

Modelos lineales

Variables provienen de múltiples fuentes:

- variables quantitativas
- transformaciones (logaritmo, raiz cuadrada, etc.)
- expansiones de base, $x_2 = x_2^2$
- variables *dummy*
- interacciones entre variables, $x_3 = x_1 \times x_2$

Pero siempre: modelo lineal en los parámetros

Regresión lineal y logística

La salida y es continua, $y \in \mathbb{R}$

• Regresión lineal (MSE o RSS)

$$\min_{w} \ \left| \left| y - \mathbf{X} w
ight|
ight|_2^2$$

La salida y es discreta, $y \in \{0, 1\}$

• Regresión logística (log-loss)

$$\min_{w} \ -(y^T \log[\sigma(\mathbf{X}w)] + (1-y)^T \log[1-\sigma(\mathbf{X}w)])$$

Generalized linear models (GLM)

- Generalización de la regresión lineal que permite distribuciones de errores distintas de la distribución normal.
- Componentes:
 - Distribución de Y_i con media μ_i
 - Predictor lineal,

$$g(\mu_i) = w^T x_i$$

donde $g(\cdot)$ es la función de media

- La función de media proporciona la relación entre la media de la distribución y el predictor lineal
- El inverso de la función de media, $g^{-1}(\cdot)$ se conoce con el nombre de **función de** enlace

Ejemplo: distribución binomial

- La regresión logística es un caso particular de GLM donde la distribución de Y es la binomial
- La función de media es la logística,

$$\mu = g^{-1}(w^T x_i) = rac{1}{1 + \exp(-w^T x_i)}$$

• La función de enlace es la inversa de la anterior,

$$w^T x_i = g(\mu) = \ln\!\left(rac{\mu}{1-\mu}
ight).$$

• Para cada distribución, hay una función de enlace "canónica" que es la que se usa habitualmente

Ejemplo: distribución de Poisson

- Esta distribución está indicada cuando queremos modelizar una variable de salida entera y no real (por ej. conteos)
- Función de media

$$\mu = \exp(w^T x_i)$$

• Función de enlace

$$w^T x_i = \ln(\mu)$$

• Otras distribuciones posibles son la Gamma, Exponencial, Multinomial, etc.

GLMs en R

- La función para ajustar modelos lineales generalizados es glm()
- Tiene los mismos argumentos principales que lm(), pero además tenemos que especificar la distribución de la variables dependiente con el parámetro family
- Por defecto se usa la función de enlace "canónica", pero esto se puede modificar (ver ayuda)
- Implementa el algoritmo IRLS (Newton-Raphson), que se puede generalizar para cualquier GLM donde la distribución pertenece a la familia exponencial

Ejemplo: regresión logística

```
library(MASS)
fit <- glm(type ~ ., data=Pima.tr, family=binomial)</pre>
```

Problemas de mínimos cuadrados

1. Calidad de predicción:

- o poco sesgo pero potencialmente mucha varianza
- o podemos mejorar las predicciones reduciendo el valor de algunos coeficientes
- o aumenta ligeramente el sesgo pero disminuye mucho la varianza

2. Interpretación:

- o el valor de los coeficientes nos da una idea de las variables mas relevantes
- o nos gustaria encontrar un subconjunto de los mejores

Regularización

• Regresión ridge (MSE + regularización l_2):

$$\min_{w} \left. \left| \left| y - \mathbf{X} w
ight|
ight|_2^2 + \left| \left| w
ight|
ight|_2^2$$

- ¿Regresión logística ridge?
- ¿Otras funciones de regularización?

Métodos de seleccion

Regresión best subset

- Mantenemos solo un subconjunto de las variables y eliminamos el resto del modelo
- Para $k \in \{0, 1, 2, \dots, d\}$ se resuelve

$$\min_{w} \ \left| \left| y - \mathbf{X} w
ight|
ight|_{2}^{2} \quad ext{s.t.} \ \left| \left| w
ight|
ight|_{0} \leq k$$

donde
$$||w||_0 = \sum_{i=1}^d \mathbb{I}(w_i
eq 0)$$

- $\mathbb{I}(\cdot)$ es la función indicatriz (cuenta el número de elementos distintos de 0)
- La restricción hace que el problema sea NP-completo,

$$C_{d,k} = inom{d!}{k} = rac{d!}{k!(d-k)!}$$

- Algoritmos clásicos pueden resolver $d \approx 30$
- Avances recientes, (Bertsimas et al., 2015): $d \in [100, 1000]$

FIGURE 3.5. All possible subset models for the prostate cancer example. At each subset size is shown the residual sum-of-squares for each model of that size.

Regresión stepwise

- Forward-Stepwise:
 - 1. Añadir al modelo la variable que proporciona mejor ajuste
 - 2. Repetir hasta añadir k variables
- Backward-Stepwise
 - 1. Empezar con las d variables
 - 2. Eliminar iterativamente la menos relevante para el ajuste
- Algoritmos avariciosos
- ullet No buscan entre todas las posibles combinaciones de subconjuntos de tamaño k
- En cada paso solo se ajustan d-k modelos

Best subset y stepwise en R

Best subsets:

- Paquete leaps, función regsubsets()
- También regresión forward y backward stepwise

Stepwise:

- Función step()
- Procedimiento hibrido: se procede como *forward* pero en cada paso está la opción de eliminar alguna variable añadida previamente
- Añade o elimina variables en grupos (por ej. si son variables *dummy*)
- Selecciona automáticamente el valor óptimo de k

Selección de k

- Secuencia de modelos indexada por k (igual que best subset)
- Elegir k como el que minimiza el error de validación cruzada
- Validación cruzada: estimación del error de generalización o error extra-sample
- Error de entrenamiento es demasiado optimista (error *in-sample*)
- Alternativa: cuantificar el "optimismo" y minimizarlo (AIC, BIC y derivados)
- Más detalles: ESL secciones 7.4 en adelante

Métodos de reducción

Lasso: motivación

- Métodos de selección:
 - modelos interpretables
 - o proceso discreto, las variables están incluidas o no
- Regresión ridge:
 - o proceso continuo, todos los coeficientes se reducen
 - rara vez son exactanente 0, modelos no interpretables
- Lasso es una técnica intermedia:
 - reduce algunos coeficientes
 - o pone el resto a 0

Lasso: formulación

• Problema optimización:

$$\min_{w} \ \left| \left| y - \mathbf{X} w
ight|
ight|_2^2 \quad ext{s.t.} \ \left| \left| w
ight|
ight|_1 \leq t$$

• Equivalente:

$$\min_{w} \ \left| \left| y - \mathbf{X} w
ight|
ight|_{2}^{2} + \lambda \left| \left| w
ight|
ight|_{1}$$

- λ o t son hiper-parámetros
 - $\circ \uparrow \lambda \circ \downarrow t$, se reducen los coeficientes (más regularización)
 - $\circ \downarrow \lambda \circ \uparrow t$, aumentan los coeficientes (menos regularización)
- t suficientemente pequeño (o λ suficientemente grande), algunos coeficientes = 0

Pierre Ablin, Twitter

TABLE 3.4. Estimators of β_j in the case of orthonormal columns of \mathbf{X} . M and λ are constants chosen by the corresponding techniques; sign denotes the sign of its argument (± 1), and x_+ denotes "positive part" of x. Below the table, estimators are shown by broken red lines. The 45° line in gray shows the unrestricted estimate for reference.

Estimator	Formula
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$
Ridge	$\hat{eta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{\beta}_j)(\hat{\beta}_j - \lambda)_+$

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

Lasso, best subset y fordward stepwise

- Comparación Lasso, best subset y forward stepwise (Hastie et al., 2017)
- Experimentos en Github, best-subset
- Relaxed Lasso: ajustar otro modelo sobre las variables que selecciona el Lasso

Lasso: limitaciones

- 1. Si d > n, como mucho n coeficientes son $\neq 0$
 - o Limitación desde el punto de vista de selección de variables
- 2. Variables con correlación alta \Longrightarrow Lasso selecciona una "aleatoriamente"
- 3. Si n>d y hay variables con correlación alta \Longrightarrow error de Ridge < error de Lasso

