Modelltheorie

Wintersemester 2019/20 Mitschrift von Floris Remmert

Prof. Dr. Amador Martin-Pizarro Abteilung für mathematische Logik Mathematisches Institut Albert-Ludwigs-Universität Freiburg

21. November 2019

Inhaltsverzeichnis

1	Erinnerung	1
I	Theorien und Quantorenelimination	4
2	Tarskis Test	4
3	Quantorenelimination	7
4	Beispiele klassischer Theorien	11
5	Ultrafilter & der Satz von Ax	15
	Townson and Catamatian	21
11	Typen und Saturation	21
6	Туреп	21
7	Exkurs: Einführung in die Topologie	24
8	Stoneraum von Typen einer Theorie	29

Ziel dieser Vorlesung ist es, eine Aussage der folgenden Qualität zu erhalten:

Satz 0.1 (Morley)

Sei T eine Theorie, welche ein einziges (bis auf Isomorphie) Modell der Mächtigkeit \aleph_0 besitzt. Dann besitzt T für jede Kardinalzahl $\kappa > \aleph_0$ ein einziges Modell der Mächtigkeit κ (bis auf Isomorphie).

1 Erinnerung

Definition 1.1 • Eine Sprache \mathcal{L} ist eine Kollektion von Konstanten-, Funktions-, und Relationszeichen

- Eine \mathcal{L} -Struktur \mathcal{A} besteht aus einer <u>nicht-leeren</u> Grundmenge (oder Universum) A zusammen mit Interpretationen der Symbole aus \mathcal{L} :
 - Für jedes Funktionszeichen f der Stelligkeit n

$$f^{\mathcal{A}}:A^n\longrightarrow A$$

- Für jedes Relationszeichen R der Stelligkeit m

$$R^{\mathcal{A}} \subset A^m$$

- Eine Einbettung F von \mathcal{A} nach \mathcal{B} ist eine <u>injektive</u> Abbildung $F: A \longrightarrow B$, welche mit den Interpretationen kompatibel¹ ist
- Ein Isomorphismus ist eine surjektive Einbettung.
- \mathcal{A} ist eine Unterstruktur von \mathcal{B} , falls $A \subset B$ und die Inklusion $\iota : A \longrightarrow B$ eine Einbettung bestimmt

Bemerkung 1.2

Sei \mathcal{B} eine \mathcal{L} -Struktur, $\emptyset \neq A \subset B$. Dann gibt es eine Unterstruktur von \mathcal{B} , welche von A erzeugt wird.

Das Universum besteht aus A zusammen mit dem Abschluss von A unter allen Interpretationen der Funktionszeichen von \mathcal{L} .

Definition 1.3

Sei (I, <) eine partielle Ordnung. Die Ordnung ist gerichtet, falls für $i, j \in I$ gibt es $k \in I$ mit $i \le k$ und $j \le k$.

¹das bedeutet, dass Funktions- und Relationszeichen bei Hin- und Rückrichtung erhalten bleiben

Bemerkung 1.4

Sei $(A_i)_{i \in I}$ eine Familie von \mathcal{L} -Strukturen indexiert nach der gerichteten partiellen Ordnung I derart, dass für $i \leq j$ gilt: $A_i \subset A_j$.

Die Menge $A = \bigcup_{i \in I} A_i$ ist das Universum einer (eindeutig bestimmten) \mathcal{L} -Struktur

$$\mathcal{A} = \bigcup_{i \in I} \mathcal{A}_i \tag{1}$$

Falls I eine lineare Ordnung ist, dann ist $(A_i)_{i \in I}$ eine <u>Kette</u>.

<u>Zu 1:</u>

- $c^{\mathcal{A}} = c^{\mathcal{A}_i}$ für ein (alle) $i \in I$, denn $c^{\mathcal{A}_i} = c^{\mathcal{A}_j} = c^{\mathcal{A}_k}$, wegen gerichteter Ordnung
- $a_1, \ldots a_n \in A = \bigcup_{i \in I} A_i \Longrightarrow \exists i \in I \text{ mit } a_1, \ldots, a_n \in A_i. \text{ Also ist } f^{\mathcal{A}}(a_1, \ldots, a_n) = f^{\mathcal{A}_i}(a_1, \ldots, a_n) \text{ wohldefiniert.}$
- $(a_1, \ldots, a_m) \in R^{\mathcal{A}}$ genau dann, wenn es ein $i \in I$ gibt mit $a_1, \ldots, a_m \in A_i$ und $(a_1, \ldots, a_m) \in R^{\mathcal{A}_i}$

<u>Beachte</u>, dass $\mathcal{A}_i \subset_{US} \mathcal{A}$ für alle $i \in I$.

Definition 1.5

Eine atomare Formel ist ein Ausdruck der Form $(t_1 = t_2), t_1, \ldots, t_k$ Terme, $R(t_1, \ldots, t_k)$.

Die Kollektion von Formeln ist die kleinste Klasse, welche alle atomaren Formeln enthält und derart, dass:

$$\begin{array}{c} \varphi \text{ Formel} \Longrightarrow \neg \varphi \text{ Formel} \\ \varphi, \psi \text{ Formel} \Longrightarrow (\varphi \vee \psi) \text{ Formel} \\ \varphi \text{ Formel}, x \text{ Variable} \Longrightarrow \exists x \varphi \text{ Formel}, (x \text{ heißt dann "gebunden"}) \end{array}$$

<u>Abk.:</u>

$$(\varphi \wedge \psi) = \neg(\neg \varphi \vee \neg \psi)$$

$$\forall x \varphi = \neg \exists x \neg \varphi$$

$$(\varphi \rightarrow \psi) = (\neg \varphi \vee \psi)$$

$$(\varphi \leftrightarrow \psi) = ((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$$

Bemerkung 1.6 • Jede Formel $\varphi[x_1,\ldots,x_n]$ lässt sich in <u>pränexer Normalform</u> umschreiben: $Q_1y_1Q_2y_2\ldots Q_my_m\psi[x_1,\ldots,x_n,y_1,\ldots,y_m]$, mit $Q_i\in\{\forall,\exists\}$. Das ist eine quantorfreie Formel, diese lässt sich weiter zerlegen in KNF bzw. DNF.

- Eine Formel ohne freie Variablen ist eine Aussage
- Eine Theorie ist eine Kollektion von Aussagen

Beispiel 1.7

Sei \mathcal{A} eine \mathcal{L} -Struktur. Erweitere die Sprache zu der Sprache $\mathcal{L}_A = \mathcal{L} \cup \{d_a\}_{a \in A}$.

 \mathcal{A} ist eine \mathcal{L}_A -Struktur, $d_a^{\mathcal{A}} = a$.

- Diag^{at}(\mathcal{A}) = {quantorenfreie \mathcal{L}_A -Aussagen χ mit $\mathcal{A} \models \chi$ } heißt "atomares Diagramm"
- Diag(\mathcal{A}) = { \mathcal{L} -Aussagen θ mit $\mathcal{A} \models \theta$ } heißt "vollständiges Diagramm"

Sei nun \mathcal{B} eine \mathcal{L}_A -Struktur.

$$\mathcal{B} \models \operatorname{Diag}^{\operatorname{at}}(\mathcal{A}) \Leftrightarrow \mathcal{A} \hookrightarrow \mathcal{B}$$
 einbetten lässt
$$A \longrightarrow B$$
$$a \mapsto d_a^{\mathcal{B}}$$

 $\mathcal{B} \models \text{Diag}(\mathcal{A}) \Leftrightarrow \text{die obige Abbildung ist } \underline{\text{elementar}}$ $\mathcal{A} \models \varphi[a_1, \dots, a_n] \Leftrightarrow \mathcal{B} \models \varphi[F(a_1), \dots, F(a_n)], a_1, \dots a_n \in A, \varphi[x_1, \dots, x_n] \text{ Formel}$

Definition 1.8 • T ist konsistent, falls T ein Modell besitzt.

ullet T ist vollständig, falls T konsistent ist und je zwei Modelle von T elementar äquivalent sind.

Satz 1.9 (Kompaktheitssatz)

Eine Theorie ist genau dann konsistent, wenn sie endlich konsistent² ist.

Wie zeigen wir, dass $A \equiv B$?

Satz 1.10 (Back & Forth)

$$S = \{F : \underset{US}{\overset{\frown}{\mathcal{C}}} \longrightarrow \underset{US}{\overset{\frown}{\mathcal{D}}}, F \text{ partieller Isomorphismus zwischen } \mathcal{C} \text{ und } \mathcal{D} \text{ geeignet}^3\}.$$

<u>Back:</u> Für alle $F \in S$ und $b \in B$, $F : \mathcal{C} \longrightarrow \mathcal{D}$ gibt es $G \in S$ mit $G \supset F$ Erweiterung und $b \in \text{Im}(G)$.

Forth: Für alle $F \in S$ und $a \in A$, $F : \mathcal{C} \longrightarrow \mathcal{D}$ gibt es $H \in S$, mit $H \supset F$ Erweiterung mit $a \in \text{Dom}(H)$

²endlich konsistent bedeutet: jede endliche Teilmenge der Theorie besitzt ein Modell.

³bspw. endlich erzeugt

 ${\mathcal A}$ und ${\mathcal B}$ heißen dann "Back & Forth äquivalent"

 \rightarrow ist jedes $F \in S$ elementar, so gilt insbesondere $\mathcal{A} \equiv \mathcal{B}$.

Teil I

Theorien und Quantorenelimination

2 Tarskis Test

Lemma 2.1 (Tarskis Test)

Sei \mathcal{B} eine \mathcal{L} -Struktur und $A \subset B$ Teilmenge derart, dass für jede \mathcal{L} -Formel $\varphi[x_1, \ldots, x_n]$ und Elemente $a_1, \ldots, a_n \in A$: falls:

$$\mathcal{B} \models \varphi[a_1, \dots, a_n, b]$$
 für ein $b \in B \Rightarrow \text{ existient } a \in A \text{ sodass } \mathcal{B} \models \varphi[a_1, \dots, a_n, a]$ (2)

 $\underline{\mathrm{dann}}$ ist A das Universum einer elementaren Unterstruktur von \mathcal{B} .

Insbesondere: Falls $\mathcal{A} \subset \mathcal{B}$ Unterstruktur, ist $\mathcal{A} \leq \mathcal{B} \Leftrightarrow A$ erfüllt 2.

Beweis. Betrachte $A \neq \emptyset \rightarrow$ Betrachte $\varphi[y] = (y = y)$. $B \neq \emptyset \rightarrow \exists b \in B \text{ mit } \mathcal{B} \models \varphi[b]$. $\hookrightarrow \exists a \in A \text{ mit } \mathcal{B} \models \varphi[a]$

Beh.: Für jedes Konstantenzeichen $c \in \mathcal{L}$ ist $c^{\mathcal{B}} \in A$. $\hookrightarrow \varphi[y] = (y = c)$, $\mathcal{B} \models \varphi[c^{\mathcal{B}}] \Rightarrow \text{es}$ gibt $a \in A$ mit $a = c^{\mathcal{B}}$.

Beh.: A ist unter den Funktionen $f^{\mathcal{B}}$ abgeschlossen, für jedes Funktionszeichen $f \in \mathcal{L}$.

Sei
$$\varphi[x_1,\ldots,x_n,y]=(y\dot{=}f(x_1,\ldots,x_n))$$
 \checkmark

Für $R \in \mathcal{L}$ m-stellig setze $R^{\mathcal{A}} = A^m \cap R^{\mathcal{B}} \longrightarrow \text{somit bildet } A \text{ eine } \mathcal{L}\text{-Unterstruktur } \mathcal{A}$ von \mathcal{B} .

