EMC Test Report Application for Grant of Equipment Authorization Class II Permissive Change/Reassessment pursuant to FCC PART 15 SUBPART C

Report#: S002E010-FCC Part 15 Subpart C-DTS

Manufacturer: Smart Technologies ULC

Model: KAPP 84

Serial# G010HW06Z0006

Test Start Date: Feb 17, 2015

Test Completion Date: Apr 07, 2015

Test Result: PASS

Report Issue Date: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

Approved by:

Reviewed by:

Trung Nguyen, Discipline Prime

Adiseshu Nyshadham, QCM

Tested By

Jaeheon Yun, Hua Yan

Report Issued to:

Smart Technologies ULC

3636 Research Rd NW Calgary, Alberta

Canada T2C 1Y1

Report Issued by:

Applied Test Lab Inc.

Unit 4174-3961 52nd Avenue NE Calgary, AB, T3J 0J8

www.appliedtestlab.com

trung@appliedtestlab.com

Applied Test Lab Inc. (ATL) test facilities are recognized by FCC and Industry Canada to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and or procedures selected by the client. ATL makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or other characteristic of the article being tested, or similar products. This report should not be relied up on as an endorsement or certification by ATL of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. The report must not be used by client to claim product endorsement by FCC or Industry Canada. Any use which a third party makes of this report, or any reliance on or decisions to be made on it, are the responsibility of such third parties. ATL accepts no responsibility for damages suffered by any third party as a result of decisions made or actions based on this report. This report shall not be reproduced except in full without the written approval of ATL

This report contains 48 pages

Applied Test Lab Inc.
Page 2 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS
Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

Document Release History

	Approvals		
Organization	Name	Signature	Date
Applied Test lab	Trung Nguyen	Eng	Apr 16, 2015

	Revision History		
Rev	Description of Change	Author	Effective Date
Draft01	Initial release	Trung Nguyen	Apr 15, 2015
Release 1	Approved release	Trung Nguyen	Apr 16, 2015

Page 3 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015
FCC ID: Z64-WL18SBMOD

Information technology equipment (ITE) - CISPR22

Any equipment:

- which has a primary function of either (or a combination of) entry, storage, display, retrieval, transmission, processing, switching, or control, of data and of telecommunication messages and which may be equipped with one or more terminal ports typically operated for information transfer;
- with a rated supply voltage not exceeding 600 V.
- It includes, for example, data processing equipment, office machines, electronic business equipment and telecommunication equipment.

Any equipment (or part of the ITE equipment) which has a primary function of radio transmission and/or reception according to the ITU Radio Regulations are excluded from the scope of this publication.

NOTE: Any equipment which has a function of radio transmission and/or reception according to the definitions of the ITU Radio Regulations should fulfil the national radio regulations, whether or not this publication is also valid.

Equipment, for which all disturbance requirements in the frequency range are explicitly formulated in other IEC or CISPR publications, are excluded from the scope of this publication.

LABELING INFORMATION - FCC

Products subject to authorization under Verification procedures shall be labelled as follows: "This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) this device may not cause harmful interference, and
- (2) this device must accept any interference received, including interference that may cause undesired operation."

Where a device is constructed in two or more sections connected by wires and marketed together, the statement is required to be affixed only to the main control unit. When the device is so small or for such use that it is not practicable to place the statement on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

INFORMATION TO THE USER - FCC

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

For a Class A digital device or peripheral, the instructions furnished in the user manual shall include the following or similar statement, placed in a prominent location in the text of the manual:

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Page 4 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

For a Class B digital device or peripheral, the instructions furnished in the user manual shall include the following or similar statement, placed in a prominent location in the text of the manual:

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio
- TV technician for help

LABELING INFORMATION - Industry Canada

The manufacturer, importer or supplier shall meet the labelling requirements set out in this section for every ITE unit:

- Prior to marketing in Canada, for ITE manufactured in Canada, and
- Prior to importation into Canada, for imported ITE

The presence of the label on the ITE represents the manufacturer's or importer's Self-Declaration of Compliance (SDoC) to Industry Canada ICES-003. Each unit of an ITE model shall bear a label indicating the model's compliance with ICES-003. The label shall be permanently affixed to the ITE or displayed electronically and its text must be clearly legible. When the dimension of the device is too small or it is otherwise not practical to place the label on the ITE, the label shall be placed in a prominent location in the user manual supplied with the ITE.

The user manual may be in an electronic format and must be readily available.

Industry Canada ICES-003 Compliance Label:

CAN ICES-3 (*)/NMB-3(*) (Insert either "A" or "B" but not both to identify the applicable Class of ITE.)

INFORMATION TO THE USER - Industry Canada

For a Class A/B digital device, the instructions furnished in the user manual shall include the following or similar statement, placed in English and French, in a prominent location in the text of the manual:

This Class A/B digital apparatus meets all requirements of the Canadian Interference Causing Equipment Regulations. Operation is subject to the following two conditions:

- this device may not cause harmful interference, and
- this device must accept any interference received, including interference that may cause undesired operation.

Applied Test Lab Inc. Page 5 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

Table of Contents

1.0	GENERAL	6
1.1	Scope	6
1.2	Objective	
1.3	Relevant Standards and References	7
1.4	SUMMARY OF COMPLIANCE PERFORMANCE	7
1.5	TEST RESULTS SUMMARY	7
1.6	TEST FACILITY INFORMATION	8
1.7	MEASUREMENT UNCERTAINTIES	8
1.8	CLIENT INFORMATION	8
1.9	Manufacturer	
2.0	TEST SAMPLE	9
2.1	TEST SAMPLE INFORMATION	g
2.2	EQUIPMENT UNDER TEST (EUT)	g
2.3	SUPPORT EQUIPMENT AND DETAILS	10
2.4	I/O PORTS AND DETAILS	
2.5	External I/O Cable Descriptions	10
2.6	Modifications	10
3.0	TEST FACILITIES	12
3.1	SEMI-ANECHOIC CHAMBER TEST SITE DESCRIPTION	13
3.2	A BLOCK DIAGRAM OF SEMI-ANECHOIC CHAMBER TEST SITE	15
3.3	CONDUCTED EMISSIONS TEST SITE	16
3.4	TEST EQUIPMENT LIST	17
4.0	TEST SETUP DESCRIPTION	19
4.1	System Block Diagram	19
4.2	SUPPORT EQUIPMENT	19
4.3	TEST SETUP-CONDUCTED EMISSIONS	20
4.4	TEST SETUP-RADIATED EMISSIONS	21
4.5	Test Setup-Antenna Conducted	23
5.0	TEST METHODOLOGY	24
5.1	METHOD OF MEASUREMENT OF CONDUCTED EMISSION	24
5.2	METHOD OF MEASUREMENT OF RADIATED EMISSION	24
5.3	Test Criteria	25
5.4	EUT OPERATION DURING EMISSION TESTING	27
5.5	TEST JUSTIFICATION	27
6.0	TEST RESULTS	28
6.1	AC CONDUCTED EMISSIONS TEST DATA	28
6.2	RADIATED SPURIOUS EMISSIONS	30
6.3	CONDUCTED SPURIOUS EMISSIONS-BAND EDGES	35
6.4	RADIATED SPURIOUS EMISSIONS-BAND EDGES	39
6.5	Antenna Conducted Output Power	41
7.0	APPENDIX A – TEST SAMPLE DESCRIPTION	46
8.0	APPENDIX B – LIST OF ABBREVIATIONS AND ACRONYMS	47
		-

Page 6 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: **Apr 16, 2015** FCC ID: **Z64-WL18SBMOD**

1.0 General

1.1 Scope

The purpose of this report is to document conformance with FCC 47 CFR PART 15 SUBPART C, intentional Radiators and to detail the results of testing performed on the sample Model: **kapp84** manufactured by **Smart Technologies ULC**. The test sample was received in good condition. Testing began on **Feb 17**, **2015** and was completed on **Apr 07**, **2015**.

