Statistik O2. Deskriptive Statistik

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Statistik

Inhalt

- 1 Motivation
- 2 Skalenniveau
- 3 Zentraltendenz

- 4 Empirische Verteilungen und Dispersion
- 5 Bivariate Statistiken
- 6 Standardfehler und Konfidenzintervalle
- 7 Nächste Woche | Überblick

- Deskriptive Statistik als Aggregation von Daten
- Verteilungen in Stichproben und Grundgesamtheiten:
 - Zentralmaße
 - Streuung (Varianz)
- Theoretische vs. empirische Verteilungen
- Konfidenzintervalle | Genauigkeiten von Schätzungen?

- · Google, Stackoverflow usw.
- Gravetter & Wallnau (2007)
 Achtung! Vermittelt eine falsche Philosophie bei Anwendung der Tests!
- Bortz & Schuster (2010)

Zweck der deskriptiven Statistik

- Mit unbewaffnetem Auge auf Daten zu blicken, ist meistens zwecklos.
- In Zahlen sehen Menschen nur schlecht Tendenzen und Zusammanhänge.
- Deskriptive Statistik
 - Zusammenfassen
 - Gruppieren
 - ► Visualisieren

Was will man wissen?

- Definition der Grundgesamtheit
- Stichprobengröße (n)
 - 200 Sätze aus dem Korpus
 - ▶ 1.000 Reaktionen (von 50 Probanden) im Experiment
 - Was sind die elementaren gemessenen Datenpunkte?
- Stichprobenmethode
 - Zufallsstichprobe | Nachweis der uniformen Zufälligkeit
 - Quotenstichprobe | Stratifzierung und Begründung

Messvariablen und Skalenniveaus

- dichotom/binär | Menge {A, B} | zwei disjunkte Kategorien männlich, weiblich; Präteritum, Perfekt
- nominal/kategorial | Menge {A, B, ...} | disjunkte Kategorien Parteizugehörigkeit; NP, AP, VP
- ordinal | Tupel ⟨A, B, ..⟩, nicht N oder Z | disjunkte Kategorien mit Rang Schulnoten; 5- oder 7-Punkt-Skalen für Akzeptabilität
- Verhältnis $| + \mathbb{Q}_0 |$ geordnete Werte mit Nullpunkt Temperatur in Kelvin ; Lesezeiten
- Intervall | Q | Wie Verhältnis, aber ohne Nullpunkt Temperatur in Celsius
- Zähldaten | Keine beobachtbaren Variablen, sondern Aggregation von dichtotomen, nominalen oder ordinalen Variablen

Intervalle vs. Verhältnisse

- Verhältnisskala | Größe von Menschen in cm
 - ► 200cm = 2 × 100cm usw.
 - Keine Messung unter 0cm
- Intervallskala | Dasselbe als Abweichung vom Mittel
 - ▶ 4cm = 2 × 2cm usw.
 - ► 184cm ≠ 2 × 182cm
 - Negative Messungen möglich

Relevanz der Skalenniveaus

- Bestimmung zulässiger mathematischer Operationen
- Deskriptive Statistiken je nach Skalenniveau
- Zulässigkeit von inferenzstatistischen Tests je nach Skalenniveau

Zentraltendenz I

Modus | Der häufigste Wert | Alle Skalenniveaus

Zentraltendenz II

Median | Mitte der sortierten Stichprobe | ab Ordinalskala

Numerische Messungen | Verschiedene Interpolationsmethoden

https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from_a_sample

Median bestimmen | Stichprobe

Sortierte Stichprobe (n=15)

Median bestimmen | Verzerrtere sortierte Stichprobe

Sortierte Stichprobe (n=13)

Arithmetisches Mittel \bar{x} | Summe aller Werte geteilt durch n | ab Intervallskala

$$\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Warum sind Dispersionsmaße wichtig?

Dispersion | Streuung der Daten

- Zentraltendenz | Orientierung über Tendenzen der Stichprobe
- Ein Maß für Zentraltendenz für beliebig viele Verteilungsformen
- Arithmetisches Mittel | deskriptiv oft unbrauchbar ohne Betrachtung der Verteilung
- Median | auch nur bedingt besser

Vier sortierte Stichproben

Jeder Punkt entspricht einem Datenpunkt/einer Messung!

Verteilungsformen

Histogramme | Vier Stichproben mit $\bar{x} = 3.72$ und n = 18

Zum Beispiel 18 Bewertungen eines Probanden auf einer 7-Punkt-Skala

Quartile

Quartile | Generalisierung des Medians (bei 25 %, 50 %, 75 %)

Interquartilbereich, Boxplots und Violinplots

- Interquartilbereich $IQR = Q_3 Q_1$ | Die mittleren 50 %
- Boxplots
 - Median | Linie in der Mitte
 - ► Oberes und unteres Quartil | Boxen
 - ▶ 1,5-facher Interquartilabstand | gestrichelte Hebel
 - Ausreißer | Punkte
- Violinplots | Zusätzlich Plot der Verteilungsdichte (statt Box)

Boxplots | Die bessere Zusammenfassung

Violinplots | Die noch bessere Zusammenfassung

Was bestimmt die Varianz?

