

REMIND Your Neural Network to Prevent Catastrophic Forgetting

Tyler L. Hayes (PhD Student)

Rochester Institute of Technology

Email: tlh6792@rit.edu

Web: https://tyler-hayes.github.io

Continual AI Talk: May 29, 2020

Outline

- Incremental Learning Paradigms
- Replay to Mitigate Forgetting
- REMIND Architecture
- Experiments on Image Classification
- Experiments on Visual Question Answering
- Conclusions

Incremental Batch Learning

- Dataset is broken into several batches
- At each time-step, the learner...
 - Receives a batch of data from one or more classes
 - Loops over the batch until learned
 - Is evaluated at the end of training the batch

Advantages:

- Recently demonstrated much success
- Makes learning easier since batches are iid

Incremental Batch Learning

Caveats:

- It is slow...
 - Must wait for data batch to accumulate before learning
 - Looping makes learning time consuming
 - Cannot evaluate until a batch is learned
- Batches often consist of multiple classes, reducing the problem to iid learning

Why Doesn't Incremental Batch Learning Suffice?

- Real-world applications require agents to learn and evaluate new information immediately
- Examples: robotics/embedded agents, home appliances, web agents

Online Streaming Learning

- Instances often have temporal correlations and are non-iid, e.g., videos
- At each time-step, the learner...
 - Receives one new sample
 - Learns the sample and then is evaluated
- The learner is only allowed one loop through the entire dataset

Online Streaming Learning

Advantages:

- Closer to how humans/animals learn
- New instances are learned immediately and the agent can be evaluated immediately
- Better suited for real-time applications

But what about catastrophic forgetting?

Replay in Artificial Neural Networks

- Replay (rehearsal) is one of the most effective methods for mitigating forgetting in neural networks
- Involves storing previous examples in a buffer and mixing new instances with old ones to fine-tune the network

Replay in Artificial Neural Networks

- Researchers have been upgrading replay to maximize efficiency
 - Store N raw images, e.g., 100 per class,
 for representation learning
 - Improve performance by using "soft" targets (distillation) and data augmentation
- But storing raw pixel images in a buffer is memory intensive and not biologically plausible

Gaps Between Biological and Artificial Replay

- Hippocampal indexing theory* postulates that the hippocampus stores compressed
 representations of neocortical activity patterns, which are reactivated during consolidation
 - a. Visual inputs are high in the visual processing hierarchy, e.g., not raw pixel representations
- 2. Animals perform immediate **online streaming learning** from non-iid experiences

Image: Yassa and Reagh, 2013

REMIND Your Neural Network to Prevent Catastrophic Forgetting

•••

Tyler L. Hayes*, Kushal Kafle*, Robik Shrestha*, Manoj Acharya, & Christopher Kanan

* denotes equal contribution Available on arXiv: https://arxiv.org/abs/1910.02509

REMIND: Replay using Memory Indexing

Perform brain-inspired streaming learning by:

- Key Idea 1: Store compressed representations of intermediate layers instead of raw inputs (e.g., CNN feature maps) for replay
 - Implement **hippocampal indexing theory** using tensor quantization
- **Key Idea 2:** Control stability-plasticity by freezing part of the network
 - Only **update high visual processing** areas

REMIND Components

- Inputs are images denoted by X
- Main network is decomposed into **two sub-networks**
 - \circ G consists of the early layers of the network and will be frozen during incremental training
 - \circ F consists of the later layers of the network and will be plastic during incremental training
 - \circ *Output* = F(G(X))
- CNN feature maps extracted from G are denoted by Z
 - \circ Z = G(X)
- A **product quantizer** will be trained to encode Z as a compressed representation and decode the compressed representation as Z'

Before we talk about REMIND, we need to talk about Product Quantization*...

Preliminaries: Product Quantization

- Let us assume that we have 50k
 vectors that we can use to train a
 product quantization model
 - o Each vector has **1024 dimensions**
- We would like to train a product quantization model that has 8
 codebooks
- First, divide our 50k vectors into 8 sub-vectors, each of size 128
 - o 1024 / 8 = 128

Data Sub-Vectors

Preliminaries: Product Quantization

- Next, we perform k-means clustering
 8 times to train our 8 codebooks,
 each of size 256
- Now our product quantizer has been trained!
 - Yellow sub-vector centroids are our codebooks

Preliminaries: Product Quantization

- Given a new 1024-dimensional vector
- Partition vector into 8 sub-vectors
- For each of the 8 sub-vectors, find its nearest centroid in the associated codebook and record the index of the centroid
- Now our vector can be represented by just 8 indices and a set of codebooks!

