PHYS/ASTR-5150 Spring 2018

Homework Set #1

Due 5 pm Thursday, Jan. 26, 2018

Problem 1:

Compute the pressure, in atmospheres, exerted by a thermonuclear plasma on its container. Assume $k_B T_e = k_B T_i = 20 \text{ keV}$, $n=10^{14} \text{ cm}^{-3}$, and $p=n k_B (T_i + T_e)$.

Problem 2:

Consider two infinite, parallel plates at $x=\pm d$, set at potential $\phi=0$. The space between them is <u>uniformly</u> filled by a 1-species gas of density n of particles with charge q. Find the potential distribution $\phi(x)$ between the plates.

Problem 3:

In laser fusion, the core of a small pellet of DT plasma is compressed to a density of $n=10^{27}\,\mathrm{cm}^{-3}$ at a temperature of 50,000,000 K. Estimate the number of particles in a Debye sphere in this plasma.

Problem 4:

Assuming an isothermal atmosphere at $k_BT = 20$ C, estimate by what factor the atmospheric pressure in Boulder is lower than in New York.

Problem 5:

Show that, in a non-relativistic plasma ($kT_e << m_e \, c^2$), the mutual Coulomb (electrostatic) force between two typical nearby electrons is much stronger than their mutual Lorentz (magnetic) force.