

ORIGINAL

414 Rec'd PCT/PTO 22 JUN 2000

FORM PTO-1390 (REV 1-98)		U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE		ATTORNEY'S DOCKET NUMBER
TRANSMITTAL LETTER TO THE UNITED STATES DESIGNATED/ELECTED OFFICE (DO/EO/US) CONCERNING A FILING UNDER 35 U.S.C. 371				LEA 32 805
INTERNATIONAL APPLICATION NO. PCT/EP98/08216		INTERNATIONAL FILING DATE 22 December 1998 (22.12.98)		U.S. APPLICATION NO. (if known) see 37 CFR 1.51 09/582246
TITLE OF INVENTION REGULATORY DNA SEQUENCES OF THE HUMAN CATALYTIC RELOMERASE SUB-UNIT GENE, DIAGNOSTIC AND THERAPEUTIC USE THEREOF				PRIORITY DATE CLAIMED 24 December 1997 (24.12.97)
APPLICANT(S) FOR DO/EO/US HAGEN, Gustav; WICK, Maresa; and ZUBOV, Dmitry				
<p>Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:</p> <p>1. <input checked="" type="checkbox"/> This is a FIRST submission of items concerning a filing under 35 U.S.C. 371.</p> <p>2. <input type="checkbox"/> This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. 371.</p> <p>3. <input checked="" type="checkbox"/> This express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(g) and PCT Articles 22 and 39(l).</p> <p>4. <input checked="" type="checkbox"/> A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.</p> <p>5. <input checked="" type="checkbox"/> A copy of the International Application as filed (35 U.S.C. 371(c)(2)) <ul style="list-style-type: none"> a. <input checked="" type="checkbox"/> is transmitted herewith (required only if not transmitted by the International Bureau). b. <input type="checkbox"/> has been transmitted by the International Bureau. c. <input type="checkbox"/> is not required, as the application was filed in the United States Receiving Office (RO/US). </p> <p><input checked="" type="checkbox"/> A translation of the International Application into English (35 U.S.C. 371(c)(2)).</p> <p><input checked="" type="checkbox"/> Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3)) <ul style="list-style-type: none"> a. <input type="checkbox"/> are transmitted herewith (required only if not transmitted by the International Bureau). b. <input type="checkbox"/> have been transmitted by the International Bureau. c. <input type="checkbox"/> have not been made; however, the time limit for making such amendments has NOT expired. d. <input checked="" type="checkbox"/> have not been made and will not be made. </p> <p><input type="checkbox"/> A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).</p> <p><input checked="" type="checkbox"/> An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).</p> <p><input type="checkbox"/> A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).</p>				
<p>Items 11. to 16. below concern document(s) or information included:</p> <p>11. <input checked="" type="checkbox"/> An Information Disclosure Statement under 37 CFR 1.97 and 1.98.</p> <p>12. <input type="checkbox"/> An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.</p> <p>13. <input checked="" type="checkbox"/> A FIRST preliminary amendment.</p> <p><input type="checkbox"/> A SECOND or SUBSEQUENT preliminary amendment.</p> <p>14. <input type="checkbox"/> A substitute specification.</p> <p>15. <input type="checkbox"/> A change of power of attorney and/or address letter.</p> <p>16. <input checked="" type="checkbox"/> Other items or information: <ul style="list-style-type: none"> 1) Certification of Mailing under 37 C.F.R. 1.10; 2) Transmittal of Information Disclosure Statement; 3) Information Disclosure Citation (Modified Form PTO-1449); 4) References cited; and 5) Return Receipt Post Card. </p>				
Date of Deposit: 22 June 2000 Express Mail Label No. EF292675302US				

U.S. APPLICATION NO. (if known) see 37 CFR 1.5 09/582246		INTERNATIONAL APPLICATION NO PCT/EP98/08216	ATTORNEY'S DOCKET NUMBER LEA 32 805						
		CALCULATIONS PTO USE ONLY							
17. <input checked="" type="checkbox"/> The following fees are submitted:									
BASIC NATIONAL FEE (37 CFR 1.492 (a) (1) - (5))									
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO and International Search Report not prepared by the EPO or JPO		\$970.00							
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but International Search Report prepared by the EPO or JPO		\$840.00							
International preliminary examination fee (37 CFR 1.482) not paid to USPTO but international search fee (37 CFR 1.445(a)(2)) paid to USPTO		\$760.00							
International preliminary examination fee paid to USPTO (37 CFR 1.482) but all claims did not satisfy provisions of PCT Article 33(l)-(4)		\$670.00							
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(l)-(4)		\$96.00							
ENTER APPROPRIATE BASIC FEE AMOUNT = \$ 840.00									
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(c)).									
CLAIMS	NUMBER FILED	NUMBER EXTRA	RATE						
Total claims	12 -20 =	0	X \$18.00 \$ 00.00						
Independent claims	9 -3 =	6	X \$78.00 \$ 468.00						
MULTIPLE DEPENDENT CLAIM(S) (if applicable)			+\$260.00 \$ 0.00						
TOTAL OF ABOVE CALCULATIONS = \$ 1,308.00									
Reduction of 1/2 for filing by small entity, if applicable. A Small Entity Statement must also be filed (Note 37 CFR 1.9, 1.27, 1.28).									
SUBTOTAL = \$ 1,308.00									
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).									
TOTAL NATIONAL FEE = \$ 1,308.00									
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property									
TOTAL FEES ENCLOSED = \$ 1,308.00									
<table border="0"> <tr> <td><input type="checkbox"/></td> <td>Amount to be: refunded</td> <td>\$</td> </tr> <tr> <td><input type="checkbox"/></td> <td>charged</td> <td>\$</td> </tr> </table>				<input type="checkbox"/>	Amount to be: refunded	\$	<input type="checkbox"/>	charged	\$
<input type="checkbox"/>	Amount to be: refunded	\$							
<input type="checkbox"/>	charged	\$							
<p>a. <input type="checkbox"/> A check in the amount of \$_____ to cover the above fees is enclosed.</p> <p>b. <input checked="" type="checkbox"/> Please charge my Deposit Account No. <u>13-3372</u> in the amount of \$ <u>1,308.00</u> to cover the above fees. A duplicate copy of this sheet is enclosed.</p> <p>c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>13-3372</u>. A duplicate copy of this sheet is enclosed.</p>									
<p>NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.</p>									
SEND ALL CORRESPONDENCE TO Jeffrey M. Greenman Vice President, Patents and Licensing BAYER CORPORATION 400 Morgan Lane West Haven, CT 06516 US		 SIGNATURE Jerrie L. Chiu NAME 41,670 REGISTRATION NUMBER							

09/582246

534 Rec'd PCT/PTC 22 JUN 2000

PATENT

Attorney's Docket No. Le A 32 805

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of: Hagen, et al.

Serial No.: National Stage Filing of PCT/EP98/08216

Filed: 22 June 2000

For: Regulatory DNA Sequences of the Human Catalytic Telomerase Sub-unit Gene, Diagnostic and Therapeutic Use Thereof

BOX PCT
Assistant Commissioner for Patents
Washington, D.C. 20231

CERTIFICATE OF MAILING UNDER 37 CFR 1.10

I hereby certify that the *attached* correspondence comprising:

- Transmittal Letter to the United States Designated/Elected Office (DO/EO/US) Concerning a Filing under 35 U.S.C. 371 [IN DUPLICATE];
- A First Preliminary Amendment;
- Combined Declaration and Power of Attorney (35 U.S.C. 371(c)(4);
- English translation of the International Application (35 U.S.C. 371(c)(2));
- Copy of the International Application as filed (35 U.S.C. 371(c)(2));
- Information Disclosure Statement under 37 C.F.R. 1.97 and 1.98 consisting of Transmittal of Information Disclosure Statement, Information Disclosure Citation (Modified Form PTO-1449), and copies of references cited therein; and
- Return Receipt Post Card.

is, on the date shown below, being deposited with the United States Postal Service, in an envelope as "Express Mail Post Office to Addressee" Mailing Label Number EF292675302US, addressed to:

Box PCT
Assistant Commissioner for Patents
Washington, D.C. 20231

22 June 2000

Date

Signature of Person Certifying: Lauren Fitzgerald

000260-572233560

09/582246

PATENT

Atty. Docket No.: Le A 32 805

534 Rec'd PCT/PTC 22 JUN 2000

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

APPLICANTS: Hagen, et al.

SERIAL NO.: National Stage Filing of PCT/EP98/08216

FILING DATE: Herewith

TITLE: Regulatory DNA Sequences of the Human Catalytic Telomerase Sub-Unit Gene, Diagnostic Therapeutic Use Thereof

PRELIMINARY AMENDMENT

Box PCT
Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

This Preliminary Amendment is submitted in the above-captioned national stage application of PCT/EP98/08216 filed on even date herewith. Please amend the application as follows:

In the Claims

Please cancel claim 7.

Please amend claims 4, 6 and 8-12 as follows:

4. (Amended) Recombinant construct which contains a DNA sequence according to [one of] Claim[s] 1 [to 3].

6. (Amended) Vector which contains a recombinant construct according to Claim 4 [or 5].

8. (Amended) Recombinant host cells which harbour recombinant constructs or vectors according to [one of] Claim[s] 4 [to 6].

09/582246 - 09/2100

9. (Amended) Process for identifying substances which affect the promoter activity, silencer activity or enhancer activity of the human catalytic telomerase subunit, comprising the following steps:
- adding a candidate substance to a host cell which harbours DNA sequences according to [one of] Claim[s] 1 [to 3] which sequences are functionally linked to a reporter gene, and
 - measuring the effect of the substance on expression of the reporter gene.
10. (Amended) Process for identifying factors which bind specifically to the DNA according to [one of] Claim[s] 1 [to 3], or to fragments thereof, characterized in that an expression cDNA library is screened using a DNA sequence according to [one of] Claim[s] 1 [to 3], or sub-fragments of widely differing length, as the probe.
11. (Amended) Transgenic animals which harbour recombinant constructs or vectors according to Claim[s] 4 [to 6].
12. (Amended) Process for detecting telomerase-associated conditions in a patient, comprising the following steps:
- incubating a recombinant construct or vector according to Claim[s] 4 [to 6], which additionally contains a reporter gene, with body fluids or cell samples,
 - detecting the activity of the reporter gene in order to obtain a diagnostic value, and
 - comparing the diagnostic value with standard values for the reporter gene construct in standardized normal cells or body fluids of the same type as the test sample.

00000000000000000000000000000000

Please add the following new claim 13.

13. (New) A medicament comprising a recombinant construct or vector according to claim 4.

Remarks

By way of this Preliminary Amendment, claims 1-6 and 8-13 are pending in the application. Claims 4, 6 and 8-12 have been amended. Claim 13 has been added. These claim amendments, cancellations and additions are being made solely to remove multiple claim dependencies from the claims and to place the claims in a format appropriate for U.S. prosecution.

Applicants believe that the subject matter of the pending claims is patentable and that the instant application should accordingly be allowed. If the Examiner believes that a conversation with Applicants' attorney would be helpful in expediting prosecution of this application, the Examiner is invited to call the undersigned attorney at (203) 812-3964.

Respectfully submitted,

Dated: *June 22, 2000*
Bayer Corporation
400 Morgan Lane
West Haven, CT 06516
(Tel) (203) 812-3964
(Fax) (203) 812-5492
e-mail: jerrie.chiu.b@bayer.com

Jerrie L. Chiu
Jerrie L. Chiu
Attorney for Applicants
Reg. No. 41,670

09/582246

534 Rec'd PCT/PTC 22 JUN 2000

Regulatory DNA sequences of the gene for the human catalytic telomerase subunit, and their diagnostic and therapeutic use

Structure and function of the chromosome ends

5

The genetic material of eukaryotic cells is distributed on linear chromosomes. The ends of hereditary units are termed telomeres, derived from the Greek words *telos* (end) and *meros* (part, segment). Most telomeres consist of repeats of short sequences which are mainly composed of thymine and guanine (Zakian, 1995). In all the vertebrates which have so far been investigated, the telomeres consist of the sequence TTAGGG (Meyne *et al.*, 1989).

10

The telomeres have a variety of important functions. They prevent the fusion of chromosomes (McClintock, 1941) and thus the formation of dicentric hereditary units. Such chromosomes having two centromeres can lead to the development of cancer due to loss of heterozygosity or duplication, or loss of genes.

15

In addition, telomeres serve the purpose of distinguishing intact hereditary units from damaged hereditary units. Thus, yeast cells ceased their cell division when they contained a chromosome without a telomere (Sandell and Zakian, 1993).

三

Telomeres fulfil another important task in association with the replication of eukaryotic cell DNA. In contrast to the circular genomes of prokaryotes, the linear chromosomes of eukaryotes cannot be completely replicated by the DNA polymerase complex. RNA primers are required to initiate DNA replication. After elimination of the RNA primers, extension of the Okazaki fragments and subsequent ligation, the newly synthesized DNA strand lacks the 5' end since the RNA primer cannot be replaced by DNA at that point. Without special protective mechanisms, the chromosomes would therefore shrink with each cell division ("end-replication problem"; Harley *et al.*, 1990). The non-coding telomere sequences presumably constitute a buffer zone for preventing the loss of genes (Sandell and Zakian, 1993).

30

卷之三

In addition to this, telomeres also play an import role in regulating cell ageing (Olovnikov, 1973). Human somatic cells exhibit a limited capacity for replication in culture; after a certain period of time, they become senescent. In this state, the cells no longer divide even after having been stimulated with growth factors; however, 5 they do not die and remain metabolically active (Goldstein, 1990). Various observations support the hypothesis that a cell determines how many more times it can divide on the basis of the length of its telomeres (Allsopp *et al.*, 1992).

10 In summary, the telomeres consequently possess key functions in the ageing of cells, and in stabilizing the genetic material and preventing cancer.

The enzyme telomerase synthesizes the telomeres

15 As described above, organisms which possess linear chromosomes can only replicate their genome incompletely in the absence of a special protective mechanism. Most eukaryotes use a special enzyme, i.e. telomerase, for regenerating the telomere sequences. Telomerase is expressed constitutively in the single-cell organisms which have so far been investigated. On the other hand, telomerase activity has only been measured in humans in germ cells and tumour cells, whereas neighbouring somatic 20 tissue did not contain any telomerase (Kim *et al.*, 1994).

Telomerase can also be designated functionally as terminal telomere transferase, which is located in the cell nucleus as a multiprotein complex. While the RNA moiety of human telomerase has been known for a relatively long period of time 25 (Feng *et al.*, 1995), the catalytic subunit of this enzyme group was recently identified in a variety of organisms (Lingner *et al.*, 1997; cf. our application PCT EP/98/03468 which is likewise pending). These catalytic subunits of telomerase are strikingly homologous both among themselves and in relation to all previously known reverse transcriptases.

30 WO 98/14592 also describes nucleic acid and amino acid sequences of the catalytic telomerase subunit.

Activation of telomerase in human tumours

It was originally only possible to demonstrate telomerase activity in humans in germ
5 line cells and not in normal somatic cells (Hastie *et al.*, 1990; Kim *et al.*, 1994). Following the development of a more sensitive detection method (Kim *et al.*, 1994), a low telomerase activity was also detected in hematopoietic cells (Broccoli *et al.*, 1995; Counter *et al.*, 1995; Hiyama *et al.*, 1995). It is true, however, that these cells nevertheless exhibited a reduction in the telomeres (Vaziri *et al.*, 1994; Counter *et*
10 *al.*, 1995). It has still not been resolved whether the quantity of enzyme in these cells is not sufficient for compensating the telomere loss or whether the telomerase activity which is measured stems from a subpopulation, e.g. incompletely differentiated CD34⁺38⁺ precursor cells (Hiyama *et al.*, 1995). In order to resolve this, it would be necessary to detect telomerase activity in a single cell.
15 Interestingly, however, significant telomerase activity was detected in a large number of the tumour tissues which had thus far been tested (1734/2031, 85%; Shay, 1997), whereas no activity was found in normal somatic tissue (1/196, <1%, Shay, 1997). In addition various investigations have shown that the telomeres still shrank in
20 senescent cells which were transformed with viral oncoproteins and it was only possible to detect telomerase in the subpopulation which survived the growth crisis (Counter *et al.*, 1992). The telomeres were also stable in these immortalized cells. (Counter *et al.*, 1992). Similar findings from investigations in mice (Blasco *et al.*, 1996) support the assumption that reactivation of the telomerase is a late event in
25 tumorigenesis.

Based on these results, a "telomerase hypothesis" was developed which links the loss of telomere sequences and cell ageing with telomerase activity and the development of cancer. In long-lived species such as humans, the shrinking of the telomeres can be regarded as being a mechanism for suppressing tumours. Differentiated cells which do not contain any telomerase cease their cell division at a particular telomere length. If such a cell mutates, it can only form a tumour if the cell can extend its telomeres.

Otherwise, the cell would continue to lose telomere sequences until its chromosomes became unstable and it was finally destroyed. Telomerase reactivation is presumably the main mechanism used by tumour cells to stabilize their telomeres.

- 5 It follows from these observations and considerations that it should be possible to treat tumours by inhibiting the telomerase. Conventional cancer therapies using cytostatic agents or short-wave radiation damage all the dividing cells in the body in addition to the tumour cells. However, since only germ line cells, apart from tumour cells, contain significant telomerase activity, telomerase inhibitors would attack the
10 tumour cells more specifically and consequently elicit fewer undesirable side effects. Telomerase activity has been detected in all the tumour tissues which have so far been tested, which means that these therapeutic agents could be employed against all types of cancer. The effect of telomerase inhibitors would then set in when the telomeres of the cells had shortened to such an extent that the genome became
15 unstable. Since tumour cells usually possess telomeres which are shorter than those of normal somatic cells, cancer cells would be the first to be eliminated by the telomerase inhibitors. By contrast, cells possessing long telomeres, such as the germ cells, would only be damaged at a much later date. Telomerase inhibitors consequently represent a potential way forward in the treatment of cancer.
20
- It becomes possible to obtain unambiguous answers to the question of the nature and points of attack of physiological telomerase inhibitors once the manner in which expression of the telomerase gene is regulated has also been identified.

25 Regulation of gene expression in eukaryotes

- There are a large number of points in eukaryotic gene expression, i.e. the cellular flow of information from the DNA to the protein by way of the RNA, at which regulatory mechanisms can exert an effect. Examples of individual control steps are
30 gene amplification, the recombination of gene loci, chromatin structure, DNA methylation, transcription, post-transcriptional modifications of mRNA, mRNA transport, translation and post-translational modifications of proteins. Studies which

have been carried out to date indicate that control at the level of transcription initiation is of the greatest importance (Latchman, 1991).

- A region which is responsible for regulating transcription, and which is designated
5 the promoter region, is located directly upstream of the transcription start of a gene
which is transcribed by RNA polymerase II. Comparison of the nucleotide sequences
of promoter regions from a large number of known genes shows that particular
sequence motifs occur regularly in this region. These elements include, inter alia, the
TATA box, the CCAAT box and the GC box, which elements are recognized by
10 specific proteins. The TATA box, which is located about 30 nucleotides upstream of
the transcription start, is, for example, recognized by the TFIID subunit TBP ("TATA
box-binding protein"), whereas particular GC-rich sequence segments are specifically
bound by the transcription factor Sp1 ("specificity protein1").
- 15 The promoter can be functionally subdivided into a regulatory segment and a
constitutive segment (Latchman, 1991). The constitutive control region comprises the
so-called core promoter which enables transcription to be initiated correctly. This
promoter contains the sequence elements which are described as UPE's (upstream
promoter elements) which are necessary for efficient transcription. The regulatory
20 control segments, which can be interlaced with the UPE's, possess sequence elements
which can be involved in the signal-dependent regulation of transcription by
hormones, growth factors, etc. They impart tissue-specific or cell-specific promoter
properties.
- 25 DNA segments which are able to exert an influence on gene expression over
relatively large distances are a characteristic feature of eukaryotic genes. These
elements can be located upstream or downstream of a transcription unit, or within the
unit, and can perform their function independently of their orientation. These
sequence segments may reinforce (enhancers) or attenuate (silencers) promoter
30 activity. In a similar way to the promoter regions, enhancers and silencers also
accommodate several binding sites for transcription factors.

The invention relates to the DNA sequences from the 5'-flanking region of the gene for the catalytically active human telomerase subunit and intron sequences for this gene.

5 The invention particularly relates to the 5'-flanking regulatory DNA sequence which contains the promoter DNA sequence for the gene for the human catalytic telomerase subunit, as depicted in Fig. 10 (SEQ ID NO 3).

10 The invention furthermore relates to part regions of the 5'-flanking regulatory DNA sequence, as depicted in Fig. 4 (SEQ ID NO 1), which has a regulatory effect.

15 Intron sequences for the gene for the human catalytic telomerase subunit, in particular those sequences which have a regulatory effect, are also part of the subject-matter of the present invention. The intron sequences according to the invention are described in detail in the context of Example 5 (cf. SEQ ID NO 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20).

20 The invention furthermore relates to a recombinant construct which comprises the DNA sequences according to the invention, in particular the 5'-flanking DNA sequence of the gene for the human catalytic telomerase subunit, or part regions thereof.

25 Preference is given to recombinant constructs which, in addition to the DNA sequences according to the invention, in particular the 5'-flanking DNA sequence of the gene for the human catalytic telomerase subunit, or part regions thereof, also contain one or more additional DNA sequences which encode polypeptides or proteins.

30 According to a particularly preferred embodiment, these additional DNA sequences encode antineoplastic proteins.

Particular preference is given to those antineoplastic proteins which inhibit angiogenesis directly or indirectly. Examples of these proteins are:

- 5 Plasminogen activator inhibitor (PAI-1), PAI-2, PAI-3, angiostatin, endostatin, platelet factor 4, TIMP-1, TIMP-2, TIMP-3 and leukaemia inhibitory factor (LIF).

Antineoplastic proteins which have a direct or indirect cytostatic effect on tumours are likewise particularly preferred. These proteins include, in particular:

- 10 perforin, granzyme, IL-2, IL-4; IL-12, interferons, such as IFN- α , IFN- β and IFN- γ , TNF, TNF- α , TNF- β , oncostatin M; tumour suppressor genes, such as p53, retinoblastoma.

- 15 Particular preference is furthermore given to antineoplastic proteins which, where appropriate in addition to their antineoplastic effect, stimulate inflammations and thereby contribute to the elimination of tumour cells. Examples of these proteins are:

- 20 RANTES, monocyte chemotactic and activating factor (MCAF), IL-8, macrophage inflammatory protein (MIP-1 α , β), neutrophil activating protein-2 (NAP-2), IL-3, IL-5, human leukaemia inhibitory factor (LIF), IL-7, IL-11, IL-13, GM-CSF, G-CSF and M-CSF.

- 25 Particular preference is furthermore given to antineoplastic proteins which, due to their action as enzymes, are able to convert precursors of an antineoplastic active compound into an antineoplastic active compound. Examples of these enzymes are:

- 30 herpes simplex virus thymidine kinase, varicella zoster virus thymidine kinase, bacterial nitroreductase, bacterial β -glucuronidase, plant β -glucuronidase from *Secale cereale*, human glucuronidase, human carboxypeptidase, bacterial carboxypeptidase, bacterial β -lactamase, bacterial cytosine deaminidase, human catalase and/or phosphatase, human alkaline phosphatase, type 5 acid phosphatase, human

lysooxidase, human acid D-aminooxidase, human glutathione peroxidase, human eosinophil peroxidase and human thyroid peroxidase.

5 The abovementioned recombinant constructs can also contain DNA sequences which encode factor VIII or factor IX, or part fragments thereof. These DNA sequences also include other blood clotting factors.

10 The abovementioned recombinant constructs can also contain DNA sequences which encode a reporter protein. Examples of these reporter proteins are:

15 Chloramphenicol acetyl transferase (CAT), glow-worm luciferase (LUC), β -galactosidase (β -Gal), secreted alkaline phosphatase (SEAP), human growth hormone (hGH), β -glucuronidase (GUS), green-fluorescing protein (GFP), and all the variants derived therefrom, aquarain and obelin.

20 Recombinant constructs according to the invention can also contain DNA which encodes the human catalytic telomerase subunit and its variants and fragments in the antisense orientation. Where appropriate, these constructs can also contain other protein subunits of the human telomerase and the telomerase RNA component in the antisense orientation.

25 The recombinant constructs can, in addition to the DNA which encodes the human catalytic telomerase subunit, and its variants and fragments, also contain other protein subunits of the human telomerase and the telomerase RNA component.

The invention furthermore relates to a vector which contains the abovementioned DNA sequences according to the invention, in particular the 5'-flanking DNA sequences and also one or more of the other DNA sequences mentioned above.

30 The preferred vector for these constructs is a virus, for example a retrovirus, an adenovirus, an adeno-associated virus, a herpes simplex virus, a vaccina virus, a lentiviral virus, a Sindbis virus and a Semliki forest virus.

Preference is also given to using plasmids as vectors.

5 The invention furthermore relates to pharmaceutical preparations which comprise recombinant constructs or vectors according to the invention; for example a preparation in a colloidal dispersion system.

10 Examples of suitable colloidal dispersion systems are liposomes or polylysine ligands.

15 The preparations of the constructs or vectors according to the invention in colloidal dispersion systems can be supplemented with a ligand which binds to the membrane structures of tumour cells. Such a ligand can, for example, be attached to the construct or the vector or else be a component of the liposome structure.

20 15 Suitable ligands are, in particular, polyclonal or monoclonal antibodies, or antibody fragments thereof, which bind, by their variable domains, to the membrane structures of tumour cells, or substances carrying mannose terminally, cytokines or growth factors, or fragments or part sequences thereof, which bind to receptors on tumour cells.

25 Examples of corresponding membrane structures are receptors for a cytokine or a growth factor, such as IL-1, EGF, PDGF, VEGF, TGF β , insulin or insulin-like growth factor (ILGF), or adhesion molecules, such as SLeX, LFA-1, MAC-1, LECAM-1 or VLA-4, or the mannose-6-phosphate receptor.

30 The present invention includes pharmaceutical preparations which, in addition to the vector constructs according to the invention, can also comprise non-toxic, inert, pharmaceutically suitable excipients. It is possible to conceive of administering (e.g. intravenously, intraarterially, intramuscularly, subcutaneously, intradermally, anally, vaginally, nasally, transdermally, intraperitoneally, as an aerosol or orally) these preparations at the site of a tumour or administering them systemically.

00582014-002100

The vector constructs according to the invention can be employed in gene therapy.

5 The invention furthermore relates to a recombinant host cell, in particular a recombinant eukaryotic host cell, which harbours the above-described constructs or vectors.

10 The invention furthermore relates to a process for identifying substances which affect the promoter activity, silencer activity or enhancer activity of the catalytic telomerase 15 subunit, with this process comprising the following steps:

- A. adding a candidate substance to a host cell which harbours the regulatory DNA sequence according to the invention, in particular the 5'-flanking regulatory DNA sequence for the gene for the human catalytic telomerase subunit, or a part region thereof which has a regulatory effect, which sequence or part region is functionally linked to a reporter gene, and
 - B. measuring the effect of the substance on expression of the reporter gene.
- 20 The process can be employed for identifying substances which increase the promoter activity, silencer activity or enhancer activity of the catalytic telomerase subunit.

25 The process can furthermore be employed for identifying substances which inhibit the promoter activity, silencer activity or enhancer activator of the catalytic telomerase subunit.

30 The invention furthermore relates to a process for identifying factors which bind specifically to fragments of the DNA fragments according to the invention, in particular the 5'-flanking regulatory DNA sequence of the catalytic telomerase subunit. This method comprises screening an expression cDNA library using the above-described DNA sequence, or subfragments of widely differing length, as the probe.

00136000000000000000000000000000

The above-described constructs or vectors can also be used for preparing transgenic animals.

5 The invention furthermore relates to a process for detecting telomerase-associated conditions in a patient, which process comprises the following steps:

- A. incubating a construct or vector, which contains the DNA sequence according to the invention, in particular the 5'-flanking regulatory DNA sequence for the gene for the human catalytic telomerase subunit, or a part region thereof having a regulatory effect, and a reporter gene, with body fluids or cell samples,
- B. detecting the activity of the reporter gene in order to obtain a diagnostic value; and
- C. comparing the diagnostic value with standard values for the reporter gene construct in standardized normal cells or body fluids of the same type as the test sample;

20 The detection of diagnostic values which are higher or lower than the standard comparative values indicates a telomerase-associated condition, which in turn indicates a pathogenic condition.

25 Explanation of the figures:

Fig. 1: Southern blot analysis using genomic DNA from various species

30 A: Photograph of an ethidium bromide-stained 0.7% agarose gel containing approximately 4 µg of Eco RI-cut genomic DNA. Track 1 contains Hind III-cut λ DNA as size markers (23.5, 9.4, 6.7, 4.4, 2.3, 2.0 and 0.6 kb). Tracks 2 to 10 contain human, rhesus monkey, Sprague

Dawley rat, BALB/c mouse, dog, bovine, rabbit, chicken and yeast (*Saccharomyces cerevisiae*) genomic DNA.

5 B: Autoradiogram, corresponding to Fig. I A, of a Southern blot analysis in which radioactively labelled hTC-cDNA probe of about 720 bp in length is used for the hybridization.

10 Fig. 2: Restriction analysis of the recombinant λ DNA of the phage clone P12, which hybridizes with a probe from the 5' region of the hTC cDNA.

15 The figure shows a photograph of an ethidium bromide-stained 0.4% agarose gel. Tracks 1 and 2 contain Eco RI/Hind III-cut λ DNA and a 1 kb ladder from Gibco as size markers. Tracks 3 - 7 each contain 250 ng of the DNA from the recombinant phage which has been cut with Bam HI (track 3), Eco RI (track 4), Sal I (track 5), Xho I (track 6) and Sac I (track 7). The arrows mark the two λ arms of the vector EMBL3 Sp6/T7.

20 Fig. 3: Restriction analysis and Southern blot analysis of the recombinant λ DNA of the phage clone which hybridizes with a probe from the 5' region of the hTC cDNA.

25 A: The figure shows a photograph of an ethidium bromide-stained 0.8% agarose gel. Tracks 1 and 15 contain a 1 kb ladder from Gibco as size markers. Tracks 2 to 14 each contain 250 ng of cut λ DNA from the recombinant phage clone. The following enzymes were employed: track 2: Sac I, track 3: Xho I, track 4: Xba I, track 5: Sac I, Xho I, track 6: Sal I, Xho I, Xba I, track 7: Sac I, Xho I, Xba I, track 8: Sac I, Sal I, Xba I, track 9: Sac I, Sal I, BamH I, track 10: Sac I, Sal I, Xho I, track 11: Not I, track 12: Sma I, track 13: empty, track 14: not digested.

B: Autoradiogram, corresponding to Fig. 3 A, of a Southern blot analysis. A 5'-hTC cDNA fragment of about 420 bp in length was used as the probe for the hybridization.

- 5 Fig. 4: Partial DNA sequence of the 5'-flanking region and of the promoter of
the gene for the human catalytic telomerase subunit. The ATG start
codon in the sequence is printed in bold. The depicted sequence
corresponds to SEQ ID NO 1.

10 Fig. 5: Use of primer extension analysis to identify the transcription start.

The figure shows an autoradiogram of a denaturing polyacrylamide gel
which was selected for depicting a primer extension analysis. An
oligonucleotide having the sequence
15 5' GTTAAGTTGTAGCTTACACTGGTTCTC 3' was used as the primer.
The primer extension reaction was loaded in track 1. Tracks G, A, T and
C constitute the sequence reactions using the same primer and the
corresponding dideoxynucleotides. The thick arrow marks the main
transcription start while the thin arrows point to three subsidiary
20 transcription start points.

Fig. 6: cDNA sequence of the human catalytic telomerase subunit (hTC; cf. our
pending application PCT/EP/98/03468). The depicted sequence
corresponds to SEQ ID NO 2.

25 Fig. 7: Structural organization and restriction map of the human hTC gene and
its 5'-flanking and 3'-flanking regions.

Exons are shown as consecutively numbered rectangles which are filled
in black, and introns are shown as regions which are not filled in.
Untranslated sequence segments in the exons are hatched. Translation
starts in exon 1 and ends in exon 16. Restriction enzyme cleavage sites

are marked as follows: S, SacI; X, XhoI. The relative arrangement of the five phage clones (P2, P3, P5, P12, P17), and of the product from the genome walking, are shown by thin lines. As the dots indicate, the sequence of intron 16 has only been partly deciphered.

5

Fig. 8: HTL splice variants.

A: Diagrammatic structure of the hTC mRNA splice variants. The complete hTC mRNA is depicted as a rectangle with a grey background in the upper region of the figure. The 16 exons are depicted in accordance with their size. The translation start (ATG) and the stop codon, and also the telomerase-specific T motif, and the seven RT motifs, are all shown. The hTC variants are subdivided into deletion and insertion variants. The missing exon sequences are marked in the deletions. The insertions are shown by additional white rectangles. The sizes and origins of the inserted sequences are given. Newly formed stop codons are marked. The size of the insertion in variant INS2 is unknown.

B: Exon-intron transitions in the hTC splice variants. Unspliced 5'-flanking and 3'-flanking sequences are shown as white rectangles. The origins of the exon and intron sequences are given. Intron and exon sequences are shown in small letters and large letters, respectively. The donor and acceptor sequences in the splice sites are underlaid as grey rectangles, and their exon and intron origins are also given.

25

Fig. 9: Identification of the transcription start by means of RT-PCR analysis. The RT-PCR was carried out using a cDNA library prepared from HL 60 cells and genomic DNA as the positive control. A common 3' primer hybridizes to a region of the exon 1 sequence. The positions of the different 5' primers in the coding region or the 5'-flanking region are given. In the negative control, no template DNA was added to the PCR reaction. M: DNA size marker.

- Fig. 10: Nucleotide sequence and structural features of the hTC promoter.
The figure depicts 11273 bp of the 5'-flanking hTC gene sequence, beginning with the translation start codon ATG (+1). The putative region of the translation start is underlined. Possible regulatory sequence segments within the 4000 bp upstream of the translation start are ringed. The depicted sequence corresponds to SEQ ID NO 3.
- Fig. 11: Activity of the hTC promoter in HEK-293 cells.
The first 5000 bp of the 5'-flanking hTC gene region are shown diagrammatically in the upper part of the figure. The ATG start codon is picked out. CpG-rich islands are marked by grey rectangles. The sizes of the hTC promoter-luciferase construct are shown on the left-hand side of the figure. The promoterless pGL2 basic construct and the SV40 promoter construct pGL2-Pro were used as controls in each transfection. The relative luciferase activities of the different promoter constructs in HEK cells are shown as continuous bars on the right-hand side of the figure. The standard deviation is indicated. The numerical values represent the average of two independent experiments which were carried out in duplicate.
- Tab. 1: Exon-intron transitions in the hTC gene
The table lists the nucleotide sequences at the 3' and 5' splice transitions of the hTC gene. The consensus sequences for donor and acceptor sequences (AG and GT) are underlaid with grey rectangles. The table shows the intron sequences (small letters) and exon sequences (large letters) which flank the splice acceptor and donor sites. The sizes of the exons and introns are given in bp.
- Tab. 2: Potential binding sites for DNA-binding factors in the nucleotide sequence of intron 2

0022246 · 0022240 D

The search for possible DNA-binding factors (e.g. transcription factors) was carried out using the "find pattern" algorithm from the Genetics Computer Group (Madison, USA) GCG sequence analysis program package. The table lists the abbreviations of the DNA-binding factors which were identified and their location in intron 2.

Tab. I

3' Acceptor Sequence			5' Donor Sequence		
Intron	Exon	bp	Intron	Exon	bp
	No.	No.		No.	No.
5' flanking region					
GTTCAGGCAAGCTGTGCT	1	281	CGCCCCCTTTCGCGAG		1 104
GTGTCCTGCCTGGAGAGC	2	1354	TGGCTGGCAAGGCCAG		2 8616
GAGTGCTGTGTCGCGC	3	196	TGCAAAACATTGAAATCAG		3 2089
A.CAGACTCTGAGGGTG	4	181	GTTGCGAGAAAGAGG		4 687
GCGAGCAGTCACCTGGA	5	180	TGAGCTTACTTGTGAG		5 494
GTGGATGTGTAACGGCGGT	6	156	CAAGGCCCTAACGCCAC		6 >4660
GTCTCTACCTGACAGACC	7	96	TGCCGTGGTATGAGAG		7 980
CTCCGCTCTCTCTGCTGAG	8	86	CCGGCCATTCAGGGCAA		8 2485
CTGCTGTTCCGCGGCGAG	9	114	GGGGATTCTCGCGGAGCG		9 1984
GCTGTTCCCTTCTTCTAG	10	72	ACGGAAAACCTTCCTCAG		10 1871
CATTGCCCCTGCTCTAG	11	189	TGAGAGCAGCACTGCGGGA		11 3801
ATTCGGCCCTGCTCTAG	12	127	CCCTTCCTGATTTTCAG		12 880
TCTTCTTGCGCTCTAG	13	62	TCTGCTGAGGGTACAG		13 3187
CTGCGCCATCTCTCTAG	14	125	CTGAAACCCAAGAACCCAG		14 781
AGCTCTGCTTCCCGAG	15	138	CTGGGTCACTAGGAGCC		15 536
TCTGATTCTGGCCCGAG	16	664	TTCCTAGTTTGTAAAAAA	3' flanking region	
CCAGACAGCAAGTCAGTCG					

Tab. 2

Factors	Location in intron 2
C/EBP	2925
CRE.2	2749
Sp1	2378, 4094, 4526, 4787, 4835, 4995
AP-2 CS3	5099
AP-2 CS4	2213, 3699, 4667, 5878, 5938, 6059, 6180, 6496
AP-2 CS5	5350, 5798, 5880, 5940, 6061, 6182, 6375, 6498
PEA3	934, 2505
P53	2125
GR uteroglobin	848, 1487, 2956
PR uteroglobin	3331
Zeste-white	1577, 1619, 1703, 1745, 1787, 1829, 1871, 1913, 1955, 1997, 2039, 2081, 3518, 3709, 4765, 5014, 5055
GRE	846
MyoD-MCK right site/rev	447, 509, 558, 1370, 1595, 1900, 2028, 2099, 4557
MyoD-MCK left site	108, 118, 453, 1566, 1608, 1692, 1734, 1818, 1902, 1986, 2372, 2460, 2720, 3491, 5030
Ets-1 CS	6408
AP1	3784, 4406
CREB	2801
GATA-1	839, 1390, 3154
c-Myc	108, 118, 453, 1566, 1608, 1692, 1734, 1818, 1902, 1986, 2372, 2460, 2720, 3491, 5030
CACCC site	991
CCAAT site	1224
CCAC box	992
CAAT site	463, 2395
Rb site	992, 4663
TATA	3650
CDEI	106, 1564, 1606, 1690, 1732, 1816, 1900, 1984

Examples

The human gene for the catalytic telomerase subunit (ghTC), and the regions of this gene located 5' and 3', were cloned, while the start point for transcription was 5 determined, potential binding sites for DNA-binding proteins were identified and active promoter fragments were highlighted. The sequence of the hTC cDNA (Fig. 6) has already been reported in our application PCT/EP/98/03468, which is also pending. Unless otherwise mentioned, all the data refer to the position of the cDNA in this sequence.

10

Example 1

A genomic Southern blot analysis was used to determine whether ghTC constitutes a single gene in the human genome or whether there exist several loci for the hTC gene 15 and possibly also ghTC pseudogenes.

In order to do this, a commercially available zoo blot from Clontech was subjected to 20 Southern blot analysis. This blot contains 4 µg of Eco RI-cut genomic DNA from nine different species (human, monkey, rat, mouse, dog, bovine, rabbit, chicken and yeast). With the exception of yeast, chicken and human, the DNA was isolated from kidney tissue. The human genomic DNA was isolated from placenta and the chicken genomic DNA was purified from liver tissue. An hTC cDNA fragment of about 720 bp in length, which was isolated from hTC cDNA, variant Del2 (position 1685 to 2349 plus 2531 to 2590 in Fig. 6 [deletion 2; cf. Example 5 in Fig. 8]), was used as 25 the radioactively labelled probe in the autoradiogram in Fig. 1. The experimental conditions for the blot hybridization and washing steps were taken from Ausubel *et al.* (1987).

In the case of the human DNA, the probe recognizes two specific DNA fragments. 30 The smaller Eco RI fragment, of from about 1.5 to 1.8 kb in length, probably originates from two Eco RI cleavage sites in an intron in the ghTC DNA. On the

002400-00028200

basis of this result, it is to be assumed that only one single ghTC gene is present in the human genome.

Example 2

5

In order to isolate the 5' flanking hTC gene sequence, approx. 1.5×10^6 phages from a human genomic placenta gene library (EMBL 3 SP6/T7 from Clontech, order number HL1067j) were hybridized on nitrocellulose filters ($0.45 \mu\text{m}$; from Schleicher and Schuell), in accordance with the manufacturer's instructions, with a 10 radioactively labelled 5'-hTC cDNA fragment of about 500 bp in length (position 839 to 1345 in Fig. 6). The nitrocellulose filters were firstly incubated, at 42°C for two hours, in $2 \times \text{SSC}$ (0.3 M NaCl; 0.5 M Tris-HCl, pH 8.0) and then in a prehybridization solution (50% formamide; 5 x SSPE, pH 7.4; 5 x Denhard's solution; 0.25% SDS; 100 μg of herring sperm DNA/ml). For the overnight 15 hybridization, the prehybridization solution was supplemented with 1.5×10^6 cpm of denatured, radioactively labelled probe/ml of solution. Nonspecifically bound radioactive DNA was removed under stringent conditions, i.e. by means of three five-minute steps of washing with $2 \times \text{SSC}$; 0.1% SDS at from 55 to 65°C . The filters were evaluated by autoradiography.

20

The phage clones which were identified in this primary investigation were purified (Ausubel *et al.* (1987)). In subsequent analyses, one phage clone, i.e. P12 turned out to be potentially positive. A λ DNA preparation carried out on this phage (Ausubel *et al.* (1987)), and the subsequent restriction digestion with enzymes which release the 25 genomic insert in fragments, showed that this phage clone contains an insert of approx. 15 kb in the vector (Fig. 2).

In order to isolate the complete hTC gene sequence, in each case from 1 to 1.5×10^6 30 phages were screened, in independent experiments, with in each case different radioactively labelled probes, as described above.

The phage clones which were identified in these primary investigations, and which were positive for the corresponding probes, were purified. The phage clone P17 was found to contain an hTC cDNA fragment of about 250 bp in length (position 1787 to 2040 in Fig. 6). The phage clone P2 was identified as containing an hTC cDNA fragment of about 740 bp in length (position 1685 to 2349 plus 2531 to 2607 in Fig. 6 [deletion 2; cf. Example 5]). The phage clones P3 and P5 were found to contain a 3' hTC cDNA fragment of 420 bp in length (position 3047 to 3470 in Fig. 6). After the λ DNA had been prepared from these phages, and subsequently subjected to restriction digestion with enzymes which release the genomic insert in fragments, the 10 inserts were subcloned into plasmids (Example 4).

Example 3

In order to investigate whether the 5' end of the hTC cDNA was also present in the 15 insert in the recombinant phage clone P12, the λ DNA from this clone was hybridized, in a Southern blot analysis, with a radiatively labelled hTC cDNA fragment of about 440 bp in length (position 1 to 440 in Fig. 6) from the extreme 5' region (Fig. 3).

20 Since the isolated λ DNA from the positive clone also hybridizes with the extreme 5' end of the hTC cDNA, this phage probably also contains the 5' sequence region flanking the ATG start codon.

Example 4

25 In order to subclone the entire 15 kb insert in the positive phage clone P12 in the form of subfragments, and subsequently to sequence these fragments, restriction endonucleases which, on the one hand, release the entire insert from EMBL3 Sp6/T7 (cf. Example 2) and, in addition, cut within the insert, were selected for digesting the 30 DNA.

- In all, two Xho I subfragments, of about 8.3 and about 6.5 kb in length, respectively, and three Sac I subfragments, of about 8.5, about 3.5 and about 3 kb in length, respectively, were subcloned into the pBluescript KS(+) vector (from Stratagene). The 5123 bp 5'-flanking nucleotide sequence of the ghTC gene region, starting from the ATG start codon, was determined by analysing the sequences of these fragments (Fig. 4; corresponding to SEQ ID NO 1). Fig. 4 depicts the first 5123 bp (starting from the ATG start codon). Fig. 10 depicts the entire cloned 5' sequence (corresponding to SEQ ID NO 3).
- 5
- 10 In order to subclone the entire insert, of approx. 14.6 kb in size, in phage clone P17 in the form of subfragments, restriction endonucleases which, on the one hand, release the entire insert from EMLB3 Sp6/T7 and, in addition, cut a few times within the insert, were selected for digesting the DNA. Three XhoI/BamHI fragments, of 7.1 kb, 4.2 kb and 1.5 kb in size, respectively, and one BamHI fragment, of 1.8 kb in size, were subcloned by means of using a combination digestion with the enzymes XhoI and BamHI. Combination restriction digestion with the enzymes XhoI and XbaI resulted in a XhoI/XbaI fragment of 6.5 kb in size, and two XhoI fragments, of 6.5 kb and 1.5 kb in size, respectively, being cloned.
- 15
- 20 Digestion with the restriction enzyme XhoI was used to subclone the insert, of approx. 17.9 kb in size, in phage clone P2 in the form of subfragments. In all, three XhoI subfragments, of 7.5 kb, 6.4 kb and 1.6 kb in length, respectively, were cloned. Four SacI fragments, of 4.8 kb, 3 kb, 2 kb and 1.8 kb in size, respectively, were additionally subcloned by digesting with the restriction enzyme SacI.
- 25
- 30 The insert, of approx. 13.5 kb in size, in phage clone P3 was subcloned by digesting with the restriction enzymes SacI and/or XhoI. Six SacI subfragments, of 3.2 kb, 2 kb, 0.9 kb, 0.8 kb, 0.65 kb and 0.5 kb in length, respectively, and two XhoI subfragments, of 6.5 kb and 4.3 kb in length, respectively, were obtained in this connection.

DRAFT00000000000000000000000000000000

The insert, of approx. 13.2 kb in size, in phage clone P5 was subcloned by digesting with the restriction enzymes SacI and/or XhoI. In all, SacI fragments of 6.5 kb, 3.3 kb, 3.2 kb, 0.8 kb and 0.3 kb in size, and XhoI fragment of 7 kb and 3.2 kb in size, were subcloned.

5

In order to clone the hTC genomic sequence region located 3' of phage clone P17 and 5' of phage clone P2, 3 genomic walkings were carried out using the Clontech GenomeWalker™ kits (catalogue number K1803-1) and various combinations of primers. In a final volume of 50 µl, 10 pmol of dNTP mix were added to 1 µl of 10 human GenomeWalker Library HDL (from Clontech), and a PCR reaction was carried out in 1xKlen Taq PCR reaction buffer and 1xAdvantage Klen Taq polymerase mix (from Clontech). 10 pmol of an internal gene-specific primer, and 10 pmol of the adaptor primer AP1 (5'-GTAATACGACTCACTATAGGGC-3'; from Clontech) were added as primers. The PCR was carried out in 3 steps as a touchdown 15 PCR. First of all, denaturation was carried out at 94°C for 20 sec, and the primers were then annealed, and the DNA chain extended, at 72°C for 4 min, over 7 cycles. There then followed 37 cycles in which the DNA was denatured at 94°C for 20 sec but the subsequent primer extension took place at 67°C for 4 min. In conclusion, there followed a chain extension at 67°C for 4 min. After this first PCR, the PCR 20 product was diluted 1:50. One µl of this dilution was used in a second nested PCR together with 10 pmol of dNTP mix in 1xKlen Taq PCR reaction buffer and 1xAdvantage Klen Taq polymerase mix and also 10 pmol of a nested gene-specific primer and 10 pmol of the nested Marathon Adaptor primers AP2 (5'-ACTATAAGGCACGCGTGGT-3'; from Clontech). The PCR conditions 25 corresponded to the parameters which were selected in the first PCR. As the sole exception, only 5 cycles rather than 7 cycles were selected in the first PCR step and only 24 cycles, instead of 37 cycles, were run in the second PCR step. The products of this nested genomic walking PCR were cloned into the TA Cloning Vector pCRII from InVitrogen.

30

DRAFT - 31/02/2005

In the first genomic walking, the gene-specific primer C3K2-GSP1 (5'-GACGTGGCTCTTGAAGGCCTG-3') and the nested gene-specific primer C3K2-GSP2 (5'-GCCTTCTGGACCACGGCATACC-3') were used, together with the HDL library 4, and a PCR fragment of 1639 bp in length was obtained. In the second genomic walking, a PCR fragment of 685 bp in length was amplified from the HDL library 4 using the gene-specific primer C3F2 (5'-CGTAGTTGAGCACGCTGAACAGTG-3') and the nested gene-specific primer C3F (5'-CCTTCACCCCTCGAGGTGAGACGCT-3). The third genomic walking mixture, using the gene-specific primer DEL5-GSP1 (5'-GGTGGATGTGACGGGCGCGTACG-3') and the nested gene-specific primer C5K-GSP1 (5'-GGTATGCCGTGGTCCAGAAGGC-3'), led to a 924 bp PCR fragments being cloned from the HDL library 1. In all, 2100 bp of the genomic hTC region located 3' of phage clone P17 were identified using this genomic walking method (see Fig. 7).

The subcloned fragments, and the genomic walking products, were sequenced in single-stranded form. The Lasergene Biocomputing Software (DNASTAR Inc. Madison, Wisconsin, USA) was used to identify overlapping regions and form contigs. In all, 2 large contigs were assembled from the sequences collected from phage clones P12, P17, P2, P3 and P5, and also the sequence data from the genomic walking. Contig 1 consists of sequence data from phage clones P12 and P17 and the sequence data from the genomic walking. Contig 2 was put together from the sequences from phage clones P2, P3 and P5. Overlapping phage clone regions are shown diagrammatically in Fig. 7. The sequence data from the 2 contigs are shown below. The ATG start codon in contig 1 is underlined. The TGA stop codon is underlined in contig 2.

Contig1:

	ACCTTGAGGCC	AAAGGACATCC	GCGCATGGT	ACCCATGAT	GCACACCCAC	ACCCAGCCT	TGGTCRAGCA	70
5	ATGGAGACCT	CTCTCAARAA	AAAANAAA	AATTGAATA	ATTTAAGAC	TCTTCCTTGG	CCACACTGG	140
	ACAAAACACG	AAATCAGAA	CAAGAGGAA	TTTAAACAACT	ATTTAAGAC	ATGAAAAATT	ACCAATATAC	210
	TCTCTGATGA	CCAGTGAAGTC	ATAGTGAAGA	TTAAAAGGAA	ATTTAAGAC	AAATGATATA	CAATGTATAA	280
	CGGAAACATCA	ACCTCTCAA	ACCCACGCTA	TACAGCAGGAA	GCAGTCGCTA	GAANGGAGCT	TTGAGCTTCA	350
10	ACGACCTACA	TCAAAAGAAT	AGGAAAGCCA	GGCCGAGTGG	CTCATGCTG	TAATCCGAGC	ACTTGTGAG	420
	GCCTAAGGGCG	GCAGATGCGC	TGGGTGAGG	AGTTGGCAGAC	GAACCTGACC	AACACAGAGA	ACCTTGTGCG	490
	CTACTAAAGA	TAACAAATTA	GGGGCATGAT	GGGGCATGAT	CTGTGATMTC	CAGCTACTTCG	GGAGCTGTG	560
	GCAGGATATAAC	CGCTTGAACCC	CAGGGAGGTGG	AGGTGTCGGT	GGGCCGCGGT	TGCGCCATTCG	GACTCCAGCC	630
	TGGGAAACAAAC	AGATGGAACCC	CTGTCATCAG	AAAAAAAAGA	AAAGTAGAAAA	ACTTAAATAT	ACCACTTAA	700
15	GATGCCACCTT	AAAGAACATAG	AAAAGCAAGA	GCAAAACTTAA	CTTAAAATTCG	GTAAAAGAAA	AGAAATATAA	770
	AAAGTCGAGAT	CGAAAGATAAA	TGAAGACTGAA	AGATAACCAT	ACAAAAGATC	AACAAAATTA	AAAGTTGGT	840
	TTTTGAAAGAA	ATAAAACAAA	TTGACAAACC	TTGGCCAGA	CTAAGGAAAAA	AGGAAAGAAC	ACCTAATATAA	910
	ATAAAGTCAG	AGATGAAAAA	AGGAGACATA	CAACTGTACAT	CACAGAAAAAT	CAAGGGATCA	CTAGAGGCT	980
20	CTATGAGCAC	CTGTGACAA	ATTAATGAA	AAACCTAGAA	AAATTAGATA	ATTTCTGAGA	TGTCATCACAC	1050
	CTACCAAGAT	TGAACATG	AGNAATCCAA	AGCCCACAA	GGCAATTA	ATAATGGGA	TTAACCGCT	1120
	ATAAAGAAAGT	CTCTTGACAA	AGGAGAAGCC	AGGACCAAT	GGCTTCTCTG	CTGATTITTA	CCAACTATT	1190
	AAAGGAAGAT	GAATTCCTT	CTACTCAAA	CTATTCTGAA	AAATAGAGAC	AAAGAATATTCT	CCAACTACAT	1260
25	TCTCATGTTG	CGATTTTACCC	CTGATTCTTAA	AAACAGGACAA	AAACACATCA	AAACACAAAC	AAACAAAAAA	1330
	CAAGAAGAAAC	GAARAACAT	GGCCACATATC	CTCTGATGAA	ATGTGATACA	AAATCTCTAA	CAAACACAT	1400
	ACGATGCTT	GGAAACATCA	ATCTGCAAC	ATCATCTTCA	GTGTGAGT	GGGATTATTTC	CCAGGATGTTG	1470
	AAAGATGCT	GGAAACATCA	ATCTGCAAC	ATCATCTTCA	GTGTGAGT	AAATGAGAT	AAACAAACAT	1540
	TATGATTATT	TCACCTTCA	ATACATGAA	AGGAGTAA	TCATCTGAA	CTTCATGATA	AAACACCTCA	1610
30	AAAGGAAACCG	TATACAAAGA	AGGAGAAGAA	ATGGTAA	GGCTCACACC	GGATGCTTCA	OCACTCTG	1680
	AGGGCAAGGT	GGGATCATG	CTTGGCCGCA	GGAGCTTGG	ATGACTGCG	GCAGGAGGAG	CTTGGCCGCA	1750
	CTACAAAAAA	CTTGTGAA	AAAATGAGCA	GGCATGATGG	CATATGATC	TAGTCCCAGG	TAGTCCTGGG	1820
	GCTGAGGTGG	GRGAATGACT	TAAGCTTGA	AGGTGCGAGC	TGGCTGAGC	CATGAGCATG	TCAGCTACT	1890
35	CCAGCCTGAA	CAACAGGCA	AGGCCCTAAC	TAATGANGAA	AGGAGAAGG	AGGAAGGAGA	GGGGGGGGAG	1960
	AAAGGGGAGG	GGGGAGGAGG	AGGAGGTGGA	GGAGAGTGG	AGGGAGGAGG	GGAGGGGAAA	GAGGAAGGAG	2030
	AGGAACATAC	TTTCACATCA	ATAAAAGGCA	TATATGACAG	ACCGGGATGG	TATATGAGG	AAAATCTGAA	2100
	AGCCCTTCTC	TTCAAGATCT	AGGAAATGCA	GGAGGATGCA	TTTCAACCTG	TGATGTCACA	TAGTACTAGA	2170
	AGTCCTGAGT	AGGACATCA	DTAAGGAGAA	AGGAAATAAA	GGCTACCTAA	CTGGAAGAGA	AGGAATGCAA	2240
40	TTATCTGTTG	TGGCATGAG	ATGATCTTAT	ATCTGGAAA	GAGCTTAAAGA	ACCACTAAA	AACTTATAGA	2310
	GCTGAATTTT	GGTGCAGACAG	GATGACAAA	CAATGTACAA	AAATCTGAGT	TATTTCTATA	TTCCACACAGC	2380
	AAACAAATCTG	AAAAGAAA	CAAAAAGCA	CTACAAATA	AAATTTACAA	GCTAGGAATT	ACCAAAAGAA	2450
	GTGAAAGATG	TCATCAATG	AAACATTA	ATGTGATATA	AAAGGATTTG	AGAGGACACA	AAAAAGAAGAA	2520
45	AGATAATCTCA	TGGTCATGAA	TGGAGAGAT	AAATATCTG	AAATGTCGA	TACATCCTAA	AGCAATTTC	2590
	AAATTCAGAT	CAATCCCTAT	TAATACATTA	ATGAGCTTGT	TCACAGAAT	AGAGAAACAA	ATTCATAGAT	2660
	TTCTGATCTT	GGGATCTTCA	ATGATCTTCA	ATGAGCTTAT	TCATGACAA	AGAGAACAAA	CTGGAGGATC	2730
	CACTACCTCT	GACTTCAAA	ATGATACAA	AGGAGTACTA	TCATGACAA	AGGAGACTCA	AGGAGACTCA	2800
	AGTGAAGACA	TOGACAGAGA	GGAAACAGAA	GAGGAGTAA	AGAACATCTA	AGGAGACTCA	AGTGAAGACA	2870
50	TTTTGAGCAA	GGCTGGCAAC	AGACGTTTCTT	GGGAAAGAGA	TAATCTGCT	TAATCTGCT	AAATCTGCT	2940
	CTGGATATCC	ATATGACAA	TAACATGAC	ATGAGCTTGT	GGGAAAGAGA	TAATCTGCT	CTGGAGGAGA	3010
	GGATGAAGGG	CTTAATCTAA	AAACCTCAA	CTTGGCAACT	TCACAAAGAA	AAACCTCTAA	CTGGAGGAGA	3080
	GGCATTTGG	GTGGGCAACG	ACTTCTGG	TAATTCCTCG	CGGGCCACGG	CAACCCAAAGC	AAAAACAGAC	3150
55	AAATGGGATC	ATATCAAGT	AAAAGGCTTC	TGGCCGACAA	GGACAAACAT	CAACAAAGG	AGAGACACG	3220
	CCACAGAGAT	GGGATGAGAT	TTTGCAAACT	ATTCATCTAA	CAAGGGAAAT	ATAACCAAGT	TATATAAGGA	3290
	GCTCAACTCT	CTCTATAGA	AAAACACCTA	TAATGGCTAT	TTTCAACAA	AAAGCAAAA	CTCTGGTACG	3360
	CATTCTCCTA	AAATGAGCA	AAACATGCA	AAACGGCTC	TAAGAAATGTG	CTCAACACCA	CTGATCTACA	3430
	GAGAAATGCA	ATAACAAATC	ACTATGAGAC	ATCATCTCAT	CCGGATTTG	ATGGCTTTTA	CTTAAACAGG	3500
60	AGGCAATCA	AAATGGGCACT	GGGGATGGTGG	TTAAAAGGAA	ACCCCTGGAG	ACTGTTGGG	GGGAATGGAA	3570
	TTGCTTACAC	TGGGAGGAC	AGTTGGAAAG	TTCTCTAAA	AAATTTAA	AAAGGACTTCA	TACAGCAGTC	3640
	CCATTGTCAG	GTATATCTAC	AAAAAAAGGA	AAATCTGATG	AAACAAACGCT	ATTCCTCACT	CCACATTC	3710
	TGCAAGACTC	TTCTAGATC	CCAAAGGAGG	AACTGATGTA	CAGTGTCTAC	CAACAGCAGA	ATGAAAAGAA	3780
	AAATAATGTTG	GGCAGATCAG	ATGGAGGAC	TAAGCAGGCA	AAAGGAAAT	TGAGTCTCG	TTAGTTGCAA	3850
	CGACCTTGGG	GGGACTCTGG	AGTGTGTTAA	GTGAAAGAA	CCAGGCGACAA	AAAGGAAAC	TTTCTGATCT	3920
65	CTCCCTTACT	TTGGGAGGAG	AAAATTAAGA	CAATTGTTAG	AAATGTTAGG	AGGAATAGAG	GAGGAATGGG	3990
	GCTGGGGGAC	AGGGTGTACTA	GAGTCACAA	TAATTATTTG	TATGTTTTAA	AAATCTCTAA	AGGATATGAA	4060
	TTGGGAGGAG	GTAAACAA	GAAGGAGGAA	ATGCTTGAAG	GTGAGAGATG	CCCCATTCAC	CTCTGATCTG	4130
	TTATGAGCA	AAATGAGCA	GTATGACAA	AACTCTGAA	TAATCTGAGA	AAACCTCTAA	CTGAGGAGAA	4200
	AAATTAATTC	TTATGAGCA	AACTCTGAA	CTTGCTTGG	GGGAGGAGGAG	GGGAGGAGGAG	GGGAGGAGGAG	4270
70	GTGGATCTCC	GGAGGTGAGC	AGTGTGAGC	GGGGGGGGCC	ACCATGATGA	AAACCTGTTG	CTACTTAAAGA	4340
	TAGAATTTAT	AGGCAAGGCG	GGTGGCAACT	ACTGTGACTG	CCAAACTCTA	GGGGGGCTGA	GAAGGAGGAGA	4410
	TTTGTTGAGC	CTGGGAGGGC	GGGGGGGGCC	TAAGGGGGAG	TCATGCTGAT	GGGGGGCTGA	GGGGGGCTGA	4480
	GAGCAAGACTC	CCATCTCAC	AAACAAACAA	AAAAGGAGG	TTTAAATTT	TTTAAATTT	GTACGGCTAA	4550
	AAATAATACAT	CTACTATAC	AAAGGATGAA	TTTAAATTTA	TTTAAATTTA	TTTAAATTTA	GTAAATTAAC	4620
	AAATGAGAC	ATGATGATG	GGGGTTCTG	CTCTGAGGA	AGTAAAGATG	ATGGCGACGA	GGGGCACTTAA	4690
	GTGAGGGAGG	AAAGGAGGG	TTAGTTCTGG	TTAGGACGTC	TAATCTCTG	TAAGTGACTT	AATTCTTAAAC	4760
	AAAGACAGG	TGGGAGGAAGT	TAAGAAGGCA	TTCTATAGC	CTCAAAACAA	CTGCTAAATA	TGGTGAAGAG	4830
	TAATCTCTAT	TAATTCACCA	TAATTCACCA	TTCTCTAAA	ATCCGAGTC	AGGATTTGCG	CTGCTCTATA	4900
	CACCGCTCTC	TCATCTCAC	GGCTGGGAGG	TTCTGTTTTT	TCATGTTGCT	GGAGATTTG	CTGGTTGTTG	4970
75	GTTAACCTA	ATCTGTATG	ATCTGTGAC	AAAAATGTTG	GTTGATTTCC	TCGAGAAGAG	TTAGACTAC	5040
	TGGAGGAG	CGGGTGCCTC	TTGGGACCTG	AGCCCACTCA	ATCTTCAAGG	GTCTCTGGCC	AGAGACJAGG	5110

	TGGAAGGCAG AGGCTGTATG ACCGGAGAC AGGAAGGCTC GGATGGGAGG GGGGATGAG AAGCCGCT 5180
	CCTGGTGCAG CAGCGCATGA AGTGGCTTA TTTAGCTT CAAAGAATG CTCTGGATAC CAITCTGAAA 5250
	AGCGGGCCAG CGGGATCCA AGGAGTCAGA AGCCTCTCGC TCAACCCAG GCGAGCACGT ATGGGCCCA 5320
	CCCGGGCTG TCCAGAGGG AGMGAGCTCA AGGACCTCG RAGTNTGGCT TRAATCTTT TTTCACCTCA 5390
5	AGCAGTGAAC AAGGGTATTG CTGGAGGAGA CTGGAGTTAG GTGCTCTCTT TAAACAGNA AGTCAGGCA 5460
	GCACCCCTCT ACGAGGAAAC CCAGACGCCG GCTCTCGGT CATTCACCTC TTTCCTCTC CCTCTCTTG 5530
	CCCTGGCGT TCTCTGGG GCAGAGATGA AGCTCTCGC GCTTCTCCGA GCCCGTCTG AGGACCTCT 5600
	TGCAAAAGGG TCCACAGCA CCCCGCTTG AGAGGAGGT CTAGAGCTTG CTTAATANCA AACTGGATG 5670
10	TGCGTGGGGG EGGACAGGG CGGGGGGAT AGAACAGTAT ATTCCATGAG TAAATTCANA TTTCACAT 5740
	CCGATGGAT TIGGATATT TCTTAATAT TTCTTAATT TCTCAAAATC ACATTCAGGA CTGAGAAAT 5810
	CCAAAGGGCT AAAACAGGAAT CTGAGCTAT TTGGCAAGG TCCAAGGACT TAATAACCT GTTACAGGGG 5880
	ATTTCCTGGC CTAAGTACT TTATTTGGT TTCTAAAGGT TTCTAAATC ACATTCAGGA GTACAGGAA 5950
	AGGGGCTGG CGGGCGAGGT TAGGAGCAGC GCAGGGGACAC CGGGAGAGGA GTCCCCGGG TGGGAGCTG 6020
15	ACAGCAGGAC CACTGAGCC CTCCTCTGGG AGCTGGCACAC GAGCTGCAC GCAAGGGGGG CACGCTGCGT 6090
	GTGACTCAGG ACCCCATACC GGGCTTCAGG GCCCACCCAC ACTAAACCGA GAAGTCACGS AGCTCTGAAC 6160
	CCGTGGAAAC GACAGATCC CTGGCTCGG TGCTTCTCTG GGGTGGTCAA GGTAATGAA CATCTCACCC 6230
	GGAAATGGG AGTAAATTA CAGACGCTC CTGAGTGGGG CGGTTCTTC CATCATTATC CATCTCACCC 6300
20	CCAAAGGACT GATGATGCC AGCAACTCTC CGGGGTGTA CAGAACCTAG CAAACCTAG TAAACACCA 6370
	ACTCTTTAAC TAGGGCCACG GAGCAGCAGC CACACCTCTG ATATATTAAC AGTCCAGGA AGATGAGGCT 6440
	GCTTCAGGCC ACCAGGCTC GTGAGCACAC GCGGCTGAAC GAGCTGTGAG TCTAGACTAG TAGACCTCG 6510
	CAGGGACTCT CCCAGGCTAC AGGGGGCTGG TGTGCAAGGAGA CGGGGGGGG ATCTGGCTCTC GAGACTACAGC 6580
25	CTGGGGTGCC ACACTAGGG CAGGGCTGTC TCCACACCC CTCCTCTCAG GGCCTACGTT CTCCAGCGAC 6650
	TTCTAAACAGG CAGGGGGGGG TGTTGTCG CGCTATGTC TCACTCCAGG CAGTGTGAG TGTCTCACGG 6720
	ACCGGGGGGG CAGGGGGGG TGTTGTCG CGCTATGTC TCACTCCAGG CAGTGTGAG TGTCTCACGG 6790
	GGGGAGATTC TGGCTCTGG AGACAGTGTGCTC TCGAACCTC AGAACCTGGT CTCAGCTCC GCGGGGCTG 6860
30	CTCTGGCTGG CGCTGGAGG TGACCTCTG TTGGCTCTG TTGGCAAGG TCCAAGCTC CTGGCTGTC TCTGGCTCC 6930
	CGGGFTGTTG CTTCCTGGT TGTCAGTGG CTCAGCTCA CGGGCTGTC TCTGGCTG TGCTGGCCG CTAGGGCTC 7000
	GGGGTTTITA TAGGGTAGG AGGGGGGGGG GTGGGGGGGG CGGGGGGGGG GTGGGGGGGG GTGGGGGGGG 7070
	TGAAAGTAAA AGTGGCTGGC CTTCAGCTAGG CAGGGCTGGG GTGGGGGGGG GTGGGGGGGG CGGGGGGGGG 7140
35	CCGGCCCTCC TCAGGGCCAG ACCTTCCTGC CCCCTCCCT CTTGGAAACACA GGATGGCAGT TTCCACAAACG 7210
	ACTRAAGCATC CTCTCCCAAGG AACAGGAGGCA ATTTGGACCC GGGGGGGGGG CTCGACATT CTCGGGAAATT 7280
	CAAGTGTACA CGGCAACATG GTACACACTC CGCTGGACGA CGGGGGGGGG CTCGATTTATI TIAATAGCTA 7350
	CAAAAGCAGGG AAATCCCTG TAAATGTCG TTAAACAAAC TGGTTAAACAA AACGGGGTCA TCCGACGGCT 7420
40	GGACAGCTTC TCACAGTGAAG GAGGAACTGG CAGGGGGGGGG CTCGACGGGGG CTCGACGGGGG CTCGACGGGG 7490
	GAGTAAACAC TGGCACCCTC ATGGGATAGG TACGGACACAT CTCACAAAC AACGAAATTG ACCCATGCG 7560
	AGGGGGTGTG TGAGGGGGGG TAGGGAGGCTT GGGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 7630
	AGGGAGCTTT CTCGTTGTTG ATGGGATAGG CGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 7700
45	GGGAGGAGG GGGCTGGCA TCTTGGCTG CTCAGGATGT CTCAGGATTTA ATATAGCTC AGAGATGCC 7770
	ACCTCTGTAT CCCACCAAGG CTGGTGCACG AACGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 7840
	TGAGGGACCTT GGGTGTGGG ATCTCTGGG ACTACTGGG GGGGGGGGGGG CTCGACGGGG CTCGACGGGG 7910
	AGGGGGGGGG GGGGGGGGG GGGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 7980
50	GGGGGGGGGG GGGGGGGGGGG GGGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 8050
	ACGGGGGGGG GGGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 8120
	GTGCTCATGGG AAGGGCTCTG CGCTCCCTCTT CTCAGGATCA CGGGGGGGGG CTCGACGGGG CTCGACGGGG 8190
	ACCCATGCGC TGTTGAACTCA GGTTATTTA AACAAAGGAGG TTACAGGAAAC CATCCAGGA CGGGGGCTGA 8260
55	GTGCTCTGGG GCAAGGGGGG GGGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 8330
	CTGAGACAGA GTTACGCTCTG TTGGTGGCC CGTGGAGTGGC AGGGGGGGGG CTCGACGGGG CTCGACGGGG 8400
	CGCTCTCTGG CGTCAAGGAA TTTCCTGGCC TCACTGGCC CAGGGGGGGGG CTCGACGGGG CTCGACGGGG 8470
	ACACGGGGGGG GGGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 8540
60	GGCTATTATA ACCATTCTAA AACTCTCTG GGGCTCAAGTC AGGACACCTG CTCGCTCTGG AGGGGGGGGG CTCGACGGGG 8610
	ATTTCCTCTT TIACTCAGGA GTTACCTCTC TTGGTATTTT TCTGTAATTC TTCTGACTAG GGGGATACAC 8750
	CGCTCTCTGG CATATTCACA GTTCTGGA CAGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 8820
	GAGGGCTCGAG CGCTTCAAGG CCAAGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 8890
65	AAGGGGGGGGG AGCTGGCTGA ATCTGGCTA CTCAGTGGT CTCAGTGGT CTCAGTGGT CTCAGTGGT CTCAGTGGT 8960
	CTCTACTCT CTGGGGGGGG AGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 9030
	TGGGGAGGGG AGGATGAGCTT TGGTATTTT CTCAGTGGT CTCAGTGGT CTCAGTGGT CTCAGTGGT 9100
	TTGGTGTGTT TTGGAGGGGG GGGTTCAGTC AGTGGCTGG CTCGCTCTGG AGGGGGGGGG CTCGACGGGG 9170
	GCTTATGCA GGGCTGGCTGG CAGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 9240
70	GGGGGGGGGG GGGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 9310
	GTATGACGGT GTGAGGGCC AGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 9380
	GAACCTGGGG CGACTCTAGT GTTCTGGCTT TTAAAGCCAA CTGAGTAAAT TTTTGTGGG TCTGACACAA 9450
	CTCTGGATGT TIACTACGTT GTGACTAGA ACATCATCGA CTCAGTGGT CTCAGTGGT CTCAGTGGT CTCAGACAA 9520
75	ACTACGGGGT GTCTCTGGG TTACGGAAAT CTCCTGGTAA CGGGGGGGGG CTCGACGGGG CTCGACGGGG 9660
	GGGTGTAATT AGTCAAGCTT ATTCCTCTGC TCCATTTCTC TCTCTCTCT CTTTTAAAT TGTGTTTCT 9730
	ATGTTGGCTT CTCTGCAAGG AACCAAGTGA AGCTACAATC TAACTTTTG TGAAACAAAT TTTCAAACG 9800
	GCCCCCTTGGC CTAGTGGCCA GAGGACATACG CAAACACAGC CTTTTAAAT AGGGCTTGGGG ATCACTACAGG 9870
	GGATTCTCTAG AGAAGGGCAAG TGTAACTCTA AGTATTAATC AGAACGGGGC AACTCTCAGG GAGGCTGACA 9940
	GGCCAGGGGGG GTGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 10010
	GAAGATAGGA AAGGGTACAT TTAAAGGTTG CTTTTGTTAGG ATTTAGCTG TTGGGGGGGG CTCGACGGGG 10080
	ATCCTCTGGCA GGCGCTGGGG GACCCAGGA TTCTCTGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 10150
	CTGGAGTCTT GGGAGACTTC CAGCTGGCTT CGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 10220
	CGCTCTGGGG TCTACTCTGG CGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 10290
	GCGCTGGACCC CGGAGCTGGC CTTCACCTCTG CGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 10360
	ACAGAGTGGC GGGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 10430
	GGCCCTGGCT CATTCTTCA CGCTTCTCTG CGGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 10500
	TTTGCTCATG GTGGGGGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG CTCGACGGGG 10570

