# Aproksymacja równań różniczkowych - projekt

# Natalia Wojtania i Grzegorz Chojnacki

#### 8 stycznia 2021

### 1 Zadanie

#### 1.1 Tytuł

Tytuł zadania to "Metody numeryczne dla zagadnieńróżniczkowych".

#### 1.2 Treść

Napisz program, który rozwiąże trzema metodami(Eulera, zmodyfikowaną Eulera oraz Heuna) zagadnienie różniczkowe:

$$y'(x) = f(x, y(x)), y(1) = 5,$$

gdzie

$$f(x, y(x)) = -5x^4 + 2\sqrt{y + x^5 - 5} + 5.$$

Program ma również obliczyć dokładność dla każdej z tych metod, porównując je z dokładnym rozwiązaniem:

$$y(x) = -x^5 + x^2 + 5.$$

### 1.3 Metody

W programie należy wykorzystać metodę Eulera, zmodyfikowaną metodę Eulera oraz metodę Heuna (udoskonaloną metodę Eulera).

#### 1.3.1 Opis metod

!!!!! Metoda siecznych (interpolacji liniowej) polega na przyjęciu, że funkcja ciągła na dostatecznie małym odcinku w przybliżeniu zmienia się w sposób liniowy. Można wtedy na odcinku [a,b] krzywą y=f(x) zastąpić sieczną. Za przybliżoną wartość pierwiastka przyjmuje się punkt przecięcia siecznej z osią odciętych OX. Miejsce przecięcia tej prostej z osią X jest przybliżonym wynikiem szukanego miejsca zerowego, o ile różnica bezwzględna wartości z dwóch ostatnich iteracji jest mniejsza od założonej dokładności. Metoda ta wymaga ustalenia na przedziale [a,b] dwóch punktów startowych  $x_0$  i  $x_1$ . Metodę siecznych dla funkcji f(x), mającej pierwiastek w przedziale [a,b] można zapisać następującym wzorem rekurencyjnym:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}, k \geqslant 1$$

 $x_0 = a, x_1 = b,$ 

gdzie w każdym kroku  $x_{k+1}$  to miejsce zerowe siecznej wykresu y = f(x) w punktach  $(x_{k-1}, f(x_{k-1}))$  oraz $(x_k, f(x_k))$ , czyli prostej

$$y = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} (x - x_k) + f(x_k)$$

#### 1.3.2 Przykład

i

Dla zagadnienia różniczkowego y'(x) = f(x, y(x)), y(1) = 5, na przedziale [1,2] przyjmując N=2 policzyć rozwiązanie trzema metodami oraz obliczyć dokładność dla każdej z metod, wiedząc, że dokładne rozwiązanie to  $y(x) = -x^5 + x^2 + 5$  oraz  $f(x, y(x)) = -5x^4 + 2\sqrt{y + x^5 - 5} + 5$ .

### 2 Opis implementacji algorytmu

Implementacja realizująca metody Eulera, zmodyfikowaną Eulara oraz Heuna.

### 2.1 Dane wejściowe

Na wejściu program pobiera od użytkownika liczbę n, określająca podział odcinka [a,b] oraz liczbę b, informująca o końcu odcinka [a,b].

#### 2.2 Przebieg działania

!!! Program wyświetla komunikat: "Wprowadź dokładność rozwiązania  $\epsilon \in (0,1)$ ". Jeśli została wprowadzona prawidłowa wartość dokładności, to program poprzez funkcję calculate wylicza przybliżone rozwiązanie i dzięki funkcji refresh wyświetla je wraz z liczbą kroków. Próba wprowadzenia nieprawidłowych danych, które weryfikowane są w programie w funkcji refresh skutkuje wyświetleniem stosownego ostrzeżenia.

Następnie funkcja calculate klasy SecantMethod zajmuje się wyliczeniem przybliżonego rozwiązania w oparciu o podaną dokładność i przedział wyszukany za pomocą funkcji findInterval. Szukanie przedziału zaczyna się od [0,1] i jeżeli funkcja nie przechodzi w nim przez oś OX, to przedział jest poszerzany.

Funkcja getNext, której argumentami są a i b odpowiednio oznaczające  $x_{k-1}$  oraz  $x_k$  zwraca wartość poszczególnego  $x_{k+1}$ .

Funkcja isGoodEnough sprawdza czy różnica  $|x_k - x_{k-1}|$  jest mniejsza od podanej przez użytkownika dokładności. Jeśli tak, to kończymy przekazując wynik oraz ilość kroków. W przeciwnym wypadku liczone jest kolejne przybliżenie tak długo, aż warunek zostanie spełniony.

Wynikiem działania programu jest przybliżone rozwiązanie równania:  $x_k$  oraz liczba wykonanych kroków: k.

#### 2.3 Najważniejsze fragmenty programu

!!! secantMethod.js

```
class SecantMethod {
  f = x \Rightarrow 4*x**3 + 5*x**2 + 6*x - 7
  constructor(precision) {
    this.precision = precision
    this.interval = this.findInterval()
  }
  findInterval = (a = 0, b = 1) \Rightarrow this.f(a) * this.f(b) < 0
    ? [a, b]
    : this.findInterval(a - (b - a), b + (b - a))
  // a = x \{k-1\}, b = x \{k\}
  getNext = (a, b) \Rightarrow b - (this.f(b) * (b - a)) / (this.f(b) - this.f(a))
  isGoodEnough = (next, prev) => Math.abs(next - prev) < this.precision</pre>
  calculate() {
    const g = (a, b, steps = 2) \Rightarrow \{
      const next = this.getNext(a, b)
      return this.isGoodEnough(next, b)
        ? ({ result: next, steps })
         : g(b, next, steps + 1)
    return g(this.interval[0], this.interval[1])
  }
}
```

```
gui.js
```

```
const gui = new (class {
  input = document.getElementById('input')
 result = document.getElementById('result')
 steps = document.getElementById('steps')
 error = document.getElementById('error')
 refresh() {
   const precision = this.getPrecision()
   if (0 < precision && precision < 1) {
      this.clearError()
      const answer = new SecantMethod(precision).calculate()
      this.result.innerText = answer.result
      this.steps.innerText = answer.steps
   } else this.setError()
 }
              { this.error.innerText = 'Wprowadzona wartość poza przedziałem (0
 setError()
 clearError() { this.error.innerText = '' }
 update = debounce(() => this.refresh(), 10)
 getPrecision = () => Number.parseFloat(this.input.value)
})()
```

## 2.4 Widok działania programu

# Metoda siecznych

$$4x^3 + 5x^2 + 6x - 7 = 0$$

Wprowadź dokładność rozwiązania  $\epsilon \in (0, 1)$ 



**x**<sub>k</sub>: 0.6436523045422802

k: 6

Rysunek 1: Prawidłowo wprowadzone dane

# Metoda siecznych

$$4x^3 + 5x^2 + 6x - 7 = 0$$

Wprowadź dokładność rozwiązania  $\epsilon \in (0,\,1)$ 

6 Wprowadzona wartość poza przedziałem (0, 1)

X<sub>k</sub>: (rozwiązanie)

k: (ilość kroków)

Rysunek 2: Nieprawidłowo wprowadzone dane