

Agenda detallada de lecciones de Física II (Correspondencia con los bloques)

La Escuela de Física, con el apoyo del proyecto **ExperTICo**, propone la siguiente agenda de trabajo para el desarrollo de los bloques por semanas con base en el documento de <u>constitución de lecciones</u>, en el programa del Ciclo de Ciencias Básicas de Ingeniería propuesto en el <u>acuerdo CA 105</u> del 30 de julio de 2004 para la asignatura Física II, y en el calendario académico del primer periodo del 2024 para la **sede Bucaramanga** propuesto en el <u>acuerdo CA 265</u> del 02 de agosto de 2023.

Para la modalidad presencial se proponen:

- 57 bloques de contenido teórico distribuidos en las 16 semanas del semestre académico.
- Además, se agregaron 5 bloques genéricos compuestos por
 - o un bloque de introducción a los recursos y estrategias,
 - o y cuatro bloques para la preparación de las evaluaciones de módulo.

En este documento se presentan las semanas del calendario, el nombre de las lecciones, los bloques de cada lección, y el proyecto de investigación sugerido para cada semana.

Tabla 1. Agenda detallada de lecciones de Física II para el primer periodo académico del 2024

Sem. Cal. Acad.	Fechas semana	Teoría Semana de trabajo	Bloques asociados	Proyectos Grupos A	Proyectos Grupos B
0	Ene. 29 – Feb. 03	Alistamiento de los cursos			
1	Feb. 05 – 10	Lección 0. Introducción	Introducción al curso O1.Introducción al Electromagnetismo	Introducción al curso (subgrupos, aula Moodle y dinámica del proyecto final)	
2	Feb. 12 – 17	Lección 1.1 Campo eléctrico	02.Carga eléctrica. ¿Cómo se carga la materia? 03.Fuerza eléctrica y principio de superposición 04.Campo eléctrico 05.Campo eléctrico y principio de superposición	Proyecto 1. Introducción al uso básico del multímetro	
3	Feb. 19 – 24	Lección 1.2 Electrostática	06.Campo eléctrico de distribuciones de carga 07.Líneas de campo eléctrico 08.Conductores y campo eléctrico. Condiciones electrostáticas		Proyecto 1. Introducción al uso básico del multímetro
4	Feb. 26 – Mar. 02	Lección 1.3 Ley de Gauss y campo eléctrico	09.Flujo eléctrico 10.Ley de Gauss 11.Aplicaciones de la Ley de Gauss	Proyecto 2. i1. Estudio de superficies equipotenciales y su relación con el campo eléctrico	

Sem. Cal. Acad.	Fechas semana	Teoría Semana de trabajo	Bloques asociados	Proyectos Grupos A	Proyectos Grupos B
5	Mar. 04 – 09	Eval. Módulo 1	Preparación para la evaluación del módulo 1		Proyecto 2. i1. Estudio de superficies equipotenciales y su relación con el campo eléctrico
			12.Trabajo electrostático, energía potencial eléctrica y diferencia de	Proyecto Final Fase 1: Presentación de ideas y formulación de las fichas de los proyectos	
6	Mar. 11 – 16	Lección 2.1 Potencial eléctrico	potencial 13.Potencial eléctrico de distribuciones finitas de carga 14.Potencial eléctrico de distribuciones finitas de carga. Distribuciones continuas 15.Potencial eléctrico de distribuciones infinitas de carga 16.Campo en función del potencial. Gradiente. Superficies equipotenciales 17.Potencial de un conductor. Conductor dentro de un campo eléctrico	Proyecto 3. i3. Determinación de la resistividad de dos conductores: Constantan y Cromo-Níquel	
7	Mar. 18 – 23	Lección 2.2 Campo eléctrico en la materia	18. Energía electrostática para un sistema de cargas puntuales y una distribución continua de carga 19. Aplicaciones electrostáticas y explicación de fenómenos 20. Potencial debido a un dipolo eléctrico 21. Campo eléctrico debido a un dipolo eléctrico 22. Torque sobre un dipolo eléctrico 23. Energía de un dipolo eléctrico 24. Polarización de la materia 25. Campo eléctrico en dieléctricos		Proyecto 3. i3. Determinación de la resistividad de dos conductores: Constantan y Cromo-Níquel
	Mar. 25 – 30	Semana de receso estudiantil			
8	Abr. 01 – 06	Lección 2.3 Capacitancia	26.Capacidad eléctrica 27.Combinación de capacitores 28.Energía almacenada en capacitores 29.Capacitores y dieléctricos	Proyecto 4. i4. Estudio del comportamiento de la resistencia, corriente y voltaje en circuitos mixtos	

