ı

编译原理

作业 2:编译原理(第4章)

中国人民大学 信息学院 崔冠宇 2018202147

一、书中练习题

1. P81, T1 考虑下面文法 *G*₁:

$$S \rightarrow a \mid \wedge \mid (T)$$

$$T \rightarrow T$$
 , $S \mid S$

- (1) 消去 G_1 的左递归。然后,对每个非终结符,写出不带回溯的递归子程序。
- (2) 经改写后的文法是否是 LL(1) 的?给出它的预测分析表。

解:

- (1)消除左递归。
 - 1. 非终结符按顺序 T, S 排列;
 - 2. 对于 T, 存在直接左递归, 消除得:

$$S \rightarrow a \mid \wedge \mid (T)$$

$$T \to ST\text{'}$$

$$\mathrm{T'} \rightarrow$$
 , $\mathrm{ST'} \mid \varepsilon$

3. 对于 S,不存在直接左递归。将 T 的产生式带入 S 的产生式右端,并消去 T 的产生式得:

$$S \rightarrow a \mid \wedge \mid$$
 (ST')

$$\mathrm{T'} \rightarrow$$
 , $\mathrm{ST'} \mid \varepsilon$

4. 将 T' 重命名为 T 得:

$$S \rightarrow a \mid \wedge \mid$$
 (ST)
$$T \rightarrow , ST \mid \varepsilon$$

写出每个非终结符的不带回溯的递归子程序 (用类 C 语言伪代码):

1. S:

```
void S()
2 {
       // S -> a
       if(*ch == 'a')
4
            ch++;
5
       // S -> ^
6
       else if(*ch == '^')
8
            ch++;
       // S \rightarrow (ST)
9
       else if(*ch == '(')
10
11
            ch++;
12
            S();
13
            T();
14
            if(*ch == ')')
15
                ch++;
16
            else
17
18
                ERROR();
       }
19
       else
20
21
            ERROR();
22 }
```

2. T:

```
void T()
2
       // T \rightarrow , ST
       if(*ch == ',')
4
5
6
           ch++;
7
           S();
8
           T();
9
       // T → 空
10
       else if(*ch == ')')
11
12
       {}
       else
13
           ERROR();
14
15 }
```

(2) 判定该文法是否是 LL(1) 的。

① 计算非终结符的 FIRST 集合:

轮数	S	Т
О		
1	$a, \wedge, ($	", ", ε
2	$a, \wedge, ($	",", ε

因此 $FIRST(S)=\{a, \land, (\}, FIRST(T)=\{",", \varepsilon\}.$

② 计算非终结符的 FOLLOW 集合:

轮数	S	T
О	#	
1	#, ", ",))
2	#, ", ",))

因此 FOLLOW(S)={#, ", ",)}, FOLLOW(T)={)}。

- ③ 根据(1),该文法不含左递归。
- (4) 验证每条非终结符的产生式的候选首符集互不相交。

1.
$$S \rightarrow a \mid \land \mid (ST)$$
, $FIRST(a) \cap FIRST(\land) \cap FIRST((ST)) = \{a\} \cap \{\land\} \cap \{(\} = \emptyset; \}$

2. T
$$\rightarrow$$
 , ST | ε , FIRST(,ST) \cap FIRST(ε) = $\{,\} \cap \{\varepsilon\} = \emptyset$.

验证正确。

- ⑤ 验证每个非终结符 A,若它存在某个候选首符集包含 ε ,则 A 的 FISRT 与 FOLLOW 不相交。
 - 1. $\varepsilon \in FIRST(T)$, $FIRST(T) \cap FOLLOW(T) = \emptyset$.

验证正确,所以该文法是 LL(1)的。

考虑每一个产生式,构造预测分析表:

- 1. $S \rightarrow a$,FIRST(a)= $\{a\}$,因此 M[S, a] 中加入 $S \rightarrow a$;
- 2. $S \rightarrow \land$, $FIRST(\land)=\{\land\}$,因此 $M[S,\land]$ 中加入 $S \rightarrow \land$;
- 3. $S \rightarrow (T)$,FIRST((T))={(},因此 M[S, (] 中加入 $S \rightarrow (T)$;

4. $T \rightarrow ,ST$,FIRST(,ST)={,},因此 M[T,,] 中加入 $T \rightarrow ,ST$;

5. $T \to \varepsilon$, $FIRST(\varepsilon) = \{\varepsilon\} \ni \varepsilon$, $FOLLOW(T) = \{\}$, 因此 M[T,] 中加入 $T \to \varepsilon$.

