Merging observations across the EM spectrum

Mehmet Alpaslan

Center for Cosmology and Particle Physics, New York University

Friday, January 26th

Substantive Expertise

OUTLINE

- Multiwavelength photometry can be hard! Why bother?
- Two primary ways:
- DIY multiwavelength photometry.
 - Matched aperture photometry, dealing with survey/ instrument/data variability, homogenizing data.
- Creating multiwavelength databases from existing data.
 - Magnitude conversions, database queries, software tools.

I'M AN EXTRAGALACTIC ASTRONOMER, SO...

GALAXIES ARE FULL OF PHYSICS!

Type of observation	Wavelength range (nm)	Frequency range (Hz)	Typical sources	Temperature of radiating object (K)	Examples of telescopes
Radio	> 1 x 10 ³	< 3 x 10 ¹¹		< 10	VLA, ATCA, ALMA
IR	10 ³ - 10 ⁶	3 x 10 ¹¹ - 4 x 10 ¹⁴		10 - 10 ³	SCUBA, Spitzer, Herschel, JWST
Visible	400-700	4 - 7.5 x 10 ¹⁴		10 ³ - 10 ⁵	VLT, HST
UV	20-400	$7.5 \times 10^{14} - 3 \times 10^{16}$		10 ⁵ - 10 ⁶	HST, FUSE
X-ray	0.01-20	3 x 10 ¹⁶ - 3 x 10 ¹⁹		106 - 108	Chandra, XMM
Gamma ray	< 0.01	> 3 x 10 ¹⁹		> 108	Integral, GLASS, HESS

GALAXIES ARE FULL OF PHYSICS!

Type of observation	Wavelength range (nm)	Frequency range (Hz)	Typical sources	Temperature of radiating object (K)	Examples of telescopes
Radio	> 1 x 10 ³	< 3 x 10 ¹¹	ISM, cool gas, electrons	< 10	VLA, ATCA, ALMA
IR	10 ³ - 10 ⁶	3 x 10 ¹¹ - 4 x 10 ¹⁴	Cool clouds (dust / gas); planets	10 - 10 ³	SCUBA, Spitzer, Herschel, JWST
Visible	400-700	4 - 7.5 x 10 ¹⁴	Stellar surfaces	10 ³ - 10 ⁵	VLT, HST
UV	20-400	$7.5 \times 10^{14} - 3 \times 10^{16}$	SNR remnants; very hot stars	10 ⁵ - 10 ⁶	HST, FUSE
X-ray	0.01-20	3 x 10 ¹⁶ - 3 x 10 ¹⁹	SNR remnants, gas in galaxy clusters, stellar coronae	106 - 108	Chandra, XMM
Gamma ray	< 0.01	> 3 x 10 ¹⁹	Hypernovae, BH accretion disks	> 108	Integral, GLASS, HESS

You need as much multiwavelength photometry as possible to fully sample the physics of a galaxy. Stellar mass, dust mass, and star formation rate estimates all greatly benefit from multiwavelength data.

BUT GALAXIES AREN'T EVERYTHING!

- Multiwavelength broadband photometry is also useful in...
 - Assigning spectral types of stars (r i or z i colors).
 - Studying globular clusters (age gradients, dynamics, RGB and AGB branch population gradients).
 - ▶ Characterizing stellar flares, and studying their frequency as a function of wavelength.
 - Color gradients of star spots correlate with their temperature.
 - Exoplanet transits: multiwavelength photometry makes it possible to study different depths of planetary atmospheres.
- Multiwavelength narrow-band photometry:
 - e.g. chemical studies of the ISM with ALMA.

WHY IS IT CHALLENGING?

THINGS TO WORRY ABOUT...

- Variable seeing across different telescopes
 / instruments.
- Variable optics in different detectors.
- Variable resolution in different instruments.
- Different sensitivity limits.
- Some telescopes are in space; others are ground-based.
- The sky isn't uniformly transparent across the EM spectrum.
- Calibration, zeropoints, etc...
- Know what you're doing, and don't overdo it!

