Ejercicios de Mecánica y Teoría Clásica de Campos (Landau)

1. Introducción

Este documento es una recopilación de ejercicios y ejemplos de mecánica clásica y teoría clásica de campos del Landau.

2. Mecánica Clásica

Encontrar la lagrangiana de los siguientes sistemas, colocados en un campo gravitatorio (aceleración de la gravedad: g).

2.1. Ejercicio 1: Péndulo doble coplanario

Solución: Tomemos como coordenadas los ángulos ϕ_1 y ϕ_2 que forman los hilos l_1 y l_2 con la vertical. Tenemos entonces para la partícula m_1 :

$$T_1 = \frac{1}{2}m_1l_1^2\dot{\phi}_1^2, \quad U = -m_1gl_1\cos\phi_1$$

Para hallar la energía cinética de la segunda partícula, expresamos sus coordenadas cartesianas x_2, y_2 (origen de coordenadas en el punto de suspensión, eje y dirigido verticalmente hacia abajo) en función de ϕ_1 y ϕ_2 :

$$x_2 = l_1 \sin \phi_1 + l_2 \sin \phi_2, \quad y_2 = l_1 \cos \phi_1 + l_2 \cos \phi_2$$

Obtenemos entonces:

$$T_2 = \frac{1}{2}m_2(\dot{x}_2^2 + \dot{y}_2^2)$$
$$= \frac{1}{2}m_2[l_1^2\dot{\phi}_1^2 + l_2^2\dot{\phi}_2^2 + 2l_1l_2\cos(\phi_1 - \phi_2)\dot{\phi}_1\dot{\phi}_2]$$

Y finalmente,

$$L = \frac{1}{2}(m_1 + m_2)l_1^2\dot{\phi}_1^2 + \frac{1}{2}m_2l_2^2\dot{\phi}_2^2 + m_2l_1l_2\dot{\phi}_1\dot{\phi}_2\cos(\phi_1 - \phi_2) + (m_1 + m_2)gl_1\cos\phi_1 + m_2gl_2\cos\phi_2$$

2.2. Ejercicio 2: Pendulo plano

Enunciado. Péndulo plano de masa m_2 , cuyo punto de suspensión (de masa m_1) puede desplazarse en el mismo plano sobre una recta horizontal (fig. 2).

Solución: Usando la coordenada x del punto m_1 y el ángulo ϕ entre el hilo del péndulo y la vertical, tenemos:

$$L = \frac{1}{2}(m_1 + m_2)\dot{x}^2 + \frac{1}{2}m_2(l^2\dot{\phi}^2 + 2l\dot{x}\dot{\phi}\cos\phi) + m_2gl\cos\phi$$

2.3. Ejercicio 3: Péndulo plano, cuyo punto de suspensión:

- a) se desplaza uniformemente sobre una circunferencia vertical con una frecuencia constante γ (fig. 3);
 - b) oscila horizontalmente en el plano del péndulo según la ley $x = a \cos \gamma t$;
 - c) oscila verticalmente según la ley $y = a \cos \gamma t$.

Solución: a) coordenadas del punto m:

$$x = a\cos\gamma t + l\sin\phi, \ \ y = -a\sin\gamma t + l\cos\phi$$

. Lagrangiana:

$$L = \frac{1}{2}ml^2\dot{\phi}^2 + mla\gamma\sin(\phi - \gamma t) + mgl\cos\phi;$$

se han omitido los términos que sólo dependen del tiempo y eliminado la derivada total con respecto al tiempo de $mla\gamma\cos(\phi-\gamma t)$.

b) Coordenadas del punto m:

$$x = a\cos\gamma t + l\sin\phi, y = l\cos\phi$$

Lagrangiana (omitiendo las derivadas totales con respecto al tiempo):

$$L = \frac{1}{2}ml^2\dot{\phi}^2 + mla\gamma^2\cos\gamma t\sin\phi + mgl\cos\phi.$$

c) De la misma manera:

$$L = \frac{1}{2}ml^2\dot{\phi}^2 + mla\gamma^2\cos\gamma t\cos\phi + mgl\cos\phi.$$

2.4. Ejercicio 4:

Enunciado. En el sistema representado en la figura 4, el punto m_2 se mueve sobre el eje vertical, y todo el sistema gira con velocidad angular constante Ω alrededor de este eje.

Solución: Sea θ el ángulo formado por el segmento a y la vertical, y ϕ el ángulo de rotación del sistema alrededor del eje; $\dot{\phi} = \Omega$. Para cada partícula m_1 , un desplazamiento elemental $dl_1^2 = a^2 d\theta^2 + a^2 \sin^2 \theta d\phi^2$. La distancia de m_2 al punto de suspensión A es $2a \cos \theta$ y así, $dl_2 = -2a \sin \theta d\theta$. La lagrangiana:

$$L = m_1 a^2 (\dot{\theta}^2 + \Omega^2 \sin^2 \theta) + 2m_2 a^2 \dot{\theta}^2 \sin^2 \theta + 2(m_1 + m_2) ga \cos \theta.$$

2.5. Ejercicio 5: Anillo oscilante con masa puntual

Enunciado. Considere un anillo de radio R y masa M que se cuelga de uno de sus puntos y oscila en su propio plano. Se comporta como un péndulo físico cuyo centro de gravedad está ubicado a una distancia R del punto de suspensión. En el anillo se coloca una masa puntual M que se puede deslizar sin fricción. Halle el lagrangiano del sistema. Realice la aproximación de pequeñas oscilaciones. Resuelva el problema de vectores propios y valores propios implicado. Analice los resultados.

