

MONASH BUSINESS SCHOOL

# Forecasting: principles and practice

**Rob J Hyndman** 

2.4 Non-seasonal ARIMA models

## **Outline**

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

# Autoregressive models

#### **Autoregressive (AR) models:**

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + e_t,$$

where  $e_t$  is white noise. This is a multiple regression with **lagged values** of  $y_t$  as predictors.





# AR(1) model

$$y_t = 2 - 0.8y_{t-1} + e_t$$

$$e_t \sim N(0, 1), \quad T = 100.$$
 AR(1)



# AR(1) model

$$\mathbf{y}_t = \mathbf{c} + \phi_1 \mathbf{y}_{t-1} + \mathbf{e}_t$$

- When  $\phi_1$  = 0,  $y_t$  is **equivalent to WN**
- When  $\phi_1$  = 1 and c = 0,  $y_t$  is **equivalent to a RW**
- When  $\phi_1$  = 1 and  $c \neq 0$ ,  $y_t$  is **equivalent to a RW with** drift
- When  $\phi_1$  < 0,  $y_t$  tends to oscillate between positive and negative values.

## AR(2) model

$$y_t = 8 + 1.3y_{t-1} - 0.7y_{t-2} + e_t$$

$$e_t \sim N(0, 1), \qquad T = 100.$$
 AR(2)



## **Stationarity conditions**

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

#### **General condition for stationarity**

Complex roots of  $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$  lie outside the unit circle on the complex plane.

- For p = 1:  $-1 < \phi_1 < 1$ .
- For p = 2:

$$-1 < \phi_2 < 1$$
  $\phi_2 + \phi_1 < 1$   $\phi_2 - \phi_1 < 1$ .

- More complicated conditions hold for  $p \ge 3$ .
- Estimation software takes care of this.

# **Stationarity conditions**

We normally restrict autoregressive models to stationary data, and then some constraints on the values of the parameters are required.

#### **General condition for stationarity**

Complex roots of  $1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p$  lie outside the unit circle on the complex plane.

- For  $p = 1: -1 < \phi_1 < 1$ .
- For p = 2:

$$-1 < \phi_2 < 1$$
  $\phi_2 + \phi_1 < 1$   $\phi_2 - \phi_1 < 1$ .

- More complicated conditions hold for  $p \ge 3$ .
- Estimation software takes care of this.

## **Outline**

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

## Moving Average (MA) models

#### Moving Average (MA) models:

$$y_t = c + e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \cdots + \theta_q e_{t-q},$$

where  $e_t$  is white noise. This is a multiple regression with **past errors** as predictors. Don't confuse this with moving average smoothing!



# MA(1) model

$$y_t = 20 + e_t + 0.8e_{t-1}$$

$$e_t \sim N(0, 1), T = 100.$$
 MA(1)



## MA(2) model

$$y_t = e_t - e_{t-1} + 0.8e_{t-2}$$

$$e_t \sim N(0, 1), \quad T = 100.$$
 MA(2)



# **Invertibility**

- Any MA(q) process can be written as an AR( $\infty$ ) process if we impose some constraints on the MA parameters.
- Then the MA model is called "invertible".
- Invertible models have some mathematical properties that make them easier to use in practice.
- Invertibility of an ARIMA model is equivalent to forecastability of an ETS model.

## Invertibility

#### **General condition for invertibility**

Complex roots of  $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_q z^q$  lie outside the unit circle on the complex plane.

- For q = 1:  $-1 < \theta_1 < 1$ .
- For q = 2:

$$-1 < \theta_2 < 1$$
  $\theta_2 + \theta_1 > -1$   $\theta_1 - \theta_2 < 1$ .

- More complicated conditions hold for  $\{q \ge 3.\}$
- Estimation software takes care of this.

## **Invertibility**

#### **General condition for invertibility**

Complex roots of  $1 + \theta_1 z + \theta_2 z^2 + \cdots + \theta_n z^q$  lie outside the unit circle on the complex plane.

- For q = 1:  $-1 < \theta_1 < 1$ .
- For q = 2:

$$-1 < \theta_2 < 1$$

$$-1 < \theta_2 < 1$$
  $\theta_2 + \theta_1 > -1$   $\theta_1 - \theta_2 < 1$ .

$$\theta_1 - \theta_2 < 1$$
.

