Electronics 2 TEST 2

Professor Cliver ENT-2156

(EEET-221 15442)

Name:			
Class time (ex. 1 p.m.):			
\ 1 /			

- 1. If $V_{IN1}=6V, V_{IN2}=2V, V_{O(SAT)}=\pm 13 V$ and, $R_L=5K\Omega$ in figure 1, determine the output voltage V_O of the comparitor.
 - (a) -13 V
 - (b) 13 V
 - (c) 4 V
 - (d) 4.0 V
- 2. If $V_{IN1} = 6V$, $V_{IN2} = 1V$, $V_{O(SAT)} = \pm 13V$ and, $R_L = 4K\Omega$ in figure 1, determine the output current I_L of the comparitor (the current through R_L).
 - (a) 1.25 mA
 - (b) 3.25 mA
 - (c) 0.88 mA
 - (d) -3.25 mA

Figure 1

- 3. For a non-inverting amplifier with $Rf = 9K\Omega$, $Ri = 5K\Omega$ and the total RMS noise level referred to the input is $7\mu V$. Select the output noise level.
 - (a) $12.60 \ \mu V$
 - (b) $19.60 \ \mu V$
 - (c) $7.00 \ \mu V$
 - (d) $-12.60 \ \mu V$

- 4. An amplifier has a common mode gain of 30 dB and a differential gain of 110 dB. What is the CMRR (common mode rejection ratio)?
 - (a) 110.00 dB
 - (b) 80.00 dB
 - (c) 3.67 dB
 - (d) 30.00 dB
- 5. An op-amp has a slew-rate of $5\frac{V}{\mu s}$ and is configured as a non-inverting amplifier $R_F = 9.6K\Omega$ and $R_I = 4.2K\Omega$. If a 8.00mV peak sine wave is applied to the non-inverting input, determine the slew rate limiting frequency (maximum sine wave frequency).
 - (a) 99.5 MHz
 - (b) 30.3 MHz
 - (c) 190.2 MHz
 - (d) 227.4 MHz

- 6. An op-amp has a unity gain frequency of 4 MHz and is configured as a non-inverting amplifier $R_f = 10.0K\Omega$ and $R_i = 4.4K\Omega$. Calculate the rise time (t_{CL}) associated with the amplifier.
 - (a) 818.18 ns
 - (b) 1.22 ns
 - (c) 4.00 ns
 - (d) 286.36 ns

The problems on this page both use the same figure.

7. Sketch the input-output characteristic curve given $R_1=8.1K\Omega$, $R_2=3.1K\Omega$ and $V_{O(SAT)}=\pm 13V$.

8. Sketch the output curve given the input curve and $R_1 = 8.2K\Omega$, $R_2 = 4.6K\Omega$ and $V_{O(SAT)} = \pm 14V$.

The problems on this page both use the same figure.

9. Sketch the input-output characteristic curve given $R_1=9.4K\Omega, R_2=3.3K\Omega$ and $V_{O(SAT)}=\pm13V.$

10. Sketch the output curve given the input curve and $R_1 = 9.0K\Omega$, $R_2 = 4.9K\Omega$ and $V_{O(SAT)} = \pm 13V$.

The problems on this page both use the same figure.

11. Sketch the input-output characteristic curve (input is Vin1) given $R_1 = 9.6K\Omega$, $R_2 = 3.9K\Omega$ and $V_{O(SAT)} = \pm 13V$.

12. Sketch the output curve given the input (Vin1) curve and $R_1 = 9.7K\Omega$, $R_2 = 3.2K\Omega$ and $V_{O(SAT)} = \pm 12V$.

