Systemy wejścia-wyjścia

Wykład 10

Wprowadzenie

Różne rodzaje urządzeń zewnętrznych:

- dyski twarde
- dyski CD
- myszki
- klawiatury
- ...

Tendencje:

- wzrost standaryzacji interfejsów programowych i sprzętowych
- wzrost różnorodności urządzeń zewnętrznych

Podstawowe elementy systemu wejścia-wyjścia:

- sprzęt: porty, szyny, sterowniki urządzeń (ang. device controllers)
- oprogramowanie: moduły sterujące (ang. device drivers) tworzą jednolity interfejs dostępu do podsystemu wejścia-wyjścia

Podstawowe elementy systemu wejściawyjścia

- sprzęt: porty, szyny, sterowniki urządzeń (ang. device controllers)
- oprogramowanie: moduły sterujące (ang. device drivers) tworzą jednolity interfejs dostępu do podsystemu wejścia-wyjścia

Prędkości transmisji urządzeń

• bardzo istotne różnice prędkości urządzeń

Sprzęt wejścia-wyjścia

· Rodzaje urządzeń:

- urządzenia pamięci (dyski, czytniki CD, taśmy,...)
- urządzenia przesyłania danych (karty sieciowe, modemy)
- urządzenia interfejsu z człowiekiem (ekrany monitorów, klawiatury, myszki)

• Podłączenia urządzenia:

- port punk łączący urządzenie z maszyną
- szyna wiązka przewodów ze ściśle zdefiniowanym protokołem, który precyzuje zbiór komunikatów, które mogą być przesyłane tymi przewodami

Komunikacja procesora ze sterownikiem

• **Sterownik** (ang. controller) - zespół układów elektronicznych kierujących pracą portu, szyny, lub urządzenia

Sposoby komunikacji procesora ze sterownikiem:

- sterownik dysponuje rejestrami do pamiętania danych i sygnałów sterujących,
- procesor komunikuje się ze sterownikiem odczytując i zapisując bity w tych rejestrach
- realizacja komunikacji:
- zastosowanie specjalnych rozkazów umożliwiających odwoływanie się do rejestrów urządzenia
- sterownik urządzenia umożliwia operacje we/wy odwzorowywane w pamięci operacyjnej - rejestry sterujące urządzenia są odwzorowywane w przestrzeni adresowej procesora

Przykładowe rejestry portu wejścia/wyjścia

- stan (ang. *status*) bity czytane przez procesor główny, które określają zakończenie bieżącego polecenia, dostępność bajtu do czytania w rejestrze danych wejściowych, błąd urządzenia
- sterowanie (ang. *control*) zapisywany przez procesor głównym w celu rozpoczęcia polecenia, zmiany trybu pracy urządzenia
- dane wejściowe (ang. *data in*) zawiera dane z urządzenia pobierane przez procesor
- dane wyjściowe (ang. *data out*) zawiera dane wysyłane przez procesor do urządzenia

Komunikacja procesor główny - sterownik Metoda: Odpytywanie (ang. polling)

Bity specjalnego przeznaczenia

- bit zajętości stosowany przez sterownik:
 - ustawiony gdy sterownik jest zajęty pracą
 - wyczyszczony gdy sterownik jest gotów do przyjęcia następnego polecenia
- bit gotowości polecenia (ang. command ready)
 - ustawiony, gdy polecenie do wykonania jest dostępne dla sterownika

Komunikacja procesor główny - sterownik Metoda: odpytywanie

- Przykład: procesor pisze na wyjściu
- 1. Procesor powtarza czytanie bitu zajętości dopóty, dopóki bit ten nie przyjmie wartości 0
- 2. Procesor główny ustawia bit pisania (ang. write bit) w rejestrze poleceń i wpisuje bajt do rejestru danych wyjściowych
- 3. Procesor główny ustawia bit gotowości polecenia,
- 4. Gdy sterownik zauważy że bit gotowości polecenia jest ustawiony, wówczas ustawia bit zajętości
- 5. Sterownik czyta rejestr poleceń i rozpoznaje polecenie pisania, zatem czyta bajt z rejestru danych wejściowych i wykonuje na urządzeniu operację we/wy
- 6. Sterownik czyści bit gotowości polecenia, oraz bit błędu w rejestrze stanu, aby powiadomić, że operacja we/wy zakończyła się pomyślnie, po czym czyści buy zajętości, sygnalizując, że zakończył działanie

powyższa pętla - powtarzana dla każdego bajtu

- Krok 1 procesor główny wykonuje aktywne czekanie (ang. busy waiting)/ odpytywanie (ang. polling)
 - nieefektywne w przypadku wolnych urządzeń

