Real case

MesoNH Tutorial Class 12-15 November 2024

REAL CASE

One-domain simulation

Creation of PGD file

Program PREP_PGD

interpolation on horizontal grid of input fields Output PGD : FM file with projection, domain and 2D fields

Input files for:

- orography
- cover
- sand fraction
- clay fraction

Namelist PRE PGD1.nam

```
&NAM PGDFILE CPGDFILE='PGD DAD' / PGD file name
&NAM_CONF_PROJ_XLATO=37., XLONO=5.1, lat/lon reference
     cone factor XRPK=0.58, XBETA=0 /rotation angle
&NAM_CONF_PROJ_GRID XLATCEN=38., XLONCEN=5., center lat/lon
                     NIMAX=12, NJMAX=10, number of points in I and J
                     XDX=2000., XDY=2000. /\Delta X and \Delta Y
&NAM_PGD_SCHEMES CNATURE='ISBA', CSEA='SEAFLX',
                 CWATER='WATFLX', CTOWN='TEB' /
surface schemes
&NAM_COVER YCOVER='ecoclimats_v2'/surface cover database
&NAM_ZS YZS='gtopo30'/orography database
&NAM_ISBA YCLAY='clay_fao', YSAND='sand_fao'/clay and sand fractions
```

NIMAX and NJMAX must be equal to $2^n 3^m 5^p$

Atmospherical fields

Atmospherical data are issued from :

- model forecasts (GRIB) :
 - ► IFS, ERA5 : extractecmwf
 - ► ARPEGE, AROME, AROME-OM : extractMF
 - ► GFS
 - MOCAGE
- other MesoNH simulation

PREP_REAL_CASE

Horizontal interpolation for GRIB files (IFS, ERA5, ARPEGE, ALADIN, AROME or MOCAGE): interpolation (U,V,T,q,Ps, 2D fields) on PGD grid from the nearest 12 points.

PREP_REAL_CASE

► Vertical interpolation

déplacement vertical selon la fonction 'shift' entre hLS et zscale

Namelist PRE REAL1.nam

It must be made for the initial file and all coupling files

```
&NAM_FILE_NAMES

HATMFILE ='arpege.FC.20110128.21', atmospherical file

HATMFILETYPE='GRIBEX', type of atmospherical file

HPGDFILE ='PGD_DAD', PGD file name

CINIFILE='28JANVIER_21H' / name of output file

&NAM_VER_GRID NKMAX=120, number of points in Z

YZGRID_TYPE='FUNCTN', FUNCTN or MANUAL

ZDZGRD=10., ZDZTOP=500., \( \Delta Z \) at ground/at top

ZZMAX_STRGRD=2500., Height for streching change

ZSTRGRD=5., ZSTRTOP=7. / streching at ground/at top
```

two-domain simulation

2 domains simulation: Grid-nesting

We need:

- a PGD file for every model
- ➤ All the PGDs must have the same averaged orography over their common area :

PREP_NEST_PGD (the mean of orography for a SON file in the overlapping domain of its DAD file must be equal to the orography of the dad file at its resolution).

ALL PGD FILES MUST BE MADE AND "NESTED" BEFORE THE SIMULATION

- prepare initial file for the son's domain(s)
 - SPAWNING: horizontal interpolation of 3D fields from dad's model to son's model
 - PREP_REAL_CASE :vertical interpolation from DAD to SON
- ▶ a file EXSEGn.nam for every domain

son's PGD: PREP PGD

```
MODEL 1
  PRE PGD1.nam :
&NAM_PGDFILE
   CPGDFILE='PGD SON' /
&NAM_CONF_PROJ /
&NAM_CONF_PROJ_GRID /
                                IYOR=4
&NAM PGD GRID
                                             IXSIZE= 6
   YINIFILE='PGD_DAD',
   YINIFILETYPE='MESONH'
                                       IXOR=3
&NAM INIFILE CONF PROJ IXOR=3, IYOR=4,
                        IXSIZE=6, IYSIZE=5,
                        IDXRATIO=4, IDYRATIO=4 /
&NAM_COVER YCOVER='ecoclimats_v2' /
&NAM_ZS YZS='gtopo30' /
&NAM_ISBA YCLAY='clay_fao', YSAND='sand_fao' /
```

PREP NEST PGD

```
&NAM_PGD1 YPGD1= 'PGD_DAD' / DAD PGD file

&NAM_PGD2 YPGD2= 'PGD_SON', IDAD = 1 /
First SON PGD file / number of the DAD file

&NAM_PGD3 /
...

&NAM_PGD8 /

&NAM_NEST_PGD YNEST= 'e1' / string of 2 characters to be added to the PGD file names

to define the corresponding output PGD file names
```

SPAWNING

The SPAWNING stage must be followed by PREP_REAL_CASE if the domain is not flat

PREP REAL CASE

PRE REAL1.nam: &NAM FILE NAMES HATMFILE = '28JANVIER_21H.spa04', input file (spawned file) HATMFILETYPE='MESONH', HPGDFILE ='PGD_SON.neste1', CINIFILE = '28JAN21H MODEL 2' / output name of prep real case &NAM_REAL_CONF NVERB=5 / &NAM VER GRID YZGRID TYPE='SAMEGR' / &NAM_PREP_SURF_ATM namelist from SURFEX CFILE = '28JANVIER_21H', CFILETYPE = 'MESONH', CFILEPGD="PGD_DAD.neste1", CFILEPGDTYPE = 'MESONH' /

