L'esperimento di Franck ed Hertz

18 Febbraio 2016

Indice

• L'esperienza

- Metodo sperimentale
- Evidenze
- Interpretazione in termine della teoria di Bohr
- Verifiche spettroscopiche

Misura in laboratorio

- Apparato sperimentale
- Verifiche qualitative
- Acquisizione dati ed analisi
- Effetti sistematici e valutazione errori

Generalità

- Significato storico
 - dimostrazione chiave del comportamento quantistico degli atomi secondo il modello di Bohr
 - metodo non ottico (a differenza dei precedenti)
 - risultati pubblicati nel 1914 (e premiati con il Nobel nel 1925)
- In cosa consiste l'esperimento
 - urti anelastici di elettroni con atomi di gas
 - → perdita di energia degli elettroni incidenti ed eccitazione degli atomi
 - per effetto dello spettro discreto dei livelli atomici, l'energia trasferita in questi urti deve essere pari all'energia minima di eccitazione (ovvero alla differenza di energia tra due livelli)
 - igordrightarrow solo elettroni con energia cinetica non inferiore a questa possono trasferire una parte ΔE della loro energia nella collisione $\frac{1}{2}mv^2 \geq \Delta E = E_n E_{n-1}$
 - equivalentemente, elettroni di energia inferiore possono dar luogo a soli urti elastici con gli atomi → perdita di energia trascurabile

L'apparato sperimentale

- Uso di un tetrodo riempito di gas (Hg o Ne) a bassa pressione (~ 10 mBar)
- Elettroni emessi da un catodo per effetto termoionico, flusso controllato dalla tensione ai capi del filamento (V_F) e dalla tensione di griglia $G_1(V_G)$
- L'energia acquisita dall'elettrone dipende dalla tensione di accelerazione (V_A) tra le due griglie
- Tra G_2 e l' anodo A si stabilisce una piccola d.d.p. frenante (V_C) di modo che gli elettroni soggetti a collisioni inelastiche (con perdita totale dell'energia) non raggiungano l'anodo

Gli elettroni raccolti sull' anodo vengono contati misurando la corrente in funzione della tensione acceleratrice

Misura dell'eccitazione su Hg

Evidenza di uno spettro discreto con energia di eccitazione minima pari a $\Delta E = 4.89 \text{ eV}$ (corrispondente alla transizione $6^3P_1 \rightarrow 6^1S_0$)

Interpretazione (1)

urto anelastico

2 urti anelastici

10

15

Regime "elastico"

- Finché $V_A < \Delta E/e$, la corrente anodica cresce con una legge di potenza simile a quella ($I \propto V_A^{3/2}$) di un diodo a vuoto in regime di carica spaziale

• 1^a eccitazione

- La corrente diminuisce allorché gli
elettroni raggiungono un'energia
cinetica sufficiente ad eccitare gli
atomi del gas → primo minimo dovuto agli elettroni
voltage / V
accelerati fino all'energia di eccitazione a ridosso di G₂

- Aumentando ulteriormente V_A , la zona di eccitazione nel gas si sposta gradualmente verso G_1 → incremento dello spazio per gli elettroni per guadagnare energia cinetica e superare la barriera di potenziale G_2 -A
 - → la corrente riprende a crescere

Interpretazione (2)

Dumping

Un ulteriore progressivo
incremento di tensione determina
un aumento della corrente anodica
finché la tensione di accelerazione
non è pari a 2ΔE/e, allorché essa
presenta una nuova discontinuità

→ 2^a eccitazione

 dovuta agli elettroni che acquistano in prossimità di G₂ sufficiente energia cinetica per subire un secondo urto elastico

• • •

→ n-esima eccitazione

Verifica spettroscopica

 Per confermare l'ipotesi, Franck ed Hertz verificarono che gli atomi eccitati dagli urti anelastici con gli elettroni si diseccitassero emettendo fotoni di lunghezza d'onda corrispondente al salto di livello

$$\lambda = \frac{\hbar}{\Delta E} = \frac{1240 \,\text{eV nm}}{4.9 \,\text{eV}} = 254 \,\text{nm}$$

spettro di "calor rosso" filamento

Effetti sistematici

• Separazione massimi corrente

- e`apprezzabile (ordine ~ 1%) un incremento (quasi lineare) di ΔE in funzione dell'ordine n e della densità del gas
- dovuto al fatto che, raggiunta l'energia di eccitazione, l'elettrone percorre in media un tratto pari al libero cammino medio λ prima di urtare un atomo, così acquistando un'ulteriore energia cinetica δ₁
 - \rightarrow possibilità di eccitare stati di energia più elevata $E_1 = E_A + \delta_1$
- per effetto del maggior campo elettrico, gli elettroni soggetti a 2 urti guadagnano una maggiore energia $δ_2$ (circa doppia di $δ_1$) lungo lo stesso cammino medio
- in generale, se $\delta_n \ll E_A$, risulta

$$\delta_n = n \frac{\lambda}{L} E_A \Rightarrow \Delta E_n = E_n - E_{n-1} = \left[1 + \frac{\lambda}{L} (2n - 1)\right] E_A$$

(più il gas è rarefatto, più l'effetto è visibile)

- → procedura più corretta:
 - estrarre le tensioni corrispondenti ai massimi di corrente
 - per ogni coppia di max. contigui calcolare ΔE
 - interpolare ΔE_n vs. n a partire da n=2
 - estrapolare a n=0.5 per ottenere E_A

La nostra esperienza

- Obiettivo
 - Riproposizione esperimento F&H in Neon
- Materiale a disposizione
 - tetrodo a neon mod. ELWE U8482230
 - sistema integrato di alimentazione e convertitore corrente-tensione
 - oscillografo

Eccitazione di livelli in Ne

svantaggi (rispetto al Hg)

- livelli di eccitazione più elevati ($E_{A1} = 16.7 \,\text{eV}, E_{A2} = 18.6 \,\text{eV}$)
- a parità di tensione di accelerazione minor numero di eccitazioni osservabili

vantaggi

- gas a temperatura ambiente
 - → riscaldamento non necessario
- minore dipendenza dalla temperatura $_{15.0~eV}$ dei parametri del gas (tipo $\lambda)$
- possibile osservazione della fluorescenza nelle zone di eccitazione da 540 a 744 nm (color arancio) dovuta alla transizione o ev spontanea dai livelli E_{A2} ad E_{A1}

Metodo operativo (1)

Accensione

- Assicurarsi prima che tutte le tensioni siano spente, quindi accendere l'alimentatore
- regolare la tensione V_F fino ad 8V circa ed attendere che il filamento si scaldi (~ alla temperatura del calor rosso)
- con selezione della modalità manuale, portare V_A a circa 70 V
- Regolare la tensione V_G finché non si osservi la luce di fluorescenza

• Osservazioni qualitative

- Osservare la struttura della fluorescenza variando con continuità la tensione di accelerazione a partire da o
- Regolare la tensione di frenamento fino ad ottenere la massima nitidezza delle bande di fluorescenza
- Riportare i valori di V_A corrispondenti alla comparsa delle prime 3 bande di fluorescenza

Metodo operativo (2)

Osservazioni qualitative(2)

- Selezionare l'opzione di generazione della tensione di rampa
- con l'oscillografo in modalità XY, osservare la curva correntetensione
- Regolare il guadagno dell'amplificatore in modo da non saturarne l'uscita
- Osservare la variazione della curva I_C - V_A al variare della tensione di frenamento (in particolare, cosa succede per V_C = 0?)
- Regolare infine V_C cosi da avere I_C = o in corrispondenza dei minimi

Osservazioni quantitative

- Disattivare la modalita` XY dell'oscillografo e, con trigger su VA, acquisire le due tracce
- Confrontare i picchi di corrente con i valori di tensione precedentemente annotati
- Calcolare le differenze di picchi contigui ed utilizzare la procedura descritta per ottenere $E_{\scriptscriptstyle A}$ e λ