

FERMI Data Analysis

Simon Schreck

January 2018

Stockholm University
Department of Physics, Chemical Physics Division

Content

- Experiment Overview
- Data acquisition and data structure
- Data sources
- Data reduction
 - Data collection
 - To come... Data Binning

Experiment Overview

Each black box in the diagram represents a data source that is described in more detail on the following pages.

All data sources are read out shot-to-shot.

Note: Not for all runs all data sources are saved! **XES** Spectro-Time of flight **TFY XAS** meter mass spectrometer detector **Online/Upstream** spectrometer Fermi FEL Sample X-ray beam **Optical laser** Laser diode **Optical laser** beam

Delay stage

Data Acquisition and Folder Structure

For XAS Runs

For one XAS run (e.g. 'XAS001') we recorded several FEL photon energies and for each FEL photon energy several delays. For each delay we recorded a number of shots - typically a few 100.

This resulted in the following folder structure for the raw data:

work

Delay File Structure (HDF5)

Raw data file

▼ 5 E286p00eV_Ver_367673584.h5 The delay files are in HDF5 format. ExperimentalComments ▼ 📟 FEL Each delay file contains many FelSource variables of different format. Only ► Cin KB PadresShutter a few of them are of interested for ₩ ValveDPI3 us. A few examples on the right. ▼ ■ Laser Baslerlmage 1 XAS detector image Baslerlmage 2 XAS001 BaslerInt1 combined BaslerInt2 E285p50eV_Ver Delay stage ■ DelayPosVector rawdata m DelaySeedps E285p50eV_Ver_367660832.h5 The Delay vs FEL E285p50eV_Ver_367661244.h5 Energy1 E285p50eV_Ver_367661545.h5 Lecroy E285p50eV_Ver_367661851.h5 Time of flight mass spec Wave1 E285p50eV_Ver_367662145.h5 C PAM E285p50eV_Ver_367662451.h5 Bunch (Shot) ID the bunches E285p50eV_Ver_367662775.h5 photon_diagnostics E285p50eV_Ver_367663070.h5 ▶ Calay_Line E285p50eV_Ver_367663375.h5 ▶ ☐ FEL02 E285p50eV_Ver_367663680.h5 ▶ Call Filters work Online/Upstream Spectrometer Spectrometer E286p00eV_Ver Pixel2micron rawdata Mavelength (F E286p00eV_Ver_367673228.h5 WavelengthSpan mhor_area E286p00eV_Ver_367673584.h5 mhor_pos E286p00eV_Ver_367673919.h5 mhor_sigma E286p00eV_Ver_367674247.h5 the hor_spectrum the hor_spectrum is a second the hor_spectrum. F E286p00eV_Ver_367674572.h5 mert_pos E286p00eV_Ver_367674901.h5 m vert_sigma E286p00eV_Ver_367675237.h5

5

E286p00eV_Ver_367675561.h5

work

m vert_spectrum

▼ m photon_source

SeedLaser

Online/Upstream Spectrometer

The **online/upstream spectrometer** is a CCD camera that sees a small fraction of the incident x-ray beam, which is diffracted (energy dispersed) onto the camera.

We use only the projection onto the dispersive direction, which is called ,hor_spectrum' and saved under:

/photon_diagnostics/Spectrometer/hor_spectrum

From ,hor_spectrum' we extract:

- Incident intensity (I0) = area under peak
- Incident photon energy = peak position
- Bandwidth of incident photon energy = peak width

Delay stage

The **delay stage** is a linear drive that moves two mirrors which ultimately changes the path length of the optical laser and with this the delay between X-ray and optical laser pulse.

The delay stage position in mm is saved under:

/Laser/DelayPosVector

With the delay stage position and the time-zero position the delay can be calculated for each shot in femtoseconds.

Laser diode

The **laser diode** is a photodiode that sees a fraction of the incident optical laser beam and with this supplies an intensity that is proportional to the laser intensity on the sample.

The laser diode reading in µJ is saved under:

/Laser/Energy1

For now we don't use the laser diode in the analysis, but it is saved in the processes data in case we need it later.

TFY XAS detector

The **TFY** (total fluorescence yield) **XAS** detector is a CCD camera that looks at the phosphor screen behind our MCP x-ray detector. Each bright spot, which we called a <u>blob</u>, on the detector corresponds to one photon.

The integrated intensity on the camera (after proper background treatment) is promotional to the total fluoresce coming from the sample and with this prontoional to the absorption.

The camera image is saved under:

/Laser/BaslerImage2

For some runs also the integrated intensity is saved directly under:

/Laser/BaslerInt2

XES Spectrometer

The **XES Spectrometer** is a CCD camera in the same way as for the TFY XAS detector. However, since the x-rays are dispersed by a grating before hitting the XES CCD camera, one dimension of the camera is the dispersive direction.

Projection onto the dispersive direction under consideration of the curvature yields the x-ray emission spectrum.

The camera image is saved under:

/Laser/BaslerImage1

For some runs also the integrated intensity is saved directly under:

/Laser/BaslerInt1

XES analysis is not yet included in the scripts! (As of Jan 2018)

The above image is the sum of many 100 shots. On a single shot there will be only a 1 to a few blobs!

Time of Flight Mass Spectrometer

The **time of flight mass spectrometer** records molecules of a specific mass that desorbed from the surface as a function of time after the optical laser hit the sample.

In the data source the arrival time of each count is saved in

units of 5e-9 sec.

The arrival times for each shot are saved under:

/Lecroy/Wave1

Data Reduction Structure

The reduction of the raw data is done in two steps:

Step 1: Data Collection (script: 16_data_collection.ipynb)

- In this step all relevant data from the raw HDF5 files (delay files) are collected and saved in a new HDF5 file.
- For the more complex data sources (e.g. XAS detector or online/upstream spectrometer) the data are reduced to more compact formats. E.g. for the XAS detector the image is reduced to a single number representing the integrated intensity in the image.
- The data from all delay files within one photon energy folder are combined in a single HDF5 file with the name run_photonenergy_polarization_col.h5 e.g.: XAS001_E285p50eV_Ver_col.h5
 This combined file is saved in the ,combined' folder of the run folder.
- In the combined files the data from each data source is saved for each shot.

Step 2: Data Binning

- In this step all combined files for a number of selected runs (or a single run) are loaded.
- Filters are applied on a shot-to-shot basis on all shots in the selected runs. E.g. Filtering out all shots with an incident intensity below a certain value.
- All good shots (the ones not filtered out) are then binned into a 2d-raster with dimensions photon energy X delay.
- ... more infos to come

Data Collection

(script: 16_data_collection.ipynb)

The data collection script consists of three cells:

1. Initialization

Initialize python by loading packages and defining some settings.

This cell needs to be run only once after starting the juyter notebook.

2. Define Parameters

Define which data to collect and parameters for e.g. the XAS detector camera.

This cell needs to run whenever you have changed a parameter defined here.

3. Do the Data Collection

This cell performs the main data collection.

In the top part of the cell you can define which run(s) (run, run type, beamtime) to collect the data from.

Also you have to set correct main data path.

3. Do the Data Collection

(Cell 3 in script: 16_data_collection.ipynb)

The main data collection consists of a three nested loops with the following structure:

1. Loop over selected runs

- Collect data which are global for the entire run (harmonic, polarization)

1.1. Loop over photon energy folders for this run

- Check that all data that should be collected do exist (checks this for the first delay file in the first photon energy folder)

1.1.1. Loop over delay files for this photon energy folder

- Collect the data for all delay files
- Save the collected data for this photon energy folder in the combined file.

Collected Date in the Combined File

After running the Data Collection

Global data (not shot-to-shot)

FEL_Avg_Spectrum and FEL_eV
 each 1d array with length 1000
 Average spectrum of all shots form the online/upstream spectrometer
 (FEL_Avg_Spectrum is the intensity and FEL_eV is the photon energy)

fitfail_counter

integer number

Number of shots for which the gaussian fit of the FEL spectrum failed.

Typically 0...10

xas_thr
 floating point number

Intensity threshold for the XAS meteor images. This number is set in the data collection parameters.

harmonic
 integer number
 FEL harmonic

Polarisation
 integer number
 FEL polarization: 1 = linear vertical, 0 = linear horizontal

t0

floating point number

Zime zero position on the delay stage in mm as it was set during data acquisition.

NOTE: THIS IS NOT THE FINAL CALIBRATED TIME ZERO!

Collected Date in the Combined File

After running the Data Collection

Shot-to-shot data

- Gauss_amps, Gauss_centers and Gauss_width
 each 1d array with length of number of shots
 Amplitude, central photon energy and photon energy width of the incident x-ray pulse retrieved from a gauss fit to the online spectrometer.
- i0
 1d array with length of number of shots
 Incident x-ray intensity calculated as the intensity in the online spectrometer over a region of interest.
- delay_position and laser_int
 each 1d array with length of number of shots
 Delay stage position in mm and laser diode reading in µJ
- MASSSPEC
 Unused for now...
- xas_int and xas_tfy
 each 1d array with length of number of shots
 Both give the integrated intensity on the XAS detector (difference is the thresholding).

USE xas_tfy FOR NOW!

- xes_intUnused for now...
- bunch_id
 each 1d array with length of number of shots
 Unique number identifying each shot. Monotonically increasing from shot to shot.

