Application No. 09/942,030

REMARKS

The foregoing amendment correct typographical errors in the specification.

No new matter is added with the amendments to the application. Corrections to the drawing figures have also been made. A Request for Permission to Change Drawings has been filed concurrently herewith.

If there are any questions regarding this amendment or the application in general, a telephone call to the undersigned would be appreciated since this should expedite the prosecution of the application for all concerned.

If necessary to effect a timely response, this paper should be considered as a petition for an Extension of Time sufficient to effect a timely response, and please charge any deficiency in fees or credit any overpayments to Deposit Account No. 05-1323 (Docket #381AS/50350).

Respectfully submitted,

January 3, 2002

James F. McKeown Registration No. 25,625

Karen Canaan Registration No. 42,382

CROWELL & MORING, LLP P.O. Box 14300 Washington, DC 20044-4300 Telephone No.: (202) 624-2500 Facsimile No.: (202) 628-8844

APPENDIX

CHANGES TO THE SPECIFICATION

Changes to the second full paragraph on page 4 of the specification at lines 13-24:

The circuit of Fig. 28 is one type of a commonly used constant voltage circuit in which a voltage applied to a connection terminal VBB for the battery causes a current to flow through the current limiting resistor R to the Zener diode [ZE] ZD. When an overvoltage is applied, the voltage of the power supply terminal Vcc to various circuits is clamped by a Zener voltage of the Zener diode ZD to put an overvoltage protection into acton.

Changes to the second line of the table on page 6:

	Analog circuit	Digital circuit
[No.] The number of transistors	Few (about 20 pcs in multiplier)	Many (2000 pcs in 8-bit multiplier)
Chip area	Small (few devices)	Large (many devices)
Power consumption	Low power consumption because of fewer devices	Large (many gates are switched)
Clock frequency	Low (determined by settling of amplifier)	Higher (1/2 of cut- off frequency of device)
Signal frequency	High (about 1/2 of cut-off frequency of device)	Low (1/10 of clock frequency)
Precision	Low (device deviation, noise)	High (depending on bit number)
Stability	Low (oscillation, characteristic variation)	High
Noise resistance	Low (S/N)	Strong (large noise margin)

Application No. 09/942,030 Appendix

Changes to the paragraph bridging pages 26-27 of the specification:

The gas flow detection circuit 10 outputs a voltage signal representing a gas flow passing through a gas passage. The gas flow detection circuit 10 may be a gas flow detection circuit DECT1 shown in Fig. [21] 25 which detects a current flowing through a resistor arranged in the gas passage or a voltage across the resistor and outputs a voltage signal representing the gas flow passing through the gas passage.

Changes to line 10 of page 44 of the specification:

 $Dout = ([a \cdot Dtepm] \ \underline{a \cdot Dtemp} + b) \cdot Din + (c \cdot Dtemp + d)(6)$