

Les CODECs audio et plus particulièrement Ogg Vorbis

Philippe Teuwen <phil@teuwen.org>

Présentation basée sur les matériaux de Werner Oomen & Nicolas Werner que je remercie au passage

Contenu de la présentation

Introduction aux CODECs audio

Psychoacoustique (24)

Outils d'encodage (21) -> 26

Les différents CODECs (11) -> 47

Présentation de Ogg Vorbis

Aperçu, historique (7) -> 50

Vue un peu plus poussée (12) -> 65

Introduction aux CODECs audio

Ingrédients nécessaires:

Une bonne connaissance de la psycho-acoustique

Des algorithmes de Digital Signal Processing (DSP)

Transformations du signal

Quantification

La théorie de l'information

Codage sans pertes (Loss-less Coding)

t enfin...

Psycho-acoustique: 1) L'effet de masquage (masking)

Un son est-il toujours audible?

Interaction entre les sons...

Avant d'aller plus loin...

Pourquoi les fréquences sont représentées selon une échelle logarithmique?

Pourquoi les niveaux de pression sonore sont représentés selon une échelle logarithmique? (le dB est une représentation logarithmique)

L'appareil auditif

Limaçon et membrane basilaire

Membrane basilaire

Lorsque la fréquence double, la position de l'excitation maximale varie linéairement

Logarithme...

Echelle de Bark

Relie la fréquence à la position de l'excitation de la membrane basilaire:

Niveau de pression sonore (SPL)

Deux tondeuses à gazon ne font pas deux fois plus de bruit qu'une seule tondeuse...

Lorsque la pression sonore double, la sensation ne double pas.

Logarithme...

SPL: Sound Pressure Level sur une échelle en dB relative à une pression de référence.

Les seuils de perception sont représentés sur une échelle de SPL en dB.

Le seuil d'audibilité

La pression de référence: seuil d'inaudibilité à 2000 Hz

Représentation numérique

Le problème:

Comment faire le lien entre des nombres entiers représentant une amplitude et les dB SPL?

Une solution:

Une sinusoïde avec la plus petite amplitude (1 LSB) a un niveau correspondant au seuil absolu d'audibilité à 4kHz, soit -5 dB SPL.

 $\frac{1}{2}$ A² pour A=1 équivaut à -3dB + K ≡ -5 dB SPL ⇒ K=-2 dB

16 bits couvrent environ 90 dB de dynamique.

Revenons au masquage

Les sons qu'on n'entend pas:

Ceux qui sont sous le seuil d'audibilité

Ceux qui sont masqués temporellement

Ceux qui sont masqués fréquentiellement

Masquage temporel

Pré et post masquages

Différence entre le temps de perception des sons faibles et des sons forts

L'effet est implicitement utilisé dans les CODECs

Masquage spectral

Un son arrivant dans l'oreille se propage dans un ensemble de filtres passe-bande (les cils)

A chaque filtre correspond l'excitation d'une cellule nerveuse.

Masquage spectral

Une sinusoïde excite plusieurs filtres adjacents.

Surtout le filtre centré sur cette fréquence.

L'excitation causée se répand en partie.

Masquage spectral

Seuil de masquage

Largeur de bande critique

Le système auditif humain est capable d'intégrer la puissance reçue par chaque filtre auditif (cil).

Un bruit (large bande) faible peut masquer un son (sinusoïde) pourtant plus fort.

Largeur de bande critique

SNR s'améliore seulement si la bande a une largeur inférieure à la largeur de bande critique

Largeur de bande critique

La puissance intégrée dans une largeur de bande critique doit être inférieure au seuil d'audibilité

Nouvelle courbe corrigée

Application: Buried data

Example d'application du seuil de masquage:

On peut ajouter un bruit au signal jusqu'au seuil de masquage corrigé.

Le signal audio reste perceptuellement identique au signal audio original.

Le bruit représente en fait un data-stream.

Ce data-stream peut être récupéré par après.

Jusqu'à 1/3 de la capacité d'un CD peut être ainsi utilisée sans différence de perception.

Buried data

Buried data process

Références

Brian C.J. Moore, *An Introduction to the Psychology of Hearing*, Academic Press, 1997

IEEE ASSP Magazine, Cochlear Modeling, January 1985, Vol.2, No.1

JAES, Buried Data Channels, Vol.43, No.1/2, 1995 Jan/Feb.

