Análisis Estadístico
Trabajo Final

Contenido

Desarrollo	3
Aplicación de estadística descriptiva para una evaluación de ingresos	4
2. Cálculo del Valor en Riesgo (VaR por su acrónimo en inglés: Value at Risk) para un portafolios de 2 activos, utilizando el método de Varianzas-Covarianzas	5
3. Cálculo del Rendimiento y Riesgo de un Portafolio de Acciones	9
4. Aplicación de un modelo de pronósticos para la definición de un Plan de Ventas	12
5. Técnicas de muestreo	15
6. Modelo de fijación/apreciación de activos de capital (CAPM por su acrónimo en inglés: Capital Asset Pricing Model)	17
7. Criterios del análisis de decisiones en entornos de incertidumbre	20
8. Aplicación de la tabla de contingencia (prueba de hipótesis de la Ji Cuadrada)	23
Conclusiones	26
Glosario	26
Bibliografía	28

Introducción

El presente trabajo tiene como principal objetivo presentar ocho distintas aplicaciones de los conceptos aprendidos en el curso, que demuestren la utilidad y necesidad de utilizar la estadística para desempeñar diversas actividades profesionales que son útiles en el ámbito financiero.

En general en el entorno empresarial es común ver que diversas decisiones se encuentren exentas de este tipo de análisis, por lo que este trabajo también tiene el propósito de mostrar la estadística nos permite ser objetivos en la descripción de la información, para interpretar y asegurar con un cierto margen de confianza que nuestras decisiones del día a día son más acertadas y no basadas en mero "instinto".

Desarrollo

En este apartado se menciona inicialmente la utilidad de los conceptos mencionados en el presente trabajo para su aplicación en el entorno profesional, y posteriormente se detallarán los ocho ejemplos en sus correspondientes apartados:

- I. <u>Aplicación de estadística descriptiva para una evaluación de ingresos:</u> en este ejemplo se muestra de forma simple como la estadística descriptiva es una herramienta necesaria para realizar un análisis preliminar de una base de datos.
- II. <u>Cálculo del valor en riesgo para un portafolios de 2 activos, utilizando el método de Varianzas-Covarianzas</u>: entre diversos métodos para calcular el valor en riesgo, este método proporciona una forma sencilla de realizar el cálculo utilizando como principal concepto los conceptos de covarianzas y correlaciones.
- III. Cálculo del rendimiento y riesgo de un portafolio de acciones: permite crear estrategias para optimizar las ganancias o minimizar el riesgo de pérdida de ciertas inversiones (en esta caso acciones) de acuerdo al perfil del inversionista. Estos cálculos son necesarios para cumplir la regulación de Prácticas de Venta, para instituciones de crédito y casas de bolsa (en vigor desde Octubre de 2014).
- IV. <u>Aplicación de un modelo de pronósticos para la definición de un Plan de Ventas:</u> junto al plan de negocios y plan de producción, es un elemento necesario para la planeación y las proyecciones financieras de una empresa productora.
- V. <u>Técnicas de muestreo</u>: son necesarias para obtener tamaños de muestra representativos de la población de datos, a manera de reducir el tiempo y el esfuerzo de análisis del personal que revise esta muestra.
- VI. <u>Modelo de fijación/apreciación de activos de capital (CAPM)</u>: es otra herramienta de análisis de inversiones, eligiendo la que tenga mayor rendimiento esperado.
- VII. <u>Criterios del análisis de decisiones en entornos de incertidumbre</u>: nos dan información necesaria para el análisis de decisiones, empleando estadísticos.
- VIII. Aplicación de la tabla de contingencia (prueba de hipótesis de la Ji Cuadrada): es una prueba para comprobar la independencia de variables de acuerdo a un análisis de frecuencias, de forma que conozcamos su relación (útil para analizar decisiones e inversiones también).

1. Aplicación de estadística descriptiva para una evaluación de ingresos

El presente ejemplo muestra de forma simple la aplicación de estadísticos descriptivos básicos, que sirven para demostrar que es posible obtener conclusiones de cualquier base de datos, reporte o información contable, y utilizar dichas conclusiones para la toma de decisiones. Estas herramientas se pueden utilizar también para validar la calidad o la completitud de la información, asegurando que ésta es razonable para ser empleada de acuerdo a la descripción de los estadísticos sobre los datos:

Se presentan los ingresos netos para una empresa en una muestra de 80 resultados de balances financieros obtenidos durante un año, seleccionados al azar. El director del área de Finanzas requiere analizar los datos en una Distribución (tabla) de frecuencias y conocer aproximadamente qué montos de ingresos se obtienen con mayor frecuencia a lo largo del año, para compararlo con los ingresos del año pasado.

	,					
Ingres	Ingreso Neto					
15546	22845					
15794	23169					
15935	23197					
17266	23372					
17357	23591					
17399	23613					
17891	23657					
17968	23765					
18021	24052					
18263	24220					
18890	24285					
19251	24296					
19331	24324					
19587	24533					
19688	24571					
19766	24609					
19873	25251					
19889	25277					
20004	25449					
20047	25783					
20155	25799					
20203	26237					
20356	26285					
20445	26613					
20454	26651					
20633	26661					
20642	27443					
20642	27453					
20818	27896					
20895	28034					
00000	00007					

Considerando el criterio de 2 elevado a la k, se obtiene que 2^h6 es igual a 64 y 2^h7 igual a 128, por lo que el número de clases se define como un número mayor a 2^hk. En este caso 80>64, por ende el número de clases es de 6

Posteriormente se obtienen en excel las estadísticas descriptivas de los datos, de forma que se puedan obtener el valor máximo y el valor mínimo de los datos

Estadística Descrip	Estadística Descriptiva				
Media	23218.1625				
Error típico	486.8409474				
Mediana	22831				
Moda	20642				
Desviación estándar	4354.43781				
Varianza de la muestra	18961128.64				
Curtosis	0.5433087				
Coeficiente de asimetría	0.72681585				
Rango	20379				
Mínimo	15546				
Máximo	35925				
Suma	1857453				
Cuenta	80				

El rango se divide entre el número de clasesm que nos dá un rango para cada clase de: 3396.5

Limite Inferior	Limite Superior	Clase	Frec. Rel.	Frec. Rel. Acum.	% rel.	% acum	Marca de clase
15546	18941.5	15546	1	1	0.014286	0.014286	17243.75
18942.5	22338	18093.375	8	9	0.114286	0.128571	20640.25
22339	25734.5	20640.75	17	26	0.242857	0.371429	24036.75
25735.5	29131	23188.125	16	42	0.228571	0.6	27433.25
29132	32527.5	25735.5	17	59	0.242857	0.842857	30829.75
32528.5	35925	28282.875	11	70	0.157143	1	34226.75

Utilizando estos datos, se puede reportar que los ingresos en general oscilan en los rangos de 22,339 pesos a 25,734.5 pesos, pero también tendrían la misma proporción que el rango que va desde 29,132 pesos a 32,537.5 pesos. Con esta conclusión, el Director puede comparar los resultados del año anterior contra los del actual año para conocer si este año tuvo mayores ingresos que el anterior.

2. Cálculo del Valor en Riesgo (VaR por su acrónimo en inglés: Value at Risk) para un portafolios de 2 activos, utilizando el método de Varianzas-Covarianzas

Este ejemplo muestra la aplicación de principios fundamentales de estadística para la medición de riesgos, como son la varianza, desviación estándar, covarianzas, intervalos de confianza, y dependiendo de la complejidad del problema de otros conceptos. En este caso se realiza un análisis del Riesgo de Mercado, que se utiliza para estimar posibles pérdidas financieras.

El **valor en riesgo** es un método para calcular y controlar la exposición al riesgo de mercado. Este valor mide la volatilidad de los activos de una institución – a mayor volatilidad, mayor es el riesgo de pérdida.

La **volatilidad** es la medida de qué tanto el precio de un activo financiero varía. La volatilidad se mide con la desviación estándar. A mayor desviación estándar, mayor es la volatilidad del activo.

Considerando esta definición, el VaR es un número (expresado como monto) que estima la pérdida máxima esperada de un portafolio sobre un periodo de tiempo (periodo de tenencia) a un nivel de confianza definido.

Los métodos que se utilizan para calcular el VaR pueden ser:

- Varianza-Covarianza (también conocido como Delta-Normal)
- Simulación Histórica
- Simulación Monte-Carlo

Para este problema se considera el primer método, el de Varianza-Covarianza. Es necesario resaltar que según sea el método aplicado, será diferente el valor que pueda adoptar el VaR.

La estimación del VaR depende de los valores especificados del periodo de tenencia, nivel de confianza, volatilidad y, usualmente, la correlación entre las variables. La fórmula para su cálculo es la siguiente:

$$VaR = P * Z_{\frac{\alpha}{2}} * \sigma_P$$

Donde:

P = valor del portafolio

 $Z_{\frac{\alpha}{2}}$ = número de desviaciones estándar de la media necesarias para capturar el 95% de los valores

 σ_P = la volatilidad (desviación estándar del portafolio)

El cálculo del VaR con el método de Varianzas-Covarianzas involucra los siguientes pasos:

1. Determinar el periodo de tenencia

Este periodo depende de los activos y de las actividades, pero indica el periodo de días en el que se puede perder un cierto monto. A mayor periodo de tenencia, mayor será el valor estimado del VaR.

El periodo de tenencia para un portafolio muy activo o para instrumentos líquidos probablemente sea adecuado con valor de 1 día, pero para cuestiones regulatorias o mercados con poca liquidez es más recomendable un periodo de 10 días.

2. Seleccionar el nivel de confianza

Como se ha descrito durante el curso, es la probabilidad de que el verdadero valor del parámetro se encuentre en el intervalo de estimación propuesto,

A mayor nivel de confianza, mayor será el valor estimado del VaR

3. Crear una distribución de probabilidad de retornos probables

Existen varios métodos para crear distribuciones de probabilidad para los retornos de un activo o un portafolio. La distribución más sencilla de entender y la más frecuentemente utilizada es la distribución normal, por lo que el presente ejemplo se puede describir en términos de los dos parámetros que la distinguen: si media y su desviación estándar.

4. Determinar las correlaciones de los activos

Los instrumentos financieros en general no son independientes unos de otros. La **Correlación** (o producto-momento de Pearson) es una medida del grado de relación (correlación) lineal entre dos variables con datos cuantitativos, en este caso de activos financieros. El **coeficiente de correlación** es expresado como un número entre -1 y +1, y se calcula con la siguiente fórmula:

$$p_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$$

Donde:

 σ_{ij} = covarianza entre el activo i y el activo j

 σ_i = desviación estándar del activo i y σ_i = desviación estándar del activo j

Recordemos que la **covarianza** es una medida descriptiva de la relación (o asociación) entre dos variables. Se calcula con la fórmula:

$$\sigma_{xy} = \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N}$$

La correlación entre activos impacta en el riesgo del portafolio. Por lo tanto, el grado de correlación entre activos (y mercados) es de suma importancia para reducir el riesgo por medio de la diversificación. La diversificación se refiere a la distribución de recursos o fondos sobre un rango de instrumentos de distintos sectores en el cual los retornos no están directamente relacionados sobre el tiempo. La efectividad de la diversificación en lograr la reducción del riesgo de portafolio depende mucho del grado de correlación entre los instrumentos en un portafolio.

A continuación se muestra el efecto de las correlaciones entre 2 activos en el riesgo de portafolio:

a. Retornos correlacionados positivamente: tanto el riesgo como el retorno esperado de un portafolio de dos activos consiste en el promedio ponderado de los riesgos y retornos de cada activo de forma individual. En este escenario, la diversificación no reduce el riesgo de portafolio, simplemente lo promedia. No existe una ventaja en diversificar con dichos activos.

b. Retornos correlacionados negativamente: en este caso, ambos activos se mueven en direcciones opuestas, por lo que el retorno de un portafolio que tiene ambos activos con el mismo monto está garantizado y el riesgo es eliminado.

c. Retornos sin correlación: si no existe relación en los retornos de ambos activos, el riesgo de combinarlos en un portafolio se reduce considerablemente

5. Calcular la volatilidad del portafolio

El VaR es prácticamente una medida de la volatilidad en los activos de una institución, a mayor volatilidad, mayor la oportunidad de pérdida. La medida más simple de la volatilidad es la desviación estándar, que mide la dispersión de los valores de los datos, con la ventaja que está en las mismas unidades que la variable en cuestión.

La desviación estándar se puede obtener calculando la raíz cuadrada de la varianza para dos activos de un portafolio, que se calcula de la siguiente manera:

$$\sigma_P^2 = \sum_{i=1}^n \sum_{j=1}^n p_{ij} w_i w_j \sigma_i \sigma_j = \sum_{i=1}^n w_i^2 \sigma_i^2 + 2 \sum_{i=1}^n \sum_{j=1}^n p_{ij} w_i w_j \sigma_i \sigma_j$$

Donde:

 σ_P^2 = varianza del portafolio p

 p_{ii} = correlación entre el activo i y el activo j

 w_i = proporción del valor del activo i en relación al valor del portafolio

 w_i = proporción del valor del activo i en relación al valor del portafolio

 σ_i = desviación estándar del activo i

 σ_i = desviación estándar del activo j

6. Calcular el estimador VaR

Previamente se mencionó la fórmula de cálculo del VaR es: VaR = P * $Z_{\frac{\alpha}{2}}$ * σ_P

Utilizando esta información podemos proceder a realizar un ejercicio práctico.

Supongamos que tenemos un portafolio diversificado con dos acciones:

- 10,000 acciones de PE&OLES, cada una con un valor de 20 pesos,
- y 20,000 acciones de GF.BANORTE, cada una con un valor de 10 pesos

Si asumimos que la volatilidad anual de PE&OLES es de 22% y la de GF.BANORTE es 20%, y que la correlación entre ambas acciones es de 0.6, ¿Cuál es el VaR de un día con un nivel de confianza del 95%?

La fórmula se puede reexprezar como: $\sigma_p = (\omega_i^2 \sigma_i^2 + \omega_j^2 \sigma_j^2 + 2p_{ij}\omega_i\sigma_i\omega_j\sigma_j)^{0.5}$

Por lo tanto, con una correlación (ρ) de 0.6: σ PE&OLES + GF.BANORTE = $((0.5^2 \times 0.0139^2) + (0.5^2 \times 0.0126^2) + (2 \times 0.6 \times 0.5 \times 0.0139 \times 0.5 \times 0.0126))^{0.5}$ S PE&OLES + GF.BANORTE = $(0.000048016 + 0.000039683 + 0.000052381)^{0.5} = 0.011835513$

Por lo tanto: $VaR = 400,000 \times 1.645 \times 0.011835513 \approx 7,788$

Esto significa que la pérdida potencial en un día del portafolio de inversión es de 7,788 pesos.

3. Cálculo del Rendimiento y Riesgo de un Portafolio de Acciones

Este ejemplo muestra una aplicación estadística a los mercados de valores, donde se considera la medición de riesgos y rendimientos de diversas acciones; además de considerar conceptos estadísticos como la media, la desviación estándar, la covarianza y el coeficiente de correlación

Este análisis sirve para seleccionar la mejor combinación posible de acciones para un portafolio diversificado, considerando el rendimiento promedio y el riesgo de las emisoras

Se utilizó para el comparativo un portafolio con acciones de las siguientes emisoras:

- Peñoles
- GFBanorte.O
- PINFRA

En la tabla se muestran los rendimientos correspondientes a cada una de las emisoras (calculadas con el logaritmo natural del precio de la acción del periodo entre el precio de la acción del periodo anterior), además de los rendimientos promedios de un portafolio que considera a las 3 emisoras.

El detalle sobre el análisis se muestra en la siguiente página, donde se utilizó Microsoft Excel para resolver el ejemplo planteado.

