Retrofitting the Readout of a Large Interferometer in Washington

by

Nicolas de Mateo Smith

Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2035

© Nicolas de Mateo Smith, MMXXXV. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part.

Author	
	Department of Physics
	May 18, 2035
Certified by	
·	Nergis Mavalvala
	Professor
	Thesis Supervisor
Accepted by	
	Somebody
	Somebody

Retrofitting the Readout of a Large Interferometer in Washington

by

Nicolas de Mateo Smith

Submitted to the Department of Physics on May 18, 2035, in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

The road approaching a direct detection of Gravitational Waves is long and hard, I am just one of many to walk this road. Here is my story.

Thesis Supervisor: Nergis Mavalvala

Title: Professor

Acknowledgments

This is the acknowledgements section. You should replace this with your own acknowledgements.

Contents

1	Gra	vitatio	onal Radiation	13
2	Exp	oerime	ntal Efforts for Detection	15
	2.1	iLIGO	Interferometers	15
3	Inte	erferon	meter Retrofitting	17
	3.1	Increa	ased Input Laser Power	17
	3.2	Re-en	gineered Thermal Compensation	17
	3.3	Non-n	modulated Signal Extraction	17
		3.3.1	Optical Gain as Compared to RF Modulated Extraction	17
		3.3.2	Laser Noise Coupling	17
		3.3.3	The Need for a Mode Cleaner at the Output Port	17
		3.3.4	Quantum Shot Noise Reduction with Squeezed Light Injection	17
4	$\operatorname{Th}\epsilon$	e Outp	out Mode Cleaner	19
	4.1	Optic	al Design	19
		4.1.1	Optical Parameters	19
	4.2	Mecha	anical Design and Seismic Isolation	19
	4.3	Servo	mechanisms	19
		4.3.1	Cavity Length Control	19
		4.3.2	Alignment Control	19
	4.4	Noise	Sources Introduced in the OMC	19
		4.4.1	OMC Length Noise	19

4.4.2	Beam Jitter Noise	19
A Tables		21
B Figures		23

List of Figures

B-1	Armadillo slaying lawyer	23
B-2	Armadillo eradicating national debt.	24

List of Tables

A.1	Armadillos .									_						_			_																2	1
1 1 · 1	i i i i i i i i i i i i i i i i i i i	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	_	_

Gravitational Radiation

Experimental Efforts for Detection

2.1 iLIGO Interferometers

Interferometer Retrofitting

- 3.1 Increased Input Laser Power
- 3.2 Re-engineered Thermal Compensation
- 3.3 Non-modulated Signal Extraction
- 3.3.1 Optical Gain as Compared to RF Modulated Extraction
- 3.3.2 Laser Noise Coupling
- 3.3.3 The Need for a Mode Cleaner at the Output Port
- 3.3.4 Quantum Shot Noise Reduction with Squeezed Light Injection

The Output Mode Cleaner

- 4.1 Optical Design
- 4.1.1 Optical Parameters
- 4.2 Mechanical Design and Seismic Isolation
- 4.3 Servomechanisms
- 4.3.1 Cavity Length Control
- 4.3.2 Alignment Control
- 4.4 Noise Sources Introduced in the OMC
- 4.4.1 OMC Length Noise
- 4.4.2 Beam Jitter Noise

Sensitivity to Beam Motion

Sources of Beam Jitter

Appendix A

Tables

Table A.1: Armadillos

Armadillos	are
our	friends

Appendix B

Figures

Figure B-1: Armadillo slaying lawyer.

Figure B-2: Armadillo eradicating national debt.

Bibliography