2018年全国统一高考化学试卷(新课标Ⅱ)

- 一、选择题:本题共7小题,每小题6分,共42分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. (6分) 化学与生活密切相关,下列说法错误的是()
 - A. 碳酸钠可用于去除餐具的油污
 - B. 漂白粉可用于生活用水的消毒
 - C. 氢氧化铝可用于中和过多胃酸
 - D. 碳酸钡可用于胃肠 X 射线造影检查
- 2. (6分)研究表明,氮氧化物和二氧化硫在形成雾霾时与大气中的氨有关(如图所示)。下列 叙述错误的是()

- A. 雾和霾的分散剂相同
- B. 雾霾中含有硝酸铵和硫酸铵
- C. NH; 是形成无机颗粒物的催化剂
- D. 雾霾的形成与过度施用氮肥有关
- 3. (6分)实验室中用如图所示的装置进行甲烷与氯气在光照下反应的实验。

在光照下反应一段时间后,下列装置示意图中能正确反映实验现象的是()

- 4. (6分) W、X、Y和Z为原子序数依次增大的四种短周期元素。W与X可生成一种红棕色有刺激性气味的气体;Y的周期数是族序数的3倍;Z原子最外层的电子数与W的电子总数相同,下列叙述正确的是()
 - A. X 与其他三种元素均可形成两种或两种以上的二元化合物
 - B. Y 与其他三种元素分别形成的化合物中只含有离子键
 - C. 四种元素的简单离子具有相同的电子层结构
 - D. W 的氧化物对应的水化物均为强酸
- 5. (6分) N_A代表阿伏加德罗常数的值,下列说法正确的是()
 - A. 常温常压下, $124gP_4$ 中所含 P-P 键数目为 $4N_A$
 - B. 100 mL 1mol•L□¹FeCl₃溶液中所含 Fe³⁺的数目为 0.1N_A
 - C. 标准状况下,11.2L 甲烷和乙烯混合物中含氢原子数目为2NA
 - D. 密闭容器中, $2 \text{ mol } SO_2$ 和 $1 \text{mol } O_2$ 催化反应后分子总数为 $2N_A$
- 6. (6分) 我国科学家研发了一种室温下"可呼吸"的 Na□CO₂二次电池,将 NaClO₄溶于有机溶剂作为电解液。钠和负载碳纳米管的镍网分别作为电极材料,电池的总反应为: 3CO₂+4Na⇒ 2Na₂CO₃+C,下列说法错误的是()

- A. 放电时, ClO₄[□]向负极移动
- B. 充电时释放 CO₂, 放电时吸收 CO₂
- C. 放电时,正极反应为: 3CO₂+4e[□]—2CO₃^{2□}+C
- D. 充电时,正极反应为: Na⁺+e[□]─Na
- 7. (6分)下列实验过程可以达到实验目的是()

		实验过程					
编号	实验目的						
Α	配制 0.4000mol•L ^{®1} 的	称取 4.0g 固体 NaOH 于烧杯中,加入少量蒸					
	NaOH 溶液	馏水溶解,转移至 250mL 容量瓶中定容					
В	探究维生素C的还原	向盛有 2mL 黄色氯化铁溶液的试管中滴加浓					
	性	的维生素 C 溶液,观察颜色变化					
С	制取并纯化氢气	向稀盐酸中加入锌粒,将生成的气体依次通					
		过 NaOH 溶液、浓硫酸和 KMnO₄溶液					
D	探究浓度对反应速率	向 2 支盛有 5mL 不同浓度 NaHSO3溶液的试					
	的影响	管中同时加入 2mL5%H₂O₂溶液,观察实验					
		现象					

二、非选择题:每个试题考生必须作答。

B. B

A. A

8. (14分) 我国是世界上最早制得和使用金属锌的国家。一种以闪锌矿(ZnS,含有 SiO_2 和少量 FeS、CdS、PbS 杂质)为原料制备金属锌的流程如图所示:

D. D

C. C

相关金属离子[c_0 (M^{n+}) =0.1 $mol \cdot L^{-1}$] 形成氢氧化物沉淀的 pH 范围如下:

金属离子	Fe ³⁺	Fe ²⁺	Zn ²⁺	Cd ²⁺
开始沉淀的 pH	1.5	6.3	6.2	7.4
沉淀完全的 pH	2.8	8.3	8.2	9.4

回答下列问题:

- (1) 焙烧过程中主要反应的化学方程式为。
- (3)溶液中的 Cd²⁺用锌粉除去,还原除杂工序中反应的离子方程式为。
- (4) 电解硫酸锌溶液制备单质锌时,阴极的电极反应式为_____; 沉积锌后的电解液可返回___ 工序继续使用。
- 9. (14 分) $CH_4 \square CO_2$ 的催化重整不仅可以得到合成气($CO \ Tampa H_2$),还对温室气体的减排具有重要意义。回答下列问题:
- (1) CH₄□CO₂催化重整反应为: CH₄ (g) +CO₂ (g) =2CO (g) +2H₂ (g)。

已知: $C(s) + 2H_2(g) = CH_4(g) \triangle H = \Box 75kJ \cdot mol^{\Box 1}$

 $C(s) +O_2(g) =CO_2(g) \triangle H = \square 394kJ \cdot mol^{\square 1}$

 $C(s) + \frac{1}{2} O_2(g) = CO(g) \triangle H = \Box 111kJ \cdot mol^{\Box 1}$

该催化重整反应的 \triangle H=_____kJ•mol $^{\square}$ 1. 有利于提高 CH₄平衡转化率的条件是______(填标号)。

- A. 高温低压 B. 低温高压
- C. 高温高压
- D. 低温低压

某温度下,在体积为 2L 的容器中加入 $2mol\ CH_4$ 、 $1mol\ CO_2$ 以及催化剂进行重整反应,达到平衡时 CO_2 的转化率是 50%,其平衡常数为_____mol^2• $L^{\square 2}$ 。

(2) 反中催化剂活性会因积碳反应而降低,同时存在的消碳反应则使积碳碳量减少。相关数据如下表:

		积碳反应	消碳反应	
		$CH_4(g) = C(s) + 2H_2$	$CO_2 (g) + C (s) = 2CO$	
		(g)	(g)	
△H/ (kJ•ı	mol ^{®1})	75	172	
活化能/	催化剂 X	33	91	
(kJ•mol ^{®1}) 催化剂 Y		43	72	

- ①由上表判断,催化剂 X_____Y(填"优于或劣于"),理由是____。在反应进料气组成,压强及反应时间相同的情况下,某催化剂表面的积碳量随温度的变化关系如右图 1 所示。升高温度时,下列关于积碳反应,消碳反应的平衡常数(K)和速率(v)的叙述正确的是_____(填标号)。
- A. K_积、K_消均增加
- B. V积减小、V消增加
- C. K 积减小、K 消增加
- D. V_消增加的倍数比 V_积增加的倍数大

- ②在一定温度下,测得某催化剂上沉积碳的生成速率方程为 $v=k \cdot p$ (CH_4) \bullet [p (CO_2)] $^{\tiny 0.5}$ (k 为 速率常数)。在 p (CH_4) 一定时,不同 p (CO_2) 下积碳量随时间的变化趋势如图 2 所示,则 P_a (CO_2)、 P_b (CO_2)、 P_c (CO_2) 从大到小的顺序为_____。
- 10. $(15 分) K_3[Fe(C_2O_4)_3] \cdot 3H_2O(三草酸合铁酸钾) 为亮绿色晶体,可用于晒制蓝图,回答$