An electromagnetic emissions test has been performed on the **Smart Technologies ULC**. Model **kapp84** pursuant to the following rule references [1, 2, and 3].

Conducted and radiated emission data has been collected, reduced and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards [4,5] as outlined in Applied Test Lab Inc Test procedures:

The system including the intentional radiator has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry standard's performance and procedural standards Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation power and I/O cabling, antenna search height and antenna polarization. Every practical effort was made to perform an impartial test using appropriate test equipment of defined calibration and specific standard related test setups and procedures. All pertinent factors have been applied to reach the assessment of compliance.

The test results reported in this report are based on a single type test of **Smart Technologies ULC**. Model **kapp84** and therefore apply only to the tested sample. The sample was selected and prepared by **Jeremy Hebert** of **Smart Technologies ULC**

1.2 Objective

The primary objective of the manufacturer is to be in compliance with the regulations outlined in the previous section for their electronic products with internally radiated devices.

Prior to placing the products on the markets in USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or manufacturer's declaration of conformity, with all other receive-only devices exempt from technical requirements. Prior to placing the products on the markets in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submittal documents including test data. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured following the equipment grant.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increase emission levels should be checked and verified to ensure continuous compliance has been maintained (i.e., printed circuit board layout changes, cable layout changes, changes to filter performance, power supply changes, I/O cable and interface changes, critical component changes, adding or modifying grounded or un-grounded conductive planes, enclosure changes etc.)

Page 7 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

1.3 Relevant Standards and References

One or more of the following standards were used to evaluate the EUT:

- 1. Industry Canada RSS-Gen Issues 4
- 2. RSS 210 Issues 8 "Low power License-exempt Radio communication Devices (All Frequency Bands): Category I Equipment"
- 3. FCC Part 15 Subpart C
- 4. ANSI C63.4-2003: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9 kHz to 40GHz
- 5. Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 Jun 5, 2014

1.4 Summary of Compliance Performance

The tested sample of **Smart Technologies ULC**. Model **kapp84** complied with the requirement of the referenced regulations [1, 2, and 3]:

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increase emission levels should be checked and verified to ensure continuous compliance has been maintained (i.e., printed circuit board layout changes, cable layout changes, changes to filter performance, power supply changes, I/O cable and interface changes, critical component changes, adding or modifying grounded or un-grounded conductive planes, enclosure changes etc.)

1.5 Test Results Summary

Test Type	FCC Rule Part	Assessment	Limit/ Requirement	Result
Frequency Hopping or Digital Modulation	15.247(a)	System uses Digital Modulation Techniques		PASS
Conducted Output Power	15.247(b) (3)	Full Power :8.987 dBm (12.21mW) Normal Power -7.317 dBm (0.286 mW)	1000mW	PASS
Antenna Conducted Band Edge Emissions	15.247(c)/15.209	Full Power 2390 MHz -67.474 dBc Full Power 2483.5 MHz -59.416 dBc Normal Power 2390 MHz -68.172 dBc Normal Power 2483.5 MHz -58.860 dBc	<-20dBc	PASS
Transmitter Radiated Spurious Emissions	15.247(c)/15.209	Highest Fundamental: 2480 MHz, 89.41 dBuV/m Highest Spurious: 7440 MHz, -14.87dB	<-20dBc	PASS
Radiated Band Edge Emissions	15.247(c)/15.209	2390 MHz Level: -37.72 dBc 2483.5 MHz Level:-48.41 dBc	<-20dBc	PASS
RF Exposure Requirements	15.247(b) (5) 15.407(f)	0.0024 mW/cm ²	1.000mW/ cm ²	PASS
AC Conducted Emissions	15.207	Based on the changes proposed, the AC conducted emissions would not be affected	Refer to Standard	N/A
RF connector	FCC 15.203	External Antenna with non-standard connector	Integral Antenna or non-standard connector	PASS

Page 8 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

1.6 Test Facility Information

Name	Applied Test Lab Inc.				
Address	Unit 4174-3961 52 nd Avenue NE, Calgary, Alberta, T3J 0J8, Canada				
Telephone	403 590 8701 Fax 403 590 8570				
Email	sale@appliedtestlab.com Website www.appliedtestlab.com				
FCC Recognition	697081	IC Recognition	10988A		

1.7 Measurement Uncertainties

ISO/IEC 17025 requires an estimate of the measurement uncertainties associated with the radiated and conducted emissions test results be included in the report. The measurement uncertainties given in the following table are estimated based on 95% confidence level and were calculated in accordance with UKAS document Lab 34.

Measurement	Frequency Range (MHz)	Calculated Uncertainity (dB)
Conducted Emission	0.15 to 30.0	+/- 2.71
Radiated Emission	0.009 to 30.0	+/- 3.0
Radiated Emission	30.0 to 1000.0	+/- 4.25
Radiated Emission	1000 to 26500.0	+/- 6.0

1.8 Client Information

Name	Smart Technologies ULC			
Address	3636 Research Road NW, Calgary, AB, Canada T2L 1Y1			
Telephone	1-403-407-4068 Website www.smarttech.com			
Contact Name	Jeremy Hebert	Contact Email	jeremyhebert@smarttech.com	

1.9 Manufacturer

Same as client

Page 9 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

2.0 Test Sample

2.1 Test Sample Information

The **kapp84** was only operated and exercised in the mode(s) and configuration(s) described in this report. All inputs and outputs to and from support equipment associated with the **kapp84** were provided or simulated under the direction and responsibility of **Smart Technologies ULC**. A description of system and their provisions are included in Appendix A.

2.2 Equipment Under Test (EUT)

Due do et Decembrie	Dry erase whiteboard with digital imaging capacity and ability to share			
Product Description	content in real time via paired Bluetooth mobile device.			
Intended Application	Dry erase Whiteboard			
Manufacturer	SMART Technologies ULC/ SMART Technologies Inc.			
Address	3636 Research Road NW, Calgary, AB T2L 1Y1			
Model/Trade Name	SMART kapp™ 84" capture board			
Model Number	kapp84			
Model Discrepancy/Variants	EVT2 unit			
Serial Number	G010HW06Z0006			
FCC ID	Z64-WL18SBMOD			
Model discrepancy/Variations	N/A			
Power Supply Requirements	5V DC			
Danier Carrella Madel Cariel	Power Supply 1			
Power Supply Model, Serial, Manufacturer, Ratings,	Manufacturer: DVE, Model# DSA-24CA-05 50300, 5V, 3A			
Regulatory Approvals	Power Supply 2			
Regulatory Approvals	Manufacturer: TOP Microsystems, Model# ADS-25SGP-06 -05015G, 5V, 3A			
Firmware Version	1.5.0.54 (MAN image for testing continuous transmit; used in spurious tests)			
Tilliwate version	1.5.2.37 (APP image used for testing immunity)			
Software Version	SMART kapp iOS application Version 1.3.x			
Equipment Category	ITE, Bluetooth Low Power Device			
Intended Operating	Residential, Commercial and Light Industrial			
Environment	F7 II (05 0 I)			
Weight	57 lbs (25.9 kg)			
Dimensions	72" x 52 5/8" (182.9cm x 133.8cm)			
Supplied Accessories	5V, 3A power supply.			
Operating Frequency(s)	2402-2480 MHz			
Operating Modes	Tx and Rx			
Transmitter power	0.0173Watts (12.38 dBm)			
	0.01Watts (10.0 dBm) (Bluetooth Low Energy BT 4.0-LE)			
Modulation Technique	GFSK (Bluetooth BR & BLE). EDR modulations not used.			
Emission Designator	1M19F1D(BR) , 1M01F1D (LE)			
Transmit data Rate	32kbits per second			
Number of Channels	79 (Bluetooth BR/EDR); 39 (Bluetooth Low Energy BT 4.0-LE)			
Number of Antennas				
Antenna Specifications	Molex 47950-4011, peak gain 1.88dBi, 2.4GHz-2.5GHz with 300mm cable (one			
(Manufacturer, model, Gain,	end is soldered to Antenna and other end is connected with U.FL Plug			
VSWR, Frequency range(s))	connector to mate with U.FL Receptacle on the PCB)			

Applied Test Lab Inc.

Page 10 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

						F	CC ID: Z64-W	-
Part number	10	2595 6 (R	evision	06 tested)		•	CC 12. 201	LIOODIVIOD
ypical Installations	W	Wall Mount						
Puration of Self Test	20	20 seconds (performed at power up)						
ycle Time	1 1	1 minute (Initialization + pairing Bluetooth device + writing ink on board)					n board)	
eaction Time	Le	ess than 1	second	for most far	ılts			
ault Recovery Time	U	p to 25 se	conds if	funit resets				
Highest Freq Generated	. 24	80MHz						
Other Information	N,							
Product Manufacturing	Status \(\sum_{\text{\tint{\text{\tin}\xi}}\\ \text{\tex{\tex	Product	ion Uni	t	Pr€	e-Production Ur	nit	
2.3 Support Equi	ipment and	l Detail	s					Applicable
Manufacturer	Descrip	otion	Mo	odel No.		Serial Number	Oth	er Info
Asus	Laptop		B43S		N/	/a		
RFID tag	RFID tag						Simulate re	ead condition
2.4 I/O Ports and	l Details							Applicable
Port Type	Descrip	otion	Fil	lter Info		Shielding Info	Oth	er Info
Mini USB	4 wired include լ			No		Yes		
2.5 External I/O	Cable Desc	ription	S					Applicable
Cable Descrip	otion	Leng	th (m)	Port Fro	m	Port To	Cable Type	Remarks
USB cable		1.8 M		USB Type	В	USB Type A	shielded	
Power cable	cable 1.8 M Power cab		Power cable					
2.6 Modification	S							Applicable

Component / Material

Description

Placement

Test Used for

Modification Type

Applied Test Lab Inc.
Page 11 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

		T CC ID: LOT (LICOBINOB
Change AC to DC adapter	From Asus to Gateway	Conducted Emission
	adapter	
	usup ter	
	·	•
Photo of Modifications		Applicable
		Пррпсион
İ		

Notes:

Page 12 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

3.0 Test Facilities

Laboratory Location

The radiated and conducted emissions test sites are located at the following address:

Applied Test Lab, Unit 4174, 3961-52 Ave N.E., Calgary, AB T3J 0J8

Laboratory Accreditation/Recognitions/Certifications

The Semi-Anechoic Chamber Test Site and Conducted Emissions Site have been fully described, submitted to, and accepted by the FCC and Industry Canada for testing Interference by information technology equipment. In addition, ATL has implemented an interim in-house quality system which is based on the ISO 17025 standard and is actively pursuing to achieve its accreditation. The following certification numbers have been issued in recognition of the certifications:

FCC Registration Number: 697081 Industry Canada Lab Code: 10988A

Country	Agency	Accreditation/Certification	LOGO
USA	FCC	3m Semi-Anechoic Chamber to perform FCC Part 15/18 measurements	F©
Canada	Industry Canada	3m Semi-Anechoic Chamber to perform ICES-004 and RSS measurements	Industry Industrie Canada Canada

*Note: Unless otherwise specified, ATL performs the tests using standard test methods to evaluate the EUT for compliance to the defined International standards. However, the report is not to be used to claim compliance, certification or endorsement by FCC or Industry Canada or any other government agency unless specifically submitted to such agency for such purpose.

Page 13 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: **Apr 16, 2015** FCC ID: **Z64-WL18SBMOD**

3.1 Semi-Anechoic Chamber Test Site Description

The Semi-Anechoic Chamber Test Site consists of a $6.24 \times 9.144 \times 5.79$ meter shielded enclosure. The chamber is lined with SAMWAH Ferrite Grid Absorber, model number SN-20. The ferrite tile grid is $100 \times 100 \times 6.7$ mm thick and weighs approximately 200 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber. Inner side Wall is lined by 600H Foam Absorber with White Cap. Chamber is illuminated by set of 12 Incandescent Bulbs.

The turntable is 198cm in diameter and is located 160cm from the back wall of the chamber. The chamber is grounded via Utility Ground installed at the side of the back East wall, it is bound to the Chamber ground Stud using 1/2" copper braided cable.

Figure 3.1 – Test Facility (setup for 30 MHz – 1GHz)

The turntable is all aluminum, flush mounted table installed in an all steel frame. The table is remotely operated from the control area located outside the Semi Anechoic Chamber. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Applied Test Lab Inc.
Page 14 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS
Date of Issue: Apr 16, 2015
FCC ID: Z64-WL18SBMOD

Figure 3.2 – Test Facility (setup for 1 GHz – 18 GHz)

Page 15 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

3.2 A Block Diagram of Semi-Anechoic Chamber Test Site

Figure 3.3 - Semi- Anechoic chamber diagram (30MHz - 1GHz)

Figure 3.4 - Semi- Anechoic chamber diagram (1 GHz - 18GHz)

3.3 Conducted Emissions Test Site

The AC mains conducted EMI site is located in the main ATL EMC lab. It consists of a 2.04×2.04 Meter solid copper horizontal group reference plane (GRP) bonded to a 2.25×2.25 meter vertical ground plane.

The site is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.4. A diagram of the Conducted Emissions Test Site and block diagram is shown in Figure below.

Figure 3.5 - Conducted Emissions test setup diagram

Figure 3.6- Conducted Emissions test setup

Page 17 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

3.4 Test Equipment List

Table 3.4A-Test Equipments used for Radiated Emissions, Radiated Spurious and Band Edges

Description	Manufacturer	Model Number	Ser Number	Next Cal	
Bi-Log antenna	ETS Lindgren	3142E	144760	09/25/2015	
Double Ridged Horn	ETS Lindgren	3117	143095	08/29/2015	
Loop Antenna	COM-POWER	AL-130	121035	08/24/2015	
Standard Gain Antenna	ETS Lindgren	3160-09	00130132	PV	
Spectrum Analyzer	Hewlett Packard	Нр8593ЕМ	3639A00172	12/18/2015	
EMI Receiver RF Filter Section	Hewlett Packard	8546A 85460A	3549A00306 3330A00109	07/07/2015	
LNA	MITEQ	AMF-7D-01001800- 22-10P	1782797	PV	
Green Short Cable	Micro Coax UTIFLEX	UFB293C	303	PV	
Green Long Cable	Micro Coax UTIFLEX	UFB311A	SFC220863	PV	
Yellow short cable	IW microwave	N/A	389.11214.01.0 3.001	PV	
DC Power Supply	Insteck	PC-3030	PC3030RP1	NCR	
Turntable	ETS Lindgren	2187	NA	NCR	
Antenna Bore-sight Mast	ETS Lindgren	2071B	136243	NCR	
Multi Device Controller	ETS Lindgren	ETS 2090	148017	NCR	
3 Meter chamber	ETS Lindgren	FACT 3-2.0	N/A	08/14/2015	
Test SW	DVT Solutions Inc	REDvtAtlV3p29			

Note: The measurement uncertainty is less than +/- 4.25 dB which is evaluated as per the NAMAS NIS 81 and

CISPR 16-4-x

NCR: No Calibration required.

PV: Periodic Verification

The calibration interval for all test equipment used for compliance measurements is two years

Table 3.4B-Test Equipment used for Power line Conducted Emissions

Description	Manufacturer	Model Number	Ser Number	Next Cal
LISN	Com-Power	LI-215A	191933	08/22/2015
EMI Receiver RF Filter Section	Hewlett Packard	8546A 85460A	3549A00267 3448A00245	03/11/2015
Cable	Huber & Suhner	M17/60-RG142	NA	PV
Transient Limiter	Com-Power	LIT-930	531577	PV
Test SW	DVT Solutions Inc	CETestExecV3p21D4.exe		

Note: The measurement uncertainty is less than +/- 2.71 dB which is evaluated as per the NAMAS NIS 81 and

CISPR 16-4-x

NCR: No Calibration required.

Applied Test Lab Inc.

Page 18 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

PV: Periodic Verification

The calibration interval for all test equipment used for compliance measurements is two years

Table 3.4C-Test Equipments used for Transmitter Conducted Power, Spurious and Band Edges

Description	Manufacturer	Model Number	Ser Number	Next Cal
EXA Signal Analyzer	Agilent	N9010A-526 N9081A-2TP	MY51170076	Mar 17, 2016
P- Series Power Meter Wideband Power Sensor	Agilent	N1911A N1921A	MY53400015 SG50270012	Mar 17, 2016
Double shielded UMCC Plug to SMA Plug, 1.37mm OD, Type III	TE Connectivity	2032439-1	NA	PV
Test SW	DVT Solutions Inc		WirelessV1p0	

Note: The measurement uncertainty is less than +/- 2.71 which is evaluated as per the NAMAS NIS 81 and CISPR

16-4-x

NCR: No Calibration required.

PV: Periodic Verification

The calibration interval for all test equipment used for compliance measurements is two years

Page 19 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

4.0 Test Setup Description

4.1 **System Block Diagram**

Figure 4.1 - System Block Diagram and Support Equipment

4.2 **Support Equipment**

Table 4.1 - Support Equipment Description

Part#		

Applicable

Item#	Type Device	Manufacture	Model#	Part#

Figure 4.3A - Conducted Emissions Test Setup - Front View

Page 21 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

4.4 Test Setup-Radiated Emissions

Applicable

Figure 4.4A – Radiated Emissions 30M-1000M Test Setup - Front View

Figure 4.4B – Radiated Emissions 30M-1000M Test Setup - Side View

Page 22 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

Figure 4.4C – Radiated Emissions 1G -18G Test Setup - Front View

Figure 4.4D – Radiated Emissions 9K -30M Test Setup - Side View

0

4.5 Test Setup-Antenna Conducted

Applicable

Figure 4.5A – Antenna Conducted Test Setup - Front View

Figure 4.5B – Antenna Conducted Test Setup - Top View

Page 24 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: **Apr 16, 2015** FCC ID: **Z64-WL18SBMOD**

5.0 Test Methodology

5.1 Method of Measurement of Conducted Emission

Conducted emissions measurements were made over the frequency range of 150 kHz to 30MHz. The software is programmed to perform a peak sweep of the frequency band using the max hold function. This sweep is performed for every power conductor of the power line. During the sweep measurement the spectrum analyzer/Receiver's resolution bandwidth set to 9.0 kHz and the video bandwidth set to 30.0 kHz. Although not a fully maximized scan, this type of scan provides emission data with a good indication of pass or fail.

Quasi- Peak measurements are taken with the Spectrum Analyzer/Receiver's resolution bandwidth set to 9.0 kHz and Video Bandwidth set to 30 kHz. Average measurements are taken with the resolution bandwidth set to 9.0 kHz and the video bandwidth set to 1.0 Hz: The calculation for the radiated emissions field strength is as follows:

Corrected Reading = Analyzer/Receiver Reading + Correction Factor (dB)

Correction Factor (dB) = LISN Insertion Loss + Cable Insertion Loss + Transient Limiter Insertion Loss

Margin = Corrected Reading - Applicable Limit

5.2 Method of Measurement of Radiated Emission

Measurement below 1 (GHz)

Measurements shall be made with a quasi-peak measuring receiver in the frequency range 30 (MHz) to 1000 (MHz). To reduce the testing time, a peak measuring receiver may be used instead of a quasi-peak measuring receiver. In case of dispute, measurement with a quasi-peak measuring receiver will take precedence.

The quasi-peak measuring receiver shall be in accordance with Clause 4 of CISPR 16-1-1. Receivers with peak detectors shall be in accordance with Clause 5 of CISPR 16-1-1 and shall have a 6 (dB) bandwidth in accordance with Clause 4 of CISPR 16-1-1. The antenna shall be a balanced dipole. For frequencies of 80 (MHz) or above, the antenna shall be resonant in length, and for frequencies below 80 (MHz) it shall have a length equal to the 80 (MHz) resonant length. Further detailed information is given in Clause 4 of CISPR 16-1-4.

Of those disturbances above (L - 20 dB), where L is the limit level in logarithmic units, record at least the disturbance levels and the frequencies of the six highest disturbances. Record the antenna polarization for each reported disturbance.

The software is programmed to perform a peak sweep of the frequency band using the max hold function. This sweep is performed every 22.5 (deg) in both horizontal and vertical polarities and at antenna heights of 100, 200 300 and 400 (cm). Although not a fully maximized scan, this type of scan provides emission data with a good indication of pass or fail.

Measurement above 1 (GHz)

The measurement instrumentation shall be as specified in CISPR 16-1-1.

The measuring antennas shall be as specified in 4.6 of CISPR 16-1-4.

The measuring site shall be as specified in 8 of CISPR 16-1-4.

The measurement method shall be as specified in 7.3 of CISPR 16-2-3.

