MAT1072/ Matemath 2

Gok Depiskenti Fonksiyonlarda Tarum Klimesi/ Limit / Slirekistik

- 1) Asapidali Ponksiyonların tenim bolpesini belirleyip gitiniz.
 - a) $z = ln\left(1 \frac{y^2}{n}\right) = 1 \frac{y^2}{n} 70$ olmalidir.
 - (1) Her 20 iam 1-42 (0 dir.
 - (2) x>0 iain 1- 42 >0 => y2(x. fir.

- b) f(nig) = arccos (y-n2)
 - =) -1 < y-22 < 1
 - =) x2-1 < y < n2+1

- c) $f(n_i y) = \frac{\sqrt{n_i y^2}}{\ln(n_i 2)}$
 - (n-y2 : n-y2 > 0 = x>y2
 - ln(n-2) = n-270 = n72
 - $\frac{1}{\ln(n-2)} : \ln(n-2) \neq 0 = |n-2 \neq 1|$ = | $n \neq 3$

- d) $z = \arcsin \frac{y-1}{n} = n + 0$ ve $-1 \le \frac{y-1}{n} \le 1$
- (1) N>0 iain -ney-162 => 1-ney61+27
- (2) n(0 iam -n),y-17,n=) 1+n(y)-1-n

e)
$$f(n_1y) = \arccos \frac{y-1}{n^2+1}$$

=> -1 \le \frac{y-1}{n^2+1} \le 1 => -n^2 \le y \le n^2+2

ny+n-y-1>0 olmander.

$$g$$
) $z = ln(y^2n - 1 + y^2 - n)$

(1)
$$y^2-170$$
, $x+170$ $xy-1$ $yy-1$ (10) y^2y1 $xy-1$ $yy-1$ (15)

h)
$$f(n_1y) = \arccos\left(\frac{y}{n^2}\right) + \ln(n-n^2)$$

$$\arccos\left(\frac{y}{n^2}\right): -1 \leq \frac{y}{n^2} \leq 1 \Rightarrow -x^2 \leq y \leq n^2$$
 $n \neq 0$
 $n \neq 0$

$$L = lim \frac{(\sqrt{1+3n^2y^2} - 2)(\sqrt{14+3n^2y^2} + 2)}{(ny) - (ni)} = lim \frac{3(n^2y^2 - 1)}{(ny) - (ni)}$$

$$= lim \frac{3(ny + 1)}{\sqrt{1+3n^2y^2} + 2} = \frac{3}{2}$$

$$(niy) - (ni) \frac{3(ny + 1)}{\sqrt{1+3n^2y^2} + 2} = \frac{3}{2}$$

$$\lim_{x\to 0^+} = \frac{xmx}{|xmx|} = \frac{m}{|m|} > = 1 \text{ m/s}$$
 \lim\text{imit mevent defildw}

1.401:
$$y = m\pi$$
 boyunca; $\lim_{n \to \infty} \frac{\pi}{mn} = \frac{1}{m}$ =) $\lim_{n \to \infty} \frac{\pi}{m}$ =) $\lim_{n \to$

$$\alpha$$
. $y=m\pi$ boyunca, $\lim_{x\to 0} \frac{m\pi^2}{x^2+m^2\pi^2} = \frac{m}{1+m^2} = m'$ e bapli =) Limit yok.

b.
$$x = rcos\theta$$
 \ $lim \frac{ny}{\sqrt{n^2 + y^2}} = lim \frac{rcos\theta rsin\theta}{\sqrt{r^2}} = lim rcos\theta sin\theta = 0$

$$y = rsin\theta \left(\frac{ny}{\sqrt{n^2 + y^2}} = \frac{1}{r+0} \frac{rcos\theta rsin\theta}{\sqrt{r^2}} \right)$$

$$y=mn$$
 boyunca, $\lim_{n\to \infty} \frac{\chi(\ln(1+mn))}{\chi^2(1+m^2)} = \lim_{n\to \infty} \frac{m}{1+mn} = \frac{m}{1+m^2} = \lim_{n\to \infty} \frac{m}{1+m^2} =$

veyer $\lim_{N\to 0} \ln (1+mx)^{1/n} \cdot \frac{1}{1+m^2} = \frac{\ln e^m}{1+m^2} = \frac{m}{1+m^2}$

$$\lim_{\chi \to 1} \left(\lim_{\gamma \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{\sin \pi \chi}{\chi - 1} = \lim_{\chi \to 1} \frac{\pi \cos \pi \chi}{\chi} = -\pi$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \frac{0}{y - 1} = 0$$

$$\lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right) = \lim_{\chi \to 1} \left(\lim_{\chi \to 1} \frac{y \sin \pi \chi}{\chi + y - 2} \right)$$

