APPLIED ECONOMETRICS

PROJECT 2 Spring, 2023 LESE207 Presentation

2021140655 Kim Sang Ock

Nerlove, Returns to Scale in Electricity Supply: Econometric Analysis 🤝

Table of Contents

I. Review of the Paper

: Nerlove, Returns to Scale in Electricity Supply

II. Empirical Research

: Econometric Analysis 1~3

- Baseline, Model A, Model C
- Return to Scale & Nonlinearity

III. Regression in Python

- Conducting Econometric Analysis 1 in Python
- Comparison with Eviews

APPENDIX

: What is the Strength of Python in a Regression Project?

Review: Nerlove, Returns to Scale in Electricity Supply Summary of the derivation of the cost function for econometric analysis

- Attributes of Electricity Production: Absence of mass storage technology, Unionized industrial structure, Existence of regulatory agencies, Long-term contract-oriented, and Macro-in which personal utility does not have a significant impact.
- Modified Cobb-Douglas Production Function with dependent variable cost:

$$cost = ky^{\frac{1}{r}} P_l^{\frac{a_1}{r}} P_k^{\frac{a_2}{r}} P_f^{\frac{a_3}{r}} v$$

- whether $r = a_1 + a_2 + a_3$ is true determines the Return to Scale of Prices.
- Then we would estimate $\log(Cost) = \beta_1 + \beta_2 \log(Y) + \beta_3 \log(P_L) + \beta_4 \log(P_F) + \beta_5 \log(P_K) + u$ for test it and find some nonlinear relationship between log(cost) and log(y=output).

Estimating Baseline Model

 $\log(Cost) = \beta_1 + \beta_2 \log(Y) + \beta_3 \log(P_L) + \beta_4 \log(P_F) + \beta_5 \log(P_K) + u$

Dependent Variable: LOG(COSTS)

Method: Least Squares Date: 05/17/23 Time: 17:00

Sample: 1 145

Included observations: 145

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-3.526503	1.774367	-1.987471	0.0488
LOG(KWH)	0.720394	0.017466	41.24448	0.0000
LOĠ(PL)	0.436341	0.291048	1.499209	0.1361
LOG(PF)	0.426517	0.100369	4.249483	0.0000
LOG(PK)	-0.219888	0.339429	-0.647819	0.5182
R-squared	0.925955	Mean deper	ndent var	1.724663
Adjusted R-squared	0.923840	S.D. dependent var		1.421723
S.E. of regression	0.392356	Akaike info criterion		1.000578
Sum squared resid	21.55201	Schwarz criterion		1.103224
Log likelihood	-67.54189	Hannan-Quinn criter.		1.042286
F-statistic	437.6863	Durbin-Watson stat		1.013062
Prob(F-statistic)	0.000000			

Estimated Result:

$$\log(Cost) = -3.526503 + 0.720394 \log(Y) + 0.436341 \log(P_l)$$

$$(1.774367) (0.017466) (0.291048)$$

$$+ 0.426517 \log(P_f) - 0.219888 \log(P_k) + u$$

$$(0.100369) (0.339429)$$

$$R^2 = 0.925955$$

Direct F-Test for $H_0: \beta_3 + \beta_4 + \beta_5 = 1 \ vs \ H_1: \beta_3 + \beta_4 + \beta_5 \neq 1$

$$\log(Cost) = \beta_1 + \beta_2 \log(Y) + \beta_3 \log(P_L) + \beta_4 \log(P_F) + \beta_5 \log(P_K) + u$$

Wald Test:

Equation: EP2_MODEL1

Test Statistic	Value	df	Probability
t-statistic	-0.757404	140	0.4501
F-statistic	0.573660	(1, 140)	0.4501
Chi-square	0.573660	1	0.4488

Null Hypothesis: C(3) + C(4) + C(5) = 1Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
-1 + C(3) + C(4) + C(5)	-0.357030	0.471387

Restrictions are linear in coefficients.

