Adatbázis-kezelő rendszerek I.

KITERJESZTETT EGYED-KAPCSOLAT MODELL

(Enhanced Entity-Relationship model)

Elmasri & Navathe: Fundamentals of Database Systems

Enhanced Entity-Relationship (EER) Model Kiterjesztett egyed-kapcsolat modell

- EER: Enhanced (Extended) Entity-Relationship Model
- Az EER modell fogalmai:
 - Tartalmazza az egyed-kapcsolat modell minden elemét
 - További fogalmak:
 - alosztály/főosztály
 - specializáció/általánosítás
 - kategória (UNIO típus)
 - attribútum és kapcsolat öröklődése
- Az EER modell fogalmaival bizonyos problémakörök pontosabban, komplexebben modellezhetőek.
 - Az EER modell tartalmaz néhány objektum-orientált alapelvet, mint például az öröklődés.

Alosztályok és főosztályok

- Az egyedtípus egyedei esetenként további alcsoportokra oszthatóak
 - Például: a DOLGOZÓ tovább csoportosítható:
 - × TITKÁRNŐ, MÉRNÖK, TECHNIKUS
 - o az alkalmazott munkáján alapulva
 - × VEZETŐ
 - azon alkalmazottak, akik valamely projektet irányítanak
 - FIX_FIZETÉSŰ_DOLGOZÓ, ÓRABÉRES_DOLGOZÓ
 - o a fizetési mód alapján
- A kiterjesztett egyed-kapcsolat diagram kiterjeszti az egyed-kapcsolat diagramot, úgy hogy további alcsoportokat is megjelenít. Ezek az alosztályok, altípusok.

Alosztályok és főosztályok (2)

- Alosztály: Az egyedtípus egymástól elkülönülő egyedeinek halmaza.
- Főosztály: egy egyedtípus, melynek egyedei alcsoportokba sorolhatók.
- Főosztály/alosztály kapcsolat: kapcsolat egy főosztály és annak bármely alosztálya között.
- Például:
 - Az előző dián említett csoportok a DOLGOZÓ egyedtípus egyedeinek részhalmazai lehetnek.
 - Mindegyik alosztálya a DOLGOZÓ főosztálynak
 - A DOLGOZÓ főosztálya ezen alosztályoknak
 - Főosztály/alosztály kapcsolatok:
 - DOLGOZÓ/TITKÁRNŐ
 - DOLGOZÓ /TECHNIKUS
 - ▼ DOLGOZÓ /VEZETŐ

× ...

Alosztályok és főosztályok az EER diagramon

Alosztályok és főosztályok (3)

- Ezen kapcsolatokat szokás IS-A kapcsolatoknak nevezni. \ISA

 - SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A EMPLOYEE,
- Megj: egy egyed, amely tagja valamely alosztálynak és a főosztálynak is, ugyanazt a valós világbeli egyedet jelöli mind a két helyen.
 - Az alosztály tagja ugyanaz az egyed egy *megkülönböztetett speciális* szerepben.
 - Egy egyed nem létezhet úgy, hogy az csak valamely alosztály tagja, mert a főosztálynak is tagja kell, hogy legyen.
 - A főosztálybeli egyed, nem szükségszerűen van besorolva az alosztály(ok)ba (opcionális).
- Az alosztályok speciális kapcsolattípusokban vehetnek részt.

Attribútum öröklődés a Főosztály/Alosztály kapcsolatokban

- Egy egyed, amely az alosztály tagja örökli:
 - o főosztálybeli egyedként a főosztály *összes attribútumát*
 - o főosztálybeli egyedként a főosztály *összes kapcsolatát*

• Példa:

 A TITKÁRNŐ (úgy mint a TECHNIKUS és a MÉRNÖK is) örökli a Név, a Szsz, ... attribútumokat a DOLGOZÓ egyedtípustól.

