

Estudio del último eclipse cromosférico de Zeta Aurigae, Otoño 2019

Marzo 2020

Autora: Natalia Lucía Oliveros Gómez

Director: Klaus Peter Schröder

Codirector: Luis A. Nuñez

Codirector: Faiber Danilo Rosas

Contenido

Contexto

Estudios Anteriores

Justificación

Objetivos

Metodología

Resultados esperados

Planteamiento del problema

Pregunta problema

¿Cómo varía la densidad de masa columnar con la altura a medida que transcurre el eclipse de un sistema binario y con esto cómo puedo conocer la dinámica de una estrella?

Análisis cromosférico

Hidrógeno Helio Metales: neutros y parcialmente ionizados

Ca II K

Espectros observacionales +

Teoría de Física estelar

Shu, F.H. (1982) Physical Universe: An Introduction to Astronomy, University Science Books, pp. 94–96

Binarias visuales
Binarias astrométricas
Binarias espectroscópicas
Binarias ópticas (falsas binarias)
Binarias eclipsantes

Estrella fría

Secuencia principal

And the state of t

cantidades físicas fundamentales

Brillante Periodo eclipse grande

Light Curves and Their Secrets. Sky & Telescope: 410. Eclipsing Binary Simulations

K.P. Schröder R.E.M. Griffin, R.F. Griffin and D. Reimers. Optical spectra ζ aurigaebinary systems: I. the 1987 eclipse of ζ aurigae. Astronomy and Astrophysics, 1989

Densidad masa columnar

$$\sigma_{cm} = \int_{a}^{b} \rho(z) dz$$

Cantidad átomos

altura

Depende de

fuerza de la línea saturación

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre elancho de línea K de Ca II y la gravedad superficial, 2019

Convective Zone

Radiation

Convection

Chromosphere

zone

zone

Core

Densidad masa columnar

$$\sigma_{cm} = \int_{a}^{b} \rho(z) dz$$

Cantidad átomos

altura

Efecto de Wilson Bappu

Magnitud

 $M_v = C_1 \log(W_0) + C_2$

Ancho

línea

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre elancho de línea K de Ca II y la gravedad superficial, 2019

Integración numérica

Contexto

Curvas de crecimiento

Calculo de abundancias químicas

Teóricas

Perfil de líneas gaussiano, lorentziano o delta invertido

Observacionales

Procesamiento de espectros

Fig. 1.—Curves of growth at height 9.4×10^6 km during ingress. The theoretical curves are for $\Delta \lambda_D = 0.13$ A (upper) and 0.10 A (lower).

R.F. Griffin K.P. Schröder, R.E.M. Griffin. Optical spectra ζ aurigae binary systems: II.The lower chromosphere of ζ aurigae. Astronomy and Astrophysics, 1989

Estudios anteriores

Optical spectra of ζ Aurigae binary systems

II. The lower chromosphere of ζ Aurigae

K.-P. Schröder^{1, ⋆}, R.E.M. Griffin^{2, ⋆}, and R.F. Griffin^{2, ⋆}

CHROMOSPHERIC STRUCTURE OF THE K-TYPE COMPONENT OF ZETA AURIGAE

O. C. Wilson and Helmut A. Abt*

Mount Wilson and Palomar Observatories

Carnegie Institution of Washington

California Institute of Technology

Curvas de crecimiento

O. C. Wilson and Helmut A. Abt. Chromospheric structure of the k-type component of zeta aurigae. Astronomy and Astrophysics, 1989.

¹ Hamburger Sternwarte, Gojenbergsweg 112, D-2050 Hamburg 80, Federal Republic of Germany

² Institute of Astronomy, The Observatories, Madingley Road, Cambridge CB3 0HA, England

Estudios anteriores

Ionización de metales

Invariante con la altura

¿ Ca II K

Ionización media varía con la altura

Densidad de masa columnar

Fig. 9.—Mean ionization of Ca and Fe as function of height

Justificación

Optical spectra of ζ Aurigae binary systems

II. The lower chromosphere of ζ Aurigae

CHROMOSPHERIC STRUCTURE OF THE K-TYPE COMPONENT OF ZETA AURIGAE

Precisión parámetros estelares

Precisión curvas evolutivas

$$in (h) = n_0 e^{-h/\alpha}$$
 ?

