INP-ENSEEIHT 1^e année SN

TP1 - Corrélation entre pixels dans une image

Initiation à Matlab

Notions générales

- Le résultat d'une affectation = est affiché, sauf si cette affectation se termine par le caractère ;
- Les commandes format short et format long permettent de modifier le format d'affichage des variables.
- Les fonctions who et whos permettent d'afficher l'ensemble des variables utilisées.
- La fonction clear efface le contenu de toutes les variables utilisées.
- Il est fortement déconseillé d'utiliser des mots-clés de Matlab comme noms de variables.
- La commande help <fonction> affiche la description de <fonction>.

Manipulation de vecteurs et de matrices

- Les composantes d'un vecteur ligne sont séparées par des virgules ou des espaces : v1 = [x1 y1 z1];
- Les composantes d'un vecteur colonne sont séparées par des points-virgules : v2 = [x2 ; y2 ; z2];
- Vecteur à incrément constant : v3 = x_min:dx:x_max; (vecteur ligne de dimension variable, qui contient les valeurs x_min+i*dx, où i est un entier positif ou nul tel que x_min+i*dx est inférieur à x_max).
- Les matrices utilisent la même syntaxe que les vecteurs : $M = [m11 \ m12 \ m13 \ ; \ m21 \ m22 \ m23]$;
- La sous-matrice de M constituée par les lignes de numéros pairs et les colonnes de numéros impairs s'écrit : N = M(2:2:end,1:2:end);
- Vectorisation d'une matrice (les colonnes de M sont concaténées) : v = M(:);
- L'instruction [nb_lignes,nb_colonnes] = size(M); permet d'affecter le nombre de lignes de la matrice M à la variable nb_lignes, et le nombre de colonnes de M à la variable nb_colonnes.

Quelques matrices utiles

- zeros(m,n): matrice nulle de taille $m \times n$.
- ones(m,n) : matrice de taille $m \times n$ dont tous les éléments sont égaux à 1.
- \bullet eye(m,n) : matrice de taille $m\times n$ dont les éléments diagonaux sont égaux à 1, les autres à 0.
- rand(m,n): matrice de taille $m \times n$ d'éléments tirés aléatoirement selon la loi uniforme sur [0,1].
- randn(m,n) : matrice de taille $m \times n$ d'éléments tirés aléatoirement selon la loi normale centrée réduite.
- Appeler ces fonctions avec un seul argument équivaut à les lancer avec deux arguments identiques.

Opérations sur les matrices

- Addition A+B; soustraction A-B; produit A*C; puissance A^3; transposition A' ou transpose(A).
- Inverse inv(A); pseudo-inverse pinv(A).
- Multiplication élément par élément A.*B (chaque élément A(i,j) est multiplié par l'élément B(i,j)); division élément par élément A./B (chaque élément A(i,j) est divisé par l'élément B(i,j)); puissance élément par élément A.^3 (chaque élément de A est élevé à la puissance 3).

Quelques conseils utiles

- La fonction mean permet de calculer la moyenne des éléments d'une matrice, colonne par colonne. Dans le cas où la matrice comporte une seule ligne, mean calcule la moyenne de la ligne.
- La fonction figure permet de créer et de configurer la fenêtre de visualisation, alors que la fonction imagesc permet d'afficher une image dans la figure. N'oubliez donc pas de modifier les titres des figures, afin de rendre ces titres cohérents (ce conseil vaut également pour les noms des axes d'un graphique).
- Sachant que l'incrément par défaut est égal à 1, il est plus lisible d'écrire 1:10 que 1:1:10
- De même, il est plus lisible d'écrire M(:,:,1) que M(1:end,1:end,1)

INP-ENSEEIHT 1^e année SN

Exercice d'initiation à Matlab

Lancez l'exécution du script exercice_Matlab : ce script lit une image en niveaux de gris, la stocke dans la matrice bidimensionnelle image_originale et l'affiche. Les niveaux de gris des pixels de cette image sont obtenus après traversée d'une mosaïque de filtres colorés, appelée matrice de Bayer, qui est placée devant le récepteur photosensible des appareils photographiques :

FIGURE 1 – Mosaïque de filtres colorés en rouge, vert et bleu (matrice de Bayer).