Przerwania

- zamiast ciągłego odpytywania sterownika przez procesor, sterownik powiadamia procesor o przejściu do stanu gotowości działania
- procesor jest wyposażony w połączenie zwane linią zgłaszania przerwań (ang. interrupt request line), którą bada po wykonaniu każdego rozkazu
- jeśli sterownik sygnalizuje zgłoszenie, to procesor przechowuje dane określające aktualny stan i wykonuje skok do procedury obsługi przerwania (ang. interrupt handler)
- procedura obsługi przerwania rozpoznaje przyczynę przerwania, wykonuje niezbędne czynności i rozkaz powrotu z przerwania, który przywraca stan procesora sprzed przerwania

Wymagane własności systemu obsługi przerwań

- Wymaganie, które powinien spełniać system obsługi przerwań (złożony z jednostki centralnej i sterownika przerwań, ang. interrupt controller):
 - zapewnienie możliwości opóźnienia obsługi przerwania, jeżeli są wykonywane działania krytyczne
 - zapewnienie skutecznego sposobu kierowania przerwania do właściwej procedury obsługi bez konieczności odpytywania wszystkich urządzeń, które z nich zgłosiło przerwanie
 - przerwania wielopoziomowe system operacyjny powinien móc odróżnić rodzaje przerwań o wysokim i niskim priorytecie

Przerwania cd.

Typowo: dwie linie zgłaszania przerwań:

- przerwania niemaskowalne (dla zdarzeń, które nie mogą zostać zignorowane np. błędy pamięci)
- przerwania maskowalne, które można wyłączyć przed wykonaniem ciągu instrukcji, który nie powinien zostać przerwany (używane przez sterowniki urządzeń do zgłaszania żądań obsługi)

Wybór procedury obsługi przerwania:

- przekazywany adres służący do wyboru procedury, zazwyczaj pozycja w tablicy - wektorze przerwań (ang. interrupt vector)
- w praktyce komputery maja więcej urządzeń (procedur obsługi przerwań) niż pozycji adresowych w wektorze przerwań:
 - → technika łańcuchowania przerwań
 - każdy element wektora przerwań wskazuje na czoło listy procedur obsługi przerwań
 - procedury z listy są wywołane kolejno, aż zostanie odnaleziona ta, która powinna obsłużyć przerwanie

Zastosowania mechanizmu obsługi przerwań

- podczas startu systemu są sprawdzane szyny sprzętowe, określa się, jakie urządzenia są dostępne i instaluje się w wektorze przerwań odpowiednie procedury obsługi
- przerwania generowane podczas operacji we/wy, gdy sterowniki zgłaszają swoją gotowość
- obsługa sytuacji wyjątkowych (dzielenie przez 0, adresowanie chronionego/ nie istniejącego obszaru pamięci)
- podczas stronicowania pamięci wirtualnej brak strony powoduje zgłoszenie przerwania
- realizacja funkcji systemowej (ang. system call) przywołanie usługi jądra:
 - sprawdza się podane argumenty,
 - tworzy się strukturę danych, do przeniesienia ich do jądra
 - wykonywany jest specjalny rozkaz przerwanie programowe (ang. software interrupt) / pułapka (ang. trap)
 - realizacja funkcji systemowej ma stosunkowo niski priorytet

Bezpośredni dostęp do pamięci

- programowane wejście-wyjście (ang. programmed I/O PIO) aktywne czekanie procesora i przekazywanie danych do/z sterownika po 1 bajcie nieefektywne dla transmisji dużych danych
- bezpośredni dostęp do pamięci (ang. direct memory access DMA) zastosowanie specjalnego sterownika bezpośredniego dostępu do pamięci

Transmisja w trybie DMA

- procesor główny zapisuje w pamięci blok sterujący DMA
- (wskaźnik do źródła przesyłania, wskaźnik miejsca docelowego przesyłania, liczba bajtów do przesłania)
- procesor główny zapisuje adres bloku sterującego w sterowniku DMA i przechodzi do kontynuowania innych prac
- uzgadnianie przesyłania między sterownikiem DMA i sterownikiem urządzenia realizowane przez parę przewodów :
 - zamówienie DMA (ang. DMA request)
 - potwierdzenie DMA (ang. DMA acknowledge)

