Лабораторная работа № 3 «Однофакторный дисперсионный анализ»

студента Смирнова Даниі	ила группы <u>Б</u>	<u>18-501</u> . Дата (сдачи:23.11.2020
Ведущий преподаватель:	Трофимов А	.Γ.	оценка:
подпись:			

Вариант № 6

Цель работы: изучение функций Statistics and Machine Learning Toolbox $^{\text{TM}}$ MATLAB / Python SciPy.stats для проведения однофакторного дисперсионного анализа (*One-Way ANOVA*).

1. Исходные данные

Характеристики наблюдаемых случайных величин:

СВ	Распределение	Параметры	Математическое ожидание, m_i	Дисперсия, σ_i^2	Объем выборки, n_i
X_1	chi2	2	2	4	100
X_2	N	3,1	3	1	150
X_3	R	-2,2	0	4/3	200
X_4	N	5,1	5	1	100

Количество случайных величин k = 4

Примечание: для генерации случайных чисел использовать функции rand, randn, chi2rnd (scipy.stats: uniform.rvs, norm.rvs, chi2.rvs)

Выборочные характеристики:

СВ	Среднее, \bar{x}_i	Оценка дисперсии, s_i^2	Оценка с.к.о., s_i
X_1	2.15	4.43	2.1
X_2	2.87	1.03	1,01
X_3	0.06	1.32	1.15
X_4	5.06	1.08	1.04
Pooled	2.12	5.04	2.24

2. Визуальное представление выборок

Диаграммы Box-and-Whisker:

Примечание: для построения диаграмм использовать функции boxplot, vartestn (matplotlib.pyplot.boxplot)

3. Проверка условия применимости дисперсионного анализа

Статистическая гипотеза: $H_0: \sigma_1^2 = ... = \sigma_k^2$

Критерий Бартлетта:

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
94.47	2.3898230345310784e- 20	Гипотеза не верна	Гипотеза Н0 отклоняется (Решение верно)

 Π римечание: для проверки гипотезы использовать функцию vartestn (scipy.stats.bartlett)

4. Однофакторный дисперсионный анализ

Таблица дисперсионного анализа:

Источник вариации	Показатель вариации	Число степеней свободы	Несмещённая оценка
Группировочный признак	3.27	3	4.36
Остаточные признаки	1.76	546	1,77
Все признаки	5.03	549	5.03

Эмпирический коэффициент детерминации $\eta^2 = 0.65$

Эмпирическое корреляционное отношение $\eta=0.8$

Статистическая гипотеза: $H_0: m_1 = ... = m_k$

Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
338.27	4.416596093257432e- 124	Гипотеза не верна	Гипотеза Н0 отклоняется (Решение верно)

Примечание: при расчетах использовать функцию anoval (scipy.stats.f oneway)

5. Метод линейных контрастов

Доверительные интервалы для $m_1, ..., m_k$:

$\overline{\Pi}$ опарные сравнения m_i и m_j :

Гипотеза	Выборочное значение статистики критерия	p-value	Статистическое решение при $\alpha = 0.05$	Ошибка стат. решения
H_0 : $m_1 = m_2$	0.7112	0.001	Гипотеза не верна	Гипотеза Н0 отклоняется (Решение верно)
H_0 : $m_1 = m_3$	-2.0961	0.001	Гипотеза не верна	Гипотеза Н0 отклоняется (Решение верно)
H_0 : $m_1 = m_4$	2.9105	0.001	Гипотеза не верна	Гипотеза Н0 отклоняется

Осенний семестр 2018/2019. Лабораторный практикум по курсу «Математическая статистика»

J	сенний семестр 2016/2019. Лаоораторный практикум по курсу «Математическая статистика»				
					(Решение верно)
					Гипотеза Н0
	H_0 : $m_2 = m_3$	-2.8073	0.001	Гипотеза не верна	отклоняется (Решение верно)
	H_0 : $m_2 = m_4$	2.1993	0.001	Гипотеза не верна	Гипотеза Н0 отклоняется (Решение верно)
	H_0 : $m_3 = m_4$	5.0066	0.001	Гипотеза не верна	Гипотеза Н0 отклоняется (Решение верно)

Примечание: при расчетах использовать функцию **multcompare** (statsmodels.stats.multicomp.pairwise_tukeyhsd)