# Ingeniería de Materiales Ingeniería Industrial

ruben.velazquez@uteq.edu.mx

Universidad Tecnológica de Querétaro

Cuatrimestre Mayo - Agosto 2025



### **BIENVENIDA**

- Asignatura: Ingeniería de Materiales
- Carrera: Ingeniería Industrial en Competencias Profesionales
- Modalidad: Presencial asistida por tecnología
- Período: Mayo Agosto 2025
- Duración: 45 horas totales (42 horas efectivas de 1 hora)
- Plataforma: Google Classroom



# ¿Por qué son importantes los materiales?

"Los materiales marcan la frontera de lo que es posible en ingeniería."

## Objetivos del Curso

#### Objetivo Original (Hoja de Asignatura)

El alumno utilizará los materiales de acuerdo al diseño del producto para que garantice la satisfacción del cliente y no contribuya al deterioro ambiental.

#### Objetivo Propuesto

El alumno seleccionará y utilizará materiales para aplicaciones industriales mediante el análisis de sus propiedades físicas, químicas y tecnológicas, aplicando criterios de funcionalidad, costo/desempeño e impacto ambiental, con apoyo de herramientas computacionales y de inteligencia artificial, para garantizar la satisfacción del cliente, la rentabilidad industrial y la minimización del impacto ambiental.

# Competencias a Desarrollar

- Administrar los recursos necesarios de la organización para asegurar la producción planeada conforme a los requerimientos del cliente.
- Administrar el sistema de gestión de la calidad, con un enfoque sistémico, considerando factores técnicos y económicos, contribuyendo al desarrollo sustentable.
- Desarrollar e innovar sistemas de manufactura a través de la dirección de proyectos, considerando estándares de calidad, ergonomía, seguridad y ecología para lograr la competitividad y rentabilidad de la organización.

## Unidades Temáticas

#### Según Hoja de Asignatura:

- Propiedades de los materiales (15 horas)
- 2 Selección de materiales (30 horas)

#### Distribución de horas

Total: 45 horas (18 teóricas, 27 prácticas)
3 horas semanales



# Mapa del Curso

## Políticas Institucionales

- Para tener derecho a asistir a clases y evaluaciones, es requisito estar inscritos oficialmente.
- Utilizaremos el correo institucional como medio oficial de comunicación.
- Sel plagio está estrictamente prohibido. Cualquier trabajo que no sea de su autoría resultará en la pérdida del derecho a aprobar la evaluación correspondiente.
- Se requiere un mínimo de 80% de asistencia para tener derecho a evaluación.
- Las entregas deben ser puntuales y cumplir con los criterios establecidos.
- Las inasistencias solo pueden justificarse por causas específicas come enfermedad con incapacidad o solicitud de autoridad.

   Transformado

# Políticas Específicas del Curso

#### **Aspectos Académicos:**

- Entrega puntual de actividades con penalización por retraso
- Originalidad en todos los trabajos
- Uso ético y declarado de herramientas de IA

#### Uso de Tecnología:

- Aprovechamiento de bases de datos de materiales como apoyo
- Utilización de simulaciones para visualizar propiedades de materiales
- Enfoque en comprensión conceptual, no solo en resultados



# Metodología de Enseñanza-Aprendizaje

#### **Sesiones Presenciales**

- Exposición dialogada
- Análisis de casos industriales
- Prácticas de selección de materiales
- Discusión y trabajo colaborativo

#### Actividades Asincrónicas (Google Classroom)

- Elaboración de fichas técnicas de materiales
- Resolución de problemas de selección
- Uso guiado de bases de datos y herramientas de IA
- Foros de discusión y análisis de casos



# Uso de Tecnología

#### Bases de Datos de Materiales

- MatWeb, CES EduPack o alternativas open source
- Recursos de repositorios académicos

#### Herramientas de IA como Apoyo

- Asistentes conversacionales para:
  - Profundizar en propiedades específicas
  - Obtener explicaciones alternativas
  - Verificar pasos en la selección de materiales
  - Buscar información complementaria o aplicaciones industriales



## Uso Ético de IA en el Curso

#### Integración de IA en el proceso enseñanza-aprendizaje

Este curso incorpora el uso responsable de herramientas de Inteligencia Artificial como apoyo al aprendizaje, siguiendo lineamientos éticos institucionales.

#### Principios rectores:

- Integridad académica
- Transparencia
- Responsabilidad
- Desarrollo de pensamiento crítico

#### Objetivo de integración:

- Potenciar, no sustituir, el aprendizaje
- Desarrollar competencias digitales
- Preparar para entorno profesional actual
- Fomentar criterio prof



# Usos Permitidos y No Permitidos de IA

#### Usos recomendados: ✓

- Clarificar conceptos complejos
- Generar explicaciones alternativas
- Verificar procesos de resolución
- Buscar y sintetizar información
- Mejorar redacción técnica
- Generar ideas preliminares

#### Usos no permitidos: ×

- Presentar contenido de IA como propio
- Completar evaluaciones sin autorización
- Evadir el proceso de aprendizaje
- Falsificar datos experimentales
- Sustituir análisis personal en evaluaciones

#### Transparencia

Se requiere declarar explícitamente cuándo y cómo se ha utilizado IA en los trabajos.

