경력기술서: 전제영

MLOps and Cloud-Native Engineer (Last modified at 2024-11-17)

SUMMAR

저는 MLOps 엔지니어 전제영 [⁵⁵⁶ Jeayoung Jeon] 입니다. **컴퓨터 비전 연구 경험**과 **클라우드 네이티브 엔지니어링 경험**의 시너지로 커리어를 성장시키고 있습니다. 저의 이력은 다음과 같습니다:

기간	기관	직급	역할
2021.01 - 2024.10 [3Y,10M]	맥스트, 기술사업부	책임	MLOps/DevOps & 컴퓨터 비전 엔지니어
2012.03 - 2020.08 [8Y,6M]	포항공대, 전기전자공학과	통합	Automotive & 컴퓨터 비전 연구원
2008.03 - 2012.02 [4Y]	금오공대, 전자공학부	학부	정보통신 및 디지털신호처리

소수 인원으로 최고의 성과를 낼 수 있는 협업 문화와 자동화를 추구합니다. 그리고 성능 향상과 비용 절감 모두 실현하는 최적의 방법을 찾고 있습니다. 제 경험과 성과를 바탕으로 회사와 함께 성장하는 커리어를 희망합니다. 저에 대한 더 자세한 내용은 포트폴리오 (https://blog.jiye.live) 의 블로그 (https://blog.jiye.live)를 참조해 주세요.

in : LinkedIn: jyje (https://www.linkedin.com/in/jyje)

: Google Scholar: Jeayoung Jeon (https://scholar.google.com/citations?user=gwcPQM8AAAAJ)

Github (http://github.com/jyje)

StackShare (https://stackshare.io/jyje/jyje-pro-stack)

Projects

Jan 2024 - Oct 2024 (10 개월)

💄 프로젝트 와이더스: 공간맵 및 AR 컨텐츠를 제공하는 B2B 디지털 트윈 플랫폼 at 맥스트 (https://maxst.com)

Roles: ML 파이프라인 설계, API 개발, 하이브리드 클러스터 운영, 배포 의사결정 및 자동화

- DevOps 웹 서버를 위한 Bitbucket CI 파이프라인과 ML 워크로드를 위한 Argo Workflows CI 파이프라인을 설계했습니다.
- Hybrid Cluster AWS EKS와 온프레미스 쿠버네티스를 이용한 하이브리드 클러스터를 구축하였습니다. ML 파이프라인은 온프레미스 클러스 터에서 수행하여 GPU 비용을 최적화하였습니다. 비상용 파이프라인을 EKS+Karpenter로 구성하여 가용성을 높였습니다.
- ML Pipeline & API Argo Workflows을 활용하여 공간맵 생성을 위한 ML 파이프라인을 설계했습니다. ML 파이프라인을 관리하는 API 서버 를 개발했습니다.

Results: 서비스 개발 및 운영 기여 → 하이브리드 클러스터, CI/CD, ML 파이프라인, ML API 개발

- ML 파이프라인 멀티 클러스터 환경에서 ML API와 데이터 파이프라인 설계. 클러스터 비용 50% 절감
- 하이브리드 인프라 하이브리드 클러스터 구현 및 데브옵스 지원으로 서비스 연간 가용성 96%, 다운타임 14일 달성
- **배포 자동화** 와이더스 (https://widearth.world) 프로젝트를 위한 CI/CD를 관리하였습니다. 3개월간 40회 이상의 배포를 주도하였습니다.

Skills: 프로젝트 <u>와이더스 (https://widearth.world)</u>를 위한 핵심 스킬

AWS EKS Karpenter Python FastAPI Argo Workflows Argo CD

Jan 2024 - Jun 2024 (6 개월)

🤽 MLOps: 최신 오픈소스 프로젝트를 이용한 온프레미스 MLOps 도입 at 맥스트 (https://maxst.com)

Roles: 최신 오픈소스 프로젝트를 이용한 MLOps 플랫폼 개발

- AutoML Katib와 Argo Workflows를 이용해 초매개변수를 튜닝하는 환경을 개발하였습니다. 연구원이 사전 빌드 없이 모델을 학습할 수 있도 로 하였습니다
- Distributed Training Kubeflow의 Training Operator를 이용해 분산 학습 환경을 개발하였습니다. 연구원이 클러스터의 모든 GPU를 단일 학습에 활용할 수 있도록 하였습니다.
- JupyterHub ML 연구원을 위한 주문형 Jupyter Notebook 관리 플랫폼을 개발하였습니다. 연구원이 필요한 연구환경을 즉시 구성할 수 있 도록 하였습니다.

