

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION

National University of Computer and Emerging Sciences

PROGRAM (S) TO

BE

Data Science

EVALUATED

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filledout form should not be more than 2-3 pages.)

Course Code	CS4045			
Course Title	Deep Learning for Perception			
Credit Hours	3			
Prerequisites by				
Course(s) and				
Topics				
Assessment Instruments with Weights quizzes, midterms, final, programming assignments, lab etc.)	Assessment with the weight.			
	Assessment Type	Weight		
	Assignments	10		
	Quiz	10		
	Mid-Term	30		
	Project	10		
	Final	40		
Course	Mr. Syed Irtaza Muzaffar	•		

CLO#	CLO description
CLO 1	Understand the theoretical foundations of deep learning, including neural networks and optimization techniques.
CLO 2	Implement deep learning models using popular frameworks (e.g., TensorFlow, PyTorch).
CLO 3	Apply deep learning algorithms to solve real-world problems such as image classification, object detection, and natural language processing.
CLO 4	Evaluate the performance of deep learning models using appropriate metrics and techniques.
CLO 5	Demonstrate teamwork and effective communication through group projects and presentations.

NCEAC

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

PLO No		PLO Name		PLO Description	
PLO 2	Knowledge			for Solving Apply knowledge of computing fundamentals,	
PLO 4	Design/ De	Design and evaluate solutions for complex computing problems, design andevaluate systems, components, or processes that meet specified needs with appropriate public health and safety, cultural, societal, and environmental considerations.			
Textl	There is no standard "textbook" for this course. The following book will be use primary text to guide some discussions, but it will be heavily supplemented lecture notes and reading assignments from other sources. • Neural Networks and Deep Learning by Michael Nielsen • http://neuralnetworksanddeeplearning.com/ • Deep Learning, An MIT Press book, by Ian Goodfellow and Yoshua and Aaron Courville • http://www.deeplearningbook.org/		ome discussions, but it will be heavily supplemented with g assignments from other sources. s and Deep Learning by Michael Nielsen uralnetworksanddeeplearning.com/ An MIT Press book, by Ian Goodfellow and Yoshua Bengio wille		
Book: http://neDeep Learning		ook: http://neep Learning	eeplearningbook.org/ euralnetworksanddeeplearning.com/ g with Python, by Francois Challet, Manning Publications o Machine Learning by Ethem Alpadyn (latest edition). ning: A Probabilistic Perspective by Kevin P. Murphy		

Week #	Topics to be covered	Reading		
1	Introduction to Deep Learning			
	Introduction and motivation, supervised learning and unsupervised learning, linear and logistic regression, gradient descent			
2	Basics of Neural Networks			
	Single and Multi-layer Perceptron, Gradient Descent in MLPs, Activation functions, Back-propagation			
3-4	Optimization algorithms, Hyperparameter			
	tunning, and practical aspects of Deep learning			
	Optimization algorithms (Gradient descent with momentum, mini-batch gradient descent, Adam optimization algorithm, etc.), regularization, Disappearing / Exploding gradients, Batch normalization, Hyperparameter tuning, programming frameworks, etc.			
5	5 Convolution Neural Networks (CNNs)			
	Motivation for CNNs, basics of convolution, Convolution, and pooling			
	First Mid-Term Exam			

National Computing Education Accreditation Council NCEAC

7	CNN Architectures and Transfer Learning	Research
	Classic CNNs: ResNet, Alex Net, VGG, and Google Net etc. Data Augmentation, Transfer Learning	paper
8-9	Deep Learning for Computer Vision: Image	
	Localization, Object Detection, and Image	paper
	Segmentation	
	Object localization, bounding box prediction, anchor	
	boxes, Object detection, and image segmentation (semantic segmentation, instance segmentation) algorithms: YOLO, RCNN, Mask CNN, etc.	
10	Sequence Models	
	Intro to Recurrent Neural Networks (RNNs), Gated	
	Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Bidirectional RNN, Adam, Dropout, Batch Norm, language models, Image Caption Generation, etc.	
	Second Mid-Term Exam	
12-13	Generative Deep Learning	
	Variational Autoencoders,	
	Adversarial Generative Networks	
14	Advanced Topic Deep Learning	Research
	Auto ML and Graph neural networks	paper
15-16	Presentations	
	Final Examination	•

Programming Assignments	A programming assignment where students are expected to develop models of deep learning.				
Class Time Spent on (in credit hours)	Theory	Problem Analysis	Solution Design	Social and Ethical Issues	
	40	25	25	10	
Oral and Written Communications	Every student is required to submit at least2written reports for the given assignments and to make1oral				
	presentation of typically10minutes duration for the project. Include only material graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.				

Instructor Name: Mr. Syed Irtaza Muzaffar

Instructor Signature:

National Computing Education Accreditation Council NCEAC

