Course: Cryptography and Network Security Code: CS-34310 Branch: M.C.A - 4th Semester

Lecture – 14 : DIGITAL SIGNATURE SCHEMES

Faculty & Coordinator : Dr. J Sathish Kumar (JSK)

Department of Computer Science and Engineering

Motilal Nehru National Institute of Technology Allahabad,

Prayagraj-211004

RSA Digital Signature Scheme

M: Message

(e, n): Alices p ublic key

S: Signature

d: Alice's private key

RSA Digital Signature Scheme

$$M' \equiv M \pmod{n} \rightarrow S^e \equiv M \pmod{n} \rightarrow M^{d \times e} \equiv M \pmod{n}$$

RSA Digital Signature Scheme

- For the security of the signature, the value of p and q must be very large.
- As a trivial example, suppose that Alice chooses p = 823 and q = 953, and calculates n = 784319.
- The value of $\phi(n)$ is 782544. Now she chooses e = 313 and calculates d = 160009.
- At this point key generation is complete. Now imagine that Alice wants to send a message with the value of M = 19070 to Bob.
- She uses her private exponent, 160009, to sign the message

M:
$$19070 \rightarrow S = (19070^{160009}) \mod 784319 = 210625 \mod 784319$$

Alice sends the message and the signature to Bob. Bob receives the message and the signature.
 He calculates

$$M' = 210625^{313} \mod 784319 = 19070 \mod 784319$$
 \rightarrow $M \equiv M' \mod n$

• Bob accepts the message because he has verified Alice's signature.

S₁, S₂: Signatures

M: Message

 (e_1, e_2, p) : Alice's public key

d: Alice's private key

r: Random secret

M: Message r: Random secret

 S_1 , S_2 : Signatures d: Alice's private key

 V_1, V_2 : Verifications (e_1, e_2, p) : Alice's public key

$$V_1 \equiv V_2 \pmod{p} \to e_1^{M} \equiv e_2^{S_1} \times S_1^{S_2} \pmod{p} \equiv (e_1^d)^{S_1} (e_1^r)^{S_2} \pmod{p} \equiv e_1^{d S_1 + r S_2} \pmod{p}$$
We get: $e_1^{M} \equiv e_1^{d S_1 + r S_2} \pmod{p}$

• Here is a trivial example. Alice chooses p = 3119, e1 = 2, d = 127 and calculates $e2 = 2^{127} \mod 3119 = 1702$. She also chooses r to be 307. She announces e1, e2, and p publicly; she keeps d secret. The following shows how Alice can sign a message.

M = 320

$$S_1 = e_1^r = 2^{307} = 2083 \mod 3119$$

$$S_2 = (M - d \times S_1) \times r^{-1} = (320 - 127 \times 2083) \times 307^{-1} = 2105 \mod 3118$$

Alice sends M, S_1 , and S_2 to Bob. Bob uses the public key to calculate V_1 and V_2 .

$$V_1 = e_1^{M} = 2^{320} = 3006 \text{ mod } 3119$$

 $V_2 = d^{S_1} \times S_1^{S_2} = 1702^{2083} \times 2083^{2105} = 3006 \text{ mod } 3119$

Because V₁ and V₂ are congruent, Bob accepts the message and he assumes that the message has been signed by Alice because no one else has Alice's private key, d.

Now imagine that Alice wants to send another message, M = 3000, to Ted. She chooses a new r, 107. Alice sends M, S_1 , and S_2 to Ted. Ted uses the public keys to calculate V_1 and V_2 .

M = 3000

$$S_1 = e_1^r = 2^{107} = 2732 \mod 3119$$

 $S_2 = (M - d \times S_1) r^{-1} = (3000 - 127 \times 2083) \times 107^{-1} = 2526 \mod 3118$

$$V_1 = e_1^{M} = 2^{3000} = 704 \mod 3119$$

 $V_2 = d^{S_1} \times S_1^{S} = 1702^{2732} \times 2083^{2526} = 704 \mod 3119$

Because V_1 and V_2 are congruent, Ted accepts the message; he assumes that the message has been signed by Alice because no one else has Alice's private key, d. Note that any person can receive the message. The goal is not to hide the message, but to prove that it is sent by Alice.

Elliptic Curve Digital Signature Scheme

 S_1 , S_2 : Signatures S_1 , S_2 : Signatures S_2 : Alice's private key S_3 : M: Message S_4 : Random secret S_4 : Random secret S_4 : Alice's public key

Elliptic Curve Digital Signature Scheme

Schnorr Digital Signature Scheme

 S_1 , S_2 : Signatures (d): Alice's private key M: Message r: Random secret (e_1, e_2, p, q) : Alice's public key

Schnorr Digital Signature Scheme

M: Message r: Random secret : Concatenation (d): Alices private key h(...): Hash algorithm S₁, S₂: Signatures V: Verification (e_1, e_2, p, q) : Alice's public key Alice Bob $\mathbf{\hat{I}}(d)$ $\P(e_1, e_2, p, q)$ (signer) (verifier) M M true $M \mid e_1^r \mod p \mid h(...)$ $S_1 \equiv V$ Accept $M \mid e_1^{S_2} e_2^{-S_1} \mod p$ $r + dS_1 \mod q$ Signing Verifying

Digital Signature Standard (DSS)

S₁, S₂: Signatures

d: Alice's private key

M: Message

r: Random secret

 (e_1, e_2, p, q) : Alice's public key

Digital Signature Standard (DSS)

M: Message r: Random secret h(M): Message digest

 S_1 , S_2 : Signatures d: Alices private key

V: Verification (e_1, e_2, p, q) : Alice's public key

Tutorial

• Explore the security attacks on schemes