10

15

20

25

30

35

ACTIVIN RECEPTOR-LIKE KINASES, PROTEINS HAVING SERINE THREONINE KINASE DOMAINS AND THEIR USE.

Field of the Invention

This invention relates to proteins having serine/threonine kinase domains, corresponding nucleic acid molecules, and their use.

Background of the Invention

The transforming growth factor-B (TGF-B) superfamily consists of a family of structurally-related proteins, including three different mammalian isoforms of TGF-8 (TGF-B1. B2 and B3), activins, inhibins, mullerian-inhibiting substance and bone morphogenic proteins (BMPs) (for reviews see Roberts and Sporn, (1990) Peptide Growth Factors and Their Receptors, Pt.1, Sporn and Roberts, eds. (Berlin: Springer - Verlag) pp 419-472; Moses et al (1990) Cell 63, The proteins of the TGF-8 superfamily have a 245-247). wide variety of biological activities. TGF-B acts as a growth inhibitor for many cell types and appears to play a central role in the regulation of embryonic development, tissue regeneration, immuno-regulation, as well as in fibrosis and carcinogenesis (Roberts and Sporn (199) s e above).

Activins and inhibins were originally identified as factors which regulate secretion of follicle-stimulating hormone secretion (Vale et al (1990) Peptide Growth Pactors and Their Receptors, Pt.2, Sporn and Roberts, eds. (Berlin: Springer-Verlag) pp.211-248). Activins were also shown to induce the differentiation of haematopoietic progenitor cells (Murata et al (1988) Proc. Natl. Acad. Sci. USA 85, 2434 - 2438; Eto et al (1987) Biochem. Biophys. Res. Commun. 142, 1095-1103) and induce mesoderm formation in Xenopus embryos (Smith et al (1990) Nature 345, 729-731; van den Eijnden-Van Raaij et al (1990) Nature 345, 732-734).

BMPs or osteogenic proteins which induce the formation of bone and cartilage when implanted subcutaneously (Wozn y et al (1988) Science 242, 1528-1534), facilitate neuronal

.5

10

15

20

25

30

14

differ ntiation (Paralkar et al (1992) J. Cell Biol. 119, 1721-1728) and induce monocyt chemotaxis (Cunningham et al (1992) Proc. Natl. Acad. Sci. USA 89, 11740-11744). Müllerian-inhibiting substance induces regression of the Müllerian duct in the male reproductive system (Cate et al (1986) Cell 45, 685-698), and a glial cell line-derived neurotrophic factor enhances survival of midbrain dopaminergic neurons (Lin et al (1993) Science 260, 1130-1132). The action of these growth factors is mediated through binding to specific cell surface receptors.

Within this family, TGF-B receptors have been most thoroughly characterized. By covalently cross-linking radio-labelled TGF-B to cell surface molecules followed by polyacrylamide gel electrophoresis of the affinity-labelled complexes, three distinct size classes of cell surface proteins (in most cases) have been identified, denoted receptor type I (53 kd), type II (75 kd), type III or betaglycan (a 300 kd proteoglycan with a 120 kd core protein) (for a review see Massague (1992) Cell 69 1067-1070) and more recently endoglin (a homodimer of two 95 kd subunits) (Cheifetz et al (1992) J. Biol. Chem. 267 19027-19030). Current evidence suggests that type I and type II receptors are directly involved in receptor signal transduction (Segarini et al (1989) Mol. Endo., 3, 261-272; Laiho et al (1991) J. Biol. Chem. 266, 9100-9112) and may form a heteromeric complex; the type II receptor is needed for the binding of TGF-B to the type I receptor and the type I receptor is needed for the signal transduction induced by the type II receptor (Wrana et al (1992) Cell, 71, 1003-1004). The type III receptor and endoglin may have more indirect roles, possibly by facilitating the binding of ligand to type II receptors (Wang et al (1991) Cell, 67 797-805; López-Casillas et al (1993) Cell, 73 1435-1444) •

Binding analyses with activin A and BMP4 have led to the identification of two co-existing cr ss-link d affinity complexes of 50-60 kDa and 70-80 kDa on responsive cells

10

15

20

25

30

35

(Hino et al (1989) J. Biol. Chem. 264, 10309 - 10314; Mathews and Val (1991), Cell 68, 775-785; Paralker et al (1991) Proc. Natl. Acad. Sci. USA 87, 8913-8917). By analogy with TGF-8 receptors they are thought to be signalling receptors and have been named type I and type II receptors.

Among the type II receptors for the TGF-8 superfamily of proteins, the cDNA for the activin type II receptor (Act RII) was the first to be cloned (Mathews and Vale (1991) Cell 65, 973-982). The predicted structure of the receptor was shown to be a transmembrane protein with an intracellular serine/threonine kinase domain. The activin receptor is related to the <u>C. elegans daf-1</u> gene product, but the ligand is currently unknown (Georgi et al (1990) Cell 61, 635-645). Thereafter, another form of the activin type II receptor (activin type IIB receptor), of which there are different splicing variants (Mathews et al (1992), Science 225, 1702-1705; Attisano et al (1992) Cell 68, 97-108), and the TGF-8 type II receptor (TSRII) (Lin et al (1992) Cell 68, 775-785) were cloned, both of which have putative serine/threconine kinase domains.

Summary of the Invention

The present invention involves the discovery of related novel peptides, including peptides having the activity of those defined herein as SEQ ID Nos. 2, 4, 8, 10, 12, 14, 16 and 18. Their discovery is based on the realisation that receptor serine/threonine kinases form a new receptor family, which may include the type II receptors for other proteins in the TGF-8 superfamily. To ascertain whether there were other members of this family of receptors, a protocol was designed to clone ActRII/daf I related cDNAs. This approach made use of the polymerase chain reaction (PCR), using degenerate primers based upon the amino-acid sequence similarity between kinase domains of the mouse activin type II receptor and daf-I gene products.

10

15

20

25

35

1

This strategy resulted in the isolation f a new family f receptor kinases call d Activin receptor like kinases (ALK's) 1-6. These cDNAs showed an overall 33-39% sequence similarity with ActRII and TGF-8 type II receptor and 40-92% sequence similarity towards each other in the kinase domains.

Soluble receptors according to the invention comprise at least predominantly the extracellular domain. These can be selected from the information provided herein, prepared in conventional manner, and used in any manner associated with the invention.

Antibodies to the peptides described herein may be raised in conventional manner. By selecting unique sequences of the peptides, antibodies having desired specificity can be obtained.

The antibodies may be monoclonal, prepared in known manner. In particular, monoclonal antibodies to the extracellular domain are of potential value in therapy.

Products of the invention are useful in diagnostic methods, e.g. to determine the presence in a sample for an analyte binding therewith, such as in an antagonist assay. Conventional techniques, e.g. an enzyme-linked immunosorbent assay, may be used.

Products of the invention having a specific receptor activity can be used in therapy, e.g. to modulate conditions associated with activin or $TGF-\beta$ activity. Such conditions include fibrosis, e.g. liver cirrhosis and pulmonary fibrosis, cancer, rheumatoid arthritis and glomeronephritis.

30 Brief Description of the Drawings

Figure 1 shows the alignment of the serine/threonine (S/T) kinase domains (I-VIII) of related receptors from transmembrane proteins, including embodiments of the present invention. The nomenclature of the subdomains is accordingly to Hanks et al (1988).

Figures 2A to 2D shows the sequences and characteristics of th respective primers used in th

15

20

25

30

35

initial PCR reactions. The nucleic acid s quences are also given as SEQ ID N s. 19 to 22.

Figur 3 is a comparison of the amino-acid sequences of human activin type II receptor (Act R-II), mouse activin type IIB receptor (Act R-IIB), human TGF-B type II receptor (TBR-II), human TGF-B type I receptor (ALK-5), human activin receptor type IA (ALK-2), and type IB (ALK-4), ALKs 1 & 3 and mouse ALK-6.

Figure 4 shows, schematically, the structures for <u>Daf-</u>
10 1, Act R-II, Act R-IIB, TBR-II, TBR-I/ALK-5, ALK's -1, -2
(Act RIA), -3, -4 (Act RIB) & -6.

Figure 5 shows the sequence alignment of the cysteinerich domains of the ALKs, TBR-II, Act R-II, Act R-IIB and daf-1 receptors.

Figure 6 is a comparison of kinase domains of serine/threonine kinases, showing the percentage amino-acid identity of the kinase domains.

Figure 7 shows the pairwise alignment relationship between the kinase domains of the receptor serine/threonine kinases. The dendrogram was generated using the Jotun-Hein alignment program (Hein (1990) Meth. Enzymol. 183, 626-645).

Brief Description of the Sequence Listings

Sequences 1 and 2 are the nucleotide and deduced amino-acid sequences of cDNA for hALK-1 (clone HP57).

Sequences 3 and 4 are the nucleotide and deduced amino-acid sequences of cDNA for hALK-2 (clone HP53).

Sequences 5 and 6 are the nucleotide and deduced amino-acid sequences of cDNA for hALK-3 (clone ONF5).

sequences 7 and 8 the nucleotide and deduced aminoacid sequences of cDNA for hALK-4 (clone 11H8), complemented with PCR product encoding extracellular domain.

Sequences 9 and 10 are the nucleotide and deduced amino-acid sequences of cDNA for hALK-5 (clone EMBLA).

Sequences 11 and 12 are the nucleotide and deduced amino-acid sequences of cDNA for mALK-1 (clone AM6).

10

15

20

30

35

Sequences 13 and 14 are the nucleotide and discrete amino-acid sequences of cDNA for mALK-3 (cl n s ME-7 and ME-D).

Sequences 15 and 16 are the nucleotide and deduced amino-acid sequences of cDNA for mALK-4 (clone 8al).

Sequences 17 and 18 are the nucleotide and deduced amino-acid sequences of cDNA for mALK-6 (clone ME-6).

Sequence 19 (B1-S) is a sense primer, extracellular domain, cysteine-rich region, BamHI site at 5' end, 28-mer, 64-fold degeneracy.

Sequence 20 (B3-S) is a sense primer, kinase domain II, BamHI site at 5' end, 25-mer, 162-fold degeneracy.

Sequence 21 (B7-S) is a sense primer, kinase domain VIB, S/T kinase specific residues, BamHI site at 5' end, 24-mer, 288-fold degeneracy.

Sequence 22 (E8-AS) is an anti-sense primer, kinase domain, S/T kinase-specific residues EcoRI site at 5' end, 20-mer, 18-fold degeneracy.

Sequence 23 is an oligonucleotide probe.

Sequence 24 is a 5' primer.

Sequence 25 is a 3' primer.

Sequence 26 is a consensus sequence in Subdomain I.

Sequences 27 and 28 are novel sequence motifs in Subdomain VIB.

25 Sequence 29 is a novel sequence motif in Subdomain VIII.

Description of the Invention

As described in more detail below, nucleic acid sequences have been isolated, coding for a new sub-family of serine/threonine receptor kinases. The term nucleic acid molecules as used herein refers to any sequence which codes for the murine, human or mammalian form, amino-acid sequences of which are presented herein. It is understood that the well known phenomenon of codon degeneracy provides for a great deal of sequence variation and all such varieties ar included within the scope of this invention.

10

15

20

25

30

35

и,

The null ic acid sequences described her in may be used to clone the respective genomic DNA sequences in reder to study the genes' structure and regulation. The murine and human cDNA or genomic sequences can also be used to isolate the homologous genes from other mammalian species. The mammalian DNA sequences can be used to study the receptors' functions in various in vitro and in vivo model systems.

As exemplified below for ALK-5 cDNA, it is also recognised that, given the sequence information provided herein, the artisan could easily combine the molecules with a pertinent promoter in a vector, so as to produce a cloning vehicle for expression of the molecule. promoter and coding molecule must be operably linked via easily-practised well-recognized and the methodologies for so doing. The resulting vectors, as well as the isolated nucleic acid molecules themselves, may be used to transform prokaryotic cells (e.g. E. coli), or transfect eukaryotes such as yeast (S. cerevisiae), PAE, Other appropriate expression COS or CHO cell lines. systems will also be apparent to the skilled artisan.

Several methods may be used to isolate the ligands for the ALKs. As shown for ALK-5 cDNA, cDNA clones encoding the active open reading frames can be subcloned into expression vectors and transfected into eukaryotic cells, The transfected cells which can for example COS cells. express the receptor can be subjected to binding assays for radioactively-labelled members of the TGF-8 superfamily (TGF-B, activins, inhibins, bone morphogenic proteins and mullerian-inhibiting substances), as it may be expected that the receptors will bind members of the TGF-B superfamily. Various biochemical or cell-based assays can be designed to identify the ligands, in tissue extracts or conditioned media, for receptors in which a ligand is not known. Antibodies raised to th receptors may also b used to identify the ligands, using th immunoprecipitation f Alternativ ly, purifi d the cross-link d complexes.

10

15

20

30

35

14

rec ptor c uld b used to is lat the ligands using an affinity-bas d approach. Th determination of th expression patterns of the recept rs may als aid in the isolation of the ligand. These studies may be carried out using ALK DNA or RNA sequences as probes to perform in situ hybridisation studies.

The use of various model systems or structural studies should enable the rational development of specific agonists and antagonists useful in regulating receptor function. It may be envisaged that these can be peptides, mutated ligands, antibodies or other molecules able to interact with the receptors.

The foregoing provides examples of the invention Applicants intend to claim which includes, inter alia, isolated nucleic acid molecules coding for activin receptor-like kinases (ALKs), as defined herein. These include such sequences isolated from mammalian species such as mouse, human, rat, rabbit and monkey.

The following description relates to specific embodiments. It will be understood that the specification and examples are illustrative but not limitative of the present invention and that other embodiments within the spirit and scope of the invention will suggest themselves to those skilled in the art.

25 Preparation of mRNA and Construction of a cDNA Library

For construction of a cDNA library, poly (A)* RNA was isolated from a human erythroleukemia cell line (HEL 92.1.7) obtained from the American Type Culture Collection (ATCC TIB 180). These cells were chosen as they have been shown to respond to both activin and TGF-B. Moreover leukaemic cells have proved to be rich sources for the cloning of novel receptor tyrosine kinases (Partanen et al (1990) Proc. Natl. Acad. Sci. USA 87, 8913-8917 and (1992) Mol. Cell. Biol. 12, 1698-1707). (Total) RNA was prepared by the guanidinium isothiocyanate method (Chirgwin et al (1979) Biochemistry 18, 5294-5299). mRNA was selected using the poly-A or poly AT tract mRNA isolation kit

10

15

20

30

35

(Pr mega, Madison, Wisconsin, U.S.A.) as described by the manufacturers, or purified through an ligo (dT)-cellulos column as described by Aviv and Led r (1972) Proc. Natl. Acad. Sci. USA 69, 1408-1412. The isolated mRNA was used for the synthesis of random primed (Amersham) cDNA, that was used to make a lgt10 library with 1x105 independent CDNA clones using the Riboclone cDNA synthesis system (Promega) and Agt10 in vitro packaging kit (Amersham) according to the manufacturers' procedures. An amplified oligo (dT) primed human placenta AZAPII cDNA library of 5x10⁵ independent clones was used. Poly (A) RNA isolated from AG1518 human foreskin fibroblasts was used to prepare a primary random primed AZAPII cDNA library of 1.5x106 independent clones using the RiboClone cDNA synthesis system and Gigapack Gold II packaging extract (Stratagene). In addition, a primary oligo (dT) primed human foreskin fibroblast lgt10 cDNA library (Claesson-Welsh et al (1989) Proc. Natl. Acad. Sci. USA. 86 4917-4912) was prepared. An amplified oligo (dT) primed HEL cell Agt11 cDNA library of 1.5 X 106 independent clones (Poncz et al (1987) Blood 69 219-223) was used. A twelve-day mouse embryo \(\lambda \text{EX}\)Iox CDNA library was obtained from Novagen (Madison, Wisconsin, U.S.A.); a mouse placenta AZAPII cDNA library was also used.

25 Generation of cDNA Probes by PCR

For the generation of cDNA probes by PCR (Lee et al (1988) Science 239, 1288-1291) degenerate PCR primers were constructed based upon the amino-acid sequence similarity between the mouse activin type II receptor (Mathews and Vale (1991) Cell 65, 973-982) and daf-1 (George et al (1990) Cell 61, 635-645) in the kinase domains II and VIII. Figure 1 shows the aligned serine/threonine kinase domains (I-VIII), of four related receptors of the TGF-8 superfamily, i.e. hTBR-II, mActR-IIB, mActR-II and the daf-1 gene product, using the nomenclature of the subdomains according to Hanks et al (1988) Science 241, 45-52.

10

15

20

25 '

30

35

S veral c nsiderations wer appli d in the design of the PCR primers. The sequenc s wer taken from regions of homology between the activin type II receptor and the daf-1 gene product, with particular emphasis on residues that confer serine/threonine specificity (see Table 2) and on residues that are shared by transmembrane kinase proteins and not by cytoplasmic kinases. The primers were designed so that each primer of a PCR set had an approximately similar GC composition, and so that self complementarity and complementarity between the 3' ends of the primer sets were avoided. Degeneracy of the primers was kept as low as possible, in particular avoiding serine, leucine and arginine residues (6 possible codons), and human codon preference was applied. Degeneracy was particularly avoided at the 3' end as, unlike the 5' end, where mismatches are tolerated, mismatches at the 3' end dramatically reduce the efficiency of PCR.

In order to facilitate directional subcloning, restriction enzyme sites were included at the 5' end of the primers, with a GC clamp, which permits efficient restriction enzyme digestion. The primers utilised are shown in Figure 2. Oligonucleotides were synthesized using Gene assembler plus (Pharmacia - LKB) according to the manufacturers instructions.

The mRNA prepared from HEL cells as described above was reverse-transcribed into cDNA in the presence of 50 mM Tris-HCl, pH 8.3, 8 mM MgCl₂, 30 mM KCl, 10 mM dithiothreitol, 2mM nucleotide triphosphates, excess oligo (dT) primers and 34 units of AMV reverse transcriptase at 42°C for 2 hours in 40 µl of reaction volume. Amplification by PCR was carried out with a 7.5% aliquot (3 µl) of the reverse-transcribed mRNA, in the presence of 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 M MgCl₂, 0.01% gelatin, 0.2 mM nucleotide triphosphates, 1 µM of both sense and antisense primers and 2.5 units of Taq polymerase (Perkin Elmer Cetus) in 100 µl reaction volume. Amplifications were performed on a thermal cycler (Perkin Elmer Cetus)

10

15

20

25

30

35

using the following program: first 5 thermal cycl s with denaturation for 1 minute at 94°C, ann aling for 1 minute at 50° C, a 2 minute ramp to 55° C and elongation for 1 minute at 72° C, followed by 20 cycles of 1 minute at 94° C, 30 seconds at 55° C and 1 minute at 72° C. A second round of PCR was performed with 3 μ l of the first reaction as a template. This involved 25 thermal cycles, each composed of 94° C (1 min), 55° C (0.5 min), 72° C (1 min).

General procedures such as purification of nucleic acids, restriction enzyme digestion, gel electrophoresis, transfer of nucleic acid to solid supports and subcloning were performed essentially according to established procedures as described by Sambrook et al, (1989), Molecular cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory (Cold Spring Harbor, New York, USA).

samples of the PCR products were digested with BamHI and EcoRI and subsequently fractionated by low melting point agarose gel electrophoresis. Bands corresponding to the approximate expected sizes, (see Table 1: ≈460 bp for primer pair B3-S and E8-AS and ≈ 140 bp for primer pair B7-S and E8-AS) were excised from the gel and the DNA was purified. Subsequently, these fragments were ligated into pUC19 (Yanisch-Perron et al (1985) Gene 33, 103-119), which had been previously linearised with BamHI and EcoR1 and transformed into E. coli strain DH5α using standard protocols (Sambrook et al, supra). Individual clones were sequenced using standard double-stranded sequencing techniques and the dideoxynucleotide chain termination method as described by Sanger et al (1977) Proc. Natl. Acad. Sci. USA 74, 5463-5467, and T7 DNA polymerase.

Employing Reverse Transcriptase PCR on HEL mRNA with the primer pair B3-S and E8-AS, three PCR products were obtained, termed 11.1, 11.2 and 11.3, that corresponded to novel genes. Using the primer pair B7-S and E8-AS, an additional novel PCR product was obtained termed 5.2.

TABLE 1

5	NUMB OF PCR PRODUCT	PRIMERS	INSERT SISE (bp)	SINE OF DHA FRAGMENT IN MACTRII/ bTORII CLOMES (bp)	SEQUENCE IDENTITY WITE SEQUENCE MACTRII/hTSRII (%)	SEQUENCE IDENTITY BETWEEN BACTRII and TOR-II (%)		
	11.1	B3-S/E8-AS	460	460	46/40	42		
	11.2	B3-S/B8-AS	460	460	49/44	47		
10	11.3	B3-5/E8-AS	460	460	44/36	48		
	11.29	B3-S/E8-AS	460	460	ND/100	ND		
	9.2	B1-S/E8-AS	800	795	100/ND	ND		
	5.2	B7-S/E8-AS	140	143	40/38	60		

15 Isolation of cDNA Clones

20

25

30

35

The PCR products obtained were used to screen various cDNA libraries described <u>supra</u>. Labelling of the inserts of PCR products was performed using random priming method (Feinberg and Vogelstein (1983) Anal. Biochem, <u>132</u> 6-13) using the Megaprime DNA labelling system (Amersham). The oligonucleotide derived from the sequence of the PCR product 5.2 was labelled by phosphorylation with T4 polynucleotide kinase following standard protocols (Sambrook <u>et al</u>, <u>supra</u>). Hybridization and purification of positive bacteriophages were performed using standard molecular biological techniques.

