JP6136311A Page 1 of 21

Original document

AMINE-CONTAINING BLOCK POLYMER FOR INK JET INK CONTAINING PIGMENT

Publication JP6136311 (A)

number:

Publication 1994-05-17

date:

SHIEAUUFUWAA MAA; UOORUTAA REIMONDO Inventor(s):

HAATORAA; HARII JIYOZEFU SUPINETSURI; AASAA

CHIYAARUZU SHIYOO +

DU PONT ± Applicant(s):

Classification:

- international: C08F293/00; C08F297/00; C09D11/00; C09D11/10;

C08F293/00; C08F297/00; C09D11/00; C09D11/10; (IPC1-

7): C08F293/00; C09D11/00; C09D11/10

- European: C09D11/00C2B4

Application JP19930029513 19930219

number:

Priority number US19920839533 19920220

(s):

View INPADOC patent family

View list of citing documents

Abstract not available for JP 6136311 (A)

Abstract of corresponding document: **EP 0556650 (A1)**

Translate this text

An aqueous ink jet ink composition having improved dispersion stability comprises an aqueous carrier medium, a pigment having a pH value below 7.0, and an AB block polymer consisting of an A block comprising a hydrophobic polymer having at least one basic amine functional groups, and a B block comprising a hydrophilic polymer selected from the group consisting of nonionic polymers and polymers containing acidic functional groups.

The EPO does not accept any responsibility for the accuracy of data and information originating from other authorities than the EPO; in particular, the EPO does not guarantee that they are complete, up-todate or fit for specific purposes. Description not available for JP 6136311 (A)

Description of corresponding document: EP 0556650 (A1)

Translate this text

FIELD OF THE INVENTION

This invention relates to aqueous pigmented inks for ink jet printers and, more particularly, to aqueous pigmented inks having improved stability wherein the pigment dispersant is an amine-containing diblock polymer.

file://C:\Documents and Settings\anthony.venturino\My Documents\EPOV3\JP6136311A.... 7/22/2010

Also published as:

JP7116395 (B)

EP0556650 (A1)

EP0556650 (B1)

DE69300173 (T2)

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-136311

(43)公開日 平成6年(1994)5月17日

(51)Int.Cl. ⁵	識別記号	庁内整理番号	FΙ	技術表示箇所
C 0 9 D 11/00	PSZ	7415-4 J		
C 0 8 F 293/00	MRC	7142-4 J		
C 0 9 D 11/10	PTS	7415—4 J		

審査請求 有 請求項の数18(全 16 頁)

(21)出願番号 特願平5-29513

(22)出願日 平成5年(1993)2月19日

(31)優先権主張番号 839533 (32)優先日 1992年2月20日 (33)優先権主張国 米国(US)

(71)出願人 390023674

イー・アイ・デュポン・ドウ・ヌムール・ アンド・カンパニー

E. I. DU PONT DE NEMO URS AND COMPANY

アメリカ合衆国、デラウエア州、ウイルミ ントン、マーケット・ストリート 1007

(72)発明者 シエアウーフワー・マー

アメリカ合衆国ペンシルベニア州19317。 チャツズフォード。 コンステイテユーショ

ンドライブ29

(74)代理人 弁理士 高木 千嘉 (外2名)

最終頁に続く

(54)【発明の名称】 顔料配合インクジェットインク用アミン含有ブロックポリマー

(57)【要約】

【目的】 改善された分散安定性を有する水性インクジ ェットインクの提供。

【構成】 この水性インクジェットインクは水性担体媒 質、7.0より低いpH値を有する顔料、並びに少なくと も1つの塩基性アミン官能基を有する疏水性ポリマーよ りなるAブロックと、非イオン性ポリマー及び酸性官能 基を含有するポリマーよりなる群から選択される親水性 ポリマーよりなるBブロックとよりなるABブロックポ リマーよりなる。

【特許請求の範囲】

【請求項1】 (a) 水性担体媒質;

- (b) 7.0より低いpHを有する顔料;並びに
- (c)(1) 少なくとも1つの塩基性アミン官能基を有する疏水性ポリマーを包含するAブロック
- (2) 非イオン性ポリマー及び酸性官能基を有するポリマーよりなる群から選択される親水性ポリマーを包含するBブロックよりなるABブロックポリマーを包含する水性インクジェットインク組成物。

【請求項2】 Aブロックがアミン官能を持つモノマーを重合させることによって製造される請求項1記載のインク。

【請求項3】 Aブロックがジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、セーブチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレート及びジエチルアミノエチルアクリレートよりなる群から選択されるモノマーを重合させることによって製造される請求項2記載のインク。

【請求項4】 Aブロックがアミン含有開始剤を使用して製造される請求項1記載のインク。

【請求項5】 該少なくとも1つのアミン基がAブロックの開放末端にある請求項1記載のインク。

【請求項6】 該少なくとも1つのアミン基がAブロックの中にある請求項1記載のインク。

【請求項7】 該Aブロックが複数のアミン基を有し、 該アミン基の1つがAブロックの開放末端にある請求項 1記載のインク。

【請求項8】 Bブロックがメタクリル酸、アクリル酸、ヒドロキシエチルメタクリレート、エトキシトリエチレングリコールメタクリレートよりなる群から選択されるモノマーから製造される請求項1記載のインク。

【請求項9】 Bブロックが全ブロックポリマーの全重量を基にして $10\sim90\%$ である請求項1記載のインク。

【請求項10】 Bブロックが有機塩基、アルカノールアミン、アルカリ金属水酸化物及びそれらの混合物よりなる群から選択される中和剤で中和される請求項9記載のインク。

【請求項11】 中和剤がアルカリ金属水酸化物である 請求項10記載のインク。

【請求項12】 該インクがインクの全重量を基にして約0.1~15%の顔料、0.1~30%のブロックコポリマー及び70~99.8%の水性担体媒質を含有する請求項7記載のインク。

【請求項13】 水性担体媒質が水又は水と少なくとも 1種の有機溶剤との混合物を包含する請求項1記載のインク。

【請求項14】 有機溶剤が多価アルコールである請求項13記載のインク。

【請求項15】 顔料粒子が約0.005~15ミクロ

ンの大きさを有する請求項1記載のインク。

【請求項16】 該インクが約20~70ダイン/cmの 範囲の表面張力及び20℃において約1.0~10.0cP の範囲の粘度を有する請求項1記載のインク。

【請求項17】 更に表面活性剤を包含する請求項1記 載のインク。

【請求項18】 水性インクジェットインク組成物であって

- (a) インク組成物の全重量を基にして重量で約70% 〜約99.89%の範囲で存在する、水及び水と少なく とも1種の水溶性有機溶剤との混合物よりなる群から選 択される水性担体媒質;
- (b) 7.0より低いpHを有する顔料;
- (c)(1) 少なくとも1つの塩基性アミン官能基を有する疏水性ポリマーを包含するAブロック;及び(2) 非イオン性ポリマー及び酸性官能基を有するポリマーよりなる群から選択される親水性ポリマーを包含するBブロックよりなるABブロックポリマーであって、このABブロックポリマーはインク組成物の全重量を基にして重量で約0.1%~約30%の範囲で存在するもの;並びに
- (d) 表面活性剤を包含し、該インクジェットインクが 20℃において約1.0~約10.0cPの範囲の粘度及び 約30~約70ダイン/cmの範囲の表面張力を有する組 成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、インクジェットプリンター用水性顔料配合インク(pigmented inks)に関し、更に詳細には顔料分散剤がアミン含有ジブロックポリマーである、改善された安定性を有する水性顔料配合インクに関する。

[0002]

【従来の技術】インクジェット印刷は、電子信号に応答する情報、例えばコンピューターによって発生されるものを記録する衝撃を用いない方法である。プリンターの中においては、電子信号は、基材、例えば紙又は透明フィルム上に沈積されるインクの小滴を生じる。インクジェットプリンターは、その信頼性、比較的静かな操作、プリントの質及び低いコストのために市場で広く受け入れられている。熱又はバブルジェットのドロップオンデマンドプリンターが特に成功しており、事務所又は家庭において個人用コンピューターのための出力装置として広く用いられている。

【0003】インクジェットプリンター用インク着色剤として色素及び顔料が共に使用されている。しかし、色素をベースとしたインクは、顔料をベースとしたインクに比していくつかの不利な点を有している。それらは通常きわめて水溶性であり、基材上で乾燥して後もそうである。それらは水と接触することによって再溶解され、

水の流れにさらされる時には消える。又、色素画像は、フェルトペンマーカーと接触するとよごれる。その外、それらは顔料に比して貧弱な光安定性を示し、事務所の蛍光照明の条件下でさえも退色することが知られている。即ち、色素をベースとしたインクジェットインクは、水分抵抗及び比較的大きな光安定性を要求する応用に使用するのには適していないことが多い。しかし、顔料は改善された水及びよごれ抵抗及び改善された光安定性を与える。

[0004]

