TOPIC: MATHEMATICAL REASONING

1. The statement	$p \wedge$	$(q \Leftrightarrow$	r)	is a
------------------	------------	----------------------	----	------

- 1) tautology
- 2) contradiction
- 3) contingency
- 4) none of these

If p,q and r statements with truth values false, true and false respectively, then the truth value of 2. $(\sim p \lor \sim q) \lor r$ is

- 1) true
- 2) false
- 3) false, if r is true
- 4) false, if q is false

 $\sim [(\sim p) \land q]$ is logically equivalent to 3.

- 1) $\sim (p \vee q)$ 2) $\sim \lceil p \wedge (\sim q) \rceil$
- 3) $p \wedge (-q)$
- 4) $p \vee (-q)$

The contrapositive of the statements "if $2^2 = 5$, then I get first class" is 4.

- 1) If I do not get a first class, then $2^2 = 5$
- 2) If I do not get a first class, then $2^2 \neq 5$

- 3) If I get a first class, then $2^2 = 5$
- 4) none of these

The contrapositive of $(p \lor q) \rightarrow r$ is 5.

1) $p \rightarrow (q \lor r)$

2) $r \rightarrow (p \lor q)$

3) $\sim r \rightarrow \sim (p \lor q)$

4) $\sim r \rightarrow (\sim p \land \sim q)$

If x = 5 and y = -2, then x - 2y = 9. The contrapositive of this proposition is 6.

1) If x-2y=9, then $x \neq 5$ or $y \neq -2$

- 2) If x 2y = 9, $x \ne 5$ and $y \ne -2$
- 3) x-2y=9 if and only if x=5 and y=-2
- 4) none of these

7. Which of the following statements is a tautology?

1) $(\sim q \wedge p) \wedge q$

2) $(\sim q \wedge p) \wedge (p \wedge \sim p)$

3) $(\sim q \wedge p) \wedge (p \wedge \sim p)$

4) $(p \wedge q) \wedge (\sim (p \wedge q))$

Negation of the statement $p \rightarrow (q \land r)$ is 8.

- 1) $\sim p \rightarrow \sim (q \lor r)$ 2) $\sim p \rightarrow \sim (q \land r)$
- 3) $(q \wedge r) \rightarrow p$
- 4) $p \wedge (\sim q \vee \sim r)$

The compound statement $p \to (\sim p \lor q)$ is false, then the truth values of p and q are respectively 9.

1) T, T

- 2) T, F
- 3) F,T
- 4) F, F

		~ 4				
10.	Which	of the	followi	ng statem	ients is a	tautology

1)
$$(\sim p \lor q) \sim (p \lor \sim q)$$

2)
$$(\sim p \lor \sim q) \rightarrow p \lor q$$

3)
$$(p \lor \sim q) \land (p \lor q)$$

4)
$$(\sim p \lor \sim q) \lor (p \lor q)$$

11. Which of the Venn diagrams represents the truth of the statement 'No policeman is a thief'

4) None of these

Which of the following is logically equivalent to $\sim (\sim p \Rightarrow q)$? 12.

1) ~
$$p \wedge q$$

2)
$$p \wedge q$$

3)
$$\sim p \land \sim q$$
 4) $p \land \sim q$

4)
$$p \wedge \sim q$$

Which of the following is true? 13.

1)
$$\sim (p \Leftrightarrow q) \equiv [\sim (p \Rightarrow q) \land \sim (q \Rightarrow p)]$$

2)
$$p \Rightarrow q \equiv p \Rightarrow q$$

3)
$$\sim (p \Rightarrow \sim q) \equiv \sim p \wedge q$$

$$4) \sim (\sim p \Longrightarrow \sim q) \equiv \sim p \wedge q$$

If $(p \land \neg r) \land (\neg p/q)$ is false, then the truth values of p, q and r, respectively 14.

- 1) T. F and F
- 2) F. F and T
- 3) F, T and T
- 4) T. F and T

Which of the following is true for any two statements p and q? 15.

1)
$$\sim [p \lor (\sim q)] \equiv (\sim p) \land q$$

$$2) \ (p \lor q) \lor (\sim p) \land q$$

3)
$$(p \land q) \land (\sim q)$$
 is a contradiction

4)
$$\sim [p \land (\sim p)]$$
 is a tautology

16. The contrapositive of $(p \lor q)r$ is

1)
$$\sim r \sim p \land \sim q$$

2)
$$r(n \vee a)$$

2)
$$r(p \lor q)$$
 3) $\sim r(p \lor q)$

4)
$$p(q \vee r)$$

Which of the following is the inverse of the proposition "If a number is a prime then it is odd"? 17.

- a) If a number is not a prime then it is odd
- b) If a number is a prime then it is odd
- c) If a number is not odd then it is a prime
- d) If a number is not odd then it is not a prime

18.	In the truth table for the statement $(p \to q) \leftrightarrow (\sim p \lor q)$, the last column has the truth value in the
	following order

1)TTTT

2) FTFT

3) TTFF

4) FFFF

19. Which of the following is false?

1) $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$ is a contradiction

2) $p \lor (\sim p)$ is a tautology

3) $\sim (\sim p) \Leftrightarrow p$ is a tautology

4) $p \land (\sim p)$ is a contradiction

Which one of the following statements is not a false statement? 20.

1) p: Each radius of a circle is a chord of the circle

2) q: Circle is a particular case of an ellipse

3) $r:\sqrt{13}$ is a rational number

4) s: The centre of a circle bisects each chord of the circle

21. Which ven diagram represents the truth of the statement 'No child is naughty where, U is the universal set of human beings C is the set of children and N is set of naughty persons?

4)None of these

The Boolean expression p and $(p \land \neg q) \lor q \lor (\neg p \land q)$ is equivalent to 22.

1) $p \vee q$

2)P 3)q 4) ~ p

23. Which of the following is a statement?

1)
$$\sim (p \lor q) \equiv p \lor \sim q$$

2)
$$(p \Rightarrow q) \equiv q \Rightarrow p$$

3)
$$\sim (p \Rightarrow q) \equiv p \land \sim q$$

4)
$$\sim (p \lor q) \equiv \sim p \land \sim q$$

24. The contrapositive of the statement "If i become a teacher then i will open a school" is

1) If I will not open a school, then I will not become a teacher

2) If I will open a school, then I will not become a teacher

3) If I will not open a school, then I will become a teacher

4)None of these

The contrapositive of statement of "If $x^2 = 25$, then (x = 5 or x = -5) is 25.

1) If $x^2 \neq 25$, then $x \neq 5$ and $x \neq 5$ 2) If $x \neq 5$ or $x \neq -5$, then $x^2 = 25$

3) $x \neq 5$ and $x \neq -5$ then $x^2 \neq 25$

4) If $x \neq 5$ and $x \neq -5$, then $x^2 = 25$

26.
$$\sim [\sim p \land (p \Leftrightarrow q)] =$$

1)
$$q \wedge p$$

2)
$$p \lor q$$
 3) ~ p

3)
$$\sim p$$

$$4) \sim q$$

27. The converse of
$$(p \land (\sim q)) \Rightarrow r$$
 is

1)
$$\sim r \Rightarrow (\sim p \lor q)$$

1)
$$\sim r \Rightarrow (\sim p \lor q)$$
 2) $r \Rightarrow (\sim p \land \sim q)$ 3) $(\sim p \lor q) \Rightarrow \sim r$

3)
$$(\sim p \lor q) \Rightarrow \sim r$$

28. The negation of
$$x \in A \cap B \Rightarrow (x \in A \text{ and } x \in B)$$
 is

1)
$$x \in A \cup B \Rightarrow (x \in A \text{ or } x \in B)$$

2)
$$x \in A \cap B$$
 or $(x \in A$ and $x \in B)$

3)
$$x \in A \cap B$$
 and $(x \notin A \text{ or } x \notin B)$

4)
$$x \notin A \cap B$$
 and $(x \in A \text{ and } x \in B)$

29. Consider the logical statements p and Q make a truth table for
$$\sim P \wedge Q$$

1)				
1)	P	Q	~ P	$\sim P \wedge Q$
	Т	Т	F	F
	Т	F	F	F
	F	Т	Т	F
	F	F	Т	F

2)	P	Q	~ P	$\sim P \wedge Q$
	-	•	1	- · · · £
	T	F	F	F
	T	F	F	F
	F	F	T	F
	F	F	T	F

2)				
3)	P	Q	~ P	$\sim P \wedge Q$
			_	~
	T	T	F	F
	Т	Т	F	F
	F	Т	F	F
	Т	Т	T	F

4)	P	Q	~ P	$\sim P \wedge Q$
")	Т	T	F	F
	F	F	F	F
	Т	Т	Т	F
	F	F	Т	F

30. Which of the following statement is a contradiction

1)
$$(\sim p) \land (p \land \sim q)$$

2)
$$p \land \sim q$$

3) ~
$$p \wedge q$$

4)
$$p \wedge q$$

1.

