project ID 08238

issue number R_0

client Downer Infrastructure

- Archerfield

issue date 3rd December 2013

testing date 30th October 2013

contact Mr. Simon Moroney

Consulting • Technologies • Monitoring • Toxicology

Downer Infrastructure 2 Burke Street Woolloongabba, Queensland. 4103

Pacific Environment Limited 1/22 Varley Street Yeerongpilly, Qld. 4105 ABN: 86 127 101 642

Emissions Testing for Downer EDI from the Asphalt Plant Release Point at the Archerfield facility

This report provides potentially sensitive information to the reader and as such should be considered a **confidential document**. All recipients are required to treat this report as confidential. It is for the sole use of Downer Infrastructure - Archerfieldand those granted permission by Downer Infrastructure - Archerfield.

This document is an initial release

Prepared by Quality checked by

Berger

21 Ill

Timon Berger QSTI – Approved Signatory Technical Manager Accreditation Number: 15438

David Arbuckle QSTI – Approved Signatory General Manager - Monitoring

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/ IEC 17025. NATA accredited laboratory 15438.

This report must not be reproduced except in full.

Page 1 of 12 PERTH

BRISBANE ADELAIDE SYDNEY MELBOURNE

1 EXECUTIVE SUMMARY

The following tables provide a summary of results for emission monitoring conducted by Pacific Environment Monitoring for Downer Infrastructure on the 30th October 2013 at their Archerfield Asphalt facility. For further details, refer to supporting document and tables in the results section below

Table 1: Results Summary: Main Stack

Compound	Unit of measure	Re	sult	License Limit	Oxygen Reference	Compliant Yes/No	Number of Samples
Particulates	mg/Nm³		4.1	50	N/A	Υ	1
Velocity [1]	m/s		18	16.3	N/A	Y	2
PM10 [2]	mg/Nm³	<	4.1	25	N/A	Υ	1
CO	mg/Nm³		409	150	N/A	N	1
H2S	mg/Nm³	<	0.61	5	N/A	Y	1
NOx	mg/Nm³		49	50	N/A	Υ	1
VOCs	mg/Nm³		47	50	N/A	Υ	1
Odour	OU		1516	1600	N/A	Υ	1
PAH (BaP) [3]	µg/Nm³		0.36	1	N/A	Y	1
Total Metals [4]	µg/Nm³		50	100	N/A	Υ	1

Notes:

- 1. Reported result is as measured at the sample location.
- 2. Assuming all particulate matter is PM₁₀.
- 3. Using total of 16 priority PAH pollutants and the Malcom & Dobson Benzo-a-pyrene (BaP) equivalent upper bound.
- 4. Sum of antimony, arsenic, cadmium, lead, mercury & vanadium. Upper bound (sum of all detection limits).
- 5. Shaded cells are above permit condition limits.

Project ID: 08238

issue number: R_0

Pacific Environment Ltd Page 2 of 12

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY	2
2 INTRODUCTION	4
3 TEST METHODS & TECHNICAL COMMENTS	4
3.1 Sampling Locations	4
3.2 Test Methods	5
3.3 Test Equipment	7
3.4 Technical Notes	8
3.4.1 Main Stack	8
3.4.2 Operational Data	8
4 QUALITY ASSURANCE & QUALITY CONTROL (QA/QC)	9
5 DEFINITIONS	10
5.1 Document Control	11
6.0 RESULTS	12
Table 1: Results Summary: Main Stack	
,	
Table 3: Test Methods	
Table 5: NATA Analysis Scope	
Table 6: Sampling Notes	
Table 7: Operation details	
Table 8: Sampling data QA/QC checklist	
Table 9: Laboratory Data QA/QC checklist	
Table 10: Definitions	
Table 11: Document Control	11
Table 12: Test Information	12
LIST OF FIGURES	
Figure 1: On-site sampling	7

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/ IEC 17025. NATA accredited laboratory 15438. This report must not be reproduced except in full.

