Cálculo Lambda I

Paradigmas de Lenguajes de Programación

Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

5 de mayo de 2020

Objetivo de la clase

```
(\lambda x : \mathsf{Bool}. \ \lambda y : \mathsf{Bool} \to \mathsf{Bool}. \ y \ (y \ x)) \ ((\lambda z : \mathsf{Bool}. \ true) \ false) \ (\lambda w : \mathsf{Bool}. \ w)
```

¿Qué significa esto? ¿Significa algo? ¿Es válido? ¿Es un valor? ¿Cómo nos damos cuenta?

Mapa del tema

C		
Sinta	VIC	
JIIILa	INIS .	

■ Reglas de Tipado

Valores

■ Reglas de Evaluación

Μ, σ

 $\Gamma \vdash M : \sigma$

V

 $M \rightarrow M'$

PLP (FCEN - UBA)

Sintaxis

Ejercicio: ¿cuáles son expresiones sintácticamente válidas? Dibujar el árbol sintáctico y marcar las ocurrencias libres de variables.

- **1** λx : Bool \rightarrow Bool.x true
- 2 $x y \lambda x : Bool \rightarrow Bool.x y$
- $(\lambda x : \mathsf{Bool} \to \mathsf{Nat}.x \ true)(\lambda y : \mathsf{Bool}.x)$
- 4 λx : Nat
- $\delta \lambda x. x$
- **6** if x then y else λz : Bool.z
- $\mathbf{Z} \times (\lambda y : \mathsf{Bool}.y)$
- 8 true false
- $9 \operatorname{succ}(M)$
- 10 succ true
- \blacksquare if succ(true) then λx : Bool.x

Chequeo de tipos

Ejercicio: demostrar (o explicar por qué no es posible) los siguientes juicios de tipado:

- **1** $\emptyset \vdash (\lambda x : \mathsf{Bool}. \lambda y : \mathsf{Bool}. if x then true else y) false : <math>\mathsf{Bool} \to \mathsf{Bool}$
- 2 $\{x : \mathsf{Bool}\} \vdash \mathsf{succ}(0) : \mathsf{Nat}$
- $\emptyset \vdash if \times then \times else z : Bool$
- 4 $\{x : Bool\} \vdash if x then x else 0 : Nat$
- **5** ¿Existen Γ y σ tal que Γ \vdash $xx : \sigma$?

Valores

Ejercicio: ¿cuáles de estos términos son valores?

- **1** if true then $(\lambda x : Bool. x)$ else $(\lambda x : Bool. false)$
- 2 λx : Bool. false
- $(\lambda x : Bool. x)$ false
- 4 succ(0)
- **5** succ(succ(0))
- **6** succ(pred(0))
- $\mathbf{7}$ succ(x)
- **8** λx : Bool. (λy : Bool.x) false

Semántica Operacional

Ejercicio: ¿cuál es el resultado de evaluar las siguientes expresiones? ¿El resultado es siempre un valor?

- **1** (λx : Bool. λy : Bool. if x then true else y) false
- 2 $(\lambda x : Bool. \lambda y : Bool \rightarrow Bool. y (y x)) ((\lambda z : Bool. true) false) (\lambda w : Bool. w)$

Simplificando la escritura

Podemos definir macros para expresiones que vayamos a utilizar con frecuencia. Por ejemplo:

- $Id_{\mathsf{Bool}} \stackrel{def}{=} \lambda x$: $\mathsf{Bool}.x$
- and $\stackrel{def}{=} \lambda x$: Bool. λy : Bool.if x then y else false

Cambiando reglas semánticas

Al agregar la siguiente regla para las abstracciones:

$$\frac{M \to M'}{\lambda x \colon \tau. \ M \to \lambda x \colon \tau. \ M'} \ E - ABS$$

Ejercicio

- Repensar el conjunto de valores para respetar esta modificación, pensar por ejemplo si $(\lambda x : Bool. Id_{Bool} true)$ es o no un valor.; Y $(\lambda x : Bool. x)$?
- 2 ¿Qué reglas deberían modificarse para no perder el determinismo?
- Utilizando la nueva regla y los valores definidos, reducir la expresión: $\lambda z \colon \mathsf{Nat} \to \mathsf{Nat}. \ (\lambda x \colon \mathsf{Nat} \to \mathsf{Nat}. \ z \ \underline{23}) \ (\lambda x \colon \mathsf{Nat}. \ 0)$ ¿Qué se puede concluir entonces? ¿Tiene sentido o no agregar esta regla?

