2018.07.07 LFMTP

Cubical Computational Type Ca Theory & RedPRL

>> redprl.org >>

Carlo Angiuli Evan Cavallo (*) Favonia Robert Harper Jonathan Sterling Todd Wilson

Cubical

features of homotopy type theory univalence, higher inductive types

+

Computational

Cartesian Cubical

features of homotopy type theory univalence, higher inductive types

+

Computational

features of Nuprl and PVS
strict equality, strict quotients,
 predicative subtypes...

Computational Types

programs/ realizers

computation

Computational Types

programs/ realizers

computation

<----

computational type theory

theory of computation

Computational Types

programs/ realizers

computation

<----

computational type theory

theory of computation

meaning explanation

<----

Martin-Löf type theory

pre-mathematical in M-L's work

```
M := a | bool | true | false | if(M,M,M)
```

The Language

The Language

What are the types in canonical forms? {bool}

The Language

```
What are the types in canonical forms? {bool}
What are the canonical forms of the types?
bool: {true, false}
```

The Language

```
What are the types in canonical forms? {bool}
What are the canonical forms of the types?
bool: {true, false}
How they are equal? syntactic equality
```

The Language

```
What are the types in canonical forms? {bool}
What are the canonical forms of the types?
bool: {true, false}
How they are equal? syntactic equality
```

One Theory

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

$$A \doteq B \text{ type}$$
 $A \downarrow A' B \downarrow B' \text{ and } A' \approx B'$

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

$$A \doteq B \text{ type}$$
 $A \downarrow A' B \downarrow B' \text{ and } A' \approx B'$

bool ≐ bool type

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

$$A \doteq B \text{ type}$$
 $A \downarrow A' B \downarrow B' \text{ and } A' \approx B'$

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

$$A \doteq B \text{ type}$$
 $A \downarrow A' B \downarrow B' \text{ and } A' \approx B'$

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

false \doteq false \in bool

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

$$a:A >> M \doteq N \in B$$

P \displies M[P/a] \displies N[Q/a] \in B

```
M := a | bool | true | false | if(M,M,M)

types: {bool} with syntactic equality ≈
bool: {true, false} with syntactic equality ≈
bool
```

$$a:A >> M \doteq N \in B$$

P \displies M[P/a] \displies N[Q/a] \in B

b:bool >> b \doteq if(b,true,false) \in bool?

A Functional Example

```
M := a | M1→M2 | \a.M | M1 M2 | ...
(M1→M2) val \a.M val (\a.M1)M2 ↔ M1[M2/a]
Another Lanquage
```

A Functional Example

```
M := a | M1→M2 | \a.M | M1 M2 | ...
(M1→M2) val \a.M val (\a.M1)M2 → M1[M2/a]
                                            Another Language
What are the types in canonical forms?
  the least fixed point of
  S → {M→N | M↓, N↓ in S} union ...
What are the canonical forms of the types?
  A→B: {\a.M}
How they are equal?
  A1 \rightarrow B1 \approx A2 \rightarrow B2 if A1 = A2 and B1 = B2
  \a.M1 \approx_{A\rightarrow B} \a.M2 if a:A >> M1 \stackrel{.}{=} M2 \stackrel{.}{\leftarrow} B
```

Variables

Nuprl/	Coq/Agda/
Vars range over closed terms	Vars are indet.
Defined by transition b/w closed terms	Defined by conversion b/w open terms

Open-endedness

```
Proof theory/tactics/editors

↓
Computational type theory

↓
Programming language
```

Open-endedness

Proof theory/tactics/editors

↓
Computational type theory

↓
Programming language

Canonicity always holds

Equality and Paths

```
Equality (\equiv)
Silent in theory
2 + 3 \equiv 5
fst \langle M, N \rangle \equiv M
```

Equality and Paths

```
Equality (\equiv)

Silent in theory

2 + 3 \equiv 5

fst \langle M, N \rangle \equiv M

If A \equiv B and M : A then M : B
```

Equality and Paths

```
Equality (\equiv)
               Silent in theory
                   2 + 3 \equiv 5
                 fst (M,N) \equiv M
        If A \equiv B and M : A then M : B
                 Paths (=)
               Visible in theory
If P : A=B and M : A then transport(M,P) : B
```

[Awodey and Warren] [Voevodsky et al] [van den Berg and Garner]

A Type Space

a: A Element Point

 $f : A \rightarrow B$ Function Continuous Mapping

 $C: A \rightarrow Type$ Dependent Type Fibration

 $a =_A b$ Identification Path

Features of HoTT

Univalence

If e is an equivalence between types A and B, then ua(E):A=B

Higher Inductive Types

Canonicity?

