QUIZ 1 CORRECTIONS – MATH 392 February 7, 2018

ALEX THIES athies@uoregon.edu

Problem 1

Let $T: \mathbb{Q}[x] \to \mathbb{R}$ be the ring homomorphism given by

$$T(p(x)) = p(\sqrt{2}).$$

We proved last term that every kernel is an ideal, and moreover, we know that any ideal of $\mathbb{Q}[x]$ is a principal ideal, so we know $\ker T = \langle a(x) \rangle$ for some $a(x) \in \mathbb{Q}[x]$. Determine this polynomial a(x) (and of course, prove your claim is true).

Proof. We claim that $p(x) = x^2 - 2$, we will show that $\ker T = \langle x^2 - 2 \rangle$ by double-inclusion.

Notice that $T(x^2-2)=0$, thus $x^2-2\in\ker T$, it follows by the zero product property that any linear combination of x^2-2 , i.e. any element of $\langle x^2-2\rangle$ will also equal zero when evaluated at $x=\sqrt{2}$. Thus, $\langle x^2-2\rangle\subseteq\ker T$. It remains to show that $\langle x^2-2\rangle\supseteq\ker T$.

Let $b(x) \in \ker T$ be arbitrary, then $T(b(x)) = b(\sqrt{2}) = 0$. By the division algorithm we can write $b(x) = q(x)(x^2-2)+r(x)$ for unique polynomials $q(x), r(x) \in \mathbb{Q}[x]$ such that $\deg r(x) < \deg x^2 - 2$, or r(x) = 0. The remainder of the proof pertains to the nature of (x). For $\ker T$ to be a subset of $\langle x^2 - 2 \rangle$ we must have r(x) = 0(x), which we will prove by cases. Since $\deg x^2 - 2 = 2$, we have either $\deg r(x) = 1$, $\deg r(x) = 0$, or r(x) = 0(x).

Case 1, suppose $\deg r(x) = 1$, then $r(x) = r_0 + r_1 x$ and $r_1 \neq 0$. We can see that $r(\sqrt{2}) \neq 0$, which would contradict our hypothesis that $b(x) \notin \ker T$. Hence, $\deg r(x) \neq 1$.

Case 2, suppose $\deg r(x) = 0$, then $r(x) = r_0$ and $r_0 \neq 0$. We can see that $r(\sqrt{2}) \neq 0$, which would contradict our hypothesis that $b(x) \notin \ker T$. Hence, $\deg r(x) \neq 0$.

This leaves us with the case that r(x) = 0(x), which allows us to write $b(x) = q(x)(x^2 - 2)$, and then conclude that $b(x) \in \langle x^2 - 2 \rangle$. Thus, we have shown that an arbitrary element of the kernel of T is

inherently also an element of $\langle x^2 - 2 \rangle$, therefore ker $T = \langle x^2 - 2 \rangle$, as we aimed to prove.

Problem 2

List all polynomials p(x) over \mathbb{Z}_2 that have degree 3, and determine which are reducible and which are irreducible. Write all polynomials as a product of their irreducible factors. For any irreducible, whether a degree 3 polynomial or a factor of something reducible, prove that it is irreducible.

Proof. Since $\mathbb{Z}_2 = \{0, 1\}$, we have the following degree three polynomials from $\mathbb{Z}_2[x]$:

$$\begin{array}{llll} p_1(x) = & x^3 + x^2 + x + 1 & p_5(x) = & x^3 + 1 \\ p_2(x) = & x^3 + x + 1 & p_6(x) = & x^3 + x^2 \\ p_3(x) = & x^3 + x^2 + 1 & p_7(x) = & x^3 + x \\ p_4(x) = & x^3 + x^2 + x & p_8(x) = & x^3 \end{array}$$

FIGURE 1. Degree 3 polynomials from $\mathbb{Z}_2[x]$

We will now determine which polynomials are irreducible, and for the reducible polynomials we write them as a product of their irreducible factors. Notice that since we are working in \mathbb{Z}_2 , we have $R = \{0, 1\}$ as the only possible roots of our polynomials. Moreover, since we cannot use any theorems about factoring in \mathbb{Q} , we will be leaning on Theorem 8.22 quite extensively. Theorem 8.22 states that for a field K, and $a(x) \in K[x]$ with $\deg a(x) = 2$ or $\deg a(x) = 3$. The polynomial a(x) is reducible over K if and only if a(x) has a root in K. Finally, recall that by the definition of irreducible and reducible, any linear factors are irreducible.

 $p_1(x)$. Let $p_1(x) = x^3 + x^2 + x + 1$. We compute the following,

$$p_1(0) = 1 \neq 0,$$

 $p_1(1) = 4 \equiv 0 \pmod{2}.$

Hence, x = 1 is a root, thus $p_1(x) = (x - 1)b(x)$ for some $b(x) \in \mathbb{Z}_2[x]$; we determine b(x) by polynomial long division:

Again, since we are operating in $\mathbb{Z}_2[x]$, we have $b(x) = x^2 + 1$, and we can write $p_1(x) = (x+1)(x^2+1)$. We can notice that b(1) = 0, thus 1 is also a root of b(x), thus we can write $p_1(x) = (x-1)^2 \tilde{b}(x)$ for some $\tilde{b}(x) \in \mathbb{Z}_2[x]$. Again, we use polynomial long division:

$$\begin{array}{r}
x+3 \\
x^2-2x+1 \overline{\smash)2x^3+x^2+x+1} \\
-x^3+2x^2-x \\
\hline
3x^2+1 \\
-3x^2+6x-3 \\
\hline
6x-2
\end{array}$$

Thus, we have $p_1(x) = (x-1)^2(x+1)$, since these factors are linear, they are irreducible over \mathbb{Z}_2 . Notice that we can also write $p_1(x) = (x+1)^3$ because $-1 \equiv 1 \pmod{2}$.

