top.vhd:

בקובץ הזה נמצא Entity בשם top בעל הכניסות והמוצאים הבאים:

שם הפורט	סוג	הסבר
rst	Input bit	ביט שתפקידו לאפס את המערכת
clk	Input bit	סיגנל מחזורי שמסנכרן את כל המערכת
ena	Input bit	סיגנל אשר מפעיל את פעולת המערכת
din	Input vector (n bits)	ווקטור הכניסה, נדגם בכל עליית שעון (clk)
cond	Input integer (range	מספר אשר פוקד איזה סוג תת-סדרה אנו
Cond	0-3)	בודקים
detector	Output bit	ביט שמאשר שתת-הסדרה תקינה

.updateCondProcess, counterProc, delayProc, הבאים: processes מביל את ה-

,detector_val.vhd ,Cond.vhd,Counter.vhd ,Adder.vhd : בעצם היצוג של תת מודולים הבאים: SynchronousDelay.vhd **Ctiling** הנמנצאים בתיקיה

איור המודול:

:updateCondProcess

process זה אחראי לעדכון ביט הכניסה (cinSIG) ואחד משני וקטורי הכניסה למודול (adderInSIG) Adder). למעשה, יש לעדכן את ערכים אלו כל פעם כאשר הערך של cond משתנה – כי אנחנו מתאימים אותם רק ל-cond.בנוסף הוא אחרי cond לעדכן את ערכים אלו כל פעם כאשר הערך של מודול (adderS) Adder). כל פעם שיש שינוי בערך הסיגנל adderS, אנחנו בודקים על בדיקת שינוי בערך של המוצא של מודול (din[i]. כאשר הם שווים, זה אומר ששני סיגנלים עוקבים מקיימים את תנאי תת-הסדרה הנתונה, ונעלה את הביט riseSig להיות '1'.

:counterProc

שאחראי על ספרות כמות הפעמים שרצף תקין הופיע. process

:delayProc

מייצר דילאי של מחזור ומוציא את הקלט הנוכחי וקלט שהיה מחזור 1 קודם.

:דיאגרמה נקייה

:דיאגרמה עם הסבר

ניתן לראות מה שמסומן באדום וצהוב בהתחלה זה מצב של RST של המעגל והדלת ENABLE FLAG.אחרי זה ניתן לראות שקיים רצף של 7 תנאי שהתקיימו לכן detector עולה ל1.בTB הנוכחי ניתן לראות מצב מעניין שמסומן בצבע כחול. שקיים רצף של 7 תנאי שהתקיימו לראות שקלט השתנה גם detector נשאר על 1 למרות שלא הופיע רצף של 7 באותו COND אף ניתן לראות שקלט השתנה גם כך ש RST עדיין 1 ולכן detector נשאר על 1.בריבוע האחרון בצבע ירוק ניתן לראות שכאשר הדליקו דגל RST אזי פלט של מעגל התאפס.

