1.

	read	pop	push
_	a	S	S1
	\mathbf{c}	S	ϵ
	b	1	ϵ

2. (a)

read	pop	push
0	q_0	q_1
1	q_0	q_0
0	q_1	q_2
1	q_1	q_1
0	q_2	q_0
1	q_2	q_2
0	q_0	ϵ
1	q_0	ϵ

(b)

/			
	read	pop	push
	a	S	Sbb
	b	S	Sb
	b	S	ϵ
	b	b	ϵ

(c)

/			
	read	pop	push
	a	S	Sb
	ϵ	S	ϵ
	b	b	ϵ
	b	S	Sa
	a	S	Sa
	b	S	Sb
	b	S	ϵ
	a	a	ϵ

(d)			
	read	pop	push
	a	S	Sd
	b	S	Sc
	ϵ	S	ϵ
	\mathbf{c}	\mathbf{c}	ϵ
	d	d	ϵ

3.			
	read	pop	push
	ϵ	S	S_1S_2
	ϵ	S	S_3S_1
	ϵ	S_1	aS_1b
	ϵ	S_1	ϵ
	ϵ	S_2	bS_2
	ϵ	S_2	b
	ϵ	S_3	aS_3
	ϵ	S_3	a
	a	a	ϵ
	b	b	ϵ

4.

$$S \rightarrow S_1 S_2 S_3$$

$$S_1 \rightarrow a S_1 b \mid \epsilon$$

$$S_2 \rightarrow c S_2 \mid \epsilon$$

$$S_3 \rightarrow d S_3 \mid \epsilon$$

5. **Prove.** $L = \{a^n b^m c^n \mid m \ge n\}$ is not context free.

Proof. Suppose not. That is, let $L = \{a^nb^mc^n \mid m \geq n\}$ be context free such that the pumping lemma holds for L. Let k be given by the pumping lemma. Choose $z = a^kb^kc^k$ such that $z \in L$ and $|z| \geq k$. Let u, v, w, x, y be given such that $z = uvwxy = a^kb^kc^k$, v, x are not both ϵ , $|vwx| \leq k$, and for all i, $uv^iwx^iy \in L$. Consider when i = 2, since v and x cannot contain more than one type of symbol each, it follows that $|vwx| \geq k$, which contradicts our assumption that $|vwx| \leq k$. Thus, L is not context free.