

Objectives

- Describe the structure of a neuron.
- Summarize the electrical and chemical conditions that characterize a resting potential.

Introduction to Neurons

Neurons: Basic Building Blocks of the Nervous System

- Neurons are specialized cells responsible for transmitting information throughout the body.
- They form the communication network of the nervous system.

Structure of Neurons:

- Each neuron consists of a **cell body** (**soma**), **dendrites**, and an **axon**.
- Dendrites receive signals from other neurons or sensory receptors.
- Axons transmit electrical impulses away from the cell body.

Communication:

- Neurons communicate with each other through electrical impulses and chemical signals.
- This communication allows for coordination of various body functions and responses.

Structure of a Neuron

Neurons consist of three main parts:

Cell Body (Soma):

- Contains the **nucleus** and other organelles essential for cell function.
- Integrates incoming signals and determines whether to transmit the signal further.

Dendrites:

- Branch-like structures extending from the cell body.
- Receive signals (electrical impulses) from other neurons or sensory receptors.

Axon:

- Long projection extending from the cell body.
- Transmits electrical impulses away from the cell body toward other neurons, muscles, or glands.

Structure of a Typical Neuron

Structure of a Neuron

Myelin Sheath:

- Insulating layer surrounding the axon, formed by specialized called Schwann's cells.
- Increases the speed of signal transmission along the axon by preventing signal loss or leakage.

Terminal Buttons (Axon Terminals):

- Located at the end of the axon.
- Store and release neurotransmitters, which are chemical messengers, to communicate with other neurons across the synapse.

Structure of a Typical Neuron

THE STRUCTURES OF NEUROTRANSMITTERS

STRUCTURE KEY:

■ Carbon atom ○ Hydrogen atom ⑥ Oxygen atom ⑥ Nitrogen atom ⑥ Rest of molecule

ADRENALINE

Fight or flight neurotransmitter

DOPAMINE

Pleasure neurotransmitter

SEROTONIN

https://youtu.be/cN

<u>aFnRKwpFk</u>

Contributes to well-being & happiness; helps sleep cycle & digestive system regulation. Affected by exercise & light exposure.

ENDORPHINS

Euphoria neurotransmitters

Affects attention & responding actions in the brain, & involved in fight or flight response. Contracts blood vessels, increasing blood flow.

NORADRENALINE

Concentration neurotransmitter

Feelings of pleasure, and also addiction, movement, and motivation. People repeat behaviours that lead to dopamine release.

GABA

Calming neurotransmitter

ACETYLCHOLINE

Learning neurotransmitter

Memory neurotransmitter

Involved in thought, learning, & memory. Activates muscle action in the body. Also associated with attention and awakening.

Resting Potential

Resting Potential:

- Refers to the **electrical charge** across the cell membrane of a resting neuron.
- It is essential for the neuron's ability to transmit signals.

Negative Charge Inside:

- Inside the neuron, the charge is **negative** compared to the outside.
- This negative charge is around -70 millivolts (mV) in typical neurons.

Sodium-Potassium Pump:

- Key mechanism maintaining resting potential.
- Actively transports:
 - Sodium ions (Na⁺) out of the cell.
 - Potassium ions (K+) into the cell.
- This process requires energy in the form of ATP.

Resting Potential

Ion Distribution:

At rest, there are:

More **sodium ions outside** the neuron.

More potassium ions inside the neuron.

Creates an **electrical potential difference across the membrane**.

Resting Membrane Potential:

Imagine a neuron at rest is like a phone on standby. The resting potential, with its negative charge inside the cell, acts as a baseline ready state. When a stimulus arrives, it can trigger changes in the cell membrane, leading to an action potential – like dialing a number. This action potential is a wave of electrical activity that travels down the neuron's axon, allowing it to communicate with other cells. Without the resting potential, the neuron wouldn't have a clear starting point to generate these action potentials.

Conclusion

- Neurons are the fundamental units of the nervous system.
- Understanding the structure of a neuron and the characteristics of resting potential is crucial for understanding how nerve impulses are generated and transmitted.

Labxchange – neuron stimulation

https://www.labxchange.org/library/items/lb:LabXchange:231cc3f0:lx_simulation:1?fullscreen=true