The double-stranded DNA clones were all sequenced using the dideoxynucleotide chain-termination method as described by Sanger et al, supra, using T7 DNA polymerase (Pharmacia - LKB) or Sequenase (U.S. Biochemical Corporation, Cleveland, Ohio, U.S.A.). Compressions of nucleotides were resolved using 7-deaza-GTP (U.S. Biochemical Corp.) DNA sequences were analyzed using the DNA STAR computer program (DNA STAR Ltd. U.K.). Analyses of the sequences obtained revealed the existence of six

10

15

20

30

35

14

distinct putative r c ptor serine/threonin kinases which have be n named ALK 1-6.

To clone CDNA for ALK-1 the oligo (dT) prim d human placenta cDNA library was screened with a radiolabelled insert derived from the PCR product 11.3; based upon their restriction enzyme digestion patterns, three different types of clones with approximate insert sizes. of 1.7 kb, The 2 kb clone, named 2 kb & 3.5 kb were identified. HP57, was chosen as representative of this class and subjected to complete sequencing. Sequence analysis of ALK-1 revealed a sequence of 1984 nucleotides including a poly-A tail (SEQ ID No. 1). The longest open reading frame encodes a protein of 503 amino-acids, with high sequence similarity to receptor serine/threonine kinases (see The first methionine codon, the putative translation start site, is at nucleotide 283-285 and is preceded by an in-frame stop codon. This first ATG is in a more favourable context for translation initiation (Kozak (1987) Nucl. Acids Res., 15, 8125-8148) than the second and third in-frame ATG at nucleotides 316-318 and 325-327. The putative initiation codon is preceded by a 5' untranslated sequence of 282 nucleotides that is GC-rich (80% GC), which is not uncommon for growth factor receptors (Kozak (1991) J. Cell Biol., 115, 887-903). The 3' untranslated sequence comprises 193 nucleotides and ends with a poly-A tail. No bona fide poly-A addition signal is found, but there is a 25 sequence (AATACA), 17-22 nucleotides upstream of the poly-A tail, which may serve as a poly-A addition signal.

ALK-2 cDNA was cloned by screening an amplified oligo primed human placenta cDNA library with a radiolabelled insert derived from the PCR product 11.2. Two clones, termed HP53 and HP64, with insert sizes of 2.7 kb and 2.4 kb respectively, were identified and their sequences were determined. No sequence difference in the overlapping clones was found, suggesting they are both derived from transcripts f the sam gene.

ŝ:

5

10

20

25

30

14

Sequ no analysis f cDNA cl ne HP53 (SEQ ID No. 3) reveal d a sequence f 2719 nucl otides with a poly-A tail. longest open reading fram encodes a protein of 509 amino-acids. The first ATG at nucleotides 104-106 agrees favourably with Kozak's consensus sequence with an A at position 3. This ATG is preceded in-frame by a stop codon. There are four ATG codons in close proximity further downstream, which agree with the Kozak's consensus sequence (Kozak, <u>supra</u>), but according to Kozak's scanning model the first ATG is predicted to be the translation start site. The 5' untranslated sequence is 103 nucleotides. untranslated sequence of 1089 nucleotides contains a polyadenylation signal located 9-14 nucleotides upstream The CDNA clone HP64 lacks 498 from the poly-A tail. nucleotides from the 5' end compared to HP53, but the sequence extended at the 3' end with 190 nucleotides and 15 This suggests that different poly-A tail is absent. polyadenylation sites occur for ALK-2. In Northern blots, however, only one transcript was detected (see below).

The cDNA for human ALK-3 was cloned by initially screening an oligo (dT) primed human foreskin fibroblast cDNA library with an oligonucleotide (SEQ ID No. 23) derived from the PCR product 5.2. One positive cDNA clone with an insert size of 3 kb, termed ON11, was identified. However, upon partial sequencing, it appeared that this clone was incomplete; it encodes only part of the kinase domain and lacks the extracelluar domain. The most 5' sequence of ON11, a 540 nucleotide XbaI restriction domain, was fragment encoding a truncated kinase subsequently used to probe a random primed fibroblast cDNA library from which one cDNA clone with an insert size of 3 kb, termed ONF5, was isolated (SEQ ID No. 5). Sequence analysis of ONF5 revealed a sequence of 2932 nucleotides without a poly-A tail, suggesting that this clone was derived by internal priming. The longest open reading frame codes for a prot in of 532 amino-acids. The first 35 ATG codon which is compatible with Kozak's consensus

5

10

15

20

25

30

35

iç

sequence (K zak, <u>supra</u>), is at 310-312 nucleotides and is prec d d by an in-fram stop codon. Th 5' and 3' untranslated sequences are 309 and 1027 nucleotides long, respectively.

ALK-4 cDNA was identified by screening a human oligo (dT) primed human erythroleukemia cDNA library with the radiolabelled insert of the PCR product 11.1 as a probe. One cDNA clone, termed 11H8, was identified with an insert size of 2 kb (SEQ ID No. 7). An open reading frame was found encoding a protein sequence of 383 amino-acids encoding a truncated extracellular domain with high similarity to receptor serine/threonine kinases. The 3' untranslated sequence is 818 nucleotides and does not contain a poly-A tail, suggesting that the cDNA was CDNA encoding internally primed. the complete extracellular domain (nucleotides 1-366) was obtained from HEL cells by RT-PCR with 5' primer (SEQ ID No. 24) derived in part from sequence at translation start site of SKR-2 (a cDNA sequence deposited in GenBank data base, accesion number L10125, that is identical in part to ALK-4) and 3' primer (SEQ ID No. 25) derived from 11H8 cDNA clone.

ALK-5 was identified by screening the random primed HEL cell lqt 10 cDNA library with the PCR product 11.1 as This yielded one positive clone termed EMBLA (insert size of 5.3 kb with 2 internal EcoRI sites). Nucleotide sequencing revealed an open reading frame of 1509 bp. coding for 503 amino-acids. The open reading frame was flanked by a 5' untranslated sequence of 76 bp, and a 3' untranslated sequence of 3.7 kb which was not completely sequenced. The nucleotide and deduced aminoacid sequences of ALK-5 are shown in SEQ ID Nos. 9 and 10. In the 5' part of the open reading frame, only one ATG codon was found; this codon fulfils the rules of translation initiation (Kozak, supra). An in-frame stop codon was found at nucleotides (-54)-(-52) in the 5' untranslated region. The predicted ATG start codon is followed by a stretch of hydrophobic amino-acid residues

10

15

20

25

30

35

which has characteristics f a cleavable signal s quence. Theref r, the first ATG codon is likely to be used as a translation initiation site. A preferred cleavage site for the signal peptidase, according to von Heijne (1986) Nucl. Acid. Res. 14, 4683-4690, is located between amino-acid residues 24 and 25. The calculated molecular mass of the primary translated product of the ALK-5 without signal sequence is 53,646 Da.

Screening of the mouse embryo LEX <u>Iox</u> cDNA library using PCR, product 11.1 as a probe yielded 20 positive clones. DNAs from the positive clones obtained from this were digested with EcoRI and HindIII, library electrophoretically separated on a 1.3% agarose gel and transferred to nitrocellulose filters according to established procedures as described by Sambrook et al, The filters were then hybridized with specific supra. probes for human ALK-1 (nucleotide 288-670), ALK-2 (nucleotide 1-581), ALK-3 (nucleotide 79-824) or ALK-4 nucleotide 1178-1967). Such analyses revealed that a clone termed ME-7 hybridised with the human ALK-3 probe. However, nucleotide sequencing revealed that this clone was incomplete, and lacked the 5' part of the translated Screening the same cDNA library with a probe corresponding to the extracelluar domain of human ALK-3 (nucleotides 79-824) revealed the clone ME-D. This clone was isolated and the sequence was analyzed. Although this clone was incomplete in the 3' end of the translated region, ME-7 and ME-D overlapped and together covered the complete sequence of mouse ALK-3. The predicted amino-acid sequence of mouse ALK-3 is very similar to the human sequence; only 8 amino-acid residues differ (98% identity; see SEQ ID No. 14) and the calculated molecular mass of the primary translated product without the putative signal sequence is 57,447 Da.

Of the clones obtained from the initial library screening with PCR product 11.1, four clones hybridized to the probe corresponding to the conserved kinase domain f

15

20

25

ALK-4 but not to probes from more divergent parts f ALK-1 to -4. Analysis of thes clones r v aled that they hav an id ntical s qu no which differs from those of ALK-1 to -5 and was termed ALK-6. The longest clone ME6 with a 2.0 kb insert was completely sequenced yielding a 1952 bp fragment consisting of an open reading frame of 1506 bp (502 aminoacids), flanked by a 5' untranslated sequence of 186 bp, and a 3' untranslated sequence of 160 bp. The nucleotide and predicted amino-acid sequences of mouse ALK-6 are shown in SEQ ID Nos. 17 and 18. No polyadenylation signal was found in the 3' untranslated region of ME6, indicating that the cDNA was internally primed in the 3' end. Only one ATG codon was found in the 5' part of the open reading frame, which fulfils the rules for translation initiation (Kozak, supra), and was preceded by an in-frame stop codon at nucleotides 163-165. However, a typical hydrophobic leader sequence was not observed at the N terminus of the Since there is no ATG codon and translated region. putative hydrophobic leader sequence, this ATG codon is likely to be used as a translation initiation site. calculated molecular mass of the primary translated product with the putative signal sequence is 55,576 Da.

Mouse ALK-1 (clone AM6 with 1.9 kb insert) was obtained from the mouse placenta AZAPII cDNA library using human ALK-1 cDNA as a probe (see SEQ ID No. 11). Mouse ALK-4 (clone 8a1 with 2.3kb insert) was also obtained from this library using human ALK-4 cDNA library as a probe (SEQ ID No. 15).

To summarise, clones HP22, HP57, ONF1, ONF3, ONF4 and HP29 encode the same gene, ALK-1. Clone AM6 encodes mouse ALK-1. HP53, HP64 and HP84 encode the same gene, ALK-2. ONF5, ONF2 and ON11 encode the same gene ALK-3. ME-7 and ME-D encode the mouse counterpart of human ALK-3. 11H8 encodes a different gene ALK-4, whilst 8a1 encodes the mouse equivalent. EMBLA encodes ALK-5, and ME-6 encodes ALK-6.

10

15

20

25

30

35

The sequence alignment between the 6 ALK genes and TBR-II, mActR-II and ActR-IIB is shewn in Figure 3. These molecules have a similar domain structure; an N-terminal predicted hydrophobic signal sequence (von Heijne (1986) Nucl. Acids Res. 14: 4683-4690) is followed by a relatively small extracellular cysteine-rich ligand binding domain, a single hydrophobic transmembrane region (Kyte & Doolittle (1982) J. Mol. Biol. 157, 105-132) and a C-terminal intracellular portion, which consists almost entirely of a kinase domain (Figures 3 and 4).

The extracelluar domains of these receptors have cysteine-rich regions, but they show little sequence similarity; for example, less than 20% sequence identity is found between <u>Daf-1</u>, ActR-II, T&R-II and ALK-5. The ALKs appear to form a subfamily as they show higher sequence similarities (15-47% identity) in their extracellular domains. The extracellular domains of ALK-5 and ALK-4 have about 29% sequence identity. In addition, ALK-3 and ALK-6 share a high degree of sequence similarity in their extracellular domains (46% identity).

The positions of many of the cysteine residues in all receptors can be aligned, suggesting that the extracellular domains may adopt a similar structural configuration. See Figure 5 for ALKs-1,-2,-3 &- 5. Each of the ALKs (except ALK-6) has a potential N-linked glycosylation site, the position of which is conserved between ALK-1 and ALK-2, and between ALK-3, ALK-4 and ALK-5 (see Figure 4).

The sequence similarities in the kinase domains between daf-1, ActR-II, TBR-II and ALK-5 are approximately 40%, whereas the sequence similarity between the ALKs 1 to 6 is higher (between 59% and 90%; see Figure 6). Pairwise comparison using the Jutun-Hein sequence alignment program (Hein (1990) Meth, Enzymol., 183, 626-645), between all family members, identifies the ALKs as a separate subclass among serine/threonin kinases (Figure 7).

The catalytic domains of kinases can be divided into 12 subdomains with stretches of conserved amino-acid

10

15

r sidues. The key motifs are found in serine/thre nine kinase r ceptors suggesting that they are functional kinases. The consensus sequence for the binding of ATP (Gly-X-Gly-X-X-Gly in subdomain I followed by a Lys residue further downstream in subdomain II) is found in all the ALKs.

The kinase domains of <u>daf-1</u>, ActR-II, and ALKs show approximately equal sequence similarity with tyrosine and serine/threonine protein kinases. However analysis of the amino-acid sequences in subdomains VI and VIII, which are the most useful to distinguish a specificity for phosphorylation of tyrosine residues versus serine/threonine residues (Hanks <u>et al</u> (1988) Science <u>241</u> 42-52) indicates that these kinases are serine/threonine kinases; refer to Table 2.

TABLE 2

KINASE	SUBDOMAINS				
	VIB	VIII			
Serine/threonine kinase consensus	DLKPEN	G (T/S) XX (Y/F) X			
Tyrosine kinase consensus	DLAARN	XP(I/V) (K/R) W (T/M)			
Act R-II	DIKSKN	GTRRYM			
Act R-IIB	DFKSKN	GTRRYM			
TBR-II	DLKSSN	GTARYM			
ALK-I	DFKSRN	GTKRYM			
ALK -2, -3, -4, -5, & -6	DLKSKN	GTKRYM			

The sequence motifs DLKSKN (Subdomain VIB) and GTKRYM (Subdomain VIII), that are found in most of the serine/threonine kinase receptors, agree well with the consensus sequences for all protein serine/threonine kinase receptors in these regions. In addition, these receptors, except for ALK-1, do not have a tyrosine residue surrounded by acidic residues between subdomains VII and VIII, which is common for tyrosine kinases. A unique characteristic of the members of the ALK serine/threonine kinase rec pt r family is the presence of two short inserts in the kinase

10

15

20

5

15

20

35

14

domain between subdomains VIA and VIB and between subdomains X and XI. In the intrac llular domain, these regions, together with the juxtamembran part and Cterminal tail, are the most divergent between family members (see Figures 3 and 4). Based on the sequence similarity with the type II receptors for TGF-B and activin, the C termini of the kinase domains of ALKs -1 to -6 are set at Ser-495, Ser-501, Ser-527, Gln-500, Gln-498 and Ser-497, respectively.

mRNA Expression 10

The distribution of ALK-1, -2, -3, -4 was determined by Northern blot analysis. A Northern blot filter with mRNAs from different human tissues was obtained from Clontech (Palo Alto, C.A.). The filters were hybridized with 32P-labelled probes at 42°C overnight in 50% formaldehyde, 5 x standard saline citrate (SSC; 1xSSC is 50mM sodium citrate, pH 7.0, 150 mM NaCl), 0.1% SDS, 50 mM sodium phosphate, 5 x Denhardt's solution and 0.1 mg/ml In order to minimize crosssalmon sperm DNA. hybridization, probes were used that did not encode part of the kinase domains, but corresponded to the highly diverged sequences of either 5' untranslated and ligand-binding regions (probes for ALK-1, -2 and -3) or 3' untranslated sequences (probe for ALK-4). The probes were labelled by random priming using the Multiprime (or Mega-prime) DNA labelling system and $[\alpha^{-32}P]$ dCTP (Feinberg & Vogelstein 25 (1983) Anal. Biochem. 132: 6-13). Unincorporated label was Filters were removed by Sephadex G-25 chromatography. washed at 65°C, twice for 30 minutes in 2.5 x SSC, 0.1% SDS and twice for 30 minutes in 0.3 x SSC, 0.1% SDS before being exposed to X-ray film. Stripping of blots was 30 performed by incubation at 90-100°C in water for 20 minutes.

The ALK-5 mRNA size and distribution were determined by Northern blot analysis as abov . An EcoR1 fragment of 980bp f th full 1 ngth ALK-5 cDNA clon , corresponding to the C-terminal part of th kinase domain and 3'

10

15

20

25

30

35

untranslated r gion (nucleotides 1259-2232 in SEQ ID No. 9) was us d as a probe. The filter was washed twice in 0.5 x SSC, 0.1% SDS at 55°C for 15 minutes.

Using the probe for ALK-1, two transcripts of 2.2 and 4.9kb were detected. The ALK-1 expression level varied strongly between different tissues, high in placenta and lung, moderate in heart, muscle and kidney, and low (to not The relative detectable) in brain, liver and pancreas. ratios between the two transcripts were similar in most tissues; in kidney, however, there was relatively more of the 4.9 kb transcript. By reprobing the blot with a probe for ALK-2, one transcript of 4.0 kb was detected with a ubiquitous expression pattern. Expression was detected in every tissue investigated and was highest in placenta and skeletal muscle. Subsequently the blot was reprobed for One major transcript of 4.4 kb and a minor ALK-3. transcript of 7.9 kb were detected. Expression was high in skeletal muscle, in which also an additional minor transcript of 10 kb was observed. Moderate levels of ALK-3 mRNA were detected in heart, placenta, kidney and pancreas, and low (to not detectable) expression was found in brain, lung and liver. The relative ratios between the different transcripts were similar in the tested tissues, the 4.4 kb transcript being the predominant one, with the exception for brain where both transcripts were expressed at a similar level. Probing the blot with ALK-4 indicated the presence of a transcript with the estimated size of 5.2 kb and revealed an ubiquitous expression pattern. The results of Northern blot analysis using the probe for ALK-5 showed that a 5.5 kb transcript is expressed in all human tissues tested, being most abundant in placenta and least abundant in brain and heart.

The distribution of mRNA for mouse ALK-3 and -6 in various mouse tissues was also determined by Northern blot analysis. A multiple mouse tissue blot was obtained from Clontech, Palo Alto, California, U.S.A. The filter was hybridized as described above with probes for mous ALK-3

10

15

20

25

30

35

4

and ALK-6. The <u>EcoRI-PstI</u> r striction fragment, corr sponding to nucle tides 79-1100 f ALK-3, and the <u>SacI-HpaI</u> fragment, corresponding t nucle tides 57-720 f ALK-6, were used as probes. The filter was washed at 65°C twice for 30 minutes in 2.5 x SSC, 0.1% SDS and twice for 30 minutes with 0.3 x SSC, 0.1% SDS and then subjected to autoradiography.

Using the probe for mouse ALK-3, a 1.1 kb transcript was found only in spleen. By reprobing the blot with the ALK-6 specific probe, a transcript of 7.2 kb was found in brain and a weak signal was also seen in lung. No other signal was seen in the other tissues tested, i.e. heart, liver, skeletal muscle, kidney and testis.

All detected transcript sizes were different, and thus no cross-reaction between mRNAs for the different ALKs was observed when the specific probes were used. This suggests that the multiple transcripts of ALK-1 and ALK-3 are coded from the same gene. The mechanism for generation of the different transcripts is unknown at present; they may be formed by alternative mRNA splicing, differential polyadenylation, use of different promotors, or by a combination of these events. Differences in mRNA splicing in the regions coding for the extracellular domains may lead to the synthesis of receptors with different affinities for ligands, as was shown for mActR-IIB (Attisano et al (1992) Cell 68, 97-108) or to the production of soluble binding protein.

The above experiments describe the isolation of nucleic acid sequences coding for new family of human receptor kinases. The cDNA for ALK-5 was then used to determine the encoded protein size and binding properties.

Properties of the ALKs cDNA Encoded Proteins

To study the properties of the proteins encoded by the different ALK cDNAs, the cDNA for each ALK was subcloned into a eukaryotic expression vector and transfected into various c ll types and then subject d to immunoprecipitation using a rabbit antiserum raised against

a synthetic peptide corresponding to part of the intracellular juxtamembrane r gion. This r gion is divergent in sequence between the various serine/threonine kinase receptors. The following amino-acid residues were

5 used:

10

15

20

25

30

35

ALK-1 145-166
ALK-2 151-172
ALK-3 181-202
ALK-4 153-171
ALK-5 158-179
ALK-6 151-168

The rabbit antiserum against ALK-5 was designated VPN.

The peptides were synthesized with an Applied Biosystems 430A Peptide Synthesizer using t-butoxycarbonyl chemistry and purified by reversed-phase high performance liquid chromatography. The peptides were coupled to keyhole limpet haemocyanin (Calbiochem-Behring) using glutaraldehyde, as described by Guillick et al (1985) EMBO J. 4, 2869-2877. The coupled peptides were mixed with Freunds adjuvant and used to immunize rabbits.

