

UNIVERSIDADE FEDERAL DE PELOTAS – UFPEL CENTRO DE DESENVOLVIMENTO TECNOLÓGICO (CDTec) CURSOS DE CIÊNCIA DA COMPUTAÇÃO E ENGENHARIA DE COMPUTAÇÃO DISCIPLINA DE PROGRAMAÇÃO DE SISTEMAS

PROFs.: Me. ANDERSON PRIEBE FERRUGEM

SEGUNDO TRABALHO TÓPICO: MÁQUINA VIRTUAL.

> O TRABALHO SERÁ UMA APRESENTAÇÃO EM VÍDEO DO GRUPO COM TODOS PARTICIPANTES COM CÓDIGO DISPONIBILIZADO VIA GITHUB; O ENVIO É FEITO APENAS POR COMPONENTE DO GRUPO; A DURAÇÃO MÁXIMA DO VÍDEO DEVERÁ SER DE 10 MIN COM TOLERÂNCIA DE 5 MIN. (5-15);

A APRESENTAÇÃO DEVERÁ MOSTRAR:

1) INTERAÇÃO ENTRE OS COMPONENTES; 2)ARGUIÇÃO DO FUNCIONAMENTO E DAS TÉCNICAS USADAS.

A APRESENTAÇÃO NÃO DEVERÁ SER APENAS:

1) APRESENTAÇÃO DE SLIDES;

2) APRESENTAÇÕES INDIVIDUAIS DOS COMPONENTES DO GRUPO.

EM CASO DE DÚVIDAS SOBRE A APRESENTAÇÃO PROCUREM POSTAR NO E-AULAS (DESTA FORMA A RESPOSTA FICA DISPONÍVEL A TODOS).

FERRAMENTAS:

SOFTWARE: JAVA OU C++ (Escolha do grupo) Apresentação gráfica da execução !!!

Projeto máquina virtual do sistema computacional hipotético Z808

Introdução

O trabalho descrito a seguir consiste em implementar a máquina virtual (emulador) do sistema computacional Z808 - conforme apresentado no livro Tradução de programas — Da montagem a carga. Cristian Koliver.

Tal sistema será composto de dois módulos que deverão operar de forma integrada: o executor (emulador propriamente dito) e uma interface visual. O resultado do trabalho deverá ser entregue com toda a documentação (programas fontes, programa executável, documentação formal sucinta das estruturas de dados definidas, das funções desenvolvidas e estratégias adotadas) pelo Github. A avaliação do trabalho será realizada com base nos seguintes aspectos:

- correção do programa,
- adequação das definições adotadas,
- uso das técnicas básicas de programação,
- autenticidade e domínio sobre o produto gerado,

Descrição do emulador Z808

1. Memória

A memória do computador é definida pelos seguintes atributos:

Tamanho da memória	64 KB (65536)
Palavra de memória	16 bits
Unidade de endereçamento	palavra
Bit de paridade	<na></na>
Cache	<na></na>
Observações adicionais: <na> sig</na>	nifica "Não se aplica".

2. Registradores de dados

Um registrador é uma pequena porção de memória localizada no processador central. Os registradores permitem acessos muito rápidos a dados e são usados para aumentar a velocidade de execução de programas. A maioria das modernas arquiteturas de computadores opera transferindo dados da memória principal para os registradores, onde estes são processados e o resultado é devolvido à memória principal - é a chamada arquitetura de carregamento-armazenamento.

O Z808 possui **dois registradores de dados AX** (Acumulador) e **DX** (Registrador de dados) de **16 bits**. Os bits recebem um designação numérica de 0 a 15, da direita para esquerda, sendo o bit 0 o de mais baixa ordem ou menos significativo.