How is REMIND Trained?

Stage 1: Base Initialization

- Train entire network offline (F and G) on a subset of the dataset (X) to initialize lower visual features
- 2. Push subset of data through frozen layers(*G*) of network and extract mid-level CNN maps for base init (*Z*)
- Train product quantization model on base init CNN maps
- 4. Save codebook and memory indices of all data with ground truth labels

How is REMIND Trained?

Stage 2: Streaming Learning

- Pass new data through "Frozen Layers" of CNN (G) to get feature map
- 2. Quantize feature map and store as indices relating to PQ codebook
- 3. Reconstruct subset of old samples from buffer and mix with current reconstructed example
- 4. Train the "Plastic Layers" of CNN (*F*) for one iteration

Classification Experiments

Datasets

- We evaluate performance on:
 - **ImageNet ILSVRC-2012**: 1,000 classes with ~1.28 million images
 - o CORe50: 10 classes with 6,000 images
- For CORe50, we compare **four orderings** of the dataset

Example CORe50 Videos

iid

class iid

instance

class instance

Comparison Models

- We compare several **single-headed** baselines (i.e., not task aware):
 - **REMIND**: uses PQ and replay augmentation on quantized features
 - o SLDA (Hayes & Kanan, CVPRW-2020): combination of a CNN with streaming LDA
 - ExStream (Hayes et al., ICRA-2019): uses stream clustering and replay
 - o **iCaRL** (Rebuffi et al., CVPR-2017): combines replay with a distillation loss and nearest class mean classifier
 - Unified Classifier (Hou et al., CVPR-2019): extends iCaRL by using a cosine normalization layer, a class geometry preservation loss, a margin ranking loss, and a neural network classifier
 - **BiC** (Wu et al., CVPR-2019): extends iCaRL by training two bias correction parameters on the output layer and using a neural network classifier
 - **Offline (upper bound)**: an optimized offline learner

Stream

Batch

ImageNet ILSVRC-2012 Results

- REMIND achieves state-of-the-art results compared to recent methods in CVPR-2019 (BiC, Unified)
- Streaming mode for incremental batch methods: Small batch size of 50 and only a single epoch
- All models are given 1.5 GB of auxiliary memory. iCaRL, Unified, and BiC store raw images

CORe50 Results

- We compare multi-headed regularization baselines that require the task label during inference
- We show task-aware methods perform poorly when task labels are withheld during testing
- REMIND achieves the best results regardless of whether task labels are allowed

Percentage of performance with respect to offline baseline

Visual Question Answering Experiments

Streaming Visual Question Answering

- REMIND can be easily extended to other tasks such as visual question answering (VQA)
- **Input Stream:** Image + Question
- **Output:** Answer to Question about the Image
- Inputs are either randomly ordered (iid) or ordered by question type (q-type)

VQA on the TDIUC and CLEVR Datasets

TDIUC test for generalization across different underlying tasks required for VQA

CLEVR tests for multi-step compositional reasoning

- Q: What size is the cylinder that is left of the brown metal thing that is left of the big sphere?
 - Q: There is a sphere with the same size as the metal cube; is it made of the same material as the small red sphere?
 - Q: How many objects are either small cylinders or red things?

TDIUC Results

- REMIND achieves strong performance on TDIUC and outperforms baselines
- REMIND closely tracks offline performance when inputs during streaming are organized by q-type

CLEVR Results

- REMIND achieves strong performance, demonstrating its ability to perform complex, multi-step reasoning in a streaming setting
- Ordering the input stream by q-type appears to be beneficial to REMIND's learning

Conclusions

- We proposed REMIND, which stores compressed mid-level CNN features as indices in a replay buffer
- REMIND outperforms existing models for object classification on ImageNet and CORe50, while remaining robust to the order in which data are presented
- We used REMIND to pioneer Visual
 Question Answering and achieved strong results, especially on the CLEVR dataset

Incremental Learning on 1,000 classes of ImageNet ILSVRC-2012

Acknowledgements: Co-Authors and Sponsors

Kushal Kafle

Robik Shrestha

Manoj Acharya

Chris Kanan

Thank You!

Questions?

Tyler Hayes
<u>tlh6792@rit.edu</u>
<u>https://tyler-hayes.github.io</u>

- REMIND is a novel streaming model that uses **tensor quantization** to efficiently store hidden representations for replay
- REMIND outperforms existing incremental learning models on ImageNet ILSVRC-2012 and CORe50
- REMIND achieves strong
 performance on streaming Visual
 Question Answering
- arXiv: https://arxiv.org/abs/1910.02509