

module-finite extensions are integral

 ${\bf Canonical\ name} \quad {\bf Module finite Extensions Are Integral}$

Date of creation 2013-03-22 17:01:23 Last modified on 2013-03-22 17:01:23

Owner rm50 (10146) Last modified by rm50 (10146)

Numerical id 9

Author rm50 (10146)
Entry type Theorem
Classification msc 16D10
Classification msc 13C05
Classification msc 13B02

 $Related\ topic \qquad RingFiniteIntegralExtensionsAreModuleFinite$

Theorem Suppose $B \subset A$ is module-finite. Then A is integral over B. **Proof.** Choose $u \in A$.

For clarity, assume A is spanned by two elements ω_1, ω_2 . The proof given clearly generalizes to the case where a spanning set for A has more than two elements.

Write

$$u\omega_1 = b_{11}\omega_1 + b_{12}\omega_2$$

$$u\omega_2 = b_{21}\omega_1 + b_{22}\omega_2$$

Consider

$$C = \left(\begin{array}{cc} u - b_{11} & -b_{12} \\ -b_{21} & u - b_{22} \end{array}\right)$$

and let C^{adj} be the adjugate of C. Then $C\left(\begin{array}{c} \omega_1 \\ \omega_2 \end{array}\right) = 0$, so $C^{\mathrm{adj}}C\left(\begin{array}{c} \omega_1 \\ \omega_2 \end{array}\right) = 0$.

Now, $C^{\operatorname{adj}}C$ is a diagonal matrix with $\det C$ on the diagonal, so

$$\left(\begin{array}{cc} f(u) & 0\\ 0 & f(u) \end{array}\right) \left(\begin{array}{c} \omega_1\\ \omega_2 \end{array}\right) = \left(\begin{array}{c} 0\\ 0 \end{array}\right)$$

where $f \in B[x]$ is monic.

But neither ω_1 nor ω_2 is zero, so f(u) must be.

Note that, as with the field case, the converse is not true. For example, the algebraic integers are integral but not finite over \mathbb{Z} .