Intervals, Transformations, and Slope Solution (version 151)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-10, -4) \cup (-1, 7)$
Negative	$(-4,-1) \cup (7,9)$
Increasing	$(-2,6) \cup (8,9)$
Decreasing	$(-10, -2) \cup (6, 8)$
Domain	(-10,9)
Range	(-7,7)

Intervals, Transformations, and Slope Solution (version 151)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=34$ and $x_2=88$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 4 & 34 \\ 34 & 49 \\ 49 & 88 \\ 88 & 4 \\ \end{array}$$

$$\frac{g(88) - g(34)}{88 - 34} = \frac{4 - 49}{88 - 34} = \frac{-45}{54}$$

The greatest common factor of -45 and 54 is 9. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-5}{6}$$

2