#### Module 11 - First Order Time Response

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

**Topic 1 - First Order Free Response** 

#### **Topic 1 - First Order Free Response**

- Model and EOM
- Solution with Laplace Transforms Method
- The Critically Damped Case
- The Underdamped Case

#### Model and EOM

Consider the model of the moving mass we derived.



The EOM is:

$$m\dot{v} + cv = 0$$

## Solution with Laplace Transforms Method

$$\mathcal{L}\{m\dot{v}+cv=0\} \implies$$

We can find the expected result from the table.

## Sketch Response Equation

Sketch the System Response in the time Domain.



Is this a stable system? What does that mean?

### Step Input Function

Consider the model subject to a Step Input, f(t).



$$m\dot{v} + cv = f(t)$$

$$f(t) = \begin{cases} 0 & t < 0 \\ F & t \ge 0 \end{cases}$$

### Solution with Laplace Transforms Method - Step 1

The method of Laplace Transforms is shown.

Solve for V(s).

## Solution with Laplace Transforms Method - Step 2

Expand V(s) as a partial fraction.

'Cover up' to find the coefficients.

This leads to a form that can be inverted with the table.

## Solution with Laplace Transforms Method - Step 3

Can you find these terms in the Table of Laplace Transforms? The inverse Laplace transform of V(s) gives the time response.

### Sketch Response Equation

Sketch the System Response in the time Domain.



Is this a stable system?

# Components of the Response

In these forms we can see the different components of the response.

$$v(t) = \frac{F}{C} \{ 1 - e^{-\frac{t}{\tau}} \} + v(0)e^{-\frac{t}{\tau}} = \{ v(0) - \frac{F}{c} \} e^{-\frac{t}{\tau}} + \frac{F}{c}$$

- Forced Response
- Free Response
- Transient Response
- Steady-State Response

#### References

 System Dynamics, Palm III, Third Edition - Section 8.1 -Response of First Order Systems - pg. 475