Unit 8. LL(k) grammars

Hierarchy of grammar classes

LL(k) grammar

- What is LL(k)?
 - □ The first L stands for scanning the input from left to right,
 - □ the second L stands for producing a leftmost derivation,
 - □ And k stands for using k input symbols of lookahead at each step to make parsing action decision.

LL(k) Grammars

- An LL(k) grammar has the property that a parser can be constructed to scan an input string from left to right and build a leftmost derivation by examining next k input symbols to determine the unique production for each derivation step.
- If a language has an LL(k) grammar, it is called an LL(k) language.
- LL(k) languages are deterministic context-free languages, but there are deterministic context-free languages that are not LL(k)

$FIRST_k(\alpha)$

The **FIRST**_k set of a string of symbols in a grammar is a set of k-length strings of terminal symbols that may begin a sentential form derivable from the string of symbols in the grammar. More specifically, for a grammar $G = (\Sigma, \Delta, P, S)$

$$FIRST_k(\alpha) =$$

 $\{ x \in \Sigma^* \mid \alpha \Rightarrow^* x \beta \text{ and } |x| = k \text{ or } \alpha \Rightarrow^* x \text{ and } |x| < k \}$

M

$FOLLOW_k(\alpha)$

The **FOLLOW**_k set of a string of symbols in a grammar is a set of k-length terminal symbol strings in the grammar that may follow the string of symbols in some sentential form derivable in the grammar.

More specifically, for a grammar

$$G = (\Sigma, \Delta, P, S)$$
:

$$FOLLOW_k(\alpha) =$$

$$\{x \in \Sigma^* \mid S \Rightarrow^* \beta \alpha \delta \text{ and } x \in \mathsf{FIRST}_k(\delta)\}$$

Ŋ.

LL(k) Grammars

<u>Definition</u> Let $G = (\Sigma, \Delta, P, S)$ is a CFG and $k \in N$. G is LL(k) if for any two leftmost derivations

$$S => xA\alpha => x\beta_1\alpha => xZ_1$$

$$S => xA\alpha => x\beta_2\alpha => xZ_2$$

if $FIRST_k(Z_1) = FIRST_k(Z_2)$ then $\beta_1 = \beta_2$

It can be shown that *LL*(k) grammars are not ambiguous and not left-recursive.

How to Build Parse Tables? FIRST and FOLLOW Sets

For a string of grammar symbols α define FIRST(α) as

- The set of tokens that appear as the first symbol in some string that derives from α
- If $\alpha \Rightarrow^* \epsilon$, then ε is in FIRST(α)

For a non-terminal symbol A, define FOLLOW(A) as

The set of terminal symbols that can appear immediately to the right of *A* in some sentential form

FIRST Set Construction

To construct FIRST(X) for a grammar symbol X, apply the following rules until no more symbols can be added to FIRST(X)

- If X is a terminal FIRST(X) is {X}
- If $X \to \varepsilon$ is a production then ε is in FIRST(X)
- If X is a nonterminal and $X \rightarrow Y_1 Y_2 \dots Y_k$ is a production then put every symbol in FIRST(Y_1) other than ε to FIRST(X)
- If X is a nonterminal and $X \to Y_1 Y_2 \dots Y_k$ is a production, then put terminal a in FIRST(X) if a is in FIRST(Y_i) and E is in FIRST(Y_i) for all $1 \le j < i$
- If X is a nonterminal and $X \to Y_1 Y_2 \dots Y_k$ is a production, then put \mathcal{E} in FIRST(X) if \mathcal{E} is in FIRST(Y_i) for all $1 \le i \le k$

Computing FIRST Sets for Strings of Symbols

To construct the FIRST set for any string of grammar symbols $X_1X_2 ... X_n$ (given the FIRST sets for symbols $X_1, X_2, ... X_n$) apply the following rules.

FIRST($X_1X_2 ... X_n$) contains:

- \square Any symbol in FIRST(X_1) other than ε
- □ Any symbol in FIRST(X_i) other than ε, if ε is in FIRST(X_i) for all $1 \le i < i$
- $\square \varepsilon$, if ε is in FIRST(X_j) for all $1 \le i \le n$

Example

The following grammar G:

 $S \rightarrow aAS \mid b$

 $A \rightarrow bSA \mid a$

is LL(1)

Simple LL(1) Grammars

For simple LL(1) grammars all rules have the form

$$A \rightarrow a_1 \alpha_1 \mid a_2 \alpha_2 \mid \dots \mid a_n \alpha_n$$

where

- \blacksquare a_i is a terminal, $1 \le i \le n$
- $a_i \neq a_j$ for $i \neq j$ and
- $lacktriangleq lpha_i$ is a sequence of terminals and non-terminal or is empty, $1 \le i \le n$

Discussion #5

M

How to recognize a LL(1) grammar?

<u>Theorem</u> A context-free grammar $G = (\Sigma, \Delta, P, S)$ is LL(1) if and if only if for every nonterminal A and every strings of symbols

$$\begin{array}{l} \mathsf{A} \to \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n \text{ , } n \geq 2 \text{ we have} \\ \mathsf{FIRST}_1(\alpha_i) \cap \mathsf{FIRST}_1(\alpha_j) = \varnothing, \text{ } i \neq j \\ \\ \mathsf{If} \ \alpha_i \Rightarrow ^* \epsilon \text{ then} \\ \\ \mathsf{FIRST}_1(\alpha_i) \cap \mathsf{FOLLOW}_1(\mathsf{A}) = \varnothing \text{ , } i \neq j \end{array}$$

KPL is nearly LL(1)

А	FIRST(A)	FOLLOW(A)
Block	CONST, VAR,TYPE, PROCEDURE,BEGIN	
Unsignedconst	ident, number,'	
Constant	+,-,',ident,number	
Туре	ident,integer, char,array	
Statement	ident, CALL, BEGIN, WHILE,FOR	.,;, END
Expression	+,-,(,ident,number	.,;, END,TO,THEN,DO,),- ,.),<,<=,>,>=,=,!=
Term	ident,number, (.,;,END,TO,THEN,DO,),- ,<,<=,>,>=,=,!=
Factor	ident, number, (.,;,END,TO,THEN, DO, +, -, *,/,) ,<,<=,>,>=,=,!=

Grammar Transformations

- Left factoring: Sometimes we can "left-factor" an LL(k) grammar to obtain an equivalent LL(n) grammar where n < k.</p>
- Example. The grammar S → aaS | ab | b is LL(2) but not LL(1). But we can factor out the common prefix a from productions S → aaS | ab to obtain

$$S \rightarrow aT$$

$$T \rightarrow aS \mid b$$
.

This gives the new grammar:

$$S \rightarrow aT \mid b$$

$$T \rightarrow aS \mid b$$
.