Noch zu zeigen: $\mathcal{A} \leq \mathcal{B}$, d. h. $\varphi[x_1, \ldots, x_n]$ \mathcal{L} -Formel.

Seien dazu $a_1, \ldots, a_n \in A$.

$$\mathcal{A} \models \varphi[a_1, \dots, a_n] \Leftrightarrow \mathcal{B} \models \varphi[a_1, \dots, a_n] \tag{3}$$

Induktiv über den Aufbau von φ .

 φ ist atomar $\longrightarrow \checkmark$

$$\mathcal{A} \not\models \psi[a_1, \dots, a_n] \Leftrightarrow \qquad \qquad \mathcal{B} \not\models \psi[a_1, \dots, a_n]
\updownarrow
\mathcal{A} \models \varphi[a_1, \dots, a_n] \qquad \qquad \updownarrow
\mathcal{B} \models \phi[a_1, \dots, a_n]$$

$$\varphi = \neg \psi \longrightarrow \checkmark$$

$$\varphi = (\psi_1 \vee \psi_2) \longrightarrow \checkmark$$

$$\varphi = \exists y \psi[x_1, \dots, x_n, y] \colon \mathcal{A} \models \varphi[a_1, \dots, a_n] \Rightarrow \text{es gibt ein } a \in A \text{ sodass } \mathcal{A} \models \psi[a_1, \dots, a_n, a]$$

$$\xrightarrow{\Rightarrow} \mathcal{B} \models \psi[a_1, \dots, a_n, a] \text{ für ein } a \in A \subset B \Rightarrow \mathcal{B} \models \varphi[a_1, \dots, a_n]$$

$$\mathcal{B} \models \varphi[a_1, \dots, a_n] \Rightarrow \text{ es gibt } b \in B \text{ mit } \mathcal{B} \models \psi[a_1, \dots, a_n, b] \underset{2}{\Rightarrow} \text{ es gibt ein } a \in A \text{ mit } \mathcal{B} \models \psi[a_1, \dots, a_n, a] \underset{3}{\Rightarrow} \mathcal{A} \models \psi[a_1, \dots, a_n, a] \Rightarrow \mathcal{A} \models \varphi[a_1, \dots, a_n].$$

Proposition 2.2 (aufwärts Löwenheim-Skolem)

Sei \mathcal{A} eine unendliche \mathcal{L} -Struktur, und $\kappa < \max\{|A|, |\mathcal{L}|\}$. Dann gibt es eine elementare \mathcal{L} -Erweiterung $\mathcal{B} \geq \mathcal{A}$ der Mächtigkeit κ .

Beweis. $\operatorname{Diag}(\mathcal{A}) \cup \{\neg(c_{\alpha} = c_{\beta})\}_{\alpha \neq \beta < \kappa}$, wobei $\{c_{\alpha}\}_{\alpha < \kappa}$ eine Menge neuer Konstantenzeichen ist, ist konsistent weil sie endlich konsistent⁴ ist.

Aus der Konstruktion von Henkin hat $\operatorname{Diag}(\mathcal{A}) \cup \{\neg(c_{\alpha} = c_{\beta})\}_{\alpha \neq \beta < \kappa}$ ein Modell der Mächtigkeit der Sprache.

$$\rightarrow$$
ein Modell der Mächtigkeit κ

Bemerkung 2.3

$$|A| = n \in \mathbb{N}, \ \mathcal{B} \succeq \mathcal{A} \Rightarrow |B| = n$$

Proposition 2.4 (abwärts Löwenheim-Skolem)

Sei \mathcal{B} eine \mathcal{L} -Struktur und $S \subset B$ beliebig. Dann gibt es eine elementare Unterstruktur $\mathcal{A} \preceq \mathcal{B}$ mit $A \supset S$ und $|A| \leq \max\{|S|, |\mathcal{L}|, \aleph_0\}$.

⁴Kompaktheit

Bemerkung 2.5

 \mathbb{C} in der Ringsprache \mathcal{L}_{Ring} , $S = \emptyset \Rightarrow$ es gibt eine abzählbare elementare Unterstruktur von \mathbb{C} . $\to \overline{\mathbb{Q}} \preceq \mathbb{C}$.

Beweis 2.4. Setze $S_0 = S$. Angenommen S_k wurde bereits konstruiert, wähle für jedes $n \in \mathbb{N}$, jede \mathcal{L} -Formel $\varphi[x_1, \ldots, x_n, y]$ und Elemente $a_1, \ldots, a_n \in S_k$ ein Element $a_{\varphi[a_1, \ldots, a_n, y]} \in B$ derart, dass $\mathcal{B} \models ((\exists y \in \varphi)[a_1, \ldots, a_n] \to \varphi[a_1, \ldots, a_n, a_{\varphi[a_1, \ldots, a_n, y]}])$. Setze $S_{k+1} = S_k \cup \{a_{\varphi}\}_{\varphi \mathcal{L}\text{-Formel}, (a_1, \ldots, a_n) \in S_k}$

Definiere $A = \bigcup_{k \in \mathbb{N}} S_k \supset S$. Wir überprüfen, dass A den Test von Tarski erfüllt. Sei $\varphi = \varphi[x_1, \dots, x_n, y]$ eine \mathcal{L} -Formel, $a_1, \dots, a_n \in A$.

 $\mathcal{B} \models \varphi[a_1, \dots, a_n, b]$ für ein $b \in B \Rightarrow$ es gibt ein $k \in \mathbb{N}$ mit $a_1, \dots a_n \in S_k \Rightarrow$ es gibt ein $a_{\varphi[a_1, \dots, a_n, y]} \in S_{k+1} \subset A$ mit $\mathcal{B} \models \varphi[a_1, \dots, a_n, a] \checkmark$

Ferner ist
$$|A| \leq \max\{\aleph_0, |\mathcal{L}|, |S|\}.$$

Folgerung 2.6

Sei $(\mathcal{A}_i)_{i\in I}$ eine gerichtete Familie von \mathcal{L} -Strukturen, sodass für $i\leq j$ ist $\mathcal{A}_i\preceq\mathcal{A}_j$. Dann ist $\mathcal{A}=\bigcup_{i\in I}\mathcal{A}_i$ eine elementare Erweiterung jeder \mathcal{A}_i .

Beweis. Wir beweisen induktiv über den Aufbau von $\varphi = \varphi[x_1, \dots, x_n]$, dass für alle $i \in I$, für alle $a_1, \dots, a_n \in A_i$: $A_i \models \varphi[a_1, \dots, a_n] \Leftrightarrow A \models \varphi[a_1, \dots, a_n]$.

 φ atomar \to klar, denn $\mathcal{A}_i \subset_{US} \mathcal{A}$

$$\varphi = \neg \varphi \Rightarrow \text{ok!}$$

$$\varphi = (\varphi_1 \vee \varphi_2) \Rightarrow \text{ok!}$$

 $\varphi = \exists y \psi[x_1, \dots, x_n, y] \colon \mathcal{A}_i \models \varphi[a_1, \dots, a_n] \Rightarrow \text{ es gibt ein } a \in A_i \text{ mit } \mathcal{A}_i \models \psi[a_1, \dots, a_n, a] \Rightarrow A_i \models \psi[a_1, \dots, a_n, a] \Rightarrow A_i \models \varphi[a_1, \dots, a_n]$

 $\mathcal{A} \models \varphi[a_1, \dots, a_n] \Rightarrow \text{ es gibt ein } b \in A = \bigcup_{i \in I} A_i \text{ mit } \mathcal{A} \models \psi[a_1, \dots, a_n, b] \Rightarrow \text{ es gibt } j \in I$ mit $b \in A_j \Rightarrow \text{ es existiert } k \in I \text{ mit } i \leq k, j \leq k, a_1, \dots, a_n, b \in A_k$ $\Rightarrow \mathcal{A}_k \models \psi[a_1, \dots, a_n, b] \underset{\mathcal{A}_i \leq \mathcal{A}_k}{\Rightarrow} \text{ es gibt ein } a \in A_k \text{ mit } \mathcal{A}_i \models \psi[a_1, \dots, a_n, a] \Rightarrow \mathcal{A}_i \models \varphi[a_1, \dots, a_n].$

3 Quantorenelimination

Definition 3.1

Eine Theorie T hat Quantorenelimination, falls jede \mathcal{L} -Formel $\varphi[x_1, \ldots, x_n]$ äquivalent modulo T zu einer quantorenfreien \mathcal{L} -Formel $\psi[x_1, \ldots, x_n]$ ist.

$$T \models \forall x_1 \dots \forall x_n (\varphi[x_1, \dots, x_n] \leftrightarrow \psi[x_1, \dots, x_n])$$

Beispiel 3.2

Sei $\mathcal{L} := (\mathbb{R}, 0, 1, +, -, \cdot)$ gegeben. Betrachte die Menge $\{(a, b, c) \in \mathbb{R}^3 | a \neq 0 \text{ und es gibt } x \in \mathbb{R} \text{ mit } ax^2 + bx + c = 0\} = \{(a, b, c) \in \mathbb{R}^3 | a \neq 0 \text{ und } b^2 - 4ac \geq 0\}.$

Diese Formel ist in \mathcal{L} nicht äquivalent zu einer quantorenfreien Formel, in $\mathcal{L}_1 := (\mathbb{R}, 0, 1, +, -, \cdot, <)$ hingegen doch. Somit ist die Menge in \mathcal{L}_1 quantorenfrei.

Bemerkung 3.3 • Wenn T inkonsistent ist, dann hat T immer Quantorenelimination

• Wenn T Quantorenelimination hat, und $\mathcal{A}, \mathcal{B} \models T$ mit $\mathcal{A} \subset_{US} \mathcal{B} \Rightarrow \mathcal{A} \preceq \mathcal{B}$ Übung

Definition 3.4 • Eine einfache Existenzformel ist eine Formel der Form $\varphi[x_1, \ldots, x_n] = \exists y \psi[x_1, \ldots, x_n, y]$

• Eine primitive Existenzformel ist eine Formel der Form $\varphi[x_1, \ldots, x_n] = \psi[x_1, \ldots, x_n, y]$, wobei ψ eine endliche Konjunktion von atomaren Formeln und Negationen ist

Lemma 3.5

Eine (konsistente) Theorie T hat genau dann Quantorenelimination, wenn jede primitive Existenzformel zu einer quantorenfreien Formel äquivalent modulo T ist.

