Intro to Rings, Fields, and GCDs: Hardware Modeling by Modulo Arithmetic

Priyank Kalla

Professor Electrical and Computer Engineering, University of Utah kalla@ece.utah.edu http://www.ece.utah.edu/~kalla

January 14, 2022

Agenda for Today

- Wish to build a number-theoretic and algebraic model for hardware and crypto
- Modulo arithmetic model is versatile: can represent both bit-level and word-level constraints
- To build the algebraic/modulo arithmetic model:
 - Rings, Fields, Modulo arithmetic
 - Multiplicative Inverses and the GCD
 - Finite fields \mathbb{F}_p , \mathbb{F}_{p^k} and \mathbb{F}_{2^k}
 - Linear Congruences
 - Basics of symmetric key ciphers: affine ciphers
- Later on, we will study
 - ullet Polynomials, Polynomial functions, Polynomial Rings over \mathbb{F}_{2^k}
 - For use is modern Block-ciphers

Motivation for Algebraic Computation

- Modeling basic affine Crypto algorithms in \mathbb{Z}_p , works well in software
- For hardware: Modeling for bit-precise algebraic computation
 - Arithmetic RTLs: functions over *k*-bit-vectors
 - k-bit-vector \mapsto integers $\pmod{2^k} = \mathbb{Z}_{2^k}$
 - k-bit-vector \mapsto Galois (Finite) field \mathbb{F}_{2^k}
- For many of these applications Boolean models fail miserably!
- ullet Number theory, Computer Algebra and Algebraic Geometry + SAT/SMT
 - Model: Circuits as polynomial functions $f: \mathbb{Z}_{2^k} \to \mathbb{Z}_{2^k}, \ f: \mathbb{F}_{2^k} \to \mathbb{F}_{2^k}$

Ring algebra

All we need is an algebraic object where we can $\mathtt{ADD}, \mathtt{MULTIPLY}, \mathtt{DIVIDE}.$ These objects are Rings and Fields.

Groups, (G, 0, +)

An **Abelian group** is a set G and a binary operation " +" satisfying:

- Closure: For every $a, b \in G, a + b \in G$.
- Associativity: For every $a, b, c \in G$, a + (b + c) = (a + b) + c.
- Commutativity: For every $a, b \in G, a + b = b + a$.
- *Identity:* There is an identity element $0 \in G$ such that for all $a \in G$; a + 0 = a.
- *Inverse*: If $a \in G$, then there is an element $a^{-1} \in G$ such that $a + a^{-1} = 0$.

Example: The set of Integers \mathbb{Z} or \mathbb{Z}_n with + operation.

Rings $(R, 0, 1, +, \cdot)$

A **Commutative ring with unity** is a set R and two binary operations "+" and $"\cdot"$, as well as two distinguished elements $0,1\in R$ such that, R is an Abelian group with respect to addition with additive identity element 0, and the following properties are satisfied:

- Multiplicative Closure: For every $a, b \in R$, $a \cdot b \in R$.
- Multiplicative Associativity: For every $a, b, c \in \mathbb{R}$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- Multiplicative Commutativity: For every $a, b \in R$, $a \cdot b = b \cdot a$.
- Multiplicative Identity: There is an identity element $1 \in R$ such that for all $a \in R$, $a \cdot 1 = a$.
- Distributivity: For every $a, b, c \in R$, $a \cdot (b + c) = a \cdot b + a \cdot c$ holds for all $a, b, c \in R$.

Example: The set of Integers \mathbb{Z} or \mathbb{Z}_n with $+, \cdot$ operations.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀ ○

Rings

- Examples of rings: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}$
- $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ where $+, \cdot$ computed $+, \cdot$ (mod n)
- Modulo arithmetic:
 - $\bullet (a+b) \pmod{n} = (a \pmod{n} + b \pmod{n}) \pmod{n}$
 - $\bullet \ (a \cdot b) \ (\mathsf{mod} \ n) = (a \ (\mathsf{mod} \ n) \cdot b \ (\mathsf{mod} \ n)) \ (\mathsf{mod} \ n)$
 - $\bullet -a \pmod{n} = (n-a) \pmod{n}$
- Arithmetic k-bit vectors \mapsto arithmetic over \mathbb{Z}_{2^k}
- For k = 1, $\mathbb{Z}_2 \equiv \mathbb{B}$

Rings

- Examples of rings: $\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}$
- $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$ where $+, \cdot$ computed $+, \cdot$ (mod n)
- Modulo arithmetic:
 - $\bullet (a+b) \pmod{n} = (a \pmod{n} + b \pmod{n}) \pmod{n}$
 - $\bullet \ (a \cdot b) \ (\mathsf{mod} \ n) = (a \ (\mathsf{mod} \ n) \cdot b \ (\mathsf{mod} \ n)) \ (\mathsf{mod} \ n)$
 - $\bullet -a \pmod{n} = (n-a) \pmod{n}$
- Arithmetic k-bit vectors \mapsto arithmetic over \mathbb{Z}_{2^k}
- For k = 1, $\mathbb{Z}_2 \equiv \mathbb{B}$

But, what about division?

How to define division?

- Over \mathbb{Q} , can you divide $\frac{2}{3}$ by $\frac{4}{5}$?
- Over \mathbb{C} , can you divide $\frac{a+ib}{c+id}$?
- Over \mathbb{Z} , can you divide $\frac{3}{4}$?
- Over \mathbb{Z} (mod 8), can you divide $\frac{3}{4}$?
- Over \mathbb{Z} (mod 7), can you divide $\frac{3}{4}$?

Division is multiplication by a (multiplicative) inverse!

Division

For an element a in a ring R, $\frac{a}{b}=a\times b^{-1}$. Here, $b^{-1}\in R$ s.t. $b\cdot b^{-1}=1$.

Multiplicative Inverses

- Over \mathbb{Q} : if $b = \frac{2}{3}$, $b^{-1} = \frac{3}{2}$?
- Over \mathbb{Z} : if b = 4, $b^{-1} = ?$
- Over rings: inverses may not exist
- Over \mathbb{Z}_8 : if $b = 3, b^{-1} = ?$
- Over \mathbb{Z}_8 : if $b = 6, b^{-1} = ?$
- Over \mathbb{Z}_7 : if $b = 6, b^{-1} = ?$

Field $(\mathbb{F}, \overline{0, 1, +, \cdot)}$

A **field** \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F} , except 0, has a multiplicative inverse:

 $\forall a \in (\mathbb{F} - \{0\}), \quad \exists \hat{a} \in \mathbb{F} \text{ such that } a \cdot \hat{a} = 1.$

Field $(\mathbb{F}, \overline{0, 1, +, \cdot})$

A **field** \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F} , except 0, has a multiplicative inverse:

 $\forall a \in (\mathbb{F} - \{0\}), \quad \exists \hat{a} \in \mathbb{F} \text{ such that } a \cdot \hat{a} = 1.$

A field is called a **finite field** or **Galois field** when \mathbb{F} has a finite number of elements.

Field $(\mathbb{F},0,1,+,\cdot)$

A **field** \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F} , except 0, has a multiplicative inverse:

 $\forall a \in (\mathbb{F} - \{0\}), \quad \exists \hat{a} \in \mathbb{F} \text{ such that } a \cdot \hat{a} = 1.$

A field is called a **finite field** or **Galois field** when \mathbb{F} has a finite number of elements.

The set $\mathbb{Z}_p = \mathbb{Z} \pmod{p} = \{0, 1, \dots, p-1\}$ is a finite field, when p is a prime integer.

Field $(\mathbb{F},0,1,+,\cdot)$

A **field** \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F} , except 0, has a multiplicative inverse:

$$\forall a \in (\mathbb{F} - \{0\}), \quad \exists \hat{a} \in \mathbb{F} \text{ such that } a \cdot \hat{a} = 1.$$

A field is called a **finite field** or **Galois field** when \mathbb{F} has a finite number of elements.

The set $\mathbb{Z}_p = \mathbb{Z} \pmod{p} = \{0, 1, \dots, p-1\}$ is a finite field, when p is a prime integer.

