Algebra III

1 体の拡大

- 定義 1.1 1. 体 K が、体 L の部分環であるとき、K は L の部分体、L は K の拡大体であると言い、L:K と書く。
 - 2. L: K を体の拡大とし、 $Y \subset L$ (部分集合) である時、 $K \cup Y$ を含む L の部分体で最小のものを、K に Y を添加して得られた体と言い K(Y) で表す。 $Y = \{y_1, \ldots, y_n\}$ である時は、K(Y) を $K(y_1, \ldots, y_n)$ とも書く。
 - 3. ある L の元 α によって、 $L=K(\alpha)$ と書けるとき、L:K を単純拡大と言う。

定義 1.2 L: K を体の拡大とし、 $\alpha \in L$ とする。

- 1. 零でない多項式 $p(x) \in K[x]$ で、 $p(\alpha) = 0$ となるものがあるとき、 α を K 上代数的な元と呼び、そうでないとき、すなわち、 $1,\alpha,\ldots,\alpha^n,\ldots$ が K 上で一次独立の時、 α を K 上超越的な元と呼ぶ。
- 2. $\alpha \in L$ が K 上代数的であるとき、 $m(\alpha) = 0$ となる零でない多項式 $m(x) \in K[x]$ で、次数 最小、monic (最高次の係数が 1) なものを、 α の最小多項式と呼ぶ。

命題 $1.1\ L:K$ を体の拡大とし、 α を K 上代数的な L の元、 $m(x)\in K[x]$ を α の最小多項式とする。このとき、次が成立する。

- (1) m(x) は、既約。
- (2) $f(x) \in K[x]$ が、 $f(\alpha) = 0$ を満たせば、m(x) は、f(x) を割り切る。特に、最小多項式はただ一つであり、さらに、 $f(x) \in K[x]$ が、既約な monic な多項式で、 $f(\alpha) = 0$ ならば、f(x) = m(x) すなわち、f(x) は、最小多項式である。
- (3) $K(\alpha) \simeq K[x]/(m(x))_{\circ}$
- (4) $K(\alpha) = K[\alpha] = \{a_0 + a_1\alpha + \dots + a_{d-1}\alpha^{d-1} \mid a_i \in K\}$ であり、 $1, \alpha, \dots, \alpha^{d-1}$ は、K 上一次独立である。ただし、 $\deg m(x) = d$ とする。

命題 1.2~K を体、m(x) を K 上既約な monic な多項式とする。このとき、拡大 $K(\alpha):K$ で、 α の最小多項式が m(x) となるものがある。

定義 1.3 $i: R_1 \longrightarrow R_2$ を環準同型とする。このとき、 R_1 、 R_2 を係数とする多項式環の間の写像 $\hat{i}: R_1[x] \longrightarrow R_2[x]$ を次のように定義する。

 $a_0+a_1x+\cdots+a_sx^s\mapsto i(a_0)+i(a_1)x+\cdots+i(a_s)x^s$.

すると、 \hat{i} は、環準同型写像である。さらに、i が同型写像なら、 \hat{i} も同型写像である。

次の定理は、この講義のあらゆる場面で、鍵となるものである。

定理 1.3 $i: K \to L$ を体同型、 $K(\alpha): K$ 、 $L(\beta): L$ を体の拡大とし、 α を K 上代数的、 β を L 上代数的とする。m(x) が K 上 α の最小多項式とする。もし、 $\hat{i}(m(x))$ が L 上 β の最小多項式ならば、体同型 $j: K(\alpha) \longrightarrow L(\beta)$ で、 $j_{|K}=i$ 、 $j(\alpha)=\beta$ となるものが存在する。

2 拡大の次数と作図問題

定義 **2.1** L:K を体の拡大とする。演算を次のように定義する。

 $(\lambda, u) \mapsto \lambda u \ (\lambda \in K, \ u \in L),$

 $(u,v) \mapsto u+v (u,v \in L).$

すると、L は、K 上のベクトル空間になる。このときの次元 $\dim_K L$ を体の拡大 L:K の次数と呼び、[L:K] と書く。

定理 **2.1** M:L、L:K を体の拡大とする。この とき、次が成立する。

$$[M:K] = [M:L][L:K].$$

命題 **2.2** $K(\alpha):K$ を単純拡大とする。このとき、次が成立する。

- (1) α が K 上超越的ならば、 $[K(\alpha):K]=\infty$ 。
- (2) α が K 上代数的で、m(x) をその最小多項式とする。すると、 $[K(\alpha):K]=\deg m$ 。

