Formelsammlung TM EI

Mathematik

x	0	$\frac{\pi}{6}(30^{\circ})$	$\frac{\pi}{4}(45^{\circ})$	$\frac{\pi}{3}(60^{\circ})$	$\frac{\pi}{2}(90^{\circ})$
$\sin(x)$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos(x)$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan(x)$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$

Additions theoreme:

$$\sin^{2} \alpha + \cos^{2} \alpha = 1$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

Basisdrehung

Darstellung eines Vektors 1a aus Koordinatensystem 1 (Index 1) in Koordinatensystem 2:

Drehmatrix:

Basisvektoren des "alten" Koordinatensystems (1), dargestellt im "neuen" Koordinatensystem (2)

$$\mathbf{A}_{21} = \begin{pmatrix} \cos \varphi & \sin \varphi & 0 \\ -\sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$${}_{2}\mathbf{a} = \mathbf{A}_{21} \, {}_{1}\mathbf{a}$$

Rücktransformation:

$$\boldsymbol{A}_{12} = \boldsymbol{A}_{21}^T = \boldsymbol{A}_{21}^{-1}$$

Statisches Gleichgewicht

$$\sum_i oldsymbol{F}_i = oldsymbol{0} \quad ext{und} \quad \sum_i oldsymbol{r}_{P_i} imes oldsymbol{F}_i + \sum_j oldsymbol{M}_j = oldsymbol{0}$$

Statische Bestimmtheit und Wertigkeit

$$f = -\sum_{j=1}^{n} w_j + \begin{cases} 3i & \text{ebener Fall} \\ 6i & \text{räumlicher Fall} \end{cases}$$

- f=0 Notwendige (aber nicht hinreichende) Bedingung für statische Bestimmtheit \rightarrow Stereo-Statik
- f < 0 System ist |f|-fach statisch unbestimmt \rightarrow Elastostatik
- f > 0 System ist f-fach statisch unterbestimmt / kinematisch unbestimmt \rightarrow Kinematik

Schwerpunkt

$$\text{Massenschwerpunkt:} \quad \boldsymbol{r}_S = \frac{1}{m} \int\limits_{m} \boldsymbol{r} \mathrm{d} \overline{m} \quad \Rightarrow \quad \boldsymbol{r}_S = \frac{\sum\limits_{i} \boldsymbol{r}_{Si} m_i}{\sum\limits_{i} m_i}$$

Flächenschwerpunkt:
$$r_S = \frac{1}{A} \int\limits_A r d\overline{A} \quad \Rightarrow \quad r_S = \frac{\sum\limits_i r_{Si} \ A_i}{\sum\limits_i A_i}$$

Schwerpunkte spezieller ebener Körper

Beliebiges
$$y_s = \frac{1}{3} h$$

Dreieck $A = \frac{1}{2} a h$

$$\frac{y}{a}$$

Trapez
$$y_s = \frac{1}{3} h \frac{a+2b}{a+b}$$
 y b $A = \frac{1}{2} h (a+b)$

Kreisseg-
$$y_s = \frac{2}{3} r \frac{\sin \alpha}{\alpha}$$

ment $A = \alpha r^2$

Halbkreis
$$y_s = \frac{4}{3} \frac{r}{\pi}$$
$$A = \frac{1}{2} \pi r^2$$

Balkenstatik

Streckenlasten

Resultierende Kraft: $F_{Res} = \int_{L} q(x) d\overline{x}$

Schnittgrößen

Normalkraft: N(x)

Querkraft: Q(x) mit $\frac{dQ(x)}{dx} = -q(x)$

Biegemoment: M(x) mit $\frac{\mathrm{d}M(x)}{\mathrm{d}x} = Q(x)$

Coulombsche Reibung

Klotz haftet: $-\mu_0 F_N \le F_R \le \mu_0 F_N$

Klotz gleitet nach rechts: $F_R = -\mu F_N$

Klotz gleitet nach links: $F_R = \mu F_N$

Gleitreibkraft immer entgegen Bewegungsrichtung

 μ : Gleitreibkoeffizient μ_0 : Haftreibkoeffizient

Elastostatik

Grundbegriffe

Spannung : $\sigma(x) = \frac{N(x)}{A(x)}$

Globale Dehnung : $\varepsilon = \frac{\Delta l}{l} = \frac{u(l) - u(0)}{l}$

Lokale Dehnung : $\varepsilon = \frac{\mathrm{d}u(x)}{\mathrm{d}x} = u'$

Thermische Dehnung : $\varepsilon_T = \alpha_T \Delta T$

Stoffgesetz nach Hooke : $\sigma = E\varepsilon$

Grundgleichung elastisch deformierbarer Stab

Elastizitätsgesetz (allgemein) : $\frac{\mathrm{d}u(x)}{\mathrm{d}x} = \frac{N}{EA} + \alpha_T \Delta T$

