pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism: Mathematical Supplement

Niall Mangan & Avi Flamholz

April 30, 2016

Abstract

1 Equations when RuBisCO is saturated

The analytic solution for the CO_2 and HCO_3^- concentration in the carboxysome when RuBisCO is saturated is:

$$C_{carboxysome} = \frac{N}{M} - \frac{R_c^3 V_{max} P}{3MD} \tag{1}$$

$$H_{carboxysome} = K_{eq}(pH)C_{carboxysome} \tag{2}$$

where,

$$N = (j_c + k_m^{eff}(pH_{out}))H_{out}((k_m^C + \alpha)G^C + \frac{D}{R_b^2}) + k_m^C C_{out}(k_m^{eff}G^H + \alpha G^C + \frac{D}{R_b^2})$$
 (3)

$$M = K_{eq} * k_m^{eff} \left((\alpha + k_m^C) G^C + \frac{D}{R_b^2} \right) + k_m^C \left(k_m^{eff} G^H + \frac{D}{R_b^2} \right) + \alpha k_m^{eff} G^H$$
 (4)

$$P = ((\alpha + k_m^C)G^C + \frac{D}{R_b^2})(k_m^{eff}G^H + \frac{D}{R_b^2}) \quad (5)$$

$$G^{C} = \frac{D}{R_{c}^{2} k_{c}^{C}} + \frac{1}{R_{c}} - \frac{1}{R_{b}}$$
 (6)

$$G^{H} = \frac{D}{R_{c}^{2} k_{c}^{H}} + \frac{1}{R_{c}} - \frac{1}{R_{b}} \quad (7)$$

The derivation of this equation can be found in the supplementary material of (Mangan 2014). Here we have made a few modifications: (1) kept track of the carboxysome permeability to CO_2 , k_c^C , and HCO_3^- , k_c^H , independently, (2) substituted the pH dependent equilibrium constant for the carbonic anhydrase

reaction, $K_{eq}(ph) = \frac{V_{ca}K_{ba}}{V_{ba}K_{ca}}$, (3) written the $CO_2 \to HCO_3^-$ reaction with α as the linear reaction rate (in Mangan 2014 the linear rate was α/K_{α}), (4) we have replaced the membrane permeability to HCO_3^- with the effective membrane permeability to the bicarbonate pool, and designated when is dependent on the external pH, $k_m^{eff}(pH_{out})$. This term only appears once in equation 3 for N. For all other $k_m^{eff} = k_m^{eff}(pH_{in})$ values it is dependent on the pH inside the cell, so we have dropped indicating the pH dependence to simplify the formulas.

2 Analysis of membrane permeability effects

2.1 Cell permeabilty compared to diffusive velocities

Examining equation (6) we note that for large carboxysome permeability $1/R_c$ will be the dominant term, and for smaller carboxysome permeability values the first term will be larger and dominate. Therefore $G^C \geq 1/R_c$. Studying the equations (3-7) we note that the terms $((\alpha + k_m^C)G^C + \frac{D}{R_b^2})$ appears repeatedly. We use the following argument:

$$(\alpha + k_m^C)G^C \ge (\alpha + k_m^C)/R_c >> D/R_b^2, \tag{8}$$

if
$$(\alpha + k_m^C) >> DR_c/R_b^2$$
 (9)

For even a small 20 nm diameter $(R_c=10^{-6}~{\rm cm})$ carboxysome this will hold as $k_m^C\approx 0.3~{\rm cm/s}$ and $DR_c/R_b^2=4\times 10^{-3}~{\rm cm/s}$ from the values in Table S1. So the membrane permeability to CO₂ could be an order of magnitude too high in our model and this would still be a reasonable assumption. Therefore we will substitute

$$(\alpha + k_m^C)G^C + D/R_b^2 \approx (\alpha + k_m^C)G^C. \tag{10}$$

Inserting this into equations (1-5) we get

$$C_{carboxysome} = \frac{(j_c + k_m^{eff}(pH_{out}))H_{out}(k_m^C + \alpha)G^C + k_m^C C_{out}(k_m^{eff}G^H + \alpha G^C + \frac{D}{R_b^2})}{K_{eq}k_m^{eff}(\alpha + k_m^C)G^C + k_m^C \left(k_m^{eff}G^H + \frac{D}{R_b^2}\right) + \alpha k_m^{eff}G^H} - \frac{R_c^3 V_{max}(\alpha + k_m^C)G^C (k_m^{eff}G^H + \frac{D}{R_b^2})/(3D)}{K_{eq}k_m^{eff}(\alpha + k_m^C)G^C + k_m^C \left(k_m^{eff}G^H + \frac{D}{R_b^2}\right) + \alpha k_m^{eff}G^H}.$$
(11)

We can divide through by $(k_m^C + \alpha)$ to obtain:

$$C_{carboxysome} = \frac{(j_c + k_m^{eff}(pH_{out}))H_{out}G^C + \frac{k_m^C}{(k_m^C + \alpha)}C_{out}(k_m^{eff}G^H + \alpha G^C + \frac{D}{R_b^2})}{K_{eq}k_m^{eff}G^C + \frac{k_m^C}{(k_m^C + \alpha)}\left(k_m^{eff}G^H + \frac{D}{R_b^2}\right) + \frac{\alpha}{(k_m^C + \alpha)}k_m^{eff}G^H} - \frac{R_c^3V_{max}G^C(k_m^{eff}G^H + \frac{D}{R_b^2})/(3D)}{K_{eq}k_m^{eff}G^C + \frac{k_m^C}{(k_m^C + \alpha)}\left(k_m^{eff}G^H + \frac{D}{R_b^2}\right) + \frac{\alpha}{(k_m^C + \alpha)}k_m^{eff}G^H}.$$
(12)

We now want to examine the remaining terms in the membrane permeability to CO_2 , k_m^C .

2.2Membrane permeability to CO_2 has little effect.

There are two parameter groupings in equation (12) containing k_m^C :

$$\frac{k_m^C}{k_m^C + \alpha} \qquad (13)$$

$$\frac{\alpha}{k_m^C + \alpha} \qquad (14)$$

$$\frac{\alpha}{k_m^C + \alpha} \tag{14}$$

Therefore if $k_m^C > \alpha$ or $CO_2 \to HCO_3^-$ conversion is negligible the first term (13) reduces to 1, and the second reduces to $1/k_m^C$. We will return to the case where this conversion is not negligible later.

With these two simplifications we obtain:

$$C_{carboxysome} = \frac{(j_c + k_m^{eff}(pH_{out}))H_{out}G^C + C_{out}(k_m^{eff}G^H + \alpha G^C + \frac{D}{R_b^2})}{K_{eq}k_m^{eff}G^C + \left(k_m^{eff}G^H + \frac{D}{R_b^2}\right) + \frac{1}{k_m^C}k_m^{eff}G^H} - \frac{R_c^3V_{max}G^C(k_m^{eff}G^H + \frac{D}{R_b^2})/(3D)}{K_{eq}k_m^{eff}G^C + \left(k_m^{eff}G^H + \frac{D}{R_b^2}\right) + \frac{1}{k_m^C}k_m^{eff}G^H}.$$
(15)

Examining equation (15), note that the only appearance of the membrane permeability to CO_2 is now in the denominator which we can rewrite as $k_m^{eff}(G^CK_{eq}+$ $\frac{G^H}{k_m^C}$) + $\left(k_m^{eff}G^H + \frac{D}{R_b^2}\right)$. Using this equation, we can write a strong bound on

when the membrane permeability will effect the function of the CCM. We find k_m^C has no significant effect when $K_{eq}G^C > \frac{G^H}{k_m^C}$ or $k_m^C > \frac{G^H}{G^C K_{eq}}$. If we assume that the carboxysome permeability to CO_2 will always be smaller than or equal to the permeability to HCO_3^- ($k_c^C \ge k_c^H$) then $G^H \ge G^C$ and $\frac{G^H}{G^C} \le 1$, so k_m^C will be negligible as long as $k_m^C > 1/K_{eq}$. For pH > 6.6, $1/K_{eq} > 0.3$ and therefore the assumed value of $k_m^C = 0.3$ will be negligible. However, if the cell operated in a lower pH regime and the membrane permeability was substantially lower to CO_2 it would begin to effect the CO_2 concentration.

Thus far we have made a series of observations about the size of terms compared to the membrane permeability to CO_2 and found that when $(\alpha +$ $(k_m^C) >> DR_c/R_b^2, k_m^C > \alpha$ and $k_m^C > \frac{G^H}{G^C K_{eq}} \approx 1/K_{eq}$ the CO₂ concentration in the carboxysome reduces to

$$C_{carboxysome} = \frac{(j_c + k_m^{eff}(pH_{out}))H_{out}G^C + C_{out}(k_m^{eff}G^H + \alpha G^C + \frac{D}{R_b^2})}{k_m^{eff}(G^CK_{eq} + G^H) + \frac{D}{R_b^2}} - \frac{R_c^3V_{max}G^C(k_m^{eff}G^H + \frac{D}{R_b^2})/(3D)}{k_m^{eff}(G^CK_{eq} + G^H) + \frac{D}{R_b^2}}.$$
 (16)

