HW9

A discription of your homework

Programming language used: Python 2.7 Library used: Numpy, PIL, Scipy.misc, math

Your parameters

i: row

j: column

tem: 用於儲存每個像素的灰階數值 0~255

mask: masks for calculating gradients

gra: gradient

gra_max: the maximum of gradients calculated by different masks

threshold: threshold for each kind of operator

Functions

roberts: Roberts operator

prewitt: Prewitt edge detector

sobel: Sobel edge detector

frei_and_chen: Frei and Chen gradient operator

kirsch: Kirsch compass operator

robinson: Robinson compass operator

nevatia babu: Nevatia-Babu 5X5 operator

The algorithm you used

Apply the masks to each pixel of lena: multiply the elements of masks to the gray scales of lena and sum up the values, so we get r_1 , r_2 in Roberts operator, for instance.

If gradient > threshold, make that pixel black. Otherwise, make that pixel white.

(1) Roberts operator

mask: (i,j) corresponds to the left-up corner of the mask

threshold=30

(2) Prewitt edge detector

mask: (i,j) corresponds to the center of the mask

-1	-1	-1	-1	1
			-1	1
1	1	1	-1	1
	<i>D</i> 1		p	2

$$gradient = \sqrt{p_1^2 + p_2^2}$$

threshold=90

(3) Sobel edge detector

mask: (i,j) corresponds to the center of the mask

-1	-2	-1
1	2	1
1000	· c.	

2
1

gradient =
$$\sqrt{s_1^2 + s_2^2}$$

threshold=120

(4) Frei and Chen gradient operator

mask: (i,j) corresponds to the center of the mask

-1	$-\sqrt{2}$	-1
1	√2	1

-1	1
$-\sqrt{2}$	$\sqrt{2}$
-1	1

$$gradient = \sqrt{f_1^2 + f_2^2}$$

threshold=100

(5) Kirsch compass operator

mask: (i,j) corresponds to the center of the mask

-3	-3	5
-3		5
-3	-3	5
ت	ko	_

-3	Γ
-3	Г
-3	

$$gradient = \max_{n=0,\dots,7} k_n$$

If the gradient of $\,k_n\,$ is larger than the one before, then save it to gra_mask and compared gra_mask to threshold.

threshold=430

(6) Robinson compass operator

mask: (i,j) corresponds to the center of the mask

-1	1		1	2	1	2	1	2	1	
-2	2	-1	Т	1				1	p.Son.	-1
-1	1	-2	-1		-1	-2	-1		-1	-2
	<i>r</i> ₀		r ₁			<i>r</i> ₂			<i>r</i> ₃	
1	-1		-1	-2	-1	-2	-1	-2	-1	T
2	-2	1		-1				-1		1
1	-1	2	1		1	2	1		1	2
r	4		rs		15-15-5	76			F7	•

$$gradient = \max_{n=0,\dots,7} k_n$$

If the gradient of $\ k_n$ is larger than the one before, then save it to gra_mask and compared gra_mask to threshold. threshold=120

(7) Nevatia-Babu 5X5 operator

mask: (i,j) corresponds to the center of the mask

100	100	100	100	100
100	100	100	100	100
0	0	0	0	0
-100	-100	-100	-100	-100
-100	-100	-100	-100	-100
		0°		
100	100	100	32	-100

100	100	100	100	100
100	100	100	78	-32
100	92	0	-92	-100
32	-78	-100	-100	-100
-100	-100	-100	-100	-100
		30°		

100	78	-92	-100	-100
100	-32	-100	-100	-100
		60°		-

-100	0	100	100
-100	0	100	100
-100	0	100	100
-100	0	100	100
-100	0	100	100
	-100 -100	-100 0 -100 0 -100 0	-100 0 100 -100 0 100 -100 0 100

-		-600		
-100	-100	-100	-32	100
-100	-100	-92	78	100
-100	-100	0	100	100
-100	-78	92	100	100
-100	32	100	100	100

100	100	100	100	100
-32	78	100	100	100
-100	-92	0	92	100
-100	-100	-100	-78	32
-100	-100	-100	-100	-100
	10-7	-30°	3004	

the other 6 masks are the derived by multiplying -1 to the above 6 masks

gradient =
$$\max_{n=0,\dots,11} k_n$$

If the gradient of $\,k_n\,$ is larger than the one before, then save it to gra_mask and compared gra_mask to threshold. threshold=37000

Principal code fragment

```
def roberts(x):
     tem=np.ones(x.shape)
threshold = 30 #12
mask_1=[[-1,0],[0,1]]
mask_2=[[0,-1],[1,0]]
     for i in range(x.shape[0]-1):
          for j in range(x.shape[1]-1):
    y=x[i:i+2,j:j+2]
               gra = sqrt(np.sum(np.multiply(y, mask_1))**2+np.sum(np.multiply(y, mask_2))**2)
               if gra>threshold:
                   tem[i][j]=0
     return tem
def prewitt(x):
      tem=np.ones(x.shape)
     tem=np.ones(x.snape)
threshold = 90 #24
mask_1=[[-1,-1,-1],[0,0,0],[1,1,1]]
mask_2=[[-1,0,1],[-1,0,1],[-1,0,1]]
for i in range(1,x.shape[0]-1):
    for j in range(1,x.shape[1]-1):
        y=x[i-1:i+2,j-1:j+2]
              gra = sqrt(np.sum(np.multiply(y,mask_1))**2+np.sum(np.multiply(y,mask_2))**2)
               if gra>thrèshold:
                   tem[i][j]=0
     return tem
def sobel(x):
     gra = sqrt(np.sum(np.multiply(y, mask_1))**2+np.sum(np.multiply(y, mask_2))**2)
               if gra>threshold:
                    tem[i][j]=0
     return tem
def frei_and_chen(x):
    tem=np.ones(x.shape)
threshold = 100 #30
    gra = sqrt(np.sum(np.multiply(y,mask_1))**2+np.sum(np.multiply(y,mask_2))**2)
              if gra>thrèshold:
                   tem[i][j]=0
    return tem
def kirsch(x):
    tem=np.ones(x.shape)
threshold = 430 #135
    mask=[]#list
              for k in range(len(mask)):
y=x[i-1:i+2,j-1:j+2]
                   gra=np.sum(np.multiply(y,mask[k]))
                   if gra>gra_max:
                       gra_max=gra
              if gra_max>threshold:
                   tem[i][j]=0
    return tem
```

Resulting images

1. Roberts operator

2. Prewitt edge detector

3. Sobel edge detector

4. Frei and Chen gradient operator

5. Kirsch compass operator

6. Robinson compass operator

7. Nevatia-Babu 5X5 operator