- More complicated conditions hold for  $\{q > 3.\}$
- Estimation software takes care of this.

## **Outline**

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

## **Autoregressive Moving Average models:**

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t.$$

- Predictors include both lagged values of y<sub>t</sub> and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

#### **Autoregressive Integrated Moving Average models**

- Combine ARMA model with **differencing**.
- $\blacksquare$   $(1-B)^d y_t$  follows an ARMA model.

#### **Autoregressive Moving Average models:**

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t.$$

- Predictors include both lagged values of y<sub>t</sub> and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

#### **Autoregressive Integrated Moving Average models**

- Combine ARMA model with differencing.
- $(1-B)^d y_t$  follows an ARMA model.

#### **Autoregressive Moving Average models:**

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \theta_1 e_{t-1} + \dots + \theta_q e_{t-q} + e_t.$$

- Predictors include both lagged values of  $y_t$  and lagged errors.
- Conditions on coefficients ensure stationarity.
- Conditions on coefficients ensure invertibility.

#### **Autoregressive Integrated Moving Average models**

- Combine ARMA model with differencing.
- $\blacksquare$   $(1 B)^d y_t$  follows an ARMA model.

#### **Autoregressive Integrated Moving Average models**

### ARIMA(p, d, q) model

AR: p = order of the autoregressive part

I: d =degree of first differencing involved

MA: q =order of the moving average part.

- White noise model: ARIMA(0,0,0)
- Random walk: ARIMA(0,1,0) with no constant
- Random walk with drift: ARIMA(0,1,0) with const.
- $\blacksquare$  AR(p): ARIMA(p,0,0)
- $\blacksquare$  MA(q): ARIMA(0,0,q)

## **Backshift notation for ARIMA**

ARMA model:

$$y_t = c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t$$
  
or  $(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) e_t$ 

ARIMA(1,1,1) model:

Written out:

$$y_t = c + y_{t-1} + \phi_1 y_{t-1} - \phi_1 y_{t-2} + \theta_1 e_{t-1} + e_t$$

## **Backshift notation for ARIMA**

ARMA model:

$$y_t = c + \phi_1 B y_t + \dots + \phi_p B^p y_t + e_t + \theta_1 B e_t + \dots + \theta_q B^q e_t$$
  
or  $(1 - \phi_1 B - \dots - \phi_p B^p) y_t = c + (1 + \theta_1 B + \dots + \theta_q B^q) e_t$ 

ARIMA(1,1,1) model:

$$(1 - \phi_1 B)$$
  $(1 - B)y_t = c + (1 + \theta_1 B)e_t$   
 $\uparrow$   $\uparrow$   $\uparrow$   $\uparrow$   
AR(1) First MA(1)  
difference

Written out:

$$y_t = c + y_{t-1} + \phi_1 y_{t-1} - \phi_1 y_{t-2} + \theta_1 e_{t-1} + e_t$$



```
(fit <- auto.arima(uschange[, "Consumption"],</pre>
   seasonal=FALSE))
## Series: uschange[, "Consumption"]
## ARIMA(2,0,2) with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 ma2 mean
## 1.3908 -0.5813 -1.1800 0.5584 0.7463
## s.e. 0.2553 0.2078 0.2381 0.1403 0.0845
##
## sigma^2 estimated as 0.3511: log likelihood=-165.14
## ATC=342.28 ATCc=342.75 BTC=361.67
```

```
ARIMA(0,0,3) or MA(3) model
```

 $y_t = 0.756 + e_t + 0.254e_{t-1} + 0.226e_{t-2} + 0.269e_{t-3}$ , where  $e_t$  is white noise with standard deviation  $0.59 = \sqrt{0.3511}$ .

```
(fit <- auto.arima(uschange[, "Consumption"],</pre>
   seasonal=FALSE))
## Series: uschange[, "Consumption"]
## ARIMA(2,0,2) with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 ma2 mean
## 1.3908 -0.5813 -1.1800 0.5584 0.7463
## s.e. 0.2553 0.2078 0.2381 0.1403 0.0845
##
## sigma^2 estimated as 0.3511: log likelihood=-165.14
## ATC=342.28 ATCc=342.75 BTC=361.67
```

#### ARIMA(0,0,3) or MA(3) model:

 $y_t = 0.756 + e_t + 0.254e_{t-1} + 0.226e_{t-2} + 0.269e_{t-3}$ , where  $e_t$  is white noise with standard deviation 0.59 =  $\sqrt{0.3511}$ .

fit %>% forecast(h=10) %>% autoplot(include=80)



# **Understanding ARIMA models**

- If c = 0 and d = 0, the long-term forecasts will go to zero.
- If c = 0 and d = 1, the long-term forecasts will go to a non-zero constant.
- If c = 0 and d = 2, the long-term forecasts will follow a straight line.
- If  $c \neq 0$  and d = 0, the long-term forecasts will go to the mean of the data.
- If  $c \neq 0$  and d = 1, the long-term forecasts will follow a straight line.
- If  $c \neq 0$  and d = 2, the long-term forecasts will follow a quadratic trend.

# **Understanding ARIMA models**

#### Forecast variance and d

- The higher the value of *d*, the more rapidly the prediction intervals increase in size.
- For d = 0, the long-term forecast standard deviation will go to the standard deviation of the historical data.

#### Cyclic behaviour

- For cyclic forecasts, p > 2 and some restrictions on coefficients are required.
- If p = 2, we need  $\phi_1^2 + 4\phi_2 < 0$ . Then average cycle of length

$$(2\pi)/\left[\arccos(-\phi_1(1-\phi_2)/(4\phi_2))\right]$$
.

## **Outline**

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

## **Partial autocorrelations**

Partial autocorrelations measure relationship between  $y_t$  and  $y_{t-k}$ , when the effects of other time lags  $-1, 2, 3, \ldots, k-1$  — are removed.

$$\alpha_k$$
 = kth partial autocorrelation coefficient  
= equal to the estimate of  $b_k$  in regression:  
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}$ .

- Varying number of terms on RHS gives  $\alpha_k$  for different values of k.
- There are more efficient ways of calculating  $\alpha_k$ .
- $\alpha_1 = \rho_1$
- same critical values of  $\pm 1.96/\sqrt{T}$  as for ACF.

## Partial autocorrelations

Partial autocorrelations measure relationship between  $y_t$  and  $y_{t-k}$ , when the effects of other time lags  $-1, 2, 3, \ldots, k-1$  — are removed.

$$\alpha_k$$
 =  $k$ th partial autocorrelation coefficient  
= equal to the estimate of  $b_k$  in regression:  
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}$ .

- Varying number of terms on RHS gives  $\alpha_k$  for different values of k.
- There are more efficient ways of calculating  $\alpha_k$ .
- $\alpha_1 = \rho_1$
- **same** critical values of  $\pm 1.96/\sqrt{T}$  as for ACF.

## **Partial autocorrelations**

Partial autocorrelations measure relationship between  $y_t$  and  $y_{t-k}$ , when the effects of other time lags  $-1, 2, 3, \ldots, k-1$  — are removed.

$$\alpha_k$$
 =  $k$ th partial autocorrelation coefficient  
= equal to the estimate of  $b_k$  in regression:  
 $y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_k y_{t-k}$ .

- Varying number of terms on RHS gives  $\alpha_k$  for different values of k.
- There are more efficient ways of calculating  $\alpha_k$ .
- $\alpha_1 = \rho_1$
- same critical values of  $\pm 1.96/\sqrt{T}$  as for ACF.

# **Example: US consumption**



# **Example: US consumption**



# **ACF and PACF interpretation**

**ARIMA**(*p*,*d*,**0**) model if ACF and PACF plots of differenced data show:

- the ACF is exponentially decaying or sinusoidal;
- there is a significant spike at lag *p* in PACF, but none beyond lag *p*.

**ARIMA(0**,*d*,*q*) model if ACF and PACF plots of differenced data show:

- the PACF is exponentially decaying or sinusoidal;
- there is a significant spike at lag q in ACF, but none beyond lag q.

