```
import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import pandas as pd
import numpy as np
import matplotlib.ticker as ticker
from sklearn import preprocessing
%matplotlib inline
```

!wget -O loan_train.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_train.csv

df = pd.read_csv('loan_train.csv')
df.head(10)

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender
0	0	0	PAIDOFF	1000	30	9/8/2016	10/7/2016	45	High School or Below	male
1	2	2	PAIDOFF	1000	30	9/8/2016	10/7/2016	33	Bechalor	female
2	3	3	PAIDOFF	1000	15	9/8/2016	9/22/2016	27	college	male
3	4	4	PAIDOFF	1000	30	9/9/2016	10/8/2016	28	college	female
4	6	6	PAIDOFF	1000	30	9/9/2016	10/8/2016	29	college	male
5	7	7	PAIDOFF	1000	30	9/9/2016	10/8/2016	36	college	male
6	8	8	PAIDOFF	1000	30	9/9/2016	10/8/2016	28	college	male
7	9	9	PAIDOFF	800	15	9/10/2016	9/24/2016	26	college	male
8	10	10	PAIDOFF	300	7	9/10/2016	9/16/2016	29	college	male

df.shape

(346, 10)

```
df['due_date'] = pd.to_datetime(df['due_date'])
df['effective_date'] = pd.to_datetime(df['effective_date'])
df.head()
```

Gender	education	age	due_date	effective_date	terms	Principal	loan_status	Unnamed: 0.1	Unnamed: 0	
male	High School or Below	45	2016-10- 07	2016-09-08	30	1000	PAIDOFF	0	0	0
female	Bechalor	33	2016-10- 07	2016-09-08	30	1000	PAIDOFF	2	2	1
male	college	27	2016-09- 22	2016-09-08	15	1000	PAIDOFF	3	3	2

df['loan_status'].value_counts()

PAIDOFF 260 COLLECTION 86

Name: loan_status, dtype: int64

```
import seaborn as sns
bins = np.linspace(df.Principal.min(), df.Principal.max(), 10)
```

```
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
g.map(plt.hist, 'Principal', bins=bins, ec="k")
g.axes[-1].legend()
plt.show()
```



```
bins = np.linspace(df.age.min(), df.age.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
g.map(plt.hist, 'age', bins=bins, ec="k")
g.axes[-1].legend()
plt.show()
```



```
df['dayofweek'] = df['effective_date'].dt.dayofweek
bins = np.linspace(df.dayofweek.min(), df.dayofweek.max(), 10)
g = sns.FacetGrid(df, col="Gender", hue="loan_status", palette="Set1", col_wrap=2)
g.map(plt.hist, 'dayofweek', bins=bins, ec="k")
g.axes[-1].legend()
plt.show()
```



```
df['weekend'] = df['dayofweek'].apply(lambda x: 1 if (x>3) else 0) df.head()
```

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	dayofweek
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	High School or Below	male	3
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Bechalor	female	3
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09-	27	college	male	3

df.groupby(['Gender'])['loan_status'].value_counts(normalize=True)

```
        Gender
        loan_status

        female
        PAIDOFF
        0.865385

        COLLECTION
        0.134615

        male
        PAIDOFF
        0.731293

        COLLECTION
        0.268707

        Name:
        loan_status, dtype:
        float64
```

dt['Gender'].replace(to_replace=['male', 'temale'], value=[0,1],inplace=!rue)
df.head()

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	dayofweek
0	0	0	PAIDOFF	1000	30	2016-09-08	2016-10- 07	45	High School or Below	0	3
1	2	2	PAIDOFF	1000	30	2016-09-08	2016-10- 07	33	Bechalor	1	3
2	3	3	PAIDOFF	1000	15	2016-09-08	2016-09-	27	college	0	3

df.groupby(['education'])['loan_status'].value_counts(normalize=True)

education loan_status 0.750000 Bechalor PAIDOFF COLLECTION 0.250000 High School or Below PAIDOFF 0.741722 COLLECTION 0.258278 Master or Above COLLECTION 0.500000 PAIDOFF 0.500000 college PAIDOFF 0.765101 COLLECTION 0.234899 Name: loan_status, dtype: float64

df[['Principal','terms','age','Gender','education']].head()

	Principal	terms	age	Gender	education	1
0	1000	30	45	0	High School or Below	
1	1000	30	33	1	Bechalor	
2	1000	15	27	0	college	
3	1000	30	28	1	college	
4	1000	30	29	0	college	

Feature = df[['Principal','terms','age','Gender','weekend']]
Feature = pd.concat([Feature,pd.get_dummies(df['education'])], axis=1)
Feature.drop(['Master or Above'], axis = 1,inplace=True)
Feature.head()

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college	1
0	1000	30	45	0	0	0	1	0	
1	1000	30	33	1	0	1	0	0	
2	1000	15	27	0	0	0	0	1	
3	1000	30	28	1	1	0	0	1	
4	1000	30	29	0	1	0	0	1	

X = Feature
X[0:5]