Vous constatez également qu'un message d'erreur s'affiche dans la fenêtre d'exécution. Cela vient du fait que le script exercice_Matlab appelle la fonction ecriture_RVB, qui n'existe pas encore, mais que vous devez écrire dans un fichier de nom ecriture_RVB.m. L'en-tête de cette fonction s'écrit :

function image_RVB = ecriture_RVB(image_originale)

Elle doit créer une matrice image_RVB à 3 dimensions contenant deux fois moins de lignes et deux fois moins de colonnes que image_originale. Chaque pixel de image_RVB correspond à un ensemble de quatre pixels de image_originale: V₁, R, V₂, B. Les valeurs R et B sont recopiées telles quelles dans les canaux rouge et bleu de image_RVB. En revanche, la valeur dans le canal vert est égale à la moyenne des valeurs V_1 et V_2 .

Exercice 1 : mise en évidence des corrélations entre pixels voisins

Cet exercice constitue une illustration du cours de probabilités consacré à un couple de variables aléatoires. Ici, chaque pixel d'une image numérique est considéré comme une variable aléatoire. On s'intéresse à la corrélation entre pixels voisins.

Le script Matlab de nom exercice_1 affiche une image interne à Matlab (cf. figure 2-a) ainsi que son histogramme (cf. figure 2-b). Il doit aussi afficher les paires de niveaux de gris d'un pixel et de son voisin de droite sous la forme d'un nuage de points. Écrivez la fonction vectorisation appelée par ce script, d'en-tête :

function [X,Y] = vectorisation(I)

dont les deux paramètres de sortie X et Y doivent être deux sous-matrices de I vectorisées, c'est-à-dire deux vecteurs colonnes. Remarque: l'écriture I(1:nb_lignes-1,:) revient à calculer I_haut, et non pas I_gauche.

Écrivez ensuite la fonction calcul_parametres, qui calcule le coefficient de corrélation linéaire r des données, ainsi que les deux paramètres (a,b) de la droite de régression d'équation y=ax+b. Remarque : cet exercice doit être résolu sans boucle!

Rappels

• Moyenne : $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

• Variance: $\sigma_x^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}^2$

• Écart-type : $\sigma_x = \sqrt{\sigma_x^2}$

• Covariance : $\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}$

• Coefficient de corrélation linéaire : $r = \frac{\sigma_{xy}}{\sigma_x \, \sigma_y}$ • Équation de la droite de régression : $y = \frac{\sigma_{xy}}{\sigma_x^2} \, (x - \bar{x}) + \bar{y}$

INP-ENSEEIHT 1^e année SN

FIGURE 2 – (a) Exemple d'image en niveaux de gris. (b) Histogramme de l'image (a).

Exercice 2 : décorrélation des niveaux de gris d'une image

La décorrélation des niveaux de gris consiste, par exemple, à soustraire au niveau de gris d'un pixel le niveau de gris de son voisin de gauche. Faites une copie du script exercice_1, de nom exercice_2, que vous modifierez de manière à remplacer l'image de la figure 2-a par une version décorrélée I_decorrelee de cette image. Pour cela, initialisez I_decorrelee par duplication de I, conservez la première colonne et modifiez les autres colonnes de cette matrice.

Remarques

- Il est nécessaire de conserver la première colonne de l'image d'origine dans I_decorrelee, sans quoi l'opération de décorrélation ne serait pas inversible (il serait impossible de recalculer l'image d'origine).
- Il est nécessaire de modifier la valeur de la variable I_min, qui n'est plus égale à 0 puisque I_decorrelee peut comporter des valeurs négatives.