
ggtaaa	gcac cgaaactatt	aatttatgca	gccagcagct	tgcaaagcgg	ggtcccgtcc	180
cgtttt	agcg gctctggatc	cggcactgat	tttaccctga	ccattagcag	cctgcaacct	240
gaagac	tttg cgnnntatta	ttgccagacc	tttggccagg	gtacgaaagt	tgaaattaaa	300
cgtacg						306
<210><211><211><212><213>	55 327 DNA Artificial Sequ	ience				
<220> <223>	polynucleotide	sequence of	f a VL doma:	in		
<400> gatato	55 caga tgacccagag	cccgtctagc	ctgagcgcga	gcgtgggtga	tcgtgtgacc	60
attacc	tgca gagcgagcca	gggcattagc	agctatctgg	cgtggtacca	gcagaaacca	120
ggtaaa	gcac cgaaactatt	aatttatgca	gccagcagct	tgcaaagcgg	ggtcccgtcc	180
cgtttt	ageg getetggate	cggcactgat	tttaccctga	ccattagcag	cctgcaacct	240
gaagac	tttg cggtttatta	ttgctttcag	tatggttcta	ttcctcctac	ctttggccag	300
ggtacg	aaag ttgaaattaa	acgtacg				327
<210><211><211><212><213>	56 309 DNA Artificial Sequ	uence				
<220> <223>	polynucleotide	sequence of	f a VL doma:	in		
<220><221><222><222><223>	misc_feature (256)(258) NNN=ACT OR GTT					
<400> gatato	56 gtgc tgacccagag	cccggcgacc	ctgagcctgt	ctccgggcga	acgtgcgacc	60

ctgagct	gca gagcgagco	a gagcgtgagc	agcagctatc	tggcgtggta	ccagcagaaa	120
ccaggtc	aag caccgcgto	t attaatttat	ggcgcgagca	gccgtgcaac	tggggtcccg	180
gcgcgtt	tta geggetetg	g atccggcacg	gattttaccc	tgaccattag	cagcctggaa	240
cctgaag	act ttgcgnnnt	a ttattgccag	acctttggcc	agggtacgaa	agttgaaatt	300
aaacgta	cg					309
<211> <212>	57 330 DNA Artificial Se	quence				
<220> <223>	polynucleotic	e sequence o	f a VL doma:	in		
	57 tgc tgacccaga	g cccggcgacc	ctgagcctgt	ctccgggcga	acgtgcgacc	60
ctgagct	gea gagegaged	a gagegtgage	agcagctatc	tggcgtggta	ccagcagaaa	120
ccaggtc	aag caccgcgto	t attaatttat	ggcgcgagca	gccgtgcaac	tggggtcccg	180
gcgcgtt	tta geggetete	g atccggcacg	gattttaccc	tgaccattag	cagcctggaa	240
cctgaag	act ttgcgactt	a ttattgccag	cagatgtcta	attatcctga	tacctttggc	300
cagggta	cga aagttgaaa	t taaacgtacg				330
<211> <212>	58 330 DNA Artificial Se	quence				
<220> <223>	polynucleotic	e sequence o	f a VL doma	in		
	58 tgc tgacccaga	g ceeggegace	ctgagcctgt	ctccgggcga	acgtgcgacc	60
ctgagct	gca gagcgagco	a gagcgtgagc	agcagctatc	tggcgtggta	ccagcagaaa	120
ccaggtc	aag caccgcgto	t attaatttat	ggcgcgagca	gccgtgcaac	tggggtcccg	180
gcgcgtt	tta geggetete	g atccggcacg	gattttaccc	tgaccattag	cagcctggaa	240
cctgaag	act ttgcgactt	a ttattgccag	cagactaata	atgctcctgt	tacctttggc	300
cagggta	cga aagttgaaa	t taaacgtacg				330

