ALCTG

The Scientist must set in order. Science is built up with facts, as a house is with stones. But a collection of facts is no more a science than a heap of stones is a house.

Science and Hypothesis Henri Poincare

Table of contents

Глав	а 1 Булева алгебра	2
1.1	Булевы функции	2
	1.1.1 Домашняя работа	. 3
1.2	Теорема Поста	5
	1.2.1 Домашняя работа	. 6

§1.1 Булевы функции

Домашняя работа

Задача 1.1.1. x, y, z — целые числа, для которых истинно высказывание

$$\neg(x = y) \land ((y < x) \to (2z > x)) \land ((x < y) \to (x > 2z))$$
 (1.1)

Чему равно x, если z = 7, y = 16?

Решение. Подставляем из условия значения z и y и преобразуем выражение (1.1)

$$\neg(x = 16) \land (\neg(x > 16) \lor (x < 14)) \land (\neg(x < 16) \lor (x > 14)),$$
$$(x \neq 16) \land ((x \leqslant 16) \lor (x < 14)) \land ((x \geqslant 16) \lor (x > 14)).$$

Заметим, что итоговое выражение, как и изначальное, является конъюнкцией трех выражений. Тогда оно истинно, если каждое из выражений должно быть истинным. Это умозаключение приводит нас к трем условиям:

- 1. $(x \neq 16) = 1$, если $x \neq 16$;
- 2. $((x \le 16) \lor (x < 14)) = 1$, если $x \le 16$;
- 3. $((x \geqslant 16) \lor (x > 14)) = 1$, если x > 14.

Пользуясь методом очень пристального взгляда, замечаем, что все три условия выше можно переписать так

$$14 < x < 16$$
.

откуда

$$x = 15.$$

Ответ. x = 15

Задача 1.1.2. Постройте таблицу истинности для функции

$$f(x_1, x_2, x_3) = (x_1 \lor x_2) \downarrow (x_2 \to x_3) \tag{1.2}$$

Решение. Давайте преобразуем выражение (1.2). Для этого представим $x_2 \to x_3$ как $\neg x_2 \lor x_3$. Далее вспомним, что

$$x \downarrow y = \overline{x \vee y},$$

откуда получаем, что

$$f = \neg(x_1 \lor x_2 \lor \neg x_2 \lor x_3).$$

Видно, что под отрицанием стоит дизъюнкция, которая на любых наборах будет равна единице, поэтому f — тождественный ноль.

x_1	x_2	x_3	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Таблица истинности функции f.

Задача 1.1.3. Докажите, что

$$1 \oplus x_1 \oplus x_2 = (x_1 \to x_2) \land (x_2 \to x_1) \tag{1.3}$$

Решение. Пусть $f_1 = 1 \oplus x_1 \oplus x_2$, $f_2 = (x_1 \to x_2) \wedge (x_2 \to x_1)$.

Видно, что векторы значений f_1 и f_2 совпадают, а значит, $f_1 = f_2$ (т.е. утверждение (1.3) ВЕРНО).

x_1	x_2	f_1	f_2
0	0	1	1
0	1	0	0
1	0	0	0
1	1	1	1

Таблица истинности функции f_1, f_2 .

Задача 1.1.4. Докажите формулу

$$\bigvee_{i,j;i\neq j} x_i \oplus x_j = (x_1 \lor x_2 \lor \dots \lor x_n) \land (\neg x_1 \lor \neg x_2 \lor \dots \lor \neg x_n)$$
(1.4)

Решение. Рассмотрим 2 случая:

1. $\bigvee_{i,j;i\neq j} x_i \oplus x_j = 1 \Rightarrow$ есть как минимум одна пара разных значений($x_i = 1, x_j = 0$). Тогла

$$(x_1 \lor x_2 \lor \dots \lor x_n) = 1, \neg x_1 \lor \neg x_2 \lor \dots \lor \neg x_n) = 1 \Rightarrow (x_1 \lor x_2 \lor \dots \lor x_n) \land (\neg x_1 \lor \neg x_2 \lor \dots \lor \neg x_n) = 1;$$

2. $\bigvee_{i,j;i\neq j} x_i \oplus x_j = 1 \Rightarrow$ все x_i и x_j равны 0. Тогда в правой части либо $(x_1 \lor x_2 \lor ... \lor x_n) = 0$, либо $(\neg x_1 \lor \neg x_2 \lor ... \lor \neg x_n) = 0$, а значит и вся правая часть равна 0.

Видно, что векторы значений левой и правой частей равенства совпадают, а значит, формула верна.

Задача 1.1.5. Постройте таблицу истинности для f и выразите её через операции $\lor, \land, \lnot,$ если

$$f = x_1 \oplus x_2 \oplus x_3 \oplus x_1 x_2 \oplus x_1 x_3 \oplus x_2 x_3 \oplus x_1 x_2 x_3. \tag{1.5}$$

Решение.

- 1. Функция f принимает значение 0 только при $x_1 = x_2 = x_3 = 0$.Во всех остальных случаях f = 1;
- 2. Перестроение с использованием \vee , \wedge , \neg : $f_1 = x_1 \vee x_2 \vee x_3$. Видно, что функция f_1 принимает значение 0 только при $x_1 = x_2 = x_3 = 0$. А во всех остальных случаях $f_1 = 1$.

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Таблица истинности функции f.

Ответ. $f_1 = x_1 \lor x_2 \lor x_3$.

§1.2 Теорема Поста

Домашняя работа

Задача 1.2.1. Постройте СДНФ и СКНФ для функции $(xz\oplus \overline{y})\equiv (x\to y).$

Решение.

Задача 1.2.2. Постройте замыкание базиса $\{\neg, \oplus\}$.

Решение.

Задача 1.2.3. Укажите существенные и несущественные (фиктивные) переменные функции $f(x_1, x_2, x_3) = 00111100$ и разложите ее в ДНФ и КНФ.

Решение.

Задача 1.2.4. Докажите или опровергните полноту системы функций $\{\oplus, \to\}$.

Решение.

Задача 1.2.5. Пусть $f(x_1,\ldots,x_n)$ — несамодвойственная функция. Докажите, что константы 0,1 вычисляются в базисе $\{\neg,f\}$.

Решение.

Задача 1.2.6. Запишите в виде КНФ функцию от n переменных, принимающую значение 0 лишь на $\vec{0}$ и на $\vec{1}$. Покажите, что эта функция равна дизъюнкции всевозможных скобок $(x_i \oplus x_j)$, где $i \neq j$.

Решение.

Задача 1.2.7. Функцию алгебры логики называют *симметрической*, если она не меняет своего значения при любой перестановке значений переменных местами. Покажите, что функция $\overline{xy} \lor \overline{yz} \lor \overline{zx}$ — симметрическая. Найдите число симметрических функций от n переменных.

Решение.

Задача 1.2.8. Докажите, что любая неконстантная симметрическая функция существенно зависит от всех своих переменных.

Решение.

Задача 1.2.9. Докажите, что если система $\{f_1,\ldots,f_n\}$ полна, то и система двойственных функций $\{f_1^*,\ldots,f_n^*\}$ также полна.

Решение.