代 数 (二)

School of Computer Wuhan University

代数 (二) 内容

- ① 群的性质
 - 群的性质
 - 元素的阶
- ② 陪集和拉格朗日定理
 - 陪集的定义和性质
 - 拉格朗日定理
 - 陪集关系

群的性质

群

- 群是半群、含幺半群且每个元素都有逆元;
- 半群、含幺半群的所有性质在群中全部成立。

群的性质

群

- 群是半群、含幺半群且每个元素都有逆元;
- 半群、含幺半群的所有性质在群中全部成立。

- 若群< G, * >的单位元为e, ∀a, b ∈ G,
- ① $(a^{-1})^{-1} = a$
- $(a*b)^{-1} = b^{-1}*a^{-1}$
- ① :: $a * a^{-1} = e, a^{-1} * a = e,$:: $a \not\in a^{-1}$ 的左、右逆元, :: $(a^{-1})^{-1} = a;$

- 若群< G, * >的单位元为e, ∀a, b ∈ G,
- ① $(a^{-1})^{-1} = a$
- ② $(a*b)^{-1} = b^{-1}*a^{-1}$ 证明:
- ① $: a * a^{-1} = e, a^{-1} * a = e,,$ $:: a \not\in a^{-1}$ 的左、右逆元, $:: (a^{-1})^{-1} = a;$
- ② $:: (a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = e,$ $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*e*b = e,$ $:: b^{-1}*a^{-1} \not\equiv a*b$ 的左、右逆元、 $:: (a*b)^{-1} = b^{-1}*a^{-1}.$

- 若群< G, * >的单位元为e, ∀a, b ∈ G,
- ① $(a^{-1})^{-1} = a$
- ② $(a*b)^{-1} = b^{-1}*a^{-1}$ 证明:
- ① :: $a * a^{-1} = e, a^{-1} * a = e,$:: $a \not\in a^{-1}$ 的左、右逆元, :: $(a^{-1})^{-1} = a;$
- ② $:: (a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = e,$ $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*e*b = e,$ $:: b^{-1}*a^{-1} \not = a*b$ 的左、右逆元、 $:: (a*b)^{-1} = b^{-1}*a^{-1}.$

- 若群< G, * >的单位元为 $e, \forall a, b \in G,$
- ① $(a^{-1})^{-1} = a$
- ② $(a*b)^{-1} = b^{-1}*a^{-1}$ 证明:
- ① :: $a * a^{-1} = e, a^{-1} * a = e,$:: $a \not\in a^{-1}$ 的左、右逆元, :: $(a^{-1})^{-1} = a;$
- ② $:: (a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = e,$ $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*e*b = e,$ $:: b^{-1}*a^{-1} \not = a*b$ 的左、右逆元、 $:: (a*b)^{-1} = b^{-1}*a^{-1}.$

- 若群< G, * >的单位元为 $e, \forall a, b \in G,$
- ① $(a^{-1})^{-1} = a$
- ② $(a*b)^{-1} = b^{-1}*a^{-1}$ 证明:
- ① $\therefore a * a^{-1} = e, a^{-1} * a = e,$ $\therefore a \not\in a^{-1}$ 的左、右逆元, $\therefore (a^{-1})^{-1} = a;$
- ② $:: (a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = e,$ $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*e*b = e,$ $:: b^{-1}*a^{-1} \not\in a*b \not\in a*b \not\in a*b , : (a*b)^{-1} = b^{-1}*a^{-1}.$

- 若群< G, * >的单位元为 $e, \forall a, b \in G,$
- ① $(a^{-1})^{-1} = a$
- ② $(a*b)^{-1} = b^{-1}*a^{-1}$ 证明:
- ① $:: a * a^{-1} = e, a^{-1} * a = e,$ $:: a \not\in a^{-1}$ 的左、右逆元, $:: (a^{-1})^{-1} = a;$
- ② $:: (a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = e,$ $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*e*b = e,$ $:: b^{-1}*a^{-1} \not = a*b$ 的左、右逆元、 $:: (a*b)^{-1} = b^{-1}*a^{-1}.$

- 若群< G, * >的单位元为 $e, \forall a, b \in G,$
- ① $(a^{-1})^{-1} = a$
- ② $(a*b)^{-1} = b^{-1}*a^{-1}$ 证明:
- ① $:: a * a^{-1} = e, a^{-1} * a = e,$ $:: a \not\in a^{-1}$ 的左、右逆元, $:: (a^{-1})^{-1} = a;$
- ② :: $(a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = e,$ $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*e*b = e,$ $\therefore b^{-1}*a^{-1} \not\equiv a*b$ 的左、右逆元、∴ $(a*b)^{-1} = b^{-1}*a^{-1}$.

- 若群< G, * >的单位元为 $e, \forall a, b \in G,$
- ① $(a^{-1})^{-1} = a$
- ② $(a*b)^{-1} = b^{-1}*a^{-1}$ 证明:
- ① $:: a * a^{-1} = e, a^{-1} * a = e,$ $:: a \not\in a^{-1}$ 的左、右逆元, $:: (a^{-1})^{-1} = a;$
- ② :: $(a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = e,$ $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*e*b = e,$:: $b^{-1}*a^{-1} \not\ge a*b$ \text{ b. E. A \text{ if } \tau. :: $(a*b)^{-1} = b^{-1}*a^{-1}$.

- 若群< G, * >的单位元为 $e, \forall a, b \in G,$
- ① $(a^{-1})^{-1} = a$
- ② $(a*b)^{-1} = b^{-1}*a^{-1}$ 证明:
- ① $:: a * a^{-1} = e, a^{-1} * a = e,$ $:: a \not\in a^{-1}$ 的左、右逆元、 $:: (a^{-1})^{-1} = a;$
- ② $:: (a*b)*(b^{-1}*a^{-1}) = a*(b*b^{-1})*a^{-1} = a*e*a^{-1} = e,$ $(b^{-1}*a^{-1})*(a*b) = b^{-1}*(a^{-1}*a)*b = b^{-1}*e*b = e,$ $:: b^{-1}*a^{-1} \not\equiv a*b$ 的左、右逆元, $:: (a*b)^{-1} = b^{-1}*a^{-1}.$

- 若< G, *>是群,则 $\forall a, b \in G,$
- ① 存在惟一的x, 使得a*x=b;
- ② 存在惟一的y, 使得y*a=b; 证明:
- 2 同理可证。

- 若< G, *>是群,则 $\forall a, b \in G,$
- ① 存在惟一的x, 使得a*x=b;
- ② 存在惟一的y, 使得y*a = b;证明:
- ① 存在性: $\diamondsuit x = a^{-1} * b$, 则 $a * x = a * (a^{-1} * b) = (a * a^{-1}) * b = e * b = b$ 惟一性: 若a * x = b,
 则 $a^{-1} * (a * x) = a^{-1} * b$, $\therefore (a^{-1} * a) * x = a^{-1} * b$, $p x = a^{-1} * b$.
- ② 同理可证。

- 若< G, *>是群,则 $\forall a, b \in G,$
- ① 存在惟一的x, 使得a*x=b;
- ② 存在惟一的y,使得y*a=b;
- ② 同理可证。

- 若< G, *>是群,则 $\forall a, b \in G,$
- ① 存在惟一的x, 使得a*x=b;
- ② 存在惟一的y, 使得y*a = b;证明:
- ① 存在性: $\diamondsuit x = a^{-1} * b$, 则 $a * x = a * (a^{-1} * b) = (a * a^{-1}) * b = e * b = b$,
 惟一性: 若 a * x = b,
 则 $a^{-1} * (a * x) = a^{-1} * b$, $\therefore (a^{-1} * a) * x = a^{-1} * b$, $\bowtie x = a^{-1} * b$.
- 2 同理可证。

- 若< G, *>是群,则 $\forall a, b \in G,$
- ① 存在惟一的x, 使得a*x=b;
- ② 存在惟一的y, 使得y*a = b;证明:
- ① 存在性: $\diamondsuit x = a^{-1} * b$, 则 $a * x = a * (a^{-1} * b) = (a * a^{-1}) * b = e * b = b$,
 惟一性: 若 a * x = b,
 则 $a^{-1} * (a * x) = a^{-1} * b$, $\therefore (a^{-1} * a) * x = a^{-1} * b$, 即 $x = a^{-1} * b$.
- 2 同理可证。

- 若< G, *>是群,则 $\forall a, b \in G,$
- ① 存在惟一的x, 使得a*x=b;
- ② 存在惟一的y, 使得y*a = b;证明:
- 2 同理可证。

- 若< G, * >是群,则 $\forall a, b \in G,$
- ① 存在惟一的x, 使得a*x=b;
- ② 存在惟一的y, 使得y*a = b;证明:
- 2 同理可证。

- 若< G, * >是群,则 $\forall a, b \in G,$
- ① 存在惟一的x, 使得a*x=b;
- ② 存在惟一的y, 使得y*a = b;证明:
- ① 存在性: $\diamondsuit x = a^{-1} * b$, 则 $a * x = a * (a^{-1} * b) = (a * a^{-1}) * b = e * b = b$,
 惟一性: 若a * x = b,
 则 $a^{-1} * (a * x) = a^{-1} * b$, $\therefore (a^{-1} * a) * x = a^{-1} * b$, 即 $x = a^{-1} * b$.
- 2 同理可证。

- 若< G, * >是群,则 $\forall a, b \in G,$
- ① 存在惟一的x, 使得a*x=b;
- ② 存在惟一的y, 使得y*a = b;证明:
- ① 存在性: $\diamondsuit x = a^{-1} * b$, 则 $a * x = a * (a^{-1} * b) = (a * a^{-1}) * b = e * b = b$,
 惟一性: 若a * x = b,
 则 $a^{-1} * (a * x) = a^{-1} * b$, $\therefore (a^{-1} * a) * x = a^{-1} * b$, 即 $x = a^{-1} * b$.
- ② 同理可证。

性质

• 群中消去律成立。

证: 群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若x是幂等元,则,x = x * x

$$x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e.$$

• 群中不可能有零元。

证: ① 若 |G| = 1, 则唯一的元素视为单位元;

② $\mathbf{A}|\mathbf{G}| > 1$,且群 \mathbf{G} 中有零元 θ ,

则 $\forall x \in G, x * \theta = \theta * x = \theta \neq e$,

性质

• 群中消去律成立。

证: 群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若x是幂等元,则,x=x*x

$$x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e.$$

• 群中不可能有零元。

证: ① 若 |G| = 1, 则唯一的元素视为单位元;

② 若|G| > 1, 且群G中有零元 θ ,

则 $\forall x \in G, x * \theta = \theta * x = \theta \neq e$,

性质

• 群中消去律成立。

证:群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若 \times 是幂等元,则,x = x * x

 $x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e$

• 群中不可能有零元。

证: ① 若 |G| = 1, 则唯一的元素视为单位元;

② 若|G| > 1, 且群G中有零元 θ ,

则 $\forall x \in G, x * \theta = \theta * x = \theta \neq e$,

性质

• 群中消去律成立。

证: 群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若x是幂等元,则,x = x * x

 $x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e.$

• 群中不可能有零元。

证: ① 若 |G| = 1, 则唯一的元素视为单位元;

② 若|G| > 1, 且群G中有零元 θ ,

则 $\forall x \in G, x * \theta = \theta * x = \theta \neq e$,

性质

• 群中消去律成立。

证:群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若 \times 是幂等元,则, $\times = \times \times \times$

$$x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e.$$

• 群中不可能有零元。

证: ① 若 |G| = 1, 则唯一的元素视为单位元;

② 若|G| > 1, 且群G中有零元 θ ,

则 $\forall x \in G, x * \theta = \theta * x = \theta \neq e$,

所以 θ 无逆元,与G是群矛盾。

性质

• 群中消去律成立。

证: 群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若x是幂等元,则,x = x * x

$$x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e.$$

• 群中不可能有零元。

证: ① 若 |G| = 1, 则唯一的元素视为单位元;

② 若|G| > 1, 且群G中有零元 θ ,

则 $\forall x \in G, x * \theta = \theta * x = \theta \neq e$,

性质

• 群中消去律成立。

证: 群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若×是幂等元,则, x = x * x

$$x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e.$$

• 群中不可能有零元。

证: ① 若 |G| = 1, 则唯一的元素视为单位元;

② 若|G| > 1, 且群G中有零元 θ , 则 $\forall x \in G, x * \theta = \theta * x = \theta \neq e$,

所以 θ 无逆元,与G是群矛盾。

性质

• 群中消去律成立。

证:群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若x是幂等元,则,x = x * x

$$x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e.$$

● 群中不可能有零元。

证: ① 若 |G| = 1, 则唯一的元素视为单位元;

② 若|G| > 1, 且群G中有零元 θ ,

 $\text{NJ} \forall x \in G, x * \theta = \theta * x = \theta \neq e,$

性质

• 群中消去律成立。

证:群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若x是幂等元,则,x = x * x

$$x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e.$$

• 群中不可能有零元。

证: ① 若|G|=1,则唯一的元素视为单位元;

② $\dot{\mathbf{z}}|G| > 1$, 且群G中有零元 θ , 则 $\forall x \in G$. $x * \theta = \theta * x = \theta \neq e$,

所以 θ 无逆元、与G是群矛盾。

性质

● 群中消去律成立。

证:群的每个元素都可逆,则每个元素都可约,所以消去律成立。

• 单位元是群中唯一的幂等元。

证: 若×是幂等元,则, x = x * x

$$x = e * x = (x^{-1} * x) * x = x^{-1} * (x * x) = x^{-1} * x = e.$$

• 群中不可能有零元。

证: ① 若 |G| = 1, 则唯一的元素视为单位元;

② 若|G| > 1, 且群G中有零元 θ ,

则 $\forall x \in G, x * \theta = \theta * x = \theta \neq e$,

所以 θ 无逆元、与G是群矛盾。

性质

- 有限群 < G,* > 的运算表中的每一行(列)是G中元素的一个置换。(有限集合S到S的一个双射,称为S的一个置换。)
- ① 先证: 群G中的任一元素在运算表中的每一行(列)中均出现(满射): 考虑运算表中对应于元素a的那一行, $\forall b \in G$,则 $b = a*(a^{-1}*b)$,... b出现在a的那一行。 由a, b的任意性,得证;
- ② 再证:一个元素在运算表中的每一行(列)中不能出现两次(单射):假设元素k在a的那一行出现两次,
 - 即 $k = a * b_1 = a * b_2$, 且 $b_1 \neq b_2$, 但与群的可约性矛盾。
- ③ 因群G中有单位元, :任两行(列)均不相同。

性质

- 有限群 < G,* > 的运算表中的每一行(列)是G中元素的一个置换。(有限集合5到5的一个双射,称为5的一个置换。)证:
- ① 先证: 群G中的任一元素在运算表中的每一行(列)中均出现(满射): 考虑运算表中对应于元素a的那一行, $\forall b \in G$,则 $b = a*(a^{-1}*b)$,... b出现在a的那一行。 a,b的任意性,得证;
- ② 再证:一个元素在运算表中的每一行(列)中不能出现两次(单射):假设元素k在a的那一行出现两次,

即 $k = a * b_1 = a * b_2$, 且 $b_1 \neq b_2$, 但与群的可约性矛盾。

③ 因群G中有单位元, ::任两行(列)均不相同。

性质

- 有限群 < G,* > 的运算表中的每一行(列)是G中元素的一个置换。(有限集合5到5的一个双射,称为5的一个置换。)证:
- ① 先证: 群G中的任一元素在运算表中的每一行(列)中均出现(满射): 考虑运算表中对应于元素a的那一行,

出d, D的任息性,行证,

② 再证:一个元素在运算表中的每一行(列)中不能出现两次(单射):假设元素k在a的那一行出现两次,

 $pk = a * b_1 = a * b_2$, 且 $b_1 \neq b_2$, 但与群的可约性矛盾。

③ 因群G中有单位元, 二任两行 (列) 均不相同。

性质

- 有限群 < G,* > 的运算表中的每一行(列)是G中元素的一个置换。(有限集合5到5的一个双射,称为5的一个置换。)证:
- ① 先证: 群G中的任一元素在运算表中的每一行(列)中均出现(满射): 考虑运算表中对应于元素a的那一行, $\forall b \in G$,则 $b = a*(a^{-1}*b)$,... b出现在a的那一行。由a, b的任意性,得证:
- ② 再证:一个元素在运算表中的每一行(列)中不能出现两次(单射):假设元素k在a的那一行出现两次,

 $pk = a * b_1 = a * b_2$, 且 $b_1 \neq b_2$, 但与群的可约性矛盾。

③ 因群G中有单位元, ::任两行(列)均不相同。

性质

- 有限群< G,*>的运算表中的每一行(列)是G中元素的一个置换。(有限集合5到5的一个双射, 称为5的一个置换。) 证:
- ① 先证: 群G中的任一元素在运算表中的每一行(列)中均出现(满射): 考虑运算表中对应于元素a的那一行, $\forall b \in G$,则 $b = a*(a^{-1}*b)$,... b出现在a的那一行。 由a, b的任意性,得证;
- ② 再证:一个元素在运算表中的每一行(列)中不能出现两次(单射):假设元素k在a的那一行出现两次,

 $pk = a * b_1 = a * b_2$, 且 $b_1 \neq b_2$, 但与群的可约性矛盾。

③ 因群G中有单位元, ::任两行(列)均不相同。

性质

- 有限群< G,*>的运算表中的每一行(列)是G中元素的一个置换。(有限集合S到S的一个双射,称为S的一个置换。)
 证:
- ① 先证: 群G中的任一元素在运算表中的每一行(列)中均出现(满射): 考虑运算表中对应于元素a的那一行, $\forall b \in G$,则 $b = a*(a^{-1}*b)$,... b出现在a的那一行。 由a, b的任意性,得证;
- ② 再证:一个元素在运算表中的每一行(列)中不能出现两次(单射):假设元素k在a的那一行出现两次,

 $pk = a * b_1 = a * b_2$, 且 $b_1 \neq b_2$, 但与群的可约性矛盾。

③ 因群G中有单位元, ::任两行(列)均不相同。

性质

- 有限群< G,*>的运算表中的每一行(列)是G中元素的一个置换。(有限集合S到S的一个双射,称为S的一个置换。)
 证:
- ① 先证: 群G中的任一元素在运算表中的每一行(列)中均出现(满射): 考虑运算表中对应于元素a的那一行, $\forall b \in G$,则 $b = a*(a^{-1}*b)$,... b出现在a的那一行。 由a, b的任意性,得证;
- ② 再证: 一个元素在运算表中的每一行(列)中不能出现两次 (单射): 假设元素k在a的那一行出现两次, 即 $k=a*b_1=a*b_2$,且 $b_1\neq b_2$,但与群的可约性矛盾。
- ③ 因群G中有单位元, 二任两行(列)均不相同。

性质

- 有限群< G,*>的运算表中的每一行(列)是G中元素的一个置换。(有限集合S到S的一个双射,称为S的一个置换。)
 证:
- ① 先证: 群G中的任一元素在运算表中的每一行(列)中均出现(满射): 考虑运算表中对应于元素a的那一行, $\forall b \in G$,则 $b = a*(a^{-1}*b)$,... b出现在a的那一行。 由a, b的任意性,得证;
- ② 再证: 一个元素在运算表中的每一行(列)中不能出现两次 (单射): 假设元素k在a的那一行出现两次, $p_k = a * b_1 = a * b_2$,且 $b_1 \neq b_2$,但与群的可约性矛盾。
- ③ 因群G中有单位元,∴任两行(列)均不相同。

有限群例子

Table: 一阶群

Table: 二阶群

*	e	a
e	e	a
a	a	e

Table: 三阶群

*	e	a	b
e	e	a	b
а	a	b	e
b	b	e	a

Table: 四阶群(1)

*	e	a	b	С
e	e	a	b	С
a	a	b	С	e
b	b	С	е	a
С	С	e	а	Ь

Table: 四阶群(2)

*	e	a	b	С
e	e	a	b	C
a	a	e	С	Ь
b	b	С	е	a
C∢	- C ∢	∌	a →	e ≘

- 群< G, *>, $\forall a \in G$, 定义函数 $f_a : G \longrightarrow G$, $x \longmapsto a * x$, 则 f_a 是双射。
- 证:

$$f_{a} \circ f_{a-1}(x)$$

$$= f_{a}(f_{a-1}(x))$$

$$= f_{a}(a^{-1} * x)$$

$$= a * a^{-1} * x = x$$

- $\therefore f_a \circ f_{a^{-1}} = \mathbb{I}_G$,同理, $f_{a^{-1}} \circ f_a = \mathbb{I}_G$,
- :. fa是双射。

- 群< G, *>, $\forall a \in G$, 定义函数 $f_a : G \longrightarrow G$, $x \longmapsto a * x$, 则 f_a 是双射。
- 证:

$$f_{a} \circ f_{a-1}(x)$$

$$= f_{a}(f_{a-1}(x))$$

$$= f_{a}(a^{-1} * x)$$

$$= a * a^{-1} * x = x$$

- $\therefore f_a \circ f_{a^{-1}} = \mathbb{I}_G$,同理, $f_{a^{-1}} \circ f_a = \mathbb{I}_G$,
- : f.是双射。

- 群< G, *>, $\forall a \in G$, 定义函数 $f_a : G \longrightarrow G$, $x \longmapsto a * x$, 则 f_a 是双射。
- 证:

$$f_a \circ f_{a^{-1}}(x)$$

= $f_a(f_{a^{-1}}(x))$
= $f_a(a^{-1} * x)$
= $a * a^{-1} * x = x$

- $\therefore f_a \circ f_{a^{-1}} = \mathbb{I}_G$,同理, $f_{a^{-1}} \circ f_a = \mathbb{I}_G$,
- :. f.是双射。

定理

- 群< G, *>, $\forall a \in G$, 定义函数 $f_a : G \longrightarrow G$, $x \longmapsto a * x$, 则 f_a 是双射。
- 证:

$$f_a \circ f_{a^{-1}}(x)$$

= $f_a(f_{a^{-1}}(x))$
= $f_a(a^{-1} * x)$
= $a * a^{-1} * x = x$

$$\therefore f_a \circ f_{a^{-1}} = \mathbb{I}_G$$
,同理, $f_{a^{-1}} \circ f_a = \mathbb{I}_G$,

:. f.是双射。

定理

- 群< G, *>, $\forall a \in G$, 定义函数 $f_a : G \longrightarrow G$, $x \longmapsto a * x$, 则 f_a 是双射。
- 证:

$$f_a \circ f_{a^{-1}}(x)$$

= $f_a(f_{a^{-1}}(x))$
= $f_a(a^{-1} * x)$
= $a * a^{-1} * x = x$

$$\therefore f_a \circ f_{a^{-1}} = \mathbb{I}_G$$
,同理, $f_{a^{-1}} \circ f_a = \mathbb{I}_G$,

:. fa是双射。

例

- 群 < G, * > 是可交换群, iff, $\forall a, b \in G, (a * b) * (a * b) = (a * a) * (b * b).$
- 证:

 \leftarrow

若∀a, b∈ G, (a*b)*(a*b) = (a*a)*(b*b),
∴
$$a^{-1}*(a*b)*(a*b)*b^{-1} = a^{-1}*(a*a)*(b*b)*b^{-1}$$
,
∴由结合律, $b*a = a*b$, 群< G,*>是可交换群;

若群 <
$$G$$
, * >是可交换群,则 $\forall a, b \in G$, $a * b = b * a$,
∴ $a * (a * b) * b = a * (b * a) * b$
∴ $(a * a) * (b * b) = (a * b) * (a * b)$

- 群 < G, * > 是可交换群, iff, $\forall a, b \in G, (a * b) * (a * b) = (a * a) * (b * b).$
- 证:

$$\leftarrow$$

若
$$\forall a, b \in G, (a*b)*(a*b) = (a*a)*(b*b),$$
∴ $a^{-1}*(a*b)*(a*b)*b^{-1} = a^{-1}*(a*a)*(b*b)*b^{-1},$
∴由结合律, $b*a = a*b$,群 $< G, *>$ 是可交换群;

$$\Longrightarrow$$

若群
$$< G, *>$$
是可交換群,则 $\forall a, b \in G, a * b = b * a,$
 $\therefore a * (a * b) * b = a * (b * a) * b$
 $\therefore (a * a) * (b * b) = (a * b) * (a * b)$

例

- 群 < G, * > 是可交换群, iff, $\forall a, b \in G, (a * b) * (a * b) = (a * a) * (b * b).$
- 证:

 \Leftarrow

若
$$\forall a, b \in G, (a*b)*(a*b) = (a*a)*(b*b),$$
∴ $a^{-1}*(a*b)*(a*b)*b^{-1} = a^{-1}*(a*a)*(b*b)*b^{-1},$
∴由结合律, $b*a = a*b$,群 $< G, *>$ 是可交换群;

若群<
$$G$$
,* >是可交换群,则 $\forall a,b \in G$, $a*b=b*a$,
∴ $a*(a*b)*b=a*(b*a)*b$
∴ $(a*a)*(b*b)=(a*b)*(a*b)$

例

- 群 < G, * > 是可交换群, iff, $\forall a, b \in G, (a * b) * (a * b) = (a * a) * (b * b).$
- 证:

$$\leftarrow$$

者
$$∀a, b ∈ G, (a * b) * (a * b) = (a * a) * (b * b),$$

$$\therefore a^{-1} * (a * b) * (a * b) * b^{-1} = a^{-1} * (a * a) * (b * b) * b^{-1}$$

若群
$$< G, * >$$
是可交换群,则 $\forall a, b \in G, a * b = b * a,$

$$\therefore a * (a * b) * b = a * (b * a) * b$$

$$(a*a)*(b*b) = (a*b)*(a*b)$$

例

- 群 < G, * > 是可交换群, iff, $\forall a, b \in G, (a * b) * (a * b) = (a * a) * (b * b).$
- 证:

$$\leftarrow$$

者
$$\forall a, b \in G, (a*b)*(a*b) = (a*a)*(b*b),$$
∴ $a^{-1}*(a*b)*(a*b)*b^{-1} = a^{-1}*(a*a)*(b*b)*b^{-1},$
∴ 由结合律, $b*a = a*b$,群 $< G, *>$ 是可交换群;

若群<
$$G$$
,* >是可交换群,则 $\forall a,b \in G$, $a*b=b*a$,
∴ $a*(a*b)*b=a*(b*a)*b$
∴ $(a*a)*(b*b)=(a*b)*(a*b)$

例

- 群< G, *>是可交换群,iff, $\forall a, b \in G, (a*b)*(a*b) = (a*a)*(b*b).$
- 证:

 \Leftarrow

若
$$\forall a, b \in G, (a*b)*(a*b) = (a*a)*(b*b),$$
∴ $a^{-1}*(a*b)*(a*b)*b^{-1} = a^{-1}*(a*a)*(b*b)*b^{-1},$
∴由结合律, $b*a = a*b$,群 $< G, *>$ 是可交换群;

若群
$$< G, *>$$
是可交换群,则 $\forall a, b \in G, a * b = b * a,$
∴ $a * (a * b) * b = a * (b * a) * b$
∴ $(a * a) * (b * b) = (a * b) * (a * b)$

例

- 群 < G, * > 是可交换群, iff, $\forall a, b \in G, (a * b) * (a * b) = (a * a) * (b * b).$
- 证:

$$\leftarrow$$

$$者 ∀a, b ∈ G, (a * b) * (a * b) = (a * a) * (b * b),$$

$$\therefore a^{-1} * (a * b) * (a * b) * b^{-1} = a^{-1} * (a * a) * (b * b) * b^{-1},$$

若群
$$< G, * >$$
是可交换群,则 $\forall a, b \in G, a * b = b * a,$

$$\therefore a * (a * b) * b = a * (b * a) * b$$

$$(a*a)*(b*b) = (a*b)*(a*b)$$

例

- 群 < G, * > 是可交换群, iff, $\forall a, b \in G, (a * b) * (a * b) = (a * a) * (b * b).$
- 证:

$$\leftarrow$$

若
$$\forall a, b \in G, (a*b)*(a*b) = (a*a)*(b*b),$$
∴ $a^{-1}*(a*b)*(a*b)*b^{-1} = a^{-1}*(a*a)*(b*b)*b^{-1},$
∴由结合律, $b*a = a*b$,群 $< G, *>$ 是可交换群;

若群
$$< G$$
, * $>$ 是可交换群,则 $\forall a, b \in G$, $a*b = b*a$,

$$\therefore a * (a * b) * b = a * (b * a) * b$$

$$(a*a)*(b*b) = (a*b)*(a*b)$$

例

- 群 < G, * > 是可交换群,iff, $\forall a, b \in G, (a * b) * (a * b) = (a * a) * (b * b).$
- 证:

$$\leftarrow$$

若
$$\forall a, b \in G, (a*b)*(a*b) = (a*a)*(b*b),$$
∴ $a^{-1}*(a*b)*(a*b)*b^{-1} = a^{-1}*(a*a)*(b*b)*b^{-1},$
∴由结合律, $b*a = a*b$,群 $< G, *>$ 是可交换群;

若群
$$< G, *>$$
是可交换群,则 $\forall a, b \in G, a * b = b * a,$
∴ $a * (a * b) * b = a * (b * a) * b$

例

- 群 < G, * > 是可交换群, iff, $\forall a, b \in G, (a * b) * (a * b) = (a * a) * (b * b).$
- 证:

$$\leftarrow$$

若
$$\forall a, b \in G, (a*b)*(a*b) = (a*a)*(b*b),$$

$$\therefore a^{-1} * (a * b) * (a * b) * b^{-1} = a^{-1} * (a * a) * (b * b) * b^{-1},$$

∴由结合律,
$$b*a=a*b$$
,群 $< G,*>$ 是可交换群;

若群
$$< G$$
, $* >$ 是可交换群,则 $\forall a, b \in G$, $a * b = b * a$,

$$\therefore a * (a * b) * b = a * (b * a) * b$$

$$(a*a)*(b*b) = (a*b)*(a*b)$$

- 设群< G, *>, $\forall a \in G$, a的整数次幂可以归纳定义为:
 - ① $a^0 = e$;
 - ② $a^{n+1} = a^n * a, (n \in \mathbb{N});$
 - ③ $a^{-n} = a^{-1} * a^{-1} * ... * a^{-1} = (a^{-1})^n, n \in \mathbb{N}_+$
- 性质:

 - $(2 (a^m)^n = a^{mn}, (m, n \in \mathbb{Z})$

- 设群< G, *>, $\forall a \in G$, a的整数次幂可以归纳定义为:
 - ① $a^0 = e$;
 - ② $a^{n+1} = a^n * a, (n \in \mathbb{N});$
 - ③ $a^{-n} = a^{-1} * a^{-1} * ... * a^{-1} = (a^{-1})^n, n \in \mathbb{N}_+$
- 性质:

- 设群< G, *>, $\forall a \in G$, a的整数次幂可以归纳定义为:
 - ① $a^0 = e$;
 - ② $a^{n+1} = a^n * a, (n \in \mathbb{N});$
 - ③ $a^{-n} = a^{-1} * a^{-1} * ... * a^{-1} = (a^{-1})^n, n \in \mathbb{N}_+$
- 性质:

 - $(a^m)^n = a^{mn}, \quad (m, n \in \mathbb{Z})$

- 设群< G, *>, $\forall a \in G$, a的整数次幂可以归纳定义为:
 - ① $a^0 = e$;
 - ② $a^{n+1} = a^n * a, (n \in \mathbb{N});$
 - ③ $a^{-n} = a^{-1} * a^{-1} * ... * a^{-1} = (a^{-1})^n, n \in \mathbb{N}_+$
- 性质:

 - $(2 (a^m)^n = a^{mn}, (m, n \in \mathbb{Z})$

- 设群< G, *>, $\forall a \in G$, a的整数次幂可以归纳定义为:
 - ① $a^0 = e$;
 - ② $a^{n+1} = a^n * a, (n \in \mathbb{N});$
 - ③ $a^{-n} = a^{-1} * a^{-1} * ... * a^{-1} = (a^{-1})^n, n \in \mathbb{N}_+$
- 性质:
 - ① $a^m * a^n = a^{m+n}$.
 - $(2 (a^m)^n = a^{mn}, (m, n \in \mathbb{Z})$

- 设群< G, *>, $\forall a \in G$, a的整数次幂可以归纳定义为:
 - ① $a^0 = e$;
 - ② $a^{n+1} = a^n * a, (n \in \mathbb{N});$
 - ③ $a^{-n} = a^{-1} * a^{-1} * ... * a^{-1} = (a^{-1})^n, n \in \mathbb{N}_+$
- 性质:
 - ① $a^m * a^n = a^{m+n}$,
 - $(2 (a^m)^n = a^{mn}, (m, n \in \mathbb{Z})$

- 设群< G, *>, $\forall a \in G$, a的整数次幂可以归纳定义为:
 - ① $a^0 = e$;
 - ② $a^{n+1} = a^n * a, (n \in \mathbb{N});$
 - ③ $a^{-n} = a^{-1} * a^{-1} * ... * a^{-1} = (a^{-1})^n, n \in \mathbb{N}_+$
- 性质:
 - ① $a^m * a^n = a^{m+n}$,
 - $(a^m)^n = a^{mn}, (m, n \in \mathbb{Z})$

定义-元素的阶

- 设< G, *, e > 是群, $a \in G$,若存在正整数n,使得 $a^n = e$,满足上式的最小正整数n称为元素a的阶,并称元素a具有有限阶n,记为|a| = n.
- 若不存在这样的正整数n,则称元素a具有无限阶。

- 单位元e的阶为1, 且单位元是阶为1的唯一元素。
- 群 $< \mathbb{Z}, +, 0 >$ 中,除单位元0外,其余元素均为无限阶.
- \bullet < \mathbb{N}_4 , +4, 0 >, |0| = 1, |1| = 4, |2| = 2, |3| = 4.

定义-元素的阶

- 设< G, *, e > 是群, $a \in G$,若存在正整数n,使得 $a^n = e$,满足上式的最小正整数n称为元素a的阶,并称元素a具有有限阶n,记为|a| = n.
- 若不存在这样的正整数n,则称元素a具有无限阶。

- 单位元e的阶为1,且单位元是阶为1的唯一元素。
- 群 $< \mathbb{Z}, +, 0 >$ 中,除单位元0外,其余元素均为无限阶.
- \bullet < \mathbb{N}_4 , +4, 0 >, |0| = 1, |1| = 4, |2| = 2, |3| = 4.

定义-元素的阶

- 设< G, *, e > 是群, $a \in G$,若存在正整数n,使得 $a^n = e$,满足上式的最小正整数n称为元素a的阶,并称元素a具有有限阶n,记为|a| = n.
- 若不存在这样的正整数n,则称元素a具有无限阶。

- 单位元e的阶为1,且单位元是阶为1的唯一元素。
- 群< ℤ,+,0>中,除单位元0外,其余元素均为无限阶.
- \bullet < \mathbb{N}_4 , +4, 0 >, |0| = 1, |1| = 4, |2| = 2, |3| = 4.

定义-元素的阶

- 设< G, *, e > 是群, $a \in G$,若存在正整数n,使得 $a^n = e$,满足上式的最小正整数n称为元素a的阶,并称元素a具有有限阶n,记为|a| = n.
- 若不存在这样的正整数n,则称元素a具有无限阶。

- 单位元e的阶为1,且单位元是阶为1的唯一元素。
- 群 $< \mathbb{Z}, +, 0 >$ 中,除单位元0外,其余元素均为无限阶.
- \bullet < \mathbb{N}_4 , +4, 0 >, |0| = 1, |1| = 4, |2| = 2, |3| = 4.

定义-元素的阶

- 设< G, *, e > 是群, $a \in G$,若存在正整数n,使得 $a^n = e$,满足上式的最小正整数n称为元素a的阶,并称元素a具有有限阶n,记为|a| = n.
- 若不存在这样的正整数n,则称元素a具有无限阶。

- 单位元e的阶为1,且单位元是阶为1的唯一元素。
- 群 $< \mathbb{Z}, +, 0 >$ 中,除单位元0外,其余元素均为无限阶.
- \bullet < \mathbb{N}_4 , +4, 0 >, |0| = 1, |1| = 4, |2| = 2, |3| = 4.

