Selected Topics in Mathematics of Learning

High-Dimensional Statistics

Lecturer: Marius Yamakou

Winter Semester 2024/25 Department of Data Science, FAU

January 21, 2025

Part VI

Sparse vector autoregressive models

Motivation

- Traditional assumptions:
 - Data are multivariate Gaussian
 - Observations are independent and identically distributed (i.i.d.)

Part VI

Sparse vector autoregressive models

Motivation

- Traditional assumptions:
 - Data are multivariate Gaussian
 - Observations are independent and identically distributed (i.i.d.)
- Real-world data often deviate from these assumptions:
 - Examples: fMRI data, ETFs
 - Temporal correlations are common

Part VI

Sparse vector autoregressive models

Motivation

- Traditional assumptions:
 - Data are multivariate Gaussian
 - Observations are independent and identically distributed (i.i.d.)
- Real-world data often deviate from these assumptions:
 - Examples: fMRI data, ETFs
 - Temporal correlations are common

Key Idea: Vector Autoregressive Models (VARs) are powerful tools for capturing temporal correlations in high-dimensional data.

Outline

- Preliminaries of VAR
- Estimation of Sparse VAR using LASSO
- LASSO: Estimation
- LASSO: Properties

A time series
$$\{X_t\}_{t\in\mathbb{Z}}=\{(X_{j,t})_{j=1,\dots,d}\}_{t\in\mathbb{Z}}$$
 follows a $\mathsf{VAR}(p)$ model if:
$$X_t=\Phi_1X_{t-1}+\dots+\Phi_pX_{t-p}+\epsilon_t,\quad t\in\mathbb{Z},$$

A time series $\{X_t\}_{t\in\mathbb{Z}}=\{(X_{j,t})_{j=1,\dots,d}\}_{t\in\mathbb{Z}}$ follows a **VAR**(p) model if:

$$X_t = \Phi_1 X_{t-1} + \ldots + \Phi_p X_{t-p} + \epsilon_t, \quad t \in \mathbb{Z},$$

where:

- $lackbox{\bullet} \Phi_1, \dots, \Phi_p$ are $d \times d$ matrices.
- $\{\epsilon_t\}_{t\in\mathbb{Z}}$ is a white noise series with the following statistics:

$$\mathbb{E}[\epsilon_t] = 0, \quad \mathbb{E}[\epsilon_t \epsilon_t'] = \Sigma_{\epsilon}, \quad \mathbb{E}[\epsilon_s \epsilon_t'] = 0 \quad \text{for } s \neq t.$$

A time series $\{X_t\}_{t\in\mathbb{Z}}=\{(X_{j,t})_{j=1,\dots,d}\}_{t\in\mathbb{Z}}$ follows a **VAR**(p) model if:

$$X_t = \Phi_1 X_{t-1} + \ldots + \Phi_p X_{t-p} + \epsilon_t, \quad t \in \mathbb{Z},$$

where:

- $lackbox{\bullet} \Phi_1, \dots, \Phi_p$ are $d \times d$ matrices.
- $\{\epsilon_t\}_{t\in\mathbb{Z}}$ is a white noise series with the following statistics:

$$\mathbb{E}[\epsilon_t] = 0, \quad \mathbb{E}[\epsilon_t \epsilon_t'] = \Sigma_\epsilon, \quad \mathbb{E}[\epsilon_s \epsilon_t'] = 0 \quad \text{for } s \neq t.$$

Example: VAR(1) with d=2

$$\Phi_1 = (\Phi_{1,jk})_{j,k=1,2} = \begin{bmatrix} \Phi_{1,11} & \Phi_{1,12} \\ \Phi_{1,21} & \Phi_{1,22} \end{bmatrix}$$

A time series $\{X_t\}_{t\in\mathbb{Z}}=\{(X_{j,t})_{j=1,\dots,d}\}_{t\in\mathbb{Z}}$ follows a **VAR(**p**)** model if:

$$X_t = \Phi_1 X_{t-1} + \ldots + \Phi_p X_{t-p} + \epsilon_t, \quad t \in \mathbb{Z},$$

where:

- \bullet Φ_1, \ldots, Φ_p are $d \times d$ matrices.
- $\{\epsilon_t\}_{t\in\mathbb{Z}}$ is a white noise series with the following statistics:

$$\mathbb{E}[\epsilon_t] = 0, \quad \mathbb{E}[\epsilon_t \epsilon_t'] = \Sigma_\epsilon, \quad \mathbb{E}[\epsilon_s \epsilon_t'] = 0 \quad \text{for } s \neq t.$$

Example: VAR(1) with d=2

$$\Phi_1 = (\Phi_{1,jk})_{j,k=1,2} = \begin{bmatrix} \Phi_{1,11} & \Phi_{1,12} \\ \Phi_{1,21} & \Phi_{1,22} \end{bmatrix}$$

The equations are:

$$X_{1,t} = \Phi_{1,11} X_{1,t-1} + \Phi_{1,12} X_{2,t-1} + \epsilon_{1,t},$$

$$X_{2,t} = \Phi_{1,21} X_{1,t-1} + \Phi_{1,22} X_{2,t-1} + \epsilon_{2,t}.$$

Please note the following:

- $\mathbb{E}[\epsilon_t] = 0$: This indicates that the white noise has a mean (or expected value) of 0 for all time points t. Essentially, the noise fluctuates around zero on average.
- $\mathbb{E}[\epsilon_t \epsilon_t'] = \Sigma_{\epsilon}$: Here, Σ_{ϵ} is the covariance matrix of ϵ_t , which characterizes the variance (for scalar ϵ_t) or the relationships between components (for vector-valued ϵ_t). For scalar white noise, this reduces to $\mathbb{E}[\epsilon_t^2] = \sigma_{\epsilon}^2$, where σ_{ϵ}^2 is the variance.
- $\mathbb{E}[\epsilon_s \epsilon_t'] = 0$ for $s \neq t$: This indicates that ϵ_t values at different time points t are uncorrelated. That is, the noise at time t does not depend on or influence the noise at any other time s. For vector-valued ϵ_t , this implies that the cross-covariance between vectors at different times is 0.

• If the **VAR(1)** model has d=1 (i.e., a univariate time series) and p=1, the equation simplifies significantly because there is only one time series and only one lag, making it one of the simplest forms of a VAR model.

- If the **VAR(1)** model has d=1 (i.e., a univariate time series) and p=1, the equation simplifies significantly because there is only one time series and only one lag, making it one of the simplest forms of a VAR model.
- The univariate time series $\{X_t\}_{t\in\mathbb{Z}}$, a **VAR(1)** model with d=1 and p=1 simplifies to:

$$X_t = \Phi_1 X_{t-1} + \epsilon_t,$$

- If the **VAR(1)** model has d=1 (i.e., a univariate time series) and p=1, the equation simplifies significantly because there is only one time series and only one lag, making it one of the simplest forms of a VAR model.
- The univariate time series $\{X_t\}_{t\in\mathbb{Z}}$, a **VAR(1)** model with d=1 and p=1 simplifies to:

$$X_t = \Phi_1 X_{t-1} + \epsilon_t,$$

where:

- ullet Φ_1 is a scalar (instead of a matrix since d=1).
- \bullet ϵ_t is white noise:

$$\mathbb{E}[\epsilon_t] = 0$$
, $\mathbb{E}[\epsilon_t^2] = \sigma_{\epsilon}^2$, $\mathbb{E}[\epsilon_s \epsilon_t] = 0$ for $s \neq t$.

- A VAR(1) model is:
 - Strictly stable if:

$$\det(I_d - \Phi_1 z) \neq 0, \quad \text{for } |z| < 1,$$

which is equivalent to requiring that all eigenvalues of Φ_1 satisfy $|\lambda|<1.$

- A VAR(1) model is:
 - Strictly stable if:

$$\det(I_d - \Phi_1 z) \neq 0, \quad \text{for } |z| < 1,$$

which is equivalent to requiring that all eigenvalues of Φ_1 satisfy $|\lambda| < 1$.

Marginally stable if:

$$\det(I_d - \Phi_1 z) = 0 \quad \text{for } |z| = 1,$$

- A VAR(1) model is:
 - Strictly stable if:

$$\det(I_d - \Phi_1 z) \neq 0, \quad \text{for } |z| < 1,$$

which is equivalent to requiring that all eigenvalues of Φ_1 satisfy $|\lambda| < 1$.