Project ID: 08238

issue number: R_0

2 INTRODUCTION

Pacific Environment was commissioned by Downer Infrastructure to monitor emissions from their Archerfield Asphalt Plant. Sampling was conducted by Pacific Environment on the 30th October, 2013.

Pacific Environment was responsible for the collection and analysis of all samples. The collected samples remained sealed and preserved according to method specifications. Upon return to the laboratory the samples were prepared and analyzed by the listed methodologies in table 3.

3 TEST METHODS & TECHNICAL COMMENTS

Unless otherwise stated, the following test methods meet the requirements of Queensland EHP. All sampling and analysis was conducted by Pacific Environment unless otherwise stated. The results presented in this report are related to one or more reference calibrations held by Pacific Environment.

3.1 Sampling Locations

The reference method sampling locations are described in the table and figures to follow.

Table 2: Main Stack sampling location summary

Stack Parameter	Unit		
Dimensions (m)	1,1		
Port size (inches)	4"		
Port Thread Type	Flange		
Number of traverses	2		
Number of points per traverse	8		
Total number of traverse points	16		
AS4323.1 Compliance	Compliant, Non-ideal,		

Project ID: 08238

issue number: R_0

Pacific Environment Ltd Page 4 of 12

3.2 Test Methods

Table 3: Test Methods

Emission Test	Method	Unit of Measure	Analytical Laboratory
Traverse point selection	AS4323.1	-	1
Temperature	USEPA Method 2	°C	1
Velocity	USEPA Method 2	m/s	1
Volumetric flowrate	USEPA Method 2	m³/min	1
Moisture content	USEPA Method 4	%	1
Carbon dioxide	USEPA Method 3A	%	1
Oxygen	USEPA Method 3A	%	1
Particulate matter (PM)	AS 4323.2	mg/Nm³	1
Particulate matter < 10 microns (PM ₁₀)	AS 4323.2	mg/Nm³	1
Carbon monoxide (CO)	USEPA Method 10	mg/Nm³	1
Nitrogen oxides (NOx)	USEPA Method 7E	mg/Nm³	1
Total heavy metals	USEPA Method 29	μg/Nm³	2
Total Volatile organic compounds	USEPA Method 25A	µg/Nm³	1
Hydrogen sulphide (H ₂ S)	USEPA Method 15	μg/Nm³	1
Polycyclic aromatic hydrocarbons (PAH)	CARB 429	µg/Nm³	3
Odour	AS4323.2	OU	1

Project ID: 08238

issue number: R_0

Pacific Environment Ltd Page 5 of 12

Table 4: Laboratory Scope

Analysis Note	Company	Accreditation ID	Report Number	
1	Pacific Environment	NATA: 15438	08238	
2	Envirolab Services	NATA: 2901	100402	
3	AsureQuality	IANZ / ILAC MRA: 131	143742	

Table 5: NATA Analysis Scope

Company	Accreditation ID	Scope of accreditation (laboratory analysis)		
Pacific Env. NATA: 15438		Particulate Matter – balance weighing – Yes		
		VOCs – Yes		
Envirolab Services NATA: 2901		Heavy Metals – Yes		
AsureQuality IANZ: 131		PAHs - Yes		

Table 6: Sampling Notes

Note	Comment
Sample location Sample location is compliant, but non-ideal as per AS 4323.1. It is less than 6 greater than 2 diameters downstream from a disturbance.	
PAHs A singular PAH sample was collected and analyzed for this project.	
PM ₁₀	Due to process time restrictions, sample port access and the expected low concentration of total particulate matter, an individual PM ₁₀ sample was not collected. The measured total particulate matter showed a very low result, approaching the limit of detection for a standard particulate test, therefore when establishing compliance to a standard, assuming 100% of the collected particulate matter is PM ₁₀ demonstrates a 'worst case' scenario.
Metals	The reported total heavy metals result includes the sum of all listed metals in the Archerfield environmental permit, including those below the limit of detection. Only Cadmium (0.6 µg/Nm³) and Lead (31 µg/Nm³) were found in the sample above the limit of detection.

Project ID: 08238

issue number: R_0

Pacific Environment Ltd Page 6 of 12

3.3 Test Equipment

The sampling equipment was transported to site in Pacific Environment's mobile lab; the lab was set up at the base of the main stack and acted as a temporary site office and lab whilst on site. Sampling consoles, analysers, calibration gases and sample recovery equipment were set up inside the van with umbilical's connecting these sampling consoles to the probes and impingers at the platform level of the stack. This area also provides a clean area in which to carry out the sample recovery and an air-conditioned environment for the analysers to operate in.

Figure 1: On-site sampling

All equipment used during the course of the testing meets all relevant performance standards as required by all jurisdictions. The isokinetic equipment used for this project was from Apex Instruments. Combustion gases were monitored using a Thermo 60i combustion gas analyser.

Figure 2: Full Isokinetic Sampling ensemble (Apex Instruments)

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/ IEC 17025. NATA accredited laboratory 15438. This report must not be reproduced except in full.

Project ID: 08238

issue number: R_0

Pacific Environment Ltd Page 7 of 12

3.4 Technical Notes

3.4.1 Main Stack

3.4.1.1 CARB Method 429

The supplied Benzo-a-Pyrene (BaP) Potency Equivalency Factors (PEF) in this report are referenced to a WHO published document entitled 'Environmental Health Criteria 202', specifically table Al.9, using 'Malcom & Dobson – 1994' factors. One sample was collected from each source.

3.4.1.2 USEPA Method 3A & 7E

> Calibrations of the analyser sampling for gas densities CO₂, O₂ and CO occurred at the beginning of each day of sampling. Direct analyser calibrations were firstly performed, followed by a system bias check, where calibration gas is sent to the probe of the sampling system to determine any possible bias introduced by the sampling system. For each days calibration check, no adjustments needed to be made to the analyser, i.e. no significant drift had occurred between calibration check events.

3.4.1.3 USEPA Method 25A

- USEPA Method 25A samples for total volatile organic compounds (TVOC) via a flame ionization detector analyzer. Samples were taken on site with flex-foil bags and analyzed later that day at Pacific Environment Monitoring office.
- Emission rate calculations for the TVOC results are calculated using data from a separate velocity traverse conducted at the time of the TVOC sample.
- The FID instrument measures ppm-propane Total VOC on a wet basis at 0°C, therefore results are converted to dry using moisture values from corresponding isokinetic runs.

3.4.2 Operational Data

Table 7: Operation details

Item	Detail		
Production rate	170 tph		
Product made/materials	DG 14		
Mixing vessels operating	Rotary drying drum		
Mixing temperatures	Drum: 210 °C Bag-filter: 120 °C		

Project ID: 08238

issue number: R_0

Pacific Environment Ltd Page 8 of 12

4 QUALITY ASSURANCE & QUALITY CONTROL (QA/QC)

Pacific Environment operates within a quality system based upon the requirements of ISO17025. Our quality system defines specific procedures and methodologies to ensure any project undertaken by Pacific Environment is conducted with the highest level of quality given the specific confines of each project.

The overall objective of our QA/QC procedures is to representatively sample and accurately analyse components in the gas streams and therefore report valid measurements of emission concentrations.

To ensure representativeness of field work, our quality procedures target:

- 1. Correct sampling locations
- 2. Sample time
- 3. Frequency of samples and
- 4. Method selection & adherence

To ensure representativeness of lab work, our quality procedures target:

- 1. Sample preservation
- 2. Chain of custody (COC)
- 3. Sample preparation and
- 4. Analytical techniques

Pacific Environment maintains strict quality assurance throughout all its sampling programs, covering onsite 'field work' and the analytical phase of our projects. Our QA program covers the calibration of all sampling and analytical apparatus, where applicable, and the use of spikes, replicate sample and reference standards.

The test methodologies used for this project are outlined in section 3 of this document. Field test data has been recorded and calculated using direct entry into Microsoft Excel spreadsheets following the procedures of the appropriate test methods. Determination of emission concentrations has been performed using the same Microsoft Excel spreadsheets. Additional information can be supplied upon request.

