

S2 Characterizing Time Complexity, Asymptotic Notation, Recurrence Relation, Master Theorem

Content of S2

- 1. Characterizing Time Complexity
 - 1. Use of Asymptotic Notation
 - 2. Big-Oh, Big-Omega, Theta Notations
- 2. Analyzing Recursive Algorithm
 - 1. Recurrence Relation
 - 2. Runtime of Recursive Algorithm
 - 3. Master Theorem

Analyzing Algorithm

- →Used to mean the prediction of resource consumption
- →But, what is the resource?

Analyzing Algorithm

- →Used to mean the prediction of resource consumption
- →But, what is the resource?

Primarily i) memory, ii) communication bandwidth, iii) computer hardware

But, most often we are interested in computational time

Which computer should be taken as a base case or standard?

> Random Access Machine (RAM) model of a computer

Random Access Machine Model

Instructions in RAM that takes one unit of time

- 1) Arithmetic: Add, Sub, Mul, Div, Rem, Floor, Ceil
- 2) Data movement: Load, Store, Copy
- 3) **Control:** Subroutine call, Return, Conditional and Unconditional Branch

Data Types in RAM (fixed size, like 8 bit or 16 bit or 32 bit)

- 1) Integer
- 2) Float

RAM model: What is not an instruction?

- 1) "Sort" even if, in some computer, sort can be done in one instruction
- 2) "exponentiation" xy
 - → there may be many algorithms to compute x^y, but it is not a single instruction if y is a variable or a large integer
 - → But, x^k is a single instruction, where k is a constant and very small

We do not consider any complex memory hierarchy, like having cache or virtual memory.

RAM model: memory hierarchy

We do not consider any complex memory hierarchy, like having cache or virtual memory.

Simplicity of RAM model

- → Though simple, but an excellent predictor of performance on actual computer
- →Though simple, exact prediction can still be challenging
- →Often, it would require tools like combinatorics, probability theory, algebraic dexterity and the ability to identify the most significant terms in a formula

Content of S2

- 1. Characterizing Time Complexity
 - 1. Use of Asymptotic Notation
 - 2. Big-Oh, Big-Omega, Theta Notations
- 2. Analyzing Recursive Algorithm
 - 1. Recurrence Relation
 - 2. Runtime of Recursive Algorithm
 - 3. Master Theorem

Characterizing Time Complexity

Big-Oh Notation, Omega and Theta Notations:

• Asymptotic notation primarily describes the running times of algorithms, i.e., time complexity

Content of S2

- 1. Characterizing Time Complexity
 - 1. Use of Asymptotic Notation
 - 2. Big-Oh, Big-Omega, Theta Notations
- 2. Analyzing Recursive Algorithm
 - 1. Recurrence Relation
 - 2. Runtime of Recursive Algorithm
 - 3. Master Theorem

Characterizing Time Complexity

Big-Oh Notation: f(n) = O(g(n)).

• g(n) is an asymptotically upper bound for f(n).

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$
.

• $f(n) = \Theta(g(n))$ implies that f(n) = O(g(n)), i.e., $\Theta(g(n)) \in O(g(n))$

Graphical representation of Big-O

Example: Time Complexity Big-O

Ex-1
$$f(n) = 2n+2$$

 $2n+2 \le \underline{10n}$, where $n \ge 1$
Here, $c = 10$, $g(n) = n$
 $f(n) = O(g(n)) = O(n)$.

Ex-2 f(n) =2n+2

$$2n+2 \le \underline{10n^2}$$
, where $n \ge 1$
Here, $c = 10$, $g(n) = n^2$
 $f(n) = O(g(n)) = O(n^2)$.

Ex-3
$$f(n) = 2n+2$$

 $2n+2 \le 10n^3$, where $n \ge 1$
Here, $c = 10$, $g(n) = n^3$
 $f(n) = O(g(n)) = O(n^3)$.