Bezpośredni dostęp do pamięci - realizacje przesłania danych

- sterownik urządzenia wytwarza sygnał w przewodzie zamówienia DMA, gdy słowo danych jest gotowe do przesłania
- sterownik DMA przejmuje szynę pamięci, aby umieścić potrzebny adres w liniach adresowych pamięci i wytworzyć sygnał w przewodzie potwierdzenia DMA
- sterownik urządzenia odbiera sygnał potwierdzenia DMA, przesyła słowo danych do pamięci i usuwa sygnał zamówienia DMA
- po zakończeniu całego przesyłania sterownik DMA generuje przerwanie na procesorze głównym

Interfejs wejścia-wyjścia – Rodzaje urządzeń

strumień znaków/bloki

- urządzenie znakowe przesyła bajty osobno, jeden po drugim
- urządzenie blokowe przesyła jednorazowo blok bajtów

dostęp sekwencyjny/swobodny

- urządzenie o dostępie sekwencyjnym przesyła dane po kolei
- urządzenia o dostępie swobodnym może udostępniać użytkownikowi dane o wybranym przez niego miejscu przechowywania

synchroniczność/asynchroniczność

- urządzenie synchroniczne przesyła dane w przewidywalnym z góry czasie
- urządzenie asynchroniczne ma nieregularne/nieprzewidywalne czasy odpowiedzi

dzielenie lub wyłączność

 urządzenie dzielone może być używane współbieżnie przez wiele procesów lub wątków

szybkość działania

duża rozpiętość

czytanie i pisanie/tylko czytanie/tylko pisanie

przepływ danych w jednym, lub w obu kierunkach

Podsystem wejścia-wyjścia w jądrze

• Planowanie wejścia-wyjścia

efektywny dobór kolejności wykonania zbioru zamówień

Buforowanie

- bufor obszar pamięci,
- może zawierać dane przesyłane między urządzeniami, lub między urządzeniem i aplikacją

• Przyczyny buforowania:

- rozwiązywanie problemów związanych z dysproporcją między szybkościami producenta i konsumenta danych
- dopasowanie urządzeń o różnych rozmiarach przesyłanych jednostek danych (np. fragmentowanie/składanie komunikatów przesyłanych przez sieć)
- zapewnienie semantyki kopii (wersja danych zapisana na dysku jest wersją z chwili odwołania się przez aplikację do systemu) na wejściu i wyjściu aplikacji

Przechowywanie podręczne

• Spooling i rezerwowanie urządzeń

 użycie bufora do przechowywanie danych przeznaczonych dla urządzenia, które nie dopuszcza przeplatania danych w przeznaczonym dla niego strumieniu

Przekształcanie zamówień wejścia-wyjścia na operacje sprzętowe

- Przykład: czytanie pliku z dysku
- program użytkowy odwołuje się do danych za pomocą nazwy pliku
- system plików zajmuje się odwzorowaniem nazwy plików za pomocą katalogów systemu plików i uzyskuje dostęp do miejscu na dysku przydzielonym plikowi
 - w systemie MS DOS nazwa jest odwzorowywana na liczbę wskazującą pozycję w tablicy FAT
 - w systemie UNIX nazwa jest odwzorowywana na numer iwęzła, który zawiera informacje o przydziale miejsca na dysku

Powiązanie nazwy pliku ze sterownikiem dysku

System MS DOS

- początek nazwy pliku (do znaku ":") identyfikuje jednostkę sprzętu, w tablicy urządzeń określa odpowiedni adres portu
- pozostała część nazwy pliku nazwa pliku w obrębie urządzenia

Powiązanie nazwy pliku ze sterownikiem dysku System Unix

- przestrzeń nazw urządzeń zaliczona do przestrzeni regularnych nazw systemu plików
- nazwa ścieżki nie wyróżnia części dotyczącej urządzenia
- Unix posiada tablicę montaży, która wiąże przedrostki nazw ścieżek z nazwami poszczególnych urządzeń
 - zamiast numeru i-węzła odnaleziony jest numer urządzenia opisywany poprzez parę <starszy, młodszy>
 - starszy numer urządzenia identyfikuje *moduł sterujący*, który należy wywołać w celu obsługi we/wy urządzenia
 - młodszy numer urządzenia jest przekazywany do modułu sterującego, gdzie służy jako indeks w *tablicy urządzeń*
 - wpis w tablicy urządzeń zawiera odpowiedni adres portu, lub adres odwzorowany w pamięci adres sterownika urządzenia

Etapy wykonania zamówienia wejścia-wyjścia (z blok.)

