

#### Class 12 Multiple Regression



### **Course Grading Scale**

94 -100 A

90-92 A-

87-89 B+

83-86 B

80-82 B-

77-79 C+

73-76 C

70-72 C-

69 and below F

# Review Simple Regression Analysis

- · Regression analysis is used to:
  - Predict the value of an outcome variable based on certain values of the predictor variable
  - Extension of correlation analysis



## Exercise # 1 Linear Regression Analysis in SPSS

- Is there a relationship between height and shoe size?
- Dataset in Class 12 folder on BB
- Run linear regression in SPSS
- · Graph the results on a scatterplot
- · Interpret output

## Exercise #2 Income and Education Level

|    | Education<br>Level (X) | Monthly income (Y) in thousands |  |  |
|----|------------------------|---------------------------------|--|--|
| 1  | 6 years                | 1                               |  |  |
| 2  | 8 years                | 1.5                             |  |  |
| 3  | 11 years               | 1                               |  |  |
| 4  | 12 years               | 2                               |  |  |
| 5  | 12 years               | 4                               |  |  |
| 6  | 13 years               | 2.5                             |  |  |
| 7  | 14 years               | 5                               |  |  |
| 8  | 16 years               | 6                               |  |  |
| 9  | 16 years               | 10                              |  |  |
| 10 | 21 years               | 8                               |  |  |

- Enter data into SPSS
- 2. Run linear regression
- 3. Graph the results on a scatterplot
- 4. Interpret results
- 5. Produce the regression equation
- Predict the monthly income for 15 years of education



#### Multiple Regression



**Multiple regression** simultaneously considers the influence of *multiple* explanatory variables on a response variable Y

# Multiple Regression 2+ Independent Variables

|    | Education<br>Level (X <sub>1</sub> ) | Years working (X <sub>2</sub> ) | Monthly income (Y) in thousands |
|----|--------------------------------------|---------------------------------|---------------------------------|
| 1  | 6 years                              | 10                              | 1                               |
| 2  | 8 years                              | 14                              | 1.5                             |
| 3  | 11 years                             | 8                               | 1                               |
| 4  | 12 years                             | 7                               | 2                               |
| 5  | 12 years                             | 20                              | 4                               |
| 6  | 13 years                             | 15                              | 2.5                             |
| 7  | 14 years                             | 17                              | 5                               |
| 8  | 16 years                             | 22                              | 6                               |
| 9  | 16 years                             | 30                              | 10                              |
| 10 | 21 years                             | 10                              | 8                               |

### Multiple Regression Model

$$\hat{y} = a + b_1 x_1 + b_2 x_2$$

y = predicted value of the outcome variable

a = y-intercept, where X's equal zero

b = coefficient or slope for each variable

X1 = the value of the first predictor

X2 = the value of the second predictor

10

#### Multiple Regression

- Test if the two predictors variables in combination are significantly related to, or predictive of the outcome variable, and how much of the variance the predictor variables explain in the outcome variable
- 2. Test whether the each predictor variable is significantly related to the outcome variable, *controlling for* the other predictor variable
- 3. Determine which of the predictor variables is the stronger predictor of the outcome variable

#### Multicollinearity

 Strong correlations among predictor variables. This makes it difficult to identify the unique relationship between each predictor variable and the outcome variable.

|                | Education years | Work Exp.<br>Years | Monthly<br>Income |
|----------------|-----------------|--------------------|-------------------|
| Education yrs  | 1.00            |                    |                   |
| Work Exp. yrs  | .31             | 1.00               |                   |
| Monthly income | .826            | .695               | 1.00              |

#### Multiple Regression

 We are interested in the relationship between Education and Work Experience and Monthly Income.



#### Variance Explained

| Variance Explained (Model Summary) |      |                             |                           |  |
|------------------------------------|------|-----------------------------|---------------------------|--|
| R                                  | R²   | Adjusted <i>R</i><br>Square | Std Error of the Estimate |  |
| .946                               | .896 | .866                        | 1.1405                    |  |

- Multiple correlation coefficient (R)
- Coefficient of determination (R2)
- Adjusted R Square: takes into account sample size and number of predictors

#### Statistical Significance

#### **ANOVA Results**

|            | SS    | DF | MS    | F     | р    |
|------------|-------|----|-------|-------|------|
| Regression | 78.29 | 2  | 39.14 | 30.09 | .000 |
| Residual   | 9.10  | 7  | 1.30  |       |      |
| Total      | 87.40 | 9  |       |       |      |



# Unstandardized vs. Standardized Coefficients

#### Coefficients

|       |            | Unstand<br>Coeffi |            | Standardized<br>Coefficients |        |      |
|-------|------------|-------------------|------------|------------------------------|--------|------|
| Model |            | В                 | Std. Error | Beta                         | t      | Sig. |
| 1     | (Constant) | 11.770            | 1.734      |                              | 6.787  | .000 |
|       | Education  | 364               | .173       | 412                          | -2.105 | .047 |
|       | Work       | 403               | .194       | 408                          | -2.084 | .049 |

- a. Dependent Variable: Income
- Unstandardized (B): variables on different scales
- Standardized (β): same scale via z-score
- Use standardized coefficients (β) to compare

### R does NOT equal Causation!!





#### Exercise #3 Multiple Regression

|    | Education<br>Level (X <sub>1</sub> ) | Work<br>Experience in<br>years (X <sub>2</sub> ) | Monthly income (Y) in thousands |
|----|--------------------------------------|--------------------------------------------------|---------------------------------|
| 1  | 6 years                              | 10                                               | 1                               |
| 2  | 8 years                              | 14                                               | 1.5                             |
| 3  | 11 years                             | 8                                                | 1                               |
| 4  | 12 years                             | 7                                                | 2                               |
| 5  | 12 years                             | 20                                               | 4                               |
| 6  | 13 years                             | 15                                               | 2.5                             |
| 7  | 14 years                             | 17                                               | 5                               |
| 8  | 16 years                             | 22                                               | 6                               |
| 9  | 16 years                             | 30                                               | 10                              |
| 10 | 21 years                             | 10                                               | 8                               |

- 1. Add the Work Exp. variable to your dataset
- 2. Run multiple regression
- 3. Write regression equation
- 4. Interpret results
  - Sig, R, R<sup>2</sup>, β



### CONCLUDING NOTES

- No class next week
- 2 Readings in Class 13 Folder
  - Internal and External Validity
  - Ethics & Research
  - Read for Dec 5<sup>th</sup> class

See you Dec 5th!