The peak detector limits shall not be applied to disturbances produced by arcs or sparks that are high voltage breakdown events. Such disturbances arise when ITE devices contain or control mechanical switches that control current in inductors, or when ITE devices contain or control subsystems that create static electricity (such as

Page 25 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

paper handling devices). The average limits apply to disturbances from arcs or sparks, and both peak and average limits will apply to other disturbances from such ITE devices.

Compliance Scans

Radiated emissions measurements were made over the frequency range of 30 (MHz) to 1000 (MHz). Quasi-peak measurements are taken with the Spectrum Analyzer/Receiver 's Resolution Bandwidth set to 120 (kHz) and Video Bandwidth set to 300 (kHz) for measurements below 1 (GHz). Average measurements are taken with the Resolution Bandwidth set to 120 (kHz) and the Video Bandwidth set to 120 (kHz) for measurements above 1000 (MHz). For unintentional radiators other than ITE, for each of the frequencies to which the device is tuned, the frequency and amplitude of the six highest radiated emissions relative to the limit and the operating frequency, or frequency to which the EUT is tuned (if appropriate), shall be reported unless such emissions are more than 20 (dB) below the limit. If less than the specified number (less than six) emissions are within 20 (dB) of the limit, the noise level of the measuring instrument at representative frequencies shall be reported.

The polarization of the measurement antenna (horizontal or vertical) shall be identified for each of the reported emissions. Radiated emissions measurements taken at alternative distances are to be converted to the limit distance using the inverse distance relationship, unless data can be presented to validate a different conversion. At a reported frequency, the polarization with the highest level shall be reported. The calculation for the radiated emissions field strength is as follows:

Corrected Reading (dB) = Analyzer/Receiver Reading + Correction Factor
Correction Factor (dB) = Cable Loss + Antenna Factor
Margin (dB) = Corrected Reading - Applicable Limit

5.3 Test Criteria

☐ Applicable

Table 5.1 - Class B Conducted Emissions Limits (FCC and ICES-003)

Emission Type	Frequency Range	FCC Part 15 and ICES 003 Class B Voltage Limits (dBuV)			
Emission Type	MHz	Quasi-Peak	Average		
	0.150 to 0.50	66.0 to 56.0	56.0 to 46.0		
Conducted Emission	0.50 to 5.0	56.0	46.0		
Littission	5.0 to 30.0	60.0	50.0		

Applicable

Table 5.2 - Class A Conducted Emissions Limits (FCC and ICES-003)

Emission Type	Frequency Range	FCC Part 15 and ICES 003 Class A Voltage Limits (dBuV)			
Emission Type	MHz	Quasi-Peak	Average		
	0.150 to 0.50	79	66		
Conducted Emission	0.50 to 5.0	79	66		
	5.0 to 30.0	73	60		

Page 26 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

 \boxtimes Applicable

Table 5.3 – Radiated Emissions Limits of Licence Exempt Transmitters (FCC and Industry Canada)

Emission Type	Frequency	FCC 15 Subpart C and Industry Canada RSS-Gen 8.9 E-Field Limits				
Limission Type	Range MHz	Quasi-Peak (uV/m)	Peak (uV/m)			
	0.009-0.090		2400/F(kHz), 300m			
	0.090-0.11	2400/F(kHz), 300m				
	0.11-0.49		2400/F(kHz), 300m			
D - 4:-(- 4	0.490-1.705	24000/F(kHz), 30m				
Radiated Emission	1.705-30.0	30, 30m				
21111001011	30.0 to 88.0	100, 3m				
	88.0 to 216.0	150, 3m				
	216.0 to 960.0	200, 3m				
	960.0 and	500, 3m				

Note:

- 1. Limits below 30 MHz are specified at a test distance of 30 meters, whilst below 0.49 MHz they are specified at a test distance of 300 meters. However, as specified by RSS-Gen Section 7.2.7 or FCC 15.31, 15.33, 15.35 (b) measurements may be performed at a closer distance and compliance limits corrected to the specified measurement distance by using the square of an inverse linear distance extrapolation factor (40dB/decade).
- 2. Limits below 30 MHz are specified at a test distance of 30 meters, whilst below 0.49 MHz they are specified at a test distance of 300 meters. However, as specified by FCC Section 15.31 (f)(2), measurements may be performed at a closer distance and the compliance limits level corrected to the specified measurement distance by using the square of an inverse linear distance extrapolation factor (40dB/decade).
- 3. Final measurement values include corrections for antenna factor and cable losses.
- 4. The emission shown at approximately 125 kHz is the fundamental.
- 5. All other emissions were found to be >20 dB below the applicable limit or below the measurement system noise floor.
- 6. The EUT was rotated around the X, Y and Z axis to maximize the emission. The measurement antenna was at a fixed distance of 3 m, fixed height of 80 cm and was positioned at 0 degrees, 45 degrees and 90 degrees to the EUT to maximize the emission.

Radiated emissions from an ITE shall be measured from the lowest frequency generated, or used, in the device or 30 (MHz), whichever is higher, up to the frequency determined in accordance with Table 5.5

Table 5.4 - Frequency Range of Measurement

1 7	
Highest Frequency Generated or Used in Device	Upper Frequency of Radiated Measurement
Below 1.705 MHz	No radiated testing required
1.705 MHz - 108 MHz	1 (GHz)
108 MHz - 500 MHz	2 (GHz)
500 MHz - 1 GHz	5 (GHz)
Above 1 GHz	5th harmonic of the highest frequency or 40 (GHz), whichever is lower.

Applied Test Lab Inc.

Page 27 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

Class A: An ITE meeting the conditions for Class A operation defined in Section 1.3 shall comply with the Class A radiated limits set out in Table 5.5 determined at a distance of 3 (m).

Applicable

Applicable

Table 5.5 - Class A Radiated Emissions Limits (FCC and ICES-003)

Emission Type	Frequency	FCC @ 3 m (dBuV/m)		ICES-003 @ 3m (dBuV/m)		
	Range (MHz)	Quasi-peak	Average	Quasi-peak	Lin Ave	Peak
	30 - 88	49.5		49.5		
	88 - 216	54.0		54.0		
Radiated Emissions	216 - 960	56.9		56.9		
	960 -1000		60.0	60.0		
	> 1000		60.0		60.0	80.0

Class B: An ITE meeting the conditions for Class B operation defined in Section 1.3 shall comply with the Class B radiated limits set out in Table 5.6 determined at a distance of 3 (m).

Table 5.6 - Class B Radiated Emissions (FCC and ICES-003)

Table 510 Class & Radiated Emissions (Fee and Fees 500)						
Emission Type	Frequency	FCC @ 3m (dBuV/m)		ICES-003 @ 3m (dBuV/m)		
	Range (MHz)	Quasi-peak	Average	Quasi-peak	Lin Ave	Peak
	30 - 88	40.0		40.0		-
D 11 (1	88 - 216	43.5		43.5		-
Radiated Emissions	216 - 960	46.0		46.0		-
	960 -1000		54.0	54.0		-
	>1000		54.0		54.0	74.0

5.4 EUT Operation during Emission Testing

EUT was tested while running software to exercise applications of the device. Custom verification software version 2, provide by client.

5.5 Test Justification

No test justification required.