Etapy realizacji zamówienia operacji wejścia- wyjścia (czytanie z blokowaniem)

- 1. Proces zamawia w systemie blokującą go operację czytania, powołując się na deskryptor uprzednio otwartego pliku
- 2. Sprawdzenie poprawności parametrów w kodzie należącej do jądra funkcji systemowej. Jeżeli zamawiana operacja dotyczy we i potrzebne dane znajdują się w buforze pamięci podręcznej, to następuje przekazanie ich do procesu i zamówienie zostaje zrealizowane
- 3. W przeciwnym wypadku konieczność wykonania fizycznej operacji we/wy. Proces zostaje usunięty z kolejki procesów gotowych do wykonywania i umieszczony w kolejce czekającej na dane z urządzenia. Podsystem wejściawyjścia wysyła zamówienie do modułu sterującego. W zależności od systemu operacyjnego, zamówienie zostaje przesłane za pomocą wywołania podprogramu, lub przez wewnętrzny komunikat jądra
- 4. Moduł sterujący rezerwuje miejsce na przyjęcie danych w buforze jądra i planuje operację we/wy. W odpowiedniej chwili moduł sterujący wysyła polecenia do sterownika, zapisując je w rejestrach sterujących urządzenia
- 5. Sterownik urządzenia nakazuje sprzętowym podzespołom urządzenia dokonanie przesłania danych

Etapy realizacji zamówienia operacji wejścia- wyjścia (czytanie z blokowaniem) 2

•

- 6. Moduł sterujący może odpytywać o stan urządzenia i dane lub może zorganizować przesłanie w trybie DMA do pamięci jądra. Zakładamy, że przesyłanie to jest obsługiwane przez sterownik bezpośredniego dostępu do pamięci, który po zakończeniu przesyłania powoduje przerwanie
- 7. Właściwa procedura obsługi przerwania odbiera przerwanie za pośrednictwem tablicy wektorów przerwań, zapamiętuje niezbędne dane, przekazuje sygnał do modułu sterującego i kończy obsługę przerwania
- 8. Moduł sterujący urządzenia odbiera sygnał, określa, która operacja we/wy się skończyła, określa stan zamówienia i powiadamia podsystem we/wy w jądrze, że zamówienie zostało zakończone
- 9. Jądro przesyła dane lub przekazuje umowne kody do przestrzeni adresowej procesu, który złożył zamówienie, i przemieszcza proces z kolejki procesów czekających z powrotem do kolejki procesów gotowych do działania
- 10. Przeniesienie procesu do kolejki procesów gotowych powoduje jego odblokowanie. Planista przydziela procesowi procesor, następuje wznowienie pracy procesu po zakończeniu odwołania do systemu

Wydajność: Funkcje we/wy mogą być implementowane:

- w oprogramowaniu aplikacji
- w module sterującym
- w sprzęcie

wzrost wydajności

wzrost elastyczności

Jak można poprawiać wydajność we/wy:

- zmniejszyć liczbę przełączeń kontekstu
- zmniejszyć liczbę kopiowań danych w pamięci
- zmniejszyć częstość występowania przerwań przez stosowanie wielkich przesłań, lub odpytywania
- zwiększyć współbieżność za pomocą sterowników pracujących w trybie DM lub kanałów, w celu odciążenia procesora głównego
- realizować elementarne działania za pomocą sprzętu i pozwalać na ich współbieżne wykonanie w sterownikach urządzeń, przy jednoczesnym działaniu szyny i procesora
- równoważyć wydajność procesora, podsystemów pamięci, szyny i operacji we/wy, ponieważ przeciążenie w jednym miejscu będzie powodować bezczynność w innych miejscach

Planowanie dostępu do dysku

- usługi dyskowe dają duży narzut czasowy dla aplikacji,
- zamówienia do dysku (jak każdego innego urządzenia we/wy) są kolejkowane,
- SO może skrócić czas obsługi dysku dzięki planowaniu zamówień,

Budowa dysku

- adresowane jako wielkie jednowymiarowe tablice bloków logicznych, rozmiar bloku logicznego zazwyczaj wynosi 512 B
- tablica bloków logicznych jest odwzorowywana na sektory dysku,
 - sektor 0 pierwszy sektor na pierwszej ścieżce najbardziej zewnętrznego cylindra
 - odwzorowanie odbywa się wzdłuż ścieżki, potem pozostałych ścieżek cylindra, a potem w głąb następnych cylindrów - od wewnętrznych do zewnętrznych

Czynniki, od których zależy prędkość dysku:

- przesunięcie głowicy do odpowiedniej ścieżki lub cylindra (trwa czas przeszukania)
- gdy głowica czytająco-pisząca znajduje się nad odpowiednią ścieżką - musi poczekać aż przemieści się pod nią potrzebny blok danych, (czas oczekiwania - latency time)
- przesyłanie danych między dyskiem a pamięcią główną (czas przesyłania)

