Nom:

Question de cours :

- Donner une primitive pour chacune des fonctions suivante : a) $x \mapsto e^{-3x}$ b) $x \mapsto \frac{1}{x \ln(x)}$
- $\bullet \ \, \mathrm{Soit} \,\, f:\, [-1,1] \longrightarrow \mathbb{R} \,\, \, \mathrm{d\acute{e}finie} \,\, \mathrm{par}: f(x) = \left\{ \begin{array}{l} 1 \,\, \mathrm{si} \,\, x > 0 \\ -1 \,\, \mathrm{si} \,\, x \leq 0 \end{array} \right. \,\, \mathrm{Que} \,\, \mathrm{vaut} \,\, \int_{-1}^1 f(x) dx \, ? \,\, \mathrm{d\acute{e}finie} \,\, \mathrm{par}: f(x) = \left\{ \begin{array}{l} 1 \,\, \mathrm{si} \,\, x > 0 \\ -1 \,\, \mathrm{si} \,\, x \leq 0 \end{array} \right. \,\, \mathrm{Que} \,\, \mathrm{vaut} \,\, \int_{-1}^1 f(x) dx \, ? \,\, \mathrm{d\acute{e}finie} \,\, \mathrm{par}: f(x) = \left\{ \begin{array}{l} 1 \,\, \mathrm{si} \,\, x > 0 \\ -1 \,\, \mathrm{si} \,\, x \leq 0 \end{array} \right. \,\, \mathrm{Que} \,\, \mathrm{vaut} \,\, \int_{-1}^1 f(x) dx \, ? \,\, \mathrm{d\acute{e}finie} \,\, \mathrm{par}: f(x) = \left\{ \begin{array}{l} 1 \,\, \mathrm{si} \,\, x > 0 \\ -1 \,\, \mathrm{si} \,\, x \leq 0 \end{array} \right. \,\, \mathrm{Que} \,\, \mathrm{vaut} \,\, \int_{-1}^1 f(x) dx \, ? \,\, \mathrm{d\acute{e}finie} \,\, \mathrm{par}: f(x) = \left\{ \begin{array}{l} 1 \,\, \mathrm{si} \,\, x > 0 \\ -1 \,\, \mathrm{si} \,\, x \leq 0 \end{array} \right. \,\, \mathrm{Que} \,\, \mathrm{vaut} \,\, \int_{-1}^1 f(x) dx \, ? \,\, \mathrm{d\acute{e}finie} \,\, \mathrm{par}: f(x) = \left\{ \begin{array}{l} 1 \,\, \mathrm{si} \,\, x > 0 \\ -1 \,\, \mathrm{si} \,\, x \leq 0 \end{array} \right. \,\, \mathrm{Que} \,\, \mathrm{vaut} \,\, \int_{-1}^1 f(x) dx \, ? \,\, \mathrm{d\acute{e}finie} \,\, \mathrm{par}: f(x) = \left\{ \begin{array}{l} 1 \,\, \mathrm{si} \,\, x > 0 \\ -1 \,\, \mathrm{si} \,\, x \leq 0 \end{array} \right. \,\, \mathrm{Que} \,\, \mathrm{vaut} \,\, \int_{-1}^1 f(x) \, \mathrm{d\acute{e}finie} \,\, \mathrm{par}: f(x) = \left\{ \begin{array}{l} 1 \,\, \mathrm{si} \,\, x > 0 \\ -1 \,\, \mathrm{si} \,\, x \leq 0 \end{array} \right. \,\, \mathrm{Que} \,\, \mathrm{vaut} \,\, \int_{-1}^1 f(x) \, \mathrm{d\acute{e}finie} \,\, \mathrm{par}: f(x) = \left\{ \begin{array}{l} 1 \,\, \mathrm{si} \,\, x > 0 \\ -1 \,\, \mathrm{si} \,\, x \leq 0 \end{array} \right. \,\, \mathrm{Que} \,\, \mathrm{vaut} \,\, \mathrm{Que} \,\,$

Exercice:

Pour les intégrales suivantes, dire si elles convergent, et dans le cas échéant, donner leur valeur :

a)
$$\int_{1}^{\infty} \frac{2}{t^2} dt$$

b)
$$\int_{-\infty}^{1} 2e^t dt$$

c)
$$\int_{1}^{\infty} \frac{3}{t} dt$$

a)
$$\int_1^\infty \frac{2}{t^2} dt$$
 b) $\int_{-\infty}^1 2e^t dt$ c) $\int_1^\infty \frac{3}{t} dt$ d) $\int_{-\infty}^0 te^{t^2} dt$

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par : $f(t) = \begin{cases} e^{-t} & \text{si } t > 0 \\ 0 & \text{si } t \leq 0 \end{cases}$

- 1) Montrer que pour tout $a \ge 0$, l'intégrale $\int_a^a f(t)dt$ converge et préciser sa valeur. On notera I(a) cette valeur.
- 2) En déduire que $\int_{-\infty}^{+\infty} f(t)dt$ converge.

