# Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)"

(МГТУ им. Н.Э. Баумана)



Факультет "Фундаментальные науки" Кафедра "Высшая математика"

# ОТЧЁТ по учебной практике за 1 семестр 2020—2021 гг.

| Руководитель практики, |           | Кравченко О.В |
|------------------------|-----------|---------------|
| ст. преп. кафедры ФН1  |           | правченко О.Б |
| студент группы ФН1–11  |           | Павлов В.А.   |
|                        | (nodnucb) |               |

Москва, 2020 г.

# Содержание

| 1              | Цели и задачи практики                                    | 3        |
|----------------|-----------------------------------------------------------|----------|
|                | 1.1 Цели                                                  | 3        |
|                | 1.2 Задачи                                                | 3        |
|                | 1.3 Индивидуальное задание                                | 3        |
| 2              | Отчёт                                                     | 4        |
| 3              | <b>Индивидуальное задание</b> 3.1 Пределы и непрерывность | <b>5</b> |
| $\mathbf{C}_1$ | писок литературы                                          | 8        |

## 1 Цели и задачи практики

## 1.1 Цели

— развитие компетенций, способствующих успешному освоению материала бакалавриата и необходимых в будущей профессиональной деятельности.

## 1.2 Задачи

- 1. Знакомство с программными средствами, необходимыми в будущей профессиональной деятельности.
- 2. Развитие умения поиска необходимой информации в специальной литературе и других источниках.
- 3. Развитие навыков составления отчётов и презентации результатов.

## 1.3 Индивидуальное задание

- 1. Изучить способы отображения математической информации в системе вёртски L<sup>A</sup>T<sub>F</sub>X.
- 2. Изучить возможности системы контроля версий Git.
- 3. Научиться верстать математические тексты, содержащие формулы и графики в системе IATEX. Для этого, выполнить установку свободно распространяемого дистрибутива TeXLive и оболочки TeXStudio.
- 4. Оформить в системе IATEX типовые расчёты по курсе математического анализа согласно своему варианту.
- 5. Создать аккаунт на онлайн ресурсе GitHub и загрузить исходные tex-файлы и результат компиляции в формате pdf.

## 2 Отчёт

Актуальность темы продиктована необходимостью владеть системой вёрстки I<sup>A</sup>T<sub>E</sub>Xи средой вёрстки TeXStudio для отображения текста, формул и графиков. Полученные в ходе практики навыки могут быть применены при написании курсовых проектов и дипломной работы, а также в дальнейшей профессиональной деятельности.

Ситема вёрстки IATEX содержит большое количество инструментов (пакетов), упрощающих отображение информации в различных сферах инженерной и научной деятельности.

## 3 Индивидуальное задание

## 3.1 Пределы и непрерывность.

## Задача № 1.

**Условие.** Дана последовательность  $\{a_n\} = \frac{3n^3}{n^3-1}$  и число c=3. Доказать, что  $\lim_{n\to\infty} a_n = c,$ 

а именно, для каждого сколь угодно малого числа  $\varepsilon>0$  найти наименьшее натуральное число  $N=N(\varepsilon)$  такое, что  $|a_n-c|<\varepsilon$  для всех номеров  $n>N(\varepsilon)$ . Заполнить таблицу

| ε                | 0,1 | 0,01 | 0,001 |
|------------------|-----|------|-------|
| $N(\varepsilon)$ |     |      |       |

