REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2013

Section: MATHEMATIQUES

Epreuve: MATHEMATIQUES

Durée: 4 h

Coefficient: 4

SESSION DE CONTRÔLE

Le sujet comporte 4 pages numérotées de 1/4 à 4/4.

La page 4/4 est à rendre avec la copie.

Exercice 1: (3 points)

On considère dans $\mathbb{Z} \times \mathbb{Z}$, l'équation (E): 2x + 5y = 6.

- 1) a) Vérifier que (3, 0) est une solution de (E).
 - b) Résoudre l'équation (E).
- 2) Soit (x, y) une solution de (E).
 - a) Quelles sont les valeurs possibles de x \(\times y ? \)
 - b) Déterminer les couples (x, y), solutions de (E), tels que $x \wedge y = 3$.

Exercice 2: (5 points)

Dans l'annexe ci-jointe (Figure 1), (O, \vec{i}, \vec{j}) est un repère orthonormé et (C) est le cercle de centre O passant par les points A(2, 0) et A'(- 2, 0).

- Soit P(x, y) un point du plan n'appartenant pas à (O, i), H son projeté orthogonal sur l'axe (O, i) et M (X,Y) le milieu du segment [PH].
 - a) Exprimer X et Y à l'aide de x et y.
 - b) Montrer que lorsque P varie sur le cercle (C), M varie sur l'ellipse (E) d'équation $\frac{X^2}{4} + Y^2 = 1.$

1/4

- c) Tracer l'ellipse (E) dans le même repère (O, i, j).
- 2) Soit $P_0(1,\sqrt{3})$ et $M_0(1,\frac{\sqrt{3}}{2})$.

La tangente (T) au cercle (C) en P₀ coupe l'axe des abscisses au point I.

- a) Montrer que I a pour coordonnées (4, 0).
- b) Montrer que la tangente à l'ellipse (E) en Mo passe par I.

Exercice 3: (6 points)

Soit f la fonction définie sur $[0,+\infty[$ par $f(x) = x - \ln(1 + x^2)$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O,\vec{i},\vec{j}) .

- I. 1) Montrer que pour tout x appartenant à $[0,+\infty)$ $f'(x) = \frac{(x-1)^2}{1+x^2}$.
 - 2) a) Montrer que pour x > 0, $f(x) = x 2\ln x \ln(1 + \frac{1}{x^2})$.
 - b) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - c) Calculer $\lim_{x \to +\infty} [f(x) x]$, puis interpréter graphiquement le résultat trouvé.
 - 3) Dresser le tableau de variation de f.
 - 4) a) Donner une équation de la tangente Δ à la courbe (C) au point O.
 - b) Donner la position relative de la droite Δ et la courbe (C).
 - c) Tracer dans le repère (O, i, j) la droite Δ et la courbe (C).
- II. Soit G la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $G(x) = \int_0^{tanx} \frac{dt}{1+t^2} dt$.
 - 1) a) Montrer que G est dérivable sur $\left[0,\frac{\pi}{2}\right[$ et déterminer sa fonction dérivée.
 - b) En déduire que pour tout x appartenant à $\left[0,\frac{\pi}{2}\right]$ G(x)=x .
 - c) Calculer alors $\int_0^1 \frac{1}{1+t^2} dt$.
 - 2) On désigne par A l'aire de la partie du plan limitée par la courbe (C), la droite Δ et les droites d'équations x = 0 et x = 1.
 - a) A l'aide d'une intégration par parties, montrer que :

$$\int_0^1 \ln(1+x^2) dx = \ln 2 - 2 + 2 \int_0^1 \frac{dx}{1+x^2}.$$

b) En déduire la valeur de A.

Exercice 4: (6 points)

Le plan est orienté.

Dans l'annexe ci-jointe (Figure 2), ABCD est un rectangle tel que AB = 1 et AD = $\frac{1+\sqrt{5}}{2}$ et FCDE et BFGH sont deux carrés.

- 1) On pose $q = \frac{-1 + \sqrt{5}}{2}$.
 - a) Montrer que $q^2 = 1 q$.
 - b) Vérifier que FG = q et que EG = q2.
- 2) Soit S_1 la similitude directe de centre F, d'angle $\frac{\pi}{2}$ et de rapport q.
 - a) Montrer que S₁(C) = G.
 - b) Déterminer l'image du carré FCDE par S₁.
- 3) Soit S_2 la similitude directe de centre G qui transforme H en E. Montrer que S_2 est de rapport q et d'angle $-\frac{\pi}{2}$.
- 4) On pose h = S2 o S1.
 - a) Montrer que h(D) = E.
 - b) Montrer que h est une homothétie de rapport q².
 - c) Montrer que $\overrightarrow{AE} = q^2 \overrightarrow{AD}$ et en déduire le centre de h.
 - d) Montrer que les points A, G et C sont alignés.
 - e) Soit I = h(E) et J = h(F).
 Construire les points J et I et déterminer alors l'image du carré BFGH par S₂.
- On considère la suite (a_n) définie sur IN par a_n = q²ⁿ.
 - a) Vérifier que a₀, a₁ et a₂ sont les aires respectives des carrés FCDE, BFGH et GEIJ.
 - b) On pose pour tout entier naturel n, $A_n = a_0 + a_1 + ... + a_n$.

Exprimer \mathcal{A}_n en fonction de n et vérifier que la limite de \mathcal{A}_n est égale à l'aire du rectangle ABCD.

Epreuve : Mathématiques Section : Mathématiques

ANNEXE
