Deep Generative Models

Lecture 5

Roman Isachenko

Moscow Institute of Physics and Technology

2022

Variational autoencoder (VAE)

- ▶ VAE learns stochastic mapping between **x**-space, from $\pi(\mathbf{x})$, and a latent **z**-space, with simple distribution.
- The generative model learns distribution $p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{z})p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$, with a prior distribution $p(\mathbf{z})$, and a stochastic decoder $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$.
- The stochastic encoder $q(\mathbf{z}|\mathbf{x}, \phi)$ (inference model), approximates the true but intractable posterior $p(\mathbf{z}|\mathbf{x}, \theta)$.

LVM

$$p(\mathbf{x}|\theta) = \int p(\mathbf{x}, \mathbf{z}|\theta) d\mathbf{z} = \int p(\mathbf{x}|\mathbf{z}, \theta) p(\mathbf{z}) d\mathbf{z}$$

- More powerful $p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})$ leads to more powerful generative model $p(\mathbf{x}|\boldsymbol{\theta})$.
- Too powerful $p(\mathbf{x}|\mathbf{z}, \theta)$ could lead to posterior collapse: $q(\mathbf{z}|\mathbf{x})$ will not carry any information about \mathbf{x} and close to prior $p(\mathbf{z})$.

Autoregressive decoder

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\mathbf{z},\boldsymbol{\theta})$$

- Global structure is captured by latent variables.
- ► Local statistics are captured by limited receptive field autoregressive model.

Decoder weakening

- Powerful decoder $p(\mathbf{x}|\mathbf{z}, \theta)$ makes the model expressive, but posterior collapse is possible.
- ► PixelVAE model uses the autoregressive PixelCNN model with small number of layers to limit receptive field.

KL annealing

$$\mathcal{L}(q, \theta, \beta) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \beta \cdot \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))$$

Start training with $\beta=0$, increase it until $\beta=1$ during training.

Free bits

Ensure the use of less than λ bits of information:

$$\mathcal{L}(q, \theta, \lambda) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x}, \phi)} \log p(\mathbf{x}|\mathbf{z}, \theta) - \max(\lambda, \mathsf{KL}(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z}))).$$

This results in $KL(q(\mathbf{z}|\mathbf{x}, \phi)||p(\mathbf{z})) \geq \lambda$.

VAE objective

$$\log p(\mathbf{x}|m{ heta}) \geq \mathcal{L}(q,m{ heta}) = \mathbb{E}_{q(\mathbf{z}|\mathbf{x},m{\phi})} \log rac{p(\mathbf{x},\mathbf{z}|m{ heta})}{q(\mathbf{z}|\mathbf{x},m{\phi})}
ightarrow \max_{q,m{ heta}}$$

IWAE objective

$$\mathcal{L}_{K}(q, \theta) = \mathbb{E}_{\mathsf{z}_{1}, \dots, \mathsf{z}_{K} \sim q(\mathsf{z}|\mathsf{x}, \phi)} \log \left(\frac{1}{K} \sum_{k=1}^{K} \frac{p(\mathsf{x}, \mathsf{z}_{k}|\theta)}{q(\mathsf{z}_{k}|\mathsf{x}, \phi)} \right) o \max_{\phi, \theta}.$$

Theorem

- 1. $\log p(\mathbf{x}|\theta) \ge \mathcal{L}_K(q,\theta) \ge \mathcal{L}_M(q,\theta) \ge \mathcal{L}(q,\theta)$, for $K \ge M$;
- 2. $\log p(\mathbf{x}|\boldsymbol{\theta}) = \lim_{K \to \infty} \mathcal{L}_K(q, \boldsymbol{\theta})$ if $\frac{p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta})}{q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi})}$ is bounded.
- ► IWAE makes the variational bound tighter and extends the class of variational distributions.
- ► Gradient signal becomes really small, training is complicated.
- ▶ IWAE is a standard quality measure for VAE models.

Outline

1. Normalizing flows

2. Forward and Reverse KL for Normalizing flows

3. Residual and Linear flows

Outline

- 1. Normalizing flows
- 2. Forward and Reverse KL for Normalizing flows
- 3. Residual and Linear flows

Likelihood-based models so far...

Autoregressive models

$$p(\mathbf{x}|\boldsymbol{\theta}) = \prod_{j=1}^{m} p(x_j|\mathbf{x}_{1:j-1},\boldsymbol{\theta})$$

- tractable likelihood,
- no inferred latent factors.

Latent variable models

$$p(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

- latent feature representation,
- intractable likelihood.

How to build model with latent variables and tractable likelihood?

Generative models zoo

Normalizing flows prerequisites

Jacobian matrix

$$\mathbf{z} = f(\mathbf{x}), \quad \mathbf{J} = \frac{\partial \mathbf{z}}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial z_1}{\partial x_1} & \cdots & \frac{\partial z_1}{\partial x_m} \\ \cdots & \cdots & \cdots \\ \frac{\partial z_m}{\partial x_1} & \cdots & \frac{\partial z_m}{\partial x_m} \end{pmatrix} \in \mathbb{R}^{m \times m}$$

Change of variable theorem (CoV)

Let \mathbf{x} be a random variable with density function $p(\mathbf{x})$ and $f: \mathbb{R}^m \to \mathbb{R}^m$ is a differentiable, invertible function (diffeomorphism). If $\mathbf{z} = f(\mathbf{x})$, $\mathbf{x} = f^{-1}(\mathbf{z}) = g(\mathbf{z})$, then

$$\begin{aligned} & p(\mathbf{x}) = p(\mathbf{z}) |\det(\mathbf{J}_f)| = p(\mathbf{z}) \left| \det\left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}}\right) \right| = p(f(\mathbf{x})) \left| \det\left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}\right) \right| \\ & p(\mathbf{z}) = p(\mathbf{x}) |\det(\mathbf{J}_g)| = p(\mathbf{x}) \left| \det\left(\frac{\partial \mathbf{x}}{\partial \mathbf{z}}\right) \right| = p(g(\mathbf{z})) \left| \det\left(\frac{\partial g(\mathbf{z})}{\partial \mathbf{z}}\right) \right|. \end{aligned}$$

Jacobian determinant

Inverse function theorem

If function f is invertible and Jacobian matrix is continuous and non-singular, then

$$\mathbf{J}_f = \mathbf{J}_{g^{-1}} = \mathbf{J}_g^{-1}, \quad |\det(\mathbf{J}_f)| = rac{1}{|\det(\mathbf{J}_g)|}$$

- **x** and **z** have the same dimensionality (\mathbb{R}^m) .
- $f(\mathbf{x}, \boldsymbol{\theta})$ could be parametric function.
- Determinant of Jacobian matrix $\mathbf{J} = \frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}}$ shows how the volume changes under the transorfmation.

Fitting flows

MLE problem

$$p(\mathbf{x}|\boldsymbol{\theta}) = p(\mathbf{z}) \left| \det \left(\frac{\partial \mathbf{z}}{\partial \mathbf{x}} \right) \right| = p(f(\mathbf{x}, \boldsymbol{\theta})) \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$
$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x}, \boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)| \to \max_{\boldsymbol{\theta}}$$

Composition of flows

Theorem

Diffeomorphisms are **composable** (If $\{f_k\}_{k=1}^K$ satisfy conditions of the change of variable theorem, then $\mathbf{z} = f(\mathbf{x}) = f_K \circ \cdots \circ f_1(\mathbf{x})$ also satisfies it).

$$p(\mathbf{x}) = p(f(\mathbf{x})) \left| \det \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right) \right| = p(f(\mathbf{x})) \left| \det \left(\frac{\partial f_K}{\partial f_{K-1}} \dots \frac{\partial f_1}{\partial \mathbf{x}} \right) \right| =$$

$$= p(f(\mathbf{x})) \prod_{k=1}^K \left| \det \left(\frac{\partial f_k}{\partial f_{k-1}} \right) \right| = p(f(\mathbf{x})) \prod_{k=1}^K \left| \det(\mathbf{J}_{f_k}) \right|$$

Flows

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

Definition

Normalizing flow is a *differentiable, invertible* mapping from data \mathbf{x} to the noise \mathbf{z} .

- Normalizing means that the inverse flow takes samples from $\pi(\mathbf{x})$ and normalizes them into samples from the density $p(\mathbf{z})$.
- **Flow** refers to the trajectory followed by samples from p(z) as they are transformed by the sequence of transformations

$$\mathbf{z} = f_K \circ \cdots \circ f_1(\mathbf{x}); \quad \mathbf{x} = f_1^{-1} \circ \cdots \circ f_K^{-1}(\mathbf{z}) = g_1 \circ \cdots \circ g_K(\mathbf{z})$$

Log likelihood

$$\log p(\mathbf{x}|\boldsymbol{ heta}) = \log p(f_K \circ \dots \circ f_1(\mathbf{x})) + \sum_{k=1}^K \log |\det(\mathbf{J}_{f_k})|,$$
 where $\mathbf{J}_{f_k} = rac{\partial \mathbf{f}_k}{\partial \mathbf{f}_{k-1}}.$

Flows

Example of a 4-step flow

Flow log likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

What is the complexity of the determinant computation?

What we want

- ▶ Efficient computation of the Jacobian matrix $\mathbf{J}_f = \frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}}$;
- ▶ Efficient sampling from the base distribution p(z);
- ▶ Efficient inversion of $f(\mathbf{x}, \boldsymbol{\theta})$.

Papamakarios G. et al. Normalizing flows for probabilistic modeling and inference, 2019

Outline

- 1. Normalizing flows
- 2. Forward and Reverse KL for Normalizing flows
- 3. Residual and Linear flows

Forward KL vs Reverse KL

Forward KL

$$\begin{aligned} \mathsf{KL}(\pi||p) &= \int \pi(\mathbf{x}) \log \frac{\pi(\mathbf{x})}{p(\mathbf{x}|\boldsymbol{\theta})} d\mathbf{x} \\ &= -\mathbb{E}_{\pi(\mathbf{x})} \log p(\mathbf{x}|\boldsymbol{\theta}) + \mathsf{const} \to \min_{\boldsymbol{\theta}} \end{aligned}$$

Maximum likelihood estimation is equivalent to minimization of the Monte-Carlo estimation of forward KL.

Forward KL for flow model

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|$$

- ▶ We need to be able to compute $f(\mathbf{x}, \theta)$ and its Jacobian.
- ▶ We need to be able to compute the density $p(\mathbf{z})$.
- We don't need to think about computing the function $g(\mathbf{z}, \theta) = f^{-1}(\mathbf{z}, \theta)$ until we want to sample from the flow.

Forward KL vs Reverse KL

Reverse KL

$$KL(p||\pi) = \int p(\mathbf{x}|\theta) \log \frac{p(\mathbf{x}|\theta)}{\pi(\mathbf{x})} d\mathbf{x}$$
$$= \mathbb{E}_{p(\mathbf{x}|\theta)} [\log p(\mathbf{x}|\theta) - \log \pi(\mathbf{x})] \to \min_{\theta}$$

Reverse KL for flow model

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(\mathbf{z}) + \log |\det(\mathbf{J}_f)| = \log p(\mathbf{z}) - \log |\det(\mathbf{J}_g)|$$

$$KL(p||\pi) = \mathbb{E}_{p(\mathbf{z})} [\log p(\mathbf{z}) - \log |\det(\mathbf{J}_g)| - \log \pi(g(\mathbf{z}, \boldsymbol{\theta}))]$$

- ▶ We need to be able to compute $g(\mathbf{z}, \boldsymbol{\theta})$ and its Jacobian.
- We need to be able to sample from the density $p(\mathbf{z})$ (do not need to evaluate it) and to evaluate(!) $\pi(\mathbf{x})$.
- ▶ We don't need to think about computing the function $f(\mathbf{x}, \theta)$.

Flow KL duality

Theorem

Fitting flow model $p(\mathbf{x}|\boldsymbol{\theta})$ to the target distribution $\pi(\mathbf{x})$ using forward KL (MLE) is equivalent to fitting the induced distribution $p(\mathbf{z}|\boldsymbol{\theta})$ to the base $p(\mathbf{z})$ using reverse KL:

$$\mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \mathop{\arg\min}_{\boldsymbol{\theta}} \mathit{KL}(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})).$$

- $ightharpoonup p(\mathbf{z})$ is a base distribution; $\pi(\mathbf{x})$ is a data distribution;
- ightharpoonup $\mathbf{z} \sim p(\mathbf{z}), \ \mathbf{x} = g(\mathbf{z}, \boldsymbol{\theta}), \ \mathbf{x} \sim p(\mathbf{x}|\boldsymbol{\theta});$
- $ightharpoonup \mathbf{x} \sim \pi(\mathbf{x}), \ \mathbf{z} = f(\mathbf{x}, \boldsymbol{\theta}), \ \mathbf{z} \sim p(\mathbf{z}|\boldsymbol{\theta});$

$$\log p(\mathbf{z}|\boldsymbol{\theta}) = \log \pi(g(\mathbf{z},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_g)|;$$
$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_f)|.$$

Flow KL duality

Theorem

Fitting flow model $p(\mathbf{x}|\boldsymbol{\theta})$ to the target distribution $\pi(\mathbf{x})$ using forward KL (MLE) is equivalent to fitting the induced distribution $p(\mathbf{z}|\boldsymbol{\theta})$ to the base $p(\mathbf{z})$ using reverse KL:

$$\underset{\boldsymbol{\theta}}{\arg\min} \ KL(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})) = \underset{\boldsymbol{\theta}}{\arg\min} \ KL(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})).$$

Proof

$$\begin{split} \mathit{KL}\left(p(\mathbf{z}|\boldsymbol{\theta})||p(\mathbf{z})\right) &= \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})}\big[\log p(\mathbf{z}|\boldsymbol{\theta}) - \log p(\mathbf{z})\big] = \\ &= \mathbb{E}_{p(\mathbf{z}|\boldsymbol{\theta})}\big[\log \pi(g(\mathbf{z},\boldsymbol{\theta})) + \log |\det(\mathbf{J}_g)| - \log p(\mathbf{z})\big] = \\ &= \mathbb{E}_{\pi(\mathbf{x})}\big[\log \pi(\mathbf{x}) - \log |\det(\mathbf{J}_f)| - \log p(f(\mathbf{x},\boldsymbol{\theta}))\big] = \\ &= \mathbb{E}_{\pi(\mathbf{x})}\big[\log \pi(\mathbf{x}) - \log p(\mathbf{x}|\boldsymbol{\theta})\big] = \mathit{KL}(\pi(\mathbf{x})||p(\mathbf{x}|\boldsymbol{\theta})). \end{split}$$

Papamakarios G., Pavlakou T., Murray I. Masked Autoregressive Flow for Density Estimation, 2017

Outline

- 1. Normalizing flows
- 2. Forward and Reverse KL for Normalizing flows
- 3. Residual and Linear flows

Jacobian structure

Flow log-likelihood

$$\log p(\mathbf{x}|\boldsymbol{\theta}) = \log p(f(\mathbf{x},\boldsymbol{\theta})) + \log \left| \det \left(\frac{\partial f(\mathbf{x},\boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right|$$

The main challenge is a determinant of the Jacobian matrix.

What is the $det(\mathbf{J})$ in the following cases?

- 1. Consider a linear layer z = Wx.
- 2. Let z be a permutation of x.
- 3. Let z_i depend only on \mathbf{x}_i .

$$\log \left| \det \left(\frac{\partial f(\mathbf{x}, \boldsymbol{\theta})}{\partial \mathbf{x}} \right) \right| = \log \left| \prod_{i=1}^{m} f_j'(x_j, \boldsymbol{\theta}) \right| = \sum_{i=1}^{m} \log \left| f_j'(x_j, \boldsymbol{\theta}) \right|.$$

4. Let z_j depend only on $\mathbf{x}_{1:j}$ (autoregressive dependency).

Linear flows

$$z = f(x, \theta) = Wx, W \in \mathbb{R}^{m \times m}, \theta = W, J_f = W$$

In general, we need $O(m^3)$ to invert matrix.

Invertibility

- ▶ Diagonal matrix O(m).
- ▶ Triangular matrix $O(m^2)$.
- It is impossible to parametrize all invertible matrices.

Invertible 1x1 conv

 $\mathbf{W} \in \mathbb{R}^{c \times c}$ - kernel of 1x1 convolution with c input and c output channels. The computational complexity of computing or differentiating $\det(\mathbf{W})$ is $O(c^3)$. Cost to compute $\det(\mathbf{W})$ is $O(c^3)$. It should be invertible.

Linear flows

$$z = f(x, \theta) = Wx, \quad W \in \mathbb{R}^{m \times m}, \quad \theta = W, \quad J_f = W$$

Matrix decompositions

► LU-decomposition

$$W = PLU$$
,

where **P** is a permutation matrix, **L** is lower triangular with positive diagonal, **U** is upper triangular with positive diagonal.

QR-decomposition

$$W = QR$$

where \mathbf{Q} is an orthogonal matrix, \mathbf{R} is an upper triangular matrix with positive diagonal.

Kingma D. P., Dhariwal P. Glow: Generative Flow with Invertible 1x1 Convolutions, 2018

Hoogeboom E., Van Den Berg R., and Welling M. Emerging convolutions for generative normalizing flows, 2019

Residual Flows

Matrix determinant lemma

$$\det\left(\mathbf{I}_m + \mathbf{V}\mathbf{W}^T\right) = \det(\mathbf{I}_d + \mathbf{W}^T\mathbf{V}), \quad ext{where } \mathbf{V}, \mathbf{W} \in \mathbb{R}^{m imes d}.$$

Planar flow

$$\mathbf{x} = g(\mathbf{z}, \boldsymbol{\theta}) = \mathbf{z} + \mathbf{v} \, \sigma(\mathbf{w}^T \mathbf{z} + b).$$

Here $\theta = \{\mathbf{v}, \mathbf{w}, b\}$, $\sigma(\cdot)$ is a smooth element-wise non-linearity.

$$\left| \det \left(\frac{\partial g(\mathbf{z}, \boldsymbol{\theta})}{\partial \mathbf{z}} \right) \right| = \left| \det \left(\mathbf{I} + \sigma'(\mathbf{w}^T \mathbf{z} + b) \mathbf{v} \mathbf{w}^T \right) \right| = \left| 1 + \sigma'(\mathbf{w}^T \mathbf{z} + b) \mathbf{w}^T \mathbf{v} \right|$$

The transformation is invertible, for example, if

$$\sigma = \tanh$$
: $\sigma'(\mathbf{w}^T \mathbf{z} + b) \mathbf{w}^T \mathbf{v} > -1$.

Residual Flows

Expressiveness of planar flows

$$\mathbf{z}_K = g_1 \circ \cdots \circ g_K(\mathbf{z}); \quad g_k = g(\mathbf{z}_k, \boldsymbol{\theta}_k) = \mathbf{z}_k + \mathbf{v}_k \, \sigma(\mathbf{w}_k^T \mathbf{z}_k + b_k).$$

Sylvester flow: planar flow extension

$$g(\mathbf{z}, \boldsymbol{\theta}) = \mathbf{z} + \mathbf{V} \, \sigma(\mathbf{W}^T \mathbf{z} + \mathbf{b}).$$

Rezende D. J., Mohamed S. Variational Inference with Normalizing Flows, 2015 Berg R. et al. Sylvester normalizing flows for variational inference, 2018

Summary

- ► Flow models transform a simple base distribution to a complex one via a sequence of invertible transformations with tractable Jacobian.
- Flow models have a tractable likelihood that is given by the change of variable theorem.
- ► Flows could be fitted using forward and reverse KL minimization. We will consider each of the scenarios later in the course.
- Linear flows try to parametrize set of invertible matrices via matrix decompositions.
- ▶ Planar and Sylvester flows are residual flows which use matrix determinant lemma.