BÀI 4. TIẾP TUYẾN CỦA HÀM SỐ

1) KIẾN THỨC NỀN TẢNG

1.Tiếp tuyến của đồ thị hàm số tại một điểm : Cho hàm số y = f(x) có đồ thị (C) và một điểm $M(x_0; y_0)$ thuộc đồ thị (C). Tiếp tuyến của đồ thị (C) tại tiếp điểm M là đường thẳng d có phương trình : $y = f'(x_0)(x x_0) + y_0$

2.Lệnh Casio : SHIFT

2) VÍ DU MINH HOA

Bài 1-[Thi thử THPT Lục Ngạn - Bắc Giang lần 1 năm 2017]

Tìm hệ số góc của tiếp tuyến của đồ thị hàm số $y = \frac{1}{x} \ln x$ tại điểm có hoành độ bằng 2

A.
$$\frac{1}{2}$$
 ln 2 **B.** $\frac{1}{4}$

B.
$$\frac{1}{4}$$

C.
$$\frac{3}{4}$$

D.
$$\frac{1}{4}$$

GIẢI

- ❖ Cách 1: CASIO
- Fig. Gọi tiếp điểm là $M(x_0; y_0) \Rightarrow$ Phương trình tiếp tuyến $y = f'(x_0)(x_0) + y_0$
- > Sử dụng máy tính Casio để tính hệ số góc tiếp tuyên tại điểm có hoành độ bằng $2 \Rightarrow k = f'(2)$

$$\frac{d}{dx} \left(-\frac{1}{X} - \ln(X) \right) \Big|_{X=0}$$

$$-0.25$$

- > Ta thấy $k = f'(2) = 0.25 = \frac{1}{4}$.
 - \Rightarrow **B** là đáp án chính xác

Bài 2-[Thi thử chuyên Hạ Long – Quảng Ninh lần 1 năm 2017]

Cho hàm số $y = -x^3 + 3x - 2$ có đồ thị (C). Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung.

A.
$$y = 2x + 1$$
 B. $y = 3x + 2$ $y = 3x + 2$

B.
$$y = 3x + 2$$

C.
$$y = 2x + 1$$

D.

GIÁI

- Cách 1: CASIO
- ightharpoonup Gọi tiếp điểm là $M\left(x_0;y_0\right)\Rightarrow$ Phương trình tiếp tuyến $y=f'\left(x_0\right)\left(x-x_0\right)+y_0$
- \blacktriangleright *M* là giao điểm của đồ thị (*C*) và trục tung \Rightarrow *M* có tọa độ (0; 2) Tính f'(0) = 0

SHIFT
$$\bigcirc$$
 — ALPHA \bigcirc \bigcirc \bigcirc 3 \bigcirc \bigcirc 1 3 ALPHA \bigcirc — 2 \bigcirc 0 \bigcirc

$$\frac{d}{dx}(-\chi^3 + 3\chi^2 - 2)\Big|_{\chi=0}^{Math A}$$

Thế vào phương trình tiếp tuyến có $y = 3(x \ 0) \ 2 \Leftrightarrow y = 3x \ 2$

 \Rightarrow **B** là đáp án chính xác

Bài 3-[Thi thử chuyên Nguyễn Thị Minh Khai lần 1 năm 2017]

Số tiếp tuyến với đồ thị (C): $y = x^3 + 3x^2 + 2$ đi qua điểm M(1,0) là:

A. 4

B 2

C. 3

D. 1

GIẢI

❖ Cách 1: CASIO

- ightharpoonup Gọi tiếp điểm là $M(x_0; y_0) \Rightarrow$ Phương trình tiếp tuyến $y = f'(x_0)(x x_0) + y_0$ Trong đó hệ số góc $k = f'(x_0) = 3x_0^2 - 6x_0$
- Thế $f'(x_0)$ vào phương trình tiếp tuyến được $y = \begin{pmatrix} 3x_0^2 & 6x_0 \end{pmatrix} \begin{pmatrix} x & x_0 \end{pmatrix} + x_0^3 & 3x_0^2 + 2$

