

Prof. Tiago Buarque A. de Carvalho

Neurônio

Prof. Tiago Buarque A. de Carvalho

Inspiração

Ações simples

caminhar, dar um nó em um cadarço, reconhecer uma pessoa...

Não tão simples para um robô

Cérebro humano como inspiração para algoritmos de aprendizagem de máquina

Bioinspirado

O começo das RNs

McCulloch e Pitts (1943)

Neurônio LTU: Logic Threshold Unit

Hebb (1949)

Aprendizado Hebbiano

Rosenblatt (1958)

Perceptron

Sistema nervoso biológico

Seres vertebrados

Células especiais: NEURÔNIOS

Responde a estímulos internos e externos

Transmissão de impulsos a outro neurônios e células

Cérebro humano: 10 a 500 bilhões de neurônios

Um modelo de neurônio

Dendritos

recebem o sinal

Corpo celular

acumula o sinal, dispara um impulso para o axônio quando ultrapassa o limiar de ativação

Axônio

transmite o impulso para dendritos de outros neurônios

Sinapses

junção entre axônio e dendritos, pode ser excitatória ou inibitória

- +40 mV Rest potential ≈ .5 ms ≈ 4.4 ms -70 mV http://hyperphysics.phy-astr.gsu.edu/hbase /biology/actpot.html

http://www.mindcreators.com/neuronbasics.htm

Neurônio McCulloch-Pitts

O corpo do neurônio

acumulador = somatório

Sinapses excitatórias ou inibitórias

pesos positivos ou negativos

Ativação

função limiar

Neurônio McCulloch-Pitts

$$u = \sum_{i=1}^{d} x_i w_i$$

$$f(u, w_0) = \begin{cases} 1, u > w_0 \\ 0, u \le w_0 \end{cases}$$

Entrada:

$$(x1 = 0.6; x2 = 0.5)$$

$$U = 0.6*(-1) + 0.5*2$$

= -0.6 + 1
= 0.4

$$f(0,4;0,5) = 0$$

$$f(u, w_0) = \begin{cases} 1, u > w_0 \\ 0, u \le w_0 \end{cases}$$

Entrada: (0,6, 0,7)

$$u = 0.6*(-1) + 0.7*2$$

= -0.6 + 1.4
= 0.8

$$f(0,8,0,5) = 1$$

$$f(u, w_0) = \begin{cases} 1, u > w_0 \\ 0, u \le w_0 \end{cases}$$

Entrada: (1,0; 0,5)

$$f(0,0;0,5) = 0$$

$$f(u, w_0) = \begin{cases} 1, u > w_0 \\ 0, u \le w_0 \end{cases}$$

Entrada: (a, b)

$$f(u, w_0) = \begin{cases} 1, u > w_0 \\ 0, u \le w_0 \end{cases}$$

Treinamento de Neurônio

Prof. Tiago Buarque A. de Carvalho

Superfície de Decisão

Os neurônios resolvem problemas

"LINEARMENTE SEPARÁVEIS"

A superfície de decisão é um hiperplano

- Em 2D é uma reta
- Em 3D é um plano

Qual a superfície de decisão deste neurônio?

Entrada: (a, b)

$$u = a^*(-1) + b^*2$$

= -a + 2b
= 0

$$f(-a+2b; 0,5) = 1$$
, se $-a+2b > 0,5$
0, se $-a+2b <= 0,5$

Qual a linha que separa?

$$-a + 2b = 0.5$$

$$a = 2b - 0.5$$

se b = 0 então a = -0.5

$$b = (0.5 + a)/2$$

se a = 0 então b = 0.25

Bias = viés

É o limiar da função de ativação do neurônio

A função de ativação pode ser simplificada se o bias for inserido no somatório

Como?

