

Curso 03: Administração de Dados Complexos em Larga Escala

-- Advanced Analytics com o Apache Mahout --

Prof. Jose Fernando Rodrigues Junior

Objetivo: apresentar a solução de Aprendizado de Máquina sobre dados em larga escala Apache Mahout

Níveis da Análise de Dados

- Análise de dados básica: contagens, somas, médias, máximo, mínimo, e ordenação;
- Análise de dados estatística: distribuição de dados, ajuste de modelo, teste de hipóteses, métricas, etc;
- Análise de dados avançada: aprendizado de máquina, classificação, regressão, recomendação, clusterização, etc;
- Aprendizado de máquina avançado: arquiteturas de redes neurais visando inteligência artificial.

Níveis da Análise de Dados

- Análise de dados básica: Curso 03/11 DW/OLAP médias, máximo, mínimo, e ord
- Análise de dados estatística: distribuição de dados, ajuste de modelo, tempo de de métricas, etc;
- Análise de dados avançada: aprendizado de máquina, classificação, regres Curso 02/03 Mahout o, clusterização, etc;
- Aprendizado de máquina avançado: arquiteturas de redes neurais visando inteligé Curso 05/07/08/10

- Aprendizado de Máquina: um ramo das técnicas de inteligência artificial que fornece ferramentas que permitem aos computadores melhorar sua análise com base em eventos anteriores;
- Aproveitam os dados históricos de tentativas anteriores de resolver uma tarefa para melhorar o desempenho de futuras tentativas de tarefas semelhantes;
- Bibliotecas Mahout são implementadas em Java MapReduce é executadas em seu cluster como coleções de trabalhos MapReduce.

- Tarefas comuns de Aprendizado de Máquina:
 - Recomendação de produtos/amigos/pares;
 - Classificação em tipos/grupos/posições;
 - Encontrar elementos semelhantes;
 - Encontrar associações em comportamentos/ações;
 - Encontrar assunto chave em textos;
 - Detectar anomalias/fraudes/exceções;
 - Ranquear resultados de busca;
 - Entre outras.

Apache Mahout

- -O Apache Mahout é uma **API Java** de algoritmos de *Machine Learning*
- -Tem como características:
 - -escalabilidade;
 - -documentação extensa;
 - -uso aplicado.
- -**Tipos de algoritmos**: detecção de agrupamento, classificação, alg. genéticos, recomendação, regras de associação (*frequent pattern matching*), entre outros.

Apache Mahout Aplicações, algoritmos, bibliotecas, e arcabouço distribuído

Apache Mahout sobre a infraestrutura distribuída Hadoop

Apache Mahout

- Os algoritmos do Mahout não necessariamente funcionam em MapReduce;
- Isso, pois muitos algoritmos de Machine Learning não são paralelizáveis (pelo menos não diretamente);
- A partir de 2014, o projeto passou a priorizar Spark e generalidade com relação à infraestrutura de computação:
 - funcionamento independente do ecossistema Hadoop;
 - integração ao projeto <u>H2O.ai</u> (distributed in-memory ML),
 <u>Apache Flink</u> (stream data), além do Hadoop e do Spark;
 - suporte a programação de novos algoritmos de modo generalizado.

Apache Mahout Algoritmos

- Recomendação: item-based Collaborative Filtering, Matrix Factorization with Alternating Least Squares, e Matrix Factorization with Alternating Least Squares on Implicit Feedback;
- Classification: Naive Bayes, Complementary Naive Bayes, e Random Forest;
- Clustering: Canopy Clustering, k-Means Clustering, Fuzzy k-Means, Streaming k-Means, e Spectral Clustering;
- Dimensionality Reduction: Lanczos Algorithm, Stochastic SVD, e Principal Component Analysis;
- Regression: Ordinary Least Squares, Ridge Regression
- Topic Models: Latent Dirichlet Allocation;
- Miscellaneous: Frequent Pattern Matching, RowSimilarityJob, ConcatMatrices, e Colocations.

Apache Mahout Abrangência

O projeto Apache Mahout é imenso e pode ser usado a partir de diferentes perspectivas:

- usuário Hadoop de algoritmos existentes;
- usuário Spark de algoritmos existentes;
- desenvolvedor de novos algoritmos;
- integração com arcabouços como o H20;
- processamento em um único nó de processamento;
- entre outras possibilidades.

