

Please amend the claims to read as follows.

- Sub I' >*
1. (Six Times Amended) A router for distributing packets in a network, wherein the
 2. packets originate at a source and are routed to a destination, comprising:
 3. a plurality of route processing engines located within said router;
 4. a mechanism that performs a hashing function on a destination address portion of a
 5. network layer in the packets transferred to the routing system, to produce an indicia of a flow
 6. and,
 7. means for switching packets with a same said indicia of a flow to a single route proc-
 8. essing engine of said plurality of route processing engines.

- Sub I' >*
11. (Five Times Amended) A router for distributing packets in a network, wherein
 2. the packets originate at a source and are routed to a destination, comprising:
 3. a plurality of network interfaces that transfer the packets to said destination and from
 4. said source;
 5. a plurality of route processing engines located within said router;
 6. a fabric interconnecting said plurality of network interfaces and said plurality of route
 7. processing engines;

Cont
b7

8 a hashing function to hash a destination address of a packet to determine a distribu-
9 tion of the packets by said fabric, in response to an output of said hashing function, among
10 said plurality of route processing engines.

Sub I' >
G3

17. (Thrice Amended) A method, in a router, for selecting one processing engine of a
2 plurality of processing engines located within the router for processing at least one packet,
3 the method comprising the steps of:
4 hashing a destination address portion of a network layer of at least one packet to de-
5 termine a hash result, said hash result indicating a flow;
6 selecting one processing engine of said plurality of processing engines located within
7 said router to process the flow indicated by said hash result.

Sub I' >
G4

26. (Thrice Amended) A system, in a router, for selecting one processing engine of a
2 plurality of processing engines located within said router for processing at least one packet,
3 the system comprising:
4 means for hashing a destination address of a network layer of the at least one packet
5 to obtain a hash result; and
6 means, responsive to said hash result, for selecting said one processing engine of said
7 plurality of processing engines located within said router to preserve a packet flow indicated
8 by said destination address.

SUB I > 44. (Twice Amended) A routing system for distributing packets in a network, wherein

2 the packets originate at a source and are routed to a destination, both source and destination
3 external with respect to the routing system, comprising:

4 a plurality of network interfaces that transfer packets to said destination and from said
5 source;

6 a plurality of route processing engines;

7 a hash mechanism that performs a hashing function on a destination address portion
8 of a network layer of a particular packet, in the packets transferred to the routing system, to
9 determine a distribution of the packets to the route processing engines for processing by the
10 engines, and said hash mechanism producing a hash result giving an indication of a flow of
11 said particular packet so that packets of a flow are switched to the same route processing en-
12 gine of said plurality of route processing engines.

1 45. (Twice Amended) A router, comprising:

2 a plurality of processing engines located within said router for processing packets;
3 an interface for receiving a received packet from a network;

4 a data compiler to perform a hash function on a destination address of said received
CONT
5 packet to generate a hash result, and to select a selected processing engine from said plurality
6 of processing engines located within said router in response to said hash result; and,
7 a switch to distribute said packet to said selected processing engine.

Sub I' > 70. (Amended) A router, comprising:

2 a plurality of processing engines located within said router for processing packets;
3 an interface for receiving a received packet from a network;
4 means for performing a hash function calculation on a destination address of said re-
5 ceived packet to produce a hash result; and,
6 means, responsive to said hash result, for switching said received packet to a proc-
7 essing engine selected from said plurality of processing engines located within said router for
8 further processing of said received packet.

1 71. (Amended) A method of processing packets in a router, comprising:
2 receiving a packet from a network;
3 performing a hash function calculation on a destination address of said packet to pro-
4 duce a hash result; and,

Cont 5 switching, in response to said hash result, said packet to a processing engine of a plu-
b6 6 rality of processing engines in said router, for further processing of said packet.

Sub I' > 85. (Amended) A router, comprising:

2 a plurality of processing engines located within said router for processing packets;
3 an interface for receiving a packet from a network, said packet referred to as a re-
4 ceived packet;
5 a hashing function to perform a hash calculation on a destination address of said
6 packet, said hash calculation producing a hash result;
7 a data compiler to determine a type of service required by said received packet; and,
8 a switch, responsive to said type of service and responsive to said hash result, to dis-
9 tribute said packet to a selected processing engine of said plurality of processing engines lo-
10 cated within said router, said selected processing engine providing said type of service.

Sub I' > 90. (Amended) A method of processing packets in a router, comprising:

b8 2 receiving a packet from a network, referred to as a received packet;
3 hashing a destination address of said received packet to obtain a hash result;
4 determining a type of service required by said received packet; and,

5 distributing, in response to said type of service and in response to said hash result,
6 said received packet to a selected processing engine located within said router, said selected
7 processing engine providing said type of service.

Cont
b6