Definition 1. μ_n, μ probability measures on $(E, \mathcal{B}(E))$, where (E, ρ) is a metric space. We say that $\mu_n \implies \mu$, that is μ_n converges in law/in distribution/weakly to μ , iff $\forall_{f \in C_b(E)} \int_E f d\mu_n \rightarrow \int_E f d\mu$.

Theorem 2. The following are equivalent:

- 1. $\mu_n \implies \mu$,
- 2. $\forall_f \text{ if } f \text{ is uniformly continuous and bounded on } E, \text{ then } \int_E f \, d\mu_n \to \int f \, d\mu,$
- 3. $\forall_{G \subset E \text{ open}} \liminf_{n \to \infty} \mu_n(G) \geqslant \mu(G),$
- 4. $\forall_{F \subset E \ closed} \limsup_{n \to \infty} \mu_n(F) \leq \mu(F),$
- 5. $\forall_{A \in \mathcal{B}(E)} \ \mu(\partial A) = 0 \implies \lim_{n \to \infty} \mu_n(A) = \mu(A).$

Definition 3. μ probability measure on \mathbb{R}^d , then its distribution function is $F_{\mu}(t) = \mu((-\infty, t_1] \times \ldots \times (-\infty, t_n]).$

Theorem 4. $\mu_n \implies \mu \text{ iff } \forall_t \text{ if } F_\mu \text{ is continuous at } t, \text{ then } \lim_{n \to \infty} F_{\mu_n}(t) = F_\mu(t).$

Lemma 5. μ_n , μ probability measures on $(E, \mathcal{B}(E))$, \mathcal{A} a π -system of Borel sets (i.e. $\forall_{A,B\in\mathcal{A}}A\cap B\in\mathcal{A}$) such that any open set in E is a union of at most countably many sets in \mathcal{A} , and $\forall_{A\in\mathcal{A}}\mu_n(A)\to\mu(A)$, then $\mu_n\Longrightarrow\mu$.

Proposition 6. μ_n, μ probability measures on \mathbb{R}^d , then $\mu_n \implies \mu$ iff $\forall_{f \in C_c(\mathbb{R}^d)} \int_E f \, d\mu_n \rightarrow \int_E f \, d\mu$.

Definition 7. X_n, X random variables with values in metric space (E, ρ) , then X_n converges to X in law (or in distribution, or weakly) iff $\mu_{X_n} \implies \mu_X$. We write $X_n \xrightarrow{\mathcal{L}} X$ or $X_n \xrightarrow{d} X$ or $X_n \implies X$.

Remark 8. $\int_{E} f(t) \mu_{X}(t) = \mathbb{E}f(X)$, so $X_{n} \implies X$ iff $\forall_{f \in C_{b}(E)} \mathbb{E}f(X_{n}) \to \mathbb{E}f(X)$.

Remark 9. X_n and X may be defined on distinct spaces.

Remark 10. X_n may have the same law and be very different.

Remark 11. Convergence in probability implies convergence in law, but not conversely.

Proposition 12. X_n, Y_n, X random variables with values in $(E, \rho), X_n \implies X$, $\rho(X_n, Y_n) \xrightarrow{\mathbb{P}} 0$. Then $Y_n \implies X$.

Corollary 13. $Y_n \xrightarrow{\mathbb{P}} X$ implies $Y_n \implies X$.

Definition 14. $\{\mu_i\}_{i\in I}$ a family of probability measures on (E,ρ) , we say that this family is tight iff $\forall_{\varepsilon>0}\exists_{K \text{ compact in } E}\forall_{i\in I}\mu_i(K)\geqslant 1-\varepsilon$.

Definition 15. $\{X_i\}$ tight iff $\{\mu_{X_i}\}$ tight.

Example 16. $E = \mathbb{R}, \mu_n = \delta_n$ not tight.

Remark 17. $E = \mathbb{R}, \{\mu_i\} \text{ tight iff } \forall_{\varepsilon>0} \exists_M \forall_{i\in I} \mu_i([-M, M]) \geqslant 1 - \varepsilon.$

Remark 18. X_i random variables in \mathbb{R} , p > 0, $\sup_i \mathbb{E}|X_i|^p < \infty \implies \{X_i\}_{i \in I}$ is tight.

Theorem 19 (Prokhorov). $\{\mu_i\}_{i\in I}$ probability measures on \mathbb{R}^d . This family is tight iff for any sequence of measures μ_k in the family one may choose a weakly convergent subsequence μ_{k_l} .