于是得到下表:

	a	Λ	()	,	#
S	$S \rightarrow a$	$S \rightarrow \wedge$	$S \rightarrow (ST)$			
T				$T \rightarrow \varepsilon$	$T \rightarrow$,ST	

2. **P81, T2** 对下面的文法 *G*:

$$E \rightarrow TE'$$

$$E' \rightarrow + E \mid \varepsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow T \mid \varepsilon$$

$$F \rightarrow PF'$$

$$F' \rightarrow * F' \mid \varepsilon$$

$$P \rightarrow (E) \mid a \mid b \mid \wedge$$

- (1) 计算这个文法的每个非终结符的 FIRST 和 FOLLOW。
- (2) 证明这个文法是 LL(1) 的。
- (3) 构造它的预测分析表。
- (4) 构造它的递归下降分析程序。

解:

(1) ① 计算各非终止符号的 FIRST 集合。

将每个非终结符的 FIRST 集合的初值设为空,用迭代法循环扫描各产生式:

轮数	E	E'	T	T'	F	F'	P
О							
1		$+, \varepsilon$		ε		$*, \varepsilon$	$(,a,b,\wedge)$
2		$+, \varepsilon$		ε	$(,a,b,\wedge$	$*, \varepsilon$	$(,a,b,\wedge)$
3		$+, \varepsilon$	$(,a,b,\wedge$	$(,a,b,\wedge,\varepsilon)$	$(,a,b,\wedge$	$*, \varepsilon$	$(,a,b,\wedge)$
4	$(,a,b,\wedge$	$+, \varepsilon$	$(,a,b,\wedge$	$(,a,b,\wedge,\varepsilon)$	$(,a,b,\wedge$	$*, \varepsilon$	$(,a,b,\wedge$
5	$(,a,b,\wedge$	$+, \varepsilon$	$(,a,b,\wedge$	$(,a,b,\wedge,\varepsilon)$	$(,a,b,\wedge$	$*, \varepsilon$	$(,a,b,\wedge)$

因此 FIRST(E)= $\{(,a,b,\wedge)\}$, FIRST(E')= $\{+,\varepsilon\}$, FIRST(T)= $\{(,a,b,\wedge)\}$, FIRST(T')= $\{(,a,b,\wedge),\varepsilon\}$, FIRST(F)= $\{(,a,b,\wedge)\}$, FIRST(F')= $\{*,\varepsilon\}$, FIRST(P)= $\{(,a,b,\varepsilon)\}$ 。

② 计算各非终止符号的 FOLLOW 集合。将每个非终结符的 FIRST 集合的初值设为,用迭代法循环扫描各产生式:

轮数	Е	E'	T	T'	F	F'	P
О	#						
1	#,)	#	+,#	+,#	$(,a,b,\wedge,+,\#$	$(,a,b,\wedge,+,\#$	$*, (, a, b, \land, +, \#)$
2	#,)	#,)	+,#,)	+,#,)	$(,a,b,\wedge,+,\#,)$	$(,a,b,\wedge,+,\#,)$	$*, (, a, b, \land, +, \#,)$
3	#,)	#,)	+,#,)	+,#,)	$(,a,b,\wedge,+,\#,)$	$(,a,b,\wedge,+,\#,)$	$*, (, a, b, \land, +, \#,)$

因此 $FOLLOW(E)=\{\#,\}$, $FOLLOW(E')=\{\#,\}$, $FOLLOW(T)=\{+,\#,\}$, $FOLLOW(T')=\{+,\#,\}$, $FOLLOW(F)=\{(,a,b,\wedge,+,\#,)\}$, $FOLLOW(F)=\{(,a,b,\wedge,+,\#,)\}$, $FOLLOW(P)=\{*,(,a,b,\wedge,+,\#,)\}$. (2) 证明:

- ① 容易验证该文法不是左递归的,因为 $E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow PF'T'E'$, 显然没有左递归。
- ②验证每条非终结符的产生式的候选首符集互不相交。

1.
$$E \to +E \mid \varepsilon$$
, $FIRST(+E) = \{+\} \cap \{\varepsilon\} = FIRST(\varepsilon) = \emptyset$;

