

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 February 2002 (07.02.2002)

PCT

(10) International Publication Number
WO 02/10436 A2

(51) International Patent Classification⁷: **C12Q 1/00** (72) Inventor: MUTTER, George, L.; 230 Middlesex Road, Chestnut Hill, MA 02467-1841 (US).

(21) International Application Number: PCT/US01/23642

(22) International Filing Date: 27 July 2001 (27.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/222,093 28 July 2000 (28.07.2000) US

(71) Applicant: THE BRIGHAM AND WOMEN'S HOSPITAL, INC. [US/US]; 75 Francis Street, Boston, MA 02115 (US).

(71) Applicant and

(72) Inventor: BAAK, Jan [NL/NO]; Risajev 66, N-4056 Tananger (NO).

(74) Agent: VAN AMSTERDAM, John, R.; Wolf, Greenfield & Sacks, P.C., 600 Atlantic Avenue, Boston, MA 02210 (US).

(81) Designated States (national): CA, JP.

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROGNOSTIC CLASSIFICATION OF BREAST CANCER

(57) Abstract: The invention provides particular sets of genes that are expressed differentially in tumors characterized as high MAI or low MAI tumors. These sets of genes can be used to discriminate between high and low MAI tumors. Diagnostic assays for classification of tumors, prediction of tumor outcome, selecting and monitoring treatment regimens and monitoring tumor progression/regression are also provided.

WO 02/10436 A2

PROGNOSTIC CLASSIFICATION OF BREAST CANCER**Field of the Invention**

The invention relates to nucleic acid microarray markers for cancer, particularly for
5 breast cancer. The invention also relates to methods for diagnosing cancer as well as
optimizing cancer treatment strategies.

Background of the Invention

Breast cancer is a malignant proliferation of epithelial cells lining the ducts or lobules
10 of the breast (Harrison's Principles of Internal Medicine 1998). Although much progress has
been made toward understanding the biological basis of cancer and in its diagnosis and
treatment, it is still one of the leading causes of death in the United States. Inherent
difficulties in the diagnosis and treatment of cancer include among other things, the existence
15 of many different subgroups of cancer and the concomitant variation in appropriate treatment
strategies to maximize the likelihood of positive patient outcome.

The traditional method of breast cancer diagnosis and staging is through the use of
biopsy examination. Once a diagnosis is made, the options for treating breast cancer are
assessed with respect to the needs of the patient. These options traditionally include surgical
intervention, chemotherapy, radiotherapy, and adjuvant systemic therapies. Surgical therapy
20 may be lumpectomy or more extensive mastectomy. Adjuvants may include but are not
limited to chemotherapy, radiotherapy, and endocrine therapies such as castration;
administration of LHRH agonists, antiestrogens, such as tamoxifen, high-dose progestogens;
adrenalectomy; and/or aromatase inhibitors (Harrison's Principles of Internal Medicine
1998).

25 Of key importance in the treatment of breast cancer is the selection and
implementation of an appropriate combination of therapeutic approaches. For example,
depending on a breast cancer patient's prognosis, therapy may include surgical intervention
in combination with adjuvant therapy or it may only include surgical intervention. In
addition, for some patients pretreatment with chemotherapy or radiotherapy is utilized prior
30 to surgical intervention, but in other patients adjuvant therapies are used following surgical
intervention.

It is difficult to predict from standard clinical and pathologic features the clinical
course of early stage breast cancer, particularly lymph node-negative tumors in

premenopausal patients. Current practice in the United States is to offer systemic chemotherapy to most of these women. Because the majority of these women would have good outcome even without chemotherapy, the rate of "over-treatment" is high.

Chemotherapy itself carries a 1% mortality rate. Therefore, unnecessary deaths could be
5 avoided if it were possible to subdivide these patients into high and low risk subgroups, and only undertake adjunctive treatment for those judged to be high risk.

Selection of a suitable treatment regimen for breast cancer is based on the subgroup of cancer. Current strategies used to make therapeutic decisions in the management of patients with breast cancer are based on several factors including hormone receptor status, her-2/neu
10 staining, flow cytometry, and the mitotic activity index (MAI). The MAI is a widely utilized predictor of outcome in cancers, particularly in invasive breast cancer. The definition of the MAI is "the total number of mitoses counted in 10 consecutive high-power fields (objective, x40; numeric aperture, .75; field diameter, 450 microns), in the most cellular area at the periphery of the tumor, with the subjectively highest mitotic activity" (Jannink et al., 1995).

15 For the procedure, hematoxylin-eosin stained sections of breast cancer tumor are assessed for the total number of mitotic figures in ten consecutive high-power fields and based on these numbers the breast cancer is assigned to either good outcome (MAI<10) or poor outcome (MAI>10). MAI classification correlates to standard parameters such as death, recurrence, and metastases, which are known to those of ordinary skill in the art to predict clinical
20 outcome.

Determination of appropriate treatment for an individual cancer patient is complex with a wide variety of treatments and possible treatment combinations. For example, chemotherapy is a common method of cancer treatment, with more than 50 different
25 chemotherapeutic agents available. These therapeutic agents can be used in a wide range of dosages both singly and in combinational therapies with other chemotherapeutic agents, surgery, and/or radiotherapy.

The available methods for designing strategies for treating breast cancer patients are complex, time consuming, and inexact. The wide range of cancer subgroups and variations in disease progression limit the predictive ability of the healthcare professional. In addition,
30 continuing development of novel treatment strategies and therapeutics will result in the addition of more variables to the already complex decision-making process involving matching the cancer patient with a treatment regimen that is appropriate and optimized for the cancer stage, extent of infiltration, tumor growth rate, and other factors central to the

- 3 -

individual patient's prognosis. Because of the critical importance of selecting appropriate treatment regimens for breast cancer patients, the development of guidelines for treatment selection is of key interest to those in the medical community and their patients. Thus, there presently is a need for objective, reproducible, and sensitive methods for predicting breast
5 cancer patient outcome and selecting optimal treatment regimens.

Summary of the Invention

It now has been discovered that particular sets of genes are expressed differentially in tumors characterized as high MAI or low MAI tumors. These sets of genes can be used to
10 discriminate between high and low MAI tumors. Accordingly, diagnostic assays for classification of tumors, prediction of tumor outcome, selecting and monitoring treatment regimens and monitoring tumor progression/regression can now be based on the expression of sets of genes.

According to one aspect of the invention, methods for diagnosing breast cancer in a
15 subject suspected of having breast cancer are provided. The methods include obtaining from the subject a breast tissue sample and determining the expression of a set of nucleic acid molecules or expression products thereof in the breast tissue sample. The set of nucleic acid molecules includes at least two nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51. In preferred embodiments, the breast tissue sample suspected of being
20 cancerous.

In some embodiments the set of nucleic acid molecules includes more than 2 and up to all of the nucleic acid molecules set forth as SEQ ID NOs:1-51, and any number of nucleic acid sequences between these two numbers. For example, in certain embodiments the set includes at least 3, 4, 5, 10, 15, 20, 30, 40 or more nucleic acid molecules of the nucleic acid
25 molecules set forth as SEQ ID NOs:1-51.

In other embodiments, the method further includes determining the expression of the set of nucleic acid molecules or expression products thereof in a non-cancerous breast tissue sample, and comparing the expression of the set of nucleic acid molecules or expression products thereof in the breast tissue sample suspected of being cancerous and the non-
30 cancerous breast tissue sample.

According to another aspect of the invention, methods for identifying a set of nucleic acid markers or expression products thereof are provided. The methods are effective for determining the prognosis of cancer. The methods include obtaining a plurality of tumor

tissue samples from a plurality of subjects afflicted with cancer, classifying the plurality of tumor tissue samples according to mitotic activity index (MAI) into high MAI and low MAI groups and determining differences in the expression of a plurality of nucleic acid molecules or expression products thereof in the tumor tissue samples. The methods further include
5 selecting as a set of nucleic acid markers the nucleic acid molecules or expression products thereof which are differentially expressed in the high MAI and the low MAI groups. The set of nucleic acid markers or expression products thereof effective for determining poor prognosis of cancer includes one or more nucleic acid molecules or expression products thereof which are preferentially expressed in high MAI tumor tissue samples, and wherein the
10 set of nucleic acid markers or expression products thereof effective for determining good prognosis of cancer comprises one or more nucleic acid molecules or expression products thereof which are preferentially expressed in low MAI tumor tissue samples. In preferred embodiments, the cancer is breast cancer.
15

According to still another aspect of the invention, methods for selecting a course of treatment of a subject having or suspected of having cancer are provided. The methods include obtaining from the subject a tissue sample suspected of being cancerous, determining the expression of a set of nucleic acid markers or expression products thereof which are differentially expressed in high MAI tumor tissue samples to determine the MAI of the tissue sample of the subject, and selecting a course of treatment appropriate to the cancer of the
20 subject.

