EP Gruppe 8

29. April 2014

- Aufgabe 1
 - a)
 - Aufsteigende Spannung
 - Absteigende Spannung
 - b
 - NPLC=1,n=3000
 - NPLC=1,n=3000, Power-Supply lief vor Messbeginn
- 2 Aufgabe 2
 - Schaltung 1
 - Widerstände
 - Stromstärken an den Widerständen
 - Leistung an den Widerständen
 - Schaltung 2
 - Schaltung 3
- Aufgabe 3
 - Widerstand $1k\Omega$
 - Weiße LED
 - Silizium Diode

Innenwiderstand

U in mV	I in mA	R in $10^2\Omega$	
50	0.25	2.0000000000000000	
100	0.502	1.992031872509960	
150	0.753	1.992031872509960	
200	1.005	1.990049751243781	
220	1.107	1.987353206865402	
240	99.58	0.024101225145612	
260	107.84	0.024109792284866	
280	116.14	0.024108834165662	
300	799.3	0.003753284123608	
350	931.8	0.003756170852114	
400	1063.6	0.003760812335464	
500	1324.2	0.003775864673010	
750	1955.6	0.003835140110452	
1000	2498.1	0.004003042312157	

000000

Was fällt auf?

• Klicken im Messgerät an gleichen Stellen, wie Änderung des **Innenwiderstands**

Innenwiderstand des Messgeräts ändert sich, um größere Messbereiche abdecken zu können.

Ein großer Strom fliest nur dann, wenn der Widerstand des Schaltkreises gering ist. Ein großer Messwiderstand hätte daher einen zu großen Anteil am Gesamtwiderstand.

Damit auch bei kleinen Strömen eine messbare Spannung abfällt, muss der Shunt-Widerstand entsprechend vergrößert werden.

Aufgabe 1

0000000

Ь

0000000

Alle Werte sind in Ω angegeben. Für die berechneten Widerstände wurden die an den jeweiligen Stromstärken verwendet.

-	Erwarteter Widerstand	Berechneter "	Gemessener "
R _{ges}	97916.7	100000	96586.7
R_1	4700000	4652790.7	4640000
R_2	100000	100035	98640

Erhält man über den folgenden Ansatz:

$$U = const. = I_1 \cdot R_1 = I_2 \cdot R_2 \tag{1}$$

$$\Rightarrow \frac{I_1}{I_2} = \frac{R_2}{R_1} = \frac{1k\Omega}{4.7M\Omega} = \frac{1}{47}$$
 (2)

$$I_{\text{ges}} = I_1 + I_2 = \frac{I_2}{47} + I_2 \tag{3}$$

$$\Rightarrow I_2 = \frac{47}{48} \cdot I_{ges} = \frac{47}{48} \cdot 0.2 mA = 1.9583 e - 4 \tag{4}$$

$$I_1 = I_{ges} - I_2 = 4.167 \mu A \tag{5}$$

Werte stimmen his auf kleine Ungenauigkeiten mit den gemessenen

 $R_{ges} = 500\Omega$

Mit $U_{ges,genmessen} = 0.843V$ und $I_{ges,gemessen} = 1.7mA$ ergibt sich:

$$R_{ges} = \frac{U_{ges}}{I_{ges}} = 495.9\Omega \tag{8}$$

$$R_{1,gem} = 989\Omega \tag{9}$$

$$R_{2,gem} = 992\Omega \tag{10}$$

$$\Rightarrow R_{\text{ges,gem}} = \frac{R_{1,\text{gem}} \cdot R_{2,\text{gem}}}{R_{1,\text{gem}} + R_{2,\text{gem}}} = 495.25\Omega \tag{11}$$

2.14µA

 $R_{ges}=9.4M\Omega$, $I_{ges,gem}=2.14\mu$ A, $U_{ges,gem}=2.006V$ Es ergibt sich:

$$R_1 = \frac{U_1}{I} = 3802336.5\Omega \tag{12}$$

$$R_2 = 3779906.5\Omega \tag{13}$$

Gemessene Widerstände sind zu klein, da der tatsächliche Widerstand des Stromkreises im Verhältnis zum Innenwiderstand des DMM zu groß ist, d.h. es fällt zu viel Spannung am DMM ab. Mit dem Modus "HI-Z" wird der Innenwiderstand auf $10~\text{G}\Omega$ erhöht und es ergibt sich:

$$R_1^{(HI-Z)} = \frac{U_1^{(HI-Z)}}{I} = \frac{10.033V}{I} = 4688317.8\Omega$$
 (14)

$$R_2^{(HI-Z)} = \frac{9.937 \, V}{I} = 4660280\Omega \tag{15}$$

Widerstand $1k\Omega$

Widerstand $1k\Omega$

Bei höheren Frequenzen bildet Sich eine Elipse. Hier der $1k\Omega$

Der Effekt, der nicht linearen Kennlinie bei einem einfachen Widerstand lässt sich durch die Verbindung von Funktionsgenerator und Oszilloskop über die Erde erklären.

Die LED weist eine Durchlassspannung von 2.4V auf

Die Siliziumdiode weißt eine Duchlassspannung von 0.7 V auf

Leuchtdiode

Amplitude: $U_0 = 2.35625V$ Frequenz: f = 59.172kHz

Offset: $U_{off} \approx 0.1V$ Phase: $U(t = 0) \approx 0.09V$

Aufgabe 1

Amplitude: $U_0 = 2.35625V$ Frequenz: f = 59.172kHz

Offset: $U_{off} \approx 0.1V$

Phase: $U(t = 0) \approx 0.09V$

Aufgabe 1

Im Virtuellen Labor wurde festgestellt, dass einige Geräte zu Störungen in Form von scharfen Peaks im Spektrum führten.

Aufgabe 1

Virtuelles Labor

Die im virtellen Labor simulierten Störungen des Frequenzgenerators konnten auch in einer Messung des Einflusses des Funktionsgenerators nachgewiesen werden.

Selbst bei Verwendung eines Koaxialkabels konnte ein Peak bei 50*Hz* festgestellt werden.

