<u>SOFTWARE DESIGN DOCUMENT - PROPOSTA DE PROJETO</u>

Análise do campo de distribuição de temperatura em corpo condutor bidimensional em condição estável de fluxo de calor.

Marcos Túlio Barbosa Abreu

Instituto de Ciências Exatas, Departamento de Física

1. INTRODUÇÃO

A transferência de calor é um fenômeno natural já bem conhecido e estudado ao longo da história humana. Sabemos, pela lei de Fourier, que um fluxo de calor é observado em gradientes de temperatura nos processos de condução térmica, e, por meio da análise de tais fluxos, é possível abstrair-se o campo de temperaturas de determinado condutor. Assim, dadas as condições iniciais das barreiras do sistema, é possível, através do método das diferenças finitas, obter-se um modelo numérico que descreve a temperatura de cada ponto do material analisado, permitindo análises do sistema com um método de baixo custo de implementação. Um exemplo de importante aplicação de tais estudos é a busca por otimização da modelagem de soldas mecânicas, as quais podem perder eficiência devido às diferenças de temperaturas e propriedades entre o material da solda e o material soldado.

2. OBJETIVO

Objetiva-se com esse trabalho, através do método das diferenças finitas e de métodos numéricos iterativos, determinar e organizar graficamente a distribuição de temperaturas ao longo de um material condutor, considerando-se bidimensionalidade e condução de calor estável, observando-se a transferência de calor entre pontos do condutor e entre este e o meio externo, rodeado por um fluido de propriedades conhecidas, a fim de fornecer análise precisa das propriedades térmicas do sistema.

3. METODOLOGIA TEÓRICA

Partindo-se de uma análise puramente física da conservação de energia de uma amostra do sistema, tomar-se-á como base a equação diferencial de conservação de energia na condução térmica em um volume de controle, um sistema controlado e de massa variável, dada por:

$$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) + \dot{q} = \rho c \frac{\partial T}{\partial t} \tag{1}$$

Em que os termos diferenciais representam a lei de Fourier para o fluxo de calor em cada uma das direções - x, y e z - o termo \dot{q} refere-se à geração de energia interna no volume de controle e o termo à direita do sinal de igualdade refere-se ao processo de advecção, que é a transferência de calor devido ao fluxo de massa para dentro e para fora do sistema.

Para o sistema a ser tratado no presente trabalho, desconsidera-se a geração interna de calor pelo material condutor e considera-se um material sólido e rígido bidimensional, de modo que a equação (1) reduz-se à forma:

$$\nabla^2 T = 0 \Rightarrow \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial x^2} = 0 \tag{2}$$

Em alternativa, aplicando-se a lei de conservação da energia advinda da primeira lei da termodinâmica ao sistema considerado, vemos que ela assume a forma:

"A variação da energia acumulada em um volume de controle é igual a diferença entre a energia que entra no volume de controle e a energia que sai deste, somada à energia gerada no interior do volume de controle."

De tal maneira, obtemos a seguinte equação de conservação de energia para a condução de calor que será fundamental para a análise posterior

$$\Delta E_{acum} = E_{entra} - E_{sai} + E_{gerada} \quad (3)$$

O *Método das Diferenças Finitas* a ser utilizado fundamenta-se na aplicação das equações (1), (2) e (3) na análise do sistema. Divide-se o meio a ser analisado em regiões menores centradas em um ponto de coordenadas (*m*, *n*) chamado de *nó*, cujo coletivo é denominado *rede nodal*. Desse modo, como observa-se na figura ao lado, considerando-se a equação (2), aproxima-se as diferenciais pelos métodos *forward difference* e *backward difference* para definir a equação (2) de diferenças finitas para cada ponto nodal pertencente à rede, obtendo-se para a derivada segunda:

$$\frac{\partial^{2} T}{\partial^{2} x} \Big|_{m, n} \approx \frac{T_{m+1, n} - 2T_{m, n} + T_{m-1, n}}{(\Delta x)^{2}} (4) e$$

$$\frac{\partial^{2} T}{\partial^{2} y} \Big|_{m, n} \approx \frac{T_{m, n+1} - 2T_{m, n} + T_{m, n-1}}{(\Delta y)^{2}} (5)$$

Além disso, utilizando-se a equação (3), obtemos o *Método do Balanço de Energia*, que facilita o desenvolvimento das equações desejadas para cada nodo da rede. Nesse método, considerando um ponto nodal (*m*, *n*) interno e seus quatro vizinhos - norte, sul, leste e oeste - assumimos que todos os fluxos de calor apontam dos nodos vizinhos para dentro do nodo analisado, um evento impossível, mas cuja presunção nos leva à resposta desejada. Para a situação que

analisaremos, sem geração de energia interna e com estabilidade de condução, teremos que $E_{entra}=0$, pois não há energia saindo e nem sendo gerada no nó, e, como a condução é estável, este não absorve o calor pois já estabilizou sua temperatura, de modo então que a energia interna não varia.