NOT: Iki kat (ardışık) limitin eşit gileması limitin mevcut olduğunu povanti etmez. Dolayısıyla sadıcı limitin mevcut olmadığını posterirken işimite yarar.

 $\frac{3}{3}$ lim $\frac{2xy+x^{312}}{(x_{1}y)+(0,0)}$ limitinm varlipini araștirin.

 $x=ky^2$ boyunca limit; $\lim_{y\to 0} \frac{2ky^3+k^{312}y^3}{y^3+ky^3} = \frac{2k+k^{312}}{1+k} = k!ya bapti = 1 limit yok$

9)
$$\lim_{(n_1y_1)\to(0,2)} \frac{x^2+y^2}{\sqrt{x^2+y^2+1}-1} = ? = L$$

$$L = \lim_{(n_1 y) \to (0,0)} \frac{(n^2 + y^2) (\sqrt{n^2 + y^2 + 1} + 1)}{(\sqrt{n^2 + y^2 + 1} - 1)(\sqrt{n^2 + y^2 + 1} + 1)} = \lim_{(n_1 y) \to (0,0)} \frac{(n^2 + y^2) (\sqrt{n^2 + y^2 + 1} + 1)}{(\sqrt{n^2 + y^2 + 1} - 1)(\sqrt{n^2 + y^2 + 1} + 1)} = 2$$

$$(0.0)$$
 flxig) = $\frac{3x^2-y^2}{x^2+3y^3}$ fonksiyonunun (0.0) da limiti var midir?

y = mn boyunce limit, $\lim_{n \to \infty} \frac{3n^2 - m^2n^2}{n^2 + 3m^3n^3} = \lim_{n \to \infty} \frac{n^2(3 - m^2)}{n^2(4 + 3m^3n)} = 3 - m^2 = n \text{ in } y \in \text{bop li}$

11) lim sinny limitinin varlipini araştırın.

 $y=m\pi$ boyunca limit, $\lim_{n\to\infty} \frac{\sin m\pi^2}{(1+m^2)\pi^2} \cdot \frac{m}{m} = \frac{m}{1+m^2} = 1 \text{ m (ye bapli =) Limityok.}$

(my)+10,0) nh+y2 limitinin varlipini araştırın.

 $y=mn^3$ boyunca limit, $\lim_{n\to 0}\frac{3\times mn^3}{n^4+m^2n^6}=\lim_{n\to 0}\frac{3mx^4}{n^4(1+m^2n^2)}=3m=m'ye$ bopli

(y=more boyunca da limit alinabilir)

(13)
$$f(n_{i}y) = \frac{ny-2y}{\sqrt{(n-2)^{4}+y^{4}}}$$
 fonksiyonunun (2,0) 'daki limitini araştırın.

$$\lim_{n\to 2} \frac{m(n-2)^2}{(n-2)^2 (1+m^4)} = \frac{m}{\sqrt{1+m^4}} = m' \text{ ye beill = 1 limit yok}.$$

14)
$$f(x_{i}y) = \frac{\sqrt[3]{x_{i}y^{2}}}{x_{i}+y^{3}}$$
 fonksiyonunun (0,0) da limiti von midur?

1-yol:
$$n = ky^3$$
 boyunca imit: $\lim_{y \to 0} \frac{3\sqrt{k}y^3}{y^3/4+k} = \frac{3\sqrt{k}}{1+k} = \frac{3\sqrt{k}}{1+$

$$\frac{2-yol}{y} = kx^{1/3} \text{ boyunca limit} = \lim_{n \to 0} \frac{kx}{x(1+k^3)} = \frac{k}{1+k^3} = k \frac{1}{y} a \frac{1}{y} \frac{1}{y} k \frac{1}{y} = \lim_{n \to \infty} \frac{1}{x} \frac{1}{y} \frac{1}{x} \frac{1}{y} \frac{1}{y} \frac{1}{x} \frac{1}{y} \frac{1}{x} \frac{1}{$$

15)
$$f(x_{i}y) = \frac{x^{2}y^{4}}{x^{4}y^{4}}$$
 fonksiyonunun (0,0) noktasındaki limitinin O oldupunu göstermit.

Her
$$\varepsilon$$
70 iam $1\pi^2 ty^2 \times \delta$ iken $|\frac{\pi^2 y^4}{\pi^4 y^4} - 0| \times \varepsilon$ obtak sekilde $\delta = \delta(\varepsilon)$ 70

$$\left|\frac{n^2y^4}{n^4+y^4}\right| \leq \frac{n^2(n^4+y^4)}{n^4+y^4} = n^2 \leq n^2+y^2 \leq \delta^2 = \epsilon$$

16)
$$f(x_{iy}) = \frac{x^2 + y^2 - y}{x - 3y^2 + 3y}$$
 fonksiyonunun,

a)
$$y = x + 1$$
 boyunca limit, $\lim_{x \to 0} \frac{x^2 + (x + 1)^2 - (x + 1)}{x - 3(x + 1)^2 + 3(x + 1)} = \lim_{x \to 0} \frac{2x^2 + x}{-3x^2 - 2x} = \lim_{x \to 0} \frac{x(2x + 1)}{x(-3x - 2)} = -1$

b)
$$\lim_{n\to 0} \left(\lim_{y\to 1} \frac{x^2 + y^2 - y}{n - 3y^2 + 3y} \right) = \lim_{n\to 0} \frac{x^2}{n} = \lim_{n\to 0} n = 0$$

$$\lim_{y\to 1} \left(\lim_{x\to 0} \frac{x^2 + y^2 - y}{n - 3y^2 + 3y} \right) = \lim_{y\to 1} \frac{y^2 - y}{-3(y^2 - y)} = -\frac{1}{3}$$
iki kat limit mevcut olimit yoktur.

$$f(ny) = \begin{cases} y^2 \sin(\frac{1}{n}) & n \neq 0 \\ 0 & n = 0 \end{cases}$$

ile veriligor. f nin (0,0) dahi surehlilipini arastırınız.

+ + iam -1 (sin 0 < 1 oldupundan x+0 olmak üzere -y2 < y2 sin = 4y2

=)
$$0 = \lim_{(n,y)\to(0,0)} y^2 \le \lim_{(n,y)\to(0,0)} y^2 = 0$$
 =) $\lim_{(n,y)\to(0,0)} y^2 \le \lim_{(n,y)\to(0,0)} y^2 \le \lim_{(n,$

$$\Rightarrow$$
 lim $y^2 \sin \frac{1}{x} = f(0,0) = 0$ oldupundan süreklidir.

NOT: Sikistirma (Sandvia) tesnemi gift depişkenli fonksiyonlar igin de pegerlidir.

(18)
$$f(x_{i}y) = \begin{cases} \frac{1-\cos(x^{2}+y^{2})}{x^{2}+y^{2}}, & (x_{i}y) \neq (0,0) \\ 2, & (x_{i}y) = (0,0) \end{cases}$$
 forksiyonu (0,0) da sürekli $\frac{1}{2}$

$$\lim_{(n_1,0)} \frac{1 - \cos(n^2 + y^2)}{n^2 + y^2} \cdot \frac{1 + \cos(n^2 + y^2)}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{(n_1,y) \to (0,0)} \left(\frac{\sin(n^2 + y^2)}{(n_1y) + (0,0)} \right) \cdot \frac{1}{1 + \cos(n^2 + y^2)} = \lim_{($$

 $\lim_{(my)\to(0,0)} f(my) = \frac{1}{2} \neq f(0,0) = 2$ oldupundan sürekli depildir.

