高二化学暑假班(教师版)

教师		日期	
学生			
课程编号	03	课型	专题
课题	铁的计算		

教学目标

掌握几种常见的计算技巧方法:极值法(平均值法)、差量法、守恒法(元素守恒、得失电子守恒)、 终态法

教学重点

掌握几种常见的计算技巧方法:极值法(平均值法)、差量法、守恒法(元素守恒、得失电子守恒)、 终态法

教学安排

	版块	时长
1	知识温习	15mins
2	方法整理	20mins
4	典例解析	65mins
5	师生总结	10mins
6	课后作业	30mins

知识温习

一、完成下列反应方程式

完成下列默写:

1.	氧化铁与稀盐酸反应:
2.	氧化亚铁与稀硝酸反应:

3.	写出 2 反应的离子方程式:	

4.	氢 氧化业铁住全气中放氧化的反应:	
5.	制备氢氧化亚铁的化学方程式:	

- 6. 氢氧化铁受热分解:
- 7. 氯化铁与氨水反应的离子方程式:
- 8. 三价铁离子与碘离子的反应:
- 9. 亚铁离子与高锰酸根的反应: _______
- 10. 铜与氯化铁的反应:

二、完成下列填空

- 11. 氢氧化亚铁在空气中被氧化时发生的颜色变化: _____。
- 12. 氯化亚铁溶液的颜色_______; 氯化铁溶液的颜色: ______。
- 13. 写出 2 种检验 Fe³⁺的方法?
- 14. 如何检验氯化亚铁和氯化铁混合溶液中的 Fe²⁺?
- 15. 不能与 Fe²⁺共存的物质有哪些?

【答案】

- 1. $Fe_2O_3+6HCl\rightarrow 2FeCl_3+3H_2O$
- 2. $3\text{FeO}+10\text{HNO}_3\rightarrow 3\text{Fe}(\text{NO}_3)_3+\text{NO}\uparrow+5\text{H}_2\text{O}$
- 3. $3\text{FeO}+10\text{H}^++\text{NO}_3^-\rightarrow 3\text{Fe}^{3+}+\text{NO}\uparrow +5\text{H}_2\text{O}$
- 4. $4\text{Fe}(\text{OH})_2 + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow 4\text{Fe}(\text{OH})_3$
- 5. $FeSO_4+2NaOH \rightarrow Fe(OH)_2\downarrow+Na_2SO_4$
- 6. $2\text{Fe}(\text{OH})_3 \xrightarrow{\Delta} \text{Fe}_2\text{O}_3 + 3\text{H}_2\text{O}$
- 7. $Fe^{3+}+3NH_3\cdot H_2O \rightarrow Fe(OH)_3\downarrow +3NH_4^+$
- 8. $2Fe^{3+}+2I^{-}\rightarrow 2Fe^{2+}+I_{2}$
- 9. $5\text{Fe}^{2+}+\text{MnO}_4^- \rightarrow 5\text{Fe}^{3+}+\text{Mn}^{2+}+4\text{H}_2\text{O}$
- 10. $Cu+2FeCl_3\rightarrow 2FeCl_2+CuCl_2$
- 11. 先产生白色沉淀,后逐渐变为灰绿色,最后变为红褐色。
- 12. 浅绿色; 棕黄色
- 13. 方法一:取出少量的被检验的溶液,加入 KSCN,溶液变选红色,证明有 Fe³⁺存在。 方法二:取出少量的被检验的溶液,加入 NaOH 溶液,产生红褐色沉淀,证明有 Fe³⁺存在。
- 14. 滴加少量的酸性高锰酸钾溶液,若紫色退去,则证明含有 Fe²⁺。
- 15. ①氧化还原: S²⁻、HS-、I⁻、SO₃-
 - ②复分解: OH-
 - ③双水解: CO₃²⁻、HCO₃-

方法整理

解题虽然没有一成不变的方法模式,但应建立解题的基本思维模式:题示信息+基础知识+逻辑思维。掌握正确的解题方法能简化解题过程,提高解题能力。

1. 极值法

(1) 极值法的含义

极值法是采用极限思维方式解决一些模糊问题的解题技巧。它是将题设构造为问题的两个极端, 然后依据有关化学知识确定所需反应物或生成物的量值,进行判断分析,求得结果。也称为极端假设法。

- (2) 极值法解题的基本思路
 - ①把可逆反应假设成向左或向右进行的完全反应。
 - ②把混合物假设成纯净物。
 - ③把平行反应分别假设成单一反应。
- (3) 极值法解题的关键

紧扣题设的可能趋势, 选好极端假设的落点。

(4) 极值法解题的优点

极值法解题的优点是将某些复杂的、难以分析清楚的化学问题假设为极值问题,使解题过程简 化,解题思路清晰,把问题化繁为简,由难变易,从而提高了解题速度。

2. 平均值法

(1) 依据:

若 $X_A > X_B$,则 $X_A > X > X_B$, X 代表平均相对原子(分子)质量、平均浓度、平均含量、平均生成量、平均消耗量等。

(2) 应用:

已知 X 可以确定 X_A 、 X_B 的范围;或已知 X_A 、 X_B 可以确定 X 的范围。

解题的关键是要通过平均值确定范围,很多考题的平均值需要根据条件先确定下来再作出判断。实际上,它是极值法的延伸。

(3)混合物的许多化学特征具有加合性,均可求出平均值。属于这类"特性数量"的有:相对分子质量、密度、同条件下的体积分数、物质的量浓度、反应热、平均组成等。平均值法解题范围广泛,特别适用于缺少数据而不能直接求解的混合物判断问题。

3. 差量法

(1) 差量法的应用原理

差量法是指根据化学反应前后物质的量发生的变化,找出"理论差量"。这种差量可以是质量、物质的量、气态物质的体积和压强等。用差量法解题是先把化学方程式中的对应差量(理论差量)跟差量(实际差量)列成比例,然后求解。

如:

- (2) 使用差量法的注意事项
 - ①所选用差值要与有关物质的数值成正比例或反比例关系。
 - ②有关物质的物理量及其单位都要正确地使用。
- (3) 差量法的类型及应用
 - ①质量差法
 - ②体积差法

4. 关系式法

物质间的一种简化的式子,解决多步反应,计算最简捷。多步反应中建立关系式的方法

(1) 叠加法(如利用木炭、水蒸气制取氨气)

$$C+H_2O(g)$$
 一高温 \longrightarrow $CO+H_2$

$$CO+H_2O(g)$$
 $\xrightarrow{\overline{\beta}\underline{\mathbb{A}}}$ CO_2+H_2

由木炭、水蒸气制取 NH3 的关系为: C~ NH3

(2) 元素守恒法

工业制备硝酸的过程如下:

$$2NO + O_2 \rightarrow 2NO_2$$

$$3NO_2+H_2O \rightarrow 2HNO_3+NO$$

经过多次氧化和吸收,由 N 元素守恒知:

(3) 电子转移守恒法

$$NH_3 \xrightarrow{\text{$\not=$}} HNO_3$$
, $O_2 \xrightarrow{\text{$\not=$}} 2O^{2-}$

由得失电子总数相等知,NH3经氧化等一系列过程生成HNO3,NH3和O2的关系为

【答案】(1) $3C\sim4NH_3$ (2) $NH_3\sim HNO_3$ (3) $NH_3\sim2O_2$

4. 整体思维法(终态法)

整体思维抛开事物之间复杂的变化关系, 从整体认识把握事物之间联系规律, 具有化繁为简, 快速解题的功效,能较好的煅烧学生思维的全面性、灵活性,因此高考无论在选择还是综合性题目 中经常有意设置。

方法1:极值法(平均值法)

【例 1】将 5.6g 铁粉	与另一种金属的混合物跟足	是量的盐酸反应,标准状况下	生成氢气 2.2L,则另一
种金属可能是()		
A. Al	B. Mg	C. Ca	D. Zn

【难度】★

【答案】D

【解析】假设 1: 5.6g 全部为铁,则生成气体的体积为 2.24L

假设 2: 5.6g 全部为选项中的金属, Al: 6.96L Mg: 5.22L Zn: 1.96L 钙会与水反应,产生的氢气量为6.272L。

若另一种金属质量为 5.6g,则产生的氢气的体积应该大于 2.2L 才符合题目要求。

变式 1: 某两种金属粉末的混合物 25g, 投入足量的稀硫酸中, 在标准状况下产生氢气 11.2L, 则该 混合物可能是()

A. 铝和镁 B. 镁和铁 C. 铁和铜

- D. 铁和锌

【难度】★【答案】B

变式 2: 将 5g Mg、Al、Fe 三种金属的混合物与足量稀硫酸反应,反应完全时共放出 $H_22.8L$ (标况), 则三种金属物质的量之和为()

- A. =0.125mol B. >0.125mol C. <0.125mol D. 无法确定

【难度】★【答案】C

【方法提炼】

- ①确定两个极端分别是什么情况:
- ②考虑极端值能够取到。

知识点 2: 差量法

【例1】把一定质量的铁块放入一定质量的硫酸铜溶液中,过一会儿取出,发现溶液质量比原来减少了2g,求参加反应的铁的质量及生成的铜的质量。

【难度】★

变式 1: 将 3.0g 铁粉加入 100mL 硫酸铜溶液中,充分反应后,过滤,将滤渣洗涤、干燥、称量的固体物质 3.4g。求:

- (1)参加反应的铁的质量。
- (2) 硫酸铜溶液中溶质的物质的量浓度。

【难度】★

变式 2: 在 $FeCl_3$ 和 $CuCl_2$ 的混合溶液中加入过量的铁粉,若充分反应后溶液的质量没有变化,则原混合溶液中 Fe^{3+} 和 Cu^{2+} 的物质的量浓度之比为(

A. 2:7

B. 1:7

C. 7:1

D. 5:14

【难度】★★★

【答案】A

【解析】单质铁可以参与两个反应: ①将 FeCl₃ 还原为 FeCl₂,此过程溶液的质量是增加的; ② 与 CuCl₂ 发生置换反应,此过程溶液的质量是减少的。①中质量的增加量等于②中质量的减少量。设溶液的体积为 1 L,溶液中 FeCl₃ 的浓度为 x mol/L,CuCl₂ 的浓度为 y mol/L,质量增减为 z g,则

Fe +
$$2\text{FeCl}_3 \rightarrow 3\text{FeCl}_2$$
 Δm
 2 mol 56 g
 $x \text{ mol}$ $z \text{ g}$
Fe+CuCl₂ \rightarrow Cu+FeCl₂ Δm
1 mol $(64-56)\text{g}$
 $y \text{ mol}$ $z \text{ g}$

56x/2 = (64-56)y,28x = 8y, x:y=2:7

【方法提炼】

解答此类题的关键是分析引起差量的原因,只有当差值与始态量或终态量存在比例关系,且化 学计量的差值必须是同一物理量时,才能用"差量法"解题。

方法 3: 守恒法

题型一:元素守恒法

【例 1】将 $14.4 \text{gFeC}_2 \text{O}_4$ 隔绝空气加热分解,最终可以得到 7.2 g 铁的氧化物,此氧化物是(

- A. FeO
- B. Fe₂O₃
- C. Fe₃O₄
- D. FeO, Fe₃O₄

【难度】★★

【答案】A

【解析】草酸亚铁与产物铁氧化物存在铁元素守恒的关系。

$$FeC_2O_4 \hbox{$\sim\sim\sim\sim\sim\sim\sim} FeO_x$$

物质的量之比: 1

物质的量:

FeO_x的质量:
$$7.2 = \frac{14.4g}{(56+12\times2+16\times4)} \times (56+16\cdot x)$$

x=1

变式 1: 向铁和氧化铁的混合物中加入足量的稀 H_2SO_4 , 充分反应后生成 $FeSO_4$ 溶液, 当生成的 Fe^{2+} 和 H₂的物质的量之比为 4:1 时,被氧化的铁与被还原的铁离子的物质的量之比时(

- A. 1:1
- B. 2:1
- C. 1:2
- D. 1:3

【难度】★★

【答案】A

【解析】整个过程中参与的反应有: Fe~H₂↑ 2Fe³⁺~Fe(可看做是 Fe₂O₃~Fe)

变式 2: 用足量的 CO 还原 32.0 克某种氧化物,将生成的气体通入足量澄清石灰水中,得 60 克沉淀, 则该氧化物是()

- A. MgO
- B. Fe_2O_3
- C. CaO D. Cu₂O

【难度】★★★

【答案】B

【解析】由题意可知, CO 在还原该氧化物的同时,本身被氧化为 CO2,利用 CO2和 Ca(OH)2 生成的 CaCO3 可以求出 CO2 的量,然后利用原子守恒法来巧解该题。CO 被氧化为 CO2,增加 的氧原子全部来源于金属氧化物。n(CO₂)=n(CaCO₃)=0.6mol。CO₂中1个O是来源于金属氧化 物,则金属氧化物中含氧的质量为 16g/mol×0.6mol=9.6g。设金属的相对原子质量为 M,根据化合物中各原子个数比等于其物质的量之比,由比例式: n(金属)/n(O)=22.4g/M/0.6,结合选项,用代入法可求出 M=56 时符合题意。

【方法提炼】

用关系式法解题的关键是建立关系式,而建立关系式的一般途径有:

- ①利用粒子守恒建立关系式;
- ②利用化学方程式中化学计量数间的关系建立关系式:
- ③利用化学方程式的加和建立关系式等。

题型二: 得失电子守恒法

【例 2】用盐酸酸化的 KNO₃ 溶液表现出氧化性,向该溶液中加入 5mL 1.5mol/L 的 $FeCl_2$ 溶液,完全反应后被还原的 KNO₃ 为 $2.5 \times 10^{-3} mol$,则 KNO₃ 的还原产物为 (

- A. NO_2
- B. NO
- $C. N_2$
- D. N_2O

【难度】★★

【答案】B

【解析】被酸化的硝酸钾溶液,相当于硝酸起到氧化剂的作用,与还原性的 Fe²⁺发生反应。不需要写出反应方程式,直接利用"氧化还原反应中得失电子守恒"列出方程式。

5//1 2:5// (5・/ 川中国・ 2

NO 中 N 是+2 价。选 B

变式 1: 将 20g 铁粉放入一定量的稀硝酸中,充分反应后,放出气体 2.24L (标准状况下),则剩余 铁粉的质量是 ()

- A. 14.4g
- B. 11.6g
- C. 8.8g
- D. 3.2g

【难度】★★

【答案】B

【解析】(常规方法也能解,但较复杂)铁粉过量,说明单质铁被氧化为 Fe^{2+} ,根据得失电子,硝酸中的 N 部分转变为 NO,失去电子: 3×0.1 mol=0.3mol,则相应地,铁应该得到的电子数为: $2\times x=0.3$ mol,x=0.15mol,则反应掉得铁的质量为 $0.15\times 56=8.4$ g,则剩余铁粉的质量是 20g-8.4g=11.6g。

变式 2: 稀硫酸与适量铁反应完全后释放出 112mL 氢气(S.T.P.),所得 $FeSO_4$ 溶液与稀的高锰酸钾溶液反应,消耗高锰酸钾溶液 50mL。已知 MnO_4 被还原为 Mn^{2+} ,求所加入高锰酸钾溶液的物质的量浓度。

【难度】★★

【答案】0.02mol/L

【解析】本题计算的依据是亚铁离子与高锰酸根的氧化还原反应,如果写出反应方程式,加上通过氢气的量获得的亚铁离子的物质的量,列比例式即可求的高锰酸根物质的量。但是,写出方程式并配平的过程比较繁琐,可以借助氧化还原反应中得失电子守恒的关系,找出 Fe²⁺ 与MnO₄-物质的量的对应关系。

? = 0.02 mol/L

【方法提炼】

此类题目中题干中一定会存在一个氧化还原反应,解题时一定更不要去书写化学方程式,只要将对应的氧化剂、还原剂、氧化产物、还原产物确定下列,结合反应中给定的量,利用得失电子守恒。

