# Data structures I – Linked lists, and Hash Tables

### **LINKED LISTS**

### Linked lists (1)

- A linked list consists of a sequence of **nodes** connected by links, plus a header.
- Each node (except the last) has a **successor**, and each node (except the first) has a **predecessor**.
- Each node contains a single **element** (object or value), plus links to its successor and/or predecessor.



### Linked lists (2)

- The **length** of a linked list is the number of nodes.
- An empty linked list has no nodes.
- In a linked list:
  - We can manipulate the individual elements.
  - We can manipulate the links, thus changing the linked list's very structure! (This is impossible in an array.)

#### **Singly-linked lists**

- A singly-linked list (SLL) consists of a sequence of nodes, connected by links in one direction only.
- Each SLL node contains a single element, plus a link to the node's successor (or a null link if the node has no successor).
- An SLL header contains a link to the SLL's first node (or a null link if the SLL is empty).



## The \_SingleLinkedBase Class for a node containing a String (1)

# The \_SingleLinkedBase Class for a node containing a String (2)

```
#----- list constructor ------
 def init (self):
   #Create an empty list
   self._head = self._Node(None, None)
   self. size = 1
                                     # number of elements
 #----- public accessors ------
 def len (self):
   #Return the number of elements in the list
   return self. size
 def is empty(self):
   #Return True if list is empty
   return self. size == 0
```

#### **Doubly-linked lists**

- A doubly-linked list (DLL) consists of a sequence of nodes, connected by links in both directions.
- Each DLL node contains a single element, plus links to the node's successor and predecessor (or null link(s)).
- The DLL header contains links to the DLL's first and last nodes (or null links if the DLL is empty).



### DLL = forward SLL + backward SLL

 View a DLL as a backward SLL superimposed on a forward SLL:



#### Insertion

- Problem: Insert a new element *at a given point* in a linked list.
- Four cases to consider:
  - 1) insertion in an empty linked list;
  - 2) insertion before the first node of a nonempty linked list;
  - 3) insertion after the last node of a nonempty linked list;
  - 4) insertion between nodes of a nonempty linked list.
- The insertion algorithm needs links to the new node's successor and predecessor.

### **SLL** insertion (1)

• Animation (insertion before first node):

- 1. Make *ins* a link to a newly-created node with element *elem* and successor null.
- 2. If the insertion point is before the first node:
  - 2.1. Set node *ins*'s successor to *first*.
  - 2.2. Set *first* to *ins*.
- 3. If the insertion point is after the node *pred*:
  - 3.1. Set node *ins*'s successor to node *pred*'s successor.
  - 3.2. Set node *pred*'s successor to *ins*.
- 4. Terminate.



### **SLL** insertion (2)

• Animation (insertion after intermediate node):

- 1. Make *ins* a link to a newly-created node with element *elem* and successor null.
- 2. If the insertion point is before the first node:
  - 2.1. Set node *ins*'s successor to *first*.
  - 2.2. Set *first* to *ins*.
- 3. If the insertion point is after the node *pred*:
  - 3.1. Set node *ins*'s successor to node *pred*'s successor.
  - 3.2. Set node *pred*'s successor to *ins*.
- 4. Terminate.



#### **DLL** insertion (1)

#### • DLL insertion algorithm:

- 1. Make *ins* a link to a newly-created node with element *elem*, predecessor null, and successor null.
- 2. Insert *ins* at the insertion point in the forward SLL headed by *first*.
- 3. Let *succ* be *ins*'s successor (or null if *ins* has no successor).
- 4. Insert *ins* after node *succ* in the backward SLL headed by *last*.
- 5. Terminate.

### **DLL insertion (2)**

• Animation (insertion before the first node):

- 1. Make *ins* a link to a newly-created node with element *elem*, predecessor null, and successor null.
- 2. Insert *ins* at the insertion point in the forward SLL headed by *first*.
- 3. Let *succ* be *ins*'s successor (or null if *ins* has no successor).
- 4. Insert *ins* after node *succ* in the backward SLL headed by *last*.



