Monday, January 30

Friday, January 27, 2023 11:19

TA Help session 10:30 Fridays, Math library, JCC 574 Student hours with Todd 1:30-3:00 my office JCC 575 (end of hall)

Student hours will start on Friday at 2:00 and we can continue to 3:30 (because of AWM panel and lunch)

MATHEMATICAL CONTEST IN MODELING: February 16-20, 2023. TEAMS OF THREE UNDERGRADS

https://www.contest.comap.com/undergraduate/contests/

DIRECTED READING PROGRAM: grad student and undergrad read a math book or article and learn about it together

A list of projects and descriptions can be found

here: https://drive.google.com/file/d/1ffyVId43yPtFP-9GiODrtHf3ZIJ2Nc2S/view

?usp=sharing

Application: https://forms.gle/P46BCsEKvdnzftLo9

Save the date! AWM Panel & Lunch with Malena Espanol Friday February 3rd at 1pm in JCC 501

Malena Espanol is an assistant professor in the school of Mathematical and Statistical Sciences at Arizona State University. She earned a Ph.D. in math from Tufts in 2009. The Tufts AWM chapter is excited to host Dr. Espanol for a Q&A over lunch! Everyone in the Tufts community is welcome to join.

Please RSVP at https://tufts.qualtrics.com/jfe/form/SV_0cR5K8g15jJQ7eC

Revier Nel directions doris Ock of. Kevier Defindirections deriv Och op f: 0 = 12 X 60 TO ER9 (90) $\frac{\partial f(x)}{\partial h} = D_h f(x) = \lim_{x \to 0} f(x + th) - f(x)$ De f De f De f in dir Ei of $f':\mathbb{R}^2 \to \mathbb{R}$ $f(X_1Y) = /X^2Y$ $(X_1Y) \neq 0$ recall f not conv $(X_1Y) = 0$ $(X_1Y) = 0$ Let $\frac{h}{h} = (a,b)$ find $\frac{\partial f}{\partial h}(0,0)$ if it $\frac{1}{2}$ V se def $D_{\overline{h}} f co_{(0)} = \lim_{t \to 0} f(co_{(0)} + t(a,h)) - f(q_0)$ $= \lim_{t \to 0} f(ta,tb) \sim 0 = \lim_{t \to 0} \frac{1}{t} (ta)^{2}(tb)$ $= \lim_{t \to 0} \frac{1}{t} (ta,tb) \sim 0 = \lim_{t \to 0} \frac{1}{t} (ta)^{4} + (tb)^{2}$ $= \lim_{t \to 0} \frac{1}{t} (ta,tb) \sim 0 = \lim_{t \to 0} \frac{1}{t} (ta)^{4} + (tb)^{2}$ $= \lim_{t \to 0} \frac{1}{t} (ta,tb) \sim 0 = \lim_{t \to 0} \frac{1}{t} (ta)^{4} + (tb)^{2}$ $= \lim_{t \to 0} \frac{1}{t} (ta,tb) \sim 0 = \lim_{t \to 0} \frac{1}{t} (ta)^{4} + (tb)^{2}$ $= \lim_{t \to 0} \frac{1}{t} (ta,tb) \sim 0 = \lim_{t \to 0} \frac{1}{t} (ta)^{4} + (tb)^{2}$ $= \lim_{t \to 0} \frac{a^2b}{t^2a^4+b^2} = \frac{a^2}{b}, \qquad b = (a_1b) \neq (0,0)$ conside it b=0 get li 0 -

get li 0 conside if b = 0 $\frac{D_h f(0,0)}{h = (0,h)} = \begin{cases} \frac{9^2}{b} & b \neq 0 \\ 0 & b = 0 \end{cases}$ h = (0,6) Note: A hor 1 sh partiels evenuller but fisual cont at (0,0) Def f! O - R O ope i Rh f is continuously differentials f (C) (O) if I has all Ist partial clevius on o and Then open if tecto) $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} =$ fixiy) in book ex has cell

[SI partials evenily but is
not CI or f is discourt. at (0,0) Mean Value Ahn in Rh recal MVT in R f: (a, b) -/R x E (a,b) h + O x+h

Ida MVT & XI (X, thi, X2thz) $f(X_1+h_1, X_2)$ $= 2h(X_1+h_1, X_$ XzH f(x1+h1) Yzthz) ~ f(X1th1) /2) = $\frac{\partial f}{\partial x} \left(\overline{z}_{2} \right) h_{2}$ Similar f(Xythin, Xz)-f(MyXx) =)f(Z) h and $\|Z_j - X\| \leq \|h\|_{j=1,2}$ $= \frac{1}{2} \left(\frac{1}{2}\right) h_{j}$ $= \frac{1}{2} \left(\frac{1}{2}\right) h_{j}$ Deh f! OCR OCR' open f hos all 1st partial derus or o defin gradient of R to be $\nabla f(\bar{\chi}) = \left(\frac{\partial f}{\partial x_1}(\bar{\chi}), \frac{\partial f}{\partial x_2}(\bar{\chi}), \frac{\partial f}{\partial x_3}(\bar{\chi})\right)$ Par y CO $\forall (\chi^2 \gamma + Sig(\chi \gamma))$ $= \left(2\chi\gamma + \gamma \cos(\chi\gamma), \chi^2 + \chi \cos(\chi\gamma)\right)$ The Open in Rh f; O-R continuously diff; FCC(0)

continuously diff; $f \in C^{1}(0)$ thu if $h \in \mathbb{R}^{h} \setminus \{0\}$ $D_{X}^{-} \in (X) = \int f(X) \cdot \hat{h}$