Pismeni ispit 9. srpnja 2018.

Ime i Prezime:

Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (8 bodova)

Istosmjerni nezavisno uzbuđeni motor ima sljedeće podatke: $P_n=2,2\,\mathrm{kW},\,I_n=22,5\,\mathrm{A},\,U_n=120\,\mathrm{V},\,n_n=390\,\mathrm{min}^{-1}$ i otpor armature $R_a=0,7\Omega.$ Moment trenja i ventilacije motora je konstantan.

- a) (2 boda) Odrediti moment tereta kojim je motor opterećen ako se uz nazivni napon vrti brzinom $n=440\,\mathrm{min}^{-1}$? Nacrtati momentne karakteristike tereta i motora te označiti radnu točku.
- b) (2 boda) Ako se motor optereti momentom tereta $M_t=40\,\mathrm{Nm}$, koliko treba iznositi napon napajanja da se motor vrti brzinom $n=200\,\mathrm{min}^{-1}$? Nacrtati momentne karakteristike tereta i motora te označiti radnu točku.
- c) (4 boda) Ako na motor priključimo teret momentne karakteristike $M_t = k n^2$ Nm, pri nazivnom naponu i nazivnom toku teče struja I = 20 A. Kojom brzinom bi se vrtio motor ako bi se uzbudna struja (tok) motora smanjila za 2% u odnosu na nazivnu vrijednost?

2. zadatak (14 bodova)

Asinkroni motor nazivnih podataka: $U_n=400\,\mathrm{V},\,P_n=5\,\mathrm{kW},\,n_n=1430\,\mathrm{min}^{-1},\,f_n=50\,\mathrm{Hz},\,M_{pr}/M_n=3$, namot u spoju zvijezda, skalarno je upravljan U/f metodom u otvorenoj petlji. Motor pokreće stroj za obradu metala čija je momentna karakteristika dana izrazom $M_t=k/n\,\mathrm{Nm}.$ Gubici trenja i ventilacije motora se zanemaruju. Pri nazivnom naponu i nazivnoj frekvenciji motor je opterećen s 50% nazivnog momenta.

- a) (6 bodova) Odrediti zadanu (referentnu) frekvenciju uz koju bi brzina vrtnje motora bila $n=1200\,\mathrm{min}^{-1}$. Koliki je moment tereta pri novoj referentnoj frekvenciji? Nacrtati momentne karakteristike motora i tereta, te naznačiti karakteristične točke.
- b) (2 boda) Kolika je minimalna dozvoljena referentna frekvencija s kojom opisani pogon može trajno raditi? Obrazloži!
- c) (6 bodova) Odrediti zadanu (referentnu) frekvenciju uz koju bi moment motora bio $M=0.75\,M_n$ ako se motor upravlja u zatvorenoj petlji (PI regulator). Kolika je referentna brzina u tom slučaju? Nacrtati momentne karakteristike motora i tereta, te naznačiti karakteristične točke.

3. zadatak (11 bodova)

Za upravljanje brzinom vrtuje kaveznog asinkronog motora koristi se struktura upravljanja prikazana na slici 1. Motor se vrti brzinom koja je jednaka 80% nazivne brzine i opterećen je s50% nazivnog momenta Potrebno je:

Slika 1: Sustav za regulaciju brzine s vektorski upravljanim asinkronim motorom

- a) (6 bodova) Kvalitativno skicirati odzive struja $i_{sd}(t)$ i $i_{sq}(t)$, te brzine vrtnje $\omega(t)$ za slučaj da se motoru poveća referentna vrijednost brzine na 120% nazivne brzine, a moment tereta ostane nepromijenjen.
- b) (5 bodova) U istom d,q koordinatnom sustavu skicirati položaj vektora magnetskog toka rotora, položaj vektora struje statora te d i q komponente struje statora u početnom stacionarnom stanju $(n=80\%\,n_n,M_t=50\%\,M_n)$ te u stacionarnom stanju koje je nastupilo nakon promjene referentne vrijednosti brzine ($n = 120\% n_n, M_t = 50\% M_n$).