■ Marginally stable if:

$$\det(I_d - \Phi_1 z) = 0$$
 for $|z| = 1$,

- For d=1, the model $X_t=\Phi_1X_{t-1}+\epsilon_t,$ is:
 - Strictly stable if $|\Phi_1| < 1$,

- A VAR(1) model is:
 - Strictly stable if:

$$\det(I_d - \Phi_1 z) \neq 0, \quad \text{for } |z| < 1,$$

which is equivalent to requiring that all eigenvalues of Φ_1 satisfy $|\lambda| < 1$.

Marginally stable if:

$$\det(I_d - \Phi_1 z) = 0$$
 for $|z| = 1$,

- For d=1, the model $X_t=\Phi_1X_{t-1}+\epsilon_t$, is:
 - Strictly stable if $|\Phi_1| < 1$,
 - Marginally stable if $|\Phi_1| = 1$,

- A VAR(1) model is:
 - Strictly stable if:

$$\det(I_d - \Phi_1 z) \neq 0, \quad \text{for } |z| < 1,$$

which is equivalent to requiring that all eigenvalues of Φ_1 satisfy $|\lambda| < 1$.

Marginally stable if:

$$\det(I_d - \Phi_1 z) = 0$$
 for $|z| = 1$,

- For d=1, the model $X_t=\Phi_1X_{t-1}+\epsilon_t$, is:
 - Strictly stable if $|\Phi_1| < 1$,
 - Marginally stable if $|\Phi_1| = 1$,
 - **Unstable** if $|\Phi_1| > 1$.

General Stability Condition: For a VAR(p) model, stability requires that its characteristic polynomial satisfies:

$$\det(\Phi(z)) \neq 0$$
, for $|z| \leq 1$, $z \in \mathbb{C}$,

General Stability Condition: For a VAR(p) model, stability requires that its characteristic polynomial satisfies:

$$\det(\Phi(z)) \neq 0$$
, for $|z| \leq 1$, $z \in \mathbb{C}$,

where:

$$\Phi(z) = I_d - \Phi_1 z - \Phi_2 z^2 - \dots - \Phi_p z^p.$$

General Stability Condition: For a VAR(p) model, stability requires that its characteristic polynomial satisfies:

$$\det(\Phi(z)) \neq 0$$
, for $|z| \leq 1$, $z \in \mathbb{C}$,

where:

$$\Phi(z) = I_d - \Phi_1 z - \Phi_2 z^2 - \dots - \Phi_p z^p.$$

Assumption: In this part of the course, we assume all VAR models are strictly stable unless otherwise stated.

A VAR model is (second-order) Stationarity if:

1 The mean of the process is constant:

$$\mathbb{E}(X_t) = 0$$
 (or constant over time).

A VAR model is (second-order) **Stationarity** if:

1 The mean of the process is constant:

$$\mathbb{E}(X_t) = 0$$
 (or constant over time).

2 The autocovariance function (ACVF) depends only on the lag ℓ and not on t, that is:

$$\Gamma_X(\ell) = \mathbb{E}(X_{t+\ell}X_t') = \mathbb{E}(X_\ell X_0').$$

A VAR model is (second-order) **Stationarity** if:

1 The mean of the process is constant:

$$\mathbb{E}(X_t) = 0$$
 (or constant over time).

2 The **autocovariance function (ACVF)** depends only on the lag ℓ and not on t, that is:

$$\Gamma_X(\ell) = \mathbb{E}(X_{t+\ell}X_t') = \mathbb{E}(X_\ell X_0').$$

Remark: When $\ell=0$, we get the covariance: $\Gamma_X(0)=\Sigma_X=\mathbb{E}(X_tX_t')$

A VAR model is (second-order) Stationarity if:

1 The mean of the process is constant:

$$\mathbb{E}(X_t) = 0$$
 (or constant over time).

2 The autocovariance function (ACVF) depends only on the lag ℓ and not on t, that is:

$$\Gamma_X(\ell) = \mathbb{E}(X_{t+\ell}X_t') = \mathbb{E}(X_\ell X_0').$$

Remark: When $\ell=0$, we get the covariance: $\Gamma_X(0)=\Sigma_X=\mathbb{E}(X_tX_t')$ Implications of stationarity:

■ The statistical properties of the time series do not change over time.