Fazendo $x_0 = -1$

$$f(u, w_0) = \begin{cases} 1, u > w_0 \\ 0, u \le w_0 \end{cases} = \begin{cases} 1, u - w_0 > 0 \\ 0, u - w_0 \le 0 \end{cases}$$

$$u - w_0 = \sum_{i=1}^d x_i w_i - w_0 = \sum_{i=0}^d x_i w_i, x_0 = -1$$

$v = u - w_0$

$x_0 = -1$

$$v = \sum_{i=0}^{d} x_i w_i$$

$$u = \sum_{i=1}^{d} x_i w_i$$

$$f(v) = \begin{cases} 1, v > 0 \\ 0, v \le 0 \end{cases}$$

$$f(u, w_0) = \begin{cases} 1, u > w_0 \\ 0, u \le w_0 \end{cases}$$

Algoritmo de treinamento

Entrada: n exemplos de treino $\{(\mathbf{x}_1, y_1), \dots (\mathbf{x}_n, y_n)\}$; taxa de aprendizagem $\frac{\eta}{n}$ Saída: neurônio treinado, $\mathbf{w} = (w_0, \dots, w_d)$

- 1.Inicializa o neurônio com valores aleatórios no intervalo [0;1]
- 2.erroTotal = ε +1
- 3.Enquanto (erroTotal $> \varepsilon$)

```
A.Para cada exemplo x_i, com i = 1, ..., n, faça
```

```
I. erro = (y_i - f(u_i))^2
```

II. Se erro > 0

Para cada peso w_j , com j = 1, ... d, faça <u>atualização dos pesos</u> $\mathbf{w_i[t+1]} = \mathbf{w_i[t]} + \mathbf{\eta x_{ii}(y_i-f(u_i))}$

B.erroTotal = 0

C.Para cada exemplo x_i , com i = 1, ..., n, faça

```
I. erro = (y_i - f(u_i))^2
```

II. erroTotal = erroTotal + erro

 $w_j[t+1] = w[t] + \eta x_{ij}(y_i - f(u_i))$ equação de atualização dos pesos

$$w_j[t+1]$$
 peso APÓS a atualização

$$w_j[t]$$
 peso ANTES da atualização

$$\eta$$
 taxa de aprendizagem

$$x_{ij}, \mathbf{x}_i = (x_{i1}, \dots, x_{id})$$
 valor da característica j do exemplo i, exemplo i

$$f(u_i)$$
 saída do neurônio para o exemplo i

classe do exemplo i

 y_i

```
static double saidaNeuronio(double w[], double exemplo[]) {
double \vee = 0;
for (int i = 0; i < exemplo.length; i++) {</pre>
    v = v + w[i] * exemplo[i];
if (\vee > 0)
    return 1;
else
    return 0;
```

```
static void treinamento(double[] y, double[][] x, double eta, int n, int d, double[] w, double erroMax) {
           double erroTotal = erroMax:
           int epoca = 0:
           int atualizacao = 0:
           printSuperficieDecisao(300, -1, 2, -1, 2, w, x, y, 10, "Início");
           while (erroTotal >= erroMax) {
                 epoca++;
                 System.out.println("\nÉpoca #" + epoca);
                 for (int i = 0; i < n; i++) {
                       double f = saidaNeuronio(w, x[i]);
                       double delta = y[i] - f;
                       double erro = delta * delta;
                       erroTotal = erroTotal + erro:
                       System.out.print("y[" + i + "] = " + y[i] + ", f = " + f);
                       if (erro > 0) {
                             atualizacao++:
                             for (int j = 0; j < d; j++) {
                                                                                      Atualiza os pesos
                                   w[i] = w[i] + eta * x[i][j] * delta;
                                   System.out.print(", w[" + j + "] = " + w[j]);
                             printSuperficieDecisao(300, -1, 2, -1, 2, w, x, y, 10, "Atualização #" + atualização);
                       System.out.println();
                 erroTotal = 0;
                 for (int i = 0; i < n; i++) {
                                                                        Calcula o erro do
                       double f = saidaNeuronio(w, x[i]);
                       double delta = y[i] - f;
                                                                        neurônio
                       double erro = delta * delta;
                       erroTotal = erroTotal + erro;
                 System.out.println("Erro Total = " + erroTotal);
```

Exemplo de Treinamento

X1	x2	У
0	0	0
0	1	1
1	0	1
1	1	1
	OU	

x0	x1	x2	У
<mark>-1</mark>	0	0	0
-1	0	1	1
<mark>-1</mark>	1	0	1
-1	1	1	1

Pesos iniciais

$$w0 = 0$$

$$w1 = 0$$

$$w2 = 0$$

$$\eta = 0.5$$

x0	x1	x2	У
<u>-1</u>	0	0	0
<mark>-1</mark>	0	1	1
<mark>-1</mark>	1	0	1
<u>-1</u>	1	1	1