Dinámica estelar

Campos magnéticos

Schröder, K. P. & Schmitt, J. H. M. M. 2013, in New Quests in Stellar Astrophysics III: A Panchromatic View of Solar-Like Stars, With and Without Planets, Vol. 472, 225–230

Justificación

Friedrich, S., Friedrich, P., Schröder, K. P., freundlicher Unterstützung, M., gilt als die älteste Wissenschaft, A., & des Wissens, G. (2015). *Handbuch Astronomie: Grundlagen und Praxis für Hobby-Astronomen*. Oculum-Verlag.

K.P. Schröder R.E.M. Griffin, R.F. Griffin and D. Reimers. Optical spectra ζ aurigae binary systems: I. the 1987 eclipse of ζ aurigae. Astronomy and Astrophysics, 1989

Objetivos

Resultados esperados

Comparar absorción cromosférica y el cambio de la densidad de masa columnar $N(\boldsymbol{h})$ del eclipse de otoño 2019 con un antiguo eclipse de 1987.

Cuantificar el ancho equivalente las líneas claves (Ca II) de las dos estrellas y la absorción cromosférica

Deducir modelo de densidad en columna

Metodología

Softwares

PHOENIX iSpec **Análisis Adicionales**

Sustracción de espectros

Cuantificar ancho equivalente de las líneas cromosféricas

S Blanco-Cuaresma, et. al. Determining stellar at-mospheric parameters and chemical abundances of fgk stars with ispec. Astronomy & Astrophysics, 2014. Sergi Blanco-Cuaresma. Modern stellar spectroscopy caveats. Monthly Notices of the Royal Astronomical Society, 2019.

P Hauschildt and E Baron. Cool stellar atmospheres with phoenix. Memorie della SocietaAstronomica Italiana Supplementi, 7:140, 2005

Modalidad pasantía de investigación

Grupo de Física estelar Escuela de Astronomía

Evolución de estrellas frías y masivas

Modelo estructural de estrellas

Dinámica estelar

Sistemas binarios

Universidad de Liège (Bélgica)
Universidad Hamburgo (Alemania)

JHMM Schmitt, K-P Schröder, et al. Tigre: A new robotic spectroscopy telescope at Guanajuato, Mexico. Astronomische Nachrichten,2014

Cronograma

Actividad	Duración en	Abril				Mayo				Junio				Julio				Agosto				Septiembre				Octubre			
	semanas	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1.1	9																												
1.2																													
1.3																													
1.4																													
1.5																													
2.1	4																												
3.1	- 8																												
3.2																													
Documentación																													

Resultados esperados

Modelo densidad de masa columnar

Efecto Wilson-Bappu

Variabilidad en el tiempo

Dinámica estelar

Hidro y termo dinámica Campos magnéticos

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre elancho de línea K de Ca II y la gravedad superficial, 2019

iGracias!

Superposición estrella fría y una en secuencia principal

Caso ideal, como si la estrella se comportara como un cuerpo negro

$$B(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{k\lambda T}} - 1}$$

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre elancho de línea K de Ca II y la gravedad superficial, 2019

LAS ESTRELLAS NO SON CUERPOS NEGROS

Diferencia entre espectros

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre elancho de línea K de Ca II y la gravedad superficial, 2019

Fig. 7. Geometry of the eclipse of ζ Aur at ingress. The diagram shows, to scale, the path of ζ Aur B behind the limb of the supergiant and the relative positions of the two stars on 1987 Nov. 16.1 and Nov. 17.1. According to our model the eclipse occurs at a latitude of about $\pm 23^{\circ}$ on the supergiant; however, the associated uncertainties are such that a latitude anywhere between 0° and $\pm 40^{\circ}$ cannot be excluded

