Plastic cutting wire, used in e.g. rotating brush cutters

Publication number: DE19817883
Publication date: 1999-11-25

Inventor:

BLOCH KLAUS (DE); WEBER NORBERT (DE)

Applicant:

MONOFIL TECHNIK GMBH (DE)

Classification:

- international:

A01D34/416; D01F1/10; D01F6/62; A01D34/412;

D01F1/10; D01F6/62; (IPC1-7): C05F17/00; D01F6/62;

A01D34/84; C08J11/00; D01D5/098; D01F1/10

- european:

A01D34/416; D01F1/10; D01F6/62

Application number: DE19981017883 19980422

Priority number(s): DE19981017883 19980422; DE19981015806 19980408

Report a data error here

Abstract of **DE19817883**

Monofilament cutting thread which is degraded by microorganisms under natural conditions, is based on biodegradable polyester and produced by extrusion followed by stretching.

Data supplied from the esp@cenet database - Worldwide

BUNDESREPUBLIK (19) DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT

® Patentschrift ® DE 198 17 883 C 1

② Aktenzeichen:

② Anmeldetag:

198 17 883.2-43 22. 4.98

Offenlegungstag:

Veröffentlichungstag der Patenterteilung: 25. 11. 99

(5) Int. Cl.⁶: D 01 F 6/62

> D 01 F 1/10 C 08 J 11/00 A 01 D 34/84 D 01 D 5/098 // C05F 17/00

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

66) Innere Priorität:

198 15 806.8

08.04.98

(3) Patentinhaber:

Monofil-Technik Gesellschaft für Synthese Monofile mbH, 53773 Hennef, DE

(74) Vertreter:

Müller-Gerbes, M., Dipl.-Ing., Pat.-Anw., 53225 Bonn

② Erfinder:

Bloch, Klaus, 53757 Sankt Augustin, DE; Weber, Norbert, 53773 Hennef, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

196 34 659 C1 DE 196 18 891 C1 DE 196 38 488 A1 98 12 242 = WO 195 32 771 A1 DE 8 57 410 A1 ΕP ΕP 7 64 398 A1 6 96 414 A1 EP

Mähfaden

Die Erfindung betrifft einen monofilen Mähfaden, der **(17)** in natürlicher Umgebung unter Einwirkung von Mikroorganismen abbaubar ist, hergestellt aus einem biologisch abbaubaren Polyester durch Extrusion mit nachfolgender Verstreckung.

Beschreibung

Die Erfindung betrifft einen Mähfaden für Freischneidegeräte mit einem Antriehsmotor, wohei der Mähfaden an seinem einen Ende eingespannt und mittels des Antriehsmotors in sehr schnelle Rotationsbewegung mit bis zu 15.000 Umdrehungen je Minute versetzt wird und der Mähfaden der vorherrschenden Fliehkraft folgend sich geradlinig um die Drehachse rotierend erstreckt und Pflanzenhalme oder dergleichen schneidengleich durchtrennt. Die Mähfäden werden üblicherweise aus einem hochfesten Kunststoff, wie Polyamid, Nylon, Polyurethan und Abwandlungen dieser Kunststoffe, hergestellt und sind hochbelastet, so daß ihre Verschleißfestigkeit und Lebensdauer begrenzt ist.

Der Mähfaden ist auf einer Vorratsspule, die in dem Freischneidegerät angeordnet ist, aufgewickelt und es steht jeweils aus der Spule ein Endabschnitt des Mähfadens vor, der aktuell als Mähfaden dient und nach Verschleiß von alleine abbricht bzw. durch Betätigen einer Weiterschaltrichtung abgetrennt und ein neuer Endabschnitt des Mähfadens für 20 den Betrieb zur Verfügung steht.

Auf diese Weise wird im Laufe der Zeit der gesamte Mähfaden, der auf der Vorratsspule ist, abschnittsweise benutzt und danach als Abfall weggeworfen, wobei er üblicherweise dort auf der Erde liegenbleibt, wo mit ihm gearbeitet worden 25 war.

Der Erfindung liegt die Aufgabe zugrunde, die Abfallbeseitigung der benutzten Mähfadenabschnitte problemlos zu gestalten.

Diese Aufgabe wird gemäß dem Vorschlag der Erfindung 30 mit einem monofilen Mähfaden, der in natürlicher Umgebung unter Einwirkung von Mikroorganismen abbaubar ist, hergestellt auf Basis biologisch abbaubarer Polyester durch Extrusion mit nachfolgender Verstreckung erreicht.