方法 4: 整体思维法 (终态法)

【例 1】在铁和氧化铁混合物 15 g 中,加入稀硫酸 150 mL,能放出 H_2 1.68 L(标准状况)。同时铁和氧化铁均无剩余,向反应后的溶液中滴入 KSCN 溶液,未见颜色变化。为了中和过量的 H_2 SO₄,且使 Fe^{2^+} 完全转化成 $Fe(OH)_2$,共消耗 3 $mol\cdot L^{-1}$ 的 NaOH 溶液 200 mL,则原硫酸的物质的量浓度是

A. $1.5 \text{ mol} \cdot \text{L}^{-1}$

 $B. \ 2 \ mol \cdot L^{-1}$

 $C. \ \ 2.5 \ mol \cdot L^{-1}$

D. $3 \text{ mol} \cdot L^{-1}$

【难度】★★★

【答案】B

【解析】此题反应过程复杂,但最后溶液中只有 Na_2SO_4 ,因为 NaOH 共 0.6 mol,故 Na_2SO_4 为 0.3 mol,所以原 H_2SO_4 为 0.3 mol。

变式 1: 向一定量的 Fe、Fe₂O₃ 的混合物中加入 2mol/L 的 HNO₃ 溶液 250mL,反应完成后生成 NO1.12L (标准状况下),再向反应后溶液中加入 1mol/LNaOH 溶液,要使铁元素完全沉淀下来,所加入 NaOH 溶液的体积最少是(

A. 450mL

B. 500mL

C. 400mL

D. 不能确定

【难度】★★★

【答案】A

【解析】铁元素全部变成沉淀时溶液中的 NO₃-刚好与 Na⁺结合形成 NaNO₃溶液,溶液中的 NO₃-为: 0.25L×2mol/L- (1.12/22.4) =0.45mol, 所以 V(NaOH)=0.45/1=0.45L

变式 2: 将铁和氧化铁的混合物 5.44g 加入到 50mL3.2mol/L 的盐酸中,恰好完全反应,经检验溶液中只有 Fe^{2+} ,并无 Fe^{3+} 存在,求原混合物中氧化铁的质量。

【难度】★★

【答案】3.2g

【解析】溶液中只有 Fe^{2+} ,说明原铁和氧化铁中的铁元素全部转化成了 Fe^{2+} ,混合物与盐酸恰好完全反应,说明溶液中的溶质是 $FeCl_2$ 由此可以得到 Fe^{2+} 的物质的量是 Cl-的两倍。题中又已知混合物的质量,列方程组即可求得。

【方法提炼】

此种方法对应的题干中,一般会涉及到多步反应,如果从正面去解题会涉及繁琐的化学反应过程,过程会很复杂。用终态法去解题,直接考虑多步反应后的最终状态,考虑溶液中的溶质是什么,一个物质内部的阴阳离子之间存在什么关系,再结合题干已知的量进行解题。

课后作业

l.	有两种金属粉末的混	昆合物 15g,投入足量	的稀硫酸中, 在标准状况	上下产生氢气 11.2L,则下列各
	组金属中肯定不能构	内成上述混合物的是《	()	
	A. 铁和铝	B. 铜和锌	C. 镁和银	D. 镁和铝
	【难度】★【答案】	BD		
2.	某金属混合物 1.5g,	跟足量的稀硫酸反应	Z,共产生 560ml 氢气(S	S.T.P), 此混合物的组成可能
	是 ()			
	A. 镁和铝	B. 钙和镁	C. 铝和锌	D. 铝和铁
	【难度】★【答案】	C		
3.	将一定质量的 Mg、	Zn 混合物与足量的稀	养 H ₂ SO ₄ 反应,生成 H ₂ 2.	8L (标准状况下), 原混合物
	的质量可能是()		
	A. 2g	B. 4g	C. 9g	D. 10g

【难度】★【答案】B

4. 两种金属粉末混合物 14 克,投入足量的稀硫酸中,产生 1 克氢气,则金属的混合物不可能是()