#### **DLL** insertion (3)

• Animation (insertion after the last node):

- 1. Make *ins* a link to a newly-created node with element *elem*, predecessor null, and successor null.
- 2. Insert *ins* at the insertion point in the forward SLL headed by *first*.
- 3. Let *succ* be *ins*'s successor (or null if *ins* has no successor).
- 4. Insert *ins* after node *succ* in the backward SLL headed by *last*.
- 5. Terminate.



#### **DLL insertion (4)**

• Animation (insertion between nodes):

- 1. Make *ins* a link to a newly-created node with element *elem*, predecessor null, and successor null.
- 2. Insert *ins* at the insertion point in the forward SLL headed by *first*.
- 3. Let *succ* be *ins*'s successor (or null if *ins* has no successor).
- 4. Insert *ins* after node *succ* in the backward SLL headed by *last*.
- 5. Terminate.



#### **Deletion**

- Problem: Delete *a given node* from a linked list.
- Four cases to consider:
  - 1) deletion of a singleton node;
  - 2) deletion of the first (but not last) node;
  - 3) deletion of the last (but not first) node;
  - 4) deletion of an intermediate node.
- The deletion algorithm needs links to the deleted node's successor and predecessor.

#### **SLL** deletion (1)

• Animation (deleting the first node):



#### **SLL** deletion (2)

• Animation (deleting an intermediate (or last) node):



### **SLL** deletion (3)

#### Analysis:

Let *n* be the SLL's length.

Step 3.1 must visit all nodes from the first node to the deleted node's predecessor. There are between 0 and n–1 such nodes.

At most, no. of nodes visited = n-1Time complexity is O(n).

#### **DLL deletion (2)**

• Animation (deleting the first (but not last) node):

To delete node *del* from the DLL headed by (*first*, *last*):

- 1. Let *pred* and *succ* be node *del*'s predecessor and successor.
- 2. Delete node *del*, whose predecessor is *pred*, from the forward SLL headed by *first*.
- 3. Delete node *del*, whose successor is *succ*, from the backward SLL

headed by last.

4. Terminate.



#### **DLL** deletion (3)

• Animation (deleting an intermediate node):

To delete node *del* from the DLL headed by (*first*, *last*):

- 1. Let *pred* and *succ* be node *del*'s predecessor and successor.
- 2. Delete node *del*, whose predecessor is *pred*, from the forward SLL headed by *first*.
- 3. Delete node *del*, whose successor is *succ*, from the backward SLL

headed by last.

4. Terminate.



# Comparison of insertion and deletion algorithms

| Algorithm | SLL          | DLL          |
|-----------|--------------|--------------|
| Insertion | <i>O</i> (1) | <i>O</i> (1) |
| Deletion  | O(n)         | <i>O</i> (1) |

### Searching (1)

- Problem: Search for a given target value in a linked list.
- Unsorted SLL linear search algorithm:

To find which (if any) node of the SLL headed by *first* contains an element equal to *target*:

- 1. For each node *curr* in the SLL headed by *first*, repeat:
  - 1.1. If *target* is equal to node *curr*'s element, terminate with answer *curr*.
- 2. Terminate with answer *none*.
- DLL linear search is similar, except that we can search from last to first if preferred.

### Searching (2)

- Analysis (counting comparisons):
  - Let *n* be the SLL's length.
- If the search is **successful**:
  - At most, no. of comparisons = n
- If the search is **unsuccessful**:
  - No. of comparisons = n
- In either case, time complexity is O(n).

### Searching (3)

- (Binary) search in a sorted SLL
  - $-O(\log n)$ ?
  - Locating the middle node, O(n)





### Searching (4)

- (Binary) Search in a sorted SLL
  - $-\frac{O(\log n)?}{\log n}$
  - Locating the middle node, O(n)
  - Linear search, O(n)





## Implementation of stacks using SLLs (1)

• Represent an (unbounded) stack by an SLL, such that the first node contains the topmost element.



## Implementation of stacks using SLLs (2)

- Analysis:
  - $\blacksquare$  All operations have time complexity O(1).

