Deuxième partie:

- Espaces vectoriels. Bases. Dimensions
- Espace dual. Transposée d'une application linéaire
- Exercices
- Progression arithmétique
- Progression géométrique
- Logarithmes décimaux

Chap. 4. Algèbre linéaire

§1. Espaces vectoriels. Bases. Dimensions

1.1. Espaces vectoriels

Soit $K \equiv (K, +, \cdot)$ un champ

a. Définition

Un ensemble E a une structure d'espace vectoriel (e. v.) sur K si et seulement si dans E est définie

- i) Une loi de composition interne notée + telle que
 - (E, +) soit un groupe commutatif
- ii) Une loi de composition externe ·

$$\cdot: K \times E \longrightarrow E$$

 $(\alpha, \vec{x}) \mapsto \alpha \cdot \vec{x}$ de sorte que soient vérifiés les axiomes suivants :

- 1. $\forall \alpha \in K, \forall \vec{x}, \vec{y} \in E$; $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$
- 2. $\forall \alpha, \beta \in K, \forall \vec{x} \in E$; $(\alpha + \beta)\vec{x} = \alpha \vec{x} + \beta \vec{x}$
- 3. $\forall \alpha, \beta \in K, \forall \vec{x} \in E ; \alpha(\beta \vec{x}) = (\alpha \beta) \vec{x}$
- $4. \ \forall \vec{x} \in E, 1. \vec{x} = \vec{x}$

b. Terminologie

Si E est e. v. sur K, alors

Les éléments de *E* sont appelés *vecteurs* (et souvent surmontés par une flèche)

Les éléments de K sont appelés scalaires ou opérateurs et

K est appelé domaine d'opérateurs

c. Conséquences immédiates des axiomes

Proposition

Si E est un e. v. sur K, alors on a les propriétés :

 $\forall \alpha \in K, \forall \vec{x} \in E$:

$$\underline{\text{c.1.}} \ \alpha \vec{0} = \vec{0} \ \text{et} \ 0 \vec{x} = \vec{0}$$

c.2.
$$\alpha \vec{x} = \vec{0} \implies \alpha = 0$$
 ou $\vec{x} = \vec{0}$

$$\overline{\underline{\text{c.3.}}} (-1)\vec{x} = -\vec{x}$$

<u>Démonstration</u>

$$\underline{c.1.} \ \alpha \vec{0} = \alpha (\vec{0} + \vec{0}) = \alpha \vec{0} + \alpha \vec{0} \Longrightarrow (\text{dans } E) \ \alpha \vec{0} = \vec{0}$$

De même
$$0\vec{x} = (0+0)\vec{x} = 0\vec{x} + 0\vec{x} \Rightarrow 0\vec{x} = \vec{0}$$

<u>c.2.</u> Montrons que $\alpha \vec{x} = \vec{0} \implies \alpha = 0$ ou $\vec{x} = \vec{0}$ Si $\alpha = 0$, c'est démontré

Supposons $\alpha \neq 0$, on a :

$$\vec{x} = 1 \cdot \vec{x} = \left(\alpha \cdot \frac{1}{\alpha}\right) \vec{x} = \frac{1}{\alpha} (\alpha \vec{x}); \ \frac{1}{\alpha} (\alpha \vec{x}) = \frac{1}{\alpha} \vec{0} = \vec{0} \Longrightarrow \vec{x} = \vec{0}$$

On a:

$$\vec{0} = 0\vec{x} = (1-1)\vec{x} = 1.\vec{x} + (-1)\vec{x} = \vec{x} + (-1)\vec{x};$$

$$\vec{x} + (-1)\vec{x} = \vec{0}$$
. D'où $(-1)\vec{x}$ est l'opposé de \vec{x} c'est – à – dire $(-1)\vec{x} = -\vec{x}$

Exemples d'e. v.

 $(1)\mathbb{R}$ est un e.v. sur \mathbb{R}

 \mathbb{R}^2 est un e.v. sur \mathbb{R} (T.P.)

... \mathbb{R}^n est un e.v. sur \mathbb{R}

(2) Soit I un ensemble, alors $E = \mathfrak{I}(I, \mathbb{R})$: ensemble des fonctions définies de I dans \mathbb{R} est un e. v. sur \mathbb{R}

1.2. Sous - espaces vectoriels

a. Définition

Soit *E e. v.* sur *K*

Une partie F, non vide de E, est un sous – espace vectoriel (s.e.v.) si, pour les restrictions à F de la loi interne + et de la loi externe (dans le domaine d'opérateurs soit K), F est un e.v. sur K

Exemples

- (1) Soit $E = \mathbb{R} \times \mathbb{R}$ $e. v. sur \mathbb{R}$ Alors $F = \mathbb{R} \times \{0\}$ est un s. e. v. de E
- (2) Soit $I = [0,1] \subset \mathbb{R}$ et soit $F = C(I,\mathbb{R})$ l'ensemble des contenues de I dans \mathbb{R} alors F est un s.e.v. de $E = \mathfrak{F}(I,\mathbb{R})$
- b. <u>Proposition caractérisant les s. e. v.</u>

Soit *E e.v.* sur *K*

Une partie non vide $F \subseteq E$ est un s.e.v. si et seulement si

- i) $\forall x, y \in F$; $x + y \in F$
- ii) $\forall \alpha \in K, \forall x \in F$; $\alpha x \in F$

ou

 $\forall x, y \in F, \forall \alpha, \beta \in K; \alpha x + \beta y \in F$

Démonstration

- La condition est évidemment nécessaire ⇒
- Montrons que la condition est suffisante ←

Soit *F* une partie non vide de *E*

 α) les axiomes concernant la loi de composition externe sont vérifiés

axiome 1:
$$\forall \alpha \in K \text{ et } x, y \in F, \alpha(x+y) = \alpha x + \alpha y$$

En effet, soit $\alpha \in K$ et $x, y \in F$

Alors d'après i) $x + y \in F$ et d'après ii) $\alpha(x + y) \in F$

D'autre part, d'après ii) αx et $\alpha y \in F$ et d'après i) $\alpha x + \alpha y \in F$

Enfin, l'égalité $\alpha(x + y) = \alpha x + \alpha y$ est vérifiée dans F

Car elle l'est dans E

axiome 2: $\forall \alpha, \beta \in K \text{ et } x \in F, (\alpha + \beta)x = \alpha x + \beta x$

En effet, soit $\alpha, \beta \in K, x \in F$

Alors d'après ii) et i) αx , βx , $\alpha x + \beta x$ et $(\alpha + \beta)x \in F$

et donc, $(\alpha + \beta)x = \alpha x + \beta x$ dans E, et donc dans F

axiome 3: $\forall \alpha, \beta \in K \text{ et } \forall x \in F, \alpha(\beta x) = (\alpha \beta)x$

De même pour $\alpha, \beta \in K$ et $x \in F$

D'après ii) $\alpha(\beta x) \in F$, $(\alpha \beta) x \in F$ et $\alpha(\beta x) = (\alpha \beta) x$ dans E

axiome 4 : Dans E, et donc dans F, $\forall x$, 1.x = x

 β) les axiomes concernant la loi + sont vérifiés

Par exemple:

Associativité: $\forall x, y, z \in F, (x + y) + z = x + (y + z)$

<u>axiome 2</u>: existence de l'élément neutre et, axiome 3: commutativité sont évidemment vérifiés.

<u>axiome 3</u>: Tout élément x admet un opposé x'

L'opposé x' de x étant (-1)x

En effet, $\forall x \in F, x' = (-1)x \in F$ d'après ii)

Donc la conjonction des conditions a) et b) suffisent pour que F non vide soit un s. e. v. de E

c. <u>Intersection de sous – espaces vectoriels</u>

c.1. Théorème

Soit $\{F_i\}_{i\in J}$ une famille de s.e.v. d'un e.v. E sur K alors $\bigcap_{i\in F} F_i$ est un s.e.v. de E

Démonstration

Soit
$$F = \bigcap_{i \in I} F_i$$

- $F \neq \emptyset$ car $0 \in F$. En effet, $0 \in F_i$, $\forall i \in J \implies 0 \in F$
- $\forall \alpha, \beta \in K, \forall x, y \in F, \alpha x + \beta y \in F$

En effet, $\forall x, y \in F \Longrightarrow x, y \in F_i, \forall i \in J$

On a : $x + y \in F_i$, $\forall i \in J \text{ (car } F_i \text{ s. e. } v. \text{ de } E)$

$$\alpha x + \beta y \in F_i$$
, $\forall i \in J \ (\operatorname{car} F_i \ s. \ e. \ v. \ \operatorname{de} E)$

$$\Rightarrow \alpha x + \beta y \in F$$

c.2. Sous – espace engendré

Soient E e. v. sur K et $S \subseteq E$

 $\{F_i\}_{i\in J}$ famille de tous les $s.\,e.\,v.$ de E contenant l'ensemble S

D'après le théorème ci – dessus $\bigcap_{i \in I} F_i$ est un s. e. v.

En plus, puisque $S \subset F_i \ \forall i \in J, S \subseteq \bigcap F_i$

D'autre part si F' est un s.e.v. de E contenant S

Alors F' est égal à l'un des F_i de la famille de s.e.v. considérés

Donc $\cap F_i \subseteq F'$ d'où la proposition

Proposition

L'intersection de tous les s.e.v. contenant une partie S de E est le plus petit s.e.v. contenant S. Ce s.e.v. est noté $Eng\ S$ ou encore V(S) et appelé sous – $espace\ vectoriel\ engendr$ é par S

d. Somme de sous - espaces

Soit
$$F_1, F_2, \dots, F_q$$
 des $s. e. v.$ de E

$$F_1 + F_2 + \dots + F_q = \{x = x_1 + x_2 + \dots + x_q / x_1 \in F_1, x_2 \in F_2, \dots, x_q \in F_q \}$$
 d.1. Proposition

$$F_1 + F_2 + \cdots + F_q$$
 est un s. e. v. de E et égal à $V(F_1 \cup F_2 \cup ... \cup F_q)$

Démonstration

Soit
$$F = F_1 + F_2 + \cdots + F_q$$

- $F \neq \emptyset$ car $0 = 0 + 0 + \dots + 0 \in F$

- $\forall \alpha, \beta \in K \text{ et } \forall x, y \in F, \alpha x + \beta y \in F$ En effet,

$$\forall x \in F, x = x_1 + x_2 + \dots + x_q \text{ avec } x_1 \in F_1, x_2 \in F_2, \dots, x_q \in F_q \\ \forall y \in F, y = y_1 + y_2 + \dots + y_q \text{ avec } y_1 \in F_1, y_2 \in F_2, \dots, y_q \in F_q \\ \text{On a : } \alpha x + \beta y = \alpha x_1 + \beta y_1 + \alpha x_2 + \beta y_2 + \dots + \alpha x_q + \beta y_q \in F, \\ \alpha x_i + \beta y_i \in F_i \quad \forall i = 1, 2, \dots, q$$

Donc F est un s. e. v. de E

<u>d.2.</u> En général, l'union de s.e.v. de E n'est pas un s.e.v. de E Considérons $E = \mathbb{R}^2$

Soient
$$F_1 = {\vec{x} = (x_1, x_2)/x_2 = 0}$$
 l'axe des abscisses $F_2 = {\vec{x} = (x_1, x_2)/x_1 = 0}$ l'axe des ordonnés

On a F_1 et F_2 s. e. v. de E

Mais $F_1 \cup F_2$ n'est pas un s. e. v. de E

On a par exemple

$$\vec{x} = (1,0)$$
 $\vec{y} = (0,1)$
 $(1,0) \in F_1$; $(0,1) \in F_2$; $(1,0) \in F_1 \cup F_2$; $(0,1) \in F_1 \cup F_2$
Mais $(1,0) + (0,1) \notin F_1 \cup F_2$

<u>d.3.</u> Lorsque les s. e. v. $F_1, \overline{F_2}, \dots, F_q$ sont tels que

 $F_i\cap F_j=\{0\}$ pour $i\neq j$, leur somme interne $F_1+F_2+\cdots+F_q$ est appelée somme directe interne et est notée $F_1\oplus F_2\oplus\ldots\oplus F_q$

- Deux s.e.v. F_1 et F_2 de E sont dits complémentaires

$$\operatorname{si} \begin{cases} F_1 \cap \bar{F}_2 = \{0\} \\ F_1 \oplus F_2 = E \end{cases}$$

d.4. Proposition

Dans une somme directe $F_1 \oplus F_2$ de s. e. v., la décomposition d'un vecteur $x = x_1 + x_2$, par des $x_i \in F_i$ est unique. Vice – versa, si tout vecteur $x \in F_1 + F_2$ s'écrit d'une manière unique sous la forme $x = x_1 + x_2$ alors $F_1 \cap F_2 = \{0\}$

Démonstration

Soient
$$x = x_1 + x_2$$
 et $x' = x_1' + x_2'$ deux décompositions de $x \in F_1 + F_2$; $x_1, x_1' \in F_1$ et $x_2, x_2' \in F_2$
Alors $x_1 + x_2 = x_1' + x_2' \Longrightarrow x_1 - x_1' = x_2' - x_2$
Or $x_1 - x_1' \in F_1$ et F_2 ; $x_2' - x_2 \in F_1$ et F_2

Donc
$$x_1-x_1'\in F_1\cap F_2=\{0\}$$
. D'où $x_1-x_1'=0$ ou $x_1=x_1'$ De même $x_2'-x_2=0$ ou $x_2=x_2'$ Vice – versa, soit $z\in F_1\cap F_2$, alors $z+(-z)$ et $0+0$ sont deux décompositions du vecteur 0 dans F_1+F_2 donc $z=0$ ceci montre que $F_1\cap F_2=\{0\}$

e. Produit d'espaces vectoriels

Soient $E_1, E_2, ..., E_q$ des e.v. sur un champ K, et $E = E_1 \times E_2 \times ... \times E_q$ le produit cartésien

Posons

$$(x_1, x_2, \dots, x_q) + (y_1, y_2, \dots, y_q) = (x_1 + y_1, x_2 + y_2, \dots, x_q + y_q)$$

$$\alpha(x_1, x_2, \dots, x_q) = (\alpha x_1, \alpha x_2, \dots, \alpha x_q)$$

Alors E muni de ces opérations est un e.v. sur K appelé espace vectoriel produit (T.P.)

f. Espace vectoriel quotient

Soit *F s. e. v.* de *E* sur *K*

<u>f.1.</u> Considérons la relation d'équivalence \equiv modulo le sous – groupe F $x,y\in E,x\equiv y\ (\mathrm{mod}\ F) \Leftrightarrow x-y\in F$ cl(a)=a+F $E/_F$: le quotient de E par la relation d'équivalence $\mathrm{mod}\ F$ (E,+) étant par définition un groupe abélien, F est un sous – groupe

(E, +) étant par définition un groupe abélien, F est un sous – groupe distingué. On peut définir sur E/F deux lois :

- La loi interne par cl(x) + cl(y) = cl(x + y)
- La loi externe de K sur E/F par : α $cl(x) = cl(\alpha x)$. La loi externe est bien définie

En effet, si $x' \in cl(x)$ c'est – à – dire $x' \equiv x \pmod{F} \Rightarrow x' - x \in F$ On a : $\alpha(x - x') = \alpha x' - \alpha x \in F \pmod{F}$ car F s. e. v.) D'où $\alpha x' \equiv \alpha x \pmod{F} \Rightarrow cl(\alpha x') = cl(\alpha x)$

<u>f.2. Proposition</u>

L'ensemble quotient $^E/_F$ muni de deux opérations définies ci – dessus est un e.v. sur K appelé espace vectoriel quotient (T.P.)

1.3. Structure d'algèbre sur un corps *K*

a. <u>Définition</u>

Soit *A* un ensemble et *K* un champ.

Un système $(A, +, \times, \cdot)$, formé d'un ensemble A, de deux lois internes + et \times sur A, et d'une loi externe \cdot de K sur A, a une structure d'algèbre sur K si et seulement si

- i) $(A, +, \times)$ est un anneau
- ii) $(A, +, \cdot)$ est un e. v. sur K

iii) $\forall x, y \in A \text{ et } \forall \lambda \in K, \lambda(x \times y) = (\lambda x) \times y = x \times (\lambda y)$ Exemples

- (1) Tout corps commutatif K (p.c. \mathbb{R}) est une algèbre sur lui même
- (2) Le corps des complexes \mathbb{C} , e. v. sur \mathbb{R} , est une algèbre sur \mathbb{R}
- (3) K^n muni des opérations

$$x + y = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$

$$xy = (x_1y_1, x_2y_2, ..., x_ny_n)$$

$$\lambda x = (\lambda x_1, \lambda x_2, ..., \lambda x_n) \text{ avec } x = (x_1, x_2, ..., x_n) \text{ et } y = (y_1, y_2, ..., y_n) \text{ est une algèbre sur } K$$

- (4) $\forall n \in \mathbb{N}^*$, le système ($\mathfrak{M}_n(K)$, +,×, ·) est une algèbre appelée l'algèbre des matrices carrées d'ordre n à coefficients dans K
- (5) Pour tout champ K, le système $(K[x], +, \times, \cdot)$ est une algèbre. C'est l'algèbre des polynômes à une indéterminée x et à coefficients dans K
- b. Sous algèbre

Définition

Soit $(A, +, \times, \cdot)$ une algèbre sur K. Un sous – ensemble $F \subseteq A$ est appelé sous – algèbre de l'algèbre $(A, +, \times, \cdot)$ lorsque les trois lois de A restreintes aux éléments de F conférant à F la structure d'algèbre sur K

Autrement dit

F est sous – algèbre de l'algèbre $(A, +, \times, \cdot)$ sur K si et seulement si

- i) F est un sous anneau de $(A, +, \times)$
- ii) F est un s.e.v. de $(A, +, \cdot)$

Exemple

- (1) Soit A un corps, F un sous corps de A, K un sous corps de F c'est à dire $K \subseteq F \subseteq A$; alors F est sous algèbre de l'algèbre A
- (2) Soit K un champ, alors $F = \{(\alpha, 0, ..., 0)/\alpha \in K\}$... est sous algèbre de l'algèbre A^n sur K

1.4. Relations linéaires - Bases - Dimensions

a. Combinaisons linéaires

Soit E un e. v. sur K et $S \subseteq E$ une partie de E

a.1. Définition

On appelle combinaison linéaire (C.L.) d'éléments de S, tout vecteur $x \in E$ de la forme

$$\begin{split} x &= \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_r x_r \text{ où } x_1, x_2, \dots, x_r \in S \\ &\qquad \alpha_1, \alpha_2, \dots, \alpha_r \in K \\ &\qquad \alpha_1, \alpha_2, \dots, \alpha_r \text{ sont les coefficients de la } C.L. \end{split}$$

a.2. Proposition

L'ensemble de toutes les C.L. K(S) d'une partie $S \subseteq E$ est un s.e.v. de E. Ce s.e.v. est en fait égal au s.e.v. engendré par S c'est – à – dire V(S) Démonstration

Soit K(S) l'ensemble de toutes les C.L. d'éléments de S

- $K(S) \neq \emptyset$ car $0 = \alpha_1 0 + \alpha_2 0 + \dots + \alpha_r 0 \in K(S)$
- $\forall x, y \in K(S), \forall m, n \in K; mx + ny \in K$

On a :
$$x, y \in K(S)$$
 ; $x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_r x_r$
$$y = \beta_1 y_1 + \beta_2 y_2 + \dots + \beta_r y_r$$

$$mx + ny = (m\alpha_1)x_1 + (m\alpha_2)x_2 + \dots + (m\alpha_r)x_r + (n\beta_1)y_1 + (n\beta_2)y_2 + \dots + (n\beta_r)y_r \in K$$
 - Montrons en plus que $K(S) = V(S)$
$$\forall z \in S, z = 1. \ z \Longrightarrow S \subseteq K(S)$$

Comme K(S) est le plus petit s. e. v. contenant S, alors $V(S) \subseteq K(S)$

D'autre part, $\forall x \in K(S), x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_r x_r$

Mais $x_1, x_2, ..., x_r \in S$. Donc $\in V(S)$, on a:

 $\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_r x_r \in V(S)$ (car V(S) s. e. v.)

Donc $K(S) \subseteq V(S)$ et K(S) = V(S)

Exemple

Soit l'e. v. \mathbb{R}^3 et le sous – ensemble $S = \left\{ \left(-1,0,\frac{1}{2}\right), (0,2,1) \right\}$ Une C.L. d'éléments de S est un vecteur $x = (x_1, x_2, x_3)$ de la forme

$$x = \alpha_1 \left(-1, 0, \frac{1}{2}\right) + \alpha_2(0, 2, 1) = \left(-\alpha_1, 2\alpha_2, \frac{\alpha_1}{2} + \alpha_2\right)$$

b. Partie génératrice

Définition

Une partie S d'un e. v. E est dite **génératrice** de E lorsque K(S) = E c'est - à - dire lorsque tout élément de E est C. L. d'éléments de S. On dit que S engendre E

Exemple

Soit $S = \{1, i\}$ sous –ensemble de l'e. v. \mathbb{C} sur \mathbb{R}

On a: $K(S) = V(S) = \{x + yi/x, y \in \mathbb{R}\} = \mathbb{C}$

D'où $S = \{1, i\}$ est une partie de \mathbb{C} génératrice de \mathbb{C}

c. Indépendance linéaire

c.1. Définitions

Un sous – ensemble S d'un e.v.E est dit linéairement indépendant (ou libre) si et seulement si

 $\forall x_1, x_2, ..., x_r \in S, \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_r x_r = \vec{0} \Rightarrow \alpha_1 = 0, \alpha_2 = 0, ..., \alpha_r = 0$ Un sous – ensemble S d'un e. v. E est dit linéairement dépendant (ou lié) si et seulement s'il n'est pas libre c'est – à – dire

 $\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_rx_r=\vec{0}$ et l'un au moins des coefficients $\alpha_1,\alpha_2,\ldots,\alpha_r$ est non nul

<u>Exemples</u>

Si $\vec{x} \neq \vec{0}$ alors $\{\vec{x}\}$ est libre car $\alpha \vec{x} = 0 \implies \alpha = 0$

 $\{\vec{0}\}$ est une partie liée car $1\vec{0} = \vec{0}$ avec $1 \neq 0$

Dans $\mathbb{R}^3 = \{\overrightarrow{e_1} = (1,0,0), \overrightarrow{e_2} = (0,1,0), \overrightarrow{e_3} = (0,0,1)\}$ est libre Car $\forall \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3} \in \mathbb{R}^3, \alpha_1 \overrightarrow{e_1} + \alpha_2 \overrightarrow{e_2} + \alpha_3 \overrightarrow{e_3} = 0 \Rightarrow \alpha_1 = \alpha_2 = \alpha_3 = 0$

c.2. Toute relation de la forme

 $\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_rx_r=0$ est appelée **relation linéaire** entre les vecteurs x_1,x_2,\ldots,x_r

La relation $0x_1 + 0x_2 + \cdots + 0x_r$ est appelée relation **linéaire triviale** c.3. Proposition

Soient S et S' deux sous – ensembles d'un e.v. tel que $S \subseteq S'$

Si S est lié alors S' est aussi lié. Inversement si S' est libre alors S est aussi libre (Expliquez)

c.4. Théorème

Si un système de vecteurs est lié, alors l'un au moins des vecteurs du système est une *C. L.* des autres

Démonstration

Soit $S = \{x_1, x_2, \dots, x_r\}$ une partie libre alors $\exists \alpha_1, \alpha_2, \dots, \alpha_r$ non tous $\text{nuls}/\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_r x_r = 0$

Supposons $\alpha_3 \neq 0$, alors α_3 est inversible dans K

On a:
$$\alpha_3 x_3 = -\alpha_1 x_1 - \alpha_2 x_2 - \dots - \alpha_r x_r$$

$$\Rightarrow x_3 = -\frac{\alpha_1}{\alpha_3} x_1 - \frac{\alpha_2}{\alpha_3} x_2 - \dots - \frac{\alpha_r}{\alpha_3} x_r$$

Le vecteur x_3 est donc une C.L. des autres vecteurs

Exemple

Dans
$$\mathbb{R}^3$$
, le sous – ensemble $S = \{x_1, x_2\}$ avec $x_1 = (2, -1, 0)$ et $x_2 = \left(-1, \frac{1}{2}, 0\right)$ est lié par la relation $x_1 + 2x_2 = 0 \Longrightarrow x_1 = -2x_2$

d. Base

d.1. Définition

On appelle base d'un *e. v. E*, toute partie de *E* à la fois libre et génératrice. Exemples

 $B = \{2\}$ est une base de \mathbb{R}

 $B = \{(1,0), (0,1)\}$ est une base de \mathbb{R}^2

d.2. Définitions et propositions

Définition 1 (Partie génératrice minimale)

Soit S une partie génératrice de E telle que $S \setminus \{x_2\}$ est non génératrice de E ($x \in S$). Alors on dit que S est une partie génératrice minimale Proposition 1

$$Si S = \{x_1, x_2, ..., x_n\}$$
 est une partie génératrice et

$$\forall \alpha_1, \alpha_2, \dots, \alpha_n \in K : \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n = 0 (Q)$$

$$\Rightarrow \alpha_1 = \alpha_2 = \dots = \alpha_n = 0 (R)$$

Alors $\forall i \in \{1,2,...,n\} = I, S - \{x_i\}$ est non génératrice (S)

(c'est – à – dire S est une partie génératrice minimale)

$$[(P \land Q) \Longrightarrow R] \Longrightarrow S$$

Montrons que $\neg S \Rightarrow \neg [(P \land Q) \Rightarrow R]$

 $\neg S$ signifie $S - \{x_i\}$ est une partie génératrice de E

On en déduit que

 $\forall i \in I, x_i \text{ est une } C.L. \text{ des éléments de } S - \{x_i\}$

On a:

$$x_{i} = \alpha_{1}x_{1} + \alpha_{2}x_{2} + \dots + \alpha_{i-1}x_{i-1} + \alpha_{i+1}x_{i+1} + \dots + \alpha_{n}x_{n}$$

$$\downarrow \downarrow$$

$$\alpha_{1}x_{1} + \alpha_{2}x_{2} + \dots + \alpha_{i-1}x_{i-1} + \alpha_{i+1}x_{i+1} + (-1)x_{i} + \dots + \alpha_{n}x_{n} = \vec{0}$$

$$\Rightarrow \alpha_{1} = \alpha_{2} = \dots = -1 = 0 = \dots = \alpha_{n}$$

$$D'où \neg S \Rightarrow \neg [(P \land Q) \Rightarrow R]$$

Proposition 2

Si
$$S = \{x_1, x_2, ..., x_n\}$$
 est une partie génératrice de E : (P)

et
$$\forall i \in I, S - \{x_i\}$$
 est non génératrice $: (Q)$
Alors $\forall \alpha_1, \alpha_2, ..., \alpha_n \in K : \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = \vec{0} : (R)$
 $\Rightarrow \alpha_1 = \alpha_2 = \cdots = \alpha_n = 0 : (S)$

<u>Démonstration</u>

$$(P \land Q) \Longrightarrow (R \Longrightarrow S)$$

Montrons que $\neg (R \Longrightarrow S) \Longrightarrow \neg (P \land Q)$

(C'est – à – dire si S est une partie liée alors S n'est pas une partie génératrice minimale)

 $\neg(R \Rightarrow S)$ signifie qu'il existe une C.L. nulle à coefficients non tous nuls Soit α_k , ce coefficient

On a :
$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_k x_k + \dots + \alpha_n x_n = \vec{0}$$
 $(\alpha_k \neq 0)$

$$\Rightarrow \frac{\alpha_1}{\alpha_k} x_1 + \frac{\alpha_2}{\alpha_k} x_2 + \dots + 1. x_k + \dots + \frac{\alpha_n}{\alpha_k} x_n = \vec{0}$$

$$x_k = -\left(\frac{\alpha_1}{\alpha_k} x_1 + \frac{\alpha_2}{\alpha_k} x_2 + \dots + \frac{\alpha_n}{\alpha_k} x_n\right)$$

$$= \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

Ainsi x_k s'écrit comme une $C.L. \operatorname{de} S - \{x_k\}$

Ce qui contredit Q donc $P \wedge Q$ faux

Définition 2 (partie génératrice libre)

Si $S = \{x_1, x_2, ..., x_n\}$ est une partie génératrice libre, donc minimale, alors $\{x_1, x_2, ..., x_n, x\}$ est une partie liée. S est donc une partie libre telle que si on lui ajoute un élément quelconque x, elle cesse de l'être. On dit que S est une **famille libre maximale**. Réciproquement, Soit $L_M = \{x_1, x_2, ..., x_n\}$ une partie libre maximale c'est – à – dire telle que $L_M \cup \{x\}$ soit liée, alors tout x de E est une C. L. de $x_1, x_2, ..., x_n$. Donc $\{x_1, x_2, ..., x_n\}$ est une partie génératrice, par ailleurs libre, de E

Conclusion

S partie génératrice minimale

1

S partie génératrice libre

1

S partie libre maximale

d.3. Existence de base

Théorème

Soit E un e.v. sur un champ K. Soient G une partie génératrice de E et L une partie libre contenue dans $G:L\subseteq G$. Alors il existe une base B de E telle que $L\subseteq B\subseteq G$ Corollaire 1

Tout e. v. admet une base

En effet, soit *E* un *e*. *v*.

Si $E = \{0\}$, alors $E = \emptyset$ est une base de E

Supposons $E \neq \{0\}$, soit $x \in E$ et $x \neq 0$

Alors $L = \{x\}$ est libre, car $\alpha x = 0 \implies \alpha = 0$

D'où, en appliquant le théorème précédent avec $L = \{x\}$ et G = E on a le résultat Corollaire 2

Soit *F* un *s*. *e*. *v*. d'un *e*. *v*. *E*

Si B_o est une base de F alors il existe une base B de E contenant B_o c'est – à – dire il existe une base $B \setminus B_o \subset B$

En effet, comme B_o est une partie libre, il suffit d'appliquer le même théorème précédent avec $L \subset B_o$ et G = E

d.4. Expression d'un vecteur à l'aide d'une base

Théorème

Tout vecteur d'un e. v. E s'exprime, de façon unique, comme C. L. des vecteurs d'une base de *E*

Démonstration

Soit $B = \{e_1, e_2, ..., e_n\}$ une base dont les éléments sont considérés suivants un certain ordre

$$\forall x \in E, x = \alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n \text{ où } \alpha_i \in K$$

Supposons que x s'exprime de deux façons comme C.L. des éléments de B, on a :

$$x = \alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n = \alpha'_1 e_1 + \alpha'_2 e_2 + \dots + \alpha'_n e_n$$

$$\Rightarrow (\alpha_1 - \alpha'_1) e_1 + (\alpha_2 - \alpha'_2) e_2 + \dots + (\alpha_n - \alpha'_n) e_n = \vec{0}$$

D'où, *B* étant une partie libre,

e partie libre,
$$\begin{cases} \alpha_1 - {\alpha'}_1 = 0 \\ \alpha_2 - {\alpha'}_2 = 0 \\ \dots \\ \alpha_n - {\alpha'}_n = 0 \end{cases} \quad \text{ou} \quad \begin{cases} \alpha_1 = {\alpha'}_1 \\ \alpha_2 = {\alpha'}_2 \\ \dots \\ \alpha_n = {\alpha'}_n \end{cases}$$

Notation

Soit
$$I = \{1.2, ..., n\}, x = \alpha_1 e_1 + \alpha_2 e_2 + \cdots + \alpha_n e_n = \sum_i \alpha_i e_i$$
 qu'on note

Soit
$$I = \{1, 2, ..., n\}, x = \alpha_1 e_1 + \alpha_2 e_2 + \cdots + \alpha_n e_n = \sum \alpha_i e_i \text{ qu'on note}$$

souvent $x = (\alpha_1, \alpha_2, ..., \alpha_n) \text{ ou} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ ... \\ \alpha_n \end{pmatrix}$

Les scalaires $\alpha_1, \alpha_2, \dots, \alpha_n$ sont appelés coordonnées de x par rapport à la base $B = \{e_1, e_2, ..., e_n\}$

e. <u>Dimension d'un espace vectoriel</u>

e.1. Définition

Un e. v. est dit de dimension finie lorsqu'il admet une partie génératrice à un nombre fini d'éléments

e.2. Théorème

Dans un e. v. E de dimension finie sur le corps K, toutes les bases ont le même nombre d'éléments

Démonstration

On sait que tout e. v. E de dimension finie admet au moins une base B (d'après quel théorème?)

Soit *n*, le nombre de ses éléments

Soit B', une autre base ayant n' éléments

B' étant une partie libre et ses éléments étant des C. L. des éléments de B

On a : $n' \le n$. De même $n \le n'$. D'où n = n'e.3. Définition

La dimension d'un *e. v. E* est le nombre d'éléments d'une base quelconque de *E* e.4. Théorème

Tout e. v. E de dimension n sur K est isomorphe à K^n , e. v. sur K<u>Démonstration</u>

Soit $\{a_1, a_2, \dots, a_n\}$ une base de E

$$\forall x \in E, x = \alpha_1 a_1 + \alpha_2 a_2 + \dots + \alpha_n a_n$$

On considère l'application $f : E \longrightarrow K^n$

$$x \mapsto f(x) = (\alpha_1, \alpha_2, ..., \alpha_n)$$

f est une bijection (vérifier)

D'autre part, si

$$y = \beta_{1}a_{1} + \beta_{2}a_{2} + \dots + \beta_{n}a_{n}$$

$$f(y) = (\beta_{1}, \beta_{2}, \dots, \beta_{n})$$
On a: $f(x + y) = (\alpha_{1} + \beta_{1}, \alpha_{2} + \beta_{2}, \dots, \alpha_{n} + \beta_{n})$

$$= (\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) + (\beta_{1}, \beta_{2}, \dots, \beta_{n}) = f(x) + f(y)$$

$$f(\lambda x) = (\lambda \alpha_{1}, \lambda \alpha_{2}, \dots, \lambda \alpha_{n}) = \lambda(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n})$$

Corollaire

Deux *e. v.* de dimension finie sur le même corps *K* sont isomorphes si et seulement si ils ont une même dimension par rapport à K Exemples

- (1) Tout corps *K* est un *e. v.* de dimension 1 sur lui même
- (2) \mathbb{C} est un e. v. sur \mathbb{R}

Alors $B = \{1 = (1,0), i = (0,1)\}$ est une base de \mathbb{C} ou tout couple de nombres complexes formant une partie libre dans \mathbb{C} , e. v. sur \mathbb{R} c'est – à – dire tel que $\frac{z_1}{z_2} \notin \mathbb{R}$ alors $\forall z \in \mathbb{C}$, $z = \alpha_1 z_1 + \alpha_2 z_2$

Donc
$$Dim_{\mathbb{R}}\mathbb{C}=2$$
 ; $Dim_{\mathbb{C}}\mathbb{C}=1$

f. Dimension d'un sous – espace vectoriel

<u>f.1. Théorème</u> : si F est un s.e.v. de l'e.v.E de dim n sur K alors F est dimension finie sur K et $\dim_K F \leq \dim_K E$. Réciproquement toute partie à p éléments de E engendre un s. e. v. de E, de dim p. Enfin, $\dim_K F = \dim_K E \Longrightarrow F = E$ <u>Démonstration</u>

Soit *E* un *e*. *v*. de dimension n > 0 sur *K* (donc $E \neq \{0\}$) et *F* s. e. v. de *E*, $E \neq \{0\}$. On sait que toute partie libre L de F est une partie libre de E et a donc au plus n éléments.

L a au moins un élément non nul car $F \neq \{0\}$

Il y a donc dans *F* des parties libres.

Soit p le nombre d'éléments d'une partie libre maximale de F

Donc c'est une base de F et $1 \le p \le n$

Si p = n, c'est une base de E et E = F

Si
$$F = \{0\}$$
, dim $_K F = 0$

Enfin si $E = \{0\}$, on a également $F = \{0\}$

f.2. Un s. e. v. F de dim 1 s'appelle une droite passant par $0 \in E$

$$F = {\alpha \alpha / \alpha \in K}, \alpha \neq 0 \text{ et } B = {\alpha}$$

Un s. e. v. F de dim 2 s'appelle un plan passant par $0 \in E$

$$F = \{\alpha_1 a_1 + \alpha_2 a_2 / \alpha_1, \alpha_2 \in K\} \text{ avec } B = \{a_1, a_2\}$$

Un s. e. v. de dim p > 2 de base $\{a_1, a_2, ..., a_p\}$ est décrit par

$$x/x = \sum_{i=1}^{p} \alpha_i a_i, \ \alpha_i \in K$$

Si p = n - 1, on dit que F est un **hyperplan** passant par $0 \in E$

g. Changement de bases - Matrices de passage

Soient $B = \{a_1, a_2, ..., a_n\}$ et $B' = \{b_1, b_2, ..., b_n\}$ deux bases ordonnées d'un e. v. E

$$\forall x \in E, x = x_1 a_1 + x_2 a_2 + \dots + x_n a_n \text{ dans la base } B$$
 (1)

$$x = x_1'b_1 + x_2'b_2 + \dots + x_n'b_n$$
 dans la base B' (2)

Etablissons la relation qui existe entre les coordonnées

 x_1, x_2, \dots, x_n de x dans la base B et ses coordonnées

 x_1', x_2', \dots, x_n' dans la base B'

En effet, les vecteurs $b_1, b_2, ..., b_n$ de la base B', dans B s'écrivent

$$b_{1} = \alpha_{11}a_{1} + \alpha_{21}a_{2} + \dots + \alpha_{n1}a_{n}$$

$$b_{2} = \alpha_{12}a_{1} + \alpha_{22}a_{2} + \dots + \alpha_{n2}a_{n}$$
...
...
...
...
(3)

$$b_n = \alpha_{1n}a_1 + \alpha_{2n}a_2 + \dots + \alpha_{nn}a_n$$

(3) dans (2) donne

$$\begin{split} x &= x_1'(\alpha_{11}a_1 + \alpha_{21}a_2 + \dots + \alpha_{n1}a_n) + x_2'(\alpha_{12}a_1 + \alpha_{22}a_2 + \dots + \alpha_{n2}a_n) + \dots + \\ &\quad x_n'(\alpha_{1n}a_1 + \alpha_{2n}a_2 + \dots + \alpha_{nn}a_n) \\ &= (x_1'\alpha_{11}a_1 + x_2'\alpha_{12}a_1 + \dots + x_n'\alpha_{1n}a_1) + (x_1'\alpha_{21}a_2 + x_2'\alpha_{22}a_2 + \\ &\quad \dots + x_n'\alpha_{2n}a_2) + \dots + (x_1'\alpha_{n1}a_n + x_2'\alpha_{n2}a_n + \dots + x_n'\alpha_{nn}a_n) \\ &= (x_1'\alpha_{11} + x_2'\alpha_{12} + \dots + x_n'\alpha_{1n})a_1 + (x_1'\alpha_{21} + x_2'\alpha_{22} + \dots + x_n'\alpha_{2n})a_2 + \dots + \\ &\quad (x_1'\alpha_{n1} + x_2'\alpha_{n2} + \dots + x_n'\alpha_{nn})a_n \end{split}$$

D'où, par unicité des coordonnées par rapport à *B* dans (1) On a :

$$x_{1} = x'_{1}\alpha_{11} + x'_{2}\alpha_{12} + \dots + x'_{n}\alpha_{1n}$$

$$x_{2} = x'_{1}\alpha_{21} + x'_{2}\alpha_{22} + \dots + x'_{n}\alpha_{2n}$$

$$\dots \qquad \dots \qquad \dots$$

$$x_{n} = x'_{1}\alpha_{n1} + x'_{2}\alpha_{n2} + \dots + x'_{n}\alpha_{nn}$$

$$(4)$$

Si on pose

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \qquad X' = \begin{pmatrix} x'_1 \\ x'_2 \\ \dots \\ x'_n \end{pmatrix} \quad \text{et} \quad P = (\alpha_{ij})$$

Matrices colonnes de ces coordonnées alors le système (4) est équivalent à l'égalité de la matrice X avec le produit matriciel PX'. On a :

$$(4) \Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix} \begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}$$

ou

$$(4) \Leftrightarrow X = PX' \qquad (5)$$

La matrice $P = (\alpha_{ij})$ s'appelle **matrice de passage** de la B à la base B' ou matrice de changement des coordonnées de la base B à la base B'.

Si P^{-1} est la matrice inverse de la matrice de passage en multipliant la relation (5) à gauche par P^{-1} , on obtient :

$$X' = P^{-1}X$$

Expression de nouvelles coordonnées $x_1', x_2', ..., x_n'$ en fonction des anciennes

$$x_1, x_2, \dots, x_n$$

Exemple

Etablir la relation qui existe entre les coordonnées $x_1, x_2, ..., x_n$ dans la base $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ et ses coordonnées $x'_1, x'_2, ..., x'_n$ dans la base $B' = \{(1,1,1), (1,1,0), (1,0,0)\}$

En effet, la matrice de passage est $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

La relation cherchée est donnée par les formules de changement de bases

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} x'_1 \\ x'_2 \\ x'_3 \end{pmatrix} \qquad \text{D'où} \quad \begin{cases} x_1 = x'_1 + x'_2 + x'_3 \\ x_2 = x'_1 + x'_2 \\ x_3 = x'_3 \end{cases}$$

h. Base canonique de K^n

On sait que pour tout champ K, K^n est un e. v. sur K.

Considérons les vecteurs suivants de K^n

$$e_1 = (1,0,...,0)$$

$$e_2 = (0,1,...,0)$$

$$e_n = (0,0,...,1)$$

$$\forall x \in (x_1, x_2, \dots, x_n) \in K^n, x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

De plus, si
$$\alpha_1e_1+\alpha_2e_2+\cdots+\alpha_ne_n=0 \Longrightarrow \alpha_1=\alpha_2=\cdots=\alpha_n=0$$

Donc les vecteurs $e_1, e_2, ..., e_n$ constituent une base appelée **base canonique** de K^n . Ainsi dim $K^n = n$

Exemple

$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$
 est la base canonique de \mathbb{R}^3 *e. v.* sur \mathbb{R}

1.5. Applications linéaires. Matrices

a. Applications linéaires

a.1. Définition

Soient E et E' deux e. v. sur un champ K.

On appelle application linéaire ou homomorphisme de l'e.v.E dans E', toute application

$$f: E \to E'$$
 telle que $i) \forall x, y \in E, f(x + y) = f(x) + f(y)$
 $ii) \forall \alpha \in K, \forall x \in E, f(\alpha x) = \alpha f(x)$

ou

$$\forall \alpha, \beta \in K \text{ et } \forall x, y \in E, \ f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

a.2. Définition

On appelle **isomorphisme** de E sur E' tout homomorphisme bijectif de E dans E'

a.3. Définition

On dit que E et E' sont isomorphes s'il existe un isomorphisme de E sur E' a.4. Définition

- On appelle endomorphisme de E (ou opérateur linéaire dans E), tout homomorphisme de E dans E

a.5. Définition

- On appelle automorphisme de E tout isomorphisme de E sur lui même Exemples
- (1) Pour tout *e. v. E* sur *K*, l'identité sur *E* est une application linéaire En effet,

$$\forall x, y \in E, \forall \alpha, \beta \in K, f(\alpha x + \beta y) = \alpha x + \beta y$$
$$= \alpha f(x) + \beta f(y)$$

(2) L'application définie dans \mathbb{R}^2 par f(x,y)=(x+y,x-y) est linéaire. En effet,

$$\forall (x,y), (x',y') \in \mathbb{R}^2, f[(x,y) + (x',y')] = f(x+x',y+y')$$

$$= [(x+x') + (y+y'), (x+x') - (y+y')]$$

$$= (x+x'+y+y', x+x'-y-y')$$

$$= (x+y+x'+y', x-y+x'-y')$$

$$= [(x+y) + (x'+y'), (x-y) + (x'-y')]$$

$$= (x+y,x-y) + (x'+y',x'-y')$$

$$= f(x,y) + f(x',y')$$

En plus,

$$\forall \alpha \in K, \forall (x, y) \in \mathbb{R}^2, f[\alpha(x, y)] = f(\alpha x, \alpha y)$$

$$= (\alpha x + \alpha y, \alpha x - \alpha y)$$

$$= [\alpha(x + y), \alpha(x - y)]$$

$$= [\alpha(x + y, x - y)]$$

$$= \alpha f(x, y)$$

b. Noyau – Image

b.1. Définitions

Le noyau d'une application linéaire $f: E \rightarrow E'$ noté

$$\ker f = \{x/x \in E \text{ et } f(x) = 0\}$$

L'image d'une application linéaire $f: E \to E'$ notée f(E) ou $Im f = \{f(x)/x \in E\}$

b.2. Propositions

- i) $\ker f$ est un s. e. v. de E
- ii) $\ker f = \{0\} \iff f \text{ est injectif }$
- iii) Im f est un s. e. v. de E'

Démonstration

- i) $\ker f \neq \emptyset \operatorname{car} f(0) = 0 \in \ker f$ $\forall x, y \in \ker f, \forall \alpha, \beta \in K, \alpha x + \beta y \in \ker f$ $\operatorname{Car} f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) = \alpha. 0 + \beta. 0 = 0$
- ii) Supposons $\ker f = \{0\}$ et montrons que f est injectif c'est à dire $\forall x, y \in E, f(x) = f(y) \Longrightarrow x = y$ En effet, si f(x) = f(y)

Alors
$$f(x) - f(y) = f(x - y) = 0 \Rightarrow x - y \in \ker f$$
 or $\ker f = \{0\}$
donc $x - y = 0$ ou $x = y$
Supposons f injectif et montrons que $\ker f = \{0\}$
Si $x \in \ker f$ alors $f(x) = 0 = f(0) \Rightarrow x = 0$. D'où $\ker f = \{0\}$
iii) $Im \ f \neq \emptyset \ \operatorname{car} f(0) = 0 \in Im \ f$
 $\forall x', y' \in Im \ f \text{ et } \forall \alpha, \beta \in K, \alpha x' + \beta y' \in Im \ f$
On a:
 $x' \in Im \ f \Rightarrow \exists x \in E/x' = f(x)$
 $y' \in Im \ f \Rightarrow \exists y \in E/y' = f(y)$
D'où $\alpha x' + \beta y' = \alpha f(x) + \beta f(y) = f(\alpha x) + f(\beta y) = f(\alpha x + \beta y)$
 $\Rightarrow \alpha x' + \beta y' \in Im \ f$

c. Rang d'une application linéaire

c.1. Définition

On appelle rang d'une application linéaire $f: E \to E'$ la dimension de $Im\ f$ c.2. Théorème

Soient E e. v. de dimension finie et $f: E \rightarrow E'$ application linéaire alors $\dim E = \dim \ker f + rang f$

Corollaire

Soient E et E' des e.v. de même dimension n sur un champ K. Pour une application linéaire $f: E \to E'$, les affirmations suivantes sont équivalentes

- i) Rang de f = n
- ii) *f* est injective
- iii) f est surjective
- iv) *f* est bijective

Démonstration

Il est évident que $iv \implies ii$)

Comme dim $E = \dim \ker f + rang f = n$

On a : $rang f = n \Leftrightarrow \ker f = \{0\} \Leftrightarrow f \text{ est injectif. D'où } i) \Leftrightarrow ii)$

Par définition du rang, iii) $\Leftrightarrow i$)

Enfin, puisque ii) \Leftrightarrow i) \Leftrightarrow iii) on a iii) \Rightarrow iv)

c.3. Proposition

Soient E et E' deux e. v. sur K et $f: E \to E'$ application linéaire. Si f est bijective alors $f^{-1}: E' \to E$ est linéaire

<u>Démonstration</u>

Montrons que
$$\forall x', y' \in E', \forall \alpha, \beta \in K;$$

 $f^{-1}(\alpha x' + \beta y') = \alpha f^{-1}(x') + \beta f^{-1}(y')$
Soient $x = f^{-1}(x')$ et $y = f^{-1}(y')/f(x) = x'$ et $f(y) = y'$
On a:
 $f^{-1}(\alpha x' + \beta y') = f^{-1}[\alpha f(x) + \beta f(y)]$

$$f^{-1}(\alpha x' + \beta y') = f^{-1}[\alpha f(x) + \beta f(y)]$$

$$= f^{-1}[f(\alpha x + \beta y)]$$

$$= (f^{-1} \circ f)(\alpha x + \beta y)$$

$$= \alpha x + \beta y = \alpha f^{-1}(x') + \beta f^{-1}(y')$$

c.4. Théorème de factorisation d'applications linéaires

Soient E et E' des e. v. sur K

Toute application linéaire $f: E \to E'$ se factorise en une surjection linéaire, un isomorphisme et une injection canonique. En d'autres mots : il existe un isomorphisme

 $f': E/_{\ker f} \to f(E)$ tel que le diagramme

cl: surjection canonique

Démonstration

f' est bien définie par f'[cl(x)] = f(x)

 $\operatorname{Car} x' \in \operatorname{cl}(x) \Leftrightarrow x' \equiv x \pmod{\ker f} \Leftrightarrow x' - x \in \ker f \Leftrightarrow$

$$f(x'-x) = f(x') - f(x) = 0 \Leftrightarrow f(x') = f(x)$$

- $(j \circ f' \circ cl)(x) = (j \circ f')cl(x) = j[f'(cl(x))] = j(f(x)) = f(x)$
- f' est linéaire car $f'[\alpha cl(x) + \beta cl(y)] = f'[cl(\alpha x + \beta y)]$

$$= f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

= $\alpha f'(cl(x)) + \beta f'(cl(y))$

Montrons que f' est bijectif

Opérations d'applications linéaires 1.6.

a. Addition et multiplication par un scalaire

Posons : E et E' deux e. v. sur un champ K

 $\mathcal{L}_K(E,E')$ ou simplement $\mathcal{L}(E,E')$ ensemble de toutes les applications linéaires de E vers E'

a.1. Addition d'applications linéaires

Si
$$f, g \in \mathcal{L}(E, E')$$

 $f + g : E \to E'$
 $x \mapsto (f + g)(x) = f(x) + g(x)$

- $f + g \in \mathcal{L}(E, E')$

En effet, $\forall x, y \in E$ et $\forall \alpha, \beta \in K$:

$$(f+g)(\alpha x + \beta y) = f(\alpha x + \beta y) + g(\alpha x + \beta y)$$

$$= f(\alpha x) + f(\beta y) + g(\alpha x) + g(\beta y)$$

$$= \alpha f(x) + \beta f(y) + \alpha g(x) + \beta g(y)$$

$$= \alpha (f(x) + g(x)) + \beta (f(y) + g(y))$$

$$= \alpha (f+g)(x) + \beta (f+g)(y)$$

Cette addition définit donc une L.C.I. sur l'ensemble $\mathcal{L}(E, E')$

$$+: \mathcal{L}(E, E') \times \mathcal{L}(E, E') \longrightarrow \mathcal{L}(E, E')$$

 $(f, g) \mapsto f + g$

a.2. Multiplication par un scalaire

$$\forall \lambda \in K \text{ et } \forall f \in \mathcal{L}(E, E'), \ \lambda f \in \mathcal{L}(E, E')$$

 $\lambda f : E \longrightarrow E'$
 $x \longmapsto (\lambda f)(x) = \lambda f(x)$

- $\lambda f \in \mathcal{L}(E, E')$

Car
$$(\lambda f)(\alpha x + \beta y) = \lambda f(\alpha x + \beta y) = \lambda (f(\alpha x) + f(\beta y))$$

$$= \lambda (\alpha f(x) + \beta f(y)) = (\lambda \alpha) f(x) + (\lambda \beta) f(y)$$

$$= (\alpha \lambda) f(x) + (\beta \lambda) f(y) = \alpha (\lambda f(x)) + \beta (\lambda f(y))$$

$$= \alpha (\lambda f)(x) + \beta (\lambda f)(y)$$

Cette opération définit une loi de composition externe de K sur $\mathcal{L}(E, E')$

$$K \times \mathcal{L}(E, E') \longrightarrow \mathcal{L}(E, E')$$

 $(\lambda, f) \mapsto \lambda f$

a.3. Théorème

 $\mathcal{L}_K(E, E')$ muni de deux opérations ci – dessus est un e. v. sur K (T.P.)

b. <u>Composition d'applications linéaires</u>

Considérons E, E' et E'' des e. v. sur K

b.1. Proposition

La composée de deux applications linéaires est linéaire c'est – à – dire Si $f \in \mathcal{L}(E, E')$ et $g \in \mathcal{L}(E', E'')$, alors $g \circ f \in \mathcal{L}(E, E'')$

$$g \circ f : E \longrightarrow E''$$

 $x \longmapsto (g \circ f)(x) = g(f(x))$

 $- g \circ f \in \mathcal{L}(E, E'')$

En effet, $\forall x, y \in E$ et $\forall \alpha, \beta \in K$:

$$(g \circ f)(\alpha x + \beta y) = g(f(\alpha x + \beta y)) = g(f(\alpha x) + f(\beta y))$$
$$= g(\alpha f(x) + \beta f(y)) = \alpha g(f(x)) + \beta g(f(y))$$
$$= \alpha (g \circ f)(x) + \beta (g \circ f)(y)$$

