Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

l	1.	(Previously presented) A method for reverse transcribing an RNA, that
2	comprises:	·
3	(a)	providing a reverse transcription reaction mixture comprising said RNA, a
4	primer, a divalent ca	ation, and a mutant thermoactive DNA polymerase, wherein said mutant
5	DNA polymerase is	characterized in that
6		i) in its native form said DNA polymerase comprises an amino acid
7	sequence that is SEQ ID NO:1;	
8		ii) the amino acid at position 2 of said amino acid sequence is S or A and
9	the amino acid at po	sition 5 of said amino acid sequence is L or I; and
10		iii) the amino acid at position 4 of said amino acid sequence is mutated in
11	comparison to said 1	native sequence to an amino acid other than E, A, G, or P; and
12	(b)	treating said reaction mixture at a temperature sufficient for said mutant
13	DNA polymerase to	initiate synthesis of an extension product of said primer to provide a cDNA
14	molecule complementary to said RNA.	
1	2.	(Previously presented) The method of Claim 1, wherein said amino acid
2	sequence is SEQ ID	NO:2, the amino acid at position 3 of said amino acid sequence is Q or G,
3	and the amino acid	at position 6 of said amino acid sequence is S or A.
1	3.	(Original) The method of Claim 1, wherein said amino acid sequence is
2	SEQ ID NO:3.	

1		4.	(Previously presented) The method of Claim 1, wherein said amino acid
2	sequence is SE	EQ ID 1	NO:4, and the amino acid at position 3 is Q or G.
1		5-7 (C	ancelled)
1		8.	(Original) The method of Claim 1, wherein said mutant DNA polymerase
2	is thermostable	e.	
1		9.	(Original) The method of Claim 1, wherein said DNA polymerase is a
2	mutant form o	f a <i>Thei</i>	rmus species DNA polymerase.
1		10.	(Original) The method of Claim 1, wherein said DNA polymerase is a
2	mutant form o	f Thern	nus thermophilus DNA polymerase or Thermus aquaticus DNA
3	polymerase.		
1		11.	(Original) The method of Claim 1, wherein said temperature of said
2	reaction mixtu	re in ste	ep (b) is between 40°C and 80°C.
1		12.	(Original) The method of Claim 1, wherein said amino acid at position 4
2	of said amino	acid sec	quence is mutated in comparison to said native sequence to an amino acid
3	other than E, A	A, G, P,	Q, or D.
1		13.	(Previously presented) A method for reverse transcribing an RNA, that
2	comprises:		
3		(a)	providing a reverse transcription reaction mixture comprising said RNA, a
4	primer, Mg ⁺² ,	and a n	nutant thermoactive DNA polymerase, wherein said mutant DNA
5	polymerase is	charact	erized in that
6		i) in it	s native form said DNA polymerase comprises an amino acid sequence that
7	is SEQ ID NO):1;	

2

polymerase is thermostable.

- ii) the amino acid at position 2 of said amino acid sequence is S or A and the 8 amino acid at position 5 of said amino acid sequence is L or I; and 9 10 iii) the amino acid at position 4 of said amino acid sequence is mutated in comparison to said native sequence to an amino acid other than E, A, G, or P; and 11 treating said reaction mixture at a temperature sufficient for said mutant 12 (b) DNA polymerase to initiate synthesis of an extension product of said primer to provide a cDNA 13 molecule complementary to said RNA. 14 (Previously presented) The method of Claim 13, wherein said amino acid 1 14. sequence is SEQ ID NO:2, the amino acid at position 3 of said amino acid sequence is Q or G, 2 and the amino acid at position 6 of said amino acid sequence is S or A. 3 (Original) The method of Claim 13, wherein said amino acid sequence is 15. 1 2 SEQ ID NO:3. (Previously presented) The method of Claim 13, wherein said amino acid 1 16. 2 sequence is SEQ ID NO:4, and the amino acid at position 3 is Q or G. 17-19. (Cancelled) 1 (Original) The method of Claim 13, wherein said mutant DNA 20. 1
 - 1 21. (Original) The method of Claim 13, wherein said DNA polymerase is a mutant form of a *Thermus* species DNA polymerase.
 - 1 22. (Original) The method of Claim 13, wherein said DNA polymerase is a 2 mutant form of *Thermus thermophilus* DNA polymerase or *Thermus aquaticus* DNA 3 polymerase.

23.

1

reaction mixture in step (b) is between 40°C and 80°C. 2 (Original) The method of Claim 13, wherein said amino acid at position 4 24. 1 of said amino acid sequence is mutated in comparison to said native sequence to an amino acid 2 3 other than E, A, G, P, Q, or D. (Original) A method for amplifying an RNA, that comprise: 1 25. 2 reverse transcribing said RNA according to a method of Claim 1 to (a) 3 provide a cDNA; (b) amplifying said cDNA. 4 1 26. (Original) A method of Claim 25, wherein in step (b) said amplifying is carried out using a polymerase chain reaction. 2 (Original) A method for amplifying an RNA, that comprise: 27. 1 reverse transcribing said RNA according to a method of Claim 13 to 2 (a) 3 provide a cDNA; 4 (b) amplifying said cDNA. (Original) A method of Claim 27, wherein in step (b) said amplifying is 1 28. 2 carried out using a polymerase chain reaction. (Previously presented) A method for amplifying an RNA using a single-29. 1 2 enzyme reverse transcription/amplification reaction, that comprises: providing an amplification reaction mixture comprising said RNA, a pair 3 (a) of primers, a divalent cation, and a mutant thermostable DNA polymerase, wherein said mutant 4 5 DNA polymerase is characterized in that

(Original) The method of Claim 13, wherein said temperature of said

6	i) in its native form said DNA polymerase comprises an amino acid sequence that		
7	is SEQ ID NO:1;		
8	ii) the amino acid at position 2 of said amino acid sequence is S or A and the		
9	amino acid at position 5 of said amino acid sequence is L or I; and		
10	iii) the amino acid at position 4 of said amino acid sequence is mutated in		
11	comparison to said native sequence to an amino acid other than E, A, G, or P; and		
12	(b) treating said reaction mixture at a temperature sufficient for said mutant		
13	DNA polymerase to initiate synthesis of an extension product of said primer to provide a cDNA		
14	molecule complementary to said RNA;		
15	(c) treating said reaction mixture at an appropriate temperature for said		
16	mutant DNA polymerase to initiate synthesis of an extension product of said second primer to		
17	provide a double-stranded cDNA molecule; and		
18	(d) amplifying said double-stranded cDNA molecule of step (c) by a		
19	polymerase chain reaction.		
1	30. (Previously presented) The method of Claim 29, wherein said amino acid		
2	sequence is SEQ ID NO:2, the amino acid at position 3 of said amino acid sequence is Q or G,		
3	and the amino acid at position 6 of said amino acid sequence is S or A.		
1	31. (Original) The method of Claim 29, wherein said amino acid sequence is		
2	SEQ ID NO:3.		
1	32. (Previously presented) The method of Claim 29, wherein said amino acid		
2	sequence is SEQ ID NO:4, and the amino acid at position 3 is Q or G.		
1	33-35. (Cancelled)		

1	36. (Original) The method of Claim 29, wherein said mutant DNA
2	polymerase is thermostable.
1	37. (Original) The method of Claim 29, wherein said DNA polymerase is a
2	mutant form of a Thermus species DNA polymerase.
1	38. (Original) The method of Claim 29, wherein said DNA polymerase is a
2	mutant form of <i>Thermus thermophilus</i> DNA polymerase or <i>Thermus aquaticus</i> DNA
3	polymerase.
5	porymerase.
1	39. (Original) The method of Claim 29, wherein said temperature of said
2	reaction mixture in step(b) is between 40°C and 80°C.
1	40. (Original) The method of Claim 29, wherein said amino acid at position 4
2	of said amino acid sequence is mutated in comparison to said native sequence to an amino acid
3	other than E, A, G, P, Q, or D.
1	41. (Previously presented) A method for amplifying an RNA using a single-
1 2	41. (Previously presented) A method for amplifying an RNA using a single-enzyme reverse transcription/amplification reaction, that comprises:
2	chzyme reverse transcription ampinication reaction, that comprises.
3	(a) providing an amplification reaction mixture comprising said RNA, a pair
4	of primers, Mg ⁺² , and a mutant thermostable DNA polymerase, wherein said mutant DNA
5	polymerase is characterized in that
6	i) in its native form said DNA polymerase comprises an amino acid
7	sequence that is SEQ ID NO: 1;
8	ii) the amino acid at position 2 of said amino acid sequence is S or A and
9	the amino acid at position 5 of said amino acid sequence is L or I; and
10	iii) the amino acid at position 4 of said amino acid sequence is mutated in
11	comparison to said native sequence to an amino acid other than E, A, G, or P; and

