OPTICAL SYSTEM FOR DISPLAY PANEL

Publication number: JP2004526183 (T)
Publication date: 2004-08-26

Inventor(s):
Applicant(s):

Classification:
- international:

G03B21/62; G02B17/08; G02B27/00; G03B21/00; G03B21/10; G09G3/20; G09G3/34; G03B21/62; G02B17/08; G02B27/00; G03B2 1/00; G03B21/10; G09G3/20; G09G3/34; (IPC1-7): G03B21/00; G02B17/08;

G03B21/10; G03B21/62; G09G3/20; G09G3/34

- European:

G02B27/00K

Application number: JP20020559757T 20020122

Priority number(s): US20010768639 20010124; WO2002US01698 20020122

Abstract not available for JP 2004526183 (T) Abstract of corresponding document: WO 02059693 (A1)

An optical system for producing an accurate image on an optical panel inlet face surface which is highly litted relative to the image path. The optical system comprises an image source and an imaging element that creates an image from the image source. The optical system also comprises an anamorphic telescope for reducing anormorphic distortion of the Image, and a final element for directing the image toward the optical panel. The anamorphic telescope reduces magnification of the image in a first direction and enlarges magnification of the image in a second direction which is perpendicular to the first direction. The anamorphic telescope includes a first lens group, a second lens group, and a third lens group. The first lens group and the second lens group form a first anamorphic telescopic system, and the second lens group and the third lens group form a second anamorphic telescopic system.

Also published as:

JP4278980 (B2)

WO02059693 (A1)

US2002140912 (A1)

US6457834 (B1)

EP1354244 (A1)

more >>

Data supplied from the esp@cenet database — Worldwide

(19) 日本国特許庁(JP)

(12)公表特許公報(A)

(11) 特許出願公表番号

特表2004-526183 (P2004-526183A)

(43) 公表日 平成16年8月26日(2004.8.26)

			(13) 24 36 [1	THE TOPPORT	123 (2004.0.20)
(51) Int. Ci. 7 GO3B 21/00 GO2B 17/08 GO3B 21/10 GO3B 21/62 GO9G 3/20	F 1 GO3B GO2B GO3B GO3B GO9G 審查請求	17/08 21/10 21/62 3/20	-	テーマコー 2HO21 2HO87 2K103 5CO80 (全113頁)	ド (参考) 最終頁に続く
(21) 出願番号 (86) (22) 出願日 (85) 翻訳文提出日 (86) 国際出願番号 (87) 国際公開番号 (87) 国際公開日 (31) 優先權主張番号 (32) 優先權主張国	特願2002-559757 (P2002-559757) 平成14年1月22日 (2002.1.22) 平成15年7月22日 (2003.7.22) PCT/US2002/001698 W02002/059693 平成14年8月1日 (2002.8.1) 09/768,639 平成13年1月24日 (2001.1.24) 米国 (US)	(71) 出疆(74) 代理(72) 発明	スクラム デ イアメリカド 合衆 フード 2 100075638 弁理士トンカニンメリカニメリカニスメリカニスメリカニスメ		ド州 207 一ク ビーチ ティー ク州 144
W-1.	· · · · · · · · · · · · · · · · · · ·			Д у	終頁に続く

(54) 【発明の名称】ディスプレイパネル用光学系

(57)【要約】

画像経路に対して高度に傾斜された光学パネルの入口面上に正確な画像を生成するための光学系を提供する。光学系は、画像源と、画像源から画像を形成する結像素子とを有する。光学系はまた、画像のアナモルフィック拡大器と、光学パネルに向けて画像を再指向させるための最終素子とを有する。アナモルフィック拡大器は、第1の方向における画像の倍率を減少させ、第1の方向に対し垂直な第2の方向における画像の倍率を増大させる。アナモルフィック拡大器は、第1のレンズ群と、第2のレンズ群と、第3のレンズ群と、第1のレンズ群と、第1のレンズ群と、第1のレンズ群と、第1のレンズ群と、第1のレンズ群と、第1のレンズ群と、第1のレンズ群と、第1のレンズ群と、第1のアナモルフィック拡大系を形成し、第2のレンズ群及び第3のレンズ群は第2のアナモルフィック拡大系を形成する。

【特許請求の範囲】

【請求項1】

表示画像平面上にゼロより大きい入射角 θ にて画像を投影するための光学系であって、画像源と、

前記画像源から画像を形成するための結像素子と、

前記画像のアナモルフィックディストーションを低減させるためのアナモルフィック拡大器であって、第1の方向において前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記画像の倍率を増大させるアナモルフィック拡大器と、

前記表示画像平面に向けて前記画像を指向させるための最終素子と、

を有することを特徴とする前記光学系。

【請求項2】

表示画像平面にゼロより大きい入射角 θ にて画像を投影するための光学系であって、画像源と、

前記画像源から画像を形成するための結像素子と、

前記画像のアナモルフィックディストーションを低減させるためのアナモルフィック拡大器であって、第1の方向において前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記画像の倍率を増大させ、又第1のレンズ群と、第2のレンズ群と、第3のレンズ群と、を備え、前記第1のレンズ群及び第2のレンズ群は第1のアナモルフィック拡大系を形成し、前記第2のレンズ群及び前記第3のレンズ群は第2のアナモルフィック拡大系を形成するアナモルフィック拡大器と、

前記表示画像平面に向けて前記画像を指向させるための最終素子と、

を有することを特徴とする前記光学系。

【請求項3】

前記第1のアナモルフィック拡大系は、前記第1の方向において前記画像の倍率を減少させることを特徴とする請求項2の光学系。

【請求項4】

前記第2のアナモルフィック拡大系は、前記第2の方向において前記画像の倍率を増大させることを特徴とする請求項2の光学系。

【請求項5】

前記第2のアナモルフィック拡大系は、前記第2の方向において前記画像の倍率を増大さ 30 せることを特徴とする請求項3の光学系。

【請求項6】

前記第2のアナモルフィック拡大系は、前記第1の方向において前記画像の倍率を減少させることを特徴とする請求項2の光学系。

【請求項7】

前記第1のアナモルフィック拡大系は、前記第2の方向において前記画像の倍率を増大させることを特徴とする請求項2の光学系。

【請求項8】

前記第1のアナモルフィック拡大系は、前記第2の方向において前記画像の倍率を増大させることを特徴とする請求項6の光学系。

【請求項9】

前記第1のレンズ群は、前記第1の方向において負の倍率を生成し、前記第2の方向において正の倍率を生成することを特徴とする請求項2の光学系。

【請求項10】

前記第1のレンズ群は、2つの軸外回転対称面と、2つの円錐曲線柱面と、を有することを特徴とする請求項2の光学系。

【請求項11】

前記第1のレンズ群は、前記画像の色収差を補正するように、低色分散材料で構成される少なくとも1つのレンズと、高色分散材料で構成される少なくとも1つの追加レンズと、を備えることを特徴とする請求項2の光学系。

10

20

50

20

30

40

【請求項12】

前記低色分散材料は、アクリルであることを特徴とする請求項11の光学系。

【請求項13】

前記低色分散材料は、ゼオネクス(登録商標)であることを特徴とする請求項11の光学系。

【請求項14】

前記高色分散材料は、ポリスチレンであることを特徴とする請求項11の光学系。

【請求項15】

前記第2のレンズ群は、前記第1の方向において正の倍率を生成し、前記第2の方向において正の倍率を生成することを特徴とする請求項9の光学系。

【請求項16】

前記第2のレンズ群は、2つの軸外回転対称面と、2つの円錐曲線柱面と、を有することを特徴とする請求項2の光学系。

【請求項17】

前記第2のレンズ群は、前記画像の色取差を補正するように、低色分散材料で構成される少なくとも1つのレンズと、高色分散材料で構成される少なくとも1つの追加レンズと、を備えることを特徴とする請求項2の光学系。

【請求項18】

前記低色分散材料は、アクリルであることを特徴とする請求項17の光学系。

【請求項19】

前記低色分散材料は、ゼオネクス(登録商標)であることを特徴とする請求項 1 7 の光学系。

【請求項20】

前記高色分散材料は、ポリスチレンであることを特徴とする請求項17の光学系。

【請求項21】

前記第3のレンズ群は、前記第1の方向において正の倍率を生成し、前記第2の方向で負 の倍率を生成することを特徴とする請求項15の光学系。

【請求項22】

前記第3のレンズ群は、1つの軸外回転対称面と、5つの円錐曲線柱面を有することを特 徴とする請求項2の光学系。

【請求項23】

前記第3のレンズ群は、前記画像の色収差を補正するように、低色分散材料で構成される少なくとも1つのレンズと、高色分散材料で構成される少なくとも1つの追加レンズと、を備えることを特徴とする請求項2の光学系。

【請求項24】

前記低色分散材料は、アクリルであることを特徴とする請求項23の光学系。

【請求項25】

前記低色分散材料は、ゼオネクス(登録商標)であることを特徴とする請求項23の光学系。

【請求項26】

前記高色分散材料は、ポリスチレンであることを特徴とする請求項23の光学系。

【請求項27】

前記結像素子は、前記第1の方向及び前記第2の方向において、等しく前記画像の倍率を 増大させることを特徴とする請求項1の光学系。

【請求項28】

前記結像素子は、少なくとも1つの回転対称面を有することを特徴とする請求項1の光学系。

【請求項29】

前記結像素子は、前記画像の色収差を補正するように、低色分散材料で構成される少なくとも1つのレンズと、高色分散材料で構成される少なくとも1つの追加レンズと、を備え 50

30

ることを特徴とする請求項1の光学系。

【請求項30】

前記低色分散材料は、アクリルであることを特徴とする請求項29の光学系。

【請求項31】

前記低色分散材料は、ゼオネクス(登録商標)であることを特徴とする請求項29の光学系。

【請求項32】

前記高色分散材料は、ポリスチレンであることを特徴とする請求項29の光学系。

【請求項33】

前記結像素子は、前記画像源の中心長手軸に対して傾斜され、偏心化された少なくとも 1 10 つのレンズを有することを特徴とする請求項 1 の光学系。

【請求項34】

前記最終素子は、ミラーであることを特徴とする請求項1の光学系。

【請求項35】

前記最終素子は、前記第1の方向及び前記第2の方向において、両方アナモルフィック、 且つ、円錐曲線である双円錐曲線面を有することを特徴とする請求項34の光学系。

【請求項36】

前記アナモルフィック拡大器は台形歪みの補正を行い、前記アナモルフィック拡大器内での前記台形歪みの補正は主に前記第1のレンズ群で行われ、前記結像素子、第2のレンズ群及び第3のレンズ群を含むレンズ群の少なくとも1つによって付加的な補正が行われる 20 ことを特徴とする請求項2の光学系。

【請求項37】

前記最終素子と前記表示画像平面との間の主光線は、互いに非平行であることを特徴とする請求項1の光学系。

【請求項38】

前記最終素子は、正の倍率を有することを特徴とする請求項37の光学系。

【請求項39】

前記第1のレンズ群と前記第2のレンズ群との間に、折り返しミラーが配置されることを特徴とする請求項2の光学系。

【請求項40】

前記第2のレンズ群と前記第3のレンズ群との間に、折り返しミラーが配置されることを特徴とする請求項2の光学系。

【請求項41】

前記第1のレンズ群と前記第2のレンズ群との間に第1の折り返しミラーが配置され、前記第2のレンズ群と前記第3のレンズ群との間に第2の折り返しミラーが配置されることを特徴とする請求項2の光学系。

【請求項42】

前記画像源は、色画像結合プロジェクターであることを特徴とする請求項1の光学系。

【清求項43】

前記結像素子、アナモルフィック拡大器及び最終素子の曲率中心は、それぞれ共通平面内 40 に整列されることを特徴とする請求項1の光学系。

【請求項44】

前記画像源、前記結像素子、前記アナモルフィック拡大器及び前記最終素子は、それぞれ 前記画像上に傾斜をもたらすことを特徴とする請求項1の光学系。

【請求項45】

前記画像源、前記結像素子、前記アナモルフィック拡大器及び前記最終素子から成る群から選択される1つ以上の素子は、前記画像上に傾斜をもたらすことを特徴とする請求項1 の光学系。

【請求項46】

前記結像素子内のレンズ群は、それぞれ中心長手光軸に沿って整列され、前記アナモルフ 50

イック拡大器内の少なくとも1つのレンズは、前記中心長手光軸に対して傾斜され、偏心 化されていることを特徴とする請求項1の光学系。

【請求項47】

前記アナモルフィック拡大器は、球面、非球面、回折面、及びフレネル面から成る群から 選択されるタイプの少なくとも1つの表面を有することを特徴とする請求項1の光学系。

【請求項 4 8】

前記結像素子内のレンズ群は、それぞれ中心長手光軸に沿って整列され、前記アナモルフ イック拡大器は、球面及び非球面の表面を有し、前記アナモルフィック拡大器内の少なく とも1つのレンズは、前記中心長手光軸に対して傾斜され、偏心化されていることを特徴 とする請求項1の光学系。

【請求項49】

前記アナモルフィック拡大器内の各レンズ群は、前記画像上に傾斜をもたらすことを特徴 とする請求項2の光学系。

【請求項50】

前記最終素子は、フレネル面を有することを特徴とする請求項1の光学系。

【請求項51】

前記表示画像平面は、複数の光導波路の端部によって画成されることを特徴とする請求項 1の光学系。

【請求項52】

前記入射角 heta は、約 5 0 $^{\circ}$ \sim 8 5 $^{\circ}$ の範囲内にあることを特徴とする請求項 1 の光学系。 【請求項53】

前記入射角θは約78°であることを特徴とする請求項52の光学系。

【請求項54】

光学パネルと、表示画像平面上にゼロより大きい入射角 θ にて画像を投影するための少な くとも1つの光学系と、を有するディスプレイシステムであって、

複数の積層された光導波路であって、各々が第1の端部と第2の端部とを有し、前記複数 の第1の端部によって出口面が画成され、前記複数の第2の端部によって入口面が画成さ れる複数の積層された光導波路と;前記入口面に対し非垂直な軸から前記入口面に対し垂 直な軸へと、光進行を再指向させる、前記入口面に設けられる少なくとも1つの結合器と ;を備える光学パネルと、

画像源と;前記画像源から画像を形成するための結像素子と;前記画像のアナモルフィッ クディストーションを低減させるためのアナモルフィック拡大器であって、第1の方向に おいて前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記 画像の倍率を増大させるアナモルフィック拡大器と;前記表示画像平面に向けて前記画像 を指向させるための最終素子と;をそれぞれが備える少なくとも1つの光学系と、

を有することを特徴とする前記ディスプレイシステム。

【請求項55】

光学パネルと、表示画像平面上にゼロより大きい入射角 θ にて画像を投影するための少な くとも1つの光学系と、を有するディスプレイシステムであって、

複数の積層された光導波路であって、各々が第1の端部と第2の端部とを有し、前記複数 40 の第1の端部によって出口面が画成され、前記複数の第2の端部によって入口面が画成さ れる複数の積層された光導波路と;前記入口面に対し非垂直な軸から前記入口面に対し垂 直な軸へと、光進行を再指向させる、前記入口面に設けられる少なくとも1つの結合器と ;を備える光学パネルと、

画像源と;前記画像源から画像を形成するための結像素子と;前記画像のアナモルフィッ クディストーションを低減させるためのアナモルフィック拡大器であって、第1の方向に おいて前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記 画像の倍率を増大させ、又第1のレンズ群と、第2のレンズ群と、第3のレンズ群と、を 備え、前記第1のレンズ群及び前記第2のレンズ群は第1のアナモルフィック拡大系を形 成し、前記第2のレンズ群と前記第3のレンズ群は第2のアナモルフィック拡大系を形成 50

するアナモルフィック拡大器と;前記表示画像平面に向けて前記画像を指向させるための 最終素子と;をそれぞれが備える少なくとも1つの光学系と、

を有することを特徴とする前記ディスプレイシステム。

【請求項56】

前記第1のアナモルフィック拡大系は、前記第1の方向において前記画像の倍率を減少さ せることを特徴とする請求項55のディスプレイシステム。

【請求項57】

前記第2のアナモルフィック拡大系は、前記第2の方向において前記画像の倍率を増大さ せることを特徴とする請求項55のディスプレイシステム。

前記第2のアナモルフィック拡大系は、前記第2の方向において前記画像の倍率を増大さ せることを特徴とする請求項56のディスプレイシステム。

【請求項59】

前記第2のアナモルフィック拡大系は、前記第1の方向において前記画像の倍率を減少さ せることを特徴とする請求項55の光学系。

【請求項60】

前記第1のアナモルフィック拡大系は、前記第2の方向において前記画像の倍率を増大さ せることを特徴とする請求項55のディスプレイシステム。

【請求項61】

前記第1のアナモルフィック拡大系は、前記第2の方向において前記画像の倍率を増大さ 20 せることを特徴とする請求項59のディスプレイシステム。

【請求項62】

前記第1のレンズ群は、前記第1の方向において負の倍率を生成し、前記第2の方向にお いて正の倍率を生成することを特徴とする請求項55のディスプレイシステム。

【請求項63】

前記第1のレンズ群は、2つの軸外回転対称面と、2つの円錐曲線柱面と、を有すること を特徴とする請求項55のディスプレイシステム。

【請求項64】

前記第1のレンズ群は、前記画像の色収差を補正するように、低色分散材料で構成される 少なくとも1つのレンズと、高色分散材料で構成される少なくとも1つの追加レンズと、 を備えることを特徴とする請求項55のディスプレイシステム。

【請求項65】

前記低色分散材料は、アクリルであることを特徴とする請求項64のディスプレイシステ

【請求項66】

前記低色分散材料は、ゼオネクス(登録商標)であることを特徴とする請求項64のディ スプレイシステム。

【請求項67】

前記高色分散材料は、ポリスチレンであることを特徴とする請求項64のディスプレイシ ステム。

【請求項68】

前記第2のレンズ群は、前記第1の方向において正の倍率を生成し、前記第2の方向にお いて正の倍率を生成することを特徴とする請求項62のディスプレイシステム。

前記第2のレンズ群は、2つの軸外回転対称面と、2つの円錐曲線柱面と、を有すること を特徴とする請求項55のディスプレイシステム。

【請求項70】

前記第2のレンズ群は、前記画像の色収差を補正するように、低色分散材料で構成される 少なくとも1つのレンズと、高色分散材料で構成される少なくとも1つの追加レンズと、 を備えることを特徴とする請求項55のディスプレイシステム。

10

50

20

【請求項71】

前記低色分散材料は、アクリルであることを特徴とする請求項70のディスプレイシステム。

【請求項72】

前記低色分散材料は、ゼオネクス(登録商標)であることを特徴とする請求項70のディスプレイシステム。

【請求項73】

前記高色分散材料は、ポリスチレンであることを特徴とする請求項70のディスプレイシステム。

【請求項74】

前記第3のレンズ群は、前記第1の方向において正の倍率を生成し、前記第2の方向において負の倍率を生成することを特徴とする請求項68のディスプレイシステム。

【請求項75】

前記第3のレンズ群は、1つの軸外回転対称面と、5つの円錐曲線柱面と、を有することを特徴とする請求項55のディスプレイシステム。

【請求項76】

前記第3のレンズ群は、前記画像の色収差を補正するように、低色分散材料で構成される少なくとも1つのレンズと、高色分散材料で構成される少なくとも1つの追加レンズと、 を備えることを特徴とする請求項55のディスプレイシステム。

【請求項77】

前記低色分散材料は、アクリルであることを特徴とする請求項76のディスプレイシステム。

【請求項78】

前記低色分散材料は、ゼオネクス(登録商標)であることを特徴とする請求項76のディ スプレイシステム。

【請求項79】

前記高色分散材料は、ポリスチレンであることを特徴とする請求項76のディスプレイシステム。

【請求項80】

前記結像素子は、前記第1の方向及び前記第2の方向において、等しく前記画像の倍率を 増大させることを特徴とする請求項54のディスプレイシステム。

【請求項81】

前記結像素子は、少なくとも1つの回転対称面を有することを特徴とする請求項54のディスプレイシステム。

【請求項82】

前記結像素子は、前記画像の色収差を補正するように、低色分散材料で構成される少なくとも1つのレンズと、高色分散材料で構成される少なくとも1つの追加レンズと、備えることを特徴とする請求項54のディスプレイシステム。

【請求項83】

前記低色分散材料は、アクリルであることを特徴とする請求項82のディスプレイシステ 40 ム。

【請求項84】

前記低色分散材料は、ゼオネクス(登録商標)であることを特徴とする請求項82のディスプレイシステム。

【請求項85】

前記高色分散材料は、ポリスチレンであることを特徴とする請求項82のディスプレイシステム。

【請求項86】

前記結像素子は、前記画像源の中心長手軸に対して傾斜され、偏心化された少なくとも1つのレンズを有することを特徴とする請求項54のディスプレイシステム。

【請求項87】

前記最終素子は、ミラーであることを特徴とする請求項54のディスプレイシステム。 【請求項88】

前記最終素子は、前記第1の方向及び前記第2の方向において、両方アナモルフィック、 且つ、円錐曲線である双円錐曲線面を有することを特徴とする請求項87のディスプレイ システム。

【請求項89】

前記アナモルフィック拡大器は台形歪みの補正を行い、前記アナモルフィック拡大器内での前記台形歪みの補正は主に前記第1のレンズ群で行われ、前記結像素子、第2のレンズ群及び第3のレンズ群を含むレンズ群の少なくとも1つによって付加的な補正が行われる 10 ことを特徴とする請求項55のディスプレイシステム。

【請求項90】

前記最終素子と前記表示画像平面との間の主光線は、互いに非平行であることを特徴とする請求項54のディスプレイシステム。

【請求項91】

前記最終素子は、正の倍率を有することを特徴とする請求項90のディスプレイシステム

【請求項92】

前記第1のレンズ群と前記第2のレンズ群との間に、折り返しミラーが配置されることを 特徴とする請求項55のディスプレイシステム。

【請求項93】

前記第2のレンズ群と前記第3のレンズ群との間に、折り返しミラーが配置されることを 特徴とする請求項55のディスプレイシステム。

【請求項94】

前記第1のレンズ群と前記2のレンズ群との間に第1の折り返しミラーが配置され、前記第2のレンズ群と前記第3のレンズ群との間に第2の折り返しミラーが配置されることを特徴とする請求項550のディスプレイシステム。

【請求項95】

前記画像源は、色画像結合プロジェクターであることを特徴とする請求項54のディスプレイシステム。

【請求項96】

前記結像素子、アナモルフィック拡大器及び最終素子の曲率中心は、それぞれ共通平面内 に整列されることを特徴とする請求項54のディスプレイシステム。

【請求項97】

前記画像源、前記結像素子、前記アナモルフィック拡大器及び前記最終素子は、それぞれ前記画像上に傾斜をもたらすことを特徴とする請求項54のディスプレイシステム。

【請求項98】

前記画像源、前記結像素子、前記アナモルフィック拡大器及び前記最終素子から成る群から選択される1つ以上の素子は、前記画像上に傾斜をもたらすことを特徴とする請求項5 4のディスプレイシステム。

【請求項99】

前記結像素子内のレンズ群は、それぞれ中心長手光軸に沿って整列され、前記アナモルフィック拡大器内の少なくとも1つのレンズは、前記中心長手光軸に対して傾斜され、偏心化されていることを特徴とする請求項54のディスプレイシステム。

【請求項100】

前記アナモルフィック拡大器は、球面、非球面、回折面、及びフレネル面から成る群から 選択されるタイプの少なくとも1つの表面を有することを特徴とする請求項54のディス プレイシステム。

【請求項101】

前記結像素子内のレンズ群は、それぞれ中心長手光軸に沿って整列され、前記アナモルフ 50

20

30

40

イック拡大器は、球面及び非球面の表面を有し、前記アナモルフィック拡大器内の少なくとも1つのレンズは、前記中心長手光軸に対して傾斜され、偏心化されていることを特徴とする請求項54のディスプレイシステム。

【請求項102】

前記アナモルフィック拡大器内の各群は、前記画像に傾斜をもたらすことを特徴とする請求項55のディスプレイシステム。

【請求項103】

前記最終素子は、フレネル面を有することを特徴とする請求項54のディスプレイシステム。

【請求項104】

前記表示画像平面は、前記複数の導波路の前記複数の第1の端部により画成されることを 特徴とする請求項54のディスプレイシステム。

【請求項105】

前記入射角 θ は、約 5 0° ~ 8 5° の範囲内にあることを特徴とする請求項 5 4 のディスプレイシステム。

【請求項106】

前記入射角 θ は約7.8°であることを特徴とする請求項1.0.5のディスプレイシステム。 【請求項1.0.7】

前記ディスプレイシステムは、2つ以上の光学システムを有することを特徴とする請求項54のディスプレイシステム。

【請求項108】

3つの光学系を有し、これらの光学系は赤、緑及び青の光を投影することを特徴とすることを特徴とする請求項54のディスプレイシステム。

【請求項109】

前記複数の導波路のそれぞれは、前記出口面に沿って水平方向に連続して延在する平坦な リボン状として形成されることを特徴とする請求項54のディスプレイシステム。

【請求項110】

表示画像平面上にゼロより大きい入射角 θ にて画像を投影する方法であって、 画像源から画像を投影する段階、

結像素子を用いて前記投影された画像から画像を形成する段階、

アナモルフィック素子であって、第1の方向において前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記画像の倍率を増大させるアナモルフィック拡大器を用いて、前記画像のアナモルフィックディストーションを低減させる段階、最終素子を用いて前記表示画像平面に向けて前記画像を指向させる段階、

の各段階を含むことを特徴とする前記方法。

【請求項111】

光学パネルの表示画像平面上にゼロより大きい入射角 θにて画像を表示する方法であって

画像源から画像を投影する段階、

結像素子を用いて前記投影された画像から画像を形成する段階、

アナモルフィック素子であって、第1の方向において前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記画像の倍率を増大させるアナモルフィック拡大器を用いて、前記画像のアナモルフィックディストーションを低減させる段階、最終素子を用いて前記表示画像平面に向けて前記画像を指向させる段階、

取終素士を用いて則記表示画像平面に同けて前記画像を指向させる段階、 の各段階を含み、

前記光学パネルは、複数の積層された光導波路であって、各々が第1の端部と第2の端部とを有し、前記複数の第1の端部によって出口面が画成され、前記複数の第2の端部によって入口面が画成される複数の積層された光導波路を有し、前記光学パネルは更に、前記入口面に対し非垂直な軸から前記入口面に対し垂直な軸へと、光進行を再指向させる、少なくとも1つの結合器を前記入口面に有することを特徴とする前記方法。

10

30

20

40

50

30

40

【請求項112】

光学パネルと、表示画像平面上にゼロより大きい入射角 θ にて画像を投影するための少なくとも1つの光学系と、を有するディスプレイシステムであって、

複数の積層された光導波路であって、各々が第1の端部と第2の端部とを有し、前記複数の第1の端部によって出口面が画成され、前記複数の第2の端部によって入口面が画成され、前記入口面は実質的に前記出口面に対し平行である複数の積層された光導波路と;前記入口面に対し非垂直な軸から前記入口面に対し垂直な軸へと、光進行を再指向させる、前記入口面に設けられる少なくとも1つの結合器と;を備える光学パネルと、

画像源と;前記画像源から画像を形成するための結像素子と;前記画像のアナモルフィックディストーションを低減させるためのアナモルフィック拡大器であって、第1の方向に 10 おいて前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記画像の倍率を増大させるアナモルフィック拡大器と;前記表示画像平面に向けて前記画像を指向させるための最終素子と;をそれぞれが備える少なくとも1つの光学系と、を有することを特徴とする前記ディスプレイシステム。

【請求項113】

光学バネルの表示画像平面上にゼロより大きい入射角 θ にて画像を表示する方法であって

画像源から画像を投影する段階、

結像素子を用いて前記投影された画像から画像を形成する段階、

アナモルフィック素子であって、第1の方向において前記画像の倍率を減少させ、前記第 20 1の方向に対し垂直な第2の方向において前記画像の倍率を増大させるアナモルフィック 拡大器を用いて、前記画像のアナモルフィックディストーションを低減させる段階、最終素子を用いて前記表示画像平面に向けて前記画像を指向させる段階、の各段階を含み、

前記光学パネルは、複数の積層された光導波路であって、各々が第1の端部と第2の端部とを有し、前記複数の第1の端部によって出口面が画成され、前記複数の第2の端部によって入口面が画成され、前記入口面は実質的に前記出口面に対し平行である複数の積層された光導波路を有し、前記光学パネルは更に、前記入口面に対し非垂直な軸から前記入口面に対し垂直な軸へと、光進行を再指向させる、少なくとも1つの結合器を前記入口面に有することを特徴とする前記方法。

【請求項114】

表示画像平面上にゼロより大きい入射角 θ にて画像を投影するための光学系であって、画像源と、

前記画像源から画像を形成するための結像素子と、

前記画像のアナモルフィックディストーションを低減させ、又前記表示画像平面に向けて前記画像を指向させるためのアナモルフィック拡大器であって、第1の方向において前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記画像の倍率を増大させるアナモルフィック拡大器と、

を有することを特徴とする前記光学系。

【請求項115】

光学パネルと、表示画像平面上にゼロより大きい入射角 θ にて画像を投影するための少なくとも1つの光学系と、を有するディスプレイシステムであって、

複数の積層された光導波路であって、各々が第1の端部と第2の端部とを有し、前記複数の第1の端部によって出口面が画成され、前記複数の第2の端部によって入口面が画成される複数の積層された光導波路と;前記入口面に対し非垂直な軸から前記入口面に対し垂直な軸へと、光進行を再指向させる、前記入口面に設けられる少なくとも1つの結合器と;を備える光学パネルと、

画像源と;前記画像源から画像を形成するための結像素子と;前記画像のアナモルフィックディストーションを低減させ、又前記表示画像平面に向けて前記画像を指向させるためのアナモルフィック拡大器であって、第1の方向において前記画像の倍率を減少させ、前 50

記第1の方向に対し垂直な第2の方向において前記画像の倍率を増大させるアナモルフィック拡大器と;をそれぞれが備える少なくとも1つの光学系と、

を有することを特徴とする前記ディスプレイシステム。

【請求項116】

光学パネルと、表示画像平面上にゼロより大きい入射角 θ にて画像を投影するための少なくとも1つの光学系と、を有するディスプレイシステムであって、

複数の積層された光導波路であって、各々が第1の端部と第2の端部とを有し、前記複数の第1の端部によって出口面が画成され、前記複数の第2の端部によって入口面が画成され、前記入口面は実質的に前記出口面に対し平行である複数の積層された光導波路と;前記入口面に対し非垂直な軸から前記入口面に対し垂直な軸へと、光進行を再指向させる、前記入口面に設けられる少なくとも1つの結合器と;を備える光学パネルと、

画像源と;前記画像源から画像を形成するための結像素子と;前記画像のアナモルフィックディストーションを低減させ、又前記表示画像平面に向けて前記画像を指向させるためのアナモルフィック拡大器であって、第1の方向において前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記画像の倍率を増大させるアナモルフィック拡大器と;をそれぞれが備える少なくとも1つの光学系と、

を有することを特徴とする前記ディスプレイシステム。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、一般には、ディスプレイ装置の分野に関するものである。特に、本発明は、ディスプレイ装置上に画像を結合させるための光学系及び方法に関するものである。より詳細には、本発明は、超薄型平面光学ディスプレイ装置上に画像を結合させるための光学系及び方法に関し、これは入射する画像に対して傾斜されたディスプレイ装置上に画像が投影される場合に一般に起こるディストーション(歪曲)を低減若しくは排除することができる。

【背景技術】

[0 0 0 2]

光学スクリーンは、画面(スクリーン)上に画像を投影するために、一般には、陰極線管(CRT)を用いる。標準的なTVスクリーンは、幅対高さの比率が4:3で、525本 30の垂直解像線を有する。集合的に画像を形成する多数の画素(ピクセル)を形成するために、電子ビームがスクリーン上で水平方向及び垂直方向の両方に走査される。

[0003]

従来の陰極線管は、サイズ上実際的な限界があり、所要の電子銃を収容するために比較的 奥行きが深い。通常各種の型式の画像投影を備えた、より大型のスクリーンが入手可能で ある。しかしながら、このようなスクリーンは、限定された視角 (viewing angle)、解 像度、明るさ(輝度、明度)及びコントラストを含む、観る上での種々の短所を有し、又 このようなスクリーンは、一般に、比較的扱い難い重さ及び形状である。更に、全てのサ イズのスクリーンに関し、視野コントラストを向上させるために黒色に見えることが望ま しい。しかし、直視CRTが実際に黒色であることは、それが画像を形成するために蛍光 40 体を利用し、この蛍光体が黒色ではないため不可能である。

[0004]

各々が第1の端部と第2の端部とを有する光導波路を積層することによって、光学パネルを作製することができる。この光学パネルにおいては、複数の第1の端部によって出口面が画成され、複数の第2の端部によって入口面が画成される。このようなパネルは、その高さ及び幅と比較してその奥行きを薄くすることができる。又、各導波路のクラッドは、黒色表面積を増大させるために黒色とすることができる。しかし、このようなパネルは、画像光を入口面にわたり分配するために、高価で、扱い難い投影機器を必要とすることがある。これにより、この機器は、全体のサイズ、及びパネルのコストを増大させる。

[0005]

従って、積層された導波路パネルに対応する利点を有するが、高価で、扱い難い投影機器 を用いる必要がなく、又そのような機器のために必要となるサイズ及びコストの増大の不 利益を被ることのない光学パネルが必要とされている。

[0006]

ハウジング(筐体)(光学パネル及び投影機器を収納する。)の奥行きが最小限であるこ とが要求される光学パネルにおいては、一般に、投影機器は、その全体の寸法的制約に適 応するように配置される。従って、投影機器の配置が、標的とされるパネルの出口面に対 して鋭い角度にて指向される画像経路を要求することがある。そして、一般に出口面の表 面は画像経路に対して高度に傾斜されているため、合焦 (集束) され、又ディストーショ ンのない画像を生成することのできる結像系は重要である。適切に集束された画像が要求 10 されるのみならず、出口面の表面上に生成された画像は、色収差が僅かであるか若しくは 無いものでなければならず、又所望のアスペクト比を保持すると共に画像の線形的点間(point-to-point) マッピングを維持しなければならない。

[0007]

従って、画像経路に対して高度に傾斜された入口面の表面上に正確な画像を生成すること ができ、不適切に集束された画像、及び色収差、誤ったアスペクト比及び一致しない画像 の線形的点間マッピングをもたらす画像ディストーションの不利益を被ることのない光学 パネル用光学系が必要とされている。

【発明の開示】

[0008]

本発明は、表示画像平面上にゼロより大きい入射角にて画像を投影するための光学系に関 する。前記光学系は、画像源と、結像素子と、を有する。前記結像素子は、前記画像源か ら画像を形成する。前記光学系はまた、前記画像のアナモルフィック (歪像) ディストー ションを低減させるためのアナモルフィック拡大器、前記表示画像平面に向けて前記画像 を反射するための最終ミラーを有する。前記アナモルフィック拡大器は、第1の方向にお いて前記画像の倍率を減少させ、前記第1の方向に対し垂直な第2の方向において前記画 像の倍率を増大させる。更に、前記アナモルフィック拡大器は、第1のレンズ群と、第2 のレンズ群と、第3のレンズ群とを有する。前記第1のレンズ群及び前記第2のレンズ群 は第1のアナモルフィック拡大系を形成し、前記第2のレンズ群及び前記第3のレンズ群 は第2のアナモルフィック拡大系を形成する。前記アナモルフィック拡大器はまた、前記 30 画像の色収差を補正するために、1つ以上の光学材料で構成されてよい。本発明はまた、 光学系と光学パネルとの組み合わせを有するディスプレイシステムに関する。

[0009]

本発明は、画像経路に対して高度に傾斜された入口面の表面上に正確な画像を生成する、 減少された光経路を有し、又誤ったアスペクト比又は一致しない画像の点間マッピングを もたらす色収差、不適切に集束された画像、画像ディストーションの不利益を被ることの ない光学系を提供することによって、高価で、扱い難い投影機器の使用などの従来技術に て経験された問題点を解決する。本発明はまた、向上されたコントラスト、又パネル及び 周囲のハウジングの最小限とされた奥行きといった、積層された導波路パネルに対応する 利点を保持する。

[0010]

本発明のこれら及び他の優位性及び利点が、以下の発明の詳細な説明から明らかとなるだ ろう。

【発明を実施するための最良の形態】

[0011]

本発明が明快に理解され、容易に実施され得るように、本発明を添付の図面との関係にお いて説明する。

[0 0 1 2]

本発明の図面及び説明は、本発明の明快な理解に関連する要素を例示するために単純化さ れ、一方明確さを期すために、典型的な光学ディスプレイパネルにおいて見出される他の 50

20

多くの要素を省略していることを理解されたい。当業者は、本発明を実施するために他の 要素が望ましく且つ/或いは必要であることを認識するだろう。しかし、そのような要素 は斯界にて周知であり、又それらが本発明のより良い理解を容易とすることはないので、 そのような要素の議論は本明細書では提供しない。

[0013]

本開示のために、「光導波路」なる用語は、光を導くために全反射(全内部反射)を利用する如何なるタイプの光案内部材をも包含するものとして定義する。

[0.0.14]

図1は、光学パネル10を示す概略等角図である。光学パネル10は、複数の導波路10 aであって、各導波路10aの一端部がその導波路のための入口を形成し、各導波路10 aの反対側の端部がその導波路のための出口を形成する複数の導波路10aと、光発生系(システム)12と、光発生系12及び複数の導波路10aがその中に搭載されるハウジング14と、結合器(カプラー)16とを有する。

