Applications:

10 Calculate (integral admits an absolute value) .

$$1^{\circ} \int_{-1}^{1} |x| dx.$$

$$2^{\circ} \int_{-2}^{1} |x^2 - 1| dx$$
.

$$4^{\circ} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} |x \cos x| \, dx \, .$$

$$5^{\circ} \, \int_{-1}^2 \frac{|t|}{\sqrt{1+t^2}} \, dt \; .$$

$$7^{\circ} \int_{-6}^{2} |x^2 + 4x - 5| dx$$
..

$$8^{\circ} \int_{-1}^{2} \frac{|x|}{(1+x^2)^3} dx$$
.

The plane is that of an orthonormal system $(O; \vec{i}, \vec{j})$ of unit 2 cm.

Consider the curve (C) of the function f defined by $f(x) = x + 1 + \frac{1}{x^2}$.

- 1° Show that the line (D) of equation y = x + 1 is an asymptote to (C).
- 2° Study the position of (C) with respect to (D) .
- 3° Calculate the area of the domain limited by (C), (D) and the two lines of equations x=1 and x=2. Give your answer in cm^2 .

Let (C) be the curve of the function f defined over]-1; $+\infty[$ by $f(x) = \frac{x^2}{\sqrt{1+x^3}}$ in an orthonormal system $(O; \vec{i}, \vec{j})$.

2° a) Calculate the area $\mathcal{A}(\lambda)$ of the domain limited by (C), x'Ox, y'Oy and the line of equation $x = \lambda$, where $-1 < \lambda < 0$.

30 Consider the two adjacent curves (C) and (C') in an orthonormal system $(O; \vec{i}, \vec{j})$.

- (C) is the curve of the function f defined over the interval]0; $+\infty[$ and (C') is the curve of the function f', derivative of f.
- 1° Calculate f(1) and f(2).
- 2° Set up the table of variations of f.
- 3° Calculate the area of the shaded surface , limited by the curve (C $^{\prime}$) and (x $^{\prime}Ox)$.

