EEL7030 - Microprocessadores

Laboratório de Comunicações e Sistemas Embarcados

Prof. Raimes Moraes
EEL - UFSC

- □ Objetivo
 - Mostrar emprego de interrupção externa (EXTI) no STM32CubeMX
 - Mostrar geração de código no CubeMX e uso das funções HAL

- ☐ Crie projeto no STMCubeMX:
 - 1. New Project
 - 2. No MCU Selector: STM32F4 (series); STM32F429/439 (lines); LQFP144 (package); selecione: STM32F429ZITx

- □ Configuração do clock dos diferentes barramentos e periféricos:
 - 3. Selecionar RCC e especificar Crystal como fonte de clock HSE

- Configuração do clock dos diferentes barramentos e periféricos:
 - 4. TAB > Clock Configuration
 - 5. Substituir cristal de 25 MHz por 8 MHz e seguir esquema abaixo:

☐ Configurar pino ao qual o LED está conectado (PG14) como pino de saída: GPIO_Output

6. Em TAB -> Pinout, clicar no pino e selecionar a opção como abaixo:

- Configure pino PAO conectado a push button azul para aceitar interrupção externa (GPIO_EXTIO)
 - 7. Em TAB -> Pinout, clicar no pino e selecionar a opção como abaixo:

Conexão do push button azul ao pino PA0

- ☐ Configuração dos GPIOs
 - TAB->Configuration->System->GPIO

8. Configuração dos GPIOs:

- Selectionar External Interrupt Mode with Rising edge trigger detection
- No pull-up or pulldown
- PG14 não precisa ser modificado
- Clique OK

- □ Configuração do NVIC
 - TAB>Configuration>System>NVIC

- 9. Configuração do NVIC:
 - Enable interrupt for EXTI Line0
 - Clique OK

- 10. Para permitir depuração, configure pinos relacionados ao SWD (única opção no kit):
 - Configuração a ser realizada, usando: TAB->Pinout->SYS
 - Escolher SWD;

11. Forneça dados para geração do código:

Arquivos do Projeto

- User files: main.c (ponto de entrada do programa) system_stm32f4xx.c (configuração inicial do sistema) stm32f4xx_it.c (Interrupt Service Request - ISR's) ☐ Funções e definições específicas do kit: stm32f429i_discovery.c ☐ Biblioteca de funções para programação dos periféricos: STM32F4xx_StdPeriph_Driver ☐ Arquivo para inicialização do sistema, stack pointer, tabela de vetores de interrupção do chip, reset e salto para main():
 - startup_stm32f429_439xx.s

Código Gerado

Código Gerado

Código Gerado

- 13. Abra o projeto no Keil
- 14. Deve-se inserir funções em main.c (em Application User)
 - Entre os rótulos/* USER CODE BEGIN 4 */ e /* USER CODE END4*/, inserir a função:

```
void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin)
// para responder à solicitação da interrupção externa
```

Dentro da mesma, use a função: HAL_GPIO_WritePin // para acender o led

15. Para fazer o download do código no kit, pressione ALT+F7 e selecione o tab Debug:

☐ Clique em Settings e....

16. Verifique os campos abaixo:

carregue no kit