Algorithmique et structures de données CM 6 – Arbres binaires

Jean-Marie Le Bars jean-marie.lebars@unicaen.fr

Plan du CM 6

Évaluation de conditions

Arbres binaires particuliers

Nombre de nœuds et hauteur

Algorithmes de parcours sur un arbre binaire

Évaluation de conditions •00000

condition1 ou condition2

- la condition1 est d'abord évaluée
- si la condition1 est vérifiée, on retourne Vrai
- si la condition1 n'est pas vérifiée, on évalue la condition2
- on retourne Vrai si la condition2 est vérifiée et Faux sinon

Exemple

Évaluation de conditions 000000

```
base (A : arbreBinaire): booléen
   retourner A = None ou (A->qauche = None et A->droit = None)
```

La procédure teste d'abord si l'arbre binaire A est l'arbre vide et ensuite, si ce n'est pas le cas, si c'est l'arbre racine.

condition1 ou condition2

L'ordre entre les deux conditions a une importance

Exemple

```
base2(A : arbreBinaire): booléen
  retourner (A->qauche = None et A->droit = None) ou A = None
```

Si l'arbre binaire *A* est vide la procédure retourne une erreur car on ne peut utiliser l'instruction A->qauche = None lorsque *A* vaut None.

condition1 ou condition2 La procédure

```
base(A : arbreBinaire): booléen
  retourner A = None ou (A->gauche = None et A->droit = None)
```

est équivalente à la procédure

```
base(A : arbreBinaire): booléen
    si A = None alors
        retourner Vrai
    si (A->gauche = None et A->droit = None) alors
        retourner Vrai
    retourner Faux
```


condition1 et condition2

- la condition1 est d'abord évaluée
- si la condition1 n'est pas vérifiée, on retourne Faux
- si la condition1 est vérifiée, on évalue la condition2
- on retourne Vrai si la condition2 est vérifiée et Faux sinon

Exemple

```
mystere(A : arbreBinaire): booléen
  retourner A <> None et A->qauche <> None
```


condition1 et condition2

L'ordre entre les deux conditions a une importance

Exemple

```
mystere(A : arbreBinaire): booléen
  retourner A <> None et A->gauche <> None
```

est différent de

```
mystere(A : arbreBinaire): booléen
  retourner A->gauche <> None et A <> None
```

car on ne peut utiliser l'instruction A->gauche lorsque A vaut None.

Plan du CM 6

Arbres binaires particuliers

Arbre dégénéré ou filiforme

Un arbre est dégénéré lorsque tout nœud possède au plus un enfant.

Exemple

Lien entre hauteur et nombre de nœuds

$$N(A) = h(A) + 1.$$

Arbre dégénéré ou filiforme

Un arbre est dégénéré lorsque tout nœud possède au plus un enfant.

Procédure vérifiant si un arbre A est dégénéré

```
estDegenere(A : arbreBinaire) : booléen
    si A = None alors
        retourner Vrai
    si A->gauche <> None et A->droit <> None alors
        retourner Faux
    si A->gauche <> None alors
        retourner estDegenere(A->gauche)
    si A->droit <> None alors
        retourner estDegenere(A->droit)
    retourner Vrai #condition terminale le noeud est une feuille
```


Procédure vérifiant si un arbre A est dégénéré

estDegenere (A : arbreBinaire) : booléen

```
si A = None alors
    retourner Vrai
si A->gauche <> None et A->droit <> None alors
    retourner Faux
si A->gauche <> None alors
    retourner estDegenere(A->gauche)
si A->droit <> None alors
    retourner estDegenere(A->droit)
retourner yrai #condition terminale le noeud est une feuille
```

Exercice

- donnez le nombre d'appels récursifs
- proposez une procédure itérative

Définition d'un arbre complet

Un arbre de hauteur *h* est complet lorsque tous les niveaux de 0 à *h* sont remplis.

Exemple

Arbre complet

Lien entre hauteur et nombre de nœuds

Nous avons un seul arbre complet C pour une hauteur h, C vérifie

$$N(C) = 2^{h(C)+1} - 1.$$

Nœuds internes et feuilles

- l'arbre complet de hauteur h possède 2^h − 1 nœuds internes
- l'arbre complet de hauteur h possède 2h feuilles

Bilan

Tout arbre complet C vérifie

•
$$N_f(C) = N_i(C) + 1$$
.

