

mk rel 1con hret= /lavicon. 200

# Centro Universitário Presidente Antônio Carlos Teoria de Grafos

### Caminho Mínimo - Algoritmo Bellman-Ford Felipe Roncalli de Paula Carneiro

felipecarneiro@unipac.br

# O que vamos aprender nessa aula

- Grafos com pesos;
- Caminhos Mínimos
- Algoritmo de Bellman-Ford;

- Alguns autores denominam o algoritmo de Ford-Moore-Bellman, em homenagem a outros três autores que propuseram o mesmo algoritmo em anos diferentes:
- Lester Ford (1956);
- Edward Moore (1957);
- Richard Bellman (1958).

#### Arestas com Pesos Negativos

Para além das distâncias geográficas, caminhos mais curtos podem modelar diversas outras situações reais, incluindo aquelas que para serem modeladas necessitam de arestas cujo peso é negativo:

- Movimentações financeiras, nas quais é possível obter lucro ou prejuízo, principalmente quando há utilização de câmbio;
- Um taxista que recebe mais dinheiro do que gasta com combustível a cada viagem: se o táxi roda vazio, ele gasta mais do que recebe;
- Um entregador que necessita atravessar um pedágio e pode acabar pagando mais do que recebe para entregar encomendas;
- A energia gerada e consumida durante uma reação química.

- Ao invés de fechar um vértice por iteração, como o algoritmo de Dijkstra, examina todos os vértices de um grafo orientado por iteração até que atualizações não sejam possíveis.
- Em um grafo com n vértices, qualquer caminho possui no máximo n - 1 arestas, portanto, cada vértice é examinado no máximo n - 1 vezes.
- Com esta estratégia, é possível calcular caminhos mínimos em grafos com arestas de peso negativo.

- Assim como o algoritmo de Dijkstra, baseia-se no princípio de relaxação: uma aproximação da distância da origem até cada vértice é gradualmente atualizada por valores mais precisos até que a solução ótima seja atingida.
- Se, em alguma iteração do algoritmo os caminhos até cada um dos vértices permanecerem inalterados, não haverá atualizações nas próximas iterações e o algoritmo pode terminar.

#### Terminologia

- $ightharpoonup \Gamma^-(i)$ : Conjunto de vértices antecessores do vértice atual;
- ► dt[i]: Vetor que armazena a distância entre o vértice de origem e o vértice i;
- ightharpoonup rot[i]: Vetor que armazena o índice do vértice anterior ao vértice i, no caminho cuja distância está armazenada em dt[i];
- altera: variável booleana que indica se houve alguma atualização na iteração atual.

```
Entrada: Grafo G = (V, E) e matriz de pesos D = \{d_{ij}\} para todos os arcos (i, j)
 1 dt[1] \leftarrow 0; rot[1] \leftarrow \infty; //considerando o vértice 1 como o inicial
2 para i \leftarrow 2 até n faça
        se \exists (1, i) \in E então rot[i] \leftarrow 1; dt[i] \leftarrow d_{1i};
 senão rot[i] \leftarrow 0; dt[i] \leftarrow \infty;
5 fim
6 para k \leftarrow 1 até n-1 faça
        altera \leftarrow falso;
        para i \leftarrow 2 até n faça
             para j \in \Gamma^-(i) faça
                   se dt[i] > dt[j] + d_{ji} então
10
                      dt[i] \leftarrow dt[j] + d_{ji};
11
                      rot[i] \leftarrow j;
12
                        altera ← verdadeiro; //indica que houve alteração
13
                   fim
14
              fim
15
        fim
16
        se altera = falso então k \leftarrow n;
17
```

#### Complexidade

- Após a inicialização, o laço para da linha 6 é repetido por no máximo n-1 vezes;
- Em cada iteração, são calculados caminhos com k arestas entre a origem e os demais vértices do grafo;
- Para cada um dos n-1 vértices, todos seus antecessores são
- examinados;
- O vértice original não é atualizado, logo, n-2 antecessores são analisados no máximo;
- Logo, em uma implementação simples, a complexidade é O(n³).





| dt |   |          |          |          |  |
|----|---|----------|----------|----------|--|
| 2  | 3 | 4        | 5        | 6        |  |
| 1  | 3 | $\infty$ | $\infty$ | $\infty$ |  |

| rot |   |   |   |   |  |
|-----|---|---|---|---|--|
| 2   | 3 | 4 | 5 | 6 |  |
| 1   | 1 | 0 | 0 | 0 |  |

Vetores após a inicialização do algoritmo.



$$i=2, \Gamma^{-}(i)=\{1\};$$

 $> j=1, dt[1]+d_{12}=1$ 

| dt |   |          |          |          |  |
|----|---|----------|----------|----------|--|
| 2  | 3 | 4        | 5        | 6        |  |
| 1  | 3 | $\infty$ | $\infty$ | $\infty$ |  |



$$i=3, \Gamma^{-}(i)=\{1, 2\};$$

- $> j=1, dt[1]+d_{13}=3$
- $> j=2, dt[2]+d_{23}=2$

| dt |   |          |          |          |  |
|----|---|----------|----------|----------|--|
| 2  | 3 | 4        | 5        | 6        |  |
| 1  | 2 | $\infty$ | $\infty$ | $\infty$ |  |

| rot |   |   |   |   |  |
|-----|---|---|---|---|--|
| 2   | 3 | 4 | 5 | 6 |  |
| 1   | 2 | 0 | 0 | 0 |  |



$$i=4$$
,  $\Gamma^{-}(i)=\{2, 3, 5\}$ ;

