

Project Proposal Parking Lot Vehicle Classification

Team Members: Aniruddha Srinivasan, Coleman Todd, Fabianna Barbarino, Jacqueline Mioduski, Spencer Cho, Tyler Roosth

Presentation Contents

- 1 Problem Background
- 2 Needs Statement
- Goals & Objectives
- 4 Literature Review
- Design Constraints & Feasibility
- Evaluation of Alternate Solutions

- 7 Proposed Design
- Approach for Design Validation
- Economic Analysis & Budget
- Schedule of Tasks
- Project Management & Teamwork
- Societal, Safety, & Environmental Analysis

Problem Background

- ☐ Increased vehicle traffic as business growth occurs
- ☐ Security personnel need to identify a large number of cars simultaneously
- ■Analysts need to track heavier traffic flow

Needs Statement

Parking lots are frustrating!

- According to the National Safety Council (NSC), "tens of thousands of crashes occur in parking lots and garage structures annually, resulting in hundreds of deaths and thousands of injuries" [1].
- Allows for quicker response time from security personnel
- Monitor the parking lots in order to recognize traffic patterns
- Improve the overall flow of traffic and customer satisfaction

Goals & Objectives

Our main goal to build a containerized app that detects and tracks vehicles across a parking lot and continually logs the driving patterns.

- > Parked, illegally parked, stopped driving, speeding, etc.
- Monitored through the user interface by <u>security personnel</u> or <u>data scientist</u>.

Vehicle detector should track at least 5 cars

Cameras will be 12 feet off the ground looking out

Bounding Boxes around the cars

The coordinates will be sent to our database

Tie the back-end with the front-end successfully

GUI should work in real time

Implementation works as a desktop app on a GPU workstation/laptop

Literature Review

Research Projects

ArcVision

Hackathon Project using OpenCV & YOLO

GUI includes video feed, parking map view, analytics, & license plates

Ultrasonic sensor system

Use sound to detect speed and type of vehicle, as well as count of vehicles

Commercial Products

Smartpark System

Capable of supporting thousands of parking spaces

SmartCloud for data processing/ analytics

ParkSol

For mid-size and small businesses

On-premises solution

M-Gage Node Pucks

Magnetic field detectors

Placed underground (at each parking space)

Design Constraints and Feasibility

Our <u>Design Constraints</u> are:

- > USB Camera
- Experience in ML
- > Due Date

One issue is the fact that we will need to have the camera be around <u>12 feet high</u>, looking out, preferably at some sort of parking lot.

Evaluation of Alternative Solutions

Proposed Design

Approach for Design Validation

- ➤ MVP Requirements
- > 1USB Camera should be able to send a live feed to our application (up to 5 cars in frame)
- Web/Desktop Application should be able to view this feed, view details of parked, illegally parked, speeding, stopped vehicles
- > Business analyst view should update with data from database
- > Application should run in a container smoothly with reasonable usage of resources

ML Detection	Backend	GUI	Infrastructure
5 cars 10 FPS >85% accuracy Vehicle status	SQL Database Record position, time, status	2 separate views Filter by status Trending charts	Runs in Docker container Reasonable resource usage

We found that, if this project were to go commercial, we would need a <u>few things</u> to ensure everything goes smoothly.

- Manufacturing for USB Cameras
- Database on a Cloud to store data
- IT Team to handle software support
- Compliance with regulations
- ➤ A system to let customers report the USB Cameras for being broken

Regulations

Regulations we have to be followed, specifics can change from <u>state to state</u>, as well as following <u>FCC quidelines</u>.

Database

The Database can be hosted on a cloud which can be found from numerous vendors, Amazon, Google, Azure, etc...

USB Cameras

The USB Cameras used are generic and therefore are easy to find and produce.

Schedule of Tasks

Project Management and Teamwork

- Members divide into 3 pairs
- Tasked with module connections
- Assignments are flexible
- 2 in-person meetings weekly

ML Recognition

Spencer Cho & Tyler Roosth

Database Server Management

Aniruddha Srinivasan & Coleman Todd

User Interface

Fabianna Barbarino & Jacqueline Mioduski

Docker & Documentation

All Member & Rotating

Societal, Safety, and Environmental Analysis

Beneficial Impact

- ★ Increase in parking lot safety
- ★ More efficient and satisfying shopping experience

Safety Precautions we must take

- ★ Conducting tests with camera 12 feet high (ladder safety)
- ★ Inclement weather may damage camera

Detrimental Impact

★ Potential loss of privacy due to information being stored and cameras recording

Environmental Impact

- ★ Carbon emissions from streaming video footage
- ★ Only keep cameras on during business hours

RESOURCES

- [1] "Parking lots & distracted driving," *National Safety Council*. [Online]. Available: https://www.nsc.org/road/safety-topics/distracted-driving/parking-lot-safety. [Accessed: 02-Feb-2023].
- "Wireless M-Gage Node," *Banner Engineering*. [Online]. Available: https://www.bannerengineering.com/us/en/products/wireless-sensor-networks/wireless-sensors/wireless-m-gage-node.html?s ort=1#all. [Accessed: 12-Feb-2023].
- [3] "Monitoring software," *Parksol*, 26-Aug-2022. [Online]. Available: https://parksol.lt/solutions/monitoring-software//. [Accessed: 12-Feb-2023].
- [4] Z. Yin, H. Xiong, X. Zhou, D. W. Goldberg, D. Bennett, and C. Zhang, "A deep learning based illegal parking detection platform," *Proceedings of the 3rd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery*, 2019.
- [5] A Deep Learning Based Illegal Parking Detection Platform. YouTube, 2019.
- [6] S. parking, "Smartpark system," *Smart parking*, 07-Apr-2022. [Online]. Available: https://www.smartparking.com/smartpark-system. [Accessed: 12-Feb-2023].

RESOURCES cont.

- [7] R. Stiawan, A. Kusumadjati, N. S. Aminah, M. Djamal, and S. Viridi, "An ultrasonic sensor system for vehicle detection application," *Journal of Physics: Conference Series*, vol. 1204, p. 012017, 2019.
- [8] "Papers with code mot17 benchmark (multi-object tracking)," *The latest in Machine Learning*. [Online]. Available: https://paperswithcode.com/sota/multi-object-tracking-on-mot17. [Accessed: 13-Feb-2023].
- [9] Emergen Research, "Security cameras market size, share: Industry forecast by 2030," *Security Cameras Market Size, Share* | *Industry Forecast by 2030*. [Online]. Available: https://www.emergenresearch.com/industry-report/security-cameras-market#:~:text=Market%20Synopsis,18.7%25%20durin g%20the%20forecast%20period. [Accessed: 11-Feb-2023].
- [10] D. Hardawar, "FCC Bans Telecom and video surveillance gear from Huawei, ZTE and other Chinese companies," *Engadget*, 25-Nov-2022. [Online]. Available: https://www.engadget.com/fcc-officially-bans-telecom-and-video-surveillance-gear-from-several-chinese-companies-003040 729.html. [Accessed: 11-Feb-2023].
- [11] P. N. Service, "Turn off that camera during virtual meetings, environmental study says," *Purdue University News*. [Online]. Available: https://www.purdue.edu/newsroom/releases/2021/Q1/turn-off-that-camera-during-virtual-meetings,-environmental-study-say

THANK YOU!

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**