Prova-02

Prof. Dr. Gustavo Teodoro Laureano Prof. Dr. Thierson Rosa Couto

Sumário

1	Potência de matrizes (+++)	2
2	Remove vogais (+++)	3
3	Comparação de textos (++++)	4

1 Potência de matrizes (+++)

Faça um programa que leira uma matriz quadrada $\mathbf{A}_{N\times N}$, sendo 0 < N <= 10, e imprima o resultado de \mathbf{A}^k , onde k é uma potência inteira maior que zero. A potência k de uma matriz é dada pela operação: $\mathbf{A}^k = \prod_{i=1}^k \mathbf{A}$.

Entrada

O programa deve ler o valor de N, o valor de k, em seguida $N \times N$ números reais.

Saída

O programa deve imprimir a matriz resultante com precisão de 3 casas decimais.

Exemplo

Entrada	Saída
2	1.000 0.000
4	0.000 1.000
1 0	
0 1	

Entrada	Saída
2	81.000 48.000
2	42.000 57.000
5 8	
7 1	

2 Remove vogais (+++)

Escreva a função remove_vogais que remove todas a vogais de um texto e calcula a quantidade de vogais removidas. A função remove_vogais recebe como parâmetro uma *string* str, e um vetor de inteiros com 5 posições, corresndendo às vogais 'a', 'e', 'i', 'o' e 'u'. A função deve modificar a *string* passada como parâmetro e atualizar o vetor de ocorrências de vogais. Considere o tamanho máximo de 256 caracteres para a *string* de entrada.

```
1
2 /**
3 * Função que remove vogais e calcula a quantidade de vogais removidas
4 * @param str string de entrada
5 * @param vogais vetor de 5 posições que contabiliza a quantidade
6 * de vogais removidas
7 * @return A função atualiza os vetores str e vogais.
8 */
9 void remove_vogais( char * str, int * vogais );
```

Entrada

Seu programa deve ler uma string.

Saída

Uma linha contendo a *string* modificada e outras 5 linhas contendo a quantidade das vogais 'a', 'e', 'i', 'o' e 'u' que foram removidas.

Exemplo

Entrada	Saída
Fulano de Tal da Silva	Fln d Tl d Slv
	a: 4
	e: 1
	i: 1
	o: 1
	u: 1

Entrada	Saída
Ciencia DA COMPUTACAO	Cnc D CMPTC
	a: 4
	e: 1
	i: 2
	o: 2
	u: 1

3 Comparação de textos (++++)

Um sistema inteligente de reconhecimento de textos precisa de um algoritmo que seja capaz de comparar frases. Você, um excelente projetista de sistemas de reconhecimento de padrões, sugeriu o seguinte método de comparação: dados duas *strings* A e B, a distância entre as A e B pode ser calculada usando a distância euclidiana entre os vetores de frequência das vogais que compõem cada *string*. Um vetor de frequências das vogais "a, e, i, o, u", ou suas maiúsculas, é um vetor com 5 posições, onde cada posição armazena a quantidade de vezes que as vogais aparecem na *string*. Por exemplo:

Seja A ="ola, meu nome e maria", possui um vetor de frequências de vogais F_A = (3,3,1,2,1), ou seja, há 3 vogais "a", 3 vogais "e", 1 vogal "i", "2 vogais "o"e 1 vogal "u".

Para a *string B* = "era uma vez um lobo mal...", $F_B = (3,2,0,2,2)$.

A distância entre *A* e *B* é dada pela equação:

$$d(A,B) = \sqrt{\sum_{i=0}^{4} (F_A(i) - F_B(i))^2}$$
 (1)

onde, $F_A(i)$ e $F_B(i)$ é a quantidade de vezes que a vogal i aparece nas *strings* A e B respectivamente. Para o exemplo dado, o resultado da distância seria:

$$d(A,B) = \sqrt{(3-3)^2 + (3-2)^2 + (1-0)^2 + (2-2)^2 + (1-2)^2} = 1.732050808$$
 (2)

Faça um programa que leia duas *strings*, calcule e apresente a distância entre elas usando o método descrito.

Entrada

O programa deve ler uma linha contendo 2 *strings*, cada uma de no máximo 1000 caracteres, separadas pelo caracter ';'.

Saída

Se o texto informado não conter o caracter separador ';' ou mais de um caracter ';', o programa deve imprimir a mensagem "FORMATO INVALIDO!". Caso contrário, o programa deve apresentar 3 linhas. As duas primeiras devem conter os vetores de frequências de cada *string*, com os valores entre parênteses e separados por vírgulas, e a última linha deve conter o valor da distância entre as *strings* com 2 casas decimais.

Observações

O programa não deve diferencias maiúsculas de minúsculas. Também não não são admitidos acentos no texto de entrada.

Exemplo

Entrada										
Ola mundo,	meu	nome	е	Maria;	Era	uma	vez	um	lobo	mal
Saída										
(3,3,1,3,2)									
(3,2,0,2,2)									
1.73										
Entrada										
		, ,	~ -		,	~			ì	

Eu serei um grande Cientista da Computacao. **Saída**

FORMATO INVALIDO!

4