An Introduction to Statistical Learning: Chapter 9

Due on January 25,2016 at 3:10pm

G. James et.al.

Tony Jiang

- 1. This problem involves hyperplanes in two dimensions.
- (a). Sketch the hyperplane $1 + 3X_1 X_2 = 0$. Indicate the set of points for which $1 + 3X_1 X_2 > 0$, as well as the set of points for which $1 + 3X_1 X_2 < 0$.
- (b). On the same plot, sketch the hyperplane $-2 + X_1 + 2X_2 = 0$. Indicate the set of points for which $-2 + X_1 + 2X_2 > 0$., as well as the set of points for which $-2 + X_1 + 2X_2 < 0$.

Answers:

Red line= $1+3X_1-X_2=0$; Blue line= $-2+X_1+2X_2=0$. (a) set of points for $1+3X_1-X_2>0$: (0,2) set of points for $1+3X_1-X_2>0$: (0,-1) (b) set of points for $-2+X_1+2X_2>0$: (0,2) set of points for $-2+X_1+2X_2<0$: (0,2)

2. We have seen that in p=2 dimensions, a linear decision boundary takes the form $\beta_0 + \beta_1 X 1 + \beta_2 X_2 = 0$. We now investigate a non-linear decision boundary.

(a) Sketch the curve

$$(1+X_1)^2 + (2-X_2)^2 = 4.$$

(b) On your sketch, indicate the set of points for which

$$(1+X_1)^2 + (2-X_2)^2 > 4.$$

as well as the set of points for which

$$(1+X_1)^2 + (2-X_2)^2 \le 4.$$

(c) Suppose that a classifier assigns an observation to the blue class if

$$(1+X_1)^2 + (2-X_2)^2 > 4.$$

and to the red class otherwise. To what class is the observation (0,0) classified? (-1,1)?(2,2)?(3,8)? (d) Argue that while the decision boundary in (c) is not linear in terms of X_1 and X_2 , it is linear in terms of X_1 , X_1^2 , X_2 , and X_2^2 .

Answers:

(a).

It would be an eclipse entering on (-1,2) long axis=2, short axis=1

(b). point inside the eclipse satisfy $(1 + X_1)^2 + (2 - X_2)^2 \le 4$. point outside the eclipse satisfy $(1 + X_1)^2 + (2 - X_2)^2 > 4$.

(c)

- (0,0) is outside the eclipse -> blue class
- (-1,1) is inside the eclipse ->red class
- (2,2) is outside the eclipse -> blue class
- (3,8) is outside the eclipse -> blue class

(d)

This can be easily shown by expanding the terms

$$f(x) = (1 + X_1)^2 + (2 - X_2)^2 - 4$$

= $X_1^2 + 2X_1 + X_2^2 - 4X_2 + 1$

it is a linear combination of the terms X_1, X_1^2, X_2 , and X_2^2

- 3. Here we explore the maximal margin classifier on a toy data set. $\,$
- (a) We are given n=7 observation in p=2 dimensions. For each observation, there is an associated class label.

Sketch the observations.

(b). Sketch the optimal separating hyperplane, and provide the equation for this hyperplane (of the form (9.1)).

Obs.	X_1	X_2	Y
1	3	4	Red
2	2	2	Red
3	4	4	Red
4	1	4	Red
5	2	1	Blue
6	4	3	Blue
7	4	1	Blue

- (c). Describe the classification rule for the maximal margin classifier. It should be something along the lines of "Classify to Red if $\beta_0 + \beta_1 X_1 + \beta_2 X_2 > 0$, and classify to Blue otherwise." Provide the values for β_0 , β_1 , and β_2 .
- (d). On your sketch, indicate the margin for the maximal margin hyperplane.
- (e). Indicate the support vectors for the maximal margin classifier.
- (f). Argue that a slight movement of the seventh observation would not affect the maximal margin hyperplane.
- (g) Sketch a hyperplane that is not the optimal separating hyperplane, and provide the equation for this hyperplane.
- (h) Draw an additional observation on the plot so that the two classes are no longer separable by a hyperplane.

Answers:

(a).

(b)

(c) Classify to Red if $-X_1+X_2+0.5>0$, and classify to Blue otherwise. $\beta_0=05, \beta_1=-1$ and $\beta_2=1$

(d)

see dashed lines

(e)

(f)

7th observation is not a support vector, so a slight movement (so slight that it still is on the down side of the boundary to be classified as blue) will not affect the maximal margin hyperplane.

(g)

$$1.4 + 1.3X_1 - X_2 = 0.$$
 (h)

