Math 395: Homework 2 Name: Avinash Iyer

Due: 09/12/2024

Collaborators: Noah Smith, Gianluca Crescenzo, Carly Venenciano, Timothy Rainone

Problem 11

Problem. Let $T \in \operatorname{Hom}_{\mathbb{F}}(P_7(\mathbb{F}), P_7(\mathbb{F}))$ be defined by T(f(x)) = f'(x), where f'(x) denotes the usual derivative of a polynomial $f(x) \in P_7(\mathbb{F})$. For each of the fields below, determine a basis for the image and kernel of T:

- (a) $\mathbb{F} = \mathbb{R}$
- (b) $\mathbb{F} = \mathbb{F}_3$.

Solution.

(a) For $f(x) \in P_7(\mathbb{R})$, we have

$$f(x) = a_0 + a_1x + \cdots + a_7x^7,$$

where $a_i \in \mathbb{R}$ for each i from 1 through 7. In particular,

$$T(f(x)) = a_1 + 2a_2x + \cdots + 7a_7x^6,$$

and since $a_i \in \mathbb{R}$ for each i, so too is ia_i . For any $p(x) \in P_6(\mathbb{R})$, with $p(x) = p_0 + p_1x + \cdots + p_6x^6$, we can find $q(x) \in P_7(\mathbb{R})$ with

$$q(x) = q_0 + p_0 x + \frac{p_1}{2} x^2 + \dots + \frac{p_5}{6} x^6 + \frac{p_6}{7} x^7$$

with $q_0 \in \mathbb{R}$ being arbitrary, and

$$T(q(x)) = p_0 + p_1 x + \cdots + p_6 x^6.$$

Thus, im (T) = $P_6(\mathbb{R})$. The basis for im (T) is the basis for $P_6(\mathbb{R})$, which is $\{1, x, x^2, \dots, x^6\}$.

We know that if $f(x) \in \mathbb{R}$, then T(f(x)) = 0, meaning ker $(T) = \mathbb{R}$. Thus, a basis for ker (T) is $\{1\}$.

(b) For $f(x) \in P_7(\mathbb{F}_3)$, we have

$$f(x) = a_0 + a_1x + \cdots + a_5x^5 + a_6x^6 + a_7x^7$$

where $a_0, a_1, \ldots, a_6, a_7 \in \mathbb{F}_3$. In particular, we can see that

$$T(f(x)) = a_1 + 2a_2x + 3a_3x^2 + \dots + 5a_5x^4 + 6a_6x^5 + 7a_7x^6.$$

Since we are working in \mathbb{F}^3 , in particular, it is the case that $3a_3 \equiv 0a_3 = 0$, and similarly with $6a_6$. Thus, we have

$$T(f(x)) = a_1 + 2a_2x + 4a_4x^3 + 5a_5x^4 + 7a_7x^6.$$

Thus, im (T) must be of this form, meaning that the set $\{1, x, x^3, x^4, x^6\}$ is a basis for the image of T.

Similarly, since all polynomials of the form $f(x) = a + bx^3 + cx^6$ with $a, b, c \in \mathbb{F}_3$ are mapped to 0 under T, it is the case that the set $\{1, x^3, x^6\}$ is a basis for ker (T).

Problem 12

Problem. Let $T \in \text{Hom}_{\mathbb{F}}(V, \mathbb{F})$. Prove that if $v \in V$ is not in $\ker(T)$, then

$$V = \ker(T) \oplus \{cv \mid c \in \mathbb{F}\}.$$

Solution. Since $T(v) \neq 0$, there exists $(T(v))^{-1} \in \mathbb{F}$. Let $w \in V$. Then,

$$\mathsf{T}(w) = \left(\mathsf{T}(w) \left(\mathsf{T}(v)\right)^{-1}\right) \mathsf{T}(v).$$

We let $c = T(w) (T(v))^{-1}$. We have

$$T(w) = cT(v)$$
$$= T(cv),$$

meaning

$$T(w - cv) = 0$$
.

so $w - cv \in \text{ker}(T)$, or $w \in [cv]_{\sim}$, where \sim is the equivalence relation defining V/ker(T).

Thus, we have $w \in \ker(T) + \{cv \mid c \in \mathbb{F}\}$, implying that $V \subseteq \ker(T) + \{cv \mid c \in \mathbb{F}\}$, so $V = \ker(T) + \{cv \mid c \in \mathbb{F}\}$.

For $k \in ker(T)$, suppose

$$cv + k = 0$$
.

