质量损失函数(单位产品);

关于零件参数问题的建模

余 辉 那永林 肖云翔

指导教师:史道济

(天津大学, 天津 300072)

编者按 本文在合理的假设下取质量损失函数,符合实际情况,说明了y近似服从正态分布。给出了 单位产品质量损失的表达式和较完整的数学模型,特别是在最优化过程中,探讨了其算法。

擅 要 这是一个如何安排加工次序的组合优化问题,首先建立了一般问题的数学模型,在对其求解过 程中我们采取了分枝限界法,保证了所得结果的系优性,且具有很高的对效性。其次针对某部门所采取 的贪婪算法给以了评价,在评价中以真近似解与遗优额的接近稳度、得到最优解的概率为标准,利用计 算机模拟对其进行评估,发现对于该问题贪婪真法并不能保证解的最优性,但近似程度较好。而后对调 整刀具费用为 e 的情形进行了讨论,首先给出了一个引理,然后给出了一个简明的优化准则: 当对各切 割平面按其厚贵比以不升序排列时,所得次序为最优加工次序. 最后利用题中所给数据进行了验证, 再 次表明了所得结论的正确性.

一、问题的背景分析(略)

二、问题的假设

(1) 模型的参数

第28卷 第1期

1998年1月

 $\cos t_1$: $\cos t$: 总费用函数 (单位产品); Δ_i : 代表零件i的容差; 成本函数 (单位产品); $\cos t_2$: $C_2:$ 产生一个次品造成的损失; C_1 : 产生一个费品造成的损失; 次品的界限; $A_1:$ 费品的界限; A_2 : Y:表征产品性能的指标; σ_i : 零件参数的方差; $x_i = E[x_i]$: 零件参数标定值的期望; 产品性能指标的方差; σ_v : Y_0^* : $Y_0 = E[Y]$: 产品性能指标的期望; Y的目标值1.50; 代表产品性能指标的分布概率 N: 产品生产数目; P(y): 在程序及打印数据中以dy代替 7个零件参数的标定值 $(i = 1, \dots, 7)$; x_i :

 $a_{ij} = \begin{cases} 1, & \text{代表第} i \land \text{零件中第} j \land \text{等级容差}; \\ 0, & \text{代表第} i \land \text{零件末选中第} j \land \text{等级容差}; \end{cases}$

其中 $i = 1, \dots, 7, j = 1, \dots, 3.$

- (2) 模型的假设
- a. 为简化模型只考虑用单参数指标 y 表征产品性能并已知 $y=f(x_1,x_2,\cdots,x_n)$;
- b. 容差 Δ_i 近似等于 3 倍均方差 $(\Delta_i=3\sigma_i)$, x_i 服从正态分布 $-N[x_i,(\frac{\Delta_i}{2})^2]$, X_i 之间相互独 立;
 - c. Y 的目标值 Y₀* 已定, (即 y₀*=1.5);

d. 结合问题并考虑到实际生产, 假设已知质量损失函数;

$$Q(y) = \begin{cases} C_1, & Y_0^* - A_1 > y \not x y < Y_0^* + A_1, \\ C_2, & Y_0^* - A_1 < y < Y_0^* - A_2 \not x Y_0^* + A_2 < y < Y_0^* + A_1, \\ 0, & Y_0^* - A_2 < y < Y_0^* + A_2 \end{cases}$$

- e. 由于批量生产,产品性能指标 Y 受到多个设计参数及加工工艺的影响,所以假设 Y 近似服从正态分布
- f. 由于批量生产数目 N较大 (实例中N = 1000), 造成一批产品质量的损失,则 Q(Y) 可近似看成为一连续的函数.

三、模型的建立

A 问题的进一步分析

(I) 容差等级选取的精度升高,造成成本 $\cos i_1$ 上升,零件标定值 x_i 选取的不同影响 y 中心值 (y_0^*) 变动,它和容差共同影响次废品出现的概率,从而影响质量损失 $\cos i_2$,因此考虑总费用

$$\cos t = \cos t_1 + \cos t_2$$

(II) 容崇等級是离散的,即对每一个 Δ_i 只有几个是可选的,考虑用 0-1 整数规划,表示 $\cos t_2$ 如下: g

$$\cos t_2 = \sum_{i=1}^{7} \sum_{j=1}^{3} K_{ij} a_{ij}$$

其中

$$\sum_{j=1}^{3} a_{ij} = 1, \qquad a_{ij} \neq 0 \neq 1$$

 K_{ij} 为第 i 种零件 j 级精度时的单位价格. 对于本问题中不存在的等级,其价格 K_{ij} 可取 $+\infty$ 或直接改变 aij 值进行优化,如本问题中第 1 组零件只有一个容差等级 2(即 B 等),那么在用计算机进行优化时可直接约定 $a_{12}=1$, $a_{13}=a_{11}=0$ 即可.

