Combining corpus statistics and knowledge base to disambiguate and acquire verb frames

學生: 高定慧

指導教授: 張俊盛 博士

系所: 資訊工程學系

時間: 2013.07.09

Abstract

Verb frames may play a key role in language learning

Purpose

Automatically generate verb frames with semantic labels

Method

- Combining corpus statistics and knowledge base
- Disambiguate semantic labels

Results

 We achieved quite satisfied performance comparing to a manually built gold standard

A verb frame

consists of one or more parts which express the requirements for their possible participants.

Tesnière (1953)

Verb frames in different forms

sentence: "I finally abandon the wild idea"

Linggle →	1	abandon	idea
VerbNet →	np	abandon	np
VerbNet →	subject	abandon	object
Dictionary →	somebody	abandon	something
FrameFinder →	person	abandon	cognition
CPA →	person	abandon	plan
		4 / 61	

Learning verb frames is important

For example, a language learner who is already familiar with:

"members + establish + friendship"

Learners tend to rephrase using similar words

Unfortunately, this often leads to a word choice error

```
members establish friendship
```

* members construct friendship

members build friendship

Dictionaries typically overly simplified semantic labels

1 to build something construct something from/of/in something

2 to form something

More specific semantic labels help one to use a verb more appropriately

PERSON establish RELATIONSHIP

PERSON construct ARTIFACT

We can easily derive such verb frames from a corpus and a knowledge base

verb	construct show 3 instance > 3 pattern 0.	.0 %	search
1	PERSON construct ARTIFACT	27	29.35 %
	him construct kiln	•	Grumpily Dai Huang chose Li Lu , to help him construct a newer , bigg
	you construct shelter	•	There may have been so much conflict indoors that you had to constru
	I construct bomb	•	As for Meredith-Lee 's death , if you 're asking me did I construct a boarswer is no . $ \\$
2	COGNITION construct ARTIFACT	18	19.57 %
	intention construct road		Taken in conjunction the written statement and the key diagram indicated an A fifty nine relief road, passing to the north of Harrogate and Kna
	techniques construct houses	•	For the first time , archaeologists have been able to study in detail the medieval builders to construct the typical cob houses for which the We
	example construct building	•	Would a trust , for example to construct a public building or to set up be enforced as such ?
3	PERSON construct COGNITION	13	14.13 %
	I construct tactic	•	I 've always been too shy to construct a tactic in order to attract wom
	I construct idea	•	In a split-second I would build on this particle of noise and construct a that could produce such a phenomenon .
	he construct understanding	•	Unlike the Chicago School , for example , he was not attempting to continuous distinct forms of natural area were resulting from people 's search
4	PERSON construct COMMUNICATION	8	8.7 %
	you construct movies	•	Flip through the wacky but informative manual which casts you as a methat the first three programs let you construct 20-frame icon-sized mo
	we construct database	•	This we have used to construct and maintain a database of managem
	he construct discourse	•	Furthermore , he was attempting to construct a discourse which was in attack then being launched from inside and outside the discipline .
5	COGNITION construct COMMUNICATION	6	6.52 %

Ambiguity existed in a verb frame.

→ Word Sense Disambiguation

"workers abandon plants"

PERSON ARTIFACT PLANT

Many resources provide verb frames information in various forms

Linggle →		abandon	idea
VerbNet →	np	abandon	np
VerbNet →	subject	abandon	object
Dictionary →	somebody	abandon	something
FrameFinder →	person	abandon	cognition
CPA →	person	abandon	plan

VerbNet

FRAMES	REF KEY
NP V NP	
EXAMPLE	"David constructed a house."
SYNTAX	AGENT V RESULT
SEMANTICS	NOT(EXIST(START(E), RESULT)) EXIST(RESULT(E), RESULT) CAUSE(AGENT, E)
NP V NP PP.	MATERIAL
EXAMPLE	"David constructed a house out of sticks."
SYNTAX	AGENT V RESULT (FROM OUT_OF) MATERIAL
SEMANTICS	${\color{red} {\tt NOT(EXIST(START(E), RESULT))} \; {\tt EXIST(RESULT(E), RESULT) \; MADE_OF(RESULT(E), RESULT, MATERIAL) \; {\tt CAUSE}(AGENT, E)} }$
NP V NP PP.	BENEFICIARY
EXAMPLE	"David dug a hole for me."
SYNTAX	AGENT V RESULT (FOR) BENEFICIARY
SEMANTICS	NOT(EXIST(START(E), RESULT)) EXIST(RESULT(E), RESULT) CAUSE(AGENT, E) BENEFIT(E, BENEFICIARY)
NP V NP PP.	ATTRIBUTE
EXAMPLE	"They designed the Westinghouse-Mitsubishi venture as a non-equity transaction."
SYNTAX	AGENT V RESULT (AS) ATTRIBUTE
SEMANTICS	NOT(EXIST(START(E), RESULT)) EXIST(RESULT(E), RESULT) CAUSE(E, AGENT)