- $> j=2, dt[2]+d_{24}=4$
- $> j=3, dt[3]+d_{34}=4$
- $j=5, dt[5]+d_{54}=\infty$

| dt |   |   |          |          |  |
|----|---|---|----------|----------|--|
| 2  | 3 | 4 | 5        | 6        |  |
| 1  | 2 | 4 | $\infty$ | $\infty$ |  |

| rot |   |   |   |   |  |
|-----|---|---|---|---|--|
| 2   | 3 | 4 | 5 | 6 |  |
| 1   | 2 | 2 | 0 | 0 |  |



$$i=5, \Gamma^{-}(i)=\{2, 6\};$$

- $> j=2, dt[2]+d_{25}=3$
- $> j=6, dt[6]+d_{65} = \infty$

|   |   | dt | • |          |
|---|---|----|---|----------|
| 2 | 3 | 4  | 5 | 6        |
| 1 | 2 | 4  | 3 | $\infty$ |

| rot |   |   |   |   |  |  |
|-----|---|---|---|---|--|--|
| 2   | 3 | 4 | 5 | 6 |  |  |
| 1   | 2 | 2 | 2 | 0 |  |  |



$$i=6, \Gamma^{-}(i)=\{4\};$$

 $\rightarrow$  j=4,  $dt[4]+d_{46}=6$ 

|   |   | dt |   |   |
|---|---|----|---|---|
| 2 | 3 | 4  | 5 | 6 |
| 1 | 2 | 4  | 3 | 6 |



$$i=2, \Gamma^{-}(i)=\{1\};$$

 $j=1, dt[1]+d_{12}=1$ 

|   |   | dt |   |   |
|---|---|----|---|---|
| 2 | 3 | 4  | 5 | 6 |
| 1 | 2 | 4  | 3 | 6 |

|   |   | rot |   |   |
|---|---|-----|---|---|
| 2 | 3 | 4   | 5 | 6 |
| 1 | 2 | 2   | 2 | 4 |



$$i=3, \Gamma^{-}(i)=\{1, 2\};$$

- $> j=1, dt[1]+d_{13}=3$
- $> j=2, dt[2]+d_{23}=2$

| dt |   |   |   |   |  |
|----|---|---|---|---|--|
| 2  | 3 | 4 | 5 | 6 |  |
| 1  | 2 | 4 | 3 | 6 |  |

| rot |   |   |   |   |  |  |
|-----|---|---|---|---|--|--|
| 2   | 3 | 4 | 5 | 6 |  |  |
| 1   | 2 | 2 | 2 | 4 |  |  |



$$i=4, \Gamma^{-}(i)=\{2, 3, 5\};$$

- $> j=2, dt[2]+d_{24}=4$
- $> j=3, dt[3]+d_{34}=4$
- $> j=5, dt[5]+d_{54}=0$

|   |   | dt |   |   |
|---|---|----|---|---|
| 2 | 3 | 4  | 5 | 6 |
| 1 | 2 | 0  | 3 | 6 |

| rot |   |   |   |   |  |  |
|-----|---|---|---|---|--|--|
| 2   | 3 | 4 | 5 | 6 |  |  |
| 1   | 2 | 5 | 2 | 4 |  |  |



$$i=5, \Gamma^{-}(i)=\{2, 6\};$$

- $> j=2, dt[2]+d_{25}=3$
- $> j=6, dt[6]+d_{65}=9$

| dt |   |   |   |   |  |
|----|---|---|---|---|--|
| 2  | 3 | 4 | 5 | 6 |  |
| 1  | 2 | 0 | 3 | 6 |  |

| rot |   |   |   |   |  |  |
|-----|---|---|---|---|--|--|
| 2   | 3 | 4 | 5 | 6 |  |  |
| 1   | 2 | 5 | 2 | 4 |  |  |



$$i=6, \Gamma^{-}(i)=\{4\};$$

j=4,  $dt[4]+d_{46}=2$ 

|   |   | dt |   |   |
|---|---|----|---|---|
| 2 | 3 | 4  | 5 | 6 |
| 1 | 2 | 0  | 3 | 2 |

|   |   | rot |   |   |
|---|---|-----|---|---|
| 2 | 3 | 4   | 5 | 6 |
| 1 | 2 | 5   | 2 | 4 |



Iteração k=3, Teremos Alterações?



Iteração k=3, Teremos Alterações?

Não Teremos, assim a execução do Algoritmo é encerrada.

#### Exemplo - Final



| dt |   |   |   |   |  |
|----|---|---|---|---|--|
| 2  | 3 | 4 | 5 | 6 |  |
| 1  | 2 | 0 | 3 | 2 |  |

| _ |   |   | rot |   |   |
|---|---|---|-----|---|---|
|   | 2 | 3 | 4   | 5 | 6 |
|   | 1 | 2 | 5   | 2 | 4 |

#### Exercício

• Encontre o menor caminho utilizando Bellman-Ford partindo de S. Faça o passo a passo.



## Dúvidas??