High School Mathematics Test 2014

Year 8

Volume

Non Calculator Section

Skills and Knowledge Assessed:

- Draw different views of prisms and solids formed from combinations of prisms (ACMMG161)
- Choose appropriate units of measurement for area and volume and convert from one unit to another (ACMMG195)
- Develop the formulas for volumes of rectangular and triangular prisms and prisms in general. Use formulas to solve problems involving volume (ACMMG198)
- Calculate the surface area and volume of cylinders and solve related problems (ACMMG217) Extension

Answer all questions in the spaces provided on this test paper by:

Writing the answer in the box provided.

or

Shading in the bubble for the correct answer from the four choices provided. Show any working out on the test paper. Calculators are **not** allowed.

For the solid shown, which diagram below correctly shows its front view (elevation) and top view (plan).

2. Draw a three dimensional sketch of the prism whose net is shown below.

- What name describes the solid shown?
 - Rectangular Prism.
 - Rectangular Pyramid.
 - Triangular Prism.
 - Triangular Pyramid.

4. What is the volume of the cube shown?

Volume = cm³

5. What is the volume of the rectangular prism?

Volume = cm³

6. Jimmy buys the glass aquarium shown and fills it to within 10 cm of the top.

How many litres of water are needed?

(1000 cm³ holds one litre.)

- ☐ 70 litres.
- □ 80 litres.
- ☐ 140 litres.
- ☐ 160 litres.

7. Josie buys a pizza in the box shown.

What is the volume of the box?

8. What is the volume of the prism whose net is shown here?

9. What is the volume of the triangular prism shown?

- 4 500 cm³
- □ 9 000 cm³
- \Box 18 000 cm³

10. Each of these hexagonal boxes has a depth of 12 cm and the hexagonal top of each has an area of 90 cm².

What is the total volume of all the boxes shown?

11. A dog kennel has the dimensions shown.

Calculate the volume of the kennel in cm³.

Volume =
$$cm^3$$
.

A storage cabinet is in the shape shown.

What volume of storage does the cabinet provide?

Volume of Storage =

A gift box is in the shape of an octagonal prism that has 20 cm edges, measures 48 cm across and is 20 cm deep.

The octagon can be thought of as 8 isosceles triangles as shown.

Find the volume of the box.

 m^3 .

Volume = cm³

14. Find the volume of the cylinder in terms of π .

Volume = cm^3

A letter box is a prism with its cross section shown below.

What is the volume of the lunch box?

- $150 \text{ m} + 720 \text{ cm}^3$
- $1500 \text{ m} + 7200 \text{ cm}^3$
- $\frac{}{}$ 3000 π + 7200 cm³

High School Mathematics Test 2014

Year 8	Volume	Calculator Allowed Short Answer Section
		Name

Answer all questions in the spaces provided on this test paper by:

Writing the answer in the box provided.

or

Shading in the bubble for the correct answer from the four choices provided. Show any working out on the test paper. Calculators are allowed.

1.	Which solid below is not a prism?
2.	Which of the solids shown would have the top and side view below? Top View Side View

The cube shown has a volume of 42.875 cm³.

What is the length of its edge?

Length = cm.

4. What is the volume of the rectangular prism?

□ 25.0 cm

□ 50.0 cm

□ 100.0 cm

□ 125.0 cm

5. What is the volume of the prism shown in cm³?

□ 105 cm³

 \Box 1 050 cm³

 \square 10 500 cm³

 \Box 105 000 cm³

6. A prism has a volume of 6.5 m³. What is its volume in cm³?

 650 cm^3

 $65~000~\text{cm}^3$

 $650\ 000\ \text{cm}^3$

6 500 000 cm³

7. Each of the cubes used in this design measure 2 cm on each side.

What is the total volume of the design?

☐ 13 cm³

 \square 26 cm³

☐ 52 cm³

 \square 104 cm³

8. Which calculation could be used to find the volume of the triangular prism shown?

9. Find the volume of the triangular prism shown.

Volume = cm^3

The area of the pentagonal base of this prism is 64.5 cm².

What is the volume of the prism?

Volume = cm³

The water tank is designed to go under a deck and has the dimensions shown below.

Using the relationship: 1 cubic metre holds 1 kilolitre; find the capacity of the tank in litres.

Capacity = litres.

12. Choc Delites are sold in a packet which is a triangular prism.

What is the volume of the packet shown?

