TÖL304G Forritunarmál Vikublað 3

Snorri Agnarsson

31. ágúst 2024

Efnisyfirlit

1	I Efni vikunnar	1
2	2 Bindingar	2
3	3 Umdæmi	2
4	1 Lambda reikningur	2
	4.1 Bindingar	3
	4.2 Innsetningar	
	4.3 Reiknireglur	4

1 Efni vikunnar

Í þessari viku höldum við áfram með Scheme og kíkjum einnig á bindingu og sýnileika nafna, sérstaklega í bálkmótuðum forritunarmálum.

Nokkur lykilatriði í sambandi við bindingu og sýnileika eru:

- Skilgreiningar nafna.
- Umdæmi skilgreiningar (scope).
- Földun (nesting).
- Földunarhæð (nesting level).

- Frjáls breyta (free variable).
- Bundin breyta (bound variable).

2 Bindingar

Binding nafna í einhverju tilteknu máli er málefni, sem er mjög mikilvægt að þýðendur og notendur málsins séu sammála um.

Bindingar eru ekki aðeins mikilvægar í tölvufræðum, heldur jafnvel einnig í stærðfræðinni. Hver er t.d. merking formúlunnar $\sum_{i=1}^{10} \sum_{i=1}^{i} i$? Getum við á skynsamlegan hátt sagt að þessi formúla hafi merkingu?

3 Umdæmi

Til þess að komast að niðurstöðu skilgreinum við **umdæmi** (*scope*) hverrar breytuskilgreiningar.

Í formúlu á sniðinu $\sum_{i=X}^{Y} Z$, þar sem i er breytunafn og X, Y og Z eru formúlur, er breytan i skilgreind, og hefur væntanlega eitthvert vel skilgreint umdæmi, þ.e. það er væntanlega eitthvert vel skilgreint svæði innan formúlunnar þar sem i hefur þá merkingu, sem skilgreiningin gefur. Í þessu tilfelli er eðlilegt að skilgreina umdæmi þessarar breytu i sem undirformúluna Z.

Ef við vitum umdæmi tiltekinnar skilgreiningar eigum við að geta skipt um nafn á viðkomandi breytu án þess að merking formúlunnar breytist. Við megum gefa breytunni nýtt nafn ef það nafn kemur ekki fyrir annars staðar í formúlunni (reyndar ætti þessi regla að vera aðeins flóknari, en við komum að því síðar).

Með þessum bindingarreglum komumst við að því að formúlan að ofan er jafngild formúlunni $\sum_{i=1}^{10} \sum_{j=1}^{i} j$. Þessa niðurstöðu fáum við með því að skipta um nafn í undirformúlunni $\sum_{i=1}^{i} i$ og fá jafngilda formúlu $\sum_{j=1}^{i} j$.

Takið eftir að innri summan í formúlunni $\sum_{i=1}^{10^{\circ}} \sum_{i=1}^{i} i$ býr til **holu** í umdæmi ytri skilgreiningarinnar á i. Í hvert skipti sem breytunafn kemur fyrir í formúlu, hlýtur það að vísa til einnar og aðeins einnar skilgreiningar, og almenna reglan er sú að það sé sú skilgreining, sem er næst á undan í texta, eða næst fyrir utan í rúmi.

4 Lambda reikningur

Alonzo Church skilgreindi fyrir daga tölvunnar formúlur, sem kallast λ -formúlur (lambda formúlur), og reikninga með slíkar formúlur.

 λ -formúlur eru skilgreindar á eftirfarandi hátt:

• Ef x er breytunafn þá er x lögleg λ -formúla.

- Ef x er breytunafn og N er lögleg λ -formúla þá er $\lambda x.N$ lögleg λ -formúla.
- Ef M og N eru löglegar λ -formúlur þá er MN lögleg λ -formúla.
- Ef M er lögleg λ -formúla þá er (M) lögleg λ -formúla.
- Engar aðrar formúlur eru löglegar λ -formúlur.

Við getum einnig lýst málinu á eftirfarandi hátt, þar sem við látum óskilgreint hvaða breytunöfn eru leyfð:

$$M \to x \mid (M) \mid MM \mid \lambda x.M$$

Mál þetta er margrætt, en við reiknum með því að leyst sé úr margræðninni með því að bæta svigum við eftir þörfum, þannig að ef $M_1M_2M_3$ er λ -formúla sem samsett er úr minni λ -formúlum M_1 , M_2 og M_3 þá túlkum við hana sem jafngilda λ -formúlunni $(M_1M_2)M_3^1$. Hins vegar er $\lambda x.M_1M_2$ talin jafngild $\lambda x.(M_1M_2)$.

4.1 Bindingar

Í λ -formúlum er skilgreind breytubinding, sem er svipuð þeirri bindingu, sem við þekkjum úr stærðfræðinni og forritunarmálum. Lykilhugtak þar er hvenær breytutilvísun er sögð vera *frjáls* í formúlu.

