Redoxné reakcie

PRÍKLAD: Ak dáme do roztoku síranu meďnatého železo (napr. železný klinec) dochádza k chemickej reakcii (modré sfarbenie roztoku slabne a na železe sa vylučuje červeno-hnedá meď). Napíšte:

[Spracoval: M.Kozák, B.Šlenker]

- a) Iónovú rovnicu reakcie CuSO₄ s Fe,
- b) Polreakcie redoxnej reakcie,
- c) Ktorá látka v reakcii pôsobí ako oxidačné činidlo a ktorá ako redukčné činidlo?

RIEŠENIE: a) Cu^{2+} (aq) + Fe^{0} (s) \longrightarrow Cu^{0} (s) + Fe^{2+} (aq)

b) Oxidácia:
$$Fe^{0}(s) - 2e^{-} \longrightarrow Fe^{2+}(aq)$$

Redukcia:
$$Cu^{2+}$$
 (aq) + $2e^{-}$ \longrightarrow Cu^{0} (s)

c) Redukčné činidlo – redukovadlo: Fe⁰ (s)

Oxidačné činidlo – oxidovadlo: Cu2+ (aq)

Všeobecná schéma redoxných rovníc:

oxidácia

ox. – oxidovaná forma, red. – redukovaná forma

ox.
$$1 + \text{red}$$
. $2 \rightleftharpoons \text{red}$. $1 + \text{ox}$. $2 \rightleftharpoons \text{red}$

Skladá sa z dvoch konjugovaných dvojíc.

PRÍKLAD: $2Ag^{I} + Cu^{0} \longrightarrow 2Ag^{0} + Cu^{II}$

- 1. konjugovaná dvojica ox. 1 red. 1 2Ag¹ 2Ag⁰
- 2. konjugovaná dvojica red.2 ox. 2 Cu⁰ Cu^{II}

Redoxné vlastnosti látok

To, či bude v určitej reakcii látka reagovať ako oxidovadlo alebo redukovadlo, závisí od redoxných schopností reakčného partnera.

PRÍKLAD: Cl₂⁰ + H₂⁰ → 2H^ICl^{-I}

Cl₂ ... oxidačné činidlo – oxidovadlo

 $Cl_2^0 + F_2^0 \longrightarrow 2Cl^1F^{-1}$

Cl₂ ... redukčné činidlo – redukovadlo

Redoxné vlastnosti prvkov

Oxidovadlá – sú to najmä nekovy – fluór, kyslík, bróm, chlór,... – ochotne prijímajú elektróny (okrem fluóru však môžu pôsobiť aj ako redukovadlá, ak ich reakčný partner má silnejšie oxidačné účinky).

Redukovadlá – predovšetkým neušľachtilé kovy (Li, K, Na, Ca, Zn, Al,...) – ľahko odovzdávajú elektróny, z nekovov sú dobré redukovadlá uhlík a vodík.

Prí výrobe kovov možno použiť aj kov, napr. Hliník reaguje s oxidom určitého kovu za vzniku Al₂O₃. Tento dej sa nazýva **aluminotermia**.

$$Cr_2^{|||}O_3 + 2AI^0 \longrightarrow AI_2^{|||}O_3 + 2Cr^0$$

Elektrochemický rad napätia kovov

Kovy sú v ňom zoradené podľa klesajúcich redukčných schopností (schopnosti oxidovať sa na svoje katióny).

Kov nachádzajúci sa naľavo od daného kovu je schopný redukovať katión tohto kovu.

$$Zn^{0}$$
 (s) + Cu^{2+} (aq) \rightleftharpoons Zn^{2+} (aq) + Cu^{0} (s)

$$Cu^{0}(s) + 2Ag^{+}(aq) \rightleftharpoons Cu^{2+}(aq) + 2Ag^{0}(s)$$

Kovy umiestnené naľavo od vodíka sú schopné redukovať katión vodíka vo vodnom roztoku. Reakciou týchto kovov so zriedenými kyselinami vzniká vodík.

$$Zn^{0}$$
 (s) + $2H^{+}$ (aq) \rightleftharpoons Zn^{2+} (aq) + H_{2} (g)

$$(Zn^0 + 2H^1CI \longrightarrow Zn^{11}CI_2 + H_2^0)$$

Kovy umiestnené napravo od vodíka nereagujú so zriedenými kyselinami za vzniku vodíka.

