MCC à excitation indépendante ★

Pas de corrigé pour cet exercice.

Une machine d'extraction est entraînée par un moteur à courant continu à excitation indépendante. L'inducteur est alimenté par une tension $u=600\,\mathrm{V}$ et parcouru par un courant d'excitation d'intensité constante : $i=30\,\mathrm{A}$. L'induit (rotor) de résistance $R=12\,\mathrm{m}\Omega$ est alimenté par une source fournissant une tension U réglable de $0\,\mathrm{V}$ à sa valeur nominale : $U_N=600\,\mathrm{V}$. L'intensité I du courant dans l'induit a une valeur nominale : $I_N=1,50\,\mathrm{kA}$. La fréquence de rotation nominale est $n_N=30\,\mathrm{tr/min}$.

Démarrage

Question 1 Réaliser un schéma de principe.

Question 2 En notant Ω la vitesse angulaire du rotor, la fem du moteur a pour expression : $E = K\Omega$ avec Ω en rad/s. Quelle est la valeur de E à l'arrêt (n = 0 tr/min)?

Question 3 Dessiner le modèle équivalent de l'induit de ce moteur en indiquant sur le schéma les flèches associées à *U* et *I*.

Question 4 Ecrire la relation entre U, E et I aux bornes de l'induit, en déduire la tension U_d à appliquer au démarrage pour que $I_d = 1, 2I_N$.

Question 5 Citer un système de commande de la vitesse de ce moteur.

Fonctionnement nominal au cours d'une remontée en charge

Question 6 Exprimer la puissance absorbée par l'induit du moteur et calculer sa valeur numérique.

Question 7 Exprimer la puissance totale absorbée par le moteur et calculer sa valeur numérique.

Question 8 Exprimer la puissance totale perdue par effet Joule et calculer sa valeur numérique.

Question 9 Sachant que les autres pertes valent 27 kW, exprimer et calculer la puissance utile et le rendement du moteur.

Question 10 Exprimer et calculer le couple utile T_u et le couple électromagnétique T_{em} .

Corrigé voir .