下列问题:

- (1) 晒制蓝图时,用 K_3 [Fe(C_2O_4) $_3$]•3 H_2O 作感光剂,以 K_3 Fe[(CN) $_6$]溶液为显色剂。其光解反应的化学方程式为 $2K_3$ [Fe(C_2O_4) $_3$]———2Fe C_2O_4 +3 $K_2C_2O_4$ +2 CO_2 ↑;显色反应的化学方程式为____。
- (2) 某小组为探究三草酸合铁酸钾的热分解产物,按如图所示装置进行实验。

- ①通入氮气的目的是。
- ②实验中观察到装置 B、F 中澄清石灰水均变浑浊,装置 E 中固体变为红色,由此判断热分解产物中一定含有____、___。
- ③为防止倒吸,停止实验时应进行的操作是。
- ④样品完全分解后,装置 A 中的残留物含有 FeO 和 Fe_2O_3 ,检验 Fe_2O_3 存在的方法是: _____。
- (3) 测定三草酸合铁酸钾中铁的含量。
- ①称量 mg 样品于锥形瓶中,溶解后加稀 H_2SO_4 酸化,用 $cmol \cdot L^{\Box 1}KMnO_4$ 溶液滴定至终点。滴定 终点的现象是_____。
- ②向上述溶液中加入过量锌粉至反应完全后,过滤、洗涤,将滤液及洗涤液全部收集到锥形瓶中。加稀 H_2SO_4 酸化,用 $cmol \bullet L^{\Box 1}KMnO_4$ 溶液滴定至终点,消耗 $KMnO_4$ 溶液 VmL. 该晶体中铁的质量分数的表达式为

[化学一选修 3: 物质结构与性质] (15 分)

11. (15分) 硫及其化合物有许多用途。相关物质的物理常数如表所示:

	H ₂ S	S ₈	FeS ₂	SO ₂	SO ₃	H ₂ SO ₄
熔点/℃	285.5	115.2	>600(分	? 75.5	16.8	10.3
沸点/℃	2 60.3	444.6	解)	?10.0	45.0	337.0

回答下列问题:

- (1) 基态 Fe 原子价层电子的电子排布图(轨道表达式)为______,基态 S 原子电子占据最高能级的电子云轮廓图为______形。
- (2) 根据价层电子对互斥理论, H_2S , SO_2 , SO_3 的气态分子中,中心原子价层电子对数不同于其他分子的是。
- (3) 图 (a) 为 S_8 的结构,其熔点和沸点要比二氧化硫的熔点和沸点高很多,主要原因为。

[化学一选修 5: 有机化学基础] (15 分)

12. 以葡萄糖为原料制得的山梨醇(A)和异山梨醇(B)都是重要的生物质转化平台化合物。E 是一种治疗心绞痛的药物。由葡萄糖为原料合成 E 的路线如下:

回答下列问题:

(1) 葡萄糖的分子式为。

- (2) A 中含有的官能团的名称为。
- (3) 由B到C的反应类型为。
- (4) C 的结构简式为。
- (5) 由 D 到 E 的反应方程式为。
- (6) F 是 B 的同分异构体,7.30g 的 F 与足量饱和碳酸氢钠反应可释放出 2.24L 二氧化碳(标准 状况),F 的可能结构共有______种(不考虑立体异构);其中核磁共振氢谱为三组峰,峰面积比为 3: 1: 1 的结构简式为 。

2018年全国统一高考化学试卷(新课标II)

参考答案与试题解析

- 一、选择题:本题共7小题,每小题6分,共42分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1. (6分) 化学与生活密切相关,下列说法错误的是()
 - A. 碳酸钠可用于去除餐具的油污
 - B. 漂白粉可用于生活用水的消毒
 - C. 氢氧化铝可用于中和过多胃酸
 - D. 碳酸钡可用于胃肠 X 射线造影检查

【考点】14:物质的组成、结构和性质的关系.

【分析】A. 碳酸钠水溶液呈碱性,碱性条件下促进油脂水解;

- B. 当把漂白粉撒到水中时,发生反应 Ca(ClO)₂+CO₂+H₂O=CaCO₃↓+2HClO,HClO 具有强氧化性;
- C. 氢氧化铝属于弱碱, 能中和酸:
- D. 碳酸钡能和稀盐酸反应生成有毒的氯化钡,但是硫酸钡不溶于稀盐酸、不溶于水。
- 【解答】解: A. 碳酸钠水解生成 NaOH 而导致其水溶液呈碱性,碱性条件下促进油脂水解,从而除去油污,故 A 正确;
- B. 当把漂白粉撒到水中时,发生反应 Ca (ClO) $_2$ + CO_2 + H_2O = $CaCO_3$ ↓+2HClO,HClO 具有强氧化性而杀菌消毒,所以漂白粉可用于生活用水的消毒,故 B 正确:
- C. 氢氧化铝属于弱碱,能中和胃酸中的盐酸而降低胃液酸性,所以氢氧化铝可以用于中和过多胃酸,故 C 正确;
- D. 碳酸钡能和稀盐酸反应生成有毒的氯化钡,但是硫酸钡不溶于稀盐酸、不溶于水,所以应该用硫酸钡而不是碳酸钡作胃肠 X 射线造影检查,故 D 错误;

故选: D。

【点评】本题考查物质结构和性质,侧重考查化学在生产生活中的应用,明确物质性质是解本题

关键,会运用化学知识正确解释生产生活现象,题目难度不大。

2. (6分)研究表明, 氮氧化物和二氧化硫在形成雾霾时与大气中的氨有关(如图所示)。下列 叙述错误的是()

- A. 雾和霾的分散剂相同
- B. 雾霾中含有硝酸铵和硫酸铵
- C. NH₃是形成无机颗粒物的催化剂
- D. 雾霾的形成与过度施用氮肥有关

【考点】EK: 氮的氧化物的性质及其对环境的影响.

【分析】由图示可知雾霾的主要成分为颗粒物,其中无机颗粒物的主要成分为铵盐,可由氨气和 硝酸、硫酸反应生成,以此解答该题。

【解答】解: A. 雾和霾的分散剂都是空气, 故 A 正确;

- B. 由图示可知雾霾中含有硝酸铵和硫酸铵, 故 B 正确;
- C. 由图示可知氨气参与反应生成铵盐,为反应物,不是催化剂,故 C 错误;
- D. 无机颗粒物的主要成分为铵盐,可形成雾霾,可知雾霾的形成与过度施用氮肥有关,故 D 正确。

故选: C。

【点评】本题考查环境污染问题,侧重于化学与生活、生产以及环境保护的考查,有利于培养学生良好的科学素养,树立环保意识,难度不大。

3. (6分)实验室中用如图所示的装置进行甲烷与氯气在光照下反应的实验。

在光照下反应一段时间后,下列装置示意图中能正确反映实验现象的是()

饱和食盐水

【考点】T4: 甲烷的取代反应.