QA/QC checks for this project used validation techniques and criteria appropriate to the type of data and the purpose of the measurement to approve the test report. Records of all data collected will be maintained by PE-M. Complete chain of custody (COC) procedures has been followed to document the entire custodial history of each sample. The COC forms also served as a laboratory sheet detailing sample ID and analysis requirements.

Table 8: Sampling data QA/QC checklist

Sampling Data QA/QC Checklist	Comment				
Use of appropriate test methods	Yes				
'Normal' operation of the process being tested	Yes – as instructed by Downer Staff				
Use of properly operating and calibrated test equipment	Yes				
Use of high purity reagents	Yes				
Performance of leak checks post sample (at least)	Yes				

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/ IEC 17025. NATA accredited laboratory 15438. This report must not be reproduced except in full.

Project ID: 08238

issue number: R_0

Pacific Environment Ltd Page 9 of 12

Table 9: Laboratory Data QA/QC checklist

Laboratory Data QA/QC Checklist	Comment
Use of appropriate analytical methods	Yes
Use of properly operating and calibrated analytical equipment	Yes
Precision and accuracy comparable to that achieved in similar	Yes
projects	
Accurate reporting	Yes

5 DEFINITIONS

The following terms and abbreviations may be used in this report:

Table 10: Definitions

	Table 10: Definitions						
Symbol	Definition						
<	The analytes tested for was not detected; the value stated is the reportable limit of						
	detection						
NT	Not tested						
Am³	Gas volume in cubic meters at measured conditions						
AS	Australian Standard						
ВН	Back half of sample train (filter holder and impingers) (referred to during sample recovery)						
°C	Degrees Celsius						
dscm	dry standard cubic meters						
FH	Front half of sample train (probe and filter holder) (referred to during sample recovery)						
g	Grams						
kg	Kilograms						
m	Meters						
m³	actual gas volume in cubic meters as measured						
mb	Millibars						
mg	Milligrams (10 ⁻³ grams)						
min	Minute						
ml	Milliliters						
mmH ₂ O	Millimeters of water						
Mole	SI unit that measures the amount of substance						
N/A	Not applicable						
ng	Nanograms (10 ⁻⁹ grams)						
Nm³	Gas volume in dry cubic meters at standard temperature and pressure (0°C and 101.3 kPa)						
PM	Particulate matter						
ppm-c	Parts per million referenced to carbon						
ррт-р	Parts per million referenced to propane						
S	Second						
Sm ³	Gas volume in dry cubic meters at standard temperature and pressure (0°C and 101.3 kPa) and corrected to a standardised value (e.g. 7% O ₂)						
STP	Standard temperature and pressure (0°C and 101.3 kPa)						
TVOC	Total volatile organic compounds						
μg	microgram (10 ⁻⁶ grams)						
USEPA	United States Environmental Protection Authority						
*	Indicates compounds that are not covered under the respective analytical labs'						
	accreditation scope						

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/ IEC 17025. NATA accredited laboratory 15438. This report must not be reproduced except in full.

Project ID: 08238

issue number: R_0

Pacific Environment Ltd Page 10 of 12

5.1 Document Control

Table 11: Document Control

Report ID	Date	Comment	Author	QA	Recipient
08238 R_0	3 rd December 2013	Initial release	ТВ	DA	Simon Moroney