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college
0	1000	30	45	0	0	0	1	0
1	1000	30	33	1	0	1	0	0
2	1000	15	27	0	0	0	0	1
3	1000	30	28	1	1	0	0	1
4	1000	30	29	0	1	0	0	1

df['loan_status'].replace(to_replace=['PAIDOFF','COLLECTION'], value=[0,1],inplace=True)
df.head()

```
Unnamed: Unnamed:
                            loan_status Principal terms effective_date due_date age education Gender dayofweek
                        0.1
y = df['loan_status'].values
y[0:20]
     from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.40, random_state=5)
print ('Train set:', X_train.shape, y_train.shape)
print ('Test set:', X_test.shape, y_test.shape)
     Train set: (207, 8) (207,)
     Test set: (139, 8) (139,)
display(X_train.shape, y_train.shape)
display(X_test.shape, y_test.shape)
    (207, 8)
     (207,)
     (139, 8)
     (139,)
# (technically should be done after train test split )
X_{\text{train}} = preprocessing.StandardScaler().fit(X_{\text{train}}).transform(X_{\text{train}})
X_test = preprocessing.StandardScaler().fit(X_test).transform(X_test)
X_train[0:5]
     array([[ 0.52533066, -0.97207061, 0.53495582, -0.45109685, 0.85993942,
              2.76134025, -0.86846836, -0.91206272],
            [ 0.52533066, 0.91317564, -0.47326137, 2.21681883, 0.85993942, -0.36214298, -0.86846836, 1.09641582],
            [ 0.52533066, 0.91317564, -0.13718897, -0.45109685, 0.85993942,
              -0.36214298, 1.15145243, -0.91206272],
            [ 0.52533066, 0.91317564, -0.64129757, -0.45109685, 0.85993942,
            -0.36214298, -0.86846836, 1.09641582],
[ 0.52533066, -0.97207061, -0.47326137, 2.21681883, -1.16287262,
              -0.36214298, -0.86846836, 1.09641582]])
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
# We will be checking for value of K from 0 to 25 so
n = 25
accuracy = np.zeros(n)
for i in range(1,n+1):
    clf = KNeighborsClassifier(n_neighbors = i).fit(X_train, y_train)
    y_test_predicted = clf.predict(X_test)
    accuracy[i-1] = (accuracy_score(y_test, y_test_predicted))
accuracy
     array([0.65467626, 0.68345324, 0.6618705, 0.71223022, 0.69064748,
            0.69064748, 0.65467626, 0.70503597, 0.64028777, 0.69784173,
            0.69784173, 0.69784173, 0.69064748, 0.69784173, 0.65467626,
            0.69064748, 0.6618705, 0.67625899, 0.67625899, 0.67625899, 0.70503597, 0.70503597, 0.71942446, 0.74100719, 0.74820144])
plt.plot(range(1,n+1),accuracy,'g')
plt.ylabel('Accuracy')
plt.xlabel('Number of Neighbors (K)')
plt.show()
```

accuracy = pd.DataFrame(accuracy)
print("Maximum Accuracy Got is - ")

accuracy.sort_values(by = 0, ascending = False)[0:1]

```
0.74
              0.72
           0.70 Accuracy
clf_KNN = KNeighborsClassifier(n_neighbors = 24).fit(X_train, y_train)
# y_test_pred_KNN = clf_KNN.predict(X_test)
              0.64
from sklearn.tree import DecisionTreeClassifier
clf2 = DecisionTreeClassifier(criterion = 'gini').fit(X_train, y_train)
y_test_pred_KNN = clf.predict(X_test)
print("Accuracy using criterion as gini - ", accuracy_score(y_test, y_test_pred_KNN))
clf3 = DecisionTreeClassifier(criterion = 'entropy').fit(X_train, y_train)
y_test_pred_KNN = clf2.predict(X_test)
print("Accuracy using criterion as entropy - ", accuracy_score(y_test, y_test_pred_KNN))
         Accuracy using criterion as gini - 0.7482014388489209
         Accuracy using criterion as entropy - 0.6474820143884892
# using criterion as gini
clf_DT = DecisionTreeClassifier(criterion = 'gini').fit(X_train, y_train)
from sklearn.svm import SVC
clf4 = SVC(kernel = 'poly').fit(X_train, y_train)
print("accuracy using polynomial kernel - ", accuracy\_score(y\_test, clf2.predict(X\_test)))
clf5 = SVC(kernel = 'rbf').fit(X_train, y_train)
print("accuracy using Radial Basis function kernel - ", accuracy_score(y\_test, clf3.predict(X\_test)))
         accuracy using polynomial kernel - 0.6474820143884892
         accuracy using Radial Basis function kernel - 0.6474820143884892
# using linear for kernel in our SVM model
clf_SVM = SVC(kernel = 'poly', random_state = 4).fit(X_train, y_train)
from sklearn.linear_model import LogisticRegression
clf_LR = LogisticRegression(solver='lbfgs', warm_start = True)
clf_LR.fit(X_train, y_train)
#print("accuracy score - ", accuracy_score(y_test, clf_LR.predict(X_test)))
         LogisticRegression(warm_start=True)
!wget -0 loan_test.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test.csv
          --2023-01-22 11:32:53-- https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/loan_test
         Resolving s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)... 67.228.254.196
          \texttt{Connecting to s3-api.us-geo.objectstorage.softlayer.net (s3-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s3-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s3-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s3-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s3-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s3-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s3-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s3-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s3-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.254.196 | : 443... \\ \texttt{connecting to s4-api.us-geo.objectstorage.softlayer.net)} | 67.228.196 | : 443... \\ \texttt{connecting to s4-api.u
         HTTP request sent, awaiting response... 200 OK
         Length: 3642 (3.6K) [text/csv]
         Saving to: 'loan_test.csv'
         loan_test.csv
                                             2023-01-22 11:32:53 (358 MB/s) - 'loan_test.csv' saved [3642/3642]
        4
test_df = pd.read_csv('loan_test.csv')
test df.head()
```