【分析】CH₄与 Cl₂在光照条件下发生取代反应,取代反应的产物有 CH₃Cl (g), CH₂Cl₂ (1), CHCl₃ (1), CCl₄ (1)和 HCl。

【解答】解: CH₄与 Cl₂在光照条件下发生取代反应,取代反应的产物有 CH₃Cl (g), CH₂Cl₂ (1), CHCl₃ (1), CCl₄ (1) 和 HCl, 产生的 CH₂Cl₂ (1), CHCl₃ (1), CCl₄ (1)能附着在管壁上形成油状液滴,由于试管连接饱和食盐水,HCl 在其中的溶解度降低,所以 HCl 能和管内部的空气中的水蒸气形成白雾附着在管内壁上,整个反应是气体体积减少的反应,管内液面上升,所以 D 选项正确,

故选: D。

【点评】本题考查 CH_4 与 Cl_2 在光照下的取代反应,明确反应过程,产物及其物理状态和化学性质是解题的关键,为高频考点,题目难度不大,是基础题。

- 4. (6分) W、X、Y和Z为原子序数依次增大的四种短周期元素。W与X可生成一种红棕色有刺激性气味的气体;Y的周期数是族序数的3倍;Z原子最外层的电子数与W的电子总数相同,下列叙述正确的是()
 - A. X 与其他三种元素均可形成两种或两种以上的二元化合物
 - B. Y 与其他三种元素分别形成的化合物中只含有离子键
 - C. 四种元素的简单离子具有相同的电子层结构
 - D. W 的氧化物对应的水化物均为强酸

【考点】8F: 原子结构与元素周期律的关系.

- 【分析】W、X、Y和Z为原子序数依次增大的四种短周期元素,W与X可生成一种红棕色有刺激性气味的气体,该气体是 NO_2 ,则W、X分别是N、O元素;Y的周期数是族序数的3倍,其原子序数大于O,则Y为Na元素;Z原子最外层的电子数与W的电子总数相同,为Cl元素;
- A. X 是 O 元素,与 W 形成的二元化合物有 NO、 NO_2 、 N_2O_5 等;与 Y 元素形成的二元化合物有 Na_2O 、 Na_2O_2 ;有 Z 元素形成的二元化合物有 ClO_2 、 Cl_2O_7 等;
- B. Na 与 O 元素形成的化合物 Na₂O₂ 中含有共价键;
- C. 形成的简单离子中 W、X、Y 电子层结构相同;
- D. W的氧化物的水化物 HNO₂是弱酸。
- 【解答】解: W、X、Y和Z为原子序数依次增大的四种短周期元素,W与X可生成一种红棕色有刺激性气味的气体,该气体是 NO_2 ,则W、X分别是N、O元素; Y的周期数是族序数的3倍,其原子序数大于O,则Y为Na元素; Z原子最外层的电子数与W的电子总数相同,为Cl元素;
- A. X 是 O 元素,与 W 形成的二元化合物有 NO、 NO_2 、 N_2O_5 等;与 Y 元素形成的二元化合物有 Na_2O 、 Na_2O_2 ;有 Z 元素形成的二元化合物有 ClO_2 、 Cl_2O_7 等,所以 X 与其他三种元素均可形

成两种或两种以上的二元化合物, 故 A 正确;

- B. Na 与 O 元素形成的化合物 Na₂O₂ 的电子式为 Na^{*}[: o : o :] *- Na^{*}, 含有共价键和离子键,故 B 错误;
- C. 形成的简单离子中 W、X、Y 电子层有 2 个, 而 Z 离子核外电子层有 3 个, 所以这四种元素简单离子电子层结构不相同, 故 C 错误;
- D. W 的氧化物的水化物 HNO₃ 是强酸,而 HNO₃ 为弱酸,故 D 错误;

故选: A。

【点评】本题考查原子结构和元素周期律,侧重考查学生分析、判断及知识综合运用能力,明确原子结构、物质结构、元素周期表结构、元素周期律即可解答,注意规律中的特殊现象,题目难度不大。

- 5. (6分) N_A代表阿伏加德罗常数的值,下列说法正确的是()
 - A. 常温常压下, $124gP_4$ 中所含 P-P 键数目为 $4N_A$
 - B. 100 mL 1mol•L□¹FeCl₃溶液中所含 Fe³+的数目为 0.1Nል
 - C. 标准状况下, 11.2L 甲烷和乙烯混合物中含氢原子数目为 2N_A
 - D. 密闭容器中, 2 mol SO₂和 1molO₂催化反应后分子总数为 2N_A

【考点】4F: 阿伏加德罗常数.

【分析】A. 1molP₄含有 6molP□P 键;

B. FeCl₃溶液中存在 Fe³⁺的水解;

C.1mol 乙烷含有 4molH, 1mol 乙烯含有 4molH:

D. SO_2 和 O_2 的催化反应为可逆反应。

【解答】解:A.124gP₄的物质的量为 $\frac{124g}{31\times 4g/mol}$ =1mol,根据 P₄的结构式,1molP₄含有6molP \square P键,即含有 P \square P键数目为 6N_A,故 A 错误;

B. FeCl₃溶液中存在 Fe³⁺的水解, 所以 100 mL 1mol•L□¹FeCl₃溶液中所含 Fe³⁺的数目小于 0.1mol, 即小于 0.1N_A, 故 B 错误;

C.1mol 甲烷含有 4molH, 1mol 乙烯含有 4molH, 二者无论按何种比例, 相当于 1mol 混合气体含

有 4molH,则标准状况下,11.2L 甲烷和乙烯混合物中含 H 有 $\frac{11.2L}{22.4L/mol} \times 4=2mol$,即含氢原子数目为 $2N_A$,故 C 正确;

D. SO_2 和 O_2 的催化反应为可逆反应,反应不可能完全进行,存在一个化学平衡,所以密闭容器中, $2 \, mol \, SO_2$ 和 $1 mol O_2$ 催化反应后分子总数不一定为 2 mol,即不一定为 $2 N_A$,故 D 错误,故选: C。

【点评】本题考查阿伏伽德罗常数的简单计算,注意盐类水解知识和化学平衡知识的运用,明确 P₄ 的结构是解题的关键,为易错点,题目难度不大,是基础题。

6. (6分) 我国科学家研发了一种室温下"可呼吸"的 Na□CO₂二次电池,将 NaClO₄溶于有机溶剂作为电解液。钠和负载碳纳米管的镍网分别作为电极材料,电池的总反应为: 3CO₂+4Na⇌ 2Na₂CO₃+C,下列说法错误的是()

- A. 放电时, ClO₄□向负极移动
- B. 充电时释放 CO_2 , 放电时吸收 CO_2
- C. 放电时, 正极反应为: 3CO₂+4e[□]=2CO₃^{2□}+C
- D. 充电时,正极反应为: Na⁺+e[□]─Na

【考点】BH: 原电池和电解池的工作原理.