Em vista disso, a energia total que entra no nó (m, n) pode ser dada pela soma da parcela de energia que o nó recebe de cada um de seus vizinhos, $\sum_{i=1}^{4} q_{(i) \to (m, n)}$. A condução de calor de um nodo específico, como o nodo (m-1, n) para o nodo (m, n) pode ser dada pela lei de Fourier: $q_{(m-1, n) \to (m, n)} = k(\Delta y. 1) \frac{T_{m-1, n} - T_{m, n}}{\Delta x}$, em que Δy . 1é a área de secção transversal, em que multiplica-se Δy por 1 pois não se considera profundidade no eixo z, admitindo-se então profundidade 1, e o termo final da equação representa o gradiente de temperatura calculado pelas equações derivação numérica.

Realizando tal processo para todos os nós vizinhos, considerando-se $\Delta x = \Delta y$, verifica-se que o balanço energético resultará na equação:

$$T_{m-1,n} + T_{m+1,n} + T_{m,n-1} + T_{m,n+1} - 4T_{m,n} = 0$$
 (6)

Dessa forma, estendendo essa análise a todos os nós da rede nodal, considerando que nas fronteiras do sistema há perda de calor por convecção para o fluido que circunda o condutor, cuja taxa de condução depende da temperatura do fluido (T_{∞}) , da temperatura do nó $(T_{m,n})$ e do coeficiente de transferência de calor por condução do fluido (h), teremos, além do caso acima, os casos abaixo:

m-1,n T_{∞} Convecção

Caso de convecção com nó sobre a superfície de contorno ou dentro de uma região muito próxima a ela, dentro de um erro mínimo, onde obteremos:

Caso de convecção com nodo na quina do sistema, onde obteremos:

$$\Delta x = \Delta y \quad \text{obteremos:}$$

$$T_{\infty} \qquad (T_{m, n-1} + T_{m-1, n}) + 2\frac{h}{k}\Delta x T_{\infty} - 2T_{m, n}(\frac{h}{k}\Delta x + 1) = 0$$
(8)

Por fim, após definidas as equações de diferenças finitas para cada nó do sistema, obteremos um sistema de equações que assumirá a forma:

$$\begin{aligned} a_{11}T_1 + a_{12}T_2 + a_{13}T_3 + \dots + a_{1N}T_N &= C_1 \\ a_{21}T_1 + a_{22}T_2 + a_{23}T_3 + \dots + a_{2N}T_N &= C_2 \\ &\vdots &\vdots &\vdots &\vdots &\vdots \\ a_{N1}T_1 + a_{N2}T_2 + a_{N3}T_3 + \dots + a_{NN}T_N &= C_N \end{aligned}$$

Sendo a_{11} , a_{12} , ..., C_{1} , ..., C_{N} constantes conhecidas advindas da análise pelo balanço de energia. Por fim, utilizaremos o *Método de Gauss-Seidel* para alcançar a solução deste sistema linear. Tal método se baseia nas seguintes etapas:

- 1°) Na medida do possível, organiza-se cada equação do sistema de modo que o elemento a_{ii} , ou seja, o coeficiente da equação que fará parte da diagonal principal da matriz seja o maior de todos da linha em módulo: ($|a_{11}| > |a_{12}|,...; |a_{22}| > |a_{21}|, |a_{23}|,...$).
- 2°) Após reordenada, escreve-se cada uma das equações na forma explícita, ou seja, isola-se a temperatura T_1 na linha 1, T_2 na linha 2, etc. Assim, cada equação assumirá uma forma tal que

$$T_i^{(k)} = \frac{C_i}{a_{ii}} - \sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} T_j^{(k)} - \sum_{j=i+1}^{N} \frac{a_{ij}}{a_{ii}} T_j^{(k-1)}, \text{ de modo que i refere-se à temperatura que está}$$

sendo calculada (1, 2, 3, ..., N) e k representa o número da iteração.

