Федеральное государственное автономное образовательное учреждение высшего образования «Самарский национальный исследовательский университет имени академика С. П. Королева»

Факультет информатики

Кафедра технической кибернетики

Отчет по лабораторным работам №1 и №2 по дисциплине «Численные методы математической физики»

Тема: РЕШЕНИЕ КРАЕВЫХ ЗАДАЧ МАТЕМАТИЧЕСКОЙ ФИЗИКИ МЕТОДОМ КОНЕЧНЫХ РАЗНОСТЕЙ

Вариант 9

Выполнил студент Барсков Н. М. Группа 6406 Преподаватель Дегтярев А. А.

ОГЛАВЛЕНИЕ

	Стр.
ГЛАВА 1 Лабораторная работа № 1	7
1.1 Тема работы. Цель работы. Порядок выполнения работы	7
1.2 Индивидуальное задание на лабораторную работу	7
1.3 Описание этапов выполнения лабораторной работы	8
1.3.1 Математическая поставновка задачи	8
1.3.2 Построение аналитического решения	9
1.3.3 Построение разностной схемы	11
1.3.4 Исследование аппроксимации и устойчивости разностной	
схемы	14
ГЛАВА 2 Лабораторная работа №2	17
2.1 Тема работы. Цель работы. Порядок выполнения работы	17
2.2 Описание этапов выполнения лабораторной работы	17
2.2.1 Описание тестовой задачи, ее аналитическое решение	17
2.2.2 Экспериментальное исследование фактической скорости	
сходимости сеточного решения к точному для тестовой за-	
паци	17

ГЛАВА 1

Лабораторная работа № 1

1.1 Тема работы. Цель работы. Порядок выполнения работы

Тема: решение краевых задач математической физики методом конечных разностей.

Цель работы: получение практических навыков построения и исследования разностных схем для задач математической физики, разработки вычислительных алгоритмов и компьютерных программ для их решения.

Порядок выполнения лабораторной работы:

- а) осуществить математическую постановку краевой задачи для физического процесса, описанного в предложенном варианте работы.
- б) осуществить построение разностной схемы, приближающей полученную краевую задачу. При этом следует согласовать с преподавателем тип разностной схемы;
- в) провести теоретическое исследование схемы: показать, что схема аппроксимирует исходную краевую задачу, и найти порядки аппроксимации относительно шагов дискретизации; исследовать устойчивость схемы и сходимость сеточного решения к решению исходной задачи математической физики;
- г) разработать алгоритм численного решения разностной краевой задачи;
- д) разработать компьютерную программу, реализующую созданный алгоритм, с интерфейсом, обеспечивающим следующие возможности: диалоговый режим ввода физических, геометрических и сеточных параметров задачи; графическую визуализацию численного решения задачи;
- е) провести исследование зависимости численного решения от величин параметров дискретизации;
- ж) оформить отчет о проделанной работе в соответствии с требованиями, изложенными в методических указаниях.

1.2 Индивидуальное задание на лабораторную работу

Разработать программу численного моделирования процесса остывания тонкой однородной пластины, имеющей форму диска радиусом R и толщиной l. Между гранями пластины и окружающей средой, имеющей температуру u_c , происходит теплообмен, описываемый законом Ньютона с коэффициентом теплообмена α . На боковой поверхности r=R пластины поддерживается температура u_b . В начальный момент времени поле пластины обладает осевой сим-

метрией, т.е. распределение температуры по пластине зависит только от радиальной координаты r полярной системы, т.е. $u|_{t=0}=\psi(r), 0\leq r\leq R.$

Пластина выполнена из материала, характеризуемого коэффициентами теплопроводности k, объемной теплоемкости .

Для численного решения задачи теплопроводности на временном промежутке использовать:

- а) Простейшую явную конечно-разностную схему;
- б) Простейшую неявную конечно-разностную схему;

При проведении расчетов использовать значения параметров $R, l, u_c, u_b, \alpha, T, k, c$ и выражение функции $\psi(r)$, указанные преподавателем.