Specializáció

- A specializáció egy *folyamat*, melynek során egy főosztály alosztályainak halmazát határozzuk meg.
 - Fentről lefelé (top down) haladó koncepcionális finomítás (szétbontás)
- Az alosztályok halmazának kialakítása a főosztálybeli egyedek néhány megkülönböztető jellemvonásán alapul.
 - Példa: a {TITKÁRNŐ, MÉRNÖK, TECHNIKUS} egy specializációja a DOLGOZÓ egyedtípusnak a foglalkozás típusa alapján.
- Egy főosztálynak számos specializációja is lehetséges
 - Példa: A DOLGOZÓ egyedtípus másik lehetséges specializációja a fizetési mód alapján: {FIX_FIZETÉSŰ_DOLGOZÓ, ÓRABÉRES_DOLGOZÓ}

Általánosítás

- Az általánosítás a specializációval ellentétes folyamat
 - o Alulról felfelé haladó (bottom up) koncepcionális egyesítő eljárás
- Közös jellemzőkkel rendelkező osztályok egy főosztályba történő általánosítása
 - o az eredeti osztályok a főosztály alosztályaivá válnak
- Példa: Az AUTÓ és TEHERGÉPKOCSI általánosítása a JÁRMŰ egyedtípusba
 - Mind az AUTÓ, mind a TEHERGÉPKOCSI egyedtípusok a JÁRMŰ főosztály alosztályaivá válnak.
 - Az {AUTÓ, TEHERGÉPKOCSI} -t tekinthetjük a JÁRMŰ specializációjának is (felülről lefelé).
 - Analóg módon, tekinthetjük a JÁRMŰ-t az AUTÓ és a TEHERGÉPKOCSI egyedtípusok általánosításának is (alulról felfelé).

Általánosítás – Példa

Főosztály/Alosztály kapcsolatok korlátozásai

- Két alapvető korlátozás létezik:
 - Elkülönülő korlátozás (Disjointness Constraint)
 - X Azt határozza meg, hogy egy főosztálybeli egyed legfeljebb hány alosztálynak lehet a tagja (egy vagy több).
 - Teljességi korlátozás (Completeness Constraint)
 - × Azt határozza meg, hogy a főosztály minden egyes egyedének tartoznia kell-e legalább egy alosztályhoz, vagy sem.

Főosztály/Alosztály kapcsolatok korlátozásai (folyt.)

• Elkülönülő korlátozás (Disjointness Constraint):

- Elkülönülő (disjoint):
 - egy főosztálybeli egyed legfeljebb egy alosztály tagja lehet
 - 🗴 jelölése az EER diagramon: d
- Átfedő (overlapping):
 - ugyanazon egyed tagja lehet több alosztálynak is
 - × jelölése az EER diagramon: o

Főosztály/Alosztály kapcsolatok korlátozásai (folyt.)

- Teljességi korlátozás (Completeness Constraint):
 - Teljes (totális, total): a főosztály minden egyes egyedének tagja kell, hogy legyen legalább 1 alosztálynak is.
 - Jelölése az EER diagramon: dupla vonal
 - Részleges (parciális, partial) megengedi, hogy egy főosztálybeli egyed ne tartozzon egyetlen alosztályhoz sem.
 - ▼ Jelölése az EER diagramon: szimpla vonal

Főosztály/Alosztály kapcsolatok korlátozásai (folyt.)

Ennek alapján 4-féle specializációnk/általánosításunk lehet:

- Elkülönülő teljes (disjoint, total)
- Elkülönülő részleges (disjoint, partial)
- Átfedő teljes (overlapping, total)
- Átfedő részleges (overlapping, partial)

Megjegyzés: Az általánosítás általában teljes, mert a főosztály az alosztálytól származik.