AX : é o chamado ACUMULADOR (o X refere-se a "eXtended"). O AX pode ser dividido em dois registradores de 8 bits: AL e AH, sendo AL formado pelo byte menos significativo (D0 a D7), enquanto AH é constituído pelo byte mais significativo (D8 a D15), podendo cada um deles ser acessado separadamente. **O código de endereçamento de AX é C0.**

	15	14	13	12	11	10	09	08	07	06	05	04	02	01	00
$\mathbf{A}\mathbf{X}$															

DX também pode ser dividido em DL e DH. pode ser dividido em DL e DH. É chamado de registrador de DADOS, pois ele pode ser usado como uma extensão do AX em operações de multiplicação e divisão. <u>O código de endereçamento de DX é C2</u>.

	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
$\mathbf{D}\mathbf{X}$																

3. Demais Registradores:

A lista seguinte mostra os demais registradores implementados no computador hipotético e sua descrição.

Registrador	Tipo	Tamanho	Descrição
		(bits)	
SP	Pilha	16	Aponta para o topo da memória do tipo pilha. Usado
	STACK POINTER		pelas instruções push e pop.
SI	Registrador de índice	16	Aponta para a origem dos dados que serão
	SOURCE INDEX		movimentados. É usado para indexação de tabelas no
			endereçamento indireto.
IP	Apontador de instrução	16	Contém durante a execução de um programa o
	Instruction pointer		endereço na memória da próxima instrução a ser
			executada
SR	Registrador de estado	16	Contém seis flags de um bit. Usados para indicar
	Status register		várias condições durante a execução do programa

	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
SR				of			sf	zf	if	pf						cf

Os "flags" de estado podem ser testados após algumas operações terem sido realizadas e cujos resultados poderia ser usados para decisões de desvios condicionais. Os "flags" são inicializados da seguinte maneira:

CE: é setado (recebe valor 1) se uma operação de adição resulta cm "carry" (vai-um) ou se uma operação de subtração resulta cm "borrow" (vem-um). Se nenhum "carry" ou "borrow ocorrer após urna adição ou subtração, ele é resetado (recebe 0). A execução da sequência de instruções

onde a letra b ao lado da constante indica que está sendo usada a notação binária, faria CF ser setado:

PF: é o "flag" de paridade. É setado quando um valor contêm um número par de "bits" no estado 1 (caso o número contenha um número impar de 1's. ele é resetado). A execução da sequência de instruções

mov AX, 0

add AX, 0111011101110111b

seta PF, pois o operando-destino (AX) passa a conter um número par de 1's;

IF: 'flag'' de interrupção. Quando ele está setado, o Z808 ignora (desabilita) as interrupções. Ele é alterado pelo usuário, quando este deseja desabilitar interrupções (**popf pushr**)

ZF: é o flag zero. Setado quando resultado de uma operação é zero (1). Para resultados diferentes do zero ele é resetado(0).

SF: flag de sinal, usado para indicar se o número é positivo ou negativo.

OF: Overflow Flag, indica um estouro da capacidade de armazenamento de um registrador.

4. Modos de Endereçamento

2.3. MODOS DE ENDERECAMENTO

Os modos de endereçamento (modos como o processador obtém os dados) empregados pelo Z808 são cinco: imediato, via registrador, direto, indireto e indexado.

2.3.1. ENDEREÇAMENTO IMEDIATO

No endereçamento imediato, o operando é uma constante numérica que segue o código da instrução. Existem três modos de referenciar-se a constantes no Z808: diretamente, através de um número, através de um nome simbólico de uma constante declarada com a diretiva EQU (vide adiante) ou através de um nome simbólico precedido da diretiva OFFSET (o conceito de diretiva será explicado posteriormente). A figura 2.4 ilustra um exemplo do uso do modo de endereçamento imediato (B8 é o código de operação da instrução).