III) 由于单位产品的质量损失可视为连续函数,而且设计中心值 Y_0^* 和废次品范围已定 (y < 1.2 或 y > 1.8 为废品, y 在 [1.2, 1.4] 或 [1.6, 1.8] 范围可视为次品),所以

$$\cos t_1 = 9000 \left(\int_{-\infty}^{1.2} P(y) dy + \int_{1.8}^{+\infty} P(y) dy \right) + 1000 \left(\int_{1.2}^{1.4} (y) dy + \int_{1.6}^{1.8} P(y) dy \right)$$

其中

$$\begin{split} P(y) &= \frac{1}{\sqrt{2\pi\sigma_y}} 2 \ e^{\frac{-(y-y_0)^2}{2\sigma_y^2}}, \qquad \sigma_y^2 = \sum_{i=1}^7 \left(\frac{\partial y}{\partial x_i}\right) \sigma_{x_i}^2 \\ \sigma_{x_i}^2 &= \left(\frac{\Delta i}{3}\right) \left[0.01^2 \cdot a_{i1}^2 + 0.05^2 \cdot a_{i2}^2 + 0.1 \cdot a_{i3}^2\right] \end{split}$$

B 综合上述分析, 完整模型表示如下:

Min
$$(\cos t = \cos t_1 + \cos t_2)$$
, $\cos t_2 = \sum_{i=1}^{7} \sum_{j=1}^{3} K_{ij} a_{ij}$

其中

$$\sum_{j=1}^{3} a_{ij} = 1, \qquad a_{ij} \otimes 0 \otimes 1$$

$$\cos t_1 = 9000 \left(\int_{-\infty}^{1.2} P(y) dy + \int_{1.8}^{+\infty} P(y) dy \right) + 1000 \left(\int_{1.2}^{1.4} P(y) dy + \int_{1.6}^{1.8} P(y) dy \right)$$

其中

$$P(y) = \frac{1}{\sqrt{2\pi\sigma_y}} e^{\frac{-(y-y_0)^3}{2\sigma_y^2}}, \qquad \sigma_y = \sum_{i=1}^7 \left(\frac{\partial y}{\partial x_i}\right) \sigma_{x_i}$$

$$Y = f(x_1, x_2, \dots, x_7) \qquad \sigma_i^2 = \left(\frac{\Delta i}{3}\right) \left[0.01^2 \cdot a_{i1}^2 + 9.05^2 \cdot a_{i2} + 0.1 \cdot a_{i3}^2\right]$$

四、模型算法的探讨

- (一) 本模型可以归为运筹学中的非线性规划问题,目前非线性规划还没有适用于各种问题的一般算法。我们知道线性规划问题最优解只能在其可行域的边界上达到 (特别是在可行域的顶点上到达). 而非线性规划问题最优解 (如果存在) 则可能在其可行域中任一点达到,所以从理论上各种算法寻找的均为局部最优极值点,从现实角度考虑要求算法收敛快,稳定性好,寻到的极值接近最优值.
- (二) 采用问题所给的数据我们先用 Mathcad 软件作出 $\cos t_1 (y_0, \sigma)$ 的三维关系图 (彩色附图略), 通过做等值线分析可知:
 - i) 当 y_0 偏离 1.5 较远时, $\cos t_1$ 对 y_0 取值敏感性要远大于对取值敏感性.
 - ii) 当 y_0 很接近 1.5 时, $\cos t_1$ 对 σ_n 敏感性较大.

结论 考虑本身变动范围较小,综合 i) 、 ii) 分析所得,并结合 Mathcad 软件粗略运算得到 $\cos t_1$ =300 时有 $\left|\frac{\partial \cos t_1}{\partial y_0}\right|$ =10 $\left|\frac{d \cos t_1}{\partial y}\right|$, 所以 $\cos t_1$ >300 时 $(\sigma_y$ 动范围为 0.09~0.100), y_0 的邻域在首次搜索时定为 [1.48, 1.52].

(三)程序算法分析:

在编程计算时,考虑到程序执行时间因素,故采用三分算法进行计算,这样可使程序执行效率提高上千倍甚至更高(试验证明,此种方法比穷举法效率提高几万倍).具体算法步骤如下:

首先将各参量所允许区间分为四等分,取其三个分点进行计算(取点如下)

参量	下界	分点一	分点二	分点三	上界	步长
x 1	0.075	0.0875	0.1	0.1125	0.125	0.0125
x 2	0.225	0.2625	0.3	0.3375	0.375	0.0375
x 3	0.075	0.0875	0.1	0.1125	0.125	0.0125
x 4	0.075	0.0875	0.1	0.1125	0.125	0.0125
x 5	1.125	1.3125	1.5	1.6875	1.875	0.1875
x 8	12	14	16	18	20	2
x7	0.5625	0.6625	0.75	0.85	0.935	0.1

如上,算出各分点 (共 3⁷ 个) 各自的质量损失,经过比较得到 cos t₁ 最低的几个点.