Радиус пластины <i>R</i>	6 см
Толщина пластины <i>l</i>	0,5 см
Температура окружающей среды u_c	20° C
Коэффициент теплообмена α	$0,002 \; \frac{B_T}{c_M^2 \cdot K}$
Температура боковой поверхности u_b	$(20 + \psi(r))^{\circ}$ C
Продолжительность эксперимента T	50 c
Коэффициент теплопроводности k	$0,59 \frac{B_T}{c_M \cdot K}$
Объемная теплоемкость <i>с</i>	$1,65 \frac{Дж}{cм^3 \cdot K}$

Таблица 1.1 — Значения параметров задачи

1.3 Описание этапов выполнения лабораторной работы

1.3.1 Математическая поставновка задачи

Процесс, происходящий в пластинке, описывается уравнением теплопроводности:

$$\frac{\partial u}{\partial t} = \frac{k}{c} \nabla^2 u + f(r, t)$$

В постановке задачи указано, что начальное распределение имеет радиальную симметрию. Учтем это и заключим, что дальнейший процесс так же имеет радиальную симметрию, т.е

$$u = u(r, t), \quad u(\varphi) = const$$

тогда:

$$\frac{\partial u}{\partial t} = \frac{k}{c} \left(\frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial r^2} \right) + f(r, t)$$

Теплообмен между поверхностью пластинки и окружающей средой согласно условию задачи описывается при помощи закона Ньютона в дифференциальной форме:

$$\frac{d}{dt}\frac{\partial Q}{\partial S} = \alpha \Delta u = \alpha (u_b - u)$$

Если считать, что температура окружающей среды однородна, то:

$$\frac{\partial u}{\partial t} = \frac{\alpha S}{cSl}(u_b - u) = \frac{\alpha}{cl}(u_b - u) = f(r, t)$$

Особо следует рассмотреть граничное условие в точке r=0. Используя соотношение (23) из методических указаний найдем:

$$\frac{\partial u}{\partial t} = \frac{2k}{c} \frac{\partial^2 u}{\partial r^2} + \frac{\alpha}{cl} (u_b - u)$$

Тогда, учитывая вышеперечисленные выражения, а также условие задачи, постановка задачи Коши выглядит следующим образом:

$$\begin{cases}
\frac{\partial u}{\partial t} = a^2 \left(\frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial r^2} \right) + \frac{\alpha}{cl} (u_b - u), 0 < r \le R \\
\frac{\partial u}{\partial t} = 2a^2 \frac{\partial^2 u}{\partial r^2} + \frac{\alpha}{cl} (u_c - u), r = 0 \\
u(r, 0) = u_b + J_0 \left(\frac{\mu_1 r}{R} \right), 0 \le r \le R \\
u(R, t) = u_b, 0 \le t \le T
\end{cases} \tag{1.1}$$

1.3.2 Построение аналитического решения

Рассмотрим систему (1.1) в следующем виде:

$$\begin{cases}
\frac{\partial u}{\partial t} = a^2 \left(\frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial r^2} \right) + \frac{\alpha}{cl} (u_b - u), 0 < r \le R \\
u(r, 0) = u_b + J_0 \left(\frac{\mu_1 r}{R} \right), 0 \le r \le R \\
u(R, t) = u_b
\end{cases} \tag{1.2}$$

В этом уравнении $J_0\left(\frac{\mu_1 r}{R}\right)$ — функция Бесселя нулевого порядка, а μ_1 — первый корень уравнения $J\left(\mu\right)=0$.

