Amendments to the Claims:

The following Listing of Claims will replace all prior versions, and listings, of the claims in the above-identified application.

Listing of Claims

- (currently amended) An isolated and purified-poly(ADP-ribose) polymerase (PARP)
 homolog comprising human PARP2 (SEQ ID NO: 2) or a functional equivalent thereof
 which is at least 95% homologous to or a PARP homolog with at least 85% identity with
 human PARP2 (SEQ ID NO: 2), which exhibits poly(ADP-ribose)-synthesizing activity,
 and has an amino acid sequence which
 - a) has a functional NAD[†] binding domain comprising the sequence PX_n(S/T)GX₃GKGIYFA (SEQ ID NO:11) in which n is an integral value from 1 to 5, and the X radicals are, independently of one another, any amino acid:

and

- b) lacks a zinc finger sequence of the formula CX₂CX_mHX₂C (SEQ ID NO:30) in which m is an integral value of 28 or 30, and the X radicals are, independently of one another, any amino acid.
- (previously presented) The PARP homolog as claimed in claim 1, wherein the functional NAD⁺ binding domain comprises the following sequence:

(S/T)XGLR(I/V)XPX_n(S/T)GX₃GKGIYFA (SEQ ID NO:12) in which n is an integral value from 1 to 5, and the X radicals are, independently of one another, any amino acid.

 (currently amended) The PARP homolog as claimed in claim 1, further comprising the sequence:

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO: 15)

in which the X radicals are, independently of one another, any amino acid.

4-32. (canceled)

 (previously presented) The PARP homolog as claimed in claim 1, wherein the functional NAD⁺ binding domain comprises the following sequence:

 $LLWHG(S/T)X_7LL(S/T)XGLR(I/V)XPX_n(S/T)GX_3GKGIYFAX_3SKSAXY \ (SEQ\ ID\ NO:13)$

in which n is an integral value from 1 to 5, and

the X radicals are, independently of one another, any amino acid.

34. (currently amended) The PARP homolog as claimed in claim 1, further comprising sequence:

AX3FXKX4KTXNXWX5FX3PXK (SEQ ID NO:16)

in which the X radicals are, independently of one another, any amino acid.

35. (currently amended) The PARP homolog as claimed in claim 1, further comprising sequence:

XL(I/L)X2IX9MX10PLGKLX3QIX6L (SEQ ID NO:17)

in which the X radicals are, independently of one another, any amino acid.

36. (currently amended) The PARP homolog as claimed in claim 1, further comprising sequence:

FYTXIPHXFGX₃PP (SEQ ID NO:18)

in which the X radicals are, independently of one another, any amino acid.

 (currently amended) The PARP homolog as claimed in claim 1, further comprising sequence:

KX3LX2LXDIEXAX2L (SEO ID NO:19)

in which the X radicals are, independently of one another, any amino acid.

- 38. (currently amended) An isolated poly(ADP-ribose) polymerase (PARP) homolog comprising human PARP2 (SEQ ID NO: 2) or a functional equivalent thereof which is at least 95% homologous to or a PARP homolog having at least 85% identity with human PARP2 (SEQ ID NO: 2), which exhibits poly(ADP-ribose)-synthesizing activity, and has an amino acid sequence which
 - has a functional NAD⁺ binding domain comprising the sequence PX_n(S/T)GX₃GKGIYFA (SEQ ID NO:11)
 in which n is an integral value from 1 to 5, and the X radicals are, independently of one another, any amino acid;

and

b) lacks a zinc finger sequence of the formula

CX2CXmHX2C (SEQ ID NO:30)

in which m is an integral value of 28 or 30, and the X radicals are, independently of one another, any amino acid

further comprising a leucine zipper-like sequence:

(L/V)X₆LX₆LX₆L (SEQ ID NO: 14)

wherein X radicals are, independently of one another, any amino acid.

 (currently amended) The PARP homolog as claimed in claim 38, further comprising at least one of the following sequences:

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO: 15),

AX3FXKX4KTXNXWX5FX3PXK (SEQ ID NO:16),

QXL(I/L)X2IX9MX10PLGKLX3QIX6L (SEQ ID NO:17),

FYTXIPHXFGX₃PP (SEQ ID NO:18), and

KX3LX3LXDIEXAX3L (SEO ID NO:19)

in which the X radicals are, independently of one another, any amino acid.

 (currently amended) The PARP homolog as claimed in claim 38, further comprising sequences:

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO: 15)

AX3FXKX4KTXNXWX5FX3PXK (SEQ ID NO:16),

QXL(I/L)X2IX9MX10PLGKLX3QIX6L (SEQ ID NO:17),

FYTXIPHXFGX₃PP (SEQ ID NO:18), and

KX3LX2LXDIEXAX2L (SEQ ID NO:19)

in which the X radicals are, independently of one another, any amino acid.

