Lab05 PRESENTATION

Chia Wei Kuo

Outline

- Strategies of Optimization
- Actions
- FSM

Strategies of Optimization

- Save area:
 - -1 SRAM 288 words
 - Sharing operators
 - -Using registers as less as possible
- Save latency :
 - flip = change the way to read image.

Definition

- Initial image:
 - -(row,col) = (i,j)
 - $-Address = \{1'b0, i, j\}$

	j+	1		
i+1 (0,0	0,1	0,2	0,3
1+1	1,0	1,1	1,2	1,3
	2,0	2,1	2,2	2,3
	3,0	3,1	3,2	3,3

Flip

- © Change the way to read memory => 1 cycle
- Stored by register
 - > (i_start,j_start) : start point (0,0)
 - > j_first : j change first?
 - > j_step : the value of j change +1
 - > i_step : the value of i change +1

Table

Param. Flip	i_start	j_start	j_first	j_step	i_step
Horizontal	(j_first)? x:inverse	(j_first)? inverse:x	X	(j_first)? inverse:x	(j_first)? x:inverse
Vertical	(j_first)? inverse:x	(j_first)? x:inverse	X	(j_first)? x:inverse	(j_first)? inverse:x
Left-diagonal	inverse	inverse	inverse	inverse	inverse
Right- diagonal	X	X	inverse	X	X

x: don't change

inverse(expect j_first) : 0<-> img_size-1

inverse(j_first) : 0<->1

Example: Left-diagonal

0,3	0,2	0,1	0,0
1,3	1,2	1,1	1,0
2,3	2,2	2,1	2,0
3,3	3,2	3,1	3,0

Start point=(0,3) j_first =1 j_step =-1 i_step =+1

Start point=(3,0) j_first =0 j_step =+1 i_step =-1

Just inverse all parameters!

Zoom-in

 Read from the last pixel to prevent overwriting the data we still need.

 No matter what kinds of flips you do previously, this method is always worked. Just being care for the sequence of 4 write

back data.

Image	Last pixel	Write Back to
4*4	(3,3)	(6,6) (6,7) (7,6) (7,7)
8*8	(7,7)	(14,14) (14,15) (15,14) (15,15)

Zoom-in

- Reusing div by 3. (save area)
- Arranging when to calculate the result and write back.

Other Actions

- Max Pooling
 Shortcut + Brightness Adjustment
 - -The sequence of pixels won't affect the result.
 - -Choosing the start point for easily defining where to write back.

SB	4*4	8*8	16*16
Read start point	0,0	2,2	4,4
Write start point	0,0	0,0	0,0

Table. Shortcut + Brightness Adjustment

Cross Correlation

- Using 1 multiplier and 1 adder.
- Using additional memory to store a part of correlation results prevents the data which we still need being overwritten.

» For 16*16 we need 256+2*16=288 to store the result.

FSM

Thanks For Your Listening