Transient transfection of the ALK-5 cDNA

COS-1 cells (American Type Culture Collection) and the R mutant of Mv1Lu cells (for references, see below) were cultured in Dulbecco's modified Eagle's medium containing 10% fetal bovine serum (FBS) and 100 units/ml penicillin and 50 µg lml streptomycin in 5% CO, atmosphere at 37°C. The ALK-5 cDNA (nucleotides (-76) - 2232), which includes the complete coding region, was cloned in the pSV7d vector (Truett et al, (1985) DNA 4, 333-349), and used for transfection. Transfection into COS-1 cells was performed by the calcium phosphate precipitation method (Wigler et al (1979) Cell 16, 777-785). Briefly, cells were seeded into 6-well cell culture plates at a density of 5x105 cells/well, and transfected the following day with 10 µg of recombinant plasmid. After overnight incubation, cells were washed thr times with a buffer containing 25 mM Tris-HCl, pH 7.4, 138 mM NaCl, 5 mM KCl, 0.7 mM CaCl, 0.5

10

15

20

25

30

4

mM MgCl₂ and 0.6 mM Na₂HPO₄, and th n incubated with Dulb cco's modified Eagle's medium containing FBS and antibiotics. Tw days after transfection, th cells were metabolically labelled by incubating the c lls f r 6 hours in methionine and cysteine-free MCDB 104 medium with 150 μ Ci/ml of [35S]-methionine and [35S]-cysteine (in vivo labelling mix; Amersham). After labelling, the cells were washed with 150 mm NaCI, 25 mm Tris-HCl, pH 7.4, and then solubilized with a buffer containing 20mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM EDTA, 1% Triton X-100, 1% deoxycholate, 1.5% Trasylol (Bayer) and 1 mM phenylmethylsulfonylfluoride (PMSF; Sigma). After 15 minutes on ice, the cell lysates were pelleted by centrifugation, and the supernatants were then incubated with 7 μ l of preimmune serum for 1.5 hours Samples were then given 50 μ l of protein Aat 4°C. Sepharose (Pharmacia-LKB) slurry (50% packed beads in 150 mm NaCl, 20 mm Tris-HCl, pH 7.4, 0.2% Triton X100) and incubated for 45 minutes at 4°C. The beads were spun down by centrifugation, and the supernatants (1 ml) were then incubated with either 7 μ l of preimmune serum or the VPN antiserum for 1.5 hours at 4° C. For blocking, 10 μ g of peptide was added together with the antiserum. complexes were then given 50 μ l of protein A-Sepharose (Pharmacia - LKB) slurry (50% packed beads in 150 mM NaCl. 20mM Tris-HCl, pH 7.4, 0.2% Triton X-100) and incubated for 45 minutes at 4°C. The beads were spun down and washed four times with a washing buffer (20 mM Tris-HCl, pH 7.4, 500 mM NaCI, 1% Triton X-100, 1% deoxycholate and 0.2% SDS), followed by one wash in distilled water. The immune complexes were eluted by boiling for 5 minutes in the SDSsample buffer (100 mM Tris-HCl, pH 8.8, 0.01% bromophenol blue, 36% glycerol, 4% SDS) in the presence of 10 mM DTT, and analyzed by SDS-gel electrophoresis using 7-15% polyacrylamide gels (Blobel and Dobberstein, (1975) J.Cell Biol. 67, 835-851). Gels were fixed, incubated with 35 Amplify (Amersham) for 20 minutes, and subjected to fluorography. A compon nt of 53Da was seen.

10

15

25

30

35

14

Æ.

component was not seen when pr immune serum was used, r wh n 10 μ g blocking peptide was added t gether with th antiserum. Moreover, it was not d tectabl in sampl s derived from untransfected COS-1 cells using either preimmune serum or the antiserum.

Digestion with Endoglycosidase F

Samples immunoprecipitated with the VPN antisera obtained as described above were incubated with 0.5 U of endoglycosidase F (Boehringer Mannheim Biochemica) in a buffer containing 100 mM sodium phosphate, pH 6.1, 50 mM EDTA, 1% Triton X-100, 0.1% SDS and 1% B-mercaptoethanol at 37°C for 24 hours. Samples were eluted by boiling for 5 minutes in the SDS-sample buffer, and analyzed by SDS-polyacrylamide gel electrophoresis as described above. Hydrolysis of N-linked carbohydrates by endoglycosidase F shifted the 53 kDa band to 51 kDa. The extracelluar domain of ALK-5 contains one potential acceptor site for N-glycosylation and the size of the deglycosylated protein is close to the predicted size of the core protein.

20 Establishment of PAE Cell Lines Expressing ALK-5

In order to investigate whether the ALK-5 cDNA encodes a receptor for TGF-8, porcine aortic endothelial (PAE) cells were transfected with an expression vector containing the ALK-5 cDNA, and analyzed for the binding of ¹²⁵I-TGF-81.

pae cells were cultured in Ham's F-12 medium supplemented with 10% FBS and antibiotics (Miyazono et al., (1988) J. Biol. Chem. 263, 6407-6415). The ALK-5 cDNA was cloned into the cytomegalovirus (CMV)-based expression vector pcDNA I/NEO (Invitrogen), and transfected into PAE cells by electroporation. After 48 hours, selection was initiated by adding Geneticin (G418 sulphate; Gibco - BRL) to the culture medium at a final concentration of 0.5 mg/ml (Westermark et al., (1990) Proc. Natl. Acad. Sci. USA 87, 128-132). Several clones were obtained, and after analysis by immunoprecipitation using the VPN antiserum, one clone denoted PAE/TBR-1 was chosen and further analyzed.

10

15

20

25

30

12

Iodination of TGF-81. Binding and Affinity Crosslinking

Rec mbinant human TGF-81 was iodinated using the chloramine T method acc rding t Frolik et al., (1984) J. Biol. Chem. 259, 10995-11000. Cross-linking experiments were performed as previously described (Ichijo et al., (1990) Exp. Cell Res. 187, 263-269). Briefly, cells in 6well plates were washed with binding buffer (phosphatebuffered saline containing 0.9 mM CaCl2, 0.49 mM MgCl2 and 1 mg/ml bovine serum albumin (BSA)), and incubated on ice in the same buffer with 125I-TGF-81 in the presence or absence of excess unlabelled TGF-81 for 3 hours. were washed and cross-linking was done in the binding buffer without BSA together with 0.28 mM disuccinimidyl suberate (DSS; Pierce Chemical Co.) for 15 minutes on ice. The cells were harvested by the addition of 1 ml of detachment buffer (10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 10% glycerol, 0.3 mm PMSF). The cells were pelleted by . centrifugation, then resuspended in 50 μ l of solubilization buffer (125 mM NaCl, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 1% Triton X-100, 0.3 mM PMSF, 1% Trasylol) and incubated for 40 minutes on ice. Cells were centrifuged again and supernatants were subjected to analysis by SDS-gel electrophoresis using 4-15% polyacrylamide gels, followed 125 I-TGF-B1 formed a 70 kDa crossby autoradiography. linked complex in the transfected PAE cells (PAE/TBR-I cells). The size of this complex was very similar to that of the TGF-B type I receptor complex observed at lower amounts in the untransfected cells. A concomitant increase of 94 kDa TGF-B type II receptor complex could also be observed in the PAE/TBR-I cells. Components of 150-190 kDa, which may represent crosslinked complexes between the type I and type II receptors, were also observed in the PAE/TBR-I cells.

In order to determine whether the cross-linked 70 kDa complex contained the protein encoded by the ALK-5 cDNA, the affinity cross-linking was followed by immunoprecipitati n using the VPN antiserum. For this,

10

15

20

25

30

35

cells in 25 cm2 flasks were used. Th supernatants obtain d after cross-linking were incubated with 7 ul of preimmune serum or VPN antiserum in th presence or abs nce . of 10 µg of peptide for 1.5h at 4°C. Immune complexes were then added to 50 µl of protein A-Sepharose slurry and incubated for 45 minutes at 4°C. The protein A-Sepharose beads were washed four times with the washing buffer, once with distilled water, and the samples were analyzed by SDSgel electrophoresis using 4-15% polyacrylamide gradient gels and autoradiography. A 70 kDa cross-linked complex was precipitated by the VPN antiserum in PAE/TBR-1 cells, and a weaker band of the same size was also seen in the untransfected cells, indicating that the untransfected PAE cells contained a low amount of endogenous ALK-5. The 70 kDa complex was not observed when preimmune serum was used, or when immune serum was blocked by 10 μ g of peptide. Moreover, a coprecipitated 94 kDa component could also be observed in the PAE/TBR-I cells. The latter component is likely to represent a TGF-B type II receptor complex, since an antiserum, termed DRL, which was raised against a synthetic peptide from the C-terminal part of the TGF-8 type II receptor, precipitated a 94 kDa TGF-B type II receptor complex, as well as a 70 kDa type I receptor complex from PAE/TBR-I cells.

The carbohydrate contents of ALK-5 and the TGF-8 type II receptor were characterized by deglycosylation using endoglycosidase F as described above and analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. The ALK-5 cross-linked complex shifted from 70 kDa to 66 kDa, whereas that of the type II receptor shifted from 94 kDa to 82 kDa. The observed larger shift of the type II receptor band compared with that of the ALK-5 band is consistent with the deglycosylation data of the type I and type II receptors on rat liver cells reported previously (Cheifetz et al (19°8) J. Biol. Chem. 263, 16984-16991), and fits well with the fact that the proine TGF-8 type II receptor has two N-glycosylation sites (Lin tal (1992)

£ .

14

20

25

30

35

Cell $\underline{68}$, 775-785), whereas ALK-5 has only ne (see SEQ ID No. 9).

Binding of TGF-81 to the type I receptor is known to be abolished by transient treatment of the cells with dithiothreitol (DTT) (Cheifetz and Massague (1991) J. Biol. 5 Chem. 266, 20767-20772; Wrana et al (1992) Cell 71, 1003-1014). When analyzed by affinity cross-linking, binding of 125 I-TGF-B1 to ALK-5, but not to the type II receptor, was completely abolished by DTT treatment of PAE/TBR-1 cells. Affinity cross-linking followed by immunoprecipitation by 10 the VPN antiserum showed that neither the ALK-5 nor the type II receptor complexes was precipitated after DTT treatment, indicating that the VPN antiserum reacts only with ALK-5. The data show that the VPN antiserum recognizes a TGF-B type I receptor, and that the type I and 15 type II receptors form a heteromeric complex. 125 I-TGF-B1 Binding & Affinity Crosslinking of Transfected COS Cells

Transient expression plasmids of ALKs -1 to -6 and TBR-II were generated by subcloning into the pSV7d expression vector or into the pcDNA I expression vector (Invitrogen). Transient transfection of COS-1 cells and iodination of TGF-B1 were carried out as described above. Crosslinking and immunoprecipitation were performed as described for PAE cells above.

Transfection of cDNAs for ALKs into COS-1 cells did not show any appreciable binding of ¹²I-TGF&1, consistent with the observation that type I receptors do not bind TGF-B in the absence of type II receptors. When the T&R-II CDNA was co-transfected with cDNAs for the different ALKs, type I receptor-like complexes were seen, at different levels, in each case. COS-1 cells transfected with T&R-II and ALK cDNAs were analyzed by affinity crosslinking followed by immunoprecipitation using the DRL antisera or specific antisera against ALKs. Each one of the ALKs bound ¹²⁵I-TGF-B1 and was coimmunopr cipitated with the T&R-II complex using the DRL antiserum. Comparison of the

10

15

20

25

30

35

effici ncy of the different ALKs to form heteromeric complexes with TBR-II, revealed that ALK-5 formed such complexes more efficiently than the ther ALKs. The size of the crosslinked complex was larger for ALK-3 than for other ALKs, consistent with its slightly larger size. Expression of the ALK Protein in Different Cell Types

Two different approaches were used to elucidate which ALK's are physiological type I receptors for TGF-8.

Firstly, several cell lines were tested for the expression of the ALK proteins by cross-linking followed by immunoprecipitation using the specific antiseras against ALKs and the TGF-B type II receptor. The mink lung epithelial cell line, Mv1Lu, is widely used to provide target cells for TGF-B action and is well characterized regarding TGF-B receptors (Laiho et al (1990) J. Biol. Chem. 265, 18518-18524; Laiho et al (1991) J. Biol. Chem. 266, 9108-9112). Only the VPN antiserum efficiently precipitated both type I and type II TGF-B receptors in the wild type Mv1Lu cells. The DRL antiserum also precipitated components with the same size as those precipitated by the VPN antiserum. A mutant cell line (R mutant) which lacks the TGF-B type I receptor and does not respond to TGF-B (Laiho et al, supra) was also investigated by cross-linking followed by immunoprecipitation. Consistent with the results obtained by Laiho et al (1990), supra the type III and type II TGF-B receptor complexes, but not the type I receptor complex, were observed by affinity crosslinking. Crosslinking followed by immunoprecipatition using the DRL antiserum revealed only the type II receptor complex, whereas neither the type I nor type II receptor complexes was seen using the VPN antiserum. When the cells were metabolically labelled and subjected to immunoprecipitation using the VPN antiserum, the 53 kDa ALK-5 protein was precipitated in both the wild-type and R mutant Mv1Lu These results suggest that the type I receptor cells. expressed in the R mutant is ALK-5, which has lost the affinity for binding to TGF-B after mutation.

10

15

20

25

30

35

14

è.

The type I and type II TGF-8 receptor complexes could be precipitated by th VPN and DRL antisera in other cell lines, including human for skin fibroblasts (AG1518), human lung adenocarcinoma cells (A549), and human oral squamous cell carcinoma cells (HSC-2). Affinity cross-linking studies revealed multiple TGF-B type I receptor-like complexes of 70-77 kDa in these cells. These components were less efficiently competed by excess unlabelled TGF-B1 in HSC-2 cells. Moreover, the type II receptor complex was low or not detectable in A549 and HSC-2 cells. linking followed by immunoprecipitation revealed that the VPN antiserum precipitated only the 70 kDa complex among the 70-77 kDa components. The DRL antiserum precipitated the 94 kDa type II receptor complex as well as the 70 kDa type I receptor complex in these cells, but not the putative type I receptor complexes of slightly larger sizes. These results suggest that multiple type I TGF-B receptors may exist and that the 70 kDa complex containing ALK-5 forms a heteromeric complex with the TGF-8 type II receptor cloned by Lin et al (1992) Cell 68, 775-785, more efficiently that the other species. In rat pheochromocytoma cells (PC12) which have been reported to have no TGF-B receptor complexes by affinity cross-linking (Massagué et al (1990) Ann. N.Y. Acad. Sci. 593, 59-72), neither VPN nor DRL antisera precipitated the TGF-8 receptor complexes. The antisera against ALKs -1 to -4 and ALK6 did not efficiently immunoprecipitate the crosslinked receptor complexes in porcine aortic endothelial (PAE) cells or human foreskin fibroblasts.

Next, it was investigated whether ALKs could restore responsiveness to TGF-B in the R mutant of MvlLu cells, which lack the ligand-binding ability of the TGF-B type I receptor but have intact type II receptor. Wild-type MvlLu cells and mutant cells were transfected with ALK cDNA and were then assay d for th production of plasminogen activator inhibitor-1 (PAI-1) which is produced as a result of TGF-B receptor activation as d scribed previously by

10

15

20

25

30

35

4

Laih et al (1991) Mol. Cell Biol. 11, 972-978. Briefly, cells were added with or without 10 ng/ml f TGF-81 for 2 serum-free MCDB 104 without methionine. Thereafter, cultures were labelled with [35s] methionine (40 μ Ci/ml) for 2 hours. The cells were removed by washing on ice once in PBS, twice in 10 mM Tris-HCl (pH 8.0), 0.5% sodium deoxycholate, 1 mM PMSF, twice in 2 mM Tris-HCl (pH 8.0), and once in PBS. Extracellular matrix proteins were extracted by scraping cells into the SDS-sample buffer containing DTT, and analyzed by SDS-gel electrophoresis followed by fluorography using Amplify. PAI-1 can be identified as a characteristic 45kDa band (Laiho et al (1991) Mol. Cell Biol. 11, 972-978). Wild-type MviLu cells responded to TGF-B and produced PAI-1, whereas the R mutant clone did not, even after stimulation by TGF-B1. Transient transfection of the ALK-5 cDNA into the R mutant clone led to the production of PAI-1 in response to the stimulation by TGF-81, indicating that the ALK-5 cDNA encodes a functional TGF-B type I receptor. In contrast, the R mutant cells that were transfected with other ALKs did not produce PAI-1 upon the addition of TGF-81.

Using similar approaches as those described above for the identification of TGF-\$\beta\$-binding ALKs, the ability of ALKs to bind activin in the presence of ActRII was examined. COS-1 cells were co-transfected as described above. Recombinant human activin A was iodinated using the chloramine T method (Mathews and Vale (1991) Cell 65, 973-982). Transfected COS-1 cells were analysed for binding and crosslinking of ¹²⁵I-activin A in the presence or absence of excess unlabelled activin A. The crosslinked complexes were subjected to immunoprecipitation using DRL antisera or specific ALK antisera.

All ALKs appear to bind activin A in the presence of Act R-II. This is more clearly demonstrated by affinity cross-linking followed by immunopreciptation. ALK-2 and ALK-4 bound 125 I-activin A and were coimmunoprecipitat d

20

25

30

35

with ActR-II. Other ALKs als bound 125 I-activin A but with a lower efficiency compar d to ALK-2 and ALK-4.

In order to inv stigat which ralks are physiological activin type I receptors, activin responsive cells were examined for the expression of endogenous activin type I receptors. Mv1Lu cells, as well as the R mutant, express both type I and type II receptors for activin, and the R mutant cells produce PAI-1 upon the addition of activin A. Mv1Lu cells were labeled with ¹²⁵I-activin A, cross-linked and immunoprecipitated by the antisera against ActR-II or ALKs as described above.

The type I and type II receptor complexes in Mv1Lu cells were immunoprecipitated only by the antisera against ALK-2, ALK-4 and ActR-II. Similar results were obtained using the R mutant cells. PAE cells do not bind activin because of the lack of type II receptors for activin, and so cells were transfected with a chimeric receptor, to enable them to bind activin, as described herein. plasmid (chim A) containing the extracelluar domain and Cterminal tail of Act R-II (amino-acids -19 to 116 and 465 to 494, respectively (Mathews and Vale (1991) Cell, 65, 973-982)) and the kinase domain of TBR-II (amino-acids 160-543) (Lin et al (1992) Cell, 68, 775-785) was constructed and transfected into pcDNA/neo (Invitrogen). were stably transfected with the chim A plasmid by electroporation, and cells expressing the chim A protein were established as described previously. PAE/Chim A cells were then subjected to 12 I-activin A labelling crosslinking and immunoprecipitation as described above.

Similar to MvlLu cells, activin type I receptor complexes in PAE/Chim A cells were immunoprecipitated by the ALK-2 and ALK-4 antisera. These results show that both ALK-2 and ALK-4 serve as high affinity type I receptors for activin A in these cells.

ALK-1, ALK-3 and ALK-6 bind TGF-B1 and activin A in the presence of their respective typ II receptor , but th

functional consequences of the binding of the ligands remains to be lucidated.

Th invention has been described by way of example only, without restriction of its scope. The invention is defined by the subject matter herein, including the claims that follow the immediately following full Sequence Listings.