其次,在所得到的点的小邻域内继续采取相同的算法,计算步长逐步缩小,并对 0 所得点的质量 损失函数值进行比较,逐步筛选.

再将上述过程重复数次, 直至质量函数值变化不大为止, 取其最小进行容差设计,

最后,在最优点的很小邻域内进行最后选优,容差选取考虑采用穷举法. 经过比较总费用 $\cos t$ 计算得出几组最优解,数据结果附下.

结果数据

X_1		X 2		X_3		X4		X 5		X ₆		X 7		$\cos t$	Y	DY
值	等	值	等	值	等	值	等	值	等	值	等	值	等			
075	В	.29	В	.108	В	.095	C	1.33	C	19.3	В	.64	В	427.72	1.4952	.091308
.075	В	.29	В	.109	В	.095	C	1.31	C	19.6	В	.65	В	427.68	1.4954	.091315
.075	В	.30	В	.108	В	.095	C	1.252	C	19.2	В	.65	В	426.21	1.4954	.091199
.075	В	.30	В	.108	В	.095	C	1.298	C	19.1	В	.60	В	426.17	1.4966	.091272

注: 其中, "值"代表标定值, "等"代表等级; cost 的单位为(元/个)

(四) 算法程序(具体程序略)

其中 程序一的功能为完成数据点的初次搜索;

程序二的功能为在初选点的基础上通过调整容差使结果进一步优化;

(五) 实例问题的求解

在原设计中,一个零件参数的标定值为: $x_1=0.1, x_2=0.3, x_3=0.1, x_4=0.1, x_5=1.5, x_6=16, x_7=0.75;$

$$a_{ij} = egin{array}{ccccc} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 \ \end{array}$$

$$\cos t_2 = 9000 \left(\int_{-\infty}^{1.2} P(y) dy + \int_{1.8}^{+\infty} P(y) dy \right) + 1000 \left(\int_{1.2}^{1.4} P(y) dy + \int_{1.6}^{1.8} P(y) dy \right) = 2887 \vec{\pi} / \uparrow \cos t_2 = 200 \vec{\pi} / \uparrow \cos t = 3087 \vec{\pi} / \uparrow \uparrow$$

采用我们的算法程序求得

X_1		X		7	X ₃		X4		X_5		X ₆		X 7	$\cos t$	Y	DY
值	等	值	等	值	等	值	等	值	等	值	等	值	等			
0.75	В	.30	В	.108	В	.095	C	1.298	С	19.1	В	.60	В	426.17	1.4966	.091272

与原设计比较, 总费用降低了 2660.83(元 / 个)×1000 个 ~26 万元

五、一般零件的参数设计(略)

六、模型的评价

本模型的成功之处在于使一个多因素的问题,以极简便的方法快速得到结论、采用本模型辅以一台 PC 机,可以在十几分钟之内寻找出问题的优化答案,而采用普通的算法通常在十几小时都难于找出答案。这就为解决涉及多因素的问题提出了一条捷径,另外此模型并不涉及许多深奥的数学理论,可以很方便地推广到实际生产中。模型的不足之处在于模型求解需要依靠计算机进行,离开计算机进行求解会有一定困难。

优点为当具体问题中影响产品性能指标的零件数目减少时,用网格法搜索时,计算量呈指数下降, 所以可以考虑直接寻优.

七、模型的推广

本模型可广泛用于实际生产中的诸多领域,对受多种因素影响的具体问题可以很方便地求出优化解,而且也可用于理论分析和科学实验中,其特点在于用一段简单的程序就可将一复杂问题解决.

参考文献

- [1] 叶其孝主编,大学生数学建模竞赛辅导教材,湖南教育出版社,长沙.
- [2] 衷光定,应用概率统计 —MATHCAD 数理分析图形软件,北京师范大学出版社,北京.
- [3] 盛昭瀚、雷忻,最优的方法教程,东南大学出版社,南京.
- [4] 傅家良、周仲良、魏国华、运筹学,复旦大学出版社、北京
- [5] 叶其孝,卢树铭,数学建模教育与国际数学建模竞赛,中国工业与应用数学学会,工科数学杂志社.
- [6] 谭浩强编, C程序设计,清华大学出版社社,北京.
- [7] 姬振豫,正交设计,天津科技翻译出版公司,天津.
- [8] 可计算理论目的三次设计,中国现场统计研究会三次设计组编著.