- 3°) Escolhe-se um valor inicial (ou seja, iteração número k=0) para cada temperatura T_i . É possível realizar-se um "chute preciso" caso se definam valores coerentes para as temperaturas, advindos de análise da situação.
- 4°) Na primeira iteração (k = 1), calcula-se $T_{-}1$ a partir dos valores que se escolheu inicialmente para o resto das temperaturas, sendo $T_{i}^{(k-1)}$ o termo que representa essas temperaturas da iteração anterior, nesse caso, a iteração 0. Assim, atualiza-se o valor de T_{1} e, usando-o juntamente com as outras temperaturas que chutamos $(T_{2}, T_{3}, ..., T_{N})$, calcula-se T_{2} , atualiza-se seu valor e se utiliza T_{1} e T_{2} juntamente com as outras temperaturas que foram escolhidas inicialmente para calcular T_{3} e assim por diante. Essa é a primeira iteração (k = 1).
- 5°) Terminada a primeira iteração, obtemos novos valores para cada T_i que foram calculados, de modo que realizar-se-á a iteração novamente, de modo que agora os valores $T_i^{(k-1)}$ são os valores da 1° iteração e $T_i^{(k)}$ são os valores que estão sendo descobertos durante a iteração atual. Assim, repete-se todo o processo de iteração, usando-se como base os valores descobertos na iteração anterior.
- 6°) Por fim, o processo é parado quando algum critério é atingido, como por exemplo, quando a diferença em módulo entre cada uma das temperaturas atuais $(T_i^{(k)})$ e todas as temperaturas antigas $(T_i^{(k-1)})$ são menores ou iguais a um erro arbitrariamente estabelecido, ou seja: $|T_i^{(k)} T_i^{(k-1)}| \le \varepsilon$.

4. MILESTONES E TIMELINE

Timeline and Milestones

Tabela original presente no endereço:

https://prairie-chord-fa8.notion.site/f899493e05c34acda32b33d6530a0302?v=748e4f0f9b684b3e8926930bbcf3ccce

5. FLOWCHART

A imagem acima evidencia o funcionamento básico do software a ser desenvolvido, bem como os dados de entrada do programa e o resultado esperado. O arquivo raiz do software será o main.py, que contará com os módulos abaixo explicitados para o desenvolvimento do algoritmo supracitado. Todo o software será desenvolvido em linguagem Python, utilizando-se da ferramenta editora VisualStudio Code e utilizar-se-á a ferramenta Git para controle de versões. O software final será publicado na plataforma GitHub, no perfil pessoal do autor, conforme data prevista para lançamento da versão Alpha.

Módulos:

- <u>GetData:</u> Responsável pelo recebimento de dados de entrada. É necessária a inserção das condições de fronteira do sistema e das dimensões/características do condutor, que serão chave para a obtenção da distribuição de temperatura. Portanto, tal módulo é o responsável pela entrada de dados, utilizando-se para isso os fundamentos de entrada de dados em Python.
- MeshF: Responsável pela geração da rede nodal, dividindo as dimensões do condutor em uma malha nodal n × n e gerando a matriz de coordenadas dos nós. Além disso, também é responsável pela identificação dos nós vizinhos a um determinado nó dado como parâmetro, identificando também quais deles estão em alguma das fronteiras e em qual das fronteiras este se encontra. Utiliza-se para esse módulo a biblioteca científica para Python Numpy. Além disso, utilizar-se-á aqui um sistema orientado ao objeto para definir a classe "mesh" que representará o campo de nós, que possuirá atributos que identificam o número de nós, as dimensões da rede, etc.
- <u>Plot:</u> Responsável, uma vez que já se possui a matriz final de temperaturas de cada nó, por construir o gráfico do campo de temperaturas utilizando-se da biblioteca científica para Python Matplotlib e a biblioteca Numpy para organização dos dados base.

6. <u>BIBLIOGRAFIA:</u>

- 1. Fundamentals of Heat and Mass Transfer T. L Bergman, Theodore L. Bergman, Frank P. Incropera, David P. DeWitt, Adrienne S. Lavine, 6 ed., 2008.
- 2. PME 3361 Processos de Transferência de Calor: Notas de aula, Prof. Dr. José R. Simões Moreira, Escola Politécnica da USP, Departamento de Engenharia Mecânica, https://edisciplinas.usp.br/pluginfile.php/5229933/mod_resource/content/1/Aula%2011%20%20M/%C3%A9todos%20Num%C3%A9ricos.pdf