

이동민

삼성전자 서울대 공동연구소 Jul 17, 2019

Outline

- Environment: Pendulum
- Deep Deterministic Policy Gradient (DDPG)
 - Learning process
 - Hyperparameter
 - Main loop
 - Train model
 - Train & TensorboardX
 - Learning curve & Test
 - DDPG video

Pendulum

- Env name: Pendulum-v0
- States: Continuous observation spaces

Num	Observation	Min	Max
0	cos(theta)	-1.0	1.0
1	sin(theta)	-1.0	1.0
2	theta dot	-8.0	8.0

Num	Action	Min	Max
0	Joint effort	-2.0	2.0


```
state: [0.88760426 0.46060687 0.60495138] | action: [1.5591747] |
next_state: [0.8587901  0.5123276  1.18428273] | reward: -0.268161
02634748273 | done: False
state: [0.8587901  0.5123276  1.18428273] | action: [1.0582479] |
next_state: [0.81139809  0.58449392  1.72726561] | reward: -0.430701
2460303101 | done: False
state: [0.81139809  0.58449392  1.72726561] | action: [0.7929939] |
next_state: [0.73948894  0.6731687   2.28458514] | reward: -0.688669
3000621688 | done: False
state: [0.73948894  0.6731687  2.28458514] | action: [-0.6580073] |
next_state: [0.64251266  0.76627507  2.69076057] | reward: -1.06772
66789916096 | done: False
state: [0.64251266  0.76627507  2.69076057] | action: [-1.4092577] |
next_state: [0.51847703  0.85509156  3.05407822] | reward: -1.48817
52666467798 | done: False
```


Pendulum

Reward

The precise equation for reward:

```
-(theta^2 + 0.1*theta_dt^2 + 0.001*action^2)
```

Theta is normalized between -pi and pi. Therefore, the lowest cost is $-(pi^2 + 0.1*8^2 + 0.001*2^2) = -16.2736044$, and the highest cost is 0. In essence, the goal is to remain at zero angle (vertical), with the least rotational velocity, and the least effort.

Episode Termination

There is no specified termination. Adding a maximum number of steps might be a good idea.

NOTE: Your environment object could be wrapped by the TimeLimit wrapper, if created using the "gym.make" method. In that case it will terminate after 200 steps.

DDPG Algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^\mu$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for t = 1. T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau)\theta^{Q'}$$

$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

- Learning process
 - 1. 상태에 따른 행동 선택
 - 2. 환경에서 선택한 행동으로 한 time step을 진행한 후, 다음 상태와 보상을 받음
 - 3. Sample (s, a, r, s')을 replay buffer에 저장
 - 4. Replay buffer에서 랜덤으로 sample을 추출
 - 5. 추출한 sample로 Actor & Critic network 업데이트
 - 6. Actor & Critic에 대해 Soft target 업데이트

Actor network

Critic network

Actor network

```
class Actor(nn.Module):
         def __init__(self, state size, action size, args):
             super(Actor, self).__init__()
             self.fc1 = nn.Linear(state_size, args.hidden_size)
             self.fc2 = nn.Linear(args.hidden_size, args.hidden_size)
             self.fc3 = nn.Linear(args.hidden_size, action_size)
10
11
         def forward(self, x):
             x = torch.relu(self.fc1(x))
12
13
             x = torch.relu(self.fc2(x))
14
             policy = self.fc3(x)
15
              return policy
16
```


Critic network

```
18
      class Critic(nn.Module):
19
          def __init__(self, state_size, action_size, args):
              super(Critic, self).__init__()
20
              self.fc1 = nn.Linear(state_size + action_size, args.hidden_size)
21
22
              self.fc2 = nn.Linear(args.hidden_size, args.hidden_size)
              self.fc3 = nn.Linear(args.hidden_size, 1)
23
24
25
         def forward(self, states, actions):
              x = torch.cat([states, actions], dim=1)
27
             x = torch.relu(self.fc1(x))
              x = torch.relu(self.fc2(x))
29
              q_value = self_fc3(x)
30
              return q_value
```


1. 상태에 따른 행동 선택

```
policy = actor(torch.Tensor(state))
action = get_action(policy, ou_noise) train.py

def get_action(policy, ou_noise):
    action = policy.detach().numpy() + ou_noise.sample()

return action

utils.py
```

- Ornstein-Uhlenbeck noise (OU noise) theta: 0.15, mu: 0.0, sigma: 0.2
 - $o \quad dx_t = \theta(\mu x_t)dt + \sigma dW_t$

```
def __init__(self, action_size, theta, mu, sigma):
    self.action_size = action_size
    self.theta = theta
    self.mu = mu
    self.sigma = sigma
    self.X = np.zeros(self.action_size)

def sample(self):
    dx = self.theta * (self.mu - self.X)
    dx = dx + self.sigma * np.random.randn(len(self.X))
    self.X = self.X + dx

return self.X
```

dx [-0.25447483] X [-0.25447483] dx [-0.20936269] X [-0.46383752] dx [0.1268112] X [-0.33702632] dx [0.18123875] X [-0.15578757] dx [-0.0240699] X [-0.17985747]

utils.py

2. 환경에서 선택한 행동으로 한 time step을 진행한 후, 다음 상태와 보상을 받음

```
next_state, reward, done, _ = env.step(action)
```

3. Sample (s, a, r, s')을 replay buffer에 저장

```
replay_buffer = deque(maxlen=10000)

mask = 0 if done else 1

replay_buffer.append((state, action, reward, next_state, mask))
```

4. Replay buffer에서 랜덤으로 sample을 추출 (Batch size : 64)

```
mini_batch = random.sample(replay_buffer, args.batch_size)
```


- 5. 추출한 sample로 Actor & Critic network 업데이트
 - Critic Loss

$$J_Q(\phi) = (\underbrace{r + \gamma Q_{\phi^-}(s', \pi_{\theta^-}(s')) - Q_{\phi}(s, a)}_{\text{Target}})^2$$

```
# update critic
50
         criterion = torch.nn.MSELoss()
51
52
         # get Q-value
53
         q_value = critic(torch.Tensor(states), actions).squeeze(1)
54
         # get target
          target_next_policy = target_actor(torch.Tensor(next_states))
          target next q value = target critic(torch.Tensor(next states), target next policy).squeeze(1)
          target = rewards + masks * args.gamma * target_next_q_value
         critic_loss = criterion(q_value, target.detach())
          critic_optimizer.zero_grad()
62
         critic_loss.backward()
63
          critic_optimizer.step()
```


- 5. 추출한 sample로 Actor & Critic network 업데이트
 - Actor Loss

$$J_{\pi}(\theta) = -\frac{1}{N} \sum Q_{\phi}(s, \pi_{\theta}(s))$$

```
# update actor
policy = actor(torch.Tensor(states))

actor_loss = -critic(torch.Tensor(states), policy).mean()
actor_optimizer.zero_grad()
actor_loss.backward()
actor_optimizer.step()
```


- 6. Actor & Critic에 대해 Soft target 업데이트
 - Initialize target model

```
hard_target_update(actor, critic, target_actor, target_critic) train.py

def hard_target_update(actor, critic, target_actor, target_critic):
    target_critic.load_state_dict(critic.state_dict())

target_actor.load_state_dict(actor.state_dict())

utils.py
```

