In this work, we consider the reinforcement learning setting where an agent interacts with an environment ε over a number of discrete time steps. At each time step t, the agent receives a state s_t and selects an action a_t according to its policy π , which maps states s_t to actions a_t . In return, the agent receives a scalar reward r_t and the next state s_{t+1} . This process continues until the agent reaches a terminal state. The return $R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}$ is the total accumulated and discounted reward from time step t. The objective of the agent is to maximize the expected return from each state s_t .

Policy based models parametrize the policy $\pi(a|s;\theta)$. They work by computing an estimator

$$\hat{g} = \hat{\mathbb{E}}_t [\nabla_\theta \log \pi_\theta(a_t|s_t) \hat{A}_t]$$
 (1)

and plugging it into a stochastic gradient ascent algorithm. \hat{A}_t corresponds to an estimator of the advantage function at time step t.

The initial objective of the agent to learn the policy $\pi(a|s;\theta)$ is augmented so that it will be robust to the value of nuisance parameters $z \in Z$ which remain unknown at test time. A formal way of enforcing this is to require that

$$\pi(a|s,z;\theta) = \pi(a|s,z';\theta) \tag{2}$$

for all $z, z' \in Z$, all values of $a \in A$ and all values of $s \in S$.