Otras penalizaciones

• Podemos generalizar Lasso, Ridge y Best subset como

$$\min_{w}\left|\left|y-\mathbf{X}w
ight|
ight|_{2}^{2}+\lambda\left|\left|w
ight|
ight|_{p}^{p}$$

donde,

$$||w||_p^p=\sum_{i=1}^d|x_i|^p$$

- $0 \le p < 1$, no convexas (NP-completo!)
- p = 1, convexa y no diferenciable
- p > 1, convexas y diferenciables

Interpretación Bayesiana

- Regularización = distribución a priori de los parámetros w
- Ridge regressión: distribución Normal
- Lasso: distribución de Laplace, $\tau = 1/\lambda$

$$f(w) = rac{1}{2 au} \mathrm{exp}\left(-rac{|w|}{ au}
ight)$$

- Estimadores: máximo de la distribución a posteriori (MAP)
 - Ridge: coincide con la media
 - Lasso y Best subset: moda

Wikipedia, "Laplace distribution"

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

FIGURE 3.13. Contours of constant value of $\sum_j |\beta_j|^q$ for q = 1.2 (left plot), and the elastic-net penalty $\sum_j (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$ for $\alpha = 0.2$ (right plot). Although visually very similar, the elastic-net has sharp (non-differentiable) corners, while the q = 1.2 penalty does not.

Elastic Net

• Combina regularización Lasso y Ridge:

$$\min_{w} \ \left| |y - \mathbf{X} w|
ight|_2^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2$$

• Otra parametrización con $\alpha \in (0,1)$:

$$\min_{w} \ ||y - \mathbf{X}w||_2^2 + \lambda(lpha||w||_1 + (1-lpha)||w||_2^2)$$

• Equivalentes con

$$\circ \ \ lpha = \lambda_1/(\lambda_1 + \lambda_2)$$

$$\circ \ \lambda = \lambda_1 + \lambda_2$$

• Selecciona variables y reduce el resto de coeficientes

Notación

- Lasso (Elastic Net) suelen hacer referencia a: minimizar MSE + norma l_1 (+ norma l_2)
- MSE puede reemplazarse por otras funciones de pérdida
- Por ej. cualquier GLM
- En esos casos hablamos de regresión logística, Poisson, Gamma + regularización Ridge/Lasso/Elastic Net

Elastic Net en R

- Paquete glmnet
- Implementa descenso coordenado cíclico (detalles más adelante)
- Resuelve GLMs con regularización l_1 (Lasso), l_2 (Ridge) o ambas (ElasticNet)
- Sin interfaz de fórmulas
 - Hay que crear la matriz X "a mano"
- Elige automáticamente el valor óptimo de λ (pero no α !)
- Puede ser interesante la extensión glmnetUtils

Métodos de reducción

Principal Component Regression

- Calcular las m componentes principales, $\mathbf{V} \in \mathbb{R}^{d \times m}$
- Crear combinaciones lineales de las variables originales: $\mathbf{Z} = \mathbf{X}\mathbf{V} \in \mathbb{R}^{n \times m}$
- Ajustar una regresión lineal, $y = \mathbf{Z}\theta$,

$$heta^* = (\mathbf{Z}^T\mathbf{Z})^{-1}\mathbf{Z}^Ty$$

• \mathbf{Z} es ortogonal, por lo que los θ_m son independientes

$$heta_m = rac{z_m^T y}{z_m^T z_m}$$

• Coeficientes sobre los datos originales **X**:

$$y = \mathbf{Z}\theta = \mathbf{X}\mathbf{V}\theta = \mathbf{X}w \Rightarrow w = \mathbf{V}\theta$$

PCR, OLS y Ridge Regression

- Componentes principales dependientes de la escala ⇒ estandarizar
- Si m = d, se obtienen el estimador de mínimos cuadrados (OLS)
- Si m < d, se obtiene una versión reducida de la regresión
- Ridge Regression:
 - o reduce los coeficientes de las componentes principales
 - o reduce más cuanto más grande sea el autovalor
- PCR descarta las d-m componentes principales con menor autovalor
- m se puede elegir por validación cruzada

FIGURE 3.17. Ridge regression shrinks the regression coefficients of the principal components, using shrinkage factors $d_j^2/(d_j^2 + \lambda)$ as in (3.47). Principal component regression truncates them. Shown are the shrinkage and truncation patterns corresponding to Figure 3.7, as a function of the principal component index.