A VAR model is (second-order) Stationarity if:

1 The mean of the process is constant:

$$\mathbb{E}(X_t) = 0$$
 (or constant over time).

2 The autocovariance function (ACVF) depends only on the lag ℓ and not on t, that is:

$$\Gamma_X(\ell) = \mathbb{E}(X_{t+\ell}X_t') = \mathbb{E}(X_\ell X_0').$$

Remark: When $\ell=0$, we get the covariance: $\Gamma_X(0)=\Sigma_X=\mathbb{E}(X_tX_t')$ Implications of stationarity:

- The statistical properties of the time series do not change over time.
- Stationarity ensures that the VAR model's behavior is predictable and consistent over time, making it suitable for modeling and forecasting.

Left: Time Series:

The time series shows a pattern with persistent, slowly decaying behavior over time, indicating that observations are strongly correlated even at long time lags.

Right: Autocorrelation Function (ACF):

■ The autocorrelation function (ACF) $\Gamma_X(\ell)/\Gamma_X(0)$ decreases very slowly as the lag ℓ increases.

Left: Time Series:

 The time series shows a pattern with persistent, slowly decaying behavior over time, indicating that observations are strongly correlated even at long time lags.

Right: Autocorrelation Function (ACF):

- The autocorrelation function (ACF) $\Gamma_X(\ell)/\Gamma_X(0)$ decreases very slowly as the lag ℓ increases.
- This behavior reflects long-range dependence (LRD), where correlations persist over long time periods.

Left: Time Series:

 The time series shows a pattern with persistent, slowly decaying behavior over time, indicating that observations are strongly correlated even at long time lags.

Left: Time Series:

The time series shows a pattern with persistent, slowly decaying behavior over time, indicating that observations are strongly correlated even at long time lags.

Right: Autocorrelation Function (ACF):

- The autocorrelation function (ACF) $\Gamma_X(\ell)/\Gamma_X(0)$ decreases very slowly as the lag ℓ increases.
- This behavior reflects long-range dependence (LRD), where correlations persist over long time periods.

Stationarity Implications:

The slow decay in the ACF suggests that the time series is not stationary, as stationarity requires the ACF to decay rapidly (e.g., exponentially or geometrically-decreases by a constant ratio in each time step.

Left: Time Series:

The time series exhibits more erratic behavior compared to LRD. While there are small dependencies between consecutive observations, they dissipate quickly over time.

Right: Autocorrelation Function (ACF):

■ The ACF decreases rapidly as ℓ increases and eventually becomes close to zero, indicating weak or no correlation at large lags. This is characteristic of short-range dependence (SRD).

Left: Time Series:

 The time series exhibits more erratic behavior compared to LRD. While there are small dependencies between consecutive observations, they dissipate quickly over time.

Left: Time Series:

The time series exhibits more erratic behavior compared to LRD. While there are small dependencies between consecutive observations, they dissipate quickly over time.

Right: Autocorrelation Function (ACF):

- The ACF decreases rapidly as ℓ increases and eventually becomes close to zero, indicating weak or no correlation at large lags. This is characteristic of short-range dependence (SRD).
- The rapid decay indicates that the time series is likely stationary, as the ACF does not persist indefinitely.

Stationarity Implications:

 The rapid decay in the ACF suggests that the time series is likely stationary.

Left: Time Series:

The time series exhibits more erratic behavior compared to LRD. While there are small dependencies between consecutive observations, they dissipate quickly over time.

Right: Autocorrelation Function (ACF):

- The ACF decreases rapidly as ℓ increases and eventually becomes close to zero, indicating weak or no correlation at large lags. This is characteristic of short-range dependence (SRD).
- The rapid decay indicates that the time series is likely stationary, as the ACF does not persist indefinitely.

Stationarity Implications:

- The rapid decay in the ACF suggests that the time series is likely stationary.
- Stationary time series exhibit consistent statistical properties over time.

1.2 Stationarity: In Functional Magnetic Resonance Imaging (fMRI).

Left: Time Series:

 The fMRI signal shows fluctuations over time, typical of neuro-physiological processes, with moderate temporal correlations.

1.2 Stationarity: In Functional Magnetic Resonance Imaging (fMRI).

Right: Autocorrelation Function (ACF):

The ACF decreases gradually but not as rapidly as in SRD. The slower decay suggests some degree of correlation over time, though it is weaker than in LRD.

