

7 Steps to Specifying a DL205 System

7 steps to help specify a successful system

Before you begin selecting products for your DL205 PLC system, be sure to evaluate all of your application needs and any future growth potential.

Review the DL205 family of products

The DL205 family offers a wide variety of products. Please review the product offering starting on page 369.

Select a CPU, programming tool and cable

The DL205 family offers four CPUs: the D2-260, D2-250-1, D2-240 and D2-230. The WinPLC, a Windows® CE-based CPU, is also covered in this step. Please take the time to understand the features and specifications of each CPU model (i.e. built-in communications ports protocols, instructions, etc.).

To program the DL205 CPUs, choose between the Windows-based *Direct*SOFT32 programming software and PC cable or handheld programmer. The WinPLC requires Entivity Studio or Think & Do Live for programming. CPU-slot slave base controllers are also introduced in this step.

Determine if additional communications ports are needed

If your application requires more than the built-in CPU communications ports, then select the H2-ECOM Ethernet Communications Module or the D2-DCM Serial Communications Module. These modules add more ports for networking or connection to an HMI, etc. The H2-SERIO serial communications module can be used with the WinPLC to add more communications ports.

The following 7 steps will help you specify a DL205 PLC system. They are also covered in more detail on the pages that follow. Your first priority when designing a system should be safety. Please make sure that all of the components in your system will operate within the product's environmental and operating specifications. This desk reference is intended to provide abbreviated product descriptions, benefits and prices. It is not intended to be a substitute for the product manuals.

7 Steps to Specifying a DL205 System

Select the discrete, analog and specialty I/O modules

Since there are several different types of I/O and speciality modules available for the DL205 system, it is important to review the module specifications in detail when selecting them for your system. The hardware specifications for the modules are described at the end of this DL205 section, starting with the speciality modules and followed by the discrete and analog I/O modules.

Choose an I/O configuration method

The DL205 offers several configurations of I/O. Choose among local I/O, local expansion I/O and remote I/O. A DL205 system can be developed using a combination of the configuration arrangements. It is important to understand the octal addressing scheme and I/O module placement restrictions that are described in this step.

Check the power budget

It is very important to verify that the selected CPU and I/O modules will operate within the base power budget. Tables list the power supplied and consumed by each DL205 device. This step also describes base dimensions and mounting requirements.

DL205 Product Family

STEP 1: REVIEW THE DL205 PRODUCT FAMILY

CPUs

D2-260 – 30.4K words total memory 2 communications ports 16 built-in PID loops with auto-tuning D2-250-1 - (Replaces D2-250) 14.8K words total memory 2 communications ports 4 built-in PID loops with auto-tuning D2-240 - 3.8K total memory, 2 communications ports D2-230 - 2.4K total memory 1 communications port

Programming tools

Windows CE CPUs

WinPLC (H2-WPLC*-**)

110/220 VAC (D2-03B-1)

12/24 VDC (D2-03BDC1-1)

DirectSOFT32 Programming Software for Windows (PC-PGMSW or PC-PGM-205) Handheld Programmer (D2-HPP)

3-slot base (includes power supply)

Bases

4-slot base (includes power supply) 110/220 VAC (D2-04B-1) 12/24 VDC (D2-04BDC1-1) 6-slot base (includes power supply) 110/220 VAC (D2-06B-1) 12/24 VDC (D2-06BDC1-1) 125 VDC (D2-06BDC2-1) 9-slot base (includes power supply) 110/220 VAC (D2-09B-1) 12/24 VDC (D2-09BDC1-1) 125 VDC (D2-09BDC2-1)

Local expansion modules

(D2-250-1 or D2-260 using D2-0*B-1 or D2-0*BDC*-1 only) Base expansion module (D2-EM) Expansion base controller module (D2-CM) Expansion base cable (D2-EXCBL-1)

Discrete input modules

DC input

8-pt. 12-24 VDC sink/source (D2-08ND3) 16-pt. 24 VDC sink/source (D2-16ND3) 32-pt. 24VDC sink/source (D2-32ND3) 32-pt. 5-12VDC sink/source (D2-32ND3-2)

Discrete input modules (continued) AC input

8-pt. 110 VAC (D2-08NA-1) 16-pt. 110 VAC (D2-16NA) 8-pt. 220 VAC (D2-08NA-2)

Discrete output modules

DC output 4-pt. 12-24 VDC sink (D2-04TD1)

8-pt. 12-24 VDC source (D2-08TD2) 16-pt. 12-24 VDC sink (D2-16TD1-2) 16-pt. 12-24 VDC source (D2-16TD2-2) 32-pt. 12-24 VDC sink (D2-32TD1) 32-pt. 12-24 VDC source (D2-32TD2)

8-pt. 12-24 VDC sink (D2-08TD1)

AC output

8-pt. 24-140 VAC (F2-08TA) 12-pt. 18-110 VAC (D2-12TA) Relay output 4-pt. 4A/pt (Isolated) (D2-04TRS) 8-pt. 1A/pt (D2-08TR) 8-pt. 10A/pt. (F2-08TR) 8-pt. 7A/pt (Isolated) (F2-08TRS)

8-pt. 18-220 VAC (D2-08TA)

Combination discrete modules

12-pt. 1.5A/pt (D2-12TR)

4-pt. 24 VDC in/4pt Relay Out (D2-08CDR)

Analog modules

Analog input

4-ch. in, 12 bit, current (F2-04AD-1) 4-ch. in, 12 bit, voltage (F2-04AD-2) 8-ch. in, 12 bit, current (F2-08AD-1) 8-ch. in, 12 bit, voltage (F2-08AD-2)

Analog output

2-ch. out, 12 bit, current (F2-02DA-1) 2-ch. out, 16 bit, current (Isolated) (F2-02DAS-1) 2-ch. out, 12 bit, voltage (F2-02DA-2) 2 -ch. out, 16 bit, voltage (Isolated) (F2-02DAS-2) 8-ch. out, 12 bit, current (F2-08DA-1) 8-ch. out, 12 bit, voltage (F2-08DA-2) Combination analog in/out 4-ch. in/2-ch. out, 12 bit, current (F2-4AD2DA-1)

Temperature input

4-ch. in, RTD (F2-04RTD)

4-ch. in, Thermocouple (F2-04THM)

Communications/ networking modules

Ethernet Communications Module (H2-ECOM (-F)) Data Communications Module (D2-DCM)

Remote I/O modules

Ethernet

Ethernet Remote Master Module (H2-ERM(-F)) Ethernet Base Controller (slave) (H2-EBC(-F)) Serial Remote Master Module (D2-RMSM) Remote Slave Module (D2-RSSS)

Specialty modules

Basic CoProcessor (F2-CP128) 8-pt Input Simulator (D2-08SIM) Counter I/O (H2-CTRIO) Counter Interface (D2-CTRINT)

CPU-slot slave controllers

Ethernet Base Controller (H2-EBC) DeviceNet Slave (F2-DEVNETS-1) Profibus Slave (H2-PBC) SDS Slave (F2-SDS)

Operator interface

See the Operator Interface section in this desk reference for a complete line of compatible text and touch panels and configuration software.

Connection systems

See the Connection Systems section in this desk reference for information on **DIN**nector terminal blocks. **ZIP**Link connection systems and other connection accessories for use with the DL205 system.

STEP 2: SELECT THE CPU, PROGRAMMER AND CABLE

There are many things to consider when choosing a CPU, most of which depend on your particular application. The facing page provides a comparison between the CPUs. This section provides a quick summary of the key features for each CPU.

System capacity

System capacity is the ability of the CPU to accommodate a variety of applications. Consider both ladder memory and data registers (V-memory). For ladder memory, most boolean instructions require one word. Some other instructions, such as timers, counters, etc. require two or more words.

Our V-memory locations are 16-bit words and are useful for data storage, etc. If you think you may exceed 256 local I/O points, then select the D2-250-1 or the D2-260 CPU which support local expansion of up to two or four additional bases, respectively.

The D2-240, D2-250-1 and D2-260 support the Ethernet and standard Remote Master module that are used to build a remote I/O network. Port 2 on the D2-250-1 and D2-260 can also serve as a remote I/O master.

Performance

If you are using basic boolean instructions and speed is not the primary concern, then the D2-230 or D2-240 will do the job. For applications that require fast scan times, additional communications or advanced instructions, choose the D2-250-1 or D2-260 CPU. The D2-260 is our fastest CPU for performing even the most basic of math or data instructions, and will provide better overall performance than the other DL205 CPUs.

Programming and diagnostics

Our CPUs offer an incredible array of instructions and diagnostic features that can save you many hours of programming and debug time. From basic boolean contact logic to PID and floating point math, we have it covered! The table on the next page covers some of the basic instruction categories, but for more details, see our complete list of instructions at the end of this section. If you already have *Direct*SOFT32 and/or a Handheld Programmer, you may have to upgrade the software/firmware to accommodate the D2-260.

Built-in CPU communications

Every DL205 CPU provides at least one built-in RS232 communication port. If you're using an operator interface, then you should choose the D2-240, D2-250-1 or D2-260 CPU. The D2-240, D2-250-1 and D2-260 CPUs offer two built-in communication ports. The D2-240 supports our *Direct*NET™ slave protocol on the bottom port, which provides a quick and easy network connection to any DirectNET master. If you need the most flexibility possible, then consider the D2-250-1 or D2-260 CPU. These CPUs offer built-in DirectNET slave support capability on the top and bottom ports, and DirectNet/MODBUS RTU master/slave support on the bottom. The bottom port supports baud rates up to 38.4K baud. The D2-260 provides support for ASCII IN/OUT communications.

If you require more than two ports, we also offer an Ethernet Communications Module that can be used to quickly add a communication port to a DL205 system with a D2-240, D2-250-1 or D2-260 CPU. The D2-DCM module can also be added to these CPUs to provide an additional serial communications port.

The WinPLC brings PLC and PC technologies together by providing a Windows CE operating system environment for the DL205 hardware. See the WinPLC pages later in this section for details on the WinPLC.

D2-260

D2-240

D2-230

370

DL205 CPU Specifications DL205 CPU Specifications

DL205 CPU Comparison						
System Capacity	D2-230	D2-240	D2-250	D2-250-1	D2-260	
Total memory available (words) Ladder memory (words)	2.4K 2048 EEPROM	3.8K 2560 EEPROM	14.8K 7680 Flash	14.8K 7680 Flash	30.4 15872 Flash	
V-memory (words) Battery backup Total CPU memory I/O pts. available (actual I/O pts. depend on I/O configuration method selected) Local I/O (pts.) Local Expansion I/O (pts.)	256 Yes 256 256 none	1024 Yes 896 (320 X + 320 Y + 256 CR) 256 none	7168 Yes 2048 (512 X + 512 Y + 1024 CR) 256 none	7168 Yes 2048 (512 X + 512 Y + 1024 CR) 256 768 (2 exp. bases max)	14592 Yes 8192 (1024 X + 1024 Y + 2048 CR + 2048 GX + 2048 GY) 256 1280 (4 exp. bases max.) (Including local I/O)	
Serial Remote I/O (pts.) Remote I/O channels I/O per remote channel Ethernet Remote I/O Discrete I/O pts.	N/A N/A N/A N/A N/A	896 max. (Including local I/O) 2 2048 (Ilimited to 896) Yes 896 max.	2048 max. (Including local and exp.l/0) 8 (7+1 CPU port) 2048 Yes 2048 max.	(Including local I/O) 2048 max. (Including local and exp.I/O) 8 (7+1 CPU port) 2048 Yes 2048 max.	8192 max. (Including local & exp. I/O) 8 (7+1 CPU port) 2048 Yes 8192	
Analog I/O channels Remote I/O channels I/O per remote channel	N/A N/A N/A	(Including local I/O) Map into V-memory Limited by power budget 16,384 (limited to 896)	(Including local and exp.I/O) Map into V-memory Limited by power budget 16,384 (16 fully expanded H4-EBC slaves using V-memory and bit-of-word instructions)	(Including local and exp.I/O) Map into V-memory Limited by power budget 16,384 (16 fully expanded H4-EBG slaves using V-memory and bit-of-word instructions)	(Including local and exp.I/O) Map into V-memory Limited by power budget 16,384 (16 fully expanded H4-EBC slaves using V-memory and bit-of-word instructions)	
Performance						
Contact execution (boolean) Typical scan (1K boolean)	3.3µs 4-6ms	1.4µs 10-12ms	0.61µs 2ms	0.61µs 1.9ms	0.61µs 1.9ms	
Programming and Diagnostics			-			
RLL Ladder Style RLL ***EVFTOwchart Style (Stages) Run time editing Variable/fixed scan Instructions Control relays Timers Counters Immediate I/O Subroutines For/Next loops Timed Interrupt Integer Math Floating-point Math Trigonometric functions Table Instructions PID Drum Sequencers Bit of Word ASCII Print Real-time clock/calender Internal diagnostics Password security System and user error log Communications	Yes Yes/256 Yes Variable 113 256 64 64 Yes No	Yes Yes/512 Yes Variable 129 256 128 128 128 Yes Yes Yes Yes No	Yes Yes/1024 Yes Variable 172 1024 256 128 Yes	Yes Yes/1024 Yes Variable 174 1024 256 128 Yes	yes Yes/1024 Yes Variable 231 2048 256 256 256 Yes	
Built-in ports	Port 1 RS-232C	Port 1 RS-232C and	Port 1 RS-232C and	Port 1 RS-232C and	Port 1 RS-232C and	
K-sequence (proprietary protocol) Direct MODBUS RTU master/slave ASCII communications Maximum baud rate	Yes No No No 9600	Port 2 RS-232C Yes Yes No No 19.2K port 2	Port 2 RS (232C/422) Yes Yes Yes OUT 38.4K port 2	Port 2 RS (232C/422) Yes Yes Yes OUT 38.4K port 2	Port 2 RS (232C/422/485) Yes Yes Yes IN/OUT 38.4K port 2	

D2-260 Key Features

D2-260: Our most powerful DL205 CPU

Our new D2-260 CPU provides all the capabilities of the other DL205 CPUs (as well as our D4-450 CPU), plus several additional features rarely found in a PLC of this size. With such an incredible array of features, you may be able to replace PLCs costing hundreds (or thousands) more.

4.0 Release higher *Direct*SOFT32[™] is required to program the D2-260. If you're using a handheld programmer, version 2.10 of the handheld programmer firmware will is required. Here are a few key features about the D2-260 CPU:

Local expansion I/O

The D2-260 supports local expansion up to five total bases (one CPU base and four expansion bases). Expansion bases are commonly used when there are not enough slots available in the CPU base, when the base power budget will be exceeded or when placing an I/O base at a location away from the CPU base, but within the expansion cable limits, if desired. All local and expansion I/O points are updated on every CPU scan. Each local expansion base requires the D2-CM module in the CPU slot. The local CPU base requires the D2-EM Expansion Module, as well as each expansion base. For more information on local expansion, refer to the Expansion Modules pages later in this section.

Powerful built-in CPU communications

The D2-260 offers two communications ports that provide a vast array of communication possibilities. The top RJ-12 RS-232C port can be used for programming, connection EZText/EZTouch or DV-1000 operator interface panel, or as a K-sequence or DirectNET slave. The 15-pin bottom port (port 2) supports RS232C or RS422/RS485. This port offers several different protocol options such as:

- K-sequence
- · Direct NET Master/Slave
- MODBUS RTU Master/Slave
- ASCII In/Out Communications

Port 2 can also serve as a remote I/O master. The D2-260 supports the Ethernet Communication module and Data Communication Module for additional communications ports.

D2-260 local expansion system

16 PID loops with auto-tuning

The D2-260 CPU can process up to 16 PID loops directly in the CPU. You can select from various control modes including automatic, manual, and cascade control. There are also a wide variety of alarms including Process Variable, Rate of Change, and Deviation. The loop operation parameters (Process Variable, Setpoint, Setpoint Limits, etc.) are stored in V-memory, which allows easy access from operator interfaces or HMIs. Setup is accomplished with easyto-use setup menus and monitoring views in *Direct*SOFT32 programming.

The auto-tuning feature is easy to use and can reduce setup and maintenance time. Basically, the CPU uses the autotuning feature to automatically determine near optimum loop settings. See the D2-250-1 CPU section for a PID loop control block diagram.

D2-EXCBL-1

straight-through

cable with RJ45

D2-EM

(Category

connectors)

Note: All bases in the system must be (-1) bases.

CPU Status Indicators CPU is in RUN mode

OK or disabled

CPU is OK

Mode Switch

Port 1

9,600 baud Odd parity only

Port 2

CPU is in PROGRAM mode

Battery backup voltage

Battery backup voltage is

CPU internal diagnostics

has detected an error

CPU into RUN Mode

Allows peripherals (HPP. Direct S0FT32)

K-sequence slave, *Direct*NET™ slave Can connect w/HPP, *Direct*\$0FT32, EZText/EZTouch, DV-1000, O/I panels, or any *Direct*NET master

6P6C phone jack connector RS232C

8 data bits one start, one stop asynchronous, half-duplex, DTE

K-sequence slave, *Direct*NET Master/Slave, MODBUS RTU Master/Slave, ASCII IN/OUT, Remote I/O Master

to select the mode of operation

Forces CPU out of RUN mode

CPU power good CPU power failure

D2-260 Key Features

Full array of instructions

The right instruction can greatly simplify your programming task and can save hours of programming time.

The D2-260 supports over 225 powerful instructions, such as:

- Four types of drum sequencers
- · Leading / trailing edge triggered oneshots
- Bit of word manipulation
- Floating point conversions
- Trigonometric functions
- Table instructions
- · ASCII IN/OUT instructions

For a complete list of instructions supported by all DL205 CPUs, see the end of this section.

New MODBUS RTU instructions

The D2-260 CPU supports new easy-touse MODBUS Read/Write instructions that expand our existing MODBUS network instruction capabilities. The MRX or MWX instructions allow you to enter native Modbus addressing in your ladder program with no need to perform octal to decimal conversion. We added Function codes 05, 06 and the ability to read Slave Exception Codes. These flexible instructions allow the user to select the following parameters within one instruction window:

- 584/984 or 484 MODBUS data type
- Slave node (0-247)
- Function code
- · MODBUS starting master / slave memory address
- Number of bits
- Exception code starting address

Examples of MRX and MWX instructions in DirectSOFT 4.0

ZIPLink communications adapter modules

ZIPLink cables and communications adapter modules offer fast and convenient screw terminal connections for the D2-260 bottom port. They are RS232/422 DIP switch selectable. See the Connection Systems section in this desk reference for part numbers and descriptions.

Can connect w/many devices, such as PCs running *DirectSOFT*32, DSData, HMI packages, EZText/EZTouch panels, DV-1000, other O/I panels, any *Direct*NET or MODBUS RTU master or slave, or ASCII devices HD15 connector RS232C/RS422/485 300/1200/4800/9600 19.2K/38.4K baud Odd, even, or no parity Selectable address (1-90. HEX 1 - 5A) 8 data bits, one start, one stop Asynchronous, Half-duplex, DTE **Battery (Optional)** Coin type, 3.0V Lithium battery, 560mA, battery number CR2354 Note: Batteries are not needed for program backup. However, you should order a battery if you have parameters in V-memory that must be maintained in case of a

On-board memory

The D2-260 has 15.5K words of flash memory on board for your program plus 14.2K words of data registers. With flash memory, you don't have to worry about losing the program due to a bad battery.

Built-in remote I/O connection

The bottom port on the D2-260 can be used as a master for serial remote I/O networks. (See the D2-RSSS later in this section for details.

New ASCII communications instructions

The D2-260 CPU supports several new easy-to-use instructions that allow ASCII strings to be read into and written from the PLC communications ports.

Raw ASCII: Port 2 can be used for either reading or writing raw ASCII strings, but not for both.

Embedded ASCII: The D2-260 can decipher ASCII embedded within a supported protocol (K-Sequence, DirectNet, Modbus, Ethernet) via the CPU ports, H2-ECOM or D2-DCM.

Here's how the D2-260 can receive ASCII input strings:

- 1. ASCII IN (AIN) This instruction configures port 2 for raw ASCII input strings with parameters such as fixed and variable length ASCII strings, termination characters, byte swapping options, and instruction control bits. Use barcode scanners, weight scales, etc. to write raw ASCII input strings into port 2 based on the (AIN) instruction's parameters.
- 2. Write embedded ASCII strings directly to V-memory from an external HMI or similar master device via a supported communications protocol using the CPU ports, H2-ECOM or D2-DCM. The AIN instruction is not used in this case.
- 3. If a D2-260 PLC is a master on a network, the Network Read instruction (RX) can be used to read embedded ASCII data from a slave device via a supported communications protocol using port 2, H2-ECOM or D2-DCM. The RX instruction places the data directly into V-memory.

Here's how the D2-260 can write ASCII output strings:

- 1. Print from V-memory (PRINTV) -Use this instruction to write raw ASCII strings out of port 2 to a display panel or a serial printer, etc. The instruction features the starting V-memory address, string length, byte swapping options, etc. When the instruction's permissive bit is enabled, the string is written to port 2.
- 2. Print to V-memory (VPRINT) Use this instruction to create pre-coded ASCII strings in the PLC (i.e. alarm messages). When the instruction's permissive bit is enabled, the message is loaded into a pre-defined Vmemory address location. Then the (PRINTV) instruction may be used to write the pre-coded ASCII string out of port 2. American, European and Asian Time/Date stamps are supported.
- 3. Print Message (PRINT) This existing instruction can be used to create pre-coded ASCII strings in the PLC. When the instruction's permissive bit is enabled, the string is written to port 2. The VPRINT/PRINTV instruction combination is more powerful and flexible than the PRINT instruction.
- 4. If a D2-260 PLC is a master on a network, the Network Write instruction (WX) can be used to write embedded ASCII data to an HMI or slave device directly from V-memory via a supported communications protocol using port 2, H2-ECOM or D2-DCM.

Additional new instructions that help manage the ASCII strings

The following instructions can be very helpful in managing the ASCII strings within the CPU's V-memory:

ASCII Find (AFIND) - Finds where a specific portion of the ASCII string is located in continuous V-memory addresses. Forward and reverse searches are supported.

ASCII Extract (AEX) - Extracts a specific portion (usually some data value) from the ASCII find location or other known ASCII data location.

Compare V-memory (CMPV) - This instruction is used to compare two blocks of V-memory addresses and is usually used to detect a change in an ASCII string. Compared data types must be of the same format (i.e. BCD, ASCII, etc.).

Swap Bytes (SWAPB) - usually used to swap V-memory bytes on ASCII data that was written directly to V-memory from an external HMI or similar master device via a communications protocol. The AIN and AEX instructions have a built-in byte swap feature.

Examples of AIN and VPRINT instructions in DirectSOFT 4.0

D2-250-1 Key Features

D2-250-1 replaces D2-250

Our new D2-250-1 CPU replaces the D2-250 CPU. The D2-250-1 offers all the features and functionality of the D2-250 with the addition of local I/O expansion capability. The D2-250-1 offers an incredible array of features for a CPU that costs so little.

Release 2.1 or higher of *Direct*SOFT[™] is required to program the D2-250-1. Release 4.0 is required if you intend to use local expansion I/O. If you're using a handheld programmer, version 2.10 of the handheld programmer firmware is required. Following are a few key features of the D2-250-1 CPU:

Local expansion I/O

The D2-250-1 supports local expansion up to three total bases (one CPU base and two expansion bases). Expansion bases are commonly used when there are not enough slots available in the CPU base, when the base power budget will be exceeded or when placing an I/O base at a location away from the CPU base, but within the expansion cable limits. All local and expansion I/O points are updated on every CPU scan. Each local expansion base requires the D2-CM module in the CPU slot. The local CPU base requires the D2-EM Expansion Module, as well as each expansion base. For more information on local expansion, refer to the Expansion Modules pages later in this section.

Powerful built-in **CPU** communications

The D2-250-1 offers two communication ports that provide a vast array of communication possibilities. The top RS232C port is for programming, connection to an EZText/EZTouch operator interface panel or DV-1000, or to serve as a DirectNET slave. The 15pin bottom port (port 2) supports RS232C or RS422. This port offers several different protocol options such

K-sequence

CPU

- · Direct NET master/slave
- MODBUS RTU master/slave

Port 2 can also serve as a remote I/O master. The D2-250 supports the Ethernet Communication Module and Data Communication Module for additional communications ports.

D2-250-1 local expansion system

Note: All bases in the system must be (-1) bases.

Four PID loops with auto-tuning

The D2-250-1 CPU can process up to 4 PID loops directly in the CPU. You can select from various control modes including automatic, manual, and cascade control. There are a wide variety of alarms including Process Variable, Rate of Change, and Deviation. The loop operation parameters (Process Variable, Setpoint, Setpoint Limits, etc.) are stored in V-memory, which allows easy access from operator interfaces or HMIs. Setup is accomplished with easyto-use setup menus and monitoring views in *Direct*SOFT32 programming.

The auto tuning feature is easy to use and can reduce setup and maintenance time. Basically, the CPU uses the autotuning feature to automatically determine near optimum loop settings. See the next page for a PID loop control block diagram.

The D2-250-1 offers:

- up to 2 expansion bases
- up to 768 physical I/O points
- up to 30m (98ft.) total expansion system cable

D2-EXCBL-1 (Category 5 straight-through cable with RJ45 connectors)

D2-250-1 Key Features

Full array of instructions

The D2-250-1 supports over 160 powerful instructions, such as:

- Four types of drum sequencers
- Leading and trailing edge triggered oneshots
- Bit of word manipulation
- · Floating point conversions
- 4 PID loops

For a complete list of instructions supported by all DL205 CPUs, see the end of this section.

On-board memory

The D2-250-1 has 7.6K words of flash memory on board for your program plus 7.1K words of V-memory (data registers). With flash memory, you don't have to worry about losing the program due to a bad battery. If you have critical data stored in the capacitor backed V-memory, simply purchase the optional lithium battery (D2-BAT-1) to permanently maintain these parameters.

Built-in remote I/O connection

In addition to providing outstanding communications capabilities, the bottom port on the D2-250-1 can also be a master for remote I/O networks. If you need extra I/O at a remote distance from the CPU, you can use this port to add up to seven of our remote slave stations. (See the D2-RSSS for additional information. later in this section).

DN-15TB

ZIPLink communications adapter modules

ZIPLink cables and communications adapter modules offer fast and convenient screw terminal connections for the D2-250-1 lower port. They are RS232/422 DIP switch selectable. See the Connection Systems section in this desk reference for part numbers and descriptions.

D2-240: our best value DL205 CPU

The D2-240 provides a subset of the D2-250-1's capabilities. If you need a good CPU, with multiple communications ports, and complex math or PID isn't required, then the D2-240 is the CPU for you!

Built-in memory

There is 2.5K of EEPROM program memory in the D2-240. No additional memory is required.

If you have critical data stored in the capacitor backed V-memory, simply purchase the optional lithium battery (D2-BAT) to permanently maintain these parameters as well.

Powerful instructions

The D2-240 instructions cover most of the capability of our more powerful D2-250-1 and allow you to cover a wide variety of applications. Instructions include boolean logic, data manipulation, integer math, interrupts, subroutines, FOR/NEXT loops, etc. For a complete list of instructions, see the back of this section.

Two built-in RS232C communications ports

The D2-240 offers two communication ports. The top port can be used for a direct connection to a personal computer for programming, to our handheld

programmer, EZTouch/EZText panels, or to the DV-1000. The bottom port is a slave-only port and supports our DirectNET $^{\text{\tiny M}}$ or K-sequence protocol at speeds up to 19.2K baud. If you're using an operator interface or if you plan on connecting the system to a network later on, then you can choose the D2-240. The D2-240 also supports the D2-DCM Data Communication Module and the **H2-ECOM** Ethernet Communication Modules.

DL205 spare EEPROM chips

There may be cases where you want to have a spare EEPROM chip available. For example, maybe you need to upgrade a customer's machine with your latest enhancements. You can purchase extra EEPROM chips (two per pack). These can be installed in the CPU (D2-230/D2-240 only) and programmed, or they can be programmed directly with the DL205 handheld programmer.

