Math 296 (the Linear Algebra $parts^1)$

Atharva $Gawde^2$

 $March\ 17,\ 2024$

 $^{^1\}mathrm{I}$ didn't lock in before this (Analysis). $^2\mathrm{Taught}$ by Sarah Koch.

Contents

2	\mathbf{Fiel}	ds													2
	2.1	Recall from last class .													2
	2.2	Ring Homomorphisms													4
	2.3	Characteristic													
	2.4	Polynomials													4
-	Bas														6
	6.1	Algebraic Numbers													

Lecture 2

Fields

2.1 Recall from last class

Example. We showed that $\mathbb{Z}/n\mathbb{Z}$ is a field if and only if n is prime.

Explanation. We have two cases

- (i) If n is prime we use Bezout's lemma to find inverses.
- (ii) If n is composite, we get zero-divisors. That is, if n is composite, there exist a,b with $2 \le a \le b \le n-1$ such that n=ab. So then we have $ab \equiv 0 \mod n$ so a and b form a pair of zero divisors; that is, nonzero elements in $\mathbb{Z}/n\mathbb{Z}$ whose product is 0.

Note. This contradiction arises from something we proved in 295. If F is a field and $a, b \in F$ such that ab = 0, then either a = 0 or b = 0. In other words, a field can not have zero divisors.

2.2 Ring Homomorphisms

Lemma 1. Let F be a field. Then there exists a unique $\varphi \colon \mathbb{Z} \to F$ such that for all $n,m\in\mathbb{Z}$

- (i) $\varphi(1) = 1_F$
- (ii) $\varphi(n+m) = \varphi(n) +_F \varphi(m)$, that is φ is a group homomorphism with respect to +
- (iii) $\varphi(n \cdot m) = \varphi(n) \cdot_F \varphi(m)$.

Lingo. A function $\varphi \colon \mathbb{Z} \to F$ (or from any ring) that satisfies (i), (ii), and (iii) is called a ring homomorphism.

Proof. We can construct φ from these properties, building it from the ground up. To satisfy (i), we define $\varphi(i) := 1_F$. Then by (ii), we have $\varphi(2) := \varphi(1+1) = \varphi(1) +_F \varphi(1) = 1_F +_F +1_F$. Naturally, $\varphi(3) :=$

 $1_F +_F 1_F +_F 1_F$ and so forth. So we define

$$\varphi(n) \coloneqq \underbrace{1_F +_f \cdots +_F 1_F}_{n \text{ times}}.$$

We have that (1) and (2) hold by construction, and by some casework we have $\varphi(\underbrace{1+\cdots+1}_{n\cdot m \text{ times}}) = \underbrace{1_F +_F \cdots +_F 1_F}_{n\cdot m \text{ times}} = \varphi(n) \cdot_F \varphi(m)$, satisfying (3).

This construction is unique since it was completely determined by (1) and (2), and we got (3) as a consequence of using the ring \mathbb{Z} , we can take this as a definition.

Lemma 2. Let F be a field, Let $\varphi \colon \mathbb{Z} \to F$ be the ring homomorphism we just defined. Then either

- (i) $ker(\varphi) = \{0\}$ if and only if φ is injective, or
- (ii) $\ker(\varphi) = p\mathbb{Z}$ for some prime p.

Proof. If φ is injective, then $\ker(\varphi) = \{0\}$ (by homework). Suppose φ is not injective. Then there exists $n \in \mathbb{N}$ such that $\ker(\varphi) = n\mathbb{Z}$. Write n = ab for some integers a,b such that $1 \le a \le b \le n$, so $\varphi(n) = \varphi(a) \cdot_F \varphi(b)$. That is we have $0_F = \varphi(a) \cdot_F \varphi(b)$ so $\varphi(a) = 0$ or $\varphi(b) = 0$ without loss of generality.

2.3 Characteristic

Definition 1. Let F be a field. Let $\varphi \colon \mathbb{Z} \to F$ be the unique ring homomorphism. If φ is injective, then we say that F has characteristic 0. If φ is not injective, then we say F has characteristic p, where $\ker(\varphi) = p\mathbb{Z}$.

Example. $\operatorname{char}(\mathbb{C}) = 0$

Example. $\operatorname{char}(\mathbb{R}) = 0$

Example. $\operatorname{char}(\mathbb{Z}/67\mathbb{Z}) = 67$

Example. There are examples of infinite fields that have prime characteristic. Let $F_2 = \mathbb{Z}/2\mathbb{Z}$, then we have

 $F_2[x] := \{ \text{polynomials with coefficients in } \mathbb{Z}/2\mathbb{Z} \text{ with variable } x \}$

Lemma 3. Suppose F is a finite field, then $\varphi \colon \mathbb{Z} \to F$ can not be injective, so F has prime characteristic.

