

Linux EMAC 开发指南

版本号: 1.2

发布日期: 2021.8.16

版本历史

版本号	日期	制/修订人	内容描述
1.0	2020.6.20	AWA1637	Initial Version
1.1	2021.5.10	AWA1637	添加 R528 说明
1.2	2021.8.16		添加 AC200 AC300 说明

目 录

1	概述		1
	1.1	编写目的	1
	1.2	适用范围	1
	1.3	相关人员	1
2	相关	术语介绍	2
3	模块	介绍	3
	3.1	模块功能介绍	3
		3.1.1 以太网简介	3
		3.1.2 网络设备框架	3
	3.2	模块配置介绍	4
		3.2.1 menuconfig 配置说明	
		3.2.2 device tree 配置说明	7
		3.2.3 AW 定制 PHY	10
		3.2.3.1 AC200	10
		3.2.3.2 AC300	11
		3.2.3.2 AC300	12
		3.2.4.1 RGMII 接口配置	12
		3.2.4.2 RMII 接口配置	12
	3.3	GMAC 源码结构	13
4		网常用调试手段 以太网常用调试命令	14
	4.2	以太网通用排查手段	
		4.2.1 常用软件排查手段	
		4.2.2 常用硬件排查手段	
	4.3	以太网常见问题排查流程	
		4.3.1 ifconfig 命令无 eth0 节点	
		4.3.2 ifconfig eth0 up 失败	
		4.3.3 网络不通或网络丢包严	
		4.3.4 吞吐率异常	16

插图

3-1	以太网在 TCP/IP 协议族中的位置	3
3-2	网络设备框架	4
3-3	网络协议栈配置	5
3-4	GMAC 驱动配置	6
3-5	ACX00 驱动配置	6
3-6	EPHY 驱动配置	7
3-7	AC200 框图	11
3-8	AC300 框图	11

概述

1.1 编写目的

介绍以太网模块配置及调试方法,为以太网模块开发提供参考。

1.2 适用范围

表 1-1: 适用产品列表

内核版本	驱动文件
Linux-4.9 及以上	drivers/net/ethernet/allwinner/*
目 关人员 _{块开发/维护人员。}	ALLWIN

1.3 相关人员

以太网模块开发/维护人员。

2 相关术语介绍

表 2-1: 以太网相关术语介绍

术语	解释说明
SUNXI	Allwinner 一系列 SOC 硬件平台
MAC	Media Access Control,媒体访问控制协议
GMAC	千兆以太网控制器
PHY	物理收发器
MII	Media Independent Interface,媒体独立接口,是 MAC 与 PHY 之间的接口
RMII	简化媒体独立接口
RGMII	简化千兆媒体独立接口

3 模块介绍

3.1 模块功能介绍

3.1.1 以太网简介

以太网是一种局域网通信技术,遵循 IEEE802.3 协议规范,包括 10M、100M、1000M 和 10G 等多种速率的以太网。以太网在 TCP/IP 协议族中的位置如下图所示:

图 3-1: 以太网在 TCP/IP 协议族中的位置

以太网与 TCP/IP 协议族的物理层(L1)和数据链路层(L2)相关,其中数据链路层包括逻辑链路控制(LLC)和媒体访问控制(MAC)子层。

3.1.2 网络设备框架

Linux 内核中网络设备框架如下图所示:

图 3-2: 网络设备框架

从上至下分为 4 层:

- (1) 网络协议接口层: 向网络协议层提供统一的数据包收发接口,通过 dev_queue_xmit() 发送数据,并通过 netif rx() 接收数据;
- (2) 网络设备接口层: 向协议接口层提供统一的用于描述网络设备属性和操作的结构体 net device,该结构体是设备驱动层中各函数的容器;
- (3) 网络设备驱动层:实现 net_device 中定义的操作函数指针(通常不是全部),驱动硬件完成相应动作;
 - (4) 网络设备媒介层:完成数据包发送和接收的物理实体,包括网络适配器和具体的传输媒介。

3.2 模块配置介绍

3.2.1 menuconfig 配置说明

对于 longan, Linux-4.9 的环境,进入内核根目录,执行 make ARCH=arm menuconfig (64 位平台执行 make ARCH=arm64 menuconfig) 进入配置主界面,按以下步骤操作。对于 longan, Linux-5.4 的环境,可以直接在 longan 的根目录执行./build.sh menuconfig; 对

于 Tina 的环境,可以在根目录执行 make kernel menuconfig 进入 menuconfig 配置界面。

(1) 配置网络协议栈,如下图所示:

图 3-3: 网络协议栈配置

(2) 勾选 GMAC 驱动,如下图所示

版权所有 © 珠海全志科技股份有限公司。保留一切权利


```
> Device Drivers > Network device support > Ethernet driver s
                                     Ethernet driver support
    Arrow keys navigate the menu. <Enter> selects submenus -
   Highlighted letters are hotkeys. Pressing <Y> includes,
    features. Press <Esc> to exit, <?> for Help, </> fo
    [ ] excluded <M> module < > module capable
              --- Ethernet driver support
                    Allwinner devices
                      Allwinner Alo FMAC support
                      Allwinner GMAC support
              [*]
                       Use extern phy
                    Altera Triple-Speed Ethernet MAC support
              [*]
                    Amazon Devices
              [*]
                    AMD devices
                      AMD 10GbE Ethernet driver
              < >
                    ARC devices
              [*]
```

图 3-4: GMAC 驱动配置

□ 说明

如果使用 SOC 内置 PHY,则需完成步骤 3 和步骤 4 配置,目前只有 TV 系列、部分 H 系列平台有使用内置 EPHY,如 TV303、H3、H6、H313、H616,其它平台可直接跳过。

(3) 勾选 SUNXI-EPHY 驱动,如下图所示: 首先,SOC 内部 ACX00 封装了 EPHY,因此需要先支持 ACX00 设备:

图 3-5: ACX00 驱动配置

然后,勾选 SUNXI-EPHY 驱动:

.config - Linux/arm64 4.9.191 Kernel Configuration > Device Drivers > Network device support > PHY Device su PHY Device support and infrastru Arrow keys navigate the menu. <Enter> selects submen ----). Highlighted letters are hotkeys. Pressing <Y <M> modularizes features. Press <Esc><Esc> to exit, Legend: [*] built-in [] excluded <M> modu Search. Hisilicon FEMAC MDIO bus controller < > Octeon and some ThunderX SOCs MDIO buses < > Allwinner sun4i MDIO interface support *** MTT PHY device drivers *** Drivers for Allwinnertech EPHY AMD PHYS Aquantia PHYs < > AT803X PHYs < >

图 3-6: EPHY 驱动配置

3.2.2 device tree 配置说明

MER 在 device tree 中对 GMAC 控制器进行配置,一个 GMAC 控制器对应一个 GMAC 设备节点。 EMAC 模块的设备树配置位于内核目录,64 位 arm 系统在 arch/arm64/boot/dts/sunxi/xxxxx.dtsi, 32 位 arm 系统在 arch/arm/boot/dts/xxxxx.dtsi, riscv 系统在 arch/riscv/boot/dts/xxxxx.dtsio

linux-4.9 内核下的配置如下所示:

```
gmac0: eth@05020000 {
            compatible = "allwinner, sunxi-gmac";
 2
 3
            reg = <0x0 0x05020000 0x0 0x10000>,
 4
                   <0x0 0x03000030 0x0 0x4>;
 5
            interrupts = <GIC SPI 14 IRQ TYPE LEVEL HIGH>;
 6
            interrupt-names = "gmacirq";
 7
            clocks = <&clk_gmac0>, <&clk_ephy_25m>;
 8
            clock-names = "gmac", "ephy";
9
            device_type = "gmac0";
10
            pinctrl-0 = <&gmac_pins_a>;
11
            pinctrl-1 = <&gmac pins b>;
            pinctrl-names = "default", "sleep";
12
13
            phy-mode;
14
            tx-delay = <7>;
15
            rx-delay = <31>;
16
            phy-rst;
            gmac-power0;
17
18
            gmac-power1;
19
            gmac-power2;
            status = "disabled";
20
21
        };
```


- (1) "compatible" 表征具体的设备, 用于驱动和设备的绑定;
- (2) "reg" 设备使用的地址;
- (3) "interrupts" 设备使用的中断;
- (4) "clocks" 设备使用的时钟;
- (5) "pinctrl-0" 设备 active 状态下的 GPIO 配置;
- (6) "pinctrl-1" 设备 suspend 状态下的 GPIO 配置;
- (7) "phy-mode" GMAC 与 PHY 之间的物理接口,如 MII、RMII、RGMII 等;
- (8) "tx-delay" tx 时钟延迟, tx-delay 取值 0-7, 一档约 536ps(皮秒);
- (9) "rx-delay "rx 时钟延迟, rx-delay 取值 0-31, 一档约 186ps(皮秒);
- (10) "phy-rst" PHY 复位脚;
- (11) "gmac-powerX" gmac 电源脚,根据实际情况配置;
- (12) "status" 是否使能该设备节点;

在 linux-5.4 中,TWI 的配置与 linux-4.9 内核配置有些不同,区别主要体现在 clock 和 dma 的配置上:

```
gmac0: eth@4500000 {
        compatible = "allwinner,sunxi-gmac";
        reg = <0\times0 0x04500000 0x0 0x10000>,
              <0x0 0x03000030 0x0 0x4>;
        interrupts-extended = <&plic0 62 IRQ_TYPE_LEVEL_HIGH>;
        interrupt-names = "gmacirq";
        clocks = <&ccu CLK BUS EMACO>, <&ccu CLK EMACO 25M>;
        clock-names = "gmac", "ephy";
        resets = <&ccu RST_BUS_EMAC0>;
        device type = "gmac0";
        pinctrl-0 = <&gmac pins a>;
        pinctrl-1 = <&gmac pins b>;
        pinctrl-names = "default", "sleep";
        phy-mode = "rgmii";
        use\_ephy25m = <1>;
        tx-delay = <7>;
        rx-delay = <31>;
        phy-rst = <&pio PA 14 GPIO_ACTIVE_LOW>;
        gmac-power0;
        gmac-power1;
        gmac-power2
        status = "disabled";
```

其中 gmac pins a, gmac pins a 为 EMAC 的引脚配置的配置节点。

lixnu4.9 中该配置的路径为 arch/arm64(32 位平台为 arm)/boot/dts/sunxi/xxxx-pinctrl.dtsi,具体配置如下所示:


```
gmac pins a: gmac@0 {
    allwinner,pins = "PIO", "PI1", "PI2", "PI3",
             "PI4", "PI5", "PI6", "PI7",
             "PI8", "PI9", "PI10", "PI11",
             "PI12", "PI13", "PI14", "PI15",
             "PI16";
    allwinner, function = "gmac0";
    allwinner, muxsel = <2>;
    allwinner,drive = <3>;
    allwinner, pull = <0>;
};
gmac_pins_b: gmac@1 {
    allwinner,pins = "PIO", "PI1", "PI2", "PI3",
             "PI4", "PI5", "PI6", "PI7",
             "PI8", "PI9", "PI10", "PI11"
             "PI12", "PI13", "PI14", "PI15",
             "PI16";
    allwinner,function = "io_disabled";
    allwinner,muxsel = <7>;
    allwinner,drive = <3>;
    allwinner, pull = <0>;
                                         MER
};
```

- (1) "pins" 表示 xMII 使用的 GPIO 管脚;
- (2) "function" pinctrl 用到的 function 名称;
- (3)"muxsel" GPIO 管脚复用,需查看 Spec 来设定;
- (4) "drive" GPIO 管脚驱动能力;
- (5) "pull" 输出电平状态;

注:不同平台的 pin 配置不一样。

linux-5.4 中该配置的路径为 arch/arm64(32 位平台为 arm)/boot/dts/sunxi/xxxx.dtsi,具 体如下所示:

```
gmac pins a: gmac@0 {
        pins = "PAO", "PA1", "PA2", "PA3",
                          "PA4", "PA5", "PA6", "PA7",
                          "PA8", "PA10", "PA11", "PA12",
                          "PA13", "PA17", "PA18", "PA28",
                         "PA29", "PA30", "PA31";
        function = "gmac0";
        drive-strength = <10>;
};
gmac_pins_b: gmac@1 {
        pins = "PA0", "PA1", "PA2", "PA3",
                         "PA4", "PA5", "PA6", "PA7",
                         "PA8", "PA10", "PA11", "PA12",
                         "PA13", "PA17", "PA18", "PA28",
                         "PA29", "PA30", "PA31";
        function = "gpio_in";
        drive-strength = <10>;
```


};

- (1) "pins" 表示 xMII 使用的 GPIO 管脚;
- (2) "function" pinctrl 用到的 function 名称;
- (3) "drive-strength" GPIO 管脚的驱动能力,具体查看 GPIO 文档;

