GIẢN ĐỔ LATIMER

Số oxh +2 +1 0
$$Cu^{2+} \longrightarrow Cu^{+} \longrightarrow Cu$$

$$\phi^{0} \left(\frac{Cu^{2+}}{Cu^{+}} \right) = 0,159V \qquad \phi^{0} \left(\frac{Cu^{+}}{Cu} \right) = 0,520V$$

Trong giản đồ Latimer:

- Số OXH của nguyên tố giảm dần từ trái sang phải.
- Trong 1 cặp OXHK liên hợp: dạng nằm bên trái mũi tên là dạng OXH (số OXH lớn hơn), dạng nằm bên phải mũi tên là dạng KHỦ liên hợp (số OXH nhỏ hơn).

↓TÍNH THỂ KHỬ CHUẨN CỦA CÁC CẶP OXH-KHỬ KHÔNG GẦN NHAU.

 $\rightarrow \phi^0(A/D) = (n_1\phi^0(A/B) + n_2\phi^0(B/C) + n_3\phi^0(C/D)) / (n_1 + n_2 + n_3)$

Bên phải

♣ DỰ ĐOÁN TRẠNG THÁI OXY HÓA BỀN CỦA NGUYÊN TỐ.

Bên trái

Xét hai nửa phản ứng cạnh nhau trong giản đồ latimer:

- ✓ Nếu thế khử bên phải mũi tên nhỏ hơn thế khử bên trái mũi tên: ϕ^0 (A/B) $> \phi^0$ (B/C)
 - \rightarrow Dạng oxh **A** (tính oxh mạnh hơn **B**) sẽ tác dụng với dạng khử **C**(tính khử mạnh hơn **B**)
 - \rightarrow Ta gọi là sự hợp phân (nhị hợp): $\mathbf{A} + \mathbf{C} \rightarrow \mathbf{B} + \mathbf{B}$ (B bền; A và C kém bền)

✓ Nếu thế khử bên phải mũi tên lớn hơn thế khử bên trái mũi tên: ϕ^0 (A/B) < ϕ^0 (B/C)

- \rightarrow Dạng oxh B (tính oxh mạnh hơn A) sẽ tác dụng với dạng khử B(tính khử mạnh hơn C)
- \rightarrow Ta gọi là sự dị phân : $B + B \rightarrow A + C$ (B kém bền; A và C bền hơn)

Ví dụ:
$$Cu^{2+} \rightarrow Cu^{+} \rightarrow Cu$$

$$\phi^{0} (\mathbf{Cu^{2+}}/\mathbf{Cu^{+}}) = 0,159V < \phi^{0} (\mathbf{Cu^{+}}/\mathbf{Cu}) = 0,520V \rightarrow Cu^{+} \text{ không bền, bị dị phân.}$$

$$\mathbf{Cu^{+}} + \mathbf{Cu^{+}} \rightarrow \mathbf{Cu^{2+}} + \mathbf{Cu}$$

Câu 9.1. Chọn phát biểu đúng.

- 1. Thế khử chuẩn ϕ^0 (H_2O_2 / H_2O) = 1,76V.
- 2. H₂O₂ không bền bị dị phân thành H₂O và O₂.
- 3. O_2 và H_2O hợp phân để tạo H_2O_2 .
- A. Chỉ 1,2
- B. Chỉ 3
- C. Tất cả
- D. Chỉ 2

Câu 9.2. Chọn nhận xét đúng.

