PRÉPAS INTERNATIONALES

Filière Ingénierie Générale

B.P.: 2375 Yaoundé

Sis Carrefour des Carreaux, Immeuble 3ème étage

Tél.: 696 16 46 86

E-mail.: prepas.internationales@yahoo.com Site: www.prepas-internationales.org

CONTROLE DE PHYSIQUE(ELECTROCINETIQUE) du 29/05/2021

Durée: 2H

ÉCOLE D'INGÉNIEURS

Exercice 1:

Un circuit RLC série est soumis à une tension alternative sinusoïdale e=E(2)^{1/2}sin(ωt) et parcouru par un courant i= $I(2)^{1/2}\sin(\omega t-\varphi)$.

- 1) Que représentent E, I, ω et φ .
- 2) Calculer I et φ en fonction de E, R, L, C et ω .
- 3) On fait varier la pulsation ω du circuit.
- a) Montrer qu'il existe une pulsation ω_0 et une fréquence f_0 (que l'on calculera) pour lesquelles I est maximum
- b) Donner les expressions de I_0 et de l'impédance Z_0 du circuit lorsque $\omega = \omega_0$
- c) Calculer les fréquences de coupure f₁ et f₂ (f₁<f₂) de ce circuit et en déduire la bande passante.
- d) Etablir la relation entre f_0 , f_1 et f_2 .
- e) Calculer le coefficient de surtension et l'exprimer en fonction de f_0 , f_1 et f_2 .

Exercice 2:

La tension d'entrée du circuit représenté ci-contre est sinusoïdale et présente une valeur efficace Ve =230 V à la fréquence f=5 0 Hz. Le récepteur, ou encore la « charge », correspond à l'association d'une résistance et d'une inductance. On s'intéresse à la détermination de toutes les grandeurs électriques en régime permanent sinusoïdal du circuit.

- 1 Calculer la valeur de la réactance X associée à l'inductance du circuit.
- 2 Préciser l'expression et la valeur de l'impédance complexe \underline{Z} équivalente à la charge.
- 3 -Déterminer alors l'expression et la valeur du courant (en écriture complexe) <u>I</u>, et de la tension Vs
- 4 En déduire la valeur efficace et le déphasage par rapport à \underline{Ve} du courant \underline{I} et de la tension \underline{Vs} .
- 5 Calculer la valeur de la puissance consommée par la résistance R et la valeur de la puissance fournie par la source Ve. Commenter.

Exercice 3:

On considère le montage suivant. La puissance moyenne consommée par le dipôle vaut 700w.

- 1) Calculer la valeur efficace de i
- 2) Calculer la valeur de la puissance moyenne dissipée dans chacune des résistances
- 3) Calculer la valeur de la puissance réactive