Pri mjerenju velike istosmjerne struje Hallovom sondom poznato je da struja od 41 A stvara indukciju od 1.07 T. Ako je stalnica materijala sonde $R_{\rm H} = 282.2~{\rm cm}^3/({\rm As})$, a ona je debljine 0.89 mm, kolika je upravljačka struja $I_{\rm H}$ potrebna da generirani napon bude pritom 29.67 mV?

Unesite rezultat sa 1 decimalom. Koristite decimalnu točku, a ne zarez.

$$I_{H} = 87.4 \text{ mA}$$

V

One possible correct answer is: 87.5

Analogno-digitalni pretvornik s dvostrukim pilastim naponom integrira mjereni napon 100 ms. Koliki će napon pokazati voltmetar s takvim pretvornikom ako je mjerenom istosmjernom naponu 1.959 V superponiran izmjenični napon frekvencije 50 Hz i tjemenog iznosa 0.145 V?

Unesite rezultat sa 3 decimale. Koristite decimalnu točku, a ne zarez.

V

One possible correct answer is: 1.959

Napon izvora izmjeren je 14 puta u istim uvjetima, digitalnim voltmetrom s prikazom 5½ znamenke i granicama pogrješaka $\pm (0.0005 \text{ of reading} + 0.0002 \text{ of range})$, na mjernom opsegu 10 V. Aritmetička sredina svih rezultata bila je 5.2748 V, a standardno odstupanje (pojedine vrijednosti) 2.3 mV. Kolika je složena standardna nesigurnost $u_c(U_{DV})$ tako izmjerenog napona?

Unesite rezultat sa 3 decimale. Koristite decimalnu točku, a ne zarez.

$$u_{c}(U_{DV}) = \boxed{1.75} \text{ mV}$$

×

One possible correct answer is: 2.747

Impedancije grana izmjeničnog Wheatstoneovog mosta pri nekoj frekvenciji su:

 $Z_2 = (80.9 \angle 21.4^{\circ}) \Omega$

 $Z_3 = (75.2 \angle 19.2^{\circ}) \Omega$

 $Z_4 = (42.2 \angle 11.5^{\circ}) \Omega$

Koliki mora biti Z_1 da bi most bio u ravnoteži?

Unesite rezultat sa 1 decimalom. Koristite decimalnu točku, a ne zarez.

$$Z_1 = (144.2 \angle 29.1) \Omega$$

One possible correct answer is: 144.2, 29.1

Koliki su gubitci kondenzatora kapaciteta $C = 242.3 \text{ nF} \text{ s tg} d = 0.004 \text{ pri naponu } U = 229.6 \text{ V i frekvenciji } f = 52.4 \text{ Hz}?$
Unesite rezultat sa 2 decimale . Koristite decimalnu točku , a ne zarez. $P_{g} = \boxed{16.8z \text{ mW}}$
One possible correct answer is: 16.82
NTC otpornik na temperaturi od 25 °C ima nazivnu vrijednost R_{25} = 10 k Ω . Ako pretpostavimo da se njegov otpor na uskom temperaturnom rasponu od 24 °C do 26 °C mijenja linearno i to 4%/°C, koliko će iznositi otpor NTC otpornika na temperaturi t = 24 °C?
Unesite rezultat sa 1 decimalom. Koristite decimalnu točku, a ne zarez. $R_t = \boxed{\qquad} k\Omega$
One possible correct answer is: 10.4
Pri mjerenju istosmjerne struje shuntom i voltmetrom ustanovljeno je da se pri struji od 10 A otpor shunta povećao za 0.3 % u odnosu na stanje kad njime ne prolazi struja. Ako je temperaturni koeficijent shunta 3.5·10 ⁻⁴ K ⁻¹ , za koliko se pritom povećala njegova temperatura kad njime prolazi navedena struja?
Unesite rezultat sa 2 decimale . Koristite decimalnu točku , a ne zarez.
Δθ =
×
One possible correct answer is: 8.57
Elektroničkim brojilom mjeri se utrošak energije trošila tijekom vremenskog intervala od 25 min. Ako je pritom brojilo pokazalo 2017 impulsa, a stalnica mu je 4000 imp/kWh, kolika je bila prosječna snaga trošila u tom periodu?
Unesite rezultat sa 2 decimale . Koristite decimalnu točku , a ne zarez.
P = W
×
One possible correct answer is: 1210.2

Potrebno je odrediti temperaturu toplog kraja termoparskog osjetnika temperature tipa K ako mu je izmjeren napon od U = 30.382 mV, a temperatura hladnog kraja bila je $t_{\rm Hx} = 28.8$ °C. Ovisnost napona termoparske žice tipa K o temperaturi prikazana je tablično za temperature od 720°C do 779°C.

