

TD 5: Assembleur

Exercice 1 (Exemple d'instruction assembleur INTEL 8086) L'instruction suivante (avec AX un accumulateur 16 bits)

AND AX, 06

a pour code machine:

25 06 00_H (convention INTEL little Endian)

Cette instruction est implantée à l'adresse $01 00_H$

- 1. Indiquer le contenu des registres IR et IP juste avant l'exécution de l'instruction.
- 2. Indiquer le contenu du registre IP juste après exécution de l'instruction.

Exercice 2 (Programme ASSEMBLEUR (ASM))

Soit l'extrait de programme ASSEMBLEUR INTEL 8086 suivant, stocké à l'adresse 0100_H (via le code (ASM ORG 100h) avec les valeurs initiales : $AX = 0000_H$, $BX = 0000_H$, et l'état de pile (STACK) suivant (pile vide) :

 $\begin{array}{lll} \text{STACK}: & \text{FF FE}_{\text{H}} : 00 \ 00_{\text{H}} \\ \text{SP = FF FE}_{\text{H}} & \text{initialement} & \text{FF FC}_{\text{H}} : 00 \ 00_{\text{H}} \\ \text{Z = 0 initialement} & \text{FF FA}_{\text{H}} : 00 \ 00_{\text{H}} \end{array}$

•••

1	MOV AX, 0100h	B8 00 01	Ecrit 01 00 _H dans AX : (AX) = 01 00 - (AH)=01; (AL)=00
2	MOV BX, 0304h	BB 04 03	Ecrit 03 04 _H dans BX : (BX) = 03 04 - (BH)=03; (BL)=04
3	Boucle: ADD AL, 1 04 01		Ajoute 1 à l'octet de poids faible de AX noté AL : (AL) = (AL) + 1
4	CMP AL, 2	3C 02	Compare AL à 2 ; place Z à 1 en cas d' égalité de la comparaison
5	JNE Boucle	75 FA	Saut à l'étiquette Boucle si Z = 0 (si pas d'égalité) – <i>Jump Not Equal</i>
6	PUSH AX	50	Empile le contenu de AX dans la pile (STACK) : (AX) → STACK
7	PUSH BX	53	Empile le contenu de BX dans la pile (STACK) : (BX) → STACK

Compléter le tableau suivant (exécution du programme) :

	ı	(1 0	,		
	Instruction ASM	IP	AX	BX	Flag Z	SP	stack (FFFF, FFFE , FFFD, FFFC , FFFB, FFFA)
0	Etat intitial	01 00	00 00	00 00	0	FF FE	00 00 00 00 00 00
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							