School of Mathematical and Computational Sciences

Abstract Algebra

Prof. Pablo Rosero & Christian Chávez Lesson 7

1. Cyclic groups and subgroups

Definition 1.1. A group H is cyclic if H can be generated by a single element, i.e., there exists $a \in H$ such that

$$H = \langle a \rangle = \{a^n \mid n \in \mathbb{Z}\} \text{ where } a^n \in H.$$

Remark 1.1.1. 1. In additive notation $H = \{2m \mid m \in \mathbb{Z}\}$. (In additive notation $(\mathbb{Z}/n\mathbb{Z})$ is cyclic and $\mathbb{Z}/2\mathbb{Z} = \langle 1 \rangle$)

- 2. If *H* is cyclic then there exists some $x \in H$ such that $H = \langle x \rangle$.
- 3. If $|H| = \langle x \rangle$ then x is not unique (and more).
- 4. $x^n \neq x^m$ if and only if $n \neq m$.
- 5. If $G = D_n$ and $H = \langle r \rangle$, then $H = \langle r^m \rangle$ and k = m if and only if $k \equiv m \mod n$.
- 6. Every cyclic subgroup H is abelian. For example, if $H = \langle r \rangle$ in $G = D_n$, then H is abelian, but D_n is not cyclic.
- 7. By convention, $x^0 = 1$ for any element x

Proposition 1.2. *If* $H = \langle x \rangle$ *then* |H| = |x|. *More specifically:*

- 1. If $|H| = n < \infty$, then $x^n = 1$ and $1, x, \dots, x^{n-1}$ are all distinct elements of H.
- 2. If $|H| = \infty$, then $x^n \neq 1$ for $n \neq 0$ and $x^a \neq x^b$ for $a \neq b$ in \mathbb{Z} .

Proposition 1.3. *Let* G *be a group,* $x \in G$ *, and* $m, n \in \mathbb{Z} \setminus \{0\}$ *.*

- If $x^m = 1$ and $x^n = 1$, then $x^d = 1$ where $d = \gcd(m, n)$.
- In particular, if $x^m = 1$, then $x^{|m|} = 1$.

Proof. By the Euclidean Algorithm, there exist $r, s \in \mathbb{Z}$ such that d = mr + ns where $d = \gcd(m, n)$. Therefore, $x^d = (x^m)^r \cdot (x^n)^s = 1^r \cdot 1^s = 1$.

On the other hand, if $x^m = 1$ and n = |x|, then if m = 0 (implying $n \mid m$), then by 1), $x^d = 1$ where $d = \gcd(m, n)$,

therefore d = n by minimality. Then (since $d \mid n$ and $n \mid m$), d = m.

 \square

Theorem 1.4. Any two cyclic groups of the same order are isomorphic.

- *Proof.* (1) **Finite case:** Let $H_1 = \langle x \rangle$ and $H_2 = \langle y \rangle$ where |x| = |y| = n. Define $\varphi : \langle x \rangle \to \langle y \rangle$ by $\varphi(x^k) = y^k$. Then φ is a well-defined isomorphism.
 - Well-defined: If $x^k = x^l$ then $\varphi(x^k) = \varphi(x^l)$ since $y^k = y^l$. Since $x^k = x^l$ implies $k \equiv l \mod n$, $y^k = y^l$ by the same logic.
 - Homomorphism: $\varphi(x^k \cdot x^l) = \varphi(x^{k+l}) = y^{k+l} = y^k \cdot y^l = \varphi(x^k) \cdot \varphi(x^l)$.
 - **Injective:** If $\varphi(x^k) = y^k = 1$, then $x^k = 1$ since $n \mid k$.
 - **Surjective:** Let $y^k \in \langle y \rangle$ then $\varphi(x^k) = y^k$.
 - (2) **Infinite case:** If $H = \langle x \rangle$ with $|H| = \infty$, then define $\varphi : \mathbb{Z} \to \langle x \rangle$ by $\varphi(k) = x^k$. φ is an isomorphism:
 - φ is a function from \mathbb{Z} to $\langle x \rangle$ that maps each integer k to x^k , preserving the structure of \mathbb{Z} under addition, mirroring the group operation of $\langle x \rangle$ under multiplication.

Remark 1.4.1. Up to isomorphism, there exists a unique cyclic group of finite order n, namely $\mathbb{Z}/n\mathbb{Z} = \langle x \rangle = \{1, x, x^2, \dots, x^{n-1}\}$ (multiplicative), and a unique cyclic group of infinite order, $\mathbb{Z} = \langle x \rangle = \{ n \cdot 1 \mid n \in \mathbb{Z} \}$ (additive).