Beweis. "⇒": klar

" \Leftarrow ": Beachte, $\exists y(\psi_1 \lor \psi_2) \leftrightarrow (\exists y\psi_1 \lor \exists y\psi_2)$. Insbesondere, wenn T Quantorenelimination für primitive Existenzformeln hat, dann hat T Quantorenelimination für einfache Existenzformeln.

$$\varphi_{\text{einfache Existenzformel}} = \exists y \underbrace{\psi[x_1, \dots, x_n]}_{\text{umschreiben in DNF}} \sim \exists y (\psi_1 \lor \dots \lor \psi_n) \sim \underbrace{\bigvee_{i=1}^n \exists y \psi_i}_{\text{primitive Existenzformel}}$$

Zu zeigen: Jede beliebige Formel $\varphi[x_1,\ldots,x_n]$ ist äquivalent zu einer quantorenfreien Formel modulo T.

$$\varphi[x_1,\ldots,x_n] \underbrace{\sim}_{\substack{\text{pränexe} \\ \text{Normal form}}} Q_1y_1\ldots Q_my_m \underbrace{\psi[x_1,\ldots,x_n,y_1,\ldots,y_m]}_{\substack{\text{quantorenfrei}}}, \text{ wobei } Q_i \in \{\forall,\exists\}$$

Induktion über m:

$$m=0$$
:

$$m = 1$$
: $\varphi = Q \underbrace{\psi[x_1, \dots, x_n, y]}_{\text{quantor enfrei}}$

 $Q = \exists \varphi$ einfache Existenzformel \checkmark

$$Q = \forall \varphi \sim \neg \underbrace{\exists y \neg \psi}_{\substack{\text{einfache} \\ \text{Existenz formel}} \rightarrow \text{eliminieren} \rightarrow \checkmark}$$

$$m-1 \to m$$
: $\varphi[x_1,\ldots,x_n] = Q_1y_1Q_2y_2\ldots\underbrace{Q_my_m\psi[x_1,\ldots,x_n,y_1,\ldots,y_m]}_{\varphi'[x_1,\ldots,x_n,y_1,\ldots,y_{m-1}]}$. φ' ist eine einfache Existenzformel, wir eliminieren also:

$$\underbrace{m-1 \text{ viele Quantoren}}_{m-1 \text{ viele Quantoren}} \underbrace{\Theta[x_1,\ldots,x_n,y_1,\ldots,y_{m-1}]}_{\text{quantorenfrei}}$$

 \Rightarrow Induktion

Beispiel 3.6

Sei $\mathcal{K} = \{\text{unendliche Mengen}\}$. Diese Klasse lässt sich definieren durch die Theorie $T = \{\exists x_1 \dots \exists x_n (\bigwedge_{i \neq j=1}^n \neg (x_i = x_j))\}_{n \in \mathbb{N}}$. Diese Theorie ist vollständig! Betrachte jetzt die definierbaren Mengen:

$$\{b \in A | \mathcal{A} \models \underbrace{\varphi}_{\text{quantorenfrei}} [b, a_1, \dots, a_m]\}$$

Lemma 3.7 (Trennungslemma)

Seien T_1 und T_2 zwei \mathcal{L} -Theorien, und Δ eine Kollektion von \mathcal{L} -Aussagen, welche unter endlichen Konjunktionen und Disjunktionen abgeschlossen ist. Folgende Eigenschaften sind äquivalent:

- (1) Es gibt eine Aussage $\chi \in \Delta$ mit $T_1 \models \chi$
- (2) Für alle $\mathcal{A} \models T_1$, $\mathcal{B} \models T_2$ gibt es eine Aussage $\chi \in \Delta$ mit $\mathcal{A} \models \chi$, $\mathcal{B} \models \neg \chi$

Bemerkung 3.8

Das ganze ist trivial für inkonsistente Theorien.

Beweis. $1 \Rightarrow 2$: trivial!

 $2 \Rightarrow 1$: OBdA T_1, T_2 konsistent. Sei $\mathcal{A} \models T_1$, setze $\Sigma_{\mathcal{A}} = \{\chi, \chi \text{ Aussagen in } \Delta \text{ mit } \mathcal{A} \models \chi\}$.

Betrachte jetzt $T_2 \cup \Sigma_A$. Ist diese Theorie konsistent? Nein: Wäre $\mathcal{B} \models T_2 \cup \Sigma_A \hookrightarrow \text{es}$ gibt $\chi \in \Delta \text{ mit } \mathcal{A} \models \chi, \mathcal{B} \models \neg \chi \Rightarrow \chi \in \Sigma_A \Rightarrow \mathcal{B} \models \chi$. Widerspruch!

Das bedeutet (wegen Kompaktheit), dass es $\chi_1, \ldots, \chi_r \in \Sigma_A$ gibt mit $T_2 \cup \{\chi_1, \ldots, \chi_r\}$ inkonsistent.

$$\hookrightarrow T_2 \models \bigvee_{i=1}^r \neg \chi_i \Rightarrow T_2 \models \neg (\bigwedge_{i=1}^r \chi_i)$$

Das heißt für jedes $\mathcal{A} \models T_1$ gibt es $\chi_{\mathcal{A}} \in \Delta$ mit $T_2 \models \neg \chi_{\mathcal{A}}$ und $\mathcal{A} \models \chi_{\mathcal{A}}$.

Sei nun $T_1 \cup \{\neg \chi_A\}_{A \models T_1}$. \hookrightarrow inkonsistent nach Konstruktion.

 \Rightarrow es existieren $\chi_{\mathcal{A}_1}, \dots \chi_{\mathcal{A}_n}$ mit $T_1 \cup \{\neg \chi_{\mathcal{A}_1}, \dots, \chi_{\mathcal{A}_n}\}$ inkonsistent. Also:

$$T_1 \models \bigvee_{j=1}^n \chi_{\mathcal{A}_j} =: \chi \in \Delta$$

$$T_1 \models \chi$$
. Wollen zeigen: $T_2 \models \neg \chi$. Aber $T_2 \models \neg \chi_{A_i}, 1 \leq i \leq n$.

Folgerung 3.9

Zwei Theorien T_1 und T_2 werden von einer quantorenfreien Aussage getrennt, wenn je zwei Modelle $\mathcal{A} \models T_1$ und $\mathcal{B} \models T_2$ von einer quantorenfreien Aussage getrennt werden.

$$\rightarrow \exists \chi$$
 quantorenfrei : $\mathcal{A} \models \chi$ und $\mathcal{B} \models \neg \chi$

Satz 3.10

Sei T eine Theorie. Folgende Aussagen sind äquivalent:

- (1) T hat Quantorenelimination.
- (2) Gegeben Modelle $\mathcal{A}, \mathcal{B} \models T$ und endlich erzeugte Unterstrukturen $\langle c_1, \ldots, c_n \rangle_{\mathcal{A}} = \mathcal{C} \subset \mathcal{A}, \langle d_1, \ldots, d_n \rangle_{\mathcal{B}} = \mathcal{D} \subset \mathcal{B}$, wobei $\mathcal{C} \simeq \mathcal{D}$ und $\varphi[x_1, \ldots, x_n]$ eine Formel. Dann gilt:

$$\mathcal{A} \models \varphi[c_1, \dots, c_n] \Rightarrow {}^{6}\mathcal{B} \models \varphi[d_1, \dots, d_n]$$

(3) Gegeben Modelle \mathcal{A}, \mathcal{B} mit isomorph erzeugten Unterstrukturen $\langle c_1, \ldots, c_n \rangle_{\mathcal{A}} = \mathcal{C} \simeq \mathcal{D} = \langle d_1, \ldots, d_n \rangle_{\mathcal{B}}$ wie in (2) und für alle $\varphi[x_1, \ldots, x_n]$ primitive Existenzformel, gilt:

$$\mathcal{A} \models \varphi[c_1, \dots, c_n] \Rightarrow \mathcal{B} \models \varphi[d_1, \dots, d_n]$$

⁵Ist das überhaupt eine Menge? Es genügt die Einschränkung bis auf Isomorphie, das sollte reichen...

⁶Durch vertauschen von \mathcal{A} und \mathcal{B} gilt hier sogar \Leftrightarrow .

Ferner, falls T konsistent ist, (1) gilt und je zwei Modelle von T isomorphe endlich erzeugte Unterstrukturen besitzen, dann ist T vollständig mit Quantorenelimination.

Bemerkung 3.11

Wie benutzen wir diesen Satz? Letztlich wollen wir Back-&-Forth-Äquivalenz zeigen.

Beweis. (1) \Rightarrow (2): Sei $\varphi[x_1, \dots, x_n]$. That Quantorenelimination \leftarrow es gibt $\psi[x_1, \dots, x_n]$ quantorenfrei mit: $T \models \forall \vec{x} (\varphi[\vec{x}] \leftrightarrow \psi[\vec{x}])$

$$\begin{array}{ll}
\mathcal{A} \models \varphi[c_1, \dots, c_n] \\
\mathcal{A} \models \psi[c_1, \dots, c_n] \\
\Leftrightarrow \psi \text{ quantorenfrei}
\end{array}$$

$$\begin{array}{ll}
\mathcal{C} \models \psi[c_1, \dots, c_n] \\
\mathcal{C} \models \psi[d_1, \dots, d_n]
\end{aligned}$$

$$\begin{array}{ll}
\mathcal{C} \models \psi[d_1, \dots, d_n] \\
\mathcal{C} \models \psi[d_1, \dots, d_n]$$

$$\mathcal{C} \models \psi[d_1, \dots, d_n]$$

$$\mathcal{C} \models \psi[d_1, \dots, d_n]$$

$$\mathcal{C} \models \psi[d_1, \dots, d_n]$$

 $(2) \Rightarrow (3)$: klar.

 $\underline{(3) \Rightarrow (1)}$: Um zu zeigen, dass T Quantorenelimination besitzt, genügt es nur primitive Existenzformeln $\varphi[x_1,\ldots,x_n]$ zu betrachten.

Seien dazu e_1, \ldots, e_n neue Konstantenzeichen. Betrachte die Sprache $\mathcal{L} \cup \{e_1, \ldots, e_n\}$, sowie die Theorien $T_1 = T \cup \{\varphi[e_1, \ldots, e_n]\}$ und $T_2 = T \cup \{\neg \varphi[e_1, \ldots, e_n]\}$.

Falls T_1 und T_2 durch eine quantorenfreie Aussage $\psi[e_1, \dots, e_n]$ in $\mathcal{L} \cup \{e_1, \dots, e_n\}$ trennquantorenfreie

bar sind, so folgt:

$$T \cup \{\varphi[\vec{e}]\} \models \psi[\vec{e}] \qquad \Rightarrow T \models (\varphi[\vec{e}] \rightarrow \psi[\vec{e}])$$

$$T \cup \{\neg \varphi[\vec{e}]\} \models \neg \psi[\vec{e}] \qquad \Rightarrow T \models (\neg \varphi[\vec{e}] \rightarrow \psi[\vec{e}])$$

$$\Rightarrow T = (\psi[\vec{e}] \rightarrow \varphi[\vec{e}]) \qquad \Rightarrow T \models \forall \vec{x} (\varphi[\vec{x}] \leftrightarrow \psi[\vec{x}])$$
quantorenfrei

Sonst, falls also T_1, T_2 nicht trennbar sind, gibt es zwei Modelle $\mathcal{A} \models T_1 \cup \{\varphi[\vec{e}]\}, \mathcal{B} \models T \cup \{\neg \varphi[\vec{e}]\}$, welche alle quantorenfreien Aussagen in $\mathcal{L} \cup \{e_1, \ldots, e_n\}$ gleich erfüllen.

Seien
$$c_1 = e_i^{\mathcal{A}}, d_i = e_i^{\mathcal{B}}$$
. Betrachte jetzt $\langle c_1, \dots, c_n \rangle_{\mathcal{A}} \subset_{\mathcal{L}\text{-US}} \mathcal{A} \mid_{\mathcal{L}} \text{ und } \langle d_1, \dots, d_n \rangle_{\mathcal{B}} \subset_{\mathcal{US}} \mathcal{B} \mid_{\mathcal{L}}$. Es gilt: $\mathcal{A} \models \varphi[c_1, \dots, c_n]$ und $\mathcal{B} \models \neg \varphi[d_1, \dots, d_n]$.

 $^{^{7}}$ weil e_1, \ldots, e_n <u>neue</u> Konstantenzeichen sind

Um einen Widerspruch zu bekommen genügt es zu zeigen, dass $\mathcal{C} \simeq \mathcal{D}, c_i \mapsto d_i$.

$$C \longrightarrow D:$$

$$\underbrace{t^{\mathcal{A}}[c_1, \dots, c_n]}_{\mathcal{L}\text{-Term}} \mapsto t^{\mathcal{B}}[d_1, \dots, d_n]$$

Ist diese Abbildung wohldefiniert?

