

목차

개요

목적: IoT 네트워크 공격 유형을 분류하기 위해 랜덤 포레스트와 XGBoost 모델의 성능을 비교 분석

데이터셋: IoT 네트워크 트래픽 데이터셋 (RT_IOT2022.csv) 목표: 고성능 분류 모델을 활용해 다양한 공격 유형을 정확하게 탐지

데이터셋 설명

- 총 데이터 포인트: 123,117개
- 특성 수: 85개 (숫자형 82개, 범주형 3개)
- 목표 레이블 (Attack_type): 12개의 공격 유형 (예: 'ARP_poisioning', 'DDOS_Slowloris', 'MQTT_Publish' 등)


```
1 print(data['Attack_type'].unique())

['MQTT_Publish' 'Thing_Speak' 'Wipro_bulb' 'ARP_poisioning'
'DDOS_Slowloris' 'DOS_SYN_Hping' 'Metasploit_Brute_Force_SSH'
'NMAP_FIN_SCAN' 'MMAP_OS_DETECTION' 'NMAP_TCP_scan' 'NMAP_UDP_SCAN'
'NMAP_XMAS_TREE_SCAN']
```

데이터셋설명

- 전처리
 - 숫자형 데이터는 StandardScaler()를 사용하여 평균이 0, 분산이 1이 되도록 표준화
 - 이는 다양한 범위를 가진 데이터가 모델에 균형 있게 반영되도록 하기 위함.
 - 범주형 데이터는 OneHotEncoder()를 사용하여 각 카테고리마다 별도의 열을 생성해 이진형으로 변환.
 - 범주형 변수를 수치형으로 변환해 모델이 이를 효과적으로 학습하도록 하기 위함.

```
1 # 報告/組入性 福岡田 崔敏 (後衛、報命, 20% 昭元年)
2 % frain, % test, y_train, y_test = train_test_split(%, y, test_size=0.2, random_state=42)
3 print(%_train.shape)
4 print(%_train.shape)
5 print(y_train.shape)
6 print(y_train.shape)
7 (98493, 83)
(24624, 83)
(98493,)
(24624,)
```

랜덤 포레스트 모델

- 개념: 랜덤 포레스트는 여러 개의 결정 트리(Decision Tree)를 앙상블하여 예측 성능을 높이는 방법입니다. 각 트리는 서로 다른 데이터 샘플과 특성을 이용해 학습하며, 최종 예측값은 다수결 또는 평균값으로 결정됩니다.
- 장점:
- 과적합 방지: 다수의 트리를 이용하여 과적합(overfitting)을 방지하고 안정적인 예측이 가능함.
- 높은 정확도: 다양한 데이터 패턴을 학습할 수 있어 예측 성능이 높음.
- 사용 용이성: 다양한 데이터 타입과 크기에서도 잘 작동함.
- 단점:
- 해석성 낮음: 여러 트리가 결합된 결과물이므로 개별 예측의 해석이 어려움.
- 속도: 트리가 많아질수록 학습 및 예측 시간이 오래 걸릴 수 있음.
- 주요 특징:
- 배깅(Bagging) 기법 사용: 무작위 데이터 샘플로 트리를 생성하여 예측의 다양성과 안정성을 높임.
- 분산 감소: 여러 트리의 예측을 결합해 예측의 변동성을 줄임.

XGBoost 모델

- 개념: XGBoost는 그래디언트 부스팅을 개선한 방법으로, 순차적으로 트리를 추가하면서 오류를 줄여 나가는 앙상블 기법입니다. 이전 트리의 오류를 다음 트리가 보완해나가며, 성능과 속도 면에서 뛰어난 최적화가 이루어집니다.
- 장점:
- 높은 예측 성능: 부스팅 기법을 이용해 오차를 단계적으로 줄여 높은 성능을 보임.
- 효율성: CPU와 메모리 효율이 뛰어나고, 대규모 데이터에서도 빠르게 학습 가능.
- 다양한 기능: 결측값 처리, 조기 종료 기능으로 최적의 성능 달성 가능.
- 단점:
- 튜닝 필요성: 하이퍼파라미터가 많아 최적의 성능을 위해 세밀한 조정이 필요함.
- 과적합 위험: 트리를 순차적으로 학습하기 때문에 과적합의 위험이 있음.
- 주요 특징:
- 그래디언트 부스팅 사용: 각 트리가 이전 예측의 오류를 보완해 나가면서 성능을 향상시킴.
- L1, L2 정규화: 모델의 복잡도를 줄이고 과적합을 방지하기 위해 정규화 기법 사용.

