Classification Theory and the Map of the Universe

Katie Ellman-Aspnes

University of Notre Dame

April 3, 2025

Classifying Mathematical Objects

A fundamental mathematical question is when and how can we classify various mathematical objects.

Which is more complex:

- A graph or a group?
- A field or a topological space?

Model theory allows us to make sense of these types of questions.

• Language: a collection of constant, function, and relation symbols

- Language: a collection of constant, function, and relation symbols
- Formula: a Boolean combination of statements in the language, possibly with variables (ex. $\exists x \ x * x = y$)

- Language: a collection of constant, function, and relation symbols
- Formula: a Boolean combination of statements in the language, possibly with variables (ex. $\exists x \ x * x = y$)
- Structure: a mathematical object, represented by a set of elements with an interpretation of a language (ex. a field, a graph, an ordered set, etc)

- Language: a collection of constant, function, and relation symbols
- Formula: a Boolean combination of statements in the language, possibly with variables (ex. $\exists x \ x * x = y$)
- Structure: a mathematical object, represented by a set of elements with an interpretation of a language (ex. a field, a graph, an ordered set, etc)
- Theory: a collection of axioms (ex. group axioms, equivalence relations)

- Language: a collection of constant, function, and relation symbols
- Formula: a Boolean combination of statements in the language, possibly with variables (ex. $\exists x \ x * x = y$)
- Structure: a mathematical object, represented by a set of elements with an interpretation of a language (ex. a field, a graph, an ordered set, etc)
- Theory: a collection of axioms (ex. group axioms, equivalence relations)
- Model: a structure that satisfies the axioms of a particular theory

- Language: a collection of constant, function, and relation symbols
- Formula: a Boolean combination of statements in the language, possibly with variables (ex. $\exists x \ x * x = y$)
- Structure: a mathematical object, represented by a set of elements with an interpretation of a language (ex. a field, a graph, an ordered set, etc)
- Theory: a collection of axioms (ex. group axioms, equivalence relations)
- Model: a structure that satisfies the axioms of a particular theory

Example

The field of real numbers: $(\mathbb{R},+,-,\cdot,0,1)$ is a structure that models the theory of fields. If we extend the language to include the < symbol, then we get an ordered field.

A relatively straightforward way to classify theories is by looking at the number of non-isomorphic models of a given cardinality.

Example

• Q-vector spaces: up to change of basis, completely determined by dimension

A relatively straightforward way to classify theories is by looking at the number of non-isomorphic models of a given cardinality.

Example

- Q-vector spaces: up to change of basis, completely determined by dimension
- Algebraically closed fields of characteristic 0: determined by transcendence degree over $\mathbb Q$

A relatively straightforward way to classify theories is by looking at the number of non-isomorphic models of a given cardinality.

Example

- Q-vector spaces: up to change of basis, completely determined by dimension
- Algebraically closed fields of characteristic 0: determined by transcendence degree over $\mathbb Q$
- Theory of an infinite set together with an equivalence relation with 3 classes: the models are completely determined by specifying the cardinalities of the classes (up to permutation)

A relatively straightforward way to classify theories is by looking at the number of non-isomorphic models of a given cardinality.

Example

- Q-vector spaces: up to change of basis, completely determined by dimension
- Algebraically closed fields of characteristic 0: determined by transcendence degree over Q
- Theory of an infinite set together with an equivalence relation with 3 classes: the models are completely determined by specifying the cardinalities of the classes (up to permutation)

We can also use model theory to determine when theories are **not** classifiable.

The Model-Theoretic Map of the Universe

https://forkinganddividing.com/

Stability

A stable theory is one with relatively few complete types (a complete type assigns every formula in the language a true/false value).

Stability

A stable theory is one with relatively few complete types (a complete type assigns every formula in the language a true/false value).

Definition

A formula $\varphi(x,y)$ has the **order property** if there exist sequences $(a_i)_{i<\omega}, (b_i)_{i<\omega}$ such that $\varphi(a_i,b_i)$ is true if and only if $i\leq j$.

Alternate definition of stability: no formula has the order property.

Example: Dense Linear Orders

A dense linear order \mathcal{M} is a structure in the language $\langle \cdot \rangle$ with the following theory:

- For all $x, y \in M$, exactly one of x < y, x = y, and y < x holds.
- For all $x, y \in M$, x < y implies there is some $z \in M$ with x < z < y.

The standard example is the rational numbers.

Example: Dense Linear Orders

A dense linear order \mathcal{M} is a structure in the language $\langle \langle \rangle$ with the following theory:

- For all $x, y \in M$, exactly one of x < y, x = y, and y < x holds.
- For all $x, y \in M$, x < y implies there is some $z \in M$ with x < z < y.

The standard example is the rational numbers.

This clearly has the order property, as we can take the formula x < y and pick sequences such that $a_i < b_j$ if and only if $i \le j$ (ex. odd and even positive integers).