PCR, Lasso y Best subset

- Lasso y Best subset obtienen modelos interpretables
- PCR reduce las variables, pero son combinaciones lineales de las originales
- Computacionalmente:
 - Best subset es factible para $d \approx 100$
 - Lasso y PCR tienen aprox. el mismo coste
- PCR puede ser útil para situaciones con muchas variables altamente correladas

Partial Least Squares

- Igual que con PCR, es importante estandarizar las x_j
- Algoritmo (simplificado):
 - 1. Calcular $\phi_m = x_j^T y$ para cada $j = 1, \dots d$
 - 2. Calcular $z_m = \sum_j \phi_m x_j$
 - 3. Resolver regresión lineal $y=z_m\theta_m$
 - 4. Actualizar salida, $y^{(m)} = y^{(m-1)} + \theta_m^* z_m$
 - 5. Ortogonalizar x_j con respecto a z_m
 - 6. Repetir hasta un m < d

PLS vs PCR

• PCR:

- o no supervisado (solo usa X para calcular las componentes principales)
- \circ elige direcciones z_m que maximizan la varianza

• PLS:

- \circ crea combinaciones lineales de las variables originales, pero de manera supervisada (usando el valor de y)
- \circ si m=d obtenemos el estimador de mínimos cuadrados
- \circ produce una series de direcciones ortogonales z_1, z_2, \ldots, z_m
- \circ elige direcciones que maximizan la varianza y tienen mucha correlación con la salida y

PLS y PCR en R

- Paquete pls
- Funciones pcr() y plsr()
- Ambas eligen el valor óptimo de k usando validación cruzada

Descenso coordinado

Motivación

- Lasso es un problema
 - 1. cuadrático
 - 2. convexo
 - 3. sin restricciones
- Pero
 - 1. No diferenciable en 0
 - 2. No es fuertemente convexo \Longrightarrow peor tasa de convergencia algoritmos estándar

Descenso coordinado

- Resuelve el de forma eficiente el problema de optimización de los GLM con:
 - \circ regularización l_1
 - \circ regularización $l_1 + l_2$
- Esquema básico:
 - 1. Seleccionar una coordenada $j \in \{1,\ldots,d\}$
 - 2. Fijar el valor del resto
 - 3. Optimizar con respecto respecto a la coordenada j
 - solución analítica!
 - 4. Repetir para el resto de las coordenadas varias veces

Descenso coordinado: Lasso

- ullet Función que minimiza Lasso, $f(w) = \left|\left|y \mathbf{X}w
 ight|\right|_2^2 + \lambda \left|\left|w
 ight|\right|_1$
- Fijamos $w_k = \tilde{w}_k$ para $k \neq j$
- Aislamos w_j ,

$$f(ilde{w},w_j) = rac{1}{2} \sum_{i=1}^n ig(y_i - \sum_{k
eq j} x_{ik} ilde{w}_k - x_{ij} w_jig)^2 + \lambda \sum_{k
eq j} | ilde{w}_k| + \lambda |w_j|$$

• Derivada, si $w_j \neq 0$:

$$egin{aligned} rac{\partial f}{w_j} &= -\sum_{i=1}^n x_{ij} ig(y_i - \sum_{k
eq j} x_{ik} w_k - x_{ij} w_j ig) + \lambda \operatorname{sign}(w_j) = \ &= -\sum_{i=1}^n x_{ij} ig(y_i - \sum_{k
eq j} x_{ik} ilde{w}_k ig) + \sum_{i=1}^n x_{ij}^2 w_j + \lambda \operatorname{sign}(w_j) \ &= \sum_{i=1}^n x_{ij} ig(y_i - \sum_{k
eq j} x_{ik} ilde{w}_k ig) + \sum_{i=1}^n x_{ij}^2 w_j + \lambda \operatorname{sign}(w_j) \end{aligned}$$

