

Classifiez automatiquement des biens de consommation

PROJET 6
EMANUELE PARTENZA

Etude de faisabilité d'un moteur de classification

Texte:

CountVectorizer

TfidVectorizer

Word2Vec

BERT

USE

Image:

- ORB
- ResNet50
- ▶ VGG16

Data Frame

Nettoyage du texte

Bag of words

CountVectorizer

Transforme le corpus en une matrice de comptage des mots

TfidVectorizer

Transforme le corpus en une matrice dans laquelle à chaque mot est associé, non plus sa fréquence, mais un poids.

Ce poids correspond à la fréquence fois l'indicateur idf (inverse document frequency).

CountVectorizer

SCORES:

► ARI: 0.110

F1:0.143

Precision: 0.152

Recal: 0.147

TfidVectorizer

SCORES:

► ARI: 0.188

F1:0.088

Precision: 0.082

Recal: 0.110

Word2Vec

Ce modèle essaye de prendre en compte le contexte dans lequel le mot a été trouvé.

Il le fait en combinant deux techniques:

- CBOW (Continuous Bag of Words) qui entraine le réseau de neurones pour prédire un mot en function du contexte;
- Skip-gram qui essaye de prédire le contexte en fonction du mot.

Word2Vec

SCORES:

ARI: 0.385

► F1:0.167

Precision: 0.201

Recal: 0.153

BERT & USE

BERT (Bidirectional Encored Représentations from Transformers)

USE (Universal Sentence Encoder)

Ce sont deux modèles préentrainés

Scores

USE

► ARI: 0.361

► F1: 0.226

► Precision: 0.219

► Recal: 0.236

BERT

► ARI: 0.301

► F1: 0.228

► Precision: 0.253

▶ Recal: 0.213

ORB

L'algorithmes ORB (Oriented FAst and Rotated BRIEF) nous permets d'extraire des features des images et de calculer leurs descripteurs.

Cette méthodes est la fusion de FAST, pour la detection des keypoints, et de BRIEF pour les descripteurs.

ORB

SCORES:

► ARI: 0.032

► F1:0.133

▶ Precision: 0.133

► Recal: 0.135

ResNet50 & VGG16 ResNet50 (deep Residual Networks) et VGG16(Visual Geometry Group) sont deux modèles pré-entrainés utilisant un réseau de neurones convolutif (CNN)

Scores

ResNet50

► ARI: 0.371

► F1:0.116

▶ Precision: 0.116

► Recal: 0.117

VGG16

► ARI: 0.394

► F1:0.164

Precision: 0.257

▶ Recal: 0.171

Merci pour votre attention