Notation

Symbol	Description	Example
N	Natural Numbers	$\{0,1,2,3,\dots\}$
${\mathbb Z}$	Integers	$\{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$
\mathbb{Q}	Rational Numbers	Ratios of integers
\mathbb{R}	Real Numbers	The standard number line
\mathbb{C}	Complex Numbers	$\{a+bi \mid a,b \in \mathbb{R}, \ i^2 = -1, \text{ and } si = is \ \forall \ s \in \mathbb{R}\}$
\in	element of	$2 \in \{1, 2, 3\}$
\subseteq	subset of	$\{2\} \subseteq \{1,2,3\} \text{ and } \{1,2,3\} \subseteq \{1,2,3\}$
\subset or \subsetneq	proper subset of	$\{2\} \subset \{1,2,3\}$ but $\{1,2,3\} \not\subset \{1,2,3\}$
\cap	intersection	$\{1,2,3\} \cap \{2,3,4\} = \{2,3\}$
\cup	union	$\{1,2,3\} \cup \{2,3,4\} = \{1,2,3,4\}$
×	Cartesian product	$\{1,2\} \times \{3,4\} = \{(1,3), (1,4), (2,3), (2,4)\}$
$A \xrightarrow{\alpha} B$	mapping α from A to B	$\alpha: \mathbb{Z} \to \mathbb{R}$ defined by $\alpha(n) = e^n$ for all $n \in \mathbb{Z}$
$1_A = \mathrm{id}_A$	identity map on A	$1_A:A\to A$ is defined by $1_A(a)=a$ for all $a\in A$
$\operatorname{im}(\alpha)$	the image of the map α	Given $\alpha: \mathbb{Z} \to \mathbb{R}$ defined by $\alpha(n) = e^n$ for all $n \in \mathbb{Z}$,
		$im(\alpha) = \{e^n : n \in \mathbb{Z}\}$
eta lpha	composition of maps	Given $\alpha: \mathbb{Z} \to \mathbb{R}$ defined by $\alpha(n) = e^n$ and
		$\beta: \mathbb{R} \to \mathbb{C}$ defined by $\beta(x) = \sqrt{x}$,
		$\beta \alpha : \mathbb{Z} \to \mathbb{C}$ is defined by $\beta \alpha(n) = \beta(\alpha(n)) = \sqrt{e^n}$.
≡	relation	for $a, b \in \mathbb{Z}$ we say $a \equiv b$ if 5 divides $a - b$
$[\cdot]$	equivalence class	for the relation just above, $[1] = \{\cdots, -4, 1, 6, 11, \dots\}$
A_{\equiv}	quotient of A by \equiv	the collection of unique equivalence classes

Theorems

Theorem 0.3.1. If $\alpha: A \to B$ and $\beta: A \to B$ are mappings then

$$\alpha=\beta \quad \text{if and only if} \quad \alpha(a)=\alpha(b) \text{ for all } a\in A.$$

Theorem 0.3.2. Let $\alpha: A \to B$ be a mapping where A and B are nonempty finite sets with |A| = |B|. Then α is one-to-one if and only if α is onto.

Theorem 0.3.3. Let $A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D$ be mappings on sets. Then

- 1. (identity) $\alpha 1_A = \alpha$ and $1_B \alpha = \alpha$
- 2. (associativity) $\gamma(\beta\alpha) = (\gamma\beta)\alpha$
- 3. If α and β are both one-to-one (resp. onto), then $\beta\alpha$ is one-to-one (resp. onto) too.

Theorem 0.3.4. If $\alpha: A \to B$ has an inverse, then the inverse mapping is unique.

Theorem 0.3.5. Let $\alpha: A \to B$ and $\beta: B \to C$ denote mappings.

1. The identity map, $1_A: A \to A$ is invertible and $1_A^{-1} = 1_A$.

- **2.** If α is invertible, then α^{-1} is invertible and $(\alpha^{-1})^{-1} = \alpha$.
- **3.** If α and β are both invertible, then $\beta \alpha$ is invertible with $(\beta \alpha)^{-1} = \alpha^{-1} \beta^{-1}$.

Theorem 0.3.6 (Invertibility Theorem). A mapping $\alpha : A \to B$ is invertible if and only if α is a bijection.

Theorem 0.4.1. Let \equiv be an equivalence on a set A and let a and b denote elements of A. Then

- 1. $a \in [a]$ for every $a \in A$.
- **2.** [a] = [b] if and only if $a \equiv b$.
- 3. If $a \in [b]$, then [a] = [b].
- **4.** If $[a] \neq [b]$ then $[a] \cap [b] = \emptyset$.

Theorem 0.4.2 (Partition Theorem). If \equiv is any equivalence on a nonempty set A, then the collection of all equivalence classes of A under \equiv partitions A.

Definitions

Definition (Method of Direct Proof). To prove $p \Rightarrow p$, demonstrate directly that q is true whenever p is true.

Definition (Method of Reduction to Cases). To prove $p \Rightarrow q$, show that p implies at at least one of a list p_1, p_2, \ldots, p_n of statements (the cases) and that $p_i \Rightarrow q$ for each i.

Definition (Method of Proof by Contradiction). To prove $p \Rightarrow p$, show that the assumption that both p is true and q is false leads to a logical contradiction.

Definition. A counterexample to the statement $p \Rightarrow q$ is an example set of values and inputs that has q true and p false.