• Si estandarizamos las variables, $b_i = 1$

$$\begin{array}{c} \partial f(x) = \{u : \forall y, f(y) \geq f(x) + u^\top(y-x)\} \\ \text{Fermat's rule: } x^* = \min f(x) \Leftrightarrow 0 \in \partial f(x^*) \\ f \text{ cvx differentiable: } \partial f(x) = \{\nabla f(x)\}, \text{ Fermat: } x^* = \min f(x) \Leftrightarrow \nabla f(x^*) = 0 \\ f = |\cdot| & \partial f(x_0) \\ 1.5 & 0.5 \\ 0.5 & 0.0 \\$$

Mathurin Massias, Twitter

Solución: operador soft-thresholding

1. Si
$$w_j < 0, \quad -a_j + w_j + \lambda = 0 \quad \Rightarrow \quad w_j = a_j + \lambda \quad ext{para} \quad a_j < \lambda$$

2. Si
$$w_j>0,\quad -a_j+w_j-\lambda=0\quad \Rightarrow\quad w_j=a_j-\lambda\quad {
m para}\quad a_j>\lambda$$

3. Si
$$w_j=0,\quad 0\in [-a_j-\lambda,\,-a_j+\lambda]\quad \Rightarrow\quad -\lambda\leq a_j\leq \lambda$$

• Operador soft-thresholding,

$$S_{\gamma}(z) = ext{sign}(z) \max(|z| - \gamma, \ 0)$$

• Actualización:

$$ilde{w}_j = S_\lambda(a_j) = igg(\sum_{i=1}^n x_{ij}ig(y_i - \sum_{k
eq j} x_{ik} ilde{w}_kig)igg)$$

Pierre Ablin, Twitter

Descenso coordinado: implementación

- Regularization path: resolver el problema para valores decrecientes de λ
 - 1. Empezamos por el valor más pequeño de λ para el cual $w^*=0,\,\lambda_{\max}$
 - 2. Terminamos con λ_{\min} tal que $\lambda_{\min}/\lambda_{\max} = \epsilon$
 - 3. Creamos una rejilla de M valores en escala logarítmica
- Warm-starts: valor inicial de los pesos w es el valor anterior de $w^*(\lambda)$
- Reducir el coste computacional:
 - 1. Calcular y almacenar $x_j^T y$ (cache)
 - 2. Aprovechar dispersión: multiplicar solo elementos distintos de 0
 - 3. Descartar coeficientes 0 antes de tiempo

Variantes del Lasso

Variantes del Lasso

Múltiples variantes:

- Group Lasso
- Fused Lasso
- Generalized Lasso
- Relaxed Lasso
- ...

Ejemplo: Group Lasso

- Variables tienen J grupos predefinidos
- Regularización: norma $l_{2,1}, ||w||_{2,1} = \sum_{j=1}^J \sqrt{||w_j||_2}$
- Coeficientes de grupo j son o bien todos 0 o todos $\neq 0$

FISTA

- Descenso por gradiente proyectado:
 - 1. Paso de descenso por gradiente
 - 2. Proyectamos a la región de las restricciones usando operador proximal
- En general, el operador proximal es otro problema de optimización:

$$ext{prox}_g(v) = rg\min_z \left(g(z) + rac{1}{2} ||z-v||_2^2
ight)$$

- En ocasiones tiene solución analítica:
 - $\circ \; \operatorname{Lasso:} \operatorname{prox}_{\lambda||\cdot||_1}(v) = S_{\lambda}(v)$
- Existen "trucos" para acelerar la convergencia (Nesterov)

Referencias

- 1. Tibshirani (1996). Regression Shrinkage and Selection via the Lasso
- 2. Zou, Hastie (2004). Regularization and variable selection via the elastic net
- 3. Beck, Teboulle (2008). A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
- 4. Friedman, Hastie, Tibshirani (2009). https://web.stanford.edu/~hastie/Papers/glmnet.pdf