<210> 59 <211> 324 <212> DNA

081408-04400 ST25 tx

<pre><220> <223> polynucleotide sequence of a VL domain <400> 59 gatategtga tgacccagag cceggatage ctggcggtga gcetgggega acgtgcgacc 60 attaactgca gaagcagcca gagcgtgctg tatagcagca acaacaaaaa ctatetggcg 120 tggtaccagc agaaaccagg tcagccgcg aaactattaa tttattgggc atccacccgt 180 gaaagcgggg tcccggatcg ttttagcggc tctggatccg gcactgattt taccctgacc 240 atttcgtccc tgcaagctga agacgtggcg gtgtattatt gccagacctt tggccagggt 300 acgaaagttg aaattaaacg tacg 324 <210> 60 <211> 345 <212> DNA <213> Artificial Sequence <220></pre>
gatategtga tgacecagag eceggatage etggeggtga geetgggega aegtgegace 60 attaactgea gaageageea gaegetgetg tatageagea acaacaaaaa etatetggeg 120 tggtaceage agaaaceagg teageegeeg aaactattaa tttattggge atecaceegt 180 gaaagegggg teeeggateg tittagegge tetggateeg geaetgatit taceetgace 240 attiegteee tgeaagetga agaegtggeg gigtatiatit geeagaeett tggeeagggt 300 aegaaagitg aaattaaaeg tacg 324 <210> 60 <211> 345 <212> DNA <213> Artificial Sequence <220>
tggtaccagc agaaaccagg tcagccgccg aaactattaa tttattgggc atccacccgt 180 gaaagcgggg tcccggatcg ttttagcggc tctggatccg gcactgattt taccctgacc 240 atttcgtccc tgcaagctga agacgtggcg gtgtattatt gccagacctt tggccagggt 300 acgaaagttg aaattaaacg tacg 324 <210> 60 <211> 345 <212> DNA <213> Artificial Sequence <220>
gaaagcgggg tcccggatcg ttttagcggc tctggatccg gcactgattt taccctgacc 240 atttcgtccc tgcaagctga agacgtggcg gtgtattatt gccagacctt tggccagggt 300 acgaaagttg aaattaaacg tacg 324 <210> 60 <211> 345 <212> DNA <213> Artificial Sequence <220>
atttcgtccc tgcaagctga agacgtggcg gtgtattatt gccagacctt tggccagggt 300 acgaaagttg aaattaaacg tacg 324 <210> 60 <211> 345 <212> DNA <213> Artificial Sequence <220>
acgaaagttg aaattaaacg tacg 324 <210> 60 <211> 345 <212> DNA <213> Artificial Sequence <220>
<210> 60 <211> 345 <212> DNA <213> Artificial Sequence
<211> 345 <212> DNA <213> Artificial Sequence <220>
<223> polynucleotide sequence of a VL domain
<400> 60 gatatogtga tgacccagag cooggatago otggoggtga gootgggoga acgtgogaco 60
attaactgca gaagcagcca gagcgtgctg tatagcagca acaacaaaaa ctatctggcg 120
tggtaccagc agaaaccagg tcagccgccg aaactattaa tttattgggc atccacccgt 180
gaaagegggg teeeggateg tittagegge tetggateeg geaetgatit taccetgace 240
atttegteee tgeaagetga agaegtggeg gtgtattatt geeageagta tgattetatt 300
ccttatacct ttggccaggg tacgaaagtt gaaattaaac gtacg 345
<210> 61 <211> 315 <212> DNA <213> Artificial Sequence
<220> <223> polynucleotide sequence of a VL domain
<400> 61 gatategeae tgacceagee agetteagtg ageggeteae eaggteagag cattaceate 60
tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag 120
catcccggga aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg 180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg 240
caageggaag acgaagegga ttattattge caggaegtgt ttggeggegg caegaagtta 300

accgttcttg gccag	315
<210> 62 <211> 336 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VL domain	
<400> 62	60
gatatogoac tgaccoagoc agottoagtg agoggotoac caggtoagag cattacoato	
togtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag	120
catcccggga aggcgccgaa actgatgatt tatgatgtga gcaaccgtcc ctcaggcgtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caagcggaag acgaagcgga ttattattgc cagagctatg acatgtataa ttatattgtg	300
tttggcggcg gcacgaagtt aaccgttctt ggccag	336
<210> 63 <211> 330 <212> DNA <213> Artificial Sequence <220> <223> polynucleotide sequence of a VL domain	
<400> 63	
gatatogcac tgacccagcc agottcagtg agoggotcac caggtcagag cattaccatc	60
tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag	120
cateceggga aggegeegaa actgatgatt tatgatgtga geaacegtee etcaggegtg	180
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	240
caageggaag aegaagegga ttattattge eagteteate atttttatga ggtgtttgge	300
ggcggcacga agttaaccgt tcttggccag	330
<pre><210> 64 <211> 336 <212> DNA <213> Artificial Sequence <220> <220> polynucleotide sequence of a VL domain</pre>	
<223> polynucleotide sequence of a VL domain	
gatategeae tgaceeagee agetteagtg ageggeteae caggteagag cattaceate	60

081408-04400.ST25.txt tcgtgtacgg gtactagcag cgatgtgggc ggctataact atgtgagctg gtaccagcag	120
cateceqqqa aggegecqaa actgatgatt tatgatgtga geaacegtee cteaggegtg	180
	240
agcaaccgtt ttagcggatc caaaagcggc aacaccgcga gcctgaccat tagcggcctg	
caagoggaag acgaagogga ttattattgo cagagotatg acaataatto tgatgttgtg	300
tttggcggcg gcacgaagtt aaccgttctt ggccag	336
<210> 65 <211> 306 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VL domain	
<400> 65 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc	60
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg	120
caggegecag ttetggtgat ttatgatgat tetgacegte ceteaggeat eceggaacge	180
tttagcggat ccaacagcgg caacaccgcg accetgacca ttagcggcac tcaggcggaa	240
gacgaagcgg attattattg ccaggacgtg tttggcggcg gcacgaagtt aaccgttctt	300
ggccag	306
<210> 66 <211> 324 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VL domain	
<400> 66 gatategaac tgacceagec geetteagtg agegttgeac caggteagae egegegtate	60
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg	120
caggogocag ttotggtgat ttatgatgat totgacogto cotcaggoat cooggaacgo	180
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa	240
gacgaagcgg attattattg ccagagctat gactatttta agcttgtgtt tggcggcggc	300
acgaagttaa ccgttcttgg ccag	324
<210> 67	

<210> 67 <211> 327 <212> DNA <213> Artificial Sequence

<220> <223> polynucleotide sequence of a VL domain						
<400> 67 gatatcgaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 6	50					
tcgtgtagcg gcgatgcgct gggcgataaa tacgcgagct ggtaccagca gaaacccggg 12	0 20					
caggegecag ttetggtgat ttatgatgat tetgacegte ceteaggeat eceggaacge 18	80					
tttageggat ccaacagegg caacacegeg accetgacea ttageggeac tcaggeggaa 24	0					
gacgaagegg attattattg ceagagetat gactattetg etgattatgt gtttggegge 30	0					
ggcacgaagt taaccgttct tggccag 32	27					
<210> 68 <211> 324 <212> DNA <213> Artificial Sequence						
<220> <223> polynucleotide sequence of a VL domain						
<400> 68 gatategaac tgacceagce geetteagtg agegttgeac caggteagac egegegtate 6	50					
tegtgtageg gegatgeget gggegataaa taegegaget ggtaccagea gaaacceggg 12	0 2					
caggegecag ttetggtgat ttatgatgat tetgacegte ceteaggeat eeeggaacge 18	30					
tttageggat ecaacagegg caacacegeg accetgacea ttageggeac tcaggeggaa 24	10					
gacgaagogg attattattg coagagctat gactttgatt ttgctgtgtt tggcggcggc 30	0					
acgaagttaa ccgttcttgg ccag 32	24					
<210> 69 <211> 327 <212> DNA <213> Artificial Sequence						
<223> polynucleotide sequence of a VL domain						
<400> 69 gatategaac tgacccagcc gccttcagtg agcgttgcac caggtcagac cgcgcgtatc 6	50					
tegtgtageg gegatgeget gggegataaa taegegaget ggtaceagea gaaaceeggg 12	20					
caggogocag ttotggtgat ttatgatgat totgacogto cotcaggoat cocggaacgo 18	30					
tttagcggat ccaacagcgg caacaccgcg accctgacca ttagcggcac tcaggcggaa 24	łO					
gacgaagcgg attattattg ccagagctat gacggtcctg atctttgggt gtttggcggc 30	0					

327

332

60

359

<210> 70

<211> 332 <212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide seguence of a VH domain

<220>

<221> misc_feature

<222> (1)..(3)

<223> NNN=GAA OR CAG

<400> 70

nnngtgeaat tggtteagte tggcgcggaa gtgaaaaaac cgggcagcag cgtgaaagtg 60
agctgcaaag cetceggag cacttttage agctatgcga ttagetgggt gegceaagce 120
cetgggcagg gtetegagtg gatgggegge attatteega tttttggcac ggegaactac 180
gegcagaagt tteagggeeg ggtgaccatt accgeggatg aaagcaccag caccgegtat 240
atggaactga geacetggg tagecagaagat acqqeedtgt attattqcqc geqtqattqq 300

ggccaaggca ccctggtgac ggttagctca gc

<210> 71

<211> 359 <212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide seguence of a VH domain

