# EduElevators with Standard Bank



Advertise with Us!

Your Brand, Front and Center –

Right Here on Page 1!

.Contact us today to secure

your spotlight!"



# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

**MATHEMATICS P1/WISKUNDE V1** 

**NOVEMBER 2018** 

MARKING GUIDELINES/NASIENRIGLYNE

MARKS: 150 *PUNTE: 150* 

These marking guidelines consist of 18 pages. *Hierdie nasienriglyne bestaan uit* 18 *bladsye* 

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

### **NOTE:**

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

## LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyne van toepassing.

| 1.1.1 | $x^{2} - 4x + 3 = 0$ $(x - 3)(x - 1) = 0$ $x = 3 \text{ or } x = 1$ $5x^{2} - 5x + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ✓ factors/correct subt in formula  ✓ $x = 3$ ✓ $x = 1$ (3)                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|       | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{5 \pm \sqrt{25 - 4(5)(1)}}{2(5)}$ $= \frac{5 \pm \sqrt{5}}{10}$ $x = 0.72 \text{ or } x = 0.28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ✓ substitution into the correct formula $ ✓ x = 0.72 $ $ ✓ x = 0.28 $                       |
| 1.1.3 | $x^{2} - 3x - 10 > 0$<br>(x - 5)(x + 2) > 0<br><b>OR/OF</b> $\frac{1}{-2} \sqrt{\frac{y}{5}} \sqrt{\frac{1}{5}} $ | ✓ factors/ critical values                                                                  |
|       | x < -2  or  x > 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\checkmark \checkmark x < -2 \text{ or } x > 5$ (3)                                        |
| 1.1.4 | $3\sqrt{x} = x - 4$ $9x = x^{2} - 8x + 16$ $x^{2} - 17x + 16 = 0$ $(x - 16)(x - 1) = 0$ $x = 16 \text{ or } x = 1$ NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ✓ squaring both sides<br>✓ $x^2 - 17x + 16 = 0$<br>✓ factors<br>✓ answer with selection (4) |

DBE/November 2018

3 NSC/*NSS* – Marking Guidelines/*Nasienriglyne* 

|     | OR/OF                                                                     | OR/OF                                                       |
|-----|---------------------------------------------------------------------------|-------------------------------------------------------------|
|     | $3x^{\frac{1}{2}} = x - 4$                                                |                                                             |
|     | $x-3x^{\frac{1}{2}}-4=0$                                                  | ✓ standard form                                             |
|     |                                                                           |                                                             |
|     | $\left(x^{\frac{1}{2}} - 4\right)\left(x^{\frac{1}{2}} + 1\right) = 0$    | $\checkmark$ recognize $x = \left(x^{\frac{1}{2}}\right)^2$ |
|     | $x^{\frac{1}{2}} = 4$ or $x^{\frac{1}{2}} = -1$                           | ✓ factors                                                   |
|     | $x^{2} = 4$ or $x^{2} = -1$<br>x = 16 NA                                  | ✓ answer with selection (4)                                 |
| 1.2 | $2y + 9x^2 = -1(1)$                                                       |                                                             |
|     | 3x - y = 2 (2)                                                            |                                                             |
|     | y = 3x - 2(3)                                                             | $\checkmark y = 3x - 2$<br>$\checkmark$ substitution        |
|     | $2(3x-2) + 9x^2 = -1$ $6x - 4 + 9x^2 = -1$                                | Substitution                                                |
|     | $\begin{vmatrix} 6x - 4 + 9x & = -1 \\ 9x^2 + 6x - 3 & = 0 \end{vmatrix}$ |                                                             |
|     | $3x^2 + 2x - 1 = 0$                                                       | ✓ standard form                                             |
|     | (3x-1)(x+1) = 0                                                           | ✓ factors                                                   |
|     | $x = \frac{1}{3}$ or $x = -1$                                             | ✓ both x values                                             |
|     | y = -1 or $y = -5$                                                        | ✓ both y values                                             |
|     |                                                                           | ·                                                           |
|     |                                                                           | (6)                                                         |
|     | OR/OF                                                                     | OR/OF                                                       |
|     | $2y + 9x^2 = -1(1)$                                                       |                                                             |
|     | $3x - y = 2 \dots (2)$ $x = \frac{y+2}{3}$                                | $\checkmark x = \frac{y+2}{3}$                              |
|     | $2y + 9\left(\frac{y+2}{3}\right)^2 = -1$                                 | ✓substitution                                               |
|     | $2y + 9\left(\frac{y^2 + 4y + 4}{9}\right) = -1$                          |                                                             |
|     | $2y + y^2 + 4y + 4 + 1 = 0$                                               |                                                             |
|     | $y^2 + 6y + 5 = 0$                                                        | ✓ standard form ✓ factors                                   |
|     | (y+5)(y+1)=0                                                              |                                                             |
|     | y = -1 or $y = -5$                                                        | ✓ both y values                                             |
|     | $x = \frac{1}{3}$ or $x = -1$                                             | ✓ both $x$ values                                           |
|     |                                                                           | (6)                                                         |