# **ACF and PACF interpretation**

**ARIMA**(*p*,*d*,**0**) model if ACF and PACF plots of differenced data show:

- the ACF is exponentially decaying or sinusoidal;
- there is a significant spike at lag p in PACF, but none beyond lag p.

**ARIMA(0**,*d*,*q*) model if ACF and PACF plots of differenced data show:

- the PACF is exponentially decaying or sinusoidal;
- there is a significant spike at lag q in ACF, but none beyond lag q.

# **Example: Mink trapping**





# **Example: Mink trapping**



### **Outline**

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

### **Maximum likelihood estimation**

Having identified the model order, we need to estimate the parameters c,  $\phi_1, \ldots, \phi_p$ ,  $\theta_1, \ldots, \theta_q$ .

 MLE is very similar to least squares estimation obtained by minimizing

$$\sum_{t-1}^{T} e_t^2.$$

- The Arima() command allows CLS or MLE estimation.
- Non-linear optimization must be used in either case.
- Different software will give different estimates.

### **Maximum likelihood estimation**

Having identified the model order, we need to estimate the parameters c,  $\phi_1, \ldots, \phi_p$ ,  $\theta_1, \ldots, \theta_q$ .

 MLE is very similar to least squares estimation obtained by minimizing

$$\sum_{t-1}^{T} e_t^2.$$

- The Arima() command allows CLS or MLE estimation.
- Non-linear optimization must be used in either case.
- Different software will give different estimates.

#### **Akaike's Information Criterion (AIC):**

AIC = 
$$-2 \log(L) + 2(p + q + k + 1)$$
,  
where L is the likelihood of the data,  
 $k = 1$  if  $c \ne 0$  and  $k = 0$  if  $c = 0$ .

#### **Corrected AIC:**

AICc = AIC + 
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

#### **Bayesian Information Criterion:**

$$BIC = AIC + \log(T)(p + q + k - 1).$$

#### **Akaike's Information Criterion (AIC):**

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where *L* is the likelihood of the data, k = 1 if  $c \ne 0$  and k = 0 if c = 0.

#### **Corrected AIC:**

AICc = AIC + 
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

#### Bayesian Information Criterion:

$$BIC = AIC + \log(T)(p + q + k - 1).$$

#### **Akaike's Information Criterion (AIC):**

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

#### **Corrected AIC:**

AICc = AIC + 
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

#### **Bayesian Information Criterion:**

$$BIC = AIC + \log(T)(p + q + k - 1).$$

#### **Akaike's Information Criterion (AIC):**

$$AIC = -2 \log(L) + 2(p + q + k + 1),$$

where L is the likelihood of the data,

$$k = 1 \text{ if } c \neq 0 \text{ and } k = 0 \text{ if } c = 0.$$

#### **Corrected AIC:**

AICc = AIC + 
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
.

#### **Bayesian Information Criterion:**

$$BIC = AIC + \log(T)(p + q + k - 1).$$

### **Outline**

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

#### A non-seasonal ARIMA process

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders: p, q, d

#### Hyndman and Khandakar (JSS, 2008) algorithm:

- Select no. differences d and D via unit root tests.
- Select p, q by minimising AICc.
- Use stepwise search to traverse model space.

AICc = 
$$-2 \log(L) + 2(p + q + k + 1) \left[ 1 + \frac{(p+q+k+2)}{T-p-q-k-2} \right]$$
. where *L* is the maximised likelihood fitted to the *differenced* data,  $k = 1$  if  $c \neq 0$  and  $k = 0$  otherwise.

**Step1:** Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

**Step 2:** Consider variations of current model:

- vary one of p, q, from current model by  $\pm 1$
- p, q both vary from current model by  $\pm 1$ ;
- Include/exclude *c* from current model.

Model with lowest AICc becomes current model

Repeat Step 2 until no lower AICc can be found

AICc = 
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where *L* is the maximised likelihood fitted to the *differenced* data,  $k = 1$  if  $c \neq 0$  and  $k = 0$  otherwise.

**Step1:** Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

Step 2: Consider variations of current model:

- vary one of p, q, from current model by  $\pm 1$ ;
- p, q both vary from current model by  $\pm 1$ ;
- Include/exclude *c* from current model.

Model with lowest AICc becomes current model

Repeat Step 2 until no lower AICc can be found.

