T.D. 4 Transformée de Fourier

Exercice 1 Calculs de transformées de Fourier

1. Calculer la transformée de Fourier de $f(x) = e^{-|x|}$. Calculer celle de g(x) = U(x)f(x), U étant l'échelon unité, valant 1 sur R_+ et 0 sinon. En déduire que :

$$F[x^n e^{-x} U(x)](\nu) = \frac{n!}{(1 + 2i\pi\nu)^{n+1}}$$

- **2.** Calculer la transformée de Fourier de la fonction $\rho_n(x) = n\Pi(nx)$ (Π étant défini à l'équation (2). Tracer les graphes de ρ_n et $\hat{\rho}_n$. Que se passe-t-il quand $n \to +\infty$?
 - 3. Modulation

Evaluer $F[\cos(2\pi\nu_0 x)f(x)]$. Exemple : $f(x)=\chi_{[-a,a]}(x)$. Illustration graphique.

Exercice 2 Le but de cet exercice est le calcul de la transformée de Fourier de $f(x) = e^{-\pi x^2}$.

- 1. Vérifier que $f \in L^1(\mathbb{R})$ et tracer son graphe.
- **2.** Montrer que f est solution de l'équation différentielle :

$$y' + 2\pi xy = 0 \tag{1}$$

- **3.** Appliquer la transformée de Fourier à l'équation (1) et en déduire l'équation différentielle vérifiée par \hat{f} .
 - **4.** En déduire le calcul de \hat{f} .

Exercice 3 Fonction porte

Soit Π la fonction définie sur \mathbb{R} par :

$$\Pi(x) = \begin{cases} 1 & si & |x| \le 1/2 \\ 0 & si & |x| > 1/2 \end{cases}$$
 (2)

- 1. Calculer $\hat{\Pi}$ et tracer le spectre de Π . Vérifier le théorème du cours $\lim_{\nu\to\infty}\hat{\Pi}(\nu)=0$.
- **2.** Calculer $\int_{-\infty}^{+\infty} \Pi^2(x) dx$
- 3. En déduire que :

$$\int_{-\infty}^{+\infty} \left(\frac{\sin t}{t}\right)^2 dt = \pi$$

Exercice 4 Fonction triangle

Soit Λ la fonction, affine par morceaux, valant 0 sur $]-\infty,-1]$ et $[1,+\infty[$, et 1 au point x=0.

- 1. Donner l'expression de $\Lambda(x)$.
- 2. Montrer que Λ est dérivable par morceaux, et montrer que l'on peut écrire

$$\Lambda'(x) = \Pi(x + 1/2) - \Pi(x - 1/2).$$

- **3.** Calculer la transformée de Fourier de Λ' . En déduire celle de Λ .
- 4. Montrer que Λ s'exprime en fonction de Π par le produit de convolution $\Lambda = \Pi * \Pi$.

Exercice 5 Fonctions splines

Soit $p \in \mathbb{N}$. On pose $\varphi_p(x) = (\Pi * \dots * \Pi)(x)$ la fonction convoluent p-fois la fonction porte.

- 1. Calculer la transformée de Fourier de φ_p .
- 2. Montrer que φ_p est une fonction de classe C^p , polynomiale de degré p+1 sur des intervalles de longueur 1 et calculer son support.

Exercice 6 Rapport entre TF et coefficients de Fourier

Soit f_0 une fonction de $L^1(\mathbb{R})$, nulle en dehors de l'intervalle [0,T]. Soit f la fonction "périodisée" de f_0 la période T:

$$f(x) = \sum_{n \in \mathbb{Z}} f_0(x + nT)$$

- 1. Vérifier que f est une fonction périodique de période T, intégrable sur [0,T].
- **2.** Montrer que le coefficient de Fourier de f, noté $c_n(f)$ $(n \in \mathbb{Z})$, vérifie :

$$c_n(f) = \frac{1}{T}\hat{f}_0(\frac{n}{T})$$

o \hat{f}_0 est la transformée de Fourier de la fonction f_0 . Interprétation? Comment peut-on utiliser la FFT pour calculer f_0 ?

Exercice 7 Résoudre dans $L^1(\mathbb{R})$ l'équation intégrale (a > 0):

$$\int_{-\infty}^{+\infty} e^{-a|x-t|} f(t)dt = e^{-x^2}$$

Exercice 8 Soit a et b deux réels tels que a, b > 0 et $a \neq b$.

- 1. Calculer la transformée de Fourier de $e^{-a|x|}$.
- **2.** En déduire les valeurs des produits de convolution $\frac{1}{a^2+x^2}*\frac{1}{b^2+x^2}$ et $e^{-a|x|}*e^{-b|x|}$.

Exercice 9 (cf exercice précédent - ex indépendant)

Soit a et b deux réels tels que a, b > 0 et $a \neq b$.

- 1. Calculer la transformée de Fourier de $e^{-a|x|}$.
- **2.** Soit $f \in L^2(\mathbb{R})$. On admet l'existence d'une fonction $y \in L^2(\mathbb{R})$ solution de l'équation différentielle :

$$-y'' + a^2y = f (3)$$

Donner l'expression de y sous forme intégrale.

- **3.** Montrer l'unicité de la solution y appartenant à $L^2(\mathbb{R})$.
- **4.** Montrer que la fontion $e^{-a|x|} * e^{-b|x|}$ satisfait l'équation différentielle :

$$-y'' + a^2 y = e^{-b|x|} (4)$$

(on fera deux calculs distincts dans \mathbb{R}_+ et \mathbb{R}_- et on ajustera les constantes d'intégration en écrivant la continuité à l'origine de y et y').

5. En déduire le calcul de $e^{-a|x|} * e^{-b|x|}$.

Exercice 10 Montrer, en utilisant la régularité d'une transformée de Fourier, qu'il n'existe pas de fonction χ , intégrable sur \mathbb{R} , non identiquement nulle, telle que $\chi * \chi = \chi$. En déduire que la convolution dans $L^1(\mathbb{R})$ n'admet pas d'élément neutre.

Exercice 11 Soit $f(x) = \frac{\sin x}{|x|}$ et $f_{\lambda}(x) = e^{-\lambda|x|} \frac{\sin x}{|x|}$ ($\lambda > 0$). Calculer, pour ξ fixé, $\frac{\partial}{\partial \lambda} \hat{f}_{\lambda}(\xi)$. En déduire $\hat{f}_{\lambda}(\xi)$. En déduire $\hat{f}(\xi)$.

Exercice 12 Equation de la chaleur

Soit l'équation aux dérivées partielles :

$$\begin{cases} \frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t} \\ f(x,0) = \varphi(x) \end{cases}$$
 (5)

o φ est une fonction de $C^\infty({\rm I\!R})$ -support compact. On pose :

$$F(\nu,t) = \int_{-\infty}^{+\infty} f(x,t) e^{-2i\pi\nu x} dx$$

1. On suppose que la solution f appartient à l'espace $L^1(\mathbb{R}).$ Vérifier que F vérifie :

$$\frac{\partial F}{\partial t} + 4\pi^2 \nu^2 F = 0$$

2. En déduire F, puis f.