Department of Computer Science and Engineering

B.Sc. Engg.(CSE) 1st Year 2016

Course: MATH1111(Algebra, Trigonometry and Vector)

Time: 3 Hrs.

Full Marks: 52.5

[N.B. Answer SIXquestions taking at least THREE from each part.]

Part A

	 1.a) Define null set, subset, power set, union and intersection of two sets with example. b) Define one-one and onto functions. Can a constant function be one-one? Justify your answer. Show that if a relation R is transitive, then its inverse relation R¹ is also transitive. c) Use Cramer's rule to solve the system of linear equations: x + y + z = 3, x + 2y + 3z = 6, 5x + 8y + 11z = 24. 	3 3 2.75
	 2.a) Show that in an equation with real coefficients imaginary roots occurs in pairs. b) Solve the equation 54x³ - 39x² - 26x + 16 = 0, the roots being in geometrical progression. c) In the equation x⁴ - x³ - 7x² + x + 6 = 0, find the value of S₄. 	3 3 2.75
	3.a) If a, b, c are the roots of $x^3 + qx + r = 0$, find the equation whose roots are $bc + \frac{1}{a}$, $ca + \frac{1}{b}$, $ab + \frac{1}{c}$.	2
	b) Solve the cubic equation $x^3 - 15x^2 - 33x + 847 = 0$ by Cardan's method.	3.75
	c) If $x = \cos\theta + i\sin\theta$ and $1 + \sqrt{1 - a^2} = na$ then prove that $1 + a\cos\theta = \frac{a}{2n}(1 + nx)(1 + \frac{n}{x})$	3
	4.a) If $x = \frac{2}{1!} - \frac{4}{3!} + \frac{6}{5!} - \frac{8}{7!} + \cdots \dots to \infty$ and $y = 1 + \frac{2}{1!} - \frac{2^3}{3!} + \frac{2^5}{5!} - \cdots \dots to \infty$ then show that $x^2 = y$.	3
	b) If $i^{i - m - adinf} = A + iB$, then prove that $tan \frac{\pi A}{2} = \frac{B}{A}$ and $A^2 + B^2 = e^{-\pi B}$.	2.75
	c) Find the sum to infinity of the series $sin\theta.sin\theta - \frac{1}{2}sin2\theta.sin^2\theta + \frac{1}{2}sin3\theta.sin^3\theta$	3
	Part B	
	5.a) Define dot product of two vectors \vec{A} and \vec{B} . Prove that the area of a parallelogram with sides \vec{A} and \vec{B} is $ \vec{A} \times \vec{B} $.	3
	b) Determine the unit vector perpendicular to the plane of $\vec{A} = 2\vec{\imath} - 6\vec{\jmath} - 3\vec{k}$ and $\vec{B} = 4\vec{\imath} + 3\vec{\jmath} - \vec{k}$.	2.75
	c) Show that the vectors $\vec{A} = 3\vec{\imath} - 2\vec{\jmath} + \vec{k}$, $\vec{B} = \vec{\imath} - 3\vec{\jmath} + 5\vec{k}$ and $\vec{C} = 2\vec{\imath} + \vec{\jmath} - 4\vec{k}$ form a right-angled triangle.	3
(6.a) Find a unit tangent vector to any point on the curve $x = t^2 + 1$, $y = 4t - 3$, $z = 2t^2 - 6t$. Also determine it where $t=2$.	2.75
1	b) A particle moves on a curve so that its position vector is given by $\vec{r} = coswt\vec{i} + \sin wt \vec{j}$, where w is a constant. Show that the velocity of the particle is perpendicular to \vec{r} and the acceleration is directed towards the origin.	3
	c) What is the physical significance of the curl of a vector field? Determine the value of λ so that the vector field $\vec{v}(x,y,z) = (x+3y)\vec{i} + (y-2z)\vec{j} + (x+\lambda z)\vec{k}$ is solenoidal.	3
	7.a) What is meant by $\vec{\nabla}\varphi$, where φ is a scalar field? Find a unit normal to the surface $x^2y + 2xyz = 4$ at the point (2, -2, 3).	3
	b) Find angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point (2, -1, 2). c) Find the volume of the region common to the intersecting cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.	2.75
	8.a) State the divergence theorem of Gauss. Verify Green's theorem in the plane for	4.75
	$\oint_{c} (x^{2} - 2xy)dx + (x^{2}y + 3)dy$ around the boundary of the region defined by $y^{2} = 8x$ and	

b) Verify Stroke's theorem for $\vec{A} = (y - z + 2)\vec{i} + (yz + 4)\vec{j} - xz\vec{k}$, where S is the surface of the 4 cube x = 0, y = 0, z = 0, x = 2, y = 2, z = 2 above the xy plane.

Department of Computer Science and Engineering

B.Sc. (Engg.) Part-I (Odd Semester) Examination-2015

Course: MATH-1111 (Algebra, Trigonometry and Vector)

Marks: 52 5

Mar	ks: 52.5 [Answer any six (06) questions taking three (03) from each section]	
	Section-A	
1 a)	Define null set and subset. State and prove De Morgan's rule.	3
b)	Define function. Find the domain and range of the function $f(x) = \frac{x-3}{2x+1}$.	2.75
c)	Using Cramer's rule solve the following system: x + y + z = 1; $x + 2y + 3z = 2$; $x + 4y + 9z = 4$.	3
2. a)	Evaluate the determinant: $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix}$	3
b)	Prove that in an equation with real coefficients imaginary roots occur in pairs.	3
c)	If a, b, c are the roots of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{b^2 + c^2}{bc}$.	2.75
3. a)	Prove that every equation of n^{th} degree has exactly n roots and no more.	3
b)	Solve the cubic equation: $28x^3 - 9x^2 + 1 = 0$.	. 3
c) !	State Demoiver's theorem and prove it when n is fractional either positive or negative.	2.75
	If $x_r = \cos\frac{\pi}{2r} + i\sin\frac{\pi}{2r}$, then prove that, x_1, x_2, x_3, \dots to infinity = -1.	3
b) I	If $(1+x)^n = P_0 + P_1 x + P_2 x^2 + \cdots$ then show that, $P_1 - P_3 + P_5 - \cdots = 2^{\frac{n}{2}} \sin \frac{n\pi}{4}$	3
	Solve $x^4 - 4x^2 + 16 = 0$ using Demoiver's theorem.	2.75
	Section-B	•
i. a) l	If $A + iB = log(x + iy)$, then show that $B = tan^{-1}\frac{y}{x}$ and $A = \frac{1}{2}log(x^2 + y^2)$.	2.75
b) (Using Gregory's series prove that $\frac{\pi}{8} = \frac{1}{1.3} + \frac{1}{5.7} + \frac{1}{9.11} + \frac{1}{13.15} + \cdots$	3
c) I	Find the sum of the series cosec α + cosec 2α + cosec $2^2\alpha$ + + cosec $2^{n-1}\alpha$	
. a) F b) F	Find the projection of the vector $\bar{A} = \hat{\imath} - 2\hat{\jmath} + \hat{k}$ on the vector $\bar{B} = 4\hat{\imath} - 4\hat{\jmath} + 7\hat{k}$. Find principal normal and binormal at point $t = \pi$ to the curve	2.75
χ	$c=3\cos t$, $y=3\sin t$, $z=4t$.	9
c) F	Find the total work done in moving a particle in a force field given by $(\bar{x} = 3xy\hat{\imath} - 5z\hat{\jmath} + 10x\hat{k})$ along the curve $x = 1 + t^2$, $y = 2t^2$, $z = t^2$ from $t = 1$ to $t = 2$	2.
b) F c) F	Define gradient and divergence. What is the physical significance of gradient? ind directional derivative of $\varphi = x^2yz + 4xz^2$ at $(1, -2, -1)$ in the direction $2\hat{\imath} - \hat{\jmath} - \hat{\jmath}$ ind the constants a, b, c so that $\bar{F} = (x + 2y + az)\hat{\imath} + (bx - 3y - z)\hat{\jmath} + (4x + cy + 2z)\hat{\jmath}$ irrotational.	
	$c(\bar{F}) = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$, evaluate $\iint_S \bar{F} \cdot \bar{n} ds$ where s is the surface of the cube bour	nded

by x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.

 $y=x^2$.

b) State Green's theorem in the plane. Verify Green's theorem in the plane for

 $\varphi\{(xy+y^2)dx+x^2dy\}$, where c is the closed curve of the region bounded by y=x and

4.75

Department of Computer Science and Engineering

B. Sc. (Engg.) Part-I Odd Semester Exam - 2014

Course: MATH-1111 (Algebra, Trigonometry and Vector Analysis)

Full Marks: 52.5

Time: 3 Hours

3

2.75

3

3

[N.B.: Answer any SIX questions taking THREE from each section. Marks for each question are shown on the right side margin.]

Section A

- 1. a) Explain the operations of union, intersection and difference of sets with the aid of Venn-Euler diagrams. b) Is there any difference between mappings and operators? Explain your answer. Give an example of a relation which is not symmetric. 3 c) Using Cramer's rule solve the following system:
 - 3x y + 2z = 72x + y + z = 7
 - x + v 2z = -3
- Solve the cubic equation $3x^3 26x^2 + 52x 24 = 0$, the roots being in 2.75 geometrical progression.
- b) What is Descartes' rule of signs? Use the rule to find the nature of the roots of the quintic equation $x^5 + 5x^4 - 20x^2 - 19x - 2 = 0$. Show that the equation has a real root between 2 and 3.
 - c) Obtain the value of S_6 in equation $x^3 x 1 = 0$.
- 3. a) Test the equation $2x^4 + x^3 6x^2 + x + 2 = 0$ whether it is reciprocal. If a, b and c are roots of the equation $x^3 + qx + r = 0$, form the equation whose roots are $\frac{b+c}{a^2}$,
 - $\frac{c+a}{b^2}$, $\frac{a+b}{c^2}$.
 - b) Solve the quartic equation $x^4 6x^3 + 12x^2 10x + 3 = 0$ which has equal roots. 2
 - c) Use Cardan's method to solve the cubic equation $x^3 + 21x + 342 = 0$. 4
- 4. a) Mention some applications of Demoivre's theorem. With the aid of Demoivre's 3.75 theorem solve the polynomial equation $x^7 + x^4 + x^3 + 1 = 0$.
 - b) If $x_r = \cos \frac{\Pi}{2^r} + i \sin \frac{\Pi}{2^r}$, prove that $x_1 x_2 x_3$to infinity = -1. 3
 - c) If $\frac{Sinx}{x} = \frac{5045}{5046}$ then show that x is nearly 1°58'. 2

Section B

- a) Explain a technique to find the numerical value of Π using Gregory's series.
 - b) Show that $i^{i} = e^{-(4n+1)\frac{\Pi}{2}}$
 - c) Find the sum of the following series up to n terms

6. a) Show graphically that $-(\vec{A} - \vec{B}) = -\vec{A} + \vec{B}$. Graph the vector field defined by $\vec{V}(x, y) = x \hat{i} + y \hat{j}$.

. .

