МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа № 2 по курсу «Программирование графических процессоров»

Обработка изображений на GPU. Фильтры.

Выполнил: Ф.М. Шавандрин

Группа: 8О-408Б

Преподаватель: А.Ю. Морозов

Условие

Написать конвертер программирования для работы с нижеописанным форматом.

Формат изображений. Изображение является бинарным файлом, со следующей структурой:

width(w)	height(h)	r	g	b	а	r	g	b	а	r	g	b	а		r	g	b	а	r	g	b	а
4 байта, int	4 байта, int	3	4 ба нач пикс [1	ени	е	3	4 ба нач пикс [2	ени	е	3	4 ба наче пикс [3,	ени селя	е	:	3	4 ба нач пикс w -	ени селя	e a	3	нач	айта ени селя ,h]	е

В первых восьми байтах записывается размер изображения, далее построчно все значения пикселей, где

- г -- красная составляющая цвета пикселя
- g -- зеленая составляющая цвета пикселя
- b -- синяя составляющая цвета пикселя
- а -- значение альфа-канала пикселя

Цель работы:

Научиться использовать GPU для обработки изображений.

Использование текстурной памяти и двухмерной сетки потоков.

Вариант 5. Выделение контуров. Метод Робертса.

Программное и аппаратное обеспечение **GPU**:

- Название NVIDIA GeForce GT 545
- Compute capability: 2.1
- Графическая память: 3150381056
- Разделяемая память: 49152
- Константная память: 32768
- Количество регистров на блок: 32
- Максимальное количество нитей: (1024, 1024, 64)
- Максимальное количество блоков: (65535, 65535, 65535)
- Количество мультипроцессоров: 3

Сведения о системе:

- Процессор: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
- ОЗУ: 15 ГБ
- HDD 500 ГБ

Программное обеспечение:

- OS: Ubuntu 16.04.6 LTS
- Текстовый редактор: Vim
- Компилятор: nvcc

Метод решения

Для решения этой задачи нужно предварительно конвертировать все пиксели изображения из RGB представления в YUV с помощью формулы:

$$brightness = 0.299 * x + 0.587 * y + 0.114 * z$$
,

где x, y, z — RGB-компоненты пикселя. Далее ищем первые частные производные для каждого пикселя:

$$G_x = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, G_y = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Норма градиента будет окончательным ответом для каждого пикселя, т. е.

$$|(g)| = \sqrt{(g_x^2 + g_y^2)}$$

Описание программы

В функции *kernel* вычисляется яркость для каждого пикселя по формуле выше, затем находятся первые частные производные и берётся минимум из 255 и нормы градиента, т. к. при вычислениях норма градиента может превышать максимальное значение 255, что будет не совсем корректно, т.к значение 255 соответствует максимально насыщенному белому цвету.

Результаты

В качестве тестирования используются изображения с разрешением 736*736, 1280*720, 2975*2980 и 3264*2724 соответственно.

CPU:

Разрешение	Время работы, мс
736*736	1.2323
1280*720	1.8558
2975*2980	11.2803
3264*2724	11.3630

<<<(16, 16), (32, 32)>>>

Разрешение	Время работы, мс					
736*736	1.3517					
1280*720	2.1399					
2975*2980	18.3572					
3264*2724	18.4780					

<<<(32, 32), (32, 32)>>>

Разрешение	Время работы, мс					
736*736	1.5618					
1280*720	2.4682					
2975*2980	18.7678					
3264*2724	18.9545					

<<<(1, 16), (32, 16)>>>

Разрешение	Время работы, мс					
736*736	1.2238					
1280*720	2.0273					
2975*2980	19.8591					
3264*2724	19.9263					

Выводы

В ходе данной лабораторной работы были получены знания о контурах изображений и о методах выделения контурах. Был реализован метод Робертса для обработки изображений с использованием текстурной памяти и двухмерной сетки потоков. На практике выделение контуров могут указывать, например, на изменение глубины или изменения в свойствах материала. Таким образом, целью выделения контуров является фиксация важных событий и изменений мира.