2. T'
$$\rightarrow$$
 T | ε , FIRST(T) = {(, a , b , \land } \cap { ε } = FIRST(ε) = \emptyset ;

3.
$$F' \to {}^*F' \mid \varepsilon$$
, $FIRST(*) = \{*\} \cap \{\varepsilon\} = FIRST(\varepsilon) = \emptyset$;

4. $P \rightarrow (E) \mid a \mid b \mid \land$, $FIRST((E)) \cap FIRST(a) \cap FIRST(b) \cap FIRST(\land) = \{(\} \cap \{a\} \cap \{b\} \cap \{\land\} = \emptyset \circ \{a\} \cap \{a\} \cap$

验证正确。

- ③ 验证每个非终结符 A,若它存在某个候选首符集包含 ε ,则 A 的 FISRT 与 FOLLOW 不相交。
 - 1. $\varepsilon \in FIRST(E')$, $FIRST(E') \cap FOLLOW(E') = \emptyset$;

- 2. $\varepsilon \in FIRST(T')$, $FIRST(T') \cap FOLLOW(T') = \emptyset$;
- 3. $\varepsilon \in FIRST(F')$, $FIRST(F') \cap FOLLOW(F') = \emptyset_{\circ}$

验证正确。

由以上 (1) (2) 以及 (3) 可得该文法是 LL(1) 的。

(3) 预测分析表。

考虑每一个产生式,构造预测分析表:

- E → TE', FIRST(TE')=FIRST(T)={(,a,b,∧}, 所以将 E → TE' 加入到 M[E, (]、M[E, a]、M[E, b] 以及 M[E, ∧] 中。
- E' → +E, FIRST(+E)={+}, 所以将 E' → +E 加入到 M[E', +];
- E' $\rightarrow \varepsilon$, FIRST(ε)={ ε } $\ni \varepsilon$, FOLLOW(E') = {#, }}, 所以将 E' $\rightarrow \varepsilon$ 加入到 M[E', #] 以及 M[E',)];
- T \rightarrow FT', FIRST(FT')=FIRST(F)= $\{(,a,b,\wedge\},$ 所以将 T \rightarrow FT' 加入到 M[T, (]、M[T, a]、M[T, b] 以及 M[T, \wedge];
- T' \rightarrow T,FIRST(T)= $\{(,a,b,\wedge\},$ 所以将 T' \rightarrow T 加入到 M[T', (]、M[T', a]、M[T', b] 以及 M[T', \wedge];
- T' → ε, FIRST(ε)={ε} ∋ ε, FOLLOW(T')={+,#,)}, 所以将 T' → ε 加入到 M[T', +]、 M[T', #] 以及 M[T',)];
- F → PF', 因为 FIRST(PF')=FIRST(P)={(,a,b,∧}, 所以将 F → PF' 加入到 M[F, (]、M[F, a]、M[F,
 b] 以及 M[F, ∧];
- F' → *F', 因为 FIRST(*F')={*}, 所以将 F' → *F' 放入 M[F', *] 中;
- F' → ε, 因为 FIRST(ε)={ε} ∋ ε, FOLLOW(F')={(,a,b,∧,+,#,)}, 所以将 F' → ε 加入到 M[F', (]、 M[F', a]、 M[F', b]、 M[F', ∧]、 M[F', +]、 M[F', #] 以及 M[F',)] 中;
- P \rightarrow (E), 因为 FIRST((E))={(}, 所以将 P \rightarrow (E) 加入 M[P, (] 中;

- $P \rightarrow a$,因为 FIRST(a)={a},所以将 $P \rightarrow a$ 加入到 M[P, a] 中;
- $P \rightarrow b$, 因为 FIRST(b)= $\{b\}$, 所以将 $P \rightarrow b$ 加入到 M[P, b] 中;
- $P \to \land$,因为 $FIRST(\land) = \{\land\}$,所以将 $P \to \land$ 加入到 $M[P, \land]$ 中。

由此得到预测分析表:

	+	*	()	a	b	٨	#
Е			$E \rightarrow TE'$		$E \rightarrow TE'$	$E \rightarrow TE'$	$E \rightarrow TE'$	
E'	$E' \rightarrow +E$			$E' \to \varepsilon$				$E' \rightarrow \varepsilon$
T			$T \rightarrow FT'$		$T \rightarrow FT'$	$T \rightarrow FT'$	$T \rightarrow FT'$	
T'	$T' \rightarrow \varepsilon$		$T' \rightarrow T$	$T' \rightarrow \varepsilon$	$T' \rightarrow T$	$T' \rightarrow T$	$T' \rightarrow T$	$T' \rightarrow \varepsilon$
F			$F \rightarrow PF'$		$F \rightarrow PF'$	$F \rightarrow PF'$	$F \rightarrow PF'$	
F'	$F' \rightarrow \varepsilon$	$F' \rightarrow *F'$	$F' \to \varepsilon$	$F' \rightarrow \varepsilon$	$F' o \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \rightarrow \varepsilon$
P			$P \rightarrow (E)$		$P \rightarrow a$	$P \rightarrow b$	$P \rightarrow \wedge$	

(4) 递归下降分析程序:

1. E:

```
void E()
{
    // E -> TE'
    if(*ch == '(' || *ch == 'b' || *ch == '^'))
    {
        T();
        E1();
    }
    else
        ERROR();
}
```

2. E' (E1):

```
1 void E1()
      // E' -> +E
      if(*ch == '+')
4
5
6
          ch++;
7
          E();
8
      // E' → 空
9
      else if(*ch == ')' || *ch == '#')
      {}
      else
12
          ERROR();
13
14 }
```

3. T:

```
void T()
{
    // T -> FT'
    if(*ch == '(' || *ch == 'b' || *ch == '^')
    {
        F();
        T1();
    }
    else
        ERROR();
}
```

4. T'(T1):

```
1 void T1()
2 {
      // T¹ →> T
      if(*ch == '(' || *ch == 'a' || *ch == 'b' || *ch == '^')
4
5
6
          T();
7
      // T' → 空
      else if(*ch == '+' || *ch == ')' || *ch == '#')
      {}
      else
11
          ERROR();
12
13 }
```

5. F:

```
void F()
{
    // F \rightarrow PF'
    if(*ch == '(' || *ch == 'b' || *ch == '^')
    {
        P();
        F1();
    }
}
```

6. F' (F1):

```
void F1()
{
    // F' -> *F'
    if(*ch == '*')
    {
        ch++;
        F1();
    }
}
```

7. P:

```
void P()
2 {
       // P -> (E)
       if(*ch == '(')
4
5
           ch++;
           E();
7
8
           ch++;
       }
9
       // P -> a
10
       else if(*ch == 'a')
11
12
           ch++;
13
14
       // P -> b
15
       else if(*ch == 'b')
16
17
18
           ch++;
19
       // P -> #
20
       else if(*ch == '^')
21
22
           ch++;
23
24
       else
25
           ERROR();
26
27 }
```

3. P81, T3 下面文法中, 哪些是 LL(1) 的, 说明理由。

(1)

$$S \to Abc$$

$$A \to a \mid \varepsilon$$

$$B \to b \mid \varepsilon$$

(2)

$$S \to Ab$$

$$A \rightarrow a \mid B \mid \varepsilon$$

$$B \rightarrow b \mid \varepsilon$$

(3)

$$S \to ABBA \,$$

$$A \to a \mid \varepsilon$$

$$B \rightarrow b \mid \varepsilon$$

(4)

$$S \to aSe \mid B$$

$$B \to bBe \mid C$$

$$C \to cCe \mid d$$

解:

(1) 先删去从 S 不可达的符号 B, 得到:

$$S \to \mathsf{Abc}$$

$$\mathsf{A}\to\mathsf{a}\mid\varepsilon$$

考察每个产生式,计算预测分析表:

- 1. $S \rightarrow Abc$, $FIRST(Abc)=\{a,b\}$,所以将 $S \rightarrow Abc$ 加入到M[S,a]、M[S,b]中;
- 2. A \rightarrow a,FIRST(a)= $\{a\}$,所以将 A \rightarrow a 加入到 M[A, a] 中;
- 3. $A \to \varepsilon$, $FIRST(\varepsilon)=\{\varepsilon\} \ni \varepsilon$, $FOLLOW(A)=\{b\}$,所以将 $A \to \varepsilon$ 加入到 M[A,b] 中。

	a	b	С	#
S	$S \rightarrow Abc$	$S \rightarrow Abc$		
A	$A \rightarrow a$	$A \rightarrow \varepsilon$		