Aplicações de Aprendizado de Máquina Mahout

Clusterização

Classificação

Recomendação

Utilitários Mahout

Mahout Math

Hadoop Distributed File System (HDFS)

Fazendo Recomendações com o Apache Mahout Taste

- Como visto, o Apache Mahout contém dezenas de algoritmos de Aprendizado de Máquina;
- Um de seus subprojetos de maior sucesso é o Apache Mahout
 Taste, um mecanismo de filtragem colaborativa flexível e rápido para Java;
- Filtragem colaborativa: um mecanismo que processa as preferências dos usuários para os itens ("gostos") e retorna as preferências estimadas para outros itens;
- Exemplos: próximos filmes da NetFlix; próximos livros da Amazon;
 próximos produtos no eBay.
- ⇒ Para saber mais: Mahout Taste :: Part 1 Introduction

Para fazer recomendações usando o Taste:

1) Dados, ou DataModel

Neste exemplo:

- Usuário refere-se a usuários de um serviço, por exemplo, de streaming;
- Filme refere-se ao identificador de um filme no catálogo de filmes;
- Nota refere-se ao quanto o usuário gostou de um filme, considerando notas entre 1 e 5.

Usuário	Filme	Nota	
1	101	5	
1	102	3	
1	103	2,5	
2	101	2	
2	102	2,5	
2	103	5	
2	104	2	
3	101	2,5	
3	104	4	
3	105	4,5	
3	107	5	
4	101	5	
4	103	3	
4	104	4,5	
4	106	4	

Para fazer recomendações usando o Taste:

2) Uma medida de similaridade entre usuários e/ou items

Suposição: se dois usuários são parecidos, supõe-se que os mesmos itens podem ser de interesse de ambos.

Similarity between users (2/3)

Pearson Correlation Coefficient

$$sim(u_{a}, u_{b}) = \frac{\sum_{i \in I} (r_{u_{a},i} - \overline{r_{u_{a}}}) (r_{u_{b},i} - \overline{r_{u_{b}}})}{\sqrt{\sum_{i \in I} (r_{u_{a},i} - \overline{r_{u_{a}}})^{2}} \sqrt{\sum_{i \in I} (r_{u_{b},i} - \overline{r_{u_{b}}})^{2}}}$$

	Item1	Item2	Item3	Item4	
Alice	5	3	4	4	sim=0.71
User1	3	1	2	3	Sim-0.71
User2	4	3	4	3	
User3	3	3	1	5	sim=-0.79
User4	1	5	5	2	4.**

Para fazer recomendações usando o Taste:

2) Uma medida de similaridade entre usuários e/ou items

Neste exemplo: a medida de similaridade Coeficiente de Correlação de Pearson (há muitas outras).

Suposição: se dois usuários são parecidos, supõe-se que os mesmos itens podem ser de interesse de ambos.

Para fazer recomendações usando o Taste:

3) Uma vizinhança: quantos usuários parecidos serão considerados

⇒ Para saber mais: Collaborative Filtering

Neste exemplo, serão considerados os dois usuários mais parecidos ao usuário 3 com o objetivo de se computar as recomendações.

Para fazer recomendações y

3) Uma vi considera

Neste conside mais

computar as rec

Note que em um mecanismo como este, quanto mais dados, mais precisa e abrangente será a recomendação. É daí que vem o poder do Big Data.

Exercício Hands on – criar um sistema de recomendação no Mahout:

Apache Mahout - Creating a User-Based Recommender in 5 minutes https://github.com/felrukby/com.rukbysoft.examples.mahout

Passos:

- 1) Logar no GitHub;
- 2) Fazer download do projeto em https://github.com/felrukby/com.rukbysoft.examples.mahout;
- 3) Instalar o ambiente integrado de desenvolvimento Apache Netbeans;
- 4) Abrir o projeto com o Netbeans;
- 5) Testar as funcionalidades to Apache Mahout Taste.

Conclusões

- -O ecossistema Hadoop oferece soluções com custo reduzido para o processamento analítico em larga escala;
- -As ferramentas estão em constante mudança;
- -Há muito espaço para **profissionais** em *Data Science* com **bom salário**; todavia, *Data Science* requer **estudo e dedicação**

Conclusões

- -BigData tem muito a explorar em termos de dados **não estruturados**, como texto;
- -O uso combinado de *Deep Learning* e processamento Big Data tem trazido *breakthroughs* na indústria;
- -**Consolidação** do especialista em dados como um requisito de sobrevivência das corporações.

Referências

 Hadoop: The Definitive Guide, Storage and Analysis at Internet Scale, 4th Edition; By Tom White, O'Reilly Media, 2015

http://shop.oreilly.com/product/0636920033448.do

Referências

 Analítica de Dados com Hadoop: Uma Introdução Para Cientistas de Dados, 1a. Edição; By Benjamin Bengfort, Jenny Kim. O'Reilly Media,

2016

