Segundo Examen (Solución)

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Ej. 1 (2.5 pts) Demuestra que la relación $R \subseteq A \times A$ es transitiva y simétrica si y sólo si $R^{-1} \circ R = R$.

Demostración. (\Rightarrow) Supongamos que $R \subseteq A \times A$ es transitiva y simétrica, veamos $R^{-1} \circ R = R$.

(⊆) Sea $(x, y) \in R^{-1} \circ R$, entonces existe $z \in A$ de modo que $(x, z) \in R$ y $(z, y) \in R^{-1}$. Por definición de relación iniversa, $(y, z) \in R$ y por ser R simétrica, $(z, x) \in R$. Luego $(y, z), (z, x) \in R$ y R es transitiva, por lo que $(y, x) \in R$, pero como R es simétrica, $(x, y) \in R$. Esto prueba que $R^{-1} \circ R \subseteq R$.

(⊇) Sea $(a, b) \in R$, como R es simetrica, $(b, a) \in R$ y por ello $(a, b) \in R^{-1}$. Por otro lado, como $(a, b), (b, a) \in R$ y R es transitiva, entonces $(a, a) \in R$. Así, si c = a, entonces $(a, c) \in R$ y $(c, b) \in R^{-1}$; lo cual demuestra que $(a, b) \in R^{-1} \circ R$. Por lo tanto $R \subseteq R^{-1} \circ R$, y con ello:

$$R = R^{-1} \circ R$$

 (\Leftrightarrow) Supongamos que $R = R^{-1} \circ R$, veamos que R es simiétrica y transitiva.

(Simetría) Sean $x, y \in A$ y supongamos que $(x, y) \in R$, entonces se sigue de la hipótesis que $(x, y) \in R^{-1} \circ R$ y así, existe $z \in A$ de modo que $(x, z) \in R$ y $(z, y) \in R^{-1}$. Por definición de relación inversa, $(y, z) \in R$ y $(z, x) \in R^{-1}$, de donde $(y, x) \in R^{-1} \circ R$, lo cual implica por hipótesis que $(y, x) \in R$. Por lo que R es simétrica.

(Transitividad) Sean $a,b,c \in A$ y supongamos que $(a,b) \in R$ y $(b,c) \in R$. Como R es simétrica (probado en el párrafo de arriba), de lo último se obtiene que $(c,b) \in R$ y con ello $(b,c) \in R^{-1}$. Luego, $(a,b) \in R$ y $(b,c) \in R^{-1}$, así que $(a,c) \in R^{-1} \circ R$, de donde $(a,c) \in R$. Por lo tanto, R es simétrica.

- **Ej. 2 (2.5 pts)** Sea $f: A \to B$ una función. Demuestra que $A = \bigcup_{b \in B} f^{-1}[\{b\}]$.
- **Ej. 3 (2.5 pts)** Sean $f: A \to B$ una función y $S \subseteq A$. Demuestra que si f es inyectiva, entonces $f^{-1}[f[S]] = S$.
- **Ej. 4 (2.5 pts)** Sean $f: A \to B y g, h: B \to A$ funciones. Demuestra que si g es inversa izquierda de f y h es inversa derecha de f, entonces g = h.
- **Ej. 5 (+1 pt)** Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución. Sean X un conjunto y $g: \emptyset \to X$. Pruebe que las siguientes condiciones son equivalentes:
 - i) g es biyectiva.
 - ii) g es sobreyectiva.
 - iii) $X = \emptyset$.