Results: 'MLOps 도입' ← Kubeflow와 JupyterHub를 이용한 AI 연구 GPU 활용성 향상 [기여도 90%+]

- **연구환경개선** AI 연구팀과 도입 검토 후, 온프레미스 연구 환경을 개선을 위한 최신 오픈소스적용
- GPU 활용성 24/7 GPU 활용으로 GPU 사용률 3배 증가 및 800건 이상의 AutoML 실험 수행

Skills: 온프레미스 MLOps 도입을 위한 핵심 스킬

 Kubeflow/Katib
 Kubeflow/Training Operator
 Argo Workflows
 Grafana
 TensorBoard

Skills

제 스킬 중 현업에 바로 쓸 수 있는 것은 강조하였습니

MLOps & LLMOps :

Kubeflow Data Pipeline AutoML Katib

Training Operator (JupyterHub) (PyTorch) (OpenCV)
(Ollama) (RAG) (OpenAl)

DevOps:

 Kubernetes
 Argo Workflows
 AWS EKS

 Kubespray
 IaC
 Terraform
 Ansible
 Grafana

Karpenter

GitOps :

CI/CD Argo CD Bitbucket Pipelines

GitHub Actions Kaniko Docker/Multi-stage

Slackbot

Application Development :

Python/FastAPI Unit Testing .NET/WPF

.NET/MAUI Unity

Programming languages :

Python C# C/C++ Go MATLAB

Tools:

 (Visual Studio Code)
 (Visual Studio)

 (Jupyter Notebook)
 (MATLAB/Simulink)

OS and Hardware :

Windows WSL2 Ubuntu Alpine MacOS

ARM64/Raspberry Pi AMD64/Bare Metal FPGA

🙎 DevOps: Chatbot과 CI/CD를 제공하는 하이브리드 클러스터 기반의 DevOps 도입 at 맥스트 (https://maxst.com)

Roles: Hybrid 클러스터 개발 및 ChatOps와 GitOps를 이용한 DevOps 도입

- Hybrid Cluster AWS EKS와 온프레미스 쿠버네티스를 결합한 하이브리드 클러스터를 구축했습니다. GPU 워크로드는 온프레미스 클러스터에서 실행하여 비용을 최적화했습니다. 웹 또는 백업 워크로드는 가용성을 높이기 위해 EKS로 구성했습니다.
- laC Terraform과 Ansible을 이용해 클러스터 인프라를 코드화하였습니다. Terraform을 이용해 AWS EKS 클러스터를 구성하였습니다.
 Ansible 기반의 Kubespray를 이용해 온프레미스 클러스터를 구성하였습니다.
- CI/CD Bitbucket Pipeline으로 협업을 위한 빠른 CI를 구성하였습니다. 온프레미스 Argo Workflows로 고성능의 커스텀 CI을 구성하였습니다. Argo CD와 Slackbot을 이용한 GitOps로 CD를 구현하였습니다. IaC도 CI/CD 및 파이프라인으로 구성하여 선언적 인프라를 구성하였습니다.

Results: 'DevOps 도입' ← AWS EKS와 온프레미스를 결합한 하이브리드 클러스터 개발 [기여도 75%+]

- 고가용성 하이브리드 클러스터 온프레미스의 경제성을 이용해 순수 클라우드 인프라 대비 50% 이상의 비용 절감을 달성
- ▶ **DevOps 문화** 앱 현대화 및 CI/CD를 포함한 DevOps 문화 전파. 모니터링을 통한 의사결정 지원

Skills: Hybrid DevOps를 위한 핵심 스킬

[Kubernetes] [Argo Workflows] [AWS EKS] [IaC] [Terraform] [Python/FastAPI] [Python/Bolt (Slack)]

Jan 2021 - Dec 2022 (2 년)

淄 디지털 트윈 연구 컴퓨터 비전 엔지니어 at 맥스트 (https://maxst.com)

Roles: 컴퓨터 비전 알고리즘 개발 및 디지털 트윈 시스템 구축

- Visual-SLAM & SfM Visual-SLAM을 위한 영상처리 알고리즘을 개발하였습니다. 영상처리 알고리즘을 이용해 디지털 트윈 시스템을 구축하 영습니다
- 전문연구요원 대학원 전공과 관련된 컴퓨터 비전 직군에 종사하며, 군 대체복무를 수행하였습니다.