next page

116	ext page			
No.	Chunks	Frequency	Examples (from BNC)	Parent (more general versions)
1	[noun sg] construct a [noun sg] of	20	Q	1
2	[noun] construct a [noun sg] of	34	Q	1
3	[noun] be constructed from [noun]	15	Q	1
4	[noun] construct a [noun sg]	91	Q	1
5	[noun sg] construct a [noun sg]	57	Q	1
6	[noun] be constructed in [noun]	9	Q	1
7	[noun] be constructed [prep] the [noun]	28	Q	1
8	[noun] be constructed by [noun]	12	Q	1
9	[noun sg] of constructing a [noun sg]	16	Q	1
10	the [noun sg] of constructing [noun]	7	Q	1
11	[noun] constructed by the [noun]	10	Q	1
12	[noun] construct a new [noun sg]	12	Q	1
13	[noun] be constructed [prep] the [noun sg]	22	Q	•

Corpus Pattern Analysis (CPA)

Human construct Artifact | Building

Human construct Theory | Hypothesis

Human build Relationship

Human build Building | Machine

Requires expert linguists to manually derive patterns from a corpus

- 1. time-consuming
- 2. might not achieve high coverage for many verbs a learner has to master

Linggle: a Web-scale Linguistic Search Engine for Words in Context
- Boisson et al. 2013

Linggle website: linggle.com

Learners need more complete verb frames or patterns

Linggle —> 1 PERSON apologize

I apologize

juvenile apologize

2 PERSON apologize to PERSON

you apologize to me

I apologize to him

3 PERSON apologize for ACT

I apologize for needing

I apologize for using

-FrameFinder

An automatically generating verb frames approach

- 1. Extract verb arguments corpus
- 2. Obtain probable semantic roles for each argument Knowledge base
- 3. Disambiguate senses of an argument WSD
- 4. Tally and output verb frames

Step 1. Extracting verb arguments based on grammatical relations

```
"The deer would eat your plants"

(subject) "The deer would eat your plants" (object)

< deer, eat, plants > (argument tuple)
```

Step 2. Obtaining semantic roles from a knowledge base

Step 3. Generating verb frames

argument tuples	semantic tuples
deer, eat, plants	< ANIMAL, eat, PLANT >
	< ANIMAL, eat, ARTIFACT >
birds, eat, seeds	< ANIMAL, eat, PLANT >
	< ANIMAL, eat, PERSON>
ants, eat, sugar	< ANIMAL, eat, FOOD>

Disambiguate and identify the *intended* meaning of arguments

< deer, eat, plants >

< ANIMAL, eat, ARTIFACT> < ANIMAL, eat, PLANT>

Applying the Expectation-Maximization (EM) algorithm to disambiguate

- EM algorithm Dempster et al., 1977
- Expectation (E-step)
- Maximization (M-step)

A flexible and extensible disambiguation module

$$p(v_f|v) = \alpha(p(v_f|v)) + \beta(p(s|v) \cdot p(o|v) \cdot \prod_{po \ \epsilon \ adverbial} p(po|v))$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
subject object adverbial

In this study, we set $\alpha = 1$, $\beta = 0$

```
Procedure GenerateVerbFrames (ArgumentTuples)
 (1a) FrameCandis = {}
 (1b) allFrames = {getVerbFrames(t) for each tuple t in ArgumentTuples}
 (1c) p(frame|v) = 1 / |allFrames|
       while not convergent
         count(frame|v) = 0 for frame in allFrames
         for each tuple t in ArgumentTuples
 (2a)
          tupleFrame = getVerbFrames(t)
          nf = sum(prob(frame)) for all frame in tupleFrames)
 (2b)
           for each frame in tupleFrames
             count(frame) += prob(frame)/nf
 (2c)
         for all frame in allFrames
 (3)
           p(frame|v) = count(frame|v)/|ArgumentTuples|
       for each tuple t in ArgumentTuples
 (4)
         append argmax(frame) to FrameCandis
       RankedFrames = Sort(frames in FrameCandis in decreasing order of frequency)
 (5)
     return top K ranking RankedFrames
```

EM Example

argument tuples	semantic tuples	
deer, eat, plants (a ₁)	< ANIMAL, eat, ARTIFACT >	s ₁
	< ANIMAL, eat, PLANT>	s ₂
birds, eat, seeds (a ₂)	ANUNAAL DEDCON	s ₂ s ₃
ants, eat, sugar (a ₃)	< ANIMAL, eat, FOOD>	S ₄

1st E-step: Initialize the probability of each candidate *uniformly*

$$a_1$$
 s_1 $1/4 \rightarrow 1/2$ s_2 $1/4 \rightarrow 1/2$ a_2 s_2 $1/4 \rightarrow 1/2$ s_3 $1/4 \rightarrow 1/2$ a_3 s_4 $1/4 \rightarrow 1$ \rightarrow normalize

1st M-step:

2nd E-step:

2nd M-step:

Until convergent...