Angenommen
$$t_1^{\mathcal{A}}[c_1, \dots, c_n] = t_2^{\mathcal{A}}[c_1, \dots, c_n]$$

$$\Leftrightarrow \underbrace{\mathcal{A}}_{\text{als } \mathcal{L} \cup \{e_1, \dots, e_n\}\text{-Struktur}} \models \underbrace{(t_1[e_1, \dots, e_n] \dot{=} t_2[e_1, \dots, e_n])}_{\text{quantorenfreie Aussage}}$$

$$\Leftrightarrow \mathcal{B} \models (t_1[\vec{e}] \dot{=} t_2[\vec{e}])$$

$$\Leftrightarrow t_1^{\mathcal{B}}[d_1, \dots, d_n] = t_2^{\mathcal{B}}[d_1, \dots, d_n]$$

$$\longrightarrow \text{wohldefiniert und injektiv}$$

induktiv über den Aufbau zeigen wir: Das ist ein Isomorphismus.

<u>Zu "ferner":</u> Angenommen T hat Quantorenelimination, ist konsistent und je zwei Modelle $A, B \models T$ haben isomorphe, endlich erzeugte Unterstrukturen

$$\langle c_1, \dots, c_n \rangle_{\mathcal{A}} = \overset{\subset \mathcal{A}}{\overset{\subset \mathcal{B}}{\mathcal{C}}} \simeq \overset{\subset \mathcal{B}}{\overset{\subset \mathcal{B}}{\mathcal{D}}} = \langle d_1, \dots, d_n \rangle_{\mathcal{B}}$$

T ist vollständig $\Leftrightarrow A \equiv \mathcal{B}$. Sei χ eine \mathcal{L} -Aussage und schreibe $\chi = \chi[x_1, \dots, x_n]$.

$$\mathcal{A} \models \chi \Leftrightarrow \mathcal{A} \models \chi[c_1, \dots, c_n] \underset{(2)}{\Leftrightarrow} \mathcal{B} \models \chi[d_1, \dots, d_n] \Leftrightarrow \mathcal{B} \models \chi$$

4 Beispiele klassischer Theorien

Beispiel 4.1

 $T = \exists^{\infty}$ hat Quantorenelimination und ist vollständig.

Beispiel 4.2 (DLO)

DLO (dichte lineare Ordnung ohne Randpunkte). Sei $\mathcal{L} = \{<\}$.

DLO =
$$\{ \forall x (\neg x < x) \}$$

 $\cup \{ \forall x \forall y \forall z ((x < y \land y < z) \rightarrow (x < z)) \}$
 $\cup \{ \forall x \forall y ((x = y) \lor (x < y) \lor (y < x)) \}$
 $\cup \{ \forall x \forall y \exists z ((x < y) \rightarrow (x < z < y)) \}$
 $\cup \{ \forall x \exists u \exists v (u < x < v) \}$
 $\cup \{ \exists x (x = x) \}$

Diese Theorie ist vollständig und hat Quantorenelimination. Es gibt zwei Methoden, um Quantorenelimination zu zeigen:

(1)

$$\varphi[x_1, \dots, x_n] = \exists y (\bigwedge_{i} \underbrace{\Theta_i[x_1, \dots, x_n, y]}_{\text{Negation davon}})$$

$$= \exists y (\psi_1[x_1, \dots, x_n] \land \bigwedge_{i} \underbrace{x_i = y \atop x_i < y \atop y < x_i}_{y < x_i})$$

$$x_i = y \land x_j = y \Leftrightarrow x_i = x_j$$

 $x_i = y \land y < x_j \Leftrightarrow x_i < x_j \longrightarrow \text{induktiv lassen sich alle Quantoren eliminieren}$

(2) Gegeben $\langle c_1, \ldots, c_n \rangle_{\mathcal{A}} = \mathcal{C}_{\subset \mathcal{A}} \simeq \mathcal{D}_{\subset \mathcal{B}} = \langle d_1, \ldots, d_n \rangle_{\mathcal{B}}$, mit $F : \mathcal{C} \to \mathcal{D}$ Isomorphismus und $\mathcal{A}, \mathcal{B} \models \text{DLO}$.

OBdA wähle $c_1 < c_2 < \dots < c_n \underset{F}{\mapsto} d_1 < d_2 < \dots < d_n$. $\longrightarrow F$ in Back-&-Forth-System.

- 1. Fall: $a < c_1 \rightarrow \text{wähle } b < d_1 \text{ in } \mathcal{B}, \text{ weil } d_i \text{ kein Randpunkt ist.}$
- 2. Fall: $a > c_n \to \text{wähle } b < c_n \text{ in } \mathcal{B}, \text{ weil } d_i \text{ kein Randpunkt ist.}$
- 3. Fall: $\exists i \mid c_i < a < c_{i+1} \rightarrow \text{ wähle } b \text{ zwischen } d_i \text{ und } d_{i+1} \text{ weil } \mathcal{B} \text{ dicht ist.}$

Vollständigkeit folgt, weil Unterstruktur und Punkt zu Punkt.

Beispiel 4.3 (Vektorraum)

Sei
$$K$$
 ein Körper, $\mathcal{L}_{VR} = \{0, +, f_{\lambda}\}_{{\lambda} \in K}$. Dann ist die Theorie $T = \{ \forall x \forall y \forall z \dots \} \dots^{8}$ unendliche K -VR

vollständig und hat Quantorenelimination.

Wie zuvor gibt es zwei verschiedene Methoden, um Quantorenelimination zu zeigen:

(1) Betrachte die folgende primitive Existenzformel:

$$\varphi[x_1,\ldots,x_n] = \exists y (\bigwedge_{\text{endlich}} (\lambda_1 x_1 + \cdots + \lambda_n x_n + \lambda_y = 0) \land \bigwedge_{\text{endlich}} \neg (\mu_1 x_1 + \cdots + \mu_n x_n = 0)$$

Jetzt gibt es zwei Möglichkeiten:

 $^{^8}$ diese Theorie ist axiomatisierbar, für eine beispielhafte Axiomatisierung vergleiche Klausur zu mathematische Logik im SS 2019.

4 Beispiele klassischer Theorien

(1) Alle
$$\lambda$$
 vor der Variable y sind $Null \to \bigwedge_{\substack{\text{endlich}}} \lambda x_1 + \dots + \lambda_n x_n = 0$

- (2) Es gibt ein $\lambda \neq 0$. Dann gilt OBdA: $y = \lambda_1 x_1 + \cdots + \lambda_n x_n$. Ersetze jetzt jedes Vorkommen von y durch $\tilde{\lambda}_1 x_1 + \cdots + \tilde{\lambda}_n x_n$. Erhalte eine quantorenfreie Bedingung in $x_1, \dots x_n$.
- (2) (semantisch)

Ansatz:

$$\mathbb{Q}$$
 ? $\mathbb{Q} \oplus \mathbb{Q}$ $\langle 2 \rangle$ \simeq $\langle (3,7) \rangle$

Wir brauchen also: \mathcal{A} und \mathcal{B} undendlichdimensional, um ein Back & Forth-System zu konstruieren. Es sei dazu

$$\tilde{\mathcal{A}} \succeq \mathcal{A} \supset \langle c_1, \dots, c_n \rangle \simeq \langle d_1, \dots, d_n \rangle \subset \mathcal{B} \preceq \tilde{\mathcal{B}}$$

für $\tilde{\mathcal{A}}, \tilde{\mathcal{B}}$ undendlichdimensional.

Insbesondere gilt jetzt auch:

$$\mathcal{A} \models \varphi[c_1, \dots, c_n] \Leftrightarrow \tilde{\mathcal{A}} \models \varphi[c_1, \dots, c_n]$$

Angenommen $\langle c_1, \dots, c_n \rangle \xrightarrow{F} \langle d_1, \dots, d_n \rangle$ liegt in einem Back & Forth-System zwischen $\tilde{\mathcal{A}}$ und $\tilde{\mathcal{B}}$. Dann folgt insbesondere auch:

$$\tilde{\mathcal{B}} \models \varphi[d_1, \dots, d_n] \Leftrightarrow \mathcal{B} \models \varphi[d_1, \dots, d_n]$$

Es ergeben sich also die folgenden beiden Fragen:

(1) Finden wir ein Back & Forth-System zwischen $\tilde{\mathcal{A}}$ und $\tilde{\mathcal{B}}$?

Angenommen also wir haben $\tilde{\mathcal{A}}$ und $\tilde{\mathcal{B}}$ bereits konstruiert. Zeige: Es gibt ein Back & Forth-System.

 $c \in UR$: trivial.

 $c \notin \text{UR: } \dim_K \tilde{\mathcal{B}} = \infty \ge n+1 \longrightarrow \text{es gibt ein } d \notin \langle d_1, \dots, d_n \rangle \Rightarrow G \text{ die Erweiterung}$

$$\langle c_1, \dots, c_n \rangle \longrightarrow \langle d_1, \dots, d_n \rangle$$

$$c_i \longmapsto d_i$$

$$c \longmapsto d$$

(2) Zur Existenz von $\tilde{\mathcal{A}}, \tilde{\mathcal{B}}$:

So funktioniert es nicht: Diag $(A) \cup \{ \exists x \exists y \neg (\lambda x + \mu y \dot{+} 0) \}_{\substack{\lambda, \mu \in K \\ (\lambda, \mu) \neq (0, 0)}}$.

Seien $(e_i)_{i\in\mathbb{N}}$ neue Konstantenzeichen.

$$\underbrace{\operatorname{Diag}(\mathcal{A}) \cup \{\neg \sum_{i} \lambda_{i} e_{i} = 0\}_{(\lambda_{1}, \dots, \lambda_{n}) \in K^{n} \setminus \{(0, \dots, 0)\}}}_{\text{endlich konsistent}}$$

Zur Vollständigkeit: Das endliche Erzeugnis zweier nicht-trivialer Vektoren ist Isomorph, somit folgt Vollständigkeit.

Beispiel 4.4 (ACF)

Wir betrachten jetzt die Theorie algebraisch abgeschlossener Körper (ACF) in der Ringsprache $\mathcal{L}_{Ring} = \{0, 1, +, -, \cdot\}.$

$$ACF = \begin{cases} \text{K\"orperaxiome} \\ \{ \ \forall x_0 \ \forall x_1 \dots \ \forall x_{k-1} \ \exists y(y^k + x_{k-1}y^{k-1} + \dots + x_1y + x_0 \dot{=} 0) \}_{k \geq 1} \end{cases}$$

ACF hat Quantorenelimination, ist aber nicht vollständig. Die Vervollständigungen sind $\underbrace{\text{ACF}_0}_{1+1+\dots+1\doteq0}$ und $\underbrace{\text{ACF}_p}_{1+\dots+1\doteq0}$ für jede Primzahl p.

Satz 4.5 (Kurzeinführung Galois'sche Theorie)

Beweis ACF. Betrachte OBdA die Abbildung

$$F = \operatorname{Quot}(\langle c_1, \dots, c_n \rangle) \longrightarrow \operatorname{Quot}(\langle d_1, \dots, d_n \rangle)$$

Fall 1: a ist algebraisch über K

 \hookrightarrow sei $m_a(T)$ das Minimalpolynom von a über K. $F(m_a)(T)$ ist ein normiertes Polynom über $\mathrm{Quot}(\langle d_1,\ldots,d_n\rangle)\subset B$.

B ist algebraisch abgeschlossen \Rightarrow es gibt b in B mit $F(m_a)(b) = 0 \stackrel{\text{Galoistheorie}}{\Longrightarrow} F$ lässt sich erweitern.

<u>Fall2</u>: a ist transzendent über $K = \text{Quot}(\langle c_1, \dots, c_n \rangle)$.

