Field kinematics

Basic conventions						
Minkowski metric tensor	Totally antisymmetric tensor	Momentum	Norm	Frame		
$\eta_{\mu u}$	$\epsilon \eta_{\mu u ho \sigma}$	k^{μ}	$k^2 == k_{\mu} k^{\mu}$	$n^{\mu} == \frac{k^{\mu}}{k}$		

$\omega_{\alpha\beta\chi} \qquad \qquad \text{Symmetry[3, } \omega^{\bullet 1 \bullet 2 \bullet 3}, \{\bullet 1 \to -\text{a, } \bullet 2 \to -\text{b, } \bullet 3 \to -\text{c}\}, \begin{vmatrix} -\frac{1}{2} \ \eta_{\beta\chi} \ \omega_{1^-\alpha}^{\#1} + \frac{1}{2} \ \eta_{\alpha\chi} \ \omega_{1^-\beta}^{\#1} + \frac{4}{3} \ \omega_{2^-\alpha\beta\chi}^{\#1} + \frac{1}{3} \ \eta_{\beta\chi} \ \omega_{0^+}^{\#1} \ n_{\alpha} + \omega_{1^+\beta\chi}^{\#1} \ n_{\alpha} + \omega_{1^+\beta\chi}^{\#1} \ n_{\alpha} - \frac{1}{3} \ \eta_{\alpha\chi} \ \omega_{0^+}^{\#1} \ n_{\beta} - \omega_{1^-\alpha}^{\#1} \ n_{\alpha} \ n_{\chi} - \frac{1}{2} \ \omega_{1^-\beta}^{\#1} \ n_{\alpha} \ n_{\chi} - \omega_{1^-\beta}^{\#2} \ n_{\alpha} \ n_{\chi} + \omega_{1^-\alpha}^{\#2} \ n_{\beta} \ n_{\chi} - \frac{1}{6} \ \epsilon \ \eta_{\alpha\beta\chi\delta} \ \omega_{0^-}^{\#1} \ n^{\delta} \\ \omega_{1^+\alpha\chi}^{\#1} \ n_{\beta} - \omega_{2^+\alpha\chi}^{\#1} \ n_{\beta} + \omega_{1^+\alpha\beta}^{\#2} \ n_{\gamma} - \frac{1}{2} \ \omega_{1^-\beta}^{\#1} \ n_{\alpha} \ n_{\chi} - \omega_{1^-\alpha}^{\#2} \ n_{\alpha} \ n_{\chi} + \omega_{1^-\alpha}^{\#2} \ n_{\beta} \ n_{\chi} - \frac{1}{6} \ \epsilon \ \eta_{\alpha\beta\chi\delta} \ \omega_{0^-}^{\#1} \ n^{\delta} \\ \omega_{1^+\alpha\chi}^{\#2} \ n_{\beta} - \omega_{2^+\alpha\chi}^{\#2} \ n_{\beta} + \omega_{1^+\alpha\beta}^{\#2} \ n_{\gamma} - \frac{1}{2} \ \omega_{1^-\beta}^{\#1} \ n_{\alpha} \ n_{\chi} - \omega_{1^-\alpha}^{\#2} \ n_{\alpha} \ n_{\chi} + \omega_{1^-\alpha}^{\#2} \ n_{\beta} \ n_{\chi} - \frac{1}{6} \ \epsilon \ \eta_{\alpha\beta\chi\delta} \ \omega_{0^-}^{\#1} \ n^{\delta} \\ \omega_{1^+\alpha\chi}^{\#2} \ n_{\beta} - \omega_{2^+\alpha\chi}^{\#2} \ n_{\beta} + \omega_{1^+\alpha\beta}^{\#2} \ n_{\alpha} \ n_{\chi} - \omega_{1^-\beta}^{\#2} \ n_{\alpha} \ n_{\chi} + \omega_{1^-\alpha}^{\#2} \ n_{\beta} \ n_{\chi} - \frac{1}{6} \ \epsilon \ \eta_{\alpha\beta\chi\delta} \ \omega_{0^-}^{\#1} \ n^{\delta} \\ \omega_{1^+\alpha\chi}^{\#2} \ n_{\alpha} + \omega_{1^+\alpha\beta}^{\#2} \ n_{\alpha} \ n_{\chi} - \omega_{1^-\alpha}^{\#2} \ n_{\alpha} \ n_{\chi} + \omega_{1^-\alpha}^{\#2} \ n_{\beta} \ n_{\chi} - \frac{1}{6} \ \epsilon \ \eta_{\alpha\beta\chi\delta} \ \omega_{0^-}^{\#1} \ n^{\delta} \\ \omega_{1^+\alpha\chi}^{\#2} \ n_{\alpha} + \omega_{1^+\alpha\beta}^{\#2} \ n_{\alpha} \ n_{\chi} - \omega_{1^-\alpha}^{\#2} \ n_{\alpha} \ n_{\chi} + \omega_{1^-\alpha}^{\#2} \ n_{\beta} \ n_{\chi} + \omega_{1^-\alpha}^{\#2} \ n_{\beta} \ n_{\chi} - \frac{1}{6} \ \epsilon \ \eta_{\alpha\beta\chi\delta} \ \omega_{0^-}^{\#2} \ n^{\delta} \\ \omega_{1^+\alpha\chi}^{\#2} \ n_{\alpha} \ n_{\chi} + \omega_{1^+\alpha\beta}^{\#2} \ n_{\alpha} \ n_{\chi} + \omega_{1^+\alpha}^{\#2} \ n_{\alpha} \ n_{\chi$	Fundamental field	Symmetries	Decomposition in SO(3) irreps	Source
	$\omega_{lphaeta\chi}$			$\sigma_{lphaeta\chi}$

SO(3) irreps		
SO(3) irrep Symmetries	Expansion in terms of the fundamental field	Source

 $\frac{1}{2} \omega_{\alpha\beta\chi} + \frac{1}{4} \omega_{\alpha\chi\beta} - \frac{3}{8} \eta_{\beta\chi} \omega_{\alpha\delta}^{} - \frac{1}{4} \omega_{\beta\chi\alpha} + \frac{3}{8} \eta_{\alpha\chi} \omega_{\beta\delta}^{} - \frac{3}{8} \omega_{\beta\delta}^{} n_{\alpha} n_{\chi} + \frac{3}{8} \omega_{\alpha\delta}^{} n_{\beta} n_{\chi} + \frac{1}{4} \omega_{\beta\chi\delta} n_{\alpha} n^{\delta} +$

 $\frac{1}{2} \omega_{\beta\delta\chi} n_{\alpha} n^{\delta} + \frac{1}{4} \omega_{\chi\delta\beta} n_{\alpha} n^{\delta} + \frac{3}{8} \eta_{\beta\chi} \omega_{\delta}^{\epsilon} n_{\alpha} n^{\delta} - \frac{1}{4} \omega_{\alpha\chi\delta} n_{\beta} n^{\delta} - \frac{1}{2} \omega_{\alpha\delta\chi} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\alpha\chi\delta} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\alpha\chi\delta} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{1}{4} \omega_{\chi\delta\alpha} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\beta} n^{\delta} - \frac{3}{8} \eta_{\alpha\chi} \omega_{\delta}^{\epsilon} n_{\delta}^{\epsilon} n_$