 (currently amended) The PARP homolog as claimed in claim 38, further comprising sequences:

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO: 15)

AX3FXKX4KTXNXWX5FX3PXK (SEQ ID NO:16),

QXL(I/L)X2IX9MX10PLGKLX3QIX6L (SEQ ID NO:17),

FYTXIPHXFGX3PP (SEO ID NO:18), and

KX3LX2LXDIEXAX2L (SEQ ID NO:19)

in which the X radicals are, independently of one another, any amino acid, wherein

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO:15)

is closest to the N terminus.

 (currently amended) The PARP homolog as claimed in claim 1, further comprising sequences:

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO: 15)

AX3FXKX4KTXNXWX5FX3PXK (SEQ ID NO:16),

QXL(I/L)X2IX9MX10PLGKLX3QIX6L (SEQ ID NO:17),

FYTXIPHXFGX3PP (SEO ID NO:18), and

KX₃LX₂LXDIEXAX₃L (SEO ID NO:19)

in which the X radicals are, independently of one another, any amino acid.

 (currently amended) The PARP homolog as claimed in claim 1, further comprising sequences:

> LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO: 15) AX₃FXKX₄KTXNXWX₅FX₃PXK (SEQ ID NO:16), QXL(I/L)X₂IX₉MX₁₀PLGKLX₃QIX₆L (SEQ ID NO:17), FYTXIPHXFGX₃PP (SEQ ID NO:18), and

KX3LX2LXDIEXAX2L (SEQ ID NO:19)

in which the X radicals are, independently of one another, any amino acid, wherein LXoNXoYXoLLX(D/E)Xi001WGRVG (SEO ID NO:15)

is closest to the N terminus.

44. (currently amended) The PARP homolog as claimed in claim 1, further comprising at least one of the following:

GX₃LXEVALG (SEQ ID NO: 20),

GX2SX₄GX₃PX_aLXGX₂V (SEQ ID NO: 21), and E(Y/F)X₂YXYX₃OXYLL (SEO ID NO: 22)

in which a is 7 to 9 and

X is any amino acid.

45. (currently amended) The PARP homolog as claimed in claim 1, further comprising

GX3LXEVALG (SEQ ID NO: 20),

 $GX_2SX_4GX_3PX_aLXGX_2V$ (SEQ ID NO: 21), and

E(Y/F)X2YX3QX4YLL (SEQ ID NO: 22)

in which a is 7 to 9 and

X is any amino acid.

46. (currently amended) The PARP homolog as claimed in claim 1, further comprising

GX3LXEVALG (SEO ID NO: 20),

GX2SX4GX3PXaLXGX2V (SEQ ID NO: 21), and

E(Y/F)X2YX3OX4YLL (SEO ID NO: 22)

in which a is 7 to 9 and

X is any amino acid, wherein

E(Y/F)X2YX3QX4YLL (SEQ ID NO: 22)

is closest to the C terminus.

- 47. (currently amended) An isolated poly(ADP-ribose) polymerase (PARP) homolog comprising human PARP2 (SEQ ID NO: 2) or a functional equivalent thereof which is at least 95% homologous to or a PARP homologue having at least 85% identity with human PARP2 (SEQ ID NO: 2), which exhibits poly(ADP-ribose)-synthesizing activity, and has an amino acid sequence which
 - a) has a functional NAD⁺ binding domain comprising the sequence PX_n(S/T)GX₃GKGIYFA (SEQ ID NO:11)
 in which n is an integral value from 1 to 5, and the X radicals are, independently of one another, any amino acid;

and

- b) lacks a zinc finger sequence.
- (previously presented) The PARP homolog as claimed in claim 47, wherein said PARP lacks a zinc finger sequence of the formula

CX2CXmHX2C (SEO ID NO:30)

in which m is an integral value of 28 or 30, and

the X radicals are, independently of one another, any amino acid.

 (previously presented) The PARP homolog as claimed in claim 47, wherein the functional NAD⁺ binding domain comprises the following sequence:

(S/T)XGLR(I/V)XPX_n(S/T)GX₃GKGIYFA (SEO ID NO:12)

in which n is an integral value from 1 to 5, and

the X radicals are, independently of one another, any amino acid.

 (previously presented) The PARP homolog as claimed in claim 47, wherein the functional NAD⁺ binding domain comprises the following sequence:

 $LLWHG(S/T)X_7lL(S/T)XGLR(I/V)XPX_n(S/T)GX_3GKGIYFAX_3SKSAXY \ (SEQ\ ID\ NO:13)$

in which n is an integral value from 1 to 5, and

the X radicals are, independently of one another, any amino acid.

51. (currently amended) The PARP homolog as claimed in claim 47, further comprising a leucine zipper-like sequence:

(L/V)X₆LX₆LX₆L (SEQ ID NO: 14)

wherein X radicals are, independently of one another, any amino acid.

52. (currently amended) The PARP homolog as claimed in claim 51, further comprising at least one of the following sequences:

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO: 15),

AX3FXKX4KTXNXWX5FX3PXK (SEO ID NO:16).

OXL(I/L)X2IX0MX10PLGKLX2OIX6L (SEO ID NO:17).

FYTXIPHXFGX3PP (SEQ ID NO:18), and

KX3LX2LXDIEXAX2L (SEQ ID NO:19)

in which the X radicals are, independently of one another, any amino acid.

53. (currently amended) The PARP homolog as claimed in claim 51, further comprising:

LX₀NX₂YX₂OLLX(D/E)X_{10/11}WGRVG (SEO ID NO: 15).

AX3FXKX4KTXNXWX5FX3PXK (SEO ID NO:16),

QXL(I/L)X2IX9MX10PLGKLX3QIX6L (SEQ ID NO:17),

FYTXIPHXFGX3PP (SEQ ID NO:18), and

KX3LX2LXDIEXAX2L (SEO ID NO:19)

in which the X radicals are, independently of one another, any amino acid.

54. (currently amended) The PARP homolog as claimed in claim 51, further comprising:

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO: 15),

AX3FXKX4KTXNXWX5FX3PXK (SEQ ID NO:16),

 $QXL(I/L)X_2IX_9MX_{10}PLGKLX_3QIX_6L \ (SEQ\ ID\ NO:17),$

FYTXIPHXFGX3PP (SEQ ID NO:18), and

KX3LX2LXDIEXAX2L (SEQ ID NO:19)

in which the X radicals are, independently of one another, any amino acid, wherein

LX₉NX₂YX₂QLLX(D/E)X_{10/11}WGRVG (SEQ ID NO: 15)

is closest to the N terminus

55. (currently amended) The PARP homolog as claimed in claim 47, further comprising at least one of the following:

GX3LXEVALG (SEQ ID NO: 20),

GX2SX4GX3PXaLXGX2V (SEQ ID NO: 21), and

E(Y/F)X2YX3QX4YLL (SEQ ID NO: 22)

in which a is 7 to 9 and

X is any amino acid.

56. (currently amended) The PARP homolog as claimed in claim 47, further comprising

GX3LXEVALG (SEQ ID NO: 20),

GX2SX4GX3PXaLXGX2V (SEQ ID NO: 21), and

E(Y/F)X₂YX₃QX₄YLL (SEQ ID NO: 22)

in which a is 7 to 9 and

X is any amino acid.

57. (currently amended) The PARP homolog as claimed in claim 47, further comprising

GX3LXEVALG (SEQ ID NO: 20),

GX2SX4GX3PX2LXGX2V (SEO ID NO: 21), and

E(Y/F)X2YX3QX4YLL (SEQ ID NO: 22)

in which a is 7 to 9 and

X is any amino acid, wherein

E(Y/F)X2YX3QX4YLL (SEQ ID NO: 22)

is closest to the C terminus.

58. (currently amended) The PARP homolog as claimed in claim 51, further comprising at least one of the following:

GX3LXVALG (SEQ ID NO: 20),

GX2SX4GX3PXaLXGX2V (SEQ ID NO: 21), and

E(Y/F)X2YX3QX4YLL (SEQ ID NO: 22)

in which a is 7 to 9 and

X is any amino acid.

59. (currently amended) The PARP homolog as claimed in claim 51, further comprising

GX3LXEVALG (SEQ ID NO: 20),

GX2SX4GX3PXaLXGX2V (SEQ ID NO: 21), and

E(Y/F)X2YX3QX4YLL (SEQ ID NO: 22)

in which a is 7 to 9 and

X is any amino acid.

60. (currently amended) The PARP homolog as claimed in claim 51, further comprising

GX3LXEVALG (SEQ ID NO: 20),

GX2SX4GX3PXaLXGX2V (SEQ ID NO: 21), and

E(Y/F)X2YX3QX4YLL (SEQ ID NO: 22)

in which a is 7 to 9 and

X is any amino acid, wherein

E(Y/F)X2YX3QX4YLL (SEQ ID NO: 22

is closest to the C terminus.

61. (new) An isolated and purified-poly(ADP-ribose) polymerase (PARP) homolog comprising human PARP2 (SEO ID NO: 2).