A

Project Work-II Report

on

Automatic Solar Panel Cleaning Robot

Submitted in Partial Fulfilment of the Academic Requirements of Degree

Bachelor of Engineering

in

ELECTRONICS AND COMMUNICATION ENGINEERING

by

M. Sri Charan Siddharth 2451-21-735-178 Gouni Sandeep 2451-21-735-315 Tukkapuram Rohit Chary 2451-21-735-317

Under the Guidance of

Dr. B. Sarala Professor, ECED

Department of Electronics and Communication Engineering

Maturi Venkata Subba Rao (MVSR) Engineering College
An UGC Autonomous Institute Nadergul P.O., Hyderabad - 501510
April 2025

Maturi Venkata Subba Rao (MVSR) Engineering College (An Autonomous Institution)

(Sponsored by Matrusri Education Society, Estd.1980) Affiliated to Osmania University & Approved by AICTE

Councelling code EAMCET/ECET/ICET: MVSR PGECET: MVSR1

CERTIFICATE

This is to certify that the Project work "Automatic Solar Panel Cleaning Robot", being submitted by, M. Sri Charan Siddharth, Gouni Sandeep and Tukkapuram Rohit Chary, in partial fulfilment for the award of Bachelor of Engineering (BE) degree, with specialization Electronics and Communication Engineering (ECE), to the Department of Electronics and Communication Engineering, MATURI VENKATA SUBBA RAO (MVSR) ENGINEERING COLLEGE, an autonomous institution under OSMANIA UNIVERSITY, Hyderabad, is a record of the bonafide work carried out by him/her under my guidance and supervision.

Signature of the Guide

Dr. B. Sarala

Professor, ECED

Head of the Department

Dr. G. Kanakadurga

Department of ECED

Signature of External Examiner

DECLARATION

We declare that this project report titled **Automatic Solar Panel Cleaning Robot** submitted in partial fulfillment of the degree of Bachelor of Engineering in Electronics and Communication Engineering is a record of original work carried out by us under the supervision of **Dr. B. Sarala**, and has not formed the basis for the award of any other degree or diploma, in this or any other Institution or University. In keeping with the ethical practice in reporting scientific information, due acknowledgements have been made wherever the findings of others have been cited.

Student Name:	Roll No:	<u>Signature:</u>
M. Sri Charan Siddharth	2451-21-735-178	
Gouni Sandeep	2451-21-735-315	
Tukkapuram Rohit Chary	2451-21-735-317	

ACKNOWLEDGEMENTS

We sincerely express my heartfelt gratitude to my supervisor **Dr. B. Sarala, Professor, ECED** for their invaluable guidance, unwavering support, and insightful contributions throughout this Project work. The discussions we had greatly enhanced our understanding and played a crucial role in achieving our project goals.

We also extend my gratitude to **Dr. G. Kanaka Durga, Professor & Head of the Department**, and our **Principal, Dr. Vijaya Guntur**, for their continuous support, encouragement, and for providing the necessary resources to successfully carry out this project work.

Furthermore, we would like to acknowledge the faculty and staffs of the department for their direct and indirect assistance in making this project a success.

Lastly, we are deeply grateful to my parents for their unwavering support, encouragement, and blessings throughout this journey.

M. Sri Charan Siddharth	2451-21-735-178
Gouni Sandeep	2451-21-735-315
Tukkapuram Rohit Chary	2451-21-735-317

ABSTRACT

This report presents the design and development of a fully autonomous solar panel cleaning robot aimed at enhancing the efficiency and longevity of solar energy systems. With the accumulation of dust and debris significantly reducing power output—by as much as 50% if left uncleaned for extended periods—this project addresses the critical need for a reliable maintenance solution in solar farms. The proposed robot employs advanced sensing technology and a water-assisted cleaning mechanism to operate independently, ensuring optimal performance of solar panels.

The solar panel cleaning robot is built around an Arduino microcontroller, which integrates multiple components such as infrared (IR) sensors for edge detection, a rain detection module for safety, and a cleaning mechanism featuring rotating brushes and a water pump. The robot is programmed to follow a boustrophedon cleaning path to ensure comprehensive coverage of the solar panel surface while avoiding potential hazards. Testing results demonstrated over 90% cleaning efficiency and reliable autonomous operation under various environmental conditions.

Implementation of the system involved the careful selection and integration of hardware and software tools. The Arduino platform facilitated seamless communication between sensors and motor drivers, allowing for real-time adjustments during operation. The use of cost-effective components ensured the project's accessibility for medium to large-scale solar installations. Additionally, the potential application of this robotic solution extends beyond just cleaning; it lays the groundwork for future integration with IoT technologies for remote monitoring and scheduling, further streamlining solar panel maintenance processes.