Die Distanzen der Messwerte zum Mittel sind unterschiedlich groß.

Varianz und Standardabweichung

Varianz s² | Quadrierte mittlere Abweichung vom Mittelwert

$$s^{2}(x) = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

Standardabweichung s | Quadratwurzel der Varianz

$$s(x) = \sqrt{s^2(x)}$$

Summe der Quadrate | Zählerterm der Varianz

$$SQ(x) = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Unterschiedliche Standardabweichungen

Für jeden Messpunkt $x_i \mid z_i = \frac{x_i - \bar{x}}{s(x)}$

z-Wert | Rechenbeispiel

- Bsp.: x = [3.9, 4.3, 7.2, 8.5, 11.1, 12.1, 14.0, 20.7]
 - $\bar{x} = 10.225$

$$s(x) = \sqrt{30.785} = 5.548$$

$$z = \left[\frac{3.9 - 10.225}{5.548}, ..., \frac{20.7 - 10.225}{5.548}\right] = \left[-1.140, -1.068, -0.545, -0.311, 0.158, 0.338, 0.680, 1.888\right]$$

Zähldaten von zwei Variablen

Kreuztabelle | Darstellung der Zähldaten zweier Variablen

	Variable 1 Wert 1	Wert2
Variable 2 Wert 1	Anzahl x ₁₁	Anzahl x ₁₂
Wert 2	Anzahl x ₂₁	Anzahl x ₂₂

Anteilswerte und Stichproben

- Das Verb essen | Manchmal mit, manchmal ohne Akkusativ (direktes Objekt)
- Angenommenes wahres Verhältnis | Mit Objekt 39 %, ohne Objekt 61 %
- Viele Stichproben mit n=100 | Ergebnis nicht immer 39 zu 61

95%-Konfidenzintervall
 In welchem Bereich liegen 95% aller Anteilswerte bei n=100?

Roland Schäfer (FSU Jena) Statistik 02. Deskriptive Statistik

Sechzehn simulierte Stichprobenentnahmen (n=100)

Wiederholte Stichprobenentnahmen (n=100)

Standardfehler

- Die meisten q | Nah am wahren Wert Q
- Sehr wenige q | Weit von Q entfernt
- Bei unendlich vielen Messungen
 - Mittelwert der gemessenen Anteilswerte gleich Q
 - Gemessene Anteilswerte normalverteilt um O
 - Standardabweichung der Messwerte um Q bekannt → Standardfehler
- Standardfehler | Standardabweichung der Messwerte
 - ► Bei gegebener Stichprobengröße *n*
 - Bei einem bekannten Populationsanteil Q

Standardfehler für Anteilswerte | Berechnung

- Für einen wahren Anteilswert Q
- Bei Stichprobengröße n

$$SF(Q, n) = \sqrt{\frac{Q \cdot (1-Q)}{n}}$$

Bsp. für
$$Q = 0.39$$
 und $n = 100 \mid SF(q) = \sqrt{\frac{0.39 \cdot (1 - 0.39)}{100}} = 0.0488$

Standardfehler | Interpretation

$$SF(Q, n) = \sqrt{\frac{Q \cdot (1 - Q)}{n}}$$
Bsp.: $SF(0.39, 100) = \sqrt{\frac{0.39 \cdot (1 - 0.39)}{100}} = 0.0488$

- Für beliebig viele Stichproben
- Bei Stichprobengröße *n* = 100
- Aus einer Grundgesamtheit mit wahrem Anteilswert Q = 0.39
- Abweichung der gemessenen Anteile von Q = 0.39 mit einem SF = 0.0488

Konfidenzintervall | Standardfehler und Normalverteilung

Normal-/Gaussverteilung | Parameter Mittelwert und Standardabweichung

→ Mathematisch exhaustiv bekannt, Flächen unter der Kurve usw. berechenbar

Roland Schäfer (FSU Jena) Statistik 02. Deskriptive Statistik

Verteilungsfunktion der Normalverteilung

$$p(\mathbf{x}) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\mathbf{x}-\mu}{\sigma}\right)^2}$$

x ist der Wert, für den die Funktion die Wahrscheinlichkeit angibt. Der graue Term skaliert die Verteilung lediglich, damit die Fläche unter der Kurve 1 ist. Der Kern der Funktion ist e^{-x^2} , weil $-\mu$ lediglich für die mögliche Verschiebung des Modus von 0 benötigt wird und σ die Spreizung der Verteilung modelliert (größere Standardabweichung bedeutet flachere Kurve). Für den Standardnormalfall kann μ = 0 und σ = 1 angesetzt werden. μ und σ sind sogenannte Parameter der Funktion.

