# Some Basic Deep Architectures



## Objectives



Objective

Appraise the detailed architecture of a basic convolutional neural network



Objective

Explain the basic concepts and corresponding architecture for autoencoders and recurrent neural networks

#### Overview

# Convolutional Neural Network (CNN)

 will be given the most attention, for its wide range of application

Auto-encoder

Recurrent Neural Networks (RNN)

## Convolutional Neural Network (CNN)

- Most useful for input data defined on grid-like structures, like images or audio
- Built upon concept of "convolution" for signal/image filtering
- Invokes other concepts like pooling, weight-sharing, and (visual) receptive field, etc.

#### Image Filtering via Convolution - 1 of 5



| 255 | 128 | 128 | 240 | 1   | 128 | 24  | 255         |
|-----|-----|-----|-----|-----|-----|-----|-------------|
| 255 | 128 | 245 | 240 | 1   | 128 | 24  | 255         |
| 245 | 128 | 245 | 240 | 1   | 128 | 128 | 128 <i></i> |
| 24  | 24  | 24  | 255 | 255 | 0   | 0   | 0           |
| 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0           |
| 245 | 245 | 128 | 128 | 128 | 128 | 245 | 245         |
| 245 | 245 | 245 | 240 | 240 | 240 | 255 | 240         |
| 255 | 240 | 128 | 240 | 240 | 128 | 240 | 255         |

image

# Image Filtering via Convolution - 2 of 5

| New pixel - |
|-------------|
| value =     |
| (1*255+     |
| 1*128+      |
| 1*128+      |
| 1*255+      |
| 4*128+      |
| 1*245+      |
| 1*245+      |
| 1*128+      |
| 1*245)/12=  |
| 2141/12     |
| =178        |

| 2 <mark>5</mark> 5 | 128         | 128 | 240 | 1   | 128 | 24  | 255 |
|--------------------|-------------|-----|-----|-----|-----|-----|-----|
| 255                | <b>1</b> 28 | 245 | 240 | 1   | 128 | 24  | 255 |
| 245                | 128         | 245 | 240 | 1   | 128 | 128 | 128 |
| 24                 | 24          | 24  | 255 | 255 | 0   | 0   | 0   |
| 0                  | 0           | 0   | 0   | 0   | 0   | 0   | 0   |
| 245                | 245         | 128 | 128 | 128 | 128 | 245 | 245 |
| 245                | 245         | 245 | 240 | 240 | 240 | 255 | 240 |
| 255                | 240         | 128 | 240 | 240 | 128 | 240 | 255 |

#### Image Filtering via Convolution - 3 of 5

| 255 | 128        | 128 | 240 | 1   | 128 | 24  | 255 |
|-----|------------|-----|-----|-----|-----|-----|-----|
| 255 | <u>178</u> | 245 | 240 | 1   | 128 | 24  | 255 |
| 245 | 128        | 245 | 240 | 1   | 128 | 128 | 128 |
| 24  | 24         | 24  | 255 | 255 | 0   | 0   | 0   |
| 0   | 0          | 0   | 0   | 0   | 0   | 0   | 0   |
| 245 | 245        | 128 | 128 | 128 | 128 | 245 | 245 |
| 245 | 245        | 245 | 240 | 240 | 240 | 255 | 240 |
| 255 | 240        | 128 | 240 | 240 | 128 | 240 | 255 |

#### Image Filtering via Convolution - 4 of 5

| New pixel \ |
|-------------|
| value =     |
| (1*128+     |
| 1*128+      |
| 1*240+      |
| 1*178+      |
| 4*245+      |
| 1*240+      |
| 1*128+      |
| 1*245+      |
| 1*240)/12=  |
| 2507/12     |
| =209        |
|             |

| 255 | 128 | 128          | 240  | 1   | 128 | 24  | 255 |
|-----|-----|--------------|------|-----|-----|-----|-----|
| 255 | 178 | <b>2</b> 445 | 2140 | 1   | 128 | 24  | 255 |
| 245 | 128 | 245          | 240  | 1   | 128 | 128 | 128 |
| 24  | 24  | 24           | 255  | 255 | 0   | 0   | 0   |
| 0   | 0   | 0            | 0    | 0   | 0   | 0   | 0   |
| 245 | 245 | 128          | 128  | 128 | 128 | 245 | 245 |
| 245 | 245 | 245          | 240  | 240 | 240 | 255 | 240 |
| 255 | 240 | 128          | 240  | 240 | 128 | 240 | 255 |

#### Image Filtering via Convolution - 5 of 5

| 255 | 128        | 128        | 240 | 1   | 128 | 24  | 255 |
|-----|------------|------------|-----|-----|-----|-----|-----|
| 255 | <u>178</u> | <u>209</u> | 240 | 1   | 128 | 24  | 255 |
| 245 | 128        | 245        | 240 | 1   | 128 | 128 | 128 |
| 24  | 24         | 24         | 255 | 255 | 0   | 0   | 0   |
| 0   | 0          | 0          | 0   | 0   | 0   | 0   | 0   |
| 245 | 245        | 128        | 128 | 128 | 128 | 245 | 245 |
| 245 | 245        | 245        | 240 | 240 | 240 | 255 | 240 |
| 255 | 240        | 128        | 240 | 240 | 128 | 240 | 255 |

#### Image Filtering via Convolution: Kernels

#### **Examples of Kernels:**

| 1 | 1 | 1 |
|---|---|---|
| 1 | 4 | 1 |
| 1 | 1 | 1 |

1/12

Smoothing/Noise-reduction

| 1 | 0 | -1 |
|---|---|----|
| 1 | 0 | -1 |
| 1 | 0 | -1 |

(Vertical) Edge detection

- By varying coefficients of the kernel, we can achieve different goals
  - Smoothing, sharpening, detecting edges, etc.

Better yet: can we learn proper kernels? Part of CNN objective

#### 2D Convolutional Neuron



The sizes of the kernels define the *receptive fields*.

# Convpool Layer



Convolution, pooling, and going through some activations

## Illustrating A Simple CNN



Some convpool layers plus some fully-connected layers