WHAT IS CLAIMED IS:

1	1.	A prosthetic heart valve resistant to tissue overgrowth following
2	implantation of said p	rosthetic heart valve into a host, said heart valve comprising a
3	sewing ring, and a ho	using component enclosing a valve component, wherein a member
4	selected from said sev	wing ring, said housing component, said valve component and
5	combinations thereof	comprises at least one biologically active material in an amount
6	sufficient to prevent t	issue overgrowth.
	2	The heart valve according to claim 1, wherein said sewing ring
1	2.	
2	comprises said at leas	st one biologically active material.
1	3.	The heart valve according to claim 1, wherein said sewing ring
2	comprises a polymer	c material.
	4	The heart valve according to claim 3, wherein said polymeric
1	4.	member selected from plastics, rubbers and combinations thereof.
2	material comprises a	member selected from plastics, rubbers and combinations thereo.
ī	5.	The heart valve according to claim 3, wherein said polymeric
2	material is a fabric.	
1	6.	The heart valve according to claim 5, wherein said fabric
1		that is a member selected from thermoplastic polyurethanes TPUs,
2	_	ne, polytetrafluoroethylene, polyesters, nylon polymers, block
3		vether polymer and a polyester polymer, and block copolymers of a
4		one selected from the group consisting of polyamides, polyimides,
5	-	c hydrocarbon elastomers, and natural rubber.
O	poryoterms, synthetic	c flydfocarbon classomers, and manager are
1	7.	The heart valve according to claim 5, wherein said polyester is
2	polyethylene terepht	halate (PET).
1	8.	The heart valve according to claim 5, wherein said nylon is a
1		m nylon-11, nylon-12 and combinations thereof.
2	member selected iro	in nyion-11, nyion 12 and comomence merce.
1	9.	The heart valve according to claim 5 wherein said polyolefin is a
2	member selected fro	m polyethylenes (PE) and polypropylenes (PP).

1	1 10. The heart valve according to	claim 5, wherein said fabric is a
2	2 member selected from a weft knit with a velour, a v	veft knit without a velour, a warp knit
3		
4	4 structure without a velour and combinations thereof	f. Lijturi
1	1 11. The heart valve according to	claim 10, wherein said fabric
2		wo polymeric components.
1	1 12. The heart valve according to	claim 11, wherein said combination
2	2 yarn comprises polyester wrapped with polypropyle	ene yarn.
1	1 13. The heart valve according to	claim 1, wherein said at least one
2	2 biologically active material is a member selected fr	om antithrombotics,
3	3 antiinflammatories, corticosteroids, antimicrotubul	e agents, antisense oligonucleotides,
4		
5	4.0	
6		
7		
8	8 proteoglycans, NO, NO precursors and combination	ns thereof.
1	1 14. The heart valve according to	claim 13, wherein said antithromboti
2	2 is a member selected from heparin, heparin derivat	ives, hirudin, hirudin derivatives and
3,	3 combinations thereof.	
1		claim 13, wherein said corticosteroid
2	2 is a member selected from dexamethasone, dexam	ethasone derivatives and combinations
3	3 thereof.	
1		
2	2 antimicrotubule agent is a member selected from t	axane, taxane derivatives and
3	3 combinations thereof.	
1	1 17. The heart valve according to	o claim 13, wherein said antiplatelet
2	2 agent is an inhibitor of collagen synthesis.	