•
$$N(C) = 2N_f(C) - 1 = 2N_i(C) + 1$$

Lien entre hauteur et nombre de nœuds

Cas général

Soit A un arbre binaire.

$$h(A) + 1 \le N(A) \le 2^{h(A) + 1} - 1.$$

- égalité à gauche pour les arbres dégénérés
- égalité à droite pour les arbres complets

Exercice

Donnez un schéma d'induction pour construire les arbres dégénérés et les arbres complets.

Définition

Un arbre binaire est localement complet lorsque chaque nœud possède

- soit deux enfants
- soit aucun enfant (c'est une feuille)

Exemple

Lien entre nombre de nœuds internes et nombre de feuilles

$$N_f(A) = N_i(A) + 1$$

$$N_f(A) = N_i(A) + 1$$
 et $N(A) = 2N_i(A) + 1$.

Mêmes relations que pour les arbres complets (normal, un arbre complet est un localement complet).

Définition

Un arbre binaire est localement complet lorsque chaque nœud possède

- soit deux enfants
- soit aucun enfant (c'est une feuille)

Schéma d'induction

- i) l'arbre racine $A = \bullet$ est localement complet
- ii) Soient B et C deux arbres localement complets.

$$A = (\bullet, B, C)$$
 est localement complet

Expressions arithmétiques ou logiques

Arbres binaires particuliers 00000000000000000

(p ou q) et (r et p)

Définition

Un arbre binaire est localement complet lorsque chaque nœud possède

- soit deux enfants
- soit aucun enfant (c'est une feuille)

Procédure vérifiant si un arbre binaire est localement complet

```
estLC(A : arbreBinaire) : booléen
si A = None alors # l'arbre vide n'est pas localement complet
retourner Faux
```

- si A->gauche = None et A->droit = None alors # condition terminale
 retourner Vrai # 1'arbre racine est localement complet
- si A->gauche <> None et A->droit <> None alors#le noeud possède retourner estLC(A->gauche) et estLC(A->droit)#deux enfants

retourner Faux # le noeud ne possède qu'un seul enfant

Procédure vérifiant si un arbre binaire est localement complet

```
estLC(A : arbreBinaire) : booléen
si A = None alors # l'arbre vide n'est pas localement complet
retourner Faux
```

- si A->gauche = None et A->droit = None alors # condition terminale
 retourner Vrai # l'arbre racine est localement complet
- si A->gauche <> None et A->droit <> None alors#le noeud possède
 retourner estLC(A->gauche) et estLC(A->droit)#deux enfants

retourner Faux # le noeud ne possède qu'un seul enfant

Calcul de C(A), le nombre d'appels de la fonction

- nous avons au moins un appel de la fonction sur A
- pas d'appel de fonction pour les feuilles
- pas d'appel de fonction pour les nœuds internes avec un seul enfant
- deux appels de fonction pour les nœuds internes avec deux enfants

$$C(A) < 1 + 2N_i(A)$$
.

Calcul de C(A), le nombre d'appels de la fonction

$$C(A) = 1 + 2N_i(A).$$

Calcul de C(A) en fonction de N(A) lorsque A est localement complet

$$C(A) = N(A)$$
.

C'est immédiat car nous avons Preuve.

$$N_f(A) = N_i(A) + 1$$
 et $N(A) = 2N_i(A) + 1$.

Calcul de C(A) en fonction de N(A) lorsque A n'est pas localement complet

Cela dépend fortement de l'arbre A.

Exemple

• on ne s'aperçoit que l'arbre n'est pas localement complet qu'au dernier nœud

$$C(A) = N(A)$$
.

Calcul de C(A) en fonction de N(A) lorsque A n'est pas localement complet

Cela dépend fortement de l'arbre A.

Exemple

• on s'aperçoit que l'arbre n'est pas localement complet dès le deuxième nœud

$$C(A) = 2.$$

Définition d'un arbre parfait

Tous les niveaux sont remplis sauf éventuellement le dernier niveau, dans ce cas tous les noeuds sont regroupés à gauche.

Exemple

Exercice

Calculez le nombre d'arbres parfaits de hauteur h.

Réponse : $2^h - 1$

Arbre binaire quasi-parfait

Arbre quasi-parfait

Tous les niveaux sont remplis sauf éventuellement le dernier niveau.

Exemple

Exercice

Calculez le nombre d'arbres quasi-parfaits de hauteur h.