Band	Survey/ Facility	Central Wavelength	Pixel Scale	Native (conv.) PSF FWHM (")
FUV	GALEX	1550Å	1.5	4.1
NUV	GALEX	2275Å	1.5	5.2
14	SUSS	3540Å	0.339	1.4(2.0)
SE.	SUSS	4770A	0.339	1.4 (2.0)
r	SDSS	6230A	0.339	1.4(2.0)
1	SDSS	7630A	0.339	1.4(2.0)
2	SDSS	9134Å	0.339	1.4 (2.0)
Z.	VIKING	8770Å	0.339	0.9(2.0)
Y	VIKING	1.020µm	0.339	0.9 (2.0)
J	VIKING	1.252µm	0.339	0.9 (2.0)
11	VIKING	1.645pm	0.339	0.9 (2.0)
K.	VIKING	2.147pm	0.339	0.9(2.0)
WI	WISE	3.4 perm	1	5.9
W2	WISE	4.6 parm	1	6.5
W3	WISE	12pm	1	7.0
W4	WISE	22µm	1	12.4
100	II-ATLAS	100pm	3	9.6
160	II-ATLAS	160yrm	4	12.5
250	II-ATLAS	150µm	6	18
350	H-ATLAS	$350 \mu m$	8	25
500	H-ATLAS	500pm	12	36

THINGS

- Varia/ inst
- Varia
- Varia
- Diffe
- Som grou
- the E
- Calik
- Know over

THINGS

- Varia/ inst
- Varia
- Varia
- Diffe
- Som grou
- The the E
- Calik
- Knowover

MULTIWAVELENGTH SURVEYS

- Modern galaxy surveys now produce photometry across multiple bands.
 - e.g. SDSS: ugriz; VISTA VIKING: ZYJHK.
- The survey I'm involved with, GAMA, brings together photometry from a number of different photometric surveys.
 - Lots of in-house image analysis required to do this, but the end result is a single homogeneous database of photometry in multiple bands.

BASIC PROCEDURE

OBTAIN RAW DATA

PERFORM CALIBRATION

ACCOUNT FOR VARYING SEEING / RESOLUTION

EXTRACT PHOTOMETRY

CREATE DATABASE

MAGNITUDES

THIS IS THE ORIGINAL SLIDE FROM THE TALK — HOWEVER THESE MAGNITUDE CALIBRATIONS ARE NOT GENERALLY HUGELY NECESSARY.

- Given that the raw data is coming from multiple sources, that usually means that it will have been pre-processed by different teams / organizations, etc.
- For example, the zeropoint of an instrument is the magnitude of an object that produces one count per second on that detector.

$$m = -2.5 imes \log{(\mathrm{DN/EXPTIME)}} + \mathrm{zp}$$

- These all need to be standardized. So do the gains!
- All these corrections can either be applied on a per-magnitude basis to your data, or to the photometric images on which you perform your multiwavelength photometry.

$$10^{-0.4\times(zp_i-zp_f)}$$

SEEING

- Aperture photometry, if performed on images without the same seeing/resolution will be catastrophically wrong.
- Note that the PSF across all the data in each band, then determine a value to degrade everything to.

$$\sigma_{\mathrm{req}} = \sqrt{\sigma_{\mathrm{final}}^2 - \sigma_{\mathrm{initial}}^2}$$
 \uparrow
Set Measure

- Aperture photometry, if performed on images without the same seeing/resolution will be catastrophically wrong.
- Note that the PSF across all the data in each band, then determine a value to degrade everything to.

$$\sigma_{\rm req} = \sqrt{\sigma_{\rm final}^2 - \sigma_{\rm initial}^2}$$

WHAT DRAWBACKS DOES THIS HAVE?

WHY IS THIS A BAD FIT?

IF YOU DON'T WANT TO DEGRADE ALL YOUR IMAGES...

- Flux fitting is an alternative to matched aperture (a.k.a. 'forced flux') photometry.
- Instead of only using degraded images, flux fitting works by taking information from the best quality image and using it to infer the flux from a lower resolution image (e.g. TFIT; Laigler et al. 2007; Mancone et al. 2013).
 - Start with a catalogue of galaxy positions and fluxes from the high resolution image.
 - Degrade that to match the PSF / resolution of the low quality image (e.g. Hubble -> ground-based telescope).
 - Then measure flux in the low-band image modulo some parameters such that a chi-squared fit to the flux in the degraded high-resolution image is minimized.
- Even more sophisticated algorithms are being developed (e.g. Wright et al. 2016).