Sem. Cal. Acad.	Fechas semana	Teoría Semana de trabajo	Bloques asociados	Proyectos Grupos A	Proyectos Grupos B
9	Abr. 08 – 13	Eval. Módulo 2	Preparación para la evaluación del módulo 2		Proyecto 4. i4. Estudio del comportamiento de la resistencia, corriente y voltaje en circuitos mixtos
10	Abr. 15 – 20	Lección 3.1 Corriente eléctrica	30.Corriente eléctrica y densidad de corriente 31.Conductividad y resistividad 32.Ley de Ohm 33.Resistencia en serie y paralelo 34.Efecto Joule y potencia eléctrica	Proyecto Final Fase 2: Presentación de datos tomados en el proyecto	
11	Abr. 22 – 27	Lección 3.2 Circuitos	35.Fuerza electromotriz 36.Leyes de Kirchhoff 37.Instrumento de medición 38.Semiconductores y Superconductores	Proyecto 5. i9. Estudio del campo magnético producido por diferentes configuraciones de corriente	
12	Abr. 29 – May. 04	Lección 3.3 Introducción al magnetismo	39.Magnetismo 40.Fuerza de Lorentz 41.Fuerza magnética sobre elementos de corriente: Hilos 42.Torque magnético		Proyecto 5. i9. Estudio del campo magnético producido por diferentes configuraciones de corriente
13	May. 06 – 11	Eval. Módulo 3	Preparación para la evaluación del módulo 3	Proyecto 6. i7. Estudio de diferentes configuraciones de transformadores	
14	May. 13 – 18	Lección 4.1 Fuentes de campo magnético	43.Ley de Biot-Savart 44.Campo magnético debido a una espira circular y un solenoide 45.Fuerza entre alambres de corriente 46.Ley de Ampere 47.Magnetización 48.Materiales magnéticos		Proyecto 6. i7. Estudio de diferentes configuraciones de transformadores
15	May. 20 – 25	Lección 4.2 Inducción magnética	49.Flujo magnético y Ley de Gauss para el magnetismo 50.Ley de Faraday 51.Ejercicios aplicando la Ley de Faraday 52.Ejemplos aplicando la Ley de Faraday 53.Generador AC DC	Proyecto Final Fase 3: Entrega y sustentación del proyecto final y Evaluación conceptual	

Sem. Cal. Acad.	Fechas semana	Teoría Semana de trabajo	Bloques asociados	Proyectos Grupos A	Proyectos Grupos B
		(Adicional) Lección 4.3 Inducción en circuitos	54.Inductancia 55.Energía en un inductor 56.Coeficiente de inducción mutua 57.Corriente de desplazamiento		
16	May. 27 – 31	Realimentación y refuerzo de todo el curso		Realimentación y refuerzo de todo el curso Entrega de notas definitivas	
Eval. Fin	Jun. 04 – 07	Evaluación final	Preparación para la evaluación del módulo 4		-

Nota: Para el Proyecto Final de Laboratorio de Física el profesor podrá escoger una de las siguientes ideas:

1. Plantear una idea en la que se proponga y ejecute una posible solución al Objetivo de Desarrollo Sostenible 13.

- 2. Diseñar proyectos nuevos con equipos ya existentes.
- **3.** Mejorar los proyectos ya existentes.
- 4. Implementar herramientas para la ciencia como Python, Látex, GitHub, entre otras.

Se debe procurar hacer la toma de datos con elementos disponibles por los estudiantes. En caso de que los proyectos requieran de los equipos de laboratorio, se debe acordar con los profesionales de los laboratorios para evaluar disponibilidad de equipos y espacios.

Los detalles del Proyecto Final de Laboratorio de Física podrá consultarlos en el siguiente enlace: Proyecto Final.