- The F-statistic of this test is 0.573660 and the p-value is 0.4051 with following $F_{(1,140)}$.
- So, the null hypothesis is not rejected.
- We cannot rule out the possibility that the restriction $\beta_3 + \beta_4 + \beta_5 = 1$ of null hypothesis H_0 is true.

Indirect F-Test for $H_0: \beta_3 + \beta_4 + \beta_5 = 1 \ vs \ H_1: \beta_3 + \beta_4 + \beta_5 \neq 1$

Derivation of Model A Under H_0

$$\begin{split} \log(\mathit{Cost}) &= \beta_1 + \beta_2 \log(\mathit{Y}) + \beta_3 \log(\mathit{P_L}) + \beta_4 \log(\mathit{P_F}) + \boldsymbol{\beta_5} \log(\mathit{P_K}) + u \\ \Leftrightarrow \log(\mathit{Cost}) &= \beta_1 + \beta_2 \log(\mathit{Y}) + \beta_3 \log(\mathit{P_L}) + \beta_4 \log(\mathit{P_F}) + (\mathbf{1} - \boldsymbol{\beta_3} - \boldsymbol{\beta_4}) \log(\mathit{P_K}) + u \\ \Leftrightarrow \log(\mathit{Cost}) - \log(\mathit{P_K}) &= \beta_1 + \beta_2 \log(\mathit{Y}) + \beta_3 (\log(\mathit{P_L}) - \log(\mathit{P_K})) + \beta_3 (\log(\mathit{P_F}) - \log(\mathit{P_K})) + u \\ &= \mathsf{Model} \; \mathsf{A} \end{split}$$

- Under
$$H_0$$
, $r=a_1+a_2+a_3\Leftrightarrow 1=\frac{a_1}{r}+\frac{a_2}{r}+\frac{a_3}{r}$ holds for the theoretical model in the paper:
$$c=ky^{\frac{1}{r}}P_l\frac{a_1}{r}P_k\frac{a_2}{r}P_f\frac{a_3}{r}v$$

 We can check whether the Constant Return to Scale of Prices holds by comparing Baseline Model and Model A.

Estimating Model A & Getting F-stat

$$\log(Cost) - \log(P_K) = \beta_1 + \beta_2 \log(Y) + \beta_3 (\log(P_L) - \log(P_K)) + \beta_3 (\log(P_F) - \log(P_K)) + u$$

Dependent Variable: LOG(COSTS)-LOG(PK)

Method: Least Squares Date: 05/17/23 Time: 11:52

Sample: 1 145

Included observations: 145

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-4.690789	0.884871	-5.301098	0.0000
LOG(KWH)	0.720688	0.017436	41.33398	0.0000
LOG(PL)-LOG(PK)	0.592910	0.204572	2.898291	0.0044
LOG(PF)-LOG(PK)	0.414471	0.098951	4.188644	0.0000
R-squared	0.927088	Mean dependent var		-3.432113
Adjusted R-squared	0.925537	S.D. dependent var		1.435663
S.E. of regression	0.391762	Akaike info criterion		0.990874
Sum squared resid	21.64032	Schwarz criterion		1.072991
Log likelihood	-67.83836	Hannan-Quinn criter.		1.024241
F-statistic	597.6166	Durbin-Wats	1.015369	
Prob(F-statistic)	0.000000			

$$-F = \frac{(RSS_R - RSS_U)/q}{RSS_U/(n-r)} = \frac{(21.64032 - 21.55201)/1}{21.55201/(145-5)} = 0.573654.$$

- Its p-value is 0.450083 with following F(1,140).
- we cannot reject H0 then there is no evidence that $\beta_3 + \beta_4 + \beta_5 = 1$ is not true.
- We can say that the evidence, which Constant Return to Prices $(r = a_1 + a_2 + a_3)$ does not holds is not enough.