[0015]

各導波路10aは水平方向に延在し、又複数の積層された導波路10aは垂直(縦)方向に伸長する。複数の入口端部は、画像光22を受容するための入口面20を画成する。複数の出口端部は、光22を表示するための、入口面20と実質的に平行に配置される出口面24を画成する。光22は、限定されるものではないが、ビデオ(映像)画像22aのような形態にて表示することができる。

[0016]

ハウジング14は、光発生系12と複数の導波路10aとの組み合わせよりも大きい高さ及び幅のサイズとされ、複数の導波路10a及び光発生系12をその中に配置することができる。ハウジング14は、出口面24を見ることができるように開放した前面を有し、又上記開放した前面からハウジング14の背面へと見て閉じた奥行きDを有する。

[0017]

光発生系12は、導波路10aを通して観察される光22を提供する。光発生系12は、光源30、及び光源30からの入射光22を結合器16内へと再指向させる光再指向素子32を有する。この光再指向素子32は、結合器16と協働して、ハウジング14の奥行きDの低減を可能とする。複数の導波路10aの垂直方向の積み重ねに近接して又平行にハウジング14内に配置される光源30からの光22の方向を、結合器16内へと変え、次いで光22の方向を導波路10a内へと鋭く変えるように光再指向素子32を構成する場合に、この奥行き低減が許される。結合器16は、複数の導波路10aを通したほぼ水平方向の透過(伝達)を生成するために、好ましくは、典型的には約45°から約90°までの範囲内で画像光を曲げるのに効果的なものである。光発生系12はまた、変調器(モジュレータ)62、更には結像光学素子64を有する。光発生系12については、図2を参照してより詳細に議論する。

[0018]

入口面 20 及び出口面 24 の平行な表面は、パネル 10 及び取り囲むハウジング 14 の奥行きを極薄に作製することを可能とする。パネル 10 は、入口面 20 と出口面 24 との間の各導波路 10 aの奥行きである公称厚さTを有する。厚さTは、本質的に出口面 24 の 40 高さ 10 高さ 10 高さ 10 以外 10 以の 10 以

[0019]

図2は、超薄型光学パネル10の概略側面断面図である。光学パネル10は、複数の積層された導波路10a、光発生系12、結合器16、及びハウジング14を有する。

[0020]

光発生系12は、本発明の一実施例においては、光再指向素子32に対し光学的に整列さ 50

れたプロジェクター(投影機)60を有する。画像は、光再指向素子32上に投影され、 次いで出口面24上での表示のために導波路群10aを通して透過するように、結合器1 6へと再指向される。好ましい実施例では、プロジェクター60は、入口面20に対し略 平行な画像光22を投影するために、入口面20の頂部に隣接して配置され、又導波路群 10aを通した透過のために、画像光22の向きを光再指向素子32から結合器16内へ と変えることができるように十分な距離だけ、入口面20から離隔される。

プロジェクター60は、光22を生成するために適当な光源30を有していてよい。光源 30は、電球(例えば、フィラメント又はアークタイプのもの)又はレーザであってよい 。プロジェクター60は、光22を変調して画像22aを形成するための変調器62を有 10 していてよいスライドプロジェクター又はビデオプロジェクターとすることができる。変 調器62は、例えば、通常の液晶ディスプレイ(LCD)、ディジタルマイクロミラー装 置(DMD)、GLV、レーザラスタスキャナ、PDLC、LCOS、MEMS、又はC RTであってよい。プロジェクター60はまた、結合器16への適切に集束(合焦)され た透過(伝達)のために、光再指向素子32を超えて水平方向及び垂直方向に画像光22 を分配若しくは広げるための、適当な結像(画像)光学素子64を有していてよい。結像 光学素子64は、集束(フォーカシング)及び拡大レンズ類及び/又はミラー類を有して いてよい。結合器16の1つ若しくはそれ以上の部分へと光を提供するために、1つ若し くはそれ以上の光発生系12、例えば2~4個の光発生系12を用いることができる。結 像光学素子64及び光再指向素子32の両方のために拡大レンズを用いることができ、画 20 像光22を結合器16上で垂直方向及び水平方向の両方に拡大することができる。別法で は、適当なラスタシステムを光発生系12として用いてもよく、結合器16を超えて水平 方向及び垂直方向の両方に画像光22をラスタリングすることによって画像を形成するこ とができる。

[0022]

[0021]

図示の実施例においては、光22は、先ず、プロジェクター60から垂直下方に、ハウジング14内で、各光再指向素子32が取り付けられたその底部へと投影され、次いで、各光再指向素子32は、結合器16の露出した全表面にわたり広げるために、画像光22をパネル10に垂直な表面に対して大きい角度にて垂直上方に再指向させる。別の実施例においては、プロジェクター60は、入口面20の背後ではなく、下部又は入口面20の何 30 れのサイドにも配置することができる。

[0023]

許容し得る結合器 16上の画像光 22の入射角は、光 22の方向をパネル 10の入口面 20内へと曲げる結合器 16の能力によって決定される。結合器 16の曲げ能力がより大きければ、ハウジング 14に要求される奥行き Dを低減するために、プロジェクター 60をカプラー 16のより近くに取り付けることができる。

[0024]

図3は、超薄型光学パネル10の概略水平及び垂直断面を示す。パネル10は、複数の垂直方向に積層された光導波路10a、光発生系12(図2参照。)、結合器16、及びハウジング14を有する。

[0025]

複数の導波路10aの各導波路10aは、第1の屈折率を有する中央透明コア80を備える。コア80は、限定されるものではないが、プレキシガラス又はポリマー類のような、それを通して光波を通過させるのに適していることが斯界にて知られている如何なる材料で形成してもよい。中央コア80は、ジェネラルエレクトリック社(General Electric Company)(登録商標)から市販されているレクサン(Lexan)(登録商標)のような光学プラスチック、又はBK7のようなガラスで形成することができる。本発明の好ましい実施例は、典型的には厚さが2~1000ミクロン(μm)の範囲内にあり、扱い易い長さ及び幅であってよい個別のガラスシートを用いて実施される。中央コア80は、少なくとも2つのクラッド層82の間にラミネートされる。コア80と直接触するクラッド層

82は、コア80の屈折率よりも低い第2の屈折率を有し、これにより光22がコア80を通して透過される際に、光22の実質的な全反射を可能とする。クラッド82は、例えば、適当なプラスチック、プレキシガラス、ガラス、接着剤、ポリウレタン、低屈折率ポリマー、又はエポキシであってよく、又好ましくは黒色である。多重クラッド層82が用いられる場合、クリア(透明)なクラッド層がガラスに接触し、黒色に着色された層が跨接するクリアなクラッド層間に配置されることが好ましく、これにより出口面24の視野コントラスト及びコア80を通した光22の全反射の両方を向上させる。少なくとも1つの黒色に着色された層を用いることで、出口面24における黒色に着色された層により、コントラストの向上をもたらす。更に、出口面24における黒色に着色された層により、コントラストの向上をもたらす。更に、出口面24における黒色に着色された層のより、コントラストの向上をもたらす。更に、出口面24における黒色に着色された層のより、コントラストの向上をもたらす。更に、出口面24における黒色に着色された層により、コントラストの向上を接合するにおける黒色に着色された層において直視可能である。加えてもおける黒色に着色された層において、黒色噴霧塗料、又は隣接するコア80同士を接合するエポキシ接着剤中のカーボン粒子などのような、如何なる適当な手法によっても形成することができる。クラッド層82及びコア80を形成する手法については、後述してより詳細に議論する。

[0026]

好ましい実施例の各導波路10aは、出口面24の幅に沿って水平方向に連続して延在する平坦なリボン状の形態にて形成される。各リボン状導波路10aは、好ましくは出口面24の高さに沿って垂直方向に積層される。従って、パネル10の垂直解像度は、出口面24の高さに沿って積層される導波路10aの数に依存する。例えば、525個の導波路20を積層すれば、525本の垂直解像線が提供される。勿論、より多くの導波路が、相応のより高い解像度をもたらし得ることが想定される。

[0027]

複数の積層された導波路10aは、先ず、第1のガラスシートを、この第1のガラスシー トよりも僅かに大きいサイズのトラフ(槽)内に配置することによって形成することがで きる。次いで、このトラフは、熱硬化性エポキシで満たすことができる。エポキシは、導 波路間に黒色層を形成し、それによって向上した視野コントラストを提供するために好ま しくは黒色である。更に、このエポキシは、ガラスシートよりも低い屈折率を有しガラス シート内での光22の実質的な全反射を可能とするなどの、適当なクラッド層82の特性 を有するべきである。トラフを満たした後、ガラスシート80を繰り返し積層し、各ガラ スシート80の間にエポキシの層を形成する。この積層工程は、好ましくは約500~2 000枚積層されるまで繰り返す。次いで、この積層体に一様な圧力を印加することがで き、これによってエポキシを流動させ、ガラスシート80間で略一様なレベルと成す。本 発明の好ましい実施例では、得られるこの一様なレベルは、ガラスシート80の間で約0 . 0002インチ (0.000508cm) である。次いで、この積層体は、エポキシを 硬化させるのに必要とされる時間だけ、昇温下にてベーキング(焼成)して硬化させるこ とができる。その後、この積層体は、ガラスのクラッキング (亀裂) を防ぐためにゆっく りと冷まされる。硬化した後、この積層体は、限定されるものではないが、ダイヤモンド 鋸のような鋸に対して配置することができ、所望のサイズに切断することができる。次い で、パネル10の切断部分を研磨することができ、如何なる鋸痕(saw mark)をも除去す 40 ることができる。

[0028]

本発明の別の実施例においては、複数のガラスシート80は個別に、ガラスの屈折率よりも低い屈折率を有する物質でコートするか、又はそれに浸漬される。そして、この複数のコートされたシートを、好ましくは黒色である接着剤又は熱硬化性エポキシを用いて互いに固定する。第1のコートされたガラスシート10aを、この第1のコートされたガラスシート10aよりも僅かに大きいサイズのトラフ内に配置し、このトラフを熱硬化性黒色エポキシで満たし、又コートされたガラスシート10aを繰り返し積層し、各コートされたガラスシート10a間にエポキシの層を形成する。この積層工程は、好ましくは約500~2000枚積層されるまで繰り返す。次いで、この積層体に一様な圧力を印加するこ

とができ、その後エポキシを硬化させ、又この積層体を所望のサイズへと鋸で切断する。 この積層体は、湾曲状又は平坦に鋸で切断することができ、又鋸で切断した後に艷消し (フロスト) にしたり或いは研磨したりすることができる。

[0029]

本発明の更に別の実施例においては、ガラスシート80は、好ましくは0.5インチ(1.27 cm)~1.0インチ(2.54 cm)の範囲内の幅を有し、1.2インチ(3.048 cm)~3.66(9.11.44 cm)インチといった取り扱い易い長さである。シート80は、各シート80の間に配置される黒色の紫外線接着剤の層と共に積層される。次いで、各接着剤層を硬化させるために紫外線放射を用い、その後この積層体を切断及び/又は研磨することができる。

[0030]

上記各実施例のそれぞれの方法はまた、積層体の鋸での切断及び/又は研磨の後に、積層体の入口面20に結合器16を接着する工程、及びそれに接着された結合器16を有する積層体を矩形ハウジング14内に固定する工程をも含んでいてよい。積層体は、ハウジング14の開放した全面を出口面24と整列させるように、又ハウジング14内の光発生器12が光学的に結合器16と整列されるように固定される。

[0031]

光発生系12は、結合器16上に入射する光22を提供し、又光発生系12は実質的に図 2を参照して議論したように構成される。光発生系12の光源30は、ハウジング14の 容積及び奥行きを最小化するように適当な位置にて、ハウジング14内に取り付けること ができる。光源30は、ハウジング14内で、その頂部において入口面20の直ぐ後ろに 取り付けることができる。これにより、光源30は、最初、光22を垂直下方に投影し、 次いで、この光22の向きは、結合器16と光学的に係合するように、光発生系12の光 再指向素子32によって垂直上方へと変えられる。本発明の好ましい実施例においては、 個々の導波路10aは、傾斜せずに水平方向に延在する。従って、画像を、観察者による 直視のために導波路10aを通して直接水平方向に透過することができ、これにより観察 者が、最大の輝度のために光22の全強度を受容することを可能にする。他の実施例は、 導波路群10aの傾斜を含んでいてよい。ディスプレイの視角 (viewing angle) の向上 をもたらすために、出口面24上に拡散性材料のシートを任意に設けることができる。別 法では、拡散性の材料のシートの代わりに、同様に視角の向上をもたらすために、出口面 24自体中に、拡散性表面を形成することができる。このように、最大輝度のために、光 発生系12から入射する光22は、実質的に水平方向に曲げられなければならない。ブリ ズム結合器16を、入口面20内への入射のために、90°までの角度にて光を曲げるの に使用することができる。本発明の一実施例では、透過型直角フィルム (トランスミッシ ブライトアングルフィルム: Transmissive Right Angle Film) (TRAF)が、81° の角度にて光を曲げる。

[0032]

導波路群10aを通した透過のために、入口面20内に光発生系12から入射する光22を結合又は再指向させるように、光結合器16は、入口面20の全面に隣接し、入口面20の全面に適当に接着することができる。本発明の導波路10a(即ち、より詳細にはコア80)は、入射光22を受容するための受け入れ角の限界を有することがあり、結合器16は、画像光22を適当に曲げて、許容し得る受け入れ角の範囲内で導波路コア80に確実に入れるように整列される。

[0033]

本発明の好ましい実施例においては、結合器16は、入口面20の幅に沿って直線状で、入口面20の高さに沿って垂直に間隔が開けられたプリズム状溝16aを有する。このプリズム結合器16は、光を90°の角度まで曲げることができる。本発明の他の好ましい実施例においては、プリズム結合器16は、3M社(3M Company)(登録商標)[セントポール、ミネアポリス]から商標TRAF II(登録商標)として市販されているTRAFである。溝16aにて如何なる迷光22をも導波路群10a内に反射し戻すために、

任意に反射器(リフレクター)をプリズム結合器 16に極近接して設けることができる。本発明の更に他の好ましい実施例においては、結合器 16 (又は光再指向性表面) は、代わりに入口面 20自体内に形成することができる。

[0034]

結合器 1 6 はまた、回折素子 1 6 の形態をとることもできる。回折結合器 1 6 は、水平方向に延在し、且つ、個々の導波路 1 0 a と平行な、多数の小さい溝を備えた回折格子を有する。この溝は、入口面 2 0 の高さにわたり垂直方向に、互いに接近して離隔されている。結合器 1 6 は、限定されるものではないが、ホログラフィック若しくはフレネル素子類を含むその他の形態をとることもできる。用いる光学系に対するパネル 1 0 の配向によっては、結合器 1 6 を任意にパネル 1 0 から省略することをも想定される。

[0035]

ハウジング14は、実質的に閉じた囲いの中に導波路積層体10a及び光発生系12を支持する。出口面24は、外側に面し観察者及び周辺光に露出され、入口面20及び隣接する結合器16は、ハウジング14内の好ましくは黒色の表面に向かって内側に面し、これにより出口面24におけるコントラストのための付加的な黒色を提供する。この付加的な黒色は、導波路群10a及び結合器16の受動的性質によって、出口面24において提供される。これらの受動素子が黒色領域内に囲包される場合、出口面24は、入口面20上に入射する画像光22によって照明されてないときに黒色に見えるだろう。

[0036]

図4は、光学パネル10(これもまた図解のために図4中に示される。)上に画像源110からの画像を投影するために用いられる光学系100(即ち、パネル10以外)を示す単純化された概略背面図である。光学系100は、図2を参照して上述した光発生系12に取って代わることができる。光学系100は、画像源110、結像素子120、アナモルフィック拡大器(テレスコープ,望遠鏡)130、及び最終ミラー140を有する。光学パネル10は、図1~3に対応する上記実施例に記載したタイプのものであってよい。或いは、光学パネル10は、当業者による設計的選択若しくは日常的な実験に依存する異なるタイプのものであってもよい。例えば、光学パネル10は、通常の映写(レンズ)用透過投影(背面投影)スクリーンであってよい。画像源110、結像素子120、アナモルフィック拡大器130及び最終ミラー140は全て、好ましくは、理想的にこれら光学素子の曲率中心の全てを含む単一の平面について名目上対象である。ここでの議論のためにのみ、本明細書においてこの平面を「y-z平面」と言う。

[0037]

本明細書で用いられる場合、入射角 θ は、画像源の中心から表示画像平面の中心へと引いた線と、表示画像平面に対して垂直な線との間に形成される角度として定義する。図5に示されるように、画像源の中心から表示画像平面の中心へと引いた線は、最終ミラー140によって反射される。画像は、好ましくはゼロより大きい入射角 θ にて表示画像平面上に投影される。本発明の好ましい実施例において、入射角 θ は、約50° ~ 85° の範囲内にある。本発明のより好ましい実施例においては、入射角 θ は約50° ~ 85° の範囲

[0038]

この構成に関する傾斜(ティルト)は本質的なものであるため、画像源又は画像平面の光 40学的傾斜は、好ましくは、光学列(オプティカルトレイン)の全体にわたり徐々に展開される。換言すれば、光学列中の光学素子群、即ち、結像素子120、アナモルフィック拡大器130、及び最終ミラー140は、それぞれ、対象の画像上に傾斜をもたらす。しかし、これは、光学列中の光学素子群のうち1つ若しくは幾つかのみを用いて達成することもできる。画像源110及び結像素子120及びパネル10を傾斜させるには、仮想中間画像平面(virtual intermediate image plane)上に中間傾斜をもたらすためにScheimpf1 ug(スキムフラグ)の法則を利用する。

[0039]

結像素子120は、画像源110の平面(「対象平面」)と、標的たる入口面20の平面 50

(「表示画像平面」)との間で成す角度の中間の角度にて、仮想中間画像平面中に仮想画像を形成する。アナモルフィック拡大器 130及び最終ミラー 140もまた、X軸に関して傾斜され、最終画像平面の更なる傾斜をもたらす。アナモルフィック拡大器 130による傾斜作用は、光学系 100が傾斜された画像を生成するのに不可欠ではないが、ある程度の傾斜をアナモルフィック拡大器 130によって提供し、これにより画像の品位を向上させることは有用である。

[0040]

画像源110は、照明された対象、例えばLCD若しくはDMD、又は放射する対象、例 えばLEDアレイ若しくはレーザであってよい。好ましい実施例において、画像源110 は、色画像結合プロジェクター (chromatic image-combining projector) である。結像 素子120は、第1の方向及びこの第1の方向に対し垂直な第2の方向において、画像源 110からの画像の倍率を増大させる。好ましい実施例においては、結像素子120は、 第1の方向及びこの第1の方向に対し垂直な第2の方向において、等しく画像源110か らの画像の倍率を増大させる。結像素子120は、画像の色収差(即ち、横方向及び縦(長手)方向の両方におけるもの)を補正するように、低色分散材料で構成される少なくと も1つのレンズと、高色分散材料で構成される少なくとも1つの追加レンズとを備える。 本開示の目的にて、低色分散材料とは、その表面にて光が屈折する時に、それに関連して 高色分散材料と比較して少ない色分解を示す材料である。低色分散材料の例としては、ア クリル類 (acrylic) 及びゼオネクス (Zeonex) (登録商標) が挙げられる。ゼオ ネクス(登録商標)は、ゼオンケミカルズ (Zeon Chemicals) [ルイスビル、ケンタッキ 20 ー] から市販されている。高色分散材料の例としては、ポリスチレン及びポリカーボネー トが挙げられる。勿論、その他の低及び高色分散材料を、本発明の実施のために使用する ことができる。

[0041]

レンズの表面にて光が屈折するとき、例えば、低色分散材料で構成されていれば、長手(縦)方向の色分解が起こる。光がレンズを横切り、又第2の表面にて再び屈折された後、長手(縦)方向の色分解及び横方向の色ズレ(カラーオフセット)の両方がある場合がある。第1のレンズに隣接して若しくは近接して配置された際に、その効果が色分解及び色ズレを取り消すものである、高色分散材料で構成された、相殺(補正)形状を有する第2のレンズを利用することができる。好ましい実施例においては、第1のレンズは、それに隣接して若しくはその近傍にある高色分散材料で構成された第2のレンズの位置決めによって取り消すことのできる色展開を起こす低色分散材料で構成される。勿論、別法では、第1のレンズは、相殺(補正)する低色分散材料の第2のレンズがその後に続く、高色分散材料のものであってもよい。異なる色分散値を示す材料の対を用いることで、各対は、第1のレンズは、相殺(補正)する低色分散値を示す材料の対を用いることで、各対は、第2の上のであってもよい。異なる色分散値を示す材料の対を用いる場合、と対ができる。各レンズ群のためにこのタイプの「対を成す材料」を用いる場合、色はそれぞれのレンズ群を超えて決して分解されず、又全ての色が同一若しくは同様の光学経路(オプティカルパス、光学距離)を辿る。

[0042]

主な色補正は、結像素子120内で行われる。好ましい実施例においては、結像素子120は、低色分散材料で構成される3つのレンズと、高色分散材料で構成される2つのレンズを有する。結像素子120を構成する個々のレンズは、図6~10に詳細に示されている。結像素子120は、少なくとも1つの回転対称面を有し、又結像素子120を構成するレンズ群は、ガラス若しくはプラスチック、又はガラスとブラスチックとの組み合わせのいずれかで構成される。結像素子120は、球面、非球面、回折性(回折面)若しくはフレネルタイプ、又はこれらの表面タイプの組み合わせである少なくとも1つの表面を有していてよい。又、結像素子120は、画像源110の中心長手光軸に対して傾斜され、偏心化された少なくとも1つのレンズを有する。好ましくは、結像素子120は、全て、全群として画像源110の中心長手光軸に対して傾斜され、偏心化されたレンズ群から成る。

[0 0 4 3]

アナモルフィック拡大器130は、主に画像のアナモルフィックディストーションを低減 するために光学系100中に設けられ、好ましくは、光学系100の光学経路内にて結像 素子120に続いて配置される。但し、幾つかの構成においては、結像素子120を、光 学系100の光学経路内にてアナモルフィック拡大器130に続いて配置することが望ま しいことがある。本開示の目的にて、完全に合焦(集束)されたアナモルフィック光学系 は、第1の方向(例えば、水平方向)において、第1の方向に対し垂直な第2の方向(例 えば、垂直方向)とは異なる画像の倍率を有する。集束された4:3の投影された画像を 、水平軸に関して劇的に傾斜された表示画像平面上に表示すべきディスプレイシステムに おいては、画像の水平方向の広がりは比較的影響されないが、一方画像の垂直方向の広が 10 りは著しく伸長される。通常のアナモルフィック光学系も、一般に、伸長された画像を垂 直方向に収縮させ、一方水平方向の画像のアスペクトは影響されないままとするか、或い は伸長された画像を水平方向に拡大し、一方垂直方向の画像のアスペクトは影響されない ままとする。このタイプの「古典的な」アナモルフィック系は、2つのレンズ群を利用し 、又アナモルフィック拡大器のタイプとして呼ばれることがある。しかしながら、古典的 なアナモルフィック拡大器(即ち、2つのレンズ群から成るもの)を利用する場合、全て のアナモルフィック補正を1つの軸内に提供する。本発明の結果を達成するためにこのア プローチを用いると、高度に傾斜された表示画像平面の利用に起因する台形の画像ディス トーション(「台形歪み」 (keystone-type distortion) としても知られる。)、画像の 色収差及び画像の不十分な集束の前補正(プレコレクション)が不可能になるなどの、深 20 刻な設計上の問題をもたらす可能性のある非常に強力な光学レンズが必要とされるだろう

[0044]

古典的なアナモルフィック拡大器の上述の欠点を克服するために、本発明のアナモルフィック拡大器130を利用する。アナモルフィック拡大器130は、第1の方向において画像の倍率を減少させ、第1の方向に対し垂直な第2の方向において画像の倍率を増大させる。アナモルフィック拡大器130は、3つのレンズ群、即ち、第1のレンズ群131及第2のレンズ群132、及び第3のレンズ群133を有する。第1のレンズ群131及び第2のレンズ群132は、第1のアナモルフィック拡大系(システム)を形成する。第2のレンズ群132は、第1のアナモルフィック拡大系(システム)を形成する。第1のアナモルフィック拡大系は、第2のアナモルフィック拡大系を形成的に用いられ、一方第2のアナモルフィック拡大系は、第1の方向に対し垂直な第2の方において画像の倍率を増大させる。第1及び第2のアナモルフィック拡大系の機能は、において画像の倍率を増大させる。第1及び第2のアナモルフィック拡大系は、第1の方に対ける画像の倍率を減少させるために用いることができ、一方第1のアナモルフィック拡大系は第2の方向における画像の倍率を増大させる。

[0045]

第2のレンズ群132が、第1のアナモルフィック拡大系及び第2のアナモルフィック拡大系の両方のためのレンズ群として機能する二重の役割を有するのは明らかである。斯かる方法にて(即ち、第1のアナモルフィック拡大系及び第2のアナモルフィック拡大系の両方の部分として)第2のレンズ群132を利用することで、第2の方向における画像の比較的穏やかな(即ち、古典的なアナモルフィック系と比較して)拡大を備えることにより第1の方向における画像の比較的穏やかな(即ち、古典的なアナモルフィック系と比較して)減少を提供する光学系を可能とし、同時にコンパクトな光学系を提供する。第1の方向における画像の倍率を減少させる第1のアナモルフィック拡大系と、第2の方向における画像の倍率を増大させる第2のアナモルフィック拡大系とを組み合わせて用いることで、結果的に、首尾一貫した画像の線形的点間マッピングを備える画像の正確な最終的アスペクト比をもたらす。

[0046]

3つのレンズ群のそれぞれの中には、非球面の表面を有していてよい少なくとも1つのシ 50

リンドリカル素子又は左右対称性素子がある。好ましい実施例においては、第1のレンズ 群131は、2つの軸外回転対称面と、2つの円錐曲線柱面 (conic cylindrical surfac e) とを有する。但し、本発明の範囲内において、より多くの又はより少ないレンズ群を 用い得ることも想定される。第1のレンズ群131は、第1の方向において負の倍率 (ne gative power) を生成し、第1の方向に対し垂直な第2の方向において正の倍率 (positi ve power) を生成する。第1のレンズ群131は、画像の色収差を補正するように、低色 分散材料で構成される少なくとも1つのレンズと、高色分散材料で構成される少なくとも 1つの追加レンズとを備える。低色分散材料の例としては、アクリル類及びゼオネクス (登録商標)が挙げられる。高色分散材料の例としては、ポリスチレンが挙げられる。勿論 、その他の低及び高色分散材料を、本発明の実施において用いることができる。好ましい 10 実施例において、第1のレンズ群131は、低色分散材料で構成される1つのレンズと、 高色分散材料で構成されるもう1つのレンズとを有する。第1のレンズ群131を構成す る個々のレンズは、図6~10に詳細に示される。第1のレンズ群131は、少なくとも 1つの回転対称面を有し、又第1のレンズ群131を構成するレンズ群は、ガラス若しく はプラスチック、又はガラスとプラスチックとの組み合わせの何れかで構成される。第1 のレンズ群131は、球面、非球面、回折性若しくはフレネルタイプ、又はこれらの表面 タイプの組み合わせである少なくとも1つの表面を有していてよい。又、第1のレンズ群 131は、結像素子120を構成するレンズ群の中心長手光軸に対して傾斜され、偏心化 された少なくとも1つのレンズを有していてよい。好ましくは、第1のレンズ群131は 、全て結像素子120を構成するレンズ群の中心長手光軸に対して傾斜され、偏心化され 20 たレンズ群から成る。

[0047]

第2のレンズ群132は、好ましくは、2つの軸外回転対称面と、2つの円錐曲線柱面と を有する。但し、本発明の範囲内において、より多くの又はより少ないレンズ群を用い得 ることが想定される。第2のレンズ群132は、第1の方向において正の倍率 (positive power) を生成し、第1の方向に対し垂直な第2の方向において正の倍率 (positive pow er)を生成する。第2のレンズ群132は、画像の色収差を補正するように、低色分散材 料で構成される少なくとも1つのレンズと、高色分散材料で構成される少なくとも1つの 追加レンズとを備える。低色分散材料の例としては、アクリル類及びゼオネクス(登録商 標)が挙げられる。高色分散材料の例としては、ポリスチレンが挙げられる。勿論、その 30 他の低及び高色分散材料を、本発明の実施において用いることができる。好ましい実施例 において、第2のレンズ群132は、低色分散材料で構成される1つのレンズと、高色分 散材料で構成されるもう1つのレンズとを有する。第2のレンズ群132を構成する個々 のレンズは、図6~10に詳細に示される。第2のレンズ群132は、少なくとも1つの 回転対称面を有し、又第2のレンズ群132を構成するレンズ群は、ガラス若しくはプラ スチック、又はガラスとプラスチックとの組み合わせで構成される。第2のレンズ群13 2は、球面、非球面、回折性若しくはフレネルタイプ、又はこれらの表面タイプの組み合 わせの何れかである少なくとも1つの表面を有していてよい。又、第2のレンズ群132 は、結像素子120を構成するレンズ群の中心長手光軸に対して傾斜され、偏心化された 少なくとも1つのレンズを有していてよい。好ましくは、第2のレンズ群132は、全て 結像素子120を構成するレンズ群の中心長手光軸に対して傾斜され、偏心化されたレン ズ群から成る。

 $[0\ 0\ 4\ 8]$

第3のレンズ群133は、好ましくは、1つの軸外回転対称面と、5つの円錐曲線柱面とを有する。但し、本発明の範囲内にて、より多くの又はより少ないレンズを利用し得ることが想定される。第3のレンズ群133は、第1の方向において正の倍率 (positive power)を生成し、第1の方向に対し垂直な第2の方向において負の倍率 (negative power)を生成する。第1の方向における倍率の減少は、第1のレンズ群131における負の倍率 (negative power)、及び第2のレンズ群132における正の倍率 (positive power)によって達成された。第2の方向における倍率の増大は、第2のレンズ群132における正 50

の倍率(positive power)、及び第3のレンズ群133における負の倍率(negative pow er) によって達成された。好ましい実施例においては、第1のレンズ群131は、第2の 方向において低い正の倍率 (positive power) を生成し、第3のレンズ群133は、第1 の方向において低い正の倍率 (positive power) を生成する。第3のレンズ群133は、 画像の色収差を補正するように、低色分散材料で構成される少なくとも1つのレンズと、 高色分散材料で構成される少なくとも1つの追加レンズとを備える。低色分散材料の例と しては、アクリル類及びゼオネクス(登録商標)が挙げられる。高色分散材料の例として は、ポリスチレンが挙げられる。勿論、その他の低及び高色分散材料を、本発明の実施に おいて用いることができる。好ましい実施例において、第3のレンズ群133は、低色分 散材料で構成される1つのレンズと、高色分散材料で構成されるもう1つのレンズとを有 10 する。第3のレンズ群133を構成する個々のレンズは、図6~10に詳細に示される。 第3のレンズ群133は、少なくとも1つの回転対称面を有し、又第3のレンズ群133 を構成するレンズ群は、ガラス若しくはプラスチック、又はガラスとプラスチックとの組 み合わせの何れかで構成される。第3のレンズ群133は、球面、非球面、回折性若しく はフレネルタイプ、又はこれらの表面タイプの組み合わせである少なくとも1つの表面を 有していてよい。又、第3のレンズ群133は、結像素子120を構成するレンズ群の中 心長手光軸に対して傾斜され、偏心化された少なくとも1つのレンズを有していてよい。 好ましくは、第3のレンズ群133は、全て結像素子120を構成するレンズ群の中心長 手光軸に対して傾斜され、偏心化されたレンズ群から成る。

[0049]

各レンズ群及び結像素子120内の種々のレンズが、所望の補正の量若しくはタイプに応じて、それぞれ光学系100の中心長手光軸101(図4)に対して傾斜され、偏心化されていてよい。個々の構成要素群に対するこの調整(即ち、傾斜化及び偏心化)は、日常的な実験を通して決定することができ、従って本開示に照らして当業者には明らかとなう。各レンズは、光学系100の他の残りの素子から独立して配列又は調整することができる。例えば、配列又は調整が、第2のレンズ群132が光学系100の中心長手光軸101に対して正(positive)の傾斜を有することを要求することがあるが、一方で第1のレンズ群131及び第3のレンズ群133がそれぞれ光学系100の中心長手光軸101に対して負(negative)の傾斜を有することを要求するだろう。勿論、その他の構成も、本明細書の記載に照らして、本発明の範囲内にある。或いは、アナモルフィック拡大器130の各レンズ群内のレンズの正確な数は、光学系の全体構成(上述の傾斜化及び色収差補正を含む。)、入射角 θ の値、所望の倍率、及び所望の画像品位に依存してよい。【0050】

第1のレンズ群131内での傾斜及び/又は偏心化の有意量を利用することで、台形歪みの本質的な補正が起こる。好ましくは第1のレンズ群131内のレンズによって提供されるものよりも小さい程度にではあるが、結像素子120、第2のレンズ群132、及び第3のレンズ群133内の幾つか若しくは全てのレンズもまた、台形歪みの補正に寄与し得る。

[0051]

光学系100内の最終ミラー140は、主に画像を表示画像平面に向けて反射するために用いられ、画像の光学経路中第3のレンズ群133に続いて配置される。最終ミラー140は、好ましくは、第1の方向及び第1の方向に対し垂直な第2の方向において独立してアナモルフィック、且つ、円錐曲線である双円錐面(biconic)を有する。好ましい実施例においては、最終ミラー140は正の倍率(positive power)を有し、又好ましくは最終ミラーと表示画像平面との間で、互いに対して非平行である光線を反射するように構成される。台形歪みの補正は、レンズ群中で上述のように起こるので(又、主に、好ましくは最も大きい傾斜を有する第1のレンズ群131中で起こるので)、台形歪みは平行光線に頼ることなく補正される。光学系100の全体にわたるその他のレンズが、台形歪みの補正を助け、緩やかな(漸次の)、従って、単一の素子によって行われるよりも、より穏やかな補正をもたらす。別法では、最終ミラーと表示画像平面との間の光線が互いに対し

て平行であるように、最終ミラー140を構成することが望ましいことがある。そして、 この特定の構成においては、このタイプの最終ミラー140に反射する主な光線(即ち、 そこで反射された平行光線を有するもの)は、更に分離することはなく (即ち、円錐形で はなく)、従ってこの構成によって、結果的に無限遠から来るように見える画像源をもた らす。いずれの構成においても、最終ミラー140は、任意に台形歪みを低減若しくは排 除するのを助けるように構成することができる。又、所望に応じて、最終ミラー140は 、任意に対象の画像上に傾斜を導入するために用いることができ(上述)、又任意に画像 を集束させるために用いることもできる。更に、別法では、最終素子140は、球面、非 球面、フレネル、平面若しくは回折面、又はその組み合わせであってよい。結像素子12 0、アナモルフィック拡大器130、及び最終ミラー140の曲率中心は、好ましくは、 それぞれ共通平面内に整列される。又、結像素子120、アナモルフィック拡大器30及 び最終ミラー140から選択される1つ又は2つの素子が、画像上に傾斜をもたらす。よ り詳細には、それぞれが画像上に傾斜をもたらす結像素子120、アナモルフィック拡大 器130、及び最終ミラー140を有することが望ましい。任意に、最終ミラー140は 、透過型素子、又は透過型/反射型素子の組み合わせによって置き換えることができる。 別法では、最終ミラー140は省略することも可能である。

[0052]

結像素子120内、又はアナモルフィック拡大器130を構成する3群中のレンズを用い て台形の補正を提供するための別の方法として、台形型歪みの低減若しくは排除を電子的 に行うことができる。例えば、画像源110は、投影経路の光学素子によって引き起こさ れる台形型歪みを補償する「逆台形型歪み」を有する画像を生成するように構成されたD MDであってよい。勿論、この歪み補正手法は、光学系中に設けられる他の如何なる歪み 補正若しくは集束素子を補償するためにも用いることができる。この手法は、DMD変調 器に関連して説明したが、ラスタスキャナ又はLCDなどの他の変調器を用いてもよい。 [0053]

図5は、図4に示すタイプの好ましい光学系100を用いる超薄型光学パネル10を示す 概略側面図である。図6は、光学バネルと共に図5に概略示されるタイプの好ましい光学 系における特定のレンズ素子群を示す詳細側面図である。一般に入手可能な光学的設計ソ フトウェア、例えば、ゼマックス(ZEMAX)、バージョン9. 0 (フォーカスソフト ウェア社: Focus Software, Inc.) などを、光学系100内の個々の素子/群の各表面領 域に対応する種々の特性(例えば、半径、厚さ、ガラスのタイプ、直径(倍率)、及び表 面が円錐曲線であるかなど)を記述するのを支援するために用いることができる。図6~ 7に示される典型的な構成において、ゼマックスソフトウェアは、表1に示すようなそれ らの表面特性を記述する表面データを出力する。表面#(番号) OBJ~#3(表1の左 側欄中に示される)に関する表面データは、画像源110に対応する。表面#6~#15 、#24~#27、#30~#33、及び#36~#41に関する表面データは、それぞ れ結像素子120、第1のレンズ群131、第2のレンズ群132、及び第3のレンズ群 133に対応する。表面#44に関する表面データは、最終ミラー140に対応する。表 面#48~#IMAに関する表面データは、パネル10の1つのモデルに対応する。表1 中に記載された形状、組成、及び素子の定義を示す特定の名称は、ゼマックスの取扱説明 40 書に記述される規格に従う。

