Does $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{100}}$ diverge, converge absolutely, or converge conditionally?

Solution

The function $f(x) = \frac{1}{x(\ln x)^{100}}$ is continuous, positive, and decreasing on $[3, \infty)$.

We do the following indefinite integral using the substitution $u = \ln x$, so $du = \frac{1}{x} dx$:

$$\int \frac{1}{x(\ln x)^{100}} \, dx = \int u^{-100} \, du = \frac{-1}{99u^{99}} + C = \frac{-1}{99(\ln x)^{99}} + C$$

so

$$\int_{3}^{\infty} \frac{1}{x(\ln x)^{100}} dx = \lim_{t \to \infty} \int_{3}^{t} \frac{1}{x(\ln x)^{100}} dx$$
$$= \lim_{t \to \infty} \left[\frac{-1}{99(\ln t)^{99}} - \frac{-1}{99(\ln 3)^{99}} \right]$$
$$= \frac{1}{99(\ln 3)^{99}}$$

Since the integral $\int_3^\infty \frac{1}{x \ln x} dx$ converges, the series $\sum_{n=3}^\infty \frac{1}{n(\ln n)^{100}}$ converges by the Integral Test. So the

series $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converges as well.

Since all terms (except when n=2) are positive, we essentially have $\sum |a_n| = \sum a_n$, so the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{100}}$ converges absolutely.