Appl. No. 10/621,406 Amdt. dated Jan. 3, 2006 Reply to Office Action of July 1, 2005

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of the Claims:

1	Claim 1 (currently amended): A method for producing a
2	structure on a substrate comprising the steps of
3	depositing drops of a suspension of nanoparticles of a
4	material in a liquid by means of a droplet generator,
5	melting the nanoparticles of the deposited drops at least
6	partially by exposition to laser light and
7	solidifying the molten nanoparticles for forming the
8	structure.
9	a) depositing drops of a suspension onto a substrate,
10	wherein said suspension comprises nanoparticles of
11	a material suspended in a liquid; and,
12	wherein said substrate lacks recesses in the
13	region where said drops are deposited onto said substrate;
14	and,
15	\cdot
16	b) exposing said nanoparticles on said substrate to at
17	least one localized spot of laser light such that said
18	nanoparticles are at least partially melted by said at least
19	one localized spot of laser light; and,
20	
21	c) solidifying said at least partially melted
22	nanoparticles, forming thereby said structure on said
23	substrate.

Appl. No. 10/621,406 Amdt. dated Jan. 3, 2006 Reply to Office Action of July 1, 2005

1 Claim 2 (currently amended): The method of claim 1 further 2 comprising the steps of directing the said at least one localized spot of 3 laser light to a at least one curing point on the said 4 substrate and 5 translating the said at least one curing point in 6 respect to the over said substrate. 7 Claim 3 (currently amended): The method of claim 1 further 1 comprising the steps of 2 depositing the said drops at a drop-off point on 3 said substrate and 4 translating the said drop-off point in with 5 respect to the said substrate. 6 Claim 4 (currently amended): The method of claim 1 further 1 comprising the steps of 2 directing the said at least one localized spot of 3 laser light to a curing point on the said substrate, 4 depositing the said drops at a drop-off point on 5 said substrate, and 6 translating the said curing point and the said 7 drop-off point in respect to the over said substrate. 8 Claim 5 (currently amended): The method of claim 4 wherein 1 the said curing point and the said drop-off point coincide. 2 Claim 6 (currently amended): The method of claim 4 wherein 1 2 the-said curing point and the-said drop-off point are located at a distance from each other. 3 Claim 7 (currently amended): The method of claim 1 further 1 comprising the step of generating the said drops by 2 compressing a volume of the-said suspension and thereby 3

- Appl. No. 10/621,406 Amdt. dated Jan. 3, 2006 Reply to Office Action of July 1, 2005
- 4 squirting the said drops through an opening onto the said
- 5 substrate.

١

- 1 Claim 8 (currently amended): The method of claim 1 wherein
- 2 the said liquid is selected from the group comprising
- 3 consisting of toluene, terpineol, xylene, and water and
- 4 mixtures thereof.
- 1 Claim 9 (currently amended): The method of claim 1 wherein
- 2 an the exponential absorption coefficient of the said at
- 3 least one localized spot of laser light in the-said
- 4 suspension is at least approximately 0.1 μ m⁻¹, in particular
- 5 at least 1 μm^{-1} .
- 1 Claim 10 (currently amended): The method of claim 1 wherein
- 2 the said suspension is deposited as a layer on the said
- 3 substrate and wherein at least 80% of the said at least one
- 4 localized spot of laser light is absorbed in the said layer.
- 1 Claim 11 (currently amended): The method of claim 1 wherein
- 2 the said nanoparticles are of a comprise at least one metal.
- 1 Claim 12 (currently amended): The method of claim 1 wherein
- 2 the said liquid comprises toluene and the said nanoparticles
- 3 comprise gold.
- 1 Claim 13 (currently amended): The method of claim 1 wherein
- 2 an average diameter of the size of said nanoparticles is
- 3 sufficiently small for reducing a that the melting point of
- 4 thesaid nanoparticles is substantially below a bulk—the
- 5 melting point of the bulk material comprising said
- 6 nanoparticles.

Claim 14 (currently amended): The method of claim 1 wherein 1 2 an average diameter of the said nanoparticles is less than approximately 100 nm, in particular less than 10 nm, 3 preferably between 1 nm and 5 nm. 4 Claim 15 (currently amended): The method of claim 1 wherein 1 the said structure is a superconductor. 2 Claim 16 (currently amended): The method of claim +2 wherein 1 an intensity distribution of the one or more of said at 2 least one localized spot of laser light at the said curing 3 point is non-Gaussian. 4 Claim 17 (currently amended): The method of claim +2 wherein 1 an intensity distribution of the one or more of said at 2 least one localized spot of laser light at the said curing 3 point has at least two spatially separated maxima. 4 Claim 18 (currently amended): The method of claim +2 1 comprising the step of depositing wherein said drops are 2 deposited along a line strip on said substrate, wherein an 3 intensity distribution of the said at least one localized 4 spot of laser light at the said curing point has a local 5 minimum on a center line of said line strip. 6 Claim 19 (currently amended): The method of claim +2 1 comprising the steps of 2 depositing wherein said drops are deposited along a 3 4 line strip on said substrate, wherein said exposing of said 5 nanoparticles comprises directing at least two laser beams onto said 6 substrate at said curing point, such that said laser beams 7

Appl. No. 10/621,406 Amdt. dated Jan. 3, 2006

1

8

line strip.

Reply to Office Action of July 1, 2005

impinging impinge on opposite sides of a center line of said

```
1
     Claim 20 (currently amended): The method of claim 1
     comprising the step of repetitively pulsing said laser light
2
     wherein said at least one localized spot of laser light is
3
4
     pulsed.
     Claim 21 (currently amended): The method of claim 1 further
1
     comprising immediately following step (a), the step of
2
                a<sub>1</sub>) evaporating at least part of said liquid. - after
3
     depositing said drops and before bringing said nanoparticles
4
     into contact with said laser light.
5
1
     Claim 22 (currently amended): The method of claim 1 further
     comprising the step of heating said substrate by a means
2
      separate from said laser light.
3
     Claim 23 (currently amended): The method of claim 1 wherein
1
      said substrate is transparent for to said laser light.
2
     Claim 24 (currently amended): The method of claim 1 further
1
     comprising the step of generating, above or below said
2
      structure, a structured polymer layer by
3
                depositing drops of a polymerizable liquid, and
4
               polymerizing said drops of deposited polymerizable
5
      liquid.
6
     Claim 25 (original): The method of claim 24, wherein said
1
     drops of deposited polymerizable liquid are polymerized
2
     using UV radiation.
3
     Claims 26-29 (canceled)
     Claims 30-34 (withdrawn)
```

Appl. No. 10/621,406 Amdt. dated Jan. 3, 2006

1

Reply to Office Action of July 1, 2005

Reply to Office Action of July 1, 2005 Claim 35 (new): The method of claim 9 wherein said 1 exponential absorption coefficient of said at least one 2 localized spot of laser light in said suspension is at least 3 approximately 1 μ m⁻¹. 4 Claim 36 (new): The method of claim 14 wherein said average 1 diameter of said nanoparticles is less than approximately 2 3 10 nm. Claim 37 (new): The method of claim 36 wherein said average 1 diameter of said nanoparticles in the range from 2 approximately 1 nm to approximately 5 nm. 3 Claim 38 (new): A method for making a capacitor comprising: 1 2 depositing a first electrically conductive 3 structure on an insulating substrate as in claim 1; and, 4 5 b) depositing a dielectric structure on said conductive 6 structure as in claim 24; and, 7 8 c) depositing a second electrically conductive 9 structure on said dielectric structure as in claim 1 such 10 that said first conductive structure and said second 11 conductive structure surround said dielectric structure 12 forming thereby a capacitor. 13 Claim 39 (new): A method for crossing a first electrical 1 conductor and a second electrical conductor on an insulating 2 substrate while maintaining electrical isolation between 3 said first and second electrical conductors, comprising: 4 5 6 depositing a first electrically conductive

Appl. No. 10/621,406 Amdt. dated Jan. 3, 2006

1

7

structure on an insulating substrate as in claim 1; and,

Appl. No. 10/621,406 Amdt. dated Jan. 3, 2006 Reply to Office Action of July 1, 2005

 b) depositing an insulating structure on said conductive structure as in claim 24; and,

10 11

12

13

14

15

8

9

١

c) depositing a second electrically conductive structure on said insulating structure as in claim 1 such that said first conductive structure and said second conductive structure are separated by said insulating structure and maintain electrical isolation thereby.