微积分 第一次辅学

一、数列极限和函数极限

数列极限的定义

给定一个数列 $\{a_n\}$,如果存在实数 L ,对于 $\forall \varepsilon>0$,都 $\exists N$,使得当 n>N 时, $|a_n-L|<\varepsilon$ 成立,那 么我们说数列 $\{a_n\}$ 的极限是 L ,并写作:

$$\lim_{n o\infty}a_n=L$$

(例题) 证明
$$\lim_{n o\infty}rac{2n^2-n+1}{n^2+2}=2$$
 。

解析:

(例题) 证明
$$\lim_{x o rac{\pi}{2}}\sin x=1$$
 。

解析:

数列极限的四则运算

假设 $\lim_{n o \infty} a_n = A$ 且 $\lim_{n o \infty} b_n = B$,则以下运算成立:

$$\lim_{n\to\infty}(a_n+b_n)=A+B$$

$$\lim_{n o\infty}(a_n-b_n)=A-B$$

$$\lim_{n o\infty}(a_n\cdot b_n)=A\cdot B$$

$$\lim_{n o\infty}\left(rac{a_n}{b_n}
ight)=rac{A}{B}$$

单调有界定理

如果一个实数数列 $\{a_n\}$ 是单调递增的并且有上界,或者是单调递减的并且有下界,那么这个数列收敛。

(例题) 证明
$$a_n = \sqrt{1+\sqrt{2+\cdots+\sqrt{n}}}$$
 收敛。

解析:

Cauchy 收敛原理

数列 $\left\{a_n\right\}$ 收敛的充分必要条件是:对于任何 $\varepsilon>0$,存在一个正整数 N ,使得对 $\forall m,n>N$, $\left|a_m-a_n\right|<\varepsilon$ 成立。我们也称收敛的数列为**柯西列(或基本列)**。

我们如何选择证明极限存在的方法呢?

定义法是明确需要知道(或者猜到)极限是多少的。

如果要证明一个不知道极限是什么的数列收敛,优先考虑 Cauchy 收敛原理。

(例题) 若存在 C>0 使得 $|x_1|+|x_2-x_1|+|x_3-x_2|+...+|x_n-x_{n-1}|< C$,则称 $\{x_n\}$ 有界变差。证明:有界变差数列收敛。

解析

(真题) 设 f(x) 在 \mathbb{R} 上严格单调有界, $\{x_n\}$ 为实数列,则下列陈述中错误的是:

A.若 $\{x_n\}$ 发散,则 $\{f(x_n)\}$ 必发散

B.若 $\{x_n\}$ 单调,则 $\{f(x_n)\}$ 必收敛

C.若 $\{f(x_n)\}$ 发散,则 $\{x_n\}$ 必发散

D.若 $\{f(x_n)\}$ 单调,则 $\{x_n\}$ 必收敛。

解析

(真题) 下列陈述不正确的是:

A.若数列 $\{a_n\}$ 收敛, $\{b_n\}$ 发散,则 $\{a_n+b_n\}$ 必发散;

B.若数列 $\{a_n\}$ 收敛, $\{b_n\}$ 发散,则 $\{a_nb_n\}$ 必发散;

C.若正项数列 $\{a_n\},\{b_n\}$ 均发散,则 $\{a_nb_n\}$ 必发散;

D.若数列 $\{a_n\}$ 满足 $\lim_{x o +\infty}|a_{n+1}-a_n|=0$,则数列 $\{a_n\}$ 必收敛。

解析

二、极限的计算

基本极限

设 a>0, b>1 ,基本极限关系为 $\log n < n^a < b^n < n! < n^n$ 。

• 根式: $(1)a>0, \lim_{n\to\infty}\sqrt[n]{a}=1; \quad (2)\lim_{n\to\infty}\sqrt[n]{n}=1; \quad (3)\lim_{n\to\infty}\sqrt[n]{n!}=+\infty;$

• 比武: $(1) \forall k>0, \lim_{n \to \infty} \frac{\ln n}{n^k} = 0 \; (k>0); \;\; (2) \forall k>0, a>1, \lim_{n \to \infty} \frac{n^k}{a^n} = 0 \; (k>0);$

• 对数:
$$(1) orall k > 0, \lim_{x o \infty} rac{\ln x}{x^k} = 0; \quad (2) orall k > 0, \lim_{x o 0^+} x^k \ln x = 0;$$

• 指数:
$$(1)\forall k>0, \lim_{x\to\infty}\frac{x^k}{e^x}=0;$$

两个重要极限

$$\bullet \quad \lim_{x \to 0} \frac{\sin x}{x} = 1;$$

•
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e;$$

。 变式:
$$orall k, \lim_{n o\infty} \left(1+rac{k}{n}
ight)^n = e^k, \quad ext{e.g.} \ \lim_{n o\infty} \left(1-rac{1}{n}
ight)^n = rac{1}{e}.$$

$$\circ \lim_{n o \infty} \left(1 + rac{1}{n} + rac{1}{n^2}
ight)^n = \lim_{n o 0} e^{rac{\ln(1+x+x^2)}{x}} = e^{rac{2x+1}{1+x+x^2}} = e \; .$$

