LA11 Ch4

KYB

Thrn, it's a Fact mathrnfact@gmail.com

February 9, 2021

Overview

Ch4. Eigenvalues and eigen vectors

Riview

Exercises

Ch5 The Jordan canonical form

1.Invariant subspaces

Exercises

2. Generalized Eigenspaces

Eigenobjects

For $A \in F^{n \times n}$, $\lambda \in F$ and nonzero vector $x \in F^n$ are called an eigenpair if $Ax = \lambda x$.

If λ is an eigenvalue, $A - \lambda I$ is singular, and thus $\det(\lambda I - A) = 0$.

 $p_A(r) := \det(rI - A)$ is called the chracteristic polynomial.

Some results

For eigenvalue λ of A, $E_{\lambda}(A)$ is a vector space of dimension k. Thus there are eigenvectors $\{x_1, \dots, x_k\}$ of λ such that they are linearly independent. k is called the geometric multiplicity.

Let λ_j be distinct eigenvalue of A and let $\mathcal{B}_j = \{x_i^{(j)}\}_{i=1}^{n_j}$ be a basis for $E_{\lambda_j}(A)$. Then $\mathcal{B} = \bigcup \mathcal{B}_j$ is linearly independent.

Similar

Let $A, B \in F^{n \times n}$. We say A and B are similar if there is invertiable $X \in F^{n \times n}$ such that $B = X^{-1}AX$.

A relation \sim such that $A \sim B$ iff A and B are similar forms an equivalence relation.

Diagonalizable

If A is similar to a diagonal matrix D, we say A is diagonalizable.

Some results

If A and B are similar,

- 1. $p_A(r) = p_B(r)$
- 2. det(A) = det(B)
- 3. tr(A) = tr(B)
- 4. A and B have the same eigen valuses
- 5. m.geo and m.alg of an eigenvalue λ are the same whether λ is regard as an eigenvalue of A or B.

$$\mathsf{m.geo} \leq \mathsf{m.alg}$$

Some results

Let F be an algebraically closed field. Let $A \in F^{n \times n}$. Then A is Diagonalizable if and only if m.geo(A) = m.alg(A).

Let F be any field and $A \in F^{n \times n}$. If A has n distinct eigenvalues, then A is diagonalizable.

$$\{\lambda_1,\ldots,\lambda_n\}$$
 (may not distinct) with $\{x_1,\cdots,x_n\}$. Define $X=[x_1|\cdots|x_n]$ and $D=\operatorname{diag}(\lambda_1,\cdots,\lambda_n)$. Then

$$AX = \begin{bmatrix} Ax_1 & \cdots & Ax_n \end{bmatrix} = \begin{bmatrix} \lambda_1 x_1 & \cdots & \lambda_n x_n \end{bmatrix}$$
$$= \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \frac{\lambda_1}{0} & \cdots & 0 \\ \frac{1}{0} & \cdots & \lambda_n \end{bmatrix} = XD$$

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

and r = 1, x = (0, 1, 0) form an eigenpair of A.

(a) Write $x_1 = x$ and extend $\{x_1\}$ to a basis $\{x_1, x_2, x_3\}$ for \mathbb{R}^3 .

Proof.

(1)
$$x_2 = (1,0,0)$$
, $x_3 = (0,0,1)$.

(2)
$$x_2 = (5,1,3), x_3 = (4,3,2).$$

(b) Define $X = [x_1|x_2|x_3]$ and compute the matrix $B = X^{-1}AX$. What are the vector v and the matrix C?

$$B = \begin{bmatrix} \lambda & v \\ \hline 0 & C \end{bmatrix}$$

Proof.

(1)
$$x_2 = (1, 0, 0), x_3 = (0, 0, 1).$$

$$\begin{bmatrix} 1 & -5 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Proof.

(2)
$$x_2 = (5, 1, 3), x_3 = (4, 3, 2).$$

$$\begin{bmatrix} 1 & -22 & -18 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- (c) Verify that $e_1 = (1, 0, 0)$ is an eigenvector of B corresponding to the eigenvalue r = 1.
- (d) Find another eigenvector z of B, where the first component of z is zero. Let

$$z = \left[\frac{0}{u}\right]$$

where $u \in \mathbb{R}^2$. Verify that u is an eigenvector of C corresponding to the eigenvalue r = 1.