		-11		
Fecha		nientos por Er		PROMEDIO
Fri 30-May-14	Peñoles 0.068331947	-0.00824725	PINFRA 0.025404808	0.0284965
Fri 06-Jun-14	0.050451543	0.007180013	-0.01479267	0.0284963
Fri 13-Jun-14	-0.01612938	0.007180013	-0.02208805	-0.01138933
Fri 20-Jun-14	-0.0573019	0.004049491	0.03610173	0.00022644
Fri 27-Jun-14	0.021295524	-0.04272701	-0.03604402	-0.0191585
Fri 04-Jul-14	0	0.022653822	0.028837488	0.01716377
Fri 11-Jul-14	-0.02215689	-0.0386349	0.007596104	-0.0177319
Fri 18-Jul-14	0.00344095	0.019990834	-0.00339994	0.00667728
Fri 25-Jul-14	0.000858283	-0.02607795	0.025848068	0.00020947
Fri 01-Aug-14	-0.07850664	-0.00200022	-0.04991975	-0.04347554
Fri 08-Aug-14	-0.01873586	0.012161565	0.014422235	0.00261598
Fri 15-Aug-14	-0.0346355	-0.02368488	0.007693426	-0.01687565
Fri 22-Aug-14	-0.02027263	0.034396534	0.018072447	0.01073212
Fri 29-Aug-14	-0.04526077	0.000760746 -0.00250177	0.007007584	0.03281201 -0.0098124
Fri 05-Sep-14 Fri 12-Sep-14	-0.04320077	-0.00230177	-0.04077959	-0.0038124
Fri 19-Sep-14	0.011151631	-0.02312945	0.003897989	-0.00269328
Fri 26-Sep-14	-0.01115163	-0.02312345	-0.0059086	-0.01827403
Fri 03-Oct-14	-0.06080753	-0.02138742	0.026045725	-0.01871641
Fri 10-Oct-14	-0.03211637	-0.00930794	-0.04341491	-0.02827974
Fri 17-Oct-14	-0.03595158	-0.01704896	0.032351153	-0.00688313
Fri 24-Oct-14	-0.04075278	0.044366923	0.00209067	0.0019016
Fri 31-Oct-14	-0.01983729	0.007785758	0.016569846	0.0015061
Fri 07-Nov-14	-0.03294692	-0.02460869	-0.01152625	-0.02302729
Fri 14-Nov-14	0.089090067	-0.11610868	-0.06980564	-0.03227475
Fri 21-Nov-14	-0.00278946	0.076294597	0.018302228	0.03060246
Fri 28-Nov-14	-0.34793432	-0.02753616	-0.0091964	-0.12822229
Fri 05-Dec-14 Fri 12-Dec-14	-0.00079145 -0.09285871	-0.01007597 0.002304739	-0.02709235 -0.01667558	-0.01265326 -0.03574319
Fri 19-Dec-14	0.324359958	0.002304739	0.018524617	0.13047906
Fri 26-Dec-14	0.021746741	-0.02130229	0.018714204	0.00638622
Fri 02-Jan-15	-0.01548498	-0.01909846	0.006296663	-0.00942892
Fri 09-Jan-15	-0.1135784	-0.01058481	-0.0002325	-0.04146524
Fri 16-Jan-15	0.09467425	-0.00153965	-0.0033774	0.02991907
Fri 23-Jan-15	0.068229221	0.03333642	0.05326871	0.05161145
Fri 30-Jan-15	-0.00357143	-0.05685163	-0.06926153	-0.0432282
Fri 06-Feb-15	0.047738983	0.045108836	0.052137533	0.04832845
Fri 13-Feb-15	-0.01778074	0.005138822	-0.01348004	-0.00870732
Fri 20-Feb-15	-0.05471043	0.009456335	-0.01702267	-0.02075892
Fri 27-Feb-15 Fri 06-Mar-15	-0.09414955 -0.09800016	0.005434125 0.021807528	0.037566309 -0.0840449	-0.0170497 -0.05341251
Fri 13-Mar-15	0.07901654	0.021807328	0.018064075	0.04740094
Fri 20-Mar-15	0.015620012	0.003679434	0.022597498	0.01396565
Fri 27-Mar-15	0.068992871	0.009594591	-0.03351739	0.01502336
Fri 03-Apr-15	0	0.018359473	0.001386587	0.00658202
Fri 10-Apr-15	0.087849658	-0.02097742	0.016846277	0.02790617
Fri 17-Apr-15	-0.05505983	0.015493666	0.038922199	-0.00021466
Fri 24-Apr-15	0.017496616	-0.01572164		0.00672634
Fri 01-May-15	0.007151461	-0.00273973	-0.01340261	-0.00299696
Fri 08-May-15	-0.02039663	0.032723446	-0.00551435	0.00227082
Fri 15-May-15	0.065674296	-0.02147013	-0.01371811	0.01016202
Fri 22-May-15	-0.00626253	-0.01986367	0.018154724	-0.00265716
Fri 29-May-15 Fri 05-Jun-15	-0.00114286 0.032070204	-0.01611909	-0.04914494 0.01737427	-0.01599481 0.01110846
Fri 12-Jun-15	0.008820344	0.007337986	-0.0061705	0.00332928
Fri 19-Jun-15	-0.01548692	0.009700965	0.016486781	0.00352520
Fri 26-Jun-15	0.003894247	-0.00715113	0.010153543	0.00229889
Fri 03-Jul-15	0	-0.00778576	0.002407844	-0.00179264
Fri 10-Jul-15	-0.07851694	0.042370026	-0.0001718	-0.01210624
Fri 17-Jul-15	-0.02739891	-0.02502253	0.029457045	-0.0076548
Fri 24-Jul-15	-0.08633826	-0.02990855	0.002221853	-0.03800832
Fri 31-Jul-15	-0.02728682	0.001770434	0.028874976	0.00111953
Fri 07-Aug-15	-0.00277008	0.003531493	-0.00410523	-0.00111461
Fri 14-Aug-15	0.113922921	-0.02510692	-0.02588006	0.02097865
Fri 21-Aug-15	-0.09333194	-0.07452516	0.009178434	-0.05289289

Los pasos del método utilizado para analizar el portafolio son los siguientes:

- 1. Obtener los datos. En este caso analizamos acciones de empresas emisoras
- 2. Estandarizar los tiempos de las acciones (medirse en el mismo intervalo de tiempo)
- 3. Calcular los rendimientos de las acciones
- 4. Calcular las correlaciones entre las acciones
- 5. Seleccionar los activos (en este caso acciones de Peñoles, GFBanorte.O y PINFRA)

El método asume una ponderación del número de títulos de la tercera parte para cada emisora dentro del portafolio (es decir, 33.33% del portafolio le corresponde a cada emisora):

	Rendifficitos Effisoras					
Concepto	Peñoles	GFBanorte.O	PINFRA	Promedio	CALCULO	
X's	33.33%	33.33%	33.33%	Promedio	=1/3	
Rendimiento Emisora	-0.00632131	-0.0030221	0.000552573	-0.00293028	=PROMEDIO(datos)	
Riesgo	0.078740621	0.030135745	0.028366501	0.03229483	=DESVEST.M(datos)	
CV	-12.4563749	-9.9717789	51.33530331	-11.0210706	=Rend. Emis./Riesgo	

- Peñoles tiene un 12.45% de riesgo por cada 1% que pueda tener de rendimiento el portafolio, que en este caso se representa como pérdidas
- En el caso de PINFRA, se tiene un riesgo mayor dado al pequeño rendimiento promedio que tiene, pero no ha presentado pérdidas.
- El que tiene un menor riesgo es Banorte, sin embargo también se expresa como una pérdida su rendimiento promedio

Podemos concluir de los puntos anteriores que el rendimiento del portafolio es negativo (puede generar pérdidas) con las tres emisoras seleccionadas, y no mitiga mucho el riesgo del portafolio. Para conocer el impacto de cada emisora (a manera de evaluar cuál mantener en el portafolio) se obtienen la tabla de covarianzas entre emisoras con la opción "Analisis de datos - Covarianza" de Excel (con datos poblacionales):

	Peñoles	GFBanorte.O	PINFRA
Peñoles	0.006104699		
GFBanorte.O	0.000281522	0.000894191	
PINFRA	0.000163997	0.000279993	0.000792279

Notemos que el número de covarianzas es N(N-1)/2 = (3*(3-1))/2 = 3, donde N es el número de emisoras (covarianzas marcadas en azul dentro de la tabla).

Después se agrega la segunda parte de la matriz seleccionado los datos de las covarianzas y seleccionando la opción "Pegar Especial - Saltar Blancos y Transponer"

	Peñoles	GFBanorte.O	PINFRA
Peñoles	0.006104699	0.000281522	0.000163997
GFBanorte.O	0.000281522	0.000894191	0.000279993
PINFRA	0.000163997	0.000279993	0.000792279

Analizando las covarianzas se determina que no se cumple el criterio fundamental para seleccionar un activo dado que los valores son muy cercanos a cero, a pesar de ser positivos. Sin embargo, se puede confirmar que hay una mayor relación entre Peñoles y GFBanorte.O, por lo que para mejorar la diversificación del portafolio sería conveniente tener a GF.Banorte con PINFRA que para nuestro ejemplo en específico demuestran tener la menor pérdida esperada.

