Alphabetic List of Existential Paths

Standard Dictionary for Path Semantics

by Sven Nilsen, 2017

Binary Operators

Α

D

```
\exists div <=> (\neg= 0)
\exists div(k) <=> (\neg= 0)
```

Ε

```
\exists eq <=> true_1
\exists eq(k) <=> \exists(= k) <=> true_1
```

F

 $\exists false_1 <=> not$

G

```
\exists ge <=> true_1

\exists ge(k) <=> \exists (<= k) <=> true_1

\exists gt <=> true_1

\exists gt(k) <=> \exists (< k) <=> if k == 0 { id } else { true_1 }
```


 $\exists id <=> true_1$

L

```
\exists le <=> true_1

\exists le(k) <=> \exists (>= k) <=> if k == 0 { id } else { true_1 }

\exists len <=> true_1

\exists lt <=> true_1

\exists lt(k) <=> \exists (> k) <=> true_1
```

M

```
\begin{array}{l} \exists mul_{\mathbb{N}} <=> true_1 \\ \exists mul_{\mathbb{N}}(k) <=> \exists (\cdot \ k) <=> \setminus (x) = (x == 0) \parallel (x \% \ k) == 0 \\ \exists \exists mul_{\mathbb{N}}(k) <=> \exists \exists (\cdot \ k) <=> if \ k == 0 \ \{ \ true_1 \} \ else \ if \ k == 1 \ \{ \ id \ \} \ else \ \{ \ true_1 \} \end{array}
```

N

∃neg <=> true₁ ∃not <=> true₁

0

 \exists or <=> true₁

R

 \exists random <=> probl

S

 \exists sequence(0, 2) <=> even \exists sequence(1, 2) <=> odd \exists sequence(a, b) <=> linear(a, b) \exists sub_N <=> true₁ \exists sym <=> true₁

T

 $\exists true_1 <=> id$

U

 $\exists unit <=> true_1$

X

 $\exists xor <=> true_1$