Quantum Mechanics

Wang Yapeng

2025年9月19日

preface

量子力学诞生于 19 世纪,是物理学的一个重要分支。它主要研究微观粒子的行为和性质,如电子、原子、分子等。量子力学的基本原理包括波粒二象性、不确定性原理、量子叠加态等,这些原理与经典力学有很大的不同。

目录

preface											
1	Fundamental Concepts										
	1.1	Bra , Ket & Operators									
		1.1.1 Inner Product & Outer Product	3								
		1.1.2 Hermitian Operators	4								
		1.1.3 Eigenvalues & Eigenstates	4								
		1.1.4 measurement	4								
		1.1.5 commutation of operators & uncertainty principle	4								
	1.2	Position & Momentum Operators	5								
		1.2.1 Representation in Position Space	5								
		1.2.2 Representation in Momentum Space	5								
		1.2.3 the translation operator	5								
2	Quantum Dynamics										
	2.1	Time Evolution	7								
	2.2	Schrodinger Picture and Heisenberg Picture	7								
	2.3	partile in one-dimensional potential	7								
		2.3.1 free particle	8								
		2.3.2 infinite-deep potential well	8								
		2.3.3 finite potential well	9								
		2.3.4 potential barrier & tunneling effect	9								
		2.3.5 delta potential well & barrier	9								
	2.4	Simple Harmonic Oscillator	10								
		2.4.1 the solution in position presentation	10								
		2.4.2 solution in quantum number presentation	11								
	2.5	central field	12								

2														E	1录
		2.5.1	Coulomb Field o	f Hydrogen	Atom								 •		13
A	Mathematical Equations												17		
	A. 1	Hermi	tian ploynomial												17
	A.2	Sphere	e Harmonic Funct	ion											17
\mathbf{G}	lossa	ry													19

Chapter 1

Fundamental Concepts

量子力学(Quantum Mechanics) 有以下几个基本假设:

- 1. 系统的状态由希尔伯特空间(Hilbert Space)中的矢量描述。
- 2. 可观测量由厄米算符表示,测量结果为该算符的本征值。
- 3. 态矢量的演化由薛定谔方程描述。

1.1 Bra, Ket & Operators

在量子力学中,系统的状态由希尔伯特空间中的矢量表示,通常称为右矢(\ker),记作 $|\psi\rangle$ 。

右矢的复共轭称为左矢 (bra) ,记作 $\langle \psi |$ 。

算符 (operator) 是作用在希尔伯特空间上的线性映射,通常用花体字母表示,如 \hat{A} 。算符的作用是将一个右矢映射到另一个右矢,即 $\hat{A}|\psi\rangle = |\phi\rangle$ 。

1.1.1 Inner Product & Outer Product

左矢与右矢可以相乘得到一个复数,称为内积,记作 $\langle \phi | \psi \rangle$ 。内积满足以下性质:

- $\langle \psi | \psi \rangle \ge 0$, 且当且仅当 $| \psi \rangle = 0$ 时取等号。
- $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$
- $\langle \phi | (\alpha | \psi_1 \rangle + \beta | \psi_2 \rangle) \rangle = \alpha \langle \phi | \psi_1 \rangle + \beta \langle \phi | \psi_2 \rangle$

右矢与左矢相乘得到一个算符,称为外积,记作 $|\psi\rangle\langle\phi|$ 。外积的作用是将 $|\phi\rangle$ 映射到 $|\psi\rangle$,即 $(|\psi\rangle\langle\phi|)|\phi\rangle = |\psi\rangle$ 。

1.1.2 Hermitian Operators

算符 \hat{A} 的厄密共轭记作 \hat{A}^{\dagger} ,定义为满足以下关系的算符:

$$\left\langle \phi \middle| \hat{A}\psi \right\rangle = \left\langle \hat{A}^{\dagger}\phi \middle| \psi \right\rangle \tag{1.1}$$

如果 $\hat{A} = \hat{A}^{\dagger}$, 则称 \hat{A} 为厄米算符。厄米算符具有以下性质:

- 本征值为实数。
- 不同本征值对应的本征矢量正交。
- 可以构成完备归一化的本征矢量组。

1.1.3 Eigenvalues & Eigenstates

对于算符 \hat{A} , 如果存在非零矢量 $|\psi\rangle$ 和标量 a, 使得

$$\hat{A} |\psi\rangle = a |\psi\rangle \tag{1.2}$$

则称 $|\psi\rangle$ 为 \hat{A} 的本征态, a 为对应的本征值。

在量子力学中,可观测量由厄米算符表示,测量结果为该算符的本征值。

1.1.4 measurement

测量一个可观测量 \hat{A} 时,系统的状态 $|\psi\rangle$ 会坍缩到 \hat{A} 的某个本征态 $|a\rangle$,测量结果为对应的本征值 a。测量结果 a 出现的概率为

$$P(a) = |\langle a|\psi\rangle|^2 \tag{1.3}$$

测量后系统的状态变为 $|a\rangle$ 。

1.1.5 commutation of operators & uncertainty principle

两个算符 \hat{A} 和 \hat{B} 的对易子定义为

$$\left[\hat{A},\hat{B}\right] = \hat{A}\hat{B} - \hat{B}\hat{A} \tag{1.4}$$

如果 $\left[\hat{A},\hat{B}\right]=0$,则称 \hat{A} 和 \hat{B} 对易。对易的算符可以同时具有确定的测量值。

如果 $\left[\hat{A},\hat{B}\right] \neq 0$,则称 \hat{A} 和 \hat{B} 不对易。根据不确定性原理,两个不对易的可观测量不能同时具有确定的测量值。具体地,对于两个可观测量 \hat{A} 和 \hat{B} ,它们的测量结果的不确定

性满足以下关系:

$$\Delta A \Delta B \ge \frac{1}{2} |\overline{\left[\hat{A}, \hat{B}\right]}| \tag{1.5}$$

其中 ΔA 和 ΔB 分别表示测量结果的标准差, : 表示期望值。

1.2 Position & Momentum Operators

在一维空间中,位置算符 \hat{x} 和动量算符 \hat{p} 定义如下:

$$\hat{x} |x\rangle = x |x\rangle \tag{1.6}$$

$$\hat{p}|p\rangle = p|p\rangle \tag{1.7}$$

其中 $|x\rangle$ 和 $|p\rangle$ 分别为位置和动量的本征态。

位置本征态和动量本征态满足正交归一化条件:

$$\langle x'|x\rangle = \delta(x'-x)$$
 (1.8)

$$\langle p'|p\rangle = \delta(p'-p) \tag{1.9}$$

其内积为

$$\langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}}e^{ipx/\hbar} \tag{1.10}$$

进而可以得到位置和动量算符的对易关系:

$$[\hat{x}, \hat{p}] = i\hbar \tag{1.11}$$

1.2.1 Representation in Position Space

1.2.2 Representation in Momentum Space

1.2.3 the translation operator

平移算符 $\mathcal{I}(a)$ 定义为将位置平移 a 的算符,即

$$\mathcal{T}(a)|x\rangle = |x+a\rangle \tag{1.12}$$

Chapter 2

Quantum Dynamics

2.1 Time Evolution

量子态的时间演化由薛定谔方程描述:

$$i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
 (2.1)

其中 Ĥ 是系统的哈密顿算符:

$$\hat{H} = -\frac{\hat{P}^2}{2m} + V(x) \tag{2.2}$$

2.2 Schrodinger Picture and Heisenberg Picture

对于量子系统的演化,有两种不同的视角,分别称为薛定谔绘景 (Schrodinger's Picture) 和海森堡绘景 (Heisenberg's Picture) 。

在薛定谔绘景中,物理量代表的算符是不变的,量子态随时间变化。而在海森堡绘景中,量子态是不变的,物理量代表的算符随时间变化。这两种不同的绘景在物理意义上是等价的。

2.3 partile in one-dimensional potential

任何物理态都可以视为若干个本征态的线性叠加,在这里我们取能量本征态作为基矢。 对于稳定一维势场中的能量本征态 $|E_i\rangle$,

$$\hat{U}(t)|E_i\rangle = \exp\left(-\frac{i\hat{H}t}{\hbar}\right)|E_i\rangle = \exp\left(-\frac{iE_it}{\hbar}\right)|E_i\rangle.$$
 (2.3)

因此有

$$\langle x|\hat{U}(t)|E_i\rangle = \exp\left(-\frac{iE_it}{\hbar}\right)\langle x|E_i\rangle.$$
 (2.4)

可以在坐标表象进行定态求解。

 $\forall |x\rangle$, \neq

$$\langle x|\hat{H}|E_i\rangle = E_i \langle x|E_i\rangle \tag{2.5}$$

$$\left[-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) \right] \langle x | E_i \rangle = E_i \langle x | E_i \rangle \tag{2.6}$$

自然地, 其边界条件为:

- 1. 对于 $V(x) \neq \infty$ 的情形, $\frac{\hbar^2}{2m} \langle x | E_i \rangle$ 存在且有限;
- 2. 对于 $V(x) = \pm \infty$ 的情形, $\frac{\hbar^2}{2m} \langle x | E_i \rangle = \mp \infty$.

2.3.1 free particle

对于自由粒子, 其哈密顿量为

$$\hat{H} = \frac{\hat{P}^2}{2m} \tag{2.7}$$

显然, 其动量本征态就是能量本征态, 为 |p>, 在位置表象下为

$$\psi(x,p) = \langle x|p\rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{ipx/\hbar}$$
 (2.8)

2.3.2 infinite-deep potential well

对于一维的有限深方势阱 V(x):

$$V(x) = \begin{cases} = -V_0, & x \in [0, a]; \\ = 0, & x < 0 \text{ or } x > a. \end{cases}$$
 (2.9)

记 $\langle x|E_i\rangle=\psi(x)$ 分为三段,

$$\psi(x) = \begin{cases}
\psi_1(x), & x < 0; \\
\psi_2(x), & 0 \le x \le a; \\
\psi_3(x), & x > a.
\end{cases}$$
(2.10)

其边界条件为:

$$\psi_1(0) = \psi_2(0) \tag{2.11}$$

$$\psi_2(a) = \psi_3(a) \tag{2.12}$$

$$\psi_1'(0) = \psi_2'(0) \tag{2.13}$$

$$\psi_2'(a) = \psi_3'(a) \tag{2.14}$$

2.3.3 finite potential well

2.3.4 potential barrier & tunneling effect

2.3.5 delta potential well & barrier

对于 δ 势阱

$$V(x) = -V_0 \delta(x), \tag{2.15}$$

波函数分为束缚态 $E \le 0$ 和散射态 E > 0.

散射态 对于从左侧入射的波函数:

$$\psi_1(x) = \exp\left(i\frac{px}{\hbar}\right) + R\exp\left(-i\frac{px}{\hbar}\right), x < 0; \tag{2.16}$$

$$\psi_2(x) = T \exp\left(i\frac{px}{\hbar}\right), x > 0. \tag{2.17}$$

在 x = 0 处进行势函数积分:

$$\int_{-\varepsilon}^{+\varepsilon} \left[-\frac{\hbar^2}{2m} \psi''(x) + V(x)\psi(x) - E\psi(x) \right] dx = 0.$$
 (2.18)

积分得:

$$-\frac{\hbar^2}{2m}(\psi'(x)|_{0^+} - \psi'(x)|_{0^-}) - V_0\psi(0) = 0.$$
(2.19)

结合边界条件 $\psi(0)|_{0^+} = \psi(0)|_{0^-}$, 可以解得:

$$T = \frac{1}{1+\beta}, R = \frac{-\beta}{1+\beta}, \beta = \frac{mV_0}{ip\hbar}.$$
 (2.20)

束缚态 双边波函数为指数形式,边界条件同式2.19.有唯一解:

$$E = -\frac{mV_0^2}{2\hbar^2}. (2.21)$$

 δ **势垒** 与之相似, δ 势垒仅有散射态, 其解为:

$$T = \frac{1}{1-\beta}, R = \frac{\beta}{1-\beta}, \beta = \frac{mV_0}{ip\hbar}.$$
 (2.22)

2.4 Simple Harmonic Oscillator

对于一维简谐势场

$$V(x) = \frac{1}{2}m\omega^2 x^2. {(2.23)}$$

2.4.1 the solution in position presentation

在坐标表象中, 定态薛定谔方程为:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + \frac{1}{2}m\omega^2 x^2 \psi = E\psi.$$
 (2.24)

引入无量纲量 $\xi=\sqrt{\frac{m\omega}{\hbar}}x=\alpha x,$ 将方程简化为:

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}\xi^2} + (\lambda - \xi^2)\psi = 0, \quad \lambda = \frac{2E}{\hbar\omega}.$$
 (2.25)

尝试渐进求解, 当 $\xi \to \infty$ 时, 忽略 λ , 方程为:

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}\xi^2} = \xi^2 \psi. \tag{2.26}$$

其解 $\psi \sim e^{\pm \xi^2/2}$.