(1)
$$u = (1, 5)$$
.

(2)
$$u = (-18, 22)$$
.

(e) Find another eigenvector $v \in \mathbb{R}^2$ of C, so that $\{u, v\}$ is linearly independent. Write

$$w = \left[\frac{0}{v}\right].$$

Is w another eigenvector of B?

$$(1),(2) v = (1,1).$$

L-Ch4. Eigenvalues and eigen vectors

- Exercises

Ex4.7.3

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be definded by

$$T(x) = (x_1 + x_2 + x_3, ax_2, x_1 + x_3),$$

where $a \in \mathbb{R}$ is a constant. For which values of a does there exist a basis \mathcal{X} for \mathbb{R}^3 such that $[T]_{\mathcal{X},\mathcal{X}}$ is diagonal?

Proof.

1)
$$p_T(r) = r(r-2)(r-a)$$
.

2)
$$T(1,0,-1) = (0,0,0)$$
 and $T(1,0,1) = (2,0,2)$.

3)
$$(a-1, a^2-2a, 1)$$
 is an eigenvector for $a.(E_a(A))$ has nullity 1.)

Ex4.7.13

X fin.dim over $\mathbb C$ with basis $\mathcal B=\{u_1,\cdots,u_k,v_1,\cdots,v_l\}$. Let $U=\operatorname{span}\{u_1,\cdots,u_k\}$ and $V=\operatorname{span}\{v_1,\cdots,v_l\}$. Let $T:X\to X$ be linear s.t. $T(U)\subset U$.

- ightharpoonup There exists an eigenvector of T belonging to U.

$$[T]_{\mathcal{X},\mathcal{X}} = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$$

▶ Show that if V is also invariant under T, then $[T]_{\mathcal{X},\mathcal{X}}$ is block diagonal.

Proof.

Goal

$$B_i = egin{bmatrix} \lambda_i & 1 & & & & \ & \lambda_i & 1 & & & \ & & \ddots & \ddots & & \ & & & \lambda_i & 1 \ & & & & \lambda_i \end{bmatrix}$$

$$A = \begin{bmatrix} B_1 & & & \\ & B_2 & & \\ & & \ddots & \\ & & B_k & \end{bmatrix}$$

Definition (Invariant subspaces)

X v.sp over F. $T: X \to X$ linear and S subspace of X. We say S is invariant under T iff $T(S) \subset S$.

Example

 $S = E_{\lambda}(T)$, then S is invariant under T.

 $A \in F^{n \times n}$, S subspace of F^n invariant under A. Choose a basis $\{x_1, \dots, x_k\}$ for S and extend to $\{x_1, \dots, x_n\}$ for F^n . Then

$$AX = [Ax_1| \cdots | Ax_n]$$

$$= | \cdots | Ax_n] = [AX_1|AX_2]$$

$$AX_1 = [\sum_{i=1}^k a_{1,i}x_i| \cdots | \sum_{i=1}^k a_{k,i}x_i]$$

$$= [X_1B_1| \cdots | X_1B_k]$$

$$= X_1B = X_1B + X_2O = [X_1|X_2] \left[\frac{B}{O}\right]$$

$$AX_{2} = \left[\sum_{1}^{n} a_{k+1,i}x_{i}\right] \cdot \cdot \cdot \left|\sum_{1}^{n} a_{n,i}x_{i}\right]$$

$$= \left[\sum_{1}^{k} a_{k+1,i}x_{i} + \sum_{k+1}^{n} a_{k+1,i}x_{i}\right] \cdot \cdot \cdot \left|\sum_{1}^{k} a_{n,i}x_{i} + \sum_{k+1}^{n} a_{n,i}x_{i}\right]$$

$$= \left[X_{1}|X_{2}\right] \left[\frac{C}{D}\right]$$

$$AX = X \left[\frac{B \mid C}{D \mid D}\right]$$

Definition (Direct Sums)

Let V be a v.sp over F and S, T be a subspace of V. We say V is the direct sum of S and T, denoted by $V = S \oplus T$, iff V = S + T and $S \cap T = \{0\}$. More generally, if S_1, \ldots, S_t are subspaces of V such that $V = \sum S_i$ and $S_i \cap \sum_{i \neq j} S_j = \{0\}$ for any i, $V = \bigoplus S_i$

Counter Example

If $V = \sum S_i$ and $S_i \cap S_j = \{0\}$ for $i \neq j$, may not $V = \bigoplus S_i$. For example, consider $S_1 = \text{span}\{e_1\}, S_2 = \text{span}\{e_2 + e_3\}, S_3 = \text{span}\{e_1 + e_2 + e_3\}$ in \mathbb{R}^3 .

