Лекция 07.02.22

Note 1

b84aca6df42d4d74ad1fea51970c01d9

Пусть $\{(c3::W-линейное\ пространство,\ V\subset W.\}\}$ Тогда V называется $\{(c2::Линейным\ подпространством\}\}$, если $\{(c1::Res)\}$

- 1. $\forall v \in V, k \in \mathbb{R} \implies kv \in V$,
- 2. $\forall v_1, v_2 \in V \implies v_1 + v_2 \in V$.

Note 2

a2e780e4b5ff4b4199b594e34bf762c6

Выражение «V есть линейное подпространство в W» обозначают (сы:

$$V \triangleleft W$$

}}

Note 3

baa489a3d13c4978866a82630be13e73

Пусть W — линейное пространство, $V \triangleleft W$. Тогда $V = \{\{c1: rowe линейное пространство\}\}$.

Note 4

3c2988d9ae174eb4aa377f43ebd61f74

Является ли прямая проходящая через начало координат подпространством в \mathbb{R}^n ?

Да, поскольку любая линейная комбинация векторов на прямой тоже лежит на этой прямой.

Note 5

18b402a364da457aaaf95095b9113dcc

Пусть $W=\mathbb{R}^n, A\sim m\times n.$ Является ли множество

$$V = \{x \in W \mid Ax = 0\}$$

линейным подпространством?

Да, поскольку $\forall u,v\in V,\quad \alpha,\beta\in\mathbb{R}\quad A(\alpha u+\beta v)=0.$

Пусть $V \triangleleft \mathbb{R}^n$. Тогда всегда существует $A \in \mathbb{R}^{\{\!\{c2::m \times n\}\!\}}$ такая, что $\{\!\{c1::m\}\!\}$

$$V = \ker A$$
.

Note 7

eecf9dfacd2b41218565f8582275c53b

Пусть $V = \mathcal{L}(a_1, \dots, a_m) \triangleleft \mathbb{R}^n$. Как найти матрицу такую, что $\ker A = V$?

Строки матрицы A — (транспонированная) ФСР соответствующей СЛАУ.

Note 8

dcb727a8588c412db845188bf547fd9e

Пусть $W=\mathbb{R}^n,\quad a_1,a_2,\dots a_n\in W$. Является ли

$$\mathcal{L}(a_1, a_2, \dots a_n)$$

подпространством в W?

Да, является, поскольку любая линейная комбинация линейных комбинаций $a_1, a_2, \dots a_n$ тоже является их линейной комбинацией.

Note 9

d633780bbade46968c2bcb66d05be478

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Всегда ли

$$V_1 \cap V_2 \triangleleft W$$
?

Да, всегда.

Note 10

9c714ab9fa4b457f993438ef25421061

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Всегда ли

$$V_1 \cup V_2 \triangleleft W$$
?

Нет, не всегда.

Note 11

2b9216d113914ad98cbc81b055dc174b

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Тогда

$$\{(\operatorname{c2:} V_1 + V_2)\} \stackrel{\mathrm{def}}{=} \{(\operatorname{c1:} \{v_1 + v_2 \mid v_1 \in V_1, \quad v_2 \in V_2\}.)\}$$

Note 12

cd25e86c13c141be80e3673edfece8d2

Пусть W- линейное пространство, $V_1,V_2 \triangleleft W.$ Тогда $\dim(V_1+V_2) = \dim V_1 + \dim V_2 - \dim(V_1\cap V_2).$

Note 13

cf370041c6b4016a92ca63a4b3675eb

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Всегда ли

$$V_1 + V_2 \triangleleft W$$
?

Да, всегда.

Note 14

fe58542dc0ee4e48ab330cd68be1fd77

Пусть W — линейное пространство, $V \triangleleft W$ и e_1, e_2, \ldots, e_k — предвазис в V. Тогда в W существует базис вида предвазис вида предвази предваз

$$e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_n$$
.

Note 15

7e41e14368b94d50be88c6e5b025c706

В чем основная идея доказательства теоремы о размерности суммы подпространств?

Дополнить базис в $V_1 \cap V_2$ до базисов в V_1 и V_2 соответственно и построить на их основе базис в $V_1 + V_2$.

Note 16

01ac0heh84404hed8a9f676002a2804c

Пусть

- $e_1, e_2, \dots e_k$ базис в $V_1 \cap V_2$,
- $e_1, e_2, \dots e_k, f_1, \dots f_p$ базис в V_1 ,
- $e_1, e_2, \ldots, e_k, g_1, \ldots g_q$ базис в V_2 .

Как можно построить базис в $V_1 + V_2$?

$$lack e_1, \dots e_k, f_1, \dots f_p, g_1, \dots, g_q$$
 — базис в $V_1 + V_2$.

Note 17

d6aa3baccb104c5d857dad61f06b75e7

Пусть

- $e_1, e_2, \dots e_k$ базис в $V_1 \cap V_2$,
- $e_1, e_2, \dots e_k, f_1, \dots f_p$ базис в V_1 ,
- $e_1, e_2, \dots, e_k, g_1, \dots g_q$ базис в V_2 .

Как доказать, что

$$e_1, \ldots e_k, f_1, \ldots f_p, g_1, \ldots, g_q$$

— базис в $V_1 + V_2$?

Показать, что $\forall i \quad g_i \not\in V_1$, а значит

$$V_1 + V_2 = V_1 \oplus \mathscr{L}(g_1, \ldots, g_q).$$

Семинар 09.02.22

Note 1

3fd21160928849f8achc526a60229e49

Пусть e_1,e_2,\dots,e_n и e'_1,e'_2,\dots,e'_n — два базиса в линейном пространстве V. Тогда перехода от базиса e к базису e' называют патрицу C такую, что для любого $v\in V$, если

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n,$$

 $v = \mu_1 e'_1 + \mu_2 e'_2 + \dots + \mu_n e'_n,$

то

$$C \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

}}

Note 2

8fab27df46a451190278cbc1d38698f

 $\{\{e^{2a}\}\}$ Матрицу перехода от базиса e к базису $e'\}\}$ обычно обозначают $\{\{e^{1a}\}\}\}$

Note 3

c9e84965d5ea4157b50f6576e2cbddad

Пусть e_1, e_2, \ldots, e_n и e'_1, e'_2, \ldots, e'_n — два базиса в линейном пространстве. Как в явном виде задать матрицу $C_{e \to e'}$?

Столбцы $C_{e \to e'}$ — это координаты векторов e'_1, e'_2, \dots, e'_n в базисе e_1, e_2, \dots, e_n .

Лекция 14.02.22

Note 1

825ha05cha0f4850806682f4dh48f5a1

Пусть W- линейное пространство, $V_1,V_2 \triangleleft W$. ((c2:) Сумму V_1+V_2)) называют ((c1:) прямой суммой,)) если ((c2:) $V_1\cap V_2=\{0\}$.

Note 2

90c98477312541878454fb9689685fc8

 $V_1 \oplus V_2$.

Note 3

951dc5cc9d7d4722ac40423e92273c7

Пусть V_1 и V_2 — два линейных подпространства. Тогда эквивалентны следующие утверждения:

- 1. ${\{(c1::V_1+V_2-прямая сумма;)\}}$
- 2. $\{(c2): \dim(V_1 + V_2) = \dim V_1 + \dim V_2; \}\}$
- 3. $\{c3: Для \ любого \ a \in V_1 + V_2 \ разложение разложение <math>a$ в сумму $v_1 + v_2$, где $v_1 \in V_1, v_2 \in V_2$, единственно.

Note 4

fc93fb548c854d70af3f9cf3017866cb

В чем основная идея доказательства того, что если для любого $a\in V_1+V_2$ разложение разложение a в сумму v_1+v_2 , где $v_1\in V_1, v_2\in V_2$, единственно, то V_1+V_2 — прямая сумма?

Показать, что если $a=v_1+v_2\in V_1\cap V_2$, то $v_1=v_2=0$.

Note 5

78239c298e504fa9841235fdd06ac419

«(ксз::Монотонность размерности подпространств))»

Пусть W — линейное пространство, $V \triangleleft W$. Тогда

- $1. \ \{\{\operatorname{cl}: \dim V \leqslant \dim W,\}\}$
- 2. $\operatorname{dim} V = \operatorname{dim} W \iff V = W.$

 $\{(c3)$. Отображение $f:V \to W\}\}$ называется $\{(c2)$ линейным отображением, $\}\}$ если $\{(c1)\}$

1.
$$f(x+y) = f(x) + f(y)$$
, $\forall x, y \in V$,

2.
$$f(\lambda x) = \lambda f(x), \quad \forall \lambda \in \mathbb{R}, x \in V.$$

Note 7

008d3f9d2224ec38cb2e9b8a78aab6

Линейное отображение так же ещё называют (спринейным оператором.)

Note 8

df5862f6f1d4456cb943a7f07c8d8b68

Линейный оператор $f:V\to W$ называется (клаизоморфизмом линейных пространств) тогда и только тогда, когда (клаиз) f — биекция.

Note 9

d8bd78dfda034119ae049b476da96449

Линейные пространства V и W называются (сп. изоморфными), тогда и только тогда, когда (см. существует изоморфизм

$$f: V \to W$$
.

Note 10

244f456313a24261b688216f4b7f100a

Отношение (с2: изоморфности) обозначается символом (с1:

 \simeq

Note 11

7112c4ddaf614005b6a37c3f4fbd3edc

Если $f:V \to W$ — изоморфизм, то $f^{-1}:W \to V$ ((c1::— тоже изоморфизм.))

Отношение изоморфности удовлетворяет аксиомам отношения (кака) эквивалентности.)

Note 13

9fa02b16e5e74fcea192355d84b99109

Пусть V,W — конечномерные линейные пространства. Тогда

$$\{\text{c2::} V \simeq W\}\}\{\text{c3::} \iff \text{optimized in } V = \dim W.\}$$

Note 14

13b90eb2ff704cc69e067a3f047966cc

Пусть $f:V\to W$ — линейный оператор. Тогда патрицей линейного оператора f в паре базисов в V и W соответственно, называют патрицу A, переводящую координаты любого вектора $v\in V$ в координаты вектора $f(v)\in W$ в соответствующих базисах.

Note 15

d8ecf4d0e7a546668528944588ba6060

«(кс2::Теорема о матрице линейного оператора))»

Пусть $f:V \to W$ — линейный оператор,

- $\{(c3::e_1,e_2,\ldots,e_n)\}$ базис в V,
- $\{e^3: \tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_m\}$ базис в W.

Как в явном виде задать матрицу оператора f в этих базиcax?

j-ый столбец — это координаты вектора $f(e_j)$ в базисе $\tilde{e}_1, \tilde{e}_2, \ldots, \tilde{e}_m.$

Note 16

1235d9dc6038426387ee1c7475309a4f

Как можно компактно перефразировать утверждение теоремы о матрице линейного оператора?

$$f(e) = \tilde{e}A.$$

8e1ba2b68d414caeb7d229ba34833e8d

В чем ключевая идея доказательства теоремы о матрице линейного оператора?

$$f(e\lambda) = f(e)\lambda = \tilde{e}A\lambda$$

 $f(e\lambda) = f(e)\lambda = \tilde{e}A\lambda,$ где λ — координаты вектора из V в базисе e.

Note 18

b595ad9b198f46299eb5af10d49e413d

Композиция линейных операторов — тоже (кладинейный оператор.

Note 19

Матрица композиции линейных операторов есть (стапроизведение матриц этих операторов.

13db7f12a2a14ffca2f5a00107cd3a07

Пусть $f:V\to W$ — линейный оператор, A — матрица оператора f в базисах e и \tilde{e} соответственно. Как преобразуется матрица A при замене базисов $e\to e', \tilde{e}\to \tilde{e}'$?

$$A' = C_{\tilde{e} \to \tilde{e}'}^{-1} A C_{e \to e'}.$$

Note 2

015e02c15f134a53b50a24729fb6ac3d

Пусть $f:V\to V$ — линейный оператор, A — матрица оператора f в базисе e. Как преобразуется матрица A при замене базиса $e\to e'$?

$$A' = C_{e \to e'}^{-1} A C_{e \to e'}.$$

Note 3

e3c3292adefb4657a177843c8840476d

Пусть $f:V \to V$ — линейный оператор, A и A' — матрицы оператора f в двух базисах e и e' соответственно. Тогда $\det A' = \ker \det A$.

Note 4

79b8fed369c447dfb53f352258ed6940

Педа
 Определителем оператора $f:V\to V$) называется (ст.:
 оператора f в произвольном базисе.

Note 5

79b8fed369c447dfb53f352258ed6940

Рангом оператора $f:V \to V$)) называется (перанг матрицы оператора f в произвольном базисе.)

Note 6

d36be29fb7a342599a7f73709043bb1f

 $\{\{c2\}\}$ След матрицы $A\}\}$ обозначается $\{\{c1\}\}$ ${
m tr}$ $A.\}\}$

Пусть
$$A\in\{\{can}\mathbb{R}^{n imes n}\}$$
. Тогда $\{\{can}\operatorname{tr} A_{\}\}\stackrel{\mathrm{def}}{=}\{\{can}\sum_{i=1}^{n}a_{ii}\}\}$.

e0b3b870a8444704a8569d15e3f761ed

Пусть $A, B \in \mathbb{R}^{n \times n}$. Тогда

$$\operatorname{tr}(BA) = \{\{\operatorname{cl}: \operatorname{tr}(AB).\}\}$$

Note 9

5e76656e4fc4920969acdfb57634355

((c2)-Следом оператора $f:V \to V$)) называется ((c1)-след матрицы оператора f в произвольном базисе.

Note 10

1da0c4fffac341f89821707b4a1b38a6

Пусть f:V o W — линейный оператор. Тогда

$$\{\{c2:: \ker f\}\} \stackrel{\text{def}}{=} \{\{c1:: f^{-1}(\{0\}).\}\}$$

Note 11

f8fe0ceb74f84386932c4100743fb775

Пусть f:V o W — линейный оператор. Тогда

$$\{\{c2:: \text{im } f\}\} \stackrel{\text{def}}{=} \{\{c1:: f(V).\}\}$$

Note 12

6a80e8376154f29h490e470ceac8hc3

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда $\ker f \triangleleft V$?

Да, поскольку линейная комбинация нулей f — тоже нуль f.

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда $\ker f \triangleleft W$?

Hет, $\ker f \triangleleft V$.

Note 14

a4bde4e9272d4bef89c915f6390ca148

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда іт $f \triangleleft W$?

Да, поскольку $\forall f(u), f(v) \in \operatorname{im} f$

$$\alpha f(u) + \beta f(v) = f(\alpha u + \beta v) \in \text{im } f.$$

Note 15

7b17eb03a5e640f8bddefa0aaa6656c3

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда іт $f \triangleleft V$?

Hет, im $f \triangleleft W$.

Note 16

5c7bf3d386eb4fa181cdb696fc0f9ab5

Пусть $f:V\to W$ — линейный оператор. Как связаны размерности $V,\ker f$ и $\operatorname{im} f$?

 $\dim \ker f + \dim \operatorname{im} f = \dim V.$

Note 17

b6ef54a20af44801aceb30b556b95011

Пусть $f:V \to W$ — линейный оператор. В чем основная идея доказательства следующей формулы?

 $\dim \ker f + \dim \operatorname{im} f = \dim V$

Дополнить базис в $\ker f$ до базиса в V и построить из них базис в $\operatorname{im} f$.

Note 18

26a0af100d5b4c459a74ba6384b7c554

Пусть $f:V \to W$ — линейный оператор,

- e_1, e_2, \dots, e_k базис в $\ker f$;
- $e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_n$ базис в V.

Как выглядит базис в $\operatorname{im} f$?

$$f(e_{k+1}),\ldots,f(e_n).$$

Note 19

8a962591377f49c1a6b297a1efe008e9

Пусть $f:W \to W$ — линейный оператор. Тогда

$$\dim\operatorname{im} f=\{\{\operatorname{cli}\operatorname{rk} f.\}\}$$

Note 20

2acbea4466f54360bc19e2065a44fc95

Пусть $f:W \to W$ — линейный оператор. Как показать, что

$$\dim \operatorname{im} f = \operatorname{rk} f$$
?

Показать, что в координатном выражении $\operatorname{im} f$ есть линейная оболочка столбцов матрицы оператора f.

Note 21

a85a7d7b1e3d47939cc717cb8da889a

Пусть $f:W\to W$ — линейный оператор. (c1:Пространство $V\lhd W$) называется (c2:инвариантным относительно оператора f,)) если (c1:

$$f(V) \subset V$$
.

}}

Примеры инвариантных подпространств в контексте произвольного оператора $f:W \to W.$

 $\ker f, \operatorname{im} f.$

Note 23

e64a247c0efb47f8be38d4ab4ef17b05

Пусть $f:W\to W$ — линейный оператор, e_1,e_2,\ldots,e_n — ([cd:: дополнение до базиса в W базиса e_1,e_2,\ldots,e_k в инвариантном подпространстве $V \triangleleft W$.) Тогда ([cd:: матрица оператора f в базисе e_1,e_2,\ldots,e_n) примет вид

$$A = \{ \{ ext{cliff} egin{bmatrix} T_{11} & T_{12} \ 0 & T_{22} \end{bmatrix}, \} \}$$

где T_{11} — это {{сез матрица $f|_V$ в базисе e_1,e_2,\ldots,e_k .}}

Лекция 28.02.22

Note 1

9932dc2853764661928eedc8d44ddd74

Линейный оператор $f:W\to W$ называется ((с2)-невырожденным,)) если ((c1)-det $f\neq 0$.))

Note 2

e565e676da342fb8cdacf4d62de05e8

Пусть $f:V \to V$ — линейный оператор. Следующие 5 условий эквивалентны:

- 1. f невырождено; {{c1::
- 2. $\ker f = \{0\};$
- 3. im f = V;
- 4. $\operatorname{rk} f = \dim V$;
- 5. f биекция.

Note 3

8f9f5108ac8847299f21fd40619c6612

Пусть $f:W\to W$ — линейный оператор. Как доказать, что если f — невырожденный оператор, то f — биекция?

Показать, что если f задаётся матрицей A, то f^{-1} задаётся матрицей A^{-1} .

Note 4

0c8915aebdc24427ab211efa79c6e07a

Пусть $f:W\to W$ — линейный оператор. Как доказать, что если f — биекция, то f — невырожденный оператор.

$$\det(f \circ f^{-1}) = |E| \implies \det f \neq 0.$$

Пусть $\{(c): f: V \to V$ — линейный оператор. $\}$ Тогда $\{(c):$ число $\lambda \in \mathbb{C}\}$ называется $\{(c):$ собственным значением оператора f, $\{(c): \}$ если $\{(c): \}$

$$\exists v \in V \setminus \{0\} \quad f(v) = \lambda v.$$

}}

Note 6

Ob8dcb8a69748a0a51393ae495884b4

Пусть $\{(c): f: V \to V -$ линейный оператор. $\}$ Тогда $\{(c): Beктор v \in V \setminus \{0\}\}\}$ называется $\{(c): Cobc = Bektopom one patopa f, \}\}$ если $\{(c): Cobc = Bektopom one patopa f, \}\}$

$$\exists \lambda \in \mathbb{C} \quad f(v) = \lambda v.$$

}}

Note 7

22a614bf26ea4db3ae297b5c647e6513

«са Спектром оператора» называется «са множество собственных значений этого оператора.»

Note 8

1f331a6bd4c84dc4996f323fd40b5a22

 $\{\{cancellangeright constraints for the constraints of the constrain$

Note 9

ff82c9b056384c19b0a176b637c3941c

Пусть $\{(c3):f:V\to V$ — линейный оператор, $\lambda\in\mathbb{C}$. $\}$ Тогда λ является собственным значением f $\{(c2):$ тогда и только тогда, когда $\}$ $\{(c1):$

$$\det(f - \lambda E) = 0.$$

}}

Note 10

a96c7b61477946699a72e8a792c8bf75

Пусть $\{(c) : f: V \to V - \text{линейный оператор.}\}$ Тогда $\{(c) : y \in V \}$ нение

$$\det(f - \lambda E) = 0$$

)) называется ((с.)-характеристическим уравнением оператора f.))

Пусть ((c3:: $f:V \to V$ — линейный оператор.)) Тогда ((c2::Выражение

$$\det(f - \lambda E)$$

)) называется ((с.)-характеристическим многочленом оператора f .))

Note 12

76ac89d4ea7486080b6c2c8473946d9

Пусть $f:V \to V$ — линейный оператор. Почему

$$\det(f - \lambda E)$$

является многочленом переменной λ ?

Если A — матрица оператора f, то $|A-\lambda E|$ — многочлен переменной λ .

Note 13

5376672e8b21438896bc774aa4ac2275

Пусть

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

Тогда

$$\{(c2: |A - \lambda E|)\} = \{(c1: |A| - \lambda \operatorname{tr} A + \lambda^2.)\}$$

Лекция 07.03.22

Note 1

0d6c679ab377462a90a8ac9bba29dd61

Пусть $f:W\to W$ — линейный оператор. ([c2::Характеристический многочлен оператора f[]) обозначается ([c1::

 χ_f .

Note 2

78106143b649485eb1c075b2388eb22

Пусть $\{(ca): f: W \to W -$ линейный оператор и $V \triangleleft W$ инвариантно относительно f.

$$\{\{c2::\chi_{f|_V}\}\}$$
 — $\{\{c1::$ делитель $\chi_f.\}\}$

Note 3

deeef304fd8465bbff331e4241bde67

Пусть $f:W\to W$ — линейный оператор и $V \triangleleft W$ инвариантно относительно f. Тогда

$$\chi_{f|_V}$$
 — делитель χ_f .

В чем основная идея доказательства?

Показать, что χ_f — определитель соответствующей квазитреугольной матрицы оператора f.

Note 4

cdb0a7bde4e044e48a5a798a8052f163

Пусть $\{(c) : W \to W - \text{линейный оператор}, \lambda \in \operatorname{spec} f.\}\}$ $\{(c) : M$ ножество всех собственных векторов f с собственным значением λ , объединённое с нулём, (c) обозначается $(c) : V_f(\lambda)$.

Note 5

785c107694984499a5fd89afd052841

Пусть $f:W\to W$ — линейный оператор, $\lambda\in\operatorname{spec} f$. Тогда $\{(a,b)\}$ называется $\{(a,b)\}$ собственным подпространством оператора f.

Пусть $f:W\to W$ — линейный оператор, λ — собственное значение f. В кратком выражении

$$\{ (\operatorname{c2::} V_f(\lambda)) \} \stackrel{\mathrm{def}}{=} \{ (\operatorname{c1::} \ker(f - \lambda E).) \}$$

Note 7

edf7cad1b7df422181105ad8bf31a210

Пусть $f:W\to W$ — линейный оператор, λ — собственное значение f. Всегда ли

$$V_f(\lambda) \triangleleft W$$
?

Да, всегда, потому что $V_f(\lambda) = \ker(f - \lambda E)$.

Note 8

de964305c22b4993819a8d5095504e53

Пусть $f:V \to V$ — линейный оператор, λ — собственное значение f. Подверенность $V_f(\lambda)$ называют (подверенного значения λ .)

Note 9

f6b8139d2f0e46d38a2dd075ff83b2f4

Пусть $f:V\to V$ — линейный оператор, λ — собственное значение f. Педа Геометрическая кратность собственного значения λ Обозначается (ССС) $S_f(\lambda)$.

Note 10

eff6d05e42b34f078450044f6153939b

Пусть $f:V\to V$ — линейный оператор, λ — собственное значение f. (с.: Кратность λ как корня χ_f) называют (с.: алгебраической кратностью собственным значением λ .)

Note 11

856a933db82641cd87b0ee5f34647b1a

Пусть $f:V\to V$ — линейный оператор, λ — собственное значение f. (каза Алгебраическая кратность собственного значения λ)) обозначается (каза $m_f(\lambda)$.))

Пусть $f:V \to V$ — линейный оператор, λ — собственное значение f. Тогда (кладия) $\leq m_f(\lambda)$.

Note 13

6b913f908a194114bee71fb9a7526282

Пусть $f:V \to V$ — линейный оператор, λ — собственное значение f. Тогда $S_f(\lambda) \leqslant m_f(\lambda)$.

В чем основная идея доказательства?

Показать, что $V_f(\lambda)$ инвариантно относительно f $\implies \chi_f$ делится на $\chi_{\tilde f}$, где $\tilde f=f|_{V_f(\lambda)}.$

Note 14

i8579b404ae34478b736df96c853c6e6

Пусть $f:V \to V$ — линейный оператор, λ — собственное значение f, пределение $f = f|_{V_f(\lambda)}$. Тогда

$$\{\{\mathrm{c3::}\chi_{ ilde{f}}(t)\}\}=\{\{\mathrm{c1::}(\lambda-t)^{S_f(\lambda)}\}\}$$

Note 15

8d63ff53045545709809018e1492b231

Пусть $f:V \to V$ — линейный оператор, λ — собственное значение $f,\ \ \tilde{f}=f|_{V_f(\lambda)}.$ Откуда следует, что

$$\chi_{\tilde{f}}(t) = (\lambda - t)^{S_f(\lambda)}$$
 ?

 $ilde{f}$ представляется матрицей λE порядка $\dim V_f(\lambda).$

Note 16

a3b9ba1c4e884a7bb1e3c4764f063d1f

 $\{(c2)\}$ Оператор $f:x\mapsto \lambda x$, где $\lambda\in\mathbb{R}_{n}\}$ называется $\{(c1)\}$ скалярным оператором. $\{(c1)\}$

Note 17

51a455604c9c4d7eadc3fe5ab0af6397

Пусть (сан $f:V \to V$ — линейный оператор.)) f называется (сан диагонализуемым оператором,)) если (сан существует базис в V, в котором матрица оператора f является диагональной.

)

 $\{\{c\}$: Диагональная матрица с элементами a_1, a_2, \ldots, a_n на диагонали $\{c\}$ обозначается $\{\{c\}\}$:

$$\operatorname{diag}(a_1, a_2, \ldots, a_n).$$

Note 19

8066b576097a49fb9d5aa3c4580a27c5

Пусть $f:V\to V$ — линейный оператор. Если в базисе e_1,e_2,\ldots,e_n матрица оператора f равна $\mathrm{diag}(a_1,a_2,\ldots,a_n)$, то $\{c_2:e_1,e_2,\ldots,e_n\}$ — $\{c_4:c_5$ собственные векторы f_5

Note 20

19e6a7fb9c8e4f04a3711d479f2c628

Пусть $f:V\to V$ — линейный оператор. Если в базисе e_1,e_2,\ldots,e_n матрица оператора f равна $\mathrm{diag}(a_1,a_2,\ldots,a_n)$, то $\{(c_2,a_1,a_2,\ldots,a_n)\}$ — $\{(c_1,c_2,\ldots,a_n)\}$ — $\{(c_1,$

Note 21

1176411a2bf147348b94dd69b9bbad73

Пусть $\{(-4):f:V\to V$ — линейный оператор. $\}$ Тогда оператор f $\{(-2):$ Диагонализуем $\}$ $\{(-2):$ Тогда и только тогда, когда $\}$ $\{(-1):$ Для любого собственного значения λ

$$S_f(\lambda) = m_f(\lambda).$$

}}

Note 22

ca827a11abb047fda276763e1e593ef1

В чем основная идея доказательства критерия диагонализуемости оператора (необходимость)?

Покзать, что если f представляется матрицей $\mathrm{diag}(a_1,a_2,\ldots,a_n)$, то по определению

$$\chi_f(\lambda) = \prod_{i=1}^n (a_i - \lambda).$$

Пусть $f:V \to V$ — линейный оператор, каза $\lambda_1,\ldots,\lambda_n$ — различные собственные значения оператора f , каза

$$\forall j \quad v_j \in V_f(\lambda_j).$$

 \mathbb{R} Тогда ((спесистема векторов v_1,\dots,v_n линейно независима.

Note 24

2a1e5294e5c34d889ca747ab0b44fa0a

Пусть $f:V\to V$ — линейный оператор, $\lambda_1,\dots,\lambda_n$ — различные собственные значения оператора f,

$$\forall j \quad v_j \in V_f(\lambda_j).$$

Тогда система векторов v_1, \ldots, v_n линейно независима. В чем основная идея доказательства?

Применяем f к произвольной равной нулю линейной комбинации, пока не получится СЛАУ с основной матрицей — определителем Вандермонда.

Note 25

cfe344113f4e40b2b27ecfee11beb647

В чем основная идея доказательства критерия диагонализуемости оператора (достаточность)?

Составить систему векторов из базисов в $V_f(\lambda_j)$ и показать, что она является базисом V.

Note 26

fbb72d710ce84fe6b5237ee1f15112a8

Почему система векторов, составленная в доказательстве критерия диагонализуемости оператора (достаточность), является порождающей?

Из условия $\dim V_f(\lambda_j)=m_f(\lambda_j)$, а значит система содержит $\deg \chi_f=\dim V$ элементов.

Почему система векторов, составленная в доказательстве критерия диагонализуемости оператора (достаточность), является линейно независимой?

Любая её линейная комбинация есть линейная комбинация системы векторов v_1, \ldots, v_n , где $v_j \in V_f(\lambda_j)$.