定理

- $\# < G, *, e > \psi$, |a| = n, $\| a^k = e$, iff, n | k.
- 证明:

 \leftarrow

若
$$n|k$$
,即 $k = mn, m \in \mathbb{Z}$,则 $a^k = a^{mn} = (a^n)^m = e^m = e$.

-

若
$$a^k = e$$
, 设 $k = mn + t$, $0 \leqslant t < n$, $m \in \mathbb{Z}$,

$$\therefore a^t = a^{k-mn} = a^k * (a^n)^{-m} = e * e^{-m} = e$$

$$\therefore$$
 n是使 $a^n = e$ 的最小正整数,又 $0 \le t < n$,

$$\therefore t = 0, k = mn.$$

定理

- $\# < G, *, e > \psi$, |a| = n, $\| a^k = e$, iff, n | k.
- 证明:

 \leftarrow

若
$$n|k$$
,即 $k = mn, m \in \mathbb{Z}$,则 $a^k = a^{mn} = (a^n)^m = e^m = e$.

 \Longrightarrow

 \therefore n是使 $a^n = e$ 的最小正整数,又 $0 \le t < n$, $\therefore t = 0, k = mn$.

定理

- $\# < G, *, e > \psi$, |a| = n, $\| a^k = e$, iff, n | k.
- 证明:

$$\leftarrow$$

若
$$n|k$$
,即 $k=mn, m \in \mathbb{Z}$,则 $a^k=a^{mn}=(a^n)^m=e^m=e$.

 \Longrightarrow

若
$$a^k = e$$
, 设 $k = mn + t$, $0 \le t < n$, $m \in \mathbb{Z}$,
 $a^t = a^{k-mn} = a^k * (a^n)^{-m} = e * e^{-m} = e$.

 \therefore n是使 $a^n = e$ 的最小正整数,又 $0 \leqslant t < n$,

 $\therefore t = 0, k = mn.$

- $\# < G, *, e > +, |a| = n, M |a^k| = e, \text{ iff}, n|k.$
- 证明:

$$\leftarrow$$

若
$$n|k$$
,即 $k=mn, m \in \mathbb{Z}$,

则
$$a^{\kappa} = a^{mn} = (a^n)^m = e^m = e.$$

若
$$a^k = e$$
,设 $k = mn + t, 0 \leqslant t < n, m \in \mathbb{Z}$,

$$\therefore a^t = a^{k-mn} = a^k * (a^n)^{-m} = e * e^{-m} = e.$$

::
$$n$$
是使 $a^n = e$ 的最小正整数,又 $0 \le t < n$,

$$\therefore t = 0, k = mn.$$

- 群 < G, *, e >中,|a| = n,则 $a^k = e$, iff, n|k.
- 证明:

$$\leftarrow$$

$$若n|k$$
,即 $k=mn, m \in \mathbb{Z}$,则 $a^k=a^{mn}=(a^n)^m=e^m=e$.

$$\Longrightarrow$$

定理

- $\# < G, *, e > +, |a| = n, M |a^k| = e, \text{ iff}, n|k.$
- 证明:

$$\leftarrow$$

若
$$n|k$$
,即 $k=mn, m \in \mathbb{Z}$,则 $a^k=a^{mn}=(a^n)^m=e^m=e$.

 \Longrightarrow

定理

- \not $\mathbf{A} < G, *, e > \mathbf{p}$, |a| = n, \mathbf{M} $a^k = e$, iff, n | k.
- 证明:

$$\leftarrow$$

若
$$n|k$$
, 即 $k = mn, m \in \mathbb{Z}$, 则 $a^k = a^{mn} = (a^n)^m = e^m = e$.

$$\Longrightarrow$$

若
$$a^k = e$$
,设 $k = mn + t, 0 \leqslant t < n, m \in \mathbb{Z}$,

$$\therefore a^t = a^{k-mn} = a^k * (a^n)^{-m} = e * e^{-m} = e.$$

 \therefore n是使 $a^n = e$ 的最小正整数,又 $0 \le t < n$,

 $\therefore t = 0, k = mn.$

定理

- $\# < G, *, e > +, |a| = n, M |a^k| = e, \text{ iff}, n|k.$
- 证明:

$$\leftarrow$$

若
$$n|k$$
, 即 $k = mn, m \in \mathbb{Z}$, 则 $a^k = a^{mn} = (a^n)^m = e^m = e$.

$$\Longrightarrow$$

 $\therefore t = 0, k = mn.$

- $\# < G, *, e > +, |a| = n, M |a^k| = e, \text{ iff}, n|k.$
- 证明:

$$\leftarrow$$

若
$$n|k$$
, 即 $k = mn, m \in \mathbb{Z}$, 则 $a^k = a^{mn} = (a^n)^m = e^m = e$.

$$\Longrightarrow$$

$$若 a^k = e$$
,设 $k = mn + t, 0 \leqslant t < n, m \in \mathbb{Z}$,
$$\therefore a^t = a^{k-mn} = a^k * (a^n)^{-m} = e * e^{-m} = e.$$

$$\therefore$$
 n是使 $a^n = e$ 的最小正整数,又 $0 \le t < n$,

$$\therefore t = 0, k = mn.$$

- \not $\mathbf{A} < G, *, e > \mathbf{p}$, |a| = n, \mathbf{M} $a^k = e$, iff, n | k.
- 证明:

$$\leftarrow$$

若
$$n|k$$
, 即 $k = mn, m \in \mathbb{Z}$,

则
$$a^k = a^{mn} = (a^n)^m = e^m = e$$
.

$$\Longrightarrow$$

若
$$a^k = e$$
,设 $k = mn + t, 0 \leq t < n, m \in \mathbb{Z}$,

$$\therefore a^t = a^{k-mn} = a^k * (a^n)^{-m} = e * e^{-m} = e.$$

∴
$$n$$
是使 $a^n = e$ 的最小正整数,又 $0 \le t < n$,

$$\therefore$$
 $t = 0, k = mn$.

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群 $< G, *, e > 中, a \in G$,

① 若元素a具有有限阶,设|a| = n, $\therefore (a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e$, 则 a^{-1} 也具有有限阶,设为m,则 $m \le n$, 又 $\therefore a^m = ((a^{-1})^m)^{-1} = e^{-1} = e$, $\therefore n \le n$

所以m = n

② 若元素 a 具有无限阶,

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群 $< G, *, e > 中, a \in G$,

① 若元素a具有有限阶,设|a|=n, $\therefore (a^{-1})^n=a^{-1\cdot n}=(a^n)^{-1}=e^{-1}=e$, 则 a^{-1} 也具有有限阶,设为m,则 $m \leq n$, 又 $\therefore a^m=((a^{-1})^m)^{-1}=e^{-1}=e$, $\therefore n \leq m$, 所以 m=n

② 若元素 4具有无限阶,

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群< G, *, e >中, $a \in G$,

① 若元素a具有有限阶,设|a| = n, $\therefore (a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e$, 则 a^{-1} 也具有有限阶,设为m,则 $m \le n$, 又 $\therefore a^m = ((a^{-1})^m)^{-1} = e^{-1} = e$, $\therefore n \le m$, 所以m = n;

② 若元素 a 具有无限阶,

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群< G, *, e >中, $a \in G$,

① 若元素a具有有限阶,设|a|=n,

$$(a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e,$$
则 a^{-1} 也具有有限阶,设为 m ,则 $m \le n$,又 $(a^m)^m = ((a^{-1})^m)^{-1} = e^{-1} = e, (n \le m)$ 所以 $m = n$:

② 若元素 4具有无限阶,

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群< G, *, e >中, $a \in G$,

① 若元素a具有有限阶,设|a|=n,

$$(a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e,$$

则 a^{-1} 也具有有限阶,设为m,则 $m \leq n$,

$$\mathbf{X}$$
: $a^m = ((a^{-1})^m)^{-1} = e^{-1} = e$, : $n \leq m$,

所以m=n;

② 若元素a具有无限阶、

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群< G, *, e >中, $a \in G$,

① 若元素a具有有限阶,设|a|=n,

$$(a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e$$

则 a^{-1} 也具有有限阶,设为m,则 $m \leq n$,

X:
$$a^m = ((a^{-1})^m)^{-1} = e^{-1} = e$$
, ∴ $n \leq m$,

所以m=n;

② 若元素 3具有无限阶,

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

所以、元素。和其逆元有相同的阶。

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群
$$< G, *, e >$$
中, $a \in G$,

① 若元素a具有有限阶,设|a|=n,

$$(a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e,$$

则 a^{-1} 也具有有限阶,设为m,则 $m \leq n$,

$$X: a^m = ((a^{-1})^m)^{-1} = e^{-1} = e, : n \leq m,$$

所以m=n;

② 若元素 3具有无限阶,

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群< G, *, e >中, $a \in G$,

① 若元素a具有有限阶,设|a|=n,

$$(a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e,$$

则 a^{-1} 也具有有限阶,设为m,则 $m \leq n$,

$$X: a^m = ((a^{-1})^m)^{-1} = e^{-1} = e, : n \leq m,$$

所以m=n;

② 若元素a具有无限阶、

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群< G, *, e >中, $a \in G$,

① 若元素a具有有限阶,设|a|=n,

$$(a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e,$$

则 a^{-1} 也具有有限阶,设为m,则 $m \leq n$,

$$\mathbf{X}$$
: $a^m = ((a^{-1})^m)^{-1} = e^{-1} = e$, : $n \leq m$,

所以m=n;

② 若元素 具有无限阶,

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群< G, *, e >中, $a \in G$,

① 若元素a具有有限阶,设|a|=n,

$$(a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e,$$

则 a^{-1} 也具有有限阶,设为m,则 $m \leq n$,

$$\mathbf{X}$$
: $a^m = ((a^{-1})^m)^{-1} = e^{-1} = e, : n \leq m,$

所以m=n;

② 若元素 4 具有无限阶,

易证不存在正整数m使得 $(a^{-1})^m = e$, 即 a^{-1} 也具有无限 阶;

定理

- 群中任一元素和其逆元具有相同的阶。
- 证明:

设群< G, *, e >中, $a \in G$,

① 若元素a具有有限阶,设|a|=n,

$$(a^{-1})^n = a^{-1 \cdot n} = (a^n)^{-1} = e^{-1} = e$$

则 a^{-1} 也具有有限阶,设为m,则 $m \leq n$,

$$\mathfrak{X}$$
: $a^m = ((a^{-1})^m)^{-1} = e^{-1} = e, : n \leq m,$

所以m=n;

② 若元素 具有无限阶,

易证不存在正整数m使得 $(a^{-1})^m = e$,即 a^{-1} 也具有无限阶;

定理

- 在有限群 $\langle G, *, e \rangle$ 中,设|G| = n,则任一元素具有有限阶,且阶至多为n.
- 证明:

 $\forall a \in G$, 在序列 $a, a^2, a^3, ..., a^{n+1}$ 中至少有两个元素相等,不妨设 $a^r = a^s, 1 \le r < s \le n+1$,

则 $a^{-r} = a^{-s}$,

则 $a^{s-r} = a^s * a^{-r} = a^s * a^{-s} = e$

所以,元素a的阶至多为s-r ≤ n.

定理

- 在有限群 $\langle G, *, e \rangle$ 中,设|G| = n,则任一元素具有有限阶,且阶至多为n.
- 证明:

 $\forall a \in G$, 在序列 $a, a^2, a^3, ..., a^{n+1}$ 中至少有两个元素相等,不妨设 $a^r = a^s, 1 \le r < s \le n+1$,

则 $a^{-r} = a^{-s}$,

所以,元素a的阶至多为 $s-r \leq n$.

定理

• 在有限群 $\langle G, *, e \rangle$ 中,设|G| = n,则任一元素具有有限 阶、且阶至多为n.

所以、元素a的阶至多为 $s-r \leq n$.

● 证明:

 $\forall a \in G$, 在序列 $a, a^2, a^3, \dots, a^{n+1}$ 中至少有两个元素相等,

定理

- 在有限群 $\langle G, *, e \rangle$ 中,设|G| = n,则任一元素具有有限阶,且阶至多为n.
- 证明:

 $\forall a \in G$, 在序列 $a, a^2, a^3, ..., a^{n+1}$ 中至少有两个元素相等,不妨设 $a^r = a^s, 1 \le r < s \le n+1$,

则 $a^{-r} = a^{-s}$,

所以,元素a的阶至多为 $s-r \leq n$.

定理

- 在有限群 $\langle G, *, e \rangle$ 中,设|G| = n,则任一元素具有有限阶,且阶至多为n.
- 证明:

 $\forall a \in G$, 在序列 $a, a^2, a^3, ..., a^{n+1}$ 中至少有两个元素相等,不妨设 $a^r = a^s, 1 \le r < s \le n+1$,则 $a^{-r} = a^{-s}$,

则 $a^{s-r} = a^s * a^{-r} = a^s * a^{-s} = e$ 所以,元素a的阶至多为 $s-r \le n$.

定理

- 在有限群 $\langle G, *, e \rangle$ 中,设|G| = n,则任一元素具有有限阶,且阶至多为n.
- 证明:

 $\forall a \in G$, 在序列 $a, a^2, a^3, ..., a^{n+1}$ 中至少有两个元素相等,不妨设 $a^r = a^s, 1 \leqslant r < s \leqslant n+1$,

则
$$a^{-r}=a^{-s}$$
,

$$M \ a^{s-r} = a^s * a^{-r} = a^s * a^{-s} = e$$

所以,元素a的阶至多为 $s-r \leq n$.

定理

- 在有限群 $\langle G, *, e \rangle$ 中,设|G| = n,则任一元素具有有限阶,且阶至多为n.
- 证明:

 $\forall a \in G$, 在序列 $a, a^2, a^3, ..., a^{n+1}$ 中至少有两个元素相等,不妨设 $a^r = a^s, 1 \leqslant r < s \leqslant n+1$,则 $a^{-r} = a^{-s}$,

则
$$a^{s-r} = a^s * a^{-r} = a^s * a^{-s} = e$$

所以,元素a的阶至多为 $s-r \le n$.

- 群 < G, *, e >中, $a \in G \ |a| = n$,则 $|a^k| = \frac{n}{(k,n)}, (k \in \mathbb{Z})$. 特别的, $|a^{-1}| = |a|$.
- 证明:

- 群< G, *, e >中, $a \in G \ |a| = n$,则 $|a^k| = \frac{n}{(k,n)}, (k \in \mathbb{Z})$. 特别的, $|a^{-1}| = |a|$.
- 证明:

$$oldsymbol{\mathcal{B}}|a^k|=m$$
,则 $a^{km}=e$, $\therefore n|km$,即 $\frac{n}{(k,n)}|\frac{km}{(k,n)}$, $\overline{m}\frac{n}{(k,n)}$ 与 $\frac{k}{(k,n)}$ 互质,故 $\frac{n}{(k,n)}|m$, \mathcal{X} $\therefore (a^k)^{\frac{n}{(k,n)}}=(a^n)^{\frac{k}{(k,n)}}=e$, $\therefore m|\frac{n}{(k,n)}$ \mathcal{X} m , $\frac{n}{(k,n)}\in\mathbb{Z}_+$, $\therefore m=\frac{n}{(k,n)}$.

- 群< G, *, e >中, $a \in G |a| = n$,则 $|a^k| = \frac{n}{(k,n)}, (k \in \mathbb{Z})$. 特别的, $|a^{-1}| = |a|$.
- 证明:

$$oldsymbol{\mathcal{U}}|a^k|=m$$
,则 $a^{km}=e$,
 $\therefore n|km$,即 $\frac{n}{(k,n)}|\frac{km}{(k,n)}$,
而 $\frac{n}{(k,n)}$ 与 $\frac{k}{(k,n)}$ 互质,故 $\frac{n}{(k,n)}|m$,
又 $\therefore (a^k)^{\frac{n}{(k,n)}}=(a^n)^{\frac{k}{(k,n)}}=e$,
 $\therefore m|\frac{n}{(k,n)}$
又 $m,\frac{n}{(k,n)}\in\mathbb{Z}_+, \therefore m=\frac{n}{(k,n)}$.

- 群< G, *, e >中, $a \in G |a| = n$,则 $|a^k| = \frac{n}{(k,n)}, (k \in \mathbb{Z})$. 特别的, $|a^{-1}| = |a|$.
- 证明:

$$\mathcal{E}|a^{k}| = m$$
,则 $a^{km} = e$,
 $\therefore n|km$,即 $\frac{n}{(k,n)}|\frac{km}{(k,n)}$,
而 $\frac{n}{(k,n)}$ 与 $\frac{k}{(k,n)}$ 互质,故 $\frac{n}{(k,n)}|m$,
又 $\therefore (a^{k})^{\frac{n}{(k,n)}} = (a^{n})^{\frac{k}{(k,n)}} = e$,
 $\therefore m|\frac{n}{(k,n)}$
又 m , $\frac{n}{(k,n)} \in \mathbb{Z}_{+}$, $\therefore m = \frac{n}{(k,n)}$.

- 群< G, *, e >中, $a \in G |a| = n$,则 $|a^k| = \frac{n}{(k,n)}, (k \in \mathbb{Z})$. 特别的, $|a^{-1}| = |a|$.
- 证明:

$$\mathfrak{X} \cdot (a^k)^{\frac{n}{(k,n)}} = (a^n)^{\frac{k}{(k,n)}} = e,$$

$$\therefore m|_{\frac{n}{(k,n)}}$$

$$\mathbf{X}m, \frac{n}{(k,n)} \in \mathbb{Z}_+, \therefore m = \frac{n}{(k,n)}.$$

- 群 < G, *, e > 中, $a \in G$ |a| = n, 则 $|a^k| = \frac{n}{(k,n)}$, $(k \in \mathbb{Z})$. 特别的, $|a^{-1}| = |a|$.
- 证明:

- 群< G, *, e >中, $a \in G |a| = n$,则 $|a^k| = \frac{n}{(k,n)}, (k \in \mathbb{Z})$. 特别的, $|a^{-1}| = |a|$.
- 证明:

设
$$|a^k|=m$$
,则 $a^{km}=e$,
 $\therefore n|km$,即 $\frac{n}{(k,n)}|\frac{km}{(k,n)}$,
而 $\frac{n}{(k,n)}$ 与 $\frac{k}{(k,n)}$ 互质,故 $\frac{n}{(k,n)}|m$,
又 $\therefore (a^k)^{\frac{n}{(k,n)}}=(a^n)^{\frac{k}{(k,n)}}=e$,
 $\therefore m|\frac{n}{(k,n)}$
又 $m,\frac{n}{(k,n)}\in\mathbb{Z}_+, \therefore m=\frac{n}{(k,n)}$.

