

Gene expression inference with Deep Learning

Andrea Sessa

Yifei Chen, Yi Li, Rajiv Narayan, Aravind Subramanian, Xiaohui Xie Bioinformatics, 2016 Volume 32, Issue 12, pages: 1832-1839

- A fundamental problem in molecular biology: Characterize gene expression pattern under certain biological states
- Gene expression profiling has been historically used as a tool to capture the gene expression patterns in response to diseases
- Unfortunately, whole-genome gene expression profiling is still too expensive to be used in a typical academic lab to generate a compendium over thousand of samples
- Human genome: ~ 22000 genes!

In the following we will indicate:

- L the number of landmark genes
- T the number of target genes
- N the number of training samples

 $\boldsymbol{x}^i \in R^L$ denotes the expression value of the landmark genes in the i-th sample

 $y^i \in R^T$ denotes the expression value of the target genes in the i-th sample Our goal is to infer the function:

$$F: R^L \to R^T \tag{1}$$

- Computationally complex to infer the expression profiles of target genes based on landmark genes
- A large-scale multi-task supervised learning problem!
- We need also to consider that the target dimension(22000) is significantly greater thant the feature dimension(1000)
 - ► LINCS uses linear regression, high scalability but it ignores non-linearity patterns inside the data
 - Others(Ye et al. 2006) have tried to use kernel machines(ie. SVM), scalability problem!
 - Seems natural to adopt **Deep Learning** approach, high scalability + high representability

- Main idea: The expression profile of genes are known to be highly correlated!
- Connectivity MAP project: Creation of a large reference collection gene expression patterns of the human genome (only 564 genome-wide gene expr. profiles)
- LINCS: PCA analysis over the CMAP data; only ~ 1000 genes of 22000 capture the 80% of the variance!
 - ► The chosen 1000 genes are called landmark genes
 - ► The remaining part are called **target genes**
 - Measure gene expression of the landmark genes under certain biological condition(low cost!)
 - ► Infer the expression of the target genes from the landmark genes and other expression profile
 - ► LINCS program currently use **linear regression** to infer the expression of the target genes

Deep Learning Architecture

Idea: learn a hierarchical rappresentation of the data through multiple layers

D-Gex: A mult-task multi-layed feedforward neural network

953 hidden units(one for each landmark gene)
9520 output units, divided in two due to capicity constraints

<u>\</u>

The ouput of the hidden unit j in the hidden layer l is given by:

$$o_j^l = f(\sum_{i=1}^H \omega_{i,j}^{l-1} o_i^{l-1} + b_j^{l-1})$$

f(x) is a non-linear activation function that in our case has been chosen as the hyperbolic tangent

We try the learn w_{ij}, b_j by minimizing the sum of mean squared errors for each output unit(t)

$$E = \sum_{t=1}^{T} \left[\frac{1}{N} \sum_{i=1}^{N} (y_{i(t)} - \hat{y}_{i(t)})^{2} \right]$$

<u>\</u>

The training follows the standard back-propagation algorithm, with some tricks:

- Dropout: Regularization and model averaging
- Momentum gradient descent: Use velocity to update parameters
- Normalized Initialization: Initial parameters sampled from a uniform distribution
- Learning Rate: $5*10^{-4}$ or $3*10^{-4}$ and decreased according to the training error
- Model Selection: 200 epochs and evaluated against the dataset after each epoch

Idea: Train a linear model for each target gene t:

$$F_t(x) = w_t^T x + b_t$$

where $w_t^T x$ and b_t are the model parameters associated to t:

$$(w_t, b_t) = \underset{w,b}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_{it} - w_t^T x_i - b_t)^2$$
 (2)

For regularization we introduce the L1 and L2 norms:

$$(w_t, b_t) = \underset{w, b}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_{it} - w_t^T x_i - b_t)^2 + \lambda ||w_t||_1$$
 (3)

$$(w_t, b_t) = \underset{w, b}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_{it} - w_t^T x_i - b_t)^2 + \lambda ||w_t||_2$$
 (4)

L(1) is currently used in LINCS

 λ is tuned on the GEO-va and 1000G-va datasets.

- Non-parametric, instance based algorithm
- For any testing data, the k-nearest neighbors based on a certain distance metric(euclidean) are used for the prediction(average)
- Problem: Bias due to duplicated samples in the data(DGE)
- Solution: Do not query the k nearest sample but the k nearest genes
- Pros: No prior assumption on the model, high capability to model non linear pattern
- k is tuned on the GEO-va and 1000G-va datasets.