La composition définit une application

$$\circ: \mathcal{L}(E,E') \times \mathcal{L}(E',E'') \longrightarrow \mathcal{L}(E,E'')$$

b.2. Proposition

- i) $\forall f_1, f_2 \in \mathcal{L}(E, E'), \ g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2 \text{ et } g \in \mathcal{L}(E', E'')$
- ii) $\forall f \in \mathcal{L}(E, E'), (g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f \text{ et } g_1, g_2 \in \mathcal{L}(E', E'')$
- iii) $\forall f \in \mathcal{L}(E, E'), \forall g \in \mathcal{L}(E', E'') \text{ et } \lambda \in K$ $\lambda(g \circ f) = (\lambda g) \circ f = g \circ (\lambda f)$

(On dit que • est compatible avec la multiplication par les scalaires)

<u>Démonstration</u>

i)
$$\forall f_1, f_2 \in \mathcal{L}(E, E') \text{ et } \forall g \in \mathcal{L}(E', E''),$$

 $g \circ (f_1 + f_2)(x) = g((f_1 + f_2)(x)) = g(f_1(x) + f_2(x))$
 $= g(f_1(x)) + g(f_2(x)) = (g \circ f_1)(x) + (g \circ f_2)(x)$

- ii) Comme en i)
- iii) Laissé pour le lecteur (la démonstration)
 - c. Algèbre des endomorphismes

Soient *E e. v.* sur un champ *K*

 $End(E)=\mathcal{L}(E,E)$ ensemble des endomorphismes de E ou opérateurs linéaires sur K

<u>c.1.</u> (End(E), +, ·) est un e.v. sur K

où + est l'addition interne des endomorphismes

· est la multiplication externe des endomorphismes par les scalaires

<u>c.2.</u> $(End(E), +, \circ)$ est un anneau

avec + : l'addition interne des endomorphismes

• : la composition des endomorphismes. • est une L.C.I.

c.3. La structure d'e. v. et celle d'anneau sont liées par la relation

$$\lambda(f \circ g) = (\lambda f) \circ g = f \circ (\lambda g), \ \forall f, g \in End(E) \text{ et } \lambda \in K$$

Le système $(End(E), +, \circ, \cdot)$ vérifiant c.1, c.2 et c.3 est une algèbre sur K appelée algèbre des endomorphismes de l'e.v.E

d. Groupe linéaire sur un espace vectoriel

Soit GL(E) l'ensemble des automorphismes de E

Proposition et définition

 $(GL(E), \circ)$ est un groupe appelé groupe linéaire de l'e. v. E

<u>Démonstration</u>

On sait que un automorphisme de $\it E$ est une permutation de l'ensemble sous – jacent $\it E$

On a:

 $GL(E) \neq \emptyset$ car l'identité sur E est un automorphisme

D'autre part,

$$\forall f, g \in GL(E); f \circ g \in GL(E)$$

Donc GL(E) est un sous – groupe du groupe (s(E), \circ)

1.7. Applications linéaires et matrices

a. Extension linéaire d'une fonction donnée sur une base

a.1. Proposition

Soient E et E' des e. v. sur K et $B = \{e_1, e_2, ..., e_n\}$ une base de E

Alors, étant donné n vecteurs quelconque $u_1, u_2, ..., u_n \in E'$, il existe un et un seul homomorphisme $f: E \to E'$ tel que

$$f(e_i) = u_i \ \forall i = 1, 2, ..., n \ (C.S)$$

<u>Démonstration</u>

 $\forall x \in E, x = x_1e_1 + x_2e_2 + \dots + x_ne_n$ son expression par rapport à la base B.

Etant donné que f doit être linéaire et en même temps satisfaire aux conditions (C.S), on aura l'égalité

$$f(x) = x_1 f(e_1) + x_2 f(e_2) + \dots + x_n f(e_n) = x_1 u_1 + x_2 u_2 + \dots + x_n u_n$$

On definit f par la relation

 $f(x)=x_1u_1+x_2u_2+\cdots+x_nu_n$ avec x_1,x_2,\ldots,x_n coordonnées de x par rapport à B

f est linéaire

En effet,
$$\forall x, y \in E, x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

$$y = x_1' e_1 + x_2' e_2 + \dots + x_n' e_n$$

$$f(\alpha x + \beta y) = f[(\alpha x_1 + \beta x_1') e_1 + (\alpha x_2 + \beta x_2') e_2 + \dots + (\alpha x_n + \beta x_n') e_n]$$

$$= (\alpha x_1 + \beta x_1') u_1 + (\alpha x_2 + \beta x_2') u_2 + \dots + (\alpha x_n + \beta x_n') u_n$$

$$= \alpha (x_1 u_1 + x_2 u_2 + \dots + x_n u_n) + \beta (x_1' u_1 + x_2' u_2 + \dots + x_n' u_n)$$

$$= \alpha f(x) + \beta f(y)$$

Supposons qu'il existe un autre homomorphisme g tel que

$$g(e_i) = u_i$$
. On a:
 $g(x) = x_1 g(e_1) + x_2 g(e_2) + \dots + x_n g(e_n)$
 $= x_1 u_1 + x_2 u_2 + \dots + x_n u_n$
 $= f(x)$

<u>a.2.</u> Une application linéaire est donc entièrement déterminée lors qu'on connait les images des éléments d'une base En effet,

Soient E et E' deux e. v. sur K et $B = \{e_1, e_2, \dots, e_n\}$ base de E ayant n éléments. La donnée de n vecteurs u_1, u_2, \dots, u_n de E' est équivalente à la donnée d'une application linéaire

$$\ell: B \longrightarrow E'/\ell(e_i) = u_i; \forall i = 1, 2, ..., n$$

Si on note $j: B \to E$ l'injection canonique de la base, les conditions (C.S) deviennent $f \circ j = \ell$ et la proposition 1) ci – dessus s'énonce alors : Etant donné une fonction $\ell: B \to E'$, il existe une et une seule application linéaire $f: E \to E'/f \circ j = \ell$

f est appelée extension linéaire de ℓ

En associant à ℓ son extension linéaire f, on définit une bijection de $\Im(B,E')$ sur $\mathcal{L}(E,E')$

Corollaire

Deux e. v. de même dimension sont isomorphes

b. Matrice d'une application linéaire

Soient E et E' deux e. v. de dimension respectivement n et m sur K

$$B = \{e_1, e_2, ..., e_n\}$$
 base ordonnée de E
 $B' = \{e'_1, e'_2, ..., e'_m\}$ base ordonnée de E'

<u>b.1.</u> Soit $f \in \mathcal{L}(E, E')$, on sait que f est entièrement déterminée par les images $f(e_1), f(e_2), ..., f(e_n)$ des éléments de la base B Comme $f(e_1), f(e_2), ..., f(e_n) \in E'$, on peut écrire

$$f(e_1) = a_{11}e'_1 + a_{21}e'_2 + \dots + a_{m1}e'_m$$

$$f(e_2) = a_{12}e'_1 + a_{22}e'_2 + \dots + a_{m2}e'_m$$

...
$$f(e_n) = a_{1n}e'_1 + a_{2n}e'_2 + \dots + a_{mn}e'_m$$

Les coordonnées de $f(e_1), f(e_2), ..., f(e_n)$ par rapport à B' constituent les colonnes de la matrice suivante

$$M(f) = \begin{pmatrix} f(e_1) & f(e_2) & \dots & f(e_n) \\ \alpha_{11} & \alpha_{12} & \dots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{2n} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix}$$

appelée matrice de l'application linéaire f par rapport aux bases B et

- <u>b.2.</u> L'unicité de l'écriture de $f(e_i)$ dans la base B' nous rassure l'unicité du tableau précédent, à condition de fixer les bases B et B'. Réciproquement, tout tableau du type précédent définit une unique application linéaire f d'un e.v. de dim = n dans un autre e.v. de $\dim = m$
- <u>b.3.</u> Le nombre d'éléments de chaque colonne est la dim de E'Le nombre d'éléments de chaque ligne est la dim de *E* Notre tableau comprend $m \times n$ éléments
- <u>b.4.</u> Considérons x ∈ E de coordonnées $x_1, x_2, ..., x_n$ par rapport à BSoient $x'_1, x'_2, ..., x'_m$ les coordonnées de f(x) dans la base B', établissons la relation entre les scalaires

$$\begin{aligned} x_1, x_2, \dots, x_n & \text{ et les scalaires } x_1', x_2', \dots, x_n' \\ f(x) &= x_1 f(e_1) + x_2 f(e_2) + \dots + x_n f(e_n) \\ &= x_1 (a_{11} e_1' + a_{21} e_2' + \dots + a_{m1} e_m') + x_2 (a_{12} e_1' + a_{22} e_2' + \dots + a_{m2} e_m') + \dots + x_n (a_{1n} e_1' + a_{2n} e_2' + \dots + a_{mn} e_m') \\ &= (x_1 a_{11} + x_2 a_{12} + \dots + x_n a_{1n}) e_1' + (x_1 a_{21} + x_2 a_{22} + \dots + x_n a_{2n}) e_2' + \dots + (x_1 a_{m1} + x_2 a_{m2} + \dots + x_n a_{mn}) e_m' \end{aligned}$$

Par unicité de coordonnées de f(x) suivant la base B', on a :

$$x'_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n$$

 $x'_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n$
...

 $x'_{m} = a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n}$ Ces formules sont équivalentes à l'égalité

$$\begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_m' \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

Donc, la colonne des $x'_1, x'_2, ..., x'_m$ s'obtient en multipliant la colonne des $x_1, x_2, ..., x_n$ par la matrice f relativement aux bases B et B' Exemples de matrices d'une application linéaire

(1) Matrice de l'application nulle θ sur \mathbb{R}^2

$$0(e_1) = 0 = 0e_1 + 0e_2$$

$$0(e_2) = 0 = 0e_1 + 0e_2$$

$$(2) \text{Matrice de l'identité } 1_E \text{ sur } E = \mathbb{R}^2$$

$$1_E(e_1) = e_1 = 1e_1 + 0e_2$$

$$1_E(e_2) = e_2 = 0e_1 + 1e_2$$

$$M(\theta) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$M(1_E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$1_E(e_1) = e_1 = 1e_1 + 0e_2
1_E(e_2) = e_2 = 0e_1 + 1e_2$$

$$M(1_E) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(3) Soit
$$f : \mathbb{R}^3 \to \mathbb{R}^2$$
 définie par $f(x) = \left(\frac{x_1}{2} - x_2 + 5x_3, x_2 - 2x_3\right)$

- a) Vérifier que f est linéaire
- b) Trouver la matrice M(f) de l'application linéaire f par rapport aux bases canoniques

Solution b)

On a:

$$f(e_1) = f(1,0,0) = \left(\frac{1}{2},0\right) = \frac{1}{2}e_1' + 0e_2'$$

$$f(e_2) = f(0,1,0) = (-1,1) = -e_1' + e_2' \quad M(f) = \begin{pmatrix} \frac{1}{2} & -1 & 5\\ 0 & 1 & -2 \end{pmatrix}$$

$$f(e_3) = f(0,0,1) = (5,-2) = 5e_1' - 2e_2'$$

c. <u>Isomorphisme entre espaces d'applications linéaires et espaces de matrices</u> C'est – à – dire entre $\mathcal{L}_K(E,E')$ et $\mathfrak{M}_{m,n}(K)$

c.1. Théorème

Soient E et E' e. v. sur K où dim E = n et dim E' = m

B une base de E,

B' une base de E'

Alors l'application $M: \mathcal{L}_K(E, E') \to \mathfrak{M}_{m,n}(K)$ est un isomorphisme d'e.v.