Réponse : $2^{2^h} - 1$

Arbre équilibré

Objectif

Contrôler la hauteur par rapport au nombre de nœuds.

Il existe plusieurs définitions possibles

Exemple de définition

Soit A un arbre binaire. A est équilibré lorsque tout sous-arbre B de A vérifie

$$|h(B_g)-h(B_d)|\leq 1,$$

où B_a et B_d sont les sous-arbres gauche et droit de B.

Exemples

Arbres complets, arbres parfaits, arbres quasi-parfaits.

Plan du CM 6

Évaluation de conditions

Arbres binaires particuliers

Nombre de nœuds et hauteur

Algorithmes de parcours sur un arbre binaire

Rappel – structure de nœud et type arbreBinaire

Structure de nœud

Un nœud est constitué d'une valeur (ici un entier), d'un pointeur sur le sous-arbre gauche et d'un pointeur sur le sous-arbre droit.

structure noeud

valeur : entier

gauche : pointeur sur noeud
droit : pointeur sur noeud

type arbreBinaire = pointeur sur noeud

Exemple

Soit A un arbre binaire et A_a et A_d ses sous-arbres gauche et droit.

Nombre de nœuds en fonction de A_g et A_d

nombreNoeuds (A : arbreBinaire) : entier

$$N(A) = N(A_g) + N(A_d) + 1.$$

Procédure

```
si A = None alors # condition terminale
  retourner 0

retourner 1 + nombreNoeuds(A->qauche) + nombreNoeuds(A->droit)
```

Récursivité non terminale

Exercice (voir TD)

- 1. donnez une procédure calculant le nombre de feuilles.
- 2. donnez une procédure calculant le nombre de nœuds internes.

Calcul de C(A), le nombre d'appels récursifs de la fonction

- la racine est appelée une fois
- pour chaque nœud, on effectue deux appels de fonction

$$C(A) = 1 + 2N(A)$$
.

Réduction du nombre d'appels de la procédure

Nous pouvons réduire le nombre d'appels de la procédure en supposant que l'arbre est non vide.

Réduction du nombre d'appels de la procédure

Nous pouvons réduire le nombre d'appels de la procédure en supposant que l'arbre est non vide.

Nouvelle procédure

```
nombreNoeuds(A : arbreBinaire) : entier
N : entier ; N = 1
si A->gauche <> None alors
N = N + nombreNoeuds(A->gauche)

si A->droit <> None alors
N = N + nombreNoeuds(A->droit)

retourner N #on renvoie 1 lorsque A est une feuille
```

Calcul de C(A), le nombre d'appels de la procédure Nous avons un appel de la procédure pour chaque nœud.

$$C(A) = N(A)$$
.

Procédure

```
nombreNoeuds (A : arbreBinaire) : entier
   si A = None alors # condition terminale
      retourner 0
   retourner 1 + nombreNoeuds (A->qauche) + nombreNoeuds (A->droit)
```

Exemple

Calcul de la hauteur d'un arbre binaire

Définition inductive

- l'arbre racine (réduit à une racine) est de hauteur 0
- par convention, l'arbre vide est de hauteur −1.
- soit A un arbre binaire de sous-arbre gauche A_q et de sous-arbre droit A_d .

$$h(A) = 1 + max(h(A_g), h(A_d)).$$

Procédure

```
hauteurArbre(A : arbreBinaire) : entier
    si A = None alors # condition terminale
        retourner -1
    hG, hD : entier
    hG = hauteurArbre(A->gauche)
    hD = hauteurArbre(A->droit)
    si hG > hD alors retourner hG + 1
    retourner hD + 1
```


Calcul de la hauteur d'un arbre binaire

Procédure

```
hauteurArbre(A : arbreBinaire) : entier
    si A = None alors # condition terminale
        retourner -1
    hG, hD : entier
    hG = hauteurArbre(A->gauche)
    hD = hauteurArbre(A->droit)
    si hG > hD alors retourner hG + 1
    retourner hD + 1
```

Exemple

Arbre complet

Un arbre A de hauteur h est complet si et seulement si

$$N(A) = 2^{h(A) + 1} - 1.$$

Comment tester si un arbre est complet

- on ne peut pas tester directement si un arbre binaire est complet
- il n'y a pas de test local (directement sur les nœuds)

Procédure vérifiant si un arbre A est complet

On utilise des procédures déjà définies.

```
estComplet(A : arbreBinaire) : booléen
n, h : entier
n = nombreNoeuds(A)
h = hauteur(A)
retourner n = 2**(h+1) - 1
```


Plan du CM 6

Évaluation de conditions

Arbres binaires particuliers

Nombre de nœuds et hauteur

Algorithmes de parcours sur un arbre binaire

Parcours en profondeur

Parcours en profondeur

On part de la racine, on descend le plus à gauche possible et on retourne en arrière pour explorer les autres branches.

Exemple

Ordre de parcours

Chaque nœud est visité trois fois

- 1. première visite premier passage sur le nœud
- 2. seconde visite après l'exploration du sous-arbre gauche
- 3. troisième visite après l'exploration du sous-arbre droit

(1)

(2)

(3)

Affichage des nœuds par ordre préfixe

Ordre préfixe

On effectue le traitement (par exemple afficher les valeurs des nœuds) uniquement à la première visite.

Exemple

741291220511

Algorithme récursif d'affichage

```
affichagePrefixe(A : arbreBinaire)
   si A <> None alors
      afficher A->valeur
      affichagePrefixe(A->gauche)
      affichagePrefixe(A->droite)
```


Ordre infixe

Ordre infixe

On effectue le traitement à la seconde visite.

Exemple

12 4 1 9 7 5 20 11 2

Algorithme récursif d'affichage

affichageInfixe(A : arbreBinaire)

```
si A <> None alors
  affichageInfixe(A->gauche) (2)
  afficher A->valeur (1)
```


Ordre suffixe ou postfixe

Ordre suffixe ou postfixe

On effectue le traitement à la troisième visite.

Exemple

12 1 9 4 5 11 20 2 7

Algorithme récursif d'affichage

```
si A <> None alors
   affichageSuffixe (A->gauche)
  affichageSuffixe(A->droite)
   afficher A->valeur
```

affichageSuffixe(A : arbreBinaire)

(2)

On utilise une pile (de pointeurs sur nœud) pour mémoriser les prochains nœuds à visiter.

Affichage itératif avec l'ordre préfixe

```
affichagePrefixeIteratif(A : arbreBinaire)
    si A <> None alors
    P : pile ; P = initPile() ; P = empiler(A)

    tant que nonVide(P) faire
    B : pointeur sur noeud ; B = sommet(P); P = depiler(P)

    afficher B->valeur

    si B->droit <> None alors
        P = empiler(P, B->droit) #on commence à droite

    si B->gauche <> None alors# car l'ordre
        P = empiler(P, B->qauche)#est inversé avec la pile
```


Algorithmes de parcours sur un arbre binaire

Exécution sur un exemple

Au début la pile est vide

Exécution sur un exemple

2

- on affiche 1
- on dépile 1
- on empile 5
- on empile 2

- on affiche 2
- on dépile 2
- on empile 3

- on affiche 3
- on dépile 3
- on empile 4

- on affiche 4
- on dépile 4

Exécution sur un exemple

6 7

- on affiche 5
- on dépile 5
- on empile 7
- on empile 6

Exécution sur un exemple

8

- on affiche 7
- on dépile 7
- on empile 8

- on affiche 8
- on dépile 8
- la pile est vide, on s'arrête

On définit un algorithme itératif.

On utilise une file (de nœuds) pour mémoriser les prochains nœuds à visiter.

Affichage des nœuds avec un parcours en largeur

```
affichageLargeur(A : arbreBinaire)
si A <> None alors
F: file ; F = initFile() ; F = enfiler(F,A)

tant que nonVide(F) faire
B : pointeur sur noeud ; B = tete(F) ; F = defiler(F)
afficher B->valeur

si B->gauche <> None alors
F = enfiler(F,B->gauche)

si B->droit <> None
F = enfiler(F,B->droit)
```


Exécution sur un exemple

 au début la file est vide

- on affiche 1
- on défile 1
- on enfile 2
- on enfile 3

- on affiche 2
- on défile 2
- on enfile 4

4	5	6

- on affiche 3
- on défile 3
- on enfile 5
- on enfile 6

5	6	7

- on affiche 4
- on défile 4
- on enfile 7

- on affiche 5
- on défile 5

- on affiche 6
- on défile 6
- on enfile 8

Exécution sur un exemple

8

- on affiche 7
- on défile 7

- on affiche 8
- on défile 8
- la file est vide, on s'arrête