另外 clk_gmac0, clk_ephy_25m 为时钟的配置。

在 linux-4.9 中,路径为 arch/arm64(32 位平台为 arm)/boot/dts/sunxi/XXXX-clk.dtsi, 具体配置如下所示:

```
clk_gmac0_25m: gmac0_25m {
         #clock-cells = <0>;
         compatible = "allwinner,periph-clock";
         clock-output-names = "gmac0_25m";
};
clk_gmac0: gmac0 {
         #clock-cells = <0>;
         compatible = "allwinner,periph-clock";
         clock-output-names = "gmac0";
};
```

3.2.3 AW 定制 PHY

AW 部分 SOC 集成了 AC200 和 AC300, 而 AC200 和 AC300 内部又集成了 EPHY

3.2.3.1 AC200

ARM 通过 TWI 与 AC200 进行通讯, 把 EPHY 初始化,然后 MAC 通过 MDIO 总线是访问 EPHY, PWM 模块提供一个内部 25M 时钟给 EPHY。

AC200 整体框图如下:

图 3-7: AC200 框图

3.2.3.2 AC300

ARM 通过 MDIO 总线与 AC300 进行通讯, 把 EPHY 初始化, 然后 MAC 通过 MDIO 总线是访问 EPHY, PWM 模块提供一个内部 25M 时钟给 EPHY。

AC300 整体框图如下:

图 3-8: AC300 框图

文档密级: 秘密

3.2.4 board.dts 配置说明

3.2.4.1 RGMII 接口配置

对于 RGMII 接口,外挂 RTL8211F PHY 的 EMAC,使用 SOC 内部 EPHY_25M 时钟,支持 10Mbps/100Mbps/1000Mbps 速率。

board.dts 配置范例如下:

路径: longan/device/config/chips/{IC}/configs/{BOARD}/board.dts

```
gmac0: eth@05020000{
    phy-mode = "rgmii";
    use_ephy25m = <1>;
    tx-delay = <7>;
    rx-delay = <0>;
    status = "okay";
};
```

□ 说明

use_ephy25m=1,代表 PHY 使用 SOC 内部 EPHY_25M 时钟; use_ephy25m=0 或者不配置该参数,代表 PHY 不使用 SOC 内部 EPHY_25M 时钟,需外挂 25M 晶振为 PHY 提供时钟;

RGMII 接口对时钟和数据波形的相位要求比较严格,因此通常需要调整 tx-delay 和 rx-delay 参数保证数据传输的正确性。

3.2.4.2 RMII 接口配置

对于 RMII 接口,外挂 RTL8201F PHY 的 EMAC,使用外挂 25M 晶振,支持 10Mbps/100Mbps 速率。

board.dts 配置范例如下:

路径: longan/device/config/chips/{IC}/configs/{BOARD}/board.dts

```
gmac1: eth@05030000 {
    phy-mode = "rmii";
    status = "okay";
};
```

对于使用 SOC 内置 EPHY 的 EMAC, 25M 时钟由 PWM 模块提供, 支持 10Mbps/100Mbps 速率。

路径: longan/device/config/chips/{IC}/configs/{BOARD}/board.dts

```
gmac1: eth@05030000 {
    phy-mode = "rmii";
    status = "okay";
```

文档密级: 秘密


```
};
 5
 6
            ac200: ac200 {
 7
                 tv used = <1>;
 8
                 tv_twi_used = <1>;
 9
                 tv_twi_addr = <16>;
10
                 tv_pwm_ch = <5>;
11
                 status = "okay";
12
            };
```

🛄 说明

有些 SOC 内部 AC200 封装了 EPHY,通过 TWI 与 AC200 进行通讯, 把 EPHY 初始化,然后 MAC 通过 MDIO 总线是访问 EPHY。有些 SOC 内部 AC300 封装了 EPHY,通过 MAC 控制器 MIDO 总线与 AC300 进行通信,把 EPHY 初始化,然后 MAC 同样利用 MDIO 总线去访问 EPHY

当然,关于设备树的配置,可以放在内核的设备树配置,或者是 board.dts。只不过 board.dts 的配置会覆盖内核的设备树配置。

3.3 GMAC 源码结构

GMAC 驱动的源代码位于内核 drivers/net/ethernet/allwinner 目录下:

```
drivers/net/ethernet/allwinner/

sunxi-gmac.h // Sunxi平台GMAC驱动头文件,里面定义了一些宏、数据结构及内部接口
sunxi-gmac.c // Sunxi平台GMAC驱动核心代码
sunxi_gmac_ops.c // Sunxi平台GMAC驱动各个内部接口具体实现
```


