

Universidade Federal de Minas Gerais Departamento de Engenharia Mecânica Curso de Engenharia Aeroespacial

Estudo das opções de telemetria remota para drones compatíveis com o protocolo MAVLink

Caio Tácito Borges da Costa Projeto AVANT UFMG 26 de fevereiro de 2019

D . ~	O 41: CT7 4 + 1 + 1 1 2
Descrição	O rádio SiK é a telemetria padrão encontrada
	nos kits ARF de pixhawk e APM
Protocolo	SiK – open source
	$\underline{\text{https://github.com/ArduPilot/SiK}}$
Frequência	900 MHz ou 433 MHz
Alcance	300 - 500 m
Preço	Cerca de R\$ 100,00
Peso	< 4 gramas
Vantagens	Pequeno e leve
	• Não requer configuração
	• Baixo consumo de bateria
	Pode ser usado com uma antena omni
	para aumentar o alcance
	• Frequência mais baixa garante maior
	penetração em obstáculos físicos
	• Reconexão instantânea em caso de
	perda de sinal
Desvantagens	• Uso da faixa de 900 MHz é permitido
	apenas durante a janela de vôo da
	equipe
	• O uso de cabos e interfaces físicas
	proprietárias dificulta o diagnóstico de
	problemas
	• Às vezes não funciona sem motivo

Deganicão	O rádio DED000 á uma norte garial
Descrição	O rádio RFD900 é uma ponte serial
	transparente de longo alcance
Protocolo	SiK – open source
	$\underline{\text{https://github.com/ArduPilot/SiK}}$
Frequência	900 MHz
Alcance	40.000 m
Preço	R\$ 1200,00
Peso	< 15 gramas
Vantagens	Alcance enorme
	• Não requer configuração
	• Extremamente confiável
	• Frequência mais baixa garante maior
	penetração em obstáculos físicos
	• Reconexão instantânea em caso de
	perda de sinal
Desvantagens	• Uso da faixa de 900 MHz é permitido
	apenas durante a janela de vôo da
	equipe
	• O uso de cabos e interfaces físicas
	proprietárias dificulta o diagnóstico de
	problemas
	• Preço elevado
	• Consumo elevado de bateria

3. Placas baseadas em ESP8266

Descrição	O ESP8266 é um microchip WiFi para
	internet das coisas.
Protocolo	Full stack TCP/IP
	MAVESP8266 – Open Source
	$\underline{\text{https://github.com/dogmaphobic/mavesp8266}}$
Frequência	2.4 GHz
Alcance	Não especificada na datasheet
	De 100m a 300m sem repetidor
Preço	R\$ 20,00
Peso	< 10 gramas
Vantagens	Preço acessível
	• Rede protegida por WPA2 AES
	• Permite conectar ao drone com qualquer
	PC/Celular/Tablet sem um módulo
	adicional
Desvantagens	• Usa LVTTL nas linhas seriais (3.3V)
	• Requer configuração de firmware
	especial para funcionar com MAVLink
	Protocolo TCP/IP introduz overhead
	• Handshake de WiFi causa atraso
	considerável para reestabelecer conexão
	após perda de sinal

4. Raspberry PI model 3B \pm

D . ~	A.D. 1 () 1 1 1 1
Descrição	A Raspberry é um computador completo rodando
	Linux ARM com um processador quad core @ 1.2
	GHz e 1GB de RAM
Protocolo	Full stack TCP/IP - MAVProxy
	$\underline{https://github.com/ArduPilot/MAVProxy}$
Frequência	2.4 Ghz
Alcance	100m com WiFi embutido sem repetidor
Preço	R\$ 200,00
Peso	< 50 gramas
Vantagens	Computador poderoso
	• Permite transmitir outras informações na
	mesma rede da telemetria
	• Funciona como transmissor FPV
	Permite acionar servos e outros atuadores remotamente
	Pode trabalhar com sensores para detectar
	obstáculos e redirecionar o drone
	• Rede protegida por WPA2 AES
	Permite conectar ao drone com qualquer
	PC/Celular/Tablet sem um módulo
	adicional
Desvantagens	Relativamente grande e pesada
	• WiFi embutido de baixa potência
	Grande consumo de bateria
	Handshake de WiFi causa atraso
	considerável para reestabelecer conexão
	após perda de sinal
	-

5. Módulo bluetooth HC-06

Descrição	Módulo de bluetooth com funcionalidades
	básicas
Protocolo	Bluetooth 2.0
	Spread Spectrum FHSS
Frequência	2.4 Ghz
Alcance	50m
Preço	R\$ 15,00
Peso	< 5 gramas
Vantagens	• Extremamente barato
	• Simples configuração
	Baixo consumo de bateria
	• Permite conectar ao drone com qualquer
	PC/Celular/Tablet compatível com
	bluetooth sem um módulo adicional
Desvantagens	Curto alcance

Descrição	O HC-12 é uma ponte serial transparente de
	propósito geral
Protocolo	Si4463 – Open Source
	$\underline{\text{https://github.com/zkemble/Si446x}}$
Frequência	433 MHz
Alcance	1000 m
Preço	R\$ 50,00
Peso	< 5 gramas
Vantagens	• Preco acessível
	• Não requer configuração
	• Longo alcance
	• Reconexão instantânea em caso de
	perda de sinal
	• Frequência mais baixa garante maior
	penetração em obstáculos físicos
	• Baixo consumo de bateria
Desvantagens	

Amplificadores de sinal para dispositivos WiFi

1. TPLink TL-WA850RE

Descrição	Repetidor WiFi universal
Alcance	Depende
Preço	R\$ 80,00
Peso	Depende
Vantagens	• Fácil configuração
Desvantagens	• Requer modificações de hardware para
	instalar no drone

${\bf 2.~Amplificador~booster~4W}$

Descrição	Booster WiFi universal
Alcance	Até 10Km
Preço	R\$ 180,00
Peso	<50 g
Vantagens	• Fácil configuração
	• Fácil instalação no drone
Desvantagens	• Preço elevado