MULTIMEDIA

STUD	ENT	ID	N(1		
			א ישוני	TI	NO.		
ורד אר יכור <i>א</i>	THE .	2) LU P		10		

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2015/2016

PMT0301 - MATHEMATICS III

(All sections/ Groups)

7 MARCH 2016 2.30 p.m. – 4.30 p.m. (2 Hours)

Question	Marks
1	/10
2	/10
3	/10
4	/10
5	/10
Total	/50

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of **TEN** printed pages excluding cover page, formulae list and statistical table.
- 2. Answer **ALL** FIVE questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the QUESTION BOOKLET. All necessary working steps MUST be shown.

a) Find the parametric equations of the line passing through the point (-1, 2, 4) that is parallel to 3i - 4j + k.

b) Find an equation of the plane that contains the line x = -2 + 3t, y = 4 + 2t, z = 3 - t and is perpendicular to the plane x - 2y + z = 5. Give your final answer in the form of ax + by + cz = d. (2 marks)

c) Find the point at which the line x = 3 - t, y = -3t, z = 1 - 2t intersects the plane x + y - 2z = 2. (2 marks)

Continued...

NSL

d) Find the sum of the geometric series 1+3+9+...+2187.

(2.5 marks)

e) Find the term that contains x^5 in the expansion of $(x+2y)^{15}$. (1.5 marks)

Continued...

a) Solve the system of linear equations with Gauss-Jordan Elimination method. (6 marks)

$$2x - 3y + 5z = 14$$
$$4x - y - 2z = -17$$
$$-x - y + z = 3$$

- b) Let $A = \begin{bmatrix} 1 & -3 & 4 \\ 2 & 0 & -2 \\ -1 & -2 & 5 \end{bmatrix}$, $B = \begin{bmatrix} -2 & 4 & -3 \\ 1 & 5 & \frac{3}{2} \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 & -3 \\ 2 & 4 & \frac{1}{2} \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 5 & 4 \\ 3 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix}$
 - i) Solve the matrix equation $\frac{1}{3}(X+C)=B$ for the unknown matrix X. (2 marks)

ii) Calculate AD.

(2 marks)

Continued...

NSL

The following table shows the money spent for entertainment on weekends by a **sample** of 34 students.

Money (in RM)	Number of students
20 – 29	4
30 - 39	6
40 – 49	14
50 – 59	7
60 - 69	3
TOTAL	34

a) Compute the midpoint, class boundaries, $\sum mf$ and $\sum m^2 f$.

(3 marks)

Money (in RM)	f	Midpoint,	Class boundaries	mf	$m^2 f$
20 - 29	4				
30 - 39	6				
40 - 49	14				
50 - 59	7				
60 - 69	3				
TOTAL	34				

b)	Calculate the mean.	Give your answer correct to 2 decimal places.	

(1.5 marks)

Î
,

Continued...

Question 4

a)	How many ways can a committee of five people be formed consisting of at least two boys and at most one girl to be selected from a group of fifteen boys and eight girls? (2 marks)
b)	Kevin is a Foundation student in a certain institution. According to the examination rules of the institution, the eligibility of a student to sit for a final examination is that he/she must have a good attendance rate and high coursework mark. Kevin shows a good attendance in Mathematics subject with a probability of 0.75. If his attendance is good, he will have a probability of 0.83 scoring high in his coursework assessment. If his attendance is not good, his probability of scoring high in his coursework assessment will be 0.35. Let A be the event of having good attendance, A for not having good attendance, C for scoring high in coursework and C for not scoring high in coursework. i) Find the probability that he is eligible to sit for the final exam of the Mathematics subject. (1 mark)
	ii) Let the probability that Kevin has high coursework is 0.71, find the chance that he will have good attendance rate given that he does not score high in coursework assessment. Give your answer correct to 4 decimal places. (2 marks)
-	Continued
NSL	7/10

	111) Are events 'good attendance' and 'high coursework' statistically inc Explain your answer.	lependent? (3 marks)
- \		
c)	There are 5 children, 4 men and 6 women in a gathering. Find the proba arranging 6 persons from the gathering in a row if the second person m woman, follow by a child and the last person must be a man. Give your correct to 4 decimal places.	not be a
		i i

a)	Given the probability for a car to have life expectancy of at least 25 years. Among 20 such cars, i) find the probability between 8 and 11 cars will have life expectancy of years. Give your answer correct to 4 decimal places.	
		799
	ii) find the mean and standard deviation for the number of cars with life e of at least 25 years.	expectancy (2 marks)

b)	The number of marriages per day in a district follows a Poisson distribu standard deviation of 3. Find the i) mean of the number of marriages per day.	tion with a (1 mark)
		<u></u>
	ii) probability that exactly 21 marriages will occur on two given days. answer correct to 4 decimal places.	Give your (2 marks)
c)	Given that the weight of the adult chicken is normally distributed with a mean and a standard deviation of $0.5kg$. What is the probability that the adult weight is within $0.45 kg$ from the mean weight?	nn of 2.1kg alt chicken (3 marks)

FORMULAE LIST

Mode	$L + \left[\frac{f_m - f_B}{(f_m - f_A) + (f_m - f_B)} \right] c$
Median	$L + \left(\frac{\sum f}{2} - f_L \over f_m\right) c$
Mean	
	Ungrouped Data Grouped Data
	Sample Population Sample Population
	$\overline{x} = \frac{\sum x}{n}$ $\mu = \frac{\sum x}{N}$ $\overline{x} = \frac{\sum mf}{\sum f}$ $\mu = \frac{\sum mf}{\sum f}$
Variance	
	Ungrouped Data
	Sample Population
	$s^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n}}{n-1} \qquad \qquad \sigma^{2} = \frac{\sum x^{2} - \frac{\left(\sum x\right)^{2}}{N}}{N}$
	Grouped Data
	Sample Population
	$s^{2} = \frac{\sum m^{2} f - \frac{\left(\sum mf\right)^{2}}{\sum f - 1}}{\sum f - 1}$ $s^{2} = \frac{\sum m^{2} f - \frac{\left(\sum mf\right)^{2}}{\sum f}}{\sum f}$
Caraliniana	
Conditional Probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$ $P(A B) = P(A) \text{ or } P(B A) = P(B) \text{ or } P(A \cap B) = P(A) \cdot P(B)$
Independent Event	$P(A B) = P(A)$ or $P(B A) = P(B)$ or $P(A \cap B) = P(A) \cdot P(B)$
Binomial	$P(X = x) = \binom{n}{x} p^x q^{n-x}$; $\mu = np$; $\sigma = \sqrt{npq}$
Poisson	$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$; $\mu = \lambda$; $\sigma = \sqrt{\lambda}$
Standard Normal	$z = \frac{x - \mu}{\sigma}$

171211	- 5
James a Johna Distribut	Tr VI
	Jd.
	/:

The Normal Distribution Function

Φ(X) 0.99379 0.99413 0.99413 0.99461 0.99407 0.99550 0.99550 0.99550 0.99550

(X)⊕	0 97775	0.97778	0.97831	0.97882	0.97932	0.97982	0.98030	0.98077	0.98124	0.98169	0.98214	0.98257	0.98300	0.98341	0.98382	0.98422	0.98461	0.98500	0.98537	0.98574	0.98610	0.98645	0.98679	0.98713	0.98745	0.98778	0.98809	0.98840	0.98870	0.98899	0.98928	0.98956	0.98983	0.99010	0.99036	0.99061	98066.0	0.99111	0.99134	0.99158	0.99180	0.99202	0.99224	0.99245	0.99266	0.99286	0.99305	0.99324	0.99343	0.99361	0.99379
*	2 00	2.01	2.02	2:03	2.04	2.05	2.06	2.07	2.08	2.09	2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17	2.18	2.19	2.20	2.21	2.22	2.23	2.24	2.25	2.26	2.27	2.28	2.29	2.30	2.31	2.32	2.33	2.34	2.35	2.36	2.37	2.38	65.3	2.40	2.41	2.42	2,43	2.44	2,45	2.46	2,47	2.48	2.49	2.50
(X)D	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0,9418	0.9429	0.9441	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.3700	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767	0.9772
×	1.50	1.51	1.52	1.53	1.54	1.55	1.56	1.57	1.58	1.59	1.60	1.61	1.62	1.63	1.64	1.65	1.66	1.67	1.68	1.69	1.70	1.71	1.72	1.73	1.74	1.75	1.76	1.77	1.78	1.79	1.80	1.81	1.82	1.83	1.84	1.85	1.86	1.87	80 60	T-02	1.90	1.91	1.92	1.93	1.94	1.95	1.96	1.97	1.98	1.99	2.00
(X)0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.91/7	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319	0.9332
×	1.00	1.01	1.02	1.03	1.04	1.05	1.06	1.07	1.08	1.09	1.10	1.11	1.12	1.13	1.14	1.15	1.16	1.17	1.18	1.19	1.20	1.21	1.22	1.23	1.24	1.25	1.26	1.27	1.28	1.29	1.30	1.31	1.32	1.33	1.34	1.35	1.36	1.37	1.38	L.39	1.40	1.41	1.42	1.43	1.44	1.45	1.46	1.47	1.48	1.49	1.50
(x) 0	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852	0.7881	0.7910	0.7939	0,7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.0100	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389	0.8413
×	0.50	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	09.0	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	69.0	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0000	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00
(X)()	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	1000	0.6554	0.6591	0.6628	0.6564	0.6/00	0.6736	0.6772	0.6808	0.6844	0.6879	0.6915
×	0.00	0.01	0.02	0.03	0.04	0.05	90.0	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.3/	0.38	0.00	0.40	0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.50

0.99978 0.99978 0.99978 0.99982 0.99982 0.99983 0.99983 0.99983 0.99983 0.99983 0.99983 0.99983 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999993 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999995 0.999999

x 3.3.5.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.3.5 3.

x 3.00 m 3.00 m

0.99683 0.99702 0.99711 0.99720 0.99728 0.99736 0.99752 0.99752 0.99975 0.99976 77999.0

0.99856 0.99861 0.99865

0.99781 0.99785 0.99801 0.99813 0.99819 0.99825 0.99836 0.99836 0.99841 0.99846

0.99865 0.99866 0.99878 0.99887 0.99888 0.99888 0.99903 0.99903 0.99910 0.99910 0.99910 0.99944 0.99966 0.99952 0.99966

> 0.99643 0.99653 0.99664 0.99674

0.99598 0.99609 0.99621 0.99632

0.99573