

Análise Complexa e Equações Diferenciais 1º Semestre 2016/2017

2º Teste — Versão A

(CURSOS: MEBIOL, MEQ)

17 de Dezembro de 2016, 10h

[2,0 val.] 1. Considere a equação diferencial

$$e^{t} + y - 2e^{-t} + (1 + ye^{-t})\frac{dy}{dt} = 0.$$

Determine um fator integrante que dependa apenas da variável t e resolva o problema de valor inicial y(0)=0 indicando o intervalo máximo de definição da solução.

Resolução:

Chamemos $M(t,y)=e^t+y-2e^{-t}$ e $N(t,y)=1+ye^{-t}$. A equação é então $M(t,y)+N(t,y)\frac{dy}{dt}=0$, e não é exacta pois

$$\frac{\partial M}{\partial y} = 1 \neq \frac{\partial N}{\partial t} = -ye^{-t}.$$

Como sugerido no enunciado, procuramos agora um factor integrante $\mu=\mu(t)$, ou seja, tal que multiplicando toda a equação por μ , ela se reduza a uma equação exacta. Para isso, μ tem necessariamente de satisfazer a equação

$$\frac{\partial \mu M}{\partial y} = \frac{\partial \mu N}{\partial t} \Leftrightarrow \mu(t) \frac{\partial M}{\partial y} = \frac{d\mu}{dt} N + \mu(t) \frac{\partial N}{\partial t},$$

ou seja,

$$\frac{d\mu}{dt} = \left(\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial t}}{N(t, y)}\right)\mu(t),$$

pelo que existe um tal factor integrante μ , só função de t, se o termo $\left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial t}\right)$ for também função apenas de t. E, de facto,

$$\left(\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial t}}{N(t, y)}\right) = \frac{1 + ye^{-t}}{1 + ye^{-t}} = 1,$$

donde o factor integrante $\mu=\mu(t)$ satisfaz a equação diferencial ordinária, linear homogénea,

$$\frac{d\mu}{dt} = \mu,$$

e daqui concluímos que poderemos escolher $\mu(t)=e^t.$

Multiplicando então toda a equação inicial dada por e^t obtemos a nova equação equivalente (agora evidentemente exacta)

$$e^{2t} + ye^t - 2 + (e^t + y)\frac{dy}{dt} = 0.$$

Existe, portanto, um potencial $\Phi(t,y)$, definido em \mathbb{R}^2 , tal que

$$\begin{cases} \frac{\partial \Phi}{\partial t} = e^{2t} + ye^t - 2\\ \frac{\partial \Phi}{\partial y} = e^t + y. \end{cases}$$

Primitivando a primeira destas equações em ordem a t obtém-se

$$\Phi(t,y) = \frac{e^{2t}}{2} + ye^t - 2t + \alpha(y),$$

e substituindo na segunda equação podemos obter o termo $\alpha(y)$ que resta:

$$e^t + \alpha'(y) = e^t + y \Leftrightarrow \alpha'(y) = y \Leftrightarrow \alpha(y) = \frac{y^2}{2} + c, \qquad c \in \mathbb{R}.$$

O potencial é assim dado por

$$\Phi(t,y) = \frac{e^{2t}}{2} + ye^t - 2t + \frac{y^2}{2} + c,$$

e a solução na forma implícita por

$$\Phi(t,y) = c \Leftrightarrow e^{2t} + 2ye^t - 4t + y^2 = c \Leftrightarrow (e^t + y)^2 - 4t = c,$$

com c arbitrário em \mathbb{R} . Finalmente, usamos a condição inicial para determinar o valor de c, específico para o problema de valor inicial em questão:

$$c = (e^0 + y(0))^2 - 4 \cdot 0 = 1,$$

concluindo-se assim que a solução do PVI, na forma implícita, é dada por

$$(e^t + y)^2 - 4t = 1.$$

Esta equação permite explicitar y como função de t. Assim, tem-se

$$(e^t + y(t))^2 - 4t = 1 \Leftrightarrow e^t + y(t) = \pm \sqrt{1 + 4t} \Leftrightarrow y(t) = -e^t \pm \sqrt{1 + 4t}.$$

Por fim, substituindo t=0 e usando a condição inicial, imediatamente se conclui que, dos dois sinais possíveis na raiz quadrada, a solução do PVI corresponde ao sinal positivo

$$y(t) = -e^t + \sqrt{1+4t}.$$

O intervalo máximo de definição da solução é, evidentemente,

$$t \in \left] -\frac{1}{4}, \infty \right[,$$

onde y é C^1 . Relembramos que, apesar da raíz quadrada estar definida em $t=-\frac{1}{4}$, ela não é diferenciável nesse ponto e por isso este não faz parte do intervalo máximo de definição de y como solução da equação diferencial ordinária.

2. Considere a matriz

$$A = \left[\begin{array}{cc} 2 & -1 \\ 1 & 2 \end{array} \right].$$

[1,5 val.]

(a) Calcule e^{At} .

[1,0 val.]

(b) Determine uma solução particular para o sistema $\mathbf{x}' = A\mathbf{x} + (0, e^{2t})$.

Resolução:

(a) Começamos por determinar os valores e vectores próprios da matriz A. O seu polinómio característico $\det(A-\lambda I)$ tem raízes:

$$\det(A - \lambda I) = 0 \Leftrightarrow (2 - \lambda)^2 + 1 = 0 \Leftrightarrow 2 - \lambda = \pm i \Leftrightarrow \lambda = 2 \pm i.$$

Donde se conclui que os dois valores próprios são complexos, necessariamente conjugados. Basta-nos agora calcular os vectores próprios associados a apenas um dos valores próprios, por exemplo $\lambda=2+i$, porque sabemos que para $\lambda=2-i$ os vectores próprios são também conjugados. Assim,

$$\det(A - \lambda I)\mathbf{v} = \mathbf{0} \Leftrightarrow \begin{bmatrix} -\mathbf{i} & -1 \\ 1 & -\mathbf{i} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Leftrightarrow v_2 = -\mathbf{i}v_1.$$

Os vectores próprios associados a $\lambda=2+i$ são, portanto, da forma

$$\left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] = \alpha \left[\begin{array}{c} 1 \\ -i \end{array}\right].$$

Conclui-se imediatamente que para $\lambda=2-\mathrm{i}$ serão

$$\left[\begin{array}{c} v_1 \\ v_2 \end{array}\right] = \alpha \left[\begin{array}{c} 1 \\ \mathrm{i} \end{array}\right].$$

A matriz A é assim diagonalizável, usando estes dois tipos de vectores próprios, linearmente independentes, como nova base. Assim,

$$A = S\Lambda S^{-1},$$

com

$$S = \left[\begin{array}{cc} 1 & 1 \\ -\mathrm{i} & \mathrm{i} \end{array} \right] \qquad \mathrm{e} \qquad \left[\begin{array}{cc} 2+\mathrm{i} & 0 \\ 0 & 2-\mathrm{i} \end{array} \right].$$

Por fim, $e^{At} = Se^{\Lambda t}S^{-1}$ e assim

$$\begin{array}{lll} e^{At} & = & \left[\begin{array}{cc} 1 & 1 \\ -\mathrm{i} & \mathrm{i} \end{array} \right] \left[\begin{array}{cc} e^{(2+\mathrm{i})t} & 0 \\ 0 & e^{(2-\mathrm{i})t} \end{array} \right] \left[\begin{array}{cc} \frac{1}{2} & -\frac{1}{2\mathrm{i}} \\ \frac{1}{2} & \frac{1}{2\mathrm{i}} \end{array} \right] \\ & = & \left[\begin{array}{cc} \frac{e^{(2+\mathrm{i})t} + e^{(2-\mathrm{i})t}}{2} & -\frac{e^{(2+\mathrm{i})t} - e^{(2-\mathrm{i})t}}{2\mathrm{i}} \\ \frac{e^{(2+\mathrm{i})t} - e^{(2-\mathrm{i})t}}{2\mathrm{i}} & -\frac{e^{(2+\mathrm{i})t} + e^{(2-\mathrm{i})t}}{2\mathrm{i}} \end{array} \right] \\ & = & \left[\begin{array}{cc} e^{2t} \cos t & -e^{2t} \sin t \\ e^{2t} \sin t & e^{2t} \cos t \end{array} \right]. \end{array}$$

(b) Uma solução particular do sistema não homogéneo pode ser obtida pelo correspondente termo da fórmula da variação das constantes

$$e^{At} \int e^{-At} \mathbf{b}(t) dt,$$

o que, substituindo pela exponencial matricial calculada na alínea anterior, e pelo termo não homogéneo do sistema dado ${\bf b}(t)=(0,e^{2t})$ dá

$$\begin{bmatrix} e^{2t}\cos t & -e^{2t}\sin t \\ e^{2t}\sin t & e^{2t}\cos t \end{bmatrix} \int \begin{bmatrix} e^{-2t}\cos t & e^{-2t}\sin t \\ -e^{-2t}\sin t & e^{-2t}\cos t \end{bmatrix} \begin{bmatrix} 0 \\ e^{2t} \end{bmatrix} dt$$

$$= \begin{bmatrix} e^{2t}\cos t & -e^{2t}\sin t \\ e^{2t}\sin t & e^{2t}\cos t \end{bmatrix} \int \begin{bmatrix} \sin t \\ \cos t \end{bmatrix} dt$$

$$= \begin{bmatrix} e^{2t}\cos t & -e^{2t}\sin t \\ e^{2t}\sin t & e^{2t}\cos t \end{bmatrix} \begin{bmatrix} -\cos t \\ \sin t \end{bmatrix}$$

$$= \begin{bmatrix} -e^{2t} \\ 0 \end{bmatrix}.$$

3. Considere a equação diferencial

$$y'' + 2y' = g(t)$$

sendo g(t) uma função contínua em \mathbb{R} .

- [1,0 val.] (a) Determine a solução geral da equação no caso em que $g(t) \equiv 0$.
 - (b) Determine a solução da equação que verifica y(0) = y'(0) = 0 no caso em que $g(t) = 5 \operatorname{sen} t + 8t$.

Resolução:

[1,5 val.]

(a) Neste caso a equação é homogénea e pode escrever-se como

$$D^2y + 2Dy = 0 \Leftrightarrow D(D+2)y = 0.$$

A solução geral desta equação homogénea, de segunda ordem, ou seja, o conjunto de todas as possíveis soluções, constitui um espaço vectorial de dimensão dois. Pelo que podemos obtê-la por combinação linear arbitrária de duas soluções linearmente independentes (i.e. uma base do espaço das soluções). Pela factorização anterior concluimos que os valores próprios do polinómio característico são $\lambda=0$ e $\lambda=-2$, pelo que duas soluções linearmente indepentes serão y(t)=1 e $y(t)=e^{-2t}$. O espaço gerado por esta base, ou seja, a solução geral da equação, será assim dada por

$$y(t) = c_1 + c_2 e^{-2t},$$

com $c_1, c_2 \in \mathbb{R}$ constantes reais arbitrárias.

(b) Para resolver este problema de valor inicial, para a equação não homogénea, utilizamos o método dos aniquiladores.

A função $\sin t$ corresponde à existência dos valores próprios complexos (necessariamente conjugados) i e -i, portanto o seu aniquilador é $(D-i)(D+i)=(D^2+1)$. A função t corresponde à repetição dupla do valor próprio zero, ou seja é (evidentemente) aniquilada por D^2 . Assim, o aniquilador do termo não homogéneo $g(t)=5 \sin t+8t$ é $D^2(D^2+1)$.

Aplicando este aniquilador a ambos os membros da equação não homogénea dada, obtemos a equação homogénea aumentada

$$D^3(D^2+1)(D+2)y = 0,$$

cuja solução geral é

$$y(t) = c_1 + c_2 e^{-2t} + c_3 t + c_4 t^2 + c_5 \cos t + c_6 \sin t.$$

De todos estes termos, os dois primeiros já sabemos, pela alínea anterior, que correspondem à solução geral homogénea, pela que uma solução particular da equação não homogénea corresponderá a

$$y_p(t) = c_3 t + c_4 t^2 + c_5 \cos t + c_6 \sin t$$
,

com as constantes c_3, c_4, c_5 e c_6 convenientemente escolhidas. Assim, substituindo na equação original, e notando que

$$y_p''(t) = 2c_4 - c_5 \cos t - c_6 \sin t,$$

e que

$$y_p'(t) = c_3 + 2c_4t - c_5 \sin t + c_6 \cos t,$$

obtemos

$$(2c_4 + 2c_3) + (4c_4)t + (2c_6 - c_5)\cos t + (-c_6 - 2c_5)\sin t = 5\sin t + 8t$$

donde resulta o sistema

$$\begin{cases} 2c_4 + 2c_3 = 0 \\ 4c_4 = 8 \\ 2c_6 - c_5 = 0 \\ -c_6 - 2c_5 = 5 \end{cases}$$

e daqui se conclui que $c_3=-2, c_4=2, c_5=-2$ e $c_6=-1$, ou seja a solução particular é

$$y_n(t) = -2t + 2t^2 - 2\cos t - \sin t$$
,

e a solução geral não homogénea é

$$y(t) = c_1 + c_2 e^{-2t} - 2t + 2t^2 - 2\cos t - \sin t$$

com $c_1, c_2 \in \mathbb{R}$. Resta finalmente acertar estas duas últimas constantes de forma a que a solução y satisfaça a condição inicial. Para isso

$$y(0) = 0 \Leftrightarrow c_1 + c_2 - 2 = 0$$
,

е

$$y'(0) = 0 \Leftrightarrow -2c_2 - 2 - 1 = 0,$$

donde se conclui que $c_1=7/2$ e $c_2=-3/2$, pelo que a solução do problema de valor inicial é

$$y(t) = \frac{7}{2} - \frac{3}{2}e^{-2t} - 2t + 2t^2 - 2\cos t - \sin t.$$

[1,0 val.] 4. (a) Determine o desenvolvimento em série de senos da função

$$f(x) = \begin{cases} -2x & \text{se } 0 \le x < \pi \\ 0 & \text{se } \pi \le x \le 2\pi \end{cases}$$

Estude a convergência pontual da série em \mathbb{R} .

[1,0 val.] (b) Resolva o problema de valor inicial e valores na fronteira

$$\begin{cases} \frac{\partial u}{\partial t} = (2t + \cos t) \frac{\partial^2 u}{\partial x^2} & 0 < x < 2\pi , t > 0 \\ u(t, 0) = u(t, 2\pi) = 0 & t > 0 \\ u(0, x) = f(x) & 0 < x < 2\pi \end{cases}$$

Resolução:

(a) Para escrever a função f, definida em $[0,2\pi]$ como uma série de Fourier de senos, começamos por considerar o prolongamento ímpar de f ao intervalo $[-2\pi,0]$. Obtemos assim uma função ímpar em $[-2\pi, 2\pi]$ pelo que a correspondente série de Fourier, com $L=2\pi$, terá os correspondentes coeficientes dos cosenos iguais a zero, e os dos senos

$$b_n = \frac{2}{2\pi} \int_0^{2\pi} f(x) \operatorname{sen}\left(\frac{nx}{2}\right) dx.$$

Mas f(x) = 0 para $x \in [\pi, 2\pi]$ pelo que

$$b_n = -\frac{1}{\pi} \int_0^{\pi} 2x \operatorname{sen}\left(\frac{nx}{2}\right) dx$$

$$= \frac{4}{n\pi} \left(\left[x \cos\left(\frac{nx}{2}\right) \right]_0^{\pi} - \int_0^{\pi} \cos\left(\frac{nx}{2}\right) dx \right)$$

$$= \frac{4}{n\pi} \left(\pi \cos\left(\frac{n\pi}{2}\right) - \frac{2}{n} \left[\operatorname{sen}\left(\frac{nx}{2}\right) \right]_0^{\pi} \right)$$

$$= \frac{4}{n\pi} \left(\pi \cos\left(\frac{n\pi}{2}\right) - \frac{2}{n} \operatorname{sen}\left(\frac{n\pi}{2}\right) \right).$$

Assim, a série de Fourier de senos de f é

$$\sum_{n=0}^{\infty} \frac{4}{n} \left(\cos \left(\frac{n\pi}{2} \right) - \frac{2}{\pi n} \operatorname{sen} \left(\frac{n\pi}{2} \right) \right) \operatorname{sen} \left(\frac{nx}{2} \right).$$

Como o prolongamento ímpar de f, em $[-2\pi, 2\pi]$, é seccionalmente C^1 , com descontinuidades em $x=\pm\pi$, o teorema da convergência pontual das séries de Fourier garante que a correspondente série de senos converge, em cada $x \in [-2\pi, 2\pi]$, para

$$\begin{cases} 0 & \text{se} & \pi < |x| \le 2\pi \\ \pi & \text{se} & x = -\pi \\ -\pi & \text{se} & x = \pi \\ -2x & \text{se} & |x| < \pi \end{cases}$$

Nos restantes pontos de $x \in \mathbb{R}$ a série converge para o prolongamento periódico, de período 4π , desta função.