# Implementation of queues using SLLs (1)

- Represent an (unbounded) queue by:
  - an SLL, whose first node contains the front element, and whose header contains links to the first node (*front*) and last node (*rear*).
  - a variable *length* (optional).



## Implementation of queues using SLLs (2)

- Analysis:
  - Most operations have time complexity O(1), but size is O(n).
  - However, size too would be O(1) if we used a variable *length*.

#### **HASH TABLES**

#### Maps

- A map models a searchable collection of key-value entries
- The main operations of a map are for searching, inserting, and deleting items (seen with linked lists)
- Multiple entries with the same key are not allowed
- Applications:
  - address book
  - student-record database
- Python's **dict** class is a very important data structure in the language representing an abstraction known as a dictionary in which unique keys are mapped to associated values
- A map is a more general form of the dict abstract data type

#### The Map ADT

- Some map ADT methods:
  - M[k]=v: associate value v with key k in map M, replacing the existing value if the map already contains an entry with key k

```
e.g. M['Alison'] = 02085551234
```

- M[k]: if the map M has an entry with key k, return its associated value v; else, raise a KeyError

```
e.g. M['Alison'] returns 02085551234
```

- Del M[k]: remove from map M the item with key k; if key k is not already in M,
   then raise a KeyError
- k in M: if the map M has an entry with key k then return True
- len(M): return the number of items in the map M.
- M.pop(k,d=None): remove item with key k and return its value v. If k is not in map return d or raise KeyError if d set to None
- M. keys(): return set-like view of all keys of M
- ...Lots of others

#### **Example use of a Map**

```
Operation Output
               Map
Len(M) 0
              Ø
M['A']=5 - {'A':5}
M['B']=7 - {'A':5,'B':7}
M['C']=2 - {'A':5,'B':7,'C':2}
M['D']=8 - \{'A':5,'B':7,'C':2,'D':8\}
M['C']=9 -
                {'A':5,'B':7,'C':9,'D':8}
M['B'] 7 {'A':5,'B':7,'C':9,'D':8}
M['X'] KeyError {'A':5,'B':7,'C':9,'D':8}
len(M) 4 {'A':5,'B':7,'C':9,'D':8}
Del M['A'] -
                {'B':7,'C':9,'D':8}
M.pop('B') 7 {'C':9,'D':8}
M.keys() 'C','D' {'C':9,'D':8}
```

#### A Simple List-based Map

- We can (inefficiently) implement a map M using an unsorted list
- We store the items of the map in a list (based on a doubly-linked list), in arbitrary order not good for large maps
- Inserting an item takes O(1) if we insert at beginning/end of list
- Searching for an item can take *O*(len[M])



## Implementation of small-integerkey maps using key-indexed arrays (1)

- What about a more efficient storage and retrieval of information than a list-based map?
- If the keys are known to be small **integers**, in the range 0...m-1, represent the map by:
  - an array *vals* of length m, such that vals[k] contains a value v if and only if (k, v) is a entry of the map.



# Implementation using key-indexed arrays (2)

Illustration (m = 20):

| <u>code</u> | module |
|-------------|--------|
| 01          | CS1    |
| 02          | CS2    |
| 10          | DB     |
| 11          | OOP    |
| 12          | ADS    |
| 14          | OS     |
| 16          | HCI    |

is represented by



# Implementation using key-indexed arrays (3)

| Operation | Algorithm                 | Time complexity |
|-----------|---------------------------|-----------------|
| search    | inspect array component   | <i>O</i> (1)    |
| insert    | update array component    | <i>O</i> (1)    |
| delete    | make array component null | <i>O</i> (1)    |

## Implementation using key-indexed arrays (3)

Illustration (m = 20):

| <u>module</u> | code |
|---------------|------|
| CS1           | 01   |
| CS2           | 02   |
| DB            | 10   |
| OOP           | 11   |
| ADS           | 12   |
| OS            | 14   |
| HCI           | 16   |



## **Hash Tables Principles (1)**

- If a map's keys are small integers, we can represent the map by a key-indexed array. Search, insertion, and deletion then have time complexity O(1).
- Surprisingly, we can approach this performance with keys of other types!
- **Hashing**: translate each key to a small integer, and use that integer to index an array.
- A hash table is an array of m buckets, together with a hash function hash(k) that translates each key k to a bucket index (in the range 0...m-1).

## **Hash Tables Principles (2)**



## **Hash Tables Principles (3)**

- Each key k has a home bucket in the hash table, namely the bucket with index hash(k).
- To **insert** a new entry with key *k* into the hash table, assign that entry to *k*'s home bucket.
- To **search** for an entry with key *k* in the hash table, look in *k*'s home bucket.
- To **delete** an entry with key *k* from the hash table, look in *k*'s home bucket.

## **Hash Tables Principles (4)**

• The hash function must be **consistent**:

$$k_1 = k_2$$
 implies  $hash(k_1) = hash(k_2)$ .

- In general, the hash function is many-to-one.
- Therefore, different keys may share the same home bucket:

$$k_1 \neq k_2$$
 but  $hash(k_1) = hash(k_2)$ .

This is called a **collision**.

• Always prefer a hash function that makes collisions relatively infrequent.

## **Example: a Hash Function for Words**

- Suppose that the keys are English words.
- Possible hash function:
- m = 26hash(w) = (initial letter of w) - 'A'
- All words with initial letter 'A' share bucket 0; ... all words with initial letter 'Z' share bucket 25.
- This is a convenient choice for illustrative purposes.
- But it is a poor choice for practical purposes: collisions are likely to be frequent in some buckets.

## Closed-bucket vs. Open-bucket Hash Tables

- Closed-bucket hash table (CBHT):
  - Each bucket may be occupied by several entries.
  - Buckets are completely separate: *separate chaining*.
- Open-bucket hash table (OBHT):
  - Each bucket may be occupied by at most one entry.
  - Whenever there is a collision, displace the new entry to another bucket: *linear probing*.

### **Closed-bucket Hash Tables**

| Element | Number |
|---------|--------|
| F       | 9      |
| Ne      | 10     |
| CI      | 17     |
| Ar      | 18     |
| Br      | 35     |
| Kr      | 36     |
| 1       | 53     |
| Xe      | 54     |

is represented by



#### **CBHT: Collisions**

| Element | Number |
|---------|--------|
| Н       | 1      |
| He      | 2      |
| Li      | 3      |
| Ве      | 4      |
| Na      | 11     |
| Mg      | 12     |
| K       | 19     |
| Ca      | 20     |
| Rb      | 37     |
| Sr      | 38     |
| Cs      | 55     |
| Ва      | 56     |



## **CBHT: Algorithms & Analysis**

- Set bucket *b* to *hash(target-key)* and search/insertion/deletion algorithms of SLL
- Analysis of the CBHT search/insertion/deletion algorithms (counting comparisons): Let the number of entries be *n*.
- Set bucket b to hash(target-key) and search/insertion/deletion algorithms of SLL.
- In the best case, no bucket contains more than (say) 2 entries: **Best-case** time complexity is O(1).
- In the worst case, one bucket contains all n entries: Worst-case time complexity is O(n).

### **CBHT: Design**

- CBHT design consists of:
  - choosing the number of buckets m
  - choosing the hash function *hash*.
- Design aims:
  - collisions should be infrequent
  - entries should be distributed evenly among the buckets, such that few buckets contain more than about 2 entries.

#### **CBHT: Number of Buckets**

- The load factor of a hash table is the average number of entries per bucket, n/m.
- If *n* is (roughly) predictable, choose m such that the load factor is likely to be between 0.5 and 0.75.
  - A low load factor wastes space.
  - A high load factor tends to cause some buckets to have many entries.
- Choose *m* to be a prime number.

#### **CBHT: Hash Function**

- The hash function should be efficient (performing few arithmetic operations).
- The hash function should distribute the entries evenly among the buckets, regardless of any patterns in the keys.
- Possible trade-off:
  - Speed up the hash function by using only part of the key.
  - But beware of any patterns in that part of the key.