 $\mathbb{Z}_n, n \neq p$ is a ring but not a field. So, \mathbb{Z}_{2^k} is not a field, as even numbers in \mathbb{Z}_{2^k} have no inverses.

Field $(\mathbb{F},0,1,+,\cdot)$

A **field** \mathbb{F} is a commutative ring with unity, where every element in \mathbb{F} , except 0, has a multiplicative inverse:

$$\forall a \in (\mathbb{F} - \{0\}), \quad \exists \hat{a} \in \mathbb{F} \text{ such that } a \cdot \hat{a} = 1.$$

A field is called a **finite field** or **Galois field** when \mathbb{F} has a finite number of elements.

The set $\mathbb{Z}_p = \mathbb{Z} \pmod{p} = \{0, 1, \dots, p-1\}$ is a finite field, when p is a prime integer.

 $\mathbb{Z}_n, n \neq p$ is a ring but not a field. So, \mathbb{Z}_{2^k} is not a field, as even numbers in \mathbb{Z}_{2^k} have no inverses.

$$\mathbb{Z}_2 \equiv \mathbb{F}_2 \equiv \mathbb{B} \equiv \{0,1\}$$

\mathbb{B} is arithmetic (mod 2)

ullet Boolean AND-OR-NOT can be mapped to $+,\cdot\pmod 2$

\mathbb{B} is arithmetic (mod 2)

• Boolean AND-OR-NOT can be mapped to $+, \cdot \pmod{2}$

$$\mathbb{B} \to \mathbb{F}_2$$
:

$$\neg a \rightarrow a+1 \pmod{2}$$

$$a \lor b \rightarrow a+b+a \cdot b \pmod{2}$$

$$a \land b \rightarrow a \cdot b \pmod{2}$$

$$a \oplus b \rightarrow a+b \pmod{2}$$
(1)

where $a, b \in \mathbb{F}_2 = \{0, 1\}.$

\mathbb{B} is arithmetic (mod 2)

• Boolean AND-OR-NOT can be mapped to $+, \cdot \pmod{2}$

$$\mathbb{B} \to \mathbb{F}_2$$
:

$$\neg a \rightarrow a+1 \pmod{2}$$

$$a \lor b \rightarrow a+b+a \cdot b \pmod{2}$$

$$a \land b \rightarrow a \cdot b \pmod{2}$$

$$a \oplus b \rightarrow a+b \pmod{2}$$
(1)

where $a, b \in \mathbb{F}_2 = \{0, 1\}.$

In
$$\mathbb{Z}_2 \equiv \mathbb{F}_2, -1 = +1 \pmod{2}$$

Hardware Model in \mathbb{Z}_2

Figure: $\otimes = AND$, $\oplus = XOR$.

$$f_1: s_0 + a_0 \cdot b_0;$$
 $f_2: s_1 + a_0 \cdot b_1,$
 $f_3: s_2 + a_1 \cdot b_0;$ $f_4: s_3 + a_1 \cdot b_1,$
 $f_5: r_0 + s_1 + s_2;$ $f_6: z_0 + s_0 + s_3,$
 $f_7: z_1 + r_0 + s_3$

Finite Fields

- \mathbb{Z}_p : field of p elements, p = 2, 3, 5, 7, ..., 163, ...
- Is there a field of 4 elements \mathbb{F}_4 ?
- ullet Yes, we can have fields of p^k elements \mathbb{F}_{p^k}
- These are called extension fields, we will study them later
- In fact, we are interested in \mathbb{F}_{2^k} (k-bit vector arithmetic)
- Fields are unique factorization domains (UFDs)

Finite Fields

- \mathbb{Z}_p : field of p elements, p = 2, 3, 5, 7, ..., 163, ...
- Is there a field of 4 elements \mathbb{F}_4 ?
- ullet Yes, we can have fields of p^k elements \mathbb{F}_{p^k}
- These are called extension fields, we will study them later
- In fact, we are interested in \mathbb{F}_{2^k} (k-bit vector arithmetic)
- Fields are unique factorization domains (UFDs)

Fermat's Little Theorem

$$\forall x \in \mathbb{F}_p, \ x^p - x = 0 \ (\text{mod } p)$$

Zero Divisors

Zero Divisors (ZD)

For $a, b \in R$, $a, b \neq 0$, $a \cdot b = 0$. Then a, b are zero divisors of each other. \mathbb{Z}_n , $n \neq p$ has zero divisors. What about \mathbb{Z}_p ?