Wenn wir ein $b \in B$ finden, welches transzendent über $Quot(\langle d_1, \ldots, d_n \rangle)$ ist

$$\hookrightarrow \operatorname{Ring}_A(K, a) \simeq \operatorname{Ring}_B(F(K), b)$$

<u>Ziel:</u> Wir brauchen $\mathcal{A} \preceq \tilde{\mathcal{A}}$ mit unendlich vielen Elementen, welche algebraisch unabhängig sind.

$$\underbrace{\operatorname{Diag}(A) \cup \{\neg (B(e_1, \dots, e_n) \doteq 0)\}_{\substack{P \in A[T_1, \dots, T_n] \setminus \{0\} \\ P(e_1, \dots e_n) \neq 0}}}_{\text{endlich konsistent}}$$

5 Ultrafilter & der Satz von Ax

Anwendung: Wir wollen eine Aussage der folgenden Art bekommen: Sei $f: \mathbb{C} \longrightarrow \mathbb{C} \atop z \longmapsto z^2$. $\to f$ ist surjektiv, aber nicht injektiv.

Satz 5.1 (Ax)

Sei $f: \mathbb{C}^n \xrightarrow[z \mapsto z^2]{} \mathbb{C}^n$ eine polynomiale⁹ injektive Abbildung. Dann ist f surjektiv.

Motivation: Sei G eine Gruppe der Ordnung p. Für einen Körper der Charakteristik p bekommen wir dann:

$$\underbrace{\mathbb{Z}/p\mathbb{Z}}_{\ni \bar{g}} \underset{\text{wirkt}}{\curvearrowright} \underbrace{K}_{\substack{\text{K\"{o}rper der} \\ \text{Charakteristik}}} \longrightarrow K$$

$$x \longmapsto \underbrace{1 + \dots + 1}_{g\text{-Mal}} + x$$

$$\rightarrow h + (g + x) = (h + g) + x$$

Für einen Körper der Charakteristik 0:

$$\underbrace{\mathbb{Z}/p\mathbb{Z}}_{\text{wirkt}} \curvearrowright \mathbb{C} \longrightarrow \mathbb{C}$$

$$\underbrace{\mu_p}_{p\text{-te Einheits-wurzel in }\mathbb{C}} = \{e^{\frac{2\pi i k}{p}}\}_{0 \le k < p} \qquad z \longmapsto \omega z$$

$$z \mapsto \omega z$$

Satz 5.2 (Lefschetz'sches Prinzip)

Eine Aussage χ in der Ringsprache \mathcal{L}_{Ring} gilt für \mathbb{C} genau dann, wenn es unendlich viele Primzahlen p derart gibt, dass χ in einem algebraisch abgeschlossenen Körper der Charakteristik p gilt.

⁹polynomial bedeutet, dass jede Koordinate der Abbildung durch Polynome gegeben ist.

Beweis von Satz 5.1 (Ax). Sei $f: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ injektiv. Die Aussage "f injektiv $\Rightarrow f$ surjektiv" lässt sich als \mathcal{L}_{Ring} -Aussage schreiben.

D. h. es genügt zu zeigen, dass diese Aussage für alle Körper $\mathbb{F}_p^{\text{alg}}$ gilt.

Was ist $\mathbb{F}_p^{\text{alg}}$? Ein algebraischer abgeschlossener Körper der Charakteristik p.

Galoistheo.

$$\mathbb{F}_p^{\mathrm{alg}}=\bigcup_{n\in\mathbb{N}}F_n,$$
wobe
i $F_n\subset F_{n+1}$ endliche Körper mit Charakteristik
 $p.$

$$F_1 = \{0, 1\}$$

$$F_2 = \cdots$$

Sei nun $g:(\mathbb{F}_p^{\mathrm{alg}})^n \longrightarrow (\mathbb{F}_p^{\mathrm{alg}})^n$ eine surjektive polynomiale Abbildung.

Zeige: g ist surjektiv. Sei $(b_1, \ldots, b_n) \in (\mathbb{F}_p^{\text{alg}})^n$. Dann gibt es ein N, sodass $b_i \in \mathbb{F}_n$ für \mathbb{F}_n endlich.

Ferner können wir N so wählen, dass alle Koeffizienten aus g in \mathbb{F}_n liegen.

$$g_{|\mathbb{F}_N^n}: \underbrace{\mathbb{F}_N^n}_{\text{endlich}} \longrightarrow \underbrace{\mathbb{F}_N^n}_{\text{endlich}} \text{ ist injektiv (geerbt)}$$

$$\Downarrow \text{ endlich}$$

$$\text{surjektiv}$$

Beweis Lefschetz'sches Prinzip (Satz 5.2). " \Rightarrow " Sei χ eine \mathcal{L}_{Ring} -Aussage derart, dass $\mathbb{C} \models \chi$. Dann ist $\underbrace{ACF_0}_{\text{alle elementar}} \cup \{\neg \chi\}$ inkonsistent, weil ACF₀ vollständig ist.

Dann gibt es eine endliche Teilmenge $T_0 \subset ACF_0 \cup \{\neg \chi\}$, welche inkonsistent ist. \Rightarrow Es gibt ein $N \in \mathbb{N}$ sodass:

$$T_0 \subset ACF \cup \{\neg(\underbrace{1 + \dots + 1}_{k} = 0)\}_{k < N} \cup \{\neg\chi\}$$
inkonsistent

Für p>Neine Primzahl: ACF $_p\models\chi$

"←" → Ultrafilter und Satz von Łoś

Exkurs: Sei im Folgenden $I \neq \emptyset$.

Definition 5.3

Ein Ultrafilter \mathcal{U} auf I ist ein endlich additives Wahrscheinlichkeitsmaß

$$\mu_{\mathcal{U}}: \mathcal{P}(I) \longrightarrow \{0,1\}$$

Bemerkung 5.4

Die Definition entspricht der von Blatt 1 Aufgabe 3, denn:

- (1) $\mu_{\mathcal{U}}(I) = 1, \ \mu_{\mathcal{U}}(\emptyset) = 0.$
- (2) $\mu_{\mathcal{U}}(X) = 1 \Rightarrow \mu_{\mathcal{U}}(Y) = 1$
- (3) Angenommen $\mu_{\mathcal{U}}(X) = \mu_{\mathcal{U}}(Y) = 1$ aber $\mu_{\mathcal{U}}(X \cap Y) = 0$. Dann gilt $X = X \setminus Y \dot{\cup} X \cap Y \Rightarrow \mu_{\mathcal{U}}(X \setminus Y) = 1$ und $\mu_{\mathcal{U}}(Y \setminus X) = 1$, sowie $I \supset X \cup Y = X \setminus Y \dot{\cup} Y \setminus X \dot{\cup} X \cap Y$. $\rightsquigarrow \mu_{\mathcal{U}}(I) = 1 \geq 1 + 1 + 0$, ein Widerspruch.
- (4) Gegeben $X \subset I$ entweder $X \in \mathcal{U}$ oder $I \setminus X \in \mathcal{U}$ $\mu_{\mathcal{U}}(I \setminus X) = 1$

Definition 5.5

Ein Hauptultrafilter ist ein Maß der Form δ_x für ein $x \in I$.

Definition 5.6

Falls I undendlich ist, so gibt es generisch/reiche Ultrafilter, nämlich die Ultrafilter, welche alle koendlichen Mengen enthalten.

Definition 5.7

Angenommen $(A_i)_{i\in I}$ ist eine \mathcal{L} -Struktur. Sei ferner \mathcal{U} ein Ultrafilter. Definiere eine Äquivalenzrelation¹⁰ auf $\prod_{\mathcal{U}} A_i$:

$$(a_i)_{i \in I} \sim_{\mathcal{U}} (b_i)_{i \in I} \iff \{i \in I \mid a_i = b_i\} \in \mathcal{U} \iff \mu_{\mathcal{U}}(\{i \in I \mid a_i = b_i\}) = 1$$

Definition 5.8

Sei $\prod_{\substack{\mathcal{U} \\ \neq \emptyset}} A_i$ die Menge $\prod_{i \in I} A_i / \sim_{\mathcal{U}}$. Wir definieren Interpretationen der Symbole aus \mathcal{L} auf $\prod_{\mathcal{U}} A_i$:

• Sei $c \in \mathcal{L}$ ein Konstantenzeichen. Definiere:

$$c^{\prod A_i} = (c^{\mathcal{A}_i})_{i \in I} / \sim_{\mathcal{U}}$$

¹⁰vergleiche dazu Blatt 1, Aufgabe 3

• Sei $f \in \mathcal{L}$ ein n-stelliges Funktionszeichen. Definiere:

$$f^{\prod_{\mathcal{U}} A_i}([a_1]_{\mathcal{U}}, \dots, [a_n]_{\mathcal{U}}) = (f^{\mathcal{A}_i}(a_1^i, \dots, a_n^i))_{i \in I} / \sim_{\mathcal{U}}$$

Ist das wohldefiniert? Ja, denn fast überall gleich.

• Sei \mathcal{R} ein m-stelliges Relationszeichen auf \mathcal{L} . Definiere:

$$([a_1]_{\mathcal{U}}, \dots, [a_m]_{\mathcal{U}}) \in \mathcal{R}^{\prod A_i} \iff \{i \in I \mid (a_1^i, \dots, a_n^i) \in \mathcal{R}^{A_i}\} \in \mathcal{U}$$

Wenn \mathcal{U} ein Hauptfilter ist, dann ist er erzeugt vom Element $\{i_0\}$.

$$\underbrace{\prod_{\mathcal{U}} \mathcal{A}_{i}}_{\mathcal{U}} \xrightarrow{\varphi} \mathcal{A}_{i_{0}} \text{ ist ein Isomorphismus}$$

$$(a_{i})_{i \in I} / \sim_{\mathcal{U}} \longmapsto a_{i_{0}}$$

Definition 5.9

Wenn \mathcal{A} eine \mathcal{L} -Struktur und \mathcal{U} ein Ultrafilter ist, dann ist $\mathcal{A}^{\mathcal{U}} = \prod_{\mathcal{U}} \mathcal{A}$ die Ultrapotenz.

Beispiel 5.10

Sei \mathcal{U} ein reicher/generischer Ultrafilter auf \mathbb{N} . Betrachte $\mathcal{N}=(\mathbb{N},<)$.

$$\mathcal{N}^{\mathcal{U}} \ni (1, 2, 3, \dots) / \sim_{\mathcal{U}} > (1, 1, 1, \dots) / \sim_{\mathcal{U}}$$

Satz 5.11 (Satz von Łoś)

Sei \mathcal{U} ein Ultrafilter auf I, $(\mathcal{A}_i)_{i\in I}$ eine Familie von \mathcal{L} -Strukturen, $\varphi[x_1,\ldots,x_n]$ eine \mathcal{L} -Formel und $[a_1]_{\mathcal{U}},\ldots,[a_n]_{\mathcal{U}}\in\prod_{\mathcal{U}}A_i$. Dann gilt:

$$\prod_{\mathcal{U}} \mathcal{A}_i \models \varphi[[a_1]_{\mathcal{U}}, \dots, [a_n]_{\mathcal{U}}] \iff \{i \in I \mid \mathcal{A}_i \models \varphi[a^1, \dots, a^n]\} \in \mathcal{U}$$

Beweis. Induktiv über den Aufbau von φ . Sei $\varphi=(t_1\dot{=}t_2)$. Dann gilt:

$$\prod_{\mathcal{U}} A_{i} \models (t_{1}[[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}[[a_{1}]_{s}crU, \dots, [a_{n}]_{\mathcal{U}}])$$

$$\stackrel{\prod_{i=1}^{\mathcal{A}_{i}} A_{i}}{\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]}$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \doteq t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \rightarrow t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \rightarrow t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \rightarrow t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \rightarrow t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \rightarrow t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

$$\Leftrightarrow t_{1}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \rightarrow t_{2}^{\mathcal{U}} [[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}]$$

Folgerung 5.12

Sei \mathcal{A} eine \mathcal{L} -Struktur und \mathcal{U} ein Ultrafilter auf I. Betrachte $\mathcal{A}^{\mathcal{U}} = \prod_{\mathcal{U}} \mathcal{A}$. Das ist eine elementare Erweiterung von \mathcal{A} bezüglich der Abbildung $A \longrightarrow \prod_{\mathcal{U}} A$.

