Wykorzystanie teorii Galois w konstrukcjach geometrycznych

Andrzej Kokosza

Oblicze 2016

(C1) Dwa punkty $\alpha \neq \beta$ można połączyć prostą.

(C2) Dla puntów $\alpha \neq \beta$ i γ można utworzyć okrąg o środku w γ i promieniu $|\alpha\beta\>$

(P1) Punkt powstaje poprzez przecięcie 2 prostych.

(P2) Punkt powstaje przez przecięcie prostej i okręgu.

(P3) Punkt powstaje przez przecięcie dwóch okręgów.

Definicja

Liczba zespololona jest konstruowalna, gdy można utworzyć ją za pomocą aksjomatów C1, C2, P1, P2, P3 w skończonej liczbie kroków. z liczb 0, 1.

Przykład Liczby naturalne

Przykład Liczby naturalne

Przykład Liczby naturalne

Przykład Liczby naturalne

Przykład Liczby urojone całkowite

Twierdzenie

Niech $\mathcal{C} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ jest konstuowalne} \}$. \mathcal{C} jest podciałem \mathbb{C} Ponadto:

- (a) Niech $\alpha = a + bi \in C$, gdzie $a, b \in \mathbb{R}$, to $a, b \in C$.
- (b) Jeżeli $\alpha \in \mathcal{C}$, to $\sqrt{\alpha} \in \mathcal{C}$

$$\alpha \cdot \beta = ae^{\theta} \cdot be^{\tau} = (ab)e^{\theta+\tau}$$

$$\frac{\alpha}{\beta} = \frac{ae^{\theta}}{be^{\tau}} = (\frac{a}{b})e^{\theta-\tau}$$

$$\sqrt{\alpha} = \sqrt{r}e^{\frac{\theta}{2}}$$

Przypomnienie

Twierdzenie

Niech α będzie liczbą zespoloną. Wtedy $\alpha \in \mathcal{C}$ wtedy i tylko wtedy, gdy istnieją ciała

$$\mathbb{Q} = F_0 \subset F_1 \subset ... \subset F_n \subset \mathbb{C}$$

takie, że $\alpha \in F_n$ i $[F_{i-1} : F_i] = 2$ dla $0 < i \leqslant n$

Dowód.

(\Leftarrow) Załóżmy, że istnieje $\mathbb{Q} = F_0 \subset ... \subset F_n \subset \mathbb{C}$ gdzie $[F_{i-1}:F_i]=2$. Możemy skorzystać z faktu, że jeżeli $[F_{i-1}:F_i]=2$, to $F_i=F_{i-1}(\sqrt{\alpha_i})$ dla pewnego $\alpha_i \in F_{i-1}$. Poprzez indukcję udowodnimy, że dla $0 < i \leqslant n$ $F_i \subset \mathbb{Q}$. Oczywiście $F_0=\mathbb{Q} \subset \mathcal{C}$. Załóżmy, że $F_{i-1} \subset \mathcal{C}$, $F_i=F_{i-1}(\sqrt{\alpha_i})$. Skoro $\alpha_i \in \mathcal{C}$, to $\sqrt{\alpha_i} \in \mathcal{C}$, stąd $F_i=F_{i-1}(\sqrt{\alpha_i}) \in \mathcal{C}$. Zatem $F_n \in \mathcal{C}$.

Dowód.

 (\Rightarrow) $\alpha \in \mathcal{C}$ Udowodnimy, przez stworzenie wieży rozszerzeń $\mathbb{Q} = F_0 \subset F_1 \subset ... \subset F_n \subset \mathbb{C}$ gdzie $[F_{i-1}:F_i]=2$ takie, że F_n wartości urojone i rzeczywiste liczb, które powstają w trakcie konstrukcji α . Przeprowadzimy indukcje po liczbie N użyć aksjomatów P1, P2, P3. Dla N=0 $\alpha=0$ lub $\alpha=1$ zatem $\mathbb{Q} = F_0 = F_n$.

Dowód.