Démonstration

D'après a. et b., *M* est bijective

Montrons que *M* est linéaire c'est – à – dire

$$\forall f_1, f_2 \in \mathcal{L}_K(E, E') \text{ et } \forall \alpha, \beta \in K; M(\alpha f_1 + \beta f_2) = \alpha M(f_1) + \beta M(f_2)$$

En effet,

Soient a_{ij} les coefficients de la matrice $M(f_1)$ où $1 \le i \le m$

 b_{ij} les coefficients de la matrice $M(f_2)$ $1 \le j \le n$

 $\forall k \in \{1,2,\ldots,n\}$, la $k^{\mathrm{ème}}$ colonne de la matrice $M(\alpha f_1 + \beta f_2)$ est constituée par les coordonnées de $(\alpha f_1 + \beta f_2)(e_k)$ suivant e'_1,e'_2,\ldots,e'_m or $(\alpha f_1 + \beta f_2)(e_k) = \alpha f_1(e_k) + \beta f_2(e_k)$

$$= (\alpha a_{1k} + \beta b_{1k})e'_1 + (\alpha a_{2k} + \beta b_{2k})e'_2 + \dots + (\alpha a_{mk} + \beta b_{mk})e'_m$$

$$= (\alpha a_{1k})e'_1 + (\beta b_{1k})e'_1 + (\alpha a_{2k})e'_2 + (\beta b_{2k})e'_2 + \dots + (\alpha a_{mk})e'_m + (\beta b_{mk})e'_m$$

$$= \alpha (a_{1k}e'_1 + a_{2k}e'_2 + \dots + a_{mk}e'_m) + \beta (b_{1k}e'_1 + b_{2k}e'_2 + \dots + b_{mk}e'_m)$$

$$= \alpha f_1(e_k) + \beta f_2(e_k)$$

C'est donc la combinaison linéaire des $k^{\text{ème}}$ colonnes de (a_{ij}) et de (b_{ij}) avec les coefficients α et β respectivement. Donc M est linéaire

c.2. Théorème

Si $f: E \to E'$ et $g: E' \to E''$ sont des applications linéaires composables, alors pour tout choix de bases dans les e.v.E,E' et E'', on a :

$$M(g\circ f)=M(g)\cdot M(f)$$

Démonstration

Soient
$$B = \{e_1, e_2, ..., e_n\}$$
 une base de E
 $B' = \{e'_1, e'_2, ..., e'_m\}$ une base de E'

$$B'' = \{e_1'', e_2'', \dots, e_a''\}$$
 une base de E''

La $j^{\text{ème}}$ colonne de la matrice $M(g \circ f)$ par rapport aux bases B et B', est constituée des coordonnées de $(g \circ f)(e_j)$ suivant $e_1'', e_2'', \dots, e_q''$

Soient a_{ij} les coefficients de la matrice M(f) où $1 \le i \le n$

 b_{ij} les coefficients de la matrice M(g) $1 \le j \le n$

Alors $\forall j \in \{1, 2, ..., n\}$, on a :

$$(g \circ f)(e_{j}) = g(f(e_{j}))$$

$$= g(a_{1j}e'_{1} + a_{2j}e'_{2} + \dots + a_{mj}e'_{m})$$

$$= a_{1j}g(e'_{1}) + a_{2j}g(e'_{2}) + \dots + a_{mj}g(e'_{m})$$

$$= a_{1j}(b_{11}e''_{1} + b_{21}e''_{2} + \dots + b_{q1}e''_{q}) + a_{2j}(b_{12}e''_{1} + b_{22}e''_{2} + \dots + b_{q2}e''_{q}) + \dots + a_{mj}(b_{1m}e''_{1} + b_{2m}e''_{2} + \dots + b_{qm}e''_{q})$$

$$= (b_{11}a_{1j} + b_{12}a_{2j} + \dots + b_{1m}a_{mj})e''_{1} + (b_{21}a_{1j} + b_{22}a_{2j} + \dots + b_{2m}a_{mj})e''_{2} + \dots + (b_{q1}a_{1j} + b_{q2}a_{2j} + \dots + b_{qm}a_{mj})e''_{q}$$

$$= \sum_{i=1}^{q} (b_{i1}a_{1j} + b_{i2}a_{2j} + \dots + b_{im}a_{mj})e''_{1}$$

On voit que les coefficients de la $i^{\text{ème}}$ ligne et $j^{\text{ème}}$ colonne de la matrice $M(g \circ f)$ est égale à la somme des produits des coefficients de la $i^{\text{ème}}$ ligne de M(g) par les coefficients correspondants de la $j^{\text{ème}}$ colonne de M(f).

D'où
$$M(g \circ f) = M(g) \cdot M(f)$$

- <u>c.3.</u> En vertu des deux théorèmes c.1) et c.2) précédents, on peut établir certaines propriétés sur l'opération des matrices à partir des propriétés correspondantes des applications linéaires
- Démontrons par exemple l'associativité de produit des matrices

Supposons a, b, c des matrices à coefficients dans K telles que les produits (cb)a et c(ba) soient définis

Soient
$$f: E \longrightarrow E'$$

$$M(f) = a$$
 $g: E' \to E''$ des applications linéaires telles que $M(g) = b$
$$M(h) = c$$

$$h: E' \to E''$$
On a:
$$(cb)a = M(h \circ g) \cdot M(f)$$

$$= M((h \circ g) \circ f)$$

$$= M(h \circ (g \circ f))$$

$$= M(h) \cdot M(g \circ f) = c. (b. a)$$

 De même, démontrer la distributivité du produit par rapport à l'addition des matrices

c.4. Proposition

Soit a une matrice carrée d'ordre n à coefficients dans un champ K. Les propriétés suivantes sont équivalentes

- i) a est inversible à gauche c'est à dire $\exists b \in \mathfrak{M}_n(K)/b$. a = 1
- ii) a est inversible à droite c'est à dire $\exists b \in \mathfrak{M}_n(K)/a$. b=1

iii)
$$a$$
 est inversible c'est – à – dire $\exists a' \in \mathfrak{M}_n(K)/a'$. $a = a$. $a' = 1$ (1 : matrice unité)

Démonstration

Il suffit de montrer que i) \Rightarrow iii) car iii) \Rightarrow i) et ii)

Supposons a inversible à gauche et soit $b \in \mathfrak{M}_n(K)/b$. a = 1

Considérons les applications linéaires

$$f: K^n \to K^n$$
 et $g: K^n \to K^n$ avec $a = M(f)$ et $b = M(g)$ matrices par rapport à la base canonique

D'après c.2, on a:

$$M(g\circ f)=M(g)\cdot M(f)=a.\,b=1=M(1_E)$$
 où $E=K^n\Longrightarrow g\circ f=1_E$ f est injective car si $f(x)=0$

Alors
$$0 = g(0) = g(f(x)) = 1_E(x) = x$$
. Donc $x = 0$

D'après c.2 corollaire, f est alors un isomorphisme donc inversible.

Si f' est la réciproque de f on a nécessairement f' = g

On a alors simultanément

$$ab = M(f \circ f') = M(1_E) = 1$$

$$ba = M(f' \circ f) = M(1_E) = 1$$

C'est – à – dire a est inversible et $a^{-1} = b$

d. <u>Isomorphisme d'algèbres</u>

d.1. Définition

Soit $A \equiv (A, +, \times, \cdot)$ et $A' \equiv (A', +, \times, \cdot)$ deux algèbres sur un champ K.

Une application f d'une algèbre A dans une algèbre A', toutes les deux sur le même champ K, telle que

- i) f(x + y) = f(x) + f(y); $\forall x, y \in A \text{ et } \forall \alpha \in K$
- ii) $f(xy) = f(x) \cdot f(y)$
- iii) $f(\alpha x) = \alpha f(x)$

sera appelé un homomorphisme d'algèbres

d.2. Définition

- Un homomorphisme bijectif entre algèbres est appelé isomorphisme d'algèbres. Dans ce cas, ces algèbres sont dites isomorphes.
- <u>d.3.</u> On définira de même un endomorphisme ou un automorphisme d'une algèbre <u>Exemple</u>

Soit E un e. v. sur K

 $\forall \alpha \in K, h_{\alpha} : E \longrightarrow E/h_{\alpha}(x) = \alpha x$ est un endomorphisme

Alors l'application $f: K \rightarrow End(E)$

$$\alpha \mapsto f(\alpha) = h_{\alpha}$$
 est un homomorphisme d'algèbres. (Vérifier)

d.4. Proposition

Pour tout *e.v. E* de dimension *n* sur *K*

L'application
$$M: End(E) \rightarrow \mathfrak{M}_n(K)$$

 $f \mapsto M(f)$ est un isomorphisme d'algèbres

Démonstration

En vertu de 2.3 c.1) et 2)

d.5. Proposition

Soit f un endomorphisme d'un e. v. E et a = M(f) par rapport à une base de E

Alors f est inversible si et seulement si a est une matrice inversible

Démonstration

 \Longrightarrow

Si f est inversible alors a est une matrice inversible

En effet,

Considérons f inversible avec f' son inverse

Alors
$$f \circ f' = f' \circ f = 1_E$$
 (1)

Si a=M(f') par rapport à la base considérée les égalités (1) donnent aa'=a'a=1 et $a'=a^{-1}$

 \Leftarrow

Si a est inversible alors f est inversible

En effet,

Considérons a inversible avec a' son inverse et f' l'application linéaire telle que a' = M(f')

Comme
$$a'a = aa' = 1$$
, on a, par isomorphisme $f \circ f' = f' \circ f = 1_E$ c'est – à – dire $f' = f^{-1}$

e. <u>Matrices d'une application linéaire dans un changement de bases</u>

La notation $M_{B,C}(f)$ signifiera par la suite matrice d'une application linéaire $f: E \longrightarrow F$ par rapport aux bases B et C de E et F respectivement.

<u>e.1. Introduction</u>

Considérons deux bases ordonnées

$$B = \{e_1, e_2, ..., e_n\}$$
 et $B' = \{e'_1, e'_2, ..., e'_n\}$ d'un même $e. v. E$

On sait que la matrice de passage p de la base B à la base B' est (a_{ij}) , $1 \le i, j \le n$ définie par les relations

$$e'_1 = a_{11}e_1 + a_{21}e_2 + \dots + a_{n1}e_n$$

$$e'_2 = a_{12}e_1 + a_{22}e_2 + \dots + a_{n2}e_n$$

$$\dots \qquad \dots \qquad \dots$$

$$e'_n = a_{1n}e_1 + a_{2n}e_2 + \dots + a_{nn}e_n$$

e.2. Théorème

Soient E et F deux e. v. sur un champ K

B et B' deux bases ordonnées de E

C et C' deux bases ordonnées de F

Si p est la matrice de passage de B à B'

et q est la matrice de passage de C à C'

Alors pour toute application linéaire $f: E \rightarrow F$

Les matrices $a = M_{B,C}(f)$ et $a' = M_{B',C'}(f)$ sont liées par la relation

$$a' = q^{-1}ap$$

<u>Démonstration</u>

Considérons le diagramme suivant où f est vue comme composée $1_F \circ f \circ 1_E$

$$E_{B'} \xrightarrow{1_E} E_B \xrightarrow{f} F_C \xrightarrow{1_F} F_{C'}$$

Les espaces vectoriels étant rapportés respectivement aux bases B', B, C et C'. D'après le théorème c.2

$$a' = M_{B',C'}(1_F \circ f \circ 1_E) = M_{C,C'}(1_F) \cdot M_{B,C}(f) \cdot M_{B',B}(1_E)$$

= $q^{-1} \cdot a \cdot p$

e.3. Corollaire

Soient *E e. v*.

B et B' bases ordonnées de E

p matrice de passage de $B \ a \ B'$

Alors pour tout endomorphisme f de E avec $a = M_{B,C}(f)$ par rapport à B et $a' = M_{B',C'}(f)$ par rapport à B';

On a

$$a' = q^{-1} \cdot a \cdot p$$

Démonstration

On applique le théorème précédent. Dans ce cas B=C et B'=C'

e.4. Définition

- Deux matrices a et $a' \in \mathfrak{M}_{m,n}(K)$ sont dites **équivalentes** lorsqu'il existe des matrices inversibles $p \in \mathfrak{M}_n(K)$ et $q \in \mathfrak{M}_m(K)$ telles que

$$a' = q^{-1} \cdot a \cdot p$$

e.5. Définition

Deux matrices a et $a' \in \mathfrak{M}_n(K)$ sont dites **conjuguées** lorsqu'il existe une matrice $p \in \mathfrak{M}_n(K)$ telle que

$$a' = p^{-1} \cdot a \cdot p$$

Ainsi, quand deux matrices sont conjuguées, elles sont nécessairement équivalentes. Les matrices conjuguées sont aussi appelées **matrices** semblables

e.6. Proposition

- La relation \mathcal{R} définie par

 $\forall a, a' \in \mathfrak{M}_n(K), a \mathcal{R} \ a' \Longleftrightarrow \exists p \in \mathfrak{M}_n(K) \text{ inversible/ } a' = p^{-1} \cdot a \cdot p \text{ est}$ une relation d'équivalence (Vérifier)

e.7. Théorème

Soient *E* et *F* e. v. de dimensions respectives n et m sur un champ K.

Si $f: E \rightarrow F$ est une application linéaire de rang r

Alors il existe une base $B = \{b_1, b_2, \dots, b_n\}$ de E et $C = \{c_1, c_2, \dots, c_n\}$ de F

Telles que $f(b_i) = c_i$ si $1 \le i \le r$

$$f(b_i) = 0$$
 si $r \le i \le n$

C'est – à – dire $M_{B,C}(f)$ est de la forme

$$\begin{pmatrix} 1 & & 0 & 0 & \cdots & 0 \\ & \ddots & & \vdots & & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix}$$

<u>Démonstration</u>

Soit $C' = \{c_1, c_2, \dots, c_r\}$ une base du s. e. v. f(E)

C' a r éléments car $rang f = \dim f(E) = r$

On sait que C' peut être complété pour en faire une base de F et avoir

$$C = \{c_1, c_2, \dots, c_r, c_{r+1}, c_{r+2}, \dots, c_m\}$$

Comme $C' \subseteq f(E)$, il existe des éléments $b_1, b_2, ..., b_r \in E$ tels que

$$f(b_1) = c_1, f(b_2) = c_2, ..., f(b_r) = c_r$$

Soit $\{e_1, e_2, ..., e_r\}$ une base de ker f; k = n - r

Montrons que

 $B=\{b_1,b_2,\dots,b_r,b_{r+1},b_{r+2},\dots,b_n\}$ où $b_{r+1}=e_i$ (1) est une base de E. Comme # $B=n=\dim E$, il suffit de montrer par exemple que B est une partie génératrice de E

En effet, $\forall x \in E$, on a $f(x) \in f(E)$ et $f(x) = \alpha_1 c_1 + \alpha_2 c_2 + \dots + \alpha_r c_r$

Posons $v = x - (\alpha_1 b_1 + \alpha_2 b_2 + \dots + \alpha_r b_r)$, (2) On a

$$f(v) = f(x) - f(\alpha_1 b_1 + \alpha_2 b_2 + \dots + \alpha_r b_r)$$

= $f(x) - [\alpha_1 f(b_1) + \alpha_2 f(b_2) + \dots + \alpha_r f(b_r)]$
= $f(x) - (\alpha_1 c_1 + \alpha_2 c_2 + \dots + \alpha_r c_r) = 0$

Donc $v \in \ker f$ et s'écrit sous la forme

$$v = \beta_1 e_1 + \beta_2 e_2 + \dots + \beta_k e_k$$

En substituant v par sa valeur dans (2) tout en tenant compte de (1), on tire

$$x = \alpha_1 b_1 + \alpha_2 b_2 + \dots + \alpha_r b_r + \beta_1 b_{r+1} + \beta_2 r_{r+2} + \dots + \beta_k b_n$$

D'où $\forall x \in E$, x est une C. L. d'éléments de B.

