Assigment I

Advance Machine Learning

Dăscălescu Dana

June 12, 2022

1. Give an example of a finite hypothesis class \mathcal{H} with $VCdim(\mathcal{H}) = 2022$. Justify your choice.

Exemple 1: Let us consider \mathcal{X} to be the Boolean hypercube $\{0,1\}^n$ and

$$\mathcal{H}_{n-parity} = \left\{ h_I \middle| \begin{array}{l} I \subseteq \{1, 2, \dots, n\}, x = (x_1, x_2, \dots, x_n) \in \{0, 1\}^n, \\ h_I : I \subseteq \{1, 2, \dots, n\} \to \{0, 1\}, h_I(x_1, x_2, \dots, x_n) = \left(\sum_{i \in I} x_i\right) \mod 2 \end{array} \right\}$$

We will show that $VCdim(\mathcal{H}) = n$ and we will pick n = 2022 for our example.

Proof. For each subset $I \subseteq \{1, 2, ..., n\}$, where n = 2022, we have a parity function h_I , so $|\mathcal{H}_{2022-parity}| = 2^{2022}$ (we also have that $\mathcal{H}_{2022-parity}$ is a finite hypotheses class).

We know that for a finite hypotheses class \mathcal{H} , $VCdim(\mathcal{H}) \leq \lfloor log(|\mathcal{H}|) \rfloor$. For our particular case, we have the upper bound

$$VCdim(\mathcal{H}_{2022-parity}) \le \left| log_2\left(\left| 2^{2022} \right| \right) \right| \Leftrightarrow VCdim(\mathcal{H}_{2022-parity}) \le 2022 \tag{1}$$

Now, we will show that $VCdim(\mathcal{H}_{2022-parity}) \geq 2022$ by finding a set of 2022 entries from the Boolean hypercube $\{0,1\}^{2022}$ that is shattered by $\mathcal{H}_{2022-parity}$.

Let us consider the set of unit vectors $C = \{e_i = (0, \dots, 0, \frac{1}{i}, 0, \dots, 0) \mid i = \overline{1,2022}\}$. We need to show that, for each possible labeling $(y_1, y_2, \dots, y_{2022})$ of $(e_1, e_2, \dots, e_{2022})$, we can find a corresponding $h, h \in \mathcal{H}_{2022-parity}$, such that $h(e_i) = y_i, \forall i = \overline{1,2022}$.

Consider the vector of labels $(y_1, y_2, \dots, y_{2022})$ and let $I = \{i \in [2022] : y_i = 1\}$. Then we have

$$h_I(x) = \left(\sum_{i \in I} x_i\right) \mod 2 = \begin{cases} 1, & \text{if } i \in I \\ 0, & \text{otherwise} \end{cases}$$

Thus, we have $h_I(e_i) = y_i$ for every $i \in [n]$. So $VCdim(\mathcal{H}_{2022-parity}) \geq 2022$. Combining with Equation 1, we conclude our proof that $VCdim(\mathcal{H}_{2022-parity}) = 2022$.

<u>Exemple 2:</u> Consider the class $\mathcal{H}_{mcon}^{2022}$ of monotone Boolean conjunctions over $\{0,1\}^{2022}$.

$$\mathcal{H}_{mcon}^{2022} = \left\{ h : \{0, 1\}^{2022} \to \{0, 1\}, h(x_1, x_2, \dots, x_{2022}) = \bigwedge_{i=1}^{2022} l(x_i) \right\} \cup \{h^-\}$$
$$l(x_i) \in \{x_i, 1\}$$

In the following, we will show that $VCdim(\mathcal{H}_{mcon}^{2022}) = 2022$.

Proof. We know that $|\mathcal{H}_{mcon}^{2022}| = 2^{2022} + 1$. We can use the property of a finite hypothesis class that $VCdim(\mathcal{H}) \leq \lfloor log_2(|\mathcal{H}|) \rfloor$. Thus, we have the upper bound $VCdim(\mathcal{H}_{mcon}^{2022}) \leq 2022$.

Subsequently, we would like to show that there exists a set $C \subseteq \{0,1\}^{2022}$ with 2022 points that is shattered by $\mathcal{H}_{mcon}^{2022}$.

We choose $C = \{(0, 1, 1, \dots, 1, 1), \dots, (1, \dots, 1, 0, 1, \dots, 1), \dots, (1, 1, 1, \dots, 1, 0)\}$ set of vectors of the form $c_i = (1, 1, \dots, 1) - e_i, i = \overline{1, 2022}$, where e_i is the unit vector $(0, \dots, 0, 1, 0, \dots, 0)$.

Consider the vector of labels $(y_1, y_2, \dots, y_{2022})$ and let $\mathcal{I} = \{i \in [2022] : y_i = 1\}$. We want to show that there exists a function $h, h \in \mathcal{H}_{mcon}^{2022}$, such that $h(c_i) = y_i, \forall i = \overline{1,2022}$

If
$$\mathcal{I} = \emptyset$$
, then h^- realizes the labelling $\underbrace{(0, \dots, 0)}_{\text{times 2022}}$.

