MDS Assignment 3

1. We have:
$$g'(x) = (2^{5(x^{2}) \cdot x^{n}})'$$

$$= \log 2 \cdot 2^{f(x^{2}) \cdot x^{n}} \cdot (f(x^{2}) \cdot x^{n})'$$

$$= \log 2 \cdot 2^{f(x^{2}) \cdot x^{n}} \cdot ((f(x^{2}))' \cdot x^{n} + (x^{n})' \cdot f(x^{2}))$$

$$= \log 2 \cdot 2^{f(x^{2}) \cdot x^{n}} \cdot (2x \cdot f'(x^{2}) \cdot x^{n} + n \cdot x^{n-1} \cdot f(x^{2}))(4)$$

Subtitute
$$x = 1$$
 into (1), we get:
 $g'(1) = \log 2$. $2^{g(1) \cdot 1^n} \cdot (2.1. f'(1). 1^n + n. 1^{n-1} \cdot f(1))$

$$(=)$$
 -4 $\log 2 = \log 2$. 2^{-2} . $(6 - 2n)$
 $(=)$ -4 = $\frac{1}{2}$. $(3-n)$

$$(=)$$
 - 8 = 3 - n

$$(=)$$
 $n = 11$

2.
(a)
$$P_{r}(2 < x < 3) = F(3) - F(2)$$
.

$$= \left(-\frac{9}{5} + \frac{39}{10} - \frac{11}{10}\right) - \left(-\frac{4}{5} + \frac{26}{10} - \frac{11}{10}\right)$$

$$= -18 + 39 - 11 + 8 - 26 + 11$$

$$=\frac{3}{3}$$

Ans: 3

(b) We will consider these 3 cases: Case 1: b<1 We have: Pr(X = b) = F(b) = 0 (because b<1) =) $\frac{1}{2} = 0$ (contradiction) Case 2: 14 6 48. Then we have: Pr (x 4b) = F(b) $= -\frac{b^2}{5} + \frac{13b}{10} - \frac{11}{10}$ $\frac{1}{2} = -\frac{b^2}{5} + \frac{13b}{10} - \frac{11}{10}$ (because 14b =3) (=) 5 = $13b - 2b^2 - 11$ (=) 13b-2b-16 = 0. (=) 2b2-13b+16=0 (=) $b^2 - 13b + 8 = 0$ $\left(b-\frac{13}{4}\right)^2=\frac{13^2}{16}-8$ (=) $\left(b-\frac{13}{4}\right)^2=\frac{41}{1b}$ $b = 13 + \sqrt{41}$ (contradiction since $1 \le b \le 3$) $b = 13 - \sqrt{41}$

(ase 3:
$$b 73$$

We have: $A(x \le b) = F(b)$
 $\Rightarrow 1$ (because $b > 3$)
 $\Rightarrow 1 = 1$ (contradiction)
Hence, combining 3 cases, we have the only b that satisfies is $b = \frac{13+\sqrt{10}}{10}$.
(C) Since $f(x) = F'(x)$, then from the definition of $F(x)$ we have:
 $f(x) = \begin{cases} 0 & \text{if } x < 1 \\ -\frac{2}{5}x + \frac{13}{10} & \text{if } 1 \le x \le 3. \end{cases}$
So the graph of $f(x)$ is:

3. (a) We have:
$$1 : Rr(-1 \le x \le 5)$$
 ($rac{70}$).

= $\int_{0}^{1} f(x) dx + \int_{0}^{1} f(x) dx$

= $\int_{0}^{1} f(x) dx + \int_{0}^{1} f(x) dx$

= $\int_{0}^{1} c dx + \int_{0}^{1} \int_{0}^{1} dx$

= $c(1-(-1)) + \int_{0}^{1} (5-4)$

= $2c + \int_{0}^{1} c dx$

= $2c + \int_{0}^{1} c dx$

[Ans: $2c + \int_{0}^{1} c dx$

= $\int_{0}^{1} x f(x) dx + \int_{0}^{1} x f(x) dx$

= $\int_{0}^{1} x f(x) dx + \int_{0}^{1} x f(x) dx$

= $\int_{0}^{1} x f(x) dx + \int_{0}^{1} x f(x) dx$

= $\int_{0}^{1} x f(x) dx + \int_{0}^{1} x f(x) dx$

= $\int_{0}^{1} x f(x) dx + \int_{0}^{1} x f(x) dx$

$$F[x^{2}] = \int_{0}^{\infty} x^{2}f(x) dx$$

$$= \int_{0}^{\infty} x^{2}f(x) dx + \int_{0}^{\infty} x^{2}f(x) dx$$

$$=\frac{4}{15}+\frac{61}{15}$$

$$=\frac{15}{3}$$
.

$$=\frac{13}{3}-\left(\frac{9}{10}\right)^2=3.52\overline{3}$$

Ans: 3.523

4. In order to find the Maclaurin polynomial $P_{\epsilon}(x)$ for f(x), we need to Sind the Maclaurin polynomial $P_{\epsilon}(x)$ for the function $g(x) = e^{3x^2}$

According to the Maclaurin polynomial for ex, we have:

$$e^{x} = \sum_{i=0}^{\infty} \frac{x^{ii}}{x^{i}}$$

So the Madaurin polynomial PG (x) for the Sunction gcx) = e 32 is:

$$1 + 3x^2 + 9x^4 + 29x^6$$

1 + 3x² + 9x4 + 29x6.

=) The Maclaurin polynomial Pz(x) For the function f(x) is

$$(1+x)$$
 $(1+3x^2+9x^4+27x^6)$

$$= 1 + x + 3x^{2} + 3x^{3} + \frac{9x^{9}}{2} + \frac{9x^{5}}{2} + \frac{9x^{6}}{2} + \frac{9x^{5}}{2}.$$

The Maclaurin polynomial PG(x) for the function F(x) is.

$$P_{6}(x) = 1 + x + 3x^{2} + 3x^{3} + 9x^{6} + 9x^{6} + 9x^{6}$$
(b) Since in a Maclaurin polynomial, the coefficient of x^{6} is $\frac{g^{(6)}(0)}{6!}$
Combined with (1), we have:

 $f^{(6)}(0) = 9 = (=) f^{(6)}(0) = 3240$ [Ans: 3240]