Isomorphism of memBers	1
Shigeo Hattori bayship.org@gmail.com	2
October 21, 2019 First version: September, 2019	3
1 Introduction	5
Definition 1.1 (memBer). Take $\forall x$ such that (there exists $\exists S$ such that $x \in S$). Then x is said a memBer.	6 7 8
that all homeomorphic topological spaces are isomorphic as memBers,(4) defines that a memBer S1 is a minor of a memBer S2. I expect that readers will realize that the newly defined isomorphisms are somehow more fundamental than ,e.g., homeomorphisms of topological spaces. Because "homeomorphisms" logically resolve to "isomorphisms of memBers"	9 10 11 12 13 14 15
2 Notation	17
"A $_{then} \land$ B" \equiv "A holds then B holds". "A $_{else} \lor$ B" \equiv "if A fails then B holds". " $\forall x : \in S$ " \equiv "for all x such that $x \in S$ ".	18 19 20 21 22
Take $\forall (x, I, X)$ as a family X, the index set I and the function x, then x is surjective.	23242526

And x is said a family's function.	27 28
3 Deep member	29
Definition 3.1 (Deep member of memBer). This definition uses a style of recursion. Take $\forall (x,y)$ such that *1 holds. Then define *2 $_{then} \land$ *3.	30 31 32
1 $x = y$ else (there exists $\exists z$ such that $x \in z \in \geq 0$ y).	33
$2 \ x$ is a deep member of y	34
$3 x \in \geq 0 y$	35
·	36
Definition 3.2 (Power of membership). This definition uses a style of recursion. Take $\forall (x, y, z, n)$ such ¹ that $n \in \mathbb{N}$. ² Then define *1 $_{then} \land$ *2.	37 38
1 $x \in {}^{0} x$.	39
2 If $x \in y \in \mathbb{R}$ z Then $x \in \mathbb{R}^{n+1}$ z .	40
· ·	41
Definition 3.3 (Sum of powers of membership). Take $\forall m \geq 1$. Then let $I := [1, m+1] \subset N$. Take $\forall x$ as a family's function on I . Then define *1.	42 43
1 If $x_1 \in {}^{p_1} \dots \in {}^{p_m} x_{m+1}$ Then $(\in {}^{p_1+\dots+p_m}, x_1, \dots, x_{m+1})$.	44
2 For example, If $x_1 \in {}^{n_1} x_2$ Then $(\in {}^{n_1}, x_1, x_2)$.	45 46
3 For example, If $x_1 \in {}^{n_1} x_2 \in {}^{n_2} x_3$ Then $(\in {}^{n_1+n_2}, x_1, x_2, x_3)$.	47 48
· ·	49
Definition 3.4 (Space of memBer). Take $\forall (x,y)$ such that *1 holds. Then define *2.	50 51
1 $y = \{d \mid d \in \geq 0 x \text{ then } d \text{ is a point } \}.$	52
$2 \ y$ is the space of x .	53
· ·	5/

 $^{^1}N$ denotes the set of all natural numbers. 2 It may happen to be that $x \in ^1y$ and $x \in ^2y$.

4 Notations	55
Definition 4.1 (Restriction of binary relation). Take $\forall (L, X, Y, X1, Y1)$ such that *1 holds. Then define (*2 $_{then} \land$ *3 $_{then} \land$ *4).	56 57
$1 \ \text{L is a binary relation on} \ X * Y {}_{then} \land \ X1 \subset X {}_{then} \land \ Y1 \subset Y.$	58
2 $L[X1]:=\{ (x,y) \in L \mid x \in X1 \}.$	59
3 $L[,Y1]:=\{(x,y)\in L\mid y\in Y1\}.$	60
4 $L[X1,Y1]:=\{\ (x,y)\in L\ \ x\in X1\ _{then}\wedge\ y\in Y1\ \}.$	61

5 Isomorphic memBers	62
Definition 5.1 (Isomorphic memBers). Take all $\forall x$. Then (x, x) are said isomorphic.	63 64
Definition 5.2 (Isomorphic memBers by binary relation). This definition uses a style of recursion.	65 66
	67
Take $\forall (x, y, F)$ such that *A holds. Then define (*B1 $_{then} \land$ *B2).	68
A (F is a binary relation $_{then} \wedge *0$) holds.	69
	70
0 If there exists $\exists v :\in \{x, y\}$ such that $space(v) = \emptyset$ Then $x = y$ Else *1.	71
1 If there exists $\exists v :\in \{x, y\}$ such that v is a point Then $((x, y)$ are points $then \land (x, y) \in F$) Else $(*2 then \land *3)$.	72 73
2 $F[space(x), space(y)]$ is a ³ bijection from*to space(x)*space(y).	7 4
3 There exists $\exists f$ such that (*4 $_{then} \land$ *5 $_{then} \land$ *6).	7 5
4 f is a bijection from*to $x * y$.	76
5 Take $\forall (m1, m2) \in f$.	77
6 *A holds for $(m1, m2, F)$ in place of (x, y, F)).	78
B1 (x,y) are said isomorphic by F as an isomorphism.	79
B2 Take $\forall (x, y, F)$ such that (x, y) are isomorphic by F . Then (x, y) are said	80
isomorphic.	81

³To weaken the definition, replace "bijection" with "function" or with "binary relation".

6	Minors of memBers	82
Defi *B.	nition 6.1 (Minors). Take $\forall (x,y)$ such that *A holds. Then it is said as	83 84
A *	$1_{then} \wedge *2.$	85
	1 Take $\forall d$. Then $d \in \geq 0$ $x \Rightarrow d \in \geq 0$ y .	86
	2 Take $\forall (d1, d2, d3)$ such that (take $\forall d \in \{d1, d2, d3\}$, then $d \in \geq 0$ x). Then (*3 \Leftarrow *4).	87 88
	3 $((x, d1, d3), (x, d2, d3))$ are isomorphic.	89
	4 $((y, d1, d3), (y, d2, d3))$ are isomorphic.	90
B *	$5_{then} \wedge *6.$	91
	5 x is a minor of y .	92
	6 $x \leq^{minor} y$.	93
	•	94
7	Notations	95
Nota	ations defined bellow are used to express typical patterns of logic.	96
	y are used to make the texts of proofs shorter or simpler if the original texts	97
are o	consists of long or complex repetitions of typical logic.	98
		99
	nition 7.1 (Symbol for omitting).	100
For e	example:	101102
Let ,	$S := \{ x \in N \mid \dots \}.$	103
	G . 37	104
Defi	.nition 7.2 (Set definition with symbol for omitting). Bellow, P denotes a	105
	al expression.	106
For e	example:	107
_		108
	$P := (x \in N \mid_{then} \land x < 2).$	109
Let ,	$S := \{ \dots \mid P \}.$	110
Thei	a S is the set of all valid substitutions into free variables of P .	111112

Namely $S = \{(x = 0), (x = 1)\}.$	113
	114
For example:	115
	116
Let $Q := P$ then $\land (\forall y :\in N, (\exists z :\in N \text{ such that } y = z - 1)).$	117
$Let S := \{ \dots \mid Q \}.$	118
Then $S = \{(x = 0), (x = 1)\}.$	119
	120
As a remark on Q , only x is a free variable.	121
Definition 7.3 (Pipes).	122
Pipe to express a function:	123
	124
Let $S := \{x * 2 \mid_{fun} x \in N \mid \dots \}.$	125
	126
Then S is the set of all even members from N .	127
	128
Pipe to define a subset:	129
	130
$S1, S2 := \{ x \in N \mid_{then} \land x^2 = y \} _{sub} $ (S1,where y is smallest).	131
	132
Then $S1 = \{ x \in N \mid_{then} \land x^2 = y \}.$	133
And $S2$ is the subset of $S1$ exactly including all minimum members in terms of y .	134
	135
Example:	136
	137
$S1, S2, S3 := \{ x \in N \mid_{then} \land x^2 = y \} _{sub}$	138
(S1,where y is smallest) $ _{fun}$	139
(S2, return x + y).	140
	141
The last line says that (take $S2$, then return $x + y$ for each member).	142
In other words, $S3 = \{x + y \mid_{fun} P(x, y) \in S2 \mid \dots \}.$	143
Namely $S3 = \{(x = 0, y = 0)\}.$	144
8 Depth of deep member	145
Definition 8.1 (Depth of deep member). Recall the defined type of expressions	146