°C	0	1	2	3	4	5	6	7	8	9
	Termonapon [mV]									
720	29,965	30,007	30,049	30,090	30,132	30,174	30,216	30,257	30,299	30,341
730	30,382	30,424	30,466	30,507	30,549	30,590	30,632	30,674	30,715	30,757
740	30,798	30,840	30,881	30,923	30,964	31,006	31,047	31,089	31,130	31,172
750	31,213	31,255	31,296	31,338	31,379	31,421	31,462	31,504	31,545	31,586
760	31,628	31,669	31,710	31,752	31,793	31,834	31,876	31,917	31,958	32,000
770	32,041	32,082	32,124	32,165	32,206	32,247	32,289	32,330	32,371	32,412

Ü	lnesite i	rezultat sa	1 decimalom.	Koristite de	cimalnu točki	u, a ne zarez

$t_{Tx} =$	°C

×

One possible correct answer is: 758.8

Djelatnu snagu impedancije Z_t mjerimo metodom 3 voltmetra. Ako je na voltmetru V_1 spojenom na izvor napona očitano U_{V1} = 227.44 V, na voltmetru V_0 spojenom paralelno otporu R napon U_{V0} = 166.97 V, a na voltmetru V spojenom paralelno mjerenoj impedanciji U_V = 84.5 V, koliki je $\cos \varphi$ impedancije Z_t ?

Unesite rezultat sa 3 decimale. Koristite decimalnu točku, a ne zarez.

$$\cos \varphi = 0.592$$

.

One possible correct answer is: 0.592

Koliki je fazni pomak između napona na mjernom otporniku i struje koja njime prolazi pri frekvenciji 1374 Hz, ako mu je otpor $2.677~\Omega$, vlastiti kapacitet 75.5 pF te vlastiti induktivitet $2.219~\mu$ H?

Unesite rezultat sa 5 decimale. Koristite decimalnu točku, a ne zarez.

 $\varphi = | rad |$

×

One possible correct answer is: 0.00715

Odredite snagu izvora ako je, u spoju prema slici, vatmetrom izmjerena snaga P = 144.7 W, voltmetrom napon izvora 221.7 V, a ampermetrom struja tereta 0.41 A. Otpor naponske grane vatmetra je 57.5 k Ω , otpor strujne grane vatmetra 1.22 Ω , otpor voltmetra 99.9 k Ω , a otpor ampermetra 0.52 Ω .

Unesite rezultat sa	1 decimalom.	Koristite decimalnu	i točku, a ne zarez
---------------------	--------------	---------------------	---------------------

 $P_{W} = 116.1 \text{ W}$

×

One possible correct answer is: 146

Na izvor napona pravokutnog valnog oblika amplitude $U_{\rm m}=4.675$ V priključeni su paralelno dva digitalna voltmetra za mjerenje izmjeničnog napona: prvi s odzivom na srednju vrijednost te drugi koji je označen kao TrueRMS. Kolika u tom slučaju nastaje relativna pogreška napona mjerenog prvim voltmetrom?

Unesite rezultat sa 2 decimale. Koristite decimalnu točku, a ne zarez.

p% = %

×

One possible correct answer is: 11.07

Otpor R_X mjeren je U - I metodom u spoju za mjerenje malih otpora. Napon je mjeren voltmetrom karakterističnog otpora 42.55 k Ω / V na mjernom opsegu 1 V , a struja ampermetrom na mjernom opsegu 1 V 0.00 unutrašnjeg otpora 0.07 V 0. Koliki je njegov otpora ako je na voltmetru očitano 0.5157 V 0, a na ampermetru 0.6696 V 0.
Unesite rezultat sa 4 decimale. Koristite decimalnu točku, a ne zarez.
$R_{X} = \boxed{0.77017} \qquad \Omega$
→
One possible correct answer is: 0.7702
Otpor jednog otpornika izmjeren je trima metodama: U - I metodom, digitalnim omometrom i usporedbom s poznatim otporom. Pritom su dobivene sljedeće aritmetičke sredine i pripadna standardna odstupanja sredine: $3.5835~\Omega~(5.7~m\Omega)$; $3.5815~\Omega~(8.4~m\Omega)$; $3.5848~\Omega~(8.2~m\Omega)$.
Koliko je standardno odstupanje najvjerojatnije vrijednosti otpora tog otpornika?
Koliko je standardno odstupanje najvjerojatnije vijednosti otpora tog otpornika:
Unesite rezultat sa 2 decimale . Koristite decimalnu točku , a ne zarez. $R_{S} = \begin{bmatrix} 8.2 & m\Omega \\ & & $
One possible correct answer is: 4.09