【発明が解決しようとする課題】インクジェット印刷技術において3つの主なインクに関係した問題がある。それらは(1)プリントの質、(2)乾燥速度及び(3)信頼性である。プリントの質は、光学密度、エッジの鋭さ/フェザリング、スプレーその他の加工等の因子によって主に決定され、主要なものはプリンターの解像である。乾燥速度は、処理速度、したがって生産性を決定する。現在のインク装置中主な欠陥は、競合する技術を使用するプリンターと比べて相対的に低い印刷速度にある。用紙送りプリンターにおいては、インクは続く用紙の接触の前に乾燥しなけれはならず、そうでなければインクは汚れるので、主な障害はインクの乾燥速度である。

【0005】乾燥は、液体ビヒクルの蒸発と基材中への インクの浸透との両方によって起こる。蒸発は溶剤の蒸 気圧によって決定され、一方浸透は、インクと基材との 間の界面エネルギーにより、又基材の多孔性によって決 定される。水性インクの場合には、浸透剤、例えば有機 補助溶剤及び表面活性剤の使用がインクの浸透の速度を 大きくする手段として当該技術において知られている。 【0006】すべてのインクジェット印刷装置について 第三の主な問題は、操作の間及び操作の中間のノズルの 障害である。この障害又は閉塞は、ビヒクルが蒸発して 空気/液体の界面においてインクの固体成分が析出又は 晶出することのためであることが多い。顔料添加インク においては、障害の別の一因は、蒸発によって起こされ る溶剤の組成の変化のため分散された顔料が凝集するこ とである。他の信頼性の問題には、物理的又は化学的な 変化によって見られるインクの貯蔵安定性、装置材料と の相容性及び焼付け条件の変動に対する対応力が含まれ ている。

【0007】色素をベースとしたインクの技術において 実用化されているような、前記の要件に適合するように バランスのとれた特性を持つインクを処方するために浸 透剤、閉塞防止剤及び表面活性剤を含む補助溶剤を使用 することは、しかし、顔料分散液の不安定化を起こす傾 向がある。即ち、凝集及び沈降に対して顔料分散液を安 定にすることができるかぎり、顔料は色素に代える別の 有用な手段である。したがって、他のインク成分の存在 下に適当な顔料分散液の安定性が得られ、かつインクジ ェットカートリッジの寿命を通して安定であり続ける分 散剤の必要性が存する。

[0008]

【課題を解決するための手段】本発明は、速乾性インク ジェットインクに要求される要件に適合するのに特に合っている顔料配合水性インク組成物であって.

- (a) 水性担体媒質;
- (b) 7.0より低いpHを有する顔料;並びに
- (c)(1) 少なくとも1つの塩基性アミン官能基を有する疏水性ポリマーを包含するAブロック
- (2) 非イオン性ポリマー及び酸性官能基を有するポリマーよりなる群から選択される親水性ポリマーを包含するBブロックよりなるABブロックポリマーを包含するインク組成物を提供する。

【0009】本発明のインクジェット組成物は、一般にインクジェットプリンター、そして特に熱インクジェットプリンターにおいて使用するのに特に適している。このインクは、特定の施用に望まれる光安定性、汚れ抵抗性、粘度、表面張力、光学密度及び閉塞抵抗性のバランスを与えるように特定のインクジェットプリンターの要件に合わせることができる。

【〇〇1〇】水性担体媒質

水性担体媒質は、水又は水と少なくとも1種の水溶性有機溶剤との混合物を包含する。普通脱イオン水が使用される。水溶性有機溶剤の代表的な例は、1990年4月11日に出願された本出願人の米国特許出願USSN07/508,145に開示されている。この開示を参照によって本明細書に組込むものとする。水と水溶性有機溶剤との混合物の選択は、特定の施用の要件、例えば所望の表面張力及び粘度、選択された顔料、インクの乾燥時間、並びにインクが印刷される媒質基材の型によってきまる。

【0011】少なくとも2つのヒドロキシル基を有する水溶性有機溶剤、例えばジエチレングリコールと脱イオン水との混合物が水性担体媒質として好ましく、水は、水性担体媒質の全重量を基にして、 $30\%\sim95\%$ 、好ましくは $60\%\sim95\%$ よりなる。水性担体媒質の量は、有機顔料が選択されるときにはインクの全重量を基にして約 $70\sim99.8\%$ 、好ましくは約 $94\sim99.8\%$ であり、無機顔料が選定されるときには約 $25\sim99.8\%$ 、好ましくは約 $70\sim99.8\%$ である。

【0012】顔料

ここで使用される「顔料」(pigment)なる用語は、不溶性の着色剤を意味する。本発明の分散剤との所望の酸ー塩基相互作用を得るためには、顔料は顔料粒子の表面に酸性基を有する必要がある。即ち、顔料は叫<7.0を持たなければならない。このような顔料は当該技術において周知である。例えば、カーボンブラックはすべて、製造条件によって種々の程度にその表面に、本来主として酸性、例えばカルボキシル性、キノン性、ラクト

ン性又はフェノール性の基の化学吸収され(chemisorbe d)酸素化されたコンプレックスを有している。顔料表 面上のこれらの酸性基は、分散剤に塩基性官能物、例え ばアミンとの結合部位をもたらす。酸-塩基相互作用 は、ウァンデルワァールス力又は水素結合より強いと考 えられ、その故に顔料への分散剤の結合が強くなり、分 散液の安定性は大きくなる。これらの酸性表面構成分 は、ひとまとめにして「揮発性分」(Volatile Conten t)といわれ、乾燥したカーボンブラックを950℃に 加熱した後の重量損失率として表わされる。カーボンブ ラックの中には、その揮発性分を増大させるために、通 常種々の酸化剤を用いる後処理によって意図的に酸化さ れている表面を持つものがある。

【0013】顔料自体が酸性基を有しているか、又は酸 性基、例えばスルフォン酸、燐酸又はカルボン酸基を有 する薬剤によって表面が改質されている、酸性表面を持 つ他の顔料は、本発明において等しく有用である。有利 に使用することができる顔料の例は、アゾ、アンスラキ ノン、チオインディゴ、オキサジン、キノアクリドン、 酸性染料のレーキ及びトーナー、銅フタロシアニン及び その誘導体、並びにそれらの種々の混合物及び修飾物を 包含する。

【 0 0 1 4 】 顔料粒子は、インクジェット印刷装置を、 特に通常10ミクロン~50ミクロンの範囲の直径を有 する押出しノズルにおいてインクが自由に流れることを 許容する程度に小さいことが必要である。粒子径は又、 顔料分散液の安定性にも影響を及ぼし、この安定性はイ ンクの全寿命を通してきわめて重要である。微小粒子の ブラウン運動は、粒子が凝集するのを防止するのに役立 つ。最高の色強度及び光沢のためにも小さい粒子を使用 することが望ましい。有用な粒径の範囲は約0.005 ミクロン~15ミクロンである。好ましくは、顔料粒径 は0.005~1ミクロンの範囲であるべきである。選 択された顔料は、乾いた又は湿った形態、例えばプレス ケーキとして使用してよい。

【0015】有機顔料の場合には、インクは重量で約3 0%までの顔料を含有することができるが、大ていの熱 インクジェット印刷の施用の場合には全インク組成物の 重量で、一般に約0.1~15%、好ましくは約0.1~ 8%の範囲である。無機顔料が選択される場合には、イ ンクは、有機顔料を用いる対比されるインクの場合より 高い重量百分率の顔料を含有する傾向があり、場合によ っては約75%のような高率であってよい。無機顔料は 一般に有機顔料より高い比重を有しているからである。

【0016】ABブロックポリマー

本発明のABジブロックポリマーは、少なくとも1つの 塩基性アミノ基を有する疏水性ポリマーを包含するAブ ロック及び非イオン性ポリマー及び酸性官能基を有する ポリマーよりなる群から選択された親水性ポリマーを包 含するBブロックよりなる。本発明のインク組成物は、

Aブロックと顔料との間の結合が改善され、即ちより安 定な分散液を形成する。

【0017】Aブロックは、アミン含有モノマーのホモ ポリマー又はアミン含有モノマーの他のモノマーとのコ ポリマーであってよい。アミン含有モノマーの例は、ジ メチルアミノエチルメタクリレート(DMAEMA). ジエチルアミノエチルメタクリレート、セーブチルアミ ノエチルメタクリレート、ジメチルアミノエチルアクリ レート、ジエチルアミノエチルアクリレート、ビニルピ リジン、N-ビニルピロリドン、4-アミノスチレン等 を包含する。Aブロックのためにアミン含有モノマーと 共に使用することができるモノマーは、メチルメタクリ レート(MMA)、nーブチルメタクリレート(BM A)、2-エチルヘキシルメタクリレート(EHM A)、ベンジルメタクリレート(BzMA)、2-フェ ニルエチルメタクリレート (PEMA)、ヒドロキシエ チルメタクリレート(HEMA)、メタクリロニトリ ル、グリシジルメタクリレート、ソルビルメタクリレー ト、メチルアクリレート、エチルアクリレート、ブチル アクリレート、2-エチルヘキシルアクリレート、スチ レン、4-メチルスチレン、ビニルナフタレン及びフェ ニルアクリレートを包含する。

【0018】 このポリマーのAブロックは、少なくとも 1つの塩基性アミノ基を含有する。Aブロックとして特 に有用なのは、Aブロックの内部又は開放末端に、即ち Bブロックから最も遠い各Aブロックの末端にアミン基 を有するポリマー又はコポリマーである。好ましくは、 Aブロックは、開放末端及びブロックの内部にアミン基 を有するポリマー又はコポリマーである。Aブロック中 いくつかのアミン基が存在していてよいが、アミン基の 数は、Aブロックを親水性にしないことを確実にするよ うに注意が払われなければならない。

【0019】アミン官能性は、有利にはアミン官能性を 持つモノマーを重合させることによってAブロック中に 導入することができる。各Aブロックの開放末端(即ち AブロックとBブロックの間の連結から離れたAブロッ クの末端)において少なくとも1つのアミン基を持つA Bブロックポリマーをつくる好ましい方法は、アミン含 有開始剤を使用して重合を開始させる「リビング」重合 技術である。リビング重合技術は当該技術において周知 であり、J. Amer. Chem. Soc., 1983, 105, 5706中Webs ter, "Anionic Polymerization: Principles and Prac tice", Academic Press, NY, 1983中Mortonにより記述 されたアニオン重合、又は "Ring Opening Polymerizat ion", NY, 1984, 1巻, 461頁中Ivinらによって記述さ れた開環重合により例示されている。

【0020】上記の重合技術のためのアミン含有開始剤 の例は

(1) メタクリレートのアニオン重合の場合には;1 - (ジメチルアミノメチルフェニル) -1-フェニルー 1-ヘキシルリチウム1 [これはn-ブチルリチウムの1-(ジメチルアミノエチルフェニル)-1-フェニルエチレンとの反応によって製造することができる];

(2) ラクトンの開環重合の場合には;3-ジメチル アミノプロピオン酸ナトリウム2;

(3) グループトランスファー重合の場合には;1-(2-i)メチルアミノエトキシ)-1-トリメチルシロキシ-2-メチル-1-プロペン $\underline{3}$;3-iジメチルアミノ-1-メトキシ-2-メチル-1-トリメチルシロキシ-1-プロペン $\underline{4}$;3-iジエチルアミノ-1-メトキシ-2-メチル-1-トリメチルシロキシ-1-プロペン5を包含する。

【0021】グループトランスファー重合のための他の

$$C_6 \parallel_5$$
 $C_6 \parallel_5$
 $C_6 \parallel_5$
 $C_6 \parallel_5$

$$0SiNe_3 \\ 0(CH_2)_2NMe_2 \\ 3$$

$$0SiMe_{3}$$

$$0(CH_{2})_{2}N(Me)C_{6}H_{5}$$

$$5$$

【0023】アミン末端基を持つブロックポリマーの製 造のためのアミン含有開始剤の使用の別法は、アミン含 有連鎖移動剤による連鎖移動、アミン含有停止試薬によ る停止、及び官能末端ブロックポリマーのアミン含有試 薬との反応である。例えば、Hert1erら、U.S. 4,656,23 3によって記述されているメタアクリレートのグループ トランスファー重合における連鎖移動剤としてアミン含 有2-アリールプロピオンニトリルを逐次使用すると末 端アミノ基が導入される。アルデヒドは、グループトラ ンスファー重合の停止剤であることがMacromolecules。 1986, 19, 1775中Sogahらによって示されているので、 アミン含有アルデヒドを用いるグループトランスファー 重合によって製造されたリビングブロックポリマーの停 止は、アミン末端ブロックコポリマーを与える。リビン グ重合法、例えばグループトランスファー重合によって 製造されたヒドロキシ末端ブロックポリマーの反応は、

アミン含有シリルケテンアセタール開始剤は、J. Organ omet. Chem., 1972, 46, 59中Ainsworthらによって記述された一般操作によってアミノエステルから容易に製造することができる。マスクされたアミン、例えば3ービス(トリメチルシリル)アミノー1ーメトキシー2ーメチルー1ートリメチルシロキシー1ープロペン6(これは、シリル保護基のフルオライドを触媒とする除去の後第一アミン末端基を持つブロックポリマーを製造する手段を与える)を含有するグループトランスファー重合開始剤を使用することが望ましいことがある。

[0022]

【化1】

2

$$R_2N$$
OSiMe₈

OMe

 $R=Ne$, Et

潜在性のあるアミン含有試薬、例えばイソシアネートと 反応する。

【0024】Bブロックの機能は、水性担体媒質中顔料の分散を容易にすることである。Bブロックは、親水性、又は水溶性のポリマー又はコポリマーである。Aブロックと顔料表面との間の所望の酸/塩基相互作用を妨害しないために、Bブロックは、非イオン性であるか又は酸性でなければならない。Bブロックは、酸と非イオン性親水性モノマーとのコポリマー、例えば後述するものであってもよい。それは、酸又は非イオン性親水性モノマーの他の非アミン含有モノマー、例えばAブロック中使用されるものであってもよい。代表的な酸モノマーは、メタクリル酸(MAA)及びアクリル酸を包含する。代表的な非イオン性親水性モノマーは、ヒドロキシエチルメタクリレート、メトキシボリエチレングリコールメタクリレートを包含する。

【0025】酸含有ポリマーは直接つくることができ、又は重合の後除去されるブロッキング基でブロックされたモノマーからつくることができる。ブロッキング基の除去の後アクリル酸又はメタクリル酸を生じるブロックされたモノマーの例は、トリメチルシリルメタクリレート、トリメチルシリルアクリレート、1ーブトキシエチルアクリレート、1ーエトキシエチルアクリレート、2ーテトラヒドロピラニルアクリレート、セーブチルメタクリレート及び2ーテトラヒドロピラニルメタクリレートを包含する。酸又は非イオン性親水性モノマーは、Bブロック組成物の10~100%の範囲、好ましくは20~100%の範囲で使用することができる。Bブロックは、一般に全ブロックボリマーの重量で10~90、好ましくは25~60%を構成する。

【0026】水性媒質中にBブロックを可溶化するためには、Bブロック中に含まれる酸基の塩をつくることが必要であることがある。酸モノマーの塩は、有機塩基、アルカノールアミン、アルカリ金属水酸化物及びそれらの混合物、例えば1990年4月11日に出願された本出願人の特許出願USSN 07/508,145に開示されているものから選択される対成分によってつくることができる。この開示を参照によって本明細書に組込むものとする。

【0027】本発明を実施する際有利に選択されるブロックポリマーは、20,000未満、好ましくは15,000未満、そして典型的には1,000~5,000の範囲の数平均分子量を有する。

【0028】ブロックポリマーは、全インク組成物の重量で約0.1~30%の範囲、好ましくは全インク組成物の重量で約0.1%~8%の範囲で存在する。ポリマーの量があまり高くなる場合には、インクの色密度は許容できず、所望のインク粘度を維持することが困難となる。不十分なブロックポリマーが存在する場合には、顔料分子の分散安定性は悪影響を受ける。

【0029】他の成分

特定の施用のための要件に合致して、種々の型の水性添加剤を使用してインク組成物の特性を修正することができる。アミン含有ABジブロックボリマー分散剤の外に表面活性化合物を使用してよい。これらはアニオン性、非イオン性又は両性表面活性剤であってよい。非ポリマー系及び若干のボリマー系表面活性剤の詳細なリストは、1990 McCutcheon's Functional Materials, 北アメリカ版, Manufacturing Confection Publishing Co., Glen Rock, NJの110~129頁にリストされている。この開示を参照によって本明細書に組込むものとする。ある種の表面活性剤はある種のインク組成物と相容性でなく、顔料分散液を不安定にすることがあることが当該技術において知られている。特定の表面活性剤の選定は、印刷される媒質基材の型にも大いに依存する。特定のインク組成物中使用される特定の基材のために適当な表面活性

剤を当業者は選択することができることが予期される。 水性インクにおいては、表面活性剤は、インクの全重量 を基にして、0.01~5%、好ましくは0.2~2%の 量で存在していてよい。

【0030】インク組成物の浸透及び閉塞阻止特性を改善する補助溶剤を添加してもよく、そして事実好ましい。このような補助溶剤は当該技術において周知である。有利に使用することができる補助溶剤の例は、下の実施例において使用されたものを包含する。

【 O O 3 1 】殺生物剤をインク組成物中使用して微生物の生育を阻止することができる。Dowicides(登録商標) (Dow Chemical, Midland, MI), Nuosept(登録商標)(Huls America, Inc., Piscataway, NJ), Omidines(登録商標)(Olin Corp., Cheshire, CT), Nopcocides(登録商標)(Henkel Corp., Ambler, PA), Troysans(登録商標)(Troy Chemical Corp., Newark, NJ)及び安息香酸ナトリウムがこのような殺生物剤の例である。

【 0 0 3 2 】金属イオン封鎖剤、例えばEDTAも包含させて重金属不純物の有害な効果を除くことができる。他の既知の添加剤、例えば保湿剤、粘度調整剤及び他のアクリル系又は非アクリル系ポリマーも、上述したインク組成物の種々の特性を改善するために添加することができる。