得到预测分析表:

可以看到每个格子最多有一个产生式,因此是LL(1)的。

- (2) 考察每个产生式, 计算预测分析表:
 - 1. $S \rightarrow Ab$, $FIRST(Ab)=\{a,b\}$,所以将 $S \rightarrow Ab$ 加入到 M[S,a]、M[S,b] 中;
 - 2. $A \rightarrow a$,FIRST(a)={a},所以将 $A \rightarrow a$ 加入到 M[A, a] 中;
 - 3. $A \rightarrow B$, $FIRST(B) = \{b, \varepsilon\}$, 所以将 $A \rightarrow B$ 加入到 M[A, b] 中, 又因为 $\varepsilon \in FIRST(B)$, $FOLLOW(A) = \{b\}$, 所以将 $A \rightarrow B$ 加入到 M[A, b] 中;
 - 4. $A \to \varepsilon$, $FIRST(\varepsilon)=\{\varepsilon\} \ni \varepsilon$, $FOLLOW(A)=\{b\}$, 所以将 $A \to \varepsilon$ 加入到 M[A,b] 中。发生冲突。

可以发现 3、4 冲突, 故不是 LL(1) 文法。

- (3) 考察每个产生式, 计算预测分析表:
 - 1. S \rightarrow ABBA,FIRST(ABBA)= $\{a,b,\varepsilon\}$,所以将 S \rightarrow ABBA 加入到 M[S, a]、M[S, b] 中,又因为 $\varepsilon \in$ FIRST(ABBA),FOLLOW(S)= $\{\#\}$,所以将 S \rightarrow ABBA 加入 M[S, #];
 - 2. $A \rightarrow a$,FIRST(a)={a},所以将 $A \rightarrow a$ 加入到 M[A, a] 中;
 - 3. $A \to \varepsilon$, $FIRST(\varepsilon)=\{\varepsilon\} \ni \varepsilon$, $FOLLOW(A)=\{a,b,\#\}$,所以将 $A \to \varepsilon$ 加入到 M[A,a]、M[A,b] 以及 M[A,#] 中。发生冲突。

可以发现 2、3 冲突,故不是 LL(1) 文法。

- (4) 考察每个产生式, 计算预测分析表:
 - 1. $S \rightarrow aSe$, $FIRST(aSe)=\{a\}$,所以将 $S \rightarrow aSe$ 加入到 M[S, a] 中;
 - 2. $S \rightarrow B$, $FIRST(B)=\{b,c,d\}$, 所以将 $S\rightarrow B$ 加入到 M[S,b]、M[S,c] 以及 M[S,d]中;

3. $B \rightarrow bBe$,FIRST(bBe)={b},所以将 $B \rightarrow bBe$ 加入到 M[B, b] 中;

4. $B \to C$,FIRST(C)= $\{c,d\}$,所以将 $B \to C$ 加入到 M[B, c] 以及 M[B, d] 中;

5. $C \rightarrow cCe$, FIRST(cCe)={c}, 所以将 $C \rightarrow cCe$ 加入到 M[C, c] 中;

6. $C \rightarrow d$, FIRST(d)={d}, 所以将 $C \rightarrow d$ 加入到 M[C, d] 中。

得到预测分析表:

	a	b	С	d	e	#
S	$S \rightarrow aSe$	$S \rightarrow B$	$S\toB$	$S \rightarrow B$		
В		$B \rightarrow bBe$	$B \rightarrow C$	$B \rightarrow C$		
C			$C \rightarrow cCe$	$C \rightarrow d$		

可以看到每个格子最多有一个产生式,因此是 LL(1)的。

4. P81, T4 对下面文法:

$$\begin{array}{c} \operatorname{Expr} \to \operatorname{\mathsf{-}} \operatorname{Expr} \\ \\ \operatorname{Expr} \to (\operatorname{Expr}) \mid \operatorname{Var} \operatorname{Expr} \operatorname{Tail} \\ \\ \operatorname{Expr} \operatorname{Tail} \to \operatorname{\mathsf{-}} \operatorname{Expr} \mid \varepsilon \\ \\ \operatorname{Var} \to \operatorname{\mathsf{id}} \operatorname{Var} \operatorname{Tail} \\ \\ \operatorname{Var} \operatorname{Tail} \to (\operatorname{Expr}) \mid \varepsilon \end{array}$$