The datasets used are:

GEO Expression Data

- ► 129158 gene expression profiles from **Affymetrix microarray** platform
- Normalization: quantile normalization(joint) + duplicate removal

GTEx Expression Data

- 2921 gene expression profiles from Illumina RNA-Seq platform
- Normalization: quantile normalization(joint)
- 1000 Genome expression data
 - ▶ 462 gene expression profiles from Illumina RNA-Seq platform
 - Normalization: quantile normalization(joint)

For the microarray platform(Affymetrix):

- GEO dataset
- 80 % for training(GEO-tr), 10 % validation(GEO-va), 10 % testing(GEO-te)

For the RNA-Seq platform:

- The GEO-tr dataset was used for training
- The 1000G-va dataset was used for validation
- The GTEx-te was used for testing

7

- Developed in 2008
- Affymetrix Oligonucleotides microarray ~ 2000
- cDNA microarray ~ 1995

Something on RNA-Seq - 2

The best performance of DGEx is achieved with a dropout rate of 10 %

	Number of hidden units		
	3000	6000	9000
Number o	f hidden layers		
1	0.3421 ± 0.0858	0.3337 ± 0.0869	0.3300 ± 0.0874
2	0.3377 ± 0.0854	0.3280 ± 0.0869	0.3224 ± 0.0879
3	0.3362 ± 0.0850	0.3252 ± 0.0868	0.3204 ± 0.0879
LR		0.3784 ± 0.0851	
LR-L1		0.3782 ± 0.0844	
LR-L2		0.3784 ± 0.0851	
KNN-GE		0.5866 ± 0.0698	

Relative improvement: 15.33% vs LR and 45.38% vs KNN

Cross-platform scenario: reduced predictive power!

	Number of hidden units		
	3000	6000	9000
Number o	f hidden layers		
1	0.4507 ± 0.1231	0.4428 ± 0.1246	0.4394 ± 0.1253
2	0.4586 ± 0.1194	0.4446 ± 0.1226	0.4393 ± 0.1239
3	0.5160 ± 0.1157	0.4595 ± 0.1186	0.4492 ± 0.1211
LR		0.4702 ± 0.1234	
LR-L1		0.5667 ± 0.1271	
LR-L2		0.4702 ± 0.1234	
KNN-GE		0.6520 ± 0.0982	

Relative improvement: 6.57% vs LR and 32.63% vs KNN

Interpreting the linear model produced by LR is easy: big coefficients indicate a strong dependency between the target and the landmark genes.

On the other hand interpreting the model learned by DGEx is much more complex!

No consolidated method exist, the author proposed:

- Major weight visualization
- Analysis of the non-linearity captured by the hidden units

Major weights visualization

Following the idea of LR, try to visualize the more **important** connection between artificial neurons.

Non-Linearity Analysis

Try to understand if some of the hidden units have captured some non-linearity pattern.

Problem: many neurons in DGEx!

Idea: each hidden unit represent a feature, that is a non-linear transformation of the expression of the landmark genes.

Can a LR model based on this feature achieve better performances than a simple LR?

The author have estimated the (adjusted) R^2 between:

- The last hidden layer and the target (features based LR)
- The raw input and the target (Simple LR)

In the first case we achieve a larger R^2 !

Non-Linearity Analysis - Results

- Available at: https://github.com/uci-cbcl/D-GEX
- Not user friendly, it a collection of script that model the neural network.
- The software permits just to train the network and to evaluate the performance.
- Poor documentation: comments in the code???.
- Usage of the learned model is up to the final user!

- DGEx outperforms LR in a single-platform scenario
- DGEx outperforms LR in a cross-platform scenario(dropout)
- Interpretation of the learned model lead to the conclusion that the network has capture non-linearity pattern in the data(LR probably underfit the data)
- Model interpretation in LR is easy while it is very complicated in deep learning settings

Possible improvements:

- Target genes have been randomly partitioned and each set was trained separately using different GPUs
- First improvement: perform clustering and the train the model
- Target genes sharing similar expression profiles share weights in the NN
- Other possibilities: use a larger memory GPU(or multi-GPU techniques)

Thank you! Questions?