Project ID: 08238

issue number: R_0

Pacific Environment Ltd Page 11 of 12

6.0 RESULTS

Table 12: Test Information

Source Data Client Site			Stack SDS version - 3.03 Downer EDI Archerfield	Stack SDS version - 3.03 Downer EDI Archerfield
Site Sample Point			Archerfield Kiln Stack	Archerfield Kiln Stack
Reference Method Test Parameters			USEPA M29 - Metals - ISOKINETIC PM & HM	PAH PAH - ISOKINETI
Process conditions Historical Data & Hardware Information - Manual Sample			DG14	DG14 @ 170tph
Run Start Date Project ID		dd-mm-yy	Wednesday, 30 October 2013 08238	Wednesday, 30 October 2013 08238
Run ID Run Start Time	Ti	hh:mm	-1 9:26:00	-2 7:19:00
Run Stop Time Positioning compliance check with AS4323.1	Tf	hh:mm	11:42:00 Non-ideal	8:46:00 Non-ideal
Flow & temperature compliance check with AS4323.1			YES 1.1, 1, 1, 16	YES 1.1,1,1.1,16
Traverse pt factors; up, down, total & trav pts Console Serial Number			SN256	SN256
Meter Calibration Factor Orifice Coefficient	(Y)	(DH _e)	0.990 45.35	0.990 45.35
Pitot Tube Coefficient Actual Nozzle Diameter	(C _p)	mm	0.84 5.55	0.84 5.55
Stack Test Data				
Initial Meter Volume Final Meter Volume	(V _m) _i (V _m) _f	m³	6.272 7.585	4.622 5.937
Actual Sampling Time Average Meter Temperature	(Q) (t _m) _{avq}	minutes °C	80 28	80 26
Average Stack Temperature	(t _r) _{avq}	°C	111	110
Barometric Pressure Stack Static Pressure	(P _b) (P _{rtatic})	mb mm H₂O	1014 -16	1014 -16
Absolute Stack Pressure Sample Volumes	(P,)	mb	1012	1012
Actual Meter Volume	(V _m)	m³	1.300	1.302
Standard Meter Volume Moisture Content Data	(V _m) _{rtd}	Nm ³	1.181	1.194
Impingers 1-3 Water Volume Gain Impinger 4 Silica Gel Weight Gain	(V _n)	ml	184 10	194 15
impinger 4 oliica Gei weight Gain Total Water Volume Collected	(W _n)	g ml	194	209
Calculated Stack Moisture Stack Gas Density Analysis Data	(B _{ur(calc)})	%	18	19
Carbon Dioxide Percentage	(%CO ₂)	%	4.2	4.2
Oxygen Percentage Carbon Monoxide Percentage	(%.CO)	% %	15.4 0.0	15.6 0.0
Nitrogen Percentage Dry Gas Molecular Weight	(%N₂) (M₄)	% kg/Nm3	79 1.3	79 1.3
Dry Gas Molecular Weight	(M_d)	g/g-mole	29	29
Wet Stack Gas Molecular Weight Volumetric Flow Rate Data (at Sample Plane)	(M,)	g/g-mole	27	27
Average Stack Gas Velocity Stack Diameter	(v,) Ds	m/sec m	18	19 1.1
Stack Cross-Sectional Area	(A _x)	m²	0.95	0.95
Upstream distance (from disturbance) Downstream distance (from disturbance)	B A	m m	3.6 3.0	3.6 3.0
Actual Stack Flow Rate Wet Standard Stack Flow Rate	(Q _{au})	m³/min Nm³/min-wet	1,040 739	1,061 756
Dry Standard Stack Flow Rate	(Q_{rd})	Nm³/min-dry	606	613
Percent of Isokinetic Rate Particulate Matter (PM) Concentration	(1)	%	96	96
Total Mass of Particulates Stack PM Concentration	(m _n)	g mg/Nm³	0.0048 4.1	
Stack PM Concentration at 12 % CO2	(c,)	mg/Nm³	4.4	
Particulate Emission Rate Particulate Uncertainty Calculation	(E)	g/min	2.5	