Einbettung, injektiv

Beweis. Sei φ eine \mathcal{L} -Formel, $a_1, \ldots, a_n \in A$. Zu zeigen ist:

$$\mathcal{A} \models \varphi[a_1, \dots, a_n] \iff \mathcal{A}_i^{\mathcal{U}} \models \varphi[[a_1]_{\mathcal{U}}, \dots, [a_n]_{\mathcal{U}}]$$

"⇒": Mit Satz von Łoś gilt:

$$\mathcal{A}_{i}^{\mathcal{U}} \models \varphi[[a_{1}]_{\mathcal{U}}, \dots, [a_{n}]_{\mathcal{U}}] \iff \{i \in I \mid \mathcal{A} \models \varphi[a_{1}, \dots, a_{n}]\} \in \mathcal{U}$$

Da dieser Ausdruck jedoch der gesamten Menge I entspricht, folgt die Behauptung direkt.

 $\underline{,} \leftarrow$ ": Die leere Menge liegt nicht in \mathcal{U} , also gibt es i sodass die Formel gilt, da diese jedoch von i unabhängig ist, gilt sie immer.

Beweis Lefschetz'sches Prinzip (5.2) "←". Sei

$$S = \left\{ p \text{ Primzahl} \mid \begin{array}{c} \text{ein algebraisch abgeschlossener K\"{o}rper mit} \\ \text{Charakteristik } p \text{ erf\"{u}llt die Aussage } \chi \end{array} \right\}$$

Zeige: S ist unendlich. Sei $P \subset \mathbb{N}$ Primzahlen. Betrachte jetzt

$$\mathcal{B} = \{ X \cap S \subset P \mid X \subset P \text{ koendlich} \}$$
 (4)

Ist \mathcal{B} eine Filterbasis? $X \cap S = \emptyset$ ist endlich $\iff S \subset P \setminus X$ unendlich, ein Widerspruch.

Weiter gilt
$$(X_1 \cap S) \cap (X_2 \cap S) = \underbrace{(X_1 \cap X_2)}_{\text{koendlich}} \cap S.$$

 $\overset{\text{Blatt 1}}{\Rightarrow}$ es gibt einen Ultrafilter, welcher alle Elemente aus \mathcal{B} enthält.

Sei im Weiteren \mathcal{U} ein Ultrafilter auf P, welcher \mathcal{B} enthält. $X \cap S \in \mathcal{U}$ ist für alle $X \subset P$ koendlich.

- $\hookrightarrow \mathcal{U}$ ist reich (kein Hauptultrafilter). Für $p_0 \in P$ ist $P \setminus \{p_0\}$ koendlich.
- $\Rightarrow P \setminus \{p_0\} \cap S \in \mathcal{U}.$

$$\hookrightarrow S \in \mathcal{U}$$

Sei $K = \prod_{\mathcal{U}} K_p$, wobei K_p ein algebraisch abgeschlossener Körper der Charakteristik p ist derart, dass

$$\begin{cases} K_p \models \chi & p \in S \\ \text{egal }_{\text{bspw. } \mathbb{F}_p^{\text{alg}}} & p \notin S \end{cases}$$

- (1) $K \models ACF_0$
- (2) $K \models \chi$, weil $\{p \in P \mid K_p \models \chi\} \supset S \in \mathcal{U}$

 ACF_0 ist vollständig $\Rightarrow \mathbb{C} \models \chi$.

Satz 5.13 (Kompaktheitssatz)

Eine Theorie T ist genau dann konsistent, wenn sie endlich konsistent ist.

Beweis. OBdA ist T unendlich. Sei $I = \{\emptyset \neq S \subset T \text{ endlich}\}$. Für $s \in I$ gibt es eine \mathcal{L} -Struktur \mathcal{A}_s , sodass $\mathcal{A}_s \models \chi$ für jedes $\chi \in s$. Sei weiter

$$B_s = \{ t \in I \mid \mathcal{A}_t \models \chi \text{ für jedes } \chi \in s \}$$

Ist $\mathcal{B} = \{B_s\}_{s \in I}$ eine Filterbasis?

- (1) $\emptyset \neq B_s \ni s$
- (2) $B_{s_1} \cap B_{s_2} = \{t \in I \mid \mathcal{A}_t \models \chi \text{ für alle } \chi \text{ aus } s_2\} = B_{s_1 \cup s_2} \in \mathcal{B}!$

Sei \mathcal{U} ein Ultrafilter auf I, sodass $B_s \in \mathcal{U}$ für jedes $\emptyset \neq s \subset T$ endlich. Sei $\mathcal{A} = \prod_{\mathcal{U}} \mathcal{A}_s$.

Zu zeigen ist: $\mathcal{A} \models T$ (sei $\chi \in T$, zeige $\mathcal{A} \models \chi$).

$$\underbrace{\{s \in T \mid \mathcal{A}_s \models \chi\}}_{B_{\{\chi\}}} \in \mathcal{U}$$

Teil II Typen und Saturation

6 Typen

Sei im Folgenden \mathcal{L} eine Sprache und \mathcal{A} eine \mathcal{L} -Struktur.

Definition 6.1

Ein partieller Typ $\sum (x_1, \ldots, x_n)$ mit Parametern aus B ist eine Kollektion von Formeln in der Sprache $\mathcal{L} \cup \{b\}_{b \in B}$, welche in der (kanonischen) $\mathcal{L} \cup \{b\}_{b \in B}$ -Struktur \mathcal{A} endlich erfüllbar ist, das heißt für alle $\varphi_1, \ldots, \varphi_m \in \sum$ gibt es ein Tupel $(a_1, \ldots, a_n) \in A^n$ mit $\mathcal{A} \models \varphi_i(a_1, \ldots, a_n)$ für $1 \leq i \leq m$.

 \mathcal{A} realisiert Σ , falls es ein Tupel (a_1, \ldots, a_n) gibt, sodass $\mathcal{A} \models \varphi[a_1, \ldots, a_n]$ für alle $\varphi \in \Sigma$. Sonst vermeidet \mathcal{A} den partiellen Typ Σ .

Beispiel 6.2

Betrachte ($\mathbb{R}, 0, <$). Sei $\sum (x) = \{0 < x < q\}_{\substack{q \in \mathbb{Q} \\ q > 0}}$ ein partieller Typ.

Wird Σ realisiert oder vermieden? \leadsto vermieden

Sei jedoch
$$\Sigma' = \{\sqrt{2} \le x < q\}_{\substack{q \in \mathbb{Q} \\ q > \sqrt{2}}} . \rightsquigarrow \text{ realisiert von } \sqrt{2}$$

Betrachte nun \sum auf $\prod_{\mathcal{U}} \mathbb{R}$. Hier realisiert $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots)$ den partiellen Typen \sum !

Bemerkung 6.3

Sei \mathcal{A} eine unendliche Struktur. Dann gibt es immer einen partiellen Typen, der vermieden wird: $\{\neg(x \doteq a)\}_{a \in A}$.

Bemerkung 6.4

Sei $\sum (x_1, \ldots, x_n)$ ein partieller Typ über C in A. Dann gibt es eine elementare Erweiterung $\mathcal{B} \succeq \mathcal{A}$, welche \sum realisiert.

Beweis. Seien ζ_1, \ldots, ζ_n neue Konstantenzeichen. Schreibe $T = \text{Diag}(\mathcal{A}) \cup \sum (\zeta_1, \ldots, \zeta_n)$. T ist eine $\mathcal{L}_A \cup \{\zeta_1, \ldots, \zeta_n\}$ -Theorie. Falls $\mathcal{B} \models T$, dann ist $\{\zeta_1^{\mathcal{B}}, \ldots, \zeta_n^{\mathcal{B}}\}$ eine Realisierung von $\sum (x_1, \ldots, x_n)$.

Zu zeigen ist: T endlich konsistent.

 $T_0 \subset T \longrightarrow T_0 \subset \operatorname{Diag}(\mathcal{A}) \cup \{\varphi_i[\zeta_1, \dots, \zeta_n]\}_{i \in M} \text{ für } \varphi_1, \dots, \varphi_M \in \Sigma, M \in \mathbb{N}.$ $\{\varphi_1, \dots, \varphi_M\}$ ist in \mathcal{A} realisierbar von $(a_1, \dots, a_n) \in A^n$.

 \longrightarrow Setze $\tilde{\mathcal{A}}$ die $\mathcal{L}_A \cup \{\zeta_1, \ldots, \zeta_n\}$ -Struktur aus \mathcal{A} mit Interpretationen $\zeta_i^{\tilde{\mathcal{A}}} = a_i$.

Definition 6.5

Ein n-Typ über $C \subset A$ in der Struktur \mathcal{A} ist ein partieller Typ in der Variable x_1, \ldots, x_n über C, welcher maximal endlich erfüllbar ist bezüglich der Inklusion zwischen partiellen Typen über C.

 $S_n^{\mathcal{A}}(C)$ ist die Menge aller Typen in \mathcal{A} über C.

$$S^{\mathcal{A}}(C) = \bigcup_{n \in \mathbb{N}} S_n^{\mathcal{A}}(C)$$

Bemerkung 6.6

 $S_n^{\mathcal{A}}(C) \neq \emptyset$. Gegeben $b_1, \ldots, b_n \in A$, setze

$$\operatorname{tp}^{\mathcal{A}}(b_1,\ldots,b_n\mid C)=\{\varphi[x_1,\ldots,x_n]\ \mathcal{L}\text{-Formel}\mid \mathcal{A}\models\varphi[b_1,\ldots,b_n]\}$$

ist ein n-Typ über C.

