Gradient Boosted Decision Trees and Particle Physics

Aaron Webb

October 27, 2017

The LHC and Big Data

- Bunches of 10¹¹ protons are collided every 25 ns
- Produces ≈ 50 PB of data per year
- Particle lifetimes $\mathcal{O}(10^{-25})$ seconds, only ever see decay products
- Many processes look the same in the detector
- Interesting interactions are rare

The ATLAS Dectector

- Tells us the types of particles, their momentum, energy, and location
- Use these to reconstruct interaction, e.g. $m^2 = E^2 - p^2$

Gradient Boosted Decision Trees

- Combines a set of weak "learners" into a single "strong" learner
- Start with a simple model single binary decision tree
- Construct a new tree to correct the weaknesses of the model
- Iterate till it converges

Gradient Boosting Algorithm

- Begin with a simple model $F_0(x) = \underset{\gamma}{\arg\min} \sum_{i=1}^n L(y_i, \gamma)$
- Compute pseudo-residuals, $r_i = -\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}$
- Fit a new learner, $h_m(x)$, to maximize r_i
- Compute a weight, γ , for h(x) using line search
- Update the model $F_{m+1}(x) = F_m(x) + \gamma_m h_m(x)$
- Iterate till the model converges
- Final model $F(x) = \sum_{i=1}^{M} \gamma_i h_i(x) + \text{const}$

Decision Trees

- Gradient Boosting is a general algorithm
- For BDTs, each h(x) is a decision tree
- Scan feature set for the split that produces greatest gain
- Repeat for each node that results till max depth is reached

Improvements

- \blacksquare l_2 penalty term
 - Penalize complex trees, remove branches that produce little differentiation
- Shrinkage
 - $F_m(x) = F_{m-1}(x) + v \cdot \gamma_m h_m(x), \quad 0 < v < 1$
 - v is the "learning rate", typically <0.1
 - Improves results, but increases computation costs
- Stochastic Boosting
 - Each successive tree is fit to a random subsample
 - Prevents overfitting, improves speed

Pros and Cons

Pros

- Easy to use once model has been developed
- Few input parameters needed to tune
- General framework, relevant for a large number of applications

Cons

- Training the model can be slow
- Difficult to interpret the output
- Not ideal for sparse data, large numbers of features

Uses in Particle Physics

- Separate signal and background events
 - Use Monte Carlo simulations to train the model, use for data
- Distinguish "real" particles from "fakes"
 - Particles misidentified by the detector, from secondary sources
- "B-tagging" identifying different flavors of quarks
 - Quarks "hadronize", leaving complex signatures

Vector Boson Scattering

Results

Results

- Cut to maximize significance of the signal: S/\sqrt{B}
- BDT achieves 81% better significance than square cuts