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

| 1.3 | $3^{9x} = 64$                                                                                                                                                                    |                                                                                                                     |                                                             |   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---|
|     | $\left(3^{3x}\right)^3 = (4)^3$                                                                                                                                                  |                                                                                                                     | $\checkmark 3^{3x} = 4$                                     |   |
|     | $3^{3x} = 4$                                                                                                                                                                     |                                                                                                                     | 3 -4                                                        |   |
|     |                                                                                                                                                                                  |                                                                                                                     |                                                             |   |
|     | $5^{\sqrt{p}} = 64$                                                                                                                                                              |                                                                                                                     |                                                             |   |
|     | $\sqrt{5}^{\sqrt{p}} = \sqrt{64}$                                                                                                                                                |                                                                                                                     |                                                             |   |
|     | $\sqrt{5}^{\sqrt{p}} = 8$                                                                                                                                                        |                                                                                                                     | $\checkmark \sqrt{5}^{\sqrt{p}} = 8$                        |   |
|     | $[3^{x-1}]^3$ $3^{3x-3}$                                                                                                                                                         | $3^{3x}.3^{-3}$                                                                                                     |                                                             |   |
|     | $\frac{\left[3^{x-1}\right]^3}{\sqrt{5}^{\sqrt{p}}} = \frac{3^{3x-3}}{\sqrt{5}^{\sqrt{p}}}$                                                                                      | $\mathbf{OR/OF} = \frac{\sqrt{p}}{\sqrt{p}}$                                                                        | $\checkmark 3^{3x-3} \text{ or } 3^{3x}.3^{-3}$             |   |
|     |                                                                                                                                                                                  | <b>OR/OF</b> $= \frac{3^{3x} \cdot 3^{-3}}{\frac{\sqrt{p}}{5^{2}}}$ $= \frac{\sqrt[3]{64} \cdot 3^{-3}}{\sqrt{64}}$ |                                                             |   |
|     | $=\frac{3^{3x}}{27\times\sqrt{5}^{\sqrt{p}}}$                                                                                                                                    | $=\frac{\sqrt[3]{64.3^{-3}}}{\sqrt{64}}$                                                                            |                                                             |   |
|     | $27 \times \sqrt{5}$                                                                                                                                                             | √64                                                                                                                 |                                                             |   |
|     | $=\frac{4}{27\times8}$                                                                                                                                                           |                                                                                                                     |                                                             |   |
|     | $=\frac{1}{54}$                                                                                                                                                                  |                                                                                                                     | ✓answer                                                     |   |
|     | 54                                                                                                                                                                               |                                                                                                                     | (4                                                          | ) |
|     | OR/OF                                                                                                                                                                            |                                                                                                                     | OR/OF                                                       |   |
|     | $\begin{vmatrix} \frac{(3^{x-1})^3}{\sqrt{5}^{\sqrt{p}}} = \frac{3^{3x} \cdot 3^{-3}}{(5^{0.5})^{\sqrt{p}}} \\ = \frac{3^{3x} \cdot 3^{-3}}{(5^{\sqrt{p}})^{0.5}} \end{vmatrix}$ |                                                                                                                     | Oldor                                                       |   |
|     | $\frac{1}{\sqrt{5}} \sqrt{p} = \frac{1}{(5^{0.5})^{\sqrt{p}}}$                                                                                                                   |                                                                                                                     |                                                             |   |
|     | $3^{3x}.3^{-3}$                                                                                                                                                                  |                                                                                                                     | $\checkmark 3^{3x-3} \text{ or } 3^{3x}.3^{-3}$             |   |
|     | $=\frac{1}{\left(5\sqrt{p}\right)^{0.5}}$                                                                                                                                        |                                                                                                                     |                                                             |   |
|     |                                                                                                                                                                                  |                                                                                                                     |                                                             |   |
|     | $=\frac{4.3^{-3}}{\sqrt{1-1}}$                                                                                                                                                   |                                                                                                                     | $\checkmark 3^{3x} = 4$                                     |   |
|     | √64<br>1                                                                                                                                                                         |                                                                                                                     | $\checkmark \sqrt{5}^{\sqrt{p}} = 8$                        |   |
|     | $= \frac{4.5}{\sqrt{64}}$ $= \frac{4.\frac{1}{27}}{8} = \frac{1}{54}$                                                                                                            |                                                                                                                     | $\checkmark \sqrt{5}^{\sqrt{p}} = 8$<br>$\checkmark$ answer |   |
|     | 8 - 54                                                                                                                                                                           |                                                                                                                     | v answer (4)                                                | ) |
|     |                                                                                                                                                                                  |                                                                                                                     | [23                                                         |   |

