Financial Modeling and Analysis Course Code: MATH 242 Module 3: Exploratory Data Anaylsis

Dr. Zahra Lakdawala

July 3, 2020

- 1 Day 1: Time series
- 2 Day 2: PDE
- 3 Day 3: ECDF
- 4 Day 4: Quantiles
- 5 Day5: Transformations

Day 1: Time series

Day 1: Time series

•00

Statistical Analysis of financial data

- Randomness means financial risk
- Also, opportunity for profit
- Some time series can show risk-free information
- Forecasting models results in time series with risk
- Use of statistics to understand randomness and predict movement and quantify volatility

Randomness in data

Time Series

Financial data over time comes with some form of random variation

There exist methods for reducing or cancelling the effect due to random variation. 'Smoothing':

Simple Moving averages - takes a certain number of past periods and add them together

$$MA_{t+1} = \frac{[D_t + D_{t-1} + \dots + D_{t-n+1}]}{n}$$

- 2 reduces irregularities
- 3 useful for filtering 'white' noise
- 4 series emphasizes certain informational components in the time series

Day 2: PDE

Probability Density

- Relationship between observations and their probability
- Some outcomes have low probability outcomes compared to the other
- Overall shape of the probability density is referred to as a probability distribution
- Calculation of probabilities for specific outcomes of a random variable is done by PDF
- Probability density must be approximated using a probability density estimation

Content cover

- Histogram plots provide a fast and reliable way to visualize the probability density of a data sample
- Parametric probability density estimation involves selecting a common distribution and estimating the parameters for the density function from a data sample
- Non parametric probability density estimation involves using a technique to fit a model to the arbitrary distribution of the data, e.g. kernel density estimation

Kernel Density Estimation

- Technique to create a smooth curve given a set of data
- Useful to visualize the 'shape' or distribution of some data
- Continous replacement for the discrete histogram
- Can also be used to generate points that look like they came from a certain dataset
- Used to power simulations where simulated objects are modelled off of real data
- Inferences about the data 'distribution' is made

So, how does it work?

- Start with some points sampled from some unknown distribution
- As more points build up, its will start corresponding to a distribution marginal unconditional distribution
- KDE takes a 'bandwidth' that affects how smooth the resulting curve is.
- If we've seen more points nearby, the estimate is higher, indicating that probability of seeing a point at that location.
- Changing the bandwidth changes the shape of the kernel.
 - lower bandwidth means only points very close to the current position are given any weight

Kernel Density Estimator

The concept of weighting the distances of our observations from a particular point x is expressed as:

$$\hat{f}(x) = \frac{1}{nb} \sum_{observations} K(\frac{x - X_i}{b})$$

- K denotes the Kernel function
- b denotes the bandwidth
- X: denotes the observations
- Using different kernel and bandwidth produces different estimates

Choice of bandwidth

- Small/large value of b allows the density estimator to detect/obscure fine features in the true density.
- Small/large value of b permits high/low degree of variation
- Small values of b causes the KDE to have a low bias
- Its a tradeoff between variance and bias
- Overfitting and Underfitting problem
- Are you confused?

Choice of bandwidth

- Small/large value of b allows the density estimator to detect/obscure fine features in the true density.
- Small/large value of b permits high/low degree of variation
- Small values of b causes the KDE to have a low bias
- Its a tradeoff between variance and bias
- Overfitting and Underfitting problem
- Are vou confused?
 - There is no simple answer!

Kernel density estimate is used to suggest a parametric statistical model

- bell shaped normal/gaussian distribution
 - normal density mean = sample mean of returns
 - standard deviation = standard deviation of returns
 - There could be more refined ways of chosing the mean and standard deviation using sample median and MAD estimators.
- uniform/tophat, exponential, cosine, and many more

Summarizing KDE

- KDE suggests a way to model the distribution of the data in the sample
- Parameters must be estimated properly
- Simple to compute, but still comes with a few issues.
- Stay tuned for further improvizations!

Day 3: ECDF

Don't we love Gaussian Distributions?!

Day 4: Quantiles

Why EDFs?

- Histograms easy way to visualize a density plot, BUT...
- Bin size problem: wrong bin size = wrong depiction of the data distribution
- Also, what about visualizing multiple variables at the same time?!

Empirical/Sample distribution functions

- No binning required
- Visualize many distributions together

$$F_n(y) = \frac{\sum_{i=1}^n I\{Y_i \le y\}}{n}$$

- $I\{.\}$ is the indicator function so that $I\{Y_i \le y\}$ is 1 is $Y_i \le y$ and is 0 otherwise.
- \blacksquare Sum in the numerators counts the number of Y_i that are less than or equal to y
- True cdf vs sample cdf? Difference comes because of the 'random variation'

Day 4: Quantiles

Day5: Transformations

Dilemma: Data and Statistics

- Statistical methods work best when data is normally distributed (or atleast symmetrically distributed)
 - constant variance
 - less skewness
- Reality does not always conform to the needs of statistics.

- Statistical methods work best when data is normally distributed (or atleast symmetrically distributed)
 - constant variance
 - less skewness
- Reality does not always conform to the needs of statistics.

So what do we do?

Transformed data

Data Analysts usually don't work with original variables

- Transform data, such that there is constant variance compared to original variables (minimize skewness)
- Commonly used transformations
 - Log transformations
 - Square root transformations
 - Power transformations
- Chose transformation to stabilize variance (removes dependence between conditional variance and conditional mean of a variable.

Log Transformation is widely used

Log strength

- Stabilizes the variance of a variable whose conditional standard deviation is proportional to its conditional mean.
- Changes in log returns have relatively constant variability (compared to changed in returns)
- Super power: log transformations can be embedded into power transformations

Log Transformation embedded into power transformation

$$y^{\alpha} = \left\{ egin{array}{ll} rac{y^{\alpha}-1}{lpha} &, lpha
eq 0 \\ log(y) &, lpha = 0 \end{array}
ight.$$

Since $\lim_{x\to 0} \left(\frac{y^{\alpha}-1}{\alpha}\right) = log(y)$, the transformation is continuous in α at 0.

Choice of α

It is commonly the case that the response is right-skewed and the conditional response variance is an increasing function of the conditional response mean. In such cases, a concave transformation, e.g. a Box–Cox transformation with $\alpha < 1$, will remove skewness and stabilize the variance

■ The value of α that is best for symmetrizing the data is not the same value of that is best for stabilizing the variance.

