CS 65500 Advanced Cryptography

Lecture 19: Function Secret Sharing

Instructor: Aarushi Goel

Spring 2025

Agenda

- → Function Sevet Shaving
 → Motivation
- → Distributed Point Function

Secret Shaving Inputs vs Functions

- → So far, we have seen how to a dealer can secret share an input amongst mutually distrusting parties.
- → When using a linear secret sharing scheme, given secret shares of inputs, parties can non-interactively obtain secret shares of any linear combinations of the inputs.
- Today we are going to discuss a dual notion of function secret sharing*

 (FSS)
- → FSS enables a dealer to sceret share a function amongst mutually distrusting parties
- → Given secret shares of the function, the parties should be able to noninteractively compute shares of the output of this function on any common input.

Function Secret Sharing

$$f = \frac{\text{Eval}(f_1, x)}{f_1(x)} + f_2(x) = f(x)$$

$$f_2 = \frac{\text{Eval}(f_2, x)}{f_2(x)} + f_2(x) = f(x)$$
Share Evaluation

- → Function f is secret shared. input x is common
- → Each fi should hide newsary information about f.
- → Trivial Solution: Additive screet share each entry in the truth table of f.

 However this will result in shares that are linear in the domain size
- → Challenge: Design FSS where Shares are sublinear in the domain size.

Private Database Queries

Let's assume both servers hold a copy of a database. The Client wants to query this database without revealing the query attributes (but revealing the query structure is okay!)

Example: Database contains the list of all the restamants in west lafayette.

Client wants to get a <u>count</u> of <u>vegetarian</u>, <u>Greek</u> restamants in the city.

OK with should remain hidden

Query: COUNT (column) where $x_1 = v_1$, $x_2 = v_2$ vegetarian Greek

- We can define a predicate $f_{y_1y_2}$ such that $f_{y_1y_2}(x_1,x_2) = 1$ iff $x_1 = y_1$, and $x_2 = y_2$, and 0 otherwise.
- \rightarrow The Went can use FSS to compute shares of $f_{y_1y_2}$ and send them to the servers.
- The servers can use FSS shares and evaluate on all entries in the database. Sum these evaluations $z_i = 2 f_i(x_1^i, x_1^i)$ s send the sum to the client
- Chent computes: $z_1 + z_2 = \xi f_{y_1 y_2}(x_1^j, x_2^j)$.

A similar approach can be used to compute other statistical queries.

Function Secret Sharing for a Point Function

Point Functions are of the form:
$$f(x_1,...,x_n) = \begin{cases} 1, & \text{if } x_1 = v_1, ---, x_n = v_n \\ 0, & \text{otherwise} \end{cases}$$

we can simply this to:
$$f_y(x) = \begin{cases} 1, & \text{if } x = y \\ 0, & \text{otherwise} \end{cases}$$

- → FSS for point functions is called a distributed point function* (DPF)
- → DPFs are very useful in various secure computation applications.

(ve will see one such application un the next class)

Defining Two-Party Distributed Point Function Let $f: \{0,12^n \to G \text{ be a point function.}$

Definition: A two-party DPF scheme is defined by PPT algorithms (Gen, Eval):

- * Gen (1, f): On input f and the security parameter 1, it outputs shares f1, f2.
- * Eval (i, fi, x): On input ie[2], share fi and input $x \in \{0,1\}^n$, it outputs $y_i \in G$

These algorithms must satisfy the following properties:

- Torrectness: For any point function $f:\{0,12^n \rightarrow G \text{ and any input } x \in \{0,12^n, if f_1, f_2 \leftarrow Gen(1^n, f), then <math>Pr[Eval(1, f_1, x) + Eval(2, f_2, x) = f(x)] = 1$
- → Security: For any point functions, g, h, and any it[2], the following distributions are computationally indistinguishable!
 - $\mathcal{E}_{gi}(g_1,g_2) \leftarrow Gen(1^3,g)\mathcal{E}_{gi}$
 - { hi/(h1, h2) ← Gen (1, h)}

Construction of DPFs.