:wave כדי שנוכל לראות את טבלת האמת של גרף ה-LIST

ps-	/tb final/rst-/tb final/detector-
delta-	/tb final/ena-
	/tb_final/clk-
	/tb_final/din-
	/tb_final/cond-
55000000 +1	0 1 1 00000101 0
60000000 +1	0 1 0 00000110 0
65000000 +1	0 1 1 00000110 0 0
70000000 +1	0 1 1 00000101 0 0 0 1 0 00000110 0 0 0 1 1 00000110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75000000 +1	0 1 1 00000111 0
80000000 +1	0 1 0 00001000 0 0
85000000 +1	0 1 1 00001000 0 0
90000000 +1	0 1 0 00001001 0 0
95000000 +1	0 1 1 00001001 0 0
1000000000 +1	0 1 0 00001010 0
105000000 +1	0 1 1 00001010 0 0
105000000 +3	0 1 1 00001010 0 1
1100000000 +1	0 1 0 00001011 0 1
115000000 +1	0 1 1 00001011 0 1
120000000 +1	0 1 0 00001100 0 1
125000000 +1	0 1 1 00001100 0 1
130000000 +1	0 1 0 00001101 0 1
135000000 +1	0 1 1 00001011 0 1 0 1 0 00001100 0 1 0 1 1 00001100 0 1 0 1 0 00001101 0 1 0 1 1 00001101 0 1
140000000 +1	0 1 0 00001111 1 1
145000000 +1	0 1 1 00001111 1 1
1500000000 +1	0 1 0 00010001 1 1
155000000 +1	0 1 1 00010001 1 1
160000000 +1	0 1 0 00010100 2 1
165000000 +1	0 1 1 00010100 2 1
170000000 +1	0 1 0 00010111 2 1
175000000 +1	0 1 0 00010111 2 1 0 1 1 00010111 2 1 0 1 0 00011010 2
180000000 +1	
185000000 +1	0 1 1 00011010 3 1
190000000 +1	0 1 0 00011110 3 1
195000000 +1	0 1 0 00011110 3 1 0 1 1 00011110 3 1 0 0 0 00100010 3 1
200000000 +1	0 0 0 00100010 3 1
205000000 +1	0 0 1 00100010 3 1
210000000 +1	0 0 0 00100110 3
215000000 +1	0 0 1 00100110 3 1
220000000 +1	0 1 0 00101010 3 1
225000000 +1	0 1 1 00101010 3 1
225000000 +3	0 1 1 00101010 3 0
230000000 +1	0 1 0 00101110 3 0
235000000 +1	0 1 1 00101110 3 0
240000000 +1	0 1 0 00101010 3 1 0 1 1 00101010 3 1 0 1 1 00101010 3 0 0 1 0 0010110 3 0 0 1 1 0010110 3 0 0 1 0 00110010 3 0 0 1 1 00110010 3 0
45000000 +1	0 1 1 00110010 3

Adder.vhd:

מודול זה בעצם מקבל 2 וקטורים באורך n וביט בשם cin ותפקידו פשוט לחבר ביניהם. אנו משתמשים בו לשם ווידוא ששני וקטורי כניסה עוקבים מקיימים את תנאי התת-הסדרה שאותה אנחנו רוצים לבדוק (לפי הערך של cond). בפועל, אנחנו מחברים אליו לווקטור אחד את [in[i-1], ובכניסה לווקטור השני ולביט הכניסה אנחנו מחברים אות שמתאים לתת-הסדרה שאנחנו בוחנים. לבסוף, אנחנו משווים את המוצא ל-[in[i] וכך נדע אם התנאי מתקיים.

Synchronous Delay process:

מודול זה אחראי על דגימת ערכי ווקטור הכניסה din ולאחר מכן שמירת הערך הנוכחי והערך הקודם. הדגימה נעשית בכל עליית שעון וכל עוד 'ena='1'. באשר 'rst='1' ערכי din[i-1] וdin[i] מתאפסים. פירוט הכניסות והמוצאים של המודול:

שם הפורט	סוג	הסבר
rst	Input bit	ביט שתפקידו לאפס את המערכת
clk	Input bit	סיגנל מחזורי שמסנכרן את כל המערכת
ena	Input bit	סיגנל אשר מפעיל את פעולת המערכת
din	Input vector (n bits)	ווקטור הכניסה, נדגם בכל עליית שעון (clk)
din_i	Output vector (n bits)	lin[i] ווקטור הכניסה ברגע הנתון
din_iMinus	Output vector (n bits)	din[i-1] ווקטור הכניסה ברגע הקודם

איור המודול:

:דיאגרמה עם הסבר

ניתן לראות במלבן האדום בתמונה למעלה שחלק של דילאי עובד כמו שהוגדר בתרגיל.הוא סינכרוני לCLK ואסינכרוני לRST.בנוסף ניתן לראות שכאשר קיימת עליית שעון אזי מודול הזה מוציא את הקלט בדילאי .

דיאגרמה של מודול מחוץ למערכת:

ניתן לראות את הדילאי כפי שהוגדר בתרגיל.

