MIDTERM EXAMINATION CS302- Digital Logic Design

Ref No: 1022709 Time: 60 min Marks: 38

Question No: 1 (Marks: 1) - Please choose one
According to Demorgan's theorem:
A + B + C =
► A.B.C
$ ightharpoonup$ A + $\overline{B.C}$
▶ Ā.B.C
A.B + C
► A.B. C
Question No: 2 (Marks: 1) - Please choose one
The Extended ASCII Code (American Standard Code for Information Interchange) is a
code
▶ 2-bit
► 7-bit
► 8-bit
► 16-bit
Question No: 3 (Marks: 1) - Please choose one
The AND Gate performs a logicalfunction
► Addition
► Subtraction
► Multiplication
► Division
Question No: 4 (Marks: 1) - Please choose one
NOR gate is formed by connecting
 OR Gate and then NOT Gate NOT Gate and then OR Gate
► AND Gate and then OR Gate ► AND Gate and then OR Gate
► OR Gate and then AND Gate

Question No: 5 (Marks: 1) - Please choose one
Generally, the Power dissipation of devices remains constant throughout their operation.
► TTL
► CMOS 3.5 series
► CMOS 5 Series
▶ Power dissipation of all circuits increases with time.
Question No: 6 (Marks: 1) - Please choose one
Two 2-bit comparator circuits can be connected to form single 4-bit comparator
► True
► False
Question No: 7 (Marks: 1) - Please choose one
When the control line in tri-state buffer is high the buffer operates like a gate
► AND
▶ OR
► NOT
► XOR
Question No: 8 (Marks: 1) - Please choose one
The GAL22V10 has inputs
 '
h 00
► 22 ► 10
► 44
▶ 20
Question No: 9 (Marks: 1) - Please choose one
The ABEL symbol for "OR" operation is
▶ !
▶ &
▶ #
▶ \$
Question No: 10 (Marks: 1) - Please choose one
The OLMC of the GAL16V8 is to the OLMC of the GAL22V10

► Similar

► Associative law

► Different
➤ Similar with some enhancements
Depends on the type of PALs input size
Question No: 11 (Marks: 1) - Please choose one
All the ABEL equations must end with
► " . " (a dot)
► "\$ " (a dollar symbol)
• "; " (a semicolon)
► " endl " (keyword "endl")
Question No: 12 (Marks: 1) - Please choose one
The Quad Multiplexer has outputs
• 4
▶ 8 ▶ 42
► 12 ► 16
▶ 16
Question No: 13 (Marks: 1) - Please choose one
"Sum-of-Weights" method is used
► to convert from one number system to other
► to encode data
▶ to decode data
► to convert from serial to parralel data
Question No: 14 (Marks: 1) - Please choose one
Circuits having a bubble at their outputs are considered to have an active-low output.
► True
► False
r aloo
Question No: 15 (Marks: 1) - Please choose one
$(A+B)(A+\overline{B}+C)(\overline{A}+C)$ is an example of
► Product of sum form
► Sum of product form
► Demorgans law

Question No: 16 (Marks: 1) - Please choose one

Which one is true:

- ► Power consumption of TTL is higher than of CMOS
- ▶ Power consumption of CMOS is higher than of TTL
- ▶ Both TTL and CMOS have same power consumption
- ▶ Power consumption of both CMOS and TTL depends on no. of gates in the circuit.

Question No: 17 (Marks: 1)

Which device performs an operation which is the opposite of the Decoder function?

Ans:

Encoder function.

Question No: 18 (Marks: 1)

Name any two modes in which PALs are programmed.

Ans:

PAL devices are programmed by blowing the fuses permanently using over voltage.

Question No: 19 (Marks: 2)

Explain Combinational Function Devices?

Ans:

Xor, Xnor, NAND, NOR are combinational function devices.

Question No: 20 (Marks: 3)

Differentiate between hexadecimal and octal number system

octal - base 8

hexadecimal - base 16

Octal and hex are used to represent numbers instead of decimal because there is a very easy and direct way to convert from the "real" way that computers store numbers (binary) to something easier for humans to handle (fewer symbols). To translate a binary number to octal, simply group the binary digits three at a time and convert each group. For hex, group the binary digits four at a time.

Question No: 21 (Marks: 5)

Explain "Sum-of-Weights Method" for Hexadecimal to Decimal Conversion with at least one example?

Ans:

The hexadecimal (Hex) numbering system provides even shorter notation than octal. Hexadecimal uses a base of 16. It employs 16 digits: number 0 through 9, and letters A through F, with A through F substituted for numbers 10 to 15, respectively,

Hexadecimal numbers can be expressed as their decimal equivalents by using the sum of weights method, as shown in the following example:

Weight 2 1 0
Hex. Number 1 B 7
$$7 \times 16^{0} = 7 \times 1 = 7$$

$$11 \times 16^{1} = 11 \times 16 = 176$$

$$1 \times 16^{2} = 1 \times 256 = 256$$
Sum of products 439₁₀

Like octal numbers, hexadecimal numbers can easily be converted to binary or vise versa. Conversion is accomplished by writing the 4-bit binary equivalent of the hex digit for each position, as illustrated in the following example:

Hex. Number	1 B 7	
	(0001) (1011) (0111)	← Binary number
Hexadecimal	Binary	Decimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
С	1100	12
D	1101	13
Е	1110	14
F	1111	15

Question No: 22 (Marks: 10)

Draw the function table of two-bit comparator circuit, map it to K-Map and derive the

expression for (A > B) Ans:

\mathbf{X}_1	X_0	\mathbf{Y}_1	\mathbf{Y}_0	X <y< th=""><th>X=Y</th><th>X>Y</th></y<>	X=Y	X>Y
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

.

The circuit has inputs X_1X_0 and Y_1Y_0 and outputs X>Y, the expression for > is $x_1 \overline{y_1} + x_0 \overline{y_1} \overline{y_0} + x_1 x_0 \overline{y_0}$

time is out						