Project 6 - Time Series Analysis

Objective

The main objective of the analysis is to forecast the tempurature based on its historic behaviour.

Dataset

The data is referred from $\underline{\mathsf{Kaggle}}$ which includes climate data of Delhi, India.

Dataset includes following variables:

date - Date of format YYYY-MM-DD.

meantemp - Mean temperature averaged out from multiple 3 hour intervals in a day.

humidity - Humidity value for the day (units are grams of water vapor per cubic meter volume of air).

wind_speed - Wind speed measured in kmph.

meanpressure - Pressure reading of weather (measure in atm).

Imports

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from matplotlib import rcParams
   import seaborn as sns
   import statsmodels.api as sm
```

```
In [2]: data = pd.read_csv('DailyDelhiClimateTrain.csv', parse_dates=['date'], index_col='date')
data.head()
```

Out[2]:

	meantemp	humidity	wind_speed	meanpressure
date				
2013-01-01	10.000000	84.500000	0.000000	1015.666667
2013-01-02	7.400000	92.000000	2.980000	1017.800000
2013-01-03	7.166667	87.000000	4.633333	1018.666667
2013-01-04	8.666667	71.333333	1.233333	1017.166667
2013-01-05	6.000000	86.833333	3.700000	1016.500000

EDA

- Timeseries Decomposition (Trend, Seasonal, Noise).
- Data Smoothing.
- · Conversion from non-stationary to stationary series.
- Plot Auto Correlation and Partial Auto Correlation.

```
In [3]: data["meantemp"].plot(figsize=(16, 6), fontsize=15)
plt.xlabel("Date")
plt.show()

40
35
30
15
10
5
2013
2014
2015
2016
2017
```

In [4]: data["meantemp"].hist() plt.show()

```
In [5]: import random
import statistics

meanVal, varianceVal = [], []
for i in range(10):
    sample = random.sample(list(data.meantemp), 100)
    meanVal.append(np.mean(sample))
    varianceVal.append(statistics.variance(sample))

plt.plot(np.mean(data.meantemp), marker="o", markersize=10, label='Global Mean')
plt.plot(meanVal, label='Mean')
plt.plot(statistics.variance(data.meantemp), marker="+", markersize=10, label='Global Variance')
plt.plot(varianceVal, label='Variance')
plt.legend()
plt.show()
```



```
In [6]: from statsmodels.tsa.stattools import adfuller
        dfTest = adfuller(data.meantemp, autolag='AIC')
        print('l. ADF: ' ,dfTest[0])
        print('2. P-Value: ', dfTest[1])
        print('3. Num Of Lags: ', dfTest[2])
        print('4. Num Of Observations used For ADF Regression and Critical values Calculation: ', dfTest[3])
        print('5. Critical Values:')
        for key, val in dfTest[4].items():
            print('\t', key, ':
        1. ADF: -2.021069055920659
        2. P-Value: 0.27741213723016633
        3. Num Of Lags: 10
        4. Num Of Observations used For ADF Regression and Critical values Calculation: 1451
        5. Critical Values:
                 1%: -3.4348647527922824
                 5%: -2.863533960720434
                 10%: -2.567831568508802
```

Observations:

- By Visual Inspection, we can see a seansonality in the line graph and histogram.
- Considering a reasonable mean, variance and existence of correlation, the series is not a white noise.
- Histogram is not normally distributed thus indicates non-stationarity.
- · Next being Global and Local Checks, we can again confirm difference in variance while constant mean, resulting in non-stationarity.
- Based on Dickey-Fuller Test (Hypothesis testing), the p-value is less than 0.05, thus non-stationary.

```
In [7]: from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
pacf = plot_pacf(data.meantemp, lags=10)
acf = plot_acf(data.meantemp, lags=50)

c:\users\mahim\appdata\local\programs\python\python38\lib\site-packages\statsmodels\graphics\tsaplots.py:348: FutureWarning: Th
    e default method 'yw' can produce PACF values outside of the [-1,1] interval. After 0.13, the default will change tounadjusted
    Yule-Walker ('ywm'). You can use this method now by setting method='ywm'.
    warnings.warn(
```


Observations:

- From **PACF**, there is correlation with lag of upto 4 above the error band.
- In ACF, due to direct and indirect effects taken into consideration, the lag 50 is also correlated to current series.

Model Building

```
In [13]: train = data.meantemp[:-30]
    test = data.meantemp[-30:]
    len(train)

Out[13]: 1432
In [14]: from statsmodels.tsa.ar_model import AutoReg
```

In [14]: from statsmodels.tsa.ar_model import AutoReg
autoRegModel = AutoReg(train, lags=4).fit()
autoRegModel.summary()

c:\users\mahim\appdata\local\programs\python\python38\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning: No
frequency information was provided, so inferred frequency D will be used.
self._init_dates(dates, freq)

Out[14]: AutoReg Model Results

meantemp	No. Observations:	1432
AutoReg(4)	Log Likelihood	-2704.218
Conditional MLE	S.D. of innovations	1.608
Sun, 01 Jan 2023	AIC	5420.437
23:09:20	BIC	5452.021
01-05-2013	HQIC	5432.232
- 12-02-2016		
	AutoReg(4) Conditional MLE Sun, 01 Jan 2023 23:09:20 01-05-2013	AutoReg(4) Log Likelihood Conditional MLE S.D. of innovations Sun, 01 Jan 2023 AIC 23:09:20 BIC 01-05-2013 HQIC

	coef	std err	z	P> z	[0.025	0.975]
const	0.5163	0.158	3.270	0.001	0.207	0.826
meantemp.L1	0.8069	0.026	30.849	0.000	0.756	0.858
meantemp.L2	0.0484	0.034	1.433	0.152	-0.018	0.115
meantemp.L3	-0.0263	0.034	-0.781	0.435	-0.092	0.040
meantemp.L4	0.1514	0.026	5.803	0.000	0.100	0.203

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	1.0136	-0.0000j	1.0136	-0.0000
AR.2	-1.9511	-0.0000j	1.9511	-0.5000
AR.3	0.5557	-1.7408j	1.8273	-0.2008
AR.4	0.5557	+1.7408j	1.8273	0.2008

```
In [15]: pred0 = autoRegModel.predict(start=len(train), end=len(data.meantemp)-1)
    plt.figure(figsize=(14, 5))
    plt.plot(test, label='Actual')
    plt.plot(pred0, label='Prediction')
    plt.legend()
    plt.show()

    c:\users\mahim\appdata\loca\programs\python\python38\lib\site-packages\statsmodels\tsa\deterministic.py:302: UserWarning: Only
```

c:\users\mahim\appdata\local\programs\python\python38\lib\site-packages\statsmodels\tsa\deterministic.py:302: UserWarning: Only
PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes, and Index with a unit increment support extending. The inde
x is set will contain the position relative to the data length.
fcast_index = self._extend_index(index, steps, forecast_index)


```
In [16]: from sklearn.metrics import mean_squared_error
    rms = mean_squared_error(test, pred0, squared=False)
    rms
```

Out[16]: 4.4577961380273665

Totally opposite to the trend ©

Let's try experimenting with other features of the data, might provide some value to the regression calculations.

