

• Succinct zero-knowledge proofs

- Multiparty computation
- Fully homomorphic encryption
- Indistinguishability obfuscation

- Succinct zero-knowledge proofs
 - Data integrity, verifiable computation
 - Cryptographic adapter
- Multiparty computation and fully homomorphic encryption
 - Collaboration with privacy
 - Hallucinated server
- Indistinguishability obfuscation
 - Arbitrary programmable functionality
 - Autonomous cryptographic agent

- Succinct zero-knowledge proofs
 - Data integrity, verifiable computation
 - Cryptographic adapter
- Multiparty computation and fully homomorphic encryption
 - Collaboration with privacy
 - Hallucinated server
- Indistinguishability obfuscation
 - Arbitrary programmable functionality
 - Autonomous cryptographic agent

Succinct zero-knowledge proofs

- I know a secret input x such that f(x) = 0.
 - I don't reveal x
 - Or, I reveal only a part of x
- I know the private key corresponding to this public key.
- I possess a message...
 - with a valid digital signature from [authority]'s known public key...
 - o and here are the first 50 characters of the message

Succinct zero-knowledge proofs

- Applicable and widely used in practice
- Cost overhead: Thousands

- Succinct zero-knowledge proofs
 - Data integrity, verifiable computation
 - Cryptographic adapter
- Multiparty computation and fully homomorphic encryption
 - Collaboration with privacy
 - Hallucinated server
- Indistinguishability obfuscation
 - Arbitrary programmable functionality
 - Autonomous cryptographic agent

Multi-party computation

- Each of us has some secret number x_i
- We want to know some function of all our secrets
 - How many are bigger than 100?
- Application: Danish beet auction

Multi-party computation

- Applicable in practice
 - At least for small groups
- Cost overhead: Thousands

- Succinct zero-knowledge proofs
 - Data integrity, verifiable computation
 - Cryptographic adapter
- Multiparty computation and fully homomorphic encryption
 - Collaboration with privacy
 - Hallucinated server
- Indistinguishability obfuscation
 - Arbitrary programmable functionality
 - Autonomous cryptographic agent

Fully homomorphic encryption

- I encrypt my secret data
- You can operate on the data, but you can't access it
- I decrypt and learn the results of your operation

Fully homomorphic encryption

Overhead: Millions

- Succinct zero-knowledge proofs
 - Data integrity, verifiable computation
 - Cryptographic adapter
- Multiparty computation and fully homomorphic encryption
 - Collaboration with privacy
 - Hallucinated server
- Indistinguishability obfuscation
 - Arbitrary programmable functionality
 - Autonomous cryptographic agent

Program obfuscation

- I can "obfuscate" any program f (a function)
- I give you the obfuscated source code
- You can run it and learn the output... but you can't learn anything more about how f works

Program obfuscation

- Several protocols proposed
 - Some secure but impractical
 - Some fast(ish) but might be insecure
 - Further research needed

- Succinct zero-knowledge proofs
 - Data integrity, verifiable computation
 - Cryptographic adapter
- Multiparty computation and fully homomorphic encryption
 - Collaboration with privacy
 - Hallucinated server
- Indistinguishability obfuscation
 - Arbitrary programmable functionality
 - Autonomous cryptographic agent