Chris Agia

christopher.agia@mail.utoronto.ca | 416.836.5422 agiachris.github.io | github.com/agiachris | linkedin.com/in/agiachris

EDUCATION

UNIVERSITY OF TORONTO

B.A.Sc. IN ENGINEERING SCIENCE

Year 4 - Expected May 2021 President's Scholarship Program Robotics Major, Business Minor Professional Experience Year GPA: 3.82 / 4.0

SKILLS

PROGRAMMING

3+ years:
Python • C/C++ • MATLAB
1-2 years:
Assembly • Verilog HDL • Java

SOFTWARE TOOLS

Git • TensorFlow • NumPy PyTorch • ROS • PCL Simulink • Linux • Docker

PUBLICATIONS

[1] K. Zhang, H. Hu, A. H. Tan, M. Ruan, C. Agia, and G. Nejat. Sim to real: Deep reinforcement learning for autonomous robot navigation in rough terrain. *Manuscript in preparation*, 2020.

COURSEWORK

UNDERGRADUATE

Machine Learning, AI Statistics, Bayesian Inference Numerical Methods, Optimization Mobile Robotics, Manipulators Algorithms, Data Structures Control Systems, Path Planning State Estimation, Mapping Dynamics, Systems Software Microprocessors, Electronics

EXTRACURRICULARS

NSight Student Mentorship Program Academic Teaching/Counselling Varsity Blues Soccer Team Health and Fitness Guitar/Bass Reading

EXPERIENCE

AUTORONTO | Computer Vision Engineer

UofT Self-Driving Vehicle Group - SAE/GM AutoDrive Challenge August 2019 - Present | Toronto, ON

 Leading the development of a PointPillars 3D LiDAR detection pipeline for aUToronto's Object Detection Team

HUAWEI - NOAH'S ARK LAB | Deep Learning Research Intern

Autonomous Vehicles Research - Perception and Localization May 2019 - Present | Toronto, ON

- Designed an F-CNN model that learns (end-to-end) to predict binary road masks from LiDAR point clouds at real-time speeds
- Developed a monocular SLAM system that integrates dense depth prediction with the traditional direct sparse odometry method for faster convergence
- Implemented a deep learning PointNet model for point-wise segmentation of stable and dynamic objects from 3D point sets
- Proposed a novel graph-based mapping method to improve multi-level surface localization and circumvent the UTM zone switching issue
- Performed extensive literature review on the topics of semantic segmentation, object detection, and learning-based localization

UNIVERSITY OF TORONTO | UNDERGRADUATE RESEARCHER

Autonomous Systems Lab, Prof. Goldie Nejat - NSERC Grant May 2018 – Aug 2018 | Toronto, ON

- Worked with a team of graduate researchers to investigate the application of Deep Reinforcement Learning (A3C) for autonomous rough terrain navigation
- Developed the ROS Navigation Stack for a Jaguar 4x4 search and rescue robot
- Improved the state estimation of the Jaguar 4x4 with an Extended Kalman Filter for sensor fusion of odometry information
- Implemented various SLAM methods to generate accurate 2D and 3D maps
- Coordinated several demos for corporate Vp's and news media

GENERAL ELECTRIC | SOFTWARE ENGINEERING INTERN

May 2017 – Aug 2017 | Markham, ON

PROJECTS

AUTONOMOUS PACKING ROBOT | C, ASSEMBLY, ARDUINO

Microcontroller Subsystem Member - Team placed $3^{rd}/50$

- Designed, built and programmed a robot that systematically sorts and packs up to 50 pills/minute to assist those suffering from dementia
- Created an efficient UI allowing a user to input packing instructions

HOSPITAL TRIAGE SYSTEM | PYTHON - MACHINE LEARNING

Ontario Engineering Competition 2019 - $\mathbf{1}^{st}$ Place Programming

 Developed a machine learning software solution to predict the triage score of emergency patients, allocate available resources to patients, and track key hospital performance metrics to reduce emergency wait times

WAREHOUSE LOGISTICS PLANNING | PYTHON - ALGORITHMS

UTEK 2019 Programming Competition - $\mathbf{1}^{st}$ Place

• Created a logistics planning algorithm that assigns mobile robots to efficiently retrieve warehouse packages - A* Path Planning, Clustering