Ex-4
$$f(n) = 2n^2 + 5$$

 $2n^2 + 5 \le 2n^2 + 5n^2 = 7n^2$, where $n \ge 1$
Here, $c = 7$, $g(n) = n^2$
 $f(n) = O(g(n)) = O(n^2)$.

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$
.

Example: Time Complexity Big-O

Ex-5
$$f(n) = 7n-2$$

Here, $c = 7$, $n > = 1$
 $\rightarrow 7n - 2 \le cn$, $g(n) = n$
 $f(n) = O(g(n)) = O(n)$.

Ex-7
$$f(n) = 3logn + loglogn$$

Here, $c = 4$, $g(n) = logn$
 $f(n) = O(g(n)) = O(logn)$.

Ex-9
$$f(n) = 5/n$$

Here, $c = 5$, $g(n) = 1/n$
 $f(n) = O(g(n)) = O(1/n)$.

Ex-6
$$f(n) = 20n^3 + 10nlogn + 5$$

Here, $c = 35$, $g(n) = n^3$
 $f(n) = O(g(n)) = O(n^3)$.

Ex-8
$$f(n) = 2^{100}$$

Here, $c = 2^{100}$, $g(n) = 1$
 $f(n) = O(g(n)) = O(1)$.

$$O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$$
.

Time Complexity: Big-Omega

Omega Notation: $f(n) = \Omega(g(n))$.

• g(n) is an asymptotically lower bound for f(n).

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

Example: Omega Notation

Ex-1
$$f(n) = 2n+2$$

 $2n+2 \ge \underline{2n}$, where $n \ge 1$
Here, $c = 2$, $g(n) = n$
 $f(n) = \Omega(g(n)) = \Omega(n)$

Ex-2 f(n) =2n+2

$$2n+2 \ge \sqrt{n}$$
, where $n \ge 1$
Here, $c = 1$, $g(n) = \sqrt{n}$
 $f(n) = \Omega(g(n)) = \Omega(\sqrt{n})$

Ex-3
$$f(n) = 2n+2$$

 $2n+2 \ge \underline{\log n}$, where $n \ge 1$
Here, $c = 1$, $g(n) = \underline{\log n}$
 $f(n) = \Omega(g(n)) = \Omega(\log n)$

Ex-4 f(n) =2n²+5

$$2n^{2}+5 \ge 2n^{2}$$
, where n ≥ 1
Here, c = 2, g(n) = n²
f(n) = $\Omega(g(n)) = \Omega(n^{2})$.

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$

Characterizing Run Time

Theta Notation: $f(n) = \Theta(g(n))$.

• g(n) is an asymptotically tight bound for f(n).

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

Example: Theta Notation

Ex-1
$$f(n) = \frac{n^2}{2} - \frac{n}{2}$$

 $\frac{n^2}{4} \le \frac{n^2}{2} - \frac{n}{2} \le \frac{n^2}{2}$, where $n \ge 2$
 $c_1 = \frac{1}{4}$, $c_2 = \frac{1}{2}$, $g(n) = n^2$
 $f(n) = \Theta(g(n)) = \Theta(n^2)$.

Ex-2 f(n) =6
$$n^3$$
 { $\neq \Theta(n^2)$, why?}
 $c_1 n^2 \le 6n^3 \le c_2 n^2$, where n ≥ 1
There exists no c_2 that implies $6n^3 \le c_2 n^2$

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

Time Complexity: Little-Oh, Little-omega

o-notation:

$$o(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$$
.

Time Complexity: Little-Oh, Little-omega

ω -notation:

$$\omega(g(n)) = \{f(n) : \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$$
.

Notation Summary

Because these properties hold for asymptotic notations, we can draw an analogy between the asymptotic comparison of two functions f and g and the comparison of two real numbers a and b:

$$f(n) = O(g(n))$$
 is like $a \le b$,
 $f(n) = \Omega(g(n))$ is like $a \ge b$,
 $f(n) = \Theta(g(n))$ is like $a = b$,
 $f(n) = o(g(n))$ is like $a < b$,
 $f(n) = \omega(g(n))$ is like $a > b$.

