Exercise 1: Use the following r code to simulate and plot a data set consisting of n = 60 values from the model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$, where the ϵ 's are independent $N(0, \sigma^2)$ random variables.

Code:

```
library (geoR) set.seed (32123) # for reproducibility n <-60 lons <- runif( n, min=90, max=110 ) lats <- runif( n, min=35, max=45 ) y <- 30.0 + 1.3*(lons-100) + 1.5*(lats-40) + rnorm(n, mean=0, sd=1.6) mydata <- as.geodata( cbind(lons, lats, y) ) plot (mydata)
```

a. Include the resulting plot in your write-up.

Solution:

Running the given R code produces the following plot,

b. What are the values of β_0 , β_1 , β_2 , and σ^2 that are being used to simulate these data?

Solution:

The given R code defines the following function for Y (assuming $lons = X_1$ and $lat = X_2$),

$$Y = 30 + 1.3(X_1 - 100) + 1.5(X_2 - 40) + \epsilon,$$

= 30 + 1.3X₁ - 130 + 1.5X₂ - 60 + \epsilon,
= -160 + 1.3X₁ + 1.5X₂ + \epsilon.

Simplifying the function we get that $\beta_0 = -160$, $\beta_1 = 1.3$, $\beta_2 = 1.5$. The distribution of ϵ is described by the rnorm() function which gives $\sigma^2 = 1.6^2 = 2.56$.

c. Fit a linear model with independent errors using the R function lm, for example by typing,

Code:

```
myfit <- lm( y ~ lons + lats )
summary(myfit)</pre>
```

Solution:

Fitting the model we get the following summary report,

Code:

```
> LinearModel <- lm(y ~ lons + lats)
> summary (LinearModel)
Call:
lm(formula = y \sim lons + lats)
Residuals:
    Min
             1Q Median
                              3Q
                                     Max
-3.6062 -1.2721 -0.2853 1.2536 3.0766
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -153.67616
                          4.47966 -34.30
                                             <2e-16 ***
               1.25420
                           0.03443
                                     36.43
                                             <2e-16 ***
lons
lats
               1.45169
                          0.06947
                                     20.90
                                             <2e-16 ***
___
```

Residual standard error: 1.636 on 57 degrees of freedom Multiple R-squared: 0.9681, Adjusted R-squared: 0.967 F-statistic: 864.7 on 2 and 57 DF, p-value: < 2.2e-16 d. State the estimated regression function and the estimate of σ^2 (Be sure to include the R output.)

Solution:

From the summary report, which is included above, we can see that the following estimated regression function is produced,

$$\hat{Y} = \hat{\beta_0} + \hat{\beta_1} X_1 + \hat{\beta_2} X_2,$$

= (-153.67616) + (1.25420)X₁ + (1.45169)X₂.

e. Construct a 95 percent confidence for all β_i 's.

Solution:

We can quickly compute the 95 percent confidence interval for all of our β_i regression paramaters using the R confint() function. Doing so we get the following,

Code:

f. Make a table with the values of the β 's, the estimates of the β 's, and 95 percent CIs for the β 's. Comment briefly for example, are the $\hat{\beta}$'s 'close to' the true β 's? Do the β 's lie in the respective 95 percent CIs.

Solution:

i	β_i	\hat{eta}_i	Upper CI	Lower CI
0	-160	-153.67616	-162.646523	-144.705802
1	1.3	1.25420	1.185266	1.323137
2	1.5	1.45169	1.312573	1.590810

g. Perhaps Y(s) is the weight of observed dog fur, in nanograms, at s. Interpret β_0 in terms of E(Y). Explain why ie doesn't really make sense to interpret β_0 .(I'm looking for two reasons. Three, if you include "its silly to talk about dog fur.")