Definition 8.1 (Depth of deep member). Recall the defined type of expressions 146 titled as "Sum of powers of membership". 147 Take $\forall m \geq 1$. Take $\forall x$ as a family's function on $[1, m+1] :\subset N$. Then define 148

as follows.	149
	150
Let $S1, S2, S3 := \{ (\in^{n_1 + + n_m}, x_1,, x_{m+1}) \} _{sub}$	151
(S1, where $n1 + + n_m$ is largest) $ _{fun}$	152
$(S_2, \text{return } n1 + \dots + n_m).$	153
If $S1 \neq \emptyset$ Then	154
take $\forall n :\in S3$,	155
let $\#depth(x_1,, x_{m+1}) := n.$	156
As a remark, all n_i are free variables whereas all x_i are not.	157 158
Definition 8.2 (Depth of memBer). Take $\forall x_2$.	159
T + Gt G0 G0 (1 / m1))	160
Let $S1, S2, S3 := \{ (\epsilon^{n1}, x_1, x_2) \} _{sub}$	161
$(S1, \text{where } n1 \text{ is largest}) \mid\mid_{fun}$	162
$(S_2, \text{return } n_1).$	163
Take $\forall n :\in S3$. Let $\#depth(x_2) := n$.	164 165
Let $\#aepin(x_2) := n$.	166
As a remark, all n_i and x_1 are free variables whereas x_2 is not.	167
Proposition 1 (Donth of door member). Take $\forall (x, y, z)$ such that $z \in y \in \mathbb{R}^2$	n 160
Proposition 1 (Depth of deep member). Take $\forall (x, y, z)$ such that $z \in y \in \geq 0$. Then $\#depth(z, x) > \#depth(y, x)$.	169
	170
Proof.	171
• Assume it is false.	172
• There exists $\exists (x, y, z)$ such that it is a counterexample.	173
• Hence $\#depth(z,x) \leq \#depth(y,x)$.	174
• Hence $\#depth(z,x) \ge \#depth(z,y,x) > \#depth(y,x) \ge \#depth(z,x)$.	175
• The assumption is false.	176
[177
Proposition 2 (Depth of memBer). Take $\forall (x,y)$ such that $y \in x$. The $\#depth(y) < \#depth(x)$.	n 178
Proof.	180

• Assume it is false.	181
• There exists $\exists (x,y)$ such that it is a counterexample.	182
• Hence $\#depth(y) \ge \#depth(x)$.	183
• There exists $\exists v :\in y$ such that (184
$\#depth(y) = \#depth(v, y) \ge \#depth(v, y, x) \le \#depth(x)$	185
).	186
• Though $\#depth(v, y) + 1 = \#depth(v, y, x)$.	187
• The assumption is false.	188
	189
9 Isomorphic memBers as equivalence relation	190
Definition 9.1. In this section, *Def refers to the definition titled as "Isomor-	191
phic memBers by binary relation".	192
And $*1 \equiv *2$, without any explicit proof because it is trivial by *Def. And *3 holds, without any explicit proof because it is trivial by *Def.	193 194
1 (x_i, y_i) are isomorphic by F_i .	195
2 *Def.A holds for (x_i, y_i, F_i) in place of (x, y, F) .	196
3 Take $\forall (x, y, F)$ such that (*4 $_{then} \land$ (*5 $_{else} \lor$ *6)). Then *7 holds.	197
4 F is a binary relation.	198
5 $(space(x) = \emptyset \ _{then} \land \ x = y).$	199
6 $((x,y) \text{ are points } then \land (x,y) \in F).$	200
7 (x,y) are isomorphic by F .	201
Proposition 3 (Restriction). Take $\forall (x, y, F1, F2)$ such that (*A1 $_{then} \land$ *A2 $_{then} \land$ *A3) holds. Then *B holds.	202 203
A1 $(F1, F2)$ are binary relations.	204
A2 $F1[space(x)] = F2[space(x)].$	205
A3 Def.A holds for $(x, y, F1)$.	206