(9)
$$f(n_{i}y) = \begin{cases} \frac{3ny}{x^{4}+y^{2}}, & (n_{i}y) \neq (0,0) \\ 0, & (n_{i}y) = (0,0) \end{cases}$$
 Conksiyonu (0,0) da sürekli midir?

$$f(0,0) = 0$$
 oldupundan bu noutoda tanımlı $\sqrt{g} = g = 0$ boyunca limit; $\lim_{n \to 0} \frac{3nmn}{n^4 + m^2n^2} = \lim_{n \to 0} \frac{3mn^2}{n^4(n^2 + m^2)} = \frac{3m}{m^2} = \frac{3}{m}$

20)
$$f(n_1y) = \begin{cases} \frac{2ny}{n^2+y^2}, (n_1y) \neq (0,0) \\ 0, (n_1y) = (0,0) \end{cases}$$

fonksiyonunun orizin haria her roktada sürekli oldupunu posteriniz.

selvinde olup forksiyon (0,0)

haria her voltada süreklidir.

 $(x_{i}y) = (0,0)$ iam $f(x_{i}y) = f(0,0) = 0$ 'dir ancak bu roktada limiti olmadipindan s'urekii depildir. G'unkii i

y=mn boyuna: $\lim_{n\to 0} \frac{2nmn}{n!} = \lim_{n\to 0} \frac{2mn^2}{n!(n+m^2)} = \frac{2m}{1+m^2} = m'e$ bepti

21)
$$f(n_{i}y) = \begin{cases} \frac{n_{i}^{2}}{n^{2}+y^{4}}, (n_{i}y) \neq (0,0) \\ 0, (n_{i}y) = (0,0) \end{cases}$$

fonksiyonunun
a) (0,0) dahi süreklilipini inceleyinit
b) fx (0,0) ve fy (0,0) kısmi türevle-

rinn varlipine avastiriniz

a)
$$x=my^2$$
 boyunca : $\lim_{y\to 0} \frac{my^2y^2}{m^2y^4+y^4} = \frac{m}{1+m^2}$: m^4 e bapli =) Limit yok

b)
$$f_{x}(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

 $f_{y}(0,0) = \lim_{h \to 0} \frac{f(0,0+h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0}{h} = 0$

22)
$$\lim_{(ny)\to(0,0)} (n^2+y^2) \cos \frac{1}{n^2+y^2}$$
 hesaplayinit.

 $(n_1y) \neq (0,0)$ iam $-1 < \cos \frac{1}{n^2 + y^2} < 1 \Rightarrow -(x^2 + y^2) < (n^2 + y^2) \cos \frac{1}{n^2 + y^2} < n^2 + y^2$

 $\lim_{(n,y)\to(0,0)} -(n^2+y^2) = \lim_{(n,y)\to(0,0)} x^2+y^2 = 0$ oldupundan silustirma tesremme (pôre

$$\lim_{(n,y)+(0,0)} (n^2+y^2) \cos \frac{1}{n^2+y^2} = 0$$

23)
$$f(my) = \begin{cases} \frac{ny-y^2}{\sqrt{n-y}}, & (n_1y) \neq (0,0) \\ 0, & (n_1y) = (0,0) \end{cases}$$
 forksiyonu (0,0) da sürekli midir?

$$\lim_{(x,y)\to(0,0)} \frac{xy-y^2}{\sqrt{x}-\sqrt{y}} = \lim_{(x,y)\to(0,0)} \frac{y(\sqrt{x}+\sqrt{y})(\sqrt{x}-\sqrt{y})}{\sqrt{x}-\sqrt{y}} = \lim_{(x,y)\to(0,0)} y(\sqrt{x}+\sqrt{y}) = 0$$

$$P(n,y) = \begin{cases} \frac{sm(ny)}{n^2 + y^2}, & (n,y) \neq (0,0) \\ 0, & (n,y) = (0,0) \end{cases}$$
 forksiyonunun (0,0) daki süreklilipini inceleymit.

y=mx doorusu boyunca limit;
$$\lim_{n \to \infty} \frac{\sin(m\pi^2)}{(4+m^2)\pi^2} = \frac{m}{4+m^2} \Rightarrow m' \in booting = 0$$

lm flag) mercut olmadipindan shrekli depildir.