Direct F-Test for H_0 : $\beta_2 = 1 \ vs \ H_1$: $\beta_2 < 1$ (Model A)

$$\log(Cost) - \log(P_K) = \beta_1 + \beta_2 \log(Y) + \beta_3 (\log(P_L) - \log(P_K)) + \beta_3 (\log(P_F) - \log(P_K)) + u$$

Wald Test:

Equation: EQ2 MODEL2

Test Statistic	Value	df	Probability
t-statistic	-16.01956	141	0.0000
F-statistic	256.6262	(1, 141)	0.0000
Chi-square	256.6262	1	0.0000

Null Hypothesis: <u>C(</u>2)=1 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
-1 + <u>C(</u> 2)	-0.279312	0.017436

Restrictions are linear in coefficients.

- The F-statistic of this test is 256.6262 and the p-value is $0.0000\cdots$ with following $F_{(1,141)}$.
- So, the null hypothesis is rejected.
- We rule out the possibility that the restriction $\beta_2 = 1$ of null hypothesis H_0 is true.

Estimating Model C

 $\log(Cost) - \log(P_K) = \beta_1 + \beta_2 \log(Y) + \beta_3 (\log(Y))^2 + \beta_4 (\log(P_L) - \log(P_K)) + \beta_5 (\log(P_F) - \log(P_K)) + u$

Dependent Variable: LOG(COSTS)-LOG(PK)

Method: Least Squares Date: 05/17/23 Time: 12:03

Sample: 1 145

Included observations: 145

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-3.764649	0.701727	-5.364837	0.0000
LOG(KWH)	0.152547	0.061860	2.465992	0.0149
LOG(KWH) ²	0.050514	0.005364	9.417823	0.0000
LOG(PL)-LOG(PK)	0.480586	0.161072	2.983663	0.0034
LOG(PF)-LOG(PK)	0.445248	0.077765	5.725535	0.0000
R-squared	0.955366	Mean deper	ndent var	-3.432113
Adjusted R-squared	0.954091	S.D. depend	dent var	1.435663
S.E. of regression	0.307612	Akaike info	criterion	0.513919
Sum squared resid	13.24751	Schwarz criterion		0.616565
Log likelihood	-32.25909	Hannan-Quinn criter.		0.555627
F-statistic	749.1534	Durbin-Wats	son stat	1.665259
Prob(F-statistic)	0.000000			

Estimated Result:

$$\log(Cost) - \log(P_k) = -3.764649 + 0.1525478 \log(Y)$$

$$(0.701727) \quad (0.061860)$$

$$+ 0.050514(\log(Y))^2 + 0.480586(\log(P_l) - \log(P_k))$$

$$(0.005364) \quad (0.161072)$$

$$+ 0.445248(\log(P_f) - \log(P_k)) + u$$

$$(0.077765)$$

$$R^2 = 0.955366$$

Direct F-Test for H_0 : $\beta_3 = 0 \ vs \ H_1$: $\beta_3 \neq 0$ (Model C)

$$\log(Cost) - \log(P_K) = \beta_1 + \beta_2 \log(Y) + \beta_3 (\log(P_L) - \log(P_K)) + \beta_3 (\log(P_F) - \log(P_K)) + u$$

Wald Test:

Equation: EQ2_MODEL3

Test Statistic	Value	df	Probability
t-statistic	9.417823	140	0.0000
F-statistic	88.69539	(1, 140)	0.0000
Chi-square	88.69539	1	0.0000

Null Hypothesis: <u>C(</u>3)=0 Null Hypothesis Summary:

Normalized Restriction (= 0)	Value	Std. Err.
<u>C(</u> 3)	0.050514	0.005364

Restrictions are linear in coefficients.

- The F-statistic of this test is 88.69539 and the p-value is $0.0000\cdots$ with following $F_{(1,140)}$.
- So, the null hypothesis is rejected.
- We rule out the possibility that the restriction $\beta_3 = 0$ of null hypothesis H_0 is true.
- Then can estimate that there may exist a nonlinear relationship between the log(cost) and the log(output), which is convex because of (+) coef. of the 2nd term.

