Coalescent inference of HIV transmission history

Raymond Heil
T-6: Theoretical Biology and Biophysics
Emma Goldberg, Thomas Leitner

20 July 2022

Why this project?

- * Prevalence of HIV
- * Transmission pairs
- * Using genetics to find transmission time

What can we expect to see?

- * Tips represent individual viral sequences
- * Shows the evolutionary distance between individuals
- * What can we infer about a single transmission time?

Coalescent modeling

Node times as a function of population size

Relationship between population and samples

Large N causes node times to be further apart, stretching the tree

Effect of changing population size

Predicting transmission time on a changing population

Results

What I did. . . In this, I could show what's going on for my

Next steps: this summer

Extend my current work to trees with multiple hosts

- * Split tree by host
- * Isolate hosts until a transmission occurs
- * Transmit a certain number of lineages

Next steps: this summer

Work with different sampling times for each host

- * Do not allow nodes that don't exist to coalesce
- * Add several nodes to the model when the second sample is taken

Next steps: future years

Next year (and later)...