Adicional al análisis de las covarianzas es posible comprender mejor el impacto de cada emisora al rendimiento promedio si ponderamos los valores de la matriz de covarianzas con el número de acciones que se estima comprar para comprender el riesgo del portafolio. Para ello, se recurre a resolver la operación de matrices con la siguiente función de Excel:

=MMULT(MMULT(ponderadores, covarianzas), TRANSPONER(ponderadores))^0.5

Y dado que estamos hablando de varianzas, se eleva a 0.5 la operación para no expresar el riesgo en términos cuadráticos. Recordemos por último que lo valores de matrices deben ingresarse usando SHIFT + CTRL + ENTER.

Esto resulta en un riesgo del portafolio del 3.2045%, donde se aprecia un considerable nivel de riesgo del portafolio. Se puede interpretar este número como el porcentaje de pérdida esperado al momento de esperar obtener un 1% de rendimiento del portafolio.

Para asegurar que el análisis pueda realizarse de una mejor manera, se pueden calcular los coeficientes de correlación de estos datos (que en este caso se puede aplicar el mismo procedimiento que realizamos con las covarianzas, pero con la opción "Análisis de Datos – Coeficiente de Correlación", donde se obtiene la siguiente tabla:

	Peñoles	GFBanorte.O	PINFRA
Peñoles	1	0.12049386	0.0745703
GFBanorte.	0.12049386	1	0.33265353
PINFRA	0.0745703	0.33265353	1

Siendo este caso muy similar al de las covarianzas, podemos confirmar que los valores son cercanos a cero y por ende tienen una correlación positiva débil.

4. Aplicación de un modelo de pronósticos para la definición de un Plan de Ventas

Un **Plan de Ventas** proyecta periódicamente las ventas que se estiman realizar durante un periodo de tiempo definido, a partir del actual periodo, y generalmente se definen para un año. Pronosticar y planear las ventas con precisión ayuda a las empresas a evitar problemas futuros de flujo de efectivo, falta o exceso de personal o inventarios, por lo que es una herramienta financiera muy necesaria.

Para lo anterior se utiliza un **pronóstico de la demanda**, que es la predicción de lo que sucederá con un elemento determinado dentro del marco de un conjunto dado de condiciones. Los pronósticos que se mencionan a continuación utilizan herramientas estadísticas y usan el concepto de series de tiempo.

Una **serie de tiempo** es una colección de datos históricos ordenada cronológicamente en periodos "iguales" dentro de un cierto intervalo de tiempo. Los componentes de una serie de tiempo son:

- Nivel: mecanismo de autocorrección del modelo de pronósticos
- **Tendencia**: inclinación del modelo en cierta dirección.
- **Estacionalidad**: presenta aumentos o disminuciones en las ventas causadas por eventos, tales como el clima, días festivos, temporada de impuestos, etc.
- Ciclicidad: comportamiento que se repite regularme en un intervalo de tiempo, normalmente asociada con el largo plazo
- **Eventos**: casos discretos que podrían o no repetirse, y pueden afectar las medidas de tendencia y estacionalidad de los modelos estadísticos.
- y **Ruido**: componente inherentemente impredecible de una variable. Es importante medirlo para obtener un comparativo de que tan correcta es la serie.

Modelos de Pronósticos

Considere el siguiente ejemplo: Una empresa tiene información de 2 años de ventas de su producto principal. Se están solicitando hacer un plan de ventas para el siguiente año (año 3).

Para obtener el pronóstico de la demanda se pueden utilizar los siguientes modelos estadísticos:

- a. Promedio Simple
- b. Promedio Móvil de 6 meses
- c. Promedio Móvil Ponderado de 6 meses (con pesos óptimos)
- d. Nivelación (o Suavización) Exponencial Simple
- e. Nivelación Exponencial con Tendencia
- f. Nivelación Exponencial con Estacionalidad
- g. Nivelación Exponencial con Estacionalidad y Tendencia

Mes	AÑO 1	AÑO 2
Enero	15	21
Febrero	21	31
Marzo	85	131
Abril	20	31
Mayo	88	134
Junio	75	107
Julio	14	20
Agosto	16	24
Septiembre	15	23
Octubre	62	94
Noviembre	60	86
Diciembre	80	118

A medida que se acompleja cada modelo de pronósticos, se van añadiendo distintos conceptos estadísticos, tales como las covarianzas, regresiones (para los modelos que miden la tendencia de los datos), aplicación de índices (para los modelos que consideran periodos estacionales, donde las ventas se comportan de manera diferente), y la combinación de todos los conceptos anteriores. A mayor complejidad del modelo, mayor es el apego de los pronósticos a los datos proporcionados.

Para el presente ejemplo, se utilizará el modelo del **Promedio Móvil**, donde se utilizan las siguientes fórmulas y conceptos estadísticos para conocer la precisión del mismo:

- Error de pronóstico: $e_i = D_i f_i$ donde Di es la demanda durante el periodo i y fi es el pronóstico elaborado al concluir el periodo i para el periodo i
- Desviación Estándar del error (s):

$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n}(\mathrm{Di} - \mathrm{Fi})^{2}}{n}}$$

<u>Desviación Media Absoluta (MAD):</u>

$$MAD = \frac{\sum_{i=1}^{n} |Di - Fi|}{n}$$

D_i = Demanda real del período

F_i = Pronóstico del período i

(D_i - F_i) = Error de pronóstico del período i

Porcentaje de Error Medio Absoluto (MAPE):

$$MAPE = \frac{\sum \left[\frac{|e_i|}{D_i} \right]^{*100}}{n}$$

 $\frac{\sum \left[|e_i|D_i\right]*100}{\text{MAPE}} = \frac{\sum \left[|e_i|D_i\right]*100}{\text{EI MAPE es una unidad relativa de error. Cuando se comparan varios modelos do propértios se eliza agual con el mana MARE.}$ varios modelos de pronóstico se elige aquel con el menor MAPE

Señal de rastreo (S):

$$S = \frac{\sum e_i}{\sum |e_i|/n}$$

Un valor positivo de S indica que la demanda es mayor que el pronóstico. El objetivo es hacer que el valor se acerque lo más posible a 0

Donde:

Fn = Pronóstico para el período n n = número de periodo para el cual se pronostica m = número de períodos utilizados en el pronóstico

Fórmulas de Pronósticos:

- Promedio Simple:
$$F_n = \frac{D_1 + D_2 + D_3 + \dots + D_{n-1}}{n-1}$$

- Promedio Móvil:
$$F_n = \frac{D_{n-m} + D_{n-(m-1)} + D_{n-(m-2)} + \dots + D_{n-1}}{m}$$

En la siguiente página se muestra la solución utilizando los conceptos del promedio móvil ponderado, utilizando las herramientas proporcionadas por Microsoft Excel.

Solución en Microsoft Excel

Suma	51.74013158	790.7664474	42083.39635	
Indicador	Sesgo	MAD		MAPE
Promedio	2.874451754	43.9314693		127.53%

Señal de rastreo 1.17774644

En la gráfica es posible apreciar que el modelo empieza a cobrar cierta similitud con los datos históricos proporcionados, sin embargo existen modelos que presentan un pronóstico mucho más acertado, sin embargo para el propósito del ejercicio, se presentaron las variables a considerar y los indicadores necesarios para hacer un seguimiento adecuado de los pronósticos, donde se busca principalmente que se tenga el menor valor posible para el indicador MAPE.

5. Técnicas de muestreo

Una muestra es un grupo de registros o transacciones tomadas de una población de registros o transacciones que sirven para proporcionar información que puede ser utilizada como una base para tomar una decisión relativa a toda la población.

Las muestras estadísticas se calculan de acuerdo con el tipo de datos recogidos. Los **datos** son información objetiva, como registros y transacciones, que se pueden transformar en conocimiento al ser recolectados y analizados.

Hay 2 tipos principales de datos:

- <u>Datos de Atributo (o Discretos)</u>, donde los valores de datos sólo pueden ser enteros. Requiere recuentos de cada categoría y poco espacio de almacenamiento de datos.
- <u>Datos de Variables (o Continuos)</u>, donde los valores de datos pueden ser cualquier número real. Requiere el almacenamiento de los valores y cálculos individuales para obtener la media, desviación estándar y otras estimaciones de la población.

Los datos de variables se consideran mejores que los datos de atributos, ya que son más precisos y contienen más información.

