$$F_1 = \overline{X}\overline{Y} + XY\overline{Z}$$

$$F_2 = \overline{X} + \overline{Y}$$

$$F_3 = xy + \overline{x}\overline{y}$$

Fz can be readily implemented using an inverter and an OR gate

Assign Y to S,

Z to So

truth table

| Y 2      | ×        | F, | F,                                                                                                                                                                            | F3       | F3-                                                                                                                 |
|----------|----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------|
| 00000111 | 0-0-0-0- | 0  | $\begin{cases} I_0 = \overline{X} \\ I_1 = \overline{X} \end{cases}$ $\begin{cases} I_1 = \overline{X} \\ I_2 = \overline{X} \end{cases}$ $\begin{cases} I_3 = 0 \end{cases}$ | 10-00-0- | $\begin{cases} T_0 = \overline{X} \\ T_1 = \overline{X} \end{cases}$ $\begin{cases} T_2 = X \\ T_3 = X \end{cases}$ |



 $F_1 = \overline{Y}\overline{Y} + XY\overline{Z}$  $= \overline{X}\overline{Y}\overline{Z} + \overline{X}\overline{Y}\overline{Z} + XY\overline{Z}$ 

= &m (0,1,6)

| X YZ | 00 | 01  | ( ( | 10 |
|------|----|-----|-----|----|
| 0    |    | - 1 |     | "  |
| Ţ    |    |     |     | 1  |

$$F_{2} = \overline{X} + \overline{Y}$$

$$= \overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z}$$

$$+ \overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z} + \overline{X} \overline{Y} \overline{Z}$$

$$= \overline{Z} M (0, 1, 2, 3, 6, 7)$$

$$X \qquad Y^{2}$$

$$00 \qquad 01 \qquad 11 \qquad 10$$

$$0 \qquad 1 \qquad 1 \qquad 1$$

Note that  $\overline{F_2}$  is a simpler expression  $\overline{F_2} = 2 \text{ m } (4,5)$ .

$$F_3 = XY + \overline{X}\overline{Y}$$

$$= XYZ + XY\overline{Z} + \overline{X}\overline{Y}Z + \overline{X}\overline{Y}Z$$



$$F_{3} = 2 m (0,1,6,7)$$

$$\Rightarrow \text{ Note that } F_{3} = F_{1} + m_{7}$$

$$= \overline{F_{1} + m_{7}}$$

$$= \overline{F_{1} \cdot m_{7}}$$
ie NAND of  $\overline{F_{1}}$  and  $\overline{M_{1}}$ 

Hence using a 3-to-8 line decoder and NAND gates (minimum number of connections).



OR Using the minimum number of external



bits are A and B

Carry-in is Ci

Carry-out is Co.

Sum is S.



For a Full adder,

$$S(A,B,C_i) = Em(1,2,4,7)$$
  
 $C_o(A,B,C_i) = Em(3,5,6,7)$ 

|          |       | * * * * * * * * * * * * * * * * * * * |        | I = BC;                                                                                                                                                              | ۱ -۱  | I=BC;                                   |
|----------|-------|---------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------|
| M        | A     | B Ci                                  | 5      | SUM                                                                                                                                                                  | 6     | CARRY                                   |
| 01234567 | 00001 | 000000000                             | 00-00- | $I_0 = A$ $I_1 = \overline{A}$ $I_2 = \overline{A}$ $I_3 = A$ $I_1 = \overline{A}$ $I_2 = \overline{A}$ $I_3 = A$ $I_4 = \overline{A}$ $I_5 = A$ $I_7 = A$ $I_8 = A$ | 000-0 | Io=0 I1=A I2=A I3=1 Io=0 I1=A I2=A I3=1 |



Example 3

| A                | В     | C                 | D          | F   |               |                                                       |
|------------------|-------|-------------------|------------|-----|---------------|-------------------------------------------------------|
| 0                | 0     | 0                 | 0          | 0   | 76            |                                                       |
| 0                | 0     | 0                 | 1          | 0   | Io<br>Io      | 1/ Io=C                                               |
| 0                | 0     | 1                 | 0          | 1   | 10            | 1                                                     |
| 0                | 0     | 1                 | 1          | 1   | Io            | 1)                                                    |
| 0                | 1     | 0                 | 0          | 0   | 3,            | [ ] <sub>1</sub> =0                                   |
| 0                | 1     | 0                 | 1          | 0   |               | 6-11-0                                                |
| 0                | 1     | 1                 | 0          | C   | II            | -                                                     |
| 0                | 1     | 1                 | 1          | 0   | II :          | <u> </u>                                              |
| 1                | 0     | 0                 | 0          | 11  | 122           | <b>1</b> 7                                            |
| 1                | 0     | 0                 | 1          | 0_  | 12            | $J_2 = \overline{D}$                                  |
| 1                | 0     | 1                 | 0          | 1   | I2<br>I2 4    |                                                       |
| 1                | 0     | 1                 | 1          | 0   | 72,0          |                                                       |
| 1                | 1     | 0                 | 0          | 0   | IZ            | 7 - COD                                               |
| 1                | 1     | 0                 | 1          | 1 1 | I2            | $I_3 = C \oplus D$                                    |
| 1                | 1     | 1                 | 0          | 1   | 13            |                                                       |
| 1                | 1     | 1                 | 1          | 0   | 133           | .,                                                    |
| J <sub>3</sub> = | Con o | $\mathcal{D} = 0$ | VSE TO C+D | (D) | <u>(+ D</u> ) | ) using De Murgen Thoran                              |
|                  |       |                   |            |     |               | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |