No. of Printed Pages: 05

Following Paper ID and Rol	ll No. t	o b	e fi	lled	in	you	r A	nsw	er I	300	k.
PAPER ID: 23302	Roll No.										

B. Tech. Examination 2018-19

(Even Semester)

BASIC ELECTRICAL ENGINEERING

Time: Three Hours]

[Maximum Marks: 60

- **Note:** (i) This question paper contains three sections.
 - (ii) Section A is compulsory. Section B and C contains internal choices.
 - (iii) Be precise your answer.

SECTION-A

1. Attempt all parts of the following:

 $8 \times 1 = 8$

- (a) What is basis of Nodal Analysis?
- (b) What do you mean by bilateral circuit elements?
- (c) Define form factor.

I P. T. O.

- (d) What is condition for series resonance?
- (e) Define MMF.
- (f) Which instrument can measure both AC and DC?
- (g) Write number of parallel path in wave winding.
- (h) Single phase induction motor can directly switched on.

SECTION-B

- 2. Attempt any two parts of the following: $2 \times 6 = 12$
 - (a) Determine the value of R_L in Figure-(a) for maximum power transfer and also find maximum power:

- (b) Find the average value, rms value and form factor for full wave rectified alternating current.
- (c) Derive the e.m.f. equation of a single phase

(d) Derive an expression for torque of a d.c. motor.
Also draw torque speed characteristics for d.c. shunt and series motors.

SECTION-C

Note: Attempt all questions from this section. $10 \times 4 = 40$

- 3. Attempt any two parts of the following:
 - (a) Write the statement of maximum power theorem. Also derive for condition of maximum power. Also find efficiency of circuit on maximum power condition.
 - (b) Find out delta to star transformation and vice versa.
 - (c) Write the statement of Norton's theorem.

 Obtain Norton's equivalent circuit at terminal A and B for the network shown in figure-(b):

IP. T. O. Scanned by CamScanner

- 4. Attempt any two parts of the following:
 - (a) Explain the concept of bandwidth and quality factor for series R-L-C circuit. Derive their expressions.
 - (b) Find relations between line and phase values for star-delta connection.
 - (c) Explain two wattmeter method of measuring three phase power with the help of phasor.
- 5. Attempt any two parts of the following:
 - (a) Describe the construction and working of a single phase induction type energy meter.
 - (b) Write similarities and dissimilarities between magnetic and electric circuit.
 - (c) A 25 KVA, 2200/200V, single-phase transformer has primary resistance of 1Ω and secondary resistance of 0.01Ω. Find the full load efficiency at 0.8 pf., if the iron loss in the transformer is 200W.

- 6. Attempt any two parts of the following:
 - (a) Derive e.m.f. equation of a d.c. generator. What will be the change in induced e.m.f. if the flux is reduced by 20% and the speed is increased by 20%?
 - (b) Explain the concept of rotating magnetic field also find magnitude and speed of rotating magnetic field. Also explain principle of operation of 3 phase induction motor.
 - (c) Why single phase induction motor is not self starting? Explain any one method of starting.