Método de muestreo:

- <u>Aleatorio</u>: significa dar a cada registro la misma oportunidad de ser seleccionado para la muestra, que deberá ser representativa de la población. Esto implica la extracción de elementos de una población a través de una rifa, sin otra condición.
- Estratificado: Uno de los supuestos más básicos realizados en el muestreo es que la muestra se selecciona al azar a partir de un "lote" homogéneo, pero cuando ese "lote" no es homogéneo, se requiere seleccionar muestras al azar de cada grupo o proceso que sea diferente de los otros grupos o procesos. La proporción de las muestras debe reflejar la frecuencia relativa de los grupos.

Cálculo del tamaño de muestra:

Se ilustra la ecuación general utilizada para calcular el Tamaño de la muestra de datos variables (suponiendo una distribución normal):

$$n = \frac{Z^2 \sigma^2}{E^2}$$

Dónde:

Z es el valor estandarizado del intervalo de confianza. Por ejemplo, queremos estar 90% seguro de que la muestra sea representativa de las características de la población, por lo que puedo decir que el valor estandarizado es igual a +/- 1.645, que es el rango de cualquier registro / transacción puede variar de la media de la población estudiada. Esto significa que la probabilidad de tener una muestra con el tamaño adecuado es 0.9.

Z puede tomar los siguientes valores en función del intervalo de confianza deseado, donde por lo general se emplea una distribución de doble cola:

Nivel de Confianza	90%	95%	99%	99.995%	99.998%
α	0.10	0.05	0.01	0.005	0.002
Z (doble cola)	+/-1.645	+/-1.96	+/-2.58	+/-2.81	+/-3.08

Cálculo del tamaño de muestra (Continuación):

- σ es la desviación estándar (el diferencial entre la media poblacional y los registros / transacciones)
- E es el margen de error estimado, para determinar si un ajuste alterará la media por cuánto. Por defecto su valor es 0,05, basado en el conocimiento empírico sobre las mejores prácticas.

Para los datos binomiales y proporciones (útil para muestras estratificadas), se utiliza la siguiente fórmula:

$$n = \frac{Z^2(\bar{p})(1-\bar{p})}{(\Delta p)^2}$$

Dónde:

 \bar{p} = es la tasa de la proporción, que por defecto se establece como 0.5. Δp = es el intervalo de proporción deseado. Por defecto su valor es de 0.05.

Últimamente, estos cálculos de muestras tienen que ser ajustados para una población finita, debido a los grados de libertad, que determinan el número de valores en el cálculo final de una estadística que tienen libertad para variar. Esta estimación de parámetros estadísticos puede basarse en diferente cantidad de información o datos, pero generalmente se utilizan n-1 grados, libres para asumir cualquier valor, dejando espacio a una muestra aleatoria para evitar errores de estimación.

La aplicación de este ajuste, se obtiene la siguiente fórmula:

$$n \ ajustada = \frac{n}{1 + \left(\frac{n-1}{N}\right)}$$

Ejemplo: Supongamos una población de 10,000 registros, donde se quiere obtener con un 95% de confianza el tamaño de muestra adecuado para su análisis.

$$n = \frac{1.96^2(0.5)(1-0.5)}{(0.05)^2} = 384.16$$
 y posteriormente, se ajusta la población para los 10,000 registros que queremos analizar: $n \ ajustada = \frac{384.16}{1+\left(\frac{384.16-1}{10,000}\right)} = 369.98 \approx 370$

Por lo tanto, el tamaño de muestra requerido es de 370 registros, que son representativos de la población con una confianza del 95%.

6. Modelo de fijación/apreciación de activos de capital (CAPM por su acrónimo en inglés: Capital Asset Pricing Model)

Es un modelo es utilizado para determinar la tasa de retorno teoréticamente requerida para un cierto activo, si éste es agregado a una Cartera de inversiones adecuadamente diversificada, este modelo toma en cuenta la sensibilidad del activo al riesgo nodiversificable (conocido también como riesgo del mercado o riesgo sistémico), representado por el símbolo de beta (β) , así como también el retorno esperado del mercado y el retorno esperado de un activo teoréticamente libre de riesgo.

 β es el **beta** (cantidad de riesgo con respecto al Portafolio de Mercado), o también es el exceso de rentabilidad del portafolio de mercado. β se puede calcular a partir de las covarianzas y varianzas entre el rendimiento de mercado y el rendimiento de la acción:

$$\beta_{im} = \frac{Cov(r_i, r_m)}{Var(r_m)}$$

Donde: r_m = Rendimiento del mercado.

CAPM calcula **el rendimiento esperado de un instrumento** usando la tasa de retorno apropiada y requerida para descontar los flujos de efectivo futuros que producirá un activo, dada la apreciación de riesgo que tiene ese activo. Betas mayores a 1 simbolizan que el activo tiene un riesgo mayor al promedio de todo el mercado; betas debajo de 1 indican un riesgo menor. Por lo tanto, un activo con un beta alto debe ser descontado a una mayor tasa, como medio para **recompensar** al inversionista por asumir el riesgo que el activo acarrea.

"Esto se basa en el principio que dice que los inversionistas, entre más riesgosa sea la inversión, requieren mayores retornos", debido a que el beta refleja la sensibilidad específica al riesgo no diversificable del mercado, el mercado como un todo, tiene un beta de 1. Puesto que es imposible calcular el retorno esperado de todo el mercado.

El CAPM demuestra que el retorno esperado para un activo es:

$$E(r_i) = r_f + \beta_{im}(E(r_m) - r_f)$$

donde:

- E(r_i): tasa de rendimiento esperada del capital sobre el activo i
- $E(r_{\text{m}})$ r_{f} : prima de riesgo del mercado, que es el exceso de rentabilidad del portafolio de mercado
- rf: rendimiento de un activo libre de riesgo

Ejemplo: uso de tasas de descuento ajustadas por el riesgo

Existen varios métodos para realizar el ajuste por el riesgo al estimar una tasa de descuento que será usada, cuando se tomen decisiones de inversión en condiciones de incertidumbre. El enfoque del CAPM representa una teoría que expone una relación cuantitativa entre el monto del riesgo sistemático de un proyecto y el rendimiento requerido del proyecto. Pero existen también algunas pruebas de que el riesgo total, incluyendo el riesgo diversificable, tiene una influencia sobre el rendimiento requerido ajustado por el riesgo. En el grado que esto sea verdad, la desviación estándar (como medida del riesgo total de una inversión) y su medida normalizada, el coeficiente de variación, también deben tomarse en cuenta. A continuación se ejemplifica:

Supongamos que se cuenta con la siguiente información: la tasa libre de riesgo es de 6% y el rendimiento esperado de mercado es de 11%. Considérese 2 inversiones, I y J, para las cuales se han calculado las medidas que se muestran en la tabla siguiente:

	Inversión I	Inversión J
Rendimiento esperado	20%	14%
Desviación Estándar (σ)	0.8	0.42
Coeficiente de Variación (CV)	4	3
Beta (β)	1.5	2

Nota: la Beta se puede calcular

Si se utiliza la fórmula del CAPM, se obtienen los siguientes valores:

$$E(r_i) = 0.06 + 1.5(0.11 - 0.06) = 0.135$$

$$E(r_i) = 0.06 + 2(0.11 - 0.06) = 0.16$$

Usando el CAPM, la inversión I tiene un rendimiento requerido de 13.5% versus su rendimiento esperado de 20%, mientras que la inversión J tiene un rendimiento requerido de 16%, pero un rendimiento esperado de 14%. El criterio de aceptación del CAPM es que el rendimiento esperado sea mayor al requerido, por lo que para este caso se acepta la inversión I y se rechaza la J. Sin embargo, el coeficiente de variación de la inversión I es mayor que el de la J. Supongamos que quien toma decisiones formula una relación de ajuste de riesgo tomando como base el coeficiente de variación:

K = tasa libre de riesgo + 0.03CV

En este caso, meramente por criterio se selecciona 0.03 como el coeficiente de ajuste de riesgo, ya que no existe una teoría o un conjunto de datos empíricos sobre los

cuales se pueda basar su magnitud. Sin embargo, lo que toman decisiones deben implícitamente, si no es en forma explícita, formular algún coeficiente al elegir los factores requeridos de ajuste de riesgo que deberán aplicarse a las inversiones que tengan distintos coeficientes de variación.

