QPM II - Problem Set 4

2024-11-13

- 1) The Negative Binomial Distribution
- a. Use the integrate function in R to find the Expected A Posteriori estimate of θ . Use a β distribution for the prior with parameters $\alpha = \beta = 1$.

```
# Given parameters
x \leftarrow c(23, 14, 24, 17, 4, 40, 17, 13, 31, 24)
s <- 1
alpha <- 1
beta <- 1
# Likelihood f(n)
likelihood <- function(theta) {</pre>
  suppressWarnings(prod(choose(x + s - 1, x) * theta^s * (1 - theta)^x))
# Integrals
num_posterior_integral <- integrate(function(theta) theta * dbeta(theta, alpha, beta) *
                                        likelihood(theta), 0, 1)
denom_posteriorintegral <- integrate(function(theta) dbeta(theta, alpha, beta) *</pre>
                                         likelihood(theta), 0, 1)
# EAP Estimate
E_theta <- num_posterior_integral$value / denom_posteriorintegral$value</pre>
cat("E(theta) =", E_theta, "\n")
```

E(theta) = 0.5

b. Now execute a similar method to find the posterior variance of θ .

The posterior variance is given by $Var(\theta) = E(\theta^2) - E(\theta))^2$. We have already calculated $E(\theta)$, therefore we need to calculate $E(\theta^2)$. The parameter is denoted by α .

```
## E(theta^2) = 0.3333333
```

```
cat("Posterior Variance =", posterior_variance, "\n")
```

Posterior Variance = 0.08333333

c. Now plot the likelihood function and the posterior and discuss how they differ.

Likelihood and Posterior

The plot is overlapping. They do not differ.

d. Show that these results are sensitive to choices of α and β . Plot different posteriors, calculate the posterior mean using the numerical method above, and explain the changes.

Prior Sensitivity

Changes in the prior parameters shift the weight of the prior, affecting the posterior mean. A stronger prior like Beta(1,3) centers the distribution more along the mean of theta. Weaker distributions aren't as extremely tight around the mean.

e. Perform a non-parametric bootstrap to find the standard error of the MLE

```
mle_theta <- function(data) {
  mean(data / (data + 1))</pre>
```

```
# Bootstrap
iterations <- 1000
bootstrap_mle <- replicate(iterations, mle_theta(sample(x, replace = TRUE)))

# SE of MLE
bootstrap_se <- sd(bootstrap_mle)
cat("Booststrap Standard Error of MLE:", bootstrap_se)</pre>
```

Booststrap Standard Error of MLE: 0.01544707

- 2) One sample t-test
- i. Conduct the likelihood ratio test for the null hypotheses using the results above

```
# Given data
data \leftarrow c(1, 3, 2, 4, -1, 7, 19, 3, -4, -5, -8)
n <- length(data)</pre>
theta0 <- 0
alpha <- 0.10
# T-statistic
x_bar <- mean(data)</pre>
S <- sd(data)
t_stat <- (x_bar - theta0) / (S / sqrt(n))
critical_value \leftarrow qt(1 - alpha, df = n - 1)
# Perform the hypothesis test
reject_null <- abs(t_stat) > critical_value
cat("Reject HO:", reject_null,"\n", "T-Statistic value:", abs(t_stat), "\n", "Critical Value:", critical
## Reject HO: FALSE
## T-Statistic value: 0.8823841
## Critical Value: 1.372184
  j. Find the power function for this test.
\# power = Pr(rejecting\ HO\ (t > critical\ value))
power_function <- function(theta, x_bar, S, n, critical_value) {</pre>
  non_central_t <- (x_bar - theta) / (S / sqrt(n))</pre>
  power <- pt(critical_value, df = n - 1, ncp = abs(non_central_t), lower.tail = FALSE)</pre>
  return(power)
```

k. Plot the power function for this test.

Power Function of the Likelihood Ratio Test

3) Power Calculations

b + c

```
# Power Function Calculation for different mu_a values
mu_0 <- 7
mu_a_values <- c(7.5, 8, 8.5, 9)
n <- 20
critical_value <- 7.8225

power_function <- function(mu_a, critical_value, n) {
   z_score <- (critical_value - mu_a) / sqrt(5 / n)
   power <- 1 - pnorm(z_score)
   return(power)</pre>
```

Power Function for Different mu_a values

d + e.

Power Function for Different Sample Sizes at mu = 8

4) Simulation b - d.

```
alpha <- 0.05

false_discovery_rate_fn <- function(alpha, beta, phi) {
   false_discovery_rate <- (alpha * phi) / (alpha * phi + (1 - beta) * (1 - phi))
   return(false_discovery_rate)
}

false_discovery_rate_b <- false_discovery_rate_fn(alpha, beta = 0.75, phi = (1/6))
cat("b. False Discovery Rate:", false_discovery_rate_b, "\n")</pre>
```

b. False Discovery Rate: 0.03846154

```
false_discovery_rate_c <- false_discovery_rate_fn(alpha, beta = 0.75, phi = (1/21) )
cat("c. False Discovery Rate:", false_discovery_rate_c, "\n")</pre>
```

c. False Discovery Rate: 0.00990099

```
false_discovery_rate_d <- false_discovery_rate_fn(alpha, beta = 0.6, phi = (1/41))
cat("d. False Discovery Rate:", false_discovery_rate_d, "\n")</pre>
```

d. False Discovery Rate: 0.003115265