Theorem

 $A \in F^{n \times n}$, define $N = \mathcal{N}(A)$. If there exists a subspace R of F^n such that R is invariant under A and $F^n = N \oplus R$, then R = col(A).

Corollary

TFAE.

- 1. there exists a subspace R of F^n such that R is invariant under A and $F^n = N \oplus R$
- 2. $\mathcal{N}(A) \cap col(A) = \{0\}$, in which case R = col(A).

Theorem

$$\mathcal{N}(A) \cap col(A) = \{0\}$$
 if and only if $\mathcal{N}(A^2) = \mathcal{N}(A)$.

Lemma

 $A \in F^{n \times n}$, $\lambda \in F$. If S is a subspace of F^n , then S is invariant under A iff S is invariant under $A - \lambda I$.

U fin.dim.v.sp over F, $T:U\to U$ linear. Let $\mathcal{U}=\{u_1,\cdots,u_n\}$ be a basis for U and define $A=[T]_{\mathcal{U},\mathcal{U}}$. Suppose $X\in F^{n\times n}$ is an invertiable matrix, and define $J=X^{-1}AX$. For each $j=1,\cdots n$, define

$$v_j = \sum_{1}^{n} X_{ij} u_i.$$

- (a) Prove that $\mathcal{V} = \{v_1, \dots, v_n\}$ is a basis for U.
- (b) Prove that $[T]_{\mathcal{V},\mathcal{V}} = J$.

(a) Prove that $\mathcal{V} = \{v_1, \cdots, v_n\}$ is a basis for U.

(b) Prove that $[T]_{\mathcal{V},\mathcal{V}} = J$.

Let V be a finite-dimensional vector space over F, suppose $\{x_1, \dots, x_n\}$ be a basis for V, and $1 \le k \le n-1$. Prove that $V = S \oplus T$ where $S = \operatorname{span}\{x_1, \dots, x_k\}$ and $T = \operatorname{span}\{x_{k+1}, \dots, x_n\}$.

 $A \in F^{n \times n}$, N is a subspace of F^n that is invariant under A and $F^n = N \oplus \operatorname{col}(A)$. Prove that N must be $\mathcal{N}(A)$.

Suppose A is Diagonalizable. Let $\lambda_1, \dots, \lambda_t$ be the all distinct eigenvalues. Prove that

$$\operatorname{col}(A - \lambda_1 I) = E_{\lambda_2}(A) + \cdots + E_{\lambda_t}(A)$$

Main Idea

For $\mathbb{C}^{n\times n}$, let λ be an eigenvalue of A. Then

$$\mathcal{N}(A - \lambda I) \subset \mathcal{N}((A - \lambda I)^2) \subset \mathcal{N}((A - \lambda I)^3) \cdots$$

is stable.

$\mathcal{N}(A - \lambda I)$	$\mathcal{N}((A-\lambda I)^2)$	$\int \mathcal{N}((A-\lambda I)^3)$
$(A-\lambda I)^2x_1$	$(A-\lambda I)x_1$	<i>x</i> ₁
$(A-\lambda I)x_2$	<i>x</i> ₂	
$(A-\lambda I)x_3$	<i>x</i> ₃	

남은 내용

- 1. 5.2 Generalized Eigenspaces $G_{\lambda}(A) = \mathcal{N}((A \lambda I)^k)$.
- 2. 5.3 Nilpotent Operators $T: V \rightarrow V$ such that $T^k = 0$.
- 3. 5.4 The Jordan Canonical Form of a matrix

$$A = \begin{bmatrix} B_1 & & & \\ \hline & B_2 & & \\ \hline & & \ddots & \\ \hline & & & B_k \end{bmatrix}$$

The End