

Name:

- 1. (15 points) Let $f(x) = x^2 4x + 3$. Then:
 - (a) (5 points) Find $p_1(x)$, $p_2(x)$ and $p_3(x)$ around $x_0 = 0$. How $P_3(x)$ is related to f(x)?
 - (b) (5 points) Same as part (a) but consider $x_0 = 1$.
 - (c) (5 points) In general, given a polynomial f(x) with degree m, what can you say about $f(x) p_k(x)$ for $k \ge m$?
- 2. (25 points) Given $f(x) = \cos x$, find both $p_2(x)$ and $p_3(x)$ about $x_0 = 0$, and use them to approximate $\cos (0.1)$. Show that in each case the remainder term provides an upper bound for the true (absolute) error.
- 3. (30 points) If $f(x) = e^x$, then
 - (a) (10 points) derive the Maclaurin series of the function $f(x) = e^x$, i.e., the Taylor series about $x_0 = 0$ (write **separately** $p_k(x)$ and $R_k(x)$),
 - (b) (20 points) find a minimum value of k necessary for $p_k(x)$ to approximate f(x) to within 10^{-6} on the interval [0, 0.5] (here, you must use the remainder term).
- 4. (20 points) Let $f(x) = \sqrt[3]{x}$. Does f(x) have a Taylor polynomial of degree 1 based on expanding about x = 0 and x = 1? Justify your answers. Include a copy of the graph of f(x) and its associated polynomials (when applicable) on the same figure, as well as your MATLAB script producing the figure.
- 5. (10 points) Consider the polynomial

$$p(x) = 1 - \frac{x^3}{3!} + \frac{x^6}{6!} - \frac{x^9}{9!} + \frac{x^{12}}{12!} - \frac{x^{15}}{15!}.$$

Evaluate p(x) as efficiently as possible. How many multiplications are necessary? Assume all coefficients have been computed and stored for later use.

Date: January 9, 2020

Mathematics Department, California Polytechnic State University, San Luis Obispo, CA 93407-0403, USA *Email address*: echarala@calpoly.edu

Copyright © 2020 by Efstathios Charalampidis. All rights reserved.