B Def.A holds for $(x, y, F2)$.	207
•	208
Proof.	209
• Assume it is false.	210
• There exists $\exists (x, y, F1, F2)$ such that it is a minimum counterexample by $\#depth(x)$.	211 212
• Let us follow *Def.A for $(x, y, F1)$.	213
• Assume the antecedent of *0 holds.	214
• Hence $space(x) = \emptyset$ $then \land x = y$.	215
• Then *0 holds for $(x, y, F2)$.	216
• The last assumption is false.	217
• Assume the antecedent of *1 holds.	218
• Hence (x, y) are points $_{then} \land (x, y) \in F1$.	219
• Then *1 holds for $(x, y, F2)$.	220
• The last assumption is false.	221
• Then (*2 $_{then} \wedge$ *3) holds.	222
• Hence *2 holds for $(x, y, F2)$.	223
• Hence *3 fails for $(x, y, F2)$.	224
• Hence there exists $\exists (m1, m2) \in f$ such that	225
• *Def.A holds for $(m1, m2, F1)$ $_{then} \land$ *Def.A fails for $(m1, m2, F2)$.	226
• Hence $(m1, m2, F1, F2)$ is a counterexample smaller than $(x, y, F1, F2)$.	227
• The first assumption is false.	228
	229
Proposition 4 (Members' isomorphisms as consequent). Take $\forall (x, y, F)$ such that (*A1 $_{then} \land$ *A2). Then (*B1 $_{then} \land$ *B2) holds.	230 231
A1 *Def.A holds for (x, y, F) in place of (x, y, F) .	232

A2 F is an injection.	233
B1 Take $\forall m1 :\in \geq 0$ x . Then there exists $\exists m2 :\in \geq 0$ y such that *Def.A holds for $(m1, m2, F)$ in place of (x, y, F) .	234 235
B2 Take $\forall m2 :\in \geq 0$ y. Then there exists $\exists m1 :\in \geq 0$ x such that *Def.A holds for $(m1, m2, F)$ in place of (x, y, F) .	236 237
Proof of *B1.	238
• Assume it is false.	239
• Then there exists $\exists (x, y, F, m1)$ such that it is a minimum counterexample by $\#depth(m1, x)$.	240 241
• It is trivial that $(x \neq m1)$.	242
• Consider the proposition titled as "Depth of deep member".	24 3
• There exists $\exists x1$ such that $(m1 \in x1 \mid_{then} \land (x, y, F, x1))$ is not a counterexample).	244 245
• Hence *B1 holds for $x1$ in place of $m1$.	246
• Hence there exists $2:\in^{\geq 0}y$ such that *Def.A holds for $(x1,y2,F)$.	247
• Let us follow *Def.A for $(x1, y2, F)$.	248
• Assume the antecedent of *0 holds.	249
• Then $space(x1) = \emptyset$ $then \land x1 = y2$.	25 0
• Hence $space(m1) = \varnothing$ $_{then} \land \ m1 = m1$ $_{then} \land \ m1 \in ^{\geq 0} y$.	251
• Hence *B1 holds for $m1$ in place of $m1$.	25 2
• Hence $(x, y, F, m1)$ is not a counterexample.	25 3
• Hence the last assumption is false.	25 4
• Assume the antecedent of *1 holds.	25 5
• Hence $(x1 \text{ is a point})$ $_{then} \land (m1 \in x1).$	256
• Hence the last assumption is false.	257
• Hence (*2 $_{then} \wedge$ *3) must hold.	258

