

CS261 Data Structures

AVL Trees

Motivation and Introduction

Goals

- Pros/Cons of a BST
- AVL Solution
- Height-Balanced

Binary Search Tree: Balance

Binary Search Tree: Balance

Complete Binary Trees

 Very costly to maintain a complete binary tree

Height-Balanced BST

- For each node, the height difference between the left and right subtrees is at most one
- Trees are locally balanced, but globally they can be slightly more unbalanced
 Height-Balanced Tree

3(3) 2(1) 8(2) 1(0) 5(1) 9(0) 4(0) 6(0)

Quiz

 Are these trees height balanced? If not, which node is out of balance?

Quiz

 Are these trees height balanced? If not, which node is out of balance?

Height-Balanced Trees

- Mathematically, the longest path in a heightbalanced tree has been shown to be, at worst, 44% longer than log n
- Therefore, algorithms on height-balanced trees that run in time proportional to the path length are still O(log n)
- So.....How do we maintain height balance??

AVL Trees

- Named after the inventors' initials: G.M.
 Adelson-Velskii, E.M. Landis
- Maintain the height balanced property of a BST through a series of rotations

When unbalanced, performs a "rotation" to balance the tree

Your Turn

- Read Chapter 10 and Worksheet 31
 - but do not yet work on the problems