<400> 71

agctgcaaag cctccggagg cacttttagc agctatgcga ttagctgggt gcgccaagcc 120
cctgggcagg gtctcgagtg gatgggcgg attattccga tttttggcac ggcgaactac 180
gcgcagaagt ttcagggccg ggtgaccatt accgcggatg aaagcaccag caccgcgtat 240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtgataat 300

caqqtqcaat tqqttcaqtc tqqcqcqgaa qtqaaaaaac cqqqcaqcaq cqtqaaagtg

tggtttaagc ctttttctga tgtttggggc caaggcaccc tggtgacggt tagctcagc

<210> 72

<211> 359 <212> DNA

<213> Artificial Sequence

<220>

<223> polynucleotide sequence of a VH domain

<223> F	отуписте	ocide	sequence of	. a vn doma.	.11			
	72							
caggtgca	at tggtt	cagtc	tggcgcggaa	gtgaaaaaac	cgggcagcag	cgtgaaagtg	60	
agctgcaa	ag cctcc	ggagg	cacttttagc	agctatgcga	ttagctgggt	gegecaagee	120	
cctgggca	agg gtctc	gagtg	gatgggcggc	attattccga	tttttggcac	ggcgaactac	180	
gcgcagaa	gt ttcag	ggccg	ggtgaccatt	accgcggatg	aaagcaccag	caccgcgtat	240	
atggaact	ga gcagc	ctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtgttaat	300	
cattggad	tt atact	tttga	ttattggggc	caaggcaccc	tggtgacggt	tageteage	359	
<211> 3 <212> E <213> F <220>	73 374 DNA Artificia							
<223> p	oolynucle	otide	sequence of	a VH doma:	in			
	73 aat tggtt	cagtc	tggcgcggaa	gtgaaaaaac	cgggcagcag	cgtgaaagtg	60	
agctgcaa	ag cctcc	ggagg	cacttttagc	agctatgcga	ttagctgggt	gcgccaagcc	120	
cctgggca	agg gtctc	gagtg	gatgggcggc	attattccga	tttttggcac	ggcgaactac	180	
gcgcagaa	agt ttcag	ggccg	ggtgaccatt	accgcggatg	aaagcaccag	caccgcgtat	240	
atggaact	ga gcago	ctgcg	tagcgaagat	acggccgtgt	attattgcgc	gcgtggtggt	300	
ggttgggt	tt ctcat	ggtta	ttattatctt	tttgatcttt	ggggccaagg	caccctggtg	360	
acggttag	gct cagc						374	
<211> 3 <212> I <213> I	74 332 DNA Artificia	ıl Sequ	ence					
<220> <223> I	polynucle	otide	sequence of	E a VH doma:	in			
<222> <223> 1	misc_feat (1)(3) NNN=GAA C							
	74 aat tggtt	cagag	cggcgcggaa	gtgaaaaaac	cgggcgcgag	cgtgaaagtg	60	
agctgcaa	ag cctcc	ggata	tacctttacc	agctattata	tgcactgggt	ccgccaagcc	120	

081408-04400.ST25.txt	
cctgggcagg gtctcgagtg gatgggctgg attaacccga atagcggcgg cacgaactac	180
gegeagaagt tteagggeeg ggtgaceatg accegtgata ceageattag cacegegtat	240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtgattgg	300
ggccaaggca ccctggtgac ggttagctca gc	332
<210> 75 <211> 380 <212> DNA <213> Artificial Sequence	
<pre><223> polynucleotide sequence of a VH domain</pre>	
<400> 75 caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg	60
agctgcaaag cctccggata tacctttacc agctattata tgcactgggt ccgccaagcc	120
cctgggcagg gtctcgagtg gatgggctgg attaacccga atagcggcgg cacgaactac	180
gegeagaagt tteagggeeg ggtgaceatg accegtgata ceageattag cacegegtat	240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgtaatatg	300
gettataeta attateagta tgttaatatg eeteattttg attattgggg eeaaggeace	360
ctggtgacgg ttagctcagc	380
<210> 76 <211> 380 <212> DNA <213> Artificial Sequence	
<220> <223> polynucleotide sequence of a VH domain	
<400> 76 caggtgcaat tggttcagag cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg	60
agctgcaaag ceteeggata tacetttace agetattata tgcaetgggt eegecaagee	120
cctgggcagg gtctcgagtg gatgggctgg attaacccga atagcggcgg cacgaactac	180
gcgcagaagt ttcagggccg ggtgaccatg acccgtgata ccagcattag caccgcgtat	240
atggaactga gcagcctgcg tagcgaagat acggccgtgt attattgcgc gcgttctatg	300
aattotacta tgtattggta tottogtogt gttotttttg atcattgggg ccaaggcaco	360
ctggtgacgg ttagctcagc	380

