

PKK2233.SEQ

Return to this vector's summary.

ID PKK2233 preliminary; circular DNA; SYN; 4584 BP.

XX

AC M77749; IG0335;

XX

DT 23-OCT-1991 (Rel. 6, Created)

DT 01-JUL-1995 (Rel. 12, Last updated, Version 1)

XX

DE E. coli plasmid vector pKK223-3 - complete.

XX

KW cloning vector.

XX

OS Cloning vector

OC Artificial sequences; Cloning vehicles.

XX

RN [1]

RC pKK125-1 from pKK92c-2 & pKK3535 & linker

RC pKK176-2, pKK176-3 from pKK125-1 & linker

RC pAH1-1 from pKK125-1 & pKK231-1

RC pAH3-4 from pKK176-2 & pKK231-1

RC pAH4-1 from pKK176-3 & pKK231-1

RC pAH7-2 from pAH1-1 & linker

RC pAH9-2 from pAH3-4 & linker

RC pAH10-2 from pAH4-1 & linker

RC pKK278-8 from pAH1-1 & pKK34-121 & pKK92c-2 & pKK231-1

RC pKK279-1 from pAH3-4 & pKK34-121 & pKK92c-2 & pKK231-1

RC pKK287-12 from pAH4-1 & pKK34-121 & pKK92c-2 & pKK231-1

RC pKK223-3 from pKK10-2 & ptac11 & linker & pUC8

RA Brosius J., Holy A.;

RT "Regulation of ribosomal RNA promoters with a synthetic lac operator";

RL Proc. Natl. Acad. Sci. U.S.A. 81:6929-6933 (1984).

XX

RN [2]

RC pLC29-47 from ColE1 & E.coli dehydroquinate synthase gene

RC pJB14 from pLC29-47 & pKK223-3

RA Frost J.W., Bender J.L., Kadonaga J.T., Knowles J.R.;

RT "Dehydroquinate synthase from Escherichia coli: purification, cloning, and construction of overproducers of the enzyme";

RL Biochemistry 23:4470-4475 (1984).

XX

RN [3]

PKK2233.SEQ

RC from pKK series, human alpha-tubulin expression
 RA Yaffe B.M., Levison B.S., Szasz J., Sternlicht H.;
 RT "Expression of a human alpha-tubulin: properties of the isolated
 RT subunit";
 RL Biochemistry 27:1869-1880 (1988).

XX

RN [4]

RC from pKK223-3

RC from pKK233-2

RA Kozak M.;

RT "Comparison of initiation of protein synthesis in Prokaryotes,
 RT Eucaryotes, and organelles";

RL Microbiological Reviews 47:1-45 (1983).

XX

RN [5]

RP 1-4586 (old)

RC pKK223-3

RA Gilbert W.;

RT "Obtained from VecBase 3.0";

RL Unpublished (1991).

XX

RN [6]

RC pKK34- series from pKK34-121

RC pKK35- series from pKK35-120

RA Kingston R.E.;

RT "Effects of deletions near Escherichia coli rrnB promoter P2 on
 RT inhibition of in vitro transcription by guanosine tetraphosphate";
 RL Biochemistry 22:5249-5254 (1983).

XX

CC GenBank entry is not current with Pharmacia entry (1993).

CC NM (pKK223-3)

CC CM (yes)

CC NA (ds-DNA)

CC TP (circular)

CC ST ()

CC TY (plasmid)

CC SP (Pharmacia)

CC HO (E.coli JM105)

CC CP ()

CC FN (expression)

CC SE ()

CC PA (pBR322) (pKK10-2) (ptacII) (pUC8)

CC BR (pKK233-2) (pKK232-8)

CC QF (pLC29-47) (pJB14)

CC OR ()

PKK2233.SEQ

XX

FT	Key	Location/Qualifiers
FT	misc_feature	0..0 /note="1. pBR322 2. pKK3535 -> pKK5-1 1. pKK5-1 -> pKK8-18 1. pKK8-18 2. linker -> pKK10-2 1. pKK10-2 large BamHI-HindIII 5339bp 2470..7809, \ pKK3535 BamHI = 306 7809 \ pKK3535 HindIII = 1902 2470 2. ptac11 HindIII 4600bp fill in BamHI linker 10bp ccggatccgg:BamHI linker 10bp \ ccggatccgg BamHI-EcoRI 260bp, tac promoter 3. pUC8 EcoRI-HindIII 30bp 231..261, MCS -> plasmid 5600bp 1. plasmid remove Pvul-BgII, amp gene/3300bp 2. pUC8 Pvul-BgII 1147bp 387..1534, amp gene/no PstI -> pKK223-3 4584bp [unique PstI]" join(4552..4584,1..11) /note="MCS unique HindIII-PstI-SalI-BamHI-SmaI-EcoRI" complement(11..>88) /note="PRO E. coli tac (trp -35 and lacUV5 -10)" 443..443 /note="SIT SphI" 1945..1945 /note="SIT Pvull" complement(0..0) /note="ORI E. coli pMB1 (ColE1 and pBR322)" complement(0..0) /note="ANT E. coli beta-lactamase gene (bla) ampicillin resistance gene (apr/amp)" 3613..3613 /note="SIT Pvul" 0..0 /note="TER E. coli rrnB gene T1" 0..0 /note="TER E. coli rrnB gene T2" 0..0

PKK2233.SEQ

FT

/note="GEN E. coli 5S gene"

XX

SQ

Sequence 4584 BP; 1042 A; 1269 C; 1191 G; 1082 T; 0 other;

ttctgtttcc tgggtgaaat ttgttatccgc tcacaattcc acacattata cgagccgatg
 attaattgtc aacagctcat ttcaagaatac ttgccagaac cgtratgatg tcggcgcaaa
 aaacattatac cagaacggga gtgcgccttg agogacacga attatgcagt gatttacgac
 ctgcacagcc ataccacagc ttccgatggc tgccctgacgc cagaaggatt ggtgcaccgt
 gcagtcgata agcccgata ctctacgccc gacgcattgtt ggccggcatc accggcgcca
 caggtgcgggt tgcgggccc tatatacgccg acatcacccg tggggaaagat cgggctcgcc
 acttcgggct catgagcgct tgcggccggc tgggtatggt ggcaaggcccc gtggccgggg
 gactgttggg cgccatctcc ttgcattgcac cattccctgc ggccggcggtt ctcaacggcc
 tcaacctact actgggctgc ttcttaatgc aggagtcgca taaggagag cgtcgaccga
 tgcctttag agccctcaac ccagtcagct cttccgggtg ggccgcggggc atgactatcg
 tcgcgcact tatgactgtc ttctttatca tgcaactcg aggacaggtg cggcagcgc
 tctgggtcat ttccggcgag gacgggtttc gctggagcgc gacgatgate ggcctgtcgc
 ttgcggtatt cggaatcttgc cacgcctcg ctcaaggcctt cgtcaactggc cccggccacca
 aacgttccgg cggaaagcag gccattatcg ccggcatggc ggccgacgcg ctggctacg
 tcttgcgtggc gttcgcgaag cgaggctggc tggcccttccc cattatgatt ttctctcggtt
 cccggccggcat cgggatgccc gcgttgcagg ccatgctgtc caggcaggta gatgacgacc
 atcagggaca gttcaaggaa tcgctcgccg ctcttaccag cctaacttgc atcactggac
 cgctgatcgt cacggcgatt tatgcgcgtt ccggcagcac atggaaacggg ttggatggg
 ttgttaggccc cgccctatac ttgtctgtcc ttcccggtt gctcgccgtt gcatggagcc
 gggccaccc gacctgaatg gaagccggcg gcacccgtt aacggatcca ccactccaag
 aattggagcc aatcaatttgc tgccgagaac tggatgcgcg caaaaaacc cttggcagaa
 catatccatc gctccgcac ttcccgccg cggcagcgcg cgcacccgtt gcatccgtt ggccatgttgg
 gtcctggcca cgggtgcgcac tgatcgtgtt cctgtcggtt aggacccggc taggcggccg
 gggtgtgcctt actgggttagc agaartgaatc accgataacgc gagcgaacgt gaagcgactg
 ctgcgtgcggg acgtctgcga cctgagcaac aacatgaatg gtcttcgggtt tccgtgttt
 gtaaaagtctg gaaacgcggg agtcagcgcc ctgcaccatt atgttccggc tctgcacccgc
 aggatgtgc tggctaccct gtggAACACC tacatctgtt ttaacgaago gctggatcg
 accctgagtg atttttctt ggtcccgccg catccatacc gccagttgtt taccctcaca
 acgttccagt aaccgggcat gttcatcatc agtaacccgt atcgtgagca ttctctctcg
 ttcatcggt atcattaccc ccataccatc aaatccccct tacacggagg catcgtgac
 caaacaggaa aaaacccggcc ttaacatggc ccgttttac agaagccaga cattaacgc
 tctggagaaa ctcaacgcgc tggacgcggc tgaacaggca gacatctgtt aatcgcttca
 cgaccacgct gatgagctt accgcagctt cctcgccgtt ttcgggtatg acggtaaaaa
 cctctgacac atgcagctcc cggagacggt cacagttgtt ctgttaagccgg atgcggggag
 cagacaaggcc cgtcaggccg cgtcagccgg tggccgggg tgcggggcc cagccatgac
 ccagtcacgt agcgatagcg gagtgtatac tggcttaact atgcggcatc agagcagatt
 gtactgagag tgcaccatc ggggtgtt gaa ataccgcaca gatgcgttaag gagaaaaatc
 cgcacccggc gctttccgc ttctctcgctc actgactcgcc tgcgtcggtt cgttcggctg
 cggcgagccg tatacgctca ctccaaaggcg gtaatacggt tataccacaga atcaggggat
 aacgcaggaa agaacatgtg agaaaaaggc cagaaaaaggc coaggaaccg taaaaaggcc
 gcttgcggc cgttttcca taggctccgc cccctgacgc agcatcacaa aaatcgacgc
 tcaagtca ggtggcgaaa cccgacaggaa ctataaagat accaggcggtt tccctctgg

PKK2233.SEQ

agatccctcg tgccgtctcc tggccgacc ctggccgtta ccggatacct gtccgcctt
 ccccccttcgg gaagcgtggc gctttctcaa tgctcacgt gtaggtatct cagtccggtg
 taggtcggtc gtcacaagct gggctgtgt cacgaacccc ccgttcagcc cgaccgctgc
 gccttatccg gtaactatcg tctttagtcc aacccggtaa gacacgactt atcgccactg
 gcaggcagcca ctggtaacag gattagcaga gcgaggtatg taggegggtgc tacagagttc
 ttgaagtgg ggcctaacta cggctacact agaaggacag tatttggtat ctgcgtctg
 ctgaagccag ttacotttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc
 gctggtagcg gtggttttt tggccaaag cagcagatta cgcgcagaaa aaaaggatct
 caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaaacga aaactcaogt
 taagggatctt tggcatgag attatcaaaa agatcttca octagatccct ttaaattaa
 aatgaagtt ttaaatcaat cttaagtata tatgagtaaa ctggctctga cagttaccaa
 tgcttaatca gtgaggcacc tacatcagcg atctgtctat ttcgttcatc catagttgcc
 tgactcccg tcgtgttagat aactacgata cgggagggct taccatctgg ccccagtgt
 gcaatgatac cgcgagaccc acgttcacccg gatccagatt tatcagcaat aaaccagcca
 gccggaaaggcc cgagcgcag aagtggctt gcaactttat ccgcctccat ccagtctatt
 aatttgttgc gggaaagctag agtaagtagt tccgcagttt atagtttgcg caacgttgc
 gccattgcta cagcatcggt gttcacgtt cttttttttt tatggcttca ttcagctccg
 gttcccaacg atcaaggcga gttacatgtt ccccatgtt gtcggaaaaa gcggtttagct
 ctttcggtcc tccgatcgat gtcagaagttt agttggccgc agtgttatca ctcatggta
 tggcagoact gcataattttt ctactgtca tgcacccgtt aagatgttt tctgtgactg
 gtgagtttttcc aaccaagtca ttctgagaaat agtgtatgcg ggcacccgatg tgccttgc
 cggcgtcaac acgggataat accgcgcac atagcagaac tttaaaatgtt ctcatcattt
 gaaaacgttc ttccggggcga aaactttcaaa ggatcttacc gctgttggaa tccagttcga
 tggtaaccac tcgtgoaccc aactgtatctt cagcatctt tactttcacc agcgtttctg
 ggtgagcaaa aacaggaagg caaaatgcgg caaaaaagg aataaggcgc acacggaaat
 gttgaatact catacttttc ttttttcaat attattgaag catttatcag gtttattgtc
 tcatgagcgg atacatattt gaatgtattt agaaaaataa acaaaagagt ttgtagaaac
 gcaaaaaggccatccgtcag gatggcccttc tggtttttt gatgcgttgc agtttatggc
 gggcgccctg cccgcaccc tccggggcgt tgcttcgcaa cgttcaaaatc cgctccggc
 ggatttgtcc tactcaggag agcgttccacc gacaaacaac agataaaacg aaaggcccag
 ttttcgact gagccttccg ttttttttga tgcctggcag ttccttactc tgcgttgggg
 agaccccccaca ctaccatagg cgttacggcgt tttttttt gatggccaa tgggggtcagg
 tgggaccacc ggcgtactgc cgccaggoaa attttttt atcagaccgc ttctgcgttc
 tgattttaatc tgtatcaggc tggaaatctt ctctcatccg ccaaaacagc caagttggc
 tgcaggtcga cggatccccggaa

//