Department of Mathematical Sciences

Rajiv Gandhi Institute Of Petroleum Technology, Jais

Real Analysis and Calculus (MA 111)

Week 1 / September 2023

Problem Set 3

Solutions

Real Analysis

(Infinite) Series

1. If $\sum u_n$ be a convergent series of positive real numbers prove that $\sum \frac{u_n}{n}$ is convergent.

Comparison Test

Suppose $\sum u_n$ and $\sum v_n$ be two series of positive real numbers such that there exists $m \in \mathbb{N}$ for which

$$u_n \le kv_n$$
, for all $n \ge m$,

for some positive k. Then,

- (i) $\sum u_n$ is convergent if $\sum v_n$ is convergent.
- (ii) $\sum v_n$ is divergent if $\sum u_n$ is divergent.

p-Test. The series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$ converges for p > 1 and diverges for $p \le 1$.

Solution. Given $\sum u_n$ be convergent series.

Note that; $A.M. \geq G.M.$ $\frac{(u_n + \frac{1}{n})}{2} \geq \left(u_n \cdot \frac{1}{n}\right)^{\frac{1}{2}}; \quad \forall n \in \mathbb{N}$ $\frac{\left(u_n + \frac{1}{n}\right)^2}{4} \geq u_n \cdot \frac{1}{n}; \quad \forall n \in \mathbb{N}$ $u_n \cdot \frac{1}{n} < \frac{u_n^2 + \frac{1}{n^2}}{2}; \quad \forall n \in \mathbb{N}$

In R.H.S., $\sum u_n^2$ is convergent (**Verify!**) and $\sum \frac{1}{n^2}$ is convergent by *p*-test. Thus, by comparison test $\sum \frac{u_n}{n}$ is convergent.

2. If $\sum u_n$ be a convergent series of positive real numbers prove that $\sum \frac{u_n}{1+u_n}$ is convergent.

Limit Comparison Test

Let $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ be two series of positive real numbers and $\lim_{n\to\infty} \frac{u_n}{v_n} = l \ (\neq 0, \infty)$. Then the two series $\sum u_n$ and $\sum v_n$ converge or diverge

If l = 0, $\sum v_n$ is convergent $\implies \sum u_n$ is convergent.

If $l = \infty$, $\sum v_n$ is divergent $\implies \sum u_n$ is divergent.

Note that, if a series $\sum u_n$ is convergent then $\lim_{n\to\infty} u_n = 0$.

Solution. Given series $\sum u_n$ is convergent.

Take
$$v_n = \frac{u_n}{1+u}$$
.

Take $v_n = \frac{u_n}{1+u_n}$. Then $\lim_{n\to\infty} \frac{u_n}{v_n} = 1$ (Since $\sum_{n\geq 1} u_n$ is convergent, $\lim_{n\to\infty} u_n = 0$) $\Rightarrow \sum v_n$ is convergent (by limit comparison test).

3. If $\sum u_n$ be a series of positive real numbers and $v_n = \frac{u_1 + u_2 + u_3 + ... u_n}{n}$, prove that $\sum v_n$ is divergent.

Theorem

Suppose $\sum u_n$ be series of positive real numbers. Then the series converges if and only if the sequence of its partial sum $\{s_n\}$ is bounded above.

Solution. Given $\sum u_n$ be a series of positive real numbers. By definition,

$$v_1 = u_1$$
 $v_2 = \frac{u_1 + u_2}{2} > \frac{u_1}{2}$
 \vdots
 $v_n = \frac{u_1 + u_2 + \dots + u_n}{n} > \frac{u_1}{n}, \text{ for all } n \in \mathbb{N}.$

Therefore by comparison test, since $u_1 \sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, $\sum v_n$ is divergent.

- 4. Test the convergence of the following series.
- (i) $\frac{1}{1+2} + \frac{1}{1+2^2} + \frac{1}{1+2^3} + \dots$

Solution. Observe that $\frac{1}{1+2^n} < \frac{1}{2^n}$ for all n = 1, 2, 3, ...