<210> 77 <211> 356

<212>	DNA	001	1400 01100	. DIZJ. CAC		
<213>	Artificial Seq	uence				
<220> <223>	polynucleotide	sequence of a	a VH domai	n		
<400> caggtge	77 caat tggttcagag	cggcgcggaa gi	tgaaaaaac	cgggcgcgag	cgtgaaagtg	60
agctgc	aaag cctccggata	tacctttacc as	gctattata	tgcactgggt	ccgccaagcc	120
cctggg	cagg gtctcgagtg	gatgggctgg at	ttaacccga	atagcggcgg	cacgaactac	180
gcgcaga	aagt ttcagggccg	ggtgaccatg a	cccgtgata	ccagcattag	caccgcgtat	240
atggaa	ctga gcagectgcg	tagcgaagat a	cggccgtgt	attattgcgc	gcgtgatttt	300
cttggt	tatg agtttgatta	ttggggccaa g	gcaccctgg	tgacggttag	ctcagc	356
<210> 78 <211> 380 <212> DNA 2:23> Artificial Sequence						
<220> <223>	polynucleotide	sequence of a	a VH domai	n ,		
<400> caggtge	78 caat tggttcagag	cggcgcggaa gt	tgaaaaaac	cgggcgcgag	cgtgaaagtg	60
agetge	aaag cctccggata	tacctttacc ac	gctattata	tgcactgggt	ccgccaagcc	120
cctggg	cagg gtctcgagtg	gatgggctgg at	ttaacccga	atageggegg	cacgaactac	180
gegeage	aagt ttcagggccg	ggtgaccatg ac	cccgtgata	ccagcattag	caccgcgtat	240
atggaad	ctga gcagcctgcg	tagcgaagat ad	cggccgtgt	attattgcgc	gcgttattat	300
ggttcti	tctc tttatcatta	tgtttttggt g	gttttattg	attattgggg	ccaaggcacc	360
ctggtgacgg ttagctcagc 380						
<210><211><211><212><213>	79 380 DNA Artificial Seq	uence				
<220> <223>	polynucleotide	sequence of a	a VH domai	n		
<400> caggtgo	79 caat tggttcagag	cggcgcggaa gt	tgaaaaaac	egggegegag	cgtgaaagtg	60
agctgca	aaag cctccggata	tacctttacc ag	gctattata	tgcactgggt	ccgccaagcc	120
cctggg	cagg gtctcgagtg	gatgggctgg at	ttaacccga	atageggegg	cacgaactac	180

gcgcagaagt ttcagggccg	081408-04400.ST25.txt ggtgaccatg accegtgata ccagcattag caccgcgtat	240
atggaactga gcagcctgcg	tagegaagat acggeegtgt attattgege gegtggttat	300
tggtatgctt attttactta	tattaattat ggttattttg ataattgggg ccaaggcacc	360
ctggtgacgg ttagctcagc		380
<210> 80 <211> 383 <212> DNA <213> Artificial Segr	uence	
<220> <223> polynucleotide	sequence of a VH domain	
<400> 80 caggtgcaat tggttcagag	cggcgcggaa gtgaaaaaac cgggcgcgag cgtgaaagtg	60
agctgcaaag cctccggata	tacctttacc agctattata tgcactgggt ccgccaagcc	120
cctgggcagg gtctcgagtg	gatgggctgg attaacccga atagcggcgg cacgaactac	180
gcgcagaagt ttcagggccg	ggtgaccatg acccgtgata ccagcattag caccgcgtat	240
atggaactga gcagcctgcg	tagegaagat acggeegtgt attattgege gegtaettgg	300
cagtattctt attttatta	tettgatggt ggttattatt ttgatatttg gggccaaggc	360
accctggtga cggttagctc	age	383
<210> 81 <211> 335 <212> DNA <213> Artificial Seq	uence	
<220> <223> polynucleotide	sequence of a VH domain	
<220> <221> misc_feature <222> (1)(3) <223> NNN=GAA OR CAG		
<400> 81 nnngtgcaat tgaaagaaag	cggcccggcc ctggtgaaac cgacccaaac cctgaccctg	60
acctgtacct tttccggatt	tagcetgtec acgtetggcg ttggcgtggg ctggattcgc	120
cageegeetg ggaaageeet	cgagtggctg gctctgattg attgggatga tgataagtat	180
tatagcacca gcctgaaaac	gcgtctgacc attagcaaag atacttcgaa aaatcaggtg	240
gtgctgacta tgaccaacat	ggacccggtg gatacggcca cctattattg cgcgcgtgat	300