【分析】A. 放电时, Na 失电子作负极、Ni 作正极, 电解质溶液中阴离子向负极移动:

- B. 放电时 Na 作负极、Ni 作正极,充电时 Ni 作阳极、Na 作阴极,则放电电池反应式为 3CO₂+4Na⇒2Na₂CO₃+C、充电电池反应式为 2Na₂CO₃+C⇒3CO₂+4Na;
- C. 放电时负极反应式为 $Na = e^{-}=Na^{+}$ 、正极反应式为 $3CO_2+4e^{-}=2CO_3^{2-}+C_3$;
- D. 充电时,原来的正极作电解池的阳极,失电子发生氧化反应。

【解答】解: A. 放电时, Na 失电子作负极、Ni 作正极, 电解质溶液中阴离子向负极移动, 所以

ClO₄□向负极移动,故A正确;

- B. 放电时 Na 作负极、Ni 作正极,充电时 Ni 作阳极、Na 作阴极,则放电电池反应式为 3CO₂+4Na⇒2Na₂CO₃+C、充电电池反应式为 2Na₂CO₃+C⇒3CO₂+4Na,所以充电时释放 CO₂, 放电时吸收 CO₂,故 B 正确;
- C. 放电时负极反应式为 $Na = e^{-1} = Na^{+}$ 、正极反应式为 $3CO_2 + 4e^{-1} = 2CO_3 + C$,故 C 正确;
- D. 充电时,原来的正极 Ni 作电解池的阳极,Na 作电解池阴极,则正极发生的反应为原来正极 反应式的逆反应,即 $2CO_3^2$ + C 4e $=3CO_2$,负极发生的反应为 Na + e Na,故 D 错误; 故选: D。

【点评】本题考查原电池原理,明确充电电池中正负极、阴阳极发生反应关系是解本题关键,侧 重考查学生分析判断能力,难点是电极反应式的书写,题目难度不大。

7. (6分)下列实验过程可以达到实验目的是()

		实验过程		
编号	实验目的			
А	配制	称取 4.0g 固体 NaOH 于烧杯中,加入少量蒸馏水		
	0.4000mol∙L ² 1	溶解,转移至 250mL 容量瓶中定容		
	的 NaOH 溶液			
В	探究维生素C的	向盛有 2mL 黄色氯化铁溶液的试管中滴加浓的织		
	还原性	生素 C 溶液,观察颜色变化		
С	制取并纯化氢气	向稀盐酸中加入锌粒,将生成的气体依次通过		
		NaOH 溶液、浓硫酸和 KMnO₄溶液		
D	探究浓度对反应	向 2 支盛有 5mL 不同浓度 NaHSO₃溶液的试管中		
	速率的影响	同时加入 2mL5%H ₂ O ₂ 溶液,观察实验现象		
A. A B. E		C. C D. D		

【考点】U5: 化学实验方案的评价.

【分析】A. 在转移溶液之前应该将溶液冷却至室温, 否则配制的溶液浓度偏高;

- B. 氯化铁具有氧化性、维生素 C 具有还原性, 二者发生氧化还原反应而使溶液变色;
- C. 高锰酸钾溶液和氢气、HCl 都不反应,且最后通过酸性高锰酸钾溶液会导致得到的氢气中含有 水蒸气;
- D. 要探究浓度对化学反应速率影响实验时,应该只有浓度不同其它条件必须完全相同。

【解答】解: A. NaOH 溶解过程是放热的,导致溶液浓度高于室温,如果在转移溶液之前未将溶液冷却至室温,否则配制的溶液体积偏小,则配制溶液浓度偏高,所以不能实现实验目的,故 A 不选;

- B. 氯化铁具有氧化性、维生素 C 具有还原性,二者发生氧化还原反应而生成亚铁离子,导致溶液由黄色变为浅绿色,则溶液变色,所以能实现实验目的,故 B 选;
- C. 高锰酸钾溶液和氢气、HCl 都不反应,且最后通过酸性高锰酸钾溶液会导致得到的氢气中含有水蒸气,所以不能实现实验目的,用 NaOH 吸收 HCl、用浓硫酸干燥气体即可,故 C 不选;
- D. 要探究浓度对化学反应速率影响实验时,应该只有浓度不同其它条件必须完全相同,该实验没有明确说明温度是否相同,并且实验现象也不明显,所以不能实现实验目的,故 D 不选,故选: B。

【点评】本题考查化学实验评价,涉及溶液配制、性质检验、物质的分离提纯、化学反应速率影响因素探究等知识点,侧重考查学生实验操作、实验分析和判断能力,明确实验原理及物质性质是解本题关键,题目难度不大。

二、非选择题:每个试题考生必须作答。

8. (14 分)我国是世界上最早制得和使用金属锌的国家。一种以闪锌矿(ZnS,含有 SiO_2 和少量 FeS、CdS、PbS 杂质)为原料制备金属锌的流程如图所示:

相关金属离子 $[c_0(M^{n+})=0.1 \text{mol} \cdot L^{-1}]$ 形成氢氧化物沉淀的 pH 范围如下:

金属离子	Fe ³⁺	Fe ²⁺	Zn ²⁺	Cd ²⁺
------	------------------	------------------	------------------	------------------

开始沉淀的 pH	1.5	6.3	6.2	7.4
沉淀完全的 pH	2.8	8.3	8.2	9.4

回答下列问题:

- (1) 焙烧过程中主要反应的化学方程式为 $2ZnS+3O_2$ 高温 $2ZnO+2SO_2$ 。
- (2) 滤渣 1 的主要成分除 SiO_2 外还有<u>PbSO_4</u>; 氧化除杂工序中 ZnO 的作用是<u>调节溶液的</u> <u>pH 到 2.8 \square 6.2 之间,使 Fe^{3+} 完全沉淀</u>,若不通入氧气,其后果是<u>无法除去溶液中 Fe^{2+} </u>。
- (3) 溶液中的 Cd^{2+} 用锌粉除去,还原除杂工序中反应的离子方程式为 Cd^{2+} $Zn=Cd+Zn^{2+}$ 。
- (4) 电解硫酸锌溶液制备单质锌时,阴极的电极反应式为<u>Zn²++2e□=Zn</u>; 沉积锌后的电解液可返回 溶浸 工序继续使用。

【考点】U3: 制备实验方案的设计.

【分析】 焙烧过程中发生的反应有 2ZnS+3O₂—高温_2ZnO+2SO₂、4FeS+7O₂—高温_2Fe₂O₃+4SO₂、2PbS+3O₂—高温_2PbO+2SO₂、2CdS+3O₂—高温_2CdO+2SO₂,所以焙烧过程中生成的气体是 SO₂,然后加入稀硫酸酸浸,FeS(未焙烧)、ZnO、Fe₂O₃、PbO、CdO 和稀硫酸反应生成 Fe²⁺、Zn²⁺、Fe³⁺、PbSO₄、Cd²⁺,所以滤渣 1 为未反应的 SiO₂ 和生成的 PbSO₄;

- 氧化除杂时通入氧气,使 Fe $^{2+}$ 转化为 Fe $^{3+}$,加入 ZnO 和稀硫酸反应调节溶液的 pH 值,将 Fe $^{3+}$ 转化为 Fe $^{(OH)}$ 3 而除去 Fe $^{3+}$,滤渣 2 为生成的 Fe $^{(OH)}$ 3;然后向溶液中加入 Zn,Zn 和 Cd $^{2+}$ 发生氧化还原生成 Cd,然后过滤得到滤液,滤渣 3 为 Cd;将滤液电解得到 Zn;
- (1) 焙烧过程中 ZnS、FeS、CdS、PbS 都和氧气发生氧化还原反应, 但是 ZnS 的反应是主要反应;
- (2) 滤渣 1 的主要成分除 SiO₂ 外还有生成的硫酸铅, ZnO 能和酸反应生成盐和水, 从而改变溶液的 pH 值, 如果不通入氧气, 亚铁离子影响 Zn 的制备;
- (3) Cd²⁺和 Zn 发生氧化还原反应生成 Cd;
- (4) 电解硫酸锌溶液制备单质锌时,阴极上溶液中 Zn²⁺ 得电子生成 Zn; 沉积锌后的电解液中锌 离子浓度降低,可以通过返回溶浸工序继续使用。

