Fondamenti dell'Informatica

1 modulo

Test sui fondamenti matematici

Prof. Giorgio Gambosi

a.a. 2020-2021

Problema 1: Definire i termini seguenti.

- 1. Insieme $A=\{x,y\}$, sottoinsieme $B\subseteq A$, sottoinsieme proprio $B\subset A$, multinsieme $\{x,y,y\}$, insieme potenza $\mathcal{P}(A)$, cardinalità |A|, insieme infinito, numeri naturali $\mathbb N$, numeri interi $\mathbb Z$, insieme vuoto \emptyset , unione $A\cup B$, intersezione $A\cap B$, prodotto cartesiano $A\times B$, complemento \overline{A} , sequenza $\langle x,y,z\rangle$, k-pla $\langle x_1,x_2,\ldots,x_k\rangle$.
- 2. Relazione $R = \{(d_1, r_1), (d_2, r_2), \dots, (d_i, r_i)\}$, relazione riflessiva, relazione simmetrica, relazione transitiva, relazione di equivalenza.
- 3. Funzione $f:D\mapsto R$, dominio D, codominio R, funzione iniettiva, funzione suriettiva, funzione 1-1.
- 4. Grafo G=(V,E), grado, cammino, cammino semplice, ciclo, grafo connesso, grafo fortemente connesso.
- 5. Alfabeto, stringa, lunghezza di una stringa, stringa vuota, sottostringa, concatenazione, ordinamento lessicografico, linguaggio.
- 6. Logica booleana, operatori $\land \lor \neg \oplus$, implicazione, equivalenza logica.
- 7. Teorema, lemma, corollario, dimostrazione, induzione.

Logica

Problema 2: Siano p, q, r le seguenti proposizioni:

- p: 'sta piovendo'
- q: 'splende il sole'
- r: 'è nuvoloso'

Si traducano le proposizioni seguenti in formule logiche, utilizzando p,q,r e i connettivi logici \vee , \wedge , \neg .

- 1. 'Sta piovendo e splende il sole'
- 2. 'Sta piovendo ed è nuvoloso'
- 3. 'Non sta piovendo, non splende il sole ed è nuvoloso'
- 4. 'Il sole splende se e solo se non sta piovendo'
- 5. 'Se non è nuvoloso allora splende il sole'

Problema 3: Siano p, q, r le seguenti proposizioni:

- p: 'sta piovendo'
- q: 'splende il sole'
- r: 'è nuvoloso'

Si traducano le formule logiche seguenti i proposizioni in italiano.

- 1. $(p \land q) \Rightarrow r$
- 2. $(p \Rightarrow r) \Rightarrow q$
- 3. $\neg p \Leftrightarrow (q \lor r)$
- 4. $\neg(p \Leftrightarrow (q \lor r))$
- 5. $\neg (p \lor q) \land r$

Problema 4: Per tutte le formule logiche del problema precedente, fornire le corrispondenti tabelle di verità.

Problema 5: Quale delle formule seguenti è logicamente equivalente a $p \Rightarrow q$?

- 1. $\neg p \Rightarrow \neg q$
- 2. $q \Rightarrow p$
- 3. $\neg q \Rightarrow \neg p$
- 4. $\neg q \lor p$
- 5. $\neg p \lor q$
- 6. $p \land \neg q$
- 7. $q \wedge \neg p$

Problema 6: Costruire le tabelle di verità per le seguenti formule

- 1. $(p \Rightarrow q) \Rightarrow ((p \lor \neg q) \Rightarrow (p \lor q))$
- 2. $((p \lor q) \land r) \Rightarrow (p \land \neg q)$
- 3. $((p \Leftrightarrow q) \lor (p \Rightarrow r)) \Rightarrow (\neg q \land p)$

Problema 7: Dati i due universi

- $0,1) = \{x \in \mathbb{R} | 0 < x < 1\}$
- $[0,1] = \{x \in \mathbb{R} | 0 \le x \le 1\}$

si determini se le proposizioni seguenti sono vere o false in ognuno dei due universi