р	q	r	$q \Leftrightarrow r$	$p \land (q \Leftrightarrow r)$
Т	F	F	Т	T
Т	F	T	F	F
Т	T	F	F	F
Т	Т	Т	Т	T
F	F	F	Т	F
F	F	Т	F	F
F	Т	F	F	F
F	T	Т	Т	F

2.

Let
$$S: (\sim p \lor \sim q) \lor r$$

 $\Rightarrow S: (\sim F \lor \sim T) \lor F$
 $S: (T \lor F) \lor F = T$

Hence, (3) is the correct answer

3.
$$\sim [(\sim p) \land q] \equiv \sim (\sim p) \lor \sim q \equiv p \lor (\sim q)$$

4. Let p and q be two propositions given by $p: 2^2 = 5, q: I$ get 1^{st} class

The given statement is $p \rightarrow q$.

The contrapositive of this statement is $\sim q \rightarrow \sim p$

i.e., If I do not get first class, then $2^2 \neq 5$.

5. We know that the contrapositive of $p \to q$ is $\sim q \to \sim p$. Therefore, contrapositive of $(p \lor q) \to r$ is $\sim r \to \sim (p \lor q)$.

6. Let p, q and r be three propositions given by p: x = 5, q: y = -2 and r: x - 2y = 9

Then, the given statement is $(p \land q) \rightarrow r$

Its contrapositive is $\sim r \rightarrow \sim (p \land q)$

i.e.,
$$\sim r \rightarrow \sim p \lor \sim q$$

i.e., If
$$x - 2y \neq 9$$
, then $x \neq 5$ or $y \neq -2$.

7. We have

$$(\sim q \land p) \land q \cong (\sim q \land q) \land p \cong c \land p \cong c$$

So, statement in option (1) is a contradiction.

$$(\sim q \land p) \land (p \land \sim p) \cong (\sim q \land p) \land c \cong c$$
, which is a contradiction

$$(\sim q \land p) \lor \cong (p \lor \sim p) \cong (\sim q \land p) \land t \cong t$$
, which is a tautology.

$$(p \land q) \land (\sim (p \land q)) \cong c$$
 is a contradiction.

8. We know that $\sim (p \vee q) \cong p \wedge -q$

$$\sim (p \rightarrow (q \land r)) \cong p \land (\sim (q \land r))$$

$$\sim (p \rightarrow (q \land r)) \cong p \land (\sim q \lor \sim r)$$
 (by demorgan's laws)

9. We know that $p \rightarrow q$ is false only when p is true and q is false. Therefore,

$$p \rightarrow (\neg p \lor q)$$
 is false only when p is true and $(\neg p \lor q)$ is false

Now , $\sim p \vee q$ is false if q is false, because $\sim p$ is false

Hence, $p \rightarrow (\neg p \lor q)$ is false only when p is true and q is false

10. The truth table of $\sim (p \lor \sim q) \lor (p \lor q)$ is as shown below

p	9	~ p	~ q	$p \vee q$	~ p v ~ q	$(\sim p \vee \sim q) \vee (p \vee q)$
T	T	F	F	T	F	T
T	F	F	T	T	T	T
F	T	T	F	T	T	T
F	F	T	T	F	F	T

11. No policeman is a thief means $P \cap T = \phi$

That is, there is no common elements (area) between P and T SO

12. Since
$$\sim (p \Rightarrow q) = p \land \sim q$$

$$\sim (\sim p \Rightarrow q) = \sim p \land \sim q$$

13.
$$\sim (p \Rightarrow q) p \land \sim q$$

$$\sim$$
 $(\sim p \Rightarrow \sim q) \equiv p \land \sim (\sim q) \equiv p \land q$

14.

p	q	r	~p	~ r	$p \wedge \sim r$	~p \(\sq \)	$(p \land \sim r)$ $\Rightarrow (\sim p \lor q)$
T	T	Т	F	F	F	T	Т
T	T	F	F	Т	T	T	T
Т	F	Т	F	F	F	F	T .
T	F	F	F	T	T	F	F
F	T	Т	T	F	F	T	Т
F	Т	F	Т	Т	F	T	T
F	F	Т	Т	F	F	T	T
F	F	F	Т	Т	F	Т	T

p	q	~ p	~q	$p \vee -q$	$\sim (p \vee \sim q)$	$\sim p \wedge q$
T	T	F	F	Т	F	F
T	F	F	Т	Т	F	F
F	Т	Т	F	F	T	Т
F	F	Т	Т	Т	F	F

15.