2Fe₂O₃+4SO₂、2PbS+3O₂——2PbO+2SO₂、2CdS+3O₂——3—2CdO+2SO₂,所以焙烧过程中 生成的气体是 SO₂;然后加入稀硫酸酸浸,FeS(未焙烧)、ZnO、Fe₂O₃、PbO、CdO 和稀硫 酸反应生成 Fe²⁺、Zn²⁺、Fe³⁺、PbSO₄、Cd²⁺,所以滤渣 1 为未反应的 SiO₂ 和生成的 PbSO₄;

- 氧化除杂时通入氧气,使 Fe^{2+} 转化为 Fe^{3+} ,加入 ZnO 和稀硫酸反应调节溶液的 pH 值,将 Fe^{3+} 转化为 Fe (OH) $_3$ 而除去 Fe^{3+} ,滤渣 2 为生成的 Fe (OH) $_3$; 然后向溶液中加入 Zn,Zn 和 Cd^{2+} 发生氧化还原生成 Cd,然后过滤得到滤液,滤渣 3 为 Cd;将滤液电解得到 Zn;
- (1) 焙烧过程中 ZnS、FeS、CdS、PbS 都和氧气发生氧化还原反应,但是 ZnS 的反应是主要反应,所以其主要方程式为 2ZnS+3O₂———2ZnO+2SO₂,

故答案为: 2ZnS+3O₂=高温_2ZnO+2SO₂;

(2) 滤渣 1 的主要成分除 SiO_2 外还有 PbO 和稀硫酸生成的沉淀 $PbSO_4$; ZnO 能和酸反应生成盐和水,从而改变溶液的 pH 值,使溶液的 pH 调节在 2.8 $\square 6.2$ 之间,从而 Fe^{3+} 将转化为沉淀除去 Fe^{3+} ; Fe^{2+} 、 Zn^{2+} 开始沉淀、完全沉淀的 pH 相近,如果不通入氧气, Fe^{2+} 不能完全除去而影响 Zn 的制备,

故答案为: PbSO₄; 调节溶液的 pH 到 $2.8\square 6.2$ 之间,使 Fe^{3+} 完全沉淀; 无法除去溶液中 Fe^{2+} ;

(3) Cd^{2+} 和 Zn 发生氧化还原反应生成 Cd,离子方程式为 $Cd^{2+}+Zn=Cd+Zn^{2+}$,

故答案为: Cd²⁺⁺Zn=Cd+Zn²⁺;

(4) 电解硫酸锌溶液制备单质锌时,阴极上溶液中 Zn²⁺ 得电子生成 Zn, 电极反应式为 Zn²⁺+2e□=Zn; 沉积锌后的电解液中锌离子浓度降低,可以通过返回溶浸工序继续使用,从而减少资源浪费,

故答案为: Zn²⁺+2e□=Zn; 溶浸。

- 【点评】本题考查物质制备,综合性较强,涉及物质分离提纯、电解原理、氧化还原反应、方程 式的书写等知识点,明确流程图中各物质的性质、发生的反应及物质分离提纯方法是解本题关 键,知道每一步的目的及原理,题目难度中等。
- 9. (14 分) $CH_4\square CO_2$ 的催化重整不仅可以得到合成气(CO 和 H_2),还对温室气体的减排具有重要意义。回答下列问题:
- (1) CH₄□CO₂催化重整反应为: CH₄ (g) +CO₂ (g) =2CO (g) +2H₂ (g)。

已知: C (s) +2H₂ (g) =CH₄ (g) △H=□75kJ•mol□1

 $C(s) +O_2(g) =CO_2(g) \triangle H = \square 394kJ \cdot mol^{\square 1}$

$$C (s) + \frac{1}{2} O_2 (g) = CO (g) \triangle H = \Box 111kJ \cdot mol^{\Box 1}$$

该催化重整反应的 \triangle H=__+247__kJ•mol $^{\square}$ 1. 有利于提高 CH₄平衡转化率的条件是__A__ (填标号)。

- A. 高温低压
- B. 低温高压
- C. 高温高压
- D. 低温低压

某温度下,在体积为 2L 的容器中加入 $2mol\ CH_4$ 、 $1mol\ CO_2$ 以及催化剂进行重整反应,达到平衡时 CO_2 的转化率是 50%,其平衡常数为 $\frac{1}{3}$ $mol\ ^2$ \bullet $L^{\square 2}$ 。

(2) 反中催化剂活性会因积碳反应而降低,同时存在的消碳反应则使积碳碳量减少。相关数据如下表:

		积碳反应	消碳反应
	CH ₄ (g) —C	CO ₂ (g) +C	
		(s) +2H ₂	(s) =2CO
		(g)	(g)
△H/ (kJ•mol®	△H/ (kJ•mol³¹)		
活化能/(kJ•mol ^{®1}) 催化剂 X		33	91
	催化剂 Y	43	72

- ①由上表判断,催化剂 X_ 劣于 Y (填"优于或劣于"),理由是 催化剂 X 较催化剂 Y,积碳 反应时,活化能低,反应速率快,消碳反应时,活化能高,反应速率慢,综合考虑,催化剂 X 较催化剂 Y 更利于积碳反应,不利于消碳反应,会降低催化剂活性 。在反应进料气组成,压强及反应时间相同的情况下,某催化剂表面的积碳量随温度的变化关系如右图所示。升高温度时,下列关于积碳反应,消碳反应的平衡常数 (K) 和速率 (v) 的叙述正确的是 AD (填标号)。
- A. K_积、K_消均增加
- $B.V_{积减小、V_{消</sub>增加$
- C. K 积减小、K 消增加
- D. V 消增加的倍数比 V 积增加的倍数大

②在一定温度下,测得某催化剂上沉积碳的生成速率方程为 $v=k \cdot p$ (CH_4) \bullet [p (CO_2)] $\Box 0.5$ (k 为速率常数)。在 p (CH_4) 一定时,不同 p (CO_2) 下积碳量随时间的变化趋势如图所示,则 P_a (CO_2) 、 P_b (CO_2) 、 P_c (CO_2) 从大到小的顺序为 $\underline{p_c}$ ($\underline{CO_2}$) > $\underline{p_b}$ ($\underline{CO_2}$) > $\underline{p_a}$ ($\underline{CO_2}$) 。

【考点】CP: 化学平衡的计算.

【专题】51E: 化学平衡专题.

【分析】 (1) ①C (s) $+2H_2$ (g) — CH_4 (g) $\triangle H = \Box 75kJ \cdot mol^{\Box 1}$

 \bigcirc C (s) +O₂ (g) =CO₂ (g) \triangle H= \square 394kJ•mol \square 1

 $(3) C (s) + \frac{1}{2}O_2 (g) = CO (g) \triangle H = \square 111kJ \cdot mol^{\square 1}$

将方程式 2③ \square 1 \square 2得 CH₄ (g) +CO₂ (g) =2CO (g) +2H₂ (g) , \triangle H 进行相应的改变;要提高 CH₄ 平衡转化率应该使平衡正向移动,但是不能通过增大甲烷浓度实现;

达到平衡时 CO_2 的转化率是 50%,根据方程式知,参加反应的 n $(CO_2) = n$ $(CH_4) = 1 mol \times 50\% = 0.5 mol$,生成的 n (CO) = n $(H_2) = 1 mol$,