Lemma 4. If
$$F$$
 has characteristic p , then $\underbrace{1_F + \dots + 1_F}_{p \text{ times}} = 0$ and if $\underbrace{1_F + \dots + 1_F}_{p \text{ times}} = 0$ then $p \mid n$.

2.4 Polynomials

Definition 2. A polynomial over a finite field F is a formal expression of the form $a_n x^n + \cdots + a_1 x + a_0$ where $n \in \mathbb{N} \cup \{0\}$ and $a_i \in F$ for all $0 \le i \le n$, and x is a formal variable.

Note. This is not a function like in 295.

Definition 3. The set of all polynomials with coefficients in F is denoted F[x].

Definition 4. The 0 polynomial is called the trivial polynomial.

Definition 5. A nontrivial polynomial can be written as $b(x) = b_0 + b_1 x + \cdots + b_\ell x^\ell$ with $b_\ell \neq 0$. In this case, we say b has degree ℓ .

Definition 6. A polynomial function is a function $F \to F$ that can be defined by evaluating a polynomial in F[x].

Example. To make the distinction between polynomials and polynomial functions clear, consider $f, g: \mathbb{Z}/3\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ where $f(x) = x^3 + x$ and g(x) = 2x. These are different polynomials, but the same function.

Lemma 5. If $p, q \in F[x]$ and $c \in F$, then

- (i) $p + a \in F[x]$
- (ii) $p \cdot q \in F[x]$
- (iii) $c \cdot p \in F[x]$

Lemma 6 (Descartes). Let $\alpha \in F$ and let $p \in F[x]$ be nonzero. Then $p(\alpha) = 0$ if and only if there exists $q \in F[x]$ with $\deg(p) = \deg(q) + 1$ such that $p(x) = (x - \alpha)q(x)$.

Proof. The backwards implication is immediate from evaluating the expression. For the forward implication, since p is nonzero and $p(\alpha) = 0$ we must have $\deg(p) \geq 1$. Write $p(x) = c_m x^m + \cdots + c_1 x + c_0$ with $c_i \in F$.

Then $p(\alpha) = c_m \alpha^m + \dots + c_1 \alpha + c_0$. So we have $p(x) = p(x) - 0 = p(x) - p(\alpha) = c_m(x^m - \alpha^m) + \dots + c_1(x - \alpha)$. Then from homework this is $= (x - \alpha) \sum_{i=1}^m c_i G_{i-1}(\alpha, x)$ where we apply $x^i - \alpha^i = (x - \alpha) \cdot G_{i-1}(x, \alpha)$

where $G_n(\alpha, x) = \sum_{k=0}^n x^n \alpha^{n-k}$ to each term and factor out $(x - \alpha)$, leaving us with g(x) with $\deg(g) = m - 1$.

Definition 7. Let $p \in F[x]$ be nonzero. The field element $\alpha \in F$ is called a root or a zero of p provided that $p(\alpha) = 0$.

Corollary. Let $p \in F[x]$ be nonzero. Then p has $\leq \deg(p)$ roots in F.

Proof. Note that the statement holds if $\deg(p)=0$. We will use induction on $\deg(p)$. Let our candidate inductive set be $S:=\{n\in\mathbb{N}\mid \text{if }q\in F[x]\text{ is nonzero and has }\deg(q)\leq n\text{, then }q\text{ has }\leq \deg(q)\text{ roots}\}.$ We have that $1\in S$, since polynomials of degree one are of the form q(x)=ax+b with $a,b\in F$ and $a\neq 0$, so we can just solve for the root. Suppose $k\in S$ and let $q\in F[x]$ be nonzero with degree k+1. If q has no roots we are done. If q does have a root, we can use Descartes to write $q(x)=(x-\alpha)\cdot r(x)$ where $\deg(r)=\deg(q)-1=k$, and so our statement holds by the inductive hypothesis and $k+1\in S$.

Lingo. A field F is algebraically closed provided that every nonconstant polynomial in F[x] has a root.

Remark. \mathbb{C} is algebraically closed by the Fundamental Theorem of Algebra. We can build the closure of any field by "throwing in the roots", like $\overline{\mathbb{Q}}$.