### Evaluación

#### Requisito de asistencia:

Mínimo 80% para tener derecho a evaluación

## Evaluación Diagnóstica (0%)

Cuestionario inicial (hoy)

#### Evaluación Formativa (40%)

- Portafolio de fichas técnicas de materiales (10%)
- Reportes de prácticas y análisis de casos (10%)
- Ejercicios de aplicación y problemas (10%)
- Participación en discusiones y foros (5%)
- Autoevaluación/coevaluación (5%)

### Evaluación Sumativa (60%)

- Evaluación teórico-práctica Unidad I (15%)
- Evaluación teórico-práctica Unidad II (15%)
- Proyecto integrador de selección de materiales (30%)



## Niveles de Desempeño

### SA (Satisfactorio)

- Comprensión básica de propiedades de materiales y criterios de selección
- 80% de actividades formativas con calidad aceptable
- Mínimo 70% en evaluaciones sumativas

### DE (Destacado)

- Comprensión profunda de conceptos e interrelaciones
- 100% de actividades con alta calidad
- Mínimo 85% en evaluaciones sumativas
- Propuestas alternativas con justificación técnica

## AU (Autónomo)

- Pensamiento crítico avanzado en selección de materiales
- Soluciones originales a problemas complejos
- Mínimo 95% en evaluaciones sumativas
- ruben.velazquez@uteq.edu.mx

# Recursos Principales

#### Bibliografía Base

- Askeland, D. (2005). *Ciencias e Ingeniería de Materiales*. International Thomson Editores.
- Callister, W.D. (1997). *Introducción a la Ciencia e Ingeniería de los Materiales*. Editorial Reverté.
- Smith, W. F. (2007). Fundamentos de la Ciencia e Ingeniería de Materiales. McGraw-Hill Interamericana.
- Shackelford, J.F. (2005). *Introducción a la Ciencia de Materiales para Ingenieros*. Pearson Alhambra.

#### **Recursos Digitales**

- Repositorios CONACYT, IPN, UNAM
- Base de datos MatWeb (acceso institucional)
- Classroom: código de acceso [insertar código]



## Políticas de Clase Institucionales

- Para tener derecho a asistir a clases y a la evaluación del aprendizaje correspondiente, será requisito que los alumnos estén inscritos oficialmente.
- Los alumnos contarán con correo institucional, que será el medio oficial para la comunicación y entrega de reportes, trabajos o actividades asignadas en la plataforma de Google.
- Sel plagio de tareas, proyectos, presentaciones, evaluaciones o prácticas, queda estrictamente prohibido. El alumno que sea sorprendido entregando resultados que no sean de su autoría, perderá derecho a aprobar la evaluación correspondiente.



## Políticas de Clase Institucionales

- El alumno tendrá derecho a la evaluación del aprendizaje siempre y cuando cumpla con las actividades encomendadas y entregue en tiempo y forma los productos de aprendizaje señalados.
- La puntualidad y asistencia, así como las actitudes y valores son criterios para evaluar el saber ser y aprobar la unidad en la fase ordinaria. El porcentaje mínimo de asistencia será del 80% del total de horas de la unidad.
- El estudiante podrá justificar alguna inasistencia solamente en caso de incapacidad por enfermedad o a solicitud de alguna autoridad educativa, familiar o empresa debido a alguna situación especial.



# Importancia de la Ingeniería de Materiales

- 60-70% del costo final de muchos productos está en sus materiales
- La selección adecuada impacta directamente en:
  - Calidad y desempeño del producto
  - Rentabilidad del proceso productivo
  - Sostenibilidad ambiental
  - Competitividad de la organización
- Influye en la selección de procesos, equipos y tecnologías necesarias
- Determina el impacto ambiental del ciclo de vida del producto

#### Ejemplo de impacto económico

Se estima que los problemas relacionados con la selección incorrecta de materiales causan pérdidas de entre el 3% y 5% del PIB en países industrializados.



# Próximas Sesiones y Proyecto Integrador

#### Sesiones Iniciales

- Hoy: Presentación y diagnóstico
- Sesión 2: Introducción a la ingeniería de materiales
- Sesión 3: Interrelaciones entre estructura, propiedades y procesamiento

#### **Proyecto Integrador**

- Selección y justificación de materiales para un producto industrial específico
- Consideración de aspectos técnicos, económicos y ambientales
- Aplicación de metodologías sistemáticas de selección
- Implementación gradual durante el cuatrimestre
- Presentación final en las últimas sesiones



## Evaluación Diagnóstica

#### A continuación realizaremos:

- Presentación breve de cada estudiante
- Expectativas sobre el curso
- Cuestionario diagnóstico (Google Forms)
- Discusión sobre uso ético de bases de datos y herramientas de IA como apoyo al aprendizaje

## ¡Comencemos!

#### Contacto:

- Correo electrónico: [insertar correo]
- Horario de consulta: [insertar horario]
- Classroom: [insertar enlace]

¿Preguntas?