4. zadatak (16 bodova)

Nadređena petlja upravljanja brzinom vrtnje istosmjernog motora s nezavisnom i konstantnom uzbudom prikazana je blokovskom shemom na slici 2. Pritom su: $K_i=1,\,T_{ei}=5\,\mathrm{ms},\,K=1,33\,\mathrm{Vs/rad}$ i $J=3\,\mathrm{kgm}^2,\,K_{fb}=1,\,T_{fb}=1\,\mathrm{ms}.$ Potrebno je:

Slika 2: Blokovska shema upravljanja brzinom vrtnje

- a) (4 boda) Odrediti prijenosnu funkciju zatvorenog kruga.
- b) (5 bodova) Odrediti parametre modificiranog PI regulatora brzine vrtnje tako da nadomjesna vremenska konstanta zatvorenog kruga iznosi $T_e = 0.1 \,\mathrm{s}$, a karakteristični odnos $D_2 = 0.5 \,\mathrm{s}$.
- c) (3 boda) Odrediti prefiltar u grani referentne vrijednosti brzine vrtnje kojim se krate sve nule.
- d) (4 boda) Je li moguće promjenom prefiltra u grani referentne vrijednosti osigurati točnost slijeđenja linearno rastuće referentne veličine? Obrazložiti.

5. zadatak (16 bodova)

Kaskadna struktura upravljanja brzinom istosmjernog motora prikazana je na slici 3, pri čemu pojedini parametri iznose: $K_a=4,5\,\mathrm{A/V},\,T_a=25\,\mathrm{ms},\,K=1,33\,\mathrm{Vs/rad},\,K_t=44,\,T_{mi}=1,66\,\mathrm{ms},\,K_i=0,1\,\mathrm{V/A},\,T_{fi}=2\,\mathrm{ms},\,K_b=0,0318,\,T_{fb}=15\,\mathrm{ms},\,J=2,4\mathrm{kg}\,\mathrm{m}^2.$

Slika 3: Blokovska shema kaskadnog upravljanja brzinom DC motora s nezavisnom uzbudom

Potrebno je:

- a) (5 bodova) Projektirati PI regulator struje armature $G_{R1}(s)$ prema tehničkom optimumu kao i prefiltar referentne vrijednosti struje armature $G_{pf1}(s)$.
- b) (5 bodova) Izračunati parametre modificiranog PI regulatora brzine vrtnje motora prema simetričnom optimumu uz a = 2. Projektirati prefiltar u referentnoj grani brzine vrtnje $G_{pf2}(s)$.
- c) (6 bodova) Izračunati maksimalnu dozvoljenu promjenu momenta tromosti, tako da minimalno fazno osiguranje iznosi $\gamma=37^\circ$, uz parametre regulatora dobivene uz a = 2,41. Skicirati bodeov dijagram za nominalni moment tromesti i za maksimalnu dozvoljenu promjenu.

Napomena: Nagib karakteristike amplitudno frekvencijske karakteristike otvorenog kruga u okolini presječne frekvencije iznosi -20 dB/dek.

Podsjetnik:

$$a \tan x \pm a \tan y = a \tan \left(\frac{x \pm y}{1 \mp xy}\right) \tag{1}$$

LJIR_2018

(1)
$$P_n = 2.2 \text{ lw}$$
 $I_n = 22.5 \text{ A}$
 $U_n = 12.5 \text{ A}$
 $U_n = 12.0 \text{ V}$
 $M_n = 390 \text{ min}$
 $R_n = 0.7 \text{ A}$

A) $M_n = 440 \text{ min}^{4}$
 $M_{c_1} = 2.$
 $M_{c_1} = 3.5 \text{ Nm}$
 $M_{c_1} = 3.5 \text{$

$$(2) Mec = h \cdot m^{2}$$

$$= V_{n} - \overline{l_{a} l_{a}} = 41.53 \text{ mod/s}$$

$$= V_{n} - \overline{l_{a} l_{a}} = 41.53 \text{ mod/s}$$

$$= V_{n} - \overline{l_{a} l_{a}} = 41.53 \text{ mod/s}$$

Mec = Man, c - Mer, en

$$\phi^* = 0.98 \, \phi_n \rightarrow ce = 0.98 \, ce$$

2.
$$U_{n} = 400 V$$
 $P_{n} = 5 kw$

$$\frac{M_{64}}{M_{M}} = \frac{M_{5M} - M_{1}}{M_{5M} - M_{M}} \implies M_{4} = 1465 \text{ min}^{3}$$