2.6. Ejercicio 6: Oscilaciones de molécula triatómica lineal

Ejercicio 1 secc 24: Frecuencia de vibraciones de molécula triatómica lineal 1. Determinar la frecuencia de las vibraciones de una molécula simétrica lineal triatómica ABA (fig. 28). Se supone que la energía potencial de la molécula depende solamente de las distancias AB y BA y del ángulo ABA.

Solución: Los desplazamientos longitudinales x_1, x_2, x_3 de los átomos están relacionados, según (24.1), por:

$$m_A(x_1 + x_3) + m_B x_2 = 0.$$

Con la ayuda de esta ecuación, eliminamos x_2 de la lagrangiana del movimiento longitudinal de la molécula:

$$L = \frac{1}{2}m_A(\dot{x}_1^2 + \dot{x}_3^2) + \frac{1}{2}m_B\dot{x}_2^2 - \frac{1}{2}k_1[(x_1 - x_2)^2 + (x_3 - x_2)^2],$$

y utilizando las nuevas coordenadas:

$$Q_a = x_1 + x_3, \quad Q_s = x_1 - x_3,$$

obtenemos:

$$L = \frac{\mu}{4m_B} \dot{Q}_a^2 + \frac{m_A}{4} \dot{Q}_s^2 - \frac{k_1 l^2}{4m_B^2} Q_a^2 - \frac{k_1}{4} Q_s^2.$$

Es evidente que Q_a y Q_s son coordenadas normales (todavía no normalizadas). La coordenada Q_a corresponde a una vibración antisimétrica alrededor del centro de la molécula ($x_1 = x_3$; fig. 28, a) y de frecuencia:

$$\omega_a = \sqrt{\frac{k_1 \mu}{m_A m_B}}.$$

La coordenada Q_s corresponde a una vibración simétrica ($x_1 = x_3$; fig. 28, b) de frecuencia:

$$\omega_{s1} = \sqrt{\frac{k_1}{m_A}}.$$

Los desplazamientos transversales de los átomos y_1, y_2, y_3 están relacionados, según (24.1) y (24.2), por:

$$m_A(y_1 + y_2) + m_B y_2 = 0, \quad y_1 = y_3.$$

(vibraciones simétricas de curvatura de la molécula; fig. 28, c). Sea $\frac{1}{2}k_2l^2\delta^2$ la energía potencial de curvatura de la molécula, donde δ es la desviación del ángulo ABA con respecto a π ; su expresión en función de los desplazamientos es:

$$\delta = \frac{[(y_1 - y_2) + (y_3 - y_2)]}{l}.$$

Expresando y_1, y_2, y_3 en función de δ , se obtiene la lagrangiana del movimiento transversal de la molécula:

$$L = \frac{1}{2}m_A(\dot{y}_1^2 + \dot{y}_3^2) + \frac{1}{2}m_B\dot{y}_2^2 - \frac{1}{2}k_2l^2\delta^2$$
$$= \frac{m_Am_Bl^2\dot{\delta}^2}{4u} - \frac{1}{2}k_2l^2\delta^2,$$

de donde la frecuencia:

$$\omega_{s2} = \sqrt{\frac{2k_2\mu}{m_A m_B}}.$$

Enunciado. Plantee y resuelva el problema de las oscilaciones de la molécula triatómica lineal, descrito en la Fig.28 (que corresponde al Pro.1 de la sección §24), cuando se considera que cada átomo está sometido a fricción y a una forzante periódica.

2.7. Ejercicio 7: Oscilador forzado y amortiguado

Enunciado. Considere el oscilador forzado y amortiguado descrito por la ecuación (26.1). Halle la amplitud de la oscilación de estado estacionario de la velocidad correspondiente a la B de (26.2). Halle el valor γ_R de γ para el cual dicha amplitud es máxima y compárelo con la frecuencia de las oscilaciones amortiguadas libres. Se define el factor de calidad del oscilador:

$$Q = \frac{\gamma_R}{2\lambda}.$$

Demuestre que si el amortiguamiento es pequeño y la frecuencia de la forzante es cercana a la resonancia:

$$Q\approx 2\pi\frac{\text{Energ\'ia total}}{\text{Energ\'ia perdida en un per\'iodo}}\approx \frac{\omega_0}{\Delta\omega},$$

donde $\Delta\omega$ representa el intervalo de frecuencia entre los puntos en los cuales la amplitud alcanza $1/\sqrt{2}$ de su valor máximo. Ilustre con gráficas cuando Q=5 y cuando Q=100.

2.8. Ejercicio 8: Sistema con fuerzas periódicas

Enunciado. Considere el sistema mostrado en la Fig.2, que corresponde al Pro.2 de la sección §5. Suponga que las masas m_1 y m_2 están sometidas a fuerzas externas periódicas horizontales de la forma $f_i \cos(\gamma t + \alpha_i)$ para i = 1, 2. Realice la aproximación de pequeñas oscilaciones. Lleve el problema a coordenadas normales. Analice los resultados.

3. Teoría Clásica de Campos

3.1. Ejercicio 1: Campo Escalar

Estudie el campo escalar $\phi(x)$ a partir del lagrangiano:

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - V(\phi).$$

Derive las ecuaciones de movimiento correspondientes usando el formalismo de Euler-Lagrange.

3.2. Ejercicio 2: Campo Electromagnético

Exponga las ecuaciones de Maxwell en el contexto del campo electromagnético y su representación en términos del tensor electromagnético.