collagen synthesis is a member selected from halofuginore, halofuginore deri GpII _b III _a and combinations thereof. 1	ologically selected from nations
GpII _b III _a and combinations thereof. 1 19. The heart valve according to claim 1, wherein said bio active material adheres tenaciously, without covalent bonding, to a member s	ologically selected from nations
1 19. The heart valve according to claim 1, wherein said bio active material adheres tenaciously, without covalent bonding, to a member s	selected from nations
2 active material adheres tenaciously, without covalent bonding, to a member s	selected from nations
	nations
3 said sewing ring, said housing component, said valve component and combin	ewing ring
4 thereof.	ewing ring
1 20. The heart valve according to claim 19, wherein said se	
2 comprises said biologically active material.	
1 21. The heart valve according to claim 19, wherein said bi	iologically
2 active material is combined with a surfactant.	
The heart valve according to claim 21, wherein said su	urfactant is a
2 member selected from benzalkonium halides and sterylalkonium halides.	
1 23. The heart valve according to claim 19, wherein said by	oiologically
1 butter and combinations the	
2 active material comprises a taxane, a taxane derivative and combinations the	
1 24. The heart valve according to claim 19, further compris	ising a coating
2 layered over said biologically active material.	
The heart valve according to claim 24, wherein said c	coating is a
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
member selected from bioerodable coatings, nydrogel coatings, thermolevel coatings, bioresorbable coatings and combinations thereof.	
5 Coatings, biolesoibable coatings and communicate traces	
1 26. The heart valve according to claim 1, wherein said bid	ologically
2 active material is covalently bonded to a reactive group located on a member	
3 from said sewing ring, said housing component, said valve component and c	combinations
4 thereof.	
1 27. The heart valve according to claim 26, wherein said by	biologically
2 active material is covalently bound to said sewing ring.	

1	28. T	he heart valve according to claim 26, wherein said reactive group
2	is selected from amine-	containing groups, hydroxyl groups, carboxyl groups, carbonyl
3	groups, and combination	
1		he heart valve according to claim 28 wherein said amine-
2	containing groups are se	elected from amino groups, amido groups, urethane groups, urea
3	groups, and combinatio	ns thereof.
1		The heart valve according to claim 29, wherein said amino groups
2	are selected from the gr	oup consisting of primary amino groups, secondary amino groups,
3	and combinations thereof.	
1	31. 7	The heart valve according to claim 30 wherein said amino groups
2	are derived from a nitro	ogen-containing gas selected from the group consisting of
3	ammonia, organic amir	nes, nitrous oxide, nitrogen, and combinations thereof.
1	32.	The heart valve according to claim 31, wherein said organic amines
2	are selected from meth	ylamine, dimethylamine, ethylamine, diethylamine, n-
3	propylamine, allylamin	e, isopropylamine, n-butylamine, n-butylmethylamine, n-
4	amylamine, n-hexylam	ine, 2-ethylhexylamine, ethylenediamine, 1,4-butanediamine, 1,6-
5	hexanediamine, cycloh	exylamine, N-methylcyclohexylamine, and ethyleneimine.
1	33.	The heart valve according to claim 26, wherein when said substrate
2	is a polymer and said r	eactive chemical functional groups are affixed to the surface of
3	said substrate by plasn	na fixation.
1	34.	The heart valve according to claim 26, wherein said biologically
2	active material is a tax	ane, a taxane derivative and combinations thereof.
1	35.	The heart valve according to claim 26, further comprising a coating
2	layered over a compor	nent that is a member selected from said sewing ring, said housing
3	component, said valve	component and combinations thereof.
1	36.	The heart valve according to claim 35, wherein said coating is a
2	member selected from	bioerodable coatings, hydrogel coatings, thermoreversible
3	coatings, bioresorbabl	e coatings and combinations thereof.