Uncertainty expressed at 95%Cl Uncertainty expressed at 95%Cl	(U) (U)	mg/Nm³	Non ideal. Cannot quote	Non ideal. Cannot quote
Instrumental Analyser – Historical Data & Hardware Information Analyser serial number, make & model	,- <i>r</i>	value	SN034	SN034
Analyser Run Start Time	Ti	hh:mm	9:26:51	8:04:45
Analyser Run Stop Time Analyser Total Sampling Time	Tf (Q)	hh:mm hh:min	11:14:59 1:48	8:45:47 0:41
Instrumental Analyser Raw Data Averages Oxides of Nitrogen	(NOx)	ppm	24	
Carbon Monoxide ge Oxides of Nitrogen (USEPA Method 7E – instrumental analyser)	(CO)	ppm	327	
Nitrogen Oxides (NOx as NO2) Nitrogen Oxides at 7 % O2	(Conc) (Conc)	mg/Nm3 mg/Nm3	49 53	
Nitrogen Oxides (NOx as NO2) age Carbon Monoxide (USEPA Method 10 - instrumental analyser)	(E)	g/min	30	
Carbon Monoxide (CO)	(Conc)	mg/Nm³	409	
Carbon Monoxide at 7 % O2 Carbon Monoxide (CO)	(Conc) (E)	mg/Nm3 g/min	441 248	
Heavy Metals (USEPA Method 29) Antimony		μg/Nm³	⟨ 4.8	
Arsenic Cadmium		μg/Nm³	< 4.8 0.59	
Lead		μg/Nm³ μg/Nm³	31	
Vanadium Mercury			< 6.0 < 2.7	
OTHER ANALYTES	(C)		1	1 518
Odour Odour emission rate	(Conc) (E)	ou ou/min (wet)		1,516 1,147,075
Total VOCs – as propane Total VOCs – as propane emission rate	(Conc) (E)	mg/Nm3 g/min		47 29
Hydrogen Sulphide Hydrogen Sulphide emission rate	(Conc) (E)	mg/Nm3 g/min		(0.61 (0.37
PAHs (CARB 429) ANALYTE Naphthalene	(Conc)	μg/Nm³		279
2-Methylnapthalene	(Conc)	μg/Nm³		196
Acenaphthylene Acenaphthene	(Conc) (Conc)	μg/Nm³ μg/Nm³		23 6.7
Fluorene	(Conc)	μg/Nm³		9.3
Phenanthrene Anthracene	(Conc) (Conc)	μg/Nm³ μg/Nm³		1.8
Fluoranthene Pyrene	(Conc) (Conc)	μg/Nm³ μg/Nm³		0.56 1.0
Benz[a]anthracene	(Conc)	μg/Nm³		0.015
Chrysene Benzo(b)fluoranthene	(Conc) (Conc)	μg/Nm³ μg/Nm³		0.044 0.0058
Benzo[k]fluoranthene	(Conc)	μg/Nm³		0.0033
Benzo(e)pyrene Benzo(a)pyrene	(Conc) (Conc)	μg/Nm³ μg/Nm³		0.0050 0.0014
Perylene Indeno[123-c,d]pyrene	(Conc)	μg/Nm³		0.0024
Dibenzo (a,h) pyrene	(Conc) (Conc)	μg/Nm³ μg/Nm³		0.0020
Benzo[g,h,i]perylene	(Conc)	μg/Nm³		0.0021
Total Target PAHs - LOWER	(Conc)	μg/Nm³		531
Тохіо CARB Benzo [a] pyrene equivalents - LOWER Toxio USEPA Benzo [a] pyrene equivalents - LOWER	(Conc) (Conc)	μg/Nm³ μg/Nm³		0.00
WHO - Malcom & Dobson (1994)	(Conc)	μg/Nm³		0.35
Total Target PAHs - MEDIUM	(Conc)	μg/Nm³		531
Тохіо CARB Benzo [a] pyrene equivalents - MEDIUM Toxio USEPA Benzo [a] pyrene equivalents - MEDIUM	(Conc) (Conc)	μg/Nm³ μg/Nm³		0.00
TONIO COLL IN DELICO (a) pyrette edalvalet (b) The Block		μg/Nm ³		0.36
WHO - Malcom & Dobson (1994)	(Conc)	p.g		
WHO - Malcom & Dobson (1994) Total Target PAHs - UPPER	(Conc)	μg/Nm³		531
WHO - Malcom & Dobson (1994)				531 0.01 0.01

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/ IEC 17025. NATA accredited laboratory 15438. This report must not be reproduced except in full.

Pacific Environment Ltd Page 12 of 12