**Решение.** Рассмотрим неравенство  $a_n - c < \varepsilon, \forall \varepsilon > 0$ , учитывая выражение для  $a_n$  и значение c из условия варианта, получим

$$\left| \frac{3n^3}{n^3 - 1} - 3 \right| < \varepsilon.$$

Неравенство запишем в виде двойного неравентсва и приведём выражение под знаком модуля к общему знаменателю, получим

$$-\varepsilon < \frac{3}{n^3 - 1} < \varepsilon.$$

Заметим, что левое неравенство выполнено для любого номера  $n \in \mathbb{N}$  поэтому, будем рассматривать правое неравенство

$$\frac{3}{n^3 - 1} < \varepsilon.$$

Выполнив цепочку преобразований, перепишем неравенство относительно  $n^3$ , и учитывая, что  $n \in \mathbb{N}$ , получим

$$\frac{3}{n^3 - 1} < \varepsilon,$$

$$n^3 - 1 > \frac{3}{\varepsilon},$$

$$n^3 > \frac{3}{\varepsilon} + 1,$$

$$n > \sqrt[3]{\frac{3}{\varepsilon} + 1},$$

$$N(\varepsilon) = \left[\sqrt[3]{\frac{3}{\varepsilon} + 1}\right],$$

где [ ] — целая часть числа. Заполним таблицу:

| ε                | 0,1 | 0,01 | 0,001 |
|------------------|-----|------|-------|
| $N(\varepsilon)$ | 3   | 6    | 14    |

Проверка:

$$|a_4 - c| = \frac{1}{121} < 0.1,$$
  

$$|a_7 - c| = \frac{1}{114} < 0.01,$$
  

$$|a_{15} - c| = \frac{3}{3374} < 0.001.$$

#### Задача № 2.

Условие. Вычислить пределы функций

(a): 
$$\lim_{x \to -1} \frac{x^3 + x^2 - x - 1}{x^3 + 5x^2 + 7x + 3},$$

(6): 
$$\lim_{x \to \infty} \frac{\sqrt{3x^4 + 2\sqrt[3]{x^{16} - 4x}}}{\sqrt[3]{x^8 + x^2 - 1}},$$

(B): 
$$\lim_{x\to 0} \frac{\sqrt[3]{1+x^2}-1}{\sqrt{1+x^2}-1},$$

(r): 
$$\lim_{x \to 0} (1 - x \sin x)^{\frac{1}{\ln(1 + \pi x^2)}}$$

(д): 
$$\lim_{x \to 0} (1 - \arcsin x)^{\operatorname{arcctg} x},$$

(e): 
$$\lim_{x \to 1} \frac{x^2 - 1}{\ln x}$$
.

Решение.

(a):

$$\lim_{x \to -1} \frac{x^3 + x^2 - x - 1}{x^3 + 5x^2 + 7x + 3} = \lim_{x \to -1} \frac{(x+1)(x+1)(x-1)}{(x+1)(x+1)(x+3)} = \lim_{x \to -1} \frac{x - 1}{x + 3} = \frac{-2}{2} = -1.$$

(б):

$$\lim_{x \to \infty} \frac{\sqrt{3x^4 + 2\sqrt[3]{x^{16} - 4x}}}{\sqrt[3]{x^8 + x^2 - 1}} = \lim_{x \to \infty} \frac{\sqrt[3]{x^8} \sqrt{\frac{3}{\sqrt[3]{x^2}} + 2\sqrt[3]{1 - \frac{4}{x^{15}}}}}{\sqrt[3]{x^8} \sqrt[3]{1 + \frac{1}{x^6} - \frac{1}{x^8}}} = \lim_{x \to \infty} \frac{\sqrt{\frac{3}{\sqrt[3]{x^2}} + 2\sqrt[3]{1 - \frac{4}{x^{15}}}}}{\sqrt[3]{1 + \frac{1}{x^6} - \frac{1}{x^8}}} = \sqrt{2}.$$

(B):

$$\lim_{x \to 0} (1 - x \sin x)^{\frac{1}{\ln(1 + \pi x^2)}} = e^{\lim_{x \to 0} (1 - x \sin x - 1) \left(\frac{1}{\ln(1 + \pi x^2)}\right)} = e^{-\frac{1}{\pi} \lim_{x \to 0} \frac{\sin x}{x}} = e^{-\frac{1}{\pi}}.$$

(д):

$$\lim_{x \to 0} (1 - \arcsin x)^{\arccos x} = (1 - 0)^0 = 1.$$

(e):

$$\lim_{x \to 1} \frac{x^2 - 1}{\ln x} = \begin{vmatrix} t = x - 1 \\ t \to 0 \end{vmatrix} = \lim_{t \to 0} \frac{(t + 1 - 1)(t + 1 + 1)}{t} = 2.$$

#### Задача № 3.

### Условие.

(a): Показать, что данные функции f(x) и g(x) являются бесконечно малыми или бесконечно большими при указанном стремлении аргумента.