[0054]

勿論、個々の素子/群のそれぞれに対する他の表面データの値が、本開示に照らして、当 業者には明白となろう。従って、それは、光学系100内の個々の素子/群の全体構成及 び配置(上述の傾斜を含む。)、入射角 heta の値、及び所望の画像品位に応じて、日常的な 実験を通して決定することができる。

[0055]【表 1】

表1 光学系100内の個々の素子のそれぞれに関する表面データの 概要及び詳細を記述するゼマックス(ZEMAX)ソフトウェアの出力

Surf Typ	e Radius	Thickness	Glass	Diameter	
Conic					
OBJ STANDAR	D Infinity	10000		19.94653	10
STO STANDAR	D Infinity	-10000		3554.857	
0 .		2.2			
2 STANDAE	D Infinity	90	SFL57	19.94653	
3 STANDAR	D Infinity	0		37.08317	
0 4 COORDBE	!K -	13			
-					•
5 COORDBR	- K	0			
6 STANDAR	eD -193,9193	. 3	POLYSTYR	62.24857	
0	20 10015	7 5		C4 #2050	
7 EVENASE	PH 77.12215	1.5		64.52058	20
8 STANDAR	218.4338	19	ZEON480R	64.74043	
0 9 EVENASI	°H -52.84822	0.5		66.36415	
0					
10 EVENASI	PH 49.08624	18.5	ZEON480R	62.70585	
11 EVENASI	PH -67,60375	2.481307		61.4723	
0 12 EVENASE	PH 74.80689	4	POLYSTYR	46.89625	
0	74,00003	-	* 25.544.45.4	1010,022	
13 STANDAR	ND 40.09159	1.066642		41.29904	
14 EVENASI	PH 60.42716	5	ZEON480R	41.10136	
O TE COMPANIONA				22 44564	20
15 STANDAI	RD 47.51392	4.344381		37.44564	30
16 STANDAR	Infinity	-59.39233		36.9 6 545	
0 17 COORDBE	ek -	69.39233		-	
-					
18 COORDBI	εк	45		~	•
19 COORDBE	- EK	2		-	
- 20 COORDBE		0			
-	-	Ů		_	
21 TOROIDA	L Infinity	•		0	
0 22 COORDBI	- RK	~ 2		*	
-		_			40
23 COORDBI	RK -	0		-	

40

(表1の続き)

24 0	BICONICX	Infinity	4.5	ACRYLIC	105.1232		
25	EVENASPH	350.0003	7.5		99.38359		
	BICONICX	Infinity	4.5	POLYSTYR	94.47566		
	EVENASPH	83.47696	~16.5		82.78123		
0 28	COORDBRK	· ·	100				10
29	COORDBRK	-	. 0		· · · -		
30	BICONICX	Infinity	17	POLYSTYR	152.1916		
0 31	EVENASPH	-498.0031	7.5		154.9292		
0 32	BICONICX	328.9291	32	ACRYLIC	161.8571		
0 33	EVENASPH	-211.3969	-56.5		162.2234		
0 34	COORDBRK	· <u>-</u>	175		ne.		
-	COORDBRK		· c				
	BICONICX	Infinity		ACRYLIC	534,5		20
0	BICONICX	Infinity	20		532.8953	•	
O		_		* CONT. T.O.			
0	BICONICX	-	11.875	ACRYLIC	528.8599		
39 0	BICONICX	Infinity	10		527.2552		
40 0	BICONICX	Infinity	-5	POLYSTYR	525.2375		
41	EVENASPH	400	-48.75		520.4943		
_	COORDBRK	-	708.75				
43	COORDBRK	-	o		-		30
	BICONICX	~6038.072	o	MIRROR	716.4895		
	1398 COORDBRK	-	~340		-		
46	COORDBRK		0				
47	COORDBRK	-	o				
48	STANDARD	Infinity	-12.7	ACRYLIC	918.3966		
O IMA	STANDARD	Infinity		BK7	933.8467		
0							

SURFACE DATA DETAIL:

Surface OBJ : STANDARD
Scattering : None
Surface STO : STANDARD
Scattering : None
Surface 2 : STANDARD

```
: None
Scattering
Surface 3
               : STANDARD
               : None
Scattering
               : COORDBRK
Surface 4
Decenter X
Decenter Y
                        10.229896
Tilt About X
                       -17.916146
Tilt About Y
                                o.
Tilt About Z
                                0
Order
               : Decenter then tilt
                                                                                          10
 Scattering
               : None
Surface 5
               : COORDBRK
Decenter X
                                0
 Decenter Y
                                n
 Tilt About X
                        21.963548
Tilt About Y
                                0
 Tilt About Z
                                Ð
               : Decenter then tilt
 Order
Scattering
               : None
               : STANDARD
Surface 6
Scattering
               : None
               : EVENASPH
Surface 7
Coeff on r 2 :
 Coeff on r 4
                  -7.6365947e~006
Coeff on r 6
                 8.2389495e-009
              :
                                                                                          20
Coeff on r 8 : -6.4927098e-012
                  3.8564522e-015
Coeff on r 10
 Coeff on r 12
              : -1.4897253e-018
Coeff on r 14
               : 1.9404697e-022
 Coeff on r 16
                                Π
 Scattering
               : None
               : STANDARD
Surface 8
Scattering
               : None
Surface 9
               : EVENASPH
Coeff on r 2
Coeff on r 4
               2
                  1.1540499e-006
               =
 Coeff on r 6 :
                 -6.5212774e-010
 Coeff on r 8
               .
                   4.1919239e-013
 Coeff on r 10
                  5.8009771e-017
               .
                  -2.3798683e-019
 Coeff on r 12
                                                                                          30
 Coeff on r 14
                   1.85S2364e-022
 Coeff on r 16
               :
Scattering
               : None
               : EVENASPH
Surface 10
 Coeff on r 2 :
 Coeff on r 4
                  -6.6616345e-006
               Coeff on r 6
                  -2.9177847e-009
                  4.0710705e-012
Coeff on r 8
 Coeff on r 10
                  -1.3118453e-015
 Coeff on r 12
Coeff on r 14
                                 0
Coeff on r 16
                                 0
Scattering
               : None
               : EVENASPH
Surface 11
 Coeff on r 2
                                                                                          40
                                 0
 Coeff on r 4
Coeff on r 6
                                 o
Coeff on r 8
                                 Ö
 Coeff on r 10
                                 O
 Coeff on r 12
```

```
Coeff on r 14
 Coeff on r 16
 Scattering
                : None
Surface 12
                : EVENASPH
 Coeff on r 2
                  -2.3046574e-006
 Coeff on r 4
 Coeff on r 6
                    4.9958897e-009
 Coeff on r 8
                    7.7451265e-013
                  -1.9299055e-015
 Coeff on r 10
                                                                                           10
 Coeff on r 12
                                 0
 Coeff on r 14
                                 0
                                 Ω
 Coeff on r 16
 Scattering
Surface 13
                : STANDARD
 Scattering
                : None
Surface 14
                : EVENASPH
 Coeff on r
                   8.7986807e-006
 Coeff on r 4 :
 Coeff on r 6
                   -2.2204077e-009
 Coeff on r 8
                   -3.1936648e-012
                                 0
 Coeff on r 10
 Coeff on r 12
                                 Ð
 Coeff on r 14
                                 0
 Coeff on r 16
                                                                                           20
 Scattering
                : None
Surface 15
                : STANDARD
                : None ·
 Scattering
Surface 16
                : STANDARD
Scattering
                : None
Surface 17
                : COORDBRK
 Decenter X
 Decenter Y
                                 O
 Tilt About X
                        -21.963548
 Tilt About Y
                                 O
 Tilt About Z
                                 Û
 Order
                : Tilt then decenter
 Scattering
                : None
                  COORDBRK
Surface 18
 Decenter X
                                 Ð
                                                                                           30
 Decenter Y
                                  0
 Tilt About X
                                  0
 Tilt About Y
                                 0
 Tilt About Z
                                  ø
 Order
                : Decenter then tilt
 Scattering
                : None
Surface 19
                : COORDBRK
 Decenter X
                                 0
 Decenter Y
                                 0
 Tilt About X
 Tilt About Y
                                  o
 Tilt About Z
                : Decenter them tilt
 Order
 Scattering
                : None
Surface 20
                : COORDBRK
                                                                                          40
 Decenter X
                                  Ð
 Decenter Y
                                 Ð
 Tilt About X
                                 55
 Tilt About Y
                                  0
 Tilt About Z
 Order
                 : Decenter then tilt
```

```
Scattering
                : None
Surface 21
                : TOROLDAL
Rad of rev.
Coeff on y^2
Coeff on \hat{y}^4
                                 0
Coeff on y'6
Coeff on y^8
                                 0
Coeff on yalo
                                 0.
Coeff on y^12
                                 0
                                                                                            10
Coeff on y 14
                                 0
Scattering
Surface 22
                : COORDBRK
Decenter X
                                 0
December Y
                                 0
 Tilt About X
                                -55
Tilt About Y
                                 0
Tilt About Z
                                 0
Order
                : Decenter then tilt
Scattering
                : None
Surface 23
                : COORDBRK
Decenter X
December Y
                        -66.296228
Tilt About X
                               -30
Tilt About Y
                                 0
                                                                                            20
Tilt About Z
Order
                : Decenter then tilt
Scattering
                : None
Surface 24
                : BICONICX
                       ~387.32209
X Radius
X Conic
                       -267.03867
Aperture
                : Rectangular Aperture
X Half Width
                            15
Y Half Width
                             20
Y- Decenter
                              37.5
Scattering
                : None
Surface 25
                : EVENASPH
Coeff on r 2
Coeff on r 4
Coeff on r 6
                   -2.8438997e-007
                   1.4417908e-010
               =
                                                                                            30
Coeff on r B
               : -4.3731403e-014
Coeff on r 10
                   5.1611474e-018
Coeff on r 12
Coeff on r 14
                                 0
Coeff on r 16
                                 0
Aperture
                : Rectangular Aperture
X Half Width
                            15
Y Half Width
                             20
Y- Decenter
                              37,5
Scattering
                : None
Surface 26
                : BICONICX
X Radius
                       127.25182
X Conic
                       ~0.73067967
                  Rectangular Aperture
Aperture
X Half Width
                             1.5
                                                                                            40
Y Half Width
                             20
Y- Decenter
Scattering
                : None
Surface 27
                : EVENASPH
Coeff on r 2
Coeff on r 4 :
                  1.7830073e-006
```