Le A 32 805-Foreign Countries

- 27 -

5	CCCAAGTGC GGGGAAAGTGT TSCAGGGAGG CACTCCGGGA GTTCCCCTGGT GCCCGTCAG GAGCAATGC 10640 GTCCTCGGGT CGTCCTCCAG CGCGCTCTAC GCGCTCGGT CCTCCCTCTC AGCTCGCGA TTCTGTTGTC 10710 CCGAGCCCG ACGCCCGCCG TCCGGACCTG GAGGAGGCC GGGCCCAAAG 10780 GGTCGCCCA CGCACCTGT CCCAGGCC CACATCATG GGGCTCTCC CGGGTTARCCC CAACGCCAG 10850 GCCGATTGC CCTCTTCGG CTGGGGGGCT CGCTGGCGTC CGTGCACCTC GGGAGGCCGA GCAGCGCCG 10920 GGCGGGGAGAG CGCCGGCCAG CGCCCGGGT CGCGCGGAG CAGCTCGCTG TGCGGGGCCA GGCGGGGCTC 10990 CCAGTGAATT CGCGGACACA GAGCCGGGG ACCGGCGCTCC CAACAGTGGCC GAGGGGACTTG GGACCCGGGC 11060 ACCCCTCTG CCGCTCTTCTC TTTCAGCTCC GCTCTCTCCG ECGGAGGCC GGGCCGTCCC GACCCCTCTCC 11130 GGGTCGCCCG CCGAGCCCGG TCCGGGGCTC CCCAGGCCCT CCGCTCTCTC TCCGGGCCCG GGGCTCTCC 11200 10 TCCGGGCCG AGTTTACAGG AGCGCTCGT CGCTGGCGC ACCTGGGAAG CCTCTGGCCC GGCACCCCC 11270 GCATGGCCG CGGAGCTCCC CTGGCTGGC GTCGAGGCC GGGCTGGTG CAGGGGGGG ACCCGGGCCG 11410 CGCTGGCCAC GTTGTGCGC CGCCCTGGGC CAGAGGGCTG CGCGCTGGTG CAGGGGGGG ACCCGGGCCG 11480 TTTCGGGCCG CTGGGGGGCC AGCTGGCTGT GTSGCTGGCC CGGGAGGAC GGCCTGGCCC GGCCTGGCCC 11480 TCCTTCGCCG AGATGGGGCT CCCCGGGCTG GGCGCTGGCC CGGGGGGGGG GGGAACCCAG 11550 GACATGCAGG GAGCCGGCA CGGCAGCTAC CGGGCTCTCC CGCGAGCTGTG CCTGCCTGTA GGAGCTGTG 11620 GCCCTGGTC TCGAGGAGG TGCGAGGCC GGGCGGAAGA CGCTGGCTT CCTGGCTTC GGGCTGTG 11690 ACGGGGGCCG CGGGGGGGCC CGGGAGGAGT TCACAGGAGG TGCGAGGCC ACACGGTGTAC 11760 CGACGACTC CGGGGGGGCC GGGCGTGGG TGCTGCTGCG GCGCGGCCG GCGAGACGT GCGTTGCTAC 11830 CTGCTGGCAC GTCGAGGCC TTTGGTGTG TGAGGCTGG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG 11900 20 TGATGACCTG CGCGCTGGC ACTCAAGGAGG GGGGGGCCCG AGCTGGCTAG GAGACCCAGG GGGCTGTG 11970 ATCGAGACG GCGGGGAGC GGGGGGCCCG GGGGGGCCCG GGGGGGCCG GGGGGGCCG 12000 AGGAGGCCCG CGGGGGGCCG CGGGGGGCCG GGGGGGCCG GGGGGGCCG GGGGGGCCG 12110 ACGGGGGCCG GACCGCTG GTGGGGGGGT CTGGGGCTCC CGGGGGGCCG AGCGCTGGAC GAGAGTGACG 12180 TGTGTTCTGCT GTGGTGTAC CGTCAGGAGG CGGGGGAGAA GGGACCTCTT TGAGGGGTG CGCTCTGTCG 12250 ACGGGCCACT CGGCCCCATC CGGGGGGCCG CGGGGGGCCG AGGGGGGCCG ATCCAGATCG GGGGCCACAC 12320 GTCTCTGGG CGGGGGCTG CGGGGGCTC CGGGGGGCCG AGGGGGCTG CCTACAGCTCC CAGGGGACAA 12390 GGAGGAGCTG CGGGCCCCATC TCTACTCGA CTCTCTGAGG CGGGGGCTG TGCGGGCTCG GAGGGCTGTG 12460 GAGACCATCG TCTCTGGGGT CGGGGGGCCG ATGGGGGGAG CGGGGGGCCG GTTGGCCCCG CTCGCCCCAGC 12530 GTACTGGCA AGATGGGGCC CGTGGGGCTG AGCTGGCTGG GAGGGGGCCG CAGTGGCCCT AGCGGGGTGCT 12600 30 CTCIAAGGGG CACTGGGCCG TGCGAGCTGG GTGCACCCCA CGGGGGCTG TGCTGGCCCG GGGAGGACCC 12670 CAGGGCTCTG TTGGGGGCCG CGGGGGAGGG GACACAGACCG CCTCTGGCCG GTGGCAGCTG CCTGGCCAGC 12740 ACAGAGCGG CGGGGGCTG TGCGGGCTG TGCGGGCTCG CCTGGGGCCG TGCTGGCCCG 12810 GGGCTCAGG CAAACAGAC GGGCCCTCTC CAGGGGACCC AGGGAGTCTA CCTCCCTGGG GAGAGCATGG 12880 AAAGCTCTGC TGCGAGGAGT GACGAGACG TGAGGAAACCC TGAGGCTGGG AGGAGGCCAG 12950 35 GTGAGGAGGT GTGGGGCCG CGGGGGGCCG GGGGGGCCG HATGATCTAG AGGGGGCTCG AAAAGGGGCCG 13020 AGGGAGAGG CGTGGGGCTC TGTCCTCGA GTGACGGTGG CGACAGCTGG TTTTGGCTA GGGAGTGTAG 13090 TGAGACAGGT GAGATCTCGC TGCTCTCTC CTCTCTGAGG TGCTGGCTAC AGTCTGGAGG TTGACTCTAC 13160 CGTTTGGAT GACACGGGG TGTCGGGCC CGGGGGCCG CGGGGGGCCG GGGGGGCCG 13230 40 TGAGGGCCG TTGGGGCCG TGCGGGCTG TGCTGGCCG GAGACAGACCG CCTGGCCG TGCTGGCCCG 13300 GAGCTGGCTC TCGGGCTGG TGCGGGCTG TGCTGGCCG GAGACAGACCG CCTGGCCG TGCTGGCCCG 13370 GAGCTGGCTC GGGGGCTG CGGGGGCTC GTGGCTGCTC CGGGGGCTG CCTACAGCTCC CCTGGGGCTG 13440 GTSTGTGAC CGGGGGCTG GTGGCTGCTC CGGGGGCTAC AMATTCAGG CCTGGCTTAA AGATTTTAACT 13440 TCACTGGTG CGGGGGCTG TGAGACAGAC TGAGGAAACCC TGAGGCTGGG AGGAGGCCAG 13510 45 AATTAGCTG CGGGGGCTG TTGGGGCTG TGAGGAGGT TGAGGATGGT CGGATCTGAC CCTGGGGCTG AGGAGATGAGT 13580 AAAGTCATG CGGGGGCTG TTGGGGCTG TGAGGAGGT TGAGGATGGT CGGATCTGAC CCTGGGGCTG AGGAGATGAGT 13650 TGAGACCCG CGGGGGAGGG TGCGAGCTGG TGAGGAGGT CCTGGGGCTG AGGAGATGAGT 13720 GAAACTCTGG CTTTAAA AAAAATAAGTTG CTGTTAGTGT CGGGGGAGGG GTGAGGGAGG GGGGGATAGG 13790 ACTGTTCTC AGCACAGACG CTGGGGCTAC CTGGGGCTAC TTGGGGATGT AGGAGGGCCG ACATGGGAGC 13860 AGATGGCTC AGCTGGCTC GAAGGGGAGC TGTTTGTGG TGCTGGGCC AGGGGGGCCG AGGGAGGCCG 13930 50 CGTGTGGCCA CGCTGGTTTG CGTGGATTG TGTTGGAGGA CCTGGGGCTG AGCCCCCTTT TGCTCCCTAG 14000 TGCTCCAGG CCTACCTGG CGACAGTAGA GAAAGCTCGA CCTGGGGCTG CCTACCCCCA CCTACAGAC 14070 ATGAAGTACG TCCGGGGCTAT CGACAGAGA GGGTGGACCTT CTGGGGCTG TTTTTTTCTT TTTTTTTCTT 14140 TTATGGTGG AAAAGTCAT CCTACAGAGA TGCGGGCTAC TAACAGCTTG TGCTGCTAC AGTGCAGAGAT 14210 TGCTAACTGC CGGGGGCTTG CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG TGCTGGCTAC 14280 ATCGAACGGG AGCTGGCTC CACCTGGCTC GGCTGGCTG CCTGGGGCTG AGCTGGAGTA TGCTGATG 14350 55 ACCGAGTTG CCTTTTGTG CCTCGAGCTC CTTCAGGGTG AGAGGGGGTG GTTCTGGAGA GTAGGGGGTG AGAGGGAGCCG 14420 CTCTGCAATG CTGTTCTG AGCTGGAGT AGGTGACCAT AGCTGGCTC CGGGGGCTG CTATGGAGG GGGGGGGCTG 14480 TGTGCTGGT CTGTTCTG AGCTGGAGT AGGTGACCAT AGCTGGCTC CGGGGGCTG CTATGGAGG GGGGGGGCTG 14550 GGGGGGCTG GGGGGGGCTG AGCTGGAGT AGGTGACCAT AGCTGGCTC CGGGGGCTG CTATGGAGG GGGGGGGCTG 14630 60 CCCAGGGCTG TGAGGCTGG TGAGGCTGG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG 14700 TGCTGGCCG CGGGGGCTG CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG 14770 GGGGGGCTG CGGGGGCTG CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG 14840 CCTGTGAGG TGAGGCTGG TGAGGCTGG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG 14910 CTGGGGGGGG CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 14980 GGGGGGCTG CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15050 65 CCTGGCTT GGGCTACTG AGCTGGCTC TGAACTGGTG CTCTCTCTAT AGGCAAGCTG CCTGGGGCTG AGGGGGGGCTG 15120 CCGAGTGGCT CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15190 TCTTGTGAC CCTCTGGCTT CATTCTGTA CGGGGGACACG GAACTGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15260 GGGAGCTGAG CGAACAGCTT AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15330 ATCGATGTC CGAACATCTC TCTGGCTAGG TGCTGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15400 70 CTGGGGCTG TGCTGGAGA AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15470 CCCCACTCTG TGCTGGTGTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15540 TCACTGGT CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15610 ATCGATGTC CGAACATCTC TCTGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG 15680 GTGGGGCTG CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15750 75 TCTTGTGTC TCTGGAGT GGGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15820 GAGGCTTCTG CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15890 CGGGGGCTG CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 15960 CGGGGGCTG CGGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGCTG CCTGGGGCTG AGGGGGGGCTG AGGGGGGGCTG 16030
---	--

TATTCCTGTGA TTTCTTTGAG CACTGACCTA TTTCGAACAT GTTATCTTC AACATATGTA GAGTATCAAG 16100
 ATAGTAGAG TATTATTAGT TAICATTAA TTATGAAATT CTAACTCAGT TGFTGAGTGG TCTGTATAAT 16170
 ACCAAATTG TGAAGTGGC GGAGCCTGC TTITGTGACT AGTGTGTCGA TGTTTCCAG AACTGTCCAT 16240
 TGTAAATTG ACATCGTCG AAATSTGCCG MTCGCGACG ACTTGTGAACTA GTTATGAACTA GTTATGAC 16310
 AACGCTTG CTCCTGCTT AATCGAAGAA TTCCAAAGGAA TGCTGAGGCTA GTCAGCATCA GTCATATGCA GTCCAGTGGCA 16380
 TCTGTTATT TCTGTGTT TGGTAGCATG TATGTGAGGC AGCTTGTAGGT GCATGCAAGT GTTAGAGAG 16450
 TTATCTCTT GATGAGGAA TCTTTTGAGG ACTTCTCTGT CTCTAGTAGT CTAGTAATTC GTTATTTAAA 16520
 TTGCTCTAG TAGCTGCACT CTGGCTCTT TTGTTAGTAGT ATTTCCTCGC TGTTGCTGTT TTCTGCTT 16590
 AATTATATA TATATATA TATATATA TTTTTTTT TTGTTAGAGA GAGTCTGTGGT CTGRCGCCCA GGGTGAAGTGC 16660
 10 AGTGGTGTG TCAACGGTC GTGTAACCTA TACCTCTCG CCTGAGGCGT CCTCTCACCT CAGCCTCTG 16730
 AGTACGCTGG ACCTGAGACA CGAACCGCTG CACCTGGCTA ATTTTTAAAT TTTCCTGGA GACAGGGCT 16800
 TGTCTGTTG CCAACGGCTG TTCTAACCTA GAAAGCTTAA CCTGGATCCAGT TACCTCTGGT TCCCAAATG 16870
 CTGATTACA GGCATGGCC AGCATGCTG GCCTAACTT CAACAGCTT ATATTCCTAT AGTGTGGTGA 16940
 15 TGTCTGTTA ACAGCATGTA GGGATATTC GAATCCAGTC TGACAGCTG TGTTTAATCTG DAATACCTGA 17010
 TTATTTTGCT TTITTTGTC AGTACAGGAC CGCTCTGGTC ACTCTCTGTCC TGTTGCTGATG TCCACTCTGCC 17080
 CCTCTGTCCT TTGTTCTCA CAACTCTTC GGTGAGGATG TGCTGTTGATG GCGGAGTGTG TGTTGATCTC 17150
 CTGCTGTTCT CGTGTGACT GGGCTATGG TTITATTTCT CTTCCTGCTG TGTTACCCCC TGATCTTTT 17220
 ATTCCTGTTT TTGTTCTT TTATGAGA CAGTCCTACT CTGAGCTTCA CCTGACCAAA GGCTGAGTG TAATGGCCAT 17290
 20 ATCTCGGCT ACCTGAGAAC CTGCGCTCTG GTTCAAGGA GTTCTATTC CTCAACCTCA TGAGTAGCTG 17360
 GGAATACAGC CGCCCAACAC GGGCTCTGG ATTTTTTGTG ATTTTTAAAT TTTCCTGGA GAGAATGGCT TTACCACTGT 17430
 TGGCCAGGG GGTCTAACAG TCCACCTGC AAGTGTGTCG CCCGGACACT TGCTGAGGTT 17500
 ACAGGCTGGC GGCACCTGGC GGCACATAC CCAGTGTGCTC TGACAGCTT AAAATAGAGT CTGAAACATI GCTACCTTIG 17570
 TCTGTGCGA GGGAGCTTCTT GGGAGCTTCTT AGCTCTGGCT ACCCCCCAGT CTGTTGCTG TGTTCTCTG 17640
 25 TGTAGTGTG TATCTCTGAG CAGTCCTGCA CCTACATCA CCTACATCA TGACAGTAA TTAAATAGI TTTCCTGTG 17710
 GACCTCTGCT CTGACCTGG CGCCACCTGC CTTCACCTGC TGTTGCTGCT TGTTGCTGCT TGTTGATCTC 17780
 CGCCGCTTGG GGGAGCTCTT AGCTCTGGCT GGGAGCTCTG TGTTGCTGCT TGTTGCTGCT TGTTGATCTC 17850
 CTTTACCTGT GCTGGCTCTG ATTCGATCTA GGGAGCTGG TGTTGCTGCT TGTTGCTGCT TGTTGCTGCT 17920
 ATCTGGAGAC TCAACAGGG CGGGCTCTG GGGGGCTCTG AGCTCTGGG TGTTGCTGCT TGTTGCTGCT 17990
 CTTGGCCAGT GGTAGCTGGC AAGCTGCTGG CGGGCTGGT TGTTGCTGCT TGTTGCTGCT 18060
 30 TCTGGTGGT CCGGGCTGTC GGGTTTGGAA GGGGGCAACAA CTGGGGCTGG TGTTGCTGCT TGACGGCTGC 18130
 GCGCTGGGGG GGAGGTGCTG CTGCTCTCTG TCTGTGTTGG AAGGAGGAA AGGGATGAGG CTGGGGAGCG 18200
 TTGTGCGCTTCA ACAGGAGCATC GGGGGAGCC ATGGTGATAAA TTITTAATAT TCTAGGCTGTG CGGGCTGGC 18270
 TCACTGGCTT ATAACCCAGCA TTGGGGGGG CAAAGGGGGG TGTTGAGGAA GGTCAGGAGG TGAGGACCAT 18340
 CCTGGGGGAA ATGAGTGAAC CCTACATCTA AAACAAACAC AAAAATTAAGC TGGGGCTGTG GGGGGCTGGC 18410
 35 TGTAATCCA GCTACTGAGG AGGGTGGAGG AGGAGAATGG CTGGACACTG CTGGACACTG GGAGACTCTGT CTGAGGTTGAA 18480
 GCGGACATTC CACCTACGCA TCCACGCA CCTACATCTA AAACACAGC GAGAGCTCTGT CTGAGGTTGAA 18550
 AAAAANAAA AATTCATGAA CCTACATCTA AAAAATGAA GAAAAGAGT GAAAATTAATG TAATATAATG 18620
 TTTACAGCA GGGCCAGATG CCTACACCTG ATCTACCTTG AGTTGTTATG GTGGGAGCATC CACTCAGGG 18690
 ACATTTGACA TTTTTGAGC TTCTGTGCG AGGGCTGGT TGTTGCTGCG TGTTGAGCTG TGTTGAGCTG 18760
 40 GGCCTGCTG GGGCTGGCTG CCTGGCATGCT GTTGTACCCG ATGGTGAGAG TGTTGAGCTG TGTTGAGCTG 18830
 CCCTCAGTG GCTGGATGTC CAGTCCTGGC TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 18900
 AGCTGAGCTG GGGGGGGGGG GGGGGGGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 18970
 ATGAGCTGG GGTAGCTGG GGGGGGGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19040
 GGTAGCTGG GGGGGGGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19110
 45 GGTCTGGGG GGGGGGGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19180
 TGAGGTCACC AGGGCCGGGG TGEGGGCTGG TGEGGGCTGG TGEGGGCTGG TGTTGAGCTG TGTTGAGCTG 19250
 CAGGGCTGGG CAGACCATGCG GGGGGGGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19320
 CCAGGGCTGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19390
 GCTCTGAGTG GGGGGGGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19460
 50 AGCTGGATG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19530
 GCACTGTTCA GATGGTGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19600
 GGGATGGTCA GGGTTGAGG GAGGGTGGCA CCTGGGGCTGG ACCCTGGGGT GAGCTGGATG TAAGGAGTCC 19670
 GTGTCGGGGG GAGGGTGGCA CCTGGGGCTGG TGAGCTGGTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19740
 55 TGAGCTGGG AGAACCTGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19810
 CAGGGCTGGG TGAGCTGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19880
 TGTAACCTG ATGTTGGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 19950
 AGGTATGGG TCCTGGATG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20020
 60 GTCTGGATGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20090
 TGTCAGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20160
 GGGTGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20230
 CAACAGGCCC GGGGGGGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20300
 CTGGGGCTGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20370
 TGCTGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20440
 GATGCGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20510
 65 GTCCGGATGG TGCTGGCTGG CGCTGGGGCTG CCTGGGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20580
 GTGCAAGCTG GGGGGGGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20650
 CGGGGGTGAAG TGCCGAGGCG CCTGGGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20720
 GTCACTGGGG CCTGGGGCTA TGCTGGATG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20790
 CCTCTGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20860
 70 GAGCTGGTGA TGCTGGATCC TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 20930
 ATGGCTGGTG GGGATGGTCA TGCTGGGGGG GAGGGTACCA CCTGGGGCTG TGTTGAGCTG TGTTGAGCTG 21000
 CGGATGGTGA AGGGTGGGG TGTTGAGCTG CCTGGGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 21070
 CAGGGCTGGG TGCTGGGGGG CCTGGGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 21140
 CGTGAAGCTG CGGAGGGCTG CCTGGGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 21210
 GCAGGGCCCT CCTGGGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 21280
 TGCGGGTGTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 21350
 TGAGTATGGG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 21420
 75 GATGCTGGT GGGGGGGGG TGCTGGGGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG TGTTGAGCTG 21490

		GTCGGGATGG TCCAGGTCG GGGTGAAGTC ACCAGGCCCT CGGTGATCTG GATGTTGGCAT GTCTCTCTCG 21560
		TTTAAGGGT TGCGCTGGT CGCGCCGAG ACCACCGTCT CGGTGAGAG ATCTGGCCA AGTTCTTCGA 21630
		CTGGCTGATG AGTGCTGAG TCCTGAGCT GCTCAGGCTC TTCTTCTTATG TCACGGAGAC CAGCTTCTCA 21700
		AGAACAGGC TCTTTTCTA CGGGAGAGT GTCTGAGCA AGTTGCAAGG CATTGGAAATC RGTTACTGTA 21770
5		TCCCCAGCC AGGGCTCTGC TCTCGAGAGT CGTGGAGACAG ACCGGCCGCG TCAGATGGCG CCTGTCCTCA 21840
		CTTGGCTGTG CTTCCTGGC TGTCGAGCTC TGGGCTGGGA GCAGGGGGC CGGTACAGG CCTGGTCCAA 21910
		GTGAGATCTG TGCAAGGCTC TAAGCTGCTC GAGCTCAAGT TCTTCTACT GTAAAATAC GAGTTTGTGC 21980
		CAAGTGTCTG CTAGGGTTG TAAAGCAGAA GGATTTAAA TTAGATGGA ACACATACCA TAGGCTCTT 22050
		GCTTCTCCCG GGGATGTTGG AGTCTGATCTC TCTCTCTTCTT TTGAGATGG AGTCTCAACTC 22120
10		TGTTGCCAG GCTGGAGTG AGTGGCATATA TCTTGGCTCA CTGGAACCTC CACCTCTCTGG GTTAAAGGCA 22190
		TTCACCGAGC TCAGGCTCTC AGTAGCTGGG ACCTGACGGC ACCTGCTGGG AATTTTGTTA 22260
		CTTTAGGAGC AGAACGGGGT TCACCATGGT GGGCCAGCTC CTGTCGAATC CATGACTCA TGTTGATCC 22330
		CCACCTGGC CTCCCAAAGT GCCTGGGTTA CAGGGTAAGC CACCGCTGCC AGCCCCCGAT TCTCTTTAA 22400
15		TTCATGCTGT CTGATGATTA TCTTAACATC TGGGATTTA CGGGATGATTA CGGGATGAGA GTATTAATTC 22470
		GGGGACTCTC TCAGGAGGAG ACCTGCGGG CGGGAGACCTG GGGTGAAGG AGTTCAACCA TGAGCTTA 22540
		TCTAGTGGC TGCACTTGA TGGCTGAGAT ATTTCCTGCT TGATGTCGAG AGGGAGCTGG TGAGATGATC 22610
		TGACAGATTA AGAGTGGATT TGCACTGAGT AGGGAGCGGG AGGGCTGGCT GGGAGATGGC AGGCTCTGGT 22680
20		AGCCAGGCGC ATGGTATGAG CTTCCTGGT CCCCCCGAC AGTGGCTGGG GGGGGGGGGG CACCCAAATCA 22750
		CAAGGCTTCC CAAGCTCCG TGACAGACG AGTGGCTGGG GGGGGGGGGG CACCCAAATCA 22820
		GGATGTCTGC ASAGAGCTC TGCGAGACG CGGGATGAGC CTCTGGCTG GGGGGGGGGG CACCCAAATCA 22890
		TGTTGTCG GGGCGGGGGG CGGGATGAGC AGGGATGAGC AGGGCTGGC TGTTGAGGAC AGAGTAACTAC 22960
		ACAGACAGG CTTACTTGGG AGTGGCTGGG AGGGGGGGGG GGGGGGGGGG CACCCAAATCA 23030
25		TTTAAAGAAGA AGTATTTGGG GTGGAGCGGG AGGGGGGGGG GGGGGGGGGG CACCCAAATCA 23100
		CACTACTGGG AGCTTGTCTC TGCGCTGGGG CGGCTCTGGC TGAGGGGGGG GGGGGGGGGG CACCCAAATCA 23170
		TTTCATCTCT CGTGGGGGGC CGGGCTGGGG TGAGGGGGGG GGGGGGGGGG CACCCAAATCA 23240
		ACGGAGTGC AGGGTGTGAG CGAACAGATC CGAACGGGGC TGTTGGGGGG TGCAAGGCCCCAT 23310
		GGGTGGTTTG GGGGGGGGGG GGGCAAGGGG GGGGGGGGGG CACCCAAATCA 23380
30		GCTCTCTGG TGAGCTGCC TGAGGACCTG CTCCGGGCCCT TGCACTCTGA AGGGATGTTG CCTTITCTAC 23450
		CTGGGGGGTC TGCGCTGGGG CGGGCTGGGG TGACGGCTGGG GGGGGGGGGG CACCCAAATCA 23520
		GGGGGGGGAT GGTTGACAGT GGCCCCAGAT CGACGGCTGG ACCAGCTCTGA TGTTGGGTGA TGTTGGGGCA 23590
		GTCACTCTGG GGGGGGGGG CGGGCTGGG CGTCCTGGGG TGACTGACTTA GAACCCAGGGT CCTCAGGTGC 23660
		CTGCAAGTGG AGGGGGGGCTC AGAGGGCTG TGCTGGCATG TGTTGGGGTG GGGGGGGGGG TGCCCTCTCG 23730
35		CTGGTCTGCG CTGGGGGGGG TGAGGGGGGG TGAGGGGGGG GGGGGGGGGG CACCCAAATCA 23800
		CCTAGTCTGTG TGCTGGCTGC AGAACGGGGC AGGGGGGGGG TGTTGGGGGG TGAGGGGGGG CACCCAAATCA 23870
		CAAGCTGGGG AGCTGCTGG AGAACGGGGC AGGGGGGGGG TGTTGGGGGG TGAGGGGGGG CACCCAAATCA 23940
		GACTCCGGG CATTCCCGGG CGTCAGGGGG TGCGGGGGGG TGAGGGGGGG GGGGGGGGGG CACCCAAATCA 24010
		AAAGCTTCCC AGAACAAAAGA GGTTGGCTGT GCTTTGGTTT AACATCTCTTA TAAACAGAAA TGCGTTGTTG 24080
40		GCCCCACATG TGTTGATCAG TTAGATGAGA GGGGGGGGGG AGGGGGGGGG GGGGGGGGGG CACCCAAATCA 24150
		CAAGGGGGCA ACCATTTGGG CGGGCAAGCTG CGGGGGGGGG GGGGGGGGG GGGGGGGGGG CACCCAAATCA 24220
		GGGGGTGAGG GGGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 24290
		GATGCTGGGG GGGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 24360
		GGGGGGGGGG GGGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 24430
45		GGGGGGGGGG CCCGGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 24500
		AGGGGGGGGG AGGGGGGGGG TGCGGGGGGG TGAGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 24570
		GGGTGAGGGA AGGGGGGGGG GGGTGTGAGT CGGGGGGGGG TGTTGGGGGG TGAGGGGGGG CACCCAAATCA 24640
		TCTCTCTGGG TGCTCTTGTG TGGGGGGGGG AGTCTGGGGG ACTTCTGGGG TGTTCTCTTG TGAGCTGTCT 24710
		CCCCGGGGGG CGGGGGGGGG CGGGGGGGGG TGTTGGGGGG AGGGGGGGGG GGGGGGGGG CACCCAAATCA 24780
50		GGGGGGGGGG CGGGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 24850
		GTCTGGCTGG CGGGGGGGGG AGGGGGGGGG TGAGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 24920
		GAGCCGGCCC TGCTGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 24990
		GGGGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25060
		TTCACGGCTT CTGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25130
55		GTCCTGGGGG ATTCGGCTTG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25200
		CACCCGGGGT CTGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25270
		GGGGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25340
		ATGTCGAGG TCTCTGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25410
		GTACGACACC ATCCCCAGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25480
60		TGGGTGGCTG GGAGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25550
		TAAGGTCTAC GIGTGATAGT CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25620
		GGTGTCTGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25690
		GGTGTCTGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25760
		GGTGTCTGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25830
65		GGTGTCTGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25900
		GGTGTCTGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 25970
		GGGGCTGGGG TTGGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 26040
		GGGGCTGGGG TTGGGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 26110
		CCCTGGGACG CTCAGGGGGC CGGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 26180
		TGCGCTGGGG SGGACACGGC CTGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 26250
		TGGGCTGGGG TTCCCAACCA GTGGGGGGGG AGGGGGGGGG GGGGGGGGG GGGGGGGGG CACCCAAATCA 26320
70		GGGTGAGGAGT GTGGAGGAGT ATCTGGGGGG CGGGGGGGGG AGGGGGGGGG GGGGGGGGG CACCCAAATCA 26390
		CTCTCTCTCT TGACTCTCTG AGGT

Contig 2:

TGTGGGATTG GTTTCATGT GTGGGATAGG TGGGGATCTG TGGGATTGGT TTTATGAGT GGGGTAACAC 70
 AGGATTCACG CGGATTCAGT TCTCTGTAGT GGTCCTGCAG GTGTCCTCAAAG AGCTTATATG AGGAGGCCAT 140
 ATCTCCTTCA GAACATTAAGG CCGGGTTATAA GAAAGTCAGG GGTGTTGGAGS CCTCCCTTG SCTCCCTGT 210
 CTGTTCTCTG CACTTCGGA TGTTGTTGGC CTCGTCGTTG TGTTGTCGGC GTGGCCAGGG CTTCGAGGCC 280
 TCTCTGTTG CATTCGGCC GATGTTGGCC GGGCTTACCCG CGGTCTCTG ATTTCCTGT CGATTGGAG 350
 GCTTCTCTG TTCTGTTG TCTTCTCTT TCTTCTCTT TCTTCTCTT TCTTCTCTT TCTTCTCTT 420
 GGTGCTCTG GGGCTTGGC GGGCTTGGC GGGCTTGGC GGGCTTGGC GGGCTTGGC GGGCTTGGC 490
 CTCAGCTCC GAACATTCAGT GAAATTAAGG CCCCTACAC GATCTGACT ATTTCCTGT ATTTCCTGT 560
 AGAACGAGGT TCTTCATGT GGCGCAGGCTG CTCTGCACAT CGTGCACCTA GGTGATCTCC CAACGCCGC 630
 CTCCCAAACT CTCGGCAGA CGACCTGCTG CGCCGGCCCC CGCCGGAGNC TCCCTCTCC CAGCTTCTGT 700
 GAGACTCTGA CGGATAGCTG CCTGGACGCT TGGTGTCTAC AACCTCCGT TTCTCTCTC AGGTCTCCGT 770
 AGGGGCTTCTT CCAATTCTAT ACTCTCTCA CAAAGAGCTT TCAGCTGTGT TGATTTCTCCG GCTGTTCTCT 840
 GCGTAATGGG TGTCCTGTTG TTATGATGG CTCATCTCC TCTTCTCTT GCTTGTCTTG TTGTTGTTT 910
 TCCGGCTCTC TGGAAAGGA GTTCTGATTA TGATGTTTG AAATCTCTT TCTAAACAGG CATCTGAAAGT 980
 TGCGGTTTCTC CCTCTTAAGG AGGGATCTGC AGGGCTCTGC CTGTTGGAGT GCAACCGCTT 1050
 AGGAACCCGG CGCACAGCG GAGGCTTAGT GGGGGTGGG GAGGCCACGT TCCCGCTGTG GCCCCGCC 1120
 TCTCAGATCA CGACTGCTGA CGGCTGTCAG GAGGCCACAC CACCTCTACT AGAACTGTG AGGAGGGGG 1190
 TCTAGATCTC GTGCTCTCTA TGGAGATCTA ATGCTGATGTG ATCTGAGGAG GAAACGGTTG GTTCCCAAAGC 1260
 CATCCCCCTC CCACATGCTG TCTCTGTGG AAACTCTCTT CCAAGAACCC AGTCCCCTGG ACCACAATGG 1330
 TTGGGGACCC TGTCTTAAG ACCTCTCTCA CGACGGCTTC CGACGGCTTG ATATAATTGGC TTTCCTCTGT 1400
 TGAGTCCTGA ATAATTCAGG ATTTCCTTG TGCTTTCTGC CGAACCTCAGG CCCATGGGGT ATTGTGGGC 1470
 TGTTGCTCTG CCTCTGGGGT GGGAGGGGT CAGGGCCCAT TACCTCTCTG GTTACTGCTCT GTCAGGTGG 1540
 TTCTCAGGTT TGAACTGTA TGATGTTGTT TTAGCTGCCAC GTCCTCTCTG GGGGGCTGGG 1610
 AACATCTGTA CGACACAGT CACCTCTGCCG GTCTCTGTAT GCTCTCAGAC CTGAGGGCTT CTCTGTCTGG 1680
 TGTTAGTGTG TGTCCTGCTG CTCTCTCTG ATCTGCTGG AGGAGCAGGG GTTATAGGGT 1750
 ATAGCAACAGC CTGCTGGGG AGTCCTCTGG ATAGGGCTGTG GGGGGCTCTG TCTCTCTCC GCTCTCTGTG 1820
 ATCTCTCTC TGCTGGGGT GTGCTCTCTG CTCTCTCTG GGGGGCTCTG CAGCATGGGG CTGGGGCTGG 1890
 CGGGAGGCTC GAGGCTGCTA GTCTCTCTG CTCTCTCTG GGGGGCTCTG GGGGGCTCTG TGTGTCCTGG 1960
 TCTGACTGCTG TGCTGGGGT GGGGGCTCTG CTCTCTCTG GGGGGCTCTG GGGGGCTCTG TGTGTCCTGG 2030
 TGCTGACTCTG CTGCTGGGGT CTGATGTTGTG TGACTCTCTG TGACTCTCTG ATGGGGCTCTG TGGGGCTCTA 2100
 TGCTGACTCTG GGATGCTGGG CTGATGTTGTG TGACTGTTGTG TGACTGTTGTG GGGGGCTCTG 2170
 TGCTGACTCTG GGATGCTGGG CTGATGTTGTG TGACTGTTGTG TGACTGTTGTG GGGGGCTCTG 2240
 TGCTGACTCTG GGATGCTGGG CTGATGTTGTG TGACTGTTGTG TGACTGTTGTG GGGGGCTCTG 2310
 TGCTGACTCTG GTGGAGGGC CTGATGTTGTG TGACTGTTGTG ATGGGGCTCTG TGGGGCTCTG 2380
 TGCTGIGGTA CTGCTGGGGT CGGTCTGGGG CTGTCATGTG TGACTGTTGTG ATGGGGCTCTG TGGGGCTCTG 2450
 TGCTGTTGAG TGCTGATGG TGATGCTGGG CAGGGCTCTG ATGTTGTTGTG ACTGTTGAGT CGGGGGCTGG 2520
 GGGCTGATGT GTGGTGTGAG TGCTGATGGG TGCGGTCACAG GGGCTGCTAG TGTTGTTGACT TTGGATGGC 2590
 GTCTGAGGCT TGCTGATGTG TGACTGTTGTG ATGGGGCTCTG TGCTGATGTG TGCTGATGTG 2660
 GATGCGGATC GGGTCAACGG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG GGGGGCTCTG 2730
 GACTCTGTTG GGGCTGCTGG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG GGGGGCTCTG 2800
 GACTCTGTTG GGGCTGCTGG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG GGGGGCTCTG 2870
 GACTCTGTTG GGGCTGCTGG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG GGGGGCTCTG 2940
 TGCTGACTCTG TGATGCTGG TGCTGATGTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG 3010
 TGCTGTTGAG TGCTGATGG TGCTGATGTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG 3080
 ATCTGTTGTC ACTGTTGCTG GGGCTGCTGG CTGTCATGTG TGACTGTTGTG GGGGGCTCTG GGGGGCTCTG 3150
 ATCTGTTGTC ACTGTTGCTG GTGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG GGGGGCTCTG 3220
 GGGCTGATGT TGCTGATGTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG GGGGGCTCTG 3290
 GGGCTGATGT TGCTGATGTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG GGGGGCTCTG 3360
 GTCACAGGCT TGCTGATGTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 3430
 GCGCTGCTGG TGCTGATGTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 3500
 TGCGGGTCTG GGGCTGATGTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 3570
 GCAAGGGTGG CTCACAGCTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 3640
 GAACTCTCTC AGGGCTCTCTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 3710
 GGGAGAACAA ACTGTTGCTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 3780
 AGGTCTCTAC CTGCTACAGG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 3850
 GCTGAGGATG CCTGGCTCTCA TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 3920
 GTGGCTCTC CCTCTGGCCA TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 3990
 GAATGAGCTG TGATGCTGG AGTATGAGCT TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 4060
 CGCACGCTG TGATGCTGG AGTATGAGCT TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 4130
 TCTTCTCATG TTGCTTAATG TCTTCTCTC CAGTTGATGT TGCTGATGTG TGCTGATGTG GGGGGCTCTG 4200
 TTAGGAGGG CAGGGCATCTG TGATGCTGG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 4270
 AGGAACACTG TCCCTCTCTG TAGGGACGAC GGGGGCTCTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 4340
 TGCTGGCTCTG TGCTGATGTG CCTCTGTGGC TTCTGGCTCTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG 4410
 TGCTGATGTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 4480
 GGGGGCTCTG TTCTGGCTCTG TGCTGATGTG GGGGGCTCTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 4550
 GGGGGCTCTG CCTCTGGCCA TGCTGATGTG GGGGGCTCTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 4620
 CCTCTGGG TGCTGATGTG GGGGGCTCTG GGGGGCTCTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 4690
 CGCTGAGAGA TGCGGGGGG GGGGGCTCTG GGGGGCTCTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 4760
 GACGGGGCCC AAAAGGGGG CAGGGCTCTG GGGGGCTCTG GGGGGCTCTG GGGGGCTCTG GGGGGCTCTG 4830
 CGGAGTGTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 4900
 TCTCTACGCT TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 4970
 GGGGGCTCTG GGGGGCTCTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 5040
 GGGGGCTCTG GGGGGCTCTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 5110
 GGGGGCTCTG GGGGGCTCTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 5180
 AGGGGGCTG TGCTGATGTG TGCTGATGTG TGCTGATGTG GGGGGCTCTG ATGCTGCTGTG GGGGGCTCTG 5250

GAGCCGTGTTG ACGGGCAGAC TGTGAGCTTC AGACTTAC TGACGCCGTA CACCCGGCTC TCAACCGGCTC 5320
 TATGCTCTCT CCTCCGGCATC AAAAGGATT TAATCCGATTC TATCTGCTTC GGGGGTGTGAC 5390
 GAGGGGGCGGC GGGCTCTTC CTGTTGACTAG ATTTCCTCCG GGGAAAGTCG GTGGGATGCG 5460
 CCTCTCTCGC GGGGGGCTTG TGCCGCGAT GGGCAGGGCG CTGGGAGAGC 5530
 GTGAGGACACA CCTACGGGCTA TAGAGGCCAA TGCTCCGTCG CACCCATCAG 5600
 AACACACACG CCTCCGGGAGC CATCTGGCTG GGGACTCTTG TGTGCTGGTG 5670
 AATTGCTGCA CCTACGAAGG CATACGAAG TGATCCCGCA CGACCTTCCA ACCTGTTGCA 5740
 GAGGTGCTCC AGGGCATATAA GAGCTGTGCA GAGCTTCCA ACCTTTTAT 5810
 ATTGCTGATAT AAAGTAATCA TAATGTTGATC AGGCAATAA ATATATTTAAG AAGATTAATTA 5880
 AGTAGTACACG ACCTGTCTGG AAAAACCAAAC TATCCGACATG CAGCAGAGTG 5950
 TGTGCACTAT TGTTGAGGG GCCCCAGGC CGACAGATTC GCGTGCACAA GAGGAGCAC 6020
 AACAGGGCGC TCCTCTGGTG TGTTGAAATT TTAAAGTGGT GATCACTGCA CGACGGGCGC 6090
 GGGCTTGTGG GAATGTGAGC TGATGCTTCG GCTCTCCGTC CGTCAGAC 6160
 TCTCTCTGAC GACAGGGACA GGGGGGAGC TCTAGTCCCG ATCTGTTGC 6230
 GCTATGCTAC CCTGGGCTAC CCCAAAGACT AAAGAACAGAC AGAGTTGGTC 6300
 AGTGTGCTCC AGGGCTTGTG CCGGGACTTC TAGAGTTGGT GCGGTTGTC 6370
 TTTTTTGGTG GAGGGGGATC TGCTGGCTAC CAAGTGTGATA TGCGCAGAC GAGGAGAAC 6440
 GCGGACGGCTC CCTGGGCTGT GGTGACCTTC TGCTGGCTTG TCTGAGGAC 6510
 TGTGCTGAACT CGTCGCTTCA GGGTGTGATC TTATTTGTA TGAGGGTTG GAGGGGGT 6580
 CCTACGACCCG CCTGGGCTCA GGGTGTGATC CGGGGGCTTG CTCCCAAGAT 6650
 TTTTGGTGCA GTAGGGCTCA GGGTGTGATC AGGAGGTCG CCTATAGGGC 6720
 TGTGTTGGCA GTAGGGCTCA GGGTGTGATC AGGAGGTCG GTGGGCTCT 6790
 AGGGTCGGT GGGCGGCTC CCTCTGGTGT CGACCTTGTG TTGTCACGGG 6860
 TGTGTTGAAAG CGGGGGCTTC GGGTGTGATC TTGAGGAGIT GTCCTCTTC 6930
 GGGCAAGGGT TGTCGGCTTG GGGTGTGATC TTGAGGAGIT GTCCTCTTC 7000
 CCTGGTAAAGA AAAAGGGGGG TGTCGGCTTG GGGTGTGATC TTGAGGAGIT GTCCTCTTC 7070
 TCTGAGGATTT AAAGAACCTA ATAGGAAAGA AACCTTGTG ATTCAGGAGCA GAGGATGTTG 7140
 GGGTGGATCT TTTCAGGGCC CCTGGGCTTC GGGAGAGTC GGGAGGAGG 7210
 ATCTGTTGATG TTTCAGGGCC GTGGAGAGTC TGATGTTGAG ACCTGTTGC 7280
 TCTGTTGATG TTTCAGGGCC GTGGAGAGTC TGATGTTGAG ACCTGTTGC 7350
 CGGGGGGGGG CCTGGGCTTC GGGTGTGATC AACCTTGTG ATTCAGGAGCT 7420
 TCTGTTGATG TTTCAGGGCC GTGGAGAGTC TGATGTTGAG ACCTGTTGC 7490
 CGGGGGGGGG CCTGGGCTTC GGGTGTGATC AACCTTGTG ATTCAGGAGCT 7560
 CCTGGTAAAGA AAAAGGGGGG TTGGGGTG GGTAGTGGC TTGTTGTCGCA TGGGGGGGG 7630
 ACCATGAGTC CCTCTGGTTC AGGGACAGGA CGAACGGCTC GGGGGGGGG 7700
 GGGTGTGACCA CCTGGGCTTC TGCGGAGTC TGCTGGCTTC AGGGGGGGGG 7770
 GGTGAGTCAG CCTGGGCTTC TGCGGAGTC TGCTGGCTTC AGGGGGGGGG 7840
 CCTGGGCTTC TGCGGAGTC TGCTGGCTTC AGGGGGGGGG 7910
 ATCTGTTGATG TTTCAGGGCC GGGTGTGATC GGGAGGCTC CCTCTGGCAG 7980
 ATCTGTTGATG TTTCAGGGCC GGGTGTGATC GGGAGGCTC CCTCTGGCAG 8050
 CCTGGTAAAGA AAAAGGGGGG TTGGGGTG GGTAGTGGC AACCTTGTG 8120
 TCTGTTGATG TTTCAGGGCC GGGTGTGATC GGGAGGCTC CCTCTGGCAG 8190
 TGTGTTGAAAG CGGGGGGGGG TTGGGGTG GGTAGTGGC AACCTTGTG 8260
 TATCTGCTAA TGTCATCTC CCTCCACCTCC CCTACCTGCA GAGGAGGCTC 8330
 CTGGTGGGCA GGTGTTCTAT TTGTCGATTC CCTACCTGCA GAGGAGGCTC 8400
 CTGGTGGGCA GGTGTTCTAT TTGTCGATTC CCTACCTGCA GAGGAGGCTC 8470
 TCTTGTGATG ATCTGATAG ATTCGGGCT TGATGTTGCG TAATCTGTC 8540
 GGACATTTGG TTGTGGGGTG AGCTTGTGG TGATGTTGCG TAATCTGTC 8610
 CCTTGTGATG ATCTGATAG ATTCGGGCT TGATGTTGCG AGTACTTGTG 8680
 CCTTGTGATG ATCTGATAG ATTCGGGCT TGATGTTGCG AGTACTTGTG 8750
 AACAGGGCTC AGTACTTGTG ATCTGATAG ATTCGGGCT TGATGTTGCG 8820
 AGTACGACAA CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 8890
 GGGTGGGCA GGTGTTCTAT TTGTCGATTC CCTACCTGCA GAGGAGGCTC 8960
 TCTGTTGATG ATCTGATAG ATTCGGGCT TGATGTTGCG TAATCTGTC 9030
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9100
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9170
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9240
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9310
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9380
 AACAGGGCTC AGTACTTGTG ATCTGATAG ATTCGGGCT TGATGTTGCG 9450
 AACAGGGCTT CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9520
 GGGTGGGCA GGTGTTCTAT TTGTCGATTC CCTACCTGCA GAGGAGGCTC 9590
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9660
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9730
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9800
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9870
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 9940
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10010
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10080
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10150
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10220
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10290
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10360
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10430
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10500
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10570
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10640
 CCTGGGCTTC TGATGTTGCG TAATCTGTC AACAGGGCTC 10710

	TGGCCACAGG GAGCTGGGG TGCACCGGG GAGCTGGCA GCTGGGGAG GTCGCCAGGC CAGGCCACAG 10780
	GAAGGGCAGG GGGACCCGG GGGCCACAGC AGAGGGCCGA CGAAGGGGAG GGGTGCAGA GGCCAGGGCA 10850
	GAGGCTACCG GGACACGGGG GGCTCCCTGA GTCTGGGTAG CGAAGGCTCAT GACTCGGGCA GGAAACCTCC 10920
	TYGAGTGA GCTGACGACT GGTGTTGCC AGCTCACAGC CGACCGAGGT CCCCGGCTG AGCAGGAAC 10990
5	CAAGACCCCTC CCCTTGTGCT AGAACACAGC AGATGCTTC AGGGCATCTTA GGAGAAAACA GGCAAGACTG 11060
	TTAGAAGAACCT TCTTAAAGAAC AGGTGGGATG GTGCAATTTC TTGTCAGA TTTAGTCTG CCCCCGAGA 11130
	CAAGATGAGTC TATAAGGGGG TTGTGGTTG GCCAATGGGGG CACATGAGAT GGACCATCAC AGAGGCCACT 11200
	GGGGCTGACAC TCTCCATCTC AGTCTCTGGT GTCTGGGOTC CGACCGAGGT CCTTGATGTC TCACACTAC 11270
	GTCTCGCCCG GGAGACAGGG AAAGACCCCG GAAAGCTGGG CGAAGGCTGG GTCCAGGGCT CTACAGACCTC 11340
10	CTGCCAGGGC CAGCACCCCT CTCCAAATCA CCAACTCTCTC SGGGTTTCCC AAACCATTTA ACAAGGGTGT 11410
	CAGGTACCTC CTGGGTACG GGGCCGGCTC ATCTGGGCTC AGATTCGGCC TCTGCTTAC GACCCTTGTG 11480
	CGAGGTGTCG CTGAGATGTC TGCGGTGTC AACTGGGCA AGACAGTGTG GAACCTTCTC GTAGAGAGAC 11550
	AGGGCTCGGG TGGCCAGGCT TTGTTCTGAG TGCCGGCCCA CGCCCTATTC CCTCTGGCTGCT 11620
15	GGATACCCGG ACCCTGGCA TGACAGGCG ACTACCTCAGG TGACAGGCG TCGACAGGAG CGCTGGCTG 11690
	GGCCCGCTGG GGGAGGTGCTC GTCTGGCTC CGCTGGCTCC ACCTCTGGT CCTGGTGGG CAGGGACTG 11760
	CCAACTCCAA AGGGTCAACG CGACAGGGG CGCCCTCTG GCTATGGGG CGACGGAGG ATGCACTTC 11830
	CTGGGGATG GAGGGTGTGCA ACACAGGGG CAGTTTCTC TTCTATTTTG GTAAAGAGNA ATGGTGGAC 11900
	AGAGCTGGGT GAGCTACGGT GTCTGGGAG AGCTGGGGT ATGGCTGGC ACACAGGGG ATGGCTGGT 11970
20	GGCTGTGTCG GGGCTGACG AGGGCTGGG GGGAGGTGAG GGTCTGGT GCGAGGCTC CTCTGAGCCC GAGACCTGG 12040
	GGGGCTGACG GGGCTGACG TCTCGAACCC AGAACAGGG AGGGCTGGT TTGGCTGTAG TCTCTGGG 12110
	GTCTGGCTGG GAGCTGGCA TGCTGGCTG GCTATGAGCA TGCTGGCTG TGACAGGAG CGCTGGCTG 12180
	TCAGGGGCA GGGCTGGT CTGGGGGGG CTCTACAAAGA ATTCCTGGT CTGTTTCTGG CAGAGCCCGA 12250
	GAAGCTGAGG CCCCCTGCTCA GGGCTACAGA CAATAGGATT AGGATGGAG CAAGATGCGA AAATCTGCG 12320
25	TGTTCTTCTT ATGAATTTAA AGTATCAACG TTACCTGGG TGCTGGTACI TGRRGGGGAGG CAACTTACCC AAATAGATG 12390
	ACTTGGGGAG GGGCGGGGGG AACATTTGG TGACCTGGG TGCTGGTACI TGRRGGGGAGG CAACTTACCC AAATAGATG 12460
	AATTCTCATC TCTACTAAAAT AAACATACAA TTAGCTCTGC TGCTGGTACI TGRRGGGGAGG CAACTTACCC AAATAGATG 12530
	GGGGGGAGGT GAGGGGGGGG AACATTTGG TGACCTGGG TGCTGGTACI TGRRGGGGAGG CAACTTACCC AAATAGATG 12600
	CTGCACTCA GGGCTGGGCA CAGATGAGA TGCTGGTACI TGRRGGGGAGG CAACTTACCC AAATAGATG 12670
30	AACCATAGTG AGGAGGTGG TTITTTATCT GTCTCTCTGGT ATTATTTACT GTGCTCTGGT TAGAGGGCCG 12740
	AACCTGGGGT GCCTCTCTCT AGAACGGGCA CCTCTGGG AGGAGAGATA AGTGGTGAAT GTGTTGAAAT 12810
	CGAGGAGTTT AAACCTGGG CTGCTGGTC TGAGTTAACG CCTCTGGG AGGAGAGATA AGTGGTGAAT GTGTTGAAAT 12880
	ATCTGGGGT CTGGGGTCTGG CATGGGGGGG CAGGGAGGTG CGACGGCTTC GTGATGGGG AGGAGAGATA 12950
	CGAGACGCCG TCTATGATGG GAGATGGCG TGCTGGACAC CCTCTGGTACI GTGCTGGAG CAGTCTCTG 13020
35	TGAGCTGCCG TCCCCAACAG GATGCGGCG TGCTGGTCTC CCTCCAGCTC CGACCTTCTG CTGCTTCTC CTACAGACCT 13090
	TACTGGTCCG TGCCCTGGC TGCTGGTCTC TGCTGGTCTC TGCTGGTCTC CGACCTTCTG TGCTGGTCTC GAACCTCTC 13160
	GGCTTCTCA GGGCCCTCTC AGCTGGTCA TGCTGGTCTC TGCTGGTCTC CGACCTTCTG TGCTGGTCTC GAACCTCTC 13230
	CCCCATGAA TGTATTTCCTT AGGACAGGCA CCTCTGGG TGCTGGTCTC CGACCTTCTG TGCTGGTCTC GAACCTCTC 13300
40	TGAGGAGACA ARGGAGGAGG AACAAACATA GGAAATGGG TTCTACCTAA ACCTATGGG AGGAGAGATA 13370
	GGTAGTGTG GGTAGTGGG GCAATAGTCG CCTCTGGG TGCTGGTCTC CGACCTTCTG TGCTGGTCTC GAACCTCTC 13440
	AGAACAGGAGG CCTATAGGGG GAGCTGGGG CCTCTGGG TGCTGGTCTC CGACCTTCTG TGCTGGTCTC GAACCTCTC 13510
	CCATCTAGGG GTGGTACAGA CATCTCTGG TGCTGGTCTC CGACCTTCTG TGCTGGTCTC GAACCTCTC 13580
	AGRNAAACAG CGAAATGAT GAAAAGGGG AGTGGTGAAT TGAGGGATTT TGCTGGTCTC CGACCTTCTG TGCTGGTCTC 13650
45	ATTATGAGT CCAAAACAC AGCTGGGG TGAGATGGTG TGCTGGTCTC CGACCTTCTG TGCTGGTCTC GAACCTCTC 13720
	AAACGGGAGG CCTATCTCTC AGCTGGGG TGAGATGGTG TGCTGGTCTC CGACCTTCTG TGCTGGTCTC GAACCTCTC 13790
	TGTGTTGAT ATTTTTCTC GGGAAAAGT ACCTGGGGCA TGTTGTCGAC AGCTGGTGG TGCTGGTCTC GAACCTCTC 13860
	AGGAGATTCTT AGGAGGAGA GGAGACACAT CAAACAAACA CGAACACACG AAATAAACAGG AAAGACCTCA 13930
	AGGGGGAGG GGTGAGGCTT CCTCTGGGG TGTTGGGGG AGGACACACA CGGGAGGGGG TGAAACACAGT 14000
	GAGGGCAACGG GGGATCTGG CCTACTGGAG GAAACTCAGT CCTCTGGGG TGCTGGTCTC CGACCTTCTG TGCTGGTCTC 14070
50	CTGGAGGGTT TGTGAGGCTT ATTATTTAA GGGCCCTGTG AGGGCTCTGC ACATTCATC TCTCTACCTT 14140
	TTCTCTAAC CACTCTGGAG GTAGGAGGGG AAAGGCTCA GGAGGAGACG CGCCCTTGTG CCTCCAGCTC 14210
	GGCAAGGGCA TGATGATTCG CCTGGCTGG TGCTGGTCTC GGCCCCCTGC TCTGGTGGG GATGGCTGTG AAAGAGAGAA 14280
	AACTGACACC CATGGCTCA GGTTGGGGC CCTGGGGGG TGCTGGTCTC GGCCCCCTGC TCTGGTGGG GATGGCTGTG AAAGAGAGAA 14350
	TGGAGCTGGT ATGCGACACTT GGGGGAGGG CCTGGGGGG TGCTGGTCTC GGCCCCCTGC TCTGGTGGG GATGGCTGTG ACTGAGACGG 14420
55	AGGGCCATTC CTTAACAGA CGCACGCTGA ACTGTGGGG AGACCTGGTC CCTCTGGGG TGCTGGTCTC 14490
	TTTCTGGGG AGTCTCTAA ATTTCTGGT TTCTCTGGT ATTCTCTGGT CCTCTGGGG TGCTGGTCTC GAACCTCTC 14560
	CACTCTCTT CTTAACAGA AGTCTCTAA CCTGGGGGG CCTCTGGGG TGCTGGTCTC GAACCTCTC 14630
	AAATACAGA CGAAAGGAGT ATTATTTAA CCTGGGGGG CCTCTGGGG TGCTGGTCTC GAACCTCTC 14700
	TGAGGAGATC TTAACTGGCA CAAAAGCTT ATTCTCTGGT CCTCTGGGG CCTCTGGGG TGCTGGTCTC GAACCTCTC 14770
60	ACCCCCCGAG AGCTGGCGT AGTGGTCTG TGCTGGTCTC TGCTGGTCTC GAACCTCTC 14840
	GGTGGTGGAGG CCTGGGGGG CCTGGGGGG CCTGGGGGG CCTGGGGGG TGCTGGTCTC GAACCTCTC 14910
	CGTGGACTCA CCTGGGGGG CCTGGGGGG CCTGGGGGG CCTGGGGGG TGCTGGTCTC GAACCTCTC 15050
	AGATTCGGCA GGGCCACACT AGTGGTCTCC CACAAAAAAC CCTGGTGTCA TGCTGGTCTC GAACCTCTC 15120
	GGCCGGGAGG CAGGGGGCC CAGGGGGCC CAGGGGGCC TGTTGGGG TGCTGGTCTC GAACCTCTC 15190
65	TGATGATGAT GCACAAACAG CGGGCTGGCA GTGGTGGTAA CACTCTACAT CCTACTGGAG TGCTGGTCTC 15260
	AGTTGGTCA TGAGGAGCTT GGATGGCATG TGCTGGTCTG AGCTGGTCTG TGCTGGTCTC GAACCTCTC 15330
	GGCTGGAGGG CCTGGGGGG CCTGGGGGG CCTGGGGGG CCTGGGGGG TGCTGGTCTC GAACCTCTC 15400
	ACCTCTCAAGA GGGCTGGCA CCTGGGGGG CCTGGGGGG CCTGGGGGG TGCTGGTCTC GAACCTCTC 15470
70	TTGGGGTCTT CGGGGGGGT TGCTGGACAG TGCTGGTCTG TTGTTGGGG TGCTGGTCTC GAACCTCTC 15540
	AGNGTCTAGA GTTGGAGGG TGCTGGGCA TGCTGGTCTG TTGTTGGGG TGCTGGTCTC GAACCTCTC 15610
	ATGGGGTACTG GTGCTGGCTA AGAGGGCAGA TGAGGGCTAA TACACCTGAG CCTACATAGT TGCTGGTCTG CGAACGGGG 15680
	TGATGATGAGT GCAACAAACAG CGGGCTGGCA GTGGTGGTAA CACTCTACAT CCTACTGGAG TGCTGGTCTC 15680
75	CTGGTACGAA GGGCTGGCA TGCTGGTCTG TGCTGGTCTG TGCTGGTCTC GAACCTCTC 15750
	CTGGTACGAA GGGCTGGCA TGCTGGTCTG TGCTGGTCTG TGCTGGTCTC GAACCTCTC 15820
	CTGGTACGAA AGTGGTGGTCC TGCTGGTCTG TGCTGGTCTG TGCTGGTCTC GAACCTCTC 15890
	CTGGTACGAA AGTGGTGGTCC TGCTGGTCTG TGCTGGTCTG TGCTGGTCTC GAACCTCTC 15960
	CGAGGGCCAC TGTCTCTACAGG ATGGAGGGGG TGCTGGGCTC TTGGGGGGT CCTGGGGGG TGCTGGTCTC GAACCTCTC 16030
	CTGGAGGGCACT TGTCTCTACAGG ATGGAGGGGG TGCTGGGCTC TTGGGGGGT CCTGGGGGG TGCTGGTCTC GAACCTCTC 16090
	TCTCTGGGG CGCATTTACAT CCTACTGGGG TGCTGGGCTC TTGGGGGGT CCTGGGGGG TGCTGGTCTC GAACCTCTC 16150

	GTGGGCATCT	GCGTCACCT	CCCCCTCTG	TGGGCATTG	CCTTCACTC	CTCTCTCTG	TCCCTCTCTG	16240
	CTGGCGGAG	CTTCGGGGC	AGGCAGATG	CACAGAGTC	TGACTCGCC	AGGGTGGTC	GCAGCTGCC	16310
	GGTAGGGCC	AGGGCGGAT	TCACCTGGAA	GAGGGATAGT	TCTCTGCAA	AATGTTCTC	TTCTCTGTC	16380
	CATCTGAATG	GATGATAAG	AAAAAGTAA	AAACTTAAA	TCCCAGAG	GTITCTACG	TTCTCTACT	16450
5	TTCTCTGG	ACTCTAGTG	AAACAGCTT	AGACGGCTTG	CACCAACATC	TACAAGATCC	TCTCTGTC	16520
	GGCCCTACAGG	TGAGCCCG	CCAAAGGGTC	CAGGCCACG	CTCCAGGNC	CCCTCGGCT	CTGCTCACCT	16590
	CTGAGCCGG	GCTTCACCT	GGAACTCTC	GGTTTAAAGG	GCAGGAAATG	TCTTACGTT	TCAGTGGTC	16660
	TGCTGCTGT	GCACAGTC	TGTCGGTGG	CTCTGTCAA	AGCACCTGT	CTCTCTCT	GGTAGSTGGT	16730
	AGGAGCCGGT	GTGGCCCG	GATGAGAGA	TGTCCTGTC	AGCTGGCC	GGGAGCTCAT	GGAGGCCCAT	16800
10	CCAGGGCAGT	AGGGCATG	GGTAAAGAG	TGTTTATGG	GAGTCTTACG	AGAGGAGGCT	GGAGGAGGTT	16870
	CTGACAGTA	GATGAGAG	AGCATGGCC	GAGGATTTG	GGTCTCAGA	AGAGGGCCG	AGGTGGTGTG	16940
	AGGTGGAGGT	CGCTGGCG	ACCCGGGGA	AGGTGGCAGA	GGAGTGTG	TCCCCACACA	SGCCGGCCAG	17010
	CACCTGTG	CTGGCTG	CTGTCCTCT	GGACGCTTC	CTGTCCTG	TGGTAGGGG	GTGCCCTCTG	17080
	CAAGAACG	CAACTTAT	ACAGGAGGA	GGGACATCT	GGAGGAGGCA	CAGGGCAGG	TTCTGCTCTG	17150
	AGTCAGGG	GCTGTG	CAAGCTT	GGCTGTACCA	AAAGGGCTAG	GGGCAACACA	GGCCCCGGGC	17220
	TCCACCTTCA	CGACCTC	GACCGACTG	GGGGAAATG	CGGAGGAG	GGAGCCCTG	CCCCATGAG	17290
	GCACGGG	AGGGGAG	GGGGGAG	GGGGGGAG	GGGGGGAG	ATTCACGTT	AGGGGGGAG	17360
	TGAACTG	GGGGGAG	TGCTGGCTA	TCAGCAAGGG	TCAGCAAGGG	ATCAAGCTA	TACAGACTG	17430
	TAACGATCAA	ATGCTG	ACCCGGTGC	TTGGCCG	ATGGCTG	AGGGAGGCA	GAGGCCACAG	17500
15	TGAGTGTAC	CCGGCTT	CGACGGTCA	AGGCTGGGA	CGRCGGTGTG	TCAAGTCC	GGTCTCCTGG	17570
	CGCTGAGGCG	CGCCCTG	TGTCCTCT	GGGGGGGG	GGGGGGGG	TCAGTCTC	GGTCTCCTGG	17640
	GTGCTGGG	GGCTCTGG	GGCTCTGAC	TCCTCTGGG	AAACCTCTG	GGGTGCTG	ATACAGGTC	17710
	CACTGGGAC	TGAGGGT	TGACAGTC	TGAGGACCA	TCAGGAGCT	GGGCTCTG	GGGCTCTT	17780
	GGGCGATG	GAGGTG	GAGTTTCT	AGGTGAAAC	TCTCTGAA	CTCCCAAGGG	CATGTAACCT	17850
20	GCACCGCTG	CTCCCTAC	TGACCTGAT	GGGGGGGG	TTTCTCCAC	AGGGCTCTA	FTCCGAGGA	17920
	GTCTCCGG	AGGGCTGGG	TCAGGGAG	GGGGCTGGT	TTTCTCCAC	CATGTTGGGA	CCCTTGGTA	17990
	GTCTGGTGT	TGGGTG	GGGGGGGG	GGGGGGGG	GGGGGGGG	CGGTTTCAA	ACACAGATC	18060
	AGGAGCAGT	AAAGGGG	ATACCTCTC	CTCTGGGCA	GGAGTGGGAG	AACGGAGAGC	TGGGGGGGG	18130
	TTTACGGCCA	CGGAGGCTG	GGGGGGGG	GGGGGGGG	GGGGGGGG	TCCCCCTCTG	GGGGGGGG	18200
25	CAATGCTG	GGGGGGGG	CTTCCGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	18270
	CGGACCTCTA	CGAGGTG	ATTCCTCT	TTGGAGAGA	GGGGGGGG	GGGGGGGG	GGGGGGGG	18340
	TGSGCTGAG	GGGGGGGG	GTGSGCA	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	18410
	GCCTGCTTC	CGCTGTG	AAATGGGAA	AGAACATCC	AGCTCACAG	AGTACTCTAG	AGGGCTGAG	18480
	CGGGGCTG	CGTCTG	TGATGATCT	GOTCATTC	GGAGTCTG	AGGAAGCTAG	TCAGGACAGG	18550
	TACATGGGG	TGCTGGCG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	18620
	CATGGGGG	TGAGGGACT	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	18690
30	CGGGGGCTCT	GTATCAC	ACATGATG	ACATGATG	ATGTCGTT	TCAGGGTAC	GGGGGGGG	18760
	CACTGGGCTG	GTATCAC	ACATGATG	ACATGATG	ATGTCGTT	TCAGGGTAC	GGGGGGGG	18830
	CACTGGGCTG	GTATCAC	ACATGATG	ACATGATG	ATGTCGTT	TCAGGGTAC	GGGGGGGG	18900
	CACTGGGCTG	GTATCAC	ACATGATG	ACATGATG	ATGTCGTT	TCAGGGTAC	GGGGGGGG	18970
35	GGGGGGGG	CACTAGAG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19040
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19110
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19180
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19250
40	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19320
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19390
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19460
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19530
45	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19600
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19670
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19740
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19810
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19880
50	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	19950
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20020
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20090
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20160
55	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20230
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20300
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20370
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20440
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20510
60	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20580
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20650
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20720
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20790
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20860
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	20930
65	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21000
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21070
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21140
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21210
70	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21280
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21350
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21420
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21490
75	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21560
	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	GGGGGGGG	21630