该化学反应 CH₄ (g) +CO₂ (g) =2CO (g) +2H₂ (g),

开始(mol/L)1

0.5

0

0

化学平衡常数
$$K = \frac{c^2(CO) \cdot c^2(H_2)}{c(CH_4) \cdot c(CO_2)};$$

- (2)①消碳反应越容易发生,催化剂活性越好,消碳反应所需活化能越低,消碳反应越容易进行;
- A. 积碳反应和消碳反应的正反应都是吸热反应,升高温度平衡向吸热方向移动;
- B. 升高温度所有的化学反应速率都增大;
- C. 积碳反应和消碳反应的正反应都是吸热反应,升高温度平衡向吸热方向移动;
- D. 积碳量达到最大值以后再升高温度积碳量降低, V_{ij} 增加的倍数比 V_{ij} 增加的倍数大;
- ②在一定温度下,相同时间内,沉积的碳越多,则沉积碳生成速率越快,根据 v=k*p (CH_4) \bullet [p (CO_2)] \Box 0.5 (k 为速率常数)知,p (CH_4)一定时,沉积碳生成速率与二氧化碳压强成反比。

【解答】解: (1) ①C(s) $+2H_2$ (g) — CH_4 (g) $\triangle H = \Box 75kJ \cdot mol^{\Box 1}$

 $\bigcirc C (s) +O_2 (g) =CO_2 (g) \triangle H = \square 394kJ \cdot mol^{\square 1}$

$$3C (s) + \frac{1}{2}O_2 (g) = CO (g) \triangle H = \square 111kJ \cdot mol^{\square 1}$$

将方程式 2③□①□②得 CH_4 (g) $+CO_2$ (g) =2CO (g) $+2H_2$ (g) , $\triangle H=2$ (□111kJ•mol□¹) □ (□75kJ•mol□¹) □ (□394kJ•mol□¹) =+247kJ/mol;

要提高 CH₄ 平衡转化率应该使平衡正向移动,但是不能通过增大甲烷浓度实现,该反应的正反应 是一个反应前后气体体积增加的吸热反应,升高温度、减小压强能使平衡正向移动,增大甲烷 转化率,

达到平衡时 CO_2 的转化率是 50%,根据方程式知,参加反应的 n (CO_2) =n (CH_4) =1mol× 50%=0.5mol,生成的 n (CO) =n (H_2) =1mol,

该化学反应 CH₄ (g) +CO₂ (g) =2CO (g) +2H₂ (g),

化学平衡常数
$$K = \frac{c^2(CO) \cdot c^2(H_2)}{c(CH_4) \cdot c(CO_2)} = \frac{0.5^2 \times 0.5^2}{0.75 \times 0.25} = \frac{1}{3};$$

故答案为: +247; 高温低压; $\frac{1}{3}$;

- (2)①根据表中数据知,催化剂 X 较催化剂 Y,积碳反应时,活化能低,反应速率快,消碳反应时,活化能高,反应速率慢,综合考虑,催化剂 X 较催化剂 Y 更利于积碳反应,不利于消碳反应,会降低催化剂活性;
- A. 积碳反应和消碳反应的正反应都是吸热反应,升高温度平衡正向移动,则 $K_{\mathcal{H}}$ 、 $K_{\mathring{\mathcal{H}}}$ 均增加,故正确;
- B. 升高温度化学反应速率都增大, V_积增加、V_消增加, 故错误;
- C. 积碳反应和消碳反应的正反应都是吸热反应,升高温度平衡正向移动,则 $K_{\mathcal{H}}$ 、 $K_{\mathring{\mathcal{H}}}$ 均增加,故错误;
- D. 积碳量达到最大值以后再升高温度积碳量降低, V_{ij} 增加的倍数比 V_{ij} 增加的倍数大,故正确:

所以选 AD;

故答案为: 劣于;催化剂 X 较催化剂 Y,积碳反应时,活化能低,反应速率快,消碳反应时,活化能高,反应速率慢,综合考虑,催化剂 X 较催化剂 Y 更利于积碳反应,不利于消碳反应,会降低催化剂活性;

AD;

②在一定温度下,相同时间内,沉积的碳越多,则沉积碳生成速率越快,根据 $v=k \cdot p$ (CH_4) \bullet [p (CO_2)] $^{0.5}$ (k 为速率常数)知,p (CH_4)一定时,沉积碳生成速率与二氧化碳压强成反比,根据图知,积碳量 a>b>c,则 p_c (CO_2) $>p_b$ (CO_2) $>p_a$ (CO_2),

故答案为: $p_c(CO_2) > p_b(CO_2) > p_a(CO_2)$ 。

- 【点评】本题考查化学反应原理,涉及盖斯定律、化学平衡计算、外界条件对化学平衡影响等知识点,侧重考查学生分析、推断及图象分析能力,正确理解题给信息及出题人目的是解本题关键,难点是(2)题分析解答。
- 10. (15 分) K_3 [Fe(C_2O_4) $_3$]• $_3H_2O$ (三草酸合铁酸钾)为亮绿色晶体,可用于晒制蓝图,回答下列问题:

- (2) 某小组为探究三草酸合铁酸钾的热分解产物,按如图所示装置进行实验。

- ①通入氮气的目的是<u>排出装置中原有空气,避免 O_2 和 CO_2 干扰实验,同时用 N_2 把装置 A 、 E 中反应生成的气体排出进行后续检验。</u>
- ②实验中观察到装置 B、F 中澄清石灰水均变浑浊,装置 E 中固体变为红色,由此判断热分解产物中一定含有 $_{\rm CO}$ 、 $_{\rm CO_2}$ 。
- ③为防止倒吸,停止实验时应进行的操作是<u>先关闭 A、E 中的酒精灯,冷却后再停止通入 N_{2} 。</u>
- ④样品完全分解后,装置 A 中的残留物含有 FeO 和 Fe₂O₃,检验 Fe₂O₃存在的方法是: <u>取少量 装置 A 中残留物放入试管中,加入稀硫酸溶解,再滴加几滴 KSCN 溶液,若观察到溶液变 红,则证明 A 中残留物中含 Fe₂O₃。</u>
- (3) 测定三草酸合铁酸钾中铁的含量。
- ①称量 mg 样品于锥形瓶中,溶解后加稀 H₂SO₄酸化,用 cmol•L□¹KMnO₄溶液滴定至终点。滴定 终点的现象是<u>当滴入最后一滴滴入后,溶液变成浅红色,且半分钟内不褪色</u>。
- ②向上述溶液中加入过量锌粉至反应完全后,过滤、洗涤,将滤液及洗涤液全部收集到锥形瓶中。加稀 H_2SO_4 酸化,用 $cmol \bullet L^{\Box 1}KMnO_4$ 溶液滴定至终点,消耗 $KMnO_4$ 溶液 VmL. 该晶体中铁的质量分数的表达式为 $_{\underline{m} \times 1000}$ $\underline{5 \times cV \times 56}$ $\underline{\times 100\% oldows } \underline{7 cV} \times 100\%$ $\underline{(oldows 28 cV)}$ $\underline{(ol$

【考点】5C: 物质的量浓度的相关计算: RD: 探究物质的组成或测量物质的含量.