tggggccaag gcaccetggt gacggttage tcage Page 38 335

<210><211><211><212><213>	82 392 DNA Artificial Sequence	
<220> <223>	polynucleotide sequence of a VH domain	
<400> caggtg	82 gcaat tgaaagaaag cggcccggcc ctggtgaaac cgacccaaac	cctgaccctg 60
acctgt	tacet tttccggatt tagcctgtcc acgtctggcg ttggcgtggg	ctggattcgc 120
cagccg	geetg ggaaageeet egagtggetg getetgattg attgggatga	tgataagtat 180
tatage	cacca geetgaaaac gegtetgaee attageaaag ataettegaa	aaatcaggtg 240
gtgctg	gacta tgaccaacat ggacccggtg gatacggcca cctattattg	cgcgcgttat 300
cattct	ttggt atgagatggg ttattatggt tctactgttg gttatatgtt	tgattattgg 360
ggccaa	aggca ccctggtgac ggttagctca gc	392
<210><211><212><212><213>	DNA	
<220> <223>	polynucleotide sequence of a VH domain	
<220> <221> <222> <223>	(1)(3)	
<400> nnngtg	83 gcaat tgcaacagte tggteeggge etggtgaaac egageeaaac	cctgagcctg 60
acctgt	tgcga tttccggaga tagcgtgagc agcaacagcg cggcgtggaa	ctggattcgc 120
cagtet	teetg ggegtggeet egagtggetg ggeegtaeet attategtag	caaatggtat 180
aacgat	ttatg cggtgagcgt gaaaagccgg attaccatca acccggatac	ttcgaaaaac 240
cagttt	tagee tgeaactgaa eagegtgaee eeggaagata eggeegtgta	ttattgcgcg 300
cgtgat	ttggg gccaaggcac cctggtgacg gttagctcag c	341
-210>	84	

<210> 84 <211> 362 <212> DNA <213> Artificial Sequence

081408-04400.ST25.txt						
<220> <223> polynucleotide sequence of a VH domain						
<400> 84 caggtgcaat tgcaacagtc tggtccgggc ctggtgaaac cgagccaaac cctgagcctg	60					
acctgtgcga tttccggaga tagcgtgagc agcaacagcg cggcgtggaa ctggattcgc	120					
cagteteetg ggegtggeet egagtggetg ggeegtaeet attategtag caaatggtat	180					
aacgattatg cggtgagcgt gaaaagccgg attaccatca acccggatac ttcgaaaaac	240					
cagtttagcc tgcaactgaa cagcgtgacc ccggaagata cggccgtgta ttattgcgcg	300					
cgttcttatt atcctgattt tgattattgg ggccaaggca ccctggtgac ggttagctca	360					
gc	362					
<210> 85 <211> 109 <212> PRT <213> Artificial Sequence						
<220> <223> polypeptide sequence of a VL domain						
<400> 85						
Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 15 15						
Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 25 30						
Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr $_{\mbox{\scriptsize 35}}$ $_{\mbox{\scriptsize 40}}$						
Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 60						
Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 65 70 75 80						
Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Ser Ala Asp Tyr 85 90 95						
Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 .						
<210> 86 <211> 110						

<212> PRT <213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 86

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln 1 $$ 5 $$ 10 $$ 15

Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 35 40 45

Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe 50 60

Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 65 70 75 80

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser His His Phe Tyr 85 90 95

Glu Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105 110

<210> 87

<211> 108 <212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 87

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 5 10 15

Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala 20 25 30

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser
Page 41

Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 70

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Phe Asp Phe Ala Val

Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 105

55

<210> 88

<223> polypeptide sequence of a VL domain

<400> 88

Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly

Glu Arg Ala Thr Ile Asn Cys Arg Ser Ser Gln Ser Val Leu Tyr Ser 25

Ser Asn Asn Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln

Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val

Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr

Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln

Tyr Asp Ser Ile Pro Tyr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105

Lys Arg Thr

<210> 89 <211> 110

<212> PRT <213> Artificial Seguence

<223> polypeptide seguence of a VL domain

<400> 89

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu

Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Met Ser Asn Tyr Pro

Asp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 100

<210> 90 <211> 90 <211> 112 <212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 90

