Usando GMT en Python: Una introducción a la librería PyGMT

Sebastian Principi Grupo de prospección Geológica y Geofísica Lacustre y Marina del IGEBA sebaprincipi@gmail.com

¿Por qué usar PyGMT?

- Sintaxis: En líneas generales es mas literal y mas entendible para usuarios nuevos de GMT
- Python: Si ya se tiene una idea del lenguaje, es muy fácil empezar a crear scripts
- Integración con otras librerías de Python: la principal ventaja, es posible usarlo en conjunto con una gran numero de librerías para análisis de datos geográficos, estadísticos y de manejo de grillas
- Al igual que GMT, se tiene como producto figuras de alta calidad para publicaciones científicas

¿Cómo lo usamos?

Anatomía de una figura de PyGMT

Todo muy lindo ¿Cómo lo uso con mis propios datos?

- Los datos que mas solemos usar para hacer mapas son <u>archivos vectoriales y rasters</u>

- Para hacer un ejemplo usamos:
- Raster: de un modelo de elevación digital de marte bajado de:
 - https://astrogeology.usgs.gov/search/map/Mars/GlobalSurveyor/MOLA/Mars_MGS_MOLA_DEM_mosaic_global_463m
- Un shapefile creado en QGis

Todo muy lindo ¿Cómo lo uso con mis propios datos?

- Algo importante: Al exportar los datos de Qgis (o ArcGIS/Global Mapper, etc) hay que hacerlo en latitud / longitud (EPSG: 4326) para poder usarlo en GMT

Proyección equirectangular (también llamada geográfica o lat/lon).
 Codigo EPSG 4326

Ejemplo: Mapa topográfico 2D

Importo las librerías Rioxarray: para cargar los rasters en forma de grilla Geopandas: para cargar archivos vectoriales como shapefiles Ruta archivos Leo archivos con rioxarray (dem) y geopandas (shapefiles - shp) Creo la figura Voy invocando funciones de GMT con sus parametros Guardo y muestro la figura

Referencias: https://www.earthinversion.com/utilities/pygmt-high-resolution-topographicmap-in-python/

Ejemplo: Mapa topográfico en perspectiva 3D

Referencias:

- 1. https://www.earthinversion.com/utilities/Three-dimensional-perspective-mapof-Taiwan-using-GMT-and-PyGMT//
 - ?. https://www.pygmt.org/latest/tutorials/advanced/3d_perspective_image.html
 - 3. https://www.generic-mapping-tools.org/egu22pygmt/mars_maps.html

Ejemplos con integración con otras bibliotecas de Python

• Scikit-learn – Manipulación de grillas con la biblioteca Xarray clasificación no supervisada del fondo mediante

Tesis doctoral de José Isola 2021

Ejemplos con integración con otras bibliotecas de Python

Creación de animaciones con ciclos for y librería Open CV

Datos multidimensionales NETCDF


```
#Obtengo todas las fechas individuales
fechas=model csv.time.unique()
#Genero un mapa por cada fecha
for i in range(0,len(fechas)):
   #Filtro por fechas los vectores de velocidad de uo y vo
   vector_df=model_csv[model_csv["time"]==fechas[i]][["longitude", "latitude", "uo", "vo"]
   #Filtro por fecha los datos de magnititud de velocidad de corriente (ws)
   model_df=model_csv[model_csv["time"]==fechas[i]][["longitude", "latitude", "ws"]]
   #Para ws necesito una grilla, primero paso los datos a dataArray para que los lea PyG
   idx=pd.MultiIndex.from arrays(arrays=[model df.latitude,model df.longitude],names=['Y
   s= pd.Series(data=model_df.ws.values, index=idx)
   model data array=xr.DataArray.from series(s)
   #Grillo los datos de magnitud de ws
   model_sampled=pygmt.grdsample(model_data_array,spacing="0.3",interpolation="t")
   fig = pygmt.Figure()
   pygmt.config(MAP_FRAME_AXES='WesN')
   #Grafico la magnitud de velocidad de la corriente ws
   pygmt.makecpt(cmap="roma",
                 series=(0,20,0.01),
                 reverse=True
   fig.grdimage(
       grid=model sampled,
       projection="M14c",
       cmap=True,
       dpi=720,
       frame=True,
       region=subset_region,
       transparency="20",
       nan transparent=True)
```


Ejemplos con integración con otras bibliotecas de Python

Creación de animaciones con ciclos for y librería Open CV


```
#Genero la animación
image_folder = path_gif
video_name = 'MCAB_bottom_currents.avi'
images = [img for img in os.listdir(image_folder) if img.endswith(".png")]
images = sorted(images, key=lambda x: int(os.path.splitext(x)[0]))

images=images[0:len(images)-1]
frame = cv2.imread(os.path.join(image_folder, images[0]))
height, width, layers = frame.shape

video = cv2.VideoWriter(video_name, 0, 5, (width,height))

for image in images:
    video.write(cv2.imread(os.path.join(image_folder, image)))

cv2.destroyAllWindows()
video.release()
```


Recursos y links utiles:

Anaconda Python:

https://www.anaconda.com/products/distribution

Instalación pygmt:

https://www.pygmt.org/latest/install.html (Prestar atención al tutorial en la parte de instalación de dependencias)

Documentación oficial:

https://www.pygmt.org/latest/api/index.html https://www.pygmt.org/latest/gallery/

Webinar con tutoriales:

https://www.generic-mapping-tools.org/egu22pygmt/intro.html https://www.youtube.com/watch?v=Dgf6ijduNoE&list=PL3GHXjKap6VBA_MlUP7T_ByCFYQZ5uDG

Pagina con varios tutoriales:

https://www.earthinversion.com/utilities/pygmt-high-resolution-topographic-map-in-python/

Crafting beautiful maps with PyGMT 1

