Real Variables: Problem Set III

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set III of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 3.20.

Solution. Let A and B be any sets. The LHS of the first equation can be written as

$$\chi_{A \cap B} = \begin{cases} 1 & \text{if } x \in A \cap B \\ 0 & \text{if } x \notin A \cap B. \end{cases}$$

By noting that the product of has to be of the form, $1 \cdot 1$, to yield 1, the RHS of the second equation can be written as

$$\chi_A \chi_B = \begin{cases} 1 & \text{if } x \in A \text{ and if } x \in B \\ 0 & \text{otherwise,} \end{cases}$$

which is precisely the LHS as $x \in A$ and $x \in B$ is the definition of $x \in A \cap B$. Now, the LHS of the second equation can be written as

$$\chi_{A \cup B} = \begin{cases} 1 & \text{if } x \in A \cup B \\ 0 & \text{if } x \notin A \cup B. \end{cases}$$

The RHS of the second equation can be written as

$$\chi_A + \chi_B - \chi_A \cdot \chi_B = \begin{cases} 1 + 1 - 1 \cdot 1 = 1 & \text{if } x \in A, x \in B \\ 1 + 0 - 1 \cdot 0 = 1 & \text{if } x \in A, x \notin B \\ 0 + 1 - 0 \cdot 1 = 1 & \text{if } x \notin A, x \in B \\ 0 + 0 - 0 \cdot 0 = 0 & \text{if } x \notin A, x \notin B, \end{cases}$$

which can be simplified to

$$\chi_A + \chi_B - \chi_A \cdot \chi_B = \begin{cases} 1 & \text{if } x \in A \cup B \\ 0 & \text{if } x \notin A \cup B \end{cases},$$

as desired. The LHS of the third equation can be written as

$$\chi_{A^c} = \begin{cases} 1 & \text{if } x \in A^c \\ 0 & \text{if } x \notin A^c \end{cases}$$

1

as desired. The RHS of the third equation can be written as

$$1 - \chi_A = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \notin A \end{cases},$$

which is precisely the LHS, as $x \notin A$ is equivalent to $x \in A^c$ by definition. Hence, we have shown the three given equalities. \square

Question 2. Royden 3.21.

Solution. Let $\{f_n\}$ be a sequence of measurable functions with common domain E. Consider the

function $\sup\{f_n\}$, which we will denote as s. Let $c \in \mathbb{R}$. We wish to show that $\{x \in E \mid s(x) > c\}$ is measurable. By the definition of supremum, we have that s(x) > c iff there exists n such that $f_n(x) > c$. Hence, it follows that

$${x \in E \mid s(x) > c} = \bigcup_{n=1}^{\infty} {x \in E \mid f_n(x) > c}.$$

Since the RHS is a countable collection of measurable sets, the set $\{x \in E \mid s(x) > c\}$ is measurable. Since c was arbitrary, s is measurable. The inf case can be shown analogously.

Now, consider the $\limsup \{f_n\}$ case. Observe that $\limsup_{n\to\infty} f_n = \inf_n \sup_{m\geq n} f_n$. Consequently, as we have shown that $\sup\{f_n\}$ and $\inf\{f_n\}$ are measurable functions, we have that $\limsup\{f_n\}$ is measurable. The \liminf case can be shown analogously. \square

Question 3. Royden 3.27.

Solution. Let f=1 on $[0,\infty)$. Define $f_n=\chi_{[0,n]}$ for all n. Then, we have that $f_n\to f$ pointwise everywhere. Suppose for sake of contradiction that there exists a closed set F such that $m([0,\infty)\setminus F)<\epsilon$ and $f_n\to f$ uniformly on F. F is unbounded, as otherwise $m([0,\infty)\setminus F)>\infty$, which is a contradiction. Since $f_n\to f$ uniformly on F, there exists N such that $f_n=f$ on F. As F is unbounded, there exists $x\in F\setminus [0,N]$. Since $f_N(x)=0$ and f(x)=1, this is a contradiction with $f_n=f$ on F. Therefore, we have shown that the conclusion of Egoroff can fail without the finiteness assumption on the measure of domain. \square

Question 4. Royden 4.12.

