Modélisation par Processus Gaussiens

Examen

14 décembre 2010

Exercice 1:

On considère une trajectoire issue d'un processus Z sur \mathbb{R}^2 de noyau produit tensoriel :

$$K(x,y) = K_1(x_1, y_1)K_2(x_2, y_2).$$

Soit $Z_1(x_1)$ le processus correspondant à la restriction de Z sur la droite $x_2=0$. On a donc $Z_1(x_1)=Z(x_1,0)$.

- 1. Calculez le noyau de covariance du processus $Z_1: K_{Z_1}(x_1,y_1) = \text{cov}(Z_1(x_1),Z_1(y_1)).$
- **2.** Puisque la courbe tracée en rouge correspond à une trajectoire de Z_1 , quel type de noyau vous semble le plus vraisemblable pour Z_1 ?
- 3. De même, si on note $Z_2(x_2) = Z(0, x_2)$, quel type de noyau intuitez vous pour Z_2 ?
- **4.** Déduisez en une expression de K. Cette expression peut dépendre des paramètres σ_1 , σ_2 , θ_1 , θ_2 .
- **5.** Le processus Z est il stationnaire et/ou isotrope?

Exercice 2:

Pour les trois modèles de krigeage suivants, le noyau utilisé est le noyau Matern 3/2 de paramètres $(\sigma^2, \theta) = (0.5, 0.8)$.

- 1. Précisez pour les trois figures :
- le type de krigeage utilisé,
- la tendance choisie.
- **2.** Si σ^2 avait varié d'un modèle à l'autre, une des conclusions précédentes n'aurait pas été possible. Laquelle et pourquoi ?

Exercice 3:

Le but de cet exercice est de trouver un noyau K_S adapté à la modélisation d'une fonction f qui est symétrique sur [-1,1]. Soit Z un processus gaussien sur [-1,1] de moyenne μ et de noyau K. On note S l'application qui a toute fonction f associe sa symétrisée f_S :

$$S: f(x) \mapsto f_S(x) = \frac{f(x) + f(-x)}{2} \tag{1}$$

1. Soit $Z_{\mathcal{S}}$ la symétrisée du processus $Z:Z_{\mathcal{S}}=\mathcal{S}(Z)$. Montrez que l'on a :

$$E(Z_{\mathcal{S}}(x)) = \mu \cos(Z_{\mathcal{S}}(x), Z_{\mathcal{S}}(y)) = \frac{K(x, y) + K(-x, y) + K(x, -y) + K(-x, -y)}{4}.$$
 (2)

- **2.** Notons K_S le noyau de Z_S . Montrez que $K_S(-x,y) = K_S(x,y)$
- 3. Soit $X = \{x_1, \dots, x_n\}$ un ensemble de points sur $[-1\ 1]$, Y = f(X) le vecteur des observations et $m_{\mathcal{S}}(x)$, $v_{\mathcal{S}}(x)$ la moyenne et la variance de krigeage construites avec le noyau $K_{\mathcal{S}}$. Déduire de la question précédente que
- $m_S(-x_1) = f(x_1)$
- $v_{\mathcal{S}}(-x_1) = 0$
- **4 Question Bonus.** On vient de voir que l'utilisation du noyau K_S permet de prendre en compte la symétrie de la fonction f dans la construction du modèle de krigeage. Si on simule des trajectoires du

processus conditionnel $Z_{\mathcal{S}}|Z_{\mathcal{S}}(X)=Y$, on trouve qu'elles sont toutes symétriques par rapport à 0. Ces trajectoires seront elles équivalentes aux trajectoires du processus Z|Z(X)=Y, Z(-X)=Y (on symétrise ici l'ensemble des points du plan d'expérience)?

Exercice 4:

Soit $D = [0, 1]^n$, X un plan d'expérience sur D et Y le vecteur des observations. Notons Z un PG indexé par D, centré et de noyau K.

- 1. Soit $x_0 \in D$. Quelle est la loi de $Z(x_0)|Z(X)=Y$? Notons Y_{x_0} une variable de même loi.
- 2. On considère maintenant que l'on ajoute le point x_0 au plan d'expérience et que l'on ajoute la variable aléatoire Y_{x_0} au vecteur des observations. Donnez alors l'expression du meilleur prédicteur et de la variance de prédiction. Ces 2 fonctions sont-elles aléatoires ?
- 3. Montrez que l'ajout de l'observation aléatoire Y_{x_0} ne modifie pas la moyenne de krigeage, i.e. $\mathrm{E}(Z(x)|Z(X)=Y,Z(x_0)=Y_{x_0})=\mathrm{E}(Z(x)|Z(X)=Y).$
- 4. En utilisant la formule de la variance totale

$$\operatorname{var}(Z(x)|Z(X) = Y, Z(x_0) = Y_{x_0}) = \operatorname{E}[\operatorname{var}(Z(x)|Z(X) = Y, Z(x_0) = Y_{x_0})] + \operatorname{var}(\operatorname{E}[Z(x)|Z(X) = Y, Z(x_0) = Y_{x_0}]),$$
(3)

calculez $var(Z(x)|Z(X) = Y, Z(x_0) = Y_{x_0})$. Concluez.