DSC 40B Theoretical Foundations II

Lecture 9 | Part 1

Warmup

Exercise

► How fast can we query/insert with these data structures?

	Query	Insert	
Unsorted linked list Unsorted array Sorted array BST	n logn logn	logn	7

DSC 40B Theoretical Foundations II

Lecture 9 | Part 2

Direct Address Tables

Counting Frequencies

How many times does each age appear?

Name	Age
Wan	24
Deveron	22
Vinod	41
Aleix	17
Kayden	4
Raghu	51
Cui	48
:	:
	Wan Deveron Vinod Aleix Kayden Raghu

Exercise

What data structure would you use to store the age counts?

Direct Address Tables

- ▶ Idea: keep an **array** arr of length, say, 125.
- ► Initialize to zero.

If we see age x, increment arr[x] by one.

Building the Table

```
# loading the table
table = np.zeros(125)

for age in ages:
    table[age] += 1
```

Time complexity if there are n people?

Query

```
# query: how many people are 55?
print(table[55])
```

► Time complexity if there are *n* people?

Counting Names

How many times does each name appear?

PID	Name	Age
A1843	Wan	24
A8293	Deveron	22
A9821	Vinod	41
A8172	Aleix	17
A2882	Kayden	4
A1829	Raghu	51
A9772	Cui	48
:	:	:

Downsides

DATs are fast.

- What are the downsides of DATs?
- Could we use a DAT to store:
 - zip codes?
 - phone numbers?
 - credit card numbers?
 - names?

Downsides

- Things being stored must be integers, or convertible to integers
 - why? valid array indices
- Must come from a small range of possibilities
 - why? memory usage. example: phone numbers

Hash Tables

- Insight: anything can be "converted" to an integer through hashing.
- But not uniquely!

Hash tables have many of the same advantages as DATs, but work more generally.

DSC 40B Theoretical Foundation II

Lecture 9 | Part 3

Hashing

Hashing

- One of the most important ideas in CS.
- Tons of uses:
 - Verifying message integrity.
 - ► Fast queries on a large data set.
 - Identify if file has changed in version control.

Hash Function

A hash function takes a (large) object and returns a (smaller) "fingerprint" of that object.

Usually the fingerprint is a number, guaranteed to be in some range.

How?

Looking at certain bits, combining them in ways that *look* random (but aren't!)

Hash Function Properties

- Hashing same thing twice returns the same hash.
- Unlikely that different things have same fingerprint.
 - But not impossible!

Collisions

- Hash functions map objects to numbers in a defined range.
 - Example: given image, return number in [0, 1, 2, ..., 1024]
- There will be two images with the same hash.
 - Pigeonhole principle: if there are n pigeons, < n holes, there will a hole with ≥ 2 pigeons.</p>
- Collision: two objects have the same hash

"Good" Hash Functions

A good hash function tries to minimize collisions.

Hashing in Python

The hash function computes a hash.

```
»> hash("This is a test")
-670458579957477203
»> hash("This is a test")
-670458579957477203
»> hash("This is a test!")
1860306055874153109
```

MD5

- MD5 is a cryptographic hash function.
 - ► Hard to "reverse engineer" input from hash.
- Returns a really large number in hex.

a741d8524a853cf83ca21eabf8cea190

Used to "fingerprint" whole files.

Example

```
> echo "My name is Justin" | md5
a741d8524a853cf83ca21eabf8cea190
> echo "My name is Justin" | md5
a741d8524a853cf83ca21eabf8cea190
> echo "My name is Justin!" | md5
f11eed2391bbdoa5a2355397co89fafd
```

```
Example
```

e3fd437ofda3oceb978390004e07b9df

> md5 slides.pdf

Why?

- ► I release a piece of software.
- ► I host it on Google Drive.
- Someone (Google, US Gov., etc.) decides to insert extra code into software to spy on users.
- You have no way of knowing.

Why?

- I release a piece of software & publish the hash.
- ► I host it on Google Drive.
- Someone inserts extra code.
- You download the software and hash it. If hash is different, you know the file has been changed!