Integral Domains

Any set (ring) with no zero divisors: $\mathbb{Z}, \mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{Z}_p, \mathbb{F}_{2^k}$. What about \mathbb{Z}_{2^k} ?

Relationships

Commutative Rings \supset Integral Domains (no ZD) \supset Unique Factorization Domains \supset Fields

For Hardware: Our interests – non-UFD Rings (\mathbb{Z}_{2^k}) and Fields \mathbb{F}_{2^k} .

For Software: $\mathbb{F}_p \equiv Z_p$ also works.

Ambiguities in non-UFDs UFDs

- In 3-bit arithmetic \mathbb{Z}_8 : $(x^2 + 6x) \pmod{8}$
- Factorize according to its roots: x(x+6)
- What about (x + 2)(x + 4)?
- Degree 2 polynomial has more roots than the degree? Roots x = 0, 2, 4, 6?
- $\mathbb{Z}_8 = \text{non-UFD}$
- Cannot use factorization to prove equivalence over non-UFDs.

Consolidating the results so far...

- Over fields \mathbb{Z}_p , \mathbb{F}_{2^k} , \mathbb{R} , \mathbb{Q} , \mathbb{C}
 - We can ADD, MULTIPLY, DIVIDE
 - No zero-divisors, can uniquely factorize a polynomial according to its roots
- ullet Rings \mathbb{Z} : integral domains, unique factorization, but no inverses
- Over Rings \mathbb{Z}_n , $n \neq p$; e.g. $n = 2^k$
 - Presence of zero divisors
 - non-UFDs, polynomial can have more zeros than its degree
 - Cannot perform division

Let's focus on \mathbb{Z}_n , \mathbb{Z}_p : p = prime integer, n = any integer

Computation of Multiplicative Inverses in \mathbb{Z}_n

The integer $a \in \mathbb{Z}_n$ has a multiplicative inverse if and only if GCD(a, n) = 1.

We compute GCDs using the Euclid's algorithm.

Euclidean Domains

Definition

A Euclidean domain $\mathbb D$ is an integral domain where:

- **①** associated with each non-zero element $a \in \mathbb{D}$ is a non-negative integer f(a) s.t. $f(a) \leq f(ab)$ if $b \neq 0$; and
- $\forall a, b \ (b \neq 0), \exists (q, r) \text{ s.t. } a = qb + r, \text{ where either } r = 0 \text{ or } f(r) < f(b).$
 - ullet Can apply the Euclid's algorithm to compute $g = GCD(g_1, \dots, g_t)$
 - GCD(a, b, c) = GCD(GCD(a, b), c)
 - Then $g = \sum_i u_i g_i$, i.e. GCD can be represented as a linear combination of the elements

Euclid's Algorithm

Algorithm 1 Euclid's Algorithm

Inputs: Elements $a, b \in \mathbb{D}$, a Euclidean domain

Outputs: g = GCD(a, b)

- 1: Assume a > b, otherwise swap $a, b \{/* GCD(a, 0) = a */\}$
- 2: while $b \neq 0$ do
- 3: t := b
- 4: $b := a \pmod{b}$
- 5: a := t
- 6: end while
- 7: **return** g := a

GCD(84, 54) = 6

$$84 = 1 \cdot 54 + 30$$
 $6 = 30 - 1 \cdot 24$
 $54 = 1 \cdot 30 + 24$ $= 30 - 1(54 - 30)$
 $30 = 1 \cdot 24 + \underline{6}$ $= 2 \cdot 30 - 1 \cdot 54$
 $24 = 4 \cdot 6 + 0$ $= 2 \cdot 84 - 3 \cdot 54$

Lemma

If $g = \gcd(a, b)$ then $\exists s, t \text{ such that } s \cdot a + t \cdot b = g$.

