

Avance Preliminar del Proyecto

1. Información del Proyecto

- Nombre del Proyecto:
 - o DreamForCare
- Nombre Equipo:
 - o DreamInCode
- Equipo:
 - Emilio Conejo Fernández
 - Samuel Solano Molina
 - Sebastián Arrieta Guzmán
- Roles:
 - o Emilio: Ingeniero desarrollo en borde Coordinador
 - Samuel: Ingeniero de IA
 - Sebastián: Ingeniero de aplicación

2. Descripción y Justificación

- Problema que se aborda:
 - Muchas personas adultas mayores tienen dificultades para utilizar dispositivos tecnológicos modernos debido a interfaces poco amigables, limitaciones físicas o cognitivas, y falta de acompañamiento constante. Estas barreras dificultan su acceso a información, recordatorios, asistencia cotidiana o comunicación con familiares y servicios médicos.
- Importancia y contexto:
 - Con el envejecimiento progresivo de la población, existe una necesidad creciente de soluciones tecnológicas accesibles que les brinden autonomía, seguridad y compañía. El proyecto busca responder a esta necesidad mediante un asistente de voz basado en microcontrolador, que interactúe con los usuarios en lenguaje natural y se adapte a las características de cada persona.
- Usuarios/beneficiarios:
 - o Personas adultas mayores (principal grupo objetivo).
 - Personas con limitaciones visuales o motoras.
 - Familiares o cuidadores que necesitan apoyo para el monitoreo o asistencia.
 - Centros de atención a adultos mayores o entornos domiciliarios.

3. Objetivos del Proyecto

- Objetivo General:
 - Desarrollar un asistente conversacional de bajo costo, basado en microcontrolador, capaz de reconocer la voz de los usuarios, interpretar sus solicitudes en lenguaje natural y generar respuestas personalizadas, orientado principalmente a mejorar la accesibilidad tecnológica de personas adultas mayores.
- Objetivos Específicos:
 - Diseñar una arquitectura que integre reconocimiento de voz, procesamiento de lenguaje natural y síntesis de voz en un dispositivo físico.
 - Desarrollar una base de datos para almacenar perfiles de usuario, historial de conversaciones, condiciones de salud y recordatorios.
 - Incorporar funciones básicas de asistencia, como recordatorios de medicación, respuestas a preguntas frecuentes y mensajes personalizados.

4. Requisitos Iniciales

- Lista breve de lo que el sistema debe lograr:
 - Requisito 1: El sistema debe captar la voz del usuario y transformarla en texto mediante un sistema de reconocimiento de voz.
 - Requisito 2: El sistema debe interpretar el texto recibido y generar respuestas apropiadas mediante procesamiento de lenguaje natural.
 - Requisito 3: El sistema debe generar una respuesta en voz clara y pausada, tomando en cuenta las preferencias del usuario.
 - Requisito 4: Debe almacenar perfiles de usuario con detalles personalizados (nombre, condiciones médicas, idioma preferido, etc.).
 - Requisito 5: El sistema debe permitir registrar y consultar historial de conversaciones y recordatorios.

5. Diseño Preliminar del Sistema

• Arquitectura inicial (diagrama):

- Componentes previstos:
 - o Microprocesador: Raspberry PI Zero 2W
 - Sensores/actuadores:
 - o Periferal: Audifonos BT con micrófono
 - o LLM/API: Open AI
 - o Librerías y herramientas: Python, Flask, Pvporcupine, Sounddevice, Numpy

6. Plan de Trabajo

• Cronograma preliminar:

Fase	Actividades Principales	Fecha Estimada
1	Investigación técnica (voz, PLN, TTS, microcontroladores	16/07/2025
	Diseño base de datos y arquitectura del sistema	
2	Pruebas de Endpoints, API y Base de Datos	23/07/2025
3	Implementación del prototipo (voz -> texto -> respuesta)	31/07/2025
4	Personalización de usuarios y pruebas	07/08/2025
6	Página Web	14/08/2025
7	Integración con hardware y mejoras	14/08/2025
8	Documentación y presentación final	16/08/2025

- Riesgos identificados y mitigaciones:
 - Riesgo 1: Limitaciones de hardware (procesamiento local de voz).
 Mitigación: Utilizar microcontroladores con soporte de red (ESP32, RPi).
 - **Riesgo 2:** Rechazo por parte del usuario final (por miedo o desconfianza tecnológica).

Mitigación: Diseño amigable, interacción natural, posibilidad de personalización con nombre y voz familiar.

Riesgo 3: Pérdida de datos o problemas de privacidad.
 Mitigación: Uso de encriptación, consentimiento explícito, y diseño de base de datos con medidas de seguridad.