Usando el coeficiente de variación como la base para estimar el factor de ajuste de riesgo, bajo los supuestos del ajuste de riesgo, el rendimiento requerido para la inversión I es de 18% (es decir, $K_I = 0.06 + 0.03$ (04) = 0.18), mientras que la de J es del 15%. La inversión I aún excede de su rendimiento requerido, y la inversión J aún es menor de su rendimiento requerido. Si las inversiones hubiesen sido **mutuamente excluyentes**, la inversión I sería preferible a la inversión J. Sin embargo, tomando como base el análisis del <u>coeficiente de variación</u>, los resultados estaban cercanos; por lo tanto, el administrador financiero probablemente requeriría que las estimaciones de ingresos, de los costos de inversión, de los costos de mantenimiento, y todos los demás factores que podrían afectar la medidas presentadas en la tabla, fuesen vueltas a calcular y a examinar.

Un análisis de sensibilidad de los factores críticos que afectan al nivel y a la variabilidad de los rendimientos, sería útil para estimar su influencia sobre estas medidas. De este modo, el uso combinado de los enfoques del coeficiente de variación y de la línea del mercado de valor podría proporcionar mejores indicios y, por lo tanto, mejores decisiones.

Por lo tanto, como respuesta inicial la inversión I sería la opción a seleccionar, sin embargo se pueden utilizar más herramientas financieras y estadísticas para poder tomar una mejor decisión.

Nota: no todos los valores de las betas son iguales, ya que algunas se pueden calcular usando periodos de tiempo, sean estos diarios, semanales, mensuales, etc. por lo que se recomienda consultar las betas calculadas por diversas empresas, ya que estas pueden ajustar la beta a distintos tipos de instrumentos financieros. La ventaja que representan estas betas es el acceso de dichas empresas a datos históricos que generalmente son complicados de obtener. También la desventaja es que la beta puede ser distinta a la que buscas según como haya sido calculada, por lo que la lección es que se debe considerar la beta como algo más que una "caja negra" que simplemente se obtiene con un cálculo.

7. Criterios del análisis de decisiones en entornos de incertidumbre

El análisis de decisiones es una metodología que a través de un conjunto de estructuras probabilísticas conduce a tomar una decisión clara y convincente.

Una buena decisión es consistente y lógica con nuestro estado de información, incorpora posibles alternativas con sus probabilidades asociadas y resultados potenciales de acuerdo con la actitud al riesgo.

En general, se conocen cinco pasos que permiten crear un modelo de decisiones:

- 1. Definir claramente el problema
- 2. Hacer una lista de todas las posibles alternativas
- 3. Identificar los posibles resultados de cada alternativa de decisión
- 4. Identificar la rentabilidad (ganancia/utilidad o pérdida/costo) para cada combinación de alternativas y resultados
- 5. Seleccionar una de las técnicas de modelación de teoría de decisiones. Una vez seleccionado, se debe aplicar y tomar decisión

Considerando estos pasos, se procede a resolver el siguiente problema:

Paso 1: El dueño de una compañía quiere conocer si conviene expandir la línea de productos manufacturando y comercializando un producto nuevo.

Paso 2: Para generar alternativas de decisión (reales), se deciden las alternativas:

- Construir una gran planta
- Construir una planta pequeña
- No hacer planta

Paso 3: Se determina que hay dos posibles salidas:

- El mercado para el nuevo producto será favorable (gran demanda)
- El mercado será poco favorable (demanda baja)

Paso 4: Se analiza la rentabilidad de cada posible combinación de las alternativas y resultados. En este caso se ha evaluado lo siguiente:

- Una planta grande y un mercado favorable resulta en una utilidad neta para la firma de \$ 200,000.
- Si el mercado no es favorable habría una pérdida neta de \$ 180,000
- Con una planta pequeña y mercado favorable la utilidad neta sería de \$100,000
- Con una planta pequeña y mercado no favorable la pérdida neta sería de \$20,000
- Finalmente el no hacer nada daría una utilidad de \$ 0 en cualquier mercado

Paso 5: Los criterios que se presentan a continuación pueden ser posteriormente aplicados para diversas actividades más, como son obtener el Valor Monetario Esperado, considerar los perfiles de riesgo de los tomadores de decisión, la creación de árboles de decisión utilizando probabilidades condicionales (árboles bayesianos), entre otros conceptos.

- Optimista (MAXIMAX): Selecciona la alternativa que maximiza la máxima ganancia o resultado sobre todas las alternativas. Se considera que el medio ambiente es propicio y la cantidad de dinero que puede perderse es pequeña en comparación con la utilidad que puede alcanzarse
 - Procedimiento de cálculo: determinar el resultado de mayor valor para cada alternativas y registrarlo en una lista y elegir el valor máximo
- Pesimista (Wald o MAXIMIN): Selecciona la alternativa que maximiza la mínima pérdida o consecuencia en todas las alternativas. Se considera que de acuerdo a su inseguridad económica debe evitar pérdidas altas aún a riesgo de posiblemente perder altas utilidades
 - Procedimiento de cálculo: Determinar el resultado de menor valor para cada alternativa y registrarlo en una lista y elegir el valor máximo
- **Criterio de equiprobabilidad (Laplace):** Selecciona la alternativa con el mayor promedio en ganancia. Considera ambos estado de la naturaleza iguales, con ambos teniendo la misma probabilidad de ocurrencia
- Criterio realista (Hurwicz): También llamado <u>promedio ponderado</u>, es un compromiso entre el pesimista y optimista. Se deberá seleccionar un coeficiente de realismo α, entre 0 y 1.

Si $\alpha \rightarrow 1$ el decisor es optimista sobre el futuro y si $\alpha \rightarrow 0$ el decisor es pesimista

- o Procedimiento de cálculo: Determinar el resultado de la siguiente fórmula para cada alternativa: Criterio de realismo= $\alpha^*(Max. resultado) + (1 \alpha)^*(Min. Resultado)$. Elija el valor máximo
- Criterio de minimización del arrepentimiento (Savage): Se basa en la pérdida de oportunidad, también llamado <u>arrepentimiento</u>, es la diferencia entre el óptimo resultado y el resultado actual.
 - Se realiza la tabla de Arrepentimiento o de pérdida de oportunidad: para cada alternativa se determina la pérdida máxima y se escribe en una lista. Se debe elegir el valor mínimo de la lista.

Pago por la

Oportunidad = Pago Máximo - Alternativ a
Selecciona da

Paso 5. Aplicación de los criterios: se obtienen a continuación utilizando MS Excel:

	Estados de la naturaleza			
Alternativas	Mercado	Mercado no		
Aitemativas	Favorable	Favorable		
Planta Grande	\$200,000.00	-\$180,000.00		
Planta Chica	\$100,000.00	-\$20,000		
No actuar	\$0	\$0		

Criterio Optimista (MAXIMAX)							
	Estados de la naturaleza		turaleza Maximax		Fórmulas Aplicadas		
Alternativas	Mercado Favorable	Mercado no Favorable	Ganancia Máxima	Decisión	Ganancia Máxima	Decisión	
Planta Grande	\$200,000.00	-\$180,000.00	200000	BEST	=MAX(C14:D14)	=SI(E14=MAX(\$E\$14:\$E\$16),"BEST","")	
Planta Chica	\$100,000.00	-\$20,000	100000		=MAX(C15:D15)	=SI(E15=MAX(\$E\$14:\$E\$16),"BEST","")	
No actuar	\$ 0	\$0	0		=MAX(C16:D16)	=SI(E16=MAX(\$E\$14:\$E\$16),"BEST","")	

Criterio Pesimista (MAXIMIN)							
	Estados de la naturaleza		Maximin		Fórmulas Aplicadas		
Alternativas		Mercado no	Ganancia	Decisión Ganancia Mínima		Decisión	
	Favorable	Favorable	Mínima				
Planta Grande	\$200,000.00	-\$180,000.00	-180000		=MIN(C21:D21)	=SI(E21=MAX(\$E\$21:\$E\$23),"BEST","")	
Planta Chica	\$100,000.00	-\$20,000	-20000		=MIN(C22:D22)	=SI(E22=MAX(\$E\$21:\$E\$23),"BEST","")	
No actuar	\$0	\$0	0	BEST	=MIN(C23:D23)	=SI(E23=MAX(\$E\$21:\$E\$23),"BEST","")	

