

9890 GROUP PROJECT

TEAM 15 -ANNA BAE, AUGUSTIN NARE

INTRODUCTION TO DATA SET

- The data set, US_birth_2018, contains Information about the natality in the United States in 2018 from https://www.kaggle.com/des137/us-births-2018.
- \blacksquare N(sample size) = 5000
- P = 40
- 16 numerical variables, 24 categorical variables.
- y = Birth weight detail in gram.
- We'd like to predict the birth weight based on parents' information such as parents' education level, race, mothers' BMI, height, etc.

BOX PLOTS OF R²TRAIN AND R²TEST

10-FOLD CY CURVES FOR ONE OF THE 100 SAMPLES

The smallest MSE for **Ridge regression** is 10,866,345

Lambda min: 24567164 Log(lambda min): 17.01692

Avg time: 0.3285648 secs

The smallest MSE for **Lasso regression** is 5,495,843

Lambda min: 51711.53 Log(lambda min): 10.85344

Avg time: 0.2163834 secs

The smallest MSE for **Elastic net regression** is 6,217,850

Lambda min: 103423.1 Log(lambda min): 11.54658

Avg time: 0.2113414 secs

BOXPLOTS OF TRAIN AND TEST RESIDUALS OF ONE OF THE 100 SAMPLES

90% TEST R² INTERVALS AND TIME TO FIT MODELS

Methods	R ² test 90% i	nterval (5%, 95%)	Time(secs)
Ridge	-37.60701	-31.32745	0.4237831
Lasso	-18.47137	-15.26618	0.325855
Elastic Net	-21.06208.	-17.46165	0.4964371
Random Forest	0.1024872	0.1432783	49.32369

• Trade-off:

Random forest's test R² has the highest 90% interval range of values than among the four models. However, it takes the longest time to fit the model.

BAR-PLOTS OF THE ESTIMATED COEFFICIENTS AND THE IMPORTANCE OF THE VARIABLE.

Elastic net

M Ht In: 37.94869

Lasso

M_Ht_In: 44.71495

Ridge

M_Ht_In: 1.67369258
MAGER: 0.3895588
FAGECOMB: 0.3514663

Random Forest

%IncMSE

PWgt_R: 32384.4232 BMI: 24638.0814 WTGAIN: 20913.8666

CONCLUSIONS

- The Random forest has the best predictive performance.
 - Its test data set residuals are closer to 0 than those of other models.
 - Its 90% test R² interval has higher values than those of other models.
- https://github.com/AnnaBae92/STA9890-Group-Project