Note 28

435490ce764048d9a55b762d6175cf59

Если оператор $f:V \to V$ имеет $\dim V$ различных собственных значений, то $\{(c): f$ диагонализуем.(f)

Note 29

8757ff57337847268575f5903d640f08

Как доказать, что если оператор $f:V\to V$ имеет $\dim V$ различных собственных значений, то f диагонализуем.

$$\forall \lambda \in \operatorname{spec} f \quad 1 \leqslant S_f(\lambda) \leqslant m_f(\lambda) = 1$$

$$\implies S_f(\lambda) = m_f(\lambda).$$

Note 30

b7cd455d24424dd0879b90d7cad89a6b

Пусть (казапространство $V=V_1\oplus V_2$.)) (казапространство $P:V\to V$, переводящий сумму v_1+v_2 векторов из V_1 и V_2 соответственно в вектор v_1 ,)) называется (казапространором проектирования на V_1 параллельно V_2 .))

Note 31

522c1911d5d04c898b070c53537026b2

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$\operatorname{im} P = \{\{c1:: V_1.\}\}$$

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$\ker P = \{\{c_1: V_2.\}\}$$

Note 33

27181bd7474e4091aee4fa9dba20ae0t

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$\operatorname{spec} P = \{\{c1:: \{0, 1\}.\}\}$$

Note 34

448f428dbef544a9a7ad66228e473bea

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$m_P(0) = \{\{\text{cl}: \dim V_2.\}\}$$

Note 35

d4a2a9780d1a4e1db35238e91f3875b9

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$S_P(0) = \{\{c1:: \dim V_2.\}\}$$

Note 36

322376ccf5e4418bb64b5e8b886d8aac

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$m_P(1) = \{\{\text{cli}: \dim V_1.\}\}$$

Пусть $V=V_1\oplus V_2$ и $P:V\to V$ — оператор проектирования на V_1 параллельно V_2 . Тогда

$$S_P(1) = \{\{\operatorname{cli}: \dim V_1.\}\}$$

Лекция 14.03.22

Note 1

d32917879c284285842d17bbfc251d30

Пусть (каза $f:V\to V$ — линейный оператор, $v\in V,\,k\in\mathbb{N}$.) Вектор v называется (казакорневым вектором высоты k оператора f,)) если (казакуществует такое $\lambda\in\mathbb{C}$, что

$$(f - \lambda E)^k v = 0,$$

$$(f - \lambda E)^{k-1} v \neq 0.$$

Note 2

83d2e0cc0a894b54ac4d3604babf2d57

Корневой вектор высоты ($\{c2=1\}$) оператора f — это ($\{c1=c06ct$ венный вектор этого оператора.)

Note 3

9e3747b6754c4bad9076277f39c4e920

 λ из определения корневого вектора оператора f — это всегда (класобственное значение f .))

Note 4

a4093e0c9f55478ebd2eb2defda323d

Как показать, что λ из определения корневого вектора всегда является собственным значением?

Из определения $(f - \lambda E)^k v = 0 \implies \det(f - \lambda E) = 0.$

Note 5

999c7f68724546db81750f9e997d0a1b

Пусть $\{|e^{2i\pi}V-$ корневой вектор высоты $k\geqslant 2$ оператора f. $\|$ Тогда $\{|e^{2i\pi}(f-\lambda E)v\|\} \{|e^{2i\pi}Kophe$ вой вектор высоты k-1. $\|$

Note 6

264901faf0bb401e91105512f04f06dc

Пусть v — корневой вектор высоты $k\geqslant 2$ оператора f . Тогда $(f-\lambda E)v$ — корневой вектор высоты k-1 . В чем основная идея доказательства?

Из определения корневого вектора

$$(f - \lambda E)^{k-1} \cdot (f - \lambda E)v = 0$$

и аналогично с неравенством нулю для степени k-2.

Note 7

50c2388c1fa843dfa616f85d4cecfa2f

Система (козакорневых векторов разных высот, потвечающих (козакорному и тому же собственному значению оператора, по принейно независима.)

Note 8

de47eb56e219455a8497a97ad90b861d

Как доказать, что система корневых векторов разных высот, отвечающих одному и тому же собственному значению оператора, линейно независима.

Приравнять линейную комбинацию к нулю и домножать её на $(f-\lambda E)^{k_j-1}$ в порядке убывания высот k_j корневых векторов системы.

Note 9

187218f20c2b46ab9309b3385f2012f4

Пусть $\{ e^{2\pi i} v - \text{корневой вектор высоты } k \geqslant 2$ оператора $f. \} \}$ Тогда система $\{ e^{2\pi i} \}$

$$v, (f - \lambda E)v, (f - \lambda E)^2v, \dots, (f - \lambda E)^{k-1}v$$

» «с1::**линейно независима.**»

Note 10

f77f36f44a0a4dbfb7fe6d8a6b58db75

Пусть v — корневой вектор высоты $k\geqslant 2$ оператора f . Тогда система

$$v, (f - \lambda E)v, (f - \lambda E)^2v, \dots, (f - \lambda E)^{k-1}v$$

линейно независима. В чем основная идея доказательства?

Показать, что это система корневых векторов разных высот, отвечающих одному и тому же собственному значению λ .

Note 11

3ab579b8e03a47ec865a43fc21bd39b7

Система ([сз.: корневых векторов,)) отвечающих ([сз.: разным собственным значениям оператора,)) ([сз.: линейно независима.])

Note 12

04c77a5799504d088141691461b44095

Пусть v — корневой вектор высоты k оператора f. Тогда (сенов) $(f-\lambda E)^{k-1}v$) — (сеново собственный вектор оператора f.)

Note 13

59e9653333744cccaf670372a881ab06

Как доказать, что система корневых векторов, отвечающих разным собственным значениям оператора, линейно независима.

Домножить произвольную линейную комбинацию на

$$(f-\lambda_1 E)^{k_1-1} (f-\lambda_2 E)^{k_2} \cdots (f-\lambda_l E)^{k_l}$$

и получить равенство нулю первого коэффициента. Далее аналогично для остальных коэффициентов.

Note 14

5b16ae3e6ef643508aa2e1f086ffde5

Пусть $f:V\to V$ — линейный оператор, $\lambda\in\operatorname{spec} f$. (сан Множество всех корневых векторов, отвечающих собственному значению λ , объединённое с нулём, называется (сан корневым подпространством, отвечающим собственному значению λ .)

Note 15

2779025573314db7aa326077599c90b3

Пусть $f:V \to V$ — линейный оператор. (с.: Корневое подпространство, отвечающее собственному значению λ ,)) обозначается (с.: $K_f(\lambda)$.)

Пусть $f:V \to V$ — линейный оператор, $\lambda \in \operatorname{spec} f$. Всегда ли $K_f(\lambda) \triangleleft V$?

Да, всегда (тривиально следует из определения).

Note 17

e3330d597cd547a385f694495c2dc29

Пусть $\{c: V \to V -$ линейный оператор, $k \in \mathbb{N}.\}$

$$\{\{c^2:N_{f,k}(\lambda)\}\}\stackrel{ ext{def}}{=} \{\{c^1:: \ker(f-\lambda E)^k.\}\}$$

Note 18

12d32fc206824eafb2be52cb821ffafd

Пусть $f:V \to V$ — линейный оператор, $k \in \mathbb{N}$. Всегда ли $N_{f,k}(\lambda) \triangleleft V$?

Да, всегда (тривиально следует из определения).

