Programación Lineal: Introducción y Resolución por Método Gráfico

Rodrigo Maranzana

Modelo de programación lineal

Función objetivo:

max o min
$$z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n$$

Sujeto a las restricciones:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \ge$$

$$\begin{array}{c} \leq \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \geq \end{array}$$

$$\begin{array}{c} \leq \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \\ \geq \end{array}$$

 c_i : coeficiente variable de decisión "j". Costo.

 a_{ij} : coeficiente tecnológico de la restricción "i" para la variable "j".

 b_i : término independiente de la restricción "i".

Formas de expresar un modelo LP

Algebraica:

max o min
$$\sum_{j} c_{j} x_{j}$$

s.t.
$$\leq \sum_{i} a_{ij} x_{j} = b_{i} \forall i \geq 1$$

Matricial:

 $\max o \min C^T X$

Estandarización del problema

Variables slack:

Convertir desigualdades de restricciones en igualdades.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + S_1 = b_1$$

Siendo
$$S_1 \ge 0$$

Variables libres:

Convertir variable de decisión en positiva.

$$x_k^+ - x_k^- = x_k$$

Siendo $x_k^+ \ge 0$ y $x_k^- \ge 0$

Visualización de un PL

La función objetivo describe un plano en x-y-z:

Ej:

$$z = 72x + 33y$$

 Los colores sobre el gráfico indican el valor de Z

Visualización de un PL

Las restricciones definen una región factible en x-y

$$\max z = 72x + 33y$$

$$30x + 23y \le 307$$

$$72x + 21y \le 550$$

$$x \ge 0$$

$$y \ge 0$$

Visualización de un PL

Proyectando las curvas de iso-costo de la función objetivo en el plano xy, podemos tomar la decisión de punto óptimo.

Ej:

$$\max z = 72x + 33y$$

s.t.
 $30x + 23y \le 307$
 $72x + 21y \le 550$
 $x \ge 0$
 $y \ge 0$

Resolución por método gráfico

Condiciones:

- Problemas pequeños.
- Solo para problemas con dos o tres dimensiones.

Aplicación real

- Solo para introducción y didáctica.
- Entendimiento del procedimiento.
- No es aplicable a contextos reales.

Ejemplo inicial

$$\max z = 10x_1 + 5x_2$$

s.t.

$$\begin{array}{ccc} x_1 & \geq & 2 \\ 3x_1 & +8x_2 & \leq & 30 \\ & x_2 & \geq & 0 \end{array}$$

Representar restricciones

Encontrar región factible

Encontrar óptimo gráficamente

1) Encontrar el valor de Z máximo entre los vértices del poliedro.

Encontrar óptimo gráficamente

2) Aplicamos el método de curvas de nivel.

Encontrar óptimo gráficamente

2) Encontramos el vértice que coincide con la curva de nivel de Z máximo.

Una empresa (Wyndor Glass Co.) produce puertas y ventanas. Deciden poner en producción dos productos nuevos:

Producto 1: Una ventana de 2m de altura con marco de aluminio

Producto 2: Una ventana colgante de 3m con marco de madera.

Wyndor tiene 3 fábricas que cumplen funciones diferentes. El producto 1 requiere producción de la fábrica 1 y 3 mientras que el producto 2 requiere de las plantas 2 y 3. La división de marketing de la empresa hizo un estudio en el cual llegaron a la conclusión de que podrían vender la misma cantidad de ambos productos.

Sin embargo, como ambos están compitiendo por tiempo de producción en la fábrica 3 (el cuál es limitado), la compañía debe decidir cuánto hacer de cada uno para obtener el mayor retorno posible.

Queremos saber cuánto de cada producto debemos fabricar para maximizar el retorno teniendo en cuenta las horas de producción limitadas de las fábricas.

Planta	Horas necesarias de producción por batch		Tiempo disponible
	Producto 1	Producto 2	por semana de producción
1	1	0	4
2	0	2	12
3	3	2	18
Ganancia por Batch	\$3000	\$5000	

Modelo LP:

$$\max z = 3000x_1 + 5000x_2$$
 Función Objetivo st :
$$x_1 \leq 4 \\ 2x_2 \leq 12 \\ 3x_1 + 2x_2 \leq 18$$
 Restricciones
$$x_1 \geq 0 \\ \text{positividad}$$

$$x_2 \geq 0$$

Desmos: calculadora gráfica

https://www.desmos.com/calculator