因此,将原方程的解 ψ 写成 $\psi = H(\xi)e^{-\frac{\xi^2}{2}}$,其中 $H(\xi)$ 可通过多项式法进行求解。将 H(x) 带入可以得到:

$$\frac{\mathrm{d}^2 H}{\mathrm{d}\xi^2} - 2\xi \frac{\mathrm{d}H}{\mathrm{d}\xi} + (\lambda - 1)H = 0. \tag{2.27}$$

这个方法得到的解称为厄米多项式 (详见附录A.1), 其存在收敛解的条件为

$$\lambda = 2n + 1, \quad n = 0, 1, 2, 3, \cdots$$
 (2.28)

带入原方程可得波函数的本征值为:

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \ n = 0, 1, 2, 3, \cdots$$
 (2.29)

2.4.2 solution in quantum number presentation

简谐势场的薛定谔方程还可以写成以下形式:

$$\frac{1}{2m} \left(\hat{p}^2 + m^2 \omega^2 \hat{x}^2 \right) \psi = E \psi \tag{2.30}$$

参考平方差公式,可以定义算符:

$$a_{\pm} \equiv \frac{1}{\sqrt{2\hbar m\omega}} \left(\mp i\hat{p} + m\omega \hat{x} \right). \tag{2.31}$$

但是 \hat{x} 与 \hat{p} 并不对易, a_{\pm} 同样不对易,不能简单套用平方差公式,需要进行检验:

$$a_{-}a_{+} = \frac{1}{2\hbar m\omega} \left[\hat{p}^{2} + (m\omega\hat{x})^{2} - im\omega \left[\hat{x}, \hat{p} \right] \right]$$

$$= \frac{1}{\hbar\omega} \hat{H} + \frac{1}{2}.$$
(2.32)

同理,有:

$$a_{+}a_{-} = \frac{1}{\hbar\omega}\hat{H} - \frac{1}{2}.$$
 (2.33)

$$\hat{H} = \hbar\omega \left(a_+ a_- + \frac{1}{2} \right). \tag{2.34}$$

可以得到这一对算符的对易关系:

$$[a_{-}, a_{+}] = 1. (2.35)$$

容易证明,对于哈密顿量 \hat{H} 的本征态 ψ , $a_+\psi$ 也是 \hat{H} 的本征态:

Proof

对于 \hat{H} 和 a_+ :

$$\left[\hat{H}, a_{+}\right] = \hbar\omega \left(a_{+}a_{-} + \frac{1}{2}\right) a_{+} - a_{+}\hbar\omega \left(a_{+}a_{-} + \frac{1}{2}\right)
 = \hbar\omega \left(a_{+}a_{-}a_{+} - a_{+}a_{+}a_{-}\right)
 = \hbar\omega a_{+} \left[a_{-}, a_{+}\right]
 = \hbar\omega a_{+}.$$
(2.36)

同理

$$\left[\hat{H}, a_{-}\right] = \hbar \omega a_{-}. \tag{2.37}$$

那么对于 \hat{H} 的本征态 ψ :

$$\hat{H}\psi = E\psi. \tag{2.38}$$

有

$$\hat{H}a_{+}\psi = (E + \hbar\omega)a_{+}\psi. \tag{2.39}$$

$$\hat{H}a_{-}\psi = (E - \hbar\omega)a_{-}\psi. \tag{2.40}$$

但是谐振子的能量不可能为无限低,因此存在一个能量的下界使得:

$$a_{-}\psi_{0} = 0. (2.41)$$

将方程展开为:

$$\begin{split} \frac{1}{\sqrt{2\hbar m\omega}} \left(i\hat{p} + m\omega \hat{x} \right) \psi_0 &= 0 \\ \left(-\hbar \frac{\partial}{\partial x} + m\omega x \right) \psi_0(x) &= 0. \end{split} \tag{2.42}$$

可以解得:

$$\psi_0(x) = A \exp\left(-\frac{m\omega x^2}{2\hbar}\right) \tag{2.43}$$

归一化为:

$$\psi_0(x) = \sqrt{\frac{m\omega}{2\pi\hbar}} \exp\left(-\frac{m\omega x^2}{2\hbar}\right).$$
 (2.44)

2.5 central field

对于中心力场 $V(\vec{x}) = V(r)$, 其定态薛定谔方程可写为:

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\vec{r}) + (V(r) - E)\psi(\vec{r}) = 0$$
 (2.45)

其中 Laplace 算符 $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ 可以按照极坐标展开为:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \left\{ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right\}$$
(2.46)

将 $\psi(\vec{r})$ 写成 $\frac{u(r)}{r}Y(\theta,\phi)$, 则有:

$$\nabla^2 \psi(\vec{r}) = \frac{u''(r)}{r} Y(\theta, \phi) + \frac{u(r)}{r^3} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] Y(\theta, \phi). \tag{2.47}$$

2.5. CENTRAL FIELD

13

将径向部分 u(r) 与轴向部分 $Y(\theta,\phi)$ 分离开:

$$\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]Y(\theta,\phi) = AY(\theta,\phi) \tag{2.48}$$

$$-\frac{\hbar^2}{2m}u''(r) - \frac{A\hbar^2}{2m}\frac{u(r)}{r^2} + (V(r) - E)u(r) = 0$$
 (2.49)

其中轴向部分的解为球谐函数(详见附录):

$$\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\phi^2}\right]Y_{l,m}(\theta,\phi) = l(l+1)Y_{l,m}(\theta,\phi)$$
(2.50)

径向部分需要根据势能函数进行求解。

2.5.1 Coulomb Field of Hydrogen Atom

Problems

1.

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) = (E - ax)\psi(x) \tag{2.51}$$

2. 对于中心势场

$$V(r) = \begin{cases} -V_0, & r < a; \\ 0, & r \ge a. \end{cases}$$
 (2.52)

求 V_0 的最小值,使得能量 E=0 的无角动量态存在。

Solution to Problems

- 1. a
- 2. 无角动量,即 l=0,径向部分为:

$$-\frac{\hbar^2}{2m}u''(r) + (V(r) - E)u(r) = 0.$$
 (2.53)

可以写成:

$$u''(r) - \alpha u(r) = 0, \quad \alpha = \frac{2m}{\hbar^2} (V - E).$$
 (2.54)

对于 $r < a, \, \alpha = -\frac{2mV_0}{\hbar^2} < 0,$ 其解为

$$u_1(r) = A \sin\left(\sqrt{-\frac{2mV_0}{\hbar^2}}r\right), r < a. \tag{2.55}$$

对于 $r \ge a$, $\alpha = 0$, 其解为

$$u_2(r) = Br + C, r \ge a \tag{2.56}$$

边界条件为:

$$u_1(a) = u_2(a)$$
 \rightarrow $A \sin\left(\sqrt{\frac{2mV_0}{\hbar^2}}a\right) = Ba + C$ (2.57)

$$u_1'(a) = u_2'(a)$$
 $\rightarrow \sqrt{\frac{2mV_0}{\hbar^2}} A \cos\left(\sqrt{\frac{2mV_0}{\hbar^2}}a\right) = B$ (2.58)

$$\lim_{r \to +\infty} \frac{u_2(r)}{r} = 0 \qquad \qquad \to \qquad \qquad B = 0. \tag{2.59}$$

解得

$$A\sin[(n+\frac{1}{2})\pi] = C, \quad \sqrt{\frac{2mV_0}{\hbar^2}}a = (n+\frac{1}{2})\pi.$$
 (2.60)

对应 V_0 最小为 $\frac{\pi^2 \hbar^2}{8ma^2}$.

附录 A

Mathematical Equations

- A.1 Hermitian ploynomial
- A.2 Sphere Harmonic Function

术语表

- **右矢** 在量子力学中,右矢(ket)是希尔伯特空间中的一个元素,通常表示为 $|\psi\rangle$,它描述了量子系统的状态。右矢可以与左矢(bra)结合形成内积,用于计算量子态之间的关系和测量结果。. 3, 4
- **左矢** 在量子力学中,左矢(bra)是希尔伯特空间中的一个元素,通常表示为 $\langle \psi |$,它是一个线性函数,可以作用于右矢(ket)以产生一个复数。左矢与右矢一起构成了内积的基础,用于描述量子态之间的关系和测量结果。. 3, 4
- **希尔伯特空间** 希尔伯特空间 (Hilbert Space) 是量子力学中用于描述量子态的数学结构。它是一个完备的内积空间,允许定义向量的长度和角度,从而可以进行正交化和归一化等操作。希尔伯特空间中的每个向量对应一个量子态,而线性算符则作用于这些向量以描述物理量的测量和系统的演化。. 3

海森堡绘景 Heisenberg's Picture. 7

球谐函数 .. 13

算符 在量子力学中,算符(operator)是作用在希尔伯特空间中的线性映射,用于描述物理量的测量和量子态的演化。常见的算符包括位置算符、动量算符和哈密顿算符等。算符通常表示为大写字母,如 A、B等,并且可以通过对易关系来描述它们之间的相互作用。. 3

薛定谔绘景 Schrodinger's Picture. 7

量子力学 量子力学 (Quantum Mechanics) 是研究微观粒子行为和性质的物理学分支, 是现代物理学体系的重要基石。. 3

20 术语表