Probability Theory

Exercise Sheet 2

Exercise 2.1 Take $\Omega = \{a, b, c, d\}$, $\mathcal{A} = \mathcal{P}(\Omega)$ and $\mathcal{C} = \{\{a, b\}, \{c, d\}, \{a, c\}, \{b, d\}\}\}$. Consider P the equiprobability on Ω and Q the probability measure $\frac{1}{2}(\delta_a + \delta_d)$ (with δ_a the point measure at a, and δ_d the point measure at d).

- (a) Show that $\sigma(\mathcal{C}) = \mathcal{A}$, and P and Q agree on \mathcal{C} .
- (b) Show that $\{A \in \mathcal{A}; P(A) = Q(A)\}\$ is not a σ -algebra.
- (c) Is \mathcal{C} a π -system?

Exercise 2.2 Let \mathcal{F} be a σ -algebra and $A_i \in \mathcal{F}$ (i = 1, 2, ...) the event "at time i the phenomena Φ occurs".

Express with the help of the subsets A_i the following events as subsets $A \in \mathcal{F}$:

- (a) "Φ occurs exactly 17 times"
- (b) "Φ always occurs again"
- (c) "Φ stops occurring at some point"

Describe in words the following event:

(d) $\bigcup_{n\geq 1}\bigcup_{m>n}(A_n\cap A_m)$

Which of these events belong to the asymptotic σ -algebra $\mathcal{A}^* := \bigcap_{n \geq 1} \sigma \left(\bigcup_{i \geq n} \{A_i\} \right)$?

Exercise 2.3 In this exercise, we will construct a countably infinite number of independent random variables, without using a product space with an infinite number of factors.

Consider $\Omega = [0, 1)$, equipped with the Borel σ -algebra and the Lebesgue measure P restricted to [0, 1). We define the random variables

$$Y_n: \Omega \to \mathbb{R}$$
, $n \ge 1$,

by

$$Y_n(\omega) := \begin{cases} 0 & \text{if } \lfloor 2^n \omega \rfloor \text{ is even,} \\ 1 & \text{if } \lfloor 2^n \omega \rfloor \text{ is odd,} \end{cases}$$

where $\lfloor x \rfloor = \max \{z \in \mathbb{Z} \mid z \leq x\}$ denotes the integer part of x. Show that Y_n , $n \geq 1$, are independent and satisfy $P[Y_n = 0] = P[Y_n = 1] = \frac{1}{2}$.

Hint: To gain insight, consider the meaning of Y_n in terms of the binary expansion of ω . You may use the following observation, without proving it:

Let (Ω, \mathcal{A}, P) be a probability space and Y_1, Y_2, \ldots be random variables on this space, each taking values only in a countable set (that is, for each *i* there is a countable set S_i such that $P[Y_i \in S_i] = 1$). Assume that

$$P[Y_1 = z_1, Y_2 = z_2, \dots, Y_n = z_n] = \prod_{i=1}^n P[Y_i = z_i] \text{ for all } z_1, \dots, z_n \in \mathbb{R}$$
 (1)

holds for all $n \geq 1$. Then, the infinite sequence of random variables $(Y_i)_{i\geq 1}$ is independent.

Exercise 2.4 (Optional.) A non-empty family C of subsets of a non-empty set Ω is called a λ -system, if

- (i) $\Omega \in \mathcal{C}$,
- (ii) $A, B \in \mathcal{C} : B \subset A \Rightarrow A \setminus B \in \mathcal{C}$,
- (iii) $A_n \in \mathcal{C}, A_n \subset A_{n+1} \Rightarrow \bigcup_n A_n \in \mathcal{C}.$

Show that the definitions of a Dynkin system and a λ -system are equivalent.

Submission: until 14:15, Oct 8., during exercise class or in the tray outside of HG G 53.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students	Time & Date	Room	Assistant
Afa-Fül	Tue 13-14	HG F 26.5	Angelo Abächerli
Gan-Math	Tue 13-14	ML H 41.1	Zhouyi Tan
Meh-Schu	Tue 14-15	HG F 26.5	Angelo Abächerli
Schü-Zur	Tue 14-15	ML H 41.1	Dániel Bálint