CSC17103 - KHAI THÁC DỮ LIỆU ĐỒ THỊ

HOMEWORK 01: MẤU ĐỒ THỊ & PHÁT SINH ĐỒ THỊ

1 Bài tập

Phát sinh mạng Erdős-Rényi

Hãy trực quan hoá mạng Erdős-Rényi với N = 50 nút và bậc trung bình $\langle k \rangle$ lần lượt là a. $\langle k \rangle = 0.5$ b. $\langle k \rangle = 4$ c. $\langle k \rangle = 8$

Lưu ý: sử dụng thư viện networkx. Chèn hình và code tương ứng với từng trường hợp. Mang Erdős-Rényi

Hình 1. Phân loại chế độ topo khi thay đổi $\langle k \rangle$

Xem xét mạng G(N, p) có N = 3000 nút và được kết nối với nhau với xác suất $p = 10^{-3}$. Hãy trả lời các câu hỏi dưới đây.

- a. Xác định số lượng liên kết kỳ vọng $\langle L \rangle$ và bậc trung bình $\langle k \rangle$ của mạng.
- b. Xác suất có chính xác 50 liên kết trong mạng là bao nhiều?
- c. Dựa vào hình 1, xác định xem mạng ở chế độ (regime) nào ?
- d. Tính xác suất p_c để mạng ở chế độ critical point.
- e. Tính số nút N^{cr} , bậc trung bình $\langle k^{cr} \rangle$ và khoảng cách trung bình giữa hai nút được chọn ngẫu nhiên $\langle d \rangle$ để mạng chỉ có một thành phần.
- f. Tìm phân bố bậc p_k của mạng này (xấp xỉ với phân bố bậc Poisson).

VNUHCM-UNIVERSITY OF SCIENCE FACULTY OF INFORMATION TECHNOLOGY

Cây Cayley (Cayley tree)

Cây Cayley là cây đối xứng, được xây dựng bắt đầu từ nút trung tâm bậc k. Mỗi nút ở khoảng cách d tính từ nút trung tâm có bậc k, cho đến khi chúng ta đến các nút ở khoảng cách P có bậc một và được gọi là các lá. Ví dụ, hình P là cây Cayley có P có bậc một và được gọi là các lá. Ví dụ, hình P là cây Cayley có P0 và P1.

- a. Tính tổng số nút trên cây sau t bước tính từ từ nút trung tâm.
- b. Tính độ phân phối bậc (degree distribution) của mạng.
- c. Tính đường kính d_{max}.
- d. Tìm biểu thức của đường kính d_{max} theo tổng số nút N.

Hình 2. Cây Cayley

Nghich lý tình ban (Friendship Paradox)

Phân phối bậc p_k là xác suất mà một nút được chọn ngẫu nhiên có k hàng xóm. Tuy nhiên, nếu chúng ta chọn ngẫu nhiên một liên kết, xác suất để một nút ở một trong các đầu của nó có bậc k là $q_k = Akp_k$, trong đó A là hệ số chuẩn hóa.

- a. Tìm hệ số chuẩn hóa A, giả sử rằng mạng có phân bố bậc theo luật mũ với $2 < \gamma < 3$, với bậc nhỏ nhất k_{min} và bậc lớn nhất k_{max} .
- b. Chọn ngẫu nhiên một nút trong mạng có $N=104,\,\gamma=2.3,\,k_{min}=1$ và $k_{max}=1000.$ Tính bậc trung bình của các nút lân cận.

2 Tài liệu tham khảo

[1] Network Science by Albert-László Barabási. (n.d.). BarabásiLab. http://networksciencebook.com

[2] Chakrabarti, D., & Faloutsos, C. (2012, October 30). Graph Mining: Laws, Tools, and Case Studies.