Воспользуемся вспомогательной задачей на собственные значения уравнения Лапласа. Для начала, сделаем так чтобы граничные условия были однородными, для этого осуществим замену:

$$u = v + u_b$$

Тогда задача (1.2) будет выглядеть следующим образом

$$\begin{cases}
\frac{\partial v}{\partial t} = a^2 \left(\frac{1}{r} \frac{\partial v}{\partial r} + \frac{\partial^2 v}{\partial r^2} \right) - \frac{\alpha}{cl} v, 0 < r \le R \\
v(r,0) = J_0 \left(\frac{\mu_1 r}{R} \right), 0 \le r \le R \\
v(R,t) = 0
\end{cases}$$
(1.3)

Теперь рассмотрим следующую спектральную задачу:

$$\hat{L}v = \lambda v$$

$$\frac{1}{r}\frac{\partial v}{\partial r} + \frac{\partial^2 v}{\partial r^2} = \lambda v$$

Это уравнение можно привести к уравнению Бесселя и записать его решение в следующем виде:

$$v = C(t)J_0\left(\sqrt{-\lambda}r\right)$$

Решение системы (1.3) можно записать в виде бесконечного ряда по собственным функциям оператора Лапласа:

$$v(r,t) = \sum_{i=0}^{\infty} C_i(t) J_0\left(\sqrt{-\lambda_i}r\right)$$
(1.4)

Рассмотрим граничное условие v(R,t) = 0:

$$v(R,t) = \sum_{i=0}^{\infty} C_i(t) J_0\left(\sqrt{-\lambda_i}R\right) = 0 \Rightarrow J_0\left(\sqrt{-\lambda_i}R\right) = 0 \Rightarrow \lambda_i = -\frac{\mu_i^2}{R^2}$$

Теперь рассмотрим другое граничное условие $v(r,0) = J_0\left(\frac{\mu_1 r}{R}\right)$:

$$v(r,0) = \sum_{i=0}^{\infty} C_i(0) J_0\left(\frac{\mu_i r}{R}\right) = J_0\left(\frac{\mu_1 r}{R}\right) \Rightarrow C_i(0) = \begin{cases} 1, i = 1\\ 0, i \neq 1 \end{cases}$$

Подставим разложение (1.4) в первое уравнение системы (1.3)

$$\frac{\partial C_i}{\partial t} = -\left(\frac{\mu_i^2}{R^2}a^2 + \frac{\alpha}{cl}\right)C_i = -\gamma_i C_i \Rightarrow C_i = A_i \exp\left(-\gamma_i t\right)$$

Подставим граничные условия для $C_i(t)$, получим

$$A_i = \begin{cases} 1, i = 1\\ 0, i \neq 1 \end{cases}$$

Тогда решение системы (1.3) запишется в виде:

$$v(r,t) = \exp\left[\left(\frac{\mu_1^2}{R^2}a^2 + \frac{\alpha}{cl}\right)t\right]J_0\left(\frac{\mu_1 r}{R}\right)$$

Решение уравнения $J_0(\mu)=0$, найдем при помощи математического пакета $\mu_1=2.4048255$.

1.3.3 Построение разностной схемы

Для построения разностной схемы для начала введем равномерную сетку с шагами h_r — пространственный шаг и h_t — шаг по времени:

$$r_i = ih_r, \quad i = \overline{0, I}$$

$$t_k = kh_t, \quad k = \overline{0, K}$$

$$(1.5)$$

Значения шагов равномерной сетки можно найти из следующих соотношений:

$$h_r = \frac{R}{I}$$
$$h_t = \frac{T}{K}$$

И рассмотрим 4 разностных отношения для производных по времени и пространству:

$$\begin{aligned} \frac{\partial u}{\partial t} \Big|_{(r_i, t_k)} &= \frac{u_i^k - u_i^{k-1}}{h_t}, \quad i = \overline{1, I - 1}, k = \overline{1, K} \\ \frac{\partial u}{\partial r} \Big|_{(r_i, t_k)} &= \frac{u_{i+1}^k - u_{i-1}^k}{2h_r}, \quad i = \overline{1, I - 1}, k = \overline{1, K} \\ \frac{\partial^2 u}{\partial r^2} \Big|_{(r_i, t_k)} &= \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h_r^2}, \quad i = \overline{1, I - 1}, k = \overline{0, K} \end{aligned}$$

На основе этих соотношений построим неявную конечно-разностную схему:

снове этих соотношении построим неявную конечно-разностную схему:
$$\begin{cases} \frac{u_i^k - u_i^{k-1}}{h_t} = a^2 \left(\frac{1}{ih_r} \frac{u_{i+1}^k - u_{i-1}^k}{2h_r} + \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h_r^2} \right) + \frac{\alpha}{cl} \left(u_c - u_i^k \right) \\ i = \overline{1, I-1}, \quad k = \overline{0, K-1} \\ \frac{u_0^k - u_0^{k-1}}{h_t} = 2a^2 \frac{u_1^k - 2u_0^k + u_{-1}^k}{h_r^2} + \frac{\alpha}{cl} (u_c - u_0^k) \\ u_i^0 = u_b + J_0 \left(\frac{\mu_1 ih_r}{R} \right) \\ i = \overline{0, I-1} \\ u_I^k = u_b \\ k = \overline{0, K} \end{cases}$$

В связи с радиальной симметрией запишем соотношение для первой пространственной производной:

$$\frac{u_1 - u_{-1}}{h_r} = 0$$

Из этого соотношения получим:

$$u_{-1} = u_1$$

В соответствии с этим получим:

$$\begin{cases}
\frac{u_i^k - u_i^{k-1}}{h_t} = a^2 \left(\frac{1}{ih_r} \frac{u_{i+1}^k - u_{i-1}^k}{2h_r} + \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{h_r^2} \right) + \frac{\alpha}{cl} \left(u_c - u_i^k \right) \\
i = \overline{1, I - 1}, \quad k = \overline{0, K - 1} \\
\frac{u_0^k - u_0^{k-1}}{h_t} = 2a^2 \frac{u_1^k - u_0^k}{h_r^2} + \frac{\alpha}{cl} (u_c - u_0^k) \\
u_i^0 = u_b + J_0 \left(\frac{\mu_1 i h_r}{R} \right) \\
i = \overline{0, I - 1} \\
u_I^k = u_b \\
k = \overline{0, K}
\end{cases} \tag{1.6}$$

Перепишем первое уравнение этой схемы в виде, удобном для решения дискретной задачи:

$$Au_{i-1}^k + Bu_i^k + Cu_{i+1}^k = Du_i^{k-1} + E$$

Опуская промежуточные выкладки, запишем значения коэффициентов A, B, C, D, E, F:

$$A = -\frac{a^2 h_t}{2ih_r} + \frac{a^2 h_t}{h_r^2}$$

$$B = 1 - \frac{2h_t a^2}{h_r^2} - \frac{\alpha h_t}{cl}$$

$$C = \frac{a^2 h_t}{2ih_r^2} + \frac{a^2 h_t}{h_r^2}$$

$$D = -1$$

$$E = -\frac{\alpha u_c h_t}{cl}$$

Аналогично представим второе уравнение этой системы и коэффициенты F, G, H:

$$u_{0}^{k} = Fu_{0}^{k-1} + Gu_{1}^{k} + H$$

$$F = \frac{1}{1 + \frac{2a^{2}h_{t}}{h_{r}^{2}} + \frac{\alpha h_{t}}{cl}}$$

$$G = \frac{\frac{2a^{2}h_{t}}{h_{r}}}{1 + \frac{2a^{2}h_{t}}{h_{r}^{2}} + \frac{\alpha h_{t}}{cl}}$$

$$H = \frac{\frac{\alpha h_{t}}{cl}u_{1}^{k}}{1 + \frac{2a^{2}h_{t}}{h_{r}^{2}} + \frac{\alpha h_{t}}{cl}}$$