In preferred embodiments the cancer is breast cancer, and in some of these embodiments the methods include determining the expression of a set of nucleic acid markers that are differentially expressed in low MAI breast tumor tissue samples.

According to yet another aspect of the invention, methods for evaluating treatment of cancer are provided. The methods include obtaining a first determination of the expression of a set of nucleic acid molecules or expression products thereof, which are differentially expressed in high MAI tumor tissue samples to determine the MAI of the tissue sample from a subject undergoing treatment for cancer, and obtaining a second determination of the expression of a set of nucleic acid molecules or expression products thereof, which are differentially expressed in high MAI tumor tissue samples to determine the MAI of the second tissue sample from the subject after obtaining the first determination. The methods also include comparing the first determination of expression to the second determination of expression as an indication of evaluation of the treatment.
25
30

- 5 -

In preferred embodiments the cancer is breast cancer, and in some of these embodiments the methods include determining the expression of a set of nucleic acid markers that are differentially expressed in low MAI breast tumor tissue samples.

The invention in another aspect provides solid-phase nucleic acid molecule arrays.

- 5 The arrays have a cancer gene marker set that consists essentially of at least two and as many as all of the nucleic acid molecules set forth as SEQ ID NOS:1-51 fixed to a solid substrate. The set of nucleic acid markers can include any number of nucleic acid sequences between these two numbers, selected from SEQ ID NOS:1-51. For example, in certain embodiments the set includes at least 3, 4, 5, 10, 15, 20, 30, 40 or more nucleic acid molecules of the
10 nucleic acid molecules set forth as SEQ ID NOS:1-51. In some embodiments, the solid-phase nucleic acid molecule array also includes at least one control nucleic acid molecule.

In certain embodiments, the solid substrate includes a material selected from the group consisting of glass, silica, aluminosilicates, borosilicates, metal oxides such as alumina and nickel oxide, various clays, nitrocellulose, or nylon. Preferably the substrate is glass.

- 15 In other embodiments, the nucleic acid molecules are fixed to the solid substrate by covalent bonding.

According to yet another aspect of the invention, protein microarrays are provided. The protein microarrays include antibodies or antigen-binding fragments thereof, that specifically bind at least two different polypeptides selected from the group consisting of
20 SEQ ID NOS:52-102, fixed to a solid substrate. In some embodiments, the microarray comprises antibodies or antigen-binding fragments thereof, that bind specifically to least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or 51 different polypeptides selected from the group consisting of SEQ ID NOS:52-102. In certain
25 embodiments, the microarray also includes an antibody or antigen-binding fragment thereof, that binds specifically to a cancer-associated polypeptide other than those selected from the group consisting of SEQ ID NOS:52-102, preferably a breast cancer associated polypeptide. In some embodiments, the protein microarray also includes at least one control polypeptide molecule. In further embodiments, the antibodies are monoclonal or polyclonal antibodies.
30 In other embodiments, the antibodies are chimeric, human, or humanized antibodies. In some embodiments, the antibodies are single chain antibodies. In still other embodiments, the antigen-binding fragments are F(ab')₂, Fab, Fd, or Fv fragments.

- 6 -

In a further aspect of the invention, methods for identifying lead compounds for a pharmacological agent useful in the treatment of breast cancer are provided. The methods include contacting a breast cancer cell or tissue with a candidate pharmacological agent, and determining the expression of a set of nucleic acid molecules in the breast cancer cell or
5 tissue sample under conditions which, in the absence of the candidate pharmacological agent, permit a first amount of expression of the set of nucleic acid molecules. The set of nucleic acid molecules includes at least two and as many as all of the nucleic acid molecules set forth as SEQ ID NOs:1-51. The methods also include detecting a test amount of the expression of the set of nucleic acid molecules, wherein a decrease in the test amount of expression in the
10 presence of the candidate pharmacological agent relative to the first amount of expression indicates that the candidate pharmacological agent is a lead compound for a pharmacological agent which is useful in the treatment of breast cancer. In preferred embodiments, the set of nucleic acid molecules is differentially expressed in high MAI breast tumor tissue samples.

In some embodiments of any of the foregoing methods and products, the differences
15 in the expression of the nucleic acid molecules are determined by nucleic acid hybridization or nucleic acid amplification methods. Preferably the nucleic acid hybridization is performed using a solid-phase nucleic acid molecule array. In other embodiments, the differences in the expression of the nucleic acid molecules are determined by protein expression analysis, preferably SELDI mass spectroscopy.

20 These and other aspects of the invention will be described in greater detail below.

Brief Description of the Drawings

Figure 1 is a scatterplot of gene expression level in low risk (x axis) and high risk (y axis) breast cancers. 422 genes whose mean expression between groups differs at least 2-fold
25 and by 100 expression units are shown as small crosses. The top 51 t-test ranked genes with Permax 0.96 are indicated as solid circles, and appear in Table 1.

Detailed Description of the Invention

The invention described herein relates to the identification of a set of genes expressed
30 in breast cancer tissue that are predictive of the clinical outcome of the cancer. Changes in cell phenotype in cancer are often the result of one or more changes in the genome expression of the cell. Some genes are expressed in tumor cells, and not in normal cells. In addition, different genes are expressed in different subgroups of breast cancers, which have different

prognoses and require different treatment regimens to optimize patient outcome. The differential expression of breast cancer genes can be examined by the assessment of nucleic acid or protein expression in the breast cancer tissue.

The genes were identified by screening nucleic acid molecules isolated from various 5 breast cancer samples for expression of the genes present on a high-density nucleic acid microarray. The breast cancer samples were categorized with respect to their mitotic activity index (MAI) and the MAI was correlated to gene expression to identify those genes differentially expressed between low and high-MAI breast cancer tissue. The MAI has been shown to correlate with the outcome of the cancer as defined by tumor metastasis, tumor 10 recurrence or mortality. Accordingly the genes identified permit, *inter alia*, rapid screening of cancer samples by nucleic acid microarray hybridization or protein expression technology to determine the expression of the specific genes and thereby to predict the outcome of the cancer. Such screening is beneficial, for example, in selecting the course of treatment to provide to the cancer patient, and to monitor the efficacy of a treatment.

15 The invention differs from traditional breast cancer diagnostic and classification techniques including MAI, hormone receptor expression and her-2/neu expression, with respect to the speed, simplicity, and reproducibility of the cancer diagnostic assay. The invention also presents targets for drug development because it identifies genes that are differentially expressed in poor outcome breast tumors, which can be utilized in the 20 development of drugs to treat such tumors, e.g., by reducing expression of the genes or reducing activity of proteins encoded by the genes.

The invention moves beyond the use of the MAI and simplifies prognosis determination by providing an identified set of genes whose expression in breast cancers predicts poor clinical outcome as defined by tumor metastasis, recurrence, or death. In the 25 invention, the MAI was used in conjunction with RNA expression phenotyping performed using high density microarrays generated from quantitative expression data on over 5000 (estimated 5800) genes, which have been analyzed to identify 51 specific probe sets (genes) with divergent expression between MAI groups. The expression gene set has multifold uses including, but not limited to, the following examples. The expression gene set may be used 30 as a prognostic tool for breast cancer patients, to make possible more finely tuned diagnosis of breast cancer and allow healthcare professionals to tailor treatment to individual patients' needs. The invention can also assess the efficacy of breast cancer treatment by determining progression or regression of breast cancer in patients before, during, and after breast cancer

treatment. Another utility of the expression gene set is in the biotechnology and pharmaceutical industries' research on disease pathway discovery for therapeutic targeting. The invention can identify alterations in gene expression in breast cancer and can also be used to uncover and test candidate pharmaceutical agents to treat breast cancer.

5 Although the invention is described primarily with respect to breast cancer, one of ordinary skill in the art will appreciate that the invention also is useful for diagnosis and prognosis determination of cancers that can be classified into subgroups for prognosis of the cancer based on MAI. For example, MAI has been used successfully in the classification of malignant melanoma, ovarian cancer, bladder cancer, and prostatic adenocarcinoma. Thus,
10 the methods and products of the invention also are applicable to non-breast cancers that can
be classified by MAI.

