Theoretische Physik 6 Höhere Quantenmechanik und Quantenfeldtheorie

T. Hurth

5. Übungsblatt

Ausgabe: 20. 11. 2012 Abgabe: Donnerstag, 29. 11. 2012 Besprechung: 6. 12. 2012

Aufgabe 11: (2+3+3+2)

In der nicht-relativistischen Quantenmechanik beruht die Interpretation der Wellenfunktion $\psi(\vec{x},t)$ als Wahrscheinlichkeitsamplitude auf der Gültigkeit der Kontinuitätsgleichung

$$\dot{\rho} + \vec{\nabla} \cdot \vec{j} = 0 \tag{43}$$

für die Wahrscheinlichkeitsdichte ρ und die Stromdichte $\vec{j},$ gegeben durch

$$\rho = |\psi|^2 \quad \text{und} \quad \vec{j} = \frac{\hbar}{2mi} (\psi^* (\vec{\nabla}\psi) - (\vec{\nabla}\psi^*)\psi). \tag{44}$$

(a) Leiten Sie diese Kontinuitätsgleichung mit Hilfe der (freien) Schrödingergleichung für ein nicht-relativistisches freies Teilchen der Masse m her.

Hinweis: Multiplizieren Sie die Schrödingergleichung von links mit ψ^* und subtrahieren Sie das komplex Konjugierte der gesamten Gleichung.

- (b) Was ändert sich in der Definition von \vec{j} und in der Herleitung der Kontinuitätsgleichung, wenn das Teilchen mit einem äußeren elektromagnetischen Feld wechselwirkt? Hinweis: Verwenden Sie die minimale Substitution $\vec{p} \to \vec{p} - \frac{e}{c} \vec{A}$ und den Hinweis zu Aufgabenteil (a).
- (c) Analysieren Sie die Frage, ob auch das (komplexe) Feld $\phi(\vec{x},t)$ in der Klein-Gordon-Gleichung ($\Box + m^2$) $\phi = 0$ eine analoge Interpretation erlaubt (Schein-Problem 1 aus der Vorlesung). Warum kann das entsprechende ρ in diesem Fall nicht als Wahrscheinlichkeitsdichte interpretiert werden? Was ist die physikalische Erklärung?
- (d) Leiten Sie nochmals die Kontinuitätsgleichung für das komplexe Klein-Gordon-Feld her, diesmal jedoch mit Hilfe des Noether-Theorems. Untersuchen Sie dafür zunächst die Invarianz des Klein-Gordon-Feldes, deren Lagrangedichte gegeben ist durch (siehe Vorlesung)

$$\mathcal{L} = (\partial_{\mu}\phi^*)(\partial^{\mu}\phi) - m^2\phi^*\phi, \qquad (45)$$

unter einer globalen U(1) Transformation $\phi \to e^{-i\Lambda}\phi$, mit $\Lambda \in \mathbb{R}$. Wenden Sie dann das Noether-Theorem an.

Aufgabe 12: (3+1+3)

Der Energie-Impuls-Tensor eines klassischen Feldes $\phi(x)$ mit der Lagrange-Dichte $\mathcal{L}(\phi, \partial_{\mu}\phi)$ lautet

 $T^{\mu\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\phi)} \partial^{\nu}\phi - g^{\mu\nu}\mathcal{L}. \tag{46}$

(a) Berechnen Sie die Energie und den Impuls des reellen Klein-Gordon-Feldes (siehe Vorlesung)

 $H = P^0 = \int d^3x \, T^{00} \,, \qquad P^i = \int d^3x \, T^{0i}$ (47)

in Abhängigkeit des Feldes und seiner Ableitungen. Zeigen Sie, dass H positiv definit ist und es somit kein negatives Energieproblem (Schein-Problem 2 aus der Vorlesung) in der Feldtheorie der Klein-Gordon-Gleichung gibt.

- (b) Was ändert sich, wenn der Lagrangedichte ein Term $-\lambda \phi^4$ (skalares (Spin-0) Teilchen mit Selbstwechselwirkung) hinzugefügt wird?
- (c) Führen Sie dieselbe Rechnung für das komplexe Klein-Gordon-Feld durch. Wie ändert sich $T^{\mu\nu}$?

Aufgabe 13: (2+2)

Ein massives (reelles) 4-Vektorfeld $\phi_{\mu}(x)$, das mit einer äußeren 4-Stromdichte $J_{\mu}(x)$ wechselwirkt, besitzt folgende Lagrange-Dichte:

$$\mathcal{L} = -\frac{1}{4} \left(\partial_{\mu} \phi_{\nu} - \partial_{\nu} \phi_{\mu} \right) \left(\partial^{\mu} \phi^{\nu} - \partial^{\nu} \phi^{\mu} \right) + \frac{1}{2} \mu^{2} \phi_{\mu} \phi^{\mu} + J_{\mu} \phi^{\mu} . \tag{48}$$

- (a) Leiten Sie die Feldgleichungen her (*Proca-Gleichung*, von Alexandre Proca (1897-1955) im Jahr 1934 vorgeschlagene Gleichung für die Beschreibung von massiven Teilchen mit Spin 1, sogenannten Vektormesonen).
- (b) Zeigen Sie, dass (im Gegensatz zum elektromagnetischen Feld A_{μ}) die Feldgleichungen nicht die Kontinuitätsgleichung für J_{μ} zur Folge haben, d.h. es gilt nicht $\partial_{\mu}J^{\mu}=0$. Welche Bedingung muss das Feld ϕ_{μ} erfüllen, damit die Kontinuitätsgleichung erfüllt ist?

Notieren Sie bitte die Zeit, die Sie für die Bearbeitung der Aufgaben benötigt haben.