Introduction: Using Google Colab

III. Regression in Python LESE207 Empirical Project 2

Conducting Econometric Analysis 1 in Python

Estimating Baseline Model

Dependent Variable: LOG(COSTS)

Method: Least Squares
Date: 05/17/23 Time: 17:00

Sample: 1 145

Included observations: 145

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-3.526503	1.774367	-1.987471	0.0488
LOG(KWH)	0.720394	0.017466	41.24448	0.0000
LOG(PL)	0.436341	0.291048	1.499209	0.1361
LOG(PF)	0.426517	0.100369	4.249483	0.0000
LOG(PK)	-0.219888	0.339429	-0.647819	0.5182
R-squared	0.925955	Mean deper	ndent var	1.724663
Adjusted R-squared	0.923840	S.D. depen	dent var	1.421723
S.E. of regression	0.392356	Akaike info	criterion	1.000578
Sum squared resid	21.55201	Schwarz cri	terion	1.103224
Log likelihood	-67.54189	Hannan-Qu	inn criter.	1.042286
F-statistic Prob(F-statistic)	437.6863 0.000000	Durbin-Wat	son stat	1.013062

III. Regression in Python LESE207 Empirical Project 2

Conducting Econometric Analysis 1 in Python

Estimating Model A

Dependent Variable: LOG(COSTS)-LOG(PK)

Method: Least Squares Date: 05/17/23 Time: 11:52

Sample: 1 145

Included observations: 145

Coefficient	Std. Error	t-Statistic	Prob.
-4.690789	0.884871	-5.301098	0.0000
0.720688	0.017436	41.33398	0.0000
0.592910	0.204572	2.898291	0.0044
0.414471	0.098951	4.188644	0.0000
0.927088	Mean deper	ndent var	-3.432113
0.925537	S.D. depend	dent var	1.435663
0.391762	Akaike info	criterion	0.990874
21.64032	Schwarz cri	terion	1.072991
-67.83836	Hannan-Qu	inn criter.	1.024241
597.6166	Durbin-Wats	son stat	1.015369
0.000000			
	-4.690789 0.720688 0.592910 0.414471 0.927088 0.925537 0.391762 21.64032 -67.83836 597.6166	-4.690789	-4.690789

```
√ [21] A_data = Baseline_data[['Log(Cost)']].copy()
        A_data['Log(Cost)-Log(Pk)'] = A_data['Log(Cost)'] - Baseline_data['Log(Pk)']
        A_data['Log(Y(kWh))'] = Baseline_data['Log(Y(kWh))']
        A_data['Log(PI)-Log(Pk)'] = Baseline_data['Log(PI)'] - Baseline_data['Log(Pk)']
        A_data['Log(Pf)-Log(Pk)'] = Baseline_data['Log(Pf)'] - Baseline_data['Log(Pk)']
        A data = A data.iloc[0:.1:]
        A_data.head()
            Log(Cost)-Log(Pk) Log(Y(kWh)) Log(PI)-Log(Pk) Log(Pf)-Log(Pk)
                                    0.693147
                                                      -4.472322
                                                                        -2.324685
                      -7.710522
                      -5.573057
                                    1.098612
                                                      -4.441216
                                                                        -1.600854
                      -5.151714
                                    1.386294
                                                      -4.423824
                                                                        -1.583462
                      -6.267170
                                    1.386294
                                                      -4.507672
                                                                        -1.640021
                      -7.075590
                                                      -4.699622
                                                                        -2.097632

✓ [22] Model_A = sm.OLS(A_data['Log(Cost)-Log(Pk)'], sm.add_constant(A_data[['Log(Y(kWh))', 'Log(Pl)-Log(Pk)', 'Log(Pf)-Log(Pk)']])).fit()

        print(Model A.summary())
```

0.927

OLS Regression Results

Dep. Variable: Log(Cost)-Log(Pk) R-squared:

Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Leas	OLS ot Squares May 2023 03:00:51 145 141 3 nonrobust		:: itistic):	6.16 -67	0.926 597.6 59-80 7.838 143.7
	coef	std err	t	P> t	[0.025	0.975]
const Log(Y(kWh))	-4.6908 0.7207	0.885	-5.301 41.334	0.000	-6.440 0.686	-2.941 0.755
Log(PI)-Log(Pk) Log(Pf)-Log(Pk)	0.5929 0.4145	0.205 0.099	2.898 4.189	0.004	0.188 0.219	0.997 0.610
Omnibus: Prob(Omnibus): Skew: Kurtosis:		49.416 0.000 1.252 7.617	Durbin-Wats Jarque-Bera Prob(JB): Cond. No.	on:	166	 1.015 3.633 5e-37 234.

Kurtosis

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Indirect F-test

```
[25] RSSu = Baseline.ssr
      RSSr = Model A.ssr
     n = len(Baseline_data)
     r = len(Baseline.params)
     F_stat = ((RSSr-RSSu)/(q))/(RSSu/(n-r))
     Pval = 1-sp.stats.f(q,n-r).cdf(F_stat)
     print(f"RSSu: {RSSu} #nRSSr: {RSSr}] #ng: {q} #nn: {n} #nr: {r}")
     print(f"\nTest Result: \nF-stat: \{F_stat\}\nP-value:\{Pval\}")
     RSSu: 21.552008164185782
     RSSr: 21.64031911672138]
     a: 1
     n: 145
     r: 5
     Test Result:
     F-stat: 0.5736603875052707
     P-value: 0.45008093212710076
```


Comparison with Eviews and Python

Eviews	VS	Python
Function as a single software	VS	Have to Use Add-ons (Libraries)
Strong at Statistical Analysis	VS	More Flexible Projects
Proper to Econometrics	VS	Proper to Engineering Projects

Comparison with Eviews and Python in a Regression Project

Eviews

Function as a **single software** VS Ha
Strong at **Statistical** Analysis VS Mc
Proper to **Econometrics** VS Pro

Python

Have to Use Add-ons (Libraries)
More Flexible Projects

Proper to **Engineering Projects**

1. Customized Visualization:

Scatterplot of Model C & Correlation Matrix for Baseline

2. Service Prototyping: Cost Predictor with Model C

https://colab.research.google.com/drive/1MBbHMZe6ffvIEkyqcQoUdbATAXRjm_9K?usp=sharing

У	2	output 0
pl	1.45	output 1
pf	10.3	
pk	138	output 2
클리어	제출하기	output 3
271	= 11	
		플래그

2. Service
Prototyping:
Cost Predictor
with Model C

Predicted	Cost = 19.96129
utput 1	
Predicted	Log(Cost)-Log(Pk) = -2.24848
utput 2	
95% Conf	dence Interval = [-2.98588, -1.51108]
utput 3	
	OLS Regression Results
Model: Method: Date: Time: No. Obser Df Residu Df Model:	ble: Log(Cost)-Log(Pk) R-squared: 0.955 OLS Adj. R-squared: 0.954 Least Squares F-statistic: 749.2 Wed, 24 May 2023 Prob (F-statistic): 2.03e-93 02:37:33 Log-Likelihood: -32.259 vations: 145 AlC: 74.52 sls: 140 BlC: 89.40 4 e Type: nonrobust
====	coef std err t P> t [0.025 0.975]
Log(Y(kW Log(Y(kW Log(Pl)-Lo	-3.7646 0.702 -5.365 0.000 -5.152 -2.377 n) 0.1525 0.062 2.466 0.015 0.030 0.275 n) 2 0.0505 0.005 9.418 0.000 0.040 0.061 g(Pk) 0.4806 0.161 2.984 0.003 0.162 0.799 ng(Pk) 0.4452 0.078 5.726 0.000 0.292 0.599
======	21.061 Durbin-Watson: 1.665

3. Expansion to Machine Learning: Decision Tree Example