If
$$\mathcal{I} = \{1, 2, \dots, 2022\}$$
, them h_{empty} realizes the labelling $\underbrace{(1, \dots, 1)}_{\text{times } 2022}$.

If $1 \leq |\mathcal{I}| \leq 2021$, then consider $h_{\mathcal{I}}(x_1, \dots, x_{2022}) = \bigwedge_{i \notin \mathcal{I}} x_i$. In this case, we have that $h_{\mathcal{I}}(c_i) = 1$ if $i \in \mathcal{I}$, and $h_{\mathcal{I}}(c_i) = 0$ if $i \notin \mathcal{I}$.

For all indices $i \in \mathcal{I}$, c_i will have value 0 on the position i and 1 in rest, but variable x_i is not considered in the conjunction. So $h_{\mathcal{I}}(c_i) = 1$.

For all indices $i \notin \mathcal{I}$, c_i will have value 0 on the position i and, because the conjunction contains the literal x_i , then we have that $h_{\mathcal{I}}(c_i) = 0$.

We have that $\mathcal{H}_{mcon}^{2022}$ shatters C, so $VCdim(\mathcal{H}_{mcon}^{2022}) \geq 2022$. Thus, combining it with the upper bound, $VCdim(\mathcal{H}_{mcon}^{2022}) \leq 2022$, we concluded our proof that $VCdim(\mathcal{H}_{mcon}^{2022}) = 2022$.

2. What is the maximum value of the natural even number n, n = 2m, such that there exists a hypothesis class \mathcal{H} with n elements that shatters a set C of $m = \frac{n}{2}$? Give an example of such an \mathcal{H} and C. Justify your answer.

Proof. According to the problem statement, we have $|\mathcal{H}| = n = 2m$ and $VCdim(\mathcal{H}) \ge m = \frac{n}{2}$. We also know that $VCdim(\mathcal{H}) \le log(|\mathcal{H}|)$. Thus, we have

$$m \le log_2(2 \cdot m)$$

 $m \in \mathbb{N}$ $\Rightarrow m \in \{1, 2\}$.

Since $n = 2 \cdot m$ is the maximum value of the natural even number with the property described above, we have that m = 2, and hence n = 4.

Now, we will take the same example as in the previous exercise $(\mathcal{H}_{n-parity}, |\mathcal{H}_{n-parity}| = 2^n$ and $VCdim(\mathcal{H}_{n-parity}) = n)$, the hypothesis class $\mathcal{H}_{2-parity}$ which has $|\mathcal{H}_{2-parity}| = 2^2 = 4$ and shatters the standard basis $\{e_j\}_{j=1}^2$.

3. Let $\mathcal{X} = \mathbb{R}^2$ and consider \mathcal{H} the set of axis aligned rectangles with center in origin O(0,0). Compute the $VCdim(\mathcal{H})$.

Proof. We shall show in the following that $VCdim(\mathcal{H}) = 2$. To prove this we need to find a set of 2 points that are shattered by \mathcal{H} , and show that no set of 3 points can be shattered by \mathcal{H} .

It is easy to see that 2 points can be shattered by axis aligned rectangles with the center in the origin O(0,0). Let us consider $p_1=(x_{p_1},y_{p_1})\in\mathbb{R}^2$ and $p_2=(x_{p_2},y_{p_2})\in\mathbb{R}^2$, such that $x_{p_1}< x_{p_2},$ $y_{p_1}>y_{p_2}$, and $C=\{p_1,p_2\}$. For this two points we can achieve all possible labelling, more precisely (0,0),(0,1),(1,0),(1,1), as shown in Figure 1.

Figure 1: Two points shattered by the class of axis-aligned rectangles with the center in origin O(0,0)

Figure 2: An impossible assignment of +/- to the data, as all rectangles that contains the two points P_1 and P_2 (marked +) must also contain the one marked with - point, P_3

 \mathcal{H} shatters C, so $VCdim(\mathcal{H}) \geq 2$ (*).

Consider any set of three distinct points $\{p_1 = (x_{p_1}, y_{p_1}), p_2 = (x_{p_2}, y_{p_2}), p_3 = (x_{p_3}, y_{p_3})\} \subset \mathbb{R}^2$ (provided they are not collinear). These three points denote a non-degenerate triangle. Consider a rectangle centered in origin O(0,0) that contains the points with maximum x-coordinate in absolute value $(\exists j_1 \in [3] \text{ such that } |x_{p_{j_1}}| \geq |x_{p_j}|, \forall j = \overline{1,3})$ and maximum y-coordinate in absolute value $(\exists j_2 \in [3] \text{ such that } |y_{p_{j_2}}| \geq |y_{p_j}|, \forall j = \overline{1,3})$. These points may not be distinct. However, there are at most two such points. Call this set of points $V \subset \{p_1, p_2, p_3\}$. There is at least one point p_i that is not in V, but still must be in the area inside of the rectangle (as shown in Figure 2). Therefore, the labelling that labels all vertices in V with + and the vertice p_i with - cannot be consistent with any axis aligned rectangles with center in origin O(0,0). This means that there is no shattered set of size 3, since all possible labellings of a shattered set must be realized by some concept. So, VCdim(H) < 3 (**).

$$(*)(**) \implies VCdim(H) = 2$$

4. Axis-aligned rectangled triangles:

$$\mathcal{H}_{\alpha} = \left\{ \begin{array}{l} h_{\triangle ABC} \colon \mathbb{R}^2 \to \{0,1\}, \frac{AB}{AC} = \alpha, \alpha > 0, AB \parallel Ox \text{ and } AC \parallel Oy, \\ h_{\triangle ABC}(x_1, x_2) = \mathbb{1}_{\triangle ABC} \end{array} \right\}$$

Show that the class \mathcal{H}_{α} is (ε, δ) -PAC learnable by giving an algorithm \mathcal{A} and determing an upper bound on the sample complexity $m_H(\varepsilon, \delta)$ such that the definition of PAC-learnability is satisfied.

