

community project

encouraging academics to share statistics support resources

All stcp resources are released under a Creative Commons licence

# Statistical Methods 10. Introduction to Analysis of Variance (ANOVA)

Based on materials provided by Coventry University and Loughborough University under a National HE STEM Programme Practice Transfer Adopters grant





Peter Samuels Birmingham City University

### Workshop outline

- Motivation for ANOVA
- Checking assumptions
- ☐ ANOVA using SPSS
- Multiple comparisons post hoc tests
- Participants should have previous experience of:
- Descriptive Statistics see Workshop 3
- ☐ SPSS see Workshop 7
- ☐ Two sample tests see Workshop 8



### **Example 1**

- ☐ Amount of oil used by four machines (litres/week)
- □ Recorded over 6 sampled periods
- □ Does this sample data provide evidence that oil consumption differs between the machines?
- ⇒ Create summary statistics and error bar charts
- ⇒ Describe the data



#### Oil data

Machine number gives 4 data groups (known as a **factor**)

**Note:** This example has the same number of data values for each group, but this is not necessary (as in the unpaired t-test)

| Machine         | 1  | 2  | <b>3</b> | 4  |  |  |  |  |
|-----------------|----|----|----------|----|--|--|--|--|
|                 | 72 | 91 | 93       | 66 |  |  |  |  |
|                 | 64 | 78 | 75       | 55 |  |  |  |  |
| Oil concumption | 68 | 97 | 78       | 49 |  |  |  |  |
| Oil consumption | 77 | 82 | 71       | 64 |  |  |  |  |
|                 | 56 | 85 | 63       | 70 |  |  |  |  |
|                 | 95 | 77 | 76       | 68 |  |  |  |  |



#### Oil data in SPSS

- ☐ Open the file Oil.sav
- □ Oil data is given in a single column with the Machine variable indicating the machine it refers to





### Simple statistics

- □ Analyze Compare means means
- ☐ Add Oil and Machine as shown



| Report  |         |    |                |  |  |  |  |
|---------|---------|----|----------------|--|--|--|--|
| Oil     |         |    |                |  |  |  |  |
| Machine | Mean    | N  | Std. Deviation |  |  |  |  |
| 1       | 72.0000 | 6  | 13.34166       |  |  |  |  |
| 2       | 85.0000 | 6  | 7.77174        |  |  |  |  |
| 3       | 76.0000 | 6  | 9.87927        |  |  |  |  |
| 4       | 62.0000 | 6  | 8.22192        |  |  |  |  |
| Total   | 73.7500 | 24 | 12.60521       |  |  |  |  |



### Error bar chart (Oil v. Machine)



Error bar charts are better for larger samples.

They show the means and their confidence intervals

Non-overlapping confidence intervals indicate possible significant differences



#### **Initial observations**

- ☐ There appear to be differences between the sample means, i.e. variation between groups
- But there is also variation within groups
- □ Can we conclude that there are differences between groups (population means)?
- □ We need an objective approach this is known as ANOVA



#### Introduction to ANOVA

- □ ANOVA is a multiple group extension of the two sample independent t test used to compare two groups (population means)
- ☐ ANOVA is used to compare several groups (population means)
- ☐ Called ANOVA from ANalysis Of VAriance
- □ (The name is therefore a bit confusing because it appears to be a means test, not a variance test)



#### Introduction to ANOVA

- □ Better than doing lots of two sample tests, e.g. 6 tests for 4 machines
- □ For every test, there is a probability that we reject H<sub>0</sub> when it is true
- ☐ This probability is 0.05 for testing at a significance level of 0.05
- Doing several tests increases the probability of making a wrong inference of significance (Type I error)
- E.g. for our example, the probability of a wrong inference, assuming they are all equally randomly distributed and that these events are independent is  $1 0.95^6 = 1 0.735 = 0.265$ , i.e. more than 1 in 4



### The ANOVA model

$$y_{ij} = \mu + m_i + e_{ij}$$

- $\Box$   $y_{ij}$  denotes oil consumption for the  $j^{th}$  measurement of the  $i^{th}$  machine
- $\Box$  The parameter  $m_i$  denotes how the consumption for machine i differs from the overall mean  $\mu$
- $\Box$   $e_{ij}$  denotes the error for the  $j^{th}$  measurement of the  $i^{th}$  machine
- □ The ANOVA model assumes that all these errors are normally distributed with zero mean and equal variances



### **Testing**

☐ In our example, we test the hypothesis:

$$H_0$$
:  $m_1 = m_2 = m_3 = m_4 = 0$ 

Or, more simply, that the machine means are the same

☐ Intuitively, this is done by looking at the difference between means relative to the difference between observations, i.e. is the mean to mean variation greater than you would expect by chance?



