Problems 4

10/09/2020

1) Let (V, b) be an euclidean vector space, i.e. V is a finite dimensional real vector space with positive definite symmetric bilinear form $b: V \times V \longrightarrow \mathbb{R}$. Show that every element of the orthogonal group O(V, b) can be written as a product of $\leq \dim_{\mathbb{R}} V$ reflections.

The aim of the following problem is a generalization of what has been proven in Topic 4 of the lectures. All assertions can be proven by slight modifications of the arguments used in these lectures for an euclidean vector space.

- 2) Let F be a field of characteristic $\neq 2$ and V a F-vector space of dimension $n < \infty$. A quadratic form on V is a map $q: V \longrightarrow F$, such that
 - (a) $q(\lambda \cdot v) = \lambda^2 \cdot q(v)$ for all $v \in V$ and $\lambda \in F$, and

(b)

$$b_q(v, w) := \frac{1}{2} \cdot (q(v+w) - q(v) - q(w))$$

is a symmetric bilinear form, i.e.

$$b_q(\lambda_1 v_1 + \lambda_2 v_2, w) = \lambda_1 b(v_1, w) + \lambda_2 b(v_2, w)$$

for all $v_1, v_2, w \in V$ and $\lambda_1, \lambda_2 \in F$.

The quadratic form q is called non degenerate if $b_q(v, w) = 0$ for all $w \in V$ implies v = 0. If q is non degenerated then (V, q) is called a quadratic space.

- (i) Let (V, q) be a quadratic space and O(V, q) be the set of all F-linear maps $f: V \longrightarrow V$ satisfying q(f(v)) = q(v) for all $\in V$. Show that O(V, q) is a subgroup of GL(V).
- (ii) A vector $v \in V$ is called anisotropic (with respect to q) if $q(v) \neq 0$. Show that the map

$$s_v: V \longrightarrow V, x \longmapsto x - \frac{2b_q(v,x)}{q(v)} \cdot v$$

is in O(V, b) for all anisotropic vectors v in V. The map s_v is called a reflection.

(iii) Show that O(V, q) is generated by the set of elements

$$\{s_v \mid v \in V \text{ a anisotropic vector }\}.$$

- (iv) Determine the centre of O(V, q).
- 3) Let $\langle x,y \rangle := x^t \cdot y$ be the usual scalar product on \mathbb{R}^n , $\mathcal{O}_n(\mathbb{R})$ the set of real $n \times n$ -matrices A with $\langle Ax, Ay \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{R}^n$, and $SO_n(\mathbb{R}) = SL_n(\mathbb{R}) \cap O_n(\mathbb{R})$. Show that $O_n(\mathbb{R})$ and $SO_n(\mathbb{R})$ are subgroups of $GL_n(\mathbb{R})$, and that $O_n(\mathbb{R})$ is isomorphic to a semidirect product of $SO_n(\mathbb{R})$ and $\mathbb{Z}/2$.