Beweis. Sei $\varphi[x_1,\ldots,x_n] \notin \operatorname{tp}^{\mathcal{A}}(b_1,\ldots,b_n \mid C)$. Zu zeigen ist: $\operatorname{tp}^{\mathcal{A}}(b_1,\ldots,b_n \mid C) \cup$ $\{\varphi[x_1,\ldots,x_n]\}$ nicht endlich erfüllbar. Aus der Annahme folgt:

$$\mathcal{A} \not\models \varphi[b_1, \dots, b_n]$$

$$\Longrightarrow \mathcal{A} \models \neg \varphi[b_1, \dots, b_n]$$

$$\Longrightarrow \neg \varphi[x_1, \dots, x_n] \in \operatorname{tp}^{\mathcal{A}}(b_1, \dots, b_n \mid C)$$

$$\Longrightarrow \operatorname{Widerspruch zur Maximalität}$$

Sei nun $p(x_1, \ldots, x_n) \in S_n^{\mathcal{A}}(C)$. Gegeben $\varphi[x_1, \ldots, x_n]$ eine \mathcal{L}_C -Formel. Zu zeigen ist: $\varphi \in p \text{ oder } \neg \varphi \in p.$

Angenommen $\varphi \notin p$. $\Longrightarrow p \subsetneq \underbrace{p(x_1, \dots, x_n) \cup \{\varphi[x_1, \dots, x_n]\}}_{\text{endlich erfüllbar}}$ \leadsto Es gibt $\varphi_1, \dots, \varphi_k \in p$ sodass $\varphi_1, \dots, \varphi_k, \varphi$ in A nicht erfüllbar ist. Insbesondere

$$\mathcal{A} \not\models \exists x_1, \dots, x_n (\bigwedge \liminf_{i=1}^k \varphi_i[x_1, \dots, x_n] \land \varphi[x_1, \dots, x_n])$$

$$\iff \mathcal{A} \models \neg \exists x_1, \dots, x_n (\bigwedge \liminf_{i=1}^k \varphi_i[x_1, \dots, x_n] \land \varphi[x_1, \dots, x_n])$$

$$\iff \mathcal{A} \models \forall x_1 \dots \forall x_n (\bigwedge_{i=1}^k \varphi_i[x_1, \dots, x_n] \rightarrow \neg \varphi[x_1, \dots, x_n])$$

Es genügt zu zeigen, dass $p \subseteq p(x_1,\ldots,x_n) \cup \{\neg \varphi[x_1,\ldots,x_n]\}$ endlich erfüllbar ist. Sei dazu $\psi_1, \ldots, \psi_r \in p$. Wir wollen zeigen:

$$\mathcal{A} \models \exists x_1, \dots, x_n (\bigwedge_{j=1}^r \psi_j[x_1, \dots, x_n] \land \neg \varphi[x_1, \dots, x_n])$$

$$\varphi_1, \dots, \varphi_k, \psi_1, \dots, \psi_r \in p, \ p \text{ ist insbesondere partieller Typ.}$$

$$\hookrightarrow \text{ es gibt } (a_1, \dots, a_n) \in A^n \text{ mit } \mathcal{A} \models \bigwedge \varphi_i[a_1, \dots, a_k] \land \bigwedge \psi_j[a_1, \dots, a_n].$$

$$\Longrightarrow \mathcal{A} \models \neg \varphi[a_1, \dots, a_n] \qquad \Box$$

Allgemeiner: Sei T eine konsistente Theorie in der Sprache \mathcal{L} . Definiere: n-Typ in Tist eine Kollektion von \mathcal{L} -Formeln in x_1, \ldots, x_n , welche endlich konsistent mit T ist, es gilt also für $\varphi_1, \ldots, \varphi_m \in p$: $T \cup \{ \exists x_1, \ldots, x_n (\bigwedge_{j=1}^m \varphi_j[x_1, \ldots, x_m]) \}$ ist konsistent, und maximal bezüglich Inklusion mit dieser Eigenschaft:

Für \mathcal{A} eine \mathcal{L} -Struktur und $C \subset A$. Dann sei T die \mathcal{L}_C -Theorie von \mathcal{A} .

$$\underbrace{p \in S_n(T)}_{n\text{-Typ von }T} \Leftrightarrow p \in S_n^{\mathcal{A}}(C)$$

Folgerung 6.7

Gegeben eine \mathcal{L} -Struktur \mathcal{A} gibt es $\mathcal{B} \succ \mathcal{A}$, welche alle Typen in $S^{\mathcal{A}}(A)$ realisiert.

Beweis. Sei $\{p_{\alpha}\}_{{\alpha}<\lambda}$ eine Aufzählung von $S^{\mathcal{A}}(A)$. Wir konstruieren eine elementare Kette $\mathcal{A} = \mathcal{A}_0 \preceq \mathcal{A}_1 \preceq \cdots \preceq \mathcal{A}_{\alpha} \preceq \ldots$ so, dass $\underbrace{p_{\alpha}}_{\substack{\text{als part. Typ} \\ \text{über } A \text{ in } \mathcal{A}_{\alpha}}}$ in $\mathcal{A}_{\alpha+1}$ realisiert wird. $\mathcal{A}_0 = \mathcal{A}. \ \mathcal{A}_1 \text{ wird mithilfe des Lemmas für } p_0 \text{ gewonnen. Falls } \gamma \text{ eine Limeszahl ist: Setze}$ $\mathcal{A} = \mathcal{A}_0 \leq \mathcal{A}_1 \leq \cdots \leq \mathcal{A}_\alpha \leq \ldots$ so, dass

über
$$A$$
 in \mathcal{A}_{α} für p_0 gewonnen. Falls γ eine Limeszahl ist: Setze

 $\mathcal{A}_{\gamma} = \bigcup_{\beta < \gamma} \mathcal{A}_{\beta}$. Sei $\mathcal{A} \leq \mathcal{B} = \bigcup_{\alpha < \lambda} \mathcal{A}_{\lambda}$.

Achtung: \mathcal{B} kann sehr groß werden!

Beispiel 6.8

 $\mathcal{A} = (\mathbb{R}, <) \longrightarrow \text{Typ für jedes Element aus } \mathbb{R}.$

$$r \in \mathbb{R} \longrightarrow p_r \supset \{x < r\} \cup \{s < x\}_{s < r}$$
$$p_r ,= \text{``} \{x < r\} \cup \{s < x\}_{s < r}$$
$$p_{r^+} = \{x > r\} \cup \{s > x\}_{s > r}$$

<u>Ziel:</u> $S_n(T)$ ist ein kompakter, 0-dimensionaler Hausdorff topologischer Raum \rightsquigarrow "Stoneraum der Theorie T".

7 Exkurs: Einführung in die Topologie

Sei X eine Menge.

Definition 7.1

Eine Basis \mathcal{B} einer Topologie auf X ist eine Kollektion von Teilmengen derart, dass

- (1) $\forall x \in X \text{ gibt es } B \in \mathcal{B} \text{ mit } x \in B$
- (2) $\forall B_1, B_2 \in \mathcal{B} \ \forall x \in B_1 \cap B_2 \ \text{gibt es ein } B_3 \in \mathcal{B} \ \text{mit } x \in B_3 \subset B_1 \cap B_2$

Definition 7.2

 $U \subset X$ ist offen, falls es für jedes $x \in U$ ein $B \in \mathcal{B}$ gibt mit $x \in B \subset U$. Sei $T = \{U \subset X\}$. Die Kollektion T erfüllt folgende Eigenschaften:

- $(1) \emptyset, X \in T$
- (2) $U_1, U_2 \in T \Rightarrow U_1 \cap U_2 \in T$
- (3) Sei $(U_i)_{i \in I} \subset T$. Dann ist $\bigcup_{i \in I} U_i \in T$

Beispiel 7.3 (1) die euklidische Topologie auf \mathbb{R}^n , \mathbb{C}^n

- (2) die triviale Topologie auf X ist $\{\emptyset, X\}$
- (3) die diskrete Topologie auf X ist $\mathcal{P}(X)$
- (4) die koendliche Topologie auf X wird gegeben als:

$$U \subset X$$
 offen $\iff |X \setminus U|$ endlich, oder $U = \emptyset$

So ist beispielsweise (0,1) offen in \mathbb{R} für die euklidische Topologie, aber nicht für die koendliche Topologie.

Bemerkung 7.4

$$Y \subset X \text{ ist offen} \iff \forall x \in Y \quad \underbrace{\exists U \ni x}_{U \text{ ist eine}} \quad \text{mit } x \in U \subset Y$$

Definition 7.5

Eine Menge $C \subset X$ ist abgeschlossen, falls das Komplement offen ist.

Definition 7.6

Ein topologischer Raum (X.T) ist θ -dimensional, falls es eine Basis der Topologie gibt, welche aus offen-abgeschlossenen¹¹ Mengen besteht.

¹¹Englisch: "clopen"

Beispiel 7.7

Die diskrete Topologie ist θ -dimensional, weil sie als Basis $\{x\}_{x\in X}$ hat.

Definition 7.8 (Trennungseigenschaften)

Sei (X,T) ein topologischer Raum.

offene Mange die
$$x$$
 enthält

T1 Falls $x \neq y \in X$ gibt es Umgebungen $\widetilde{U^x, U^y}$ mit $x \in U^x \setminus U^y, y \in U^y \setminus U^x$.

T2 (Hausdorff) falls $x \neq y \in X$ gibt es U^x, U^y Umgebungen mit $U^x \cap U^y = \emptyset$

Bemerkung 7.9

 $T2 \Rightarrow T1$

Beispiel 7.10 • Ist die euklidische Topologie T2? Ja.

• Sei X unendlich. Ist die koendliche Topologie T Hausdorff? Nein. Ist sie T!? Ja: $U^x = X \setminus \{y\}, U^y = X \setminus \{x\}$

Bemerkung 7.11

 $(X,T)T1 \Rightarrow \text{Jeder Punkt ist abgeschlossen!}$

Beweis. Zu zeigen: $X \setminus \{x\}$ offen

Sei
$$y \in X \setminus \{x\}$$
. Wir suchen $U^y \subset X \setminus \{x\}$. Es gilt $x \neq y \Longrightarrow U^x \atop U^y$, insbesondere $x \notin U^y \Longrightarrow U^y \subset x \setminus \{x\}$

Definition 7.12

(X,T) topologischer Raum.

- $s \in X$ ist *isoliert*, falls $\{x\}$ offen ist.
- $A \subset X$ ist dicht, falls für jede offene Menge $\emptyset \neq U \subset X$ ist $A \cap U \neq \emptyset$
- $x \in X$ ist ein Häufungspunkt von A, falls für jede Umgebung $U^x \ni x$ gilt, dass $U^x \cap (A \setminus \{x\}) \neq \emptyset$

Bemerkung 7.13

Sei
$$A \subset X$$
. $C \subset X \Longrightarrow C = X$

Beweis. Zu zeigen ist:
$$C=X$$
. Sonst ist $\overbrace{X\setminus C}^U$ offen. $\stackrel{A \text{ dicht}}{\Longrightarrow} \underbrace{A\cap U}_{\subset C\cap (x\setminus C)=\emptyset} \neq \emptyset$, ein Widerspruch.

Bemerkung 7.14

Eine Topologie auf X ist genau dann diskret, falls jeder Punkt isoliert ist.

Übung

Bemerkung 7.15

Eine Teilmenge $C \subset X$ ist genau dann abgeschlossen, wenn C alle ihre Häufungspunkte enthält.

$$Beweis. \ \, \underset{\longrightarrow}{\dots} x \notin C \Rightarrow x \in \underbrace{X \setminus C}_{\text{offen}} \text{ und } (X \setminus C) \cap (\underbrace{C \setminus \{x\}}_{=C}) = \emptyset \Rightarrow x \text{ kein Häufungspunkt von } C.$$

"←": Zu zeigen:
$$X \setminus C$$
 offen. Sei dazu $x \in X \setminus C$ beliebig. $\Rightarrow x$ ist kein Häufungspunkt von $C \Rightarrow \exists U^x \ni x$ mit $U^x \cap \underbrace{C \setminus \{x\}}_{=C} = \emptyset \Rightarrow x \in U^x \subset X \setminus C$

Definition 7.16

Seien X, Y topologische Räume. Die Abbildung $f: X \longrightarrow Y$ ist stetig auf x_0 , falls für jede Umgebung $V^{f(x_0)} \ni f(x_0)$ (in Y) das Urbild $f^{-1}(V)$ in X offen ist. f ist stetig, wenn sie auf jedem Punkt in X stetig ist.

Bemerkung 7.17

Es genügt Urbilder von Basiselementen zu betrachten. Warum? Sei V eine Umgebung von $f(x_0)$.

$$\hookrightarrow$$
 es gibt B ein Basiselement mit $f(x_0) \in B \subset V \Rightarrow x_0 \in \underbrace{f^{-1}(B)}_{\text{offen}} \subset f^{-1}(V)$

Bemerkung 7.18

 $f:X\longrightarrow Y$ ist genau dann stetig, wenn $f^{-1}(C)$ abgeschlossen in Xist für alle $C\subset Y$. $_{\rm abgeschlossen}$

$$X \setminus f^{-1}(C) = f^{-1}(Y \setminus C)$$

Beispiel 7.19

$$f: \begin{array}{c} X \longrightarrow Y \\ x \longmapsto y_0 \end{array}$$
 konstant. Ist f stetig? Ja, denn $f^{-1}(x) = \begin{cases} X & x = y_0 \\ \emptyset & \text{sonst} \end{cases}$.

