8. Finite Difference Analysis of Transient Heat Transfer in 1D

Mateusz Janicki 165653

Wstęp

Celem projektu jest zaimplementowanie skryptu rozwiązującego równanie przepływu ciepła w jednym wymiarze. Przyjęto założenie, że współczynnik wyrównywania temperatury (κ) w badanym materiale jest stały w czasie, przez co problem sprowadza się do następującego równania:

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}.$$

gdzie

$$\kappa = \frac{k}{\rho c_p},$$

gdzie: k-przewodność ciepła, ho-gęstość, $^{c}p-$ pojemność ciepła.

Do rozwiązania problemu wykorzystano metodę różnic skończonych. Jej pierwszym krokiem jest dyskretyzacja pola, na którym problem będzie rozwiązywany. Należy przy tym pamiętać, że w zależności od zastosowanego kroku dyskretyzacji w kierunku x oraz t będzie się zmieniał błąd wynikający z tego przybliżenia. Następnie należy dokonać przybliżenia pochodnej temperatury po czasie - zastosowano przybliżenie wprzód:

$$\frac{\partial T}{\partial t} = \frac{T_i^{n+1} - T_i^n}{t^{n+1} - t^n} = \frac{T_i^{n+1} - T_i^n}{\Delta t}$$

Równanie to w prosty sposób można wyprowadzić ze wzoru na pochodną. W podobny sposób można przybliżyć drugą stronę równania, którą jest pochodna drugiego stopnia po odległości. Na początku przeprowadzamy obliczenia podobne jak w przypadku powyższego przybliżenia, aby następnie ponowić tę operację tym razem z uzyskanym wynikiem. Daje to następujący wynik (przybliżenie punktu środkowego):

$$\frac{\partial^2 T}{\partial x^2} = \frac{T_{i-1}^n - 2T_i^n + T_{i+1}^n}{(\Delta x)^2}$$

Po podstawieniu uzyskanych wzorów do inicjalnego równania i wyznaczeniu temperatury w następnym kroku uzyskujemy wzór na jej obliczenie. Ma on następującą postać:

$$T_i^{n+1} = T_i^n + \kappa \Delta t \frac{T_{i-1}^n - 2T_i^n + T_{i+1}^n}{(\Delta x)^2}$$

Powyższe indeksy zostały zilustrowane na Rysunku 1.

Rysunek 1. Wartości, na których opiera się obliczenie kolejnego kroku czasowego.

Stabilność metody elementów skończonych określa warunek Couranta-Friedrichsa-Lewy'ego. W przypadku rozważanej funkcji metoda jest stabilna, przy spełnieniu nierówności:

$$\frac{\kappa \Delta t}{(\Delta x)^2} \le \frac{1}{2}$$

Warunek ten został uwzględniony w skrypcie, a w przypadku jego niespełnienia wyświetlana odpowiednia informacja w konsoli.

Warto również zaznaczyć, że do wykonania obliczeń potrzebne są warunki brzegowe - temperatura w kroku pierwszym oraz temperatura na brzegach badanego obszaru w każdym kroku czasowym. Warunki brzegowe na krańcach badanego materiału można dostosować na trzy sposoby - warunek Dirichleta (stała temperatura), warunek Neumana (izolacja) oraz strumień ciepła - możliwa jest stała zmiana temperatury na krańcach obszaru. Konfiguracja odbywa się poprzez zmienne w sekcji warunków wejściowych skryptu, oznaczonej komentarzem.

Dirichleta:
$$T_x^n=A_x$$
 $x=0, x=x_{max}$, Neumanna: $T_0^n=T_1^n, T_{x_{max}}^n=T_{x_{max-1}}^n$, Strumień ciepła: $T_0^n=\frac{f\Delta x}{\kappa}+T_1^n, T_{n_{max}}^n=\frac{f\Delta x}{\kappa}+T_{n_{max-1}}^n$

Powyższe wzory oparto o źródło z Załącznika 1 (slajd 10).

Modelowanie i symulacja systemów

Przeprowadzone testy

Wpływ zmiany kroku czasowego na średni błąd bezwzględny.

L	3m		
k	127*10 ⁻⁶ m/s ²		
Temperatura w momencie t ₀	(x-L/2)^2*200 C		
Warunek brzegowy - lewy	Napływ ciepła (0.1 W/m²)		
Warunek brzegowy - prawy	Neumanna (izolacja)		

Modelowanie i symulacja systemów

Wpływ zmiany kroku w kierunku x na średni błąd bezwzględny.

dla Δx =1m	Δt = 0.5s		
Temperatura po 6000 sekundach 100minutach 2 godzinach 0 dniach	Δx [m]	warunek CFL	Mean absolute error
D 1000 500 6000 6000	1	6*10 ⁻⁶	129.2984
4000 2000 0 1 1.5 2 2.5 3 3.5 4 Czas [s] Odległość [m] dla Δx = 0.077m Temperatura po 6000 sekundach 100minutach 2 godzinach 0 dniach	0.077	0.0107	5.899
SC 800 400 400 2000 0 0 Odległość [m]	0.0126	0.403	- (wartość bazowa)

Modelowanie i symulacja systemów

Inne przykłady:

