Package 'misclassifyr'

September 4, 2024

Title Estimation and Inference for Misclassification Models.

Version 0.0.0.9000

Description This package provides tools for estimation and inference of simple misclassification models, as described in Mattheis (2024).

License `use_mit_license()`
Encoding UTF-8
Roxygen list(markdown = TRUE)
RoxygenNote 7.3.1
Imports Rcpp,
 parallel,
 numDeriv,
 dplyr
Suggests testthat (>= 3.0.0)

R topics documented:

Config/testthat/edition 3

Index

log_prior_Delta_NP
log_prior_Delta_NP_ind
log_prior_Delta_RL_ind
log_prior_Pi_NP
misclassifyr
model_to_Delta_NP
model_to_Delta_NP_ind
model_to_Delta_RL_ind
model_to_Pi_NP
Pi_to_beta
Pi_to_betas
prep_misclassification_data

10

log_prior_Delta_NP

Evaluates the log of the prior of Delta at model_to_Delta_NP(psi).

Description

Evaluates the log of the prior of Delta at model_to_Delta_NP(psi).

Usage

```
log_prior_Delta_NP(psi)
```

Arguments

psi

A numeric vector parameterizing Delta through model_to_Delta_NP.

Value

A numeric value equal to the log of the flat prior of Delta at psi, re-scaled for the logit transform.

```
log_prior_Delta_NP_ind
```

Evaluates the log of the prior of Delta at model_to_Delta_NP_ind of psi.

Description

Evaluates the log of the prior of Δ at model_to_Delta_NP_ind(psi).

Usage

```
log_prior_Delta_NP_ind(psi)
```

Arguments

psi

A numeric vector parameterizing Delta through model_to_Delta_NP_ind.

Value

A numeric value equal to the log of the flat prior of Delta at psi, re-scaled for the logit transform.

log_prior_Delta_RL_ind

Evaluates the log of the prior of Delta at model_to_Delta_RL_ind(psi).

Description

Evaluates the log of the prior of Delta at model_to_Delta_RL_ind(psi).

Usage

```
log_prior_Delta_RL_ind(psi)
```

Arguments

psi

A numeric vector parameterizing Delta through model_to_Delta_RL_ind.

Value

A numeric value equal to the log of the flat prior of Delta at psi, re-scaled for the logit transform.

log_prior_Pi_NP

 $Evaluates \ the \ log \ of \ the \ prior \ of \ Pi \ at \ model_to_Pi_NP(phi).$

Description

Evaluates the log of the prior of Pi at model_to_Pi_NP(phi).

Usage

```
log_prior_Pi_NP(phi)
```

Arguments

phi

A numeric vector parameterizing Pi through model_to_Pi.

Value

A numeric value equal to the log of the flat prior of Pi at phi, re-scaled for the logit transform.

4 misclassifyr

misclassifyr

misclassifyr

Description

This function provides a menu of options for estimation and inference of misclassification models in which the analyst has access to two noisy measures, Y1 and Y2 of a latent outcome Y*, a correctly measured covariate X, and discrete controls W.

Usage

```
misclassifyr(
  tab,
  J,
  Κ,
  model_to_Pi = model_to_Pi_NP,
  model_to_Delta = model_to_Delta_NP_ind,
  phi_0 = NA,
  psi_0 = NA,
  X_names = NA,
  Y_names = NA,
  W_names = NA,
  estimate_beta = F,
  estimate_betas = F,
  X_{vals} = NA,
  Y_vals = NA,
  optim_tol = 1e-08,
  optim_maxit = 1e+05,
  bayesian = F,
  prior_Pi = prior_Pi_NP,
  prior_Delta = prior_Delta_NP_ind,
  n_mcmc_draws = 20000,
  n_burnin = 10000,
  thinning_rate = 2,
  gibbs_proposal_sd = 0.1,
  cores = 1
)
```

Arguments

tab	A dataframe or a list of dataframes containing tabulated data or a list of tabulated data split by controls. The columns should be numeric with names Y1, Y2, X, and n where Y1 and Y2 take each value between 1 and J, X takes each value between 1 and K, and
J	An integer or list corresponding to the number of unique values of Y1 and Y2.
K	An integer or list corresponding to the number of unique values of X.
model_to_Pi	A function or list of functions mapping the parameters of a model for the joint distribution to the joint distribution $\ensuremath{\mbox{eqn}\{\protect\mbox{pi}\}}$.
model_to_Delta	A function or list of functions mapping the parameters of a model to the conditional distribution Y1, $Y2 \mid Y^*$, \eqn{\Delta}.

model_to_Delta_NP 5

phi_0	A numeric vector or list of numeric vectors providing the starting location for optimization for the argument to model_to_Pi.	
psi_0	A numeric vector or list of numeric vectors providing the starting location for optimization for the argument to model_to_Delta.	
X_names	A character vector or list corresponding to the values of the regressor X.	
Y_names	A character vector or list corresponding to the values of the outcome Y.	
W_names	A character vector corresponding to the values of the control W in each cell.	
estimate_beta	A logical value indicating whether to regress Y on X.	
estimate_betas	A logical value indicating whether to regress Y on X within covariate cells.	
X_vals	A numeric vector or list of numeric vectors providing the values of X associated with the columns of Pi.	
Y_vals	A numeric vector or list of numeric vectors providing the values of Y associated with the rows of Pi.	
optim_tol	A numeric value giving the relative tolerance for optimization with the optim.	
optim_maxit	An integer giving the maximum number of iterations for optim.	
bayesian	A logical value indicating whether or not to compute the posterior of values.	
n_mcmc_draws	An integer corresponding to the length of the MCMC chain.	
n_burnin	An integer giving the length of the burn-in period for each MCMC chain, must be shorter than n_mcmc_draws .	
thinning_rate	An integer indicating how frequently to record posterior draws from the MCMC chain – e.g. a thinning_rate of 2 records every other draw.	
gibbs_proposal_		
	A numeric value giving the standard deviation for the proposal distribution in each Gibbs step.	
cores	An integer for the number of CPUs available for parallel processing.	
split_eta	An integer or list indicating where to split the vector eta in phi and psi, the arguments to model_to_Pi and model_to_Delta respectively.	
log_prior_Pi	A function or list of functions evaluating the log of the prior of Pi at phi (in logs!).	
log_prior_Delta		
	A function or list of functions evaluating the log of the prior of Delta at psi (in logs!).	