Fig. 1. Scale diagram of geometry of eclipse ingress, defining the parameter h_0 used in the text. The uneclipsed disk of the B star is treated as a series of strips i, each of which shines through a different chromospheric column density $N_i(h_i)$

K.P. Schröder R.E.M. Griffin, R.F. Griffin and D. Reimers. Optical spectra ζ aurigae binary systems: I. the 1987 eclipse of ζ aurigae. Astronomy and Astrophysics, 1989

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre el ancho de línea K de Ca II y la gravedad superficial, 2019

h, T

Fotosfera y Cromósfera

Física basada equilibrio dinámico

Parte baja de la cromosfera donde aún aplican ecuaciones de **Saha y Boltzman**

Mediciones: espectropolarimétricas

Estructurada por campo magnético

Plasma, opaco a la luz

Movimiento Convección

Aumento de prensión sin variaciones en la densidad

Plasma menos caliente (Cromosfera) Protuberancias solares

Intenta seguir las líneas de campo

del Pino Alemán, T., Bueno, J. T., Casini, R., & Sainz, R. M. (2020). The Magnetic Sensitivity of the Resonance and Subordinate Lines of Mg II in the Solar Chromosphere. *The Astrophysical Journal*, 891(1), 91.

Zhang, J., Bi, S., Li, Y., Jiang, J., Li, T., He, H., ... & Tian, Z. (2020). Magnetic Activity of F-, G-, and K-type Stars in the LAMOST-Kepler Field. The Astrophysical Journal Supplement Series, 247(1), 9.

Nagaraju, K., Sankarasubramanian, K., & Rangarajan, K. E. (2020). Hα full line spectropolarimetry as diagnostics of chromospheric magnetic field. Journal of Astrophysics and Astronomy, 41(1), 1-9.

Efecto Wilson Bappu

Independiente del tipo espectral = Temperatura

movimientos de naturaleza turbulenta gran espesor óptico

Estrellas tipo tardío: G, K y tipo gigante rojo M

Línea de visión radial

Donde no se conoce el comienzo de la cromosfera

Se miran partes de la atmosfera diferentes

Se relaciona con la gravedad superficial de la estrella

Caso de la densidad de masa columnar

Línea de visión de la compañera

Mejor para explicar la cromosfera

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre el ancho de línea K de Ca II y la gravedad superficial, 2019

Generada en fotosfera

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre el ancho de línea K de Ca II y la gravedad superficial, 2019

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre el ancho de línea K de Ca II y la gravedad superficial, 2019

Generada en la parte alta cromósfera

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre elancho de línea K de Ca II y la gravedad superficial, 2019

Faiber Danilo Rosas. Efecto Wilson-Bappu en estrellas frías: Relación física entre elancho de línea K de Ca II y la gravedad superficial, 2019

Espectro Visible

Continuo

Líneas de absorción

Líneas de emisión

Kitchin, Christopher R. (1987). Stars, Nebulae, and the Interstellar Medium: Observational Physics and Astrophysics. CRC Press, pp. 124 y 125.

Espectro Visible

Faiber Danilo Rosas (2017). Implementación de iraf como software de reducción y análisis de espectros de cuerpos celestes en el observatorio astronómico de la universidad de nariño

Formación del Espectro

Ligado-ligado

 $E_{\gamma} = n(E_f - E_i)$

Líneas de absorción

Ligado-libre

 $E_{\gamma} = Energ$ ía ionización

Absorción continua

Anchos de línea

Ensanchamiento natural

Electrones en estado excitado

 $\Delta E \ \Delta t \geq h$

Anchos de línea

Ensanchamiento Doppler térmico

$$v = v_o \left(1 + \frac{v_z}{c} \right)$$

Distribución velocidades de Maxwell

Frequency v

Anchos de línea

Colisional

El perfil de estas líneas se describe con una lorentziana

Rotacional

Ecuación de Saha

#electrones que caen

electrones expulsados

Para un mismo potencial atómico

distribución de velocidades de Maxwell

No tiene en cuenta

fotoionización

Ecuación de Boltzman

Errores datos observacionales

Errores datos observacionales