 $\frac{1}{2} \ \omega_{\alpha\beta\delta} \ n_\chi \ n^\delta - \frac{1}{4} \ \omega_{\alpha\delta\beta} \ n_\chi \ n^\delta + \frac{1}{4} \ \omega_{\beta\delta\alpha} \ n_\chi \ n^\delta + \frac{3}{8} \ \eta_{\beta\chi} \ \omega_{\alpha\delta\epsilon} \ n^\delta \ n^\epsilon - \frac{3}{8} \ \eta_{\alpha\chi} \ \omega_{\beta\delta\epsilon} \ n^\delta \ n^\epsilon - \frac{3}{8} \ \omega_{\beta\delta\epsilon} \ n_\alpha \ n_\chi \ n^\delta \ n^\epsilon + \frac{3}{8} \ \omega_{\alpha\delta\epsilon} \ n_\beta \ n_\chi \ n^\delta \ n^\epsilon$

 $\sigma_{1-\alpha}^{\#1}$

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

 $\sigma_{2}^{\#1}_{\alpha\beta\chi}$

 $\omega_{1-\alpha}^{\#1}$ $\omega_{1-\alpha}^{\#2}$ $\omega_{2^{+}\alpha\beta}^{\#1}$ $\omega_{2}^{\#1}{}_{\alpha\beta\chi}$

Symmetry[2, $\omega_{2+}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[{1, 2}, GenSet[(1,2)]]] Symmetry[3, $\omega_{2^{-}}^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$,

StrongGenSet[{1, 2}, GenSet[-(1,2)]]]

 $\omega_{\alpha\beta\chi} n^{\chi} + \omega_{\beta\chi\delta} n_{\alpha} n^{\chi} n^{\delta} - \omega_{\alpha\chi\delta} n_{\beta} n^{\chi} n^{\delta}$ Symmetry[1, $\omega_1^{\#1} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[$\} \}$] $-\omega_{\alpha\beta}^{\beta} + \omega_{\beta\gamma}^{\chi} n_{\alpha} n^{\beta} + \omega_{\alpha\beta\chi}^{\chi} n^{\beta} n^{\chi}$ Symmetry[1, $\omega_{1}^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[$\} \}$] $\omega_{\alpha\beta\chi} n^{\beta} n^{\chi}$ $-\frac{1}{2} \omega_{\alpha\chi\beta} n^{\chi} - \frac{1}{2} \omega_{\beta\chi\alpha} n^{\chi} - \frac{1}{3} \eta_{\alpha\beta} \omega_{\chi\delta}^{\delta} n^{\chi} + \frac{1}{3} \omega_{\chi\delta}^{\delta} n_{\alpha} n_{\beta} n^{\chi} + \frac{1}{2} \omega_{\beta\chi\delta} n_{\alpha} n^{\chi} n^{\delta} + \frac{1}{2} \omega_{\alpha\chi\delta} n_{\beta} n^{\chi} n^{\delta}$

Symmetry[2, $\omega_{1+}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, $\omega_{1}^{\#1}{}_{\alpha\beta}$ StrongGenSet[{1, 2}, GenSet[-(1,2)]]] Symmetry[2, $\omega_{1+}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, $\omega_{1}^{\#2}{}_{lphaeta}$ StrongGenSet[{1, 2}, GenSet[-(1,2)]]]

 $-\epsilon \eta_{\alpha\beta\chi\delta} \overline{\omega^{\beta\chi\delta} n^{\alpha}}$ $\omega_0^{\#1}$ Symmetry[0, $\omega_0^{\#1}$, {}, StrongGenSet[{}, GenSet[]]] $-\frac{1}{2} \omega_{\alpha\chi\beta} n^{\chi} + \frac{1}{2} \omega_{\beta\chi\alpha} n^{\chi} - \frac{1}{2} \omega_{\beta\chi\delta} n_{\alpha} n^{\chi} n^{\delta} + \frac{1}{2} \omega_{\alpha\chi\delta} n_{\beta} n^{\chi} n^{\delta}$

 $\omega_{0^+}^{\sharp 1}$ $\omega_{\alpha\beta}^{\beta} n^{\alpha}$ Symmetry[0, $\omega_{0+}^{\#1}$, {}, StrongGenSet[{}, GenSet[]]]

Fundamental fields