Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Lukáš Lejdar **Naměřeno:** 24. září 2024

Obor: F **Skupina:** Út 16:00 **Testováno:**

Úloha č. **5:**

Magnetické pole

 $T=21,1~^{\circ}\mathrm{C}$ $p=101,35~\mathrm{kPa}$ $\varphi=47,7~\%$

1. Úvod

Cílem je změřit horizontální složku magnetického pole na Zemi pomocí Gaussova magnetometru a proměřit magnetickou odezvu feromagnetického materiálu.

2. Postup měření

2.1. Geomagnetické pole

Máme střelkový kompas a tyčový magnet v konfiguraci podle Gaussových poloh 1 a 2 jako na obrázku 1. Pokud délka magnetu l je výrazně menší než vzdálenost od kompasu r a magnet považujeme za nekonečně tenký, lze odvodit aproximativní vztah

$$H_z = \frac{7M}{4\pi\mu_0 r^3} \frac{1}{(\frac{3}{2}\tan\varphi_1 + 4\tan\varphi_2)},\tag{1}$$

kde $M=\mu l$ je celkový magnetický moment, který určíme z periody kmitů v magnetickém poli Země. Je-li osa magnetu stočena vůči magnetickému poli Země o úhel φ , pak na něj působí magnetický moment velikosti $MH_z\sin\varphi\approx MH_z\varphi$ a pokud direkční moment závěsu $D\varphi\approx 0$, platí pohybová rovnice

$$J\ddot{\varphi} + MH_z\varphi = 0, (2)$$

kde

$$J = \frac{m}{4} \left(R^2 + \frac{l^2}{3} \right) \tag{3}$$

je moment setrvačnosti válce. Celý magnet potom na závěsu kmitá s periodou

$$T^2 = \frac{4\pi^2 J}{MH_z} \tag{4}$$

odkud lze dosadit do vztahu 1.

$$H_z = \frac{1}{T} \sqrt{\frac{7\pi J}{\mu_0 r^3} \frac{1}{\left(\frac{3}{2} \tan \varphi_1 + 4 \tan \varphi_2\right)}} \tag{5}$$

Obrázek 1: Schéma experimentálního uspořádání. Permanentní magnet je vždy orientován kolmo ke směru magnetického pole Země podél osy x a úhly φ_1 a φ_2 označují výchylky střelky kompasu od severo-jižního směru.

2.2. Magnetické odezva feromagnetického materiálu

Hledáme způsob, jak zjistit parametrickou závislost magnetické indukce y=B(t) na magnetické intenzitě x=H(t) v některém materiálu. Pro tento účel slouží obvod na obrázku 2, kde měření probíhá na tenkém toroidním magnetickém jádře se dvěma vinutími buzeném střídavým napětím $U=U_0\cos(\omega t)$. Pro obvod primárního vynutí můžeme získat první závislost z Ampérova zákona jako

$$H(t) = \frac{N_1 I_1}{2\pi r} = \frac{N_1}{2\pi r R_1} U_1(t) \tag{6}$$

Pro zjednodušení budu předpokládat konstantní intenzitu magnetického pole i magnetickou indukčnost, aby platilo $\Phi = SNB$ a $\mathbf{B}(t) = \mu_0(\mathbf{H}(t) + \mathbf{M}(t))$, kde do vztahu (6) dosadím průměr poloměrů r_{max} a r_{min} . Pro obvod sekundárního vinutí platí

$$\frac{d\phi}{dt} + R_2 C \dot{U}_C + U_C = 0. \tag{7}$$

Je-li časová konstanta integračniho obvodu $R_2C\gg T=\frac{2\pi}{\omega}$, pak lze okamžitý náboj na kondenzátoru ohraničit jako $|CU_C|=|Q_C|\leq T\dot{U}_C^{Amp}\ll R_2C\dot{U}_C^{Amp}$ odkud plyne, že po většinu času periody platí $U_C\ll R_2C\dot{U}_C$. Jinými slovy, kondenzátor se nikdy nestihne nabít a člen U_C v rovnici (6) můžeme zanedbat. Když navíc dosadím $\frac{d\Phi}{dt}=N_2S_2\frac{dB}{dt}$ dostávám druhou závislost

$$B(t) \approx -\frac{R_2 C}{N_2 S_2} U_C(t) \tag{8}$$

Obrázek 2: Schéma obvodu pro měření magnetického pole ve feromagnetu

Obrázek 3: Schéma řezu toroidní cívkou

3. Výsledky měření

3.1. Geomagnetické pole

Použil jsem válcový magnet o hmotnosti $m=306.3\pm0.2~g$, délce $l=123.3\pm0.4~mm$ a průměru $d=21.2\pm0.1~mm$, který při vodorovném závěsu kmitá s periodou $T=9.62\pm0.04~s$. Výchylky střelky kompasu φ způsobené tímto magnetem v Gaussových poloháh 1 a 2 jsou uvedené v tabulce 1.

$r \pm 0.5 \text{ (mm)}$	$\varphi_1^+ \pm 1$	$\varphi_1^- \pm 1$	$\varphi_2^+ \pm 1$	$\varphi_2^- \pm 1$
-300	73	-75	-50	52
-400	52	-50	-33	35
-500	37	-37	-19	22
300	72	-71	-50	53
400	51	-51	-34	33
500	37	-36	-19	19

Tabulka 1: Měření výchylky střelky kompasu od severo-jižního směru pro obě natočení magnetu v obou Gaussových poloháh.

Pro každou dvojici úhlů φ jsem podle vztahu (6) spočítal horizontální komponentu magnetického pole země a výsledné hodnoty zprůměroval pro konečné

$$H_z = 16.2 \pm 0.3 \ Am^{-1} \tag{9}$$

3.2. Magnetické odezva feromagnetického materiálu

Sestavil jsem obvod podle obrázku 2 s parametry $R_1=83~\Omega,~R_2=120~k\Omega,~C=1~\mu F$. Počty závitů na okruzích transformátoru byly $N_1=260$ a $N_2=900$ s toroidním feromagnetickým jádrem o rozměrech $r_2=28.7\pm0.3~mm,~r_1=19.5\pm0.3~mm$ a výškou $h=7.3\pm0.2~mm$. Měřil jsem závislost $U_C(t)$ a $U_1(t)$ a podle vztahů (8) a (6) vykreslil závislost B na B do grafu 1.

Získaná saturační magnetizace je $B_s = 0.169~T$ pro intenzitu $H_s = 86.6~Am^{-1}$, koercitivní síla $H_C = 29.1~Am^{-1}$ a remanentní magnetizace $B_R = 0.126~T$.

Graf 1: Měření parametrické závislosti x = H(t) a y = B(t) podle vztahů (8) a (6).

4. Závěr

Z měření výchylky kompasu v důsledku magnetu v Gaussových poloháh 1 a 2 jsem změřil horizontální složku intenzity magnetického pole země $H_z=16.2\pm0.3~Am^{-1}$, odkud jsem dopočítal indukce $B_z=20.4\pm0.3~\mu T$, která odpovídá tabulková hodnota v Brně je $Bz=20.344~\mu T$.

Použitím obvodu z obrázku 2 jsem změřil hysterezní křivku některého feromagnetického materiálu a vykreslil ji do grafu 1. Odečtená koercitivní síla byla $H_C=29.1\ Am^{-1}$, takže bychom tento materiál řadili mezi magneticky měkké.

Reference

[1] Hustota pevných látek. Dostupné z http://www.converter.cz/tabulky/hustota-pevne.htmf.