①Fe ②Zn ③Al ④Mg A. ①② B. ②③ C. ①③ D. ①④

【难度】★【答案】A

5.	将 8g 铁片放入 100	OmL 硫酸铜溶液中,当治	溶液中的 Cu ²⁺ 全部被还	原时,"铁片"的质量变为8.2g,
	则原硫酸铜溶液的	物质的量浓度为()	
	A. 0.5mol/L	B. 0.25mol/L	C. 0.025mol/L	D. 0.125mol/L
	【难度】★【答案] B		
6.	在 100mL 0.1mol/L	的 CuSO4溶液中,加力	入薄的铁片, 反应片刻品	后,将铁片取出洗净,干燥后称
	量,铁片增重 0.08	g,则此时 Fe ²⁺ 的物质的	的量浓度为(假定体积)	无变化)()
	A. 1×10^{-4} mol/L	В.	1×10^{-3} mol/L	
	C. 1×10^{-2} mol/L	D.	1×10^{-1} mol/L	
	【难度】★【答案] D		
7.	1.4g 铁全部溶于盐	酸中,加入足量 NaOH	溶液,得红棕色沉淀,	过滤后给红棕色沉淀加热(在
	空气中),最后得到	到红色物质的质量是()	
	A. 1g	B. 1.6g	C. 2g	D. 1.8g
	【难度】★★【答	案】C【解析】铁元素等	守恒	
8.	在 FeCl ₃ 和 CuCl ₂ 的	的混合物溶液中,加入	过量的 Fe 屑,反应停止	上后, 称得固体与加入的铁屑质
	量相等。原混合液	中 FeCl3 和 CuCl2 的物质	质的量之比是()
	A. 1:1	B. 3:4	C. 2:7	D. 7:2
	【难度】★★【答	案】C		
9.	某铁的"氧化物"	样品,用 5mol/L 盐酸 1	40mL,恰好完全溶解,	所得溶液还能吸收标准状况下
	0.56L 氯气, 使其中	中 Fe ²⁺ 全部转化为 Fe ³⁺ ,	该样品可能的化学式。	륃 ()
	A. Fe_2O_3	B. Fe ₃ O ₄	C. Fe_4O_3	D. Fe ₅ O ₇
	【难度】★★★【	答案】D		
	【解析】根据 2Fe2	$^{+}+\text{Cl}_{2}\rightarrow 2\text{Fe}^{3^{+}}+2\text{Cl}^{-},$	可知铁的"氧化物"样品	用盐酸溶解后所得溶液中 n(Fe ²
	$^{+}) = 0.025 \text{ mol} \times 2 =$	0.05 mol,根据电荷守恒	亘得 $2n(Fe^{2+})+3n(Fe^{3+})$	$= n(C1^-), \ \ \text{M} \ n(\text{Fe}^{3^+}) = 0.2 \ \text{mol},$
	故 $n(\operatorname{Fe}^{2^+})$: $n(\operatorname{Fe}^{3^+}$	$)=0.05:0.2=1:4, \; t$	效该氧化物可表示为 FeC	O·2Fe ₂ O ₃ ,即Fe ₅ O _{7。}
10.	某稀硝酸溶液中,力	加入 5.6g 铁粉充分后,每	失粉全部溶解,放出一氧	化氮气体,溶液质量增加 3.2g,
	所得溶液中 Fe ²⁺ 和	Fe ³⁺ 的物质的量之比是	()	
	A. 3: 2	B. 2:3	C. 1:1 D.	2:1
	【难度】★★★【	答案】A【解析】利用	得失电子守恒	
11.	Fe ₃ O ₄ 与 HNO ₃ 反应	立生成 Fe(NO ₃) ₃ 、NO、	H ₂ O 若溶解 1mol Fe ₃ O ₄	,则被还原的硝酸是()
	A. 1/2mol	B. 1/3mol	C. 3mol	D. 9mol
	【难度】★★【答	案】B【解析】利用得	失电子守恒	
12.	将适量铁粉放入三	氯化铁溶液中,完全反	应后,溶液中 Fe ²⁺ 和 F	e ³⁺ 浓度比为 3:2。则已反应的
	Fe ³⁺ 和未反应的 Fe	3+的物质的量之比是()	

13.	在由 Fe、FeO 和 Fe	2O3 组成的混合物中加	入 100 mL 2 mol / L 辪	的盐酸,恰好使混合物完全	溶解,	
	并放出 448 mL 气体	以(标准状况),此时溶	序液中无 Fe ³⁺ 离子。则	下列判断正确的是()	
	A. 混合物里三种物	7质反应时消耗盐酸的	物质的量之比为1:1	: 3		
	B. 反应后所得溶液	页中的 Fe ²⁺ 离子与 Cl	离子的物质的量之比。	为1:2		
	C. 混合物里,FeO	的物质的量无法确定,	,但 Fe 比 Fe ₂ O ₃ 的物点	质的量多		
	D. 混合物里, Fe ₂ C	D ₃ 的物质的量无法确定	E,但Fe比FeO的物	质的量多		
	【难度】★★★【答	答案】BC				
14.	向一定量的 Fe、FeC	和 Fe ₂ O ₃ 的混合物中力	加入 120mL 4mol/L 的	稀硝酸,恰好使混合物完全	溶解,	
	放出 0.06 mol NO,	往所得溶液中加入 KS	CN 溶液, 无血红色出	现。若用足量的氢气在加热	热下还	
	原相同质量的原混合	合物,能得到铁的物质	的量为()			
	A. 0.24mol	B. 0.21mol	C. 0.16mol	D. 0.14mol		
	【难度】★★★【答	答案】B				
	【解析】利用元素等	宁恒和终态法解题。最	终溶液中的物质是 Fe	(NO ₃) ₂ ,课根据溶液中 NO)3-的量	
	推出 Fe ²⁺ 的量,而溶	容液中的剩余的硝酸根	的量=n(总硝酸的量)-1	n(NO)		
15.	向一定量的 Fe、Fe	O 、 Fe_2O_3 的混合物中,	加入 100mL 1 moL /	L 的盐酸; 恰好使混合物等	完全溶	
	解并放出标准状况	解并放出标准状况下 224mL 气体。向所得溶液中加入 KSCN 溶液无血红色出现,若用足量的				
	CO在高温下还原相	目同质量的此混合物,自	能得到单质铁的质量为	J ()		
	A. 11.2g	B. 2.8g	C. 5.6g	D. 无法计算		
	【难度】★★★【答	答案】B				
16.	向一定量的 Cu、Fe	2O3的混合物中加入 30	00 mL 1 mol/L 的 HCl	溶液,恰好使混合物完全流	容解,	
	所得溶液中加入 KS	CN 溶液后无红色出现	R, 若用过量的 CO 在高	高温下还原相同质量的此混	!合物,	
	固体的质量减少了	()				
	A. 6.4 g	B. 4.8 g	C. 2.4 g	D. 1.6 g		
	【难度】★★★【名	答案】C				
17.	将 8gFe ₂ O ₃ 投入到 1	50mL 某浓度的稀 H ₂ S	SO ₄ 中,再投入 7g 铁	粉收集到 1.68LH ₂ (标准状	说),	
	同时, Fe 与 Fe ₂ O ₃ 以	7无剩余,为了中和过量	量的硫酸,且使溶液中	铁元素完全沉淀,共消耗4	1mol/L	
	的 NaOH 溶液 150n	nL。则原硫酸的物质的	的量浓度为 ()			
	A. 1.5 mol/L	B. 0.5 mol/L	C. 2 mol/L	D. 1.2 mol/L		
	【难度】★★★【名	答案】C				
18.	现有一铁粉样品,	其中可能混有碳粉或铝	品粉中的一种。取 28g	该样品,加入足量的稀硫酶	睃,产	
	生氢气 13.44L(已热	英算成标准状况下的体	积)。试通过计算判断	样品中混有的是碳粉还是银	岩粉并	

A. 2:3 B. 3:2 C. 1:2 D. 1:1

【难度】★★【答案】D

计算铁粉的纯度(精确到0.1%)。

【难度】★★【答案】样品中混有的杂质是铝粉。铁粉的纯度是90.5%

- 19. 某硫酸铜溶液 100mL,向溶液中浸入 50g 的铁片,待充分反应后,将铁片取出,洗净并 低温下 烘干 (假设析出的铜全部附在铁片上),称得为 50.16g,求:
 - (1) 原硫酸铜溶液的物质的量浓度为多少?
 - (2) 析出铜的质量为多少克?

【难度】★【答案】(1) 0.2mol/L (2) 1.28g

- 20. 在 200mL FeCl₂溶液中通入一定量的 Cl₂后,把溶液分为两等份,一份加入足量的硝酸银溶液, 反应得到 28.7g 沉淀;另一份放入铁片,直到溶液中不再使 KSCN 溶液变红色为止,铁片质量 减轻了 0.56g,求:
 - (1) 通入 Cl₂ 反应后的溶液中 Cl⁻的物质的量;
 - (2) 通入 Cl₂ 在标准状况下的体积;
 - (3) 原 FeCl₂溶液的物质的量浓度。

【难度】★★【答案】(1) 0.4mol (2) 0.448L (3) 0.9mol/L

【解析】利用得失电子守恒、氯元素的守恒

- 21. 将 54.4 g 铁粉和氧化铁的混合物中加入 200 mL 的稀硫酸,恰好完全反应,放出氢气 4.48 L(标准状况). 反应后的溶液中滴加 KSCN 不显红色,且无固体剩余物,求:
 - ①混合物铁和氧化铁各是多少克?
 - ②原稀硫酸物质的量浓度?
 - ③反应后得到 FeSO₄ 的物质的量是多少?

【难度】★★

【答案】解: 设铁粉的物质的量为 X, 氧化铁的物质的量为 Y。

据: Fe + $H_2SO_4 \rightarrow FeSO_4$ + H_2 和 Fe + $2Fe^{3^+} \rightarrow 3Fe^{2^+}$ 可以得到:

 $\int X - Y = 0.2 \text{ mol},$

56X + 160Y= 54.4 g 解得: X=0.4mol, Y=0.2mol。

所以铁的质量为22.4g,氧化铁的质量为32g。

- (2) 反应中共生成 $FeSO_4$ 0.8mol,所以消耗 H_2SO_4 的物质的量为 0.8mol,稀硫酸的浓度为 0.8mol/0.2L=4.0mol/L。
 - (3) 根据铁元素的物质的量守恒,反应后 FeSO₄ 的物质的量为 0.8mol。
- 22. 向 15gFe 和 Fe_2O_3 混合物中加入 150ml 稀 H_2SO_4 ,在标准状况下放出 1.68L H_2 ,这时 Fe 和 Fe_2O_3 均无剩余,再向溶液中滴入硫氰化钾溶液未见颜色变化,为中和过量的 H_2SO_4 ,消耗了 3mol/L 的 NaOH 溶液 200mL 求:
 - (1) Fe 和 Fe₂O₃ 质量

(2) 原稀硫酸的物质的量浓度

【难度】★★【答案】(1) Fe:7g; Fe₂O_{3:}8g (2) 0.3mol/L

- 23. 在铁和氧化铁的混合物 15g 中加入 150mL 稀 H_2SO_4 放出氢气 1.68L(标准状况)。当反应停止后,铁和氧化铁均无剩余,且溶液中无 Fe^{3+} 存在。为了中和过量 H_2SO_4 ,并 使 Fe^{2+} 完全转化为 $Fe(OH)_2$ 沉淀,共耗用 3 mol/L NaOH,溶液 200mL。求:
 - ①混合物中铁和氧化铁各多少克?
 - ②稀 H₂SO₄ 的物质的量浓度为多少?

【难度】★★★

【答案】①铁的质量为7g,氧化铁的质量为8g.

②稀硫酸的物质的量浓度为 2mol/L

【解析】第①问用元素守恒法(或得失电子守恒法)解;第②问用终态法解。