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

| QUES. | ΓΙΟΝ/ <i>VRAAG</i> 2                                                                                           |                                    |                                    |                                                                                                  |      |
|-------|----------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------|------|
| 2.1.1 | 42                                                                                                             |                                    |                                    | ✓answer                                                                                          | (1)  |
| 2.1.2 | 2a = 6 $a = 3$                                                                                                 | 3a + b = 1 $3(3) + b = 1$ $b = -8$ | a+b+c=2 (3) + (-8) + c = 2 $c = 7$ | $ \begin{array}{l} \checkmark \ a = 3 \\ \checkmark \ b = -8 \\ \checkmark \ c = 7 \end{array} $ | (1)  |
|       | $T_n = 3n^2 - 8n + 7$                                                                                          |                                    |                                    | $\checkmark T_n = an^2 + bn + c$                                                                 |      |
|       | OR/OF $2a = 6$                                                                                                 |                                    |                                    | OR/OF                                                                                            | (4)  |
|       | $a = 3$ $T_n = 3n^2 + bn + c$                                                                                  |                                    |                                    | $\checkmark a = 3$                                                                               |      |
|       | $T_1: 3+b+c=2$                                                                                                 |                                    |                                    |                                                                                                  |      |
|       | $T_2: 12 + 2b + c = 3$ $T_2 - T_1: b = -8$                                                                     | $2b+c=-9 \dots$                    | (2)                                | ✓ b = -8                                                                                         |      |
|       | Subst. in (1): -8+                                                                                             | c = -1 $c = 7$                     |                                    | ✓ <i>c</i> = 7                                                                                   |      |
|       | $T_n = 3n^2 - 8n + 7$                                                                                          |                                    |                                    | $\checkmark T_n = an^2 + bn + c$                                                                 | (4)  |
| 2.1.3 | $T_{20} = 3(20)^2 - 8(20)$                                                                                     | + 7                                |                                    | ✓substitution                                                                                    |      |
|       | = 1047                                                                                                         |                                    |                                    | ✓answer                                                                                          | (2)  |
| 2.2   | $T_n = -7n + 42$                                                                                               |                                    |                                    | $\checkmark T_n = -7n + 42$                                                                      |      |
|       | -7n + 42 = -140<br>-7n = -182                                                                                  |                                    |                                    | $\checkmark -7n + 42 = -140$                                                                     |      |
|       | -7n = -182 $n = 26$                                                                                            |                                    |                                    | ✓ n = 26                                                                                         | (3)  |
| 2.3   | $S_n = \frac{n}{2}(a+l)$                                                                                       | <b>OR/OF</b> $S_n =$               | $=\frac{n}{2}[2a+(n-1)d]$          |                                                                                                  |      |
|       | $S_n = \frac{n}{2} (35 - 7n + 42)$                                                                             | $S_n =$                            | $\frac{n}{2}(70-7n+7)$             | $\checkmark S_n = \frac{n}{2}(35 - 7n + 42)$ or                                                  | •    |
|       | $S_n = \frac{n}{2} \left( -7n + 77 \right)$                                                                    |                                    |                                    | $S_n = \frac{n}{2} \big( 70 - 7n + 7 \big)$                                                      |      |
|       | $S_n = -\frac{7}{2}n^2 + \frac{77}{2}n$ $-\frac{7}{2}n^2 + \frac{77}{2}n = 3n^2$                               | -8n+7                              |                                    | ✓ simplification of $S_n$ ✓ equating                                                             |      |
|       | $     \begin{array}{r}         2 \\         13n^2 - 93n + 14 = 0 \\         (n-7)(13n-2) = 0     \end{array} $ |                                    |                                    | ✓ standard form ✓ factors                                                                        |      |
|       | $n = 7  or  n = \frac{2}{13}$ $NA$ $\therefore n = 7$                                                          |                                    |                                    | ✓ answer with selection                                                                          | (6)  |
|       |                                                                                                                |                                    |                                    |                                                                                                  | [16] |

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

| 3.1 | $r = \frac{1}{2}$ and $S_{\infty} = 6$                                          |                                                           |
|-----|---------------------------------------------------------------------------------|-----------------------------------------------------------|
|     | $S_{\infty} = \frac{a}{1 - r}$                                                  |                                                           |
|     | $S_{\infty} = \frac{a}{1 - r}$ $6 = \frac{a}{1 - \frac{1}{2}}$ $a = 3$          | ✓substitution                                             |
|     | $1 - \frac{1}{2}$                                                               | ✓answer                                                   |
|     |                                                                                 | (2)                                                       |
| 3.2 | $T_n = ar^{n-1}$                                                                |                                                           |
|     | $T_8 = 3\left(\frac{1}{2}\right)^7$ $T_8 = \frac{3}{128}$                       | $\checkmark \checkmark T_8 = 3\left(\frac{1}{2}\right)^7$ |
|     | $T_8 = \frac{3}{128}$                                                           | (2)                                                       |
| 3.3 | $\sum_{k=1}^{n} 3(2)^{1-k} = 5.8125$                                            |                                                           |
|     | $3 + \frac{3}{2} + \frac{3}{4} + \dots = 5,8125$                                |                                                           |
|     | $S_n = \frac{a(1-r^n)}{1-r} = 5,8125$                                           |                                                           |
|     | $\frac{3\left[1 - \left(\frac{1}{2}\right)^n\right]}{1 - \frac{1}{2}} = 5,8125$ | $✓ r = \frac{1}{2}$ ✓ substitution                        |
|     | $6\left[1-\left(\frac{1}{2}\right)^n\right]=5,8125$                             |                                                           |
|     | $\left(\frac{1}{2}\right)^n = \frac{1}{32} = 0.03125$                           | ✓simplification                                           |
|     | $2^{-n} = 2^{-5}$ or $n \log \frac{1}{2} = \log \frac{1}{32}$                   |                                                           |
|     | n = 5 	 n = 5                                                                   | ✓answer                                                   |
|     |                                                                                 | (4)                                                       |
|     |                                                                                 |                                                           |
|     |                                                                                 |                                                           |
|     |                                                                                 |                                                           |