### **Assumptions**

(Similar to the two-sample unpaired t-test)

- 1. The dependent values  $y_{ij}$  are normally distributed for each i. However, if there are many groups there is a danger of a Type I error.
- 2. The errors  $e_{ij}$  for the whole data set are normally distributed. But we must estimate the sample means  $(\mu + m_i)$  first. (This theoretically follows from Assumption 1, but it is worth testing separately with small samples.)
- 3. The variances of each group are equal



## Assumption 1: Testing each group for normality

- □ Analyze Descriptive Statistics Explore
- Choose the variables as shown
- □ Select Plots... and choose Histogram and Normality plots with tests as shown





#### **Tests of Normality** Kolmogorov-Smirnova Shapiro-Wilk Statistic Statistic Sia. df Siq. df Machine .200<sup>\*</sup> Oil .187 ĥ .950ĥ .741200\* .593 167 932 200\* 3 .253933 .607 200\* 263 .888 ĥ .310

- ☐ Shapiro-Wilk test significance levels are all greater than 0.1 (look at this test first for small to medium sizes, up to one or two thousand)
- No evidence that individual machine data is not normally distributed



a. Lilliefors Significance Correction

<sup>\*.</sup> This is a lower bound of the true significance.





Peter Samuels
Birmingham City University

### Assumption 2: Testing errors for normality

- ☐ First create the residuals
- □ Select Analyze General linear model Univariate
- ☐ Add the variables as shown
- ☐ Select Save...
- ChooseUnstandardised residuals
- □ Based on estimates of m<sub>i</sub>





- □ Select Analyze
  - DescriptiveStatistics –Explore
- Add the residual variable as shown
- ☐ Keep the Plots... settings as before





| Tests of Normality |                                              |    |       |      |    |  |      |
|--------------------|----------------------------------------------|----|-------|------|----|--|------|
|                    | Kolmogorov-Smirnov <sup>a</sup> Shapiro-Wilk |    |       |      |    |  |      |
|                    | Statistic df Sig. Statistic df Sig.          |    |       |      |    |  | Sig. |
| Residual for Oil   | .094                                         | 24 | .200* | .972 | 24 |  | .721 |

a. Lilliefors Significance Correction

- □ Significance level of Shapiro-Wilk test is greater than 0.1
- No evidence that the residuals are not normally distributed
- However, a slightly higher threshold is required than usual because we have already estimated the group means  $μ + m_i$  (and thus reduced the degrees of freedom)



<sup>\*.</sup> This is a lower bound of the true significance.

The histogram is again acceptable. The sample size is now 24. A normal curve approximation has been added using the Chart Editor window.





### Assumption 3: Equal variances for Oil data

Analyze → Compare Means → One-Way ANOVA









- □ This carries out a Levene's test for homogeneity of variance
- Null hypothesis: the variances are equal

| Test of Homogeneity of Variances |          |           |              |  |  |  |  |
|----------------------------------|----------|-----------|--------------|--|--|--|--|
| Oil  Levene                      |          |           |              |  |  |  |  |
| Statistic<br>.361                | df1<br>3 | df2<br>20 | Sig.<br>.782 |  |  |  |  |

□ Significance value > 0.1 so we have no evidence to doubt assumption of equal variances



### Example 2

- □ A research project involving three different designs of a new product
- ☐ Tested by 60 people
- □ Each person was assigned to assess one product, providing in an overall performance score out of 100
- ☐ 20 people per product
- ⇒ Create summary statistics and an error bar chart
- ⇒ Describe the data
- ⇒ Test the ANOVA assumptions
- ⇒ Interpret the output



### Error bar chart (*PerformanceScore* v. *Design*)



Performance scores for *Design 3* seems to be quite different from the other two groups, especially *Design 1*.

The variance of Design 3 also seems to be smaller.

As before, these confidence intervals clearly don't overlap, indicating likely significant differences



### Check normality of each group

- □ Analyze Descriptive Statistics Explore
- Select PerformanceScore in the Dependent list and Design as the factor
- ☐ Select Normality plots with tests and Histograms under Plots...

| Tests of Normality |        |                                              |    |       |           |    |      |  |
|--------------------|--------|----------------------------------------------|----|-------|-----------|----|------|--|
|                    |        | Kolmogorov-Smirnov <sup>a</sup> Shapiro-Wilk |    |       |           |    |      |  |
|                    | Design | Statistic                                    | df | Sig.  | Statistic | df | Sig. |  |
| PerformanceScore   | 1      | .139                                         | 20 | .200* | .957      | 20 | .494 |  |
|                    | 2      | .134                                         | 20 | .200* | .948      | 20 | .344 |  |
|                    | 3      | .153                                         | 20 | .200* | .962      | 20 | .582 |  |

<sup>\*.</sup> This is a lower bound of the true significance.

