Problem Chosen

A

2025 MCM/ICM Summary Sheet

Team Control Number

888888

Our Article

Summary

sumary su sumary sumary

Contents

1	Introduction	1
	1.1 Background	1
	1.2 Problem Analysis	1
	1.3 Our Work	1
2	Assumptions and Notations	1
	2.1 Assumptions and Explanation	1
	2.2 Notations	2
3	Models	2
4	Application of the Models	2
5	Sensitivity Analysis	2
6	Evaluation of the Model	2
	6.1 Strengths	2
	6.2 Weaknesses	2
7	Conclusion	2
R	eferences	2

Team # 888888 Page 1 of 2

1 Introduction

1.1 Background

1.2 Problem Analysis

1.3 Our Work

- 1
- 2
- 3

2 Assumptions and Notations

2.1 Assumptions and Explanation

• Geographic Applicability Assumption: The model assumes that the applicable region is Southeast Asia.

Explanation: The climate of Southeast Asia is simple, with only two seasons—rainy and dry. Additionally, the temperature variation within a year is minimal.

• Planting Pattern Assumption: The model assumes that two crops of rice are planted each year in the farmland.

Explanation: This aligns with the planting patterns commonly observed in Southeast Asia, and the simplicity of crop types makes the model easier to establish.

• Stable Growth Environment Assumption: The model assumes that no natural disasters, which could significantly impact the agricultural ecosystem, will occur during the time frame considered.

Explanation: Natural disasters are considered low-probability events in agricultural activities. To ensure the generalizability of the model, natural disasters should not be considered.

Team # 888888 Page 2 of 2

Symbols	Description
X	Vector $[N_w, N_c, N_p, N_b, N_B, C_{hc}, C_{pc}]^T$, etc.
w	Subscription for weeds
c	Subscription for crops
p	Subscription for pest
bir	Subscription for birds
bat	Subscription for bats
hc	Subscription for herbicide
pc	Subscription for pesticide
C_{i}	Concentration of certain chemical
N_i	Numbers of certain species
α	abc

2.2 Notations

- 3 Models
- 4 Application of the Models
- 5 Sensitivity Analysis
- 6 Evaluation of the Model
- 6.1 Strengths
- 6.2 Weaknesses
- 7 Conclusion

References

- [1] John Doe. An example article. Journal of Examples, 1:1–10, 2020.
- [2] Rosenow D.T. et al. Drought tolerant sorghum and cotton germplasm. *Agricultural Water Management*, 7(1):207–222, 1983.