Példa – elkülönülő részleges specializáció

Példa – átfedő teljes specializáció

Hierarchia, osztott alosztályok

- Egy alosztálynak további alosztályai lehetnek, hierarchiát vagy rácsot alkotva.
- Hierarchia: korlátozza, hogy minden egyes alosztálynak csak egy szülő osztálya lehet (*egyszerű öröklődés*)
- Egy **rácsban**, egy alosztálynak több szülő osztálya is lehet (*többszörös öröklődés*) (osztott alosztályok)

Példa

Osztott alosztály: MÉRNÖK_IGAZGATÓ

Példa – rács (UNIVERSITY)

Kategória (UNIO típus)

- Néhány esetben, olyan főosztály/alosztály kapcsolatot szükséges modellezni amelyben több mint egy főosztály van.
 - A főosztályok különböző egyedtípusokat jelölnek.
- Unio: egy főosztály/alosztály kapcsolat amelyben több főosztály van.
- Unio típus vagy kategória: egy olyan alosztály, melynek különböző főosztályai vannak.

Kategória (UNIO típus) (folyt.)

- Példa: egy jármű regisztrációs adatbázisban egy járműtulajdonos lehet egy SZEMÉLY, egy BANK (pl. zálogjog) vagy egy VÁLLALAT.
 - Kategóriának (UNIO típusnak) nevezzük a létrehozott
 TULAJDONOS egyedtípust, amely a három főosztálynak (SZEMÉLY, BANK, és VÁLLALAT) az uniója.
 - A kategória egyedeinek *legalább egy* főosztályhoz is tartozniuk kell.
- Eltérés a megosztott alosztálytól:
 - A megosztott alosztály részhalmaza a főosztályok metszetének.
 - Egy megosztott alosztálybeli egyednek minden főosztályban léteznie kell.

Példa – Kategória

Alternatív jelölések

Alternatív jelölések

- Az (E)ER diagram az adatbázis sémák egy közkedvelt megjelenítési módszere.
- A szakirodalomban és az adatbázis-tervező és modellező szoftvereszközökben sok más jelöléssel is találkozhatunk.
- Például:
 - Chen jelölés: alap jelölés
 - Varjúlábas jelölés
 - Az egyedeket dobozokként jelöli, a kapcsolatokat a dobozokat összekötő vonalakként. A vonalak végén különböző formák jelölik a kapcsolattípusok kardinalitását.
 - o UML
 - Az UML osztály diagramja hasonlít az az ER diagramhoz, de van számos eltérés is felfedezhető. Számos kereskedelmi forgalomban lévő tervezőszoftver használja.

Varjúlábas jelölés

Az A egyedtípus minden egyes előfordulása legalább 0 legfeljebb 1 B-beli egyeddel kapcsolatban áll.

A B egyedtípus minden egyes előfordulása pontosan 1 A-beli egyeddel áll kapcsolatban.

Az A egyedtípus minden egyes előfordulása legalább 1 legfeljebb sok B-beli egyeddel áll kapcsolatban.

A B egyedtípus minden egyes előfordulása legalább 0 legfeljebb sok A-beli egyeddel áll kapcsolatban.

Gyenge egyedtípus

Ekvivalens jelölések

Varjúlábas jelölés – Példa

UML Osztály Diagramok

- Az UML osztály diagramok az ER modell fogalmait más módon ábrázolják – számos kereskedelmi tervezőszoftver használja
 - Adatbázis tervezésben és objektum-orientált szoftvertervezésben használatos
- Az UML az osztályokat (hasonlóan az egyedtípusokhoz) lekerekített dobozokban ábrázolja, melyeket 3 részre oszt:
 - o Felső rész: egyedtípus (osztály) neve
 - Középső rész: attribútumok
 - Alsó rész: osztályokon végezhető műveletek (a műveletek nem részei az ER modellnek)
- A kapcsolatok (asszociációk) az osztályokat összekapcsoló vonalak

UML osztály diagram a COMPANY adatbázis sémához

UML Osztály Diagramok (folyt.)

- Az egyedtípusok jelölése téglalap, attribútumok a téglalapon belül.
- Bináris kapcsolattípusok: az egyedhalmazokat összekötő vonalak. A kapcsolattípus neve a vonal mellé írva.
 - Alternatív mód: a kapcsolattípus neve írható egy téglalapba is, a kapcsolattípus attribútumaival együtt, és az a téglalap szaggatott vonallal kapcsolódik a kapcsolattípus vonalához.
- Nem bináris kapcsolattípusok: rombusz, mint az ER modellben
- Az egyedtípus kapcsolattípusban betöltött szerepe: az egyedtípus mellé, a vonalra írva.