【0033】インクの特性及び製造

本発明のインク組成物は、他のインクジェットインク組成物と同じ方式で製造される。顔料分散液は、水中で選択された顔料とABブロックポリマーとをプレミックスすることによって製造される。分散工程は、水平ミニミル、ボールミル、アトリッター中か、又は少なくとも1000psiの液圧において液体ジェット相互作用室内の複数のノズルにこの混合物を通すことによって達成され、水性担体媒質中顔料粒子の均一な分散液を得る。顔料添加インクを濃縮された形態でつくることが一般に望ましく、後で適当な液体で希釈してインクジェット印刷の系中使用するのに適当な濃度とする。希釈により、インクは特定の施用に望まれる粘度、色、色相、飽和密度及びプリント領域適用範囲に調整される。

【0034】ジェット速度、小滴の分離長さ、滴の大きさ及び液流の安定性は、表面張力及びインクの粘度によって大いに影響される。インクジェット印刷系を用いて使用するのに適している顔料添加インクジェットインクは、20℃において約20ダイン/cm~約70ダイン/cmの範囲、更に好ましくは30ダイン/cm~約70ダイン/cmの範囲の表面張力を持つべきである。許容される粘度は、20℃において20cP以下、好ましくは約1.0cP~約10.0cPの範囲である。このインクは、広い範囲の押出し条件、即ち熱インクジェット印刷の場合の駆動電圧及びパルス幅、ドロップオンデマンド装置か又は連続装置の場合の圧電素子の駆動振動数、並びにノズルの形状及び大きさと相容れる物理的特性を有する。そ

れらは、種々のインクジェットプリンター、例えば連続、圧電式ドロップオンデマンド及び熱またはバブルジェットドロップオンデマンドによって使用することができ、そして特に熱インクジェットプリンター中使用するのに特に適合されている。

【0035】このインクは、長期間すぐれた貯蔵安定性を有し、インクジェット装置中凝固しない。媒体基材、例えば紙、繊維、フィルム等上のインクの固定は、迅速かつ正確に実施することができる。印刷されたインクの画像は、清澄な色調、高い密度、すぐれた水抵抗性及び光堅牢性を有する。更に、このインクはインクジェット印刷装置と相容れ、又それらは本質的に無臭である。

[0036]

【実施例】

ポリマーの製造

下に述べるいくつかの操作においては、ポリマーは、アミン含有開始剤、1-(2-ジチメルアミノエトキシ)-1-トリメチルシロキシ-2-メチル-1-プロペンを使用して製造された。この開始剤は次の操作によって製造された。

【0037】 $0\sim-15$ ℃に保たれた乾燥ジクロロメタン1L中2-ジメチルアミノエタノール(蒸留された)83.66g(94.3mL,0.939モル)及びトリエチルアミン(Aldrichゴールドラベル)95g(131mL)の溶液に機械撹拌下塩化イソブチリル100g(98.3mL,0.939モル)を1滴ずつ添加した。この混合物を室温において30分間撹拌し、水中重炭酸ナトリウム100gの溶液で処理した。有機層を希重炭酸ナトリウム溶液で洗浄し、硫酸ナトリウムで乾燥し、蒸留してジメチルアミノエチルイソブチレート、 $bp59\sim64$ ℃($8\sim10$ mm)を得た。

【 O O 3 8】 ¹ H-NMR(360MHz,ベンゼンーd₆): 1.06(d, J=6.6Hz, 6H, Me₂CH), 2.05(s, 6H, CH₃N), 2.33(t, J=6Hz, 2H, CH₂N), 2.39(sept, J=6.6Hz, 1H, Me₂CH), 4.11(t, J=6Hz, 2H, CH₂O) 分析C₈H₁₇NO₂として計算値: C 60.35, H 10.76, N 8.80;実測値: C 60.82, H 1 0.95, N 9.01。

【0039】-5~0℃のテトラヒドロフラン300m 中ジイソプロピルアミン(Aldrichゴールドラベル)3 1.78g(44mL, 0.314モル)の溶液にヘキサン(196m)中1.6N n-ブチルリチウム0.314モルを約30分間にわたって添加した。0℃において30分後、この溶液を-78℃に冷却し、温度を-70℃より下に保ちながら上に製造したジメチルアミノエチルイソブチレート50g(0.314モル)を添加した。次に-70℃より低温でクロロトリメチルシラン34.11g(39.9mL, 0.314モル)を添加した。室温まで上って後、この混合物をロータリーエヴァボレーター上濃縮し、残留物をヘキサンで処理し、アルゴン気流中沪過した。沪液を回転蒸発器上で濃縮し、スピニング

バンドカラム中蒸留して1-(2-i)メチルアミノエトキシ)-1-トリメチルシロキシ-2-メチル-1-プロペン45.4g、bp $39\sim42.5$ $\mathbb{C}(0.5mm)$ を得た。

【 O O 4 O 】 1 H-NMR(360MHz, ベンゼンー 4 G₀): 0.22(s, 9H, SiMe), 1.67(s, 3H, =CCH $_{3}$), 1.77(s, 3H, =CCH $_{3}$), 2.12(s, 6H, NCH $_{3}$), 2.46(t, J=6Hz, 2H, CH $_{2}$ N), 3.85(t,J=6Hz, 2H, CH $_{2}$ 0)。分析C $_{11}$ H $_{25}$ O $_{2}$ SiNとして計算値: C 57.09, H 10.89, N 6.05, Si 12.14; 実測値: C 57.27, H 11.11, N 6.17, Si 11.37。IR(ニート): 1705cm $^{-1}$ (C=C), C=O吸収なし。

【0041】製造A

ポリ ω -2- β -ジメチルアミノエチルイソブチレート (ブチルメタクリレート〔46モル%〕-b-メタクリ ル酸〔54モル%〕)、アミン開始剤//BMA//MAA (開始剤//9//10)

THF 90 町中1-(2-ジメチルアミノエトキシ) -1-トリメチルーシロキシー2-メチルー1-プロペ ン2.08g(2.36m, 8.97ミリモル)、テトラ ブチルアンモニウムビアセテートヘキサハイドレート (THF中O.04M) O.5 LL及びビス(ジメチルアミ ノ) -メチルシラン0.8g(1.0元,6ミリモル)の 溶液を10分間放置した。次にブチルメタクリレート (アルゴン気流中塩基性アルミナのカラムを通すことに よって精製) 11.1g(12.4 元, 78ミリモル)及 びビス (ジメチルアミノ) メチルシラン0.4g(0.5 加した。添加の過程で反応混合物の温度は27℃から4 8℃まで上昇した。添加の完了後、温度が約2℃まで下 降した時、2-テトラヒドロピラニルメタクリレート (アルゴン気流中塩基性アルミナのカラムを通すことに よって精製) 15.3g(15.0元,89.9モル)及 びビス(ジメチルアミノ)-メチルシラン0.4g(0.5 配, 3ミリモル)の混合物の1滴ずつの添加を開始し た。添加の過程で反応混合物の温度は57℃に上昇し た。1H NMRによるこの溶液の試料の分析は、残留モノマ ーが存在しないことを示した。メタノール10 配の添加 の後、溶液を減圧下に蒸発させた。残留ポリ ω -2- β ージメチルアミノエチルイソブチレート(ブチルメタク リレート〔46モル%〕-b-テトラヒドロピラニルメ タクリレート〔54モル%〕) をジクロロメタンに溶解 し、メタノール中に析出させた。このポリマーを真空オ ーブン中138℃に加熱してテトラヒドロピラニルエス テル基を分解し、ポリ $\omega - 2 - \beta - i$ ジメチルアミノエチ ルイソブチレート(ブチルメタクリレート〔46モル %]-b-メタクリル酸〔54モル%〕) 20.8gを 得た。

【0042】このポリマー8gをテトラヒドロフランとイソプロパノールとの混合物(重量で3:2)8gで予めぬらし、16.9%のポリマー溶液が得られるまで水

酸化カリウム(0.984N溶液)と混合することによってこのブロックポリマーを中和した。

【0043】製造B

ポリω-2-β-ジメチルアミノエチルイソブチレート (2-ジメチルアミノエチルメタクリレート〔9モル %]-co-n-ブチルメタクリレート「32モル%]-b-メタクリル酸〔59モル%〕、アミン開始剤//O MAEMA//BMA//MAA(開始剤//2//7//10) THF 30 山中1-(2-ジメチルアミノエトキシ) -1-トリメチルシロキシ-2-メチル-1-プロペン 5.55g(6.31 ..., 24ミリモル)及びテトラブチ ルアンモニウムビアセテート0.1 血の溶液に、2-ジ メチルアミノエチルメタクリレート(アルゴン気流中塩 基性アルミナのカラムを通すことによって精製)7.6 g(8.1 配, 48ミリモル)とnーブチルメタクリレ ート(アルゴン気流中塩基性アルミナのカラムを通すこ とによって精製) 23.9g(26.7元, 168ミリモ ル)の混合物を添加ろうとから添加した。添加の過程で 反応混合物の温度は27℃から61℃まで上昇し、温度 上昇を緩和するために氷浴を使用した。添加の完了及び 冷却浴の除去の後、温度が32℃であった時、トリメチ ルシリルメタクリレート49.4g(56.1元,312 ミリモル)の1滴ずつの添加を開始した。添加の過程で 反応混合物の温度は56℃に上昇し、一方全部で1.2m Lのテトラブチルアンモニウムビアセテート(プロピレ ンカーボネート中〇.04M)を4回の添加で添加し、 THF 20mlを添加して粘度を低下させた。1H NM Rによるこの溶液の試料の分析は、残留モノマーが存在 しないことを示した。テトラブチルアンモニウムフルオ ライドテトラハイドレート(メタノール中0.03M) 70 mLを添加して後、溶液を12時間還流した。この溶 液を、回転蒸発器を用いて減圧下に濃縮してポリωー2 $-\beta$ - ジメチルアミノエチルイソブチレート(2 - ジメ チルアミノエチルメタクリレート〔9モル%〕-con-ブチルメタクリレート〔32モル%〕-b-メタク リル酸〔59モル%〕の40.58%の固定分の溶液8 0gを得た。

【0044】ポリマー溶液27.3gを均質な10%の溶液が得られるまで水酸化カリウム(45%溶液)6.3g及び脱イオン水76.4gと混合することによってこのブロックポリマーを中和した。

【0045】製造C

ポリ(メタクリル酸〔50モル%〕-b-ブチルメタク リレート〔50モル%〕)、BMA//MAA(10//1 0)

12リットルのフラスコに機械撹拌機、温度計、窒素入口、乾燥管出口及び添加ろうとを設置した。このフラスコにテトラヒドロフラン(THF)3750g及びp-キシレン7.4gを仕込んだ。供給物I〔テトラブチルアンモニウムm-クロロベンゾエート、アセトニトリル

中1.0 M溶液3.0 ml] を開始し、150分にわたって添加した。供給物II [トリメチルシリルメタクリレート、1976g(12.5 M)] を0.0分において開始し、30分にわたって添加した。400分において、上の溶液に乾燥メタノール780gを添加し、この混合物を蒸留した。蒸留の第一段階の間に、沸点55℃未満のもの1300.0gがフラスコから取り出された。除去されるメトキシトリメチルシラン(bp 54℃)の理論値は1144.0gである。沸点が76℃に上昇する第二段階の間蒸留を継続した。蒸留の第二段階の間に全部で5100gのiープロパノールを添加した。全部で8007gの溶剤が除去され、ポリ(メタクリル酸ーbーブチルメタクリレート)を生じた(M_n =2400;52.1%の固形分)。

【0046】均質な10%ポリマー溶液が得られるまでポリマー溶液500gを水酸化カリウム(45.6%の溶液)114.6g及び脱イオン水1,879gと混合することによってこのブロックポリマーを中和した。

【0047】製造D

ポリ ω -2- β -ジメチルアミノエチルイソブチレート(ブチルメタクリレート〔22モル%〕-co-2-フェニルエチルメタクリレート〔22モル%〕-b-メタクリル酸〔56モル%〕)、アミン開始剤//BMA//PEMA//MAA(開始剤//5//5//13)

THF 100m中1-(2-ジメチルアミノエトキ) シ)-1-トリメチルーシロキシー2-メチルー1-プ ロペン2.31g(10ミリモル)、テトラブチルアン モニウムビアセテートヘキサハイドレート(THF中 O.O4M) O.5mL及びビス(ジメチルアミノ) -メチ ルシラン0.8g(1.0瓜,6ミリモル)を10分間放 置した。次にブチルメタクリレート(アルゴン気流中塩 基性アルミナのカラムを通すことによって精製)7.2 g(8.0元,50ミリモル)、2-フェニルエチルメ タクリレート(アルゴン気流中塩基性アルミナのカラム を通すことによって精製)9.5g(9.4mL,50ミリ モル)及びビス(ジメチルアミノ)-メチルシラン0.8 g(1.0ml,6ミリモル)の溶液を10分間放置し た。次にブチルメタクリレート(アルゴン気流中塩基性 アルミナのカラムを通すことによって精製) 7.2 g (8.0元,50ミリモル)、2-フェニルエチルメタ クリレート(アルゴン気流中塩基性アルミナのカラムを 通すことによって精製)及びビス(ジメチルアミノ)-メチルシラン0.8g(1.0 配,6ミリモル)の混合物 を添加ろうとから1滴ずつ添加した。添加の過程で反応 混合物の温度は25℃から46℃まで上昇した。添加の 完了後、温度が約1℃低下した時、2-テトラヒドロピ ラニルメタクリレート(アルゴン気流中塩基性アルミナ のカラムを通すことによって精製)22.1g(21.7 130ミリモル)の混合物の1滴ずつの添加を開始。 した。添加の過程で、反応混合物の温度は60℃に上昇 した。¹H NMRによるこの溶液の試料の分析は、残留 モノマーが存在しないことを示した。ゲル浸透クロマト グラフィー (GPC) は、 $M_n = 2280$ 、 $M_w = 327$ $O_{M_n}/M_n = 1.4$ を示した。メタノール25礼の添 加の後、この溶液を減圧下に蒸発させた。残留ポリマー をジクロロメタンに溶解し、メタノール中に析出させて $\omega - 2 - \beta - \mathcal{S} \times \mathcal{$ リ(ブチルメタクリレート[22モル%]-co-2-フェニルエチルメタクリレート〔22モル%〕-b-2 ーテトラヒドロピラニルメタクリレート〔56モル %〕) 23gを得た。このポリマーを真空オーブン中1 20℃に36時間加熱してテトラヒドロピラニルエステ ル基を分解し、ポリωー2-β-ジメチルアミノエチル イソブチレート(ブチルメタクリレート〔22モル%〕 -co-2-フェニルエチルメタクリレート〔22モル %]-b-メタクリル酸〔56モル%〕)16.8gを 得た。

【0048】均質な12.4%のポリマー溶液が得られるまでポリマー16.6gを水酸化カリウム(0.984 N溶液)59.5g及び脱イオン水57.9gと混合することによってこのブロックポリマーを中和した。

【0049】製造E

ポリ(メタクリル酸〔56モル%〕-bーブチルメタクリレート〔22モル%〕-c o -2 - フェニルエチルメタクリレート〔22モル%〕)、BMA/PEMA//MAA(5/5//13)

THF 250 山中1 ーメトキシー1 ートリメチルーシ ロキシ-2-メチル-1-プロペン3.48g(4.04 配,20ミリモル)、テトラブチルアンモニウムビアセ テートヘキサハイドレート (THF中O.04M) 1 ml 及びビス(ジメチルアミノ)メチルシラン0.8g(1. 〇元, 6ミリモル)の溶液を10分間放置した。次に2 ーテトラヒドロピラニルメタクリレート(アルゴン気流 中塩基性アルミナのカラムを通すことによって精製)4 4.5g(43.6元,261ミリモル)及びビス(ジメ チルアミノ) -メチルシラン 0.8 g (1.0 ml, 6 ミリ モル)の混合物を添加ろうとから1滴ずつ添加した。添 加の過程で反応混合物の温度は25℃から50℃まで上 昇した。添加の完了の後、温度が約1℃低下した時、ブ チルメタクリレート(アルゴン気流中塩基性アルミナの カラムを通すことによって精製) 14.7g(16.4m L, 103ミリモル)、2-フェニルエチルメタクリレ ート(アルゴン気流中塩基性アルミナのカラムを通すこ とによって精製)19.6g(19.4m,103ミリモ ル)及びビス(ジメチルアミノ)-メチルシラン0.8 g (1.0 ml, 6 ミリモル) の混合物の1滴ずつの添加 を開始した。添加の過程で反応混合物の温度は56℃に 上昇した。1H NMRによるこの溶液の試料の分析は、 残留モノマーが存在しないことを示した。メタノール1 5 礼の添加の後、ポリマーをメタノール中析出させ、ポ リ(2ーテトラヒドロピラニルメタクリレート〔56モル%〕-bーブチルメタクリレート〔22モル%〕-co-2-2ェニルエチルメタクリレート〔22モル%〕)29.2gを得た。GPCによる分析は、 M_n = $4310、<math>M_w$ = $4500、<math>M_w$ / M_n =1.05を示した。このポリマーを真空オーブン中130°Cに20時間加熱してテトラヒドロピラニルエステル基を分解し、ポリ(メタクリル酸〔56 モル%〕-b-ブチルメタクリレート〔22モル%〕-co-2-フェニルエチルメタクリレート〔22モル%〕) 20.7gを得た。

【0050】ポリマー20gをテトラヒドロフランとイソプロパノールとの混合物(重量で3:2)20gで予めぬらし、次に均質なポリマー溶液が得られるまで水酸化カリウム(0.984N溶液)71.7gと混合することによってこのブロックポリマーを中和した。

【0051】製造F

ポリ ω -2- β -ジメチルアミノエチルイソブチレート (2-ジメチルアミノエチルメタクリレート〔9モル %]-co-2-フェニルエチルメタクリレート〔35 モル%〕-b-メタクリル酸〔56モル%〕)、アミン 開始剤//DMEAMA/PEMA//MMA (開始剤//2/8//13)