Properties of Time Complexity

Comparison

Transitivity:

```
f(n) = \Theta(g(n)) and g(n) = \Theta(h(n)) imply f(n) = \Theta(h(n)), f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)), f(n) = \Omega(g(n)) and g(n) = \Omega(h(n)) imply f(n) = \Omega(h(n)), f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)), f(n) = \omega(g(n)) and g(n) = \omega(h(n)) imply f(n) = \omega(h(n)).
```

Reflexivity:

$$f(n) = \Theta(f(n)),$$

 $f(n) = O(f(n)),$
 $f(n) = \Omega(f(n)).$

Summary of Properties

Comparison

Symmetry:

$$f(n) = \Theta(g(n))$$
 if and only if $g(n) = \Theta(f(n))$.

Transpose symmetry:

$$f(n) = O(g(n))$$
 if and only if $g(n) = \Omega(f(n))$, $f(n) = o(g(n))$ if and only if $g(n) = \omega(f(n))$.

Content of S2

- 1. Characterizing Time Complexity
 - 1. Use of Asymptotic Notation
 - 2. Big-Oh, Big-Omega, Theta Notations
- 2. Analyzing Recursive Algorithm
 - 1. Runtime of Recursive Algorithm
 - 2. Recurrence Relation
 - 3. Master Theorem


```
Algorithm recursive Max(A, n):
```

Input: An array A storing $n \ge 1$ integers.

Output: The maximum element in A.

if n = 1 then return A[0]

return max{recursiveMax(A, n-1), A[n-1]}

Algorithm recursive Max(A, n):

Input: An array A storing $n \ge 1$ integers.

Output: The maximum element in A.

$$\begin{array}{l} \textbf{if } n=1 \textbf{ then} \\ \textbf{return } A[0] \\ \textbf{return } \max \{ \text{recursiveMax}(A,n-1), A[n-1] \} \end{array}$$

$$T(n) = \begin{cases} 2, if \ n = 1 \\ T(n-1) + 4, otherwise \end{cases}$$


```
Algorithm recursive Max(A, n):
```

Input: An array A storing $n \ge 1$ integers.

Output: The maximum element in A.

if
$$n = 1$$
 then

1 +1

return A[0]

return max{recursiveMax(A, n-1), A[n-1]}

$$T(n) = \begin{cases} 3, if \ n = 1 \\ T(n-1) + 6, otherwise \end{cases}$$

Content of S2

- 1. Characterizing Time Complexity
 - 1. Use of Asymptotic Notation
 - 2. Big-Oh, Big-Omega, Theta Notations
- 2. Analyzing Recursive Algorithm
 - 1. Runtime of Recursive Algorithm
 - 2. Recurrence Relation
 - 3. Master Theorem

Recurrence Relation

Defⁿ: A recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function of the previous term(s).

Mathematically, $x_{n+1} = f(x_n)$: a simple recurrence relation, also called as first order recurrence relation.

Recurrence Relation

Defⁿ: A recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function of the previous term(s).

Mathematically, $x_{n+1} = f(x_n)$: a simple recurrence relation, also called as first order recurrence relation.

Example of first order recurrence relation:

1)
$$x_{n+1} = 2 - x_{n/2}$$

Recurrence Relation

Defⁿ: A recurrence relation is an equation that defines a sequence based on a rule that gives the next term as a function of the previous term(s).

Mathematically, $x_{n+1} = f(x_n)$: a simple recurrence relation, also called as first order recurrence relation.