Another Use: De-duplication

- Building a massive training set of images.
- Given a new image, is it already in my collection?
- Don't need to compare images pixel-by-pixel!
- Instead, compare hashes.

Hashing for Data Scientists

Don't need to know much about how the hash function works.

But should know how they are used.

DSC 40B Theoretical Foundations II

Lecture 9 | Part 4

Hash Tables

Membership Queries

▶ **Given**: a collection of *n* numbers and a target *t*.

Find: determine if t is in the collection.

Goal

- ► DATs are fast, but won't work for things that aren't numbers in a small range.
- Idea: hash objects to numbers in a small range, use a DAT.
- But must deal with collisions.

Hash Tables

- ▶ Pick a table size *m*.
 - ▶ Usually $m \approx$ number of things you'll be storing.
- ► Create hash function to turn input into a number in $\{0, 1, ..., m 1\}$.
- Create DAT with m bins.

Example

```
hash('hello') == 3
hash('data') == 0
hash('science') == 4
```

$$\frac{\text{data}}{0} \quad \frac{1}{2} \quad \frac{\text{hello}}{3} \quad \frac{\text{science}}{4} \quad \dots \quad \frac{m-1}{m-1}$$

Collisions

- ► The **universe** is the set of all possible inputs.
- This is usually much larger than *m* (even infinite).
- Not possible to assign each input to a unique bin.
- If hash(a) == hash(b), there is a collision.

Example

```
hash('hello') == 3
hash('data') == 0
hash('san diego') == 3
```

justin an dieso hyllo

Chaining

- Collisions stored in same bin, in linked list.
- Query: Hash to find bin, then linear search.

The Idea

- A good hash function will utilize all bins evenly.
 - Looks like uniform random distribution.
- ▶ If $m \approx n$, then only a few elements in each bin.
- As we add more elements, we need to add bins.

Average Case

- n elements in the
- \triangleright *m* bins.
- Assume elements placed randomly in bins¹.
- Expected bin size: $\frac{\eta}{\eta}$

¹Of course, they are placed deterministically.

Average Case

- n elements in bin.
- \triangleright *m* bins.
- Assume elements placed randomly in bins¹.
- ► Expected bin size: n/m

¹Of course, they are placed deterministically.

- Query:
 - ightharpoonup Time to find correct bin: $\mathcal{O}(1)$
 - Expected number of elements in the bin: N/M
 Time to perform linear search: (n/m)
 Total: (n/m)

- Query:
 - ightharpoonup Time to find correct bin: Θ(1)
 - Expected number of elements in the bin:
 - ► Time to perform linear search:
 - ► Total:

- Query:
 - Time to find correct bin: Θ(1)
 - Expected number of elements in the bin: n/m
 - ► Time to perform linear search:
 - ► Total:

- Query:
 - Time to find correct bin: Θ(1)
 - Expected number of elements in the bin: n/m
 - Time to perform linear search: $\Theta(n/m)$
 - Total:

- Query:
 - ightharpoonup Time to find correct bin: $\Theta(1)$
 - Expected number of elements in the bin: n/m
 - ► Time to perform linear search: $\Theta(n/m)$
 - ► Total: $\Theta(1 + n/m)$

- Querv:
 - ightharpoonup Time to find correct bin: $\Theta(1)$
 - Expected number of elements in the bin: n/m
 - \triangleright Time to perform linear search: $\Theta(n/m)$
 - ► Total: $\Theta(1 + n/m)$
 - We usually guarantee $m = \chi(n)$

- Query:
 - ightharpoonup Time to find correct bin: $\Theta(1)$
 - Expected number of elements in the bin: n/m
 - ► Time to perform linear search: $\Theta(n/m)$
 - ► Total: $\Theta(1 + n/m)$
 - We usually guarantee m = O(n)
 - Expected time: Θ(1).

Worst Case

- Everything hashed to same bin.
 - Really unlikely!
 - Adversarial attack?

