Movimento de Robos Grafos de Visibilidade

João Comba

Problema

Problema

Espaço de trabalho

Espaço de trabalho

Espaço de Configuração

Espaço dos parâmetros de um robô R

$$(x, y, \Phi) \rightarrow R(x, y, \Phi)$$

Espaço de Configuração

Espaço dos parâmetros de um robô R

 $(x, y, \Phi) \rightarrow R(x, y, \Phi)$

Espaço de Configuração Proibido

Espaço dos parâmetros de um robô R onde o robô colide com o ambiente

Espaço de Configuração Livre

Espaço dos parâmetros de um robô R onde o robô não colide <u>com o ambiente</u>

Espaço de Configuração Obstáculos

Espaço dos parâmetros dos obstáculos mapeados para o espaço de configuração

Problema Mais Simples (Robos Pontuais)

Problema Mais Simples (Robos Pontuais)

Decomposicao Trapezoidal

Problema Mais Simples (Robos Pontuais)

Remover Paredes Internas

Criar um mapa de ruas

Adicionar o centro de cada trapezoide

Criar um mapa de ruas

Adicionar vertices sobre as extensoes verticais

Criar um mapa de ruas

Criar arestas conectando centros-fronteira

Restringir o movimento do robo ao mapa de ruas

Achar as celulas contendo a posicao inicial e final

Mover o robo para o centro da celula

Fazer uma busca em largura ate' encontrar o vertice contendo a posicao final

Mover ate' a posicao final

Robôs Poligonais/Translacionais

Robots Poligonais/Translacionais

Robots Poligonais/Translacionais

Caminho mais curto?

Caminho mais curto?

Caminho mais curto?

Grafo de Visibilidade

Calculo do Grafo de Visibilidade

Lee: rotational plane sweep

Construct a visibility graph, i.e. a road map based on visibility edges

To do this we perform a rotational plane sweep -- much like a weather radar sweep -- around every vertex in S* (obstacle edges and p, q)

Lee: rotational plane sweep

In the plane sweep, we consider a vertex w visible from v if a ray cast from v in the direction of w doesn't intersect the interior of an obstacle before reaching w

▶ Ray emanating from v rotating in plane

Lee: rotational plane sweep

Finding the visible vertices for each of n vertices takes $O(n^2 \log n)$

Running Dijkstra's SP takes O $(n \log n + k)$, which is less than computing the vertex visibility

 Four cases of sweep ray intersecting multiple vertices