| 3.4 | 20                                                                                                              |                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 3.4 | $\sum_{k=1}^{20} 3(2)^{1-k} = p$                                                                                |                                                                                                 |
|     | $3 + \frac{3}{2} + \frac{3}{4} + \dots + 3 \cdot 2^{-19} = p$                                                   | ✓expansion                                                                                      |
|     | $\sum_{k=1}^{20} 24(2)^{-k}$                                                                                    |                                                                                                 |
|     | $=12+6+3+\ldots +24.2^{-20}$                                                                                    | ✓ expansion                                                                                     |
|     | $=4\left(3+\frac{3}{2}+\frac{3}{4}+\ldots+3.2^{-19}\right)$                                                     |                                                                                                 |
|     | =4p                                                                                                             | ✓ answer (3)                                                                                    |
|     | OR/OF                                                                                                           | OR/OF                                                                                           |
|     | $\sum_{k=1}^{20} 3(2)^{1-k} = p$                                                                                | $\checkmark \sum_{k=1}^{20} 6(2)^{-k} = p$                                                      |
|     | $\sum_{k=1}^{20} 6(2)^{-k} = p$                                                                                 | $\sum_{k=0}^{20} A_{k} C(2)^{-k}$                                                               |
|     | $\therefore \sum_{k=1}^{20} 24(2)^{-k} = 4p$                                                                    | $ \begin{array}{c} \checkmark \sum_{k=1}^{20} 4 \times 6(2)^{-k} \\ \checkmark 4p \end{array} $ |
|     | k=1                                                                                                             | (3)                                                                                             |
|     | OR/OF                                                                                                           | OR/OF                                                                                           |
|     | $\sum_{k=1}^{20} 24(2)^{-k} = \sum_{k=1}^{20} 4 \times 3 \times 2(2)^{-k}$                                      | $\checkmark \sum_{k=1}^{20} 4 \times 3 \times 2(2)^{-k}$                                        |
|     | $=4\sum_{k=1}^{20}3\times2(2)^{-k}$                                                                             | $\checkmark 4 \sum_{k=1}^{20} 3 \times 2(2)^{-k}$                                               |
|     | $=4\sum_{k=1}^{20}3\times(2)^{1-k}=4p$                                                                          | √4 <i>p</i>                                                                                     |
|     | n-1                                                                                                             | (3)                                                                                             |
|     | $ \begin{array}{c} \mathbf{OR/OF} \\ \begin{pmatrix} 1 \\ \end{pmatrix}^{20} \end{array} $                      | OR/OF                                                                                           |
|     | OR/OF $S_{20} = \frac{3\left(\frac{1}{2}\right)^{20} - 1}{\frac{1}{2} - 1} = 6 = p$                             | ✓ substitution and answer                                                                       |
|     | $\begin{pmatrix} 2 \\ ((1)^{20} \end{pmatrix}$                                                                  |                                                                                                 |
|     | $S_{20} = \frac{12\left(\left(\frac{1}{2}\right)^{20} - 1\right)}{\frac{1}{2} - 1} = 24$ $24 = 4 \times 6 = 4n$ | ✓ substitution and answer                                                                       |
|     | $ \begin{array}{c c}  & -1 \\ 24 = 4 \times 6 = 4p \end{array} $                                                |                                                                                                 |
|     | $24 = 4 \times 0 = 4p$                                                                                          | ✓4 <i>p</i> (3)                                                                                 |
|     |                                                                                                                 | [11]                                                                                            |

# QUESTION/VRAAG 4

|     | <del>-</del>                                                             |                                                     |     |
|-----|--------------------------------------------------------------------------|-----------------------------------------------------|-----|
| 4.1 | Yes                                                                      | ✓answer                                             |     |
|     | For every <i>x</i> -value there is only one corresponding <i>y</i> value | ✓reason                                             |     |
|     | OR/OF                                                                    |                                                     |     |
|     | One to one mapping (vertical line test)                                  |                                                     | (2) |
| 4.2 | R(-12; -6)                                                               | ✓answer                                             | (1) |
| 4.3 | $f(x) = ax^2$ substitute (-6; -12)                                       |                                                     |     |
|     | $-12 = a(-6)^2$                                                          | ✓substitution                                       |     |
|     | $a=\frac{-1}{3}$                                                         | ✓answer                                             |     |
|     | a = 3                                                                    |                                                     | (2) |
| 4.4 | $f: y = -\left(\frac{1}{3}\right)x^2$                                    |                                                     |     |
|     | $f^{-1}: x = -\left(\frac{1}{3}\right)y^2$                               | $\checkmark$ swapping $x$ and $y$                   |     |
|     | $y^2 = -3x$                                                              | $\checkmark y^2 = -3x$                              |     |
|     | $y = \pm \sqrt{-3x}$                                                     | $\checkmark y^2 = -3x$ $\checkmark y = -\sqrt{-3x}$ |     |
|     | Only $y = -\sqrt{-3x}$ and $x \le 0$                                     | $\checkmark y = -\sqrt{-3x}$                        |     |
|     |                                                                          |                                                     | (3) |
|     |                                                                          |                                                     | [8] |