	CACTTCCCCA CAGGGTGGG CTCGGCTCCA CCCCAGGGCC AGCTTTCTCT CACCAAGGGNC CGGGCTTCCA 21700
5	CTCCCCATC AGGAATAGTC CATCCCGAGA TTTCGCATTT TCACCCCTCT CGGCCCTGCCT CCTTTCGCTT 21770
	CAACCCCAAC CATCCAGGGT GAGACCTGTA GAAGGRCCTT GGAGGCTCTG GGAAATTGGA GTGACCAAAG 21840
	GTGTCGCTTG TACACAGGGC AGGACCTGTC ACCTGGATGG GGTTCCCTGT GGTCATAATT TCTCATGTTT 21910
	GCTGTTGGAA TAAATATGAG ATTATATGAG TTTCAGTGT TTGAAAAGAA AGGATTCATG AAATCTTAAAT 21980
10	GTGCACTGCA TAGACACCCAG TGATGCAAT TACAGAGGC TGAGGTGGA CGGGGTGGG TGTCAGTGGG 22050
	GCCTCATGGC TGGCGGGAGA TTTCAGGAGG TCTATGAGT ATATGGGTTG TGTCAGTGGC GGCCCCATGG 22120
	CTCTGGCTGG CCTGGGGAGT TTCTGATCTG GTGAGGCAGG AGGGGGAGGA GGTTAGGGGA TAGACAGTTG 22190
	GAGCCGCCCACT CTGGAAAGAC ATAACAGTAA GTCCAGGGCA GAAGGGCAGC AGGGATGCTG GGGGCCCAAG 22260
15	TTGGGGGCCG GGGATGATGG AGGGCCCTGG CAGGGTGGCA GGAGATGATGG GGCCCCCAAG TGAGGCTTCC 22330
	GGGGTGATGG TGGGGGGCTGG CTGGGGTGGC GGGAAAGATG GGAGGATGTC GGCTGGGCCCT 22400
	GCCTCCACCA TGACCGATG TGCTCTCTG TGACCATCTG CTGGGGCCAT CAGCTTCTTCA 22470
	GGAGGTGGGG GGCAGGGGCA TGACACCATG CTGGTAAAGGGC AGGCTTCTGG CTCCTCTGGA AGGCCCAAC 22540
20	TCAGGTTGAG ATGCACTAC CGCCCTGGC ATTCTCTTAA AGAGTAGAAC AGGATTCAGA TCTCTGAGA 22610
	GTGGGTAGTG TGGGGCAGTG GAGGGTGTGG CAACAGGAGA CTTCAGGGTG GGCGCTGGTG TGCTCTCTCA 22680
	TCTCTTATAG ATCTCCAGT CATTCCTCTA ATCTCTTAAAG CCTCCCTCAG CCTCTCTCTA CTCTCTCTTA 22750
	TCTCCAGTC TCTATGTC TAATCTTACAG ATCTCCCTAGT CCTACATCTTAA ATCTCTTAAAT CTCTCTCTCA 22820
25	CATCCAGACAG CCTGGGGAGG GAGGGTGGCC AGGGCTCTG AGGAGGCTGG AGGAGGAGGAG CAGGGGGGGG 22890
	GAAGGGACTG GAAGGGGGGG AGGAAACAGC AGGGCTGGC AGGGAGGAGGAG CAGGGGGGGG TGAGAACAGC 23030
	AGGCCCTCTT CAGAGCTGG CTGGGGTGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 23100
	CAACGGGGGG CCTGGGGGGG CTGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 23170
30	TTTCAGTCA GGCAGGGGCTT GCGGGGGGGG CTGGATGGCA TGTCAGGCA AGGGGGGGGG AGGGGGGGGG 23240
	TGCTGGCTGT CTAGGGATG TGTCAGTGGC TGTCAGTAAAT GGGGGGGGGGG GGCCCCAAGTC CAGACAGTC 23310
	GTCTTAATG CACTGGGGC CTGGAGGGC CGGTAGTAGGA GCCTGGGGGG AGGGGGGGGG CTGGAGGGGG 23380
	GGCTGGGGGG CGCTGGGGCC CTGCAACATG AGGGGGGGGG AGGGGGGGGG CCCTGGGGGG AGGACCTTCA 23450
35	GTGNGGAGTG GGACAGAACA GGGGGGGGAG TGCCCAGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 23520
	TGAAATCACAG ACCAACCATG CTCAGGCTATG TTTCAGTACAT AGCTCTCTCA AAAGCTTCAG ATTCTCTTCA 23590
	CTCCGGGGTT TTTCAGTGTG AATTATTCAGT AGGGATTACTT ATATTTTCTG CTAAGAATTG AGACCTTAA 23590
	AAAAGGTATG TCTCTTGTAA TGTCCTTAAC TCACTAACAGC CTACTTCTTAT TGCTGTGTTT TATTTTATTT 23660
40	TATTATTTAT ATTAGGAGATG GTGTCCTACTG TCTCACCCGG GTTGTAGTGT AGGGGGGGGG AGGGGGGGGG 23730
	GTGTCAGGGC CAAACCCCGA GGCTCAAGTS ATCTCCGGC CTGACCTCTC CAGAGTCTGCG GGATTCACAG 23800
	TGTGAGCTGG CGCCCTTGGC TTGGCCTTAAAT AAAAACCTAC AGTGAATAGTC AGGTCCTAGTC GCTTCACAC 23870
	CTGTCATCCCG AGTAGTTGGT GGAGGGGGGG CAGAGGGATG GTCTGGGGGG AGGGAGTTGA GACGACCTAG 23940
45	GTTACATAGC GGAGGGCCCCA TCTCTACAAA AAATGAAAAG AGTTATCTGGG GCCTGGGGGG CAGCATCTGT 24010
	AGTCCTCAGT CCTGGGGGG TGAGTGGGGAG AGGGCTCTG AGGGGGGGGG GTCTGGCTG CAGTGGAGGG 24080
	TGATTTGACT ATGCGACTCC AGCTCTGGCA AGCAAGTGG AGCCCTGTGG AGGGGGGGGG AGGGGGGGGG 24150
	RAAGGAGAGG AGAAGAGGAG AGAAGGAGAG AGAAGGAGAG AGAAGGAGAG AGAAGGAGAG AGAAGGAGAG 24220
	AGGGAGGGGG CCTGAGTGGT AGGTAGACTG TCTAACATTC GAGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 24290
50	AGGGAGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 24360
	ACAGGGGGGG ACCCTGGGG TTTCAGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 24430
	GTGAGACAGC CGGAGGGGG TGAAAGGAG TGCTTCTTCTT CTGGCTCTG CCCCCAGCTG CTGGCGCTGC 24500
	TGCACTCTGT CTGACCTGGC ATCTGGTGC CAGGGGGGCCA AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 24570
	CAAACTTTGT TGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 24640
	CCCTGGCTCT TCTCTGGAA CTGGTGTGAGT GGGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 24710
	AATCAACGGC CGGATCTGAG TGCTACCTGG ATTATCTGGT GGCGCTTGTAGA TTGGCCACAAAG 24780
	GTCTGGCTAGA AGTGGAGGAG GGAGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG AGGGGGGGGG 24850
	GTGGCTCTTG AGATGGAGGA GGGGGGGCCC AGGCAAGGAAGA TGGGGGGGGGG CGCTCCATGC TGGAAGAGCA 24920
	AGCACTATCTC CCGGGCTCTG AGGGGGGGGG CCCTCTGCCA CGGGCTCTGATT TGAGGCTAGT GGGGGCTCTG 24990
	TCAGCTTCTC GGCCCTCCAGA GCTGTAAGAT GATGCGTTTG TGTTCAAGCA CTAGGCTGCA GTGATTCTGC 25060
	ACAGCAGCAA ATGGAAATAGC AGTACAGGGGA AATGAATACA GGGGAGCTTC TCAGAGTGC TCTCAGGCCA 25130
	CCCCCTGGG 25138

Example 5

55 Comparison of the above-described genomic hTC sequence and the sequence of the hTC cDNA (Fig. 6; corresponding to SEQ ID NO 2) made it possible to elucidate the exon-intron structure of the hTC gene. The genomic organization of the hTC gene is illustrated diagrammatically in Fig. 7. The coding region of the hTC gene is composed of 16 exons which vary in size between 62 bp and 1354 bp (see Table 1)

60 Exon 1 contains the translation start codon ATG. The translation stop codon TGA and the 3'-untranslated region lie on exon 16 (Fig. 8). No possible polyadenylation signal (AATAAA) was found either in exon 16 or in the 3195 bp of the following

3'-flanking region. The exon-intron transitions were determined on the basis of the consensus sequence

		5'-Exon			Intron			3'-Exon		
5	Pre-mRNA	A/C	A	G		G	T	A/G	A	... N C A G G
	Frequency (%)	70	60	80	100	100	95	70	80	100 100 60

and listed in Table 1. With the exception of the 5' splice site between exon 15 and intron 15, all the exon-intron transitions are in accord with the published (Shapiro and Senapathy, 1987) splice consensus sequence. The sizes of the introns are between 104 bp and 8616 bp. Since only part of intron 6 was isolated, it is not possible to determine the precise length of the hTC gene. Based on the part sequence of ~4660 bp, which was obtained from intron 6, the minimum size of the hTERT gene is 37 kb.

Introns 1-5 and the 5' region of intron 6, are contained in contig 1:
Intron 1: bp 11493-11596 (SEQ ID NO 4);
Intron 2: bp 12951-21566 (SEQ ID NO 5);
Intron 3: bp 21763-23851 (SEQ ID NO 6);
5 Intron 4: bp 24033-24719 (SEQ ID NO 7);
Intron 5: bp 24900-25393 (SEQ ID NO 8);
5' region of intron 6: bp 25550-26414 (SEQ ID NO 9).

The 3' region of intron 6, and introns 7-15, are located in contig 2 at the following
10 positions:
3' region of intron 6: bp 1-3782 (SEQ ID NO 10);
Intron 7: bp 3879-4858 (SEQ ID NO 11);
Intron 8: bp 4945-7429 (SEQ ID NO 12);
Intron 9: bp 7544-9527 (SEQ ID NO 13);
15 Intron 10: bp 9600-11470 (SEQ ID NO 14);
Intron 11: bp 11660-15460 (SEQ ID NO 15);
Intron 12: bp 15588-16467 (SEQ ID NO 16);
Intron 13: bp 16530-19715 (SEQ ID NO 17);
Intron 14: 19841-20621 (SEQ ID NO 18);
20 Intron 15: 20760-21295 (SEQ ID NO 19).

The 3'-untranscribed region is also located in contig 2 at position 21960-25138 (SEQ
ID NO 20).

25 The individual sequences of the abovementioned introns are as follows:

002100-002215-002226

Intron 1 (SEQ ID NO 4)

GTGGGCCTCCCGGGTCCGGCTCCGGCTGGGTTGAGGGCGCCGGGGGAACAGCGACATGCGGAGAGCAGCGAGG
CGACTCAGGGCGCTTCCCCCGAG

5 Intron 2 (SEQ ID NO 5)

GTGAGGGAGGTGGTGGCGCTGAGGGCCCAGAGCTGAATGCACTGGCTCAGAAAAGGGGCAGGCAGGCC
CTGGTCTCTCTGTCATCGTACAGTGGCACAGTGGCTTCAGGCTCAGGGCTTGAGTCAGGACACGGTATCTGCC
TCGTCTCTCTGTCAGTGGCATAACTTACGGGTTACCTTCAGGGTTGAGGCGAGCTGGGAGAATGGTGGAAAG
CGAGGCGAGGAGTGGACAGAGGAGCTGGGAGCTGGGAGGAGTGGAGGAGCTGGGAGAATGGTGGAAAG
10 CACAGACGCTCTGGCGAGGGTGCCTCAGGGTACCTATACTCTTCAGGAAATTCAAGGGTGGAAATGAGGAGTGGGA
CGAGAACCCCTCTTCTGGGGTGGAGGTAAAGGTTTGAGGTGACAGTGGTCAAGGAAATAGCAGGTTGTITA
AGAATTATTGTGTTGACGGCCAGGTGCTGAGCTCAGGGCTTAATCCACACTTGGGAAGCTGAGGCGAGTGG
TCACCTGAGGTGAGGAGTGGAGACAGCTGACCAAATGGTACTCTGACTAAAAAAATACAAAAAAATCTGCC
GGCATGGTGTGCTGCTGTAATTCCAGCTACTGGGAGGCTGAGGAGGAGTCACTGAGACCCAGGGGG
15 TGCACTGAGCTGAGATTGTCATTGACTTACAGGCTGGGAGCAAGAGTGAACACTCTGCTTTTAAAAAAAGTGT
CGTTGATTGTCAGGACAGGGTAGAGGGAGGAGATAAGACTGTTCTCAGGACAGATCTGGTCCATTTAGGTAT
GAAGAGGGCCACATGGGAGGAGACAGCAGCTGGCACCAGTGGGAGGAGCTGGTGTGGTGTGAGGG
ATGGTCTGCTGGGGCTGGCTGTCCTGGGGCTGTTTCTGGATTGATTTGAGGANCTCCGCTCAGCCCCCTT
20 TGGCTCCAGTGTCTCCAGGGCTTACGGGCTGGCTGTCCTGGGGCTTCTTTCTTTCTTTCTTTCTTTATGGTGGC
AAAGTCATATAACRTGAGATTGGCACTCTAACACGGTTTCTGTGTAAGCTGCAAGATTGCTAACTCGGGGTGTTA
CAGCAGGGTGTGAAATGCTGGCTTCTGGCTGAGTGGACAGGACCTACCCATGAGGCACTGGCTCACACTGTG
GGCTCAGGTGGACCCGGCTGGAGTCAAGGCTATGCAAGGACCTTCTGGCTTCTGGCTCAGGAGGCTGGTGGAG
25 GAGAGTTGAGTTCTGATCAGGACTCTGCTGTCATTGTTCTGACTTCAGATGAGGTCACATCTGCCCTGG
CTTATGAGGGAGTGAGGCGTGTGCCCCGGGTGTCCTGTCACGTGCAAGGTGAGTGAGGCGTGTGCCCCAGGTGCTT
GTCACTGTAAGGGTAGTGGCGGG
30 CCCGTCACTGTTAGGGTAGTGGCGGGCCATGG
GTGTCCTGCTGGGGCTGGGGTAGGTGGAGGCACTGTCCCCGGGTGTCCTGTCAGTGGCAGGGTAGTGGAGGGGG
CCCCGGTGTCCCCTCTCAGGTGTAGGGTAGTGGAGGCACTGTCCCCGGGTGTCCTGTCAGTGGCAGGGTAGTGGAGGG
35 CGCAGCTGGTGTCCCCTCCAGGTATAGGGTAGTGGAGGCACTGTCCCCGGGTGTCCTGTCAGGTGCAAGGGTAGTGG
CGCAGGG
GAGGGCTGTGCCCCAGGTGTGTCCTGGGGTTGTCACTTGGCTGAGCTGGTCTCTGTAATGTTGCTTTCTATAGC
GCCGGGGTGTGCCCATGGCTGGGGTAGTGGCTGAGGCACTGTGCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
40 TCTGGTCACCTCTGGTCCATTGGTACAGGGACACGGGACTGCAAGCTCTCGCCCTCCGGTGCAGGGACTCGAG
CCACAGCTTCAAGGGTGGCTGGCTCTGGTCAAGGCTGGGCTGGCTGTCACAGGCTGGGGGGGGGGGGGGGGGGGG
TCTCCCGCTGTGCTCATGGCGAGGGTGGACTCTGGGGCTGGTCTGTCAGGCTGGGGGGGGGGGGGGGGGGGGGGGG
AGGGTTCTGTGCCCATGGAGGAAAGCAAGTCAACCCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
45 TTGGCCCCCTGG
CCAGTGCAGGG
GAGGG
TTTCTATCTCTCCATTGTATGTTGTTTCTGGGGTTATTCTTCTGTTCTGGCTGAGTGGTGTGAGTGGTGTGAG
CTCTGGCTGGCTTACCTGCAACCTGG
ATACCTCAAGGTAAACTCTTTAAAGTATCTTATCTGTGATTTTTCTTGTGCACTGGCTGTGGGGGGGGGGGGGG
50 ATGATTTGAGTATCAGTGTGACTTTAAAGTATCTTGTGAGTGGTATCTTGTGAGTGGTATTTGAAGGACACT
GTTATGTTCAAGATGTAGAGTATCAAGATACTGGAGTATTTGAAGTGTGAGTGGTATTTGAGTGGTATTTCTA
TGTGAGTGGTGTGATTAATACCAATTATTTGAAGTGTGGGGAGGCTGGTTGTGAGTGTGAGTGGTGTGG
AACTGTGTCATTGTAATTGACATCTGTCAATAGTGGGAGTGCATTTCACTATACAGCTTTAAGGTCAGTGTCA

AAAGTTCTGTCCTCTAGATGCATGAATTCCAAGAAGGAGGCCATGTCCTCACCTGGGGATGGGTCTTCATT
 TCTTCGTTGGTAGCATTTATGTGAGGCATTGTTAGGTGATGCACGGTGTAGAAATTATTTATCTCCTGATGAGTGA
 TCTTTGGAGACTCTATGTCCTAGTAATCTAGTAATTCTTTTAAATTGCTCTTACTGCCACACTGGGCTCT
 TTGTTAGTAGTATTCTCTGTCGTTGCTGTTCTGCCCTAAATTATAATATAATATAATTCTTCTGAGACA
 5 GAGTCCTGGTCTGTCGCCAGGGTGAGTCAGTGGCTGATCACAGGTAGCTTAACCTTACCTGGCTGAGCGT
 CCTCACCTCACCTCTGAGTAGCTGAACCTGGCAGCACGCCAACCTGGCTAACCTTAAATTCTGGA
 GACAGGGCTTGTGCTGTTGCCAGGTGGTCTCAAACCTTGGACTCAAGGGATCATCTACCTGGCTTCCAAGTG
 CTGAATTACAGGCATGAGCACCATCTGGCTAACTTCAACACTTTAATTCTTAACTTGTGGGTATGTCCTGTA
 10 ACAGCATGAGTTGAACTTCCAACTCAGCTGACAGTCAGTGGTGTAACTGGATAACCTGATTATTTCTGTA
 ACTAGACAGGCCCTGGTGTGCACTGTTAGTCTGCTGTTGACTGTCCTGTTCTGGTCACTGGCAATTGCTTT
 GTTGTGCGATGCGTTCTCGCCAGTGTGTGATCTCTGTTGCTCTGGTCACTGGCAATTGCTTTATTCT
 CTTGCTTAGTGTACCCCTCATCTTTATTGTCGTTGCTTGTGTTATTGAGACAGTCACTGTGACCCA
 GGCTGGAGTGTGACCATCTGCCACTGCAACCTCTGCCCTCTGGCTCAAGCAGTCTATTCCCTAACCTCA
 15 TGAGTACTGGGATTACAGGCCACACCCAGCTGGTGTGTTCTGGTCACTGGTCTTCCCTACAGTGTGAGGATT
 TGCCAGCTGGCTCAACACTGCTGACTGCAAGTGTGCTGGGCCCCCTGGCTCCACAGTGTGAGGATT
 AGTGTATTAGTGTGACCCCTGACCTTAAATTGAGTGTGAACTTGTGTTCTGGTCACTGGTCTTACCTGACA
 CCCCAACAGCTAACGATTAAATTAAATTGTTCTGGTGTGAGTGTGCTTCTGGGCCCCCTGCTTCTGCTC
 20 TTGTTGCTGGTAAACCCCAGCTTACCTGCTGCTGCCATCTGGCATCTAGGCTACCTGGCTGAGTGTGTT
 ACAGATGAAGATGTGGAGACTCACGAGGAGGGCGTCACTTGGCCCGTGTGAGTGTGCTGGAGCAC
 CAGTGGCCAGCTTCCTGGCTGGGAGGCTGGCTTACGGCTGGGAAACCCAGGGCATGGGCTGCTGCTG
 CCGGGTGTGAGTTGAAATGGCAACCTGGCTGTGCTGGGCCCCCTGGCTTCTGGTCTCTGGTCTGCTG
 25 CTCTCTCTCTGGTGGAGGAGGCTGGCTTAATCCAGCTGGCTGGGAGGCTGGCTTACGGTGTGCTGGG
 ATGGTGTGAGGGTCAAGGGTCAAGGACATCTGGCAACATGATGAAACCCCCATGTAACAAAACACAAA
 TGCCGCTGGGGGGTGGCTTAATCCAGCTGGCTGGGAGGCTGGGAGGAGATGGCTGACCTGGGAGGTGGAA
 GTGAGTGG
 30 AAAAAGGG
 GCCAGCATGTCACCCATCATTTAGGGTGTATTGGGGAGCATCCTACAGGACATTGACATTGGAGC
 TTGTTGCTGGGGATCCGGTGTAGGTCCGGTGCCTGACCTCTGGCTTCCCTGGGATCTGGCATGGCT
 GTGTAACCGAGGTGGCTGG
 35 TCTGGGGATGG
 TGTTGGTGTGG
 GTGAGGTGG
 40 GGGGGTGAAGGTGCCAGGCCCTGGTGGAGTGTGAGTGTGCTGGGTGAGGTGTGAGTGTGCTGGG
 GGG
 AGGCCCTGG
 GTGG
 45 AGACCCCTGGTGTGAGCTGGATATGG
 GTATGG
 GCAGGGTCTGG
 SCAGGG

Intron 4 (SEQ ID NO 7)

5 GTGGCTGTGTTGGTTAACCTCTTTAAACAGAAGTCGGTTGAGCCCCACATTGGTATCAGCTAGATGAAGGG
CCCCGAGGGGGGCCACGGGACACAGCCAGGGCTGCAGCGCCACACCCATTGTCGACAGTCAGGTGGCCGAGG
TGGGGCTGCCCTCAGAAAAGCAGCTGGGGTGAGGGGACTCTGGGGCAGGGACAGGCTCTGGGGACACAGAAGG
CAGCCGGCCAGGGCTTGTAGCAGCACGGCCAGGGCTGGCTGGGACCTGGTCTGGCTCTGGGGCAGGGCTCTGGGT
TCCGGCTTACGGGGCCGGGACCAGGGCACAGGACCTGGCAGGAGGACCCAGGGCTCTGGGGATCTGGGACCTTGGCCACGG
CTCCTGACCCCACCCCTGTGGCTCGGGTGGCTGGGTGACCCCTGATCTGGAGGAGAGTGTGGGGTGAGGTGGACAGAG
GTGGCATGAGGATCTCCCTGTGCAACACATGGGCCAGGAACCCGTTTCACAAACAGGGCTCTGGGGAGCTGGAGGGGG
10 TTCTAGTCCGGGCTGGGTGGGACACTGGGGAGGGCTGGCTCTCCCTGGTCCCTATGGTGGGGTGGGCAC
TTGGCCGGATCCACTTCTGACTGTCCTCCCATGTCCTGGCCCGAG

Intron 5 (SEQ ID NO 8)

15 GTGGGTGCCGGGACCCCGTGAGCAACCTGCTGGACCTGGGAGTGGCTGCCTGATTGGCACCTCATGTTGGGTGGAG
GAGGTACTCTGGTGGGCCAGGGAGTCAGGTGACCCCTGTCACTGTGAGGACACACCTGGCACCTAGGGTGGAGC
CTTCAGCCCTTCTCGCAGCACATGGGCCGACTGTGACCCCTGACTIONGCCGGGCTCTTATTCGAGGGGGTCCACTG
GATTCCAGTTCCTGGTCAAGAGAAGGAAACCCGCAACGGCTCAGGCCAACGGGCCCCGGTCTGGCTGCACCCAGTCCTGGACAG
GGGTCTCTGTCTGGGCTCAGAGGGGACACAGGGCCCCCTGGCTTCTGGGTCTGGAGTGTGGGGTCAGAGAG
AGTGGGGGACACCCGCCAGGGCAGGGCTGAGGGCAGAGGTGATGTCTGAGTTCTGGCTGGCCACTGTCACTCTCCGC
CTCCACTCACACAG

5'-region intron 6 (SEQ ID NO 9)

25 GTAAAGTTCACGTGATGTCGTCAGGATGTGCTCTCTGGGATATGAATGTCCTAGAATGCAGTCGTGCTG
ATSCGTTCTGCTGGAGGACTTCCATGATTACACATGATTCGATGTTGCGTGTGCCACGCTGTGCTGCTGGCAT
GTATCTGTGCGTCATATTGGTGTGTTGCTGTCGTCGACGCTGTGTCCTGGTGTGCTGCTGGTGTGCGAT
TGTGTCGTTGCTGACCGCTGATTCGTCGATGTCATGGCCTGGGTTGTCGTCGATGTCGCTGCTGCTGCTGAT
GTGTCGGTGCACATATGGCTGTTGTCGTCGATGTCGTCGATGTCGCTGCTGCTGCTGCTGCTGCTGAT
GCACCATTTGCTCACGGCTCGGGTGTGGTTGGGAGCTCACATTGGCTCTCACTTCTAGCATGGGTGCCCT
GTCTGTACAGGGCTGGCCCTGGAGACTGTAAGCCAGGTTGAGAGGAGAGTAGGGATGTCGTTGTGACCTTCTGGA
CCCCCTGGCACCCCCAGGACCCAGTCTGGCTATGCCGGCTCCATGAGGATTAAGGAAGGCTGATTCAGGCTCTGGCTCCC
30 GGGACACACTCTCCCGAGGCCGGGGCTGGGCTGCGCAGGGGTGAAAGGGCCCTGGGTTGGGCTTCCCC
AGTGGCTATGRCGACGCTGGAGGGTAAAGCTCAAGTCTGCGCAGGGGTGAAAGGGTGAAGAAGTATCCCTGGA
GCTTCGGCTGGGAGGGCACATGCTGGAAACCAAGGACTCTTCCTGACTCTGAGCT

3'-region intron 6 (SEQ ID NO 10)

GGCCCTGTGGCCCTTGAGATCTGGTCTGCCAGTGGCCCTGTGGCTTTGAGATGCCGTGTTAGCACTTGCTCGGC
TCTAGGGGACAGTCGTGTCACCGCATGAGGCTCAGAGACCTCTGGCGGAATTCTCTGGCTCCAGGGTGGGGGGAG
GTGGCCCTGGGCTGCTGGGACCCAGACCTCTGGCCCGACGCTGCCAACACTCTGTGATCACATATGCCATCGGGCA
CGGTGGCTGTGTGGGGTGTGAGCCAGCTGCCAGGCCACAGGTGGCCCAGGGAGACCTCTGTGTCACACACTCTGCTAA
GCCCATGTGTGTCAGAGACTGCCCGGCCAGCCCCAGATGGCCCTGCACTTCAGCCCCAGCCCCACTTCATCACA
AACACTGTACCCCCAAAAGGGAGGGTCTTGGCCACGTGGTCTGCCGTGTCAGCACCCACCGGCTACTCCATGTG
TCTCCCGTCTGCTTCCAG

Intron 8 (SEQ ID NO 12)

Intron 9 (SEQ ID NO 13)

GGGAGACAGGGAAAGCACCCGAACTCTGGAGCAAGGCTGGGTCAAGGCTCTCGAGACTCTGCCAAGGCCAGCACCT
GCTCCAAATCACCACCTCTCTGGGGTTTCAACAGGATTTAACAGGGTGTCAAGGTACCTCTGGGTGACGGCCCCGCA
TCCTGGGGTGTACATTGGGGCTCTGGCTTAG

5 Intron 11 (SEQ ID NO 15)

GATGCCCTCATCTGGAGACACCATGTCGCACTCACTGGACCCCTGTAGCTGGCACCCTG
GCTCTTCCATCCCCTGAGRTCACAAACAGCTGGAGTTCCTCCACGCCAACACTGAGTCAC
ACCTGTTCTCATCGAGGAGGCCCGGGAGCAGGCTCCACGATTATATGTTTGGCTGAGTTGAGTC
TCATCAGGGCAGATGATGAGTCACAAACAGGGCGCTGCGAGGTTGGATACACTCACACTGAGGCTGGT
5 GAGTTTGCTGATCAGCAGTCTGGATGCTGAGTTCCTGGAGTCAGGAGTCAGGAGTCAGCCCCCTGGCTGCAGC
GCATGCCCGAGGAGCAAGGAAGCGGGAGGAAGCAGGAGGCTTGGAGCAAGCTTGCAGGAGGGGCTGGT
GGGCAGGCACCTGTGTAGCATTCCCCCTGTGTCAG

Intron 12 (SEQ ID NO 16)

10 GTGAGCAGGGCTGTGGTCAGCACAGAGTTCAAGGTTCAAGGGGTGTGCGCAAGTATGTGTGTGTGCGCGGT
GCCCTGGAAGGCTGTGTGACTGGCTGCACGTAAGGTGCACTATGTCGGCATATACTGGCAACATGTCATGTCAT
GTGTCATACATGAAGGCTATGGCAGTTGTGCAAGGGTGTGCAAGGGCATACTGGCAACATGTCATGTCAT
TGCATGTGTCGTGCAAGCTGTGGCATTTCAGCTGAGGTGCACTGGTGTGCACTGGTGTGAGTCAGCATGTGTCAT
GCACATACATGTTAGGGGGTCTCTGGTACCCCGCTAGGTTCTCAGCACCATGGCCACTCTTCAAGGATGAGAC
15 GGGGTCACAGGGCTTGTGGCTGAGGCTCTGAAAGCTGCAAGGGCTTGTCCCCTGGGCATCCGGCTCCACT
CCCTCTCTGTGGCTTGTGTCACCTCCCCCTCTCTGTGGCATTTACRTCCACTCCCTCTCTGTGGC
ATCCGGCTCCTCCCCCTCTGTGGCATCTGGCTCCACCTCCCCCTCTGTGGCATTTGGCTCCTCTCTCT
GGTCTCTCTGTGGCCCTGGGGCTGGGGCAGATGACACAGAGTCAGTGTGACTGGCCAGGGTGTGCACTGGT
CCGGTGAGGGCAAGGGGATTTCTGGGAGAGGGTAGTTCTCTTCTCAAACTTCTCTTCTGGTTCAGCTGAG
20 ATGGAAATGATAAAGGAAAAGTAAACCTAAATCCAGAGGGTTCTACGGTTCTCACTCTTCTGGCAGACTAG

Intron 13 (SEQ ID NO 17)

GTGAGCCGCCACCAAGGGGTGAGGCCAGCCTCCAGGGACCTCCCGCCTCTGCACCTCTGACCCGGGCTCACCT
TGGAACTCTGGTTTATAGGGCAAGGAATGCTTACCTGGTTCAGGGTCTGCTGCACACTCTGTTCGGCTG
35 GCTCTGTGAAAGACCTTCTTCATCTGGGTAGGGTACGGGACCTCATGGGGCAGGGGGCATGGGTTAAGAGATTTATGGGGAGTTAG
GCACCTGGCGTGGAGCATCTGGGGCAGGGGGCATGGGGGCAAGGGGGCATGGGTTAAGAGATTTATGGGGAGTTAG
CAGAGGGAGCTGGAGGTGCTGACAGTAGATGGGAGATCAGATGCCGGAGGATTGGGGTCTCAGCAAAGAGGGCC
GAGGGGGTGCAAGGTGAGGGTCTGGCCCCACCCCGGGAGGGTGCAGCAGAGCTGGCTCCCAAACAGGCCGGCA
GCACCTGTGCTCTGGGATGGCTGTGCTCTGGGAGCTTCTCTGGCTGTCAGGGGGTGGCCCTGGCAAGATCG
30 ACAACATTACAGAGGGAGGGCAATCTGTGGGACCCAGGGGGCATCTGGCTCTGGCTGTCAGGGGGTGGCCCTGGCAAGATCG
ACAAGGCTGGGGCTGTACCAAAAGGGCAGTGAGGGGCCACAGGGGGCTCCACCAACAGGGCTCCGGAGGACTG
GGAGCTGAATGCCAGGGGGCGAAGGCCCTCGCCCATGAGGGCTGAGAAGGGATGTGAGCATTTGTTAACCCAGGGCG
AGGCTGCGGAATTACCGTGCACACTTGATGTGAATGAGGGCTGCTGTCATCTGGAAAACCCAGCAAGGGCTCAAGGG
SAGTTTCCAATCAAGGGATGCTTACCATGGAAAATGGTTTAACTGGGAGCTGCTGGCCCTTCATGCTCTGGCAGGGGGC
35 AGAGGCCACAGCTGCTGATCTGGGGCTTGGCAGGCTTCAGGGCTGGGGACAGGGGGTGTGCTGAGCTTGGGTGCTCC
GGCTGCAAGCCCTCTCTGCTTCTCTGCTCAATCTTCCCTGCTGTTCTCCCTGAGGGCTGGCTGGGGCTGG
CCCTGTCAGCTGCTTCTGACTCTTCCGGAAACCTTGGGGTGTGCTGGATAACAGGTGCCACTGAGGACTGGAGGTG
CTGACACTGTTGGTACCCCAGGGTCAAGCTGGGTCTGGGCTCTCTGGGCAATGAGGGTCAAGAGGGATTTCC
CAGGTAAAATCTCTGGGAAATCTCCGGGCACTGTGACCTGGGCACTCTGGCTCTCTGGGCAATGAGGGTCAAGAGGGATTTCC
40 ATTTCCCAACAGGGTCTCTAGCTGGGAGCTGGGCACTGGGCTCTGGGCAATGAGGGTCAAGAGGGATTTCC
CCAGTGGGACTCCCTGGGAGTCCGGTGTGGGAGCTGGGCTGAGGGCCAGATCGATGGGCAACGGGGCTTTCCA
AACACAGAGTAGGJACGTGGAAGGCCAGGAATCCCTTCCCTGAGGCAAGGAGTGGJAGAAGCAGGAGCTGGGGCC
ATTTCAGGGCAGCCAGCTGCTGGGCACTGGGCTCTGGGCTGGGCAACGGGGCTGGGCAATTCAGGGCAACGGGGCTTTCCA
TGGGGCTGGCTCTGGGCGGGCTGGGCGGGCTGGGCAACGGGGCTGGGCAACGGGGCTGGGCAACGGGGCTGGGCAACGGGGCTTTCCA
45 TATTTGGGGCTGGGGCTGGGCAACGGGGCTGGGCAACGGGGCTGGGCAACGGGGCTGGGCAACGGGGCTGGGCAACGGGGCTTTCCA

Intron 14 (WEQ ID NO 18)

20 GTATGCGAGCTGCCCTGCGCTCAGTGGCACAGTCGCCTGCGCTGGTAGTGTCAAGGAGACTGAGTGAATCTGG
CTTAGGAAGTTCTTACCCCTTTCGATCAGAAGTGTAAACCAACCATGTCAAGGCTCTGCTGCCGGCCCTCTGT
GGGGTGACAGAGCCACATGGAGAAGGGACAGGGACTGTCTGGAGGCTCCATCTTCCCACCTTGCTCGCTGGGG
GCGCTGGGGGGCTGGTCTCTCTTGTGGCCCATGGGGGGATTTGGGGGGCTTGGCTCTCTGTGTTGGGGCTGTGG
GATTGGCTGTCCTGGGCACTTGGGACTCTAGGGCCCTTGTGTCACAAACCCAGGGCAAGGGCTTAGGGAGGGCCAGGG
GCTACCCCCACCCCTCTCAGGAGCACAGGGCCGCGTATCACCCACGACAGAGCCCCGGCCGCTCTGCTCTCCAGTCACCG
TCCTCTGCCCTGGACACTTGTCCAGCATCAGGGAGGTTCTGTATCCCTGTGAATTCAAGGCACTGTGAGAACCTGGGT
CTCTGGACTTAAACAGCTTACTTCTTGTCTTCTGTGTTGGAAATTACCTGGAGAGGCGAAGAAACATTTCTG
TCGTGACTCTGGGTGCTGGGGGGCCAGAGATGGAGCCACGGGGCTGGGTGTTGGGGCTGGCTGGCTGGCTGG
GTTCTCTGGGGAGGGAGCTGGGCTGGCTGACTCTCAGGGCTCTGGGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG

25

Intron 15 (SEQ ID NO 19)

GCAAGTGTGGTGAGGCCAGTGCAGGCCCCACCTGCCAGGGTATCCTTGACGCCCTGTGGGGCGAGCACCTC
AGATGCTGCTGAAGTGCAGACGCCCGGCCCTGACCCCTGGGGCTGGAGGCCACGCTGGCAGCCATGTGATTAAACG
CTGGTGTCCCAGGCCAGGACCTGGCAGGGTCCCCAACTCTTGACCCCTGCTCCCATCTCAGGGCGATGGCTCC
CCACGCTTGGAGCCCTTGACCCCTGACCTGTGCTCTCACAGCCCTTCCCTGGCTGCTGCCCTGACTCTGGGT
CCTGGCAAGCTTCTCCCGCCCGCCGCTCCAGCTTACGGCTGCCCTGCTGCTGCCCTGGAGGGTGTCTG
TCCCTTCACTGAGTTCCACCCAGGCCAGGAGCTGGCTGCCCTGGAGGGTGTCTGCTGCCCTGGAGGGTGTCTG
TTGGAGGTGCCACCTCTGGCTCTCTGGAGGAGCTGTGATTTTGCCGGCACACAGCTCCAGGAGGG

40 3'-untranscribed region (SEQ ID NO 20)

CGGGGAAAGATGGGGAAAGCTGGCTGGGCCCTCCTCCCTGCCTCCACCTGCAGCGGTGGATCCGGATGTGCTTCCCT
 GTGCACATCCTCTGGCCATCAGCTTCATGGAGGTGGGGGGCAGGGGATGACACCCTCTGTATAAAATCCAGGATT
 CCTCTCTGAACCCCCACTCAGGTTAAAGTCACATTCGCCCTCTGCCATTCTTAAGAGTAGACCAAGGATTCTG
 ATCTCTGAAGGGTGGTAGGTGGGCCAGTGAGGGTGTGGACACAGGAGGCTCAGGGTGGGGCTGGTGTAGCTCTC
 5 ATCTCTTATCATCTCCAGTCTCATCTCATCTTATCATCTCCAGTCTCATCTGTCTCTTATCTCCAGT
 CTCATCTGTATCCTTACCATCTCCAGTCTCATCTTATCTCTTATCTCTTACCTCCA
 GGGGGGGTCCAGCTGGAGCTGGACATACGGCTCTCAGGAGAAGGAACCTGGAGGATTCAGAGAACAC
 GAGGGGGGGCTCAGAGGGACCCGACTCTGGGTGTAGAAACAGCCCCCTCTCAGAAGTTGGCTTGGGACACGAACAG
 AGGGCCCTGGTGTAGTGGCTCAGACCTTCAGCAGGTTCTGGTGGGGCTTATGGTATGCCCGGTTACTGAGTG
 10 CACCTGGACAGGGCTCTGGTTGAGTGCAAGCCGGACGCTGGCTGTGGTGGGGTGGGGCTTATGCCACTGGATATG
 GCGTCATTATTGCTGTGCTTCAGAGAACTGCTGAGTGACCGAGGCTTAATGTGTATGGTGGCCCAAACCTCACAGACTG
 TGCTGAAATGCTCTGGTGTGGCCCTGGAGCCCCCTGATAGAGGCTGTGAGGAGGAGGGGGCTTCTGGCCACCGGGGG
 GCGCTTGGCTCAGGGAGGAGGG
 15 AGGGCGGGGACCTCCAGGAGCAGGGCGCTGCTCAGGACACACTGGTTGAATCACAGACCAACAGTCAGGCCATT
 GTTCACTCATCTTCTACAAAGCTCAGATTCTGTCTCCGGGTGTTTTGTTGAATTTACTCAGGATTACT
 TATTTTTGCTAAAGTATTAGACCCCTAAAGGTTATGCTTGTATGGCTTAACTCACTAACGACCTTAATT
 TTGCTCTTTTATTTATTTATTTATTTAGAGGATGGTGTACTCTGTCACCCAGGTGTAGCTGAGTGGC
 AGTCATGGCTGGCTGTAGCCGCAACCCCCAGCTCAAGTGTACTCTGGCTCTGGCTTCCAGACTGGTGGNTACAG
 GTGTGAGGCACTGCCCTGGCTGCCACTTAAAACACCTATGTAAGGTCAAGGTCAGGTCAGTGGCTTCCACACTGTCA
 20 CAGTAGTTGGGAAACCGAGGAGAAGGATTGCTGAGGGCAGGAGTTGAGACCAAGCATGGTAACTAGGGAGACCCC
 ATCTCTACAAAAAAATGCAAAAGTATCCGGGCGTGGGGTCCAGCATCTGTAGTCCAGCTGCTGGGGAGGTGAGTGG
 AGGATGCGCTGTAGCCGGGGAGGTCACTGGCTGAGCTGTGAGGATGGTGTACTCTGTCACCCAGCTGGGACACGAGTGA
 GACCCCTGCTCAAAAAAAAAAAAGAAGGAGAAGGAGAAGGAGAAGGAGAAGGAGAAGGAGAAGGAGAAGGAGAAG
 GAGAAGGAGAAGAAGGAGAAGGAGGCTGTAGGTGCTAGGTGACTGTCAAAACTCAGAGCAGGAAATTTAAACA
 25 AAAGTTTAAAGGGAAAGAAAAACCCAGCTTTGGACTCTCTTAGGCCTGAACTCTCATCTCAAGCAGCTTCCACCA
 GCAAGCGTGTATGGCGAGTGAGTCAAAGCAGAAAGGGAGGAGAAGCAGGCAAGGGTGGGGCTGTGGGTGACACCA
 GCAGGACCCCTGAAAGGGAGTGTGTTTCTGCCCTGCCCTGGGAGGATGCTGTCAGGGGGCTTCCACCTGCTTAACCGTC
 GATGTTGGTCCAGGTGCCCACCTGGAGGATGCTGTCAGGGGGCTTCCAAACATTGGTTGAGGACCTGGCAG
 GCACTTGTGCCAGGCAAACTACAGCCCCCTCCCAAAGATGCCACGTCCTCTCTCTGAACTTGTGAATGTGTCACCCG
 30 CAAGGAGGCTGGTGAAGGCTGAGGTTGAGGATCAGCTGCAAGGCTGAGGAGGAGGTGAGGAGGAGGAGGAGGAG
 CACTGGCCACTGCTGGCTTGTAGGTGAGGAGGGGTGCTCCAGGCAAGGAATGGGGCAGCCGCTCCATGCTGAAAGC
 AAGCAATCTCCCCGCTCTGAGGGCACAGGGGCTGCCAGGCTGATTCTGAGGACCTGGGACTGTTCACTTC
 CGGCTCCAGAGCTGAAGATGATGCCCTGTGTTGAGGACAGTCAAGCTGAGGTGACTCTGACAGCAGCAAATGGAAATAG
 35 CAGTACAGGGAAATGAATACAGGGACAGTTCTCAGAGTGAETCTCAGGCCACCCCTGGG

- Characterization of the exons showed, interestingly, that the functionally important hTC protein domains which are described in our Patent Application PCT/EP/98/03469 are arranged on separate exons. The telomerase-characteristic T motif is located on exon 3. The RT (reverse transcriptase) motifs 1-7, which are
5 important for the catalytic function of the telomerase, are located on the following exons: RT motifs 1 and 2 on exon 4, RT motif 4 on exon 9, RT motif 5 on exon 10, and RT motifs 6 and 7 on exon 11. RT motif 3 is shared by exons 5 and 6 (see Fig. 8).
- 10 Elucidation of the exon-intron structure of the hTC gene also shows that the four deletions or insertion variants of the hTC cDNA which were described in our Patent Application PCT/EP/98/03469, as well as three additional hTC insertion variants which are described in the literature (Kilian et al., 1997), in all probability represent alternative splicing products. As shown in Fig. 8, the splicing variants can be divided
15 into two groups: deletion variants and insertion variants.
- The hTC variants in the deletion group lack specific sequence segments. The 36 bp in-frame deletion in variant DEL1 in all probability results from using an alternative 3' splice acceptor sequence in exon 6, resulting in a part of RT motif 3 being lost. In
20 variant DEL2, the normal 5' splice donor and 3' splice acceptor sequences of introns 6, 7 and 8 are not used. Instead exon 6 is fused directly to exon 9, resulting in a displacement arising in the open reading frame and a stop codon appearing in exon 10. Variant Del3 is a combination of variants 1 and 2.
- 25 The insertion variant group is characterized by the insertion of intron sequences which lead to premature cessation of translation. Instead of the 5' splice donor sequence of intron 5, which is normally used, use is made, in variant INS1, of an alternative, 3'-located splice site, resulting in the insertion of the first 38 bp from
30 intron 4 between exon 4 and exon 5. The insertion, in variant INS2, of a region of the intron 11 sequence likewise results from using an alternative 5' splice donor sequence in intron 11. Since this variant was only described inadequately in the

literature (Kilian et al., 1997), it is not possible to determine the precise alternative 5' splice donor sequence in this variant. The insertion of intron 14 sequences between exon 14 and exon 15 in variant INS3 comes from using an alternative 3' splice acceptor sequence, resulting in the 3' part of intron 14 not being spliced.

5

The hTC variant INS4 (variante 4), which is described in our Patent Application PCT/EP/98/03469, is characterized by exon 15, and the 5' part region of exon 16, being replaced by the first 600 bp of intron 14. This variant can be attributed to the use of an alternative internal 5' splice donor sequence in intron 14 and an alternative 3' splice acceptor sequence in exon 16, resulting in an altered C terminus.

10

The *in vivo* generation of hTC protein variants which are probably non-functional and which could interfere with the function of the complete hTC protein constitutes a possible mechanism, in addition to transcription regulation, for controlling hTC protein function. The function of the hTC splicing variants is not yet known. Although most of these variants presumably encode proteins without reverse transcriptase activity, they could nevertheless play a crucial role as transdominant-negative telomerase regulators by, for example, competing for interaction with important binding partners.

15

The search for possible transcription factor binding sites was carried out using the „find pattern“ algorithm from the Genetics Computer Group (Madison, USA) GCG Sequence Analysis program package. This resulted in the identification of a variety of potential binding sites for transcription factors in the nucleotide sequence of intron 2, which binding sites are listed in Tab. 2. In addition, an Sp1 binding site was found in intron 1 (pos. 43), and a c-Myc binding site was found in the 5'-untranslated region (cDNA position 29-34, cf. Fig. 6).

002010-93238560

Example 6

In order to ascertain the start point(s) of hTC transcription in HL 60 cells, the 5' end of the hTC mRNA was determined by means of primer extension analysis.

- 5 2 µg of polyA⁺ RNA from HL-60 cells were denatured at 65°C for 10 min. 1 µl of RNasin (30-40 U/ml) and 0.3-1 pmol of radioactively labelled primer (5' GTTAAGTTGTAGCTTACACTGGTTCTC 3'; 2.5-8x10⁵ cpm) were added for primer annealing, and the whole was incubated, at 37°C for 30 min, in a total volume
10 of 20 µl. After the addition of 10 µl of 5xreverse transcriptase buffer (from Gibco-BRL), 2 µl of 10 mM dNTPs, 2 µl RNasin (see above), 5 µl of 0.1 M DTT (from Gibco-BRL) 2 µl of ThermoScript RT (15 U/µl; from Gibco-BRL) and 9 µl of DEPC-treated water, primer extension took place, at 58°C for 1 h, in a total volume [lacuna]. The reaction was stopped by adding 4 µl of 0.5 M EDTA, pH 8.0, and the
15 RNA was degraded, at 37°C for 30 min, after having added 1 µl of RNaseA (10 mg/ml). 2.5 µg of sheared calf thymus DNA and 100 µl of TE were then added, and the mixture was extracted once with 150 µl of phenol/chloroform (1:1). The DNA was precipitated, at -70°C for 45 min, after adding 15 µl of 3 M Na acetate and 450 µl of ethanol, and then centrifuged at 14,000 rpm for 15 min. The precipitate was
20 washed once with 70% ethanol, dried in air and dissolved in 8 µl of sequencing stop solution. After 5 min of denaturation at 80°C, the samples were loaded onto a 6% polyacrylamide gel and fractionated electrophoretically (Ausubel et al., 1987) (Fig. 5).
- 25 In this connection, a main transcription start site was identified which is located 1767 bp 5' of the ATG start codon of the hTC cDNA sequence (nucleotide position 3346 in Fig. 4). In addition to this, the nucleotide sequence around this main transcription start (TTA₋₁TTGT) represents an initiator element (Inr), which, in 6 out of 7 nucleotides, matches the consensus motif (PyPyA₋₁Na/tPyPy) (Smale, 1997) of an initiator element.
30

00000000000000000000000000000000

It was not possible to identify any unambiguous TATA box in the immediate vicinity of the experimentally identified main transcription start, which means that the hTC promoter has probably to be classified in the family of TATA-less promoters (Smale, 1997). However, a potential TATA box from nucleotide position 1306 to nucleotide 5 position 1311 (Fig. 4) was found by means of bioinformatics analysis. The subsidiary transcription starts which were additionally observed around the main transcription start have also been described in the case of other TATA-less promoters (Geng and Johnson, 1993), for example in the strongly regulated promoters of some cell cycle genes (Wick *et al.*, 1995).

10

Example 7

In addition to the start point of the hTC transcript which was described in Example 6 and identified in HL60 cells, a further transcription start region was also identified in 15 HL60 cells. With the aid of RT-PCR analyses, the region of the hTC gene transcription start in HL60 cells was localized to bp -60 to bp -105.

The cDNA for this was synthesized using a First Strand cDNA Synthesis kit (Clontech), in accordance with the manufacturer's instructions, and employing 0.4 µg 20 of HL60 cell polyA RNA (Clontech) and the gene-specific primer GSP13 (5'-CCTCCAAAGAGGTGGCTTCTCGGC-3', cDNA position 920-897). In a final volume of 50 µl, 10 pmol dNTP mix were added to 1 µl of cDNA, and a PCR reaction was carried out in 1xPCR reaction buffer F (PCR-Optimizer kit from InVitrogen) and using one unit of platinum Taq DNA polymerase (from Gibco/BRL). 25 10 pmol of each of the 5' and 3' primers defined below were added as primers. The PCR was carried out in 3 steps. A two-minute denaturation at 94°C was followed by 36 PCR cycles in which the DNA was first of all denatured at 94°C for 45 sec and, after that, the primers were annealed, and the DNA chain was extended at 68°C for 5 min. The cycles were concluded by a chain extension at 68°C for 10 min. In all, six 30 different 5' PCR primers (primer HTRT5B: 5'-CGCAGCCACTACCGCGAGGTGC-3', cDNA position 105 to 126; primer C5S:

00726205-092100

5'-CTGCGTCCTGCTGCGACGTGGGAAGC-3', 5'-flanking region -49 to -23; primer PRO-TEST1: 5'-CTCGCGCGCGAGTTCAAGCAG-3', 5'-flanking region -74 to -52; primer PRO-TEST2: 5'-CCAGCCCCCTCCCCTCCCTTCC-3', 5'-flanking region -112 to -91; primer PRO-TEST4: 5-CCAGCTCCGCCTCCCGC-3', 5'-flanking region -191 to -171; primer RP-3A: 5'-CTAGGCCGATTCGACCTCTCTCC-3', 5'-flanking region -427 to -405) were combined with the 3' PCR primer C5Rback (5'-GTCAGGGCACGCACACCAG-3', cDNA position 245 to 225). Genomic DNA was also employed for the PCR, as a control, in addition to the Oligo dT- and GSP13-primed cDNAs. As Fig. 9 shows, a PCR product was only obtained with the primer combinations HTRT5B-C5Rback, C5S-C5Rback and PRO-TEST1-C5Rback, indicating that the start point for hTC transcription lies in the region between bp-60 and bp-105.

15 **Example 8**

Several extremely GC-rich regions, so-called CpG Islands, are located in the isolated 5'-flanking region, of about 11.2 kb in size, of the hTC gene. One CpG Island, having a GC content of > 70%, extends from bp - 1214 into intron 2. Two further GC-rich 20 regions having a GC content of > 60% extend from bp -3872 to bp -3113 and from bp -5363 to bp -3941, respectively. The positions of the CpG Islands are shown graphically in Fig. 11.

The search for possible transcription factor binding sites was carried out using the 25 "Find Pattern" algorithm from the Genetics Computer Group (Madison, USA) GCG Sequence Analysis program package. This resulted in the identification of a variety of potential binding sites in the region up to -900 bp upstream of the translation start codon ATG: five Sp1 binding sites, one c-Myc binding site, and one CCAC box (Fig. 10). In addition, a CCAAT box and a second c-Myc binding site were found at 30 positions -1788 and -3995, respectively, of the 5'-flanking region.

Example 9

In order to analyse the activity of the hTC promoter, PCR amplification was used to generate four hTC promoter sequence segments of differing length, which segments were cloned into the Promega vector pGL2 5' in front of the luciferase reporter gene. The 8.5 kb SacI fragment which was subcloned from phage clone P12 was selected as the DNA source for the PCR amplification. In a final volume of 50 µl, 10 pmol of dNTP mix were added to 35 ng of this DNA, and a PCR reaction was carried out in 1xPCR reaction buffer (PCR-Optimizer kit from InVitrogen) and using one unit of platinum Taq DNA polymerase (from Gibco/BRL). In each case 20 pmol of the 5' and 3' primers which are defined below were added as primers. The PCR was carried out in three steps. A two-minute denaturation at 94°C was followed by 30 PCR cycles in which the DNA was first of all denatured at 94°C for 45 sec, after which the primers were annealed, and the DNA chain was extended, at 68°C for 5 min. The cycles were concluded by a chain extension at 68°C for 10 min. The selected 3' PCR primer was in each case the primer PK-3A (5'-GCAAGCTTACGCAGCGCTGCCTGAAACTCG-3', position -43 to -65), which primer recognizes a sequence region 42 bp upstream of the ATG START codon. A promoter fragment of 4051 bp in size (NPK8) was amplified by combining the PK-3A primers with the 5' PCR primer PK-5B (5'-CCAGATCTCTGGAACACAGAGTGGCAGTTCC-3', position -4093 to -4070). Combining the pair of primers PK-3A and PK-5C (5'-CCAGATCTGCATGAAGTGTGTTGGGATTGCAG-3', position -3120 to -3096) led to the amplification of a promoter fragment of 3078 bp in size (NPK15). Use of the primer combination PK-3A and PK-5D (5'-GGAGATCTGATCTGGCTTACTGCAGCCTCTG-3', position -2110 to -2087) amplified a promoter fragment of 2068 bp in size (NPK22). Finally, using the primer combination PK-3A and PK-5E (5'-GGAGATCTGATCTGGATTCCCTGGAAAGTCCTCA-3', position -1125 to -1102) led to the amplification of a promoter fragment of 1083 bp in size (NPK27).

The PK-3A primer contains a HindIII recognition sequence. The different 5' primers contain a BglII recognition sequence.

5 The resulting PCR products were purified using the Qiagen QIA quick spin PCR purification kit, in accordance with the manufacturer's instructions, and then digested with the restriction enzymes BglII and HindIII. The pGL2 promoter vector was digested with the same restriction enzymes, and the SV40 promoter contained in this vector was released and removed. The PCR promoter fragments ligated into the vector, which was then transformed into competent DH5 α bacteria (from 10 Gibco/BRL). DNA for the promoter activity analyses, which are described below, was isolated from transformed bacterial clones using the Qiagen plasmid kit.

Example 10

15 The activity of the hTC promoter was analysed in transient transfections in eukaryotic cells.

All the work with eukaryotic cells was carried out at a sterile workstation. CHO-K1 and HEK 293 cells were obtained from the American Type Culture collection.

20 CHO-K1 cells were kept in DMEM Nut Mix F-12 cell culture medium (from Gibco-BRL, order number: 21331-020) containing 0.15% streptomycin/penicillin, 2 mM glutamine and 10% FCS (from Gibco-BRL).

25 HEK 293 cells were cultured in DMOD cell culture medium (from Gibco-BRL, order number: 41965-039) containing 0.15% streptomycin/penicillin, 2 mM glutamine and 10% FCS (from Gibco-BRL).

CHO-K1 and HEK 293 cells were cultured at 37°C in a water-saturated atmosphere 30 while being gassed with 5% CO₂. When the cell lawn was confluent, the medium was sucked off, after which the cells were washed with PBS (100 mM KH₂PO₄ pH

002800-07428560

7.2; 150 mM NaCl) and released by adding a trypsin-EDTA solution (from Gibco-BRL). The trypsin was inactivated by adding medium and the cell count was determined using a Neubauer counting chamber in order to plate out the cells at the desired density.

5

For the transfection, in each case 2×10^5 HEK 293 cells were plated out, per well, in a 24-well cell culture plate. The HEK 293 medium was removed after 3 hours. For the transfection, up to 2.5 µg of plasmid DNA, 1 µg of a CMV β-Gal plasmid construct (from Stratagene, order number: 200388), 200 µl of serum-free medium and 10 µl of transfection reagent (DOTAP from Boehringer Mannheim) were incubated at room temperature for 15 minutes and then dropped uniformly onto the HEK 293 cells. 1.5 ml of medium were added after 3 hours. The medium was changed after 20 hours. After a further 24 hours, the cells were harvested for determining the luciferase activity and the β-Gal activity. For this, the cells were lysed, at room temperature for 15 minutes, in the cell culture lysis reagent (25 mM Tris [pH 7.8] containing H₃PO₄; 2 mM CDTA; 2 mM DTT; 10% glycerol; 1% Triton X-100). Twenty µl of this cell lysate were mixed with 100 µl of luciferase assay buffer (20 mM Tricin; 1.07 mM (MgCO₃)₄ Mg(OH)₂·5H₂O; 2.67 mM MgSO₄; 0.1 mM EDTA; 33.3 mM DTT; 270 µM coenzyme A; 470 µM luciferin, 530 µM ATP), and the light generated by the luciferase was measured.

25

In order to measure the β-galactosidase activity, equal quantities of cell lysate and β-galactosidase assay buffer (100 mM sodium phosphate buffer, pH 7.3; 1 mM MgCl₂; 50 mM β-mercaptoethanol; 0.665 mg of ONPG/ml) were incubated at 37°C for at least 30 minutes or until a slight yellow coloration appeared. The reaction was stopped by adding 100 µl of 1 M Na₂CO₃, and the absorption was determined at 420 nm.

30

In order to analyse the hTC promoter, four hTC promoter sequence segments of differing length were cloned 5' in front of the luciferase reporter gene (cf. Example 9).

001260-07428550

- The relative luciferase activities of two independent transfections in HEK 293 cells, using the constructs NPK8, NPK15, NPK22 and NPK27, are plotted in Fig. 11. Each experiment was carried out in duplicate. The standard deviation has also been given.
- 5 The construct NPK 27 exhibits a luciferase activity which is 40 times higher than the basal activity of the promoterless luciferase control construct (pGL2-basic) and from 2 to 3 times higher than that of the SV40 promoter control construct (pGL2PRO). Interestingly, a luciferase activity which was from 2 to 3 times lower than that obtained with the NPK 27 construct was observed in cells which were transfected
- 10 with longer hTC promoter constructs (NPK8, NPK15, NPK22). Similar results were also observed in CHO cells (data not shown).

References

- Allsopp, R. C., Vazire, H., Patterson, C., Goldstein, S., Younglai, E.V., Futcher, A.B., Greider, C.W. und Harley, C.B. (1992). Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. **89**, 10114-10118.
- Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1987). Current protocols in molecular biology. Greene Publishing Associates and Whiley-Intersciences, New York.
- Blasco, M. A., Rizen, M., Greider, C. W. und Hanahan, D. (1996). Differential regulation of telomerase activity and telomerase RNA during multistage tumorigenesis. Nature Genetics **12**, 200-204.
- Broccoli, D., Young, J. W. und deLange, T. (1995). Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl. Acad. Sci. **92**, 9082-9086.
- Counter, C. M., Avilion, A. A., LeFeuvre, C. E., Stewart, N. G. Greider, C.W. Harley, C. B. und Bacchetti S. (1992). Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. **11**, 1921-1929.
- Feng, J., Funk, W. D., Wang, S.-S., Weinrich, S. L., Avilion, A.A., Chiu, C.-P., Adams, R.R., Chang, E., Allsopp, R.C., Yu, J., Le, S., West, M.D., Harley, C.B., Andrews, W.H., Greider, C.W. und Villeponteau, B. (1995). The RNA component of human telomerase. Science **269**, 1236-1241.
- Geng, Y., and Johnson, L.F. (1993). Lack of an initiator element is responsible for multiple transcriptional initiation sites of the TATA less mouse thymidine synthetase promoter. Mol. Cell. Biol. **14**:4894.
- Goldstein, S. (1990). Replicative senescence: The human fibroblast comes of age. Science **249**, 1129-1133.
- Harley, C.B., Futcher, A.B., Greider, C.W., 1990. Telomeres shorten during ageing of human fibroblasts. Nature **345**, 458-460.

NOV 30 1994 9:28:56 AM

- Hastie, N. D., Dempster, M., Dunlop, M. G., Thompson, A. M., Green, D.K. und Allshire, R.C. (1990). Telomere reduction in human colorectal carcinoma and with ageing. *Nature* **346**, 866-868.
- 5 Hiyama, K., Hirai, Y., Kyoizumi, S., Akiyama, M., Hiyama, E., Piatyszek, M.A., Shay, J.W., Ishioka, S. und Yamakido, M. (1995). Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. *J. Immunol.* **155**, 3711-3715.
- 10 Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C. B., West, M.D., Ho, P.L.C., Coviello, G.M., Wright, W.E., Weinrich, S.L. und Shay, J.W. (1994). Specific association of human telomerase activity with immortal cells and cancer. *Science* **266**, 2011-2015.
- 15 Latchman, D.S. (1991). Eukaryotic transcription factors. Academic Press Limited, London.
- 15 Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V. und Cech T.R. (1997). Reverse transcriptase motifs in the catalytic subunit of telomerase. *Science* **276**: 561-567.
- 20 Lundblad, V. und Szostak, J. W. (1989). A mutant with a defect in telomere elongation leads to senescence in yeast. *Cell* **57**, 633-643.
- 20 McClintock, B. (1941). The stability of broken ends of chromosomes in *Zea mays*. *Genetics* **26**, 234-282.
- 25 Meyne, J., Ratliff, R. L. und Moyzis, R. K. (1989). Conservation of the human telomere sequence $(TTAGGG)_n$ among vertebrates. *Proc. Natl. Acad. Sci.* **86**, 7049-7053.
- Olovnikov, A. M. (1973). A theory of marginotomy. *J. Theor. Biol.* **41**, 181-190.
- 30 Sandell, L. L. und Zakian, V. A. (1993). Loss of a yeast telomere: Arrest, recovery and chromosome loss. *Cell* **75**, 729-739.
- Shapiro, M.B., Senapathy, P., 1987. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. *Nucl. Acids Res.* **15**, 7155-7174.
- 35 Smale, S.T. and Baltimore, D. (1989). The "initiator" as a transcription control element. *Cell* **57**:103-113.

09552004 : 0952100

- Smale, S.T. (1997). Transcription initiation from TATA-less promoters within eukaryotic protein-coding genes. *Biochimica et Biophysica Acta* 1351, 73-88.
- 5 Shay, J. W. (1997). Telomerase and Cancer. Ciba Foundation Meeting: Telomeres and Telomerase. London.
- Vaziri, H., Dragowska, W., Allsopp, R. C., Thomas, T. E., Harley, C.B. und Landsdorf, P.M. (1994). Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. *Proc. Natl. Acad. Sci.* 91, 9857-9860.
- 10 Wick, M., Härrönen, R., Mumberg, D., Bürger, C., Olsen, B.R., Budarf, M.L., Apte, S. S. and Müller, R. (1995). Structure of the human TIMP-3 gene and its cell-cycle-regulated promoter. *Biochemical Journal* 311, 549-554.
- 15 Zakian, V. A. (1995). Telomeres: Beginning to understand the end. *Science* 270, 1601-1607.

092100 223456 092100

SEQUENCE LISTING

Homo sapiens

	tccacaacgc	actaaggcata	cttcccccua	aaagcccgac	attggcaccc	ctggacattt	7260
	gccccacacgc	cctgggaatt	cacgtgacta	cgcacatcat	gtacacactc	ccgtccacga	7320
5	ccgaccggcc	cgtttttattt	ttaatgccta	caaggacggg	aaatcccttc	taaaatgtcc	7380
	ttaaacaaaaac	tgtttaaaaca	aacgggtcata	tccgcacggt	ggacagtcc	tcaagtga	7440
	gaggaaatcg	cgtttttataat	acgtcgacgg	catttcacaa	gaattacgtt	gagtcaaaaat	7500
	tgccaccttc	atggatatacg	tgcacaaatc	gtccaaaaa	aagaatttc	ccccatgtcc	7560
	aggggaggtgg	tlagggggg	taaggacgg	ggggccggca	gctggggggc	actgcacgca	7620
10	ccttttactt	aaaggccattt	cctgttttgc	atgttatgg	ctcagttatg	ggagactaa	7680
	catagggggg	tggggalggg	ggaaacccgg	cgctgtcg	tttttgccat	ggccgagatgt	7740
	cctggccagg	ataatgtct	agagatgc	acgttcgtat	tcccccääac	cgttgacac	7800
	aaccggcccg	gccccägggg	tttgcacgg	tgatgtcc	tgaggaccc	gagggtctgg	7860
	atcccttcgg	actaccatcg	ggccggggaa	gtatccatgg	ggttctgg	agaggccgg	7920
	aggagggtgg	ggggggggcc	gctcggac	gatggagga	gtcagcttgt	gggtgaaaaa	7980
15	ggggaggagg	cctcgaggcc	aggctcgaa	ggccctccaa	aactgtggaa	aaggccgggg	8040
	ggggacccctt	acggccatcc	cacgttgcac	ggccatccaa	gtttttcc	acccatggcc	8100
	atccgttaccc	atccgttaccc	ccatggccat	ggccatccaa	gtttttcc	cttcgtttcc	8160
	gttcgtgg	atttcggaaa	aaacaaacaa	acccatgtt	tgtgaatcta	ggatattttt	8220
	aaacaaacaaa	tttacaaaaaa	cattccaa	cgccgtggaa	gtcccttcgg	caaggccgg	8280
20	ggcaggccag	atgtttttt	tttgcattat	ttatttttat	tacttacttt	ctgagacaga	8340
	gttatagttc	tgttcggcc	gttgcacgg	acggccatgt	tctttggctca	ctgcacccct	8400
	cgccgttctt	gttcaacaa	tttcgtgtcc	tcacgcctcc	aactgtcg	gatttcgggg	8460
	gtgcaccatgt	tcttcaaaatc	tcgtacccat	gtgtacccgg	gtatgggttt	caccatgttg	8520
	gtcaacgtca	tcgtttttttt	tcgtacccat	gtgtacccgg	cacccatgc	tcccaaaatg	8580
25	ctggattttt	atggatgtgg	caactgcac	ggccctttttt	accattttta	aacttccctt	8640
	ggctcaatgc	acacccactt	tcgttggat	tcgttttttt	tttttttttt	ttacttcgg	8700
	gttacccctt	ttttatattt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	8760
	cattatccat	tttttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	8820
	gagggtcgag	tttttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	8880
30	atccaggccg	aaatgttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	8940
	gttggataaa	aaatgttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9000
	ccggggccgg	agggtttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9060
	cactgtgttt	atgttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9120
35	gttttttttt	tttttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9180
	ggccctggcc	ccggggccgg	agggtttttt	tcgtttttt	tttttttttt	tttttttttt	9240
	caggccaccc	ccatccatgc	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9300
	ggggtttccac	atgttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9360
	tctttttttt	aaatgttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9420
	tttttttttt	tttttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9480
40	tttttttttt	tttttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9540
	gtatgttttt	atcatatccat	tttttttttt	tcgtttttt	tttttttttt	tttttttttt	9600
	gtttctgtttt	tatcccaat	tttttttttt	tcgtttttt	tttttttttt	tttttttttt	9660
	gggttttaattt	atcccaatccat	tttttttttt	tcgtttttt	tttttttttt	tttttttttt	9720
	tgtttttttt	atgttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9780
45	tttttttttt	tttttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9840
	cccttttttt	aaatgttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9900
	atgttttttt	atgttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	9960
	ctgttttttt	tttttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	10020
50	tttttttttt	tttttttttt	tcgtttttt	tttcgttgc	tttttttttt	tttttttttt	10080
	atccctggcc	ggccggccgg	ggccggccgg	tttttttttt	tcgtttttt	aaactttttt	10140
	aaaaccggat	tcgtttttt	gggggggggg	tttttttttt	tcgtttttt	tttttttttt	10200
	gggttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10260
55	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10320
	gtccatccat	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10380
	ccatccatccat	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10440
	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10500
	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10560
60	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10620
	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10680
	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10740
	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10800
65	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10860
	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10920
	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	10980
	tttttttttt	tttttttttt	tcgtttttt	tttttttttt	tcgtttttt	tttttttttt	11040
70	<210> 4						
	<211> 104						
	<212> DNA						
	<213> Homo sapiens						
75	<400> 4						
	gtggggcccttc	ccggggcccttc	cgtccggcttc	gggttttgggg	ccggggccgggg	gaaccaggcga	60
	catggggaga	gcacggcggaga	cgacttcagg	cggtttccccc	gcag	104	

<210> 5
 <211> 8616
 <212> DNA
 <213> Homo sapiens
 5 <400> 5
 gtgaggagggt ggtggccgtc gagggcccaag gccccagagc tgaatgcagt aggggctcag 60
 aaaagggggc aggccagagcc ctggtcctcc tgcacgtggg cacacgtggc 120
 tttcgcgtca ggacgtcgag tggacacggt lctgcctccc ctccgttcca 180
 gttgcataaa acttacgagg ttcacccctt cttgttgcgtt gacacgggtt ttccaggccg 240
 cgaggcccaaga ggactgaaaca gaggaggctg ggccgcggag tggagccggg ttgcggccaa 300
 tggggaaaga tgcttcgaag caccacgtt ctggccggggg tgcctcgagg ttactctataa 360
 tcctcttccg aatttcagaat gggggatgtt ggggtggggg cgagaacccc ctcttcctcg 420
 ggggtgggggg taagggtttt ggggtgcac ttgggtcaccc aatatgcagggtt tttgtgttta 480
 agatattaat ttgtgttgac gggcgggttgc gttgtctcac gccggtaatcc ccagacatctt 540
 gggggatgtt ggcgggtttttt tcaaccttgcg tcaaggatgtt gagacccggc tggaccacat 600
 gggaaaaccctt ctgttgcactt aaataatcaa aatattatgtt ggcatgttggg ttgtgtccgt 660
 taatccccccg tadtggggat cttatgtactt ccattgtactt ccgtccgtgg cgacacaaatgtt 720
 tgcggatggat tttttttttttt tttttttttt tttttttttt ttatgtgtcc 780
 ctgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 840
 atgtttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 900
 agggacggccg agatgttgcctt acgttgttgcgaa gaaaggccatgg tttttttttt tttttttttt 960
 atgttgttgc tggggccgttc ctgttccccc ccctttttttt tttttttttt tttttttttt tttttttttt 1020
 cccctccgtcc accggccctttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1080
 10 25 gaatgttccgg ttttcacccctt tttttttttt 1140
 cagacaaaggaa ggggttacccctt tttttttttt 1200
 aaaatgttccaa taatcatgataa tttttttttt 1260
 tgcgtacttcg ggggtttttttt tttttttttt 1320
 20 30 gttccatccccc tttttttttt 1380
 agtcatggatttt aacccatgtttt tttttttttt 1440
 gagatgttgc tttttttttt 1500
 aggttcaccaat tttttttttt 1560
 caactgttcagg gttgtgttgcg tttttttttt 1620
 gggccggccccc ccgggttgcgt tttttttttt 1680
 25 35 cccctgttcacg tttttttttt 1740
 gttgtgttgcg tttttttttt 1800
 ggggttccccc tttttttttt 1860
 30 40 tttttttttt 1920
 gttttttttt tttttttttt 1980
 gttttttttt tttttttttt 2040
 gttttttttt tttttttttt 2100
 35 45 cttttttttt tttttttttt 2160
 gttttttttt tttttttttt 2220
 gttttttttt tttttttttt 2280
 gttttttttt tttttttttt 2340
 40 45 gttttttttt tttttttttt 2400
 gttttttttt tttttttttt 2460
 tttttttttt 2520
 45 50 tttttttttt 2580
 gttttttttt tttttttttt 2640
 gttttttttt tttttttttt 2700
 tttttttttt 2760
 tttttttttt 2820
 50 55 tttttttttt 2880
 gttttttttt tttttttttt 2940
 tttttttttt 3000
 tttttttttt 3060
 tttttttttt 3120
 55 60 tttttttttt 3180
 gttttttttt tttttttttt 3240
 gttttttttt tttttttttt 3300
 gttttttttt tttttttttt 3360
 60 65 tttttttttt 3420
 gttttttttt tttttttttt 3480
 gttttttttt tttttttttt 3540
 tttttttttt 3600
 tttttttttt 3660
 tttttttttt 3720
 65 70 tttttttttt 3780
 tttttttttt 3840
 gttttttttt tttttttttt 3900
 tttttttttt 3960
 tttttttttt 4020
 tttttttttt 4080
 tttttttttt 4140
 70 75 tttttttttt 4200
 tttttttttt 4260
 tttttttttt 4320

<210> 6

<211> 2089

<212> DNA

<213> Homo sapiens

	agccggcccca	gtgcatggta	agatggggaga	gcaggggattg	tttgcgttca	ggcttcatct	2340
	gttattttc	tatgggttc	ccccgtgtc	ttgtacatgg	ttgtttttgt	ttttttttgt	2460
	tctgtgtctg	tgttgtgtc	gggtttgggt	ttttttttgt	ttttttttgt	ttttttttgt	2460
	tcataactgt	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	2485
5	<210> 13						
	<211> 1984						
	<212> DNA						
10	<213> Homo sapiens						
	<400> 13						
	gtggggccct	ctttccccc	ggggggctt	gggtgggggtt	gatttgcttt	tgatgcattc	60
	agtgttataa	tttcctgg	tcttggatgc	atgtatgc	ttttttttgt	aaaaacccaa	120
	ggtttgcacg	ccccccccc	ttttttttgt	atggaaaccc	acgggggggg	ttttttttgt	180
15	ggccgttcacg	caggctgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	240
	gaggggcgcd	ccccccccc	ttttttttgt	atggatgt	ttttttttgt	ttttttttgt	300
	ctgtcaatgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	360
20	ccccccatct	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	420
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	480
	atgttttttt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	540
25	tatctttttt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	600
	gttttttttt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	660
	tatccccc	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	720
30	tgtcaatgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	780
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	840
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	900
35	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	960
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1020
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1080
40	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1140
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1200
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1260
45	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1320
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1380
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1440
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1500
50	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1560
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1620
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1680
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1740
55	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1800
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1860
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1920
	ttttttttgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1980
60	tttag						
	<210> 14						
	<211> 1871						
	<212> DNA						
65	<213> Homo sapiens						
	<400> 14						
	gtggggcccg	tgcgtgtgt	ctgtggggac	ctccacacgg	tgtgggtttt	ggatgggtac	60
	ccccccgttc	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	120
70	gtgtggatc	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	180
	caccctgggt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	240
	acacccgtgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	300
75	ggccgtccgt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	360
	ggggccaccc	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	420
	gtccggccac	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	480
	gtccggccac	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	540
	aaatgttggta	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	600
	cagggttgtat	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	660
	ggggatgttc	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	720
80	atgttgtttt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	780
	ttggccggac	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	840
	cccccgttcc	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	900
	aatgtccaccc	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	960
85	gtcttgcgtt	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1020
	gggggggggg	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1080
	gggggggggg	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1140
	gggggggggg	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1200
	gggggggggg	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1260
	gggggggggg	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1320
	gggggggggg	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1380
	gggggggggg	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1440
	gggggggggg	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1500
	gggggggggg	ccccccccc	ttttttttgt	ttttttttgt	ttttttttgt	ttttttttgt	1560

	ggttttagt	gcagtggcac	agtcatggct	cgctgtatgcc	gcaaaccccc	aggctcaagt	1800
	gatccctcg	cctcacgttc	ccagagtgct	gggattacag	gtgtgagcca	ctgccttcgc	1860
5	ctggcacctt	taaaacccac	tatgtaaatgt	caggttccatgt	ggcttccaca	cctgtcatcc	1920
	cagtatgtt	ggaagccgag	gcagaaggat	tgtctggagc	caggatgtt	agaccagcat	1980
	gggttaacat	gggagacccc	atcttcacaa	aaaatgcaaa	aagtttatccc	ggcgtgggg	2040
	ccagcatctg	tagtccccage	tgctcgggag	gctgatgtgg	aggatcgctt	gagccgggaa	2100
	ggtcatggct	gcagtgtact	gtgattgtac	catcgacatc	cagctgggc	aacagatgt	2160
10	gaccctgtct	caaaaaaaaaa	aaaaaaaacaa	gaaggaaagaa	gagaagagaa	gaagaaggaa	2220
	gaaggaaaga	gaaggaaaga	gaaggaaagaa	gaaggaaagaa	gaaggaggcc	tgtctagggt	2280
	taggtagact	gtcaaatc	agagcaaat	aaaataaca	agttttaaa	ggggaaagaa	2340
	aaccttccat	ctttggactt	ccttaggcct	gaacttcatc	tcaagcagct	tccttcacac	2400
	gacaaagctg	tatggagcgt	gtgatgtac	agcagaaagg	gaggaaagac	aggcaagggt	2460
15	ggaggctgt	ggtgacaccc	gcaggacacc	ctggaaaggaa	gtgggttgtt	tctctgttcc	2520
	gccccacgt	cctggccgtc	ctgcacccgtc	tgttttttttgc	gtgtgtgtgt	ccatggccc	2580
	acctggggaa	gtatgtgtgt	aggggggggg	ggaaaaatctt	gtatgttca	aaagccccaa	2640
	gcctttttgt	cacgtttttt	accccccctt	cccccaatgt	gccccacgtcc	tttttttttt	2700
	accttttgtt	gttttttttt	ccaccccccgt	caaggccatgt	gtgtcgagg	gaatccacggc	2760
	tggcaactcg	ccgatcttaa	gttcatcttc	gatltatctgg	ggggctctgt	atggccacaa	2820
20	gggttccctag	aaatgtggat	ggggaggccgg	ggagatgtca	agagggggacg	tggaaaggaa	2880
	cactggccac	tgttgtgttt	gatgtgtgtt	gggggggtcc	caggccaaagg	atggggggcc	2940
	ccgtttccatg	ctggaaaaagc	aagcaatct	cccccggtct	gaggggcacac	ggcccttgccc	3000
	acgcctcgat	ttcaaggccag	ttgggacactgt	ttcagttttc	cgggctccag	agctgttaaga	3060
	tgtatgtgtt	gtgttcagcc	actaaatgtc	atgttttgtt	cacacgacga	aatggaaatg	3120
25	cagtacagg	aaatgaatac	aggggacagg	cttcagatgt	tcctcagccc	acccttgggg	3179

Patent Claims

1. Regulatory DNA sequences for the gene for the human catalytic telomerase subunit.

5

2. DNA sequences according to Claim 1, characterized in that the sequences are intron sequences in accordance with SEQ ID NO 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and/or 20 or fragments of these sequences which have a regulatory effect.

10

3. DNA sequences according to Claim 1, characterized in that the sequences are the 5'-flanking regulatory DNA sequence for the gene for the human catalytic telomerase subunit as depicted in Fig. 10 (SEQ ID NO 3), or fragments of this DNA sequence which have a regulatory effect.

15

4. Recombinant construct which contains a DNA sequence according to one of Claims 1 to 3.

20

5. Recombinant construct according to Claim 4, characterized in that it additionally contains one or more DNA sequences which encode polypeptides or proteins.

6. Vector which contains a recombinant construct according to Claim 4 or 5.

25

7. Use of recombinant constructs or vectors according to one of Claims 4 to 6 for preparing medicaments.

8. Recombinant host cells which harbour recombinant constructs or vectors according to one of Claims 4 to 6.

30

DRAFT 0222046, 0222045

9. Process for identifying substances which affect the promoter activity, silencer activity or enhancer activity of the human catalytic telomerase subunit, comprising the following steps:
- 5 A. adding a candidate substance to a host cell which harbours DNA sequences according to one of Claims 1 to 3, which sequences are functionally linked to a reporter gene, and
- 10 B. measuring the effect of the substance on expression of the reporter gene.
10. Process for identifying factors which bind specifically to the DNA according to one of Claims 1 to 3, or to fragments thereof, characterized in that an expression cDNA library is screened using a DNA sequence according to one of Claims 1 to 3, or subfragments of widely differing length, as the probe.
- 15 11. Transgenic animals which harbour recombinant constructs or vectors according to Claims 4 to 6.
- 20 12. Process for detecting telomerase-associated conditions in a patient, comprising the following steps:
- 25 A. incubating a recombinant construct or vector according to Claims 4 to 6, which additionally contains a reporter gene, with body fluids or cell samples,
- B. detecting the activity of the reporter gene in order to obtain a diagnostic value, and

D395456.1002100

- C. comparing the diagnostic value with standard values for the reporter gene construct in standardized normal cells or body fluids of the same type as the test sample.

09588500
09588500

Regulatory DNA sequences of the gene for the human catalytic telomerase subunit, and their diagnostic and therapeutic use

A b s t r a c t

This invention relates to regulatory DNA sequences, comprising promoter sequences and intron sequences, for the gene for the human catalytic telomerase subunit. In addition, this invention relates to the use of these DNA sequences for pharmaceutical, diagnostic and therapeutic purposes, especially in the treatment of cancer and ageing.

09/582246

- 1/15 -

Fig. 1

A

1 2 3 4 5 6 7 8 9 10

B

1 2 3 4 5 6 7 8 9 10

001266-0028500

09/582246

- 2/15 -

Fig. 2

09/582246 09/26/00

09/582246

- 3/15 -

Fig. 3

A

B

2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4

GACCTCTGAA	CCGTGGAAAC	GAACATGACC	CTTGCCTGCC	TGCTTCCCTG	GGTGGTCAA	GGTAATGAA	70
GTGCTGTCCC	GGAAATGGCC	ATGTAATTA	CACGACTCTG	CTGATGGGA	CGGTTCTTC	CAICATTATT	140
CACTCTCACC	CCCCAAGACT	GATGATRCC	ACGAACTCT	TGGGGTGTGA	CAAGCCATGA	CAAACATCAG	210
TACAAACACC	ACTCTTTAC	TAGGCCACA	GAGCACGGC	CACACCCCTG	ATATAATTAG	AGTCAGGAG	280
AGATGAGGCT	GCTTCAAGCC	ACCGGGCTGG	GOTGACAACA	CGGGCTGNAAC	AGTCIGTICC	TCTAGACTAG	350
TAGACCCCTG	CAGGCCACTCC	CCCCAATTCCT	AGGGCCCTGT	TCTGCTTC	CGAGGGCCG	ATCTGCCCTG	420
GRAGACTCAGC	CTGGGGTGGCC	ACACTGAGCC	CAGGGCTGTC	TCCACACCC	CCGGCTCCAG	GCTCAGCCTT	490
CTCCACGAGC	TTCCTAARACC	CTGGGTGGGC	COTGTTCCAG	CCTACTCTG	TACACTGTGTC	CACTGTGCT	560
TGTCAGGGC	ACCTAGTCG	CACGGCTCTC	CTCTACATGG	GGTGTGTC	TCTTCCCTCA	ACACTGACAT	630
GCCTGTAAGG	GAGGAGATTC	TGCGCTCTCC	AGACTGGCC	CTCTGAGGCC	GAACCTGGCT	CGTGGCCCC	700
GATGCAAGGT	CTGGCGCTCC	GGCTGACGC	TGACCTCAT	TTCAGGGC	TCCCCCTCTC	CTGTGATCTG	770
CCGGGGCTCC	CCGGGGTGTG	CTTCGTTTC	TGTCCTCTT	TCTACGTC	GCTGGCTGTG	TCTCTGCGG	840
CTAGGGTCTC	GGGGTTTTTA	TAGGCACTAGG	ACGGGGGGG	GTTGGGCCA	GGGCGCTTC	GGAAATGCAA	910
CATTGGGGT	TGAAAGTAGG	ATGCTGCTG	CTACCTAGG	TCAACGGCA	CAGGGCTTGGG	GATGGAGGCC	980
CCGGCAGGGA	CCCCCCTTC	TCTGGCCAGC	ATCTTCCTG	CCCCCTCTCC	CTGAAACACA	GATGGCAGT	1050
TTCCACAAACG	ACTAAGCTC	CTCTCCCTAA	AAAGGACAGC	ATTTGGCACC	CTGGACATT	GCCCCAACAGC	1120
CTGGGGAT	CAGCTGACTA	GGCACATCAT	TAACRACATC	CGCTTCAAGG	CGGACCCCCG	CTGTTTATT	1190
TTAACTAGCTA	CAAGCAGGG	AAATCCCTGC	TAAGATGTC	TTAAACAAC	TGGTAAACAC	AACGGGTCCA	1260
TCCGCACTGG	GGGACAGTTC	TCACAGTGA	GAGGACATG	CGCTTATAAA	AGCCTGAGG	CATCTCAGG	1330
GAATTAAGCT	GATGCAACAC	TGACCTCTCA	ATGGATGAC	TACGAAACAT	GCTCAAAAG	AAAGAATTTC	1400
ACCCCACTGG	AGGGGAGTGG	TTAGGGGGTG	TAAGGGCGT	GGGGGGGCCA	GCTGGGGGGT	ACTGCAGCA	1470
CTTCTTACTA	AAAGGGCTTT	CTCTGGTCTG	ATGTTATG	CTAGTATG	GGAGACTAAC	CATAGGGGAG	1540
TGGGGATGCC	GGACCCGGG	GGCTTGCGCA	TCTTGTCCAT	GGCCGGATGT	CTGGGGCAGG	ATAATGCTT	1610
AGAGATGCCC	ACGCTCTGAT	TCTCCCCAAC	TCTGGGCC	AAACCCCCG	GGCCCGAGGG	CTTGGCAGG	1680
GTGATCTCCC	TCAGGGACCTC	GAGGCTCTGG	ATCTCTCGG	ACTACTCTGA	GGCCCGAAAA	GTANTCAGG	1750
GGTCTGGGG	AGAGGCCGGC	AGGGAGTCA	GAGGGGGCA	GGCTCAGAC	GTAGGAGCA	CTAGCTG	1820
GGCTGAAAAG	GGAGGGAGGG	CTTCGGGCC	AGGCTCTGCA	GGCCCTCCAG	AGCTGGAAA	AGCCGGGAA	1890
GGGACCTCC	ACGGAGCTCC	CAGCAGGAG	CGACGGAG	CCCTTGTGAC	ACAGGGGCC	ATCTGAGGCC	1960
TCCGGCTCTC	GTGGCCATAGG	AGGGCACTCG	GGCTGCCCT	CTAGCATGA	GTTGGTGGG	ATTTCAGAGA	2030
GCACAGGAA	ACCATCTGAC	TGTTGAACTCA	GGATTATTTC	AAAACAAAG	TTTACAGAAA	CATCAGGAA	2100
CAGGGCTTAC	GGCTCTCCGG	GGACGGCAG	TCTGGGCC	GGTGGGGAG	AGTGGATTTC	TTTACGTT	2170
TACTACTCTT	CTGAGACAGA	GTTATGCTCT	TGTTGCCAG	GCTGGAGTGC	GGCCCGATA	TCTGGCTCA	2240
CTGCAACCTG	CTGCTCTGG	GTTCAAGGA	TCTCTGTC	TCAGCTTCTC	AAAGTAGCTG	GATTCTAGG	2310
GTGCAACCC	ACACCCGGCC	AAATTGTTAT	TTTAGTAGA	GTTAGGCTTT	CACCATGTTG	GTCACTG	2380
CTCAAAATCTC	CTGACCTGC	GTGATGCCG	CACCTGAGC	TCCCAAACTG	CTGGGGATTAC	AGGCATGAGC	2450
CACTGCACTC	GGCCTATTAA	ACCATTTAA	AACTTCCTG	GGTCACTGG	ACACCACTG	GTAGAGGAT	2520
CATGGAGTC	ATTCCTCCCC	TCTACGAGG	GTTCACCTC	TTTGTATTT	TCTGTAACT	TCTCTGAGACT	2590
GGGGCTACCTA	CTGCTCTGG	TATATACACA	TCTTCGTC	CCACCTGTTA	CCCATCTGG	CCACATCGAC	2660
GGGAGCTG	GGGGCTGGAG	GCTTCAGGTC	CCAGTGGGGT	TGCACTATGC	CAGTAGAAC	CTGATGAGA	2730
ATCAGGGCGC	AGATGGGAGC	ACTGCTCTGA	ATCTCAATG	CTCTAGTGT	GCTGAAACAT	GTAGAAATT	2800
AGTCATCATC	CTCTCTACTC	ATGAGGATG	AGGCCCTTC	CTATCCCCC	CCAGGGCCAG	AGGAGTCTCC	2870
CTCACCTCTG	TTGGAGGAG	AAATGACTT	TGTTATTT	CACTGCTGT	ACTGAATCTCA	CTGTTTCAT	2940
TGTTGGTTGG	TTGGTTTTGT	TTGGAGGCG	GGGTTCTCA	TGTTGCTCA	GCTGGAGGG	AGTCATG	3010
CGCGATCTCTG	CTGGTACTCGA	GGCTTGCTG	CCACGATCTCA	AGTGGATCTC	TTCTTCTGG	CTCCCCATTG	3080
CTGGGGATTA	GGCTCTGGCC	GGCTTGCTG	GGCTCTGGG	GGCTCTGG	TTCTTCTCT	CTTTTTAAT	3150
GGGGTCTACC	ATGTTGCCA	GGCTGCTGCA	GAACATGTC	CCACGATGTA	TCCACCTGCC	TCTGCTCTCC	3220
AAAGTGTGTT	GATACAGATC	GTGAGCCACC	ATGCCAGCT	CAGNATTTC	TCTGTTTGA	AAACATCTGG	3290
TCTGAGGTAG	GAAGCTCACC	CCACTAAGT	GTGTTGGT	TTAAAGCCAA	GTAGAGAAT	TTTTTATGT	3360
TGTTAGAAC	CTCTGATGG	TTTACAGT	GTAGTAAG	ACATCATCAG	CTTTCAAG	ACACACTAAC	3430
TGCCACCATC	ATACTGGGGT	GGCTTCTGG	ATTCACGAA	CTTCATGGA	TGCGGGAGG	CTTCCCCTG	3500
CCATGACCAT	GGGGTTAAAT	ACTCCAGCT	AACTCTCTG	TTCCATCTCT	TCTCTTCTCT	CTTTTTAAT	3570
TGTTTTTCT	ATTTGGCTT	CTCTGGAG	AAAGCTTCA	AGCTCACAT	TAACCTTTG	TGAAACAAT	3640
TTTCAACACC	GGCCCTTTCG	CTCTGGCTA	GAGACAACTG	CCCTTTAAAC	AGGCTTACGG	3710	
ATCACAATGC	GGATTCTCTG	GATACAGATC	GTGAGCCACC	ATGTTATCTA	AGACAGGACT	AACTCCAGC	3780
GAGCTGAC	GGCCAGGGAG	GGTGGAGGAC	CTGTCIAAAT	GCTAGCTCA	TAATAAANGC	ATTTTCTCC	3850
GCCAGCTTCT	GAATGAGTA	AAAGTATCAT	TTAAGGTTG	TTTGTAGTC	ATTCAGTGT	TTGCCGACCT	3920
CACTGACAGC	ATTCCTGGCA	GGCTCTGGG	GAGCCAGAA	TTTCCTCCGG	CTCTAGATCC	AAACITGAGC	3990
ACACGGGAGT	CTGGGATCTC	GGGAGACTCT	CAGCTCTCTG	GGGGTGTG	CGGGCCGCCA	GGTCTGGAGG	4060
GGAGGCTGG	CCCTGGGGT	TCTACTCTG	GGCTGGAGA	GGGGCTCTC	AGCTCTGAC	TCAGQAGGTT	4130
CACTCTGAG	GGGGCTGGCC	GGGGCTGGCC	CTCCACCTTC	GGGGCTGGCC	ATGTTGAGCAG	ATGTTGGCT	4200
GGAGGCTGG	GGCTGGACCC	GGAGGCTGCC	CTCCACCTTC	GGGGCTGGCC	ATGTTGAGCAG	ATGTTGGCT	4270
CACTCTGAG	GGGGCTGGCC	GGGGCTGCC	CTCAAGGGC	GGGGCTGGCC	GGGGCTGGCC	GGGGCTGGCC	4340
GGAGGCTGG	GGGGCTGGCC	GGGGCTGCC	CTGGCTCTG	GGGGCTGGCC	GGGGCTGGCC	GGGGCTGGCC	4410
TGTCAGGG	GGGGCTGGCC	GGGGCTGCC	GGGGCTGCC	GGGGCTGCC	GGGGCTGGCC	GGGGCTGGCC	4480
GGAGGCTGG	GGGGCTGGCC	GGGGCTGCC	GGGGCTGCC	GGGGCTGCC	GGGGCTGGCC	GGGGCTGGCC	4550
TGTCAGGG	GGGGCTGGCC	GGGGCTGCC	GGGGCTGCC	GGGGCTGCC	GGGGCTGGCC	GGGGCTGGCC	4620
TGTCAGGG	GGGGCTGGCC	GGGGCTGCC	GGGGCTGCC	GGGGCTGCC	GGGGCTGGCC	GGGGCTGGCC	4690

- 5/15 -

Fig. 4 (continued)

CACAGCCCTAG	GCCGATTCTGA	CCTCTCTCCG	CTGGGGCCCT	CGCTGGCGTC	CCTGCACCCCT	GGGAGGCCGA	4760
GGGGCGCGCG	GGGGGGGAAG	CCGGGCCAG	ACCCCCGGGT	CCGCCCCGAG	CAGCTGGCCT	GTCGGGGCCA	4830
GGCCGGGCTC	CCAGTGGATT	CGGGGGACA	GAAGCCCAGG	ACCAGCGCTCC	CCACAGTGGCG	GGGGACTGG	4900
GGACCCGGGC	ACCCGTCCTG	CCCTTCACCC	TTCAGGTCC	GCCCTCTCCG	CCGGGACCCC	GCCCCGTCCC	4970
GACCCCTCTCC	GGGTCCCCCG	CCCAAGCCCC	TCCGGGCCCT	CCCAAGCCCC	CCCCTTCTT	TCCGGGGCCC	5040
CGCCCTCTCC	TCCGGGCCCG	AGTTCAAGGC	AGCGCTGCCT	CCTGCTGC	ACGTGGQAAG	CCCTGGCCCC	5110
GGCACCCCCC	<u>GCGATG</u>						5126

09/582246

- 6/15 -

Fig. 5

007260-94228560

- 7/15 -

Fig. 6

TTTCAGGGCA	GCGCTGCGTC	CTGCTGCGCA	CGTGGGAAGC	CTTGCCCCG	GCCACCCCG	CGATGCCGG	70
CGCTCCCGC	TGCGCCAGCC	TGCGCTTCCC	GTGCGGCC	CACTACCGC	AGGTGTGCC	CTGGCCACG	140
TTGTCGGCG	CGCTGGGGGC	CAAGGGTGTG	CGGTGTTGCG	AGGGCGGGAA	CGCCGGGG	TTCGGCCGCG	210
TGGTGGGCCA	GTGCGCTTGTG	TGGTGGCTCC	GGGAGCGAC	CGGGCCCCCG	GCCGGCCC	CCTTCGGCCCA	280
GTTGCTTCG	CGTGAAGGG	TGGTGGCCGC	AGTGTCTGAG	AGGTGTGCG	AGGGCGGC	GAAAGCTG	350
CTGGCTTCTG	GCTTCGCGCT	GCTGGACCGG	GGGGCGGGG	GCCCCCGCGA	GGCTCTTAC	ACACCGCTGC	420
CGTGGCCGAC	CCCCAACACG	GTGACCGACG	CACTGGGGG	GACGGGGG	TGGGGCTGC	TGCTGGCCG	490
CGTGGCTACTC	GACTGCTGG	TTACCTGGCT	GGCACGGCTG	GGGCTCTTG	TGCTGTGTC	TCCAGCTGC	560
GCCTTACCGG	TGTCGGGGCC	GGCGCTGTAC	GTGCGGCC	CTGGCACTA	GGGGCCCC	CGCCGACACG	630
TAATGGGACC	CGAAAGGGCG	CTGGATGCG	AAACGGGCTC	GAACCTAG	TGTAGGGAG	GGGGGGCTC	700
CTGGGGCTG	CAAGCCCCGG	GTGCGGAGAG	GGCGGGGG	AGTGTGCGC	GAAGATG	GTGGCCCAA	770
AGGGCCAGGC	GTGGCGCTGC	CCTGAGGCC	GAACGGGACG	CCCTTGGCA	GGGGTCTTC	GGGCCCCCG	840
CGAGGGCG	TGGACGGACG	GACCGTGGTT	TCTGTGTGTT	GTACCTGCC	AGACCCGGC	AAGAGGCCA	910
CTCTTGGAG	GTTGGCTCTT	CTGGACCGG	CACTCCCG	CCATCTGGT	GGCCGAGCA	CGACGGCCG	980
CTCTTACCCA	ATACCGGGCC	ACCACTGGC	TTGGGAGACG	CTTGTCCCC	GGTGTACGCC	GAGGCCAACG	1050
ACTTCCTCTA	CTCTCTACGGC	GAAACGGAGC	AGTGTGGCC	CTTCTCTCA	CTACGCTCTC	TGAGGCCCG	1120
CTCTGACTGC	TCGCTGGGG	TGCGTGGAGAC	CATCTTCTG	GGTTTCCAGG	CTCTGATGCC	AGGGACTCTC	1190
CGCAGGTGTC	CCGGCGCTGC	CCAGCGCTAC	TGGCAATTGC	GGCCCTGTG	TCTGTGACTG	CTGGGGAAC	1260
CGCAGGAGTC	CCCTCATGGG	TGTCCTCTCA	AGACCGCT	CCGGCTGGA	GTGCGGTCA	CCACAGCGAC	1330
CGGTGCTGT	CGGGGGAGGA	AGCCGGGAGG	CTCTGGGG	GGCCCCGAGG	AGGAGGACAC	AGACCCCCGT	1400
CGCTGGCTGC	AGCTGCTCCG	CAACAGCACG	AGAACCTGG	AGGTGTACGG	CTTGTGCGG	GGCTGCTGC	1470
CGGGCGCTGG	CGGGGGAGGA	CTCTGGGGCT	CCGGACACAA	CGAACCGCC	TCTCTCGGA	ACACAGGAA	1540
STTCATCTCC	CTGGGGAGAC	ATGCAACGCT	CTGCTGCG	AGACTGACCT	GGAAATGAG	GTGGCCGAC	1610
TGCGCTTGGC	TGCGCAGGAG	CCAGGGGGT	GGGTGTTGTC	GGGGCCAGGA	CGACGGCTG	CTQAGGAGGA	1680
CTCTGGGCA	TCTTCCTGCA	TGGCTGTAGTA	GTGTGTACGT	CGTCGAGCTG	CTCAGGCTCT	TCTTTTATGT	1750
CAACGGAGAC	AGCTTGTGAA	AAACAGACCT	CTTTTCTAC	GGAGAGAGTG	TCTGGGACA	TGTCAAGAAC	1820
ATTTGGAA	GACACCACTT	GARAGGGTG	CACTGGGG	AGTGTGCGG	AGCACAGGT	AGGCAGCATC	1890
GGGAAGGCC	GCCCCCGCTG	CTGACGCTCA	GAACGGCTCC	AGATCCCGAT	CTCTGGGG	CGTCGAGGCC	1960
TGTAACATG	GACTGACTGC	TGGAGGAGCA	AACTGTCCTC	AGAGAAAAGA	GGGGCGAGC	TCTTACCTCC	2030
AGGTGAGGG	CACTGTTCA	CGTGTCAAC	TAGGAGGGGG	CGGGGGCGG	GGGGGGCTCG	GGGGCCCTCG	2100
TGCTGGGCC	GGACGATATA	CAACAGGGCT	GGGCCACCT	CTGTCCTGCT	GTGCGGGCC	AGGGACCCCG	2170
CGCTGAGCT	TATTTTCTG	AGGTGTGATG	GGCCGGGGG	TACGACACCA	TCCCCAGGA	CAGCTTCAAG	2240
GAGGTCTATC	CCAGCATCAT	CAACACCCAG	AGAACCTACT	GGTGGCTGCG	GTATGGCTG	GTCCAGGAGG	2310
CGGCCATGG	CGAACCTGG	AAAGCTTCA	AGAACCCACT	CTCTATCTTG	ACAGACCTTC	AGUCCTACAT	2380
CGCACAGTTC	TGTTGGCTAAC	TGAGGAGGAC	GAACGGCTCC	AGGGATGCG	TCTGCTATCG	CGACAGGCTC	2450
TCCCTGATG	AGGCCAGGAG	TGGCTCTCTC	GAACCTTCCC	TACCTCTCAT	GTGCCCCAC	CGCTGGCGCA	2520
TAAGGGGCA	FGTCCTACGTC	CACTGCCAGG	GGATCCCGA	GGGTCTTAC	CTCTCACGCG	TGCTCTGCAG	2590
CTGTGCTAC	GGCCGACATGG	AGACAGACTG	TTTGGGGGG	ATTCGGGG	ACGGCTGCT	CTGGGTTGG	2660
TGTTGATT	TCTTGTGTTG	GACACCTAC	CTACCAACCG	CGAAAACCTT	CCTCAGGAC	CTGGTCCAGG	2730
GTGCTCTGTA	GTATGGCTGC	GTGTTGACT	GGTGGAGGA	AGTGTGAC	TTCTCTGTAG	AGACAGGGC	2800
CTCTGGGGC	AGGGCTTGGT	TTCAGTGGC	GGGGCGGGC	CTATTTCTCT	GGTGGGCGCT	GTGCTGGGT	2870
ACCCGGGCC	TGGAGGTGCA	GAGCGACTAC	TCCAGCTATG	CCGGGACCTC	CATCGACGCC	AGTCTACCT	2940
TCAGGGCGG	CTTCAGAACGT	GGGGAGAAC	TGCTGCCAA	ACTCTTGGG	GTCTGGCGC	TAAGTCTGCA	3010
CGACCTGTT	TGGCTGGT	AGGTGACAGC	CTCTCACAGG	GTGTGACCA	ACATCTACAA	GTCTCTCTG	3080
CTGAGGGCT	ACAGGTTTCA	CGCATGTGTC	CTGAGCTG	CATTCTCAT	CGAACATTGG	AAGAACCCCA	3150
ATTTTCTCT	CGCGCTCATC	TCTGACACCG	CTCTCTCTG	CTACTCCATC	CTGAGAGCC	AGAACCGAG	3220
GATGTCTGC	GGGGGGCAAG	GGGGCCCGGG	CTCCCTGCTC	GGAGGGCC	TGACTGGCT	GTGCCCCAGG	3290
GGATCTCTG	TCACTCTG	TGACGACCT	GTCACTTACG	GGGGTCTACT	GGGGTCTACT	AGAACAGCC	3360
AGAACCGACT	GAGTCGGAG	CTCCGGGGA	CGACGCTGAC	TGCCCCGGAG	GGCCGAGGAG	ACCCGGCAGT	3430
GGCCCTCAGAC	TTCAAGACCA	TCTCTGACTG	ATGGCCACCC	CGGCCACAGG	AGGGCGAGAG	CGACACAGG	3500
CAACGGCTG	ACGGCCGGCT	TACTGCCCA	GGAGGGAGGA	GGGGCCCCAC	ACCCAGGCC	GCACCCGCTG	3570
GAGTCCTGAGG	CTGTGACTGG	TGTTGGGGCC	AGGCTCTCAT	TGGCTGGCT	AGGCTGTAGT	TGCGGCTGAG	3640
GCGCTGGAGGA	TGTTGGCTGC	AAGGGCTGAG	TGTCCTGGAC	ACCTGGCTG	TCTACTCCC	CAACGGCTAC	3710
CGCTCGGCTC	CACCCGGAGG	CGACCTTTTC	CTCACAGGA	GGGGCGGTG	CACTCCCTAC	ATAGGAATAC	3780
TCCATCCCCA	GATTCGGCAT	TGTTCAACCC	TCGGCTGGCC	CTCTTCTGGC	TTTCAACCCC	ACCATCCATC	3850
TGAGGACCTC	GAAGGGAC	CTGGGGAC	CTGGGGAC	TGGAAGATTG	GAGTGGACAA	AGGTGTGCC	3920
CGAGGACCTC	GAACGCTAC	GGGGGGCTCT	TGGGGTCAAA	TGGGGGGGG	GTTGCTGTGGG	AGTAAATAC	3990
TGAAATATG	AGTTTCTAC	TGTTGAAAAA	AAAAA	AAAAA	AA	4042	

