

PCS-2039 Modelagem e Simulação de Sistemas Computacionais

Graça Bressan gbressan@larc.usp.br

Estudo de Caso 1: Simulação do Lava Rápido

Lava-rápido

 A modelagem do Lava-rápido será feita utilizando o simulador Arena.

Estrutura do Sistema

Serviços

Serviços	Resultados	Métricas
Lavagem de veículos	Veículo lavado e secado	 Tempo de espera total Número médio de veículos lavados por unidade de tempo Erros: não limpou direito, arranhou a pintura Falhas: falta d'água,

Serviços

Serviços	Resultados	Métricas
Encerar e polir	Veículo encerado e polido	 Tempo de espera total Número médio de veículos polidos por unidade de tempo Erros: não poliu direito, arranhou a pintura Falhas: acabou a cera

Parâmetros do Sistema	Níveis	Fator
 Tempo médio do Enxágüe inicial: Carro médio Carro grande 	 Tempo com 1 funcionário trabalhando no carro Tempo com 2 funcionários trabalhando no mesmo carro 	SIM
Z. Tempo médio de Ensaboar:Carro médioCarro grande	 Tempo com 1 funcionário trabalhando no carro Tempo com 2 funcionários trabalhando no mesmo carro 	SIM
3. Tempo médio do Jato d'água:Carro médioCarro grande	Tempo com 1 funcionário trabalhando no carro	

Parâmetros do Sistema	Níveis	Fator
4. Tempo médio de Secagem:Carro médioCarro grande	 Tempo com 1 funcionário trabalhando no carro Tempo com 2 funcionários trabalhando no mesmo carro 	SIM
5. Tempo médio Aspirar:Carro médioCarro grande	 Tempo com 1 funcionário trabalhando no carro Tempo com 2 funcionários trabalhando no mesmo carro 	SIM
6. Tempo médio de Polimento:Carro médioCarro grande	 Tempo com 1 funcionário trabalhando no carro Tempo com 2 funcionários trabalhando no mesmo carro 	SIM

Parâmetros do Sistema	Níveis	Fator
7. Intervalo médio entre uma etapa e a próxima	Não será utilizado na modelagem	
8. Tempo médio para Pagar	Tempo com 1 funcionário no caixa	
9. Gasto de água por veiculo :Carro médioCarro grande	Não será utilizado na modelagem	
 10. Gasto de energia elétrica por veículo: Carro médio Carro grande 	Não será utilizado na modelagem	

Parâmetros do Sistema	Níveis	Fator
11. Gasto de produtos de limpeza por veículo:Carro médioCarro grande	Não será utilizado na modelagem	
12. Gasto de cera por veículo :Carro médioCarro grande	Não será utilizado na modelagem	
13. Probabilidade de falta de água	Não será utilizado na modelagem	
14. Probabilidade de faltar produtos de limpeza	Não será utilizado na modelagem	

Parâmetros de Carga, Fatores e Níveis

Parâmetros de Carga	Níveis	Fator
15. Intervalo médio entre chegadas de carros	Cargas baixas, média e alta	SIM
16. Porcentagem de carros médios e grandes que chegam		
17. Porcentagem de carros que solicitam polimento		

PCS-2039 - 11 © Copyright LARC 2008 LARC/PCS/EPUSP

Experimentos

Experimen tos	Fatores	Métricas
1.	15	 Tempo de espera total Número médio de veículos lavados por unidade de tempo
2.	2, 5 e 15	 Tempo de espera total Número médio de veículos lavados por unidade de tempo
3.	1 e 4	 Tempo de espera total Número médio de veículos lavados por unidade de tempo
4.	6 e 15	 Tempo de espera total Número médio de veículos lavados por unidade de tempo

Técnica de modelagem e avaliação

- Podem ser utilizadas as seguintes técnicas:
 - Simulação do sistema utilizando uma ferramenta de simulação Arena.
 - Modelagem analítica através de redes abertas de filas (algoritmo de Análise do Valor Médio)
- Foram descartados testes com o sistema real pois afeta o faturamento do posto.
- Foi escolhida a simulação com a ferramenta Arena.

Análise dos Dados de Entrada

- Foram feitas medidas no lava-rápido em um período de 8 horas sendo que o início da observação ocorreu duas horas após a abertura do posto. A seguir será feita a análise de dados observados, escolhidos como parâmetros e fatores do sistema.
- Os dados se encontram no documento Estudo de caso 1: Análise e Dimensionamento de Lava-Rápido.