Sumaryczny czas obsługi zamówienia dyskowego : suma trzech powyższych czasów:

Zamówienie musi obejmować następujące informacje:

- operacja we czy wy,
- adres dyskowy (napęd, cylinder, powierzchnia, blok)
- adres w pamięci głównej,
- wielkość informacji do przesłania

Planowanie dostępu do dysku

• Planowanie metodą FCFS.

 pierwszy nadszedł - pierwszy obsłużony, prosty ale średni czas obsługi może nie być najlepszy

• Planowanie metodą SSTF (najpierw najkrótszy czas przeszukiwania shortest seek-time first)

 - łączenie obsługi wszystkich zamówień sąsiadujących z bieżącym położeniem głowicy,

• Planowanie metodą SCAN.

- głowica startuje od jednego końca dysku i przemieszcza się do przeciwległego końca, potem zmienia kierunek ruchu itd.
- Rozważamy skrajne położenie głowicy: największe zagęszczenie nie zrealizowanych zadań dotyczy przeciwległego końca dysku.

• Planowanie metodą C-SCAN.

- głowica przemieszcza się od jednego końca dysku do drugiego obsługując napotkane zamówienia,
- gdy osiągnie przeciwległy koniec natychmiast wraca do początku dysku

Planowanie metodą LOOK, C-LOOK.

 głowica przemieszcza się nie pomiędzy krańcami dysku, ale skrajnymi zamówieniami,

Planowanie dostępu do dysku (2)

Wybór systemu planowania:

- SCAN, C-SCAN odpowiednie w systemach z dużą ilością zamówień na operacje dyskowe,
- SSTF powszechnie stosowane

Algorytmy planowania obsługi dysku – szersze podsumowanie

Name	Description	Remarks					
Selection according to requestor							
RSS	Random scheduling	For analysis and simulation					
FIFO	First in first out	Fairest of them all					
PRI	Priority by process	Control outside of disk queue management					
LIFO	Last in first out	Maximize locality and resource utilization					
Selection according to requested item							
SSTF	Shortest service time first	High utilization, small queues					
SCAN	Back and forth over disk	Better service distribution					
C-SCAN	One way with fast return	Lower service variability					
N-step-SCAN	SCAN of N records at a time	Service guarantee					
FSCAN	N-step-SCAN with N = queue size at beginning of SCAN cycle	Load sensitive					

RAID

Wprowadzenie

- Wydajność pamięci pomocniczej zwiększa się wolniej niż wydajność procesorów i pamięci głównej
- Dlatego system pamięci dyskowej jest elementem, na który kładziony jest największy nacisk podczas prób zwiększenia ogólnej wydajności systemu komputerowego
- Podobnie jak w przypadku innych komponentów, wzrost wydajności można uzyskać dzięki zastosowaniu wielu równoległych komponentów
 - W przypadku dysków spowodowało to powstanie macierzy dyskowych, pracujących niezależnie i równolegle
 - Jeśli dysków jest kilka,
 - żądania we/wy mogą być obsługiwane równolegle, jeśli dane są zlokalizowane na różnych dyskach
 - pojedyncze żądanie może być zrealizowane równolegle, jeśli dane znajdują się na różnych dyskach
 - Korzystając z wielu dysków można zorganizować dane na wiele sposobów i dodać redundancję, aby zwiększyć niezawodność
 - Mogłoby to utrudniać użycie systemów używanych na różnych platformach, dlatego opracowano standard RAID (ang. Redundant Array of Independent Disks <- nadmiarowa macierz niezależnych dysków)

Poziomy systemu RAID

- System RAID składa się z 7 poziomów od 0 do 6 (są definiowane inne poziomy, ale nie są powszechnie uznane)
- Poziomy nie sugerują hierarchicznej zależności, ale wyznaczają odmienne architektury, które mają trzy wspólne cechy:
 - RAID to zbiór dysków fizycznych postrzegany przez system operacyjny jako jeden dysk
 - Dane są rozproszone po fizycznych dyskach wchodzących w skład macierzy
 - Nadmiarowa pojemność dysku służy do przechowywania informacji o parzystości, co pozwala odtworzyć dane w przypadku awarii dysku (ta cecha zależy od poziomu RAID, RAID 0 nie ma tej właściwosci)

