Due: 2022/3/12

Homework 4 - Typed

* If there is any problem,	please contact TA.
Student ID:	Email:

Problem 1. (50 points)

Name:

Given the definition of $pred\ n$ (predecessor of n):

$$pred = \lambda n.\lambda f.\lambda x.n \ (\lambda g.\lambda h.h \ (g \ f)) \ (\lambda u.x) \ (\lambda u.u)$$

Note that with such definition we don't have numbers less than zero. (Try pred 0 for example) Please define following terms using lambda calculus:

- 1. sub m n (subtraction)
- 2. iszero n
- 3. leq m n (m is less or equal than n)
- 4. equal m n
- 5. factorial n (You can try to define it using pair)

(You can directly use the definition in the slides and the last homework, like add, tru, etc.)

Solution.

- 1. subtraction: $\lambda xy.y \ pred \ x$
- 2. iszero: $\lambda x.x$ ($\lambda y.fls$) tru
- 3. leq: $\lambda xy.iszero(sub \ x \ y)$
- 4. equal: λxy and (leq x y) (leq y x)
- 5. $n! = \text{if } n \le 1 \text{ then } 1 \text{ else } n * (n-1)!$
 - (a) Use pair to define factorial

$$zz = pair \ 1 \ 1$$

 $ss = \lambda p.pair \ (multi \ (fst \ p) \ (snd \ p)) \ (add \ (snd \ p) \ 1)$
 $factorial = \lambda x.fst \ (x \ ss \ zz)$

pred can also be defined by pair!

(b) factorial: $(\lambda y.y\ y)\ (\lambda fn.(iszero\ n)\ 1\ (times\ n\ (f\ f\ (pred\ n))))$

Problem 2. (20 points) Prove the exchange lemma: If $\Gamma, x: t_1, y: t_2, \Gamma' \vdash e: t$, then $\Gamma, y: t_2, x: t_1, \Gamma' \vdash e: t$. (proof by induction on derivation of $\Gamma, x: t_1, y: t_2, \Gamma' \vdash e: t$)

Proof. By induction on derivation of $\Gamma, x: t_1, y: t_2, \Gamma' \vdash e: t$

1. $case \frac{x:t \in \Gamma}{\Gamma \vdash x:t}$

Need to prove: If $\Gamma, x: t_1, y: t_2, \Gamma' \vdash x_1: t$, then $\Gamma, y: t_2, x: t_1, \Gamma' \vdash x_1: t$.

- (1) $x_1: t \in \Gamma, x: t_1, y: t_2, \Gamma'$ (by assumption)
- (2) $x_1: t \in \Gamma, y: t_2, x: t_1, \Gamma'$ (by (1))
- (3) $\Gamma, y: t_2, x: t_1, \Gamma' \vdash x_1: t$. (by (2) and T-Var)
- 2. case $\frac{\Gamma \vdash true:bool}{\Gamma}$

Need to prove: If $\Gamma, x: t_1, y: t_2, \Gamma' \vdash true: t$, then $\Gamma, y: t_2, x: t_1, \Gamma' \vdash true: t$.

- (1) $\Gamma, y : t_2, x : t_1, \Gamma' \vdash true : t$. (by T-True)
- 3. case $\frac{}{\Gamma \vdash false:bool}$

Need to prove: If $\Gamma, x: t_1, y: t_2, \Gamma' \vdash false: t$, then $\Gamma, y: t_2, x: t_1, \Gamma' \vdash false: t$.

- (1) $\Gamma, y: t_2, x: t_1, \Gamma' \vdash false: t$. (by T-False)
- 4. case $\frac{\Gamma \vdash e_1:bool \quad \Gamma \vdash e_2:t \quad \Gamma \vdash e_3:t}{\Gamma \vdash if \ e_1 \ then \ e_2 \ else \ e_3:t}$

Need to prove: If $\Gamma, x: t_1, y: t_2, \Gamma' \vdash if \ e_1 \ then \ e_2 \ else \ e_3: t$, then $\Gamma, y: t_2, x: t_1, \Gamma' \vdash if \ e_1 \ then \ e_2 \ else \ e_3: t$.

(1)

 $\Gamma, x: t_1, y: t_2, \Gamma' \vdash e_1: bool,$

 $\Gamma, x: t_1, y: t_2, \Gamma' \vdash e_2: t$

 $\Gamma, x: t_1, y: t_2, \Gamma' \vdash e_3: t$ (by assumption)

(2)

 $\Gamma, y: t_2, x: t_1, \Gamma' \vdash e_1: bool,$

 $\Gamma, y : t_2, x : t_1, \Gamma' \vdash e_2 : t$,

 $\Gamma, y : t_2, x : t_1, \Gamma' \vdash e_3 : t \text{ (by (1) and I.H.)}$

- (3) $\Gamma, y : t_2, x : t_1, \Gamma' \vdash if \ e_1 \ then \ e_2 \ else \ e_3 : t$. (by (2) and T-If)
- 5. case $\frac{\Gamma, x: t_1 \vdash e_2: t_2}{\Gamma \vdash \lambda x: t_1.e_2: t_1 \rightarrow t_2}$

Need to prove: If $\Gamma, x: t_3, y: t_4, \Gamma' \vdash \lambda x: t_1.e_2: t_1 \rightarrow t_2$, then $\Gamma, y: t_4, x: t_3, \Gamma' \vdash \lambda x: t_1.e_2: t_1 \rightarrow t_2$.

- (1) $\Gamma, x: t_3, y: t_4, \Gamma' \vdash e_2: t_2$ (by assumption)
- (2) $\Gamma, y: t_4, x: t_3, \Gamma' \vdash e_2: t_2$ (by (1) and I.H.)
- (3) $\Gamma, y: t_4, x: t_3, \Gamma' \vdash \lambda x: t_1.e_2: t_1 \to t_2.$ (by (2) and T-Abs)

6. case $\frac{\Gamma \vdash e_1:t_{11} \rightarrow t_{12} \quad \Gamma \vdash e_2:t_{11}}{\Gamma \vdash e_1 \quad e_2:t_{12}}$

Need to prove: If $\Gamma, x : t_1, y : t_2, \Gamma' \vdash e_1 \ e_2 : t_{12}$, then $\Gamma, y : t_2, x : t_1, \Gamma' \vdash e_1 \ e_2 : t_{12}$.

(1)

 $\Gamma, x: t_1, y: t_2, \Gamma' \vdash e_1: t_{11} \to t_{12},$

 $\Gamma, x: t_1, y: t_2, \Gamma' \vdash e_2: t_{11}$ (by assumption)

(2)

 $\Gamma, y: t_2, x: t_1, \Gamma' \vdash e_1: t_{11} \to t_{12},$

 $\Gamma, y: t_2, x: t_1, \Gamma' \vdash e_2: t_{11} \text{ (by (1) and I.H.)}$

(3) $\Gamma, y: t_2, x: t_1, \Gamma' \vdash e_1 \ e_2: t_{12}$. (by (2) and T-App)

Problem 3. (20 points) Prove the **weakening lemma**: If $\Gamma \vdash e : t$ then $\Gamma, x : t' \vdash e : t$ (provided x not in $Dom(\Gamma)$)

Proof. by induction on derivation of $\Gamma \vdash e : t$

1. $case \frac{x:t \in \Gamma}{\Gamma \vdash x:t}$

Need to prove: If $\Gamma \vdash x : t$ then $\Gamma, y : t' \vdash x : t$

$$(1)x: t \in \Gamma \qquad \qquad (by \ assumption)$$

$$(2)x: t \in \Gamma, y: t' \tag{by (1)}$$

$$(3)\Gamma, y: t' \vdash e: t$$
 (by (2) and $T - Var$)

2. case $\frac{}{\Gamma \vdash true:bool}$

Need to prove: If $\Gamma \vdash true : bool$ then $\Gamma, y : t' \vdash true : bool$

$$(1)\Gamma, x: t' \vdash true: bool$$
 $(T-True)$

3. case $\frac{}{\Gamma \vdash false:bool}$

Need to prove: If $\Gamma \vdash false:bool$ then $\Gamma, y: t' \vdash false:bool$

$$(1)\Gamma, x: t' \vdash false: bool$$
 $(T - False)$

4. case $\frac{\Gamma \vdash e_1:bool}{\Gamma \vdash if} \frac{\Gamma \vdash e_2:t}{e_1:then} \frac{\Gamma \vdash e_3:t}{e_2:t}$

Need to prove: If $\Gamma \vdash if \ e_1 \ then \ e_2 \ else \ e_3 : t \ then \ \Gamma, y : t' \vdash if \ e_1 \ then \ e_2 \ else \ e_3 : t$

$$(1)\Gamma \vdash e_1 : bool,$$

$$\Gamma \vdash e_2 : t$$
,

$$\Gamma \vdash e_3 : t$$
 (by assumption)

$$(2)\Gamma, y: t' \vdash e_1: bool,$$

$$\Gamma, y: t' \vdash e_2: t$$

$$\Gamma, y: t' \vdash e_3: t$$
 (by (1) and I.H.)

$$(3)\Gamma, y: t' \vdash if \ e_1 \ then \ e_2 \ else \ e_3: t$$
 (by (2) and $T - If$)

5. case
$$\frac{\Gamma, x:t_1 \vdash e_2:t_2}{\Gamma \vdash \lambda x:t_1.e_2:t_1 \rightarrow t_2}$$

Need to prove: If $\Gamma \vdash \lambda x : t_1.e_2 : t_1 \to t_2$ then $\Gamma, y : t' \vdash \lambda x : t_1.e_2 : t_1 \to t_2$

$$(1)\Gamma, x: t_1 \vdash e_2: t_2$$
 (by assumption)

$$(2)\Gamma, x: t_1, y: t' \vdash e_2: t_2$$
 (by (1) and I.H)

$$(3)\Gamma, y: t', x: t_1 \vdash e_2: t_2$$
 (by exchange lemma)

$$(4)\Gamma, y: t' \vdash \lambda x: t_1.e_2: t_1 \to t_2 \qquad (by \ T - Abs)$$

6. case $\frac{\Gamma \vdash e_1:t_{11} \rightarrow t_{12} \quad \Gamma \vdash e_2:t_{11}}{\Gamma \vdash e_1 \quad e_2:t_{12}}$

Need to prove: If $\Gamma \vdash e_1 \ e_2 : t_{12}$ then $\Gamma, y : t' \vdash e_1 \ e_2 : t_{12}$

$$(1)\Gamma \vdash e_1 : t_{11} \to t_{12},$$

$$\Gamma \vdash e_2 : t_{11} \qquad (by \ assumption)$$

$$(2)\Gamma, y: t' \vdash e_1: t_{11} \to t_{12},$$

$$\Gamma, y : t' \vdash e_2 : t_{11}$$
 (by (1) and I.H)

$$(3)\Gamma, y: t' \vdash e_1 \ e_2: t_{12}$$
 (by (2) and $T - App$)

Problem 4. (20 points)

Prove the substitution lemma: If $\Gamma, x : t' \vdash e : t$ and $\Gamma \vdash v : t'$ then $\Gamma \vdash e[v/x] : t$.

Proof. by induction on the derivation of $\Gamma \vdash e : t$

1. case $\frac{x:t\in\Gamma}{\Gamma\vdash x:t}$

Need to prove: If $\Gamma, x: t' \vdash y: t$, and $\Gamma \vdash v: t'$, then $\Gamma \vdash y[v/x]: t$.

If y == x:

$$(1)y[v/x] = v$$

$$(2)\Gamma \vdash y[v/x]:t$$
 (by (1) and assumption)

If $y \neq x$:

$$(1)y[v/x] = y$$

$$(2)\Gamma, x: t' \vdash y: t$$
 (by assumption)

$$(3)y: t \in \Gamma, x: t'$$
 (by inversion of $T - Var$)

$$(4)y:t\in\Gamma$$

$$(5)\Gamma \vdash y:t \qquad \qquad (by \ T - Var)$$

$$(6)\Gamma \vdash y[v/x]:t \qquad (by (1) and (5))$$

2. case $\frac{}{\Gamma \vdash true:bool}$

Need to prove: If $\Gamma, x : t' \vdash true : bool$, and $\Gamma \vdash v : t'$, then $\Gamma \vdash true[v/x] : bool$.

