

Image Filtering

CPS592 – Visual Computing and Mixed Reality

Filter Operations

The name "filter" is used because these signal-processing elements typically "pass" or amplify certain frequency components of the signal, while they "stop" or attenuate others.

Image Filtering

 Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3
4	5	1
1	1	7

Local image data

Modified image data

Convolution

• The prescription for the linear combination is called the "convolution kernel".

Example

Example

Mean filtering

Linear filters: examples

8

Linear filters: examples

α

By 1 pixel

Linear filters: examples

10

(accentuates edges)

Sharpening

after

11

Gaussian filters

•A Gaussian kernel gives less weight to pixels further from the center of the window

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$

1	1	2	1
9	2	4	2
J	1	2	1

Gaussian filters

Sharpening revisited

What does blurring take away?

Let's add it back:

Source: S. Lazebnik

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value) Source: D. Lowe

Other filters

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value) Source: D. Lowe

Linear vs. Non-linear

- "Convolution"/Linear Filters
 - Linear operation
 - Have corresponding frequency domain filter
- Non-linear Filters
 - Mask used to determine the proper substitution of a "good" pixel value
 - Examine neighbors using various orderings
 - Often use Rank or Order Statistics
 - Harder to interpret effect in frequency domain

Ordered Statistic Filters

Also called "rank" filters

2	3	8
3	4	10
4	2	9

Consider a neighborhood about a pixel. Rank (sort) the pixels. {2, 2, 3, 3, 4, 4, 8, 9, 10}

Rank Filters: Median Filter

- One of the most popular non-linear filter
- Find the median of the window
- Preserves edges
- Removes impulse noise, avoids excessive smoothing

neighbor sort =
$$\{2,2,3,3,4,4,8,9,10\}$$

f f (x,y) = median

Rank Filters: Min/Max Filter

- Find the min or max of the neighborhood
- Not as "mainstream" as median filter
- Has various uses, will talk about these more later.

2	3	8
3	4	10
4	2	9

neighbor sort =
$$\{2,2,3,3,4,4,8,9,10\}$$
 $f(x,y) = min$
 $f(x,y) = max$

Examples

Original Image

Median

Max

Sobel Filter

Laplacian Filter

```
Kernel = [0 1 0;
1 -4 1;
0 1 0];
```


Mean Filter

Kernel = ones(15,15) / 15^2;

Gaussian Filter

Kernel = fspecial('gaussian', [15 15], 5);

0.0012 0.0015 0.0019 0.0023 0.0027 0.0029 0.0031 0.0032 0.0031 0.0029 0.0027 0.0023 0.0019 0.0015 0.0012 0.0015 0.0020 0.0025 0.0030 0.0034 0.0038 0.0040 0.0041 0.0040 0.0038 0.0034 0.0030 0.0025 0.0020 0.0015 0.0019 0.0025 0.0031 0.0037 0.0043 0.0047 0.0050 0.0051 0.0050 0.0047 0.0043 0.0037 0.0031 0.0025 0.0019 0.0023 0.0030 0.0037 0.0045 0.0051 0.0057 0.0060 0.0061 0.0060 0.0057 0.0051 0.0045 0.0037 0.0031 0.0025 0.0019 0.0023 0.0034 0.0034 0.0037 0.0045 0.0051 0.0059 0.0065 0.0069 0.0061 0.0060 0.0057 0.0051 0.0045 0.0037 0.0031 0.0023 0.0027 0.0034 0.0043 0.0057 0.0065 0.0059 0.0065 0.0069 0.0071 0.0069 0.0065 0.0059 0.0051 0.0043 0.0034 0.0027 0.0031 0.0040 0.0050 0.0066 0.0069 0.0077 0.0078 0.0077 0.0072 0.0065 0.0057 0.0047 0.0038 0.0029 0.0038 0.0041 0.0051 0.0061 0.0061 0.0071 0.0078 0.0083 0.0081 0.0077 0.0069 0.0060 0.0050 0.0050 0.0040 0.0031 0.0041 0.0051 0.0061 0.0071 0.0078 0.0083 0.0083 0.0083 0.0071 0.0061 0.0051 0.0041 0.0032 0.0041 0.0051 0.0061 0.0061 0.0071 0.0078 0.0083 0.0083 0.0083 0.0071 0.0061 0.0051 0.0041 0.0032 0.0031 0.0040 0.0050 0.0060 0.0069 0.0077 0.0081 0.0083 0.0081 0.0077 0.0069 0.0060 0.0050 0.0040 0.0031 0.0040 0.0050 0.0060 0.0069 0.0077 0.0081 0.0083 0.0081 0.0077 0.0069 0.0060 0.0050 0.0040 0.0031 0.0040 0.0050 0.0060 0.0069 0.0077 0.0081 0.0083 0.0081 0.0077 0.0069 0.0060 0.0050 0.0040 0.0031 0.0027 0.0033 0.0047 0.0055 0.0057 0.0055 0.0057 0.0055 0.0057 0.0051 0.0041 0.0031 0.0027 0.0033 0.0043 0.0044 0.0050 0.0069 0.0077 0.

Median Filter

25x25

Sharpening

Denoising

Median

Mean

Gaussian

Q&A