Unter den Begriffen biologisch abbaubare Polyester werden im Sinne der Erfindung hieraus hergestellte Mähfaden verstanden, die entsprechend der Prüfung nach DIN 54900 aus dem Entwurf von 1996 die Bioabbaubarkeit testiert bekommen

Als bioabbaubare Polyester für monofile Mähfaden kommen insbesondere hochmolekulare statistische Copolyester in Frage, die unter Verwendung mindestens einer Dihydroxyverbindung, wie aliphatischer Polyole, oder mindestens eines Aminoalkohohls oder deren Mischungen sowie mindestens einer aromatischen Polycarbonsäure oder deren esterbildendem Derivat sowie gleichzeitig einer aliphatischen oder cycloaliphatischen Polycarbonsäure oder deren esterbildendem Derivat als Monomerkomponenten hergestellt sind und die unter Verwendung eines Diisocyanates oder einer Mischung, enthaltend aromatische ein- und mehrkernige Isocyanate, ein- oder zweikernige Diisocyanate und/oder ein- und mehrkernige Isocyanurate als zusätzlicher Monomerkomponente hergestellt worden sind.

Für erfindungsgemäße Mähfäden werden insbesondere biologisch abbaubare Polyester mit Molmassen über 55 100.000 g/mol vorzugsweise über 130.000 g/mol, eingesetzt, deren Schmelzpunkt mindestens 100°C, vorzugsweise mindestens 110°C beträgt.

Erfindungsgemäße Mähfäden können beispielsweise unter Einsatz von biologisch abbaubaren Polyestern, wie sie 60 beispielsweise in der DE 195 32 771 A1 oder der WO 98/12242 beschrieben sind, hergestellt werden.

Der erfindungsgemäße Mähfaden aus einem biologisch abbaubaren Polyester wird durch Extrusion und Verstrekkung hergestellt, wobei das hergestellte Monofilament ein dem Polyethylen PE-LD vergleichbares Eigenschaftsprofil aufweist. Die erfindungsgemäßen Mähfäden sind reißfest und elastisch, wasserfest und unempfindlich gegen Feuch-

tigkeitsschwankungen. Sie zeichnen sich durch sehr hohe Zähigkeit und Reißfestigkeit aus. Es werden Zugfestigkeiten nach ISO 527 von 25 N/mm² und mehr erreicht. Ebenfalls ist die Reißdehnung sehr hoch und beträgt nach ISO 527 mindestens 700% und mehr.

Erfindungsgemäße Mähfaden können bevorzugt aus biologisch abbaubaren Polyestern auf der Basis von 95 bis 99,99 mol-% wenigstens eines Polyesters erstellt werden, der als monomere Komponenten enthält eine Mischung von 20 bis 95 mol-% von mindestens einer aliphatischen oder cycloaliphatischen Dicarbonsäure oder deren esterbildendem Derivat und 5 bis 80 mol-% von mindestens einer aromatischen Dicarbonsäure oder deren esterbildendem Derivat, des weiteren mindestens einer Dihydroxyverbindung oder mindestens ein Aminoalkohol oder deren Mischungen, gegebenenfalls auch noch zusätzlich geringe Mengen 1,6-Hexamethylendiisocyanat und des weiteren 0,01 bis 5 mol-% einer Mischung, enthaltend aromatische ein- oder mehrkernige Isocyanate, ein- oder zweikernige Diisocyanate und/oder ein- oder mehrkernige Isocyanurate.

Als aliphatische Dicarbonsäuren kommen bevorzugt Adipinsäure und/oder Sebacinsäure sowie deren esterbildende Derivate zum Einsatz. Als aromatische Dicarbonsäuren kommt bevorzugt Terephthalatsäure zum Einsatz.

Als Dihydroxyverbindung kommen bevorzugt Diole in Frage, wie das 1,4-Butandiol oder Mischungen von Diolen.

Als Verbindung mit funktionellen Gruppen, die mit den Säure-, Amino- oder Hydroxyendgruppen der Polyesterkomponente reagieren können, werden bevorzugt Mischungen unterschiedlicher aromatischer Isocyanate und/oder Isocyanurate eingesetzt. Hiermit werden verzweigte Polyester erhalten, die biologisch abbaubar sind und bevorzugt Molekulargewichte (Gewichtsmittelwert) von etwa 100.000 g/mol bis 180.000 g/mol aufweisen.

Den biologisch abbaubaren Polyestern können auch gegebenenfalls bereits bei deren Herstellung neben üblichen Katalysatoren Additive zugegeben sein, insbesondere Stabilisatoren, wie Phosphorverbindungen, beispielhaft Organophosphite, phosphorige Säure, phosphonige Säure, Trialkylphosphite, Triphenylphosphit, Trialkylphosphat, Triphenylphosphat, Tocopherol, sowie Füllstoffe, UV-Stabilsatoren, Nukleierungsmittel, Gleit- und Formtrennmittel, wobei hiervon die biologisch verträglichen Mittel bevorzugt sind. Auch für die Einfärbung der Mähfaden werden biologisch verträgliche oder abbaubare Farbmittel verwendet.

Darüber hinaus ist es auch möglich, eine Mischung aus verschiedenen biologisch abbaubaren Polyestern oder mit anderen biologisch abbaubaren extrudierbaren Polymer-komponenten für die Mähfaden einzusetzen.

Es wurde überraschenderweise gefunden, daß die aus solchen biologisch abbaubaren Polyestern hergestellten Mähfäden, bei denen der Polyester durch Zusatz von funktionellen Isocyanaten und/oder Isocyanuraten eine Erhöhung der Molmasse erfährt, ausreichende mechanische Eigenschaften insbesondere Reißfestigkeit und Wasserfestigkeit und Zähigkeit erhält, um als Mähfaden eingesetzt zu werden. Zugleich können die beim Einsatz der Mähfaden anfallenden Abfälle problemlos an Ort und Stelle fallengelassen werden, da sie innerhalb kurzer Zeit biologisch durch die Mikroorganismen, die überall vorhanden sind, zersetzt und abgebaut werden und kompostiert werden.

Je nach Einstellung können nach den kontrollierten Kompostierungstest gemäß DIN V 54900 Abbaugrade von 100% bereits in 100 Tagen und weniger erreicht werden. Der Abbaugrad ist vergleichbar dem von Zellulose, wobei der anfängliche Abbaugrad langsamer ansteigt, sich aber dann von Zellulose nähert.

Überraschend ist, daß für eine ausreichende Festigkeit

des Mähfadens eine entsprechende große Molmasse eines biologisch abbaubaren Polyesters erforderlich ist, und dennoch der Mähfaden sich durch Mikroorganismen innerhalb einer angemessenen Zeit abbauen läßt.

Die erfindungsgemäßen Mähfaden werden aus biologisch abbaubaren Polyestern hergestellt, bei denen der Kondensation der aliphatischen/aromatischen Copolyester 0,1 bis 5 Gew.-%, bevorzugt 0,5 bis 2 Gew.-%, bifunktionelle Isocyanate auf Basis des Polyesters zugegeben werden. Als Diisocyanate lassen sich aliphatische, cycloaliphatische 10 und/oder aromatische Diisocyanate verwenden.

Für die biologische Abbaubarkeit von Vorteil ist der Anteil in dem biologisch abbaubaren Polyester, der auf die aromatische Polycarbonsäure als Monomerkomponente zurückgeht, das sind bevorzugt 35 bis 65 mol-%.

Beispielsweise kann für den Mähfaden auch ein biologisch abbaubarer Polyester verwendet werden, der hergestellt ist dergestalt, daß der Polyester mit einem aliphatischen Diol, insbesondere C₂₋₆Diol, vorzugsweise 1,2-Ethandiol, 1,2-Propandiol, 1,3-Propandiol, 1,4-Butandiol, 2,3-Butandiol oder 1,6-Hexandiol, einer aromatischen Dicarbonsäure, vorzugsweise Terephthalsäure, und einer aliphatischen Dicarbonsäure, insbesondere C₂₋₁₀Dicarbonsäure, vorzugsweise Adipinsäure oder Sebacinsäure, vorkondensiert und zusätzlich einem Diisocyanat, wie Hexamethylendiisocyanat und/oder einer Mischung, enthaltend unterschiedliche aromatische Isocyanate und/oder Isocyanurate, nachkondensiert bzw. polymerisiert worden ist.

Der Polyester kann dadurch herstellbar sein, daß man den Polyester mit Hilfe von aromatischen Dicarbonsäuren und/ oder aliphatischen Dicarbonsäuren in Form ihrer Methylester kondensiert.