- 1. $\forall x \exists y : x > y$
- $2. \ \forall x \exists y : x \ge y$
- 3. $\exists x \forall y : x > y$
- **4.** $\exists x \forall y : x \geq y$

Problema 8: Costruire tabelle di verità per ognuna delle formule seguenti. Inoltre, per ogni coppia di formule, dire quale delle seguenti affermazioni è vera:

- Le formule sono equivalenti,
- Le formule non sono equivalenti, ma una implica l'altra (dire quale),
- Nessuna delle due precedenti.
- (i) $p \oplus (q \Rightarrow \neg p)$
- (ii) $(q \Rightarrow \neg p) \Rightarrow \neg p$
- (iii) $(p \Rightarrow q) \Rightarrow \neg p$
- (iv) $p \land \neg p \land (p \Rightarrow q)$

Problema 9: Scrivere le negazioni delle proposizioni seguenti

- 1. $\forall x \in \mathbb{R} : x > \frac{1}{x}$
- **2.** $\exists x \in \mathbb{R} : x^2 = 2$
- 3. $\forall x \in \mathbb{R} : (x > 3) \Rightarrow (x^2 > 9)$

Problema 10: Si considerino le due proposizioni

- 1. $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x < y$
- 2. $\exists x \in \mathbb{R} \forall y \in \mathbb{R} : x < y$

Determinare se le proposizioni sono vere (nessuna, entrambe, o una soltanto).

Insiemi

Problema 11: Si scrivano i sequenti insiemi in forma enumerata:

- 1. L'insieme delle vocali
- 2. $\{x \in \mathbb{N} | 10 \le x \le 20 \text{ e } x \text{ è divisibile per 3} \}$
- 3. L'insieme di tutti i numeri naturali cha danno resto 1 se divisi per 5

Problema 12: Si descrivano i seguenti insiemi mediante un predicato che li definisca:

- **1.** {4, 8, 12, 16, 20}
- **2.** {000, 001, 010, 011, 100, 101, 110, 111}
- 3. $\{1, 4, 9, 16, 25, \ldots\}$

Problema 13: Sia \mathbb{Z} l'insieme degli interi. Descrivere, nel modo più semplice possibile, i sequenti insiemi.

- 1. $\{2k \mid k \in \mathbb{Z}\}$
- **2.** $\{4n \mid n \in \mathbb{Z}\} \cup \{4n+2 \mid n \in \mathbb{Z}\}$
- 3. $\{n \mid \exists k \in \mathbb{Z}, n = 2k\}$
- $4. \{n \mid \forall k \in \mathbb{Z}, n = 2k\}$
- 5. $\{4k \mid k \in \mathbb{Z}\}/\{2k \mid k \in \mathbb{Z}\}$

Problema 14: Elencare tutti gli elementi dei seguenti insiemi.

- 1. 2⁰
- 2. $2^{\{a,b\}}/\{\{a,b\},\{a\}\}$
- 3. $\{a, b\} \times \{c\}$
- **4.** $\{a,b\} \times \{\{c\}\}$
- 5. $\{a,b\} \cup (\{b,c\} \cap \{a,c\})$
- 6. $(\{a,b\} \cup \{b,c\}) \cap \{a,c\}$

Problema 15: Sia $A = \{a, b, c\}$ e sia $B = \{p, q\}$. Si scrivano gli insiemi seguenti in forma enumerativa: $A \times B$, A^2 , B^3

Problema 16: Sia $A = \{1, \{1\}, \{2\}, 3\}$. Si determini per ognuna delle seguenti proposizioni se è vera o falsa.

- 1. $\emptyset \in A$; $\emptyset \subseteq A$
- **2.** $1 \in A$; $1 \subseteq A$
- 3. $\{1\} \in A; \{1\} \subseteq A$
- **4.** $\{\{1\}\}\subseteq A$
- 5. $2 \in A$
- 6. $\{2\} \in A$; $\{2\} \subseteq A$
- 7. $\{3\} \in A; \{3\} \subseteq A$

Problema 17: Dato l'universo $\{x \in \mathbb{N} | x \le 12\}$, siano dati i tre insiemi $A = \{x | x \text{ è dispari}\}$, $B = \{x | x > 7\}$, $C = \{x | x \text{ è divisibile per } 3\}$. Scrivere gli insiemi seguenti in forma enumerata:

- 1. $A \cap B$
- 2. $B \cup C$
- 3. \overline{A}
- 4. $(A \cup \overline{B}) \cap C$
- 5. $\overline{A \cup C} \cup \overline{C}$

Problema 18: Dimostrare che $\overline{\overline{A} \cap B} = A \cup \overline{B}$

Problema 19: Dimostrare che la differenza di insiemi non è commutativa, cioè che non è vero che per ogni A,B, vale A-B=B-A

Problema 20: Dimostrare che la differenza di insiemi non è associativa, cioè che non è vero che per ogni A,B,C, vale A-(B-C)=(A-B)-C

Problema 21: Determinare se le seguenti proposizioni sono vere

- 1. $\{a,b\} \subseteq 2^{\{a,b,\{a,b\}\}}$
- 2. $\{a, b, \{a, b\}\} \{a, b\} = \{a, b\}$
- 3. $\emptyset \in \emptyset$

Problema 22: Dimostrare che le seguenti proprietà valgono per tutti gli insiemi A,B,C

- 1. $A B = A \cap \overline{B}$
- 2. $A \subseteq B$ se e solo se $A B = \emptyset$
- 3. $A (A B) = A \cap B$
- **4.** $A \cap B \subseteq (A \cap B) \cup (B \cap \overline{C})$
- 5. $(A \cup C) \cap (B \cup \overline{C}) \subseteq A \cup B$
- 6. $A \subseteq B$ se e solo se $\overline{B} \subseteq \overline{A}$
- 7. $(A \cup B) (A \cup C) \subseteq B C$
- 8. $(A \cup B) C = (A C) \cup (B C)$
- 9. $A (B C) = (A B) \cup (A \cap C)$

Problema 23: Dati gli insiemi $A = \{1, 3, 5, 15\}$, $A = \{0, 1, 2, 3\}$, $C = \{n \mid n \in \mathbb{N} \land n > 10\}$, $D = \{2n \mid n \in \mathbb{N}\}$.

- 1. Descrivere $A \cap B \cap C \cap D$
- 2. Descrivere $(A \cup B) C$
- 3. Descrivere $\overline{B} \wedge \overline{C}$ (Il complemento è preso rispetto a \mathbb{N})
- 4. Quante coppie di insiemi disgiunti esistono tra A, B, C, D?

Relazioni e funzioni

Problema 24: Sia $\mathbb Z$ l'insieme degli interi. Sia R la relazione binaria su $\mathbb Z$ tale che $\{a,b\}\in R$ se e solo se ab>0.

- (a) R è riflessiva? Motivare il perché.
- (b) R è simmetrica? Motivare il perché.
- (c) R è transitiva? Motivare il perché.
- (d) Definire una relazione $R_1 \subseteq R$ riflessiva e simmetrica ma non transitiva.
- (e) Definire una relazione $R_2 \subseteq R$ riflessiva e transitiva ma non simmetrica.
- (f) Definire una relazione $R_3 \subseteq R$ simmetrica e transitiva ma non riflessiva.
- (g) Definire una relazione $R_4 \subseteq R$ che sia una relazione di equivalenza.

Problema 25: Determinare quali delle seguenti relazioni sono riflessive, simmetriche, antisimmetriche, transitive.

- 1. 'parente di' sull'insieme di tutte le persone
- 2. 'figlio di' sull'insieme di tutte le persone
- 3. 'maggiore di' sull'insieme dei numeri reali
- 4. 'ha la stessa parte intera di' sull'insieme dei numeri reali

- 5. 'è multiplo di' sull'insieme dei numeri reali
- 6. la relazione R sui numeri reali definita come $(x,y) \in R$ se e solo se $x^2 = y^2$

Problema 26: Per tutte le relazioni di equivalenza del problema precedente, definire le classi di equivalenza.

Problema 27: Sia $R \subseteq \mathbb{Z}^2$ una relazione sui numeri interi tale che $(x,y) \in R$ se e solo se x-y è divisibile per 4. Mostrare che R è una relazione di equivalenza e descrivere le relative classi di equivalenza.

Problema 28: Dato un insieme S, la relazione di inclusione \subseteq è definita su $\mathcal{P}(S)^2$, dove $\mathcal{P}(S)$ è l'insieme potenza di S. Elencare tutti gli elementi della relazione assumendo che $S=\{1,2,3\}$.

Problema 29: Dato l'insieme $S=\{0,1,2,3\}$, elencare tutti gli elementi di ognuna delle seguenti relazioni su S^2 .

- 1. $(s, y \in R_1)$ se e solo se x + y = 3
- 2. $(s, y \in R_2)$ se e solo se $x \leq y$
- 3. $(s, y \in R_3)$ se e solo se $\max(x, y) = 3$
- 4. $(s, y \in R_4)$ se e solo se x y è pari
- 5. $(s, y \in R_5)$ se e solo se $x + y \le 4$

Determinare quali tra queste relazioni sono riflessive, simmetriche, antisimmetriche e transitive.

Problema 30: Un grafo non orientato è detto connesso se ogni coppia di nodi è collegata da un cammino (sequenza di archi). Dimostrare che un grafo connesso di n nodi ha almeno n-1 archi.

Problema 31: Sia data la funzione $f:\mathbb{N}\mapsto\mathbb{N}$ definita come

$$f(x) = \begin{cases} 1 & 0 \le x < 10 \\ 2 & x = 10 \\ 2x + 1 & x > 10 \end{cases}$$

Questa funzione è totale? 1-1? Suriettiva?

Problema 32: Determinare quali tra le seguenti funzioni sono iniettive e quali sono suriettive:

- 1. $f: S \mapsto S$, dove S è un insieme non vuoto di stringhe e f(s) restituisce la stringa s rovesciata
- 2. $g: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ tale che g(x,y) = x + y
- 3. $s: \mathbb{N} \to \mathbb{N}$ tale che s(n) = n+1
- 4. $h: \{parole \text{ in italiano}\} \mapsto \{lettere \text{ dell'alfabeto}\}\ tale\ che\ h(w)\ restituisce\ la\ lettera\ iniziale\ di\ w$
- 5. Dato un insieme finito $A, |\cdot| : \mathcal{P}(A) \mapsto \mathbb{N}$, tale che |X| è la cardinalità dell'insieme $X \subseteq A$.

Problema 33: Date le seguenti funzioni, determinare se sono iniettive e/o suriettive

- 1. i(n) = n
- 2. f(n) = 3n
- 3. $g(n) = n + (-1)^n$
- 4. $h(n) = \min(n, 100)$
- 5. $k(n) = \max(0, n-5)$

Dimostrazioni, induzione

Problema 34: Dimostrare che $\forall n \in \mathbb{N}$, $n \ge 1$ si ha che

$$\sum_{i=1}^{n} (2i - 1) = n^2$$

Problema 35: Dimostrare che per ogni numero naturale $n \ge 12$, esistono due interi a, b tali che n = 3a + 7b.

Problema 36: Dimostrare per induzione che $\forall n \in \mathbb{N}, n > 1, n^3 - n$ è divisibile per 6.

Problema 37: Dimostrare per assurdo che $\forall n \in \mathbb{N}$, $n^3 - n$ è divisibile per 6.

Problema 38: Dimostrare per induzione che $\forall n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Problema 39: Dimostrare per induzione che la somma dei primi n numeri dispari è pari a n^2 .

Problema 40: Si consideri la seguente seguenza di equazioni.

$$1 + \frac{1}{2} = 2 - \frac{1}{2}$$

$$1 + \frac{1}{2} + \frac{1}{4} = 2 - \frac{1}{4}$$

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 2 - \frac{1}{8}$$

Dare una equazione che descrive la regola generale e dimostrarne la correttezza per induzione.

Problema 41: Trovare una formula per la somma dei primi n numeri pari. Dimostrarne la correttezza per induzione.

Problema 42: Dimostrare per induzione che $\forall n \in \mathbb{N}, n \geq 4$, si ha che $n^2 \leq 2^n$.

Problema 43: Dimostrare per induzione che $\forall n \in \mathbb{N}$

$$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Problema 44: Sia data la funzione f definita ricorsivamente come

- 1. f(0) = 0
- 2. f(n+1) = f(n) + n

Determinare i valori f(2) e f(3). Mostrare poi che $\forall n \in \mathbb{N}$ si ha che $2f(n) = n^2 - n$

Problema 45: Data la funzione fattoriale, definita ricorsivamente come

- 1. 0! = 0
- 2. (n+1)! = (n+1)n!

mostrare che $n!>2^n \ \forall n\in\mathbb{N}$, $n\geq 4$

Problema 46: Sia $\Sigma = \{0, 1\}$: definiamo per ricorsione la funzione $\phi : \Sigma^* \mapsto \Sigma^*$ come

- 1. $\phi(\varepsilon) = \varepsilon$
- **2.** $\phi(w0) = \phi(w)1$
- 3. $\phi(w1) = \phi(w)0$

Determinare $\phi(1011)$ e $\phi(1101)$. Dimostrare poi, per induzione su |w|, che $|\phi(w)| = |w|$

Problema 47: Sia $\Sigma = \{0,1\}$: definiamo per ricorsione la funzione di inversione $r: \Sigma^* \mapsto \Sigma^*$ come

- 1. $r(\varepsilon) = \varepsilon$
- **2.** r(aw) = r(w)a

Dimostrare, per induzione su |u|, che r(uv) = r(v)r(u) e, per induzione su n, che $r(x^n) = (r(x))^n$

Problema 48: Data una stringa w, la sua stringa rovesciata \tilde{w} è definita come:

- 1. Se $w=\varepsilon$ allora $\tilde{w}=\varepsilon$
- 2. Se w=ua, dove $u\in \Sigma^*$ e $a\in \Sigma$, allora $\tilde{w}=a\tilde{u}$

Dimostrare per induzione che se w=bv, dove $u\in \Sigma^*$ e $b\in \Sigma$, allora $\tilde{w}=\tilde{v}b$

Problema 49: Data una stringa w, la sua stringa rovesciata \tilde{w} è definita come:

- 1. Se $w = \varepsilon$ allora $\tilde{w} = \varepsilon$
- 2. Se w=ua, dove $u\in \Sigma^*$ e $a\in \Sigma$, allora $\tilde{w}=a\tilde{u}$

Dimostrare per induzione che se w=bv, dove $u\in \Sigma^*$ e $b\in \Sigma$, allora $\tilde{w}=\tilde{v}b$

Problema 50: Un ciclo Hamiltoniano in un grafo non orientato è un ciclo che attraversa ogni nodo esattamente una volta.

Sia G un grafo non orientato avente un ciclo Hamiltoniano. Si supponga che H sia un altro grafo non orientato ottenuto da G aggiungendo un nodo alla volta, insieme ad alcuni archi tra il nuovo nodo e nodi già presenti.

Più precisamente, supponiamo di avere una sequenza di grafi non orientati $G = G_0, G_1, G_2, \ldots, G_k = H$, dove ogni grafo G_{i+1} è ottenuto dal grafo precedente G_i aggiungendo un nodo n_{i+1} , insieme ad archi che collegano n_{i+1} a più della metà dei nodi in G_i . Dimostrare che se G ha un ciclo Hamiltoniano, anche H ha un ciclo Hamiltoniano.

Insiemi numerabili e non numerabili

Problema 51: Mostrare che l'insieme $X=\{4n+1\mid n\in\mathbb{N}\}$ è numerabile fornendo, in accordo alla definizione, una funzione 1-1 $f:X\mapsto\mathbb{N}$.

Problema 52: L'insieme $X=\{0,1,2\}\cup\{n\ |\ n\in\mathbb{N}\wedge n>10\}$ è numerabile?

Problema 53: L'insieme $X = \{n \mid n \in \mathbb{N} \land n < 100\}$ è numerabile?