Proof. From the definition of PAC-learnability, we know that $\mathcal{H} = \mathcal{H}_{\alpha}$ is (ε, δ) -PAC learnable if there exists a function $m_{\mathcal{H}}: (0,1) \times (0,1) \to \mathbb{N}$, and there exists a learning algorithm \mathcal{A} with the following property: for every $\varepsilon \in (0,1)$, for every $\delta \in (0,1)$, for every labeling function $f \in \mathcal{H}_{\alpha}$ (realizability case), for every distribution \mathcal{D} on \mathbb{R}^2 , when we run the learning algorithm \mathcal{A} on a training set S consisting of $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ examples sampled i.i.d. from \mathcal{D} and labeled by f, the learning algorithm \mathcal{A} returns a hypothesis $h_S \in \mathcal{H}$ such that, with probability at least $1 - \delta$ (over the choices of examples) the real risk of h_S is smaller than ε :

$$\mathbb{P}_{S \sim \mathcal{D}^m}[L_{D,f}(h_S) \le \varepsilon] \ge 1 - \delta \Leftrightarrow \mathbb{P}_{S \sim \mathcal{D}^m}[L_{D,f}(h_S) > \varepsilon] < \delta$$

Firstly, we will define the algorithm \mathcal{A} .

We are under the realizability assumption, so there exists a function $f \in \mathcal{H}$, $f = h_{\triangle A^*B^*C^*}$ that labels the training data, where $h_{\triangle A^*B^*C^*}$ is denoted as the hypothesis represented by a orthogonal triangle $\triangle A^*B^*C^*$ with the two catheti A^*B^* and A^*C^* parallel to the axes (Ox and Oy), with the ratio $\frac{A^*B^*}{A^*C^*} = \alpha$, $\alpha \in \mathbb{R}_+^*$ (fixed constant), and a_1^* , b_1^* , a_2^* , b_2^* represent the coordinates of the rectangled triangle's vertices, as follows:

$$A^*(a_1^*, b_1^*), \quad B^*(a_2^*, b_1^*), \quad C^*(a_1^*, b_2^*)$$

As in Figure 3, $h_{\triangle A^*B^*C^*}$ labels each point drawn from the rectangled triangle $\triangle A^*B^*C^*$ with label 1(+), all the other points with label 0(-).

Figure 3: All the points inside the area of the right triangle $\triangle A^*B^*C^*$ will be labeled by h^* with label 1(+), and all the points outside will be labeled with label 0(-).

Consider the training set
$$S = \left\{ (x_1, y_1), (x_2, y_2), \dots, (x_m, y_m) \middle| \begin{array}{l} x_i \in \mathbb{R}^2, x_i = (x_{i1}, x_{i2}), \\ y_i = h^*_{\triangle A^* B^* C^*}(x_i) \end{array} \right\}.$$

Consider the following algorithm \mathcal{A} , that takes as input the samples from the training set and outputs a hypothesis $h_S = h_{\triangle A_S B_S C_S}$:

STEP 1: We choose a_{1S} to be the leftmost coordinate on the Ox axis of a positive point in the training set S, and b_{1S} to be the lowest coordinate on Oy axis of a positive point in the training set S:

$$a_{1S} = \min_{\substack{i=\overline{1},m\\y_i=1}} x_{i1} \qquad \qquad b_{1S} = \min_{\substack{i=\overline{1},m\\y_i=1}} x_{i2}$$

We take A_S as the point with coordinates (a_{1S}, b_{1S}) .

STEP 2: We need to compute B_S and C_S such that the resulting hypothesis will be a function from the hypothesis class H_{α} , meaning that the $\triangle A_S B_S C_S$ must have the following property: the two catheti $A_S B_S$ and $A_S C_S$ are parallel to the axes (Ox and Oy), with the ratio $\frac{A_S B_S}{A_S C_S} = \alpha$, $\alpha > 0$ (fixed constant).

Let d be an oblique line passing through the points B and C, and θ the angle formed by the line with the axis of the abscissa (see Figure 4). The real number $\tan(\pi - \theta)$ is called the slope of line d or the angular coefficient of a line (angle of inclination $\pi - \theta$) and it is indicated by m.