1.3.4 Исследование аппроксимации и устойчивости разностной схемы

Систему уравнений (1.1) можно представить в операторном виде:

$$\hat{L}u = \left\{ \begin{array}{c} \hat{L}^{1}u \\ \hat{L}^{2}u \\ \hat{L}^{3}u \\ \hat{L}^{4}u \end{array} \right\} = \left\{ \begin{array}{c} \left[\frac{\partial}{\partial t} - a^{2} \left(\frac{1}{r} \frac{\partial}{\partial r} + \frac{\partial^{2}}{\partial r^{2}} + \frac{\alpha}{cl} \right) \right] u \\ \left[\frac{\partial}{\partial t} - 2a^{2} \frac{\partial^{2}}{\partial r^{2}} + \frac{\alpha}{cl} \right] u \\ u|_{t=0} \\ u|_{r=R} \end{array} \right\}, f = \left\{ \begin{array}{c} \frac{\alpha u_{c}}{cl} \\ \frac{\alpha u_{c}}{cl} \\ u_{c} + J_{0} \left(\frac{\mu_{1}r}{R} \right) \\ u_{c} \end{array} \right\} \tag{1.7}$$

Конечно – разностная задача (1.6) можно также представить в операторном виде:

$$\hat{L}_{h}u_{h} = \begin{cases}
\hat{L}_{h}^{1}u \\
\hat{L}_{h}^{2}u \\
\hat{L}_{h}^{3}u \\
\hat{L}_{h}^{4}u
\end{cases} = \begin{cases}
\frac{u_{i}^{k} - u_{i}^{k-1}}{h_{t}} - a^{2} \left(\frac{1}{ih_{r}} \frac{u_{i+1}^{k} - u_{i-1}^{k}}{2h_{r}} + \frac{u_{i+1}^{k} - 2u_{i}^{k} + u_{i-1}^{k}}{h_{r}^{2}} \right) + \frac{\alpha}{cl} u_{i}^{k} \\
\frac{u_{0}^{k} - u_{0}^{k-1}}{h_{t}} - 2a^{2} \frac{u_{1}^{k} - u_{0}^{k}}{h_{r}^{2}} + \frac{\alpha}{cl} u_{0}^{k} \\
u_{N}^{i} \\
u_{N}^{k}
\end{cases} \tag{1.8}$$

Определение порядка аппроксимации. Рассмотрим первый компонент вектора невязки

$$\delta f_h^1 = \left\{ L_h^1[u]_h - f_h^1 \right\}_{(r_i, t_k)} = \frac{u(r_i, t_k) - u(r_i, t_{k-1})}{h_t} - a^2 \left(\frac{1}{ih_r} \frac{u(r_{i+1}, t_k) - u(r_{i-1}, t_k)}{2h_r} + \frac{u(r_{i+1}, t_k) - 2u(r_i, t_k) + u(r_{i-1}, t_k)}{h_r^2} \right) + \frac{\alpha}{cl} u(r_i, t_k) - \frac{\alpha u_c}{cl} 1.9)$$

Воспользуемся разложением Тейлора для функции и:

$$u(r_{i}, t_{k-1}) = u(r_{i}, t_{k}) - \frac{\partial u(r_{i}, t_{k})}{\partial t} \frac{h_{t}}{1!} + \frac{\partial^{2} u(r_{i}, t_{k})}{\partial t^{2}} \frac{h_{t}^{2}}{2!} + O(h_{t}^{3})$$
$$u(r_{i-1}, t_{k}) = u(r_{i}, t_{k}) - \frac{\partial u(r_{i}, t_{k})}{\partial r} \frac{h_{r}}{1!} + \frac{\partial^{2} u(r_{i}, t_{k})}{\partial r^{2}} \frac{h_{r}^{2}}{2!} + O(h_{r}^{3})$$

$$u(r_{i+1}, t_k) = u(r_i, t_k) + \frac{\partial u(r_i, t_k)}{\partial r} \frac{h_r}{1!} + \frac{\partial^2 u(r_i, t_k)}{\partial r^2} \frac{h_r^2}{2!} + O(h_r^3)$$

