Codes and number systems

Introduction to Computer

Solution #1

• B: 2 blinks

• C: 3 blinks

• Z: 26 blinks

What's the problem?

• How are you? = 131 blinks

Coding

• Assume that you want to communicate with your friend with a flashlight in a night, what will you do?

light painting? What's the problem?

Solution #2: Morse code

A	•-	J		S	•••
В		K		T	-
С		L		U	
D		M		V	•••-
E	•	N		W	•
F		О		X	
G		P	••	Y	
Н	••••	Q		Z	
I	••	R			

Hello

Lookup

• It is easy to translate into Morse code than reverse. Why?

Lookup

••	I	i	N
	A		M

•					
•••	S		D		
••-	U		K		
•	R		G		
•	W		О		

••••	Н	 В
	V	 X
	F	 С
	Ü	 Y
•=••	L	 Z
	Ä	 Q
	P	 Ö
	J	 Ş

Number of Dots and Dashes	Number of Codes
1	2
2	4
3	8
4	16

number of codes = 2^{number of dots and dashes}

Lookup

Useful for checking the correctness/redundency

Braille

- 1 O O 4
- 2 0 0 5
- 3 0 0 6

Braille

::	: • : :	:•	: • : •	::	• •	: :	: •
• :	• • : :	• · : •	: •	•	• • • •	::	: • : •
•:	: • • :	••	• •	• •	• •	••	• •
•	••	• •	•••	• •	• •	• •	• •
:: •:	: • • :		: •	::	: • : :	: •	•
• :	• •	• •		• •	• •	• •	• • • •
::	• :	::	•	••	••	::	•
•	• •	• •		• •	• •	• •	•••

What's common in these codes?

• They are both binary codes.

Binary representations

- Electronic Implementation
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

Number systems

Number Systems

Decimal numbers

Binary numbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <13>

Number Systems

Decimal numbers

$$5374_{10} = 5?10^3 + 3?10^2 + 7?10^1 + 4?10^0$$
five three thousands hundreds tens ones

• Binary numbers

$$\frac{\frac{00}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}}{\frac{1}{8} + \frac{1}{8} + \frac{$$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <14>

Binary numbers

- Digits are 1 and 0

 (a binary digit is called a bit)
 - 1 = true
 - 0 = false
- MSB -most significant bit
- LSB -least significant bit
- Bit numbering:

MSB	LSB
1011001010011	100
15	0

• A bit string could have different interpretations

Powers of Two

- 2⁰=
- _
- •
- 22=
- Z³ –
- $2^4 =$
- $2^5 =$
- $2^6 =$
- 27 =

- $2^8 =$
- $2^9 =$
- $2^{10} =$
- 2¹¹=
- $2^{12} =$
- 2¹³ =
- 214 =
- $2^{15} =$

Powers of Two

•
$$2^0 = 1$$

•
$$2^8 = 256$$

•
$$2^1 = 2$$

•
$$2^9 = 512$$

•
$$2^2 = 4$$

•
$$2^{10} = 1024$$

•
$$2^3 = 8$$

•
$$2^{11} = 2048$$

•
$$24 = 16$$

•
$$2^{12} = 4096$$

•
$$2^5 = 32$$

•
$$2^{13} = 8192$$

•
$$2^6 = 64$$

•
$$2^6 = 64$$
 • $2^{14} = 16384$

•
$$2^7 = 128$$

•
$$2^{15} = 32768$$

• Handy to memorize up to 29

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <17>

Translating binary to decimal

Weighted positional notation shows how to calculate the decimal value of each binary bit:

$$\begin{array}{l} dec = (D_{n\text{-}I} \times 2^{n\text{-}1}) + (D_{n\text{-}2} \times 2^{n\text{-}2}) + ... + (D_I \times 2^1) + (D_\theta \times 2^0) \end{array}$$

D = binary digit

binary 00001001 = decimal 9:

$$(1 \times 2^3) + (1 \times 2^0) = 9$$

Unsigned binary integers

- Each digit (bit) is either 1 or 0
- Each bit represents a power of 2:

Table 1-3 Binary Bit Position Values.

Every binary number is a sum of powers of 2

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
20	1	28	256
21	2	2 ⁹	512
2^{2}	4	210	1024
2 ³	8	211	2048
24	16	212	4096
2 ⁵	32	213	8192
2 ⁶	64	214	16384
27	128	2 ¹⁵	32768

Translating unsigned decimal to binary

• Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value:

Division	Quotient	Remainder
37 / 2	18	1
18 / 2	9	0
9/2	4	1
4/2	2	0
2/2	1	0
1/2	0	1

$$37 = 100101$$

Number Conversion

- Decimal to binary conversion:
 - Convert 100112 to decimal
- Decimal to binary conversion:
 - Convert 47₁₀ to binary

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <21>

Number Conversion

• Decimal to binary conversion:

- Convert 10011₂ to decimal
- $-16\times1+8\times0+4\times0+2\times1+1\times1=19_{10}$

• Decimal to binary conversion:

- Convert 47₁₀ to binary
- $-32\times1+16\times0+8\times1+4\times1+2\times1+1\times1=101111_2$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <22>

ZERO TO ONE

Binary Values and Range

- N-digit decimal number
 - How many values?
 - Range?
 - Example: 3-digit decimal number:
- N-bit binary number
 - How many values?
 - Range:
 - Example: 3-digit binary number:

ROM ZERO

Binary Values and Range

- N-digit decimal number
 - How many values? 10%
 - Range? $[0, 10^{N} 1]$
 - Example: 3-digit decimal number:
 - 10³ = 1000 possible values
 - Range: [0, 999]
- N-bit binary number
 - How many values? 2^N
 - Range: [0, 2^N 1]
 - Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: [0, 7] = [000₂ to 111₂]

Integer storage sizes

Ctandard cizace

FROM ZERO

Table 1-4 Ranges of Unsigned Integers.

Storage Type	Range (low-high)	Powers of 2
Unsigned byte	0 to 255	0 to $(2^8 - 1)$
Unsigned word	0 to 65,535	0 to (2 ¹⁶ – 1)
Unsigned doubleword	0 to 4,294,967,295	0 to $(2^{32} - 1)$
Unsigned quadword	0 to 18,446,744,073,709,551,615	0 to $(2^{64} - 1)$

Practice: What is the largest unsigned integer that may be stored in 20 bits?

Bits, Bytes, Nibbles...

• Bits

most significant significant bit bit

Bytes & Nibbles

byte 10010110 nibble

• Bytes

most significant byte

significant bvte

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 < 26>

Large Powers of Two

≈ 1000 (1024) $2^{10} = 1 \text{ kilo}$

 $2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$

• $2^{30} = 1$ giga ≈ 1 billion (1,073,741,824)

Estimating Powers of Two

• What is the value of 2²⁴?

How many values can a 32-bit variable represent?

FROM ZERO TO

Estimating Powers of Two

• What is the value of 2²⁴?

 $-2^4 \times 2^{20}$ ≈ 16 million

 How many values can a 32-bit variable represent?

 $-2^2 \times 2^{30} \approx 4$ billion

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <29>

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivalent
0	0	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
A	10	
В	11	
С	12	
D	13	
Е	14	
F	15	

Large measurements

- Kilobyte (KB), 210 bytes
- Megabyte (MB), 2²⁰ bytes
- Gigabyte (GB), 230 bytes
- Terabyte (TB), 240 bytes
- Petabyte
- Exabyte
- Zettabyte
- Yottabyte

Hexadecimal Numbers

Hex Digit	Decimal Equivalent	Binary Equivale
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal Numbers

- Base 16
- Shorthand for binary

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <33>

Translating binary to hexadecimal

- Each hexadecimal digit corresponds to 4 binary bits.
- Example: Translate the binary integer 000101101010011110010100 to hexadecimal:

1	6	A	7	9	4	
0001	0110	1010	0111	1001	0100	

© Digital Design and Computer Architecture, 2nd Edition, 2012

Converting hexadecimal to decimal

 Multiply each digit by its corresponding power of 16:

$$dec = (D_3 \times 16^3) + (D_2 \times 16^2) + (D_1 \times 16^1) + (D_0 \times 16^0)$$

- Hex 1234 equals $(1 \times 16^3) + (2 \times 16^2) + (3 \times 16^1) + (4 \times 16^3) + (4 \times 16^3)$ \times 16⁰), or decimal 4,660.
- Hex 3BA4 equals $(3 \times 16^3) + (11 * 16^2) + (10 \times 16^1)$ $+ (4 \times 16^{0})$, or decimal 15,268.

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
- Hexadecimal to decimal conversion:
 - Convert 0x4AF to decimal

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 1111₂
- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $-16^{2}\times4+16^{1}\times10+16^{0}\times15=1199_{10}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <37>

Converting decimal to hexadecimal

Division	Quotient	Remainder	
422 / 16	26	6	
26 / 16	1	A	
1 / 16	0	1	

decimal 422 = 1A6 hexadecimal

Powers of 16

Used when calculating hexadecimal values up to 8 digits long:

16 ⁿ	Decimal Value	16 ⁿ	Decimal Value
16 ⁰	1	16 ⁴	65,536
16 ¹	16	16 ⁵	1,048,576
16 ²	256	16 ⁶	16,777,216
16 ³	4096	16 ⁷	268,435,456

Addition

Decimal

8902

Binary

ERO TO ONE

Binary Addition Examples

Add the following
 4-bit binary
 numbers

Add the following4-bit binarynumbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <41>

Binary Addition Examples

Add the following
 4-bit binary
 numbers

• Add the following

111 1011

Overflow!

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <42>

M ZERO TO ONE

Overflow

- Digital systems operate on a fixed number of bits
- Overflow: when result is too big to fit in the available number of bits
- See previous example of 11 + 6

Hexadecimal addition

Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

		1	1
36	28	28	6A
42	45	58	4B
78	6D	80	B5

Important skill: Programmers frequently add and subtract the addresses of variables and instructions.

Signed Binary Numbers

- Sign/Magnitude Numbers
- Two's Complement Numbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <45>

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A: \{a_{N-1}, a_{N-2}, a_2, a_1, a_0\}$
 - Negative number: sign bit = 1 $A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^{i}$
- Example, 4-bit sign/mag representations of \pm 6:
 - +6=
 - **-** 6 =
- Range of an *N*-bit sign/magnitude number:

Signed integers

The highest bit indicates the sign. 1 = negative, 0 = positive

If the highest digit of a hexadecmal integer is > 7, the value is negative. Examples: 8A, C5, A2, 9D

Sign/Magnitude Numbers

- 1 sign bit, *N*-1 magnitude bits
- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0 $A: \{a_{N-1}, a_{N-2}, a_2, a_1, a_0\}$
 - Negative number: sign bit = 1 $A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i$
- Example, 4-bit sign/mag representations of \pm 6:
 - +6 = 0110
 - **-** 6 = **1110**
- Range of an *N*-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Sign/Magnitude Numbers

• Problems:

- Addition doesn't work, for example -6 + 6:

1110

+0110

10100 (wrong!)

– Two representations of $0 (\pm 0)$:

1000

0000

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <49>

Two's Complement Numbers

- Don't have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <50>

Two's complement notation

Steps:

- Complement (reverse) each bit
- Add 1

Starting value	0000001
Step 1: reverse the bits	11111110
Step 2: add 1 to the value from Step 1	11111110 +00000001
Sum: two's complement representation	11111111

Note that 00000001 + 11111111 = 00000000

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$

ROM ZERO

"Taking the Two's Complement"

- Flip the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100

$$\frac{2. + 1}{1101} = -3_{10}$$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <53>

Two's Complement Examples

• Take the two's complement of $6_{10} = 0110_2$

• What is the decimal value of 1001₂?

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 < 54

Two's Complement Examples

- Take the two's complement of $6_{10} = 0110_2$
 - 1. 1001

$$\frac{2. + 1}{1010_2} = -6_{10}$$

- What is the decimal value of the two's complement number 1001₂?
 - 1. 0110

$$\frac{2. + 1}{0111_2} = 7_{10}$$
, so $1001_2 = -7_{10}$

Binary subtraction

- When subtracting A B, convert B to its two's complement
- Add A to (-B)

Advantages for 2's complement:

- No two 0's
- Sign bit
- Remove the need for separate circuits for add and sub

FROM ZER

Two's Complement Addition

Add 6 + (-6) using two's complement numbers

Add -2 + 3 using two's complement numbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <57>

Two's Complement Addition

Add 6 + (-6) using two's complement numbers 111 0110 + 1010 10000

Add -2 + 3 using two's complement numbers

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <58>

Increasing Bit Width

- Extend number from N to M bits (M > N):
 - Sign-extension

Zero-extension

Sign-Extension

- Sign bit copied to msb's
- Number value is same
- Example 1:
 - 4-bit representation of 3 = 0011
 - 8-bit sign-extended value: 00000011
 - Example 2:
 - 4-bit representation of -5 = 1011
 - 8-bit sign-extended value: 11111011