Cho nguyên tố Ganvanic gồm điện cực (1) tiêu chuẩn: $\text{Cl}_2 \mid \text{Cl}^-$ ($P_{\text{Cl}_2} = 1 \text{atm}$, dd NaCl 1M) và điện cực (2): $\text{Cl}_2 \mid \text{Cl}^-$ ($P_{Cl_2} = 1 \text{atm}$, dd NaCl 1M). Ở nhiệt độ nhất định nguyên tố này có:

- a) Suất điện động giảm khi pha loãng dung dịch ở điện cực (1).
- b) Điện cực (1) là catod.
- c) Ở mạch ngoài electron chuyển từ điện cực (2) sang điện cực (1).
- d) Suất điện động của pin ở 25°C là 0.1V

Cl₂(k) + 2e = 2Cl⁻(aq);
$$\dot{\sigma}$$
 25°C $\phi = \phi^0 + \frac{0,059}{2} lg \frac{P_{Cl_2}}{[cl^-]^2} = \phi^0 - 0,059 lg[Cl^-]$

 $\rightarrow \phi_2 > \phi_1$: điện cực 1 là cực âm, điện cực 2 là cực dương.

(1) (-) Pt
$$| Cl_2(p = 1atm) | Cl^2(dd) 1M | Cl^2(dd) 0,1M | (p = 1atm) Cl_2 | Pt (+) (2)$$

ANOD 2Cl²(aq) -2e = Cl₂(k); Cl₂(k) + 2e = 2Cl²(aq) CATOD

Suất điện động của pin khi pha loãng dd ở đc 1: E $\downarrow = \phi_{^+}\,$ - $\phi_{^-} = \,\phi_2\,$ - $\,\phi_1 \!\uparrow$

Suất điện động của pin ở
$$25^{\circ}$$
C: $E = 0.0591$ g $\frac{[cl^{-}]_{(-)}}{[cl^{-}]_{(+)}} = 0.059lg\frac{1}{0.1} = 0.059V$

Câu 9.3. Chọn phương án **đúng**. Cho pin nồng độ ở 25°C:

- (1) $Ag \mid Ag^{+}(dd) \ 0.001M \parallel Ag^{+}(dd) \ 0.100M \mid Ag \ (2)$
- 1) Điện cực (1) là anod.
- 2) Điện cực (2) là catod.
- 3) Ở mạch ngoài electron di chuyển từ điện cực (2) qua (1)

- 4) Tại điện cực (1) xuất hiện kết tủa Ag.
- 5) Tại điện cực (2) Ag bị tan ra.
- 6) Sức điện động của pin ở 25° C là 0.059V
- 7) Khi pin ngừng hoạt động khi nồng độ Ag⁺ trong dung dịch ở hai điện cực 1à 0.0505M
- **a**) 3,4,5
- **b**) 1,2,6
- **c)** 4,6,7 **d)** 1,2,7

e
$$\phi_1 < \phi_2$$

ANOD (1) (-)Ag | Ag⁺(dd) 0.001M || Ag⁺(dd) 0.100M | Ag (+) (2) CATOD

Ag₍₋₎ - e \rightarrow Ag⁺₍₋₎(dd) \rightarrow Ag⁺₍₊₎(dd) + \rightarrow Ag₍₊₎

Suất điện động của pin ở 25° C là: $E = 0.059.lg \frac{0.100}{0.001} = 0.118 \text{ V}$

Khi pin ngừng hoạt động
$$E = 0 \text{ V}$$
 : $[Ag]_{cb} = \frac{0,100+0,001}{2} = 0,0505 \text{ M}$

Câu 9.4. Tính hằng số cân bằng K của phản ứng sau ở 25°C:

$$\begin{array}{l} 3~Au^{_{}^{+}}~(dd)~\rightleftarrows~Au^{_{}^{3+}}~(dd)~+~2~Au~(r).~Cho~bi\acute{e}t~\mathring{\sigma}~25^{o}C:~\phi^{o}_{_{(Au^{^{3+}}/Au^{^{+}})}}=1,\!\!4V~;\\ \phi^{o}_{_{(Au^{^{+}}/Au)}}=1,\!\!7V~;~F=96500~C/mol;~R=8.314~J/mol.K \end{array}$$

- **a)** 4.5×10^9 **b)** 2.5×10^9 **c)** 1.41×10^{10} **d)** 3.1×10^{12}

$$2Au^{+}$$
 (dd) + Au^{+} (dd) $\rightleftharpoons Au^{3+}$ (dd) + $2Au$ (r); n = 2 mol
Hằng số cân bằng ở 25^{0} C: $1gK = \frac{nE^{0}}{0,059}$; $E^{0} = 1,7 - 1,4 = 0,3$ [V]

Câu 9.5.