- treating said reaction mixture at a temperature sufficient for said mutant 12 (b) DNA polymerase to initiate synthesis of an extension product of said primer to provide a cDNA 13 molecule complementary to said RNA; 14 treating said reaction mixture at an appropriate temperature for said 15 (c) mutant DNA polymerase to initiate synthesis of an extension product of said second primer to 16 provide a double-stranded cDNA molecule; and 17 amplifying said double-stranded cDNA molecule of step (c) by a (d) 18 polymerase chain reaction. 19 (Previously presented) The method of Claim 41, wherein said amino acid 1 42. sequence is SEQ ID NO:2, the amino acid at position 3 of said amino acid sequence is Q or G, 2 3 and the amino acid at position 6 of said amino acid sequence is S or A. (Original) The method of Claim 41, wherein said amino acid sequence is 1 43. 2 SEQ ID NO:3. 1 44. (Previously presented) The method of Claim 41, wherein said amino acid 2 sequence is SEQ ID NO:4, and the amino acid at position 3 is Q or G. 45-47. (Cancelled) 1 48. (Original) The method of Claim 41, wherein said mutant DNA 1 2 polymerase is thermostable.
 - 1 49. (Original) The method of Claim 41, wherein said DNA polymerase is a mutant form of a *Thermus* species DNA polymerase.
 - 1 50. (Original) The method of Claim 41, wherein said DNA polymerase is a mutant form of *Thermus thermophilus* DNA polymerase or *Thermus aquaticus* DNA polymerase.

51. (Original) The method of Claim 41, wherein said temperature of said 1 2 reaction mixture in step (b) is between 40°C and 80°C. (Original) The method of Claim 41, wherein said amino acid at position 4 52. 1 of said amino acid sequence is mutated in comparison to said native sequence to an amino acid 2 3 other than E, A, G, P, Q or D. (Previously presented) A method for reverse transcribing an RNA, that 1 53. 2 comprises: providing a reverse transcription reaction mixture comprising said RNA, a 3 (a) primer, a divalent cation, and a thermoactive DNA polymerase, wherein said DNA polymerase is 4 characterized in that 5 i) in is native form said DNA polymerase comprises an amino acid 6 7 sequence that is SEQ ID NO:1; ii) the amino acid at position 2 of said amino acid sequence is S or A and 8 the amino acid at position 5 of said amino acid sequence is L or I; and 9 10 iii) the amino acid at position 4 of said amino acid sequence is other than 11 E, A, G, or P; and treating said reaction mixture at a temperature sufficient for said DNA 12 (b) polymerase to initiate synthesis of an extension product of said primer to provide a cDNA 13 14 molecule complementary to said RNA. (Previously presented) The method of Claim 53, wherein said amino acid 54. 1 sequence is SEQ ID NO:5 and the amino acid at position 7 of said amino acid sequence is V or I. 2 (Previously presented) The method of Claim 53, wherein said amino acid 55. 1 2 sequence is SEQ ID NO:6.