Tiếp tuyến đi qua điểm $M(1;0) \Rightarrow 0 = (3x_0^2 - 6x_0)(1 - x_0) + x_0^3 - 3x_0^2 + 2$

$$\Leftrightarrow 2x_0^3 + 6x_0^2 + 6x_0 + 2 = 0$$

Sử dụng máy tính với lệnh MODE 5 để giải phương trình bậc 3 trên

χ=

1

- ightharpoonup Ta thấy có 1 nghiệm $x_0 \Rightarrow$ Chỉ có 1 tiếp tuyến duy nhất.
 - \Rightarrow **D** là đáp án chính xác

Bài 4-[Thi thử báo Toán học tuổi trẻ lần 4 năm 2017]

Cho hàm số $y=x^3$ $3x^2+2$ có đồ thị (C). Đường thẳng nào sau đây là tiếp tuyến của (C) với hệ số góc nhỏ nhất

A. y = 3x + 3

B. y = 3x + 3

C. y = 3x

D. y = 0

GIẢI

❖ Cách 1: CASIO

- ightharpoonup Gọi tiếp điểm là $M(x_0; y_0) \Rightarrow$ Phương trình tiếp tuyến $y = f'(x_0)(x x_0) + y_0$ Trong đó hệ số góc $k = f'(x_0) = 3x_0^2 - 6x_0$
- \triangleright Tìm giá trị nhỏ nhất của k bằng chức năng MODE 7

 $\begin{array}{c} \text{MODE} \ \ 7 \ \ 3 \ \ \text{ALPHA} \ \) \ \ = \ \ = \ \ 9 \ \ = \ \ 1 \ \ 0 \ \ = \ \ 1 \ \ = \ \ \\ \end{array}$

1

Ta thấy $f'(\min) = f'(1) = \stackrel{-}{3} \Rightarrow x_0 = 3 \Rightarrow y_0 = 1^3 \quad 3.1^2 + 2 = 0$

Thế vào phương trình tiếp tuyến có $y = 3(x + 1) + 0 \Leftrightarrow y = 3x + 3$ \Rightarrow **D** là đáp án chính xác

Bài 5-[Thi thử báo Toán học tuổi trẻ lần 4 năm 2017]

Cho hàm số $y = \frac{x+2}{x+1}$ (C) Gọi d là khoảng cách từ giao điểm hai tiệm cận của (C) đến một tiếp tuyến bất kì của (C) . Giá trị lớn nhất d có thể đạt được là :

A.
$$3\sqrt{3}$$

B. $\sqrt{3}$

C. $\sqrt{2}$

D. $2\sqrt{2}$

GIẢI

* Cách 1: T. CASIO

ightharpoonup Gọi tiếp điểm là $M\left(x_0;y_0\right) \Rightarrow$ Phương trình tiếp tuyến $y=f'(x_0)(x-x_0)+y_0$ Trong đó hệ số góc $k=f'(x_0)=\frac{1}{\left(x_0+1\right)^2}$.

Thế k, y_0 vào phương trình tiếp tuyến có dạng : $y = \frac{1}{(x_0 + 1)^2} (x + x_0) + \frac{x_0 + 2}{x_0 + 1}$

$$\Leftrightarrow \frac{1}{(x_0+1)^2}x+y \quad \frac{x_0}{(x_0+1)^2} \quad \frac{x_0+2}{x_0+1}=0$$

 \blacktriangleright Hàm số có tiệm cận đứng x=1 và tiệm cận ngang y=1 nên giao điểm hai tiệm cận là I(1;1).

Áp dụng công thức tính khoảng cách từ 1 điểm đến 1 đường thẳng ta có:

$$h = d(I;(d)) = \frac{\left| \frac{1}{(x_0 + 1)^2} (1) + 1 \frac{x_0}{(x_0 + 1)^2} \frac{x_0 + 2}{x_0 + 1} \right|}{\sqrt{\left(\frac{1}{(x_0 + 1)^2}\right)^2 + 1^2}}$$

Dùng máy tính Casio với lệnh MODE 7 để tính các giá trị lớn nhất này.

- $\begin{array}{c} \text{MODE} \ 7 \ \blacksquare \ \text{SHIFT} \ \text{hyp} \ \blacksquare \ \ 1 \ \bigcirc \ (\ \text{ALPHA} \) \ + \ 1 \) \ x^2 \ \bigcirc \ + \ 1 \ \ \blacksquare \ \text{ALPHA} \\ \end{array}$

- $0 \equiv 1 \equiv$

-2

- ightharpoonup Ta thấy $h(\max) = \sqrt{2}$
 - \Rightarrow **C** là đáp án chính xác

Bài 6-[Thi HK1 THPT Việt Đức - Hà Nội năm 2017]

Hàm số $y = \frac{2x-1}{x-1} \ (H)$, M là điểm bất kì và $M \in (H)$. Tiếp tuyến với (H) tại M tạo với hai đường tiệm cận một tam giác có diện tích bằng :

A. 4

B. 5

C. 3

D. 2

GIẢI

- ❖ Cách 1: CASIO
- ightharpoonup Gọi tiếp điểm là $M(x_0;y_0) \Rightarrow$ Phương trình tiếp tuyến $y=f'(x_0)(x-x_0)+y_0$ Trong đó hệ số góc $k=f'(x_0)=\frac{1}{\left(x_0-1\right)^2}$.

Thế k, y_0 vào phương trình tiếp tuyến có dạng : $y = \frac{1}{(x_0 + 1)^2} (x + x_0) + \frac{2x_0 + 1}{x_0 + 1}$ (d)

ightharpoonup Hàm số có tiệm cận đứng x=1 và tiệm cận ngang y=2 và giao điểm 2 tiệm cận là I(1;2)

Gọi E là giao điểm của tiếp tuyến d và tiệm cận đứng $\Rightarrow E\left(1; \frac{2x_0}{x_0-1}\right)$

Gọi F là giao điểm của tiếp tuyến d và tiệm cận ngang $\Rightarrow F(2x_0 \ 1;2)$

- ▶ Độ dài $IE = \left| I\vec{E} \right| = \sqrt{(1-1)^2 + \left(\frac{2x_0}{x_0 1} 2 \right)} = \frac{2}{\left| x_0 1 \right|}$ Độ dài $IF = \sqrt{(2x_0 - 1 - 1)^2 + (2 - 2)^2} = 2\left| x_0 - 1 \right|$ Áp dụng công thức tính khoảng cách từ 1 điểm đến 1 đường thẳng ta có :
- ightharpoonup Diện tích $\Delta IEF = \frac{1}{2}IE.IF = \frac{1}{2}.\frac{2}{|x_0|}.2|x_0| 1| = 2 \Rightarrow \mathbf{D}$ là đáp án chính xác

BÀI TẬP T Ự LUYỆN

Bài 1-[Thi thử chuyên Khoa học tự nhiên lần 3 năm 2017]

Cho hàm số $y = \frac{x+1}{2x-1}$. Tiếp tuyến tại điểm có hoành độ bằng 1 có hệ số góc bằng:

A. $\frac{1}{2}$

B. $\frac{1}{6}$

C. $\frac{1}{3}$

D. $\frac{1}{6}$

Bài 2-[Thi thử chuyên Quốc Học Huế lần 1 năm 2017]

Tìm tọa độ của tất cả các điểm M trên đồ thị (C) của hàm số $y = \frac{x-1}{x+1}$ sao cho tiếp

tuyến của (C) tại M song song với đường thẳng $d: y = \frac{1}{2}x + \frac{7}{2}$

A. (0;1),(2;3)

B. (1;0), (3;2)

C. (3;2)

D. (1;0)

Bài 3-[Thi thử chuyên Thái Bình lần 1 năm 2017]

Cho hàm số $y = \frac{x-1}{x+2}$ có đồ thị (C). Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là :

A.
$$y = 3x$$

B.
$$y = 3x + 3$$

C.
$$v = x + 3$$

$$y = \frac{1}{3}x \quad \frac{1}{3}$$

Bài 4-[Thi thử nhóm toán Đoàn Trí Dũng lần 3 năm 2017]

Viết phương trình tiếp tuyến của đồ thị hàm số $y = x^3 - 3x$ biết tiếp tuyến song song với đường thắng y = 9x 16

A.
$$y = 9x + 16$$

B.
$$y = 9x + 12$$

C.
$$y = 9x 10$$

D.

$$y = 9x - 12$$

<u>Bài 5</u>-[Thi thử Group nhóm toán Facebook lần 5 năm 2017]