Trước đây, người ta không không rõ ion thủy ngân (I) tồn tại trong dung dịch dưới dạng Hg_nⁿ⁺ với giá trị n bằng bao nhiều. Để xác định n, có thể lập một pin như sau ở 25°C.

Pt, $Hg(\ell)|$ dd A|| dd B| $Hg(\ell)$, Pt

1 lit dung dịch A chứa 0.263g Hg(I) nitrat và 1 lit dung dịch B chứa 2.630g Hg(I) nitrat. Sức điện động đo được là 0.0289 V. Hãy xác định giá trị của n.

- **a)** n = 3
- **b**) n = 4 **c**) n = 1
- **d**) n = 2

$$Hg_n^{n+}(dd) + ne = nHg(long)$$

$$\mathring{O} 25^{0}C, \varphi = \varphi^{0} + \frac{0,059}{n} \lg \left[Hg_{n}^{n+} \right] \rightarrow E = \frac{0,059}{n} \lg \left[\frac{[Hg_{n}^{n+}]_{+}}{[Hg_{n}^{n+}]_{-}} \right] = \frac{0,059}{n} \lg \frac{m_{B}}{m_{A}} = 0,0289 \text{ V}$$

Câu 9.6. Chọn phương án đúng. Cho quá trình điện cực:

$$3Fe^{3+}(dd) + 4H_2O(\ell) + 1e \rightarrow Fe_3O_4(r) + 8H^+(dd)$$

Phương trình Nerst đối với quá trình đã cho ở 25⁰C có dạng:

a)
$$\phi = \phi^{\circ} + 0.059 \lg \frac{[H^{+}]^{8}}{[Fe^{3+}]^{3}[H_{2}O]^{4}}$$
 c) $\phi = \phi^{\circ} + 0.059 \lg \frac{[Fe^{3+}]^{3}}{[H^{+}]^{8}}$

c)
$$\varphi = \varphi^{\circ} + 0.059 \lg \frac{[Fe^{3+}]^3}{[H^+]^8}$$

b)
$$\varphi = \varphi^{\circ} + 0.059 \lg \frac{[H^{+}]^{8}}{[Fe^{3+}]^{3}}$$

d)
$$\varphi = \varphi^{\circ} + 0.059 \lg \frac{[Fe^{3+}]^3 [H_2 O]^4}{[Fe_3 O_4][H^+]^8}$$

Câu 9.7.

Hãy xác định ở giá trị nào của pH thì phản ứng sau bắt đầu xảy ra theo chiều thuân ở 25°C.

$$\begin{split} HAsO_2(dd) \ + \ I_2(r) \ + 2H_2O(\ell) \ \rightleftarrows \ H_3AsO_4(dd) \ + \ 2I^{\scriptscriptstyle -}(dd) \ + \ 2H^{\scriptscriptstyle +}(dd) \\ Cho \ bi\acute{e}t, \ \mathring{\sigma} \ 25^{\rm o}C \colon \phi^{\rm o}_{(H_3AsO_4/HAsO_2)} = +0{,}559V \ ; \ \phi^{\rm o}_{(I_7/I^{\scriptscriptstyle -})} = +0{,}5355V \end{split}$$