Let
$$u_n = \frac{1}{1+2^n}$$
 and $v_n = \frac{1}{1+2^n}$ for all $n = 1, 2, 3, ...$

Then $u_n < v_n$ for all n = 1, 2, 3, ... Since $\sum_{n=1}^{\infty} \frac{1}{2^n}$ is convergent series (being geometric

series with common ratio $\frac{1}{2}$), $\sum_{n=1}^{\infty} \frac{1}{1+2^n}$ is convergent by comparison test.

(ii)
$$\sin\frac{\pi}{2} + \sin\frac{\pi}{4} + \sin\frac{\pi}{6}\dots$$

Solution. Note that

$$1 \le \frac{x}{\sin x} \le \frac{\pi}{2}, \qquad 0 < x \le \frac{\pi}{2}$$

Choose $x = \frac{\pi}{2n}$. Then

$$\frac{1}{n} \le \sin \frac{\pi}{2n} \quad \text{for all } n = 1, 2, 3, \dots$$

Let $u_n = \frac{1}{n}$ and $v_n = \sin \frac{\pi}{2n}$ for all $n = 1, 2, 3, \dots$

Then $u_n \le v_n$ for all n = 1, 2, 3, ... Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, by

comparison test the series $\sum_{n=1}^{\infty} \sin \frac{\pi}{2n}$ is divergent.

(iii)
$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots$$

Solution. We can write above series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \cdots$$

 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \cdots$ Let $u_n = \frac{1}{n(n+1)(n+2)}$ and $v_n = \frac{1}{n^3}$ then $\lim \frac{u_n}{v_n} = 1$.

Since $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is convergent (by p-test). Hence, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$ is convergent (by limit comparison test).

(iv)
$$\frac{1}{1+2^{-1}} + \frac{1}{1+2^{-2}} + \frac{1}{1+2^{-3}} \dots$$

Solution. Given series is $\sum_{n=1}^{\infty} \frac{2^n}{1+2^n} = \frac{1}{1+2^{-1}} + \frac{1}{1+2^{-2}} + \frac{1}{1+2^{-3}} + \dots$

Let $u_n = \frac{2^n}{1+2^n}$. Note That $\lim_{n\to\infty} u_n = 1 \neq 0$. Since $\lim_{n\to\infty} u_n \neq 0$, $\sum u_n$ is divergent.

(v)
$$\sum_{n=1}^{\infty} \sqrt[3]{n^3+1} - n$$
,

Solution. Let

$$u_n = (n^3 + 1)^{\frac{1}{3}} - n \quad [x^3 - y^3 = (x - y)(x^2 + xy + y^2)]$$

=
$$\frac{1}{(n^3 + 1)^{\frac{2}{3}} + n(n^3 + 1)^{\frac{1}{3}} + n^2} > 0 \text{ for all } n = 1, 2, 3, ...$$

Let $v_n = \frac{1}{n^2}$ for all $n = 1, 2, 3, \ldots$ Then $\lim_{n \to \infty} \frac{u_n}{v_n} = \frac{1}{3}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, by comparison test (limit form), the series $\sum u_n$ is convergent.

(vi)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$$

Solution. Taking $u_n = \frac{\sqrt{n+1} - \sqrt{n-1}}{n} = \frac{2}{n(\sqrt{n+1} + \sqrt{n-1})}$ and $v_n = \frac{1}{n^{\frac{3}{2}}}, \forall n \in \mathbb{N}$.

Then

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{2n^{\frac{1}{2}}}{\sqrt{n+1} + \sqrt{n-1}} = 1$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ is convergent (by p-test with p > 1), the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$ is convergent gent by limit comparison test.

(vii)
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$$
,

Solution. Since $\sin x \le x$ for all $x \ge 0$, $0 < \frac{1}{n} \sin \frac{1}{n} < \frac{1}{n^2}$, for all $n \in \mathbb{N}$. Since the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent (by p-test), the series $\sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{1}{n}$ is convergent by comparison test

(viii)
$$\frac{1}{\log 2} + \frac{1}{\log 3} + \dots$$
, [**Hint.** $\log(1+x) < x$ for $x > 0$.]

Solution. Note that

$$\log(1+x) < x, \text{ for all } x > 0$$

$$\implies \frac{1}{n} < \frac{1}{\log(1+n)}, \text{ for all } n \in \mathbb{N}.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent, $\sum_{n=1}^{\infty} \frac{1}{\log(1+n)}$ is divergent by comparison test.