• Hence, (*4 $_{then} \wedge$ *5 $_{then} \wedge$ *6) holds.	25 9
• Hence *B1 holds for $(x, y, F, m1)$ in place of $(x, y, F, m1)$.	260
• Hence $(x, y, F, m1)$ is not a counterexample.	261
• The first assumption is false.	262
	263
Proof of *B2.	264
• Assume it is false.	265
• Then there exists $\exists (x, y, F, m2)$ such that $(x, y, F, m2)$ is a minimum counterexample by $\#depth(m2, y)$.	- 266 267
• It is trivial that $(y \neq m2)$.	268
• There exists $\exists y2$ such that $(m2 \in y2 \mid_{then} \land (x, y, F, y2)$ is not a counterexample).	269 270
• Hence *B2 should hold for $y2$ in place of $m2$.	271
• Hence there exists $1:\in^{\geq 0} x$ such that *Def.A holds for $(x1,y2,F)$.	272
• Let us follow *Def.A for $(x1, y2, F)$.	273
• Assume the antecedent of *0 holds.	274
• Then $space(x1) = \emptyset$ then $\land x1 = y2$.	275
• Hence $space(m2) = \varnothing$ $_{then} \land \ m2 = m2$ $_{then} \land \ m2 \in \ge 0$ x .	276
• Hence *B2 holds for $m2$ in place of $m2$.	277
• Hence $(x, y, F, m2)$ is not a counterexample.	278
• Hence the last assumption is false.	279
• Assume the antecedent of *1 holds.	280
• Hence $(y2 \text{ is a point})$ $_{then} \land (m2 \in y2).$	281
• Hence the last assumption is false.	282
• Hence (*2 $_{then} \wedge$ *3) must hold.	283
• Hence, (*4 $_{then} \wedge$ *5 $_{then} \wedge$ *6) holds.	284

• Hence *B2 holds for $(x, y, F, m2)$ in place of $(x, y, F, m2)$.	285
• Hence $(x, y, F, m2)$ is not a counterexample.	286
• The first assumption is false.	287
	288
Proposition 5 (Symmetric property). Take $\forall B$ such that B is a binary relation. Then let B^{-1} denote $\{(b2,b1) \mid (b1,b2) \in B\}$. Take $\forall (x,y,F)$. Then *A1 implies *A2.	289 290 291
A1 Def.A holds for (x, y, F) .	292
A2 Def.A holds for (y, x, F^{-1}) .	293
	294
Proof.	295
• Assume it is false.	296
• There exists $\exists (x, y, F)$ such that it is a minimum counterexample by $\#depth(x)$.	297 298
• Let us follow *Def.A for (x, y, F) in terms of *A1.	299
• Assume the antecedent of *0 holds for (x, y, F) in terms of *A1.	300
• Hence $space(x) = \emptyset$ then $\land x = y$.	301
• Hence *0 holds for (x, y, F) in terms of *A2.	302
• Hence the last assumption is false.	303
• Assume the antecedent of *1 holds for (x, y, F) in terms of *A1.	304
• Hence (x, y) are points $_{then} \land (x, y) \in F$.	305
• Hence (y, x) are points $_{then} \land (y, x) \in F^{-1}$.	306
• Hence *1 holds for (x, y, F) in terms of *A2.	307
• Hence the last assumption is false.	308
• Hence (*2 $_{then} \wedge$ *3) must hold for (x, y, F) in terms of *A1.	309
• Hence $F[space(x), space(y)]$ is a bijection from *to $space(x) * space(y)$.	310

