Dependable Hybrid Systems Design: a Refinement Approach

Zheng Cheng Dominique Méry

Nov, 2020

Where were we?

- Overview of hybrid system
- Review of calculus
- Review of Event-B
- Develop theories in Event-B

Outlines

Design Hybrid Systems in Event-B Smart Heating System Refinement Strategy for Hybrid System Design

Smart Heating System

- ▶ 2 modes: ON/OFF
- ▶ Simple dynamics: \dot{T} =1/-1
- \blacktriangleright Sample at δ s
- Switch mode costs t_{act} s $(t_{act} < \delta)$
- ▶ Safety: $T_{min} \le T \le T_{max}$

Refinement Strategy for Hybrid System Design

Lab Material

- https://github.com/veriatl/LORIA_WEEK2
- ▶ Import theory-axiom-real to Rodin, and deploy this theory
- ► Import **ex-heating-maintainer-event** to Rodin

Smart Heating System (Specification M0)

Smart Heating System (Specification M0)

- Generic hybrid system state trajectory
- Generic safety property
- Big-step semantics

Smart Heating System (Safety M1)

Smart Heating System (Safety M1)

- Concrete system state trajectory
- Concrete safety property
- Big-step semantics refined

Smart Heating System (Cycle M2)

Smart Heating System (Cycle M2)

- Time pointer
- Refined system state trajectory
- Refined safety property
- Small-step semantics

Practice

In M2_cycle,

- 1. Encode invariant *safety*: up until *now*, the room temperature is within safe range.
- 2. Once task 1 is finished, a proof obligation named *Prophecy/safety/INV* will be generated automatically, try to prove this result.

Smart Heating System (Close-loop M3)

14 / 44

Smart Heating System (Close-loop M3)

- Variable for close-loop mode control
- Prediction (Controller)
- Progression (Plant)

Smart Heating System (Control Logic M4)

Event-triggered

- Event-triggered design(when certain events are detected what actions that system should take)
- Specification of time-triggered design

Smart Heating System (Control Logic M4)

Time-triggered

- Revisit the description of heating system
- Time-triggered design(the controller takes action only every once in a while)

- ▶ 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do

- ▶ 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- \rightarrow monotonicity

- 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- \rightarrow monotonicity
- ightharpoonup Sample at δ s
- $\rightarrow\,$ Decision at sampling time

- ▶ 2 modes: ON/OFF
- $\,\rightarrow\,$ the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- ightarrow monotonicity
- ▶ Sample at δ s
- ightarrow Decision at sampling time
- Switch mode costs t_{act} s $(t_{act} < \delta)$
- → Cost of switch mode

- ▶ 2 modes: ON/OFF
- ightarrow the only actuation we can do
 - ▶ Simple dynamics: \dot{T} =1/-1
- \rightarrow monotonicity
- ▶ Sample at δ s
- ightarrow Decision at sampling time
 - Switch mode costs t_{act} s $(t_{act} < \delta)$
- → Cost of switch mode
 - ▶ Safety: $T_{min} \le T \le T_{max}$

Case 1: ON mode, $T(now) \leq T_{max}$, Stay ON

Case 1: ON mode, $T(now + \delta) \leq T_{max}$, Stay ON

Case 1: ON mode, $T(now + \delta + t_{act}) \leq T_{max}$, Stay ON

Practice

In M4_2_control_logic_time_trigger, Ctrl_ON_safe corresponds to case 1.

- 1. Explain *Ctrl_ON_safe* using natural language.
- 2. If you think that this control logic is sound, try to prove the proof obligation Ctrl_ON_safe/grd4/THM.
- Otherwise, please modify Ctrl_ON_safe to match your expectation, and try to convince Rodin your proposal is sound.

Case 2: ON mode, $T(now + \delta + t_{act}) > T_{max}$, TO OFF

Practice

In M4_2_control_logic_time_trigger, Ctrl_ON_unsafe corresponds to case 2.

- 1. Draw the trajectory when mode switching
- 2. Give a mathematical expression for such trajectory
- Referencing Ctrl_ON_safe, complete the encoding of Ctrl_ON_unsafe, and convince Rodin that the control logic in this case is sound(hint: prove Ctrl_ON_unsafe/grd4/THM).

Code Generation

```
1: if q = ON \lor q = OFFON then
        if T_{on}(now + \delta + t_{act}) \leq T_{max} then
 3:
            q \leftarrow ON
 4:
      else
 5:
            q \leftarrow \mathsf{ONOFF}
 6:
       end if
 7: else if q = OFF \lor q = ONOFF then
8:
        if T_{off}(now + \delta + t_{act}) \geq T_{min} then
 9:
            m \leftarrow OFF
10:
       else
11:
        \mathsf{m} \leftarrow \mathsf{OFFON}
12:
         end if
13: end if
```

Problems

1. Initial condition shifting might make the algorithm unnecessary complex

```
1: if q = ON \lor q = OFFON then
        if T_{on}(now + \delta + t_{act}) \leq T_{max} then
 3:
            q \leftarrow ON
 4:
      else
 5:
            q \leftarrow \mathsf{ONOFF} \dots
 6:
        end if
 7: else if q = OFF \lor q = ONOFF then
8:
        if T_{off}(now + \delta + t_{act}) \geq T_{min} then
 9:
            m \leftarrow OFF
10:
        else
11:
            m \leftarrow OFFON \dots
12:
         end if
13: end if
```

Problems

- 1. Initial condition shifting might make the algorithm unnecessary complex
- 2. Solution of differential equations might be non-unique(e.g. bessal function), or non-exists(e.g. most of real-life systems).

```
1: if q = ON \lor q = OFFON then
       if T_{on}(now + \delta + t_{act}) < T_{max} then
3:
           q \leftarrow ON
4:
       else
5:
           q \leftarrow ONOFF
6:
       end if
7: else if q = OFF \lor q = ONOFF then
8:
       if T_{off}(now + \delta + t_{act}) \geq T_{min} then
9:
           m ← OFF
10:
        else
11:
           m \leftarrow OFFON
12:
        end if
13: end if
```

Challenge

Can we express control logic in terms of sensor reading plus evaluable terms?

```
1: if q = ON \lor q = OFFON then
2:
       if f_1(T(now), constants) then
3:
          q \leftarrow ON
4:
      else
5:
          q \leftarrow ONOFF
6:
       end if
7: else if q = OFF \lor q = ONOFF then
       if f_2(T(now), constants) then
8:
9:
          m \leftarrow OFF
10:
     else
11:
           m \leftarrow OFFON
12:
       end if
13: end if
```

Proposal: Numerical Solutions + Coping with Errors

Forward-Euler Method and Truncation Errors

Forward-Euler: $f_e(n + \delta) = f_e(n) + \dot{f}(n, f_n) * \delta$

Forward-Euler Method and Truncation Errors

► Global truncation errors

Forward-Euler Method and Truncation Errors

► Local truncation errors

Properties of Forward-Euler Method and Truncation Errors

Global truncation errors:

$$\mid f(\delta)$$
 - $f_e(\delta) \mid \leq \epsilon_{gte} = rac{\delta M}{2K} (e^{K(t-t_0)} - 1)$

Local truncation errors:

$$\mid f(\delta + \triangle) - f_e(\delta + \triangle) \mid \leq \epsilon_{Ite} = M$$

Derivation of these properties can be found at this tutorial: [ref]

New Properties of Heating System

- $(\mathsf{prop}_{\mathit{on}}^{\mathit{Ite}}) \mid T_{\mathit{on}}(\mathit{now} + \delta + t_{\mathit{act}})$ $Te_{\mathit{on}}(\mathit{now} + \delta + t_{\mathit{act}}) \mid \leq \epsilon_{\mathit{on}}^{\mathit{Ite}}$
- $\qquad \qquad |\mathsf{prop}_{\mathit{off}}^{\mathit{lte}}) \ | \mathit{T}_{\mathit{off}}(\mathit{now} + \delta + t_{\mathit{act}}) \mathit{Te}_{\mathit{off}}(\mathit{now} + \delta + t_{\mathit{act}}) | \leq \epsilon_{\mathit{off}}^{\mathit{lte}}$
- $ightharpoonup (prop_{T_{on}}) \ T_{on}(now, \ T_{on}(now)) = 1$
- $ightharpoonup (prop_{T_{off}}) \ \dot{T_{off}}(now, \ T_{off}(now)) = -1$

Case 1: ON mode safe

Case 1: ON mode safe

$$T_{on}(now + \delta + t_{act}) \leq Te_{on}(now + \delta + t_{act}) + \epsilon_{on}^{lte}$$

$$= T_{on}(now) + T_{on}(now, T_{on}(now)) \cdot (\delta + t_{act}) + \epsilon_{on}^{lte}$$

$$= T_{on}(now) + (\delta + t_{act}) + \epsilon_{on}^{lte}$$

$$\leq T_{max}$$

Case 2: ON mode unsafe

$$T_{on}(now + \triangle) = ...$$

> T_{max}

Practice

In M_5_euler,

- 1. Encode control logic of case 1 in terms of Euler approximation in the *grd*4 of event *Ctrl_ON_safe*.
- Using the derivation on page.36, prove Ctrl_ON_safe/thm01/THM - Ctrl_ON_safe/thm04/THM.
- Finsh the derivation on page.37, encode this control logic of case 2 in terms of Euler approximation in the grd4 of event Ctrl_ON_unsafe.
- 4. Prove Ctrl_ON_unsafe/thm01/THM Ctrl_ON_unsafe/thm04/THM.

Simulation: Automata from Event-B

```
Event Prediction_1 = Any reading
Where

...

grd_i: q = ON

grd_j:

T_{on}(now) + \delta + t_{act} + \epsilon_{on}^{lte} \le T_{max}
Then

...

act_i: q = ON

act_j: fa = T_{on}
End
```

$$T_{on}(now) + \delta + t_{act} + \epsilon_{on}^{lte} \le T_{max}$$

$$ON$$

$$T = T_{on}$$

Practice

In M_5_euler,

1. Examine all the control logic events, draw the automata for the heating system.

Simulation

Simulation in Stateflow

- Demo
- More reference:
 - Download matlab for UL students: [link]
 - ► Getting started with Stateflow: [link]
 - ► Temporal logic operators in Stateflow: [link]

Conclusion

► A refinement strategy for design dependable hybrid system

Conclusion

- ► A refinement strategy for design dependable hybrid system
- Propose different refinement strategies to design control logic
 - Based on modelling numerical solutions, and coping with truncation errors
 - ► Adaptable to deal with sensor errors or round-off errors