모델 성능 비교

모델 성능 비교

- **정확도비교**: 랜덤 포레스트(99.79%) vs XGBoost(99.81%)
- 소수 클래스 성능: XGBoost가 소수 클래스에서 좀 더 높은 성능을 보임
- 추천 모델: XGBoost 실시간 탐지 시스템에서 성능이 우수할 것으로 예상

모델성능비교

o=	호 • 1 2 # 전명 포레스트 평가 3 evaluate_model("Random Forest", y_test, rf_preds) 4												
	₹	Rando	m Forest M 0.9978882		3								
		Classific											
					prec:	precision recall f1-			f1-score	-score support			
		ARP_poisioning DOS_Slowloris DOS_SWN_Hping MOTT_Publish Metasploit_Brute_Force_SSH MMAP_FIN_SCAN NMAP_FIN_SCAN NMAP_TOS_DETECTION NMAP_TOS_DETECTION NMAP_TOS_DETECTION NMAP_TOS_DETECTION TOS_SPEAK Wipro_bulb accuracy macro avg		owloris N_Hping Publish rce_SSH IN_SCAN TECTION CP_scan DP_SCAN EE_SCAN g_Speak ro_bulb ccuracy	0.98 0.99 1.00 1.00 0.71 1.00 1.00 0.99 1.00		0.99 0.98 1.00 1.00 0.83 0.67 1.00 0.99 0.99 0.99		0.99 0.98 1.00 1.00 0.77 0.80 1.00 0.99 1.00 0.99 0.95	2 2 2	1578 100 8897 871 6 3 393 220 489 384 1625 58		
		Confusion [[1567 [Matrix:	0 0 2 0 870 0 0	1 0 0 5 0 0 1 0	0 0 0 0 0 2 0 0 0	0 0 0 0 0 393 0 0	220 0 0 0 0 0 0 0		0 0 0 0 0 0	8 0 0 0 0 0 0 2 0 1604	0] 0] 0] 0] 0] 0] 0] 0] 0] 0]	

결과를 통해 알 수 있는 것

- 1. 각 모델의 전반적인 성능
- 랜덤 포레스트와 XGBoost 모델 모두 매우 높은 정확도를 기록했습니다.
 - 랜덤 포레스트: 99.79%
 - XGBoost: 99.81%
- 두 모델 모두 IoT 네트워크의 다양한 공격 유형을 효과적으로 분류할 수 있는 능력을 보여줍니다.
- 2. 주요 공격 유형에 대한 높은 분류 정확도
- DOS SYN Hping, NMAP TCP scan, NMAP OS DETECTION과 같은 주요 공격 유형에서 두 모델 모두 완벽에 가까운 분류 정확도를 보였습니다.
- 각 주요 공격 유형의 탐지율이 높은 것은 IoT 환경에서 발생할 수 있는 주된 보안 위협을 신속하게 탐지할 수 있음을 의미합니다.
- 3. 소수 클래스에 대한 성능 차이
- XGBoost는 Metasploit_Brute_Force_SSH와 Wipro_bulb 등 소수 클래스에 대해 비교적 안정적인 성능을 보였으며, 랜덤 포레스트보다 다소 높은 정밀도와 재현율을 기록했습니다.
- 이로 인해 XGBoost는 드문 공격이나 특이한 패턴의 공격 탐지에서도 더 강력한 성능을 발휘할 수 있습니다.
- 4. 모델의 적합성 및 최적화 방향
- 실시간 탐지: XGBoost는 고성능을 유지하면서도 드문 유형의 공격을 더 잘 탐지할 수 있어. 실시간 IoT 공격 탐지 시스템에 적합합니다.
- IoT 보안 강화: 이 결과를 통해 각 공격 유형에 특화된 탐지 시스템을 구축하여 IoT 네트워크의 보안을 강화할 수 있습니다.
- 향후 개선 사항: 드문 공격 유형에 대한 데이터를 추가 수집하고, 하이퍼파라미터 최적화를 통해 소수 클래스 성능을 더욱 향상시킬 여지가 있습니다.

감사합니다