Lezione del 8 Novembre del Prof. Frigerio

Teorema 0.1 (di Alexander).

 $Sia\ X\ spazio\ topologico\ con\ una\ prebase\ P.$

Se da ogni ricoprimento con elementi di P si può estrarre un sottoricoprimento finito, X è compatto

Dimostrazione. Supponiamo per assurdo che X non sia compatto.

Sia Ω l'insieme dei ricoprimenti aperti da cui non è possibile estrarre sottoricoprimenti finiti, e su Ω definiamo una relazione d'ordine tramite l'inclusione.

X non compatto $\Rightarrow \Omega \neq \emptyset$.

Proviamo che ogni catena di Ω ammette un maggiorante.

Sia $C \subseteq \Omega$ una catena, cioè $C = \{\mathfrak{U}_i\}_{i \in I}$ dove gli \mathfrak{U}_i sono ricoprimenti aperti in Ω .

Pongo $\mathfrak{U} = \bigcup \mathfrak{U}_i$, sicuramente \mathfrak{U} è un ricoprimento e $\mathfrak{U} > \mathfrak{U}_i \ \forall i \in I$.

Proviamo che $\mathfrak{U} \in \Omega$.

Supponiamo, per assurdo, che da $\mathfrak U$ si estrae un sottoricoprimento finito ovvero

$$\exists A_i, \dots, A_n \in \mathfrak{U} \quad X = A_1 \cup \dots \cup A_n \text{ dove } A_j \in \mathfrak{U}_{i(j)} \text{ per qualche } i(j) \in I$$

Poichè gli $\mathfrak{U}_{i(j)}$ appartengono ad una catena e sono finiti, esiste il massimo, poniamo $\mathfrak{U}_{\bar{i}} \in C$ tale massimo.

Allora $A_J \in \mathfrak{U}_{\bar{i}} \ \forall j = 1, \dots n$ dunque da $\mathfrak{U}_{\bar{i}}$ si estrae un sottoricoprimento finito, il che è assurdo. $\mathfrak{U} \in \Omega$ è il maggiorante della catena cercato.

Per il Lemma di Zorn, esiste un elemento $Z = \{Z_i\}_{i \in I} \in \Omega$ massimale, ovvero un ricoprimento Y che contiene Z e un aperto non contenuto in Z non appartiene ad Ω dunque da Y si estrae un sottoricoprimento finito.

Mostriamo che $P \cap Z$ è un ricoprimento di X.

Mostrando ciò, concludo la dimostrazione infatti da $P \cap Z$ non posso estrarre sottoricoprimenti finiti (non posso da Z). Dunque $P \cap Z$ è un ricoprimento con aperti di P dal quale non posso estrarre sottoricoprimenti finiti, il che è assurdo per ipotesi.

Sia $x \in X$, per definizione di ricoprimento $\exists i \in I$ con $x \in Z_i$.

Ora Z_i è aperto, dunque per definizione di prebase,

$$\exists P_1, \dots, P_n \in P \quad x \in P_1 \cap \dots \cap P_n \subseteq Z_i$$

Mostriamo che un $P_j \in \mathbb{Z}$.

Supponiamo, per assurdo, che $P_j \notin Z \ \forall j=1,\ldots,n$ dunque per massimalità di $Z, Z \cup \{P_j\} \notin \Omega$ ovvero

$$\exists I_j \subseteq I$$
 finito tale che $X = P_j \cup \bigcup_{i \in I_j} Z_i$

Poichè ciò vale $\forall j$ allora

$$X = \left(\bigcap_{i=1}^{n} P_{j}\right) \cup \left(\bigcup_{j=1}^{n} \bigcup_{i \in I_{j}} Z_{i}\right)$$

infatti se $x \notin \bigcap P_j$ allora appartiene ad un certo Z_i dove $i \in \bigcup_{j=1}^n I_j$.

Ora $\bigcap_{j=1}^{n} P_j \subseteq Z_i$ dunque abbiamo trovato un sottoricoprimento finito di Z, da cui $P \cap Z$ è un ricoprimento, da cui la tesi.

Teorema 0.2 (di Tychonoff).

Sia X_i , $i \in I$ una famiglia di spazi topologici compatti

$$X = \prod_{i \in I} X_i \ \dot{e} \ compatto$$

Dimostrazione. Per il teorema di Alexander, basta vedere che ogni ricoprimenti $\mathfrak U$ fatto con aperti di una prebase ammette un sottoricoprimento finito.

Scegliendo la prebase canonica, sia $\mathfrak{U} = \bigcup_{i \in I} A_i$ un ricoprimento di X dove

$$A_i = \{\pi_i^{-1}(D) \, | \, D \in \mathfrak{D}_i\}$$
dove \mathfrak{D}_i famiglia di aperti di X_i

Ora $\exists i \in I$ per cui \mathfrak{D}_i è un ricoprimento di X_i . Supponiamo, per assurdo, che

$$\forall i \in I \quad \exists \overline{x_i} \in X_i \quad x_i \not\in \bigcup_{D \in \mathfrak{D}_i} D$$

dunque l'elemento $(\overline{x_i}_{i\in I}$ non appartiene ad alcun elemento di $\mathfrak U$ il che è assurdo.

Dunque $\exists i_0 \in I$ tale che \mathfrak{D}_{i_0} è un ricoprimento di X_{i_0} , ma \mathfrak{D}_{i_0} ammette un sottoricoprimento finito B_1, \ldots, B_n dunque

$$\{\pi_{i_0}^{-1}(B_1),\ldots,\pi_{i_0}^{-1}(B_n)\}$$

è il sottoricoprimento di $\mathfrak U$ cercato.

Esempio 0.3. Sia X un insieme, $A \subseteq \mathbb{R}$

$$A^X = \{f: X \to A\}$$

Dotando A^X della topologia prodotto (A con topologia euclidea) si ottiene la topologia della convergenza puntuale

Osservazione 1. Gli elementi di A^X , spesso, si denotano con $(a_x)_{x\in X}$, pensandoli come "stringhe di elementi di A"

Lemma 0.4. Sia $\{f_n\}$ una successione di funzioni con $f_n: X \to A$.

$$f_n \to f \text{ in } A^X \quad \Rightarrow \quad f_n \to f \text{ puntualmente}$$

Dimostrazione. Sia $x_0 \in X$. Per definizione di topologia prodotto, se $f(x_0) = a \in A$ allora

$$\forall \varepsilon > 0 \quad \{(a_x)_{x \in X} \text{ con } |a_{x_0} - a| < \varepsilon\} = \pi_{x_0}^{-1}((a - \varepsilon, a + \varepsilon))$$

è un aperto, dunque un intorno di f.

Poichè $f_n \to f$ allora

$$\exists n_0 \in \mathbb{N} \quad \forall n \geq n_0 \quad |f(x_{n_0}) - a| = |f_n(x_0) - f(x_0)| \leq \varepsilon$$

ovvero $f_n \to f$ puntualmente

Osservazione 2. Vale anche il viceversa, verrà dimostrato nelle successive lezioni