5. Use Cauchy's Condensation Test to discuss the convergence of the following series:

Cauchy's Condensation Test

Let $\{f(n)\}$ be a **monotone decreasing** sequence of positive real numbers and a be a positive integer > 1. Then the series $\sum_{n=1}^{\infty} f(n)$ and $\sum_{n=1}^{\infty} a^n f(a^n)$ converge or diverge together.

(i)
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$
; $p > 0$.

Solution. Let $f(n) = \frac{1}{n(\log n)^p} > 0; \ p > 0; \ n \ge 2$

As $\{\log n\}$ is an increasing sequence and p > 0 then $\forall n \in \mathbb{N}$;

$$\{\log(n+1)\}^p > \{\log(n)\}^p$$

$$(n+1)\{\log(n+1)\}^p > n\{\log(n)\}^p$$

$$\frac{1}{n\{\log(n)\}^p} < \frac{1}{(n+1)\{\log(n+1)\}^p}$$

Therefore $\{f(n)\}_{n=2}^{\infty}$ is monotonically decreasing sequence of positive real numbers.

By Cauchy's condensation test, the two series $\sum f(n)$ and $\sum 2^n f(2^n)$ converge or diverge together.

Here, $\sum_{n=2}^{\infty} 2^n f(2^n) = \frac{1}{(\log 2)^p} \sum_{n=2}^{\infty} \frac{1}{n^p}$ and this series converges when p > 1 and diverges when $p \le 1$.

Therefore, the series $\sum_{n=2}^{\infty} f(n) = \sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ is convergent when p > 1 and divergent when $p \le 1$.

(ii)
$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

Solution. Let $f(n) = \frac{1}{n \log n} > 0$; $n \ge 2$

As $\{\log n\}$ is an increasing sequence then $\forall n \in \mathbb{N}$;

$$\begin{array}{rcl} \log(n+1) & > & \log(n) \\ (n+1)\log(n+1) & > & n\log(n) \\ \\ \frac{1}{n\log(n)} & < & \frac{1}{(n+1)\log(n+1)} \end{array}$$

Therefore $\{f(n)\}_{n=2}^{\infty}$ is monotonically decreasing sequence of positive real num-

By Cauchy's condensation test, the two series $\sum f(n)$ and $\sum 2^n f(2^n)$ converge or diverge together.

Here $\sum_{n=2}^{\infty} 2^n f(2^n) = \frac{1}{\log 2} \sum_{n=2}^{\infty} \frac{1}{n}$ which is divergent. Therefore, the series $\sum_{n=2}^{\infty} f(n) = \sum_{n=2}^{\infty} \frac{1}{n \log n}$ is divergent.

(iii) $\sum_{n=2}^{\infty} \frac{1}{(\log n)^2}$

Solution. Let $f(n) = \frac{1}{(\log n)^2} > 0; \ n \ge 2$

As $\{\log n\}$ is an increasing sequence then $\forall n \in \mathbb{N}$;

$$\begin{aligned}
\log(n+1) &> \log(n) \\
(\log(n+1))^2 &> (\log(n))^2 \\
\frac{1}{(\log(n))^2} &< \frac{1}{(\log(n+1))^2}
\end{aligned}$$

Therefore $\{f(n)\}_{n=2}^{\infty}$ is monotonically decreasing sequence of positive real num-

By Cauchy's condensation test, the two series $\sum f(n)$ and $\sum 2^n f(2^n)$ converge or diverge together.

Here, $\sum_{n=2}^{\infty} 2^n f(2^n) = \frac{1}{(\log 2)^2} \sum_{n=2}^{\infty} \frac{2^n}{n^2}$ is divergent (Verify by *D'Alembert ratio test!*).

Therefore the series $\sum_{n=2}^{\infty} f(n) = \sum_{n=2}^{\infty} \frac{1}{(\log n)^2}$ is divergent.

6. Use general form of root test to show that the series

$$a+b+a^2+b^2+a^3+b^3+\dots$$

where 0 < a < b < 1, is convergent.