	D2-EE-1	D2-EE-2
CPU	D2-230	D2-240
CPU Program Storage Capacity	2.0K	2.4K
Writing Cycle Life	10,000	10,000
Write Inhibit	CPU jumper	CPU jumper
Memory Clear Method	Electrical	Electrical

D2-230: our lowest price DL205 CPU

The D2-230 is our most economical CPU in the DL205 product family. If you are looking at the DL205 primarily because of the size or for other reasons that don't require lots of CPU horsepower, then give the D2-230 a try.

Built-in EEPROM memory

There is 2.0K of EEPROM program memory in the D2-230. No additional memory is required.

If you have critical data stored in the capacitor backed V-memory, simply purchase the optional lithium battery (D2-BAT) to permanently maintain these parameters as well.

One built-in communications port

The D2-230 has only one communication port. If you are considering any network connections in the future, you will need the D2-240, D2-250-1 or D2-260 CPU. The extra port may be worth the cost, especially during machine startup or troubleshooting sessions. The D2-230 does not support the Ethernet or Data Communications modules.

Basic instruction set

The D2-230 provides a subset of the D2-240's well-rounded instructions. The D2-230's instructions cover boolean and simple integer math.

D2-230/240 Key Features

The diagram to the right shows the various hardware features found on the D2-230 and D2-240 CPUs.

RUN	ON	tatus Indicators CPU is in RUN mode				
ITON	OFF	CPU is in PROGRAM mode				
BATT	ON	Battery backup voltage is low				
	OFF	Battery backup voltage is OK or				
OPII	011	disabled				
CPU	ON	CPU internal diagnostics has detected an error				
	OFF	CPU is OK				
PWR	ON	CPU power good				
	0FF	CPU power failure				
N	lode Sv	vitch (D2-240 only)				
RUN	Forces	CPU into RUN Mode				
TERM	Allows	peripherals (HPP, <i>Direct</i> SOFT32) to he mode of operation				
	seiect t	· · · · · · · · · · · · · · · · · · ·				
		Port 1				
Protocol		ence slave				
Devices	Can co	nnect w/HPP, <i>Direct</i> SOFT32™, EZTouch, DV-1000,				
	LZ IUNY	LZ IBAYLZ IOUGII, DV-1000,				
Specs	6P6C phone jack connector					
	RS232	6P6C phone jack connector RS232C, 9600 baud Odd parity				
	FIXED S	Fixed station address (1)				
	8 data 1	8 data bits, one stop bit Asynchronous, half-duplex, DTE				
	7 toyrion	Torrodo, riair dapiex, DTE				
	Port	2 (D2-240 only)				
Protocol		ence slave, <i>Direct</i> NET slave				
Devices	Can co	nnect many devices, <i>Direct</i> SOFT32,				
	1000. F	i, HMI packages, <i>Direct</i> Touch, DV- ZTouch/EZText Panels, or any				
	Direct\	ET master				
Specs	6P6C r	hone jack connector				
		00/9600/19.2K baud				
	Odd pa	rity or no parity				
		ble address (1-90, HEX 1-5A)				
		oits, one start, one stop bit				
	Asynch	ronous, half-duplex, DTE				
		tery (optional)				

you should order a battery if you have parameters in V-memory that must be maintained in case of a

CPU side view

Four external potentiometers for adjustments

There are four potentiometers on the face plate of the D2-240 CPU. They have a resolution of 256 steps and can be used to externally adjust four predefined V-memory locations inside the D2-240 CPU. You specify upper and lower limits for the values and the CPU takes care of the rest!

power outage.

DL205 Programming Tools and Cables

Selecting a programming device

There are two tools for programming the DL205 CPUs: DirectSOFT32 PC based programming software and the D2-HPP handheld programmer.

DirectSOFT32

programming software

Our powerful Windows-based programming packages make it easy for you to program and monitor your DL205 PLC system. The two versions of the software that support the DL205 CPUs are described in the table below. See the Software section in this desk reference for detailed information on DirectSOFT32.

<i>Direct</i> Soft32 Part Number	Description			
PC-PGM-205	Programs only the DL205 CPUs D2-230/240/250-1/260			
PC-PGMSW	Programs all PLC families DL05/06/105/205/305/405			
Note: The D2-260 requires <i>Direct</i> S0FT32 version 4.0 or later				

DL205 programming cables

Choose the proper cable to connect the DL205 CPU to your PC running DirectSOFT32.

CPU	Port	Cable
D2-230	Only one	D2-DSCBL
D2-240	Top port	D2-DSCBL
DZ-240	Bottom port	D2-DSCBL
D2-250-1	Top port	D2-DSCBL
DZ-230-1	Bottom port	D2-DSCBL-1
D2-260	Top port	D2-DSCBL
DZ-200	Bottom port	D2-DSCBL-1

Handheld programmer

The D2-HPP handheld programmer connects to an RJ12 phonejack port on any of the DL205 CPUs. The handheld unit contains a zero force insertion socket that can be used to store programs on an optional EEPROM.

Pin labeling conforms to IBM DTE and DCE standards

D2-DSCBL

Handheld programmer cable included (DV-1000CBL)

DL205 WINPLC: WINDOWS® CE-BASED CPU

PC control with a WinPLC

The WinPLC provides a Windows[®] CE operating system environment in our DL205 CPU hardware. The small size and low cost of DL205 products is desirable, but the operating systems of the D2-230, 240, 250-1 and 260 CPUs are proprietary (like most PLCs). The WinPLC provides a hybrid PC PLC solution that brings the best of the PLC and PC control worlds together. A WinPLC system is the best solution if your applications requires:

- Complex math
- Heavy serial communications (can use the H2-SERIO module)
- Advanced data manipulation
- Advanced handling of string or array data
- Up to 64 PID loops

Here's how it works

The WinPLC module is plugged into the CPU slot of the DL205 base. It uses Windows® CE, a real-time operating system combined with the advantages of open standard software such as OPC, ActiveX and other Microsoft communications tools. The WinPLC offers both deterministic control and open communications. It uses advanced software development tools for control, data management, communication and integration with business systems. The

Specifications	H2-WPLC1-SD	H2-WPLC2-SD	H2-WPLC1-LV	H2-WPLC2-LV			
Processor	Hitachi SH3 Series 7708 Processor						
Processor Speed	40 Mhz	100 Mhz	40 Mhz	100 Mhz			
Pre-loaded Software	Entivity	Studio	Think &	Do Live			
Memory	4MB FLAS	SH EE ROM, 2MB RAM,	64kB battery-backed RA	M10Mbps			
Indicators		Power, Link/A	ct, Run, Error				
Local I/O Points	256 (22	4 if using H2-ERM in mo	odule slot for Ethernet rei	mote I/O)			
Ethernet Remote I/O pts.	256 (using H2-ERM master in local WinPLC base and H*-EBC or T1H-EBC remote slave						
Port 0	RJ12, 6-pin modular, serial port, supports K-sequence, or any protocol from Windows CE						
Port 1	RJ45, 8-pin modular, Ethernet 10MBPS						
I/O Interface	Backplane to DL205 (Up to 9-Slot base), expandable with H2-ERM						
Power Consumption	680 mA at 5VDC						
Weight	6 oz.						
Operating Temperature		0–6	0°C				
Storage Temperature	-20-70°C						
Agency Listings	UL Listing						
*H2-WPLC2-** is not include	d in the PC-WPLC-ST	ART starter kit.					

WinPLC supports the following DL205 modules only:

- All discrete and analog modules
- Temperature input modules
- H2-SERIO serial communications module
- H2-ERM module for Ethernet remote I/O (limited to one ERM and one EBC slave per system)
- H2-CTRIO Counter I/O module

DL205 specialty modules not listed above are not supported by the WinPLC.

Built-in Ethernet port

The WinPLC is programmed via a built-in 10MB Ethernet port. WinPLCs can use OPC or DDE to link to an HMI or other application using this high-speed port. Or, share tags with any controller running Entivity software for coordinated control with a PC system. The built-in Ethernet port can also be used for peer-to-peer communications between multiple WinPLCs.

Built-in serial port

A built-in RS-232C serial port lets you connect an EZTouch, EZText or other operator interfaces to the WinPLC. You can also connect to devices such as barcode readers, weight scales or serial modems to the serial port. Unlike most RLL programming, the Entivity programming method is designed for easy communication programming and string manipulation.

Up to nine additional serial ports can be added to a WinPLC system by using the H2-SERIO serial communication module. See "Additional Serial Ports for the WinPLC" later in this section for more information on the H2-SERIO module.

Programming the WinPLC

To create flowcharts (projects) for the WinPLC, you'll need one of the following development packages running on a desktop PC equipped with an Ethernet card: Think & Do Live (PC-ENT-LIVE) or Entivity Studio (PC-ENT-SDD). Since each WinPLC includes its own run-time license, you can program as many WinPLCs as you need, at no additional cost. When you build (compile) your project, the PC will automatically download the flowcharts into the WinPLC. Then at runtime (or at powerup), the WinPLC will run the flowchart program.

CE-only version WinPLC

This version of the WinPLC is not preconfigured with any control software. It's for qualified OEMs or software developers who want to develop their control code in VB or C++.

DL205 CPU-SLOT SLAVE CONTROLLERS

Overview

There are currently four slave "base controllers" or "slave I/O controllers" available for the DL205 hardware. This allows you to use industry proven DL205

I/O for general purpose distributed applications.

The controller modules are plugged into the CPU slot of any size DL205 base. The slave controllers must be connected to a network master controller module or to a PC running PC-based control, HMI or SCADA software.

H2-EBC

Ethernet Base Controller Module

See page 403

H2-PBC

Profibus DP Slave Base Controller Module

See page 404

Profibus slave nodes

H2-PBC slave H2-PBC slave

PLC or PC-based Profibus master

F2-DEVNETS-1

DeviceNet Slave Module

See page 406

DeviceNet slave nodes

PLC or PC-based DeviceNet master

F2-SDS-1

Smart Distributed System I/O

See page 408

SDS Slave I/O

PLC or PC-based SDS master

STEP 3: ADDITIONAL COMMUNICATIONS PORTS NEEDED?

Do you need communications ports in addition to the built-in CPU communications ports to connect to an operator interface or HMI? Would you like to connect to a network of other AutomationDirect products, or a MODBUS RTU or Ethernet network? If so, then choose between the H2-ECOM Ethernet communications module or the D2-DCM serial data communications module. Both modules' specifications and communications details are covered later in this section.

Ethernet networking with the H2-ECOM

The D2-260, D2-250-1 and D2-240 CPUs support the H2-ECOM Ethernet communications module. Any PLC on an ECOM network can initiate communications with another PLC or use DirectSOFT32 to program any PLC on the network. This is the fastest data transfer rate we offer for HMI or other Windows-based software. When monitoring your PLC, you will notice much faster updates using the ECOM module. The H2-ECOM module supports the industry standard 10BaseT with an RJ45 port. The H2-ECOM-F has ST-style bayonet connectors for 10BaseFL fiber optic connections. The ECOM modules use standard cables, hubs and repeaters which are available from a large number of suppliers. A virtually unlimited number of PLCs can be connected to an Ethernet network using ECOM modules.

Serial networking with the D2-DCM

The D2-260, D2-250-1, and D2-240 CPUs support the D2-DCM Data Communications Module, which can serve as a DirectNet master/slave. DirectNet peer, or a MODBUS RTU slave. The D2-DCM supports both RS-232C and RS-422. You can program the CPU through the DCM locally, or if a PC is the RS-422 master, you can use DirectSOFT32 to program any PLC on the network.

H2-ECOM Ethernet network

The H2-ECOM can be used for:

- High-speed peer-to-peer networking of PLCs (any PLC can initiate communications)
- CPU programming with *Direct*SOFT32 Programming Software
- High-speed data acquisition via HMI, DSData Server, Lookout Direct or other HMI software
- Virtually unlimited number of network nodes
- Very easy to setup

The D2-DCM can be used for:

- Direct Net networking of PLCs (only one DCM or PC can serve as master)
- Peer-to-peer networking of two DCM modules (each can serve as a master or slave)
- CPU programming with *Direct*SOFT32 Programming Software
- Data acquisition via HMI, DSData Server, Lookout Direct or other HMI software
- · A slave on a MODBUS RTU network
- · Connection to a serial modem (MDM-TEL)

Additional Serial Ports for the WinPLC

H2-SERIO serial communications module for the **WinPLC**

Do you need serial communications ports in addition to the built-in serial port on the WinPLC? Do you need to connect to multiple EZTouch, EZText or other operator interface panels? Would you like to connect devices such as barcode readers, weight scales or serial modems to your WinPLC system? If so, then select the H2-SERIO serial communications module. This module is used exclusively with the WinPLC.

Protocols supported

The H2-SERIO module supports serial ASCII communications and can also serve a Modbus RTU slave.

Up to ten serial ports

The WinPLC has one built-in serial port. Each H2-SERIO module has three serial ports on board. Up to three H2-SERIO modules can be used per WinPLC system. That's a total of ten serial ports that can be used in one WinPLC system to handle all of your serial communications needs.

Separate communication parameters for each **bort**

Use Entivity software packages to set baud rate, parity, data bits, and stop bits for each serial port. Choose from 300 to 57,600 baud communication speeds. Entivity Studio or Think & Do Live allows each port to be designated as a MODBUS slave or a generic serial device. Each port on the H2-SERIO module is capable of full hardware handshaking.

Note on processing large amounts of serĭal data

While the H2-SERIO module will support virtually any serial device, processing large amounts of serial data will increase the system response time. This is important to consider when using multiple H2-SERIO modules, especially in a WinPLC local base with an H2-ERM or H2-CTRIO module.

Connect the WinPLC / H2-SERIO system to a variety of serial ASCII devices.

STEP 4: SELECT THE I/O MODULES

There are several factors you should consider when choosing an I/O module.

- 1. Environmental specifications: What environmental conditions will the I/O module be subjected to?
- 2. Hardware specifications: Does this product have the right features, performance and capacity to adequately serve your application?
- 3. Field termination: How does this module connect to field devices? Do you need a sinking or sourcing DC module?
- 4. Power budget:

It is very important that your module selections operate within the base power budget. Refer to the power budget description later in this section.

Check the environmental specifications

The following table lists the environmental specifications that globally apply to the DL205 system (CPUs, bases, and I/O modules). Be sure the modules you choose are operated within these environmental specifications.

Specifications and ratings

Storage temperature*

 $-4^{\circ}F - 158^{\circ}F$ (-20°C to 70°C)

Ambient operating temperature**

32°F - 131°F (0° to 55°C)

Ambient humidity

30% - 95% relative humidity (non-condensing)

Vibration resistance

MIL STD 810C. Method 514.2

Shock resistance

MIL STD 810C, Method 516.2

Noise immunity NEMA (ICS3-304)

Atmosphere

No corrosive gases

* Storage temperature for the Handheld Programmer is -4° to 158°F (-20° to 70°C)

Storage temperature for the DV-1000 is -4° to 158°F (-20° to 70°C)

** Operating temperature for the Handheld Programmer is 32° to 122°F (0° to 50°C)

Operating temperature for the DV-1000 is 32° to 122°F (0° to 50°C)

This logo is placed by each I/O module that supports **ZIP**Link connection systems. (The I/O modules are listed at the end of this section.) See the Connection Systems section of this desk reference for details on ZIPLinks.

Review I/O hardware specifications

The hardware specifications for every DL205 module are described later in this

Take time to understand the specification charts, the derating curves and the wiring diagrams. The module specifications should help you determine if this module is right for your application.

Factors affecting field

DL205 modules use three types of field terminations. They include a low density removable terminal block (used on modules with eight or fewer points), a high density removable terminal block (European style terminal block available on modules with 12 to 16 points) and a 40-pin connector (for modules with 32 points). The module diagrams indicate the connector type that is on the module. You can also use our super fast and inexpensive ZIPLink I/O connector systems.

Module types and suggested AWG range

4 point

16* - 24 AWG

8 point

16* - 24 AWG

12 point

16* - 24 AWG

16 point

16* - 24 AWG

32 point

Ribbon and Solder-style Connectors

* Note: 16 AWG Type TFFN or Type MTW can be used on 8 pt. Modules. Other types of 16 AWG may be acceptable. But it really depends on the thickness of the wire insulation. If the insulation is too thick and you use all the I/O points, then the plastic terminal cover may not close properly.

Need spare parts?

Sometimes it is helpful to have extra I/O module connectors or spare fuses. The DL205 spare parts and accessories are listed below:

- D2-FILL Filler module for empty slots
- D2-8IOCON 8-pt. I/O terminal blocks
- D2-16IOCON 16-pt. I/O terminal blocks
- D2-IOCVR Spare terminal block covers
- D2-FUSE-1 Fuses for D2-12TA
- D2-FUSE-3 Fuses for D2-04TD1, D2-08TA, D2-04TRS, D2-08TR, D2-08CDR
- D2-FUSE-4 Fuses for D2-12TR
- D2-ACC-1 Base power terminal strip
- D2-ACC-2 Spare terminal screws for 4-pt. and 8-pt. I/O modules
- D2-ACC-3 -Spare terminal screws for 12-pt. and 16-pt. I/O modules
- D4-IO3264R Ribbon cable connector for 32-pt. modules.
- D4-IO3264S Solder-type connector for 32-pt. modules.
- DINnectors and ZIPLinks Refer to the Connection System section of this desk reference for the complete line of products available.

DINnectors terminal blocks

are DIN rail mounted connectors or terminal blocks. They provide a means of connecting and identifying two or more wires. All DIN nectors are UL, CSA, VDE, SEV, RINA and IEC approved. For more information, refer to the Connection Systems section of this desk reference.

ZIPLink connection systems

ZIPLinks consist of PLC interface cables and connector modules that offer "plug and play" capability by plugging one end of the ZIPLink cable into an I/O module and the other end into the ZIPLink connector module. This eliminates the tedious process of wiring PLC I/O terminals to terminal blocks individually. For more information, refer to Connection Systems section of this desk reference to determine compatibility among PLCs, cables and I/O modules.

	I/O Availability Table									
PLC CPU / CPU-Slot	Controller	D2-230	D2-240	D2-250-1	D2-260	WinPLC	Profibus	H2-EBC	F2-SDS-1	F2-DEVNETS
Discrete Modules	Catalog Pages	p. 377	p. 377	p. 375	p. 372	p. 380	p. 404	p. 403	p. 408	p. 406
DC Sink/Source In	p. 426	√	1	√	1	√	1	1	√(except 32-pt.)	1
TTL Input	p. 427	√	√	√	√	√	√	√		1
DC Sink Out	p. 431	√	√	√	√	√	√	√	√(except 32-pt.)	1
DC Source Out	p. 432	√	√	√	√	√	√	√	√(except 32-pt.)	√
AC Input	p. 428	√	√	√	√	√	√	√	√	√
AC Triac Out	p. 435	√	√	√	√	√	√	√	√	√
Relay Out	p. 437	√	√	√	√	√	√	√	√	1
Isolated Relay Out	p. 439	√	√	√	√	√	√	√	√	1
DC In / Relay Out	p. 442	√	√	√	√	√	√	√	1	1
Analog Modules										
Analog Current In	p. 443	√	√	√	√	√	√	√	√	√
Analog Voltage In	p. 446	√	√	√	√	√	√	√	√	√
Analog Current Out	p. 451	√	√	√	√	√	√	√	√	√
Analog Voltage Out	p. 455	√	√	√	√	√	√	√	√	√
Analog Isolated Current Out	p. 453	1	1	1	1	1	1	1	1	√
Analog Isolated Voltage Out	p. 457	1	1	1	1	1	1	1	1	√
Combination Analog	p. 459	√	1	√	√	√	1	√	√	1
Temperature Input	p. 449	√	√	√	√	√	1	√	1	√
Speciality Modules										
Local Expansion	р. 394			√	√					
Communications	p. 396		√	√	√					
Remote I/O	p. 400		√	√	√	√-(H2-ERM)				
CoProcessor	p. 410		√	√	√					
Counter I/O (CTRIO)	p. 412		1	√	√	1		√		
Counter Interface	p. 420	√	√	1	√					

Sinking and sourcing for DC field devices

If you are using a DC type of field device, then you should consider whether the device is a sinking or sourcing configuration. This may affect your module selection since it determines the manner in which the device must be wired to the module (AutomationDirect offers both sinking and sourcing modules). Refer to the sinking/sourcing appendix in this desk reference for a complete explanation on how this affects your system selection.

Analog module selection tips

If you're going to control the speed of an AC inverter or drive with the DL205 analog module, make sure you select either the current sourcing F2-02DAS-1 or voltage sourcing F2-02DAS-2 isolated analog output module. Complete module specifications are listed later in this section.

If you need to operate within a 12 VDC environment, the analog module part numbers that end with (-L) will operate at 12VDC. Most of the other modules require 24VDC.

New H2-CTRIO vs. D2-CTRINT high-speed counter module

Select the H2-CTRIO instead of the D2-CTRINT if your application requires:

- · More than one quadrature encoder
- · More than two single up counters
- · Compatibility with the WinPLC
- High-speed inputs or outputs > 5KHz
- · Output operations on the module based on counts without interacting with the CPU

The CTRIO is configured using "CTRIO Workbench", a Windows-based "Wizard" utility, eliminating the need for ladder logic programming to configure the module. Multiple CTRIO modules can be used in a base to support additional input/output pulse trains.

STEP 5: CHOOSE AN I/O CONFIGURATION

I/O configurations

The DL205 system offers local, local expansion and remote I/O system configurations. A DL205 system can be developed using a combination of the configuration arrangements. The tables, along with the configuration diagrams, list the number of I/O points, bases, etc. that are available with each configuration.

New (-1) I/O bases

The new (-1) bases are required for local expansion I/O that is supported by the new D2-250-1 and D2-260 CPUs only. These bases can be used in local, local expansion or remote I/O configurations. For all I/O configurations, the (-1) bases will function exactly the same as the previous bases that did not support expansion I/O. The (-1) bases can be used with all DL205 CPUs and the WinPLC. There are four DL205 base sizes (3, 4, 6, and 9-slot), each of which has a built-in power supply.

Local I/O

All of the DL205 CPUs support local I/O. The D2-230 and D2-240 CPUs are limited to one base of local I/O. (The D2-250-1 and the D2-260 CPUs support local expansion bases). All local I/O points are updated on every CPU scan. The I/O count limits are merely determined by the number of available I/O slots, the I/O module point density, and the available power budget for the system.

New local expansion

The D2-260 supports local expansion up to five total bases (one CPU base and four expansion bases) and the D2-250-1 supports local expansion up to three total bases (one CPU base and two expansion bases). The D2-230/240 CPUs and WinPLCs do not support local expansion I/O. All local and expansion I/O points are updated on every CPU scan. Expansion bases are commonly used when there are not enough slots available in the CPU base, or when the base power budget

will be exceeded. Each local expansion base requires the D2-CM module in the CPU slot. The local CPU base requires the D2-EM Expansion Module, as well as each expansion base. The modules are connected using the D2-EXCBL-1.

Ethernet remote I/O

The DL205 Ethernet Remote I/O system allows you to locate I/O bases at a remote distance from the CPU. For many applications, this can reduce wiring costs by allowing I/O points to be located near the devices they are controlling.

The Ethernet Remote Master module (H2-ERM) is placed in an I/O slot of the local CPU base. Ethernet Base Controller (EBC) modules serve as the remote slave units and are placed in the CPU slot of one or more remote bases. You can use standard DL205 modules in the remote bases. The Remote Slaves are connected to the Master using Category 5 UTP cables for cable runs up to 100 meters. Use repeaters to extend distances and hubs to expand the number of nodes. Our fiber optic version uses industry standard 62.5/125 ST-style fiber optic cables and can be run up to 2,000 meters.

Each H2-ERM module can support up to: 16 H2-EBC systems, 16 Terminator I/O EBC systems, or 16 fully expanded H4-EBC systems or any combination of these.

The PLC, ERM and EBC slave modules work together to update the remote I/O points. These three scan cycles are occurring at the same time, but asynchronously. It is recommended that critical I/O points that must be monitored every scan be placed in the CPU base.

ERM Workbench is an easy-to-use Windows-based software utility for configuring the ERM and its remote slaves.

It is highly recommended that a dedicated Ethernet remote I/O network be used for the ERM and its slaves. While Ethernet networks can handle a very large number of data transactions, and

normally handle them very quickly, heavy Ethernet traffic can adversely affect the reliability of the slave I/O and the speed of the I/O network. Keep ERM networks, multiple ERM networks and ECOM/office networks isolated from one another.

Serial remote I/O

The DL205 Serial Remote I/O system also allows you to locate I/O bases at a remote distance from the CPU.

The Remote Master module (D2-RMSM) is placed in an I/O slot of the local CPU base. The Remote Slave module (D2-RSSS) is placed in the CPU slot of one or more remote bases. You can use standard DL205 modules in the remote bases. The Remote Slaves are connected to the Master module in a daisy-chain manner over a twisted pair communication cable. You can assign input and output addresses to the remote I/O points by using setup logic in your RLL program. The Remote Master polls the slaves and sends the remote I/O information to the CPU. The communication between the Remote Master and the CPU is asynchronous to the CPU scan. For this reason, Remote I/O applications should be limited to those that do not require the Remote I/O points to be updated with every scan.

The number of bases supported depends on your choice of Remote I/O communications protocol, Remote Master (RM-NET) or Slice Master (SM-NET). In SM-NET mode, the communications port on the D2-RSSS remote slave can be used to connect to an operator interface or to program/monitor the CPU with *Direct*SOFT32.

Remote master protocol (RM-NET)—allows you to connect up to seven remote bases to a single master. The baud rate is fixed at 38.4K baud with a total allowable distance of 3900 feet.

Slice master protocol (SM-NET)—allows you to connect up to 31 remote bases to a single master. The baud rate is selectable over several ranges with a maximum baud rate of 614.4K baud.

LOCAL/LOCAL EXPANSION I/O CONFIGURATIONS

Local I/O configurations

Local I/O Configuration							
CPU	Total I/O	Max. Inputs	Max. Outputs				
D2-230	128	128	128				
D2-240	256	256	256				
D2-250-1	256	256	256				
D2-260	256	256	256				

Four I/O base configurations to select from

3-slot base 64-pts. max.

4-slot base 96-pts. max.

6-slot base 160-pts. max.

9-slot base 256-pts. max.

Local expansion I/O configurations using D2-EM and D2-CM modules

D2-260 local expansion system

The D2-260 supports local expansion up to five total bases (one CPU base and four expansion bases). All bases in an expansion system must be (-1) bases. The CPU base can be located at any point in the expansion system layout. The maximum total expansion system cable length is 30m (98ft.). For more information, refer to the Expansion Module specification pages later in this section.

D2-250-1 local expansion system

The D2-250-1 supports local expansion up to three total bases (one CPU base and two expansion bases). The CPU base can be located at any point in the expansion system layout. The maximum total expansion system cable length is 30m (98ft.).

The D2-EXCBL-1 is a Category 5 straight-through cable that connects the D2-EM modules together. The cable can be user made in custom lengths up to 30m depending upon the configuration.

Local Expansion I/O Configuration						
CPU	# of Exp. Bases	Total I/O	Max. Inputs	Max. Outputs		
D2-250-1	2	768	512	512		
D2-260	4	1280	1024	1024		

DL-230, DL240 CPUs and WinPLCs do not support local expansion systems

H2-ERM

H2-EBC I/O

REMOTE I/O CONFIGURATIONS

Ethernet remote I/O configuration using H2-ERM and EBC slaves

Specifications	H2-ERM	H2-ERM-F		
Communications	10BaseT Ethernet	10BaseFL Ethernet		
Data Transfer Rate	10Mbps			
Link Distance	100 meters (328 ft)	2Km (6560 ft)		
Ethernet Port	RJ45	ST-style fiber optic		
Ethernet Protocols	TCP/IP, IPX			

Ethernet Remote I/O Configuration							
CPU	Max. # of Channels	Max. # of Slaves/ Channel	Discrete I/O pts.	Analog I/O	Remote I/O pts / Channel		
D2-230	N/A	N/A	N/A	N/A	N/A		
D2-240	Limited by	16 Slaves	limited to 896 by CPU	Not recom- mended	896		
D2-250-1	power budget	(H2-EBC, H4-EBC or	(H2-EBC, H4-EBC or	2048	Man into	16,384 ¹	
D2-260	1 3	T1H-EBC)	8192	Map into available memory	16,384 ¹		
H2-WPLC*-**	1 / system	1 Slave	256	registers	1024 ²		

 $^{^{1\}text{--}}16,384$ I/O pts. can be achieved with 16 fully expanded H4-EBC slaves using V-memory and bit-of-word instructions. 2 1024 I/O points can be achieved using 1 fully expanded H4-EBC slave.

