Отчет о выполнении лабораторной работы 3.4.2 Закон Кюри-Вейсса

Комкин Михаил, группа Б01-303 2 ноября 2024 г.

Цель работы: изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри.

В работе используются: катушка самоиндукции с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

Вещества с отличными от нуля атомными магнитными моментами обладают парамагнитными свойствами. Внешнее магнитное поле ориентирует магнитные моменты, которые в отсутствие поля располагались в пространстве хаотичным образом. При повышении температуры T возрастает дезориентирующее действие теплового движения частиц, и магнитная восприимчивость парамагнетиков убывает по закону Кюри — обратно пропорционально температуре.

$$\chi \propto \frac{1}{T - \Theta_p}$$

Непосредственно вблизи Θ_K закон Кюри–Вейсса (2) нарушается. На практике наблюдается зависимость, изображённая на рис. 1.

Рис. 1: Зависимость обратной величины магнитной восприимчивости от температуры.

1 Экспериментальная установка

В работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что его точка Кюри лежит в диапазоне комнатных температур.

Рис. 2: Схема экспериментальной установки

Схема установки для проверки закона Кюри-Вейса показана на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотелой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора (генератора колебаний с самовозбуждением).

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика ($\sim 50~\rm k\Gamma u$), поэтому для уменьшения вихревых токов образец изготовлен из мелких кусочков размером 0.5 мм. Катушка 1 с образцом помещена в термостат 3, залитый трансформаторным маслом. Масло предохраняет образец от окисления при высоких температурах. Регулировка температуры осуществляется с помощью нагревателя 4 и термопары. Температура образца регулируется с помощью термостата 5.

Коэффициент самоиндукции катушки L пропорционален магнитной проницаемости и заполняющей его среды (почему?): $L \propto \mu$. Тогда разность самоиндукции катушки с образцом L и без него L_0 будет пропорциональна восприимчивости образца χ :

$$L = L_0 \cdot \mu = L_0 \cdot (1 + \chi).$$

При изменении индуктивности образца меняется период колебаний автогенератора:

$$\tau = 2\pi\sqrt{LC},$$

где C — ёмкость контура автогенератора. Период колебаний в отсутствие образца определяется самоиндукцией пустой катушки:

$$\tau_0 = 2\pi \sqrt{L_0 C}.$$

Отсюда находим

$$L = L_0 \cdot \frac{\tau^2}{\tau_0^2},$$

и, следовательно,

$$\chi \approx \frac{\tau^2}{\tau_0^2} - 1. \tag{3}$$

Из формул (2) и (3) следует, что закон Кюри-Вейса справедлив, если выполнено соотношение

$$\frac{1}{\tau^2 - \tau_0^2} \propto T - \Theta_p. \tag{4}$$

Измерения проводятся в интервале температур от $14^{\circ}C$ до $40^{\circ}C$. С целью экономии времени следует начинать измерения с низких температур.

Температура исследуемого образца всегда несколько отличается от температуры воды в термостате. После того как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медно-константановой термопары 6, один из спаев которой находится в тепловом контакте с образцом, а другой погружён в воду. Чувствительность термопары указана на установке. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится меньше $0.5^{\circ}C$ (более точному измерению температур мешают паразитные ЭДС, возникающие в цепи термопары).

2 Экспериментальные данные

Погрешности:

$$\Delta T = 0.01$$
$$\Delta \tau = 0.001$$

$T^{\circ}C$	τ , MKC	ε , мкВ	$\frac{1}{\tau^2 - \tau_0^2}$
14.01	10.0803	20	0.546956189
16.02	9.95619	10	0.586789032
18.02	9.7559	10	0.664937828
20.02	9.5073	20	0.796622321
22	9.06843	10	1.224844751
24	8.779850	20	1.894477598
26	8.6285	20	2.656042497
28	8.544	20	3.424657534
30	8.488	10	4.237288136
32	8.4568	20	4.8828125
34	8.4291	10	5.646527386
36	8.4096	10	6.345177665
38	8.3943913	10	7.022900978
40	8.38194	10	7.695859628

$$\Theta_p = (18.6 \pm 0.2)^{\circ} C$$

$$\Theta_K \approx (22 \pm 2)^{\circ} C$$

3 Вывод

В ходе работы был проверен закон Кюри–Вейсса вблизи точки Кюри и получены значения совпадающие с теоретическими. Теоретическое значение для температуры Кюри $\Theta_K = 20.2^{\circ}C$. Совпадает с полученным в пределах доверительного интервала.

Рис. 3: Закон Кюри-Вейса

Рис. 4: Точка Кюри