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln

Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu 40

Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe Page 43

Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu 70

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Asn Asn

Ser Asp Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln

<210> 91

<211> 109 <212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 91

Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly

Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Gly Ile Ser Ser Tyr

Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile

Tyr Ala Ala Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 75

Glu Asp Phe Ala Val Tyr Tyr Cys Phe Gln Tyr Gly Ser Ile Pro Pro 90

Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 100

<210> 92

<211> 110 <212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 92

Asp Ile Val Leu Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly 1 $$ 10 $$ 15

Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Val Ser Ser Ser 20 25 30

Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45 \hspace{1.5cm}$

Ile Tyr Gly Ala Ser Ser Arg Ala Thr Gly Val Pro Ala Arg Phe Ser 50

Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu 65 707575 80

Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Thr Asn Asn Ala Pro $85 \hspace{1cm} 90 \hspace{1cm} 95 \hspace{1cm} 95 \hspace{1cm}$

Val Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 100 110 115 110

<210> 93

<211> 108

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VL domain

<400> 93

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln 1 $$ 5 $$ 10 $$ 15

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 60

As n Ser Gly As n Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu Page 45

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Tyr Phe Lys Leu Val 95

Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln

<210> 94

<211> 112 <212> PRT

<213> Artificial Sequence

65

<223> polypeptide sequence of a VL domain

<400> 94

Asp Ile Ala Leu Thr Gln Pro Ala Ser Val Ser Gly Ser Pro Gly Gln

Ser Ile Thr Ile Ser Cys Thr Gly Thr Ser Ser Asp Val Gly Gly Tyr

Asn Tyr Val Ser Trp Tyr Gln Gln His Pro Gly Lys Ala Pro Lys Leu

Met Ile Tyr Asp Val Ser Asn Arg Pro Ser Gly Val Ser Asn Arg Phe

Ser Gly Ser Lys Ser Gly Asn Thr Ala Ser Leu Thr Ile Ser Gly Leu

Gln Ala Glu Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Met Tyr

Asn Tyr Ile Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln 100 105

<210> 95

<211> 109 <212> PRT

<213> Artificial Sequence

<223> polypeptide sequence of a VL domain

<400> 95

Asp Ile Glu Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln

Thr Ala Arg Ile Ser Cys Ser Gly Asp Ala Leu Gly Asp Lys Tyr Ala

Ser Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr

Asp Asp Ser Asp Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser

Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Gly Thr Gln Ala Glu 70

Asp Glu Ala Asp Tyr Tyr Cys Gln Ser Tyr Asp Gly Pro Asp Leu Trp

Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln

<210> 96

<211> 90
<211> 118
<212> PRT
<213> Artificial Sequence

<223> polypeptide sequence of a VH domain

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys Page 47

Ala Arg Asp Phe Leu Gly Tyr Glu Phe Asp Tyr Trp Gly Gln Gly Thr 100 105

Leu Val Thr Val Ser Ser 115

<210> 97

<211> 126 <212> PRT

<213> Artificial Sequence

<223> polypeptide sequence of a VH domain

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys

Ala Arg Tyr Tyr Gly Ser Ser Leu Tyr His Tyr Val Phe Gly Gly Phe 100

Ile Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 120

<210> 98

<211> 130 <212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide seguence of a VH domain

<400> 98

Gln Val Gln Leu Lys Glu Ser Gly Pro Ala Leu Val Lys Pro Thr Gln

Thr Leu Thr Leu Thr Cys Thr Phe Ser Gly Phe Ser Leu Ser Thr Ser

Gly Val Gly Val Gly Trp Ile Arq Gln Pro Pro Gly Lys Ala Leu Glu

Trp Leu Ala Leu Ile Asp Trp Asp Asp Asp Lys Tyr Tyr Ser Thr Ser

Leu Lys Thr Arg Leu Thr Ile Ser Lys Asp Thr Ser Lys Asn Gln Val

Val Leu Thr Met Thr Asn Met Asp Pro Val Asp Thr Ala Thr Tyr Tyr

Cys Ala Arg Tyr His Ser Trp Tyr Glu Met Gly Tyr Tyr Gly Ser Thr 100 105

Val Gly Tyr Met Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val 120

Ser Ser 130

<210> 99

<210> 35
<211> 119
<212> PRT
<213> Artificial Sequence

<223> polypeptide sequence of a VH domain

<400> 99

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr 20 25

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met Page 49

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys

Ala Arg Asp Asn Trp Phe Lys Pro Phe Ser Asp Val Trp Gly Gln Gly 105

Thr Leu Val Thr Val Ser Ser 115

<210> 100

<211> 119 <212> PRT <213> Artificial Sequence

<220>

<223> polypeptide sequence of a VH domain

<400> 100

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 40

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr 70

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys

Ala Arg Val Asn His Trp Thr Tyr Thr Phe Asp Tyr Trp Gly Gln Gly 100 105

Thr Leu Val Thr Val Ser Ser

<210> 101

<211> 126

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VH domain

<400> 101

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 $$ 5 $$ 10 $$ 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 $^{\circ}$ 90 $$ 95