_			1002	XX	XX
u _	XX	XX	1004	II	IX
_			1006	28	03
EP	10	06	1008	OA	XX
			100A	xx	XX
			100C	XX	XX
			(*)		1
x [OA.	03	1002	xx	11
u _	U.N.		1004	XX	XX
		1 00	1006	28	03

2.3.2. ENDEREÇAMENTO DIRETO

No modo de endereçamento direto ou absoluto, o operando localiza-se em um endereço especificado na instrução (imediatamente após o código de operação). A figura 2.5 ilustra um exemplo do modo de endereçamento direto. A instrução do exemplo (mov AX,Oito, onde 'Oito' é um nome simbólico - variável - do endereço 1002) faz um acesso a mais à memória do que a anterior (um acesso para pegar o código de operação, um acesso para pegar o endereço do dado e um outro para pegar o conteúdo daquele endereço). Oito deve ter sido declarado como uma variável (inicializada ou não) da seguinte forma:

Oito DW 8:

(se Oito tivesse sido declarado como uma constante através da diretiva EQU,

Oito EQU 8;

o modo de endereçamento seria o imediato).

2.3.3. ENDEREÇAMENTO VIA REGISTRADOR

No modo de endereçamento via registrador, o(s) operando(s) é (são) o(s) conteúdo(s) de um registrador(es), conforme o exemplo da figura 2.6.

O modo de endereçamento via registrador é o mais rápido (exige menos ciclos de UCP) uma vez que faz um único acesso à memória, para pegar o código de operação.

		ADD AX,DX	Mom	ória
AND THE PERSON NAMED IN	02	1002	xx	xx
00	A STATE OF THE STA	1004	xx	xx
	06	1006	03	C2
10		1008	xx	XX
	08	100A	XX	XX
00	08	100C	xx	XX
		(a)		
		 		
00	OA	1002	xx xx	xx
00	0A 08	 	xx xx 03	xx xx c2
		1002	xx	XX
		1002 1004 1006	XX 03	XX C2
10	08	1002 1004 1006 1008	03 XX	x C

Figura 2.6 Exemplo do modo de endereçamento via registrador: (a) antes da execução da instrução; (b) após a execução da instrução

2.3.5. ENDEREÇAMENTO INDEXADO

2

fi

No modo de endereçamento indexado, o registrador SI é usado como um deslocamento (índice) em relação à uma base. Essa base é um endereço. É importante ressaltar que o deslocamento é dado em "bytes".

O modo de endereçamento indexado é bastante conveniente para o processamento de vetores e matrizes.

		н	(IB),XA VO	Hemo	Srin
	XX	XX	1002	08	00
			1004	XX	XX
	10	06	1006	8 B	04
			1008	XX	XX
	10	02	100A	XX	XX
			100C	XX	xx
			(a)		
x [00	08	1002	08	00
x [00	08		08 XX	00
	00	08	1002		00
X P			1002	xx	00
			1002 1004 1006	XX 8B	00 XX 04
P [10	08	1002 1004 1006 1008	XX 8B XX	00 xx 04 xx

Figura 2.7 Exemplo do modo de endereçamento indireto: (a) antes da execução da instrução; (b) após a execução da instrução

A figura 2.8 ilustra um exemplo de tal modo de endereçamento. **Tabela** é o nome simbólico do endereço 0A02 que representa a base de um **vetor** de dez posições (cada posição com o tamanho de uma palavra) **inicializadas** com valores primos, conforme a declaração abaixo:

Tabela DW 01
DW 03
DW 05
DW 07
DW 11
DW 13
DW 17
DW 19
DW 23
DW 29

Figura 2.8 Exemplo do modo de endereçamento indexado

Deseja-se mover para AX o conteúdo da sexta posição do vetor ou posição de índice 5 (que contém o valor 13 ou 000Dh). Como tal posição representa um deslocamento de 10 "bytes" em relação à base, SI foi carregado com 0A (10 em hexadecimal).

5. Conjunto de Instruções

A seguir está definido o conjunto de instruções reconhecido pelo computador, acompanhado de todas as informações necessárias para sua implementação.