004260 9h223560

09/502246

- 8/15 -

Fig. 7

卷之三

09/582246

- 9/15 -

Fig. 8A

Fig. 8B

Fig. 9

- 12/15 -

Fig. 10

ATTTGAGGCC, AAGAGTTCAA GGCTACGGT AGCCATGATT GCAACACCAC ACGCCAGGCT TGGTGACAGA -11204
 ATGAGACCT GTCTAAAAAA AAAAAAAAAT ATTGAATAA ATATAAACGA TCTTCCTGG CCACAGTGG -11134
 ACAAAACCG AAATCACAACAA CAAGAGGAAT TTGAAAGACT ATACAAACAC ATGAAAATTA AACATATFAC -11064
 TTCTGAGATGA CCAGTGAATC AATGAGGAAT 'TTAAAAGGA ATTGTAAAAA TTATTTAAG CAATGTATAA -10994
 CGGAAACATA ACCTCTCAA ACCCACGGTA TACAGCAAAG GCAGTGTCAA GAAGGAAGTT TATAGCTATA -10924
 AGGAGTACA TCAAAAAGT AGAAAAGCCA GGCGCATGG CTCTGCCTG TATGCCAGC ACTTTGGGAG -10854
 GCCAAGCGG CGACATGCCG TGAGGTGAGG AGTICGAGAC CAGCCTGAC AACACAGAGA AACCTTGTCG -10784
 CTACTAAAAA TACAAATGAA GCTGGCATG TGTCGATCC CAGCTACTCG GGAGGCTGAG -10714
 GCAGGATAC CGCTTGAACC CAGGGGTGG AGGTGGGTG GAGGCCGGAT TGCGGCATG GACTCCAGC -10644
 TGGGTAAACCA GAGTGAACCC CTGTCAGG AAAAAGGAAAG ATTGAAGAAA ACTTAAAGAT ACACCTTAT -10574
 GATGCCCCTT AAGAACATG AAAAGCAAGA GCAAACATAA CCTTAAATTG GTAAAAGAAA AGAAATAATA -10504
 AAGATCAGAG CAGAAATAAA TGAAACTGAA AGTAACTAAC ACAAAGATC AACAATTTA AAAGTGGTT -10434
 TTTTGAAGAR ATAAACAAAAA TTGACAAACC TTGCCCCAGA CTAAAGAAAAGG AGGAAAGAGG ACCTAAATAA -10364
 ATAAGTCAG AGATGAAAGG AGAGACATA CAACTGTACAC CACAGAAATT CAAGGATCA CTAGRGCTA -10294
 CTATGAGCA CTGTGACATC ATAAATGGA AACCTGAGA AAATAGATAA ATTCTCTAGA TGCAATCAC -10224
 CTACCAAGAT TGAACTGAA AGAACATCC AGCCCAACAG GACCAATAC AATAATGGGA TAAAGGCTA -10154
 AATAAAAGAT CTCTGAGCA AGAGAACGCC AGGACCAAT GGCCTCCCTG CTGGATTTTA CCACATATT -10084
 AAAAGAAGAT GAATTCCTA CCTACTAACTT ATCTCTGAA AGATAGAGGA AGAAATACTT CCAACATCAT -10014
 TCTACATGCC CAGTATTACG CTGTTCTCAA AACCCAGAAC AAACACATCA AAAACAAACAA AACAAAGAAA -9944
 CAGAAGAGA GAANACTACA GGCACATAGG CCTGTGATAGT ACTGTACATA AAATCTCTAA CAAACACTA -9974
 GCAAAACAAA TTAAACACCA CTTCGAAAG ATCTTCTTAA GTGATCAAGT GGGATTATT CCAGGGATGG -9904
 AAGGATGTTG CAACATGTC AAATCAGCA ATGGTGTGAA CTATCCCAAC AAAATGAAGT ACAAAACTA -9734
 TATGATTATT TCACTTATG CAGAAAAGG ATTGTGATAA ATCTTCGACCC CTTCATGATA AAAACCTCTA -9664
 AAAAACCCAG TATACAGAA ACATACAGC CAGGGCACAG GGCCTCACAC TGCGATGCCA GCACCTGGG -9594
 AGGCCAAGGT GGGTAGTTG CTTGGGCCA GGGATTTAGG CTAGCTCTGG TGACACTCTGG GACACTCTGGT -9524
 CTACAAAAAA CTTTTTTAA AAATTAGCCTA GGCATGATGG CATATGCGGG TGACTGGAC TACTCTCAG -9454
 GCTGGGGTGG GAGAGTCACT TAAGGCTTAGG AGGTGGGGGG TGACTGGAC TGTGAGCT -9384
 CCACGCTAGA CAACAGACA AGAACCCCAAT GAATAAGAG AGGGAGAAGG AGRAAGGGAGA AGGGAGGGAG -9314
 AAGGGAGGAG GGGGGAGGG AGGGAGTGG GGAGAGATGG AGGGAGGAGG GGAAGGGAGA GAGGAAGAAG -9244
 AAGAACATA CTTCAACATA AAATACGGCA TATATGACAG AGGGAGTAG TATTATGAGG AAAACTGAA -9174
 AGCTTCTTCG CTAAAGATCG GAAAATGACA AGGGCCACCT TTACACCTCT TGATTCACAA TAGTACTAGA -9104
 AGTCTCTAGGT AGAACATCA GATAAGAGGA AGAAATAAAA GGCATTCAAA CTGGAAAGGA AGAAGTCATAA -9034
 TTATCTGTG TGCAGATGAT ATGATCTTAT ATCTGGAAA GGCATTAAGC ACCACTAAAG AACTTATTAGA -8964
 GCTGAATTTT GTTACAGCAG GACATACCAAA CTATGTCATAA AAATCAGTG TATTCTCTATA TTCCACAGC -8894
 AAACAACTCTG AAAAGAACAC CARAAAAGCA GCTACAAATAA AARTTAAACCA GCTAGGAATT AACCAAAGGA -8824
 GTGAAGATCT CTCAATGAA AAATCTAAAT ATTGTGATAA AGRAAATTGA AGGGAGGAGA AACCTGACAA AAAAGAAA -8754
 AGATATCTCA TTGTCATGAG TTGGAGAGAT AAATACCTGTT AAATGTCCTA TACTAACCCAA AGCAATTAC -8684
 AAATCTCATG CAATCTCTAT TAAATACATA ATGAGCTCTC TGACAGATA AGAAAGAAACCA ATTCTAAGAT -8614
 TTGTACAGAA CCACAAAGG CCGGAGATG CCAAAGCTT CTCGACCAA AAGAACAAAAT CTGGAAGCAT -8544
 CACATTACCT GACTCTAACAT TATACCTAAC AGCTATAGTA ACCAACCTAA CTGGTACTG GCATAAAAAC -8474
 AGATGAGACA TGGACACAG AGAACAGAAGA GAGAACATCC AACACATTC ATGCATCTAC AGTGAACCTA -8404
 TTTTGACAA AGGTGCCAG AACATRACTTT GGGGAAAAGA TAATCTCTCT AATAAATGGT GCTGGAGGGA -8334
 CTGGATATCC ATATGCAAAAC TAACTACACT AACACTCTGT CTCTCACCT ATACAAANAGC AAATCAAAT -8264
 GGATGAAARGG CTTAATCTCA AACCTCTCA CTTGCAACT AACAAAGAG AACRCGGAG AACCTCTCCA -8194
 GGACATGGGA TTGGGCAACAG ACCTCTTGTG TAATTCCTG CAGGGCACAG CAAACCAAGG AAAACACAGAC -8124
 AATGGGATC ATATCAAGT AAAAACCTG TGCCCGACCA AACGGAAACAT CAACAAAGAG AAGNGAACAC -8054
 CCACAGATG TGAGGATATAA TTGCAACT ATCATCTAC CAAGGAACTT ATAACCCAGTA TATATAAGGA -7984
 GCTCAACTA CTCTCTAAAGA AAAACACCA TAAAGCTGT TTCTAAACAT AAGCCTAAAGA TCTGGGTAGA -7914
 CATTCTCAA ATAATGCTAT AACAAATGCC AACGGGCTAC TGAAATGTG CTAAACACCA CTGATCATCA -7844
 GAGGAATGCA AACATCAACAT ATGATGAGG ATCATCTCAT CCGAGTAAAT TTGCTTCTTAA TTCAAAGAC -7774
 AGGCAATACG AACATGCGT GAGGTGGCTG ATTAAGGAGA ACCCTTGGAC ACTGTGGTGG GGRATGGAAA -7704
 TTGCTACCCAT TATGGAGACG AGTTGGAAAG TTCTCTAA AACCTAAAGA AAAGCTACCA TACRGCAATC -7634
 CCATGCTAG TGATATCTAC CAAACAGG AATCTAGTG TAACACAGGT ATCTCCACTC CCACATTAC -7564
 TGCAGCTGT TTCTACAGG CCAAGGTTTG GAAGCAACCTA CAGITGCTAC CAACAGACGA ATGAAAAGA -7494
 AAATATGTTG GCACATACAC ATGGGGTACG TACGGACGG TAAAGGAGAAGGAGAACAAAC TTTCTAGTT -7354
 CAGCATGGG GGCACCTGGT ACATGTTAA GTGAATTAAG CCAGGCGAC AAAGACAAAC GAGGATGTTG GTTCTAGAGG -7284
 CTCTCTTACT TTGTTGGGCAAC AAAATTTAA CATTGACAT AACATAGAG GAGGATGTTG GTTCTAGAGG -7214
 GGGGGGGGAC AGGTGGTACTA GAGTCRACAAT TATTCTTATG TATGTTTTAA ATAACCTAA AGGATATAAT -7124
 TGGGTGTTT GTAAACACAA GAAAGGATAA ATCTCTGAG GTGACAGATA CCCCATTTAC CTCGATGTGA -7144
 TTATTCACAC TGTATGCTT GTATCAACAT ATCTCTGAG TGCTTGTAGAT ATAACCTAA CTATATTTAA -7074
 AATAAAATTTT ATTAATGCGG GGCGCATGGG CTCTATGCGG TAATCCCGAC ACTTTGGGAG GCGGAGGGCG -7004
 GTGGTCACTC TGAGGGTCAAG AGTTGGAAAG CTTCTGGGG ACCATGTGATAA PACCCTGTCTC TACTAAAGA -6934
 TACAAAATTT AGCCAGCGT GTGGGACAT ACCCTGTAGTC CCAACTACCT AGGAGGCTGA GACAGGAGAA -6864
 TTGCTGTGAACT TTGGGAGGGAG GAGGGTCAAG TGAGGCCAGA TCATGCCACT GACTCTGAGC CTGGGTGACA -6794
 GAGCAGACTG CCTATCTCAA AACAAACAA AAAAGAGG ATTAAANTG TAAATTTTAT GTACCGTATA -6724
 AATAATATAC TCACTATATG AGAAAGTAAAR ATTTAAACCA ATTATATAAGG GTAAATACAC ACTTAATCTA -6654
 AATAAGAAC AATGTATGTG GGTTCTGAG CTCTCTGAGA AGTAAAGGT ATGGCCACGA TGGCAGAAAT -6584

09/582246

- 13/15 -

Fig. 10

GTGAGGGAGG AACAGTGGAA GTTACTGTG TTAGACGCTC ATACTCTCG TAAGTGACTT AATTTAAC -6514
 AAAAGACAGG TGGGAGAAGT TAAAGGGCA TTCTATAAGC CCTAAAACAA CTGCTAATAA TGTTGAAAGG -6444
 TAATTCTCTA TAATTACCAA TAATTACAGA TATCTCTAAAT ATCGAGCTGC AGAAATTGGCA CGTCIGATCA -6374
 CACCGCTTC TCATTCACGG TGCTTTTTT CTGTTGTCG TGAGATTTCG CGATTGTCG TTGCTGTTG -6304
 GTTAAACTTA ATCTGTATGA ATCTGTGAAAC GAAAATGGT GTGATTTCC TCCAGAAAGAA TTAGAGTACC -6234
 TGGCAGGAGG CAGGTGGCTC TGTTGRCCTG AGCCACTTC ATCTTCAGG GTCTCTGGC PAGACCCAGG -6164
 TGCAGGCG AGGCCCTGATG ACCCGAGGAC AGGAAGACTC GSATGGGAAG GGGCAGATGAG ARGCCCTGC -6094
 CGTTGTGAG CAGGGCATGA ATGCCCTTA TTACGCTG CAAAGAATTCG CTCTGGATAC CATCTGGAAA -6024
 AGGGCCCG AGGGATAGCA AGGAGTCAGA AGCCCTCTGC TCAACCCAGG CAGGAGCT ATGGCCCA -5954
 CCCGGCCG TGCCAGAGGG AGAGGAGCTCA AGGCCCTCC AAATGTGCT TAATCTTT TTTCACCTGA -5884
 AGCAGTGACC AAGGTGATT CTGAGGGAGG CTGAGTAGTG GTGCTCTTCTP TAAACAGGA AGTCATGGA -5814
 GCACCCCTCT CAAGGGAAAA CCAGACGCCG CTCTGGGGT CATTACCTTC TTCTCTCTC CCCCCTCT -5744
 CCCCTGGCTC TTCTGATCGG GACAGATGA CCCCGCTGG AGAGGGAGCT CGTACCTGG CTTAATRACA AACTGGGATG -5674
 TGCAGGAGG CTCACAGACC CCCGGCTGG AGAGGGAGCT CGTACCTGG CTTAATRACA AACTGGGATG -5604
 TGGCTGGGG EGGAGACCGA CGGGGGATG CAAAGACTA ATCTTGATG TAATTCARAC CTTTCCACAT -5534
 CGGAATGGAT TTGATTTA TCTTAAATA TCTCATTAATTA TCTCATTAATTA ACATTCAGGA CTGAGAAAT -5464
 CCAAGGCT AAAACAGGA CTGAGCTATG TTGCGAACCG TCCAGAACCTG TARTAAACAT GTTCAGAGGG -5394
 ATTTCTGCCTC TAATGACTT TTATGTTGCTT TCTAAGGTT GGCTTGGAGG CGAAGGGAAA TCACAGGAGG -5324
 AGAGGCTCG GCGGCAAGGG TATGAGCAGC GCAGGGCCAC CGGGAGAGGA GTCCCCGGGC TGGGAGGGCTG -5254
 ACAGCAGGG CACTGAGCTC CTCCCTCTGG AGCTGCCCA GCTCTGGGGT CAGGAGGGCC CACCGCTGGT -5184
 GTGACTCAGG ACCCCATACC GCTCTCTGG AGCCACCCAC ACTAACCCAG GAA-GTACCG AGCTCTGGAAC -5114
 CCGTGGAAAC GAACATGACC CTGTCGCTGC TTGCTCTCTGG GTGGGTGCA CGGTTAATGAA GTGGTGTGCA -5044
 GGAATGGCC ATGTAATTA CAGCTGCCTG CTGAGGGGG CCGTCTCTTC CATCAATTAT CATCTCACCC -4974
 CCCAGGACT GAATGATTCG AGCAACCTTC TGCGGTGTA AGAACCTGA CAARACTCAG TACAAACACCC -4904
 ACTCTTTAC TAGGCCAACAGA GAGCCGGCC CACACCCCTG ATATATAAG AGTCACGGAG AGATGAGGCT -4834
 GCTTCTGAGCC ACCAGGCTGG GTGACAAACA GCGCTGTAAC AGTCCTGTTCTC TCTAGACTG TAGACCCCTGG -4764
 CAGGGACTCC CCGACATTC AGGGCTCTGG TGCTGCTTCC AGGGGGCCCG AGGGGGCCCG ATCTGCTCTG GAGACTCAGC -4694
 CTGGGGTGGC AGACTGAGG CAGCCCTCTG TCCACACCTC CGGCTCTCCAG GCCTCAGCTT CTCCAGCAGC -4624
 TTCTAACARCC CTGGGGTGGG CGTCTGCTTCC CGCTCTGTC TCCACTCTG CACTGTGCT CACTGTGCT -4554
 AGCTGACTCG CAGGGCTCTC CCTCACATG GTGTTGCTG TCTTCTCCCA ACACATCACAT GCGTTGAGG -4484
 GAGGAGATTC TGCGCTCCCG AGACTGCTG CTCTGAGCTT GAAACTGGT CGTGGGCCCCC GTAGCAGGTT -4414
 CTGGGGCTCC CGCTGTCAGC TGACCTCTC TCTACGGGG CACCTCTCTC CTGTCATCTG CGGGGGCTG -4344
 CGGTGTGTT CTTCCTGTTG TGTTGCTCTT TCCACGCTCA GTGCTGCTTG TCTCTGCCCC CGTAGGCTCTC -4274
 GGGGTTTAA TAGGCTAGG AGGGGGGGT GTGGGGCCCG AGGGGGCTGG CAGGGCTCTGG GGAATGCAAA CATTGGGTTG -4204
 TGAAGTAGG AGTGGCTGCTC CTCACTTGG TCCACGGCA CAGGGCTGG GATGGAGCCC CGGGCAGGGA -4134
 CCCGGCTCTC TGCTGGCCAG ACCTTCTGC CCCCTCTCTT CTGGACACCA GAGTGGCAGT TTCCACACGC -4064
 ACTAAGCATC CTCTCTCCAA AGAACCCAG ATGGCACCC CTGGACATTT GCCCCCACAGC CCTGGGATT -3994

-414

CACCTGCTA CGCACATCAT GTACACACTC CGCTCCACGA CGGACCCCCG CTGTTTATT TAATAGCTA -3924
 CAAGCAGGG AAATCCCTGC TAAATGTC TTAAACAAAC TGTTAAACAAAC AGCGGCTCCA TCCCGACGGT -3854
 GGACAGCTTCTC TCACAGTGA GAGGACATAG CGCTTATAAC AGCTCTGAGG CATCTCAAGG GAATTCAGCT -3784
 GAGTCAAACAC TCCACCTCC ATGGGTAGC TACGCAACNT GCTCAAAAGG AAAGAATTTCG ACCCCCATGGC -3714
 AGGGGAGTC TTAGGGGGT TAAGGGCGGT GGGGGCGGA GCTGGGGGT ACTGCAGCGA CCTTITACTA -3614
 AAGGGAGTCTT CTGGTTCTG ATGTTATTT CTGAGTAGTG GGAGACTAC CATAGGGGG FGGGGATGGG -3574
 GSGACCCGGG GGCTGTGCC TCTTGGCCAT CGCCGGCTG CCTGGGGCGG ATAATGCTCT AGAGATGCC -3504
 AGCTCTGTAT TCCCCAACAC CTGTCAGAC CACCCCGCCG CGGGCCAGGG CTTTGCAGGT GTGATCTCC -3434
 TGAGGACCTC GGGGTGTTGG ATCTCTGGG ACTACCTGCA GGGCCGGAA GTAGGGAGCA GTCTGGAAAAG -3364
 AGAGGGCGGC AGGGGGCTA GAGGGGGGG CCGCTCAGGA GAGCTGGGGT AAGGGGGGGAA GGACCCCTCC -3224
 GGGGGAGGG CCTTCAGGCC AGGGCTGCA CGCCCTCTGG CCCCTAGCCC ACCAGGGCCCT ACCTGGACCC TCCGGCTCC -3154
 ACGGAGCTCC CAGGGAGACG CGCTGGCTT CTAGCATGA GTGTTGGGG ATTTCAGAAA GCAACAGGAA -3084
 GTGCCATAGG AGGGCAACTC CGCTGCCCTT CTAGCATGA GTGTTGGGG ATTTCAGAAA GCAACAGGAA -3014
 ACCCATGCGC TGTTGACTTA GGATTTTAAACAAAGG TTACACAGGA CATCCAAAGGA CAGGGCTGAA -2944
 GTGCCCTCGG CGAACGGGAGG GGCAGGGAGG AGTGTATTTC TTAGCTATT TTATTTATT TACTCTTTT -2944
 CGTCTCTCTG TTACATTCAGA GTTCTCTGCA CGACCTCTG TCCCATGGG CCAACTCGAG GGGCGAGCTGG -2454
 CTGAGACAGA GTTATGCTT TGTTGGCCAG CGTGGGAGTGC AGCGGCTGTA TCTTGGCTCA CTGCAACCTC -2874
 CGTCTCTCTG GTTCAAGCAA TTCTCTGGC TGACCTCTC AGGTAGCTG GATTTCAGGC GTGCAACCC -2804
 ACACCCGGCTC AATTTCAGTAT TTCTTACTAGA GRTGGCTT CACCATGTTG GTCAAGCTGC TCTCNAAAATC -2734
 CTGACCTCTC GTATGACTCC CACCTCAAGG TCCCAAGTGC CTGGGATAC AGGCATGAGC CACTGCACT -2664
 GGCCTATTAA ACCATTTAA AACCTCTCTG CGCTCAAGTG ACACCCACTG GTAAGGAGT GTAGGAGTTC -2594
 AATTCTCCCT TCTACAGGA GTTACCTCTC TTGTTATTT CTGCTGTTT TCTCTGAGACT GGGGATACAC -2524
 CGCTCTCTG CAATTTACAA GTTCTCTGCA CGACCTCTG TCCCATGGG CCAACTCGAG GGGCGAGCTGG -2454
 GAGGTGAGG GCTTCAAGG TGCTCTGAGG AGTGTCTGA ATCTCAATG CTGAGTAGTG GTAGGATGAG ATCAAGGGG -2384
 AAGGTGAGG ACTGCTCTGA ATCTCAATG CTGAGTAGTG GTGAAACAT GTAGGAAATTA AAGTCATCC -2314
 CTCTACTCTC ATGAGGATTCG AGCCCTCTC CTATCCCCC CGAGGGGGAGG AGGAGTTCTC CTCACTCTG -2244
 TGGAGGAAGG ATGTGACTT TGTTTATTCT CAGCTGCTG ACTGAATCCA CTGTTTCTAT TGTTGTTG -2174
 TTGTTTGTG TTGGAGAGG TTGTTACTC GTGTTGCTA CGCTGGAGGG AGTGGATGAG CGGGATCTG -2104
 GTTACTGCA GCCCTCTGCT CCCAGGTTCA AGTGATTCG CTGCTCTGGC CTCCCATTTG GCTGGGATTA -2034
 CAGGACCCCG CCACCATGCC CAGCTAATT TTGTTATTT TAGTAGAGAC GGGGGTGGGT GGGGGTCACTC -1964

D0Y20050

- 14/15 -

Fig. 10

ATGTTGGCCA GGCTGGTCTC GAACCTCTGA CCTCAGATGA TCCACCTGCC TCTGCCTCTT AAAGTGCTGG -1894
 GATTACAGGT GTGAGCCACC ATGCCAGCT CAGAAATTAC TCTGTTAGA AACATCTGG TCTGAGGTAG -1824
 CAAT-Box
 GAAGCTCAC CCACTCAGT GTTGTGGTGT TTTC[CCA] TGATAGAATT TTTTATTGT TGTTAGAAC -1754
 CTCTTGATGT TTTCACACTGT GATGACTAAG ACATCATCAG CTTCACAAG ACACACTAAC TSCACCCATA -1684
 ATACTGGGGT GTCTCTGGG TATCAGCAAT CTTCATTGAA TGCGGGGAGG CGTTTCCCG CCATGCACAT -1614
 GGTGTTAATT ACTCCAGCAT AATCTCTGC TTCCATTCT TCCTCTCCCT CTTTAAAT TGTGTTTCT -1544
 ATGTTGGCTT CTCTGAGAG AACCAAGTGA AGCTACACT TAACCTTTGT TGGAACAAT TTCCAA[CC] -1474
Spl
 [CCA] CTTCG CCTAGTGGCA GAGACAATTAC ACAAAACACAG CCCTTTAAAAA AGGCTTAGGG ATCACTAAAGG -1404
 GGATTTCTAG AAGAGCGACC TGTAATCTCA AGTATTTACA AGACGAGGT AACCTCCAGC GAGCGTGACA -1334
 GCCCAGGGG GGTGCGAGGC CTGTTCAAAT GCTAGCTCCA TAAATAAAGC AATTCTCCG GCCAGTTCT -1264
 GAAAGTAGGA AAGGTTACAT TAAAGGTTGC GTTGTGGTAC ATTTCAGTGT TTGCGGACCT CAGCTACAGC -1194
 ATCCCTGCAA GGCCCTGGGA GACCCAGAAG TTTCCTGGCC CCTTAGATCC AAACCTGAGC ARCCGGAGT -1124
 CTGAGTTCTT GGGAGTCTT CAGCTGCTC CGGGTTGTG CGGGGCCCGA GCTCTGGAGG GGACCCAGTGG -1054
 CGCTGTGGCT TCTACTGCTG GGCTGAAAGT CGGGCCCTCT AGCTCTGCAG TCCGAGGCTT GGAGCCAGGT -984
 GCCTGGACCC CGAGGCGTGC CTCCCACCTG TGCGGGCGGG ATGTGACCAAG ATGTTGGCTT CAICTGCCAG -914
 ACAGAGTGC GGGGGCCAGG GTCAAGGGCG TTGTGGCTG TGTGAGGGCGC CGGGTGCAGC GGAGCAGGA -844
CCAC-Box
 GCGCTGGCT CCATT[CCA CCC] TTCTCG ACGGGAC[CG CCC] GTGGGGT GATTAACAGA TTTGGGGTGG -774
 TTGCTCATG GTGGGGACCC CTGCCCCCT GAGAACCTGC AAAGAGAAAAT GACGGGCCTG TGTCAGGAG -704
 CCCAAGTGC GGGGAGTGT TGCAAGGGAGG CACTCCGGGA GGTCCCGCTG GCCCGTCCAG GGAGCAATGC -634
AP-2
 GTCTCTGGGT TCG[CCCCCG CGCGCTCTAC CGCCACCTCGT CCTCCCTTC AGCTCCGCCA TICGTGGTGC -564
 CGGGAGCCCG AGCCCCCGCG TCCGACCTG GAGGCACCC CGGGTCTCG GATCAGGCCA CGGGCCAAAG -494
 GGTGGCCGA CGCACCTGTT CCCAGGGCT CCTACATCG GCCCTCCCT CGGGTTACCC CACAGCCTAG -424
Spl
 GCCGATTCGA CCTCTCTCG CTGGGGCCCT CGCTGGCGTC CCTGCACCCCT GGGAGCGCGA GC33[CGCG] -354
Spl
 [GCC]GGGAAG CGGGGGCCAG ACCCCCCGGT [CGCG]GGGAG CAGCTGCCCT GTGGGGGCCA GGCGGGCTC -284
c-Myc
 CCAGTGGATT CGGGGGCACA GACGCCAGG ACCGCCTGC[CG] GACCGCTGC GAGGGACTGG GGACCCGGGC -214
Spl
 ACCCGTCTCG CCCCTTCACC TTCCAGCTCC GCCTCTCTCG CGCGACCC[CC] GCGCGTCCC GACCCCTCCC -144
 GGGTCCCCCGG CCCAGCCCCC TCCGGGCCCT CCCAGCCCCCTT CCCCTTCCTT TCCGGCGCG[CG] GCGCGTCTCC -74
c-Myc
 TCGCGGCGCG AGTTTCAGGC AGCGCTGCCT CGTGCCTGC[CG] ACGTGGAGG CCTGGCCCCC GGCCACCCCCC -4

09/582246

- 15/15 -

Fig. 11

COMBINED DECLARATION AND POWER OF ATTORNEY

ATTORNEY DOCKET NO

Le A 32805

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name. I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought
on the invention entitled

REGULATORY DNA SEQUENCES OF THE HUMAN CATALYTIC TELOMERASE SUB-UNIT GENE, DIAGNOSTIC AND THERAPEUTIC USE THEREOF

the specification of which is attached hereto,

or was filed on **December 22, 1998**

as a PCT Application Serial No. **PCT/EP98/08216**

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, §1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s), the priority(ies) of which is/are to be claimed:

197 57 984.1 (Number)	Germany (Country)	December 24, 1997 (Month/Day/Year Filed)
---------------------------------	-----------------------------	--

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose the material information as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
(Application Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Le A 32 805-US

Docket No. 32805

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

- 5-
* Jeffrey M. Greenman, Reg.No. 26552
Barbara A. Shimel, Reg. No. 29862
William F. Gray, Reg. No. 31018
Alice A. Brewer, Reg. No. 32888
Jerrie L. Chiu, Reg. No. 41670

all of Bayer Corporation, 400 Morgan Lane, West Haven, Connecticut 06516

Send Correspondence To: <u>Mr. Jeffrey M. Greenman</u> <u>Bayer Corporation</u> <u>400 Morgan Lane</u> <u>West Haven, Connecticut 06516</u>		Direct Telephone Calls To: (203)812-3964(Jerrie L. Chiu)
FULL NAME OF SOLE OR FIRST INVENTOR <u>Gustav Hagen</u>		INVENTOR'S SIGNATURE DATE <u>16 Mai 2000</u>
RESIDENCE <u>D 51373, Leverkusen, Germany DEX</u>		CITIZENSHIP <u>German</u>
POST OFFICE ADDRESS <u>c/o Bayer Aktiengesellschaft, D 51368 Leverkusen, Germany</u>		
FULL NAME OF SECOND INVENTOR <u>Maresa Wick</u>		INVENTOR'S SIGNATURE DATE <u>16 Mai 2000</u>
RESIDENCE <u>D 51065 Köln, Germany DEX</u>		CITIZENSHIP <u>German</u>
POST OFFICE ADDRESS <u>c/o Bayer Aktiengesellschaft, D 51368 Leverkusen, Germany</u>		
FULL NAME OF THIRD INVENTOR <u>Dmitry Zubov</u>		INVENTOR'S SIGNATURE DATE <u>16 Mai 2000</u>
RESIDENCE <u>D 51061 Köln, Germany DEX</u>		CITIZENSHIP <u>Russian</u>
POST OFFICE ADDRESS <u>c/o Bayer Aktiengesellschaft, D 51368 Leverkusen, Germany</u>		
FULL NAME OF FOURTH INVENTOR		INVENTOR'S SIGNATURE
RESIDENCE		CITIZENSHIP
POST OFFICE ADDRESS		
FULL NAME OF FIFTH INVENTOR		INVENTOR'S SIGNATURE
RESIDENCE		CITIZENSHIP
POST OFFICE ADDRESS		
FULL NAME OF SIXTH INVENTOR		INVENTOR'S SIGNATURE
RESIDENCE		CITIZENSHIP
POST OFFICE ADDRESS		
FULL NAME OF SEVENTH INVENTOR		INVENTOR'S SIGNATURE
RESIDENCE		CITIZENSHIP
POST OFFICE ADDRESS		

Le A 32 805-US