Improving LLL algorithm for cryptanalysis

Zhenfei ZHANG

School of Computer Science and Software Engineering University of Wollongong

zz920@uowmail.edu.au

A Knapsack Problem

A Knapsack Problem

- $X_1,\ldots,X_d\in\mathbb{Z}$;
- $s_1,\ldots,s_d\in\mathbb{Z}_2$;
- $X = \sum_{i=1}^d s_i X_i$;
- Given $\{X_i\}$ and X, find s_i .

```
X = 1911310173

X_1 = 437491759; X_2 = 128552629; X_3 = 972127522;

X_4 = 711069765; X_5 = 125617110; X_6 = 812891076;

X_7 = 44057509; X_8 = 376073782; X_9 = 340284326;
```

Solving a Knapsack Problem using LLL

```
X = 1911310173

X_1 = 437491759; X_2 = 128552629; X_3 = 972127522;

X_4 = 711069765; X_5 = 125617110; X_6 = 812891076;

X_7 = 44057509; X_8 = 376073782; X_9 = 340284326;
```

Solving a Knapsack Problem using LLL

```
X = 1911310173 = X_1 + X_3 + X_5 + X_8

X_1 = 437491759; X_2 = 128552629; X_3 = 972127522;

X_4 = 711069765; X_5 = 125617110; X_6 = 812891076;

X_7 = 44057509; X_8 = 376073782; X_9 = 340284326;
```

$$LLL(\mathcal{B}) = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 5 & -3 & -1 & 1 & 0 & 0 & 3 & 1 & 3 & 2 \\ -1 & -5 & 4 & 5 & -1 & 4 & 1 & 0 & -5 & 0 \\ 3 & -4 & 3 & 2 & -4 & 3 & -6 & 4 & -1 & -2 \\ 1 & 2 & -1 & 1 & 7 & 4 & 4 & 3 & -6 & -2 \\ -1 & -4 & -4 & -5 & 3 & 3 & -5 & 1 & 5 & 3 \\ -3 & 1 & -4 & 7 & 5 & -6 & 1 & 3 & -3 & -5 \\ 8 & -1 & 5 & -1 & 4 & 1 & -3 & -4 & 2 & -1 \\ 4 & 2 & 4 & 4 & 4 & -6 & -4 & 5 & 1 & 3 \\ 3 & 2 & -6 & 1 & -2 & 4 & 1 & -4 & -9 & 2 \end{pmatrix}$$

Cryptanalysis using Lattice Reduction

Problems:

- Shortest Vector problem;
- Closest Vector problem;
- Knapsack Problem;
- Factorization;
- Bounded Distance Decoding Problem;
- Learning with Error problem;
- Approximate Greatest Common Divisor Problem;
- ...

Practicality:

- Some are solvable in Poly time (Gentry-Halevi's FHE challange)
- But time consuming (45 years, small challange, Chen and Nguyen)

LLL Algorithm

- Introduction
- 2 Classic LLL Algorithm
- 3 Improving floating point precisions
- 4 Recursive Reduction
- 5 LLL for ideal lattices
- 6 conclusion

LLL in \mathbb{Z}^1 (Greatest Common Divisor)

$$\mathbf{B} = \begin{pmatrix} 18 \\ 51 \end{pmatrix}$$

- Define $\mu = \frac{b_1 \cdot b_2}{b_1 \cdot b_1} = \frac{17}{6}$;
- If $|\mu| > 0.5$, let $b_2 = b_2 \lfloor \mu \rceil b_1 = 51 3 \times 18 = -3$;
- If $b_2 < b_1$, swap b_1 and b_2 ;
- Else, terminate.

LLL in \mathbb{Z}^1 (Greatest Common Divisor)

$$\mathbf{B} = \begin{pmatrix} -3 \\ 18 \end{pmatrix}$$

- Define $\mu = \frac{b_1 \cdot b_2}{b_1 \cdot b_1} = -6$;
- If $|\mu| > 0.5$, let $b_2 = b_2 |\mu| b_1 = 18 3 \times 6 = 0$;
- If $b_2 < b_1$, swap b_1 and b_2 ;
- Else, terminate.

LLL in \mathbb{Z}^1 (Greatest Common Divisor)

$$\mathbf{B} = \begin{pmatrix} 0 \\ -3 \end{pmatrix}$$

- Define $\mu = \frac{b_1 \cdot b_2}{b_1 \cdot b_1} = 0$;
- If $|\mu| > 0.5$, let $b_2 = b_2 |\mu| b_1 = -3$;
- If $b_2 < b_1$, swap b_1 and b_2 ;
- Else, terminate.

LLL in \mathbb{Z}^2 (Gauss reduction)

$$\mathbf{B} = \begin{pmatrix} 18 & 1 \\ 51 & 2 \end{pmatrix}$$

- Define $\mu = \frac{{\bf b}_1 \cdot {\bf b}_2}{{\bf b}_1 \cdot {\bf b}_1} = \frac{184}{65}$;
- If $|\mu| > 0.5$, let $\mathbf{b}_2 = \mathbf{b}_2 \lfloor \mu \rceil \mathbf{b}_1 = \mathbf{b}_2 3\mathbf{b}_1 = (-3, -1)$;
- If $|\mathbf{b}_2| < |\mathbf{b}_1|$, swap \mathbf{b}_1 and \mathbf{b}_2 ;
- Else, terminate.

LLL in \mathbb{Z}^2 (Gauss reduction)

$$\mathbf{B} = \begin{pmatrix} -3 & -1 \\ 18 & 1 \end{pmatrix}$$

- Define $\mu = \frac{\mathbf{b}_1 \cdot \mathbf{b}_2}{\mathbf{b}_1 \cdot \mathbf{b}_1} = -\frac{11}{2}$;
- If $|\mu| > 0.5$, let $\mathbf{b}_2 = \mathbf{b}_2 \lfloor \mu \rceil \mathbf{b}_1 = \mathbf{b}_2 (-6)\mathbf{b}_1 = (0, -5)$;
- If $|\mathbf{b}_2| < |\mathbf{b}_1|$, swap \mathbf{b}_1 and \mathbf{b}_2 ;
- Else, terminate.

LLL in \mathbb{Z}^2 (Gauss reduction)

$$\mathbf{B} = \begin{pmatrix} -3 & -1 \\ 0 & -5 \end{pmatrix}$$

- Define $\mu = \frac{\mathbf{b}_1 \cdot \mathbf{b}_2}{\mathbf{b}_1 \cdot \mathbf{b}_1} = -\frac{1}{2}$;
- If $|\mu| > 0.5$, let $\mathbf{b}_2 = \mathbf{b}_2 \lfloor \mu \rceil \mathbf{b}_1$;
- If $|\mathbf{b}_2| < |\mathbf{b}_1|$, swap \mathbf{b}_1 and \mathbf{b}_2 ;
- Else, terminate.

LLL in \mathbb{Z}^4

$$\mathbf{B} = \begin{pmatrix} 855401 & 0 & 0 & 0 \\ 328161 & 1 & 0 & 0 \\ 211573 & 0 & 1 & 0 \\ 325714 & 0 & 0 & 1 \end{pmatrix}$$

Gauss-reduce the first two vectors;

LLL in \mathbb{Z}^4

$$\mathbf{B} = \begin{pmatrix} 855401 & 0 & 0 & 0 \\ 328161 & 1 & 0 & 0 \\ \hline 211573 & 0 & 1 & 0 \\ 325714 & 0 & 0 & 1 \end{pmatrix}$$

Gauss-reduce the first two vectors;

LLL in \mathbb{Z}^4

$$\mathbf{B} = \begin{pmatrix} -801 & -309 & 0 & 0 \\ -260 & 941 & 0 & 0 \\ \hline 211573 & 0 & 1 & 0 \\ 325714 & 0 & 0 & 1 \end{pmatrix}$$

Gauss-reduce the first two vectors;

LLL in \mathbb{Z}^4

$$\mathbf{B} = \begin{pmatrix} -801 & -309 & 0 & 0 \\ -260 & 941 & 0 & 0 \\ 211573 & 0 & 1 & 0 \\ 325714 & 0 & 0 & 1 \end{pmatrix}$$

• Every pair of first three vectors are Gauss-reduced;

LLL in \mathbb{Z}^4

$$\mathbf{B} = \begin{pmatrix} -26 & -12 & 55 & 0 \\ 68 & 53 & 31 & 0 \\ 59 & -146 & -4 & 0 \\ \hline 325714 & 0 & 0 & 1 \end{pmatrix}$$

• Every pair of first three vectors are Gauss-reduced;

LLL in \mathbb{Z}^4

$$\mathbf{B} = \begin{pmatrix} 15 & 18 & 10 & 20 \\ -20 & 15 & 18 & 10 \\ -10 & -20 & 15 & 18 \\ -18 & -10 & -20 & 15 \end{pmatrix}$$

• Finally, every pair of vectors are Gauss-reduced.

LLL in \mathbb{Z}^4

$$\begin{pmatrix} 855401 & 0 & 0 & 0 \\ 328161 & 1 & 0 & 0 \\ 211573 & 0 & 1 & 0 \\ 325714 & 0 & 0 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 15 & 18 & 10 & 20 \\ -20 & 15 & 18 & 10 \\ -10 & -20 & 15 & 18 \\ -18 & -10 & -20 & 15 \end{pmatrix}$$

- Let n be the dimension, and β be maximum bit length of coefficients
- i.e., n = 4, $\beta = \log_2 855401 \sim 16.4$
- Requires $O(n^2)$ Gauss reduction
- Each Gauss reduction need $O(\beta^2 n^4)$ operations.
- Total cost $O(n^6\beta^3)$


```
      (83090417
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      1
      0
      0
      0
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

/83090417	0	0	0	0	0	0	0\
73193167	1	0	0	0	0	0	0
67400468	0	1	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

/83090417	0	0	0	0	0	0	0\
-9897250	1	0	0	0	0	0	0
67400468	0	1	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454		0		0	0	1	0
11182519	0	0	0	0	0	0	1/

/ 587	4290	0	0	0	0	0	0\
-18732	4651	0	0	0	0	0	0
67400468	0	1	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

/ 587	4290	0	0	0	0	0	0\
-18732	4651	0	0	0	0	0	0
67400468	0	1	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

/ 587	4290	0	0	0	0	0	0\
-18732	4651	0	0	0	0	0	0
-1643	-690	1	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

	/ 142	230	125	0	0	0	0	0\
	195	-352	275	0	0	0	0	0
I	-440	-61	388	0	0	0	0	0
I	229382	0	0	1	0	0	0	0
I	54626226	0	0	0	1	0	0	0
ı	13559580	0	0	0	0	1	0	0
	63222454	0	0	0	0	0	1	0
	\11182519	0	0	0	0	0	0	1/

/ 142	230	125	0	0	0	0	0\
195	-352	275	0	0	0	0	0
-440	-61	388	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

/ 142	230	125	0	0	0	0	0\
195	-352	275	0	0	0	0	0
-440	-61	388	0	0	0	0	0
75	-202	48	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

/ -89	-35	-36	12	0	0	0	0\
-83	59	42	-15	0	0	0	0
-42	66	-25	51	0	0	0	0
-3	24	76	76	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

/ -89	-35	-36	12	0	0	0	0\
-83	59	42	-15	0	0	0	0
-42	66	-25	51	0	0	0	0
-3	24	76	76	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

/ -89	-35	-36	12	0	0	0	0\
-83	59	42	-15	0	0	0	0
-42	66	-25	51	0	0	0	0
-3	24	76	76	0	0	0	0
-2	26	-34	7	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

1	-24	-10	20	-6	7	0	0	0\
	23	2	-4	-3	19	0	0	0
1	-26	16	-14	1	8	0	0	0
ı	9	26	19	40	10	0	0	0
1	5	39	-7	-47	-13	0	0	0
1	3559580	0	0	0	0	1	0	0
6	3222454	0	0	0	0	0	1	0
$\backslash 1$	1182519	0	0	0	0	0	0	1/

1	-24	-10	20	-6	7	0	0	0\
	23	2	-4	-3	19	0	0	0
	-26	16	-14	1	8	0	0	0
İ	9	26	19	40	10	0	0	0
1	5	39	-7	-47	-13	0	0	0
13	3559580	0	0	0	0	1	0	0
63	3222454	0	0	0	0	0	1	0
$\backslash 1$	1182519	0	0	0	0	0	0	1/

/ -24	-10	20	-6	7	0	0	0\
23	2	-4	-3	19	0	0	0
-26	16	-14	1	8	0	0	0
9	26	19	40	10	0	0	0
5	39	-7	-47	-13	0	0	0
1	6	10	-25	-19	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

$$\begin{pmatrix} 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -12 & 8 & 2 & 4 & 3 & -4 & 0 & 0 \\ -2 & 0 & -18 & -7 & 2 & 8 & 0 & 0 \\ 5 & 1 & 7 & -4 & 24 & -2 & 0 & 0 \\ 7 & 15 & 1 & -20 & -21 & -1 & 0 & 0 \\ 5 & 0 & -1 & 12 & 15 & 24 & 0 & 0 \\ \hline 63222454 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 11182519 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -12 & 8 & 2 & 4 & 3 & -4 & 0 & 0 \\ -2 & 0 & -18 & -7 & 2 & 8 & 0 & 0 \\ 5 & 1 & 7 & -4 & 24 & -2 & 0 & 0 \\ 7 & 15 & 1 & -20 & -21 & -1 & 0 & 0 \\ 5 & 0 & -1 & 12 & 15 & 24 & 0 & 0 \\ 63222454 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \hline 11182519 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -12 & 8 & 2 & 4 & 3 & -4 & 0 & 0 \\ -2 & 0 & -18 & -7 & 2 & 8 & 0 & 0 \\ 5 & 1 & 7 & -4 & 24 & -2 & 0 & 0 \\ 7 & 15 & 1 & -20 & -21 & -1 & 0 & 0 \\ 5 & 0 & -1 & 12 & 15 & 24 & 0 & 0 \\ 3 & 2 & -5 & -1 & 1 & -13 & 1 & 0 \\ \hline 11182519 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 3 & 1 & -7 & -2 & -1 & 4 & 0 \\ 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -3 & -2 & 5 & 1 & -1 & 13 & -1 & 0 \\ -6 & 5 & 1 & 11 & 5 & -3 & -4 & 0 \\ -6 & -3 & -8 & 2 & -7 & 1 & 6 & 0 \\ -2 & -12 & -10 & -5 & 6 & 11 & -4 & 0 \\ 4 & -3 & 4 & 2 & 0 & 6 & 15 & 0 \\ 11182519 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 3 & 1 & -7 & -2 & -1 & 4 & 0 \\ 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -3 & -2 & 5 & 1 & -1 & 13 & -1 & 0 \\ -6 & 5 & 1 & 11 & 5 & -3 & -4 & 0 \\ -6 & -3 & -8 & 2 & -7 & 1 & 6 & 0 \\ -2 & -12 & -10 & -5 & 6 & 11 & -4 & 0 \\ 4 & -3 & 4 & 2 & 0 & 6 & 15 & 0 \\ 11182519 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 3 & 1 & -7 & -2 & -1 & 4 & 0 \\ 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -3 & -2 & 5 & 1 & -1 & 13 & -1 & 0 \\ -6 & 5 & 1 & 11 & 5 & -3 & -4 & 0 \\ -6 & -3 & -8 & 2 & -7 & 1 & 6 & 0 \\ -2 & -12 & -10 & -5 & 6 & 11 & -4 & 0 \\ 4 & -3 & 4 & 2 & 0 & 6 & 15 & 0 \\ 7 & 2 & 1 & -4 & 0 & -6 & 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 3 & 1 & -7 & -2 & -1 & 4 & 0 \\ 4 & 0 & 6 & -3 & -1 & 7 & 2 & 1 \\ -7 & -2 & -1 & 4 & 0 & 6 & -3 & -1 \\ -1 & 4 & 0 & 6 & -3 & -1 & 7 & 2 \\ 7 & 5 & -9 & -1 & 1 & -1 & -7 & -2 \\ 4 & 4 & -2 & 1 & 2 & -5 & -7 & -8 \\ 1 & 6 & 0 & 6 & 3 & 8 & -2 & 7 \\ 0 & 6 & -3 & -1 & 7 & 2 & 1 & -4 \end{pmatrix}$$

Improving floating point precisions

- Introduction
- 2 Classic LLL Algorithm
- 3 Improving floating point precisions
- 4 Recursive Reduction
- 6 LLL for ideal lattices
- 6 conclusion

LLL using floating point

$$\mathbf{B} = \begin{pmatrix} 18 & 1 \\ 51 & 2 \end{pmatrix}$$

- Define $\mu = \frac{\mathbf{b}_1 \cdot \mathbf{b}_2}{\mathbf{b}_1 \cdot \mathbf{b}_1} = \frac{184}{65} \sim 2.8$;
- If $|\mu| > 0.5$, let $\mathbf{b}_2 = \mathbf{b}_2 \lfloor \mu \rceil \mathbf{b}_1 = \mathbf{b}_2 3\mathbf{b}_1 = (-3, -1)$;
- If $|\mathbf{b}_2| < |\mathbf{b}_1|$, swap \mathbf{b}_1 and \mathbf{b}_2 ;
- Else, terminate.

LLL using floating point

$$\mathbf{B} = \begin{pmatrix} 18 & 1 \\ 51 & 2 \end{pmatrix}$$

- Define $\mu = \frac{\mathbf{b}_1 \cdot \mathbf{b}_2}{\mathbf{b}_1 \cdot \mathbf{b}_1} = \frac{184}{65} = \frac{1011 \ 1000}{0100 \ 0001} \sim 2.8;$
- If $|\mu| > 0.5$, let $\mathbf{b}_2 = \mathbf{b}_2 |\mu| \mathbf{b}_1 = \mathbf{b}_2 3\mathbf{b}_1 = (-3, -1)$;
- If $|{f b}_2| < |{f b}_1|$, swap ${f b}_1$ and ${f b}_2$;
- Else, terminate.

The error in the fp will not effect μ if the precision is $\mathcal{O}(1.6d) \sim 4$

LLL using floating point

$$\mathbf{B} = \begin{pmatrix} 18 & 1 \\ 51 & 2 \end{pmatrix}$$

- Define $\mu = \frac{\mathbf{b_1} \cdot \mathbf{b_2}}{\mathbf{b_1} \cdot \mathbf{b_1}} = \frac{184}{65} \sim \frac{1011 \ 0000}{0100 \ 0000} = 2.75;$
- If $|\mu| > 0.5$, let $\mathbf{b}_2 = \mathbf{b}_2 |\mu| \mathbf{b}_1 = \mathbf{b}_2 3\mathbf{b}_1 = (-3, -1)$;
- If $|\mathbf{b}_2| < |\mathbf{b}_1|$, swap \mathbf{b}_1 and \mathbf{b}_2 ;
- Else, terminate.

The error in the fp will not effect μ if the precision is $\mathcal{O}(1.6d) \sim 4$

LLL using floating point

$$\mathbf{B} = \begin{pmatrix} -3 & -1 \\ 18 & 1 \end{pmatrix}$$

- Define $\mu = \frac{\mathbf{b}_1 \cdot \mathbf{b}_2}{\mathbf{b}_1 \cdot \mathbf{b}_1} = -\frac{11}{2} = -5.5$;
- If $|\mu| > 0.5$, let $\mathbf{b}_2 = \mathbf{b}_2 \lfloor \mu \rceil \mathbf{b}_1 = \mathbf{b}_2 (-6)\mathbf{b}_1 = (0, -5)$;
- If $|\mathbf{b}_2| < |\mathbf{b}_1|$, swap \mathbf{b}_1 and \mathbf{b}_2 ;
- Else, terminate.

LLL using floating point

$$\mathbf{B} = \begin{pmatrix} -3 & -1 \\ 0 & -5 \end{pmatrix}$$

- Define $\mu = \frac{\mathbf{b}_1 \cdot \mathbf{b}_2}{\mathbf{b}_1 \cdot \mathbf{b}_1} = -\frac{1}{2} = -0.5$;
- If $|\mu| \le 0.5$, let $\mathbf{b}_2 = \mathbf{b}_2 \lfloor \mu \rceil \mathbf{b}_1$;
- If $|\mathbf{b}_2| < |\mathbf{b}_1|$, swap \mathbf{b}_1 and \mathbf{b}_2 ;
- Else, terminate.