- 群< G, *, e >中, $a \in G |a| = n$,则 $|a^k| = \frac{n}{(k,n)}, (k \in \mathbb{Z})$. 特别的, $|a^{-1}| = |a|$.
- 证明:

设
$$|a^k|=m$$
,则 $a^{km}=e$, $\therefore n|km$,即 $\frac{n}{(k,n)}|\frac{km}{(k,n)}$, $\frac{n}{(k,n)}$ 与 $\frac{k}{(k,n)}$ 互质,故 $\frac{n}{(k,n)}|m$,又 $\therefore (a^k)^{\frac{n}{(k,n)}}=(a^n)^{\frac{k}{(k,n)}}=e$, $\therefore m|\frac{n}{(k,n)}$ 又 m , $\frac{n}{(k,n)}\in\mathbb{Z}_+, \therefore m=\frac{n}{(k,n)}$.

内容

- 1 群的性质
 - 群的性质
 - 元素的阶
- ② 陪集和拉格朗日定理
 - 陪集的定义和性质
 - 拉格朗日定理
 - 陪集关系

陪集

定义-左陪集(右陪集)

- 设< H, * > 是群< G, * > 的子群,
- 集合a*H ≜ {a*h|h∈H}为元素a∈G所确定的H的左陪集。
 左陪集a*H可简记为aH.元素a为左陪集aH的表示元素.
- 集合 $H*a \triangleq \{h*a|h \in H\}$ 为元素 $a \in G$ 所确定的H的右陪集。 右陪集H*a可简记为Ha. 元素a为右陪集Ha的表示元素.

陪集

定义-左陪集(右陪集)

- $\mathcal{C} < H, * > \mathcal{E} \not\subset G, * > 0$
- 集合a*H ≜ {a*h|h∈H}为元素a∈G所确定的H的左陪集。
 左陪集a*H可简记为aH. 元素a为左陪集aH的表示元素.
- 集合H*a = {h*a|h∈H}为元素a∈G所确定的H的右陪集。
 右陪集H*a可简记为Ha.元素a为右陪集Ha的表示元素。

陪集

定义-左陪集(右陪集)

- 设< H, * > 是群< G, * > 的子群,
- 集合a*H ≜ {a*h|h∈H}为元素a∈G所确定的H的左陪集。
 左陪集a*H可简记为aH.元素a为左陪集aH的表示元素.
- 集合H*a ≜ {h*a|h∈H}为元素a∈G所确定的H的右陪集。
 右陪集H*a可简记为Ha.元素a为右陪集Ha的表示元素。

例 S3的左陪集

•
$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, ($$
 \mathring{k}

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) (3)$$

 $\triangleq \{\mathbb{I}, a, a^2, b, c, d\};$

• 3次对称群 $\langle S_3, \circ \rangle$, $H = \{I, d\}$ 是群 S_3 的一个子群。

- $\mathbb{I}H = {\mathbb{I} \circ \mathbb{I}, \mathbb{I} \circ d} = {\mathbb{I}, d}$ $dH = {d \circ \mathbb{I}, d \circ d} = {d, \mathbb{I}}$
- $cH = \{c \circ \mathbb{I}, c \circ d\} = \{c, a\}$ $aH = \{a \circ \mathbb{I}, a \circ d\} = \{a, c\}$
- $bH = \{b \circ \mathbb{I}, b \circ d\} = \{b, a^2\}$ $a^2H = \{a^2 \circ \mathbb{I}, a^2 \circ d\} = \{a^2, b\}$
- H的所有左陪集组成的集合 $\{[I, d], \{a, c\}, \{b, a^2\}\}$

例 S3的左陪集

•
$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} \lambda \end{pmatrix} \right\}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
(翻转)

 $\triangleq \{\mathbb{I}, a, a^2, b, c, d\};$

• 3次对称群 $\langle S_3, \circ \rangle$, $H = \{\mathbb{I}, d\}$ 是群 S_3 的一个子群。

- $\mathbb{I}H = {\mathbb{I} \circ \mathbb{I}, \mathbb{I} \circ d} = {\mathbb{I}, d}$ $dH = {d \circ \mathbb{I}, d \circ d} = {d, \mathbb{I}}$
- $cH = \{c \circ \mathbb{I}, c \circ d\} = \{c, a\}$ $aH = \{a \circ \mathbb{I}, a \circ d\} = \{a, c\}$
- $bH = \{b \circ \mathbb{I}, b \circ d\} = \{b, a^2\}$ $a^2H = \{a^2 \circ \mathbb{I}, a^2 \circ d\} = \{a^2, b\}$
- H的所有左陪集组成的集合{{I, d}, {a, c}, {b, a²}}

例 S3的左陪集

•
$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} \lambda \xi \end{pmatrix} \right\}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} \lambda \xi \end{pmatrix}$$

 $\triangleq \{\mathbb{I}, a, a^2, b, c, d\};$

• 3次对称群 $\langle S_3, \circ \rangle$, $H = \{\mathbb{I}, d\}$ 是群 S_3 的一个子群。

- $\mathbb{I}H = {\mathbb{I} \circ \mathbb{I}, \mathbb{I} \circ d} = {\mathbb{I}, d}$ $dH = {d \circ \mathbb{I}, d \circ d} = {d, \mathbb{I}}$
- $cH = \{c \circ \mathbb{I}, c \circ d\} = \{c, a\}$ $aH = \{a \circ \mathbb{I}, a \circ d\} = \{a, c\}$
- $bH = \{b \circ \mathbb{I}, b \circ d\} = \{b, a^2\}$ $a^2H = \{a^2 \circ \mathbb{I}, a^2 \circ d\} = \{a^2, b\}$
- H的所有左陪集组成的集合 $\{[I, d], \{a, c\}, \{b, a^2\}\}$

例 S3的左陪集

•
$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, ($$

 $\triangleq \{\mathbb{I}, a, a^2, b, c, d\};$

• 3次对称群 $\langle S_3, \circ \rangle$, $H = \{I, d\}$ 是群 S_3 的一个子群。

- $\mathbb{I}H = {\mathbb{I} \circ \mathbb{I}, \mathbb{I} \circ d} = {\mathbb{I}, d}$ $dH = {d \circ \mathbb{I}, d \circ d} = {d, \mathbb{I}}$
- $cH = \{c \circ \mathbb{I}, c \circ d\} = \{c, a\}$ $aH = \{a \circ \mathbb{I}, a \circ d\} = \{a, c\}$
- $bH = \{b \circ \mathbb{I}, b \circ d\} = \{b, a^2\}$ $a^2H = \{a^2 \circ \mathbb{I}, a^2 \circ d\} = \{a^2, b\}$
- H的所有左陪集组成的集合 $\{[I,d],\{a,c\},\{b,a^2\}\}$

例 S3的左陪集

•
$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} \lambda \end{pmatrix} \right\}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} \lambda \end{pmatrix} \begin{pmatrix} \lambda \end{pmatrix}$$

 $\triangleq \{\mathbb{I}, a, a^2, b, c, d\};$

• 3次对称群 $\langle S_3, \circ \rangle$, $H = \{I, d\}$ 是群 S_3 的一个子群。

H的所有的左陪集为:

•
$$\mathbb{I}H = {\mathbb{I} \circ \mathbb{I}, \mathbb{I} \circ d} = {\mathbb{I}, d}$$
 $dH = {d \circ \mathbb{I}, d \circ d} = {d, \mathbb{I}}$

•
$$cH = \{c \circ \mathbb{I}, c \circ d\} = \{c, a\}$$
 $aH = \{a \circ \mathbb{I}, a \circ d\} = \{a, c\}$

•
$$bH = \{b \circ \mathbb{I}, b \circ d\} = \{b, a^2\}$$
 $a^2H = \{a^2 \circ \mathbb{I}, a^2 \circ d\} = \{a^2, b\}$

• H的所有左陪集组成的集合 $\{[I, d], \{a, c\}, \{b, a^2\}\}$

例 S3的左陪集

•
$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \begin{pmatrix} \lambda \end{pmatrix}, \begin{pmatrix} \lambda \end{pmatrix} \right\}$$

 $\triangleq \{\mathbb{I}, a, a^2, b, c, d\};$

• 3次对称群 $\langle S_3, \circ \rangle$, $H = \{\mathbb{I}, d\}$ 是群 S_3 的一个子群。

H的所有的左陪集为:

•
$$\mathbb{I}H = {\mathbb{I} \circ \mathbb{I}, \mathbb{I} \circ d} = {\mathbb{I}, d}$$
 $dH = {d \circ \mathbb{I}, d \circ d} = {d, \mathbb{I}}$

•
$$cH = \{c \circ \mathbb{I}, c \circ d\} = \{c, a\}$$
 $aH = \{a \circ \mathbb{I}, a \circ d\} = \{a, c\}$

•
$$bH = \{b \circ \mathbb{I}, b \circ d\} = \{b, a^2\}$$
 $a^2H = \{a^2 \circ \mathbb{I}, a^2 \circ d\} = \{a^2, b\}$

• H的所有左陪集组成的集合 $\{[I,d],\{a,c\},\{b,a^2\}\}$

例 S3的左陪集

•
$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, ($$

$$\triangleq \left\{ \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix} \right\}$$

 $\triangleq \{\mathbb{I}, a, a^2, b, c, d\};$

• 3次对称群 $\langle S_3, \circ \rangle$, $H = \{I, d\}$ 是群 S_3 的一个子群。

H的所有的左陪集为:

•
$$\mathbb{I}H = {\mathbb{I} \circ \mathbb{I}, \mathbb{I} \circ d} = {\mathbb{I}, d}$$
 $dH = {d \circ \mathbb{I}, d \circ d} = {d, \mathbb{I}}$

•
$$cH = \{c \circ \mathbb{I}, c \circ d\} = \{c, a\}$$
 $aH = \{a \circ \mathbb{I}, a \circ d\} = \{a, c\}$

•
$$bH = \{b \circ \mathbb{I}, b \circ d\} = \{b, a^2\}$$
 $a^2H = \{a^2 \circ \mathbb{I}, a^2 \circ d\} = \{a^2, b\}$

● H的所有左陪集组成的集合{{I, d}, {a, c}, {b, a²}}

例 S3的左陪集

•
$$S_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}, ($$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, ($$

 $\triangleq \{\mathbb{I}, a, a^2, b, c, d\};$

• 3次对称群 $\langle S_3, \circ \rangle$, $H = \{\mathbb{I}, d\}$ 是群 S_3 的一个子群。

H的所有的左陪集为:

•
$$\mathbb{I}H = {\mathbb{I} \circ \mathbb{I}, \mathbb{I} \circ d} = {\mathbb{I}, d}$$
 $dH = {d \circ \mathbb{I}, d \circ d} = {d, \mathbb{I}}$

•
$$cH = \{c \circ \mathbb{I}, c \circ d\} = \{c, a\}$$
 $aH = \{a \circ \mathbb{I}, a \circ d\} = \{a, c\}$

•
$$bH = \{b \circ \mathbb{I}, b \circ d\} = \{b, a^2\}$$
 $a^2H = \{a^2 \circ \mathbb{I}, a^2 \circ d\} = \{a^2, b\}$

• H的所有左陪集组成的集合 $\{[I,d],\{a,c\},\{b,a^2\}\}$

H的所有的右陪集为:

- $\bullet \ H\mathbb{I} = \{\mathbb{I} \circ \mathbb{I}, d \circ \mathbb{I}\} = \{\mathbb{I}, d\} \quad Hd = \{\mathbb{I} \circ d, d \circ d\} = \{d, \mathbb{I}\}$
- $Hc = {\mathbb{I} \circ c, d \circ c} = {c, a^2}$ $Ha^2 = {\mathbb{I} \circ a^2, d \circ a^2} = {a^2, c}$
- $Hb = \{ \mathbb{I} \circ b, d \circ b \} = \{ b, a \}$ $Ha = \{ \mathbb{I} \circ a, d \circ a \} = \{ a, b \}$

- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- H的所有左陪集组成的集合{{I, d}, {a, c}, {b, a²}}

H的所有的右陪集为:

- $H\mathbb{I} = {\mathbb{I} \circ \mathbb{I}, d \circ \mathbb{I}} = {\mathbb{I}, d}$ $Hd = {\mathbb{I} \circ d, d \circ d} = {d, \mathbb{I}}$
- $Hc = {\mathbb{I} \circ c, d \circ c} = {c, a^2}$ $Ha^2 = {\mathbb{I} \circ a^2, d \circ a^2} = {a^2, c}$
- $Hb = {\mathbb{I} \circ b, d \circ b} = {b, a}$ $Ha = {\mathbb{I} \circ a, d \circ a} = {a, b}$

- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- H的所有左陪集组成的集合 $\{\{I, d\}, \{a, c\}, \{b, a^2\}\}$

H的所有的右陪集为:

- $H\mathbb{I} = {\mathbb{I} \circ \mathbb{I}, d \circ \mathbb{I}} = {\mathbb{I}, d}$ $Hd = {\mathbb{I} \circ d, d \circ d} = {d, \mathbb{I}}$
- $Hc = {\mathbb{I} \circ c, d \circ c} = {c, a^2}$ $Ha^2 = {\mathbb{I} \circ a^2, d \circ a^2} = {a^2, c}$
- $Hb = {\mathbb{I} \circ b, d \circ b} = {b, a}$ $Ha = {\mathbb{I} \circ a, d \circ a} = {a, b}$

- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- H的所有左陪集组成的集合 $\{\{I, d\}, \{a, c\}, \{b, a^2\}\}$

H的所有的右陪集为:

- $H\mathbb{I} = {\mathbb{I} \circ \mathbb{I}, d \circ \mathbb{I}} = {\mathbb{I}, d}$ $Hd = {\mathbb{I} \circ d, d \circ d} = {d, \mathbb{I}}$
- $Hc = {\mathbb{I} \circ c, d \circ c} = {c, a^2}$ $Ha^2 = {\mathbb{I} \circ a^2, d \circ a^2} = {a^2, c}$
- $Hb = {\mathbb{I} \circ b, d \circ b} = {b, a}$ $Ha = {\mathbb{I} \circ a, d \circ a} = {a, b}$

- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- H的所有左陪集组成的集合{{I, d}, {a, c}, {b, a²}}

H的所有的右陪集为:

- $H\mathbb{I} = {\mathbb{I} \circ \mathbb{I}, d \circ \mathbb{I}} = {\mathbb{I}, d}$ $Hd = {\mathbb{I} \circ d, d \circ d} = {d, \mathbb{I}}$
- $Hc = {\mathbb{I} \circ c, d \circ c} = {c, a^2}$ $Ha^2 = {\mathbb{I} \circ a^2, d \circ a^2} = {a^2, c}$
- $Hb = {\mathbb{I} \circ b, d \circ b} = {b, a}$ $Ha = {\mathbb{I} \circ a, d \circ a} = {a, b}$

- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- H的所有左陪集组成的集合 $\{[I,d],\{a,c\},\{b,a^2\}\}$

定理

- 设< H,* >是群< G,* >的子群, aH和bH是任意两个左陪集, 则aH = bH, 或 $aH \cap bH = \emptyset$.
- 证:

```
设aH \cap bH \neq \emptyset,则∃f \in aH \cap bH,
∴ ∃h_1, h_2 \in H,使得f = a*h_1 = b*h_2, ∴ a = b*h_2*h_1^{-1}
(证明aH \subseteq bH)
```

 $\because \forall x \in aH, \exists h \in H, \ x = a * h, \ , \ p x = b * h_2 * h_1^{-1} * h, \ \because H$ 是子群, $\therefore h_2 * h_1^{-1} * h \in H, \therefore x \in bH, \therefore aH \subseteq bH.$ 同理可证, $bH \subseteq aH$,paH = bH 或 $aH \cap bH = \emptyset$

- 设< H,* >是群< G,* >的子群, aHabH是任意两个左陪集, MaH = bH, $A = \emptyset$.
- 证:

定理

- 设< H,* >是群< G,* >的子群, aHnbH是任意两个左陪集, 则aH = bH, 或 $aH \cap bH = \emptyset$.
- 证:

 $\boldsymbol{\mathcal{C}}_{a}H \cap bH \neq \emptyset, \, \, \boldsymbol{\mathcal{M}} \exists f \in aH \cap bH,$

∵∃h1, h2 ∈ H,使得f = a * h1 = b * h2, ∴ a = b * h2 * h11 (证明aH ⊆ bH)

 $\because \forall x \in aH, \exists h \in H, \ x = a * h, \ , \ ppx = b * h_2 * h_1^{-1} * h,$ $\because H$ 是子群, $\therefore h_2 * h_1^{-1} * h \in H, \therefore x \in bH, \therefore aH \subseteq bH.$ 同理可证, $bH \subseteq aH$,ppaH = bH.

则aH = bH,或 $aH \cap bH = \varnothing$.

定理

- 设< H,* >是群< G,* >的子群, aH和bH是任意两个左陪集, 则aH = bH, 或 $aH \cap bH = \emptyset$.
- 证:

 $\boldsymbol{\mathcal{C}}_{a}H \cap bH \neq \emptyset, \, \, \boldsymbol{\mathcal{M}}\exists f \in aH \cap bH,$

 $\therefore \exists h_1, h_2 \in H$,使得 $f = a * h_1 = b * h_2, \therefore a = b * h_2 * h_1^{-1}$ (证明 $aH \subseteq bH$)

 $\because \forall x \in aH, \exists h \in H, \ x = a * h, \ , \ ppx = b * h_2 * h_1^{-1} * h,$ $\because H$ 是子群, $\therefore h_2 * h_1^{-1} * h \in H, \therefore x \in bH, \therefore aH \subseteq bH.$ 同理可证, $bH \subseteq aH$,ppaH = bH.

定理

- 设< H,* >是群< G,* >的子群, aH和bH是任意两个左陪集, 则aH = bH, 或 $aH \cap bH = \emptyset$.
- 证:

 $\therefore \exists h_1, h_2 \in H$,使得 $f = a * h_1 = b * h_2, \therefore a = b * h_2 * h_1^{-1}$ (证明 $aH \subseteq bH$)

 $\therefore \forall x \in aH, \exists h \in H, \ x = a * h, \ , \ \mathbb{P} x = b * h_2 * h_1^{-1} * h, \ \therefore H$ 是子群, $\therefore h_2 * h_1^{-1} * h \in H, \therefore x \in bH, \therefore aH \subseteq bH.$ 同理可证, $bH \subseteq aH$, $\mathbb{P} aH = bH$. 则aH = bH. 或 $aH \cap bH = \emptyset$.

定理

- 设< H,* >是群< G,* >的子群, aHabH是任意两个左陪集, 则aH = bH, 或 $aH \cap bH = \emptyset$.
- 证:

 $\therefore \exists h_1, h_2 \in H$,使得 $f = a * h_1 = b * h_2, \therefore a = b * h_2 * h_1^{-1}$ (证明 $aH \subseteq bH$)

 $\because \forall x \in aH, \exists h \in H, \ x = a * h, \ , \ \mathbf{p}x = b * h_2 * h_1^{-1} * h,$ $\because H$ 是子群, $\therefore h_2 * h_1^{-1} * h \in H, \therefore x \in bH, \therefore aH \subseteq bH.$ 同理可证, $bH \subseteq aH$, $\mathbf{p}aH = bH$.

定理

- 设< H,* >是群< G,* >的子群, aHabH是任意两个左陪集, 则aH = bH, 或 $aH \cap bH = \emptyset$.
- 证:

设 $aH \cap bH \neq \emptyset$,则 $\exists f \in aH \cap bH$,

- $\therefore \exists h_1, h_2 \in H$,使得 $f = a * h_1 = b * h_2, \therefore a = b * h_2 * h_1^{-1}$ (证明 $aH \subseteq bH$)
- $\therefore \forall x \in aH, \exists h \in H, \ x = a * h, \ , \ \mathsf{EP} x = b * h_2 * h_1^{-1} * h,$
- \therefore H是子群, \therefore $h_2*h_1^{-1}*h\in H, \therefore$ $x\in bH, \therefore$ $aH\subseteq bH$.
- 同理可证, $bH \subseteq aH$, paH = bH.
- 则aH = bH, 或 $aH \cap bH = \emptyset$.

定理

- 设< H,*>是群< G,*>的子群, aH和bH是任意两个左陪集,则aH=bH,或aH∩bH=∅.
- 证:

- $\therefore \exists h_1, h_2 \in H$,使得 $f = a * h_1 = b * h_2, \therefore a = b * h_2 * h_1^{-1}$ (证明 $aH \subseteq bH$)
- $\because \forall x \in aH, \exists h \in H, \ x = a * h, \ , \ \mathbf{p}x = b * h_2 * h_1^{-1} * h,$ $\because H$ 是子群, $\therefore h_2 * h_1^{-1} * h \in H, \therefore x \in bH, \therefore aH \subseteq bH.$
- い 「大丁料, $:: n_2 * n_1 * n \in n, :: X \in Dn, :: an \subseteq Dn$

同理可证, $bH \subseteq aH$, paH = bH.

则aH = bH, 或 $aH \cap bH = \emptyset$

定理

- 设< H,*>是群< G,*>的子群, aH和bH是任意两个左陪集,则aH=bH,或aH∩bH=∅.
- 证:

- $\therefore \exists h_1, h_2 \in H$,使得 $f = a * h_1 = b * h_2, \therefore a = b * h_2 * h_1^{-1}$ (证明 $aH \subseteq bH$)
- $\forall x \in aH, \exists h \in H, \ x = a * h, \ , \ \mathbb{P} x = b * h_2 * h_1^{-1} * h,$
- \therefore H是子群, $\therefore h_2 * h_1^{-1} * h \in H, \therefore x \in bH, \therefore aH \subseteq bH$.

同理可证, $bH \subseteq aH$, paH = bH.

则aH = bH, 或 $aH \cap bH = \emptyset$.

- 设< H, * >是群< G, * >的子群,则 $G = \bigcup aH$.
- 证:

$$(1) \ G \subseteq \bigcup_{a \in G} aH$$

$$: H \leqslant G, : e \in H,$$

$$orall a \in G, \ a = a * e \in aH, \$$
所以 $G \subseteq \bigcup_{i \in G} aH;$

(2)
$$\bigcup_{a \in G} aH \subseteq G$$

$$\forall a \in G, \forall h \in H, \ a * h \in G, \therefore aH \subseteq G$$

$$\therefore \bigcup aH \subseteq G$$

- $\mathcal{U} < H, * > \mathcal{E} \mathcal{A} < G, * > \mathsf{OPP} \mathcal{A}$, $\mathcal{M} G = \bigcup_{a \in \mathcal{A}} \mathcal{A} \mathcal{A}$.
- 证:

(1)
$$G \subseteq \bigcup_{a \in G} aH$$

 $\because H \leqslant G, \therefore e \in H,$
 $\forall a \in G, \ a = a * e \in aH, 所以 $G \subseteq \bigcup_{a \in G} aH$$

(2)
$$\bigcup_{a \in G} aH \subseteq G$$

 $\forall a \in G, \forall h \in H, \ a * h \in G, \therefore aH \subseteq G$
 $\therefore \bigcup_{a \in G} aH \subseteq G$

定理

- $\mathcal{U} < H, * > \mathcal{E} \mathcal{A} < G, * > \mathsf{OPP} \mathcal{A}$, $\mathcal{M} G = \bigcup_{a \in \mathcal{A}} \mathcal{A} \mathcal{A}$.
- 证:

$$(1) \ \ G \subseteq \bigcup_{a \in G} aH$$

$$\therefore H \leqslant G, \therefore e \in H$$

$$\forall a \in G, \ a = a * e \in aH, \$$
所以 $G \subseteq \bigcup_{a \in G} aH;$

(2)
$$\bigcup aH \subseteq G$$

 $\forall a \in G, \forall h \in H, \ a * h \in G, :: aH \subseteq G$

$$\therefore \bigcup aH \subseteq G$$

- 设< H, * >是群< G, * >的子群,则 $G = \bigcup_{a \in G} aH$.
- 证:

(1)
$$G \subseteq \bigcup_{a \in G} aH$$

 $\therefore H \leqslant G, \therefore e \in H,$
 $\forall a \in G, \ a = a * e \in aH,$ 所以 $G \subseteq \bigcup_a H$

(2)
$$\bigcup_{a \in G} aH \subseteq G$$

 $\forall a \in G, \forall h \in H, \ a * h \in G, \therefore aH \subseteq G$
 $\therefore \bigcup_{a} aH \subseteq G$

- 设< H, * >是群< G, * >的子群,则 $G = \bigcup_{a \in G} aH$.
- 证:

(1)
$$G \subseteq \bigcup_{a \in G} aH$$

 $\therefore H \leqslant G, \therefore e \in H,$
 $\forall a \in G, \ a = a * e \in aH, \ 所以 $G \subseteq \bigcup_{a \in G} aH;$$

(2)
$$\bigcup_{a \in G} aH \subseteq G$$

 $\forall a \in G, \forall h \in H, \ a * h \in G, \therefore aH \subseteq G$
 $\therefore \bigcup_{a \in G} aH \subseteq G$

- 设< H, * >是群< G, * >的子群,则 $G = \bigcup_{a \in G} aH$.
- 证:

(1)
$$G \subseteq \bigcup_{a \in G} aH$$

 $\therefore H \leqslant G, \therefore e \in H,$
 $\forall a \in G, \ a = a * e \in aH, \ 所以G \subseteq \bigcup_{a \in G} aH;$

(2)
$$\bigcup_{a \in G} aH \subseteq G$$

 $\forall a \in G, \forall h \in H, \ a * h \in G, : aH \subseteq G$
 $\therefore \bigcup_{a} aH \subseteq G$

- 设< H, * >是群< G, * >的子群,则 $G = \bigcup_{a \in G} aH$.
- 证:

(1)
$$G \subseteq \bigcup_{a \in G} aH$$

 $\therefore H \leqslant G, \therefore e \in H,$
 $\forall a \in G, \ a = a * e \in aH, \ 所以G \subseteq \bigcup_{a \in G} aH;$

(2)
$$\bigcup_{a \in G} aH \subseteq G$$

 $\forall a \in G, \forall h \in H, \ a * h \in G, \therefore aH \subseteq G,$
 $\therefore \bigcup_{a \in G} aH \subseteq G$

- 设< H, * >是群< G, * >的子群,则 $G = \bigcup_{a \in G} aH$.
- 证:

(1)
$$G \subseteq \bigcup_{a \in G} aH$$

 $\therefore H \leqslant G, \therefore e \in H,$
 $\forall a \in G, \ a = a * e \in aH, \ 所以 $G \subseteq \bigcup_{a \in G} aH;$$

(2)
$$\bigcup_{a \in G} aH \subseteq G$$

 $\forall a \in G, \forall h \in H, \ a * h \in G, \therefore aH \subseteq G,$
 $\therefore \bigcup_{a \in G} aH \subseteq G$

定理

- 设< H,*>是群< G,*>的子群, H的任意的陪集的大小 (基数) 是相等的。
- 证:

设a是群G中的任一元素, h_1, h_2 是子群H中的元素,若 $h_1 \neq h_2$,则 $a * h_1 \neq a * h_2$ (消去律)。

所以,aH中没有相同的元素,即aH和H的基数一样,且H的 所有陪集基数相等。

 $\mathbb{R}P \forall a \in G, |aH| = |Ha| = |H|.$

定理

- 设< H,*>是群< G,*>的子群, H的任意的陪集的大小 (基数) 是相等的。
- 证:

设a是群G中的任一元素, h_1, h_2 是子群H中的元素,若 $h_1 \neq h_2$,则 $a*h_1 \neq a*h_2$ (消去律)。

所以,aH中没有相同的元素,即aH和H的基数一样,且H的 所有陪集基数相等。

 $\operatorname{\mathfrak{P}}\forall a\in \mathit{G},\ |aH|=|Ha|=|H|.$

定理

- 设< H,*>是群< G,*>的子群, H的任意的陪集的大小 (基数) 是相等的。
- 证:

设a是群G中的任一元素, h_1, h_2 是子群H中的元素,

所以,aH中没有相同的元素,即aH和H的基数一样,且H的 所有陪集基数相等。

 $\operatorname{\mathfrak{P}} \forall a \in G, \ |aH| = |Ha| = |H|.$

定理

- 设< H,*>是群< G,*>的子群, H的任意的陪集的大小 (基数) 是相等的。
- 证:

设a是群G中的任一元素, h_1 , h_2 是子群H中的元素,若 $h_1 \neq h_2$,则 $a*h_1 \neq a*h_2$ (消去律)。

所以,aH中没有相同的元素,即aH和H的基数一样,且H的 所有陪集基数相等。

 $\operatorname{\mathfrak{PP}} \forall a \in \mathit{G}, \ |aH| = |Ha| = |H|.$

定理

- 设< H,*>是群< G,*>的子群, H的任意的陪集的大小 (基数) 是相等的。
- 证:

设a是群G中的任一元素, h_1,h_2 是子群H中的元素,若 $h_1 \neq h_2$,则 $a*h_1 \neq a*h_2$ (消去律)。 所以,aH中没有相同的元素,即aH和H的基数一样,且H的所有陪集基数相等。

 $\operatorname{\mathfrak{PP}} \forall a \in \mathit{G}, \ |aH| = |Ha| = |H|.$

定理

- 设< H,*>是群< G,*>的子群, H的任意的陪集的大小 (基数) 是相等的。
- 证:

设a是群G中的任一元素, h_1, h_2 是子群H中的元素,若 $h_1 \neq h_2$,则 $a * h_1 \neq a * h_2$ (消去律)。

所以,aH中没有相同的元素,即aH和H的基数一样,且H的 所有陪集基数相等。

 $\operatorname{\mathfrak{P}} \forall a \in \mathit{G}, \ |aH| = |Ha| = |H|.$

定理

设< H, * >是群< G, * >的子群,

- aH和bH是任意两个左陪集,则aH = bH,或aH∩bH = Ø.
- $G = \bigcup_{a \in G} aH$. (所有左陪集的并集即为G)
- H的任意两个陪集的大小相等, 都等于H的大小。
- H的左、右陪集的个数相等。(Th8.5.3)

- H的所有左陪集集合,构成G的一个划分;
- 并且, 划分中的块 (即各个左陪集) 的大小相等。
- 即: G的大小=左陪集的个数×H的大小

定理

设< H, * >是群< G, * >的子群,

- aH和bH是任意两个左陪集,则aH = bH,或aH∩bH = Ø.
- $G = \bigcup_{a \in G} aH$. (所有左陪集的并集即为G)
- H的任意两个陪集的大小相等,都等于H的大小。
- H的左、右陪集的个数相等。(Th8.5.3)

- H的所有左陪集集合,构成G的一个划分;
- 并且, 划分中的块 (即各个左陪集) 的大小相等。
- 即: G的大小=左陪集的个数×H的大小

定理

设< H, * >是群< G, * >的子群,

- aH和bH是任意两个左陪集,则aH = bH,或aH∩bH = Ø.
- $G = \bigcup_{a \in G} aH$. (所有左陪集的并集即为G)
- H的任意两个陪集的大小相等, 都等于H的大小。
- H的左、右陪集的个数相等。(Th8.5.3)

- H的所有左陪集集合,构成G的一个划分;
- 并且, 划分中的块 (即各个左陪集) 的大小相等。
- 即: G的大小=左陪集的个数×H的大小

定理

设< H, * >是群< G, * >的子群,

- aH和bH是任意两个左陪集,则aH = bH,或aH∩bH = Ø.
- $G = \bigcup_{a \in G} aH$. (所有左陪集的并集即为G)
- H的任意两个陪集的大小相等,都等于H的大小。
- H的左、右陪集的个数相等。(Th8.5.3)

- H的所有左陪集集合,构成G的一个划分;
- 并且, 划分中的块 (即各个左陪集) 的大小相等。
- 即: G的大小=左陪集的个数×H的大小

定理

设< H.*>是群< G.*>的子群、

- aH和bH是任意两个左陪集、则aH = bH、或aH∩bH = Ø.
- $G = \bigcup aH.$ (所有左陪集的并集即为G) $a \in G$
- H的任意两个陪集的大小相等、都等于H的大小。
- H的左、右陪集的个数相等。(Th8.5.3)

- H的所有左陪集集合,构成G的一个划分;
- 并且、划分中的块(即各个左陪集)的大小相等。

定理

设< H, * >是群< G, * >的子群,

- aH和bH是任意两个左陪集,则aH = bH,或aH∩bH = Ø.
- $G = \bigcup_{a \in G} aH$. (所有左陪集的并集即为G)
- H的任意两个陪集的大小相等, 都等于H的大小。
- H的左、右陪集的个数相等。(Th8.5.3)

- H的所有左陪集集合,构成G的一个划分;
- 并且, 划分中的块 (即各个左陪集) 的大小相等。
- 即: G的大小=左陪集的个数×H的大小

定理

设< H, * >是群< G, * >的子群,

- aH和bH是任意两个左陪集,则aH = bH,或aH∩bH = Ø.
- $G = \bigcup_{a \in G} aH$. (所有左陪集的并集即为G)
- H的任意两个陪集的大小相等, 都等于H的大小。
- H的左、右陪集的个数相等。(Th8.5.3)

- H的所有左陪集集合,构成G的一个划分;
- 并且, 划分中的块 (即各个左陪集) 的大小相等。
- 即: G的大小=左陪集的个数×H的大小

定理

设< H, * >是群< G, * >的子群,

- aH和bH是任意两个左陪集,则aH = bH,或aH∩bH = Ø.
- $G = \bigcup_{a \in G} aH$. (所有左陪集的并集即为G)
- H的任意两个陪集的大小相等,都等于H的大小。
- H的左、右陪集的个数相等。(Th8.5.3)

- H的所有左陪集集合,构成G的一个划分;
- 并且, 划分中的块 (即各个左陪集) 的大小相等。
- 即: G的大小=左陪集的个数×H的大小

Lagrange定理

定理

- 引入记号[G:H]:设<H,*>是群<G,*>的子群,称H的左
 (右)陪集的个数为H在G中的指数,记为[G:H].
- Lagrange定理 设< H,*>是有限群< G,*>的子群,则
 |H|整除|G|,且|G|=|H|⋅[G:H]

注意

• 注意: Lagrange定理的逆定理不成立。即,如果|G|=n, m整除n,则阶为m的子群未必存在。但是,对于循环群却成立。

Lagrange定理

定理

- 引入记号[G: H]: 设< H,*>是群< G,*>的子群, 称H的左
 (右) 陪集的个数为H在G中的指数,记为[G: H].
- Lagrange定理 设< H,*>是有限群< G,*>的子群,则
 |H|整除|G|,且|G|=|H|⋅[G:H]

注意

• 注意: Lagrange定理的逆定理不成立。即,如果|G|=n,m整除n,则阶为m的子群未必存在。但是,对于循环群却成立。

Lagrange定理

定理

- 引入记号[G: H]: 设< H,*>是群< G,*>的子群, 称H的左
 (右) 陪集的个数为H在G中的指数,记为[G: H].
- Lagrange定理 设< H,*>是有限群< G,*>的子群,则
 |H|整除|G|,且|G|=|H|⋅[G:H]

注意

• 注意: Lagrange定理的逆定理不成立。即,如果|G|=n,m整除n,则阶为m的子群未必存在。但是,对于循环群却成立。

推论

● 在有限群G中,每个元素的阶能整除|G|.

```
证: 设a \in G, |a| = r, 则a^r = e. \{e, a, a^2, a^3, \dots, a^{r-1}\}, *> \mathcal{L} < G, *> 的子群, 即< a > \le G, \therefore |< a > |整除|G|, 即|a|整除|G|.
```

推论

• 质数阶段群必为循环群。

证: 设
$$|G| = p$$
, p 是质数, $\forall a \in G$, $|a|$ 整除 p , $\exists a \neq e$, 则 $|a| = p$, 设 $H = \{e, a, a^2,, a^{p-1}\}$, $< H, * >$ 构成群,则 $H \le G$, $|H| = p$, 即 $G = H = < a >$.