Value

An object that includes estimates and information from the estimation process

model_to_Delta_NP	Maps model parameters, psi, to Delta, the fully non-parametric distribution of Y1, Y2 Y*
	Button of 11, 12 1"

Description

Maps model parameters, psi, to Delta, the fully non-parametric distribution of Y1, Y2 | Y* $\,$

Usage

```
model_to_Delta_NP(psi)
```

Arguments

psi

A numeric vector of lengthJ^2*(J-1) containing all but the last row of Delta.

Value

A numeric vector corresponding to the JxJ^2 matrix Delta.

 $Maps\ model_to_Delta_NP_ind$ Maps model parameters, psi, to Delta, the distribution of Y1, Y2 | Y* under conditional independence of Y1, Y2 on Y

Description

Maps model parameters, psi, to Delta, the distribution of Y1, Y2 | Y^* under conditional independence of Y1, Y2 on Y

Usage

```
model_to_Delta_NP_ind(psi)
```

Arguments

psi

A numeric vector of length 2xJx(J-1) containing Delta^(1) and Delta^(2).

Value

A numeric vector of length J^3 corresponding to the values of the JxJ^2 matrix Delta.

 $Maps\ model_to_Delta_RL_ind$ $Maps\ model\ parameters,\ psi,\ to\ Delta,\ the\ distribution\ of\ Y1,\ Y2 \mid Y^*$ $under\ record\ linkage\ error\ structure.$

Description

Maps model parameters, psi, to Delta, the distribution of Y1, Y2 | Y* under record linkage error structure.

Usage

```
model_to_Delta_RL_ind(psi)
```

Arguments

psi

A numeric vector of length 2(J-1)+2J corresponding to the column and row scales of the record linkage.

Value

A numeric vector of length J^3 corresponding to the values of the JxJ^2 matrix Delta.

model_to_Pi_NP 7

Description

Maps model parameters, phi, to the joint distribution of X and Y*, Pi.

Usage

```
model\_to\_Pi\_NP(phi, \ J, \ \ldots)
```

Arguments

phi A numeric vector.J An integer corresponding to the dimension of Y.... Additional, optional arguments.

Value

A numeric vector corresponding to the JxK matrix Pi

Pi_to_beta	Maps the joint distribution, Pi, of X and Y^* to a scalar, beta

Description

Maps the joint distribution, Pi, of X and Y* to a scalar, beta

Usage

```
Pi_to_beta(Pi, X_vals, Y_vals, W_weights)
```

Arguments

Pi	A numeric vector or list of numeric vectors containing the elements of Pi.
X_vals	A numeric vector or a list of numeric vectors representing the scalar values associated with $\boldsymbol{X}.$
Y_vals	A numeric vector or a list of numeric vectors representing the scalar values associated with Y.
W_weights	A numeric vector representing the sample size of each control cell.

Value

A scalar equal to beta.

Pi_to_betas	Maps the joint distribution, Pi , of X and Y^* to a vector, representing
	beta in each covariate cell

Description

Longer description of what it does...

Usage

```
Pi_to_betas(Pi, X_vals, Y_vals)
```

Arguments

Pi A list of numeric vectors containing the elements of Pi.

X_vals A list of numeric vectors representing the scalar values associated with X.Y_vals A list of numeric vectors representing the scalar values associated with Y.

Details

some details.

Value

A scalar equal to beta.

Examples

```
## Not run:
some example code # Should return something
## End(Not run)
```

Description

This function tabulates data and generates metadata in a format to be used with the misclassifyr() function.

Usage

```
prep_misclassification_data(
   data,
   outcome_1,
   outcome_2,
   regressor,
   controls = NA,
   weights = NA,
   record_vals = F
)
```

Arguments

data	A data.frame containing the outcome variable,
outcome_1	A character string denoting the variable in the dataframe to be used as the first measure of an outcome, Y_1 .
outcome_2	A character string denoting the variable in the dataframe to be used as the second measure of an outcome, Y_2 .
regressor	A character string denoting the variable in the dataframe to be used as a regressor, X.
controls	A character string or vector of character strings denoting the variable/variables to be used as non-parametric controls, W.
weights	A character string denoting a variable containing individual level weights
record_vals	A logical value indicating whether to record the unique values of the outcomes and the regressor. If record_vals = F, you likely want to order the data by the regressor and outcomes before applying prep_misclassification_data.

Value

A list of objects including tabulated data to be used in misclassifyr()

Index

```
log_prior_Delta_NP, 2
log_prior_Delta_NP_ind, 2
log_prior_Delta_RL_ind, 3
log_prior_Pi_NP, 3

misclassifyr, 4
model_to_Delta_NP_ind, 6
model_to_Delta_RL_ind, 6
model_to_Pi_NP, 7

Pi_to_beta, 7
Pi_to_betas, 8
prep_misclassification_data, 8
```