Digital Design

Lecture of week 11 Dr Manal Tantawi

Analysis of Sequential Circuits

- 1) Logic Diagram
- 2) Expressions for external outputs (if exist) and inputs of flipflops
- 3) State Table
- 4) State Diagram

Analyze the following circuit and then derive its state table and diagram

- One external input
- No external output
- Two J K flip flops

$$J_A = B$$
 $K_A = Bx'$
 $J_B = x'$ $K_B = A'x + Ax' = A \oplus x$

$$J_A = B$$
 $K_A = Bx'$
 $J_B = x'$ $K_B = A'x + Ax' = A \oplus x$

State Table for Sequential Circuit with JK Flip-Flops

Present State		Input	Flip-Flop Inputs				Next State	
A	В	x	JA	K _A	J _B	K _B	A	В
0	0	0	0	0	1	0		
0	0	1	0	0	0	1		
0	1	0	1	1	1	0		
0	1	1	1	0	0	1		
1	0	0	0	0	1	1		
1	0	1	0	0	0	0		
1	1	0	1	1	1	1		
1	1	1	1	0	0	0		

JK Flip-Flop							
J	K	Q(n+	1)				
0	0	Q(n)	No change				
0	1	0	Reset				
1	0	1	Set				
1	1	Q'(n)	Complement				

State Table for Sequential Circuit with JK Flip-Flops

	sent ate	Input		Flip-Flop Inputs				Next tate	
A	В	x	JA	K _A	J _B	K _B	A	В	
0	0	0	0	0	1	0	0		
0	0	1	0	0	0	1	0		
0	1	0	1	1	1	0	1		
0	1	1	1	0	0	1	1		
1	0	0	0	0	1	1	1		
1	0	1	0	0	0	0	1		
1	1	0	1	1	1	1	0		
1	1	1	1	0	0	0	1		

JK	Flip-F	lop	
J	K	Q(n+	1)
0	0	Q(n)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(n)	Complement

State Table for Sequential Circuit with JK Flip-Flops

	sent at	Input	Flip-Flop Inputs					Next Stat	
A	В	×	JA	K _A	J _B	K _B	A	В	
0	0	0	0	0	1	0	0	1	
0	0	1	0	0	0	1	0	0	
0	1	0	1	1	1	0	1	1	
0	1	1	1	0	0	1	1	0	
1	0	0	0	0	1	1	1	1	
1	0	1	0	0	0	0	1	0	
1	1	0	1	1	1	1	0	0	
1	1	1	1	0	0	0	1	1	

State Diagram

Present State		Input	Next State		
A	В	x	A	В	
0	0	0	0	1	
0	0	1	0	0	
0	1	0	1	1	
0	1	1	1	0	
1	0	0	1	1	
1	0	1	1	0	
1	1	0	0	0	
1	1	1	1	1	

Analyze the following circuit and then derive its state table and diagram

One external input
One external output
Two T flip flops

$$T_A = Bx$$

 $T_B = x$
 $y = AB$

$$T_A = Bx$$
$$T_B = x$$

y = AB _____

	sent ate	Input	
A	В	x	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$T_A = Bx$$

 $T_B = x$
 $y = AB$

	sent ate	Input			
A	В	x	Ta	Tb	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	0	0	1
1	1	1	1	1	1

$T_A = Bx$

$$T_B = x$$

$$y = AB$$

T Flip-Flop

T	Q(n + 1)	
0	Q(n)	No change
1	Q'(n)	Complement

Present State		Input		Next Sate				
A	В	x	Ta	Tb	A	У		
0	0	0	0	0	0	0		
0	0	1	0	1	0	0		
0	1	0	0	0	0	0		
0	1	1	1	1	1	0		
1	0	0	0	0	1	0		
1	0	1	0	1	1	0		
1	1	0	0	0	1	1		
1	1	1	1	1	0	1		

$T_A = Bx$

$$T_B = x$$

$$y = AB$$

T Flip-Flop

T	Q(n + 1)	
0	Q(n)	No change
1	Q'(n)	Complement

Present State		Input		Nex Stat	_		
A	В	x	Ta	Tb	Α	В	У
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	0	0	1	0
0	1	1	1	1	1	0	0
1	0	0	0	0	1	0	0
1	0	1	0	1	1	1	0
1	1	0	0	0	1	1	1
1	1	1	1	1	0	0	1

Analyze the following sequential circuit, find state table, state diagram and the repeated sequence if exists. is it self correcting? why?