(b) Observamos que a equação diferencial parcial dada, assim como as condições de fronteira, são homogéneas. É válido, por isso, o princípio da sobreposição, ou seja, funções obtidas por combinações lineares arbitrárias de soluções da equação e das condições de fronteira ainda as satisfazem.

Vamos por isso usar o método de separação de variáveis, construindo soluções gerais por combinação linear (eventualmente infinita) de soluções mais simples, da forma u(t,x)=T(t)X(x), para $0 \le x \le 2\pi$ e $t \ge 0$. Substituindo na equação diferencial parcial obtemos

$$T'(t)X(x) = (2t + \cos t)T(t)X''(x) \Leftrightarrow \frac{T'(t)}{(2t + \cos t)T(t)} = \frac{X''(x)}{X(x)}.$$

Esta igualdade só é possivel se as funções dos dois lados da igualdade, de variáveis diferentes x e t, forem ambas iguais a uma constante, digamos λ . Portanto é equivalente ao sistema seguinte, onde λ é um número real qualquer

$$\begin{cases} T'(t) = \lambda(2t + \cos t)T(t) \\ X''(x) - \lambda X(x) = 0. \end{cases}$$

A primeira equação é uma equação linear homogénea para T(t), cuja solução geral é

$$T(t) = Ae^{\lambda(t^2 + \operatorname{sen} t)} \operatorname{com} A \in \mathbb{R}.$$

A expressão para as soluções da segunda equação depende do sinal de λ . Temos

$$X(x) = \begin{cases} Be^{\sqrt{\lambda}x} + Ce^{-\sqrt{\lambda}x} & \text{se } \lambda > 0 \\ Bx + C & \text{se } \lambda = 0 \\ B\cos\sqrt{-\lambda}x + C\sin\sqrt{-\lambda}x & \text{se } \lambda < 0. \end{cases}$$

onde B, C são constantes reais.

As condições de fronteira homogéneas $u(t,0)=u(t,2\pi)=0$ para as soluções da forma T(t)X(x) não nulas dizem que

$$T(t)X(0) = T(t)X(2\pi) = 0 \Leftrightarrow \begin{cases} X(0) = 0 \\ X(2\pi) = 0 \end{cases}$$

Impondo estas condições às soluções X(x) determinadas acima temos

(i) Para $\lambda > 0$:

$$\begin{cases} B+C=0\\ Be^{\sqrt{\lambda}2\pi}+Ce^{-\sqrt{\lambda}2\pi}=0 \end{cases} \Leftrightarrow \begin{cases} B=0\\ C=0 \end{cases}$$

(ii) Para $\lambda = 0$:

$$\left\{ \begin{array}{l} C=0 \\ B2\pi+C=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} B=0 \\ C=0 \end{array} \right.$$

(iii) Para $\lambda < 0$:

$$\left\{ \begin{array}{l} B=0 \\ B\cos\sqrt{-\lambda}2\pi+C\sin\sqrt{-\lambda}2\pi=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} B=0 \\ C=0 \text{ ou } \sqrt{-\lambda}2\pi=n\pi \end{array} \right.$$

donde obtemos as soluções não nulas $X(x)=C\sin\left(\frac{nx}{2}\right)$ com $n=1,2,\cdots$, para $\lambda=-\frac{n^2}{4}$.

As soluções não triviais da equação diferencial da forma T(t)X(x) que satisfazem as condições de fronteira são portanto as funções da forma

$$A \operatorname{sen}\left(\frac{nx}{2}\right) e^{-\frac{n^2}{4}(t^2 + \operatorname{sen}t)}$$

 $\mathsf{com}\ A \in \mathbb{R}\ \mathsf{e}\ n = 1, 2, \ldots$

Procuramos agora uma solução formal para a equação e condição inicial que seja uma "combinação linear infinita" das soluções obtidas acima:

$$u(x,t) = \sum_{n=1}^{\infty} c_n \operatorname{sen}\left(\frac{nx}{2}\right) e^{-\frac{n^2}{4}(t^2 + \operatorname{sen}t)}.$$