Intervalos de Chegada

- O Input Analyzer do Arena determina uma distribuição que se ajusta aos dados de intervalos de chegada.
- Antes de executar o Input Analyser, os dados das observação devem ser colocados em um arquivo com extensão .dst e os valores. Os valores devem ser separados por vírgula (o ponto indica o decimal).
- Pa realizar o ajuste, execute o Input Analyser e selecionar as opções File, New e em seguida, File, Data File e Use Existing....
- A opção de Best Fit determina a distribuição que melhor se ajusta aos dados fornecidos.
- O Input Analyzer aplica o teste dos Mínimos Quadrados (Sq Error) para decidir pelo melhor ajuste.

Intervalos de Chegada

- A distribuição com Best Fit foi Gama(8.46, 0.994), sendo que o valor da média amostral é 8.42.
- A distribuição Exponencial EXP(8.42) também seria um bom ajuste.
- O resumo de todos os ajustes tentados é o seguinte:

Fit All Summary Data File: C:\ Lava Rapido\ Chegada.dst Function Sa Error 0.00905 Gamma Exponential 0.00983 Erlang 0.00983 Weibull 0.00987 0.0256 Beta Lognormal 0.0335 Normal 0.0761 Triangular 0.145 Uniform 0.244

Tempos das Etapas

- No caso das distribuições de tempos de chegada podemos repetir o processo de determinar o melhor ajuste através do Input Analyzer.
- Considerando que em alguns casos o conjunto de pontos é pequeno para permitir um ajuste adequado, vamos utilizar a distribuição triangular que se adeqüa a casos como este e é simples de ser calculada, pois seus parâmetros são o mínimo, moda e máximo da amostra.

Tempos das Etapas

- Distribuição Triangular Triang (Min, Moda, Max)
- Usos mais comuns: Aproximação na ausência de dados que permitam obter uma distribuição mais adequada.

Função de distribuição de probabilidade.

Tempos das Etapas

 Utilizando o Input Analyser do Arena podemos determinar as distribuições desejadas:

	Carros Médios	Carros Grandes		
Enxaguar	TRIA(0.79, 0.961, 1.2)	TRIA(1.42, 1.73, 1.98)		
Ensaboar	TRIA(2.8, 3.05, 3.55)	TRIA(4.87, 4.96, 5.74)		
Jato D'agua	TRIA(1.78, 2.02, 2.21)	TRIA(3.08, 3.39, 3.71)		
Secar	TRIA(1.76, 2.09, 2.33)	TRIA(3.15, 3.61, 3.8)		
Aspirar	TRIA(2.09, 3.03, 3.7)	TRIA(3.49, 5.03, 6.56)		
Polir	TRIA(7.03, 7.05, 7.28)	TRIA(11.1, 11.3, 13.4)		
Pagar	TRIA(0.37, 0.691, 0.82)			

Porcentagem de carros grandes e pequenos

- Durante o período de observação de 8 horas, chegaram 45 carros médios e 13 carros grandes.
 - Porcentagem de carros médios = 45/(45+13) = 78 %
 - Porcentagem de carros grandes = 13/(45+13)= 22 %

Porcentagem de carros que optaram por polimento

- Observamos que 3 carros pequenos e 3 carros grandes optaram por polimento.
- Conclui-se que:
 - Porcentagem de carros médios que optaram por polimento: 3/45 = 6.7%
 - Porcentagem de carros grandes que optaram por polimento: 3/13 = 23%

Intervalos de Chegadas por Tipos de Carros

- Sendo T_c o intervalo de chegada de carros:
 - Intervalo de Carros Médios Simples = T_c/(0.78*0.933)
 - Intervalo de Carros Médios com Polimento = T_c/(0.78*0.067)
 - Intervalo de Carros Grandes Simples = T_c/(0.22*0.77)
 - Intervalo de Carros Grandes com Polimento = T_c/(0.22*0.23)

Modelo em Arena

Execução da Simulação

 Concluído o projeto do modelo em Arena, deve-se introduzir no mesmo os valores e distribuições dos parâmetros obtidos na etapa de análise dos dados. Com estes valores será feita a simulação inicial com o propósito de validar o modelo.

Execução da Simulação

Parâmetros da simulação:

Parâmetro	Valor	Significado
Number of Replication	10	Número de repetições da Simulação
Warm-up	120 min.	Tempo até o sistema atingir o equilíbrio
Replication Length	600 min.	Tempo escolhido para duração de cada replicação da simulação (tempo simulado)

Validação da Simulação

 Após executar a simulação por 10 replicações podemos observar a variabilidade dos resultados do tempo total para lavagem de carros:

Replicações	1	2	3	4	5	6	7	8	9	10	Média Simul	Média Observ	Diferença
Carro Medio Simples	14.86	13.89	15.73	14.67	16.07	14.84	17.22	15.94	17.00	16.07	15.40	15.87	2.96%
Carro Medio Polido	21.38	1	24.16	20.99	20.82	29.60	33.50	24.21	19.54	26.35	23.70	20.93	13.23%
Carro Grande Simples	20.53	21.5	21.64	20.81	22.64	21.70	22.58	20.72	22.76	22.35	21.50	21.01	2.33%
Carro Grande Polido	34.71	34.88	33.20	33.26	37.63	31.89	41.61	34.69	36.50	35.35	34.80	34.71	0.26%

Obs.: Esses dados foram obtidos com um simulador que rodou em uma versão anterior do Arena e resultou em diferenças.

