π -WALK IDEAS

LANDON RABERN

Abstract.

1. π -WALKS

Unless otherwise noted we mean *proper coloring* when we say *coloring*. The codomain of all our k-colorings is [k].

Definition 1. Let G be a graph and π a k-coloring of G. A π -walk is a walk $x_0x_1\cdots x_r$ in G with the following two properties:

- (1) for $i \in [r]$, $\pi(x_i) \notin \pi(N(x_i) \{x_j \mid j \in [i]\})$;
- (2) for $i, j \in [r]$, if $\pi(x_i) = \pi(x_j)$ then $x_{i-1}x_{j-1} \notin E(G)$.

Let G be a graph, π a k-coloring of G and $W := x_0 x_1 \cdots x_r$ a π -walk in G. For $v \in V(G)$ put $i_W(v) := \min \{i \in [r] \cup \{0\} \mid v = x_i\}$ if $v \in V(W)$ and $i_W(v) := -1$ otherwise.

Lemma 1. The function $\pi_W : V(G) \to [k+1]$ given by the following is a (k+1)-coloring of G:

$$\pi_W(v) := \begin{cases} \pi(v) & \text{if } i_W(v) = -1; \\ \pi(x_{i_W(v)+1}) & \text{if } 0 \le i_W(v) \le r - 1; \\ k+1 & \text{if } i_W(v) = r. \end{cases}$$

Lemma 2. Any π -walk beginning at a vertex $v \in V(G)$ with $|\pi^{-1}(\pi(v))| = 1$ is a path or a cycle.