МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) МАИ

Институт № 8 «Компьютерные науки и прикладная математика» Кафедра 804 «Теория вероятностей и компьютерное моделирование»

Курсовая работа на тему: «Метод наименьших квадратов»

по дисциплине Теория вероятностей и математическая статистика

Студент: Манташев А.У.

Группа: М8О-305Б-20

Преподаватель: Ибрагимов Д. Н.

Дата:

Оценка:

Описание модели

Модель полезного сигнала имеет вид:

$$y(x) = \theta_0 + \theta_1 x + \ldots + \theta_m x^m. \tag{1}$$

Рассматривается модель наблюдений:

$$y_k = \theta_0 + \theta_1 x_k + \ldots + \theta_m x_k^m + \varepsilon_k, \ k = \overline{1, n}.$$
 (2)

где $\epsilon_1,\ldots,\epsilon_n$ – независимые и одинаково распределённые случайные величины.

Моделирование данных

Смоделировать два набора наблюдений на основе модели (2) для следующих случаев:

$$1$$
 случай 2 случай $m=3, \, \varepsilon_k \sim \mathcal{N}(0,\sigma^2)$ $m=2, \, \varepsilon_k \sim \mathcal{R}(-3\sigma,3\sigma)$ $x_k=-4+k\cdot \frac{8}{n}, \, k=\overline{1,n}, \, n=40.$

Параметры задания определяются номером варианта

Вариант 12
$$\theta_1 = 6, \theta_2 = 5, \theta_3 = -0.07, \sigma^2 = 2.4$$
 $\theta_0 = (-1)^N N$, где N – номер варианта

Задание

Для обоих случаев выполнить по очереди следующие задания.

- 1. Подобрать порядок многочлена \hat{m} в модели (1), используя критерий Фишера, и вычислить оценки неизвестных параметров ($\theta_0,\ldots,\theta_{\hat{m}}$) методом наименьших квадратов.
- 2. В предположении нормальности ошибок построить доверительные интервалы уровней надёжности $\alpha_1=0.95$ и $\alpha_2=0.99$ для параметров $(\theta_0,\ldots,\theta_{\ \hat{m}})$.
- 3. В предположении нормальности ошибок построить доверительные интервалы уровней надёжности $\alpha_1 = 0.95$ и $\alpha_2 = 0.99$ для полезного сигнала (1).
- 4. Представить графически
 - истинный полезный сигнал,
 - набор наблюдений,
 - оценку полезного сигнала, полученную в шаге 1,
 - доверительные интервалы полезного сигнала, полученные в шаге 3.
- 5. По остаткам регрессии построить оценку плотности распределения случайной ошибки наблюдения в виде гистограммы.
- 6. Вычислить оценку дисперсии σ^2 случайной ошибки.

7. По остаткам регрессии с помощью χ^2 - критерия Пирсона на уровне значимости 0.05 проверить гипотезу о том, что закон распределения ошибки наблюдения является нормальным.

Случай 1

1. Был подобран m=3 и вычислены $(\theta_0,\ldots,\theta_{\ \hat{m}})$ методом наименьших квадратов

2. Доверительные интервалы уровней надёжности $\alpha_1=0.95$ и $\alpha_2=0.99$ для параметров $(\theta_0,\ldots,\theta_{\,\hat{m}})$.

Для альфа = 0.95 t 0975(37) = 2.03

Доверительный интервал для θ_0 : [11.82951; 13.17822] Доверительный интервал для θ_1 : [5.90638; 6.8783] Доверительный интервал для θ_2 : [4.87036; 5.06081] Доверительный интервал для θ_3 : [-0.16167; -0.06853]

Для альфа = $0.99 t_0995(37) = 2.72$

Доверительный интервал для θ_0 : [11.60013 13.40761] Доверительный интервал для θ_1 : [5.74107; 7.04361] Доверительный интервал для θ_2 : [4.83797; 5.0932] Доверительный интервал для θ_3 : [-0.17751; -0.05269]

3. Построены доверительные интервалы уровней надёжности $\alpha_1 = 0.95$ и $\alpha_2 = 0.99$ для полезного сигнала (1).

4.

- 6. $\sigma^2 = 1.9445258065459896$
- 7. Распределение является нормальным, так как с помощью χ^2 критерия Пирсона на уровне значимости 0.05 проверена гипотеза о том, что закон распределения ошибки наблюдения является нормальным 5.350987688619938 < 14.067 гипотеза верна

Случай 2

1. Был подобран m=2 и вычислены $(\theta_0,\ldots,\theta_{\ \hat{m}})$ методом наименьших квадратов

2. Доверительные интервалы уровней надёжности $\alpha_1 = 0.95$ и $\alpha_2 = 0.99$ для параметров $(\theta_0, \dots, \theta_{\hat{m}})$.

Для альфа =
$$0.95 t 0975(37) = 2.03$$

Доверительный интервал для θ_0 : [11.28418; 12.77372] Доверительный интервал для θ_1 : [5.16196; 5.59415] Доверительный интервал для θ_2 : [4.84437; 5.05289]

Для альфа =
$$0.99 t_0995(37) = 2.72$$

Доверительный интервал для θ_0 : [11.03138; 13.02653] Доверительный интервал для θ_1 : [5.08861; 5.6675] Доверительный интервал для θ_2 : [4.80898; 5.08828]

3. Построены доверительные интервалы уровней надёжности $\alpha_1 = 0.95$ и $\alpha_2 = 0.99$ для полезного сигнала (1).

5.

6. $\sigma^2 = 2.4597280768259853$

7. Распределение является нормальным, так как с помощью χ^2 - критерия Пирсона на уровне значимости 0.05 проверена гипотеза о том, что закон распределения ошибки наблюдения является нормальным 9.416620830232995 < 14.067 гипотеза верна