Criterio de Equiprobabilidad (Laplace)								
	Estados de la naturaleza		Maximax		Fórmulas Aplicadas			
Alternativas		Mercado no	Ganancia	Decisión	Ganancia Promedio	Decisión		
	Favorable	Favorable	Promedio					
Planta Grande	\$200,000.00	-\$180,000.00	10000		=PROMEDIO(C28:D28)	=SI(E28=MAX(\$E\$28:\$E\$30),"BEST","")		
Planta Chica	\$100,000.00	-\$20,000	40000	BEST	=PROMEDIO(C29:D29)	=SI(E29=MAX(\$E\$28:\$E\$30),"BEST","")		
No actuar	\$ 0	\$0	0	·	=PROMEDIO(C30:D30)	=SI(E30=MAX(\$E\$28:\$E\$30),"BEST","")		

	Criterio Realista (Hurwicz)								
	Estados de la naturaleza		Maximax		Fórmulas Aplicadas				
Alternativas	Mercado	Mercado no	Ganancia	Decisión Ganancia Realista		Choice			
Alternativas	Favorable	Favorable	Realista	Decision	Gallalicia Realista	Choice			
Planta Grande	\$200,000.00	-\$180,000.00	124000	BEST	=\$C\$38*MAX(C35:D35)+((1-\$C\$38)*MIN(C35:D35))	=SI(E35=MAX(\$E\$35:\$E\$37),"BEST","")			
Planta Chica	\$100,000.00	-\$20,000	76000		=\$C\$38*MAX(C36:D36)+((1-\$C\$38)*MIN(C36:D36))	=SI(E36=MAX(\$E\$35:\$E\$37),"BEST","")			
No actuar	\$0	\$0	0 =\$C\$38*MAX(C37:D37)+((1-\$C\$38)*MIN(C37:D37)) =SI(E37=MAX(\$E\$35:\$E\$37),"BEST						
ALFA	A 0.8 ο Criterio de realismo= α*(Max. resultado) + (1 - α)*(Min. Resultado)								

	Criterio de Minimización del Arrepentimiento (Savage)							
	Estados de la naturaleza		Maximax		Fórmulas Aplicadas			
Alternativas	Mercado Favorable	Mercado no Favorable	Ganancia (Savage)	Decisión	Ganancia (Savage)	Decisión		
Planta Grande	\$200,000.00	-\$180,000.00	180000		=SI((MAX(\$C\$43:\$C\$45)-C43) <max(\$d\$43:\$d\$45)- D43,MAX(\$D\$43:\$D\$45)-D43,MAX(\$C\$43:\$C\$45)-C43)</max(\$d\$43:\$d\$45)- 	=SI(E43=MAX(\$E\$43:\$E\$45),"BEST","")		
Planta Chica	\$100,000.00	-\$20,000	100000		=SI((MAX(\$C\$43:\$C\$45)-C44) <max(\$d\$43:\$d\$45)- D44,MAX(\$D\$43:\$D\$45)-D44,MAX(\$C\$43:\$C\$45)-C44)</max(\$d\$43:\$d\$45)- 	=SI(E44=MAX(\$E\$43:\$E\$45),"BEST","")		
No actuar	\$0	\$0	200000	BEST	=SI((MAX(\$C\$43:\$C\$45)-C45) <max(\$d\$43:\$d\$45)- D45,MAX(\$D\$43:\$D\$45)-D45,MAX(\$C\$43:\$C\$45)-C45)</max(\$d\$43:\$d\$45)- 	=SI(E45=MAX(\$E\$43:\$E\$45),"BEST","")		

Estos criterios demuestran la aplicación de promedios y probabilidades (en especial los criterios de equiprobabilidad y realista) para el análisis de decisiones en un entorno de incertidumbre.

8. Aplicación de la tabla de contingencia (prueba de hipótesis de la Ji Cuadrada)

La **tabla de contingencia** es un análisis de datos bivariados, donde se estudia la relación entre dos variables, para probar si una es independiente de la otra. Las hipótesis planteadas son las siguientes:

H₀: las dos variables son independientes (no existe relación).

Ha: las variables son dependientes (existe relación).

Se determina la tabla de las frecuencias esperadas con la siguiente formula:

$$f_e = \frac{(totaldelrenglos)(totaldelacolumna)}{Grantotal}$$

Para probar la hipótesis nula (H_o), debemos comparar las frecuencias que fueron observadas con las frecuencias que esperaríamos si la H_o fuera verdadera. Si los conjuntos de frecuencias observadas y esperadas son casi iguales, podemos razonar de manera intuitiva que aceptamos H_o. Si existe una diferencia grande entre esas frecuencias, podemos intuitivamente rechazar la hipótesis nula (H_o) y llegar a la conclusión de que existen diferencias significativas en las poblaciones.

Para ir más allá de nuestros sentidos intuitivos acerca de las frecuencias observadas y esperadas, podemos hacer uso del estadístico ji-cuadrada (veamos más delante la diferencia con el estadístico visto en clase), la cual se calcula de la siguiente manera:

$$X^2 = \sum \frac{(f_0 - f_e)^2}{f_e}$$

Donde:

f_o: frecuencia observada f_e: frecuencia esperada

X²: ji-cuadrada

Posteriormente, con la ayuda de la siguiente tabla se realiza un test de significación, donde se puede tomar una decisión:

$X^2 = 0$	Indica que las frecuencias observadas son exactamente iguales a las					
	frecuencias esperadas					
$X^2 > 20$	Con un valor grande, indica una diferencia sustantiva entre nuestros valores					
	observados y los valores esperados					
$X^2 < 20$	Nunca podrá ser negativa, ya que la diferencia entre las frecuencias					
	observadas y esperadas están elevadas al cuadrado					

Si aun así es difícil tomar una decisión, se procede a la prueba estadística para lo cual hay que definir un nivel de significaría (a) y proceder a establecer los límites críticos de la prueba. En este caso se deben determinar los grados de libertad:

Con los grados de libertad y nivel de significancia definidos, se debe consultar la tabla para determinar el valor crítico de la X^2 . Se utiliza el valor de la estadística de prueba X^2 , llevándolo al test de significación para tomar una decisión y emitir una conclusión (este es el estadístico visto en clase).

Una tabla de contingencia con r renglones y columnas se denomina R x C. Por ejemplo, nuestra decisión de aceptar o rechazar la hipótesis nula, de independencia, entre la opción de un votante con respecto a la nueva reforma fiscal y su nivel de ingreso se basa en que tan buen ajuste tengamos en las frecuencias observadas, en cada una de las celdas de la tabla, y en las frecuencias que esperaríamos para cada celda bajo la suposición de que H_0 es verdadera.

Deferme Figure	Nivel de Ingreso			
Reforma Fiscal	Bajo	Medio	Alto	TOTAL
Votante a favor	182	213	203	598
Votante en contra	154	138	110	402
TOTAL	336	351	313	1000

H₀: no hay relación entre el nivel de ingreso y la opinión del votante de la reforma.

Ha: existe una relación entre el nivel de ingreso y la opinión del votante de la reforma.

$$Oij = \frac{Total\ a\ Favor\ x\ Total\ en\ Contra}{n} \qquad O_{1,1} = \frac{598\ x\ 336}{1000} = 200.92$$

$$O_{1,2} = \frac{598\ x\ 351}{1000} = 209.89\ \dots$$

entonces para cada uno de las combinaciones posibles se obtiene la siguiente tabla:

	Bajo	Medio	Alto
Votante a favor	200.9	209.92	187.17
Votante en contra	135.67	141.1	125.82

Posteriormente se aplica la prueba con la ji-cuadrada:

$$X^2$$
 (chi-cuadrada): $X^2 = \sum_{i=1}^{n} \frac{(f_0 - f_e)^2}{f_e}$

Dada la tabla anterior, se puede definir que $X^2 = 7.8782$, evidenciada en la **tabla 8.3**

A manera de tomar una decisión más certera respecto a este estadístico, se calcula ahora el estadístico de prueba X^2 _(α ,GL), donde graficamos la prueba de hipótesis, considerando una confianza del 95% (α =0.05) y se define que los grados de libertad son los siguientes:

Posición	fo	fe	$\frac{(f_0 - f_e)^2}{f_e}$
Voto a	182	200.92	1.78307
Favor	213	209.89	0.04508
ravoi	203	187.17	1.3381
Voto en	184	135.07	2.6524
Contra	130	141.1	0.0681
Contra	110	125.82	1.9905
T	7.8782		

-
$$V_1 = r-1=2-1=1$$

-
$$V_2 = c-1=3-1=2$$

Donde r=renglones y c=columnas

Por lo tanto,
$$GL=(V_1)(V_2)=(1)(2)=2$$

Calculando X^2 con estos datos, se obtiene un valor de comparación $X^2_{(0.05,2)} = 5.991$ (para la cola derecha).

