

Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

1. (Original) A compound of the formula:

wherein:

R₃₁ is a linear or branched polymer residue;

Y₁₀ and Y₁₁ are independently O, S, or NR₄₀;

X₂ is O, S or NR₄₁;

R₃₂, R₃₃, R₃₄, R₃₅, R₃₇, R₃₈, R₃₉, R₄₀, R₄₁, R₅₀ and R₅₁ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls and substituted C₁₋₆ heteroalkyls;

a, b and e are each independently a positive integer;

L is an amino acid residue or a bifunctional linker;

wherein Y₁₂ and Y₁₃ are independently O, S, or NR₄₁;

Z is selected from the group consisting of a bond, a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

D₁ and D₂ are independently selected from the group consisting of OH, a residue of a hydroxyl-containing moiety, a residue of an amine-containing moiety and a leaving group; and y₁ and y₂ are independently selected positive integers.

2. (Withdrawn) The compound of claim 1, wherein Y₁ and Y₂ are O.

3. (Withdrawn) The compound of claim 1, wherein R₂, R₃, R₄, R₇, R₈ and R₉ are H.

4. (Withdrawn) The compound of claim 1, wherein m and n are both 1.

5. (Currently Amended) The compound of claim 1, wherein R₄ R₁ is O-(CH₂CH₂O)_x or O-(CH(CH₃)CH₂O)_x, wherein x is the degree of polymerization fix m about 10 to about 2,300.

6. (Withdrawn) The compound of claim 5, wherein R₁ is O-(CH₂CH₂O)_x and x is a positive integer selected so that the weight average molecular weight is at least about 20,000.

7. (Withdrawn) The compound of claim 6, wherein R₁ has a weight average molecular weight of from about 20,000 to about 100,000.

8. (Withdrawn) The compound of claim 7, wherein R₁ has a weight average molecular weight of from about 25,000 to about 60,000.

9. (Currently Amended) The compound of claim 1 wherein L is selected from the group consisting of:

wherein

X₃ is O, S or N R₄₃;

Y₁₅ is O, S, or NR₄₄;

R₄₃, R₄₄ and R₅₄-R₅₈ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₁₋₈ substituted

cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls and substituted C₁₋₆ heteroalkyls;
and

g is a positive integer.

10. (Withdrawn) The compound of claim 1 wherein L is an amino acid residue of the formula:

wherein X₄ is O, S or NR₄₂;

Y₁₄ is independently O, S, or NR₄₅;

R₄₂, R₄₅ and R₅₂-R₅₃ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls and substituted C₁₋₆ heteroalkyls; and

f is a positive integer.

11. (Original) The compound of claim 1 wherein D₁ and D₂ are residues of an active biological agent, an anticancer prodrug, a detectable tag, and combinations thereof.

12. (Withdrawn) The compound of claim 11 wherein the anticancer agent or anticancer prodrug is selected from the group consisting of daunorubicin, doxorubicin, p-aminoaniline mustard, melphalan, cytosine arabinoside, gemcitabine, and combinations thereof.

13. (Withdrawn) The compound of claim 1 wherein at least one I moiety is a leaving group selected from the group consisting of N-hydroxybenzotriazolyl, halogen, N-hydroxy-phthalimidyl, p-nitrophenoxy, imidazolyl, N-hydroxysuccinimidyl, thiazolidinyl thione, and combinations thereof.

14. (Withdrawn) A compound of the formula:

wherein:

 R_{31} is a linear or branched polymer residue; Y_{10} and Y_{11} are independently O, S, or NR_{40} ; X_1 is O, S or NR_{41} ;

R_{32} , R_{33} , R_{34} , R_{35} , R_{36} , R_{37} , R_{38} , R_{40} and R_{41} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, $3-12$ branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls and substituted C_{1-6} heteroalkyls; and

 a and b are each independently a positive integer.

15. (Original) A method of preparing a polymeric conjugate, comprising reacting a compound of the formula (XII)

wherein

R_{31} is a linear or branched polymer residue;

Y_{10} and Y_{11} are independently O, S, or NR₄₀;

L is an amino acid residue or a bifunctional linker;

R_{32} , R_{33} , R_{34} , R_{35} , R_{37} , R_{38} , and R_{40} are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls and substituted C₁₋₆ heteroalkyls;

a and b are each independently a positive integer, and

B is a leaving group;

with a compound of the formula (XIII)

wherein

X_2 is O, S or NR₄₁;

R_{39} , R_{41} , R_{30} and R_{31} are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls and substituted C₁₋₆ heteroalkyls;

wherein Y_{12} and Y_{13} are independently O, S, or NR₄₁;

Z is selected from the group consisting of a bond, a moiety that is actively transported into a target cell, a hydrophobic moiety, and combinations thereof;

D_1 and D_2 are independently selected from the group consisting of OH, a residue of a hydroxyl, a residue of an amine-containing moiety and a leaving group;

e is a positive integer; and

y_1 and y_2 are independently selected positive integers;

under conditions sufficient to cause a substitution reaction in which the compound of formula (X) is formed.

16. (Original) A method of treating mammals with polymeric conjugates, comprising administering an effective amount of the compound of claim 1.

17. (New) The compound of claim 9 wherein g is 1 or 2.

18. (New) The compound of claim 5, wherein x is the degree of polymerization, from about 10 to about 2,300.

19. (New) The compound of claim 5, wherein R₃₁ is a polymer having a weight average molecular weight ranging from about 2,000 to about 100,000.

20. (New) The compound of claim 5, wherein R₃₁ is a polymer having a weight average molecular weight from about 5,000 to about 50,000.

21. (New) The compound of claim 5, wherein R₃₁ is a polymer having a weight average molecular weight of from about 20,000 to about 40,000.

22. (New) The compound of claim 1, having the formula:

23 (New) The compound of claim 1, wherein Y₁₁ and Y₁₂ are both .

24 (New) The compound of claim 1, wherein R₂₂-R₄₀, R₅₀, and R₅ are each hydrogen.

25 (New) The compound of claim 1, wherein a and b are each 1.

26 (New) The compound of claim 1, wherein y₁ and y₂ are both or .