SEQUENCE LISTING

(1) GENERAL	INFORMATION:
-------------	--------------

- (1) APPLICANT:
 - (A) NAME: Ludwig Institute for Cancer Research
 - (B) STREET: St. Mary's Hospital Medical School, Norfolk Place
 - (C) CITY: Paddington, London
 - (E) COUNTRY: United Kingdom
 - (F) POSTAL CODE (ZIP): W2 1PG
- (11) TITLE OF INVENTION: PROTEINS HAVING SERINE/THREONINE KINASE DOMAINS, CORRESPONDING NUCLEIC ACID MOLECULES, AND THEIR USE
- (111) NUMBER OF SEQUENCES: 29
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1984 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: linear
 - (ii) HOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (111) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISH: Homo sapiens
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 283..1791
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

60	CCCTGGAATA	GGCAGGAAGA	AGCTGGGCCA	GGAGTGGTGG	TTATTAGGAG	AGGAAACGGT
120	CAGCTGCGCC	GCTGCCGCCC	GTCCCGGGAG	CCCCATCCCA	TTGCTCCAGC	AGAAACATTT
180	AGCCCGCCGT	GCCGGACCCC	cccccccc	CCAGCCCCGT	CTCCCCGGCT	GAGCGAGCCC
240	GGTCCCCCCA	AGGTGGCCCC	GGTGGAGGGG	cccccccc	CGGTGCAACT	CCAGCGCTGG

AGG	CTAG	œc	ccc	CCAC	∞ 6	CAGA	cocc	6 CC	CAGA	.ggga		ATG Het 1				294
TCC Ser 5	Pro	AGG Arg	Lys	GCC	Leu 10	CIG	ATG Met	CIG	Leu	ATG Met 15	A) a	TTG Leu	CTC Val	ACC Thr	CAG Gln 20	342
GGA Gly	GAC Asp	Pro	GTG Val	AAG Lys 25	Pro	TCT	Arg	est	Pro 30	Leu	GTG Val	ACC	Cys	ACC Thr 35	Cys	390
GAG Glu	AGC Ser	Pro	CAT His 40	Cys	AAG Lys	CCC	Pro	ACC Thr 45	Cys	CGG Arg	es eee	Ala	TCG Trp 50	Cys	ACA Thr	438
GTA Val	GTG Val	CTG Leu 55	GTG Val	CGG Arg	GAG Glu	GAG Glu	GGG Gly 60	Arg	CAC	CCC Pro	CAG Gln	GAA Glu 65	CAT	CGG Arg	GCC	486
TGC	GGG Gly 70	Yau	TTG	HTE	λGG Arg	GAG Glu 75	CTC	TGC Cys	AGG Arg	GGG Gly	Arg 80	CCC Pro	ACC Thr	Glu	TTC Phe	534
GTC Val 85	AAC	CAC	TAC Tyr	TGC Cys	TGC Cys 90	yab gyc	AGC Ser	HIS	CTC	TGC Cys 95	AAC Asn	EXC	AAC Asd	GTC Val	TCC Ser 100	582
CTG Leu	CTG Val	CTG Leu	GAG Glu	GCC Ala 105	ACC Thr	CAA Gln	CCT Pro	CCT Pro	TCG Ser 110	GAG Glu	CAG Gln	CCG Pro	GLY	ACA Thr 115	GAT Asp	630
GC GC	CAG Gln	CTG Leu	GCC Ala 120	CTG Leu	ATC Ile	CIG Leu	ely	CCC Pro 125	GTG Val	CTG Leu	GCC Ala	TIG	CTG Leu 130	GCC Ala	CTG Leu	678
GTG Val	GCC Ala	CTG Leu 135	GLY	GTC Val	Leu	ej eec	CTG Leu 140	TGG Trp	CAT	GTC Val	CGλ Arg	CGG Arg 145	AGG Arg	CAG Gln	G)u	726
AAG Lys	CAG Gln 150	CGT Arg	61y 66C	CTG Leu	CAC His	AGC Ser 155	G)r G)r	CTG Leu	Gly GGX	GAG Glu	TCC Ser 160	AGT Ser	CTC Leu	ATC Ile	CTG Leu	774
AAA Lys 165	GCA Ala	TCT Ser	GAG Glu	CAG Gln	Gly	yab Cyc	λ∝ Thr	ATG Het	Leu	GGG Gly 175	GAC Asp	CTC Leu	CTG Leu	6XC As p	ACT Ser 180	822
GAC Asp	TGC Cys	ACC	ACA Thr	GGG Gly 185	AGT Ser	et GC GC	TCA Ser	GCG	CTC Leu 190	Pro	TTC Phe	CTG Leu	GTG Val	CAG Gln 195	AGG Arg	870
ACA Thr	GTG Val	GCA Ala	CGG Arg 200	CAG Gla	GTT Val	GCC Ala	TTG Leu	GTG Val 205	G)u	TGT Cys	GTG Val	GGA Gly	AAA Lys 210	età ecc	CGC Arg	918
TAT	GCC	GAA Glu 215	GTG Val	TCG	CGG Arg	GCC	TTG Leu 220	TCG	CAC	GGT Gly	GAG Glu	AGT Ser 225	GTG Val	GCC Ala	GTC Val	966

																•
											TTC Phe 240					1014
											ATC Ile					1062
											CAG Gln					1110
											1TT Phe					1158
											GTG Val					1206
ejä Gec	CTG Leu 310	%1≥ GCG	CAC	Leu	CAC His	GTG Val 315	GAG Glu	ATC 11e	TTC Phe	Cly	ACA Thr 320	CAG Gln	ely	AAA Lys	CCA Pro	1254
											GTG Val					1302
											GCT Ala					1350
											ecc Pro					1398
											CAG Gln					1446
											GCC Ala 400					1494
	Trp	Glu	Ile	Ala	Arg		Thr	Ile	Val		GCC					1542
											gaç Asp					1590
											ACC Thr					1638
											CTA Leu					1686

-

C110cmm.cc c11cm

) Arg	GAG Glu 470	TGC Cys	TGG	TAC	CCA Pro	AAC ABD 475	Pro	TCT	GCC	yrg	CTC Leu 480	ACC Thr	GCG Ala	CTG	∝ G λr g	1734
			ACA Thr													1782
GTG Val			TAGO	CCA	GA (CAC	CTGAT	TT C	TITE	CTGC	2 200	CAGG	GGC			1831
TGG	GGGG	TG (GGGG	CAG	rG G!	\TGG:	rece	TA:	CTG	GTA	GAG	TAG:	rgt (Gagt	STEETE	1891
TGI	CTG	GGG 1	ATGG	CAGO	T GO	xcc:	recc:	. ec.	rœcc	ccc	CAG	CCA	ccc a	AGCCI	LAAAAT	1951
ACAC	CTG	GC :	IGAA)	CCTC	נג ג:	ww	ww	N N								1984

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 503 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Het Thr Leu Gly Ser Pro Arg Lys Gly Leu Leu Het Leu Leu Het Ala 1 5 15

Leu Val Thr Gln Gly Asp Pro Val Lys Pro Ser Arg Gly Pro Leu Val 20 25 30

Thr Cys Thr Cys Glu Ser Pro His Cys Lys Gly Pro Thr Cys Arg Gly 35 40 45

Ala Trp Cys Thr Val Val Leu Val Arg Glu Glu Gly Arg His Pro Gln 50 55 60

Glu His Arg Gly Cys Gly Asn Leu His Arg Glu Leu Cys Arg Gly Arg 65 70 75 80

Pro Thr Glu Phe Val Asn His Tyr Cys Cys Asp Ser His Leu Cys Asn 85 90 95

His Asn Val Ser Leu Val Leu Glu Ala Thr Gln Pro Pro Ser Glu Gln 100 105 110

Pro Gly Thr Asp Gly Gln Leu Ala Leu Ile Leu Gly Pro Val Leu Ala 115 120 125

Leu Leu Ala Leu Val Ala Leu Gly Val Leu Gly Leu Trp His Val Arg 130 140

Arg Arg Gln Glu Lys Gln Arg Gly Leu His Ser Glu Leu Gly Glu Ser 145 150 155 160

Ser Leu Ile Leu Lys Ala Ser Glu Gln Gly Asp Thr Het L u Gly Asp 165 170 175 Leu Leu Asp Ser Asp Cys Thr Thr Gly Ser Gly Ser Gly L u Pr Ph Leu Val Gln Arg Thr Val Ala Arg Gln Val Ala Leu Val lu Cym Val 195 200 205 Gly Lys Gly Arg Tyr Gly Glu Val Trp Arg Gly Leu Trp His Gly Glu 210 220 Ser Val Ala Val Lys Ile Phe Ser Ser Arg Asp Glu Gln Ser Trp Phe 225 230 235 240 Arg Glu Thr Glu Ile Tyr Asn Thr Val Leu Leu Arg His Asp Asn Ile Leu Gly Phe Ile Ala Ser Asp Het Thr Ser Arg Asn Ser Ser Thr Gln Leu Trp Leu Ile Thr His Tyr His Glu His Gly Ser Leu Tyr Asp Phe Leu Gln Arg Gln Thr Leu Glu Pro His Leu Ala Leu Arg Leu Ala Val 295 Ser Ala Ala Cys Gly Leu Ala His Leu His Val Glu Ile Phe Gly Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp Phe Lys Ser Arg Asn Val 325 330 Leu Val Lys Ser Asn Leu Gln Cys Cys Ile Ala Asp Leu Gly Leu Ala Val Met His Ser Gln Gly Ser Asp Tyr Leu Asp Ile Gly Asn Asn Pro 355 360 365 Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu Val Leu Asp Glu Gln 370 380 Ile Arg Thr Asp Cys Phe Glu Ser Tyr Lys Trp Thr Asp Ile Trp Ala 385 390 395 400 Phe Gly Leu Val Leu Trp Glu Ile Ala Arg Arg Thr Ile Val Asn Gly 405 410 415 Ile Val Glu Asp Tyr Arg Pro Pro Phe Tyr Asp Val Val Pro Asn Asp 420 425 Pro Ser Phe Glu Asp Het Lys Lys Val Val Cys Val Asp Gln Gln Thr Pro Thr Ile Pro Asn Arg Leu Ala Ala Asp Pro Val Leu Ser Gly Leu Ala Gln Het Het Arg Glu Cys Trp Tyr Pro Asn Pro Ser Ala Arg Lau

ķ.,

Thr Ala Leu Arg Ile Lys Lys Thr Leu In Lys Il Ser Asn Ser Pro 485 490 495

Glu Lys Pro Lys Val Ile Gln 500

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2724 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (iii) HYPOTHETICAL: NO
- (111) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISH: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 104..1630
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

CTCCGAGTA	C CCCAGTGACC A	gagtgagag aagct	CTGAA CGAGGGCACG	DEGCTTGANG 60									
GACTGTGGGC AGATGTGACC AAGAGCCTGC ATTAAGTTGT ACA ATG GTA GAT GGA Het Val Asp Gly 1													
	_	Leu Ile Met Il	T GCT CTC CCC TCC .e Ala Leu Pro Ser 15										
		Lys Val Asn Pr	C AAA CTC TAC ATG O Lys Leu Tyr Het O										
			C CAC TGT GAA GGC p His Cys Glu Gly 50										
Cys Phe S			C TTC CAC GTC TAC y Phe His Val Tyr 65										
			G ATG ACC TGT AAG S Het Thr Cys Lys 80										

CCG Pro 85	TCC	CCT Pro	ejä eec	CAA Gla	SCT Ala 90	GTG VAl	GAG Glu	TGC Cys	TGC Cys	CAA Gln 95	est ece	GAC Asp	TCG Trp	TGT Cys	AAC Asn 100	403
					CAG Gln											451
					TIG											499
					TTA Leu											547
					CAA Gln											595
					CTC Leu 170											643
					CAT His											691
CCT Pro	TTT Phe	CTG Leu	GTA Val 200	CAA Gln	AGA Arg	ACA Thr	GTG Val	GCT Ala 205	yrd CCC	CAG Gln	ATT Ile	ACA Thr	CTG Leu 210	Leu	GAG Glu	739
TGT Cys	GTC Val	GGG Gly 215	AAA Lys	GCC	ycc yld	TAT Tyr	GGT Gly 220	GAG Glu	GTG Val	TCG	AGG AFG	GGC Gly 225	AGC Ser	TCG	CAA Gln	787
GGG Gly	GAA Glu 230	AAT Asn	GTT Val	GCC Ala	GTG Val	AAG Lys 235	ATC Ile	TTC Phe	TCC	TCC	CGT Arg 240	GAT Asp	GAG Glu	AAG Lys	TCA Ser	835
TGG Trp 245	TTC Phe	ycc Yld	GAA Glu	ACG Thr	GAA Glu 250	TTG Leu	TAC Tyr	AAC Asn	ACT Thr	GTG Val 255	ATG Met	CTG Leu	AGG Arg	CAT His	GAA Glu 260	883
AAT Asn	ATC Ile	TTA Leu	GGT Gly	TTC Phe 265	ATT Ile	GCT Ala	TCA Ser	Asp	ATG Het 270	ACA Thr	TCA Ser	YCY YLd	CAC	TCC Ser 275	agt Ser	931
ACC Thr	CAG Gln	CTG	TGG Trp 280	TTA Leu	ATT Ile	ACA Thr	CAT His	TAT Tyr 285	CAT His	G) u	ATG Net	gly gcy	TCC Ser 290	TIG	TAC Tyr	979
GAC A sp	TAT Tyr	CTT Leu 295	CAG Gln	CII Lau	ACT	ACT	CTG Leu 300	GAT Asp	ACA Thr	GTT Val	AGC Ser	TGC Cys 305	CIT	Arg Arg	ATA Ile	1027
GTG Val	CTG Leu 310	TCC Ser	ATA Ile	GCT Ala	AGT Ser	GGT Gly 315	CII Leu	GCA Ala	CAT His	TTG	CAC His 320	ATA Ile	GAG Glu	ATA Ile	TTT Phe	1075

GGG AC	C CAA	SSS Gly	AAA Lua	CCA	SCC	ATT	GCC	CAT	œλ	GAT	TTA	AAG	AGC	AAA Lvs	1123
325		uly	_,_	330	~~~				335	a.e.p		-,-		340	
AAT AT Asn Il	T CTG	GTT Val	AAG Lys 345	AAG Lys	ART	GGA Gly	CAG Gln	TGT Cys 350	TGC Cys	ATA Ile	Ala GCA	GAT Asp	TTG Leu 355	GLY	1171
CTG GC															1219
ANT CO															1267
GAA AC Glu Th	r Ile														1315
TGG GG Trp Al 405															1363
AAT GO ABN Gl															1411
AAT GA Asn As	C CCA	AGT Ser 440	Phe	GAA Glu	GAT Asp	ATG Met	AGG Arg 445	AAG Lys	GTA Val	GTC Val	TGT Cys	GTG Val 450	GAT Asp	CAA Gln	1459
CAA AC Gln Ar	G CCA g Pro 455	Asn	XTX Ile	CCC Pro	AAC Asn	AGA Arg 460	TGG Trp	TTC Phe	TCA Ser	GAC Asp	CCG Pro 465	ACA Thr	TTA Leu	ACC Thr	1507
TCT CT Ser Le	u Ala	Lys	CTA Leu	ATG Het	111 Lys 475	GAA Glu	TGC Cys	TGG Trp	TAT Tyr	CAA Gln 480	AAT Asn	CCA Pro	TCC	GCA Ala	1555
AGA CT Arg Lo 485	C ACA	GCA	CTG Leu	CGT Arg 490	ATC Ile	AAA Lys	AAG Lys	ACT Thr	TTG Leu 495	ACC Thr	AAA Lys	ATT Ile	GAT Asp	AAT Asn 500	1603
TCC CT Ser Le	C GAC	Lys	TTG Leu 505	AAA Lys	ACT Thr	GAC Amp	TGT Cys	TGA	CATT	ric :	ATAG:	TGTC	NA		1650
GAAGG	AGAT	TTGA	œm	CI I	STCA'	TTGT	C CA	CTC	GGAC	CTA	atge:	rgg (CTG	ACTGGT	1710
TGTCAG	AATG	GAAT	CCAT	CI G	TCTC	CCTC	c cc	AAAT	CCT	CCT	TGA	CAA (GCX(GACCTC	1770
GTACCO	AGCC .	ATGT	GIIG	GG G	AGAC	ATCA	A AA	CCAC	CCTA	ACC	rece	1 0 00 1	atga(CTCTGA	1830
ACTGGG	CATT	TCAC	GAAC	TG T	TCAC	ACTG	C AG	AGAC:	TAAT	CII	GGAC	NGA (CACT	CTTGCA	1890
AAGGT															1950
CCTTTC	CATA	GCTT	TCAC	XX G	TCTC	CTAG	A CA	CICC	CCYC	GGG	XXXC	ICA I	AGGA	CCTCCT	2010

GAATITITAA TCAGCAATAT TGCCTGTGCT TCTCTTCTTT ATTGCACTAG GAATT	CITIC 2070
CATTECTTAC TIGCACTGIT ACTOTTAATT TIAAAGACCC AACTIGCCAA AATGI	TGGCT 2130
GCGTACTCCA CTGGTCTGTC TTTGGATAAT AGGAATTCAA TTTGGCAAAA CAAAA	TGTAA 2190
TGTCAGACTT TGCTGCATTT TACACATGTG CTGATGTTTA CAATGATGCC GAACA	TTAGG 2250
ANTIGITIAT ACACAACITT GCAAATTATT TATTACTTGT GCACTTAGTA GITTT	TACAA 2310
AACTGCTITG TGCATATGTT AAAGCTTATT TITATGTGGT CTTATGATTT TATTA	CAGAA 2370
ATGITITIAN CACIATACIC TANANIGGAC ATTITCTITI ATTAICAGIT AAAAT	CACAT 2430
TITANGTOOT TOACATTTOT ATGTGTGTAG ACTGTAACTT TITTTCAGTT CATAT	GCAGA 2490
ACGIATITAG CCATTACCCA CGIGACACCA CCGAATATAT TATCGATITA GAAGC	AAAGA 2550
TTTCAGTAGA ATTTTAGTCC TGAACGCTAC GGGGAAAATG CATTTTCTTC AGAAT	TATCC 2610
ATTACCTCCA TITARACTCT GCCAGAAAAA AATAACTATT TTGTTTTAAT CTACT	TTTTG 2670
TATITAGING ITATITGIAT ANATIANATA ANCIGITITIC ANGICANNA ANNA	2724

(2) INFORMATION FOR SEQ ID NO: 4:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 509 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) HOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Val Asp Cly Val Met Ile Leu Pro Val Leu Ile Met Ile Ala Leu 1 5 15

Pro Ser Pro Ser Het Glu Asp Glu Lys Pro Lys Val Asn Pro Lys Leu 20 25 30

Tyr Het Cys Val Cys Glu Gly Leu Ser Cys Gly Asn Glu Asp His Cys 35 40 45

Glu Gly Gln Gln Cys Phe Ser Ser Leu Ser Ile Asn Asp Gly Phe His
50 55

Val Tyr Gln Lys Gly Cys Phe Gln Val Tyr Glu Gln Gly Lys Het Thr 65 70 75 80

Cys Lys Thr Pro Pro Ser Pro Gly Gln Ala Val Glu Cys Cys Gln Gly 85 90 95

Asp Trp Cys Asn Arg Asn Ile Thr Ala Gln Leu Pro Thr Lys Gly Lys 100 105 110

Ser Phe Pro Gly Thr Gln Asn Phe His Leu Glu Val Gly Leu Ile Ile 115 120 125

عناها والأحاث المشتين واووري

Leu Ser Val Val Ph Ala Val Cys Leu Leu Ala Cys Leu Leu Gly Val 130 135 140

Ala Leu Arg Lys Phe Lys Arg Arg Asn Gln Glu Arg Leu Asn Pro Arg 145 150 155 160

Asp Val Glu Tyr Gly Thr Ile Glu Gly Leu Ile Thr Thr Asn Val Gly 165 170 175

Asp Ser Thr Leu Ala Asp Leu Leu Asp His Ser Cys Thr Ser Gly Ser 180 185 190

Gly Ser Gly Leu Pro Phe Leu Val Gln Arg Thr Val Ala Arg Gln Ile 195 200 205

Thr Leu Leu Glu Cys Val Gly Lys Gly Arg Tyr Gly Glu Val Trp Arg 210 215 220

Gly Ser Trp Gln Gly Glu Asn Val Ala Val Lys Ile Phe Ser Ser Arg 225 230 235 240

Asp Glu Lys Ser Trp Phe Arg Glu Thr Glu Leu Tyr Asn Thr Val Het 245 250

Leu Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ser Asp Het Thr Ser 260 265 270

Arg His Ser Ser Thr Gln Leu Trp Leu Ile Thr His Tyr His Glu Het 275 280 285

Gly Ser Leu Tyr Asp Tyr Leu Gln Leu Thr Thr Leu Asp Thr Val Ser 290 295 300

Cys Leu Arg Ile Val Leu Ser Ile Ala Ser Gly Leu Ala His Leu His 305 310 315

Ile Glu Ile Phe Gly Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp 325 330 335

Leu Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Gln Cys Cys Ile 340 345 350

Ala Asp Leu Gly Leu Ala Val Het His Ser Gln Ser Thr Asn Gln Leu 355 360 365

Asp Val Gly Asn Asn Pro Arg Val Gly Thr Lys Arg Tyr Het Ala Pro 370 380

Glu Val Leu Asp Glu Thr Ile Gin Val Asp Cys Phe Asp Ser Tyr Lys 385 390 395 400

Arg Val Asp Ile Trp Ala Phe Gly Leu Val Leu Trp Glu Val Ala Arg
405 410 415

Arg Het Val Ser Asn Gly Ile Val Glu Asp Tyr Lys Pro Pro Phe Tyr 420 425 430

Asp Val Val Pro Asn Asp Pro Ser Phe Glu Asp Het Arg Lys Val Val 435 445

در رن لحنث اشات کا اکثب

Cys Val Asp Gin Gin Arg Pro Asn Ile Pro Asn Arg Trp Phe Ser Asp
450
460

Pro Thr Leu Thr Ser Leu Ala Lys Leu Het Lys Glu Cys Trp Tyr Gln 465 470 480

Asn Pro Ser Ala Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Thr 485 490 495

Lys Ile Asp Asn Ser Leu Asp Lys Leu Lys Thr Asp Cys 500 505

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2932 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: linear
 - (11) HOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (v) FRAGHENT TYPE: internal
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISH: Homo sapiens
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 310..1905
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

GCTCCGCGCC GAGGGCTGGA GGATGCGTTC CCTGGGGTCC GGACTTATGA AAATATGCAT	60
CAGTITAATA CTGTCTTGGA ATTCATGAGA TGGAAGCATA GGTCAAAGCT GTTTGGAGAA	120
ANTCAGAAGT ACAGTTTTAT CTAGCCACAT CTTGGAGGAG TCGTAAGAAA GCAGTGGGAG	180
TTGAAGTCAT TGTCAAGTGC TTGCGATCTT TTACAAGAAA ATCTCACTGA ATGATAGTCA	240
TTTAAATTGG TGAAGTAGCA AGACCAATTA TTAAAGGTGA CAGTACACAG GAAACATTAC	300
ANTIGNACH ATG ACT CAG CTA TAC ATT TAC ATC AGA TTA TTG GGA GCC Het Thr Gln Leu Tyr Ile Tyr Ile Arg Leu Leu Gly Ala 1 5 10	348
TAT TTG TTC ATC ATT TCT CGT GTT CAA GGA CAG AAT CTG GAT AGT ATG Tyr Leu Phe Ile Ile Ser Arg Val Gln Gly Gln Asn Leu Asp Ser Met 15 20 25	396