Example of first order recurrence relation:

1)
$$x_{n+1} = 2 - x_{n/2}$$

A second order recurrence relation depends just on x_n and x_{n-1} and is of the form $x_{n+1}=f(x_n,x_{n-1})$

Example:
$$x_{n+1}=x_n+x_{n-1}$$

Content of S2

- 1. Characterizing Time Complexity
 - 1. Use of Asymptotic Notation
 - 2. Big-Oh, Big-Omega, Theta Notations
- 2. Analyzing Recursive Algorithm
 - 1. Runtime of Recursive Algorithm
 - 2. Recurrence Relation
 - 3. Master Theorem

Solving recurrence equations

1. Master Theorem for Dividing Functions

$$T(n) = aT(\frac{n}{b}) + g(n)$$

where g(n) is $O(n^k \log^p n)$, where p and k are integers.

a)
$$a < b^k$$
: if $p < 0$, then $T(n) = O(n^k)$

Solving recurrence equations

1. Master Theorem for Dividing Functions

$$T(n) = aT(\frac{n}{b}) + g(n)$$

where g(n) is $O(n^k \log^p n)$, where p and k are integers.

a)
$$a < b^k$$
: if $p < 0$, then $T(n) = O(n^k)$
if $p \ge 0$, then $T(n) = O(n^k \log^p n)$

Solving recurrence equations

1. Master Theorem for Dividing Functions

$$T(n) = aT(\frac{n}{b}) + g(n)$$

where g(n) is $O(n^k \log^p n)$

a)
$$a < b^k$$
: if $p < 0$, then $T(n) = O(n^k)$
if $p \ge 0$, then $T(n) = O(n^k \log^p n)$

b)
$$a = b^k$$
: if $p > -1$, then $T(n) = O(n^k \log^{p+1} n)$
if $p = -1$, then $T(n) = O(n^k \log \log n)$
if $p < -1$, then $T(n) = O(n^k)$

Analyzing Recursive Algorithms

Solving recurrence equations

1. Master Theorem for Dividing Functions

$$T(n) = aT(\frac{n}{b}) + g(n)$$

where g(n) is $O(n^k \log^p n)$

a)
$$a < b^k$$
: if $p < 0$, then $T(n) = O(n^k)$
if $p \ge 0$, then $T(n) = O(n^k \log^p n)$

b)
$$a = b^k$$
: if $p > -1$, then $T(n) = O(n^k \log^{p+1} n)$
if $p = -1$, then $T(n) = O(n^k \log \log n)$
if $p < -1$, then $T(n) = O(n^k)$

c)
$$a > b^k : T(n) = O(n^{\log_b a})$$

$$g(n)$$
 is $O(n^k log^p n)$

Ex-1 T(n) =
$$4T(\frac{n}{2})+n$$
,
a = 4, b = 2, k = 1, p = 0.
a = 4, b^k = 2 \Rightarrow a > b^k
T(n) = O($n^{\log_2 4}$) = O(n^2)

Ex-2 T(n) =
$$8T(\frac{n}{2})+n^2$$
,
a = 8, b = 2, k = 2, p = 0.
a = 8, b^k = 4 \Rightarrow a > b^k
T(n) = O(n^{log_28}) = O(n^3)

Ex-3 T(n) =
$$8T(\frac{n}{2})+n \log n$$
,
a = 8, b = 2, k = 1, p = 1.
a = 8, b^k = 2 \Rightarrow a > b^k
T(n) = O($n^{\log_2 8}$) = O(n^3)

Ex-4 T(n) =
$$2T(\frac{n}{2})+n$$
,
a = 2, b = 2, k = 1, p = 0.
a = 2, b^k = 2 \Rightarrow a = b^k
T(n) = O(n^k log^{p+1} n)
= O(n log n)

Ex-5 T(n) =
$$4T(\frac{n}{2})+n^2$$
,
a = 4, b = 2, k = 2, p = 0.
a = 4, b^k = 4 \Rightarrow a = b^k
T(n) = O(n^k log^{p+1} n)
= O(n²log n)

