Analysis Algorithm

[Example] Sum from i to j

§ 3 Compare the Algorithms [Example] Given (possibly negative) integers $A_1, A_2, ...,$ A_N , find the maximum value of $\sum_{k=1}^{J} A_k$. Algorithm 1 int MaxSubsequenceSum (const int A[], int N) { int ThisSum, MaxSum, i, j, k; /* 1*/ MaxSum = 0; /* initialize the maximum sum */ **/* 2*/** for(i = 0; i < N; i++) /* start from A[i] */ **/* 3*/** for(j = i; j < N; j++) { /* end at A[j] */ ThisSum = 0; **|* 4*|** /* 5*/ for(k = i; $k \le j$; k++) ThisSum += A[k]; /* sum from A[i] to A[j] */ **/* 6*/ |* 7*|** if (ThisSum > MaxSum) MaxSum = ThisSum; /* update max sum */ **/*8*/** } /* end for-j and for-i */ /* 9*/ return MaxSum; $T(N) = O(N^3)$

• 记忆前项和

Algorithm 2

```
int MaxSubsequenceSum (const int A[], int N)
{
        int ThisSum, MaxSum, i, j;
/* 1*/
        MaxSum = 0; /* initialize the maximum sum */
        for( i = 0; i < N; i++ ) { /* start from A[ i ] */
/* 2*/
            ThisSum = 0;
/* 3*/
            for(j = i; j < N; j++) { /* end at A[j] */
|* 4*|
                 ThisSum += A[j]; /* sum from A[i] to A[j] */
/* 5*/
/* 6*/
                 if ( ThisSum > MaxSum )
                     MaxSum = ThisSum; /* update max sum */
/* 7*/
            } /* end for-j */
        } /* end for-i */
/* 8*/
        return MaxSum;
}
```

• Divide and Conquer (分治法)

如何解T(N): 直接带入

• Online Algorithm

Algorithm 4 **On-line Algorithm** int MaxSubsequenceSum(const int A[], int N) { int ThisSum, MaxSum, j; ThisSum = MaxSum = 0; /* 1*/ -1 3 -24 -6 -1for (j = 0; j < N; j++) { **/* 2*/** ThisSum += A[j]; **/* 3*/** if (ThisSum > MaxSum) **|* 4*|** MaxSum = ThisSum; **/* 5*/** else if (ThisSum < 0) **/* 6*/** ThisSum = 0; **/* 7*/** } /* end for-j */ /* 8*/ return MaxSum; } T(N) = O(N)A[] is scanned once only.

负值不可能产生更大的和,因此置零重新计算

意义:

- 1. 快
- 2. 空间复杂度低
- 3. 随时停止即为当前最佳结果

[Example] Binary search

```
int BinarySearch ( const ElementType A[],
                         ElementType X, int N)
{
       int Low, Mid, High;
/* 1*/
       Low = 0; High = N - 1;
/* 2*/ while ( Low <= High ) {
/* 3*/
           Mid = (Low + High)/2;
           if(A[Mid] < X)
/* 4*/
/* 5*/
               Low = Mid + 1;
           else
/* 6*/
               if(A[Mid] > X)
/* 7*/
                   High = Mid - 1;
               else
/* 8*/
                   return Mid; /* Found */
       } /* end while */
       return NotFound; /* NotFound is defined as -1 */
/* 9*/
}
```

Home work: Self-study Euclid's Algorithm and Exponentiation

辗转相除法

指数算法 (分治+递归)

Check your Analysis

§ 5 Checking Your Analysis

When T(N) = O(N), check if $T(2N)/T(N) \approx 2$

When $T(N) = O(N^2)$, check if $T(2N)/T(N) \approx 4$

When $T(N) = O(N^3)$, check if $T(2N)/T(N) \approx 8$

... ...

When T(N) = O(f(N)), check if

$$\lim_{N\to\infty}\frac{T(N)}{f(N)}\approx \text{Constant}$$

Read the example given on p.28 (Figures 2.12 & 2.13).