No evidence that individual groups are not normally distributed



a. Lilliefors Significance Correction

Histograms are fairly acceptable, although *Design 2* appears to have a slight negative skew (although it is less than twice its standard error)







Peter Samuels
Birmingham City University

### Normality of errors check

- □ Analyze General Linear Model Univariate
- Save... Unstandardised Residuals as before
- □ Analyze Descriptive Statistics Explore
- ☐ Select Residual for PerformanceScore as the variable
- ☐ Select Plots... Normality plots with tests

| Tests of Normality                           |            |    |      |           |    |      |  |  |
|----------------------------------------------|------------|----|------|-----------|----|------|--|--|
| Kolmogorov-Smirnov <sup>a</sup> Shapiro-Wilk |            |    |      |           |    |      |  |  |
|                                              | Statistic  | df | Sig. | Statistic | df | Sia. |  |  |
| Residual for<br>PerformanceScore             | .123       | 60 | .025 | .957      | 60 | .032 |  |  |
| a Lilliafore Significance                    | Correction |    |      |           |    |      |  |  |

a. Lilliefors Significance Correction

□ Evidence that residuals are not normally distributed from Shapiro-Wilk test (p < 0.05)</p>



- ☐ Kurtosis looksa bit high itis 1.553
- ☐ Its standard error is 0.608
- ☐ So it is more than twice its standard error



### **Equality of variances check**

- □ Analyze Compare Means One-Way ANOVA
- ☐ Select Options... and Homogeneity of variance test

| Test of Homogeneity of Variances |     |     |      |  |  |  |  |
|----------------------------------|-----|-----|------|--|--|--|--|
| PerformanceScore                 |     |     |      |  |  |  |  |
| Levene<br>Statistic              | df1 | df2 | Sig. |  |  |  |  |
| 4.637                            | 2   | 57  | .014 |  |  |  |  |

☐ Significance value < 0.05 so we do have evidence to reject the assumption of equal variances



#### **Robustness of ANOVA**

☐ ANOVA is quite robust to changes in skewness but not to changes in kurtosis. Thus, it should not be used when:

$$\frac{|Kurtosis|}{Standard\ Error\ of\ Kurtosis} > 2$$

for any group.

- □ Otherwise, provided the group sizes are equal and there are at least 20 degrees of freedom, ANOVA is quite robust to violations of its assumptions
- ☐ However, the variances must still be equal

Source:

Glass, G. V., Peckham, P. D. and Sanders, J. R. (1972)
Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance, Review of Educational Research, 42(3), pp. 237-288.



### Robustness calculation for Example 2

| Group | Kurtosis |             | Kurtosis                   |
|-------|----------|-------------|----------------------------|
|       |          | of Kurtosis | Standard Error of Kurtosis |
| 1     | 0.493    | 0.992       | 0.497 < 2                  |
| 2     | 0.435    | 0.992       | 0.439 < 2                  |
| 3     | 0.115    | 0.992       | 0.116 < 2                  |

- ☐ Group sizes are equal
- □ Total degrees of freedom = 20 + 20 + 20 1 = 59 > 20
- ☐ All OK so far
- □ However, ANOVA cannot be used because the variances are not equal



### Summary of findings: ANOVA assumptions

| Example                | 1                            | 2                                              |
|------------------------|------------------------------|------------------------------------------------|
| Normality of groups    | No evidence of non-normality | No evidence of non-normality                   |
| Normality of residuals | No evidence of non-normality | Evidence of non-<br>normality                  |
| Equality of variances  | No evidence of non-equality  | Evidence of non-<br>equality                   |
| Robustness             | N/A                          | Satisfied apart from non-equality of variances |



### What if these assumptions are in doubt?

- ☐ If normality assumptions are in doubt:
  - Use a non-parametric test: Kruskal-Wallis (general) or Jonckheere-Terpstra (where the groups are in a sequence and you wish to look for a linear trend)
  - Select Analyze Nonparametic Tests Independent Samples... then select these tests on the Settings tabs after selecting Customise Tests
- ☐ If variances assumption in doubt:
  - Use the Brown-Forsythe or Welch test (the Welch test is more powerful except where there is an extreme mean with a large variance when the Brown-Forsyth is better)
  - Select ANOVA and click on Options... button and select the Brown-Forsythe and Welch options
  - Use the significance values there instead