Solution:

The term $\beta_0 = -160$ would be interpreted as, the mean weight of the observed dog fur is -160 at point s = (0,0). In terms of E(Y) we would say $\beta_0 = -160 = E(Y((0,0)))$. It doesn't really make sense to interpret this coefficient since the data is translation invariant, or in other words $s \in D$ is a generic data location in $D \subset \mathbb{R}^d$ dimensional space.

h. Interpret β_1 and β_2 in terms of E(Y).(β_1 is the change in mean response if ...if what? -If you have question about what I'm looking for please ask.)

Solution:

For every one unit $s \in D$ increases in the longitudinal direction, the E(Y) response changes by $\beta_1 = 1.25420$. Similarly for every one unit $s \in D$ increases in the latitudinal direction, the E(Y) response changes by $\beta_1 = 1.45169$. These coefficient make sense interpret since the describe a relationship between points in D.

Exercise 2: Let,

$$\Sigma = \begin{bmatrix} 5 & -3 \\ -3 & 1 \end{bmatrix}$$

a. Show that Σ cannot be a valid variance-covariance matrix for $(Y_1, Y_2)^T$, by assuming it is and finding the correlation of Y_1 and Y_2 .

Solution:

Assuming Σ is a valid variance-covariance matrix we can compute the correlation of Y_1 and Y_2 by the following,

$$Cor(Y_1, Y_2) = \frac{Cov(Y_1, Y_2)}{\sqrt{Var(Y_1)Var(Y_2)}},$$

$$= \frac{-3}{\sqrt{(5)(1)}},$$
< -1.

This matrix produces a correlation between Y_1 and Y_2 which is outside of the possible domain $Cor(Y_1, Y_2) \notin [-1, 1]$

b. Show that Σ cannot be a valid variance-covariance matrix by assuming it is and finding $Var(Y_1 + 2Y_2)$.

Solution:

Simplifying the variance expression we get the following,

$$Var(Y_1 + 2Y_2) = Var(Y_1) + 4Var(Y_2) + 2(1)(2)Cov(Y_1, Y_2),$$

= 5 + 4(1) + 4(-3),
= 5 + 4 + 4(-3),
= -3.

A linear combination of random variables should not be able to produce a negative variance, which suggests that Σ is not a valid variance-covariance matrix.

Exercise 3: Consider the covariogram,

$$C(h) = \begin{cases} 8 & h = 0\\ 5e^{-h^2/16} & h > 0 \end{cases}$$

a. Sketch C(h), for example, using R code:

Solution:

Running the tweaked version of the given R code we produce the following plot, **Code:**

b. Calculate the corresponding semivariogram. (Be sure to show your work.) You need to be careful about your calculations at h = 0.

Solution:

Recall the relationship between a covariogram and the corresponding semivariogram,

$$\gamma(h) = C(0) - C(H).$$

Applying this relationship to both parts of the piecewise function C(h) we get the following,

$$\gamma(h) = \begin{cases} C(0) - C(0) & h = 0 \\ C(0) - C(h) & h > 0 \end{cases},$$
$$= \begin{cases} 0 & h = 0 \\ 8 - 5e^{-h^2/16} & h > 0 \end{cases}$$

Plotting the resulting semivariogram, we get the following, **Code:**

```
abline ( v=0 ) # include y-axis on the plot abline ( h=0 ) # include x-axis on the plot points (0, 3) points (0, 0, pch = 16)
```


c. What kind of (semi)variogram is this, and what are its parameters?

Solution:

This is an example of an exponential semivariogram. It's parameters are $\tau^2 = 3$, $\sigma^2 = 5$ and $\phi = 16$.

$$\gamma(h) = \begin{cases} 0 & h = 0 \\ 8 - 5e^{-h^2/16} & h > 0 \end{cases},$$

$$= \begin{cases} 0 & h = 0 \\ 3 + 5(1 - e^{-h^2/16}) & h > 0 \end{cases},$$

$$= \begin{cases} 0 & h = 0 \\ \tau^2 + \sigma^2(1 - e^{-h^2/\phi}) & h > 0 \end{cases}$$

d. What is the nugget? the partial sill? the sill? the range (or effective range)? Var(Y(s))?

