

PIC18F4550: Entadas e Saídas Digitais

Prof. Matheus Ribeiro

- 7 pinos de entrada e saída
- Pinos RA0 a RA5 configurados como entradas analógicas na inicialização (POR)
- Pino RA6 utilizado como saída de realimentação do oscilador principal nos modos HS e XT (cristal)
- Registradores associados:
 - PORTA
 - LATA
 - TRISA

Registrador TRISA

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0

Responsável por configurar aos pinos como entradas ou saídas
 0 = saída, 1 = entrada

Registrador PORTA

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0

- Responsável pela operação do pino como entrada ou saída
- Operação de escrita:

Registrador PORTA

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0

- Responsável pela operação do pino como entrada ou saída
- Operação de leitura:

Registrador LATA

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de escrita:

```
LATA = 0b01010101;  // RA0, RA2, RA4, RA6*: nível alto // RA1, RA3, RA5: nível baixo

LATAbits.LATA1 = 1;  // RA1 (pino 3) = nível alto LATAbits.LATA2 = 0;  // RA2 (pino 4) = nível baixo
```


Registrador LATA

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de leitura:

Rotina de inicialização (conforme folha de dados)

```
PORTA = 0b00000000;  // limpa o porto A

LATA = 0b00000000;  // limpa o latch do porto A (opcional)

ADCON1= 0b00001111;  // configura todos pinos como digitais

CMCON = 0b00000111;  // desliga módulo comparador (opcional)

// padrão na inicialização

TRISA = 0b11001111;  // configurar de acordo com a

// utilização dos pinos
```

- O valor do dos pinos do PORTA é desconhecido na inicialização, então limpe o porto antes de configurar os pinos.
- Configure os pinos não utilizados como saídas no registrador TRISA.

Exemplo de programa

```
void main()
    // Inicialização do porto A
   PORTA = 0b00000000;
   LATA
          = 0b00000000;
   TRISA = 0b00000011;
   ADCON1= 0b00001111;
   while(1){
       if(PORTAbits.RA0 == 1) {
           PORTAbits.RA3 = 1;
       if(PORTAbits.RA1 == 1) {
           PORTAbits.RA3 = 0;
```


- 8 pinos de entrada e saída
- Ativação de resistores de pull-up (bit RBPU do registrador INTCON2)
- Pinos RB0 a RB4 configurados como entradas analógicas na inicialização (POR)
- ICSP nos pinos RB5, RB6 e RB7
- Registradores associados:
 - PORTB
 - LATB
 - TRISB

Registrador TRISB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0

Responsável por configurar aos pinos como entradas ou saídas
 0 = saída, 1 = entrada

Registrador PORTB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0

- Responsável pela operação do pino como entrada ou saída
- Operação de escrita:

Registrador PORTB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0

- Responsável pela operação do pino como entrada ou saída
- Operação de leitura:

Registrador LATB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de escrita:

```
LATB = 0b01010101; // RB0, RB2, RB4, RB6: nível alto // RB1, RB3, RB5, RB7: nível baixo

LATBbits.LATB1 = 1; // RB1 (pino 34) = nível alto LATBbits.LATB2 = 0; // RB2 (pino 35) = nível baixo
```


Registrador LATB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de leitura:

Rotina de inicialização (conforme folha de dados)

```
PORTB = 0b00000000;  // limpa o porto B

LATB = 0b00000000;  // limpa o latch do porto B (opcional)

ADCON1= 0b00001111;  // configura todos pinos como digitais

CMCON = 0b00000111;  // desliga módulo comparador (opcional)

// padrão na inicialização

TRISB = 0b11001111;  // configurar de acordo com a

// utilização dos pinos
```

- O valor do dos pinos do PORTB é desconhecido na inicialização, então limpe o porto antes de configurar os pinos.
- Configure os pinos não utilizados como saídas no registrador TRISB.

Exemplo de programa

```
void main() {
    // Inicialização do porto B
    PORTB = 0b00000000;
    LATB = 0b00000000;
    TRISB = 0b00010000;
    ADCON1= 0b00001111;

while(1) {
        if(PORTBbits.RB4 == 1) {
            LATBbits.LATB0 = ~LATBbits.LATB0;
            while(PORTBbits.RB4 == 1);
        }
    }
}
```


- 7 pinos de entrada e saída
- RC3 não está implementado
- RC4 e RC5 multiplexados com o módulo USB e podem ser usados somente como entradas digitais
- Registradores associados:
 - PORTC
 - ► LATC
 - ► TRISC

Registrador TRISC

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TRISC7	TRISC6	-	-	-	TRISC2	TRISC1	TRISC0

Responsável por configurar aos pinos como entradas ou saídas
 0 = saída, 1 = entrada

Registrador PORTC

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC7	PORTC6	PORTC5	PORTC4	-	PORTC2	PORTC1	PORTC0

- Responsável pela operação do pino como entrada ou saída
- Operação de escrita:

Registrador PORTC

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC7	PORTC6	PORTC5	PORTC4	-	PORTC2	PORTC1	PORTC0

- Responsável pela operação do pino como entrada ou saída
- Operação de leitura:

Registrador LATC

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATC7	LATC6	-	-	-	LATC2	LATC1	LATC0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de escrita:

```
LATC = 0b01010101; // RC0, RC2, RC4, RC6: nível alto // RC1, RC5, RC7: nível baixo

LATCbits.LATC1 = 1; // RC1 (pino 34) = nível alto LATCbits.LATC2 = 0; // RC2 (pino 35) = nível baixo
```


Registrador LATC

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATC7	LATC6	-	-	-	LATC2	LATC1	LATC0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de leitura:

Rotina de inicialização (conforme folha de dados)

```
PORTC = 0b00000000;  // limpa o porto C

LATC = 0b00000000;  // limpa o latch do porto C (opcional)

TRISC = 0b11001111;  // configurar de acordo com a // utilização dos pinos
```

- O valor do dos pinos do PORTC é desconhecido na inicialização, então limpe o porto antes de configurar os pinos.
- Configure os pinos não utilizados como saídas no registrador TRISC.