| 5.1 | Domain: $x \in R$ ; $x \neq 1$                   | ✓answer                                                                         |     |
|-----|--------------------------------------------------|---------------------------------------------------------------------------------|-----|
|     | OR/OF                                            |                                                                                 | (1) |
|     | $x \in (-\infty;1) \cup (1;\infty)$              |                                                                                 |     |
| 5.2 | x = 1                                            | $\checkmark x = 1$                                                              |     |
|     | y = 0                                            | $\checkmark y = 0$                                                              | (2) |
| 5.3 |                                                  | ✓ y intercept  ✓ vertical asymptote  ✓ shape                                    |     |
|     |                                                  |                                                                                 | (3) |
| 5.4 | $x \ge 0$ ; $x \ne 1$                            | $\checkmark x \ge 0$                                                            |     |
|     |                                                  | $\sqrt{x} \neq 1$                                                               | (2) |
|     | OR/OF                                            | OR/OF                                                                           |     |
|     | $0 \le x < 1  \text{or}  x > 1$ $\mathbf{OR/OF}$ | $\begin{array}{c c} \checkmark & 0 \le x < 1 \\ \checkmark & x > 1 \end{array}$ |     |
|     | $x \in [0;1) \cup (1;\infty)$                    | <b>v</b> x > 1                                                                  |     |
|     | [-,-/-(-, /                                      |                                                                                 | [8] |

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

| 6.1   | y = mx + c                                                                                                                                               |                                                                  |     |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----|
| 0.1   | $m = \frac{5-1}{4-0}$ $m = 1$ $c = 1$ $g(x) = x+1$ <b>OR/OF</b> $y = mx + c$                                                                             | ✓ substitution into gradient formula ✓ y-intercept (0; 1)  OR/OF | (2) |
|       | 5 = m(4) + 1 $m = 1$ $g(x) = x + 1$                                                                                                                      | ✓ substitute (4; 5)<br>✓ $c = 1$                                 | (2) |
| 6.2   | $x^{2}-2x-3=0$ $(x+1)(x-3)=0$ $x = -1 \text{ or } x = 3$                                                                                                 | $\checkmark y = 0$ $\checkmark$ factors $\checkmark x$ -values   | (3) |
| 6.3   | A(-1; 0) B(3; 0)<br>$x = \frac{-1+3}{2}  \text{or}  x = \frac{-b}{2a} = \frac{-(-2)}{2(1)}  \text{or}  f'(x) = 2x - 2 = 0$ $x = 1$ $f(x) = x^2 - 2x - 3$ | $\checkmark x$ -value                                            |     |
|       | $y = (1)^2 - 2(1) - 3$ or $y = (x^2 - 2x + (-1)^2) - 3 - 1$<br>$y = -4$ = $(x - 1)^2 - 4$                                                                | ✓ substitution/ completing the squ                               | are |
|       | $y \ge -4$ or $[-4; \infty)$                                                                                                                             | ✓ answer                                                         | (3) |
| 6.4.1 | MN: $y = (x^2 - 2x - 3) - (x + 1)$<br>$= x^2 - 3x - 4$<br>$6 = x^2 - 3x - 4$<br>$0 = x^2 - 3x - 10$<br>0 = (x - 5)(x + 2)                                | $✓ x^2 - 3x - 4$ ✓ substituting $y = 6$                          |     |
|       | x = 5 or $x = -2$                                                                                                                                        | $\checkmark$ values of $x$                                       |     |
|       | OT = 2  or  OT = 5 $NA$                                                                                                                                  | ✓ OT = 2                                                         | (4) |
| 6.4.2 | y = x + 1  substitute  x = -2 $= (-2) + 1$                                                                                                               | ✓ substituting $x = -2$                                          |     |
|       | = -1<br>N(-2; -1)                                                                                                                                        | ✓answer                                                          | (2) |

| 6.5 | $f'(x) = 2x - 2$ $2x - 2 = 1$ $x = \frac{3}{2}$ $f\left(\frac{3}{2}\right) = \frac{-15}{4}$                                                                               | $f'(x) = 2x - 2$ $\checkmark 2x - 2 = 1$ $\checkmark x = \frac{3}{2}$ $\checkmark f\left(\frac{3}{2}\right) = \frac{-15}{4}$ |      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------|
|     | $y + \frac{15}{4} = 1\left(x - \frac{3}{2}\right) \qquad \text{or} \qquad -\frac{15}{4} = \frac{1}{2} + c$ $y = x - \frac{21}{4}$ $\mathbf{OR/OF}$ $x^2 - 2x - 3 = x + p$ | ✓answer  OR/OF                                                                                                               | (5)  |
|     | $x^{2}-2x-3-x-p=0$ This equation will have equal roots, therefore: $b^{2}-4ac=0$ $(-3)^{2}-4(1)(-3-p)=0$                                                                  | ✓ equating  ✓ equal roots  ✓ substitution ✓ simplification                                                                   |      |
|     | $9+12+4p=0$ $p = \frac{-21}{4}$ $y = x - \frac{21}{4}$ $k < \frac{-21}{4}$                                                                                                | ✓answer                                                                                                                      | (5)  |
| 6.6 | $k < \frac{-21}{4}$                                                                                                                                                       | ✓answer                                                                                                                      | (1)  |
|     |                                                                                                                                                                           |                                                                                                                              | [20] |

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

|       |                                                                                                                                                                                                   | , , , , , , , , , , , , , , , , , , , ,                                                                                      |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 7.1.1 | $F = \frac{x[(1+i)^n - 1]}{i}$ $F = \frac{15\ 000\left[\left(1 + \frac{0,088}{4}\right)^{16} - 1\right]}{\frac{0,088}{4}}$ $F = R283\ 972,28$                                                     | ✓ $\frac{0,088}{4}$ and $n = 16$ ✓ substitution into correct formula ✓ answer  ✓ future value – amount                       |
| 7.1.2 | $A = R283 972,28 - 100000 \left(1 + \frac{0,088}{4}\right)^4$ $= R 174 877,60$                                                                                                                    | including interest $\checkmark 100000 \left(1 + \frac{0,088}{4}\right)^4$ $\checkmark \text{answer}$                         |
|       | OR/OF Amount at end of 3 years:                                                                                                                                                                   | OR/OF                                                                                                                        |
|       | $F = \frac{15\ 000 \left[ \left( 1 + \frac{0,088}{4} \right)^{12} - 1 \right]}{\frac{0,088}{4}} - 100\ 000$ $= R103\ 459,12$                                                                      | ✓ R15 000 including interest - R100 000                                                                                      |
|       | Amount at end of 4 years:                                                                                                                                                                         |                                                                                                                              |
|       | $P(1+i)^{n} + \frac{x[(1+i)^{n} - 1]}{i}$ $= 103459,12\left(1 + \frac{0,088}{4}\right)^{4} + \frac{15000\left[\left(1 + \frac{0,088}{4}\right)^{4} - 1\right]}{\frac{0,088}{4}}$ $= R 174 877,60$ | $\checkmark \left(1 + \frac{0,088}{4}\right)^4 \text{ on } P \text{ and } x \text{ in } F_v$ $\checkmark \text{ method}$ (3) |
| 7.2.1 | $P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $1500\ 000 = \frac{x \left[1 - \left(1 + \frac{0,105}{12}\right)^{-12 \times 20}\right]}{\frac{0,105}{12}}$ $x = R14\ 975,70$                       | $ √ i = \frac{0,105}{12} $ $ √ n = 240 $ ✓ substitution into correct formula $ √ \text{ answer} $ (4)                        |

12 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*  DBE/November 2018

| 7.2.2 $P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $P = \frac{14 \ 975,70 \left[1 - \left(1 + \frac{0,105}{12}\right)^{-12\times8}\right]}{\frac{0,105}{12}}$ $P = R969 927,74$ <b>OR/OF</b>               | ✓R14 975,70 in P <sub>v</sub> -formula<br>✓✓ n = 96<br>✓ substitution into<br>correct formula<br>✓ answer  (5) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Balance outstanding = $A - F$                                                                                                                                                                               | OR/OF                                                                                                          |
| $= 1500\ 000 \left(1 + \frac{0,105}{12}\right)^{144} - \frac{14\ 975,70 \left[\left(1 + \frac{0,105}{12}\right)^{144} - 1\right]}{\frac{0,105}{12}}$ $= R5\ 259\ 229,61 - R4\ 289\ 302,47$ $= R969\ 927,14$ | ✓ $n = 144$ in A-formula<br>✓ $n = 144$ in F <sub>v</sub> -formula<br>✓ R14 975,70<br>✓ A – F                  |
|                                                                                                                                                                                                             | ✓ answer (5)                                                                                                   |
|                                                                                                                                                                                                             | [15]                                                                                                           |

| 8.1      | f(x+h) - f(x)                                              |                                   |      |
|----------|------------------------------------------------------------|-----------------------------------|------|
| 0.1      | $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$           |                                   |      |
|          | · · ·                                                      | $\sqrt{x^2 + 2xh + h^2 - 5}$      |      |
|          | $= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 5 - x^2 + 5}{h}$ | ✓simplification                   |      |
|          |                                                            | 1                                 |      |
|          | $=\lim_{h\to 0}\frac{h(2x+h)}{h}$                          | ✓ factorisation                   |      |
|          | 1                                                          |                                   |      |
|          | $=\lim_{h\to 0} (2x+h)$                                    | $\checkmark \lim_{h\to 0} (2x+h)$ |      |
|          | =2x                                                        | $\checkmark 2x$                   |      |
|          |                                                            |                                   | (5)  |
|          |                                                            | OR/OF                             | ( )  |
|          | OR/OF                                                      |                                   |      |
|          | $f(x+h) = (x+h)^2 - 5$                                     |                                   |      |
|          | $=x^2+2xh+h^2-5$                                           | $\checkmark x^2 + 2xh + h^2 - 5$  |      |
|          |                                                            |                                   |      |
|          | $f(x+h) - f(x) = x^2 + 2xh + h^2 - 5 - (x^2 - 5)$          |                                   |      |
|          |                                                            | ✓ simplification                  |      |
|          | $=2xh+h^2$                                                 | ▼ simplification                  |      |
|          | $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$           |                                   |      |
|          | $\int_{h\to 0}^{h\to 0} \frac{h}{h}$                       |                                   |      |
|          | $2xh+h^2$                                                  |                                   |      |
|          | $=\lim_{h\to 0}\frac{2xh+h^2}{h}$                          | ✓ factorisation                   |      |
|          |                                                            |                                   |      |
|          | $=\lim_{h\to 0}\frac{h(2x+h)}{h}$                          |                                   |      |
|          | $=\lim_{h\to 0}(2x+h)$                                     | $\checkmark \lim_{h\to 0} (2x+h)$ |      |
|          |                                                            | , ,                               |      |
|          | =2x                                                        | $\checkmark 2x$                   |      |
|          |                                                            |                                   | (5)  |
| 8.2.1    | $y = 3x^3 + 6x^2 + x - 4$                                  |                                   |      |
|          |                                                            | $\checkmark 9x^2$                 |      |
|          | $dy = 0.0^2 + 12.0 + 1$                                    | $\checkmark 12x$                  |      |
|          | $\frac{dy}{dx} = 9x^2 + 12x + 1$                           | <b>√</b> 1                        | (2)  |
| 0.2.2    |                                                            |                                   | (3)  |
| 8.2.2    | y(x-1) = 2x(x-1)                                           | $\checkmark y(x-1)$               |      |
|          | $y = \frac{2x(x-1)}{x-1} \text{ if } x \neq 1$             | $\checkmark 2x(x-1)$              |      |
|          |                                                            | $\checkmark y = 2x$               |      |
|          | y = 2x                                                     | $\mathbf{v}  y = 2x$              |      |
|          | $\frac{dy}{dx} = 2$                                        | ✓answer                           |      |
|          | dx                                                         | allswei                           | (4)  |
|          |                                                            |                                   | [12] |
| <u> </u> |                                                            |                                   | [*#] |

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

| 9.1.1 | $g(x) = (x+5)(x-x_1)^2$                                           | $\checkmark (x+5)$                                   |
|-------|-------------------------------------------------------------------|------------------------------------------------------|
|       | $20 = 5(x_1)^2$                                                   |                                                      |
|       | $ x_1 ^2 = 4$                                                     |                                                      |
|       | $x_1 = 2$                                                         | ✓repeated root                                       |
|       | $g(x) = (x+5)(x-2)^2$                                             | $\checkmark x_1 = 2$                                 |
|       | $g(x) = (x+5)(x^2 - 4x + 4)$                                      | $\checkmark g(x) = (x+5)(x^2-4x+4)$                  |
|       | $g(x) = x^3 + x^2 - 16x + 20$                                     |                                                      |
| 9.1.2 | $g(x) = x^3 + x^2 - 16x + 20$                                     | <b>/1</b>                                            |
|       | $g'(x) = 3x^2 + 2x - 16$                                          | ✓derivative                                          |
|       | $3x^2 + 2x - 16 = 0$                                              | ✓ equating to zero                                   |
|       | (3x+8)(x-2) = 0                                                   | ✓factors                                             |
|       | $x = \frac{-8}{3}  \text{or}  x = 2$                              |                                                      |
|       | $R\left(\frac{-8}{3}; \frac{1372}{27}\right)$ or $R(-2,67;50,81)$ | ✓ co-ordinates of R                                  |
|       |                                                                   | ✓ co-ordinates of P                                  |
| 0.1.2 | P(2;0)                                                            | (5)                                                  |
| 9.1.3 | g''(x) = 6x + 2 $g''(0) = 2$                                      | $\checkmark g''(x) = 6x + 2$ $\checkmark g''(0) = 2$ |
|       | $\therefore$ concave up                                           | $\checkmark g (0) = 2$ $\checkmark conclusion $ (3)  |
|       |                                                                   |                                                      |
|       | OR/OF                                                             | OR/OF                                                |
|       | g''(x) = 6x + 2                                                   | $\checkmark g''(x) = 6x + 2$                         |
|       | 6x + 2 = 0                                                        | $\checkmark x = -\frac{1}{3}$                        |
|       | $x = -\frac{1}{3}$ is the point of inflection                     | $\sqrt{x^2-3}$                                       |
|       | 3                                                                 | ✓ conclusion                                         |
|       | ∴ concave up                                                      | (3)                                                  |
|       |                                                                   |                                                      |
|       |                                                                   |                                                      |

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018



DBE/November 2018



| 10.1 | $\frac{AH}{AH} = \frac{3}{AH}$                                                   | ,                                                   |            |
|------|----------------------------------------------------------------------------------|-----------------------------------------------------|------------|
|      | $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$                                        | ✓ answer                                            | (1)        |
| 10.2 | Area of a parallelogram = base $\times \perp$ height                             |                                                     |            |
|      | Area = $\frac{3}{5}(5-t).\frac{2}{5}t$                                           | $\sqrt{\frac{2}{5}}t$ $\sqrt{\frac{3}{5}}(5-t)$     |            |
|      | $Area = \frac{6}{25} (5 - t) t$                                                  | $\checkmark \frac{3}{5}(5-t)$                       |            |
|      | $A(t) = -\frac{6}{25}t^2 + \frac{6}{5}t$ $A'(t) = -\frac{12}{25}t + \frac{6}{5}$ | $\checkmark A(t) = -\frac{6}{25}t^2 + \frac{6}{5}t$ |            |
|      | $A'(t) = -\frac{12}{25}t + \frac{6}{5}$                                          | 12 6                                                |            |
|      | $-\frac{12}{25}t + \frac{6}{5} = 0$                                              | $\checkmark -\frac{12}{25}t + \frac{6}{5}$          |            |
|      | 12t - 30 = 0                                                                     |                                                     |            |
|      | $t = \frac{30}{12} \text{ or } \frac{5}{2}$                                      |                                                     |            |
|      | 12 2                                                                             | ✓answer                                             | (5)        |
|      |                                                                                  |                                                     | (5)<br>[6] |
|      |                                                                                  |                                                     | լսյ        |

# QUESTION/VRAAG 11

| 11.1.1 | $7^5 = 16\ 807$                                                  | ✓ ✓ answer                                                       | (2) |
|--------|------------------------------------------------------------------|------------------------------------------------------------------|-----|
| 11.1.2 | $7 \times 6 \times 5 \times 4 \times 3$ $= \frac{7!}{2!} = 2520$ | $\checkmark$ 7×6×5×4×3 or $\frac{7!}{2!}$<br>$\checkmark$ answer | (2) |
| 11.2   | $2 \times 7 \times 1 = 14$                                       | ✓✓✓ 2×7×1                                                        | (3) |
|        |                                                                  |                                                                  | [7] |

| 12.1 | P(A  or  B) = P(A) + P(B)                                                                                                              | $\checkmark$ P(A or B) = P(A) + P(B)                                                                                                    |     |
|------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | 0,74 = 0,45 + y                                                                                                                        | ✓substitution                                                                                                                           |     |
|      | y = 0.29                                                                                                                               | ✓answer                                                                                                                                 | (3) |
| 12.2 | $ \begin{array}{c c} 3x \\ \hline 4x \end{array} $ S S S S S S S S S S S S S S S S S S                                                 |                                                                                                                                         |     |
|      | Let the number of mystery gift bags = $x$<br>The total number of bags = $4x$                                                           | ✓ 4 <i>x</i>                                                                                                                            |     |
|      | $\left(\frac{x}{4x}\right) \times \left(\frac{x-1}{4x-1}\right) = \frac{7}{118}$ $\frac{1}{4} \times \frac{x-1}{4x-1} = \frac{7}{118}$ | $\checkmark \left(\frac{x}{4x}\right) \text{ or } \left(\frac{1}{4}\right)$ $\checkmark \left(\frac{x-1}{4x-1}\right)$                  |     |
|      | $\frac{x-1}{4x-1} = \frac{28}{118}$ $118x - 118 = 112x - 28$ $x = 15$                                                                  | $\sqrt{\frac{1}{4}} \times \frac{x-1}{4x-1}$ $\sqrt{\frac{1}{4}} \times \frac{x-1}{4x-1}$ $\sqrt{\frac{7}{118}}$ $\sqrt{\frac{7}{118}}$ | (6) |

# Need an amazing tutor? www.teachme2.com/matric

Mathematics P1/Wiskunde V1

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2018

| OR/OF                                                                                             | OR/OF                                                                                                                                         |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| $P(gift \text{ and } gift) = P(gift \text{ at first draw}) \times P(gift \text{ at second draw})$ |                                                                                                                                               |
| $\frac{7}{118} = \frac{1}{4} \times P(\text{gift at second draw})$                                | $\checkmark \frac{1}{4}$                                                                                                                      |
| P(gift at second draw) = $\frac{7}{118} \div \frac{1}{4}$                                         | $\checkmark \frac{1}{4} \times P(gift at 2^{nd} draw)$                                                                                        |
|                                                                                                   | $✓ \frac{1}{4} \times P(gift \text{ at } 2^{nd} \text{ draw})$ $✓ \frac{7}{118} = \frac{1}{4} \times P(gift \text{ at } 2^{nd} \text{ draw})$ |
| Therefore: P(gift at first draw) = $\frac{15}{100}$                                               | $\checkmark \frac{14}{59}$                                                                                                                    |
| And: 15 bags had mystery gifts inside                                                             | $\checkmark \frac{15}{60}$                                                                                                                    |
|                                                                                                   | ✓answer (6)                                                                                                                                   |
|                                                                                                   | [9]                                                                                                                                           |

TOTAL/TOTAAL: 150