Elastizitätsgesetz (speziell) : $\Delta l = \frac{Fl}{EA}$

dabei: F = N Stabbelastung nur durch Einzelkraft F = N

EA = const. konstante Dehnsteifigkeit

 $\Delta T = 0$ keine Wärmedehnung

Kinematik

Eindimensionale (Punkt-)Bewegungen

Lage : x(t)

Geschwindigkeit : $v(t) = \frac{\mathrm{d} x}{\mathrm{d} t} = \dot{x}(t)$

Beschleunigung : $a(t) = \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{\mathrm{d}^2 x}{\mathrm{d} t^2} = \ddot{x}(t)$

Starrkörperformel

Eulersche Beziehung

$$\boldsymbol{v}_Q = \boldsymbol{v}_P + \boldsymbol{\omega} \times \boldsymbol{r}_{PQ}$$

Momentanpol Q

$$\mathbf{0} = oldsymbol{v}_P + oldsymbol{\omega} imes oldsymbol{r}_{PQ} \Rightarrow oldsymbol{r}_{PQ} = rac{oldsymbol{\omega} imes oldsymbol{v}_P}{\omega^2}$$

 ω : absolute Winkelgeschwindigkeit des Körpers

 $oldsymbol{v}_Q$: Geschwindigkeit des Punktes Q $oldsymbol{v}_P$: Geschwindigkeit des Punktes P $oldsymbol{r}_{PQ}$: Vektor von Punkt P zu Punkt Q

Relativkinematik, bewegtes KOSY K

Ortsvektor

$$_{I}\boldsymbol{r}_{0P} = _{I}\boldsymbol{r}_{00'} + _{I}\boldsymbol{r}_{0'P} = _{I}\boldsymbol{r}_{00'} + \boldsymbol{A}_{IK} \cdot _{K}\boldsymbol{r}_{0'P}$$

Geschwindigkeit

$$_{K}oldsymbol{v}_{P}=oldsymbol{A}_{KI}{}_{I}oldsymbol{v}_{P}={}_{K}oldsymbol{v}_{0'}+{}_{K}\dot{oldsymbol{r}}_{0'P}={}_{K}oldsymbol{v}_{0'}+{}_{K}\overset{\circ}{oldsymbol{r}}_{O'P}+\underbrace{{}_{K}oldsymbol{\omega}_{K} imes{}_{K}oldsymbol{v}_{K} imes{}_{K}oldsymbol{v}_{0'}}_{ ext{Euler-Ableitung}}$$

Beschleunigung

$$_{K}oldsymbol{a}_{P}={}_{K}\dot{oldsymbol{v}}_{P}={}_{K}\ddot{oldsymbol{v}}_{P}={}_{K}\overset{\circ}{oldsymbol{v}}_{O'P}+\underbrace{{}_{K}oldsymbol{\omega}_{K} imes{}_{K}oldsymbol{v}_{P}}_{ ext{EULER-Ableitung}}$$

dabei ist ${}_K\boldsymbol{\omega}_K=(\omega_x,\omega_y,\omega_z)^T$ die Winkelgeschwindigkeit des bewegten Koordinatensystems K, dargestellt im K-System. Der einfache Punkt (`) kennzeichnet die totale Ableitung nach der Zeit, der Kringel (°) die komponentenweise Ableitung.

Kinetik

Impuls

$$\boldsymbol{p} = \int\limits_K \boldsymbol{v} \, \mathrm{d} m = m \, \boldsymbol{v}_S$$

Impulssatz

$$\dot{\boldsymbol{p}} = m \, \boldsymbol{a}_S = \boldsymbol{F} = \sum \mathrm{d} \boldsymbol{F}_i$$

mit:

 $m{v}_S$: absolute Geschwindigkeit des Schwerpunktes $m{a}_S$: absolute Beschleunigung des Schwerpunktes

m: Masse

 $\sum \boldsymbol{F}_i$: Summe aller angreifenden Kräfte

Trägheitsmomente

Trägheitsmomente eines Körpers im K-KOSY bzgl. des (Schwer-)Punktes S:

$${}_{K}\boldsymbol{\Theta}^{S} = \begin{pmatrix} \boldsymbol{\Theta}_{xx}^{S} & -\boldsymbol{\Theta}_{xy}^{S} & -\boldsymbol{\Theta}_{xz}^{S} \\ -\boldsymbol{\Theta}_{yx}^{S} & \boldsymbol{\Theta}_{yy}^{S} & -\boldsymbol{\Theta}_{yz}^{S} \\ -\boldsymbol{\Theta}_{zx}^{S} & -\boldsymbol{\Theta}_{zy}^{S} & \boldsymbol{\Theta}_{zz}^{S} \end{pmatrix}$$

