Building HMSC step by step: variation in species niches

6	Joint Species Distribution Modelling: Variation in	
	Species Niches	104
	6.1 Stacked versus Joint Species Distribution Mo	dels 104
	6.2 Modelling Variation in Species Niches in a	
	Community	107
	6.3 Explaining Variation in Species Niches by T	heir
	Traits	110
	6.4 Explaining Variation in Species Niches by	
	Phylogenetic Relatedness	114
	6.5 Explaining Variation in Species Niches by B	oth
	Traits and Phylogeny	117
	6.6 Simulated Case Studies with HMSC	120
	6.7 Real Case Study with HMSC: How Do	
	Plant Traits Influence Their Distribution?	133

Full HMSC

$$L_{ij} = \sum_{k=1}^{n_c} \beta_{kj} x_{ik}$$

Single-species HMSC

$$L_i = \sum_{k=1}^{n_c} \beta_k x_{ik}$$

Variation in species niches among the species

Figure 6.1 Illustration of variation in species niches. In both panels, each dot corresponds to one species in a community of 100 species. In panel A, there is continuous variation among species niches, whereas in panel B the species niches form three clusters.

Variation in species niches among the species

Figure 6.1 Illustration of variation in species niches. In both panels, each dot corresponds to one species in a community of 100 species. In panel A, there is continuous variation among species niches, whereas in panel B the species niches form three clusters.

Variation in species niches among the species

A simple statistical model for variation in species niches:

$$\boldsymbol{\beta}_{\cdot j} \sim N(\boldsymbol{\mu}, \mathbf{V})$$

How to utilize data on species traits & phylogenetic relationships?

Modelling the influence of species traits on their niches

Species-specific expected value:

$$\boldsymbol{\beta}_{\cdot j} \sim N(\boldsymbol{\mu}_{\cdot j}, \mathbf{V})$$

Modelled as regression to species traits:

$$\mu_{kj} = \sum_{l=1}^{n_t} t_{jl} \gamma_{kl}$$

The trait l of species j

The influence of trait l on how the species is expected to respond to covariate k

How to utilize data on species traits & phylogenetic relationships?

Modelling the influence of phylogeny on species niches

Evolutionary time

Modelling the influence of phylogeny on species niches

Ilustration of systematic variation in species niches across the phylogeny

Modelling the influence of phylogeny on species niches

The basic model in matrix notation:

$$\boldsymbol{\beta}_{\cdot j} \sim N(\boldsymbol{\mu}, \mathbf{V})$$

$$vec(\mathbf{B}) \sim N(vec(\mathbf{M}), \mathbf{I} \otimes \mathbf{V})$$

Phylogenetically structured model in matrix notation:

$$vec(\mathbf{B}) \sim N(vec(\mathbf{M}), \mathbf{W} \otimes \mathbf{V})$$

$$\mathbf{W} = \rho \mathbf{C} + (1 - \rho)\mathbf{I}$$

The parameter ρ measures the strength of phylogenetic signal in species niches

Modelling the joint influence of species traits and phylogeny on species niches

Distribution of species niches, as estimated with HMSC (BetaPlot)