- \square 35 cm³
- \square 37.5 cm³
- ☐ 52.5 cm³
- \square 131.25 cm³

What is the volume of the cylinder to the nearest cm³?

Volume = $\int cm^3$.

14. A storage hut is in the shape of a half cylinder.

The diameter of the semicircle is 8 metres and the length of the hut is 16 metres. What volume does the hut hold?

The petroleum storage tanks are cylinders which have a diameter of 80 metres and a height of 40 metres.

The top curved section is only used to contain vapour.

A cubic metre holds one kilolitre.

How many megalitres of petroleum would the three tanks hold?

Capacity of three tanks = | Megalitres

High School Mathematics Test 2014

Volume ANSWERS

- What name describes the solid shown?
 - Rectangular Prism.
 - ☐ Rectangular Pyramid.
 - Triangular Prism.
 - Triangular Pyramid.

4. What is the volume of the cube shown?

$$V=9^3=729$$

Volume =
$$927$$
 cm³

5. What is the volume of the rectangular prism?

Volume =
$$\boxed{216}$$
 cm³

$$V = 3 \times 6 \times 12 = 216$$

6. Jimmy buys the glass aquarium shown and fills it to within 10 cm of the top.

How many litres of water are needed?

(1000 cm³ holds one litre.)

- 70 litres.
- 80 litres.
- $V = 50 \times 40 \times 70 = 140\,000\,\mathrm{cm}^3 = 140\,\mathrm{litres}$
- **1**40 litres.
- ☐ 160 litres.

7. Josie buys a pizza in the box shown.

What is the volume of the box?

$$V = 950 \times 4 = 3800 \text{ cm}^3$$

8. What is the volume of the prism whose net is shown here?

$$V = \frac{1}{2} \times 6 \times 4 \times 8$$
$$= 96 \text{ cm}^3$$

Volume = 96

8 cm ↓
cm³

- 9. What is the volume of the triangular prism shown?
 - \square 900 cm³
 - 4500 cm^3
 - □ 9 000 cm³
 - ☐ 18 000 cm³

 $V = \frac{1}{2} \times 12 \times 25 \times 30 = 4500 \text{ cm}^3$

Each of these hexagonal boxes has a depth of 12 cm and the hexagonal top of each has an area of 90 cm².

What is the total volume of all the boxes shown?

Volume 1 box = $90 \times 12 = 1080$ Volume 3 boxes = $3 \times 1080 = 3240$

11. A dog kennel has the dimensions shown.

Calculate the volume of the kennel in cm³.

Area =
$$50 \times 60 + \frac{1}{2} \times 60 \times 20$$

= $3000 + 600 = 3600$
Volume = 3600×100
= $360\ 000\ \text{cm}^3$

Volume =
$$360\ 000$$
 cm³.

A storage cabinet is in the shape shown.

What volume of storage does the cabinet provide?

Area =
$$0.6 \times 1.8 + 1 \times 0.6$$

= $1.08 + 0.6 = 1.68$
Volume = 1.68×3
= 5.04 m^3

Volume of Storage = $\begin{bmatrix} 5.04 \\ \end{bmatrix}$ m³.

A gift box is in the shape of an octagonal prism that has 20 cm edges, measures 48 cm across and is 15 cm deep.

The octagon can be thought of as 8 isosceles triangles as shown.

Find the volume of the box.

Volume = 28 800 cm³

Area = $\frac{1}{2} \times 20 \times 24 \times 8 = 1920$ Volume = 1920 × 15 = 28 800 cm³

14. Find the volume of the cylinder in terms of π .

Area =
$$\pi \times 6^2 = 36\pi$$

Volume = $36\pi \times 20$
= 720π cm³

Volume =
$$\sqrt{720\pi}$$
 cm³

A letter box is a prism with its cross section shown below.

What is the volume of the lunch box?

- \Box 50 π + 240 cm³
- \Box 150 π + 720 cm³
- $1500 \text{ m} + 7200 \text{ cm}^3$
- \square 3000 π + 7200 cm³

Area =
$$\frac{1}{2} \times \pi \times 10^2 + 12 \times 20$$

= $50\pi + 240$
Volume = $A \times 30$

 $= 1500\pi + 7200 \text{ cm}^3$

High School Mathematics Test 2014

Calculator Allowed Short Answer Section (1 mark each)

1. Which solid below is **not** a prism?

2. Which of the solids shown would have the top and side view below?

The cube shown has a volume of 42.875 cm³.

