Областная олимпиада по математике, 2019 год, 10 класс

- **1.** Найдите все такие пары простых чисел p и q, что число $p^{q+1}+q^{p+1}$ является полным квадратом.
- **2.** Последовательность $\{a_n\}$ определена следующим образом: $a_1=3$ и $a_{n+1}=\frac{a_n^2+1}{2}$ для всех натуральных n. Докажите, что для любого натурального n выполнено неравенство $\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_n+1}<\frac{1}{2}$.
- 3. В треугольнике ABC точка M середина AB, точка N середина CM. На плоскости отмечена точка X такая, что X и B лежат по разные стороны от CM, $\angle XMC = \angle MBC$ и $\angle XCM = \angle MCB$. Пусть Ω описанная окружность треугольника AMX. (a) Докажите, что прямая CM касается Ω . (b) Докажите, что прямые NX и AC пересекаются на Ω .
- **4.** Две окружности Γ_1 и Γ_2 с центрами в точках O_1 и O_2 соответственно, пересекаются в точках A и B. Прямая O_1A пересекает Γ_2 во второй раз в точке C, а прямая O_2A пересекает Γ_1 во второй раз в точке D. Прямая ℓ , параллельная AD, пересекает Γ_1 в точках B и E. Известно, что $O_1A \parallel DE$. Докажите, что $CD \perp O_2C$.
- **5.** Найдите число способов заполнения клеток таблицы 2019×2019 числами из множества $\{-2, -1, 1, 2\}$ так, чтобы произведения чисел в каждой строке и в каждом столбце были равны -2 (минус два).
- **6.** Дано натуральное число n > 2. Пусть k наименьшее натуральное число такое, что множество $\{1, 3, 5, ..., 2n 1\}$ можно разбить на два подмножества A и B так, что сумма элементов A ровно в k раз больше суммы элементов B. Докажите, что числа n и k взаимно просты.