Note 19

ba89f8d6240947edac91e39df44d92bc

Пусть $f:V \to V$ — линейный оператор, $\lambda \in \operatorname{spec} f$. Как $K_f(\lambda)$ выражается через $N_{f,k}(\lambda)$?

$$K_f(\lambda) = \bigcup_{k \geqslant 1} N_{f,k}(\lambda)$$

Note 20

c11610dbf64143fbaeeb57dfc3d66af0

Пусть $f:V \to V$ — линейный оператор, $\lambda \in \operatorname{spec} f$. Тогда $\dim K_f(\lambda) = \ker m_f(\lambda)$.

Note 21

efee3536114a40d28eb925c540f796bf

Пусть $f:V\to V$ — линейный оператор, $\lambda\in\operatorname{spec} f$. Тогда $\dim K_f(\lambda)=m_f(\lambda)$. В чем основная идея доказательства? ТООО (?)

Пусть ((c3:: f:V o V — линейный оператор, $\lambda_1,\dots,\lambda_l$ — все различные собственные значения f. Тогда

$$\{\{c2::V\}\} = \{\{c1::K_f(\lambda_1) \oplus \cdots \oplus K_f(\lambda_l).\}\}$$

Note 23

Пусть $f:V\to V$ — линейный оператор, $\lambda_1,\ldots,\lambda_l$ — все различные собственные значения f. Тогда

$$V = K_f(\lambda_1) \oplus \cdots \oplus K_f(\lambda_l).$$

В чем основная идея доказательства?

Показать, что сумма $K_f(\lambda_i)$

- 1. является прямой, $2. \ \ \mbox{порождает все пространство } V.$

Note 24

Пусть $f:V\to V$ — линейный оператор, $\lambda_1,\ldots,\lambda_l$ — все различные собственные значения f. Тогда

$$V = K_f(\lambda_1) \oplus \cdots \oplus K_f(\lambda_l).$$

Почему сумма $K_f(\lambda_i)$ прямая?

Линейная комбинация векторов v_j из $K_f(\lambda_j)$ — это линяния комбинация корневых векторов, отвечающих разным собственным значениям.

Пусть $f:V \to V$ — линейный оператор, $\lambda_1,\dots,\lambda_l$ — все различные собственные значения f. Тогда

$$V = K_f(\lambda_1) \oplus \cdots \oplus K_f(\lambda_l).$$

Почему сумма $K_f(\lambda_i)$ порождает все V?

$$\sum_{j=1}^{l} \dim K_f(\lambda_j) = \sum_{j=1}^{l} m_f(\lambda_j)$$

Note 26

e23c324999e1436d8c6d50a246244d60

«са:Жорданова клетка» — это «са:квадратная матрица вида

$$\begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ 0 & 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda \end{bmatrix}.$$

Note 27

d354e3255a1a46e99261a422c4e41207

Жорданова клетка высоты q, соответствующая некоторому числу λ , обозначается (сыя

$$J_q(\lambda)$$
.

Note 28

49446743h36c41h2825ed009c2fe6cd6

«са Жорданова матрица» — это «са блочно-диагональная матрица, составленная из жордановых клеток.

Note 29

c2e8392343e8487288fc8b5d700aeafa

Пусть $f:V\to V$ — линейный оператор. Тогда, если $\{(c1:B)$ некотором базисе в V матрица A оператора f имеет жорданов вид, $\|$ то A называют $\{(c2:B)$ жордановой нормальной формой оператора f, $\|$

Пусть $f:V\to V$ — линейный оператор. Тогда, если (ст. в некотором базисе в V матрица оператора f имеет жорданов вид,)) то этот базис называют (сел жордановым базисом оператора f.))

Note 31

617ac459f3846a1b581c79a9c044b7e

«([с2::Теорема о жордановой нормальной форме)]»

 \mathbb{C} имеем жорданову нормальную форму.

Note 32

d8f181b2d5004a47bd308a35849cddec

Пусть $f:V\to V$ — линейный оператор, $\lambda\in\operatorname{spec} f$. Как для k>0 соотносятся $N_{f,k}(\lambda)$ и $N_{f,k+1}(\lambda)$?

Для всех k меньше некоторого q

$$N_{f,k}(\lambda) \subsetneq N_{f,k+1}(\lambda),$$

а для всех $k\geqslant q$:

$$N_{f,k}(\lambda) = N_{f,k+1}(\lambda)$$

Note 33

414400 f8 f69 b41 b58 c7 d5 b293 0735317

Каков первый шаг в построении жордановой нормальной формы оператора $f: V \to V$?

Найти все собственные значения оператора f.

Note 34

a79be36515f64439b4db0f075099cbc3

Каков второй шаг в построении жордановой нормальной формы оператора $f: V \to V$?

Для каждого собственного значения λ найти все подпространства $N_{f,k}(\lambda)$.

Note 35

adf2c488dh4640a1aha232fha8286d63

Каков третий шаг в построении жордановой нормальной формы оператора $f:V \to V$?

Построить жорданову лестницу в каждом из корневых подпространств f.

Note 36

2fe8afa7a09b49a1a7219ce868aaf67e

Каков заключительный шаг в построении жордановой нормальной формы оператора $f:V \to V$?

Объединить все построенные базисы в одну систему и построить матрицу f в полученном базисе.

Лекция 21.03.22

Note 1

61582b48320a46c3ad047eec84da3eb3

Пусть $A,A'\in\mathbb{C}^{[[c3:n\times n]]}$. Тогда матрицы A и A' называются [[c2:n]одобными,[] если [[c1:cy]ществует невырожденная матрица T такая, что

$$A = T A' T^{-1}$$
.

}}

Note 2

6366e6bbaa1149eb8bba346a3cc38654

Отношение подобия матриц обозначается символом (са

 \sim

}}

Note 3

1ae63106d8d0480b82ef6f9e9b3d62bl

Подобие матриц является отношением (ст. эквивалентности.

Note 4

de 743729325e 43f 79f 35a7b8c 22d 5bb 2

Любая (са:квадратная матрица) подобна (са:своей жордановой нормальной форме.)

(следствие из {{с3::теоремы о жордановой форме}})

Note 5

82aa01fcbfb7476d84662ca5802dae5b

 $\{(c2)$ Две квадратные матрицы подобны) $\{(c3)$ -тогда и только тогда, когда $\}$ $\{(c1)$ -их жордановы формы совпадают с точностью до перестановки клеток. $\}$

(следствие из {{с4::теоремы о жордановой форме}})

Note 6

198e1f3eef67411c89f83a35ade066d2

Пусть
$$A,\Lambda,T\in\mathbb{C}^{n imes n},\ A=T^{-1}\Lambda T,\ k\in\mathbb{N}.$$
 Тогда
$$A^k=\mathrm{deg}_{T}T^{-1}\Lambda^k T. \mathrm{d}$$

Пусть
$$A\in\mathbb{C}^{n\times n},\;p\in\mathbb{C}[x],\;p(x)=\sum_{k=0}^na_kx^k.$$
 Тогда

$$p(A)\stackrel{\mathrm{def}}{=}{}_{\{\!\mid\!\, \mathrm{Clif.}\!\mid\!\,} \sum_{k=0}^n a_k A^k, \quad$$
где $A^0\stackrel{\mathrm{def}}{=} E_{\cdot,\,\,\!\mid\!\,}$

59cb3566c41d4eca89ef63e626740c4e

Пусть
$$A,T\in\mathbb{C}^{n\times n}$$
, $\det T\neq 0$, $p\in\mathbb{C}[x]$. Тогда

$$p(TAT^{-1}) = \{\{c1: T \ p(a) \ T^{-1}.\}\}$$

Note 9

ad579382cf8a42caabf0b8b6a5a4d76f

Пусть $f:D\subset\mathbb{C}\to\mathbb{C},\lambda\in D.$

$$f(\lambda E) \stackrel{\text{def}}{=} \{\{c1:: f(\lambda)E.\}\}$$

Note 10

be2002dbe01149aa91e229d1c991143e

Пусть $f:D\subset \mathbb{C} \to \mathbb{C}$,

$$A = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix} \in \mathbb{C}^{n \times n}.$$

Тогда

$$f(A) \stackrel{\mathrm{def}}{=} \{ \{ can \left[egin{matrix} f(A_{11}) & 0 \ 0 & f(A_{22}) \end{smallmatrix}
ight]. \} \}$$

Note 11

455a3d16cf6744b39c1d1e21cab4e7f5

Пусть $f:D\subset \mathbb{C} \to \mathbb{C},\, \lambda\in D.$ Как определяют значение

$$f(J_k(\lambda))$$
?

Представляют $f(J_k(\lambda))$ как $f(\lambda E + \varepsilon)$ и далее используют разложение f в ряд Тейлора в точке λE .

Note 12

c435657fd33d4705ae2de65b4bf5c682

Пусть $f:D\subset\mathbb{C}\to\mathbb{C},\ \lambda\in D.$ Для каких k и λ определено значение $J_k(\lambda)$?

Должен существовать многочлен $T_{\lambda,k}f$.

Note 13

3450a4591ff748cb856f4578b3cda3c2

Пусть $p\in\mathbb{C}[x],\;A\in\mathbb{C}^{n\times n}.$ (с) Многочлен p_0 называется аннулирующим многочленом для матрицы A_0 если (с):

$$p(A) = 0.$$

}}

Note 14

34b1edb015384033870e10717e8bbdb2

«{{с2:: Теорема Гамильтона-Кэли}}»

«СПР Характеристический многочлен квадратной матрицы является для неё аннулирующим.»

Note 15

07bbead6e007486e93d2daa598a265b6

В чем ключевая идея доказательства теоремы Гамильтона-Кэли?

Для любого корневого вектора x имеем $\chi_A(A)$ x=0.

Лекция 28.03.22

Note 1

c4787ae5340942d2a27db89ea5f9d4df

Пусть V — линейное пространство над $\mathbb R$. Билинейная форма f в V называется (кез-положительно определённой,)) если (кез-для любого $v \in V$

$$f(v,v) \geqslant 0;$$
 $f(v,v) = 0 \iff v = 0.$

Note 2

18f442014f0e4614a642e429958b893

Пусть V — линейное пространство над \mathbb{R} . «са Скалярным произведением в $V_{\mathbb{H}}$ называется (са симметричная положительно определённая билинейная форма в $V_{\mathbb{H}}$)

Note 3

cea78871e8124a29945d3540057c0c68

 $\| e^{\pm i}$ Линейное пространство с заданным на нём скалярным произведением $\|$ называется $\| e^{\pm i}$ евклидовым пространством.

Note 4

79a607edba4945a4a562d9b1fd8f2ce9

Пусть V — евклидово пространство над $\mathbb R$. Скалярное произведение векторов $v,w\in V$ обозначается (ССС):

$$(v, w)$$
.

}}

Note 5

717ab493f110448bb867a49b37d29d83

Пусть V — евклидово пространство над $\mathbb{R},\ v\in V$. «следлиной вектора v » называется «слевеличина $\sqrt{(v,v)}$.»

Note 6

7 b c 89 a 880 f b 244 a 78 c 3 e 2045 75 a c 9005

Пусть V — евклидово пространство над $\mathbb{R},\ v\in V$. {{e2-Длина вектора v}} обозначается {{e1-|v| или $||v||}.}}$

Длину вектора в еклидовом пространства так же ещё называют (кланормой этого вектора.)) В таком случае чаще используется обозначение (каза $\|v\|$.))

Note 8

c0b109c4be9e4749ad794e9e38fffb2d

Пусть V — евклидово пространство над $\mathbb{R},\ v_0\in V,\ \text{(св.}\ r\in\mathbb{R}$)). (св. Сферой радиуса r с центром в точке v_0) называют (св. множество

$$\{v \in V \mid ||v - v_0|| = r\}.$$

Note 9

09b61a41cf5f45109c79e7cc61f6374

Пусть V — евклидово пространство над \mathbb{R} , $v_0 \in V$, $r \in \mathbb{R}$. (Сфера радиуса r с центром в точке v_0) обозначается (СПЕ

$$S_r(v_0)$$
.

Note 10

e63df21bb26d42269a7a5d45c6b828b8

Пусть V — евклидово пространство над $\mathbb{R},\ v_0\in V,\ \text{(ез.}\ r\in\mathbb{R}$). (ез.: Шаром радиуса r с ценстром в точке v_0) называют (ез.: множество

$$\{v \in V | \|v - v_0\| \leqslant r\}.$$

}

Note 11

d0d10cbbdb664b428b1f3284ff5321f9

Пусть V — евклидово пространство над \mathbb{R} , $v_0 \in V$, $r \in \mathbb{R}$. ((c):: Шар радиуса r с центром в точке v_0)) обозначается

$$B_r(v_0)$$
.

Пусть V — евклидово пространство над \mathbb{R} , $\{c^2, v, w \in V \setminus \{0\}$. $\{0\}$ Векторы v и w называются $\{c^2, c$ онаправленными, $\{c^2, c^2\}$ если $\{c^2, c^2\}$

$$\exists \lambda > 0 \quad v = \lambda w.$$

}}

Note 13

0cfd3b2d9f17418eb0b8fd2dd36ef1d4

Пусть V — евклидово пространство над \mathbb{R} , $\{e^{2s}v,w\in V\setminus\{0\}$. $\{0\}$. $\{e^{2s}$ Углом между векторами v,w называется $\{e^{1s}$ Угол $\varphi\in[0,\pi]$ такой, что

$$\cos \varphi = \frac{(v, w)}{\|v\| \cdot \|w\|}.$$

}}

Note 14

097fc51b1eab4a699e7110a38f0bd670

«({c2::Неравенство Коши-Буниковского)}»

Пусть V — евклидово пространство над \mathbb{R} , (63:: $v,w\in V$.)) Тогда всегда (61:: $|(v,w)|\leqslant \|v\|\cdot\|w\|$.)

Note 15

570b086e7e1b48e3b3012778f4841d1e

В чем основная идея доказательства неравенства Коши-Буниковского?

Рассмотреть скалярное произведение

$$(v - \lambda w, v - \lambda w) \geqslant 0.$$

И показать, что дискриминант соответствующего квадратного уравнения $\leqslant 0.$

Note 16

96bb9d37dba3499d8890f7b3eb1f04d4

Пусть V- евклидово пространство над $\mathbb{R},\ v,w\in V$. Тогда $|(v,w)|=\|v\|\cdot\|w\|$

«{{c2::Неравенство треугольника}}»

Пусть V — евклидово пространство над \mathbb{R} , (кеза $v,w\in V$.)) Тогда (кеза

$$||v + w|| \le ||v|| + ||w||$$
.

}}

Note 18

4759501bf4b84cf0acf58f945229396c

В чем основная идея доказательства неравенства треугольника?

