

Run-Length Coding

Run-Length Encoding

This methods exploits the fact that along any particular scan line there will usually be long runs of zeros or ones.

Two approaches are commonly used in run-length encoding.

- -the start positions and length of runs of 1s for each row are used.
- -lengths of runs, starting with the length of the 0 run.

1	1	1	0	0	0	1	1	0	0	0	1	1	1	1	0	1	1	0	1	1	1
0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Start and length of 1 runs: (1,3) (7,2) (12,4) (17,2) (20,3)

(5,13)(19,4)

(1,3)(17,6)

Length of 0 and 1 runs: 0,3,3,2,3,4,1,2,1,3

4,13,1,4

0,3,13,6

Run-Length coding (2)

Computation of the geometric properties from run-length

Use the convention that r_{ik} is the k-th run of the i-th line and that the first run in each row is a run of zeros (thus all the even runs will correspond to ones in the image). There are m_i runs on the i-th line

Area

$$A = \sum_{i=1}^{n} \sum_{k=1}^{m_i/2} r_{i,2k}$$

Position

First of all, we obtain the horizontal projection as follows:

$$h_i = \sum_{k=1}^{m_i/2} r_{i,2k}$$

From this we can easily compute the vertical position of the center of area using:

Run-length code

Horizontal projection

$$\bar{i}A = \sum_{i=1}^{n} ih_{i}$$

Run-Length coding (3)

The vertical projection is obtained by adding up all picture cell values in one column of the image.

 $\overline{v}_j = v_j - v_{j-1} , \quad \overline{v}_1 = v_1$

The first difference of the vertical projection can be obtained by projecting not the image data, but the first horizontal differences of the image data: $\bar{b}_{i,j} = b_{i,j} - b_{i,j-1}$

The first difference $b_{i,j}$ has the advantage over $b_{i,j}$ itself that is nonzero only at the beginning of each run. It equals +1 where the data change from 0 to a 1, and -1 where the data change from a 1 to a 0.

Run-Length coding (6)

We can locate these places by computing the summed run-length code

$$\widetilde{r}_{ik} = 1 + \sum_{p=1}^{k} r_{i,p}$$

recursively: $\tilde{\mathbf{r}}_{i,0} = 1$ and $\tilde{\mathbf{r}}_{i,j+1} = \tilde{\mathbf{r}}_{i,j} + \mathbf{r}_{i,j+1}$

Then, for a transition at $j = \tilde{r}_{ik}$ we add $(-1)^{k+1}$ to the accumulated total for the first difference of the vertical projection

Run-Length coding (7)

						uii			191			\mathcal{I}	
													0
							0	1	1	0			2
						0	1	1	1	0			3
					0	1	1	1	1	1	0		5
		0	1	0	0	1	1	1	1	1	0		6
	0	1	1	1	1	1	1	1	1	0			8
0	1	1	1	1	1	1	1	1	0				8
0	1	1	1	1	1	1	1	0					7
		0	1	1	1	0							3
													h _i
0	+2	+1	+2	-1	0	+1	+1	0	-1	-3	-2	0	
0	2	3	5	4	4	5	6	6	5	2	0	0	$\mathbf{v_j}$

	k
$r_{i,k}$	$\frac{\widetilde{r}_{ik} = 1 + \sum_{p=1}^{k} r_{i,p}}{\sum_{k=1}^{k} r_{i,p}}$
8,2,3	1,9,11,14
7,3,3	1,8,11,14
6,5,2	1,7,12,14
3,1,2,5,2	1,4,5,7,12,14
2,8,3	1,3,11,14
1,8,4	1,2,10,14
1,7,5	1,2,9,14
3,3,7	1,4,7,14

Technical University of Cluj Napoca

Computer Science Department

Run-Length coding (4)

• From this difference we can compute the vertical projection itself using the simple summation

$$v_j = \sum_{j=1}^{J} \overline{v}_p$$

- Or recursively: $v_0 = 0$ and $v_{j+1} = v_j + \overline{v}_{j+1}$
- Given the vertical projection, we can easily compute the horizontal projection of the center of area $A_{j}^{-} = \sum_{i=1}^{m} j v_{j}$
- The diagonal projection can be obtained in a way similar to that used to obtain the vertical projection.