Coursework 4

COMP2721 Algorithms and Data Structures II

1. A triomino is an L-shaped tile formed by three adjacent squares of a chess board.

The *trinomino puzzle* problem is to cover any 2^n -by- 2^n chessboard with one missing square (anywhere on the board) with triominos. Triominos should cover all the squares except the missing one with no overlaps.

Design a divide-and-conquer algorithm for this problem. Describe your main steps (divide, conquer, combine) informally in plain English and illustrate by a drawings where appropriate. [0:20 h expected time]

2. Give asymptotic upper bound for T(n) in each of the following recurrences. Assume that T(n) = n for $n \leq 2$. Make your bounds as tight as possible, and justify your answers.

(a)
$$T(n) = T(n-1) + 1$$

(i)
$$T(n) = (T(\sqrt{n}))^2$$

(b)
$$T(n) = T(n/2) + 1$$

(i)
$$T(n) = 4T(n/2) + n$$

(c)
$$T(n) = T(\sqrt{n}) + 1$$

(k)
$$T(n) = 8T(n/4) + n \log n$$

(d)
$$T(n) = 2T(n-1)$$

(1)
$$T(n) = 27T(n/9) + n^2$$

(e)
$$T(n) = 2T(n/2)$$

(m)
$$T(n) = T(8n/9) + \sqrt{n}$$

(f)
$$T(n) = 2T(\sqrt{n})$$

(n)
$$T(n) = 5T(n/25) + \sqrt{n}$$

(g)
$$T(n) = (T(n-1))^2$$

(o)
$$T(n) = T(2n/3) + \log n$$
.

(h)
$$T(n) = (T(n/2))^2$$

[15 marks]

[1.00 if expected time]

Submission: Work out and present your solution on paper. Stitch together all your sheets and a filled header form and submit via SSO. Indicate date and time of your tutorial, that is, one of the following:

 \bullet Tuesday 12–1 \bullet Tuesday 4–5 \bullet Friday 1–2 \bullet Friday 2–3 For a proof of submission, convert your solution into portable document format (via pdflatex if you use LATEX or scan your manuscript) and submit it in Minerva.

Deadline: Monday 27 April 2020, 10am.

Credits: This piece of summative coursework is worth 5% of your grade.