Dos Construcciones Geométricas Iterativas

Aidan Lorenzo

Noviembre 2024

1. Introducción

En este trabajo se desarrolla una doble generalización de la Espiral de Teodoro (véase la Figura 9). Por una parte generalizamos el ángulo de formación de nuevos triángulos: en la mencionada Espiral, el ángulo empleado es $\frac{\pi}{2}$, a fin de que, por el Teorema de Pitágoras, la distancia del centro a cada nuevo punto de la espiral sea la función \sqrt{n} .

Por otra parte, ampliaremos esta construcción a bloques no triangulares, y demostraremos algunos teoremas que describen la relación entre los comportamientos de ambas construcciones geométricas iterativas. Conectaremos, además, nociones de Teoría de Números, al introducir la función totiente de Euler y demostrar algunas simetrías que rijen y sirven de Lema.

2. Primera Construcción

2.1. Definición de la Construcción

Definición 1.1. Sea $x \in (0,\pi) = X$ un ángulo de formación en su dominio de generación.

Definición 1.2. Llamaremos bloque fundamental al triángulo de lados a_i, b_i y c_i , tales que

$$\forall i \in \mathbb{Z}^+, a_i = 1 \text{ y } b_1 = 1$$

y O el centro de la figura, que es la intersección de b_i y c_i . x es el ángulo que separa a_i y b_i .

Figura 1: Triángulo Primero.

Definición 1.3. Sea T_x la figura generada por el ángulo x yuxtaponiendo bloques fundamentales triangulares mediante la regla de iteración:

Figura 2: Dos primeros bloques de T_{36}° .

Definición 1.4. Sea $c_i(x)$ la longitud del segmento c_i de T_x .

2.2. Estudio de convergencia

Proposición 1.1.

$$c_i(x) = \begin{cases} 1 & \text{si } i = 0\\ \sqrt{1 + c_{i-1}^2 - 2c_{i-1}\cos x} & \text{si } i > 0 \end{cases}$$

Demostración. Por el Teorema del Coseno y las Definiciones anteriores tenemos:

$$c_i^2(x) = a_i^2 + b_i^2 - 2a_ib_i\cos x \iff c_i(x) = \sqrt{1 + c_{i-1}^2 - 2c_{i-1}\cos x}$$

La función está definida de forma recurrente, por lo que necesitamos un valor inicial de definición:

$$b_i = c_{i-1} \wedge b_1 = 1 \implies c_0 = 1$$

Proposición 1.2.

$$i) \lim_{i \to \infty} c_i(x) = \infty \iff \cos(x) \le 0 \iff x \in \left[\frac{\pi}{2}, \pi\right)$$

$$ii)$$
 $\lim_{i \to \infty} (c_i(x) - c_{i-1}(x)) = |\cos(x)| \iff \cos(x) < 0 \iff x \in (\frac{\pi}{2}, \pi)$

$$iii)$$
 $\lim_{i \to \infty} c_i(x) = \frac{1}{2\cos(x)} \iff \cos(x) > 0 \iff x \in (0, \frac{\pi}{2})$

Figura 3: $c_i(\frac{\pi}{2})$

Figura 4: $c_i(\frac{2}{3}\pi)$

Demostración. Notemos primero que, por construcción, $c_i(x) > 0$, pues refiere a la longitud de un segmento.

Probemos i). Veamos que las funciones asociadas a ángulos x con coseno negativo o nulo son monótonamente crecientes.

$$\forall i \in \mathbb{Z}^+ \forall x \in X, c_i(x) > 0 \land \cos(x) < 0 \implies c_i(x) > c_{i-1}(x)$$

ya que

$$\sqrt{1 + c_{i-1}^2 + 2c_{i-1}|\cos(x)|} > c_{i-1} \iff 2c_{i-1}|\cos(x)| > -1$$

lo cual se cumple siempre. Además, la sucesión no está acotada superiormente; entonces, diverge.

Además, $c_i(\frac{\pi}{2}) = \sqrt{i}$. Falta demostrar la convergencia de la serie para $\cos(x) > 0$. Estudiemos cómo se comporta la función para distintos intervalos de X_1 a través de la visualización de los correspondientes gráficos. Notemos que $c_i(\frac{\pi}{3}) = 1, \forall i \in \mathbb{Z}^+$, por lo que sólo tenemos la demostración analítica correspondiente al caso trivial donde la sucesión es constante, porque

$$c_1(\frac{\pi}{3}) = \sqrt{2 - 2\cos(\frac{\pi}{3})} = \sqrt{2 - 1} = \sqrt{1} = 1$$

y así vemos que cada vez que sea evaluada dará 1. Esto es equivalente a decir que los bloques serán triángulos equiláteros.

Figura 5: $c_i(x)$ para $x \in (0, \frac{\pi}{4})$. Comportamiento Oscilante

15

Figura 6: $c_i(x)$ para $x \in \left[\frac{\pi}{4}, \frac{\pi}{3}\right)$. Comportamiento Decreciente

Figura 7: $c_i(x)$ para $x \in (\frac{\pi}{3}, \frac{\pi}{2})$. Comportamiento Creciente

Definición 2.1. Llamaremos dominio de convergencia triangular al intervalo $X_1=(0,\frac{\pi}{2})$, para el cual

$$x \in (0, \frac{\pi}{2}) \iff \cos(x) > 0 \iff c_i(x) \text{ converge}$$

Definición 2.2. Análogamente, llamaremos dominio de no convergencia triangular X_2 al intervalo $\left[\frac{\pi}{2},\pi\right)$, para el cual

$$x \in \left[\frac{\pi}{2}, \pi\right) \iff \cos(x) \le 0 \iff \lim_{i \to \infty} c_i(x) = \infty$$

Definición 2.3 Sea $r(x) = \frac{1}{2\cos(x)}$ la función $radio,\,\forall x \in X_1$

Figura 8: T_{36} °

Figura 9: $T_{90^{\circ}}$ (Espiral de Teodoro)

2.3. Estudio de una función: p(x)

Definición 3.1.

Sea $\varphi_n = |\{\frac{m}{n}\pi : m \in \mathbb{Z}^+_{\leq n} \wedge \operatorname{mcd}(m, n) = 1\}| \text{ y } \varphi_n' = |\{m \in \mathbb{Z}^+_{\leq n} : \operatorname{mcd}(m, n) = 1\}|$

Definición 3.2.

Sea $\gamma_n = |\{\frac{m}{n}\pi : 2m < n \land m \in \mathbb{Z}^+ \land \operatorname{mcd}(m,n) = 1\}| \text{ y } \gamma_n' = |\{m \in \mathbb{Z}^+ : 2m < n \land \operatorname{mcd}(m,n) = 1\}|$

Definición 3.3.

$$\chi_n = |\{\frac{m}{n}\pi : m \in \mathbb{Z}^+_{\leq n} \land \operatorname{mcd}(m, n) = 1 \land 2 \mid m\}|, \ \chi'_n = |\{m \in \mathbb{Z}^+_{\leq n} : \operatorname{mcd}(m, n) = 1 \land 2 \mid m\}|$$

Observación 1. Trivialmente, $|\varphi_n| = |\varphi'_n|, |\gamma_n| = |\gamma'_n|$ y $|\chi_n| = |\chi'_n|$.

Definición 4.1. Sea $p: X_1 \to \mathbb{Z}^+ \cup \{\infty\}$ la función $p(x) = |\{P \in F_x : |\overline{OP}| = r(x)\}|$.

Teorema 1.1. Valor de la función p(x)

$$\forall n \in \mathbb{Z}^+ : x \in \gamma_n \iff \begin{cases} 2 \nmid n \iff p(x) = 2n \\ 4 \mid n \iff p(x) = n \\ 2 \mid n \land 4 \nmid n \implies p(x) = \frac{1}{2}n \end{cases}$$

Demostración. Si $c_i(x)$ converge, también converge $c_{i-1}(x)$, que por la Definición 1.3, es igual a b_i . Esto implica que los bloques serán triángulos isósceles. Siendo O el vértice que une estos segmentos y α_i el ángulo central, vemos que α_i converge. Por la relación de ángulos de un triángulo, $\alpha = \pi - 2x$.

Establecemos la condición de cierre: deberá existir un número finito k de bloques la suma de cuyos ángulos centrales α sea $v \cdot 2\pi$ para algún $v \in \mathbb{Z}^+$:

$$\exists n \in \mathbb{Z}^+ : x \in \gamma_n \iff x = \frac{m}{n}\pi \iff \frac{2\pi}{\alpha} = \frac{2n}{n-2m} \iff \exists k, v \in \mathbb{Z}^+ : \operatorname{mcd}(k,v) = 1 \land k \cdot \alpha = v \cdot 2\pi$$

Esto significa que, tras k triángulos isósceles constantes, los nuevos triángulos se dibujarán sobre otros ya existentes, al ser α constante. Para conocer el valor de k en función de x, haremos lo siguiente:

$$k \cdot \alpha = v \cdot 2\pi \iff \frac{k}{v} = \frac{2n}{n - 2m}$$

Para igualar k al numerador hay que ver qué valores de m y n generan una fracción irreductible.

- $2 \nmid n \land 1 = \operatorname{mcd}(n, m) = \operatorname{mcd}(n, n m) \implies \operatorname{mcd}(n, n 2m) = \operatorname{mcd}(2n, n 2m) = 1$
- $4 \mid n \wedge 1 = \operatorname{mcd}(n, m) = \operatorname{mcd}(n, n m) \implies \operatorname{mcd}(n, n 2m) = \operatorname{mcd}(2n, n 2m) = 2$
- $2 \mid n \land 4 \nmid n \land 1 = \operatorname{mcd}(n, m) = \operatorname{mcd}(n, n m) \implies \operatorname{mcd}(n, n 2m) = 2 \implies \operatorname{mcd}(2n, n 2m) = 4$

En consecuencia tenemos que

- $2 \nmid n \implies \operatorname{mcd}(2n, n 2m) = 1 \implies k(x) = 2n$
- $\blacksquare 4 \mid n \implies \operatorname{mcd}(2n, n 2m) = 2 \implies \operatorname{mcd}(n, \frac{n 2m}{2}) = 1 \implies k(x) = n$
- $\blacksquare 2 \mid n \land 4 \nmid n \implies \operatorname{mcd}(2n, n 2m) = 4 \implies \operatorname{mcd}\left(\frac{n}{2}, \frac{n 2m}{4}\right) = 1 \implies k(x) = \frac{n}{2}$

Los bloques son triángulos isósceles, donde $c_i = b_i = r(x)$, por lo que el primer bloque aportará 2 nuevas puntas a la figura; a partir de éste, cada nuevo triángulo aportará 1 punta nueva, pues compartirá una con el bloque anterior; finalmente, el último bloque no añade ninguna punta más a la figura, pues une dos ya existentes cerrando la figura.

i	1	2	3	4	5	6	 k-1	k
$\sum_{j=1}^{i} p_j$	2	3	4	5	6	7	 k	k

Corolario 1.1.

$$\nexists n \in \mathbb{Z}^+ : x \in \gamma_n \iff \frac{m}{n} \notin \mathbb{Q} \iff p(\frac{m}{n}\pi) = \infty$$

Demostración. Si x no es una fracción racional de π , $\nexists k, v \in \mathbb{Z}^+ : k \cdot \alpha = v \cdot 2\pi$, lo que se traduce en que nunca se llega a cerrar la figura tras un número finito de bloques.

Corolario 1.2.

$$\forall n \in \mathbb{Z}^+ : x \in \gamma_n \iff \begin{cases} 2 \nmid n \iff v(x) = n - 2m \\ 4 \mid n \iff v(x) = \frac{n - 2m}{2} \\ 2 \mid n \land 4 \nmid n \implies v(x) = \frac{n - 2m}{4} \end{cases}$$

Definición 4.2. Sea $p^{-1}(p) = \{x \in X_1 : p(x) = p\}, \forall p \in \mathbb{Z}_{\geq 3}$ el conjunto antiimagen de la aplicación explicada en la Definición 4.1, y $f(p) \coloneqq |p^{-1}(p)|$ el cardinal de este conjunto.

Definición 5.1. Sea $\varphi(n) = |\varphi_n|$ la función totiente de Euler.

Lema Único. Simetrías de φ_n

$$i) \ \forall n \in \mathbb{Z}_{>2}, \ |\varphi_n| = 2|\chi_n|$$

$$ii) \ \forall n \in \mathbb{Z}_{>2} : 2 \nmid n \iff |\varphi_n| = 2|\gamma_n|$$

$$iii) \ \forall n \in \mathbb{Z}_{>2} : 2 \nmid n \iff \varphi(2n) = \varphi(n)$$

La demostración de este Lema puede hallarse en el Apéndice.

Teorema 1.2. Inversa de p(x) y Función Totiente

$$\forall p \in \mathbb{Z}_{\geq 3}, \ f(p) = \frac{\varphi(p)}{2}$$

Demostraci'on. Veamos primero qué denominador n causará que la figura tenga p puntas, siguiendo el Teorema 1.1:

$$\begin{cases} 2 \nmid p \iff n = 2p \\ 4 \mid n \iff n = p \\ 2 \mid p \land 4 \nmid p \iff n = \frac{1}{2}p \end{cases} \implies p^{-1}(p) = \gamma_n = \begin{cases} \gamma_{2p} \iff 2 \nmid p \\ \gamma_n \iff 4 \mid p \\ \gamma_{\frac{p}{2}} \iff 2 \mid p \land 4 \nmid p \end{cases}$$

Es decir, el conjunto de las x para las cuales p(x) = p son los ángulos $x \in X_1$ con denominador entero positivo n, dependiente de la paridad de p, y numerador también entero positivo y coprimo respecto a n. Esto es lo que representa, por construcción, el conjunto γ_n introducido en la Definición 4.2.

Siguiendo el Lema de Simetrías y la Definición 5.1:

$$p^{-1}(p) = \gamma_n \iff |p^{-1}(p)| = f(p) = |\gamma_n| = \frac{\varphi(n)}{2} = \begin{cases} \frac{1}{2}\varphi(2p) \iff 2 \nmid p \\ \frac{1}{2}\varphi(p) \iff 4 \mid p \\ \frac{1}{2}\varphi(\frac{p}{2}) \iff 2 \mid p \land 4 \nmid p \end{cases} = \frac{\varphi(p)}{2}$$

2.4. Extensión de p(x)

Definición 6.1. Sea $k: X \times \mathbb{R}^+ \to \mathbb{R}^+$ la función

$$k(x,y) = k \iff \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor + 1}(x) = y$$

Proposición 2.1.

$$\exists n \in \mathbb{Z}^+ : x \in \gamma_n \iff p(x) = k(x, 2\pi v(x))$$

Demostración. Por el Teorema 1.1. y la Definición 6.1. vemos lo siguiente:

$$p(x) = k \iff \exists k, v \in \mathbb{Z}^+ : k \cdot \alpha = v \cdot 2\pi \wedge \operatorname{mcd}(k, v) = 1$$

$$k(x,y) = k \iff \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor + 1}(x) = y$$

En el dominio de convergencia, para $k \in \mathbb{Z}^+$:

$$k(x, 2\pi v(x)) = k \iff \sum_{i=1}^{k} \alpha(x) = y \iff k \cdot \alpha = 2\pi v(x)$$

Teorema 2.1. Espirales Únicas

$$\forall k \in \mathbb{Z}_{>3}, \exists ! x \in X : k(x, 2\pi) = k$$

Demostración. Veamos que la función $k(x, 2\pi)$ es inyectiva:

1.
$$\forall x_1, x_2 \in X : x_1 < x_2 \implies c_i(x_1) < c_i(x_2)$$

En i = 0, $c_0(x_1) = c_0(x_2) = 1$. Luego:

$$x_1 < x_2 \implies c_1(x_1) = \sqrt{2(1 - \cos(x_1))} < \sqrt{2(1 - \cos(x_2))} = c_1(x_2) \iff \cos(x_1) > \cos(x_2)$$

Lo cual es cierto cuando $x_1, x_2 \in (0, \pi) = X$. Para el resto de valores de i hacemos lo siguiente:

$$\forall a, b \in \mathbb{R}^+ : a < b \implies \sqrt{1 + a^2 - 2a\cos x_1} < \sqrt{1 + b^2 - 2b\cos(x_2)} \iff a(a - 2\cos(x_1)) < b(b - 2\cos(x_2))$$

Por hipótesis tenemos que a < b, así que veamos que $a - 2\cos(x_1) < b - 2\cos(x_2)$. Con la misma lógica, a < b, así que basta ver que $2\cos(x_1) > 2\cos(x_2)$, lo cual acabamos de ver en el caso i = 0:

2.
$$\forall x_1, x_2 \in X : c_i(x_1) < c_i(x_2) \implies \alpha_i(x_1) > \alpha_i(x_2)$$

Comprobémoslo para la primera iteración de dos construcciones cualesquiera:

$$\alpha_{1}(x_{1}) > \alpha_{1}(x_{2}) \iff \arccos(\frac{1^{2} + c_{1}^{2}(x_{1}) - 1}{2 \cdot 1 \cdot c_{1}(x_{1})}) > \arccos(\frac{1^{2} + c_{1}^{2}(x_{2}) - 1}{2 \cdot 1 \cdot c_{1}(x_{2})}) \iff \frac{c_{1}(x_{1})}{2} < \frac{c_{1}(x_{2})}{2}$$

$$\arccos(\frac{c_{i}(x_{1})^{2} + c_{i-1}(x_{1})^{2} - 1}{2c_{i}(x_{1})c_{i-1}(x_{1})}) > \arccos(\frac{c_{i}(x_{2})^{2} + c_{i-1}(x_{2})^{2} - 1}{2c_{i}(x_{2})c_{i-1}(x_{2})}) \iff \frac{c_{i}(x_{1})^{2} + c_{i-1}(x_{1})^{2} - 1}{c_{i}(x_{1})c_{i-1}(x_{1})} < \frac{c_{i}(x_{2})^{2} + c_{i-1}(x_{2})^{2} - 1}{c_{i}(x_{2})c_{i-1}(x_{2})} \iff \frac{(\sqrt{1 + c_{i-1}^{2} - 2c_{i-1}\cos(x_{1})})^{2} + c_{i-1}^{2} - 1}{c_{i}(x_{1})c_{i-1}(x_{1})} < \frac{(\sqrt{1 + c_{i-1}^{2} - 2c_{i-1}\cos(x_{2})})^{2} + c_{i-1}^{2} - 1}{c_{i}(x_{2})c_{i-1}(x_{2})} \iff \frac{c_{i-1}(x_{1}) - \cos(x_{1})}{c_{i}(x_{1})} < \frac{c_{i-1}(x_{2}) - \cos(x_{2})}{c_{i}(x_{2})}$$

$$3. \ \forall k \in \mathbb{R}^+ \forall x_1, x_2 \in X : x_1 < x_2 \implies \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x_1) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor}(x_1) > \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x_2) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor}(x_2)$$

4.
$$\forall x_1, x_2 \in X \ \forall y \in \mathbb{R}^+ : x_1 < x_2 \implies k(x_1, y) < k(x_2, y)$$

Consideremos $k(x_2, y) = k_2 \iff \sum_{i=1}^{\lfloor k_2 \rfloor} \alpha_i(x_2) + (k_2 - \lfloor k_2 \rfloor) \alpha_{\lfloor k_2 \rfloor}(x_2) = y$. Entonces:

$$\sum_{i=1}^{\lfloor k_2 \rfloor} \alpha_i(x_1) + (k_2 - \lfloor k \rfloor) \alpha_{\lfloor k_2 \rfloor}(x_1) > y$$

Por lo que, necesariamente, $k(x_1, y) = k_1 < k_2 = k(x_2, y)$. Basándonos en este principio:

5.
$$\forall x_1, x_2 \in X \ \forall y \in \mathbb{R}^+, \exists k \in \mathbb{Z}^+ : k(x_1, y) < k < k(x_2, y) \implies \exists ! x_m \in X : x_1 < x_m < x_2 \land k(x_m, y) = k$$

Así, conociendo k(x, y), podemos encontrar aquellos ángulos únicos x_m tales que $k(x_m, y) \in \mathbb{Z}^+$. En la Figura 9 se aprecian 17 bloques de T_{90° . La suma de sus ángulos centrales $\alpha_i(90^\circ)$ es mayor a 2π , y la suma de los 16 primeros es menor. Por esto, sabemos que la parte entera de $k(90^\circ, 360^\circ) = k \in \mathbb{R}^+$ es 16. En general:

$$\lfloor k(x,y) \rfloor = n \in \mathbb{Z}^+ \iff \sum_{i=1}^n \alpha_i(x) < y < \sum_{i=1}^{n+1} \alpha_i(x)$$

$$k(x,y) = k \iff \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x) + (k - \lfloor k \rfloor) \alpha_{\lfloor k \rfloor + 1}(x) = y \iff k = \lfloor k \rfloor + \frac{y - \sum_{i=1}^{\lfloor k \rfloor} \alpha_i(x)}{\alpha_{\lfloor k \rfloor + 1}(x)}$$

Ya podemos computar con facilidad la función k(x,y) para todas $(x,y) \in X \times \mathbb{R}^+$. En particular, $k(90^\circ, 360^\circ) \approx 16,649128$, y $k(91^\circ, 360^\circ) \approx 17,445935$. Apliquemos el Punto 5:

$$k(90^{\circ}, 360^{\circ}) < 17 < k(91^{\circ}, 360^{\circ}) \implies \exists ! x_m \in (90^{\circ}, 91^{\circ}) : k(x_m, 360^{\circ}) = 17$$

rigura 10: 17 bio	ques de	$1_{x=90,45332215}$ °
-------------------	---------	-----------------------

$k \in \mathbb{Z}^+$	x°
3	19.019079333
6	60
9	74.15292718
12	82.2524055
16	89.13404388
17	90.45332215
18	91.65964018
19	92.76863062
20	93.79304858
21	94.74341811
60	110.8178438
450	128.8014110

Figura 11: $\{(k, x) : k(x, 2\pi) = k\}$

Corolario 2.

i)
$$|\{x_1 \in X_1 : k(x_1, 2\pi) \in \mathbb{Z}^+\}| = 14$$

$$|ii| |\{x_2 \in X_2 : k(x_2, 2\pi) \in \mathbb{Z}^+\}| = \infty$$

Es decir, que hay número finito de $x_1 \in X_1$ que satisfacen $k(x_1, 2\pi) \in \mathbb{Z}^+$, mientras que existen infinitos ángulos $x_2 \in X_2$ para los cuales $k(x_2, 2\pi) \in \mathbb{Z}^+$

Conjetura 1.

$$\forall x \in X \setminus \{\frac{\pi}{3}\} : k(x, 2\pi) \in \mathbb{Z}^+ \implies \nexists n \in \mathbb{Z}^+ : x \in \gamma_n$$

Concluímos así que ésta es una función de crecimiento exponencial.

Figura 12: Gráfico de $k(x, 2\pi)$.

3. Segunda Construcción

3.1. Definición de la Construcción

Definición 7.1. En este caso, el bloque fundamental será el paralelogramo equilátero de lados a_i, b_i, c_i y d_i tales que

$$\forall i \in \mathbb{Z}^+ : a_i = b_i = c_i = d_i = \lambda \in \mathbb{R}^+$$

y x el ángulo que se forma entre a_i y b_i (también entre c_i y $d_i)$

Definición 7.2. Sea P_x la figura generada yuxtaponiendo bloques mediante la misma regla que T_x , y O el centro de la figura:

$$b_i = c_{i-1}$$

Figura 13: Dos primeros bloques de $P_{50^{\circ}}.$

Definición 7.3. Sea $r'(x) := \max(\lambda, t(x)), \forall x \in X$, donde t(x) es la distancia entre los vértices opuestos cuyos ángulos son α .

3.2. Estudio de q(x)

Proposición 3.1.

$$r'(x) = \begin{cases} \lambda & \text{si } 0 < x \le \frac{\pi}{3} \\ \lambda \sqrt{2(1 - \cos x)} & \text{si } \frac{\pi}{3} < x < \pi \end{cases}$$

Demostración. Por el Teorema del Coseno, tenemos que:

$$t^2(x) = a^2 + b^2 - 2ab\cos x \iff t(x) = \sqrt{2\lambda^2 - 2\lambda^2\cos(x)} = \sqrt{2\lambda^2(1 - \cos(x))} = \lambda\sqrt{2(1 - \cos(x))}$$

$$\begin{cases} r'(x) = \lambda \iff \max(\lambda, \lambda\sqrt{2(1 - \cos x)}) = \lambda \iff \lambda \ge \lambda\sqrt{2(1 - \cos(x)} \iff \cos x \ge \frac{1}{2} \iff x \in (0, \frac{\pi}{3}] \\ r'(x) = \lambda\sqrt{2(1 - \cos x)} \iff \lambda < \lambda\sqrt{2(1 - \cos(x)} \iff \cos x < \frac{1}{2} \iff x \in (\frac{\pi}{3}, \pi) \end{cases}$$

Por lo que vemos que todas las figuras generadas por esta segunda construcción tendrán un radio real.

Definición 8.1. Sea
$$q: X \to \mathbb{Z}^+ \cup \{\infty\}$$
 la función $q(x) = |\{S \in P_x : |\overline{OS}| = r'(x)\}|$

Teorema 3.1. Función q(x)

$$i) \ \forall n \in \mathbb{Z}^+ \setminus \{3\}, x \in \varphi_n \iff \begin{cases} q(x) = 2n \iff 2 \mid n \lor 2 \mid m \\ q(x) = n \iff 2 \nmid n \land 2 \nmid m \end{cases} \qquad ii) \ q(\frac{1}{3}\pi) = 2n = 6$$

Demostración. Por la relación de ángulos de un cuadrilátero, $2\alpha + 2x = 2\pi \iff \alpha = \pi - x$. Procedamos ahora de la misma manera que en el Teorema 1.1:

$$\exists n \in \mathbb{Z}^+ : x \in \varphi_n \iff x = \frac{m}{n}\pi \land m < n \iff \frac{2\pi}{\alpha} = \frac{2n}{n-m} \iff \exists k, v \in \mathbb{Z}^+ : \operatorname{mcd}(k, v) = 1 \land k \cdot \alpha = v \cdot 2\pi \iff \frac{k}{v} = \frac{2n}{n-m}$$

- $\bullet \ (2 \mid n \lor 2 \mid m) \land 1 = \operatorname{mcd}(n, m) = \operatorname{mcd}(n, n m) \implies \operatorname{mcd}(2n, n m) = 1 \implies k(x) = 2n$
- $2 \nmid n \land 2 \nmid m \land 1 = \operatorname{mcd}(n, m) = \operatorname{mcd}(n, n m) \implies \operatorname{mcd}(2n, n m) = 2 \implies k(x) = n$

Finalmente, la relación entre q(x) y k(x) es la siguiente:

Cuando $r'(x) = \lambda$, el primer bloque aporta dos puntas, porque tiene dos segmentos con esa longitud: $b_1 = \lambda = c_1$. En cambio, para r'(x) = t(x), el primer bloque contiene únicamente un segmento desde O con longitud $t(x) = \lambda \sqrt{2(1 - \cos(x))}$. En el caso singular $x = 60^{\circ}$ se da que los bloques son triángulos equiláteros.

Corolario 3.1.

$$\forall n \in \mathbb{Z}^+, x \in \varphi_n \iff \begin{cases} (2 \mid n \lor 2 \mid m) \iff v'(x) = n - m \\ 2 \nmid n \land 2 \nmid m \iff v'(x) = \frac{n - m}{2} \end{cases}$$

Corolario 3.2.

$$\nexists n \in \mathbb{Z}^+ : x \in \varphi_n \iff \frac{m}{n} \notin \mathbb{Q} \iff q(\frac{m}{n}\pi) = \infty$$

4. Integración de las Construcciones

Definición 8.2. Sea $q^{-1}(q) = \{x \in X : q(x) = q\}$ el conjunto antiimagen de la función q(x), y $g(q) \coloneqq |q^{-1}(q)|$

Definición 9. Sean
$$\varphi_{\infty} = \bigcup_{n \in \mathbb{Z}_{>2}} \varphi_n$$
, $\gamma_{\infty} = \bigcup_{n \in \mathbb{Z}_{>2}} \gamma_n$ y $\chi_{\infty} = \bigcup_{n \in \mathbb{Z}_{>2}} \chi_n$

Observación.

$$x \in \varphi_{\infty} \iff \exists n \in \mathbb{Z}_{\geq 2} : x \in \varphi_n$$

4.1. Teoremas de Integración

Proposición 4.

$$\forall x \in X_1, \exists n \in \mathbb{Z}_{\geq 2} : x \in \gamma_n \iff \begin{cases} p(x) = q(x) \iff 2 \mid m \vee 3m = n \iff x \in \chi_\infty \cup \left\{\frac{\pi}{3}\right\} \\ p(x) = 2q(x) \iff 2 \nmid m \wedge 2 \nmid n \wedge 3m \neq n \\ 2p(x) = q(x) \iff 4 \mid n \\ 4p(x) = q(x) \iff 2 \mid n \wedge 4 \nmid n \end{cases}$$

Demostración. Uniendo los Teoremas 1.1. y 3.1:

$$1. \ p(x) = 2n = q(x) \iff 2 \nmid n \land (2 \mid m \lor 2 \mid n) \iff 2 \mid m, \ p(x) = 6 = q(x) \iff x = \frac{\pi}{3}$$

$$2. \ p(x) = n = q(x) \iff 4 \mid n \land 2 \nmid n \iff F$$

$$3. \ p(x) = 2n = 2q(x) \iff 2 \nmid n \land (2 \nmid m \land 2 \nmid n) \iff 2 \nmid m \land 2 \nmid n$$

$$4. \ 2p(x) = 2n = q(x) \iff 4 \mid n \land (2 \mid m \lor 2 \mid n) \iff 4 \mid n$$

$$5. \ 2p(x) = n = q(x) \iff 2 \mid n \land 4 \nmid n \land (2 \nmid m \land 2 \nmid n) \iff F$$

$$6. \ 4p(x) = 2n = q(x) \iff (2 \mid n \land 4 \nmid n) \land (2 \mid m \lor 2 \mid n) \iff 2 \mid n \land 4 \nmid n$$

4.1.1. Distribución de Figuras y Función Totiente

Teorema de Integración

i)
$$\forall p, q \in \mathbb{Z}_{>3} \setminus \{6\}, \ p = q \implies f(p) = g(q)$$

ii) $\forall p \in \mathbb{Z}_{>3} \setminus \{6\}, \ f(p) + g(p) = \varphi(p)$
iii) $g(3) = 0 = \frac{\varphi(3)}{2} - 1 \land g(6) = 2 = \frac{\varphi(6)}{2} + 1$

Demostración. Por el Teorema 1.2. tenemos que $f(p) = \frac{\varphi(p)}{2}$, así que veremos

$$f(p) + g(p) = \varphi(p) \iff g(p) = \frac{\varphi(p)}{2} \iff f(p) = g(p)$$

viendo que $g(p) = \frac{\varphi(p)}{2}$. Estudiemos las condiciones de q para conocer los denominadores y numeradores m y n para los cuales $q(\frac{m}{n}\pi) = q$:

$$\begin{cases} 2 \nmid n \land 2 \mid m \iff n = \frac{q}{2} \land 2 \mid m \iff 2 \mid q \land 4 \nmid q \\ 2 \mid n \land 2 \nmid m \iff n = \frac{q}{2} \land 2 \nmid m \iff 4 \mid q \\ 2 \nmid n \land 2 \nmid m \iff n = q \land 2 \nmid m \iff 2 \nmid q \end{cases} \implies q^{-1}(q) = \begin{cases} \chi_{\frac{q}{2}} \iff 2 \mid q \land 4 \nmid q \\ \varphi_{\frac{q}{2}} \iff 4 \mid q \\ \varphi_{q} \setminus \chi_{q} \iff 2 \nmid q \end{cases}$$

Por el Lema de Simetrías:

$$|q^{-1}(q)| = g(q) = \begin{cases} \varphi(q) - |\chi_q| = \frac{1}{2}\varphi(q) \iff 2 \nmid q \\ \varphi(\frac{q}{2}) \iff 4 \mid q \\ |\chi_{\frac{q}{2}}| = \frac{1}{2}\varphi(\frac{q}{2}) \iff 2 \mid q \land 4 \nmid q \end{cases} = \frac{\varphi(q)}{2}$$

iii) Cuando consideramos el número de puntas p en lugar del número de bloques k, siguiendo lo visto en el Teorema 3.1, estamos interpretando a $P_{\frac{\pi}{3}}$ como una figura del conjunto $q^{-1}(6)$. Por tanto, el conjunto $q^{-1}(3)$ se queda vacío, al haber movido la única figura que contenía al otro conjunto.

4.1.2. Homología y Unicidad de Figuras Finitas y Cerradas

Definición 10. Diremos que dos figuras F_{x_1} y G_{x_2} son homólogas si se cierran con las mismas k y v, y lo denotaremos por $F_{x_1} \sim_h G_{x_2}$.

Teorema 4.2. Segundo Teorema de Integración

$$\forall x_t, x_p \in \varphi_{\infty} : T_{x_t} \sim_h P_{x_p} \iff 2x_t = x_p$$

$$\forall x_t, x_p \in \varphi_{\infty} : T_{x_t} \sim_h P_{x_p} \land x_p \neq \frac{\pi}{3} \implies p(x_t) = q(x_p)$$

$$\forall x_1, x_2 \in \varphi_{\infty} : T_{x_1} \sim_h T_{x_2} \iff x_1 = x_2$$

$$\forall x_1, x_2 \in \varphi_{\infty} : P_{x_1} \sim_h P_{x_2} \iff x_1 = x_2$$

Demostración. Por la condición de cierre del los Teoremas 1.1. y 3.1. podemos ver que

$$\frac{k}{v} = \frac{k'}{v'} \wedge \operatorname{mcd}(k, v) = \operatorname{mcd}(k', v') = 1 \iff k = k' \wedge v = v'$$

$$T_{x_t} \sim_h P_{x_p} \iff \frac{k}{v} = \frac{k'}{v'} \iff \frac{2n_t}{n_t - 2m_t} = \frac{2n_p}{n_p - m_p} \iff \frac{2m_t}{n_t} = \frac{m_p}{n_p} \iff 2x_t = x_p$$

Además sabemos que el número de bloques coincide con el número de puntas salvo en el caso singular:

$$\forall x_t \in \gamma_\infty : k(x_t) = p(x_t)$$

$$\forall x_p \in \varphi_\infty : k'(x_p) = q(x_p) \iff x_p \neq \frac{\pi}{3}$$

Luego:

$$T_{x_1} \sim_h T_{x_2} \iff \frac{k_1}{v_1} = \frac{k_2}{v_2} \iff \frac{2n_1}{n_1 - 2m_1} = \frac{2n_2}{n_2 - 2m_2} \iff \frac{m_1}{n_1} = \frac{m_2}{n_2} \iff x_1 = x_2$$

$$P_{x_1} \sim_h P_{x_2} \iff \frac{k'_1}{v'_1} = \frac{k'_2}{v'_2} \iff \frac{2n_1}{n_1 - m_1} = \frac{2n_2}{n_2 - m_2} \iff \frac{m_1}{n_1} = \frac{m_2}{n_2} \iff x_1 = x_2$$

