- Un caño con recodo está orientado de manera vertical y lleno con un líquido en resposo de densidad  $\rho$ .
  - (a) Muestre que la diferencia de presiones entre A y C se debe solamente a la diferencia de alturas.
  - (b) Halle la variación de presión entre A y C si la diferencia de alturas es de 20cm y el líquido es agua.



a) 
$$p_8 = p_A + g_{AA}$$
,  $p_9' = p_8$ ,  $p_c = p_{B'} + g_{AB'} = p_B + g_{AB} = p_A + g_{AA}$   
 $\rightarrow p_c = p_A + g_{AA}$   $\rightarrow p_c - p_A = g_A$ 

En un tubo en U hay dos líquidos inmiscibles de densidades  $\rho_1$  y  $\rho_2$ , con  $\rho_1 > \rho_2$ . Sabiendo el nivel del punto B, respecto a la superficie que separa a los dos líquidos es h, calcule:

- (a) la altura H de la columna del líquido menos denso;
- (b) la presión en el punto A, y compárela con la presión en el punto B.

() II es les céleules pars el coco en que h - lem el líquide 1 es men-



- 4 Se tiene una prensa hidráulica de secciones  $S = 1 \text{cm}^2$  y  $S' = 100 \text{cm}^2$ . Se aplica sobre S una fuerza  $F_1 = 400 \text{N}$  formando un ángulo de  $60^\circ$  con su normal. Sabiendo que S se desplaza 100 cm, calcule:
  - (a) la presión sobre S y la presión sobre S'.
  - (b) la fuerza  $F_2$  que actuando sobre S' equilibra al sistema (dar dirección y sentido)
    - (c) el trabajo de las fuerzas  $F_1$  y  $F_2$ . Compárelos.

En la figura, una esfera de volumen  $V_1$  y densidad  $\rho_1$ , flota en un líquido de densidad  $\rho$ , de modo que se sumerge la mitad de su volumen, estando unida por una cuerda inextensible, a un cilindro de densidad  $\rho_2$ , y de volumen  $V_2$ .

(a) Si 
$$V_1 = 500 \text{cm}^3$$
,  $V_2 = V_1/2$ ,  $\rho = 1 \text{g/cm}^3$  y  $\rho_1 = 0.3 \text{g/cm}^3$ , halle  $T$  y  $\rho_2$ .

(b) Si  $\rho_1 = \rho/2$ , halle T,  $\rho_2$  y los volúmenes  $V_1$  y  $V_2$  que satisfacen esta condición de equilibrio.