16. Contra positive of $p \Rightarrow q$ is $\sim q \Rightarrow \sim p$

Contra positive of $(p \lor q) \Rightarrow r$ is

$$-r \Rightarrow \sim (p \land q), i.e \sim r \Rightarrow (\sim p \lor \sim q)$$

$$So(\sim q \land p) \equiv (q \Rightarrow p)$$

17. If p:A number is a prime

Q: It is odd

We have $p \Rightarrow q$

The inverse of q is $\sim p \Rightarrow \sim q$

Ie, if a number is not a prime then it is not odd

18.

p	q	$p \rightarrow q$	~ p	$\sim p \vee q$	$(p \to q) \leftrightarrow (\sim p \lor q)$
T	T	T	F	T	4 T
T	F	F	F	F	T
F	T	T	T	T	T
F	F	T	T	T	T

- 19. (a) $p \Rightarrow q$ is logically equivalent to $\sim p \Rightarrow \sim q$, therefore, $(p \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$ is a tautology but not a Contradiction so
- 20. We know that, equation of an ellipse is given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

If we take a=b, then we get $x^2 + y^2 = a^2$ which satisfies all the conditions of circle.

Circle is the particular case of an ellipse Hence,(b) is the correct answer

21. No child is naughty means $C \cap N = \phi$

i.e, there is no common elements between \boldsymbol{C} and \boldsymbol{N} .

Hence,(a) is the correct answer

22.

$$[(p \land \neg q) \lor q] \lor (\neg p \land q) = (p \lor q) \land (\neg q \lor q) \lor (\neg p \land q)$$

$$= (p \lor q) \land t \lor (\neg p \land q)$$

$$= p \lor q \land t$$

$$= p \lor q$$

- 23. Since, $p \Rightarrow q = p \land q$ $\sim (p \Rightarrow q) = p \land \sim q$
- 24. Let p:I become a teacher, q:I will open a school

Contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$

If I will not open a school, then I will not become a teacher

25. Hence $P: x^2 = 25; q: x = 5 \text{ or } x = -5$

The given statement of the form $P \Rightarrow (q \lor r)$

THE CONTRA POSITIVE OF $p \Rightarrow (q \lor r) \equiv (q \lor r) \Rightarrow p$

ii) if $x \neq 5$ and $x \neq -5$ then $x^2 \neq 25$

26.

$$\sim [\sim p \land (p(=)q)] = p \lor \sim (p(=)q)$$

$$= p \lor \sim [(p(=)q) \land (q \to p)]$$

$$= [p \lor \sim [(p \land \sim q)] \lor (q \land \sim p)]$$

$$= p \lor (q \land \sim p)]$$

$$= (p \lor q) \land (p \lor \sim p)$$

$$= (p \lor q)$$

$$(p \land \neg q) \Rightarrow r = r \Rightarrow (p \land (\neg q)$$

$$= \neg r \lor (p \land \neg q)$$
27. The converse of
$$= (p \land \neg q) \lor (\neg r)$$

$$= [\neg (\neg p \lor q)] \lor (\neg r)$$

$$= (\neg (p \lor q) \Rightarrow \neg r)$$

$$x \in A \cap B$$
; $Q : x \in A \ AND \ x \in B$

28. Let
$$\sim [p \rightarrow q] = \sim (\sim p \lor q) = p \land \sim q$$

ie. $x \in A \cap B$ and $(x \in A \text{ or } x \in B)$

29.

P	Q	~ P	$\sim P \wedge Q$
Т	Т	F	F
Т	F	F	F
F	Т	Т	F
F	F	Т	F

30.

P	Q	~ P	~ <i>q</i>	$p \land \sim q$	$(\sim p) \land (p \land \sim q)$
T	T	F	F	F	F
F	T	T	F	F	F
T	F	F	T	T	F
F	F	T	T	F	F

MATHS-A KEY									
1	2	3	4	5	6	7	8	9	10
3	3	4	2	3	1	3	4	2	4
11	12	13	14	15	16	17	18	19	20
2	3	4	1	1	2	4	1	1	2
21	22	23	24	25	26	27	28	29	30
1	1	3	1	3	2	3	3	1	1