【分析】(1)显色过程是 FeC_2O_4 中的亚铁离子与 $[Fe(CN)_6]^{3\Box}$ 结合成蓝色沉淀,据此写出该后

- 续方程式; (2)①反应开始前通氮气,可排净装置中空气,以免氧气、二氧化碳对实验干扰,同时把装置 A、E 中反应生成的气体排出;
- ②B 中澄清石灰水变浑浊证明含有二氧化碳, E 中固体变红、F 中澄清石灰水变浑浊证明分解产物中有一氧化碳;
- ③为避免倒吸,需先关闭反应装置中的酒精灯,冷却后再停止通入 N₂;
- ④检验 Fe₂O₃, 需将 Fe₂O₃转化成铁离子,再用硫氰化钾进行检验;
- (3) ①用 KMnO₄溶液滴定亚铁离子,滴定终点溶液变成浅红色;
- 【解答】解: (1) 显色过程是 FeC_2O_4 中的亚铁离子与[$Fe(CN)_6$] $^{3\square}$ 结合成蓝色沉淀的反应,该反应的化学方程式为: $3FeC_2O_4+2K_3[Fe(CN)_6]=Fe_3[Fe(CN)_6]_2\downarrow+3K_2C_2O_4$,
- 故答案为: $3\text{FeC}_2\text{O}_4+2\text{K}_3$ [Fe(CN) $_6$]=Fe $_3$ [Fe(CN) $_6$] $_2\downarrow+3\text{K}_2\text{C}_2\text{O}_4$; (2)①在反应开始前通入 N₂,可排净装置中的空气,以免 O₂和 CO₂对实验干扰,同时用 N₂把装置 A、E 中反应生成的 气体排出进行后续检验,
- 故答案为:排出装置中原有空气,避免 O_2 和 CO_2 干扰实验,同时用 N_2 把装置A、E中反应生成的气体排出进行后续检验;
- ②B 中澄清石灰水变浑浊证明分解产物中一定含有 CO_2 , E 中固体变红、F 中澄清石灰水变浑浊证明分解产物中有还原性气体 CO,

故答案为: CO; CO2;

- ③为防止倒吸,需要先关闭反应装置中的酒精灯,冷却至常温过程中需保持一直通入 N_2 ,
- 故答案为: 先关闭 $A \times E$ 中的酒精灯,冷却后再停止通入 N_2 ;
- ④检验固体中是否存在 Fe_2O_3 ,需将 Fe_2O_3 转化成铁离子,再用硫氰化钾进行检验,操作方法为:取少量装置 A 中残留物放入试管中,加入稀硫酸溶解,再滴加几滴 KSCN 溶液,若观察到溶液变红,则证明 A 中残留物中含 Fe_2O_3 ,
- 故答案为:取少量装置 A 中残留物放入试管中,加入稀硫酸溶解,再滴加几滴 KSCN 溶液,若观察到溶液变红,则证明 A 中残留物中含 Fe_2O_3 ;

(3) ①用 KMnO₄溶液滴定亚铁离子,滴定终点溶液变成浅红色,则滴定终点为: 当滴入最后一滴滴入后,溶液变成浅红色,且半分钟内不褪色,

故答案为: 当滴入最后一滴滴入后,溶液变成浅红色,且半分钟内不褪色;

根据化合价升降相等可得反应关系式: 5Fe²⁺~MnO₄□,

则 n (Fe²⁺) =5n (MnO₄□) =5×
$$\frac{\text{cV}}{1000}$$
mol, m (Fe²⁺) =56g/mol×5× $\frac{\text{cV}}{1000}$ mol,

所以铁的质量分数=
$$\frac{5 \times \frac{\text{cV}}{1000} \text{mol} \times 56 \text{g/mol}}{\text{mg}} \times 100\% = \frac{5 \times \text{cV} \times 56}{\text{m} \times 1000} \times 100\%$$
或 $\frac{7 \text{cV}}{25 \text{m}} \times 100\%$ (或 $\frac{28 \text{cV}}{\text{m}}$)

故答案为:
$$\frac{5 \times cV \times 56}{m \times 1000} \times 100\%$$
或 $\frac{7 cV}{25m} \times 100\%$ (或 $\frac{28 cV}{m}\%$)

【点评】本题考查探究物质组成、测量物质含量,题目难度较大,明确实验原理、实验目的为解答关键,注意掌握常见元素及其化合物性质,试题知识点较多、综合性较强,充分考查了学生的分析、理解能力及综合应用能力。

「化学一选修 3: 物质结构与性质」(15分)

11. (15分) 硫及其化合物有许多用途。相关物质的物理常数如表所示:

	H ₂ S	S ₈	FeS ₂	SO ₂	SO₃	H ₂ SO ₄
熔点/℃	285.5	115.2	>600(分	? 75.5	16.8	10.3
沸点/℃	260.3	444.6	解)	210.0	45.0	337.0

回答下列问题:

%)),

- (2) 根据价层电子对互斥理论, H_2S , SO_2 , SO_3 的气态分子中,中心原子价层电子对数不同于其他分子的是 H_2S 。
- (3) 图 (a) 为 S_8 的结构,其熔点和沸点要比二氧化硫的熔点和沸点高很多,主要原因为 S_8 与

 SO_2 都是分子晶体, S_8 相对分子质量比 SO_2 大, S_8 的分子间作用力大于 SO_2 ,所以熔沸点 S_8 SO_2 。

- (4) 气态三氧化硫以单分子形式存在,其分子的立体构型为<u>平面三角</u>形,其中共价键的类型有<u>2</u>种;固体三氧化硫中存在如图(b) 所示的三聚分子。该分子中 S 原子的杂化轨道类型为 sp³。
- (5) FeS_2 晶体的晶胞如图 (c) 所示,晶胞边长为 anm, FeS_2 相对式量为 M、阿伏加德罗常数的

值为 N_A ,其晶体密度的计算表达式为 $= \frac{\frac{M}{N_A} \times 4}{(a \times 10^{-7})^3} = g^{\bullet} cm^{\square 3}$;晶胞中 Fe^{2+} 位于 $S_2^{2\square}$ 所形成的 八面体的体心,该正八面体的边长为 $= \frac{\sqrt{2}}{2} = nm$ 。

【考点】86:原子核外电子排布;98:判断简单分子或离子的构型;9I:晶胞的计算;9S:原子轨道杂化方式及杂化类型判断.

【专题】51D: 化学键与晶体结构.

【分析】(1)基态 Fe 原子价层电子为其 3d、4s 能级上电子;

基态 S 原子电子占据的能级有 1s、2s、2p、3s、3p,最高能级为 3p,其电子云轮廓图为哑铃形;

- (2) H_2S 中 S 原子价层电子对个数= $2+\frac{6-2\times 1}{2}$ =4、 SO_2 中 S 原子价层电子对个数= $2+\frac{6-2\times 2}{2}$ =3、 SO_3 中 S 原子价层电子对个数= $3+\frac{6-3\times 2}{2}$ =3;
- (3) S_8 、 SO_2 都分子晶体,分子晶体熔沸点与其分子间作用力成正比,分子间作用力与其相对分子质量成正比:
- (4) SO_3 中 S 原子价层电子对个数= $3+\frac{6-3\times 2}{2}$ =3,且不含孤电子对,根据价层电子对互斥理论判

断其空间构型;该分子中 S□O 原子之间存在共价键;该分子中每个 S 原子价层电子对个数都是 4,根据价层电子对互斥理论判断 S 原子杂化类型;

(5) 晶胞边长为 anm=a×10 $^{-7}$ cm,晶胞体积=(a×10 $^{-7}$ cm)³,该晶胞中 Fe²⁺个数=1+12× $\frac{1}{4}$ =4, S_2^{2-} 个数=8× $\frac{1}{8}$ +6× $\frac{1}{2}$ =4,其晶体密度= $\frac{m}{V}$; 晶胞中 Fe²⁺位于 S_2^{2-} 所形成的八面体的体心,该正八面体的边长为每个面对角线长度的一半。

