```
FactorInteger \left[\left(\text{Zeta}\left[2, 25\right] - \frac{\pi^2}{6}\right)\right] // MatrixForm
```

FactorInteger $\left[\left(\text{Zeta}\left[4,\ 25\right] - \frac{\pi^4}{90}\right)\right]$ // MatrixForm

FactorInteger[(Zeta[6, 25] - Zeta[6])] // MatrixForm

$$\begin{pmatrix} -1 & 1 \\ 2 & -8 \\ 3 & -4 \\ 5 & -1 \\ 11 & -2 \\ 13 & -2 \\ 17 & -2 \\ 19 & -2 \\ 23 & -2 \\ 59 & 1 \\ 2237 & 1 \\ 1422157053067 & 1 \\ \end{pmatrix}$$

$$\begin{pmatrix} -1 & 1 \\ 2 & -16 \\ 3 & -8 \\ 5 & -4 \\ 7 & -3 \\ 11 & -4 \\ 13 & -4 \\ 17 & -4 \\ 19 & -4 \\ 23 & -4 \\ 67 & 1 \\ 6653 & 1 \\ 7821781867 & 1 \\ 118012336597 & 1 \\ 308824784503 & 1 \\ \end{pmatrix}$$

-1	1	
2	- 24	
3	- 12	ı
5	- 5	ı
7	- 6	ı
11	-6	ı
13	- 6	
17	-6	
19	-6	
23	-6	
63 241	1	
75 801 932 658 367 485 593 475 342 582 725 991 580 135 986 911 046 997	1	

Zeta[20]

$$\frac{174\,611\,\pi^{20}}{1\,531\,329\,465\,290\,625}$$

Zeta[s] = f(s) * π ^s, find f(s) and you have something

$$\pi^{\Lambda}s \, \text{\sim} \, [\, \left(\, \left\{ \, \mathbf{1} \right\} \, \left\{ \, \mathbf{x} \, \right\} \, \right) \, \, + \, \, 2 \, \, \mathbf{x} \, \star \, \left(\, \left[\, \sum_{b=-\infty}^{\infty} \, \left\{ \, \mathbf{1} \right\} \, \left\{ \, \left(\, \mathbf{x} \, {}^{\Lambda} \mathbf{2} \, + \, b \, {}^{\Lambda} \mathbf{2} \, \right) \, \right\} \right) \right] \, \, \,] \,] \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \, \,] \,] \, \,] \, \,] \, \,] \,] \, \,] \, \,] \,] \, \,] \,] \, \,] \,] \, \,] \,] \,] \, \,] \,] \, \,]$$