Proposition 1.5. *Let* G *be a group, let* $x \in G$ *, and let* $a \in \mathbb{Z} \setminus \{0\}$ *.*

- (i) If $|x| = \infty$, then $|x^a| = \infty$.
- (ii) If $|x| = n < \infty$, then $|x^a| = \frac{n}{\gcd(n,a)}$.
- (iii) If $|x| = n < \infty$ and also $a \equiv 0 \mod n$, then $|x^a| = \frac{n}{a}$.
- 1. Assume that $|x| = \infty$. Just assume $|x^a| = m < \infty$. Then $(x^a)^m = x^{am} = 1$. Show Proof. that there exist $r, s \in \mathbb{Z}$ such that n = amr + s where $x^n = x^s$. This shows $|x| < \infty$, which is a contradiction.
 - 2. Define $y = x^a$ and $d = \gcd(n, a)$, then n = db and a = dc for some $b, c \in \mathbb{Z}$ with gcd(b,c) = 1. We need to prove that |y| = b. First note that $y^b = (x^a)^b = x^{ab} = x^{dcb} = x^{dcb}$ $(x^n)^c = 1^c = 1$. Thus $|y| \le b$.

Let k = |y|, then $y^k = x^{ak} = 1$. If ak = nd, since gcd(b, c) = 1, then $b \mid k$. Thus k = b and hence |y| = b.

3. This is a special case of 2.

Theorem 1.6. Let H be a cyclic group. Assume $H = \langle x \rangle$.

- 1. Every subgroup $K \leq H$ is cyclic and $K = \langle x^d \rangle$ where $d = \min\{k \in \mathbb{N} \mid x^k \in K\}$.
- 2. If $|H| = \infty$, then $\langle x^s \rangle \neq \langle x^t \rangle$ for all $s \neq t$ in \mathbb{Z} , and $\langle x^n \rangle = \langle x \rangle$ implies \mathbb{Z} . Thus, there exists an injective correspondence between \mathbb{N} and the subgroups of H.

3. If $|H| = n < \infty$, then for all $a \in \mathbb{Z}^*$ such that $a \mid n$ and $a \neq n$, $\langle x^d \rangle \leq H$ implies that |K| = a where $d \cdot m = n/a$.

(a)
$$\langle x^s \rangle = \langle x^{(n/m)} \rangle$$
 where $gcd(m, n) = 1$.

4. The subgroups of H correspond bijectively with the positive divisors of |H|.

Remark 1.6.1. In $\mathbb{Z}/n\mathbb{Z}$:

- 1. $\mathbb{Z}/n\mathbb{Z} = \langle t \rangle = \langle m \rangle$ if and only if gcd(m, n) = 1 for $m \in \mathbb{Z}$.
- 2. $\langle s \rangle \leq \langle \gcd(s, m) \rangle$.
- 3. $\langle a \rangle \leq \langle b \rangle$ if and only if $gcd(b, n) \mid gcd(a, n)$ where $1 \leq a, b \leq n$.

Example 1. In $\mathbb{Z}/48\mathbb{Z}$, compute $\langle 6 \rangle$, find the order of a and relation between $\langle 6 \rangle$ and Molien subgroups.

•
$$\phi(48) = \phi(2^4 \cdot 3) = \phi(2^4) \cdot \phi(3) = 2^3 \cdot (3-1) = 16.$$

The subgroup relations for $\mathbb{Z}/48\mathbb{Z}$ are represented as follows:

$$\langle 1 \rangle = \langle 47 \rangle = \langle 49 \rangle = \cdots = \langle 1 \rangle,$$

$$\langle 2 \rangle = \langle 46 \rangle = \langle 50 \rangle = \cdots = \langle 2 \rangle,$$

$$\langle 3 \rangle = \langle 45 \rangle = \langle 51 \rangle = \cdots = \langle 3 \rangle,$$

$$\langle 4 \rangle = \langle 44 \rangle = \langle 52 \rangle = \cdots = \langle 4 \rangle,$$

$$\langle 6 \rangle = \langle 42 \rangle = \langle 54 \rangle = \cdots = \langle 6 \rangle,$$

$$\langle 8 \rangle = \langle 40 \rangle = \langle 56 \rangle = \cdots = \langle 8 \rangle,$$

$$\langle 12 \rangle = \langle 36 \rangle = \langle 60 \rangle = \cdots = \langle 12 \rangle,$$

$$\langle 16 \rangle = \langle 32 \rangle = \langle 64 \rangle = \cdots = \langle 16 \rangle,$$

$$\langle 24 \rangle = \langle 24 \rangle = \langle 72 \rangle = \cdots = \langle 24 \rangle.$$

Subgroups of $\mathbb{Z}/48\mathbb{Z}$ are related as follows:

$$\langle 24 \rangle \subset \langle 12 \rangle \subset \langle 6 \rangle \subset \langle 3 \rangle \subset \langle 1 \rangle$$
,

$$\langle 16 \rangle \subset \langle 8 \rangle \subset \langle 4 \rangle \subset \langle 2 \rangle \subset \langle 1 \rangle \text{,}$$

$$\langle 18 \rangle \subset \langle 9 \rangle \subset \langle 3 \rangle \subset \langle 1 \rangle$$
,

$$\langle 20 \rangle \subset \langle 10 \rangle \subset \langle 5 \rangle \subset \langle 1 \rangle.$$