THF 30 mL中1-(2-ジメチルアミノエトキシ) -1-トリメチルーシロキシ-2-メチル-1-プロパ ン4.86g(5.52m, 21.0ミリモル)、テトラ ブチルアンモニウムビアセテートヘキサハイドレート (THF中O.04M) O.1 nLの溶液に2-ジメチルア ミノエチルメタクリレート(蒸留及びアルゴン気流中塩 基性アルミナのカラムを通すことによって精製)6.6 g(7.1 LL, 42 SUE) 及び2-フェニルエチル メタクリレート(アルゴン気流中塩基性アルミナのカラ ムを通すことによって精製)31.9g(31.6元,1 68ミリモル)の混合物を添加ろうとから添加した。反 応混合物の温度は、添加の過程で62℃に上昇し、温度 上昇を緩和するために氷浴を使用した。添加の完了の 後、温度が26℃であった時、トリメチルシリルメタク リレート43.2g(49礼,273ミリモル)の1滴 ずつの添加を開始した。添加の過程で反応混合物の温度 は45℃に上昇し、一方全部で1.25 ևのテトラブチ ルアンモニウムビアセテートヘキサハイドレート (TH F中0.04M) を9回の添加で添加した。¹H NMR によるこの溶液の試料の分析は、残留モノマーが存在し ないことを示した。THF 55mL、メタノール56mL 及びテトラブチルアンモニウムフルオライドトリハイド レート0.086g(2.7ミリモル)の添加の後、溶液 を9時間還流した。次にTHF 50 Lを添加し、更に 9時間還流を継続した。ロータリーエヴァポレーターを 用いて減圧下溶液を蒸発させた。固体残留物を真空オー ブン中80℃において9時間乾燥してポリω-2-β-ジメチルアミノエチルイソブチレート(2-ジメチルア

ミノエチルメタクリレート〔9モル%〕-co-2-フ ェニルエチルメタクリレート〔35モル%〕-b-メタ クリル酸〔56モル%〕) 57gを得た。このポリマー の¹ H NMR分析は、トリメチルシリル基が実質的に残 っていないことを示した。

【0052】ポリマー30gをテトラヒドロフランとイ ソプロパノールとの混合物(重量で3:2)30gで予 めぬらし、次に均質なポリマー溶液が得られるまで水酸 化カリウム(45.6%の溶液)13g及び脱イオン水 127gと混合することによってこのブロックポリマー を中和した。

【0053】製造G

ポリ (メタクリル酸〔56モル%〕 -β-2-フェニル エチルメタクリレート〔44モル%〕)、MAA//PE MA(13//10)

THF 30 礼中1 ーメトキシー1 ートリメチルー2ー メチル-1-プロペン3.13g(3.63m, 18ミリ モル)及びテトラブチルアンモニウムビアセテートへキ サハイドレート (THF中0.04M) 0.1 mLの溶液に トリメチルシリルメタクリレート37g(42社,23 4ミリモル)を添加ろうとから1滴ずつ添加した。反応 混合物の温度が27℃から37℃まで上昇するに従っ て、全部で1.9元の追加のテトラブチルアンモニウム ビアセテート溶液を11回に分けて添加した。添加の完 了後、温度が約1℃低下した時、溶液を氷浴中冷却し、 2-フェニルエチルメタクリレート (アルゴン気流中塩 基性アルミナのカラムを通すことによって精製)34. 3g(34m, 181ミリモル)の1滴ずつの添加を開 始した。添加の過程で反応混合物の温度は23℃から3 2℃まで上昇した。¹H NMRによるこの溶液の試料の 分析は、残留モノマーが存在しないことを示した。TH F(100ml)を添加して粘度を低下させた。メタノー ル50 礼中テトラブチルアンモニウムフルオライドトリ ハイドレート0.1モル%の添加の後、溶液を36時間 還流し、減圧下蒸発させてポリ(メタクリル酸〔56モ ル%] -b-2-フェニルエチルメタクリレート〔44 モル%〕)を得た。

【0054】ポリマー21gをテトラヒドロフランとイ

成 FW18, カーボンブラック顔料 16.0 (Degussa Corp., Allendale, NJ) (pH=4) 製造Cにおいて得られたポリマー 80.0 64.0

分

脱イオン水 顔料の塊又は乾燥凝集塊が見えなくなるまで撹拌するこ とによって、プラスティックビーカー中上記の成分をプ

レミックスした。この混合物をミニモーターミル250 (Eiger Machinery Inc., Bensenville, II 60106製 造)に添加した。ミリングは、0.8mmのガラスビーズ を用いて4500rpmにおいて30分間実施して、Brook

成

量(重量部)

ソプロパノールとの混合物(重量で3:2)21gで予 めぬらし、次に均質な15%ポリマー溶液が得られるま で水酸化カリウム(0.984N溶液)71.7g及び脱 イオン水21.6gと混合した。

【0055】製造H

ポリ(n-ブチルメタクリレート〔35モル%〕-co -2-ジメチルアミノエチルメタクリレート〔15モル %〕-b-メタクリル酸〔50モル%〕、BMA/DM AEMA//MAA(7/3//10)

3リットルのフラスコに機械撹拌機、温度計、窒素入 口、乾燥管出口及び添加ろうとを設置した。フラスコに テトラヒドロフランTHF 812g及びpーキシレン 4.9gを仕込んだ。供給物 I 〔テトラブチルアンモニ ウムm-クロロベンゾエート、アセトニトリル中1.0 M溶液1.2mL〕を開始し、240分にわたって添加し た。供給物II〔トリメチルシリルメタクリレート,43 4g(2.75M)〕を0.0分において開始し、30分 にわたって添加した。供給物IIの完了後90分に、供給 物III〔ブチルメタクリレート、272g(1.91M) 及び2-ジメチルアミノエチルメタクリレート、130 g(0.828)〕を開始し、30分にわたって添加し た。400分において、モノマーがすべて変換された 時、上の溶液に乾燥メタノール344gを添加し、混合 物を蒸留した。蒸留の第一段階の間に、フラスコから物 質317.0gが取り出された。全部で162gのi‐ プロパノールを添加してポリ(n-ブチルメタクリレー ト〔35モル%〕-co-2-ジメチルアミノエチルメ タクリレート〔15モル%〕-b-メタクリル酸〔50 モル%〕(M_n=2700;35.08%の固形分)を得 た。

【0056】次にこのブロックポリマー溶液に45%水 酸化カリウム溶液を添加し、脱イオン水で希釈し、そし て15%の均質な溶液が得られるまで混合することによ ってブロックポリマーを中和(90モル%において)し

【0057】試料製造

対照1:次の操作を使用して黒色顔料濃縮液を製造し た:

量(重量部)

haven BI-90粒子サイザー (Brookhaven Instruments Co rp., Holtsville, NY) によって求めて133nmの最終 粒径を有する10%顔料濃縮液を得た。最終pHは8.1 5であった。

【0058】実施例1:次の操作を使用して黒色顔料濃 縮液を製造した:

FW18, カーボンブラック顔料 製造Aから得られたポリマー 脱イオン水

上の成分をプレミックスし、対照1中記載したとおりミリングして、Brookhaven BI-90粒子サイザーによって求めて、129nmの最終粒径を有する10%顔料濃縮液を

16.0

47.2 96.8

得た。最終pHは8.3であった。

【 0 0 5 9 】実施例 2 : 次の操作を使用して黒色顔料濃 縮液を製造した:

成分量(重量部)FW200, カーボンブラック顔料22(Degussa Corp., Allendale, NJ)(pH=2.5)110脱イオン水88

上記の成分をプレミックスし、対照1中記載したとおり ミリングして10%顔料濃縮液を得た。45.6% KO H溶液1.0gを添加してpHを7.52に調節した。Brookhaven BI-90粒子サイザーによって求めて最終粒径は1 25nmであった。

【 0 0 6 0 】対照 2 : 次の操作を使用して黒色顔料濃縮液を製造した。

[0061]

成分量(重量部)FW200,カーボンブラック顔料30.0製造Eにおいて得られたボリマー100.0脱イオン水70.0

上記の成分をプレミックスし、対照1中記載したとおり ミリングして15%顔料濃縮液を得た。KOH溶液 (0.984N, Aldrich Chemical Co., Milwaukee, W I)を添加してpHを7.60に調節し、この濃縮液を脱イオン水で希釈して10%の顔料濃度を得た。Brookhaven BI-90粒子サイザーによって求めて最終粒径は127nmであった。

【 0 0 6 2 】実施例 3 : 次の操作を使用して黒色顔料濃 縮液を製造した:

	量(重量部)
FW200,カーボンブラック顔料	33.2
製造Dにおいて得られたポリマー	134.0
KOH溶液,0.984N	
(Aldrich Chemical Co., Milwaukee, WI)	30.0
脱イオン水	134.8

上記の成分をプレミックスし、対照1中記載したとおり ミリングして、Brookhaven BI-90粒子サイザーによっ て求めて、128mmの最終粒径を有する10%顔料濃縮 液を得た。最終pHは7.60であった。

【0063】対照3:次の操作を使用して黒色顔料濃縮液を製造した:

成分量(重量部)FW200,カーボンブラック顔料15.0製造Gにおいて得られたポリマー50.0脱イオン水85.0

顔料の塊又は乾燥凝集塊が見えなくなるまで10~15分間撹拌することによって上記の成分をプレミックスした。次にこの混合物をミニミル100(Eiger Machinery Inc., Bensenville, II) に仕込んだ。ミリングを3500rpmにおいて1時間実施した。分散液を3M 114A液体フィルターバッグ(3M, St. Paul, MN) を通して

真空沪過して、Brookhaven BI-90粒子サイザーによって 求めて、9.8nmの最終粒径を有する1.0%顔料濃縮液を 得た。最終pHは7.72であった。

【0064】実施例4:次の操作を使用して黒色顔料濃縮液を製造した:

<u>成</u><u>分</u> FW200, カーボンブラック顔料 製造Fから得られたポリマー 脱イオン水 __ <u>量(重量部)</u> 15.0 50.0 85.0

上記の成分を機械撹拌によってプレミックスした。45%KOH溶液(J. T.Baker Inc., Phillipsburg, NJ) 数滴を添加してpHを7.3に調節した。この混合物をマ イクロフルイダイザー (Microfluidics Corp., Newton, MA) に9.000~11,000psiの液圧下5回通して、Brookhaven BI-90粒子サイザーによって求めて、

104nmの最終粒径を有する10%顔料濃縮液を得た。 【0065】安定性試験

上のインクの分散安定性を、各々-20℃において4時間及び70℃において4時間よりなる4回の温度サイクルにインクの試料をかけて後Brookhaven BI-90粒子サイ

ザー上にデルタnmで粒径の変化を測定することによって 求めた。結果を下の表1に示す。

[0066]

【表1】

	デルタ nm						
補助溶剤又は表面活性剤	<u>C1</u>	<u>E1</u>	<u>E2</u>	<u>c2</u>	<u>E3</u>	<u>C3</u>	<u>E4</u>
補助溶剤 ¹ :							
ネオペンチルグリコール (2 , 2 ージメチルー 1 , 2 ープ プロパンジオール)	68	9	0	0	0	0	0
3, 3 - ジメチルー $1, 2 - ブタンジオール$	58	7	6	15	0	2	1
1, 2, 4 ーブタントリオール	2	0	0	42	0	21	9
Dowano1(登録商標)TBH	F	F ³	20	F	4	7	2
ブチルカルビトール	F	F	10	F	5	11	9
Liponic(登録商標)EG-1	74	10	1	F	10	15	9
N ーアセチルエタノールアミン	44	3	2	F	25	47	19
1-エチルー2-ピロリジノン	49	6	0	F	8	0	5
1,4ーシクロヘキサンジメタ ノール	44	0	0	26	0	0	0
表面活性剤 ² :							
Merpol (登録商標) SH	F	76	5	56	0	0	0
Aerosol (登録商標) MA-80/ Aerosol (登録商標) OT (2/1)	74	17	3	14	0	0	0
Surfynol (登録商標) CT-136	98	24	0	0	0	0	0
Surfynol (登録商標) 465	F	29	0	37	0	6	0
Triton (登録商標) X-100	F	21	3	3	0	9	0
Synthrapol (登録商標) KB	F	36	0	78	0	42	0

【0067】このデータに基ずいて、Aブロック上アミン官能を有するポリマーの場合安定性は、非アミン含有ポリマーより顕著に改善された。実施例の最初のセット(E1,E2対C1)においては、E1におけるようにAブロックの開放未端において1つのアミン基を持つものが非アミン含有対照C1より顕著な安定性の改善を生

じることをデータは示した。しかし、E2におけるようにこのブロック中更にアミン基を組み入れることにより、安定性は更に改善される。E3は、Aブロックの開放末端に1つのアミン基を有していた。E4は、Aブロックの開放末端及びAブロック中にアミン基を有していた。両実施例共、その夫々の非アミン含有対照より安定

性の改善を示した。

【0068】注:ネオペンチルグリコール、3,3ージメチルー1,2ーブタンジオール、1,2,4ーブタントリオール、ブチルカルビトール、Nーアセチルエタノールアミン、1ーエチルー2ーピロリジノン、1,4ーシクロヘキサンジメタノールはAldrich Chemical Co., Milwaukee, WIから得られた。Dowanol(登録商標)TBHはDow Chemical Midland, MIから得られた。Liponic(登録商標)EG-1はLipo Chemicals Inc., Paterson, NJから得られた。Merpol(登録商標)SHはE. I. du Pontde Nemours and Company, Wilmington, DEから得られた。Aerosol(登録商標)MA-80及びOTはAmerican Cyanamid Co., Wayne, NJから得られた。Surfynol(登録商標)CT-

136及び465はAir Products and Chemicals, Inc., Alle ntown, PAから得られた。Triton (登録商標) X-100はRo hm & Haas Co., Philadelphia, PAから得られた。Synth rapol (登録商標) KBはICI Americas, Inc., Wilmington, DEから得られた。

【0069】1. 補助溶剤は、全液体担体媒質の8% (重量)において試験された。

2. 表面活性剤は、全液体担体媒質の3%において試験された。

3. F=フロキュレーション肉眼可視

【0070】プリント試験

試験#1:次の組成を持つ黒色インクを処方した:

	量(重量部)
実施例3の顔料濃縮液	10.0
3,3ージメチルー1,2ーブタンジオール	1.9
脱イオン水	8.1

このインクを熱インクジェットペン中に充填し、Hewlet t Packard DeskJetインクジェットプリンターを用いてGilbertボンド紙(25%の綿、Mead Co., Dayton, OH)上にプリントした。円滑にプリントされ、インクはきわ

めて迅速に紙に浸透してプリントは5秒以内に触って乾燥していた。プリント密度は1.02であった。

【 0 0 7 1 】試験# 2 : 次の組成を持つ黒色インクを処方した:

	量(重量部)
実施例1の顔料濃縮液	7.0
3,3 <i>-ジメチル-</i> 1,2-ブタンジオ ー ル	0.95
Liponic EG-1	0.95
脱イオン水	11.1

このインクを熱インクジェットペン中に充填し、Hewlet t Packard DeskJetインクジェットプリンターを用いてG ilbertボンド紙(25%の綿, Mead Co., Dayton, OH) 上にプリントした。円滑にプリントされ、インクは迅速

に紙に浸透してプリントは5秒以内に触って乾燥していた。プリント密度は0.93であった。

【 0 0 7 2 】試験#3:次の組成を持つ黒色インクを処方した:

	量(重量部)
実施例4の顔料濃縮液	7.0
ジエチレングリコール	0.95
ブチルカルビトール	1.52
Surfynol 465	0.19
脱イオン水	10.34

このインクを熱インクジェットペン中に充填し、Hewlet t Packard DeskJetインクジェットプリンターを用いてGilbertボンド紙(25%の綿、Mead Co., Dayton, OH)上にプリントした。円滑にプリントされ、インクはきわめて迅速に紙に浸透してプリントは5秒以内に触って乾

【0073】実施例5:次の成分をビーカーに順番にゆっくり添加し、混合した。

燥していた。プリント密度は0.94であった。

[0074]

成分	量(g)
製造Hにおいて得られたポリマー	133.3
W-200カーボンブラック顔料	40.0
兇イオン 水	26.7

顔料の塊又は乾燥凝集塊が見えなくなるまで撹拌を10~15分間継続した。次にこの混合物をミニミル100(Eiger Machinery Inc., Bensenville, II)に仕込んだ。ミリングを3500rpmにおいて1時間実施した。分散液を3M114A液体フィルターバッグ(3M, St.

Paul, M)に通して真空沪過して10%の顔料及び2/1の顔料/ブロックポリマー比を有する顔料分散液を得た。

【0075】実施例6:次の成分をビーカーに順番にゆっくり添加し、混合した:

成分量(g)製造Cにおいて得られたポリマー133.3FW-200カーボンブラック顔料40.0脱イオン水26.7

顔料の塊又は乾燥凝集塊が見えなくなるまで撹拌を10~15分間継続した。この混合物を次にミニミル100(Eiger Machinery Inc., Bensenville, II)に仕込んだ。ミリングを3500rpmにおいて1時間実施した。分散液を3M114A液体フィルターバッグ(3M, St. Paul, MN 55144)に通して真空沪過した。このことによって10%の顔料及び2/1の顔料/ブロックポリマー比を有する顔料分散液がつくられた。

【0076】試験:以下酸性顔料及びアミン含有ブロックポリマーをベースとした分散液と酸性顔料及び非アミン含有ブロックポリマーをベースとした分散液との分散安定性の差異を示す。下にリストされた溶剤に分散液を添加して1%の顔料濃度を得た。次に分散特性を記述する:

分散 - 顔料粒子は均一に分離し、粒子のブラウン運動が明らかである。

やや凝集 - 顔料粒子は分離するが動かない(ブラウン 運動の有意のしるしはない)。

凝集 - 顔料粒子は高度に密集し、密集体の間に大きな空隙がある。

ľ	0.0	7	71	分	散	特	性
---	-----	---	----	---	---	---	---

溶 剤	<u>実施例 5</u>	<u>実施例 6</u>
水	分散	分散
DEG	分散	凝集
水/TBH	分散	凝集
水/ブチル/カルビ	分散	凝集
水/ブチルセロ	やや凝集	凝集