Ala Arg Gly Tyr Trp Tyr Ala Tyr Phe Thr Tyr Ile Asn Tyr Gly Tyr 100 105 110

Phe Asp Asn Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 $$\rm 120$$

<210> 102

<211> 124

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VH domain

<400> 102

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ser Page 51

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Gly Thr Phe Ser Ser Tyr

Ala Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met

Gly Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe

Gln Gly Arg Val Thr Ile Thr Ala Asp Glu Ser Thr Ser Thr Ala Tyr

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys

Ala Arg Gly Gly Gly Trp Val Ser His Gly Tyr Tyr Tyr Leu Phe Asp 100 105

Leu Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

<210> 103

<211> 127

<212> PRT

<213> Artificial Sequence

<220>

<223> polypeptide sequence of a VH domain

<400> 103

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 75 Page 52

Met Glu Leu	Ser Ser L	eu Arg Ser	Glu Asp 90	Thr Ala	Val Tyr	Tyr Cys 95	
Ala Arg Thr	Trp Gln T	r Ser Tyr	Phe Tyr 105	Tyr Leu	Asp Gly 110	Gly Tyr	
Tyr Phe Asp 115	Ile Trp G	ly Gln Gly 120	Thr Leu	Val Thr	Val Ser 125	Ser	
<210> 104 <211> 126 <212> PRT <213> Artif	<211> 126 <212> PRT						
<220> <223> polyp	peptide se	quence of	a VH doma	ain			
<400> 104							
Gln Val Gln 1	Leu Val G 5	ln Ser Gly	Ala Glu 10	Val Lys	Lys Pro	Gly Ala 15	
Ser Val Lys	Val Ser C	ys Lys Ala	Ser Gly 25	Tyr Thr	Phe Thr	Ser Tyr	
Tyr Met His 35	Trp Val A	rg Gln Ala 40	Pro Gly	Gln Gly	Leu Glu 45	Trp Met	
Gly Trp Ile 50	Asn Pro A	sn Ser Gly 55	Gly Thr	Asn Tyr 60	Ala Gln	Lys Phe	
Gln Gly Arg 65	Val Thr M		Asp Thr	Ser Ile 75	Ser Thr	Ala Tyr 80	

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95 Ala Arg Asn Met Ala Tyr Thr Asn Tyr Gln Tyr Val Asn Met Pro His 100 $$105\$

Phe Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 $$\rm 120$$

<210> 105 <211> 126 <212> PRT

<213> Artificial Sequence

<223> polypeptide sequence of a VH domain

<400> 105

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 . 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Tyr 20 25 30

Tyr Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45

Gly Trp Ile Asn Pro Asn Ser Gly Gly Thr Asn Tyr Ala Gln Lys Phe 50 55 60

Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Ile Ser Thr Ala Tyr 65 70707580

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

Ala Arg Ser Met Asn Ser Thr Met Tyr Trp Tyr Leu Arg Arg Val Leu 100 105 110

Phe Asp His Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120 125

<210> 106

<211> 120

<212> PRT <213> Artificial Sequence

<220>

<223> polypeptide sequence of a VH domain

<400> 106

Gln Val Gln Leu Gln Gln Ser Gly Pro Gly Leu Val Lys Pro Ser Gln 1 10 15

Thr Leu Ser Leu Thr Cys Ala Ile Ser Gly Asp Ser Val Ser Ser Asn 20 25 30

Ser Ala Ala Trp Asn Trp Ile Arg Gln Ser Pro Gly Arg Gly Leu Glu 35 40 45

Trp Leu Gly Arg Thr Tyr Tyr Arg Ser Lys Trp Tyr Asn Asp Tyr Ala 50

Val Ser Val Lys Ser Arg Ile Thr Ile Asn Pro Asp Thr Ser Lys Asn 65 70 70 75

Gln Phe Ser Leu Gln Leu Asn Ser Val Thr Pro Glu Asp Thr Ala Val 85 90 95

Tyr Tyr Cys Ala Arg Ser Tyr Tyr Pro Asp Phe Asp Tyr Trp Gly Gln $100 \ 105 \ 110$

Gly Thr Leu Val Thr Val Ser Ser 115 120