	•					
	Coeff on r 6	: -6.824874Be-010				
	Coeff on r 8					
	Coeff on r 10	: -6.940471e-017				
	Coeff on r 12	: 0				
	Coeff on r 14	= 0				
	Coeff on r 16	: 0				
	Aperture	: Rectangular Aperture				
	X Half Width	: 15				
	Y Half Width	: 20				10
-	Y- Decenter	: 30				
	Scattering	: None		•		•
	Surface 28	: COORDBRK			•	
	Decenter X	: 0				
,	Decenter Y	: 66,296228				
	Tilt About X	: 30				
	Tilt About Y	: 0				
	Tilt About Z	: 0				
	Order	: Tilt then decenter				
	Scattering	: None				
	Surface 29	: COORDBRK				
	Decenter X	: 0				
	Decenter Y	: -40.738965				
	Tilt About X	1 -17.109512				20
	Tilt About Y	: 0				20
	Tilt About Z	: 0				
	Order	: Decenter then tilt				
	Scattering	: None				
	Surface 30	: BICONICX				
	X Radius	: 183.73015				
	X Conic	: -0.43100708				
	Aperture	: Rectangular Aperture				
	X Half Width	: 40				
		50				
•		35				
		: None	,			
		: EVENASPH				
		: 0				
	Coeff on r 4	: -2.3071702e-008				30
	Coeff on r 6	: 1.8940836e-012				
	Coeff on r 8	: -1.5192564e-016				
	Coeff on r 10	÷ 0				
	Coeff on r 12	÷ 0				
	Coeff on r 14	÷ 0				
	Coeff on r 16	: 0				
		: Rectangular Aperture				
		: 40				
		· 50				
		= 3\$				
		: None				
		: BICONICX				
		: 0				
		: 0				
	Aperture	: Rectangular Aperture				40
	X Half Width					
		: 50				
		35				
		: None				
		: Evenasph				
		0				
	Coeff on r 4	2.6979e-009				

```
Coeff on r \cdot 6 : -2.7244033e-014
 Coeff on r 8
                   8.9679739e-017
               :
 Coeff on r 10
 Coeff on r 12
                                 o
 Coeff on r 14
                                o
 Coeff on r 16
                                Ü
Aperture
                : Rectangular Aperture
 X Half Width
                            40
                                                                                          10
 Y Half Width
                            50
 Y- Decenter
 Scattering
                : None
Surface 34
                : COORDBRK
 Decenter X
 December Y
                        40.738965
 Tilt About X
                        17.109512
 Tilt About Y
 Tilt About Z
                                 0
                : Tilt then decenter
 Order
 Scattering
                : None
Surface 35
                : COORDBRK
Decenter X
                        240.74828
 Decenter Y
 Tilt About X
                        1.8789527
                                                                                          20
 Tilt About Y
                                Ð
 Tilt About Z
                                6
 Order
                : Decenter then tilt
 Scattering
                : None
                : BICONICX
Surface 36
 X Radius
                       -52.407587
 X Conic
                       -1.0669935
 Aperture
                : Rectangular Aperture
 X Half Width
                            40
 Y Half Width
                             60
 Y- Decenter
                             -215
 Scattering
                : None
Surface 37
                : BICONICX
 X Radius
                  360.14619
 X Conic
                               0
                                                                                         30
                : Rectangular Aperture
Aperture
 X Half Width
                             60
 Y Half Width
                             60
 Y- Decenter
                              -215
 Scattering
                : None
Surface 38
                : BICONICX
 X Radius
                        -52.407587
 X Conic
                        -1.0669935
 Aperture
                 Rectangular Aperture
 X Half Width
                            40
 Y Half Width
                            60
 Y- Decenter
                             .-215
 Scattering
                : None
Surface 39
                : BICONICX
 X Radius
                        360.14619
                                                                                         40
 X Conic
 Aperture
                : Rectangular Aperture
 X Half Width
                             60
 Y Half Width
                             60
 Y- Decenter
                              ~215
 Scattering
                : None
                : BICONICX
Surface 40
```

```
X Radius
                          111.4054
 X Conic
                         -8.322084
 Aperture .
                 : Rectangular Aperture
 X Half Width
                             70
 Y Half Width
                             60
 Y- Decenter
                              -215
 Scattering '
                 : None
 Surface 41
                : EVENASPH
 Coeff on r 2 :
                                                                                          10
 Coeff on r 4
                = -2.1490064e-008
 Coeff on r 6
                   2.3665096e-013
 Coeff on r 8
                : -1.7247128e-018
 Coeff on r 10
                   5.2496812e-024
                :
 Coeff on r 12
                                 0
 Coeff on r 14
                                 Ģ
 Coeff on r 16
                                 0
 Aperture
                : Rectangular Aperture
 X Half Width
                           80
 Y Half Width
                             60
 Y- Decenter
                              -215
 Scattering
                : None
Surface 42
                : COORDBRK
 Decenter X
 Decenter Y
                        -240.74828
                                                                                          20
 Tilt About X
                        -1.8789527
 Tilt About Y
                                 0
 Tilt About Z
                                 Ω
 Order
                : Tilt then decenter
 Scattering
                : None
Surface 43
                : COORDBRK
 Decenter X
 Decenter Y
                          132.5782
 Tilt About X
                               6.5
 Tilt About Y
                                 0
 Tilt About Z
 Order
                : Tilt then decenter
 Scattering
                : None
Surface 44
                : BICONICX
 X Radius
                  -1988.3354
                                                                                          30
 X Conic
                       -5.5500196
 Aperture
                : Rectangular Aperture
 X Half Width
                           360
 Y Half Width
                            80
 Y- Decenter
                              -120
 Scattering
                : None
Surface 45
                : COORDBRK
 December X
 Decenter Y
                         -132,5782
Tilt About X
                               6.5
Tilt About Y
                                0
Tilt About Z
                                 0
Order
                : Decenter them tilt
Scattering
Surface 46
                : COORDBRK
                                                                                          40
December X
                                 0
Decenter Y
                         12.127182
Tilt About X
                               78
Tilt About Y
                                ß
Tilt About Z
                                 o
Order
                : Decenter them tilt
```

10

20

30

(表1の続き)

Scattering : None Surface 47 : COORDBRK Ω Decenter X 0 Decenter Y Tilt About X 0 Tilt About Y Û 0 Tilt About 2 Decenter then tilt Order Scattering : None Surface 48 : STANDARD : Rectangular Aperture Aperture 360 X Half Width Y Half Width 300 Scattering : None : STANDARD Surface IMA : Rectangular Aperture Aperture X Half Width 360 300 Y Half Width Scattering : None

表中、「SURFACE DATA SUMMARY」は「表面データ概要」である。以下同様に、

Surf:表面、Conic:円錐曲線、Type:タイプ、Radius:半径、Thickness:厚さ、

Glass:ガラス、Diameter:直径、STANDARD:標準、Infinity:無限大、

COORDBRK: コーディネートブレイク、EVENASPH: 一様非球面 (イーブンアスフェリカル)、

TORO I DAL: トロイダル、POLYSTYR: ポリスチレン、ZEON480R: ゼオネクス480R、

ACRYLIC:アクリル、BICONICX:双円錐曲線 (バイコニック)、MIRROR:ミラー、

SURFACE DATA DETAIL:表面データ詳細、Surface:表面、Scattering:散乱、

None: なし、Decenter: 偏心化、Tilt About X(Y, Z): X (Y, Z)に関する傾斜、

Order: 順序、Decenter then tilt: 偏心化して傾斜化、Coeff on ~:~の係数、

Tilt then decenter:傾斜化して偏心化、Rad of rev.:回転半径、Aperture:開口、

Rectangular Aperture:矩形開口、Half Width:半値幅、である。

[0064]

上述の光学系100及びパネル10は、画像の色収差を補正する、ディストーションの無 い画像を生成する。この光学系100はまた、図11のスポットダイアグラムによって示 されるように、光学パネル10の出口面24の表面上に適正に集束された画像を生成する 。図11は、光学パネル10の種々の位置に投影された幾何学的画像のスポットを用いて 光学系100の画像集束性能を例証。この光学系100はまた、図12のグリッドディス トーションプロットダイアグラムによって示されるように、オリジナルの画像源のアスペ クト比を保持すると共に、2%未満のディストーションを有する画像の線形的点間マッピ ングを維持する。図12は、グリッド(格子)の交点が理想的な画像位置を示し、「x」 が実際の画像位置を示すグリッドディストーションプロットダイアグラムである。このグ リッドは、12.48mm×15.56mmの画像源のためのものである。このグリッド ディストーションプロットダイアグラムは、グリッド若しくはラティス(枠)のパターン を備える画像が画像源110の表面#OBJに配置された際の、出口面24の表面#IM Aを描く。本発明の光学系100に用いられるレンズは、好ましくは非平面で、プラスチ ックであり、従って結果的に成形過程におけるより一層の製造容易性をもたらす。更に、 本発明の光学系100を用いることで、上述のような種々のディストーション及び色収差 の低減によって、著しく高い解像度を得ることができる。上述のような色補正機構に必要 な複数のレンズは、台形歪みをその補正が単一の素子を用いて行われる場合に比べてより 穏やかな方法にて徐々に補正する系全体にわたって、より小さい傾斜群の有意量を加える のを助ける。

[0065]

他の好ましい実施例においては、アナモルフィック拡大器130内で光学系100の光学 経路を1回折り曲げるか若しくは複数回折り曲げて、それによって光学パネル10及び光 学系100を収納するハウジング14の全体の高さ、幅、及び奥行きDを減少させること が要求されることがある。図8は、光学パネルと共に他の光学系におけるレンズ素子群及 び折り返しミラーを示す詳細背面図である。この構成においては、折り返しミラー138 は、第1のレンズ群131と第2のレンズ群132との間に配置される。更に他の好まし 10 い実施例として、図9は、光学パネルと共に他の光学系におけるレンズ素子群及び折り返 しミラーを示す詳細背面図である。この構成においては、折り返しミラー139は、第2 のレンズ群132と第3のレンズ群133との間に配置される。更に他の好ましい実施例 として、図10は、光学パネルと共に他の光学系におけるレンズ素子群及び折り返しミラ ーを示す詳細背面図である。この構成においては、折り返しミラー138は、第1のレン ズ群131と第2のレンズ群132との間に配置され、一方折り返しミラー139は、第 2のレンズ群132と第3のレンズ群133との間に配置される。第1及び第2のアナモ ルフィック拡大系内に光学経路の折り返しを提供することによって、画像ディストーショ ン(例えば、色収差)が低減されると共に、要求されるハウジング14のサイズを低減す る。別のもう1つの光学系構成においては、任意に、折り返しミラーを、結像素子120 20 と第1のレンズ群131との間に設けることができる。この特定の折り返しミラーは、光 学系100内の折り返しミラーだけであってもよいし、或いは折り返しミラー138及び /又は折り返しミラー139との如何なる組み合わせを用いてもよい。

[0066]

当業者は、本発明の多くの修飾と変更を実施し得ることを認識するだろう。例えば、別法 では、結像素子120及びアナモルフィック拡大器130を構成する各レンズ群は、レン ズ群の代わりに、それぞれ付加的なミラー(群)又はレンズ/ミラーの組み合わせ(群) を有していてよい。結像素子120内のレンズ及び/又はアナモルフィック拡大器130 内の少なくとも1つのレンズをミラーと置き換えるか、或いは付加的なミラー素子群を提 供して、光学系100の光学経路中に付加的な折り返しをもたらし、それによって光学パ 30 ネル10及び光学系100を収納するハウジング14(図1~3)の全体的な厚さDを低 減することが要求されることがある。本発明の他の変形例として、別法では、アナモルフ イック拡大器は、3つより多いレンズ群で構成されてもよい。本発明の更に他の変形例と して、光学パネル10内の各導波路10aが垂直方向に延在し、複数の積層された導波路 10 aが水平方向に延在してもよい。この光学バネル10の他の構成においては、光源1 10は相応の寸法様式で、水平方向の配向の光を投影するだろう。このように、本発明の 光学系100は、変化する光学パネル寸法、サイズ及び/又は配向に適応するように構成 し得ることが想定される。本発明の更に他の変形例においては、図6及び図7に示すよう なシステムは、反射投影(全面投影)形式において、例えば、パネル10を反射投影に適 したスクリーンと置き換えることによって用いることができる。本発明の更なる変形例に おいては、別法として、色補正を達成するために、低及び高色分散性を有する素子群の代 わりに若しくはそれと共に、空隙及び/又は回折光学素子を有するような異なる素子群を 用いることができる。上述の説明及び添付の特許請求の範囲は、このような修飾及び変更 の全てを包含することを意図するものである。

【図面の簡単な説明】

[0067]

- 【図1】超薄型光学パネルを示す概略部分断面等角図である。
- 【図2】超薄型光学パネル及び光発生系の概略断面側面図である。
- 【図3】プリズム結合器を用いる超薄型光学パネルの概略水平及び垂直断面図である。
- 【図4】光学パネルと共に光学系を示す単純化された概略背面図である。

50

【図5】好ましい光学系を用いる超薄型光学パネルの概略側面図である。

【図 6 】 光学パネルと共に概略図 5 に示されるタイプの好ましい光学系におけるレンズ素子群を示す詳細側面図である。

【図7】光学パネルと共に概略図5に示されるタイプの好ましい光学系におけるレンズ素子群を示す詳細背面図である。

【図8】光学パネルと共に他の光学系におけるレンズ素子群及び折り返しミラーを示す詳細背面図である。

【図9】光学パネルと共に他の光学系におけるレンズ素子群及び折り返しミラーを示す詳細背面図である。

【図 10 】 光学パネルと共に更に他の光学系におけるレンズ素子群及び 2 つの折り返し > 10 ラーを示す詳細背面図である。

【図11】好ましい光学系及び光学パネルを用いた画像集束性能を示すスポットダイアグラムである。

【図12】好ましい光学系及び光学パネルを用いた画像ディストーションを示すグリッド ディストーションプロットダイアグラムである。

【図1】

[図2]

【図4】

[図5]

[図6]

[図7]

[図8]

【図9】

[図10]

【図11】

[図12]

グラフ中、「Unit IS ARE MICRONS」は「単位はミクロン」である。以下同様に、 FIELD:フィールド、RUS RADIUS: REAS 学様、GEO RADIUS: G E O 学優、 SCALE SAR:スケールバー、REFERENCE:対解、CENTROID:第心。 ERID DISTORTION:グリッドディストーション、MILLIWETERS:ミリメーター、 IMAGE: 画像、MAXIAMM OISTORTION: 最大ディストーション、SCALE:スケール、 MAVELENGTH: 財長、MICRONS:ミクロン、である。