```
1911310173
437491759 1 0 0 0 0 0 0 0
128552629 0 1 0 0 0 0 0 0
972127522
                         0
711069765
         0 0 0 1
                   0
                     0 0
                         0
125617110
         0 0 0 0 1 0 0
                         0
812891076
        0 0 0 0 0 1 0
                         0
44057509 0 0 0 0 0 0 1
                         0
376073782 0 0 0 0 0 0 0 1
340284326
```

- To process first two vectors;
- Precision used 1.6d = 16;
- Required precision 1.6 * 2 ∼ 4

- To process first two vectors;
- Precision used 1.6d = 16;
- Required precision $1.6*2 \sim 4$

- To process first three vectors;
- Precision used 1.6d = 16;
- Required precision $1.6*4\sim5$

LLL using Adaptive floating point

- The cost of *fplll* depends largely on the precision (ℓ) ;
 - $(d^3\beta^2 + d^4\beta)\mathcal{M}(\ell)$
 - $\mathcal{M}(\cdot)$ is the multiplication cost of two integers
 - $\|\mathbf{b}_i\| \leq 2^{\beta}$
- The original *fplll* uses a fixed precision $\ell \sim 1.6d$;
- One needs 1.6k for $(\mathbf{b}_1, \dots, \mathbf{b}_k)$ for k from 2 to d;
- Increase the precision with regards to #vectors;
- The reduction is accelerated.

Complexity

- The cost of *Adp-fpIII*:
 - $\sum_{i=2}^{d} d^2\beta (1+\frac{\beta}{i})\mathcal{M}(i) = \frac{1}{2}d^4\beta^2 + \frac{1}{6}d^5\beta;$
 - Compared with $d^4\beta^2 + d^5\beta$ for fplll;
- One need to re-generate μ (a.k.a. GSO) due to the change of precision;
 - Incur a cost of $\mathcal{O}(d^5\beta)$ in worst-cases;
- In theory, the advantage is $0 \sim 50\%$.

Figure: Apt-fplll vs fplll

- Introduction
- 2 Classic LLL Algorithm
- 3 Improving floating point precisions
- Recursive Reduction
- 5 LLL for ideal lattices
- 6 conclusion

$$\mathcal{B} = \begin{pmatrix} 69069346 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 23286381 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 21463395 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 57272001 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 17637855 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 21407089 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 7776123 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 29209763 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- Recall that the complexity depends on d and β
- d = 8
- $\beta = \log_2 69069346 \sim 26$

$$\mathcal{B} = \begin{pmatrix} 69069346 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 23286381 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 21463395 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 57272001 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 17637855 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 21407089 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 7776123 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 29209763 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- Recursive reduction step 1
- d = 2
- $\beta = \log_2 69069346 \sim 26$

$\mathcal{B}=$	$ \begin{pmatrix} -2711 \\ -13730 \\ -741 \\ -20583 \\ -843 \\ 13505 \\ -3980 \\ 3720 $	3353 -8496 0 0 0	0 0 2631 -4208 0 0	0 0 -986 1577 0 0	0 0 0 0 -1187 -6378	0 0 0 0 978 5255 0	0 0 0 0 0 0 0 3407	0 0 0 0 0 0 0 -907 -1104
	3729	0	0	0	0	0	4147	-1104/

- Recursive reduction step 1
- d = 2
- $\beta = \log_2 69069346 \sim 26$

$$\mathcal{B} = \begin{pmatrix} -2711 & 3353 & 0 & 0 & 0 & 0 & 0 & 0 \\ -13730 & -8496 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -741 & 0 & 2631 & -986 & 0 & 0 & 0 & 0 \\ -20583 & 0 & -4208 & 1577 & 0 & 0 & 0 & 0 \\ -843 & 0 & 0 & 0 & -1187 & 978 & 0 & 0 \\ 13505 & 0 & 0 & 0 & -6378 & 5255 & 0 & 0 \\ -3980 & 0 & 0 & 0 & 0 & 0 & 3407 & -907 \\ 3729 & 0 & 0 & 0 & 0 & 0 & 4147 & -1104 \end{pmatrix}$$

- Recursive reduction step 2
- d = 4
- $\beta = \log_2 20583 \sim 14$

$$\mathcal{B} = \begin{pmatrix} -8 & -47 & -10 & -29 & 0 & 0 & 0 & 0 \\ 59 & 52 & 51 & -4 & 0 & 0 & 0 & 0 \\ 22 & -50 & -17 & 87 & 0 & 0 & 0 & 0 \\ 75 & 40 & -120 & 7 & 0 & 0 & 0 & 0 \\ -52 & 0 & 0 & 0 & -20 & -13 & -9 & 24 \\ 19 & 0 & 0 & 0 & -17 & -36 & 40 & 26 \\ 9 & 0 & 0 & 0 & -26 & -19 & -54 & 44 \\ 26 & 0 & 0 & 0 & -112 & 88 & -7 & 5 \end{pmatrix}$$

- Recursive reduction step 2
- d = 4
- $\bullet \ \beta = \log_2 20583 \sim 14$

$$\mathcal{B} = \begin{pmatrix} -8 & -47 & -10 & -29 & 0 & 0 & 0 & 0 \\ 59 & 52 & 51 & -4 & 0 & 0 & 0 & 0 \\ 22 & -50 & -17 & 87 & 0 & 0 & 0 & 0 \\ 75 & 40 & -120 & 7 & 0 & 0 & 0 & 0 \\ -52 & 0 & 0 & 0 & -20 & -13 & -9 & 24 \\ 19 & 0 & 0 & 0 & -17 & -36 & 40 & 26 \\ 9 & 0 & 0 & 0 & -26 & -19 & -54 & 44 \\ 26 & 0 & 0 & 0 & -112 & 88 & -7 & 5 \end{pmatrix}$$

- Recursive reduction step 3
- d = 8
- $\beta = \log_2 120 \sim 7$

Complexity

- New complexity: $O(d^4\beta + d^2\beta^2)$
- Compare with L²: $O(d^4\beta + d^3\beta^2)$

Analyze Gentry-Halevi's Fully homomorphic encryption scheme

- $d = 2^{11}$, $\beta \sim 2^{19.5}$
- Complexity for L2: $(2^{11})^4(2^{19.5}) + (2^{11})^3(2^{19.5})^2 \sim 2^{72}$
- \bullet Our complexity: $(2^{11})^4(2^{19.5})+(2^{11})^2(2^{19.5})^2\sim 2^{63.5}$

Figure: Implementation results

- Introduction
- 2 Classic LLL Algorithm
- 3 Improving floating point precisions
- 4 Recursive Reduction
- 5 LLL for ideal lattices
- 6 conclusion

Ideal Lattice

A basis of ideal lattice

$$\begin{pmatrix} v_1 & v_2 & v_3 & \dots & v_d \\ -v_d & v_1 & v_2 & \dots & v_{d-1} \\ -v_{d-1} & -v_n & v_1 & \dots & v_{d-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -v_2 & -v_3 & -v_4 & \dots & v_1 \end{pmatrix}$$

$$\begin{pmatrix} 15 & 18 & 10 & 20 \\ -20 & 15 & 18 & 10 \\ -10 & -20 & 15 & 18 \\ -18 & -10 & -20 & 15 \end{pmatrix}$$

Principal Ideal Lattice

A principal ideal lattice

 ${\cal L}$ is generated by only one element and a determinant

$$\begin{pmatrix} p & 0 & 0 & \dots & 0 & 0 \\ -\alpha & 1 & 0 & \dots & 0 & 0 \\ -\alpha^2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -\alpha^{\deg g - 1} & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 855401 & 0 & 0 & 0 \\ 328161 & 1 & 0 & 0 \\ 211573 & 0 & 1 & 0 \\ 325714 & 0 & 0 & 1 \end{pmatrix}$$