We consider the general equation given for a line:

$$y = mx + n$$

We know that $\tan(\theta) = \frac{AC}{AB} = \frac{1}{\alpha}$. The slope of the hypotenuse BC is given by $\tan(\pi - \theta) = \frac{\tan(\pi) - \tan(\theta)}{1 + \tan(\pi)\tan(\theta)} = -\tan(\theta) = -\frac{1}{\alpha}$. Therefore, the lines which are parallel to our hypotenuse will be given by the following equation: $-\frac{x}{\alpha} - y + n = 0$.

Figure 4: The slope of the line passing through points B and C

Consider $D \in \mathbb{R}^2$, a point on the hypotenuse BC with coordinates (x_D, y_D) . The line which contains $D = (x_D, y_D)$ has the following equation:

$$-\frac{x_D}{\alpha} - y_D + n = 0 \Rightarrow n = \frac{x_D}{\alpha} + y_D$$

We previously computed the coordinates of point A, and because the cathetus AB and cathetus AC are parallel to the axes, we have that $y_B = y_A$ and $x_C = x_A$. Using the obtained equation of the line and the formula we found for the parameter n, we will have that:

•
$$-\frac{x_B}{\alpha} - y_A + n = 0 \Rightarrow -\frac{x_B}{\alpha} = y_A - n \Rightarrow -\frac{x_B}{\alpha} = y_A - \frac{x_D}{\alpha} - y_D \Rightarrow x_B = x_D + \alpha(y_D - y_A)$$

•
$$-\frac{x_A}{\alpha} - y_C + n = 0 \Rightarrow y_C = -\frac{x_A}{\alpha} + n \Rightarrow y_C = y_D + \frac{x_D - x_A}{\alpha}$$

As a consequence, in order to have the tighest right triangle from \mathcal{H}_{α} that covers all the points in the training set S labeled with 1(+), we need to find $i, i \in \{1, ..., m\}$, $y_i = 1$, such that $\forall j \in \overline{1, m}$, $y_j = 1$, we have that $-\frac{x_{i1}}{\alpha} - x_{i2} \le -\frac{x_{j1}}{\alpha} - x_{j2}$. To compute B_S and C_S , we have:

$$a_{2S} = x_{i1} + \alpha(x_{i2} - b_{1S})$$
$$b_{2S} = x_{i2} + \frac{x_{i1} - a_{1S}}{\alpha}$$

$$B_S = (a_{2S}, b_{1S})$$

$$C_S = (a_{1S}, b_{2S})$$

If there are no positive examples in the training set (all points $x_i, i = [m]$, have label $y_i = 0$), then we choose a $Z = (z_1, z_2)$ a point that is not in the training set S and take $a_{1S} = z_1$, $b_{1S} = z_2$, $a_{2S} = a_{1S} + 2\epsilon^{-7}$ and $b_{2S} = b_{1S} + \frac{2\epsilon^{-7}}{\alpha}$.

The hypothesis returned by the algorithm \mathcal{A} , $h_S = h_{\triangle A_S B_S C_S}$ is the indicator function of the tightest rectangled triangle enclosing all positive examples, which preserves the properties of the hypotheses from H_{α} (see Figure 5).

Now, we want to find the sample complexity $m_H(\varepsilon, \delta)$ such that

$$\mathbb{P}_{S_{2},\mathcal{D}^{m}}[L_{D,f}(h_{S})>\varepsilon]<\delta$$

where S contains $m \geq m_H(\varepsilon, \delta)$ examples.

The area inside the right triangle $\triangle A^*B^*C^*$ is denoted by \mathcal{T}^* , whereas the area inside the right triangle $\triangle A_S B_S C_S$ is denoted by \mathcal{T}_S (see Figure 5).

We will show that $\mathcal{T}_S \subseteq \mathcal{T}^*$.

Suppose that $T_S \nsubseteq \mathcal{T}^*$. The only case in which this can happen is if there is at least one pair $(x_k, 1) \in S$ such that $x_k = (x_{k1}, x_{k2}) \notin \mathcal{T}^*$, but we assumed realizability, thus we get a contradiction. So $\mathcal{T}_S \subseteq \mathcal{T}^*$.

Figure 5: Triangle \mathcal{T}_S is the tighest rectangle enclosing all positive examples

The definition of the algorithm \mathcal{A} implies that \mathcal{A} is an ERM, meaning that $L_S(h_S) = 0$, so h_S does not make any error on the training set. Considering this, we make the observation that h_S can only make errors in region $\mathcal{T}^* \backslash \mathcal{T}_S$, assigning the label 0(-) to points that should get label 1(+). All points within \mathcal{T}_S will be correctly labeled (label 1), as will all points outside \mathcal{T}^* , which will be labeled 0.

Let's fix $\varepsilon > 0$, $\delta > 0$ and consider a distribution \mathcal{D} over \mathbb{R}^2 .