					ATG Met 35											444
					GCA Ala											492
					TCT Cys											540
					TII Phe											588
ACC Thr	ACA Thr 95	TTA Leu	GCT Ala	TCA Ser	età ece	TGT Cys 100	ATG Het	AAA Lys	TAT Tyr	GAA Glu	GGA Gly 105	TCT Ser	GAT Asp	TIT Phe	CAG Gln	636
TGC Cys 110	AAA Lys	GAT Asp	TCT Ser	CCA Pro	AAA Lys 115	GCC Ala	CAG Gln	CTA Leu	œc λrg	CGG Arg 120	ACA Thr	ATA- Ile	GAA Glu	TGT Cys	TGT Cys 125	684
					AAC Asn											732
					TII Phe											780
					TGC Cys											828
					TAT Tyr											876
					CAG Gln 195											924
		Asp	Leu	Ile	GAC As p	Gln	Ser	Gln	Ser	Ser	Gly	Ser	Gly	Ser	Gly	972
CTA Leu	CCT Pro	TTA Leu	TTG Leu 225	GTT Val	C)C	CGA Arg	ACT The	ATT 11e 230	Ala GCC	AAA Lys	CAG Gln	ATT Ile	CAG Gln 235	ATG Het	GTC Val	1020
					Gly											1068
CGT Arg	GGC Gly 255	GA X Glu	λλλ Lys	GTG Val	GCG Ala	GTG Val 260	AAA Lys	GTA Val	TTC Phe	TTT Phe	ACC Thr 265	ACT Thr	GAA Glu	GAA Glu	GCC Ala	1116

	TCG															;	1164
	AAC Asn															•	1212
	ACT			Tyr												•	1260
	GAC Asp																1308
	GCT Ala 335															1	1356
	CJY CCC															;	1404
	AAC																1452
	CTT Leu															3	1500
	AAT Asn													-		3	1548
	GAA Glu 415															3	1596
	TAC Tyr															1	1644
	GGA Gly															3	1692
CCG Pro	AGT Ser	GAT Asp	CCG Pro 465	TCA Ser	TAC Tyr	G)# Gyy	GAT Asp	ATG Het 470	Arg	gju Gyg	GTT Val	GTG Val	TGT Cys 475	GTC Val	Lys	3	1740
	TTG Leu															1	L788
CGA Arg	GCA Ala 495	GTT Val	TTG Leu	AAG Lys	CTA Leu	ATG Het 500	TCA Ser	GAA Glu	Cys Cys	TGG Trp	GCC Ala 505	CAC	AAT ABD	CCA Pro	SCC Ala	1	1836

TCC AGA CTC ACA GCA TTG AGA ATT AAG AAG ACG CTT GCC AAG ATG GT Ser Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Ala Lys Het Va 510 520 52	1
GAA TCC CAA GAT GTA AAA ATC TGATGGTTAA ACCATCGGAG GAGAAACTCT Glu Ser Gln Asp Val Lys Ile 530	1935
AGACTGCAAG AACTGTTTTT ACCCATGGCA TGGGTGGAAT TAGAGTGGAA TAAGGAT	GTT 1995
AACTTGGTTC TCAGACTCTT TCTTCACTAC GTGTTCACAG GCTGCTAATA TTAAACC	TTT 2055
EAGTACTOTT ATTAGGATAC AAGCTGGGAA CTTCTAAACA CTTCATTCTT TATATAT	GGA 2115
CAGCITTATI TIAAATGIGG TITTIGATGC CITTITITAA GIGGGITTIT ATGAACT	GCA 2175
TCAAGACTTC AATCCTGATT AGTGTCTCCA GTCAAGCTCT GGGTACTGAA TTGCCTC	TTC 2235
ntanancegt ectitetete anageettaa gaagataaat gageegragea gagategi	AGA 2295
NATAGACTIT GCCTTTTACC TGAGACATTC AGTTCGTTTG TATTCTACCT TTGTAAA	ACA 2355
CCTATAGAT GATGATGTGT TTGGGATACT GCTTATTTTA TGATAGTTTG TCCTGTG	rcc 2415
TAGTCATCT GTGTGTGTCT CCATGCACAT GCACGCCGGG ATTCCTCTGC TGCCATT	NGA 2475
ATTAGAAGAA AATAATTTAT ATGCATGCAC AGGAAGATAT TGGTGGCCGG TGGTTTY	TG 2535
CTITANANT GCANTATCTG ACCANGATTC GCCANTCTCA TACAAGCCAT TTACTTY	GCA 2595
AGTGAGATAG CTTCCCCACC AGCTTATTT TTTAACATGA AAGCTGATGC CAAGGCC	WA 2655
AGAAGITIAA AGCATCIGIA AATTIGGACI GITITCCIIC AACCACCAIT IIIIIIIGI	rGG 2715
TATTATTTT TGTCACGGAA AGCATCCTCT CCAAAGTTGG AGCTTCTATT GCCATGAI	ACC 2775
ATGCTTACAA AGAAAGCACT TCTTATTGAA GTGAATTCCT GCATTTGATA GCAATGT?	VAG 2835
GCCTATAAC CATGTTCTAT ATTCTTTATT CTCAGTAACT TTTAAAAGGG AAGTTATT	TTA 2895
ATTITGIGI ATANIGIGGI TINITIGGAN ATCNOCC	2022

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 532 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Het Thr Gln Leu Tyr Ile Tyr Ile Arg Leu Leu Gly Ala Tyr Leu Phe -

Ile Ile Ser Arg Val Gln Gly Gln Asn Leu Asp Ser Met Leu His Gly 20 25 30

Thr Gly Net Lys Ser Asp Ser Asp Gln Lys Lys Ser Glu Asn Gly Val Thr Leu Ala Pro Glu Asp Thr Leu Pro Phe Leu Lys Cys Tyr Cys Ser 50 60 Gly His Cys Pro Asp Asp Ala Ile Asn Asn Thr Cys Ile Thr Asn Gly 65 70 75 80 His Cys Phe Ala Ile Ile Glu Glu Asp Asp Gln Gly Glu Thr Thr Leu 85 90 95 Ala Ser Gly Cys Met Lys Tyr Glu Gly Ser Asp Fha Gln Cys Lys Asp 100 105 110 Ser Pro Lys Ala Gln Leu Arg Arg Thr Ile Glu Cys Cys Arg Thr Asn 115 120 125 Leu Cys Asn Gln Tyr Leu Gln Pro Thr Leu Pro Pro Val Val Ile Gly 130 135 Pro Phe Phe Asp Gly Ser Ile Arg Trp Leu Val Leu Leu Ile Ser Het 145 150 155 160 Ala Val Cys Ile Ile Ala Het Ile Ile Phe Ser Ser Cys Phe Cys Tyr 165 170 175 Lys His Tyr Cys Lys Ser Ile Ser Ser Arg Arg Arg Tyr Asn Arg Asp 180 185 190 Leu Glu Gln Asp Glu Ala Phe Ile Pro Val Gly Glu Ser Leu Lys Asp 195 200 205 Leu Ile Asp Gln Ser Gln Ser Ser Gly Ser Gly Ser Gly Leu Pro Leu Leu Val Gln Arg Thr Ile Ala Lys Gln Ile Gln Het Val Arg Gln Val 225 230 235 240 Gly Lys Gly Arg Tyr Gly Glu Val Trp Met Gly Lys Trp Arg Gly Glu 245 250 255 Lys Val Ala Val Lys Val Phe Phe Thr Thr Glu Glu Ala Ser Trp Phe Arg Glu Thr Glu Ile Tyr Gln Thr Val Leu Het Arg His Glu Asn Ile 275 280 285 Leu Gly Phe Ile Ala Ala Asp Ile Lys Gly Thr Gly Ser Trp Thr Gln 290 295 300 Leu Tyr Leu Ile Thr Asp Tyr His Glu Asn Gly Ser Leu Tyr Asp Phe 305 310 320 Leu Lys Cys Ala Thr Leu Asp Thr Arg Ala Leu Leu Lys Leu Ala Tyr 325 330 335 Ser Ala Ala Cys Gly Leu Cys His Leu His Thr Glu Ile Tyr Gly Thr

Æ.:

Gln Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser Lys Asn Ile 355 360 365

Leu Ile Lys Lys Asn Gly S r Cys Cys Ile Ala Asp Leu Gly Leu Ala 370 380

Val Lys Phe Asn Ser Asp Thr Asn Glu Val Asp Val Pro Leu Asn Thr 385 390 395

Arg Val Gly Thr Lys Arg Tyr Het Ala Pro Glu Val Leu Asp Glu Ser 405 410

Leu Asn Lys Asn His Phe Gln Pro Tyr Ile Net Ala Asp Ile Tyr Ser 420 425 430

Phe Gly Leu Ile Ile Trp Glu Het Ala Arg Arg Cys Ile Thr Gly Gly 435 440

Ile Val Glu Glu Tyr Gln Leu Pro Tyr Tyr Asn Met Val Pro Ser Asp 450 455

Pro Ser Tyr Glu Asp Met Arg Glu Val Val Cys Val Lys Arg Leu Arg 465 470 475 480

Pro Ile Val Ser Asn Arg Trp Asn Ser Asp Glu Cys Leu Arg Ala Val 485 490 495

Leu Lys Leu Met Ser Glu Cys Trp Ala His Asn Pro Ala Ser Arg Leu 500 505 510

Thr Ala Leu Arg Ile Lys Lys Thr Leu Ala Lys Met Val Glu Ser Gln 515 520 525

Asp Val Lys Ile 530

(2) INFORMATION FOR SEQ ID NO: 7:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2333 base pairs
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
 - (v) FRACHENT TYPE: internal
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISH: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1...1515

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

ATG Het 1	GCG Ala	GAG	TCG Ser	GCC Ala 5	GGA	GCC	TCC	TCC	TTC Phe 10	TTC Phe	CCC Pr	CII	CTT Val	GTC Val 15	CTC Leu	48
CTG	CTC	GCC	GGC Gly 20	AGC Ser	ej eec	GGG	TCC	GGG Gly 25	CCC Pro	CGG Arg	GCG	GTC Val	CAG Gln 30	GCT Ala	CTG Leu	96
CTG Leu	TGT Cys	GCG Ala 35	TGC Cys	ACC	AGC Ser	TGC Cys	CTC Leu 40	CAG Gln	GCC Ala	AAC	TAC	ACG Thr 45	TGT Cys	GAG Glu	ACA Thr	144
GAT Asp	GGG Gly 50	GCC	TGC Cys	ATG Het	GTT Val	TCC Ser 55	TTT Phe	TTC Phe	AAT Asn	CTG Leu	GAT Asp 60	GGG Gly	ATG Het	GAG Glu	CAC	192
CAT His 65	GTG Val	CGC Arg	ACC Thr	TGC	ATC Ile 70	CCC Pro	AAA Lys	GTG Val	GAG Glu	CTG Leu 75	GTC Val	CCT Pro	GCC Ala	GCG	AAG Lys 80	240
CCC	TTC Phe	TAC Tyr	TGC Cys	CTG Leu 85	AGC Ser	TCG Ser	G)r	GAC A≡p	CTG Leu 90	CGC Arg	A AC	ACC	ETS	TGC Cys 95	TGC Cys	288
TAC	ACT	GAC Asp	TAC Tyr 100	Cys Cys	AAC Asd	YCC YLC	ATC Ile	GAC Asp 105	TTG Leu	AGG Arg	GTG Val	CCC Pro	AGT Ser 110	GGT Gly	HIS	336
CTC	AAG Lys	GAG Glu 115	CCT Pro	ejn eye	CAC	CCG Pro	TCC Ser 120	ATG Het	TGG Trp	Gly	CCG Pro	GTG Val 125	GAG Glu	CTG Leu	GTA Val	384
GCC	ATC Ile 130	ATC Ile	GCC Ala	GCC Gly	CCG Pro	GTG Val 135	TTC Phe	CTC Leu	CTG Leu	TTC Phe	CTC Leu 140	ATC Ile	ATC Ile	ATC Ile	ATT Ile	432
CTT Val 145	TTC Phe	CTT	GTC Val	ATT Ile	AAC Aen 150	TAT Tyr	CAT His	CAG Gln	&T Arg	GTC Val 155	TAT Tyr	HIB	AAC Asn	CGC Arg	CAG Gln 160	480
AGA Arg	CTG Leu	GAC Asp	ATG Met	GAA Glu 165	GAT Asp	CCC Pro	TCA Ser	TGT Cys	GAG Glu 170	ATG Het	TGT Cys	CTC Leu	TCC Ser	AAA Lys 175	GAC Asp	528
AAG Lys	ACG Thr	Leu	CAG Gln 180	Asp	CTT Leu	GTC Val	Tyr	GAT Asp 185	CTC	TCC	ACC Thr	TCA Ser	GGG Gly 190	TCT Ser	GC GLY	576
TCA Ser	Gly	TTA Leu 195	CCC Pro	CTC Leu	TTT Phe	GTC Val	CAG Gln 200	∆rg	ACA Thr	CTG Val	GCC Ala	CGA Arg 205	ACC Thr	ATC Ile	GIT Val	624
TTA Leu	CAA Gln 210	G)d G)d	ATT Ile	ATT Ile	GC GC	AAG Lys 215	cly Cly	CGG Arg	TTT Phe	ejå ece	GAA Glu 220	GTA Val	TGG Trp) Arg	GGC Gly	672

CGC Arg 225	TCG	AGG	GCT	GCT	GAT Asp 230	GTG Val	SCT Ala	GTG Val	AAA Lys	ATA 11e 235	TTC Phe	TCT Ser	TCT	CCT Arg	GAA Glu 240	720
) Arg															768
	CAT His															816
	ACC Thr															864
	CTG Leu 290														ATG Net	912
	AAG Lys															960
	ATC Ile															1008
	TCA Ser														GCA Ala	1056
	CTG Leu															1104
	GCC Ala 370															1152
	CTT											-				1200
	GAT Asp			Ala		Gly	Leu	Val	Tyr	Trp	Glu	Ile	Ala	Arg		1248
TGC Cys	AAT Aan	TCT Ser	GGA Gly 420	GGA Gly	GTC Val	CAT His	GAA Glu	GAA Glu 425	TAT Tyr	CAG Gln	CTG Leu	CCA Pro	TAT Tyr 430	TAC Tyr	GAC Asp	1 1296
TTA	GTG Val	CCC Pro 435	TCT Ser	GAC Asp	CCT Pro	TCC Ser	ATT 11e 440	GAG Glu	GAA Glu	ATG Ket	Ωλ Arg	AAG Lys 445	GTT Val	GTA Val	TGT Cys	1344
GAT Asp	CAG Gln 450	Lys	CTG Leu	∝T Arg	CCC Pro	AAC Asn 455	ATC Ile	CCC Pro	AAC Asn	TGG Trp	TGG Trp 460	CAG Gln	AGT Ser	TAT Tyr	GAG Glu	1392

														GCC Ala			1440
														Ser 495			1488
			CAG Gln 500						TAAC	neci	100 (CTCT	TCC	'AC			1535
ACGG	AGCT	rec :	recu	KCCC X	G AJ	CIA	жс х с	: AGC	:TGC(xx	TIG	\GŒ1	CAC	GATGO	AGG	œ	1595
TAC	.1010	XI :	TTCTC	:ccc)	e co	CTC	CTG	cci	\GGX(ccc	7 GG(ccc	XX.	GAGGG	ACAC	Sλ	1655
GCC	26663	GA (GACTO	CTC	:A C7	rccci	ligii	: GGC	TTTC	AGA	CAG	CAC	777	TTCT	TII	AC [1715
CTC	TAX?	.cc (CATGO	SAGAC	17 C7	CAG)	LGCGX	AT	GIGI	rgga	GXX	TCA	TG	ccycı	CCT	∞	1775
AAC:	recti	CI :	AGTG	GAAG	T C		: AAAC	: cc	GTG	ATC	TGG	:XCG1	rec	CCAGO	AGC	CX.	1835
TGA	CAGGO	GC (CTTC	GGAG	:G G	:cœ	SAGGA	ACC	Σ λGC	TGT	TGC	ZAGTO	CT.	aagct	rece	-1	1895
GAG	GTT	rcc :	IIŒ	GGAC	C A	cccı	CAGO	; ycı	ccy	LGGT	GGCC	eccc)	LAG	AACCI	GAA	ST.	1955
GCA	ccc	TC :	ICYC	/eecs	'e c3	crci	kGCCC	~	TTT	ccc	TCC	recer	rcc	GATGO) ACC	T	2015
GCC	GGA	ac :	IGCC)	GTGG	ia Gi	.ccc1	L ATCI	. ecc	XCII	TGT	CIG	CCAC	:cc	CICIC	TGC	\T	2075
GTG	CCGAC	GT (cœt	cccc	X II	CTC	crcc	TI	STG(CAT	GCC	TTAC	CAC	crcc	TGT	ξA	2135
GTG:	CICI	CT (CTCTC	CICIA	C C3	:coc	CYCII	, ycc	ucci	TCA	CCIT	ucu	TÇ	CATGI	CCAC	3 C	2195
TCG	GGG1	CT (CCTC	TCAT	.c. c.	CTC	×160	TIC	CTGG	TGC	ಯದ	777	cyc .	TAGTO	:XGCI	vc	2255
CATO	TAGT	II (cccr	GTGC	:c c:	TCC	TGGA	CC:	cre	rece	TCC	CCAC	SAG	ccccı	CAT	3 C	2315
CYC	GTGC	TA (CICIO	TGT													2333

(2) INFORMATION FOR SEQ ID NO: 8:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 505 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) HOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Ala Glu Ser Ala Gly Ala Ser Ser Phe Phe Pro Leu Val Val Leu

Leu Leu Ala Gly Ser Gly Gly Ser Gly Pro Arg Gly Val Gln Ala Leu 20 25 30

Leu Cys Ala Cys Thr Ser Cys Leu Gln Ala Asn Tyr Thr Cys Glu Thr 35 40 45 Asp Gly Ala Cys Met Val Ser Phe Phe Asn Leu Asp Gly Met Glu His 50 55 His Val Arg Thr Cys Ile Pro Lys Val Glu Leu Val Pro Ala Gly Lys
65 70 75 80 Pro Phe Tyr Cys Leu Ser Ser Glu Asp Leu Arg Asn Thr His Cys Cys 85 90 95 Tyr Thr Asp Tyr Cys Asn Arg Ile Asp Leu Arg Val Pro Ser Gly His 100 105 110 Leu Lys Glu Pro Glu His Pro Ser Het Trp Gly Pro Val Glu Leu Val Gly Ile Ile Ala Gly Pro Val Phe Leu Leu Phe Leu Ile Ile Ile Ile 130 140 Val Phe Leu Val Ile Asn Tyr His Gin Arg Val Tyr His Asn Arg Gln 145 150 155 160 Arg Leu Asp Het Glu Asp Pro Ser Cys Glu Het Cys Leu Ser Lys Asp 165 170 175 Lys Thr Lou Gln Asp Lou Val Tyr Asp Lou Ser Thr Ser Gly Ser Gly 180 185 190 Ser Gly Leu Pro Leu Phe Val Gln Arg Thr Val Ala Arg Thr Ile Val 195 200 205 Leu Gln Glu Ile Ile Gly Lys Gly Arg Phe Gly Glu Val Trp Arg Gly 210 225 Arg Trp Arg Gly Gly Asp Val Ala Val Lys Ile Phe Ser Ser Arg Glu 225 230 235 240 Glu Arg Ser Trp Phe Arg Glu Ala Glu Ile Tyr Gln Thr Val Het Leu 245 250 255 Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Asn Lys Asp Asn 260 265 270 Gly Thr Trp Thr Gln Leu Trp Leu Val Ser Asp Tyr His Glu His Gly Ser Leu Phe Asp Tyr Leu Asn Arg Tyr Thr Val Thr Ile Glu Gly Met 290 295 300 The Lys Leu Ala Leu Ser Ala Ala Ser Gly Leu Ala His Leu His Met 305 310 320 Glu Ile Val Gly Thr Gln Gly Lys Pro Gly Ile Ala His Arg Asp Leu 325 330 335 Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Het Cys Ala Ile Ala 340 350

Asp Leu Gly Leu Ala Val Arg His Asp Ala Val Thr Asp Thr Il Asp 355

Ile Ala Pro Asn Gln Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu 370 375 380

Val Leu Asp Glu Thr Ile Asn Net Lys His Phe Asp Ser Phe Lys Cys 385 390 395

Ala Asp Ile Tyr Ala Leu Gly Leu Val Tyr Trp Glu Ile Ala Arg Arg 405 410 415

Cys Asn Ser Gly Gly Val His Glu Glu Tyr Gln Leu Pro Tyr Tyr Asp 425 430

Leu Val Pro Ser Asp Pro Ser Ile Glu Glu Het Arg Lys Val Val Cys 435 440 445

Asp Gln Lys Leu Arg Pro Asn Ile Pro Asn Trp Trp Gln Ser Tyr Glu 450 455

Ala Leu Arg Val Het Gly Lys Het Het Arg Glu Cys Trp Tyr Ala Asn 465 470 475 480

Gly Ala Ala Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Ser Gln
485

Leu Ser Val Gln Glu Asp Val Lys Ile 505

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2308 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
- (vi) ORIGINAL SOURCE:
 (A) ORGANISM: Mouse
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 77..1585
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 9:
 GGCGAGGCGA GGTTTGCTGG GGTGAGGCAG CGGCCGGCC GGGCCACAGG