Dem Polykondensat können die in der Technik üblichen Additive zur Verbesserung der hydrolytischen Stabilität zugesetzt worden sein, insbesondere Phosphorverbindungen. 35

Bei der Herstellung des Mähfadens können den biologisch abbaubaren Polyestern Verarbeitungshilfsmittel und Additive, beispielsweise Nukleierungsmittel, Stabilisatoren oder Gleitmittel sowie auch Farbmittel zugegeben werden.

Als Nukleierungsmittel können auch sulfonatgruppenhaltige Verbindungen eingesetzt werden, zum Beispiel Alkalimetallsalze der 5-Sulfoisophthalsäure oder deren Mischungen, bevorzugt das Natriumsalz.

Da der Mähfaden, der auf einer Vorratsspule aufgerollt ist und in dem Freischneidegerät untergebracht ist, bei Betrieb des Gerätes und den hohen Umdrehungsgeschwindigkeiten Schwingungen ausgesetzt ist, die zu Relativbewegungen zwischen den Windungen des auf der Vorratsspule aufgewickelten Mähfadens führen, wird hier Reibungshitze erzeugt. Die Erwärmung des Mähfadens, der auf der Vorratsspule ist, kann dabei so stark werden, daß es zu einem Schmelzen bzw. Verschweißen von aufeinanderliegenden Fadenwicklungen kommen kann, wodurch das Abspulen von der Vorratsrolle behindert ist.

Da die biologisch abbaubaren Polyester, aus denen die 55 Mähfaden erfindungsgemäß hergestellt werden, keinen so hohen Schmelzpunkt aufweisen, besteht die Gefahr des Anschmelzens durch Reibungshitze oder Verklebens untereinander.

Um dieses Problem zu lösen, wird erfindungsgemäß vorgeschlagen, den Mähfaden aus biologisch abbaubarem Polyester mit einem Überzug auf Basis eines Fluorpolymeren und/oder eines Aviviermittels zu versehen.

Der Überzug aus einem gegebenenfalls ein Aviviermittel enthaltenden Fluorpolymeren verleiht dem Mähfaden eine 65 glattere Oberfläche und erhöht damit auch die Abriebfestigkeit der auf der Vorratsspule den Schwingungen ausgesetzten Fadenwicklungen. Darüber hinaus bietet der Überzug

aus Fluorpolymeren auf Grund seiner höheren Schmelzefestigkeit und seines höheren Schmelzpunktes einen verbesserten Schutz gegen das Anschmelzen der Oberfläche auf Grund der entstehenden Reibungswärme, so daß das Verkleben der Fadenwicklungen auf Grund der mit einem Überzug versehen Mähfaden verhindert werden kann.

Als Aviviermittel kommen die aus der Textilindustrie für die Behandlung von Garnen und Geweben bekannten glättenden, antistatische und/oder hydrophobierende Eigenschaften aufweisenden Mittel, wie Tenside, in Frage, zum Beispiel auf Basis quartärer Ammoniumverbindungen.

Besonders glatte Überzüge werden erreicht, wenn diese aus einer Polymerdispersion des Fluorpolymeren aufgebracht sind. Bevorzugt wird der Überzug aus einer wässrigen Dispersion von feinverteilten Fluorpolymeren aufgebracht.

Besonders geeignet für den Überzug sind Fluorpolymere mit hoher Schmelzefestigkeit und einer Schmelztemperatur von mindestens 210°C und einer Langzeitgebrauchstemperatur von mindestens 120°C oder mehr.

Als besonders geeignet für den Überzug auf den erfindungsgemäßen Mähfaden aus biologisch abbaubarem Polyester haben sich die im Anspruch 6 aufgeführten Polymere erwiesen. Dies sind FEP, PFA, E/TFE, E/CTFE, PCTFE oder PTFE-Copolymere.

Der erfindungsgemäße Mähfaden zeichnet sich auch dadurch aus, daß er aus einem aus einer Formmasse enthaltend biologisch abbaubare Polyester als Monofilament extrudiert wird und nachfolgend bevorzugt um das Vierfache bis Zwölffache verstreckt wird.

Es ist bekannt, daß die mit Mähfaden ausgerüsteten Freischneidegeräte, da sie mit hohen Drehzahlen arbeiten, ein erhebliches Geräusch verursachen, was zu einem Großteil durch Wirbelablösung an dem mit hoher Geschwindigkeit umlaufenden Endabschnitt des Mähfadens bedingt ist.