Tìm tọa độ điểm M có hoành độ âm trên đồ thị (C): $y = \frac{1}{3}x^2$ $x + \frac{2}{3}$ sao cho tiếp

tuyến tại M vuông góc với đường thẳng $y = \frac{1}{3}x + \frac{2}{3}$

A.
$$M(2;0)$$

A.
$$M(2;0)$$
 B. $M(3; \frac{16}{3})$

C.
$$\left(1; \frac{4}{3}\right)$$

D.

$$M\left(\frac{1}{2};\frac{9}{8}\right)$$

Bài 6-[Thi tốt nghiệm THPT năm 2012]

Cho hàm số $y = \frac{1}{4}x^4$ $2x^2(C)$. Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ $x = x_0$ biết $f''(x_0) = 1$

A.
$$y = 3x \quad \frac{5}{4}$$

$$y = 3x + \frac{5}{4}$$

$$\mathbf{B.} \begin{vmatrix} y = 3x & \frac{5}{4} \\ y = 3x + \frac{5}{4} \end{vmatrix}$$

D.

$$\int y = 3x + \frac{5}{4}$$
$$y = 3x + \frac{5}{4}$$

$$y = 3x + \frac{5}{4}$$

LỜI GIẢI BÀI TẬP T Ư LUYÊN

Bài 1-[Thi thử chuyên Khoa học tự nhiên lần 3 năm 2017]

Cho hàm số $y = \frac{x+1}{2x-1}$. Tiếp tuyến tại điểm có hoành độ bằng 1 có hệ số góc bằng:

A.
$$\frac{1}{3}$$

B.
$$\frac{1}{6}$$

C.
$$\frac{1}{3}$$

D.
$$\frac{1}{6}$$

GIẢI

• Hệ số góc của tiếp tuyến là đạo hàm tại tiếp điểm $\Rightarrow k = f'(1) = \frac{1}{2}$

$$\frac{d}{dx} \left(\frac{X+1}{2X-1} \right) \Big|_{X=-1}^{8 \text{ Math } A} -\frac{1}{3}$$

⇒ Đáp số chính xác là C

Bài 2-[Thi thử chuyên Quốc Học Huế lần 1 năm 2017]

Tìm tọa độ của tất cả các điểm M trên đồ thị (C) của hàm số $y = \frac{x-1}{x+1}$ sao cho tiếp tuyến của (C) tại M song song với đường thẳng $d: y = \frac{1}{2}x + \frac{7}{2}$

A.
$$(0;1),(2;3)$$

GIẢI

- Đề bài hỏi các điểm M nên ta dự đoán có 2 điểm , lại quan sát thấy đáp án B được cấu tạo từ đáp án C và D nên ta ưu tiên thử đáp án D trước.
- Tiếp tuyến song song với d nên tiếp tuyến có hệ số góc bằng hệ số góc của d và bằng $\frac{1}{2}$

Tính $f'(1) = \frac{1}{2} \Rightarrow$ Điểm M(1;0) là một tiếp điểm

SHIFT
$$APHA$$
 $APHA$ A

Tính $f'(3) = \frac{1}{2} \Rightarrow$ Điểm M(3;2) là một tiếp điểm

 \Rightarrow **B** là đáp án chính xác

Bài 3-[Thi thử chuyên Thái Bình lần 1 năm 2017]

Cho hàm số $y = \frac{x-1}{x+2}$ có đồ thị (C). Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là :

A.
$$y = 3x$$
 $y = \frac{1}{3}x + \frac{1}{3}$

B.
$$y = 3x + 3$$

C.
$$y = x - 3$$

D.

$$y = \frac{1}{3}$$

GIÁI

- Gọi tiếp điểm là $M(x_0; y_0) \Rightarrow$ Tiếp tuyến $y = f'(x_0)(x x_0) + y_0$
- M là giao điểm của đồ thị (C) và trục hoành $\Rightarrow M(1,0) \Rightarrow x_0 = 1, y_0 = 0$

Tính hệ số góc k = f'(1)

SHIFT
$$APPA$$
 $APPA$ A

$$\frac{1}{3}$$

Thay vào ta có tiếp tuyến $y = \frac{1}{3}(x+1) + 0 \Leftrightarrow y = \frac{1}{3}x + \frac{1}{3}$

⇒ Đáp số chính xác là **D**

Bài 4-[Thi thử nhóm toán Đoàn Trí Dũng lần 3 năm 2017]

