Linear Regression

Regression Analysis

- Statistical process for estimating the relationships among variables
- The predictor is a continuous variable
- Relationship between a dependent variable and one or more independent variables (or 'predictors')
- Can also be used to infer causal relationships between dependent and independent variables.

Predicting Continuous Value

What will be the stock price in future? Should I buy it now?

Start

Simple Regression:

$$y = b_0 + b_1 x$$

Only one Dependent
Only one Independent

Hrs Studied	Marks	
(X)	(Y)	
0	40	
2	52	
3	53	
4	55	
4	56	
5	72	
6	71	
6	88	
7	56	
7	74	
8	89	
9	67	
9	89	
5.38	66.31	
Mean		

X – Mean	Y – Mean		
(A)	(B)	A^2	A*B
-5.38	-26.31	28.99	141.66
-3.38	-14.31	11.46	48.43
-2.38	-13.31	5.69	31.73
-1.38	-11.31	1.92	15.66
-1.38	-10.31	1.92	14.27
-0.38	5.69	0.15	-2.19
0.62	4.69	0.38	2.89
0.62	21.69	0.38	13.35
1.62	-10.31	2.61	-16.65
1.62	7.69	2.61	12.43
2.62	22.69	6.84	59.35
3.62	0.69	13.07	2.50
3.62	22.69	13.07	82.04
		89.08	405.46
		S	um

$$y = b_0 + b_1 x$$

$$b_1 = \frac{\sum (X - \overline{X}) (Y - \overline{Y})}{\sum (X - \overline{X})^2}$$

Hrs Studied	Marks	
(X)	(Y)	
0	40	
2	52	
3	53	
4	55	
4	56	
5	72	
6	71	
6	88	
7	56	
7	74	
8	89	
9	67	
9	89	
5.38	66.31	
Mean		

$$y = b_0 + b_1 x$$
 $b_1 = 4.55$

$$b_1 = 4.55$$

$$b_0 = 41.8$$

Simple Linear
Regression – OLS
(Ordinary Least Square)
&
Error Terms

Ordinary Least Square

Minimum

$$\sum_{i=1}^{n} (yi - \hat{y}i)^2$$

Mean Absolute Error

$$MAE = \frac{1}{n} \sum_{i=0}^{n} |y_i - \hat{y}_i|$$

Mean absolute error (MAE) is a quantity used to measure how close forecasts or predictions are to the eventual outcomes.

Root Mean Squared Error

$$RMSE = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

- Very commonly used and makes for an excellent general purpose error metric for numerical predictions.
- Compared to the similar Mean Absolute Error, RMSE amplifies and severely punishes large errors.

Relative Absolute Error

RAE =
$$\frac{\sum_{i=1}^{n} |yi - \hat{y}i|}{\sum_{i=1}^{n} |yi - \bar{y}i|}$$

Simple Linear Regression – R Squared or Coefficient of Determination

Coefficient of Determination

How much (what %) of variation in Y is described by the variation in X?

R-Square With an Example

Hrs Studied	Marks
(X)	(Y)
0	40
3	52
3	53
4	55
4	56
5	72
6	71
6	88
7	56
7	74
8	89
9	67
9	89
5.38	66.31
Mean	

Y = 41.8 + 4.55X

Predicted Marks
Ϋ́
41.80
50.90
55.45
60.00
60.00
64.55
69.10
69.10
73.65
73.65
78.20
82.75
82.75

(Y – [–] Y)^2	^ _ (Y – Y)^2
692.22	600.74
204.78	237.47
177.16	117.94
127.92	39.82
106.30	39.82
32.38	3.10
22.00	7.78
470.46	7.78
106.30	53.88
59.14	53.88
514.84	141.37
0.48	270.27
514.84	270.27
3028.77	1844.12
SST	SSR

Coefficient of Determination

Sum of Squares Due to Regression

$$SSR = \sum_{i=1}^{n} (\hat{y}i - \bar{y}i)^2$$

Total Sum of Squares

$$SST = \sum_{i=1}^{n} (yi - \bar{yi})^2$$

R-Square With an Example

Hrs Studied	Marks	
(X)	(Y)	
0	40	
2	52	
3	53	
4	55	
4	56	
5	72	
6	71	
6	88	
7	56	
7	74	
8	89	
9	67	
9	89	
5.38	66.31	
Mean		

R = SSR/SST

= 1844.12/3028.77

= 0.60886

Higher the value → Variation in Y is explained by variation in X.

(Y - ⁻ Y)^2	^ _ (Y – Y)^2
692.22	600.74
204.78	237.47
177.16	117.94
127.92	39.82
106.30	39.82
32.38	3.10
22.00	7.78
470.46	7.78
106.30	53.88
59.14	53.88
514.84	141.37
0.48	270.27
514.84	270.27
3028.77	1844.12
SST	SSR

Multiple Linear Regression

Multiple Linear Regression

Simple Regression :

$$y = b_0 + b_1 x$$

Only one Dependent
Only one Independent

Multiple Linear Regression:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

Multiple Linear Regression

Hrs Studied	Hrs Slept	Marks
(X1)	(X2)	(Y)
0	8	40
2	8	52
3	7.5	53
4	7	55
4	9	56
5	8.5	72
6	9	71
6	7	88
7	6	56
7	7	74
8	9	89
9	6	67
9	9	89

Degrees of Freedom (n-p-1)

$$\overline{R}^2 = 1 - \frac{(1 - R^2) * (n - 1)}{n - p - 1}$$

R = Sample R-Squared

p = Number of independent variables

n = sample size or number of observations

Assumptions of Multiple Linear Regression

Relationship Among Variables

- Linear Relationship
- Multicollinearity
- No Auto-Correlation
- Endogeneity

Behaviour of Data

- Sample Size
- Normality
- Homoscedasticity

Multiple Linear Regression – Degree of Freedom

Degrees of Freedom in Statistics

The number of values in the final calculation of a statistic that are free to vary.

OR

The minimum number of independent coordinates that can specify the position of the system completely.

$$df = n - p - 1$$
Number of Observations

Number of variables

Degrees of Freedom in Statistics

Degrees of Freedom in Statistics (n - p - 1)

$$y = b_0 + b_1 x_1$$

Degrees of Freedom in Statistics (n - p - 1)

$$y = b_0 + b_1 x_1$$

$$df = 0 \rightarrow 1$$

$$R^2 = 1 \rightarrow 0.87$$

Degrees of Freedom in Statistics (n - p - 1)

$$\overline{R}^2 = 1 - \left[\frac{(1 - R^2) * (n - 1)}{n - p - 1} \right]$$

R = Sample R-Squared

p = Number of independent variables

n = sample size or number of observations

Lower value of Adjusted R-Squared

$$\overline{R}^2 = 1 - \frac{(1-R^2)*(n-1)}{(n-p-1)}$$

Increase in this term

Lower Denominator due to higher value of p.

If the R-Squared does not increase significantly.

$$R = Sample R - Squared$$

p = Number of independent variables

n = sample size or number of observations

N	р	R-Squared	Adjusted R-Squared
50	10	0.80	0.75
50	12	0.82	0.76
50	15	0.83	0.75
50	20	0.84	0.73

$$\overline{R}^2 = 1 - \frac{(1 - R^2) * (n - 1)}{n - p - 1}$$

Multiple Linear Regression – Assumptions

Assumptions of Multiple Linear Regression

Relationship Among Variables

- Linear Relationship
- No Multicollinearity
- No Auto-Correlation
- Endogeneity

Behaviour of Data

- Sample Size
- Normality
- Homoscedasticity

Linear Relationship

- Dependent and Independent Features have linear relationship
- Can be Positive or Negative correlation
- Can be checked using Pearson Correlation Coefficient as well as visualisation

Linear Relationship

No Multicollinearity

Statistically Correlated

- Strength of the correlation Coefficient of Correlation
- Direction of correlation Sign of the Coefficient

Pearson Correlation Coefficient
$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1) * \sigma_x * \sigma_y}$$

Correlation Coefficient Matrix

Age	Experience	Education Received	Salary
32	8	6	\$ 8,000
40	15	8	\$ 12,000
35	6	8	\$ 10,000

	Age	Experience	Education Received	Salary
Age	1	0.9	0.2	0.7
Experience	0.9	1	0.15	0.72
Education Received	0.2	0.15	1	0.85
Salary	0.7	0.72	0.85	1

Auto-Correlation

The value of one record for the same variable or feature is dependent on the value from the same column but of different record.

	X1	X2	Υ
\rightarrow	Value-11	Value-21	Y1
	Value-12	Value-22	Y2
	Value-13	Value-23	Y3

Auto-Correlation

Measure of Autocorrelation

ACF,
$$\rho = \frac{\sum_{t=k+1}^{T} (x_t - \overline{x}) (x_{t-k} - \overline{x})}{\sum_{t=1}^{T} (x_t - \overline{x})^2}$$

Number of time Units or Lag

Autocorrelation for lag of 1.

Autocorrelation

$$k = 4$$

$$\frac{\sum_{t=k+1}^{T} (x_t - \overline{x}) (x_t - \overline{x})}{\sum_{t=1}^{T} (x_t - \overline{x})^2}$$

Day	Temperature	
1	32	K
2	33	K
3	33	K)
4	36	R
5	33	/ X)
6	37	//
7		//
8	•••••	

Autocorrelation

10				
t0	t-1	t-2	t-3	t-4
8	NaN	NaN	NaN	NaN
14	8	NaN	NaN	NaN
36	14	8	NaN	NaN
56	36	14	8	NaN
84	56	36	14	8
94	84	56	36	14
106	94	84	56	36
110	106	94	84	56
93	110	106	94	84
67	93	110	106	94
35	67	93	110	106
37	35	67	93	110
36	37	35	67	93
34	36	37	35	67
28	34	36	37	35
39	28	34	36	37
17	39	28	34	36

Sliding Window Approach

t0	t-1	t-2	t-3	t-4
8	NaN	NaN	NaN	NaN
14	8	NaN	NaN	NaN
36	14	8	NaN	NaN
56	36	14	8	NaN
84	56	36	14	8
94	84	56	36	14
106	94	84	56	36
110	106	94	84	56
93	110	106	94	84
67	93	110	106	94
35	67	93	110	106
37	35	67	93	110
36	37	35	67	93
34	36	37	35	67
28	34	36	37	35
39	28	34	36	37
17	39	28	34	36

8 14 36 56 84 94 106 110 93 67

pandas.shift()

Autocorrelation Function

tO	t-1	t-2	t-3	t-4
8	NaN	NaN	NaN	NaN
14	8	NaN	NaN	NaN
36	14	8	NaN	NaN
56	36	14	8	NaN:
84	56	36	14	8
94	84	56	36	14
106	94	84	26	36
110	106	94	84	5t
93	110	100	94	84
67	99	110	106	94
35	ó ⁷	93	110	106
37	35	67	93	1.0
36	37	35	6.7	93
34	36	37	5 5	67
28	34	36	37	35
39	28	34	36	37
17	39	28	34	36

Autocorrelation Function (ACF)

Assumptions of Multiple Linear Regression

Relationship Among Variables

- Linear Relationship
- No Multicollinearity
- No Auto-Correlation
- Endogeneity

Behaviour of Data

- Sample Size
- Normality
- Homoscedasticity

Endogeneity

• Situations in which an explanatory/independent variable is correlated with the error term.

$$y = b_0 + b_1 x_1$$

$$y_i = y_i^{\hat{}} + \varepsilon$$

$$y_i = b_0 + b_1 x_1 + \varepsilon$$

$$\varepsilon = f(x) ??$$

Endogeneity

Wheelbase	Length	Engine Size	Horsepower	Price
88.6	168.8	130	111	
94.5	171.2	152	154	
99.8	176.6	109	102	
99.4	176.6	136	115	

Omitted Variable Bias

Wheelbase	Length	Engine Size	Horsepower	Price
88.6	168.8	130	111	
94.5	171.2	152	154	
99.8	176.6	109	102	
99.4	176.6	136	115	

Price ~ EngineSize ~ Horsepower ~ error

QuickFix

• Start with All the variable

• Remove unwanted ones using Adjusted R-Squared or feature selection methods

Normality of Residuals

Normality of Residuals

Hrs Studied	Marks
(X)	(Y)
0	40
2	52
3	53
4	55
4	56
5	72
6	71
6	88
7	56
7	74
8	89
9	67
9	89

Marks predicted
41.80
50.90
55.45
60.00
60.00
64.55
69.10
69.10
73.65
73.65
78.20
82.75
82.75

Residuals
-1.80
1.10
-2.45
-5.00
-4.00
7.45
1.90
18.9
-17.65
0.35
10.8
-15.75
6.25

$$y = 41.8 + 4.55 x$$

Residuals or Errors should be normally distributed.

Homoscedasticity

Ordinary Least Square

Heteroscedasticity

Variance should follow Homoscedasticity

Remedies

- Rebuild the model with new predictors
- Look for outliers
- Variable transformation using Log or Power transformation
- Consider Polynomial or other regression algorithm

Multiple Linear Regression – Dummy Variable Trap

Multiple Linear Regression

Hrs Studied	Hrs Slept	Marks	
(X1)	(X2)	(Y)	
0	8	40	
2	8	52	
3	7.5	53	
4	7	55	
4	9	56	
5	8.5	72	
6	9	71	
6	7	88	
7	6	56	
7	7	74	
8	9	89	
9	6	67	
9	9	89	

Marks Obtained

Hrs Studied Hrs Slept

Dummy Variable Trap

Hrs Studied	Hrs Slept	Math	Science	Art	Marks
(X1)	(X2)	(X3)	(X4)	(X5)	(Y)
0	8	1	0	0	40
2	8	0	1	0	52
3	7.5	0	0	1	53
4	7	1	0	0	55
4	9	1	0	0	56
5	8.5	1	0	0	72
6	9	0	1	0	71
6	7	0	0	1	88
7	6	0	0	1	56
7	7	0	1	0	74
8	9	0	1	0	89
9	6	1	0	0	67
9	9	0	0	1	89

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4$$