Poziomy RAID

			<u> </u>		
Kategoria	Pozio m	Opis	Tempo żądań we- wy (zapis- odczyt)	Szybkość transmisji danych	Typowe zastosowanie
Paskowanie	0	Brak nadmiarowości	Duże paski: doskonałe	Małe paski: doskonała	Aplikacje wymagające wysokiej jakości przetwarzania niekrytycznych danych
Kopiowanie lustrzane	1	Kopia lustrzana	Dobre/średnie	Średnia/ średnia	Dyski systemowe, pliki krytyczne
Dostęp równoległy	2	Nadmiarowość z wykorzystaniem kodu Hamminga	Niskie	Doskonała	
	3	Parzystość z przeplotem bitów	Niskie	Doskonała	Aplikacje z dużymi żądaniami we-wy, np. przetwarzanie obrazów, CAD
Dostęp niezależny	4	Parzystość z przeplotem bloków	Doskonałe/ średnie	Średnia/ Niska	
	5	Rozproszona parzystość z przeplotem bloków	Doskonałe/ średnie	Średnia/ Niska	Duże tempo żądań, dużo operacji odczytu, wyszukiwanie danych
	6	Podwójnie rozproszona parzystość z przeplotem bloków	Doskonałe/ niskie	Średnia/ niska	Aplikacje wymagające bardzo wysokiej niezawodności

Poziomy macierzy RAID

Tabela 11.4. Poziomy macierzy RAID

Kategoria	Poziom	Opis	Wymagane dyski	Dostępność danych	Duża przepustowość operacji we/wy	Niewielki współczynnik żądań we/wy
Paskowanie	0	Bez nadmiarowości	N .	Niższa niż w przypadku jednego dysku	Bardzo duża	Bardzo wysoki zarówno dla odczytu, jak i zapisu
Kopiowanie lustrzane	1	Kopia lustrzana	2N, 3N itd.	Wyższa niż w RAID 2, 3, 4 lub 5, niższa niż w RAID 6	Wyższa niż odczyt z jednego dysku, podobna przy zapisie na jednym dysku	Do dwóch razy wyższy dla odczytu z pojedynczego dysku; podobny dla zapisu
Dostęp równoległy	2	Nadmiarowość z wykorzystaniem kodu Hamminga	N + m	O wiele wyższa niż w jednym dysku, wyższa niż RAID 3, 4 lub 5	Najwyższa ze wszystkich wymienionych alternatyw	W przybliżeniu dwukrotnie wyższy od jednego dysku
	3	Parzystość z przeplotem bitów	N + 1	O wiele wyższa niż w jednym dysku, porównywalna z RAID 2, 4 lub 5	Najwyższa ze wszystkich wymienionych alternatyw	W przybliżeniu dwukrotnie wyższy od jednego dysku
Dostęp niezależny	4	Parzystość z przeplotem bloków	N+1	O wiele wyższa niż w jednym dysku, porównywalna z RAID 2, 3 lub 5	Podobna do RAID 0 dla odczytu, znacząco niższa dla zapisu na jednym dysku	Podobny do RAID 0 dla odczytu, znacząco niższy dla zapisu na jednym dysku
	5	Parzystość rozproszona z przeplotem bloków	N+1	O wiele wyższa niż w jednym dysku, porównywalna z RAID 2, 3 lub 4	Podobna do RAID 0 dla odczytu, mniejsza niż w jednym dysku dla zapisu	Podobny do RAID 0 dla odczytu, ogólnie niższy niż w jednym dysku dla zapisu
	6	Podwójnie rozproszona parzystość z przeplotem bloków	N+2	Najwyższa ze wszystkich wymienionych alternatyw	Podobna do RAID 0 dla odczytu, niższa niż RAID 5 dla zapisu	Podobny do RAID 0 dla odczytu, znacząco niższy niż RAID 5 dla zapisu