Left: Time Series:

 The fMRI signal shows fluctuations over time, typical of neuro-physiological processes, with moderate temporal correlations.

1.2 Stationarity: In Functional Magnetic Resonance Imaging (fMRI).

Left: Time Series:

 The fMRI signal shows fluctuations over time, typical of neuro-physiological processes, with moderate temporal correlations.

Right: Autocorrelation Function (ACF):

The ACF decreases gradually but not as rapidly as in SRD. The slower decay suggests some degree of correlation over time, though it is weaker than in LRD.

Stationarity Implications:

The fMRI data may exhibit weak stationarity, as the mean and variance appear constant over time.

1.2 Stationarity: In Functional Magnetic Resonance Imaging (fMRI).

Left: Time Series:

 The fMRI signal shows fluctuations over time, typical of neuro-physiological processes, with moderate temporal correlations.

Right: Autocorrelation Function (ACF):

The ACF decreases gradually but not as rapidly as in SRD. The slower decay suggests some degree of correlation over time, though it is weaker than in LRD.

Stationarity Implications:

- The fMRI data may exhibit weak stationarity, as the mean and variance appear constant over time.
- However, correlations persist over moderate lags, requiring further investigation to confirm stationarity.

Left: Time Series:

 The stock price time series appears highly volatile, with no clear trend or periodicity.

Left: Time Series:

- The stock price time series appears highly volatile, with no clear trend or periodicity.
- The variations are large and erratic, consistent with typical financial time series.

Right: Autocorrelation Function (ACF):

■ The autocorrelation function (ACF) $\Gamma_X(\ell)/\Gamma_X(0)$ does not decay as rapidly as expected for short-range dependence.

Left: Time Series:

- The stock price time series appears highly volatile, with no clear trend or periodicity.
- The variations are large and erratic, consistent with typical financial time series.

Left: Time Series:

- The stock price time series appears highly volatile, with no clear trend or periodicity.
- The variations are large and erratic, consistent with typical financial time series.

Right: Autocorrelation Function (ACF):

- The autocorrelation function (ACF) $\Gamma_X(\ell)/\Gamma_X(0)$ does not decay as rapidly as expected for short-range dependence.
- This behavior suggests that correlations persist over time, indicating potential long-range dependence, weak or even non-stationarity.

Left: Time Series:

- The stock price time series appears highly volatile, with no clear trend or periodicity.
- The variations are large and erratic, consistent with typical financial time series.

Right: Autocorrelation Function (ACF):

- The autocorrelation function (ACF) $\Gamma_X(\ell)/\Gamma_X(0)$ does not decay as rapidly as expected for short-range dependence.
- This behavior suggests that correlations persist over time, indicating potential long-range dependence, weak or even non-stationarity.

Stationarity Implications:

The slow decay in the ACF indicates that the time series may be weakly stationary.

Left: Time Series:

- The stock price time series appears highly volatile, with no clear trend or periodicity.
- The variations are large and erratic, consistent with typical financial time series.

Right: Autocorrelation Function (ACF):

- The autocorrelation function (ACF) $\Gamma_X(\ell)/\Gamma_X(0)$ does not decay as rapidly as expected for short-range dependence.
- This behavior suggests that correlations persist over time, indicating potential long-range dependence, weak or even non-stationarity.

Stationarity Implications:

- The slow decay in the ACF indicates that the time series may be weakly stationary.
- Financial data can exhibit behaviors such as long-range dependence or structural breaks that violate stationarity assumptions.

1. Stationarity:

■ A time series is stationary if its mean and variance are constant over time, and the autocovariance $\Gamma_X(\ell)$ depends only on the lag ℓ , not on time t.

1. Stationarity:

- A time series is stationary if its mean and variance are constant over time, and the autocovariance $\Gamma_X(\ell)$ depends only on the lag ℓ , not on time t.
- In the figures:
 - SRD, fMRI, and stock data are examples of stationary (or weakly stationary) time series.

1. Stationarity:

- A time series is stationary if its mean and variance are constant over time, and the autocovariance $\Gamma_X(\ell)$ depends only on the lag ℓ , not on time t.
- In the figures:
 - SRD, fMRI, and stock data are examples of stationary (or weakly stationary) time series.
 - LRD may not be stationary due to the slow decay of the ACF, which suggests that correlations persist across large lags.

