Programme de colle - Semaine n°16

- Groupe A: Ilyes BENFERHAT, Hamza BOURAS, Julien DENEUBOURG, Célian FORET, Maxime LE BLAN, Pierre LESAGE, Vishwaraj SHABADI, Julien STEVENART, Mohamed Jibril TROUGOUTY, Félix VANDEN-BROUCKE.
- Groupe B: Lucas AGBOTON, Vladislas BANCOD, Nathan BISKUPSKI, Pierre CATHELAIN, Matthieu CHARETTE, Célien CHAZAL, Jarode COQUEL, Félix CORDONNIER-PORTIER, Maxime DANIEL, Baptiste DAULE SIGAUT, Raphaël DEPUYDT, Ethan DUMONT, Houdayfa EL HAJJIOUI, Gabriel HARENDARZ, Victor KRAWCZIK, Thibaut LAMARQUE, Juliette LECOUTRE, Mohamed-Yassine LOKMANE, Alexandre MARTINSSE, Clément MONCHIET, Mathieu POULAIN, Clarissa VALLAEYS.
- Groupe C : Ilan AKADJI, Orane BERTOUT, Pierre BODET, Marc BURGHGRAEVE, Noelien DUTILLEUL, Douae EL FANI, Julien GERY, Paul LEONARD, Noam THIBAUT-GESNEL, Clément TURPIN.

Chapitre 15 - Fonctions convexes

• cf. semaine 14.

Chapitre 16 - Relations binaires sur un ensemble

• cf. semaine 14.

Chapitre 17 - Dénombrement

• cf. semaine 15.

Chapitre 18 - Structures algébriques usuelles

- cf. semaine 15.
- Groupe des permutations d'un ensemble E, cas particulier de S_n . Note aux colleurs : seule la définition a été vue, l'étude de S_n en détails sera faite au second semestre, en particulier la notation d'une permutation comme matrice à deux lignes ou à une seule ligne n'a pas été vue. S_E est non abélien dès que E a au moins trois éléments.
- Propriétés : un groupe est non vide, unicité du neutre, du symétrique, tout élément est régulier à gauche ou à droite (attention, on ne peut rien faire si ab=ca!), groupe produit (exemple de $(\mathbb{Z}/2\mathbb{Z})^2$ et de $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$).
- Sous-groupes : définition, caractérisation, exemples. Application : le centre d'un groupe est un sous-groupe, si x est un élément de G qui n'est pas dans le centre, $Z_x = \{y \in G \mid xy = yx\}$ est un sous-groupe de G contenu strictement dans G et qui contient strictement Z(G). Une intersection de sous-groupes est un sous-groupe, une union de deux sous-groupes est un sous-groupe si et seulement si l'un des deux est inclus dans l'autre.
- Sous-groupes de \mathbb{Z} (deuxième année), sous-groupes de \mathbb{R} (HP et difficile mais classique : démonstration non exigible, mais il faut connaître le résultat). Application : une fonction $f:\mathbb{R}\to\mathbb{R}$ continue et périodique de périodes 1 et $\sqrt{2}$ est constante, contre-exemple sans la continuité.
- Théorème de Lagrange (HP, non exigible). Applications (faites très rapidement) : sous-groupes de G lorsque le cardinal de G est un nombre premier, il n'existe aucun sous-groupe de G dont le cardinal soit égal à $3/4 \times \operatorname{card}(G)$, si G est un groupe non commutatif, alors $\operatorname{card}(Z(G)) \leq \operatorname{card}(G)/4$.
- Morphismes de groupes, isomorphismes, groupes isomorphes. Exemples, premières propriétés : isomorphisme réciproque, composée de morphismes, la relation « être isomorphes » est une relation d'équivalence.
- Image directe ou réciproque d'un sous-groupe par un morphisme. Image d'un morphisme, l'image est un sous-groupe du groupe d'arrivée.
- · Noyau d'un morphisme de groupes, le noyau est un sous-groupe du groupe de départ, CNS d'injectivité.
- Définition d'un anneau (note aux colleurs : en MP2I, les anneaux sont unitaires). Dans un anneau, 0_A est absorbant. Si l'anneau contient au moins deux éléments (ce qu'on suppose dans la suite), $0_A \neq 1_A$. Exemples : $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{R}^{\mathbb{R}}$ et plus généralement A^X où A est un anneau et X un ensemble quelconque, $\mathbb{Z}/n\mathbb{Z}$ (deuxième année).
- Diviseurs de zéro (à gauche, à droite), exemples. Anneau intègre. Dans un anneau intègre, tout élément non nul est régulier.
- Identités remarquables et binôme de Newton dans un anneau (les deux éléments doivent commuter!).

Page 1/2 2023/2024

MP2I Lycée Faidherbe

• Éléments nilpotents dans un anneau : définition, définition de l'indice de nilpotence. Le produit, la somme de deux éléments nilpotents qui commutent sont encore nilpotents (nous donnerons des contre-exemples si les deux éléments ne commutent pas dans le chapitre 21).

• Sous-anneau. Attention, un anneau peut être inclus dans un autre sans être un sous-anneau (le neutre n'est pas forcément dedans). \mathbb{Z} est son seul sous-anneau. Caractérisation des sous-anneaux. Exemple : $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} , $\mathscr{C}(\mathbb{R},\mathbb{R})$ est un sous-anneau de $\mathbb{R}^{\mathbb{R}}$.

Chapitres au programme

Chapitres 15 et 16 (exercices uniquement), chapitre 17 (cours et exercices, note aux colleurs : l'utilisation de bijections dans les problèmes de dénombrement n'est pas un attendu du programme), chapitre 18 (cours uniquement).

Questions de cours

- 1. Pour tout $n \ge 1$, $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$ (démonstration).
- 2. Définition d'une loi commutative, associative. Donner un exemple de loi associative et un exemple de loi non associative (sans démonstration).
- 3. Définition d'un groupe, d'un groupe abélien.
- 4. Si $n \geq 1$, (\mathbb{U}_n, \times) est un groupe (démonstration).
- 5. Le centre d'un groupe est un sous-groupe (démonstration).
- 6. L'union de deux sous-groupes est un sous-groupe si et seulement si l'un est inclus dans l'autre (démonstration).
- 7. Sous-groupes de \mathbb{Z} (démonstration).
- 8. Définition d'un morphisme de groupes, d'un isomorphisme de groupes.
- 9. L'image directe ou réciproque d'un sous-groupe par un morphisme est un sous-groupe (énoncé précis, démonstration uniquement pour l'image directe).
- 10. Définition du noyau d'un morphisme. CNS d'injectivité (démonstration). Donner un exemple de morphisme injectif et un exemple de morphisme non injectif (on donnera le noyau à chaque fois).
- 11. Définition d'un anneau, d'un anneau intègre, avec les deux écritures avec des quantificateurs.
- 12. Binôme de Newton dans un anneau (sans démonstration).
- 13. Définition d'un élément nilpotent dans un anneau A. Une somme de deux éléments nilpotents qui commutent est encore un élément nilpotent (démonstration).
- 14. $\mathbb{Z}[i]$ est un sous-anneau de \mathbb{C} (démonstration, avec un joli dessin de $\mathbb{Z}[i]$).

Prévisions pour la semaine prochaine

- Fin des structures algébriques usuelles (vraiment).
- Début des polynômes.

Exercices à préparer

Exercices 12, 13, 14, 15, 16, 17, 19, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 42, 43 du chapitre 18.

Cahier de calcul

Rien cette semaine.

Page 2/2 2023/2024