Kangcheng Li Com Sci 161 Assignment 5

1. Consider the following sentences and decide for each whether it is valid, unsatisfiable, or neither

(a) Neither

Smoke	Fire	Smoke => Fire	~Smoke => ~Fire	$(Smoke \Rightarrow Fire) \Rightarrow (\sim Smoke \Rightarrow \sim Fire)$
T	T	T	T	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

(b) Neither

Smoke	Fire	Heat	Smoke =>	Smoke \lor	(Smoke ∨	(Smoke => Fire) =>	
			Fire	Heat	Heat) => Fire	$((Smoke \lor Heat) \Rightarrow Fire)$	
T	T	T	T	T	T	T	
T	T	F	T	T	T	T	
T	F	T	F	T	F	T	
T	F	F	F	T	F	T	
F	T	T	T	T	T	T	
F	T	F	T	F	T	T	
F	F	T	T	T	F	F	
F	F	F	T	F	T	T	

(c) Valid

	(c) vana							
Smoke	Fire	Heat	Smoke ∧ Heat	(Smoke ∧ Heat) => Fire	Smoke => Fire	Heat => Fire	(Smoke => Fire) ∨ (Heat => Fire)	((Smoke ∧ Heat) => Fire) <=> ((Smoke => Fire) ∨ (Heat => Fire))
T	T	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T	T
T	F	T	T	F	F	F	F	T
T	F	F	F	T	F	T	T	T
F	T	T	F	T	T	T	T	T
F	T	F	F	T	T	T	T	T
F	F	T	F	T	T	F	T	T
F	F	F	F	T	T	T	T	T

2. (a) Represent the above information using a propositional logic knowledge base (set of sentences in propositional logic).

If the unicorn is mythical, then it is immortal Mythical => ~Mortal

if it is not mythical, then it is mortal and it is a mammal \sim Mythical => (Mortal \wedge Mammal)

If the unicorn is either immortal or a mammal, then it is horned (\sim Mortal \vee Mammal) => Horned

The unicorn is magical if it is horned Horned => Magical

2. (b) Convert the knowledge base into CNF.

Propositional Logic CNF

(1) Mythical \Rightarrow ~Mortal (5) ~Mythical \lor ~Mortal

(2) \sim Mythical \Rightarrow (Mortal \land Mammal) (Mortal \lor Mythical) \land (Mammal \lor Mythical)

(Can be broken down as)(6) (Mortal ∨ Mythical)(7) (Mammal ∨ Mythical)

(3) (\sim Mortal \vee Mammal) => Horned (Mortal \vee Horned) \wedge (\sim Mammal \vee Horned)

(Can be broken down as) (8) (Mortal ∨ Horned) (9) (~Mammal ∨ Horned)

(4) Horned => Magical (10) \sim Horned \vee Magical

2. (c) (i) Is it possible to derive from the knowledge base that the unicorn is mythical? (ii) How about magical? (iii) Horned? Justify your answers using resolution.

Assume the unicorn is not mythical

(11) ~Mythical Assumption

(12) (Mortal ∧ Mammal)
(13) Mortal
(14) Mammal
Modus Ponens (2) and (11)
And Elimination (12)
And Elimination (12)

(15) ~Mortal ∨ Mammal
(16) Horned
(17) Magical
(18) ~Mythical
Resolution (5) and (7)
Modus Ponens (3) and (15)
Modus Ponens (4) and (16)
Disjunctive syllogism (5) and (13)

We cannot find a contradiction, which means KB $\wedge \neg \alpha$ is satisfiable. Thus, we cannot prove that the unicorn is mythical from the knowledge base

Assume the unicorn is not magical

(19) ~Magical Assumption

(20) ~Horned Disjunctive syllogism (10) and (19)

(21) ~Mortal ∨ Mammal Resolution (5) and (7) (22) Horned Modus Ponens (3) and (21)

We have found the contradiction between (20) and (22), which means KB $\wedge \neg \alpha$ is unsatisfiable.

Thus, we have proved that the unicorn is magical

Assume the unicorn is not horned

(23) ~Horned Assumption

(24) MortalDisjunctive syllogism (8) and (23)(25) ~MammalDisjunctive syllogism (9) and (23)(26) MythicalDisjunctive syllogism (7) and (25)(27) ~MortalDisjunctive syllogism (5) and (26)

We have found the contradiction between (24) and (27), which means KB $\land \neg \alpha$ is unsatisfiable. Thus, we have proved that the unicorn is horned

(3) Suppose the test comes back positive. What's the probability that oil is present?

```
P(oil) = 0.5
P(gas) = 0.2
P(neither) = 0.3
P(positive | oil) = 0.9
P(positive | gas) = 0.3
P(positive | neither) = 0.1
```

We want to have P(oil | positive)

```
P(positive)
= P(oil) * P(positive | oil) + P(gas) * P(positive | gas) + P(neither) * P(positive | neither)
= 0.5*0.9 + 0.2*0.3 + 0.3*0.1 = 0.45 + 0.06 + 0.03
= 0.54
P(oil | positive)
= P(oil) * P(positive | oil) / P(positive)
= (0.5*0.9) / (0.54)
= 5/6
\approx 0.833
```