

Physics 2: Electricity, Optics and Quanta

Week 2 – Electrostatics

2023.9

QQ group: 776916994

cyjing@swjtu.edu.cn

What have we learned LAST WEEK?

- 1
- 2
- 3.

Is there anything that we still need to spend more time to get understood?

- 1.
- 2.

What are we going to do after the lecture?

OUTLINE

Static electricity

Polar – neutral, but charge is not distributed uniformly

Hold a net charge for long?

Hold their charge for a limited time and return to neutral state.

Where does the charge go?

Excess charge "leaks off" on to water molecules in the air.

Electrostatic Force – Coulomb's law

2 **point** charges q_1 and q_2 :

Vector!
$$\mathbf{F}_{21} = k \frac{q_1 q_2}{r_{21}^2} \hat{\mathbf{r}}_{21} = \frac{q_1 q_2}{4\pi \varepsilon_0 r_{21}^2} \hat{\mathbf{r}}_{21}$$
 unit vector (to show the direction)

$$q_1$$
 on q_2 ?

$$q_2$$
 on q_1 ?

$$k = 9 \times 10^9 \, Nm^2 C^{-2}$$

$$\varepsilon_0 = 8.85 * 10^{-12} \,\mathrm{C}^2 / (\mathrm{N \, m}^2)$$

(Permittivity of free space)

Electric field line

Characteristics:

- 1. Direction
- 2. Magnitude
- 3. Direction of *E*
- 4. Never cross

Electric field line

Nearly uniform field between parallel plates

Electric field from a uniformly charged ring

Surface charge density $\sigma = Q/A$

- divide the circle into small elements
- Direction of electric field of the small elements?

• Direction of total E?

Electric field from a uniformly charged ring

Surface charge density $\sigma = Q/A$

- divide the circle into small elements
- the *horizontal* components from elements on opposite sides of the circle cancel out
- all the small elements give a same amount of electric field in the *vertical* direction

Electric field from a uniformly charged ring

- area of each element: $A_{el} = r\delta\phi \delta r$
- charge of each element: $Q_{el} = \sigma r \delta \phi \ \delta r$
- number of elements in a circle: $\frac{2\pi r}{r\delta\phi} = \frac{2\pi}{\delta\phi}$
 - field from one element:

$$E_{el} = \frac{Q_{el}}{4\pi\varepsilon_0 d^2} \cos\theta = \frac{\sigma r \delta \phi \, \delta r \cos\theta}{4\pi\varepsilon_0 d^2}$$

total field from the circle

$$E_{tot}(r) = rac{2\pi}{\delta\phi} rac{\sigma r \delta\phi}{4\pi oldsymbol{arepsilon}_0 d^2} \cos heta = rac{\sigma r \, h \, \delta r}{2oldsymbol{arepsilon}_0 (r^2 + h^2)^{3/2}}$$

- divide the plane into concentric rings with equal width
- contributions from rings, from r=0 to infinity
 contribution from one ring (r): $E_{tot}(r) = \frac{2\pi}{\delta\phi} \frac{\sigma r \delta\phi}{4\pi\varepsilon_0 d^2} \cos\theta = \frac{\sigma r h \delta r}{2\varepsilon_0 (r^2 + h^2)^{3/2}}$
 - Define a new variable x: $x = \frac{r}{h}$ $\delta x = \frac{\delta r}{h}$

$$E_{tot}(r) = rac{\sigma(rac{r}{h})\!ig(rac{\delta r}{h}ig)}{2oldsymbol{arepsilon}_0ig(ig(rac{r}{h}ig)^{\!\!2}+1ig)^{\!\!3/2}}$$

• Field from charges at radius r = hx

$$E_{tot}(x) = \frac{\sigma x \delta x}{2\varepsilon_0 (x^2 + 1)^{3/2}}$$

Add all Fields from x = 0 to $x = \infty$

$${E}_{ extit{plate}} = rac{\sigma}{2oldsymbol{arepsilon}_0}\int\limits_0^\infty rac{x}{(1+x^2)^{3/2}}dx$$

$$E_{\it plate} = rac{\sigma}{2 oldsymbol{arepsilon}_0}$$

with a uniform surface density of charge σ :

- But of course, no plate can be infinite
- This is only an approximation

Plate is large

Close to the plate

Related to the distance?

How?

Think about it!

Gravitational field

Definition: Force per unit mass

Magnitude above Earth surface:

 GM_E/r^2

At the earth surface, magnitude

$$g = GM_E/r^2$$

Charge accelerated in an electric field

Potential Energy U

Charge accelerated in an electric field

In a gravitational field.

Potential Energy

The electrostatic force is a conservative force

Corresponding potential energy

Potential energy of a charge

Zero potential - infinitely far away

$$v = 0$$

Change in potential energy = - work done

$$W = Fx = -\Delta U$$

Potential energy of a charge

Potential energy of a charge

$$W = F x$$

F depends on x

Potential energy and the path

 $W = \int F \cdot dr$

W only depends on movement in

the radial direction

So the work does not depend on the path!

U and multiple charges

Total U is the sum of potential energy due to all charges

$$U = \sum_{i=1}^{6} \frac{Q_i q}{4\pi \varepsilon_0 d_i}$$

- > Potential energy is always proportional to q
- > Define: $V = \frac{U}{q} = \sum_{i=1}^{6} \frac{Q_i}{4\pi\varepsilon_0 d_i}$

V is the "potential"

Electric potential

$$V = \frac{U}{q}$$

V is the 'electric potential', or just 'potential'

Change in potential between points A and B is:

$$\Delta V = V_B - V_A = \frac{\Delta U_{BA}}{q}$$
 (Joules/Coulomb = Volt) also called "Voltage"

$$Q \leftarrow \frac{5 \text{ cm}}{} \qquad V = ? \qquad Q = -3 \text{ nC}$$

$$V = \frac{kQ}{r}$$

Potential at distance 'r' from a point charge is the same

We can draw "equipotential lines" where potential is the same

Equipotential lines/surfaces are perpendicular to Electric Field lines

Differences between

Electric field line &

Electric field line

Characteristics:

- 1. Direction
- 2. Magnitude
- 3. Direction of *E*
- 4. Never cross

Characteristics:

- 1. Direction to E
- 2. Shape
- 3. Shortest way

Similar in the Gravitational potential lines/Conservation of mechanical Energy

The speed of the electron?

$$\Delta E_p + \Delta E_k = 0$$

V and E

How to relate potential to electric field?

In a constant electric field

$$W = qV_{AB} = F_E d = qEd$$

$$E = \frac{V_{AB}}{d}$$

$$1 \text{ N/C} = 1 \text{ V/m}$$

In general

$$E = -\frac{dV}{dr}$$

or $\vec{E} = -\nabla V$ gradient

Four identical point charges are arranged at the corners of a square [Hint: Draw a figure]. The electric field E and potential V at the center of the square are

- (a) E = 0, V = 0.
- (b) $E = 0, V \neq 0.$
- (c) $E \neq 0, V \neq 0$.
- $(d) E \neq 0, V = 0.$
- (e) E = V regardless of the value.

Which of the following statements is valid?

- (a) If the potential at a particular point is zero, the field at that point must be zero.
- (b) If the field at a particular point is zero, the potential at that point must be zero.
- (c) If the field throughout a particular region is constant, the potential throughout that region must be zero.
- (d) If the potential throughout a particular region is constant, the field throughout that region must be zero.

Parallel metal plates charged by a constant voltage source.

What is the charge on the plate(s)?

Voltage of the battery = potential difference

Distance between plates - D

Surface area of plates - A

Parallel metal plates charged by a constant voltage source.

What is the charge on the plate(s)?

- **8.** Which of the following do not affect capacitance?
 - (a) Area of the plates.
 - (b) Separation of the plates.
 - (c) Material between the plates.
 - (d) Charge on the plates.
 - (e) Energy stored in the capacitor.

TRY TO RECALL

What have we learned this WEEK?

- 1.
- 2
- 3.

Is there anything that we still need to spend more time to get understood?

- 1.
- 2.

What are we going to do after the lecture?