Definition. Two statements p and q are logically equivalent if both $p \Rightarrow q$ and $q \Rightarrow p$ are true. In which case we write $p \Leftrightarrow q$ and say "p if and only if q". To prove such a statement, we must prove both that $p \Rightarrow q$ and $q \Rightarrow p$.

Definition. A set is a collection of objects called *elements*. If a is an element of A, we write $a \in A$ or $A \ni a$.

Definition. If A and B are sets such that for all $a \in A$, we also have $a \in B$, then we call A a subset of B. This is denoted by $A \subseteq B$. If we know further that $A \neq B$, we can write $A \subset B$ or $A \subseteq B$, in which case A is a proper subset of B.

Definition (Principle of Set Equality). If A and B are sets, then

A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Definition. If A has n-elements then we say the cardinality of A is n and we write |A| = n. Such sets are called *finite* sets. Sets with an infinite number of elements are *infinite* sets.

The set with cardinality 0 is called the *emptyset* and is denoted \emptyset .

Definition. The power set of a set A is the set P(A) consisting of all subsets of A.

Definition. The Cartesian Product of the sets A and B is the set

$$A \times B := \{(a, b) : a \in A \text{ and } b \in B\}.$$

Note that the elements, (a, b), are ordered pairs.

Definition. Let A and B be sets. The *union* of A and B is the set of all elements that appear in at least one of A or B. Denote the union of A and B by

$$A \cup B := \{x : x \in A \text{ or } x \in B\}.$$

The intersection of A and B is the set of all elements that appear in both A and B. Denote the intersection of A and B by

$$A \cap B := \{x : x \in A \text{ and } x \in B\}.$$

The difference of B in A is the set of all elements in a that do not appear in B. Denote the difference of B in A by

$$A \setminus B := \{x \in A \ : \ x \not \in B\}.$$

Definition. A mapping or function α from A to B is a rule that assigns to every input $a \in A$ exactly one output $\alpha(a) \in B$. The notation here is

$$\alpha: A \to B \text{ or } A \xrightarrow{\alpha} B.$$

Once we have verified that each input maps to exactly one output then we say the mapping is well-defined.

Definition. Assume $\alpha: A \to B$ is a mapping.

- We call A the domain of α and B the codomain of α .
- If $C \subseteq A$, then the *image* of C is

$$f(C) = \{b \in B : b = f(c) \text{ for some } c \in C\}.$$

- The range of α is the image of the domain,

$$im(\alpha) = f(A) = \{ f(a) \in B : a \in A \}.$$

Definition. Let $\alpha: A \to B$ be a mapping.

(a) We call α one-to-one or injective if for all $a_1, a_2 \in A$ if $\alpha(a_1) = \alpha(a_2)$, then $a_1 = a_2$.

- (b) We call α onto or surjective if for all $b \in B$ there is an $a \in A$ such that $\alpha(a) = b$.
- (c) We call α a bijection or bijective if α is both one-to-one and onto.

Definition. The *identity map* for the set A is the map $1_A : A \to A$ defined by $1_A(a) = a$ for all $a \in A$.

If $\alpha: A \to B$ and $\beta: B \to C$ are mappings, we can write

$$A \xrightarrow{\alpha} B \xrightarrow{\beta} C$$

and the *composition* of the maps is the mapping $\beta \alpha : A \to C$ defined by

$$\beta \alpha(a) = \beta[\alpha(a)]$$
 for all $a \in A$.

Definition. If $\alpha: A \to B$ is a mapping of sets, then we call $\beta: B \to A$ an *inverse* of α if

$$\beta \alpha = 1_A$$
 and $\alpha \beta = 1_B$.

Any map that has an inverse is called *invertible*[

Definition. If A is a set, any subset of $A \times A$ is called a *relation* on A.

Definition. A relation \equiv on a set A is called an *equivalence relation* if it satisfies all of the following conditions for all $a, b, c \in A$,

- 1. $a \equiv a \ (reflexivity),$
- **2.** If $a \equiv b$ then $b \equiv a$ (symmetric),
- **3.** If $a \equiv b$ and $b \equiv c$, then $a \equiv c$ (transitive).

Definition. An equivalence relation \mathcal{R} on a set S partitions S into disjoint pieces S_i such that

$$S = S_1 \cup S_2 \cup \cdots$$
.

Each S_i is called an *equivalence class* - see next definition.

We can pick any member of each class to be a *representative* of the class S_i . We denote this class by square brackets or overbar.

Definition. Given an equivalence relation \equiv on a set A, we define the equivalence class of a to be the set

$$[a] = \{ x \in A \mid x \equiv a \}.$$

Definition. Two sets are *disjoint* if their intersection is empty.

A collection of sets \mathcal{P} is pairwise disjoint if $X \cap Y = \emptyset$ for all $X \neq Y$ in \mathcal{P} .

Definition. A partition of the set A is a collection \mathcal{P} of subsets of A such that

- 1. $\emptyset \notin \mathcal{P}$.
- **2.** \mathcal{P} is pairwise disjoint.
- **3.** Every element of A is in some element of \mathcal{P} .

Definition. If \equiv is an equivalence on A, the set of equivalence classes is called the *quotient* set and is denoted A_{\equiv} .

Definition. The mapping $\phi: A \to A_{\equiv}$ given by $\phi(a) = [a]$ for all $a \in A$ is called the *natural mapping*.