Practice Queries

CSCI 320

Consider the following tables.

student	enrolledIr	า	subject	
id name	id	code	code	lecturer
1234 joe	1234	cs1500	cs1500	curtis
4000 hector	1234	cs1200	cs2001	dave
2000 ling	1234	cs2001	cs3010	curtis
	4000	cs3010	cs2001	olivier
	4000	ma3000	ma3000	roger

Figure out which relational algebra operations were used to obtain each of the following tables.

```
1.
name
joe
hect
or
ling
```

```
2.
lecturer
curti
s
dave
olivi
er
roger
```

There are two ways to get this table. Try to list both. *Hint*: Use an OR in the selection condition for one method.

4.	id	name
	1234	joe
	4000	hector

There are three ways to get this table. *Hint*: How about using the difference operator?

5.				
	id	name	id	code
	1234	joe	1234	cs1500
	1234 1234	joe joe	1234 1234	cs1200 cs2001
	1234	joe	4000	cs3010
	1234	joe	4000	ma3000
6.				
	id	name	id	code
	1234	joe	1234	cs1500
	1234 1234	joe joe	1234 1234	cs1200 cs2001
	1234	Joe	1234	CSZUUI
7.				
	id	name	code	
	1234	joe	cs1500	
	1234	joe	cs1200	
	1234	joe	cs2001	
8.				
	id	code		
	1234	cs1500	_	
	1234	cs1200		
	1234	cs2001		
9.				
	id	name	code	lecturer
	4000	hector	cs3010	curtis

ma3000 roger

10. name	lecturer
joe	curtis
hector	curtis

4000 | hector |

Solutions

1. Solution: \sqcap name(student) 2. Solution: ☐ lecturer(subject) 3. Solution: σ_{lecturer=curtis}(subject) σ code=cs1500 OR code=cs3010(subject) 4. Solution: σ name=joe OR name=hector(student) $\Pi_{id, name}(student \bowtie enrolledIn)$ student - $\sigma_{\text{name=ling}}(\text{student})$ 5. Solution: Many ways are possible. Here are two.

 $\bigcap_{name = joe}(student \ X \ enrolledIn)$

 $\bigcap_{\text{name = joe}} (\text{student}) \ X \text{ enrolledIn}$

6.

Solution: Many ways are possible. Here is one. student $\bowtie_{\text{student.id} = \text{enrolledIn.id}}$ enrolledIn

7.

Solution: Many ways are possible. Here is one. $\sigma_{name=joe}(student \ \bowtie \ enrolledIn)$

8.

Solution:

 $\sqcap_{id,code}(\ \sigma_{name=joe}(student\ \bowtie\ enrolledIn)$

 $\sigma_{id=1234}(enrolledIn)$

9.

Solution: ($\sigma_{\text{name=hector}}(\text{student})$) \bowtie enrolledIn \bowtie subject

10.

Solution: $\sqcap_{\text{name, lecturer}}(\sigma_{\text{lecturer}=\text{curtis}}(\text{subject} \bowtie \text{enrolledIn} \bowtie \text{student}))$

Formulating Queries in Relational Algebra

Give the following queries in the relational algebra using the relational schema

```
student(id, name)
enrolledIn(id, code)
subject(code, lecturer)
```

- 1. What are the names of students enrolled in cs3020?
- 2. Which subjects is Hector taking?
- 3. Who teaches cs1500?
- 4. Who teaches cs1500 or cs3020?
- 5. Who teaches at least two different subjects?
- 6. What are the names of students in cs1500 or cs3010?
- 7. What are the names of students in both cs1500 and cs1200?
- 8. What are the names of students in at least two different subjects?
- 9. What are the codes of all the subjects taught?
- 10. What are the names of all the students?
- 11. What are the names of all the students in cs1500?
- 12. What are the names of students taking a subject taught by Roger.
- 13. What are the names of students who are taking a subject *not* taught by Roger?

Solutions to Formulating Queries in Relational Algebra

8.

Solution: For this query we have to relate enrolledIn to itself. To disambiguate the relation, we will call the enrolledIn relation R or S.

```
\sqcap_{\text{name}}(\text{student} \bowtie ( \sigma_{R.\text{id} = S.\text{id} \text{ AND } R.\text{code}} (R \bowtie S)))
```

9.

```
Solution: \Pi_{code}(subject)
```

10.

```
Solution: \Pi_{\text{name}}(\text{student})
```

11.

```
Solution: \Pi_{\text{name}}(\sigma_{\text{code=cs1500}}(\text{student} \bowtie \text{enrolledIn}))
```

12.

```
Solution: \sqcap_{\text{name}}(\sigma_{\text{lecturer=Roger}}(\text{student} \bowtie \text{enrolledIn} \bowtie \text{subject}))
```

13.

```
Solution: \sqcap_{\text{name}}(\sigma_{\text{lecturer}}, s_{\text{Roger}}(\text{student} \bowtie \text{enrolledIn} \bowtie \text{subject}))
```