Recordemos que en Excel se puede calcular como:

=INV.CHICUAD(0.05,2)

Los criterios del test de significancia para este escenario serían entonces:

$X^2 \ge X^2_{(\alpha,GL)}$	Se rechaza H₀ y se acepta Ha
$X^2 < X^2_{(\alpha,GL)}$	Se rechaza Ha y se acepta Ho

En este caso se cumple el primer criterio de la tabla, significando con una confianza del 95% que existe una relación entre el nivel de ingreso y la opinión del votante de la reforma.

Conclusiones

Las aplicaciones estadísticas mostradas en el presente documento son solo pocas en comparación con el inmenso número de aplicaciones que podemos ver en nuestro entorno profesional. Cabe destacar que el uso de la estadística es vital para la existencia de otras áreas como ingeniería, actuaria, consultoría, marketing, entre otras, que aplican diariamente conceptos de análisis estadístico multivariante, minería de datos, diseño de experimentos, control estadístico de la calidad, investigación de operaciones (en su rama estocástica), el análisis de decisiones, la simulación, la programación de algoritmos, entre otros. A esto debemos agregar que a pesar de la existencia del software necesario para obtener esta información, lo que realmente requieren las empresas son profesionales capaces de hacer estos análisis.

La estadística es útil en prácticamente cualquier campo en donde se puedan recolectar datos e información, de forma que sea posible describir objetos o eventos que puedan compararse objetivamente, lo que con frecuencia da lugar a una mayor comprensión de las propiedades y relaciones de los objetos y eventos que intervienen en las evaluaciones que son parte de un entorno productivo.

Por ende, siendo cada vez mayor el volumen de información a procesar y a interpretar todos los días, la estadística posiblemente sea la más importante ciencia a la que deban recurrir todos los profesionistas que deseen utilizar de forma inteligente la información para sustentar con argumentos comprobables (y cuantitativos) cuáles son las decisiones más adecuadas a tomar, de acuerdo a la correcta interpretación de los datos y la experiencia del profesionista.

Glosario

- Valor en riesgo es un método para calcular y controlar la exposición al riesgo de mercado. Este valor mide la volatilidad de los activos de una institución – a mayor volatilidad, mayor es el riesgo de pérdida.
- Volatilidad es la medida de qué tanto el precio de un activo financiero varía. La volatilidad se mide con la desviación estándar. A mayor desviación estándar, mayor es la volatilidad del activo
- 3. **Plan de Ventas**: proyección periódica de las ventas que se estiman realizar durante un periodo de tiempo definido, a partir del actual periodo, y generalmente se definen para un año.
- 4. **Pronóstico de la demanda**: es la predicción de lo que sucederá con un elemento determinado dentro del marco de un conjunto dado de condiciones.
- 5. **Serie de tiempo:** es una colección de datos históricos ordenada cronológicamente en periodos "iguales" dentro de un cierto intervalo de tiempo.

- 6. Nivel: es un mecanismo de autocorrección dentro de los modelos de pronósticos
- 7. **Tendencia**: inclinación del modelo en cierta dirección, indicando un patrón de comportamiento por medio del arreglo de los datos
- 8. **Estacionalidad**: aumentos o disminuciones en las ventas causadas por eventos, tales como el clima, días festivos, temporada de impuestos, etc.
- 9. **Ciclicidad**: comportamiento que se repite regularme en un intervalo de tiempo, normalmente asociada con el largo plazo
- 10. **Eventos**: casos discretos que podrían o no repetirse, y pueden afectar las medidas de tendencia y estacionalidad de los modelos estadísticos.
- 11. **Ruido**: componente inherentemente impredecible de una variable, que es necesario medir para obtener un comparativo de la serie pronosticada contra lo que sería el comportamiento real de la misma.
- 12. **MAPE** (Porcentaje de Error Medio Absoluto o en inglés Medium Average Percentage Error): es una unidad relativa del error. Cuando se comparan varios modelos de pronóstico se elige aquel con el menor MAPE
- 13. **Muestra**: es un grupo de registros o transacciones tomadas de una población de registros o transacciones que sirven para proporcionar información que puede ser utilizada como una base para tomar una decisión relativa a toda la población.
- 14. **Datos**: son información objetiva, como registros y transacciones, que se pueden transformar en conocimiento al ser recolectados y analizados.
- 15. Datos de Atributo (o Discretos): valores de datos que sólo pueden ser enteros. Requiere recuentos de cada categoría y poco espacio de almacenamiento de datos.
- 16. Datos de Variables (o Continuos): valores de datos qie pueden ser cualquier número real. Requiere el almacenamiento de los valores y cálculos individuales para obtener la media, desviación estándar y otras estimaciones de la población.
- 17. Método de muestreo aleatorio: significa dar a cada registro la misma oportunidad de ser seleccionado para la muestra, que deberá ser representativa de la población. Esto implica la extracción de elementos de una población a través de una rifa, sin otra condición.
- 18. **Método de muestreo estratificado**: método que considera que la **proporción** de las muestras debe reflejar la frecuencia relativa de los grupos.
- 19. **CAPM** (Modelo de fijación/apreciación de activos de capital o en inglés: Capital Asset Pricing Model): es un modelo es utilizado para determinar la tasa de retorno teoréticamente requerida para un cierto activo, si éste es agregado a una Cartera de inversiones adecuadamente diversificada, este modelo toma en cuenta la sensibilidad del activo al riesgo no-diversificable (conocido también como riesgo del mercado o riesgo sistémico), representado por el símbolo de beta (β), así como también el retorno esperado del mercado y el retorno esperado de un activo teoréticamente libre de riesgo.

- 20. **Beta** (β): es la cantidad de riesgo de mercado en un Portafolio de Inversiones, o también es el exceso de rentabilidad del portafolio de mercado
- 21. **Análisis de decisiones**: es una metodología que a través de un conjunto de estructuras probabilísticas conduce a tomar una decisión clara y convincente
- 22. **Criterio Optimista (MAXIMAX):** criterio que selecciona la alternativa que maximiza la máxima ganancia o resultado sobre todas las alternativas. Se considera que el medio ambiente es propicio y la cantidad de dinero que puede perderse es pequeña en comparación con la utilidad que puede alcanzarse
- 23. Criterio pesimista (Wald o MAXIMIN): criterio que selecciona la alternativa que maximiza la mínima pérdida o consecuencia en todas las alternativas. Se considera que de acuerdo a su inseguridad económica debe evitar pérdidas altas aún a riesgo de posiblemente perder altas utilidades
- 24. **Criterio de equiprobabilidad (Laplace):** criterio que selecciona la alternativa con el mayor promedio en ganancia. Considera ambos estado de la naturaleza iguales, con ambos teniendo la misma probabilidad de ocurrencia
- 25. **Criterio realista (Hurwicz):** También llamado promedio ponderado, es un compromiso entre el pesimista y optimista. Se deberá seleccionar un coeficiente de realismo α, entre 0 y 1.
- 26. Criterio de minimización del arrepentimiento (Savage): Se basa en la pérdida de oportunidad, también llamado arrepentimiento, es la diferencia entre el óptimo resultado y el resultado actual.
- 27. **Tabla de contingencia**: es un análisis de datos bivariados, donde se estudia la relación entre dos variables, para probar si una es independiente de la otra

Bibliografía

- F.J. Weston, E.F. Brigham. (1987). Fundamentos de administración financiera. México D.F. Mc Graw-Hill S.A. de C.V.
- Frederic S. Mishkin. (2014). Moneda, banca y mercados financieros. México D.F. Pearson Educación S.A. de C.V.
- Phillipe Jorion. (2007). Financial Risk Manager Handbook. Hoboken, New Jersey. GARP, Inc.
- Alfonso de Lara Haro. (2012). Medición y Control de Riesgos Financieros. Balderas 95, México D.F.: LIMUSA S.A. de C.V.
- Sunil Chopra, Peter Meidl. (2007). Supply Chain Management, Strategy, Planning and Operation. New Jersey. Pearson Education, Inc.
- Jay L. Devore. (2008). Probabilidad y Estadística para Ingeniería y Ciencias. México D.F. Cengage Learning Editores, S.A. de C.V.