START OF QUIZ Student ID: 97233886,Nandakumar,Hariharavarshan

${\bf Question}\ 1$

Topic: Lecture 1 Source: Lecture 1

What lexical features might you use to identify the named entities in the following sentences? "Ronald Reagan? The actor? Then who's Vice-President, Jerry Lewis? I suppose Jane Wyman is the First Lady! And Jack Benny is Secretary of the Treasury!" (At least 2) (1)

Topic: Lecture 3 Source: Lecture 3

Give an example of a sentence where the subject is also the theme of the sentence (hint: it might have a special sentence structure). (1)

Topic: Lecture 2 Source: Lecture 2

Identify the events in the following sentences, and place them in order. Identify the cues you used to determine the order. Every morning, on my walk to the University, I read an audiobook while watching for birds. I start up my laptop after I get to class, and then wait for students to arrive so I can start the lecture. (2)

Topic: Lecture 2 Source: Lecture 2

How can we use POS/morphological tagging to aid in temporal relation extraction? (1)

Topic: Lecture 1 Source: Lecture 1

Imagine that we were using the Viterbi algorithm to ensure that our sequence of NER tags is valid. What might the scores in the transition matrix look like? (2)

Topic: Lecture 4 Source: Lecture 4

Why do you think that we pass the output of our classifier to an ILP solver instead of just incorporating the constraints into the model? (1)

Topic: Lecture 4 Source: Lecture 4

If we were to attempt joint NER and SRL, how would we set up the model? Describe the input, the architecture, and the output. (2)

Topic: Lecture 3 Source: Lecture 3

Imagine that we came across the word "extrambulate" in the following sentence: "Realizing that she was going to be late for the bus, Jane extrambulated to the stop." What verb class does this verb belong to? What are 2 features that distinguish it from the prototype of the class? (1)

Topic: Coding Source: Lecture 4

Assume that our fancy SR labeler has been run on the following sentence: "Do androids dream of electric sheep?" Imagine that we ran the sentence with 2 different predicates: "dream" and "do", and obtained the following scores. NP1 = (NP(NNs androids)) NP2 = (NP(JJ electric NNS sheep)) NP3 = (PP(of (NP2)) do: NP1: 0.5, 0.3 NP2: 0.3, 0.5 NP3: 0.2, 0.4 dream: NP1: 0.4, 0.6 NP2: 0.2, 0.3 NP3: 0.4, 0.7 Assuming the standard constraints we talked about in class, what is the most likely parse? Show your work! (3)

END OF QUIZ