Artificial Intelligence

Regression Algorithm

Problem Statement:

A client's requirement is; he wants to predict the insurance charges based on the several parameters. The Client has provided the dataset of the same. As a data scientist, you must develop a model which will predict the insurance charges.

- 1.) Identify your problem statement:
- Stage 1: Machine Learning
 Since all the data points are numerical, the problem falls under the domain of
 Machine Learning.
- Stage 2: Supervised Learning
 We have clearly provided both input and output data for the model to learn from, which categorizes this as Supervised Learning.
- Stage 3: Regression
 As the data consists of continuous numerical values (e.g., 36,788.98; 106,029.90; etc.), this is specifically a **Regression** problem.
- 2.) Tell basic info about the dataset (Total number of rows, columns)

The dataset you've provided consists of **1338 rows** and **6 columns**.

- **AGE** Age of the person (numerical)
- **GENDER** Gender (categorical: male/female)
- **BMI** Body Mass Index (numerical)
- **CHILDREN** Number of children/dependents (numerical)
- **SMOKER** Whether the person is a smoker (categorical: yes/no)
- **CHARGES** Medical insurance charges (numerical this is the **target/output** variable for regression)
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)

```
GENDER (male/female) and SMOKER (yes/no) are nominal. One HOT Encoding-> {male = 1, female = 0; yes = 1, no = 0}
```

dataset = pd.get_dummies(dataset, columns=['GENDER', 'SMOKER'],
dtype=int)

#1338 rows × 8 columns

4.) Develop a good model with r2_score. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.

S.NO	Algorithm	R2	Parameter	Result-	Percentage
1	Linear Algorithm	0.789 4790 3498 6700 9	LinearRegression(fit_intercept=True, copy_X=True, n_jobs=None, positive=False)	Good/Bad Bad	69%
2	SVR	-0.08 9941 2170 2567 57	kernel='sigmoid'	Bad	40%
3	SVR	-0.07 1956 7218 9777 969	kernel='rbf', C=100, gamma=0.1, epsilon=0.1	Bad	45%
4	SVR	0.543 2818 1966 9792 6	kernel='linear', C=100	Bad	55%
5	Decision Tree	0.695 7078 1995 5167 7	DecisionTreeRegressor(random_state=0)	Bad	67%
6	Random Forest	0.85 4221 9814 6427 09	RandomForestRegressor(n_estimators=100, random_state=42)	Not Bad	80%
7	Random Forest	0.86 8506 4586 4504 66	RandomForestRegressor(n_estimators=200, min_samples_split=5, random_state=42)	Not Bad	85%

```
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators=288, min_samples_split=5, random_state=42 )
regressor.fit(X_train, y_train)

C:\Users\User\anaconda3\Lib\site-packages\sklearn\base.py:1473: DataConversionWarning: A colu
en a 1d array was expected. Please change the shape of y to (n_samples,), for example using r
return fit_method(estimator, "args, "*kwargs)

RandomForestRegressor

RandomForestRegressor

RandomForestRegressor(min_samples_split=5, n_estimators=280, random_state=42)

[164]: y_pred=regressor.predict(X_test)

[165]: from sklearn.metrics import r2_score
r_score=r2_score(y_test,y_pred)

[166]: r_score

4. ①

[166]: p_score
```

5.) Mention your final model, justify why u have chosen the same.

Tried But only get 85% Accuracy.