Taller # 2 de Anillos y Campos

Universidad Distrital Francisco José de Caldas Facultad de Ciencias Matemáticas y Naturales Programa Académico de Matemáticas

Ejercicios

- 1. Sea $f(x) = x^6 + 3x^5 + 4x^2 3x + 2$ y $g(x) = x^2 + 2x 3$ en $\mathbb{Z}_7[x]$. Encuéntrese q(x) y r(x) en $\mathbb{Z}_7[x]$ tal que f(x) = g(x)q(x) + r(x) con $\deg(r(x)) < 2$.
- 2. El polinomio $x^4 + 4$ puede factorizarse en factores lineales en $\mathbb{Z}_5[x]$. Encuéntrese esta factorización.
- 3. ¿Es $x^3 + 2x + 3$ un polinomio irreducible de $\mathbb{Z}_5[x]$? ¿Por qué? Exprésese como producto de polinomios irreducibles de $\mathbb{Z}_5[x]$.
- 4. Pruebe que si F es un campo, todo ideal primo propio de F[x] es maximal.
- 5. Si D es un dominio de ideales principales (DIP), entonces D[x] es un DIP.
- 6. Indique cuáles de las funciones dadas ν son evaluaciones euclidianas para los dominios enteros dados.
 - (a) La función ν para $\mathbb Z$ dada por $\nu(n)=n^2$ para $n\in\mathbb Z$ distinto de cero.
 - (b) La función ν para $\mathbb Q$ dada por $\nu(a)=a^2$ para $a\in\mathbb Q$ distinto de cero.
- 7. Encuéntrese un mcd de los polinomios

$$x^{10} - 3x^9 + 3x^8 - 11x^7 + 11x^6 - 11x^5 + 19x^4 - 13x^3 + 8x^2 - 9x + 3,$$

$$x^6 - 3x^5 + 4x^4 - 9x^3 + 5x^2 - 5x + 2$$

en $\mathbb{Q}[x]$.

- 8. Muéstrese que $\{a + xf(x) \mid a \in \mathbb{Z}, f(x) \in \mathbb{Z}[x]\}$ es un ideal en $\mathbb{Z}[x]$.
- 9. Sea D un dominio euclidiano y sea ν una evaluación euclidiana en D. Muéstrese que si a y b son asociados en D, entonces $\nu(a) = \nu(b)$.

- 10. Sea D un DFU. Un elemento c en D es un mínimo común múltiplo de dos elementos a y b en D si $a \mid c$ y $b \mid c$ y c divide a todo elemento de D que sea divisible entre a y b. Muéstrese para cualesquiera dos elementos no nulos de D, un dominio euclidiano, tienen un mínimo común múltiplo en D.
- 11. Considerando $\mathbb{Z}[\sqrt{-5}]$ como subanillo de los Complejos, defina para $z \in \mathbb{Z}[\sqrt{-5}]$ la función $N(z) = z\bar{z}$ y use esta para mostrar que 6 no se factoriza de manera única (sin considerar asociados) en irreducibles en $\mathbb{Z}[\sqrt{-5}]$. Exhíbanses dos factorizaciones diferentes.
- 12. Use el algoritmo euclideano en $\mathbb{Z}[i]$ para encontrar el máximo común divisor de 8+6i y 5-15i.
- 13. Sea $\langle \alpha \rangle$ un ideal principal distinto de cero en $\mathbb{Z}[i]$.
 - a) Muéstrese que $\mathbb{Z}[i]/\langle \alpha \rangle$ es un anillo finito. [Sugerencia: úsese el algoritmo de división.]
 - b) Muéstrese que si π es un irreducible de $\mathbb{Z}[i]$, entonces $\mathbb{Z}[i]/\langle \pi \rangle$ es un campo.
 - c) Con respecto a b), encuéntrese el orden n y característica de cada uno de los siguientes campos:
 - 1) $\mathbb{Z}[i]/\langle 3 \rangle$
 - 2) $\mathbb{Z}[i]/\langle 1+i\rangle$
 - 3) $\mathbb{Z}[i]/\langle 2+i \rangle$
- 14. Sea $n \in \mathbb{Z}^+$ libre de cuadrado, esto es, no es divisible entre el cuadrado de ningún entero primo. Sea $\mathbb{Z}[\sqrt{-n}] = \{a + b\sqrt{-n} \mid a, b \in \mathbb{Z}\}.$
 - a) Defínase la norma N definida por $N(a+b\sqrt{-n})=a^2+nb^2$ para $a+b\sqrt{-n}$ en su norma multiplicativa en $\mathbb{Z}[\sqrt{-n}]$.
 - b) Muéstrese que $N(\alpha) = 1$ para $\alpha \in \mathbb{Z}[\sqrt{-n}]$ si y solo si α es una unidad en $\mathbb{Z}[\sqrt{-n}]$.
 - c) Muéstrese que todo $\alpha \in \mathbb{Z}[\sqrt{-n}]$ distinto de cero que no sea unidad, tiene factorización en irreducibles en $\mathbb{Z}[\sqrt{-n}]$. [Sugerencia: úsese b].

Ejercicios de la clase

1. Sea D un dominio entero y F su campo de fracciones. Entonces, para cualquier polinomio $f(X) \in F[X]$, existe un polinomio $f_0(X) \in D[X]$ y un elemento $a \in D$ tal que:

$$f(X) = \frac{f_0(X)}{a}.$$

• Dado que D es un dominio entero, su campo de fracciones F consiste en todas las fracciones de la forma $\frac{a}{b}$, donde $a, b \in D$ y $b \neq 0$. Consideremos el anillo de polinomios F[X], cuyos elementos son expresiones de la forma:

$$f(X) = \sum_{i=0}^{n} c_i X^i, \quad \text{con } c_i \in F.$$

Queremos demostrar que cualquier polinomio en F[X] puede escribirse como $f(X) = \frac{f_0(X)}{a}$, donde $f_0(X) \in D[X]$ y $a \in D$.

• Construcción de $f_0(X)$: Dado un polinomio $f(X) \in F[X]$, podemos escribir cada coeficiente c_i en términos de elementos de D:

$$c_i = \frac{a_i}{b_i}$$
, con $a_i, b_i \in D$, $b_i \neq 0$.

Sea a el **mínimo común múltiplo** de los denominadores b_0, b_1, \ldots, b_n , es decir,

$$a = \operatorname{mcm}(b_0, b_1, \dots, b_n) \in D.$$

Por la propiedad del mínimo común múltiplo, sabemos que a es un múltiplo de cada b_i , lo que significa que existe $k_i \in D$ tal que:

$$a = k_i b_i$$
.

Multiplicamos ambos lados por a_i , obteniendo:

$$aa_i = k_i b_i a_i$$
.

Ahora, dividiendo por b_i (que es distinto de cero en D):

$$\frac{aa_i}{b_i} = k_i a_i.$$

Dado que $k_i, a_i \in D$ y D es un anillo, el producto $k_i a_i$ también pertenece a D. Definiendo $d_i = k_i a_i$, obtenemos:

$$d_i = \frac{aa_i}{b_i} \in D.$$

Definimos entonces el polinomio $f_0(X)$ en D[X] como:

$$f_0(X) = \sum_{i=0}^n d_i X^i.$$

Por construcción, tenemos:

$$f(X) = \sum_{i=0}^{n} c_i X^i = \sum_{i=0}^{n} \frac{a_i}{b_i} X^i = \sum_{i=0}^{n} \frac{d_i}{a} X^i = \frac{1}{a} \sum_{i=0}^{n} d_i X^i = \frac{f_0(X)}{a}.$$

• Conclusión: Hemos demostrado que cualquier polinomio en F[X] puede escribirse como $f(X) = \frac{f_0(X)}{a}$ con $f_0(X) \in D[X]$ y $a \in D$. Esto implica que D[X] es un subanillo de F[X], ya que cada polinomio en F[X] se obtiene como un polinomio en D[X] dividido por un elemento de D.

П

- 2. Muestre que el polinomio $p(x) = x^2 + x + 3$ es irreducible en $\mathbb{Q}[x]$.
- 3. Determine los elementos de $\mathbb{Q}[x]/\langle p(x)\rangle$.
- 4. Encuentre el inverso multiplicativo para a+bt en $\mathbb{Q}[x]/\langle p(x)\rangle$ con $a+bt\neq 0$.