Namelist

Principe

One namelist EXSEGn.nam for each model

Model 1 (dad): EXSEG1.nam

Namelist ended by **n** are relative to model 1 Other namelists are common for all models

Modele 2 (son): EXSEG2.nam

There is only an initial file (no coupling file)
Only namelists ended by n are taken into account

MODEL with grid-nesting

file EXSEG1.nam

```
&NAM_LUNIT CINIFILE = "28JANVIER_21H",
            CINIFILEPGD = "PGD_DAD.neste1"/
            CCPLFILE(1) = "29JANVIER_00H"/
&NAM_DYNn XTSTEP = 60., CPRESOPT = "CRESI",
         NITR=8.LHORELAX UVWTH = T.
         LHORELAX RV = T, LVE RELAX = T,
         NRIMX = 5, NRIMY = 5, XRIMKMAX = 0.0083
&NAM_ADVn CUVW_ADV_SCHEME = "WENO_K",
          NWENO_ORDER=5 CTEMP_SCHEME='RK53',
          CMET ADV SCHEME = "PPM 01" /
&NAM_PARAMn CTURB = "TKEL", CRAD = "ECMW",
            CSCONV = "KAFR", CDCONV = "KAFR",
            CCLOUD = "KESS"/
```

```
&NAM_PARAM_RADn XDTRAD = 3600.,
                 XDTRAD_CLONLY = 3600.
                  NRAD COLNBR = 400 /
&NAM PARAM KAFRn XDTCONV = 300.. NICE = 1.
                  LREFRESH ALL = T. LDOWN = T /
&NAM_LBCn CLBCX = 2*"OPEN", CLBCY = 2*"OPEN" /
&NAM_TURBn CTURBLEN = "BL89",
            CTURBDIM = "1DIM",
            LSUBG COND = F /
&NAM_CONF CCONF = "START", start/restart simulation
           NMODEL = 2, number of [father + son(s)] models
           CEXP = "CTRLO", CSEG = "SEGO1" /
           name of the outputs = CEXP.Nmodel.CSEG.00(n)
&NAM_DYN XSEGLEN = 400., LCORIO = T,
          XALKTOP = 0.001, XALZBOT = 14500. /
```

```
&NAM_NESTING NDAD(2) = 1, 1 is the father of the son number 2
              NDTRATIO(2) = 4, ratio of the timestep for the son number 2
              XWAY(2) = 2. 1 = one-way; 2 = two-way interactions /
&NAM_BACKUP XBAK_TIME(1,1)=100/
&NAM CONFIO LCDF4=T LLFIOUT=T LLFIREAD=F /
&NAM_ISBAn CSCOND = "NP89", CALBEDO = "DRY",
            CC1DRY = 'DEF', CSOILFRZ = 'DEF',
            CDIFSFCOND = 'DEF', CSNOWRES= 'DEF' /
&NAM SGH ISBAn CRUNOFF = "WSAT"/
&NAM_SEAFLUXn CSEA_ALB="UNIF" /
```

file EXSEG2.nam

```
&NAM LUNITH CINIFILE = "28JAN21H MODEL 2"/
            CINIFILEPGD = "PGD SON.neste1"/
&NAM_DYNn CPRESOPT = "CRESI",
         LHORELAX_UVWTH = F, LHORELAX_RV = F,
         LHORELAX_RC= F, LHORELAX_RR= F,
         LHORELAX_RS= F, LHORELAX_RI= F,
         LHORELAX_RG= F, LHORELAX_TKE= F,
         LVE RELAX = T.NITR=8.
         NRIMX = O, NRIMY = O
&NAM_ADVn CUVW_ADV_SCHEME = "WENO_K",
          CMET_ADV_SCHEME = "PPM_01" /
&NAM_PARAMn CTURB = "TKEL", CRAD = "ECMW",
            CSCONV = "KAFR", CDCONV = "KAFR",
            CCLOUD = "KESS"/
```

```
&NAM_PARAM_RADn XDTRAD = 1800.,
                XDTRAD\_CLONLY = 1800.,
                LCLEAR_SKY = F, NRAD_COLNBR = 400 /
&NAM_PARAM_KAFRn XDTCONV = 300., NICE = 1,
                LREFRESH_ALL = T, LDOWN = T /
&NAM_LBCn CLBCX = 2*"OPEN", CLBCY = 2*"OPEN",
          XCPHASE = 20. /
&NAM_TURBn XIMPL = 1., CTURBLEN = "BL89",
           CTURBDIM = "1DIM".
           LSUBG COND = F /
&NAM_ISBAn CSCOND = "NP89", CALBEDO = "DRY",
          CC1DRY = 'DEF', CSOILFRZ = 'DEF',
          CDIFSFCOND = 'DEF', CSNOWRES= 'DEF'/
&NAM_SGH_ISBAn CRUNOFF = "WSAT"/
&NAM SEAFLUXn CSEA ALB="UNIF" /
```