Falls Sie mehr wissen möchten:
https://youtu.be/cy8r7WSuT1I
Großartiges Video von Grant Sanderson (3blue1brown)

- Anteilswerte oder Mittelwerte aus Stichproben (wie erwähnt) normalverteilt
- Der z-Wert, zum Beispiel für α = 0.95: z(0.95) beantwortet:
 Wie viele Standardfehler definieren 95% der Fläche unter der Kurve?
- Achtung: Dieser z-Wert ist nicht ganz dasselbe wie der rein deskriptive z-Wert von Folie 25
- Quantilfunktion der Normalverteilung | In R mit qnorm() oder Tabelle
- Quantilfunktion | Wie viele Standardabweichungen trennen auf jeder Seite 2.5% ab?
- qnorm(0.025, lower.tail=FALSE) $\rightarrow z(0.95) = 1.96$

Konfidenzintervall | Standardfehler um wahren Anteilswert

- Standardfehler | Standardabweichung der Stichprobenwerte
- Konfidenzbreite | z-Wert multipliziert mit Standardfehler
- 95% der Werte | Intervall Anteilswert ± Konfidenzbreite

$$KI(Q, n, \alpha) = Q \pm z(\alpha) \cdot SF(Q, n)$$

Bsp.: $KI(0.39, 100, 0.95) = 0.39 \pm 1.96 \cdot 0.0488 = 0.39 \pm 0.096 = [0.29, 0.49]$

Konfidenzintervall im Beispiel | 0.29 bis 0.49

In 95% aller Stichproben mit n = 100 liegt der Messwert zwischen 0.29 und 0.49 bei einem wahren Anteil von 0.39.

- Praxis | Wahrer Anteil nicht bekannt, daher Schätzung aus Stichprobenanteil q
- Der gemessene Anteil q kann aber eine totale Fehlschätzung sein!
- Die Philosophie dahinter geht von wiederholten Messungen aus.
- Entweder liegt der gemessene Wert im Konfidenzintervall, oder ein seltenes Ereignis ist eingetreten.
- Falsche Interpretation:
 Wir sind zu 95% sicher, dass der wahre Wert zwischen 0.29 und 0.49 liegt.

Konfidenzintervall | Breite bei verschiedenen Q, n und α

Konfidenzintervall für Mittelwerte

Parallel zum KI für Anteilswerte: KI für Mittelwerte mit derselben Formel

Nur der Standardfehler wird anders berechnet:

$$SF(\sigma, n) = \frac{\sigma}{\sqrt{n}}$$

$$KI(\bar{x}, n, \alpha) = \bar{x} \pm z(\alpha) \cdot SF(\sigma, n)$$

Interpretation des KI (95%): Für einen beliebigen Mittelwert \bar{x} und die wahre Standardabweichung der Population σ liegen im Grenzwert exakt 95% aller Stichproben der Größe n im 95%-KI.

Hier wird die wahre Standardabweichung σ ggf. aus der Standardabweichung s(x) Stichprobe geschätzt.

Zur Interpretation des KIs

Schauen Sie sich möglichst mein (sehr altes) Video zur Interpretation von KIs an, auch wenn ich deutlich weniger im Kopf habe als Grant Sanderson.

https://www.youtube.com/watch?v=TG8Z3RXL4E8X

Kritische Werte für Normalverteilung

	α	$z(\alpha)$	α		z(a)
	0.99	2.576	0.8	34	1.405
	0.98	2.326	0.8	33	1.372
	0.97	2.170	0.8	32	1.341
	0.96	2.054	0.8	31	1.311
	0.95	1.960	0.8	80	1.282
	0.94	1.881	0.7	9	1.254
	0.93	1.812	0.7	8'	1.227
	0.92	1.751	0.7	7	1.200
	0.91	1.695	0.7	6	1.175
	0.90	1.645	0.7	' 5	1.150
	0.89	1.598			
	0.88	1.555			
	0.87	1.514			
	0.86	1.476			
-	0.85	1.440			

Einzelthemen

- 1 Inferenz
- Deskriptive Statistik
- 3 Nichtparametrische Verfahren
- z-Test und t-Test
- 5 ANOVA
- 6 Freiheitsgrade und Effektstärken
- Power und Severity
- 8 Lineare Modelle
- Generalisierte Lineare Modelle
- 10 Gemischte Modelle

Literatur I

Bortz, Jürgen & Christof Schuster. 2010. Statistik für Human- und Sozialwissenschaftler. 7. Aufl. Berlin: Springer.

Gravetter, Frederick J. & Larry B. Wallnau. 2007. Statistics for the Behavioral Sciences. 7. Aufl. Belmont: Thomson.

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.