EE5801: CSP Lab/EE5301: DSP Lab EE3701: Communication Systems Lab (Aug – Nov 2022)

Lecture 2

Today's Topics

- Analog vs Digital frequencies
- Digital filter design
 - 1. Low pass filter(LPF)
 - 2. High pass filter(HPF)
 - 3. Band pass filter(BPF)
- Half band filter and M band filter

Analog vs Digital frequencies

- Consider the continuous time signal $Sin(\Omega t)$, where $\Omega=2\pi f$, $-\infty < f < \infty$, Ω is known as analog frequency
- To convert it into discrete time signal put $t=nT_S$, where $T_S=$ sampling interval and $f_S=\frac{1}{T_S}=$ sampling frequency

$$Sin(2\pi f \ nT_S) = Sin\left(\frac{2\pi f}{f_S}n\right) = Sin(\omega n)$$

where ω is known as digital frequency

- Ω represents analog frequencies and ω represents digital frequencies.
- $\omega = \Omega T_{S}$, $\Omega \in (-\infty, \infty)$, $\omega \in [-\pi, \pi]$

Analog vs Digital frequencies(contd...)

• Why digital frequency ω has finite range?

Reason : As per sampling theorem $f_s \ge 2f$

We know,
$$\omega = \frac{2\pi f}{f_S}$$

min value of $f_{\mathcal{S}}$ can be 2f , so max value of $\omega = \frac{2\pi f}{2f} = \pi$

max value of $f_{\mathcal{S}}$ can be ∞ , so min value of $\omega \to 0$

Similarly for –ve frequencies, min value is $-\pi$ and max is 0

So
$$-\pi \le \omega \le \pi$$

Digital Filters

- Two types of digital filter,
 - 1. FIR(Finite Impulse Response)
 - 2. IIR(Infinite Impulse Response)
- FIR filters are easy to design in discrete time than IIR filters.
- FIR filters may have linear or non linear phase response.
- The simplest method of FIR filter design is called the window method.
- In window method we always try to design **Linear Phase FIR filter** to avoid phase distortions.

Window method for FIR filter design

- Let the desired ideal frequency response is $H_d(e^{j\omega})$.
- Take IFFT of $H_d(e^{j\omega})$ to get $h_d[n]$.
- Since $h_d[n]$ has infinite length, truncate it using a finite length window function w[n] to get h[n]. $h[n] = h_d[n] \times w[n]$
- To see your practical filter frequency response you can take FFT of h[n] which is $H(e^{j\omega})$ and you can plot magnitude and phase response.

Some commonly used window functions

Rectangular

$$w[n] = \begin{cases} 1, & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Bartlett (triangular)

$$w[n] = \begin{cases} 2n/M, & 0 \le n \le M/2, \\ 2 - 2n/M, & M/2 < n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Hanning

$$w[n] = \begin{cases} 0.5 - 0.5\cos(2\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Hamming

$$w[n] = \begin{cases} 0.54 - 0.46\cos(2\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Blackman

$$w[n] = \begin{cases} 0.42 - 0.5\cos(2\pi n/M) + 0.08\cos(4\pi n/M), & 0 \le n \le M, \\ 0, & \text{otherwise} \end{cases}$$

Design of LPF

Ideal LPF magnitude response

$|H_d(e^{j\omega})|$ $-\pi$ $-\omega_c$ ω_c π ω

Ideal LPF phase response

Design of LPF(contd...)

Design of LPF(contd...)

- Now we have $h_d[n]=\frac{Sin(\omega_c\,n)}{\pi\,n}$, where $-(N-1)/2\leq n\leq (N-1)/2$ and $\omega_c=\frac{2\pi f_c}{f_s}$
- What happens to $h_d[n]$ at n=0 ?

Ans:
$$\lim_{n\to 0} h_d[n] = \lim_{n\to 0} \frac{\omega_c cos(\omega_c n)}{\pi} = \frac{\omega_c}{\pi}$$

• So for LPF
$$h_d[n] = \begin{cases} \frac{\sin(\omega_c n)}{\pi n}, & -(N-1)/2 \le n \le (N-1)/2 \\ \frac{\omega_c}{\pi}, & n = 0 \end{cases}$$

• The impulse response of practical LPF is $h[n] = h_d[n] \times w[n]$

Magnitude and phase response of practical LPF from Matlab simulation

Filter specifications

- δ_1 is passband ripple.
- δ_2 is stopband ripple.
- ω_p is passband edge ripple.
- ω_s is stopband edge ripple.
- Cutoff frequency ω_c lies in between ω_p and ω_s .
- Passband and stopband ripples should be as low as possible.
- Width of transition band should be as small as possible.

Comparison of two different window method

Rectangular window

Hamming window

Observation: Hamming windowing results in less passband and stopband ripples than rectangular windowing.

Comparison of two different tap filter with Hamming windowing method

Observation: More taps in impulse response results in lesser transition band width.

Design of HPF

Idea: Subtract the LPF magnitude response with cutoff frequency ω_c from a LPF magnitude response with cutoff frequency π .

$$\bullet \quad \text{So for HPF } h_d[n] = \begin{cases} \frac{Sin(\pi n)}{\pi \, n} - \frac{Sin(\omega_c \, n)}{\pi \, n} \;, & -(N-1)/2 \leq n \leq (N-1)/2 \\ 1 - \frac{\omega_c}{\pi} \;, & n = 0 \end{cases}$$

• The impulse response of practical HPF is $h[n] = h_d[n] \times w[n]$

Magnitude, phase and impulse response of practical HPF from Matlab simulation

Design of BPF

Idea: Subtract the LPF magnitude response with cutoff frequency ω_{c1} from a LPF magnitude response with cutoff frequency ω_{c2} .

• So for BPF
$$h_d[n] = \begin{cases} \frac{Sin(\omega_{c2}n)}{\pi n} - \frac{Sin(\omega_{c1}n)}{\pi n} , & -(N-1)/2 \le n \le (N-1)/2 \\ \frac{\omega_{c2} - \omega_{c1}}{\pi} , & n = 0 \end{cases}$$

• The impulse response of practical BPF is $h[n] = h_d[n] \times w[n]$

Magnitude, phase and impulse response of practical BPF from Matlab simulation

Steps for C code implementation of filters

- 1. Decide the filter parameters such as cutoff frequency (f_c) , sampling frequency (f_s) , number of taps or samples (N).
- 2. Generate the N samples of $h_d[n]$ in time domain for the filter you want to design.
- 3. Multiply the window function w[n] with $h_d[n]$ to get practical impulse response h[n].

Exercise

- Design a digital LPF with gain = 1 and $\omega_c = \pi/3$
- Steps: 1. decide f_c , f_s and N, but $f_c = f_s/6$.
 - 2. Generate the N samples of $h_d[n]$ using the parameters in step-1.
 - 3. Multiply $h_d[n]$ with window function w[n] to get h[n].

Half band filter (HBF)

- HBF is a special case of LPF, whose $f_c = f_s/4$.
- Impulse response of half band filter is

$$h(2n) = \begin{cases} 1/2 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

Half band filter (HBF)

M band filter

- Generalization of half band filter is M band filter.
- Impulse response of M band filter is

$$h(Mn) = \begin{cases} c & n = 0 \\ 0 & n \neq 0 \end{cases}$$

- For half band filter, $c=rac{1}{2}$, Cut-off frequency: $\omega_c=rac{\pi}{2}$
- For M band filter, $c=rac{1}{M}$, Cut-off frequency: $\omega_c=rac{\pi}{M}$

Applications

• Pulse shaping: Raised cosine pulse filters are used to minimize ISI.

Decimation and Interpolation

Noise and interference suppression

Reference

- Discrete Time Signal Processing by Alan V. Oppenheim and Ronald W. Schafer [Chapter 7, section 7.2]
- Multirate Digital Filters, Filter Banks, Polyphase Networks, and Applications: A Tutorial, P.P. Vaidyanathan, senior member, ieee [section V. A]