Then,

$$T(cv + k) = 0_V$$

$$cT(v) + T(k) = 0$$

$$cT(v) = 0.$$

Since $T(v) \neq 0$ by the definition of v, it must be the case that c = 0, meaning $cv = 0_V$. Thus, it is the case that ker(T) and $\{cv \mid c \in \mathbb{F}\}$ are independent subspaces, meaning

$$V = \ker(T) \oplus \{cv \mid c \in \mathbb{F}\}.$$

Problem 18

Problem. Let V be a \mathbb{F} -vector space of dimension n. Let $T \in \operatorname{Hom}_{\mathbb{F}}(V, V)$ such that $T^2 = 0$. Prove that the image of T is contained in the kernel of T, and hence the dimension of the image of T is at most n/2.

Solution. Suppose $w \in \text{im}(T)$. Then, there exists $v \in V$ such that T(v) = w. In particular, this means that

$$T(w) = T(T(v))$$
$$= T^{2}(v)$$
$$= 0.$$

meaning $T(w) \in \ker(T)$. Thus, $w \in \ker(T)$, implying that $\operatorname{im}(T) \subseteq \ker(T)$. In particular, since $\mathfrak{n} = \dim_{\mathbb{F}}(V) = \dim_{\mathbb{F}}(\operatorname{im}(T)) + \dim_{\mathbb{F}}(\ker(T))$, and $\dim_{\mathbb{F}}(\operatorname{im}(T)) \leq \dim_{\mathbb{F}}(\ker(T))$, it is the case that $\dim_{\mathbb{F}}(\operatorname{im}(T)) \leq \mathfrak{n}/2$.

Problem 19

Problem. Let W be a subspace of a finite-dimensional vector space V. Let $T \in \operatorname{Hom}_{\mathbb{F}}(V,V)$ be such that $T(W) \subseteq W$. Show that T induces a linear transformation $\overline{T} \in \operatorname{Hom}_{\mathbb{F}}(V/W,V/W)$. Prove that T is nonsingular (i.e., injective) on V if and only if T restricted to W and \overline{T} on V/W are both nonsingular.

Solution. Let $\pi: V \to V/W$ be the projection map, $\pi(v) = v + W$. For $T \in \operatorname{Hom}_{\mathbb{F}}(V, V)$ with $T(W) \subseteq W$, it is the case that $\pi \circ T(W) = 0 + W$. We define $\overline{T}: V/W \to V/W$ by taking

$$\overline{T}(v+W) = T(v) + W.$$

We will show that \overline{T} is well-defined and that $\pi \circ T = \overline{T} \circ \pi$. Suppose $v_1 + W = v_2 + W$. Then, for some $w \in W$, $v_1 = v_2 + w$. Therefore,

$$\overline{T}(v_1 + W) = \overline{T}(v_2 + w + W)$$

$$= T(v_2 + w) + W$$

$$= T(v_2) + T(w) + W$$

$$= T(v_2) + W,$$

where the property that $T(W) \subseteq W$ was used in the final step.

We will now show that \overline{T} is a linear map. Let $\alpha \in \mathbb{F}$, $v_1 + W$, $v_2 + W \in V/W$. Then,

$$\overline{T}((v_1 + W) + \alpha(v_2 + W)) = \overline{T}((v_1 + \alpha v_2) + W)$$
$$= T(v_1 + \alpha v_2) + W$$

$$= T (v_1) + \alpha T (v_2) + W$$

= $(T (v_1) + W) + \alpha (T (v_2) + W)$
= $\overline{T} (v_1 + W) + \alpha \overline{T} (v_2 + W)$.

Finally, we can see that for $v \in V$

$$\pi \circ T (v) = \pi (T(v))$$

$$= T (v) + W$$

$$= \overline{T} (v + W)$$

$$= \overline{T} (\pi (v)).$$

Thus, we can see that the following diagram commutes.

$$\begin{array}{ccc}
V & \xrightarrow{T} & V \\
\downarrow^{\pi} & \downarrow^{\pi} \\
V/W & \xrightarrow{\overline{T}} & V/W
\end{array}$$

Suppose T is injective. Then, by inclusion, $T|_{W}$ is injective. Let $v + W \in \ker(\overline{T})$. Then,

$$\overline{T}(v + W) = 0 + W$$
$$= T(v) + W,$$

Thus, we have $T(v) \in W$. Since V is finite-dimensional, and T is injective, then T is bijective, meaning T(W) = W (as, by assumption, $T(W) \subseteq W$). Thus, $v \in W$, meaning v + W = 0 + W, so $\ker\left(\overline{T}\right) = 0 + W$, meaning \overline{T} is injective.

Suppose $\ker\left(\overline{T}\right) = 0 + W$ and $\ker\left(T\big|_{W}\right) = 0$. Let $v \in \ker(T)$. Then, T(v) = 0. Thus,

$$\pi(\mathsf{T}(v)) = 0 + W$$
$$= \overline{\mathsf{T}}(\pi(v)),$$

implying that $\pi(v) = 0 + W$, so $v \in W$. So, $T(v) = T|_{W}(v) = 0$, meaning v = 0.