4 以太网常用调试手段

4.1 以太网常用调试命令

(1) 查看网络设备信息

查看网口状态: ifconfig eth0 查看收发包统计: cat /proc/net/dev

查看当前速率: cat /sys/class/net/eth0/speed

(2) 打开/关闭网络设备

打开网络设备: ifconfig eth0 up 关闭网络设备: ifconfig eth0 down

(3) 配置网络设备

配置静态IP地址: ifconfig eth0 192.168.1.100

配置MAC地址: ifconfig eth0 hw ether 00:11:22:aa:bb:cc

动态获取IP地址: udhcpc -i eth0

PHY强制模式: ethtool -s eth0 speed 100 duplex full autoneg on (设置100Mbps速率、全双工、开启自协

商)

(4) 常用测试命令

测试设备连通性: ping 192.168.1.100

TCP吞吐测试:

Server端: iperf -s -i 1

Client端: iperf -c 192.168.1.100 -i 1 -t 60 -P 4

UDP吞吐测试:

Server端: iperf -s -u -i 1

Client端: iperf -c 192.168.1.100 -u -b 100M -i 1 -t 60 -P 4

4.2 以太网通用排查手段

4.2.1 常用软件排查手段

- (1) 检查 phy mode 配置是否正确,如 rgmii、rmii 等;
- (2) 检查 clk 配置是否正确,如 gmac clk、ephy 25m clk;

- (3) 检查 GPIO 配置是否正确,如 IO 复用功能、驱动能力等;
- (4) 检查 phy reset 配置是否正确;
- (5) 通过 cat /proc/net/dev 命令查看 eth0 收发包统计情况;

4.2.2 常用硬件排查手段

- (1) 检查 phy 供电 (vcc-ephy) 是否正常;
- (2) 检查 phy 时钟波形是否正常;

4.3 以太网常见问题排查流程

4.3.1 ifconfig 命令无 eth0 节点

问题现象:

执行 ifconfig eth0 无相关 log 信息

问题分析:

以太网模块配置未打开或存在 GPIO 冲突

排查步骤:

- (1) 抓取内核启动 log, 检查 gmac 驱动 probe 是否成功;
- (2) 如果无 gmac 相关打印,请参考 3.2 节确认以太网基本配置是否打开;
- (3) 如果 gmac 驱动 probe 失败,请参考 4.2.1 节并结合 log 定位具体原因,常见原因是GPIO 冲突导致;

4.3.2 ifconfig eth0 up 失败

问题现象:

执行 ifconfig eth0 up, 出现 "Initialize hardware error" 或 "No phy found" 异常 log

问题分析:

常见原因是供给 phy 使用的 25M 时钟异常

排查步骤:

- (1) 检查软件 phy mode 配置与板级情况一致;
- (2) 检查 phy 供电是否正常;
- (3) 若步骤 1 和步骤 2 正常,需重点检查 phy 使用的 25M 时钟(ephy25M 或外部晶振)是 否正常;

4.3.3 网络不通或网络丢包严

问题现象:

ping 不通对端设备、无法动态获取 ip 地址或有丢包现象

问题分析:

一般原因是 tx/rx 通路不通

排查步骤:

- (1) 检查 ifconfig eth0 up 是否正常;
- (2) 检查 eth0 能否动态获取 ip 地址;
- MER (3) 若步骤 1 正常, 但步骤 2 异常, 需首先确认 tx/rx 哪条通路不通;
- (4) 若无法动态获取 ip 地址,可配置静态 IP, 和对端设备互相 ping;
- (5) 检查对端设备能否收到数据包,若能收到,则说明 tx 通路正常,否则 tx 通路异常;
- (6) 检查本地设备能否收到数据包,若能收到,则说明 rx 通路正常,否则 rx 通路异常;
- (7) 若 tx 通路异常,可调整 tx-delay 参数或对照原理图检查 tx 通路是否异常,如漏焊关键器 件;
- (8) 若 rx 通路异常,可调整 rx-delay 参数或对照原理图检查 rx 通路是否异常,如漏焊关键器 件;
 - (9) 若经过上述排查步骤问题仍未解决,需检查 phy 供电与 GPIO 耐压是否匹配;

4.3.4 吞吐率异常

问题现象:

千兆网络吞吐率偏低,如小于 300Mbps

排查步骤:

- (1) 检查内核有无开启 CONFIG_SLUB_DEBUG_ON 宏,若有,则关闭此宏后再进行测试;
- (2) 如问题仍没有解决,请检查网络是否有丢包、错包现象,若有,参考 4.3.3 进行排查;

著作权声明

版权所有 © 2021 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。