Canonicity broken by new features stated as axioms!

Canonicity?

Canonicity broken by new features stated as axioms!

Canonicity

For any M: bool, either

 $M \equiv true : bool or <math>M \equiv false : bool$

Canonicity?

Canonicity broken by new features stated as axioms!

Canonicity

For any M : bool, either $M \equiv true$: bool or $M \equiv false$: bool

ua(not) : bool = bool
transport(ua(not), true) ≠ false

Canonicity for All

Canonicity for bool means canonicity for everyone

Canonicity for All

Canonicity for bool means canonicity for everyone

```
M: bool \times A
fst(M) \equiv ??? : bool
```

Canonicity for All

Canonicity for bool means canonicity for everyone

```
M: bool \times A
fst(M) \equiv ??? : bool
```

Wants $M \equiv \langle P, Q \rangle$ and then $fst(M) \equiv fst\langle P, Q \rangle \equiv P \equiv$ true or false

$$\frac{M : A}{refl(M) : M =_A M}$$

```
\frac{M:A}{refl(M):M=_AM}
a:A \vdash R:C(a,a,refl(a)) P:M=N
path-ind[C](a.R,P):C(M,N,P)
```

```
M : A
           refl(M) : M =_{A} M
a:A \vdash R : C(a,a,refl(a)) \quad P : M = N
   path-ind[C](a.R,P) : C(M,N,P)
  a:A \vdash R : C(a,a,refl(a)) \quad M : A
 path-ind[C](a.R,refl(M)) \equiv R[M/a]
            : C(M,M,refl(M))
```

```
M : A
           refl(M) : M =_{A} M
a:A \vdash R : C(a,a,refl(a)) \quad P : M = N
   path-ind[C](a.R,P) : C(M,N,P)
  a:A \vdash R : C(a,a,refl(a)) \quad M : A
 path-ind[C](a.R,refl(M)) \equiv R[M/a]
            : C(M,M,refl(M))
```

 $path-ind[C](a.R,ua(E)) \equiv ???$

Can we have a new TT with canonicity + univalence?

```
Yes with De Morgan cubes [CCHM 2016]
Yes with Cartesian cubes [AFH 2017]
```

... and higher inductive types?

Examples with De Morgan cubes [CHM 2018] Yes with Cartesian cubes [CH 2018]

Idea: each type manages its own paths

Idea: each type manages its own paths

base : S1

Idea: each type manages its own paths

base: S1

loop : base = base

Idea: each type manages its own paths

base : S1

Pour : base 7 base

Idea: each type manages its own paths


```
base : S1

roop : Lase 7 bee

x: | | loop{x} : S1

loop{0} ≡ base : S1

loop{1} ≡ base : S1
```

Idea: each type manages its own paths

base : S1

roop : Loade 7 bee

x: | | | loop{x} : S1

loop{0} | | | base : S1

loop{1} | | | base : S1

Kan structure:
sufficient to implement path-ind

Kan types: types with Kan structure

Introducing I the formal interval

Introducing I the formal interval

$$\Gamma \vdash O: \mathbb{I}$$
 $\Gamma \vdash 1: \mathbb{I}$ $\Gamma, x: \mathbb{I}$

Introducing I the formal interval

$$\Gamma \vdash O: \mathbb{I}$$
 $\Gamma \vdash 1: \mathbb{I}$ $\Gamma, x: \mathbb{I}$

$$x_1:\mathbb{I}, x_2:\mathbb{I}, \ldots, x_n:\mathbb{I} \vdash M : A$$

 $\Leftrightarrow M \text{ is an n-cube in } A$

Introducing I the formal interval

$$\Gamma \vdash O: \mathbb{I}$$
 $\Gamma \vdash 1: \mathbb{I}$ $\Gamma, x: \mathbb{I}$