Рассмотреть скалярное произведение

$$(v + w, v + w) = ||v + w||^2$$
.

Note 19

378eh0c9d81404c9cd8ca40925h9ce

Пусть V — евклидово пространство над $\mathbb{R},\ v,w\in V$. Тогда

$$||v+w|| = ||v|| + ||w|| \text{ (c2:: } \iff \text{)} \text{ (c1:: } v \uparrow \uparrow w \text{)}$$

Note 20

8238aebbcc724e708990b61d8a0e3603

Пусть V — евклидово пространство над $\mathbb{R},\ v,w\in V$. Векторы v и w называются постональными, если постои постои

Note 21

ce138d9eefe6445bbe72ecb3cafe43e8

Пусть V — евклидово пространство над $\mathbb R$. Система векторов в V называется (селортогональной, если (селеё векторы попарно ортогональны.)

Note 22

2dbaa8c8157c42e08de67ebd6cc42e47

Пусть V — евклидово пространство над \mathbb{R} , $\{e_i\}_{j=1}^n$ — ортогональная система векторов в V.) Тогда $\{e_i\}_{j=1}^n$ — линейно независима) $\{e_i\}$ $\{e_j\}$ динейно независима) $\{e_i\}$

Пусть V — евклидово пространство над \mathbb{R} , $\{e_j\}_{j=1}^n$ — ортогональная система ненулевых векторов в V. Как показать, что система $\{e_j\}$ линейно независима?

Умножить линейную комбинацию векторов $\{e_j\}$, равную нулю, на e_i для произвольного i и показать равентсво нулю i-ого коэффициента.

Note 24

b9cf4cdf374445c4bc8412c8ca72847c

Пусть V — евклидово пространство над \mathbb{R} , каза $v\in V$, $\{e_j\}_{j=1}^n$ — ортогональный базис в V.) Тогда координаты вектора v в базисе $\{e_j\}_{\mathbb{N}}$ имеют вид

$$v_j = \{(c_1 :: \frac{(v, e_j)}{\|e_j\|^2}.)\}$$

Note 25

5a4e71f923b84eb5b5f3e2b66ea26470

Пусть V — евклидово пространство над $\mathbb{R},\ v\in V,\ \{e_j\}_{j=1}^n$ — ортогональный базис в V. Как показать, что координаты вектора v в базисе $\{e_j\}$ имеют вид

$$v_j = \frac{(v, e_j)}{\|e_i\|^2}?$$

Вычислить (v,e_j) , разложив v по базису $\{e_j\}$.

Note 26

7ede17a5d2d049c690090d4850f4ef60

Пусть V — евклидово пространство над $\mathbb{R},\ \|e^{\otimes v}\in V,\ \{e_j\}_{j=1}^n$ — ортогональная линейно независима система в V.) Тогда $\|e^{\otimes v}\|$ Тогда

$$\frac{(v, e_j)}{\|e_i\|^2}$$

 $_{\mathbb{N}}$ называют $_{\mathbb{N}}$ коэффициентами Фурье вектора v в системе $\{e_{i}\}_{\mathbb{N}}$

Пусть V — евклидово пространство над $\mathbb R$. Система векторов $\{e_j\}_{j=1}^n$ в V называется попарно ортогональны и $\|e_j\|=1$ для всех j.

«Псз.:Ортогонализация Грама-Шмидта)»

Пусть $\{e^2:V-e$ вклидово пространство, e_1,\ldots,e_n —базис в пространстве V. $\}$ Тогда $\{e^2:B$ сегда существует ортогональный базис a_1,\ldots,a_n в V такой, что

$$a_j \in \mathcal{L}(e_1, \dots, e_j) \quad \forall j.$$

Note 2

39394003d65441209a81ec6be5c7f2d

В чем основная идея доказательства истинности теоремы об ортогонализации Грама-Шмидта?

Положить

$$a_1 = e_1,$$

 $a_2 = e_2 + \alpha_1 a_1,$
 $a_3 = e_3 + \beta_1 a_1 + \beta_2 a_2$
...

Note 3

067af76850ea49929f538a99ef2fb445

Пусть $\{ (cd) : W - e$ вклидово пространство, $V \triangleleft W. \} \{ (cd) : M$ ножество

$$\left\{w \in W \mid (v, w) = 0 \quad \forall v \in V\right\}$$

 \mathbb{R} называется ({c2::opтогональным дополнением к $V.\mathbb{R}$

Note 4

dc34194cc9a642aeb10ad2ba1cbab7ad

Пусть W — евклидово пространство, $V \triangleleft W$. ((c): Ортогональное дополнение к пространству V) обозначается ((c2: V^{\perp} .))

Пусть W — евклидово пространство, $V \triangleleft W$. Всегда ли $V^{\perp} \triangleleft W$?

Да, всегда.

Note 6

nb8d62b25a294edebe7a3735b84dab19

Пусть W — евклидово пространство, $V \triangleleft W$. Тогда

$$\dim V^{\perp} = \{\{\operatorname{cl}: \dim W - \dim V.\}\}$$

Note 7

70166548d05745278d7a8f9de584d21

Пусть W — евклидово пространство, $V \triangleleft W$. Тогда

$$V+V^{\perp}=\mathrm{Geom}V\oplus V^{\perp}=W.$$

Note 8

eee9a5f3a40047629e2192983ab08770

Пусть W- евклидово пространство, $V \triangleleft W.$ Как показать, что $W=V \oplus V^{\perp}?$

Выбрать ортогональный базис в V, дополнить его до ортогонального базиса в W и показать, что дополнение — базис в V^{\perp} .

Note 9

53d600a53a4f48a7b4d1e3a3822918fe

Пусть W — евклидово пространство, $V \triangleleft W$, e_1, \ldots, e_k — ортогональный базис в V, e_1, \ldots, e_n — ортогональный базис в W. Как показать, что e_{k+1}, \ldots, e_n — базис в V^{\perp} ?

Показать, что $\mathscr{L}(e_{k+1},\ldots,e_n)=V^{\perp}.$

Note 10

a9fc50cec2cc442d87f7f6a551043a18

Пусть W — евклидово пространство, (ез:: $V \triangleleft W$, $w \in W$.)) Тогда (ез:- проекция w на V параллельно V^\perp)) называется (ез:- проекцией вектора w на V.))

Пусть W — евклидово пространство, (каз $V \triangleleft W, w \in W$.)) Тогда (каз проекция w на V^\perp параллельно V)) называется (каз перпендикуляром, опущенным из w на V.))

Note 12

e448e8833f94547ad7848fd34666613

Пусть e_1,\dots,e_k — система векторов в евклидовом пространстве. Исал Матрицей Грема системы e_1,\dots,e_k называют и матрицу

$$\left[\left(e_i,e_j\right)\right] \sim k \times k.$$

Note 13

3bff6be501ed49109d5041f018ecab96

Пусть e_1,\dots,e_k — система векторов в евклидовом пространстве. Исаг Матрица Грема системы e_1,\dots,e_k обозначается (сы

$$G(e_1,\ldots,e_k)$$
.

Note 14

f45df626ca1d4db1866e3f7aae0c6f2a

Пусть W — евклидово пространство, $w \in W$, e_1, \ldots, e_k — базис в $V \triangleleft W$. Как найти проекцию w_0 вектора w на V?

$$G(e_1, \dots, e_n) \cdot \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_k \end{bmatrix} = \begin{bmatrix} (w, e_1) \\ \vdots \\ (w, e_k) \end{bmatrix},$$

 $w_0 = e\alpha.$