Les principes utilisés pour le codage audio

Redondance et irrelevance

Redondance:

Information qui n'est pas nécessaire pour comprendre totalement le message Infrmtn qi n'e pa ncesair pr comprndr ttlmnt l msg

Irrélévance:

Information qui fait partie du message, mais qui ne change pas la perception de ce message

Codage sans pertes <> avec pertes

	Avec pertes	Sans pertes
Propriété	Output ≈ Input	Output ≡ Input
Exploite	Redondance & Irrélévance	Redondance seulement
Tests perceptuels	Oui	Non
Compression ratio η	> 30	> 2
Bit rate	Fixe ou variable	Variable
Qualité	Subjective	Objective (max)

Les paramètres caractéristiques d'un CODEC audio

Qualité (bande passante (voix: 4kHz <> HQ Audio:24kHz), résolution perceptuelle (8 <> 24 bits))

Compression ratio ($\eta_{lossless}$:2 ... η_{lossy} >30 ...)

Complexité (ROM, RAM, MIPS, Vitesse, Symétrie enc/déc)

Flexibilité (Scalability, Retard, Canaux, Fonctionnalités suppl.)

CODEC

Codec ≡ encodeur + décodeur

Encodeur

Encodeur

Pré-processing:

Banc de filtres

Facilite l'analyse psychoacoustique

Les puissances du signal intégrées en bandes de fréquence peuvent être mises facilement en relation avec le seuil de masquage.

'Noise-shaping' perceptuel

Le bruit de quantification de chaque bande peut être choisi séparément selon le seuil de masquage.

Subband coding

Large overlap dans le domaine temporel Faible overlap dans le domaine spectral

⇒ Les échantillons dans une bande sont corrélés

Transform coding

Large overlap dans le domaine spectral Faible overlap dans le domaine temporel

Erreurs au pré-écho

Erreurs de quantification en fréquentiel se répandent en temporel lors de la synthèse du son:

Changement de fenêtres

Basculement vers des fenêtres plus courtes lors des transitoires

Subband vs. Transform

Valeurs typiques

Type	N/M	M	Implémentation
SBC	264	264	Polyphase matrix
TC	2	2562048	FFT

Avec les outils adéquats (quantification, compression sans pertes, ...) subband coding et transform coding sont comparables en termes de performances/complexité

Codage sans pertes

Enlever la redondance

Huffman:

Les mots les plus fréquents reçoivent les symboles les plus courts

L'alphabet Morse international

```
A .- J .-- S ... 0 ----
B -... K -.- T - 1 .---
C -.-. L .-.. U ..- 2 ..--
D -.. M -- V ...-
E . N -. W .-- 4 ...-
F ..-. O --- X -..- 5 ....
G --. P .--. Y -.-- 6 -...
I .. R .-. 9 ---.
```

36 symboles Morse nécessitent 6 bit -> 64 possibilités (A=000001, B=000010, ...)

En exploitant les probabilités des lettres dans les mots, la longueur moyenne des symboles en Morse (A.. Z) ≈ 3.2

Codage stéréo

Pour les fréquences élevées, l'oreille humaine: Devient moins sensible aux différences inter-aurales

Détermine la direction à partir des différences d'intensité uniquement

Intensity Stereo Coding

Codage stéréo

Sum difference (MS) coding

Code L-R et L+R séparément (efficace pour les basses fréquences)

L+R: év. 1 bit en plus

L-R: nettement moins de bits si canaux fort corrélés

Ajustement du modèle perceptuel et de la quantification nécessaires

$$L = [(L-R) + (L+R)] / 2$$

$$R = [(L+R) - (L-R)] / 2$$

D'autres outils

TNS: Temporal noise shaping

Exploite post-masquage autour des transitoires

PNS: Perceptual noise shaping

Substitue les bandes de fréquence par une synthèse de bruit blanc dans le décodeur (applaudissements=bruit blanc...)

LTP: Long term prediction

Réduction supplémentaire de la corrélation dans les sous-bandes par prédiction dans le domaine temporel

TWIN-VQ

Autre type de quantification dans les sous-bandes

• • •

Différentes façons d'encoder...

