4EK211 Základy ekonometrie

Heteroskedasticita náhodné složky

Cvičení 6

Gauss-Markovy předpoklady

Náhodná složka: Gaussovy-Markovovy předpoklady

- 1. E(u) = 0
- 2. $E(\boldsymbol{u} \ \boldsymbol{u}^T) = \boldsymbol{\sigma}^2 \boldsymbol{I}_n \leftarrow \text{kovarianční matice, tj. rozptyl } \boldsymbol{u}$.
 - konečný a konstantní rozptyl = homoskedasticita
 - prvky na diagonále kovarianční matice konstantní (\(\sigma^2\))
 - → porušení: heteroskedasticita
 - náhodné složky jsou sériově nezávislé
 - nuly mimo diagonálu kovarianční matice
 → porušení: autokorelace
- 3. X je nestochastická matice $E(X^Tu) = 0$
- 4. X má plnou hodnost k+1
 - matice X neobsahuje žádné perfektně lineárně závislé sloupce

Heteroskedasticita - obecně

- Heteroskedasticita: rozptyl náhodné složky: σ^2 není konečný a konstantní, obvykle σ^2 je funkcí některé exogenní proměnné
- náhodná složka může mít v případě heteroskedasticity odlišný rozptyl pro každé pozorování:

$$E(u_i^2) = \sigma_i^2 \neq \text{konst}$$

Příklad

y = počet chyb při psaní na stroji

x = počet hodin strávených cvičením

$$y = f(x) + u$$

- čím více hodin cvičení tím méně chyb
- rozptyl chybovosti je větší pro skupinu lidí s nižší praxí
 - někdo se učí rychleji a už od počátku dělá méně chyb než ti, kteří se učí pomaleji a na začátku dělají spoustu chyb
 - s rostoucím počtem hodin praxe se schopnosti jednotlivců začínají sbližovat a rozptyl chybovosti se snižuje

Heteroskedasticita - příčiny

- chybná specifikace modelu
 - vynechání podstatné vysvětlující proměnné
 - nevhodná funkční forma modelu
- odhad z průřezových dat se značnou variabilitou ve výběru
 - variabilita endogenní proměnné (a tedy i reziduí) může být závislá na magnitudě některé exogenní proměnné
- chyby měření
 - s rostoucí hodnotou endogenní proměnné dochází ke kumulaci chyb měření – to zvyšuje rozptyl endogenní proměnné a tedy i rozptyl reziduí
- odhad z upravených dat
 - odhad nikoliv na původních pozorováních, ale např. ze skupinových průměrů získaných z tříděných dat

Heteroskedasticita - důsledky

- bodové odhady parametrů
 - zůstávají nevychýlené a konzistentní
 - nemají však minimální rozptyl tj. nejsou vydatné a ani asymptoticky vydatné
- odhady směrodatných chyb bodových odhadů (s_{bi}) a rozptylu sigma (s²) jsou vychýlené
 - intervalové odhady nejsou spolehlivé
 - statistické testy (*t*-testy, *F*-test) ztrácejí na síle
 - Nelze předem říci, zda je odhadnutá hodnota s^2 , resp. s_{bi} podhodnocená nebo nadhodnocená

Heteroskedasticita graficky (eyeballing test)

Heteroskedasticita – neparametrické testy

Spearmanův test korelace pořadí

- zkoumá korelaci pořadí mezi jednou vysvětlující proměnou a rezidui
- test je nutné udělat pro každou vysvětlující proměnnou LRM zvlášť!!!
- vypočítáme koeficient pro konkrétní výběr, pak testujeme statistickou významnost pro "populaci"

Postup

- 1. Absolutní hodnoty reziduí |e;| seřadíme vzestupně a očíslujeme
- 2. Pořadové číslo přiřadíme k původním (tj. nesrovnaným) reziduím
- 3. Absolutní hodnoty exogenní proměnné $|x_i|$ seřadíme vzestupně a očíslujeme
- 4. Pořadové číslo přiřadíme k původním (tj. nesrovnaným) hodnotám x_i
- 5. Spočítáme rozdíly v pořadí reziduí a pozorování: $d_i = \text{pořadí } |e_i| \text{pořadí } |x_i| \dots \text{ rozdíl pořadí}$
- 6. Spočítáme Spearmanův koeficient korelace pořadí:

$$r_{e,x} = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)}$$

Heteroskedasticita – neparametrické testy

7. Vyhodnocení:

- $|r_{e,x}| \rightarrow 0$ (resp. $|r_{e,x}| < 0.8 0.9$) ... je možné očekávat homoskedasticitu
- $|r_{e,x}| \rightarrow 1$ (resp. $|r_{e,x}| > 0.8 0.9$) ... je možné očekávat heteroskedasticitu
- test statistické významnosti koeficientu (spočteného pro daný výběr)
- pomocí *t*-statistiky:

$$t = r_{e,x} \sqrt{\frac{n-k-1}{1-r_{e,x}^2}} \approx t_{(n-k-1)}$$

Testovaná hypotéza:

 H_0 : homoskedasticita H_1 : heteroskedasticita

- vypočtená t hodnota > $t^*_{1-\alpha/2}$ (n-k-1) \rightarrow zamítneme H_0
- vypočtená t hodnota $\leq t^*_{1-\alpha/2}$ (n-k-1) \rightarrow nezamítáme H_0

Heteroskedasticita – neparametrické testy – příklad

Soubor: CV6_PR1.xls

Data: y = průměrný roční výnos cenného papíru

x = riziko cenného papíru (směrodatná odchylka)

Zadání: Odhadněte závislost průměrného ročního výnosu cenného papíru (y) na riziku (x).

Vyhodnoť te heteroskedasticitu s využitím Spearmanova koeficientu korelace pořadí pro $\alpha = 0.05$.

$$y_i = \beta_0 + \beta_1 x_i + u_i, \quad i = 1, 2, ..., 10$$

Heteroskedasticita – neparametrické testy

Goldfeldův-Quandtův test

Postup:

- 1. zvolíme statisticky významnou proměnnou X_i a seřadíme datový soubor (všechna pozorování) vzestupně podle této proměnné
- 2. rozdělíme data na dvě stejné poloviny (přitom kolem "středu" řady vynecháme q hodnot: $q \le n/4$): pro "malé" a "velké" hodnoty X_i
- 3. vypočteme stupně volnosti **v**

$$\mathbf{v} = \frac{\mathbf{n} - \mathbf{q}}{2} - \mathbf{k} - 1$$

4. vypočteme **F**(**v**,**v**) statistiku (odhad 2 modelů v PcGive)

$$F(v,v) = \frac{S_2}{S_1}$$
, kde $S_j = \sum_{j=1,2} e_j^2$

5. Vyhodnocení - testovaná hypotéza:

*H*₀: homoskedasticita

*H*₁: heteroskedasticita

 $F(v,v) > F^*(v,v) \rightarrow \text{zamítáme } H_0 \text{ ve prospěch heteroskedasticity}$ $F(v,v) < F^*(v,v) \rightarrow \text{nezamítáme } H_0$

Heteroskedasticita – neparametrické testy – příklad

Soubor: CV6_PR2.xls

Data: y = spotřební výdaje (tis. USD/rok)

x = disponibilní příjem (tis. USD/rok)

Zadání: Odhadněte závislost spotřebních výdajů (*y*) na disponibilním příjmu (*x*).

Vyhodnoť te heteroskedasticitu

- graficky
- s využitím testu Goldfelda-Quandta pro $\alpha = 0.05$
- uvažujte logaritmickou transformaci modelu a vyhodnoťte heteroskedasticitu s využitím testu Goldfelda-Quandta pro α = 0,05 (pomůcka – zlogaritmujte proměnnou y a x pomocí funkce log(VAR) v PcGivu)

$$y_i = \beta_0 + \beta_1 x_i + u_i$$
, $i = 1, 2,...,30$

Heteroskedasticita – parametrické testy

- testy s pomocnou regresí
- většinou potřebujeme n ≥ 30

Parkův test

 podle Parka je vztah mezi rozptylem a proměnnou (která způsobuje heteroskedasticitu) následovný (pomocná regrese):

$$\sigma_i^2 = \beta_0 X_i^{\beta_1} e^{\nu_i}$$

• po zlogaritmování (zajímá nás pouze významnost odhadu β_1):

$$\ln \sigma_i^2 = \beta_0 + \beta_1 \ln X_i + v_i$$

 Rozptyl náhodné složky není pozorovatelný, použijeme pomocnou regresi přes (přímo pozorovatelná) rezidua:

$$\ln e_i^2 = \beta_0 + \beta_1 \ln X_i + v_i$$

• parametry modelu odhadneme pomocí MNČ a t-testem vyhodnotíme významnost $\beta_1 \rightarrow H_0$: homoskedasticita (β_1 není významný)

 H_1 : heteroskedasticita (β_1 je významný)

Heteroskedasticita – parametrické testy

Glejserův test

• pomocná regrese: absolutní hodnota reziduí a různé formy závislosti:

$$\begin{aligned} |e_i| &= \beta_0 + \beta_1 X_i + v_i \\ |e_i| &= \beta_1 X_i + v_i \\ |e_i| &= \beta_0 + \beta_1 \frac{1}{\sqrt{X_i}} + v_i \\ |e_i| &= \beta_0 + \beta_1 \sqrt{X_i} + v_i \\ |e_i| &= \sqrt{\beta_0 + \beta_1 X_i + v_i} \\ |e_i| &= \sqrt{\beta_0 + \beta_1 X_i^2 + v_i} \qquad i = 1, 2, ..., n \end{aligned}$$

• parametry modelu odhadneme pomocí MNČ a t-testem vyhodnotíme významnost $\beta_1 \rightarrow H_0$: homoskedasticita (β_1 není významný) H_1 : heteroskedasticita (β_1 je významný)

Heteroskedasticita – parametrické testy

Whiteův test

• testovaný LRM: $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_1 X_{2i} + u_i$ pomocná regrese:

$$e_t^2 = f(x_1, x_2, x_1^2, x_2^2, x_1^*x_2) + V$$

• pomocná regrese obeně:

$$e_t^2 = f$$
 (exogenní proměnné, jejich čtverce, jejich párové násobky)

- statistika $n^* R^2 \approx \chi^2(k-1)$
 - n = rozsah souboru
 - k = počet parametrů <u>pomocné regrese</u>

Testovaná hypotéza:

 H_0 : homoskedasticita H_1 : heteroskedasticita

 $n^* R^2 > \chi^{*2}_{\alpha} (k-1) \dots$ zamítáme H_0 ve prospěch heteroskedasticity obvykle Whiteův test vyhodnocujeme pomocí p-value (na hl. $\alpha = 5\%$ zamítáme H_0 , je-li p-value menší než 0,05)

Heteroskedasticita – parametrické testy – příklady

Soubor: CV6_PR3.xls

Data: vydaje = průměrné měsíční výdaje placené kreditní kartou (v USD) **vek** = věk (v letech)

prijem = příjem (v tis. USD)

Zadání: Odhadněte závislost výdajů na věku a příjmu. Vyhodnoť heteroskedasticitu s využitím Whiteova testu pro $\alpha = 0.01$.

$$vydaje_i = \beta_0 + \beta_1 vek_i + \beta_2 prijem_i + u_i, i = 1, 2, ..., 72$$