### **Example 1**

- ☐ All 3 assumptions are OK so use normal ANOVA
- ☐ Analyze Compare Means One-Way ANOVA





### SPSS output

| ANOVA          |                   |    |             |       |      |  |  |
|----------------|-------------------|----|-------------|-------|------|--|--|
| Oil            |                   |    |             |       |      |  |  |
|                | Sum of<br>Squares | df | Mean Square | F     | Sig  |  |  |
| Between Groups | 1636.500          | 3  | 545.500     | 5.406 | .007 |  |  |
| Within Groups  | 2018.000          | 20 | 100.900     |       |      |  |  |
| Total          | 3654.500          | 23 |             |       |      |  |  |

- ☐ Significant at 0.01
- □ So there is strong evidence of differences in mean oil consumption between the four machines



## Example 2

- □ Normality cannot be assumed and groups are not ordered so use the Kruskal-Wallis test
- ☐ Select Analyze –
  Nonparametric
  tests Independent
  Samples...
- ☐ Add

  PerformanceScore

  and Design on the

  Groups tab





## Hypothesis Test Summary

|   | Null Hypothesis                                                                     | Test                                               | Sig. | Decision                    |
|---|-------------------------------------------------------------------------------------|----------------------------------------------------|------|-----------------------------|
| 1 | The distribution of<br>PerformanceScore is the same<br>across categories of Design. | Independent-<br>Samples<br>Kruskal-<br>Wallis Test | .000 | Reject the null hypothesis. |

Asymptotic significances are displayed. The significance level is .05.

- ☐ Give a p-value < 0.001
- □ Very strong evidence that there are differences between the groups



However, ANOVA was robust for Example 2 apart from the differences in variances so we can also use the Brown-Forsythe or Welch test:

| Robust Tests of Equality of Means |                        |     |        |      |  |  |
|-----------------------------------|------------------------|-----|--------|------|--|--|
| PerformanceScore                  |                        |     |        |      |  |  |
|                                   | Statistic <sup>a</sup> | df1 | df2    | Sig. |  |  |
| Welch                             | 13.278                 | 2   | 30.962 | .000 |  |  |
| Brown-Forsythe                    | 12.048                 | 2   | 40.540 | .000 |  |  |
| a. Asymptotically F distributed.  |                        |     |        |      |  |  |

- ☐ Both tests are significant at the 0.001 level
- ☐ Thus there is very strong evidence that the means are not equal



# Multiple comparisons

- What if we conclude there are differences between the groups?
- We don't know where differences are!
- We can do post-hoc tests to compare each pair of groups
- ☐ Similar to 2-sample tests but adjusted for the multiple testing issue



## Which post hoc test?

- ☐ For equal group sizes and similar variances, use **Tukey (HSD)** or, for guaranteed control over Type I errors (more conservative), use **Bonferroni**
- ☐ For slightly different group sizes, use Gabriel
- ☐ For very different group sizes, use **Hochberg's GT2**
- ☐ For unequal variances, use Games-Howell

Source: (Field, 2013: 459)



## **Example 1**

Analyze - Compare Means - One-Way ANOVA





## Multiple comparisons in SPSS





### Multiple Comparisons Dependent Variable:Oil 95% Confidence Interval Mean Difference (I-Std. Error Siq. Lower Bound Upper Bound (I) Machine (J) Machine Tukey HSD 2 -13.00000 5.79943 .146 -29.2322 3.2322 -4.00000 5.79943 .900 -20.232212.2322 26.2322 10.00000 5.79943 .338 -6.23222 1 13.00000 5.79943 .146 -3.232229.2322 9.00000 5.79943 -7.2322.427 25.2322 4 .004 6.7678 23.000000 5.79943 39.2322 3 -12.2322 20.2322 1 4.00000 5.79943 .900 2 -9.00000 5.79943 .427-25.23227.2322 14.00000 5.79943 -2.232230.2322 .1074 1 -10.00000 5.79943 .338 -26.2322 6.2322 2 -23.000000 5.79943 .004-39.2322-6.76783 5.79943 -30.2322 2.2322 -14.00000 .107Bonferroni 2 -13,00000 5.79943 .219 -29.97563.9756 3 -4.00000 5.79943 1.000 -20.975612.9756 10.00000 5.79943 .600 -6.975626.9756 2 1 -3.9756 29.9756 13.00000 5.79943 .219 -7.9756 3 9.00000 5.79943 25,9756 .818 23.000000\* 5.79943 .0056.0244 39.9756 3 1 4.00000 5.79943 1.000 -12.975620.9756 2 -9.00000 5.79943 -25.9756 7.9756 .818 14.00000 5.79943 .153 -2.975630.9756 4 1 -10.00000 5.79943 .600 -26.9756 6.9756 -6.0244 2 -23.00000° 5.79943 .005 -39.9756 -14.00000 5.79943 .153 -30.97562.9756





☐ Significance levels are higher and confidence interval bounds are smaller than for Bonferroni, as expected



<sup>\*.</sup> The mean difference is significant at the 0.05 level.