Proposición 5.

$$\forall (p, v) \in \mathbb{Z}_{\geq 3} \times \gamma'_{p}, \ x_{t}(p, v) = \frac{p - 2v}{2p} \pi \in \gamma_{\infty}$$
$$\forall (q, v') \in \mathbb{Z}_{> 3} \times \gamma'_{q}, \ x_{p}(q, v') = \frac{q - 2v'}{q} \pi \in \varphi_{\infty}$$

Demostración. Por el Segundo Teorema de Integración, tenemos que dos figuras de la misma construcción son homólogas si y sólo si comparten generador. Por lo tanto:

$$\forall (p, v) \in \mathbb{Z}_{\geq 3} \times \gamma'_p, \exists ! x_t \in \gamma_\infty : p(x_t) = p \land v(x_t) = v$$

$$\forall (q, v') \in \mathbb{Z}_{> 3} \times \gamma'_p, \exists ! x_p \in \varphi_\infty : q(x_t) = q \land v'(x_p) = v'$$

$$\frac{p}{v} = \frac{2n}{n - 2m} \iff p(n - 2m) = 2nv \iff pn - 2pm = 2nv \iff n(p - 2v) = 2pm \iff \frac{m}{n} = \frac{p - 2v}{2p}$$

$$2m < n \iff p - 2v < p \iff v > 0$$

$$p - 2v > 0 \iff 2v < p$$

$$p, v \in \mathbb{Z}^+ \land \operatorname{mcd}(p, v) = 1$$

$$\therefore v \in \gamma_p'$$

$$ii) \frac{q}{v'} = \frac{2n}{n - m} \iff q(n - m) = 2nv' \iff qn - qm = 2nv' \iff n(q - 2v') = qm \iff \frac{m}{n} = \frac{q - 2v'}{q}$$

$$m < n \iff q - 2v' < q \iff v' > 0$$

$$q - 2v' > 0 \iff 2v' < p$$

$$q, v' \in \mathbb{Z}^+ \land \operatorname{mcd}(q, v') = 1$$

$$\therefore v' \in \gamma_p'$$

Esta caracterización permite demostrar el Primer Teorema de Integración sin información de χ_n . Por las expresiones explícitas de los ángulos en función de p y v podemos reexpresar el Segundo Teorema en los siguientes términos:

$$\forall (p,v) \in \mathbb{Z}_{>3} \times \gamma_p' : 2x_t(p,v) = x_p(p,v)$$

 $2x_t = x_p$ implica que los ángulos internos α serán iguales, por lo tanto será el mismo número de puntas y de vueltas el que satisfaga la condición de cierre.

En suma, hemos encontrado una nueva manera de caracterizar a los generadores, que pueden ser identificados de forma única por el número p de puntas y v de vueltas de la figura a la que dan lugar.

Figura 14: $x_t = 50^{\circ}$

Figura 15: $x_p = 2x_t = 100^{\circ}$

4.1.3. Radio Mínimo Relativo (RMR)

Definición 11.1. Sea $r_t: X_1 \times \mathbb{Z}^+ \to (0, r(x))$ la función radio generalizada para figuras T_x .

Definición 11.2. Sea $r_p: X \times \mathbb{Q}^+ \to (0, r'(x))$ la función radio generalizada para figuras P_x .

Proposición 6.1. Definición completa de r_t

$$r_t(x,n) = r(x) \frac{\sin(x)}{\sin(\frac{p(x)-n}{p(x)}\pi - x)}$$

Figura 16: Disección de una construcción

Figura 17: $r_t := |\overline{OM}|$

Definimos el ángulo central θ como n medias partes de sección $(\frac{2\pi}{p(x)})$:

1.
$$\theta(x,n) \coloneqq \frac{n}{2} \cdot \frac{2\pi}{p(x)} = \frac{n\pi}{p(x)}$$

Por la relación fundamental de ángulos de un triángulo:

$$2. x + \gamma + \theta = \pi$$

Siguiendo el Teorema del Seno:

3.
$$\frac{r_t(x,n)}{\sin x} = \frac{r(x)}{\sin \gamma} \iff r(x,n) = r(x) \frac{\sin x}{\sin \gamma}$$

4.
$$r_t(x, n) = r(x) \frac{\sin x}{\sin (\pi - \theta - x)} = r(x) \frac{\sin x}{\sin (\frac{p(x) - n}{p(x)} \pi - x)}$$

Proposición 6.2. Radio Mínimo Relativo para Primera Construcción

$$r_0(x) := \frac{r_t(x, n_0)}{r(x)} = \frac{r_t(x, v(x))}{r(x)} = \sin(x)$$

Demostración. La condición de minimización del radio de las figuras de la Primera Construcción es

$$\gamma = \frac{\pi}{2}$$

ya que hay líneas tangentes al radio mínimo las cuales unen puntas internamente. Notando que entre la tangente a una circunferencia y su radio se forma un ángulo recto, veremos que igualando γ a $\frac{\pi}{2}$ sacaremos un valor específico de n, al que llamaremos n_0 , al ser el parámetro que minimiza el radio.

$$\frac{p-n}{p}\pi - x = \frac{p-n}{p}\pi - \frac{p-2v}{2p}\pi = \frac{2(p-n)-(p-2v)}{2p}\pi = \frac{2v-2n+p}{2p}\pi$$

$$\frac{2v-2n_0+p}{2p}\pi = \frac{\pi}{2} \iff n_0 = v$$

La función $\sin(x)$ representa el radio mínimo relativo de la figura generada por el ángulo de formación x. En la Figura sería un 8,715 % del radio total, ya que $\sin(5^{\circ}) = 0.08715$.

Figura 18: Zoom en $T_{5^{\circ}}$.

Proposición 7.1. Definición completa de r_p

$$r_p(x,n) = \begin{cases} r'(x) \frac{\sin(x)}{\sin(\frac{q(x)-n}{q(x)}\pi - x)} & \text{si } x \in (0, \frac{\pi}{3}), \\ r'(x) \frac{\cos(\frac{x}{2})}{\sin(\frac{q(x)-2n}{2q(x)}\pi + \frac{x}{2})} & \text{si } x \in (\frac{\pi}{3}, \pi). \end{cases}$$