- → We can build 2-party DPFs from OWFs.
- → Most efficient Known construction of 2-party DPFs yields shares of Size polylog un the domain size.
- Joday: We will discuss a simpler construction where shares are of size square root in the domain size.
- → Both of these constructions are by:

Niv Gilboa

Yuval Ishai

Construction of DPFs.

Let N be the size of the domain. For simplicity lets consider point functions of the form $f_y: [N] \to \{0,1\}$. Let l=JN

1. Let us start by listing all the domain elements in an exe size matrix

- 2. Let $PRG: \{0,1\}^{\lambda} \rightarrow \{0,1\}^{d}$ be a pseudosandom generator. We will sample a PRG seed Si for each row $i \in [L]$.
- 3. Starting Idea: Each FSS share fi will consist of all the seeds $S_1, --., S_L$.

 For evaluating on any input x, determine its corresponding location (i,j) in the matrix, then compute $PRG(S_i)$ & output the j^{th} bit.

For each $i \neq i^*$: Observe that both parties will compute the same shares: Eval (1, f1, x) = Eval(2, f2, x) = PRG(S;)[j].

=> They compute shares of O, which is what we want.

For now i*: For the input corresponding to location (i*, j*) in the matix, we want parties to be able to compute additive secret shares of 1, not 0. But for inputs corresponding to all other (i*, j), $j \neq j$ *, we still want parties to be able to compute additive shares of 0.

=> The approach described on the previous slide does not work!

Modification:

Share f, will consist of all seeds S1, --., Sc

→ Share f₂ will consist of the same

Seeds except Si* will be replaced with

a random independently sampled Si*

In addition to these seeds, both parties also get a correction word w, such that PRG(Si*) PRG(Si*) P W=[ej*]

that is 0 everywhere except at position j*.

During evaluation, we want this correction word to be used only when $i=i^*$. But this must be done in a manner that does not reveal i^* to either party.

Final Construction:

- Gen (1, fy): Let the location corresponding to y in the mattin be (i^*, j^*) $\forall i \in [u]$, Sample $S_i \stackrel{\$}{\leftarrow} \{0, 13^{\lambda}, Sample another S'_{i^*} \stackrel{\$}{\leftarrow} \{0, 13^{\lambda}, Sample another S'_{i^*} \stackrel{\$}{\leftarrow} \{0, 13^{\lambda}, Sample bits b_1, ..., b_u \stackrel{\$}{\leftarrow} \{0,$
- Fral (i, fi, x): Let (i,j) be the location corresponding to input x.

 Output $y_i = (PRG(Si) \oplus b_i \cdot w) [j]$

Correctness: Depending on (i,j) corresponding to x, we consider the following cases:

1)
$$i \neq i^*$$
: $y_1 = (PRG(S_i) \oplus b_i \cdot w) [j]$

$$y_2 = (PRG(S_i) \oplus b_i \cdot w) [j]$$

$$y_1 \oplus y_2 = 0 = f_y(n)$$

2)
$$i=i^*$$
, $j\neq j^*$: $y_1 = (PRG(Si^*) \oplus bi^* \cdot w) [j]$

$$y_2 = (PRG(Si^*) \oplus (I-bi^*) \cdot w) [j]$$

$$y_1 \oplus y_2 = (PRG(Si^*) \oplus PRG(Si^*) \oplus w) [j] = e_{j^*} [j]$$

3)
$$i=i^*$$
, $j=j^*$: $y_1 = (PRG(Si^*) \oplus bi^* \cdot w) [j^*]$

$$y_2 = (PRG(Si^*) \oplus (1-bi^*) \cdot w) [j^*]$$

$$y_1 \oplus y_2 = (PRG(Si^*) \oplus PRG(Si^*) \oplus w) [j^*] = e_{j^*} [j^*] = 1$$

Security: We want to show that each share fi, hides y (or equivalently i*, j*)

1.
$$f_1 = (s_1, \ldots, s_\ell, w, b_1, \ldots, b_\ell)$$

uniform \ uniform \ i* remains hidden.

Sinu this party does not get Si*, PRG(Si*) acts as a one-time pad for marking ej*. Hence j* remains hidden.

2.
$$f_2 = (S_1, ..., S_i^*, ..., S_\ell, w, b_1, ..., (1-b_i^*), ... b_{\ell})$$

Similar argument as above