

MODULE : Supervision et contrôle à distance Mise en œuvre de système IOT

Réalisation d'un système de contrôle d'accès par RFID et Web pour une salle.

PROFESSEUR M. Mehdi SELMANI

Etudiants
LAMAH Severin
FIGUEROA Carlos

Sommaire

- TP IoT
 - I. Objectifs
 - II. Matériel électronique
 - III. Logiciel
 - IV. Server OK
 - V. Server avec lien
 - VI. Server et affichage de température
 - VII.Server et control de LED
 - VIII.Server et Control de LED par Température
 - IX. ThinkSpeak Capteur de Température

- II. Mini-projet
 - I. Objectifs
 - II. Matériel électronique
 - III. Logiciel
 - IV. Programmation
 - V. Obstacles rencontrés
 - VI. Futur du projet
- III. Conclusion

- I TP IoT
- I.I Objectifs

Comprendre et sensibiliser à la problématique liée à l'IOT, comprendre la chaîne de mesure de données et le développement d'une application WEB, impliquant :

- a) La conception de système de mesure communicant (Arduino)
- b) La programmation de système embarquée et Web
- c) La connectivité à Internet et la transmission de données via internet
- d) La mise en œuvre de plateforme web et la mise à disposition de données sur le Web

I.II Matériel électronique

Arduino + Ethernet Shield

PC

Protoboard

Cable RJ45

I.III Logiciel

Interface pour programmer l'Arduino

Plateforme Web

Test de connexion FR-MX

Sur Web Page

I.V Server avec lien

Programmation

I.VI Server et affichage de température

La température est de 17°C

Sur Web Page

Schéma de connexion

```
client.println("<br /> La température est ");
// lecture de valeur analogique et convertion
sensorValue = analogRead(sensorPin);
float tpc=sensorValue*(5.0/1023.0*100.0);
client.println(sensorValue);
client.println(tpc);
client.println("°C");
```

Programmation

I.VII Server et Control de LED


```
onClick=location.href='./?LED=T\'>");
x onClick=location.href='./?LED=F\'>");
```


I.VIII Server et Control de LED par Température

LED ON/OFF

ON

OFF

La temperáture est de 33°C

LED AUTO = ON

Sur Web Page

```
float tpc=sensorValue*(5.0/1023.0*100.0);
if (tpc=>30) {
    digitalWrite(ledPin, HIGH);
}
else{
    digitalWrite(ledPin, LOW);
}
    Programmation
```


I.IX ThinkSpeak Capteur de température

Sur Web Page

```
// Utiliser le valeurs
ThingSpeak.setField(1, (int) DHT11.humidity);
ThingSpeak.setField(2, (int) DHT11.temperature)
// ecriture sur ThingSpeak channel
int x = ThingSpeak.writeFields(myChannelNumber, myWriteAPIKey);
if(x == 200) {
    Serial.println("Channel update successful.");
}
```


- II Mini-projet
- II.I Objectifs

Créer un contrôle d'accès par l'utilisation de la lecture de cartes RFID et en même temps une page web pour visualiser qui entre et autoriser l'entrée ou la sortie à distance.

II.II Matériel électronique

ESP32

PC

Protoboard

Module RFID RC522

II.III Logiciel

Interface pour programmer l'Arduino

```
#include <SPI.h>
#include <RFID.h>
#include <ESPAsyncWebServer.h>
#include <WiFi.h>
```

Libraires a utiliser

II.IV Programmation

```
//RFID Lecture
if (rfid.isCard()) {
  if (rfid.readCardSerial()) {
    Serial.println(" ");
    Serial.println("Carte Trouvé");
    Serial.println(" ");
    Serial.println("Nombre Carte:");
    Serial.print("Dec: ");
    Serial.print(rfid.serNum[0], DEC);
    Serial.print(", ");
    Serial.print(rfid.serNum[1], DEC);
    Serial.print(", ");
    Serial.print(rfid.serNum[2], DEC);
    Serial.print(", ");
    Serial.print(rfid.serNum[3], DEC);
    Serial.print(", ");
    Serial.print(rfid.serNum[4], DEC);
    Serial.println(" ");
```

```
<!DOCTYPE HTML><html>
<head>
<title>FIZET ACCESS IUT</title>
clink rel="icon" type="image/png" l
<img style="display: block; marg
<meta name="viewport" content="w:
<link rel="stylesheet" href="httl
<style>
```

Lecture de Carte RFID

Page web sur le esp

II.V Obstacles rencontres

```
Arrêt du cpu pour cause de retard
digitalWrite(led 1, HIGH);
delay(2000);
digitalWrite(led 1, LOW);
Solution utiliser le temporisateur millis sur le programmation
int temp_milis = 5000; //temp pour atreindre le carte NFC
unsigned long temp_init_milis = 0;
//*
temp init milis = millis();
///Acction
digitalWrite(led 1, HIGH);
///
while (millis() < temp init milis + temp milis) {</pre>
  // atteindre [temp milis] milisegundos
digitalWrite(led 1, LOW);
//*
```


II.VI Futur de Project

Ajouter un Basse de donnes dédié

Ajouter une expansion de mémoire

Ajouter une interphase pour nouveau cartes et paramètres

III Conclusion

III Conclusion

Prototype sur Protoboard

Web page