#4

SEQUENCE LISTING

```
<110> Hauptmann, Rudolph
      Himmler, Adolph
      Maurer-Fogy, Ingrid
      Stratowa, Christian
<120> TNF Receptors, TNF Binding Proteins and DNAs Coding for
      Them
<130> 98,385-H
<140> 09/899,422
<141> 2001-07-03
<150> 09/525,998
<151> 2000-03-15
<150> 08/383,676
<151> 1995-02-01
<150> 08/153,287
<151> 1993-11-17
<150> 07/821,750
<151> 1992-01-02
<150> 07/511,430
<151> 1990-04-20
<160> 87
<170> PatentIn Ver. 2.0
<210> 1
<211> 1368
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(1368)
<220>
<221> sig_peptide
<222> (1)..(87)
<220>
<221> misc_feature
<222> (88)..(120)
<223> Portion of TNF-BP pro protein cleaved by
      extracellular proteases following secretion.
<220>
<221> misc feature
<222> (606)..(633)
<223> Portion of TNF-BP pro protein cleaved by
```

extracellular proteases following secretion.

- 400	1 1									
	ggc			gac Asp						48
				ccc Pro						96
				aga Arg 40						144
				tcg Ser	-	_	_	_		192
				tgt Cys						240
				tcc Ser						288
				aaa Lys						336
				gac Asp 120						384
				tgg Trp						432
				gly ggg						480
				tgc Cys						528
				aac Asn						576
				gag Glu 200						624
				ctg Leu						672

210		:	215		220	

			ctc Leu													720
			tac Tyr													768
			gaa Glu 260					_		_	_				_	816
			act Thr													864
	_		acc Thr				_							-	_	912
			gcg Ala	_		_	-			-				-		960
_	_		atc Ile				-		-		_					1008
			aag Lys 340													1056
	-	_	ccc Pro		_	_		-							_	1104
_	-		aag Lys	_				_			-	_	-			1152
	-		ctg Leu		_	_			-	-	_	_				1200
	_	-	ctg Leu						-	_	_		_		-	1248
_	_		ctg Leu 420	_		_			_	-	_	-	_	_		1296
			gac Asp													1344

1368

ccc gcg ccc agt ctt ctc aga tga Pro Ala Pro Ser Leu Leu Arg 450 455

<210> 2

<211> 455

<212> PRT

<213> Homo sapiens

<400> 2

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu 1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys 35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 55 60

Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 65 70 75 80

Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu 85 90 95

Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val 100 105 110

Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg 115 120 125

Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 135 140

Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 145 150 155 160

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu 165 170 175

Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr 180 185 190

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser 195 200 205

Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu 210 215 220

Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys 235 230 235

Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu 245 Gly Glu Leu Glu Gly Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser Phe Ser Pro Thr Pro Gly Phe Thr Pro Thr Leu Gly Phe Ser Pro Val 280 Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys 295 Pro Asn Phe Ala Ala Pro Arg Glu Val Ala Pro Pro Tyr Gln Gly 310 315 Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn 330 325 Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Glu Asn Val Pro Pro 360 Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Gln 390 Tyr Ser Met Leu Ala Thr Trp Arg Arg Thr Pro Arg Arg Glu Ala 410 Thr Leu Glu Leu Leu Gly Arg Val Leu Arg Asp Met Asp Leu Leu Gly

Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro 435 440 445

Pro Ala Pro Ser Leu Leu Arg 450 455

<210> 3 <211> 483 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(483)

<400> 3
gat agt gtg tgt ccc caa gga aaa tat atc cac cct caa aat aat tcg 4!
Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser 1 5 10 15

att tgc tgt Ile Cys Cys	_	-								-	_	96
cca ggc ccg Pro Gly Pro 35		_										144
ttc acc gct Phe Thr Ala 50			Leu									192
tgc cga aag Cys Arg Lys 65												240
cgg gac acc Arg Asp Thr												288
agt gaa aac Ser Glu Asn												336
acc gtg cac Thr Val His 115		-			_				-		-	384
cat gca ggt His Ala Gly 130			g Glu									432
tgt aag aaa Cys Lys Lys 145			-	-	_	_			-			480
aat Asn										•		483
<210> 4 <211> 161 <212> PRT <213> Homo	sapiens		٠									
<400> 4 Asp Ser Val	Cys Pro 5	Gln Gl	y Lys	Tyr	Ile 10	His	Pro	Gln	Asn	Asn 15	Ser	
Ile Cys Cys	Thr Lys	Cys Hi:	. Lys	Gly 25	Thr	Tyr	Leu	Tyr	Asn 30	Asp	Cys	
Pro Gly Pro 35	Gly Gln	Asp Th	Asp 40	Cys	Arg	Glu	Cys	Glu 45	Ser	Gly	Ser	
Phe Thr Ala	Ser Glu	Asn His		Arg	His	Cys	Leu 60	Ser	Cys	Ser	Lys	

Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp 90 Ser Glu Asn Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly 105 100 Thr Val His Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys 120 His Ala Gly Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys Ser Asn 130 135 Cys Lys Lys Ser Leu Glu Cys Thr Lys Leu Cys Leu Pro Gln Ile Glu 150 155 Asn <210> 5 <211> 87 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(87) atg ggc ctc tcc acc gtg cct gac ctg ctg cca ctg gtg ctc ctg Met Gly Leu Ser Thr Val Pro Asp Leu Leu Pro Leu Val Leu Leu 87 gag ctg ttg gtg gga ata tac ccc tca ggg gtt att gga Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly <210> 6 <211> 29 <212> PRT <213> Homo sapiens Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly 20 <210> 7

<211> 33

```
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(33)
<400> 7
                                                                    33
ctg gtc cct cac cta ggg gac agg gag aag aga
Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg
<210> 8
<211> 11
<212> PRT
<213> Homo sapiens
<400> 8
Leu Val Pro His Leu Gly Asp Arg Glu Lys Arg
<210> 9
<211> 30
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (1)..(30)
<400> 9
                                                                    30
gtt aag ggc act gag gac tca ggc acc aca
Val Lys Gly Thr Glu Asp Ser Gly Thr Thr
<210> 10
<211> 10
<212> PRT
<213> Homo sapiens
<400> 10
Val Lys Gly Thr Glu Asp Ser Gly Thr Thr
<210> 11
<211> 1334
<212> DNA
<213> Artificial Sequence
<220>
<221> CDS
<222> (213)..(1325)
```

<220>

<223> Description of Artificial Sequence: cDNA insert of lambdaTNF-BP15 and pTNF-BP15 vectors

<400> 11 quattetetq quetquequet country cetttqqqqt teauqueteac tqqquecuqq 60 cogtgatete tatgecogag teteaaceet caactgteae eccaaggeae ttgggaegte 120 ctggacagac cgagtcccgg gaagccccag cactgccgct gccacactgc cctgagccca 180 aatgggcgag tgagaggcca tagctgtctg gc atg ggc ctc tcc acc gtg cct 233 Met Gly Leu Ser Thr Val Pro gac ctg ctg ctg cca ctg gtg ctc ctg gag ctg ttg gtg gga ata tac 281 Asp Leu Leu Pro Leu Val Leu Leu Glu Leu Val Gly Ile Tyr 329 ccc tca ggg gtt att gga ctg gtc cct cac cta ggg gac agg gag aag Pro Ser Gly Val Ile Gly Leu Val Pro His Leu Gly Asp Arg Glu Lys 25 30 35 aga gat agt gtg tgt ccc caa gga aaa tat atc cac cct caa aat aat Arg Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn 40 tcg att tgc tgt acc aag tgc cac aaa gga acc tac ttg tac aat gac 425 Ser Ile Cys Cys Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp 70 60 tgt cca ggc ccg ggg cag gat acg gac tgc agg gag tgt gag agc ggc 473 Cys Pro Gly Pro Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly tee tte ace get tea gaa aac cac ete aga cac tge ete age tge tee 521 Ser Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser aaa tgc cga aag gaa atg ggt cag gtg gag atc tct tct tgc aca gtg 569 Lys Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val 105 110 115 gac cgg gac acc gtg tgt ggc tgc agg aag aac cag tac cgg cat tat 617 Asp Arg Asp Thr Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr 120 125 130 135 tgg agt gaa aac ctt ttc cag tgc ttc aat tgc agc ctc tgc ctc aat 665 Trp Ser Glu Asn Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn 140 145 150 ggg acc gtg cac ctc tcc tgc cag gag aaa cag aac acc gtg tgc acc 713 Gly Thr Val His Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr 155 tgc cat gca ggt ttc ttt cta aga gaa aac gag tgt gtc tcc tgt agt 761 Cys His Ala Gly Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys Ser

		170					175					180				
	tgt Cys 185															809
	aat Asn															857
_	gtc Val						-									905
	atg Met															953
	Gly ggg															1001
	aag Lys 265															1049
	ccc Pro															1097
	tcc Ser															1145
	gag Glu															1193
_	ctc Leu	_		~							_	-			-	1241
	gcc Ala 345														ctg Leu	1289
	gcc Ala							_	_	_		aag	gaatt	tc		1334
<213 <213	0> 12 1> 3° 2> PI 3> Ai	71 RT	icia.	l Se	quenc	ce										

<220>

<223> Description of Artificial Sequence: cDNA insert of lambdaTNF-BP15 and pTNF-BP15 vectors

)> 12 Gly		Ser	Thr 5	Val	Pro	Asp	Leu	Leu 10	Leu	Pro	Leu	Val	Leu 15	Leu
	Leu	Leu	Val 20	Gly	Ile	Tyr	Pro	Ser 25	Gly	Val	Ile	Gly	Leu 30	Val	Pro
His	Leu	Gly 35	Asp	Arg	Glu	Lys	Arg 40	Asp	Ser	Val	Cys	Pro 45	Gln	Gly	Lys
Tyr	Ile 50	His	Pro	Gln	Asn	Asn 55	Ser	Ile	Cys	Cys	Thr 60	Lys	Cys	His	Lys
Gly 65	Thr	Tyr	Leu	Tyr	Asn 70	Asp	Cys	Pro	Gly	Pro 75	Gly	Gln	Asp	Thr	Asp 80
Cys	Arg	Glu	Cys	Glu 85	Ser	Gly	Ser	Phe	Thr 90	Ala	Ser	Glu	Asn	His 95	Leu
Arg	His	Cys	Leu 100	Ser	Cys	Ser	Lys	Cys 105	Arg	Lys	Glu	Met	Gly 110	Gln	Val
Glu	Ile	Ser 115	Ser	Суѕ	Thr	Val	Asp 120	Arg	Asp	Thr	Val	Cys 125	Gly	Суѕ	Arg
Lys	Asn 130	Gln	Tyr	Arg	His	Tyr 135	Trp	Ser	Glu	Asn	Leu 140	Phe	Gln	Cys	Phe
Asn 145	Cys	Ser	Leu	Cys	Leu 150	Asn	Gly	Thr	Val	His 155	Leu	Ser	Cys	Gln	Glu 160
Lys	Gln	Asn	Thr	Val 165	Суѕ	Thr	Суѕ	His	Ala 170	Gly	Phe	Phe	Leu	Arg 175	Glu
Asn	Glu	Cys	Val 180	Ser	Суѕ	Ser	Asn	Cys 185	Lys	Lys	Ser	Leu	Glu 190	Cys	Thr
Lys	Leu	Cys 195	Leu	Pro	Gln	Ile	Glu 200	Asn	Val	Lys	Gly	Thr 205	Glu	Asp	Ser
Gly	Thr 210	Thr	Val	Leu	Leu	Pro 215	Leu	Val	Ile	Phe	Phe 220	Gly	Leu	Cys	Leu
Leu 225	Ser	Leu	Leu	Phe	Ile 230	Gly	Leu	Met	Tyr	Arg 235	Tyr	Gln	Arg	Trp	Lys 240
Ser	Lys	Leu	Tyr	Ser 245	Ile	Val	Cys	Gly	Lys 250	Ser	Thr	Pro	Glu	Lys 255	Glu
Gly	Glu	Leu	Glu 260	Gly	Thr	Thr	Thr	Lys 265	Pro	Leu	Ala	Pro	Asn 270	Pro	Ser
Phe	Ser	Pro 275	Thr	Pro	Gly	Phe	Thr 280	Pro	Thr	Leu	Gly	Phe 285	Ser	Pro	Val

Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys 295 Pro Asn Phe Ala Ala Pro Arg Glu Val Ala Pro Pro Tyr Gln Gly 305 310 320 315 Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn 325 330 Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp 345 Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro 355 360 Leu Arg Trp 370 <210> 13 <211> 6414 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: pADCMV1 vector <220> <221> unsure <222> (344) <223> "n" can be a, g, c, or t <220> <221> unsure <222> (4157) <223> "n" can be a, g, c, or t <220> <221> unsure <222> (5135) <223> "n" can be a, g, c, or t <220> <221> unsure <222> (6255) <223> "n" can be a, g, c, or t <400> 13 tcgacattga ttattgacta gttattaata gtaatcaatt acggggtcat tagttcatag 60 cccatatatg gagttccgcg ttacataact tacggtaaat ggcccgcctc gctgaccgcc 120 caacgacccc cgcccattga cgtcaataat gacgtatgtt cccatagtaa cgccaatagg 180 gactttccat tgacgtcaat gggtggagta tttacggtaa actgcccact tggcagtaca 240 tcaagtgtat catatgccaa gtacgccccc tattgacgtc aatgacggta aatggcccgc 300 ctggcattat gcccagtaca tgaccttatg ggactttcct actnggcagt acatctacgt 360 attagtcatc gctattacca tggtgatgcg gttttggcag tacatcaatg ggcgtggata 420 gcggtttgac tcacggggat ttccaagtct ccaccccatt gacgtcaatg ggagtttgtt 480 ttggcaccaa aatcaacggg actttccaaa atgtcgtaac aactccgccc cattgacgca 540 aatgggcggt aggcgtgtac ggtgggaggt ctatataagc agagctctct ggctaactag 600 agaacccact gcttaactgg cttatcgaaa ttaatacgac tcactatagg gagacccaag 660 cttctgcagg tcgacatcga tggatccggt acctcgagcg cgaattctct agaggatctt 720 tgtgaaggaa cettacttet gtggtgtgac ataattggac aaactaceta cagagattta 780 aagetetaag gtaaatataa aatttttaag tgtataatgt gttaaaetae tgattetaat 840 tgtttgtgta ttttagattc caacctatgg aactgatgaa tgggagcagt ggtggaatgc 900 ctttaatgag gaaaacctgt tttgctcaga agaaatgcca tctagtgatg atgaggctac 960 tgctgactct caacattcta ctcctccaaa aaagaagaga aaggtagaag accccaagga 1020 ctttccttca gaattgctaa gttttttgag tcatgctgtg tttagtaata gaactcttgc 1080 ttgctttgct atttacacca caaaggaaaa agctgcactg ctatacaaga aaattatgga 1140 aaaatatttg atgtatagtg ccttgactag agatcataat cagccatacc acatttgtag 1200 aggttttact tgctttaaaa aacctcccac acctcccct gaacctgaaa cataaaatga 1260 atgcaattgt tgttgttaac ttgtttattg cagcttataa tggttacaaa taaagcaata 1320 gcatcacaaa tttcacaaat aaagcatttt tttcactgca ttctagttgt ggtttgtcca 1380 aactcatcaa tgtatcttat catgtctgga tcaattctga gaaactagcc ttaaagacag 1440 acagetttgt tetagteage caggeaagea tatgtaaata aagtteetea gggaactgag 1500 gttaaaagat gtatcctgga cctgccagac ctggccattc acgtaaacag aagattccgc 1560 ctcaagttcc ggttaacaac aggaggcaac gagatctcaa atctattact tctaatcggg 1620 taattaaaac ctttcaacta aaacacggac ccacggatgt cacccacttt tccttccccg 1680 geteegeest teteagtast ecceaceatt aggetegeta etecacetes aetteeggge 1740 gcgacaccca cgtgccctct cccacccgac gctaaccccg ccctgcccg tctgaccccg 1800 cccaccacct ggccccgccc cgttgaggac agaagaaacc ccgggcagcc gcagccaagg 1860 cggacgggta gacgctgggg gcgctgagga gtcgtcctct accttctctg ctggctcggt 1920 gggggacgcg gtggatctca ggcttccgga agactggaag aaccggctca gaaccgcttg 1980 tctccgcggg gcttgggcgg cggaagaatg gccgctagac gcggacttgg tgcgaggcat 2040 cgcaggatgc agaagagcaa gcccgccggg agcgcggc tgtactaccc cgcgcctgga 2100 geggeeaege eggaetggge ggggeeggee tggtggagge ggagtetgae etegtggagg 2160 eggggeetet gatgtteaaa taggatgeta ggettgttga ggegtggeet eegatteaca 2220 agtgggaagc agcgccgggc gactgcaatt tcgcgccaaa cttggggggaa gcacagcgta 2280 caggetgeet aggtgatege tgetgetgte atggttegae egetgaaetg categtegee 2340 gtgtcccaga atatgggcat cggcaagaac ggagaccttc cctggccaat gctcaggtac 2400 tggctggatt gggttaggga aaccgaggcg gttcgctgaa tcgggtcgag cacttggcgg 2460 agacgcgcgg gccaactact tagggacagt catgaggggt aggcccgccg gctgctgccc 2520 ttgcccatgc ccgcggtgat ccccatgctg tgccagcctt tgcccagagg cgctctagct 2580 gggagcaaag teeggteaet gggeageaee acceeegga ettgeatggg tageegetga 2640 gatggageet gageaeaegt gaeagggtee etgttaaege agtgtttete taaettteag 2700 gaacgagttc aagtacttcc aaagaatgac caccacctcc tcagtggaag gtaaacagaa 2760 cctggtgatt atgggccgga aaacctggtt ctccattcct gagaagaatc gacctttaaa 2820 ggacagaatt aatatagttc tcagtagaga gctcaaggaa ccaccacaag gagctcattt 2880 tettgecaaa agtetggaee atgeettaaa aettattgaa caaccagagt tageagataa 2940 agtggacatg gtttggatag ttggaggcag ttccgtttac aaggaagcca tgaatcagcc 3000 aggccatctc agactctttg tgacaaggat catgcaggaa tttgaaagtg acacgttctt 3060 cccagaaatt gatttggaga aatataaact tctcccagag tacccagggg tcctttctga 3120 agtccaggag gaaaaaggca tcaagtataa atttgaagtc tatgagaaga aaggctaaca 3180 gaaagatact tgctgattga cttcaagttc tactgctttc ctcctaaaat tatgcatttt 3240 tacaagacca tgggacttgt gttggcttta gateetgtge ateetgggea aetgttgtae 3300 totaagocac tooccaaagt catgoccoag cocotgtata attotaaaca attagaatta 3360 ttttcatttt cattagtcta accaggttat attaaatata ctttaagaaa caccatttgc 3420 cataaagttc tcaatgcccc tcccatgcag cctcaagtgg ctccccagca gatgcatagg 3480 gtagtgtgtg tacaagagac cccaaagaca tagagcccct gagagcatga gctgatatgg 3540 gggctcatag agataggagc tagatgaata agtacaaagg gcagaaatgg gttttaacca 3600 gcagagctag aactcagact ttaaagaaaa ttagatcaaa gtagagactg aattattctg 3660

cacatcagac tetgageaga gttetgttea eteagaeaga aaatgggtaa attgagaget 3720 ggctccattg tgctccttag agatgggagc aggtggagga ttatataagg tctggaacat 3780 ttaacttctc cgtttctcat cttcagtgag attccaaggg atactacaat tctgtggaat 3840 gtgtgtcagt tagggtgtgg aaagtcccca ggctccccag caggcagaag tatgcaaagc 3900 atgcatetea attagteage aaceaggtgt ggaaagteee caggeteeee ageaggeaga 3960 agtatgcaaa gcatgcatct caattagtca gcaaccatag tcccgcccct aactccgccc 4020 atcocgccc taactccgcc cagttccgcc cattctccgc cccatggctg actaattttt 4080 tttatttatg cagaggccga ggcgcctctg agctattcca gaagtagtga ggaggctttt 4140 ttggaggcct aggcttntgc aaaaaagcta attcagcctg aatggcgaat gggacgcgcc 4200 ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact 4260 tgccagegee etagegeeeg eteetttege tttetteeet teettteteg eeaegttege 4320 eggettteee egteaagete taaategggg geteeettta gggtteegat ttagtgettt 4380 acggcacete gaccecaaaa acttgattag ggtgatggtt cacgtagtgg gccategece 4440 tgatagacgg tttttcgccc tttgacgttg gagtccacgt tctttaatag tggactcttg 4500 ttccaaactg gaacaacact caaccctatc tcggtctatt cttttgattt ataagggatt 4560 ttgccgattt cggcctattg gttaaaaaat gagctgattt aacaaaaatt taacgcgaat 4620 tttaacaaaa tattaacgtt tacaatttca ggtggcactt ttcggggaaa tgtgcgcgga 4680 acccctattt gtttattttt ctaaatacat tcaaatatgt atccgctcat gagacaataa 4740 ccctgataaa tgcttcaata atattgaaaa aggaagagta tgagtattca acatttccgt 4800 gtcgccctta ttcccttttt tgcggcattt tgccttcctg tttttgctca cccagaaacg 4860 ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac gagtgggtta catcgaactg 4920 gatctcaaca gcggtaagat ccttgagagt tttcgccccg aagaacgttt tccaatgatg 4980 agcactttta aagttetget atgtggegeg gtattateee gtattgaege egggeaagag 5040 caactcggtc gccgcataca ctattctcag aatgacttgg ttgagtactc accagtcaca 5100 gaaaagcatc ttacggatgg catgacagta agagnattat gcagtgctgc cataaccatg 5160 agtgataaca etgeggeeaa ettaettetg acaacgateg gaggacegaa ggagetaace 5220 getttttttge acaacatggg ggateatgta actegeettg ategttggga aceggagetg 5280 aatgaagcca taccaaacga cgagcgtgac accacgatgc ctgtagcaat ggcaacaacg 5340 ttgcgcaaac tattaactgg cgaactactt actctagctt cccggcaaca attaatagac 5400

tggatggagg cggataaagt tgcaggacca cttctgcgct cggcccttcc ggctggctgg 5460 tttattgctg ataaatctgg agccggtgag cgtgggtctc gcggtatcat tgcagcactg 5520 gggccagatg gtaagccctc ccgtatcgta gttatctaca cgacggggag tcaggcaact 5580 atggatgaac gaaatagaca gatcgctgag ataggtgcct cactgattaa gcattggtaa 5640 ctgtcagacc aagtttactc atatatactt tagattgatt taaaacttca tttttaattt 5700 aaaaggatct aggtgaagat cetttttgat aateteatga eeaaaateee ttaaegtgag 5760 ttttcgttcc actgagcgtc agaccccgta gaaaagatca aaggatcttc ttgagatcct 5820 ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaac caccgctacc agcggtggtt 5880 tgtttgccgg atcaagagct accaactett tttccgaagg taactggett cagcagagcg 5940 cagataccaa atactgtcct tctagtgtag ccgtagttag gccaccactt caagaactct 6000 gtagcaccgc ctacatacct cgctctgcta atcctgttac cagtggctgc tgccagtggc 6060 gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa ggcgcagcgg 6120 tegggetgaa eggggggtte gtgeacaeag eccagettgg agegaaegae etaeaeegaa 6180 ctgagatacc tacagcgtga gcattgagaa agcgccacgc ttcccgaagg gagaaaggcg 6240 gacaggtate eggtnagegg cagggtegga acaggagage geacgaggga getteeaggg 6300 ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc acctctgact tgagcgtcga 6360 tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa cgcc 6414

```
<210> 14

<211> 2173

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (245)..(1630)

<220>
```

<223> Description of Artificial Sequence: raTNF-R8

<400> 14
gaatteettt teteegagtt ttetgaacte tggeteatga tegggettae tggatacgag 60
aateetggag gacegtacce tgattteeat etaeetetga etttgageet ttetaaceeg 120
gggeteacge tgeeaacace egggeeacet ggteegateg tettaettea tteaeeageg 180
ttgeeaattg etgeeetgte eecageeeca atgggggagt gagagaggee actgeeggee 240

ggac atg ggt cto Met Gly Leu 1			g ctg ctg tca u Leu Leu Ser 10		}
ctg gct ctg ctg Leu Ala Leu Leu			Gly Val Thr G		7
cct tct ctt ggt Pro Ser Leu Gly 35			Asn Leu Cys P		5
aag tat gcc cat Lys Tyr Ala His 50	_				3
aaa gga acc tac Lys Gly Thr Tyr 65				= =	L
gtc tgc gag ctc Val Cys Glu Leu 80)
gtc aga cag tgt Val Arg Gln Cys			Arg Lys Glu M		7
gtg gag att tct Val Glu Ile Ser 115			Asp Thr Val C		;
aag aag aac caa Lys Lys Asn Gln 130					3
gtg gac tgc agc Val Asp Cys Ser 145	-		- · ·		L
gag aaa cag aac Glu Lys Gln Asn 160		-		_	}
gga aat gag tgc Gly Asn Glu Cys	_	-	Lys Lys Asn G		7
atg aag ctg tgc Met Lys Leu Cys 195			Val Thr Asn P		5
tca ggt act gcc Ser Gly Thr Ala 210			_		3
ctt tta ttc ttt	atc tgc atc	agt cta ctg	tgc cga tat c	cc cag tgg 961	L

Leu	Leu 225	Phe	Phe	Ile	Cys	Ile 230	Ser	Leu	Leu	Cys	Arg 235	Tyr	Pro	Gln	Trp	
	ccc Pro															1009
	gtg Val															.1057
	cca Pro	_		_									_			1105
	acc Thr															1153
	gtc Val 305				_									_	_	1201
	gtg Val	_			_		_	_								1249
	cct Pro					_										1297
	gcc Ala															1345
_	gtg Val		-				-		_		_			-		1393
	ctg Leu 385															1441
	cgt Arg	-		_		_			_	_	_	-	_			1489
	cgc Arg															1537
	tgc Cys															1585
	gaa Glu													taa		1630

450 455 460

<210> 15

<211> 461

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: raTNF-R8

<400> 15

Met Gly Leu Pro Ile Val Pro Gly Leu Leu Leu Ser Leu Val Leu Leu 1 5 10 15

Ala Leu Leu Met Gly Ile His Pro Ser Gly Val Thr Gly Leu Val Pro 20 25 30

Ser Leu Gly Asp Arg Glu Lys Arg Asp Asn Leu Cys Pro Gln Gly Lys 35 40 45

Tyr Ala His Pro Lys Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 55 60

Gly Thr Tyr Leu Val Ser Asp Cys Pro Ser Pro Gly Gln Glu Thr Val 65 70 75 80

Cys Glu Leu Ser His Lys Gly Thr Phe Thr Ala Ser Gln Asn His Val 85 90 95

Arg Gln Cys Leu Ser Cys Lys Thr Cys Arg Lys Glu Met Phe Gln Val

Glu Ile Ser Pro Cys Lys Ala Asp Met Asp Thr Val Cys Gly Cys Lys
115 120 125

Lys Asn Gln Phe Gln Arg Tyr Leu Ser Glu Thr His Phe Gln Cys Val

	130					135					140				
Asp 145	Суѕ	Ser	Pro	Cys	Phe 150	Asn	Gly	Thr	Val	Thr 155	Ile	Pro	Суѕ	Lys	Glu 160
Lys	Gln	Asn	Thr	Val 165	Cys	Asn	Cys	His	Ala 170	Gly	Phe	Phe	Leu	Ser 175	Gly
Asn	Glu	Cys	Thr 180	Pro	Cys	Ser	His	Cys 185	Lys	Lys	Asn	Gln	Glu 190	Cys	Met
Lys	Leu	Cys 195	Leu	Pro	Pro	Val	Ala 200	Asn	Val	Thr	Asn	Pro 205	Gln	Asp	Ser
Gly	Thr 210	Ala	Val	Leu	Leu	Pro 215	Leu	Val	Ile	Phe	Leu 220	Gly	Leu	Cys	Leu
Leu 225	Phe	Phe	Ile	Cys	Ile 230	Ser	Leu	Leu	Cys	Arg 235	Tyr	Pro	Gln	Trp	Arg 240
Pro	Arg	Val	Tyr	Ser 245	Ile	Ile	Суѕ	Arg	Asp 250	Ser	Ala	Pro	Val	Lys 255	Glu
Val	Glu	Gly	Glu 260	Gly	Ile	Val	Thr	Lys 265	Pro	Leu	Thr	Pro	Ala 270	Ser	Ile
Pro	Ala	Phe 275	Ser	Pro	Asn	Pro	Gly 280	Phe	Asn	Pro	Thr	Leu 285	Gly	Phe	Ser
Thr	Thr 290	Pro	Arg	Phe	Ser	His 295	Pro	Val	Ser	Ser	Thr 300	Pro	Ile	Ser	Pro
Val 305	Phe	Gly	Pro	Ser	Asn 310	Trp	His	Asn	Phe	Val 315	Pro	Pro	Val	Arg	Glu 320
Val	Val	Pro	Thr	Gln 325	Gly	Ala	Asp	Pro	Leu 330	Leu	Tyr	Gly	Ser	Leu 335	Asn
Pro	Val	Pro	Ile 340	Pro	Ala	Pro	Val	Arg 345	Lys	Trp	Glu	Asp	Val 350	Val	Ala
Ala	Gln	Pro 355	Gln	Arg	Leu	Asp	Thr 360	Ala	Asp	Pro	Ala	Met 365	Leu	Tyr	Ala
Val	Val 370	Asp	Gly	Val	Pro	Pro 375	Thr	Arg	Trp	Lys	Glu 380	Phe	Met	Arg	Leu
Leu 385	Gly	Leu	Ser	Glu	His 390	Glu	Ile	Glu	Arg	Leu 395	Glu	Leu	Gln	Asn	Gly 400
Arg	Суѕ	Leu	Arg	Glu 405	Ala	His	Tyr	Ser	Met 410	Leu	Glu	Ala	Trp	Arg 415	Arg
Arg	Thr	Pro	Arg 420	His	Glu	Ala	Thr	Leu 425	Asp	Val	Val	Gly	Arg 430	Val	Leu
Cys	Asp	Met	Asn	Leu	Arg	Gly	Cys	Leu	Glu	Asn	Ile	Arg	Glu	Thr	Leu

<210> 16 <211> 2141 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (213)..(1580) <220> <223> Description of Artificial Sequence: human TNF-R in 1TNF-R2 <400> 16 gaattetetg gaetgagget ceagttetgg cetttggggt teaagateae tgggaecagg 60 ccqtqatctc tatgcccqaq tctcaaccct caactqtcac cccaaqqcac ttqqqacqtc 120 ctggacagac cgagtcccgg gaagccccag cactgccgct gccacactgc cctgagccca 180 katqqqqqaq tqaqaqqcca taqctqtctq qc atq qqc ctc tcc acc qtq cct 233 Met Gly Leu Ser Thr Val Pro gac ctg ctg cta cta gtg ctc ctg gag ctg ttg gtg gga ata tac 281 Asp Leu Leu Pro Leu Val Leu Leu Glu Leu Leu Val Gly Ile Tyr 10 15 ccc tca ggg gtt att gga ctg gtc cct cac cta ggg gac agg gag aag 329 Pro Ser Gly Val Ile Gly Leu Val Pro His Leu Gly Asp Arg Glu Lys 25 30 aga gat agt gtg tgt ccc caa gga aaa tat atc cac cct caa aat aat 377 Arg Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn 40 50 tcg att tgc tgt acc aag tgc cac aaa gga acc tac ttg tac aat gac 425 Ser Ile Cys Cys Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp tgt cca ggc ccg ggg cag gat acg gac tgc agg gag tgt gag agc ggc 473 Cys Pro Gly Pro Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly tee tte ace get tea gaa aac cae ete aga cae tge ete age tge tee 521 Ser Phe Thr Ala Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser 95 aaa tgc cga aag gaa atg ggt cag gtg gag atc tct tct tgc aca gtg 569 Lys Cys Arg Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val 105 110 115

440

Glu Ser Pro Ala His Ser Ser Thr Thr His Leu Pro Arg

455

445

435

450

-		-		 _	ggc Gly	_		_		_					617
					cag Gln										665
					tgc Cys										713
_		-			cta Leu	_	_				_		_		761
					gag Glu 190										809
		_	_		gag Glu	-						_	_		857
_	_				ctt Leu	_									905
					cgg Arg										953
_			_		gaa Glu		_		-			-			1001
	_				aac Asn 270										1049
					agt Ser										1097
-					ggt Gly	_	_					_		_	1145
					tat Tyr										1193
					atc Ile										1241

agc gcc cac aag Ser Ala His Lys 345				, , ,	1289
tac gcc gtg gtg Tyr Ala Val Val 360				, ,	1337
cgg cgc cta ggg Arg Arg Leu Gly				, , ,	1385
aac ggg cgc tgc Asn Gly Arg Cys 395				a Thr Trp	1433
agg cgg cgc acg Arg Arg Arg Thr 410				, ,,	1481
gtg ctc cgc gac Val Leu Arg Asp 425				, , ,	1529
gcg ctt tgc ggc Ala Leu Cys Gly 440				,	1577
tga ggctgcgccc c	tgcgggcag ct	tctaaggac cgt	teetgega gatege	ette	1630
caaccccact ttttt	ctgga aaggag	ggggt cctgcaq	gggg caagcaggag	ctagcagccg	1690
cctacttggt gctaa	cccct cgatgt	tacat agctttt	tctc agctgcctgc	gcgccgccga	1750
cagtcagcgc tgtgc	gcgcg gagaga	aggtg cgccgtq	gggc tcaagagcct	gagtgggtgg	1810
tttgcgagga tgagg	gacgc tatgco	ctcat gcccgtt	tttg ggtgtcctca	ccagcaaggc	1870
tgctcggggg cccct	ggttc gtccct	tgagc ctttttc	caca gtgcataagc	agttttttt	1930
gtttttgttt tgttt	tgttt tgtttt	ttaaa tcaatca	atgt tacactaata	gaaacttggc	1990
actcctgtgc cctct	geetg gaeaag	gcaca tagcaaq	gctg aactgtccta	aggcaggggc	2050
gagcacggaa caatg	gggcc ttcago	ctgga gctgtgg	gact tttgtacata	cactaaaatt	2110
ctgaagttaa aaaaa	aaaaa aaaagg	gaatt c			2141

<210> 17

<211> 455

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: human TNF-R in

lTNF-R2

<400> 17 Met Gly Leu	Ser Thr	Val Pro	Asp Le	u Leu	Leu 1	Pro	Leu	Val	Leu	Leu
1	5			10					15	
Glu Leu Leu	Val Gly 20	Ile Tyr	Pro Se	_	Val :	Ile	Gly	Leu 30	Val	Pro
His Leu Gly		Glu Lys	Arg As	p Ser	Val (Cys	Pro 45	Gln	Gly	Lys
Tyr Ile His	Pro Gln	Asn Asn 55		e Cys	Cys '	Thr 60	Lys	Cys	His	Lys
Gly Thr Tyr 65	Leu Tyr	Asn Asp 70	Cys Pr	o Gly	Pro 0	Gly	Gln	Asp	Thr	Asp 80
Cys Arg Glu	Cys Glu 85		Ser Ph	e Thr 90	Ala	Ser	Glu	Asn	His 95	Leu
Arg His Cys	Leu Ser 100	Cys Ser	Lys Cy 10	_	Lys (Glu	Met	Gly 110	Gln	Val
Glu Ile Ser 115		Thr Val	Asp Ar 120	g Asp	Thr '	Val	Cys 125	Gly	Cys	Arg
Lys Asn Glr 130	Tyr Arg	His Tyr 135	=	r Glu		Leu 140	Phe	Gln	Cys	Phe
Asn Cys Ser 145	Leu Cys	Leu Asn 150	Gly Th	r Val	His 1	Leu	Ser	Cys	Gln	Glu 160
Lys Gln Asr	Thr Val	_	Cys Hi	s Ala 170	Gly	Phe	Phe	Leu	Arg 175	Glu
Asn Glu Cys	Val Ser 180	Cys Ser	Asn Cy 18	_	Lys :	Ser	Leu	Glu 190	Cys	Thr
Lys Leu Cys 195		Gln Ile	Glu As 200	n Val	Lys	Gly	Thr 205	Glu	Asp	Ser
Gly Thr Thr 210	Val Leu	Leu Pro 215		l Ile		Phe 220	Gly	Leu	Cys	Leu
Leu Ser Leu 225	Leu Phe	Ile Gly 230	Leu Me	t Tyr	Arg ' 235	Tyr	Gln	Arg	Trp	Lys 240
Ser Lys Leu	Tyr Ser 245		Cys Gl	y Lys 250	Ser '	Thr	Pro	Glu	Lys 255	Glu
Gly Glu Leu	Glu Gly 260	Thr Thr	Thr Ly 26		Leu i	Ala	Pro	Asn 270	Pro	Ser
Phe Ser Pro		Gly Phe	Thr Pr 280	o Thr	Leu	Gly	Phe 285	Ser	Pro	Val

Pro Ser Ser Thr Phe Thr Ser Ser Ser Thr Tyr Thr Pro Gly Asp Cys 295 Pro Asn Phe Ala Ala Pro Arg Glu Val Ala Pro Pro Tyr Gln Gly 310 Ala Asp Pro Ile Leu Ala Thr Ala Leu Ala Ser Asp Pro Ile Pro Asn 330 Pro Leu Gln Lys Trp Glu Asp Ser Ala His Lys Pro Gln Ser Leu Asp 345 Thr Asp Asp Pro Ala Thr Leu Tyr Ala Val Val Glu Asn Val Pro Pro 360 Leu Arg Trp Lys Glu Phe Val Arg Arg Leu Gly Leu Ser Asp His Glu 370 380 Ile Asp Arg Leu Glu Leu Gln Asn Gly Arg Cys Leu Arg Glu Ala Gln 390 Tyr Ser Met Leu Ala Thr Trp Arg Arg Thr Pro Arg Arg Glu Ala 405 410 Thr Leu Glu Leu Cly Arg Val Leu Arg Asp Met Asp Leu Leu Gly 425 420 Cys Leu Glu Asp Ile Glu Glu Ala Leu Cys Gly Pro Ala Ala Leu Pro 440 Pro Ala Pro Ser Leu Leu Arg 450 <210> 18 <211> 13 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: N-terminal amino acid sequence of protein purified from urine (main sequence) <220> <221> UNSURE <222> (4) <223> Identity of "Xaa" could not be determined. <400> 18 Asp Ser Val Xaa Pro Gln Gly Lys Tyr Ile His Pro Gln <210> 19 <211> 9

<212> PRT

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: N-terminal
      amino acid sequence of protein purified from urine
      (sudsidiary sequence)
<220>
<221> UNSURE
<222> (7)
<223> Identity of "Xaa" could not be determined.
<400> 19
Leu Val Pro His Leu Gly Xaa Arg Glu
  1
                  5
<210> 20
<211> 151
<212> DNA
<213> Homo sapiens
<400> 20
caggggaaaa tattcaccct caaataattc gatttgctgt accaagtgcc acaaaggaaa 60
ctacttgtac aatgactgtc caggcccggg gcaggatacg gactgcaggg agtgtgagag 120
                                                                    151
cggctccttc acagcctcag aaaacaacaa g
<210> 21
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 21
Asp Ser Val Cys Pro Gln Gly Lys
                  5
<210> 22
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<220>
<221> UNSURE
<222> (1)..(2)
<223> Identity of "Xaa" could not be determined.
```

```
<400> 22
Xaa Xaa Leu Ser Cys Ser Lys
<210> 23
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
     cleavage peptide
<400> 23
Asp Thr Val Cys Gly Cys Arg
<210> 24
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
     cleavage peptide
<400> 24
Glu Asn Glu Cys Val Ser Cys Ser Asn Cys Lys
                 5
<210> 25
<211> 12
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TNF-BP tryptic
     cleavage peptide
<400> 25
Glu Asn Glu Cys Val Ser Cys Ser Asn Cys Lys
<210> 26
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
 cleavage peptide
```

```
<221> UNSURE
<222> (6)
<223> Identity of "Xaa" could not be determined.
<220>
<221> UNSURE
<222> (10)..(12)
<223> Identity of "Xaa" could not be determined.
Tyr Ile His Pro Gln Xaa Asn Ser Ile Xaa Xaa Xaa Lys
                  5
<210> 27
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 27
Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn Asn Lys
<210> 28
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 28
Leu Val Pro His Leu Gly Asp Arg
                  5
<210> 29
<211> 15
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 29
Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg
                                      10
```

<220>

```
<210> 30
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 30
Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln
                  5
<210> 31
<211> 13
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<220>
<221> UNSURE
<222> (9)..(11)
<223> Identity of "Xaa" could not be determined.
<400> 31
Glu Met Gly Gln Val Glu Ile Ser Xaa Xaa Xaa Val Asp
                  5
<210> 32
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 32
Lys Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp
                  5
                                      10
                                                          15
Thr Val Cys Gly
             20
<210> 33
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
```

cleavage peptide

```
<220>
<221> UNSURE
<222> (6)
<223> Identity of "Xaa" could not be determined.
<220>
<221> UNSURE
<222> (18)
<223> Identity of "Xaa" could not be determined.
<400> 33
Tyr Ile His Pro Gln Xaa Asn Ser Ile Cys Cys Thr Lys Cys His Lys
                  5
                                      10
Gly Xaa Tyr
<210> 34
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<220>
<221> UNSURE
<222> (16)..(17)
<223> Identity of "Xaa" could not be determined.
Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Xaa
                                      10
Xaa Arg
<210> 35
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 35
Leu Cys Leu Pro Gln Ile Glu Asn
                5
<210> 36
```

```
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<220>
<221> UNSURE
<222> (7)
<223> Identity of "Xaa" could not be determined.
Gln Asn Thr Val Cys Thr Xaa His Ala Gly Phe Phe Leu Arg
                  5
                                      10
<210> 37
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 37
Ser Leu Glu Cys Thr Lys Leu Cys Leu Pro Gln Ile Glu Asn
                  5
<210> 38
<211> 13
<212> PRT
<213> Homo sapiens
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 38
Asp Ser Val Cys Pro Gln Gly Lys Tyr Ile His Pro Gln
<210> 39
<211> 7
<212> PRT
<213> Homo sapiens
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 39
Gln Gly Lys Tyr Ile His Pro
```

<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Hybridization probe	
<400> caaggt	40 caaat atattcatcc	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Hybridization probe	
<400> cagggt	41 taagt acatecatec	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Hybridization probe	
<400> caaggt	42 taaat atatacatcc	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Hybridization probe	
<400> caaggo	43 caaat atattcatcc	20
<210> <211>		

<212> <213>	> DNA > Artificial Sequence	
<220> <223>	<pre>> Description of Artificial Sequence: I probe</pre>	Hybridization
<400> cagggo	> 44 gcaagt acatccaccc	20
<210><211><211><212><213>	> 20	
<220> <223>	<pre>> Description of Artificial Sequence: Description of Artificial Sequence: Description</pre>	Hybridization
<400> caaggo	> 45 gcaaat atatacatcc	20
<210> <211> <212> <213>	> 20	
<220> <223>	<pre>> Description of Artificial Sequence: probe</pre>	Hybridization
<400> caagga	> 46 gaaaat atattcatcc	20
<210><211><211><212><213>	> 20	
<220> <223>	> Description of Artificial Sequence: probe	Hybridization
<400> caggga	> 47 gaaagt acatccaccc	20
<210> <211> <212> <213>	> 20	
<220> <223>	> > Description of Artificial Sequence: :	Hybridization

probe

<400>		
caagga	aaaat atatacatcc	20
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Hybridization	
	probe	
<400>	49	
caaggg	gaaat atattcatcc	20
<210>	50	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Hybridization	
	probe	
<400>	5.0	
	gaagt acatecacec	20
555	,	
<210>	5.1	
<211>		
<212>		
<213>	Artificial Sequence	
<000×		
<220>	Description of Artificial Sequence: Hybridization	
12237	probe	
<400>		20
caaggo	gaaat atatacatcc	20
<210>		
<211>		
<212>	Artificial Sequence	
-610/	clilotat ooquonoo	
<220>		
<223>	Description of Artificial Sequence: TNF-BP tryptic	
	cleavage peptide	
<400>	52	
Glu Cy	s Gly Ser Gly Ser Phe Thr Ala Ser Glu Asn Asn Lys	
1	5 10	

```
<210> 53
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
     cleavage peptide
<400> 53
Glu Cys Gly Ser Gly Ser Phe Thr Ala Ser Cys Asn Asn Lys
                                     10
<210> 54
<211> 8
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: TNF-BP tryptic
      cleavage peptide
<400> 54
Phe Thr Ala Ser Glu Asn Asn Lys
 1
                 5
<210> 55
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: TNF-BP tryptic
     cleavage peptide
<400> 55
Phe Thr Ala Ser Cys Asn Asn Lys
<210> 56
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Hybridization
      probe
<400> 56
aaatgacgga gactcttgtt gttcctaggg
```

30

<210> 57 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Hybridization probe	
<400> 57 aagtggcgta gtcttttgtt gttcctaggg	30
<210> 58 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Hybridization probe	
<400> 58 aaatgtcgga gactcttgtt gttcctaggg	30
<210> 59 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Hybridization probe	
<400> 59 aaatgacggt cactcttgtt gttcctaggg	30
<210> 60 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Hybridization probe	
<400> 60 aagtggcgtt ctcttttgtt gttcctaggg	30
<210> 61 <211> 30 <212> DNA	

	Description of Artificial Sequence: probe	Hybridization
<400> 6 aaatgto	61 oggt cactottgtt gttootaggg	30
<210> 6 <211> 3 <212> 0 <213> F	30	
	Description of Artificial Sequence: probe	Hybridization
<400> 6 aaatgac	62 cgga gaacattgtt gttcctaggg	30
<210> 6 <211> 3 <212> E <213> F	30	
	Description of Artificial Sequence: probe	Hybridization
<400> 6 aagtggd	63 egta gtactttgtt gtteetaggg	30
<210> 6 <211> 3 <212> E <213> F	30	
	Description of Artificial Sequence: probe	Hybridization
<400> 6 aaatgto	64 cgga gaacattgtt gttcctaggg	30
<210> 6 <211> 3 <212> E <213> F	30	
	Description of Artificial Sequence: probe	Hybridization
<400> 6	65	

aaat	aaatgacggt caacattgtt gttcctaggg									30					
<210 <211 <212 <213	> 30 > DN) NA	icia	l Sec	quenc	ce									
<220 <223															
<400 aagt			ctact	tttgl	it gt	tcct	agg	3							30
<210 <211 <212 <213	> 30 > DN) NA	icia	l Sed	quenc	ce				,					
<220: <223:	> De	escr: robe	ipti	on o:	f Art	cific	cial	Sequ	uence	e: Hy	ybri	diza	tion		
<400: aaat	_		caaca	attgi	ct gt	tect	cagg	g							30
<210: <211: <212: <213:	> 15 > DN	8 NA	sapie	ens											
<220: <221: <222:	> CI		(153))											
<400	> 68	3													
Gln (48
tgc (Cys 1															96
gat a Asp '															144
aac a Asn a		_	gato	cc											158

```
<211> 51
<212> PRT
<213> Homo sapiens
<400> 69
Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys
                                      10
Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln
                                  25
Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu
                              40
Asn Asn Lys
     50
<210> 70
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PCR primer
      EBI-1786
<400> 70
                                                                   26
ggaattcagc ctgaatggcg aatggg
<210> 71
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PCR primer
      EBI-1729
<400> 71
cctcgagcgt tgctggcgtt tttcc
                                                                   25
<210> 72
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: PCR primer
      EBI-1733
<400> 72
ggtcgacatt gattattgac tag
                                                                   23
```

<210> <211> <212> <213>	23	
<220> <223>	Description of Artificial Sequence: PCR primer EBI-1734	
<400> ggaatt	73 Eccct aggaatacag cgg	23
<210> <211> <212> <213>	19	
<220> <223>	Description of Artificial Sequence: Mutagenesis primer EBI-1751	
<400> gtactt	74 tgaac tcgttcctg	19
<210> <211> <212> <213>	18	
<220> <223>	Description of Artificial Sequence: Mutagenesis primer EBI-1857	
<400> ggcaaq	75 gggca gcagccgg	18
<210><211><211><212><213>	53	
<220> <223>	Description of Artificial Sequence: Oligonucleotide EBI-1823	
<400> agctto	76 etgca ggtegacate gatggategg tacetegage ggeegegaat tet	53
<210><211><211><212><213>	54	

<220> <223>	Description of Artificial Sequence: Oligonucleotide EBI-1829	
<400> ctagaq	77 gaatt egeggeeget egaggtaeeg gateeatega tgtegaeetg eaga	54
<210><211><211><212><213>	63	
<220> <223>	Description of Artificial Sequence: Oligonucleotide EBI-1820	
<400> agctct	78 tagag attegeggee getegaggta eeggateeat egatgtegae etgeagaage	60
ttg		63
<210><211><211><212><213>	64	
<220> <223>	Description of Artificial Sequence: Oligonucleotide EBI-1821	
-	79 aaget tetgeaggte gacategatg gateeggtae etegagegge egegaattet	
ctag		64
<210><211><211><212><213>	25	
<220> <223>	Description of Artificial Sequence: PCR primer EBI-1986	
<400> caggat	80 teega gteteaacee teaac	25
<210> <211> <212> <213>	43	
<220>		

<223>	Description of Artificial Sequence: PCR primer EBI-1929	
<400> gggaat	81 tcct tatcaattct caatctgggg taggcacaac ttc	43
<210> <211> <212>	81	
	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: PCR primer EBI-2452	
4400>		
<400> cacagt	82 cgac ttacatttgc ttctgacaca actgtgttca ctagcaacct caaacagaca	60
ccatg	ggeet etecacegtg e	81
<210><211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer EBI-1922	
<400>	83	
gaggct	cgcaa ttgaagc	17
<210><211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer EBI-2316	
<400>		
attcgt	cgcgg cgcctag	17
<210>	85	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: PCR primer	

<400> 85 gtcggtagca ccaagga	17
<210> 86 <211> 17 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: PCR primer EBI-1986	
<400> 86 gttttcccag tcacgac	17
<210> 87 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Sequencing primer EBI-2112	
<400> 87 gtccaattat gtcacacc	18