Shortest Path CS 5633 Analysis of Algorithms

Computer Science
University of Texas at San Antonio

November 13, 2024

Shortest Path

Shortest Path

- ► A common application of graphs is to model some sort of transportation network (airports, roads, etc.).
- ▶ If we are currently at a location s and wish to travel to a location t, then we may want to find a path which starts at s and ends at t. There may be many such paths, and in the application, some paths may be much more expensive to follow than others.
- ▶ We can assign a weight to each edge $\{u, v\}$ of the graph which represents the cost of moving from location u to location v. Now consider some path p from s to t. The weight of the path w(p) is the sum of the edge weights along the path.

Example of Shortest Path

► Two potential paths

- Path 1: $s \to 1 \to 3 \to 4 \to t$; weight: 3 + 1 + 4 + 1 = 9.
- Path 2: $s \to 2 \to 3 \to 5 \to t$; weight: 2 + 5 + 2 + 6 = 15.

Determining the Shortest Path

- In this setting, we would be interested in computing a shortest path from s to t. A shortest path is a path of minimum weight from s to t. Let $\delta(u, v)$ denote the weight of a shortest path between any two vertices u and v in the graph ($\delta(u, v) = \infty$ if there are no paths from u to v).
- In some applications we may want to have negative weights on an edge. Note that if there is a negative-weight cycle, then some shortest paths may not exist (usually due to negative loops).

Building Shortest Path on Shortest Paths

- ► Similar to other optimization problems, we can find the shortest path from s to t based on other shortest paths.
- ► Theorem: The sub-path of a shortest path is also a shortest path.
- ▶ Proof: Consider the shortest path P from s to t. Two vertices u and v are on this path. The sub-path of P from u to v must be the shortest between u and v. Otherwise, we can construct a new path P' using the shortest path between u and v, and P' is shorter than P, thus P cannot be the shortest path between s and t.

Traingle Inequality

- ► The following theorem is known as the *triangle inequality* and is also important in the computation of shortest paths.
- ► Theorem: For all $u, v, x \in V$, we have $\delta(u, v) \leq \delta(u, x) + \delta(x, v)$.

Dijkstra's Algorithm

Single-source Shortest Path

- ▶ We will now consider the *single-source shortest path* problem in which we are given a graph with a designated source vertex s, and we wish to compute the shortest path weights $\delta(s, v)$ for each $v \in V$.
- ► We will assume all edge weights are nonnegative so that we will not have any negative weight cycles.

Dijkstra's Algorithm

- 1. Maintain a set S of vertices whose shortest path weights from s are known, that is $dist[v] = \delta(s, v)$.
- 2. At each step, add the vertex $v \in \{V S\}$ whose d[v] is minimal to S.
- 3. Update dist[u] for any vertex u adjacent to v.

Implementing Dijkstra's Algorithm

- Dijsktra's algorithm requires maintaining a sorted list vertices based on their current path weights.
- ► The algorithm also requires dynamic updates and extracting min from the list.
- A priority queue is clearly a good option for these tasks.

Pseudo-code of Dijkstra's Algorithm

Algorithm 1: Dijkstra's algorithm with a priority queue.

```
Function Dijkstra Shortest Path(graph G(V, E), source s)
        Q = empty priority queue;
2
        S = empty set; // set of vertices with known shortest path;
3
        for each u \in V do
4
             \overline{u.dist} = \infty; // Initially, all vertices have a \infty long path from s;
5
             u.prev = NIL; // previous vertex in the shortest path is unknown;
6
             Q.add(u); // add u to priority queue;
7
        s.dist=0; // s \rightarrow s has 0 weight; Q is implicitly updated;
8
        while Q is no empty do
9
             u = Q.Extract Min();
10
             S.add(u):
11
             for each neighbor v of u do
12
                   dist = u.dist + weight(u, v);
13
                   if dist < v.dist then
14
                        v.dist = dist;
15
                        v.prev = u;
16
```

Run-time Dijkstra's Algorithm

- ► Assuming binary tree is used as the priority queue. Update on the priority queue and extracting min both cost $O(\lg |V|)$.
- ► The loop at line 10 performs |V| Extract_Min in total. Therefore, the total cost of Extract_min is $O(|V| \lg |V|)$.
- ► The loop at line 15 performs |E| update at most. Therefore, the total cost of updates is $O(|E| \lg |V|)$.
- ► The overall cost of Dijkstra's Algorithm is then $O((|E| + |V|) \lg |V|) = O(|E| \lg |V|)$.