- b) Show that commutative law for dot products is valid. Find the projection of the 3.75 vector $2\hat{i}-3\hat{j}+6\hat{k}$ on the vector $\hat{i}+2\hat{j}+3\hat{k}$. Draw a rough sketch of it.
- c) Show that $\overrightarrow{A} : (\overrightarrow{B} \times \overrightarrow{C}) = \overrightarrow{B} : (\overrightarrow{C} \times \overrightarrow{A}) = \overrightarrow{C} : (\overrightarrow{A} \times \overrightarrow{B})$.
- 7. a) A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \, \hat{i} + \sin \omega t \, \hat{j}$, where ω is a constant. Show that
 - (i) the velocity \overrightarrow{v} of the particle is perpendicular to \overrightarrow{r} .
 - (ii) $\overrightarrow{r} \times \overrightarrow{v}$ is a constant vector.
 - b) Show that $\overrightarrow{div.curl A} = 0$.
 - c) If $\vec{\nabla} \cdot \vec{E} = 0$, $\vec{\nabla} \cdot \vec{H} = 0$, $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{H}}{\partial t}$, $\vec{\nabla} \times \vec{H} = \frac{\partial \vec{E}}{\partial t}$, show that \vec{E} and \vec{H} satisfy
 - $\nabla^2 \vec{u} = \frac{\partial^2 \vec{u}}{\partial t_{\underline{u}}^2}.$
- 8. a) The acceleration of a particle at any time t given by $\vec{a} = \frac{d\vec{v}}{dt} = 12\cos 2t \, \hat{i} 8\sin 2t \, \hat{j} + 16t \, \hat{k} \, .$

If the velocity \overrightarrow{v} and displacement \overrightarrow{r} are zero at t=0, find \overrightarrow{v} and \overrightarrow{r} at any time.

- b) Find the value of $\int_{-3}^{3} \int_{0}^{4} \int_{2}^{5} (x+y+z) dz dy dx$. 2.75
- c) State Green's theorem. Verify Green's theorem in the plane for $\oint_C (xy + y^2) dx + x^2 dy$, where C is the closed curve of the region bounded by y = x and $y = x^2$.

Department of Computer Science and Engineering

B. Sc. (Engg.) Examination-2013, Part-1, Odd Semester

Course: MATH-1111 (Algebra, Trigonometry, Vector Analysis)

Full Marks-52.5 Time: 4 hours

[N. B: Answer any six questions taking three from each group]