```
In [17]: from statsmodels.tsa.ar_model import AutoReg
autoRegModel = AutoReg(train, lags=4, trend='n', seasonal=True, exog=data.drop(columns=['meantemp'])[:-30]).fit()
autoRegModel.summary()
```

c:\users\mahim\appdata\local\programs\python\python38\lib\site-packages\statsmodels\tsa\base\tsa_model.py:471: ValueWarning: No frequency information was provided, so inferred frequency D will be used. self._init_dates(dates, freq)

Out[17]: AutoReg Model Results

Dep. Variable:		р No . (No. Observations:			2	
Model:	Seas. Au	toReg-X(4) L	og Like	lihood	-2616.15	9
Method:	Cond	itional MLI	E S.D. o	of innov	ations	1.51	2
Date:	Sun, 0	1 Jan 202	3		AIC	5262.31	7
Time:		23:09:2	6	BIC			8
Sample:	(01-05-201	3	HQIC			15
	- 1	12-02-201	6				
	coef	std err	z	P> z	[0.025	0.975]	
s(1,7)	4.3167	0.398	10.840	0.000	3.536	5.097	

- 12-02-2016								
	coef	std err	z	P> z	[0.025	0.975]		
s(1,7)	4.3167	0.398	10.840	0.000	3.536	5.097		
s(2,7)	4.4042	0.398	11.060	0.000	3.624	5.185		
s(3,7)	4.2396	0.398	10.659	0.000	3.460	5.019		
s(4,7)	4.2531	0.399	10.653	0.000	3.471	5.036		
s(5,7)	4.2117	0.401	10.492	0.000	3.425	4.998		
s(6,7)	4.1733	0.399	10.448	0.000	3.390	4.956		
s(7,7)	4.3778	0.402	10.877	0.000	3.589	5.167		
meantemp.L1	0.7385	0.025	29.306	0.000	0.689	0.788		
meantemp.L2	0.0516	0.032	1.617	0.106	-0.011	0.114		
meantemp.L3	-0.0118	0.032	-0.371	0.711	-0.074	0.051		
meantemp.L4	0.1599	0.025	6.485	0.000	0.112	0.208		
humidity	-0.0390	0.003	-13.394	0.000	-0.045	-0.033		
wind_speed	-0.0189	0.010	-1.972	0.049	-0.038	-0.000		
meanpressure	-0.0002	0.000	-0.862	0.389	-0.001	0.000		

Roots

	Real	Imaginary	Modulus	Frequency
AR.1	1.0416	-0.0000j	1.0416	-0.0000
AR.2	-1.9128	-0.0000j	1.9128	-0.5000
AR.3	0.4726	-1.7073j	1.7715	-0.2070
AR.4	0.4726	+1.7073i	1.7715	0.2070

```
In [18]: pred1 = autoRegModel.predict( start=len(train), end=len(data.meantemp)-1, exog_oos=data.drop(columns=['meantemp'])[-30:])
                                           plt.figure(figsize=(14, 5))
plt.plot(test, label='Actual')
                                           plt.plot(pred1, label='Prediction')
                                           plt.legend()
                                           plt.show()
                                            \verb|c:|users|| mahim appdata local programs | python python 38 lib| site-packages| stats models | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: Only performance of the packages | tsa| deterministic.py: 302: User Warning: 302: User Warning: 302: User Warning: 302: User Warning: 3
                                           PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes, and Index with a unit increment support extending. The index is set will contain the position relative to the data length.
                                                     fcast_index = self._extend_index(index, steps, forecast_index)
```

PeriodIndexes, DatetimeIndexes with a frequency set, RangesIndexes, and Index with a unit increment support extending. The index is set will contain the position relative to the data length.

fcast_index = self._extend_index(index, steps, forecast_index)


```
In [19]: rms = mean_squared_error(test, pred1, squared=False)
```

Out[19]: 4.271293281591886

Following the trend with much ups and downs.

```
In [20]: import pmdarima
         sarimaModel = pmdarima.arima.auto_arima(train, d=1, m=4, stationary=False, test='adf')
```

In [21]: sarimaModel.summary()

Out[21]: SARIMAX Results

Dep. Variable:	у	No. Observations:	1432
Model:	SARIMAX(1, 1, 3)x(1, 0, [1], 4)	Log Likelihood	-2698.464
Date:	Sun, 01 Jan 2023	AIC	5410.929
Time:	23:12:32	BIC	5447.792
Sample:	01-01-2013	HQIC	5424.694
	12.02.2016		

Covariance	Type:	opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	0.4085	0.125	3.268	0.001	0.163	0.654
ma.L1	-0.6266	0.125	-5.006	0.000	-0.872	-0.381
ma.L2	-0.0428	0.039	-1.106	0.269	-0.119	0.033
ma.L3	-0.0930	0.040	-2.304	0.021	-0.172	-0.014
ar.S.L4	0.9139	0.057	15.903	0.000	0.801	1.026
ma.S.L4	-0.8758	0.069	-12.654	0.000	-1.011	-0.740
sigma2	2.5428	0.072	35.078	0.000	2.401	2.685

Ljung-Box (L1) (Q):	0.00	Jarque-Bera (JB):	296.48
Prob(Q):	0.99	Prob(JB):	0.00
Heteroskedasticity (H):	0.75	Skew:	-0.50
Prob(H) (two-sided):	0.00	Kurtosis:	5.00

```
In [22]: pred2 = sarimaModel.predict(n_periods=30)
          plt.figure(figsize=(14, 5))
         plt.plot(test, label='Actual')
          plt.plot(pred2, label='Prediction')
          plt.legend()
         plt.show()
                                                                                                               Actual
                                                                                                                Prediction
           18
           16
           14
           12
           10
                     2016-12-05
                                  2016-12-09
                                                2016-12-13
                                                             2016-12-17
                                                                           2016-12-21
                                                                                        2016-12-25
                                                                                                     2016-12-29 2017-01-01
In [23]: mean_squared_error(test, pred2, squared=False)
Out[23]: 3.4199992717168044
          Line is following the trend straightly and RMSE is also lowered.
In [24]: trainAllVars = data[:-30]
          testAllVars = data[-30:]
In [25]: sarimaModelOnAllVars = pmdarima.arima.auto_arima(trainAllVars.meantemp,
                                                              X=trainAllVars.drop(columns=['meantemp']),
                                                              d=2, m=4, stationary=False, test='adf', trace=True)
          sarimaModelOnAllVars.summary()
          Performing stepwise search to minimize aic
           ARIMA(2,2,2)(1,0,1)[4]
                                              : AIC=4809.368, Time=7.00 sec
           ARIMA(0,2,0)(0,0,0)[4]
                                                : AIC=5695.930, Time=2.66 sec
           ARIMA(1,2,0)(1,0,0)[4]
                                               : AIC=5407.564, Time=1.75 sec
                                               : AIC=inf, Time=4.16 sec
           ARIMA(0,2,1)(0,0,1)[4]
           ARIMA(2,2,2)(0,0,1)[4]
                                                : AIC=4748.048, Time=6.54 sec
           ARIMA(2,2,2)(0,0,0)[4]
                                                : AIC=4883.747, Time=4.00 sec
           ARIMA(2,2,2)(0,0,2)[4]
                                               : AIC=4829.505, Time=9.56 sec
           ARIMA(2,2,2)(1,0,0)[4]
                                                : AIC=4895.253, Time=5.54 sec
           ARIMA(2,2,2)(1,0,2)[4]
                                                : AIC=4901.521, Time=11.48 sec
                                                : AIC=inf, Time=6.33 sec
           ARIMA(1,2,2)(0,0,1)[4]
           ARIMA(2,2,1)(0,0,1)[4]
                                                : AIC=4932.072, Time=5.30 sec
           ARIMA(3,2,2)(0,0,1)[4]
                                                : AIC=4641.521, Time=8.00 sec