UML Osztály Diagramok (folyt.)

- *Kardinalitás jelölése*: *l..h* formában, ahol *l* jelöli a minimális és *h* maximális kardinalitást.
- Figyelem: a korlátozások elhelyezése pontosan fordított, mint az ER diagramon!.
 - A o..* korlátozás az *E*2 oldalon és a o..1 korlátozás az *E*1 oldalon azt jelenti hogy minden *E*2-beli egyed legfeljebb egy kapcsolatban vehet részt, míg minden *E*1-beli egyed több kapcsolatban is részt vehet.
 - Egyetlen érték, mint például 1 vagy * szintén írható a vonalak mellé. Az 1 érték ekvivalens az 1..1, a * pedig ekvivalens a o..* jelöléssel.

UML Osztály Diagram jelölése

UML Osztály Diagram jelölése (folyt.)

^{*}a kardinalitási korlátozás fordított jelölése

^{*}Az általánosítás lehet összevont vagy elkülönülő nyíl is az elkülönülő/átfedő korlátozástól függetlenül.

UML példa a Specializáció/Általánosítás jelölésére

Egyéb alternatív jelölések

Egyéb alternatív jelölések

Alternative ways to represent multiplicity constraints	Meaning
01	Zero or one entity occurrence
11 (or just 1)	Exactly one entity occurrence
0* (or just *)	Zero or many entity occurrences
1*	One or many entity occurrences
510	Minimum of 5 up to a maximum of 10 entity occurrences
0, 3, 6–8	Zero or three or six, seven, or eight entity occurrences

Egyéb alternatív jelölések

An OMT Entity Attribute: Optional An Oracle Designer Entity Optional One to One One to Many One to Many

Problémák az ER modellel

Csapdák

- Az adatmodell tervezése közben számos probléma felmerülhet. Ezeked kapcsolati csapdákként ismerhetjük.
- A kapcsolati csapdáknak 2 fő típusa van:
 - O Legyező csapda
 - Szakadék csapda (űr)

Legyező csapda

- Legyező csapda: Akkor következik be, amikor a modell kapcsolatot jelöl egyedtípusok között, de az út az egyes egyedek között nem egyértelmű.
- Akkor fordul elő, ha 1:N ágaznak ki egy egyedtípusból.
- Példa:
 - o nem tudjuk, hogy ki melyik autót használja

Legyező csapda – példa

 Nem tudjuk megmondani, hogy melyik munkatárs használj az SH34-es autót.

A legyező csapda feloldása

Feloldott legyező csapda – példa

Most már meg tudjuk mondani.

Szakadék csapda

- Szakadék csapda: A modell arra utal, hogy az egyedek között van kapcsolat, de az útvonal nem létezik bizonyos egyed előfordulások esetében.
- Ott fordul elő, ahol az egyedeket összekötő útvonal részleges részvételű egyedtípusokat tartalmaz.
- Példa:

Szakadék csapda – példa

 Nem tudjuk megmondani, hogy az S0003 jelű alkalmazott melyik részlegen dolgozik.

A szakadék csapda feloldása

Feloldott szakadék csapda – példa

 Most már meg tudjuk mondani minden alkalmazott esetén, hogy melyik részlegen dolgozik.

Legyező csapda?

Adatmodellező case-tool eszközök

- Számos közkedvelt adatmodellező és relációs sémába leképező szoftver létezik
 - Például: ERWin, S-Designer (Enterprise Application Suite), ER-Studio, (MySQLWorkbench), OpenModelSphere (open-source), RISE Editor (can generate database and application layer code), Gliffy, Creately, draw.io, stb.

• POZITÍVUMOK:

- Követelmények dokumentálását segíti elő, felhasználóbarát felületek
 - főként grafikus támogatás