Moment	Massenträgheit	Deviation	
um x -Achse	$\Theta_{xx}^S = \int (y^2 + z^2) \mathrm{d}m$	$\Theta_{yz}^S = \Theta_{zy}^S = \int (yz) \mathrm{d}m$	
um y -Achse	$\Theta_{yy}^S = \int (x^2 + z^2) \mathrm{d}m$	$\Theta_{xz}^S = \Theta_{zx}^S = \int (xz) \mathrm{d}m$	
um z -Achse	$\Theta_{zz}^S = \int (x^2 + y^2) \mathrm{d}m$	$\Theta_{xy}^S = \Theta_{yx}^S = \int (xy) \mathrm{d}m$	

Jeder starre Körper besitzt drei zueinander senkrechte Hauptträgheitsachsen, für die die Massenträgheitsmomente $(A_0,\,B_0,\,C_0)$ Extremwerte annehmen und die Deviationsmomente Null werden \to Hauptachsensystem.

$${}_{K}\boldsymbol{\Theta}^{S} = \begin{pmatrix} A_{0} & 0 & 0 \\ 0 & B_{0} & 0 \\ 0 & 0 & C_{0} \end{pmatrix}$$

Punkt- und linienförmige Körper: Massenbelegung $\mu_l = \frac{m}{l}$ $[\mu_l] = \frac{kg}{m}$					
Bezeichnung	Masse, Schwerpunkt	Massenträgheitsmomente	Deviationsmomente		
y y_s y_s z Punktmasse	m $x_s = x$ $y_s = y$ $z_s = z$	$\Theta_{xx} = m(y^2 + z^2)$ $\Theta_{yy} = m(z^2 + x^2)$ $\Theta_{zz} = m(x^2 + y^2)$	$\Theta_{xy} = mxy$ $\Theta_{yz} = myz$ $\Theta_{zx} = mzx$		
$ \begin{array}{c c} \overline{z} & y \\ \hline z & y \\ \hline x_s & S \\ \hline Dünner Balken \end{array} $	$m = \rho A l = \mu_l l$	$\Theta_{xx} = 0$ $\Theta_{yy} = \Theta_{zz} = \frac{1}{12}ml^2$ $\Theta_{yy} = \Theta_{\overline{z}\overline{z}} = \frac{1}{3}ml^2$	$\Theta_{xy} = \Theta_{yz} = \Theta_{zx} = 0$ (Hauptachsen)		
Dünner Kreis	$m = 2\pi r \mu_l$	$\Theta_{xx} = \Theta_{yy} = \frac{1}{2}mr^2$ $\Theta_{zz} = mr^2$	$\Theta_{xy} = \Theta_{yz} = \Theta_{zx} = 0$ (Hauptachsen)		

Dünne Scheiben / homogene Körper: Massenbelegung $\mu_A = \frac{m}{A}$; $\rho = \frac{m}{V}$ $[\mu_A] = \frac{kg}{m^2}$; $[\rho] = \frac{kg}{m^3}$					
Bezeichnung	Masse, Schwerpunkt	Massenträgheitsmomente	Deviationsmomente		
\overline{y} y a \overline{x} Dreieckscheibe	$m = \mu_A \frac{1}{2}bh$ $\overline{x}_S = \frac{1}{3}(a+b)$ $\overline{y}_S = \frac{1}{3}h$	$\Theta_{xx} = \frac{1}{18}mh^2$ $\Theta_{yy} = \frac{1}{18}m(a^2 + b^2 - ab)$ $\Theta_{zz} = \Theta_{xx} + \Theta_{yy}$	$\Theta_{xy} = \frac{1}{36}mh(2a - b)$ $\Theta_{yz} = \Theta_{zx} = 0$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$m = \mu_A ab$ $\overline{x}_S = \frac{1}{3}(a+b)$ $\overline{y}_S = \frac{1}{3}h$	$\Theta_{xx} = \frac{1}{12}mb^2$ $\Theta_{yy} = \frac{1}{12}ma^2$ $\Theta_{zz} = \frac{1}{12}m(a^2 + b^2)$ $\Theta_{zz} = \frac{1}{3}m(a^2 + b^2)$	$\Theta_{xy} = \Theta_{yz} = \Theta_{zx} = 0$ (Hauptachsen) $\Theta_{\overline{xy}} = \frac{1}{4}mab$ $\Theta_{\overline{xz}} = \Theta_{\overline{yz}} = 0$		
r_a r_a r_a r_a Ringscheibe	$m = \mu_A \pi (r_a^2 - r_i^2)$ $\overline{x}_S = \frac{1}{3}(a+b)$ $\overline{y}_S = \frac{1}{3}h$	$\Theta_{xx} = \frac{1}{4}m(r_a^2 + r_i^2)$ $\Theta_{yy} = \Theta_{xx}$ $\Theta_{zz} = \frac{1}{2}m(r_a^2 + r_i^2)$	$\Theta_{xy} = \Theta_{yz} = \Theta_{zx} = 0$ (Hauptachsen)		
y Walze	$m = \rho \pi r^2 l$	$\Theta_{xx} = \frac{1}{12}m(3r^2 + l^2)$ $\Theta_{yy} = \Theta_{xx}$ $\Theta_{zz} = \frac{1}{2}mr^2$	$\Theta_{xy} = \Theta_{yz} = \Theta_{zx} = 0$ (Hauptachsen)		
y S b x Quader	m = ho abc	$\Theta_{xx} = \frac{1}{12}m(b^2 + c^2)$ $\Theta_{yy} = \frac{1}{12}m(c^2 + a^2)$ $\Theta_{zz} = \frac{1}{12}m(a^2 + b^2)$	$\Theta_{xy} = \Theta_{yz} = \Theta_{zx} = 0$ (Hauptachsen)		
y r x Kugel	$m = \rho \frac{4}{3}\pi r^3$	$\Theta_{xx} = \frac{2}{5}mr^2$ $\Theta_{yy} = \Theta_{zz} = \Theta_{xx}$	$\Theta_{xy} = \Theta_{yz} = \Theta_{zx} = 0$ (Hauptachsen)		

Drall

Drall eines Starrkörpers um allgemeinen Punkt P:

$$\boldsymbol{L}^{P} = \boldsymbol{\Theta}^{S} \, \boldsymbol{\omega} + m \left(\boldsymbol{r}_{PS} \times \boldsymbol{v}_{PS} \right)$$

Drall eines Starrkörpers um körperfesten Punkt (z. B. Momentanpol) K bzw. Schwerpunkt S:

$$L^K = \boldsymbol{\Theta}^K \boldsymbol{\omega} \qquad L^S = \boldsymbol{\Theta}^S \boldsymbol{\omega}$$

Drallsatz

Drallsatz für allgemeinen Bezugspunkt P:

$$\dot{\boldsymbol{L}}^P + m\left(\boldsymbol{r}_{PS} \times \boldsymbol{a}_P\right) = \sum_i \boldsymbol{M}_i^P$$

Drallsatz für Schwerpunkt S als Bezugspunkt:

$$\dot{m{L}}^S = \sum_i m{M}_i^S$$

Energie

Kinetische Energie eines Starrkörpers

$$egin{aligned} T &= rac{1}{2} \, m \, oldsymbol{v}_P^2 \, + \, m \, oldsymbol{v}_P^T (oldsymbol{\omega} imes oldsymbol{r}_{PS}) \, + \, rac{1}{2} \, oldsymbol{\omega}^T \, oldsymbol{\Theta}^P \, oldsymbol{\omega} \ T &= rac{1}{2} \, m \, oldsymbol{v}_S^2 \, + \, rac{1}{2} \, oldsymbol{\omega}^T \, oldsymbol{\Theta}^M \, oldsymbol{\omega} \ T &= rac{1}{2} \, oldsymbol{\omega}^T \, oldsymbol{\Theta}^M \, oldsymbol{\omega} \end{aligned}$$

mit:

 $oldsymbol{v}_P$: absolute Geschwindigkeit des körperfesten Punktes P

 ω : absolute Winkelgeschwindigkeit des Körpers

S: Schwerpunkt M: Momentanpol

 $\boldsymbol{\Theta}^P$: Trägheitstensor, bezogen auf den Punkt P

Potentielle Energie

im Gravitationsfeld: durch lineare Feder: gesamt:

$$V_g = m g \Delta h$$

$$V_c = \frac{1}{2} c (\Delta l)^2 \qquad V = V_g + V_c$$

mit: m: Masse im Kraftfeld g: Erdbeschleunigung

 Δh : Höhenänderung parallel zur Erdbeschleunigung

c: Federkonstante

 Δl : Längenänderung der Feder

Energieerhaltungssatz für konservative Systeme

$$E = T + V = \text{const.}$$