# MACM 300 Formal Languages and Automata

Anoop Sarkar\*

http://www.cs.sfu.ca/~anoop

\*some slides taken from Jason Eisner's course materials

## Applications of Context-free Grammars

- There are many applications in computer science for context-free grammars
- We will focus here on a few canonical examples from:
  - Structured databases: e.g. XML
  - Compilers and Programming languages
  - Natural language processing
  - Biological sequence analysis

#### Structured Data: SGML, XML, ...

<DOC><SO> WALL STREET JOURNAL (J), PAGE B5 </SO>

<TXT>

New York Times Co. named Russell T. Lewis, 45, president and general manager of its flagship New York Times newspaper, responsible for all business-side activities.

He was executive vice president and deputy general manager. He succeeds Lance R. Primis, who in September was named president and chief operating officer of the parent.

</TXT></DOC>

## Programming Language Interpreter

- What is meaning of 3+5\*6?
- First parse it into 3+(5 \* 6)
- Now give a meaning to each node in the tree (bottom-up)



5 5 6 6

2

#### Interpreting in an Environment

- How about 3+5\*x?
- Same thing: the meaning of x is found from the environment (it's 6)



### Logic: Lambda Terms

- · Lambda terms:
  - A way of writing "anonymous functions"
    - · No function header or function name
    - But defines the key thing: **behavior** of the function
    - Just as we can talk about 3 without naming it "x"
  - Let square =  $\lambda p p^*p$
  - Equivalent to int square(p) { return p\*p; }
  - But we can talk about  $\lambda p$  p\*p without naming it
  - Format of a lambda term: λ variable expression

7

### Compiling

- How about 3+5\*x?
- Don't know x at compile time
- "Meaning" at a node is a piece of code, not a number
- 5\*(x+1)-2 is a different expression that produces *equivalent* code (can be converted to the previous code by optimization)



## Logic: Lambda Terms

- Lambda terms:
  - Let square =  $\lambda p p^*p$
  - Then square(3) =  $(\lambda p p^*p)(3) = 3*3$
  - Note: square(x) isn't a function! It's just the value x\*x.
  - But  $\lambda x$  square(x) =  $\lambda x$  x\*x =  $\lambda p$  p\*p = square (proving that these functions are equal – and indeed they are, as they act the same on all arguments: what is ( $\lambda x$  square(x))(y)?)
  - Let even =  $\lambda p \ (p \ mod \ 2 == 0)$  a predicate: returns true/false
  - even(x) is true if x is even
  - How about even(square(x))?
  - $-\lambda x \text{ even(square(x))}$  is true of numbers with even squares
    - Just apply rules to get λx (even(x\*x)) = λx (x\*x mod 2 == 0)
    - This happens to denote the same predicate as even does

#### Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...
- Suppose we want to write times(5,6)
- Remember: square can be written as λx square(x)
- Similarly, times is equivalent to  $\lambda x \lambda y$  times(x,y)

#### Logic: Multiple Arguments

- All lambda terms have one argument
- But we can fake multiple arguments ...
- Claim that times(5)(6) means same as times(5,6)
  - times(5) =  $(\lambda x \lambda y \text{ times}(x,y))$  (5) =  $\lambda y \text{ times}(5,y)$ 
    - · If this function weren't anonymous, what would we call it?
  - $\text{ times}(5)(6) = (\lambda y \text{ times}(5,y))(6) = \text{ times}(5,6)$
- So we can always get away with 1-arg functions ...
  - ... which might return a function to take the next argument.
  - We'll still allow times(x,y) as syntactic sugar, though

#### **Logic: Interesting Constants**

- Thus, have "constants" that name some of the entities and functions (e.g., times):
  - Gilly an entity
  - red a predicate on entities
    - holds of just the red entities: red(x) is true if x is red!
  - loves a predicate on 2 entities
    - loves(Gilly, Lilly)
    - Question: What does loves(Lilly) denote?
- Constants used to define meanings of words
- Meanings of phrases will be built from the constants

- · We've discussed briefly what semantic representations should look like.
- But how do we get them from sentences???
- First parse to get a syntax tree.
- Second look up the semantics for each word.
- Third build the semantics for each constituent
  - Work from the bottom up
  - The syntax tree is a "recipe" for how to do it

**Compositional Semantics** 

## **Compositional Semantics**

- Now Gilly loves Lilly has sem=loves(Lilly)(Gilly)
- In this manner we'll sketch a version where
  - Still compute semantics bottom-up
  - Grammar is in Chomsky Normal Form
  - So each node has 2 children: 1 function & 1 argument
  - To get its semantics, apply function to argument!

13

## **Compositional Semantics**



## **Compositional Semantics**





14

## CFG for RNA secondary structure

 $S_0 \rightarrow 5' S 3'$   $S \rightarrow P S \mid L$   $P \rightarrow g P c \mid c P g \mid a P u \mid u P a \mid L$  $L \rightarrow g L \mid c L \mid a L \mid u L \mid P L \mid e$ 

