

Seq2Seq (Sequence to Sequence)

실무형 인공지능 자연어처리

RNN 활용

http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecture10.pdf

Seq2Seq (1)

Encoder-Decoder

Seq2Seq (2)

Seq2Seq (3)

Seq2Seq (4)

Seq2Seq (5)

인코더

인코더

. . . 인코더 ◀ h_{lo} ▶ h_1 h_2 h_3 h_9 컨텍스트 벡터 **RNN** RNN RNN RNN X_2 X_3 X₁₀ 나는 내일 여행을 <pad>

컨텍스트 벡터

디코더 - greedy decoding

디코더

디코더

디코더

$$y_t = argmax(p_t)$$

최대확률을 가지는 단어 선택

$$p_t = softmax(s_t)$$

확률 분포 계산

$$s_t=g(h_t)$$

RNN 출력 계산

$$h_t = RNN(h_{t-1}, x_t)$$

히든스테이트 계간 h_t : t시점 히든 스테이트 x_t : t시점 입력

학습 - Teacher Forcing

학습

Seq2Seq 예측 과정 (1)

Seq2Seq 예측 과정 (1)

감사합니다.

Insight campus Sesac