Nồng độ các chất: $[H_3AsO_4] = [I^-] = [HAsO_2] = 1M$

a)
$$pH > 0.4$$

b)
$$pH > 3.0$$

c)
$$pH > 1.0$$

d)
$$pH > 2.0$$

$$\begin{split} HAsO_2(dd) + & \mathbf{I_2}(r) + 2H_2O(\ell) \rightleftarrows \mathbf{H_3}AsO_4(dd) + 2\mathbf{I^-}(dd) + 2\mathbf{H^+}(dd) \\ & \text{$D\mathring{\text{e}}$ pur tựr phát theo chiều thuận ° 25^0C: $\Delta G = -nEF < 0 \to E > 0$ \end{split}$$

$$\mathring{O}$$
 25°C, E = E° - $\frac{0.059}{n}$ lg Q = (0.5355 - 0.559) - $\frac{0.059}{2}$ lg $\frac{1.1.[H^+]^2}{1}$ > 0

Câu 9.8. Chọn phương án đúng và đầy đủ:

Cho pin điện hóa: $(1)Cr|Cr_2(SO_4)_31M||Cr_2(SO_4)_30.02M||Cr(2)$

- 1) Điện cực (1) gọi là cathode, có xuất hiện kết tủa Crom.
- 2) Điện cực (2) gọi là anod, điện cực Crom bị tan ra.
- 3) Suất điện động của pin là E = 0.0334V
- 4) Trong quá trình pin hoạt động, nồng độ Cr³⁺(dd) ở điện cực (1) giảm dần. và ở điện cực (2) tăng dần. Khi nồng độ Cr³⁺(dd) ở hai điện cực bằng nhau thì pin ngừng hoạt động.

$$Cr^{3+}(dd) + 3e = 3Cr(r) ; \mathring{O} 25^{0}C, \phi = \phi^{0} + \frac{0,059}{3}lg [Cr^{3+}] \rightarrow \phi_{1} > \phi_{2}$$

Ký hiệu pin: $(2)(-)Cr|Cr_2(SO_4)_3$ 0,02 $M||Cr_2(SO_4)_3$ 1M|Cr (+) (1)

ANOD:
$$\operatorname{Cr}(r) - 3e = \operatorname{Cr}^{3+}(\operatorname{dd}) \uparrow$$
 ; $\operatorname{Cr}^{3+}(\operatorname{dd}) \downarrow + 3e = \operatorname{Cr}(r) : \operatorname{CATOD}$

Khi pin hoạt động:
$$\varphi_2 \uparrow v$$
ì $[Cr^{3+}]_2 \uparrow$ $\varphi_1 \downarrow v$ ì $[Cr^{3+}]_1 \downarrow$

Khi
$$[Cr^{3+}]_2 = [Cr^{3+}]_1 = \frac{2+0.04}{2} = 1.02 \text{ M} \rightarrow \phi_2 = \phi_1 \rightarrow E = 0 \text{ V}$$
: pin ngừng hoạt động.

Câu 9.9. Chọn phương án đúng:

Xét chiều của phản ứng ở 25° C: Fe + Cd²⁺ = Fe²⁺ + Cd; Cho biết:

$$E^0\!=\phi^0(Cd^{2+}\!/Cd)$$
 - $\phi^0(Fe^{2+}\!/Fe)=0.04V$

- 1) Khi $[Fe^{2+}] = 0.10M$ và $[Cd^{2+}] = 1.00M$ phản ứng diễn ra theo chiều thuận.
- 2) Khi $[Fe^{2+}] = 0.10M$ và $[Cd^{2+}] = 1.00M$ phản ứng diễn ra theo chiều nghịch.
- 3) Khi $[Fe^{2+}] = 1.00 \text{M và} [Cd^{2+}] = 0.01 \text{M}$ ứng diễn ra theo chiều thuận.
- 4) Khi $[Fe^{2+}] = 1.00M$ và $[Cd^{2+}] = 0.01M$ ứng diễn ra theo chiều nghịch.
- **a**) 2, 4

đặc.