Example: Dense Linear Orders

A dense linear order \mathcal{M} is a structure in the language $\langle \langle \rangle$ with the following theory:

- For all $x, y \in M$, exactly one of x < y, x = y, and y < x holds.
- For all $x, y \in M$, x < y implies there is some $z \in M$ with x < z < y.

The standard example is the rational numbers.

This clearly has the order property, as we can take the formula x < y and pick sequences such that $a_i < b_j$ if and only if $i \le j$ (ex. odd and even positive integers).

What about structures that don't have a built-in order?

Recall that a graph (V, E) has a vertex set and an edge set, where the edges represent pairs of vertices. The construction of the random graph is as follows: every time we add a vertex to the graph, flip a coin to decide whether to add an edge to each existing vertex.

Vertex Pair | Edge?

Vertex Pair	Edge?
(v_1, v_2)	No

Vertex Pair	Edge?
(v_1, v_2)	No
(v_1, v_3)	Yes
(v_2, v_3)	No

Vertex Pair	Edge?
(v_1, v_2)	No
(v_1, v_3)	Yes
(v_2, v_3)	No
(v_1, v_4)	Yes
(v_2, v_4)	Yes
(v_3, v_4)	No

Recall that a graph (V, E) has a vertex set and an edge set, where the edges represent pairs of vertices. The construction of the random graph is as follows: every time we add a vertex to the graph, flip a coin to decide whether to add an edge to each existing vertex.

The random graph is characterized by the following axioms:

- G = (V, E) is an infinite graph.
- For all disjoint finite sets of vertices $V_1, V_2 \subset V$, there is a vertex $v \in V$ such that v is connected to every element of V_1 and no elements of V_2 .

Ordering in the Random Graph

Definition

A **half-graph** is a bipartite graph on 2n vertices $u_1, \ldots, u_n, v_1, \ldots, v_n$, where u_i and v_j are connected by an edge if and only if $i \leq j$.

Ordering in the Random Graph

Definition

A **half-graph** is a bipartite graph on 2n vertices $u_1, \ldots, u_n, v_1, \ldots, v_n$, where u_i and v_j are connected by an edge if and only if $i \leq j$.

Fact

Every countable graph is contained as a subgraph of the random graph.

Ordering in the Random Graph

Definition

A **half-graph** is a bipartite graph on 2n vertices $u_1, \ldots, u_n, v_1, \ldots, v_n$, where u_i and v_j are connected by an edge if and only if $i \leq j$.

Fact

Every countable graph is contained as a subgraph of the random graph.

In particular, we can find an infinite half-graph inside a model of the random graph. Then taking our sequences to be the two halves of this subgraph, the formula xRy (where R is the edge relation) has the order property.

Outside of Stability: IP and SOP

Definition

A formula $\varphi(x, y)$ has the **strict order property** (SOP) if there is a sequence $(a_i)_{i < \omega}$ such that there exists an x for which $\varphi(x, a_i)$ is false and $\varphi(x, a_j)$ is true if and only if i < j.

In DLO: take φ to be x < y and any increasing sequence.

Outside of Stability: IP and SOP

Definition

A formula $\varphi(x, y)$ has the **strict order property** (SOP) if there is a sequence $(a_i)_{i < \omega}$ such that there exists an x for which $\varphi(x, a_i)$ is false and $\varphi(x, a_j)$ is true if and only if i < j.

In DLO: take φ to be x < y and any increasing sequence.

Definition

A formula $\varphi(x,y)$ has the **independence property** (IP) if for any finite n there exists a sequence $(b_i)_{i < n}$ such that for every $X \subseteq n$ there is some x for which $\varphi(x,b_i)$ is true if and only if $i \in X$.

In RG: take φ to be xRy and it follows immediately from the axioms

The Model-Theoretic Map of the Universe

https://forkinganddividing.com/

Approximating Theories by Simpler Structures

My current research is focused on questions involving approximations of more complex theories by simpler structures. There is a notion of **smoothly approximable theories**, which are can be written as an increasing union of a chain of finite homogeneous substructures.

Approximating Theories by Simpler Structures

My current research is focused on questions involving approximations of more complex theories by simpler structures. There is a notion of **smoothly approximable theories**, which are can be written as an increasing union of a chain of finite homogeneous substructures.

Question

Suppose $\mathcal M$ can be represented as the union of a directed system of substructures $\mathcal N\subset\mathcal M$, satisfying a particular set of axioms. What properties can we determine about the theory of $\mathcal M$ based solely on specific assumptions about the theories of the substructures?

Conclusions Thus Far

Theorem

If $\mathcal M$ is approximated by a directed system of substructures that all have simple theories, then the theory of $\mathcal M$ is also simple.

Conjecture

If $\mathcal M$ is approximated by a directed system of substructures that all have stable theories, then the theory of $\mathcal M$ has the property NSOP₄.