Niech N>1 i punkt α został otrzymany za pomocą P1, przecięcie się prostych I_1 , I_2 . Proste powstały z punktów α_1 i β_1 oraz α_2 i β_2 . α_1 , β_1 , α_2 , β_2 powstały w co najwyżej N-1 krokach, zatem z założenia indukcyjnego istnieje $\mathbb{Q}=F_0\subset F_1\subset ...\subset F_n\subset \mathbb{C}$ gdzie $[F_{i-1}:F_i]=2$, że części urojone i rzeczywiste α_1 , β_1 , α_2 , β_2 należą do F_n . Prosta I_1 jest opisana równaniem $a_1x+b_1y=c_1$, ponieważ α_1 , $\beta_1\in F_n$ to a_1 , b_1 , $c_1\in F_n$. analogicznie równaniem I_2 jest $a_2x+b_2y=c_2$. α jest punktem przecięcia się I_1 , I_2 . Zatem jego części urojone i rzeczywiste rozwiązaniem układu równań:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

Stad $\alpha \in F_n$

Dowód.

Niech N>1 i punkt α został otrzymany za pomocą P1, przecięcie się prostych I_1 , I_2 . Proste powstały z punktów α_1 i β_1 oraz α_2 i β_2 . α_1 , β_1 , α_2 , β_2 powstały w co najwyżej N-1 krokach, zatem z założenia indukcyjnego istnieje $\mathbb{Q}=F_0\subset F_1\subset ...\subset F_n\subset \mathbb{C}$ gdzie $[F_{i-1}:F_i]=2$, że części urojone i rzeczywiste α_1 , β_1 , α_2 , β_2 należą do F_n . Prosta I_1 jest opisana równaniem $a_1x+b_1y=c_1$, ponieważ α_1 , $\beta_1\in F_n$ to a_1 , b_1 , $c_1\in F_n$. analogicznie równaniem I_2 jest $a_2x+b_2y=c_2$. α jest punktem przecięcia się I_1 , I_2 . Zatem jego części urojone i rzeczywiste rozwiązaniem układu równań:

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

Stad $\alpha \in F_n$

Dowód.

Niech N>1 i punkt α został otrzymany za pomocą P2, przecięcie się prostej I i okręgu o. Jak poprzednio można znaleźć $\mathbb{Q}=F_0\subset F_1\subset ...\subset F_n\subset \mathbb{C}$ gdzie $[F_{i-1}:F_i]=2$, że części rzeczywiste i urojone punktów, z których powstały I i o, należą do F_n .

lpha jest rozwiązaniem układu równań.

$$a_1x + b_1y = c_1$$

 $x^2 + y^2 + a_2x + b_2y + c_2 = 0$

Gdzie $a_1, b_1, a_2, b_2, c_2 \in F_n$. Załóżmy, że $a_1 \neq 0$, więc możemy przyjąć, że $a_1 = 1$.Po podstawieniu $x = -b_1y + c_1$ otrzymujemy równanie kwadratowe:

$$(-b_1y + c_1)^2 + y^2 + a_2(-b_1y + c_1) + b_2y + c_2 = 0$$

Dowód.

$$(-b_1y + c_1)^2 + y^2 + a_2(-b_1y + c_1) + b_2y + c_2 = 0$$

W przypadku, gdy wartości y, będące rozwiązaniami równania, należą do F_n , to $x=b_1y+c_1$ także należy do F_n , więc F_n jest szukanym ciałem

Gdy rozwiązania nie należą do F_n , to istnieje rozszerzenie F_{n+1} stopnia drugiego F_n , do którego należą wartości rozwiązania, $x=b_1y-c_1$ także należy do F_{n+1} . Zatem F_{n+1} jest szukanym ciałem.

Dowód.

Niech N>1 i punkt α został otrzymany za pomocą P3, przecięcie się dwóch okręgów o_1 i o_2 . Jak poprzednio α jest rozwiązaniem równania

$$x^{2} + y^{2} + a_{1}x + b_{1}y + c_{1} = 0$$

$$x^{2} + y^{2} + a_{2}x + b_{2}y + c_{2} = 0$$

Po odjęciu stronami otrzymujemy:

$$(a_1 - a_2)x + (b_1 - b_2)y + (c_1 - c_2) = 0$$

$$x^2 + y^2 + a_2x + b_2y + c_2 = 0$$

Co sprowadza się do poprzedniego przypadku.

Wniosek

 ${\cal C}$ jest najmniejszym ciałem zamkniętym na operację pierwiastka kwadratowego.

