PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
1. (a)	$s = ut + \frac{1}{2}at^2$: $50 = 5 \times 4 + \frac{1}{2} \times a \times 4^2$	M1 A1
	$\Rightarrow 30 = 8a \Rightarrow a = 3.75 \text{ m s}^{-1}$	A1 (3)
(b)	$30^2 = 5^2 + 2 \times 3.75 \times s$	M1 A1 ft
	$\Rightarrow s = 116\frac{2}{3} \mathrm{m}$	A1 (3)
		(6 marks)
2.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 A1 (3) M1 A1 (one) M1 A1 (both) (4)
		(7 marks)
3. (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$M(C)$: $16 \times 30 = w \times 20 + 5 \times 70$ (3 terms)	M1 A1
(b)	$\Rightarrow w = 6.5 \text{ N}$ $\longleftrightarrow d \longrightarrow D$ $\downarrow \qquad \qquad \downarrow$ $3.5 \qquad 6.5 \qquad 5$	A1 (3)
	M(D): 3.5d + 6.5(d - 50) = 5(100 - d)	M1 A2ft (-1 eeoo)
	$\Rightarrow d = 55 \text{ cm}$	A1 (4)
(c)	Tension equal along string, i.e. tensions = weights throughout or no contributions from strings in moments equation	B1 (1) (8 marks)

(ft = follow through mark; -1eeoo = minus one mark for each error or omission)

EDEXCEL MECHANICS M1 (6677) – JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme	Mark	S
4.	(a)	$F = \frac{2}{5}R$	B1	
		$R(\uparrow): R\cos 30^{\circ} - F\cos 60^{\circ} = 6g$	M1 A1	
		$R^{\frac{\sqrt{3}}{2}} - \frac{2}{5}R - \frac{1}{2} = 6g$		
		F = 88.3 N (or 88 N)	A1	(4)
	(<i>b</i>)	$R(\leftarrow)$: $P = R \cos 60^{\circ} + F \cos 30^{\circ}$	M1 A1	
		= 74.7 N (or 75 N)	A1	(3)
	(c)	R' Component of weight $(\angle) = 6g \cos 60^{\circ}$		
		F'	D1	
		= 29.4 N	B1	
		$R' = 6g \cos 30^{\circ} = 50.9 \text{ N}$	M1 A1	
		$F_{\text{max}} = 0.4 R' = 20.36 N$	M1	
		Since $29.4 > 20.36$, the box moves	A1 cso	(5)
			(12 ma	arks)
5.	(a)	$\tan \theta = \frac{1}{2} \implies \theta = 26.6^{\circ}$	M1 A1	
		angle required = 153.4°	A1	(3)
	(<i>b</i>)	$\mathbf{a} = \frac{1}{3} \left[(\mathbf{i} - 2\mathbf{j}) - (-5\mathbf{i} + 7\mathbf{j}) \right]$	M1	
		$= (2\mathbf{i} - 3\mathbf{j}) \text{ m s}^{-2}$	A1	(2)
	(c)	$\mathbf{F} = m\mathbf{a} = 4\mathbf{i} - 6\mathbf{j}$	M1	
		$ \mathbf{F} = \sqrt{(16 + 36)} = 7.21 \text{ N}$	M1 A1	(3)
	(<i>d</i>)	$\mathbf{v} = (-5 + 2t)\mathbf{i} + (7 - 3t)\mathbf{j}$	M1 A1ft	(2)
	(e)	v parallel to $\mathbf{i} + \mathbf{j} \Rightarrow \frac{-5 + 2t}{7 - 3t} = 1$	M1	
		$\Rightarrow t = 2.4 \text{ s}$	M1 A1	(3)
			(13 ma	arks)

(cso = correct solution only)

EDEXCEL MECHANICS M1 (6677) – JUNE 2002

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks
6. (a)	<i>v</i>	
	3 shape	B1
	(3, 2.5)	B1 (2)
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(b)	Area = $27 = \frac{1}{2} \times 1.5 \times 3 + 3T + \frac{1}{2} \times 2.5 \times 3$	M1 A1
	$\Rightarrow T = 7 \text{ s}$	A1 (3)
(c)	$\begin{array}{c} a \\ \uparrow \\ \text{shape } 0 \le t \le 8.5 \end{array}$	B1
	shape $t > 8.5$	B1
	$(-1.2) \xrightarrow{7} \qquad 2.5 t \qquad (2, 7 \text{ (ft)}, 2.5)$	B1 (3)
(<i>d</i>)	$\wedge T$ (System)	
	$T - 200g = 200 \times 2$	M1 A1
	$\Rightarrow T = 2360 \text{ N}$	A1 (3)
(e)	(Man)	
		M1 A1
	$\Rightarrow R = 688 \text{ N}$	A1 (3)
		(14 marks)

PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	3
7. (a)	$ \begin{array}{cccc} & & & & & & & & & & & & & & & & & & & $		
	$R = 2mg \implies F = 2\mu mg$	B1	
	$A: T-2\mu mg=2ma$	M1 A1	
	$B: mg \times \frac{1}{2} - T = ma$	M1 A1	
	Eliminating <i>T</i> : $3ma = \frac{1}{2}mg - 2\mu mg$	M1	
	$a = \frac{1}{6}(1 - 4\mu)g(\clubsuit)$	A1	(7)
(b)	$\mu = 0.2 \implies a = \frac{1}{30} g$	B1	
	when string breaks: $v^2 = 2 \times \frac{1}{30} g \times h = \frac{1}{15} gh$	M1 A1	
	A decelerating with deceleration $f \Rightarrow 2mf = 2\mu mg$		
	$f = \mu g = \frac{1}{5}g$	B1	
	Hence distance travelled during deceleration is given by $\frac{1}{15}gh = 2 \times \frac{1}{5}gd$	M1	
	$\Rightarrow d = \frac{1}{6}h$		
	$\therefore \text{ Total distance} = \frac{7}{6}h$	A1 cso	(6)
(c)	Any two from: weight of pulley; friction at pulley; friction on slope;	B1 B1	(2)
	weight of string; string extensible; 'spin' of particle	(15 ma	rks)

((♣) indicates final line is given on the paper; cso = correct solution only)