Results: '가설 검증' ← 디지털 트윈 시스템을 위한 알고리즘 개발 [기여도 50%]

- 디지털 트윈 디지털 트윈 시스템을 위한 Visual-SLAM 및 ICP 알고리즘 연구/개발
- 자동화 데이터 취득 및 분석을 위한 자동화 파이프라인 개발

Skills: 디지털 트윈 연구를 위한 핵심 스킬

Computer Vision SfM Visual-SLAM Python OpenCV .NET/C# Unity

Jan 2012 - Aug 2020 (8 년)

💆 디지털 신호 처리 및 ADAS 연구원 (통합박사과정) at POSTECH (https://eee.postech.ac.kr/)

Roles: 디지털 신호처리와 컴퓨터 비전 분야에서 연구/개발

- 2018 2020 Computing and Control Engineering Lab. (Prof. SH, Han)
 - Thesis: Virtual Visual-SLAM for Real-World Environments (https://postechprimo.hosted.exilbrisgroup.com/permalink/l/1031dv/l/82POSTECH_INST21232402040003286)
- 2012 2018 Advanced Signal Processing Lab. (Prod. H, Jeong)
 - Real-Time Advanced Driver Assistance Systems using FPGA
 - Research on Traffic Sign & Lane Terrain Detection
 - 1st Author: Polygonal symmetry transform for detecting rectangular traffic signs (IEEE ICASS 2014) (https://ieeexplore.ieee.org/abstract/document/6987934)
 - Research on Stereo Vision & Markov Random Fields
 - 3rd Author: Cost aggregation table: A theoretic derivation on the Markov random field and its relation to message
 passing (IEEE ICIP 2015) (https://ieeexplore.ieee.org/abstract/document/735196)

Results: '프로젝트 및 연구논문' \leftarrow 가상 환경에서의 자동차 시뮬레이션 및 ADAS On-Edge에 대한 연구를 수행

- Digital Twins Virtual Visual-SLAM: 실제 환경과 가상 환경을 위한 동시적 위치 추정 및 지도 작성 방법
- Edge ADAS FPGA를 이용한 실시간 운전자 보조 시스템 개발 및 교통표지판 검출 알고리즘 연구

Skills: ADAS 연구를 위한 핵심 스킬

 Computer Vision
 Digital Signal Processing
 Markov Random Fields
 ADAS
 Traffic Sign Detection

 Lane Terrain Detection
 MATLAB/Simulink
 C/C++

Edge: Raspberry Pi Cluster Nvidia Jetson N100 Processor Cluster Optimization: Hybrid Cluster Karpenter Spot Instances

Kubeflow Argo Projects LitmusChaos

CNCF Projects:

Languages

Korean : 원어민
English : 일상대화, 업무

Mar 2024 - present

■ 책임연구원 at MAXST (https://maxst.com/ENG/main)

Roles: Developed On-Premise Clusters Providing MLOps for Technology Division in MAXST

- MLOps AI 팀을 위한 MLOps를 제공하는 온프레미스 클러스터 및 워크로드를 개발하였습니다.
- DevOps 프로젝트에 DevOps 역할로 참여하여 서비스 출시에 기여하였습니다. CI/CD 구성, 앱 현대화 등 DevOps 문화를 전파하였습니다.
- 하이브리드 클러스터 AWS EKS와 온프레미스 쿠버네티스를 결합한 하이브리드 클러스터를 구현/운영 하였습니다. Ansible과 Kubespray를 이용해 온프레미스 클러스터를 구축하였습니다. Terraform을 이용해 AWS EKS 클러스터를 구성하였습니다.

Skills

Kubernetes On-Premise AWS Argo Workflows Data Pipeline CI/CD Computer Vision OpenCV

Jan 2021 - Feb 2024 (3 Years)

★ 선임연구원 at MAXST (https://maxst.com/ENG/main)

Roles: Associate R&D Engineer for Technology Division in MAXST

- 알고리즘연구 컴퓨터 비전 최신 논문을 리뷰하고 기술 검증을 위한 알고리즘을 구현하였습니다.
- 주니어 DevOps 하이브리드 클러스터를 구축하고 디지털 트윈을 위한 데이터 파이프라인을 제공하였습니다.
- 전문연구요원 (병역특례) 군 복무 대체로 3년간 전공(컴퓨터 비전) 관련 분야에서 산업에 종사하였습니다.

Skills

Kubernetes On-Premise AWS Argo Workflows Data Pipeline CI/CD Computer Vision OpenCV

Education

Mar 2012 - Aug 2020

Mar 2008 - Feb 2012

🎓 학사학위 in 전자공학부, 전자통신 전공 from 금오공과대학교 (kit) with GPA of 4.3/4.5

Certifications

Sep 2024 (Expired in Sep 2026)

QCAPA: Certified Argo Project Associate (https://www.credly.com/badges/ee42c2c7-2ac3-411f-8713-cc26cbec8022) from The

Linux Foundation

Jun 2024 (Expired in Jun 2026)

EXAD: Certified Kubernetes Application Developer (https://www.credly.com/badges/9e072a3a-57d0-403e-8bef 5831d618675e) from 리눅스 재단 (The Linux Foundation)

Mar 2024 (Expired in Mar 2027)

할 CKA: Certified Kubernetes Administrator (https://www.credly.com/badges/d944bde7-222a-4ce5-b4e6-4e6c84df0ef8) from 리눅스 재단 (The Linux Foundation)