 $p_2(x)$. Let $p_2(x) = x^3 + x + 1$. We compute the following

$$p_2(0) \equiv 1 \pmod{2},$$

 $p_2(1) \equiv 1 \pmod{2}.$

Thus, $p_2(x)$ has no roots in \mathbb{Z}_2 and is irreducible over \mathbb{Z}_2 .

 $p_3(x)$. Let $p_3(x) = x^3 + x^2 + 1$. We compute the following

$$p_3(0) \equiv 1 \pmod{2},$$

 $p_3(1) \equiv 1 \pmod{2}.$

Thus, $p_3(x)$ has no roots in \mathbb{Z}_2 and is irreducible over \mathbb{Z}_2 .

 $p_4(x)$. Let $p_4(x) = x^3 + x^2 + x$. We can easily factor this as $p_4(x) = x(x^2+x+1)$, since x is linear, it remains to show that $\tilde{p}_4(x) = x^2+x+1$ is either irreducible, or has reducible factors. We compute the following

$$\tilde{p}_4(0) \equiv 1 \pmod{2},$$

 $\tilde{p}_4(1) \equiv 1 \pmod{2}.$

Thus, $\tilde{p}_4(x)$ is irreducible over \mathbb{Z}_2 , and we have p_4 as the following product of irreducible factors: $p_4(x) = x(x^2 + x + 1)$

 $p_5(x)$. Let $p_5(x) = x^3 + 1$. We compute the following

$$p_5(0) \equiv 1 \pmod{2},$$

$$p_5(1) \equiv 0 \pmod{2}.$$

Hence 1 is a root and we have $p_5(x) = (x-1)b(x)$ for some $b(x) \in \mathbb{Z}_2[x]$. We compute b(x):

$$\begin{array}{r}
x^{2} + x + 1 \\
x^{3} + 1 \\
-x^{3} + x^{2} \\
x^{2} \\
-x^{2} + x \\
x + 1 \\
-x + 1 \\
2
\end{array}$$

Thus, $b(x) = x^2 + x + 1$; at this point it should be fairly clear that b(x) is irreducible given its only possible roots of 0 and 1, thus we have $p_5(x) = (x-1)(x^2+x+1) \equiv (x+1)(x^2+x+1) \pmod{2}$.

 $p_6(x)$. Let $p_6(x) = x^3 + x^2 = x^2(x+1)$, each factor is already linear, so we're done.

 $p_7(x)$. Let $p_7(x) = x^3 + x = x(x^2 + 1)$, since x is linear, it remains to show that $x^2 + 1$ is either irreducible or reducible. From previous work its clear that $x^2 + 1 = (x + 1)^2$, thus we have $p_7(x) = x(x + 1)^2$.

 $p_8(x)$. Let $p_8(x) = x^3$. This is already a product of irreducible linear factors, so we're done.

Problem 3

Let A and B be commutative rings with unity, and let $f: A \to B$ be a ring homomorphism that is not identically zero. Prove that for all $b \in B$, there exists a ring homomorphism $F: A[x] \to B$ such that F(a) = f(a) for all $a \in A$ and F(x) = b (meaning that F maps the polynomial x to b). (Hint: use theorems; it's not necessary to prove everything from the definition). You may assume that $f(1_A) = 1_B$.

Lemma 1. The composition of ring homomorphisms is a ring homomorphism.

Proof. Let A, B, C be rings with ring homomorphisms $\phi: A \to B$ and $\psi: B \to C$.

Additivity:

$$(\phi \circ \psi)(a+b) = \phi(\psi(a+b)),$$

$$= \phi(\psi(a) + \psi(b)),$$

$$= \phi(\psi(a)) + \phi(\psi(b)),$$

$$= (\phi \circ \psi)(a) + (\phi \circ \psi)(b).$$

Multiplicativity:

$$(\phi \circ \psi)(a \cdot b) = \phi(\psi(a \cdot b)),$$

$$= \phi(\psi(a) \cdot \psi(b)),$$

$$= \phi(\psi(a)) \cdot \phi(\psi(b)),$$

$$= (\phi \circ \psi)(a) \cdot (\phi \circ \psi)(b).$$

Proof. Recall the evaluation map $h_c: A[x] \to A$ defined by $h_c(a(x)) = a(c)$, where $c \in A$. By Theorem 7.35 we know that h_c is a homomorphism. By our previous Lemma we know that the composition of ring homomorphisms is a ring homomorphism, so consider the ring homomorphism $(f \circ h_c)$.

Let $F = (f \circ h_c)$, and let $a(x) \in A[x]$; recall that since f is a function we know for some $a \in A$, there exists $b \in B$ such that f(a) = b. If $a(x) = a_0$, then for any $c \in A$ we have

$$F(a(x)) = (f \circ h_c)(a(x)),$$

= $f(h_c(a_0)),$
= $f(a_0),$
= $b.$

If $\deg a(x) > 0$, then we use $c = 0_A$ and get the following:

$$F(a(x)) = (f \circ h_0)(a(x)),$$

= $f(h_0(a(x))),$
= $f(a(0)),$
= $f(a_0),$
= $b.$

Thus, the composition $(f \circ h_c)$ is the ring homomorphism we were looking to find.