- Tilvísunin (occurrence) í breytuna x í λ -formúlunni x er frjáls.
- Ef N og M eru λ -formúlur þá eru allar tilvísanir í breytu x frjálsar í (NM), sem eru frjálsar í N og M.
- Ef N er λ -formúla þá eru engar tilvísanir í breytuna x í λ -formúlunni $\lambda x.N$ frjálsar, en aðrar tilvísanir, sem eru frjálsar í N eru frjálsar í $\lambda x.N$.

Breytutilvísun, sem ekki er frjáls, er sögð vera bundin. Breytan x er sögð vera bundin í undirformúlunni N í formúlinni $\lambda x.N$.

Einnig má skilgreina fallið free, sem tekur λ -formúlu sem viðfang og skilar mengi frjálsra breyta í formúlunni:

$$free(x) = \{x\}$$

$$free(MN) = free(M) \cup free(N)$$

$$free(\lambda x.M) = free(M) - \{x\}$$

 $^{^1}$ Mjög mikilvægt er að skilja þetta. Það er mikilvægur merkingarmunur á $(M_1M_2)M_3$ annars vegar og $M_1(M_2M_3)$ hins vegar. Í fyrra tilfellinu er fallinu M_1 beitt á viðfangið M_2 , út úr því kemur fall sem er beitt á viðfangið M_3 . Í seinna tilfellinu er fallinu M_2 beitt á viðfangið M_3 , út úr því kemur eitthvert gildi sem sent er sem viðfang í fallið M_1 . Í Scheme væri þetta munurinn á segðunum ((m1 m2) m3) annars vegar og (m1 (m2 m3)) hins vegar. Í Scheme, öfugt við λ -reikning, verðum við að setja svigana nákvæmlega svona.

4.2 Innsetningar

Í λ -reikningi eru skilgreindar **innsetningar** á formúlur, þar sem tilteknar frjálsar breytur fá "gildi". Innsetningar má skrifa á sniðinu $\{x_1 \to F_1, \dots, x_n \to F_n\}$, og slíkri innsetningu má beita á λ -formúlu og fá út nýja λ -formúlu². Formúlan $\{x \to M\}N$, þar sem M og N eru λ -formúlur, er ekki sjálf λ -formúla, en stendur fyrir þá λ -formúlu, sem út kemur þegar innsetningunni $\{x \to M\}$ er beitt á N. Áhrif innsetninga með einni breytu eru skilgreind á eftirfarandi hátt:

- Ef x og y eru breytur, $x \neq y$, þá er $\{x \rightarrow N\}y = y$.
- $\{x \to N\}x = N$
- Ef L, M og N eru λ -formúlur, þá er $\{x \to L\}(MN) = (M'N')$, þar sem $M' = \{x \to L\}M$ og $N' = \{x \to L\}N$.
- Ef y er breyta, y er ekki x, M og N er λ -formúla, þá er $\{x \to N\}\lambda y.M = \lambda z'.M'$ þar sem z er ný breyta, þ.e. ekki x og kemur ekki fyrir frjáls í N eða M og þar sem $M' = \{x \to N\}\{y \to z\}M$.
- Ef M og N eru λ -formúlur, þá er $\{x \to N\}\lambda x. M = \lambda x. M.$

Það er að sjálfsögðu sterkt samband milli innsetninga og bindinga. Breytutilvísun er frjáls þá og því aðeins að innsetning hafi áhrif á hana.

4.3 Reiknireglur

Í λ -reikningi eru skilgreindar reiknireglur, sem lýsa því hvaða aðgerðir má gera á λ formúlur án þess að breyta "gildi" þeirra. Reglurnar eru eftirfarandi:

- (β -jafngildi) Ef N og M eru λ -formúlur þá má umskrifa ($\lambda x.N$)M sem $\{x \to M\}N$. Þessi regla samsvarar kalli á fall í forritun.
- Ef breyta y kemur ekki fyrir frjáls í N þá má umskrifa $\lambda x.N$ sem $\lambda y.N'$, þar sem $N' = \{x \to y\}N$. Þessi regla samsvarar því þegar breytt er nafni á lepp í falli.

Takið eftir að í fyrri reglunni kemur ekki fram hvort búið er að "reikna út úr" viðfanginu M áður en kallað er á fallið $\lambda x.N$. Það er reyndar svo í λ -reikningi að útkoman verður sú sama hvor leiðin sem farin er. Til dæmis getum við í λ -reikningi³ skrifað bæði

$$(\lambda x.x^2)((\lambda y.(y+1))1) = (\lambda x.x^2)(1+1) = (\lambda x.x^2)2 = 2^2 = 4$$

²Takið eftir að oft er annar ritháttur, þ.e. $\{N/x\}$ notaður fyrir innsetninguna $\{x \to N\}$, en hugmyndin er sú sama.

 $^{^3}$ Með örlitlum viðbótum við hreinan λ -reikning, til að leyfa aðeins flóknari formúlur, eins og einnig er gert í ýmissi umfjöllun um λ -reikning.

$$(\lambda x.x^2)((\lambda y.(y+1))1) = ((\lambda y.(y+1))1)^2 = (1+1)^2 = 2^2 = 4$$

Vegna þess að λ -reikningur leyfir ekki hliðarverkanir í föllunum er útkoman ávallt sú sama, hvor leiðin sem farin er (ef einhver endanleg útkoma fæst, sem er ekki alltaf).