Ex-6 T(n) =
$$4T(\frac{n}{2})+n^2\log n$$
,
a = 4, b = 2, k = 2, p = 1.
a = 4, b^k = 4 \Rightarrow a = b^k
T(n) = O(n^k log^{p+1} n)
= O(n²log²n)

Ex-7 T(n) =
$$2T(\frac{n}{2}) + \frac{n}{\log n}$$
,
a = 2, b = 2, k = 1, p = -1.
a = 2, b^k = 2 \Rightarrow a = b^k
T(n) = O(n^k log log n)
= O(n log log n)

Ex-8 T(n) = T(
$$\frac{n}{2}$$
)+n²,
a = 1, b = 2, k = 2, p = 0.
a = 1, b^k = 4 \Rightarrow a < b^k
T(n) = O(n^k log^p n)
= O(n²)

Ex-9 T(n) =
$$2T(\frac{n}{2})+n^2\log^2 n$$
,
a = 2, b = 2, k = 2, p = 2.
a = 2, b^k = 4 \Rightarrow a < b^k
T(n) = O(n^k log^p n)
= O(n² log² n)

Master Theorem for Decreasing Functions

$$T(n) = aT(n-b) + g(n)$$

where g(n) is $O(n^k)$

- a) $a < 1 : T(n) = O(n^k)$
- b) $a = 1 : T(n) = O(n^{k+1})$
- c) $a > 1 : T(n) = O(n^k a^{n/b})$

Ex-1
$$T(n) = T(n-1)+1$$
,

$$a = 1, b = 1, k = 0.$$

$$T(n) = O(n^{k+1}) = O(n)$$

Ex-3
$$T(n) = 2T(n-1)+1$$
,

$$a = 2, b = 1, k = 0.$$

$$T(n) = O(n^k a^{n/b})$$
$$= O(2^n)$$

Ex-2
$$T(n) = T(n-1) + n$$
,

$$a = 1, b = 1, k = 1.$$

$$T(n) = O(n^{k+1}) = O(n^2)$$

Ex-4
$$T(n) = 2T(n-1)+n$$
,

$$a = 2, b = 1, k = 1.$$

$$T(n) = O(n^k a^{n/b})$$
$$= O(n2^n)$$

Correctness of Algorithms

- An algorithm is said to be correct
 - if, for every input instance, it halts with the correct output.
- We say that a correct algorithm
 - solves the given computational problem.
- An incorrect algorithm
 - might not halt at all on some input instances, or
 - it might halt with an incorrect answer.

Some Mathematics

Ordering Functions by Their Growth Rates

n	$\log n$	\sqrt{n}	n	$n\log n$	n^2	$\frac{1}{n^3}$	2 ⁿ
$\frac{1}{2}$	1	1.4	2	2:	4	8	4
4 :	2	2	4	8	16	64	16
8	3	2.8	8	24	64	512	256
16	4	4	16.	64	256	4,096	65,536
32	5	5.7	32	160	1,024	32,768	4,294,967,296
64	6	8	64	384	4,096	262,144	1.84×10^{19}
128	7	11	128	896	16,384	2,097,152	3.40×10^{38}
256	8	- 16	256	2,048	65,536	16,777,216	1.15×10^{77}
512	9	23	512	4,608	262,144	134,217,728	1.34×10^{154}
1,024	10	32_	1,024	10,240	1,048,576	1,073,741,824	1.79×10^{308}

$$1 < \log n < \operatorname{sqrt}(n) < n < n \log n < n^2 < n^3 < \dots < 2^n < 3^n < n^n$$