$$(1)\Gamma \vdash true[v/x]:bool \qquad \qquad (T-True)$$

3. case $\frac{}{\Gamma \vdash false:bool}$

Need to prove: If $\Gamma, x : t' \vdash false : bool$, and $\Gamma \vdash v : t'$, then $\Gamma \vdash false[v/x] : bool$.

$$(1)\Gamma \vdash false[v/x] : bool$$
 $(T - False)$

4. case $\frac{\Gamma \vdash e_1:bool \quad \Gamma \vdash e_2:t \quad \Gamma \vdash e_3:t}{\Gamma \vdash if \ e_1 \ then \ e_2 \ else \ e_3:t}$

Need to prove: If $\Gamma, x : t' \vdash if \ e_1 \ then \ e_2 \ else \ e_3 : t$, and $\Gamma \vdash v : t'$, then $\Gamma \vdash (if \ e_1 \ then \ e_2 \ else \ e_3)[v/x] : t$.

$$(1)\Gamma, x: t' \vdash e_1: bool,$$

 $\Gamma, x: t' \vdash e_2: t,$
 $\Gamma, x: t' \vdash e_3: t$ (by assumption)

$$\Gamma, x : t' \vdash e_3 : t \qquad (by \ assumption)$$

$$(2)\Gamma \vdash e_1[v/x] : bool,$$

$$\Gamma \vdash e_2[v/x] : t,$$

$$\Gamma \vdash e_3[v/x] : t \qquad (by \ (1) \ and \ I.H.)$$

$$(3)\Gamma \vdash (if \ e_1 \ then \ e_2 \ else \ e_3)[v/x] : t \qquad (by \ (2) \ and \ T - If)$$

5. case $\frac{\Gamma, x:t_1 \vdash e_2:t_2}{\Gamma \vdash \lambda x:t_1.e_2:t_1 \rightarrow t_2}$

Need to prove: If $\Gamma, y : t' \vdash \lambda x : t_1.e_2 : t_1 \to t_2$, and $\Gamma \vdash v : t'$, then $\Gamma \vdash (\lambda x : t_1.e_2)[v/y] : t_1 \to t_2$.

$$(1)\Gamma, y: t', x: t_1 \vdash e_2: t_2$$
 (by assumption)
$$(2)\Gamma, x: t_1, y: t' \vdash e_2: t_2$$
 (by exchange lemma)

$$(3)\Gamma \vdash v:t'$$
 (by assumption)

$$(4)\Gamma, x: t_1 \vdash v: t'$$
 (by (3) and weakening lemma)

$$(5)\Gamma, x: t_1 \vdash e_2[v/y]: t_2$$
 (by (2), (3) and I.H.)

$$(6)\Gamma \vdash (\lambda x : t_1.e_2)[v/y] : t_1 \to t_2 \qquad (by (5) and T - Abs)$$

6. case $\frac{\Gamma \vdash e_1:t_{11} \rightarrow t_{12}}{\Gamma \vdash e_1} \frac{\Gamma \vdash e_2:t_{11}}{e_2:t_{12}}$

 $\Gamma \vdash e_2[v/x] : t_{11}$

Need to prove: If $\Gamma, x : t' \vdash e_1 \ e_2 : t_{12}$, and $\Gamma \vdash v : t'$, then $\Gamma \vdash (e_1 \ e_2)[v/x] : t_{12}$.

$$(1)\Gamma, x: t' \vdash e_1: t_{11} \to t_{12},$$

$$\Gamma, x: t' \vdash e_2: t_{11} \qquad (by \ assumption)$$

$$(2)\Gamma \vdash v: t' \qquad (by \ assumption)$$

$$(2)\Gamma \vdash v : t' \qquad (by \ assumption)$$
$$(3)\Gamma \vdash e_1[v/x] : t_{11} \to t_{12},$$

$$(3)\Gamma \vdash (e_1 \ e_2)[v/x] : t_{12}$$
 (by (3) and $T - App$)

 $(by\ (1),(2)\ and\ I.H)$