Quantum II HW2

Vincent Baker

April 21, 2015

Problem 1 1

Electronic configurations of

- a. $He(Z=2) 1s^2$
- b. Ne(Z=10) $1s^2 2s^2 2p^6$
- c. Ar(Z=18) $1s^22s^22p^63s^23p^6$
- d. O (Z=8) $1s^2 2s^2 2p^4$
- e. Fe (Z=26) $1s^22s^22p^63s^23p^64s^23d^6$

2 Problem 2

- Nuclear configuration of: a) $_2^4He$: Protons(2): $1s_{1/2}^{(2)}$ Neutrons(2): $1s_{1/2}^{(2)}$ b) $_8^{16}O$: Protons(8): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ Neutrons(8): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ c) $_{20}^{40}Ca$ Protons (20): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ $1d_{5/2}^{(6)}$ $2s_{1/2}^{(2)}$ $1d_{3/2}^{(4)}$ Neutrons (20): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ $1d_{5/2}^{(6)}$ $2s_{1/2}^{(2)}$ $1d_{3/2}^{(4)}$ d) $_{26}^{56}Fe$ Protons (26): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ $1d_{5/2}^{(6)}$ $2s_{1/2}^{(2)}$ $1d_{3/2}^{(4)}$ $1f_{7/2}^{(6)}$ Neutrons (30): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(2)}$ $1d_{5/2}^{(6)}$ $2s_{1/2}^{(2)}$ $1d_{3/2}^{(4)}$ $1f_{7/2}^{(6)}$ $2p_{3/2}^{(2)}$ e) $_{13}^{13}Ca$ Protons (6): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ Neutrons (7): $1s_{1/2}^{(2)}$ $1p_{3/2}^{(4)}$ $1p_{1/2}^{(1)}$

3 Problem 3

The ground state configurations for the three atoms are:

a) $_{26}^{57}Fe$: Protons (26) valence $1f_{7/2}^{(6)}$ Neutrons (31): valence $2p_{3/2}^{(3)}$

b) ${}^{57}_{27}Co$ Protons (27) valence $1f^{(7)}_{7/2}$ Neutrons (30): valence $2p^{(2)}_{3/2}$ c) ${}^{57}_{28}Ni$ Protons (28) "valence" $1f^{(8)}_{7/2}$ (full) Neutrons (29): valence $2p^{(1)}_{3/2}$ So ${}^{57}_{26}Fe$ has a nuclear spin of $\frac{3}{2}$ and a parity of $(-1)^{\ell}=-1$ determined by the highest odd nucleon (the last neutron).

 $_{27}^{57}Co$ has a nuclear spin of $\frac{7}{2}$ and a parity of $(-1)^{\ell} = -1$ determined by the highest odd nucleaon (the last proton). $_{28}^{57}Ni$ has a nuclear spin of $\frac{3}{2}$ and a parity of $(-1)^{\ell} = -1$, determined entirely by the single valence partner.

by the single valence neutron.

Problem 4 4