Scilab Textbook Companion for Examples in Thermodynamics Problems by W. R. Crawford¹

Created by
Kranthi Naik
B.Tech
Civil Engineering
IIT Bombay
College Teacher
Shimpi
Cross-Checked by
Chaitanya

June 7, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Examples in Thermodynamics Problems

Author: W. R. Crawford

Publisher: Sir Isaac Pitman, London

Edition: 3

Year: 1937

ISBN: 978-0471862567

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
1	Heating and expansion of gases entropy	5
2	Air cycle efficiencies	13
3	Properties of steam	15
4	The steam engine	22
5	Air compressors and motors refrigeration	30
6	flow through nozzles steam turbines	38
7	Combustion boiler trials	50
8	Internal combustion engines Variable specific heats	58
9	Valve Dlagrams and value gears	66

List of Scilab Codes

Exa 1.1	Example 1	 5
Exa 1.2	Example 2	 5
Exa 1.4	Example 3	 6
Exa 1.5	Example 4	 6
Exa 1.8	Example 5	 7
Exa 1.9	Example 6	 8
Exa 1.11	Example 7	 8
Exa 1.13	Example 8	 9
Exa 1.20	Example 9	 10
Exa 1.22	Example 10	 10
Exa 1.23	Example 11	 11
Exa 1.26	Example 12	 12
Exa 2.2	Example 1	 13
Exa 2.4	Example 2	 13
Exa 2.5	Example 3	 14
Exa 3.1	Example 1	 15
Exa 3.2	Example 2	 16
Exa 3.3	Example 3	 16
Exa 3.4	Example 4	 17
Exa 3.5	Example 5	 18
Exa 3.6	Example 6	 19
Exa 3.10	Example 7	 19
Exa 3.12	Example 8	 20
Exa 3.17	Example 9	 21
Exa 4.1	Example 1	 22
Exa 4.2	Example 2	 22
Exa 4.3	Example 3	 23
Eva 4 10	Example 4	24

Exa 4.14	Example 5																							25	
Exa 4.16	Example 6																							26	
Exa 4.17	Example 7																							27	
Exa 4.19	Example 8																							27	
Exa 4.21	Example 9																							28	
Exa 4.23	Example 10																							28	
Exa 5.1	Example 1																							30	
Exa 5.2	Example 2																							31	
Exa 5.3	Example 3																							31	
Exa 5.5	Example 4																							32	
Exa 5.6	Example 5																							33	
Exa 5.9	Example 6																							33	
Exa 5.12	Example 7																							34	
Exa 5.14	Example 8																							34	
Exa 5.15	Example 9																							35	
Exa 5.16	Example 10																							36	
Exa 5.18	Example 11																							37	
Exa 6.1	Example 1																							38	
Exa 6.2	Example 2																							39	
Exa 6.4	Example 3																							39	
Exa 6.5	Example 4																							40	
Exa 6.6	Example 5																							40	
Exa 6.8	Example 6																							41	
Exa 6.10	-																							42	
Exa 6.11	-																							43	
Exa 6.13	-																							44	
Exa 6.15	Example 10																							44	
Exa 6.16	Example 11																							45	
Exa 6.18	example 12																							46	
Exa 6.19	Example 13																							46	
Exa 6.23	Example 14																							47	
Exa 6.25	Example 15																							48	
Exa 16.28	Example 16																							48	
Exa 7.1																								50	
Exa 7.2	Example 2																							51	
Exa 7.4	-																							51	
Exa 7.6	Example 4																							52	
Exa 7 7	Example 5	-	•	٠	•	٠	٠	٠	•	•	•	-	-	•	•	•	•	-	•	•	•	•	•	53	

Exa 7.9	Example 6													53
Exa 7.11	Example 7													54
Exa 7.13	Example 8													54
Exa 7.15	Example 9													55
Exa 7.16	Example 10													56
Exa 7.17	Example 11													57
Exa 8.1	Example 1													58
Exa 8.3	Example 2													59
Exa 8.6	Example 3													59
Exa 8.8	Example 4													60
Exa 8.10	Example 5													61
Exa 8.12	Example 6													62
Exa 8.19	Example 7													63
Exa 8.20	Example 8													63
Exa 8.21	Example 9													64
Exa 8.22	Example 10													64
Exa 9.5	Example 1													66
Exa 5.7	Example 2													66
Exa 9.10	Example 3													67
Exa 9.12	Example 4													67
Exa. 9.17	Example 5													68

Chapter 1

Heating and expansion of gases entropy

Scilab code Exa 1.1 Example 1

```
1 clc
2 //initialisation of variables
3 p1=280//lb/in^2
4 v=2//ft^3
5 p2=20//lb/in^2
6 v2=18.03//ft^3
7 //CALCULATIONS
8 W=144*(p1*v-p2*v2)/(1.2-1)//ft/lb
9 //RESULTS
10 printf('The volume and work done during the expansion=% f ft/lb', W)
```

Scilab code Exa 1.2 Example 2

```
1 clc
2 //initialisation of variables
```

```
3  v=2//ft^3
4  v2=20//ft^3
5  p=100000//ft lb
6  v2=10.41//lb/in^2
7  v3=10//lb/in^2
8  p1=1.3//lb
9  p2=(v2*199.5)/9.95//lb/in^2
10  //CALCULATIONS
11  P=(p2/v3-v2)//lb/in^2
12  //RESULTS
13  printf('The initial andfinal pressure=% f lb/in^2',P
)
```

Scilab code Exa 1.4 Example 3

```
1 clc
2 //initialisation of variables
3 Cp=0.24//lb/in^2
4 Cv=0.18/ft^3
5 p1=5//lb/in^2
6 T1=20//Degree C
7 T2=150//Degree C
8 //CALCULATIONS
9 W=p1*Cp*(T2-T1)//C.H.U
10 H=p1*Cv*(T2-T1)//C.H.U
11 Gamma=Cp/Cv//lb/in^2
12 //RESULTS
13 printf('the constant pressure=% f C.H.U',W)
14 printf('the constant volume the value of gas=% f lb/in^2',Gamma)
```

Scilab code Exa 1.5 Example 4

```
1 clc
2 //initialisation of variables
3 Gama=1.33//ft/lb
4 p=100//lb/in^2
5 p1=20//lb/in^2
6 v2=10.05//ft^3
7 v=3//ft/lb
8 //CALCULATIONS
9 W=144*(p*v-p1*v2)/0.33//ft lb
10 //RESULTS
11 printf('The work done=% f ft lb', W)
```

Scilab code Exa 1.8 Example 5

```
1 clc
2 //initialisation of variables
3 p=3.74//ft/lb
4 p1=2.48//ft/lb
5 v = 5.7 // ft lb
6 Cv = 0.21 // ft / lb
7 P = 440 / / lb / in^2
8 P1=160 // lb / in^2
9 P2=14//lb/in^2
10 T=25//degree C
11 T1 = 100 / F
12 vs = (\%pi*(p1)^2/4)*(p/1728)//ft^3
13 vc=5.7/ft^3
14 v1=4.7//ft^3
15 v2=vs/v1//ft^3
16 \text{ v3} = 0.01273 // \text{ft}^3
17 T2 = 298 / F
18 //CALCULATIONS
19 W = (P2*144*v3)/(T2*T1)//lb
20 T3 = [(P1*144*1)/(P2*144*7)*T2]//Degree C
21 T4 = (P/P1) * T3 // Degree C
```

```
22 H=W*Cv*(T4-T3)//C.H.U
23 //RESULTS
24 printf('The heat supplied during explosion=% f C.H.U
    ',H)
```

Scilab code Exa 1.9 Example 6

```
1 clc
2 //initialisation of variables
3 v=10//ft^3
4 p=100//lb/in^2
5 p1=18//lb/in^2
6 v1=50//ft^3
7 n=log(p/p1)/log(5)
8 gama=1.4//air
9 //CALCULATIONS
10 W=[144*(p*v-p1*v1)]/(n-1)//ft lb
11 H=(gama-n)/(gama-1)*W//ft lb
12 E=W-H//ft lb
13 //RESULTS
14 printf('The heat supplied and the change of internal energy=% f ft lb',E)
```

Scilab code Exa 1.11 Example 7

```
1 clc
2 //initialisation of variables
3 v=2//ft^3
4 p=1100//lb/in^2
5 t1=44//Degree C
6 t2=15//Degree C
7 p1=300//lb/in^2
8 t3=3//Degree c
```

```
9 Cv = 0.17 // ft / lb
10 T = 273 / F
11 R = 96 // ft lb
12 p3=300 // lb / in^2
13 n=1.12//lb
14 gama=1.404//lb
15 W = [(144*p*v)/(T+t1)]/R//lb
16 //CALCULATIONS
17 Wc = W * Cv * (t1 - t2) / /C.H.U
18 p2=p*(T+t2)/(T+t1)//lb /in^2
19 A = (144*p3*v)/(R*276)//lb
20 W1 = (A/W) * v // ft ^3
21 H=[(gama-n)/(gama-1)]*[144*(p*0.65-p1*v)/(n-1)]//ft
      1b
22 \text{ H1=H/1400//C.H.u}
23 //RESULTS
24 printf ('the heat was lost by all the air in the
      vessel before leakage began=% f C.H.U', Wc)
25 printf ('the heat was lost or gainned leakage by the
      air=% f C.H .U', H1)
```

Scilab code Exa 1.13 Example 8

```
1 clc
2 //initialisation of variables
3 h=0.218//ft^3
4 h1=0.156//ft^3
5 n=0.249//lb
6 h2=0.178//lb
7 c=0.208//lb
8 c1=0.162//lb
9 w1=1//ft^3
10 p=150//lb/in^2
11 T=100//Degree C
12 T1=373//F
```

```
13    Cp=(h*0.2312)+(n*0.3237)+(c*0.4451)//C.H.U/lb
14    Cv=(h1*0.2312)+(h2*0.3237)+(c1*0.4451)//C.H.U//lb
15    R=1400*(Cp-Cv)//ft lb units
16    //CALCULATIONS
17    W=(144*p*w1)/(R*T1)//lb
18    //RESULTS
19    printf('The characteristic constant of the gas=% f lb',W)
```

Scilab code Exa 1.20 Example 9

```
1 clc
2 //initialisation of variables
3 T=200//Degree C
4 p=150//lb/in^2
5 v=12//ft^3
6 R=96//Lb
7 T1=473//F
8 T2=273//F
9 j=1400//lb
10 Cv=0.169//lb/in^2
11 v1=(R*T1)/(p*144)//ft^3
12 //CALCULATIONS
13 Fhi=(R/j)*log(v/v1)+Cv*log(T2/T1)//rank
14 //RESULTS
15 printf('The change of entropy=% f rank',Fhi)
```

Scilab code Exa 1.22 Example 10

```
1 clc
2 //initialisation of variables
3 v=10//ft^3
4 T=20//Degree C
```

```
5 p=15//lb in^2
6 p1=200//lb//in^2
7 gama=1.41 //lb
8 Cv=0.169//lb
9 v2=1.153//ft^3
10 j=1400//lb
11 T1=293//F
12 T2=451//F
13 T1=[(p1*v2)/(p*v)]*T1//Degree C
14 //CALCULATIONS
15 R=Cv*j*(gama-1)
16 W=0.816//lb
17 Fhi=Cv*[(gama-1.2)/(1.2-1)]*log(T1/T2)*W//rnak
18 //RESULTS
19 printf('The change of entropy=% f rank',Fhi)
```

Scilab code Exa 1.23 Example 11

```
1
2 clc
3 //initialisation of variables
4 p=1//lb
5 T=200 // Degree C
6 p1=15//lb/in^2
7 v1 = 4 / / ft^3
8 gama=1.41//lb
9 Cv = 0.169 // lb
10 J = 1400 / / lb
11 n = 1.2
12 T = 473 / F
13 v2=16.1//ft^3
14 T1 = 473 / F
15 //CALCULATIONS
16 T2=(p1*v2)/(p*v1)*T1//Degree C
17 R=Cv*J*(gama-p)//lb/in^2
```

```
18 Fhi=0.1772*log(1.317)//rank
19 //RESULTS
20 printf('the change of entropy from intial conditions
=% f rank', Fhi)
```

Scilab code Exa 1.26 Example 12

```
2 //initialisation of variables
3 \text{ w=0.066}//\text{ft}^3
4 p=14.7/lb/in^2
5 \text{ w1} = 14.2 // \text{lb} / \text{in}^2
6 \text{ w2} = 2780 // \text{lb/in}^2
7 \text{ g=} 0.038 / / lb
8 a = 28.9 // lb
9 R=w2/w1//for gas
10 R1=93 // for air
11 T = 273 / F
12 V = 0.4245 / ft^3
13 //CALCULATIONS\
14 W = (p*144*w)/(T*R)//lb
15 m = (g - W) / lb gas
16 T2=(V+w)//ft^3
17 //RESULTS
18 printf('The volume of mixture=\% f ft ^3',T2)
```

Chapter 2

Air cycle efficiencies

Scilab code Exa 2.2 Example 1

```
1 clc
2 //initialisation of variables
3 T1=(100+273) // Degree C
4 T2=(300+273) // degree C
5 T=(1-T1/T2)*100//F
6 lam=0.41//in
7 //CALCULATIONS
8 R=log(T2)-log(T1)//lb/in^2
9 r=2.849//ratio of compression
10 //RESULTS
11 printf('The ideal efficiency and the compression ratio=% f ratio of compression',r)
```

Scilab code Exa 2.4 Example 2

```
1
2 clc
3 //initialisation of variables
```

```
4 r = 0.60 // in
5 v = 3 / / in
6 p=15.4//lb
7 r=5//in
8 P = 2000 / r p m
9 V=19000//B.Th.U Per lb
10 lam=1.41 // lb
11 n=0.4831//percent
12 P=15.4/4//lb
13 H=P*V/B.Th.U
14 \ 1=4.5//lb
15 A = 9 / / lb
16 \text{ S} = 1000 // lb
17 //CALCULATIONS
18 R=0.60*n*100//percent
19 C=H*R/B.Th.U
20 I = (C*778) / (60*33000) / / lb
21 P1=(I*12*4*33)/(I*A*\%pi)//Ib/in^2
22 //RESULTS
23 printf('The mean efficity pressure=% f lb/in^2',P1)
```

Scilab code Exa 2.5 Example 3

```
1 clc
2 //initialisation of variables
3 v=15//in
4 S=(5*14/100)//ln
5 lam=1.4//in
6 v1=1.7//in
7 //CALCULATIONS
8 N=(1-0.38)*100//percent
9 //RESULTS
10 printf('the ideal efficency for an engine =% f percent', N)
```

Chapter 3

Properties of steam

Scilab code Exa 3.1 Example 1

```
1 clc
2 //initialisation of variables
3 p=100 // lb / in^2
4 x = 0.8 // lb
5 t1=164//degree C
6 t2=4.45 //ft^3
7 p1 = 0.016 // ft^3
8 h1=493.4//C.H.U/lb
9 h2=165.9/C.H.U/lb
10 S=h2+h1//C.H.U/lb
11 w = (144*p)/1400*(t2-p1)//C.H.U/lb
12 H=h2+(x*h1)/(C.H.U//lb
13 w1 = (x*144*p)/1400*(t2-p1)//C.H.U
14 //CALCULATIONS
15 E=S-w//C.H.U/lb
16 IE=H-w1//C.H.U/lb
17 //RESULTS
18 printf('The steam is total heat dry and satured=% f
     C.H.U/lb', E)
19 printf('Total heat of wet steam=% f C.H.U/lb', IE)
```

Scilab code Exa 3.2 Example 2

```
1 clc
2 //initialisation of variables
3 t1=35//degree C
4 p=100 // lb / in^2
5 L=435/C.H.U
6 L2=539.3/C.H.U
7 h1=165.9/H.C.U/lb
8 h2=493.4//C.H.U/lb
9 S = (h1-t1)/C.H.U
10 h3=304.1/C.H.U
11 h4=335/(C.H.U/lb)
12 //CALCULATIONS
13 X1=h3/h2//C.H.U/lb
14 X2=h4/L2//C.H.U/lb
15 //RESULTS
16 printf ('The heat giving to the water and steam is =\%
      f C.H.U/lb', X2)
```

Scilab code Exa 3.3 Example 3

```
1 clc
2 //initialisation of variables
3 p=35//lb/in^2
4 w=1425//lb
5 q=1474//lb
6 s1=126.7//C.H.U/lb
7 s2=28//C.H.U/lb
8 t1=5//degree C
9 t2=28//degree C
10 L1=521.4//C.H.U/lb
```

```
11 w1=245//lb
12 w2=0.2//lb
13 //CALCULATIONS
14 W=(s1-s2)+L1//C.H.U/lb
15 H=q*(t2-t1)//C.H.U/lb
16 T=H/W//lb
17 //RESULTS
18 printf('The total equivalent=% f lb',T)
```

Scilab code Exa 3.4 Example 4

```
1 clc
2 //initialisation of variables
3 p=100//lb/in^2
4 w = 2400 // lb
5 t1=15//degree C
6 \text{ s1=165.9//C.H.U/lb}
7 x=0.9//1b
8 L2=493.4//C.H.U/lb
9 t2=65/degree
10 x4=0.8//lb
11 s3=64.8//C.H.U/lb
12 \text{ w1} = 2000 / / 1b
13 \text{ w}2 = 2400 // \text{lb}
14 b1 = 12400 // lb
15 b2 = 22000 / / lb
16 p1 = 4400 // lb
17 n = 421.65 // lb
18 h1=w2*[s1+(x*L2)]/(C.H.U/hr)
19 h2=w1*[s1+(x4+L2)]/(C.H.U/hr)
20 //CALCULATIONS
21 T=w*[(s1-t1)+(x*L2)]/(C.H.U/hr)
22 T1=w1*[(s1-s3)+(x4*L2)]/C.H.U/hr
23 H=T+T1//C.H.U/hr
24 \text{ X=n/L2//C.H.U/lb}
```

```
25 //RESULTS
26 printf('The thermal capacity of the pipe=% f C.H.U/
hr',X)
```

Scilab code Exa 3.5 Example 5

```
1 clc
2 //initialisation of variables
3 \text{ w1} = 4.5 // \text{lb}
4 s1=45.5//lb
5 p1 = 165 / / lb / in^2
6 T=140//Degree C
7 h1 = 30 // in
8 h2=4//in
9 p2=0.49/\ln/in^2
10 T1 = (w1 + s1) // lb
11 T2=103.5//Degree C
12 T3 = 140 / Degree
13 h3=0.48//in
14 x=0.988//berfore throttling
15 T = [103.12+537.1+h3*(T3-T2)]/(C.H.U/lb)
16 \text{ x} 1 = 0.012 // \text{lb of water}
17 \text{ X=s1*x1//lb water}
18 \text{ w}=50//\text{lb} \text{ of steam}
19 //CALCULATIONS
20 P=h2+h1//in of mercury
21 P1=s1*x1//lb/in^2
22 T4 = w1 + P1 / lb
23 D = (w-T4)/w//lb
24 //RESULTS
25 printf ('The dryness of steam with a combined=% f lb'
       , D)
```

Scilab code Exa 3.6 Example 6

```
1 clc
2 //initialisation of variables
3 \text{ w} = 40 / / 1b
4 \text{ w1} = 380 // \text{lb}
5 t1=80//Degree
6 p=85//lb/in^2
7 p1=15//lb/in^2
8 W=w+w1//lb/hr
9 P = p + p1 / lb / in^2
10 T = 659.3 / (C.H.U/lb)
11 d=10/h.p
12 //CALCULATIONS
13 H = W * T - w1 * t1 / / C. H. U / hr
14 H1=(d*33000*60)/1400//C.H.U/hr
15 T1=H1/H*100//percent
16 D=w1/(w1+w)/C.H.U/hr
17 H2 = [W*(99.6+D*539.3) - W1*t1] / C.H.U/hr
18 T2=H-H2//C.H.U/hr
19 H3=T2-H1//C.H.U/hr
20 E=(1400*H3)/(60*33000)/h.p
21 //RESULTS
22 printf ('The amount of radiations from the engine =\%
      f h.p',E)
```

Scilab code Exa 3.10 Example 7

```
1 clc
2 //initialisation of variables
3 w=40//lb
4 w1=380//lb
5 t1=80//Degree
6 p=85//lb/in^2
7 p1=15//lb/in^2
```

```
8 W=w+w1//lb/hr
9 P=p+p1//lb/in^2
10 T = 659.3 / C.H.U/lb
11 d=10/h.p
12 //CALCULATIONS
13 H=W*T-w1*t1//C.H.U/hr
14 H1=(d*33000*60)/1400//C.H.U/hr
15 T1=H1/H*100//percent
16 D=w1/(w1+w)//C.H.U/hr
17 H2 = [W*(99.6+D*539.3) - W1*t1] / C.H.U/hr
18 T2=H-H2//C.H.U/hr
19 H3=T2-H1//C.H.U/hr
20 E=(1400*H3)/(60*33000)//h.p
21 //RESULTS
22 printf ('The amount of radiations from the engine =\%
      f h.p',E)
```

Scilab code Exa 3.12 Example 8

```
1 clc
2 //initialisation of variables
3 p=120//lb/in^2
4 ts=264//degree C
5 T1 = (273 + 130.6) / F
6 v=0.0171//ft^3/lb
7 L1=518.4/lb
8 T2 = (273 + 171.9) / F
9 L2=487.4//1b
10 Cp=0.48//lb
11 L=0.0894/Cp//lb
12 Ts=T2*1.205//degree
13 ta=536-273//Degree C
14 T = 649.9 / C.H.U
15 S=131.2/C.H.U
16 w = (144*40) / 1400*(10.49-v) / C.H.U
```

```
17     C=T-S//C.H.U
18     I=C-w//C.H.U
19     E=(704.7-57.8)//C.H.U
20     E1=E-606.5//C.H.U
21     //CALCULATIONS
22     E1=E-606.5//C.H.U
23     H=(704.7-T)//C.H.U
24     //RESULTS
25     printf('Heat and internal energy after each operation=% f C.H.U', H)
```

Scilab code Exa 3.17 Example 9

```
1 clc
2 //initialisation of variables
3 A=28.1//in Hg vacuum
4 a=0.93//lb/in^2
5 T=33//Degree
6 p=0.729//lb/in^2
7 P=-p+a//lb/in^2
8 p1 = 120000 // lb
9 p2=28.1//in
10 a1=0.9//ln
11 p3 = 1000 // lb
12 t=15//degree C
13 A1=[a1*(p1/(60*p3))]//lb/mim
14 v = (A1*96*306) / (144*P) / ft^3 of air per min
15 V=37.3+a1*610/(C.H.U/lb)
16 //CALCULATIONS
17 H = (V - T) / C.H.U
18 W=(H/t)*(p1/60)//gal/min
19 //RESULTS
20 printf ('The water per minute in cubic feet per
      minute passing to air extractor=% f gal/min', W)
```

Chapter 4

The steam engine

Scilab code Exa 4.1 Example 1

```
1 clc
2 //initialisation of variables
3 p=90//1b/in^2
4 \times 1 = 0.9 // lb
5 p1 = 10 / / lb / in^2
6 \text{ x2=0.81}//\text{lb}
7 \text{ s1=161.5}//\text{lb.in}^2
8 \text{ s2=89.1//lb.in^2}
9 L1=496.8//lb.in^2
10 L2=545.5//lb.in^2
11 //CALCULATIONS
12 bc=(s1-s2)+(x1*L1)/(C.H.U/lb)
13 da=x2*L2//C.H.U/lb
14 W=bc-da//C.H.U/lb
15 R=W/bc*100//percent
16 //RESULTS
17 printf('the work done per =% f percent',R)
```

Scilab code Exa 4.2 Example 2

```
1 clc
2 //initialisation of variables
3 h=1600//i.h.p
4 h1 = 20000 / / lb
5 h2=230//lb/in^2
6 T1=293.3//Degree C
7 x = 25.91 / / in
8 v = 30 / / in
9 T2=201//Degree C
10 T=T1-T2//degree C
11 x2=0.845//lb
12 L2 = 566.51 // lb
13 \text{ s1} = 724 // \text{lb}
14 h3=1400//C.H.U/hr
15 x = 33000 // ft^3
16 //CALCULATIONS
17 H = 671.48 / C.H.U/lb
18 ea=x2*L2//C.H.U/lb
19 W=H-ea//C.H.U/lb
20 R=W/H*100//percent
21 S=h2*s1//C.H.U
22 I = [(h*x*60)/(h3*h1*s1)]*100//percent
23 R1=I/R*100//pecent
24 //RESULTS
25 printf('The indicated thermal efficiency ratio=% f
      percent', R1)
```

Scilab code Exa 4.3 Example 3

```
1 clc
2 //initialisation of variables
3 h1=180//lb/in^2
4 h2=3//lb/in^2
5 r1=60//percent
6 r2=90//percent
```

```
7 p3=100//lb/in^2
8 p4=10//lb/in^2
9 v1=4.4//ft^3/lb
10 v2=2*v1//ft^3
11 p=44//lb/in^2
12 x2=0.95//ft^3
13 \text{ s1} = 165.9 // lb
14 s2=89.1//lb
15 L1 = 493.4 // lb
16 H=(s1-s2)+L1//C.H.U/lb
17 W = 65.8 / (C.H.U/lb)
18 //CALCULATIONS
19 R=W/H*100//percent
20 //RESULTS
21 printf ('The rankine efficiency of the engine=% f
      percent', R)
```

Scilab code Exa 4.10 Example 4

```
1 clc
2 //initialisation of variables
3 p=85//lb/in^2
4 h=210//i.p.m
5 \text{ h1=8}//\text{in}
6 h2=2.5//in
7 h3 = 20 / / in
8 x = 0.75 // in
9 p1=100//\ln/in^2
10 \times 1 = 33000 / / in
11 p2=15//lb/in^2
12 v2=\%pi/4*(h1/12)^2*(h3/12)/ft^3
13 A=144*[29.08*1.6931-8.724] //ft/lb
14 d=x*A//ft/lb
15 \text{ v3} = 0.5816 // \text{ft}^3
16 P=d/(144*v3)//lb/in^2
```

```
17 P1=%pi/4*64//in^2
18 r=25*%pi/16//in^2
19 //CALCULATIONS
20 H=P*(h3/12)*P1*h/(x1)
21 I=(P*(h3/12)*(P1-r)*h)/(x1)//I.h.P
22 T=H+I//I.h.p
23 //RESULTS
24 printf('the h.p diameter of the piston and piston rod =% f I.h.p',T)
```

Scilab code Exa 4.14 Example 5

```
1 clc
2 //initialisation of variables
3 a=1.025//in^2
4 h=18//in
5 h1 = 24 // in
6 \text{ x=8.2//percent}
7 v = 15 / / in
8 v2=6.9/ft^3
9 p = 0.74 / lb / in^2
10 p1=50//lb/in^2
11 p2=83//lb/in^2
12 P3 = 48.0 / lb / in
13 P1 = 29.8 / lb / in^2
14 P2=14.6//lb/in^2
15 h2=29.8//in
16 D=(\%pi/4)*(3/2)^2*2//ft^3
17 \text{ v1} = 23400 // \text{ft.lb}
18 W=a*v1//ft.lb
19 V = 0.082 * D / / ft^3
20 Q=1.530//ft^3
21 //CALCULATIONS
22 I=V+Q//ft^3
23 P=P3+P2//lb/in^2
```

```
24 V1=p*v2//ft^3
25 W1=I/V1//lb
26 S=p2+P2///l/in^2
27 H=659.06//C.H.U/lb
28 T=W/(H*W1*1400)*100//percent
29 //RESULTS
30 printf('The thermal efficiency of the engine=% f percent',T)
```

Scilab code Exa 4.16 Example 6

```
1 clc
2 //initialisation of variables
3 v = 4.6 / ft^3
4 h=5//percent
5 p = 60 / / lb / in^2
6 p1=0.8//ft^3
7 p2=19//lb/in^2
8 a=100//r.p.m
9 h1 = 5920 // lb
10 W=h1/(2*a*p)//lb
11 V = (0.25*v) // ft^3
12 v1 = 21.07 // ft^3
13 w=V/v1//lb
14 \text{ H=W+w}//\text{lb}
15 v2=H*7.17//ft^3
16 P = w * v2 / / ft^3
17 P1=0.675*v//ft^3
18 //CALCULATIONS
19 DP=P1/v2//ft^2
20 //RESULTS
21 printf ('The assumptions do you make in working out
      the dryness of the steam=% f ft<sup>3</sup>',DP)
```

Scilab code Exa 4.17 Example 7

```
1 clc
2 //initialisation of variables
3 h=0.08//lb
4 p=60//lb/in^2
5 p1=0.50//lb/in^2
6 v=0.5//ft^3
7 v1=7.17//ft^3
8 V=h*v1//ft^3
9 //CALCULATIONS
10 W=p1/v1//lb
11 I=v/v1//lb
12 M=h-I//lb
13 //RESULTS
14 printf('the dryness of the steam at this pressure and missing quantity =% f lb',M)
```

Scilab code Exa 4.19 Example 8

```
1 clc
2 //initialisation of variables
3 p1=120//lb/in^2
4 p2=15//lb/in^2
5 //CALCULATIONS
6 v=1.65//lb
7 D=sqrt(v)//lb
8 //RESULTS
9 printf('The above pressure are by gauge=% f lb',D)
```

Scilab code Exa 4.21 Example 9

```
1 clc
2 //initialisation of variables
3 p=150//lb/in^2
4 x = 198 / / r.p.m
5 \text{ x1} = 33000 / / 1b
6 h = 2700 // lb
7 h1 = 1400 // lb
8 h2 = 51600 / / lb
9 r = 165 / C.H.U/lb
10 s = 60 // lb
11 t=48//Degree C
12 t1=11//degree C
13 t2=36 // Degree C
14 P1=(40*75*t2*x)/(12*x1)//lb
15 P2 = (38*70*t2*x)/(12*x1)//lb
16 L1=(t1*300*t2*x)/(12*x1)//lb
17 L2=(12*295*t2*x)/(12*x1)//lb
18 T=P1*P2*L1*L2//lb
19 H=5294//C.H.U/min
20 T1=h/s//lb/min
21 H1 = T1 * 663 / / lb / min
22 H2=(h2/s*(36-11)+(h/s)*(t))//C.H.U
23 H3=(h/60)*t//C.H.U
24 //CALCULATIONS
25 TE=H/H1-H3*100//percent
26 R=r/(663-t)*100//percent
27 //RESULTS
28 printf ('The rankine efficiency = f percent', R)
```

Scilab code Exa 4.23 Example 10

```
1 clc
2 //initialisation of variables
```

```
3 p1 = 100 / / ln / in^2
4 p2=2.5//lb/in^2
5 p3=20//lb/in^2
6 d=0.75//lb
7 p=0.5//lb
8 r = 16 / / in
9 p4=p1/r//lb/in^2
10 P5=50//lb/in^2
11 W1 = 13960 // ft / lb
12 W2 = 19040 // ft / lb
13 T = 33000 // ft / lb
14 v = 4.43 / ft^3
15 v1 = v*d // ft^3
16 W3=T*v1//ft/lb
17 Hp = 3416 / ft / lb
18 Lp=3416 // ft / lb
19 //CALCULATIONS
20 W=Lp*v1//ft lb
21 //RESULTS
22 printf('The thermal efficiency of a compound steam
      and work done=% f ft lb', W)
```

Chapter 5

Air compressors and motors refrigeration

Scilab code Exa 5.1 Example 1

```
1 clc
2 //initialisation of variables
3 a=7//in
4 b=10//in
5 c = 12 / / in
6 r = 96 / / in
7 p1=15//lb/in^2
8 p2=100//lb/in^2
9 T=16//Degree C
10 gama=1.4//in
11 h=120/r.p.m
12 T1=T+273//C absolute
13 //CALCULATIONS
14 v1 = (\%pi/4) * (a/c)^2 * (b/c) // ft^3
15 w = (p1*144*v1)/(r*T1)//lb
16 \text{ w1=h*w//lb}
17 W=1680*[1.72-1]//ft lb
18 I=144*p1*v1*log(p2/p1)//ft lb
19 E=I/W*100//percent
```

Scilab code Exa 5.2 Example 2

```
1 clc
2 //initialisation of variables
3 h1 = 16 / / i . h. p
4 p1=100//lb/in^2
5 p2=15//lb/in^2
6 R = 275 / /R. p.m
7 h=550 // ft /min
8 q = 33000 / in^2
9 \text{ v1=4.85}//\text{lb}
10 B=8.53 // in
11 //CALCULATIONS
12 M=(p1/v1)-p2+(p1/v1-p2)*1/0.2
13 S=h/(2*R)//ft
14 I = (q*h1)/(M*S*R)//in^2
15 //RESULTS
16 printf('The effect of the clearance volume=% f in 2'
      ,I)
```

Scilab code Exa 5.3 Example 3

```
1 clc
2 //initialisation of variables
3 h=100//ft^3
4 t=15//degree C
5 p=120//lb/in^2
6 gama=1.3//in
7 t1=15//Degree C
```

```
8 M=[(144*t*h*2.6)/(0.3)*(1.271-1)]//ft lb
9 //CALCULATIONS
10 V=sqrt(p/t)//ft lb
11 //RESULTS
12 printf('Compare the values of the two cylinders=% f ft lb',V)
```

Scilab code Exa 5.5 Example 4

```
1 clc
2 //initialisation of variables
3 h=0.2//ft^3
4 v=10//percent
5 T=15//degree c
6 p=30//lb/in62
7 t1=15//Degree C
8 \text{ p1=60}//\text{lb/in^2}
9 v1=2.2//ft^3
10 v3=0.328//ft^3
11 A = (v1 - v3) / ft^3
12 v2=1.341//ft^3
13 V = v2 - h / / ft^{\hat{}}
14 t2=288//Degree C
15 //CALCULATIONS
16 T2=(t2*p*v2)/(t1*v1)/Degree C absolute
17 v5 = (t2/T2) * V / / ft^3
18 v7 = 0.164 // ft^3
19 v8=v5-(v7/11)*v5
20 v6=v8/(1-v7/11)//ft^3
21 //RESULTS
22 printf('The required volume of the H.P cylinder
      including clearance=% f ft<sup>3</sup>',v6)
```

Scilab code Exa 5.6 Example 5

```
1 clc
2 //initialisation of variables
3 p1=80//lb/in^2
4 p2=20//lb/in^2
5 //CALCULATIONS
6 P=sqrt(p1*p2)//lb/in62
7 V=P/p1//stroke
8 W=p2/P//stroke
9 //RESULTS
10 printf('the ratio of cut off to length of stroke=% f stroke', W)
```

Scilab code Exa 5.9 Example 6

```
1 clc
2 //initialisation of variables
3 p1=25//lb/in^2
4 p2=50//lb/in^2
5 p3 = 75 / lb / in^2
6 p4=100//lb/in^2
7 v1 = 29.2 // ft^3
8 v2=28.8//ft^3
9 v3 = 28.1 // ft^3
10 v4=27.2//ft^3
11 h=14.7//lb/in^2
12 v=3/percent
13 s=5//stroke
14 //CALCULATIONS
15 V = (\%pi*p1)/(4)*4//in^3
16 V1 = v/p4 * V//in^3
17 //RESULTS
18 printf ('The volume of efficiency of pressure=% f in
      ^3',V1)
```

Scilab code Exa 5.12 Example 7

```
1 clc
2 //initialisation of variables
3 p1=15//lb/in^2
4 p2=60//lb/in^2
5 t=16//Degree C
6 Ta=273+t//Degree C absolute
7 T=1.486//lb/in^2
8 Td=Ta/T//Degree C absolute
9 //CALCULATIONS
10 P=Td/(Ta-Td)//Degree C absolute
11 //RESULTS
12 printf('The lowest temperature and coefficient of per formance=% f Degree C absolute',P)
```

Scilab code Exa 5.14 Example 8

```
1 clc
2 //initialisation of variables
3 T1=30//Degree c
4 T2=-10//degree C
5 t1=263//F
6 t2=303//F
7 h1=20//Units
8 h2=79//C.H.U/lb
9 h=24//hours
10 T3=1//Degree C
11 p=2.2046//C.H.U/sec
12 //CALCULATIONS
13 P=h1*p//C.H.U/sec
```

```
14 T=t1/(t2-t1)//F

15 H=P*60//C.H.U

16 W=(H*1400)/T//ft/lb

17 hp=W/33000//h.p

18 W1=(H*60*h)/(80*2240)//tons

19 //RESULTS

20 printf('the cycle is a perfect one=% f tons', W1)
```

Scilab code Exa 5.15 Example 9

```
1 clc
2 //initialisation of variables
3 p1 = 930 // lb / in^2
4 p2=440//lb/in^2
5 T = 268 / F
6 \text{ t1} = 25 / / \text{F}
7 t2=5/F
8 \text{ h1}=19.4/\text{C.H.U}
9 h2 = -1.8 / C.H.U
10 h3 = 29 / C.H.U
11 h4=58.6/C.H.U
12 d=0.6/C.H.U
13 d1 = 0.06 // lb
14 d2 = -0.01 // lb
15 c=40//percent
16 h = 24 / / hour
17 t3=10/C
18 d3 = 15 / / lb
19 h5=80/C.H.U
20 //CALCULATIONS
21 A = [h1 - (h2)] - [d1 - (d2)] *T //C.H.U
22 FD=A/T//units of entropy
23 AD=(d*h4/T-0.07-A/T)*T//C.H.U
24 W = 4.28 / C.H.U
25 T = AD/W//C.H.U
```

```
26 P=0.4*T//C.H.U
27 H=P*W*d3//C.H.U
28 H1=P*W*d3*60*h//C.H.U
29 H2=t3+h5//C.H.U
30 W1=H1/(H2*2240)//tond
31 //RESULTS
32 printf('The many tons of ice would a machine working between the same limit and having a relative coefficient=% f tons', W1)
```

Scilab code Exa 5.16 Example 10

```
1 clc
2 //initialisation of variables
3 t1=20//Degeree C
4 t2 = -10 // degree C
5 h=0.95//dry
6 t3=35//Degree C
7 h1 = 0.066 // lb
8 h2=1.089//lb
9 \text{ v1} = -0.033 // lb
10 v2=1.193//lb
11 \quad v3 = 0.508 // lb
12 T1 = 263 / F
13 T2 = 293 / F
14 //CALCULATIONS
15 T=T1/(T2-T1)//F
16 E = h1 - (v1) / lb
17 C=0.1079//lb
18 CP=E/C//lb
19 A = CP * (T2 - T1) - E * T1 / / C.H.U
20 F=A/T1//units of entropy
21 H = 254.212 / C.H.U
22 H2 = 274.447 / C.H.U
23 W = [CP*(T2-T1)+h*1.023*(T2-T1)-E*T1] //C.H.U
```

```
24 P=H/W//C.H.U
25 V=A+v3*15-T1*v3*0.0507//C.H.U
26 H1=T1*[v3*0.0507+0.05*1.023]//C.H.U
27 N=H2/(W+V)//C.H.U
28 //RESULTS
29 printf('The upper and lower temperature limits
    respectively=% f F',T)
30 printf('The vapour compression cycle work done=% f C
    .H.U',H)
31 printf('The vapour is now additional work done=% f C
    .H.U',N)
```

Scilab code Exa 5.18 Example 11

```
1 clc
2 //initialisation of variables
3 h=0.8//dry
4 p=120 // lb / in^2
5 p1=1//lb/in^2
6 t=100//Degree C
7 A=99.6-38.6-0.178*311.8//C.H.U
8 G=311.8//units of entropy
9 AF=440.52//C.H.U
10 H=399.82//lb/in^2
11 p = 307 / lb
12 //CALCULATIONS
13 T=H/p//C.H.U
14 //RESULTS
15 printf ('theoretical coefficient pf performance as a
      refrigeration=% f C.H.U',T)
```

Chapter 6

flow through nozzles steam turbines

Scilab code Exa 6.1 Example 1

```
1 clc
2 //initialisation of variables
3 p1=150//lb/in^2
4 p2=10//lb/in^2
5 n=10/percent
6 T=183.6+479.4/C.H.U
7 \text{ x}2=0.852//C.H.U
8 \text{ H} = 553.9 / \text{C.H.U/lb}
9 h1=T-H//C.H.U/lb
10 //CALCULATIONS
11 V = sqrt(2*32.2*1400*h1) / ft / sec
12 V1=sqrt(2*32.2*1400*0.9*h1)//ft/sec
13 //RESULTS
14 printf('the neglecting friction=% f ft/sec', V)
15 printf ('the frictional drop in the nozzle is 10
      recent of the total heat drop=\% f ft/sec, V1)
```

Scilab code Exa 6.2 Example 2

```
1 clc
2 //initialisation of variables
3 v=((3140*%pi*60*60)/(4*4*144))//ft/sec
4 v1=0.852*38.37//ft^3
5 //CALCULATIONS
6 W=(v/v1)//lb
7 V=(2970*%pi*60*60)/(4*4*144)//ft^3
8 W1=(V/v1)//lb
9 //RESULTS
10 printf('the weight of steam per hour=% f lb',W)
11 printf('the weight of steam per hour=% f lb',W1)
```

Scilab code Exa 6.4 Example 3

```
1 clc
2 //initialisation of variables
3 p1 = 300 // lb
4 p=75//lb/in^2
5 p2=8//lb/in^2
6 h=90/C.H.U/lb
7 Pt=0.58*p//lb/in^2 absolute
8 h1 = 24 // lb /C.H.U
9 D=0.968//C.H.U
10 D1=0.886//C.H.U
11 v=9.7/ft^3
12 v1 = 47.24 / ft^3
13 V = sqrt (2*32.2*1400*24) // ft / sec
14 V1 = sqrt(2*32.2*1400*90) / ft / sec
15 //CALCULATIONS
16 H=(p1*v*D/3600) // ft^3
17 V2 = (p1 * v1 * D1 / 3600) / / ft^3
18 A = 0.768 / / in^2
19 A1=1.72//in^2
```

```
20 d=sqrt(4*0.768/%pi)//in
21 d1=sqrt((4*A1)/(%pi))//in
22 //RESULTS
23 printf('the diameters at the throat and exit of the nozzle=% f in',d1)
```

Scilab code Exa 6.5 Example 4

```
1 clc
2 //initialisation of variables
3 d=2.15//in^2
4 a=0.98 / dry
5 p=100//lb/in^2
6 p1 = 11000 / / lb
7 P=0.58*p//lb/in^2
8 \text{ H} = 24 / / \text{C.H.U/lb}
9 D=0.947 //1b
10 s = 7.407 // ft^3
11 //CALCULATION
12 V = sqrt (2*32.2*1400*H) // ft / sec
13 V1 = V * (d/144) // ft^3
14 T=V1/(s*D)//lb
15 A = (p1/3600) // lb
16 \text{ C=A/T//lb}
17 //RESULTS
18 printf ('the coefficient of discharge for the nozzles
      =% f lb',C)
```

Scilab code Exa 6.6 Example 5

```
1 clc
2 //initialisation of variables
3 p=9.5//lb
```

```
4 p1=120//lb
5 e=0.88//in
6 p2=80//lb/in^2
7 d=25//in
8 d1 = 0.125 //in
9 t=14//degree C
10 T=e*19//C.H.U/lb
11 D=0.975//in
12 V = sqrt (2*32.2*1400*T) // ft / sec
13 S=5.467 // ft^3
14 //CALCULATIONS
15 V1=p*S*D//ft^3
16 T1=(V1*144/V)//in^2
17 C = 25 * \%pi // in
18 N = C/2.5 //in
19 P=C/31//in
20 \text{ W=d1/sind(t)//in}
21 L=P-W//in
22 \text{ W1=L*sind(t)//in}
23 T2=(T1)/(31*W1)//in
24 //RESULTS
25 printf ('The number of nozzles their breadth and
      heigh=\% f in',T2)
```

Scilab code Exa 6.8 Example 6

```
1 clc
2 //initialisation of variables
3 p1=100//lb/in^2
4 p2=15//lb/in^2
5 d1=95//percent
6 d2=30//percent
7 P=0.58*p1//lb/in^2
8 H=0.95*25//C.H.U/lb
9 H1=0.95*76.5//C.H.U/lb
```

```
10 D=0.97//in
11 D1=0.905//in
12 V=7.407//ft^3
13 V1=sqrt(2*32.2*1400*H)//ft/sec
14 V2=sqrt(2*32.2*1400*H1)//ft/sec
15 //CALCULATIONS
16 V3=(2*%pi*1*V1)/(64*4*144)//ft^3
17 W=(V3*3600)/(V*D)//lb
18 K=V2/(2*32.2)//ft lb sec
19 E=[((V2)^2*W)/(2*32.2*3600)]//ft.lb
20 W1=(E*d2)/(p1*550)//ft.lb
21 //RESULTS
22 printf('the quantity of steam used per hour and horse power developed=% f ft.lb',W1)
```

Scilab code Exa 6.10 Example 7

```
1 clc
2 //initialisation of variables
3 d=0.15//lb
4 p=20//lb/in^2
5 p1 = 100 / / lb / iN62
6 t=200//degree C
7 f=10//percent
8 Pt=0.5457*p1//lb/in^2
9 \text{ x} 1 = 0.996 // in
10 \text{ x} 2 = 0.952 // in
11 h=29/(C.H.U/lb)
12 h1 = 65 / C.H.U/lb
13 v = 7.73 / ft^3
14 \text{ v1} = 20.12 // \text{ft}^3
15 T=0.364//in
16 T1 = 0.465 / / in
17 v2=sqrt(2*32.2*1400*h)/ft/sec
18 v3 = sqrt(2*32.2*1400*h1) //ft/sec
```

Scilab code Exa 6.11 Example 8

```
1 clc
2 //initialisation of variables
3 h=0.5//lb
4 p1=2.5//lb/in^2
5 p2=100//lb/in^2
6 t=250//Degree C
7 pv=1.3//constant
8 pt=0.5457*p2//lb/in^2
9 t1=18//degree C
10 h1 = 32 / /C.H.U/lb
11 h2=151//C.H.U/lb
12 D=0.887//in
13 V1 = sqrt(2*32.2*1400*h1) / ft / sec
14 V2 = sqrt(2*32.2*1400*h2) / ft.sec
15 s1=8.74//ft^3
16 \text{ s2=} 140.8 // \text{ft}^3
17 T1=0.687 // in
18 T1=1.77 // in
19 V3=h*s1//ft^3/sec
20 V4=h*s2//ft^3/sec
21 //CALCULATIONS
22 A1=(V3/V1)*144//in^2
23 A2=(V4/V2)*144//in^2
24 //RESULTS
```

Scilab code Exa 6.13 Example 9

```
1 clc
2 //initialisation of variables
3 h=500//gallons
4 p1=150//lb/in^2
5 p2=0.6//lb/in^2
6 P=p2*p1//lb/in^2
7 h = 25 / C.H.U/lb
8 p = 62.4 / lb / ft^2
9 V = sqrt(2*32.2*1400*h) / ft / sec
10 D=0.996 // in^2
11 d=4.898//in^2
12 v1=1.2//in
13 vi = 163.2 // ft / sec
14 m=V/32.2//ft.lb.sec
15 //CALCULATIONS
16 \text{ W=V/vi-1//lb}
17 W1=(5000)/(3600*W)//ft/sec
18 V1 = W1 * d * D / / ft ^3
19 A = V1/V * 144//in^2
20 I = (50/36 + W1) / lb / sec
21 A1=(I*144)/(62.4*vi)//in^2
22 //RESULTS
23 printf('the aera of the stream and water orifices=%
      f in^2', A1)
```

Scilab code Exa 6.15 Example 10

```
1 clc
2 //initialisation of variables
```

```
3 a=50//degree c
4 v=2000//ft/sec
5 p=800//ft/sec
6 b=20//Degree C
7 v1=0.9//in^2
8 v2=513//ft/sec
9 W=(1/32.2)*[1810-(-313)]*p//ft/lb lb stream /sec
10 K=(v^2)/(2*32.2)//ft/lb sec
11 //CALCULATIONS
12 D=(W/K)*100//percent/lb
13 //RESULTS
14 printf('the work done per lb=% f percent/lb',D)
```

Scilab code Exa 6.16 Example 11

```
1
2 clc
3 //initialisation of variables
4 t=65/B.Th.U per lb
5 n = 0.98 / dry
6 p=105//lb/in^2
7 a=14//Degree C
8 b=20//Degree C
9 p1 = 800 / ft / sec
10 v = 0.80 / ft / lb
11 p2=3.5//lb/sec
12 q = 1400 / / in
13 V = sqrt(2*32.2*778*t) / ft / sec
14 W=(p1)*(1750-b)/32.2//ft lb/lb stream/sec
15 H=(W*p2/550) // ft / lb
16 E=1/64.4*[(1053)^2-(825)^2]//ft.lb_steam_/sec
17 //CALCULATIONS
18 Hd = (E/q) / (C.H.U)
19 //RESULTS
20 printf ('the steam as it leaves the blades and hourse
```

Scilab code Exa 6.18 example 12

```
1 clc
2 //initialisation of variables
3 p=300//ft/sec
4 W=880//ft/sec
5 a=18//degree C
6 g=32.2//ft
7 //CALCULATIONS
8 Wd=(p*W)/g//ft lb
9 //RESULTS
10 printf('the work done /lb steam sec=% f ft lb', Wd)
```

Scilab code Exa 6.19 Example 13

```
1 clc
 2 //initialisation of variables
3 = 35//Degree C
4 b=20//degree C
5 f = 2 / / ft
6 \text{ w} = 422 / / \text{ft}
 7 \text{ w1} = 222 // \text{ft}
8 g=32.2//ft
9 \text{ s} = 1500 / / \text{r} \text{ p} \text{ m}
10 j = 0.8 / / ft
11 p=3//lb/sec
12 h=80/percent
13 i = 1400 // ft
14 P = (\%pi*(31/12)*(s/60)) // ft / sec
15 W=P/g*[w-(-w1)]//ft lb
16 H=(p*W)/550//ft lb
```

```
17 //CALCULATIONS
18 E=W/(j*i)//C.H.U
19 //RESULTS
20 printf('the house -power developed per pair of rings
          if the steam=% f ft lb',E)
```

Scilab code Exa 6.23 Example 14

```
1 clc
2 //initialisation of variables
3 d=7//ft
4 h=2//in
5 s = 750 / / r p m
6 \text{ s1=31.3//lb/sec}
7 h1=1.5//in
8 a=25//Degree c
9 p=5.7//lb/in^2
10 d1 = 0.97 / in
11 h2 = 370 // ft / sec
12 j = 32.2 / / in
13 \text{ k} = 1400 // in
14 e=0.75/percent
15 \text{ w} = 326 / / in
16 p = 290 // in
17 vi = 155 / / ft / sec
18 //CALCULATIONS
19 P = (\%pi*7.69*s)/(60)//ft/sec
20 H=(P*h2*s1)/(550*j)//ft/sec
21 E=(P*h2)/(j*e*k)//C.H.U/lb
22 //RESULTS
23 printf ('the drop in pressure while the steam is
      passing through the turbine=% f C.H.U/lb',E)
```

Scilab code Exa 6.25 Example 15

```
1 clc
  //initialisation of variables
3 p=300//lb/in^2
4 ab=100//degree C
5 \text{ w} = 26.4 / / \text{C}
6 t = 40 / / lb / in^2
7 t1=180//Degree C
   p1=0.5//lb/in^2
9 T = 732.38 / C.H.U
10 W = 26.2 / C.H.U/lb
11 W1 = 102 / /C.H.U/lb
12 x = 0.963 / / in
13 d=335//C.H.U/lb
14 E = 743.85 / (C.H.U/lb)
15
   //CALCULATIONS
16 H=T-w//C.H.U/lb
17 h=T-W1//C.H.U/lb
18 H1=E-h//C.H.U/lb
19 T1=H+H1//C.H.U/lb
20 \text{ Wd} = \text{W1} + \text{d} / /\text{C.H.U}
21 //RESULTS
22 printf('the total work done per lb steam=% f C.H.U',
      Wd)
```

Scilab code Exa 16.28 Example 16

```
1 clc
2 //initialisation of variables
3 p=100//lb/in62
4 p1=0.5//lb/in^2
5 T1=659.3//C.H.U/lb
6 T2=26.2//C H U/lb
7 W=181//C H U/lb
```

```
8 \text{ H1=66//C H U/lb}
9 \text{ H2=115//C H U /lb}
10 D=0.912//C H U/lb
11 H3=533.4//C H U/lb
12 T3=108.5 //Degree C
13 T4=26.4//Degree C
14 W1=82.1/(D*H3)//lb
15 s=1-W1//lb
16 //CALCULATIONS
17 T=W/(T1-T2)*100//percent
18 Wd=H1+(H2*s)//C H U/lb
19 H=T1-T3//C H U//lb
20 TE=Wd/H*100/percent
21 //RESULTS
22 printf('the without bleeding % f pecent',T)
23 printf('the proper weight of steam is bled=% f
      percent', TE)
```

Chapter 7

Combustion boiler trials

Scilab code Exa 7.1 Example 1

```
1 clc
2 //initialisation of variables
3 C=86//percent
4 h=4.2//percent
5 w = 20 // lb
6 a=w+0.902//lb
7 C2 = 44/12//lb
8 N = 0.77 // lb
9 CO2 = 3.15
10 H20=0.042*9//lb
11 N2=w*N//lb
12 0x=a-C02-H20-N2//lb
13 //CALCULATIONS
14 Co2 = CO2/a * 100/percent
15 H2o=H2O/a*100//percent
16 \text{ n2=N2/a//percent}
17 o2=0x/a*100/percent
18 //RESULTS
19 printf ('the composition of the products of
      combutions by weight=% f percent', 02)
```

Scilab code Exa 7.2 Example 2

```
1
2 clc
3 //initialisation of variables
4 g=0.05//percent
5 n=0.35//percent
6 c=0.5/percent
7 h=10//percent
8 m = 167 / C H U
9 h1 = 162 / C H U
10 v=1//ft^3
11 H2=0.5//ft^3
12 Co = 0.05 / ft^3
13 \text{ v2=3}//\text{ft}
14 //CALCULATIONS
15 G=(g*c)+(n*H2)//ft^3
16 Tv = (g*h1) + (n*m) / C H U
17 M=Tv/v2//C H U/ft^3
18 //RESULTS
19 printf ('the gas with twice its volume of air=% f C H
       U/ft^3, M)
```

Scilab code Exa 7.4 Example 3

```
1 clc
2 //initialisation of variables
3 g=8//percent
4 f=88//percent
5 C=12//percent
6 w=20//lb
7 C1=11/3//lb
```

```
8    CO2=3/11//lb
9    e=0.08//lb
10    D=0.0218//lb    C
11    w1=0.88//lb
12    //CALCULATIONS
13    W1=w1/D//lb    lb    fuel
14    T=w1/D*w//lb/hr
15    //RESULTS
16    printf('the total weight of exaust gas leaving the engine per hour=% f lb/hr',T)
```

Scilab code Exa 7.6 Example 4

```
1 clc
2 //initialisation of variables
3 a=30//percent
4 b=20/percent
5 c=8/percent
6 h=42//percent
7 t1=20 // degree C
8 \text{ g=0.24}//\text{in}
9 t2=320//degree c
10 M = 7.654 / lb / lb fuel
11 A=3*M//lb/lb fuel
12 W = 0.08 + 0.04 / / 1b
13 T = A + 0.8 / / lb
14 \text{ w1} = 0.72 + 0.3 / / lb
15 \quad w = T - w1 / / lb
16 d=w*0.24*(t2-b)//C H U/lb fuel
17 H=1.02*(639+0.49*220-t1)/C H U/lb fuel
18 //CALCULATIONS
19 T1=d+H//C H U/lb fuel
20 //RESULTS
21 printf ('total heat carried away by flue gases=% f C
      H U/lb fuel',T1)
```

Scilab code Exa 7.7 Example 5

```
1 clc
2 //initialisation of variables
3 h=40/percent
4 \text{ g=30}//\text{percent}
5 c=8//percent
6 n=10//percent
7 \text{ w=} 6 // \text{percent}
8 g1=10//percent
9 \text{ g2=4.14}//\text{ft}^3
10 Ch4=4.562//ft^3 of air
11 Co2 = 0.44 // ft
12 H2o=1.18//ft^3
13 N2 = 3.7 / ft 63
14 x = 41.4/11//ft63
15 //CALCULATIONS
16 T = Ch4 + x / / ft^3
17 v = 1 + T / / ft^3
18 V = x + g2 / / ft^3
19 D=v-V//ft^3
20 P=D/v*100//percent
21 //RESULTS
22 printf('the volueme of air suplied per=% f percent',
      P)
```

Scilab code Exa 7.9 Example 6

```
1 clc
2 //initialisation of variables
3 0x=2.679//lb
```

```
4  02=0x-0.03//lb O2/lb fuel
5  o2=02*100/23//lb air lb fuel
6  E=o2/2//lb
7  a=17.325//lb /lb fuel
8  Co2=3.294//lb
9  H2o=0.315//lb
10  N2o=13.34//lb
11  02=23/100*E//lb
12  So2=0.005*2//lb
13  //CALCULATIONS
14  W=Co2+N2o+02+So2//lb /lb fuel
15  //RESULTS
16  printf('the totel weight of dry products=% f lb /lb fuel', W)
```

Scilab code Exa 7.11 Example 7

```
1 clc
2 //initialisation of variables
3 l=8.7//percent
4 Co2=42//percent
5 N=28//percent
6 O2=32//percent
7 x=27.65//lb air
8 W=(02/12)*(100/23)//lb
9 //CALCULATIONS
10 A=x-W//lb
11 //RESULTS
12 printf('the air to flues /lb carbon=% f lb', A)
```

Scilab code Exa 7.13 Example 8

```
1 clc
```

```
2 //initialisation of variables
3 \text{ Co} = 2420 / / \text{C H U}
4 a=3400/6//C H U
5 R = Co/3246 / C H U
6 T = 1 + 0.745 / / lb
7 n=1.12 // lb
8 \quad 02=1.33/1.745//lb
9 C=02*100/23//lb
10 CB=n/T//lb
11 m = 1.74 // lb
12 k=2.33//lb
13 1=1.33//lb
14 c = 77 / lb
15 d=23//lb
16 //CALCULATIONS
17 \text{ Y=1*c/d//N2}
18 //RESULTS
19 printf('the weight of air and steam = f N2', Y)
```

Scilab code Exa 7.15 Example 9

```
1 clc
2 //initialisation of variables
3 w=20//lb
4 t=320//degree C
5 t1=22//Degree C
6 w1=0.0807//lb
7 A=0.03901//AH
8 W=0.07469//AH
9 g=5.2//A
10 Q=W-A//A
11 //CALCULATIONS
12 H=(g*0.625)/(Q)//ft
13 //RESULTS
14 printf('weight of equal column of external air=% f
```

Scilab code Exa 7.16 Example 10

```
1 clc
2 //initialisation of variables
3 p=120 // lb / in^2
4 h=30//in
5 t=48//degree C
6 C = 1000 // lb
7 t1=26//degree C
8 m=2.2//percent
9 \text{ g=} 18 // \text{lb}
10 f = 127 / lb
11 j = 33000 / / in
12 q = 1400 // in
13 L=0.978*8000//C.H.U
14 b=50//in
15 t2=320//degree C
16 \text{ g1} = 0.24 // in
17 d=0.90//in
18 a=0.4912*30//lb/in^2
19 P=p+a//lb/in^2 abs
20 T=178.62+d*483.45//C.H.U/lb
21 //CALCULATIONS
22 \text{ Wt=C/f/lb}
23 H = Wt * (T - t) / /C.H.U
24 F=0.022*(638.9+0.48*220-t1)/C.H.U
25 G=g*0.24*(t2-t1)//C.H.U
26 \quad E=H/L*100//percent
27 E1=b*j*60/(L*f*q)*100//percent
28 //RESULTS
29 printf ('the heat balance for the boiler and find its
        efficiency and the overall efficiency of the
      plant=% f percent', E1)
```

Scilab code Exa 7.17 Example 11

```
1 clc
2 //initialisation of variables
3 v = 7950 // lb C.H.U / lb
4 w=15//percent
5 c=0.85//lb
6 \text{ w1=14//percent}
7 \text{ w}2=9//\text{percent}
8 t1=15//degree C
9 t2=325//degree C
10 \text{ g=} 0.25 // \text{lb}
11 //CALCULATIONS
12 H = c * v / / C.H.U
13 H1=0.15*(638.9+0.48*225-15)/C.H.U
14 \text{ C=c*c//lb}
15 A = 19.2 // lb
16 Wt=A+C//lb
17 P=Wt*g*(t2-t1)//C.H.U/lb coal
18 R=0.14*H//C.H.U
19 R1 = H - H1 - P - R / / C.H.U
20 B=R1/H*100//percent
21 //RESULTS
22 printf('the efficiency of a boiler = f percent', B)
```

Chapter 8

Internal combustion engines Variable specific heats

Scilab code Exa 8.1 Example 1

```
1 clc
 2 //initialisation of variables
3 b=6//in
4 b1=9//in
5 \text{ r1=4}//\text{ratio}
6 \text{ r2=1}//\text{ratio}
7 p=50//lb/in^2
8 s = 300 / / r p m
9 = 30/per cent
10 v = 260 / C.H.U
11 a=1.41
12 h=0.30//in
13 g = 33000 / / in
14 g1 = 1400 / / in
15 A=1-(r2/r1)^0.41//lb/in^2
16 //CALCULATIONS
17 I = (p*\%pi*36/4*9/12*s/2)*1/g//ft^3
18 X = (I*g)/(g1*v*h)//ft^3
19 C = X * 60 / I / / ft^3
```

```
20 R=h/A*100//per cent
21 //RESULTS
22 printf('The fuel consumption in ft^3/h p hr and the
    efficiency relative to the air standard cycle=% f
    percent',R)
```

Scilab code Exa 8.3 Example 2

```
1 clc
2 //initialisation of variables
3 h=200/r p m
4 h1=50//i h p
5 P4 = 33.4 / lb / in^2
6 W = 9000 / / ft lb
7 x = 33000 // ft.lb
8 p = 1728 / / ft / lb
9 //CALCULATIONS
10 w=h1*x/100//ft lb
11 T=w/W//ft^3
12 V = 13/14*T//ft^3
13 D=((V*p*8)/(3*\%pi))^(1/3)//in
14 //RESULTS
15 printf ('The diameter of the cylinder of a single
      acting and swept volume=% f in',D)
```

