

EN.600.475 Machine Learning

Linear Regression

Raman Arora Lecture 4 February 8, 2017

- Loss and Risk
- Least squares estimation

Slides credit: Greg Shakhnarovich ¹

Review

Review: supervised learning

- ullet Task: build a mapping from input ${\mathcal X}$ output ${\mathcal Y}$
- Given a training set (\mathbf{x}_i, y_i) , i = 1, ..., N, with $\mathbf{x}_i \in \mathcal{X}$, $y_i \in \mathcal{Y}$.
- ullet Goal (informally): predict y accurately for future xs

regression: $\mathcal{Y} = \mathbb{R}$ learn a (continuous) function f

classification: $\mathcal{Y} = \{1, \dots, C\}$ learn a separator between classes

Review: supervised learning pipeline

- Set up (define) a supervised learning problem
- Data collection for traning and test set.
- Representation choose how data are fed to the model
- Modeling Choose a hypothesis (model) class
- Estimation (learning) Find best hypothesis you can in the chosen class, given the data.
- Model (class) selection

3 **4** ₱ ▶

Review

Review: linear regression

 Two goals in mind: Explain the data Make predictions

- Model class: linear functions
- Fitting criterion, to guide selection of a function: sum of squared distances from data to the line, along *y* axis

Roadmap

- General form of linear regression and least squares fit
- Loss and risk: definitions and analysis
- Analysis of error in empirical risk minimization

Linear regression

Multiple input variables

- ullet Can consider additional features; e.g., x_1 horsepower and x_2 vehicle weight.
- ullet We now have mapping from ${f x}=(x_1,x_2)\in \mathbb{R}^2$ to y

4 🗗 ▶

Fitting a plane to data

• Can use the same criterion: minimize sum of square distances along *y*-axis

7 ◆ **⑤** →

Linear regression

Linear functions

• General form:

$$f(\mathbf{x}; \mathbf{w}) = w_0 + w_1 x_1 + \ldots + w_d x_d$$
$$= \mathbf{w} \cdot \mathbf{x}$$

denoting $x_0 \equiv 1$

- ullet 1D case $(\mathcal{X}=\mathbb{R})$: a line
- ullet $\mathcal{X}=\mathbb{R}^2$: a plane
- *Hyperplane* in general, *d*-D case.

Notation

We will mostly stick to these throughout the course:

 \mathbf{x}_i the *i*-th data point in \mathcal{X} (column vector)

Often
$$\mathcal{X} \equiv \mathbb{R}^d$$
, so that $\mathbf{x}_i = [x_{i1}, \dots, x_{id}]$

Often assume also $x_{i0} \equiv 1$

- y_i the label of the *i*-th data point; $y_i \in \mathcal{Y}$
- \mathbf{x}_0, y_0 a single test point and its (unknown) label
- **X** the $N \times d$ data matrix where *i*-th row is \mathbf{x}_i
- \mathbf{y} the label vector $\mathbf{y} = [y_1, \dots, y_N]$
- $\mathbf{w} \cdot \mathbf{x}$ inner (dot) product, $\sum_j w_j x_j$ sometimes write $\mathbf{w}^T \mathbf{x}$

9

◆ 🗗 →

Loss and risk

Loss function

- ullet Recall: target labels are in ${\mathcal Y}$ (e.g., regression: ${\mathcal Y}\equiv {\mathbb R})$
- A *loss function* $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ maps prediction to cost, given true value:
 - $\ell(\hat{y},y)$ defines the penalty paid for predicting \hat{y} when the true value is y.
- Standard choice for regression: squared loss $\ell(\hat{y},y)=(\hat{y}-y)^2$ is it a good loss function?..
- It is symmetric (sign of mistake doesn't matter); non-negative; gives zero loss for correct prediction
- Vaguely justifiable as "energy" of something
- Penalizes quite harshly for larger mistakes

Empirical loss

- We consider a *parametric* function $f(\mathbf{x}; \mathbf{w})$ E.g., linear function: $f(\mathbf{x}; \mathbf{w}) = w_0 + \sum_{j=1}^d w_j x_{ij} = \mathbf{w} \cdot \mathbf{x}_i$
- The *empirical loss* of function $y = f(\mathbf{x}; \mathbf{w})$ on a set \mathbf{X} :

$$L(\mathbf{w}, \mathbf{X}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i; \mathbf{w}), y_i)$$

- LSQ minimizes the empirical loss when ℓ is squared loss.
- We care about accuracy of predicting labels for new examples.
 Why/when does empirical loss minimization help us achieve that?