Substituindo esta expressão na condição inicial u(0,x)=f(x) obtemos

$$\sum_{n=1}^{\infty} c_n \operatorname{sen}\left(\frac{nx}{2}\right) = f(x)$$

pelo que os coeficientes c_n são os coeficientes da série de senos obtida na alínea anterior. Sendo assim

$$c_n = \frac{4}{n} \left(\cos \left(\frac{n\pi}{2} \right) - \frac{2}{\pi n} \operatorname{sen} \left(\frac{n\pi}{2} \right) \right)$$

e portanto a solução é

$$u(t,x) = \sum_{n=1}^{\infty} \frac{4}{n} \left(\cos \left(\frac{n\pi}{2} \right) - \frac{2}{\pi n} \operatorname{sen} \left(\frac{n\pi}{2} \right) \right) \operatorname{sen} \left(\frac{nx}{2} \right) e^{-\frac{n^2}{4} (t^2 + \operatorname{sen} t)}.$$

[1,0 val.] 5. Considere a constante real α e a matriz

$$A = \left[\begin{array}{cc} -2 & \alpha \\ -1 & 0 \end{array} \right].$$

Determine para que valores de $\alpha \in \mathbb{R}$ <u>todas</u> as soluções do sistema $\mathbf{x}' = A\mathbf{x}$ são limitadas, para $t \in \mathbb{R}^+$.

Resolução:

Os valores próprios da matriz A dada são, em termos de α dados por

$$\det(A - \lambda I) = 0 \Leftrightarrow \lambda^2 + 2\lambda + \alpha = 0 \Leftrightarrow \lambda = -1 \pm \sqrt{1 - \alpha}.$$

Será o sinal da parte real destes dois valores próprios que determina se a correspondente exponencial será crescente, decrescente ou constante, e portanto se as soluções serão ilimitadas ou limitadas. Em resumo, procuramos α para o qual os valores próprios tenham parte real menor ou igual a zero.

Estudando os diferentes casos em detalhe, em primeiro lugar, para $\alpha < 0$, tem-se que $\sqrt{1-\alpha} > 1$ e consequentemente, dos dois valores próprios $\lambda_1 = -1 - \sqrt{1-\alpha}$ e $\lambda_2 = -1 + \sqrt{1-\alpha}$, este último λ_2 é positivo. As soluções da forma $e^{\lambda_2 t} \mathbf{v}$ serão evidentemente ilimitadas para t>0, donde neste caso não se verifica a condição exigida.

Para $\alpha=0$ os dois valores próprios são $\lambda_1=-2$ e $\lambda_2=0$. Como são diferentes, os seus respectivos vectores próprios, digamos $\mathbf{v_1}$ e $\mathbf{v_2}$, são linearmente independentes e a solução geral do sistema será uma combinação linear de $e^{-2t}\mathbf{v_1}$ e $\mathbf{v_2}$, ambas limitadas em t>0 (a primeira porque converge para zero, quando $t\to\infty$ e a segunda por ser constante). A solução geral será, por isso, também limitada.

Para $0<\alpha<1$ os dois valores próprios $\lambda_1=-1-\sqrt{1-\alpha}$ e $\lambda_2=-1+\sqrt{1-\alpha}$ são reais, diferentes e ambos negativos. A solução geral, combinação linear de $e^{\lambda_1 t} \mathbf{v_1}$ e $e^{\lambda_2 t} \mathbf{v_2}$, é limitada em t>0 porque converge para zero, quando $t\to\infty$.

Para $\alpha=1$ os dois valores próprios são iguais $\lambda_1=\lambda_2=-1$, mas a multiplicidade geométrica (ou seja, o número de vectores próprios independentes associados a este único valor próprio) é apenas 1, porque a matriz A não é diagonal. Neste caso, como explicado anteriormente, a exponencial matricial e^{At} , obtida com recurso à forma canónica de Jordan, fará surgir, além de termos da forma e^{-t} , outros da forma te^{-t} . Ambos convergem para zero, quando $t\to\infty$ pelo que estas soluções também são limitadas em t>0.

Por fim, para $\alpha>1$, tem-se que $1-\alpha<0$ e portanto os valores próprios são complexos conjugados $-1\pm \mathrm{i}\sqrt{\alpha-1}$. Neste caso, a parte real dos valores próprios é negativa pelo que as soluções, além dos termos oscilatórios (senos e cosenos de $(\sqrt{\alpha-1})t$) resultantes da componente imaginária dos valores próprios, terão também presente o termo e^{-t} que fará as respectivas soluções convergir para zero, quando $t\to\infty$ pelo que estas soluções também são limitadas em t>0.

Conclui-se assim que todas as soluções do sistema $\mathbf{x}' = A\mathbf{x}$ são limitadas, para $t \in \mathbb{R}^+$, quando $\alpha \geq 0$.