6.0 Test Results

Page 28 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

-
FCC ID: Z64-WL18SBMOD

6.1 AC Conducted Emissions Test Data

Tested By:	Test Date	Applicable
------------	-----------	------------

Table 6.1 - Conducted Emissions information (CISPR 22, FCC and ICES-003)

Ambient Temperature	
Relative Humidity	
Test Standard/Reference	☐ FCC Part 15 ☐ ICES-003 ☐ CISPR 22
Frequency Range	150kHz – 30.0 MHz
Input Voltage	□110 V AC □230 V AC
Line Frequency	☐ 60 Hz ☐ 50 Hz
Test Result	N/A
Limits	
Changes/Modifications	There were no modifications made to the EUT for this test case
Notes/Remarks	Not Applicable

Table 6.1A - Conducted Emissions Line 1

Freq (MHz)	Level (dBuV)	Correction Factor (dB)	QP Limit (dBuV)	Avg Limit (dBuV)	QP Margin (dB)	Avg Margin (dB)

Table 6.1B - Conducted Emissions Line 2

Frequency (MHz)	Level (dBuV)	Correction Factor (dB)	QP Limit (dBuV)	Avg Limit (dBuV)	QP Margin (dB)	Avg Margin (dB)

Applied Test Lab Inc.

Page 29 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

Figure 6.1A – Conducted Emissions Scan Line 1 (Line L)

Page 30 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: **Apr 16, 2015** FCC ID: **Z64-WL18SBMOD**

6.2 Radiated Spurious Emissions

Ambient Temperature	21° C
Relative Humidity	23%
Test Standard/Reference	FCC Part 15 ICES-003 CISPR 22
Frequency Range	9kHz – 24800 MHz (10 th Harmonic)
Input Voltage	110 V AC
Line Frequency	60 Hz (NA)
Measurement Parameters	 Test Distance: 3m The EUT was placed on the turn table per EUT installation procedures The turn table shall rotate 0 -360 degrees and the receiving antenna is varied from 1m to 4m to find out the highest emission at a given frequency. Maximization procedure was performed on the six highest emissions to ensure EUT compliance Each emission was to be maximized by changing the polarization of receiving antenna to both horizontal and vertical Repeat the above procedure until all frequency measurements are completed Radiated emission measurements in the frequency range from 30 MHz – 1000 MHz were made with an instrument using Peak and QP detector mode. RBW: 100kHz, VBW: 100kHz for Peak, RBW: 120kHz, VBW: 300kHz for QP Radiated emission measurements in the frequency range above 1000 MHz were made with an instrument using Peak and Average detector mode. RBW: 1 MHz, VBW: 1MHz for Peak, RBW: 1 MHz, VBW: 10Hz for Average
Test Result Limits	Highest Fundamental: 2480 MHz, 89.41 dBuV/m Low Channel 2402 MHz, 80.96 dBuV/m Mid Channel 2440 MHz, 87.35 dBuV/m High Channel 2480 MHz, 89.41 dBuV/m Highest Spurious: 7440 MHz, -14.87dB Low Channel 12010 MHz, -16.51dB Mid Channel 7320 MHz, -22.04 dB High Channel 7440 MHz, -14.87dB FCC 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated
	emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)
Changes/Modifications	There were no modifications made to the EUT for this test case
Notes/Remarks	There were no spurious emissions detected from 9 kHz to 1000 MHz

Page 31 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

Tested By: Jaeheon Yun

Test Date: Feb 17- Feb 24, 2015

Applicable

Table 6.2A-BT 4.0-LE-Low Channel @ 2402 MHz Fundamental Signal Field Strength (PEAK)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
2402	97.91	133	100	-22.61	75.30	NA	NA	V
2402	103.57	38.6	100	-22.61	80.96	NA	NA	Н

Table 6.2B-BT 4.0-LE-Low Channel @ 2402 MHz Fundamental Signal Field Strength (Average)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
2402	93.96	133	100	-22.61	71.35	NA	NA	V
2402	99.42	38.6	100	-22.61	76.81	NA	NA	Н

Table 6.2C -BT 4.0-LE-Low Channel @ 2402 MHz Spurious Field Strength (PEAK)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
4804	57.02	0	100	-19.19	37.83	60.96	-23.13	V
4804	59.83	130.5	126	-19.19	40.64	60.96	-20.32	Н
7206	56.08	0	100	-15.61	40.47	60.96	-20.49	V
7206	55.81	0	100	-15.61	40.20	60.96	-20.76	Н
9608	55.87	0	100	-14.50	41.37	60.96	-19.59	V
9608	56.36	0	100	-14.50	41.86	60.96	-19.10	Н
12010	54.07	0	100	-9.62	44.45	60.96	-16.51	V
12010	53.59	0	100	-9.62	43.97	60.96	-16.99	Н

Table 6.2D-BT 4.0-LE-Low Channel @ 2402 MHz Spurious Field Strength (Average)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
4804	45.33	0	100	-19.19	26.14	60.96	-34.82	V
4804	51.31	130.5	126	-19.19	32.12	60.96	-28.84	Н
7206	44.59	0	100	-15.61	28.98	60.96	-31.98	V
7206	44.56	0	100	-15.61	28.95	60.96	-32.01	Н
9608	44.79	0	100	-14.50	30.29	60.96	-30.67	V
9608	44.75	0	100	-14.50	30.25	60.96	-30.71	Н
12010	41.51	0	100	-9.62	31.89	60.96	-29.07	V
12010	41.38	0	100	-9.62	31.76	60.96	-29.20	Н

Page 32 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

Table 6.2E –BT 4.0-LE-Mid Channel @ 2440 MHz Fundamental Signal Field Strength (PEAK)

							1011	/
Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
2440	102.72	152.5	151.6	-22.63	80.09	NA	NA	V
2440	109.98	100.2	107.2	-22.63	87.35	NA	NA	Н

 Table 6.2F–BT 4.0-LE-Mid Channel @ 2440 MHz Fundamental Signal Field Strength (Average)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
2440	98.7	152.5	151.6	-22.63	76.07	NA	NA	V
2440	103.66	100.2	107.2	-22.63	81.03	NA	NA	Н

Table 6.2G -BT 4.0-LE-Mid Channel @ 2440 MHz Spurious Field Strength (PEAK)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
1700	55.94	360	100	-25.64	30.30	67.35	-37.05	V
1700	66.40	119.7	100	-25.64	40.76	67.35	-26.59	Н
4880	60.28	160.8	144.6	-18.67	41.61	67.35	-25.74	V
4880	62.05	120.1	163.9	-18.67	43.38	67.35	-23.97	Н
7320	56.47	0	100	-15.43	41.04	67.35	-26.31	V
7320	60.74	119.7	165	-15.43	45.31	67.35	<mark>-22.04</mark>	Н
9760	56.6	0	100	-14.05	42.55	67.35	-24.80	V
9760	56.44	0	100	-14.05	42.39	67.35	-24.96	Н
12200	54.18	0	100	-9.67	44.51	67.35	-22.84	V
12200	53.71	0	100	-9.67	44.04	67.35	-23.31	Н

