MÉTODOS MATEMÁTICOS DE LA INFORMÁTICA

5. Aproximación de Funciones por Polinomios

- 5.1. Escribe todos los polinomios P tales que P(0) = 1, P'(0) = P''(0) = 0 y P'''(0) = 2¿Cuál es él de grado mínimo?
- 5.2. Halla los polinomios de Taylor, del grado indicado y en el punto indicado, de las siguientes funciones:
- a) $f(x) = \cos x$, grado 3 en 0.
- b) $f(x) = \arctan x$, grado 3 en 0.
- c) $f(x) = \operatorname{sen} x$, grado $2n \operatorname{en} \pi/2$.
- d) $f(x) = e^x$, grado n en 1.

- c) $f(x) = \sin x$, grado 2n en $\pi/2$. e) $f(x) = x^5 + x^3 + x$, grado 4 en 0. g) $f(x) = \frac{1}{x+1}$, grado n en 0. h) $f(x) = \frac{1}{x^2+1}x$, grado 2n en 0.
- 5.3. a) Prueba la siguiente desigualdad:

$$|\sin x - (x - \frac{x^3}{6} + \frac{x^5}{120})| < \frac{1}{5040}$$
 para todo $|x| \le 1$.

- b) Encuentra n_0 tal que $|\cos x \sum_{k=0}^{n_0} \frac{x^{2n}}{(2n)!} (-1)^k| < \frac{1}{10^{-4}}$ para todo $x \in [0, \pi/2]$.
- 5.4. Calcula los siguientes números con un error menor que 10^{-5} :
- a) $\cos 1$
- b) e
- c) $\arctan \frac{1}{10}$.
- 5.5. Si $x \in [0,1]$ y $n \in \mathbb{N}$, prueba que:

$$\left| \lg(x+1) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} \right| < \frac{x^{n+1}}{n+1}$$

5.6. Prueba que si x > 0, entonces

$$1 + \frac{x}{2} - \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$$

Utiliza la desigualdad anterior para aproximar los números $\sqrt{(1,2)}$ y $\sqrt{(2)}$; y haz una estimación del error cometido. Utiliza el polinomio de Taylor de grado 2 para obtener una aproximación más precisa de $\sqrt{(1,2)}$ y $\sqrt{(2)}$.

5.7. a) Demuestra que si arctan x, arctan y y arctan x+arctan y son distintos de $k\pi+\pi/2$, se tiene que:

$$\arctan x + \arctan y = \arctan(\frac{x+y}{1-xy}) + c$$

 $k \in \mathbb{Z}$. donde $c = k\pi$,

- b) Demuestra que $\pi/4 = \arctan(1/2) + \arctan(1/3)$. A partir de esta igualdad, comprueba que $\pi = 3, 14, 159...$
- 5.8. Determina el origen de las siguientes expresiones:
- 1) $\sqrt{(1+x)} \simeq 1 + \frac{x}{2} \frac{x^2}{8}$, si $|x| \simeq 0$. 2) $(\lg x)^2 \simeq (x-1)^2 (x-1)^3$, si $|x| \simeq 1$.
- 5.9. ¿Para que valores de x la fórmula $\cos x \simeq 1 \frac{x^2}{2}$ da un error no mayor de 0,01? ¿Y para 0,001?
- 5.10. Sea f una función desarrollable en serie de Taylor en un entorno de cero. Si f'' + f = 0 y f(0) = f'(0) = 0, prueba que f = 0.

1