Example. Is $\mathbb{Z}/2\mathbb{Z}$ algebraically closed? No, we have that $x, x+1, x-1, x^2+1, x^2-1$ all have roots, but x^2+x+1 has no root in $\mathbb{Z}/2\mathbb{Z}$. What does $\mathbb{Z}/2\mathbb{Z}$, the smallest algebraically closed field containing $\mathbb{Z}/2\mathbb{Z}$ look like?

Lecture 6

Basis

6.1 Algebraic Numbers

Definition 8. Fix $\alpha \in \mathbb{C}$. Define $\mathbb{Q}[\alpha] = \operatorname{span}(\alpha^i \mid i \in \mathbb{N} \cup \{0\})$ monomial powers of α . This is vector space over \mathbb{Q} .

Definition 9. The element $\alpha \in \mathbb{C}$ is algebraic provided that there exists a nonzero polynomial $p \in \mathbb{Z}[x]$ such that $p(\alpha) = 0$.

Example. $\alpha = \sqrt{2}$ is algebraic with $p(x) = x^2 - 2$.

Example. $i \in \mathbb{C}$ is algebraic with $p(x) = x^2 + 1$.

Example. $\pi \in \mathbb{C}$ is not algebraic.

Definition 10. If $\alpha \in \mathbb{C}$ is not algebraic, then α is called transcendental.

Example. $\pi \in \mathbb{C}$ is transcendental.

Lemma 7. Let $\alpha \in \mathbb{C}$. Then $\mathbb{Q}[\alpha]$ is finitely generated over \mathbb{Q} if and only if α is algebraic.

Proof. Suppose $\mathbb{Q}[\alpha]$ is finitely generated. Then there exists scalars $\overline{v_1}, \overline{v_2}, \ldots, \overline{v_m} \in \mathbb{Q}[\alpha]$ such that $\mathbb{Q}[x] = \operatorname{span}(\overline{v_1}, \overline{v_2}, \ldots, \overline{v_m})$. For each $1 \leq i \leq m$ we know $\overline{v_i} \in \mathbb{Q}[\alpha]$ so we can write

$$\overline{v_i} = q_{i_0} + q_{i_1}\alpha^1 + \dots + q_{i_{n_1}}\alpha^{n_i}$$

where we can assume $q_{i_{n_i}} \neq 0$. To avoid this hellish notation let's replace

this with

$$\begin{array}{l} \overline{v_1} = \operatorname{mess}_1 & \operatorname{deg} n_1 \\ \overline{v_2} = \operatorname{mess}_2 & \operatorname{deg} n_2 \\ & \vdots \\ \overline{v_m} = \operatorname{mess}_m & \operatorname{deg} n_m \end{array}$$

Let $M = \max\{n_1, \dots, n_m\}$. Since $\alpha^{M+1} \in \mathbb{Q}[\alpha]$ there exist scalars $d_1, \dots, d_m \in \mathbb{Q}$ such that $\alpha^{M+1} = d_1\overline{v_1} + \dots + d_m\overline{v_m}$. Then $\alpha^{M+1} = d_1(\text{mess}_1) + \dots + d_m(\text{mess}_m) = r_0 + r_1\alpha^1 + \dots + r_M\alpha^M$ with $r_i \in \mathbb{Q}$ by expanding all messes and collecting like terms in powers of α . Define $p(x) = x^{M+1} - (r_0 + r_1 x^1 + \dots + r_M x^M)$. We can clear the denominators to get a nonzero polynomial $\widetilde{p}(x) \in \mathbb{Z}[x]$ such that $\widetilde{p}(\alpha) = 0$, so α is

Note. This is only one direction of this proof, we will prove the other direction next time.

Recall from last time:

Lemma 8. Let $\alpha \in \mathbb{C}$. Then the vector space $\mathbb{Q}[\alpha] := \operatorname{span}_{\mathbb{Q}}(1, \alpha, \alpha^2, \dots)$ is finitely generated over \mathbb{Q} if and only if $\alpha \in \overline{\mathbb{Q}}$

Proof. Last time we showed the forward direction. We assumed $\mathbb{Q}[\alpha]$ is finitely generated and we found a nonzero polynomial $\widetilde{p} \in \mathbb{Z}[x]$ such that $\widetilde{p}(\alpha) = 0$. We took a generating family $(\overline{v_1}, \dots, \overline{v_m})$, and for all $1 \le i \le m$, there exist scalars in \mathbb{Q} such that $\overline{v_i} = \underbrace{q_{i_0} + q_{i_1}\alpha^1 + \dots + q_{i_{n_1}}\alpha^{n_i}}_{}$. Let