Воспользуемся этими выражениями для δf_h^1 :

$$\delta f_h^1 = \left\{ \frac{u - u + u_t h_t + -\frac{1}{2} u_{tt} h_t^2 + O(h_t^3)}{h_t} - a^2 \left(\frac{1}{i h_r} \frac{1}{2 h_r} \left(u + u_r h_r + u_r r h_r^2 / 2 + O(h_r^3) - u + u_r h_r - u_{rr} h_r^2 / 2 + O(h_r^3) \right) + \frac{1}{h_r^2} \left(u + u_r h_r + u_{rr} h_r^2 / 2 + O(h_r^3) \right) + \frac{1}{h_r^2} \left(u + u_r h_r + u_{rr} h_r^2 / 2 + O(h_r^4) \right) + \frac{2\alpha}{cl} u - \frac{2\alpha}{cl} u_c \right\}_{(r_i, t_k)}$$

Осуществляем сокращения:

$$\delta f_h^1 = \left\{ u_t + O(h_t) - a^2 \left(\frac{1}{ih_r} (u_r + O(h_r^2)) + u_{rr} + O(h^2) \right) + \frac{2\alpha}{cl} u - \frac{2\alpha}{cl} u_c \right\}_{(r_i, t_k)} = \left\{ u_t + O(h_t) - a^2 \left(\frac{1}{ih_r} (u_r + O(h_r^2)) + u_{rr} + O(h^2) \right) - u_t + a^2 \left(\frac{1}{ih_r} u_r + u_{rr} \right) \right\}_{(r_i, t_k)} = \left\{ O(h_t) + a^2 \left(\frac{1}{ih_r} + 1 \right) O(h_r^2) \right\}_{(r_i, t_k)}$$

Теперь рассмотрим второй компонент вектора невязки:

$$\delta f_h^2 = \left\{ L_h^2[u]_h - f_h^2 \right\}_{(r_0, t_k)} = \frac{u(r_0, t_k) - u(r_0, t_{k-1})}{h_t} - 2a^2 \frac{u(r_1, t_k) - u(r_0, t_k)}{h_r^2} + \frac{2\alpha}{cl} u(t_k, r_0) - \frac{2\alpha}{cl} u_c$$

Аналогично первому компоненту невязки воспользуемся соотношениями для разложения в ряд Тейлора:

$$\delta f_h^2 = \left\{ \frac{u - u + u_t - O(h_t^2)}{h_t} - 2a^2 \frac{u + u_r h_r + u_{rr} h_r^2 / 2 + u_{rrr} h_r^3 / 6 + O(h_r^4) - u}{h_r^2} + \frac{2\alpha}{cl} u - \frac{2\alpha}{cl} u_c \right\}_{(r_0, t_k)}$$

Таким же образом осуществляем сокращения:

$$\delta f_h^2 = \left\{ u_t + O(h_t) - 2a^2 \left(\frac{u_r h_r + u_{rr} h_r^2 / 2 + u_{rrr} h_r^3 / 6 + O(h_r^4)}{h_r^2} \right) + \frac{2\alpha u}{cl} - u_t + 2a^2 u_r r - \frac{2\alpha u}{cl} \right\}_{(r_0, t_k)} = \left\{ O(h_t) + 2a^2 O(h_r^2) \right\}_{(r_0, t_k)}$$

Для третьей и четвертой компонент невязки получим:

$$\delta f_h^3 = \left\{ L_h^3 [u]_h - f_h^3 \right\}_{(r_i, t_0)} = u(r_i, t_0) - u(r_i, t_0) = 0$$

$$\delta f_h^4 = \left\{ L_h^2[u]_h - f_h^2 \right\}_{(r_I, t_k)} = u(r_I, t_k) - u(r_I, t_k) = 0$$

Таким образом дискретная задача (1.6) аппроксимирует непрерывную задачу (1.1) с первым порядком по времени и вторым порядком по координате.

ГЛАВА 2

Лабораторная работа №2

- 2.1 Тема работы. Цель работы. Порядок выполнения работы
- 2.2 Описание этапов выполнения лабораторной работы
- 2.2.1 Описание тестовой задачи, ее аналитическое решение
- 2.2.2 Экспериментальное исследование фактической скорости сходимости сеточного решения к точному для тестовой задачи