

Taller, Calculando límites algebraicamente Cálculo 11°

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

Nombre:	Curso: Fecha:
Propiedades de los límite	S
Para resolver límites algebraicamente	es necesario y útil aplicar sus propiedades:
1. $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} f(x)$	g(x) Límite de una suma
2. $\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} f(x)$	g(x) Límite de una diferencia
3. $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$	Límite de una constante por una función
4. $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$	Límite del producto
5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{si} \lim_{x \to a} f(x)$	$g(x) \neq 0$ Límite de un cociente
	resolver un límite de una función polinómica o ades, también tenemos las siguientes propiedades otenciación y la radicación:
$6. \lim_{x \to a} c = c$	
$7. \lim_{x \to a} x = a$	

Para n entero positivo y a > 0

8. $\displaystyle \lim_{x \to a} x^n = a^n$ Para n entero positivo

 $9. \lim_{x \to a} \sqrt[n]{x} = \sqrt[n]{a}$

Ejemplos: Resolver los límites siguientes:

1.
$$\lim_{x \to 5} (2x^2 - 3x + 4)$$

$$2. \lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

Solución:

Taller

1. Suponga que:

$$\lim_{x \to a} f(x) = -3 \qquad \lim_{x \to a} g(x) = 0 \qquad \qquad \lim_{x \to a} h(x) = 8$$

Encuentre los valores de los límites. Si el límite no existe, explique por qué

$$a) \lim_{x \to a} [f(x) + g(x)]$$

$$d) \lim_{x \to a} \frac{f(x)}{h(x)}$$

$$g) \lim_{x \to a} \frac{f(x)}{g(x)}$$

$$b) \lim_{x \to a} [f(x)]^2$$

$$e) \lim_{x \to a} \frac{1}{f(x)}$$

$$h) \lim_{x \to a} \frac{2f(x)}{h(x) - f(x)}$$

$$c) \lim_{x \to a} \sqrt[3]{h(x)}$$

$$f$$
) $\lim_{x \to a} \frac{g(x)}{f(x)}$

2. Observe las gráficas de f y g. Úselas para evaluar cada límite si existe. Si no existe, explique por qué.

a)
$$\lim_{x \to 2} [f(x) + g(x)]$$

$$d) \lim_{x \to -1} \frac{f(x)}{g(x)}$$

$$b) \lim_{x \to 1} [f(x) + g(x)]$$

$$e) \lim_{x \to 2} x^3 f(x)$$

c)
$$\lim_{x\to 0} [f(x)g(x)]$$

$$f$$
) $\lim_{x\to 1} \sqrt{3+f(x)}$

Evalúe el límite justificando cada paso con el uso de las propiedades.

3.
$$\lim_{x \to 4} (5x^2 - 2x + 3)$$

4.
$$\lim_{x \to 3} (x^3 + 2)(x^2 - 5x)$$

5.
$$\lim_{x \to -1} \frac{x-2}{x^2 + 4x - 3}$$

6.
$$\lim_{x\to 1} \left(\frac{x^4+x^2-6}{x^4+2x+3}\right)^2$$

7.
$$\lim_{t \to -2} (t+1)^9 (t^2-1)$$

8.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6}$$

Evalúe cada límite si existe

9.
$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x} - 4$$

10.
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$

11.
$$\lim_{h \to 0} \frac{\sqrt{1+h} - 1}{h}$$

12.
$$\lim_{x \to 2} \frac{x^4 - 16}{x - 2}$$

13.
$$\lim_{h \to 0} \frac{(3+h)^{-1} - 3^{-1}}{h}$$

14.
$$\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t} \right)$$