Pour différents types de sons

Model based coding

Classification pour tous signaux musicaux/voix Description paramétrique des transitoires Bruit généré par le décodeur (cf PNS) Sinusoïdes peuvent être représentées efficacement

Les transitoires

Les sinusoïdes

Les CODECs disponibles

MPEG Layer III

Fait partie du standard MPEG-1 depuis 1993

Développé par FhG et AT&T

Basé en partie sur le MPEG Layer II

THE Internet codec \Rightarrow mp3

De-facto mode is stereo at 128 kbit/s

High quality at 160 kbit/s

Le MP3 n'est PAS libre!

De nombreux brevets couvrent le MP3

La plupart de Thompson et Fraunhofer

Si l'utilisateur peut en bénéficier gratuitement,

Rien ne garantit que cela le restera dans le futur

Il n'en est pas de même pour l'encodage...

mp3licensing.com

Home | Contact | About Us | Royalty Rates | Licensees | Other Formats | Press Releases | Sitemap

Royalty Rates

Home

Overview

PC Software Applications

Hardware Products

ICs / DSPs

Games

Electronic Music Distribution / Broadcasting / Streaming

Overview

PC Software Applications				
mp3	Decoder	· US\$ 0.75 per unit or US\$ 50 000.00 - US\$ 60 000.00 one-time paid-up		
	Encoder / Codec	· US\$ 2.50 - US\$ 5.00 per unit		
mp3PRO	Decoder	• US\$ 1.25 per unit or US\$ 90 000.00 one-time paid-up		
	Encoder / Codec	• US\$ 5.00 per unit		

<u>Hardware Products</u>				
mp3	Decoder	• US\$ 0.75 per unit		
	Encoder / Codec	· US\$ 2.50 - US\$ 5.00 per unit		
mp3PRO	Decoder	• US\$ 1.25 per unit		
	Encoder / Codec	• US\$ 5.00 per unit		

ICs / DSPs

For available software, supported platforms, porting and licensing options, please contact us at info@mp3licensing.com.

	<u>Games</u>
mp3	• US\$ 2 500.00 per title
mp3PRO	• US\$ 3 750.00 per title

Electronic Music Distribution / Broadcasting / Streaming			
mp3	· 2.0 % of related revenue		
mp3PRO	· 3.0 % of related revenue		

Advanced audio coding: AAC

Addendum au standard MPEG-2 depuis 1997

Développé par Dolby, FhG, AT&T, Sony et d'autres

Trois profils: Main, <u>Low complexity</u>, Sampling rate scalable* (Sony))

Twin-VQ (MPEG4 tool) pour les faibles bit-rates*

Qualité stéréo HiFi à 128 kbit/s

Qualité stéréo mp3-like à 80-96 kbit/s

^{*} peu de preuves de réelle efficacité

Autres CODECs propriétaires

```
AC 3 (Dolby)
```

ATRAC (Sony) \Rightarrow MD, ATRAC3

Apt-x

E-PAC (ATT)

Qsound (Qdesign)

• • •

Qualité <> bit-rate

	Qualité	
	mp3 @128 kb/s	Transparence
MPEG Layer I	224	384
MPEG Layer II	160	192 à 224
MPEG Layer III	128	160
AAC	80 - 96	128
MPEG-4 CELP	16 (uniq voix)	n.a.
AC-3	160	192 à 224
ATRAC3	128 ?	160 ?
ePAC	80 - 96	128
QDMC	n.a.	n.a.
WMA	5	
SSC	Cible 37	

Jugement de qualité objectif

Les spécifications traditionnelles de la HiFi comme le SNR sont sans valeur marketing pour les CODECs audio (SNR 13 dB!)

Il faut faire des mesures qui tiennent compte du caractère perceptuel utilisé dans les CODECs

Méthode rapide et bon marché pour évaluer les CODECs

Où est le meilleur modèle?

Dans le CODEC? ou dans l'outil de mesure objectif?

Jugement de qualité subjectif

Le seul outil correct mais...

Cher

Lent

Interne ou externe?

Formel ou informel?

Demande une bonne préparation

L'interprétation des résultats est délicate (stats)

Références

Ted Painter and Andreas Spanias, Perceptual Coding of Digital Audio, IEEE, 2000

Ogg Vorbis

Ogg Vorbis est du logiciel libre, donc gratuit et ouvert pour l'éternité!