Zur Geräuschreduzierung der Mähfaden ist deshalb bereits vorgeschlagen worden, den Querschnitt des Mähfadens über seine Längserstreckung hin derart zu verändern, daß zusätzliche Abrißkanten am Außenumfang des Mähfadens zur frühzeitigen Wirbelablösung geschaffen werden. Derartige Mähfaden aus Kunststoff mit einem Querschnitt, der eine Geräuschreduzierung bewirkt, sind beispielsweise in der DE 40 05 879 C1 und der WO 97/43469 beschrieben.

Auch der erfindungsgemäße Mähfaden aus biologisch abbaubarem Polyester kann sowohl einen über seine Längserstreckung hin gleichbleibenden Querschnitt, beispielsweise rund, oval, dreieckig, viereckig, fünfeckig, sechseckig, sternförmig oder kleeblattförmig oder dergleichen aufweisen oder aber mit zusätzlichen Querschnittveränderungen versehen sein. Insbesondere wird der Mähfaden nach dem Extrudieren und Verstrecken durch äußere Einwirkung beispielsweise unter Verkleinerung des Querschnittes bereichsweise verändert, so daß auf diese Weise die gewünschten zusätzlichen Abrißkanten am Umfang des Mähfadens geschaffen werden, um eine frühzeitige Wirbelablösung zu erreichen bzw. die Ausbildung großer Wirbel zu unterdrücken. Die Mähfaden weisen mittlere Durchmesser von 1,5 bis 8 mm je nach Einsatzgebiet auf.

Sofern der Mähfaden mit beispielsweise gemäß den Vorschlägen der WO 97/43469 ausgebildeten Querschnitten durch äußere bereichsweise Einwirkung auf das Monofilament versehen ist, wird der Überzug erst nach dem bereichsweisen Verändern der Querschnitte des Monofilamentes aufgebracht.

Die bereichsweise Verkleinerung des Querschnittes des Monofilamentes in Längserstreckung desselben ist bevorzugt mindestens einer Schraubenlinie folgend angeordnet.

In der Zeichnung sind beispielhaft Ausführungsformen

von verschiedenen Mähfaden dargestellt.

Fig. 1, 2 und 3 zeigen verschiedene Querschnitte von Mähfäden, die über ihre Längserstreckung hin konstant

Fig. 4, 5 zeigen verschiedene Querschnitte und Ausführungsformen von Mähfäden, deren Querschnitt über die Länge hin durch Verkleinerung bereichsweise verändert ist.

In der Fig. 1 ist ein Mähfaden 1 mit rundem Querschnitt dargestellt, dessen Kern 10 aus einem biologisch abbaubaren Polyester gegebenenfalls unter Zusatz von üblichen Additiven hergestellt ist und der nach der Extrusion und Verstreckung um das Siebenfache mit einem Überzug 11 aus einer Polymerdispersion auf Basis eines fluorhaltigen Polymeren versehen ist. Hierbei ist beispielsweise eine wässrige Dispersion von feinverteilten synthetischen Fluorpolyme- 15 ren, beispielsweise Ethylen-Tetrafluorethylen-Copolymer, wobei die Teilchengröße in der Dispersion unter 5 µm beträgt, hergestellt. Das extrudierte und verstreckte Monofilament wird hierbei durch die wässrige Polymerdispersion hindurchgeführt, wodurch sich ein glatter anhaftender dün- 20 ner Überzug ergibt, der dem Mähfaden die gewünschte erhöhte äußere thermische Stabilität verleiht. Ein Fluorpolymer, wie E/TFE, weist hierbei eine Schmelztemperatur zwischen 265 bis 270°C auf bei einer langzeitigen Gebrauchstemperatur von mindestens 120°C und kurzzeitig bis 200°C. 25

Der Überzug aus Fluorpolymer hat des weiteren den Vorteil des Antihafteffektes, wodurch ein Ankleben der sich im Betrieb im Freischneidegerät erwärmenden Fadenwicklungen auch an der Spule vermieden wird. Auch die Gefahr, daß der Mähfaden am Ausgang der Spule anhaftet, wird 30 durch den erfindungsgemäßen Überzug aus einem Fluorpolymeren nach Art einer Antihaftbeschichtung verringert.

In der Fig. 2 ist beispielhaft ein Mähfaden mit sternförmigem Querschnitt mit einer Seele 10 aus einem biologisch abbaubaren Polyester mit hoher Schmelztemperatur von bei- 35 spielsweise 145°C und einem Überzug 11 aus einem Fluorpolymer dargestellt.

