smlhelp.github.io - Auxiliary Library

Jacob Neumann June 2021

Contents

1	Definitions	1
2	Specification	3
	2.1 Types	3
	2.2 Values	3
3	Lemmas	5
4	rev Correctness and Analysis	5
	4.1 Behavior	5
	4.2 Asymptotic Complexity	7
5	cleanSplit, interleave, and riffle	7
6	Sorting	7

1 Definitions

Defn. 1 (Comparison Function)

For any type t, a value cmp: t * t -> order is a comparison function if it satisfies the usual properties that we expect from a function which consistently compares elements of type t:

- 1. cmp is total
- 2. Reflexivity of cmp-equality: For all x:t, cmp(x,x) \cong EQUAL
- 3. Symmetry of cmp-equality: For all x,y:t, if cmp(x,y) \cong EQUAL, then cmp(y,z) \cong EQUAL
- 4. Transitivity of cmp-equality: For all x,y,z:t, if cmp(x,y) \cong EQUAL and

```
cmp(y,z) \cong EQUAL, then cmp(x,z) \cong EQUAL
```

Defn. 2 (Length)

5.

- The length of [] is 0
- The length of x :: xs is 1 plus the length of xs

Defn. 3 (List Membership)

For any type t and any comparison function cmp: t ord, a value y: t is in a list L: t list if L = x::xs where either

- cmp(x,y) \cong EQUAL, or
- y is in xs.

We may denote this with $y \in L$ or $y \in_{cmp} L$.

Defn. 4 (Permutation)

Define the count function as follows:

Given a type t, a comparison function cmp : t * t -> order, and two lists L1 ,L2 : t list, we say that L1 is a **permutation** of L2 (with respect to cmp) if count cmp (x,L1) \cong count cmp (x,L2) for all values x:t.

We omit mention of cmp if one is clear from context.^a

Defn. 5 (Permutation Function)

A function f : t list -> t list is said to be a **permutation function** if f is total and for all values L : t list, the list f(L) is a permutation of L.

Defn. 6 (Splitting Function)

A function s : t list -> t list * t list is said to be a splitting function

^aE.g. Int.compare when deciding whether one int list is a permutation of another.

```
if it is total and
```

op@(s(L)) is a permutation of L for all values L:t list.

Or, in other words, if A@B is a permutation of L, where (A,B)=s(L).

Defn. 7 (Merging Function)

A function m : t list * t list -> t list is said to be a merging function if it is total and

m(A,B) is a permutation of A@B for all values A,B:t list.

Defn. 8 (Sorted)

A value L : t list is sorted (with respect to cmp : t ord) if either:

- L = []
- L = [x] for some x
- L = x::x'::xs for some x,x',xs such that
 - cmp(x,x') evaluates to either LESS or EQUAL
 - x' :: xs is sorted (with respect to cmp)

2 Specification

2.1 Types

Type Spec

```
type 'a ord = 'a * 'a \rightarrow order
```

INVARIANT: Any value cmp : t ord is a comparison function

Type Spec

```
type 'a perm = 'a list -> 'a list
```

INVARIANT: Any value f : t perm is a permutation function

Type Spec

```
type 'a splitter = 'a -> 'a list * 'a list
```

INVARIANT: Any value **s**: 'a ord is a splitting function

Type Spec

```
type 'a merger = 'a list * 'a list -> 'a list
INVARIANT: Any value m : 'a merger is a merging function
```

2.2 Values

Value Spec

rev : 'a perm REQUIRES: true

ENSURES: rev L evaluates to a list containing the elements of L, in the reverse

order

WORK: O(n), where n is the length of the input list

SPAN: O(n)

Value Spec

riffle : 'a perm

REQUIRES: true

ENSURES: riffle L evaluates to a "riffle shuffle" permutation of L: the first half

of the list interleaved with the second half

Value Spec

cleanSplit : 'a splitter

REQUIRES: true

ENSURES: cleanSplit(L) \Longrightarrow (A,B) where the lengths of A and B differ by at

most one, and $L \cong A@B$

Value Spec

split : 'a splitter

REQUIRES: true

ENSURES: split(L) \Longrightarrow (A,B) where the lengths of A and B differ by at most

one

WORK: O(n)SPAN: O(n)

Value Spec

interleave : 'a merger

REQUIRES: true

ENSURES: interleave (A,B) consists of alternating elements of A and of B, in the same order they were in in their respective input lists

Value Spec

merge : 'a ord -> 'a merger

REQUIRES: A and B are sorted with respect to cmp

ENSURES: merge cmp (A,B) is sorted with respect to cmp

WORK: merge cmp (A,B) is O(m+n), where m and n are the lengths of A and

B, respectively (this assumes cmp is O(1))

SPAN: O(m+n)

Value Spec

msort : 'a ord -> 'a perm

REQUIRES: true

ENSURES: msort cmp L evaluates to a sorted (w.r.t cmp) permutation of L

WORK: msort cmp L is $O(n \log n)$ where n is the length of L (assuming cmp is O(1))

SPAN: O(n)

3 Lemmas

Lemma 9

For all types t and all values X,Y,Z : t list,

$$(X @ Y) @ Z \cong X @ (Y @ Z)$$

Fact 10

For all types t, all values x : t and all values L : t list,

$$[x]@L \cong x::L$$

Fact 11

For all types t and all values L : t list,

$$L@[] \cong L$$

Lemma 12

4 rev Correctness and Analysis

4.1 Behavior

The implementation of rev given in Permute.sml is as follows.

aux-library: Permute.sml

We must prove that this (a) indeed defines a value of type 'a perm, (b) that rev reverses its input list, and then (c) analyze its runtime. We'll start with (b), by proving rev equivalent to a more canonical version of list reverse.

For the sake of this document, we'll understand the meaning of "reverse order" (as it appears in the spec of rev) to be given by the following function.

which happens to be total:

Fact 13

reverse is total

So to prove the ENSURES of rev, we'll prove that rev and reverse are extensionally equivalent as functions. We begin with the following lemma about trev, the helper function for rev.

Lemma 14

```
For all types t, and all values L : t list and acc : t list trev(L,acc) \cong (reverse L)@acc.
```

Proof. By structural induction on L.

BC L=[]. Let acc be arbitrary.

```
trev([],acc) \cong acc (Defn. trev)

\cong [] @acc (Defn. @)

\cong (reverse []) @acc (Defn. reverse)
```

```
IS L=x::xs for some values x : t, xs : t list
```

```
IH trev(xs,acc') \cong (reverse xs)@acc' for all values acc' : t list
```

Let acc : t list be arbitrary. WTS:

```
trev(x::xs,acc) \cong (reverse (x::xs))@acc
```

```
 \begin{array}{c} {\rm trev}\,({\tt x::xs,acc}) &\cong {\rm trev}\,({\tt xs,x::acc}) & ({\rm Defn.\ trev}) \\ &\cong ({\tt reverse\ xs})\,{\tt 0}({\tt x::acc}) & {\tt IH} \\ &\cong (({\tt reverse\ xs})\,{\tt 0}[{\tt x}])\,{\tt 0acc} & ({\tt Fact\ 10,\ Fact\ 13,\ Lemma\ 9}) \\ &\cong {\tt reverse}\,({\tt x::xs}) & {\tt 0acc} & ({\rm Defn.\ reverse}) \\ \end{array}
```

Done. \Box

Then the correctness of rev is immediate:

Proof. Pick an arbitrary type t and an arbitrary value L: t list. Then,

proving the claim.

```
Cor. 16
rev is total.
```

- 4.2 Asymptotic Complexity
- 5 cleanSplit, interleave, and riffle
- 6 Sorting