CGGT	reco	ec (GGA(CT CO		rg P			109
											gæ Ala					157
											HIS				lys	205
GAC Asp	AAT Asn 45	TII Phe	ACT Thr	TGT Cys	GTG Val	ACA Thr 50	GAT Asp	GGG Gly	CTC Leu	TGC Cys	TTT Phe 55	GTC Val	TCT Ser	GTC Val	ACA Thr	253
											TGT Cys					301
											GCX Ala					349
ACT Thr	eja eee	TCT Ser	GTG Val 95	ACT Thr	ACA Thr	ACA Thr	TAT Tyr	TGC Cys 100	TGC Cys	AAT	CAG Gln	GAC Asp	CAT His 105	TGC Cys	AAT Asn	397
AAA Lys	ATA Ile	GAA Glu 110	CTT	CCA Pro	ACT Thr	ACT Thr	GTA Val 115	AAG Lys	TCA Ser	TCA Ser	CCT Pro	GGC Gly 120	CTT	Gly	CCT Pro	445
GTG Val	GAA Glu 125	CTG Leu	Y) F	GCT Ala	GTC Val	ATT Ile 130	Ala GCT	GCA	CCA Pro	GTG Val	TGC Cys 135	TTC Phe	GTC Val	TGC Cys	ATC Ile	493
											CGC Arg					541
											GAT Asp				ATT	589
TCA Ser	Glu	GGT Gly	ACT Thr 175	λŒ Thr	TTG Leu	AAA Lys	GAC Asp	TTA Leu 180	ATT	TAT Tyr	GAT Asp	ATG Ket	ACA Thr 185	ACG Thr	TCA Ser	637
GCT Gly	TCT Ser	GGC Gly 190	TCA Ser	ely ect	TTA Leu	CCA Pro	TTG Leu 195	CIT	GTT Val	CAG Gln	YCY YLd	ACA Thr 200	ATT	GCG Ala	AGA Arg	685
ACT Thr	ATT Ile 205	GTG Val	TTA Leu	CAA Gln	GAA Glu	AGC Ser 210	ATT Ile	GCC	AAA Lys	GLY	CGA Arg 215	TTT Phe	GGA Gly	GAA Glu	GTT Val	. 73 3
TGG Trp 220	AGA Arg	GGX Gly	AAG Lys	Icc	CGG Arg 225	GGX Gly	GAA Glu	GAA Glu	GTT Val	GCT Ala 230	GTT Val	AAG Lys	ATA Ile	TTC Phe	TCC Ser 235	781

		TCG Ser						829
		GAX Glu						877
		TGG						925
		TIT						973
		CTT Leu 305						1021
		GTT Val						1069
		AAG Lys						1117
		GGA Gly						1165
		CCA Pro						1213
		GAT Asp 385						1261
 		ATC Ile			 	 	 	1309
		ATT Ile						1357
		CCT Pro						1405
		AAG Lys						1453
		AGA Arg 465						1501

C110 CT171 17F C11FF

TAT GCC AAT GGA GCA GCT AGG CTT ACA GCA TTG CGG ATT AAG AAA ACA Tyr Ale Aen Gly Ale Ale Arg Leu Thr Ale Leu Arg Ile Lys Lys Thr 480 485	1549
TTA TCG CAA CTC AGT CAA CAG GAA GGC ATC AAA ATG TAATTCTACA Leu Ser Gln Leu Ser Gln Gln Glu Gly Ile Lys Met 495 500	1595
GCTTTGCCTG AACTCTCCTT TTTTCTTCAG ATCTGCTCCT GGGTTTTAAT TTGGGAGGTC	1655
AGTTGTTCTA CCTCACTGAG AGGGAACAGA AGGATATTGC TTCCTTTTGC AGCAGTGTAA	1715
TARAGICARI TARARACTIC CORGGATITO TITGGROOCE GGARACROCC RIGIGGGICC	1775
TITCTGTGCA CTATGAACGC TTCTTTCCCA GGACAGAAAA TGTGTAGTCT ACCTTTATTT	1835
TITATTAACA AAACTIGITI TITAAAAAGA IGATIGCIGG ICTTAACTIT AGGIAACTCT	1895
CCTGTCCTCG AGATCATCTT TAAGGGCAAA GGAGTTGGAT TGCTGAATTA CAATGAAACA	1955
TGTCTTATTA CTAAAGAAAG TGATTTACTC CTGGTTAGTA CATTCTCAGA GGATTCTGAA	2015
CCACTAGAGT TTCCTTGATT CAGACTTTGA ATGTACTGTT CTATAGTTTT TCAGGATCTT	2075
AAAACTAACA CTTATAAAAC TCTTATCTTG AGTCTAAAAA TGACCTCATA TAGTAGTGAG	2135
GANCATANTT CATGCANTTG TATTTTGTAT ACTATTATTG TTCTTTCACT TATTCAGAAC	2195
ATTACATGCC TTCAAAATGG GATTGTACTA TACCAGTAAG TGCCACTTCT GTGTCTTTCT	2255
AATGGAAATG AGTAGAATTG CTGAAAGTCT CTATGTTAAA ACCTATAGTG TTT	2308

(2) INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 503 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Het Glu Ala Ala Val Ala Ala Pro Arg Pro Arg Leu Leu Leu Val

Leu Ala Ala Ala Ala Ala Ala Ala Ala Leu Leu Pro Gly Ala Thr 20 25 30 .

Ala Leu Gln Cys Phe Cys His Leu Cys Thr Lys Asp Asn Phe Thr Cys
40
45

Val Thr Asp Gly Leu Cys Phe Val Ser Val Thr Glu Thr Thr Asp Lys 50 55 60

Val Ile His Asn Ser Het Cys Ile Ala Glu Ile Asp Leu Ile Pro Arg 65 70 75 80

Asp Arg Pro Phe Val Cys Ala Pro Ser Ser Lys Thr Gly Ser Val Thr Thr Thr Tyr Cys Cys Asn Gln Asp His Cys Asn Lys Ile Glu Leu Pro 100 105 110 Thr Thr Val Lys Ser Ser Pro Gly Leu Gly Pro Val Glu Leu Ala Ala Val Ile Ala Gly Pro Val Cys Phe Val Cys Ile Ser Leu Het Leu Het Val Tyr Ile Cys His Asn Arg Thr Val Ile His His Arg Val Pro Asn Glu Glu Asp Pro Ser Leu Asp Arg Pro Phe Ile Ser Glu Gly Thr Thr Leu Lys Asp Leu Ile Tyr Asp Het Thr Thr Ser Gly Ser Gly Ser Gly Leu Pro Leu Leu Val Gln Arg Thr Ile Ala Arg Thr Ile Val Leu Gln
195 200 205 Glu Ser Ile Gly Lys Gly Arg Phe Gly Glu Val Trp Arg Gly Lys Trp 210 215 220 Arg Gly Glu Glu Val Ala Val Lys Ile Phe Ser Ser Arg Glu Glu Arg Ser Trp Phe Arg Glu Ala Glu Ile Tyr Gln Thr Val Het Leu Arg His 245 250 255 Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Asn Lys Asp Asn Gly Thr 260 265 270 Trp Thr Gln Leu Trp Leu Val Ser Asp Tyr His Glu His Gly Ser Leu Phe Asp Tyr Leu Asn Arg Tyr Thr Val Thr Val Glu Gly Het Ile Lys 290 295 300 Leu Ala Leu Ser Thr Ala Ser Gly Leu Ala His Leu His Met Glu Ile Val Gly Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Thr Cys Cys Ile Ala Asp Leu 340 345 350 Gly Leu Ala Val Arg His Asp Ser Ala Thr Asp Thr Ile Asp Ile Ala

Pro Asn His Arg Val Gly Thr Lys Arg Tyr Het Ala Pro Glu Val Leu 370 380

Asp Asp Ser Ile Asn Met Lys His Phe Glu Ser Phe Lys Arg Ala Asp 385 390 395

¢.

Ii•	Tyr	Ala	Net	Gly 405	Leu	V41	Phe	Trp	Glu 410	Ile	Ala	Arg	Arg	Cys 415	Sez
Ile	Gly	ly	11e 420	His	lu	λsp	Tyr	Gln 425	Leu	Pr	Tyr	Tyr	Asp 430	Leu	Val
Pro	Ser	Asp 435	Pro	Ser	Val	Glu	Glu 440	Net	Arg	Lys	Val	Val 445	Cys	Glu	Gln
Lys	Leu 450	Arg	Pro	Asn	Ile	Pro 455	Asn	Arg	îrp	Gln	Ser 460	Cys	Glu	Ala	Leu
Arg 465	Val	Met	Ala	Lys	11e 470	Ket	Arg	Glu	Cys	Trp 475	Tyr	Äla	Asn	Gly	Ala 480
Ala	Arg	Leu	Thr	Ala 485	Leu	λrg	Ile	Lys	Lys 490	Thr	Leu	Ser		Leu 495	Ser
Gln	Gln	Glu	Gly 500	Ile	Lys	Net									

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1922 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: linear
- (11) HOLECULE TYPE: CDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
 - (v) FRAGHENT TYPE: internal
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mouse
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 241..1746
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GAGAGCACAG CCCTTCCCAG TCCCCGGAGC CGCCGCCCA CG	GCGCGCATG ATCAAGACCT. 60
TTTCCCCGGC CCCACAGGGC CTCTGGACGT GAGACCCCGG CC	OGCCTCCGC AAGGAGAGGC 120
GGGGGTCGAG TCGCCCTGTC CAAAGGCCTC AATCTAAACA AT	TOTTGATTC CTGTTGCCGG 180
CTGGCGGGAC CCTGAATGGC AGGAAATCTC ACCACATCTC TT	ICTCCTATC TCCAAGGACC 240
ATG ACC TTG GGG AGC TTC AGA AGG GGC CTT TTG AT Net Thr Leu Gly Ser Phe Arg Arg Gly Leu Leu He 1	

Leu	Gly	CTA Leu	ACC Thr 20	Gln	ece ece	AGA Arg	Leu	GCG Ala 25	AAG Lys	Pro	TCC	AAG Lys	30 CIG	GTG Val	ARD	336
TGC Cys	ACT	TGT Cys 35	Glu	AGC Ser	CCA Pr	HIS	TGC Cys 40	Lys	λGλ Arg	Pro	TTC Pho	TGC Cys 45	CAG Gln	GLY	TCA Ser	384
TCC	TGC Cys 50	Thr	GTG Val	GTG Val	CTG Leu	GTT Val 55	CGA Arg	GAG Glu	CAG Gln	Gly	AGG Arg 60	His	CCC Pro	CAG Gln	GTC Val	432
TAT Tyr 65	CGG Arg	Gly	TGT Cys	es de la compa	AGC Ser 70	CTG	AAC	CAG	G)n	CTC Leu 75	TGC Cys	TTG Leu	GGA Gly	CGT Arg	Pro 80	480
ACG Thr	GAG Glu	TTT	CTG	AAC Asn 85	CAT	HIS	TGC Cys	TGC Cys	TAT Tyr 90	YCY YCY	TCC Ser	TTC Phe	TGC Cys	AAC Asn 95	CAC His	528
yau yau	GTG Val	TCT Ser	CTG Leu 100	ATG Het	CTG	GAG Glu	GCC Ala	ACC Thr 105	CAA Gln	ACT Thr	CCT Pro	TCG Ser	GAG Glu 110	GAG Glu	CCA Pro	576
GAA Glu	GTT Val	GAT Asp 115	GCC Ala	CAT His	CTG Leu	CCT Pro	CTG Leu 120	ATC Ile	CTG	GGT Gly	Pro	GTG Val 125	CTG Leu	GCC Ala	TTG	624
CCG Pro	GTC Val 130	Leu	GTG Val	GCC.	CTG Leu	GCT Gly 135	GCT Ala	CTG Leu	GCC	TTG Leu	TGG Trp 140	CGT Arg	GTC Val	CGG Arg	CGG Arg	672
AGG Arg 145	CAG Gln	GAG Glu	AAG Lys	CAG Gln	CGG Arg 150	GAT Asp	TTG Leu	His	AGT Ser	GAC Asp 155	CTG Leu	GCC G1y	GAG Glu	TCC Ser	AGT Ser 160	720
CTC	ATC Ile	CTG	AAG Lys	GCA Ala 165	TCT Ser	GAA Glu	CAG Gln	GCA Ala	GAC Asp 170	AGC Ser	ATG Met	TTG Leu	gjy egg	GAC Asp 175	TTC Phe	768
CTG Leu	GAC Asp	AGC Ser	GAC Asp 180	TGT Cys	ACC Thr	ACG Thr	G1Y GCC	AGC Ser 185	GGC Gly	TCG Ser	GGG Gly	CTC Leu	CCC Pro 190	TTC Phe	TTG Leu	816
GTG Val	CAG Gln	AGG Arg 195	Thr	Val	Ala) Arg	Gln	Val	GCG Ala	CTG Leu	GTA Val	GAG Glu 205	Cys	GTG Val	GGA Gly	864
AAG Lys	660 61y 210	y CGY	TAT Tyr	Gly	GAG Glu	GTG Val 215	TGG Trp	Arg	cct Cly	TCG Ser	TGG Trp 220	CAT His	GGC Gly	GAA Glu	AGC Sei	912
GTG Val 225	GCG Ala	GTC Val	λλG Lys	ATT Ile	TTC Phe 230	TCC Ser	TCA Ser	yrd Yrd	GAT Asp	GAG Glu 235	CAG Gln	TCC Ser	TCG Trp	TTC Phe	CGG Arg 240	960
GAG Glu	ACG Thr	Cj <i>n</i> Cyc	ATC Ile	TAC Tyr 245	AAC Asn	ACA Thr	GTT Val	CTG Leu	CTT Leu 250	AGA Arg	CAC His	GAC Asp	Asn	ATC Ile 255	CTA Leu	1008

-																
et eec	TTC Phe	ATC Ile	GCC Ala 260	TCC	GAC Asp	ATG Het	ACT Thr	TCG Ser 265	Arg	AAC Asn	TCG Ser	AGC Ser	ACC Thr 270	CAS Gln	CTG Leu	1056
TGG	CTC	ATC Ile 275	ACC Thr	HIS	TAC Tyr	CAT	GAA Glu 280	CAC	GCC	TCC	Leu	TAT Tyr 285	GAC	TTT	CTG Leu	1104
CAG Gln	AGG Arg 290	CAG Gln	ACG Thr	Leu	GAG Glu	CCC Pro 295	CAG Gln	TIG	GCC Ala	CTG Leu	AGG Arg 300	CTA	GCT Ala	GTG Val	TCC Ser	1152
CCG Pro 305	GCC	TGC Cys	ejà eec	CTG	GCG Ala 310	EYC HIP	CTA Leu	CAT His	GTG Val	GAG Glu 315	ATC Ile	TII Phe	GLY	ACT Thr	CAA Gln 320	1200
est esc	AAA Lys	CCA Pro	GCC Ala	ATT 11e 325	GCC Ala	CAT His	CGT Arg	GAC Asp	CTC Leu 330	AAG Lys	AGT	∝ c Ar g	AAT Aed	GTG Val 335	CTG Leu	1248
GTC Val	AAG Lys	AGT Ser	AAC Amn 340	TTG Leu	CAG Gln	TGT Cys	TGC Cys	ATT Ile 345	Ala GCA	GAC Asp	CTG Leu	GCX GCX	CTG Leu 350	GCT Ala	GTG Val	1296
ATG Het	CAC His	TCA Ser 355	CAA Gln	AGC Ser	AAC Asn	GAG Glu	TAC Tyr 360	CTG Leu	GAT Asp	ATC Ile	GC Gly	AAC Asn 365	ACA Thr	CCC Pro	CGA Arg	1344
GTG Val	GGT Gly 370	ACC Thr	AAA Lys	AGA Arg	TAC Tyr	ATG Met 375	GCA Ala	CCC Pro	GAG Glu	GTG Val	CTG Leu 380	GAT Asp	GAG Glu	CAC His	ATC Ile	1392
CGC Arg 385	ACA Thr	GAC Asp	TGC Cys	TTT Phe	G) G) 390	TCG Ser	TAC Tyr	AAG Lys	Trp	ACA Thr 395	yeb Gyc) Ile	TCG	GCC	TIT Phe 400	1440
Gly	CTA Leu	GTG Val	CTA Leu	TGG Trp 405	GAG Glu	ATC Ile	GCC	CGG Arg	CGG Arg 410	ACC Thr	ATC Ilo	ATC Ile	AAT Asn	GGC Gly 415	ATT Ile	1488
GTG Val	GAG Glu	GAT Asp	TAC Tyr 420	AGG Arg	CCA Pro	CCT Pro	TTC Phe	TAT Tyr 425	gyc Yab	ATG Het	GTA Val	CCC Pro	AAT Asn 430	gac Asp	CCC Pro	1536
AGT Ser	TTT Phe	GAG Glu 435	GAC Asp	ATG Het	AAA Lys	AAG Lys	GTG Val 440	CTC Val	TGC Cys	GTT Val	GAC As p	CAG Gln 445	CAG Gln	ACA Thr	CCC Pro	1584
ACC Thr	ATC Ile 450	CCT Pro	AAC Asn	CGG	CTG Leu	GCT Ala 455	GCX Ala	GAT Asp	CCG Pro	GTC Val	CTC Leu 460	TCC Ser	G1y	CTG Leu	GCC Ala	1632
									AAC Asn							1680
GCA Ala	CTG Leu	CGC Arg	ATA Ile	AAG Lys 485	AAG Lys	ACA Thr	TTC Leu	CAG Gln	AAG Lys 490	CTC Leu	AGT Ser	HIS	AAT Asn	CCA Pro 495	GAG Glu	1728

14

ANG CCC ANA GTG ATT CAC TAGCCCAGGG CCACCAGGCT TCCTCTGCCT Lys Pro Lys Val Ile His 500	1776
ARAGTGTGTG CTGGGGRAGA AGACATAGCC TGTCTGGGTA GAGGGAGTGA AGAGAGTGTG	1836
CACGCTGCCC TGTGTGCC TGCTCAGCTT GCTCCCAGCC CATCCAGCCA AAAATACAGC	1896
TGAGCTGAAA TTCAAAAAAA AAAAAA	1922

(2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 502 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Het Thr Leu Gly Ser Phe Arg Arg Gly Leu Leu Het Leu Ser Val Ala 1 5 10 15

Leu Gly Leu Thr Gln Gly Arg Leu Ala Lys Pro Ser Lys Leu Val Asn 20 25 30

Cys Thr Cys Glu Ser Pro His Cys Lys Arg Pro Phe Cys Gln Gly Ser 35 40 45

Trp Cys Thr Val Val Leu Val Arg Glu Gln Gly Arg His Pro Gln Val 50 55 60

Tyr Arg Gly Cys Gly Ser Leu Asn Gln Glu Leu Cys Leu Gly Arg Pro 65 70 75 80

Thr Glu Phe Leu Asn His His Cys Cys Tyr Arg Ser Phe Cys Asn His 85 90 95

Asn Val Ser Leu Met Leu Glu Ala Thr Gln Thr Pro Ser Glu Glu Pro 100 105 110

Glu Val Asp Ala His Leu Pro Leu Ile Leu Gly Pro Val Leu Ala Leu 115 120 125

Pro Val Leu Val Ala Leu Gly Ala Leu Gly Leu Trp Arg Val Arg Arg 130 140

Arg Gln Glu Lys Gln Arg Asp Leu His Ser Asp Leu Gly Glu Ser Ser 145 155 160

Leu Ile Leu Lys Ala Ser Glu Gln Ala Asp Ser Het Leu Gly Asp Phe 165 170 175

Leu Asp Ser Asp Cys Thr Thr Gly Ser Gly Ser Gly Leu Pro Phe Leu 180 185 190 Val Gln Arg Thr Val Ala Arg Gln Val Ala Leu Val Glu Cys Val Gly 195 200 205 Lys Gly Arg Tyr Gly Glu Val Trp Arg Gly Ser Trp His Gly Glu Ser Val Ala Val Lys Ile Phe Ser Ser Arg Asp Glu Gln Ser Trp Phe Arg Glu Thr Glu Ile Tyr Acn Thr Val Leu Leu Arg His Asp Asn Ile Leu 245 250 255 Gly Phe Ile Ala Ser Asp Het Thr Ser Arg Asn Ser Ser Thr Gin Leu Trp Leu Ile Thr His Tyr His Glu His Gly Ser Leu Tyr Asp Phe Leu Gln Arg Gln Thr Leu Glu Pro Gln Leu Ala Leu Arg Leu Ala Val Ser 290 300 Pro Ala Cys Gly Leu Ala His Leu His Val Glu Ile Phe Gly Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser Arg Asn Val Leu Val Lys Ser Asn Leu Gln Cys Cys Ile Ala Asp Leu Gly Leu Ala Val 340 345 350 Het His Ser Gln Ser Asn Glu Tyr Leu Asp Ile Gly Asn Thr Pro Arg Val Gly Thr Lys Arg Tyr Het Ala Pro Glu Val Leu Asp Glu His Ile Arg Thr Asp Cys Phe Glu Ser Tyr Lys Trp Thr Asp Ile Trp Ala Phe 385 390 395 Gly Leu Val Lou Trp Glu Ile Ala Arg Arg Thr Ile Ile Asn Gly Ile 405 415 Val Glu Asp Tyr Arg Pro Pro Phe Tyr Asp Net Val Pro Asn Asp Pro 420 425 430 Ser Phe Glu Asp Het Lys Lys Val Val Cys Val Asp Gln Gln Thr Pro 435 440 Thr Ile Pro Asn Arg Leu Ala Ala Asp Pro Val Leu Ser Gly Leu Ala Gln Het Het Arg Glu Cys Trp Tyr Pro Asn Pro Ser Ala Arg Leu Thr 465 470 480 Ala Leu Arg Ile Lys Lys Thr Leu Gln Lys Leu Ser His Asn Pro Glu

Lys Pro Lys Val Ile His

(2) INFORMATION FOR SEQ ID NO: 13:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2070 base pairs
 (B) TYPE: nucl ic acid
 (C) STRANDEDNESS: unknown

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: CDNA
- (111) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
 - (v) FRAGHENT TYPE: internal
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Mouse
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 217..1812
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

ATTCATGAGA TGGAAGCATA GGTCAAAGCT GTTCGGAGAA ATTGGAACTA CAGT	TTTATC 60
TAGCCACATC TCTGAGAATT CTGAAGAAAG CAGCAGGTGA AAGTCATTGC CAAG	TGATTT 120
TGTTCTGTAA GGAAGCCTCC CTCATTCACT TACACCAGTG AGACAGCAGG ACCA	GTCATT 180
CARAGGGCCG TGTACAGGAC GCGTGGCAAT CAGACA ATG ACT CAG CTA TAC Het Thr Gln Leu Tyr 1 5	
TAC ATC AGA TTA CTG GGA GCC TGT CTG TTC ATC ATT TCT CAT GTT TYr Ile Arg Leu Leu Gly Ala Cys Leu Phe Ile Ile Ser His Val	
GGG CAG AAT CTA GAT AGT ATG CTC CAT GGC ACT GGT ATG AAA TCA Gly Gln Asn Leu Asp Ser Met Leu His Gly Thr Gly Het Lys Ser 25 30 35	
TTG GAC CAG AAG AAG CCA GAA AAT GGA GTG ACT TTA GCA CCA GAG Leu Asp Gln Lys Lys Pro Glu Asn Gly Val Thr Leu Ala Pro Glu 40 45 50	
ACC TTG CCT TTC TTA AAG TGC TAT TGC TCA GGA CAC TGC CCA GAT Thr Leu Pro Phe Leu Lys Cys Tyr Cys Ser Gly His Cys Pro Asp 55 60 65	
GCT ATT AAT AAC ACA TGC ATA ACT AAT GGC CAT TGC TTT GCC ATT Ala Ile Asn Asn Thr Cys Ile Thr Asn Gly His Cys Phe Ala Ile 75 80 85	Ile
GAA GAA GAT GAT CAG GGA GAA ACC ACA TTA ACT TCT GGG TGT ATG Glu Glu Asp Asp Gln Gly Glu Thr Thr Leu Thr Ser Gly Cys Het 90 95	

TAT	G J u	GGC Gly 105	TCT	GAT	TII Phe	CAA ln	TGC Cys 110	Lys	GAT Asp	TCA Sei	ecc Pr	Lys 115	Ala	CAG Gln	CTA	570
λrg	AGG Arg 120	Thr	ATA Ile	GAA Glu	TGT Cys	TGT Cys 125	CGG Arg	ACC	AAT Asn	TIG	TGC Cys 130	Yac	CAG Gln	TAT	TIG	618
CAG Gln 135	CCT Pro	ACA	CTG Leu	CCC Pro	CCT Pro 140	Val	GTT Val	ATA Ile	GCT Gly	ccc Pro 145	TTC Phe	TTT Phe	GAT As p	GCC	AGC Ser 150	666
ATC	CGA	TGG	CTG	GTT Val 155	GTG Val	CTC Leu	ATT Ile	TCC Ser	ATG Met 160	GCT Ala	GTC Val	TGT Cys	ATA Ile	GTT Val 165	GCT Ala	714
ATG Het	ATC Ile	ATC Ile	TTC Phe 170	TCC	AGC Ser	TGC Cys	TIT Phe	TGC Cys 175	TAT Tyr	AAG Lys	CAT	TAT	TGT Cys 180	AAG Lys	AGT Ser	762
ATC Ile	TCA Ser	AGC Ser 185	λGG λ rg	GGT Gly	CGT Arg	TAC Tyr	AAC Amn 190	CGT Arg	GAT	TTG Leu	GAA Glu	CAG Gln 195	GAT Asp	GAA Glu	GCA Ala	810
TIT	ATT Ile 200	CCA Pro	GTA Val	GGA G1y	GAA Glu	TCA Ser 205	TTG Leu	AAA Lys	GAC Asp	CTG Leu	ATT Ile 210	GAC Asp	CAG Gln	TCC Ser	CAA Gln	858
AGC Ser 215	TCT Ser	ejà eee	AGT Ser	GGA Gly	TCT Ser 220	GGA Gly	TTG Leu	CCT Pro	TTA Leu	TTG Leu 225	GTT Val	CAG Gln	CGA Arg	ACT	ATT Ile 230	906
GCC Ala	AAA Lys	CAG Gln	ATT	CAG Gln 235	ATG Met	GTT Val	CGG Arg	CAG Gln	GTT Val 240	Cly	AAA Lys	esc esc	CGC Arg	TAT Tyr 245	GCX GCX	954
GAA Glu	GTA Val	TGG Trp	ATG Met 250	Gly	AAA Lys	TGG Trp	CGT Arg	GGT Gly 255	GAA Glu	AAA Lys	GTC Val	GCT Ala	GTC Val 260	AAA Lys	GTG Val	1002
TTT Phe	TIT Phe	ACC Thr 265	ACT Thr	G XX Glu	GAA Glu	GCT Ala	AGC Ser 270	TGG Trp	TTT Phe	λſβ	GAA Glu	ACA Thr 275	GAA Glu	ATC Ile	TAC Tyr	1050
CAG Gln	ACG Thr 280	GTG Val	TTA Leu	ATG Ket	CGT Arg	CAT His 285	GAA Glu	AAT Asn	ATA Ile	CTT Leu	GGT Gly 290	TTT Phe	ATA Ile	GCT Ala	GCA Ala	1098
GAC Asp 295	ATT Ile	XXX Lys	ejå eec	ACT Thr	GGT Gly 300	TCC Ser	TGG Trp	ACT Thr	CAG Gln	CTG Leu 305	TAT Tyr	TTG Leu	ATT Ile	ACT Thr	GAT Asp 310	. 1146
TAC Tyr	CAT His	GAA Glu	Asn	GGA Gly 315	TCT Ser	CTC Leu	TAT Tyr	gyc Yeb	TTC Phe 320	CTG Leu	AAA Lys	TGT Cys	Ala	ACA Thr 325	CTA Leu	1194
gac Asp	ACC Thr	AGA Arg	GCC Ala 330	CTA Leu	CTC Leu	AAG Lys	Leu	GCT Ala 335	TAT Tyr	TCT Ser	GCT Ala	Ala	TGT Cys 340	GCT GCT	CTG Leu	1242

TGC CAC C	CTC CAC Leu His 345	ACA GAA Thr Glu	ATT TAT Ile Tyr 350	Gly	ACC CAA Thr Gln	GGG AAG Gly Lyd 35!	Pr	GCA Ala	ATT Ile	1290
GCT CAT C Ala His J 360	CGA GAC Arg Asp	CTG AAG Leu Lys	AGC AN Ser Lys 365	AAC Asn	ATC CTT	ATT AAC Ile Lys 370	Lys	AAT Asn	Gly	1338
AGT TGC 1 Ser Cys 6 375	TGT ATT Cys Ile	GCT GAC Ala Asp 380	Leu Gly	CTA Leu	GCT GTT Ala Val 385	AAA TTO Lys Pho	AAC AED	AGT Ser	GAT Amp 390	1386
ACA AAT C				Asn						1434
TAC ATG (CCT CCA Ala Pro 410	GAA GTG Glu Val	CTG GAT	GAA Glu 415	AGC CTG Ser Leu	AAT AA Asn Lys	AAC Asn 420	CAT His	TTC Pho	1482
CAG CCC 1	TAC ATC Tyr Ile 425	ATG GCT Het Ala	GAC ATO Asp Ile 430	Tyr	AGC TTT Ser Phe	GGT TTG Gly Let 435	Ile	ATT	TGG Trp	1530
GAA ATG G Glu Met X 440	SCT CGT Ala Arg	CGT TGT Arg Cys	ATT ACI Ile Thi 445	GCA	GGA ATC Gly Ile	GTG GAG Val Glu 450	GAA Glu	TAT Tyr	CAA Gln	1578
TTA CCA T Leu Pro 1 455	TAT TAC Tyr Tyr	AAC ATG Asn Met 460	GTG CCC Val Pro	Ser .	GAC CCA Asp Pro 465	TCC TAT	GAG Glu	yab gyc	ATG Met 470	1626
CGT GAG C Arg Glu V	OTT GTG Val Val	TGT GTG Cys Val 475	AAA CGC Lys Arg	Leu .	CGG CCA Arg Pro 480	ATC GTG	TCT Ser	AAC Asn 485	yrd	1674
TGG AAC A	AGC GAT Ser Asp 490	GAA TGT Glu Cys	CTT CGA	GCA (Ala 495	GTT TTG Val Leu	AAG CTA Lys Lev	ATG Het 500	TCA Ser	GAÄ Glu	1722
TGT TGG C				Arg :			Arg			1770
AAG ACA C Lys Thr I 520										1812
TGACAATTA	AA ACAA	TTTGA G	GGAGAATI	T AGA	CTGCAAG	AACTTCT	TCA (CCN	GGAAT	1872
GGGTGGGA1	TT AGCA!	rggaat a	GGATGTTC	A CIT	CCTTTCC	AGACTCO	TTC	CTCTA	CATCT	1932
TCACAGGCT	rg CTAA	CAGTAA A	CCTTACCC	T ACT	CTACAGA	ATACAAC	ATT (GAAC	TTGGA	1992
ACTICAAAC	CA TGTC	ATTOTT T	ATATATGA	C AGC	TITGTTT	TANTGTO	GGG :	17777	TIGIT	2052
TGCTTTTTT	T GTTT	CTT								2070

(2) INFORMATION FOR SEQ ID NO: 14:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 532 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: lin ar
- (ii) HOLECULE TYPE: protein
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

Met Thr Gln Leu Tyr Thr Tyr Ile Arg Leu Leu Gly Ala Cys Leu Phe 1 5 10 15

Ile Ile Ser His Val Gln Gly Gln Asn Leu Asp Ser Het Leu His Gly
20 25 30

Thr Gly Met Lys Ser Asp Leu Asp Gln Lys Lys Pro Glu Asn Gly Val

Thr Leu Ala Pro Glu Asp Thr Leu Pro Phe Leu Lys Cys Tyr Cys Ser 50 60

Gly His Cys Pro Asp Asp Ala Ile Asn Asn Thr Cys Ile Thr Asn Gly 65 70 75 80

His Cys Phe Ala Ile Ile Glu Glu Asp Asp Gln Gly Glu Thr Thr Leu 85 90 95

Thr Ser Gly Cys Met Lys Tyr Glu Gly Ser Asp Phe Gln Cys Lys Asp
100 105 110

Ser Pro Lys Ala Gin Leu Arg Arg Thr Ile Glu Cys Cys Arg Thr Asn 115 120 125

Leu Cys Asn Gln Tyr Leu Gln Pro Thr Leu Pro Pro Val Val Ile Gly
130 135 140

Pro Phe Phe Asp Gly Ser Ile Arg Trp Leu Val Val Leu Ile Ser Het 145

Ala Val Cys Ile Val Ala Net Ile Ile Phe Ser Ser Cys Phe Cys Tyr 165 . 170 . 175

Lys His Tyr Cys Lys Ser Ile Ser Ser Arg Gly Arg Tyr Asn Arg Asp 180 185 190

Leu Glu Gln Asp Glu Ala Phe Ile Pro Val Gly Glu Ser Leu Lys Asp

Leu Ile Asp Gln Ser Gln Ser Ser Gly Ser Gly Leu Pro Leu 210 225 220

Leu Val Gln Arg Thr Ile Ala Lys Gln Ile Gln Het Val Arg Gln Val 225 230 240

Gly Lys Gly Arg Tyr Gly Glu Val Trp Het Gly Lys Trp Arg Gly Glu 245 255

14

Lys Val Ala Val Lys Val Phe Phe Thr Thr Glu Glu Ala Ser Trp Phe 260 265 270 Arg Glu Thr Glu Ile Tyr Gln Thr Val Leu Het Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Ile Lys Gly Thr Gly Ser Trp Thr Gln Leu Tyr Leu Ile Thr Asp Tyr His Glu Asn Gly Ser Leu Tyr Asp Phe 305 315 320 Leu Lys Cys Ala Thr Leu Asp Thr Arg Ala Leu Leu Lys Leu Ala Tyr 325 330 335 Ser Ala Ala Cys Gly Leu Cys His Leu His Thr Glu Ile Tyr Gly Thr 340 345 350 Gin Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser Lys Asn Ile 355 360 365 Leu Ile Lys Lys Asn Gly Ser Cys Cys Ile Ala Asp Leu Gly Leu Ala Val Lys Phe Asn Ser Asp Thr Asn Glu Val Asp Ile Pro Leu Asn Thr 385 390 395 Arg Val Gly Thr Lys Arg Tyr Het Ala Pro Glu Val Leu Asp Glu Ser Leu Asn Lys Asn His Phe Gln Pro Tyr Ile Het Ala Asp Ile Tyr Ser 420 Phe Gly Leu Ile Ile Trp Glu Het Ala Arg Arg Cys Ile Thr Gly Gly Ile Val Glu Glu Tyr Gln Leu Pro Tyr Tyr Asn Het Val Pro Ser Asp 450 455 Pro Ser Tyr Glu Asp Het Arg Glu Val Val Cys Val Lys Arg Leu Arg 465 470 475 Pro Ile Val Ser Asn Arg Trp Asn Ser Asp Glu Cys Leu Arg Ala Val 485 Leu Lys Leu Het Ser Glu Cys Trp Ala His Asn Pro Ala Ser Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Ala Lys Met Val Glu Ser Gln Asp Val Lys Ile

(2) INFORMATION FOR SEQ ID NO: 15:

530

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2160 base pairs

- (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: linear
- (11) HOLECULE TYPE: CDNA
- (iii) HYPOTHETICAL: NO
- (iii) ANTI-SENSE: NO
 - (v) FRAGMENT TYPE: internal
- (vi) ORIGINAL SOURCE: (A) ORGANISH: Mouse
- (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 10..1524
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

CGCGGTTAC ATG GCG GAG TCG GCC GGA GCC TCC TCC TTC TTC CCC CTT Het Ala Glu Ser Ala Gly Ala Ser Ser Phe Phe Pro Leu 1 5 10												
GTT GTC CTC CTG CTC GCC GGC AGC GGG GGG TCC GGG CCC CGG GGG ATC Val Leu Leu Ala Gly Ser Gly Gly Ser Gly Pro Arg Gly Ile 15 20 25	96											
CAG GCT CTG CTG TGT GCG TGC ACC AGC TGC CTA CAG ACC AAC TAC ACC Gln Ala Leu Leu Cys Ala Cys Thr Ser Cys Leu Gln Thr Asn Tyr Thr 30 35 40 45	144											
TGT GAG ACA GAT GGG GCT TGC ATG GTC TCC ATC TTT AAC CTG GAT GGC Cys Glu Thr Asp Gly Ala Cys Met Val Ser Ile Phe Asn Leu Asp Gly 50 55 60	192											
GTG GAG CAC CAT GTA CGT ACC TGC ATC CCC AAG GTG GAG CTG GTT CCT Val Glu His His Val Arg Thr Cys Ile Pro Lys Val Glu Leu Val Pro 65 70 75	240											
GCT GGA ANG CCC TTC TAC TGC CTG AGT TCA GAG GAT CTG CGC AAC ACA Ala Gly Lys Pro Phe Tyr Cys Leu Ser Ser Glu Asp Leu Arg Asn Thr 80 85 90	288											
CAC TGC TGC TAT ATT GAC TTC TGC AAC AAG ATT GAC CTC AGG GTC CCC His Cys Cys Tyr Ile Asp Phe Cys Asn Lys Ile Asp Leu Arg Val Pro 95	336											
AGC GGA CAC CTC AAG GAG CCT GCG CAC CCC TCC ATG TGG GGC CCT GTG Ser Gly His Leu Lys Glu Pro Ala His Pro Ser Het Trp Gly Pro Val 110 125 120	384											
GAG CTG GTC GGC ATC ATC GCC GGC CCC GTC TTC CTC TTC CTT ATC Glu Leu Val Gly Ile Ile Ala Gly Pro Val Phe Leu Leu Phe Leu Ile 130 135 140	432											

										HIS						480
		-								TCT Ser						528
										TAC Tyr						576
										CAG Gln 200						624
										GCGC						672
										GCT Ala						720
										GCA Ala						768
										TTT Phe						816
										CTT Leu 280						B64
										Vzd Vzd						912
										GCC						960
										aag Lys						1008
CGA	GAC Asp 335	TTG	AAG Lys	TCA Ser	AAG Lys	AAC Asn 340	ATC Ile	CIG Leu	GTG Val	AAA Lys	AAA Lys 345	AAT Asn	ely	ATG Het	Cys ·	1056
GCC Ala 350	ATT Ile	GCA Ala	GAC Asp	CTG Leu	GGC Gly 355	CTG Leu	GCT Ala	GTC Val	CGT Arg	CAT His 360	GAT Asp	GCG Ala	GTC Val	ACT Thr	GAC Asp 365	1104
ACC Thr	XTX Ile	GAC Asp	ATT Ile	GCT Ala 370	CCA Pro	AAT Asn	CAG Gln	YLĞ	GTG Val 375	eja eee	ACC Thr	AAA Lys	CG)	TAC Tyr 380	ATG Het	1152

GCT Ala	CCT Pro	GAA Glu	GTC VA1 385	Leu	yab eyc	GAG Glu	ACA Thr	ATC 11e 390	AAC	ATG Met	AAG Lys	HIS	777 Phe 395	Asp	TCC Ser	1200
TTC Phe	AAA Lys	TGT Cys 400	GCC Ala	GAC Asp	ATC Ile	TAT Tyr	GCC Ala 405	CTC Leu	ely ecc	CTT Leu	GTC VAl	TAC Tyr 410	TCG	GAG Glu	ATT Ile	1248
GCA Ala	CGA Arg 415	YCY Yld	Cys	AAT Asn	TCT Ser	GGA Gly 420	GGA Gly	GTC Val	CAT His	GAA Glu	GλC λs p 425	TAT Tyr	CAA Gln	CTG Leu	CCG Pro	1296
TAT Tyr 430	TAC Tyr	GAC Asp	TTA Leu	GTG VAl	CCC Pro 435	TCC Ser	GAC Asp	CCT Pro	TCC Ser	ATT 110 440	GAG Glu	GAG Glu	ATG Net	∝λ λrg	AAG Lys 445	1344
GTT Val	GTA Val	TGT Cys	GAC Asp	CAG Gln 450	aag Lys	CTA Leu	yrd	CCC Pro	AAT Ass 455	GTC Val	CCC Pro	AAC Asn	TCG Trp	TGG Trp 460	CAG Gln	1392
AGT Ser	TAT Tyr	GAG Glu	GCC Ala 465	TTG Leu	CGA Arg	GTG Val	ATG Met	GGA Gly 470	AXG Lys	ATG Het	ATG Net	yrg	GAG Glu 475	TGC Cys	TGG Trp	1440
TAC Tyr	GCC Ala	AAT Asn 480	GGT Gly	GCT Ala	GCC Ala	CCT Arg	CTG Leu 485	ACA Thr	GCT Ala	CTG Leu	egc Arg	ATC Ile 490	AAG Lys	AAG Lys	ACT Thr	1488
CTG Leu	TCC Ser 495	CAG Gln	CTA Leu	AGC Ser	GTG Val	CAG Gln 500	GAA Glu	GAT A∎p	GTG Val	aag Lys	ATT Ile 505	TAAG	CTG	TC		1534
CTCI	CCI	AC A	CAAA	GAAC	C TG	GGCA	.GTGA	GGA	TGAC	TGC	AGCC	ACCC	TG C	AAGC	STEET	1594
GGAG	CCT	AT C	CTCI	TCTT	1 CI	cccc	ccc	CTC	TGGC	AGA	ccc	TGGC	CT G	CAAG	AGGGA	1654
CAGA	.GCCT	ec c	AGAC	seco	e cy	CTCC	CII	GGG	TITG	λGλ	CAGA	CACI	11 1	TATA	TTTAC	1714
CTCC	TGAT	ec c	ATGG	AGAC	C TG	AGCA	AATC	ÀTG	TAGI	CAC	TCAA	TGCC	AC A	ACTO	AAACT	1774
CCTT	CAGI	.cc c	AAGT	ACA G	A GA	CCCA	GTGC	ATT	CCCI	CTG	CAGG	λGŒ	TG A	GCTG	CTGGG	1834
CTCG	CCAG	GA G	ccc	cccc	A TA	CCII	GTGG	TCC	ACTG	GGC	TGCA	GGTI	TT C	CTCC	AGGGA	1894
CCAG	TCAA	CT G	GCAT	CAAG	A TA	TTGA	GAGG	AAC	œςλ	agt	TICI	CCCT	CC I	TCCC	GTAGC	1954
AGTC	CTGA	GC C	CAC	CATC	CII	CTCA	TGGA	CAT	cccc	AGG	actg	cccc	TA G	AGAC	ACAAC	2014
CTGC	TGCC	TG I	CIGI	CCAG	C CX	AGTG	CCCA	TGT	ccœ	AGG	TGTG	TCCC	yc y	TIGI	ccccc	2074
CTCT	GTGC	CA C	ccc	GTGT	c TC	TGTG	TGTG	TGT	GTGA	GTG .	A GTG	TCTC	TG I	GTAC	ACTTA	2134
ACCT	CCTT	GA G	CIIC	TGTG	C AT	CTGT										2162