Para el intervalo de $x \in (0, \frac{\pi}{3})$ opera igual que la primera construcción, pues el ángulo de las puntas es 2x, y en la disección se toma la mitad. Para el resto del dominio de convergencia, siguiendo las Definiciones 7.3. y 8.1, vemos que el ángulo de las puntas será α . Entonces:

$$1. \ \theta(x,n) \coloneqq \frac{n}{2} \cdot \frac{2\pi}{q(x)} = \frac{n\pi}{q(x)}$$

$$2. \ \frac{\alpha}{2} + \gamma + \theta = \pi \iff \gamma = \pi - \frac{n\pi}{q(x)} - \frac{\pi - x}{2} = \frac{q(x) - 2n}{2q(x)}\pi + \frac{x}{2}$$

$$3. \ \frac{r_p(x,n)}{\sin(\frac{\alpha}{2})} = \frac{r'(x)}{\sin(\gamma)} \iff r_p(x,n) = r'(x)\frac{\sin(\frac{\alpha}{2})}{\sin(\gamma)}$$

$$4. \ \sin(\frac{\alpha}{2}) = \sin(\frac{\pi - x}{2}) = \sin(\frac{\pi}{2} - \frac{x}{2}) = \cos(\frac{x}{2})$$

$$5. \ r_p(x,n) = r'(x)\frac{\cos(\frac{x}{2})}{\sin(\frac{q(x) - 2n}{2q(x)}\pi + \frac{x}{2})}$$

Proposición 7.2. Radio Mínimo Relativo para Segunda Construcción

$$r_0'(x) := \frac{r_p(x, n_0')}{r'(x)} = \begin{cases} \sin x \iff x \in \left(0, \frac{\pi}{3}\right] \\ \cos \frac{x}{2} \iff x \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \\ \frac{1}{2\sin \frac{x}{2}} \iff x \in X_2 \end{cases}$$

Demostración. Las condiciones de minimización son 2: para $x \in X_1$ debemos $\gamma = \frac{\pi}{2}$, al estar calculando la apotema del polígono regular más pequeño que se forma en el interior de la figura. Cuando $2 \mid q$, tendremos un q-gono; y si $2 \nmid q$, habrá un 2q-gono.

Para el subdominio de generación X_2 tenemos que la forma más pequeña en el interior de la figura no será convexa, por lo que no calcularemos una apotema sino la longitud de los lados de los paralelogramos. Recordemos que en este tramo el radio es t(x), y los lados de los bloques son $\lambda \in \mathbb{R}^+$.

$$x \in \left(0, \frac{\pi}{3}\right) \iff r_0'(x) = \frac{\sin x}{\sin \gamma} = \frac{\sin x}{\sin \frac{\pi}{2}} = \sin x$$
$$x \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \iff r_0'(x) = \frac{\cos \frac{x}{2}}{\sin \gamma} = \frac{\cos \frac{x}{2}}{\sin \frac{\pi}{2}} = \cos \frac{x}{2}$$
$$x \in X_2 \iff r_0'(x) = \frac{\cos \frac{x}{2}}{\sin \gamma} = \frac{\cos \frac{x}{2}}{\sin x} = \frac{1}{2\sin \frac{x}{2}}$$

Figura 19: Zoom en $P_{x_p(17,3)}$.

Notemos que la función es contínua en los puntos de transición:

$$\sin(\frac{\pi}{3}) = \cos(\frac{\pi}{6}) = \lim_{x \to \frac{\pi}{3}^{-}} \sin(x) = \lim_{x \to \frac{\pi}{2}^{+}} \cos(\frac{x}{2}) = \frac{\sqrt{3}}{2}$$

$$\cos(\frac{\pi}{4}) = \frac{1}{2\sin(\frac{\pi}{4})} = \lim_{x \to \frac{\pi}{2}^{-}} \cos(\frac{x}{2}) = \lim_{x \to \frac{\pi}{2}^{+}} \frac{1}{2\sin(\frac{x}{2})} = \frac{\sqrt{2}}{2}$$

4.1.4. Relación entre RMR de Figuras Homólogas

Definición 12. Sean $X_{1_1} = (0, \frac{\pi}{4})$ y $X_{1_2} = (\frac{\pi}{4}, \frac{\pi}{2})$

Teorema 4.3. Tercer Teorema de Integración

$$\forall x_t, x_p \in X : T_{x_t} \sim_h P_{x_p} \implies \begin{cases} r_0(x_t) < r'_0(x_p) \iff x_t \in X_{1_1} \land x_p \in X_1 \\ r_0(x_t) = r'_0(x_p) \iff x_t = \frac{\pi}{4} \land x_p = \frac{\pi}{2} \\ r_0(x_t) > r'_0(x_p) \iff x_t \in X_{1_2} \land x_p \in X_2 \end{cases}$$

Demostración. Siguiendo el Segundo Teorema de Integración y las Proposiciones 5.2. y 6.2. planteamos la desigualdad entre ambas funciones en los diversos tramos:

1.
$$x_p \in (0, \frac{\pi}{3}) \land 2x_t = x_p \iff x_t \in (0, \frac{\pi}{6})$$

2. $r_0(x_t) < r'_0(x_p) \iff r_0(x_t) < r'_0(2x_t) \iff \sin(x_t) < \sin(2x_t)$

Lo cual se cumple para toda $x_t \in (0, \frac{\pi}{6}].$

3.
$$r_0(x_t) < r'_0(x_p) \iff \sin(x_t) < \cos(\frac{x_p}{2}) \iff \sin(x_t) < \cos(x_t)$$

Esta desigualdad se verifica positivamente para $x_t \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right]$

4.
$$r_0(\frac{\pi}{4}) = r_0'(\frac{\pi}{2}) \iff \sin(\frac{\pi}{4}) = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$$

5.
$$r_0(x_t) > r_0'(x_p) \iff \sin(x_t) > \frac{1}{2\sin\frac{x_p}{2}} \iff \sin(x_t) > \frac{1}{2\sin x_t} \iff \sin x_t > \frac{\sqrt{2}}{2}$$

Lo cual es cierto para $x_t \in (\frac{\pi}{4}, \frac{\pi}{2}) = X_{1_2}$.

4.1.5. Monogeneradores y Bigeneradores

Definición 13.1. Diremos que x es un monogenerador si $p(x) = q(x) \wedge r_0(x) = r'_0(x)$.

Definición 13.2. En cambio, x será un bigenerador si $p(x) \neq q(x) \lor r_0(x) \neq r'_0(x)$.

Definición 14.1. Sea $M = (\chi_{\infty} \cap (0, \frac{\pi}{3})) \cup \{\frac{\pi}{3}\}$

Definición 14.2. Sea $B = (\gamma_{\infty} \setminus \{\frac{\pi}{3}\}) \setminus (\chi_{\infty} \cap (0, \frac{\pi}{3}))$

Teorema 4.4. Cuarto Teorema de Integración

$$\forall x \in X : x \text{ monogenerador} \iff x \in M$$

$$\forall x \in X : x \text{ bigenerador} \iff x \in B$$

Demostración. Veamos primero los monogeneradores. Por la Proposición 4 y los Corolarios 1.2. y 3.2:

Caso discreto:
$$p(x) = q(x) \in \mathbb{Z}^+ \iff x \in \chi_{\infty} \cap X_1 \vee x = \frac{\pi}{3}$$

