KEYPOINT SUMMARY

Note: This summary is neither exhaustive nor formal. It is meant to give the intuition behind the mathmatical concepts, and extract core idea for essential proofs.

I. CARDINALITY

- 1. A is a set, $\overline{\overline{A}}$ denote the cardinality of A.
 - $\overline{\overline{A}} = \overline{\overline{B}}$ if there exists a bijection $A \sim B$.
 - $\overline{A} \leq \overline{\overline{B}}$ if there exists an injection $A \hookrightarrow B$.
 - $\overline{\emptyset} = 0, \overline{\overline{\{1, 2, \dots, n\}}} = n, \overline{\overline{\mathbb{N}}} = d, \overline{\overline{\mathbb{R}}} = c.$
- 2. Schröder-Bernstein Theorem:
 - $A \hookrightarrow B, B \hookrightarrow A \Rightarrow A \sim B$
 - $\overline{\overline{A}} < \overline{\overline{B}}, \overline{\overline{B}} < \overline{\overline{\overline{A}}} \Rightarrow \overline{\overline{\overline{A}}} = \overline{\overline{\overline{B}}}$
- 3. A is finite/denumerable/countable:

$$\left. \begin{array}{c} A \sim \emptyset \\ A \sim \{1,2,\ldots,n\} \end{array} \right\} \text{finite} \\ A \sim N \qquad \text{denumerable} \end{array} \right\} \text{countable}$$

Otherwise, A is <u>uncountable</u>.

- 4. Important results on cardinality of sets:
 - $\cdot \mathbb{N}^k \sim \mathbb{N}$ Proof. Consider $f(n_1, \dots, n_k) = p_1^{n_1} \cdots p_k^{n_k}$.
 - Proof. Code $\mathbb{N}^{\mathbb{N}}$ into binary strings and show it is uncountable. Consider $f(n_1, n_2, \dots) = \frac{1}{10^{n_1}} + \frac{1}{10^{n_1+n_2}} + \dots$
 - $\mathcal{P}(\mathbb{N}) \sim \mathbb{R}$ $Proof. \ \mathcal{P}(\mathbb{N}) \to \mathbb{R}: \ (n_1, n_2, n_3, \dots) \to 0.b_1b_2b_3 \dots$ $\mathbb{R} \to \mathcal{P}(\mathbb{Q}): \ \{a \in \mathbb{Q}: a < x, x \in \mathbb{R}\}.$
 - $\mathbb{R} \times \mathbb{R} \sim R, \, \mathbb{R}^k \sim \mathbb{R}$ $Proof. \, (0.a_1 a_2 \dots, 0.b_1 b_2 \dots) \rightarrow (0.a_1 b_1 a_2 b_2 \dots).$
 - · The set of all real valued functions on $[0,1] \sim 2^c$ Proof. Note $A \hookrightarrow \mathcal{P}([0,1] \times \mathbb{R})$.
 - · A is any set, $\overline{\overline{A}} < \overline{\overline{\mathcal{P}(A)}}$.

 Proof. Clearly there exists $f: A \hookrightarrow \mathcal{P}(A)$. But f cannot be surjective. Consider $X = \{a \in A : a \notin f(a)\}$.
 - \cdot The union of a countable family of countable sets is countable.
 - · The union of a cardinality c family of sets each with cardinality c has cardinality c.

Proof. Consider $\{A_{\alpha}\}_{{\alpha}\in S}$. There exists a bijection $f_{\alpha}:A_{\alpha}\leftrightarrow \mathbb{R}$. Define $f:A\hookrightarrow S\times \mathbb{R}$ as $f(x)=(\alpha,f_{\alpha}(x))$ where $x\in A_{\alpha}$.

II. VECTOR SPACES

- 1. A vector space (linear space) over \mathbb{R} is a set V with two operations addition and $scalar\ multiplication$ such that
 - (a) u + v = v + u
 - (b) (u+v) + w = u + (v+w)
 - (c) $\exists 0 \in V, 0 + v = v$
 - (d) $(\alpha + \beta)u = \alpha u + \beta u$ $\alpha(u + v) = \alpha u + \alpha v$
 - (e) $(\alpha\beta)u = \alpha(\beta u)$
 - (f) 1u = u

where $u, v, w \in V$ and $\alpha, \beta \in \mathbb{R}$.

- A vector space is a space closed under addition and scalar multiplication, i.e. it is a space that allows linear operations.
- · A set of vectors $\{v_1, v_2, \dots, v_n\}$ in V is called linearly independent if $a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$ $\Rightarrow a_1 = a_2 = \dots = a_n = 0$.
- 2. A normed vector space is a vector space V over $\mathbb R$ with a function $\|\cdot\|:V\to\mathbb R$ such that
 - (a) $||u|| \ge 0$, ||u|| = 0 iff u = 0
 - (b) $\|\alpha u\| = |\alpha| \|u\|$
 - (c) $||u + v|| \le ||u|| + ||v||$
 - · A normed vector space is a vector space where the length of vectors can be measured.
 - · Euclidean norm: $||x|| = \sqrt{x_1^2 + \cdots + x_n^2}$
 - · Infinity norm: $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$
 - p-norm: $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{\frac{1}{p}}$ Proof. Minkowski's inequality: $(\sum_k^n |x_k + y_k|^p)^{\frac{1}{p}} \leq (\sum_k^n |x_k|^p)^{\frac{1}{p}} + (\sum_k^n |y_k|^p)^{\frac{1}{p}}$
 - $\begin{array}{l} \cdot \text{ If } 1 \leq p \leq q \leq \infty, \text{ then } \|x\|_p \geq \|x\|_q. \\ \textit{Proof. Normalize } x \text{ to } \frac{x}{\|x\|_p} \text{ so that } \|x\|_p = 1. \text{ Then it is easy to see } \|x\|_q \leq 1 \text{ because for each element } |x_i|^q \leq |x_i|^p. \end{array}$
- 3. An inner product space is a vector space V over \mathbb{R} with a function $\cdot: V \times V \to \mathbb{R}$ such that
 - (a) $u \cdot u > 0$, $u \cdot u = 0$ iff u = 0
 - (b) $u \cdot v = v \cdot u$
 - (c) $(u+v)\cdot w = u\cdot w + v\cdot w$
 - (d) $(\alpha u) \cdot v = \alpha(u \cdot v)$
 - · Angle θ between u, v: $u \cdot v = \cos \theta \|u\| \|v\|$.
 - · u, v are orthogonal if $u \cdot v = 0$.
 - · Every inner product space is a normed space if define $\|u\| = (u \cdot u)^{\frac{1}{2}}$ as the norm.
 - $\frac{\text{Cauchy-Schwarz Inequality: } |u \cdot v| \leq ||u|| \, ||v||}{Proof. \ f(\lambda) = (u \lambda v) \cdot (u \lambda v) \geq 0, \, \forall \lambda. } \\ \text{Substitute in } \lambda = \frac{u \cdot v}{||v||^2}.$

III. METRIC SPACES

- 1. A metric space (X, d) is a set X together with a function $d: X \times X \to \mathbb{R}$ such that
 - (a) $d(x,y) \ge 0, d = 0 \text{ iff } x = y$
 - (b) d(y, x) = d(x, y)
 - (c) $d(x,y) \le d(x,z) + d(z,y)$
 - · A metric space is a set for which distances between all members of the set are defined.
 - · Any normed space $(V, \|\cdot\|)$ is a metric space.
- 2. Suppose (X,d) is a metric space, and $S \subset X$. (S,d_S) is a metric subspace if we define $d_S(x,y) = d(x,y)$ for $x,y \in S$.
 - $\cdot \ \forall a \in S, B_r^S(a) = S \cap B_r^X(a)$
 - · A is open in $S \Leftrightarrow A = S \cap U$, U is open in X; A is closed in $S \Leftrightarrow A = S \cap C$, C is closed in X.

Proof. A open in $S \Rightarrow A = \bigcup_{x \in A} B_{r_x}^S(x) = \bigcup_{x \in A} (S \cap B_{r_x}(x)) = S \cap (\bigcup_{x \in A} B_{r_x}(x))$. Thus $U = \bigcup_{x \in A} B_{r_x}(x)$.

3. Limit and Isolated Points

- · x is a limit point in A if every $B_r(x)$ contains points of A other than x.
- $\cdot x$ is a limit point iff $\exists (x_n) \subset A$ and $x_n \to x$.
- · x is a isolated point if $\exists r$ such that $B_r(x) \cap A = \{x\}$.
- 4. Interior, Exterior and Boundary
 - $\cdot x \in \operatorname{int} A \text{ if } \exists r(B_r(x) \subset A)$
 - $x \in \operatorname{ext} A \text{ if } \exists r(B_r(x) \subset A^C)$
 - $\cdot \operatorname{ext} A = \operatorname{int} A^C, \operatorname{int} A = \operatorname{ext} A^C$
 - $x \in \partial A$ (boundary of A) if any $B_r(x)$ contains both points of A and points of A^C .
 - $\cdot \ X = \operatorname{int} A \cup \operatorname{ext} A \cup \partial A$
- 5. Open Sets
 - · A is open if A = int A.
 - $A ext{ is open} \Rightarrow A = \bigcup_{x \in A} B_{r_x}(x)$
 - · If A_i are open, $\bigcap_{i=1}^k A_i$ is open; If A_i are open, $\bigcup_{i \in I} A_i$ is open.
 - \cdot int A is open; ext A is open.
- 6. Closed Sets
 - · A is closed if A^C is open.
 - · A is closed iff $\overline{A} = A$.
 - \cdot A is closed iff A contains all its limit points.
 - $A \subset R^k$ is closed iff A is complete.
 - · If B_i are closed, $\bigcup_{i=1}^k B_i$ is closed; If B_i are closed, $\bigcap_{i \in I} B_i$ is closed.
 - · Closure of a set is closed.
 - · Closed does *not* imply bounded.
- 7. Closure
 - $\cdot \overline{A} = A \cup \{ \text{limit point of } A \}$
 - $\cdot \overline{A} = \operatorname{int} A \cup \partial A$
 - $\cdot \ \overline{A} = A \cup \partial A$
 - $\cdot \overline{A} = (\operatorname{ext} A)^C$
 - $x \in \overline{A}$ iff every $B_r(x)$ contains a point of A.
 - $\cdot x \in \overline{A}$ iff there exists $(x_n) \subset A$ with $x_n \to x$.

IV. SEQUENCES AND CONVERGENCE

- 1. (x_n) converges to x if $\forall \epsilon, \exists N, [\forall n > N \Rightarrow d(x, x_n) < \epsilon]$.
- 2. (x_n) is Cauchy if $\forall \epsilon, \exists N, [\forall m, n > N \Rightarrow d(x_m, x_n) < \epsilon]$.
 - · Every convergent/Cauchy sequence is bounded. Proof. convergence $\Rightarrow (x_n)$ is bounded after some N, left
 - *Proof.* convergence \Rightarrow (x_n) is bounded after some N, left only finite elements.
 - \mathbb{R}^k : sequence (x_n) converges $\Leftrightarrow (x_n)$ is Cauchy.
 - · X: sequence (x_n) converges $\not = \Rightarrow (x_n)$ is Cauchy.
- 3. A metric space is <u>complete</u> if every Cauchy sequence converges in itself.
 - $\cdot S \subset \mathbb{R}^k$ is complete iff it is closed.
- 4. Monotone Convergence Theorem: if a sequence is increasing (decreasing) and bounded by a supremum (infimum), it will converge to the supremum (infimum).

Proof. Let $c = \sup_n \{a_n\}$. $\forall \epsilon > 0, \exists N \text{ s.t. } c - \epsilon < a_N \le a_n \le c, \forall n > N$. As $\epsilon \to 0$, $a_n \to c$.

5. Banach Fixed-Point Theorem: If (X,d) is a complete metric space, and $f: X \to X$ is a contraction, i.e. $\exists \lambda \in [0,1)$ such that $d(f(x),f(y)) \leq \lambda d(x,y)$, then there exists a unique fixed point f(x) = x.

Proof. First show (x_n) is Cauchy, then prove $d(x, f(x)) \to 0$.

V. SEQUENCES AND COMPACTNESS

1. Bolzano-Weierstrass Theorem: Every bounded sequence in \mathbb{R}^k has a convergent subsequence.

Proof. Geometric intuition: if a sequence in \mathbb{R}^k is bounded, we can always trap it in a whatever small subspace. Construct a convergent subsequence by trapping it a smaller and smaller subspace.

- 2. A metric space is (sequentially) <u>compact</u> if every sequence has a convergent subsequence.
 - \mathbb{R}^k : compact \Leftrightarrow closed, bounded (Beine-Borel Thm)
 - · X: compact $\not = \Rightarrow$ closed, bounded.

Proof. Consider X = C[0,1]. $\overline{B_1(0)} \subset X$ is closed and bounded, but *not* compact.

· Compactness is sort of a topological generalization of finiteness. For example, if a set A is finite then every function $f:A\to\mathbb{R}$ is bounded and has max/min. If A is compact, the every *continuous* function $f:A\to\mathbb{R}$ is bounded and has max/min.

VI. LIMITS AND CONTINUITY

- 1. Let $f: X \to Y$. The following are equivalent:
 - (a) $\lim_{x\to a} f(x) = b$;
 - (b) $x_n \to a \Rightarrow f(x_n) \to b$;
 - (c) $x \in B_{\delta}^X(a) \setminus \{a\} \Rightarrow f(x) \in B_{\epsilon}^Y(b)$.

Proof. (ii) \Rightarrow (iii): Suppose the opposite. Let $x_n \in B_{1/n}^X(a)$, then $x_n \to a$ and $f(x_n) \to b$, but by assumption $\exists \epsilon$ s.t. $f(x_n) \notin B_{\epsilon}^Y(b)$. contradiction. (iii) \Rightarrow (ii): Suppose $x_n \to a$. (iii) $\Rightarrow \forall \epsilon \exists \delta \exists x_n \in B_{\delta}^X(a) \Rightarrow f(x_n) \in B_{\epsilon}^Y(b) \Rightarrow f(x_n) \to b$.

- 2. $f: X \to Y$ is <u>continuous</u> at $a \in X$ if a is an isolated point, or $\lim_{x \to a} f(x) = f(a)$.
 - · Every function is continuous at isolated points.
 - · Intuitively, a continuous function is a function for which sufficiently small changes in the input result in arbitrarily small changes in the output.
- 3. Quantitative Meansures of Continuity
 - $f: X \to Y$ is Lipschitz continuous if there exists a constant M such that $d_Y(f(x_1), f(x_2)) \le M d_X(x_1, x_2)$. M is called the Lipschitz constant.
 - $f: X \to Y$ is <u>Hölder continuous</u> with exponent $\alpha \in (0,1]$ if there exists a constant M such that $d_Y(f(x_1), f(x_2)) \leq M \left[d_X(x_1, x_2)\right]^{\alpha}$.
- 4. Continuity and Compactness: $f: X \to Y$ is continuous, if $K \subset X$ is compact, then f(K) is compact in Y.

Proof. $\forall (y_n) \subset f(K), \exists (x_n): f(x_n) = y_n.$ K is compact $\Rightarrow \exists (x_{n_j}) \to x; f$ is continuous $\Rightarrow f(x_{n_j}) \to f(x) \Rightarrow y_{n_j} \to f(x).$

- Cor. Continuous function on a compact set is bounded.
- 5. Extreme Value Theorem: Each continuous function on a compact set attains its maximum and minimum.

Proof. K compact $\Rightarrow f(K)$ compact $\Rightarrow f(K)$ closed and bounded \Rightarrow exist least upper bound γ and $\gamma \in f(K)$ (take a sequence approaching γ and extract its convergent subsequence). Therefore, $\exists x_0 \in K \text{ s.t. } \gamma = f(x_0)$.

- 6. Continuity and Open Sets: The following statements are equivalent:
 - (a) $f: X \to Y$ is continuous on X;
 - (b) $f^{-1}(E)$ is open whenever E is an open set in Y;
 - (c) $f^{-1}(E)$ is closed whenever E is a closed set in Y.

Proof. f continuous $\Rightarrow \forall \epsilon \exists \delta \ f(B_{\delta}(x)) \subset B_{\epsilon}(f(x)) \subset E$ $\Rightarrow B_{\delta}(x) \subset f^{-1}(E)$. On the other hand, $f^{-1}(B_{\epsilon}(f(x)))$ is an open set $\Rightarrow \exists B_{\delta}(x) \subset f^{-1}(B_{\epsilon}(f(x)))$ $\Rightarrow f(B_{\delta}(x)) \subset B_{\epsilon}(f(x)) \Rightarrow f$ is continuous.

Note. Continuous functions do *not* necessarily map open sets to open sets, or closed sets to closed sets.

Cor. If $f: X \to \mathbb{R}$ is continuous, $\{x: f(x) < 0\}$ is open.