PART-A	
1. a) State and prove De-Morgan's Laws.	•
b) If ω is a root of x^4 -1=0, show that $a + b\omega + c\omega^2 + d\omega^3$ is a factor of	3
a b c d	3
b c d a	
c d a b	
d a b c	
Hence show that the determinant is equal to $-(a + b + c + d)(a - b + c - d)[(a - c)^2 + (b - d)^2]$.	
	2.75
x - 2y + 3z = 11	2.75
2x + y + 2z = 10	
3x + 2y + z = 9	•
2 a) Define the second	
2. a) Define the complement of a set. Prove that $B-A^C = B \cap A$.	3
b) Let S be the set of all integers. Given $a, b \in S$ define aRb if a-b is divisible by 2. Show that the relation P defines are	3
that the relation R defines an equivalence relation	
c) What is the difference between an into function and an onto function?	2.75
3. a) If a, b, c are the roots of $x^3 - 3ax + s = 0$, show that the equation $x = a$.	
July 100 to the July 100 to the July 100 to the Land 100 to th	3
c-a is $x^3 + 9qx \pm 3k = 0$, where $k^2 = 3(4q^2-s^2)$.	
b) Solve $x^3 - 12x^2 - 6x - 10 = 0$ by Cardan's method.	3
c) If the roots of $x^n - 1 = 0$ are 1, α , β , γ , show that $(1-\alpha)(1-\beta)(1-\gamma)$ = n.	2.75
4 a) State De Maiver's theorem and find the set of the	
4. a) State De-Moiver's theorem and find the value of (i) $(-1)^{1/4}$, (ii) $(-i)^{1/6}$.	3
b) If $x = \frac{2}{1!} - \frac{4}{3!} + \frac{6}{5!} - \frac{8}{7!} + \cdots \infty$ and $y = 1 + \frac{2}{1!} - \frac{2^3}{3!} + \frac{2^5}{5!} - \cdots + to \infty$, show that $x^2 = y$.	3
c) If $x + \frac{1}{x} = 2\cos\theta$, then show that If $x^n + \frac{1}{x^n} = 2\cos n\theta$.	3
$\frac{x}{x^n} = 2\cos n\theta$.	2.75
DADTD	
<u>PART-B</u>	
a) Evaluate Log(a+ib), where a and b are real.	
b) Express Log $\{Log(cos\theta+isin\theta)\}\$ in the form $A+iB$.	3
c) If ton I co(v1/v) = -111 1 2 12	3
c) If $\tan \text{Log}(x+iy) = a+ib$, where $a^2 + b^2 \neq 1$, prove that $\tan \log (x^2 + y^2) = \frac{2a}{1 - (a^2 + b^2)}$.	2.75
a) Find the numerical value of π to 4 places of decimals by Dase's Series.	
b) Find the summation of the following series to n terms: $\tan \alpha + 2\tan 2\alpha + 2^2\tan 2^2\alpha + \dots$	3
c) Show that $\cosh\theta$ is periodic.	3
	2.75
a) Define the dot product of two vectors. Find the angles which the vector	_
$\frac{1}{4} = 3i - 6j + 2k$ makes with the coordinate axes.	3
b) Prove that	
b) Prove that $\overrightarrow{A} \cdot \left(\overrightarrow{A} \times \overrightarrow{C} \right) = 0$.	2.75
c) Find the unit tangent vector to any point on the curve $x = t^2 + 1$, $y = 4t - 3$, $z = 2t^2 - 6t$.	•
	3
a) Define the curl of a differential vector field. Show that $\nabla \times (\nabla \varphi) = 0$.	
b) Find the volume of the region common to the intersecting cylinders $x^2 + y^2 = a^2$ and	3
$x^2+z^2=a^2$.	2.75
c) State and prove the Divergence Theorem of Gauss.	
or Gauss.	3

University of Rajshahi

Department of Computer Science and Engineering

B.Sc. Engg. (CSE) 1st Year Odd Semester 2012

Course: MATH 1111(Algebra, Trigonometry and Vector Analysis)

Time: 4 Hrs Full Marks: 52.5

[N.B. Answer any SIX questions taking at least THREE from each part]

