Assignment 5

- 1. Verify whether T is a linear mapping. If T is linear, find Ker(T) and $Im\ (T)$. Also verify rank and nullity of that linear mapping.
- (i) $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (x+y, x-y)
- (ii) $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(x,y) = (x + 2y, 2x + y, x + y)
- (iii) $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (yz, zx, xy)
- 2. Determine the linear mapping $T: R^{33}$ which maps the basis vectors (0,1,1), (1,0,1), (1,1,0) of R^3 to (1,1,1), (1,1,1), (1,1,1) respectively. Verify that $\dim(\operatorname{Ker} T) + \dim(\operatorname{Im} T) = \dim(R^3)$.
- 3. A linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

 $T(x_1, x_2, x_3) = (3x_1 - 2x_2 + x_3, x_1 - 3x_2 - 2x_3)$. Find the matrix of T relative to the ordered bases

- (i) $\{(1,0,0),(0,1,0),(0,0,1)\}$ of R^3 and $\{(1,0),(0,1)\}$ of R^2
- (ii) $\{(0,1,0),(1,0,0),(0,0,1)\}$ of R^3 and $\{(0,1),(1,0)\}$ of R^2
- (iii) $\{(0,1,1),(1,0,1),(1,1,0)\}$ of R^3 and $\{(1,0),(0,1)\}$ of R^2