Assign a semantic tuple for each argument tuple

Finally, counts and outputs the ranked semantic tuples

ANIMAL eat PLANT	s_2	2
ANIMAL eat FOOD	s_4	1
< ANIMAL, eat, ARTIFACT >	S ₁	0
< ANIMAL, eat, PERSON>	S_3	0

Verb frame generation methods compared

- Most Frequent Sense (MFS)
 - always chooses the major sense

```
e.g., < deer, eat, plants > \rightarrow < ANIMAL, eat, ARTIFACT >
```

- Expectation-Maximization: (EM)
 - considers probabilities of semantic categories

The extracted frames for the average language learners should be:

- 1. Valid
- 2. Cover common usages of the verb

Evaluate FrameFinder's performance using

- 1. Precision
- 2. Weighted recall
- 3. F-measure

$$Precision(v) = \frac{|F(v) \cap Gold(v)|}{|F(v)|}$$

$$wtRecall(v) = \sum_{f \in F(v) \cap Gold(v)} \frac{freq(f)}{|Gold(v)|}$$

$$F$$
 – $measure = \frac{2PR}{P+R}$

where P = Precision, R = wtRecall

For example, given a verb v

Resources and tools we used

- British National Corpus (BNC)
 - 4,693,767 sentences
- Stanford Parser
 - subject, object, adverbial- p.22 Table 5
- WordNet
 - 25 supersenses p.22 Table 4
- Corpus Pattern Analysis (CPA)
 - 812 verbs
 - 3,100 verb patterns

Mapping CPA labels to WordNet supersenses

e.g.,

HUMAN | INSTITUTION abandon PLAN | ACTIVITY

PERSON abandon COGNTION

PERSON abandon ACT

GROUP abandon COGNITION

GROUP abandon ACT

Calculate the coverage

	Verb frame	Coverage	Accumulated coverage
	PERSON abandon COGNITION	28.3%	28.3%
40%	PERSON abandon ACT	20.2%	48.5%
	PERSON abandon PERSON	18.18%	66.7%
	•	•	•

Overall performance of FrameFinder

Precision and Recall of FrameFinder

Our goal is to provide verb frames to facilitate language learning

We need high precision rate in high frequency verbs

Number of occurrences of verbs in BNC and CPA

Five grouping criteria and the number of verbs in CPA

Group	Verb count criterion	# of verbs in CPA	Verb samples
VHigh	> 6000	26 → 3%	talk, say, tell
High	3000 - 6000	50 → 6%	propose, accuse, drink
Mid	500 - 3000	85 → 10%	abolish, dispose, pray
Low	150 - 500	77 → 9%	irritate, disregard, overflow
VLow	< 150	575 → 72%	petrify, abase, apostrophize

The precision of each verb in VHigh and High

Failure cases in Group High

PERSON recall

PERSON glance at PERSON

CPA internal labeling inconsistency

He glanced at his young colleague.

He glanced at his young colleague.

CPA (gold standard)

FrameFinder

PERSON glance [NO OBJ] Direction Adv.

PERSPN glance at PERSON

PERSON yell [NO OBJ] at PERSON

The precision of each verb in Mid and Low

CPA-WordNet mapping inconsistency

The announcement is bound to anger the fundamentalists.

V

The announcement is bound to anger the fundamentalists.

FrameFinder: COMMUNICATION anger PERSON

CPA-WordNet mapping inconsistency

FrameFinder: COMMUNICATION anger PERSON

The precision of each verb in VLow

Optional adverbial

FrameFider:

PERSON abase PERSON in STATE

PERSON abase PERSON before PERSON

CPA: PERSON abase PERSON

The precision of FrameFinder in each groups

Summary

- We have introduced a method combining corpus statistics and knowledge base to disambiguate and automatically acquire verb frames
- Evaluation results show that the method is able to extract verb frames with reasonable precision and recall of the most frequent usages for language learning

Future work

- Existing very large corpora can be exploited
 - UKWaC: 2 billion words
 - ClueWeb: 70 billion words
- More grammatical relations should be utilized
 - Passive voice
 - Clause
- The generated verb frames could be applied in other fields
 - Verb clustering
 - Grammatical error detection/correction
 - Learning or teaching the difference of verb usage

Thank you!