(б): Для каждой функции f(x) и g(x) записать главную часть (эквивалентную ей функцию) вида  $C(x-x_0)^{\alpha}$  при  $x\to x_0$  или  $Cx^{\alpha}$  при  $x\to \infty$ , указать их порядки малости (роста).

**(в):** Сравнить функции f(x) и g(x) при указанном стремлении.

| № варианта | функции $f(x)$ и $g(x)$                                                            | стремление      |
|------------|------------------------------------------------------------------------------------|-----------------|
| 16         | $f(x) = \frac{2x^5 + x + 1}{x^4 - 3x^2 + 2}, \ g(x) = x^2 \sin \frac{1}{\sqrt{x}}$ | $x \to +\infty$ |

#### Решение.

(a): Покажем, что f(x) и g(x) бесконечно большие функции,

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{2x^5 + x + 1}{x^4 - 3x^2 + 2} = \lim_{x \to +\infty} \frac{x^5 \left(2 + \frac{1}{x^4} + \frac{1}{x^5}\right)}{x^4 \left(1 - \frac{3}{x^2} + \frac{2}{x^4}\right)} = \lim_{x \to +\infty} 2x = +\infty$$

$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} x^2 \sin \frac{1}{\sqrt{x}} = \lim_{x \to +\infty} x^2 \frac{1}{\sqrt{x}} = \lim_{x \to +\infty} \sqrt{x^3} = +\infty$$

(б): Так как f(x) и g(x) бесконечно большие функции, то эквивалентными им будут функции вида  $Cx^{\alpha}$  при  $x \to \infty$ . Найдём эквивалентную для f(x) из условия

$$\lim_{x \to \infty} \frac{f(x)}{r^{\alpha}} = C,$$

где C — некоторая константа. Рассмотрим предел

$$\lim_{x \to +\infty} \frac{f(x)}{x^{\alpha}} = \lim_{x \to +\infty} \frac{2x^5 + x + 1}{x^{\alpha}(x^4 - 3x^2 + 2)} = \lim_{x \to +\infty} \frac{x^5 \left(2 + \frac{1}{x^4} + \frac{1}{x^5}\right)}{x^{\alpha} \cdot x^4 \left(1 - \frac{3}{x^2} + \frac{2}{x^4}\right)} = 2$$

При  $\alpha = 1$  последний предел равен 2, отсюда C = 2 и

$$f(x) \sim 2x$$
 при  $x \to +\infty$ .

Аналогично, рассмотрим предел

$$\lim_{x \to \infty} \frac{g(x)}{x^{\alpha}} = \lim_{x \to +\infty} \frac{x^2 \sin \frac{1}{\sqrt{x}}}{x^{\alpha}} = \lim_{x \to +\infty} \frac{\sqrt{x^3}}{x^{\alpha}} = 1$$

При  $\alpha = \frac{3}{2}$  последний предел равен 1, отсюда C=1 и

$$q(x) \sim x^{\frac{3}{2}}$$
 при  $x \to +\infty$ .

(в): Для сравнения функций f(x) и g(x) рассмотрим предел их отношения при указанном стремлении

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)}.$$

Применим эквивалентности, определенные в пункте (б), получим

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{2x}{x^{\frac{3}{2}}} = \lim_{x \to +\infty} \frac{2}{\sqrt{x}} = 0.$$

Отсюда, g(x) есть бесконечно большая функция более высокого порядка роста, чем f(x).

# Список литературы

[1] Львовский С.М. Набор и вёрстка в системе І<sup>д</sup>Т<br/>еX, 2014 с.