CS143 Compilers - Written Assignment 2 Due Monday, April 30, 2018 at 11:59 PM

This assignment covers context free grammars and parsing. You may discuss this assignment with other students and work on the problems together. However, your write-up should be your own ine A Ŀ

dividual work, and you should indicate in your submission who you worked with, if applicable.
ssignments can be submitted electronically through Gradescope as a PDF by 11:59 PM PDT. A
IEX template for writing your solutions is available on the course website.

_	nts can be submitted electron aplate for writing your solution	_	ope as a PDF by 11:59 PM PDT. A ourse website.		
1. Give	e the context-free grammar fo	or each of the following	languages:		
(a)	The set of all strings over the alphabet $\{2,7,+,(,)\}$ representing valid arithmetic expressions in base-10 that evaluate to an odd number. Your CFG should allow for multi-digit numbers. Examples of strings in the language:				
	7	(72+72)+27	(((777)))		
	Examples of strings not in the language:				
	22 + 22	(72 + 27))	22 + 77722 + 22 + +7		
(b)	The set of all strings over the alphabet $\{a,b\}$ where the number of b 's is at most one greater than the number of a 's. Examples of strings in the language:				
	aaaba	b	bbaabaaaaaaaabaa		
	Examples of strings not in the language:				
	babb	abababababbb	bbbbb		
(c)	The set of all strings over the alphabet $\{0,1\}$ in the language $L:\{0^i1^j0^k\mid j=i+k\}$. Examples of strings in the language:				
	001110	000111	111000		
	Examples of strings not in the language:				
	01110	101	11111		

(d)	The set of all strings over the	alphabet $\{[,],\{,\},,\}$	which are sets (for clari	ification, ","		
	is in the alphabet). We define a set to be a collection of zero or more comma-separated					
	arrays enclosed in an open brace and a close brace. Similarly, we define an array to be a					
	collection of zero or more comma-separated sets enclosed in an open bracket and a close					
	bracket.					
	Examples of sets:					
	{}	$\{[],[]\}$	$\{[],[\{\}]\}$			

Examples of arrays:

 $[\{\}, \{\}, \{\}]$

Examples of strings in the language:

 $\{[0,1]\} \qquad \{[\{\}], [0,\{\},\{\}]\}$

Examples of strings **not** in the language:

 $[] \qquad \{[], \{\}\}$

2. (a) Left factor the following grammar:

$$S \rightarrow S^* \mid S \cup S \mid S? \mid [T]$$

$$T \rightarrow Ta \mid Tb \mid Tc \mid \epsilon$$

(b) Eliminate left recursion from the following grammar:

$$S \rightarrow Sab \mid S! \mid (T) \mid bTb$$

$$T \rightarrow Ta \mid Tb \mid Tc \mid \epsilon$$

3. Consider the following CFG, where the set of terminals is $\Sigma = \{a, b, \#, \%, !\}$:

$$S \rightarrow \%aT \mid U!$$

$$T \rightarrow aS \mid baT \mid \epsilon$$

$$U \rightarrow \#aTU \mid \epsilon$$

- (a) Construct the FIRST sets for each of the nonterminals.
- (b) Construct the FOLLOW sets for each of the nonterminals.
- (c) Construct the LL(1) parsing table for the grammar.
- (d) Show the sequence of stack, input and action configurations that occur during an LL(1) parse of the string "#abaa%aba!". At the beginning of the parse, the stack should contain a single S.

- 4. What advantage does left recursion have over right recursion in shift-reduce parsing? **Hint:** Consider left and right recursive grammars for the language a^* . What happens if your input has a million a's?
- 5. Consider the following grammar G over the alphabet $\Sigma = \{a, b, c\}$:

$$S' \rightarrow S$$

$$S \rightarrow Aa$$

$$S \rightarrow Bb$$

$$A \rightarrow Ac$$

$$A \rightarrow \epsilon$$

$$B \rightarrow Bc$$

$$B \rightarrow \epsilon$$

You want to implement G using an SLR(1) parser (note that we have already added the $S' \to S$ production for you).

- (a) Construct the first state of the LR(0) machine, compute the FOLLOW sets of A and B, and point out the conflicts that prevent the grammar from being SLR(1).
- (b) Show modifications to production 4 ($A \to Ac$) and production 6 ($B \to Bc$) that make the grammar SLR(1) while having the same language as the original grammar G. Explain the intuition behind this result.
- 6. Consider the following CFG, where the set of terminals is $\Sigma = \{[,],,, \text{int}\}$:

$$S' \rightarrow S$$

$$S \rightarrow [B$$

$$A \rightarrow \mathbf{int} \mid [B$$

$$B \rightarrow] \mid C$$

$$C \rightarrow A] \mid A, C$$

The grammar describes how arrays may be declared. Arrays consist of zero or more elements where each element is either an integer (represented by **int**) or an array (thus we may have nested arrays). Note that comma is a terminal, and we have already added a dummy production $S' \to S$ for you.

- (a) Construct a DFA for viable prefixes of the grammar using LR(0) items.
- (b) Identify any shift-reduce and reduce-reduce conflicts in the grammar under the SLR(1) rules.
- (c) Assuming that an SLR(1) parser resolves shift-reduce conflicts by choosing to shift, show the operation of such a parser on the input string "[int,[]]". Your table should include a "Configuration" column, a "DFA Halt State" column, and an "Action" column.