

華東師紀大學

基于情感分析的金融走势选择性预测

Selective Prediction of Financial Trends Based on Sentiment Analysis

> 黄一夫 软件学院 华东师范大学 上海, 中国

10092510437@ecnu.cn

指导老师:钱卫宁

目录

- →研究背景
- ▶选择性预测
- ▶情感分析
- ▶隐马尔可夫模型
- ▶多流选择性隐马尔可夫模型
- > 系统实现与实验结果
- ▶总结和展望

研究背景

- ➤金融时间序列
 - > 资产价值随着时间演变产生的随机变量
- ➤金融走势预测
 - ▶ 通过建立预测模型,分析金融数据,来预测金融涨跌的 宏观走向。
 - 对金融走势进行预测分析,可以探索金融走势背后的原因, 使我们对金融市场有更加深入的理解。
 - ▶ 当达到一定的性能指标时,可推出作为商用,在宏观上提升投资者的效益。

选择性预测

- ➤ Not ignorance, but ignorance of ignorance is the death of knowledge.
- ▶ 形式化定义

$$Y_{t+1} = \begin{cases} F(X_t), & \text{if } G(X_t) = 1 \\ \text{reject}, & \text{if } G(X_t) = 0 \end{cases}$$

> 评价指标

$$\triangleright$$
 覆盖率 $C = \frac{A}{U}$

$$\triangleright$$
 风险率 $R = \frac{F}{A}$

情感分析

- ≻行为金融学
 - >微观上,个人情感影响个人决策
 - >宏观上,群体情感影响群体决策
- ▶群体情感度量
 - >Twitter, sense the world
- ▶单维VS多维

情感分析

- ▶多维情感分析
 - ▶POMS Bipolar 情感词表
 - 冷静-焦虑,同意-敌对,欢乐-失望,自信-怀疑, 活力-疲劳,清醒-迷惑
 - ➤WordNet 扩展
 - ▶格兰杰因果关系测试

隐马尔可夫模型

≻形式化定义

- $> \lambda = \{N, M, \pi, A, B\}$
- ▶N为状态的个数
- ➤M为观察值的个数
- $\triangleright \pi = \{\pi_1, \pi_2, ..., \pi_N\}$, 状态起始概率的集合
- $rac{1}{2}A = \{a_{ij} | i, j = 1, 2, ..., N\}$,状态转移概率
- $> B = \{b_{ij} | i = 1,2,...,N, j = 1,2,...,M\}$, 观察值 概率分布

隐马尔可夫模型

- >问题一,概率计算问题
 - ▶前向后向算法
- ▶问题二,标注问题
 - >维特比算法
- ▶问题三,模型训练问题
 - ➤ Baum-Welch迭代算法

▶模型

- ▶多流
 - \triangleright 观察序列 $O = \{O^{(1)}, O^{(2)}, \dots, O^{(K)}\}$
 - ➤最大化 $P(O|\lambda) = \prod_{k=1}^{K} P(O^{(k)}|\lambda) = \prod_{k=1}^{K} P_k$
- ▶选择性
 - ightarrow访问率 $v_i = \frac{1}{T} \sum_{t=1}^{T} \gamma_{ti}$
 - >风险率 $r_i = \frac{\frac{1}{T}\sum_{t=1,l_t \neq l_i}^{T} \gamma_{ti}}{v_i}$

▶模型

▶选择性

▶放缩

- \triangleright 放缩参数 $C_t = \frac{1}{\sum_{i=1}^{N} \alpha_{ti}}$, $1 \le t \le T$
- ▶ 放缩前向算子 $\alpha_{ti}^s = C_t \alpha_{ti}$, $1 \le i \le N$, $1 \le t \le T$
- \triangleright 放缩前向算子 $\beta_{ti}^s = C_t \beta_{ti}, 1 \le i \le N, 1 \le t \le T$

- ▶算法实现
 - ≽训练
 - ▶流程

- ▶算法实现
 - ≻训练
 - ▶递归精化

▶算法实现

- ➤训练
 - ▶递归精化

输入:一个N个状态的隐马尔可夫模型 λ ,高访问率风险状态 i_h ,多流观察序列 $O=\{O^{(1)},O^{(2)},...,O^{(k)}\}$ 随机生成一个n个状态隐马尔可夫模型 λ

对每个 $j=1,2,...,N,j\neq h$,将转移 i_i,i_h 替换为 $i_j,i_{N+1},i_j,i_{N+2},...,i_j,i_{N+n}$,将转移 i_h,i_i 替换为 $i_{N+1},i_j,i_{N+2},i_j,...,i_{N+n},i_j$

将高访问率风险状态 i_h 在 λ 中记录为已精化,去除其观察值概率分布,对于所有的j=N+1,N+2,...,N+n,设置 $l_{i_j}=l_{i_h}$ 当不收敛时,重做如下过程:

对于每个
$$j = 1,2,...,N, j \neq h, k = 1,2,...,n$$
,更新

$$a_{j(N+k)} = a_{jh}\pi_{N+k}$$

$$a_{(N+k)j} = a_{hj}$$

对于每个j = N + 1, N + 2, ..., N + n, 更新

$$\pi_i = \pi_h \pi_i$$

对于每个j, k = N + 1, N + 2, ..., N + n, 更新

$$a_{jk} = a_{hh}a_{jk}$$

重估

$$\pi_j = \frac{\sum_{i=1}^K \frac{1}{P_i} (\gamma_{1j}^{(i)s} + \sum_{t=1}^{T_k-1} \sum_{k=1, k \neq h}^N \xi_{t, k, j}^{(i)s})}{Z}$$

$$a_{jk} = \frac{\sum_{i=1}^{K} \frac{1}{P_i} \sum_{t=1}^{T_k-1} \xi_{t,j,k}^{(i)s}}{\sum_{l=N+1}^{N+n} \sum_{i=1}^{K} \frac{1}{P_i} \sum_{t=1}^{T_k-1} \xi_{t,l,l}^{(i)s}}$$

$$b_{jm} = \frac{\sum_{i=1}^{K} \frac{1}{P_i} \sum_{t=1, o_t^{(i)} = m}^{T_k} \gamma_{tj}^{(i)s}}{\sum_{i=1}^{K} \frac{1}{P_i} \sum_{t=1}^{T_k} \gamma_{tj}^{(i)s}}$$

收敛后,再更新一次所有的 $a_{j(N+k)}$, $a_{(N+k)j}$, π_j , a_{jk}

输出: 一个N-1+n个状态隐马尔可夫模型 λ

▶算法实现

≻预测

▶系统框架

> 数据获取模块

➤金融数据

〉数据获取模块

▶情感数据

▶数据获取模块

▶格兰因果关系分析

Lagged	Composed	Agreeable	Elated	Confident	Energetic	Clearheaded
Days	/Anxious	/Hostile	/Depressed	/Unsure	/Tired	/Confused
1	0.723009776	0.512862214	0.9399375	0.880644906	0.857355253	0.342346356
2	0.86129301	0.166551184	0.8289756	0.576292251	0.933422157	0.310755746
3	0.434470424	0.062817907	0.9608715	0.455076866	0.993825935	0.377955186
4	0.435631775	0.127495831	0.9903607	0.637129619	0.803028135	0.514455259
5	0.593896982	0.212591485	0.9854185	0.534574688	0.755306207	0.708745583
6	0.630440149	0.206866576	0.9689204	0.656838808	0.557477213	0.738674666
7	0.694607494	0.107745913	0.9858471	0.688712317	0.577784406	0.851840215

▶预测模块

▶流程

▶预测模块

▶类图

- ▶实验结果
 - ▶风险率-覆盖率曲线

- ▶实验结果
 - ▶模拟投资曲线

总结和展望

▶总结

- ▶多流的预测效果高于单流
- ▶隐马尔可夫预测效果高于线性
- >选择性预测的引入,使得预测的可控性增强

▶展望

- ▶更好的组合方式
- ▶连续隐马尔可夫模型
- ▶更加合理的投资策略

華東師紀大學

谢谢!