The invention may also encompass cancers other than breast cancer, including but not limited to: biliary tract cancer; bladder cancer; brain cancer including glioblastomas and medulloblastomas; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer;
15 esophageal cancer; gastric cancer; hematological neoplasms including acute lymphocytic and myelogenous leukemia; multiple myeloma; AIDS-associated leukemias and adult T-cell leukemia lymphoma; intraepithelial neoplasms including Bowen's disease and Paget's disease; liver cancer; lung cancer; lymphomas including Hodgkin's disease and lymphocytic lymphomas; neuroblastomas; oral cancer including squamous cell carcinoma; ovarian cancer
20 including those arising from epithelial cells, stromal cells, germ cells and mesenchymal cells; pancreatic cancer; prostate cancer; rectal cancer; sarcomas including leiomyosarcoma, rhabdomyosarcoma, liposarcoma, fibrosarcoma, and osteosarcoma; skin cancer including melanoma, Kaposi's sarcoma, basocellular cancer, and squamous cell cancer; testicular cancer including germinal tumors such as seminoma, non-seminoma (teratomas,
25 choriocarcinomas), stromal tumors, and germ cell tumors; thyroid cancer including thyroid adenocarcinoma and medullary carcinoma; and renal cancer including adenocarcinoma and Wilms tumor.

As used herein, a subject is a human, non-human primate, cow, horse, pig, sheep, goat, dog, cat or rodent. In all embodiments human subjects are preferred. Preferably the
30 subject is a human either suspected of having breast cancer, or having been diagnosed with breast cancer. In a preferred embodiment of the invention the cancer is pre-menopausal, lymph node-negative breast cancer. Methods for identifying subjects suspected of having breast cancer may include manual examination, biopsy, subject's family medical history,

subject's medical history, or a number of imaging technologies such as mammography, magnetic resonance imaging, magnetic resonance spectroscopy, or positron emission tomography. Diagnostic methods for breast cancer and the clinical delineation of breast cancer diagnoses are well-known to those of skill in the medical arts.

5 As used herein, breast tissue sample is tissue obtained from a breast tissue biopsy using methods well-known to those of ordinary skill in the related medical arts. The phrase "suspected of being cancerous" as used herein means a breast cancer tissue sample believed by one of ordinary skill in the medical arts to contain cancerous cells. Methods for obtaining the sample from the biopsy include gross apportioning of a mass, microdissection, laser-
10 based microdissection, or other art-known cell-separation methods.

Because of the variability of the cell types in diseased-tissue biopsy material, and the variability in sensitivity of the diagnostic methods used, the sample size required for analysis may range from 1, 10, 50, 100, 200, 300, 500, 1000, 5000, 10,000, to 50,000 or more cells.
15 The appropriate sample size may be determined based on the cellular composition and condition of the biopsy and the standard preparative steps for this determination and subsequent isolation of the nucleic acid for use in the invention are well known to one of ordinary skill in the art. An example of this, although not intended to be limiting, is that in some instances a sample from the biopsy may be sufficient for assessment of RNA expression without amplification, but in other instances the lack of suitable cells in a small
20 biopsy region may require use of RNA conversion and/or amplification methods or other methods to enhance resolution of the nucleic acid molecules. Such methods, which allow use of limited biopsy materials, are well known to those of ordinary skill in the art and include, but are not limited to: direct RNA amplification, reverse transcription of RNA to cDNA, amplification of cDNA, or the generation of radio-labeled nucleic acids.

25 As used herein, the phrase "determining the expression of a set of nucleic acid molecules in the breast tissue" means identifying RNA transcripts in the tissue sample by analysis of nucleic acid or protein expression in the tissue sample. As used herein, "set" refers to a group of nucleic acid molecules that include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
30 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or 51 different nucleic acid sequences from the group of nucleic acid sequences numbered 1 through 51 in Table 1 (SEQ ID Nos: 1-51).

The expression of the set of nucleic acid molecules in the sample from the breast cancer patient can be compared to the expression of the set of nucleic acid molecules in a

-10-

sample of breast tissue that is non-cancerous. As used herein, non-cancerous breast tissue means tissue determined by one of ordinary skill in the medical art to have no evidence of breast cancer based on standard diagnostic methods including, but not limited to, histologic staining and microscopic analysis.

5 Nucleic acid markers for cancer are nucleic acid molecules that by their presence or absence indicate the presence or absence of breast cancer. In tissue, certain nucleic acid molecules are expressed at different levels depending on whether tissue is non-cancerous or cancerous. In cancerous tissue, nucleic acid molecule expression may be correlated with MAI prognostic analysis. As described herein, breast cancer nucleic acid markers were
10 identified by evaluating the nucleic acid molecules present in breast tumor tissue samples and comparing expression levels of the nucleic acid molecules with MAI levels determined for the tissues. An aspect of the invention is that different nucleic acid molecules are expressed in breast cancers with different MAI levels (i.e., high MAI versus low MAI) and these expression variations are identifiable by nucleic acid expression analysis, such as microarray
15 analysis or protein expression analysis. Some nucleic acids are more likely to be, in other words, are preferentially expressed in cancers with high MAI levels and other nucleic acids are preferentially expressed in cancers with low MAI levels. According to the invention, the correlation between the preferential expression of nucleic acid markers and MAI classification allows expression of nucleic acid markers to be used to directly categorize
20 breast cancers as low MAI or high MAI. Thus, nucleic acid expression-based categorization of breast cancer (by measurement of nucleic acid or protein expression) as low or high MAI may be used by one of ordinary skill in the medical arts to select an appropriate treatment regimen based on a patient's specific breast cancer prognosis.

Hybridization methods for nucleic acids are well known to those of ordinary skill in
25 the art (see, e.g. *Molecular Cloning: A Laboratory Manual*, J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, or *Current Protocols in Molecular Biology*, F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York). The nucleic acid molecules from a breast cancer tissue sample hybridize under stringent conditions to nucleic acid markers expressed in breast cancer. In one embodiment
30 the markers are sets of two or more of the nucleic acid molecules as set forth in SEQ ID NOs: 1 through 51.

The breast cancer nucleic acid markers disclosed herein are known genes and fragments thereof. It may be desirable to identify variants of those genes, such as allelic

variants or single nucleotide polymorphisms (SNPs) in tissues. Accordingly, methods for identifying breast cancer nucleic acid markers, including variants of the disclosed full-length cDNAs, genomic DNAs, and SNPs are also included in the invention. The methods include contacting a nucleic acid sample (such as a cDNA library, genomic library, genomic DNA isolate, etc.) with a nucleic acid probe or primer derived from one of SEQ ID NOS:1 through 51. The nucleic acid sample and the probe or primer hybridize to complementary nucleotide sequences of nucleic acids in the sample, if any are present, allowing detection of nucleic acids related to SEQ ID NOS: 1-51. Preferably the probe or primer is detectably labeled. The specific conditions, reagents, and the like can be selected by one of ordinary skill in the art to 10 selectively identify nucleic acids related to sets of two or more of SEQ ID NOS:1 through 51. The isolated nucleic acid molecule can be sequenced according to standard procedures.

In addition to native nucleic acid markers (SEQ ID NOS:1-51), the invention also includes degenerate nucleic acids that include alternative codons to those present in the native materials. For example, serine residues are encoded by the codons TCA, AGT, TCC, TCG, 15 TCT, and AGC. Each of the six codons is equivalent for the purposes of encoding a serine residue. Similarly, nucleotide sequence triplets that encode other amino acid residues include, but are not limited to: CCA, CCC, CCG, and CCT (proline codons); CGA, CGC, CGG, CGT, AGA, and AGG (arginine codons); ACA, ACC, ACG, and ACT (threonine codons); AAC and AAT (asparagine codons); and ATA, ATC, and ATT (isoleucine codons). 20 Other amino acid residues may be encoded similarly by multiple nucleotide sequences. Thus, the invention embraces degenerate nucleic acids that differ from the biologically isolated nucleic acids in codon sequence due to the degeneracy of the genetic code.