Solution:

From the figure we can see that the nugget for the semivariogram is 3. The partial sill is 5. The sill is 8. the range looks to go from [0, 10] maybe even [0, 8].

Exercise 4: Consider the semivariogram,

$$\gamma(h) = \begin{cases} 0 & h = 0\\ 3 + 7(1.5(h/6) - .5(h/6)^3) & 0 < h < 6\\ 10 & h \ge 6 \end{cases}$$

a. Use R to sketch $\gamma(h)$ for a suitable range of h.

Solution:

Code:

b. Find the corresponding covariogram, C(h).

Solution:

Recall the relationship between a covariogram and a semivariogram,

$$C(h) = \lim_{R \to \infty} \gamma(R) - \gamma(h).$$

Applying this relationship to each part of the piecewise definition of $\gamma(h)$ we get,

$$C(h) = \begin{cases} 10 - 0 & h = 0, \\ 10 - (3 + 7(1.5(h/6) - .5(h/6)^3)) & 0 < h < 6, , \\ 10 - 10 & h \ge 6. \end{cases}$$

$$= \begin{cases} 10 & h = 0, \\ 10 - 3 - 7(1.5(h/6) - .5(h/6)^3)) & 0 < h < 6, \\ h \ge 6. \end{cases}$$

$$= \begin{cases} 10 & h = 0, \\ 7 - 7(\frac{3}{2}(h/6) - \frac{1}{2}(h/6)^3)) & 0 < h < 6, \\ 0 & h \ge 6. \end{cases}$$

Plotting in R we get the following,

Code:

c. What kind of (semi)variogram is this, and what are its parameters?

Solution:

This is an example of a spherical semivariogram with parameters $\tau^2 = 3$, $\sigma^2 = 6$, and $\phi = 6$.

d. What is the nugget? the partial sill? the sill? the range? Var(Y(s))?

Solution:

From the figure we can see that the nugget for the semivariogram is 3. The partial sill is 7. The sill is 10. The range is from [0, 6].

Exercise 5: Let *X* be a discrete random variable such that,

$$\begin{array}{c|ccccc} x & -2 & -1 & 1 & 2 \\ \hline P(X=x) & .4 & .1 & .1 & .4 \end{array}$$

Define $Y = X^2$.

a. Show that cov(X, Y) = 0 (To do this, you wil need to calculate E(X), E(Y), and E(XY), and use the formula for covariance frm page 25 of the lecture notes.)

Solution:

Recall the formula for the covariance,

$$cov(X, Y) = E(XY) - \mu_x \mu_y = E(X^3) - \mu_x \mu_y.$$

Computing each term we get,

$$E(X^{3}) = (.4)(-2)^{3} + (.1)(-1)^{3} + (.1)1^{3} + (.4)2^{3} = 0.$$

$$\mu_{x} = \frac{(-2) + (-1) + (1) + (2)}{4} = 0.$$

$$\mu_{y} = \frac{(-2)^{2} + (-1)^{2} + (1)^{2} + (2)^{2}}{4} = 2.4.$$

$$cov(X, Y) = E(X^{3}) - \mu_{x}\mu_{y} = 0 - 0(2.4) = 0.$$

b. Show that X and Y are dependent. (E.g., calculate P(X = 1, Y = 4) and P(X = 1)P(Y = 4); if X and Y are independent, these two values- among others- must be equal.)

Solution:

Following the example described in the hint consider the following,

$$P(X = 1, Y = 4) = 0.$$

Since $Y = X^2$ we know that when X = 1 it follows that Y = 1 and similarly if y = 4 it follows that X = 2, -2. In any case the joint probability P(X = 1, Y = 4) must be zero. Furthermore computing the product we get,

$$P(X = 1)P(Y = 4) = (.1)(.8) = .08 \neq 0.$$

Thus *X* and *Y* are dependent.