STA 426: Diffusion maps for high-dimensional single-cell analysis of differentiation data

Giuachin Kreiliger, Samuel Pawel 19.11.2018

Introduction

Technical Details

Comparison with Other Methods

Dimension Reduction Methods for Single-Cell Omics Data

Principal Component Analysis (PCA)

- Orthogonal transformation of the data
- Works best for linear data subspace
- Non-linear extensions (Kernel-PCA)

Dimension Reduction Methods for Single-Cell Omics Data

Principal Component Analysis (PCA)

- Orthogonal transformation of the data
- Works best for linear data subspace
- Non-linear extensions (Kernel-PCA)

t-Distributed Stochastic Neighbor Embedding (t-SNE)

- Probabilistic, non-linear method
- Very robust to noise / density heterogenities
- Tuning parameter perplexity

Many more methods exist!

Simulated Data - Balanced

Simulated Data - Imbalanced

qPCR Data - Haematopoietic Stem Cells

qPCR Data – Mouse Embryonic Stem Cells

Results

- + Diffusion maps outperform other methods in finding cell differentiation trajectories
- + Diffusion maps are robust to sampling density heterogenities and noise

Results

- + Diffusion maps outperform other methods in finding cell differentiation trajectories
- + Diffusion maps are robust to sampling density heterogenities and noise
 - In all examples σ^2 was finetuned
 - Unclear if finetuning perplexity paramter in t-SNE method leads to similar results
 - Number of diffusion components needed for visualization not known in advance

R Demonstration

destiny Package

```
set.seed(12)
library(destiny)
data(guo)
dm_guo <- DiffusionMap(guo)
plot(dm_guo, pch = 20, col_by = "num_cells", legend_main = "Cell Stage")</pre>
```


Eigenvalues of Diffusion Components

Plotting Several Diffusion Components

Choice of σ^2

```
sigmas <- find_sigmas(guo, verbose = FALSE)
optimal_sigma(sigmas)
## [1] 7.663719</pre>
```


Censored/Missing Values

Discussion

- + Handle high noise levels, missing data, sampling heterogenitites
- + Diffusion distance is a biologically relevant distance metric
- + Capture nonlinear/complex differentiation dynamics

Discussion

- + Handle high noise levels, missing data, sampling heterogenitites
- + Diffusion distance is a biologically relevant distance metric
- + Capture nonlinear/complex differentiation dynamics
 - Number of significant dimension not determinable in advance
 - Finetuning of σ^2 required (but there is a proposed criterion)
 - $n^2 imes G$ computation time (but there are approximate versions)

Discussion

- + Handle high noise levels, missing data, sampling heterogenitites
- + Diffusion distance is a biologically relevant distance metric
- + Capture nonlinear/complex differentiation dynamics
 - Number of significant dimension not determinable in advance
 - Finetuning of σ^2 required (but there is a proposed criterion)
 - $n^2 \times G$ computation time (but there are approximate versions)
- ightarrow Powerful dimension reduction tool for single cell differentiation data

References

- Angerer, P., Haghverdi, L., Büttner, M., Theis, F., Marr, C., and Büttner, F. (2015). destiny: diffusion maps for large-scale single-cell data in R. *Bioinformatics*, 32(8):1241–1243.
- Coifman, R. R. and Lafon, S. (2006). Diffusion maps. *Applied and Computational Harmonic Analysis*, 21:5–30.
- Haghverdi, L., Buettner, F., and Theis, F. J. (2015). Diffusion maps for high-dimensional single-cell analysis of differentiation data. *Bioinformatics*, 31(18):2989–2998.