(2) INFORMATION FOR SEQ ID NO: 16:

⁽i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 505 amino acids

- (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

Met Ala Glu Ser Ala Gly Ala Ser Ser Phe Phe Pro Leu Val Val Leu

1 10 15

Leu Leu Ala Gly Ser Gly Gly Ser Gly Pro Arg Gly Ile Gln Ala Leu 20 25 30

Leu Cys Ala Cys Thr Ser Cys Leu Gln Thr Asn Tyr Thr Cys Glu Thr 35 40 45

Asp Gly Ala Cys Net Val Ser Ile Phe Asn Leu Asp Gly Val Glu His 50 55 60

His Val Arg Thr Cys Ile Pro Lys Val Glu Leu Val Pro Ala Gly Lys 65 70 75 80

Pro Phe Tyr Cys Leu Ser Ser Glu Asp Leu Arg Asn Thr His Cys Cys 85 90 95

Tyr Ile Asp Phe Cys Asn Lys Ile Asp Leu Arg Val Pro Ser Gly His 100 105

Leu Lys Glu Pro Ala His Pro Ser Met Trp Gly Pro Val Glu Leu Val 115 120 125

Gly Ile Iie Ala Gly Pro Val Phe Leu Leu Phe Leu Ile Ile Ile Ile 130 135 140

Val Phe Leu Val Ile Asn Tyr His Gln Arg Val Tyr His Asn Arg Gln 145 150 155 160

Arg Leu Asp Het Glu Asp Pro Ser Cys Glu Het Cys Leu Ser Lys Asp 165 170 175

Lys Thr Leu Gln Asp Leu Val Tyr Asp Leu Ser Thr Ser Gly Ser Gly 180 185 190

Ser Gly Leu Pro Leu Phe Val Gln Arg Thr Val Ala Arg Thr Ile Val 195 200 205

Leu Gln Glu Ile Ile Gly Lys Gly Arg Phe Gly Glu Val Trp Arg Gly 210 220

Arg Trp Arg Gly Gly Asp Val Ala Val Lys Ile Phe Ser Ser Arg Glu 225 235 240

Glu Arg Ser Trp Phe Arg Glu Ala Glu Ile Tyr Gln Thr Val Met Leu 245 250

Arg His Glu Asn Ile Leu Gly Phe Ile Ala Ala Asp Asn Lys Asp Asn 260 265 270

Gly Thr Trp Thr Gln Leu Trp Leu Val Ser Asp Tyr His Glu His ly 275 280 285

Ser Leu Phe Asp Tyr Leu Asn Arg Tyr Thr Val Thr Ile Glu Gly Met 290 295 300

Ile Lys Leu Ala Leu Ser Ala Ala Ser Gly Leu Ala His Leu His Met 305 310 315 320

Glu Ile Val Gly Thr Gln Gly Lys Pro Gly Ile Ala His Arg Asp Leu 325 330 335

Lys Ser Lys Asn Ile Leu Val Lys Lys Asn Gly Het Cys Ala Ile Ala 340 345

Asp Leu Gly Leu Ala Val Arg His Asp Ala Val Thr Asp Thr Ile Asp 355 360 365

Ile Ala Pro Asn Gln Arg Val Gly Thr Lys Arg Tyr Met Ala Pro Glu 370 380

Val Leu Asp Glu Thr Ile Asn Met Lys His Phe Asp Ser Phe Lys Cys 385 390 395

Ala Asp Ile Tyr Ala Leu Gly Leu Val Tyr Trp Glu Ile Ala Arg Arg 405 410 415

Cys Asn Ser Gly Gly Val His Glu Asp Tyr Gln Leu Pro Tyr Tyr Asp 420 425 430

Leu Val Pro Ser Amp Pro Ser Ile Glu Glu Met Arg Lym Val Val Cym 435 440 445

Asp Gln Lys Leu Arg Pro Asn Val Pro Asn Trp Trp Gln Ser Tyr Glu 450 455 460

Ala Leu Arg Val Het Gly Lys Het Het Arg Glu Cys Trp Tyr Ala Asn 465 470 475

Gly Ala Ala Arg Leu Thr Ala Leu Arg Ile Lys Lys Thr Leu Ser Gln 485

Leu Ser Val Gln Glu Asp Val Lys Ile 500 505

(2) INFORMATION FOR SEQ ID NO: 17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1952 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (iii) HYPOTHETICAL: NO
- (111) ANTI-SENSE: NO

(v) FRAGMENT TYPE: internal

(vi) ORIGINAL SOURCE: (A) RGANISK: Mouse

(ix) FEATURE:

(A) NAME/REY: CDS (B) LOCATION: 187..1692

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

ANGEGGEGGE AGANGTTGEE GGEGTGGTGE TEGTAGTGAG GGEGGGAGG ACCEGGACE	60												
TOGGANGEGG EGGEGGTTA ACTIEGGETG ANTENEARE ATTTEGEGGT GAGETATGAE													
AAGAGAGCAA ACAAAAAGTT AAAGGAGCAA CCCGGCCATA AGTGAAGAGA GAAGTTTATT													
GATAAC ATG CTC TTA CGA AGC TCT GGA AAA TTA AAT GTG GGC ACC AAG Het Leu Leu Arg Ser Ser Glý Lys Leu Asn Val Gly Thr Lys 1 5													
AAG GAG GAT GGA GAG AGT ACA GCC CCC ACC CCT CGG CCC AAG ATC CTA Lys Glu Asp Gly Glu Ser Thr Ala Pro Thr Pro Arg Pro Lys Ile Leu 15 20 25 30	276												
CGT TGT AAA TGC CAC CAC CAC TGT CCG GAA GAC TCA GTC AAC AAT ATC Arg Cys Lys Cys His His His Cys Pro Glu Asp Ser Val Asn Asn Ile 35 40 45	324												
TGC AGC ACA GAT GGG TAC TGC TTC ACG ATG ATA GAA GAA GAT GAC TCT Cys Ser Thr Asp Gly Tyr Cys Phe Thr Het Ile Glu Glu Asp Asp Ser 50 55 60	372												
GGA ATG CCT GTT GTC ACC TCT GGA TGT CTA GGA CTA GAA GGG TCA GAT Gly Het Pro Val Val Thr Ser Gly Cys Leu Gly Leu Glu Gly Ser Asp 65 70 75	420												
TTT CAA TGT CGT GAC ACT CCC ATT CCT CAT CAA AGA AGA TCA ATT GAA Phe Gln Cys Arg Asp Thr Pro Ile Pro His Gln Arg Arg Ser Ile Glu 80 85 90	468												
TGC TGC ACA GAA AGG AAT GAG TGT AAT AAA GAC CTC CAC CCC ACT CTG Cys Cys Thr Glu Arg Asn Glu Cys Asn Lys Asp Leu His Pro Thr Leu 95 100 105 110	516												
CCT CCT CTC AAG GAC AGA GAT TTT GTT GAT GGG CCC ATA CAC CAC AAG Pro Pro Leu Lys Asp Arg Asp Phe Val Asp Gly Pro Ile His His Lys 115 120 125	564												
GCC TTG CTT ATC TCT GTG ACT GTC TGT AGT TTA CTC TTG GTC CTC ATT Ala Leu Leu Ile Ser Val Thr Val Cys Ser Leu Leu Leu Val Leu Ile 130 135 140	612												
ATT TTA TTC TGT TAC TTC AGG TAT AAA AGA CAA GAA GCC CGA CCT CGG Ile Leu Phe Cys Tyr Phe Arg Tyr Lys Arg Gln Glu Ala Arg Pro Arg 145 150 155	660												

TAC Tyr	AGC Ser 160	Ile	Gly	Leu	GAG Glu	Gln 165	GAC Asp	GAG Glu	ACA Thr	TAC Tyr	ATT Ile 170	Pr	Pr	GGA	GAG Glu	708
TCC Ser 175	Leu	YCY YLd	GAC Asp	TTG	ATC Ile 180	Glu	CAG Gln	TCT	CAG Gln	AGC Ser 185	TCG Sor	GGA	AGT Ser	GGA	TCA Ser 190	756
GLY	CTC	CCT Pro	CTG	CTG Leu 195	GTC Val	CAA Gln	AGG Arg	ACA Thr	ATA Ile 200	GCT Ala	AAG Lys	CAA Gln	ATT Ile	CAG Gln 205	ATG Met	804
GTG Val	AAG Lys	CAG	ATT Ile 210	GGA Gly	AAA Lys	ecc ecc	CGC Arg	TAT Tyr 215	ejå eec	Glu	GTG Val	TGG Trp	ATG Met 220	GCA	AAG Lys	852
TGG	CGT Arg	GGA Gly 225	GAA Glu	AAG Lys	GTG Val	GCT Ala	GTG Val 230	AAA Lys	GTG Val	TTC Phe	TTC Phe	ACC Thr 235	ACG Thr	GAG Glu	GAA Glu	900
GCC Ala	AGC Ser 240	TCC	TTC Phe	CGA Arg	GAG Glu	ACT Thr 245	G)G G)U	ATA Ile	TAT Tyr	CAG Gln	ACG Thr 250	GTC Val	CTG Leu	ATG Met	CGG Arg	948
CAT His 255	GAG Glu	AAT Asn	ATT	CTG Leu	GGG Gly 260	TTC Phe	ATT	GCT Ala	GCA Ala	GAT Asp 265	ATC Ile	AAA Lys	GGG Gly	ACT Thr	GGG Gly 270	996
TCC Ser	TGG Trp	ACT Thr	CAG Gln	TTG Leu 275	TAC Tyr	CTC Leu	ATC Ile	ACA Thr	GAC Asp 280	TAT Tyr	CAT His	GAA Glu	AAC Asn	GGC Gly 285	TCC	1044
CTT	TAT Tyr	GAC Asp	TAT Tyr 290	CTG	AAA Lys	TCC Ser	ACC Thr	ACC Thr 295	TTA Leu	GAC Asp	GCA Ala	AAG Lys	TCC Ser 300	ATG Net	CTG Leu	1092
AAG Lys	CTA Leu	GCC Ala 305	TAC Tyr	TCC Ser	TCT	GTC Val	AGC Ser 310	Gly	CTA Leu	TGC Cys	CAT His	TTA Leu 315	CAC His	ACG Thr	GAA Glu	1140
ATC Ile	TTT Phe 320	AGC Ser	ACT Thr	CAA Gln	G1y GGC	AAG Lys 325	CCA Pro	GCA Ala	ATC Ile	gcc Ala	CAT His 330	Y rg CGX	GAC Amp	TTG Leu	AAA Lys	1188
AGT Ser 335	AAA Lys	AAC Asn	ATC Ile	CTG Leu	GTG Val 340	AAG Lys	XXX Lys	AAT Aso	GGA Gly	ACT Thr 345	TGC Cys	TGC Cys	ATA Ile	GCA Ala	GAC Asp 350	1236
CTG Leu	G17 GGC	TTG Leu	Ala	GTC Val 355	AAG Lys	TTC Phe	ATT Ile	AGT Ser	GAC Asp 360	ACA Thr	AAT Asa	G Ju GAG	GTT Val	GAC Asp 365	ATC Ile	1284
CCA Pro	CCC Pro	AAC Asn	ACC Thr 370	ccc Arg	GTT Val	GCC	ACC Thr	AAG Lys 375	&c λ rg	TAT Tyr	ATG Met	Pro	CCA Pro 380	GAA Glu	GTG Val	1332
CTG Leu	GAC Asp	GAG Glu 385	AGC Ser	TTG Leu	AAT Asn	Arg	AAC Asn 390	CAT His	TTC Phe	CAG Gln	TCC Ser	TAC Tyr 395	ATT Ile	ATG Het	GCT Ala	1380

GAC Asp	ATG Het 400	TAC Tyr	AGC Ser	Ph	GGA	CTC Leu 405	ATC	CTC	TCC	Glu Glu	ATT Ile 410	GCA Ala) Arg	AGA	Cys	1428
GTT Val 415	TCT Ser	GGA	GCT	ATA Ile	GTG Val 420	GAA Glu	GAA Glu	TAC	CAG Gln	CTT Leu 425	CCC Pro	TAT Tyr	CAC	GAC As p	CTG Leu 430	1476
GTG Val	CCC Pro	AGT Ser	GAC Asp	CCT Pro 435	TCT	TAT Tyr	GAG Glu	GAC Asp	ATG Het 440	AGA Arg	GAA Glu	ATT	CTG Val	TGC Cys 445	ATG Met	1524
AAG Lys	AAG Lys	TTA Leu	CGG Arg 450	CCT Pro	TCA Ser	TTC Phe	CCC Pro	AAT Asn 455	CGA Arg	TGG Trp	AGC Ser	AGT Ser	GAT Asp 460	G)n	TGT Cys	1572
CTC Leu	AGG Arg	CAG Gln 465	ATG Met	eg G	AAG Lys	CTT Leu	ATG Het 470	ACA Thr	GAG Glu	TGC Cys	TGG Trp	GCG Ala 475	CAG Gln	AAT Asn	CCT Pro	1620
GCC Ala	TCC Ser 480	AGG Arg	CTG Leu	ACG Thr	GCC Ala	CTG Leu 485	λGλ	GTT Val	AAG Lys	AAA Lys	ACC Thr 490	CTT Leu	GCC Ala	AAA Lys	ATG Met	1668
TCA Ser 495	GAG Glu	TCC Ser	CAG Gln	GAC Asp	ATT Ile 500	AAA Lys	CTC Leu	TGAC	XTC!	GA 7	CACTI	CTGC	SA CI	\GAG(EAAGA	1722
ATTI	CACA	GA A	GCAI	CGTI	A GC	CCAA	ccc	TGA	ACGI	TAG	CCTA	.crc	:cc	GTG	GTTCA	1782
GACI	TTC	TC C	AAGA	GAGO	A CC	GTGG	ccyc) ACA	CAGA	GGA	ACCC	AGA	NC 3	(CCC)	TTCAT	1842
CATO	CCTT	TC 1	GAGG	AGGA	G AA	ACTG	TITC	GGT	YYCI	TGT	TCAA	.GATA	TG)	TGC	TGTTG	1902
CITI	CTAA	GA A	AGCC	CIGI	A TI	TTGA	ATTA	CCA	TITI	TIT	ATAX	λλλι	λλ			1952

(2) INFORMATION FOR SEQ ID NO: 18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 502 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

Met Leu Leu Arg Ser Ser Gly Lys Leu Asn Val Gly Thr Lys Lys Glu

Asp Gly Glu Ser Thr Ala Pro Thr Pro Arg Pro Lys Ile Leu Arg Cys

Lys Cys His His His Cys Pro Glu Asp Ser Val Asn Asn Ile Cys Ser

Thr Asp Gly Tyr Cys Phe Thr Het Ile Glu Glu Asp Asp Ser Gly Het 60

Pro Val Val Thr Ser Gly Cys Leu Gly Leu Glu Gly Ser Asp Phe Gln 65 70 75 80 Cys Arg Asp Thr Pr Ile Pro His Gln Arg Arg Ser Ile Glu Cys Cys 85 90 95 Thr Glu Arg Asn Glu Cys Asn Lys Asp Leu His Pro Thr Leu Pro Pro 100 105 110 Leu Lys Asp Arg Asp Phe Val Asp Gly Pro Ile His His Lys Ala Leu 115 120 125 Leu Ile Ser Val Thr Val Cys Ser Leu Leu Leu Val Leu Ile Ile Leu 130 140 Phe Cys Tyr Phe Arg Tyr Lys Arg Gln Glu Ala Arg Pro Arg Tyr Ser 145 150 155 160 Ile Gly Leu Glu Gln Asp Glu Thr Tyr Ile Pro Pro Gly Glu Ser Leu Arg Asp Leu Ile Glu Gln Ser Gln Ser Ser Gly Ser Gly Leu Pro Leu Leu Val Gln Arg Thr Ile Ala Lys Gln Ile Gln Met Val Lys 195 200 205 Gln Ile Gly Lys Gly Arg Tyr Gly Glu Val Trp Het Gly Lys Trp Arg 210 225 220 Gly Glu Lys Val Ala Val Lys Val Phe Phe Thr Thr Glu Glu Ala Ser Trp Phe Arg Glu Thr Glu Ile Tyr Gln Thr Val Leu Het Arg His Glu 245 250 255 Asn Ile Leu Gly Phe Ile Ala Ala Asp Ile Lys Gly Thr Gly Ser Trp 260 265 270 Thr Gln Leu Tyr Leu Ile Thr Asp Tyr His Glu Asn Gly Ser Leu Tyr 275 280 285 Asp Tyr Leu Lys Ser Thr Thr Leu Asp Ala Lys Ser Met Leu Lys Leu 290 300 Ala Tyr Ser Ser Val Ser Gly Leu Cys His Leu His Thr Glu Ile Phe 305 310 315 320 Ser Thr Gln Gly Lys Pro Ala Ile Ala His Arg Asp Leu Lys Ser Lys 325 330 335 Asn Ile Leu Val Lys Lys Asn Gly Thr Cys Cys Ile Ala Asp Leu Gly 340 350 Leu Ala Val Lys Phe Ile Ser Asp Thr Asn Glu Val Asp Ile Pro Pro 355 360 365 Asn Thr Arg Val Gly Thr Lys Arg Tyr Met Pro Pro Glu Val Leu Asp 370 380

4

Glu Ser Leu Asn Arg Asn His Phe Gln Ser Tyr Ile Met Ala Asp Met 385 390 395

Tyr Ser Phe Gly Leu Ile Leu Trp Glu Ile Ala Arg Arg Cys Val Ser 405 410 415

Gly Gly Ile Val Glu Glu Tyr Gln Leu Pro Tyr His Asp Leu Val Pro 420 425 430

Ser Asp Pro Ser Tyr Glu Asp Met Arg Glu Ile Val Cys Met Lys Lys
435
440
445

Leu Arg Pro Ser Phe Pro Asn Arg Trp Ser Ser Asp Glu Cys Leu Arg 450 455 460

Gin Het Gly Lys Leu Het Thr Glu Cys Trp Ala Gin Asn Pro Ala Ser 465 470 475 480

Arg Leu Thr Ala Leu Arg Val Lys Lys Thr Leu Ala Lys Met Ser Glu 485 490 495

Ser Gln Asp Ile Lys Leu 500

- (2) INFORMATION FOR SEQ ID NO: 19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

GCGGATCCTG TTGTGAAGGN AATATGTG

- (2) INFORMATION FOR SEQ ID NO: 20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO

•	-
(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
GCGATCCGTC GCAGTCAAAA TTTT	24
(2) INFORMATION FOR SEQ ID NO: 21:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) HOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iii) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
GCGGATCCGC GATATATTAA AAGCAA	26
(2) INFORMATION FOR SEQ ID NO: 22:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) HOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iii) Anti-Sense: Yes	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
CGGAATTCTC GTGCCATATA	20
	20
(2) INFORMATION FOR SEQ ID NO: 23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	

•	ŧ	4	ſ	 NI	۲.	. 2	21	7.5	E.	N	a

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23: ATTCAAGGGC ACATCAACTT CATTTGTGTC ACTGTTG

37

- (2) INFORMATION FOR SEQ ID NO: 24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24: GCGGATCCAC CATGGCGGAG TCGGCC

26

- (2) INFORMATION FOR SEQ ID NO: 25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: CDNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25: AACACCGGGC CGGCGATGAT

- (2) INFORMATION FOR SEQ ID NO: 26:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide

- (v) FRAGMENT TYPE: internal
- (x1) SEQUENCE DESCRIPTION: SEQ ID No: 26: Gly Xaa Gly Xaa Xaa Gly
- (2) INFORMATION FOR SEQ ID NO: 27:
 - (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27: Asp Phe Lys Ser Arg Asn
- (2) INFORMATION FOR SEQ ID NO: 28:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28: Asp Leu Lys Ser Lys Asn
- (2) INFORMATION FOR SEQ ID NO: 29:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTE: 6 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:
 - Gly Thr Lys Arg Tyr Met