Data-driven Gene Regulatory Network Inference based on Classification Algorithms

Sergio Peignier^a, Pauline Schmitt, Federica Calevro

INSA Lyon, INRA BF2I, UMR0203, F-69621 Lyon, France

^a sergio.peignier@insa-lyon.fr

Gene Regulatory Networks (GRNs)

Central Dogma of Molecular Biology

Gene $\xrightarrow{\text{Transcription}} mRNA \xrightarrow{\text{Translation}} Protein$

Definition

Set of **interacting molecular regulators** (e.g. transcription factors) **controlling** the **creation** of **gene products** (e.g. mRNA, proteins).

- Wide range of mechanisms:
 (e.g., epigenetic, transcriptional ...)
- · Important biological role:
- Adaptation Differentiation
- Versatility Morphogenesis ...

Data-driven GRN Inference

General principle

- · Based on high-throughput gene expression data.
- · Score possible links between:
 - · Regulators, i.e. Transcription Factors (TFs)
 - · Target Genes (TGs)
- · Select most promising links.

Well-known paradigm: Simple, accurate, computationally efficient

Data-driven Inference Families

Correlation | Mutual Information

Regression Methods

Classification-based GRN Inference

Target gene expression discretization

- K-means \rightarrow Discretize TG exp.
- \cdot Cluster membership o Class

- Avg. SSE between gene exp. and cluster centers for different values of *K*.
- Elbow for k = 5 clusters.

Classification Algorithms

Ensemble of decision trees1

- Random Forest (RF)
- Extremely Randomized Trees (XRT)
- · AdaBoost (AB)
- Gradient Boosting (GB)

Support Vector Machine (SVM)¹

• One-vs-All linear multi-class SVM

¹Implementations from **scikit-learn** (Python 3.7)

Feature Importance | Decision Tree based

Impurity gain (e.g., GINI, Entropy) for the i-th split along feature X_{tf_d}

Feature Importance | Decision Tree based

Importance of **feature** X_{tf_d} for tree t

Feature Importance | Decision Tree based

Importance of feature X_{tf_d} for a forest, i.e., set of trees

Feature Importance | One-vs-all linear SVM

 $\gamma_c^{tf_d}$: Importance of feature X_{tf_d} for class c linear SVM \to Norm of the separating hyperplane orthogonal vector

Feature Importance | One-vs-all linear SVM

Importance of feature X_{tf_d} for a set C of one-vs-all linear SVM

Evaluation Setup

- Evaluation protocol designed by [Marbach et al. 2012]
- · Standard evaluation measures: AUROC and AUPR
- Impact of 7 pre-processing techniques.
- DREAM5 Benchmark datasets

Dataset	# condit.	TGs	TFs
In Silico	805	1,643	195
S. aureus	160	2,810	99
E. coli	805	4,511	334
S. cerevisiae	536	5,950	333

· Comparison w.r.t. 36 methods

Paradigm	# Methods	
Community	1	
MI	5	
Meta	5	
Regression	8	
Correlation	3	
Bayesian	6	
Others	8	

Results: Comparison with other Paradigms

Paradigm	Avg. AUROC	Avg. AUPR
Classification	0.67	0.18
Community	0.64	0.13
Others	0.58	0.06
MI	0.60	0.09
Meta	0.60	0.09
Regression	0.59	0.09
Correlation	0.59	0.08
Bayesian	0.56	0.05

- Best AUROC and AUPR on avg.
- Surpass community results
- · Good results for all datasets

Results: Classification Methods Comparison

- · No ever-winning method.
- · Analogous phenomenon reported in [Marbach et al. 2012]

Conclusion

Summary

- · Classification methods outperform other families on avg.
- Interesting complementary tool for the community

Implementation

- GReNaDIne Python package:
 Gene Regulatory Network Data-driven Inference
- GitLab repository:
 gitlab.com/bf2i/grenadine
- Documentation:
 grenadine.readthedocs.io

pip install GReNaDIne