## **Example: Hash Table for Words (1)**

- hash(w) can depend on any of w's letters and/or length.
- Consider m = 20, hash(w) = length of w 1.
  - Far too few buckets. Load factor = 1000/20 = 50.
  - Very uneven distribution.
- Consider m = 26, hash(w) = initial letter of w A.
  - Far too few buckets.
  - Very uneven distribution.

## **Example: Hash Table for Words (2)**

- Consider m = 520,  $hash(w) = 26 \times (length of w 1) + (initial letter of w 'A').$ 
  - Too few buckets. Load factor =  $1000/520 \approx 1.9$ .
  - Very uneven distribution. Since few words have length 0–2,
     buckets 0–51 will be sparsely populated. Since initial letter Z is uncommon, buckets 25, 51, 77, 103, ... will be sparsely populated. And so on.
- Consider m = 1499, hash(w) = (weighted sum of letters of w) modulo m
  - i.e.,  $(c_1 \times 1 \text{st letter of } w + c_2 \times 2 \text{nd letter of } w + ...) \text{ modulo } m$
  - + Good number of buckets. Load factor  $\approx 0.67$ .
  - + Reasonably even distribution.

## **Open-bucket Hash Table (1)**

- Open-bucket hash table (OBHT):
  - Each bucket may be occupied by at most one entry.
  - Whenever there is a collision, displace the new entry to another bucket: *linear probing*.
- Each bucket has three possible states:
  - occupied (currently contains an entry)
  - never-occupied (has never contained an entry)
  - **formerly-occupied** (previously contained an entry, which has been deleted and not yet replaced).

## **Open-bucket Hash Table (2)**

| Element | Number |
|---------|--------|
| F       | 9      |
| Ne      | 10     |
| CI      | 17     |
| Ar      | 18     |
| Br      | 35     |
| Kr      | 36     |
| 1       | 53     |
| Xe      | 54     |

With no collisions



## **OBHT: Collisions (1)**

| Element | Number |
|---------|--------|
| Н       | 1      |
| He      | 2      |
| Li      | 3      |
| Be      | 4      |
| Na      | 11     |
| Mg      | 12     |
| K       | 19     |
| Ca      | 20     |
| Rb      | 37     |
| Sr      | 38     |
| Cs      | 55     |
| Ва      | 56     |

With collisions



## **OBHT: Collisions (2)**

| Element | Number |
|---------|--------|
| Н       | 1      |
| He      | 2      |
| Li      | 3      |
| Ве      | 4      |
| Na      | 11     |
| Mg      | 12     |
| K       | 19     |
| Ca      | 20     |
| Rb      | 37     |
| Sr      | 38     |
| Cs      | 55     |
| Ва      | 56     |
|         |        |



#### **OBHT: Search**

- 1. Set *b* to *hash(target-key)*.
- 2. Repeat:
  - 2.1. If *b* is never-occupied:
    - 2.1.1. Terminate with answer *none*.
  - 2.2. If key(b) == target-key:
    - 2.2.1. Terminate with answer *b*.
  - 2.3. If *b* is formerly-occupied, or key(b) != target-key:
    - 2.3.1. Increment *b* modulo *m*.



#### **OBHT: Insertion**



#### **OBHT: Deletion**



## **OBHT: Analysis**

- Analysis of OBHT search/insertion/deletion algorithm (counting comparisons): Let the number of entries be *n*.
- In the **best case**, no cluster contains more than (say) 4 entries:

Max. no. of comparisons = 4

Best-case time complexity is O(1).

• In the worst case, one cluster contains all *n* entries:

Max. no. of comparisons = n

Worst-case time complexity is O(n).

## Acknowledgements

- Some of this material has been taken from a variety of sources
- the most notable of which is from

Tamassia, Goldwasser and Goodrich "Data Structures and Algorithms in Python" John Wiley & Sons.

Watt, and Brown "Java Collections: An Introduction to Abstract Data Types, Data Structures and Algorithms" John Wiley & Sons.