RAID 0, RAID1, RAID2

RAID 3-6

- Nie zapewnia nadmiarowości,
- W niektórych sytuacjach podstawową kwestią jest wydajność, pojemność i niski koszt
- Dane użytkownika i systemu są rozproszone po wszystkich dyskach macierzy
 - Korzyści: jeśli zgłoszone zostaną dwa żądania dostępu do dwóch różnych bloków danych, jest duża szansa, że są one na różnych dyskach, a zatem zlecenia mogą być realizowane równolegle
- Dane są nie tylko rozproszone po dyskach, ale także są rozciągnięte w paski (ang. strips) na wszystkich dostępnych dyskach
 - Wszystkie dane znajdują się pozornie na jednym dostępnym dysku
 - Dysk jest podzielony na paski, paskami mogą być fizyczne bloki, sektory albo inne jednostki
 - Paski są cyklicznie odwzorowywane na kolejne elementy macierzy
 - W macierz n-dyskowej pierwszych n logicznych pasków przechowuje się fizycznie w pierwszych paskach na każdym z n dysków (co tworzy pierwsze pasmo), kolejnych n logicznych pasków przechowuje się fizycznie w drugich paskach itd.
 - Zaleta: jeśli jedno żądanie we-wy dotyczy wielu logicznie ciągłych pasków, to n pasków można obsłużyć równolegle, bardzo skracając czas transmisji danych
 - Oprogramowanie zarządzające macierzą odwzorowuje logiczną przestrzeń adresową na przestrzeń fizyczną
- Korzyści
 - Zapewnia szybka transmisja danych
 - Wymogi: ścieżka miedzy pamięcią a dyskami ma dużą przepustowość,
 - Aplikacja musi zgłaszać żądania efektywnie sterujące macierzą (żądania dotyczą dużej w porównaniu z wielkością paska – ilości danych)
 - Umożliwia szybką realizację wielu żądań we-wy (rozkład obciążenia na wiele dysków)

- Inny sposób uzyskania nadmiarowości niż w przypadkach 2-6
- W innych przypadkach nadmiarowość uzyskuje się dzięki obliczaniu parzystości, natomiast w przypadku RAID 1 powiela się wszystkie dane
- Dane są na paski jak w RAID 0, ale każdy pasek logiczny jest odwzorowany na dwa odrębne dyski fizyczne
- Zalety:
 - Żądanie odczytu może być obsłużone przez dowolny z dwóch dysków zawierających żądane dane, można wybrać więc ten z krótszym czasem oczekiwania i opóźnieniem rotacyjnym
 - Żądanie zapisu wymaga aktualizacji obu odpowiadających sobie pasków, ale można to zrobić równolegle, zatem wydajność zapisu jest uwarunkowana przez wolniejszym z dwóch zapisów (większy czas wyszukiwania i opóźnienie rotacyjne). Nie występuje pogorszenie wydajności zapisu danych (w RAID 2-6 używa się bitów parzystości, podczas aktualizacji jednego paska trzeba także zaktualizaować bity parzystości)
 - Usuwanie skutków jest bardzo proste. Kiedy dysk ulegnie awarii, dane można odczytać z drugiego dysku.

• Wady:

- Koszt trzeba dwukrotnie większej przestrzeni dyskowej niż rozmiar obsługiwanego dysku logicznego
 - Dlatego konfiguracje RAID są zwykle ograniczone do dysków przechowujących oprogramowanie, dane systemowe i inne krytyczne pliki
- W środowisku transakcyjnym może zapewnić dużą szybkość żądań we-wy, jeśli większość żądań dotyczy odczytu danych (niemal dwókrotnie większa niż RAID 0)
- Jeśli duża część dotyczy zapisu danych, to prędkość nie będzie istotnie mniejsza

- Poziomu RAID-2 i RAID-3 wykorzystują technikę dostępu równoległego
- W macierzy o dostępie równoległym, w realizacji każdego żądania uczestniczą wszystkie dyski
- Zwykle poszczególne dyski są zsynchronizowane w taki sposób, że w danym momencie każda głowica znajduje się w tym samym położeniu nad każdym z dysków
- Podobnie jak w innych odmianach RAID stosuje się paskowanie danych (ang. data stripping)
- W przypadku RAID 2 i RAID 3 paski są bardzo małe, często rozmiaru jednego bitu lub słowa
- Na poziomie RAID 2 kod korelacji danych oblicza się na podstawie odpowiadających sobie bitów na każdym dysku danych, a bity kodu są przechowywane w odpowiednich pozycjach bitowych na wielu dyskach parzystości. Zwykle używa się kodu Hamminga, który potrafi naprawić błędy jednobitowe i wykryć dwubitowe,
- Poziom RAID 2 wymaga mniejszej liczby dysków niż RAID 1, ale nadal jest kosztowny (ilość nadmiarowych dysków – proporcjonalna do logarytmu liczby dysków danych
- Macierz RAID 2 byłaby efektywna tylko w środowisku, w którym występuje wiele błędów dyskowych, ze względu na wysoką niezawodność pojedynczych dysków poziom RAID 2 jako przesadny nie jest implementowany.