Cada código de instrução (*opcode*) e operando (opd1 ou opd2) ocupa uma palavra de memória. As ações dizem respeito aos registradores, conforme identificação definida na tabela de registradores e endereços de memória referenciados. As observações sinalizadas se são descritas na legenda abaixo do quadro.

Mnen	nônico	Cód. de	Tam. da	N° de	Ação (comentário) **	Modos de	Flags afetados	
		Máq.*	Instrução			endereçamento		
		(opcode)	(bytes -	ndos		(D/In/Im)		
L			8bits)					
add	AX,reg	03 C0	2	1	$AX \leftarrow AX + AX$	&	CF,PF,ZF,SF,OF	
L		03 C2			$AX \leftarrow AX + DX$			
	AX,opd	05 opd	3	1	$AX \leftarrow AX + opd$	D/In/Im	CF,PF,ZF,SF,OF	
div	SI	F7 F6	2	1	AX←AX div SI	&	CF,PF,ZF,SF,OF	
L					DX←AX mod SI			
div	AX	F7 C0	2	1	AX←AX div AX	&	CF,PF,ZF,SF,OF	
					DX←AX mod AX		CEREGE CE	
sub		2B C0	2	1	$AX \leftarrow AX - AX$	&	CF,PF,ZF,SF,OF	
AX,r	eg	2B C2			AX← AX - DX		CEREGE CE CE	
sub		25 opd	3	1	AX←AX -opd	D/In/Im	CF,PF,ZF,SF,OF	
AX,o							CTTTTTTTT	
mul	SI	F7 F6	2	1	AX←AX * SI	&	CF,PF,ZF,SF,OF	
					DX←AX * SI (parte			
					alta da multiplicação se			
					houver overflow; caso			
					contrario DX=0)			
mul	AX	F7 F0	2	1	AX←AX * AX	&	CF,PF,ZF,SF,OF	
					DX←AX * AX			
					(parte alta da			
					multiplicação se houver			
					overflow caso contrario			
					DX=0))			
cmp		3D opd	3	1	ZF←1, se AX = opd	D/In/Im	CF,PF,ZF,SF,OF	
AX,o	pd				ZF \leftarrow 0, se AX ≠ opd			
стр	AX,DX	3B C2	2	1	$ZF \leftarrow 1$, se $AX = DX$	&	CF,PF,ZF,SF,OF	
_				-	$ZF \leftarrow 0$, se $AX \neq DX$			
3	7 TV 7 TV	22.60			· ·		CEDE ZECE OF	ш
and	AX,AX	23 C0	2	1	$AX \leftarrow AX$ and AX	&	CF,PF,ZF,SF,OF	#
and		23 C2		_	AX←AX and DX	D/T /F	CEDE ZECE OF	- 4
1	d	25 cte	3	1	AX←AX and opd	D/In/Im	CF,PF,ZF,SF,OF	#
AX,o	AX	E0.C0	2	1	A X/ (A X/)	0	CF,PF,ZF,SF,OF	#
		F8 C0	2	1	$AX \leftarrow not(AX)$	<u>&</u>		
or	AX,AX	0B C0	2	1	AX←AX or AX	&	CF,PF,ZF,SF,OF	#
		0B C2		4	$AX \leftarrow AX \text{ or } DX$	D/I /I	CF,PF,ZF,SF,OF	#
or AX,o	nd	OD cte	3	1	AX←AX or opd	D/In/Im	Gr,rr,Zr,3r,Ur	#
xor	AX,AX	22.00	2	1	AV. AV vos AV	&	CF,PF,ZF,SF,OF	#
VOI	AA,AA	33 C0		1	AX←AX xor AX	OX.	OF, F, ZF, OF, OF	π
xor		33 C2	2	1	AX←AX xor DX	D/I/I	CF,PF,ZF,SF,OF	#
AX,c	+-	35 cte	3	1	AX←AX xor cte	D/In/Im	CF,FF,ZF,OF,UF	"
jmp	opd	EB opd	3	1	IP ←opd	D/In/Im	inalterados	+
jz	opd		3	1	IP ←opa IP ←opd , se ZF = 1	D/In/Im D/In/Im	inalterados	+
jnz	opd	74 opd	3		•		inalterados	+
Juz	opu	75 opd	3	1	IP ←opd , se ZF ≠1	D/In/Im	manteratios	