The invention also provides modified nucleic acid molecules, which include additions, substitutions, and deletions of one or more nucleotides such as the allelic variants 25 and SNPs described above. In preferred embodiments, these modified nucleic acid molecules and/or the polypeptides they encode retain at least one activity or function of the unmodified nucleic acid molecule and/or the polypeptides, such as hybridization, antibody binding, etc. In certain embodiments, the modified nucleic acid molecules encode modified polypeptides, 30 preferably polypeptides having conservative amino acid substitutions . As used herein, a “conservative amino acid substitution” refers to an amino acid substitution which does not alter the relative charge or size characteristics of the protein in which the amino acid substitution is made. Conservative substitutions of amino acids include substitutions made amongst amino acids within the following groups: (a) M, I, L, V; (b) F, Y, W; (c) K, R, H;

(d) A, G; (e) S, T; (f) Q, N; and (g) E, D. The modified nucleic acid molecules are structurally related to the unmodified nucleic acid molecules and in preferred embodiments are sufficiently structurally related to the unmodified nucleic acid molecules so that the modified and unmodified nucleic acid molecules hybridize under stringent conditions known
5 to one of skill in the art.

For example, modified nucleic acid molecules that encode polypeptides having single amino acid changes can be prepared for use in the methods and products disclosed herein. Each of these nucleic acid molecules can have one, two, or three nucleotide substitutions exclusive of nucleotide changes corresponding to the degeneracy of the genetic code as
10 described herein. Likewise, modified nucleic acid molecules that encode polypeptides having two amino acid changes can be prepared, which have, e.g., 2-6 nucleotide changes. Numerous modified nucleic acid molecules like these will be readily envisioned by one of skill in the art, including for example, substitutions of nucleotides in codons encoding amino acids 2 and 3, 2 and 4, 2 and 5, 2 and 6, and so on. In the foregoing example, each
15 combination of two amino acids is included in the set of modified nucleic acid molecules, as well as all nucleotide substitutions which code for the amino acid substitutions. Additional nucleic acid molecules that encode polypeptides having additional substitutions (i.e., 3 or more), additions or deletions [e.g., by introduction of a stop codon or a splice site(s)] also can be prepared and are embraced by the invention as readily envisioned by one of ordinary skill
20 in the art. Any of the foregoing nucleic acids can be tested by routine experimentation for retention of structural relation to or activity similar to the nucleic acids disclosed herein.

In the invention, standard hybridization techniques of microarray technology are utilized to assess patterns of nucleic acid expression and identify nucleic acid marker expression. Microarray technology, which is also known by other names including: DNA
25 chip technology, gene chip technology, and solid-phase nucleic acid array technology, is well known to those of ordinary skill in the art and is based on, but not limited to, obtaining an array of identified nucleic acid probes on a fixed substrate, labeling target molecules with reporter molecules (e.g., radioactive, chemiluminescent, or fluorescent tags such as fluorescein, Cye3-dUTP, or Cye5-dUTP), hybridizing target nucleic acids to the probes, and
30 evaluating target-probe hybridization. A probe with a nucleic acid sequence that perfectly matches the target sequence will, in general, result in detection of a stronger reporter-molecule signal than will probes with less perfect matches. Many components and techniques utilized in nucleic acid microarray technology are presented in *The Chipping*

Forecast, Nature Genetics, Vol.21, Jan 1999, the entire contents of which is incorporated by reference herein.

According to the present invention, microarray substrates may include but are not limited to glass, silica, aluminosilicates, borosilicates, metal oxides such as alumina and nickel oxide, various clays, nitrocellulose, or nylon. In all embodiments a glass substrate is preferred. According to the invention, probes are selected from the group of nucleic acids including, but not limited to: DNA, genomic DNA, cDNA, and oligonucleotides; and may be natural or synthetic. Oligonucleotide probes preferably are 20 to 25-mer oligonucleotides and DNA/cDNA probes preferably are 500 to 5000 bases in length, although other lengths may be used. Appropriate probe length may be determined by one of ordinary skill in the art by following art-known procedures. In one embodiment, preferred probes are sets of two or more of the nucleic acid molecules set forth as SEQ ID NO: 1 through 51 (see also Table 1). Probes may be purified to remove contaminants using standard methods known to those of ordinary skill in the art such as gel filtration or precipitation.

In one embodiment, the microarray substrate may be coated with a compound to enhance synthesis of the probe on the substrate. Such compounds include, but are not limited to, oligoethylene glycols. In another embodiment, coupling agents or groups on the substrate can be used to covalently link the first nucleotide or oligonucleotide to the substrate. These agents or groups may include, but are not limited to: amino, hydroxy, bromo, and carboxy groups. These reactive groups are preferably attached to the substrate through a hydrocarbyl radical such as an alkylene or phenylene divalent radical, one valence position occupied by the chain bonding and the remaining attached to the reactive groups. These hydrocarbyl groups may contain up to about ten carbon atoms, preferably up to about six carbon atoms. Alkylene radicals are usually preferred containing two to four carbon atoms in the principal chain. These and additional details of the process are disclosed, for example, in U.S. Patent 4,458,066, which is incorporated by reference in its entirety.

In one embodiment, probes are synthesized directly on the substrate in a predetermined grid pattern using methods such as light-directed chemical synthesis, photochemical deprotection, or delivery of nucleotide precursors to the substrate and subsequent probe production.

In another embodiment, the substrate may be coated with a compound to enhance binding of the probe to the substrate. Such compounds include, but are not limited to: polylysine, amino silanes, amino-reactive silanes (Chipping Forecast, 1999) or chromium

(Gwynne and Page, 2000). In this embodiment, presynthesized probes are applied to the substrate in a precise, predetermined volume and grid pattern, utilizing a computer-controlled robot to apply probe to the substrate in a contact-printing manner or in a non-contact manner such as ink jet or piezo-electric delivery. Probes may be covalently linked to the substrate 5 with methods that include, but are not limited to, UV-irradiation. In another embodiment probes are linked to the substrate with heat.

Targets are nucleic acids selected from the group, including but not limited to: DNA, genomic DNA, cDNA, RNA, mRNA and may be natural or synthetic. In all embodiments, nucleic acid molecules from human breast tissue are preferred. The tissue may be obtained 10 from a subject or may be grown in culture (e.g. from a breast cancer cell line).

In embodiments of the invention one or more control nucleic acid molecules are attached to the substrate. Preferably, control nucleic acid molecules allow determination of factors including but not limited to: nucleic acid quality and binding characteristics; reagent quality and effectiveness; hybridization success; and analysis thresholds and success. Control 15 nucleic acids may include but are not limited to expression products of genes such as housekeeping genes or fragments thereof.

To select a set of tumor markers, the expression data generated by, for example, microarray analysis of gene expression, is preferably analyzed to determine which genes in different groups of cancer tissues are significantly differentially expressed. In the methods 20 disclosed herein, the significance of gene expression was determined using Permax computer software, although any standard statistical package that can discriminate significant differences in expression may be used. Permax performs permutation 2-sample t-tests on large arrays of data. For high dimensional vectors of observations, the Permax software computes t-statistics for each attribute, and assesses significance using the permutation distribution of the maximum and minimum overall attributes. The main use is to determine 25 the attributes (genes) that are the most different between two groups (e.g., high MAI tissues versus low MAI tissues), measuring “most different” using the value of the t-statistics, and their significance levels.

In one embodiment of the invention, expression of nucleic acid markers is used to 30 select clinical treatment paradigms for breast cancer. Treatment options, as described herein, may include but are not limited to: chemotherapy, radiotherapy, adjuvant therapy, or any combination of the aforementioned methods. Aspects of treatment that may vary include, but are not limited to: dosages, timing of administration, or duration or therapy; and may or may

-15-

not be combined with other treatments, which may also vary in dosage, timing, or duration. Another treatment for breast cancer is surgery, which can be utilized either alone or in combination with any of the aforementioned treatment methods. One of ordinary skill in the medical arts may determine an appropriate treatment paradigm based on evaluation of
5 differential expression of sets of two or more of the nucleic acid targets SEQ ID NOS:1-51. Cancers that express markers that are indicative of a more aggressive cancer or poor prognosis may be treated with more aggressive therapies.

Progression or regression of breast cancer is determined by comparison of two or more different breast cancer tissue samples taken at two or more different times from a
10 subject. For example, progression or regression may be evaluated by assessments of expression of sets of two or more of the nucleic acid targets, including but not limited to SEQ ID NOS:1-51, in a breast cancer tissue sample from a subject before, during, and following treatment for breast cancer.

