1. Множества и операции над ними

Терминология и обозначения

 $\{a_1, a_2, ..., a_n\}$ – множество, состоящее из n элементов $a_1, a_2, ..., a_n$.

 $\{x \mid P(x)\}$ — множество, состоящее из таких элементов x, которые обладают свойством P.

 $x \in A$ – элемент x **принадлежим** множеству A.

 $x \notin A$ – элемент x не принадлежит множеству A.

 \emptyset – *пустое множество* (не содержащее ни одного элемента).

U – универсальное множество (универс), т. е. множество всех элементов.

 $A \subseteq B$ — множество A является **подмножеством** множества B (A **включено** в B, A **содержится** в B), это означает, что каждый элемент множества A является элементом множества B.

 $A \subset B$ означает, что $A \subseteq B$ и $A \neq B$, т.е. A является собственным подмножеством B .

 $2^A = \{X \mid X \subseteq A\}$ — множество всех подмножеств A.

 $\overline{A} = U - A$ — дополнение множества A.

 $A \cup B = \{x \mid x \in A \text{ или } x \in B\}$ – объединение множеств A и B.

 $A \cap B = AB = \{x \mid x \in A \text{ и } x \in B\}$ – пересечение множеств A и B.

 $A-B=\{x\mid x\in A$ и $x\not\in B\}$ – разность множеств A и B .

 $A\otimes B=(A-B)\cup (B-A)$ – симметрическая разность множеств A и B .

Некоторые свойства операций над множествами

1. $A \cup \emptyset = A$;

 $A \cap \emptyset = \emptyset$.

2. $A \cup U = U$;

 $A \cap U = A$.

3. $A \cup A = A$;

AA = A.

4. $A \cup \overline{A} = U$;

 $A\overline{A} = \emptyset$.

- 5. $\overline{A} = A$.
- 6. Коммутативные законы:

$$A \cup B = B \cup A;$$

$$AB = BA$$
.

7. Ассоциативные законы:

$$A \cup (B \cup C) = (A \cup B) \cup C;$$

$$A(BC) = (AB)C$$
.

8. Дистрибутивные законы:

$$A(B \cup C) = (AB) \cup (AC);$$

$$A \cup (BC) = (A \cup B)(A \cup C).$$

9. Законы де Моргана:

$$\overline{A \cup B} = \overline{A} \overline{B}$$
;

$$\overline{AB} = \overline{A} \cup \overline{B}$$
.

10. Законы поглощения:

$$A \cup A B = A$$
;

$$A(A \cup B) = A$$
.

11.
$$A \cup \overline{A} B = A \cup B$$
;

$$A(\overline{A} \cup B) = AB.$$

12.
$$A-B=A\overline{B}$$
.

13.
$$A \otimes B = A \overline{B} \cup \overline{A} B$$
.

Операцию пересечения считаем более сильной, чем другие. Это означает, что при отсутствии скобок она выполняется первой. Например, $(AB \cup C) \otimes CD$ эквивалентна $((A \cap B) \cup C) \otimes (C \cap D)$.

Какие из следующих утверждений верны:

1)
$$b \subset \{a,b\}$$
;

5)
$$b \subset \{a, \{b\}\};$$

2)
$$b \in \{a,b\}$$
;

2)
$$b \in \{a,b\}$$
; 6) $b \in \{a,\{b\}\}$;

10)
$$\varnothing \subseteq \{\varnothing\};$$

3)
$$\{b\} \subset \{a,b\}$$

3)
$$\{b\} \subset \{a,b\};$$
 7) $\{b\} \subset \{a,\{b\}\};$

11)
$$\emptyset \in \emptyset$$
;

4)
$$\{b\} \in \{a,b\}$$
;

4)
$$\{b\} \in \{a,b\};$$
 8) $\{b\} \in \{a,\{b\}\};$

12)
$$\varnothing \subset \varnothing$$
?

1.2. Сколько элементов в каждом из множеств:

4)
$$\{\emptyset\}$$
;

2)
$$\{1,\{1\},2,\{1,\{2,3\}\},\varnothing\};$$
 5) $\{\varnothing,\{\varnothing\}\};$

$$3) \varnothing;$$

1.3. Известно, что $A \subseteq B$ и $a \in A$. Какие из следующих утверждений верны:

1)
$$a \notin B$$
;

6)
$$a \in A - B$$
;

2)
$$a \in B$$
;

7)
$$a \in A \otimes B$$
;

3)
$$A \in B$$
;

8)
$$a \subseteq A$$
;

4)
$$a \in A \cup B$$
;

9)
$$\{a\}\subseteq A$$
;

5)
$$a \in A \cap B$$
;

10)
$$\{a\}\subseteq B$$
?

Известно, что $B \subseteq A \subseteq C$, $a \in A$ и $a \notin B$. Какие из следующих утверждений верны:

1) $a \notin C$;

9) $a \in A \cup C$;

2) $a \in C$;

10) $\{a\}\subseteq A-C$;

3) $a \in A \cap B$;

11) $\{a\}\subseteq A\otimes C$;

4) $a \in A \cup B$;

12) $a \in (A \cap B) \cup C$;

5) $a \in A - B$;

13) $\{a\}\subseteq A\cap (B\cup C);$

6) $a \in B - A$:

14) $\{a\}\subseteq B\cup (C-A);$

7) $a \in A \otimes B$;

15) $\{a\}\subseteq A\cap (B-C);$

8) $\{a\}\subseteq A\cap C$;

16) $\{a\}\subseteq B\otimes (A-C)$?

1.5. Дан универс $U = \{1,2,3,4,5,6,7,8\}$ и его подмножества $A = \{x \mid 2 < x \le 6\}$, $B = \{x \mid x - \text{четно}\}$, $C = \{x \mid x \ge 4\}$, $D = \{1,2,4\}$. Найти множества $A \cup B$, CD, $B \otimes C$, $\overline{A} \ \overline{(BD)}$, $(A - B) \cup (C - D)$, $\overline{\overline{A} \cup \overline{B} \cup \overline{C}}$, $2^A \cap 2^B$, $2^D - 2^B$.

1.6. Дан универс $U = \{1,2,3,4,5,6,7,8\}$ и его подмножества $A = \{x \mid x - \text{четно}\}, \quad B = \{x \mid x - \text{кратно} \quad \text{четырем}\}, \quad C = \{x \mid x - \text{простое}\},$ $D = \{1,3,5\}$. Найти множества $A \cup B$, CD, $A \otimes B$, $A(B \cup C \cup D)$, $C \otimes D$, $(A-B) \cup (C-D)$, $\overline{A \cup B}$, $(C-A) \otimes D$, $(C-B) \otimes D$

- **1.7.** Пусть M_2 , M_3 , M_5 обозначают подмножества универса N, состоящие соответственно из всех чисел, кратных 2, 3, 5. С помощью операций над множествами выразить через них множества всех чисел:
 - 1) делящихся на 6;
 - 2) делящихся на 30;
 - 3) взаимно простых с 30;
 - 4) делящихся на 10, но не делящихся на 3.

Используя теоретико-множественную символику, записать утверждения:

- 1) 45 делится на 15:
- 2) 42 делится на 6, но не делится на 10;
- 3) каждое число из множества $\{8, 9, 10\}$ делится хотя бы на одно из чисел 2, 3, 5, но не делится на 6.
- **1.8.** Для каждого i=1,2,...,n даны множества $A_i=\{(i,j)\mid j=1,2,...,n\}$ и $B_i=\{(j,i)\mid j=1,2,...,n\}$.