:wave כדי שנוכל לראות את טבלת האמת של גרף ה-LIST

ps⊸ 		/synchronousdelay_tb/L0/rst-	yn	chronousd	elay_tb/L	0/din_iMinu	S
delta	·⊸	/synchronousdelay_tb/L0/ena-					
		/synchronousdelay_tb/L0/clk-	4				
		/synchronousdelay_t	tb,	/L0/din-			
		/synchronous	sd	elay_tb/L	0/din_i⊸		
0	+0	ט ט	U	טטטטטטטט	טטטטטטטט	טטטטט	UUT
0	+1	1 0	0	00000000	UUUUUUUU	טטטטט	UUI
0	+3	1 0	0	00000000	00000000	00000	00
5000000	+1	1 0	1	00000000	00000000	00000	00
10000000	+1	0 0	0	00000001	00000000	00000	00
15000000	+1	0 0	1	00000001	00000000	00000	00
20000000	+1	0 1	0	00000010	00000000	00000	00
25000000	+1	0 1	1	00000010	00000000	00000	00
25000000	+3	0 1	1	00000010	00000010	00000	00
30000000	+1	0 1	0	00000011	00000010	00000	00
35000000	+1	0 1	1	00000011	00000010	00000	00
35000000	+3	0 1	1	00000011	00000011	00000	01
40000000	+1	0 1	0	00000100	00000011	00000	01
45000000	+1	0 1	1	00000100	00000011	00000	01
45000000	+3	0 1	1	00000100	00000100	00000	01
50000000	+1	0 1	0	00000101	00000100	00000	01
55000000	+1	0 1	1	00000101	00000100	00000	01
55000000	+3	0 1	1	00000101	00000101	00000	10
60000000	+1	0 1	0	00000110	00000101	00000	10
65000000	+1	0 1	1	00000110	00000101	00000	10
65000000	+3	0 1	1	00000110	00000110	00000	10
70000000	+1	0 0	0	00000111	00000110	00000	10
75000000	+1	0 0	1	00000111	00000110	00000	10
80000000	+1	0 0	0	00001000	00000110	00000	10
85000000	+1	0 0	1	00001000	00000110	00000	10
90000000	+1	0 0	0	00001001	00000110	00000	10
95000000	+1	0 0	1	00001001	00000110	00000	10
	+1	0 1		00001010	00000110	00000	
	+1	0 1		00001010	00000110	00000	
105000000	+3	0 1		00001010	00001010	00000	
110000000	+1	0 1	0	00001011	00001010	00000	11
	+1	0 1		00001011	00001010	00000	
	+3	0 1		00001011	00001011	00001	
	+1	0 1		00000000	00001011	00001	
	+1		_	00000000	00001011	00001	
	+3	0 1	_	00000000	00000000	00001	
	+1	1 1		00000010	00000000	00001	
	+3	1 1	0	00000010	00000000	00000	
	+1			00000010	00000000	00000	
	+1	11		00000100	00000000	00000	
	+1		_	00000100	00000000	00000	
	+1	0 1		00000110	00000000	00000	
	+1	0 1		00000110	00000000	00000	
155000000	+3			00000110	00000110	00000	

Counter process:

מודול זה אחראי על ספירת כמות הפעמים שהביט rise היה מורם. הספירה היא בכל עליית שעון, כל עוד 'ena='1' וכל עוד rise?1' 2'riseSig='1'. פירוט הכניסות והמוצאים של המודול:

שם הפורט	סוג	הסבר
rst	Input bit	ביט שתפקידו לאפס את המערכת
clk	Input bit	סיגנל מחזורי שמסנכרן את כל המערכת
ena	Input bit	סיגנל אשר מפעיל את פעולת המערכת
riseSig	Input bit	סיגנל ביט כניסה, מורה על כך שתת סדרה מתקיימת ברגע הנתון
counterMax	input bit	סיגנל שמסמן שהיה רצף באורך רצוי
counterResult	Output vector (k bits)	ווקטור מוצא שסופר כמה פעמים תת-הסדרה התקיימה

: דיאגרמה נקייה עבור

המסומן באדום: ניתן לראות שברגע ש'rst='1' המוצא ישר מתאפס, ללא תלות ב-clk.

