Intensity Transformation and Spatial Filtering

Spatial domain

- Image plane
- Image processing methods based on direct manipulation of pixels
- Two principal image processing technique classifications
 - 1. Intensity transformation methods
 - 2. Spatial filtering methods

Background

- Spatial domain
 - Aggregate pixels composing an image
 - Computationally more efficient and require less processing resources for implementation
- Spatial domain processes denoted by the expression

$$g(x,y) = T[f(x,y)]$$

- f(x, y) is input image
- g(x, y) is output image
- T is an operator on f, defined over some neighborhood of (x, y)
- T may also operate on a set of images (adding two images)
- Neighborhood of a point (x, y)
 - Square or rectangular subimage area centered at (x, y) (Figure 3.1)
 - * Typically, the neighborhood is much smaller than the image
 - Center moves over each pixel in the image
 - T is applied at each point to get g at that location
 - * Compute the average intensity of the neighborhood
 - Also possible to have neighborhood approximations in the form of a circle
 - The above application is also called spatial filtering
 - * Neighborhood may be extracted by a spatial mask, or kernel, or template, or window
 - Handling pixels at image border
 - * Part of the neighborhood is outside the image frame
 - * Outside pixels can be ignored; replaced by a uniform gray scale; replaced by 0; or inner pixels can be *reflected* outside
- Single pixel neighborhood, or point processing techniques
 - Simplest form of T
 - Smallest possible neighborhood of size 1×1
 - $\ast \ g$ depends only on the value of f at a single point (r,c)
 - Gray-level (or intensity) transformation function of the form

$$s = T(r)$$

- * r and s denote the gray level of f(x, y) and g(x, y)
- Contrast stretching and thresholding (Figure 3.2)
- Larger pixel neighborhoods (mask processing or filtering)
 - Use a neighborhood around (x, y) to determine the value of g(x, y)
 - Neighborhood defined by masks, filters, kernels, templates, or windows (all refer to the same thing)
 - A kernel is a small 2D array whose coefficients determine the nature of the process

Basic gray level transformations

- ullet Pixel values denoted by r and s before and after transformation
- Transform denoted by s = T(r)
- Mapping performed by lookup tables (LUTs)
- Figure 3.3 Basic transformations
- Image negatives
 - Equivalent of a photographic negative
 - Input gray level range: r = [0, L 1]
 - Transformation is given by s = (L-1) r
 - Suited for enhancing white or gray detail in dark areas of image, specially when dark areas are dominant in size (Figure 3.4)
- Flipping and flopping
 - Simplest geometric transformation
 - Reflect the image about a horizontal axis (flip) or a vertical axis (flop)
 - Figure 3.1 and 3.2 (Birchfield)
 - Assume an image of size w columns and h rows
 - Flip

$$x' = x; y' = h - 1 - y$$

* Flip, forward mapping

$$g(h-1-r,c) = f(r,c)$$

* Flip, reverse mapping

$$g(r,c) = f(h-1-r,c)$$

- Flop

$$x' = w - 1 - x; y' = y$$

* Flop, forward mapping

$$g(r, w - 1 - c) = f(r, c)$$

* Flop, reverse mapping

$$q(r,c) = f(r, w - 1 - c)$$

- Flip-flop is a flip operation followed by a flop
- Log transformations
 - General form given by: $s = c \log(1 + r)$ (Figure 3-3)
 - * c is a constant

$$* r \ge 0$$

- Maps a narrow range of gray level values in input image to a wider range of output levels, or the other way round with inverse log transform
- Log function compresses the dynamic range of images with large variation in pixel values
- Easiest way to generate log transforms is by using a lookup table, and scaling the input to the range [0,1]
- Example given by Fourier spectrum (Figure 3-5)
- Power-law or gamma transformations
 - General form given by: $s = cr^{\gamma}$ (Figure 3-6)
 - * c and γ are positive constants
 - General form may also be written as $s = c(r + \epsilon)^{\gamma}$ to account for an offset
 - * Offset is useful for some measurable output when the input is zero
 - * Typically, an issue of display calibration and hence, normally ignored
 - Fractional value of γ map a narrow range of dark input values into a wider range of output values; opposite is true for higher values of input levels
 - The transformation reduces to identity values when $c=\gamma=1$
 - Gamma-correction
 - * Different devices respond differently to pixel values according to power law
 - * Typical values of γ for CRTs is between 1.8 and 2.5
 - * Important if displaying the image accurately on a computer screen is of concern
 - · Images not properly corrected can look bleached out or too dark
 - General-purpose contrast manipulation
 - * Playing with the gamma to enhance detail in a desired region (Figure 3.9)
- Piecewise-linear transformation functions
 - Form of function can be arbitrarily complex
 - Specification requires considerable user input
 - Contrast stretching
 - * Image contrast could be low due to poor illumination, lack of dynamic range in the sensor, or wrong setting of lens aperture during image acquisition
 - * Increase the dynamic range of gray levels in the image being processed to the full intensity range of recording medium or display device
 - * Figure 3.10
 - * Thresholding function
 - Gray-level slicing
 - * Figure 3-11
 - * Two approaches
 - 1. Display in one value (white) all the values in the range of interest, and change to black everything else
 - 2. Brighten or darken desired range of intensities leaving all other intensity levels unchanged
 - 3. Figure 3-12
 - Bit-plane slicing
 - * Figure 3-13
 - * Most changes can be captured in significant bits
 - * You may not be able to perceive minute changes reflected in low bits
 - * Figure 3-14

- · See how the border is black in some cases and white in others (pixel value 194, or 1100 0010)
- * Decomposition useful for image compression
- * Combine some of the bit planes
- * Figure 3-15

Histogram processing

- Discrete function $h(r_k) = n_k$
 - r_k is the kth gray level
 - n_k is the number of pixels in the image at gray level r_k
- Normalized histogram
 - Normalize a histogram by dividing each value by total number of pixels in the image MN
 - Given by: $p(r_k) = n_k / MN$, for k = 0, 1, ..., L 1
 - $p(r_k)$ gives the probability of occurrence of gray level r_k
 - Sum of all components of a normalized histogram is 1
 - In your project, the histogram to be created is given by:

$$p(k) = \frac{n_k}{\max(n_0, n_1, \dots, n_{L-1})}$$

for
$$k = 0, 1, \dots, L - 1$$

- Basis for many spatial processing techniques
 - Simple to calculate in software and economic hardware implementations
 - Can be used for image enhancement and to look at image statistics
 - Figure 3-16
- Histogram equalization
 - Method to increase the global contrast in images by better distributing the intensities in the histogram
 - * Areas of lower local contrast gain higher contrast
 - * Achieved by spreading out most frequent intensity values
 - Consider a continuous function, with r being the gray levels of the image to be enhanced
 - Let r be normalized to the interval [0,1] such that r=0 represents black and r=1 represents white
 - Consider the transformation of the form

$$s = T(r) \qquad 0 < r < 1$$

to produce a level s for every pixel value r in the original image

- Let T(r) satisfy the following conditions
 - 1. T(r) is single-valued and monotonically increasing in the interval $0 \le r \le 1$
 - 2. $0 \le T(r) \le 1$ for $0 \le r \le 1$
 - 3. Figure 3-17
 - * Monotonic vs strictly monotonic
 - * Strictly monotonic allows for the existence of inverse
- Single-valued requirement guarantees the existence of inverse transform

- Monotonicity preserves the increasing order of black to white in output image, preventing artifacts generated by reversals of intensity
- Second condition guarantees that gray levels are preserved in output image
- Inverse transform from s back to r is denoted

$$r = T^{-1}(s) \qquad 0 \le s \le 1$$

- * T^{-1} may fail to be single valued unless we require T(r) to be *strictly* monotonically increasing in the interval [0,1]
- Gray values in an image may be viewed as random variables in the interval [0, 1]
- Probability density function
 - * Used to describe a random variable
 - * Let $p_r(r)$ and $p_s(s)$ denote the probability density functions of random variables r and s, respectively
 - · p_r and p_s are different functions
 - * If $p_r(r)$ and T(r) are known, and T(r) is continuous and differentiable over the range of values of interest, the PDF of the transformed variable s can be obtained using the simple formula

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

* A transformation function of importance in image processing is:

$$s = T(r) = \int_0^r p_r(w)dw$$

where w is a dummy variable of integration

- \cdot The integral gives the cumulative distribution function (CDF) of random variable r
- \cdot Since PDFs are positive, the area under the function cannot decrease as r increases
- · At r=1, the integral evalutes to 1 (the area under a PDF curve is always 1)
- * Finding $p_s(s)$ corresponding to the transformation
 - · Leibniz's rule: Derivative of a definite integral with respect to its upper limit is the integrand evaluated at the limit

$$\begin{array}{rcl} \frac{ds}{dr} & = & \frac{dT(r)}{dr} \\ & = & \frac{d}{dr} \left[\int_0^r p_r(w) dw \right] \\ & = & p_r(r) \end{array}$$

· Substituting the result in the equation for the PDF of transformed variable, we get

$$p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$$

$$= p_r(r) \left| \frac{1}{p_r(r)} \right|$$

$$= 1 \quad 0 \le s \le 1$$

- · The form of $p_s(s)$ is a uniform PDF, or performing the intensity transformation yields a random variable s, characterized by a uniform PDF
- · T(r) depends on $p_r(r)$ but the resulting $p_s(s)$ always is uniform
- · Figure 3.18

- For discrete values for an image of size $n = M \times N$ pixels, we have

$$p_r(r_k) = \frac{n_k}{n}$$
 $k = 0, 1, 2, \dots, L - 1$

- The discrete transformation function is given by

$$s_k = T(r_k) = \sum_{j=0}^k p_r(r_j)$$

= $\sum_{j=0}^k \frac{n_j}{n}$ $k = 0, 1, 2, ..., L-1$

- Processed image obtained by mapping each pixel with level r_k into a corresponding pixel with level s_k
 - * Histogram equalization or histogram linearization
- Transform spreads the histogram of the input image so that the levels of histogram-equalized image span a fuller range of gray scales
- Discrete form does not guarantee uniform distribution of probability density function
- Advantages
 - * More dynamic range of gray level distribution
 - * Fully automatic algorithm; no parameters need be specified
 - * Simple to compute
- Example: Consider a 3-bit image (8 intensity levels) of size 64×64 pixels with the intensity distribution as follows:

r_k	n_k	$p_r(r_k) = n_k/n$
0	790	0.19
1	1023	0.25
2	850	0.21
3	656	0.16
4	329	0.08
5	245	0.06
6	122	0.03
7	81	0.02

- * Histogram in Figure 3.19a
- * Values of histogram transformation are obtained by (last column shows the value rounded to nearest integer)

$s_0 = T(r_0)$	$7\sum_{j=0}^{0} p_r(r_j) = 7p_r(r_0)$	1.33	1
$s_1 = T(r_1)$	$7\sum_{j=0}^{1} p_r(r_j) = 7p_r(r_0) + 7p_r(r_1)$	3.08	3
$s_2 = T(r_2)$		4.55	5
$s_3 = T(r_3)$		5.67	6
$s_4 = T(r_4)$		6.23	6
$s_5 = T(r_5)$		6.65	7
$s_6 = T(r_6)$		6.86	7
$s_7 = T(r_7)$		7.00	7
$s_6 = T(r_6)$		6.86	7

- * Transformation function and equalized histogram in Figure 3.19 b and c
- * Some intensity levels are mapped to a single intensity level, hence fewer intensity levels in the equalized histogram
- * Intensity levels of the equalized histogram span a wider range of intensity scale, leading to contrast enhancement
- * Perfectly flat histograms
 - · Not possible because of two reasons
 - 1. Histograms are approximations to PDFs

- 2. We cannot create new intensity levels when we perform histogram equalization because of discrete values
- · Spreading the histogram of input image results in a wider span of intensities for equalized image
- Inverse transform from s to r is denoted by

$$r_k = T^{-1}(s_k)$$
 $k = 0, 1, 2, \dots, L - 1$

- * Satisfies the two conditions outlined earlier only if none of the levels $r_k, k = 0, 1, 2, \dots, L 1$ are missing from input image (none of the components of the equalized histogram are zero)
- * Plays a central role in histogram matching scheme
- Figure 3.20
 - * Significant improvement in low contrast images (first three)
 - * Transformation functions (Figure 3.21)
 - · Transformation 4 as nearly linear shape, indicating that the inputs were mapped to nearly equal outputs
 - * Transformation function changes contrast by redistributing pixel gray levels but does not alter the number (content given by probability) of matched gray levels
- Histogram matching/Histogram specification
 - Histogram equalization gives an image with uniformly distributed gray levels automatically
 - Histogram matching allows us to specify the shape of the histogram of new image
 - * Useful when you have to create two images with same contrast and brightness
 - Development of method
 - * Consider continuous gray levels r and z (continuous random variables)
 - $\cdot r$ is the intensity level of input image
 - · z is the intensity level of processed image
 - * Let $p_r(r)$ and $p_z(z)$ denote their continuous probability density functions
 - * $p_r(r)$ is estimated from input image
 - * $p_z(z)$ is the specified probability density function desired in output image
 - * Let s be a random variable with the property

$$s = T(r) = \int_0^r p_r(w)dw$$

This expression is a continuous version of histogram equalization

* Define a random variable z with the property

$$G(z) = \int_0^z p_z(t)dt = s$$

using t as a dummy variable of integration

* It follows that G(z) = T(r) and z must satisfy the following condition:

$$z = G^{-1}[T(r)] = G^{-1}(s)$$

- T(r) can be obtained by estimating $p_r(r)$ from the input image using $T(r) = \int_0^r p_r(w)dw$
- G(z) can be computed from a given $p_z(z)$ using $G(z) = \int_0^z p_z(t) dt$
- * An image with specified probability density function can be obtained from a given image using the procedure:
 - 1. Compute $p_r(r)$ from the input image and obtain the values of T(r) or s
 - 2. Compute G(z) using the specified PDF in $G(z) = \int_0^z p_z(t)dt$
 - 3. Obtain the inverse transformation $z = G^{-1}(s)$ by mapping from s to z

- 4. Get the output image by first equalizing the input image; pixel values in this image are s values. For each pixel in the equalized image, perform the inverse mapping $G^{-1}(s)$ to get the corresponding pixel in output image.
- Example: Let an image have the intensity PDF given by

$$p_r(r) = \begin{cases} \frac{2r}{(L-1)^2} & 0 \le r \le (L-1) \\ 0 & \text{otherwise} \end{cases}$$

Find the transformation function that will produce an image whose intensity PDF is

$$p_z(z) = \begin{cases} \frac{3z^2}{(L-1)^3} & 0 \le z \le (L-1) \\ 0 & \text{otherwise} \end{cases}$$

* Find the histogram equalization transformation for the interval [0, L-1]

$$s = T(r)$$

$$= (L-1) \int_0^r p_r(w) dw$$

$$= \frac{2}{L-1} \int_0^r w dw$$

$$= \frac{r^2}{L-1}$$

This gives a uniform PDF due to histogram equalization transform

* Since we are interested in an image with a specified histogram, we compute

$$G(z) = (L-1) \int_0^z p_z(w) dw$$
$$= \frac{3}{(L-1)^2} \int_0^z w^2 dw$$
$$= \frac{z^3}{(L-1)^2}$$

over the interval [0, L-1]

st Finally, require that G(z)=s leading to $z^3/(L-1)^2=s$ and

$$z = \left[(L-1)^2 s \right]^{1/3}$$

- * Multiply every histogram-equalized pixel by $(L-1)^2$ and compute its cube root giving an image whose intensities z have the PDF $p_z(z)=3z^2/(L-1)^2$ in the interval [0,L-1]
- * Since $s = r^2/(L-1)$, we can generate z directly from r, the input intensity by

$$z = [(L-1)^2 s]^{1/3}$$
$$= [(L-1)^2 \frac{r^2}{(L-1)}]^{1/3}$$
$$= [(L-1)r^2]^{1/3}$$

- Discrete formulation of histogram equalization transformation
 - * Mapping from input levels in original image into corresponding s_k based on the histogram of original image is given by

$$s_k = T(r_k)$$

$$= (L-1)\sum_{j=0}^{k} p_r(r_j)$$

$$= (L-1)\sum_{j=0}^{k} \frac{n_j}{n}$$

$$= \frac{(L-1)}{MN}\sum_{j=0}^{k} n_j$$
 $k = 0, 1, 2, \dots, L-1$

* Given a specific value of s_k , the discrete formulation for G(z) is based on computing the transformation function

$$G(z_q) = (L-1) \sum_{i=0}^{q} p_z(z_i)$$

for a value of q, so that

$$G(z_q) = s_k$$

where $p_z(z_i)$ is the *i*th value of the specified histogram

* Find the desired value z_q by the inverse transformation

$$z_q = G^{-1}(s_k)$$

- st This gives a value of z for each value of s, performing a mapping from s to z
- Summary of histogram specification process
 - 1. Compute the histogram $p_r(r)$ of given image and use it to find histogram equalization transform

$$s_k = \frac{(L-1)}{MN} \sum_{j=0}^k n_j$$

Round the resulting values s_k to the integer range [0, L-1]

2. Compute all values of transformation function G using

$$G(z_q) = (L-1)\sum_{i=0}^{q} p_z(z_i)$$

for $q=0,1,2,\ldots,L-1$ where $p_z(z_i)$ are the values of the specified histogram; Round the values of G to integers in the range [0,L-1] into an LUT

- 3. For every value of $s_k \in [0, L-1]$, use the stored value of G from step 2to find the corresponding value of z_q so that $G(z_q)$ is closest to s_k and store these mappings from s to z
- 4. Histogram equalize the input image; map every histogram-equalized value and f map every qualized pixel s_k of this image to corresponding value z_q in the histogram-specified image using the mappings from step 3
- Example: Using the 64×64 pixel image from histogram equalization example
 - * Histogram in Figure 3.22(a)
 - * Specified histogram is in column 2 below

z_q	Specified	Actual
	$p_z(z_q)$	$p_z(z_k)$
$z_0 = 0$	0.00	0.00
$z_1 = 1$	0.00	0.00
$z_2 = 2$	0.00	0.00
$z_3 = 3$	0.15	0.19
$z_4 = 4$	0.20	0.25
$z_5 = 5$	0.30	0.21
$z_6 = 6$	0.20	0.24
$z_7 = 7$	0.15	0.11

* Obtain the scaled histogram equalized values from last example as

$$s_k = \{1, 3, 5, 6, 6, 7, 7, 7\}$$

* Compute all the values of the transformation function G

$G(z_0)$	$7\sum_{j=0}^{0} p_z(z_j)$	0.00
$G(z_1)$	$7\sum_{j=0}^{1} p_z(z_j) = 7[p(z_0) + p(z_1)]$	0.00
$G(z_2)$	·	0.00
$G(z_3)$		1.05
$G(z_4)$		2.45
$G(z_5)$		4.55
$G(z_6)$		5.95
$G(z_7)$		7.00

* The fractional values are converted to integers in our valid range [0, 7] giving

$$G(z_i) = \{0, 0, 0, 1, 2, 5, 6, 7\}$$

- * The transformation function is sketched in Figure 3.22(c)
 - \cdot G is not strictly monotonic and has to be handled
 - · Find the smallest value of z_q such that $G(z_q)$ is closest to s_k
 - · In our example, $s_0 = 1$ and $G(z_3) = 1$; that is a perfect match, giving us $s_0 \to G(z_3)$
 - · Every pixel with value 1 in histogram equalized image will map to value 3 in the histogram-specified image
 - · Final mapping

s_k	\rightarrow	z_q
1	\rightarrow	3
3	\rightarrow	4
5	\rightarrow	5
6	\rightarrow	6
7	\rightarrow	7

- · In the final step, use the above mappings to map every pixel in the histogram equalized image into a corresponding pixel in the histogram-specified image
- · Listed in the third column of table on top as third column $(p_z(z_k))$ (Histogram in Figure 3.22(d))
- · Since $s=1\Rightarrow z=3$ and there are 790 pixels in the histogram-equalized image at intensity 1, $p_z(z_3)=790/4096=0.19$

- Example

- * Figure 3.23 Mars moon Phobos and its histogram
- * Image dominated by large dark areas
- * Figure 3.24 Histogram equalized
- * Image histogram quickly rises from 0 to 190, resulting in almost all the pixels concentrated towards the upper end of the dynamic range, giving a light, washed out appearance
- * Fixed by manual specification of the histogram
- * Sample the function into 256 equally spaced discrete values
 - · Resulting transformation function G(z) in Figure 3.25
 - · Smoother transition of levels in the dark regions of gray scale

- Comments

- * Manual specification of histogram is by trial-and-error
- * Practical use is to adjust the contrast by using the histogram of a different image

Local enhancement

- Global methods (histogram) modify pixels by transformation functions based on entire image

- Local methods work with neighborhood of each pixel to find a transformation
- A simple approach would be to define small rectangles on the image and process the pixels in selected rectangle
 using the techniques already seen
 - * May have overlapping or non-overlapping rectangles
 - * You could also define one rectangle and move its center from pixel to pixel
 - * Compute the neighborhood and obtain a histogram equalization or histogram specification transformation
- Example Blurring to reduce noise content
 - * Figure 3-26a slightly noisy
 - * Figure 3.26b Global histogram equalization
 - * Figure 3.26c Local histogram with a 3×3 neighborhood
 - * Local vs global histogram equalization
 - · Intensity values of objects too close to the intensity of large squares, and their sizes too small to influence global histogram equalization significantly enough to show the detail
- Use of histogram statistics for image enhancement
 - Let r be the discrete random variable representing intensity values in the range [0, L-1], and $p(r_i)$ the normalized histogram component corresponding to r_i
 - Mean: Average gray scale intensity

$$m = \sum_{i=0}^{L-1} r_i p(r_i)$$

 $p(r_i)$ is the probability of occurrence of gray level r_i

- The nth moment of r about its mean is defined by

$$\mu_n(r) = \sum_{i=0}^{L-1} (r_i - m)^n p(r_i)$$

Obviously, $\mu_0 = 1$ and $\mu_1 = 0$

- Variance (second moment): Average contrast

$$\sigma^{2}(r) = \mu_{2}(r) = \sum_{i=0}^{L-1} (r_{i} - m)^{2} p(r_{i})$$

- Standard deviation is defined simply as $\sigma = \sqrt{\mu_2}$
- Mean and variance can also be measured directly from sample values (sample mean and sample variance) as

$$m = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)$$

$$\sigma^{2} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[f(x, y) - m \right]^{2}$$

- Example: 2-bit (L=4) image of size 5×5

* Image histogram is given by: (6,7,7,5), or after normalization, $p(r_i) = (0.24,0.28,0.28,0.20)$

* The average value of intensities in the image is

$$m = \sum_{i=0}^{3} r_i p(r_i)$$

= $(0)(0.24) + (1)(0.28) + (2)(0.28) + (3)(0.20)$
= 1.44

* Sample mean is computed by

$$m = \frac{1}{25} \sum_{x=0}^{4} \sum_{y=0}^{4} f(x,y)$$
$$= 1.44$$

- Enhancement can be based on measuring global mean and variance over entire image and adjusting those values to change intensity and contrast
- These quantities can also be used for local enhancement by changing local mean and variance in predefined regions about each pixel
 - * Consider pixel at location (x, y)
 - * Let S_{xy} be a subimage/neighborhood of specified size, centered at (x,y)
 - * Mean value of the neighborhood is

$$m_{S_{xy}} = \sum_{i=0}^{L-1} r_i p_{S_{xy}}(r_i)$$

- · $p_{S_{xy}}$ is the histogram of region S_{xy}
- · Many of the p_i 's will be zero, depending on the size of S_{xy}
- * The gray level variance is given by

$$\sigma_{S_{xy}}^2 = \sum_{i=0}^{L-1} [r_i - m_{S_{xy}}]^2 p_{S_{xy}}(r_i)$$

- * Local mean and local variance are a measure of average intensity and average contrast, respectively in the neighborhood
- Figure 3-27
 - * Scanning electron microscope image of a tungsten filament wrapped around a support
 - * The secondary filament on the right side of the image
 - * Enhance using local enhancement techniques
- Enhancement of dark areas only
 - * Compare local average gray level $m_{S_{xy}}$ in a neighborhood around point (x,y) to the global mean m_G
 - * A pixel at point (x,y) is considered a candidate for enhancement if $m_{S_{xy}} \le k_0 m_G$, $0 < k_0 < 1.0$
 - * Low contrast areas are also candidates for enhancement, if $\sigma_{S_{xy}} \leq k_2 \sigma_G$ where $k_2 > 0$ and σ_G is global standard deviation
 - $\cdot k_2 > 1.0$ to enhance light areas
 - · $k_2 < 1.0$ to enhance dark areas
 - * We need a lower bound on contrast so as not to enhance uniform intensity areas with standard deviation 0
 - · This can be achieved by requiring $k_1 \sigma_G \leq \sigma_{S_{xy}}$, with $k_1 < k_2$
 - * A pixel meeting all the requirements can be enhanced by multiplying it by a specific constant E to increase/decrease its gray level
 - * Let f(x,y) and g(x,y) be the input and enhanced values of the pixel at location (x,y)

$$g(x,y) = \left\{ \begin{array}{ll} E \cdot f(x,y) & \text{if } m_{S_{xy}} \leq k_0 m_G \text{ \&\& } k_1 \sigma_G \leq \sigma_{S_{xy}} \leq k_2 \sigma_G \\ f(x,y) & \text{otherwise} \end{array} \right.$$

- * Values chosen: $E = 4.0, k_0 = 0.4, k_1 = 0.02, k_2 = 0.4$
- * Can a multiple of 4 for pixels cause overflow?
- * A small area under S_{xy} preserves detail and reduces computational burden

Basics of spatial filtering

- Filtering
 - Roots in the use of Fourier transform for signal processing in frequency-domain
 - Accepting or rejecting certain frequency components
 - Low-pass filter, high-pass filter, band-pass filter
 - Filtering effects of frequency-based filters can be achieved by using spatial filters
 - Filter, mask, kernel, or window
 - * Values in filter subimage are referred to as coefficients
 - Spatial filters have a 1:1 correspondence to frequency filters but can also do nonlinear filtering in addition (not possible in frequency based filters)
- · Spatial filtering
 - Spatial filter consists of
 - 1. A neighborhood, typically a small square or rectangle
 - 2. A predefined operation performed on the image pixels in the neighborhood
 - Creates a new pixel at the coordinates of the neighborhood center as the result of filtering operation
 - * Generally, the result is written into a new image as the pixels in the neighborhood may still be needed for the filtering of other pixels
 - Convolution Moving the filter mask over pixels
 - Linear filtering
 - * Product of filter coefficients with the corresponding pixels
 - * $R = \sum w_{ij} f(x+i, y+j)$
 - * Fig 3-28
 - * Response g(x,y) of the filter at point (x,y)
 - · Given by the sum of products of filter coefficients and corresponding image pixels
 - · For a 3×3 filter, we have

$$g(x,y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} w(i,j) f(x+i,y+j)$$

- · The center coefficient of the filter (0,0) aligns with the pixel at location (x,y)
- * Odd dimensions of the filter
 - · For a mask of size $m \times n$, assume that m = 2a + 1 and n = 2b + 1, where a > 0 and b > 0
 - · For a filter of size $m \times n$

$$g(x,y) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} w(i,j) f(x+i,y+j)$$

varying x and y over the entire image

- Spatial correlation and convolution
 - Correlation
 - * Process of moving the filter mask over the image and computing the sum of products at each location

- Convolution
 - * Same as correlation except that the filter is first rotated by 180°
- Figure 3.29
 - * 1D function f and filter w
- Correlation is a function of displacement of the filter
 - * First value of correlation corresponds to zero displacement of the filter
 - * Second value corresponds to one unit displacement
- Correlating a filter w with a function that contains all 0s and a single 1 (unit impulse function or discrete unit impulse) yields a copy of w but rotated by 180°
- Convolving a function with a unit impulse yields a copy of the function at the location of the impulse
 - * Prerotating the function by 180° and performing the sliding sum of products operations yields the desired result
 - * If the filter mask is symmetric, correlation and convolution yield the same result
- Issue of border crossing by the kernel
 - * Limiting the image to the kernel overlap
 - * Limiting the kernel to the image overlap
 - * Padding image by replication or reflection
- Extending the concept to images (2D)
 - * Figure 3.30
 - * If f contains a region identical to w, value of correlation is maximum when w is centered on that region of f
 - · This property can be used to find matches between images
 - * Correlation is given by

$$w(x,y)^{1/2} f(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$$

* Convolution is given by

$$w(x,y) \star f(x,y) \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x-s,y-t)$$

- Vector representation of linear filtering
 - Characteristic response R of a mask for correlation is given by

$$R = w_1 z_1 + w_2 z_2 + \dots + w_{mn} z_{mn}$$
$$= \sum_{k=1}^{mn} w_k z_k$$
$$= \mathbf{w}^T \mathbf{z}$$

where ws are coefficients of an $m \times n$ filter and zs are corresponding image intensities

- The same equation can be used for convolution by rotating the mask by 180°
- A general 3×3 mask is labeled as

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

- Again, R is given by $\mathbf{w}^T \mathbf{z}$ as above, where \mathbf{w} and \mathbf{z} are 9-dimensional vectors formed from the coefficients of the mask and image intensities, respectively
- Generating spatial filter masks

- Generating an $m \times n$ linear spatial filter mask requires the specification of mn mask coefficients
- The coefficients are selected based on the purpose of the filter
 - * All a filter does is to compute sum of products
- Replacing the pixels by the average intensity of a 3×3 neighborhood centered at the pixels
 - * Average value at location (x, y) is the sum of nine intensity values in the 3×3 neighborhood centered on (x, y) divided by 9
 - * With z_i , $i = 1, 2, \dots, 9$, the average is

$$R = \frac{1}{9} \sum_{i=1}^{9} z_i$$

* This is the same as

$$R = \sum_{i=1}^{9} w_i z_i$$

with $w_i = 1/9$

- Generating a spatial mask based on a continuous function of two variables
 - * Gaussian function of two variables has the basic form

$$h(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$$

where σ is the standard deviation and the coordinates x and y are integers

- * The mask for a 3×3 neighborhood can be generated as $w_1 = h(-1, -1), w_2 = h(-1, 0), \dots, w_9 = h(1, 1)$
- * 2D Gaussian has a bell shape with standard deviation controlling the tightness of the bell
- Generating a nonlinear filter requires the size of the neighborhood and the operations to be performed on the image pixels contained in the neighborhood
 - * Max operation

Smoothing spatial filters

- Used for blurring and noise reduction
 - Noise reduction can be achieved by blurring with a linear filter or by a nonlinear filter
- · Smoothing linear filters
 - Averaging filter or lowpass filter
 - * Average of pixels in a neighborhood
 - * Reduction in sharp transitions in gray levels
 - · Random noise is characterized by sharp transitions in intensity levels
 - · Averaging reduces the sharp transitions
 - · A side effect is the blurring of edges which are also characterized by sharp transitions in intensity levels
 - * The filter can also be used to reduce false contouring
 - Standard average of pixels in a 3×3 neighborhood

	1	1	1
$\frac{1}{9} \times$	1	1	1
	1	1	1

- * Same as $g(x,y) = \frac{1}{9} \sum_{c=-1}^{1} \sum_{r=-1}^{1} f(x+c,y+r)$
- * Also called box filter (all coefficients of filter are equal)
- * The entire image can be divided by 9 at the end of filtering

- Weighted average of pixels in a 3×3 neighborhood

	1	2	1
$\frac{1}{16} \times $	2	4	2
	1	2	1

- * Pixels are multiplied by different coefficients, giving more importance to some pixels at the expense of others
- * Reduces blurring in the smoothing process
- * Optimization by shifting right by four bits instead of dividing by 16
- * General implementation to filter an image with a weighted averaging filter of size $m \times n$ is given by

$$g(x,y) = \frac{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t)}$$

- Example: Figure 3.33
 - * Results with square averaging filters of size m=3,5,9,15,35 pixels
 - * Pronounced black border with larger filters
 - · Result of padding the border region with 0s
- Example: Figure 3.34
 - * Blur an image to detect objects of interest
 - * Image from Hubble telescope, and application of 15×15 averaging mask
- Order-statistics filters
 - Nonlinear spatial filters
 - Response based on ordering or ranking the pixels under the kernel
 - Median filter
 - * Good for filtering impulse noise (or salt-and-pepper noise), with less blurring
 - * Force points with distinct gray values to be more like their neighbors
 - * Figure 3-35
 - * Isolated clusters with area less than $n^2/2$ are eliminated by $n \times n$ median filter
 - Max filter
 - Min filter

Sharpening spatial filters

- Highlight fine detail in an image or enhance detail that has been blurred
 - Averaging is same as integration
 - Achieve sharpening by differentiation
 - * Strength of response of a derivative operator is proportional to the degree of discontinuity of image at the point where the operator is applied
 - * Differentiation enhances edges and discontinuities (including noise) and deemphasizes slow varying gray scale values
- Foundation
 - One dimensional derivatives to simplify the discussion
 - Behavior of derivatives at the beginning (step) and end (ramp) of discontinuities and along gray-level ramps
 - * Discontinuities used to model noise points, lines, and edges

- Derivative of a digital function
 - * Defined in terms of differences
 - * Definition for a first derivative must be
 - · Zero in flat segments (areas of constant gray level)
 - · Nonzero at the onset of a gray-level step or ramp
 - · Nonzero along ramps
 - * Definition of a second derivative must be
 - · Zero in flat areas
 - · Nonzero at the onset and end of a gray level step or ramp
 - · Zero along ramps of constant slope
 - * Keep in mind the finite nature of digital functions
 - · Finite values
 - · Finite maximum change
 - · Shortest distance for maximum change is adjacent pixels
 - * Basic definition of first-order derivative of a one-dimensional function given by the difference

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

* Second-order derivative is defined as the difference

$$\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$$

- · The two definitions satisfy the conditions laid out above
- · Fig 3-36
- · Scan line contains an intensity ramp, three sections of constant intensity, and an intensity step
- · First-order derivatives are indicated by dots while the second-order derivatives are indicated by squares
- · Circles indicate the onset or end of intensity transitions
- · First-order derivative produces thick edges while second-order derivative produces fine edges
- · For isolated point, second-order derivative gives a much stronger response than first-order derivative
- · Second-order derivative can enhance fine detail much more than the first-order derivative
- * Conclusions from above
 - · First-order derivatives produce thicker edges in an image
 - · Second-order derivatives have stronger response to fine detail
 - · First-order derivatives have stronger response to gray-level step
 - · Second-order derivatives produce a double response at step changes in gray level
- * In most applications, second derivative is better suited than first derivative because of enhancement of fine detail
- * Zero-crossing property
 - · Sign of the second derivative changes at the onset and end of a step or ramp
 - · In a step transition, a line joining the two values crosses the horizontal axis midway between the two extremes
 - · Useful to detect edges
- Use of second derivative for enhancement the Laplacian
 - Define a discrete formulation of second order derivative and construct a filter mask based on that formulation
 - Preference for isotropic filters
 - * Response is independent of direction of discontinuities in image
 - * Rotationally invariant filters

- · Rotating the image and then applying the filter gives the same result as applying the filter first and then rotating the image
- Development of method
 - * Laplacian simplest derivative operator
 - * Defined as $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
 - · Since derivative of any order is a linear operation, Laplacian is a linear operator
 - * Discrete Laplacian operator
 - · Must satisfy the properties of second derivative
 - · Partial-order derivative in x direction

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

· Partial-order derivative in y direction

$$\frac{\partial^2 f}{\partial y^2} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

· Discrete Laplacian in two dimensions is given by taking the sum of partials

$$\nabla^2 f = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$

· The mask is given by

0	1	0
1	-4	1
0	1	0

- The mask gives isotropic result in increments of 90°
- * Diagonal directions can be added to Laplacian by adding two more terms to above equation resulting in the mask as

1	1	1
1	-8	1
1	1	1

- \cdot The mask gives isotropic result in increments of 45°
- * Properties of Laplacian As derivative operator
 - · Highlights gray level discontinuities in an image
 - · Deemphasizes slowly varying gray level changes
 - · Produces images with grayish discontinuities superimposed on a dark featureless background
 - · Background features can be recovered by adding original and Laplacian images, if the center is a positive coefficient, or subtracting the Laplacian image from original if center is negative coefficient

$$g(x,y) = \left\{ \begin{array}{ll} f(x,y) - \nabla^2 f(x,y) & \text{if center is negative} \\ f(x,y) + \nabla^2 f(x,y) & \text{if center is positive} \end{array} \right.$$

- · Figure 3.38
- * Scaling Laplacian
 - · Add to the image its minimum value to bring the new minimum to zero and then, scale the result to the full [0, L-1] range
- Simplifications
 - * Computation of Laplacian and subtraction can be done in a single pass of a single mask

$$g(x,y) = f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] + 4f(x,y)$$

= $5f(x,y) - [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)]$

* The mask is defined as

0	-1	0
-1	5	-1
0	-1	0

- Unsharp masking and high-boost filtering
 - Unsharp masking
 - * Used in publishing industry
 - * Subtract a blurred version of the picture from itself
 - * Obtain the mask as:

$$g_{\text{mask}}(x,y) = f(x,y) - \bar{f}(x,y)$$

* Add a weighted portion of the mask back to original image:

$$g(x,y) = f(x,y) + k \times g_{\text{mask}}(x,y)$$

 $k \ge 0$ is a weight for generality

- $\cdot k = 1$ leads to unsharp masking as defined above
- $\cdot k > 1$ leads to high-boost filtering
- $\cdot k < 1$ de-emphasizes the contribution of unsharp mask
- * Figure 3-39
 - · Unsharp mask is similar to the second-order derivative
 - · The points of change of slope in intensity get emphasized
 - \cdot Possible for the final result to have negative intensities, especially if input image has zero values or k is chosen as large enough
 - · Negative intensities can lead to objectionable results (dark halo around edges)
- * Figure 3-40
 - · Blurred with a 5×5 Gaussian smoothing filter with $\sigma = 3$
 - · Figure 3.40e shows result with k = 4.5, the largest possible value that will keep all intensities positive in the output
- High-boost filtering
 - * Generalization of unsharp masking
 - * Defined as:

$$g_{hb}(x,y) = Af(x,y) - \bar{f}(x,y)$$

where $A \ge 1$ and \bar{f} is a blurred version of f

* It can also be written as:

$$g_{hb}(x,y) = (A-1)f(x,y) + f(x,y) - \bar{f}(x,y)$$

= $(A-1)f(x,y) + g_{\text{mask}}(x,y)$

- Using Laplacian

$$g(x,y) = \left\{ \begin{array}{ll} Af(x,y) - \nabla^2 f(x,y) & \text{if center is negative} \\ Af(x,y) + \nabla^2 f(x,y) & \text{if center is positive} \end{array} \right.$$

- High-boost filtering is standard Laplacian sharpening when A=1
- If A is large, high-boost image is approximately equal to the original image multiplied by a constant
- Use of first derivative for enhancement the gradient
 - First derivative implemented using the magnitude of gradient

- Gradient of f at (x, y) is defined as the column vector

$$\nabla f = \left[\begin{array}{c} g_x \\ g_y \end{array} \right] = \left[\begin{array}{c} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{array} \right]$$

- * Important geometric property of the vector: it points in the direction of the greatest rate of change of f at (x, y)
- Magnitude of vector ∇f , denoted by M(x, y), is given by

$$\begin{array}{rcl} M(x,y) & = & \max(\nabla f) \\ & = & \sqrt{g_x^2 + g_y^2} \\ & = & \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right]^{1/2} \end{array}$$

- * M(x,y) is an image of the same size as the original
- * Commonly referred to as the gradient image
- Partial derivatives are not rotationally invariant but magnitude of gradient is
- The gradient operator is computationally expensive, and is therefore, approximated as

$$\nabla f \approx |G_x| + |G_y|$$

- * Simpler to compute and preserves relative changes in gray levels
- * Does not preserve isotropic feature property
- Digital approximations to compute appropriate filter masks
 - * Use the following notation to denote intensities in a 3×3 region

z_1	z_2	z_3
z_4	z_5	z_6
z_7	z_8	z_9

* Simplest approximations

$$g_x = f(x, y + 1) - f(x, y)$$

 $g_y = f(x + 1, y) - f(x, y)$

* Robert's definition, based on cross differences

$$g_x = f(x+1, y+1) - f(x, y)$$

 $g_y = f(x, y+1) - f(x+1, y)$

· Compute the gradient as

$$M(x,y) = \sqrt{[f(x+1,y+1) - f(x,y)]^2 + [f(x,y+1) - f(x+1,y)]^2}$$

· Using absolute values, the gradient is given by

$$M(x,y) \approx |f(x+1,y+1) - f(x,y)| + |f(x,y+1) - f(x+1,y)|$$

* Implemented with the mask (Roberts cross-gradient operator)

* Even-sized masks are different to implement due to lack of center of symmetry

* An approximation using absolute values at point f(x,y) using a 3×3 mask is given by Sobel operators

$$\begin{array}{ll} M(x,y) & \approx & |(f(x-1,y+1)+2f(x,y+1)+f(x+1,y+1))-\\ & & (f(x-1,y-1)+2f(x,y-1)+f(x+1,y-1))|+\\ & & |(f(x+1,y-1)+2f(x+1,y)+f(x+1,y+1))-\\ & & (f(x-1,y-1)+2f(x-1,y)+f(x-1,y+1))| \end{array}$$

or, pictorially as

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

- · Difference in first and third row in the left mask gives partial derivative in the vertical direction
- · Difference in first and third column in the right mask gives partial derivative in the horizontal direction
- st Mask gives gradient in x and y directions, and coefficients sum to zero indicating no change in constant gray level areas
- * Used for edge detection (Fig 3-42)

Combining spatial enhancement methods

- Use a combination of the filters to enhance the image depending on the application
- Figure 3.43
- Reading assignment