- **b**) 1, 4
- **c**) 2, 3
- **d**) 1, 3

 $\Delta G = \text{-nFE}: E > 0 \rightarrow \Delta G \leq 0$: pư có khả năng tự phát theo chiều thuận.

 $E < 0 \rightarrow \Delta G < 0$: pư có khả năng tự phát theo chiều nghịch.

$$\mathring{O} 25^{0}C, \quad E = E^{0} - \frac{0,059}{2} lgQ = E^{0} - \frac{0,059}{2} lg \frac{[Fe^{2+}]}{[Cd^{2+}]}$$

Câu 9.10. Chọn phương án đúng.

Phản ứng giữa bột MnO₂ và dung dịch NaCl trong môi trường acid không xảy ra. Muốn phản ứng xảy ra phải dùng biện pháp nào?

Cho:
$$\phi^0_{MnO_2,H^+/Mn^{2+}} = 1.2 \text{ V}; \ \phi^0_{Cl_2/2Cl^-} = 1.358 \text{ V}$$

- a) Thêm HCl đậmb) Thêm NaOH.
- c) Giảm nồng độ Cl⁻.
- d) Không có cách nào ngoại trừ thay thế MnO₂ bằng chất oxi hóa khác.

MnO₂ + 2e + 4H⁺ = Mn²⁺ + 2H₂O;
$$\mathring{O}$$
 25°C, ϕ^{\uparrow} = ϕ^{0} + $\frac{0.059}{2}lg\frac{[H^{+}]^{4\uparrow}}{[Mn^{2+}]}$

$$Cl_2(k) + 2e = 2Cl^-(dd); \mathring{\sigma} 25^0C \ \varphi = \varphi^0 + \frac{0,059}{2}lg \frac{P_{Cl_2}}{|Cl^-|^2\downarrow}$$

Câu 9.11. Chọn phương án đúng:

Khi ghép một tấm bạc trong dung dịch bão hòa AgBr và một tấm bạc khác trong dung dịch AgNO₃ 0,01M ta được pin nồng độ có suất điện động ở 25°C là 0.245V. Hãy tính tích số tan của AgBr ở 25°C.

a)
$$2 \times 10^{-12}$$

c)
$$5 \times 10^{-13}$$

b)
$$2 \times 10^4$$

d) Không đủ dữ liệu để tính.

$$AgBr(r) \rightleftharpoons Ag^{+}(dd) + Br^{-}(dd); T_{AgBr} = [Ag^{+}]_{bh} . [Br^{-}]_{bh} = [Ag^{+}]^{2}_{bh}$$

$$Ag^+(dd) \ + \ e = Ag(r) \ ; \quad \mathring{O} \ 25^0C, \ \ \phi = \phi^0 + 0.059lg[Ag^+] \ \rightarrow \ \phi \sim [Ag^+]$$

 $AgBr~l\grave{a}~ch \acute{a}t~kh \acute{o}~tan~n \^{e}n~[Ag^+]_{bh} < 0,01M \\ \rightarrow \phi(AgBr(bh)~/Ag) < \phi(Ag^+(dd)/Ag)$

(-) Ag | dd AgBr(bh), [Ag⁺]_{bh} =
$$\sqrt{T_{AgBr}}$$
 || dd AgNO₃ 0,01M | Ag (+)

Suất điện động của pin ở 25°C:
$$E = 0.0591g \frac{[Ag^+]_{(+)}}{[Ag^+]_{(-)}} = 0.245 \text{ V} \rightarrow T_{AgBr}$$

Câu 9.12. Chọn phương án đúng:

Cho $\phi^0_{Fe^{3+}/Fe^{2+}} = 0.77 V$ và $\phi^0_{Sn^{4+}/Sn^{2+}} = +0.15 V$. Tính hằng số cân bằng ở $25^{\circ} C$ của phản ứng: $2Fe^{3+}(dd) + Sn^{2+}(dd) \rightleftharpoons 2Fe^{2+}(dd) + Sn^{4+}(dd)$

a)
$$10^{14}$$

c)
$$10^{21}$$

d)
$$10^{27}$$

Hằng số cân bằng ở 25°C:
$$lgK = \frac{nE^0}{0,059}$$
 ($n = 2$; $E^0 = 0,77 - 0,15$ (V))