המסומן בכחול: ניתן לראות שברגע ש'ena='0' המוצא שומר על הערך שהיה בו לפני השינוי של ביט ena. אחרי שהוא חוזר להיות '1' המערכת ממשיכה לפעול כרגיל.

.1-ב עולה ב-counter ויש עלייה של clk ויש עלייה ויש עלייה בי riseSig='1'

דיאגרמה של תת מודול מחוץ למערכת:

ניתן לראות שCOUNTER עובד כפי שמוגדר

דיאגרמת ה-LIST כדי שנוכל לראות את טבלת האמת של גרף ה-wave:

```
ps-
             /counter_tb/L0/rst-
      delta-
               /counter_tb/L0/ena-
                 /counter_tb/L0/clk-
                /counter_tb/L0/riseSig-
              /counter_tb/L0/counterResult-
       0
          +0
                                טטט טטט טטט
       0 +1
                                1 0 0 0 000
       0 +3
                                1 0 0 0 000
 5000000
                                1 0 1 0
                                        000
          +1
 10000000 +1
                                0 0 0 1
 15000000 +1
                                0 0 1 1 000
 20000000 +1
                                0 1 0 1 000
                                0 1 1 1 000
 25000000 +1
 25000000 +3
                                0 1 1 1 001
 30000000 +1
                                0 1 0 1 001
                                0 1 1 1
                                        001
 35000000 +1
 35000000 +3
                                0 1 1 1
 40000000 +1
                                0 1 0 1 010
 45000000 +1
                                0 1 1 1 010
                                0 1 1 1 011
 45000000 +3
 50000000 +1
                                0 1 0 1 011
                                0 1 1 1 011
 55000000 +1
                                0 1 1 1 101
 55000000 +3
                                0 1 0 1 101
 60000000 +1
 65000000 +1
                                0 1 1 1
                                0 1 1 1 110
 65000000 +3
70000000 +1
                                0 1 0 1 110
                                0 1 1 1 110
 75000000 +1
 75000000 +3
                                0 1 1 1 111
 80000000 +1
                                0 1 0 1 111
                                0 1 1 1 111
 85000000 +1
                                        111
 90000000 +1
                                0 1 0 1
 95000000 +1
                                0 1 1 1
                                        111
100000000 +1
                                0 1 0 1 111
                                0 1 1 1 111
105000000 +1
                                0 1 0 1 111
110000000 +1
                                0 1 1 1 111
115000000 +1
                                0 1 0 1 111
120000000 +1
                                0 1 1 1 111
125000000 +1
130000000 +1
                                1 1 0 1
                                1 1 0 1 000
130000000 +3
135000000 +1
                                1 1 1 1 000
140000000 +1
                                1 1 0 1 000
145000000 +1
                                1 1 1 1 000
```

Condition process:

מודול זה בעצם לוקח שתי סיגנלים [i] וגם d[i-1] ובודק האם הם מקיימים את cond . אם כן אזי d[i] עולה ל1 אחרת 0.

: דיאגרמה נקייה עבור

:דיאגרמה עם הסבר

אנו עובדים בלוגיקה של עליית שעון לכן אנו דאגנו שסיגנל של RISE יהיה תקין לקראת דגימה של חלק הcounter.במלבן אנו עובדים בלוגיקה של עליית שעון לכן אנו דאגנו שסיגנל של CONDi d_i-1=2 וב CONDi d_i-1=3 שווה ל0 וזה בדיוק מקיים את התנאי לכן RISE שווה ל1, לאחר עליית שעון חלק של דילאי מוציא 3 ואז כבר תנאי לא מתקיים לכן RISE יורד ל0.

:איור המודול

דיאגרמה של תת מודול מחוץ למערכת:

10 עולה לו אחרת DETECTOR ניתן לראות שכאשר תנאי מתקיים

Detector:

– מודול זה בעצם לוקח את כמות הפעמים שתתי-הסדרות קיימו את התנאי הרצוי, ומוציא '1' אם כל הסדרה תקינה – בלומר אם אורך הסדרה הוא m+1=8 אחרת 0.החלטנו לממש את זה לא בPROCESS. איור המודל:

דיאגרמה של תת מודול בנפרד מכל המערכת:

