EE236: Experiment No. 8 P Channel MOSFET Characteristics

Rohan Rajesh Kalbag, 20D170033

October 22, 2022

1 Overview of the experiment

1.1 Aim of the experiment

The aim of the experiment is to measure output and transfer characteristics of a PMOS transistor. To also investigate the effect of body bias on the characteristics of the PMOS.

2 Lab Experiment

2.1 Part 1 - Transfer Characteristics (Linear)

2.1.1 Circuit Used for Part 1

2.1.2 Readings Obtained

V_{sg}	Isd (uA)
0	0
0.3	0
0.5	0
0.64	0
0.87	4
0.93	7
1.09	16.4
1.54	37.4
1.8	46.6
2.03	53.4
2.5	65.3
2.99	73.8
3.48	81.1
3.87	85.7
4.12	88.5
4.47	91.9
4.84	95.1
5.05	96.9

2.1.3 Plot Obtained

Id vs Vsd for Linear PMOS

2.2 Part 1 - Transfer Characteristics (Saturation)

2.2.1 Circuit Used for Part 1

2.2.2 Readings Obtained

V_{sg}	I_{sd} (mA)
0	0
0.1	0
0.2	0
0.6	0
0.78	0.002
1.13	0.03
1.56	0.114
2.01	0.247
2.5	0.442
3.06	0.704
3.54	0.965
3.96	1.207
4.47	1.51
4.74	1.704
5.06	1.914

2.2.3 Plot Obtained

ld vs Vsg for Saturated PMOS

2.3 Part 2 - Drain Characteristics

2.3.1 Circuit Used for Part 2

2.3.2 Readings Obtained

		I_{sd} (mA)	
V_{sd}	$V_{sg} = 1.5 \mathrm{V}$	$V_{sg} = 2.5 \mathrm{V}$	$V_{sg} = 3.5 \mathrm{V}$
0	0	0.013	0.017
0.5	0.075	0.182	0.266
1	0.086	0.313	0.495
1.5	0.09	0.377	0.688
2	0.091	0.399	0.79
2.5	0.093	0.408	0.858
3	0.095	0.415	0.885
3.5	0.096	0.423	0.904
4	0.098	0.428	0.918
4.5	0.099	0.433	0.933
5	0.1	0.439	0.94

2.3.3 Plot Obtained

Isd vs Vsd while varying Vsg for PMOS

2.4 Part 3 - Body Effect

2.4.1 Circuit Used for Part 3

2.4.2 Readings Obtained

		$I_d (\mathrm{mA})$	
V_{sg}	$V_{sb} = -1V$	$V_{sb} = -2V$	$V_{sb} = -3V$
0	0	0	0
0.5	0	0	0
1	0.01	0	0
1.5	0.03	0.02	0
2	0.05	0.04	0.03
2.5	0.075	0.06	0.05
3	0.1	0.08	0.07
3.5	0.13	0.11	0.1
4	0.15	0.12	0.11
4.5	0.16	0.14	0.13
5	0.16	0.15	0.14

2.4.3 Plot Obtained

3 Calculations

3.1 Part 1

For Linear Region, Id = K(Vsg - Vt - 0.1) as Vsd = 0.2V. The value of K was approximated from the graph for the linear area region as 29.56e-6 A/V. The Vt is calculated as Vsg - Id/K - 0.1, for Vsg = 1.8V was obtained as **0.123 V**.

The value of g_m is nothing but the slope, which is K which we got as $29.56\mu A/V$