Zero-Extension

- Zeros copied to msb's
- Value changes for negative numbers
- Example 1:

4-bit value =

 $0011_2 = 3_{10}$

- 8-bit zero-extended value: $00000011 = 3_{10}$

- Example 2:
 - 4-bit value =

 $1011 = -5_{10}$

- 8-bit zero-extended value: $00001011 = 11_{10}$

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <61>

Number System Comparison

Number System	Range
Unsigned	$[0, 2^{N}-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

For example, 4-bit representation:

© Digital Design and Computer Architecture, 2nd Edition, 2012

Chapter 1 <62>

ELSEVIER

Ranges of signed integers

The highest bit is reserved for the sign. This limits the range:

Storage Type	Range (low-high)	Powers of 2		
Signed byte	-128 to +127	-2^7 to $(2^7 - 1)$		
Signed word	-32,768 to +32,767	-2^{15} to $(2^{15}-1)$		
Signed doubleword	-2,147,483,648 to 2,147,483,647	-2^{31} to $(2^{31}-1)$		
Signed quadword	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	-2^{63} to $(2^{63}-1)$		

Character

- Character sets
 - Standard ASCII(0 127)
 - Extended ASCII (0 255)
 - ANSI (0 255)
 - Unicode (0 65,535)
- Null-terminated String
 - Array of characters followed by a null byte
- Using the ASCII table
 - back inside cover of book

	_								
DECIMAL	•	0	16	32	48	64	80	96	112
•	HEXA DECIMAL VALUE	0	1	2	3	4	5	6	7
0	0	BLANK (NULL)	-	BLANK (SPACE)	0	(a)	P	٠	p
1	1	\odot	1	!	1	A	Q	a	q
2	2	•	1	"	2	В	R	b	r
3	3	*	!!	#	3	C	S	c	s
4	4	*	TP	\$	4	D	T	d	t
5	5	*	8	%	5	E	U	e	u
6	6	•	-	&	6	F	V	f	v
7	7	•	1	′	7	G	W	g	w
8	8	• 1	1	(8	Н	X	h	X
9	9	0	1)	9	I	Y	i	у
10	Α	0	→	*	:	J	Z	j	z
11	В	Q	←	+	;	K	[k	{
12	С	Q	L	,	<	L	/	1	1
13	D	1	←→	_	=	M]	m	}
14	Ε	Ą	•		>	N	^	n	$^{\sim}$
15	F	✡	•	/	?	О	_	0	Δ

OEC:MAL VALUE	•	128	144	160	176	192	208	224	240
-	HE XA DECIMAL VALUE	8	9	Α	В	С	D	Е	F
0	0	Ç	É	á		L		∞	
1	1	ü	æ	í	***			β	\pm
2	2	é	Æ	ó	***			Γ	\geq
3	3	â	ô	ú				π	\leq
4	4	ä	ö	ñ	\forall		E	Σ	ſ
5	5	à	ò	Ñ	\forall		F	σ	J
6	6	å	û	<u>a</u>	H	F		'n	÷
7	7	Ç	ù	ō		T		τ	\approx
8	8	ê.	ÿ	i	F		\mp	δ	0
9	9	ë	Ö	Г	H			θ	•
10	Α	è	Ü	\neg				Ω	•
11	В	ï	¢	1/2				δ	\
12	C	î	£	1/4				∞	n
13	D	ì	¥	i	Ш			ф	2
14	Е	Ä	R	**	Ħ	뜌		\in	
15	F	Å	· f	>>	\neg	1		\cap	BLANK 'FF'

Representing Instructions

• NT / Linux not fully binary

compatible


```
int sum(int x, int y)
                              Alpha sum
                                          Sun sum
                                                     PC sum
    return x+y;
                               00
                                00
                                                       89
                                30
                                                       E5
- For this example, Alpha &
                                42
                                                       8B
  Sun use two 4-byte
                                 01
                                                        45
                                80
                                                       0C
  instructions
                                FA
                                                       03
   • Use differing numbers of
                                6B
                                                       45
     instructions in other cases
                                                       08
- PC uses 7 instructions
                                                       89
  with lengths 1, 2, and 3
                                                       EC
                                                       5D
  bytes
                                                       C3

    Same for NT and for Linux
```

Different machines use totally different instructions and encodings