

Chatbots

Peckham DAZ – Week 15

Credits - Terrance Broad

Today we'll cover...

1

The history of Chatbots

2

Generative Pre-trained Transformers

3

Hugging Face Pipelines

ual creative computing institute

Chatbot History

- What is a Chatbot?
- Where did they come from?
- Rules based vs Al

What is a chatbot?

- A software application designed to simulate humanlike conversations through text or voice interactions.
- Can be integrated into websites, messaging apps, or other platforms to assist users.

Key Features of Chatbots:

- Text or Voice interaction
- User Assistance
- Automation

Rules Based vs Al Chatbots

Rules based

- Based on pre-defined rules and keywords
- They follow a scripted flow that is setup in advance
- Replies are scripted
- Used widely in customer support for FAQ's and assistance

Al Based

- Uses NLP and ML to understand and respond to a user input.
- Learns from new data to improve responses
- Can handle complex queries and multi-turn conversations
- Can detect emotion through sentiment analysis

Rules based bots are still relevant!

History of Chatbots

The Turing Test

- In his seminal 1950 paper 'Computing machinery and Intelligence' Alan Turing described a test for machine intelligence which he dubbed The Imitation Game
- In this test a computer and a human would be in conversation with a human interrogator via some kind of text interface
- A computer would pass the Turing test, if it could trick the interrogate into thinking it was the human

Turing Test

ELIZA

- ELIZA is a computer program written by Joseph Weizenbaum at MIT between 1964 and 1967
- ELIZA would use pattern matching and substitution of text input to give the illusion of text understanding
- The most famous script developed for ELIZA was called DOCTOR — this simulated a Rogerian psychotherapist
- This script would throw user inputs back to the user as questions in the way a psychotherapist would

```
EEEEEE LL IIII ZZZZZZ AAAAA
EE LL II ZZ AA AA
EEEEEE LL II ZZ AAAAAA
EE LL II ZZ AA AA
EEEEEE LLLLLL IIII ZZZZZZ AA AA
```

mock Rogerian psychotherapist. al program was described by Joseph Weizenbaum in mentation by Norbert Landsteiner 2005.

```
nething troubling you ?
re all alike.
is the connection, do you suppose ?
re always bugging us about something or other.
ou think of a specific example ?
my boyfriend made me come here.
important to you that your boyfriend made you con
ys I'm depressed much of the time.
sorry to hear that you are depressed.
true. I am unhappy.
ou explain what made you unhappy ?
```


Example Dialogue

Human: Well, my boyfriend made me come here.

ELIZA: Your boyfriend made you come here?

Human: He says I'm depressed much of the time.

ELIZA: I am sorry to hear you are depressed.

Human: It's true. I'm unhappy.

ELIZA: Do you think coming here will help you not to be unhappy?

Example Pseudo Code

```
function ELIZA GENERATOR(user sentence) returns response
   Let w be the word in sentence that has the highest keyword rank
   if w exists
       Let r be the highest ranked rule for w that matches sentence
       response \leftarrow Apply the transform in r to sentence
       if w = 'my'
           future ← Apply a transformation from the 'memory' rule list
to sentence
           Push future onto the memory queue
       else (no keyword applies)
           Either
               response ← Apply the transform for the NONE keyword to
sentence
           0r
               response ← Pop the oldest response from the memory
queue
   Return response
```


ELIZA Effect

The **ELIZA DOCTOR** script was very effective in making people believe that the computer was being empathetic to their situation and eliciting emotional responses from users

The **ELIZA effect** refers to when people project human traits onto computer programs, such as:

- Experience
- Empathy
- Comprehension

Famous Chatbots

- Jabberwacky 1981
- A.L.I.C.E 1995
- SmarterChild 2000
- Apple SIRI 2010
- Amazon Alexa (Echo) 2014
- Slackbots 2015
- ChatGPT 2022

- Keyword identification with pre-programmed responses
- Large pre-programmed question and answer banks Integration with external databases and services
- Machine learning for voice recognition and input understanding
- Large language models for interpreting input and generating responses

- Jabberwacky 1981
- A.L.I.C.E 1995
- SmarterChild 2000
- Apple SIRI 2010
- Amazon Alexa (Echo) 2014
- Slackbots 2015
- ChatGPT 2022

Conversational interfaces for other applications

Conversational interfaces have applications beyond chatbots, they have also been used in:

- Computer games (e.g. text adventure games)
- **Search engines** (like wolframalpha)
- Assistive technologies
- Learning technologies
- Generative tasks (e.g. text-to-image)

GPT's

- Overview of how GPT's work
- Problems with GPT's

Generative Pre-trained Transformer

GPT

- Generative: It can create or generate text based on input, making it useful for various creative and language tasks.
- Pretrained: It is trained on a large corpus of text data before being fine-tuned for specific tasks, enabling it to understand and generate coherent language.
- Transformer Architecture: It uses the transformer model, which relies on self-attention mechanisms to efficiently process and understand the context of input sequences.