Correctness of Dijkstra's Algorithm

- ▶ Theorem:
 - (i) For all $v \in S : v.dist = \delta(s, v)$.
 - (ii) For all $v \notin S$: v.dist is the weight of a shortest path from s to v that uses only vertices in S (besides v itself).
- ► The implication of this theorem is that Dijkstra's algorithm terminates with $v.dist = \delta(s, v)$ for each $v \in V$ (because each S = V at the end of the algorithm).
- ▶ The proof is by induction. It is clearly true in the base case (s.dist = 0 and $v.dist = \infty$ for all $v \neq s$). Assume (i) and (ii) are true before an iteration, and we will show it remains true after another iteration.
- ▶ Let u be the vertex added to S in this iteration. So $d[u] \le d[v]$ for all $v \in S$.

Correctness of Dijkstra's Algorithm cont.

Induction proof of (i):

- 1. Assume the contradiction is true, i.e, let u be the first vertex for which $u.dist \neq \delta(s, u)$ when it is added to set S.
- 2. If $u.dist \neq \delta(s, u)$, when there must be a shortest path P, and the weight(P) < u.dist. That is, there must be some vertex y in $\{V S\}$ on the path P (since u is the first vertex in S violates (i)).
- 3. As y is on u's shortest path, we should have y.dist < u.dist.
- 4. However, because *u* is chosen before *y*, we must have *u.dist* < *y.dist*, contradicting that *y.dist* < *u.dist*.
- 5. Therefore, the assumption that "(i) is false" must be false.

Correctness of Dijkstra's Algorithm cont.

Induction proof of (ii):

- Consider a v ∈ S. Let P be the shortest path from s to v using only vertices in S (except v itself).
- 2. Case 1: If *P* does not contain *u*, then (ii) is true by induction hypothesis.
- 3. Case 2: If P contains u,
 - 3.1 *P* consists of vertices of $S \{u\}$, then through *u* to *v*.
 - 3.2 Based on (i), *u.dist* is the weight of *u*'s shortest path.
 - 3.3 Therefore, u.dist + weight(u, v) is the weight of the shortest path from s to v using only vertices in S.
 - 3.4 Because of we set v.dist to be u.dist + weight(u, v), (ii) is true at the end of current iteration (or the beginning of the next iteration).

Shortest Path of Unweighted Graph

- ► Now consider the *unweighted case* in which we want to find a path with the smallest number of edges.
- Certainly Dijkstra's Algorithm can still work (we can just set the weight of each edge to be 1). Can we do better?
- ► Idea: do a modified BFS search starting from s. Recall BFS traverses the graph in "layers" where each layer will be the same distance from s.

Output Shortest Paths

- ➤ So far we have only been computing the *length* of a shortest path. What if we want to know what the shortest path actually is?
- We can build a shortest path tree similarly to how we built MST, BFS, and DFS trees (we remember the "predecessor" for each vertex during the computation).
- ► The shortest paths can be easily reconstructed backwardly using *v.prev* that we have set in the pseudo-code.

All-pairs Shortest Paths

Floyd-Warshall Algorithm

- ➤ The Floyd-Warshall algorithm is a dynamic programming algorithm for the all-pairs shortest path problem.
- Suppose the graph is given as an *adjacency matrix* $A = (a_{ij})$ where a_{ij} is the weight of the edge from i to j.
- Let $c_{ij}^{(k)}$ denote the weight of a shortest path from i to j with intermediate vertices on the path belonging to the set $\{1, 2, \dots, k\}$.
 - Note that $\delta(i,j) = c_{ij}^{(n)}$.

Floyd-Warshall Algorithm cont.

▶ The algorithm is to show that $c_{ij}^{(k)}$ for each $1 \le i, j, k \le n$ can be computed using dynamic programming.

$$c_{ij}^{(k)} = \min(c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)})$$

Pseudo-code of Floyd-Warshall Shortest Path Algorithm

Algorithm 2: Floyd-Warshall algorithm.

```
Function FW All Shortest Paths(graph G(V, E))
        c = a \text{ matrix of } |V| \times |V| \text{ with values of } \infty;
        // set initial values:
        for each vertex v do
          | c[v,v] = 0;
5
        for each edge (u, v) do
6
             c[u,v] = weight(u,v);
7
        // update the values based on c's recursive definition;
8
        for k = 1 to |V| do
             for i = 1 to |V| do
10
                  for j=1 to |V| do
11
                        if c[i,j] > (c[i,k] + c[k,j]) then
12
                          c[i,j]=c[i,k]+c[k,j];
13
```

Run Time of Floyd-Washall Algorithm

- ▶ The first two loops have a run time of $\Theta(|V| + |E|)$.
- ▶ The loop starts at line 8 has a run time of $\Theta(|V|^3)$.
- ► Considering $|E| < |V|^2$, the total run time of this algorithm is $\Theta(|V|^3)$.