Cartesian: works as normal contexts

$$M(O/X)$$
 $M(1/X)$ $M(y/X)$

Cubical Programming

```
dim expr r := 0 | 1 | x
```



```
M := S1 | base | loop{r} expr
| S1elim(a.M, M, M, x.M) | ...
```



```
M := S1 | base | loop{r} expr
| S1elim(a.M, M, M, x.M) | ...
```


S1 val

```
M := S1 | base | loop{r} expr
| S1elim(a.M, M, M, x.M) | ...
```


S1 val

base val

```
M := S1 | base | loop{r} expr
| S1elim(a.M, M, M, x.M) | ...
```


S1 val

base val

loop{x} val

loop{0} → base

loop{1} → base

$$coe[r \sim r'] \{x.A\} (M) \in A < r'/x >$$

$$\bigcap_{A < r/x >} coe[r \sim r] \{x.A\} (M) = M \in A < r/x >$$

 $hcom[r \sim r'] \{A\}(M) [..., r_i = r'_i \rightarrow y.N_i, ...] \in A$

≐ N₁<r'/y> ∈ A

coe[r~r']{_.S1}(M) → M

```
coe[r~r']{_.S1}(M) → M
hcom[r \sim r']{S1}(M)[...] \rightarrow fhcom[r \sim r'](M)[...]
                                                 -formal homo.
                                                   composition
fhcom[r~r](M)[...] → M
r!=r' r<sub>i</sub>=r'<sub>i</sub> (the first i)
fhcom[r \sim r'](M)[..., r_i = r'_i \rightarrow y \cdot N_i, ...] \rightarrow N_i \langle r' / y \rangle
```

```
coe[r~r']{_.S1}(M) → M
hcom[r \sim r'] \{S1\}(M)[...] \rightarrow fhcom[r \sim r'](M)[...]
                                             formal homo.
                                              composition
fhcom[r~r](M)[...] → M
r!=r' r;=r'; (the first i)
fhcom[r \sim r'](M)[..., r_i = r'_i \rightarrow y \cdot N_i, ...] \rightarrow N_i < r' / y >
r!=r' r<sub>i</sub>!=r'<sub>i</sub> for all i
fhcom[r~7r'](M)[...] val
```

Sielim needs to handle from

Sielim needs to handle fcom

```
r!=r' r<sub>i</sub>!=r'<sub>i</sub>

S1elim(a.A, fhcom[r~r'](M)[...], B, x.L)

→ com[r~r']{y.A[fhcom[r~y](M)[...]/a}

(S1elim(M, B, x.L))[...]
```

S1elim(composition) → composition(S1elim)

Dimension substs. do not commute with evaluation!

Restrict our theory to only cubically stable parts

Cubical Type Theory

stability: consider every substitution

Cubical Type Theory

stability: consider every substitution

$$A \doteq B \text{ type } [\Psi]$$
 context

A and B stably recognize the same stable values and have stably equal Kan structures

(see our arXiv papers)

Cubical Type Theory

stability: consider every substitution

A and B stably recognize the same stable values and have stably equal Kan structures

$$M \doteq N \in A [\Psi]$$

A \doteq A type [Ψ], M and N stably eval to M' and N', A stably treats M' and N' as the same

(see our arXiv papers)

Variables

Nuprl/...

Vars range over closed terms

Defined by transition b/w closed terms

Defined by conversion b/w open terms

exp vars dim vars cubical computational TT

arXiv papers

CHTT Part I [AHW 2016]

Cartesian cubical + computational

CHTT Part II [AH 2017]

Dependent types

CHTT Part III [AFH 2017]

Univalent Kan universes Strict equality

CHTT Part IV [AFH 2017]

Higher inductive types

Proof Assistants

RedPRL

In Nuprl style redprl.orq

redtt

(Work in progress)
github.com/RedPRL/redtt

yacctt

Proof of concept modified from cubicaltt github.com/mortberg/yacctt

Conclusion

We extended Nuprl semantics by cubical structure which justifies key features of HoTT

Conclusion

We extended Nuprl semantics by cubical structure which justifies key features of HoTT

Best of the two worlds!

Conclusion

We extended Nuprl semantics by cubical structure which justifies key features of HoTT

Best of the two worlds!

We also built proof assistants

redprl.org
github.com/RedPRL/redtt
github.com/mortberg/yacctt