

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Batch: C2 Roll No.: 16010122257

Experiment No. 10

Grade: AA / AB / BB / BC / CC / CD /DD

Signature of the Staff In-charge with date

Title: Implementation of Longest Common Subsequence String Matching Algorithm

Objective: To compute longest common subsequence for the given two strings.

CO to be achieved:

CO 2	Analyze and solve problems for divide and conquer strategy, greedy method, dynamic programming approach and backtracking and branch & bound policies.
CO 3	Analyze and solve problems for different string matching algorithms.

Books/ Journals/ Websites referred:

- 1. Ellis horowitz, Sarataj Sahni, S.Rajsekaran," Fundamentals of computer algorithm", University Press
- 2. T.H.Cormen ,C.E.Leiserson,R.L.Rivest and C.Stein," Introduction to algorithms",2nd Edition ,MIT press/McGraw Hill,2001
- 3. http://www.math.utah.edu/~alfeld/queens/queens.

Pre Lab/ Prior Concepts:

Data structures, Concepts of algorithm analysis

Historical Profile:

Given 2 sequences, X = x1, ..., xm and Y = y1, ..., yn, find a subsequence common to both whose length is longest. A subsequence doesn't have to be consecutive, but it has to be in order.

New Concepts to be learned:

String matching algorithm, Dynamic programming approach for LCS, Applications of LCS.

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

Recursive Formulation:

Define c[i, j] = length of LCS of Xi and Yj. Final answer will be computed with c[m, n].

$$c[i, j] = 0$$

if $i = 0$ or $j = 0$.
 $c[i, j] = c[i - 1, j - 1] + 1$
if $i,j > 0$ and $xi = yj$
 $c[i, j] = max(c[i - 1, j], c[i, j - 1])$
if $i, j > 0$ and $x_i <> y_i$

Algorithm: Longest Common Subsequence

Compute length of optimal solution-

LCS-LENGTH
$$(X, Y, m, n)$$

for $i \leftarrow 1$ to m
do $c[i, O] \leftarrow O$
for $j \leftarrow O$ to n
do $c[0, j] \leftarrow O$
for $i \leftarrow 1$ to m
do if $xi = yj$
then $c[i, j] \leftarrow c[i - 1, j - 1] + 1$
 $b[i, j] \leftarrow "\approx"$
else if $c[i - 1, j] \ge c[i, j - 1]$
then $c[i, j] \leftarrow c[i - 1, j]$
 $b[i, j] \leftarrow "\uparrow"$
else $c[i, j] \leftarrow c[i, j - 1]$
 $b[i, j] \leftarrow "\uparrow"$

return c and b

Print the solution-PRINT-LCS(b, X, i, j) if i = 0 or j = 0then return

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

if
$$b[i, j] =$$
 " \approx "

then PRINT-LCS($b, X, i - 1, j - 1$)

print xi

elseif $b[i, j] =$ " \uparrow "

then PRINT-LCS($b, X, i - 1, j$)

else PRINT-LCS($b, X, i, j - 1$)

Initial call is PRINT-LCS(b, X, m, n).

b[i, j] points to table entry whose subproblem we used in solving LCS of Xi and Yj.

When $b[i, j] = \approx$, we have extended LCS by one character. So longest com-mon subsequence = entries with \approx in them.

Example: LCS computation

Analysis of LCS computation

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University) **Department of Computer Engineering**

CODE:

```
Start here X LCS.cpp X
     1
          #include <iostream>
     2
          #include <vector>
     3
          #include <string>
     4
          using namespace std;
     5
     6
        □int main() {
     7
     8
              string strl, str2;
     9
              cout << "Enter the first string: ";
    10
              cin >> strl;
    11
              cout << "Enter the second string: ";
    12
              cin >> str2;
    13
    14
              vector<char> output;
    15
              vector<vector<int>>> arr(strl.length() + 1, vector<int>(str2.length() + 1, 0));
    16
    17
              for (int i = 0; i < strl.length(); i++) {</pre>
    18
                  for (int j = 0; j < str2.length(); j++) {
    19
                      if (strl[i] == str2[j]) {
    20
                           arr[i + 1][j + 1] = arr[i][j] + 1;
    21
                      else (
    22
                           if (arr[i][j + 1] <= arr[i + 1][j]) {
    23
                               arr[i + 1][j + 1] = arr[i + 1][j];
    24
    25
                           if (arr[i][j + 1] > arr[i + 1][j]) {
    26
                               arr[i + 1][j + 1] = arr[i][j + 1];
    27
    28
    29
                  }
    30
    31
    32
              int p = strl.length() - 1;
    33
              int q = str2.length() - 1;
    34
    35
              while (p >= 0 && q >= 0) {
    36
                  if (strl[p] == str2[q]) {
    37
                      output.push back(strl[p]);
    38
                      p--;
    39
                      q--;
    40
                  } else {
    41
                      if (arr[p][q - 1] <= arr[p - 1][q]) {
    42
    43
                      } else if (arr[p][q - 1] > arr[p - 1][q]) {
```


K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

```
44
                       q--;
45
                   }
46
               }
          }
47
48
49
          // Printing the LCS array
          for (int i = 0; i < arr.size(); i++) {
50
               for (int j = 0; j < arr[i].size(); j++) {
51
                   cout << arr[i][j] << " ";
52
53
54
               cout << endl;
55
          }
56
57
          // Printing the common string
58
          cout << "Common string is: ";
59
          for (int j = output.size() - 1; j >= 0; j--) {
60
               cout << output[j];
61
62
          cout << endl;
63
64
          return 0;
65
66
```

Output:

```
Enter the first string: abcdefa
Enter the second string: acd

0 0 0 0

0 1 1 1

0 1 1 1

0 1 2 2

0 1 2 3

0 1 2 3

0 1 2 3

Common string is: acd
```

```
C:\Users\DELL\Desktop\LCS.exe

Enter the first string: abcdefa

Enter the second string: tacd

0 0 0 0 0

0 1 1 1

0 0 1 1 1

0 0 1 2 2

0 0 1 2 3

0 0 1 2 3

0 0 1 2 3

Common string is: acd

Process returned 0 (0x0) execution time: 17.958 s

Press any key to continue.
```


K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

CONCLUSION:

Thus,we've implemented Longest Common Sub sequence(LCS) using in dynamic programming. We've implemented this algorithm using the table method. It has applications in computational linguistics and bioinformatics.