Classification Type I

- · Zero input response: ONTPUT DUE TO INITIAL CONDITIONS (STATE) UNLY
- * Zero state response: THE TO INPUT ONLY

Classification Type II

- Steady State response: OUTPNT TURMS OF RESPONSE THAT WHOTE
- · Transient response: OMTPUT TIRMS THAN GO TO ZURO

Ebel | 168

 $Electric\ Circuit\ Applications\ (Zero\ Input\ Response)$

Copyright 2015 by William J. Ebel

Find the current i(t) in the circuit shown. Assume L = 1H, C = 1F, R = 1 Ω , v(0) = 1V, and x(t) = 0.

SET SLIDE 166

- **♦** Impulse Response, h(t): Zero state response to an input of $\delta(t)$
- **Transfer Function:** $H(s) = L\{h(t)\}$

❖ Design Rules:

- The filter is designed using only poles.
- The poles are evenly spaced around a semi-circle in the Left-Half-Plane (LHP).
- The circle radius gives the cutoff frequency ω_c rad/sec.

Butterworth LPF Pole Polynomials

Copyright 2015 by William J. Ebel

♦ Butterworth LPF Transfer Function

$$H(s) = \frac{1}{B_N(s)}$$

• N even

$$B_{N}(s) = \prod_{k=1}^{N/2} \left[s^{2} - 2s \cos\left(\frac{2k+N-1}{2N}\pi\right) + 1 \right]$$

• Nodd

$$B_{N}(s) = (s+1) \prod_{k=1}^{(N-1)/2} \left[s^{2} - 2s \cos\left(\frac{2k+N-1}{2N}\pi\right) + 1 \right]$$

MATLAS FILTER ORDER [a,6] = butter (N, WN); fo - SAMPLE FRED. Wh= Le HORMALIZED

Wh= 4Th FREDUENCY

> IN RANGE (0,1)

Y= filter (a,b, x);

Circle radius determines the cutoff frequency, ω_c rad/sec.

For a given set of thresholds, δ_p and δ_s , the transition band grows with the cutoff frequency.