- (1) 构造 LL(1) 分析表。
- (2) 给出对句子 id--id((id)) 的分析过程。

解:

- (1) 考察每个产生式, 计算预测分析表:
 - 1. $Expr \rightarrow$ Expr, $FIRST(-Expr)=\{-\}$,所以将 $Expr \rightarrow$ -Expr 加入到 M[Expr, -] 中;
 - 2. $Expr \rightarrow (Expr)$, $FIRST((Expr))=\{(\}, 所以将 Expr \rightarrow (Expr) 加入到 M[Expr, (] 中;$

- 3. Expr → Var ExprTail, FIRST(Var ExprTail)=FIRST(Var)={id},所以将 Expr → Var ExprTail 加入 到 M[Expr, id] 中;
- 4. ExprTail → Expr, FIRST(-Expr)={-}, 所以将 ExprTail → -Expr 加入到 M[ExprTail, -] 中;
- 5. $\operatorname{ExprTail} \to \varepsilon$, $\operatorname{FIRST}(\varepsilon) = \{\varepsilon\} \ni \varepsilon$, $\operatorname{FOLLOW}(\operatorname{ExprTail}) = \operatorname{FOLLOW}(\operatorname{Expr}) = \{\}$, 所以将 $\operatorname{ExprTail} \to \varepsilon$ 加入到 $\operatorname{M}[\operatorname{ExprTail},]$ 以及 $\operatorname{M}[\operatorname{ExprTail}, \#]$ 中;
- 6. Var → id VarTail, FIRST(id VarTail)={id}, 所以将 Var → id VarTail 加入到 M[Var, id] 中;
- 7. VarTail → (Expr), FIRST((Expr))={(}, 所以将 VarTail → (Expr) 加入到 M[VarTail, (] 中;
- 8. VarTail $\to \varepsilon$, FIRST(ε)={ ε } $\ni \varepsilon$, FOLLOW(VarTail)=FOLLOW(Var)={-,),#},所以将 VarTail $\to \varepsilon$ 加入到 M[VarTail, -]、M[VarTail,)] 以及 M[VarTail, #] 中。

得到预测分析表:

	-	()	id	#
Expr	Expr o -Expr	$\operatorname{Expr} o (\operatorname{Expr})$		Expr → Var ExprTail	
ExprTail	$ExprTail \rightarrow -Expr$		ExprTail $\rightarrow \varepsilon$		ExprTail $\rightarrow \varepsilon$
Var				Var → id VarTail	
VarTail	$VarTail \to \varepsilon$	$VarTail \rightarrow (Expr)$	VarTail o arepsilon		VarTail o arepsilon

(2) 分析过程:

栈	输入	规则
# Expr	idid((id))#	(初始化)
# ExprTail Var	idid((id))#	Expr → Var ExprTail
# ExprTail VarTail id	idid((id))#	Var → id VarTail
# ExprTail VarTail	id((id))#	
# ExprTail	id((id))#	$VarTail \to \varepsilon$
# Expr -	id((id))#	ExprTail \rightarrow -Expr
# Expr	-id((id))#	
# Expr -	-id((id))#	$\operatorname{Expr} o \operatorname{-Expr}$
# Expr	id((id))#	
# ExprTail Var	id((id))#	Expr → Var ExprTail
# ExprTail VarTail id	id((id))#	Var → id VarTail
# ExprTail VarTail	((id))#	
# ExprTail) Expr (((id))#	$VarTail \rightarrow (Expr)$
# ExprTail) Expr	(id))#	
# ExprTail)) Expr ((id))#	$\operatorname{Expr} o (\operatorname{Expr})$
# ExprTail)) Expr	id))#	
# ExprTail)) ExprTail Var	id))#	Expr → Var ExprTail
# ExprTail)) ExprTail VarTail id	id))#	Var → id VarTail
# ExprTail)) ExprTail VarTail))#	
# ExprTail)) ExprTail))#	$VarTail \rightarrow \varepsilon$
# ExprTail))))#	ExprTail $ ightarrow arepsilon$
# ExprTail))#	
# ExprTail	#	
#	#	ExprTail $\rightarrow \varepsilon$