Época #1
$$y[0]=0.0$$
, $f=0.0$
 $y[1]=1.0$, $f=0.0$, $w[0]=-0.5$, $w[1]=0.0$, $w[2]=0.5$
 $y[2]=1.0$, $f=1.0$
 $y[3]=1.0$, $f=1.0$

Atualização #1, $w=(-0.5,0.0,0.5)$

Pesos iniciais

$$w0 = 0$$

$$w1 = 0$$

$$w2 = 0$$

$$\eta = 0.5$$

Erro Máximo = 0.001

Época #2 y[0]=0.0, f=1.0, w[0]=0.0, w[1]=0.0, w[2]=0.5 y[1]=1.0, f=1.0 y[2]=1.0, f=0.0, w[0]=-0.5, w[1]=0.5, w[2]=0.5 y[3]=1.0, f=1.0Erro Total = 2.0

Atualização #3, w=(-0.5,0.5,0.5) = -0.5

Época #3

$$y[0]=0.0$$
, $f=1.0$, $w[0]=0.0$, $w[1]=0.5$, $w[2]=0.5$
 $y[1]=1.0$, $f=1.0$
 $y[2]=1.0$, $f=1.0$
 $y[3]=1.0$, $f=1.0$
Erro Total = 1.0

Pesos iniciais

$$w0 = 0$$

$$w1 = 0$$

$$w2 = 0$$

$$\eta = 0.5$$

Erro Máximo = 0.001

Exemplo na Base Iris

Dados

"Iris-setosa" é a classe 0

Os demais exemplos são da classe 1

Utilizando a 1^a e 3^a colunas

Parâmetros

Taxa de aprendizagem = 1,0

Erro máximo = 1

Pesos iniciais = 0

Exemplo na Base Iris

```
Época #1
Erro Total = 50.0
Época #2
Erro Total = 50.0
Época #3
Erro Total = 50.0
Época #4
Erro Total = 50.0
Época #5
Erro Total = 0.0
```



```
Atualização 1
v[50]=1.0, f=0.0, w[0]=-1.0, w[1]=7.0, w[2]=4.7
Frro Total = 50.0
Época #2
Atualização 2
v[0]=0.0, f=1.0, w[0]=0.0, w[1]=1.90000000000004, w[2]=3.300000000000000
Atualização 3
Atualização 4
Erro Total = 50.0
Época #3
Atualização 5
Atualização 6
v[1]=0.0, f=1.0, w[0]=2.0, w[1]=-6.0, w[2]=3.8000000000000001
Atualização 7
Erro Total = 50.0
Época #4
Atualização 8
y[0]=0.0, f=1.0, w[0]=2.0, w[1]=-4.1, w[2]=7.100000000000001
Atualização 9
y[79]=1.0, f=0.0, w[0]=1.0, w[1]=1.600000000000005, w[2]=10.60000000000001
Erro Total = 50.0
Época #5
Atualização 10
v[0]=0.0, f=1.0, w[0]=2.0, w[1]=-3.49999999999999, w[2]=9.20000000000001
```

Época #1

Erro Total = 0.0

Limitações do Neurônio

Prof. Tiago Buarque A. de Carvalho

Limitações do neurônio simples

Resolve apenas problemas lineares

XOR: ou exclusivo

Iris-versicolor

Pode não alcançar erro zero

Para alguns problemas

Pode Ter erro sempre alto

Não há solução linear aproximada

XOR (ou exclusivo): NÃO CONVERGE

x1	x2	У
0	0	0
0	1	1
1	0	1
1	1	0

Pesos iniciais =(0,0,0) Taxa de aprendizagem = 0.5

43

Iris-virginica

Base Iris

Setosa

Erro = 0

Versicolor

Erro = 100%

Virgínica

Erro = 20%

Como classificar Iris-Versicolor?

Dois neurônios

- o primeiro diz se é Setosa
- o segundo se é Virgínica

Se não for

nem setosa nem Setosa nem Virgínica

é Versicolor

Será que pode aprender Versicolor sozinha?

Rede Neural para a base Iris

Redes MLP

Prof. Tiago Buarque A. de Carvalho

Perceptron multicamadas

MLP

Multilayer Perceptron (MLP)

Camadas

Geralmente Completamente Conectadas

Cada neurônio de uma camada conecta-se a todos os outros da camada seguinte

A saída de uma camada é entrada da outra

MLP completamente conectada

Perceptron structure XOR problem Meshed classes General region 1 layer (A) (B) 2 layer B 3 layer (A)

(after Lippmann, IEEE ASSP April 1987)

Efeito do número de camadas

Pré-processamento para a saída

Um neurônio na camada de saída para cada classe

Pré-processamento dos dados

Forma mais comum mas não única

Pode fazer ajustes para evitar "saturar a saída"

Classe	Classe Setosa	Classe Versicolor	Classe Virgínica
Setosa	1	0	0
Virgínica	0	0	1
Setosa	1	0	0
Versicolor	0	1	0

Classe Setosa	Classe Versicolor	Classe Virgínica
0,9	0,1	0,1
0,1	0,1	0,9
0,9	0,1	0,1
0,1	0,9	0,1

-unções de Ativação

Prof. Tiago Buarque A. de Carvalho

Funções de Ativação

Necessariamente não-lineares

A combinação de camadas lineares pode ser representada por uma única camada linear

Diferenciável (contínua, monotonicamente crescente)

Gradiente descendente (treinamento da rede)

Utiliza-se a derivada da função

Várias

Sigmóide, Tangente Hiperbólica, RELU, ...

A derivada podem atrasar o treinamento

FunçãoSigmóide ou Função Logística

Saída € [0, 1]

Assemelha-se ao degrau

Derivada em [0; 0,25]

$$f(x)=\sigma(x)=rac{1}{1+e^{-x}}$$

$$f'(x) = f(x)(1 - f(x))$$

https://en.wikipedia.org/wiki/File:Logistic-curve.svg

Sigmóide

$$f(u) = \frac{1}{1 + \exp(-u\alpha)}$$

Tangente Hiperbólica

Saída no intervalo [-1, 1]

Evita multiplicação por zero

Derivada em [0; 1]

$$f(x)= anh(x)=rac{(e^x-e^{-x})}{(e^x+e^{-x})}$$

$$f'(x) = 1 - f(x)^2$$

Rectified linear unit (ReLU)

Saída >= 0

Derivada em [0; 1]

$$f(x) = \left\{ egin{array}{ll} 0 & ext{for } x \leq 0 \ x & ext{for } x > 0 \end{array}
ight.$$

$$f'(x) = \begin{cases} 0 & \text{for } x \leq 0 \\ 1 & \text{for } x > 0 \end{cases}$$

Treinamento CE VILP

Prof. Tiago Buarque A. de Carvalho

Back-propagation

Algoritmo de treinamento de uma rede MLP

Restringe que cada neurônio deve ter uma função de ativação diferenciável (contínua? monotonicamente crescente?)

Os pesos devem obrigatoriamente serem inicializados com **valores aleatórios** para os neurônios não ficarem iguais

Duas fases

Para frente: calcula a saída da rede

Para trás: atualiza os pesos

- Calcula o erro na camada de saída e propaga para as outras camadas
- Só se pode calcular o erro na camada de saída!
- A atualização das camadas escondidas depende do erro na cama seguinte

Pra frente: calcula a saída

Pra trás: atualiza os peso

Atualização dos Pesos

A atualização dos pesos é diferente na camada de saída em relação às camadas intermediárias

O peso da entrada j do neurônio k é atualizado em função do delta para aquele neurônio, da taxa de aprendizagem e do valor \mathbf{x}_i do vetor \mathbf{x}

$$w_{kj}[t+1] = w_{kj}[t] + \eta x_j \delta_k$$

O valor do delta na entrada é o produto entre a derivada da saída e o erro – o erro é a saída desejada menos a saída do neurônio (*para minimizar o erro quadrático*)