Validação da Simulação

 Realizando a análise dos resultados da simulação através do Output Analyser obtemos os intervalos de confiança de 0.95 dos valores simulados:

```
Tempo total para Carro Médio Simples = 15.7 \pm 0.39
Tempo total para Carro Médio Polido = 24.6 \pm 3.13
Tempo total para Carro Grande Simples = 21.9 \pm 0.467
Tempo total para Carro Grande Polido = 35.3 \pm 1.45
```

 Verifica-se que o valor observado do tempo total para carro médio polido não está no intervalo de confiança obtido da simulação.

Validação da Simulação

Simulação com diferentes níveis dos fatores

 Dos 4 experimentos indicados anteriormente, será feitas simulações do experimento 1:

Experimentos	Fatores	Métricas	
1 13	4.2	1. Tempo de espera total	
	13	2. Número médio de veículos lavados por unidade de tempo	

 Mostramos a seguir os resultados do experimento 1, onde iremos verificar a sensibilidade do sistema em relação a variações de carga que corresponde a variar o parâmetro Intervalo de chegada.

Experimento 1: Variação da Carga

 Para facilitar a variação de carga em diversos níveis, utilizamos a distribuição exponencial com parâmetro $(1/\lambda)$ sendo este o valor médio do intervalo de chegada. Foram feitas várias simulações variando o valor médio do intervalo de chegada entre 2.1 min. a 60 minutos, com 10 replicações em cada simulação. A frequência de chegada (λ) é o inverso da média.

Tabela com Valores de Tempo Total

Intervalo de Chegada (min)	Freqüência de Chegada (carros/min.)	Carros Médios		Carros Grandes	
		Sem polir	Com Polimento	Sem polir	Com Polimento
60	0.02	12.8	20.1	20.4	32.7
10	0.1	14.5	23.1	21.2	34.4
5	0.2	22	31.1	25.2	41.5
4	0.25	38.5	43.1	40.2	53.4
3	0.33	73	79.2	72.6	87.4
2.5	0.4	123	130	129	138
2.3	0.43	146	152	139	145
2.1	0.48	164	180	162	176

Gráfico de Tempo Total

Gráfico de Tempo Total

• O gráfico anterior representa os valores de tempos totais no sistema para lavagem de carros médios e grandes, com ou sem polimento. O último valor de freqüência de chegada igual a 0.48 carros por minuto que corresponde a 2.1 minutos de intervalo médio entre as chegadas, já está no limite do sistema. A partir daí atingimos o limite da versão acadêmica do Arena que permite até 150 entidades no sistema.

Tabela com valores de Vazão (carros/minuto)

Intervalo de Chegada (min)	Freqüência de Chegada (carros/min.)	Carros Médios		Carros Grandes	
		Sem polir	Com Polimento	Sem polir	Com Polimento
60	0.02	0.013	0.000	0.002	0.000
10	0.1	0.071	0.005	0.017	0.006
5	0.2	0.151	0.010	0.036	0.009
4	0.25	0.189	0.011	0.045	0.012
3	0.33	0.206	0.014	0.042	0.016
2.5	0.4	0.200	0.015	0.052	0.011
2.3	0.43	0.202	0.013	0.049	0.013
2.1	0.48	0.211	0.016	0.042	0.013

Gráfico da Vazão

Gráfico da Vazão

- O gráfico anterior representa os valores de vazão do sistema para lavagem de carros médios e grandes, com e sem polimento. A partir de 0,2 carros/minuto o gráfico da vazão tende a se tornar horizontal, com a vazão se estabilizando em algum valor limite. Por exemplo, no caso de carros médios sem polimento, o limite da vazão está em torno de a 0,2 carros/minuto.
- Com a vazão menor que a taxa de chegada, começa ocorrer acúmulo de veículos e o tempo total se torna elevado.

Conclusões

- Dependendo do objetivo de desempenho ou retorno do sistema podemos verificar se o sistema está dimensionado corretamente ou precisa ser melhorado.
- Considerando o intervalo médio de chegada atual de 8,42 minutos, correspondente a uma frequência de chegada de 0,12 carros/minuto o sistema está com um bom desempenho, possuindo uma boa margem para aumento de carga.
- Após 0,2 carros/minuto, isto é, 5 minutos em média entre um carro e outro a vazão se aproxima do máximo em torno de 0,2 carros/minuto e o tempo total começa a ficar intolerável ao cliente.