Case 1 If
$$\mathcal{D}(\mathcal{T}^*) = \underset{x \sim \mathcal{D}}{\mathbb{P}} (x \in \mathcal{T}^*) \leq \varepsilon$$
 than in this case
$$L_{D,f}(h_S) = \underset{x \sim \mathcal{D}}{\mathbb{P}} (h_S(x) \neq f(x)) = \underset{x \sim \mathcal{D}}{\mathbb{P}} (x \in \mathcal{T}^* \backslash \mathcal{T}_S) \leq \underset{x \sim \mathcal{D}}{\mathbb{P}} (x \in \mathcal{T}^*) \leq \varepsilon$$

so we have that

$$\mathbb{P}_{x \sim \mathcal{D}}(L_{D,f}(h_S) \leq \varepsilon) = 1 \text{ (this happens all the time)}.$$

Case 2 Let
$$\varepsilon > 0$$
 fixed and let $\mathcal{D}(\mathcal{T}^*) = \mathbb{P}_{x \sim \mathcal{D}}(x \in \mathcal{T}^*) > \varepsilon$.

Let $a_1 \in \mathbb{R}$ and $b_1 \in \mathbb{R}$ such that $a_1 \geq a_1^*$ and $b_1 \geq b_1^*$. Let d_1 denote the line which contains the point with the coordinates $(a_1, 0)$ and $d_1 \parallel O_y$. Let d_2 denote the line which contains the point with the coordinates $(0, b_1)$ and $d_2 \parallel O_x$.

We have previously determined that the line parallel to our hypotenuse has the general equation $-\frac{x}{\alpha} - y + n = 0$. Let n_1, n_1^* be numbers such that $n_1 < n_1^*$. Let d_3 denote the line with the general equation $-\frac{x}{\alpha} - y + n_1 = 0$, and the line given through the points B and C has the general equation $-\frac{x}{\alpha} - y + n_1^* = 0$.

We will define three regions $\mathcal{T}_1, \mathcal{T}_2$ and \mathcal{T}_3 bounded by the lines d_1, d_2, d_3 and the sides of the right triangle $\triangle A^*B^*C^*$ such that the probability masses of the trapezoids are all exactly $\frac{\varepsilon}{3}$ ($\mathcal{D}(\mathcal{T}_i) = \frac{\varepsilon}{3}, i = \overline{1,3}$), as shown in Figure 6.

(a) \mathcal{T}_S intersects each \mathcal{T}_i , $i = \overline{1,3}$

(b) \mathcal{T}_S doesn't intersect at least one \mathcal{T}_i , $i = \overline{1,3}$

Figure 6: All three regions, $\mathcal{T}_1, \mathcal{T}_2$ and \mathcal{T}_3 have masses $\mathcal{D}(\mathcal{T}_i) = \frac{\varepsilon}{3}$, where $\varepsilon \in (0, 1)$

• If \mathcal{T}_S (the region defined by the area inside the right triangle $\triangle A_S B_S C_S$ returned by \mathcal{A} , implemented by h_S) intersects each \mathcal{T}_i , $i = \overline{1,3}$:

$$L_{D,h^*}(h_S) = \mathbb{P}_{x \sim D}(h_S(x) \neq h^*(x)) = \mathbb{P}_{x \sim D}(x \in \mathcal{T}^* \backslash \mathcal{T}_S) \leq \mathbb{P}_{x \sim D}\left(x \in \bigcup_{i=1}^3 \mathcal{T}_i\right) \leq \sum_{i=1}^3 \mathbb{P}_{x \sim D}(x \in \mathcal{T}_i) = 3 \cdot \frac{\varepsilon}{3} = \varepsilon$$

$$\underset{x \sim D}{\mathcal{P}}(L_{D,f}(h_S) \leq \varepsilon) = 1$$
 (this happens all the time)

• In order to have $L_{D,h^*}(h_S) > \varepsilon$, we need that \mathcal{T}_S will not intersect at least one trapezoid \mathcal{T}_i . We define this event with F_i , $F_i = \{S \sim D^m | \mathcal{T}_S \cap \mathcal{T}_i = \varnothing\}$. This leads to the following:

$$\mathbb{P}_{S \sim D^m} \left(L_{D,h^*}(h_S) < \varepsilon \right) \le \mathbb{P}_{S \sim D^m} \left(\mathcal{T}_1 \cup \mathcal{T}_2 \cup \mathcal{T}_3 \right) \le \sum_{i=1}^3 \mathcal{P}_{S \sim D^m} \left(\mathcal{T}_i \right)$$

where the last inequality follows from the Union Bound.

The probability that all instances do not fall in \mathcal{T}_i is $\underset{S \sim D^m}{\mathbb{P}}(F_i) = \left(1 - \frac{\varepsilon}{3}\right)^m \leq e^{-\frac{\varepsilon}{3}m}$. Therefore,

$$\mathbb{P}_{S_{O}D^m}(L_{D,h^*}(h_S) < \varepsilon) \le 3e^{-\frac{\varepsilon}{3}m}$$

Thus, it is suffices to ensure that:

$$\begin{aligned} 3 \cdot e^{-\frac{\varepsilon}{3}m} &< \delta \\ e^{-\frac{\varepsilon}{3}m} &< \frac{\delta}{3} \quad \bigg| \cdot \log_e \\ -\frac{\varepsilon}{3} \cdot m &< \log \frac{\delta}{3} \ \bigg| \cdot \left(-\frac{3}{\epsilon} \right) \\ m &> -\frac{3}{\epsilon} \log \frac{\delta}{3} = \frac{3}{\epsilon} \log \frac{3}{\delta} \end{aligned}$$

Plugging in the assumption on $m, m \geq m_H(\varepsilon, \delta) = \left\lceil \frac{3}{\varepsilon} \cdot \log \frac{3}{\delta} \right\rceil$, we conclude our proof.

5. Consider $\mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2 \cup \mathcal{H}_3$, where:

$$\mathcal{H}_{1} = \{h_{\theta_{1}} : \mathbb{R} \to \{0, 1\} \mid h_{\theta_{1}}(x) = \mathbf{1}_{[x \geq \theta_{1}]}(x) = \mathbf{1}_{[\theta_{1}, +\infty)}(x), \theta_{1} \in \mathbb{R} \},$$

$$\mathcal{H}_{2} = \{h_{\theta_{2}} : \mathbb{R} \to \{0, 1\} \mid h_{\theta_{2}}(x) = \mathbf{1}_{[x < \theta_{2}]}(x) = \mathbf{1}_{(-\infty, \theta_{2})}(x), \theta_{2} \in \mathbb{R} \},$$

$$\mathcal{H}_{3} = \{h_{\theta_{1}, \theta_{2}} : \mathbb{R} \to \{0, 1\} \mid h_{\theta_{1}, \theta_{2}}(x) = \mathbf{1}_{[\theta_{1} \leq x \leq \theta_{2}]}(x) = \mathbf{1}_{[\theta_{1}, \theta_{2}]}(x), \theta_{1}, \theta_{2} \in \mathbb{R} \}.$$

Consider the realizability assumption.

- a) Compute $VCdim(\mathcal{H})$.
- b) Show that \mathcal{H} is PAC-learnable.
- c) Give an algorithm A and determine an upper bound on the sample complexity $m_{\mathcal{H}}(\epsilon, \delta)$ such that the definition of PAC-learnability is satisfied.

Proof. a) Using the VC-dimension definition, we will show that $VCdim(\mathcal{H}) = 2$. Therefore, we want to prove that:

- 1. There $\exists C, C \subset \mathbb{R}$, where |C| = 2, that is shattered by \mathcal{H} $(VCdim(\mathcal{H}) \geq 2)$.
- 2. $\forall C \subset \mathbb{R}$, where |C| = 3, C is not shattered by \mathcal{H} ($VCdim(\mathcal{H}) < 3$).

Take the set of two distinct points $C = \{a, b \mid a < b\}$. For this set we can obtain all the possible labels by choosing $h_{\theta_1,\theta_2} \in \mathcal{H}_3 \subset \mathcal{H}$ and choose θ_1 and θ_2 such that we can arrange an interval over a, b that includes neither, both, or only a or b. For example, take:

- label (0, 0): Take $\theta_1 = a 2$ and $\theta_2 = a 1$, then $h_{\theta_1,\theta_2}(a) = 0$ and $h_{\theta_1,\theta_2}(b) = 0$.
- label (0, 1): Take $\theta_1 = \frac{a+b}{2}$ and $\theta_2 = b+1$, then $h_{\theta_1,\theta_2}(a) = 0$ and $h_{\theta_1,\theta_2}(b) = 1$.
- label (1, 0): Take $\theta_1 = a 1$ and $\theta_2 = \frac{a+b}{2}$, then $h_{\theta_1,\theta_2}(a) = 1$ and $h_{\theta_1,\theta_2}(b) = 0$.
- label (1, 1): Take $\theta_1 = a 1$ and $\theta_2 = b + 1$, then $h_{\theta_1, \theta_2}(a) = 1$ and $h_{\theta_1, \theta_2}(b) = 1$.

For any set C, |C| = 3, we cannot represent elements of alternative labels (for example, label (1, 0, 1)). Take an arbitrary set $C = \{a, b, c\}$ and assume without loss of generality that $a \le b \le c$.

- $h \in \mathcal{H}_1$: No $h \in \mathcal{H}_1$ can account for the labelling (1,0,1), because any h_{θ_1} that assign the label 1 to a must assign the label 1 to b as well, since $\theta_1 \leq a$ and $a \leq b$. So, $VCdim(\mathcal{H}_1) < 3$.
- $h \in \mathcal{H}_2$: No $h \in \mathcal{H}_2$ can account for the labelling (1,0,1), because any threshold that assign the label 0 to b must assign the label 0 to c as well. So, $VCdim(\mathcal{H}_2) < 3$.
- $h \in \mathcal{H}_3$: If $a \in [\theta_1, \theta_2]$ and $c \in [\theta_1, \theta_2]$, by convexity of $[\theta_1, \theta_2]$, every $b \in [a, c]$ is also in $[\theta_1, \theta_2]$. Because of this, b will also get label 1, so, any such set $\{a, b, c\}$ is not shattered by \mathcal{H}_3 . Therefore, the VC dimension of this class representation is the largest shattered set, 2.

In conclusion, any sequence of two distinct points can be shattered by \mathcal{H} , but we cannot find $h \in \mathcal{H} = \mathcal{H}_1 \bigcup \mathcal{H}_2 \bigcup \mathcal{H}_3$ that labels a sequence of three distinct points with label (+, -, +). So, $VCdim(\mathcal{H}) = 2$.

- b) According to The Fundamental Theorem Of Statistical Learning, the Vapnik-Chervonenkis dimension characterizes the PAC learnability. Considering the result obtained in the previous subsection, $VCdim(H) = 2 < \infty$, \mathcal{H} is PAC learnable.
- c) Consider a training set $S = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$. We are in the realizability case, so there exists $h \in \mathcal{H} = \mathcal{H}_1 \cup \mathcal{H}_2 \cup \mathcal{H}_3$ that labels the examples, $y_i = h^*(x_i)$.

Consider \mathcal{A} the learning algorithm that gets the training set S and outputs $h_S = \mathcal{A}(S) =$ the tighest interval containing all the positive examples.

$$h_S = h_{a_S, b_S} = \mathbb{1}_{[a_S, b_S]}$$
, where

$$a_S = \min_{\substack{i=\overline{1,m} \\ y_i=1}} x_i \qquad b_S = \max_{\substack{i=\overline{1,m} \\ y_i=1}} x_i$$

If there is no $(x_i, 1) \notin S$ (S doesn't contain positive examples), take $a_S = b_S = z$ a random point such that $(z, 0) \notin S$.

We denote by $\mathcal{R}_S = [a_S, b_S]$.

From the definition of PAC-learnability, we know that $\mathcal{H} = \mathcal{H}_1 \bigcup \mathcal{H}_2 \bigcup \mathcal{H}_3$ is (ε, δ) -PAC learnable if there exists a function $m_{\mathcal{H}} : (0,1) \times (0,1) \to \mathbb{N}$, and there exists a learning algorithm \mathcal{A} with the following property: for every $\varepsilon \in (0,1)$, for every $\delta \in (0,1)$, for every labeling function $f \in \mathcal{H}$ (realizability case), for every distribution \mathcal{D} on \mathbb{R}^2 , when we run the learning algorithm \mathcal{A} on a training set S consisting of $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ examples sampled i.i.d. from \mathcal{D} and labeled by f, the learning algorithm \mathcal{A} returns a hypothesis $h_S \in \mathcal{H}$ such that, with probability at least $1 - \delta$ (over the choices of examples) the real risk of h_S is smaller than ε :

$$\mathbb{P}_{S \sim \mathcal{D}^m}[L_{D,f}(h_S) \leq \varepsilon] \geq 1 - \delta \Leftrightarrow \mathbb{P}_{S \sim \mathcal{D}^m}[L_{D,f}(h_S) > \varepsilon] < \delta$$

From the construction, h_S is an ERM, meaning that $L_S(h_S) = 0$.

Let $\varepsilon > 0, \delta > 0$ and \mathcal{D} a distribution over \mathbb{R} . We want to find how many training examples $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ do we need such that:

$$\mathbb{P}_{S \sim \mathcal{D}^m}[L_{D,f}(h_S) > \varepsilon] < \delta$$

Case 1: If $h^* = h_{\theta_1^*} = \mathbb{1}_{[\theta_1^*, +\infty)}$ (θ_1^* is a threshold such that the hypothesis $h^* = \mathbb{1}_{[\theta_1^*, +\infty)}$ achieves $L_D(h^*) = 0$).

The generalization error of h_S will be the probability masses that falls between the θ_1^* of our hypothesis h^* and a_S and between b_S and ∞ . Points in this region will be assigned the label 0, but

they should get label 1.

Case 1.1: If
$$\mathcal{D}([a^*, +\infty]) \leq \varepsilon$$
 then $\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[L_{D,f}(h_S) > \varepsilon] = 0$.

Case 1.2: If
$$\mathcal{D}([a^*, +\infty]) > \varepsilon$$
.

Let \mathcal{R}_1 be the interval $[a*, a_S]$, which has probability mass ε , and \mathcal{R}_2 be the interval $[b_S, \infty)$, which also has probability mass ε .

If
$$\mathcal{R}_S \cap \mathcal{R}_1 = \emptyset$$
 and $\mathcal{R}_S \cap \mathcal{R}_2 = \emptyset$ then $\underset{S \sim \mathcal{D}^m}{\mathbb{P}} [L_{D,f}(h_S) > \varepsilon] = 0$.

Else, we have that $\mathbb{P}[x_i \notin \mathcal{R}_1] \leq 1 - \varepsilon$, because \mathcal{R}_1 has probability mass ε . Then

$$\mathbb{P}_{S \sim \mathcal{D}}[\mathcal{R}_1] = \mathbb{P}[x_1 \notin \mathcal{R}_1 \land x_2 \notin \mathcal{R}_1 \land x_m \notin \mathcal{R}_1] = (1 - \varepsilon)^m$$

where the last inequality follows by independence of the x_i 's. Also, by symmetry, we obtain $\underset{S \sim \mathcal{D}}{\mathbb{P}}[\mathcal{R}_2] = (1 - \varepsilon)^m$.