DEG=ジエチレングリコール

水/TBH=80/20 水/トリエチレングリコール モノブチルエーテル

水/ブチル/カルビ=80/20 水/ブチルカルビトール

水/ブチルセロ=80/20 水/ブチルセロソルブ 【0078】上のことは、酸性顔料及びアミン含有ポリマーから作られた分散液が酸性顔料及びアミンを含有しないポリマー分散剤からつくられたものより安定であることを示す

【 0 0 7 9 】実施例 7 : 次の操作を使用して黒色インクを製造した:

成 分		<u>量(g)</u>
実施例5からの分散液		50.0
ネオペンチルグリコール		15.0
Triton ^R X100 (Rohm & Haas, Philadelphia	, PA)	3.0
脱イオン水		32.0

上記の成分を2時間混合した。仕上ったインクを2ミクロンのフィルターに通して沪過し、5.7cpsの粘度、34.0ダイン/cmの表面張力及び87nm(熱循環試験の後86nm)の粒径を有していた。このインクはすぐれた熱

安定性を有し、Hewlett Packard DiskJetプリンター(Hewlett Packard, Palo Alto, CA)上明瞭にかつ均一な密度でプリントされる。

【手続補正書】

【提出日】平成5年6月23日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 (a) 水性担体媒質;

- (b) 7. Oより低いpHを有する顔料;並びに
- (c)(1) 少なくとも1つの塩基性アミン官能基を 有する疎水性ポリマーを包含するAブロック
- (2) 非イオン性ポリマー及び酸性官能基を有するポリマーよりなる群から選択される親水性ポリマーを包含するBブロックよりなるABブロックポリマーを包含す

る水性インクジェットインク組成物。

【請求項2】 水性インクジェットインク組成物であって

- (a) インク組成物の全重量を基にして重量で約70%~約99.89%の範囲で存在する、水及び水と少なくとも1種の水溶性有機溶剤との混合物よりなる群から選択される水性担体媒質;
- (b) 7. Oより低いpHを有する顔料;
- (c)(1) 少なくとも1つの塩基性アミン官能基を有する疎水性ポリマーを包含するAブロック:Bび
- (2) 非イオン性ポリマー及び酸性官能基を有するポリマーよりなる群から選択される親水性ポリマーを包含するBブロックよりなるABブロックボリマーであって、このABブロックポリマーはインク組成物の全重量

を基にして重量で約0.1%~約30%の範囲で存在す るもの:並びに

(d) 表面活性剤を包含し、該インクジェットインクが 20℃において約1.0~約 10.0cPの範囲の粘 度及び約30~約70ダイン/cmの範囲の表面張力を 有する組成物。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0008

【補正方法】変更

【補正内容】

[0008]

【課題を解決するための手段】本発明は、速乾性インク ジェットインクに要求される要件に適合するのに特に合 っている顔料配合水性インク組成物であって、

- (a) 水性担体媒質;
- (b) 7. Oより低いpHを有する顔料;並びに
- (c)(1) 少なくとも1つの塩基性アミン官能基を 有する疎水性ポリマーを包含するAブロック
- (2) 非イオン性ポリマー及び酸性官能基を有するポ リマーよりなる群から選択される親水性ポリマーを包含 するBブロックよりなるABブロックポリマーを包含す るインク組成物を提供する。

成

実施例5からの分散液 ネオペンチルグリコール

Triton^R X100 (Rohm & Haas, Philadelp

hia, PA) 3.0 脱イオン水

上記の成分を2時間混合した。仕上ったインクを2ミク ロンのフィルターに通して沪過し、5.7cpsの粘 度、34.0ダイン/cmの表面張力及び87nm(熱 循環試験の後86 nm)の粒径を有していた。このイン クはすぐれた熱安定性を有し、Hewlett Pac kard DiskJetプリンター(Hewlett Packard, Palo Alto, CA) 上明瞭 にかつ均一な密度でプリントされる。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0079

【補正方法】変更

【補正内容】

【0079】本発明の要旨およびその実施態様を以下に 要約して示す。

- 1. (a) 水性担体媒質;
- (b) 7. Oより低いpHを有する顔料: 並びに
- (c)(1) 少なくとも1つの塩基性アミン官能基を 有する疎水性ポリマーを包含するAブロック
- (2) 非イオン性ポリマー及び酸性官能基を有するポ リマーよりなる群から選択される親水性ポリマーを包含

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0016

【補正方法】変更

【補正内容】

【0016】ABブロックポリマー

本発明のABジブロックポリマーは、少なくとも1つの 塩基性アミノ基を有する疎水性ポリマーを包含するAブ ロック及び非イオン性ポリマー及び酸性官能基を有する ポリマーよりなる群から選択された親水性ポリマーを包 含するBブロックよりなる。本発明のインク組成物は、 Aブロックと顔料との間の結合が改善され、即ちより安 定な分散液を形成する。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0078

【補正方法】変更

【補正内容】

【0078】上のことは、酸性顔料及びアミン含有ポリ マーから作られた分散液が酸性顔料及びアミンを含有し ないポリマー分散剤からつくられたものより安定である ことを示す。

実施例7:次の操作を使用して黒色インクを製造した:

量 (g) 50.0

15.0

32.0

するBブロックよりなるABブロックポリマーを包含す る水性インクジェットインク組成物。

- 2. Aブロックがアミン官能を持つモノマーを重合さ せることによって製造される前項1記載のインク。
- 3. Aブロックがジメチルアミノエチルメタクリレー ト、ジェチルアミノエチルメタクリレート、セーブチル アミノエチルメタクリレート、ジメチルアミノエチルア クリレート及びジェチルアミノエチルアクリレートより なる群から選択されるモノマーを重合させることによっ て製造される前項2記載のインク。
- 4. Aブロックがアミン含有開始剤を使用して製造さ れる前項1記載のインク®
- 5. 該少なくとも1つのアミン基がAブロックの開放 末端にある前項1記載のインク。
- 6. 該少なくとも1つのアミン基がAブロックの中に ある前項1記載のインク。
- 7. 該Aブロックが複数のアミン基を有し、該アミン 基の1つがAブロックの開放末端にある前項1記載のイ
- 8. Bブロックがメタクリル酸、アクリル酸、ヒドロ キシエチルメタクリレート、エトキシトリエチレングリ

コールメタクリレートよりなる群から選択されるモノマーから製造される前項1記載のインク。

- 9. Bブロックが全ブロックポリマーの全重量を基に して10~90%である前項1記載のインク。
- 10. Bブロックが有機塩基、アルカノールアミン、アルカリ金属水酸化物及びそれらの混合物よりなる群から選択される中和剤で中和される前項9記載のインク。
- 11. 中和剤がアルカリ金属水酸化物である前項10記載のインク。
- 12. 該インクがインクの全重量を基にして約0.1 \sim 15%の顔料、0.1 \sim 30%のブロックコポリマー及び70 \sim 99.8%の水性担体媒質を含有する前項7記載のインク。
- 13. 水性担体媒質が水又は水と少なくとも1種の有機溶剤との混合物を包含する前項1記載のインク。
- 14. 有機溶剤が多価アルコールである前項13記載のインク。
- 15. 顔料粒子が約0.005~15ミクロンの大き さを有する前項1記載のインク。
- 16. 該インクが約20~70ダイン/cmの範囲の 表面張力及び20℃において約1.0~10.0cPの

範囲の粘度を有する前項1記載のインク。

- 17. 更に表面活性剤を包含する前項1記載のインク。
- 18. 水性インクジェットインク組成物であって
- (a) インク組成物の全重量を基にして重量で約70%~約99.89%の範囲で存在する、水及び水と少なくとも1種の水溶性有機溶剤との混合物よりなる群から選択される水性担体媒質;
- (b) 7. Oより低いpHを有する顔料;
- (c)(1) 少なくとも1つの塩基性アミン官能基を有する疎水性ポリマーを包含するAブロック;及び
- (2) 非イオン性ポリマー及び酸性官能基を有するポリマーよりなる群から選択される親水性ポリマーを包含するBブロックよりなるABブロックポリマーであって、このABブロックポリマーはインク組成物の全重量を基にして重量で約0.1%~約30%の範囲で存在するもの;並びに
- (d) 表面活性剤を包含し、該インクジェットインクが 20℃において約1.0 ~約10.0 c P の範囲の粘 度及び約30~約70ダイン/c m の範囲の表面張力を 有する組成物。

フロントページの続き

(72)発明者 ウオールター・レイモンド・ハートラー アメリカ合衆国ペンシルベニア州19348. ケネツトスクエア.パーカーズビルロード 1375

- (72) 発明者 ハリー・ジヨゼフ・スピネツリ アメリカ合衆国デラウエア州19802. ウイ ルミントン. ビツグロツクドライブ4604
- (72) 発明者 アーサー・チヤールズ・ショー アメリカ合衆国ペンシルベニア州19331. コンコードビル. ピー・オー・ボツクス 789