§2. Espace dual. Transposée d'une application linéaire

2.1. Formes linéaires - Dual d'un e. v.

On sait que tout champ $(K, +, \cdot)$ peut être considéré comme e.v. de dimension 1 sur lui – même

a. <u>Définition</u>

Soit *E e. v.* sur un champ *K*

Alors toute application linéaire $f: E \longrightarrow K$ est appelée **forme linéaire** définie sur E ou **fonctionnelle** définie sur E

Exemples

(1) Soit $E = \mathfrak{M}_n(K)$ e.v. des matrices carrées d'ordre n à coefficients dans K $a = (a_{ij}) \in E$, on appelle trace de a et on note tr(a) la somme de ses coefficients diagonaux.

$$Tr(a) = a_{11} + a_{22} + \dots + a_{nn}$$

Alors l'application $Tr: E \rightarrow K$

$$a \mapsto Tr(a) = \sum_{i=1}^{n} a_{ii}$$
 est une forme linéaire

(2) Si $E = \mathfrak{F}([0,1], \mathbb{R})$ e. v. des fonctions numériques et contenues sur \mathbb{R} Alors l'application $f : \mathfrak{F}([0,1], \mathbb{R}) \to \mathbb{R}$

$$f \mapsto \bar{f}(f) = \int_0^1 f(x) dx$$
 est une forme

linéaire définie sur *E*

b. Espace dual

L'ensemble $\mathcal{L}(E,K)$ des formes linéaires définies sur E, e.v. sur K, est appelé **espace dual** de E ou simplement **dual** de E et est noté E^*

Le dual de E^* est appelé le **bidual** de E et est noté E^{**}

En d'autres mots:

$$E^* = \mathcal{L}(E, K)$$

$$f \in \mathcal{L}(E, K), f(x + y) = f(x) + f(y), \forall x, y \in E$$

$$f(\alpha x) = \alpha f(x) \quad ; \forall \alpha \in K$$

et tous les résultats établis pour les applications linéaires s'appliquent en particulier aux formes linéaires

c. Proposition

Soit E e. v. de dim n sur un champ K

Toute forme linéaire non nulle sur E est surjective. Par conséquent, le noyau d'une forme linéaire non nulle sur un e.v. E de dimension n est un s.e.v. de dim n-1

Démonstration

Si
$$f: E \to K$$
 est une forme linéaire non nulle Alors $\exists v \in E/f(v) \neq 0$
Soit $\alpha = f(v)$
 $\forall \lambda \in K$, en posant $x = \frac{1}{\alpha}v$, on a $f(x) = \frac{\lambda}{\alpha}f(v) = \frac{\lambda}{\alpha}\alpha = \lambda$
Donc f est surjectif, et $rang\ f = \dim Im\ f = \dim K = 1$
D'où $\dim \ker f = \dim E - rang\ f = n - 1$

2.2. Bases duales

Soit E e. v. de dim n sur un champ K

A toute base B de E correspond une base de E^* de la manière suivante :

Soit
$$B = \{e_1, e_2, ..., e_n\}$$

 $\forall i, 1 < i < n$, on considère la forme linéaire

$$e_i^*: E \longrightarrow K$$
 telle que $e_i^*(e_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$

Si
$$x \in E$$
 avec $x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n$,
On a $e_i^*(x) = x_1 e_i^*(e_1) + x_2 e_i^*(e_2) + \dots + x_n e_i^*(e_n)$
 $= x_i$

Propositions

- i) $B^* = \{e_1^*, e_2^*, ..., e_n^*\}$ est une base de E^* appelée base duale de B
- ii) $\dim E = \dim E^*$

2.3. Bidual d'un e.v.

Soit
$$E$$
 e . v . sur K $f \in E^*$, $f: E \to K: x \mapsto f(x)$
Alors $(E^*)^* = E^{**} = \alpha(E^*, K)$ est appelé le bidual de E

A chaque élément $x \in E$ correspond un élément $\hat{x} \in E^{**}$

$$\hat{x}: E^* \to K$$
 $f \mapsto \hat{x}(f) = f(x)$
 \hat{x} est bien linéaire (à vérifier)

On définit une application

$$\hat{}: E \longrightarrow E^{**}$$

$$x \longmapsto \hat{x}$$

Cette application est aussi linéaire appelée l'application canonique de $\it E$ dans son bidual

En effet,

Si
$$x, y \in E, \alpha, \beta \in K$$
; alors on a $\forall f \in E^*$
 $(\alpha x + \beta y)(f) = f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) = \alpha \hat{x}(f) + \beta \hat{y}(f)$
 $= (\alpha \hat{x} + \beta \hat{y})(f)$

2.4. Transposée d'une application linéaire

a. Définition

Soit E_1 et E_2 des e.v. sur K

A toute application linéaire $f: E_1 \longrightarrow E_2$ correspond l'application bien définie

$$f^*: E_2^* \longrightarrow E_1^*$$
$$g \mapsto f^*(g) = g \circ f$$

entre les espaces

 f^* est linéaire et s'appelle la **transposée** de f

b. Proposition

L'application
$$^*: \mathcal{L}(E_1, E_2) \longrightarrow \mathcal{L}(E_2^*, E_1^*)$$

 $f \mapsto f^*$
est linéaire (montrez – le)

c. Théorème Soient $1_E: E \to E$; $E_1 \xrightarrow{f} E_2 \xrightarrow{f'} E_3$; f et f' linéaires

Alors

i)
$$(1_E)^* = 1_E^*$$

ii) $(f' \circ f)^* = f^* \circ f'^*$

$$E_1 \xrightarrow{f} E_2 \xrightarrow{f'} E_3$$

$$g$$

Démonstration

i)
$$(1_E)^* = 1_E^*$$
 en effet $(1_E)^* : E^* \to E^*$ $g \mapsto (1_E)^*(g) = g \circ 1_E = g$ D'où $(1_E)^* = 1_E^*$ ii) Soit $g \in E^*$, on a : $(f' \circ f)^*(g) = g \circ (f' \circ f)$ $= (g \circ f') \circ f = f^*(g \circ f') = f^* \circ f'(g)$

Remarquez que l'opération " transposée " renverse le sens des applications dans leurs compositions. Elle s'appellera espso facto foncteur contravariant

2.5. Transposée d'une matrice

a. Définition

Soit

$$a = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \text{ matrice à coefficients dans } K$$
appelle transposée de a la matrice suivante notée ta

On appelle transposée de a, la matrice suivante notée ta

$${}^{t}a = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

Exemple:

Si
$$K = \mathbb{R}$$
 et $a = \begin{pmatrix} \pi & 1/4 & -2 \\ 0 & 10 & 3,4 \end{pmatrix}$ alors ${}^t a = \begin{pmatrix} \pi & 0 \\ 1/4 & 10 \\ -2 & 3,4 \end{pmatrix}$

- b. Proposition
 - $^{t}(a+b) = ^{t}a + ^{t}b$ i)
 - $t(\alpha a) = \alpha^t a$ ii)
 - tta = aiii)

§3. Exercices

3.1. Exercices corrigés

3.1.1 Soit *E* l'ensemble de tous les couples de nombres réels. $E = \{(x, y)/a, b \in \mathbb{R}\}$. Montrer que E n'est pas un e.v. sur \mathbb{R} à l'aide des lois suivantes : addition dans E et multiplication scalaire sur E

$$(x,y) + (z,t) = (x+z,y+t)$$
 et $k(x,y) = (kx,y)$

- 3.1.2 Soit $E = \mathbb{R}^3$. Montrer que S n'est pas un s.e.v. de E, où $S = \{(x, y, z)/x \ge 0\}$; c.à.d. S contient ceux des vecteurs dont la première composante est positive ou nulle.
- 3.1.3 Soit *E* l'espace vectoriel de toutes les fonctions du corps réel \mathbb{R} sur \mathbb{R} . Montrer que S est un s.e.v de E
- 3.1.4 Pour quelle valeur de k le vecteur u = (1, -2, k) de \mathbb{R}^3 est-il une combinaison linéaire des vecteurs v = (3,0,2) et w = (2,-1,-5)?
- 3.1.5 Montrer que les vecteurs u = (1,2,3), v = (0,1,2) et w = (0,0,1) engendrent \mathbb{R}^3
- 3.1.6 Soit F_1 et F_2 deux *s.e.v* de \mathbb{R}^3 définis par $F_1 = \{(x, y, z)/x = y = z\} \text{ et } F_2 = \{(0, y, z)\}$

(Remarquez que F_2 est le plan YOZ). Montrer que $\mathbb{R}^3 = F_1 \oplus F_2$

- 3.1.7 Soit F_1 et F_2 des *s.e.v* de l'*e.v* E. Montrer que F_1 et F_2 sont contenus dans $F_1 + F_2$
- 3.1.8 Déterminer si les vecteurs u et v sont ou non linéairement dépendant avec :
- i) u = (3,4), v = (1,-3)
- ii) u = (2, -3), v = (6, -9)
- 3.1.9 Déterminer si oui ou non les vecteurs suivants forment une base de l'e.v. de \mathbb{R}^3 :
- i) (1,1,1) et (1,-1,5)
- ii) (1,2,3), (1,0,-1), (3,-1,0) et (2,1,-2)
- 3.1.10 Montrer que l'application f suivante est linéaire :

 $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par f(x, y) = (x + y, x)

3.1.11 Montrer que l'application f ci-après n'est pas linéaire :

 $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ définie par f(x, y) = xy

3.1.12 Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire définie par f(x,y,z) = (x+2y-z,y+z,x+y-2z)

Trouver une base et la dimension de

- 1) image U de f,
- 2) noyau W de f
- 3.1.13 Trouver la représentation matricielle de chacun des opérateurs f de \mathbb{R}^2 relativement à la base usuelle $\{e_1=(1,0),e_2=(0,1)\}$
- i) f(x, y) = (2y, 3x y)
- ii) f(x, y) = (3x 4y, x + 5y)
- 3.1.14 Considérons les bases suivantes de \mathbb{R}^2 : B = { e_1 = (1,0), e_2 = (0,1)} et B' = { f_1 = (1,3), f_2 = (2,5)}
- 1) Trouver la matrice de passage P de la base B à la base B'.
- 2) Trouver la matrice de passage Q de B' à B.
- 3) Vérifier que $Q = P^{-1}$

Solution ou indications de solution

3.1.1 Dans ce cas nous montrerons qu'un des axiomes de l'*e.v.* n'est pas vérifié Soit $\alpha=1,\beta=2,v=(3,4)$. Alors $(\alpha+\beta)v=3(3,4)=(9,4)$;

$$\alpha v + \beta v = 1(3,4) + 2(3,4) = (3,4) + (6,4) = (9,8)$$

Puisque $(\alpha + \beta)v \neq \alpha v + \beta v$ l'axiome 2 n'est pas vérifié

3.1.2 Montrons qu'une des propriétés de la proposition §1.1.2.b n'est pas vérifiée. $v=(1,2,3)\in S$ et $\alpha=-5\in\mathbb{R}$. Mais $\alpha v=-5(1,2,3)=(-5,-10,-15)\notin S$ car -5 est négatif. D'où S n'est pas un s.e.v. de E

3.1.3 Nous notons ici θ la fonction nulle $\theta(x) = 0$ pour tout $x \in \mathbb{R}$, $\theta \in S$ puisque $\theta(3) = 0$. Supposons $f, g \in S$ c.à.d. tels que f(3) = 0 et g(3) = 0. D'où $\forall \alpha, \beta \in \mathbb{R}$, $(\alpha f + \beta g)(3) = \alpha f(3) + \beta g(3) = \alpha \cdot 0 + \beta \cdot 0 = 0$ Donc $\alpha f + \beta g \in S$ et S est un s.e.v. de E

 $3.1.4 \, \text{Soit} \, u = xv + yw$

$$(1,-2,k) = x(3,0,-2) + y(2,-1,-5) = (3x + 2y, -y, -2x - 5y)$$

formons le système d'équations équivalent

$$3x + 2y = 1$$
, $-y = -2$, $-2x - 5y = k$

D'où x = -1, y = 2. En substituant dans la dernière équation, on obtient k = -8

3.1.5 Il est nécessaire de montrer qu'un vecteur arbitraire $(a,b,c) \in \mathbb{R}^3$ est une combinaison linéaire de u,v et w

En effet.

soit (a, b, c) = xu + yv + zw

$$(a,b,c) = x(1,2,3) + y(0,1,2) + z(0,0,1) = (x,2x+y,3x+2y+z)$$

D'où ce système d'équations $\begin{cases} z + 2y + 3x = c \\ y + 2z = b \\ x = a \end{cases}$

dont la solution est :
$$x = a$$
, $y = b - 2a$ et $z = c - 2b + a$

Donc u, v et w engendrent \mathbb{R}^3

3.1.6 Remarquons d'abord que $F_1 \cap F_2 = \{0\}$,

pour
$$v = (x, y, z) \in F_1 \cap F_2 \Longrightarrow x = y = z$$
 et $x = 0$

Donc
$$v = (0,0,0)$$

$$\Rightarrow x = 0, y = 0, z = 0$$

Nous pouvons donc affirmer que $\mathbb{R}^3 = F_1 + F_2$

Si
$$v = (x, y, z) \in F_1$$
 et $(0, y - x, z - x) \in F_2$. Les deux conditions $F_1 \cap F_2 = \{0\}$ et $\mathbb{R}^3 = F_1 + F_2 \Longrightarrow \mathbb{R}^3 = F_1 \oplus F_2$

3.1.7 Soit $x \in F_1$. Par hypothèse F_2 est un s.e.v. de E et ainsi $0 \in F_2$.

Donc
$$x = x + 0 \in F_1 + F_2$$

Donc $F_1 \subseteq F_1 + F_2$. De façon analogue $F_2 \subseteq F_1 + F_2$

- 3.1.8 Deux vecteurs u et v sont dépendants ssi l'un des vecteurs est un multiple de l'autre.
- i) non ii) oui : car v = 3u
- 3.1.9 i) et ii) non ; car une base de \mathbb{R}^3 doit contenir exactement 3 éléments, puisque \mathbb{R}^3 est de dimension 3.