Выразить через них с помощью операций \cap , \cup ,— множества:

- 1) $\{(i,j) | 1 \le i \le k, 1 \le j \le k, k \le n\};$
- 2) $\{(i,i) | i = 1,2,...,n\};$
- 3) $\{(i,j) | 1 \le i \le j \le n\}$.
- **1.9.** Выяснить, обладают ли операции $,\otimes$ свойствами коммутативности и ассоциативности.
- **1.10.** Выяснить, какие из следующих дистрибутивных законов справедливы для любых множеств A, B, C:
 - 1) $A-(B\cup C)=(A-B)\cup (A-C);$
 - 2) $A-(B\cap C)=(A-B)\cap (A-C);$
 - 3) $A \otimes (B \cup C) = (A \otimes B) \cup (A \otimes C)$;
 - 4) $A \otimes BC = (A \otimes B)(A \otimes C)$;
 - 5) $A-(B\otimes C)=(A-B)\otimes (A-C);$
 - 6) $A \cup BC = (A \cup B)(A \cup C)$;
 - 7) $A \cup (B-C) = (A \cup B) (A \cup C)$;
 - 8) A(B-C) = AB-AC;
 - 9) $A \cup (B \otimes C) = (A \cup B) \otimes (A \cup C)$;
 - 10) $A(B \otimes C) = AB \otimes AC$;
 - 11) $A \otimes (B C) = (A \otimes B) (A \otimes C)$?
- 1.11. Доказать тождества:
- 1) $A \cup AB = A$;
- $2)A(A \cup B) = A;$
- 3) $A \cup \overline{A} B = A \cup B$;
- 4) $A(\overline{A} \cup B) = AB$;
- 5) A (A B) = AB;
- 6) A AB = A B;
- 7) $A(B-A) = \emptyset$;
- 8) $A \cup (B A) = A \cup B$:
- 9) $AB \cup A\overline{B} = A$:

- 10) $A \otimes B = A \overline{B} \cup \overline{A} B$;
- 11) $A \otimes (A \otimes B) = B$;
- 12) $A B = A \otimes AB$;
- 13) $A \cup B = (A \otimes B) \cup AB$;
- 14) $\overline{A \otimes B} = \overline{A} \otimes B = A \otimes B \otimes U$:
- 15) $\overline{A \otimes B} = AB \cup \overline{A}\overline{B}$;
- 16) $A \otimes \overline{B} = \overline{A} \otimes B = AB \cup (\overline{A \cup B})$;
- 17) $A \cup \overline{A} B = A \otimes \overline{A} B = B \otimes A \overline{B}$:
- 18) $A (B \cup C) = (A B)(A C)$;
- 19) $(A-B)-C = (A-C)-(B-C) = A-(B \cup C)$;
- 20) $A (B C) = (A B) \cup AC = (A B) \cup (A \overline{C})$;
- 21) $(A \cup B) C = (A C) \cup (B C)$;

22)
$$A \cup B \cup C = (A-B) \cup (B-C) \cup (C-A) \cup ABC$$
;

23)
$$A-BC = (A-B) \cup (A-C) = ABC \otimes A$$
;

24)
$$A(B-C) = AB-C = ABC \otimes AB$$
;

25)
$$(AB \otimes A) \otimes (BC \otimes C) = (AB \otimes BC) \otimes (A \otimes C)$$
;

26)
$$(A \cup B) \otimes (B \cup C) = (A \otimes C) - B = (AB \otimes BC) \otimes (A \otimes C)$$
.

1.12. Выразить:

- 1) \cup через ⊗, \cap ;
- 2) \cap через \otimes , \cup ;
- 3) \cup и \cap через \otimes , −.

1.13. Доказать, что
$$A \subseteq B$$
 равносильно $A\overline{B} = \emptyset$.

1.14. Доказать, что
$$A = B$$
 равносильно $A \otimes B = \emptyset$.

1.15. Упростить систему условий:

1)
$$\begin{cases} A \subseteq B \ C \cup \overline{B}; \\ ABC \subseteq D; \\ AD \subseteq \overline{B} \ C \end{cases}$$

2)
$$\begin{cases} \overline{A} = B \ \overline{C}; \\ \overline{C} \subseteq D; \\ AD = \overline{B} \ C \ D; \\ B = CD. \end{cases}$$

3)
$$\begin{cases} C \subseteq A \cup B; \\ A \cup D \subseteq B \cup C; \\ \overline{B} \subseteq D \subseteq \overline{C}; \\ BC \subseteq \overline{D}. \end{cases}$$

1.16. Выяснить, равносильны ли следующие системы условий:

1)
$$\begin{cases} X \subseteq Z \subseteq \overline{W}, \\ Y \subseteq W, \\ X \cup Y = Z \cup W \end{cases} \quad \text{if } \begin{cases} X = Z, \\ Y = W. \end{cases}$$

$$2) \begin{cases} C \otimes D \subseteq A, \\ B \cup D \subseteq A \cup C, & \text{if } \begin{cases} \overline{A} \subseteq CD, \\ B - C \subseteq \overline{A}, \\ A \subseteq C \cup D. \end{cases} \end{cases}$$

3)
$$\begin{cases} A \subseteq C \otimes B, \\ C \subseteq B \otimes D, \\ AC \subseteq B - D \end{cases}$$
 $X = \begin{cases} B \subseteq \overline{CD}, \\ C - D \subseteq B, \\ AC \subseteq D, \\ A - B \subseteq BC. \end{cases}$

1.17. Решить уравнение:

1)
$$AX = B$$
;

2)
$$A \cup X = B$$
;

3)
$$A \otimes X = B$$
:

4)
$$A - X = B$$
;

5)
$$A \cup X = BX$$
;

6)
$$A \otimes X = BX$$
;

7)
$$A - X = X - B$$
;

8)
$$(A \cup X) \cup B = X \cup B$$
;

9)
$$AX = (X \cup B) - A$$
;

10)
$$\overline{XA} = (X - B) \cup A$$
;

11)
$$(A \cup X)\overline{B} = X - B$$
;

12)
$$(A-X) \cup B = B \otimes X$$
;

13)
$$(X-A) \cup B = \overline{AX}$$
;

14)
$$(X \otimes A) - B = BX$$
;

15)
$$AX \otimes B = B - X$$
;

16)
$$A - X = BX - A$$
;

17)
$$A \cap \overline{XB} = (X - A)B$$
;

18)
$$\overline{A \cup X} = \overline{BX}$$
;

19)
$$X - A = B \cup (X - A)$$
;

20)
$$(A \cup X) - B = B - X A$$
;

21)
$$X A = B(X \cup A)$$
;

22)
$$(A \otimes X) X = X - B$$
;

23)
$$AX \cup \overline{A} = (X - B)B$$
;

24)
$$(A \cup X)B = \overline{A} \cup BX$$
;

25)
$$A \otimes (X \cup B) = BX$$
;

26)
$$BX = (A - X)X$$
;

$$27) AX \otimes B = X - A;$$

$$28) (X \cup B) - A = A \cup X;$$

29)
$$AX \cup B = A - X$$
;

30)
$$X \cup A = (B - X) \otimes A$$
.

1.18. Найти множество X, удовлетворяющее системе уравнений, A, B, C – данные множества, $B \subseteq A \subseteq C$:

1)
$$\begin{cases} A - X = B \\ A \cup X = C \end{cases}$$
;

$$2) \begin{cases} A X = B \\ A \cup X = C \end{cases}.$$

1.19. Решить систему уравнений:

1)
$$\begin{cases} (A \cup X)(B \cup X) = C \cup X \\ BX \cup C = \overline{AX} \end{cases}$$
; 2)
$$\begin{cases} A \otimes B \otimes X = X \otimes C \\ AX \otimes B = AX \otimes C \end{cases}$$
;

2)
$$\begin{cases} A \otimes B \otimes X = X \otimes C \\ AX \otimes B = AX \otimes C \end{cases}$$

3)
$$\begin{cases} AX = B \\ B\overline{X} = C \\ CX = A \cup B \end{cases}$$
5)
$$\begin{cases} AX \cup B\overline{X} = C \\ BX \cup A\overline{X} = C \end{cases}$$

4)
$$\begin{cases} A - X = \overline{B} \\ A \cup X = \overline{C} \end{cases}$$
;

5)
$$\begin{cases} AX \cup B\overline{X} = C \\ BX \cup A\overline{X} = C \end{cases}$$
;

6)
$$\begin{cases} A \cup X = BX \\ AX = C \cup X \end{cases}$$
.