1	37.	The heart valve according to claim 1, further comprising a
2	microcapsule encapsu	lating said biologically active material, said microcapsule being
3		omponent of said heart valve that is a member selected from said
4		sing component, said valve component and combinations thereof.
		- 27 Souther comprising a coating
1	38.	The heart valve according to claim 37, further comprising a coating
2	layer.	
1	39.	The heart valve according to claim 38, wherein said coating is
2	layered over said mid	crocapsule.
1	40.	The heart valve according to claim 38, wherein said microcapsule
2	is embedded in said	
_		
1	41.	The heart valve according to claim 38, wherein said coating is a
2		m bioerodable coatings, hydrogel coatings, thermoreversible
3	coatings, bioresorbal	ble coatings and combinations thereof.
1	42.	The heart valve according to claim 37, wherein said microcapsules
2	are fabricated from a	a material that undergoes erosion in said host, thereby providing for
3		said encapsulated biologically active material from said
4	microcapsules.	
		The heart valve according to claim 42, wherein said microcapsules
1	43.	
2	comprise a sodium a	aiginate envelope.
1	44.	The heart valve according to claim 1, wherein a member selected
2	from said sewing rin	ng, said housing component, said valve component and combinations
3		rtially covered with a coating for release of at least one of said
4	biologically active i	material, the coating comprising a reservoir component comprising
5	said biologically ac	tive material.
1	45.	The heart valve according to claim 44, wherein said coating
2	comprises a member	er selected from gels, foams, suspensions, microcapsules, solid
3	-	and fibrous structures.

1	46.	The heart valve according to claim 46, wherein said coating
2	comprises a bioresor	bable component.
1	47.	The heart valve according to claim 46, wherein the bioresorbable
2	component is insolul	ole in water.
1	48.	The heart valve according to claim 46, wherein said bioresorbable
2	component is hydror	
1	49.	The heart valve according to claim 46, wherein said bioresorbable
2		ytically and/or enzymatically cleavable.
1	50.	The heart valve according to claim 49, wherein said bioresorbable
2		ed from poly(esters), poly(hydroxy acids), poly(lactones),
3		ester-amides), poly (amino acids), poly(anhydrides),
4	= -	oly(carbonates), poly(phosphazines), poly(phosphoesters),
5		s)poly(thioesters), polysaccharides, proteins and mixtures thereof.
1	51.	The heart valve according to claim 50, wherein said bioresorbable
2	component is a poly	
1	52.	The heart valve according to claim 51, wherein said poly(hydroxy)
2		a material selected from poly(lactic) acid, poly(glycolic) acid,
3		poly(butyric) acid, poly(valeric) acid and copolymers and mixtures
4	thereof.	
1	53.	The heart valve according to claim 46, wherein said bioresorbable
2	component forms a	n excretable and/or metabolizable fragment.
1	54.	The heart valve according to claim 45, wherein said gel is a
2	thermoreversible ge	el.
1	55.	The heart valve according to claim 54, wherein said gel comprises
2		from pluronics, fibrin sealants, albumin, collagen, gelatin,
3		nylcellulose, polyethylene oxide, hyalouronic acid, polysaccharides
4	and combinations t	

1	56. The heart valve according to claim 45, wherein said gel comprises	
2	a member selected from polyurethane hydrogels and polyurethane-urea hydrogels.	
1	57. The heart valve according to claim 1, comprising a first population	
2	of bioactive material having a first release rate from said heart valve, and a second	
3	bioactive material having a second release rate from said heart valve.	
1	58. The heart valve according to claim 57, wherein said first bioactive	
2	material and said second bioactive material are the same material.	
1	59. The heart valve according to claim 57, wherein said first bioactive	
2	material and said second bioactive material are different materials.	
1	60. The heart valve according to claim 57, wherein said first bioactive	
2	material is encapsulated in a microcapsule and said second bioactive material is admixed	
3	in a coating comprising said microcapsule, said coating covering at least a portion of a	
4	component that is a member selected from said sewing ring, said housing component,	
5	said valve component and combinations thereof.	
1	61. A method for preventing or reducing tissue overgrowth of a	
2	prosthetic heart valve following the implantation of said heart valve into a host, said	
3	method comprising:	
4	prior to said implantation, incorporating into a component of said heart	
5	valve a biologically active agent in an amount sufficient to prevent or retard tissue	
6	overgrowth.	
1	62. A method of treating a patient requiring heart valve replacement,	
2	said method comprising:	
3	replacing an existing valve with a prosthetic heart valve comprising a	
4	his logically active agent in an amount sufficient to prevent or retard tissue overgrowth.	