Câu 9.13. Chọn phương án đúng:

Tính thế điện cực tiêu chuẩn của MnO_4^-/MnO_2 ở 25°C. Cho biết ở 25°C thế điện cực tiêu chuẩn của MnO_4^-/Mn^{2+} và MnO_2/Mn^{2+} lần lượt bằng 1.51V và 1.23V.

d) 1.70V

$$\label{eq:continuous} {\color{red} {\bf 3}.} \phi^0(MnO_4{^{\!\!\!\!-}}/MnO_2) \qquad \qquad {\color{red} {\bf 2}.} \phi^0(MnO_2/Mn^{2+})$$

$$2.\phi^{0}(MnO_{2}/Mn^{2+})$$

$$MnO_2$$

$$\rightarrow$$
 Mn²⁺

$$\mathbf{5.\phi^0(\ MnO_{4^-}/MnO_{2})} = \ \mathbf{3.\phi^0(MnO_{4^-}/MnO_{2})} + \mathbf{2.\phi^0(MnO_{2}/Mn^{2+})} \ \rightarrow \phi^0(MnO_{4^-}/MnO_{2})$$

Câu 9.14. Chọn phương án đúng: Cho phản ứng sau ở 25°C:

$$Fe^{2+}(dd) + Ag^{+}(dd) \rightleftharpoons Fe^{3+}(dd) + Ag(r)$$

Biết: số Faraday F = 96484(C);
$$\varphi^0(\text{Fe}^{3+}/\text{Fe}^{2+}) = +0.771\text{V}; \ \varphi^0(\text{Ag}^{+}/\text{Ag}) = 0.7991\text{V}.$$

Với $[Fe^{3+}] = 0.1M$; $[Fe^{2+}] = 0.01M$; $[Ag^{+}] = 0.01M$ và Ag kim loại dư.

$$\phi(Fe^{3+}/Fe^{2+}) = \phi^0 + 0.059lg\frac{[Fe^{3+}]}{[Fe^{2+}]} \;\; ; \;\; \phi(Ag^+/Ag) = \phi^0 + 0.059lg[Ag^+]$$

$$Fe^{2+}(dd) + Ag^{+}(dd) \rightleftharpoons Fe^{3+}(dd) + Ag(r); n = 1 \text{mol}; F = 96,5 \text{ kJ/V.mol}$$

Cách 1:
$$\Delta G_{298} = -nFE = -nF(\phi_+ - \phi_-) = -nF.(\phi(Ag^+/Ag) - \phi(Fe^{3+}/Fe^{2+}))$$

Cách 2:
$$\Delta G_{298} = -nFE = -nF(E^0 - 0.059.lgQ)$$

$$=-nF((\phi^0(Ag^+/Ag)-\phi^0(Fe^{3+}/Fe^{2+}))-0,059lg\frac{[\mathit{Fe}^{3+}]}{[\mathit{Fe}^{2+}][\mathit{Ag}^+]})$$

1)
$$\varphi(Fe^{3+}/Fe^{2+}) = +0.830V$$

2)
$$\varphi(Ag^+/Ag) = 0.681V$$

3)
$$(\Delta G_{298})_{\text{phån \'ung}} = +14.376 \text{kJ}$$

- 4) Tại thời điểm đang xét, phản ứng đang diễn ra theo chiều thuận
- 5) Tại thời điểm đang xét, phản ứng đang diễn ra theo chiều nghịch
- a) Chỉ 5 đúng
- b) Chỉ 4 đúng
- c) 1,2,3,5 đúng
- **d**) 1,2,4 đúng