11 ◀ 🗗 ▶

Loss and risk

Loss: empirical and expected

- Fundamental assumption: example $\mathbf{x}/label\ y$ are drawn from a joint probability distribution $p(\mathbf{x},y)$.
- Data are i.i.d.: same (unknown!) distribution for all pairs (\mathbf{x}, y) in both training and test data.
- We can measure the empirical loss on training set

$$L(\mathbf{w}, \mathbf{X}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i; \mathbf{w}), y_i)$$

• The ultimate goal is to minimize the expected loss, also known as risk:

$$R(\mathbf{w}) = E_{(\mathbf{x}_0, y_0) \sim p(\mathbf{x}, y)} \left[\ell \left(f(\mathbf{x}_0; \mathbf{w}), y_0 \right) \right]$$

Loss: empirical and expected

• Empirical loss:

$$L(\mathbf{w}, \mathbf{X}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \ell(f(\mathbf{x}_i, \mathbf{w}), y_i)$$

Risk:

$$R(\mathbf{w}) = E_{(\mathbf{x}_0, y_0) \sim p(\mathbf{x}, y)} \left[\ell \left(f(\mathbf{x}_0, \mathbf{w}), y_0 \right) \right]$$

- Empirical risk minimization (ERM) approach: to the extent that the training set is a representative of the underlying distribution $p(\mathbf{x}, y)$, the empirical loss serves as a proxy for the risk (expected loss).
- Technically: estimate $p(\mathbf{x}, y)$ by the *empirical distribution* of data.

13

Loss and risk

Learning via empirical loss minimization

Two steps:

- Select a restricted class \mathcal{H} of hypotheses $f: \mathcal{X} \to \mathcal{Y}$ Here: linear functions parametrized by $\mathbf{w}: f(\mathbf{x}; \mathbf{w}) = \mathbf{w} \cdot \mathbf{x}$
- Select a hypothesis $f^* \in \mathcal{H}$ based on training set (X,Y)Here: minimize empirical squared loss, i.e., select $f(\mathbf{x}; \mathbf{w}^*)$ where

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

• How do we find $\mathbf{w}^* = [w_0^*, w_1^*, \dots, w_d^*]$?

Least squares: estimation

ullet We need to minimize L w.r.t. ${f w}$

$$L(\mathbf{w}, \mathbf{X}, \mathbf{y}) = L(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

• Necessary condition to minimize *L*:

$$\frac{\partial L(\mathbf{w}, \mathbf{X}, \mathbf{y})}{\partial \mathbf{w}} = \mathbf{0},$$

i.e., derivatives w.r.t. w_0 , w_1 ,..., w_d must all be zero.

Least squares estimation

Matrix derivatives

Scalar valued function of one variable

$$f: \mathbb{R} o \mathbb{R}$$
 derivative: $\frac{df}{dx}$

• Scalar valued function of multiple scalar variables

$$f: \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{d ext{times}} o \mathbb{R}$$
 gradient: $\nabla f = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d} \right]$

ullet If we collect multiple variables in a vector: $\mathbf{x} \in \mathbb{R}^d$:

$$\nabla f = \frac{\partial f}{\partial \mathbf{x}}$$

derivative of f w.r.t. ${f x}$ has the same dimension as ${f x}$

Least squares: estimation

$$L(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

$$\frac{\partial}{\partial w_0} L(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_0} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 = 0$$

$$\Rightarrow \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i) = 0$$

- $y_i \mathbf{w} \cdot \mathbf{x}_i$ is the *prediction error* on the *i*-th example.
- ullet Necessary condition for optimal ${\bf w}$ is that the errors have zero mean. (why does it make sense?)