L'idée initiale a germé en 1993

Le projet Ogg Vorbis a débuté à l'automne 1998, peu après que Fraunhofer décida de reprendre le mp3 et de poursuivre tous les projets libres autour du mp3

Ogg Vorbis

La license mp3 était prohibitive pour ces [musiciens un peu programmeurs] qui se sont transformés peu à peu en [programmateurs un peu musiciens]!

C'est un exemple typique de la communauté des logiciels libres: Si quelquechose manque, on ne s'en plaint pas, on le crée...

Le projet continue à évoluer: meilleur encodeur, outils plus rapides, error correction, etc.

Ogg? Vorbis? Xiph?

Ogg est un format de bitstream très complet, aussi bien pour l'audio que la vidéo (cf Mpeg4)

Vorbis et le nom du CODEC audio

Xiph est la société hébergeant les principaux développeurs, Xiph nous a déjà donné l'excellent cdparanoia, outil d'extraction audio, sous la license libre GPL.

Tarkin est le prochain grand projet de Xiph: avoir également un CODEC libre pour la vidéo

Tous ces noms et symboles tordus sont expliqués: http://www.xiph.org/xiphname.html

Et qu'est-ce que ça donne?

Meilleur que le mp3

Equivalent à l'AAC et au mp3pro?

Exemples...

Streaming radio avec la BBC...

Supporté par de plus en plus de softs: Winamp, Freeamp, JAVA, etc, etc

VBR: penser en terme de qualité plutôt que de bitrate (CBR ou ABR)

Références

Le site officiel

http://www.xiph.org/ogg/index.html

http://www.xiph.org/about.html

Why artists should be using Ogg Vorbis

http://itw.itworld.com/GoNow/a14724a50163a75981044a4

Ogg Vorbis en profondeur

Principales composantes

Un modèle psycho-acoustique

Une courbe de masquage

La quantification vectorielle (VQ)

Le couplage entre canaux (channel coupling)

Le codage sans pertes de Huffman

Fonctionnement de l'encodeur

Windowing

- Problème du pré-écho
- Emploi de fenêtres plus courtes lors des transitoires
- Pourquoi pas tout le temps?
- La résolution fréquentielle est moins bonne
- C'est le compromis résolution temporelle <> résolution spectrale

Floor

Le modèle psycho-acoustique détermine les fréquences inaudibles et le bruit de quantification permis (modèle basé sur les travaux de Robert Ehmer, années '50)

Le floor est la courbe maximale de 3 autres:

Le max. de masquage par le bruit (cf expérience)

Le masquage dû aux sons (tone masking)

L'ATH: absolute threshold of hearing en dernier recours, tout en tenant compte que l'utilisateur peut augmenter le son lors des 'blancs'

Exemple de floor

Encodage et décodage du floor

Le floor étant déterminé, il reste à coder les résidus, différence entre le signal original et le floor.

Mais le floor sera quantifié dans le bitstream donc

on va d'abord calculer cette quantification, se servir de la sortie quantifiée, la décoder puis seulement la soustraire au signal

Ainsi l'erreur de quantification du floor ne se répercutera pas sur le calcul des résidus.

Les résidus

Ils ont une très faible dynamique

Obtenus séparément pour chaque canal

On peut leur appliquer le channel coupling:

Passage en coordonnées polaires rectangulaires

L'angle (la phase) est fortement quantifié

Puis la quantification vectorielle:

Emploi de codebooks joints au bitstream

Les mots des codebooks sont choisis selon un arbre d'Huffman

VQ

Fonctionnement du décodeur

On emballe...

Paquet Vorbis:

Header avec fréquence, channels, etc

Un tag avec des infos diverses (cf id3 sur mp3)

Les codebooks

Floor gauche

Floor droit

Les résidus

Mais pas d'infos de synchro

Ogg: container format

C'est un format générique multimédia Audio, voix, video, ...

Ajoute ses propres headers, sorte d'enveloppe supplémentaire autour du bitstream Vorbis

Permet le streaming et la re-synchronisation

Il est possible de s'en passer: utiliser l'UDP

Cf Icecast

THE END