What is the length of its edges?

$$L = \sqrt[3]{42.875} = 3.5$$

Length =
$$\boxed{3.5}$$
 cm.

- 4. What is the volume of the rectangular prism?
 - □ 25.0 cm
 - □ 50.0 cm
- Area = $12.5 \times 2.0 = 25$ Volume = $25 \times 4 = 100$
- 100.0 cm
- □ 125.0 cm

- 4.0 cm 12.5 cm
- 5. What is the volume of the prism shown in cm³?
 - □ 105 cm³
- Area = $12 \times 25 = 300$
- \Box 1 050 cm³
- Volume = $300 \times 35 = 10500 \text{ cm}^3$
- $10 500 \text{ cm}^3$
- \Box 105 000 cm³

- 35 cm 25 cm
- 6. A prism has a volume of 6.5 m³. What is its volume in cm³?

$$1 m^3 = 100 \times 100 \times 100 = 1000000 \text{ cm}^3$$

6.5 $m^3 = 6.5 \times 1000000 = 6500000 \text{ cm}^3$

- 650 cm^3
- $65\ 000\ cm^3$
- 650 000 cm³
- 6 500 000 cm³

- 7. Each of the cubes used in this design measure 2 cm on each side.

What is the total volume of the design?

- \square 13 cm³ There are 13 cubes.
- \square 26 cm³ Volume of 1 cube = 2 × 2 × 2 = 8 cm³
- 52 cm³
- 104 cm

Volume of all cubes = $13 \times 8 = 104 \text{ cm}^3$

25 cm

30 cm

8. Which calculation could be used to find the volume of the triangular prism shown?

9. Find the volume of the triangular prism shown.

Area =
$$\frac{1}{2}$$
 × 40 × 15 = 300
Volume = 300 × 30 = 9 000 cn

Volume =
$$\boxed{9\ 000}\ \text{cm}^3$$

The area of the pentagonal base of this prism is 64.5 cm².

What is the volume of the prism?

Area =
$$64.5$$

Volume = $64.5 \times 16 = 1032 \text{ cm}^3$

Volume =
$$\begin{vmatrix} 1 & 032 \end{vmatrix}$$
 cm³

The water tank is designed to go under a deck and has the dimensions shown below. 11. Using the relationship: 1 cubic metre holds 1 kilolitre; find the capacity of the tank in litres.

11 500 Capacity = litres. Volume = $4.6 \times 2.5 = 11.5 \text{ m}^3$ Capacity = 11.5 kl = 11 500 litres

12. Choc Delites are sold in a packet which is a triangular prism.

What is the volume of the packet shown?

- \square 35 cm³
- \blacksquare 37.5 cm³
- \bigcap 52.5 cm³
- \bigcap 131.25 cm³

2.5 cm Choc Delite 2.5 cm Produce of Australia 3.5 cm

Area = $\frac{1}{2}$ × 2.5 × 2.5 = 3.125 Volume = $3.125 \times 12 = 37.5 \text{ m}^3$

13. What is the volume of the cylinder to the nearest cm³?

Volume =
$$\boxed{2651}$$
 cm³.

Area = $\pi \times 7.5^2 = 176.7 \text{ cm}^2$ Volume = $176.7 \times 15 = 2650.7 \text{cm}^3$

A storage hut is in the shape of a half cylinder.

The diameter of the semicircle is 8 metres and the length of the hut is 16 metres. What volume does the hut hold?

Volume =
$$\begin{bmatrix} 402.1 \\ \end{bmatrix}$$
 m³

Area =
$$\frac{1}{2} \times \pi \times 4^2 = 25.1 \text{ m}^2$$

Volume =
$$25.1 \times 16 = 402.1 \text{m}^3$$

The petroleum storage tanks are cylinders which have a diameter of 80 metres and a height of 40 metres.

The top curved section is only used to contain vapour.

A cubic metre holds one kilolitre.

How many megalitres of petroleum would the three tanks hold?

Area =
$$\pi \times 40^2 = 5026.5 \, m^2$$

Volume 1 tank =
$$5026.5 \times 40 = 201062$$
m³

Capacity 1
$$tank = 201\ 062\ kl = 201\ Ml$$

Capacity 3 tanks =
$$3 \times 201 = 603 \text{ M}$$

Capacity of three tanks =

Megalitres