In another embodiment, novel pharmacological agents useful in the treatment of
15 breast cancer can be identified by assessing variations in the expression of sets of two or more breast cancer nucleic acid markers, from among SEQ ID NOS:1-51, prior to and after contacting breast cancer cells or tissues with candidate pharmacological agents for the treatment of breast cancer. The cells may be grown in culture (e.g. from a breast cancer cell line), or may be obtained from a subject, (e.g. in a clinical trial of candidate pharmaceutical
20 agents to treat breast cancer). Alterations in expression of two or more sets of breast cancer nucleic acid markers, from among SEQ ID NOS:1-51, in breast cancer cells or tissues tested before and after contact with a candidate pharmacological agent to treat breast cancer, indicate progression, regression, or stasis of the breast cancer thereby indicating efficacy of candidate agents and concomitant identification of lead compounds for therapeutic use in
25 breast cancer.

The invention further provides efficient methods of identifying pharmacological agents or lead compounds for agents active at the level of breast cancer cellular function. Generally, the screening methods involve assaying for compounds that beneficially alter breast cancer nucleic acid molecule expression. Such methods are adaptable to automated,
30 high throughput screening of compounds.

The assay mixture comprises a candidate pharmacological agent. Typically, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a different response to the various concentrations. Typically, one of these concentrations

serves as a negative control, i.e., at zero concentration of agent or at a concentration of agent below the limits of assay detection. Candidate agents encompass numerous chemical classes, although typically they are organic compounds. Preferably, the candidate pharmacological agents are small organic compounds, i.e., those having a molecular weight of more than 50
5 yet less than about 2500, preferably less than about 1000 and, more preferably, less than about 500. Candidate agents comprise functional chemical groups necessary for structural interactions with polypeptides and/or nucleic acids, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups and more preferably at least three of the functional chemical groups. The candidate
10 agents can comprise cyclic carbon or heterocyclic structure and/or aromatic or polyaromatic structures substituted with one or more of the above-identified functional groups. Candidate agents also can be biomolecules such as peptides, saccharides, fatty acids, sterols, isoprenoids, purines, pyrimidines, derivatives or structural analogs of the above, or combinations thereof and the like. Where the agent is a nucleic acid, the agent typically is a
15 DNA or RNA molecule, although modified nucleic acids as defined herein are also contemplated.

Candidate agents are obtained from a wide variety of sources including libraries of synthetic or natural compounds. For example, numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including
20 expression of randomized oligonucleotides, synthetic organic combinatorial libraries, phage display libraries of random peptides, and the like. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural and synthetically produced libraries and compounds can be readily be modified through conventional chemical, physical, and biochemical means.
25 Further, known pharmacological agents may be subjected to directed or random chemical modifications such as acylation, alkylation, esterification, amidification, etc. to produce structural analogs of the agents.

A variety of other reagents also can be included in the mixture. These include reagents such as salts, buffers, neutral proteins (e.g., albumin), detergents, etc. which may be
30 used to facilitate optimal protein-protein and/or protein-nucleic acid binding. Such a reagent may also reduce non-specific or background interactions of the reaction components. Other reagents that improve the efficiency of the assay such as protease, inhibitors, nuclease inhibitors, antimicrobial agents, and the like may also be used.

The mixture of the foregoing assay materials is incubated under conditions whereby, the anti-breast cancer candidate agent specifically binds the cellular binding target, a portion thereof or analog thereof. The order of addition of components, incubation temperature, time of incubation, and other parameters of the assay may be readily determined. Such 5 experimentation merely involves optimization of the assay parameters, not the fundamental composition of the assay. Incubation temperatures typically are between 4°C and 40°C. Incubation times preferably are minimized to facilitate rapid, high throughput screening, and typically are between 0.1 and 10 hours.

After incubation, the presence or absence of specific binding between the anti-breast 10 cancer candidate agent and one or more binding targets is detected by any convenient method available to the user. For cell-free binding type assays, a separation step is often used to separate bound from unbound components. The separation step may be accomplished in a variety of ways. Conveniently, at least one of the components is immobilized on a solid substrate, from which the unbound components may be easily separated. The solid substrate 15 can be made of a wide variety of materials and in a wide variety of shapes, e.g., microtiter plate, microbead, dipstick, resin particle, etc. The substrate preferably is chosen to maximize signal to noise ratios, primarily to minimize background binding, as well as for ease of separation and cost.

Separation may be effected for example, by removing a bead or dipstick from a 20 reservoir, emptying or diluting a reservoir such as a microtiter plate well, rinsing a bead, particle, chromatographic column or filter with a wash solution or solvent. The separation step preferably includes multiple rinses or washes. For example, when the solid substrate is a microtiter plate, the wells may be washed several times with a washing solution, which typically includes those components of the incubation mixture that do not participate in 25 specific bindings such as salts, buffer, detergent, non-specific protein, etc. Where the solid substrate is a magnetic bead, the beads may be washed one or more times with a washing solution and isolated using a magnet.

Detection may be effected in any convenient way for cell-based assays such as two- 30 or three-hybrid screens. The transcript resulting from a reporter gene transcription assay of the anti-cancer agent binding to a target molecule typically encodes a directly or indirectly detectable product, e.g., β -galactosidase activity, luciferase activity, and the like. For cell-free binding assays, one of the components usually comprises, or is coupled to, a detectable label. A wide variety of labels can be used, such as those that provide direct detection (e.g.,

radioactivity, luminescence, optical or electron density, etc). or indirect detection (e.g., epitope tag such as the FLAG epitope, enzyme tag such as horseseradish peroxidase, etc.). The label may be bound to an anti-cancer agent binding partner, or incorporated into the structure of the binding partner.

5 A variety of methods may be used to detect the label, depending on the nature of the label and other assay components. For example, the label may be detected while bound to the solid substrate or subsequent to separation from the solid substrate. Labels may be directly detected through optical or electron density, radioactive emissions, nonradiative energy transfers, etc. or indirectly detected with antibody conjugates, strepavidin-biotin conjugates,
10 etc. Methods for detecting the labels are well known in the art.

The invention provides breast cancer gene-specific binding agents, methods of identifying and making such agents, and their use in diagnosis, therapy and pharmaceutical development. For example, breast cancer gene-specific pharmacological agents are useful in a variety of diagnostic and therapeutic applications as described herein. In general, the
15 specificity of a breast cancer gene binding to a binding agent is shown by binding equilibrium constants. Targets which are capable of selectively binding a breast cancer gene preferably have binding equilibrium constants of at least about 10^7 M^{-1} , more preferably at least about 10^8 M^{-1} , and most preferably at least about 10^9 M^{-1} . The wide variety of cell based and cell free assays may be used to demonstrate breast cancer gene-specific binding. Cell-based
20 assays include one, two and three hybrid screens, assays in which breast cancer gene-mediated transcription is inhibited or increased, etc. Cell-free assays include breast cancer gene-protein binding assays, immunoassays, etc. Other assays useful for screening agents which bind breast cancer polypeptides include fluorescence resonance energy transfer (FRET), and electrophoretic mobility shift analysis (EMSA).

25 In another aspect of the invention, pre- and post-treatment alterations in expression of two or more sets of breast cancer nucleic acid markers including, but not limited to, SEQ ID NOs:1-51 in breast cancer cells or tissues may be used to assess treatment parameters including, but not limited to: dosage, method of administration, timing of administration, and combination with other treatments as described herein.

30 Candidate pharmacological agents may include antisense oligonucleotides that selectively binds to a breast cancer nucleic acid marker molecule, as identified herein, to reduce the expression of the marker molecules in breast cancer cells and tissues. One of ordinary skill in the art can test of the effects of a reduction of expression of breast cancer

nucleic acid marker sequences *in vivo* or *in vitro*, to determine the efficacy of one or more antisense oligonucleotides.

As used herein, the term "antisense oligonucleotide" or "antisense" describes an oligonucleotide that is an oligoribonucleotide, oligodeoxyribonucleotide, modified oligoribonucleotide, or modified oligodeoxyribonucleotide which hybridizes under physiological conditions to DNA comprising a particular gene or to an mRNA transcript of that gene and, thereby, inhibits the transcription of that gene and/or the translation of that mRNA. The antisense molecules are designed so as to interfere with transcription or translation of a target gene upon hybridization with the target gene or transcript. Those skilled in the art will recognize that the exact length of the antisense oligonucleotide and its degree of complementarity with its target will depend upon the specific target selected, including the sequence of the target and the particular bases which comprise that sequence. It is preferred that the antisense oligonucleotide be constructed and arranged so as to bind selectively with the target under physiological conditions, i.e., to hybridize substantially more to the target sequence than to any other sequence in the target cell under physiological conditions.