1	56.	(Previously presented) The method of Claim 53, wherein said amino acid
2	sequence is SEQ ID	NO:7 and the amino acid at position 8 of said amino acid sequence is S or T.
1	57.	(Previously presented) A method for reverse transcribing an RNA, that
2	comprises:	
3	(a)	providing a reverse transcription reaction mixture comprising said RNA, a
4	primer, Mg ⁺² , and a	thermoactive DNA polymerase, wherein said DNA polymerase is
5	characterized in that	
6		i) in its native form said DNA polymerase comprises an amino acid
7	sequence that is SEQ ID NO:1;	
8		ii) the amino acid at position 2 of said amino acid sequence is S or A and
9	the amino acid at po	sition 5 of said amino acid sequence is L or I; and
10		iii) the amino acid at position 4 of said amino acid sequence is other than
11	E, A, G, or P; and	
12	(b)	treating said reaction mixture at a temperature sufficient for said DNA
13	polymerase to initiat	te synthesis of an extension product of said primer to provide a cDNA
14	molecule complementary to said RNA.	
1	58.	(Previously presented) The method of Claim 57, wherein said amino acid
2	sequence is SEQ ID	NO:5 and the amino acid at position 7 of said amino acid sequence is V or I.
1	59.	(Previously presented) The method of Claim 57, wherein said amino acid
2	sequence is SEQ ID	NO:6.
1	60.	(Previously presented) The method of Claim 57, wherein said amino acid
2	sequence is SEQ ID	NO:7 and the amino acid at position 8 of said amino acid sequence is S or T

1	61.	(Previously presented) A method for amplifying an RNA using a single-
2	enzyme reverse trans	cription/amplification reaction, that comprises:
3	(a)	providing an amplification reaction mixture comprising said RNA, a pair
4	of primers, a divalen	cation, and a thermostable DNA polymerase, wherein said DNA
5	polymerase is charac	terized in that
6		i) in its native form said DNA polymerase comprises an amino acid
7	sequence that is SEQ ID NO:1;	
8	•	ii) the amino acid at position 2 of said amino acid sequence is S or A and
9	the amino acid at position 5 of said amino acid sequence is L or I; and	
10		iii) the amino acid at position 4 of said amino acid sequence is other than
11	E, A, G, or P; and	
12	(b)	treating said reaction mixture at a temperature sufficient for said DNA
13	polymerase to initiate	e synthesis of an extension product of said primer to provide a cDNA
14	molecule complementary to said RNA;	
15	(c)	treating said reaction mixture at an appropriate temperature for said DNA
16	polymerase to initiat	e synthesis of an extension product of said second primer to provide a
17	double-stranded cDN	A molecule; and
18	(d)	amplifying said double-stranded cDNA molecule of step (c) by a
19	polymerase chain rea	ection.
1	62.	(Previously presented) The method of Claim 61, wherein said amino acid
2	sequence is SEQ ID	NO:5 and the amino acid at position 7 of said amino acid sequence is V or I

1	63.	(Previously presented) The method of Claim 61, wherein said amino acid
2	sequence is SEQ ID	NO:6.
1	64.	(Previously presented) The method of Claim 61, wherein said amino acid
2	sequence is SEQ ID	NO:7 and the amino acid at position 8 of said amino acid sequence is S or T
1	65.	(Previously presented) A method for amplifying an RNA using a single-
2	enzyme reverse trans	cription/amplification reaction, that comprises:
3	(a)	providing an amplification reaction mixture comprising said RNA, a pair
4	of primers, Mg+2, ar	nd a thermostable DNA polymerase, wherein said DNA polymerase is
5	characterized in that	
6		i) in its native form said DNA polymerase comprises an amino acid
7	sequence that is SEQ ID NO:1;	
8		ii) the amino acid at position 2 of said amino acid sequence is S or A and
9	the amino acid at pos	sition 5 of said amino acid sequence is L or I; and
10		iii) the amino acid at position 4 of said amino acid sequence is other than
11	E, A, G, or P; and	
12	(b)	treating said reaction mixture at a temperature sufficient for said DNA
13	polymerase to initiate	e synthesis of an extension product of said primer to provide a cDNA
14	molecule complementary to said RNA;	
15	(c)	treating said reaction mixture at an appropriate temperature for said DNA
16	•	e synthesis of an extension product of said second primer to provide a
17	double-stranded cDN	
18	(d)	amplifying said double-stranded cDNA molecule of step (c) by a
19	polymerase chain rea	• • •
1	Polymoraso omam rot	********

- 1 66. (Previously presented) The method of Claim 65, wherein said amino acid sequence is SEQ ID NO:5 and the amino acid at position 7 of said amino acid sequence is V or I.
- 1 67. (Previously presented) The method of Claim 65, wherein said amino acid sequence is SEQ ID NO:6.
- 1 68. (Previously presented) The method of Claim 65, wherein said amino acid 2 sequence is SEQ ID NO:7 and the amino acid at position 8 of said amino acid sequence is S or T.