# Multiple comparisons conclusions

- □ Only significant difference is between Machines
   2 and 4
- ☐ Strong evidence (p < 0.01) with both tests that Machine 2 uses more oil than Machine 4
- □ 95% confidence interval for difference between machines is approximately 7 to 39 litres/week
- □ No evidence of differences in oil usage between other machines (because all the other confidence intervals for Tukey HSD contain 0)



## **Example 2**

□ As normality cannot be assumed, need to use nonparametric tests



Double-click on this note to open the Model Viewer dialogue box





Change the view option to Pairwise Comparisons

- ☐ The adjusted significance values are corrected using an equivalent to the Bonferroni correction for parametric ANOVA
- □ Very strong evidence of a difference between groups 1 and 3
- □ Weak evidence of a difference between groups 1 and 2

### Pairwise Comparisons of Design



Each node shows the sample average rank of Design.

| Sample<br>1-Sam | ole Test Std.<br>Statistic Error |       | Std. Test<br>Statistic | Sig. | Adj.Sig. |
|-----------------|----------------------------------|-------|------------------------|------|----------|
| 0-1             | -12.650                          | 5.523 | -2.291                 | .022 | .066     |
| 0-2             | -21.850                          | 5.523 | -3.956                 | .000 | .000     |
| 1-2             | 9.200                            | 5.523 | -1.666                 | .096 | .287     |

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.

Asymptotic significances (2-sided tests) are displayed. The significance level is .05.

However, as ANOVA was robust apart from the equality of variances assumption we can also use the Games-Howell post hoc test:

More powerful conclusions than the nonparametric tests

| Multiple Comparisons                                   |            |                              |            |   |      |                         |             |  |
|--------------------------------------------------------|------------|------------------------------|------------|---|------|-------------------------|-------------|--|
| PerformanceScore<br>Games-Howell                       |            |                              |            |   |      |                         |             |  |
|                                                        |            |                              |            |   |      | 95% Confidence Interval |             |  |
| (I) Design                                             | (J) Design | Mean<br>Difference (I-<br>J) | Std. Error | 8 | Big. | Lower Bound             | Upper Bound |  |
| 1                                                      | 2          | -9.98789 <sup>*</sup>        | 3.84079    |   | .035 | -19.3762                | 5996        |  |
|                                                        | 3          | -15.69947 <sup>*</sup>       | 3.17733    |   | .000 | -23.6566                | -7.7424     |  |
| 2                                                      | 1          | 9.98789 <sup>*</sup>         | 3.84079    |   | .035 | .5996                   | 19.3762     |  |
|                                                        | 3          | -5.71158                     | 2.56883    |   | .086 | -12.1043                | .6812       |  |
| 3                                                      | 1          | 15.69947                     | 3.17733    |   | .000 | 7.7424                  | 23.6566     |  |
|                                                        | 2          | 5.71158                      | 2.56883    |   | .086 | 6812                    | 12.1043     |  |
| * The mean difference is significant at the 0.05 level |            |                              |            |   |      |                         |             |  |

- ☐ Very strong evidence of differences between groups 1 and 3
- ☐ Evidence of differences between groups 1 and 2
- ☐ Weak evidence of differences between groups 2 and 3



Reviewer: Ellen Marshall University of Sheffield

## Recap

- We have considered:
- □ Describing multiple groups:
  - Scatter plots
  - Means and standard deviations
  - Boxplots
- ☐ Checking assumptions:
  - Normality of each group (Shapiro-Wilk and Kolmogorov Smirnov)
  - Normality of errors (creating unstandardised residuals, then as above)
  - Equality of variances (Levene's test)
  - Robustness to violations of assumptions (kurtosis, group sizes and degrees of freedom)



## Recap (2)

☐ Carrying out the ANOVA test ■ Unequal variances alternatives (Brown-Forsythe and Welch) ■ Nonparametric alternatives: Kruskal-Wallis (general) and Jonckheere-Terpstra (linear) Post hoc tests (Tukey, Bonferroni, Gabriel and Hochberg's GT2) ■ Unequal variances alternative (Games-Howell) ■ Nonparametric alternatives (Kruskal-Wallis pairwise comparisons)