- Query:
 - \triangleright $\Theta(1)$ to find bin
 - \triangleright $\Theta(n)$ for linear search.
 - ► Total: Θ(*n*).

Exercise

What is the worst case time complexity of inserting an element into a hash table that uses chaining with linked lists?

Growing the Hash Table

- Insertions take $\Theta(1)$ unless the hash table needs to grow.
- ▶ We need to ensure that $m \le c \cdot n$.
 - Otherwise, too many collisions.
- ► If we add a bunch of elements, we'll need to increase *m*.

Increasing m means allocating a new array, $\Theta(m) = \Theta(n)$ time.

Main Idea

Hash tables support constant (expected) time insertion and membership queries.

Dictionaries

- Hash tables can also be used to store (key, value) pairs.
- Often called dictionaries or associative arrays.

Hashing in Python

- dict and set implement hash tables.
- Querying is done using in:

```
»> # make a set
»> L = {3, 6, -2, 1, 7, 12}
»> 1 in L # Theta(1)
False True
»> 7 in L # Theta(1)
True
```

DSC 40B Theoretical Foundations II

Lecture 9 | Part 5

Fast Algorithms with Hash Tables

Faster Algorithms

- Hashing is a super common trick.
- ► The "best" solution to interview problems often involves hashing.

Example 1: The Movie Problem

- ► You're on a flight that will last *D* minutes.
- You want to pick two movies to watch.
- Find two whose durations sum to **exactly** D.

Recall: Previous Solutions

- ▶ Brute force: $Θ(n^2)$.
- ► Sort, use sorted structure: $\Theta(n \log n) + \Theta(n)$.
- Theoretical lower bound: $\Omega(n)$?
- Can we speed this up with hash tables?

Idea

To use hash tables, we want to frame problem as a **membership query**.

Example

- Suppose flight is 360 minutes long.
- Suppose first movie is fixed: 120 minutes.
- ► Is there a movie lasting (360 120) = **1**40 minutes?

(4, 100)

```
def optimize entertainment hash(times, D):
hash_table = dict()
for i, time in enumerate(times):
hash_table[time] = i
for i, time in enumerate(times):

target = D - time
if target in hash_table:

return i, hash_table[target]
```

Example 2: Anagrams

Definition

Two strings w_1 and w_2 are anagrams if the letters of w_1 one can be permuted to make w_2.

Examples

- ▶ abcd / dbca
- ▶ listen / silent
- ► sandiego / doginsea

Problem

Given a collection of n strings, determine if any two of them are anagrams.

Exercise

Design an efficient algorithm for solving this problem. What is its time complexity?

Solution

We need to turn this into a membership query.

Trick: two strings are anagrams iff

```
sorted(w_1) == sorted(w_2)
```

abic

```
def any_anagrams(words):
    seen = set()
    for word in words:
        w = sorted(word)
        if w in seen
            return True
        else:
            seen.add(w)
```

Hashing Downsides

Problem must involve membership query.

Example: The Movie Problem

- You're on a flight that will last D minutes.
- You want to pick two movies to watch.
- Find two whose added durations is **closest** to *D*.

Hashing Downsides

- ▶ No locality: similar items map to different bins.
- There is no way to quickly query entry closest to given input.

Example: Number of Elements

- Given a collection of n numbers and two endpoints, a and b, determine how many of the numbers are contained in [a, b].
- Not a membership query.
- ► Idea: **sort** and use modified binary search.

DSC 40B Theoretical Foundation II

Lecture 9 | Part 6

Hash Table Drawbacks

- ▶ No locality: similar items map to different bins.
- ▶ But we often want similar items at the same time.

Results in many cache misses, slow.

Hashing Downsides

Memory overhead.

Hash Tables vs. BSTs

- Hash Table: Θ(1) insertion, query (expected time).
- \triangleright BST: Θ(log n) insertion, query (if balanced).
- Why ever use a BST?

Hash Tables vs. BSTs

- Hash tables keep items in arbitrary order.
- Example: how many elements are in the interval [3, 23]?
- Example: what is the min/max/median?
- BSTs win when order is important.