Bài toán 1. Xét dãy số $\{a_n\}_{n=1}^{\infty}$ được định nghĩa như sau:

$$a_1 = a_2 = 1$$
, $a_{n+2} = 14a_{n+1} - a_n \ (n \ge 1)$.

Chứng minh rằng nếu p là một số nguyên tố và tồn tại một số nguyên dương n sao cho $\frac{a_n}{p} \in \mathbb{Z}^+$, thì $\frac{p-1}{12} \in \mathbb{Z}^+$.

Đô khó: 3

(Korea Summer Camp 2024/3)

Lời giải. Xét một ước nguyên tố p của a_n , ta sẽ chứng minh $\left(\frac{-1}{p}\right) = \left(\frac{3}{p}\right) = 1$.

Nhận xét 1: a_n là tổng bình phương của 2 số nguyên dương.

Tổng quát hơn tồn tại $x \in \mathbb{Z}^+$ để $a_n = x^2 + (x+1)^2$. Hay theo công thức nghiệm phương trình bậc 2 thì tương đương với việc $2a_n - 1$ là số chính phương.

Ta xây dựng dãy $\{x_n\}_{n=1}^{\infty}$ như sau:

$$x_1 = x_2 = 1$$
, $x_3 = 5$, $x_{n+2} = 4x_{n+1} - x_n \ (n \ge 2)$.

Ta sẽ chứng minh quy nạp rằng $2a_n - 1 = x_n^2$. Dễ thấy đúng với n = 1, 2. Giờ giả sử đúng với n. Ta cần chứng minh

$$28a_n - 2a_{n-1} - 1 = x_{n+1}^2$$

. Sử dụng giả thiết quy nạp thì điều này tương đương

$$x_n^2 + x_{n-1}^2 - 6 = 4x_n x_{n-1} = x_{n-1}^2 + x_{n+1} x_{n-1}$$

Nhưng chú ý rằng $x_n^2 - x_{n+1}x_{n-1} = x_2^2 - x_1x_3 = 6$ nên đẳng thức trên đúng. Vậy theo nguyên lý quy nạp ta thu được nhận xét 1.

Nhận xét 2: Với
$$p$$
 là ước nguyên tố của a_n thì $\left(\frac{-1}{p}\right) = \left(\frac{3}{p}\right) = 1$.

Dễ chứng minh được a_n lẻ và không chia hết cho 3 với mọi $n \in \mathbb{Z}^+$.

Từ nhận xét trên, ta thấy $p \mid x_n^2 + (x_n+1)^2$ nên là $\left(\frac{-1}{p}\right) = 1$

Mà ta lại có
$$a_n a_{n+2} - a_{n+1} = a_1 a_3 - a_2^2 = 12$$
 nên $\left(\frac{-12}{p}\right) = 1$. Lại có $\left(\frac{-1}{p}\right) = 1$ nên $\left(\frac{3}{p}\right) = 1$.

Từ nhận xét 2, $p \equiv 1 \pmod{4}$ và theo luận thuận nghịch Gauss thì $p \equiv 1 \pmod{3}$. Vậy ta có điều phải chứng minh.