

Machine Learning

Clustering

Unsupervised learning introduction

Supervised learning

Training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$

Unsupervised learning

Training set: $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$

Applications of clustering

Market segmentation

Organize computing clusters

Astronomical data analysis

Machine Learning

Clustering

K-means algorithm

Input:

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$ <

$$x^{(i)} \in \mathbb{R}^n$$
 (drop $x_0 = 1$ convention)

μ, μ, × ×

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$ Repeat {

```
Repeat {
for i=1 to m assign each point to the closest centroid c^{(i)} := \text{index (from 1 to } K \text{) of cluster centroid}
closest to x^{(i)} \qquad \text{with } ||x|| - ||x|||
\text{for } k = 1 \text{ to } K
\Rightarrow \mu_k := \text{average (mean) of points assigned to cluster } k
x = \frac{1}{4} \left[ x^{(i)} + x^{(i)} + x^{(i)} + x^{(i)} \right] \in \mathbb{R}^n
```

K-means for non-separated clusters

Machine Learning

Clustering Optimization objective

K-means optimization objective

$$\Rightarrow c^{(i)}$$
 = index of cluster (1,2,..., K) to which example $x^{(i)}$ is currently assigned $\Rightarrow \mu_k = \text{cluster centroid } k$ ($\mu_k \in \mathbb{R}^n$)

$$\rightarrow \mu_k$$
 = cluster centroid k ($\mu_k \in \mathbb{R}^n$)

$$\frac{\mu_{c^{(i)}}}{\mu_{c^{(i)}}} = \text{cluster centroid of cluster to which example } x^{(i)} \text{ has been assigned}$$

Optimization objective:

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n cluster essignment step (iii) unt (iii) contained (holding \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n Repeat {
                   c^{(i)} := index (from 1 to K ) of cluster centroid closest to x^{(i)}
            for k = 1 to K
                    \mu_k := average (mean) of points assigned to cluster k
```


Machine Learning

Clustering Random initialization

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
       for i = 1 to m
           c^{(i)} := \mathsf{index} (from 1 to K ) of cluster centroid
                  closest to x^{(i)}
       for k = 1 to K
           \mu_k := average (mean) of points assigned to cluster k
```

Random initialization

 ${\bf Should\ have}\ K < m$

Randomly pick \underline{K} training examples.

Set μ_1, \dots, μ_K equal to these K examples. $\mu_i = \chi^{(i)}$

$$\mu_{s} = \chi_{(s)}$$

$$\mu_{s} = \chi_{(s)}$$

Random initialization

```
For i = 1 to 100 {
```

```
Randomly initialize K-means. Run K-means. Get c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_K. Compute cost function (distortion) J(c^{(1)},\dots,c^{(m)},\mu_1,\dots,\mu_K) }
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Machine Learning

Clustering

Choosing the number of clusters

What is the right value of K?

Choosing the value of K

Elbow method:

Choosing the value of K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

