

ulm university universität

1. Klausur Lineare Algebra I

09.08.2013

1. Sei
$$E = \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix} \mid \lambda, \mu \in \mathbb{R} \right\}$$
. Bestimmen Sie die Hessesche Normalform von E .

2. Zeigen Sie, dass
$$U := \left\{ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in M_{2,2}(\mathbb{R}) \mid a_{11} + a_{22} = 0 \right\}$$
 ein Unterraum von
$$M_{2,2}(\mathbb{R}) := \left\{ \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \mid m_{11}, m_{12}, m_{21}, m_{22} \in \mathbb{R} \right\} \text{ ist.}$$
 [5]

- 3. Gegeben sei die Permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 4 & 2 \end{pmatrix}$.
 - (a) Schreiben Sie σ in Zykelschreibweise. [1]
 - (b) Schreiben Sie σ als Produkt von Transpositionen. [2]
 - (c) Bestimmen Sie die Inversionen von σ . [3]
 - (d) Bestimmen Sie inv σ und sgn σ . [2]
- 4. (a) Sei $f:V\longrightarrow W$ eine lineare Abbildung. Geben Sie die Definition der folgenden Begriffe an: [4]
 - (i) Kern von f
 - (ii) Bild von f
 - (iii) Rang von f
 - (iv) Defekt von f

(b) Sei nun
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$
 und sei $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^3$, $x \longmapsto Ax$. Bestimmen Sie eine Basis von Ker f und eine Basis von Im f und geben Sie rg f und def f an. [12]

5. Für welche
$$\lambda \in \mathbb{R}$$
 ist $\begin{pmatrix} 2 & 1 & \lambda \\ 2 & 3 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ invertierbar? [5]

Bitte wenden!

ulm university universität

6. Sei $V = \mathbb{R}^{23}$ und seien U_1 und U_2 Unterräume von V mit dim $U_1 = \dim U_2$. Zeigen Sie, dass mindestens eine der beiden Aussagen $U_1 \cap U_2 = \{0\}$ und $U_1 + U_2 = V$ nicht erfüllt ist. [7]

7. Sei
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 2 & 1 & 2 \end{pmatrix}$$
.

- (a) Bestimmen Sie das charakteristische Polynom von A ohne Teilaufgabe b) zu benutzen. [3]
- (b) Zeigen Sie, dass $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ Eigenvektoren von A sind und geben sie die zugehörigen Eigenwerte an. [6]
- (c) Sei $\mathbb{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \right\}$ und sei $F : \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \, x \longmapsto Ax$. Bestimmen Sie die Darstellungsmatix $M_{\mathbb{B}}^{\mathbb{B}}(F)$ bzgl. der Basis \mathbb{B} und die Transformationsmatix $M_{\mathbb{E}}^{\mathbb{B}}(\mathrm{id})$. [6]

Viel Erfolg!