Page 33 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

 Table 6.2H–BT 4.0-LE-Mid Channel @ 2440 MHz Spurious Field Strength (Average)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
1700	45.49	360	100	-25.64	19.85	67.35	-47.50	V
1700	59.42	119.7	100	-25.64	33.78	67.35	-33.57	Н
4880	49.33	160.8	144.6	-18.67	30.66	67.35	-36.69	V
4880	53.25	120.1	163.9	-18.67	34.58	67.35	-32.77	Н
7320	43.74	0	100	-15.43	28.31	67.35	-39.04	V
7320	50.94	119.7	165	-15.43	35.51	67.35	-31.84	Н
9760	44.92	0	100	-14.05	30.87	67.35	-36.48	V
9760	44.83	0	100	-14.05	30.78	67.35	-36.57	Н
12200	41.75	0	100	-9.67	32.08	67.35	-35.27	V
12200	41.46	0	100	-9.67	31.79	67.35	-35.56	Н

Table 6.2I –BT 4.0-LE-High Channel @ 2480 MHz Fundamental Signal Field Strength (PEAK)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
2480	103.7	34.1	168.3	-22.65	81.06	NA	NA	V
2480	112.05	104.2	100	-22.65	89.41	NA	NA	Н

Table 6.2J-BT 4.0-LE-High Channel @ 2480 MHz Fundamental Signal Field Strength (Average)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
2480	99.74	34.1	168.3	-22.65	77.10	NA	NA	V
2480	107.72	104.2	100	-22.65	85.08	NA	NA	Н

Applied Test Lab Inc.

Page 34 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

Table 6.2K – BT 4.0-LE-High Channel @ 2480 MHz Spurious Field Strength (PEAK)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)	Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
1759.2	61.08	34.9	167.3	-25.59	35.49	69.41	-33.92	V
1759.2	77.09	103.5	100	-25.59	51.50	69.41	-17.91	Н
4960	60.10	130.5	100	-18.04	42.06	69.41	-27.35	V
4960	68.32	103.6	130.3	-18.04	50.28	69.41	-19.13	Н
7440	56.59	0	100	-15.27	41.32	69.41	-28.09	V
7440	69.81	104.5	100	-15.27	54.54	69.41	-14.87	Н
9920	56.59	0	100	-13.47	43.12	69.41	-26.29	V
9920	56.29	0	100	-13.47	42.82	69.41	-26.59	Н
12400	53.47	0	100	-9.92	43.55	69.41	-25.86	V
12400	53.65	0	100	-9.92	43.73	69.41	-25.68	Н

Table 6.2L-BT 4.0-LE-High Channel @ 2480 MHz Spurious Field Strength (Average)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)		Corrected Reading (dBuV/m)	15.209/ 15.247 Limit (dBuV/m)	Margin (dB)	Polarization
1759.2	51.12	34.9	167.3	-25.59	25.53	69.41	-43.88	V
1759.2	72.57	103.5	100	-25.59	46.98	69.41	-22.43	Н
4960	47.41	130.5	100	-18.04	29.37	69.41	-40.04	V
4960	61.89	103.6	130.3	-18.04	43.85	69.41	-25.56	Н
7440	44.15	0	100	-15.27	28.88	69.41	-40.53	V
7440	63.43	104.5	100	-15.27	48.16	69.41	-21.25	Н
9920	44.55	0	100	-13.47	31.08	69.41	-38.33	V
9920	44.42	0	100	-13.47	30.95	69.41	-38.46	Н
12400	41.87	0	100	-9.92	31.95	69.41	-37.46	V
12400	41.71	0	100	-9.92	31.79	69.41	-37.62	Н

Page 35 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: **Apr 16, 2015** FCC ID: **Z64-WL18SBMOD**

6.3 Conducted Spurious Emissions-Band Edges

Ambient Temperature	20° C
Relative Humidity	21%
Test Standard/Reference	
Frequency Range	2390.0 MHz – 2483.5 MHz
Input Voltage	110 V AC
Line Frequency	60 Hz(NA)
Measurement Parameters	 Place the EUT on the Table and set it in Transmitting Mode Remove the Antenna from the EUT and connect a low loss RF cable from the antenna port to spectrum analyzer or (RBW: 100kHz, VBW: 100kHz, Span 25MHz, Sweep = Auto) Mark Peak, 2.390 GHz, 2.4835 GHz and record the max level Repeat the above procedure for all frequencies.
Test Result	Restricted Band edge (2390 MHz) Level: -67.474 dBc Restricted Band edge (2483.5 MHz) Level: -59.416 dBc Normal Power Restricted Band edge (2390 MHz) Level: -68.172 dBc Restricted Band edge (2483.5 MHz) Level: -58.860 dBc
Limits	FCC 15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.
Changes/Modifications	There were no modifications made to the EUT for this test case
Notes/Remarks	Not Applicable

Applied Test Lab Inc.

Page 36 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

Tested By: Hua Yan Test Date: Apr 07, 2015 Applicable

Table 6.3A-Band Edge Conducted Measurements (PEAK)-BT 4.0-LE-Full Power

Frequency (MHz)	Measured Reading (dBm)	Correction Factor (dB)	Corrected Reading (dBm)	Delta to Fundamental (dBc)	15.209/ 15.247 Limit
2402	8.826	0.2	9.026		30dBm
2390	58.648	0.2	-58.448	-67.474	-20dBc
2389.2106	-43.379	0.2	-43.179	-52.205	-20dBc
2480	8.324	0.2	8.524		15dBm
2483.5	-51.092	0.2	-50.892	-59.416	-20dBc
2482.960	-49.313	0.2	-49.113	-57.637	-20dBc

Table 6.3B-Band Edge Conducted Measurements (PEAK) -BT 4.0-LE-Normal Power

Frequency (MHz)	Measured Reading (dBm)	Correction Factor (dB)	Corrected Reading (dBm)	Delta to Fundamental (dBc)	15.209/ 15.247 Limit
2402.0000	-7.668	0.2	-7.448		30.0dBm
2397.1717	-65.961	0.2	-65.761	-58.313	-20dBc
2390.0000	-75.820	0.2	-75.620	-68.172	-20dBc
2480.0000	-7.773	0.2	-7.573		30.0dBm
2482.9962	-63.672	0.2	-63.472	<u>-55.899</u>	-20dBc
2483.5000	-66.433	0.2	-66.233	-58.860	-20dBc

Date of Issue: Apr 16, 2015

Figure 6.3A – Full Power Mode-Conducted Spurious Emissions –Band Edges-Low Channel

Figure 6.3B – Full Power Mode-Conducted Spurious Emissions –Band Edges-High Channel

Figure 6.3C – Normal Power Mode-Conducted Spurious Emissions –Band Edges-Low Channel

Figure 6.3D – Normal Power Mode-Conducted Spurious Emissions –Band Edges-High Channel

Page 39 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: **Apr 16, 2015** FCC ID: **Z64-WL18SBMOD**

6.4 Radiated Spurious Emissions-Band Edges

Ambient Temperature	22º C				
Relative Humidity	25%				
Test Standard/Reference					
Frequency Range	2390 MHz – 2483.5 MHz				
Input Voltage	110 V AC				
Line Frequency	60 Hz(NA)				
Measurement Parameters	 Test distance is 3m Test Distance: 3m The EUT was placed on the turn table per EUT installation procedures The turn table shall rotate 0 -360 degrees and the receiving antenna is varied from 1m to 4m to find out the highest emission at a given frequency. Maximization procedure was performed on the six highest emissions to ensure EUT compliance Each emission was to be maximized by changing the polarization of receiving antenna to both horizontal and vertical Repeat the above procedure until all frequency measurements are completed Radiated emission measurements in the frequency range from 30 MHz – 1000 MHz were made with an instrument using Peak and QP detector mode. RBW: 100kHz, VBW: 100kHz for Peak, RBW: 120kHz, VBW: 300kHz for QP Radiated Band edge emission measurements in the frequency range above 1000 MHz were made with an instrument using Peak detector mode RBW: 100kHz, VBW: 100kHz 				
Test Result	Normal Power Restricted Band edge (2390 MHz) Level: -37.72 dBc Restricted Band edge (2483.5 MHz) Level: -48.41 dBc				
Limits	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.				
Changes/Modifications	There were no modifications made to the EUT for this test case				
Notes/Remarks	Not Applicable				

Applied Test Lab Inc.