3.1.10 Soit
$$u = (a, b)$$
 et $v = (a', b')$; donc $u + v = (a + a', b + b')$ et $ku = (ka, kb), k \in \mathbb{R}$
On a: $f(u) = (a + b, a)$ et $f(v) = (a' + b', a')$. Ainsi $f(u + v) = f(a + a', b + b') = (a + a' + b + b', a + a')$ $= (a + b, a) + (a' + b', a') = f(u) + f(v)$ et $f(ku) = f(ka, kb) = (ka + kb, ka) = k(a + b, a) = kf(u)$

Puisque u, v et k étant arbitraires, f est linéaire.

3.1.11 Soit
$$u = (1,2)$$
 et $v = (3,4)$; alors $u + v = (4,6)$
On a $f(u) = 1 \cdot 2 = 2$ et $f(v) = 3 \cdot 4 = 12$. Donc $f(u + v) = f(4,6) = 4 \cdot 6 = 24 \neq f(u) + f(v)$

En conséquence, f n'est pas linéaire

3.1.12 1) Les images des générateurs de \mathbb{R}^3 engendrent l'image U de f

$$f(1,0,0) = (1,0,1), f(0,1,0) = (2,1,1), f(0,0,1) = (-1,1,-2)$$

Formons la matrice dont les lignes sont les générateurs de U et réduisons-la par des opérateurs élémentaires sur les lignes à sa forme échelonnée :

$$\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 1 & -2 \end{pmatrix} d'où \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & -1 \end{pmatrix} d'où \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Ainsi $\{(1,0,1), (0,1,-1)\}$ est une base de U et donc dim U = 2

2) Cherchons l'ensemble des (x, y, z) tels que f(x, y, z) = (0,0,0) c.à.d. f(x, y, z) = (x + 2y - z, y + z, x + y - 2z) = (0,0,0)

D'où le système homogène ci-après dont l'espace solution est le noyau de W de f

$$\begin{cases} x + 2y - z = 0 \\ y + z = 0 \\ x + y - 2z = 0 \end{cases} \text{ ou } \begin{cases} x + 2y - z = 0 \\ y + z = 0 \\ -y - z = 0 \end{cases} \text{ ou } \begin{cases} z + 2y - z = 0 \\ y + z = 0 \end{cases}$$

La seule inconnue libre est z; donc dim W = 1

Soit z = 1; alors y = -1 et x = 3. Donc $\{(3, -1, 1)\}$ est une base de W

(Remarquons que dim U + dim W = 2 + 1 = 3, qui est la dimension du domaine \mathbb{R}^3 de f

3.1.13 Remarquons d'abord que si $(a,b) \in \mathbb{R}^2$, alors $(a,b) = ae_1 + be_2$

i)
$$f(e_1) = f(1,0) = (0,3) = 0e_1 + 3e_2$$

 $f(e_2) = f(0,1) = (2,-1) = 2e_1 - e_2$ et $M(f) = \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$

De même avec

ii)

3.1.14 1)
$$f_1 = (1,3) = e_1 + 3e_2$$

 $f_2 = (2,5) = 2e_1 + 5e_2$ et $P = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$
2) on sait que $(a,b) = (2b-5a)f_1 + (3a-b)f_2$. Ainsi $e_1 = (1,0) = -5f_1 + 3f_2$
 $e_2 = (0,1) = 2f_1 - f_2$ et $Q = \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix}$
3) $PQ = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} -5 & 2 \\ 3 & -1 \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$

3.2. Exercices proposés

3.2.1 Soit $E = \{(x, y)/x, y \in \mathbb{R}\}$. Montrer que E n'est pas un *e.v.* sur \mathbb{R} à l'aide des lois suivantes : addition dans E et multiplication scalaire sur E

$$(x,y) + (z,t) = (x + z, y + t)$$
 et $k(x,y) = (k^2x, k^2y)$

- 3.2.2 Soit $E = \mathbb{R}^3$. Montrer que F n'est pas un *s.e.v.* de E $F = \{(x, y, z)/x, y, z \in \mathbb{Q}\}$
- 3.2.3 Soit E l'espace vectoriel de toutes les fonctions du corps réel $\mathbb R$ sur $\mathbb R$. Montrer que F est un *s.e.v.* de E

$$F = \{f/f(7) = f(1)\}\$$

3.2.4 Ecrire le polynôme $u=t^2+4t-3$ de $\mathbb R$ comme combinaison linéaire des polynômes

$$e_1 = t^2 - 2t + 5$$
, $e_2 = 2t^2 - 3t$ et $e_3 = t + 3$

3.2.5 Trouver à quelles conditions sur a,b et c le vecteur $(a,b,c) \in \mathbb{R}^3$ appartient à l'espace engendré par

$$u = (2,1,0), v = (1,-1,2)$$
 et $w = (0,3,-4)$

3.2.6 Soit E l'e.v., des matrices 2×2 sur \mathbb{R} . Déterminer si les matrices $A,B,C \in \mathbb{F}$ sont dépendantes où

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 et $C = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$

3.2.7 Soit F le *s.e.v.* de \mathbb{R}^4 engendré par les vecteurs (1,-2,5,-3), (2,3,1,-4) et (3,8,-3,-5)

Trouver une base et la dimension de F

- 3.2.8 Montrer que les applications suivantes f ne sont pas linéaires :
- i) $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par f(x, y) = (x + 1, 2y, x + y)
- ii) $f : \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x, y, z) = (|x|, 0)
- 3.2.9 Soit $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$ l'application linéaire définie par

$$f(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t)$$

Trouver une base et la dimension de

- 1) Image U de f 2) ker f
- 3.2.10 Trouver la représentation matricielle de chacun des opérateurs f dans le précédent problème 3.1.13 relativement à la base $\{f_1 = (1,3), f_2 = (2,5)\}$
- 3.2.11 Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application linéaire définie par f(x, y, z) = (2x + y z, 3x 2y + 4z)

Trouver la matrice de f dans les bases suivantes de \mathbb{R}^3 et \mathbb{R}^2 :

$$B = \{f_1 = (1,1,1), f_2 = (1,1,0), f_3 = (1,0,0)\}\$$
et $B' = \{g_1 = (1,3), g_2 = (1,4)\}\$

Appendice. Progressions et Logarithmes

§1. Progression arithmétique (P.A.)

a. <u>Définition</u>

Une progression arithmétique est une suite de nombres appelés **termes** tels que chacun d'eux égal au précédent plus un nombre constant différent de zéro, appelé **raison** (r) de la progression

b. Conséquences de la définition

Soient t_1, t_2, \dots, t_n les n termes d'une P.A. de raison r. De la définition, il découle que :

a.
$$t_2 - t_1 = t_3 - t_2 = t_4 - t_3 = \dots = t_n - t_{n-1} = r$$

Tout terme est la moyenne arithmétique des termes qui le comprennent

b.
$$2t_2 = t_1 + t_3$$
 $\implies t_2 = \frac{t_1 + t_3}{2}$ $\implies t_3 = \frac{t_2 + t_4}{2}$

- c. $t_n=t_1+(n-1)r$: la formule d'un terme quelconque t_n d'une P.A. en fonction de t_1 , r et n
- d. t_1, t_2 et t_3 forment une P.A. si $2t_2 = t_1 + t_3$ ou ...
- e. $r = \frac{b-a}{n+1}$: c'est l'expression de la raison r d'une P.A. qu'on peut former en insérant n moyens arithmétiques entre deux nombres donnés a et b
- f. $S_n = \frac{t_1 + t_n}{2}n$: formule de la somme S_n de n termes $t_1, t_2, ..., t_n$ d'une P.A. En effet, on écrit

$$S_n = t_1 + t_2 + \dots + t_{n-1} + t_n$$

 $S_n = t_n + t_{n-1} + \dots + t_2 + t_1$

 $S_n = t_n + t_{n-1} + \dots + t_2 + t_1$ En additionnant membre à membre, on a

$$2S_n = (t_1 + t_n)n \Longrightarrow S_n = \frac{(t_1 + t_n)n}{2}$$

§2. Progression géométrique (P.G)

2.1. Définition

Une progression géométrique est une suite de nombres appelés termes tels que chacun d'eux est égal au précédent multiplié par un nombre constant différent de ± 1 appelé raison (q) de la progression

2.2. Conséquences de la définition

Soient $t_1, t_2, ..., t_n$ les n termes d'une P.G. et q sa raison. De la définition, il

- a. $\frac{t_2}{t_1} = \frac{t_3}{t_2} = \frac{t_4}{t_3} = \dots = \frac{t_n}{t_{n-1}} = q$
 - Tout terme est la moyenne géométrique des termes qui le comprennent

b. $t_2^2 = t_1 \cdot t_3$ $\implies t_2 = (t_1 \cdot t_3)^{\frac{1}{2}}$ $t_3^2 = t_2 \cdot t_4$ $\implies t_3 = (t_2 \cdot t_4)^{\frac{1}{2}}$

- $t_{n-1}^2=t_{n-2}.t_n \implies t_{n-1}=(t_{n-2}.t_n)^{\frac{1}{2}}$ c. $t_n=t_1.q^{n-1}$: formule qui permet de calculer le terme quelconque t_n d'une P.G. à partir de t_1 , q et n
- d. t_1, t_2 et t_3 forment une P.G. si $t_2^2 = t_1, t_3$ ou ...
- e. $q = \sqrt[n+1]{\frac{b}{a}}$: expression de la raison q d'une P.G. qu'on peut construire en

insérant n moyens géométriques entre deux nombres donnés a et bMême procédure de démonstration que le point e. du §1. 1.2.

f. $S_n = t_1 \frac{1-q^n}{1-q}$ est la formule de la somme S_n de n termes $t_1, t_2, ..., t_n$ d'une

P.G. de raison q. En effet, sachant que

 $S_n = t_1 + t_2 + t_3 + \dots + t_3$ $= t_1 + t_1 q + t_1 q^2 + \dots + t_1 q^{n-1}$

 $= t_1(1+q+q^2+\cdots+q^{n-1})$. On a, en vertu des quotients remarquables, la formule de S_n

g. $P_n = \sqrt{(t_1, t_n)^n}$: formule du produit de n termes $t_1, t_2, ..., t_n$ d'une P.G. $P_n = t_1. t_2. t_{n-1}. t_n$ et on multiplie membre à membre $P_n = t_n \cdot t_{n-1} \cdot \dots \cdot t_2 \cdot t_1$

$$\Rightarrow P_n^2 = (t_1 \cdot t_n)^n$$
D'où $P_n = (\sqrt{t_1 \cdot t_n})^n$

§3. Logarithmes décimaux

3.1. Définition

$$x = \log N \iff 10^x = N$$

3.2. Conséquences de la définition

- a. $\log 10 = 1 \text{ car } \dots$
- b. $\log 1 = 0$ car ...
- c. Pour tout x, $10^x > 0$ et donc seuls les nombres N positifs ont un logarithme

3.3. Propriétés des logarithmes

Soient les nombres positifs *X*, *Y*, *Z*

$$\underline{\mathbf{a}} \cdot \log X. Y. Z = \log X + \log Y + \log Z$$

b.
$$\log \frac{X}{Y} = \log X - \log Y$$

Si on pose $-\log Y = co \log Y$
Alors $\log \frac{X}{Y} = \log X + co \log Y$
c. $\log X^n = n \log X$

$$\underline{\mathbf{c}}$$
 $\log X^n = n \log X$

$$\underline{\mathbf{d}}$$
 $\log \sqrt[n]{X} = \frac{1}{n} \log X$

$$\underline{\mathbf{d.}} \log \sqrt[n]{X} = \frac{1}{n} \log X$$

$$\underline{\mathbf{e.}} \log \sqrt[n]{X^m} = \frac{m}{n} \log X$$

3.4. Logarithme décimal d'un nombre positif

- a. Si N = 10, $x \in \mathbb{Z}$, alors $\log N = x$
- b. Si N n'est pas une puissance entière de 10, alors on utilise les Tables de logarithmes ou la machine à calculer.