

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Фундаментальные науки»

КАФЕДРА «Прикладная математика»

РЕФЕРАТ ПО ПРЕДМЕТУ:

МЕТОДЫ САМООРГАНИЗАЦИИ В ЕСТЕСТВОЗНАНИИ, ТЕХНИКЕ И ЭКОНОМИКЕ

Выполнил: студент группы ФН2-32М

Матвеев Михаил

Проверил:

Малинецкий Г. Г.

1 Формулировка задачи

Классическая задача теории прогноза состоит в том, чтобы на основе известной части временного ряда $\{x_1, x_2, x_3, x_4, \dots, x_N\}$ генерировать его следующие члены x_{N+1}, x_{N+2} и т.д.

Пусть ряд генерируется простой системой с хаотическим аттрактором (например, логистическим отображением при $\lambda=4:x_{n+1}=4x_n(1-x_n)$ или аттрактором Хенона

$$x_{n+1} = y_n + 1 - ax_n, y_{n+1} = bx_n$$

(например, при a=1.4, b=0.3).

Используя трехслойную нейронную сеть (подобрав разумное число нейронов в каждом слое), алгоритмом обратного распространения ошибки, построить предсказывающую систему, которой на вход подается x_{p_1}, \ldots, x_{p+k} , а на выходе должно быть x_{p+k+1} . Сравнить горизонт прогноза для исходной системы и для «предсказывающей машины».

Советы решающему.

Последнее разумно сделать, сравнив ляпуновские показатели для исходной системы с динамическим хаосом и нейросетевого предиктора.

2 Решение задачи

В качестве хаотического аттрактора было выбрано логистическое отображение при $\lambda=4:x_{n+1}=4x_n(1-x_n)$, где x_n принимает значения от 0 до 1 и отражает отношение значение популяции в n-ом году к максимально возможному, а x_0 обозначает начальную численность. r, в данном случае, характеризует скорость роста популяции. Зависимость поведения данного отображения от параметра r можно увидеть на предоставленной бифуркационной диаграмме,где по оси абсцисс отложены значения параметра r, а по оси ординат - полученные значения r. Структура данной диаграммы самоподобна, так как если увеличить область при r=3.82, то можно увидеть, что структура этой области повторяет всю диаграмму.

После значения r=3.57 мы можем наблюдать хаотическую систему, имеющую высокую чувствительность к начальным данным. При значении r=4 мы и будем рассматривать данное логистическое хаотическое отображение.

Рис. 1: Бифуркационная диаграмма логистического отображения

Попробуем построить предсказывающую систему, которой на вход подаётся определенное количество данных их логистического отображения, а на выходе мы получаем последующее значение в данной цепочке. После же мы сравним ляпуновские показатели изначальной системы и нейронного предсказателя. Для наших целей создадим трёхслойную нейронную сеть с заранее определенным количеством входов, с заранее определенным количеством нейронов на каждом из двух спрятанных слоёв, а также с случайно заданными весами и сдвигами для каждого из нейронов. Запуская нашу сеть, мы получаем некий результат, который, безусловно, сравниваем с желаемым результатом. Чтобы уменьшать разницу между этим двумя значениями, а именно вычисляемую среднюю квадратичную ошибку

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_{true} - y_{pred})$$

или, как ещё говорят, вычислим потери.

Рис. 2: Ошибка обучения нейронной сети

Наша функция берёт среднее значение всех ошибок, и чем меньше будет это значение, тем лучше будут предсказания. Для того, чтобы минимизировать эти потери, воспользуемся методом обратного распространения. Его суть заключается в обновлении весов и сдвигов нашего перцептрона с помощью стохастического градиентного спуска. Запишем функцию потерь как функцию от

нескольких переменных:

$$L(w_i, b_i),$$

где w_i - все веса сети, а b_i - все сдвиги. Рассчитаем, как изменятся потери при изменении, например, веса w_1 :

$$w_1 = w_1 - \eta \frac{\partial L}{\partial w_1},$$

где η - скорость обучения.

Если $\frac{\partial L}{\partial w_1}$ положительна, то w_1 уменьшится, что уменьшит L. Если же $\frac{\partial L}{\partial w_1}$ отрицательно, то w_1 увеличится, что также уменьшит L. Процесс обучения таков:

- Выбираем одно наблюдение из набора данных. Именно то, что мы работаем только с одним наблюдением, делает наш градиентный спуск стохастическим;
- Считаем все частные производные функции потерь по всем весам и порогам;
- Используем формулу обновления, чтобы обновить значения каждого веса и порога;
- Возвращаемся к первому шагу;

Данный алгоритм выполняется до тех пор, пока средняя квадратическая ошибка не будет достаточно мала. Также заранее задано количество эпох (шагов по алгоритму), чтобы в случае паралича сети задача не стала бесконечной.

Было проведено множество испытаний, чтобы выбрать оптимальные значения входов, оптимальные значения количества нейронов на каждом из двух скрытых слоёв (так как в задании заявлена внешняя структура сети). По итогу, на вход подаётся 12 значений, а на каждом из скрытых слоёв у нас по 10 нейронов. Для обучения сети было подано 15 наборов тестовых данных, что позволило добиться достаточно быстрого снижения потерь сети.

Для сравнения исходной системы и нейронной сети сравним ляпуновские показатели, которые помогают диагносцировать, находится ли система в хаотическом состоянии или нет. Логистическое отображение $x_{n+1} = rx_n(1-x_n)$ при значении параметра r > 3.57 становится хаотическим. При значении параметра

r=4, показательно Ляпунова $\lambda=ln2=0.69301$. Сравним данное значение с ляпуновским показателем последовательности значений, вычисленной нейронной сетью за 40 итераций. При всех заранее объявленных параметрах сети значение показателя Ляпунова r=0.6825. Погрешность для данных вычислений показателя - 0.0164. Абсолютная ошибка - 0.0106.

3 Заключение

По данным результатам видно, что оценка показателя Ляпунова совпадает с истинным значением показателя Ляпунова в пределах погрешности. Приложенный результат показывает, что данный метод работоспособен. В дальнейшем рассматривается возможность применения данного алгоритма для аттрактора Хенона.