2. Autocorrelation Function (ACF):

■ The ACF quantifies the dependence of the time series on its past values at various lags ℓ .

1. Stationarity:

- A time series is stationary if its mean and variance are constant over time, and the autocovariance $\Gamma_X(\ell)$ depends only on the lag ℓ , not on time t.
- In the figures:
 - SRD, fMRI, and stock data are examples of stationary (or weakly stationary) time series.
 - LRD may not be stationary due to the slow decay of the ACF, which suggests that correlations persist across large lags.

2. Autocorrelation Function (ACF):

- The ACF quantifies the dependence of the time series on its past values at various lags ℓ .
- Stationary time series typically exhibit ACFs that decay rapidly (e.g., exponentially or geometrically) as ℓ increases.

1. Stationarity:

- A time series is stationary if its mean and variance are constant over time, and the autocovariance $\Gamma_X(\ell)$ depends only on the lag ℓ , not on time t.
- In the figures:
 - SRD, fMRI, and stock data are examples of stationary (or weakly stationary) time series.
 - LRD may not be stationary due to the slow decay of the ACF, which suggests that correlations persist across large lags.

2. Autocorrelation Function (ACF):

- The ACF quantifies the dependence of the time series on its past values at various lags ℓ .
- Stationary time series typically exhibit ACFs that decay rapidly (e.g., exponentially or geometrically) as ℓ increases.
- Non-stationary time series may show very slow or no decay in the ACF.

1.2. Note1 : The Autocovariance function (ACVF) \neq Autocorrelation function (ACF)

1 Autocovariance Function (ACVF):

 ACVF measures the covariance of a time series with its lagged version.

1.2. Note1 : The Autocovariance function (ACVF) \neq Autocorrelation function (ACF)

1 Autocovariance Function (ACVF):

- ACVF measures the covariance of a time series with its lagged version.
- For a time series X_t , the ACVF at lag ℓ is defined as:

$$\Gamma_X(\ell) = \mathsf{Cov}(X_t, X_{t+\ell}) = \mathbb{E}[(X_t - \mu)(X_{t+\ell} - \mu)],$$

where $\mu = \mathbb{E}[X_t]$ is the mean of the time series (assuming stationarity).

1.2. Note1 : The Autocovariance function (ACVF) \neq Autocorrelation function (ACF)

1 Autocovariance Function (ACVF):

- ACVF measures the covariance of a time series with its lagged version.
- For a time series X_t , the ACVF at lag ℓ is defined as:

$$\Gamma_X(\ell) = \mathsf{Cov}(X_t, X_{t+\ell}) = \mathbb{E}[(X_t - \mu)(X_{t+\ell} - \mu)],$$

where $\mu = \mathbb{E}[X_t]$ is the mean of the time series (assuming stationarity).

Units: The autocovariance is measured in the square of the units of X_t , so it depends on the scale of the time series.

- 1.2. Note 1: The Autocovariance function (ACVF) \neq Autocorrelation function (ACF)
 - **2** Autocorrelation Function (ACF):

1.2. Note 1: The Autocovariance function (ACVF) \neq Autocorrelation function (ACF)

2 Autocorrelation Function (ACF):

■ The ACF is the normalized version of the ACVF.

1.2. Note 1: The Autocovariance function (ACVF) \neq Autocorrelation function (ACF)

2 Autocorrelation Function (ACF):

- The ACF is the normalized version of the ACVF.
- It measures the linear dependence between X_t and X_{t+h} , scaled to lie between -1 and 1. It is defined as:

$$\rho_X(\ell) = \frac{\Gamma_X(\ell)}{\Gamma_X(0)},$$

where $\Gamma_X(0)$ is the variance of the time series $(\Gamma_X(0) = \mathsf{Var}(X_t))$.

1.2. Note 1: The Autocovariance function (ACVF) \neq Autocorrelation function (ACF)

2 Autocorrelation Function (ACF):

- The ACF is the normalized version of the ACVF.
- It measures the linear dependence between X_t and X_{t+h} , scaled to lie between -1 and 1. It is defined as:

$$\rho_X(\ell) = \frac{\Gamma_X(\ell)}{\Gamma_X(0)},$$

where $\Gamma_X(0)$ is the variance of the time series $(\Gamma_X(0) = \text{Var}(X_t))$.