Redoxné vlastnosti zlúčenín

Oxidovadlá

 $KMn^{VII}O_4$, $K_2Cr_2^{VI}O_7$, HN^VO_3 , $H_2S^{VI}O_4$, $Mn^{IV}O_2$, $Pb^{IV}O_2$, $S^{IV}O_2$, $H_2O_2^{-I}...$

Majú oxidačné účinky, pretože atómy Mn^{VII} , Cr^{VI} , N^V , S^{VI} , Mn^{IV} , PB^{IV} , S^{IV} , O_2^{-I} sa môžu nachádzať i v zlúčeninách s nižšími oxidačnými číslami (t.j. môžu prijímať elektróny).

PRÍKLAD: KMnO₄ (Mn^{VII}
$$\longrightarrow$$
 Mn^{IV} \longrightarrow Mn^{III} \longrightarrow Mn^{III})

Na akú látku sa anión MnO₄⁻ v priebehu reakcie redukuje, závisí od redukčných schopnosti látky, s ktorou reaguje a od pH prostredia (v kyslom prostredí sa Mn^{VII} redukuje až na Mn^{II}, v slabo zásaditom na Mn^{IV}). Kyseliny s oxidačnými schopnosťami reagujú aj s kovmi umiestnenými v elektrochemickom rade napätia kovov napravo od vodíka. Pri reakcii však nevzniká H₂(g)!

$$3Ag^{0} + 4HN^{V}O_{3} \longrightarrow 3Ag^{I}NO_{3} + N^{II}O + 2H_{2}O$$

(oxidovadlom je N^V, nie katión vodíka)

Redukovadlá

$$C''O, H_2S^{-1}, Sn''Cl_2, Fe''Cl_2, N^{-111}H_3...$$

Tieto látky majú redukčné účinky , lebo atómy **C**^{II}, **S**^{II}, **S**^{II}, **F**^{II}, **S**^{II}, **S**^{II} sa môžu nachádzať aj v zlúčeninách s vyššími oxidačnými číslami (t.j. môžu **odovzdávať elektróny**).

Oxidovadlá i redukovadlá

Zlúčeniny, ktorých atómy sa môžu oxidovať i redukovať, majú oxidačné i redukčné účinky (v závislosti od reakčného partnera).

a)
$$2KI + \frac{H_2O_2}{H_2SO_4} + H_2SO_4 \longrightarrow I_2 + K_2SO_4 + 2H_2O_4$$

H₂O₂ - oxidovadlo

b)
$$2KMnO_4 + 5H_2O_2 + 3H_2SO_4 \longrightarrow 5O_2 + 2MnSO_4 + K_2SO_4 + 8H_2O$$
 $H_2O_2 - redukovadlo$

(V prípade a) O^{-I} prijíma elektróny od aniónu I⁻; v prípade b) O^{-I} odovzdáva elektróny mangánu Mn^{VII}.)

Rovnováha v redoxných reakciách

Redoxnú rovnováhu (stupeň premeny reaktantov na produkty) charakterizuje rovnovážna konštanta. Jej hodnota závisí od redoxných schopností reagujúcich látok.

PRÍKLAD:
$$Co^0$$
 (s) + Ni^{2+} (aq) \rightleftharpoons Co^{2+} (aq) + Ni^0 (s)

Pri teplote 25°C:
$$K_c = \frac{[Co^{2+}]}{[Ni^{2+}]} = 10$$

(vo vzťahu pre výpočet K_c sa neuvádzajú koncentrácie tuhých látok)

Kobalt a nikel sa v elektrochemickom rade napätia kovov nachádzajú vedľa seba. Rozdiel v ich redukčných schopnostiach je veľmi malý. Preto aj hodnota K_c nie je veľká.

PRÍKLAD:
$$Cu^{2+}$$
 (aq) + Zn^0 (s) \rightleftharpoons Cu^0 (s) + Zn^{2+} (aq)

Pri teplote 25°C:
$$Kc = \frac{[Zn^{2+}]}{[Cu^{2+}]} = 10^{37}$$
 Reaktanty sú prakticky úplne premenené na produkty.

Záver: Čím je rozdiel v redukčných schopnostiach kovov väčší, tým má rovnovážna konštanta v redoxných reakciách väčšiu hodnotu.

Poznámka: V redoxných reakciách, ktoré prebiehajú v otvorených systémoch (napr. v skúmavkách, ...) sa neustáli chemická rovnováha, ak sa produkty uvoľňujú do okolia v podobe plynných látok a nemôžu spätne reagovať za vzniku reaktantov. Reakcia prebieha až do úplného zreagovania aspoň jedného reaktanta. $(2Na + 2H₂O \rightarrow 2NaOH + H₂)$

Redoxné reakcie a elektrolýza

Pod pojmom elektrolýza chápeme prechod elektrického prúdu roztokom alebo taveninou a chemické zmeny, ktoré

pri tom prebiehajú. Na katóde (zápornej prebieha redukcia. Na anóde (kladnej elektróde)

PRÍKLAD: Elektrolýza taveniny NaCl (Na⁺ Cl⁻):

Katóda: $2Na^+ + 2e^- \rightarrow 2Na^0$

Anóda: $2Cl^{-} - 2e^{-} \rightarrow Cl_{2}$

Chemické látky, ktoré pri elektrolýze vznikajú, často vstupujú do reakcie medzi sebou, s molekulami rozpúšťadla, prípadne s elektródou.

Elektrolýza sa používa na prípravu mnohých látok, napr. NaOH alebo KOH, H₂O₂ a rôznych kovov (Na, Mg, Al) z tavenín ich zlúčenín a pri pokovovaní rôznych predmetov.

Úlohy

1.	Určte	ktorė	reakcie	patria	medzi	i redoxnė:
----	-------	-------	---------	--------	-------	------------

- a) $HBr + KOH \rightarrow KBr + H_2O$
- **b)** $AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$
- c) CaO + $H_2O \rightarrow Ca(OH)_2$
- d) $2Li + 2H_2O \rightarrow 2LiOH + H_2$
- e) $2H_2SO_4 + C \rightarrow 2SO_2 + CO_2 + 2H_2O$
- f) $Cl_2 + H_2O \rightarrow HClO + HCl$
- 2. Oxiduje alebo redukuje sa ión X²⁻, keď sa v priebehu chemickej reakcie zmení na ión X³⁺?
- 3. Látka, ktorá sa ľahko oxiduje:
 - a) silné oxidačné činidlo
- c) slabé oxidačné činidlo
- **b)** slabé redukčné činidlo
- d) silné redukčné činidlo
- Možno pripraviť chlór reakciou kyseliny chlorovodíkovej s manganistanom draselným? Odpoveď zdôvodnite.
- 5. Môže prebiehať reakcia medzi roztokom dusičnanu draselného a roztokom síranu sodného? Odpoveď zdôvodnite.

- 6. Určte, ktoré z uvedených prvkov možno použiť ako redukovadlo: Na, F2, H2, Cl2, K, Al.
- 7. Vysvetlite, prečo reakciu horúcej <u>koncentrovanej</u> H₂SO₄ so Zn vyjadruje rovnica: Zn +2 H₂SO₄ → ZnSO₄ + SO₂ + H₂O, zatiaľ čo reakciu <u>zriedenej</u> H₂SO₄ za bežnej teploty vyjadruje rovnica: Zn + H₂SO₄ → ZnSO₄ + H₂, hoci v oboch prípadoch dochádza k oxidácii zinku na katióny Zn²+.