Attractor mechanism in gauged supergravity

Karthik Inbasekar

Institute of Mathematical Sciences

 $\begin{array}{c} \text{Asian Winter School, Kusatsu, Japan} \\ \text{Jan 10-20 , 2012} \\ \text{Based on ongoing work with Prasanta K. Tripathy} \end{array}$

Introduction

- Gauged supergravities are the low energy effective theories that describe flux compactifications of string theory.¹
- In the AdS/CFT correspondence, the supergravity regime of the bulk theory is described by a gauged supergravity.²
- For AdS supergravity, there exist extremal black brane solutions with Lifshitz like near-horizon geometries.³
- For ungauged supergravities ($\mathcal{N}=2, d=4$) the attractor mechanism⁴ characterizes the near horizon geometries of extremal BPS black hole solutions.
- Studying the attractor mechanism in generic gauged supergravities may be useful to understand generic properties of extremal solutions in these theories.

¹Samtelbean 0808 4076

²Aharony et.al hep-th/9905111

³Goldstein et. al 0911.3586, 1007.2490

⁴hep-th/9602136

Attractor mechanism for gauged supergravities

• Recently⁵ there has been a generalization of the attractor mechanism for $\mathcal{N}=2$ d=4 gauged supergravities coupled to vector and hyper multiplets.

"Generalized Attractors": Features

- The scalars z^i , quarternions q^u , gauge fields A_a , field strengths F_{ab} all take constant values in tangent space.
- The attractor geometries are characterized by constant anholonomy coefficients $c_{ab}^{\ c} \Rightarrow R_{ab}^{\ cd} = \text{const} \Rightarrow \text{regular geometries}.$
- All the field equations become algebraic at the attractor points.
- Examples for c_{ab}^c =const include AdS₄, dS₄, Lifshitz, Schrodinger geometries and other planar geometries.

⁵Kachru et.al 1104.2882

Scalar potential and Attractor potential

• For d=4 $\mathcal{N}=2$ gauged supergravity the scalar potential is expressed in terms of squares of fermionic shifts $\delta_A \chi^\alpha$ that arise in susy transformations due to gauging.

$$\delta_A^{\ \ B}V(z,\bar{z},q)=Z_{\alpha\beta}\delta_A\chi^\alpha\delta^B\bar{\chi}^\beta-3\mathcal{M}_{AC}\bar{\mathcal{M}}^{CB}$$

The attractor potential⁷ also has a similar structure

$$\delta_{A}^{\ \ B} \mathcal{V}_{attractor}(z,ar{z},q) = Z_{lphaeta} ilde{\delta}_{A} \chi^{lpha} ilde{\delta}^{B} ar{\chi}^{eta} - 3 ilde{\mathcal{M}}_{AC} ilde{\mathcal{M}}^{CB}$$

where the shifts $\tilde{\delta}_A \chi^\alpha$ and $\tilde{\mathcal{M}}_{AC}$ include terms depending on constant gauge fields and constant field strengths.

 The variation of the scalars in the theory is an extremum of the attractor potential.

$$\frac{\partial \mathcal{V}_{attractor}[\phi]}{\partial \phi} = 0$$

• We are in the process of generalizing this construction to $\mathcal{N}=2$ d=5 gauged supergravity.

⁶Adrianopoli et.al. hep-th/9605032

⁷Kachru et.al 1104.2882

5d gauged sugra

- ullet The 5d $\mathcal{N}=2$ gauged sugra⁸ has the field content gravity coupled to vector, tensor and hyper multiplets.
- The scalars of the theory parametrize a manifold

$$\mathcal{M}_{scalar} = \mathcal{S}(n_V + n_T) \otimes \mathcal{Q}(n_H)$$

- gauging: a) by $K \subset G$ of \mathcal{M}_{scalar} : $K = U(1)^{n_V+1}$ with gauge coupling g, b) R-symmetry $SU(2)_R$ with coupling g_R .
- Gauging by K amounts to replacing the derivatives of the scalars and fermions with K-covariant derivatives. Gauging the R symmetry replaces the $SU(2)_R$ connection with its gauged counterpart.
- The scalar potential is again expressed as squares of fermionic shifts that arise in the supersymmetry transformations due to gauging.

$$\delta_{\tilde{b}}^{\tilde{a}}\mathcal{V}(h,q) = 2g^2W^{\tilde{a}}W_{\tilde{b}} + 2g^2\mathcal{N}_{iA}\mathcal{N}^{iA}\delta_{\tilde{b}}^{\tilde{a}} - g_R^2[2P_{ij}P^{ij} - P_{ij}^{\tilde{a}}P_{\tilde{a}}^{ij}]$$

⁸Ceresole, Dall'Agata hep-th/0004111

Results+In Progress...

- The ansatz used by Kachru⁹ et.al to derive the $\mathcal{N}=2, d=4$ generalized attractors also works in 5d.
- The attractor potential can be expressed in terms of shifts and mass matrix that depend on the constant scalars and gauge fields.
- The attractor points are similar to the ones obtained in the 4d case. In particular, planar geometries ($C^a_{bc} = \text{const}$).
- Further checks in progress.
- presence of tensor field + chern-simons term, possibilities of more general ansatzes for getting the attractor equations ?
- eg, instead of having scalars and quarternions as constants, one could also have scalars and quarternions to be covariantly constant. Are there interesting solutions in the theory with such properties?
- It would be nice if this procedure gives some insight towards the classification of extremal black brane geometries.

^{91104.2882}

4d- features 4d Attractor potential 5d gauged sugra

Thank You!