SECTION 5-3: THE FUNDAMENTAL THEOREM OF CALCULUS, PART 1

- 1. Suppose f is the function whose graph is shown and that $g(x) = \int_{a}^{x} f(t)dt$.
 - (a) Find the values of g(0), g(1), g(2), g(3), g(4), g(5), and g(6). Then, sketch a rough graph of g.

f(x)

(c)
$$g(2) = \frac{1}{2} f(1) d(1) d(2)$$

(d)
$$g(3) = \frac{\text{f(t) dt = 4}}{2}$$

(e)
$$g(4) = 4$$

(f)
$$g(5) = \frac{4 - \frac{1}{2}}{4 - \frac{1}{2}}$$

- $(0,3) \cup (5,6)$ (i) Where is g(x) increasing?
- (ii) Describe f when g(x) is increasing
- (iii) Where is q(x) decreasing?
- (iv) Describe f when q(x) is decreasing.
- (v) Where does g(x) have a local maximum?
- (vi) Describe f when g(x) has a local max.
- (vii) Where does q(x) have a local minimum?
- (viii) Describe f when g(x) has a local min.
- (b) Make a guess: what is the relationship between g(x) and f(x)?

The Fundamental Theorem of Calculus, Part 1 If f is continuous on [a, b], the function gdefined by

$$g(x) = \int_{a}^{x} f(t) dt$$
 $a \le x \le b$

is continuous on [a, b] and differentiable on (a, b) and g'(x) = f(x).

2. Find the derivative of $g(x) = \int_0^x t^2 dt$.

$$g'(\infty) = \infty^2$$

3. The Fresnel function $S(x)=\int_0^x\sin(\pi t^2/2)\ dt$ first appeared in Fresnel's theory of the diffraction of light waves. Recently it was be applied to the design of highways. Find the derivative of the Fresnel function.

$$S'(x) = Sin(\frac{Tx^2}{2})$$

4. Consider
$$g(x) = \int_{1}^{x^4} \sec t \, dt$$
.

Let $u = x^4$ and $h(x) = \int_1^x \sec t \ dt$.

(a) Write g(x) as a composition.

$$x^{4} = u$$

$$g(x) = h(u(x))u$$

$$g(x) = h(u) = \int_{1}^{\infty} \operatorname{Sect} dt$$

$$g(\mathbf{x}) = \int_{2\pi+1}^{2} \sqrt{t} \, dt.$$
 5. Consider $g(x) = \int_{2\pi+1}^{2} \sqrt{t} \, dt.$

(a) Write g(x) as a composition.

$$g(x) = -\int_{2}^{2x+1} dt$$

$$g'(x) = -\sqrt{2x+1} \cdot 2$$

- (b) Use FTC1 and the chain rule to differentiate q(x).
- (b) Use FTC1 and the chain rule to differentiate q(x).

5-3

$$g'(x) = h(x) \cdot dx = Sec(x) \cdot 4x^3 = Sec(x^4) \cdot 4x^3$$
By FTC1: $h'(x) = Sec(x)$

$$\frac{dx}{dx} = 4x^3$$
6. Consider the function $g(x) = \int_{\tan x}^{x^2} \frac{1}{\sqrt{2+t^4}} dt$. Observe that

$$\int_{\tan x}^{x^2} \frac{1}{\sqrt{2+t^4}} dt = \int_{\tan x}^0 \frac{1}{\sqrt{2+t^4}} dt + \int_0^{x^2} \frac{1}{\sqrt{2+t^4}} dt.$$

Use properties of definite integrals, FTC1, and the chain rule to determine g'(x).

$$g(x) = \int \frac{x^{2}}{\sqrt{2+t^{4}}} dt = \int \frac{1}{\sqrt{2+t^{4}}} dt + \int \frac{x^{2}}{\sqrt{2+t^{4}}} dt = \int \frac{1}{\sqrt{2+t^{4}}} dt + \int \frac{1}{\sqrt{2+t^{4}}} dt = \int \frac{1}{\sqrt{2+t^{4}}} dt + \int \frac{1}{\sqrt{2+t^{4}}} dt = \int \frac{1}{\sqrt{2+t^$$

$$g'(x) = \frac{-1}{\sqrt{2+(\tan x)^4}} \cdot \sec^2(x) + \frac{1}{\sqrt{2+x^8}} \cdot 2x$$

$$\int_{\alpha}^{b} f(x) dx = \int_{\alpha}^{b} f(x) dx + \int_{\alpha}^{b} f(x) dx$$

SECTION 5-3: THE FUNDAMENTAL THEOREM OF CALCULUS, PART 2

The Fundamental Theorem of Calculus (Part 2) If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

where F is **any antiderivative** of f, that is, is a function such that F' = f. To evaluate, we write

$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b} = F(b) - F(a).$$

1. Evaluate the following integrals.

(a)
$$\int_{0}^{1} x^{2} dx$$

(b)
$$\int_{1}^{4} (1+3y-y^2) dy$$

2. Review from $\S 4.9$: To compute integrals effectively you **must** have your basic antidifferentiation formulas down. You should know that antiderivatives to the following functions. We are using the \int symbol to mean "find the antiderivative" of the function right after the symbol.

Antiderivatives of common functions:

$$\bullet \int x^n dx = \underline{\hspace{1cm}}$$

$$\bullet \int \sin x \, dx = \underline{\hspace{1cm}}$$

$$\bullet \int \cos x \, dx = \underline{\hspace{1cm}}$$

$$\bullet \int \sec^2 x \, dx = \underline{\hspace{1cm}}$$

$$\bullet \int \sec x \tan x \, dx = \underline{\hspace{1cm}}$$

$$\bullet \int \csc^2 x \ dx = \underline{\hspace{1cm}}$$

$$\bullet \int \csc x \cot x \, dx = \underline{\hspace{1cm}}$$

$$\bullet \int e^x dx = \underline{\hspace{1cm}}$$

$$\bullet \int a^x dx = \underline{\hspace{1cm}}$$

•
$$\int \frac{1}{1+x^2} dx =$$

$$\bullet \int \frac{1}{\sqrt{1-x^2}} \, dx = \underline{\hspace{1cm}}$$

$$\bullet \int \frac{1}{x} dx = \underline{\hspace{1cm}}$$

3. Evaluate the following integrals.

(a)
$$\int_{2}^{5} \frac{3}{x} dx$$

(b)
$$\int_{0}^{\pi/2} \cos x \, dx$$

4. Evaluate the following integrals.

(a)
$$\int_{1}^{8} \sqrt[3]{x} \, dx$$

(b)
$$\int_{\pi/6}^{\pi/2} \csc x \cot x \, dx$$
 (c) $\int_0^1 \frac{9}{1+x^2} \, dx$

(c)
$$\int_0^1 \frac{9}{1+x^2} \, dx$$

5. We do not have any product or quotient rules for antidifferentiation. To evaluate an integral that is expressed as a product or quotient you must try to manipulate the integrand (the stuff inside the \int sign) to look like something you know how to antidifferentiate. The following integrals are examples of this. Evaluate the following integrals.

(a)
$$\int_1^3 \frac{x^3 + 3x^6}{x^4} dx$$

(b)
$$\int_0^1 x(3+\sqrt{x}) \ dx$$

6. Evaluate the following integrals.

(a)
$$\int_0^2 (5^x + x^5) dx$$

(b)
$$\int_{1/2}^{\sqrt{2}/2} \frac{1}{\sqrt{1-x^2}} \, dx$$

7. What is wrong with the following calculation? (Hint: draw a picture!)

$$\int_{-1}^{3} \frac{1}{x^2} dx = \left. \frac{x^{-1}}{-1} \right|_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$