O delta em um neurônio de camada escondida é uma combinação dos deltas dos neurônios para quem ele transmite multiplicado pelo peso da sua saída para o receptor

$$\delta_k = \begin{cases} f'(v_k)(y_i - f(v_k)), \text{ na saída} \\ f'(v_k) \sum_j w_{kj} \delta_j, \text{ internamente} \end{cases}$$

$$w_{kj}[t+1] = w_{kj}[t] + \eta x_j \delta_k$$

$$f(v) = \frac{1}{1 + exp(-v)}$$

$$\delta_k = \begin{cases} f(v_k)(1 - f(v_k))(y_i - f(v_k)), \text{ na saída} \\ f(v_k)(1 - f(v_k)) \sum_j w_{kj} \delta_j, \text{ internamente} \end{cases}$$

a	b	y
0	0	0
0	1	1
1	0	1
1	1	0

η	=	20
η		20

u	-8	-4	-2	-1	0	1	2	4	8
f(u)	0.00	0.02	0.12	0.27	0.50	0.73	0.88	0.98	1.00

Convergência do algoritmo backpropagation

- Lenta
- Requer muitas épocas
- Pode parar em um mínimo local
- Não tem garantia de convergência como o perceptron

Taxa de Aprendizagem

Pequena

convergência lenta

Grande

pode oscila demais e não convergir

Diminuir a taxa a cada época de treino

Variações do Backpropagation

Batch Backpropagation

Atualiza os pesos pelo erro médio para todos os padrões

Mini-Batch

Funções de erros (loss)

Erro médio quadrático

Quickprop, Rprop, ...

Algoritmos de treinamento mais rápidos

Momentum, Momentum de segunda ordem

Evita grandes oscilações

Outros métodos de otimização

Para realizar o treinamento (pesos ótimos)

Newton, Levenberg-Marquardt, ...

Critério de Parada

Época (ciclo) de treinamento

Cada exemplo de treino passou exatamente uma vez a rede

- O treinamento leva várias épocas
- O algoritmo pára

Após um número fixo de épocas

Taxa máxima de erro sobre conjunto de validação

- Conjunto de Validação é uma partição do treino para testa a rede
- A rede é testada a cada 10 ou 100 épocas
- O erro sobre a validação começa a crescer por 10 épocas seguidas

Overfitting

Prof. Tiago Buarque A. de Carvalho

Sobre-ajuste

A rede "decorou o conjunto de treino" e não consegue generalizar

Conjunto de validação

Diferente do conjunto de treino e teste

Serve Para monitorar overfitting

Underfitting ≠ Overfitting

A rede pode ter menos neurônios que o necessário

Não consegue generalizar nem no conjunto de treinamento

"Não consigo aprender!" :(

O que mais?

Prof. Tiago Buarque A. de Carvalho

Projetos de arquiteturas

Função de ativação

Topologia

Número de camadas

Neurônios por camadas

Quanto mais camadas, mais demorado o treinamento

Estratégia

Empírica: começando com apenas uma camada escondida

Meta-heurística: gera e testa várias por vez, pode utilizar algoritmos genéticos

Poda: elimina nós enquanto o erro de validação permanece aceitável

Construtiva: vai inserindo nós nas camadas

Outras Redes

Redes Convolucionais

Aplicada para imagens

LSTM (Long short-term memory)

Redes recorrente

A saída da rede volta para a entrada

Problemas de séries temporais, texto, áudio, ...

Autoencoders, RBF, SOM,

Redes Convolucionais

Vantagens e Desvantagens

- Generalização
- Tolerância a falhas e ruídos
- Degradação graciosa
- Resolve tarefas de baixo nível, ex. visão computacional
- Paralela

- Não fica claro como a rede chega às suas conclusões
- Dificuldade de escolhas de parâmetros
- Requer muito tempo e recursos computacionais

Referências

R. Beale, T. Jackson. 1992. Neural Computing: an introduction. IOP.

Thomas M. Mitchell. 1997. Machine Learning McGraw-Hill.

Katti Faceli, Ana Carolina Lorena, João Gama, André C. P. L. F. de Carvalho. 2011. **Inteligência Artificial – Uma abordagem de Aprendizado de Máquina**. LTC.

Ian Goodfellow and Yoshua Bengio and Aaron Courville. 2016. **Deep Learning**. MIT Press. http://www.deeplearningbook.org

https://www.youtube.com/watch?v=McgxRxi2Jqo

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. 2009. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. ICML.

Prof. Tiago Buarque A. de Carvalho