推论

● 在有限群G中,每个元素的阶能整除 G.

证:设 $a \in G$, |a| = r, 则 $a^r = e$.

推论

• 质数阶段群必为循环群。

证:设
$$|G| = p$$
, p 是质数, $\forall a \in G$, $|a|$ 整除 p , 若 $a \neq e$, 则 $|a| = p$, 设 $H = \{e, a, a^2,, a^{p-1}\}$, $< H, * >$ 构成群,则 $H \leqslant G$, $|H| = p$, 即 $G = H = < a >$.

推论

● 在有限群G中,每个元素的阶能整除|G|.

证: 设
$$a \in G$$
, $|a| = r$, 则 $a^r = e$. $< \{e, a, a^2, a^3, \dots, a^{r-1}\}, *> \mathcal{E} < G, *> 的子群,$ 即 $< a > < G, : | < a > |$ 整除 $|G|$, 即 $|a|$ 整除 $|G|$.

推论

• 质数阶段群必为循环群。

证:设
$$|G| = p$$
, p 是质数, $\forall a \in G$, $|a|$ 整除 p , 若 $a \neq e$,则 $|a| = p$, 设 $H = \{e, a, a^2,, a^{p-1}\}$, $< H, * >$ 构成群,则 $H \le G$, $|H| = p$, 即 $G = H = < a >$.

推论

● 在有限群G中,每个元素的阶能整除 G.

证: 设
$$a \in G$$
, $|a| = r$, 则 $a^r = e$. $< \{e, a, a^2, a^3, \dots, a^{r-1}\}, *> \mathcal{E} < G, *>$ 的子群, $P < a > \leqslant G$, ∴ $| < a > |$ 整除 $|G|$, $|P| = a$ 整除 $|G|$.

推论

• 质数阶段群必为循环群。

证: 设
$$|G| = p$$
, p 是质数, $\forall a \in G$, $|a|$ 整除 p , $\exists a \neq e$, 则 $|a| = p$, 设 $H = \{e, a, a^2,, a^{p-1}\}$, $< H, * >$ 构成群,则 $H \le G$, $|H| = p$, 即 $G = H = < a >$.

推论

• 在有限群G中,每个元素的阶能整除 G.

证: 设
$$a \in G$$
, $|a| = r$, 则 $a^r = e$. $\{e, a, a^2, a^3, \dots, a^{r-1}\}, *> \mathbb{E} \{G, *> \mathbf{6}\}$ 即 $\{a > \{G, \dots, a^r\}, *> \mathbb{E} \{G, *> \mathbf{6}\}\}$ [G].

推论

• 质数阶段群必为循环群。

证: 设
$$|G| = p$$
, p 是质数, $\forall a \in G$, $|a|$ 整除 p , 若 $a \neq e$, 则 $|a| = p$, 设 $H = \{e, a, a^2,, a^{p-1}\}$, $< H, * >$ 构成群,则 $H \le G$, $|H| = p$, 即 $G = H = < a >$.

推论

● 在有限群G中,每个元素的阶能整除 G.

证: 设
$$a \in G$$
, $|a| = r$, 则 $a^r = e$. $\{e, a, a^2, a^3, \dots, a^{r-1}\}, *> \mathbb{E} \{G, *> \mathbf{6}\}$ 即 $\{a > \{G, \dots, a^r\}, *> \mathbb{E} \{G, *> \mathbf{6}\}\}$ [G].

推论

• 质数阶段群必为循环群。

证:设
$$|G| = p$$
, p 是质数, $\forall a \in G$, $|a|$ 整除 p , $\exists a \neq e$, $y \mid a| = p$, 设 $y \mid a| = p$, 设 $y \mid a| = p$, $y \mid a| = p$,

推论

● 在有限群G中,每个元素的阶能整除|G|.

证: 设
$$a \in G$$
, $|a| = r$, 则 $a^r = e$. $\{e, a, a^2, a^3, \dots, a^{r-1}\}, *> \mathcal{E} < G, *>$ 的子群, $p < a > \leqslant G$, $\therefore |a| \leq a > |a|$ 整除 $|G|$, $p |a|$ 整除 $|G|$.

推论

• 质数阶段群必为循环群。

证: 设
$$|G| = p$$
, p 是质数, $\forall a \in G$, $|a|$ 整除 p , $\exists a \neq e$, 则 $|a| = p$, 设 $H = \{e, a, a^2,, a^{p-1}\}$,

< H,*>构成群,则H≤G, |H|=p,即G=H=<a>.

推论

● 在有限群G中,每个元素的阶能整除 G.

证: 设
$$a \in G$$
, $|a| = r$, 则 $a^r = e$.
 $< \{e, a, a^2, a^3, \dots, a^{r-1}\}, *>$ 是 $< G, *>$ 的子群, 即 $< a>$ $\le G$, $\therefore |< a> |$ 整除 $|G|$, 即 $|a|$ 整除 $|G|$.

推论

• 质数阶段群必为循环群。

证:设
$$|G| = p$$
, p 是质数, $\forall a \in G$, $|a|$ 整除 p , 若 $a \neq e$,则 $|a| = p$, 设 $H = \{e, a, a^2,, a^{p-1}\}$, $< H, * >$ 构成群,则 $H \leqslant G$, $|H| = p$, 即 $G = H = < a >$.

推论

● 在有限群 G中,每个元素的阶能整除 G.

证: 设
$$a \in G$$
, $|a| = r$, 则 $a^r = e$.
 $\{e, a, a^2, a^3, \dots, a^{r-1}\}, *> \mathbb{E} \{G, *> \mathbf{6} \}$ 即 $\{a > \{G, \dots, a^r\}, *> \mathbb{E} \{G, *> \mathbf{6} \}$ 即 $\{a > \{G, \dots, a^r\}, *> \mathbb{E} \{G, \dots, a^r\},$

推论

• 质数阶段群必为循环群。

证:设
$$|G| = p$$
, p 是质数, $\forall a \in G$, $|a|$ 整除 p , 若 $a \neq e$, 则 $|a| = p$, 设 $H = \{e, a, a^2,, a^{p-1}\}$, $< H, * >$ 构成群,则 $H \leqslant G$, $|H| = p$, 即 $G = H = < a >$.

左(右) 陪集关系

陪集等价关系

设< H, * >是群< G, * >的子群,

- H的所有左(右) 陪集的集合是G的一个划分;
- 由这个划分可以诱导出一个G上的等价关系,称之为子群 H的左(右) 陪集等价关系;
- 这个等价关系的每一个等价类就是H的一个左(右) 陪集。

左(右) 陪集关系

陪集等价关系

设< H, * >是群< G, * >的子群,

- H的所有左(右) 陪集的集合是G的一个划分;
- 由这个划分可以诱导出一个G上的等价关系,称之为子群 H的左(右) 陪集等价关系;
- 这个等价关系的每一个等价类就是H的一个左(右)陪集。

左(右) 陪集关系

陪集等价关系

设< H, * >是群< G, * >的子群,

- H的所有左(右) 陪集的集合是G的一个划分;
- 由这个划分可以诱导出一个G上的等价关系,称之为子群 H的左(右) 陪集等价关系;
- 这个等价关系的每一个等价类就是H的一个左(右)陪集。

左陪集关系

- $\mathcal{C} < H, * > \mathcal{E} \not = \langle G, * \rangle$ **6** $\mathcal{C} < H, * \rangle$ **7** $\mathcal{C} < H, * \rangle$ **8** $\mathcal{C} < H, * \rangle$ **9** $\mathcal{C} < H, * \rangle$ **1** $\mathcal{C} < H, * \rangle$ **1** $\mathcal{C} < H, * \rangle$ **1** $\mathcal{C} < H, * \rangle$ **2** $\mathcal{C} < H, * \rangle$ **3** $\mathcal{C} < H, * \rangle$ **4** $\mathcal{C} < H, * \rangle$ **5** $\mathcal{C} < H, * \rangle$ **6** $\mathcal{C} < H, * \rangle$ **7** $\mathcal{C} < H, * \rangle$ **9** $\mathcal{C} < H$
- 证: $x \in aH \iff \exists h \in H, \ x = a * h \iff \exists h = a^{-1} * x \in H,$ 因此, $\forall x, \ x \in aH \iff a^{-1} * x \in H.$
- 描述了左陪集aH中的元素x。

- 同理 $\forall x, x \in Ha \iff x * a^{-1} \in H$.
- 描述右陪集Ha中的元素x。

左陪集关系

- $\mathbf{i}\mathbf{x}: \mathbf{x} \in \mathbf{a}\mathbf{H} \iff \exists \mathbf{h} \in \mathbf{H}, \mathbf{x} = \mathbf{a} * \mathbf{h} \iff \exists \mathbf{h} = \mathbf{a}^{-1} * \mathbf{x} \in \mathbf{H},$ $\mathbf{B}\mathbf{k}, \forall \mathbf{x}. \mathbf{x} \in \mathbf{a}\mathbf{H} \iff \mathbf{a}^{-1} * \mathbf{x} \in \mathbf{H}.$
- 描述了左陪集aH中的元素x。

- 同理 $\forall x, x \in Ha \iff x * a^{-1} \in H$.
- 描述右陪集Ha中的元素x。

左陪集关系

- $\mathcal{U} < H, * > \mathcal{E} \mathcal{A} < G, * > \mathbf{0} \mathcal{F} \mathcal{A}, \quad \mathbb{M}$ $\forall x, x \in \mathcal{A} H \iff a^{-1} * x \in \mathcal{H}.$
- 证: $x \in aH \iff \exists h \in H, \ x = a * h \iff \exists h = a^{-1} * x \in H,$ 因此, $\forall x, \ x \in aH \iff a^{-1} * x \in H.$
- 描述了左陪集aH中的元素x。

- 同理 $\forall x, x \in Ha \iff x * a^{-1} \in H$.
- 描述右陪集Ha中的元素x。

左陪集关系

- $\mathcal{U} < H, * > \mathcal{E} \mathcal{A} < G, * > \mathbf{0} \mathcal{F} \mathcal{A}, \quad \mathbb{M}$ $\forall x, x \in \mathcal{A} H \iff a^{-1} * x \in \mathcal{H}.$
- 证: $x \in aH \iff \exists h \in H, \ x = a * h \iff \exists h = a^{-1} * x \in H,$ 因此, $\forall x, \ x \in aH \iff a^{-1} * x \in H.$
- 描述了左陪集aH中的元素x。

- 同理 $\forall x, x \in Ha \iff x * a^{-1} \in H$.
- 描述右陪集Ha中的元素x。

左陪集关系

- 证: $x \in aH \iff \exists h \in H, \ x = a * h \iff \exists h = a^{-1} * x \in H,$ 因此, $\forall x, \ x \in aH \iff a^{-1} * x \in H.$
- 描述了左陪集aH中的元素x。

- 同理 $\forall x, x \in Ha \iff x * a^{-1} \in H$.
- 描述右陪集Ha中的元素x。

左陪集关系

- 证: $x \in aH \iff \exists h \in H, \ x = a * h \iff \exists h = a^{-1} * x \in H,$ 因此, $\forall x, \ x \in aH \iff a^{-1} * x \in H.$
- 描述了左陪集aH中的元素x。

- 同理 $\forall x, x \in Ha \iff x * a^{-1} \in H$.
- 描述右陪集Ha中的元素×。

- 设< H,*>是群< G,*>的子群, 定义G上的二元关系 R: $< a,b>\in R$, iff, $a^{-1}*b\in H$. 称R为H的左陪集关系。
- · R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - **对称性**: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc.$
- \bullet $[a]_R = aH$
 - $\textcircled{1}[a]_R \subseteq aH \colon x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$
 - $@aH \subseteq [a]_R: \ \forall x \in aH, \ \exists h \in H, \ x = a * h,$

- 设< H,*>是群< G,*>的子群, 定义G上的二元关系 R: $< a,b> \in R$, iff, $a^{-1}*b \in H$. 称R为H的左陪集关系。
- · R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - 对称性: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$ $\iff b^{-1} * a \in H \iff bRa$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc.$
- \bullet $[a]_R = aH$
 - $\textcircled{1}[a]_R \subseteq aH \colon x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$ $\vdots x = a * (a^{-1} * x) \in aH : [a]_R \subseteq aH$
 - $@aH \subseteq [a]_R: \ \forall x \in aH, \ \exists h \in H, \ x = a * h,$

- 设< H,*>是群< G,*>的子群,定义G上的二元关系
 R: < a,b>∈ R, iff, a⁻¹*b∈ H. 称R为H的左陪集关系。
- R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - **对称性**: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc$
- \bullet $[a]_R = aH$
 - $\textcircled{1}[a]_R \subseteq aH \colon x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$ $\vdots x = a * (a^{-1} * x) \in aH : [a]_R \subseteq aH$
 - $@aH \subseteq [a]_R: \ \forall x \in aH, \ \exists h \in H, \ x = a * h,$

- 砂< H,*>是群< G,*>的子群,定义G上的二元关系 $R: \langle a, b \rangle \in R$, iff, $a^{-1} * b \in H$. $\Re A \to B$.
- R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$:
 - 对称性: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$

$$\iff b^{-1} * a \in H \iff bRa$$

- -传递性: $aRb \land bRc \iff a^{-1} * b \in H \land b^{-1} * c \in H$
- \bullet $[a]_R = aH$

- 设< H,* >是群< G,* >的子群,定义G上的二元关系 R: < a, b > \in R, iff, a^{-1} * b \in H. 称R为H的左陪集关系。
- R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - **对称性**: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$ $\iff b^{-1} * a \in H \iff bRa$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc$
- \bullet $[a]_R = aH$
 - $\textcircled{1}[a]_R \subseteq aH \colon x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$ $\vdots x = a * (a^{-1} * x) \in aH : [a]_R \subseteq aH$
 - $@aH \subseteq [a]_R: \forall x \in aH, \exists h \in H, x = a * h,$
 - $\mathbb{R}^n h = a^{-1} * x \in H. \quad \times Ra, \quad x \in [a]_{\mathcal{B}}, \quad aH \subseteq [a]_{\mathcal{B}}$

- 设< H,*>是群< G,*>的子群,定义G上的二元关系
 R: < a,b>∈ R, iff, a⁻¹*b∈ H. 称R为H的左陪集关系。
- R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - 对称性: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$ $\iff b^{-1} * a \in H \iff bRa$
 - -传递性: $aRb \land bRc \Longleftrightarrow a^{-1} * b \in H \land b^{-1} * c \in H$

$$\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc.$$

- \bullet $[a]_R = aH$
 - $\textcircled{1}[a]_R \subseteq aH \colon x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$ $\vdots \quad x = a * (a^{-1} * x) \in aH \quad \vdots \quad [a]_R \subseteq aH$
 - $\bigcirc aH \subseteq [a]_R$: $\forall x \in aH$, $\exists h \in H$, x = a * h,

- 设< H,*>是群< G,*>的子群, 定义G上的二元关系 R: $< a,b> \in R$, iff, $a^{-1}*b \in H$. 称R为H的左陪集关系。
- R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - **对称性**: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$ $\iff b^{-1} * a \in H \iff bRa$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc.$
- \bullet $[a]_R = aH$
 - $\textcircled{1}[a]_R \subseteq aH \colon x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$ $\vdots x = a * (a^{-1} * x) \in aH : [a]_R \subseteq aH$
 - $@aH \subseteq [a]_R: \forall x \in aH, \exists h \in H, x = a * h,$

左陪集等价关系的定义

- 设< H,* >是群< G,* >的子群,定义G上的二元关系 R: < a, b > \in R, iff, a^{-1} * b \in H. 称R为H的左陪集关系。
- R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - **对称性**: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$ $\iff b^{-1} * a \in H \iff bRa$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc.$
- \bullet $[a]_R = aH$
 - $\textcircled{1}[a]_R \subseteq aH \colon x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$ $\vdots x = a * (a^{-1} * x) \in aH : [a]_R \subseteq aH$
 - $@aH \subseteq [a]_R: \ \forall x \in aH, \ \exists h \in H, \ x = a * h,$

左陪集等价关系的定义

- 设< H,*>是群< G,*>的子群,定义G上的二元关系
 R: < a,b>∈ R, iff, a⁻¹*b∈ H. 称R为H的左陪集关系。
- R是等价关系
 - -自反性: $e = a^{-1} * a \in H \iff aRa$;
 - 対称性: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$ $\iff b^{-1} * a \in H \iff bRa$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc.$
- \bullet $[a]_R = aH$
 - $\textcircled{1}[a]_R \subseteq aH: x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$
 - $\textcircled{a}H \subseteq [a]_R$: $\forall x \in aH$, $\exists h \in H$, x = a * h,

左陪集等价关系的定义

- 设< H,*>是群< G,*>的子群, 定义G上的二元关系 R: $< a,b>\in R$, iff, $a^{-1}*b\in H$. 称R为H的左陪集关系。
- R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - 対称性: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$ $\iff b^{-1} * a \in H \iff bRa$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc.$
- \bullet $[a]_R = aH$
 - $\textcircled{1}[a]_R \subseteq aH: \ x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$ $\therefore x = a * (a^{-1} * x) \in aH, \ \therefore [a]_R \subseteq aH;$
 - $\textcircled{a}H \subseteq [a]_R$: $\forall x \in aH$, $\exists h \in H$, x = a * h,

 $\mathbb{P}h = a^{-1} * x \in H$. xRa. $x \in [a]_{P}$. $aH \subseteq [a]_{P}$

左陪集等价关系的定义

- 设< H,* >是群< G,* >的子群,定义G上的二元关系 R: < a, b > \in R, iff, a^{-1} * b \in H. 称R为H的左陪集关系。
- R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - 対称性: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$ $\iff b^{-1} * a \in H \iff bRa$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc.$
- \bullet $[a]_R = aH$

 - $@aH \subseteq [a]_R: \ \forall x \in aH, \ \exists h \in H, \ x = a * h,$

左陪集等价关系的定义

- 设< H,*>是群< G,*>的子群,定义G上的二元关系
 R: < a,b>∈ R, iff, a⁻¹*b∈ H. 称R为H的左陪集关系。
- R是等价关系
 - 自反性: $e = a^{-1} * a \in H \iff aRa$;
 - 対称性: $aRb \iff a^{-1} * b \in H \iff (a^{-1} * b)^{-1} \in H$ $\iff b^{-1} * a \in H \iff bRa$
 - -传递性: $aRb \wedge bRc \iff a^{-1} * b \in H \wedge b^{-1} * c \in H$ $\implies (a^{-1} * b) * (b^{-1} * c) = a^{-1} * c \in H \iff aRc.$
- \bullet $[a]_R = aH$
 - $\mathbb{O}[a]_R \subseteq aH: x \in [a]_R \Leftrightarrow xRa \Leftrightarrow aRx \Leftrightarrow a^{-1} * x \in H,$ $\therefore x = a * (a^{-1} * x) \in aH, \therefore [a]_R \subseteq aH;$

 $\mathbb{P}h = a^{-1} * x \in H$. $xRa, x \in [a]_{\mathcal{P}}, aH \subseteq [a]_{\mathcal{P}}$.