Exemplo de programa

```
void main() {
    // Inicialização do porto C
    PORTC = 0b00000000;
          = 0b00000000;
    LATC
    TRISC = 0b00000110;
    while(1){
        while(PORTCbits.RC1 == 1) {
            PORTCbits.RC6 = 1;
        while(PORTCbits.RC2 == 1) {
            PORTCbits.RC7 = 1;
        PORTCbits.RC6 = 0;
        PORTCbits.RC7 = 0;
```


- 8 pinos de entrada e saída
- Ativação de resistores de pull-up (bit RDPU do registrador PORTE)
- Registradores associados:
 - PORTD
 - LATD
 - ► TRISD

Registrador TRISD

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0

Responsável por configurar aos pinos como entradas ou saídas
 0 = saída, 1 = entrada

Registrador PORTD

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0

- Responsável pela operação do pino como entrada ou saída
- Operação de escrita:

Registrador PORTD

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0

- Responsável pela operação do pino como entrada ou saída
- Operação de leitura:

Registrador LATD

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de escrita:

```
LATD = 0b01010101; // RD0, RD2, RD4, RD6: nível alto // RD1, RD3, RD5, RD7: nível baixo

LATDbits.LATD1 = 1; // RD1 (pino 20) = nível alto LATDbits.LATD2 = 0; // RD2 (pino 21) = nível baixo
```


Registrador LATD

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de leitura:

Rotina de inicialização (conforme folha de dados)

- O valor do dos pinos do PORTD é desconhecido na inicialização, então limpe o porto antes de configurar os pinos.
- Configure os pinos não utilizados como saídas no registrador TRISD.

Exemplo de programa

```
void main()
    // Inicialização do porto D
   PORTD = 0b00000000;
          = 0b00000000;
   LATD
   TRISD = 0b00000011;
   while(1){
       if(PORTDbits.RD0 == 1) {
           PORTDbits.RD3 = 1;
       if(PORTDbits.RD1 == 1) {
           PORTDbits.RD3 = 0;
```


- 4 pinos de entrada e saída
- RE0, RE1 e RE2 são configurados como entradas analógicas na inicialização (POR)
- RE3 é multiplexado com o módulo de reinicialização forçada (MASTER RESET) e só pode ser usado como entrada digital.
- Registradores associados:
 - PORTE
 - LATE
 - ► TRISE

Registrador TRISE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	TRISE2	TRISE1	TRISE0

Responsável por configurar aos pinos como entradas ou saídas
 0 = saída, 1 = entrada

```
TRISE = 0b00000111;  // configura RE0 a RE3 como entradas

TRISEbits.RE0 = 1;  // configura RE0 (pino 8) como entrada

TRISEbits.RE2 = 0;  // configura RE2 (pino 10) como saída
```


Registrador PORTE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RDPU	-	-	-	PORTE3	PORTE2	PORTE1	PORTE0

- Responsável pela operação do pino como entrada ou saída
- Operação de escrita:

Registrador PORTE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RDPU	-	-	-	PORTE3	PORTE2	PORTE1	PORTE0

- Responsável pela operação do pino como entrada ou saída
- Operação de leitura:

Registrador LATE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	LATE2	LATE1	LATE0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de escrita:

```
LATE = 0b01010101;  // RE0, RE2: nível alto // RE1: nível baixo

LATEbits.LATE1 = 1;  // RE1 (pino 9) = nível alto LATEbits.LATE2 = 0;  // RE2 (pino 10) = nível baixo
```


Registrador LATE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
-	-	-	-	-	LATE2	LATE1	LATE0

- Funciona como um backup do valor da saída e está isolado dos pinos físicos por um buffer. É útil para fazer a leitura de pinos configurados como saídas e operações read-modify-write.
- Operação de leitura:

Rotina de inicialização (conforme folha de dados)

```
PORTE = 0b00000000;  // limpa o porto E

LATE = 0b00000000;  // limpa o latch do porto E (opcional)

ADCON1= 0b0000111;  // configura todos pinos como digitais

CMCON = 0b00000111;  // desliga módulo comparador (opcional)

// padrão na inicialização

TRISE = 0b00000111;  // configurar de acordo com a

// utilização dos pinos
```

- O valor do dos pinos do PORTE é desconhecido na inicialização, então limpe o porto antes de configurar os pinos.
- Configure os pinos não utilizados como saídas no registrador TRISE.

Exemplo de programa

```
void main()
    // Inicialização do porto E
   PORTE = 0b00000000;
          = 0b00000000;
   LATE
   TRISE = 0b00000011;
   while(1){
       if(PORTEbits.RE0 == 1) {
           PORTEbits.RE2 = 1;
       if(PORTEbits.RE1 == 1) {
           PORTEbits.RE2 = 0;
```


