The University of Melbourne School of Computing and Information Systems COMP90020 Distributed Algorithms

Tutorial Week 9: Transactions and Concurrency Control

Notes

Exercises

- 42. A server manages the objects $a_1, a_2, ..., a_n$. The server provides two operations for its clients:
 - read(i): returns the v of a_i
 - write(i, v): assigns v to a_i

The transactions T and U are defined as follows:

- T: x = read(j); y = read(i); write(j, 44); write(i, 33);
- U: x = read(k); write(i, 55); y = read(j); write(k, 66).
- (a) Give serially equivalent interleavings of T and U that are strict
- (b) Give serially equivalent interleavings of T and U that are not strict but **could not produce** cascading aborts
- (c) Give serially equivalent interleavings of T and U that could produce cascading aborts
- 43. The transfer transactions of T and U are defined as:
 - T: a.withdraw(4); b.deposit(4);
 - U: c.withdraw(3); b.deposit(3);

Suppose that they are structured as a pair of nested transactions

- T_1 : a.withdraw(4); T_2 : b.deposit(4);
- U_1 : c.withdraw(3); U_2 : b.deposit(3);
- (a) Compare the number of serially equivalent interleavings of T_1, T_2, U_1, U_2 with the number of serially equivalent interleavings of T and U.
- (b) Explain why the use of these nested transactions generally permits a larger number of serially equivalent interleavings than non-nested ones.
- 44. Consider the recovery aspects of the nested transactions defined in the exercise above, assume that a withdraw operation will abort if the account will be overdrawn and that in this case the parent will also abort.
 - (a) Describe serially equivalent interleavings of T_1, T_2, U_1, U_2 that are strict
 - (b) Describe serially equivalent interleavings of T_1, T_2, U_1, U_2 that are not strict
 - (c) To what extent does the criterion of strictness reduce the potential concurrency gain of nested transactions?

45. The transactions T and U are defined as follows:

- T: x = read(i); write(j, 44);
- U: write(i, 55); write(j, 66);

Initial values $a_i = 10, a_j = 20$. Which of the following interleavings are serially equivalent, and which could occur with two-phase locking?

46. Consider three concurrent transactions below

Consider concurrency control by timestamp ordering. Which of these three concurrent transactions will commit?