 $@aH \subseteq [a]_R: \ \forall x \in aH, \ \exists h \in H, \ x = a * h,$

小结

- 设< H, * >是群< G, * >的子群,则H可以诱导出一个由H的 左(右)陪集集合构成的对G的划分;
- 由这个划分可以诱导出G的一个左(右) 陪集等价关系;
- 左陪集等价关系: ∀a,b属于同一个左陪集←⇒ a,b属于同一个左陪集等价关系的等价类←⇒ a⁻¹ * b ∈ H.
 - \Rightarrow : $a \in aH$, $b \in bH$, M aH = bH;
 - □且, a, b有左陪集关系, $pa^{-1}*b \in H$.

例

小结

- 由这个划分可以诱导出G的一个左(右) 陪集等价关系;
- 左陪集等价关系: ∀a,b属于同一个左陪集⇔ a,b属于同一个左陪集等价关系的等价类⇔ a⁻¹ * b ∈ H.
 - ightharpoonup
 ightharpoonup aH, $b \in bH$, ightharpoonup aH = bH;
 - □且, a, b有左陪集关系, $pa^{-1}*b \in H$.

例

小结

- 设< H, *>是群< G, *>的子群,则H可以诱导出一个由H的 左(右)陪集集合构成的对G的划分;
- 由这个划分可以诱导出G的一个左(右) 陪集等价关系;
- 左陪集等价关系: ∀a, b属于同一个左陪集←⇒ a, b属于同一个左陪集等价关系的等价类←⇒ a⁻¹ * b ∈ H.
 - Arr : $a \in aH$, $b \in bH$, Arr aH = bH;
 - □且, a, b有左陪集关系, $pa^{-1}*b \in H$.

例

小结

- 由这个划分可以诱导出G的一个左(右) 陪集等价关系;
- 左陪集等价关系: ∀a,b属于同一个左陪集←⇒ a,b属于同一个左陪集等价关系的等价类←⇒ a⁻¹ * b ∈ H.
 - \Rightarrow : $a \in aH$, $b \in bH$, M aH = bH;
 - ➡且, a, b有左陪集关系, 即 $a^{-1}*b \in H$.

例

小结

- 设< H, * >是群< G, * >的子群,则H可以诱导出一个由H的 左(右)陪集集合构成的对G的划分;
- 由这个划分可以诱导出G的一个左(右) 陪集等价关系;
- 左陪集等价关系: ∀a,b属于同一个左陪集←⇒ a,b属于同一个左陪集等价关系的等价类←⇒ a⁻¹ * b ∈ H.
 - \Rightarrow : $a \in aH$, $b \in bH$, M aH = bH;
 - □且, a, b有左陪集关系, 即 $a^{-1}*b \in H$.

例

- 3次对称群 $< S_3, \circ, \mathbb{I} >, S_3 = {\mathbb{I}, a, a^2, b, c, d},$
- $H = \{I, d\}$ 是群 S_3 的一个子群;
- H的所有左陪集组成的集合{{I, d}, {a, c}, {b, a²}}
- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- 则由H诱导的左、右陪集等价关系也不同。

- 3次对称群 $< S_3, \circ, \mathbb{I} >, S_3 = \{\mathbb{I}, a, a^2, b, c, d\},$
- $H = \{I, d\}$ 是群 S_3 的一个子群;
- H的所有左陪集组成的集合{{I,d}, {a, c}, {b, a²}}
- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- 则由H诱导的左、右陪集等价关系也不同。

- 3次对称群 $< S_3, \circ, \mathbb{I} >, S_3 = {\mathbb{I}, a, a^2, b, c, d},$
- $H = \{\mathbb{I}, d\}$ 是群 S_3 的一个子群;
- H的所有左陪集组成的集合 $\{[I,d],\{a,c\},\{b,a^2\}\}$
- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- 则由H诱导的左、右陪集等价关系也不同。

- 3次对称群 $< S_3, \circ, \mathbb{I} >, S_3 = {\mathbb{I}, a, a^2, b, c, d},$
- $H = \{I, d\}$ 是群 S_3 的一个子群;
- H的所有左陪集组成的集合 $\{\{I,d\},\{a,c\},\{b,a^2\}\}$
- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- 则由H诱导的左、右陪集等价关系也不同。

- 3次对称群 $< S_3, \circ, \mathbb{I} >, S_3 = {\mathbb{I}, a, a^2, b, c, d},$
- $H = \{I, d\}$ 是群 S_3 的一个子群;
- H的所有左陪集组成的集合 $\{[I,d],\{a,c\},\{b,a^2\}\}$
- H的所有右陪集组成的集合 $\{[I,d],\{c,a^2\},\{a,b\}\}$
- 则由H诱导的左、右陪集等价关系也不同。

- 设< H, * >是群< G, * >的子群,称 $H \rightarrow G$ 的不变子群(正规子群), $iff, \forall a \in G, aH = Ha, 记为<math>H \triangleleft G$.
- 注: $\forall a \in G, aH = Ha \iff \forall a \in G, \exists h_1, h_2 \in H, a * h_1 = h_2 * a.$
- 对于正规子群,左右陪集对应相等,aH = Ha,可简称为陪集。左右陪集关系相同,简称为陪集关系。
- 所有可交换群的子群都是正规子群。
- 所有平凡子群都是正规子群。

- 设< H, * >是群< G, * >的子群,称 $H \rightarrow G$ 的不变子群(正规子群), $iff, \forall a \in G, aH = Ha, 记为<math>H \triangleleft G$.
- $\mathbf{i}: \forall a \in G, aH = Ha \Longleftrightarrow$ $\forall a \in G, \exists h_1, h_2 \in H, a * h_1 = h_2 * a.$
- 对于正规子群,左右陪集对应相等,aH = Ha,可简称为陪集。左右陪集关系相同,简称为陪集关系。
- 所有可交换群的子群都是正规子群。
- 所有平凡子群都是正规子群。

- 设< H, * >是群< G, * >的子群,称 $H \rightarrow G$ 的不变子群(正规子群), $iff, \forall a \in G, aH = Ha, 记为<math>H \triangleleft G$.
- 注: $\forall a \in G$, $aH = Ha \iff$ $\forall a \in G$, $\exists h_1, h_2 \in H$, $a * h_1 = h_2 * a$.
- 对于正规子群,左右陪集对应相等,aH = Ha,可简称为陪集。左右陪集关系相同,简称为陪集关系。
- 所有可交换群的子群都是正规子群。
- 所有平凡子群都是正规子群。

- 设< H, * >是群< G, * >的子群,称 $H \rightarrow G$ 的不变子群(正规子群), $iff, \forall a \in G, aH = Ha, 记为<math>H \triangleleft G$.
- 注: $\forall a \in G, aH = Ha \iff \forall a \in G, \exists h_1, h_2 \in H, a * h_1 = h_2 * a.$
- 对于正规子群,左右陪集对应相等, aH = Ha,可简称为陪集。左右陪集关系相同,简称为陪集关系。
- 所有可交换群的子群都是正规子群。
- 所有平凡子群都是正规子群。

- 设< H, * >是群< G, * >的子群,称 $H \rightarrow G$ 的不变子群(正规子群)、 $iff, \forall a \in G, aH = Ha, 记为<math>H \triangleleft G$.
- 注: $\forall a \in G, aH = Ha \iff \forall a \in G, \exists h_1, h_2 \in H, a * h_1 = h_2 * a.$
- 对于正规子群,左右陪集对应相等, aH = Ha,可简称为陪集。左右陪集关系相同,简称为陪集关系。
- 所有可交换群的子群都是正规子群。
- 所有平凡子群都是正规子群。

- 设< H, * >是群< G, * >的子群,称 $H \rightarrow G$ 的不变子群(正规子群), $iff, \forall a \in G, aH = Ha, 记为<math>H \triangleleft G$.
- 注: $\forall a \in G$, $aH = Ha \iff$ $\forall a \in G$, $\exists h_1, h_2 \in H$, $a * h_1 = h_2 * a$.
- 对于正规子群,左右陪集对应相等, aH = Ha,可简称为陪集。左右陪集关系相同,简称为陪集关系。
- 所有可交换群的子群都是正规子群。
- 所有平凡子群都是正规子群。

定理

- $H \triangleleft G$;
- $\forall a \in G, \ a * H * a^{-1} = H;$
- $\bullet \ \forall a \in G, \ a * H * a^{-1} \subseteq H;$
- $\bullet \ \forall a \in G, \ \forall h \in H, \ a * h * a^{-1} \in H;$

定理

- $H \triangleleft G$;
- $\forall a \in G, \ a * H * a^{-1} = H;$
- $\bullet \ \forall a \in G, \ a * H * a^{-1} \subseteq H;$
- $\bullet \ \forall a \in G, \ \forall h \in H, \ a * h * a^{-1} \in H;$

定理

- $H \triangleleft G$;
- $\forall a \in G, \ a * H * a^{-1} = H;$
- $\forall a \in G$, $a * H * a^{-1} \subseteq H$;
- $\bullet \ \forall a \in G, \ \forall h \in H, \ a * h * a^{-1} \in H$

定理

- $H \triangleleft G$;
- $\forall a \in G, \ a * H * a^{-1} = H;$
- $\forall a \in G$, $a * H * a^{-1} \subseteq H$;
- $\forall a \in G$, $\forall h \in H$, $a * h * a^{-1} \in H$;

同余关系

定义-同余关系

- < A,*>是一个代数系统, R是A上的等价关系, 称等价关系 R在运算*下具有置换性质, iff,
 - if \forall < a, b > \in R \land < c, d > \in R, then < a * c, b * d > \in R.
- 将一个运算数置换为等价类中的另一个元素,不会改变运算 结果的等价类,即,等价关系R在运算*下仍然保持。
- 若等价关系R在运算*下具有置换性质,则称R为< A,*>上 的同余关系。

定理

- 群G的正规子群的陪集关系是G上的同余关系。
 - a1是aH中的任一元素。b1是bH中的任一元素。 现证任意的a1 * b1都在H的同一陪集中。

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集,

$$a_1$$
是 a H中的任一元素, b_1 是 b H中的任一元素,现证任意的 a_1*b_1 都在 B H的同一陪集中。 设 $a_1=a*h_1,b_1=b*h_2,\ h_1,h_2\in B$ H, $a_1*b_1=(a*h_1)*(b*h_2)$ $=(a*h_1)*(h_3*b)$ $=a*h_4*b$ $=(a*b)*h_5$ $(h_i\in B)$

 $\therefore \forall a_1 * b_1 \in (a * b) H.$

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集,

 a_1 是aH中的任一元素, b_1 是bH中的任一元素,

现证任意的a1*b1都在H的同一陪集中。

谈 $a_1 = a * h_1, b_1 = b * h_2, h_1, h_2 \in H$,

$$a_1 * b_1 = (a * h_1) * (b * h_2)$$

= $(a * h_1) * (h_3 * b)$

$$= (a * b) * br (b: \in H)$$

 $\therefore \forall a_1 * b_1 \in (a * b) H.$

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集,
 a₁是aH中的任一元素,b₁是bH中的任一元素,
 现证任意的a₁*b₁都在H的同一陪集中。

波
$$a_1 = a * h_1, b_1 = b * h_2, h_1, h_2 \in H$$
,
 $a_1 * b_1 = (a * h_1) * (b * h_2)$
 $= (a * h_1) * (h_3 * b)$
 $= a * h_4 * b$
 $= (a * b) * h_5 \quad (h_i \in H)$

 $\therefore \forall a_1 * b_1 \in (a * b)H.$

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集,
 a₁是aH中的任一元素,b₁是bH中的任一元素,
 现证任意的a₁ * b₁都在H的同一陪集中。

设 $a_1 = a * h_1, b_1 = b * h_2, h_1, h_2 \in H,$

$$a_1 * b_1 = (a * h_1) * (b * h_2)$$

= $(a * h_1) * (h_3 * b)$
= $a * h_4 * b$
= $(a * b) * h_5$ $(h_i \in H)$

 $\therefore \forall a_1 * b_1 \in (a * b)H.$

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集, a₁是aH中的任一元素,b₁是bH中的任一元素, 现证任意的a₁ * b₁都在H的同一陪集中。
 设 a₁ = a * h₁, b₁ = b * h₂, h₁, h₂ ∈ H,

後
$$a_1 = a * h_1, b_1 = b * h_2, h_1, h_2 \in H_1$$

 $a_1 * b_1 = (a * h_1) * (b * h_2)$
 $= (a * h_1) * (h_3 * b)$
 $= a * h_4 * b$

 $\therefore \forall a_1 * b_1 \in (a * b) H.$

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集,
 a₁是aH中的任一元素,b₁是bH中的任一元素,

现证任意的 a_1*b_1 都在H的同一陪集中。

设
$$a_1 = a * h_1, b_1 = b * h_2, h_1, h_2 \in H$$
,

$$a_1 * b_1 = (a * h_1) * (b * h_2)$$

= $(a * h_1) * (h_3 * b)$

$$= a * h_4 * h$$

$$= (a*b)*h_5 \qquad (h_i \in H)$$

 $\therefore \forall a_1 * b_1 \in (a * b)H.$

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集,

 a_1 是aH中的任一元素, b_1 是bH中的任一元素,

现证任意的 $a_1 * b_1$ 都在H的同一陪集中。

设
$$a_1 = a * h_1, b_1 = b * h_2, h_1, h_2 \in H$$
,

$$a_1 * b_1 = (a * h_1) * (b * h_2)$$

= $(a * h_1) * (h_3 * b)$
= $a * h_4 * b$

$$= (a*b)*h_5 \qquad (h_i \in H)$$

 $\therefore \forall a_1 * b_1 \in (a * b)H.$

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集,

 a_1 是aH中的任一元素, b_1 是bH中的任一元素,

现证任意的 a_1*b_1 都在H的同一陪集中。

谈
$$a_1 = a * h_1, b_1 = b * h_2, h_1, h_2 \in H$$
,

 $= (a * b) * h_5 (h_i \in H)$

$$a_1 * b_1 = (a * h_1) * (b * h_2)$$

= $(a * h_1) * (h_3 * b)$
= $a * h_4 * b$

$$\therefore \forall a_1 * b_1 \in (a * b)H.$$

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集,
 a₁是aH中的任一元素,b₁是bH中的任一元素,

现证任意的 a_1*b_1 都在H的同一陪集中。

後
$$a_1 = a * h_1, b_1 = b * h_2, h_1, h_2 \in H,$$

$$a_1 * b_1 = (a * h_1) * (b * h_2)$$

= $(a * h_1) * (h_3 * b)$
= $a * h_4 * b$

$$= (a*b)*h_5 \qquad (h_i \in H)$$

$$\therefore \ \forall a_1 * b_1 \in (a * b) H.$$

正规子群和同余关系(一)

定理

- 群G的正规子群的陪集关系是G上的同余关系。
- 证:设aH和bH是群G的两个陪集,
 a₁是aH中的任一元素,b₁是bH中的任一元素,

现证任意的 a_1*b_1 都在H的同一陪集中。

波
$$a_1 = a * h_1, b_1 = b * h_2, h_1, h_2 \in H$$
,
 $a_1 * b_1 = (a * h_1) * (b * h_2)$
 $= (a * h_1) * (h_3 * b)$
 $= a * h_4 * b$
 $= (a * b) * h_5 (h_i \in H)$

$$\therefore \forall a_1 * b_1 \in (a * b)H.$$

同时陪集关系是等价关系,所以由正规子群H诱导出的陪集 关系是同余关系。

定义

设< H,*,e>是群< G,*,e>的正规子群。H的陪集关系R
 (是同余关系,具有置换性质),则< G/H,®,H>是群,其中:

```
G/H = G/R = \{aH | a \in G\};
aH \circledast bH = (a * b)H;
[aH]^{-1} = a^{-1}H;
H是单位元.
```

• R是H的陪集关系,习惯也记为 $< G/R, \circledast, H>$,称为群G关于正规子群H的商群。

定义

• 设< H, *, e > 是群< G, *, e > 的正规子群。H的陪集关系R (是同余关系,具有置换性质),则< G/H, \circledast , H > 是群,其中:

$$G/H = G/R = \{aH | a \in G\};$$

 $aH \circledast bH = (a * b)H;$
 $[aH]^{-1} = a^{-1}H;$
 H 是单位元。

• R是H的陪集关系,习惯也记为 $< G/R, \circledast, H>$,称为群G关于正规子群H的商群。

定义

设< H,*,e>是群< G,*,e>的正规子群。H的陪集关系R
 (是同余关系,具有置换性质),则< G/H,⊛,H>是群,其中:

$$G/H = G/R = \{aH | a \in G\};$$

 $aH \circledast bH = (a * b)H;$
 $[aH]^{-1} = a^{-1}H;$
 $H 是 单位元。$

● R是H的陪集关系,习惯也记为< G/R, ®, H>, 称为群G关于正规子群H的商群。

定义

 设< H,*,e>是群< G,*,e>的正规子群。H的陪集关系R (是同余关系,具有置换性质),则< G/H, \circledast ,H>是群,其 中:

$$G/H = G/R = \{aH | a \in G\};$$

 $aH \circledast bH = (a * b)H;$
 $[aH]^{-1} = a^{-1}H;$
 $H 是 单位元$

• R是H的陪集关系,习惯也记为 $< G/R, \circledast, H>$,称为群G关

定义

• 设< H, *, e > 是群< G, *, e > 的正规子群。H的陪集关系R (是同余关系,具有置换性质),则< G/H, \circledast , H > 是群,其中:

```
G/H = G/R = \{aH | a \in G\};

aH \circledast bH = (a * b)H;

[aH]^{-1} = a^{-1}H;

H是单位元.
```