• Soft target update (τ : 0.001)

$$\phi^{Q'} \leftarrow \tau \phi^{Q} + (1 - \tau)\phi^{Q'}$$
$$\theta^{\pi'} \leftarrow \tau \theta^{\pi} + (1 - \tau)\theta^{\pi'}$$

train.py

```
def soft_target_update(actor, critic, target_actor, target_critic, args.tau)

soft_target_update(actor, critic, target_actor, target_critic, tau):

soft_update(critic, target_critic, tau)

soft_update(actor, target_actor, tau)

def soft_update(net, target_net, tau):

for param, target_param in zip(net.parameters(), target_net.parameters()):

target_param.data.copy_(tau * param.data + (1.0 - tau) * target_param.data) utils.py
```


Hyperparameter

```
15
     parser = argparse.ArgumentParser()
     parser.add_argument('--env_name', type=str, default="Pendulum-v0")
     parser.add_argument('--load_model', type=str, default=None)
17
     parser.add_argument('--save_path', default='./save_model/', help='')
     parser.add_argument('--render', action="store_true", default=False)
19
     parser.add_argument('--gamma', type=float, default=0.99)
20
     parser.add argument('--hidden size', type=int, default=64)
21
     parser.add argument('--batch size', type=int, default=64)
22
23
     parser.add_argument('--actor_lr', type=float, default=1e-3)
     parser.add argument('--critic lr', type=float, default=1e-3)
     parser.add_argument('--theta', type=float, default=0.15)
25
     parser.add argument('--mu', type=float, default=0.0)
     parser.add argument('--sigma', type=float, default=0.2)
27
     parser.add argument('--tau', type=float, default=0.001)
28
29
     parser.add_argument('--max_iter_num', type=int, default=1000)
     parser.add_argument('--log_interval', type=int, default=10)
     parser.add_argument('--goal_score', type=int, default=-300)
31
     parser.add_argument('--logdir', type=str, default='./logs',
32
33
                          help='tensorboardx logs directory')
     args = parser.parse_args()
```


- Initialization
 - o Seed random number 고정
 - Actor & Critic network
 - Target actor & critic network
 - Actor & Critic optimizer
 - Hard target update
 - OU noise
 - TensorboardX
 - Replay buffer
 - Recent rewards

```
def main():
   env = gym.make(args.env_name)
   env.seed(500)
    torch.manual_seed(500)
   state_size = env.observation_space.shape[0]
   action_size = env.action_space.shape[0]
   print('state size:', state_size)
   print('action size:', action_size)
   actor = Actor(state_size, action_size, args)
    target_actor = Actor(state_size, action_size, args)
   critic = Critic(state_size, action_size, args)
   target_critic = Critic(state_size, action_size, args)
   actor_optimizer = optim.Adam(actor.parameters(), lr=args.actor_lr)
   critic_optimizer = optim.Adam(critic.parameters(), lr=args.critic_lr)
   hard_target_update(actor, critic, target_actor, target_critic)
   ou_noise = OUNoise(action_size, args.theta, args.mu, args.sigma)
   writer = SummaryWriter(args.logdir)
    replay buffer = deque(maxlen=10000)
    recent_rewards = deque(maxlen=100)
    steps = 0
```


- Episode 진행
 - 상태에 따른 행동 선택
 - 다음 상태와 보상을 받음
 - o Replay buffer에 저장

```
for episode in range(args.max_iter_num):
102
               done = False
103
               score = 0
104
105
               state = env.reset()
              state = np.reshape(state, [1, state_size])
106
107
108
              while not done:
                   if args.render:
110
                       env.render()
111
112
                   steps += 1
113
114
                   policy = actor(torch.Tensor(state))
115
                   action = get_action(policy, ou_noise)
116
                   next_state, reward, done, _ = env.step(action)
117
118
119
                   next_state = np.reshape(next_state, [1, state_size])
120
                   mask = 0 if done else 1
121
122
                   replay_buffer.append((state, action, reward, next_state, mask))
123
124
                   state = next_state
                   score += reward
```


- Episode 진행
 - Replay buffer에서 랜덤으로 64개의 sample을 추출 → Mini batch
 - Train model
 - Soft target update

```
127
                   if steps > args.batch_size:
128
                       mini_batch = random.sample(replay_buffer, args.batch_size)
129
                       actor.train(), critic.train()
130
                       target_actor.train(), target_critic.train()
131
                       train_model(actor, critic, target_actor, target_critic,
132
                                   actor_optimizer, critic_optimizer, mini_batch)
133
134
135
                       soft_target_update(actor, critic, target_actor, target_critic, args.tau)
136
                   if done:
137
                       recent_rewards.append(score)
138
```


- Print & Visualize log
- Termination : 최근 100개의 episode의 평균 score가 -300보다 크다면
 - Save model
 - 학습 종료

```
140
               if episode % args.log interval == 0:
                   print('{} episode | score_avg: {:.2f}'.format(episode, np.mean(recent_rewards)))
141
                   writer.add_scalar('log/score', float(score), episode)
142
143
144
               if np.mean(recent_rewards) > args.goal_score:
145
                   if not os.path.isdir(args.save_path):
                       os.makedirs(args.save_path)
146
147
148
                   ckpt_path = args.save_path + 'model.pth'
                   torch.save(actor.state_dict(), ckpt_path)
149
150
                   print('Recent rewards exceed -300. So end')
151
                   break
```


Train model

- Mini batch → Numpy array
- Mini batch에 있는 64개의 sample들을 각각 나눔
 - o state (64, 3)
 - o action (64, 1)
 - o reward (64)
 - next_state (64, 3)
 - o mask (64)

```
36
      def train_model(actor, critic, target_actor, target_critic,
37
                      actor_optimizer, critic_optimizer, mini_batch):
          mini batch = np.array(mini batch)
38
          states = np.vstack(mini_batch[:, 0])
          actions = list(mini_batch[:, 1])
          rewards = list(mini_batch[:, 2])
41
42
          next_states = np.vstack(mini_batch[:, 3])
43
          masks = list(mini_batch[:, 4])
44
45
          actions = torch.Tensor(actions).squeeze(1)
          rewards = torch.Tensor(rewards).squeeze(1)
          masks = torch.Tensor(masks)
```


Train model

- Prediction
 - o **q_value** (64)

- Target
 - target_next_policy (64, 1)
 - target_next_q_value (64)
 - target (64)

- Update critic MSE Loss

```
# update critic
criterion = torch.nn.MSELoss()

# get Q-value
q_value = critic(torch.Tensor(states), actions).squeeze(1)

# get target
target_next_policy = target_actor(torch.Tensor(next_states))
target_next_q_value = target_critic(torch.Tensor(next_states), target_next_policy).squeeze(1)
target = rewards + masks * args.gamma * target_next_q_value

critic_loss = criterion(q_value, target.detach())
critic_optimizer.zero_grad()
critic_loss.backward()
critic_optimizer.step()
```


Train model

- Update actor
 - o **policy** (64, 1)
 - o critic(torch.Tensor(state), policy) (64, 1)
 - $\circ J_{\pi}(\theta) = -\frac{1}{N} \sum Q_{\phi}(s, \pi_{\theta}(s))$

```
# update actor
policy = actor(torch.Tensor(states))

actor_loss = -critic(torch.Tensor(states), policy).mean()
actor_optimizer.zero_grad()
actor_loss.backward()
actor_optimizer.step()
```


Train & TensorboardX

- Terminal A train 실행
 - conda activate env_name
 - python train.py
- Terminal B tensorboardX 실행
 - conda activate env_name
 - tensorboard --logdir logs
 - ➤ (웹에서) localhost:6006

Learning curve & Test

Learning curve

- Test
 - python test.py

DDPG video

- Learning to move: DDPG Algorithms on Gym MuJoCo https://www.youtube.com/watch?v=iFg5lcUzSYU&t=14
- Deep RL for Robotic Manipulation (DDPG + HER) https://www.youtube.com/watch?v=K-foX756KTc&t=44

Thank you