Mnemônico	Cód. de Máq.* (opcode)	Tam. da Instrução (bytes - 8bits)		Ação (comentário) **	Modos de endereçamento (D/In/Im)	Flags afetados
jp opd	7A opd	3	1	IP ←opd , se SF = 0	D/In/Im	inalterados
call opd	E8 opd	3	1	[SP]←IP	D/In/Im	inalterados
				(desvio para sub-rotina opd1)		
ret	EF	1	0	IP←[SP] (retorno de sub-rotina)	&	inalterados
hlt	EE	1	0	término (fim) de execução	&	inalterados
pop reg	58 C0 58 C2	2	1	AX←[SP] DX←[SP] Pega valor de 16 bits do topo da pilha e armazena no registrador	&	inalterados
pop opd	59	3	1	opd←[SP] Pega valor de 16 bits do topo da pilha e armazena no endereço	D/In/Im	inalterados
popf	9D	1	0	SR←[SP] Pega valor de registrador SR de 16 bits do topo da pilha e atualiza flags	&	CF,PF,ZF,SF,OF
push reg	50 C0 50 C2	2	1	[SP]←AX [SP]←DX Pega valor de 16 bits do registrador armazena no topo da pilha	&	inalterados
pushf	9C	1	0	[SP]←SR Pega valor de registrador SR de 16 bits do topo da pilha e coloca na pilha	&	inalterados
store reg	07 C0 07 C2	2	1	opd1← AX opd1← DX	D/In/Im	inalterados
read opd	12 opd	3	1	opd1←input stream	D/In/Im	inalterados
write opd	08 opd	3	1	Output stream←opd1	D/In/Im	inalterados

Legenda

- ** A referência "[SP]" representa um elemento a ser retirado da pilha (operação *pop*) e a referência "[SP]←" representa uma operação *push* na pilha.
- (#) Executa a intrução bit-a-bit.
- (%) As instruções CALL e RET utilizam a "Pilha do Sistema" para tratamento dos endereços de retorno, conforme descrito no item específico sobre este tema.
- (&) Não se aplica.

6. Pilha do Sistema

Uma pilha é utilizada pelo sistema para armazenar os endereços de retornos de sub-rotinas, conforme indicado na seção sobre o "Conjunto de Instruções". Esta pilha do sistema é endereçada (acessada) através do registrador **SP** (ponteiro da pilha).

A pilha do sistema está localizada no início da memória física, a partir do **endereço 2** (**endereço base da pilha**), cujo conteúdo não pode se desempilhado e deve manter o seu tamanho máximo (*Stack Limit*). O valor inicial do SP é implicitamente carregado com zero ao "ligar a máquina virtual". O ponteiro da pilha somente pode crescer incrementando até seu limite, causando um desvio para o endereço 0 (zero), caracterizada como uma exceção de "*Stack Overflow*", caso haja uma tentativa de empilhar com a pilha cheia.

A estrutura da pilha é a seguinte:

Bibliografia

CALINGAERT, Peter. **Assemblers, Compilers, and Program Translation.** Potomac: Computer Science Press, Inc, 1979.

STALLINGS, Willian. **Computer Organization and Architecture**. 5.ed. New Jersey: Prentice Hall, 1999.

TANENBAUM, Andrew. **Structured Computer Organization.** 4.ed. New Jersey: Prentice Hall, 1999.

KOLIVER, Cristian. **Tradução de programas – Da montagem a carga.** 1.ed. Caxias do Sul: EDUCS, 1996.