Page 40 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

Tested By: Jaeheon Yun **Test Date:** Mar 24, 2015

Applicable

Table 6.4A – BT 4.0-LE-Normal Power Low Channel @ 2402 MHz Band Edge Signal Field Strength (PEAK)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)		Delta to Fundamental (dBc)	15.209/ 15.247	Polarization
2402	97.81	136	100	-22.613	75.197			V
2390	60.09	136	100	-22.613	37.477	-37.72	-20dBc	V
2402	104.38	39.4	128.6	-22.613	81.767			Н
2390	60.99	39.4	128.6	-22.613	38.377	-43.39	-20dBc	Н

Table 6.4B- BT 4.0-LE-Normal Power High Channel @ 2480 MHz Band Edge Signal Field Strength (PEAK)

Frequency (MHz)	Measured Reading (dBuV)	Azimuth Angle (deg)	Antenna Height (cm)	Correction Factor (dB)		Delta to Fundamental (dBc)	15.209/ 15.247	Polarization
2480	105.62	47.2	120.3	-22.643	82.977			V
2483.5	59.75	47.2	120.3	-22.643	39.107	-50.87	-20dBc	V
2480	112.19	105.6	100	-22.643	89.547			Н
2483.5	63.78	105.6	100	-22.643	41.137	-48.41	-20dBc	Н

Page 41 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: **Apr 16, 2015** FCC ID: **Z64-WL18SBMOD**

6.5 Antenna Conducted Output Power

Ambient Temperature	20° C
Relative Humidity	19%
Test Standard/Reference	
Frequency Range	150kHz – 30.0 MHz
Input Voltage	110 V AC
Line Frequency	60 Hz(NA)
Measurement Parameters	 Place the EUT on the Table and set it in Transmitting Mode Remove the Antenna from the EUT and connect a low loss RF cable from the antenna port to spectrum analyzer or power meter (RBW: 1 MHz, VBW: 1MHz) Record Max Reading Repeat the above procedure for all frequencies.
Test Result	Peak Output Power:8.987 dBm (12.21mW)
Limit	FCC Part 15.247 b (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. Antenna Gain <= 6 dBi no corresponding reduction in output power limit Antenna Gain > 6 dBi Non Fixed, point to point operations The conducted output power the conducted output power from the intentional radiator shall be reduced below by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Fixed, point to point operations Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations, the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi Systems operating in the 5725–5850 MHz band that are used exclusively, no corresponding reduction in transmitter peak output power is allowed.
Changes/Modifications	There were no modifications made to the EUT for this test case
Notes/Remarks	Not Applicable

Applied Test Lab Inc.

Page 42 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

Tested By: Hua Yan

Test Date: Apr 07, 2015

Applicable

Table 6.5A – Antenna Conducted Output Power-BT 4.0-LE -Max Power

Frequency (MHz)	Measured Reading (dBm)	Cable Loss (dB)	Corrected Reading (dBm)	Corrected Reading (mW)	15.247 Limit (mW)
2402	8.787	0.2	8.987	12.210	1000
2441	8.671	0.2	8.871	11.888	1000
2480	8.383	0.2	8.583	11.125	1000

Table 6.5B- Antenna Conducted Output Power-BT 4.0-LE-Normal Operation

Frequency (MHz)	Measured Reading (dBm)	Cable Loss (dB)	Corrected Reading (dBm)	Corrected Reading (mW)	15.247 Limit (mW)
2402	-7.720	0.2	-7.520	0.273	1000
2441	-7.517	0.2	-7.317	0.286	1000
2480	-7.840	0.2	-7.640	0.265	1000

Page 43 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

Figure 6.5A - High Power Mode-Conducted Output Power -Low Channel

Figure 6.5B – High Power Mode-Conducted Output Power -Mid Channel

Date of Issue: Apr 16, 2015

Figure 6.5C – High Power Mode-Conducted Output Power -High Channel

Figure 6.5D – Normal Power Mode-Conducted Output Power -Low Channel

Date of Issue: Apr 16, 2015

Figure 6.5E - Normal Power Mode-Conducted Output Power - Mid Channel

Figure 6.5F – Normal Power Mode-Conducted Output Power -High Channel

Date of Issue: Apr 16, 2015 FCC ID: Z64-WL18SBMOD

7.0 Appendix A – Test Sample Description

System Block Diagram

Support Equipment:

- Laptop was used communicating to EUT to change RF channels, modulations and power levels to place the device in specific test modes using proprietary test software
- Adapter used for communicating to EUT to change RF channels and modulations: USB to RS-232 DB9 serial Adapter (Prolific PL2303 chipset) with 12" cable. Similar to StarTech ICUSB232V2.
- 6ft USB A-A cable: StarTech USBFAA_6

Page 47 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: **Apr 16, 2015** FCC ID: **Z64-WL18SBMOD**

8.0 Appendix B – List of Abbreviations and Acronyms

A/m	Amperes per meter	kPa	kilopascal
AC	Alternating Current	kV	kilovolt
ACF	Antenna Correction Factor	LISN	Line Impedance Stabilization Network
ANSI	American National Standards Institute	LNA	Low Noise Amplifier
CISPR	Comité International Spécial des Perturbations Radioélectriques	MHz	Megahertz
d	Measurement Distance in meters	uН	microhenry
dB	Decibels	uF	microfarad
dBuA	Decibels above one microamp	uS	microsecond
dBuV	Decibels above one microvolt	PRF	Pulse Repetition Frequency
dBuA/m	Decibels above one microamp per meter	RF	Radio Frequency
dBuV/m	Decibels above one microvolt per meter	RMS	Root Mean Square
DC	Direct Current	TWT	Travelling wave Tube
DUT	Device Under Test	V/m	Volts per meter
DSL	Digital Subscriber Line	VCP	Vertical Coupling Plane
Е	Electric Field Intensity		
EN	European Standards (Norm)		
ESD	Electrostatic Discharge		
EUT	Equipment Under Test		
f	Frequency		
FCC	Federal Communication Commission		
GRP	Ground Reference Plane		
Н	Magnetic Field Intensity		
HCP	Horizontal Coupling Plane		
Hz	Hertz		
IC	Industry Canada		
IEC	International Electrotechnical Commission		
kHz	Kilohertz		

Applied Test Lab Inc.Page 48 of 48 Report #: S002E010-FCC Part 15 Subpart C-DTS

Date of Issue: Apr 16, 2015

FCC ID: Z64-WL18SBMOD

End of Document