Mixup: Beyond Empirical Risk Minimization

Radek Bartyzal

GLAMI AI

27. 10. 2020

Motivation

- Empirical Risk Minimization = minimize errors on samples from dataset
- Data Augmentation = create new samples "around" the existing samples = capture more of the "true" distribution
- ullet regularization \Longrightarrow better generalization

Downsides of classic Data Augmentation:

- ullet dataset dependent \Longrightarrow expert knowledge
- assumes examples in the vicinity share the same class
- does not model vicinity relation across examples of different classes

Mixup

- data agnostic generation of new training samples
- linear interpolation

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j,$$
 where x_i, x_j are raw input vectors $\tilde{y} = \lambda y_i + (1 - \lambda) y_j,$ where y_i, y_j are one-hot label encodings

Figure: Generate new training samples. $\lambda \in [0,1]$

Mixup: Easy implementation

```
# y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
    lam = numpy.random.beta(alpha, alpha)
    x = Variable(lam * x1 + (1. - lam) * x2)
    y = Variable(lam * y1 + (1. - lam) * y2)
    optimizer.zero_grad()
    loss(net(x), y).backward()
    optimizer.step()
```

(a) One epoch of *mixup* training in PyTorch.

Mixup: Smoother decision boundary

Figure: Effect of mixup ($\alpha = 1$) on a toy problem. Green: Class 0. Orange: Class 1. Blue shading indicates p(y = 1|x).

5 / 14

Mixup: Vicinal Risk Minimization (VRM)

VRM approximation of true distribution *P*:

$$P_{\nu}(\tilde{x}, \tilde{y}) = \frac{1}{n} \sum_{i=1}^{n} \nu(\tilde{x}, \tilde{y} | x_i, y_i),$$

- ν is a vicinity distribution that measures the probability of finding the virtual feature-target pair (\tilde{x}, \tilde{y}) in the vicinity of the training feature-target pair (x_i, y_i) .
- to train we sample the vicinal distribution to construct a dataset D_{ν} and minimize the empirical vicinal risk: $R_{\nu}(f)$

$$R_{\nu}(f) = \frac{1}{m} \sum_{i=1}^{m} \ell(f(\tilde{x}_i), \tilde{y}_i).$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ ■ からぐ

Radek Bartyzal (GLAMI AI)

Mixup: Vicinal Risk Minimization (VRM)

Contribution: Generic vicinal distribution, called mixup:

$$\mu(\tilde{x}, \tilde{y}|x_i, y_i) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}\left[\delta(\tilde{x} = \lambda \cdot x_i + (1 - \lambda) \cdot x_j, \tilde{y} = \lambda \cdot y_i + (1 - \lambda) \cdot y_j)\right]$$

• where $\lambda \sim Beta(\alpha, \alpha)$, for $\alpha \in (0, \inf)$. In a nutshell, sampling from the mixup vicinal distribution produces virtual feature-target vectors:

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j,$$

$$\tilde{y} = \lambda y_i + (1 - \lambda) y_i,$$

4□ > 4□ > 4 = > 4 = > = 90

Beta distribution ($\alpha = 0.4, \beta = 0.4$)

Samples generated by Mixup on Two Moons Dataset

Mixup: ImageNet results

Model	Method	Epochs	Top-1 Error	Top-5 Error
ResNet-50	ERM (Goyal et al., 2017) mixup $\alpha = 0.2$	90 90	23.5 23.3	6.6
ResNet-101	ERM (Goyal et al., 2017) mixup $\alpha = 0.2$	90 90	22.1 21.5	5.6
ResNeXt-101 32*4d	ERM (Xie et al., 2016) ERM mixup $\alpha = 0.4$	100 90 90	$ \begin{array}{c} 21.2 \\ 21.2 \\ 20.7 \end{array} $	5.6 5.3
ResNeXt-101 64*4d	ERM (Xie et al., 2016) mixup $\alpha = 0.4$	100 90	20.4 19.8	5.3 4.9
ResNet-50	ERM $mixup \ \alpha = 0.2$	200 200	23.6 22.1	7.0 6.1
ResNet-101	ERM $mixup \ \alpha = 0.2$	$\frac{200}{200}$	22.0 20.8	6.1 5.4
ResNeXt-101 32*4d	$\overline{\text{ERM}}$ mixup $\alpha = 0.4$	$200 \\ 200$	$21.3 \\ 20.1$	5.9 5.0

Table 1: Validation errors for ERM and *mixup* on the development set of ImageNet-2012.

Mixup: ImageNet results

- trained with standard augmentations: scale and aspect ratio distortions, random crops, and horizontal flip
- $\alpha \in [0.1, 0.4]$ leads to improved performance over ERM
- large $\alpha \implies$ underfitting
- models with higher capacities and/or longer training runs benefit more from mixup

Mixup: CIFAR results

Dataset	Model	ERM	тіхир
CIFAR-10	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	5.6 3.8 3.7	$4.2 \\ 2.7 \\ 2.7$
CIFAR-100	PreAct ResNet-18 WideResNet-28-10 DenseNet-BC-190	25.6 19.4 19.0	$21.1 \\ 17.5 \\ 16.8$

(a) Test errors for the CIFAR experiments.

Mixup: Further experiments

Mixup helps with:

- speech commands recognition using VGG
- tabular data: UCI datasets with 2-layer nets trained by Adam
- robustness against adversarial attacks
- stabilisation of GAN training

Sources

1. Zhang, Hongyi, et al. "mixup: Beyond empirical risk minimization." arXiv preprint arXiv:1710.09412 (2017).

https://arxiv.org/abs/1710.09412

2. FastAl implementation comments.

https://forums.fast.ai/t/mixup-data-augmentation/22764

3. INFERENCE blog (two moons analysis). https:

//www.inference.vc/mixup-data-dependent-data-augmentation/