 $M = \max\{n_1, n_2, \dots, n_m\}$. Consider $\alpha^{M+1} \in \mathbb{Q}[\alpha]$. There exist scalars $d_1, \ldots, d_m \in \mathbb{Q}$ such that

$$\alpha^{M+1} = \alpha^{M+1} = d_1 \overline{v_1} + \dots + d_m \overline{v_m}$$
$$= d_1(\text{mess}_1) + \dots + d_m(\text{mess}_m)$$
$$= r_0 + r_1 \alpha^1 + \dots + r_M \alpha^M$$

So $0 = -\alpha^{M+1} + r_0 + r_1\alpha^1 + \dots + r_M\alpha^M$. So defined $p(x) = -x^{M+1} + r_0 + r_1x^1 + \dots + r_Mx^M$ and we multiplied out the denominators to get $\widetilde{p} \in \mathbb{Z}[x]$.

Now we need to prove the other direction, assume $\alpha \in \overline{\mathbb{Q}}$. We will begin with a motivating example.

Example. Suppose α is a root of $x^5 - 67x^2 + 3 = 0$, how does this give us a generating family for $\mathbb{Q}[x]$?

Let's continue with the proof. Since $\alpha \in \overline{\mathbb{Q}}$ there exist a nonzero $p \in \mathbb{Z}[x]$ such that $p(\alpha) = 0$. We can write $p(\alpha) = a_0 + a_1 \alpha^1 + \cdots + a_N \alpha^N$ with $a_i \in \mathbb{Z}$ and $a_N \neq 0$. So

$$\alpha^{N} = -\frac{a_0}{a_N} - \frac{a_1}{a_N} \alpha^1 - \dots - \frac{a_{N-1}}{a_N} \alpha^{N-1}$$
 (*)

We claim $\mathbb{Q}[x] = \underbrace{\mathrm{span}(1, \alpha, \dots, \alpha^{N-1})}_{\mathrm{RHS}}$. We will show this by two-way containment. We have LHS \supseteq RHS immediately from definitions. To

containment. We have LHS \supseteq RHS immediately from definitions. To show LHS \subseteq RHS, fix $\overline{v} \in$ LHS so $\overline{v} = \sum_{i \in \mathbb{N} \cup \{0\}} b_i \alpha^i$ with $b_i \in \mathbb{Q}$ and all but finitely many are zero.

Define the degree of \overline{v} to be $\max\{i \in \mathbb{N} \cup \{0\} \mid b_i \neq 0\}$, that is the greatest nonzero power. Note this is empty if $\overline{v} = \overline{0}_V$. In this case $\overline{v} \in \text{RHS}$ so we are done. Assume $\overline{v} \neq \overline{0}_V$ so a maximum exists.

We start with a nice case, if $\deg(\overline{v}) < N$, we are done. Now let's tackle a harder case. For $\deg(\overline{v}) \ge N$ set $j = \deg(\overline{v}) - (N-1)$. Note j = 1 when $\deg(\overline{v}) = N$. We will induct on j. So for our base case j = 1, we have $\deg(\overline{v}) = N$. We want to show $\overline{v} \in \text{RHS}$. By (*), we may replace α^N in \overline{v} with the combination in (*). Then \overline{v} is a linear combination of vectors in $(1, \alpha, \alpha^2, \ldots, \alpha^{N-1})$ so we win!

Now we have our strong inductive hypothesis: Suppose that if $1 \le j < n$, then $\overline{v} \in \text{RHS}$. We will prove that if j = n, then $\overline{v} \in \text{RHS}$. Assume j = n, so $\deg(\overline{v}) - (N-1) = n$, or alternatively, $\deg(\overline{v}) = n + (N-1)$. So we can write \overline{v} as

$$\overline{v} = b_{N-1+n} \alpha^{N-1+n} + \overline{v}'$$
$$= b_{N-1+n} \cdot \alpha^{n-1} \cdot \alpha^N + \overline{v}'$$

with $b_{N-1+n} \in \mathbb{Q} \setminus \{0\}$ and $\deg(\overline{v}') < N-1+n$. Now we can replace α^N with (*) so

$$\overline{v} = b_{N-1+n} \left[-\frac{a_0}{a_N} - \frac{a_1}{a_N} \alpha^1 - \dots - \frac{a_{N-1}}{a_N} \alpha^{N-1} \right] + \overline{v}'$$

and by our inductive hypothesis $\overline{v} \in RHS$.