• R是H的陪集关系,习惯也记为 $< G/R, \circledast, H>$,称为群G关于正规子群H的商群。

定义

• 设< H, *, e > 是群< G, *, e > 的正规子群。H的陪集关系R (是同余关系,具有置换性质),则< G/H, \circledast , H > 是群,其中:

```
G/H = G/R = \{aH | a \in G\};

aH \circledast bH = (a * b)H;

[aH]^{-1} = a^{-1}H;

H是单位元.
```

● R是H的陪集关系,习惯也记为 $< G/R, \circledast, H>$,称为群G关于正规子群H的商群。

商群的例子

定义

● (有限群的) 商群的阶等于群G的阶除以子群H的阶,即H在G中的指数。

例

- 群 $< \mathbb{Z}, +, 0 >$, $4\mathbb{Z} \triangleleft \mathbb{Z}$, **商群为** $< \{4\mathbb{Z}, 4\mathbb{Z} + 1, 4\mathbb{Z} + 2, 4\mathbb{Z} + 3\}, \oplus, 4\mathbb{Z} >$

商群的例子

定义

● (有限群的) 商群的阶等于群G的阶除以子群H的阶,即H在G中的指数。

例

- $\mathbf{\mathcal{Z}}$ + , 0 > , $4\mathbb{Z} \triangleleft \mathbb{Z}$, $\mathbf{\mathcal{Z}}$ $\mathbf{\mathcal{Z}}$ $\mathbf{\mathcal{Z}}$ $\mathbf{\mathcal{Z}}$ $\mathbf{\mathcal{Z}}$ $\mathbf{\mathcal{Z}}$ + 3}, \oplus , $4\mathbb{Z} >$
- 群 $< S_3, \circ, \mathbb{I} >, \{\mathbb{I}, a, a^2\} \triangleleft S_3$, 商群为 $< \{\{\mathbb{I}, a, a^2\}, \{b, c, d\}\}, \circledast, \{\mathbb{I}, a, a^2\} >.$

商群的例子

定义

● (有限群的) 商群的阶等于群G的阶除以子群H的阶,即H在G中的指数。

例

- $\mathbf{\mathcal{Z}}$ + , 0 > $, 4\mathbb{Z} \triangleleft \mathbb{Z}$ $, \mathbf{\vec{n}}\mathbf{\vec{n}}\mathbf{\vec{n}}$ $< \{4\mathbb{Z}, 4\mathbb{Z} + 1, 4\mathbb{Z} + 2, 4\mathbb{Z} + 3\}, \oplus, 4\mathbb{Z} >$
- 群 $< S_3, \circ, \mathbb{I} >, \{\mathbb{I}, a, a^2\} \triangleleft S_3$, 商群为 $< \{\{\mathbb{I}, a, a^2\}, \{b, c, d\}\}, \circledast, \{\mathbb{I}, a, a^2\} >.$

- 设R是群< G, * >上的同余关系,则 $[e]_R \triangleleft G$,且R就是G关于 正规子群 $[e]_R$ 的陪集关系。
- 证: (略)
 - (1) $[e]_R \leqslant G$;
 - (2) $[e]_R \triangleleft G$;
 - (3) $[a]_R = a * [e]_R$
- 由G上的同余关系可以诱导G的正规子群。

- $\partial R \neq G$, * > L的同余关系,则[e]_R $\triangleleft G$,且R就是G关于正规子群[e]_R的陪集关系。
- 证: (略)
 - $(1) [e]_R \leqslant G;$
 - (2) $[e]_R \triangleleft G$;
 - (3) $[a]_R = a * [e]_R$
- 由G上的同余关系可以诱导G的正规子群。

- $\partial R \neq G$, * > L的同余关系,则[e]_R $\triangleleft G$,且R就是G关于正规子群[e]_R的陪集关系。
- 证: (略)
 - (1) $[e]_R \leq G$;
 - (2) $[e]_R \triangleleft G$;
 - (3) $[a]_R = a * [e]_R$
- 由G上的同余关系可以诱导G的正规子群。

- $\partial R \neq G$, * > L的同余关系,则[e]_R $\triangleleft G$,且R就是G关于正规子群[e]_R的陪集关系。
- 证: (略)
 - (1) $[e]_R \leq G$;
 - (2) $[e]_R \triangleleft G$;
 - (3) $[a]_R = a * [e]_R$
- 由G上的同余关系可以诱导G的正规子群。

- 设R是群< G, * >上的同余关系,则 $[e]_R \triangleleft G$,且R就是G关于正规子群 $[e]_R$ 的陪集关系。
- 证: (略)
 - (1) $[e]_R \leq G$;
 - (2) $[e]_R \triangleleft G$;
 - (3) $[a]_R = a * [e]_R$
- 由G上的同余关系可以诱导G的正规子群。

- 设R是群< G, * >上的同余关系,则 $[e]_R \triangleleft G$,且R就是G关于正规子群 $[e]_R$ 的陪集关系。
- 证: (略)
 - (1) $[e]_R \leq G$;
 - (2) $[e]_R \triangleleft G$;
 - (3) $[a]_R = a * [e]_R$
- 由G上的同余关系可以诱导G的正规子群。

- 设h是群< G, *, e >到群< H, o, I >的同态,则:
 - (1) h诱导的G上的等价关系 $=_h$ 是同余关系, $\forall a, b \in G, \ a =_h b \iff h(a) = h(b)$
 - (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
 - (3) K的陪集关系 (正规子群的陪集关系) 就等于上述同余关系=h。

定理

- 设h是群< G, *, e>到群< H, o, I>的同态,则:
 - (1) h诱导的G上的等价关系=h是同余关系,

 $\forall a, b \in G, \ a =_h b \iff h(a) = h(b)$

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I} \}$
- (3) K的陪集关系(正规子群的陪集关系)就等于上述同余关系=h。

- 设h是群< G, *, e >到群< H, o, I >的同态,则:
 - (1) h诱导的G上的等价关系=h是同余关系,

$$\forall a, b \in G, \ a =_h b \iff h(a) = h(b)$$

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I} \}$
- (3) K的陪集关系(正规子群的陪集关系)就等于上述同余关系=h。

定理

- 设h是群< G, *, e>到群< H, o, I>的同态,则:
 - (1) h诱导的G上的等价关系=h是同余关系, $\forall a, b \in G, a = h, b \iff h(a) = h(b)$
 - (2) h的同态核K是< G, *, e >的正规子群,

 $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$

(3)K的陪集关系(正规子群的陪集关系)就等于上述同 余关系=h。

定理

- $\mathfrak{g}h$ \mathbb{Z} \mathbb{Z} $G, *, e > \mathfrak{I}$ \mathbb{Z} \mathbb{Z}
 - (1) h诱导的G上的等价关系=h是同余关系,

$$\forall a, b \in G, \ a =_h b \iff h(a) = h(b)$$

(2) h的同态核K是< G, *, e >的正规子群,

$$K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$$

(3)K的陪集关系(正规子群的陪集关系)就等于上述同 余关系=h。

定理

- 设h是群< G, *, e>到群< H, o, I>的同态,则:
 - (1) h诱导的G上的等价关系=h是同余关系,

$$\forall a, b \in G, \ a =_h b \iff h(a) = h(b)$$

(2) h的同态核K是< G,*,e>的正规子群,

$$K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$$

(3) K的陪集关系(正规子群的陪集关系)就等于上述同余关系 $=_h$ 。

Proof

• (1) h诱导的G上的等价关系=h是同余关系,

$$\forall a, b \in G, \ a =_h b \iff h(a) = h(b)$$

• 证:

Proof

• (1) h 诱导的G上的等价关系=h是同余关系, $\forall a, b \in G, a = h, b \iff h(a) = h(b)$

• 证:

Proof

- (1) h 诱导的G上的等价关系= $_h$ 是同余关系, $\forall a, b \in G, a =_h b \iff h(a) = h(b)$
- 证:

Proof

• (1) h 诱导的G上的等价关系=h是同余关系, $\forall a, b \in G, a = h, b \iff h(a) = h(b)$

Proof

• (1) h 诱导的G上的等价关系=h是同余关系, $\forall a, b \in G, a = h, b \iff h(a) = h(b)$

Proof

• (1) h 诱导的G上的等价关系 $=_h$ 是同余关系, $\forall a, b \in G, a =_h b \iff h(a) = h(b)$

Proof

• (1) h 诱导的G上的等价关系 $=_h$ 是同余关系, $\forall a, b \in G, a =_h b \iff h(a) = h(b)$

Proof

• (1) h 诱导的G上的等价关系=h是同余关系, $\forall a, b \in G, a = h b \iff h(a) = h(b)$

Proof

(2) h的同态核K是< G,*,e>的正规子群,

$$K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$$

- · 证:
- ① *K* ≤ *G*:

$$\forall k_1, k_2 \in K, \quad \not \exists h(k_1) = h(k_2) = \mathbb{I},$$
 $\vdots \quad h(k_1 * k^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I}$

$$\kappa_1 * k_2^{-1} \in K, \therefore K \leqslant G.$$

② K < G:

$$\forall a \in G, k \in K$$

$$h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h$$

= $h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$

 $\therefore a^{-1} * k * a \in K, K \triangleleft G.$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
- 证:
- ① $K \leqslant G$: $\forall k_1, k_2 \in K, \quad \mathsf{有} h(k_1) = h(k_2) = \mathbb{I},$ $\therefore h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$ $k_1 * k_2^{-1} \in K, \quad \therefore K \leqslant G.$
- $^{\circ}$ $K \triangleleft G$:

$$\forall a \in G, \ k \in K,$$

$$h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$$
$$= h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
- 证:
- ① $K \leqslant G$: $\forall k_1, k_2 \in K, \quad$ 有 $h(k_1) = h(k_2) = \mathbb{I},$ $\therefore h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$ $k_1 * k_2^{-1} \in K, \therefore K \leqslant G.$
- \bigcirc $K \triangleleft G$

$$\forall a \in G, \ k \in K,$$

$$h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$$

= $h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
 - 证:
- ① *K* ≤ *G*:

$$\forall k_1, k_2 \in K, \quad \mathbf{\pi} h(k_1) = h(k_2) = \mathbb{I},$$

 $\therefore \quad h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$
 $k_1 * k_2^{-1} \in K, \quad \therefore \quad K \leqslant G.$

② K < G:

$$\forall a \in G, \ k \in K,$$

$$h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$$
$$= h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$$

Proof

- (2) h的同态核K是< G,*,e>的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
 - 证:
- ① *K* ≤ *G*:

$$\forall k_1, k_2 \in K, \quad \not a h(k_1) = h(k_2) = \mathbb{I},$$

 $\therefore h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$
 $k_1 * k_2^{-1} \in K, \quad \therefore K \leq G.$

② K ⊲ G:

$$h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$$

= $h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
 - 证:
- ① *K* ≤ *G*:

$$\forall k_1, k_2 \in K, \quad f_1(k_1) = h(k_2) = \mathbb{I},$$

$$\therefore \quad h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$$

$$k_1 * k_2^{-1} \in K, \quad K \leq G.$$

② K < G:

$$\forall a \in G, \ k \in K,$$

$$h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$$

= $h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
- 证:
- ① *K* ≤ *G*:

$$\forall k_1, k_2 \in K$$
, $f_1h(k_1) = h(k_2) = \mathbb{I}$,
∴ $h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$
 $k_1 * k_2^{-1} \in K$, ∴ $K \leq G$.

② K < G:

$$\forall a \in G, \ k \in K,$$

$$h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$$

= $h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$

 $\therefore a^{-1} * k * a \in K, K \triangleleft G.$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
 - 证:
- ① $K \leqslant G$: $\forall k_1, k_2 \in K, \quad fh(k_1) = h(k_2) = \mathbb{I},$ $\therefore \quad h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$

$$k_1 * k_2^{-1} \in K$$
, $K \leqslant G$.

$$\forall a \in G, k \in K$$

$$h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$$

= $h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$

$$\therefore a^{-1} * k * a \in K, K \triangleleft G.$$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
- 证:
- ① *K* ≤ *G*:

$$\forall k_1, k_2 \in K$$
, $f_1h(k_1) = h(k_2) = \mathbb{I}$,
∴ $h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$
 $k_1 * k_2^{-1} \in K$, ∴ $K \leq G$.

$$\forall a \in G, k \in K$$

$$h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$$
$$= h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
- 证:
- ① *K* ≤ *G*:

$$\forall k_1, k_2 \in K$$
, $f_1h(k_1) = h(k_2) = \mathbb{I}$,
∴ $h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$
 $k_1 * k_2^{-1} \in K$, ∴ $K \leq G$.

$$\forall a \in G, \ k \in K,$$

 $h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$
 $= h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
 - 证:
- ① *K* ≤ *G*:

$$\forall k_1, k_2 \in K$$
, $f_1h(k_1) = h(k_2) = \mathbb{I}$,
∴ $h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$
 $k_1 * k_2^{-1} \in K$, ∴ $K \leq G$.

$$\forall a \in G, \ k \in K,$$

 $h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$
 $= h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$

Proof

- (2) h的同态核K是< G, *, e >的正规子群, $K = ker(h) \triangleq \{a | a \in G \land h(a) = h(e) = \mathbb{I}\}$
 - 证:
- ① *K* ≤ *G*:

$$\forall k_1, k_2 \in K$$
, $f_1h(k_1) = h(k_2) = \mathbb{I}$,
∴ $h(k_1 * k_2^{-1}) = h(k_1) \circ h(k_2)^{-1} = \mathbb{I} \circ \mathbb{I} = \mathbb{I}$
 $k_1 * k_2^{-1} \in K$, ∴ $K \leq G$.

$$\forall a \in G, k \in K,$$
 $h(a^{-1} * k * a) = h(a^{-1}) \circ h(k) \circ h(a) = h(a^{-1}) \circ \mathbb{I} \circ h(a)$
 $= h(a^{-1}) \circ h(a) = h(a)^{-1} \circ h(a) = \mathbb{I}$
 $\vdots a^{-1} * k * a \in K, K \triangleleft G.$

Proof

- (3) K陪集关系 (正规子群的陪集关系) 就等于上述同余 关系=h。
- 证: a, b有K陪集关系 $\Longleftrightarrow a, b$ 也有同余关系 $=_h$: $\forall a, b \in G$, $a =_h b \Longleftrightarrow h(a) = h(b)$ $\iff h(a^{-1} * b) = h(a^{-1}) \circ h(b) = h(a^{-1}) \circ h(a) = \mathbb{I}$ $\iff a^{-1} * b \in K$,

Proof

- (3) K陪集关系 (正规子群的陪集关系) 就等于上述同余 关系=h。
- 证: a, b有K陪集关系
 a, b也有同余关系=h:

 $\forall a, b \in G$, $a =_h b \iff h(a) = h(b)$ $\iff h(a^{-1} * b) = h(a^{-1}) \circ h(b) = h(a^{-1}) \circ h(a) = \mathbb{I}$ $\iff a^{-1} * b \in K$,

Proof

- (3) K陪集关系 (正规子群的陪集关系) 就等于上述同余 关系=h。
- 证: a, b有K陪集关系⇔ a, b也有同余关系=h:
 ∀a, b ∈ G,
 a = h b ⇔ h(a) = h(b)

$$\iff h(a^{-1} * b) = h(a^{-1}) \circ h(b) = h(a^{-1}) \circ h(a) = \mathbb{I}$$

$$\iff a^{-1} * b \in K.$$

Proof

- (3) K陪集关系 (正规子群的陪集关系) 就等于上述同余 关系=h。
- 证: $a, b \in K$ 陪集关系 \Longrightarrow $a, b \in A$ 同余关系 $=_h$: $\forall a, b \in G,$ $a =_h b \iff h(a) = h(b)$ $\iff h(a^{-1} * b) = h(a^{-1}) \circ h(b) = h(a^{-1}) \circ h(a) = \mathbb{I}$ $\iff a^{-1} * b \in K.$

Proof

- (3) K陪集关系 (正规子群的陪集关系) 就等于上述同余 关系=h。
- 证: a, b有 K 陪集关系 \iff a, b 也有同余关系 $=_h$: $\forall a, b \in G$, $a =_h b \iff h(a) = h(b)$ $\iff h(a^{-1} * b) = h(a^{-1}) \circ h(b) = h(a^{-1}) \circ h(a) = \mathbb{I}$ $\iff a^{-1} * b \in K$

Proof

- (3) K陪集关系 (正规子群的陪集关系) 就等于上述同余 关系=h。
- 证: a, b有 K 陪集关系 \iff a, b 也有同余关系 $=_h$: $\forall a, b \in G$, $a =_h b \iff h(a) = h(b)$ $\iff h(a^{-1} * b) = h(a^{-1}) \circ h(b) = h(a^{-1}) \circ h(a) = \mathbb{I}$ $\iff a^{-1} * b \in K$.

Proof

- (3) K陪集关系 (正规子群的陪集关系) 就等于上述同余 关系=h。
- 证: a, b有 K 陪集关系 \iff a, b 也有同余关系 $=_h$: $\forall a, b \in G$, $a =_h b \iff h(a) = h(b)$ $\iff h(a^{-1} * b) = h(a^{-1}) \circ h(b) = h(a^{-1}) \circ h(a) = \mathbb{I}$ $\iff a^{-1} * b \in K$.

群同态基本定理

定理

• 设h是从群< G, *>到群 $< H, \circ>$ 的同态,K是同态核,则 < G/K, *>同构于 $< h(G), \circ>$.

■ 群同态基本定理:设h是从群〈G,*〉到群〈H,。〉的同态,K是同态h的核,则〈G/K,*〉同构于〈h(G),。〉.

小结

- 1 群的性质
 - 群的性质
 - 元素的阶
- ② 陪集和拉格朗日定理
 - 陪集的定义和性质
 - 拉格朗日定理
 - 陪集关系