Criptografía Moderna I: Hashing y Cripto Simétrica

CC5325 - Taller de Hacking Competitivo

Problemas de Criptografía Moderna

- Poco resolvibles con herramientas (;aunque de más que existen algunas!).
- Requieren entender un poco de cómo funcionan primitivas criptográficas (y qué cosas pueden salir mal).
- Esta unidad **no reemplaza** un curso formal de criptografía (tomen CC5301 Intro a la Criptografía Moderna si les interesa aprender bien este tema).
- Libro útil: Serious Cryptography de Jean-Philippe Aumasson

Hashing

- Cambio chico en M -> Cambio grande en H
- Muy difícil calcular Hash⁻¹(H)
- Muy difícil encontrar colisiones

	MD5	SHA1	SHA3-256
" " (String vacío)	d41d8cd98f00b204e 9800998ecf8427e	da39a3ee5e6b4b0d 3255bfef95601890af d80709	a7ffc6f8bf1ed76651 c14756a061d662f58 0ff4de43b49fa82d80 a4b80f8434a
"hola"	4d186321c1a7f0f35 4b297e8914ab240	99800b85d3383e3a 2fb45eb7d0066a487 9a9dad0	c0067d4af4e87f00d bac63b6156828237 059172d1bbeac674 27345d6a9fda484
"password"	5f4dcc3b5aa765d61 d8327deb882cf99	5baa61e4c9b93f3f0 682250b6cf8331b7e e68fd8	c0067d4af4e87f00d bac63b6156828237 059172d1bbeac674 27345d6a9fda484

Rainbow Tables

5baa61e4c9b93f3f0682250b6c → password f8331b7ee68fd8

¡Muy pesadas!

RT de largo 8, con alfabeto de 62 caracteres [A-Za-z0-9], con 1 byte por caracter = 628 bytes, lo cual es casi 200 tebibytes*

*Existen optimizaciones que permiten bajar el tamaño de la tabla.

Otros problemas en seguridad de hashing

<u>Vulnerabilidades en algoritmos</u>

• Colisiones de Hash

KDF (Key Derivation Functions)

imagen de Base de Datos por smashicons en https://flaticon.com

- Contraseñas se "salan" con un valor aleatorio, el cual se combina con la contraseña
 - "hash" producido para dos usuarios concontraseñas iguales no será igual
- Su validación requiere harto poder de cómputo (demora segundos en validar)
 - Mayor uso de RAM o una gran cantidad de iteraciones.

Criptografía Simétrica

Iconos de https://flaticon.com (Freepik)

One Time Pad

- Forma "irrompible" de descifrar un mensaje
- Dado un stream de bits B realmente aleatorio y a disposición de Alicia y Bob, se define cada bit i del texto cifrado C como C_i = P_i xor B_i

Cifradores de Bloque

- Texto a cifrar debe tener un tamaño fijo.
 - Si es más chico, se rellena con algún caracter (Padding)
- Luego el texto se mete a un "cifrador de bloque", el cual toma de parámetro una **llave secreta**.
 - Todos los bytes del texto plano afectan a todos los bytes del texto cifrado (cambiar una letra cambia muy probablemente todo el cifrado)

Modos de Cifrado

ECB:

Electronic Codebook (ECB) mode encryption

Electronic Codebook (ECB) mode decryption

Modos de Cifrado

Block Cipher Chaining (CBC)

IV: Vector de
Inicialización
(público, aleatorio)

Cipher Block Chaining (CBC) mode encryption

Cipher Block Chaining (CBC) mode decryption

¿Y si repito el IV?

Bit Flipping Attack

https://crypto.stackexchange.com/questions/66085/bit-flipping-attack-on-cbc-mode

Cipher Block Chaining (CBC) mode decryption

¿Y si filtro información en caso de error?

Padding Oracle Attack

https://users.dcc.uchile.cl/~eriveros/cc5312/
anexos/padding-oracle/

Padding PKCS#7:

Repetir **n** veces el byte \mathbf{n} , donde \mathbf{n} es la cantidad de bytes que faltan para completar el último bloque (n pertenece a [1..BlockLen]). (Si el mensaje cabe exactamente en Kbloques, se agrega un bloque extra con BlockLen bytes de valor **BlockLen.**)

hello world!0x40x40x40x4

Cifradores de Flujo

- Llave actúa como "semilla" en un generador pseudoaleatorio.
- Luego, cada bit del mensaje se XORea con cada bit del generador pseudoaleatorio.
- Si logro determinar el <u>estado interno</u> del cifrador, puedo romper el cifrado.

Autentificación de Mensajes (MAC)

¿En qué debo fijarme en los CTF de Criptografía?

- Malas implementaciones
 - En especial implementaciones caseras
- Vulnerabilidades conocidas
 - Buscar ataques conocidos al algoritmo utilizado
- <u>Canales laterales</u>
 - ¿Algún comportamiento secundario me revela info útil?
- Valores calculables por fuerza bruta fácilmente
 - o Parámetros en rangos chicos o que dependen de otros.