17 **₫** ₽ ▶

Least squares estimation

Least squares: estimation

$$L(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i)^2$$

$$\frac{\partial}{\partial w_j} L(\mathbf{w}) = -\frac{2}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i) x_{ij} = 0.$$

- Second necessary condition: errors are uncorrelated with the data!
 (And with any linear function of the data)
- ullet d+1 linear equations in d+1 unknowns w_0,w_1,\ldots,w_d

$$\sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i) x_{ij} = 0 \qquad \forall j = 1 \dots, d,$$
 (1)

$$\sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \mathbf{x}_i) = 0$$
 (2)

4 🗇 ▶

Least squares in matrix form

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ \vdots & & \vdots & \\ 1 & x_{N1} & \cdots & x_{Nd} \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}, \qquad \mathbf{w} = \begin{bmatrix} w_0 \\ \vdots \\ w_d \end{bmatrix}$$

• Predictions: $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}$, errors: $\mathbf{y} - \mathbf{X}\mathbf{w}$, empirical loss:

$$L(\mathbf{w}, \mathbf{X}, \mathbf{y}) = \frac{1}{N} (\mathbf{y} - \mathbf{X}\mathbf{w}) \cdot (\mathbf{y} - \mathbf{X}\mathbf{w}) = \frac{1}{N} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$
$$= \frac{1}{N} (\mathbf{y}^T - \mathbf{w}^T \mathbf{X}^T) (\mathbf{y} - \mathbf{X}\mathbf{w})$$

Using
$$(AB)^T = B^T A^T$$
, $(A + B)^T = A^T + B^T$, $(A^T)^T = A$.

19

∢ 🗗 ▶

Least squares estimation

Derivative of loss

$$L(\mathbf{w}) = \frac{1}{N} (\mathbf{y}^T - \mathbf{w}^T \mathbf{X}^T) (\mathbf{y} - \mathbf{X} \mathbf{w}).$$

$$\frac{\partial \mathbf{a}^T \mathbf{b}}{\partial \mathbf{a}} = \frac{\partial \mathbf{b}^T \mathbf{a}}{\partial \mathbf{a}} = \mathbf{b}, \ \frac{\partial \mathbf{a}^T \mathbf{B} \mathbf{a}}{\partial \mathbf{a}} = 2 \mathbf{B} \mathbf{a}$$

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{N} \frac{\partial}{\partial \mathbf{w}} \left[\mathbf{y}^T \mathbf{y} - \mathbf{w}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} \right]
= \frac{1}{N} \left[\mathbf{0} - \mathbf{X}^T \mathbf{y} - (\mathbf{y}^T \mathbf{X})^T + 2 \mathbf{X}^T \mathbf{X} \mathbf{w} \right]
= -\frac{2}{N} \left(\mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \mathbf{w} \right)$$

Least squares solution

$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}) = -\frac{2}{N} \left(\mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \mathbf{w} \right) = \mathbf{0}$$
$$\mathbf{X}^T \mathbf{y} = \mathbf{X}^T \mathbf{X} \mathbf{w} \Rightarrow \mathbf{w}^* = \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \mathbf{X}^T \mathbf{y}$$

- $\mathbf{X}^{\dagger} \triangleq (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ is called the *Moore-Penrose pseudoinverse* of \mathbf{X} .
- Linear regression in Python:

X[:,0]=1; X[:,1::]=x # assumes X is right size
w=np.dot(np.linalg.pinv(X),y)

• Prediction: yhat=np.dot(X,w)

$$\hat{y} = \mathbf{w}^* \cdot \mathbf{x}_0 = \mathbf{y}^T \mathbf{X}^{\dagger T} \mathbf{x}_0$$

Note: we have d+1 numbers in \mathbf{w}^* capture what the training data \mathbf{X}, \mathbf{y} tell us about $\mathcal{X} \to \mathcal{Y}$ under our model class

Least squares estimation

Data set size and regression

- What happens when we only have a single data point (in 1D)?
 - Ill-posed problem: an infinite number of lines pass through the point and produce "perfect" fit.
- Two points in 1D?
- Two points in 2D?
- This is a general phenomenon: the amount of data needed to obtain a meaningful estimate of a model is related to the number of parameters in the model (its complexity).

Linear regression - generalization

ullet Toy experiment: fit a line to varying number of points drawn from the same distribution $p(\mathbf{x},y)$

- A paradox?
 - The more training data we have, the "worse" is the fit;
 - But at the same time our prediction ability seems to improve.