一、填空题: (本大题共10小题,每小题3分,共30分)

1. 已知函数
$$z = x + (y-1) \arcsin \sqrt{\frac{x}{y}}$$
 ,则 $dz|_{(1,1)} =$ ______.

- 2. 设 L = xOy 面的圆周 $x^2 + y^2 = 2$ 的顺时针方向,则 $\oint_L x^5 ds = ______$
- 3. 函数u = xyz 2yz 3在点(1,1,1)沿(2,2,1)的方向导数等于______.
- 4. 级数 $\sum_{n=1}^{\infty} (-1)^n (1-\cos\frac{a}{n})$ 是条件收敛、绝对收敛,还是发散? ______.
- 6. 微分方程 $(y+1)^2$ dy $+ x^3$ dx = 0满足 y(0) = 1 的特解为______.
- 8.曲线 $\begin{cases} xyz = 1 \\ x = y^2 \end{cases}$ 在点 M(1,1,1) 处的切线方程为______.
- 9.螺旋线 $x = \cos \theta$, $y = \sin \theta$, $z = 2\theta$ 在点 (1,0,0) 的切线方程为_____.
- 10. 设 $f(x) = \begin{cases} e^x, & -\pi \le x < 0 \\ 1, & 0 \le x < \pi \end{cases}$ 是以 2π 为周期的函数,其傅立叶级数的和函数记

- 二、计算题: (本大题共6小题,每小题10分,共60分)
- 11. 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n-1}}{n \cdot 2^n}$ 的收敛域及和函数.
- 12. 求由曲面 $z = \sqrt{2 x^2 y^2}$ 与曲面 $z = \sqrt{x^2 + y^2}$ 所围立体的体积.

- 13. 计算曲面积分 $I = \iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 1) dx dy$,其中 Σ 为曲面 $z = 1 x^2 y^2 \ (z \ge 0)$ 的上侧.
- 14. 求微分方程 $y'' 5y' + 6y = xe^{2x}$ 的通
- 15.求函数 $u = x^2 + y^2 + z^2$ 在约束条件 $z = x^2 + y^2$ 和 x + y + z = 4 下的最大值和最小值.
- 16. 计算 $I = \int_L (12xy + e^y) dx (\cos y xe^y) dy$, 其中 L 是由点 A(-1,1) 沿曲线 $y = x^2$ 到点 O(0,0),再沿 x 轴到点 B(2,0) 的曲线.
- 三、证明题: (本大题共2小题,每小题5分,共10分)
- 17. 设 $\{x_n\}$ 是正数列,若 $\lim_{n\to\infty} \frac{n^2(e^{\frac{1}{n}}-1)}{x_n} = 1$,证明级数 $\sum_{n=1}^{\infty} x_n$ 发散.
- 18. 设 f(u,v) 具有二阶连续偏导数,且满足 $\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} = 1$,

又
$$g(x,y) = f\left[xy, \frac{1}{2}(x^2 - y^2)\right]$$
, 证明: $\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = x^2 + y^2$.