Viết phương trình tiếp tuyến của đồ thị hàm số $y = x^3$ 3x biết tiếp tuyến song song với đường thắng y = 9x 16

A.
$$y = 9x + 16$$

B.
$$y = 9x + 12$$

C.
$$y = 9x 10$$

D.

y = 9x - 12GIÁI

- Gọi tiếp điểm là $M(x_0; y_0) \Rightarrow$ Tiếp tuyến $y = f'(x_0)(x x_0) + y_0$ với hệ số góc $k = f'(x_0) = 3x_0^2$ 3
- Tiếp tuyến song song với y = 9x 16 nên có hệ số góc $k = 9 \Leftrightarrow 3x_0^2$ $3 = 9 \Leftrightarrow x_0 = \pm 2$ Với $x_0 = 2 \Rightarrow y_0 = 2 \Rightarrow$ Tiếp tuyến : $y = 9(x + 2) + 2 \Leftrightarrow y = 9x + 16$ Tính hệ số góc k = f'(1)
 - ⇒ Đáp số chính xác là **A**

Bài 5-[Thi thử Group nhóm toán Facebook lần 5 năm 2017]

Tìm tọa độ điểm M có hoành độ âm trên đồ thị (C): $y = \frac{1}{3}x^2$ $x + \frac{2}{3}$ sao cho tiếp tuyến tại M vuông góc với đường thẳng $y = \frac{1}{2}x + \frac{2}{3}$

A.
$$M(2;0)$$
 B. $M(3; \frac{16}{3})$ **C.** $(1; \frac{4}{3})$ **D.** $M(\frac{1}{2}; \frac{9}{8})$

GIÅI

- Gọi tiếp điểm là $M(x_0; y_0)$ \Rightarrow Tiếp tuyến $y = f'(x_0)(x x_0) + y_0$ với hệ số góc $k = f'(x_0) = x_0^2$ 1
- Tiếp tuyến vuông góc với $y = \frac{1}{3}x + \frac{2}{3}$ nên có hệ số góc $k \cdot \left(\frac{1}{3}\right) = 1 \Leftrightarrow k = 3 \Leftrightarrow x_0^2 \quad 1 = 3 \Leftrightarrow x_0 = \pm 2$
 - \Rightarrow Đáp số chính xác là ${f A}$

Bài 6-[Thi tốt nghiệm THPT năm 2012]

Cho hàm số $y = \frac{1}{4}x^4$ $2x^2(C)$. Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ $x = x_0$ biết $f''(x_0) = 1$

GIÅI

- Gọi tiếp điểm là $M(x_0; y_0)$ \Rightarrow Tiếp tuyến $y = f'(x_0)(x x_0) + y_0$ với hệ số góc $k = f'(x_0) = x_0^4$ $4x_0$
- Ta có $f''(x) = 3x_0^2$ $4 \Rightarrow 3x_0^2 4 = -1 \Leftrightarrow x_0^2 = 1 \Rightarrow$ $\begin{bmatrix} x_0 = 1; y_0 = \frac{7}{4} \\ x_0 = 1; y_0 = \frac{7}{4} \end{bmatrix}$

Với $x_0 = 1$ Tính hệ số góc k = f'(1)

SHIT \mathbb{A} = 1 \mathbb{A} 4 \mathbb{A} APPA) \mathbb{A} 4 \mathbb{A} = 2 APPA) \mathbb{A}^2 \mathbb{A} 1 = $\frac{d}{dx} \left(\frac{1}{4} X^4 - 2X^2 \right)|_{x=1}$

Thay vào ta có tiếp tuyến
$$y = 3(x \ 1) \ \frac{7}{4} \Leftrightarrow y = 3x + \frac{5}{4}$$

 \Rightarrow Đáp số chính xác là **D**

Với $x_0 = 1$ Tính hệ số góc k = f'(1)

$$\begin{array}{c}
\bullet \bullet \bullet \bullet = = \\
\frac{d}{dx} \left(\frac{1}{4} \chi^4 - 2 \chi^2 \right) |_{x=-} \downarrow \\
3
\end{array}$$

Thay vào ta có tiếp tuyến
$$y = 3(x+1)$$
 $\frac{7}{4} \Leftrightarrow y = 3x + \frac{5}{4}$

 \Rightarrow Đáp số chính xác là **D**.