```
      (83090417
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      1
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
      0
```

	/83090417	0	0	0	0	0	0	0\
I	73193167	1	0	0	0	0	0	0
İ	67400468	0	1	0	0	0	0	0
İ	229382	0	0	1	0	0	0	0
I	54626226	0	0	0	1	0	0	0
l	13559580	0	0	0	0	1	0	0
I	63222454	0	0	0	0	0	1	0
١	\11182519	0	0	0	0	0	0	1/

/83090417	0	0	0	0	0	0	0\
-9897250	1	0	0	0	0	0	0
67400468	0	1	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
11182519	0	0	0	0	0	0	1/

/83090417	0	0	0	0	0	0	0\
-9897250	1	0	0	0	0	0	0
0	-9897250	1	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
11182519	0	0	0	0	0	0	1/

1	/ 587	4290	0	0	0	0	0	0\
1	-18732	4651	0	0	0	0	0	0
İ	0	-9897250	1	0	0	0	0	0
İ	229382	0	0	1	0	0	0	0
l	54626226	0	0	0	1	0	0	0
l	13559580	0	0	0	0	1	0	0
۱	63222454	0	0	0	0	0	1	0
١	\11182519	0	0	0	0	0	0	1/

/ 587	4290	0	0	0	0	0	0\
-18732	4651	0	0	0	0	0	0
0	-9897250	1	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

/ 587	4290	0	0	0	0	0	0\
-18732	4651	0	0	0	0	0	0
-1643	-690	1	0	0	0	0	0
229382	0	0	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

	/ 587	4290	0	0	0	0	0	0\
	-18732	4651	0	0	0	0	0	0
	-1643	-690	1	0	0	0	0	0
ı	0	-1643	-690	1	0	0	0	0
ı	54626226	0	0	0	1	0	0	0
ı	13559580	0	0	0	0	1	0	0
	63222454	0	0	0	0	0	1	0
	\11182519	0	0	0	0	0	0	1/

	/ 142	230	125	0	0	0	0	0\
1	195	-352	275	0	0	0	0	0
İ	-440	-61	388	0	0	0	0	0
Ì	0	-1643	-690	1	0	0	0	0
l	54626226	0	0	0	1	0	0	0
	13559580	0	0	0	0	1	0	0
۱	63222454	0	0	0	0	0	1	0
1	\11182519	0	0	0	0	0	0	1/

/ 142	230	125	0	0	0	0	0\
195	-352	275	0	0	0	0	0
-440	-61	388	0	0	0	0	0
0	-1643	-690	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

/ 142	230	125	0	0	0	0	0\
195	-352	275	0	0	0	0	0
-440	-61	388	0	0	0	0	0
75	-202	48	1	0	0	0	0
54626226	0	0	0	1	0	0	0
13559580	0	0	0	0	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

1	142	230	125	0	0	0	0	0\
	195	-352	275	0	0	0	0	0
İ	-440	-61	388	0	0	0	0	0
l	75	-202	48	1	0	0	0	0
	0	75	-202	48	1	0	0	0
1	.3559580	0	0	0	0	1	0	0
6	3222454	0	0	0	0	0	1	0
$\backslash 1$.1182519	0	0	0	0	0	0	1/

$$\begin{pmatrix} -89 & -35 & -36 & 12 & 0 & 0 & 0 \\ -83 & 59 & 42 & -15 & 0 & 0 & 0 & 0 \\ -42 & 66 & -25 & 51 & 0 & 0 & 0 & 0 \\ -3 & 24 & 76 & 76 & 0 & 0 & 0 & 0 \\ \hline 0 & 75 & -202 & 48 & 1 & 0 & 0 & 0 \\ 13559580 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 63222454 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 11182519 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

1	-89	-35	-36	12	0	0	0	0\
1	-83	59	42	-15	0	0	0	0
İ	-42	66	-25	51	0	0	0	0
İ	-3	24	76	76	0	0	0	0
İ	0	75	-202	48	1	0	0	0
	.3559580	0	0	0	0	1	0	0
6	3222454	0	0	0	0	0	1	0
$\setminus 1$.1182519	0	0	0	0	0	0	1/

1	-89	-35	-36	12	0	0	0	0\
	-83	59	42	-15	0	0	0	0
l	-42	66	-25	51	0	0	0	0
İ	-3	24	76	76	0	0	0	0
l	-2	26	-34	7	1	0	0	0
1	3559580	0	0	0	0	1	0	0
6	3222454	0	0	0	0	0	1	0
$\backslash 1$	1182519	0	0	0	0	0	0	1/