Die Fig. 3 zeigt einen Mähfaden im Querschnitt eines

gleichseitigen Sechsecks mit Überzug.

In den Fig. 4, 5 sind erfindungsgemäße Mähfäden mit ei- 40 ner Seele 10 aus einem biologisch abbaubaren Polymer und einem Überzug 11 aus einem fluorhaltigen Polymer dargestellt, die zusätzlich mit durch längs Schraubenlinien eingearbeiteter Kerben oder Nuten 12 am Außenumfang Abrißkanten bilden, um die Wirbelablösung und damit die Ge- 45 räuschminderung zu verbessern.

Patentansprüche

1. Monofiler Mähfaden, der in natürlicher Umgebung 50 unter Einwirkung von Mikroorganismen abbaubar ist, hergestellt auf Basis biologisch abbaubarer Polyester durch Extrusion mit nachfolgender Verstreckung.

2. Mähfaden nach Anspruch 1, dadurch gekennzeichnet, daß er einen Überzug auf Basis eines Fluorpolyme- 55

ren und/oder eines Aviviermittels aufweist.

3. Mähfaden nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Überzug aus einer Polymerdispersion aufgebracht ist.

4. Mähfaden nach einem der Ansprüche 1 bis 3, da- 60 durch gekennzeichnet, daß der Überzug aus einer wässrigen Dispersion, enthaltend feinverteiltes Fluorpolymer aufgebracht ist.

5. Mähfaden nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß für den Überzug Fluorpoly- 65 mere mit hoher Schmelzefestigkeit und einer Schmelztemperatur von mindestens 210°C und einer langzeitigen Gebrauchstemperatur von mindestens 120°C eingesetzt sind.

6. Mähfaden nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, daß als Fluorpolymer Polyfluo-(FEP), Perfluoralkoxy (PFA), rethylenpropylen Ethylen-Tetrafluorethylen-Copolymer (E/TFE), Polychlortrifluorethylen (PCTFE), Ethylen-Chlortrifluorethylen-Copolymer (E/CTFE) oder Polytetrafluorethylen-Copolymer mit einem fluorierten zyklischen Ether eingesetzt sind.

7. Mähfaden nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß er aus einem aus einer Formmasse, enthaltend biologisch abbaubare Polyester, extrudierten und um das Vier- bis Zwölffache

verstreckten Monofilament erhältlich ist.

8. Mähfaden nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der nach dem Extrudieren und Verstrecken erhaltene Querschnitt des Monofilamentes durch äußere Einwirkung bereichsweise unter Verkleinerung verändert ist.

9. Mähfaden nach Anspruch 8, dadurch gekennzeichnet, daß der Überzug nach dem bereichsweisen Verändern des Querschnittes des Monofilamentes aufge-

bracht ist.

10. Mähfaden nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die bereichsweisen Verkleinerungen des Querschnittes des Monofilamentes in Längserstreckung desselben einer Schraubenlinie fol-

gend angeordnet sind.

11. Mähfaden nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß als biologisch abbaubare Polyester hochmolekulare statistische Copolyester eingesetzt sind, die unter Verwendung mindestens einer Dihydroxyverbindung, wie aliphatischer Polyole, oder mindestens eines Aminoalkohohls oder deren Mischungen sowie mindestens einer aromatischen Polycarbonsäure oder deren esterbildendem Derivat sowie gleichzeitig einer aliphatischen oder cycloaliphatischen Polycarbonsäure oder deren esterbildendem Derivat als Monomerkomponenten hergestellt sind und die unter Verwendung eines Diisocyanates oder einer Mischung, enthaltend aromatische ein- und mehrkernige Isocyanate, ein- oder zweikernige Diisocyanate und/oder ein- und mehrkernige Isocyanurate als zusätzlicher Monomerkomoponente hergestellt worden sind. 12. Mähfaden nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß biologisch abbaubare Polyester mit einem Schmelzpunkt von mindestens 100°C, vorzugsweise mindestens 110°C eingesetzt sind.

13. Mähfaden nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß er mittels eines physiologisch unbedenklichen Farbmittels eingefärbt ist.

Hierzu 1 Seite(n) Zeichnungen

- Leerseite -

1 /10

Fig. 1

10

Fig.3

1 10 11 Fig 2

12 10 12 10 Fig. 5