Soit $n \ge 1$, on pose maintenant $J_n(a) = \int_{-\infty}^a t^n f(t) dt$ pour $a \ge 0$.

3) Pour tout $n \ge 1$, montrer que cette intégrale converge et donner une relation entre $J_{n+1}(a)$ et $J_n(a)$ à l'aide d'une intégration par parties.

On note maintenant $J_n = \int_{-\infty}^{+\infty} t^n f(t) dt$.

- 4) En admettant que ces intégrales converge, déduire de la question précédente une relation entre J_n et J_{n+1} pour tout
- 5) En déduire que $\int_{-\infty}^{+\infty} t^n f(t) dt$ converge pour tout $n \geq 1$ et donner sa valeur.

Commentaire:

Nom:

Question de cours :

• Donner une primitive pour chacune des fonctions suivante : a) $x\mapsto x^2-3x+9$ b) $x\mapsto xe^{x^2}$

• Soient $f: \mathbb{R} \longrightarrow \mathbb{R}$ et $a \in \mathbb{R}$. Rappeler la définition de $\int_{-\infty}^{+\infty} f(x) dx$.

Pour les intégrales suivantes, dire si elles convergent, et dans le cas échéant, donner leur valeur :

$$\mathsf{a)}\,\int_0^{+\infty}e^{-t}dt$$

b)
$$\int_{2}^{+\infty} \frac{1}{t \ln(t)} dt$$

a)
$$\int_0^{+\infty} e^{-t} dt$$
 b) $\int_2^{+\infty} \frac{1}{t \ln(t)} dt$ c) $\int_{-\infty}^0 \frac{2t}{(t^2+1)^2} dt$ d) $\int_0^{\infty} (6t^2+2) dt$

d)
$$\int_{0}^{\infty} (6t^2 + 2)dt$$

Exercice:

 $\text{Soit } f: \, \mathbb{R} \longrightarrow \mathbb{R} \, \text{ définie par } : f(t) = \left\{ \begin{array}{l} \frac{\ln(t)}{t} \, \operatorname{si} \, t > 1 \\ 0 \, \operatorname{si} \, t \leq 1 \end{array} \right. .$

1) Montrer que pour tout $a \ge 1$, l'intégrale $\int_{-\infty}^a f(t)dt$ converge et préciser sa valeur. On notera I(a) cette valeur.

2) En déduire que $\int_{-\infty}^{+\infty} f(t)dt$ diverge.

3) On pose maintenant $J(a)=\int_{-\infty}^a \frac{f(t)}{t}dt$ pour $a\geq 1$. Montrer que cette intégrale converge et calculer sa valeur à l'aide d'une intégration par parties.

4) En déduire que $\int_{-t}^{+\infty} \frac{f(t)}{t} dt$ converge.

Commentaire:

Nom:

Question de cours :

- Donner une primitive pour chacune des fonctions suivante : a) $x \mapsto \frac{5}{x}$ b) $x \mapsto \frac{2}{x} \ln(x)$
- Rappeler le théorème d'intégration par parties.

Exercice:

Pour les intégrales suivantes, dire si elles convergent, et dans le cas échéant, donner leur valeur :

a)
$$\int_{1}^{\infty} \frac{2}{t^2} dt$$

b)
$$\int_{1}^{+\infty} \ln(t) dt$$

c)
$$\int_{-2}^{1} |t| \, dt$$

b)
$$\int_{1}^{+\infty} \ln(t) dt$$
 c) $\int_{-2}^{1} |t| dt$ d) $\int_{0}^{+\infty} x e^{-x} dx$

Exercice:

- 1. Soit $f:\mathbb{R}\longrightarrow\mathbb{R}$ définie par $:f(t)=\frac{6t+3}{(3t^2+3t+1)^2}$
- a) Montrer que pour tout $a \ge 0$, l'intégrale $\int_{-\infty}^a f(t)dt$ converge et préciser sa valeur.
- b) En déduire que $\int_{-\infty}^{+\infty} f(t)dt$ converge.
- $\text{2. Soit } g: \mathbb{R} \longrightarrow \mathbb{R} \ \text{ définie par } : g(t) = \left\{ \begin{array}{l} \ln(t) \text{ si } t > 1 \\ 0 \text{ si } t \leq 1 \end{array} \right..$
- a) Montrer que pour tout $a \ge 1$, l'intégrale $\int_{-\infty}^a g(t)dt$ converge et préciser sa valeur. On notera I(a) cette valeur.
- b) En déduire que $\int_{-\infty}^{+\infty} g(t)dt$ diverge.

Commentaire: