Δεύτερη Σύνοδος Αποτελεσμάτων

Echo Packets

Γράφημα G1

Στο παρακάτω γράφημα φαίνεται ο απαιτούμενος χρόνος αποστολής κάθε πακέτου Echo. Στον οριζόντιο άξονα βρίσκεται ο αύξων αριθμός του κάθε πακέτου, ενώ στον κατακόρυφο ο απαιτούμενος χρόνος σε ms.

Bar Chart για Καλύτερη Απεικόνιση του G1

Τα δεδομένα του γραφήματος G1 φαίνονται καλύτερα με την χρήση ιστογράμματος. Παρακάτω φαίνεται ο συνολικός αριθμός πακέτων με χρόνο αποστολής μέσα σε συγκεκριμένα χρονικά διαστήματα.

VideoCoder Images

Εικόνα Ε1 (χωρίς σφάλματα)

Εικόνα Ε2 (με σφάλματα)

GPS Image

Εικόνα Μ1

Άλλες Εικόνες (διαφορετικό αρχικό στίγμα και seconds Apart)

ARQ Packets

Γράφημα G2

Στο παρακάτω γράφημα φαίνεται ο απαιτούμενος χρόνος αποστολής κάθε πακέτου ARQ. Στον οριζόντιο άξονα βρίσκεται ο αύξων αριθμός του κάθε πακέτου, ενώ στον κατακόρυφο ο απαιτούμενος χρόνος σε ms (ο οποίος συμπεριλαμβάνει και τον χρόνο επανεκπομπής και λήψης εάν αυτό συμβαίνει).

Bar Chart για Καλύτερη Απεικόνιση του G2

Τα δεδομένα του γραφήματος G3 φαίνονται καλύτερα με την χρήση ιστογράμματος. Παρακάτω φαίνεται ο συνολικός αριθμός πακέτων με χρόνο αποστολής μέσα σε συγκεκριμένα χρονικά διαστήματα.

Κατανομή Επανεκπομπών (Γράφημα G3)

Παρακάτω φαίνεται ιστόγραμμα που περιέχει την πληροφορία της κατανομής των απαραίτητων επανεκπομπών. Όπως φαίνεται η κατανομή μοιάζει εκθετική.

Υπολογισμός BER

Η πιθανότητα σφάλματος βρίσκεται μέσα από τον τύπο:

$$Q = 1 - (1 - q)^L$$

όπου:

- L, το μέγεθος σε bit κάθε αρχείου (128, δηλαδή 16 χαρακτήρες των 8 bit)
- q, η πιθανότητα σφάλματος
- Q, η πιθανότητα κάποιο πακέτο να φτάσει κατεστραμμένο

Άρα:

$$q = 1 - \sqrt[L]{1 - Q}$$

Επίσης:

$$Q = 1 - \frac{1}{l}$$

όπου Ι ο μέσος αριθμός εκπομπών για κάποιο αρχείο.

Από το G3:

$$l = \frac{1*4265 + 2*873 + 3*187 + 4*53 + 5*5 + 6*2}{5385} = \frac{19}{15} = 1.26666$$

$$Q = 1 - \frac{1}{l} = \frac{4}{19}$$

$$q = 0.001845$$