■ Units: The autocorrelation is dimensionless and does not depend on the scale of the time series.

The covariance, $\operatorname{Cov}(X_t, X_{t+\ell}) = \mathbb{E}[(X_t - \mu)(X_{t+\ell} - \mu)]$ will be equal to the variance of the time series, $\operatorname{Var}(X_t) = \mathbb{E}[(X_t - \mu)^2]$, when the lag $\ell = 0$.

The covariance, $\operatorname{Cov}(X_t, X_{t+\ell}) = \mathbb{E}[(X_t - \mu)(X_{t+\ell} - \mu)]$ will be equal to the variance of the time series, $\operatorname{Var}(X_t) = \mathbb{E}[(X_t - \mu)^2]$, when the lag $\ell = 0$.

Explanation:

■ Variance: The variance of a random variable X_t is a special case of the covariance where the two random variables are identical, i.e., the lag is $\ell=0$:

$$Var(X_t) = Cov(X_t, X_t) = \mathbb{E}[(X_t - \mu)(X_t - \mu)].$$

The covariance, $\operatorname{Cov}(X_t, X_{t+\ell}) = \mathbb{E}[(X_t - \mu)(X_{t+\ell} - \mu)]$ will be equal to the variance of the time series, $\operatorname{Var}(X_t) = \mathbb{E}[(X_t - \mu)^2]$, when the lag $\ell = 0$.

Explanation:

■ Variance: The variance of a random variable X_t is a special case of the covariance where the two random variables are identical, i.e., the lag is $\ell=0$:

$$Var(X_t) = Cov(X_t, X_t) = \mathbb{E}[(X_t - \mu)(X_t - \mu)].$$

Covariance at $\ell = 0$: When $\ell = 0$, the covariance reduces to:

$$Cov(X_t, X_{t+0}) = \mathbb{E}[(X_t - \mu)(X_t - \mu)] = Var(X_t).$$

The covariance, $\text{Cov}(X_t, X_{t+\ell}) = \mathbb{E}[(X_t - \mu)(X_{t+\ell} - \mu)]$ will be equal to the variance of the time series, $\text{Var}(X_t) = \mathbb{E}[(X_t - \mu)^2]$, when the lag $\ell = 0$.

Explanation:

■ Variance: The variance of a random variable X_t is a special case of the covariance where the two random variables are identical, i.e., the lag is $\ell = 0$:

$$Var(X_t) = Cov(X_t, X_t) = \mathbb{E}[(X_t - \mu)(X_t - \mu)].$$

Covariance at $\ell = 0$: When $\ell = 0$, the covariance reduces to:

$$Cov(X_t, X_{t+0}) = \mathbb{E}[(X_t - \mu)(X_t - \mu)] = Var(X_t).$$

■ For $\ell \neq 0$, the covariance involves the dependence between X_t and its lagged value $X_{t+\ell}$. Unless the time series is perfectly correlated for that lag $(X_{t+\ell} = X_t)$, the covariance at lag ℓ will **not** equal the variance.

The covariance, $\text{Cov}(X_t, X_{t+\ell}) = \mathbb{E}[(X_t - \mu)(X_{t+\ell} - \mu)]$ will be equal to the variance of the time series, $\text{Var}(X_t) = \mathbb{E}[(X_t - \mu)^2]$, when the lag $\ell = 0$.

Explanation:

■ Variance: The variance of a random variable X_t is a special case of the covariance where the two random variables are identical, i.e., the lag is $\ell = 0$:

$$Var(X_t) = Cov(X_t, X_t) = \mathbb{E}[(X_t - \mu)(X_t - \mu)].$$

Covariance at $\ell = 0$: When $\ell = 0$, the covariance reduces to:

$$Cov(X_t, X_{t+0}) = \mathbb{E}[(X_t - \mu)(X_t - \mu)] = Var(X_t).$$

■ For $\ell \neq 0$, the covariance involves the dependence between X_t and its lagged value $X_{t+\ell}$. Unless the time series is perfectly correlated for that lag $(X_{t+\ell} = X_t)$, the covariance at lag ℓ will **not** equal the variance.

Conclusion: Cov $(X_t, X_{t+\ell}) = \text{Var}(X_t)$ if and only if $\ell = 0$.