Note: It is highly recommended that a dedicated Ethernet remote I/O network be used for the ERM and its slaves. While Ethernet networks can handle a very large number of data transactions, and normally handle them very quickly, heavy Ethernet traffic can adversely affect the reliability of the slave I/O and the speed of the I/O network. Keep ERM networks, multiple ERM networks and ECOM/office networks isolated from one another.

O configuration using D2-RMSM and D2-RSSS

Serial R	emote I	/O Config	uration
CPU	D2-240	D2-250-1	D2-260
Max. # of Channels	2	7	7
Max. I/O pts. per Channel	2048	2048	2048
RM-NET' Bases per Channel	7	7	7
SM-NET' Bases per Channel	31	31	31
Total Remote I/O pts.	896 (limited by CPU)	2048	8192

I/O Addressing Schemes

DL205 I/O addressing scheme

You may have used other PLC systems prior to trying DirectLOGIC products. One of the key differences between various PLC systems is the I/O module addressing. This section will show you how we address the individual I/O points in a DL205 system.

Octal addressing

The DL205 uses octal addressing. That is, the I/O point addresses do not include any "8s" or "9s". The I/O points start at 0 and continue in increments of 8 or 16 points, depending on the modules being used. We have designated "X" for inputs and "Y" for outputs.

Note: 4-point modules consume eight points, but only the first four points are actually used by the module. 12-point modules consume sixteen points, but only twelve points are used. The first six points are used, then two points are skipped, then the next six points are used, and the last two are skipped.

Automatic addressing

DL205 CPUs automatically examine local I/O modules to establish the correct I/O addressing on power-up. The D2-250-1 and D2-260 CPUs automatically examine I/O modules in expansion bases as well. The modules don't have to be grouped by type and can typically be mixed in any order. However, there are restrictions placed on some specialty modules or combinations of modules. (See the next page.) The diagram to the right shows sample addresses for a simple system that contains a few discrete I/O modules.

Manual addressing

The D2-250-1 and D2-260 CPUs allow you to manually assign I/O addresses for any or all I/O slots on the local or expansion bases. This feature is useful if you have a standard configuration that you need to change slightly to accommodate a special request (i.e. adding or removing I/O modules from a system). Manual addresses are based on 16-point boundaries.

Remote I/O addressing

Remote I/O allows you to assign addresses manually. You can choose the data type for the remote points. Ethernet remote I/O (H2-ERM) allows you to map the analog I/O channels directly into V-memory (16-bit words) while mapping the discrete I/O points into input/output bit memory (Xs & Ys). Serial remote I/O (D2-RMSM) allows you to assign one starting address for all of the input modules and one starting address for the output modules.

Leaving empty slots

You may be tempted to leave empty slots for future expansion. This is perfectly acceptable, but it is very important that you understand the implications of placing a module in the empty slot at a later time.

Since the CPU automatically assigns the I/O addresses, it is possible to cause problems by adding a module to the system. Examine the example system shown below. If you added an input module to the empty slot, the new input addresses would start after the existing input addresses, so no problems would occur. However, if you added an output to the empty slot, your remaining output addresses would change. Therefore, you would have to edit your RLL program to reflect the address changes. The manual addressing feature supported by the D2-250-1 and D2-260 is especially useful when adding an I/O module between existing I/O modules or removing a module.

You should always add extra modules to the right of existing modules of the same type to avoid any readdressing of your I/O points.

I/O base with a slot left empty. The examples below show the addressing changes if an input or an output module is added to the system.

Add Input module. Addresses follow existing, so no program modification is required.

Add output module. Addresses are re-numbered and program modification is required.

MODULE PLACEMENT AND I/O USAGE TABLES

Verify planned I/O module locations

There are very few I/O module placement restrictions in the DL205 family. In general, any mix of analog and discrete module types can be used in any local, expansion or remote base. However, there are a few situations with the specialty modules that warrant some special considerations. Reference the Module Placement Restrictions table to the right for the DL205.

Analog I/O with a D2-230 CPU

DL205 analog modules map into the CPU as 16-point discrete modules. (They actually consume discrete I/O points.) With a D2-240, D2-250(-1) or D2-260 CPU, analog I/O modules can reside in any I/O slot. If you are using a D2-230 CPU, then the analog module must start on one of the word addresses boundaries. (You may have to rearrange your modules to ensure this happens.)

I/O point usage

The table to the right indicates the number of I/O points consumed by each module. Use this information to ensure you stay within the maximum I/O count of the I/O system you have chosen.

	Module Placement Restrictions				
Module/Unit	Local CPU Base	Local Expansion	Remote Base		
CPUs DC Input AC Input DC Output AC Output Relay Output Analog Input & Output	CPU slot only	<i>y y y y y y y y y</i>	<i>y y y y y y y y y y</i>		
Local Expansion (D2-260 & D2-250-1 only) Base Expansion Unit (D2-EM) Base Controller Unit (D2-CM)	/	✓ CPU slot only			
Remote I/O Remote Master Remote Slave Unit Ethernet Remote Master	✓ ✓		CPU slot only		
CPU Device Ethernet Base Controller WinPLC DeviceNET Profibus SDS	CPU slot only CPU slot only CPU slot only CPU slot only CPU slot only				
Specialty modules Counter Interface (D2-CTRINT) Counter I/O (H2-CTRIO) Simulator Data Communications Ethernet Communications Basic CoProcessor	Slot 0 only Any slot except Slot 0 Any slot except Slot 0 Any slot except Slot 0 Any slot except Slot 0 Any slot except Slot 0	Not at this time	7		

 $^{
m 1}$ With a D2-230 CPU, then the analog module must start on one of the word address boundaries.

		I/O Module	Point Usag	e			
DC INPUT		RELAY OUTPU	RELAY OUTPUT		SPECIALTY MODULES		
D2-08ND3 8 in D2-16ND3-2 16 in D2-32ND3 32 in D2-32ND3-2 32 in		D2-04TRS D2-08TR F2-08TR F2-08TRS D2-12TR	8* out 8 out 8 out 8 out 16** out	D2-EX D2-CM F2-08SIM D2-CTRINT H2-CTRIO D2-DCM	None None 8 in 8 in 8 out None None		
AC INPUT				F2-DEVNETS-1 F2-SDS-1	None None		
D2-08NA-1 D2-08NA-2 D2-16NA	8 in 8 in 16 in	D2-08CDR	8 in*/8 out*	H2-EBC H2-EBC-F H2-ECOM H2-ECOM-F F2-CP128	None None None None		
DC OUTPUT		ANALOG		H2-PBC	None		
D2-04TD1 D2-08TD1 D2-08TD2 D2-16TD1-2 D2-16TD2-2 D2-32TD1 D2-32TD2	8* out 8 out 8 out 16 out 16 out 32 out 32 out	F2-04AD-1 & 1L F2-04AD-2 & 2L F2-08AD-1 F2-08AD-2 F2-02DA-1 & 1L F2-02DA-2 & 2L F2-4AD2DA F2-02DAS-1 F2-02DAS-2	16 in 16 in 16 in 16 in 16 out 16 out 16 in/16 out 32 out 32 out	REMOTE I/O H2-ERM D2-RMSM D2-RSSS	None None None		
AC OUTPUT		F2-08DA-1	16 out				
D2-08TA F2-08TA D2-12TA	8 out 8 out 16** out	F2-08DA-2 F2-04RTD F2-04THM	16 out 32 in 32 in				

^{* 4-}pt. modules consume eight points. Only the first four points are used.

^{** 12-}pt. modules consume 16 points. The first six points are assigned, two are skipped, and then the next six points are assigned. For example, a D2-12TA installed in slot 0 would use Y0-Y5, and Y10-Y15. Y6-Y7, and Y16-Y17 would be unused.

Automatic Direct

STEP 6: CHECK THE POWER BUDGET

Managing your power resource

When determining the types and quantity of I/O modules you will be using, it is important to remember there is a limited amount of power available from the base power supply.

The chart on the next page indicates the power supplied and used by each DL205 device. The adjacent chart shows an example of how to calculate the power used by your particular system. These charts should make it easy for you to determine if the devices you have chosen will operate within the power budget of your system configuration.

If the I/O you have chosen exceeds the maximum power available from the power supply, you may be able to resolve the problem by using local expansion or remote I/O bases.

DL205 power supply specifications

The table below lists base power supply specifications, including maximum inrush current and maximum power consumed from your power source.

Power budget example

The example below shows how to calculate the power budget for the DL205 system. The examples are constructed around a single 9-slot base using the devices shown. It is recommended you construct a similar table for your DL205 system. Follow the steps to the right to determine your power budget.

- 1.Using a chart similar to the one below, fill in column 2.
- 2. Using the tables on the next page, enter the current supplied and used by each device (columns 3 and 4). Devices which fall into the "Other" category (Row D) are devices such as the operator interface and the handheld programmer, which also have power requirements, but do not directly plug into the base.
- 3.Add the current used by the system devices (columns 3 and 4) starting with the CPU slot and put the total in the row labeled "Maximum current required" (Row E).
- 4.Subtract the row labeled "Maximum Current Required" (Row E), from the row labeled "Current Supplied" (Row B). Place the difference in the row labeled "Remaining Current Available" (Row E).
- Available (How F).

 5. If "Maximum Current Required" is greater than "Current Supplied" in either column 3 or 4, the power budget will be exceeded. It will be unsafe to use this configuration, and you will need to restructure your I/O configuration. Note the auxiliary power supply does not need to supply all the external power. If you need more than the 300mA supplied, you can add an external 24V power supply. This will help keep you within your power budget for external power.

Α	Column 1	Column 2	Column 3	Column 4				
		Device Type	5 VDC (mA)	External Power 24 VDC (mA)				
В	CURRENT SUPPLIED	CURRENT SUPPLIED						
	Base	9 slot	2,600	300				
С	CURRENT REQUIRED							
	CPU SLOT SLOT 0 SLOT 1 SLOT 2 SLOT 3 SLOT 4 SLOT 5 SLOT 6 SLOT 7	D2-260 (CPU) D2-16ND3-2 D2-16ND3-2 D2-16NA D2-08NA-1 D2-16TD1-2 D2-08TA D2-08TA	330 100 100 100 50 200 250 250	0 0 0 0 0 0 80 0				
D	OTHER							
	Operator interface Handheld programmer	DV-1000 D2-HPP	150 200	0				
Ε	Maximum Current Required		1730	80				
F	Remaining Current Available		2600-1520=1080	300-80=220				

Power Supply Specifications					
Specification	AC Powered Bases 24 VDC Powered Bases 125 VDC Powered				
Part Numbers			D2-03BDC-2, D2-04BDC-2, D2-06BDC2-1, D2-09BDC2-1		
Voltage Withstand (dielectric)	1 minute @ 1,500 VAC between primary, secondary, field ground, and run relay				
Insulation Resistance	> 10M at 500 VDC				
Input Voltage Range	85-132 VAC (110 range) 170-264 VAC (220 range) 47-63Hz	10.2 - 28.8VDC (24VDC) with less than 10% ripple	100-264VDC (125 VDC) with less than 10% ripple		
Auxiliary 24 VDC Output	300mA max. none 300mA max.		300mA max.		
Maximum Inrush Current	30A 10A 20A		20A		
Maximum Power	80 VA	25W	30W		

Power Requirements

These charts help determine your power requirements

This section shows the amount of power supplied by each of the base power supplies and the amount of power consumed by each DL205 device. The Power Consumed charts list how much INTERNAL power from each power source is required for the DL205 devices. Use this information when calculating the power budget for your system.

In addition to the internal power sources, the DL205 bases offer a 24VDC Auxiliary power supply with external power connections. This auxiliary power supply can power external devices.

Use **ZIP**Links to reduce 5VDC base power requirements

If your application requires a lot of relay outputs, consider using the ZIPLink AC or DC relay output modules. These modules can switch high current (10A) loads without putting a load on your 5VDC base power budget.

For example, an 8-point F2-08TRS relay output module requires 670mA @ 5VDC. If you used a D2-16TD1-2 DC output module instead to drive a ZIPLink relay block, you would only use 200mA @ 5VDC, and you'd have eight more relay outputs at a higher rated load current switching capacity. Refer to the Connection Systems section of this desk reference to find out more about ZIPLink cables and connector modules.

This logo is placed by the I/O modules that are supported by the ZIPLink connection systems. See the I/O module specifications at the end of this section.

Power Supplied						
Device	5V(mA)	24V Auxiliary	Device	5V(mA)	24V Auxiliary	
Bases		Bases				
D2-03B-1	2600	300	D2-06B-1	2600	300	
D2-03BDC1-1	2600	None	D2-06BDC1-1	2600	None	
D2-03BDC-2	1550	200	D2-06BDC2-1	2600	300	
D2-04B-1	2600	300	D2-09B-1	2600	300	
D2-04BDC1-1	2600	None	D2-09BDC1-1	2600	None	
D2-04BDC-2	1550	200	D2-09BDC2-1	2600	300	

-U4DDG-Z	1550	200	DZ-09BDGZ-1	2000	300	
	Power Consumed			Power Cons	umed	
Device	5V(mA)	24V Auxiliary	Device	5V(mA)	24V Auxiliary	
CPUs			Analog Modules			
D2-230	120	0	F2-04AD-1	50	80	
D2-240	120	0	F2-04AD-1L	50	90mA @ 12V	
D2-250-1	330	0	F2-04AD-2	60	80	
D2-260	330	0	F2-04AD-2L	60	90mA @ 12V	
H2-WPLC*-**	680	0	F2-08AD-1	50	80	
DC Input Mo	odules		F2-08AD-2	50	80	
D2-08ND3	50	0	F2-02DA-1	40	60 (note 1)	
D2-16ND3-2	100	0	F2-02DA-1L	40	70 @ 12V (note 1)	
D2-32ND3	25	0	F2-02DA-2	40	60	
D2-32ND3-2	25	0	F2-02DA-2L	40	70 @ 12V	
AC Input Mo	dules		F2-02DAS-1	100	50 / channel	
D2-08NA-1	50	0	F2-02DAS-2	100	60 / channel	
D2-08NA-2	100	0	F2-08DA-1	30	50 (note 1)	
D2-16NA	100	0	F2-08DA-2	60	140	
Input Simulator Module		F2-4AD2DA	60	80 (note 1)		
F2-08SIM	50	0	F2-04RTD	90	0	
DC Output N	<i>lodules</i>	'	F2-04THM	110	60	
D2-04TD1	60	20	Specialty Mo	dules		
D2-08TD1	100	0	D2-CTRINT	50*	0	
D2-08TD2	100	0	D2-CM / D2-EM	130	0	
D2-16TD1-2	200	80	H2-CTRIO	400	0	
D2-16TD2-2	200	0	D2-DCM	300	0	
D2-32TD1	350	0	F2-DEVNETS	160	0	
D2-32TD2	350	0	F2-SDS-1	160	0	
AC Output N	<i>lodules</i>		H2-PBC	530	0	
D2-08TA	250	0	H2-EBC(-F)	320, (450)	0	
F2-08TA	250	0	H2-ECOM(-F)	320, (450)	0	
D2-12TA	350	0	F2-CP128	235	0	
Relay Outpu	ıt Modules		Remote I/O			
D2-04TRS	250	0	H2-ERM(-F)	320, (450)	0	
D2-08TR	250	0	D2-RMSM	200	0	
F2-08TR	670	0	D2-RSSS	150	0	
F2-08TRS	670	0	Programming	g Devices		
D2-12TR	450	0	D2-HPP	200	0	
	n In/Out Mod		*requires external 5VI Note 1: add an additi			
D2-08CDR	200	0	. tote 1. add all additi	o 201112 bei 100b		

IMENSIONS AND INSTALLATION

It is important to understand the installation requirements for your DL205 system. This will help ensure that the DL205 products operate within their environmental and electrical limits.

Plan for safety

This desk reference should never be used as a replacement for the user manual. The user manual, D2-USER-M, contains important safety information that must be followed. The system installation should comply with all appropriate electrical codes and standards.

Environmental specifications

The Environmental Specifications table to the right lists specifications that globally apply to the DL205 system (CPUs, Bases, and I/O modules). Be sure that the DL205 system is operated within these environmental specifications.

Base dimensions and mounting

Use the diagrams below to make sure the DL205 system can be installed in your application. To ensure proper airflow for cooling purposes, DL205 bases must be mounted horizontally. It is important to check these dimensions against the conditions required for your application. For example, it is recommended that approximately 3" space is left in front PLC surface for ease of access and cable clearances. Also, check the installation guidelines for recommended cabinet clearances.

Environmental Specification	Rating
Storage Temperature	-4°F - 158°F (-20°C to 70°C)
Ambient Operating Temperature	32°F - 131°F (0°C to 55°C)
Ambient Humidity	30%-95% relative humidity (non-condensing)
Vibration Resistance	MIL STD 810C, Method 514.2
Shock Resistance	MIL STD 810C, Method 516.2
Noise Immunity	NEMA (ICS3-304)
Atmosphere	No corrosive gases

Base		A		В		C		D
D2-03B-1, D2-03BDC1-1, D2-03BDC-2	6.77"	172mm	6.41"	163mm	5.8"	148mm	7.24"	184mm
D2-04B-1, D2-04BDC1-1, D2-04BDC-2	7.99" 2	203mm 7	7.63"	94mm 7	7.04"	79mm	8.46"	215mm
D2-06B-1, D2-06BDC1-1, D2-06BDC2-1	10.43"	265mm	10.07"	256mm	9.48"	241mm	10.90"	277mm
D2-09B-1, D2-09BDC1-1, D2-09BDC2-1	14.09"	358mm	13.74"	349mm	13.14"	334mm	14.56"	370mm

LOCAL EXPANSION MODULES

New local expansion modules

The D2-260 supports local expansion up to five total bases (one CPU base + four expansion bases) and the D2-250-1 supports local expansion up to three total bases (one CPU base + two expansion bases). Expansion bases are commonly used when there are not enough slots available in the CPU base, when the base power budget will be exceeded or when placing an I/O base at a location away from the CPU base, but within the expansion cable limits. All local and expansion I/O points are updated on every CPU scan.

Expansion base I/O addressing is based on the numerical order of the D2-CM rotary switch selection. The CPU recognizes the expansion bases on power-up.

D2-EM Expansion Module Specifications		
Module Type	Base expansion unit	
I/O Slots Consumed	None; attaches to right side of (-1) bases	
I/O Points Consumed	None	
Expansion Connectors	Two 8-pin RJ45	
Cable	Category 5 with RJ45 connectors (straight-through)	
Maximum Cable Length	30m (98ft.) total expansion system	
Power Consumption	130mA @ 5VDC (supplied by base)	
Operating Environment	0°C to 60°C (32°F to 140°F), 5% to 95% humidity (non-condensing)	

D2-CM Controller Module Specifications				
Module Type Expansion base controller module				
Modules per Base	One, CPU slot of (-1) base only			
I/O Points Consumed	None			
Expansion Base Number Select Switch	Rotary switch select 1-4 in any order			
Power Consumption	100mA @ 5VDC (supplied by base)			
Operating Environment 0°C to 60°C (32°F to 140°F), 5% to 95% humidity (non-condensing)				

C	CPU Supported / I/O Points				
СРИ	# of Exp. Bases	Total I/O*	Max. Inputs	Max. Outputs	
D2-260	4	1280	1024	1024	
D2-250-1	2	768	512	512	
D2-240					
D2-230	These CPUs do not support local expansion systems.				
H2-WPLC*-**					

Local expansion requires (-1) bases

The new (-1) I/O bases must be used in local expansion systems. Each expansion base requires that the D2-CM module is placed in the CPU slot. The CPU base and each expansion base require the D2-EM unit that attaches to the right side of the (-1) bases.

8-pin RJ45 Connector 8P8C

D2-EXCBL-1 local expansion base cable

The category 5 straight-through D2-EXCBL-1 (1m) is used to connect the expansion modules together. If longer cable lengths are required, we recommend that you purchase commercially manufactured cables with RJ45 connectors already installed. The maximum total expansion system cable length is 30m (98ft.).

D2-EM to D2-EM Cable Pin-outs (Use Category 5 straight-through cable)

^{*} Includes CPU base and local expansion bases

the

expansion

should

system. The D2-EMs

on each end of the

TERM switch placed in

have

expansion

system

the

LOCAL EXPANSION MODULES

D2-CM Expansion Base Controller Module

The D2-CM module is placed in the CPU slot each expansion base. The rotary switch is used to select expansion base number. The expansion

base I/O addressing (Xs & Ys) is based on the numerical order of the rotary switch selection and is recognized by the CPU on power-up. Duplicate expansion base numbers will not be recognized by the CPU. An example of base I/O addressing order is shown to the right.

D2-260 expansion system

The D2-260 supports local expansion up to five total bases (one CPU base + four expansion bases) and up to a maximum of 1280 total I/O points. All local and expansion I/O points are updated on every CPU scan. No specialty modules can be located in the expansion bases. Refer to the Module Placement Table earlier in this section for restrictions. The maximum total expansion system cable length is 30m (98ft.). The red text and arrows in the example to the right indicate the I/O addressing order.

D2-250-1 expansion system

The D2-250-1 supports local expansion up to three total bases (one CPU base + two expansion bases) and up to a maximum of 768 total I/O points. All local and expansion I/O points are updated on every CPU scan. The D2-250-1 does not support the use of specialty modules located in the expansion bases. The maximum total expansion system cable length is 30m (98ft.). The red text and arrows in the example to the right indicate the I/O addressing order.

D2-260 expansion system D2-EM Base **TERM Expansion Module** The D2-EM expansion unit is attached ON to the right side of each base TERM ON D2-CM OFF D2-CM the ON position. The expansion units between the endmost units should have the TERM switch placed in the OFF position. The CPU base can be located at any base position in the expansion system. It does not have to be located at one end or the other.

The D2-260 CPU base can be located at any base position in the expansion system.

D2-CM #2

I/O #3

TERM Switch = ON

Note: Only discrete and analog I/O modules are supported on the expansion bases. No specialty or communications modules can be used on the expansion bases at this time.

SERIAL DATA COMMUNICATIONS MODULE

The D2-DCM Data Communications Module is primarily used for three reasons:

- Extra communications port to connect a PC, operator interface, etc.
- Network interface to Direct NET
- Network interface to a MODBUS^{*} network using the RTU protocol

Extra communications port

If additional communication ports are needed, they can easily be added by installing DCM modules. This allows additional connections of devices, such as operator interfaces, PCs, etc. Since the DCM does not require any programming, you can set the DCM communication parameters, connect the cables, and start transferring data. Make sure the device has a DL205 compatible driver.

DirectNET network interface

The DCM can be used as a network interface for applications requiring data to be shared between PLCs, or between PLCs and an intelligent device such as a host PC. The DCM connects easily to *Direct*NET. This network allows you to upload or download virtually any type of system data including Timer/Counter data, I/O information, and V-memory information from any *Direct*LOGIC or compatible PLC. The DCM allows the DL205 to function as a network master or network slave.

Specifications		
Module Type	Intelligent	
Modules per CPU	7 maximum, slot 1 or higher	
CPUs Supported	D2-240 (firmware V1.8 or later), D2-250, D2-250-1 and D2-260	
Communications	RS232C/422 signal levels, <i>Direct</i> NET Master/Slave, K-sequence or MODBUS RTU Slave protocol, Baud rate selectable from 300 to 38.4K baud, Odd or No parity, HEX or ASCII mode	
Recommended Cable	Belden 9729 or equivalent (for RS422)	
Field Wiring Connector	25-pin D-shell connector	
Internal Power Consumption	300mA maximum at 5VDC, (supplied by base power supply)	
Operating Environment	0°C to 60°C (32°F to 140°F), 5% to 95% humidity (non-condensing)	
Manufacturer	Koyo Electronics	

MODBUS RTU interface

The DCM can be used as a slave station interface to connect your DL205 system to a MODBUS® network using the MODBUS RTU protocol. The host system must be capable of issuing the

MODBUS commands to read or write the appropriate data. Remember that bottom port on the D2-250-1 and D2-260 CPUs can act as a MODBUS master.

SERIAL MODULE FOR WINPLC AND EBC SYSTEMS

Serial I/O module for WinPLCs

Add serial ports to your WinPLC system by simply plugging the H2-SERIO modules into the DL205 I/O base. This serial module is used exclusively with the WinPLC. The WinPLC communicates with the H2-SERIO module across the DL205 backplane.

Up to ten serial ports on a WinPLC system

The WinPLC has one built-in serial port. You can add as many as nine additional serial ports for Entivity Studio or Think & Do Live applications requiring multiple serial devices, such as barcode scanners. Connect to just about any serial device that communicates ASCII protocol. The H2-SERIO can also serve as a Modbus RTU slave.

Processing large amounts of serial data with a WinPLC

While the H2-SERIO module will support virtually any serial device, processing large amounts of serial data will increase the system response time. This is important to consider when using multiple H2-SERIO modules, especially in a WinPLC local base with an H2-

H2-SERIO Specifications					
Module Type	Intelligent module for use with H2-WPLC*-** or PC/EBC system				
# of Serial Ports per Module	3				
# of modules supported per WinPLC	3				
# of modules supported per EBC node	3				
Protocols Supported	Serial ASCII and Modbus RTU slave				
Connector	RJ12 jack				
Power Consumption	210mA @ 5VDC				
Operating Environment	0 to 60°C (32°F to 140°F), 5% to 95% RH (non-condensing)				
Manufacturer	Host Automation Products				

ERM or H2-CTRIO.

Separate communications parameters for each port

Use Entivity software packages to set baud rate, parity, data bits, and stop bits for each serial port. Choose from 300 to 57,600 baud communication speeds. Entivity Studio or Think & Do Live allows each port to be designated as a MODBUS slave or a generic serial device. Each port on the H2–SERIO module is capable of full hardware handshaking.

Easy serial communications

All Entivity PC control software products include advanced string and array functions that make transmitting, receiving and manipulating serial data a snap.

Using H2-SERIO in a PC-based control EBC system

Entivity Studio version 6.5 supports the use of up to three H2-SERIO modules per EBC node in a PC-based control system. The master must be a PC running Studio 6.5 or later. This does not apply to a WinPLC system with an ERM module used for remote I/O.

The same Entivity features for receiving and manipulating the serial data listed on this page for the WinPLC also apply to a PC running the control software.

Pin Assignments for H2-SERIO ports

1 OV Power (-) Connection (GND)

2 CTS Clear to Send

3 RXD Receive Data (RS232C)

4 TXD Transmit Data (RS232C)

5 RTS Request to Send

6 OV Signal Ground (GND)

RJ12 (6P6C) Female Modular Connector

ETHERNET COMMUNICATIONS MODULE

Overview

Ethernet Communications Modules offer features such as:

- · High-speed peer-to-peer networking of PLCs
- Fast updates with *Direct*SOFT32 **Programming Software**
- High-performance access for Human Machine Interface (HMI), ERP, MES or other Windows-based software when using DSData Server
- Free SDK for custom drivers
- · Virtually unlimited number of network nodes
- Easy setup

The Ethernet Communication (ECOM) Modules represent a price breakthrough for high-speed peer-to-peer networking of PLCs. No longer are you forced to designate a single PLC to be the network master. Any PLC can initiate communications with any other PLC. Link your PLCs with PCs using industry standard cables, hubs, and repeaters. A simple Windows-based spreadsheet program can be linked to your networked PLCs using our DirectSOFT32 Data Server. Or, use our DSData Server to link Human Machine Interface (HMI) software to DirectLOGIC PLCs. Our Lookout Direct HMI includes ECOM drivers. DirectSOFT32 Programming Software can be used to monitor or update the program in DirectLOGIC PLC on the network.

Simple connections

Use Category 5 UTP cables or 62.5/125 ST-style fiber optic cables depending on the requirements of your application. Inexpensive UTP cables can be run 100 meters between nodes, and fiber optic cables can be run 2,000 meters. Fiber optic cables virtually eliminate electrical noise problems. Use repeaters to extend distances and expand the number of nodes.

Our HA-TADP (10BaseT) and HA-**FTADP** (combo 10BaseT 10BaseFL) PC network adapter cards are compatible with the H2-ECOM(-F). See the Communications Products section in this desk reference for information on the adapter cards.

ECOM starter kit

The H2-ECOM-START gives you everything you need to make your first Ethernet network simple to build. It contains an ECOM module and instruction manual, a network adapter card for your PC, a crossover cable, and a Showcase Demo CD. The CD contains demo versions of our software products that support the ECOM Modules. See the Software Products section in this desk reference for information on the available software packages.

Specifications	H2-ECOM	H2-ECOM-F
Communications	10BaseT Ethernet	10BaseFL Ethernet
Data Transfer Rate	10Mbps	10Mbps
Link Distance	100 meters (328 ft)	2,000 meters (6,560 ft)
Ethernet Port	RJ45	ST-style fiber optic
Ethernet Protocols	TCP/IP, IPX	TCP/IP, IPX
Power Consumption	320mA	450mA
Manufacturer	Host Automation Products	Host Automation Products

ETHERNET COMMUNICATIONS MODULE

Choose your slot

The H2-ECOM(-F) modules plug into any I/O slot (excluding slot 0) of any local DL205 I/O base. The module maintains identification data, descriptive information, and communication parameters for PLC-to-PLC communications in flash memory. Disconnect power before installing or removing any PLC module.

Note: Use D2-240, D2-250, D2-250-1 or D2-260 CPUs with the ECOM modules. The D2-230 CPU does not support the ECOM modules.

NetEdit Software

Free NetEdit Software ships with the ECOM User Manual. Use NetEdit to set up the ECOM modules for your network. Flexible addressing allows you to use your choice of protocols and identifying methods. Assign each module a number or a name or both. You don't have to use an IP address, but you can if it's necessary for your network. Two protocols are available for PC-to-PLC communications: IPX and TCP/IP. Select the one you want to use, or use them both. The NetEdit screen displays all identifiers and troubleshooting information for each module on the network. You can use NetEdit to adjust parameters for PLCto-PLC communications by clicking on Advanced Settings. The network identifiers can also be changed from DirectSOFT32 Programming Software.

NetEdit Software Screen

PLC-to-PLC communications

PLC-to-PLC communications are accomplished using Read from Network (RX) and Write to Network (WX) instructions. Build the RX and/or WX instructions into a routine as shown. One SP relay (the busy bit) is used for sequencing of multiple instructions or to prevent a single RX or WX instruction from being overwritten. The other SP relay can be used to annunciate a communication error. The first Load (LD) instruction contains the base and

slot number of the initiating ECOM and the Module ID of the responding ECOM. The second LD instruction contains the number of bytes being transferred. You can transfer up to 256 bytes with one RX or WX instruction. The Load Address (LDA) instruction contains the beginning address in the initiating PLC's memory, regardless of whether or not it is an RX or WX instruction that is being executed. The RX or WX instruction contains the beginning address in the responding PLC.

SERIAL REMOTE I/O MASTER/SLAVE MODULES

Overview

You can use remote I/O in addition to the I/O in the local base. The remote master is located in the CPU base and communicates with the remote slaves via shielded twisted-pair cable. To use a remote I/O system, you will need the following:

Remote master

One master can be used for each channel. It can be a D2-RMSM, or the bottom port on a D2-250, D2-250-1 or D2-260 CPU. (The CPU port only supports RM-NET.)

Remote slave

A D2-RSSS and I/O base must be used for each slave.

The remote I/O points are updated asynchronously to the CPU scan. For this reason, remote I/O applications should be limited to those that do not require the I/O points to be updated on every scan.

Remote Master Specifications					
Module Type	Intelligent device				
Number of Masters per CPU	Two maximum for D2-240 and eight (seven + one CPU port) for the D2-250(-1) and D2-260 (built-in master feature in D2-250(-1) and D2-260 bottom port can be used as a master for RM-NET and would count as one master if used). D2-230 does not support remote I/O.				
Maximum Number of	CPU dependent as above				
Channels	Channels may be split be	etween RM-NET and SM-NET if necessary.			
Channel Capacity:	RM-NET	SM-NET			
Maximum # Slaves	7	31			
Baud Rates	19.2K, 38.4K baud Selectable (19.2K, 38.4K, 153.6K, 307.2, 614.4K baud)				
Transmission	3,900 ft. (1.2Km) 3,900 feet (1.2Km) @ 19.2 K or 38.4K baud				
Distance	1,968 feet (600m) @ 153.6K baud				
	984 feet (300m) @ 307.2K baud				
	328 feet (100m) @ 614.4K baud				
Communication to Slaves	RS485 via twisted pair with shield @ 38.4K baud				
Recommended Cable	Belden 9841 or equivalent - 120 ohm impedance, 12pF/ft				
Terminal Type	Fixed				
Operating Environment	0°C to 60°C (32°F to 140°F), 5% to 95% humidity (non-condensing)				
Internal Power Consumption	200mA maximum				
Manufacturer	Koyo Electronics				

Remote Slave Specifications			
Maximum Slave Points per CPU	No remote I/O for D2-230 D2-240, D2-250(-1), D2-260 support a maximum of 2048 points per channel. However, actual I/O available is limited by available I/O points and number of local I/O being used. The D2-240 has a total of 320 X input, 320 Y outputs, and 256 control relays available to share between local and remote I/O. The D2-250(-1) has a total of 512 X inputs, 512 Y outputs and 1024 control relays to share between local and remote I/O. The D2-260 has 1024 X inputs, 1024 Y outputs, 2048 control relays, 2048 GX inputs and 2048 GY outputs to share between local and remote I/O.		
I/O Addresses Used	I/O modules in slave bases do not automatically consume any standard input and output points. You select which points are consumed by setup instructions in your RLL program.		
Terminal Type	Fixed		
Communications Port	RS232C, 9,600 Baud (same as top port on CPUs, SM-NET mode only)		
Base Power Rqrmnt	200mA maximum		
Operating Environment	0°C to 60°C (32°F to 140°F), 5% to 95% humidity (non-condensing)		
Manufacturer	Koyo Electronics		

ETHERNET REMOTE I/O MASTER MODULE

Overview

The Ethernet Remote Master H2-ERM (-F) connects 240, D2-250, 250-1 and 260 CPU systems to slave I/O over a high-speed Ethernet link. The H2-ERM can also be used in a WinPLC system, but only one H2-ERM can be used with one slave per system.

Need a lot of I/O?

Each ERM module can support up to 16 additional H2-EBC systems, 16 Terminator I/O EBC systems, or 16 fully expanded H4-EBC systems. Of course, combinations are fine, too. The ERM also supports Edrives. See the Drives section for details.

Note: Applications requiring an extremely large number of T1H-EBC analog I/O or H4-EBC 16-channel analog I/O, could exceed the buffer capacity of a single H2-ERM module. In these cases, an additional H2-ERM may be required.

Specifications	H2-ERM	H2-ERM-F	
Communications	10BaseT Ethernet	10BaseFL Ethernet	
Data Transfer Rate	10Mbps		
Link Distance	100 meters (328 ft)	2K meters (6560 ft)	
Ethernet Port	RJ45	ST-style fiber optic	
Ethernet Protocols	TCP/IP, IPX		
Power Consumption	320mA @5VDC	450mA @5VDC	
Manufacturer	Host Automation Products		

Simple connections

The ERM connects to your control network using Category 5 UTP cables for cable runs up to 100 meters. Use repeaters to extend distances and expand the number of nodes. Our fiber optic version uses industry standard 62.5/125 ST-style fiber optic cables and can be run up to 2,000 meters.

The PLC, ERM and EBC slave modules work together to update the remote I/O points. These three scan cycles are occurring at the same time, but asynchronously. It is recommended that critical I/O points that must be monitored every scan be placed in the CPU base.

Networking ERMs with other Ethernet devices

It is highly recommended that a dedicated Ethernet remote I/O network be used for the ERM and its slaves. While Ethernet networks can handle a very large number of data transactions, and normally handle them very quickly, heavy Ethernet traffic can adversely affect the reliability of the slave I/O and the speed of the I/O network. Keep ERM networks, multiple ERM networks and ECOM/office networks isolated from one another.

Software configuration

ERM Workbench is a software utility that must be used to configure the ERM and its remote Ethernet slaves. ERM workbench supports two methods of configuring the ERM I/O network:

- ERM Workbench PLC Wizard greatly simplifies the configuration procedure when a PLC is used as the CPU interface.
- ERM Workbench configures the I/O network whether the CPU interface is a PLC or WinPLC, and allows access to all ERM I/O network parameters.

ERM Workbench Software

ETHERNET VS. SERIAL REMOTE I/O

I/O throughput

I/O throughput is defined as the time it takes from when an output is set in the ladder logic to when its corresponding input value is equal. This includes the PLC scan time, I/O backplane update time, and I/O module response times.

Testing I/O throughput times

A test was performed by our partner, Host Automation Products, to compare the difference between H2-ERM Ethernet remote I/O and D2-RMSM serial remote I/O throughput times. Host Automation Products supplies the H2-ERM, H2-EBC, H2-ECOM, etc. as well as *Direct*SOFT32 and DSData Server software.

I/O groups tested

Discrete I/O - D2-16TD1-2 discrete outputs of slot 2 are tied to the D2-16ND3-2 discrete inputs of slot 0.

Analog I/O - F2-02DAS-2 analog output channel 1 is tied to the F2-04AD-2 analog input channel 1 of slot 3. The analog values were scaled from the full 16 bit range down to 12 bit range.

Each group was run independently through the following cycle 256 times:

- Step 1: Set all outputs to Off for a random number of scans
- Step2: Set all outputs to a random value for a random number of scans
- Step 3: Set all outputs to On for a random number of scans
- Step 4: Set all outputs to a random value for a random number of scans

Since these four steps are repeated 256 times, there are actually 1024 samples of I/O throughput.

Test results

The results are listed in the tables to the right. As the number of H2-ERM slaves and I/O points increase, the I/O throughput times will remain flat until 64 analog inputs, 64 analog outputs or 1024 discrete I/O points are exceeded. As the number of D2-RMSM slaves and I/O points increase, the I/O throughput times increase proportionally.

H2-ERM / H2-EBC Ethernet Remote I/O System

D2-RMSM / D2-RSSS Serial Remote I/O System

Discrete I/O Test	I/O Throughput Times			
Remote I/O System	Min.	Max.	Avg.	Std. Dev.
H2-ERM / H2-EBC	45ms	71ms	53.32ms	6.14ms
D2-RMSM / D2-RSSS	36ms	56ms	42.29ms	5.81ms

Analog I/O Test	I/O Throughput Times			
Remote I/O System	Min.	Мах.	Avg.	Std. Dev.
H2-ERM / H2-EBC	46ms	113ms	62.94ms	14.48ms
D2-RMSM / D2-RSSS	64ms	321ms	117.38ms	37.44ms

ETHERNET BASE CONTROLLER MODULES

Ethernet Base Controller Modules (EBC)

H2-EBC

Use EBCs for PC-based control and for H2-ERM remote I/O slaves

The H2-EBC and H2-EBC-F Ethernet Base Controller modules provide a lowcost, high-performance Ethernet link between your PC-based control system or **ERM** remote I/O system DirectLOGIC DL205 I/O. The H2-EBC module supports industry standard 10BaseT Ethernet communications, and H2-EBC-F module supports 10BaseFL (fiber optic) Ethernet standards. The EBC modules are compatible with IP and IPX protocols for flexible PC communications. EBC modules offer:

- Lower cost on your *Direct*LOGIC I/O system compared when to competitive I/O
- Virtually unlimited number of I/O points
- Deterministic I/O updates on dedicated networks
- Fast I/O updates (<1ms per base)
- On board serial port for possible operator panel, ASCII In/Out, etc. (serial port not supported when used with ERM module)

Easy to use, reliable and fast

The H2-EBC(-F) module plugs into the CPU slot of any DL205 I/O base and supports all DL205 discrete and analog I/O modules, the H2-SERIO and H2-CTRIO specialty modules.

Specifications	H2-EBC	H2-EBC-F
Communications	10BaseT Ethernet	10BaseFL Ethernet
Data Transfer Rate	10Mbps	10Mbps
Link Distance	100 meters (328 ft)	2,000 meters (6,560 ft)
Ethernet Port / Protocols	RJ45, TCP/IP, IPX	ST-style fiber optic , TCP/IP, IPX
Serial Port / Protocols	RJ12, K-Sequence, ASCII IN/OUT	None
Power Consumption	320mA	450mA
Manufacturer	Host Engineering	Host Engineering

Software developers

For programmers developing custom drivers for our I/O, we offer a free Ethernet Software Development Kit (SDK). The SDK provides a simplified API for interfacing with the H2-EBC(-F). The software interface libraries are provided for WIN32, WIN16, and DOS operating systems. The source code is available to developers under a non-disclosure agreement. Visit the technical support link at our Web site for more information.

Off-the-shelf solutions

You can purchase PC-based control software that is ready to use with the H2-EBC(-F) module. PC-based control packages are equipped with compatible I/O device drivers, program development tools, and run-time environments. See the PC-based Control section of this desk

reference for a single-source integrated PC-based control solution that ships with everything you need to make your PC into an industrial controller. Most of the software packages listed below allow you to connect serial devices, such as barcode readers, to the H2-EBC's serial port.

The chart below identifies vendors that have PC-based Control products ready to control DirectLOGIC I/O, or have products to be released in the immediate future.

Vendor	Product	Web Address
PLDirect	KEP <i>Direct</i> EBC I/O Server	www.soliton.com.br
Entivity	Think & Do Live Entivity Studio Steeplechase	www.entivity.com
KEPware	KEPServerEX	www.kepware.com
Wonderware	InControl	www.wonderware.com
MDSI	OpenCNC	www.mdsi2.com

The D2-INST-M installation and I/O Manual covers information about DL205 I/O modules, power budgeting, and installation and wiring. This manual does not cover CPU-slot controllers.

Profibus Slave Base Controller

Overview

If you are using a Profibus controller network, the DL205 I/O sub-system can help reduce the cost of your overall application. The H2-PBC module allows the micro-modular DL205 I/O sub-system to be linked with a Profibus master controller. Profibus is a control bus that provides a common method to connect automation equipment with devices on a single network and significantly reduces hardwiring costs. Profibus provides specifications for information exchanged between nodes, such as controller data associated with low level device and configuration parameters that are individually related to system operations.

How it works

The H2-PBC module is a Profibus slave, which can be plugged into the CPU slot of the DL205 micro-modular family of I/O bases. The module reports all identification data, diagnostic information, and parameters that control the module operation. The H2-PBC module scans and reports all discrete and analog I/O data to a Profibus Master. The AC externally-powered DL205 I/O base units contain a 24 VDC, 0.3A power supply for simple wiring of sensors and actuators into the DL205 I/O modules, and for controlling them with a Profibus Master. Using our Profibus I/O sub-system will increase installation flexibility and save

Specifications		
Module Location	CPU slot of any DL205 base	
Module Type	CPU device	
Maximum Expansion	126 stations, 32 stations per segment, 9 repeaters in a row	
Communications	RS-485 Profibus, Profibus-DP. Baud rate selectable from 9.6Kbaud to 12M baud.	
Module Connectors	Profibus 9-pin D-shell, RJ-12 serial (for configuration only*)	
Internal Power Consumption	530mA maximum at 5VDC (supplied by base power supply)	
Operating Environment	0°C to 60°C (32°F to 140°F), 5% to 95% humidity (non-condensing)	
Manufacturer	Host Automation Products	

^{*} The serial port is used only for configuration of the H2-PBC firmware.

on wiring costs. The H2-PBC module supports all DL205 discrete and analog I/O modules and the H2-CTRIO module.

The Profibus Slave Base Controller also offers the following:

- Cost-effectiveness: Hardwiring cost is reduced with a single network for devices.
- Easy connectivity: Low-cost installation is easy to implement and maintain.
- Diagnostics: Advanced error diagnostics not commonly available in traditional systems are supported.
- High baud rates: Baud rates bring response time down to 10ms per device.
- LED indicators: Provide quick indication of DL205 power and operating mode.

Connect our micro-modular DL205 I/O...

The D2-INST-M Installation and I/O Manual for covers information about DL205 I/O modules, power budgeting, and installation and wiring. This manual does not cover CPU-slot controllers.

PROFIBUS SLAVE BASE CONTROLLER

Baud	Max. Segment Length		Max. Ex	cpansion
	Feet	Meters	Feet	Meters
9.6Kbps	3278ft.	1000m	32786ft	10000m
19.2Kbps	3278ft.	1000m	32786ft	10000m
93.75Kbps	3278ft.	1000m	32786ft	10000m
187.5Kbps	3278ft.	1000m	32786ft	10000m
500Kbps	1311ft.	400m	13114ft	4000m
1.5Mbps	655ft.	200m	6557ft	2000m
3Mbps	327ft.	100m	3270ft	1000m
6Mbps	327ft.	100m	3270ft	1000m
12Mbps	327ft.	100m	3270ft	1000m

DL205 Style of I/O Modules Supported		
Discrete Types	Analog Types	
4-point Input	4-channel Input	
8-point Input	8-channel Input	
16-point Input	2-channel Output	
32-point Input	8-channel Output	
4-point Output	4-channel In/ 2-channel Output	
8-point Output	4-channel Thermocouple	
16-point Output (includes 12 pt)	4-channel RTD	
32-point Output		
4-point Input/4 point Output		

ERNI ER*bic* connectors for Profibus networks

ERNI ER*bic* connectors are available for the Profibus Base Controller. They are available in node and termination reversed styles for DL205 and PC connections, horizontal or vertical cable entry, and termination or daisy-chain configurations.

ERNI ER <i>bic</i> connectors		
Part No.	Description	Device
104577	Profibus-certified reverse node horizontal connector. 9-pin Male D-Sub	H2-PBC or any Profibus ISA/PCI Personal Computer Master/Slave Card
104322	Profibus-certified reversed termination horizontal con- nector. 9-pin Male D-Sub	H2-PBC or any Profibus ISA/PCI Personal Computer Master/Slave Card

DEVICENET SLAVE MODULE

Overview

If you are using a DeviceNet controller network, the DL205 I/O sub-system will help reduce the cost of your overall application. The F2-DEVNETS-1 (slave) module allows the popular micromodular DL205 I/O sub-system to be linked with a DeviceNet master controller. DeviceNet is a low-cost control bus that provides a common method to connect automation equipment with devices on a single network. DeviceNet and it significantly reduces hard wiring costs. The DeviceNet standard provides specifications for information exchanged between nodes, such as controller data associated with low level device and configuration parameters individually related to system operations.

How it works

The F2-DEVNETS-1 module is a DeviceNet slave, which can be plugged into the CPU slot of the DL205 micromodular family of I/O bases. This module maintains a database with all the identification data, diagnostic information, and parameters that control the module operation. The F2-DEVNETS-1 module scans and reports all discrete and analog I/O data to a DeviceNet Master. The AC externally-powered DL205 I/O base units contain a 24 VDC, 0.2A power supply for simple wiring of sensors and actuators into the DL205 I/O modules, and for controlling them with a

DeviceNet Master. Using our DeviceNet I/O sub-system will increase installation flexibility and save on wiring costs. The F2-DEVNETS-1 module supports all DL205 discrete and analog I/O modules.

The DeviceNet slave module also offers:

- Cost effectiveness: Hardwiring cost is reduced with a single network for
- Easy connectivity: Low-cost four wire installation is easy to implement and
- Innovative technology: Power is integrated into the device.
- Diagnostics: Advanced error diagnostics not commonly available in traditional systems are available.
- Highly dependable: Fast response and high reliability are featured for demanding applications.
- LED indicators: Provide quick indication of DL205 power and operating mode.

F2-DEVNETS-1 Interface Specifications

Module Type CPU device

DeviceNet Compatibility Predefined Group 2 Master/Slave communications.

(256 inputs, 256 outputs max.) Defined by number of slots per base. (1024 inputs, 1024 outputs max.) Defined by DeviceNet slave specifications Number of I/O

Module Location CPU slot of any DL205 base

Maximum Field Devices per bus 64 (see table on next page)

Node Address / CAN Baud Rate Jumper selectable

Standard 4-wire shielded cable to cabinet connector, molded 4-wire cable @ up to 500Kbps to field devices Communication to Field Devices

Module Connector ODVA approved pluggable screw connector

0°C to 60°C (32°F to 140°F), 5% to 95% humidity **Operating Environment** (non-condensing)

Internal Power Consumption 160mA @ 5VDC

Manufacturer **FACTS** Engineering

Connect our micro-modular DL205 I/O...

The D2-INST-M Installation and I/O Manual covers information about DL205 I/O modules, power budgeting, and installation and wiring. This manual does not cover CPU-slot controllers.

DEVICENET SLAVE MODULE

I/O base and network considerations

All discrete and analog I/O modules are supported by the F2-DEVNETS-1 slave module. Choose your DL205 base(s) and I/O modules using the the information in this section.

DL205 Style of I/O Modules Supported		
Discrete Types	Analog Types	
4-point Input	4-channel Input	
8-point Input	8-channel Input	
16-point Input	2-channel Output	
32-point Input	8-channel Output	
4-point Output	4-channel In/ 2 channel Output	
8-point Output	4-channel thermocouple	
16-point Output (includes 12 pt)	4-channel RTD	
32-point Output		
4-point Input/4 point Output		

F2-DEVNETS-1 new features

The F2-DEVNETS-1 module replaces the F2-DEVNETS module and adds the following enhancements:

- DIP Switch selectable node address and CAN baud rate
- ODVA approved pluggable screw connectors
- 1024 inputs and 1024 outputs as defined by DeviceNet Slave specifications (256 physical inputs and 256 physical outputs defined by the number of slots per I/O base)

The F2-DEVNETS-1 can be used as a direct replacement for the previous F2-DEVNETS through a simple jumper selection procedure.

Trunk	Length	Bits/sec	Branch	Length	Devices
Feet	Meters		Feet	Meters	
328ft	100m	500Kbps	20	6m	64
820ft	250m	250Kbps	20	6m	64
1,640ft	500m	125Kbps	20	6m	64

Other DeviceNet specifications, compatible products, and the latest DeviceNet information are available through:

Open DeviceNet Vendor Association Phone: (954) 340-5412 Fax: (954) 340-5413 Internet Address: http://www.odva.org

ODVA, Inc. • 20423 State Road 7 • Boca Raton, FL 33498

SMART DISTRIBUTED SYSTEM (SDS) I/O

Overview

If you are already using or planning to implement an SDSTM controller network, using the F2-SDS-1 module and I/O sub-system can help reduce the cost of your overall application. The Smart Distributed System[™] (SDS) provides a means to connect automation equipment and devices on a single network, which eliminates expensive hardwiring. This standard communication media and software provides a lowcost method for controllers and devices to communicate low-level data at high speeds. The SDS standard provides specifications for information exchange between nodes, as well as device-level diagnostics not normally found in other I/O systems. The F2-SDS-1 module allows the well-proven micro-modular DL205 I/O system to be controlled by your SDS master controller.

How it works

The FS-SDS-1 module plugs into the CPU slot of any DL205 I/O base. The module maintains a database with all identification data, diagnostic information, and parameters that are configured within the base and control the operation of the SDS slave module and the I/O. The F2-SDS-1 slave will monitor and report discrete and analog I/O module data to a SDS Master. All AC externally-powered DL205 I/O base

units contain a 24VDC, 0.2A power supply for simple wiring of sensors and actuators into the DL205 I/O modules, and for controlling them with a SDS Master. The F2-SDS-1 module supports all DL205 discrete and analog I/O modules. The SDS also offers:

- Cost effectiveness: SDS offers inexpensive controller and industrial DL205 I/O sub-system.
- Easy connectivity: SDS is low-cost, it's easy to implement and maintain wiring system.
- Innovative technology: Power is integrated into the device.
- Diagnostics: SDS offers advanced error diagnostics not commonly found in traditional systems.
- High baud rates: Baud rate bring response time down to 0.10ms per device.
- LED indicators: Provides indication of DL205 Smart Distributed System.

F2-SDS-1 Interface Specifications		
Module Type	CPU device	
Module Location	CPU slot of any DL205 base	
Number of I/O	Defined by number of slots per base	
Maximum Field Devices per Bus	126 (see table next page)	
Max SDS Addresses per CPU	8 discrete, 64 analog	
Communication to Field Devices	Standard 4-wire shielded cable to cabinet connector, molded 4-wire cable @ up to 1Mbps to field devices.	
Module Connector	5-position removable terminal (European style)	
Operating Environment	0°C to 60°C (32°F to 140°F), 5% to 95% humidity (non-condensing)	
Internal Power Consumption	160mA @ 5VDC	
Manufacturer	FACTS Engineering	

Connect our micro-modular DL205 I/O...

...with your PLC or PCbased SDS master.

Ask for our D2-INST-M Installation and I/O Manual for complete information about DL205 I/O modules, power budgeting, and installation and wiring. This manual does not cover CPU-slot controllers.

SDS I/O

I/O base and network considerations

All discrete (except 32-pt.) and analog I/O modules are supported by the F2-SDS-1 slave module. Specialty modules are not supported by the F2-SDS-1 module.

DL205 Style of I/O Modules Supported		
Discrete Types	Analog Types	
4-point Input	4-channel Input	
8-point Input	8-channel Input	
16-point Input	2-channel Output	
4-point Output	4-channel In/ 2 channel Output	
8-point Output	4-channel Temperature	
16-point Output (includes 12 pt)		
4-point Input/4 point Output		

T	runk Length	Bits/sec	Branc	h Length	Devices
Feet	Meters		Feet	Meters	
75ft	22.8m	1Mbps	1	0.3m	64
300ft	91.4m	500Kbps	3	0.9m	126
600ft	182.8m	250Kbps	6	1.8m	126
1,500ft	457.2m	125Kbps	12	3.6m	126

Other SDS specifications, compatible products, and latest SDS literature information are made available through:

Honeywell MICRO SWITCH Division Internet: http://www.honeywell.sensing.com e-mail:info@micro.honeywell.com

Comments to:

SDS Council, IL50/B4-523 Honeywell Micro Switch Division 11 West Spring Street

Freeport, IL 61032

Phone: (800)537-6945 • Fax: (815) 235-5623

CoProcessor Module

Overview

The BASIC CoProcessor Module interfaces the DL205 family of programmable controllers with bar code readers, operator interface terminals, instrumentation equipment, computers and other serial devices.

BASIC CoProcessor™ applications

BASIC CoProcessors are designed for use with intelligent devices such as:

- Bar code readers
- Welders
- Board level controllers
- Serial printers
- Intelligent sensors
- Almost any device with an RS232C/R2422/RS 485 port

They are also good solutions for applications requiring complex math, such as floating point math, sine, cosine, tangent, exponential, square roots, etc.

Features

- FACTS Extended BASIC and ABM Commander for Windows software for IBM PCs makes program development fast and simple. Allows online, full-screen BASIC program editing and the ability to upload / download programs on disk. The CD-ROM includes MODBUS master and slave BASIC programs and other application examples.
- Non-volatile memory of up to 128K allows multiple program storage and execution, DL205 register expansion, and retentive data storage and retrieval.
- 26MHz BASIC CoProcessor provides fast program execution independent of the CPU scan.
- Three buffered ports permit communication from the module to three external devices.
- The module is programmable from port 1 or 2 for complete serial port utilization without switching cables.
- A real-time clock/calendar maintains time/date with battery backup when power outages occur. Programmable time based BASIC interrupts to .010 of a second.
- Direct access of up to 254 bytes of DL205 CPU memory per scan is possible. No supporting ladder logic is required.
- Floating point math solves complex formulas to eight significant digits.

Example Application

1 - 800 - 633 - 0405

CoProcessor

	Triple Port BASIC Coprocessor Module Specification	
Module Type	CoProcessor™, Intelligent	
Modules per CPU	Seven maximum, any slot in CPU base (except slot zero)	
Communication	256 character type-ahead input buffer on all ports. Ports are independently programmed by software. Seven or eight data bits, one or two stop bits, even, odd, or no parity. XON/XOFF software flow control and RTS/CTS handshake.	
F2-CP128	128K bytes of battery-backed RAM. 26MHz clock rate Port 1: RS232C/422/485, 115.2K baud maximum Port 2: RS232C/422/485, 57.6K baud maximum Port3*: RS232C, 19.2 baud max. * Port 3 physically located in the same R.H2 jack as Port 1 (RS232). Port 3 uses the RTS/CTS pins on that jack. If you use these lines for other purposes (e.g. hardware handshaking on Port 1), then Port 3 cannot be used.	
ABM Commander for Windows (CD included with module)	Programming /documentation software for IBM PCs comes standard. Key features include: Shipped with each coprocessor module Runs under Windows 95/98/2000 On-line full-screen BASIC program editing (similar to GW Basic, with industrial application enhancements added for easier programming) Internal Editor for block copy, block move, search and replace Text upload and download BASIC programs on disk Binary upload and download BASIC programs and data on disk Download control statement allows multiple programs to be downloaded and saved with one download file. CD includes Modbus master and slave BASIC programs and other application examples	
Field Termination	Four RJ12 jacks: Port 1/3 RS232, Port 2 RS232, Port 1 RS422/485, Port 2 RS422/485	
Power Consumption	235mA @ 5VDC	
Operating Environment	0°C - 60°C (32°F - 140°F), 5% to 95% humidity (non-condensing)	
Manufacturer	FACTS Engineering	

HIGH-SPEED COUNTER I/O MODULE

Overview

The High-Speed Counter I/O (CTRIO) module is designed to accept high-speed pulse-type input signals and provide discrete outputs for monitoring, alarm, or control functions. The CTRIO module offers great flexibility for applications that call for counting or timing, based on an input pulse.

The CTRIO module has its own microprocessor and operates asynchronously with respect to the CPU. This means that on-board outputs respond in realtime to incoming signals so there is no delay waiting for the CPU to scan I/O.

The CTRIO module is designed to work with incremental encoders or other field devices that send pulse outputs.

CTRIO features

The CTRIO modules offer the following I/O features:

- 8 DC sink/source inputs, 9-30VDC
- 4 isolated sink/source DC outputs,
 5-30 VDC, 1A per point

Inputs supported:

- 2 quadrature encoders counters up to 100KHz, or 4 single channel counters up to 100KHz
- 4 high-speed discrete inputs for Reset, Inhibit or Capture

Outputs supported:

- 4 independently configurable high-speed discrete outputs or 2 channels pulse output control (20Hz-25KHz per channel or 50KHz if only using one channel)
- Pulse and direction or cw/ccw pulses

Software Configuration

All scaling and configuration is done via CTRIO Workbench, a Windows software utility. This eliminates the need for ladder programming to set up the module. CTRIO Workbench runs under Windows 98/2000/XP and NT 4.0 SP5 or later.

CTRIO Workbench main configuration screen

Use Configure I/O screen to assign the CTRIO input and output functions

Typical applications:

- High-speed cut-to-length operations using encoder input
- Pick-and-place or indexing functions controlling a stepper drive
- Dynamic registration for web material control
- Accurate frequency counting for speed control with onboard scaling
- PLS (Programmable Limit Switch) functions for high-speed packaging, gluing, or labeling
- Sub 10 usec pulse-catch capability for high-speed product detection
- Functions for level or flow

Supported systems

Multiple CTRIO modules can reside in the same base provided that the backplane power budget is adequate.

DL205

You can use the H2-CTRIO module with D2-240, D2-250(-1) and D2-260 CPUs. The module plugs into any I/O slot of any *Direct*LOGIC 205 base except slot 0. (It is not supported in expansion bases at this time.)

DL405

You can use the H4-CTRIO module with the D4-430, D4-440 and D4-450 CPUs. The module plugs into any I/O slot of any *Direct*LOGIC 405 base and is supported in expansion bases.

DL205 WinPLC

You can use the H2-CTRIO module with the DL205 WinPLCs (H2-WPLC*-**). The module plugs into any I/O slot of any *Direct*LOGIC 205 base.

PC-based control systems

The CTRIO modules can be used in H2, H4 or T1H-EBC based I/O system.

ERM to EBC systems

The CTRIO modules are supported in the EBC slaves in H*-ERM systems. This includes the supported DL205 CPUs, DL405 CPUs and WinPLCs systems.

Note: The CTRIO modules are not supported in T1K-RSSS, D2-RSSS or D4-RS remote I/O bases.

I/O specifications

CTRIO Input Specifications			
Primary Inputs	4-pts. sink/source 100K Hz Max		
Secondary Inputs	4-pts., high speed, for Reset, Inhibit, or Capture		
Minimum Pulse Width	5 µsec		
Input Voltage Range	9-30VDC		
Maximum Voltage	30VDC		
Input Voltage Protection	Zener Clamped at 33VDC		
Rated Input Current	8mA typical 12mA maximum		
Minimum ON Voltage	9.0VDC		
Maximum OFF Voltage	3.0VDC		
Minimum ON Current	5.0mA (9VDC required to guarantee ON state)		
Maximum OFF Current	3.0mA		
OFF to ON Response	Less than 3 µsec		
ON to OFF Response	Less than 3 µsec		
Counting Range	+/- 2.1 billion (31 bits + sign bit)		

General		
Module Type	Intelligent	
Modules Per Base	Limited only by power consumption	
I/O Points Used	None, I/O maps directly in PLC V-memory or PC control access	
Field Wiring Connector	Standard removable terminal block	
Internal Power Consumption	400mA @ 5VDC from base power Maximum of 6 Watts (all I/O in ON state at max voltage/current)	
Operating Environment	32°F to 140°F (0°C to 60°C), Humidity (non-condensing) 5%	
Manufacturer	Host Automation Products	
Isolation	2500V I/O to Logic, 1000V among Input Channels and All Outputs	

CTRIO Output Specifications		
Outputs	4-pts., independently isolated, current sourcing or sinking (open collector)	
Pulse Output Control	2 channels, 20Hz - 25kHz, pulse and direction or cw/ccw pulses	
Voltage Range	5VDC - 36VDC	
Maximum Voltage	36VDC	
Output Clamp Voltage	60VDC	
Maximum Load Current	1.0A	
Maximum Load Voltage	36VDC	
Maximum Leakage Current	100μΑ	
Inrush Current	5A for 20ms	
OFF to ON Response	Less than 3µsec	
ON to OFF Response	Less than 3µsec	
External Power Supply	For loop power only, not required for internal module function*	
Overcurrent Protection	15A max	
Thermal Shutdown	Tjunction = 150°C	
Overtemperature Reset	Tjunction = 130°C	
Target Position Range	+/- 2.1 billion (31 bits + sign bit)	
Duty Cycle Range	0.1% to 99.9% in 0.1% increments	

* User supplied 5VDC power source required for most stepper drive configurations

Resources		
Counter/Timer	Four (2 per 4 input channel group)	
Resource Options	1X, 2X, or 4X Quadrature, Up or Down Counte	
Timer Resolution	1 µsec	
Counter Range	+/- 2.1 billion	

Status indicators

H2-CTRIO Module Status LED Indicators			
OK	Module OK	0	Out 0
ER	User Program Error	1	Out 1
1A	Ch 1 A Status / Pulses	2	Out 2
2A	Ch 2 A Status / Pulses	3	Out 3

T1H/H4-CTRIO Module Status LED Indicators			
ОК	Module OK	2A	Ch 2 A Status / Pulses
ER	User Program Error	2B	Ch 2 B Status / Pulses
CH1	User Program	2C	Ch 2 C Status / Pulses
CH2	User Program	2D	Ch 2 D Status / Pulses
TB	Term Blk err (405 only)	YO	Out 0
1A	Ch 1 A Status / Pulses	Y1	Out 1
1B	Ch 1 B Status / Pulses	Y2	Out 2
1C	Ch 1 C Status / Pulses	<i>Y3</i>	Out 3
1D	Ch 1 D Status / Pulses		

LED Diagnostic Definitions			
OK LED	Error LED	Description	
ON	ON	205 Base Power is Out of +5 Range	
ON	OFF	RUN Mode	
Blinking	Blinking	Boot Mode - Used for Field OS Upgrades	
Blinking	OFF	Program Mode	
OFF	Blinking	Module Self-diagnostic Failure	
OFF	ON	Module Error Due to Watchdog Timeout	
OFF	OFF	No Power to Module	
H2-CTRIO 1A, 2A LEDS		Based on Configuration of Channel 1 or 2	
Blinking 7 times per se	cond	Input is Configured as Counter and is Changing	
Following State of Inpu	t	Input is not Configured as Counter	
T1H / H4-CTRIO	CH1, CH2 LEDS	Based on Configuration of Channel 1 or 2	
Blinking 7 times per se	cond	Input is Configured as Counter and is Changing	
Following State of Input		Input is not Configured as Counter	
T1H / H4-CTRIO 1A-1D LEDS 2A-2D LEDS		Follows the actual state of the connected input device	
Output LEDs (Y)	0 - (Y) 3	Follows the actual state of the output	

Installation and wiring

The CTRIO module is a two channel device. Each channel accepts four optically isolated input signals that share the same common. Input circuits can be wired with either polarity without changing the module configuration. Channel 1 inputs can have the opposite polarity from channel 2 inputs.

The module is configured using CTRIO Workbench. The function of each input is defined in the configuration of the module (counting, timing, reset, etc.).

Field device wiring must be compatible with the module configuration. Each output circuit is optically isolated from the other outputs. Output commons are independent but can be tied together using internal jumpers. All four discrete outputs are available to be energized in response to any of the inputs.

See the notes below for further details about power source considerations, circuit polarities, and field devices.

Notes

- Inputs (1A, 1B, 1C, 1D and 2A, 2B, 2C, 2D) require user-provided 9-30VDC power sources. Terminals 1M and 2M are the commons for Channel 1 and Channel 2 inputs. Maximum current consumption is 12mA per input point.
- Polarity of the input power sources (shown above) can be reversed.
 Consideration must be given, however, to the polarity of the field device.
 Many field devices are designed for only one polarity and can be damaged if power wiring is reversed.
- 3. Outputs have one polarity only (as shown above) and are powered by user-provided 5-36VDC power sources. The maximum allowable current per output circuit is 1A.

Note: The physical layout of the T1H/H4-CTRIO terminal blocks are different than the H2-CTRIO terminal block layout shown above. However, the electrical connection identifiers are the same.

Solid state input wiring device

DC types of field devices are configured to either sink or source current. This affects the wiring of the device to the CTRIO module. Refer to the sinking/sourcing appendix in this desk reference for a complete explanation of sinking and sourcing concepts.

NPN Field Device (sink)

Pulse output schematic

PNP Field Device (source)

Stepper drive wiring example

Fill-in-the-blank configuration software

The CTRIO Workbench is the software utility used to configure the CTRIO module and to scale signals to desired engineering units. Workbench also allows you to perform various other functions, such as switching between the CTRIO's Program mode and Run mode, monitoring I/O status and functions, and diagnostic control of module functions. The CTRIO Workbench utility ships with the CTRIO User Manual. You can also download the latest version free at the Host Engineering Web site: www.hosteng.com.

CTRIO Workbench diagnostics and monitoring

The Monitor I/O dialog is accessible from the main Workbench dialog when the module is in Run Mode. This allows for convenient way to test and debug your configuration prior to installation. The Monitor I/O dialog is divided into two functional areas: Input Functions and Output Functions. The data displayed under the Input Functions tab includes the current status of each configured input and output function. The fields displayed under the Output Functions tab includes all configuration information that can be altered during runtime and the bits that indicate successful transfers or errors.

Monitor I/O screen

CTRIO Workbench configure I/O setup

The Configure IO dialog is the location where input and output functions are assigned to the module. The choice of input and output functions determines which options are available. The input function boxes prompt you with selections for supported functions. The Workbench software automatically disallows any unsupported configurations.

Configure I/O screen

CTRIO Workbench on-board scaling

Scaling raw signals to engineering units is accomplished using the Scaling Wizard. The Scaling Wizard options are different for the Counter functions as compared with the Timer functions. "Position" and "Rate" scaling are available when you select a Counter function. "Interval" scaling is available when you select a Timing function.

Scaling Wizard screen

HIGH-SPEED COUNTER High-speed input operations

The CTRIO module is capable of a wide variety of high speed input and output operations all within one module. With its flexible 2-channel input and separate 2-channel output design, the CTRIO can satisfy both high-speed counting, timing, pulse catch operations, along with high speed discrete output or several profile choices of pulse output operations. Not all combinations of input functions and output functions are possible within the resources of the module, but the following examples are some of the most common applications for the CTRIO. Check out these examples and see how they relate to your high speed application needs.

High-speed timing

The CTRIO can be configured for timing functions based on both count or rate. Using a common configuration of a proximity switch sensing the teeth on a gear, the module is able to calculate the velocity of the gear based on the rate it receives its counts. This value can be scaled within the module to the engineering units required for the application.

Using Configure I/O screen to configure CTRIO for high-speed timing

High-speed counting

The CTRIO can be configured for counting functions for the use of an encoder input, (up to two quadrature encoders per module) with available connections for external reset and inhibit signals. In a simple cut to length application as shown, the encoder provides an input position reference for the material to the module. The module's high speed outputs are wired to the cutting device and to the clutch and/or braking device. When the count from the encoder is equal to a pre-programmed setpoint within the module, the high speed outputs are activated to stop and cut the material to a repeatable fixed length. Additionally, the clutch/brake signal can be used for an inhibit signal to not accumulate counts while the material is being cut.

High-speed cut-to-length application

Using Configure I/O screen to configure CTRIO for high-speed counting

Pulse output operations

Using Edit Pulse Profile screen to select Trapezoid pulse output profile

CTRIO pulse output signals

Stepper or servo drive

Stepper motor inside housing

Also applicable to DL405

and Terminator I/O

Rotary indexing liquid fill application

Pulse output for stepper/servo control

The CTRIO module is capable of multiple configurations for pulse output control, most often when connected to a stepper or servo drive system. The module can deliver a pulse output signal up to a maximum of 25Khz on two channels with support for pulse-and-direction or CW/CCW pulses. The available profile choices include Trapezoid, S-Curve, Symmetrical S-Curve, Dynamic Positioning, and Pulse to Limit. All profiles can be easily configured using the CTRIO Workbench software with fill-in-the-blank parameter fields and a graphic representation of the selected profile.

Example application

In a simple rotary indexing application, as shown above, a fixed Trapezoid profile is chosen. The CTRIO for this application is wired to a stepper drive for pulse-and-direction. The requirement for this application is to provide a smooth movement of the rotary table to allow product to be filled into individual containers equal distance apart. The predetermined number of pulses required for each movement is entered into the CTRIO Workbench as "Total Pulses" along with the Starting Frequency, Ending Frequency, and Positioning Frequency (speed after acceleration). The Acceleration and Deceleration parameters are entered in units of time, so no ramp-distance calculations are required. After all parameters are entered, a graphical representation of the configured profile is shown automatically. Once the configuration has been downloaded to the module, all that is needed is from the PLC CPU is the Enable Output signal to begin a movement.

Other common pulse output applications:

- -S-Curve accel/decel profile for signaling a stepper or servo drive that needs a curved acceleration and deceleration profile, i.e. for diminishing any initial "jerk" upon movement of static products, boxes on conveyors, liquids in containers on an indexer, printing registrations, etc.
- •Dynamic Positioning for any run-to-a-specific-position requirement, either by a pre-programmed count of an external high speed discrete input wired to the module. This is popular in winding or webcontrol with any dynamic registration mark or variable speed requirement.
- •Pulse to limit for constant velocity or home search routines.

Combining high-speed input and pulse output operations

Multihead drill machine application

PLC with CTRIO module Proximity switch

Stepper or servo drive

High-Speed inputs and pulse output combinations

The flexible design of the CTRIO module allows for combining high speed inputs and delivering high speed pulse outputs signals simultaneously. There are limitations to this type of configuration in that the module does not internally support closed loop control. Providing closed loop control with the CTRIO involves additional PLC code to coordinate this control, making the application subject to the PLC CPU program scan. Simple position/speed monitoring via a high speed counting input for non-critical response while providing pulse outputs to a drive, is easily achievable for the CTRIO.

Also applicable to DL405 and Terminator I/O CTRIO modules

Example application

In the simple drill-head application shown above, the CTRIO pulse outputs are wired to a stepper and/or servo drive. The inputs are wired to an encoder attached to the lead screw on the movable portion of the drill-head assembly. The CTRIO module output pulse train to the drive allows the motor to spin the lead screw making the drill move forward into the passing material. The encoder monitors the speed and position of the drill-head. Prox switches at each end act as limit switches ensuring the drill-head will not over-travel. A home sensor is positioned in the middle of the assembly which allows the PLC to reset the count.

Closed loop control for the CTRIO module requires PLC CPU program interaction to close the loop. This makes the application subject to the PLC CPU scan.

Counter Interface Module

Overall module specifications		
Module Type	Discrete	
Modules per CPU	One only in slot adjacent to CPU	
I/O Points Used	8 inputs, 8 outputs	
Field Wiring Connector	Standard 8 pt. removable terminal block	
Internal Power Consumption	50mA from 5VDC max., (supplied by the CPU base power supply)	
Operating Environment	32°F to 140°F (0°C to 60°C) humidity (non- condensing) 5% to 95%	
Manufacturer	Koyo Electronics	

OUT CNTR WF 0 4 1 5 2 6 3 7 D2-CTRINT COUTRING COUTRI	
--	--

Overview

The DL205 CPUs can be configured to work with the D2-CTRINT to provide the following features. (Only one D2-CTRINT can be used in a DL205 base).

- Up to two built-in 5KHz high-speed counters with 24 presets each
 When the preset is reached, an interrupt routine in the CPU is executed. The D2-240 and D2-250 support 2 channels and the D2-230 supports 1 channel.
- Quadrature encoder input for clockwise and counter clockwise position control (D2-240/250)
- Programmable pulse output with external interrupts and separate acceleration and deceleration profiles for positioning and velocity control (5K pulses per second max) (D2-240/250)
- 4 External interrupt inputs for immediate responses to tasks.
- Pulse catch feature allows the CPU to read 4 inputs, each having a pulse width as small as 0.1ms.
- Programmable filters for reading up to 4 input signals to ensure input signal integrity
- Combine features to utilize the full potential of the module. Some modes do not use all available points. So in some cases, you can assign one of the other features to the point(s) not used by the main mode of operation.
- Even though some modes can be used together, you cannot use the module for closed-loop control (i.e., you cannot use pulse output and counter input features together).

Input specifications			
Input	4 pts. sink/source 5KHz Max		
Minimum pulse width	100 μSec		
Input voltage range	12 or 24VDC ±15%		
Maximum voltage	30VDC		
Rated input current	10mA Typical 13mA Maximum		
Minimum ON voltage	8.0VDC		
Maximum OFF voltage	1.0VDC		
Minimum ON Current	8.0mA		
Maximum OFF Current	1.0mA		
OFF to ON response	Less than 30µS		
ON to OFF response	Less than 30µS		

Output specifications		
Output	2 pts., current sinking, 5KHz Max	
Voltage range	5.0VDC±15%	
Maximum voltage	5.5VDC	
Maximum load current	30mA	
Minimum load voltage	4.5VDC	
Leakage current	Less than 0.1mA at 5.5VDC	
Inrush current	0.5A (10mS)	
OFF to ON response	Less than 30µS	
On to OFF response	Less than 30µS	
External power supply	5.0VDC±10%	

Counter Interface Mode 10

Mode 10: two high-speed up counter inputs

Each DL205 CPU has internal features that support high-speed counting up to 5KHz. (Two counters for the D2-240, D2-250(-1) and D2-260, only one for the D2-230). You connect the external pulse input and reset input signals to the internal counter by using the counter interface module (D2-CTRINT). The embedded counters are independent of the CPU ladder logic execution, so counting is not affected by the scan time. When the counter reaches a preset value (up to 24 presets per counter), the CPU stops executing the main program and executes an interrupt subroutine that is

associated with the UP counter (one interrupt subroutine per UP counter). You can program the subroutine with any of the instructions that are normally available in subroutines. Also, an internal "Equal" relay assigned to each preset is set ON when the associated preset matches the actual count (24 "Equal" relays per counter). This allows you to easily trigger actions based on the current count. For example, you could use Immediate I/O instructions to provide a fast response. The CPU resumes normal operations from where it left off after the interrupt subroutine is finished.

Turning the Enable input of the counter off and on will halt and resume the counting. Counters can reset either by an external signal (X2, X3) or by special internal relays that can be activated by the program. Presets can be either absolute or incremental. Absolute presets are compared directly to the actual count. Incremental presets compare the actual count to the result of adding the associated preset value to the previous preset value.

Input Specifications		
Input Voltage	12 or 24VDC	
Frequency	5KHz maximum	
Minimum Pulse Width	100μS	
Maximum Count	99,999,999	
Preset Types	Absolute or Incremental	
Number of Presets	24 per counter	
Interrupt Priority	Counter 1 over Counter 2	

Input Assignments for Up counter		
Input 1	Up count of UP counter 1 (X0)	
Input 2 Up count of UP counter 2 (X1)		
Input 3 External Counter 1 reset (X2)		
Input 4	External Counter 2 reset (X3)	

Built-in high-speed counter

Counter Interface Mode 20

Mode 20: one up/down counter (quadrature counter)

By selecting Mode 20, the two highspeed UP counters (5KHz) embedded internally in the D2-240, D2-250(-1) and D2-260 CPUs are configured to operate as a single 5KHz Up/Down counter (not available in D2-230). Two external pulse inputs (count up and count down) and one reset input signal are connected to this internal Up/Down counter by means of the D2-CTRINT counter interface module. In addition, there are two signals used in the control program: a counter enable input, and a counter reset input.

the Just like UP counter, UP/DOWN counter is also independent

of the CPU ladder logic execution, so counting is not affected by the scan time. When the counter reaches a preset value (up to 24 presets), the CPU stops executing the main program and executes an interrupt subroutine that is associated with the counter. You can program the subroutine with any of the instructions that are normally available in subroutines. Also, an internal "Equal" relay assigned to each preset is set ON when the associated preset matches the actual count. This allows you to easily trigger actions based on the current count. For example, you could use Immediate I/O instructions to provide a fast response. The CPU resumes normal operations from where it left off after the interrupt subroutine is finished.

Turning the ENABLE input of the

counter off and on will halt and resume the counting. Presets can be either absolute or incremental. Absolute presets are compared directly to the actual count. Incremental presets compare the actual count to the result of adding the associated preset value with the previous preset value.

Up/Down Counter Specifications	
Input voltage	12 or 24 VDC
Frequency	5KHz maximum
Minimum pulse width	100μs
Count Range	-8,388,608 to 8,388,607
Preset Types	Absolute or incremental
Number of presets	24 (Two words per pre- set)

Input Assignment for the Up/Down Counter	
Input 1	Phase A (X0)
Input 2 Phase B (X1)	
Input 3	External counter reset (X2)

Built-in UP/DN counter

Example of Up/Down Counter

COUNTER INTERFACE MODE 30

Mode 30: pulse output

By selecting Mode 30, you can use the pulse output feature with a D2-240, D2-250(-1) and D2-260 CPUs to build simple motion and positioning control systems. Transfer and indexing tables are common applications. Choose the profile and motion parameters by using special CPU V-memory locations that are designated for use with the Counter Interface module. The module can be configured for independent CW/CCW pulse train output, or step and direction, regardless of the profile chosen. The pulses are sent out independently of the CPU scan, so scan time does not affect the pulse generation. The pulse output is enabled through ladder logic by acti-

vating Y4. LEDs on the front indica	tε
interrupt, clockwise and counterclock	k-
wise output status.	

The trapezoid profile is also referred to as the Automatic acceleration/deceleration profile. Specify a target destination (number of pulses), a starting velocity (pulses per second), a positioning velocity, an acceleration time, and a deceleration time. Once you have specified these parameters, the module automatically controls the actual acceleration /deceleration velocity and pulse output. Acceleration/deceleration times can be in the range of 100ms to 10 seconds. This mode also allows you to perform simple registration. By using the external interrupt, you can delay counting toward the target number of pulses until the interrupt occurs.

Complex acceleration/deceleration
allows you to specify a target destination,
an overall positioning velocity, and up to
four steps each of acceleration/decelera-
tion. Each acceleration/deceleration step
can be configured individually for a
target pulse count and positioning
velocity. Also, you do not have to use all
four steps. You can choose the number
that works best for your particular appli-
cation.

You can also choose a velocity-only mode. In this scenario, you only control the velocity. There is no target destination (number of pulses). Simply change the velocity value as necessary to achieve the desired results.

Pulse Output Specifications	
External Power Supply	5VDC±10%
Output Frequency	5KHz maximum
Target Pulse Range	-8,388,608 to 8,388,607
Velocity Range	40 to 5000 pulses/sec (in units of 10 pulses)
Pulse Distance	1 to 9999 per step

Input Assignments for the Up/Down Counter	
Input 1: (01)	External interrupt
Input 1: (01) Output 1: (03)	CW pulse output
Output 2: (04)	CCW pulse output

Automated acceleration / deceleration

Velocity control

Mode 40: four external interrupts

By selecting Mode 40, you can use the Counter Interface as a high-speed interrupt input module. The D2-230/240/250(-1)/260 CPUs support this mode.

An interrupt input is especially useful in applications that have a high priority event that requires special operations to be performed. When this high-priority event occurs, the interrupt module senses an ON input signal. The module auto-

matically informs the CPU to interrupt its present operation. The CPU immediately suspends its routine scan cycle execution and jumps to a subroutine identified with that particular interrupt input signal point. You can program the subroutine with any of the instructions that are normally available in subroutines. For example, you could use immediate I/O instructions to immediately read inputs and update outputs without waiting on the normal I/O update cycle. When the subroutine is complete, the CPU automatically resumes the normal

scan cycle starting at the exact location from where it was interrupted. The CPU continues the routine scan until another interrupt signal is sensed.

Interrupt Input Specifications	
Point Assignments	Four Interrupts (X0, X1, X2, X3)
Minimum Pulse Width	100μS
Trigger	Leading edge
Interrupt Priority	X0 first, X1 second, X2 third, X3 fourth
Interrupt Subroutines	Four (INTO, INT1, INT2, INT3)

Mode 50: four pulse catch inputs

By selecting Mode 50, the D2-230, D2-240, and D2-250 CPUs can capture very fast (narrow) pulse inputs that cannot normally be detected during the normal input update cycle. Up to four different external inputs (X0, X1, X2, X3), with

 Pulse Catch Input Specifications

 Point assignments
 Four inputs (X0, X1, X2, X3)

 Minimum pulse width
 0.1ms

 Pulse Period
 More than 0.5ms

 Trigger
 Leading edge

pulse widths as small as 0.1ms (and a pulse period greater than 0.5ms) can be trapped. When an external pulse is encountered, X0-X3 is set in the ON state for the next scan of the CPU and automatically set to the OFF state. Like the other modes, the pulse catch feature operates independently of the CPU scan.

Counter Interface Mode 60

Mode 60: four discrete inputs with filter

With Mode 60 selected, the D2-230, D2-240, and D2-250(-1) and D2-260 CPUs provide filtering for up to four input signals from the Counter Interface. The filtering helps reduce the possibility of false ON conditions triggering the program logic. When an external signal is first detected (ON

state), a programmable filter is activated which begins a timed countdown. The slight delay temporarily prevents the CPU from reading the input during the normal input update portion of the scan cycle. The ON signal must stay present long enough for the filter to time out. If the ON signal stays present during the entire filter time, it is latched by the filter and allowed to be accepted by the CPU during the CPU's normal input update

portion of the scan cycle. The signal is latched for the remaining duration of the ON signal plus an amount of time equal to the filter time. The filter time can be programmed from 0 to 99ms in 1ms increments.

After the filter delay time, the input is accepted by the CPU.

Counter interface input assignments for timed interrupt mode XO Not available for use X1 Filtered Input, Interrupt, or Pulse Catch X2 Filtered Input, Interrupt, or Pulse Catch X3 Filtered Input, Interrupt, or Pulse Catch

Timed interrupt specifications	
Timed interrupts One (internal to CPU)	
Time interval	3 to 999ms (1 ms increments)
Interrupt Subroutine	INTO

Understanding the Timed Interrupt

There is also a timed interrupt feature available in our D2-240, D2-250(-1) and D2-260 CPUs. You do not have to purchase the Counter Interface module to use the timed interrupt. This cyclical interrupt allows you to easily program a time-based interrupt that occurs on a scheduled basis. The CPU's timed interrupt operates in a similar manner to the external interrupt input, but instead of the interrupt subroutine being triggered by an external event, it is now triggered by a cyclical interval of time. This interval

can be programmed from 3ms to 999ms. Whenever the programmed time elapses, the CPU immediately suspends its routine scan cycle and jumps to interrupt subroutine INT 0. As with the other modes. when subroutine execution is complete, the CPU automatically resumes its routine scan cycle starting at the exact location from where it was interrupted. Since the CPU scan time and the interrupt time interval are different, the program gets interrupted at various points in the execution over time. The CPU returns to the point where it left to resume the program execution.

If you do choose to use a timed interrupt and the Counter Interface module, you can do so, but you cannot use X0 on the Counter Interface. If you're using the timed interrupt and a normal discrete module, then there are no restrictions.

DC INPUT MODULES

D2-08ND3 DC	Input
Inputs per module	8 (sink/source)
Commons per module	1 (2 I/O terminal points)
Input voltage range	10.2-26.4 VDC
Peak voltage	26.4 VDC
AC frequency	N/A
ON voltage level	9.5 VDC minimum
OFF voltage level	3.5 VDC maximum
Input impedance	2.7K q
Input current	4.0mA @ 12VDC 8.5mA @ 24VDC
Minimum ON current	3.5mA
Maximum OFF current	1.5mA
Base power required 5VDC	50mA
OFF to ON response	1 to 8ms
ON to OFF response	1 to 8ms
Terminal Type	Removable
Status Indicator	Logic side
Weight	2.3 oz. (65g)

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

D2-16ND3-2 DC Input	
Inputs per module	16 (sink/source)
Commons per module	2 (isolated)
Input voltage range	20-28 VDC
Peak voltage	30VDC (10mA)
AC frequency	N/A
ON voltage level	19VDC minimum
OFF voltage level	7VDC maximum
Input impedance	3.9K Ω
Input current	6mA @ 24 VDC
Minimum ON current	3.5mA
Maximum OFF current	1.5mA
Base power required 5VDC	100mA
OFF to ON response	3 to 9ms
ON to OFF response	3 to 9ms
Terminal Type	Removable
Status Indicator	Logic side
Weight	2.3 oz. (65g)
¹ Connector sold separately. See Connection Systems for wiring options.	

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

DC INPUT MODULES

D2-32ND3 DC	nput
Inputs per module	32 (sink/source)
Commons per module	4 (8 I/O terminal points)
Input voltage range	20-28VDC
Peak voltage	30VDC
AC frequency	N/A
ON voltage level	19VDC minimum
OFF voltage level	7VDC maximum
Input impedance	4.8K ohm
Input current	8.0mA @ 24VDC
Minimum ON current	3.5mA
Maximum OFF current	1.5mA
Base power required 5VDC	25mA
OFF to ON response	3 to 9ms
ON to OFF response	3 to 9ms
Terminal Type	40-pin Connector ¹
Status Indicator	Module Activity LED
Weight	2.1oz. (60g)
Connector sold separately. See Connection Systems for wiring options.	

See the Connection Systems section in this desk reference for part numbers of ZIPLink cables and terminal blocks compatible with this module.

Configuration shown is current sinking

D2-32ND3-2 DC Input		
Inputs per module	32 (Sink/Source)	
Commons per module	4 (8 I/O terminal points)	
Input voltage range	4.50 to 15.6VDC min. to max.	
Peak voltage	16VDC	
Input current	4mA at 5VDC 11mA at 12VDC 14mA at 15VDC	
Max. input current	16mA at 15.6VDC	
Input impedance	1.0kΩ at 5-15VDC	
ON voltage level	4VDC	
OFF voltage level	2VDC	
Min. ON current	3mA	
Max. OFF current	0.5mA	
OFF to ON response	3 to 9ms	
ON to OFF response	3 to 9ms	
Status indicators	Module activity LED	
Terminal type	Removable 40-pin connector ¹	
Base power required 5VDC	25mA	
Weight	2.1oz (60g)	
¹ Connector sold separately. See Co	nnection Systems for wiring options.	

See the Connection Systems section in this desk reference for part numbers of ZIPLink cables and terminal blocks compatible with this module.

SIMULATOR/AC INPUT MODULES

F2-08SIM Input Simulator		
Inputs per module	8	
Base power required 5VDC	50mA	
Terminal Type	None	
Status Indicator	Switch side	
Weight	2.65oz. (75g)	

D2-08NA-1 AC	Input
Inputs per module	8
Commons per module	1 (2 I/O terminal points)
Input voltage range	80-132VAC
Peak voltage	132VAC
AC frequency	47-63Hz
ON voltage level	75VAC minimum
OFF voltage level	20VAC maximum
Input impedance	12K Ω @ 60Hz
Input current	13mA @ 100VAC, 60Hz 11mA @ 100VAC, 50Hz
Minimum ON current	5mA
Maximum OFF current	2mA
Base power required 5VDC	50mA
OFF to ON response	5 to 30ms
ON to OFF response	10 to 50ms
Terminal Type	Removable
Status Indicator	Logic side
Weight	2.5oz. (70g)

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

AC INPUT MODULES

D2-08NA-2 AC	Input
Inputs per module	8
Commons per module	2 Commons (Connected Internally)
Input voltage range	170-265VAC
Peak voltage	265VAC
AC frequency	47-63Hz
ON voltage level	150VAC minimum
OFF voltage level	40VAC maximum
Input impedance	18K Ω @ 60Hz
Input current	9mA @ 220VAC, 50Hz 11mA @ 265VAC, 50Hz 10mA @ 220VAC, 60Hz 12mA @ 265VAC, 60Hz
Minimum ON current	10mA
Maximum OFF current	2mA
Base power required 5VDC	100mA
OFF to ON response	5 to 30ms
ON to OFF response	10 to 50ms

Terminal Type	Removable
Status Indicator	Logic side
Weight	2.5oz. (70g)
Operating Temperature	32°F to 131°F (0° to 55°C)
Storage Temperature	-4°F to 158°F (-20°C to 70°C)
Humidity	35% to 95% (non-condensing)
Atmosphere	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Insulation Withstand Voltage	1500VAC 1 minute (COM-GND)
Insulation Resistance	10M ≃s 500 VDC
Noise Immunity	NEMA 1500V 1 minute SANKI 1000V 1 minute
RFI	150MHz, 430MHz

AC INPUT MODULES

D2-16NA AC Input		
Inputs per module	16	
Commons per module	2 (isolated)	
Input voltage range	80-132VAC	
Peak voltage	132VAC	
AC frequency	47-63Hz	
ON voltage level	70VAC minimum	
OFF voltage level	20VAC maximum	
Input impedance	12K Ω @ 60Hz	
Input current	11mA @ 100VAC, 50Hz 13mA @ 100VAC, 60Hz 15mA @ 132VAC, 60Hz	
Minimum ON current	5mA	
Maximum OFF current	2mA	
Base power required 5VDC	100mA	
OFF to ON response	5 to 30ms	
ON to OFF response	10 to 50ms	
Terminal Type	Removable	
Status Indicator	Logic side	
Weight	2.4oz. (68g)	

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

D2-04TD1 DC Output		
Outputs per module	4 (current sinking)	
Output Points Consumed	8 points (only first 4-pts. used)	
Commons per module	1 (4 I/O terminal points)	
Operating voltage	10.2-26.4VDC	
Output type	NMOS FET (open drain)	
Peak voltage	40 VDC	
AC frequency	N/A	
ON voltage drop	0.72VDC maximum	
Max load current (resistive)	4A/point 8A/common	
Max leakage current	0.1mA @ 40VDC	

Max inrush current	6A for 100ms, 15A for 10ms
Minimum load	50mA
External DC Required	24VDC @ 20mA max.
Base power required 5VDC	60mA
OFF to ON response	1ms
ON to OFF response	1ms
Terminal type	Removable
Status Indicators	Logic side
Weight	2.8oz. (80g)
Fuses	4 (1 per point) (6.3A slow blow, non-replaceable)

Inductive Load Maximum Number of Switching Cycles per Minute

i	Load	Duration of output in ON state		
	Current	7ms	40ms	100ms
	Current	71113	701113	1001113
	0.1A	8000	1400	600
	0.5A	1600	300	120
	1.0A	800	140	60
	1.5A	540	90	35
	2.0A	400	70	-
	3.0A	270	-	-
	4.0A	200	-	-

At 40mS duration, loads of 3.0A or greater cannot be used.

At 100mS duration, loads of 2.0A or greater cannot be used.

Find the load current you expect to use and the duration that the output is ON. The number at the intersection of the row and column represents the switching cycles per minute. For example, a 1A inductive load that is on for 100ms can be switched on and off a maximum of 60 times per minute. To convert this to duty cycle percentage use: (duration x cycles) / 60. In this example (60 x .1)/60 = .1 or 10% duty cycle.

D2-08TD1 DC	Output
Outputs per module	8 (current sinking)
Commons per module	1 (2 I/O terminal points)
Operating voltage	10.2-26.4 VDC
Output type	NPN open collector
Peak voltage	40VDC
AC frequency	N/A
ON voltage drop	1.5VDC maximum
Max load current	0.3A/point, 2.4A/common
Max leakage current	0.1mA @ 40VDC
Max inrush current	1A for 10ms
Minimum load	0.5mA
Base power required 5VDC	100mA
OFF to ON response	1ms
ON to OFF response	1ms
Terminal type	Removable
Status Indicators	Logic side
Weight	2.3oz. (65g)
Fuses	1 per common 5A fast blow, non-replaceable

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

D2-08TD2 DC	Output
Outputs per module	8 (current sourcing)
Commons per module	1
Output voltage	10.8 to 26.4VDC
Operating voltage range	12 to 24VDC
Output type	PNP open collector
Peak voltage	40VDC
AC frequency	N/A
Max output current	0.3A per point, 2.4A per common
Max leakage current	0.1mA @ 40VDC
ON voltage drop	1.5VDC
Max. inrush current	1mA for 10mS
OFF to ON response	1mS
ON to OFF response	1mS
Terminal type	Removable
Status indication	Logic side
Weight	2.1oz. (60g)
Fuse	1 per common 5A fast blow, non-replaceable
Base power required 5VDC	100mA

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

4 0

D2-16TD1-2 DC	Output
Outputs per module	16 (current sinking)
Commons per module	1 (2 I/O terminal points)
Operating voltage	10.2-26.4VDC
Output type	NPN open collector
Peak voltage	30VDC
AC frequency	N/A
ON voltage drop	0.5VDC maximum
Max load current	0.1A/point 1.6A/common
Max leakage current	0.1mA @ 30VDC
Max inrush current	150mA for 10ms
Minimum load	0.2mA
Base power required 5VDC	200mA
OFF to ON response	0.5ms
ON to OFF response	0.5ms
Terminal type	Removable
Status Indicators	Logic Side
Weight	2.3oz. (65g)
Fuses	none
External DC required	24VDC ±4V @ 80mA max

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

D2-16TD2-2 DC	Output
Outputs per module	16 (current sourcing)
Commons per module	2
Operating voltage	10.2-26.4VDC
Output type	NPN open collector
Peak voltage	30VDC
AC frequency	N/A
ON voltage drop	1.0VDC maximum
Max load current	0.1A/point 1.6A/module
Max leakage current	0.1mA @ 30VDC
Max inrush current	150mA for 10ms
Minimum load	0.2mA
Base power required 5VDC	200mA
OFF to ON response	0.5ms
ON to OFF response	0.5ms
Terminal type	Removable
Status Indicators	Logic Side
Weight	2.8oz. (80g)
Fuses	none

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

D2-32TD1 DC (Jutput
Outputs per module	32 (current sinking)
Commons per module	4 (8 I/O terminal points)
Operating voltage	12-24VDC
Peak voltage	30VDC
ON voltage drop	0.5VDC maximum
Max load current	0.1A/point,, max 3.2A per module
Max leakage current	0.1mA @ 30VDC
Max inrush current	150mA for 10ms
Minimum load	0.2mA
Base power required 5VDC	350mA
OFF to ON response	0.5ms
ON to OFF response	0.5ms
Terminal type	removable 40-pin connector ¹
Status Indicators	Module activity (no I/O status indicators)
Weight	2.1oz. (60g)
Fuses	none

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

D2-32TD2 D0	Output
Outputs per module	32 (current sourcing)
Commons per module	4, 8 points per common (isolated)
Operating voltage	12 to 24VDC
Peak voltage	30VDC
Max load current	0.1A per point, 0.8A per common
Min load	0.2mA
Max leakage current	0.1mA @ 30VDC
ON voltage drop	0.5VDC @ 0.1A
Max inrush current	150mA @ 10mS
OFF to ON response	0.5mS
ON to OFF response	0.5mS
Statue indicators	Module activity (no I/O status indicators)
Terminal type	Removable 40-pin connector ¹
Weight	2.1oz (60g)
Fuses	None
Base power required 5VDC	350mA

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

D2-08TA AC Output		
Outputs per module	8	
Commons per module	1 (2 I/O terminal points)	
Operating voltage	15-264VAC	
Output type	SSR (Triac)	
Peak voltage	264VAC	
AC frequency	47 to 63Hz	
ON voltage drop	<1.5VAC (>0.1A) <3.0VAC (<0.1A)	
Max load current	0.5A/point 4A/common	
Max leakage current	4mA (264VAC, 60Hz) 1.2mA (100VAC, 60Hz) 0.9mA (100VAC, 50Hz)	
Max inrush current	10mA for 10ms	
Minimum load	10mA	
Base power required 5VDC	250 mA	
OFF to ON response	1ms	
ON to OFF response	1ms + 1/2 cycle	
Terminal type	Removable	
Status Indicators	Logic side	
Weight	2.8oz. (80g)	
Fuses	1 per common, 6.3A slow blow	

See the Connection Systems section in this desk reference for part numbers of ZIPLink cables and terminal blocks compatible with this module.

F2-08TA AC Output		
Outputs per module	8	
Commons per module	2 (Isolated)	
Operating voltage	24-140 VAC	
Output type	SSR (Triac with zero crossover)	
Peak voltage	140VAC	
AC frequency	47 to 63Hz	
ON voltage drop	1.6 V (rms) @ 1.5A	
Max load current	1.5A / pt @ 30°C 1.0A / pt @ 60°C 4.0A / common; 8.0A / module @ 60°C	
Max leakage current	0.7mA (rms)	
Peak one cycle surge current	15A	
Minimum load	10mA	
Base power required 5VDC	250 mA	
OFF to ON response	0.5ms - 1/2 cycle	
ON to OFF response	0.5ms - 1/2 cycle	
Terminal type	Removable	
Status Indicators	Logic side	
Weight	3.5oz.	
Fuses	N/A	

Derating Note: All outputs can be run at the current per point shown. There is no derating for the number of I/O points used.

D2-12TA AC Output		
Outputs per module	12	
Output Point Consumed	16 (four unused, see chart below)	
Commons per module	2 (isolated)	
Operating voltage	15-132VAC	
Output type	SSR (Triac)	
Peak voltage	132VAC	
AC frequency	47 to 63Hz	
ON voltage drop	<1.5VAC (>50mA) <4.0VAC (<50mA)	
Max load current	0.3A/point 1.8A/common	

Max leakage current	2mA (132VAC, 60Hz)
Max inrush current	10A for 10ms
Minimum load	10mA
Base power required 5VDC	350mA
OFF to ON response	1ms
ON to OFF response	1ms + 1/2 cycle
Terminal type	Removable
Status Indicators	Logic side
Weight	2.8 oz. (80g)
Fuses	(2) 1 per common 3.15A slow blow, replaceable Order D2-FUSE-1 (5 per pack)

See the Connection Systems section in this desk reference for part numbers of ZIPLink cables and terminal blocks compatible with this module.

Addresses Used				
Points	Used?	Points	Used?	
Yn+0	Yes	Yn+10	Yes	
Yn+1	Yes	Yn+11	Yes	
Yn+2	Yes	Yn+12	Yes	
Yn+3	Yes	Yn+13	Yes	
Yn+4	Yes	Yn+14	Yes	
Yn+5	Yes	Yn+15	Yes	
Yn+6	No	Yn+16	No	
Yn+7	No	Yn+17	No	
n is the starti				

RELAY OUTPUT MODULES

D2-04TRS Rela	y Output
Outputs per module	4
Commons per module	4 (isolated)
Output Point Consumed	8 (only 1st 4pts. are used)
Operating voltage	5-30VDC / 5-240VAC
Output type	Relay, form A (SPST)
Peak voltage	30VDC, 264VAC
AC frequency	47 to 63Hz
ON voltage drop	0.72VDC maximum
Max load current	4A / point Max. of 8A / module (resistive)
Max leakage current	0.1mA @264VAC

Typical Relay Life (Operations)				
Voltage & Load Current				
Type of Load	1A	2A	<i>3A</i>	4A
24 VDC Resistive 24 VDC Solenoid	500K 100K	200K 40K	100K	50K —
110 VAC Resistive	500K	250K	150K	100K
110 VAC Solenoid	200K	100K	50K	_
220 VAC Resistive	350K	150K	100K	50K
220 VAC Solenoid	100K	50K		
At 24 VDC, solenoid (inductive) loads over 2A cannot be used.				
At 100 VAC, solenoid (inductive) loads over 3A cannot be used.				
At 220 VAC solenoid (inductive) loads over 24 cannot be used				

Max inrush current	5A for <10ms
Minimum load	10mA
Base power required 5VDC	350mA
OFF to ON response	10ms
ON to OFF response	10ms
Terminal type	Removable
Status Indicators	Logic Side
Weight	2.8oz. (80 g)
Fuses	1 per point 6.3A slow blow, replaceable Order D2-FUSE-3 (5 per pack)

RELAY OUTPUT MODULES

D2-08TR Relay Output		
Outputs per module	8	
Commons per module	2 (isolated)	
Operating voltage	5-30VDC/5-240VAC	
Output type	Relay, form A (SPST)	
Peak voltage	30VDC, 264VAC	
AC frequency	47 to 60Hz	
ON voltage drop	N/A	
Max current (resistive)	1A/point 4A/common	
Max leakage current	0.1mA @265VAC	
Max inrush current	Output: 3A for 10ms Common: 10A for 10ms	

Minimum load	5mA @ 5VDC	
Base power required 5VDC	250mA	
OFF to ON response	12ms	
ON to OFF response	10ms	
Terminal type	Removable	
Status Indicators	Logic side	
Weight	3.9oz. (110g)	
Fuses	1 6.3A slow blow, replaceable Order D2-FUSE-3 (5 per pack)	

Typical Relay Life (Operations)		
Voltage/Load	Current	Closures
24VDC Resistive	1A	500K
24VDC Solenoid	1A	100K
110VAC Resistive	1A	500K
110VAC Solenoid	1A	200K
220VAC Resistive	1A	350K
220VAC Solenoid	1A	100K

See the Connection Systems section in this desk reference for part numbers of *ZIP*Link cables and terminal blocks compatible with this module.

RELAY OUTPUT MODULES

F2-08TRS Relay Output			
Outputs per module	8		
Commons per module	8 (isolated)		
Output Points Consumed	8		
Operating voltage	12-28VDC, 12-250VAC, 7A 120VDC, 0.5A		
Output type	Three, Form C (SPDT) Five, Form A (SPST normally open)		
Peak voltage	150VDC, 265VAC		
AC frequency	47 to 63Hz		
ON voltage drop	N/A		
Max load current (resistive)	7A/point ³ (subject to derating)		

Max leakage current	N/A
Max inrush current	12A
Minimum load	10mA @ 12VDC
Base power required 5VDC	670mA
OFF to ON response	15ms (typical)
ON to OFF response	5ms (typical)
Terminal type	Removable
Status Indicators	Logic side
Weight	5.5oz. (156g)
Fuses	None

Typical Relay Life¹ (Operations) at Room Temperature				
Voltage &	Load Co	urrent		
Type of Load ²	50mA	5A	7A	
24 VDC Resistive	10M	600K	300K	
24VDC Solenoid	-	150K	75K	
110VAC Resistive	_	600K	300K	
110VAC Solenoid	-	500K	200K	
220VAC Resistive	_	300K	150K	
220VAC Solenoid	_	250K	100K	

1 Contact life may be extended beyond those values shown with the use of arc suppression techniques described in the DL205 User Manual. Since these modules have no leakage current, they do not have built-in snubber. For example, if you place a diode across a 24VDC inductive load, you can significantly increase the life of the relav.

2 At 120 VDC 0.5A resistive load, contact life cycle is 200K cycles.

3 Normally closed contacts have 1/2 the current handling capability of the normally open contacts.

				Dera	ting Cha	rt	
	8	+					4A/ pt.
Number	6					5A/pt	
Points On	4	+					6A/ pt.
(100% duty cycle)	2					7A/pt	
	0	+					
		0 32	10 50 Amb	20 68 pient Te	30 86 mperati	40 104 ure (°C/	50 55 °C 122 131 °F °F)

RELAY OUTPUT MODULES

F2-08TR Relay Output		
Outputs per module	8	
Commons per module	2 (isolated), 4-pts. per common	
Output Points Consumed	8	
Operating voltage	12-28VDC, 12-250VAC, 7A 120VDC, 0.5A	
Output type	8, Form A (SPST normally open)	
Peak voltage	150VDC, 265VAC	
AC frequency	47 to 63Hz	
ON voltage drop	N/A	
Max load current (resistive)	10A/point ³ (subject to derating) Max of 10A/common	

Typical Relay Life¹ (Operations) at Room Temperature				
Voltage & Type of Load ² Load Current				
	50mA	5A	7A	
24 VDC Resistive 24VDC Solenoid	10M -	600K 150K	300K 75K	
110VAC Resistive	-	600K	300K	
110VAC Solenoid	-	500K	200K	
220VAC Resistive	-	300K	150K	
220VAC Solenoid	-	250K	100K	

1 Contact life may be extended beyond those values shown with the use of arc suppression techniques described in the DL205 User Manual. Since these modules have no leakage current, they do not have built-in snubber. For example, if you place a diode across a 24VDC inductive load, you can significantly increase the life of the relay.

2 At 120 VDC 0.5A resistive load, contact life cycle is 200K cycles.

3 Normally closed contacts have 1/2 the current handling capability of the normally open contacts.

Max leakage current	N/A
Max inrush current	12A
Minimum load	10mA @ 12VDC
Base power required 5VDC	670mA
OFF to ON response	15ms (typical)
ON to OFF response	5ms (typical)
Terminal type	Removable
Status Indicators	Logic side
Weight	5.5oz. (156g)
Fuses	None

RELAY OUTPUT MODULES

D2-12TR Relay Output			
Outputs per module	12		
Outputs Consumed	16 (four unused, see chart below)		
Commons per module	2 (6-pts. per common)		
Operating voltage	5-30VDC/5-240VAC		
Output type	Relay, form A (SPST)		
Peak voltage	30VDC, 264VAC		
AC frequency	47 to 60Hz		
ON voltage drop	N/A		
Max current (resistive)	1.5A/point Max of 3A/common		
Max leakage current	0.1mA @ 265 VAC		

Typical Relay Life (Operations)				
Voltage/Load	Current	Closures		
24VDC Resistive	1A	500K		
24VDC Solenoid	1A	100K		
110VAC Resistive	1A	500K		
110VAC Solenoid	1A	200K		
220VAC Resistive	1A	350K		
220VAC Solenoid	1A	100K		

See the Connection Systems section in this desk reference for part numbers of ZIPLink cables and terminal blocks compatible with this module.

Max inrush current	Output: 3A for 10ms Common: 10A for 10ms
Minimum load	5mA @ 5VDC
Base power required 5VDC	450mA
OFF to ON response	10ms
ON to OFF response	10ms
Terminal type	Removable
Status Indicators	Logic side
Weight	4.6oz. (130g)
Fuses	2 4A slow blow, replaceable Order D2-FUSE-4 (5 per pack)

Addresses Used				
Points	Used?	Points	Used?	
Yn+0	Yes	Yn+10	Yes	
Yn+1	Yes	Yn+11	Yes	
Yn+2	Yes	Yn+12	Yes	
Yn+3	Yes	Yn+13	Yes	
Yn+4	Yes	Yn+14	Yes	
Yn+5	Yes	Yn+15	Yes	
Yn+6	No	Yn+16	No	
Yn+7	No	Yn+17	No	
n is the starting address				

DC INPUT/RELAY OUTPUT MODULE

D2-08CDR 4-pt. DC In/4	lpt. Relay Out			
Input Specifications				
Inputs per module	4 (sink/source)			
Input Point Consumed	8 (only first 4-pts. are used)			
Input Commons per module	1			
Input voltage range	20-28VDC			
Peak voltage	30VDC			
AC frequency	N/A			
ON voltage level	19VDC minimum			
OFF voltage level	7VDC maximum			
Input impedance	4.7K			
Input current	5mA @ 24VDC			
Maximum Current	8mA @ 30VDC			
Minimum ON current	4.5mA			
Maximum OFF current	1.5mA			
OFF to ON response	1 to 10ms			
ON to OFF response	1 to 10ms			
Fuse (input circuits)	None			
General Specifications				
Base power required 5VDC	200mA			
Terminal Type	Removable			
Status Indicators	Logic side			
Weight	3.5oz. (100g)			

Typical Relay Life (Operations)		
Voltage/Load	Current	Closures
24VDC Resistive 24VDC Solenoid 110VAC Resistive 110VAC Solenoid 220VAC Resistive 220VAC Solenoid	1A 1A 1A 1A 1A 1A	500K 100K 500K 200K 350K 100K

D2-08CDR 4-pt. DC	In/4-pt. Relay Out
Output Specifications	
Outputs per module	4
Output Points Consumed	8 (only first 4-pts. are used)
Output Commons per module	1
Operating voltage	5-30VDC/5-240VAC
Output type	Relay, form A (SPST)
Peak voltage	30VDC, 264VAC
AC frequency	47 to 63Hz
Max load current (resistive)	1A/point 4A/module (resistive)
Max leakage current	0.1mA @ 264VAC
Max inrush current	3A for <100ms 10A for <10ms (common)
Minimum load	5mA @ 5VDC
OFF to ON response	12ms
ON to OFF response	10ms
Fuse (output circuits)	1 (6.3A slow blow, replaceable) Order D2-FUSE-3 (5 per pack)

Points

3

2

Derating Chart

Out-

puts

1A / Pt. Inputs

5mA / Pt.

Analog Current Input Modules

F2-04AD-1 4-Channel 4-20mA Analog In	
This module requires a 24 VDC user p page if you want to use a 12VDC supp	ower supply for operation. See the F2-04AD-1L on the next ly. All other specifications are the same.
Number of Channels	4, single ended (1 common)
Input Ranges	4 to 20mA current
Resolution	12-bit (1 in 4096)
Active Low-pass Filtering	-3dB at 80Hz,2 poles (-12dB per octave)
Input Impedance	250Ω ±0.1%, 1/2W current input
Absolute Maximum Ratings	-40mA to +40mA, current input
Converter Type	Successive approximation
Conversion Time (PLC Update Rate)	1 channel per scan maximum (D230 CPU) 4 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)
Linearity Error (End to End)	±1 count (0.025% of full scale) maximum
Input Stability	±1 count
Full Scale Calibration Error (offset error not included)	±12 counts max., @ 20mA current input
Offset Calibration Error	±7 counts max.,@ 4mA current input
Step Response	4ms to 95% of F.S. change

Maximum Inaccuracy	±.5% @ 77°F (25°C) ±.65% 32° to 140°F (0° to 60°C)	
Accuracy vs.Temperature	±50ppm/°C maximum full scale (including max. offset change)	
Recommended Fuse	0.032 A, Series 217 fast-acting, current inputs	
Digital Input Points Required	16 (X) input points, 12 binary data bits, 2 channel ID bits, 2 diagnostic bits	
Base power required 5VDC	50mA	
External Power Supply	80mA maximum, +18 to +30VDC	
Operating Temperature	32° to 140°F (0° to 60°C)	
Storage Temperature	-4° to 158°F (-20° to 70°C)	
Relative Humidity	5 to 95% (non-condensing)	
Environmental Air	No corrosive gases permitted	
Vibration	MIL STD 810C 514.2	
Shock	MIL STD 810C 516.2	
Noise Immunity	NEMA ICS3-304	

More than one external power supply can be used provided all the power supply commons are connected. A Series 217, 0.032A, fast-acting fuse is recommended for 4-20mA current loops. If the power supply common of an external power supply is not connected to OVDC on the module, then the output of the external transmitter must be isolated. To avoid "ground loop" errors, recommended 4-20mA transmitter types are:

2 or 3 wire: Isolation between input signal and power supply.

4 wire: Isolation between input signal, power supply, and 4-20mA output

Analog Current Input Modules

F2-04AD-1L 4-Ch. 4-20mA Analog In		
This module requires a 12VDC user power supply for operation. See the F2-04AD-1 on the previous page if you want to use a 24VDC supply. All other specifications are the same.		
Number of Channels	4, single ended (1 common)	
Input Ranges	4 to 20mA current	
Resolution	12 bit (1 in 4096)	
Active Low-pass Filtering	-3dB at 80Hz, 2 poles (-12dB per octave)	
Input Impedance	250Ω ±0.1%, 1/2W current input	
Absolute Maximum Ratings	-40mA to +40mA, current input	
Converter Type	Successive approximation	
Conversion Time (PLC Update Rate)	1 channel per scan maximum (D2-230 CPU) 4 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)	
Linearity Error (End to End)	±1 count (0.025% of full scale) maximum	
Input Stability	±1 count	
Full Scale Calibration Error (offset error not included)	±12 counts max., @ 20mA current output	
Offset Calibration Error	±7 counts max., @4mA current input	
Step Response	4ms to 95% of F.S. change	

Maximum inaccuracy	±.5% @ 77°F (25°C) ±.65% 32° to 140°F (0° to 60°C)
Accuracy vs.Temperature	±50ppm/°C maximum full scale (including max. offset change)
Recommended Fuse	0.032A, Series 217 fast acting current inputs
Digital Input Points Required	16 (X) input points 12 binary data bits, 2 channel ID bits
Base Power Required 5VDC	50mA
External Power Supply	90mA maximum, +10 to +15VDC
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4° to 158°F (-20° to 70°C)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

recommended 4-20mA transmitter types are: 2 or 3 wire: Isolation between input signal and power supply. 4 wire: Isolation between input signal, power supply, and 4-20mA output

Analog Current Input Modules

F2-08AD-1 8-Char	nel 4-20mA Analog In
Number of Channels	8, single ended (1 common)
Input Ranges	4 to 20mA current
Resolution	12 bit (1 in 4096)
Low-pass Filtering	-3dB at 200Hz, (-6dB per octave)
Input Impedance	$250\Omega \pm 0.1\%$, 1/2W current input
Absolute Maximum Ratings	-45mA to +45mA
Converter Type	Successive approximation
Conversion Time (PLC Update Rate)	(D2-230 CPU) 1 channel per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs) 8 channels per scan maximum
Linearity Error (End to End)	±1 count (0.025% of full scale) maximum
Input Stability	±1 count
Full Scale Calibration Error (offset error not included)	±5counts max., @ 20mA current input
Offset Calibration Error	±2 counts max., @ 4mA current input
Step Response	7ms to 95% of F.S. change

Maximum Inaccuracy	±.1% @ 77°F (25°C)	
тахітат тассагасу	±.25% 32° to 140°F (0° to 60°C)	
Accuracy	±50ppm/°C maximum full scale	
vs.Temperature	(including max. offset change of two counts)	
Recommended Fuse	0.032 A, Series 217 fast-acting, current inputs	
Digital Input Points	16 (X) input points 12 binary data bits, 3 channel ID bits,	
Required	1 broken transmitter bit	
Base Power Required 5VDC	50mA	
External Power Supply	80mA maximum, +18 to +30VDC	
Operating Temperature	32° to 140°F (0° to 60°C)	
Storage Temperature	-4° to 158°F (-20° to 70°C)	
Relative Humidity	5 to 95% (non-condensing)	
Environmental Air	No corrosive gases permitted	
Vibration	MIL STD 810C 514.2	
Shock	MIL STD 810C 516.2	
Noise Immunity	NEMA ICS3-304	

More than one external power supply can be used provided all the power supply commons are connected. A Series 217, 0.032A, fast-acting fuse is recommended for 4-20mA current loops. If the power supply common of an external power supply is not connected to OVDC on the module, then the output of the external transmitter must be isolated. To avoid "ground loop" errors, recommended 4-20mA transmitter types are:

2 or 3 wire: Isolation between input signal and power supply.

4 wire: Isolation between input signal, power supply, and 4-20mA output

-		
F2-04AD-2 4-Channel Voltage Analog In		
This module requires a 24VDC us next page if you want to use a 12	This module requires a 24VDC user power supply for operation. See the F2-04AD-2L on the next page if you want to use a 12VDC supply. All other specifications are the same.	
Number of Channels	4, single ended (1 common)	
Input Ranges	0 to 5V, 0 to 10V, ±5V, ±10V	
Resolution	12 bit (1 in 4096)	
Active Low-pass Filtering	-3dB at 80Hz, 2 poles (-12dB per octave)	
Input Impedance	>20MΩ	
Absolute Maximum Ratings	-75 to +75VDC	
Converter Type	Successive approximation	
Conversion Time (PLC Update Rate)	1 channel per scan maximum (D2-230 CPU) 4 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)	
Linearity Error (End to End)	±1 count (0.025% of full scale) maximum ±2 counts maximum (bi-polar)	
Input Stability	±1 count	
Full Scale Calibration Error (offset error not included)	±3 counts maximum	
Offset Calibration Error	±1 count maximum (0V input)	
Step Response	10ms to 95% of F.S change	

Maximum Inaccuracy	±.1% @ 77°F (25°C)
тахтат тассагасу	±.3% 32° to 140°F (0° to 60°C)
Accuracy vs.Temperature	$\pm 50 \mathrm{ppm/^{\circ}C}$ full scale calibration change (including maximum offset change)
Digital Input Points Required	16(x) input 12 binary data bits, 2 channel ID bits
Base Power Required 5VDC	60mA
External Power Supply	90mA maximum, +18 to +30VDC
Operating Temperature	32° to 140°F (0 to 60°C)
Storage Temperature	-4° to 158°F (-20° to 70°C)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).

Note 1: Shields should be grounded at the signal source.

F2-04AD-2L 4-C	F2-04AD-2L 4-Ch. Voltage Analog In	
This module requires a 12VDC user power supply for operation. See the F2-04AD-2 if you want to use a 24VDC supply. All other specifications are the same.		
Number of Channels	4, single ended (1 common)	
Input Ranges	0 to 5V, 0 to 10V, ±5V, ±10V	
Resolution	12 bit (1 in 4096)	
Active Low-pass Filtering	-3dB at 80Hz, 2 poles (-12 dB per octave)	
Input Impedance	>20MΩ	
Absolute Maximum Ratings	-75 to +75VDC	
Converter Type	Successive approximation	
Conversion Time (PLC Update Rate)	1 channel per scan maximum (D2-230 CPU) 4 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)	
Linearity Error (End to End)	±1 count (0.025% of full scale) maximum ±2 counts maximum (bi-polar)	
Input Stability	±1 count	
Full Scale Calibration Error (offset error not included)	±3 counts maximum	
Offset Calibration Error	±1 count maximum (0V input)	
Step Response	10ms to 95% of F.S change	

Maximum Inaccuracy	±.1% @ 77°F (25°C)
maximum maccaracy	±.3% 32° to 140°F (0° to 60°C)
	,
Accuracy	±50ppm/°C full scale calibration change (including maximum offset change of 2 counts)
vs.Temperature	mum offset change of 2 counts)
Digital Input Points	16 (X) input points
Required	12 binary data bits, 3 channel ID bits
Base Power Required	60mA
5VDC	
External Power Supply	90mA maximum, +10 to +15 VDC
,	
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4° to 158°F (-20° to 70°C)
Relative Humidity	5 to 95% (non-condensing)
	, ,
Environmental air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).

Note 1: Shields should be grounded at the signal source.

F2-08AD-2 8-Char	nnel Voltage Analog In
Number of Channels	8, single ended (1 common)
Input Ranges	0 to 5V, 0 to 10V, ±5V, ±10VDC
Resolution	12 bit (1 in 4095) uni-polar 13 bit (-4095 to 4095) bi-polar
Active Low-pass Filtering	-3dB at 200Hz, (-6 dB per octave)
Input Impedance	>20MΩ
Absolute Maximum Ratings	-75 to +75VDC
Converter Type	Successive approximation
Conversion Time (PLC Update Rate)	1 channel per scan maximum (D2-230 CPU) 8 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)
Linearity Error (End to End)	±1 count (0.025% of full scale) maximum
Input Stability	±1 count
Full Scale Calibration Error (offset error not included)	±3 counts maximum
Offset Calibration Error	±1 count maximum (0V input)
Step Response	4ms to 95% of F.S. change

Maximum Inaccuracy	±.1% @ 77°F (25°C) ±.3% 32° to 140°F (0° to 60°C)
Accuracy vs.Temperature	±50ppm/°C maximum full scale (including max. offset change of 2 counts)
Digital Input Points Required	16 (X) input points, 12 binary data bits, 3 channel ID bits, 1 sign bit, 1 diagnostic bit
Base Power Required 5VDC	60mA
External Power Supply	80mA maximum, +18 to +26.4VDC
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4° to 158°F (-20° to 70°C)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096). Includes circuitry to automatically detect broken or open transmitters.

Note 1: Connect unused channels (CH2+, CH4+, CH6+, CH8+) to common.

TEMPERATURE INPUT MODULES

E0.04B	FD Louis
F2-U4K	TD Input
Number of Channels	4
Input Ranges	Type Pt100: -200.0/850.0°C, -328/1562°F Type Pt1000: -200.0/595.0°C, -328/1103°F Type jPt100: -38.0/450.0°C, -36/842°F Type CU-10/25: -200.0/260.0°C, -328/500°F
Resolution	16 bit (1 in 65535)
Display Resolution	±0.1°C, ±0.1°F (±3276.7)
RTD Excitation Current	200μΑ
Input Type	Differential
Notch Filter	>100 db notches at 50/60Hz -3db=13.1Hz
Maximum Setting Time	100ms (full-scale step input)
Common Mode Range	0-5VDC
Absolute Maximum Ratings	Fault protected inputs to ±50VDC
Sampling Rate	160ms per channel

Converter Type	Charge Balancing
Linearity Error	±.05°C maximum, ±.01°C typical
Maximum Inaccuracy	±1°C
PLC Update Rate	4 channel/scan max., 240/250(-1)/D2-260CPUs 1 channel per scan max., 230 CPU
Digital Input Points Required	32 inputs, 16 binary data 2 inputs, channel identification 4 inputs, open/shorted fault
Base Power Required 5VDC	90mA
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4° to 158°F (-20° to 70°C)
Temperature Drift	None (self-calibrating)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

- 1. The three wires connecting the RTD to the module must be the same type and length. Do not use the shield or drain wire for the third connection.
- 2. If a RTD sensor has four wires, the plus sense wire should be left unconnected as shown.

TEMPERATURE INPUT MODULES

F2-04THM 4-Channe	el Thermocouple In	
General Specifications		
Number of Channels	4, differential	
Common Mode Range	±5VDC	
Common Mode Rejection	90dB min. @ DC, 150dB min. @ 50/60Hz.	
Input Impedance	1ΜΩ	
Absolute Maximum Ratings	Fault-protected inputs to ±50 VDC	
Accuracy vs. Temperature	±5ppm/°C maximum full scale calibration (including maximum offset change)	
PLC Update Rate	4 channels per scan max. D2-240/250(-1)/D2-260 CPU, H2-EBC(-F); 1 chan. per scan max. D2-230 CPU	
Digital Inputs	16 binary data bits, 2 channel ID bits, 4 diagnostic bits	
Input Points Required	32 point (X) input module	
External Power Supply	60mA maximum, 18 to 26.4VDC	
Base Power Required 5VDC	110 mA	
Operating Temperature	32° to 140°F (0° to 60°C)	
Storage Temperature	-4° to 158°F (-20° to 70°C)	
Relative Humidity	5 to 95% (non-condensing)	
Environmental Air	No corrosive gases permitted	
Vibration	MIL STD 810C 514.2	
Shock	MIL STD 810C 516.2	
Noise Immunity	NEMA ICS3-304	

Input Ranges	Type J -190 to 760°C Type E -210 to 1000°C Type K -150 to 1372°C Type R 65 to 1768°C Type S 65 to 1768°C Type S 65 to 1768°C Type B 529 to 1820°C Type N -70 to 1300°C Type C 65 to 2320°C	-310 to 1400°F -346 to 1832°F -238 to 2502°F 149 to 3214°F 149 to 3214°F -382 to 752°F 984 to 3308°F -94 to 2372°F 149 to 4208°F
Display Resolution	±0.1°C or ±0.1°F	
Cold Junction Compensation	Automatic	
Conversion Time	100ms per channel	
Warm-Up Time	30 minutes typically ± 1°C r	repeatability
Linearity Error (End to End)	±.05°C maximum, ±.01°C ty	/pical
Maximum Inaccuracy	±3°C (excluding thermocouple error)	
Voltage Input Specifica	tions	
Voltage Ranges	0-5V, ±5V, 0-156.25mV, ±1	56.25mVDC
Resolution	16 bit (1 in 65535)	
Full Scale Calibration Error (Offset Error Included)	±13 counts typical ±33 max	imum
Offset Calibration Error	±1 count maximum, @ 0V	input
Linearity Error (End to End)	±1 count maximum	
Maximum Inaccuracy	±.02% @ 25°C (77°F)	

- Note 1: Terminate shields at the respective signal source.
- Note 2: Connect unused channels to a common terminal (OV, CH4+, CH4).
- Note 3: When using 0-156mV and 5V ranges, connect (-) or (0) volts terminal to 0V to ensure common mode range acceptance.

Analog Current Output Modules

F2-02DA-1 2-Channel 4-20mA Analog Out	
This module requires a 24VDC user power supply for operation. See the F2-02DA-1L on the next page if you want to use a 12VDC supply. All other specifications are the same.	
Number of Channels	2
Output Ranges	4 to 20mA
Resolution	12 bit (1 in 4096)
Output Type	Single ended, one common
Maximum Loop Supply	30VDC
Peak Output Voltage	40VDC (clamped by transient voltage suppressor)
Load Impedance	0Ω minimum
Maximum Load/Power Supply	620Ω/18V, 910Ω/24V, 1200Ω/30V
PLC Update Rate	1 channel per scan maximum D2-230 CPU 2 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)
Linearity Error (end to end)	±1 count (±0.025% of full scale) maximum
Conversion Settling Time	100µs maximum (full scale change)
Full Scale Calibration Error (offset error included)	± 5 counts max., 20mA @77°F (25°C)
Offset Calibration Error	± 3 counts max., 4mA @ 77°F (25C°)

Accuracy vs. Temperature	±50ppm/°C full scale calibration change (including maximum offset change of 2 counts)
Maximum Inaccuracy	0.1% @ 77°F (25°C) 0.3% @ 32° to 140°F (0° to 60°C)
Digital Output Points Required	16 (Y) output points 12 binary data bits, 2 channel ID bits
Base Power Requirement 5VDC	40mA
External Power Supply	18 to 30VDC, 60mA. (add 20 mA for each current loop used)
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4 to 158°F(-20 to 70°C)
Relative Humidity	5% to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).

NOTE 1: Shields should be connected to the OV of the module or the OV of the R/S. NOTE 2: Unused current outputs should remain open (no connections) for minimum power consumption.

Analog Current Output Modules

F2-02DA-1L 2-Ch	F2-02DA-1L 2-Ch 4-20mA Analog Output		
This module requires a 12 VDC uprevious page if you want to use	This module requires a 12 VDC user power supply for operation. See the F2-02DA-1 on the previous page if you want to use a 24VDC supply. All other specifications are the same.		
Number of Channels	2		
Output Ranges	4 to 20mA		
Resolution	12 bit (1 in 4096)		
Output Type	Single ended, 1 common		
Peak Output Voltage	40VDC (clamped by transient voltage suppressor)		
Load Impedance	0Ω minimum		
Maximum Load/ Power Supply	620Ω/18V, 910Ω/24V, 1200Ω/30V		
PLC Update Rate	1 channel per scan maximum (D2-230 CPU) 2 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)		
Linearity Error (End to End)	±1 count (0.025% of full scale) maximum		
Conversion Settling time	100µs maximum (full scale change)		
Full Scale Calibration Error (offset error included)	±5 counts max., 20mA @ 77°F (25°C)		
Offset Calibration Error	±3 counts max., 4mA @ 77°F (25°C)		

Accuracy vs.Temperature	±50ppm/°C full scale calibration change (including maximum offset change of 2 counts)
Maximum Inaccuracy	+0.1% @ 77°F (25°C) ±0.3% @ 32 to 140°F (0 to 60°C)
Digital Output Points Required	16(Y) output points 12 binary data bits, 2 channel ID bits
Base Power Required 5VDC	40mA
External Power Supply	10 to 15 VDC, 70 mA (add 20 mA for each current loop used)
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4° to 158°F (-20° to 70°C)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).

NOTE 1: Shields should be connected to the OV of the module or the OV of the P/S.

NOTE 2: Unused current outputs should remain open (no connections) for minimum power consumption.

10 VDC

0 to 200

ANALOG CURRENT OUTPUT MODULES

F2-02DAS-1 2	2-Channel 4-20mA Isolated
Analog Output	
Number of Channels	2, isolated
Output Ranges	4 to 20mA
Resolution	16 bit (1 in 65536)
Output Type	Current sourcing
Isolation Voltage	±750V continuous, channel to channel, channel to logic
Loop supply	18V-32VDC
External Power Supply	18-32VDC @ 50mA per channel
Output loop Compliance	Vin - 2.5V
Load Impedance	0 -1375 Ω (@32V)
Maximum Load/ Power Supply	375Ω/12V, 975Ω/24V, 1375Ω/32V
PLC Update Rate	1 channel per scan maximum (D2-230 CPU) 2 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)
Digital Output Points Required	32 (Y) output points, 16 binary data,2 channel identification, 1 output enable

Base Power Requirement 5VDC	100mA
Linearity Error (end to end)	±10 count (±0.015% of full scale) maximum
Conversion Settling time	3ms to 0.1% of full scale
Gain Calibration Error	±32 counts (±0.05%)
Offset Calibration Error	±13 counts (±0.02%)
Output Drift	50 ppm/°C
Maximum Inaccuracy	0.07% @ 25°C (77°F) 0.18% 0 to 60°C (32° to 140°F)
Operating Temperature	0° to 60°C (32° to 140°F)
Storage Temperature	-20° to 70°C (-4° to 158°F)
Relative Humidity	5 to 95% (non-condensing)
Environmental air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

One count in the specification table is equal to one least significant bit of the analog data value (1 in 65536).

NOTE 1: Shields should be connected to the OV terminal of the module.

NOTE 2: Load must be within compliance voltage.

NOTE 3: For non-isolated outputs, connect all OV's together (OV1...OV2) and connect all +V's together (+V1...+V2).

Analog Current Output Modules

F2-08DA-1 8-Chan	nel 4-20mA Analog Out
Number of Channels	8, single-ended
Output Ranges	4 to 20mA
Resolution	12 bit (1 in 4096)
-	
Output Type	Current sinking or current sourcing
Maximum Loop Supply	30VDC
Source Load	0-400Ω @ 18-30VDC
Sink Load	0-600Ω/18V, 0-900Ω/24V, 0-1200Ω/30V
Total Load (sink + source)	600Ω/18V, 900Ω/24V, 1200Ω/30V
PLC Update Rate	1 channel per scan maximum (D2-230 CPU) 8 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)
Linearity Error (end to end)	±2 count (±0.050% of full scale) maximum
Conversion Settling Time	400µs maximum (full scale change)
Full Scale Calibration Error	\pm 12 counts max. sinking @ any load \pm 12 counts max. sourcing @ 125 Ω load \pm 18 counts max. sourcing @ 250 Ω load \pm 26 counts max. sourcing @ 400 Ω load
Offset Calibration Error	\pm 9 counts max. sinking @ any load \pm 9 counts max. sourcing @ 125 Ω load \pm 11 counts max. sourcing @ 250 Ω load \pm 13 counts max. sourcing @ 400 Ω load
Max. Full Scale Inaccuracy @ 60°C	0.5% sinking (any load) sinking & sourcing @ 125 Ω load 0.64% sourcing @ 250 Ω load 0.83% sourcing @ 400 Ω load
Max. Full Scale Inaccuracy @ 25°C (Incudes all errors and temp drift)	0.3% sinking (any load) sinking & sourcing @ 125 Ω load 0.44% sourcing @ 250 Ω load 0.63% sourcing @ 400 Ω load

Digital Output Points Required	16 (Y) output points 12 binary data bits, 3 channel ID bits, 1 output enable bit
Base Power Requirement 5VDC	30mA
External Power Supply	18 to 30VDC, 50mA., class 2 (add 20 mA for each current loop used)
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4 to 158°F(-20 to 70°C)
Relative Humidity	5% to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

NOTE 1: Shields should be connected to the OV of the module.

F2-02DA-2 2-Char	nel Voltage Analog Out	
next page if you want to use a 12	This module requires a 24VDC user power supply for operation. See the F2-02DA-2L on the next page if you want to use a 12VDC supply. All other specifications are the same.	
Number of Channels	2	
Output Ranges	0 to 5V, 0 to 10V, ±5V, ±10V	
Resolution	12 bit (1 in 4096)	
Output Type	Single ended, 1 common	
Peak Output Voltage	15VDC (clamped by transient voltage suppressor)	
Load Impedance	2000Ω minimum	
Load Capacitance	.01μF maximum	
PLC Update Rate	1 channel per scan maximum D2-230 CPU	
	2 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)	
Linearity Error (End to	±1 count (0.025% of full scale) maximum	
End)		
Conversion Settling	5µs maximum (full scale change)	
Time		
Full Scale Calibration	±12 counts max. unipolar @ 77°F (25°C)	
Error (offset error included)	±16 counts max. bipolar @ 77°F (25°C)	
<i>шышаш</i>		
Offset Calibration Error	±3 counts max., unipolar @ 77°F (25°C) ±8 counts max., bipolar @ 77°F (25°C)	
	== 0 Counts max., Dipolal @ 11 1 (25 G)	

Accuracy vs.Temperature	±50ppm/°C full scale calibration change (including maximum offset change of 2 counts)
Maximum Inaccuracy	+0.3% unipolar ranges @ 77°F (25°C) ±0.45% unipolar ranges >77°F (25°C) ±0.4% bipolar ranges @77°F (25°C) ±0.55% bipolar ranges >77°F (25°C)
Digital Output Points Required	16 (Y) output points (12 binary data bits, 2 channel ID bits)
Base Power Required 5VDC	40mA
External Power Supply	18 to 30 VDC, 60mA (outputs fully loaded)
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4° to 158°F (-20° to 70°C)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).

NOTE 1: Shields should be connected to the OV of the module or the OV of the R/S

NOTE 2: Unused voltage outputs should remain open (no connections) for minimum power consumption.

F2-02DA-2L 2-Ch. Voltage Analog Out		
This module requires a 12 VDC uprevious page if you want to use	This module requires a 12 VDC user power supply for operation. See the F2-02DA-2 on the previous page if you want to use a 24VDC supply. All other specifications are the same.	
Number of Channels	2	
Output Ranges	0 to 5V, 0 to 10V, ±5V, ±10V	
Resolution	12 bit (1 in 4096)	
Output Type	Single ended, 1 common	
Peak output voltage	15VDC (clamped by transient voltage suppressor)	
Load Impedance	2000Ω minimum	
Load Capacitance	.01μF maximum	
PLC Update Rate	1 channel per scan maximum (D2-230 CPU) 2 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)	
Linearity Error (End to End)	±1 count (0.025% of full scale) maximum	
Conversion Settling Time	5µs maximum (full scale change)	
Full Scale Calibration Error (offset error not included)	±12 counts max. unipolar @ 77°F (25°C) ±16 counts max. bipolar @ 77°F (25°C)	
Offset Calibration Error	±3 counts max., unipolar @ 77°F (25°C) ±8 counts max., bipolar @ 77°F (25°C)	

Accuracy vs. Temperature	±50ppm/°C full scale calibration change (including maximum offset change of 2 counts)
Maximum Inaccuracy	+0.3% unipolar ranges @ 77°F (25°C) ±0.45% unipolar ranges >77°F (25°C) ±0.4% bipolar ranges @77°F (25°C) ±0.55% bipolar ranges >77°F (25°C)
Digital Output Points Required	16 (Y) output points (12 binary data bits, 2 channel ID bits)
Base Power Requirement 5VDC	40mA
External Power Supply	10 to 15VDC, 70mA (outputs fully loaded)
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4° to 158°F (-20° to 70°C)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).

NOTE 1: Shields should be connected to the OV of the module or the OV of the P/S.

NOTE 2: Unused current outputs should remain open (no connections) for minimum power consumption.

F2-02DAS-2 2-Channel 0-5V, 0-10V Isolated Analog Output	
Number of Channels	2, isolated
Output Ranges	0-5VDC, 0-10VDC
Resolution	16 bit (1 in 65536)
Isolation Voltage	±750V continuous, channel to channel, channel to logic
External Power Supply	21.6-26.4 VDC @ 60mA per channel
Load Impedance	2K Ω min
PLC Update Rate	1 channel per scan maximum (D2-230 CPU) 2 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)
Digital Output Points Required	16 binary data, 2 channel identification, 32 point (y) output

Base Power Requirement	60mA
Linearity Error (end to end)	±10 count (±0.015% of full scale) maximum
Conversion Settling Time	3ms to 0.1% of full scale
Gain Calibration Error	±32 counts (±0.05%)
Offset Calibration Error	±13 counts (±0.02%)
Output Drift	50 ppm/°C
Maximum Inaccuracy	0.07% @ 25°C (77°F) 0.18% 0 to 60°C (32° to 140°F)
Operating Temperature	0° to 60°C (32° to 140°F)
Storage Temperature	-20° to 70°C (-4° to 158°F)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

F2-08DA-2 8-Channel Voltage Analog Out	
Number of Channels	8, single-ended, 1 common
Output Ranges	0 to 5V, 0 to 10V
Resolution	12 bit (1 in 4096)
Peak Output Voltage	15VDC (clamped by transient voltage suppressor)
Load Impedance	1Κ -10ΚΩ
Load Capacitance	.01μF maximum
PLC Update Rate	1 channel per scan maximum (D2-230 CPU) 8 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs)
Linearity Error (end to end)	±1 count (±0.025% of full scale) maximum
Conversion Settling time	400µs maximum (full scale change) 4.5ms to 9ms for digital out to Analog out
Full Scale Calibration Error (offset error included)	±12 counts max. unipolar @ 25°C (77°F)
Offset Calibration Error	±3 counts max., unipolar @ 25°C (77°F)

Accuracy vs. Temperature	±57ppm/°C full scale calibration change (including maximum offset change of 2 counts)
Maximum Inaccuracy	0.45% to 60°C (32° to 140°F)
Digital Output Points Required	16 (Y) output points (12 binary data bits, 3 channel ID bits, 1 output enable bit)
Base Power Required 5VDC	60mA
External Power Supply	21.6 - 26.4 VDC, 140mA (outputs fully loaded)
Operating Temperature	0° to 60°C (32° to 140°F)
Storage Temperature	-20° to 70°C (-4° to 158°F)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).

NOTE 1: Shields should be connected to the OV of the module.

Analog Input/Output Combination Module

E2-AAD2DA A	-Channel Analog Input /
2-Unannei A	nalog Output
Number of Input Channels	4, single-ended (1 common)
Number of Output Channels	2, single-ended (1 common)
Ranges	4 to 20mA current (current sinking)
Resolution	12 bit (1 in 4096)
Peak Withstanding Voltage	75VDC, current outputs
Maximum Continuous Overload	-40 to +40mA, each current output
Input Impedance	250Ω , $\pm 0.1\%$, $1/2W$, $25ppm/^{\circ}C$ current input resistance
External Load Resistance	0Ω minimum, current outputs
Maximum Loop Supply	30VDC
Recommended Fuse	0.032A, series 217 fast-acting, current inputs
Maximum Load/Power Supply	910 Ω /24V, current outputs 620 Ω /18V, 1200 Ω /30V
Active Low-pass Filter	-3dB at 20Hz, 2 poles (-12 dB per octave)
Linearity Error (best fit)	±1 count (±0.025% of full scale) maximum
Output Settling Time	100µs maximum (full scale change)

One count in the specification table is equal to one least significant bit of the analog data value (1 in 4096).

- Note 1: Shields should be connected at their respective signal source.
- Note 2: Unused channel should remain open for minimum power consumption.
- Note 3: More than one external power supply can be used provided the power supply commons are connected.
- Note 4: A Series 217, 0.032A fast-acting fuse is recommended for 4-20mA current input loops.
- Note 5: If the power supply common of an external power supply is not connected to OVDC on the module, then the output of the external transmitter must be isolated. To avoid "ground loop" errors, recommended 4-20mA transmitter types are:
- 2 or 3 wire: isolation between Input signal and power supply
- 4 wire: Isolation between input signal, power supply, and 4-20mA output

C-	
Accuracy vs. Temperature	±50ppm/°C full scale calibration change (including maximum offset change)
Maximum Inaccuracy	±0.1% @ 77°F (25°C ±0.3% @ 32 to 140°F (0 to 60°C)
Digital Input and Output Points Required	16 point (X) inputs 16 point (Y) outputs
PLC Update Rate	4 channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs) 2 output channels per scan maximum (D2-240, D2-250(-1) and D2-260 CPUs) 1 input and 1 output channel per scan maximum (D2- 230 CPU)
Base Power Required 5VDC	90mA
External Power Supply Requirement	18-26.4VDC @ 80mA 20mA per loop
Operating Temperature	32° to 140°F (0° to 60°C)
Storage Temperature	-4° to 158°F (-20° to 70°C)
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

Note 6: If an analog channel is connected backwards, then erroneous data values will be returned for that channel.

Note 7: To avoid small errors due to terminal block losses, connect OVDC, IN-, and OUT- on the terminal block as shown. The module's internal connection alone of these nodes is not sufficient to permit module performance up to the accuracy specifications.

Note 8: Choose an output transducer resistance according to the maximum load/power listed in the Output Specifications.

DL205 INSTRUCTION SET

Paoloon Instruction

Store (STR) Begins a new rung or an additional branch in a rung with a normally open contact.

Store Not (STR NOT) Begins a new rung or an additional branch in a rung with a normally closed contact.

Or (OR) Logically ors a normally open contact in parallel with another contact in a rung.

Or Not (OR NOT) Logically ors a normally closed contact in parallel with another contact in a rung.

And (AND) Logically ands a normally open contact in series with another contact in a rung.

And Not (AND NOT) Logically ands a normally closed contact in series with another contact in a rung.

And Store (AND STR) Logically ands two branches of a rung in series.

Or Store (OR STR) Logically ors two branches of a rung in parallel.

Out (OUT) Reflects the status of the rung (on/off) and outputs the discrete (on/off) state to the specified image register point or memory location.

Or Out (OR OUT) Reflects the status of the rung and outputs the discrete (ON/OFF) state to the image register. Multiple OR OUT instructions referencing the same discrete point can be used in the program.

Not (NOT) D2-250 Only Inverts the status of the rung at the point of the instruction.

Positive Differential (PD) Is typically know as a one shot. When the input logic produces an off to on transition, the output will energize for one CPU scan.

Set (SET) An output that turns on a point or a range of points. The reset instruction is used to turn the point(s) OFF that were set ON with the set instructions.

Reset (RST) An output that resets a point(s).

Pause outputs (PAUSE) Disables the update for a range of specified output points.

Comparative Boolean Instructions

Store if Equal (STR E) Begins a new rung or additional branch in a rung with a normally open comparative contact. The contact will be on when A=E

Store if Not Equal (STR NOT E) Begins a new rung or additional branch in a rung with a normally closed comparative contact. The contact will be on when $A \neq B$

Or if Equal (OR E) Connects a normally open comparative contact in parallel with another contact. The contact will be on when A=B.

Or if Not Equal (OR NOT E) Connects a normally closed comparative contact in parallel with another contact. It will be on when $A \neq B$.

And if Equal (AND E) Connects a normally open comparative contact in series with another contact. The contact will be on when A=B.

And if Not Equal (AND NOT E) Connects a normally closed compara-

tive contact in series with another contact. It will be on when $A \neq B$.

Store (STR) Begins a new rung or additional branch in a rung with a

normally open comparative contact. The contact will be on when $A \ge B$.

Store Not (STR NOT) Begins a new rung or additional branch in a rung with a normally closed comparative contact. The contact will be on when A<B.

Or (OR) Connects a normally open comparative contact in parallel with another contact. The contact will be on when A>B.

Or Not (OR NOT) Connects a normally open comparative contact in parallel with another contact. The contact will be on when A<B.

And (AND) Connects a normally open comparative contact in series with another contact. The contact will be on when $A \ge B$.

And Not (AND NOT) Connects a normally open comparative contact in series with another contact. The contact will be on when A<B.

Bit of Word Boolean Instructions

Store Bit of Word (STRB) D2-250 Only Begins a new rung or an additional branch in a rung with a normally open contact that examines a single bit of a V-memory location.

Store Not Bit of Word (STRNB) D2-250 Only Begins a new rung or an additional branch in a rung with a normally closed contact that examines a single bit of a V-memory location.

Or Bit of Word (ORB) D2-250 Only Logically ors a normally open bit of word contact in parallel with another contact in a rung.

Or Not Bit of Word (ORNB) D2-250 Only Logically ors a normally closed bit of word contact in parallel with another contact in a rung.

And Bit of Word (ANDB) D2-250 Only Logically ands a normally open bit of word contact in series with another contact in a rung.

And Not Bit of Word (ANDNB) D2-250 Only Logically ands a normally closed bit of word contact in series with another contact in a rung

Out Bit of Word (OUTB) D2-250 Only Reflects the status of the rung (on/off) and outputs the discrete (on/off) state to the specified bit of a V-memory location.

Set Bit of Word (SETB) D2-250 Only An output that turns on a single bit of a V-memory location. The bit remains on until it is reset. The reset bit of word instruction is used to turn off the bit.

Reset Bit of Word (RSTB) D2-250 Only An output that resets a single bit of a V-memory location.

Immediate Instructions

Store Immediate (STR I) Begins a rung/branch of logic with a normally open contact. The contact will be updated with the current input field status when processed in the program scan.

Store Not Immediate (STR NOT I)) Begins a rung/branch of logic with a normally closed contact. The contact will be updated with the current input field status when processed in the program scan.

Or Immediate (OR I) Connects a normally open contact in parallel with another contact. The contact will be updated with the current input field status when processed in the program scan.

Or Not Immediate (OR NOT I) Connects a normally closed contact in parallel with another contact. The contact will be updated with the current input field status when processed in the program scan.

And Immediate (AND I) Connects a normally open contact in series with another contact. The contact will be updated with the current input field status when processed in the program scan.

And Not Immediate (AND NOT I) Connects a normally closed contact in series with another contact. The contact will be updated with the current input field status when processed in the program scan.

Out Immediate (OUT I) D2-250 Only Reflects the status of the rung. The output field device status is updated when the instruction is processed in the program scan.

Or Out Immediate (OR OUTI) Reflects the status of the rung and outputs the discrete (ON/OFF) state to the image register. Multiple OR
OUT instructions referencing the same discrete point can be used in
the program. The output field device status is updated when the
instruction is processed in the program scan.

Set Immediate (SET I) An output that turns on a point or a range of points. The reset instruction is used to turn the point(s) off that were set. The output field device status is updated when the instruction is processed in the program scan.

Reset Immediate (RST I) An output that resets a point or a range of points. The output field device status is updated when the instruction is processed in the program scan.

Timer Counter and Shift Register Instruction

Timer (TMR) Single input incrementing timer with 0.1 second resolution (0-999.9 seconds).

Fast Timer (TMRF) Single input incrementing timer with 0.01 second resolution (0-99.99 seconds).

Accumulating Timer (TMRA) Two input incrementing timer with 0.1 second resolution (0-9,999,999.9 sec.). Time enable/reset inputs control the timer.

Accumulating Fast Timer (TMRAF) Two input incrementing timer w/0.01 sec. Resolution (0-999,999.99 sec.). Time enable/reset inputs control the timer.

Counter (CNT) Two input incrementing counter (0-9999). Count and reset inputs control the counter.

Stage Counter (SGCNT) Single input incrementing counter (0-9999). RST instruction must be used to reset count.

Up Down Counter (UDC) Three input counter (0-99,999,999). Up, down, and reset inputs control the counter.

Shift Register (SR) Shifts data through a range of control relays with each clock pulse. The data, clock, and reset inputs control the shift register.

Logical Instructions (Accumulator)

And (AND) Logically ands the lower 16 bits in the accumulator with a V memory location.

And Double (ANDD) Logically ands the value in the accumulator with an 8 digit constant.

And Formatted (ANDF) D2-250 Only Logically and the value in the accumulator and a specified range of discrete memory bits (1-32).

Or (OR) Logically ors the lower 16 bits in the accumulator with a V memory location.

Or Double (ORD) Logically ors the value in the accumulator with an 8

ligit constant.

Or Formatted (ORF) (D2-250 Only) Logically ors the value in the

accumulator with a range of discrete bits (1-32).

Exclusive Or (XOR) Performs an Exclusive Or of the value in the lower

16 bits of the accumulator and a V memory location.

Exclusive Or Double (XORD) Performs an Exclusive Or of the value in the accumulator and an 8 digit constant.

Exclusive Or Formatted (XORF) D2-250 Only Performs an exclusive or of the value in the accumulator and a range of discrete bits (1-32).

Compare (CMP) Compares the value in the lower 16bits of the accumulator with a V memory location.

Compare Double (CMPD) Compares the value in the accumulator with two consecutive V memory locations or an 8-digit constant.

Compare Formatted (CMPF) D2-250 Only Compares the value in the

accumulator with a specified number of discrete bits. (1-32).

Compare Real Number (CMPR) D2-250 Only Compares the real number in the accumulator with two consecutive V memory locations or an 8-digit real number constant.

Math Instructions (Accumulator)

Add (ADD) Adds a BCD value in the lower 16 bits in the accumulato with a V memory location. The result resides in the accumulator.

Add Double (ADDD) Adds a BCD value in the accumulator with two consecutive V memory locations or an 8-digit constant. The result resides in the accumulator.

Add Real Number (ADDR) D2-250 Only Adds a real number in the accumulator with an 8-digit constant or a real number contained in two consecutive V-memory locations. The result resides in the accumulator.

Subtract (SUB) Subtract a BCD value, which is either a V memory location or a 4-digit constant, from the lower 16 bits in the accumulator. The result resides in the accumulator.

Subtract Double (SUBD) Subtracts a BCD value, which is either two consecutive V memory locations or an 8-digit constant, from a value in the accumulator. The result resides in the accumulator.

Subtract Real Number (SUBR) D2-250 Only Subtract a real number, which is either two consecutive V memory locations or an 8-digit constant, from the real number is the accumulator. The result resides in the accumulator.

Multiply (MUL) Multiplies a BCD value, which is either a V memory location or a 4-digit constant, by the value in the lower 16 bits in the accumulator. The result resides in the accumulator.

Multiply Double (MULD) D2-250 Only Multiplies a BCD value contained in two consecutive V memory locations by the value in the accumulator. The result resides in the accumulator.

Multiply Real Number (MULR) D2-250 Only Multiplies a real number, which is either two consecutive V memory locations or an 8-digit constant, by the real number in the accumulator. The result resides in the accumulator.

Divide (DIV) Divides a BCD value in the lower 16 bits of the accumulator by a BCD value which is either a V memory location or a 4-digit constant. The result resides in the accumulator.

Divide Double (DIVD) D2-250 Only divides a BCD value in the accumulator by a BCD value which is either two consecutive V memory locations or an 8-digit constant. The result resides in the accumulator.

Divide Real Number (DIVR) D2-250 Only Divides a real number in the accumulator by a real number which is either two consecutive V memory locations or an 8-digit constant. The result resides in the accumulator.

Add Binary (ADDB) D2-250 Only Adds the binary value in the lower 16 bits of the accumulator to a value which is either a V memory location or a 16 bit constant. The result resides in the accumulator.

Subtract Binary (SUBB) D2-250 Only Subtract a 16 bit binary value, which is either a V memory location or a 16 bit constant, from the lower 16 bits in the accumulator. The result resides in the accumulator.

Multiply Binary (MULB) D2-250 Only Multiplies a 16 bit binary value, which is either a V memory location or a 16 bit constant, by the lower 16 bits in the accumulator. The result resides in the accumulator.

Divide Binary (DIVB) D2-250 Only Divides the binary value in the lower 16 bits in the accumulator by a value which is either a V memory location or a 16 bit constant. The result resides in the accumulator.

Increment (INC) D2-250 Only Increments a BCD value in a specified memory location by 1 each time the instruction is executed.

Decrement (DEC) D2-250 Only Decrements a BCD value in a specified V memory location by 1 each time the instruction is executed.

Increment Binary (INCB) Increments a binary value in a specified V memory location by one each time the instruction is executed.

Decrement Binary (DECB) Decrements a binary value in a specified V memory location by 1 each time the instruction is executed.

Accumulator/Stack Load and Output Data

Load (LD) Loads a 16 bit word into the lower 16 bits of the accumulator/stack

Load Double (LDD) Loads a 32 bit word into the accumulator/stack.

Load Real Number (LDR) D2-250 Only Loads a real number contained in two consecutive V-memory locations or an 8-digit constant into the accumulator.

Load Formatted (LDF) D2-240 and D2-250 Only Only Loads the accumulator with a specified number of consecutive discrete memory bits.

Load Address (LDA) Loads the accumulator with the HEX value for an octal constant (address).

Load Accumulator Indexed (LDX) D2-250 Only Loads the accumulator with a V memory address to be offset by the value in the accumulator stack.

Load Accumulator Indexed from Data Constants (LDSX) D2-240 and D2-250 Only Loads the accumulator with an offset constant value (ACON/NCON) from a data label area (DLBL).

Out (OUT) Copies the value in the lower 16 bits of the accumulator to a specified V memory location.

Out Double (OUTD) Copies the value in the accumulator to two consecutive V memory locations.

Out Formatted (OUTF) D2-240 and D2-250 Outputs a specified number of bits (1-32) from the accumulator to the specified discrete memory locations.

Output Indexed (OUTX) D2-250 Only Copies a 16 bit value from the first level of the accumulator stack to a source address offset by the value in the accumulator.

Pop (POP) Moves the value from the first level of the accumulator stack to the accumulator and shifts each value in the stack up one level.

DL205 Instruction Set

Binary (BIN) Converts the BCD value in the accumulator to the equivalent binary value. The result resides in the accumulator.

nary Coded Decimal (BCD) Converts the binary value in the accumulator to the equivalent BCD value. The result resides in the accu

Invert (INV) Takes the one's complement of the 32 bit value in the accumulator. The result resides in the accumulator.

nent (BCDCPL) Takes the ten's complement of the BCD value in the accumulator. The result resides in the accumulator

ASCII to HEX (ATH) D2-250 Only Converts a table of ASCII values to a table of hexadecimal value

HEX to ASCII (HTA) D2-250 Only Converts a table of hexadecimal values to a table of ASCII values

Segment (SEG) D2-250 Only Converts a 4-digit HEX number in the accumulator to a corresponding bit pattern for interfacing to seven segment displays. The result resides in the accumulator.

Gray code to BCD (GRAY) D2-240 and D2-250 Only Converts a 16 bit GRAY code value in the accumulator to a corresponding BCD value. The result resides in the accumulator.

Shuffle digits (SFLDGT) D2-240 and D2-250 Only Shuffles a maximum of 8 digits, rearranging them in a specified order. The result resides in the accumulator.

Binary to Real Number (BTOR) D2-250 Only Converts the integer value in the accumulator into a real number. The result resides in the

Real Number to Binary (RTOB) D2-250 Only Converts the real number in the accumulator into an integer value. The result resides in the

Sum (SUM) D2-250 Only Counts the number of bits set to "1" in the accumulator. The HEX result resides in the accumulator

Shift Left (SHFL) Shifts the bits in the accumulator a specified number of places to the left.

hift Right (SHFR) Shifts the bits in the accumulator a specified num ber of places to the right.

Rotate Left (ROTL) D2-250 Only Rotates the bits in the accumulator a specified number of places to the

ate Right (ROTR) D2-250 Only Rotates the bits in the accumulator a specified number of places to the right.

Encode (ENCO) Encodes the bit position set to 1 in the accumulator, and returns the appropriate binary representation in the accumulator.

Decode (DECO) Decoded a 5 bit binary value (0-31) in the accumulator by setting the appropriate bit position to 1 in the accumulator.

Move (MOV) Moves the values from one V memory table to another V memory table.

Move Memory Cartridge/Load Label (MOVMC/LDLBL) Copies data between V memory and program ladder memory.

ate (DATE) D2-250 Only Sets the date (year, month, day, day of week) in the CPU calendar using two consecutive V memory locations.

Time (TIME) D2-250 Only Sets the time (hour, seconds, and minutes) in the CPU using two consecutive V memory locations.

No Operation (NOP) Inserts a no operation coil at specified program

End (END) Marks the termination point for the normal program scan An End instruction is required at the end of the main program body Stop (STOP) Changes the operational mode of the CPU from Run to

Program (Stop). eak (BREAK) D2-250 Only Changes the operational mode of the CPU from Run to the Test Program mode.

et Watchdog Timer (RSTWT) D2-240 and D2-250 Only Resets the CPU watchdog timer.

Goto/Label (GOTO/LBL) D2-240 and D2-250 Only Skips (does not execute) all instructions between the GOTO and the corresponding

For/Next (FOR/NEXT) D2-240 and D2-250 Only Executes the logic between the FOR and NEXT Instructions a specified number of times

(GTS/SBRw/RT D2-240 and D2-250 Only (Unconditional Subroutine return is supported in the D2-250 Ohly) When a GTS instruction is executed the program jumps to the SBR (subroutine). The subroutine is terminated with an RT instruction (unconditional return). When a return is executed the program continues from the instruction after the

Master Line Set/Master Line Reset (MLS/MLR) Allows the program to control sections of ladder logic by forming a new power rail. The MLS marks the beginning of a power rail and the MLR marks the end of the

Interrupt Routine/Interrupt Return/Interrupt Return Conditional (INT/IRT/RTC) D2-240 and D2-250 Only (Conditional return is only supported in the D2-250) When a hardware or software interrupt h occurred the interrupt routine will be executed. The INT Instruction is the beginning of the interrupt routine. The Interrupt routine is terminated with an IRT Instruction (unconditional interrupt return). When an interrupt return is reached the execution of the program continues from the instruction where the program execution was prior to the interrupt.

terrupt (ENI) Enables hardware and software interrupts to be

le Interrupt (DISI) Disables hardware and software interrupts from being acknowledged.

Read from Intelligent Module (RD) D2-240 and D2-250 Only Reads a block of data (1-128 bytes max.) from an intelligent I/O modu

ent Module (WT) D2-240 and D2-250 Only Writes a block of data (1-128 bytes max.) to an intelligent I/O modu

Read from network (RX) D2-240 and D2-250 Only Reads a block of data from another CPU on the network.

twork (WX) D2-240 and D2-250 Only Writes a block of data from the master device to a slave device on the network

Fault/Data Label (FAULT/DLBL) Displays a V memory value or a Data label constant to the handheld programmer or personal computer using

nt (NCON/ACON) Store constants in numerical or ASCII form for use with other instructions.

Print Message (PRINT) D2-250 Only Prints the embedded text or text/data variable message to the specified communications port. Maximum message length is 255 words.

nitial stage (ISG) The initial stage instruction is used for a starting point for user application program. The ISG instruction will be active on power up and PROGRAM to RUN transitions.

Stage (SG) Stage instructions are used to create structured programs. They are program segments which can be activated or deactivated with

(IMP) Normally open coil that deactivates the active stage and activates a specified stage when there is power to flow to the coil.

Not Jump (NJMP) Normally Closed coil that deactivates the active stage and activates a specified stage when there is no power flow to

rge stages (CV) Converge stages are a group of stages that when all stages are active the associated converge jump(s) (CVJMP) will activate another stage(s). One scan after the CVJMP is executed, the converge stages will be deactivated.

ump (CVJMP) Normally open coil that deactivates the active CV stages and activates a specified stage when there is power

Block Call/Block/Block End (BCALL w/BLK and BEND) BCALL is a normally open coil that activates a block of stages when there is power flow to the coil. BLK is the label which marks the beginning of a block of stages. BEND is a label used to mark the end of a block of stages

Timed Drum with Discrete Outputs (DRUM) D2-250 Only Time driven drum with up to 16 steps and 16 discrete output points. Output sta tus is written to the appropriate output during each step. Specify a time base per count (in milliseconds). Each step can have a different number of counts to trigger the transition to the next step. Also define preset step as destination when reset occurs.

Time & Event Drum with Discrete Outputs (EDRUM) D2-250 Only Time and/or event driven drum with up to 16 steps and 16 discrete output points. Output status is written to the appropriate output during each step. Specify a time base per count (in milliseconds). Each step can have a different number of counts and an event to trigger the counting. Once the time has expired, a transition to the next step occurs. Also define preset step as destination when reset occurs

(MDRUMD) D2-250 Only Time and/or event driven drum with up to 16 steps and 16 discrete output points. Actual output status is the result of a bit-by-bit AND between the output mask and the bit mask in the step. Specify a time base per count (in milliseconds). Each step can have a different number of counts and an event to trigger the counting. Once the time has expired, a transition to the next step occurs. Also define preset step as destination when reset occurs.

e & Event Drum with Word Output & Output Mask (MDRUMW D2-250 Only Time and/or event driven drum with up to 16 steps and a single V-memory output location. Actual output status is the result of a bit-by-bit AND between the output mask and the bit mask in the step. Specify a time base per count (in milliseconds). Each step can have a different number of counts and an event to trigger the counting. Once the time has expired, a transition to the next step occurs. Also define

ASCII Instructions (D2-260 only)

ASCII IN (AIN) Configures port 2 to read raw ASCII input strings ASCII Find (AFIND) Searches ASCII strings in V-memory to find a specific portion of the string.

ASCII IN (AEX) Extracts a specific portion from an ASCII string.

Compare V-memory (CMPV) Compares two blocks of V-memory Swap Bytes (SWAPB) Swaps V-memory bytes

emory (VPRINT) Used to send pre-coded ASCII strings to a pre-defined V-memory address when enabled.

Print from V-Memory (PRINTV) Used to write raw ASCII strings out of port 2 when enabled.

MODBUS Read (MRX) Uses CPU port 2 to read a block of data from MODBUS RTU devices on the network

MODBUS Write (MWX) Writes a block of data from CPU port 2 to MODBUS RTU devices on the network

tric Instructions (D2-260 only)

Square Root Real (SQRTR) Takes the square root of the real number stored in the accumulator. The result resides in the accumulator.

Sine Real (SINR) Takes the sine of the real number stored in the accumulator. The result resides in the accumulator.

Cosine Real (COSR) Takes the cosine of the real number stored in the accumulator. The result resides in the accumulato

ent Real (TANR) Takes the tangent of the real number stored in the accumulator. The result resides in the accumulator

ARC Sine Real (ASINR) Takes the inverse sine of the real number stored in the accumulator. The result resides in the accumulato

ARC Cosine Real (ACOSR) Takes the inverse cosine of the real number stored in the accumulator. The result resides in the accumulator.

ARC Tangent Real (ATANR) Takes the inverse tangent of the real number stored in the accumulator. The result resides in the accumulator.

ded Table Instructions (D2-260 only

Fill (FILL) Fills a table of specified V memory locations with a value which is either a V memory location or a 4-digit constant

Find (FIND) Finds a value in a V memory table and returns the table position containing the value to the accumulator.

Find Greater Than (FDGT) Finds a value in a V memory table which is greater than the specified search value. The table position containing the value is returned to the accumulator.

Find Block (FINDB) Finds a block of data values in a V memory table and returns the starting address of the table containing the values to the accumulator.

n (TTD) Moves the value from the top of a V memory table to a specified V memory location. The table pointer incre-

Remove From Bottom (RFB) Moves the value from the bottom of a V memory table to a specified V memory location. The table pointer increments each scan.

rce To Table (STT) Moves a value from a specified V memory location to a V memory table. The table pointer increments each scan.

Remove from Top (RFT) Pops a value from the top of a V memory table and stores it in a specified V memory location. All other values in the V memory table are shifted up each time a value is Popped from the

dd To Top of Table (ATT) Pushes a value from a specified V memory location onto the top of a V memory table. All other values in the V memory table are shifted down each time a value is pushed onto the table.

Table Shift Left (TSHFL) Shifts s specified number of bits to the left in a

Table Shift Right (TSHFR) Shifts a specified number of bits to the right in a V memory table.

Block (MOVBLK) Copies a specified number of words from a Data Label Area of program memory (ACON, NCON) to a V m

(ANDMOV) Copies data from a table to the specified location, ANDing each word with the accumulator data as it is written

Or Move (ORMOV) Copies data from a table to the specified memory location, ORing each word with the accumulator data as it is written.

Exclusive Or Move (XORMOV) Copies data from a table to the specified memory location, XORing each word with the accumulator data as it is written.

Note: There are additional instructions that apply to the D2-260 CPU only that are not described in these tables. The instructions are listed below; see the DL05/06 instruction set for more detailed descriptions. Differential instructions: LDI, LDIF, OUTI, OUTIF

Accumulator/stack load and output data instructions:: OUTL, OUTM,

Logical instructions: ANDF, ANDS, ORF, ORS, XORF, XORS, CMPS
Math instructions: ADDBD, SUBB, SUBBD, MULB, DIVB, ADDF, SUBF,
MULF, DIVF, ADDS, SUBS, MULS, DIVS, ADDBS, SUBBS, MULBS, DIVBS Number conversion instructions: RADR, DEGR RLL Plus instructions: BCALL, BLK, BEND Drum instructions: MDRMD, MDRMW

Informações sobre programação do PLC KOYO www.soliton.com.br - e-mail: soliton@soliton.com.br