AICc = 
$$-2 \log(L) + 2(p+q+k+1) \left[1 + \frac{(p+q+k+2)}{T-p-q-k-2}\right]$$
. where *L* is the maximised likelihood fitted to the *differenced* data,  $k = 1$  if  $c \neq 0$  and  $k = 0$  otherwise.

**Step1:** Select current model (with smallest AICc) from:

ARIMA(2, d, 2)

ARIMA(0, d, 0)

ARIMA(1, d, 0)

ARIMA(0, d, 1)

Step 2: Consider variations of current model:

- vary one of p, q, from current model by  $\pm 1$ ;
- p, q both vary from current model by  $\pm 1$ ;
- Include/exclude c from current model.

Model with lowest AICc becomes current model.

Repeat Step 2 until no lower AICc can be found.

### ggtsdisplay(internet)



```
tseries::adf.test(internet)
##
##
    Augmented Dickey-Fuller Test
##
## data: internet
## Dickey-Fuller = -2.6421, Lag order = 4, p-value = 0.3107
## alternative hypothesis: stationary
tseries::kpss.test(internet)
##
##
   KPSS Test for Level Stationarity
##
## data: internet
## KPSS Level = 0.72197, Truncation lag parameter = 2, p-value =
## 0.01155
```

```
##
## KPSS Test for Level Stationarity
##
## data: diff(internet)
## KPSS Level = 0.26352, Truncation lag parameter = 2, p-value = 0.1
```

internet %>% diff %>% ggtsdisplay



```
(fit <- Arima(internet, order=c(3,1,0)))
## Series: internet
## ARIMA(3,1,0)
##
## Coefficients:
##
                   ar2 ar3
           ar1
## 1.1513 -0.6612 0.3407
## s.e. 0.0950 0.1353 0.0941
##
  sigma<sup>2</sup> estimated as 9.656: log likelihood=-252
## ATC=511.99 ATCc=512.42 BTC=522.37
```

```
(fit2 <- auto.arima(internet))
## Series: internet
## ARIMA(1,1,1)
##
## Coefficients:
##
           ar1 ma1
## 0.6504 0.5256
## s.e. 0.0842 0.0896
##
## sigma^2 estimated as 9.995: log likelihood=-254.
## ATC=514.3 ATCc=514.55 BTC=522.08
```

#### checkresiduals(fit, plot=TRUE)



```
checkresiduals(fit, plot=FALSE)
```

```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,0)
## Q* = 4.4913, df = 7, p-value = 0.7218
##
## Model df: 3. Total lags used: 10
```

fit %>% forecast %>% autoplot



### Modelling procedure with Arima

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.
- If the data are non-stationary: take first differences of the data until the data are stationary.
- Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
- Try your chosen model(s), and use the AICc to search for a better model.
- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

### Modelling procedure with auto.arima

- Plot the data. Identify any unusual observations.
- If necessary, transform the data (using a Box-Cox transformation) to stabilize the variance.

Use auto.arima to select a model.

- Check the residuals from your chosen model by plotting the ACF of the residuals, and doing a portmanteau test of the residuals. If they do not look like white noise, try a modified model.
- Once the residuals look like white noise, calculate forecasts.

# **Modelling procedure**



```
eeadj <- seasadj(stl(elecequip, s.window="periodic")
autoplot(eeadj) + xlab("Year") +
  ylab("Seasonally adjusted new orders index")</pre>
```



- Time plot shows sudden changes, particularly big drop in 2008/2009 due to global economic environment. Otherwise nothing unusual and no need for data adjustments.
- No evidence of changing variance, so no Box-Cox transformation.
- Data are clearly non-stationary, so we take first differences.

