Trabalho 2 Análise de Regressão

Alisson Rosa e Vítor Perira

Sumário

6	Comentário	10
5	Ajuste final	9
	4.2 Teste de hipótese dos pressupostos	9
	4.1 Análise de Influência	6
4	Verificação dos pressupostos	6
3	Ajuste dos Modelos	5
2	Análise Descritiva	1
1	Introdução	1

1 Introdução

A proposta do respectivo trabalho é predizer o produto interno bruto (PIB) de 26 estados do Brasil no ano de 2019, os dados foram extraidos de planinhas disponíveis no site do Instituto Brasileiro de Geografia e Estatística (IBGE) para isso utiliza-se como variáveis explicativas (covariáveis): **Pobreza**: Que fornece a taxa de extrema pobreza no ano 2010;

Densidade Demográfica: Informa a densidade demográfica de cada estado no ano de 2019;

Área : Refere-se a área em km de cada estado no ano de 2019; **índice de Desenvolvimento Humano (IDHe) Educacional**: Refere-se ao IDH educacional no de ano de 2017, a escolha das covariáveis foram para conter três eixos:

População e Geográfia do Estado: Área e Densidade Demográfica;

Condição de Vida: Pobreza;

e Educação : IDHe;

Como modelos de preditivos foi utilizado uma regressão linear, florestas aleatórias (rf) e os k-vizinhos mais próximos (knn)

2 Análise Descritiva

Vejamos um breve resumo das variáveis de estudo:

Tabela 1: Resumo das variáveis:

	n	Média	Desvio Padrão	Mediana	Minímo	Máximo
PIB	26	2.51e+04	9.78e + 03	2.25e+04	1.28e + 04	4.70e + 04
IDHe	26	7.14e-01	4.80e-02	7.14e-01	6.36e-01	8.28e-01
Área	26	3.27e + 05	3.77e + 05	2.31e+05	2.19e+04	1.56e + 06
Densidade Demográfica	26	5.87e + 01	8.24e+01	3.12e+01	2.66e+00	3.95e+02
Pobreza	26	1.20e-01	7.40e-02	1.29e-01	1.70e-02	2.63e-01

Note pelo seguinte gráfico que os estados da região Norte estão bem próximos da média do PIB por estado (2.512×10^4) , SP e RJ estão bem acima e os estados da região nordeste estão bem abaixo.

A titulo de curiosidade vejamos o PIB por região

Tabela 2: PIB por Região

Região	Média PIB	Desvio padrão	Quantidade
Centro-oeste	33914	5000	3
Norte	21049	2643	7
Nordeste	16358	2070	9
Sul	38062	1328	3
Sudeste	35667	9566	4

Para o eixo condição de vida, perceba a relação entre **Pobreza** e e o **PIB** pelo seguinte gráfico de dispersão:

Pode-se ver pelo gráfico e pela correlação de -0.88 que quanto maior for a taxa de pobreza do estado, menor será seu PIB.

Para o eixo Educação, perceba a relação entre IDHe e o PIB pelo seguinte gráfico de dispersão:

Gráfico de dispersão entre IDHe e PIB

Pode-se ver pelo gráfico e pela correlação de 0.822 que quanto maior for a IDHe, maior será seu PIB.

E para o eixo População e Geográfia do Estado tem-se o gráfico de dispersão:

Gráfico de dispersão entre IDHe e PIB

Duas observações se destacam das outras, pois possuem uma densidade demográfica bastante superior a média, sendo elas São Paulo e Rio de Janeiro, pelo gráfico de dispersão não fica muito claro o comportamento da relação entre PIB e Densidade Demográfica, a correlação de 0.391 indica que é uma correlação positiva entretanto fraca.

Tabela 3: Correlação entre as variáveis

	PIB	IDHe	Área	Densidade Demográfica	Pobreza
PIB	1.000	0.822	0.016	0.391	-0.880
IDHe	0.822	1.000	0.058	0.237	-0.692
Área	0.016	0.058	1.000	-0.376	0.158
Densidade Demográfica	0.391	0.237	-0.376	1.000	-0.292
Pobreza	-0.880	-0.692	0.158	-0.292	1.000

Podemos notar nos valores observados das variáveis que existe um pouco de correlação nas covariáveis, testaremos mais a frente a existência de multicolineriadade.

3 Ajuste dos Modelos

Nessa seção serão ajustados os modelos de regressão linear, rf e knn ¹, usando as covariáveis já citadas. Os hiperparâmetros dos modelos que possuem, foram encontrados por otimização, tentando minimizar a raiz do erro quadrático médio (rmse). O seguinte gráfico ilustra o rmse para cada modelo

Perceba que a rf possui um rmse menor (4830.18717754746) e a regressão linear possui o maior erro padrão (828.774169229238)

Em termos da rf as variáveis que possuem a maior importância são dadas pelo seguinte gráfico

¹Evidentemente, a escolha de colocar mais modelos foi só por motivos de comparação de desempenho, não foi aprofundado i.e, realizado seperação entre treino e teste etc

Note que a variável Área é que a possui menor importância e Pobreza que a tem mais importância

4 Verificação dos pressupostos

Precisamos primeiramente testar se os modelos estão corretamente especificados, faremos pelo teste Reset que tem como hipótese nula que o modelo está corretamente especificado, fazendo o teste para o modelo de regressão obtem-se um p-valor igual a 0.065 que nos informa que não existem evidências contra a hipótese suposta, portanto,

É necessário ver se existem observações atípicas no conjunto dados, que podem estar influenciando a análise:

4.1 Análise de Influência

No gráfico a seguir vemos as medidas de alavancagem, que informam se uma observação é discrepante em termos de covariável, nota-se que apenas uma observação está um pouco fora dos limites pré-estabelecidos.

Temos dffits, que informam o grau de influência que a observação i tem sobre o valor seu próprio valor ajustado $\hat{y_i}$, percebe-se somente uma observação levemente fora dos limites

Tem-se também a distância de cook, que fornece a influência da observação i sobre todos os n valores ajustados

O gráfico de resíduos também é importante para verificarmos visualmente a média dos resíduos e se existe algum valor fora de 3 desvios padrões, pois esses possui baixíssima probabilidade de serem observados.

E por último tem-se o gráfico de envelope simulado, que informa se a distribuição proposta para os dados está em conforme com os valores observados, percebe-se todos os valores dentros das bandas simuladas

Envelope Simulado

4.2 Teste de hipótese dos pressupostos

Primeiramente vamos testar se os erros (ϵ) possuem média zero, para isso usaremos um teste t que tem como hipótese:

$$H_0: E(\epsilon_i) = 0$$

Obtem-se um p-valor » 0.1, portanto manteremos a hipótese de média nula dos erros.

Segundo precisamos testar a hipótese de variância constante dos erros, usaremos o Teste de Bressch-Pagan, que tem por hipótese:

$$H_0: Var(\epsilon_i) = \sigma^2$$

Obtém-se um p-valor de 0.062 que também informa que não possuímos evidências amostrais contra a hipótese proposta.

Agora fazemos o teste de normalidade, utilizando o teste de Jarque-Bera, obtivemos um p-valor de 0.928 que também informa que não existem evidência contra normalidade dos erros

Como informado no início também é necessário testar se existe multicolinearidade, para tal usa-se fatores de inflação da variância (vif) para detectar, é ideal é que vif=1, obtemos 2.073, 1.26, 1.272, 2.088 para as variáveis x_1,x_2,x_3 e x_4 respectivamente.

E por último é necessário testar a existência de autocorrelação, usaremos o Teste de Durbin-Watson, que tem por hipótese, que existe não existe correlação, após aplicação do teste obtém-se um p-valor de 0.53 i.e, não existem evidências contra a hipótese de autocorrelação.

Logo, pelo testes anteriores não existem evidências contra os pressupostos teóricos, com isso podemos estabelecer inferência para os parâmetros do modelo

5 Ajuste final

Tem-se portanto como resumo do modelo final a seguinte tabela:

Tabela 4: Resumo do modelo final

Coeficientes	Estimativa	Erro Padrão	p-valor
(Intercept)	-1.83e+04	1.55e + 04	0.2518
IDHe	7.04e+04	2.04e+04	0.0024
Área	4.30e-03	2.00e-03	0.0463
'Densidade Demográfica'	2.28e+01	9.29e+00	0.0228
Pobreza	-8.03e+04	1.32e+04	0.0000

Que informa que o intercepto não são significativos a 1%, tem-se um p-valor « 0.001 do teste F e R^2 dado por 0.899 que informa que aproximadamente 89.9% da variação do PIB dos estados é explicada pelas covariáveis propostas.

6 Comentário

O código completo pode ser acessado aqui.