Based upon the sequences of breast cancer expressed nucleic acids, or upon allelic or homologous genomic and/or cDNA sequences, one of skill in the art can easily choose and synthesize any of a number of appropriate antisense molecules for use in accordance with the present invention. In order to be sufficiently selective and potent for inhibition, such antisense oligonucleotides should comprise at least 10 and, more preferably, at least 15 consecutive bases that are complementary to the target, although in certain cases modified oligonucleotides as short as 7 bases in length have been used successfully as antisense oligonucleotides (Wagner et al., 1996). Most preferably, the antisense oligonucleotides comprise a complementary sequence of 20-30 bases. Although oligonucleotides may be chosen that are antisense to any region of the gene or mRNA transcripts, in preferred embodiments the antisense oligonucleotides correspond to N-terminal or 5' upstream sites such as translation initiation, transcription initiation or promoter sites. In addition, 3'-untranslated regions may be targeted. Targeting to mRNA splicing sites has also been used in the art but may be less preferred if alternative mRNA splicing occurs. In addition, the antisense is targeted, preferably, to sites in which mRNA secondary structure is not expected (see, e.g., Sainio et al., 1994) and at which proteins are not expected to bind. Finally, although the listed sequences are cDNA sequences, one of ordinary skill in the art may easily

derive the genomic DNA corresponding to the cDNA of a breast cancer expressed polypeptide. Thus, the present invention also provides for antisense oligonucleotides which are complementary to the genomic DNA corresponding to breast cancer expressed nucleic acids. Similarly, the use of antisense to allelic or homologous cDNAs and genomic DNAs
5 are enabled without undue experimentation.

In one set of embodiments, the antisense oligonucleotides of the invention may be composed of "natural" deoxyribonucleotides, ribonucleotides, or any combination thereof. That is, the 5' end of one native nucleotide and the 3' end of another native nucleotide may be covalently linked, as in natural systems, via a phosphodiester internucleoside linkage. These
10 oligonucleotides may be prepared by art-recognized methods, which may be carried out manually or by an automated synthesizer. They also may be produced recombinantly by vectors.

In preferred embodiments, however, the antisense oligonucleotides of the invention also may include "modified" oligonucleotides. That is, the oligonucleotides may be modified
15 in a number of ways which do not prevent them from hybridizing to their target but which enhance their stability or targeting or which otherwise enhance their therapeutic effectiveness. The term "modified oligonucleotide" as used herein describes an oligonucleotide in which (1) at least two of its nucleotides are covalently linked via a synthetic internucleoside linkage (i.e., a linkage other than a phosphodiester linkage between
20 the 5' end of one nucleotide and the 3' end of another nucleotide) and/or (2) a chemical group not normally associated with nucleic acids has been covalently attached to the oligonucleotide. Preferred synthetic internucleoside linkages are phosphorothioates, alkylphosphonates, phosphorodithioates, phosphate esters, alkylphosphonothioates, phosphoramidates, carbamates, carbonates, phosphate triesters, acetamidates, carboxymethyl
25 esters, and peptides.

The term "modified oligonucleotide" also encompasses oligonucleotides with a covalently modified base and/or sugar. For example, modified oligonucleotides include oligonucleotides having backbone sugars that are covalently attached to low molecular weight organic groups other than a hydroxyl group at the 3' position and other than a
30 phosphate group at the 5' position. Thus modified oligonucleotides may include a 2'-O-alkylated ribose group. In addition, modified oligonucleotides may include sugars such as arabinose instead of ribose. The present invention, thus, contemplates pharmaceutical preparations containing modified antisense molecules that are complementary to and

hybridizable with, under physiological conditions, breast cancer expressed nucleic acids, together with pharmaceutically acceptable carriers.

Antisense oligonucleotides may be administered as part of a pharmaceutical composition. Such a pharmaceutical composition may include the antisense oligonucleotides in combination with any standard physiologically and/or pharmaceutically acceptable carriers which are known in the art. The compositions should be sterile and contain a therapeutically effective amount of the antisense oligonucleotides in a unit of weight or volume suitable for administration to a patient. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredients. The term "physiologically acceptable" refers to a non-toxic material that is compatible with a biological system such as a cell, cell culture, tissue, or organism. The characteristics of the carrier will depend on the route of administration. Physiologically and pharmaceutically acceptable carriers include diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials, which are well known in the art.

Expression of breast cancer nucleic acid molecules can also be determined using protein measurement methods to determine expression of SEQ ID NOS:1-51, e.g., by determining the expression of polypeptides encoded by SEQ ID NOS:1-51 (SEQ ID NOS: 52-102, respectively). Preferred methods of specifically and quantitatively measuring proteins include, but are not limited to: mass spectroscopy-based methods such as surface enhanced laser desorption ionization (SELDI; e.g., Ciphergen ProteinChip System), non-mass spectroscopy-based methods, antibody-capture protein arrays and immunohistochemistry-based methods such as 2-dimensional gel electrophoresis.

SELDI methodology may be used, through procedures known to those of ordinary skill in the art, to vaporize microscopic amounts of tumor protein and to create a "fingerprint" of individual proteins, thereby allowing simultaneous measurement of the abundance of many proteins in a single sample. Preferably SELDI-based assays may be utilized to classify breast cancer tumors. Such assays preferably include, but are not limited to the following examples. Gene products discovered by RNA microarrays may be selectively measured by specific (antibody mediated) capture to the SELDI protein disc (e.g., selective SELDI). Gene products discovered by protein screening (e.g., with 2-D gels), may be resolved by "total protein SELDI" optimized to visualize those particular markers of interest from among SEQ ID NOS:1-51. Predictive models of tumor classification from SELDI measurement of multiple markers from among SEQ ID NOS:1-51 may be utilized for the SELDI strategies. In an

additional embodiment a set of primary lymph node-negative premenopausal breast cancer tissues may be preferably utilized to determine the risk classification of breast cancer based on SELDI results.

The invention also involves agents such as polypeptides that bind to breast cancer-associated polypeptides, i.e., SEQ ID NOS:52-102. Such binding agents can be used, for example, in screening assays to detect the presence or absence of breast cancer-associated polypeptides and complexes of breast cancer-associated polypeptides and their binding partners and in purification protocols to isolate breast cancer-associated polypeptides and complexes of breast cancer-associated polypeptides and their binding partners. Such agents also may be used to inhibit the native activity of the breast cancer-associated polypeptides, for example, by binding to such polypeptides.

The invention, therefore, embraces peptide binding agents which, for example, can be antibodies or fragments of antibodies having the ability to selectively bind to breast cancer-associated polypeptides. Antibodies include polyclonal and monoclonal antibodies, prepared according to conventional methodology.

Significantly, as is well-known in the art, only a small portion of an antibody molecule, the paratope, is involved in the binding of the antibody to its epitope (see, in general, Clark, W.R. (1986) The Experimental Foundations of Modern Immunology Wiley & Sons, Inc., New York; Roitt, I. (1991) Essential Immunology, 7th Ed., Blackwell Scientific Publications, Oxford). The pFc' and Fc regions, for example, are effectors of the complement cascade but are not involved in antigen binding. An antibody from which the pFc' region has been enzymatically cleaved, or which has been produced without the pFc' region, designated an F(ab')₂ fragment, retains both of the antigen binding sites of an intact antibody. Similarly, an antibody from which the Fc region has been enzymatically cleaved, or which has been produced without the Fc region, designated an Fab fragment, retains one of the antigen binding sites of an intact antibody molecule. Proceeding further, Fab fragments consist of a covalently bound antibody light chain and a portion of the antibody heavy chain denoted Fd. The Fd fragments are the major determinant of antibody specificity (a single Fd fragment may be associated with up to ten different light chains without altering antibody specificity) and Fd fragments retain epitope-binding ability in isolation.

Within the antigen-binding portion of an antibody, as is well-known in the art, there are complementarity determining regions (CDRs), which directly interact with the epitope of the antigen, and framework regions (FRs), which maintain the tertiary structure of the

paratope (see, in general, Clark, 1986; Roitt, 1991). In both the heavy chain Fd fragment and the light chain of IgG immunoglobulins, there are four framework regions (FR1 through FR4) separated respectively by three complementarity determining regions (CDR1 through CDR3). The CDRs, and in particular the CDR3 regions, and more particularly the heavy chain CDR3, 5 are largely responsible for antibody specificity.

