Optics – aberration -

Kyoto University Graduate School of Science Department of Astronomy M2

Chihiro Fukunaga

What is image?

We can see ...

What is image?

We can see ...

What is image?

We can see ...

with magnifying glass

eye is also lens

about aberration What is "ideal" image?

The light from a single point converges a single point ⇒ideal image

What is not "ideal" image?

about aberration What is "ideal" image?

What we learned in school:

Valid only near axis: $h = r \sin \theta \approx r\theta$

* r : coverture of lens

Seidel region
$$h = r \sin \theta = r \left(\theta - \frac{\theta^3}{3} + \frac{\theta^5}{120} - \cdots \right) \approx r \left(\theta - \frac{\theta^3}{3} \right)$$

Seidel aberration

h: where the ray passes at stopy:the object height

astigmatism

Spherical aberration

field curvature

about aberration Spherical aberration

proportional to h^3

coma

astigmatism

field curvature

distortion

proportional to y^3

From Nikon HP

Seidel aberration

h: where the ray passes at stop y:the object height

astigmatism

Spherical aberration

field curvature

Deriving Spherical aberration

The equation for a conic section:

$$x = rac{y^2}{R + \sqrt{R^2 - (K+1)y^2}}$$

How big is the difference between

Let's substitute and derive!

note;
$$\frac{y}{R} \ll 1$$

Deriving Spherical aberration

Answer

$$x(K=0) - x(K=-1) \sim \frac{h^4}{8R^3}$$

Note:

This is "Wavefront Spherical Aberration", and you can derive h^3 by differentiate this