Ahora, por los Corolarios 4.1. y 4.2:

$$r_0(x) = \sin x = r'_0(x) \iff x \in \gamma_\infty \cap (0, \frac{\pi}{3}]$$

Entonces, el conjunto que satisfaga ambas propiedades será la intersección de aquellos que satisfacen cada una de ellas por separado. Veamos el caso discreto y añadamos posteriormente el conjunto de monogeneración trivial:

$$(\chi_{\infty} \cap X_1) \cup \{\frac{\pi}{3}\} \bigcap \gamma_{\infty} \cap (0, \frac{\pi}{3}] = (\chi_{\infty} \cap \gamma_{\infty} \cap X_1 \cap (0, \frac{\pi}{3})) \cup \{\frac{\pi}{3}\} = \chi_{\infty} \cap (0, \frac{\pi}{3}) \cup \{\frac{\pi}{3}\}$$

$$x$$
 monogenerador $\iff x \in M = (\chi_{\infty} \cap (0, \frac{\pi}{3})) \cup \{\frac{\pi}{3}\} \cup (X_1 \setminus \gamma_{\infty})$

Analicemos ahora los bigeneradores. Éste sería el caso complementario de la Proposición 4, esto es, que $p(x) \neq q(x)$. Entonces:

$$p(x) \neq q(x) \iff x \in \gamma_{\infty} \setminus (\chi_{\infty} \cup \{\frac{\pi}{3}\})$$

$$r_0(x) \neq r_0'(x) \iff x \in (\frac{\pi}{3}, \frac{\pi}{2}) \cap \gamma_\infty$$

Aquí hay que considerar el conjunto unión, dada la definición de bigenerador:

$$(\gamma_{\infty} \setminus \chi_{\infty}) \cup ((\frac{\pi}{3}, \frac{\pi}{2}) \cap \gamma_{\infty}) = \gamma_{\infty} \setminus (\chi_{\infty} \cap (0, \frac{\pi}{3}))$$

$$x$$
 bigenerador $\iff x \in B = (\gamma_{\infty}) \setminus (\chi_{\infty} \cap (0, \frac{\pi}{3}))$

4.2. Diagramas

- Las figuras de $\{T_x : x \in X_2\}$ son espirales infinitas cuya distancia al centro O crece linealmente si $x \neq \frac{\pi}{2}$.
- En $\{T_x: x \in X_{1_2} \cap \gamma_\infty\}$ y $\{P_x: x \in X_2 \cap \varphi_\infty\}$ son figuras finitas y cerradas Aquí, $r_0(x_t) > r_0'(x_p)$.
- En $\{T_x : x \in X_{1_1} \cap \gamma_\infty\}$ y $\{P_x : x \in X_1 \cap \varphi_\infty\}$ son también finitas y cerradas. Aquí, en cambio, $r_0(x_t) < r_0'(x_p)$.
- Finalmente, en $\{T_x : x \in X_1 \setminus \gamma_\infty\}$ y $\{P_x : x \in X \setminus \varphi_\infty\}$ se da una singularidad finita, pues el radio converge y no se cumple la condición de cierre

Figura 20: Diagrama Clasificatorio

Figura 21: Diagrama Triangular.

5. Apéndice

5.1. Demostración del Lema de Simetrías

$$i) \ \forall n \in \mathbb{Z}_{>2}, \ 2 \nmid n \iff |\varphi_n| = 2|\chi_n|$$

Demostración.

1.
$$\forall n \in \mathbb{Z}^+ : \exists f_n : [1, \frac{n-1}{2}] \cap \mathbb{Z}^+ \to [\frac{n+1}{2}, n-1] \cap \mathbb{Z}^+$$
 biyectiva

Es trivial ver que el dominio y el codominio de esta función son conjuntos finitos y numerables con cardinal $\frac{n-1}{2} \in \mathbb{Z}^+ \iff 2 \nmid n$:

$$\forall a, b \in \mathbb{Z}^+ : a \le b \implies |[a, b] \cap \mathbb{Z}^+| = b - a + 1$$

$$n-1-\frac{n+1}{2}+1=\frac{2(n-1)-(n+1)+2}{2}=\frac{n-1}{2}$$

Además:

$$2 \nmid n \iff [1, \frac{n-1}{2}] \cap \mathbb{Z}^+ \ \cup \ [\frac{n+1}{2}, n-1] \cap \mathbb{Z}^+ = [1, n-1] \cap \mathbb{Z}^+ = \{m \in \mathbb{Z}^+ : m < n\}$$

En concreto vamos a considerar la regla de asignación

$$f_n(m) = n - m \iff f_n(m) + m = n$$

\overline{m}	1	2	3	4	5	6	7
$f_{15}(m)$	14	13	12	11	10	9	8

$$2. \ \forall n \in \mathbb{Z}^+ : 2 \nmid n \iff \forall m \in [1, \frac{n-1}{2}] \cap \mathbb{Z}^+, \begin{cases} 2 \mid m \iff 2 \nmid f_n(m) \\ 2 \nmid m \iff 2 \mid f_n(m) \end{cases}$$

Esto se da porque, por la regla de asignación de la aplicación, vemos que la suma del argumento m y su imagen $f_n(m)$ debe ser igual a n, que es un número impar; y sólo la suma de un par y un impar resultan en un número impar.

$$3. \ \forall m,n \in \mathbb{Z}^+ : \operatorname{mcd}(m,n) = 1 \iff \operatorname{mcd}(n,n-m) = 1 \iff (m \in \gamma_n' \iff f_n(m) \in \varphi_n' \setminus \gamma_n')$$

									Ø				
$f_{27}(m)$	26	25	24	23	22	21	20	19	18	17	16	15	14

Con esta información podemos ver que existirá una biyección entre los elementos pares e impares de φ'_n :

$$\forall a \in \chi'_n, \exists! b \in \varphi'_n \setminus \chi'_n : a + b = n$$
$$\forall b \in \varphi'_n \setminus \chi'_n, \exists! a \in \varphi'_n : a + b = n$$

Por lo que ya habríamos demostrado la simetría ii) para $2 \nmid n$. Veámosla en general:

$$ii) \ \forall n \in \mathbb{Z}_{>2}, |\varphi_n| = 2|\gamma_n|$$

	m			,	,	,	· /	l .	· /	· /	,		12		
ĺ	$f_{30}(m)$	29	28	27	26	25	24	23	22	21	20	19	18	17	16

Donde estamos considerando la misma regla de asignación para $f_n(m)$. Notemos que, aquí, la unión del dominio y el codominio no es igual a todos los enteros menores que n, sino que se excluye $\frac{n}{2}$ cuando $2 \mid n$, lo cual no afectará al cómputo ni a la relación entre φ_n y γ_n , porque

$$2 \mid n \wedge n > 2 \implies \operatorname{mcd}(n, \frac{n}{2}) > 1 \implies \frac{n}{2} \notin \varphi'_{n}$$

$$\forall m \in [1, \frac{n}{2}) \cap \mathbb{Z}^{+}, (2m < n \wedge \frac{n}{2} < f_{n}(m) < n) \wedge (m \in \gamma'_{n} \iff f_{n}(m) \in \varphi'_{n} \setminus \gamma'_{n})$$

$$|\gamma'_{n}| + |\varphi'_{n} \setminus \gamma'_{n}| = |\gamma'_{n}| + (|\varphi'_{n}| - |\gamma'_{n}|) = |\varphi'_{n}| \wedge |\gamma'_{n}| = |\varphi'_{n} \setminus \gamma'_{n}| \implies |\varphi'_{n}| = 2|\gamma'_{n}|$$

5.2. Software

https://aidanLorenzo.github.io

https://github.com/aidanLorenzo/aidanLorenzo.github.io