Chapitre 8 : Fonctions affines

1 Caractérisation des fonctions affines

1.1 Définitions

Définition 1 (Fonction affine)

Une fonction f est dite **affine** lorsqu'il existe deux réels m et p tels que, pour tout $x \in \mathbb{R}$,

$$f(x) = mx + p.$$

- Le nombre m est appelé le **coefficient directeur** de f.
- Le nombre p est appelé l'**ordonnée à l'origine** de f.

Définition 2 (Fonction constante)

Si f est une fonction affine telle que m=0, alors la fonction f est une fonction constante.

Définition 3 (Fonction linéaire)

Si f est une fonction affine telle que p=0, alors la fonction f est une fonction linéaire.

1.2 Représentation graphique

Propriété 1

Dans un repère orthonormé (O; I, J), la courbe représentative d'une fonction f est une droite (non parallèle à l'axe des ordonnées) si, et seulement si, f est une fonction affine.

Exemple 1

Les représentations graphiques suivantes sont issues de fonctions affines.

Propriété 2

Soit f une fonction affine définie pour tout $x \in \mathbb{R}$ par f(x) = mx + p. Pour représenter f, il suffit de placer deux points $A(x_A, y_A)$ et $B(x_B, y_B)$ avec $y_A = mx_A + p$ et $y_B = mx_B + p$ puis de tracer la droite passant par ces deux points.

Application 2

Représenter dans un repère orthonormé (O; I, J) la fonction affine h définie par $h(x) = \frac{4}{3}x - 2$.

1.3 Propriétés des fonctions affines

Propriété 3

Soit f une fonction définie sur \mathbb{R} . La fonction f est une fonction affine si, et seulement si, pour tous réels distincts a et b, le rapport

$$\frac{f(b) - f(a)}{b - a}$$

est constant.

Application 3

Soit f la fonction définie sur \mathbb{R} par f(x) = 2x - 3.

- 1. La fonction f est-elle affine? Si oui, donner son ordonnée à l'origine et son coefficient directeur.
- 2. Calculer le nombre

$$\frac{f(b) - f(a)}{b - a}$$

pour

1)
$$a = 1, b = 3$$

2)
$$a = -1, b = 2$$

3)
$$a = 7, b = -5$$

Propriété 4

Soient f une fonction affine définie sur \mathbb{R} par f(x) = mx + p et a, b deux réels distincts. Alors

$$m = \frac{f(b) - f(a)}{b - a}$$
 et $p = f(0)$.

Application 4

Soit f une fonction affine telle que f(0) = -5 et f(1) = -2. Donner l'ordonnée à l'origine et le coefficient directeur de f.

Application 5

Les fonctions suivantes sont-elles affines? Justifier.

1)
$$f(x) = x + 1$$

2)
$$g(x) = x^2 - 1$$

2 Étude d'une fonction affine

Soit f une fonction affine définie sur \mathbb{R} par f(x) = mx + p où m et p sont des nombres réels.

2.1 Sens de variation

Propriété 5

Si
$$m \ge 0$$

Si $m \leq 0$

La fonction f est croissante.

-5

La fonction f est décroissante.

Application 6

Soit $a \in [-3; -2]$ et g une fonction affine définie sur \mathbb{R} par g(x) = -4x + 5. Déterminer un encadrement de g(a).

2.2 Signes

Propriété 6

Si $m \neq 0$, alors $f(x) = 0 \iff mx + p = 0 \iff x = -\frac{p}{m}$. On a ainsi les tableaux de signes suivants.

Si
$$m > 0$$

Application 7

Dresser le tableau de signes de la fonction h définie sur \mathbb{R} par h(x) = -3x + 4.

Application 8

Résoudre l'inéquation $(3x+2)(-2x-1) \le 0$. On pourra faire un tableau de signes.