It is now well-established in the art that the non-CDR regions of a mammalian antibody may be replaced with similar regions of conspecific or heterospecific antibodies while retaining the epitopic specificity of the original antibody. This is most clearly manifested in the development and use of "humanized" antibodies in which non-human 10 CDRs are covalently joined to human FR and/or Fc/pFc' regions to produce a functional antibody. See, e.g., U.S. patents 4,816,567, 5,225,539, 5,585,089, 5,693,762 and 5,859,205.

Fully human monoclonal antibodies also can be prepared by immunizing mice transgenic for large portions of human immunoglobulin heavy and light chain loci. Following immunization of these mice (e.g., XenoMouse (Abgenix), HuMAB mice 15 (Medarex/GenPharm)), monoclonal antibodies can be prepared according to standard hybridoma technology. These monoclonal antibodies will have human immunoglobulin amino acid sequences and therefore will not provoke human anti-mouse antibody (HAMA) responses when administered to humans.

Thus, as will be apparent to one of ordinary skill in the art, the present invention also 20 provides for F(ab')₂, Fab, Fv and Fd fragments; chimeric antibodies in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric F(ab')₂ fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; chimeric Fab fragment antibodies in which the 25 FR and/or CDR1 and/or CDR2 and/or light chain CDR3 regions have been replaced by homologous human or non-human sequences; and chimeric Fd fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced by homologous human or non-human sequences. The present invention also includes so-called single chain antibodies.

Thus, the invention involves polypeptides of numerous size and type that bind 30 specifically to polypeptides selected from SEQ ID NOs:52-102, and complexes of both breast cancer-associated polypeptides and their binding partners. These polypeptides may be derived also from sources other than antibody technology. For example, such polypeptide binding agents can be provided by degenerate peptide libraries which can be readily prepared

in solution, in immobilized form or as phage display libraries. Combinatorial libraries also can be synthesized of peptides containing one or more amino acids. Libraries further can be synthesized of peptoids and non-peptide synthetic moieties.

Phage display can be particularly effective in identifying binding peptides useful according to the invention. Briefly, one prepares a phage library (using e.g. m13, fd, or lambda phage), displaying inserts from 4 to about 80 amino acid residues using conventional procedures. The inserts may represent, for example, a completely degenerate or biased array. One then can select phage-bearing inserts which bind to the breast cancer-associated polypeptide. This process can be repeated through several cycles of reselection of phage that bind to the breast cancer-associated polypeptide. Repeated rounds lead to enrichment of phage bearing particular sequences. DNA sequence analysis can be conducted to identify the sequences of the expressed polypeptides. The minimal linear portion of the sequence that binds to the breast cancer-associated polypeptide can be determined. One can repeat the procedure using a biased library containing inserts containing part or all of the minimal linear portion plus one or more additional degenerate residues upstream or downstream thereof. Yeast two-hybrid screening methods also may be used to identify polypeptides that bind to the breast cancer-associated polypeptides.

Thus, the breast cancer-associated polypeptides of the invention, including fragments thereof, can be used to screen peptide libraries, including phage display libraries, to identify and select peptide binding partners of the breast cancer-associated polypeptides of the invention. Such molecules can be used, as described, for screening assays, for purification protocols, for interfering directly with the functioning of breast cancer-associated polypeptides and for other purposes that will be apparent to those of ordinary skill in the art. For example, isolated breast cancer-associated polypeptides can be attached to a substrate (e.g., chromatographic media, such as polystyrene beads, a filter, or an array substrate), and then a solution suspected of containing the binding partner may be applied to the substrate. If a binding partner that can interact with breast cancer-associated polypeptides is present in the solution, then it will bind to the substrate-bound breast cancer-associated polypeptide. The binding partner then may be isolated.

As detailed herein, the foregoing antibodies and other binding molecules may be used for example, to identify tissues expressing protein or to purify protein. Antibodies also may be coupled to specific diagnostic labeling agents for imaging of cells and tissues that express breast cancer-associated polypeptides or to therapeutically useful agents according to

standard coupling procedures. Diagnostic agents include, but are not limited to, barium sulfate, iocetamic acid, iopanoic acid, ipodate calcium, diatrizoate sodium, diatrizoate meglumine, metrizamide, tyropanoate sodium and radiodiagnostics including positron emitters such as fluorine-18 and carbon-11, gamma emitters such as iodine-123,
5 technetium-99m, iodine-131 and indium-111, nuclides for nuclear magnetic resonance such as fluorine and gadolinium.

The invention further includes protein microarrays for analyzing expression of breast cancer-associated peptides selected from SEQ ID NOS:52-102. In this aspect of the invention, standard techniques of microarray technology are utilized to assess expression of
10 the breast cancer-associated polypeptides and/or identify biological constituents that bind such polypeptides. The constituents of biological samples include antibodies, lymphocytes (particularly T lymphocytes), and the like. Protein microarray technology, which is also known by other names including: protein chip technology and solid-phase protein array technology, is well known to those of ordinary skill in the art and is based on, but not limited
15 to, obtaining an array of identified peptides or proteins on a fixed substrate, binding target molecules or biological constituents to the peptides, and evaluating such binding. See, e.g., G. MacBeath and S.L. Schreiber, "Printing Proteins as Microarrays for High-Throughput Function Determination," *Science* 289(5485):1760-1763, 2000.

Preferably antibodies or antigen binding fragments thereof that specifically bind
20 polypeptides selected from the group consisting of SEQ ID NOS:52-102 are attached to the microarray substrate in accordance with standard attachment methods known in the art. These arrays can be used to quantify the expression of the polypeptides identified herein.

In some embodiments of the invention, one or more control peptide or protein molecules are attached to the substrate. Preferably, control peptide or protein molecules
25 allow determination of factors such as peptide or protein quality and binding characteristics, reagent quality and effectiveness, hybridization success, and analysis thresholds and success.

The use of such methods to determine expression of breast cancer nucleic acids from among SEQ ID NOS:1-51 and/or proteins from among SEQ ID Nos:52-102 can be done with routine methods known to those of ordinary skill in the art and the expression determined by
30 protein measurement methods may be correlated to MAI levels and used as a prognostic method for selecting treatment strategies for breast cancer patients.

Examples

Introduction

To establish a prognostic tool for designing breast cancer treatment regimens, expression patterns in primary breast cancer specimens were assessed and correlated with clinical outcome. Primary breast cancer tumors from premenopausal women with no lymph node metastases at the time of initial presentation were classified using the Mitotic Activity Index (MAI), which has been shown to predict disease-free survival in this type of disease. RNA was isolated, hybridized with Affymetrix HuFL human expression arrays, and analyzed to ascertain which genes discriminate the two groups.

Methods

Breast Cancers Used for RNA Microarray Expression Analysis

Primary frozen breast cancers from premenopausal women with no lymph node metastases at the time of initial presentation were assembled from material discarded following routine surgical removal for diagnostic purposes. Institutional review and human subjects approval for this project was obtained from Brigham and Women's Hospital. Fresh tissue was frozen in liquid nitrogen, and a single fragment split for confirmatory histology and RNA isolation. Individual fragments of frozen tumor tissues (estimated as 500 mg minimum) were split by fracturing under liquid nitrogen, and a portion processed for confirmatory histology using standard methods. The remaining tissue was used for synchronous RNA, protein, and DNA isolations with TRIzol reagents (Life Technologies, Inc., Rockville, MD) using standard methods. Only tumors where the actual frozen tissue contained >50% tumor cells were used.

25

Mitotic Activity Index

All tumors were classified by Mitotic Activity Index (Baak et al., 1989; van Diest et al., 1991; van Diest et al., 1992(a); Uyterlinde et al., 1990; van Diest et al., 1992(b); Jannink et al., 1996; Baak et al., 1992; Baak et al., 1993) using paraffin H&E stained tissues sections prepared for diagnostic purposes at the time of excision. The MAI is the total number of mitoses counted in 10 consecutive high-power fields (objective, x40; numeric aperture, 0.75; field diameter, 450 microns) in the most cellular area at the periphery of the tumor, with the subjectively highest mitotic activity (Jannink et al., 1995). Risk groups have previously been

defined using a threshold of 10 mitoses/unit area (Tosi et al., 1986; Jannink et al., 1995; Theissig et al., 1996). Tumors with MAI \geq 10 were assigned to the high risk group, and those with MAI \leq 3 to the low risk group.

