# CS 430 Lecture 19 Activities

# Fractional Knapsack Problem

- 1. Prove that the Fractional Knapsack Problem has optimal substructure.
- 2. Try various "common sense" greedy approaches that divide the problem into a sub-problem(s) and try to come up with counter-examples or prove the greedy choice is correct using the "cut and paste" proof.

### Huffman Codes Problem

Data Encoding Background

- Data is a sequence of characters
- Fixed Length Each character is represented by a unique binary string Easy to encode, concatenate the codes together. Easy to decode, break off 3-bit codewords and decode each one.
- Variable Length Give frequent characters shorter codewords, infrequent characters get long codewords. However, how do we decode if the length of the codewords are variable?
- Prefix Codes No codeword is a prefix of another codeword Easy to encode, concatenate the code together. Easy to decode, since no codeword is a prefix of another, strip off one bit at a time and match to the unique prefix code

#### **Huffman Codes**

- Are a Data Compression technique using a greedy algorithm to construct an optimal variable length prefix code
- Use frequency of occurrence of characters to build an optimal way to represent each character as a binary string
- Use a Binary tree method 0 means go to left child, 1 means go to right child (not a binary search tree).
- Cost of Tree in bits:

$$B(T) = \sum_{\text{for all } c \in C} \text{freq}(c) \times \text{depth}(c)$$

Example

Table 19.1: A character-coding problem. A data file of 100,000 characters containes only the characters a—f, with the frequencies indicated. If each character is assigned a 3-bit codeword, the file can be encoded in 300,000 bits. Using the variable-length code shown, the file can be encoded in 224,000 bits.

|                          | a   | b   | c   | d   | e    | f    |
|--------------------------|-----|-----|-----|-----|------|------|
| Frequency (in thousands) | 45  | 13  | 12  | 16  | 9    | 5    |
| Fixed-length codeword    | 000 | 001 | 010 | 011 | 100  | 101  |
| Variable-length codeword | 0   | 101 | 100 | 111 | 1101 | 1100 |



Figure 19.1: Trees corresponding to the coding schemes in Table 19.1. Each leaf is labeled with a character and its frequency of occurence. Each internal node is labeled with the sum of the frequencies of the leaves in its subtree. (a) The tree corresponding to the fixed-length code  $a = 000, \ldots, f = 101$ . (b) The tree corresponding to the optimal prefix code  $a = 0, b = 101, \ldots, f = 1100$ .

### 3. Prove that the Huffman Codes Problem has optimal substructure.

The greedy approach is: Build the tree bottom up by using a minimum priority queue to merge 2 least frequent objects (objects are leaf nodes or other subtrees) together into a new subtree.



 $Huffman\ \mathtt{http://www.cs.auckland.ac.nz/software/AlgAnim/huffman.html}$ 

4. Proof this greedy algorithm leads to an optimal Huffman Code tree: Build the tree bottom up by using a minimum priority queue to merge 2 least frequent objects (objects are leaf nodes or other subtrees) together into a new subtree.