Section A

		Section A	0.75	
		$f(x) = \frac{x-1}{x}, x, y \in \mathbb{R}$	2.75	
1.	a)	Define function. Find the domain and range of f given by $y = f(x) = \frac{x-1}{2x-3}$. $x, y \in \mathbb{R}$	3	
	b)	Define difference of two sets. Prove AU(BIC)-(AD) (1200)	3	
	c)	Solve the system of equations using Cramer's rule $x+2y-z=4$, $x+4y-2z=-0$, $2x+3y+2$	3	
2.	a)	State and prove De Moivre's theorem for positive integer n.	3	
~.	b)	Prove that $\sin \alpha = \alpha - \frac{\alpha^3}{3!} + \frac{\alpha^5}{5!} + \cdots$ to infinity term	2.75	
	c)	Expand tanx in power of x as far as the term involving x ⁶	2.13	
	c)		3	
3.	a)	Prove that if $\alpha_1, \alpha_2, \dots, \alpha_n$ are the roots of the equation.		
		Prove that if $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of the equation: $f(x) = c_0 x^n + c_1 x^{n-1} + \ldots + c_n = 0$, then the sum of the roots is $-\frac{c_1}{c_0}$, the sum of the products of roots		
		$f(x) = c_0 x + c_1 x + \dots + c_n = 0$, then the standy we contain taken tree at a time is $-\frac{c_3}{c_0}$, etc., finally taken two at a time is $\frac{c_2}{c_0}$, the sum of products of the roots taken tree at a time is $-\frac{c_3}{c_0}$, etc., finally		
		$\frac{1}{1}$	3	
	h)	If a, b, c are roots of the equation $x^3 + p_1 x^2 + p_2 x + p_3 = 0$, form the equation whose roots are	3	
		u^2, b^2, c^2 . State Descartes' rule of signs, Find the nature of the roots of the equation $x^9 + 5x^8 - x^3 + 7x + 2 = 0$	2.75	
	c)	State Descartes' rule of signs, Find the nature of the roots of the organization	0.55	
ব	a)	Prove that in an equation with real coefficients imaginary roots occur in pairs.	2.75 3	
٦.	b)		3	
	Ć	Solve the cubic equation $x^2-15x-120=0$ Solve the equation $3x^3-26x^2+52x-24=0$, the roots being in geometrical progression.		
		Section B		
5	. a)	Separate $log(a+ib)$ into real and imaginary parts.	3	
J	b)			
		Using Gregory's series show that $\pi = \frac{8}{1.3} + \frac{8}{5.7} + \frac{8}{9.11} + \cdots$	2.75	
	c)			
	۵)	Sum to n terms the series $\cot^{-1}(2.1^2) + \cot^{-1}(2.2^2) + \cot^{-1}(2.3^2) + \dots$	2.75	
6 a) Sum to n terms the series cot (2.1)+cot (2.2) test (2.3) and $\cosh^2 \beta$ are roots of the equation 3 b) If $\sin^{-1}(u+iv) = \alpha + i\beta$ prove that $\sin^2 \alpha$ and $\cosh^2 \beta$ are roots of the equation 3				
	0,	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	3	
	c)	Sum to n terms the series $\sqrt{1 + \sin \alpha} + \sqrt{1 + \sin 2\alpha} + \sqrt{1 + \sin 3\alpha}$	3	
			3	
7.	a)	Determine a unit vector perpendicular to the plane of $\vec{A} = 2\hat{\imath} - 6\hat{\jmath} - 3\hat{k}$ and $\vec{B} = 4\hat{\imath} + 3\hat{\jmath} - \hat{k}$.	2.75	
	b)	Find the projection of $\vec{A} = 6\hat{\imath}-2\hat{\jmath}+3\hat{k}$ on $\vec{B} = 4\hat{\imath}+\hat{\jmath}-8\hat{k}$		
	c)	A particle moves along the curve $\vec{r} = 3t^2\hat{\imath} + 2t\hat{\jmath} + 3t\hat{k}$ at time t, find its velocity \vec{V}	and 5	
		acceleration \vec{a} .		
•		δ^2 δ^2 δ^2 δ^2 δ^3 δ^3	2.75	
8.	a)	If $\vec{A} = x^2 yz\hat{\imath} - 2xz^3\hat{\jmath} + xz^2\hat{k}$ and $\vec{B} = 2z\hat{\imath} + y\hat{\jmath} - x^2\hat{k}$, find $\frac{\delta^2}{\delta x \delta y} (\vec{A} \times \vec{B})$ at $(1, 0, -2)$.		
	b)	If $\vec{\nabla} \cdot \vec{E} = 0$, $\vec{\nabla} \cdot \vec{H} = 0$, $\vec{\nabla} \times \vec{E} = -\frac{\delta \vec{H}}{\delta t}$, $\vec{\nabla} \times \vec{H} = \frac{\delta \vec{E}}{\delta t}$, show that \vec{E} and \vec{H} satisfy $\nabla^2 \vec{u} = \frac{\delta^2 \vec{u}}{\delta t^2}$	3	
	c)	The acceleration of a particle at any time $t\ge 0$ is given by $\vec{a} = \frac{d\vec{v}}{dt} = 12\cos 2t\hat{\imath} - 8\sin \theta$	$n2t\hat{j} + 3$	
		$16t\hat{k}$, if the velocity \vec{V} and displacement \vec{r} are zero at t=0, find \vec{V} and \vec{r} at any time	,	