Week Review

How to solve a (simple) maze?

- Hold to the left wall!
- lacktriangle Wall to the left and front is clear ightarrowgo forward.
- Wall in front but not on left → turn left 90 degrees.
- Wall on the left and wall in front
 turn right 90 degrees.
- No wall on the left or front
- → turn left 90 degrees

Wall Following Robot

- Implement a circuit for a robot that solves a maze.
- 2 inputs (sensors):Front and Left
- 1 if there is a wall, 0 if not.
- 2-bit output tells robot what to do:
- 00 means go straight
- 01 means turn left
- 10 means turn right

11 means do a u-turn

Make Truth Tab<u>le!</u>

- Wall to the left and front is clear → go forward.
- Wall to the left and wall in front → turn right
- Wall in front but not on left → turn left
- No wall on the left or front → turn left

- 2 wall sensors: Front and Left
- 2-bit output Y tells robot what to do:
- 00 means go straight
- 01 means turn left
- 10 means turn right
- 11 means do a u-turn

Make Truth Table!

- Wall to the left and forward. front is clear → go
- in front → turn right Wall to the left and wall
- Wall in front but not on No wall on the left or left → turn left

front \rightarrow turn left

- 2 wall sensors: Front and Left
- do: 2-bit output Y tells robot what to
- 00 means go straight
- 01 means turn left
- 10 means turn right
- 11 means do a u-turr

며	F	K	, K
0	0	0	Ш
0	Ш	0	0
Н	0	0	Н
\vdash	Н	Н	0

Robot Controller Circuit

$$\mathbf{X}_{0} = \mathbf{L}$$
 $\mathbf{Y}_{1} = \mathbf{E} \cdot \mathbf{L}$

let's form an AI startup!

Question 1: Counting Bits

- We have 4 inputs: A, B, C, D
- The output Y should the number of high bits that we see in the input.
- How many output bits do we need for Y?
- Y can be 0 to 4, so we need 3 bits but also 100 (four) 000 (zero), 001 (one), 010 (two), 011 (three)

Question 1: Counting Bits

- Make a truth table.
- How many rows?
- We have 4 input bits, so 2⁴=16 rows

Question 1: Counting Bits

- Make a truth table.
- How many rows?
- We have 4 input bits, so $2^4=16$ rows
- Fill in inputs
- Use standard binary number order: 0000, 0001, 0010 and so on

¥	В	С	D	$\mathbf{Y}_2 \ \mathbf{Y}_1 \ \mathbf{Y}_0$

Question 1: Counting Bits

- Make a truth table.
- How many rows?
- We have 4 input bits, so 2⁴=16 rows
- Fill in inputs
- Use standard binary number order: 0000, 0001, 0010 and so on
- Complete outputs

	1	1	1	1
	0	1	1	1
	1	0	1	1
	0	0	1	1
	Н	1	0	ъ
	0	1	0	ב
	Н	0	0	1
	0	0	0	1
	ь	Н	н	0
	0	ц	1	0
	ь	0	н	0
	0	0	1	0
	Н	Н	0	0
	0	ъ	0	0
	ь	0	0	0
	0	0	0	0
$\mathbf{Y}_2 \mathbf{Y}_1 \mathbf{Y}_0$	D	С	В	A

Question 1: Counting Bits

- Make a truth table.
- How many rows?
- We have 4 input bits,
 so 2⁴=16 rows
- Fill in inputs
- Use standard binary number order: 0000, 0001, 0010 and so on
- Complete outputs

1	ц	1	1	ь	ц	1	ь	0	0	0	0	0	0	0	0	A
1	1	1	1	0	0	0	0	ь	1	ц	1	0	0	0	0	В
1	ъ	0	0	Н	1	0	0	Н	Н	0	0	ь	ц	0	0	С
1	0	Н	0	Н	0	ь	0	Н	0	Н	0	ь	0	ъ	0	D
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	\mathbf{Y}_2
0	_	1	1	Н	1	Н	0	Н	Н	Н	0	1	0	0	0	۲
0	1	1	0	1	0	0	1	Ъ	0	0	Ь	0	Ь	Н	0	Y ₀

3

2

Next step

- Convert truth table to expression!
- Starting with minterms and maxterms

Minterm expressions

- AND of all inputs or inverted inputs
- A'BC ABC AB'C but not AC or AB+C
- m_n is 1 for row n and 0 elsewhere.
- m₃ = A'BC since 3 is 011
 (A=0, B=1, C=1 will cause m₃ to be 1)
- Rows where output is high.

0	m ₇	0	1	1	1
1	m	┙	0	1	1
0	$\mathbf{m}_{_{\!5}}$	0	₽	0	Н
1	m,	⊢	0	0	₽
₽	$\mathbf{m}_{_3}$	₽	₽	Н	0
₽	\mathbf{m}_2	₽	0	Н	0
₽	$\mathbf{m}_{_{\! 1}}$	₽	₽	0	0
0	$\mathbf{m}_{_{0}}$	0	0	0	0
ĸ	Minterm	К	C	В	A

SOM: Sum of Minterms

- Expression for truth table: OR of all minterms for which is it high
- $Y = m_1 + m_2 + m_3 + m_4 + m_6$

A	В	C	ĸ	Minterm	К
0	0	0	0	\mathbf{m}_{0}	0
0	0	₽	₽	$\mathbf{m}_{_{1}}$	٢
0	Н	0	₽	\mathbf{m}_2	Н
0	Н	⊢	₽	m ₃	Н
1	0	0	1	m,	1
1	0	1	0	\mathbf{m}_5	0
1	Н	0	1	m.	_1
₽	Н	₽	0	m,	0

Maxterms

- OR of all inputs or inverted inputs
- A'+B+C A+B+C A+B'+C but not A+C or A+BC
- M_n is 0 for row n , 1 elsewhere.
- $M_3 = A + B' + C'$ since 3 is 011 (only A=0, B=1, C=1 will cause M_3 to be 0)
- Rows where output is low.

0	M	0			1
Ъ	$M_{\!\scriptscriptstyle{6}}$	Ľ	0	₽	₽
0	M	0		0	₽
Н	M	1		0	₽
Н	M ₃	₽	⊢	Н	0
Н	\mathbf{M}_{2}	1	0	Н	0
1	\mathbf{M}^{T}	1	₽		0
0	\mathbf{M}_{0}	0	0	0	0
ч	Maxterm	У	С		A

POM: Product of Maxterms

- Expression for truth table: AND of all maxterms for which is it low
- $Y = M_0 \cdot M_5 \cdot M_7$

0	M	0	₽	1	1
Н	\mathbf{M}_{6}	1	0	1	1
0	Ms	0	1	0	┙
1	M_4	1	0	0	1
Н	M ₃	₽	₽	Н	0
Н	M_2	1	0	₽	0
1	$\mathbf{M}_{_{1}}$	₽	₽	0	0
0	M₀	0	0	0	0
ч	Maxterm	ч	С	В	A

Converting SOM to gates

expression, it is easy to convert this to the Once you have a Sum-of-Minterms equivalent combination of gates:

$$m_0 + m_1 + m_2 + m_3$$

$$\overline{A} \cdot \overline{B} \cdot \overline{C} + \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot C + \overline{A} \cdot B \cdot C$$

Question 2

Write Y in SOM (Sum Of Minterms) form.

$$Y = \overline{A} \cdot \overline{B} \cdot \underline{C} + \overline{A} \cdot B \cdot \overline{C} + A \cdot B \cdot C$$

 $A \cdot B \cdot \overline{C} + A \cdot B \cdot C$

$$Y = m_1 + m_2 + m_4 + m_7$$

Н	Н	Н	Н
0	0	1	1
0	Н	0	Ľ
Ъ	0	0	1
0	Н	Н	0
Ъ	0	1	0
Н	Н	0	0
0	0	0	0
А	С	В	A

Question 3

• Given the minterms below, can you fill in the truth table on the right?

$$Y = m_2 + m_3 + m_7 + m_9 + m_{12} + m_{14}$$

	1	1	1	1
	0	1	1	1
	Н	0	1	н
	0	0	1	ч
	Н	ь	0	н
	0	1	0	1
	Н	0	0	1
	0	0	0	1
	Н	Н	ъ	0
	0	ъ	1	0
	Н	0	Н	0
	0	0	1	0
	Н	ь	0	0
	0	Ъ	0	0
	Н	0	0	0
	0	0	0	0
Л	D	С	В	A

Question 3

• Given the minterms below, can you fill in the truth table on the right?

$$Y = m_2 + m_3 + m_7 + m_9$$

+ $m_{12} + m_{14}$

1	1	ь	ц	1	ь	ц	ц	0	0	0	0	0	0	0	0	A
1	1	ц	ц	0	0	0	0	ц	ц	ц	ц	0	0	0	0	B
1	ь	0	0	ц	ь	0	0	ц	1	0	0	н	1	0	0	С
1	0	ь	0	ь	0	ь	0	ь	0	ь	0	ь	0	ь	0	D
0	Н	0	ь	0	0	ь	0	ь	0	0	0	ь	ь	0	0	У

Question 4

What is the POM form of the function from the truth table on the right?

 $Y = M_3 M_4 M_6 M_{11} M_{12} M_{14}$

1 0 1 0
1 0
0
ъ с
0 1
0 1
0
Н
0
D