$$\begin{pmatrix} -89 & -35 & -36 & 12 & 0 & 0 & 0 & 0 \\ -83 & 59 & 42 & -15 & 0 & 0 & 0 & 0 \\ -42 & 66 & -25 & 51 & 0 & 0 & 0 & 0 \\ -3 & 24 & 76 & 76 & 0 & 0 & 0 & 0 \\ -2 & 26 & -34 & 7 & 1 & 0 & 0 & 0 \\ \hline 0 & -2 & 26 & -34 & 7 & 1 & 0 & 0 \\ 63222454 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 11182519 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

1	-24	-10	20	-6	7	0	0	0\
	23	2	-4	-3	19	0	0	0
	-26	16	-14	1	8	0	0	0
İ	9	26	19	40	10	0	0	0
l	5	39	-7	-47	-13	0	0	0
	0	-2	26	-34	7	1	0	0
6	3222454	0	0	0	0	0	1	0
$\setminus 1$	1182519	0	0	0	0	0	0	1/

/ -24	-10	20	-6	7	0	0	0\
23	2	-4	-3	19	0	0	0
-26	16	-14	1	8	0	0	0
9	26	19	40	10	0	0	0
5	39	-7	-47	-13	0	0	0
0	-2	26	-34	7	1	0	0
63222454	0	0	0	0	0	1	0
\11182519	0	0	0	0	0	0	1/

1	-24	-10	20	-6	7	0	0	0\
	23	2	-4	-3	19	0	0	0
İ	-26	16	-14	1	8	0	0	0
İ	9	26	19	40	10	0	0	0
l	5	39	-7	-47	-13	0	0	0
	1	6	10	-25	-19	1	0	0
63	3222454	0	0	0	0	0	1	0
$\backslash 11$	182519	0	0	0	0	0	0	1/

$$\begin{pmatrix} -24 & -10 & 20 & -6 & 7 & 0 & 0 & 0 \\ 23 & 2 & -4 & -3 & 19 & 0 & 0 & 0 \\ -26 & 16 & -14 & 1 & 8 & 0 & 0 & 0 \\ 9 & 26 & 19 & 40 & 10 & 0 & 0 & 0 \\ 5 & 39 & -7 & -47 & -13 & 0 & 0 & 0 \\ 1 & 6 & 10 & -25 & -19 & 1 & 0 & 0 \\ \hline 0 & 1 & 6 & 10 & -25 & -19 & 1 & 0 \\ 11182519 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -12 & 8 & 2 & 4 & 3 & -4 & 0 & 0 \\ -2 & 0 & -18 & -7 & 2 & 8 & 0 & 0 \\ 5 & 1 & 7 & -4 & 24 & -2 & 0 & 0 \\ 7 & 15 & 1 & -20 & -21 & -1 & 0 & 0 \\ 5 & 0 & -1 & 12 & 15 & 24 & 0 & 0 \\ \hline 0 & 1 & 6 & 10 & -25 & -19 & 1 & 0 \\ 11182519 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -12 & 8 & 2 & 4 & 3 & -4 & 0 & 0 \\ -2 & 0 & -18 & -7 & 2 & 8 & 0 & 0 \\ 5 & 1 & 7 & -4 & 24 & -2 & 0 & 0 \\ 7 & 15 & 1 & -20 & -21 & -1 & 0 & 0 \\ 5 & 0 & -1 & 12 & 15 & 24 & 0 & 0 \\ 0 & 1 & 6 & 10 & -25 & -19 & 1 & 0 \\ \hline 11182519 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -12 & 8 & 2 & 4 & 3 & -4 & 0 & 0 \\ -2 & 0 & -18 & -7 & 2 & 8 & 0 & 0 \\ 5 & 1 & 7 & -4 & 24 & -2 & 0 & 0 \\ 7 & 15 & 1 & -20 & -21 & -1 & 0 & 0 \\ 5 & 0 & -1 & 12 & 15 & 24 & 0 & 0 \\ 3 & 2 & -5 & -1 & 1 & -13 & 1 & 0 \\ \hline 11182519 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -12 & 8 & 2 & 4 & 3 & -4 & 0 & 0 \\ -2 & 0 & -18 & -7 & 2 & 8 & 0 & 0 \\ 5 & 1 & 7 & -4 & 24 & -2 & 0 & 0 \\ 7 & 15 & 1 & -20 & -21 & -1 & 0 & 0 \\ 5 & 0 & -1 & 12 & 15 & 24 & 0 & 0 \\ 3 & 2 & -5 & -1 & 1 & -13 & 1 & 0 \\ \hline 0 & 3 & 2 & -5 & -1 & 1 & -13 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 3 & 1 & -7 & -2 & -1 & 4 & 0 \\ 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -3 & -2 & 5 & 1 & -1 & 13 & -1 & 0 \\ -6 & 5 & 1 & 11 & 5 & -3 & -4 & 0 \\ -6 & -3 & -8 & 2 & -7 & 1 & 6 & 0 \\ -2 & -12 & -10 & -5 & 6 & 11 & -4 & 0 \\ 4 & -3 & 4 & 2 & 0 & 6 & 15 & 0 \\ \hline 0 & 3 & 2 & -5 & -1 & 1 & -13 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 3 & 1 & -7 & -2 & -1 & 4 & 0 \\ 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -3 & -2 & 5 & 1 & -1 & 13 & -1 & 0 \\ -6 & 5 & 1 & 11 & 5 & -3 & -4 & 0 \\ -6 & -3 & -8 & 2 & -7 & 1 & 6 & 0 \\ -2 & -12 & -10 & -5 & 6 & 11 & -4 & 0 \\ 4 & -3 & 4 & 2 & 0 & 6 & 15 & 0 \\ 0 & 3 & 2 & -5 & -1 & 1 & -13 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 3 & 1 & -7 & -2 & -1 & 4 & 0 \\ 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -3 & -2 & 5 & 1 & -1 & 13 & -1 & 0 \\ -6 & 5 & 1 & 11 & 5 & -3 & -4 & 0 \\ -6 & -3 & -8 & 2 & -7 & 1 & 6 & 0 \\ -2 & -12 & -10 & -5 & 6 & 11 & -4 & 0 \\ 4 & -3 & 4 & 2 & 0 & 6 & 15 & 0 \\ 7 & 2 & 1 & -4 & 0 & -6 & 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 3 & 1 & -7 & -2 & -1 & 4 & 0 \\ 6 & 9 & -9 & 5 & -2 & -2 & 0 & 0 \\ -3 & -2 & 5 & 1 & -1 & 13 & -1 & 0 \\ -6 & 5 & 1 & 11 & 5 & -3 & -4 & 0 \\ -6 & -3 & -8 & 2 & -7 & 1 & 6 & 0 \\ -2 & -12 & -10 & -5 & 6 & 11 & -4 & 0 \\ 4 & -3 & 4 & 2 & 0 & 6 & 15 & 0 \\ 7 & 2 & 1 & -4 & 0 & -6 & 3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} -6 & 3 & 1 & -7 & -2 & -1 & 4 & 0 \\ 4 & 0 & 6 & -3 & -1 & 7 & 2 & 1 \\ -7 & -2 & -1 & 4 & 0 & 6 & -3 & -1 \\ -1 & 4 & 0 & 6 & -3 & -1 & 7 & 2 \\ 7 & 5 & -9 & -1 & 1 & -1 & -7 & -2 \\ 4 & 4 & -2 & 1 & 2 & -5 & -7 & -8 \\ 1 & 6 & 0 & 6 & 3 & 8 & -2 & 7 \\ 0 & 6 & -3 & -1 & 7 & 2 & 1 & -4 \end{pmatrix}$$

Why Better?

At least not worth

- iLLL has the same time complexity.
- iLLL returns same basis that LLL with an overwhelming probability

$$\left(1-2\left(\frac{\eta-0.5}{\eta}\right)^2\right)^{\frac{(d-1)d}{2}}.$$

In average better

- From $O(d^{4+\epsilon}\beta + d^{3+\epsilon}\beta^2)$ to $O(d^{4+\epsilon}\beta + d^{2+\epsilon}\beta^2)$.
- In average Gauss-reduction uses less floating point precision.

Practical Test: $det = 2^{10d}$

Practical Test: Gentry-Halevi's Toy Challenge.

Practical Test: Gentry-Halevi's Small Challenge.

conclusion

Theoretical Results

Algorithms	Time Complexity	
	$O(d^{5+arepsilon}eta^{2+arepsilon})$	Classic Result
L^2	$O(d^{3+\varepsilon}\beta^2 + d^{4+\varepsilon}\beta)$	Best in Practice
Ap-fpIII	$O(d^{3+\varepsilon}\beta^2 + d^{4+\varepsilon}\beta)$	Better Practical Result
Rec-Red	$O(d^{2+\varepsilon}\beta^2 + d^{4+\varepsilon}\beta)$	Better Theoretical Bound
iLLL	$O(d^{2+\varepsilon}\beta^2 + d^{4+\varepsilon}\beta)$	Theory and Practice

Table: Comparison of time complexity

conclusion

Practical Results

Gentry-Halevi's Challenge	dim 512	dim 2048
Previous Best Results/Prediction	30 days	45 years
LLL implementation @2.66GHz	32 days	25.8 years
iLLL implementation @2.66GHz	24 days	23.6 years
iLLL prediction @4.0GHz	16 days	15.7 years

Table: Practical Result on Gentry Halevi's Challenge

Papers

- Adaptive Precision Floating Point LLL
- Lattice Reduction for Modular Knapsack
- LLL for Ideal Lattice