【解答】解: (1) 基态 Fe 原子的核外价电子排布式为[Ar]3d⁶4S²,基态 Fe 原子价层电子为其

3d、4s 能级上电子,则基态 Fe 原子的核外价电子排布图为 3d 4s;

基态 S 原子电子占据的能级有 1s、2s、2p、3s、3p,最高能级为 3p,其电子云轮廓图为哑铃形,

(2) H_2S 中 S 原子价层电子对个数= $2+\frac{6-2\times 1}{2}$ =4、 SO_2 中 S 原子价层电子对个数= $2+\frac{6-2\times 2}{2}$ =3、 SO_3 中 S 原子价层电子对个数= $3+\frac{6-3\times 2}{2}$ =3,中心原子价层电子对数不同于其他分子的是 H_2S ,

故答案为: H₂S;

- (3) S_8 、 SO_2 都分子晶体,分子晶体熔沸点与其分子间作用力成正比,分子间作用力与其相对分子质量成正比, S_8 相对分子质量大于 SO_2 ,所以分子间作用力 S_8 大于 SO_2 ,导致熔沸点 S_8 大于 SO_2 ,
- 故答案为: S_8 与 SO_2 都是分子晶体, S_8 相对分子质量比 SO_2 大, S_8 的分子间作用力大于 SO_2 ,所以熔沸点 S_8 > SO_2 ;
- (4) SO_3 中 S 原子价层电子对个数= $3+\frac{6-3\times 2}{2}$ =3,且不含孤电子对,根据价层电子对互斥理论判 断其空间构型为平面正三角形;该分子中 S \square O 原子之间存在 σ 和离域大 π 键,所以共价键类 型 2 种;该分子中每个 S 原子价层电子对个数都是 4,根据价层电子对互斥理论判断 S 原子杂 化类型为 sp^3 ,

故答案为: 平面正三角; 2; sp³;

(5) 晶胞边长为 anm=a×10 $^{\square 7}$ cm,晶胞体积=(a×10 $^{\square 7}$ cm)³,该晶胞中 Fe²⁺个数=1+12× $\frac{1}{4}$ =4,

 $S_2^{2\Box}$ 个数=8× $\frac{1}{8}$ +6× $\frac{1}{2}$ =4,其晶体密度= $\frac{m}{V}$ = $\frac{\frac{M}{N_A}\times 4}{(a\times 1\,0^{-7})^3}$ g/cm³;晶胞中 Fe^{2+} 位于 $S_2^{2\Box}$ 所形成的八面体的体心,该正八面体的边长为每个面对角线长度的一半= $\frac{1}{2}$ × $\sqrt{2}$ anm= $\frac{\sqrt{2}}{2}$ anm,

故答案为:
$$\frac{\frac{\mathbb{N}}{\mathbb{N}_{\mathbb{A}}} \times 4}{(a \times 10^{-7})^3}$$
; $\frac{\sqrt{2}}{2}$ a。

【点评】本题考查物质结构和性质,涉及晶胞计算、微粒空间构型判断、原子核外电子排布等知识点,侧重考查学生分析判断、公式的正确运用及空间想像能力,难点是晶胞计算,注意均摊分在晶胞中的灵活运用及 nm 与 cn 之间的换算。

[化学一选修 5: 有机化学基础] (15 分)

12. 以葡萄糖为原料制得的山梨醇(A)和异山梨醇(B)都是重要的生物质转化平台化合物。E 是一种治疗心绞痛的药物。由葡萄糖为原料合成 E 的路线如下:

葡萄糖
$$\frac{\text{催化剂}}{\text{H}_2}$$
 A $\frac{\text{H}_2\text{SO}_4\Delta}{-2\text{H}_2\text{O}}$ $\frac{\text{B}}{\text{OH}}$ $\frac{\text{CH}_3\text{COOH}}{\text{催化剂}}$ $\frac{\text{C}}{\text{(C}_8\text{H}_{12}\text{O}_5)}$ $\frac{\text{D}}{\text{NaOH}}$ $\frac{\text{NaOH}}{\text{H}_2\text{O}}$ $\frac{\text{E}}{\text{ONO}_2}$ $\frac{\text{ONO}_2}{\text{HO}}$

回答下列问题:

- (1) 葡萄糖的分子式为 $C_6H_{12}O_6$ 。
- (2) A 中含有的官能团的名称为 羟基。
- (3) 由B到C的反应类型为 酯化反应或取代反应 。

$$ONO_2$$
 ONO_2
 $ONO_$

- (5) 由 D 到 E 的反应方程式为
- (6) F 是 B 的同分异构体,7.30g 的 F 与足量饱和碳酸氢钠反应可释放出 2.24L 二氧化碳(标准 状况),F 的可能结构共有__9__种(不考虑立体异构);其中核磁共振氢谱为三组峰,峰面积

【考点】HC:有机物的合成.

【专题】534: 有机物的化学性质及推断.

【分析】葡萄糖和氢气发生加成反应生成 A 为 $HOCH_2$ (CHOH) $_4CH_2OH$, A 发生消去反应生成 B, B 和乙酸反应生成 C, 根据 C 分子式知,B 中一个羟基发生酯化反应,C 结构简式为

,根据 D 分子式知,生成 D 的反应为取代反应,D 发生水解反应生成 E,

根据E结构简式知,D为

,结合题目分析解答。

【解答】解:葡萄糖和氢气发生加成反应生成 A 为 $HOCH_2$ (CHOH) $_4CH_2OH$, A 发生消去反应 生成 B, B 和乙酸反应生成 C, 根据 C 分子式知,B 中一个羟基发生酯化反应,C 结构简式为

,根据 D 分子式知,生成 D 的反应为取代反应,D 发生水解反应生成 E,

根据E结构简式知,D为

(1) 葡萄糖的分子式为 $C_6H_{12}O_6$,

故答案为: C₆H₁₂O₆;

(2) A 为 A 为 $HOCH_2$ (CHOH) $_4CH_2OH$, A 中含有的官能团的名称为羟基,故答案为: 羟基;

(3) 由B到C的反应类型为取代反应或酯化反应,

故答案为:取代反应或酯化反应;

(4) C 的结构简式为

故答案为:

(5) D为 H₃CCC

, D发生水解反应生成 E, 由 D到 E的反应方程式为

$$ONO_2$$
 ONO_2
 $ONO_$

故答案为:

(6) F 是 B 的同分异构体,B 的相对分子质量为 146, 7.30g 的 F 物质的量= $\frac{7.30g}{146g/mol}$ =0.05mol,

生成 n (CO₂) = 2.24L = 0.1mol, 说明该分子中含有 2个□COOH, B的分子式为 $C_6H_{10}O_4$,B的不饱和度= $\frac{6\times 2+2-10}{2}$ =2,2个 \Box COOH的不饱和度是 2,说明 F中不含碳碳不饱 和键和环,

如果剩余碳链结构为 C□C□C□C, 羧基排放方式有 6 种;

C-Ç-C 如果剩余碳链结构为 C ,羧基排放方式有 3 种, 所以符合条件的同分异构体有9种;

其中核磁共振氢谱为三组峰,峰面积比为 3: 1: 1 的结构简式为 HOOC COOH

【点评】本题考查有机物推断,侧重考查学生分析、推断能力,涉及物质推断、官能团判断、反 应类型判断、同分异构体种类判断等知识点,明确有机物官能团及其性质关系是解本题关键, 难点是同分异构体种类判断。