• Hence $F^{-1}[space(y), space(x)]$ is a bijection from*to $space(y) * space(x)$.	311	
• Hence *2 holds for (x, y, F) in terms of *A2.	312	
• Hence *3 must fail for (x, y, F) in terms of *A2.	313	
• At same time, *3 hold for (x, y, F) in terms of *A1.	314	
• Hence there exists $\exists (m1, m2) \in f$ such that (315	
• *Def.A holds for $(m1, m2, F)$ _{then} \wedge	316	
• *Def.A fails for $(m2, m1, F^{-1})$.	317	
•).	318	
• Hence $(m1, m2, F)$ is a counterexample.	319	
• Consider the proposition titled as "Depth of memBer".	320	
• Moreover $\#depth(m1) < \#depth(x)$.	321	
• It contradicts to the title of (x, y, F) as a minimum counterexample.	322	
• Hence the first assumption is false.	323	
	324	
Proposition 6 (Reflexive property). Take $\forall (x,F)$ such that *A holds. Then *B holds.	325 326	
A F is the identity function on $space(x)$.	327	
B Def.A holds for (x, x, F) .	328	
· ·	329	
Proof.	330	
• Assume it is false.	331	
• There exists $\exists (x,F)$ such that it is a minimum counterexample by $\#depth(x)$.32		
• Let us follow *Def.A for (x, x, F) .	333	
• Assume the antecedent of *0 holds.	334	
• Then *0 holds.	335	

• The last assumption is false.	336
• Assume the antecedent of *1 holds.	337
• Then *1 holds.	338
• The last assumption is false.	339
• It is trivial that *2 holds. Hence *3 must fail.	340
• Let $f1$ be the identity function on x .	341
• Then *3 must fail for $f1$ in place of f .	342
• Though *4 holds.	343
• Hence (*5 $_{then} \wedge$ *6) must fail.	344
• Hence there exists $\exists (m1, m1) :\in f1$ such that *Def.A fails for $(m1, m1, F)$.	345
• Meanwhile *Def.A holds for $(m1, m1, F[space(m1)])$ because otherwise $(m1, F[space(m1)])$ would be a counterexample smaller than a minimum counterexample, (x, F) .	346 347 348
• Though consider the proposition titled as "Restriction".	349
• Then *Def.A holds for $(m1, m1, F)$.	350
• The first assumption is false.	351
	352
Proposition 7 (Transitive property). Take $\forall (B1,B2)$ such that $(B1,B2)$ are binary relations. Then let $B2 \circ B1$ denote $\{(b1,b3) \mid \exists b2 \text{ such that } (b1,b2) \in B1 \atop then \wedge (b2,b3) \in B2 \}$. Take $\forall (x,y,z,F1,F2)$ such that (*A1 $_{then} \wedge$ *A2) holds. Then *B holds.	
A1 Def.A holds for $(x, y, F1)$.	357
A2 Def.A holds for $(y, z, F2)$.	358
B Def.A holds for $(x, z, F2 \circ F1)$.	359
•	360
Proof.	361
• Assume it is false.	362