(真题) 下列关于极限的说法正确的是:

A.
$$\lim_{x o +\infty} (1+x)^{rac{1}{x}} = e$$

B.
$$\lim_{x o +\infty}(1+2x)^{rac{2}{x}}=e^2$$

C.
$$\lim_{x o +\infty}(1-rac{1}{x})^{2x}=e^2$$

D.
$$\lim_{x o +\infty} (1+rac{2}{x})^x = e^2$$

解析

夹逼准则

 a_n,b_n,c_n 为三个序列,若 $\exists N$ 使得 $n\geq N$ 时 $a_n\leq b_n\leq c_n$,且 $\lim_{n o\infty}a_n=\lim_{n o\infty}c_n=A$,则 $\lim_{n o\infty}b_n=A$ 。

(例题) 求:
$$(1)$$
 $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}}\right)$, (2) $\lim_{n\to\infty} (1+\frac{1}{2}+\dots+\frac{1}{n})^{\frac{1}{n}}$ 。

解析

海涅定理 (归结原理)

(因为要讲计算,就把这一部分放到前面了)

 $\lim_{x o x_0}f(x)=A$ 的充分必要条件是:对于任意满足条件 $\lim_{n o\infty}x_n=x_0$ 且 $x_n
eq x_0$ ($n=1,2,3,\cdots$) 的数列 $\{x_n\}$,相应的函数值数列 $\{f(x_n)\}$ 成立: $\lim_{n o\infty}f(x_n)=A$ 。

这样,我们就可以把一些数列极限转化成(连续)函数的极限了。

平均值相关

有限项幂次根号平均

 a_1,a_2,\cdots,a_m 是 m 个正数,则 $\lim_{n o\infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}=\max\{a_1,\cdots,a_m\}$ 。

证明: 设 $A=\max\{a_1,a_2,\cdots,a_m\}$, $\sqrt[n]{A^n}\leq \sqrt[n]{a_1^n+a_2^n+\cdots+a_m^n}\leq \sqrt[n]{mA^n}$ 。

推论: (1) 若正数列 a_n 收敛到 a>0 , $\lim_{n o\infty}\sqrt[n]{a_n}=1$ 。

(2) 若数列 $\{a_n\}$ 非负有界,则 $\lim_{n o\infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_n^n}=\sup_{n\geq 1}a_n$ 。

平均值定理

已知 $\lim_{n \to \infty} a_n = a$ (有限 or $+\infty$ or $-\infty$),则:

- 算数平均值: $\lim_{n o \infty} rac{a_1 + a_2 + \cdots + a_n}{n} = a$;
- 几何平均值: 若 $a_n>0$, $\lim_{n o\infty}\sqrt[n]{a_1a_2\cdots a_n}=a$ 。

推论: (1) 若 $\lim_{n \to \infty} (a_n - a_{n-1}) = a$, 则 $\lim_{n \to \infty} \frac{a_n}{n} = a$;

$$(2)$$
 若 $\lim_{n o\infty}rac{a_n}{a_{n-1}}=a$,则 $\lim_{n o\infty}\sqrt[n]{a_n}=a$ 。

复杂的指数和底数 (重要极限)

(例题) 求
$$\lim_{n o\infty}(rac{2+\sqrt[n]{64}}{3})^{2n-2}$$
 。

解析:

(例题) 求
$$\lim_{x o \frac{\pi}{4}} (\tan x)^{\tan 2x}$$
 。

解析:

等价无穷小(重点)

等价、高阶和低阶无穷小

设
$$\lim_{x o x_0}f(x)=\lim_{x o x_0}g(x)=0, \lim_{x o x_0}rac{f(x)}{g(x)}=A$$
 。

当 A=1 时,称 f(x) 是 g(x) 在 $x=x_0$ 处的等价无穷小,记作 $f(x)\sim g(x)$;

当 A=0 时,称 f(x) 是 g(x) 在 $x=x_0$ 处的高价无穷小,记作 f(x)=o(g(x)) ;

当 $A=\infty$ 时,称 f(x) 是 g(x) 在 $x=x_0$ 处的低价无穷小。

同阶无穷小

设 $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = 0$,在 x_0 的一个邻域 $(x_0-\delta,x_0+\delta)$ 中恒有 $0 \le |\frac{f(x)}{g(x)}| \le M < \infty$,且 f(x) 不为 g(x) 的高阶无穷小,则称 f(x) 是 g(x) 在 $x=x_0$ 处的同阶无穷小,记作 f(x)=O(g(x)) 。注意,这里并不要求 $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ 存在。

若 f(x) 是 g(x) 的同阶或高阶无穷小,则记 f(x) = O(g(x)) 。

以上定义中 f(x) 和 g(x) 理论上可以是任意函数,但在使用时, g(x) 一般都取 x 的整数次幂。

常用等价无穷小

在 x=0 处:

$$\ln(1+x) \sim x \quad e^x - 1 \sim x$$
 $\sin x \sim x \quad \cos x \sim 1 - \frac{1}{2}x^2 \quad \tan x \sim x$ $(1+x)^{lpha} - 1 \sim lpha x$ $\arcsin x \sim x \quad \arctan x \sim x$ $a^x - 1 \sim x \ln a \ (a > 0)$

等价无穷小在求极限中的应用

等价无穷小常在极限题目中出现乘积或比式时使用。

例如我们要求 $f(x)g(x), rac{f(x)}{h(x)}$ 的极限,我们已知 $f(x) \sim x$,那么我们就能直接用 x 替换 f(x) 。

但如果题目中出现和差时,使用等价无穷小就需要格外小心。我们后面会学到,**等价无穷小的本质是泰勒展开后仅保留最低次项,而忽略了更高次项**。因此在使用等价无穷小替换时,如果替换后的和差是 0 ,则意味着最低次项被消掉,但更高次项并不一定会消掉。一个简单的例子是求 $\lim_{x\to 0} \frac{x-\sin x}{x^3}$,如果简单地用 x 替换 $\sin x$,则二者抵消,答案为 0 。但事实上 $\sin x = x - \frac{1}{6}x^3 + O(x^5)$,因此答案为 $\frac{1}{6}$ 。简单来说,在题目中有和差式时,使用等价无穷小需要保证在和差运算时最低次项不被消掉。

题型一:直接应用

(真题) 求
$$\lim_{x o 0} rac{\sqrt[4]{1+12x^2} - \cos x}{x^2}$$
 。

解析:

题型二、利用定义求系数

(真题) 当 x o 1 时, $lpha(x) = \cos \frac{\pi}{2} x$ 与 $eta(x) = A(x-1)^2$ 为等价无穷小量,求 A 和 n 的值。

解析:			

题型三、等价无穷小的判断

(真题) 设 $lpha(x)=rac{8-x}{4+x},eta(x)=2-\sqrt[3]{x}$, 当 x o 8 时,下列陈述正确的是:

- A. $\alpha(x)$ 与 $\beta(x)$ 为同阶非等价无穷小量;
- B. $\alpha(x)$ 与 $\beta(x)$ 为等价无穷小量;
- C. $\alpha(x)$ 是比 $\beta(x)$ 更高阶的无穷小量;
- D. $\alpha(x)$ 是比 $\beta(x)$ 更低阶的无穷小量。

解析:

题型四、未知函数的等价替换

(真题) 设
$$f(x)$$
 在 $x=2$ 处连续,且 $\lim_{x \to 2} \frac{f(x)}{x-2} = 2$,求 $\lim_{x \to 0} \frac{f(e^{x^2} + \cos 2x)}{\ln(1+x^2)}$ 。

解析:

含根式差的极限问题的常用策略: 有理化

遇到趋向于无穷的两个根式作差的极限问题时,我们常采用有理化的方法将它转化为两个同阶无穷大量的比值。

例如:
$$\lim_{x o +\infty} \sqrt{(x+a)(x+b)} - x$$

解:

$$\lim_{x\to +\infty} \sqrt{(x+a)(x+b)} - x = \lim_{x\to +\infty} \frac{(x+a)(x+b) - x^2}{\sqrt{(x+a)(x+b)} + x} = \lim_{x\to +\infty} \frac{(a+b)x + ab}{\sqrt{(x+a)(x+b)} + x} = \frac{a+b}{2}$$

(真题) 求
$$\lim_{x o\infty}x(\sqrt[3]{x^3+2x}-\sqrt[3]{x^3-x})$$
 。

解析:

(真题) 若
$$\lim_{x o -\infty} \left(\sqrt{9x^2+6x+8}-(ax+b)
ight)=1$$
 ,求 a,b 的值。

解析:

含三角函数的极限问题的常用策略

添项后利用倍角公式

(例题) 求
$$\lim_{n o\infty}\cosrac{arphi}{2}\cosrac{arphi}{2^2}\cdots\cosrac{arphi}{2^n}$$
 。

解析:

周期性加减 $n\pi$ 或 $2n\pi$ / 有理化

(例题) 求 $\lim_{n o \infty} \sin(\pi \sqrt{n^2 + 1})$ 。

解析:

含阶乘极限问题的常用策略: 大胆猜测和放缩

Stirling 公式

当 $n o\infty$ 时, $n!\simeq\sqrt{2\pi n}\left(rac{n}{e}
ight)^n$,进一步地, $\sqrt[n]{n!}\simrac{n}{e}$ 。

我们由此可以估计出 n! 的增长速度。

(例题) 求
$$\lim_{n o\infty}rac{n!}{n^n}$$
 。

解析:

(例题) 求
$$\lim_{n \to \infty} \sqrt[n]{rac{1}{n!}}$$
 。

解析:

数列递推: 不动点猜解

这种题的一般形式是: $x_{n+1} = f(x_n)$,求 $\lim_{n o \infty} x_n$ 。

(例题)
$$x_{n+1}=rac{10}{x_n-3}$$
 ,当 $x_1=2$ 、 $x_1=4$ 时分别求 $\lim_{n o\infty}x_n$ 。

解析:

三、函数的连续性

连续的定义

若 f(x) 在 x_0 的开邻域 $(x_0-\delta,x_0+\delta)$ 有定义,且 $\lim_{x o x_0}f(x)=f(x_0)$,则称 x_0 为 f(x) 的连续点。

若 f(x) 在 $[x_0,x_0+\delta)$ 【 $(x_0-\delta,x_0]$ 】中有定义,且 $\lim_{x\to x_0^+}f(x)=f(x_0)$ 【 $\lim_{x\to x_0^-}f(x)=f(x_0)$ 】,则 称 x_0 为 f(x) 的右【左】连续点。

海涅定理

见上文。

四则运算

若 f,g 在 x_0 处连续,则 $f+g,f-g,f imes g,rac{f}{g}$ 都在 x_0 处连续(对于除法要求 $g(x_0)
eq 0$)

复合运算

若 f 在 x_0 处连续, g 在 $f(x_0)$ 处连续,则 g(f(x)) 在 x_0 处连续。

初等函数的连续性

幂函数: 当 a>0 时, $f(x)=x^a$ 在 $\mathbb R$ 上连续; 当 a<0 时, $f(x)=x^a$ 在 $(-\infty,0)$ 和 $(0,+\infty)$ 上均连续。

指数函数: 当 a>0 时, $f(x)=x^a$ 在 $\mathbb R$ 上连续。

对数函数: 当 a>0 时, $f(x)=\log_a x$ 在 $\mathbb R$ 上连续。

三角函数: $\sin x$ 和 $\cos x$ 在 \mathbb{R} 上连续, $\tan x$ 在它的每个最小正周期上都连续。

反三角函数: $\arcsin x, \arccos x$ 在 (-1,1) 上连续, $\arctan x$ 在 \mathbb{R} 上连续。

根据初等函数的连续性和四则运算、复合运算的性质,可以推导出绝大多数函数的连续性和连续区间。

例如:若
$$f,g$$
 连续,则 $|f|=\sqrt{f^2}$ 连续,
$$\max\{f,g\}=\frac{1}{2}(|f+g|+|f-g|),\min\{f,g\}=\frac{1}{2}(|f+g|-|f-g|)$$
 连续。

间断点

函数值在某个点处 没有定义 或 有定义但不连续。分为四种情况。

• 一类间断点

可去间断点:间断点处左右极限相等

跳跃间断点:间断点处左右极限不相等

• 二类间断点

无穷间断点:间断点处左右极限至少有一个是 ∞

震荡间断点:间断点处左右极限至少有一个不存在

间断点的判断

先找到不在函数定义域上的孤立点(例如:分母为 0 ,对数的真数为 0 ,正切函数内为 $\frac{\pi}{2}$ 的奇数倍等)、函数两种表达式交界处的点(例如绝对值函数),然后依次求出这些点处的函数极限。

(真题) 函数
$$f(x)=rac{x^2-4}{(x+1)(x+2)\ln|x-1|}$$
 的可去间断点共有______个。

解析:

四、习题(后续更多)

$$egin{aligned} &\lim_{n o\infty}rac{\prod_{i=1}^n(2i-1)}{\prod_{i=1}^n(2i)} \ &\lim_{n o\infty}\sin^2(\pi\sqrt{n^2+n}) \enspace . \end{aligned}$$

$$\lim_{x\to 0}(\frac{3^x+5^x+7^x}{3})^{\frac{1}{x}}$$

$$\lim_{n\to\infty}\frac{n^3\sqrt[n]{2}(1-\cos\frac{1}{n^2})}{\sqrt{n^2+1}-n}$$

$$\lim_{n o\infty}\sum_{i=1}^n(rac{i}{n^2})^{1+rac{i}{n^2}}$$

已知数列满足
$$x_1>0, x_{n+1}=1+rac{x_n}{x_n+1}$$
 ,求 $\lim_{n o\infty}x_n$ 。