Some Mathematics

•
$$\sum_{i=0}^{n} a^i = 1 + a + \dots + a^n = \frac{1 - a^{n+1}}{1 - a}$$

- $log_b a = c \ if \ a = b^c$
- $log_bac = log_ba + log_bc$
- $log_b(a/c) = log_b a log_b c$
- $log_b a^c = clog_b a$
- $log_b a = log_c a/log_c b$
- $b^{\log_C a} = a^{\log_C b}$

```
Ex-1
#include <stdio.h>
void main(){
    int n=10;
    int a[n];
    a[3]=5;
    printf("%d",a[3]);
}
```

```
T(n) = 1+(1+1) + (1+1) \rightarrow T(n) = O(1)
```

```
Fx-2
#include <stdio.h>
void main(){
    int n; scanf("%d",&n);
    int a[n];
    for(int i=0;i<n;i++)
         scanf("%d",&a[i]);
    for(int i=0;i<n;i++)</pre>
         printf("%d",a[i]);
T(n) = 2+(1+(n+1)+2(n)) + 2n +
(1+(n+1) + 2(n)) + 2n = 10n + 6
\rightarrow T(n) = O(n)
```

```
Ex-3
#include <stdio.h>
void main(){
  int n; scanf("%d",&n);
    int a[n];
    for(int i=0;i<n;i++)
        scanf("%d",&a[i]);
    for(int i=0;i<n;i++)
        for(int j=0;j<n;j++)
        printf("%d",a[i]);
}</pre>
```

```
T(n) = 2+(1+(n+1)+2(n)) + 2n + (1+(n+1)+2(n)) + n (1+(n+1)+2(n))
= 3n^2 + 10n + 6
\rightarrow T(n) = O(n^2)
```

```
Fx-4
#include <stdio.h>
void main(){
 int n; scanf("%d",&n);
    int a[n];
    for(int i=0;i<n;i++)</pre>
         scanf("%d",&a[i]);
    for(int i=0;i<n;i++)</pre>
         for(int j=0; j< n/2; j++)
              printf("%d",a[i]);
}
T(n) = 2+(1+(n+1)+2(n)) + 2n + (1+
(n+1) + 2(n) + n (1 + (n+1)/2 + 2(n/2))
\rightarrow T(n) = O(n<sup>2</sup>)
```

```
Ex-5
int findMinimum(int array[]) {
    int min = array[0];
    for(int i = 1; i < n; i++){
        if (array[i] < min) {
            min = array[i];
        }
    }
    return min;
}</pre>
```

$$\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n})$$

```
T(n) = T(n-1) + 2 \rightarrow T(n) = O(n)
Master Theorem for Decreasing
Functions
```

```
Ex-7
void fun(int n){
    if(n<=0)
        return;
    printf("%d",n);
    fun(n/2);
}</pre>
```

```
T(n) = T(n/2) + 2 \rightarrow T(n) = O(\log n)
Master Theorem for Dividing
Functions
```

```
Ex-9
void fun(int n){
    if(n>1){ ____1
        for(int i=0;i<n;i++) ____(n+1)
            printf("%d",i); ____n
            fun(n/2); ____T(n/2)
            fun(n/2); ____T(n/2)
        }
}
T(n) = 1 + (n+1) + n + 2T(n/2) = 2T(n/2) + (2n + 2)
a = 2, b = 2, k = 1, p = 0. O(n log n) as per Master
Theorem for Dividing Functions
```

innovate achieve lead

References

- 1. Algorithms Design: Foundations, Analysis and Internet Examples Michael T. Goodrich, Roberto Tamassia, 2006, Wiley (Students Edition)
- 2. Data Structures, Algorithms and Applications in C++, Sartaj Sahni, Second Ed, 2005, Universities Press
- 3. Introduction to Algorithms, TH Cormen, CE Leiserson, RL Rivest, C Stein, Third Ed, 2009, PHI

Any Question!!

Thank you!!

BITS Pilani

Hyderabad Campus

$$T(n) = 2T(n/2) + 2$$

This will be third case of master's theorem or the second case?

Calculation:

$$f(n) = 2$$

Number of leaves = $n \wedge logb(a) = n \wedge log(1) = n \wedge 0 = 1$

 $f(n) > n^{(logb(a))}$: Third case. Right?

The answer will be Theta(2)?

has context menu