- Zorganizowany podobnie jak RAID 2, wymaga jednak tylko jednego nadmiarowego dysku bez względu na rozmiar macierzy
- RAID 3 stosuje dostęp równoległy, z danymi podzielonymi na małe paski
- Zamiast kodu korekcji błędu oblicza się prosty bit parzystości dla zbioru pojedynczych bitów znajdujących się na tej samej pozycji na wszystkich dyskach danych
- Nadmiarowość
 - W przypadku awarii dysku odczytuje się dysk parzystości i rekonstruuje dane na podstawie zawartości pozostałych urządzeń
 - Po wymianie uszkodzonego dysku można odtworzyć brakujące dane na nowym dysku i wznowić działanie macierzy
 - W razie awarii dysku wszystkie dane są dostępne w tzw. trybie zredukowanym.
 - W przypadku odczytów brakujące dane są odtwarzane w locie poprzez obliczenie różnicy symetrycznej (XOR)
 - Podczas zapisu danych w zredukowanej macierzy RAID 3 trzeba utrzymać spójność parzystości w celu późniejszego odtworzenia danych
 - Powrót do zwykłego trybu pracy wymaga wymiany uszkodzonego dysku i odtworzenia całej jego zawartości na nowym dysku

Wydajność

- Dane są podzielone na małe paski, RAID 3 pozwala uzyskać bardzo wysoką prędkość transmisji. Każde żądanie we-wy wiąże się z równoległą transmisją danych ze wszystkich dysków danych.
- Zwiększenie wydajności jest szczególnie widoczne w przypadku dużych transmisji.
- Można realizować tylko jedno żądanie we-wy jednocześnie, więc w środowisku transakcyjnym wydajność spada

- Poziomy od RAID 4 do RAID 6 wykorzystują technikę niezależnego dostępu.
- W macierzy o niezależnym dostępie każdy składowy dysk pracuje niezależnie, co pozwala na równoległą realizację żądań we-wy.
- Macierze o niezależnym dostępie sprawdzają się lepiej w zastosowaniach, które wymagają dużego tempa obsługi żądań we-wy, a gorzej tam, gdzie wymagana jest transmisja danych
- Stosuje się paskowanie danych
 - Na poziomach 4-6 paski są względnie duże
 - W RAID 4 pasek parzystości oblicza się bit po bicie na podstawie odpowiednich pasków na wszystkich dyskach danych, bity parzystości przechowuje się na odpowiednim pasku na dysku parzystości
- W RAID 4 występuje pogorszenie wydajności podczas zapisu małej ilości danych.
 - Podczas każdego zapisu oprogramowanie zarządzające macierzą musi zaktualizować nie tylko dane użytkownika, ale także odpowiednie bity parzystości

Wydajność:

- Przy zapisie, aby obliczyć nową parzystość, oprogramowanie zarządzające macierzą musi odczytać stary pasek użytkownika i stary pasek parzystości, a następnie zaktualizować te dwa paski nowymi danymi i nowo obliczoną parzystością.
- Zatem każdy zapis paska wiąże się z dwoma odczytami i dwoma zapisami
- W przypadku większego zapisu we-wy, który obejmuje paski na wszystkich dyskach, można obliczyć parzystość na podstawie nowych danych. Dysk parzystości można uaktualniać równolegle z dyskami danych, nie występują wtedy dodatkowe operacje odczytu i zapisu
- Każda operacja zapisu angażuje dysk parzystości, który przez to może stać się wąskim gardłem

- Macierz RAID 5 jest zorganizowana podobnie do RAID 4
- Różnica polega na tym, że w RAID 5 paski parzystości są rozproszone na wszystkich dyskach
- Przydział pasków danych jest zwykle cykliczny, w przypadku macierzy ndyskowej pasek parzystości znajduje się na innym dysku dla pierwszych n pasków, a następnie wzór się powtarza
- Rozłożenie pasków parzystości na wszystkich dyskach pozwala uniknąć potencjalnego gardła we-wy, które może wystąpić w macierzy RAID

- W RAID 6 przeprowadza się dwa różne obliczenia parzystości i zapisuje ich wyniki w oddzielnych blokach na różnych dyskach
- Zatem macierz RAID, w której dane użytkownika zajmują n dysków, składa się z n+2 dysków
- Są dwa różne obliczenia parzystości jeden XOR (jak w RAID 4 i 5), a drugi to niezależny algorytm sprawdzania danych
- Takie podejście umożliwia odtworzenie danych nawet w przypadku awarii dwóch dysków z danymi użytkowanika
- Poziom RAID 6 ma tę zaletę, że zapewnia niezwykle wysoką dostępność danych. Aby dane stały się niedostępne, trzy dyski musiałyby ulec awarii w okresie równym średniemu czasowi naprawy dysku
- Poziom RAID 6 pogarsza wydajność zapisu danych, gdyż każdy zapis ma wpływ na dwa bloki parzystości