Definition 7.20

Die Abbildung $f: X \longrightarrow Y$ ist offen abgeschlossen , falls für jede offene abgeschlossene Teilmenge U von X das Bild f(U) offen f(C) abgeschlossen ist.

Bemerkung 7.21

offen
$$\not\Longrightarrow$$
 abgeschlossen

Beispiel 7.22

Betrachte $\Pi: \frac{\mathbb{R}^2 \longrightarrow \mathbb{R}}{(x,y) \longmapsto x}$ mit euklidischer Topologie. Π ist offen, aber nicht abgeschlossen: Betrachte $x \cdot y = 1 \mapsto x \neq 0$.

abgeschlossen $x \mapsto x \neq 0$.

abgeschlossen $x \mapsto x \neq 0$.

Beispiel 7.23

Sei $X \longrightarrow Y$ unendlich mit koendlicher Topologie. Diese Abbildung ist abgeschlossen, aber nicht offen.

Definition 7.24

Ein Homö
omorphismus $f: X \longrightarrow Y$ ist eine bijektive stetige Abbildung derart, dass die
 $f^{-1} \text{auch stetig}$ mengentheoretische Abbildung f offen ist.
 f abgeschlossen

Definition 7.25

(X,T) topologischer Raum. Die Menge $K\subset X$ ist kompakt, falls jede offene Überdeckung $K\subset\bigcup_{i\in I}\underbrace{U_i}_{\text{offen}}$ eine endliche Teilüberdeckung besitzt: Es gibt $i_1,\ldots,i_n\in I$ mit $K\subset U_{i_1}\cup\cdots\cup U_{i_n}$. (X,T) ist kompakt, wenn X kompakt ist.

Bemerkung 7.26 • Jede endliche Menge ist kompakt

• $f: X \longrightarrow Y$ stetige Abbildung, $K \subset X$ kompakt $\Rightarrow f(K)$ kompakt in Y.

Beweis. Zu zeigen: f(K) kompakt.

$$f(K) \subset \bigcup_{i \in I} \underbrace{V_i}_{\text{offen in } Y} \Rightarrow K \subset f^{-1}(f(K)) \subset \bigcup_{i \in I} \underbrace{f^{-1}(V_i)}_{\text{offen}}$$
$$\Rightarrow K \subset f^{-1}(V_{i_1}) \cup \cdots \cup f^{-1}(V_{i_n})$$
$$\Rightarrow f(K) \subset \underbrace{f(f^{-1}(V_{i_1})}_{\subset V_{i_1}} \cup \cdots \cup \underbrace{f(f^{-1}(V_{i_n}))}_{\subset V_{i_n}}$$

Lemma 7.27

 $K \subset X$ kompakt. $C \subset X \Longrightarrow C$ kompakt.

Beweis. Sei $C \subset \bigcup_{i \in I} \underbrace{U_i}_{\text{offen}}$. C abgeschlossen $\Longrightarrow X \setminus C$ offen.

$$K \subset X = (X \setminus C) \cup C = (X \setminus C) \cup \bigcup_{i \in I} U_i$$

$$\stackrel{K \text{ kompakt}}{\hookrightarrow} C \subset K \subset (X \setminus C) \cup U_{i_1} \cup \cdots \cup U_{i_n}$$

$$\Longrightarrow C \subset U_{i_1} \cup \cdots \cup U_{i_n}$$

Lemma 7.28

X Hausdorff, $K \subset X \Longrightarrow K$ abgeschlossen.

Beweis. Es genügt zu zeigen, dass wenn $x \notin K$, dann ist x kein Häufungspunkt von K.

$$V^{y_1} \cup \cdots \cup V^{y_n}$$
 für $y_1, \ldots, y_n \in K$.
Setze $U = \bigcap_{i=1}^n U_{y_i}^x \ni x$ offen. Zu zeigen bleibt: $U \cap \underbrace{K}_{=K \setminus \{x\}} = \emptyset$.

$$U \cap K \subset U \cap (\bigcup_{i=1}^{n} V^{y_i}) = \bigcup U \cap V^{y_i} \subset U^x_{y_i} \cap V^{y_i} \underset{\text{n. Def.}}{=} \emptyset \Rightarrow x \text{ ist kein Häufungspunkt.} \quad \Box$$

Folgerung 7.29

X Hausdorff, $(K_i)_{i \in I}$ kompakte Teilmengen. $\Longrightarrow \bigcap_{i \in I} K_i$ kompakt.

Beweis.
$$\bigcap_{i \in I} \underbrace{K_i}_{\text{abg.}}$$
 abgeschlossen. $\stackrel{(7.28)}{\Longrightarrow} \bigcap_{i \in I} K_i$ kompakt. \square

Folgerung 7.30

 $f: X \longrightarrow Y$ stetig, X, Y topologische Räume.

Y Hausdorff $\Longrightarrow f$ abgeschlossen

Beweis. Sei
$$C \subset X$$
 abgeschlossen. $\Longrightarrow C$ ist kompakt $\Longrightarrow \underbrace{f(C)}_{\subset Y \text{ Hausdorff}}$ ist kompakt $\Longrightarrow f(C)$ abgeschlossen. \Box

8 Stoneraum von Typen einer Theorie

Sei T eine konsistente Theorie in der Sprache \mathcal{L} . Ein n-Typ ist eine Menge von \mathcal{L} -Formeln in den Variablen x_1, \ldots, x_n , welche endlich konsistent bezüglich T ist, und maximal mit dieser Eigenschaft bezüglich Inklusion.

Gegeben $\varphi_1, \ldots, \varphi_m \in p$. Dann ist $T \cup \{ \exists \vec{x} (\bigwedge_{i=1}^m \varphi_j[\vec{x}]) \}$ konsistent.

Bemerkung 8.1

Wenn T vollständig ist, dann gilt

$$S_n(T) = S_n^{\mathcal{A}}(\emptyset)$$

für jedes Modell $\mathcal{A} \models T$, wobei $S_n^{\mathcal{A}}(\emptyset)$ die Menge aller Typen $p(x_1, \ldots, x_n)$ in n Variablen ist, sodass $\varphi_1, \ldots, \varphi_m \in p$, $\mathcal{A} \models \exists \vec{x} (\bigwedge_{i=1}^m \varphi_j(\vec{x}))$.

<u>Häufig:</u> \mathcal{A} eine \mathcal{L} -Struktur, $B \subset A : S_n^{\mathcal{A}}(B) = S_n(\operatorname{Th}(\mathcal{A}, b)_{b \in B})$

Definition 8.2

Gegeben $\varphi = \varphi[x_1, \dots, x_n]$, setze

$$[\varphi] = \{ p \in S_n(T) \mid \varphi \in p \}$$

Bemerkung 8.3

Typen sind unter Deduktion abgeschlossen.

$$[\varphi \wedge \psi] = [\varphi] \cap [\psi]$$
$$[\varphi \vee \psi] = [\varphi] \cup [\psi]$$
$$[\neg (x_1 \dot{=} x_1)] = \emptyset$$
$$[\neg \varphi] = S_n(T) \setminus [\varphi]$$
$$[(x_1 \dot{=} x_1)] = S_n(T)$$

Bemerkung 8.4

$$[\varphi] \subset [\psi] \Longleftrightarrow T \models \ \forall \vec{x} (\varphi[\vec{x}] \to \psi[\vec{x}])$$

Insbesondere $[\varphi] = [\psi]$ genau dann, wenn φ, ψ logisch äquivalent modulo T sind.

Beweis. $\underline{,}\Rightarrow$ ": Falls $T \models \forall \vec{x}(\varphi[\vec{x}] \rightarrow \psi[\vec{x}]) \Longrightarrow T \cup \{ \exists \vec{x}(\varphi[\vec{x}] \land \neg \psi[\vec{x}]) \}$ konsistent. Das heißt die Menge $\{(\varphi[\vec{x}] \land \neg \psi[\vec{x}]) \}$ ist ein partieller Typ.

$$\xrightarrow{\text{Zorn}} \text{ es gibt } p \in S_n(T) \text{ mit } (\varphi[\vec{x}] \land \neg \psi[\vec{x}]) \in p \underset{\substack{p \text{ unter} \\ \text{Deduktion} \\ \text{abgeschlossen}}}{\Longrightarrow} p \in [\varphi] \setminus [\psi].$$

$$, \Leftarrow ": p \in [\varphi] \Rightarrow \varphi \in p \xrightarrow{T \models \forall \bar{x}} \xrightarrow{(\varphi[\bar{x}] \to \psi[\bar{x}])} \psi \in p \Rightarrow p \in [\psi].$$

Satz 8.5

Die Kollektion $\{[\varphi]\}_{\varphi[x_1,\dots,x_n] \text{ eine } \mathcal{L}\text{-Formel}}$ bildet eine Basis der Topologie auf $S_n(T)$ derart, dass $S_n(T)$ 0-dimensional, Hausdorff und kompakt ist.

Beweis. Basis: \checkmark wegen (8.3).

<u>0-dimensional:</u> $S_n(T) \setminus [\varphi] = \underbrace{[\neg \varphi]}_{\text{offen}} \Rightarrow [\varphi]$ ist abgeschlossen (und offen).

<u>Hausdorff:</u> Seien $p \neq q \in S_n(T) \Rightarrow$ es gibt $\varphi \in p \setminus q \Rightarrow p \in [\varphi], q \in [\neg \varphi]$ disjunkt.

 $\underline{S_n(T)}$ kompakt: Es genügt zu zeigen, dass jede offene Umgebung der Form $\bigcup_{i \in I} [\varphi_i]$ eine endliche Überdeckung besitzt, denn:

$$X = \bigcup_{i \in I} \underbrace{U_i}_{= \bigcup_{i \in I} B_{ij}} = \bigcup_{\substack{i \in I \\ j \in J}} B_{ij} \longrightarrow X \subset \underbrace{B_{i_1 j_1} \cup \cdots \cup B_{i_n j_n}}_{\subset U_{i_1}}$$

Also: $S_n(T) = \bigcup_{i \in I} [\varphi_i] \Rightarrow \emptyset = \bigcap_{i \in I} [\neg \varphi_i] \stackrel{\text{Kompaktheitssatz}}{\Longrightarrow} \{\neg \varphi_i[\vec{x}]\}_{i \in I} \text{ nicht endlich erfüllbar in } T \Rightarrow \text{ es gibt } \varphi_{i_1}, \dots, \varphi_{i_n} \text{ sodass } T \cup \{\exists \vec{x} (\bigwedge_{j=1}^n \neg \varphi_{ij}[\vec{x}])\} \text{ inkonsistent.}$

Also
$$T \models \forall \vec{x} (\bigvee_{j=1}^{n} \varphi_{ij}[\vec{x}]) \stackrel{(8.3)}{\Longrightarrow} S_n(T) = [\varphi_{i_1}] \cup \cdots \cup [\varphi_{i_n}]$$
. Sonst gäbe es $p \in S_n(T) \setminus \bigcup_{j=1}^{n} [\varphi_{ij}] \Rightarrow \neg \varphi_{i_1}, \dots, \varphi_{i_n} \in p \underset{\substack{p \text{ endlich} \\ \text{erfüllbar}}}{\Longrightarrow} T \cup \{\{\exists \vec{x} (\bigwedge_{j=1}^{n} \neg \varphi_{ij}[\vec{x}])\}$