Cambiando reglas semánticas

Ejercicio: considerar el cálculo **sin** la regla $pred(0) \rightarrow 0$ y evaluar:

- 2 $(\lambda x : Nat. \operatorname{succ}(\operatorname{pred}(\operatorname{succ}(x))))) 0$
- \blacksquare pred(succ(x))

¿Habrá términos que nunca lleguen a una forma normal?... Clase que viene.

Continuará...

$$(\lambda x : Clase. fin x)$$
 (Cálculo Lambda I)

Machete: Tipos y Términos

Las expresiones de tipos (o simplemente tipos) son

$$\sigma$$
 ::= Bool | Nat | $\sigma \rightarrow \rho$

Sea $\mathcal X$ un conjunto infinito enumerable de variables y $x \in \mathcal X$. Los términos están dados por

M ::= true false if M then M else M $\lambda x : \sigma. M$ MM0 succ(M)pred(M)iszero(M)

Machete: Axiomas y reglas de tipado

Machete: Axiomas y reglas de tipado

$$\frac{\Gamma \vdash M : Nat}{\Gamma \vdash \text{succ}(M) : Nat} \text{(T-Succ)} \qquad \frac{\Gamma \vdash M : Nat}{\Gamma \vdash \text{pred}(M) : Nat} \text{(T-Pred)}$$

$$\frac{\Gamma \vdash M : Nat}{\Gamma \vdash \text{iszero}(M) : Bool} \text{(T-IsZero)}$$

Machete: Semántica operacional

$$V$$
 ::= $true \mid false \mid \lambda x : \sigma$. $M \mid 0 \mid succ(V)$ (Los valores de tipo Nat pueden escribirse como n , lo cual abrevia $succ^n(0)$).

Reglas de Evaluación en un paso

$$\frac{M_1 \to M_1'}{M_1 M_2 \to M_1' M_2} \text{(E-APP1 o } \mu)$$

$$\frac{M_2 \to M_2'}{V_1 M_2 \to V_1 M_2'} \text{(E-APP2 o } \nu)$$

$$\frac{(E-APPABS o \beta)}{(\lambda x : \sigma. M) V \to M\{x \leftarrow V\}}$$

PLP (FCEN - UBA) Cálculo Lambda 14 / 16

Machete: Semántica operacional

$$V ::= true \mid false \mid \lambda x : \sigma. M \mid 0 \mid succ(V)$$

Reglas de Evaluación en un paso

 $rac{}{ ext{if } extit{true then } M_2 ext{ else } M_3
ightarrow M_2} ext{(E-IFTRUE)}$ $rac{}{ ext{if } extit{false then } M_2 ext{ else } M_3
ightarrow M_3} ext{(E-IFFALSE)}$ $rac{}{ ext{if } M_1 ext{ then } M_2 ext{ else } M_3
ightarrow ext{if } M_1' ext{ then } M_2 ext{ else } M_3} ext{(E-IF)}$

PLP (FCEN - UBA)

Machete: Semántica operacional

Reglas de Evaluación en un paso

$$\frac{M_1 \to M_1'}{\mathsf{succ}(M_1) \to \mathsf{succ}(M_1')} \text{(E-Succ)}$$

$$\frac{}{\mathsf{pred}(0) \to 0} \text{(E-PredZero)} \qquad \frac{}{\mathsf{pred}(\mathsf{succ}(\underline{n})) \to \underline{n}} \text{(E-PredSucc)}$$

$$\frac{M_1 \to M_1'}{\mathsf{pred}(M_1) \to \mathsf{pred}(M_1')} \text{(E-Pred)}$$

$$\frac{}{\mathsf{iszero}(0) \to \mathit{true}} \text{(E-IsZeroZero)} \qquad \frac{}{\mathsf{iszero}(\mathsf{succ}(\underline{n})) \to \mathit{false}} \text{(E-IsZeroSucc)}$$

$$\frac{M_1 \to M_1'}{\mathsf{iszero}(M_1) \to \mathsf{iszero}(M_1')} \text{(E-IsZero)}$$

PLP (FCEN - UBA) Cálculo Lambda