Unroll Euclid's algorithm to find s, t. A HW assignment!

GCD, Inverses and Euclid's Algorithm

Euclid's Algorithm View

a. Process

```
 \begin{array}{c} r_1 \leftarrow a; \; r_2 \leftarrow b; \\ \text{while } (r_2 > 0) \\ \{ \\ q \leftarrow r_1 \; / \; r_2; \\ r \leftarrow r_1 - q \times r_2; \\ r_1 \leftarrow r_2; \; r_2 \leftarrow r; \\ \} \\ \\ \text{gcd } (a, \; b) \leftarrow r_1 \end{array}
```

b. Algorithm

Extended Euclidean algorithm

 $d = gcd(a, b) = s \times a + t \times b$

a. Process

$$\begin{array}{c} r_{1} \leftarrow a; \; r_{2} \leftarrow b; \\ s_{1} \leftarrow 1; \; s_{2} \leftarrow 0; \\ t_{1} \leftarrow 0; \; t_{2} \leftarrow 1; \\ \end{array} \text{ while } (r_{2} > 0) \\ \{ \\ q \leftarrow r_{1} \; / \; r_{2}; \\ \\ r \leftarrow r_{1} - q \times r_{2}; \\ r_{1} \leftarrow r_{2}; \; r_{2} \leftarrow r; \\ \\ s \leftarrow s_{1} - q \times s_{2}; \\ s_{1} \leftarrow s_{2}; \; s_{2} \leftarrow s; \\ \end{cases} \text{ (Updating } r's) \\ \\ t \leftarrow t_{1} - q \times t_{2}; \\ t_{1} \leftarrow t_{2}; \; t_{2} \leftarrow t; \\ \} \\ \\ \text{gcd } (a \; , \; b) \leftarrow r_{1}; \; s \leftarrow s_{1}; \; t \leftarrow t_{1} \\ \end{array}$$

b. Algorithm

q	r_1 r_2	r	s_1 s_2	S	t_1 t_2	t
5	161 28	21	1 0	1	0 1	- 5
1	28 21	7	0 1	-1	1 -5	6
3	21 7	0	1 -1	4	- 5 6	-23
	7 0		-1 4		6 −23	

We get gcd (161, 28) = 7, s = -1 and t = 6. The answers can be tested because we have

$$(-1) \times 161 + 6 \times 28 = 7$$

Linear Diophantine Equations

ax + by = c, where $a, b, c \in \mathbb{Z}$. Find x, y that satisfy the equation

- d = gcd(a, b). If d does not divide c, then there are no solutions
- If $d \mid c$, then the equation has infinite solutions
 - Reduce equation to $a_1x + b_1y = c_1$, by dividing both sides by d
 - Solve for $s, t : a_1 s + b_1 t = 1$
 - Particular solution: $x_0 = (c/d)s$, $y_0 = (c/d)t$
 - General solutions: $x = x_0 + k(b/d)$; $y = y_0 k(a/d)$, $\forall k \in \mathbb{Z}$

Solving Linear Congruences

Solve equations of the form $ax \equiv b \pmod{n}$

- d = gcd(a, n)
- If $d \nmid b$: No solution
- If $d \mid b$: there are d solutions
- Reduce the equation by dividing both sides, including the modulus, by
- Multiply both sides of the reduced equation by the multiplicative inverse of a to find particular solution x_0
- General Solutions: $x = x_0 + k(n/d), k = 0, \dots, d-1$

Please Review Matrices

- Please review addition, multiplication and determinants det(A) of matrices on your own
- Multiplicative Inverse of a matrix: defined only for square matrix
- Inverses: $\mathbf{A} \times \mathbf{B} = \mathbf{B} \times \mathbf{A} = \mathbf{I}$
- Multiplicative inverse of A exists, only if det(A) has an inverse in the ring.
- ullet Integers (infinite set \mathbb{Z}) have no inverses, no integer matrices have no inverses
- In Crypto: we use matrices over \mathbb{Z}_n called residue matrices