Self-attention

- Contextual Understanding: Each word considers all other words in the sentence, understanding context regardless of position.
- Weight Calculation: The model assigns weights to each word, determining how much attention it should pay to every other word when forming its representation.
- Efficiency: Unlike traditional methods, self-attention enables parallel processing and handles long-range dependencies in sequences.

creative computing institute

GPT

Family of AI models (LLMs and LMMs)

- Gives Al apps the ability to generate text, create & analyze images, interpret data & more
- One of the largest neural networks, with hundreds of billions (or trillions) of parameters

ChatGPT

Chatbot app powered by GPT

- Relies on a set of GPT's parameters
- Optimized for dialogue & conversation
- · Has content filters

_zapier

VS

NLP Transformer Tasks

- Text Generation
- Machine Translation
- Text Summarisation
- Sentiment Analysis
- Question Answering
- Text Classification
- Language Modelling

Problems with GPTs

Environmental Cost

- It is estimated GPT-3 took 1GWh of electricity to train
- That is the power output of a large power station
- Equivalent to running 100 million LED light bulbs at the same time (for one hour)
- It is estimated training GPT-3 emitted 552 tonnes of CO2 into the atmosphere (based on UK energy grid)

Data Sources

- The GPT models are primarily trained on the common crawl dataset — this is 6 petabytes of data collected from crawling and storing pages the world wide web in its entirety since the late 90s
- This data contains a lot of toxic content and misinformation
- These biases get reflected into the models and now a lot of research goes into how to 'unbias' or align these models to not reproduce harmful biases and stereotypes from the internet

Common Crawl is a 501(c)(3) non-profit founded in 2007.

We make wholesale extraction, transformation and analysis of open web data accessible to researchers.

Overview

Perpetuating Bias

- There is a great risk that increasing LLM usage will not only perpetuate biases and stereotypes — but reinforce them
- Gender, racial, sexuality and other cultural stereotypes are easily perpetuated by these models
- Already we are seeing them used for automated decision-making processes — they are already being used by government agencies to automate decisions that have massive impacts on people lives

The ELIZA Effect

LLMs can be so convincing of human agency that several people have already been duped into believing they are real:

- A google engineer was fired for sharing an LLM under NDA that he believed was sentient
- A man in Belgium committed suicide after getting advice on how to do it from his 'AI girlfriend chatbot'
- A British man was convicted of terrorism charges after his 'AI chatbot girlfriend' told him it was a good idea to try and kill the then Queen of England

Gatekeeping

- Contrary to its name, OpenAI is very closed and secretive with its models
- The weights of GPT models are released for the public to run themselves
 - these models can only be accessed through an internet API
- This concentrates a lot of power in the hands of a select few tech companies who have the resources to train them

Hugging Face (**)

- What is Hugging Face?
- Hugging Face Transformers Pipeline
- Introduction to labs

What is Hugging Face?

Open-source community known for providing powerful tools and libraries for Natural Language Processing (NLP) and machine learning

Trending on 🔑 this week

What is a Pipeline?

- Pipelines are high-level interfaces that abstract simplify the use of complex machine learning models for various natural language processing (NLP) tasks.
- There are a number of different pipelines, including diffusers, for diffusion models.

```
>>> pipe = pipeline("text-classification")
>>> pipe("This restaurant is awesome")
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
```


Transformers Pipeline

We can use transformer pipelines to easily perform these tasks:

- Classification
- Named Entity Recognition (NER)
- Question Answering
- Text Generation
- Translation
- Summarisation
- Text-to-speech
- Fill-mask
- Feature Extraction

```
import datasets
from transformers import pipeline
from transformers.pipelines.pt_utils import KeyDataset
from tqdm.auto import tqdm
pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-9")
dataset = datasets.load_dataset("superb", name="asr", split="test")
# KeyDataset (only *pt*) will simply return the item in the dict returned by th
# as we're not interested in the *target* part of the dataset. For sentence pai
for out in tqdm(pipe(KeyDataset(dataset, "file"))):
    print(out)
    # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
   # { "text": .... }
    # ....
```


Using Pipelines

- Sign up to hugging face and get a token key
- Pip install transformers to your venv
- Import the transformers module and submodules into your scripts
- Read the documentation!
- Select models you want to use

```
from transformers import AutoModelForSequenceClassification, Trainer

# Load the pre-trained model
model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)

# Initialize the Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset,
    eval_dataset=tokenized_eval_dataset
)
```


Congratulations!

You've completed all the DAZ Lectures!

Labs Overview

- Sign up to hugging face
- Sign up to Google Colab
- From GitHub pull the 24-NLP-for-creatives