### equipment



- PACF is suggestive of AR(3). So initial candidate model is ARIMA(3,1,0). No other obvious candidates.
- Fit ARIMA(3,1,0) model along with variations: ARIMA(4,1,0), ARIMA(2,1,0), ARIMA(3,1,1), etc. ARIMA(3,1,1) has smallest AICc value.

```
fit <- Arima(eeadj, order=c(3,1,1))</pre>
summary(fit)
## Series: eeadj
## ARIMA(3,1,1)
##
## Coefficients:
           ar1 ar2 ar3 ma1
##
## 0.0044 0.0916 0.3698 -0.3921
## s.e. 0.2201 0.0984 0.0669 0.2426
##
## sigma^2 estimated as 9.577: log likelihood=-492.69
## ATC=995.38 ATCc=995.7 BTC=1011.72
##
## Training set error measures:
##
                      MF.
                            RMSE MAE
                                                  MPF.
                                                          MAPE
## Training set 0.0328818 3.054718 2.357169 -0.006470086 2.481603 0
##
                      ACF1
## Training set 0.008980716
```

ACF plot of residuals from ARIMA(3,1,1) model look like white noise.

### ggAcf(residuals(fit))



#### checkresiduals(fit, plot=FALSE)

```
##
## Ljung-Box test
##
## data: Residuals from ARIMA(3,1,1)
## Q* = 24.034, df = 20, p-value = 0.2409
##
## Model df: 4. Total lags used: 24
```

fit %>% forecast %>% autoplot



### **Outline**

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

### **Point forecasts**

- Rearrange ARIMA equation so  $y_t$  is on LHS.
- Rewrite equation by replacing t by T + h.
- On RHS, replace future observations by their forecasts, future errors by zero, and past errors by corresponding residuals.

Start with h = 1. Repeat for h = 2, 3, ...

#### 95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where  $v_{T+h|T}$  is estimated forecast variance.

- $\mathbf{v}_{T+1|T} = \hat{\sigma}^2$  for all ARIMA models regardless of parameters and orders.
- $\blacksquare$  Multi-step prediction intervals for ARIMA(0,0,q):

$$y_t = e_t + \sum_{i=1}^{q} \theta_i e_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^2 \left[ 1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3, \dots.$$

#### 95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where  $v_{T+h|T}$  is estimated forecast variance.

- $v_{T+1|T} = \hat{\sigma}^2$  for all ARIMA models regardless of parameters and orders.
- Multi-step prediction intervals for ARIMA(0,0,q):

$$y_t = e_t + \sum_{i=1}^q \theta_i e_{t-i}.$$

$$v_{T|T+h} = \hat{\sigma}^2 \left[ 1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \quad \text{for } h = 2, 3, \dots.$$

#### 95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where  $v_{T+h|T}$  is estimated forecast variance.

■ Multi-step prediction intervals for ARIMA(0,0,q):

$$\begin{aligned} y_t &= e_t + \sum_{i=1}^q \theta_i e_{t-i}. \\ v_{T|T+h} &= \hat{\sigma}^2 \left[ 1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \qquad \text{for } h = 2, 3, \dots. \end{aligned}$$

- $\blacksquare$  AR(1): Rewrite as MA( $\infty$ ) and use above result.
- Other models beyond scope of this workshop.

#### 95% Prediction interval

$$\hat{y}_{T+h|T} \pm 1.96 \sqrt{v_{T+h|T}}$$

where  $v_{T+h|T}$  is estimated forecast variance.

■ Multi-step prediction intervals for ARIMA(0,0,q):

$$\begin{aligned} y_t &= e_t + \sum_{i=1}^q \theta_i e_{t-i}. \\ v_{T|T+h} &= \hat{\sigma}^2 \left[ 1 + \sum_{i=1}^{h-1} \theta_i^2 \right], \qquad \text{for } h = 2, 3, \dots. \end{aligned}$$

- AR(1): Rewrite as MA( $\infty$ ) and use above result.
- Other models beyond scope of this workshop.

- Prediction intervals increase in size with forecast horizon.
- Prediction intervals can be difficult to calculate by hand
- Calculations assume residuals are uncorrelated and normally distributed.
- Prediction intervals tend to be too narrow.
  - the uncertainty in the parameter estimates has not been accounted for.
  - the ARIMA model assumes historical patterns will not change during the forecast period.
  - the ARIMA model assumes uncorrelated future errors

### **Outline**

- 1 Autoregressive models
- 2 Moving average models
- 3 Non-seasonal ARIMA models
- 4 Partial autocorrelations
- 5 Estimation and order selection
- 6 ARIMA modelling in R
- 7 Forecasting
- 8 Lab session 11

# **Lab Session 11**