Por exemplo, seja aproximar f(0.37) por polinômio de interpolação de grau ≤ 4:

x	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	
f(x)	\mathbf{f}_0	$\mathbf{f_1}$	f_2	\mathbf{f}_3	f ₄	f ₅	f_6	f ₇	f_8	

Devemos escolher $\{x_0, x_1, x_2, x_3, x_4\} = \{0.2, 0.3, 0.4, 0.5, 0.6\}$, pois 0.37 está mais próximo de 0.6 que de 0.1.

3. O matemático russo P. L. Chebyshev provou que, entre todos os polinômios do tipo $G(x) = (x - x_0) (x - x_1)... (x - x_n)$, o que apresenta menor valor para $\max_{x \in [x_0, x_n]} |G(x)|$, conhecida como propriedade MIN MÁX, é o polinômio no qual os x_i , i = 0, 1, ..., n são os nós de Chebyshev.

Tendo a liberdade de tabelar f(x) no intervalo $[x_0,x_n]$, devemos escolher para x_0 , $x_1,...,x_n$ os nós de Chebyshev.

EXERCÍCIOS

- 1. Dada a tabela abaixo,
 - a) Calcule e^{3.1} usando um polinômio de interpolação sobre três pontos.
 - b) Dê um limitante para o erro cometido.

2. Verifique que na interpolação linear

$$|E(x)| \le \frac{h^2 M_2}{8} \text{ onde } h = x_1 - x_0.$$

- Resolva o exercício proposto na introdução deste capítulo. Verifique que um polinômio de grau 2 é uma boa escolha para obter f(32.5); use um processo de interpolação linear para obter o ponto x para o qual f(x) = 0.99837.
- 4. Dados:

w	0.1	0.2	0.4	0.6	0.8	0.9
f(w)	0.905	0.819	0.67	0.549	0.449	0.407
	١.	1.2	1.4	1.7	1.8	
X	1	1.2	1.4	1.,	1.0	

Calcule o valor aproximado de x tal que f(g(x)) = 0.6, usando polinômios interpolantes de grau 2.

- 5. Queremos construir uma tabela que contenha valores de cos(x) para pontos igualmente espaçados no intervalo I = [1, 2].
 Qual deve ser o menor número de pontos desta tabela para se obter, a partir dela, o cos(x), usando interpolação linear com erro menor que 10⁻⁶ para qualquer x no intervalo [1, 2]?
- 6. Consideremos o problema de interpolação para sen(x), numa tabela de pontos igualmente espaçados com intervalo h, usando um polinômio de 2º grau. Fazendo x₀ = -h, x₁ = 0, x₂ = h mostre que:

$$|E(x)| \le \frac{\sqrt{3}}{27} h^3$$
.

- 7. Sabendo-se que a equação x e^{-x} = 0 admite uma raiz no intervalo (0, 1), determine o valor desta raiz usando interpolação quadrática. Estime o erro cometido, se possível. Justifique!
- Com que grau de precisão podemos calcular √115 usando interpolação sobre os pontos: x₀ = 100, x₁ = 121 e x₂ = 144?

9. Construa a tabela de diferenças divididas com os dados

X	0.0	0.5	1.0	1.5	2.0	2.5
f(x)	-2.78	-2.241	-1.65	-0.594	1.34	4.564

- a) Estime o valor de f(1.23) da melhor maneira possível, de forma que se possa estimar o erro cometido.
- b) Justifique o grau do polinômio que você escolheu para resolver o item (a).

10. Seja a tabela:

x	0.15	0.20	0.25	0.30	0.35	0.40	
f(x)	0.12	0.16	0.19	0.22	0.25	0.27	

Usando um polinômio interpolador de grau 2, trabalhe de dois modos diferentes para obter o valor estimado de x para o qual f(x) = 0.23. Dê uma estimativa do erro cometido em cada caso, se possível.

Construa uma tabela para a função f(x) = cos(x) usando os pontos: 0.8, 0.9, 1.0, 1.1,
 1.2 e 1.3. Obtenha um polinômio de grau 3 para estimar cos(1.07) e forneça um limitante superior para o erro.

12. Seja a tabela

x	-1	0	1	3	
f(x)	a	b	С	d	

e seja $p_n(x)$ o polinômio que interpola f(x) em -1, 0, 1 e 3. Imponha condições sobre a, b, c, d para que se tenha n = 2.