Numération binaire

.....

Capacités attendues

 \checkmark Écriture d'un entier positif dans une base b \ge 2 : passer de la représentation d'une base dans une autre.

(Les bases 2, 10 et 16 sont privilégiées.)

.....

La numération usuelle est une numération par position : à chaque chiffre correspond un « poids », d'autant plus élevé qu'il est situé à gauche. Par exemple pour le nombre 496 :

- le chiffre 4 est le chiffre des , de poids ;
- le chiffe 9 est le chiffre des , de poids ;
- le chiffre 6 est le chiffre des , de poids

En résumé, on peut écrire que : $496 = 4 \times 10^2 +$

Le rôle des puissances de 10 donne le nom à ce système de numération, appelé système

Il utilise les 10 chiffres que nous connaissons bien.

1 Conversion binaire → décimal

Le système binaire est fondé lui sur les puissances de , et il utilise chiffres, à savoir

Par exemple :

$$111110000_2 = \mathbf{1} \times 2^8 + \mathbf{1} \times 2^7 + \mathbf{1} \times 2^6 + \mathbf{1} \times 2^5 + \mathbf{1} \times 2^4 + \mathbf{0} \times 2^3 + \mathbf{0} \times 2^2 + \mathbf{0} \times 2^1 + \mathbf{0} \times 2^0$$

Pour convertir ce nombre dans le système décimal, il est utile de connaître les puissances de 2.

$$2^{0} =$$
 $2^{8} =$ $2^{9} =$ $2^{9} =$ $2^{2} =$ $2^{10} =$ $2^{10} =$ $2^{11} =$ $2^{11} =$ $2^{12} =$ $2^{13} =$ $2^{14} =$ $2^{14} =$ $2^{15} =$ $2^{15} =$

 ${\sf Ainsi}: 1\,1111\,0000\,{}_2 = 2^8 + 2^7 + 2^6 + 2^5 + 2^4 =$

binaire → décimal

- Écrire sous chaque chiffre du nombre binaire la puissance de 2 correspondante en commençant par la à partir de :
- Multiplier chaque puissance de 2 par 0 ou 1 selon le chiffre sous lequel elle est ;
- Additionner les précédents résultats pour trouver le total en base 10.

Exemple: convertissons 1001 en décimal

qui se traduit par : $1 \times 2^3 + 1 \times 2^0 = 8 + 1 = 9$

Exercice 1

Déterminer les valeurs décimales des nombres ci-dessous.

$1_2 =$	$10_2 =$
$11_2 =$	$100_2 =$
$1001_2 =$	$1011_2 =$
$1101_2 =$	$1110_2 =$
$10000000_{2} =$	$10100000_{2} =$
$10001101_{2} =$	$10101001_{2} =$
$1111_2 =$	$11111_{2} =$
$111111_{2} =$	$111111111_2 =$

2 Opérations en binaires

Exercice 2

Effectuer les opérations ci-dessous et vérifier les résultats obtenus.

	1	0	1	0_2			1	0	1	1_2
+	1	0	0	1_2	_	+	1	0	0	1_2
	1	0	1	1_2			1	1	1	1_2
+	1	0	1	1_2	+	+				1_2

Exercice 3

Effectuer les opérations ci-dessous et vérifier les résultats obtenus.

	1	0	1	1_2		1	0	1	0_2
-	1	0	0	1_2	-		1	1	1_2

3 Conversion décimal \rightarrow binaire

3.1 Méthode 1

Exercice 4

Convertir les nombres ci-dessous dans le système binaire.

5 =	4 =
9 =	6 =
32 =	16 =
128 =	64 =
65 =	33 =
131 =	66 =
180 =	150 =
240 =	220 =

3.2 Méthode 2

L'écriture binaire d'un nombre s'obtient en effectuant des divisions successives par 2. Explication sur un exemple :

```
496 = 2 \times 248 + \mathbf{0}
248 = 2 \times 124
                   +
                        0
         2 \times 62
124 =
                    +
                        0
 62 = 2 \times 31
                        O
 31 = 2 \times 15
                    + 1
 15 = 2 \times 7
                    + 1
  7 = 2 \times 3
  3 = 2 \times 1
                       1
  1 = 2 \times 0
                       1
```

L'écriture binaire de 496 s'obtient alors en

Exercice 5

Déterminer avec cette méthode l'écriture binaire de 903.

$d\acute{e}cimal \rightarrow binaire$

• Méthode 1:

- on prend la plus grande puissance de 2 inférieure ou égale au nombre à convertir ;
- on enlève sa valeur à la valeur initiale et on recommence le processus jusqu'à atteindre zéro ;
- on écrit la valeur en binaire en mettant des 1 pour toutes les puissances identifiées, et des 0 pour le reste.

Exemple: convertissons 5 en binaire

La plus grand puissance de 2 inférieure ou égale à 5 est $2^2=4$. On fait 5-4, il reste 1. La plus grand puissance de 2 inférieure ou égale à 1 est $2^0=1$. On fait 1-1, il reste 0 et on peut donc arrêter. On écrit ainsi : 1 pour 2^2 , 0 pour 2^1 (à ne pas oublier !) et 1 pour 2^0 . Ainsi 10 en binaire.

• Méthode 2:

- on **divise successivement par 2** la valeur décimale et on prend la partie entière du résultat à laquelle on ajoute 0 ou 1 selon le reste ;
- On lit les reste à l'envers, depuis le bas, pour écrire le nombre en binaire.

Confusion binaire/décimal

Il peut arriver de confondre les bases dans lesquelles on se trouve lorsqu'on en manipule plusieurs à la fois comme dans ce chapitre.

Pour pallier ce souci, on peut préciser dans quelle base on se trouve en l'indiquant en exposant inférieur.

Exemple:

Pour ne pas confondre 1000 en base 2 et en base 10, on peut préciser : 1000_2 et 1000_{10} . En l'occurrence : $1000_{10} = 1111101000_2$ et $1000_2 = 8_{10}$