Partition of Unity

(2019.04.10)

Lemma 1.

A 가 \mathbb{R}^n 에서의 열린집합이면 다음 성질을 만족하는 compact rectifiable subsets of A의 sequence $\{C_1, C_2, \cdots\}$ 가 존재한다.

1.
$$\bigcup C_i = A$$

2. $C_i \subset \operatorname{int}(C_{i+1})$

proof

Let $B=\mathbb{R}^n-A$ and $D_N=\{x\in\mathbb{R}^n:d(x,B)\geq 1/N \text{ and } d(x,0)\leq N\}$. Then D_N is a compact set in \mathbb{R}^n , $D_N\subset D_{N+1}$, and $\bigcup D_N$ covers A. 그런데 D_N 이 rectifiable이라는 보장이 없다.

각각의 $x \in D_N$ 에 대해 x를 center에 두고 $\operatorname{int}(D_{N+1})$ 에 포함되는 cube $C_{N,x}$ 를 모으자. D_N 은 compact set 이므로 finitely many $C_{N,x}$'s cover D_N . 이 finitely many $C_{N,x}$ 의 union을 C_N 이라 하면, $C_N \subset C_{N_1}$ 이며 각각의 C_N 은 finite union of cubes 이므로 rectifiable 이다.

 $D_N\subset \mathrm{int}(C_N)\subset C_N\subset \mathrm{int}(D_{N+1})$ for all $N\in\mathbb{Z}_+$ 이므로 $\bigcup C_N=A$. \Box .

Lemma 2.

Let Q be a rectangle in \mathbb{R}^n . 이면 $\mathrm{int}(Q)$ 에서 positive 이고 \mathbb{R}^n-Q 에서 0인 함수 $\phi:\mathbb{R}^n\to\mathbb{R}$ 이 존재한다.

Hint of proof

Define
$$f:\mathbb{R} o\mathbb{R}$$
 as $f(x)=egin{cases} e^{1/x} & ext{ if } x>0, \ 0 & ext{ otherwise.} \end{cases}$

Lemma 3.

 \mathcal{A} 가 \mathbb{R}^n 에서의 open sets의 collection 이며 $A=\bigcup \mathcal{A}$ 이면 다음 성질을 만족하는 countable collection $\{Q_1,\,Q_2,\ldots\}$ of rectangles contained in A 가 존재한다.

- 1. $\{\operatorname{int}(Q_1), \operatorname{int}(Q_2), \ldots\}$ covers A.
- 2. Each Q_i is contained in an element of \mathcal{A} .
- 3. Each point of A has a neighborhood that intersects only finitely many of the sets Q_i .

마지막 조건을 local finiteness condition 이라 한다.

Lemma 1에서 보았듯이 collection of compact subsets of A, $\{D_1, D_2, \ldots\}$ such that $D_i \subset \operatorname{int}(D_{i+1})$ 가 존재한다.

 $B_i = D_i - \operatorname{int}(D_{i-1})$ 이라 하자. B_i 는 compact set in \mathbb{R}^n 이다. 그리고 $B_i \cap D_{i-2} = \emptyset$ 이다. Lemma 1의 증명에서 했듯이 $\forall x \in B_i$ 에 대해 x을 중심으로 하며 A에 포함되며 D_{i-2} 와 disjoint한 closed cubes 의 collection을 생각하자. 이 cube를 A의 한 elements에 포함되도록 작게 잡을 수 있으며 그래야 한다. B_i 는 compact set 이므로 finite subcollections of interior of the collections로 B_i 를 cover 할 수 있다. 이 대 원래의 closed cubes의 collection을 \mathcal{C}_i 라 하자. 즉 $\mathcal{C}_i = \{Q_1^i, Q_2^i, \ldots, Q_k^i\}$ 이며 $B_i \subset \bigcup_k \operatorname{int}(Q_k^i)$ 이다. $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup \cdots$ 라 하자. \mathcal{C} 는 countable collection of cubes 이다.

 \mathcal{C} 가 우리가 구하고자 하는 $\{Q_1,Q_2,\ldots\}$ 이다. \mathcal{C} 가 조건 1, 2를 만족하는 것은 쉽게 보일 수 있다. 앞서 \mathcal{C}_i 를 구성할 때 \mathcal{C}_i 에 포함되는 각각의 cube가 \mathcal{A} 의 어떤 element의 subset이 되도록 했다(조건 2). $x\in A$ 이면 $x\in \mathrm{int}(D_i)$ 인 가 장 작은 i값이 존재한다. 그렇다면 $x\in B_i=D_i-\mathrm{int}(D_{i-1})$ 이므로 x는 D_i 의 open cover인 \mathcal{C}_i 의 어떤 원소인 cube의 interior에 포함된다. 따라서 $A\subset \{\mathrm{int}(Q_1),\mathrm{int}(Q_2),\ldots\}$ (조건 1).

이제 local finiteness condition을 만족함을 보이자. $x \in A$ 이면 어떤 $x \in D_i$ for some i. 이다. \mathcal{C}_i 를 구성할때를 생각해 보면 \mathcal{C}_j for $j \geq i+2$ 에 포함되는 cube는 D_i 와 disjoint 하다. 따라서 $\operatorname{int}(D_i)$ 는 기껏해야 $\mathcal{C}_1,\ldots,\mathcal{C}_{i+1}$ 과만 intersect 할 수 있다(조건 3). \square .

Definition

 $\phi: \mathbb{R}^n \to \mathbb{R}$ 일 때 $\{x \in \mathbb{R}^n : \phi(x) \neq 0\}$ 의 closure를 **support** of ϕ 라 한다.

Theorem 4. (Existence of a partition of unity)

 \mathcal{A} 가 \mathbb{R}^n 에서의 열린 집합의 collection이고 $A=\bigcup \mathcal{A}$ 일 때 1 ~ 7을 만족하는 sequence $\phi_1,\,\phi_2,\ldots$ of continuous functions $\phi_i:\mathbb{R}^n\to\mathbb{R}$ 이 존재한다.

- 1. $\phi_i(x) \geq 0$ for $\forall x \in A$.
- 2. $S_i = \text{support } \phi_i$ 일 때 $S_i \subset A$.
- 3. $x \in A$ 이면 finitely many S_i 와 intersect 하는 x의 neighborhood가 존재한다.
- 4. $\sum_{i=1}^{\infty} \phi_i(x) = 1$ for each $x \in A$.
- 5. Each ϕ_i is C^{∞} class function.
- 6. Each S_i is compact.
- 7. Each S_i is contained in an element of A.

1.-4. 조건을 만족하는 $\{\phi_i\}$ 를 partition of unity on A 라 한다. 5.의 조건도 만족하면 partition of unity on A of class \mathbf{C}^{∞} 라 한다. 6.의 조건을 만족하면 have compact support 라 한다. 7.의 조건을 만족하면 dominated by the collection \mathcal{A} 라 한다.

proof

A와 A에 대해 Lemma 3의 $\{Q_1,\,Q_2,\ldots\}$ 를 생각하자. 각각의 Q_i 는 A의 어떤 elements의 compact subset이다. Lemma 2.로부터 각각의 Q_i 에 대해 $\operatorname{int}(Q_i)$ 에서는 positive 이고 밖에서는 0인 C^∞ class 함수 $\psi_i:\mathbb{R}^n\to\mathbb{R}$ 이 존재함을 알고 있다. 따라서 $\psi_i(x)\geq 0$ for $\forall x\in A$ 이며(조건 1) support $\psi_i=Q_i$ 이다(조건 2). 모든 $x\in A$ 는 finitely many Q_i 와 intersect 하는 neighborhood를 가진다(조건 3).

 $\phi_i(x)=\psi_i(x)/\sum_{i=1}^\infty \psi_i(x)$ 로 정의하면 $\{\phi_1,\phi_2,\ldots\}$ 는 조건 1, 4, 5를 만족한다. 조건 6, 7은 Lemma 3.로부터 쉽게 알 수 있다.

Lemma 5.

A 가 open in \mathbb{R}^n 이고 $f:A\to\mathbb{R}$ 이 연속이라 하자. f가 A의 compact subset C 밖에서 0이면 $\int_A f$ 와 $\int_C f$ 는 존재하며 서로 같다.

proof

C가 bounded이고 f가 연속이므로 $\int_C f$ 는 존재한다. $f_C: \mathbb{R}^n \to \mathbb{R}$ 을 $f_C = f$ if $x \in A$ and $f_C = 0$ otherwise 로 정의하자. Sequence of compact subset of A, $\{C_i\}$ 가 $\bigcup C_i = A$ and $C_i \subset \operatorname{int}(C_{i+1})$ 을 만족한다고 하자. 이런 sequence가 항상 존재함은 Lemma 1에서 보였다.

C는 compact set이며 $\{\operatorname{int}(C_i)\}$ 는 C의 open cover 이므로 finitely many $\{\operatorname{int}(C_i)\}$ 가 C를 cover 한다. 따라서 $C \subset \operatorname{int}(C_M)$ 인 $C_M \in \{C_i\}$ 가 존재하며 $\int_C f = \int_{C_N} f$ for all $N \geq M$. 따라서 $\int_A f = \int_C f$.

Theorem 6.

A 는 open in \mathbb{R}^n , $f:A \to \mathbb{R}$ 는 연속함수, $\{\phi_i\}$ 는 partition of unity on A having compact support 라 하자. 그렇다면 $\int_A f$ exists iff $\sum_{i=1}^\infty \left[\int_A \phi_i |f|\right]$ converges 이며 $\int_A f = \sum_{i=1}^\infty \left[\int_A \phi_i f\right]$ 이다.

proof

우선 f is non-negative on A일 때 성립함을 보이자.

D가 compact rectifiable subset of A라 하자. 모든 $x \in D$ 에 대해 finitely many S_i 와 intersect 하는 x의 neighborhood를 모으면 D를 cover 한다. D가 compact set 이므로 이중 finitely many neighborhood만으로 D를 cover 할 수 있다. 따라서 finitely many ϕ_i 만 D에서 nonzero 이다. 즉 어떤 $M \in \mathbb{Z}_+$ s. t. $\phi_i(x) = 0$ for all $x \in D$ and $i \geq M$. 그렇다면

$$f(x) = \sum_{i=1}^M \phi_i(x) f(x)$$

for $x \in D$.

$$\int_D f = \sum_{i=1}^M \left[\int_D \phi_i f
ight] \leq \sum_{i=1}^M \left[\int_{D \cup S_i} \phi_i f
ight] = \sum_{i=0}^M \int_A \left[\phi_i f
ight] \leq \sum_{i=1}^M \left[\int_A \phi_i f
ight].$$

따라서 $\sum_{i=1}^{M} \phi_i f$ 가 integrable over A 이면 f도 integrable over A 이다.