9.3.3 处理冲突的方法

在哈希表中,虽然冲突很难避免,但发生冲突的可能性却有大有小。这主要与三个因素有关:

- 与装填因子有关。所谓装填因子α是指哈希表中已存入的元素数n与哈希地址空间大小m的比值,即α=n/m。α越小,冲突的可能性就越小;但α越小,存储空间的利用率就越低。
- ▶ 与所采用的哈希函数有关。
- ▶ 与解决冲突的方法有关。处理冲突就是为发生冲突的 关键字的记录找到另一个"空"的哈希地址。

1. 开放定址法

基本方法: 当冲突发生时,形成某个探测序列;按此序列逐个探测散列表中的其他地址,直到找到给定的关键字或一个空地址(开放的地址)为止,将发生冲突的记录放到该地址中。散列地址的计算公式是:

 $H_i(\text{key}) = (H(\text{key}) + d_i) \text{ MOD } m, i=1, 2, ..., k(k \le m-1)$

- > 其中: H(key): 哈希函数;
- ▶ m: 散列表长度;
- ▶ d_i: 第i次探测时的增量序列;
- ▶ H_i(key): 经第i次探测后得到的散列地址。

(1) 线性探测法

- 从发生冲突的地址(设为d)开始,依次循环探测d的下一个地址 (当到达下标为m-1的哈希表表尾时,下一个探测的地址是表首地址 0),直到找到一个空闲单元为止。
- 描述公式为: H_i(key)=(H(key)+d_i) MOD m, 其中, 增量序列为: d_i=1, 2, 3, ..., m-1。
 设d_o=H(key), 则H_i(key)=d_i=(d_{i-1}+1) mod m (1≤i≤m-1)

0	1	2	3	4	5	6	7	8	9
		*	*	*	*	*	*	*	*
					•	→•	→• —	→•	7

问题:可能出现堆积现象:

n=6,m=10,关键字为(10,11,12,19,20,21)

哈希函数: H(key) = key % 9

10, 11, 12

0	1	2	3	4	5	6	7/	8	9
	10	11	12						

- 19 ⇒ H(19)=19%9=1 (冲突)
- d₀=1, d₁=(1+1)%10=2 (冲突)
- d₂=(2+1)%10=3 (冲突)
- d₃=(3+1)%10=4(将19放在4位置)

0	1	2	3	4	5	6	7	8	9
	10	11	12	19					

- 20 ⇒ H(20)=20%9=2 (冲突)
- $d_0=2$, $d_1=(2+1)\%10=3$ (冲突)
- d₂=(3+1)%10=4 (冲突)
- d₃=(4+1)%10=5(将20放在5位置)

哈希函数值不相同的 多个记录争夺同一个 后继哈希地址称为二 次聚集现象。

线性探测法的特点

- 优点: 只要散列表未满, 总能找到一个不冲突的散列地址;
- 缺点:每个产生冲突的记录被散列到离冲突最近的空地 址上,从而又增加了更多的冲突机会(这种现象称为冲 突的"二次聚集")。

(2) 二次探测再散列

- ▶ 发生冲突时前后查找空位置。
- 描述公式为: H_i(key)=(H(key)+d_i) MOD m, 其中, 增量序列为: d_i=1²,-1²,2²,-2²,3²,....., ±k² (k≤[m/2])。
 设d_o=H(key), H_i(key)=d_i=(d_o±i²) mod m (1≤i≤m-1)

0	1	2	3	4	5	6	7	8	9
		*	*	*	*	*	*	*	*
	•		<u>)</u>	•					→•

- 二次探测再散列法可以避免出现堆积问题。
- 缺点是不能探测到哈希表上的所有单元,但至少能探测到一半单元。

【示例-1】假设哈希表长度m=13,采用采用除留余数法加线性探测法建立如下关键字集合的哈希表:

(16,74,60,43,54,90,46,31,29,88,77).

解: n=11, m=13, 除留余数法的哈希函数为:

H(key)=key mod p

p应为小于等于m的素数,假设p取值13。

哈希函数: H(key)=key mod 13

解决冲突方法:线性探测法

$$\checkmark H(16)=3$$

$$\checkmark$$
 $H(74)=9$

$$\checkmark H(60)=8$$

$$\checkmark H(43)=4$$

$$\checkmark H(54)=2$$

$$\checkmark$$
 $H(90)=12$

$$\checkmark H(46)=7$$

$$\checkmark$$
 $H(31)=5$

$$\checkmark$$
 $H(29)=3$

$$d_0=3, d_1=(3+1) \% 13=4$$

$$d_2=(4+1) \% 13=5$$

$$\checkmark$$
 $d_3 = (5+1) \% 13=6$

$$\checkmark$$
 $H(88)=10$

$$\checkmark$$
 $H(77)=12$

$$d_0=12, d_1=(12+1) \% 13=0$$

有冲突

仍有冲突

仍有冲突

hash[6]=29,共4次探测

hash[10]=88,共1次探测

有冲突

hash[0]=77, 共2次探测

哈希表hash[0..12]

下标	0	1	2	3	4	5	6	7	8	9	10	11	12
k	77		54	16	43	31	29	46	60	74	88		90
探测次数	2		1	1	1	1	4	1	1	1	1		1

成功的查找: 在hash中找到对应的关键字

 \bullet H(77)=12

$$d_0=12$$
, $d_1=(12+1)$ % 13=0

hash[12]=90≠77

hash[0]=77, 共2次比较

比较的次数=探测次数

$$ASL_{succ} = \frac{1*9+2*1+4*1}{11} = 1.364$$

哈希表hash[0..12]

下标	0										12
k	77	54	16	43	31	29	46	60	74	88	90

查找不成功:在hash中找不到对应的关键字x

♦
$$H(x)=12$$
 hash[12] $\neq x$ {12,25,38,.....} $d_0=12$, $d_1=(12+1)$ % 13=0 hash[0] $\neq x$ hash[1]为空,表示查找失败,共3次比较

确定查找失败,一定比较到空为止!

哈希表hash中查找失败的所有情况的探测次数

下标	0	1	2	3	4	5	6	7	8	9	10	11	12
k	77		54	16	43	31	29	46	60	74	88		90
探测次数	2	1	10	9	8	7	6	5	4	3	2	1	3

$$ASL_{unsucc} = \frac{2+1+10+9+8+7+6+5+4+3+2+1+3}{13} = 4.692$$

2. 链地址法

- ▶ 链地址法:将所有关键字为同义词(哈希地址相同)的记录 存储在一个单链表中,并用一维数组存放链表的头指针。
- ▶ 在这种方法中,哈希表每个单元中存放的不再是记录本身, 而是相应同义词单链表的头指针。
- 由于单链表中可插入任意多个结点,所以此时装填因子α 根据同义词的多少既可以设定为大于1,也可以设定为小 于或等于1,通常取α=1。

【示例-2】假设哈希表长度m=13,采用采用除留余数法加链地址法建立如下关键字集合的哈希表:

(16,74,60,43,54,90,46,31,29,88,77).

解:采用链地址法解决冲突建立的链表如下图所示。

成功的查找: 在hash中找到对应的关键字

不成功的查找: 在hash中找不到对应的关键字x

【示例-3】 将关键字序列(7,8,30,11,18,9,14)散列存储到散列表中,散列表的存储空间是一个下标从0开始的一维数组,散列函数为: $H(key)=(key\times3)\mod 7$,处理冲突采用线性探测再散列法,要求装填(载)因子为0.7。

- (1) 请画出所构造的散列表。
- (2)分别计算等概率情况下,查找成功和查找不成功的平均查找长度。

说明:本题为2010年全国考研题。

解: (1) n=7, $\alpha=0.7=n/m$, 则m=n/0.7=10。

计算各关键字存储地址的过程如下:

$$H(7) = 7 \times 3 \mod 7 = 0$$

$$H(8)=8\times 3 \mod 7=3$$

$$H(30)=30\times3 \mod 7=6$$

$$H(11)=11\times 3 \mod 7=5$$

$$d_2 = (6+1) \mod 10=7$$

$$d_2 = (7+1) \mod 10=8$$

$$d_1 = (0+1) \mod 10=1$$

构造的哈希表:

下标	0	1	2	3	4	5	6	7	8	9
关键字	7	14		8		11	30	18	9	
探测次数	1	2		1		1	1	3	3	

(2) 在等概率情况下:

不成功的情况下所有探测次数:

下标	0	1	2	3	4	5	6	7	8	9
关键字	7	14		8		11	30	18	9	
探测次数	3	2	1	2	1_	5	4	3	2	1

所以有:

- n个关键字的构造顺序不同得到的哈希表不同
- 平均查找长度ASL也不同
- 考虑所有顺序构造哈希表的平均情况

平均情况下的平均查找长度:

解决冲突的方法	平均查找长度ASL							
741 201 201 201 42	成功的查找	不成功的查找						
线性探测法	$\frac{1}{2}(1+\frac{1}{1-\alpha})$	$\frac{1}{2}(1+\frac{1}{(1-\alpha)})$						
平方探测法	$-\frac{1}{\alpha}\log_{e}(1-\alpha)$	$\frac{1}{1-\alpha}$						
链地址法	$1+\frac{\alpha}{2}$	$\alpha + e^{-\alpha} \approx \alpha$						

— END