定義 **2.2** L: K を体の拡大とする。 $[L: K] < \infty$ のとき、L: K を有限欠拡大であるという。また、L の各元が K 上代数的であるとき、代数拡大と呼ぶ。

命題 **2.3** L:K を体の拡大とする。このとき、 $[L:K]<\infty$ であることと、K 上代数的な元、 $\alpha_1,\ldots,\alpha_t\in L$ で $L=K(\alpha_1,\ldots,\alpha_t)$ となるものがあることとは、同値である。さらにこのとき、L:K は、代数拡大である。

以下作図問題について考える。

与えられた点集合 $\mathbf{R}^2 \supset P$ から、定規によっては、P の 2 点を通る直線を引く。コンパスによっては、P の 2 点間の距離に等しい半径の円を P の点を中心に描くものとする。 $\mathbf{R}^2 \supset P_0$ を点の集合とする。 P_0 からはじめて、上の操作を続けて行って得られる点の集合 P を P_0 から作図可能という。

- $P = P_0 \cup \{r_1, r_2, \dots, r_n\}, r_i = (x_i, y_i) (i = 1, \dots, n),$
- $P_0 = \{p_1, p_2, \dots, p_s\}, p_j = (x'_j, y'_j) (j = 1, \dots, s),$
- $K_0 = Q(x'_1, \dots, x'_s, y'_1, \dots, y'_s), K_i = K_{i-1}(x_i, y_i), (i = 1, \dots, n)$

とする。

命題 **2.4** $[K_{i-1}(x_i):K_{i-1}] \leq 2$ かつ、 $[K_{i-1}(y_i):K_{i-1}] \leq 2$ $(i=1,\ldots,n)$ 。

定理 **2.5** 点 r=(x,y) が、 P_0 から作図可能ならば、 $[K_0(x):K_0]$ 、 $[K_0(y):K_0]$ は、ともに2べきである。

3 自己同型、不変体、分解体

定義 3.1 L:K を体の拡大とする。

- 1. L の自己同型(環としての全単射) σ が、K-自己同型であるとは、 $\sigma(k)=k$ がすべての $k \in K$ について、成り立つことである。
- 2. L の K-自己同型全体を、拡大 L:K のガロア群 (Galois Group) といい、 $\Gamma(L:K)$ とかく。 $\Gamma(L:K)$ は、写像の合成に関して、群になる。

定義 3.2 L:K を体の拡大、 $G = \Gamma(L:K)$ を拡大 L:K のガロア群とする。

- 1. $K \subset M \subset L$ なる体 M を中間体 (intermidiate field) と言う。
- 2. M が拡大 L:K の中間体のとき、 $M^*=\Gamma(L:M)$ とする。 $M^*\leq K^*=G$ である。
- 3. $H \leq G$ のとき、 $H^+ = \{a \in L \mid \sigma(a) = a \text{ for all } \sigma \in H\}$ は、拡大 L:K の中間体である。これを、H の不変体という。

これによって、体の拡大 L:K の中間体全体 と、 $G=\Gamma(L:K)$ の部分群全体との間に * と + により対応が定義できる。Galois は、拡大 L:K がある性質(正規性・分離性)を満たすとき、この対応は、包含関係を逆にする全単射であることを示した。

定義 3.3 K を体、 $f(t) \in K[t]$ を多項式とする。

- 1. f(t) が K 上で分解 (split) しているとは、K の元 $k, \alpha_1, \ldots, \alpha_n$ が存在して、 $f(t) = k(t \alpha_1) \cdots (t \alpha_n)$ と書けること、すなわち、f(t) が K の中で、一次因子に分解していることを言う。
- 2. 体 Σ が、f に対する K の分解体であるとは、以下の条件を満たすことである。
 - (a) f は、 Σ で分解している。
 - (b) $K \subset \Sigma' \subset \Sigma$ で f が体 Σ' で分解して いれば、 $\Sigma' = \Sigma$ 。

すなわち、 Σ は、f が分解する極小の体ということである。上の2番目の条件は、次の条件にも置き換えることが出来る。

(c) $\Sigma = K(\alpha_1, \dots, \alpha_n)$ 、 $\alpha_1, \dots, \alpha_n$ は、f の Σ における根。

定理 **3.1** K を体 $f(t) \in K[t]$ とする。このとき、 $K \perp f$ の分解体が存在する。

命題 **3.2** $i: K \to K'$ を 体同型、 $f \in K[t]$ 、 Σ を $K \perp f$ の分解体とする。また、L を $\hat{i}(f)$ が L で分解するような K' の拡大体とする。このとき、単射準同型 $j: \Sigma \to L$ で $j_{|K}=i$ すなわち、K 上では、i となっているものが存在する。

定理 $3.3~i:K\to K'$ を体同型、 $f\in K[t]$ とする。T を f の K 上の分解体、T' を $\hat{i}(f)$ の K' 上の分解体とする。このとき、同型写像 $j:T\to T'$ で、 $j_{|K}=i$ となるものが存在する。

4 正規性と分離性

定義 **4.1** 体の拡大 L:K が正規であるとは、L において、少なくとも一つの根を持つ K 上の既約多項式 f は、全て、L において分解している時を言う。

定理 **4.1** 体の拡大 L:K が有限かつ正規である という事と、L が、K 上ある多項式の分解体であることとは、同値である。

定義 4.2 f を体 K 上の既約多項式とする。

- 1. f が、f の分解体において、重根を持たないとき、f を分離的または、分離多項式と言う。 (分解体は、同型であるから、この定義は、分解体の取り方によらない。)
- 2. f が、分離的ではないとき、f を非分離的と言う。

定義 **4.3** K を体とし、 $f(t) = a_0 + a_1 t + \cdots + a_n t^n \in K[t]$ とする。このとき、

$$Df = a_1 + 2a_2t + \dots + na_nt^{n-1}$$

を f の形式的微分という。

形式的微分に関しては、次が成り立つ。

$$D(f+g) = Df + Dg,$$

$$D(fg) = Df \cdot g + f \cdot Dg,$$

$$D(\lambda g) = \lambda Dg.$$

命題 **4.2** K を体、 $0 \neq f \in K[t]$ とする。f が、分解体において、多重根を持つと言うことと、K[t] において、 $(f,Df) \neq 1$ と言うこととは、同値である。

- 命題 **4.3** (1) char K = 0 ならば、K 上の任意の 既約多項式は、K 上分離的である。
- (2) $\operatorname{char} K = p > 0$ ならば、K 上の既約多項式 f が非分離的だと言うことと、 $f(t) \in K[t^p]$ と

なっていることとは、同値。すなわち、f(t)は、以下のように書ける。

$$f(t) = a_0 + a_1 t^p + \dots + a_r t^{rp},$$

 $a_i \in K, i = 0, 1, \dots, r.$

定義 **4.4** *L*: *K* を体の拡大とする。

- 1. $f \in K[t]$ のすべての既約因子が、K 上分離的であるとき、f は、K 上分離的であると言う。
- 2. $\alpha \in L$ が、K 上代数的であって、かつ α の 最小多項式が K 上分離的であるとき α は、K 上分離的であると言う。
- 3. L の元がすべて、K 上分離的であるとき、L: K を分離拡大という。

命題 **4.4** L:K を分離的な体の拡大とし、M をその中間体とする。このとき、L:M、M:K は、共に分離的である。

5 次数と位数

命題 **5.1** K、L を体とするとき、K から L への 相異なる単射準同型 $\lambda_1, \ldots, \lambda_n$ は、L 上で一次独立である。すなわち、 $a_1, \ldots, a_n \in L$ に対して、

$$a_1\lambda_1(x) + \dots + a_n\lambda_n(x) = 0 \text{ for all } x \in K$$

 $\Rightarrow a_1 = \dots = a_n = 0.$

以下、連立一次斉次方程式の定理を利用する。

命題 **5.2** 次の連立一次方程式は、n > m のとき、 すべては、零でない解を持つ。

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = 0 \end{cases}$$

定理 $\mathbf{5.3}$ K を 体とし、G を $\mathrm{Aut}K$ の有限部分群とする。 K_0 を G の不変体、

$$K_0=\{k\in K\mid \sigma(k)=k,\ \ for\ every\ \sigma\in G\}$$
とすると、 $[K:K_0]=|G|_\circ$

系 5.4 L: K を体の有限次拡大とする。 $H \leq G = \Gamma(L:K)$ とすると、次の等式が成り立つ。

$$[L:K] = |H| \cdot [H^+:K].$$

定理 **5.5** L:K を体の有限正規拡大とし、M をその中間体とする。 $\tau:M\to L$ が、K-単射準同型ならば、L の K-自己同型 $\sigma:L\to L$ で、 $\sigma_{|M}=\tau$ となっているものが存在する。特に、 $p(t)\in K[t]$ を既約な多項式とし、 α,β をその根とすると、L の K-自己同型で、 $\sigma(\alpha)=\beta$ となっているものが存在する。

6 ガロアの定理

L:K を体の有限次拡大、 $G = \Gamma(L:K)$ とする。 F で、中間体全体を表し、G で、G の部分群全体 を表すとする。

 $M \in \mathcal{F}$ 、 $H \in \mathcal{G}$ に対して、 $M^* \in \mathcal{G}$, $H^+ \in \mathcal{F}$ をそれぞれ次の様に定義する。

 $M^* = \{ \sigma \in G \mid \sigma(m) = m, \text{ for all } m \in M \}$

 $= \Gamma(L:M)$

 $H^+ = \{a \in L \mid \sigma(a) = a, \text{ for all } \sigma \in H\}$

定理 **6.1** (ガロアの基本定理) L:K を有限分離 正規拡大、[L:K]=n、 $G=\Gamma(L:K)$ 、 $M\in\mathcal{F}$ とする。このとき、次が成立する。

- (1) $|G| = n_{\circ}$
- (2) * と、+ は、互いに逆写像で、包含関係を逆 転させ、F と、G の間の一対一対応を与える。
- (3) $[L:M] = |M^*|, [M:K] = |G|/|M^*|.$
- (4) M:K が正規拡大 $\Leftrightarrow M^* \triangleleft G$ 。
- (5) M:K が正規拡大 $\Rightarrow \Gamma(M:K) \simeq G/M^*$ 。

有限正規分離拡大のことを有限次ガロア拡大と もいう。この節の目標は、上の定理を証明するこ とである。

定義 6.1~L:K を代数拡大、N が、L:K の正規閉包であるとは、N が、L の拡大体で、次の条件を満たすものである時を言う。

- 1. N: K は、正規拡大。
- 2. $L \subset M \subset N$ で、M : K が正規ならば、N = M。

すなわち、正規閉包は、L を含む K の正規拡大の中で、最小のもの。

定理 6.2~L:K が有限拡大ならば、L:K の正規閉包 N で、N:K が有限拡大となるものがある。M:K も、正規閉包ならば、N:K と同型である。

補題 $6.3~K \subset L \subset N \subset M$ を、体の拡大で、 $[L:K] < \infty$ 、かつ N は、L:K の正規閉包 とする。 $\tau:L \to M$ を K-単射準同型とすると、 $\tau(L) \subset N$ である。

定理 6.4 L: K を有限拡大とすると、次は同値。

- (1) L:K は、正規拡大。
- (2) L を含む K の正規拡大 M で次を満たすも のがある。

 $\Gamma(L:K) = \{\sigma: L \to M \mid \sigma K$ -単射準同型 \}

(3) L を含む K の任意の正規拡大 M は、次を満たす。

 $\Gamma(L:K) = \{\sigma: L \to M \mid \sigma K$ -単射準同型 \}

定理 $6.5 \ K \subset L \subset M$ を体の拡大の列とし、M: K は、有限正規拡大とする。[L:K]=n ならば、L から、M の中への単射準同型の数は、n 以下であり、それが、丁度 n となるのは、L:K が分離拡大の時、しかもその時に限る。

定理 $6.6\ L:K$ を有限拡大とする。このとき、L:K が正規かつ分離拡大ということと、K が、 $\Gamma(L:K)$ の不変体であることとは、同値である。

7 べき根による解の存在

定義 **7.1** 体の拡大 L:K がべき根による拡大であるとは、 $L=K(\alpha_1,\ldots,\alpha_m)$ であり、各 $i=1,2,\ldots,m$ について、 $\alpha_i^{n(i)}\in K(\alpha_1,\ldots,\alpha_{i-1})$ となる自然数 n(i) があることである。

補題 $7.1\ L:K$ を有限拡大とする。M を L:K の正規閉包とする。すると、K を含む M の部分体 L_1,\ldots,L_s で、 $M=L_1\cdots L_s$ 、 $L_i:K\simeq L:K$ となっているものが存在する。

補題 7.2 L: K べき根による拡大。M を L: K の正規閉包とする。このとき、M: K もべき根による拡大である。

補題 **7.3** K を標数 0 の体、L を t^p-1 の K 上 の分解体、p を素数とする。このとき、 $\Gamma(L:K)$ は、アーベル群である。

補題 **7.4** K を標数 0 の体で、 t^n-1 は、K で、分解しているとする。 $a \in K$ とし、L を t^n-a の K 上の分解体とすると、 $\Gamma(L:K)$ は、アーベル群である。

定義 **7.2** 群 G が可解 (solvable) であるとは、G の部分群の列 G_1, \ldots, G_{n-1} で、以下の条件を満たすものが存在することである。

$$1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_{n-1} \triangleleft G_n = G,$$

 G_{i+1}/G_i はアーベル群, i = 0, 1, ..., n-1.

定理 7.5 G を群。 $H \leq G$ 、 $N \triangleleft G$ とする。この とき以下が成り立つ。

- (1) G が可解ならば、H も可解。
- (2) G が可解であることと、N と、G/N が共に可解であることとは、同値である。

注

- 1. アーベル群は、可解。
- 2. A_5 の正規部分群は、1 と A_5 のみで、かつ、 A_5 は、アーベル群ではない。よって、 A_5 は、可解ではない。定理 7.5 により、 A_5 と同型な部分群を含む群 A_n 、 S_n $n \geq 5$ は、可解群ではない。

定義 $7.3 \ f \in K[t]$ 、 Σ を K 上 f の分解体とする。 $\Gamma(\Sigma:K)$ を f の K 上のガロア群という。

注 定義 7.3 の記号のもとで、X を根全体とすると、 $\phi:\Gamma(\Sigma:K)\to S^X$ を自然な写像とすると、これは、単射である。

定義 7.4~K を標数 0 の体、 $f \in K[t]$ 、 Σ を K上 f の分解体とする。このとき、f がべき根で解けるとは、 Σ の拡大体 M で、M:K がべき根による拡大となるものがある時を言う。

8 ガロア群の可解性

本節の目標は、次の定理を証明することである。

定理 **8.1** K を標数 0 の体とする。 $f \in K[t]$ 、 Σ を $K \perp f$ の分解体とする。このとき次は、同値である。

- (*i*) *f* は、べき根で解ける。
- (ii) f の K 上のガロア群は、可解。

定理 8.2 K を標数 0 の体とし、 $K \subset L \subset M$ とする。M:K がべき根による拡大ならば、 $\Gamma(L:K)$ は、可解群である。

定義 8.1 L: K を有限ガロア拡大。 $G = \Gamma(L: K)$ とする。 $a \in L$ に対して、

$$N_{L/K}(a) = N(a) = \prod_{\tau \in G} \tau(a)$$

を a のノルムという。σ ∈ G だから、

$$\sigma(N(a)) = \prod_{\tau \in G} \sigma\tau(a) = \prod_{\tau' \in G} \tau'(a) = N(a)$$

これは、 $N(a) \in K$ を意味する。

定理 8.3 L:K を有限ガロア拡大、 $\Gamma(L:K)=<\tau>=G$ 巡回群、 $a\in L$ とする。このとき、N(a)=1 となることと、L のある元 $b\neq 0$ について、 $a=b/\tau(b)$ となることとは同値。

定理 $8.4\ L: K$ を有限ガロア拡大、 $\Gamma(L:K) = G < \tau > \simeq \mathbf{Z}/p\mathbf{Z}$ 、p を素数とする。K の標数は、0 または、p と素とする。 t^p-1 が K 上で、分解しているとする。すると、L の元 α と、K の元 a で、 $L=K(\alpha)$ となるものが存在する。ここで、 α は、 t^p-a の根である。

定理 8.5~K を標数 0 の体。 $\Gamma(L:K) = G$ を可解、L:K を正規拡大とする。このとき、L の拡大 R で、R:K がべき根による拡大となるものが存在する。

Suzuki, H. International Christian University