CONTENTS

ABSTRACT	Γ		IV
LIST OF FI	GURES	•	VIII
LIST OF TA	ABLES		IX
LIST OF AI	BBREVIATIONS		X
CHAPTER	DESCRIPTION	PAGE NO.	
1	Introduction	1-3	
	1.1. Introduction	1	
	1.2. Problem Statement	1	
	1.3. Objectives of the Project	1	
	1.4. Scope and Limitations	2	
	1.4.1. Scope	2	
	1.4.2. Limitations	2	
	1.5. Organization of the Report	3	
2	Discussed Literature survey of	3-11	
	various Techniques & Comparison		
	2.1 Literature Review	3	
	2.1.1 Existing Methods	3	
	2.1.2. Proposed Method	6	
	2.2. Comparison of Various Methods	6	
	2.3 Summary of the Analysis	9	

3	Solar Panel Cleaning Robot	12-41
	3.1. Overview of the System	12
	3.2. Block Diagram	13
	3.3. Hardware Components and	15
	Specifications	
	3.4. Schematic Design	24
	3.5. Physical Characteristics	28
	3.6. Software Design	36
	3.6.1. Pseudocode	36
	3.6.2. Flowchart	40
	3.6.3. Algorithm	41
	3.7. Communication Protocols Used	41
	3.8. Summary	41
4	Implementation of Solar Panel	42-47
	Robot	
	4.1. Connections of Solar Panel	42
	Cleaning Robot	
	4.1.1. Wiring and Connections	42
	4.1.2. Connection Details	44
	4.1.3. Circuit diagram	45
	4.1.4. Assembly Steps	45
	4.2. Software Development	46
	4.2.1. Programming Languages and	46
	Tools Used	

	4.3. Integration of Hardware and	46
	Software	
	4.4. Summary	47
5	Results & Discussion	49-53
	5.1. Test Cases and Outcomes	49
	5.2. Performance Analysis	51
	5.3. Challenges Encountered and	51
	Solutions Applied	
	5.4. Overall Findings	52
	5.5. Results	53
	5.6. Summary	
6	Conclusion & Future work	54-58
	6.1. Summary of the Project	54
	6.2. Key Findings and Contributions	54
	6.3. Limitations of the Current	55
	Implementation	
	6.4. Possible Improvements and	55
	Future Enhancements	
	REFERENCES	58

LIST OF FIGURES

S. No	Name of the figure	Page No
3.2.2	BLOCK DIAGRAM	9
3.3.1	SOLAR PANEL	10
3.3.2	BATTERY	11
3.3.3	INNER SIDE MOTOR	13
3.3.4	WHEEL	16
3.3.5	D.C WATER PUMP	17
3.3.6	ARDUINO BOARD	18
3.4	SCHEMATIC & REFERENCE DESIGN	19
3.5.1	L293D MOTOR DRIVER	24
3.5.2	L293D HARDWARE CIRCUIT	24
3.5.3	FRC CABLE	26
3.5.4	IR SENSORS	27
4.1.3	CIRCUIT DIAGRAM	37
5.6	RESULTS & OBSERVATIONS	43

LIST OF TABLES

S. No	Name of the Tables	Page No
3.4.1	SPECIFICATIONS	23
4.1.2	TABLE OF CONNECTIONS	41
4.2.1	LIBRARIES USED	43
5.1	PERFORMANCE EVALUATION	47
5.3	CHALLENGES ENCOUNTERED	48
5.3	SOLUTIONS APPLIED	48
6.2	KEY FINDINGS & CONTRIBTIONS	51
6.3.1	CURRENT LIMITATIONS	52

LIST OF ABBREVIATIONS

Abbreviations	Definitions
IOT	Internet of things
IR	Infrared
PWM	Pulse Width Modulation
PV	Photovoltaic
LED	Light Emitting Diode
TTL	Transistor-Transistor logic
ICSP	In-Circuit Serial Programming
USB	Universal Serial Bus
SPI	Serial Peripheral Interface
I2C	Inter-Integrated Circuit
UART	Universal Asynchronous Receiver-
	Transmitter
DFU	Device Firmware Upgrade
AC	Alternating Current
FRC	Flat Ribbon Cable
TWI	Two-Wire Interface
AREF	Analog Reference

Electrically Erasable PROM

EEPROM