- You don't have to conduct a huge multiwavelength survey to obtain multi-band photometry.
 - It's tricky, but perfectly viable to collate & concatenate photometry from different sources for the astronomical objects you're interested in studying.
- This is referred to as 'cross-matching.'
 - As before, the devil is in the details.

BASIC PROCEDURE

GET RAW DATA (CATALOGUES)

CROSS-MATCH

PERFORM CALIBRATION

CREATE DATABASE

- Most photometric surveys will have catalogues you can download, or databases you can query.
- SQL is worth learning, even if just enough to construct some basic queries.

Most photometric surveys will have catalogues you can download, or databases you can query.

```
SELECT TOP 100
objID, ra ,dec
-- Get the unique object ID and coordinates
FROM
PhotoPrimary
-- From the table containing photometric data
for unique objects
WHFRF
ra > 185 and ra < 185.1
AND dec > 15 and dec < 15.1
```

hough to construct

Most photometric surveys will have catalogues you can download, or databases you can query.

```
SELECT TOP 100
objID, ra ,dec
-- Get the unique object ID and coordinates
FROM
PhotoPrimary
-- From the table containing photometric data
for unique objects
WHERE
ra > 185 and ra < 185.1
AND dec > 15 and dec < 15.1
```

```
SELECT top 100
objid, ra, dec, psfmag_i-extinction_i AS mag_i,
psfmag_r-extinction_r AS mag_r, z
-- In SpecPhoto, "z" is the redshift
FROM SpecPhoto
WHERE
(class = 'QSO')
```

DATA MATCHING

▶ ID matching:

- Internally, most photometry (or spectroscopy, or ...) databases will have an internal galaxy identifier that is kept constant within a survey.
- e.g. PhotObjID in SDSS, or SpecObjID when looking at spectra. This can be a 64 bit integer, so be careful!

Sky matching:

- Most databases will also provide you the central RA, Dec, and sometimes even redshift of a target. This can be useful when merging photometry from different surveys.
- ▶ However! Make sure you are matching by the correct centroid.
- Keep track of separations.

TOPCAT is also your friend.

TOPCAT is also your friend.

DATABASES ARE YOUR

▶ TOPCAT is also you

DATABASES ARE YOUR

▶ TOPCAT is also you

CALIBRATION

- > Standard fixes for zeropoint and gain.
- You'll probably also run into different magnitude systems / filters (e.g. *UBVRI* vs *ugriz*).
- Generally speaking, converting between AB and Vega is done as:

$$m_{AB}(Obj) = m_{Vega}(Obj) + m_{AB}(Vega)$$

Conversion =
$$m_{AB}(Vega) = -2.5 \log \left(\frac{\int F_{\lambda}(Vega)S_{\lambda}d\lambda}{\int S_{\lambda}d\lambda} \right) - 48.6$$

- ▶ (For historical reasons, this assumes you're working in cgs.)
- Magnitude conversion tables exist!

MAGNITUDES

e.g. Blanton 2007:

Band	λeff	mAB - mVega	MSun(AB)	MSun(Vega)
U	3571	0.79	6.35	5.55
В	4344	-0.09	5.36	5.45
V	5456	0.02	4.80	4.78
R	6442	0.21	4.61	4.41
I	7994	0.45	4.52	4.07
J	12355	0.91	4.56	3.65
Н	16458	1.39	4.71	3.32
Ks	21603	1.85	5.14	3.29
u	3546	0.91	6.38	5.47
g	4670	-0.08	5.12	5.20
r	6156	0.16	4.64	4.49
i	7472	0.37	4.53	4.16
Z	8917	0.54	4.51	3.97

(You don't need to know these numbers off-hand; just where to find them!)

TO CONCLUDE... (I.E. LEARN FROM MY MISTAKES)

- ▶ Know the data well! Always read the manual (or, in this case, database notes).
- Know what photometry you're matching.
 - e.g. some surveys output Kron magnitudes by default, whereas others do Petrosian magnitudes. These are not the same thing!
 - ▶ Pay particular attention to what kind of apertures are being used.
- Make sure your cross-matching / data collection routine is reproducible. Keep careful notes!
- It isn't easy, but it is worth doing.
- Not only is multiwavelength photometry an excellent way of doing interesting science, but a well prepared, high quality database of multi-band photometry is a useful tool for the whole astronomical community.