a)
$$M_{4} = 1200 \text{ min}^{1}$$

$$M_{64} = \frac{l_{4}}{M_{4}} \implies M_{64} = 20.38 \text{ Nm}$$

$$\frac{M_{6A}}{M_{m}} = \frac{M_{5A} - M_{4}}{M_{5n} - M_{m}} \implies M_{5A} = 1242.73 \, \text{min}^{-1}$$

$$30 \, \text{fa} = \frac{M_{6A}}{M_{6A}}$$

$$\frac{M_{4B}}{M_{M}} = \frac{M_{6B} - M_{B}}{M_{6M} - M_{M}} \rightarrow M_{6B} = 802.5 \text{ min}^{1}$$

$$30 \text{ fB} = M_{6B}$$

$$A = \frac{1}{M_{ec}} = 0.75 \text{ Mm}$$

$$M_{c} = \frac{1}{M_{ec}} = 976.67 \text{ min}^{-1}$$

$$J = 0.1s$$

$$D_2 = 0.5$$

$$\alpha_1 = II = 0.1s$$

$$I_1 = I_2 = 0.1s$$

$$\alpha_2 = D_2 Te^2$$

$$\frac{1}{16} Te = D_2 Te^2 = 5$$

$$\frac{J \sqrt{k_e}}{K_e \, K_i \, K \, K_e} = O_2 \, Te^{\chi} = 5 \qquad K_e = \frac{J}{K_i \, K \, K_e \, O_2 \, Te} = 45.1128$$

GPF(s) =
$$\frac{1+\overline{1}5}{1+\overline{1}65}$$

$$e_{\infty} = \lim_{S \to 0} \left[\frac{1}{S^{2}} \left(1 - G_{PF} \cdot G_{T} \right) \cdot S \right] = 0$$

$$L \int IR_{-20.8} G$$
 $K_{n} = 4.5 \text{ A}V_{1}, T_{n} = 25 \text{ ms}$
 $K = 4.33 \text{ Vs/mL}_{1}, J = 2.4 \text{ Jr}_{1} \text{ m}^{2}$
 $K_{n} = 4.5 \text{ A}V_{1}, T_{m} = 4.66 \text{ ms}$
 $K = 0.4 \text{ V/A}$
 $I = 12 \text{ ms}$
 $V_{n} = 0.318$
 $I = 15 \text{ ms}$

$$G_{r_{n}}(c) = \frac{V_{n} \text{ Kin} \text{ Ki}}{(4+T_{n} \cdot s)(4+T_{n} \cdot s)}$$

$$G_{s_{n}}(s) = \frac{V_{n} \text{ Kin}}{(4+T_{n} \cdot s)(4+T_{n} \cdot s)}$$

$$V_{s_{n}} = 14 \text{ Kin} \text{ Ki} = 43.8$$

$$I_{2s} = T_{n} = 15 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} = T_{n} + I_{n} = 3.66 \text{ ms}$$

$$V_{s_{n}} =$$

GPF2(s) = K& (1+1i2s) 1+ Tf& S

$$C) \frac{y_{mi}}{a} = 23$$

$$a = 2.44 \rightarrow T_{22} = 423.64 \text{ m/s}$$

$$V_{22} = \frac{d}{dV_{11}} \frac{T_{12}}{T_{22}} = 4054.3242$$

$$W_{23}^{**} = \frac{d}{dV_{11}} \frac{T_{12}}{T_{22}} = \frac{d}{dV_{11}} \frac{d}{T_{22}} = \frac{d}{dV_{12}} \frac{d}{T_{22}} \frac{d}{T_{22}} = \frac{d}{dV_{12}} \frac{d}{T_{22}} \frac{d}{T_{22}} \frac{d}{T_{22}} = \frac{d}{dV_{12}} \frac{d}{T_{22}} \frac{d}{T_{22}}$$