Electricity and Magnetism

- Physics 259 L02
 - •Lecture 20

Midterm Review and Class Activity

Last time

• Chapter 23

This time

Midterm Review and Class Activity

What is the field inside the slab?

The slab has thickness L, we have to choose a Gaussian surface with the same symmetries as the slab: choose a box whose centre coincides with the centre of the slab.

What about cylinder?

Study appendix 1-chapter 23 posted on D2l.

Exercise: Coaxial Cable

Study appendix 1-Chapter 23

Assume there is a charge +Q on the centre core and -Q on the metallic shield. (Ignore the dielectric insulator and plastic jacket.)

Find the electric field outside the metallic shield $(\mathbf{E_2})$ and just outside the central core $(\mathbf{E_1})$.

TopHat Question

What is the charge of the insulating wire (the wire is reshaped to form a rectangle) with charge density $-\lambda$?

- A) $L^2\lambda$
- B) $-L^2\lambda$
- C) $4L\lambda$
- D) $-4L\lambda$

Field of a line charge

Consider an infinitely long, positively charged rod of linear charge density λ . How large is the flux through side A of the box? Suppose the values for l, a and λ are given.

Field of a line charge

- Consider an infinitely long, positively charged rod of linear charge density λ. How large is the flux through side A of the box? Suppose the values for l, a and λ are given.
- Gauss' law tells us that the total electric flux only depends on the enclosed charge – not the shape of the (closed) Gaussian surface:

$$\Phi_{tot} = Q_{encl}/\epsilon_0 = \lambda l/\epsilon_0$$

Field of a line charge

- Consider an infinitely long, positively charged rod of linear charge density λ. How large is the flux through side A of the box? Suppose the values for l, a and λ are given.
- Gauss' law tells us that the total electric flux only depends on the enclosed charge – not the shape of the (closed) Gaussian surface:

$$\Phi_{\text{tot}} = Q_{\text{encl}}/\epsilon_0 = \lambda l/\epsilon_0$$

 The total flux must be equally partitioned into flux through the four surfaces whose area vectors are parallel to the electric field.

Hence,
$$\Phi_A = \lambda 1/4\epsilon_0$$

TopHat Question #1:

What is the direction of electric field at point indicated?

This section we talked about:

Midterm Review & Class Activity

See you on Monday