We can make a similar argument taking the equation for the CO₂ concen-

tration at the cell membrane:

$$C_{cytosol}(r = R_b) = \frac{k_m^C C_{out} - (\alpha + k_m^C) C_{carboxysome}}{(\alpha + k_m^C) G^C + D/R_b^2} G^C + C_{carboxysome}$$

$$\approx C_{out} \quad (17)$$

This means that the CO_2 leakage term will be negligible since the cytosolic CO_2 concentration will be approximately equal to the external CO_2 concentration. The HCO_3^- transport required to sustain a given internal inorgain carbon pool will then be:

$$j_{c}H_{out} = \left(\frac{R_{c}^{3}}{3R_{b}^{2}}V_{max} - k_{m}^{C}\left(C_{out} - C_{cytosol}\right) - k_{m}^{eff}H_{out} + k_{m}^{eff}H_{cytosol}\right)$$

$$= \left(\frac{R_{c}^{3}}{3R_{b}^{2}}V_{max} - k_{m}^{eff}H_{out} + k_{m}^{eff}H_{cytosol}\right) \quad (18)$$

We can calculate $H_{carboxyome} = K_{eq}C_{carboxysome}$ from equation (17), and is therefore also independent of k_m^C . In previous work we showed that

$$H_{cytosol} = \frac{(j_c + k_m^{eff}(pH_{out}))H_{out} + \frac{\alpha}{K_{\alpha}}C_{cytosol}(r = R_b) - k_m^{eff}H_{carboxysome}}{k_m^{eff}G^H + \frac{D}{R_b^2}}G^H$$

$$\tag{19}$$

We have now shown that all the terms in H_{cyto} are negligibly dependent on the membrane permeability to CO_2 . Therefore, the HCO_3^- transport level require to satisfy equation (18) is independent of the membrane permeability to CO_2 . This observation is consistent with the low flux of CO_2 leakage in Figure 2.

2.3 Without facilitated CO_2 uptake external CO_2 has little effect

Unless conversion from CO_2 to HCO_3^- is large we note that the second C_{out} term in equation(15) is negligible for the regimes we study. We will revisit CO_2 uptake and recycling later. Comparing this term against the first term in the numerator, again allows us to put a quantitative description on when this regime holds. Additionally we find that when the transport of HCO_3^- is significant $(j_c > k_m^{eff}(pH_{out}))$ we arrive at

$$C_{carboxysome} = \frac{j_c H_{out} G^C - R_c^3 V_{max} G^C (k_m^{eff} G^H + \frac{D}{R_b^2})/(3D)}{k_m^{eff} (G^C K_{eq} + G^H) + \frac{D}{R_b^2}}$$
(20)

$$H_{carboxysome} = K_{eq}C_{carboxysome} \tag{21}$$

3 Effect of Carboxysome permeability

Recalling the equation for $G^C = \frac{D}{R_c^2 k_c^C} + \frac{1}{R_c} - \frac{1}{R_b}$, we can see that the carboxysome permeability to CO₂ will only matter if $\frac{D}{R_c^2 k_c^C} > \frac{1}{R_c}$. In other words the carboxysome permeability to CO₂, k_c^C , begins to effectively trap CO₂ in the carboxysome when $k_c^C < \frac{D}{R_c} \approx 2$ cm/s for our base case of a 100 nm carboxysome ($R_c = 50$ nm). Similarly $G^H \approx \frac{D}{R_c^2 k_c^H}$ when $k_c^H < \frac{D}{R_c}$. As common thinking is that $k_c^H \ge k_c^C$, $k_c^H < \frac{D}{R_c}$ may not always hold when $k_c^C < \frac{D}{R_c}$.

3.0.1 Different carboxysome peremability for HCO₃

An existing hypothesis in the CCM literature is that the carboxysome has differential permeability and is more permeable to HCO_3^- and less permeable to CO_2 . Intuitively this would allow more HCO_3^- into the carboxysome and trap more CO_2 , thereby accumulating more inorganic carbon in the form of CO_2 . We use our model to test weather differential carboxysome permeability enables higher carboxysomal CO_2 concentration for the same level of HCO_3^- transport. In the following figure we show the k_c vs j_c phase space where we have plotted the carboxysome permeability to CO_2 , k_c^C , on the y-axis. We plot different ratios (1, 10, 100, 1000) between k_c^C and the carboxysome permeability to HCO_3^- , $k_c^H = \mathrm{ratio} \times k_c^C$.

Examining Figure XX, we see that making the carboxysome more permeable to HCO_3^- does not improve the function of the CCM as drastically as on might assume. The "turn on" of CO_2 accumulation with decreasing permeability is unaffected by changes to k_c^H , and depends only on the permeability CO_2 , k_c^C . The "turn off" of accumulation for lower carboxysome permeabilities is greatly effected by the permeability of the carboxysome to HCO_3^- , k_c^H . These two effects are exactly what we previously discussed as defining the carboxysome permeability optimum.