- There exists $\exists (x, y, z, F1, F2)$ such that it is a minimum counterexample 363 by #depth(x).
- Let us follow *Def.A for (x, y, F1) and for (y, z, F2).
- Assume the antecedent of *0 holds for (x, y, F1).
- Hence $space(x) = \emptyset$ then $\land x = y$.
- Hence the antecedent of *0 holds for (y, z, F2).
- Hence x = y = z.
- Hence *0 holds for $(x, z, F2 \circ F1)$.
- The last assumption is false.
- Assume the antecedent of *0 holds for (y, z, F2).
- Hence $space(y) = \emptyset$ _{then} $\land y = z$.
- Hence the antecedent of *0 holds for (x, y, F1).
- The last assumption is false.
- Assume the antecedent of *1 holds (x, y, F1).
- Hence (x, y) are points $_{then} \land (x, y) \in F1$).
- Hence *1 also hold for (y, z, F2) because otherwise *G.A cannot hold for 378 (y, z, F2).
- Hence (y, z) are points $_{then} \land (y, z) \in F2$).
- Hence (x, z) are points $_{then} \land (x, z) \in F2 \circ F1$.
- Hence *1 holds for $(x, z, F2 \circ F1)$.
- The last assumption is false.
- Assume the antecedent of *1 holds (y, z, F2).
- Hence (y, z) are points $_{then} \land (y, z) \in F2$).
- Hence the antecedent of *1 also hold for (x, y, F1) because otherwise *G.A 386 cannot hold for (x, y, F1).
- The last assumption is false.

```
• Hence (*2 _{then} \wedge *3) holds for (x, y, F1) and for (y, z, F2).
   • Hence F1[space(x), space(Y)] is a bijection from *to space(x) * space(y).
   • And F2[space(y), space(z)] is a bijection from*to space(y) * space(z).
   • Hence (F2 \circ F1)[space(x), space(z)] is a bijection from *to space(x) * space(z)392
   • Hence *2 holds for (x, z, F2 \circ F1).
   • Hence *3 fails for (x, z, F2 \circ F1).
   • By the way, there exists (f1, f2) such that (
      3 holds for (x, y, F1, f1) in place of (x, y, F, f) then
     3 holds for (y, z, F2, f2) in place of (x, y, F, f)
     ).
   • Then *3 fails for (x, z, F2 \circ F1, f2 \circ f1) in place of (x, y, F, f).
   • Hence, there exists \exists (m1, m2, m3) such that (
      (m1, m2) \in f1 then
      (m2, m3) \in f2 then
      ( the antecedent of this proposition accepts
        (m1, m2, m3, F1, F2) as (x, y, z, F1, F2)
                                                                                   404
     ) then \wedge
      (m1, m2, m3, F1, F2) is a counterexample
   • Though (m1, m2, m3, F1, F2) is smaller than a minimum counterexample. 408
   • The first assumption is false.
                                                                                410
10
       Homeomorphism as Isomorphism
                                                                                   411
Proposition 8 (Members' isomorphisms as antecedent). Take \forall (x, y, F, f) such 412
that (*A1 _{then} \wedge *A2 _{then} \wedge *A3). Then *B holds.
A1 F is an injection.
                                                                                   414
A2 f is a bijection from*to x*y.
A3 Take \forall (m1, m2) :\in f. Then *Def.A holds for (m1, m2, F).
                                                                                   416
```

В	*Def.A holds for (x, y, F) in place of (x, y, F) .	417
Pr	roof.	418
	• Assume B fails.	419
	• Hence there exists $\exists (x, y, F)$ such that *Def.A fails for (x, y, F) .	420
	• Let us follow *Def.A for (x, y, F) .	421
	• (the antecedent of *0 fails $_{then}\wedge$ the antecedent of *1 fails $_{then}\wedge$ (*2 fails $_{else}\vee$ *3 fails)).	422 423
	• Hence $(space(x) \neq \emptyset \neq space(y))$ _{then} \land both of (x,y) are not points.	42 4
	• Assume *2 fails.	425
	• Hence $F[space(x), space(y)]$ is not a bijection from *to $space(x) * space(y)$.	426
	\bullet Consider *A1 which says F is an injection.	427
	• Hence there exists $\exists (p_x, p_y) :\in space(x) * space(y)$ such that $p_x \not\in domain(F) \ _{else} \lor \ p_y \not\in image(F).$	428 429
	\bullet Consider *A2,*A3 and the proposition titled as "Members' isomorphisms as the consequent".	430 431
	• There exists $\exists y2 \in \geq 0$ y such that *Def.A holds for $(p_x, y2, F)$.	432
	• There exists $\exists x 1 \in \geq 0$ x such that *Def.A holds for $(x1, p_y, F)$.	433
	• Meanwhile, for each of the 2 lines just above, (*Def.A holds only by the if-then condition of *1) because (each of (p_x, p_y) is a point).	434 435 436
	• Hence $p_x \in domain(F)$ $then \land p_y \in image(F)$.	437
	• Hence the last assumption is false.	438
	• Hence *3 must fail.	439
	• Hence *3 fails for f in place of f .	440
	\bullet Though by (*A2 $_{then}\wedge$ *A3), (*4 $_{then}\wedge$ *5 $_{then}\wedge$ *6) holds.	441
	• Hence the first assumption is false.	442