           ARIMA(3,2,2)(0,0,0)[4]
                                                : AIC=inf, Time=5.87 sec
           ARIMA(3,2,2)(1,0,1)[4]
                                                : AIC=4656.687, Time=8.03 sec
           ARIMA(3,2,2)(0,0,2)[4]
                                                : AIC=4656.037, Time=11.00 sec
           ARIMA(3,2,2)(1,0,0)[4]
                                                : AIC=4658.158, Time=7.86 sec
                                                : AIC=4640.278, Time=11.86 sec
           ARIMA(3,2,2)(1,0,2)[4]
           ARIMA(3,2,2)(2,0,2)[4]
                                                : AIC=4657.462, Time=12.22 sec
           ARIMA(3,2,2)(2,0,1)[4]
                                                : AIC=4642.503, Time=11.88 sec
           ARIMA(3,2,1)(1,0,2)[4]
                                                : AIC=4842.291, Time=10.25 sec
           ARIMA(3,2,3)(1,0,2)[4]
                                                : AIC=4671.978, Time=11.96 sec
           ARIMA(2,2,1)(1,0,2)[4]
                                               : AIC=5172.535, Time=8.64 sec
           ARIMA(2,2,3)(1,0,2)[4]
                                                : AIC=4984.429, Time=10.78 sec
           ARIMA(3,2,2)(1,0,2)[4] intercept : AIC=4662.571, Time=11.50 sec
          Best model: ARIMA(3,2,2)(1,0,2)[4]
          Total fit time: 194.227 seconds
Out[25]: SARIMAX Results
                                              y No. Observations:
              Dep. Variable:
                    Model: SARIMAX(3, 2, 2)x(1, 0, 2, 4)
                                                   Log Likelihood -2308.139
                     Date:
                                   Sun, 01 Jan 2023
                                                            AIC 4640.278
                     Time:
                                         23:15:47
                                                             BIC 4703.464
                                       01-01-2013
                                                           HQIC 4663 873
                   Sample:
                                      - 12-02-2016
           Covariance Type:
                                             opg
```

	coef	std err	z	P> z	[0.025	0.975]
humidity	-0.1402	0.003	-43.014	0.000	-0.147	-0.134
wind_speed	-0.0286	0.006	-4.758	0.000	-0.040	-0.017
meanpressure	-3.924e-05	0.000	-0.128	0.898	-0.001	0.001
ar.L1	-0.7070	0.056	-12.600	0.000	-0.817	-0.597
ar.L2	-0.2886	0.034	-8.463	0.000	-0.355	-0.222
ar.L3	-0.3550	0.034	-10.484	0.000	-0.421	-0.289
ma.L1	-0.3403	0.057	-6.004	0.000	-0.451	-0.229
ma.L2	-0.6049	0.054	-11.295	0.000	-0.710	-0.500
ar.S.L4	-0.2485	0.334	-0.744	0.457	-0.903	0.406
ma.S.L4	-0.0253	0.339	-0.075	0.941	-0.690	0.640
ma.S.L8	-0.1326	0.094	-1.410	0.159	-0.317	0.052
sigma2	1.4043	0.036	39.427	0.000	1.334	1.474
Ljung-Box (L1) (Q): 0	.38 Jarq	ue-Bera (JB): 68	38.40	
F	Prob(Q): 0	.54	Prob(JB):	0.00	
Heteroskedasti	city (H): 0	.82	Sk	ew:	-0.22	
Prob(H) (two	-sided): 0	.03	Kurto	sis:	6.37	

```
In [26]: pred3 = sarimaModelOnAllVars.predict(n_periods=30, X=testAllVars.drop(columns=['meantemp']))
plt.figure(figsize=(14, 5))
plt.plot(test, label='Actual')
plt.plot(pred3, label='Prediction')
plt.legend()
plt.show()
```



```
In [27]: mean_squared_error(test, pred3, squared=False)
```

Out[27]: 1.3504414642350195

Ahh!! Looks quite similar to the actual values.

Best Model to Choose

Models	Root Mean Square Error
Auto Regressive Model	4.4578
AR Model with supporting features	4.2713
SARIMA Model	3.4199
SARIMA with supporting features	1.3504

Based on the Root Mean square error of each of the models created, SARIMA outperformed other models with RMSE of 1.3504.

Future Scope

Will try to use some deep learning models to reduce the errors and provide more accurate results. Also can add multiple datasets to build robust model.

Thank You,

Aditya Mahimkar.

Connect with me on GitHub and Kaggle.