Scilab code Exa 8.6 Example 3

```
1 clc
2 //initialisation of variables
3 h=12//in
4 h1=18//in
5 v=19000//B.Th.U/lb
6 T=12600//lb/in^2
```

```
7 m = 90 / / lb / in^2
8 w = 120 // gal
9 t1=140/F
10 t2=60/F
11 t3=570/F
12 Cv = 0.24 // ft / lb
13 q = 810 // ft / lb
14 n = 16.9 // lb
15 //CALCULATIONS
16 H=(n/t2*v)/B.Th.U
17 H1=[m*\%pi*(144/4)*(h1/h)*(T/t2)]/(778*2)/B.TH.U/min
18 H2 = 1750 / B. Th. U
19 H3 = (H1 - H2) / /B. Th. U
20 W = (w*10/t2)*(t1-t2)//B, Th.U
21 G=((q+n)/(t2))*(t3-t2)*Cv//B.TH.U
22 //RESULTS
23 printf ('The heat balance showing heat quantities
      received and the discharged per min=% f B.TH.U', G
      )
```

Scilab code Exa 8.8 Example 4

```
1 clc
2 //initialisation of variables
3 v=12.5 //i.p.h
4 p1=8.25//in
5 p2=12//in
6 t=110//per min
7 g1=280//C.H.U/ft^3
8 g2=215//ft^3
9 V=25//percent
10 e=0.875//in
11 T=33000//in
12 v1=0.4170//ft^3
13 //CALCULATIONS
```

```
14 M=(T*v)/((%pi*(p1)^2)/(4)*(p2/p2)*(t))//lb.in^2
15 V1=%pi*(p1)^2/4*p2/1728*e//ft^3
16 V2=(%pi*(p1)^2*p2)/(4*4*1728)//ft^3
17 G=(g2/60*1/t)//ft^3
18 T1=G*g1//C.H.U
19 T2=(T1/v1)//C.H.U
20 F=(M/T2)//C.H.U
21 //RESULTS
22 printf('The value of the Tookey factor for gas engine=%.f C.H.U',F)
```

Scilab code Exa 8.10 Example 5

```
1 clc
 2 //initialisation of variables
 3 p1=140 // lb / in^2
4 p2=6.6//lb/in^2
 5 \text{ v1} = 122 / / \text{r.p.m}
6 \text{ v2=1250//b.h.p}
 7 t = 1425 / / i . h. p
8 p3 = 77.8 / lb / in^2
9 h=0.356//lb
10 \text{ v} = 10000 / / \text{C.H.U} / \text{lb}
11 h2 = 2400 // lb
12 q = 33000 / / in
13 j = 1400 / / in
14 //CALCULATIONS
15 t = (v2*q*60) / (j*h*v2*v)*100 / percent
16 V = (p3*144*v1)/(q*2)/V
17 V1=(p2*144*v1)/q//V
18 T = 24.16 / V
19 V2=t/T//ft^3
20 I = V * V2 / / ft^3
21 I1 = V1 * V2 // ft^3
22 \text{ H} = 24904 / \text{C} / \text{.H.U} / \text{mim}
```

```
T=(I*q*60)/(j*h*v2*v)*100// percent
T1=(I1*q)/(j*H)*100// percent
T2=(h*v2*v)/(60)//C.H.U
H1=(v2*q)/(j)//C.H.U/mim
H2=H-(I1*q*v2)/(j*t)//C.H.U/mim
T3=H1+H2//C.H.U/mim
Tn=T2-T3//C.H.U/mim
//RESULTS
printf('the overall thermal effciency=% f percent',t
)
printf('the thermal effciency of steam engine=% f percent',T1)
printf('total heat in oil.mim=% f C.H.U/mim',Tn)
```

Scilab code Exa 8.12 Example 6

```
1 clc
2 //initialisation of variables
3 r = 14 / / in
4 r1=1.8//in
5 t=30.4//1b
6 e = 0.6 / lb
7 lam = 1.4
8 d=12//in
9 d1=18//in
10 v = 10000 / C.H.U/lb
11 P = 200 / / r m p
12 //CALCULATIONS
13 A=1-(1/(lam*(r)^0.4))*((r1)^lam-1)/(r1-1)/percent
14 T=e*A//percent
15 H=t/60*v//C.H.U
16 H1 = H * T / / C. H. U
17 I = (H1*1400) / (33000) / (\ln / in^2)
18 M=(I*33000)/(2*\%pi*144/4*d1/12*P/2)//lb/in^2
```

```
19 //RESULTS
20 printf('the indicated hourse-power and the mean
        efficative pressure of the engine=% flb/in^2',M)
```

Scilab code Exa 8.19 Example 7

```
1 clc
2 //initialisation of variables
3 cv=0.1714//C.H.U
4 R=100.3//ft.lb
5 T=500//degree c
6 J=1400//in
7 Lam=R/J//C.H.U percent C
8 //CALCULATIONS
9 Cp=Lam+cv//C.H.U percent C
10 //RESULTS
11 printf('The specific heat at constant volume of a gaseous mixture is=% f C.H.U percent C',Cp)
```

Scilab code Exa 8.20 Example 8

```
1 clc
2 //initialisation of variables
3 a=0.124//in
4 b=0.000025//in
5 R=0.0671//heat units
6 //CALCULATIONS
7 Cp=(R+a+b)+b//T
8 //RESULTS
9 printf('the specific heat of a gas at constant volume=% f T',Cp)
```

Scilab code Exa 8.21 Example 9

```
1
2 clc
3 //initialisation of variables
4 v = 18 / / ft^3
5 p=14//lb/in^2
6 \text{ p1=150}//\text{lb/in}^2
7 Cp=0.242//T
8 Cv = 0.171 / T
9 j = 1400 // ft
10 R = j * (Cp - Cv) // ft . lb
11 p2=144//ft
12 I1 = 137500 / ft / lb
13 I2=6.37 // ft / lb
14 \text{ v2}=3.282 // \text{ft}^3
15 //CALCULATIONS
16 T=(p2*p*v)/R//Degree C
17 T2=(p2*p1*v2)/(R)/Degree c
18 W=Cp*(T2-T)+0.00002*[(T2)^2-(T)^2]/(C.H.U/lb)
19 C=v/v2//ratio
20 //RESULTS
21 printf('The work done the temperatures at the
      beginning and end of compression ratio=% f ratio'
      , C)
```

Scilab code Exa 8.22 Example 10

```
1 clc
2 //initialisation of variables
3 r=12.5//rario
4 p=0.39*10^6//ft.lb
```

```
5 p1=14//lb/in^2
6 t=373 / / Degree C
7 g=18//ft^3
8 t1=100//Degree C
9 V=g/r//ft^3
10 I = 0.2*10^6 // ft lb/lb
11 T=0.59*10^6 // ft. lb/lb
12 D=0.221*10^6//ft.lb/lb
13 A=0.095*10^6 // ft. lb/lb
14 E=0.264*10^6 // ft. lb/lb
15 E1=0.390*10^6//ft.lb/lb
16 //CALCULATIONS
17 W = (E/E1) * 100 // percent
18 M=(E)/(144*(g-V))//lb.in^2
19 //RESULTS
20 printf('the efficiency of the engine and the me p
      on the assumption that the specific heats=% f lb
      in^2',M)
```

Chapter 9

Valve Dlagrams and value gears

Scilab code Exa 9.5 Example 1

```
1 clc
2 //initialisation of variables
3 p=20//in
4 l=100//in
5 r=120//r.p.m
6 v=3.5//in
7 l2=1//in
8 l3=1/8//in
9 v1=1.44//umega in/sec
10 //CALCULATIONS
11 V=p*(1.06/1.166)//umega in./sec
12 R=(V/v1)//umega in/sec
13 //RESULTS
14 printf('The ratio of velocity of the piston to the velocity=% f umega in/sec',R)
```

Scilab code Exa 5.7 Example 2

```
1 clc
2 //initialisation of variables
3 v=0.6//in
4 m=1.0//in
5 t=0.75//in
6 p=4//in
7 //CALCULATIONS
8 D=t/m//in
9 A=(p*m/D)//in
10 //RESULTS
11 printf('the travel and laps of the value=% f in',A)
```

Scilab code Exa 9.10 Example 3

Scilab code Exa 9.12 Example 4

```
1 clc
2 //initialisation of variables
3 p=1/10//in
4 v1=3/4//in
5 v2=3/5//in
6 m=1*1/2//in
```

```
7 l=4//cranks
8 a1=1.25//in
9 a2=0.7//in
10 //CALCULATIONS
11 C=a1/a2//in
12 A=1*a1/a2//in
13 S=(A/2-a1)//in
14 //RESULTS
15 printf('the travel of the value =% f in',S)
```

Scilab code Exa 9.17 Example 5

```
1 clc
2 //initialisation of variables
3 v = 3*1/2//in
4 a=30//degree
5 1 = 0.8 / / in
6 v1=0.2//in
7 L=0.13//in
8 m = 1.075 // in
9 d=0.58//in
10 p=1.875//in
11 //CALCULATIONS
12 V = (p-d) / / in
13 P=V+1.25//in
14 //RESULTS
15 printf('the main value and the maximum opening to
      steam = \% f in', P)
```