Definition 10.1 (Pair). Take $\forall \{x, y\}$. ⁴ Then $(x, y) := \{\{x\}, \{x, y\}\}$.	444 445
Proposition 9 (Topological space). Take $\forall ((X1,T1),(X2,T2))$ such that *A holds. Then *B1 \Rightarrow *B2.	446 447
A Take $i \in \{1, 2\}$. Then (X_i, T_i) is a topological space.	448
B1 $((X1,T1),(X2,T2))$ are homeomorphic.	449
B2 There exists $\exists F$ such that $((X1,T1),(X2,T2))$ are isomorphic by F .	450
•	451
Proof. B1 implies *C.	452 453
	454
C There exists $\exists (G,g)$ such that (*C1 $_{then} \land$ *C2 $_{then} \land$ *C3 $_{then} \land$ *C4).	455
	456
C1 G is a bijection from $X1$ to $X2$.	457
C2 G is a homeormorphism for *B1.	458
C3 g is a bijection from $T1$ to $T2$.	459
C4 Take $\forall (t1, t2) :\in g$. Then $(G \text{ takes } t1 \text{ to } t2)$.	460
	461
Consider the previous proposition titled as Members' isomorphisms as antecedent	
and refer it as *P. Then *P accepts arguments as (*D1 to *D6) 5 combined by " $_{then} \wedge$ ".	463 464
1 () men	465
D1 *P accepts $(X1, X2, G, G)$ in place of (x, y, F, f) .	466
D2 *P accepts $(\{X1\}, \{X2\}, G, \{(X1, X2)\})$ in place of (x, y, F, f) .	467
D3 Take $\forall (t1, t2) :\in g$. Then *P accepts $(t1, t2, G, G)$ in place of (x, y, F, f) .	468
D4 *P accepts $(T1, T2, G, g)$ in place of (x, y, F, f) .	469

 $^{^4}$ By Kazimierz Kuratowski. 5* D1 $_{then} \wedge _{then} \wedge *$ D5.

$^{6}*A2$ says that $\neg(N_{null} \in \geq^{0} S)$.	
Definition 11.1. This definition uses a style of recursion. Take $\forall (S, X, N_{null})$ such that (*A1 $_{then} \land$ *A2 $_{then} \land$ *A3) 6 holds. T *B.	495 Then define 496 497
11 Restriction of memBer by space	494
	□ 493
	492
E6 $(\{\{X1\}, \{X1, T1\}\}, \{\{X2\}, \{X2, T2\}\})$ are isomorphic by G .	491
E5 $\{X1, T1\}, \{X2, T2\}$) are isomorphic by G .	490
E4 $(T1, T2)$ are isomorphic by G .	489
E3 Take $\forall (t1, t2) :\in g$. Then $(t1, t2)$ are isomorphic by G .	488
E2 $(\{X1\}, \{X2\})$ are isomorphic by G .	487
E1 $(X1, X2)$ are isomorphic by G .	486
	485
Finally, *E6 implies this proposition.	484
Hence *P implies (*E1 to *E6) combined by $_{then}\wedge$.	483
	482
) in place of (x, y, F, f) .	481
$G,$ $\{(\{X1\}, \{X2\}), (\{X1, T1\}, \{X2, T2\})\}$	479 480
$\{\{X2\}, \{X2, T2\}\},\$	478
$\{\{X1\}, \{X1, T1\}\},\$	477
D6 *P accepts (476
$\{(X1, X2), (T1, T2)\}\$) in place of (x, y, F, f) .	474 475
$G,$ $\{(X_1, X_2), (T_1, T_2)\}$	473
$\{X2,T2\},$	472
D5 *P accepts ($\{X1,T1\},$	470 471
D5 *P accepts (470

A1 X is a ⁷ space.	498
A2 N_{null} is not a set.	499
A3 $N_{null} \not\in^{\geq 0} (S, X).$	500
В	501
1 If $space(S) \subset X$ Then $S[X] := S$ Else *2.	502
2 If S is not a set Then $S[X] := N_{null}$ Else *3	503
$3 \ S[X] := \{s[X] \mid s \in S \ _{then} \land \ s[X] \neq N_{null}\}.$	504
	5 05

⁷That is, x is a set of points.

References 506