Da = Cn Db = An'Dc = Bn

An	Bn	Cn	Da	Db	Dc	An+1	Bn+1	Cn+1
0	0	0	0	1	0			
0	0	1	1	1	0			
0	1	0	0	1	1			
0	1	1	1	1	1			
1	0	0	0	0	0			
1	0	1	1	0	0			
1	1	0	0	0	1			
1	1	1	1	0	1			

 $\begin{array}{l} Da = Cn \\ Db = An' \\ Dc = Bn \end{array}$

An	Bn	Cn	Da	Db	Dc	An+1	Bn+1	Cn+1
0	0	0	0	1	0	0	1	0
0	0	1	1	1	0	1	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	1	0	0
1	1	0	0	0	1	0	0	1
1	1	1	1	0	1	1	0	1

0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0	_	Ъ		Da	Db	Dc		D 1		1
0	An	Bn	Cn				An+1			
0	0	0	0			0				
0	0	0	1	1	1	0	1	1		
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	1	0	0	1	1	0	1	1	
1 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1	0	1	1	1	1	1	1	1	1	0
1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	1	0	0	0	0	0	0	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	1	1	0	0	1	0	0	7 000
6 110 010 011 5 100 011	1	1	0	0	0	1	0	0	1	
6 110 010 011 5 100 011	1	1	1	1	0	1	1	0	1	111
3									101	010

Two existing loops

- 1) 1 and 6
- 2) 7, 5, 4, 0, 2, 3

Two existing loops

- 1) 1 and 6
- 2) 7, 5, 4, 0, 2, 3

Self correcting counter contains only one loop

Programmable counters

Clear	Clk	Load	Count	Function
0	Х	Х	Х	Clear all
1	†	1	Χ	Load input
1	†	0	1	count
1	†	0	0	No change

Programmable counters

$$T_{Q1} = 2 T_{clk}$$

$$F_{Q1} = 1/2 T_{clk}$$

$$FQ1 = F_{clk}/2$$

$$T_{Q2} \ = \ 4 \ T_{clk}$$

$$F_{Q2} = 1/4 T_{clk}$$

$$FQ2 = F_{clk}/4$$

$$T_{Q4} = 8 T_{clk}$$

$$F_{Q4} = 1/8 T_{clk}$$

$$F_{Q4} = F_{clk}/8$$

$$T_{Q8} = 16 T_{clk}$$

$$F_{Q8} = 1/16 T_{clk}$$

$$F_{Q8} = F_{clk}/16$$

- Counter mod n
- Ex: n = 6 to get f/6

From the beginning (using load)

Q8	Q4	Q2	Q1	load
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1

- Counter mod n
- Ex: n = 6 to get f/6

From the beginning (using load)

Q8	Q4	Q2	Q1	load
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1

- Counter mod n
- Ex: n = 6 to get f/6

From the beginning (using clear)

Q8	Q4	Q2	Q1	clear
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0

- Counter mod n
- Ex: n = 6 to get f/6

From the beginning (using clear)

Q8	Q4	Q2	Q1	clear
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0

- Counter mod n
- Ex: n = 6 to get f/6

From the middle

Q8	Q4	Q2	Q1	load
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1

- Counter mod n
- Ex: n = 6 to get f/6

From the middle

Q8	Q4	Q2	Q1	load
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1

- Counter mod n
- Ex: n = 6 to get f/6

From the end

Q8	Q4	Q2	Q1	load
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

- Counter mod n
- Ex: n = 6 to get f/6

From the end

Q8	Q4	Q2	Q1	load
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Next Lecture we will explain Computer Memories Thank you