Math 320 List of Definitions and Theorems, March 12

Definition 1: A function $f: A \to B$ is called **one-to-one** or **injective** if f satisfies the following property: for all $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

Here is an alternate, but equivalent, definition: If f(x) = f(y), then x = y.

Definition 2: A function $f: A \to B$ is called **onto** or **surjective** if f satisfies the following property: for all $y \in B$, there exists $x \in A$ such that f(x) = y.

Definition 3: A function $f: A \to B$ is called **bijective** or a **one-to-one correspondence** if f is both injective and surjective.

Definition 4: A ring R is **isomorphic** to a ring S, which we denote by $R \cong S$, if there exists a function $f: R \to S$, which we call an **isomorphism** such that

- (1) f is injective;
- (2) f is surjective;
- (3) (Homomorphism property) f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b) for all $a, b \in R$.

Alternatively, we can say that $f: R \to S$ is an isomorphism if f is a bijection and satisfies the homomorphism property.

Theorem 1: Let R, S, T be rings. Then,

- (a) If $R \cong S$, then $S \cong R$,
- (b) If $R \cong S$ and $S \cong T$, then $R \cong T$.

Definition 5: Let R and S be rings. A function $f: R \to S$ is called a **homomorphism** if f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b) for all $a, b \in R$.

Theorem 3.10: Let $f: R \to S$ be a homomorphism of rings. Then

- (1) $f(0_R) = 0_S$.
- (2) f(-a) = -f(a) for every $a \in R$.
- (3) f(a-b) = f(a) f(b) for all $a, b \in R$

If R is a ring with identity and f is surjective, then

- (4) S is a ring with identity $1_S = f(1_R)$.
- (5) Whenever u is a unit in R, then f(u) is a unit in S and $f(u)^{-1} = f(u^{-1})$.

Corollary 3.11: If $f: R \to S$ is a homomorphism of rings, then the image of f is a subring of S.