Solution. Let f a bounded measurable function on a set of finite measure E. Assume g is bounded and f=g a.e. on E. First, as g is a function that equals a measurable function a.e., we have that g is measurable. Since both f and g are bounded measurable functions, we have $\int_E f$ and $\int_E g$ terms well-defined. Let $E_0=\{x\in E\mid f(x)\neq g(x)\}$. Note that $\mathrm{m}(E_0)=0$, as f=g a.e. Consequently, $E\setminus E_0$ and E_0 are disjoint measurable sets. Then, by additivity over domain and linearity of integration, we have

$$\begin{split} \left| \int_{E} f - \int_{E} g \right| &= \left| \int_{E \setminus E_{0}} f - \int_{E \setminus E_{0}} g + \int_{E_{0}} f - \int_{E_{0}} g \right| \\ &= \left| \int_{E \setminus E_{0}} f - g + \int_{E_{0}} f - g \right|. \end{split}$$

As f = g on $E \setminus E_0$, we have

$$\left| \int_{E} f - \int_{E} g \right| = \left| \int_{E_{0}} f - g \right|$$

$$\leq \int_{E_{0}} |f - g|.$$

As both f and g are bounded, there exists M such that $|f - g| \le M$ on E_0 . Hence, we have

$$\left| \int_{E} f - \int_{E} g \right| \leq M \cdot \mathbf{m}(E_{0})$$

$$\leq 0.$$

Therefore, we have $\int_E f = \int_E g$ as desired. \square

Question 5. Royden 4.23.

Solution. Let $\{a_n\}$ be a sequence of non-negative real numbers. Let f be a function on $E = [1, \infty)$, defined by setting $f(x) = a_n$ if $n \le x < n+1$. Then, consider the following sequence of functions of nonnegative real numbers $\{f_n\}$ defined on E such that

$$f_n = \sum_{k=1}^n a_k \chi_{I_k},$$

where I_k denotes the characteristic function of an interval [k, k+1). Notice that $\{f_n\}$ is increasing, and converges to f pointwise everywhere on E. Hence, by the Monotone Convergence Theorem, we have

$$\int_{E} f = \lim_{n \to \infty} \int_{E} f_n.$$

As the integral on the RHS is a simple function with n values, we have

$$\int_{E} f = \lim_{n \to \infty} \sum_{k=1}^{n} a_{k} m(I_{k}).$$

By noting that $m(I_k) = 1$ for all k and subsuming the limit into the summation, we finally obtain

$$\int_{E} f = \sum_{k=1}^{\infty} a_k,$$

as desired. \Box

Question 6. Royden 4.28.

Solution. Let f be integrable over E and C a measurable subset of E. We wish to show that $\int_C f = \int_E f \cdot \chi_C$. First, observe that $f \cdot \chi_C$ is measurable. Furthermore, we have $|f \cdot \chi_C| \leq f$ on E. Hence, by the integral comparison test, we have that $f \cdot \chi_C$ is integrable over E. It follows that

$$\int_{E} f \cdot \chi_{C} = \int_{E} (f \cdot \chi_{C})^{+} - \int_{E} (f \cdot \chi_{C})^{-}.$$

By the additivity over domain of integration for nonnegative measurable functions, we have

$$\int_{E} f \cdot \chi_{C} = \int_{E \setminus C} (f \cdot \chi_{C})^{+} + \int_{C} (f \cdot \chi_{C})^{+}$$
$$- \int_{E \setminus C} (f \cdot \chi_{C})^{-} - \int_{C} (f \cdot \chi_{C})^{-}.$$

We can write $(f \cdot \chi_C)^+$ and $(f \cdot \chi_C)^-$ explicitly as follow:

$$(f \cdot \chi_C)^+ = \begin{cases} \max(f(x), 0) & \text{if } x \in C \\ 0 & \text{if } x \notin C \end{cases}$$
$$(f \cdot \chi_C)^- = \begin{cases} \max(-f(x), 0) & \text{if } x \in C \\ 0 & \text{if } x \notin C. \end{cases}$$

Hence, the above integral can be simplified to

$$\int_{E} f \cdot \chi_{C} = \int_{C} (f \cdot \chi_{C})^{+} - \int_{C} (f \cdot \chi_{C})^{-},$$

which simplifies to

$$\int_{E} f \cdot \chi_{C} = \int_{C} (f \cdot \chi_{C}),$$

as desired. \square