As we start at the top of the y-axis and decrease the carboxysome permeability the following occurs: At high permeability not enough CO_2 is trapped, but HCO_3^- enters readily. As we moved to lower permeabilities CO_2 begins to be trapped, but there is a window where HCO_3^- still enters enough to supply the system. Eventually the carboxysome begins to restrict HCO_3^- entry. If the carboxysome is more permeable to HCO_3^- than to CO_2 then the window where CO_2 trapping is effective without restricting HCO_3^- entry broadens. The width of this window (on the y-axis) will also depend strongly on how much of the CO_2 is being fixed.

The "turn off" of the optimum, caused by not allowing enough HCO $_3^-$ into the carboxysome, does slightly increase the amount of transport required to saturate RuBisCO at the carboxysome optimum. The reduction in transport required, and therefore CCM cost is around 5% when going from a k_c^C to k_c^H ratio of 1 to 1000.

4 Effect of membrane permeability to H₂CO₃

The sensitivity of the cost to our assumption for the value of the membrane permeability to H_2CO_3 can be determined from the equation derived previously. If we are in a regime where CO_2 leakage is negligible, as is the regime presented in the main paper, the second line holds.

$$j_{c}H_{out} = \left(\frac{R_{c}^{3}}{3R_{b}^{2}}V_{max} - k_{m}^{C}(C_{out} - C_{cytosol}) - k_{m}^{eff}(pH_{out})H_{out} + k_{m}^{eff}(pH_{in})H_{cytosol}\right)$$
$$= \left(\frac{R_{c}^{3}}{3R_{b}^{2}}V_{max} - k_{m}^{eff}(pH_{out})H_{out} + k_{m}^{eff}(pH_{in})H_{cytosol}\right)$$
(22)

In this equation $k_m^{eff}=k_m^{H_2CO_3}\times 10^{(pK_1-pH)}$. Therefore, the leakage of H_{total} out of the cell will depend linearly on what we assume for $k_m^{H_2CO_3}$. This linear dependence is past on to the active HCO_3^- transport required to replenish the leaked inorganic carbon, and therefore onto the CCM cost. In Figure XX you can see this effect, where going from $k_m^{H_2CO_3}=3\times 10^{-2}$ to $k_m^{H_2CO_3}=3\times 10^{-3}$ (an order of magnitude change), decreases the active HCO_3^- transport needed by an order of magnitude. Decreasing to $k_m^{H_2CO_3}=3\times 10^{-4}$ is a little less than an order of magnitude, indicating that the linear dependence breaks down and CO_2 leakage would become important for that value. There is also an order of magnitude change in the optimal carboxysome permeability from 10^{-4} to 10^{-5} across the 2 order of magnitude change in $k_m^{H_2CO_3}$ we are checking.

5 Selection and effect of cytosolic HCO_3^- pool size

The HCO₃⁻ cytosolic pool we assume in our cost calculation has a large effect on the absolute values for the cost calculation. The dependence of HCO₃⁻ transport required to support a given internal cytosolic pool can also be seen in the equation in the previous section.

In Figure XX the active HCO_3^- transport and carboxysome permeability values required to achieve a particular cytosolic pool are shown. For the Ru-BisCO half-max values assumed in the main text $K_m = 276 \ \mu M$ at internal pH 8, internal HCO_3^- cytosolic pools between 20 and 50 mM are required to saturated RuBisCO. For lower K_m values, lower cytosolic pools would be required. Additionally, as the K_m values are pH dependent, the internal pH of the cell will effect when saturation takes place.

It has recently been suggested that cytosolic HCO_3^- pools of around 5-10 mM can saturate RuBisCO. As was discussed in Whitehead et al., this is only possible with our given understanding of the CCM mechanism if the pH in the carboxysome is lower than the rest of the cell, or if the carbonic anhydrase does not act to bring CO_2 and HCO_3^- into equilibrium. Either of these possibilities seems physically questionable given out current understanding of the

diffusion rate of protons and the mechanism of carbonic anhydrase – its speed is considered linked to its lack of directionality.

To identify when facilitated uptake starts, we can find for what CO_2 concentration in the carboxysome the flux at the cell membrane is zero, or when $C_{cytosol} = C_{out}$.

 $CO_2 \text{ flux} = k_m^C (C_{cytosol}(R_b) - C_{out}).$ (23)

We do not know enough about the $CO_2 \to HCO_3^-$ mechanism to estimate a cost in the way we have done for HCO_3^- uptake. Therefore we cannot asses the effect of conversion on the cost.