Dowód.

Wiemy, że $\mathcal C$ jest zamknięty na operację $\sqrt{\ }$. Załóżmy, że istnieje $F\subset \mathbb C$ będzie ciałem zamkniętym na $\sqrt{\ }$. Weźmy dowolne $\alpha\in \mathcal C$. Z poprzedniego twierdzenia wiemy, istnieje wieża ciał $\mathbb Q=F_0\subset F_1\subset ...\subset F_n\subset \mathbb C$, gdzie $F_i=F_{i-1}(\alpha_i)$. Stąd $F_n\in F$, zatem $\mathcal C\subset F$.

Wniosek

Jeżeli $\alpha \in \mathcal{C}$, to $[\mathbb{Q}(\alpha):\mathbb{Q}]=2^n$ dla pewnego $n \in \mathbb{N}$. Więc każda liczba konstruowalna jest algebraiczna nad \mathbb{Q} oraz jej wielomian minimalny jest stopnia 2^n .

Dowód.

Jeżeli $\alpha \in \mathcal{C}$, to istnieje wieża ciał z poprzedniego twierdzenia $\mathbb{Q} = F_0 \subset F_1 \subset ... \subset F_n \subset \mathbb{C}$, gdzie $[F_i : F_{i-1}] = 2$. Stąd

$$[F_n : \mathbb{Q}] = [F_n : F_0] = [F_n : F_{n-1}][F_{n-1} : F_{n-2}]...[F_2 : F_1] = 2^m$$

Ponieważ $\mathbb{Q} \subset \mathbb{Q}(\alpha) \subset F_n$, to $[\mathbb{Q}(\alpha\mathbb{Q})]$ dzieli $[F_n : \mathbb{Q}]$. Zatem $[\mathbb{Q}(\alpha\mathbb{Q})] = 2^n$.

Trysekcja kąta

Przykład

Na przykładzie kąta $\frac{2}{3}\pi$. Kąt θ utożsamiamy z liczbą e^{θ}

Trysekcja kąta

Przykład

Trysekcja kąta

Przykład

Pokażemy, że nie da się podzielić kąta $\frac{2}{3}\pi$ na trzy, czyli skonstruować kąta $\frac{2}{9}\pi$

Kąt θ utożsamiamy z liczbą e^{θ} .

Czyli badamy konstruowalność punku $e^{\frac{2}{9}\pi}=\zeta_9$. Wielomianem minimalnym ζ_9 jest x^6+x^3+1 , którego stopień to 6. Stąd ζ_9 nie jest konstruowalny.

Podwojenie Objętości sześcianu

Przykład

Problem sprowadza się do skonstruowania liczby $\sqrt[3]{2}$. jego wielomian minimalny to x^3-2 , jego stopień wynosi 3. Co oznacza, że $\sqrt[3]{2}$ nie jest konstruowalny.

Teoria Galois

Liczby konstruowalne

Twierdzenie

Niech $\alpha \in \mathbb{C}$ będzie algebraiczne nad \mathbb{Q} i $\mathbb{Q} \subset L$ będzie ciałem rozkładu wielomianu minimalnego α nad \mathbb{Q} . Wtedy α jest konstruowalne wtedy i tylko wtedy, gdy $[L:\mathbb{Q}]$ jest potęgą dwójki.

Liczby konstruowalne

Dowód.

(\Leftarrow) Załóżmy, że $[L:\mathbb{Q}]$ jest potęgą dwójki. Ponieważ L/\mathbb{Q} jest Galois, to $|Gal(L/\mathbb{Q})| = [L:\mathbb{Q}] = 2^n$. $Gal(L/\mathbb{Q})$ jest rozwiązywalna, więc istnieją podgrupy:

$$\{e\} = \textit{G}_m \subset \textit{G}_{m-1} \subset ... \subset \textit{G}_1 \subset \textit{G}_0 = \textit{Gal}(\textit{L}/\mathbb{Q})$$

takie, że G_{i-1} jest podgrupą normalną dla G_i o indeksie 2. Z odpowiedniości Galois wynika, że istnieje wieża ciał

$$\mathbb{Q}=L_{G_0}\subset L_{G_1}\subset ...\subset L_{G_m}=L,$$

gdzie $[L_{G_i}:L_{G_{i-1}}]=2$. Zatem α jest konstruowalne.

Definicja

Liczba pierwsza p większa od 2 jest liczbą pierwszą Fermata, jeżeli można ją zapisać jako:

$$p=2^{2^n}+1$$

Twierdzenie

Niech n>2 całkowite, wtedy n-kąt foremny może zostać skonstruowany wtedy i tylko wtedy, gdy

$$n=2^s p_1 p_2 ... p_r,$$

 $gdzie\ p_1,...,p_n\ sa\ liczbami\ pierwszymi\ Fermata.$

Dowód.

(\Leftarrow) Dany n-kąt foremny jest konstruowalny, gdy konstruowalne jest ζ_n . Wiemy, że:

$$\mathbb{Q} \subset \mathbb{Q}(\zeta_n)$$
 jest Galois,

 ζ_n jest konstruowalne, gdy $[\mathbb{Q}(\zeta_n):\mathbb{Q}]=2^s$

$$[\mathbb{Q}(\zeta_n):\mathbb{Q}]=\phi(n)$$

$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}) = \begin{cases} 2^{s-1}(p_1 - 1)(p_2 - 1)...(p_n - 1), & s > 0 \\ (p_1 - 1)(p_2 - 1)...(p_n - 1), & s = 0 \end{cases}$$

w obu przypadkach $[\mathbb{Q}(\zeta_n):\mathbb{Q}]=\phi(n)$ jest potęgą dwójki.

Dowód.

 (\Rightarrow) Niech $n=q_1^{s_1},...,q_n^{s_n}$, gdzie $q_1,...,q_n$ są liczbami pierwszymi.

$$\phi(n) = n \prod_{q|n} (1 - \frac{1}{q}) = q_1^{a_1} (q_1 - 1) ... q_2^{a_2} \bullet (q_2 - 2).$$

Jeżeli q_i jest większe od 2, to s_i jest równe 1, dla 2 dowolne. Zatem wszystkie liczby $q_1, ..., q_n$ są postaci $2^{k_i} + 1$. Wystarczy dowieść, że jeżeli liczba pierwsza tej postaci jest liczbą Fermata.

Lemat

Niech P_1 będzie punktem na płaszczyźnie nie leżącym na linii l_1 . Linia l, o którą odbicie P_1 leży na prostej l_1 , jest styczna z parabolą o ogniskowej w P_1 i kierownicy l_1 .

Przykład

pokażemy, jak za pomocą stycznej do 2 paraboli policzyć pierwiastki wielomianu $x^3 + ax + b = c$ rozważmy parabole

$$(y - \frac{a}{2})^2 = 2bx \text{ oraz } y = \frac{1}{2}x^2$$

Niech I będzie prostą styczną do tych parabol. w punktach (x_1, y_1) pierwszą oraz (x_2, y_2) drugą. współczynnik nachylenia prostej wynosi:

$$m = \frac{b}{y_1 - \frac{1}{2}a}$$

stąd $m \neq 0$ oraz:

$$x_1 = \frac{zb}{2m^2}$$
$$y_1 = \frac{zb}{m} + \frac{a}{2}$$

Przykład

Jeśli podstawimy pod $m = \frac{y_1 - y_2}{x_1 - x_2}$ otrzymamy:

$$m = \frac{y_1 - y_2}{x_1 - x_2} = \frac{\frac{m^2}{2} - (\frac{b}{m} + \frac{a}{2})}{m - \frac{2}{2m^2}} = \frac{m^4 - 2m - qm^2}{2m^3 - b}$$

Co sprowadza się do:

$$m^3 + am^2 + bm + c = 0$$

Twierdzenie

Niech $\mathcal{O} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ jest origami} \}$. \mathcal{C} jest podciałem \mathbb{C} Ponadto:

- (a) Niech $\alpha = a + bi \in C$, gdzie $a, b \in \mathbb{R}$, to $a, b \in C$.
- (b) Jeżeli $\alpha \in \mathcal{C}$, to $\sqrt{\alpha} \in \mathcal{C}$
- (c) Jeżeli $\alpha \in \mathcal{C}$, to $\sqrt[3]{\alpha} \in \mathcal{C}$