Now, we can bound the probability that $L_{D,h^*}(h_S) > \varepsilon$:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[L_{D,f}(h_S) > \varepsilon] \leq \underset{S \sim \mathcal{D}}{\mathbb{P}}[\mathcal{R}_1 \cup \mathcal{R}_2] \leq \underset{S \sim \mathcal{D}}{\mathbb{P}}[\mathcal{R}_1] + \underset{S \sim \mathcal{D}}{\mathbb{P}}[\mathcal{R}_2] \leq 2(1-\varepsilon)^m \leq 2e^{-\varepsilon m} < \delta \implies m > \frac{1}{\varepsilon}log(\frac{2}{\delta})$$

Case 2: If $h* = h_{\theta_2^*} = \mathbb{1}_{(-\infty, \theta_2^*)}$ (θ_2^* is a threshold such that the hypothesis $h^* = \mathbb{1}_{(-\infty, \theta_2^*)}$ achieves $L_D(h^*) = 0$).

The generelazitation error of h_S will be the probability masses that falls between $-\infty$ and a_S , and b_S and θ_2^* of our hypothesis h^* . Points in these regions are assigned label 0, but they should get label 1.

Case 2.1: If
$$\mathcal{D}((-\infty, \theta_2^*)) \leq \varepsilon$$
 then $\mathbb{P}_{S \sim \mathcal{D}^m}[L_{D,f}(h_S) > \varepsilon] = 0$.

Case 2.2:
$$\mathcal{D}((-\infty, \theta_2^*)) > \varepsilon$$
.

Let \mathcal{R}_1 be the interval $(-\infty, a_S)$, which has probability mass ε , and \mathcal{R}_2 be the interval (b_S, θ_2^*) , which also has probability mass ε .

If
$$\mathcal{R}_S \cap \mathcal{R}_1 = \emptyset$$
 and $\mathcal{R}_S \cap \mathcal{R}_2 = \emptyset$ then $\mathbb{P}_{S \sim \mathcal{D}^m}[L_{D,f}(h_S) > \varepsilon] = 0$.

Else, we have that $\mathbb{P}[x_i \notin \mathcal{R}_2] \leq 1 - \varepsilon$, because \mathcal{R}_2 has probability mass ε . Then

$$\mathbb{P}_{S \sim \mathcal{D}}[\mathcal{R}_1] = \mathbb{P}[x_1 \notin \mathcal{R}_1 \land x_2 \notin \mathcal{R}_1 \land x_m \notin \mathcal{R}_1] = (1 - \varepsilon)^m$$

where the last inequality follows by independence of the x_i 's. Also, by symmetry, we obtain $\underset{S \sim \mathcal{D}}{\mathbb{P}}[\mathcal{R}_1] = (1 - \varepsilon)^m$.

Now, we can bound the probability that $L_{D,h^*}(h_S) > \varepsilon$:

$$\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[L_{D,f}(h_S) > \varepsilon] \leq \underset{S \sim \mathcal{D}}{\mathbb{P}}[\mathcal{R}_1 \cup \mathcal{R}_2] \leq \underset{S \sim \mathcal{D}}{\mathbb{P}}[\mathcal{R}_1] + \underset{S \sim \mathcal{D}}{\mathbb{P}}[\mathcal{R}_2] \leq 2(1-\varepsilon)^m \leq 2e^{-\varepsilon m} < \delta \implies m > \frac{1}{\varepsilon}log(\frac{2}{\delta})$$

Case 3: If $h* = h_{\theta_1^*, \theta_2^*} = \mathbb{1}_{[\theta_1^*, \theta_2^*]}$, then

Case 3.1: If
$$\mathcal{D}([a^*, b^*]) \leq \varepsilon$$
 then $\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[L_{D,f}(h_S) > \varepsilon] = 0$.

Case 3.2: If $\mathcal{D}([a^*, b^*]) > \varepsilon$.

Build
$$\mathcal{R}_1$$
 and \mathcal{R}_2 , $\mathcal{R}_1 = [a^*, a]$, $\mathcal{R}_2 = [b, b^*]$ such that $\mathcal{D}(\mathcal{R}_1) = \mathcal{D}(\mathcal{R}_2) = \frac{\varepsilon}{2}$.

If
$$\mathcal{R}_S \cap \mathcal{R}_1 = \emptyset$$
 and $\mathcal{R}_S \cap \mathcal{R}_2 = \emptyset$ then $\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[L_{D,f}(h_S) > \varepsilon] = 0$.

Else
$$\underset{S \sim \mathcal{D}^m}{\mathbb{P}}[L_{D,f}(h_S) > \varepsilon] \le 2\left(1 - \frac{\varepsilon}{2}\right)^m \le 2e^{-\frac{\varepsilon}{2}m} < \delta \implies m > \frac{2}{\varepsilon}log\left(\frac{2}{\delta}\right).$$

Therefore, for a training set S of size $m \ge m_{\mathcal{H}(\varepsilon,\delta)} = \max\left(\frac{1}{\varepsilon}\log\left(\frac{2}{\delta}\right), \frac{2}{\varepsilon}\log\left(\frac{2}{\delta}\right)\right)$ i.i.d. samples from \mathcal{D} , our learning algorithm \mathcal{A} obtains a hypothesis h_S with $\underset{S \sim D^m}{\mathbb{P}}[L_{D,h^*}(h_S) < \varepsilon] \ge 1-\delta$, showing that H is (ε,δ) - PAC learnable.