

GPU Programming in Computer Vision

Preliminary Meeting

Björn Häfner, Benedikt Löwenhauser, Thomas Möllenhoff

What you will learn in the practical course

- Introduction to NVIDIA CUDA Framework
- Introduction to parallel computing on GPUs
- How to parallelize basic computer vision algorithms in CUDA/C++
- Practical project experience
- Team work, presentation skills

Important Dates

- Preliminary Meeting: 3. February 2017 (today)
- Registration in the matching system on 3. 8.
 February 2017
 - List your preferred practical courses
 - Send an email to <u>cuda-ss17@vision.in.tum.de</u> describing your prior knowledge in C/C++, Computer Vision/Image processing along with a short motivational statement
- Matching Results: 15. February 2017
- Only assigned students are allowed to attend !!!
- See <u>docmatching.in.tum.de/index.php/schedule</u>

Course Organisation

- 4-5 weeks block course in the semester break (beginning of September - mid of October)
- 1 week lecture and exercise session
- 3 weeks project phase
- Our computer lab will be open for students
- Computers are equipped with recent GPUs (GTX 750), one for each student.
- Students will work in groups: 24 students, ideally 8 groups, each has 3 students.
- Every group will be assigned to one advisor.

Course Structure

- First Week
 - Theoretical lecture in the morning
 - Hands-on programming exercises in the afternoon
- Following 3-4 weeks
 - Project phase, one project to each group
 - Your own ideas,
 - Project Proposals, any related topic to Computer Vision, Image Processing, Machine Learning
- Final presentation of the projects

Evaluation Criteria

- Successful completion of the exercises (0,3 bonus)
- Gained expertise in CUDA/parallel programming
- Quality of your final project
 - Successful completion of the project
 - Projects will be evaluated by the project advisors
 - Your talk

Regular Attendance Is Required

- Attendance at classes/exercises is mandatory
- In case of absence: Medical attest
- The practical course is intended as a 4 week "full-time" project

Motivation on GPU programming

CPU: 4 - 32 cores GPU: 3072 cores

CPU vs GPU

Motivation on GPU programming

- Allows you to do some cool stuff!
- Student projects from the previous years...

High Resolution Maps from Aerial Footage

Dense Visual Odometry

Poisson Image Editing

Properties of the Poisson's Equation

$$\min_{f} \iint_{\Omega} \left| \nabla f - \mathbf{v} \right|^2 with \quad f \mid_{\partial \Omega} = f^* \mid_{\partial \Omega}$$

$$\Delta f = \operatorname{div} \mathbf{v} \text{ over } \Omega \text{ with } f \mid_{\partial \Omega} = f^* \mid_{\partial \Omega}$$

$$\operatorname{div} \mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

- Second-order variations extracted by Laplacian operator are the most significant "perceptually"
- Scalar function on a bounded domain is uniquely defined by its values on the boundary and its Laplacian in the interior
 - Poisson equation therefore has a unique solution

Poisson Image Editing by Gaurav & Saion

With source guiding gradient

Source (That's Me)

Target

Poisson Image Editing by Gaurav & Saion

Output

C

Depth Adaptive Super Pixels

GPU Accelerated Cryo-microscopy

Results: Speed

1:100
GTX 980 Xeon 2640 v3 cores

...or 1:42 when using AVX on CPU

Results: Validation

World's first 2.7 A proteasome density from EM data

(previous record: 2.8 A)

Kinect Fusion

Enjoy the practical course!

