

Integraltransformationen und Partielle Differentialgleichungen (Hausaufgabe 7)

Abgabe: 10. – 14. Juni 2024 Sommersemester 2024

Aufgabe 19 (6 Punkte)

Bestimme für alle $\alpha \in \mathbb{R}$ ein reelles Fundamentalsystem der Differentialgleichung

$$x''(t) + 4x'(t) + \alpha x(t) = 0.$$

Aufgabe 20 (5 Punkte)

Löse das reelle Anfangswertproblem

$$x''(t) + 5x'(t) + 6x(t) = e^{-2t}, \quad x(0) = 2, \quad x'(0) = 1.$$

Aufgabe 21 (4 Punkte)

Verwende einen Ansatz in Form der rechten Seite, um eine partikuläre Lösung der folgenden Differentialgleichungen zu bestimmen:

(a)
$$x''(t) + 2x(t) = \sin(2t)$$
,

(b)
$$x''(t) - x'(t) = t^2 e^t$$
.

Aufgabe 19

(6 Punkte)

Bestimme für alle $\alpha \in \mathbb{R}$ ein reelles Fundamentalsystem der Differentialgleichung

$$x''(t) + 4x'(t) + \alpha x(t) = 0.$$

 $\psi - \alpha > 0 \Rightarrow \alpha < \psi$ $0 \neq S$ $\pi_{A}(t) = e^{\left(-2 + \sqrt{4 - \alpha}\right)t}$ $\chi_{2}(t) = e^{\left(-2 - \sqrt{4 - \alpha}\right)t}$

x(+)= c1e(-2+V+-x)++c,e(-2-V+-x)+

x(t) = C1e-1t + C1te-1t

Aufgabe 20

(5 Punkte)

Löse das reelle Anfangswertproblem

$$x''(t) + 5x'(t) + 6x(t) = e^{-2t}, \quad x(0) = 2, \quad x'(0) = 1.$$

1.1)
$$P(\lambda) = \lambda^{2} + 5\lambda + 6 = (\lambda + \lambda)(\lambda + 3) = 0$$
 = $\lambda \lambda_{1} = -\lambda \lambda_{2} = -3$

D Part. LSG & ATS;

$$(x, t) = A_0(e^{-\lambda t} - 1te^{-\lambda t})$$

2.2)
$$\vec{x}_{p}^{\prime}(t) = A_{0}(e^{-\lambda t} - 2te^{-\lambda t})$$
 $\vec{x}_{p}^{\prime\prime}(t) = A_{0}(-2e^{-\lambda t} - 2te^{-\lambda t} \cdot (-2) - 2e^{-\lambda t})$

$$= A_{0}(-4e^{-\lambda t} + 4e^{-\lambda t})$$

$$\Rightarrow A_0 = 1$$
 $\Rightarrow x_0(t) = te^{-\lambda t}$

3 Ally, LSG:

$$X(0) = C_A + C_2 = 2 \qquad \Rightarrow \qquad C_A = 6$$

```
=> x(t)= 6e-2t-4e-2t+te-2t
```

Aufgabe 21 (4 Punkte)

Verwende einen Ansatz in Form der rechten Seite, um eine partikuläre Lösung der folgenden Differentialgleichungen zu bestimmen:

(a)
$$x''(t) + 2x(t) = \sin(2t)$$
,

(b)
$$x''(t) - x'(t) = t^2 e^t$$
.

(b)
$$x''(t) - x'(t) = t^2 e^t$$
.

A) @ hom. $lag: X'' + \lambda X = 0$

A. (1) $P(\lambda) = \lambda^2 + \lambda = 0 \Rightarrow \lambda_{A/2} = \lambda i \sqrt{2}$

A. (2) $x_A(t) = e^0 c_A(i + t) = c_A(i + t)$

b) @ hom. ly:
$$\chi'' - \chi' = D$$

1.1) $P(\lambda) = \chi^2 - \lambda = 0 \Rightarrow \lambda \lambda = 0 \lambda = 1$
1.2) $\chi_{\Lambda}(t) = e^0 = 1 \chi_{\Lambda}(t) = e^t$
1.3) $\chi_{\Lambda}(t) = C_1 + C_2 e^t$

D Pow. lig: 2.1)
$$b(t) = t^2 e^t$$

$$\frac{\partial t}{\partial t} = A \text{ isteine } A - \text{form } \text{MST von POJ}$$

$$\chi_{p}(t) = t e^t \cdot (A_0 + A_1 t + A_2 t^2) + t e^t (A_1 + A_2 t)$$

$$\chi_{p}(t) = (e^t + e^t + t e^t)(A_0 + A_1 t + A_2 t^2) + (e^t + t e^t)(A_1 + A_2 t)$$

$$+ (e^t + t e^t)(A_1 + A_2 t) + t e^t (A_2 t)$$

Sin DGL:
$$\kappa_{p}^{\parallel}(t) - \chi'(t) = e^{t}(A_{0} + A_{1} + A_{2} + t^{2}) + e^{t}(A_{1} + t^{2} + t^{2}) + e^{t}(A_{1} + t^{2} + t^{2}) + e^{t}(A_{1} + t^{2} + t$$