General form of Root Test

Let $\sum u_n$ be a series of positive real numbers and let $\overline{\lim} (u_n)^{\frac{1}{n}} = l$. Then $\sum u_n$ is convergent if $l < 1, \sum u_n$ is divergent if l > 1.

Solution. Let $\sum u_n = a + b + a^2 + b^2 + a^3 + b^3 + \dots$

Here

$$\frac{u_{2n}}{u_{2n-1}} = \left(\frac{b}{a}\right)^n, \qquad \frac{u_{2n+1}}{u_{2n}} = a\left(\frac{a}{b}\right)^n$$

 \Rightarrow

$$\lim \frac{u_{2n}}{u_{2n-1}} = \infty, \qquad \lim \frac{u_{2n+1}}{u_{2n}} = 0.$$

It follows that

$$\overline{\lim} \frac{u_{n+1}}{u_n} = \infty, \qquad \underline{\lim} \frac{u_{n+1}}{u_n} = 0$$

That means, Ratio test gives no decision.

Now,

$$\lim_{n \to \infty} (u_{2n})^{\frac{1}{2n}} = \lim_{n \to \infty} (b^n)^{\frac{1}{2n}} = \sqrt{b},$$

$$\lim_{n \to \infty} (u_{2n+1})^{\frac{1}{2n+1}} = \lim_{n \to \infty} (a^{n+1})^{\frac{1}{2n+1}} = \sqrt{a}.$$

Therefore, $\limsup (u_n)^{\frac{1}{n}} = \sqrt{b} < 1$.

Hence, by general root test, $\sum u_n$ is convergent.

7. Show that the following series are convergent.

Absolute Convergence

Let $\sum u_n$ be a series of positive and negative real terms. Let $u'_n = |u_n|$ then $\sum u'_n$ is a series of positive real numbers. If $\sum u'_n$ is convergent then the series $\sum u_n$ is said to be absolutely convergent.

Theorem. An absolutely convergent series is convergent.

(i)
$$1 - \frac{1}{2^2} - \frac{1}{3^2} + \frac{1}{4^2} - \frac{1}{5^2} - \frac{1}{6^2} + \dots$$

Solution. Given series is

$$\sum u_n = 1 - \frac{1}{2^2} - \frac{1}{3^2} + \frac{1}{4^2} - \frac{1}{5^2} - \frac{1}{6^2} + \dots$$

which is series of arbitrary terms.

Here,
$$\sum |u_n| = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

Clearly, $\sum |u_n| = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent. $\Rightarrow \sum u_n$ is absolutely convergent.

$$\Rightarrow \sum u_n$$
 is convergent.

(ii)
$$1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} - \dots$$

Solution. Given series is

$$\sum u_n = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} - \dots,$$

which is series of arbitrary terms. Here $\sum |u_n| = 1 + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{1}{(2n)!}$.

Clearly $\sum |u_n| = \sum_{n=0}^{\infty} \frac{1}{(2n)!}$ is a convergent series by D'Alembert ratio test. [Actually $\sum_{n=0}^{\infty} \frac{1}{(2n)!} = \frac{1}{2} (e - e^{-1})$].

It follows that $\sum u_n$ is absolutely convergent.

$$\Rightarrow \sum u_n$$
 is convergent.

(iii)
$$\frac{1}{2^2 \log 2} - \frac{1}{3^2 \log 3} + \frac{1}{4^2 \log 4} - \dots$$

Solution. Given series is

$$\sum u_n = \frac{1}{2^2 \log 2} - \frac{1}{3^2 \log 3} + \frac{1}{4^2 \log 4} - \dots$$

which is series of arbitrary terms.

Here,
$$\sum |u_n| = \frac{1}{2^2 \log 2} + \frac{1}{3^2 \log 3} + \frac{1}{4^2 \log 4} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2 \log n}$$

Clearly, $\sum |u_n| = \sum_{n=2}^{\infty} \frac{1}{n^2 \log n}$ is convergent by Cauchy's condensation test.

 $\Rightarrow \sum u_n$ is absolutely convergent.

$$\Rightarrow \sum u_n$$
 is convergent.

8. Show that the following series are conditionally convergent.

Conditional Convergence

A series $\sum u_n$ is said to be *conditionally convergent* if $\sum u_n$ is convergent but $\sum |u_n|$ is NOT convergent.

(i)
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$$

Solution. Let $u_n = \frac{1}{\sqrt{n}}$ for all n = 1, 2, 3, ... Note that the sequence of positive real numbers $\{u_n\}$ is monotonic decreasing and $\lim_{n \to \infty} u_n = 0$.

Therefore by Leibnitz's Test, the given (alternating) series

$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} (-1)^{n+1} u_n = 1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$$

is convergent.

Note that $|v_n| = u_n$. But the series $\sum_{n=1}^{\infty} |v_n| = \sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is divergent (by p-test with $p = \frac{1}{2}$). Hence, the series $\sum v_n$ is conditionally convergent.

(ii)
$$\sin \frac{\pi}{2} - \sin \frac{\pi}{4} + \sin \frac{\pi}{6} - \dots$$

Solution. Let $u_n = (-1)^{n+1} \sin \frac{\pi}{2n}$ for all n = 1, 2, 3, The given alternating series $\sum u_n = \sin \frac{\pi}{2} - \sin \frac{\pi}{4} + \sin \frac{\pi}{6} - ...$ is convergent (by *Leibnitz's Test* as the previous problem).

But the series $\sum |u_n| = \sin \frac{\pi}{2} + \sin \frac{\pi}{4} + \sin \frac{\pi}{6} + \dots$ is divergent (See Problem 4(ii) for poof).

Hence, the series $\sum u_n$ is conditionally convergent.

(iii)
$$\frac{1}{\log 2} - \frac{1}{\log 3} + \frac{1}{\log 4} - \dots$$

Solution. Given series $\sum u_n = \frac{1}{\log 2} - \frac{1}{\log 3} + \frac{1}{\log 4} - \dots$ is convergent (by *Leibnitz's Test*).

But the series $\sum |u_n| = \frac{1}{\log 2} + \frac{1}{\log 3} + \frac{1}{\log 4} + \dots$ is divergent by comparison test (See Problem 4(*viii*) for proof).

Hence, the series $\sum u_n$ is conditionally convergent.

9. Show that the following series are convergent.

Leibnitz's Test

If $\{u_n\}$ is a sequence of positive real numbers which is a monotone decreasing and converging to 0, then the alternating series $u_1 - u_2 + u_3 - u_4 + \dots$ is convergent.

(i)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Solution. Given series is

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots,$$

where $u_n = \frac{1}{n}$ for all $n \in \mathbb{N}$. Then $u_{n+1} = \frac{1}{n+1}$. Since $\frac{1}{n+1} < \frac{1}{n}$, $\forall n \in \mathbb{N}$, that is $u_{n+1} < u_n$, $\forall n \in \mathbb{N}$

 $\implies \{u_n\}$ is monotonic decreasing sequence.

Also,
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n} = 0$$

Also, $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n} = 0$. Therefore, by *Leibnitz's Test*, the given alternating series is convergent.

(ii)
$$\frac{1}{1+a^2} - \frac{1}{2+a^2} + \frac{1}{3+a^2} - \dots$$

Solution. Given series is
$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = \frac{1}{1+a^2} - \frac{1}{2+a^2} + \frac{1}{3+a^2} - \dots$$
, where $u_n = \frac{1}{n+a^2}$ for all $n \in \mathbb{N}$. Then $u_{n+1} = \frac{1}{n+1+a^2}$. Since $(n+1) + a^2 > n + a^2$ for all $n \in \mathbb{N}$, $u_{n+1} < u_n$, $\forall n \in \mathbb{N}$

$$u_n = \frac{1}{n+a^2}$$
 for all $n \in \mathbb{N}$. Then $u_{n+1} = \frac{1}{n+1+a^2}$. Since $(n+1) + a^2 > n + a^2$ for all $n \in \mathbb{N}, u_{n+1} < u_n, \ \forall n \in \mathbb{N}$

Also
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n+a^2} = 0$$

 \Rightarrow $\{u_n\}$ is monotonic decreasing sequence. Also $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{n+a^2} = 0$. Therefore, by *Leibnitz's Test*, the given series is convergent.