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender
0	1	1	PAIDOFF	1000	30	9/8/2016	10/7/2016	50	Bechalor	female
1	5	5	PAIDOFF	300	7	9/9/2016	9/15/2016	35	Master or Above	male
2	21	21	PAIDOFF	1000	30	9/10/2016	10/9/2016	43	High School or Below	female
3	24	24	PAIDOFF	1000	30	9/10/2016	10/9/2016	26	college	male

```
# conversion to datetime object
test_df['due_date'] = pd.to_datetime(test_df['due_date'])
test_df['effective_date'] = pd.to_datetime(test_df['effective_date'])
test_df.head()
```

```
Unnamed:
                 Unnamed:
                           loan_status Principal terms effective_date
                                                                             due_date age
                                                                                                  education Gender
                                                                              2016-10-
                                              1000
                                                                2016-09-08
0
           1
                        1
                               PAIDOFF
                                                       30
                                                                                        50
                                                                                                    Bechalor female
                                                                                   07
                                                                              2016-09-
           5
                        5
                               PAIDOFF
                                               300
                                                        7
                                                                2016-09-09
                                                                                        35
                                                                                              Master or Above
                                                                                                                male
                                                                                   15
                                                                              2016-10-
                                                                                               High School or
2
          21
                       21
                               PAIDOFF
                                              1000
                                                       30
                                                                2016-09-10
                                                                                        43
                                                                                                              female
                                                                                   09
                                                                                                      Below
```

```
# creating weekend column
test_df['dayofweek'] = test_df['effective_date'].dt.dayofweek
test_df['weekend'] = test_df['dayofweek'].apply(lambda x: 1 if (x>3) else 0)
test_df.head()
```

	Unnamed:	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	dayofweek
0	1	1	PAIDOFF	1000	30	2016-09-08	2016-10- 07	50	Bechalor	female	3
1	5	5	PAIDOFF	300	7	2016-09-09	2016-09- 15	35	Master or Above	male	4
2	21	21	PAIDOFF	1000	30	2016-09-10	2016-10- 09	43	High School or Below	female	5

replacing male and female string with 0 and 1
test_df['Gender'].replace(to_replace=['male','female'], value=[0,1],inplace=True)
test_df.head()

	Unnamed: 0	Unnamed: 0.1	loan_status	Principal	terms	effective_date	due_date	age	education	Gender	dayofweek
0	1	1	PAIDOFF	1000	30	2016-09-08	2016-10- 07	50	Bechalor	1	3
1	5	5	PAIDOFF	300	7	2016-09-09	2016-09- 15	35	Master or Above	0	4
2	21	21	PAIDOFF	1000	30	2016-09-10	2016-10- 09	43	High School or	1	5

creaing dummies and dropping one column

```
X_t = test_df[['Principal','terms','age','Gender','weekend']]
X_t = pd.concat([X_t,pd.get_dummies(test_df['education'])], axis=1)
X_t.drop(['Master or Above'], axis = 1,inplace=True)
```

X_t.head()

	Principal	terms	age	Gender	weekend	Bechalor	High School or Below	college	1
0	1000	30	50	1	0	1	0	0	
1	300	7	35	0	1	0	0	0	
2	1000	30	43	1	1	0	1	0	
3	1000	30	26	0	1	0	0	1	
4	800	15	29	0	1	1	0	0	

```
# Feature Scaling
X_t = preprocessing.StandardScaler().fit(X_t).transform(X_t)
X t[0:5]
```

```
array([[ 0.49362588,  0.92844966,  3.05981865,  1.97714211,  -1.30384048,  2.39791576,  -0.79772404,  -0.86135677],  [-3.56269116,  -1.70427745,  0.53336288,  -0.50578054,  0.76696499,  -0.41702883,  -0.79772404,  -0.86135677],  [ 0.49362588,  0.92844966,  1.88080596,  1.97714211,  0.76696499,  -0.41702883,  1.25356634,  -0.86135677],  [ 0.49362588,  0.92844966,  -0.98251057,  -0.50578054,  0.76696499,  -0.41702883,  -0.79772404,  1.16095912],  [ -0.66532184,  -0.78854628,  -0.47721942,  -0.50578054,  0.76696499,  2.39791576,  -0.79772404,  -0.86135677]])
```

Colab paid products - Cancel contracts here

✓ 0s completed at 5:07 PM