5 *Microarray Expression Analysis*

RNA from 27 qualifying tumors was reverse transcribed and resultant cDNA used for *in vitro* transcriptional synthesis of fluorescently labeled nucleic acid probes which were then hybridized to Affymetrix HuFL human expression arrays (approximately 7100, probe sets, estimated 5800 unique genes). Hybridization images were analyzed with Affymetrix
10 software to generate a data matrix of named probes by quantitative expression level in each tissue. RNA labeling, microarray hybridization, and microarray analysis were performed as per vendor's instructions for HuGeneFL array (Affymetrix, Santa Clara, CA). Four tumors were excluded from analysis because they failed to meet quality control criteria for
15 microarray hybridization: 3 cases had low hybridization signal, one case had high background.

Results

Analysis of 23 primary breast cancer specimens from premenopausal lymph node negative women were split between two prognostic groups (Low MAI, MAI \leq 3, n=11 and
20 High MAI, MAI \geq 10, n=12) and was accomplished as follows. Affymetrix HuFL expression values were normalized by scaling so the sum of AD (AD units are the quantitative expression units used by Affymetrix) values in each sample was 3,000,000; genes for which RNA abundance was absent or marginal were reset to a value of 0, then any values less than 20 were reset to 20. The result is the GPT datastate, which was then log transformed and
25 discriminating genes selected by t-test comparison of the logged data between low and high MAI groups. Significance cutoffs for the t-tests used Permax <0.96 based on 10,000 random permutations of the data. Permax is a data analysis software tool for testing the significance of gene expression. It has been presented by Mutter, et al., 8th International Workshop on Chromosomes in Solid Tumors, Tucson, AZ, 2000; and is available online at
30 biowww.dfci.harvard.edu/~gray/permax.html and from Robert J. Gray, Department of Biostatistical Science, Dana-Farber Cancer Institute, 44 Binney Street Boston, MA 02115. Permax details enclosed therein are incorporated by reference herein. Seventy eight of 7070 Affymetrix probe sets were selected by Permax.

-28-

Filters for minimum divergence between the average expression values of the two groups (Low vs. High MAI) were applied as follows: ratio of means ≥ 2 , and difference between means ≥ 100 . It was determined that 51/78 genes passed these filters. The final 51 selected genes which discriminate between low and high MAI subgroups appear in Table 1
5 and as SEQ ID NOs:1-51. Average expression in high MAI tumors and low MAI tumors is shown as HX and LX, respectively.

Table 1. Gene list identifying 51 genes that discriminate low from high MAl breast cancers.

SEQ ID NO	Short Name	GenBank Acc.No.	Permax	HX	LX	FOLDABS	DIFFABS
1	ABCB2	X57522	0.9577	501	83	6.0	417
2	ACTA2	X13839	0.7131	3098	6152	2.0	3054
3	AMD1	M21154	0.0808	257	50	5.1	207
4	APM2	D45370	0.3317	590	2682	4.5	2092
5	ASAH	U70063	0.8435	360	990	2.8	630
6	BARD1	U76638	0.5637	242	102	2.4	140
7	CCNH	U11791	0.9104	104	204	2.0	100
8	CCT2	U91327	0.8801	280	109	2.6	171
9	CDC20	U05340	0.0669	579	20	29.0	559
10	CDC34	L22005	0.6979	182	41	4.4	141
11	CDKN3	U02681	0.0072	454	63	7.2	391
12	CKS1	X54941	0.8823	539	219	2.5	320
13	CKS2	X54942	0.1881	413	119	3.5	294
14	COX7A1	M83186	0.9223	89	326	3.6	236
15	CPA3	M73720	0.8234	132	357	2.7	225
16	CPE	X51405	0.1984	80	243	3.0	163
17	CX3CR1	U20350	0.0317	70	328	4.7	258
18	DLG4	U83192	0.3427	20	179	8.9	159
19	DOC1	U53445	0.927	122	276	2.3	154
20	DXS9879E	X92896	0.9448	744	331	2.3	413
21	E2-EPF	M91670	0.9602	324	20	16.2	304
22	ElastinAlt2	U77846	0.8368	417	2210	5.3	1792
23	GTF2A1	U14193	0.7495	528	249	2.1	279
24	GU45MPST	U10860	0.6129	599	114	5.2	485
25	H2AFX	X14850	0.8106	496	193	2.6	303
26	H2BFA	M60750	0.2334	508	143	3.6	365
27	Hevin	X86693	0.7484	529	1686	3.2	1157
28	HNRPH2	U01923	0.9056	106	231	2.2	126
29	HPV16E1Bind	U96131	0.2439	194	78	2.5	116
30	IDUA	M74715	0.1712	176	594	3.4	418
31	IGF1	X57025	0.9213	79	265	3.4	186
32	IQGAP2	U51903	0.9517	137	321	2.3	184
33	ISG15	M13755	0.9316	2133	386	5.5	1747
34	JAG1	U61276	0.9466	79	264	3.3	185
35	LAMA2	Z26653	0.8882	31	213	6.8	182
36	LAMB2	X79683	0.083	156	658	4.2	502
37	LBR	L25931	0.5991	221	68	3.2	153
38	MMP2	M55593	0.93	1765	3670	2.1	1905
39	MMSDH	M93405	0.9072	297	669	2.3	372
40	MYH11	AF001548	0.3109	164	777	4.7	612
41	MYLK	U48959	0.8351	158	680	4.3	522
42	PDE4A	L20965	0.8912	34	176	5.2	142
43	SCNN1A	X76180	0.694	352	864	2.5	511
44	SCYB10	X02530	0.4416	528	83	6.4	445
45	SNRPB	X17567	0.8965	1473	638	2.3	835
46	STAT1	M97936	0.9553	440	20	22.0	420
47	TAF2A	X07024	0.6819	193	65	2.9	127
48	TCEAL1	M99701	0.5595	241	749	3.1	508
49	TPM1	Z24727	0.5676	1266	2533	2.0	1267
50	TPS2	M33493	0.3638	194	892	4.6	698
51	UBCH10	U73379	0.1972	1519	639	2.4	880

-30-

Several features of selected genes provide reassurance that low frequency random events were not the cause of expression differences between groups. A review of the 51 selected genes (Table 1) shows that five pairs of genes known to be co-expressed were 5 selected independently (two carboxypeptidases, two histones, two cdc28, two ubiquitins, two laminins, and myosin/tropomyosin), and reciprocal regulation of ligand and receptor, a common regulatory pattern, occurred once (laminin and lamin receptor) amongst genes selected.

The first expectation is that genes whose expression is linked to cell division would be 10 represented in this comparison of tumors whose mitotic activity differs systematically. This was in fact the largest category of selected genes, with expression of 11/12 cell cycle genes greatest in the high MAI group. Genes which are preferentially expressed (at higher levels) in the low MAI group include those encoding extracellular matrix or enzymes which may remodel extracellular matrix (proteolytic enzymes).

15 The gene expression data presented in Table 1 can be used to generate an expression matrix of 51 selected genes by 23 tissues examined. Using standard clustering algorithms, dendograms can be provided on the borders of the matrix (e.g., using Wards linkage and Euclidean distance) to show cluster relationships between tissues and genes. Similarly, a gene expression matrix can be generated using data normalized by standard deviation for 20 each gene [STD(GPT)]. Dendograms on borders of the matrix can be provided to show cluster relationships between tissues and genes. In this type of matrix, clustering of genes is based upon relative changes without bias due to absolute expression level, because each gene is expressed in standard deviation from the mean for that specific gene. However, unlike the other expression matrix described above, the absolute magnitude of expression cannot be 25 directly inferred from this plot.

References

Harrison's Principles of Internal Medicine, 14/e, (1998) McGraw-Hill Companies, New York.

30

Jannink, I, van Diest, P.J., Baak, J.P. (1995) Comparison of the prognostic value of four methods to assess mitotic activity in 186 invasive breast cancer patients: classical and random

mitotic activity assessments with correction for volume percentage of epithelium. *Hum Pathol* Oct;26(10):1086-92.

Baak JP, van Diest PJ, Ariens AT, van Beek MW, Bellot SM, Fijnheer J, van Gorp LH, Kwee WS, Los J, Peterse HC: The Multicenter Morphometric Mammary Carcinoma Project (MMMCP). A nationwide prospective study on reproducibility and prognostic power of routine quantitative assessments in The Netherlands. *Pathol Res Pract* 1989, 185:664-670.

van Diest PJ, Baak JP: The morphometric prognostic index is the strongest prognosticator in premenopausal lymph node-negative and lymph node-positive breast cancer patients. *Hum Pathol* 1991, 22:326-330.

van Diest PJ, Baak JP, Matze-Cok P, Bacus SS: Prediction of response to adjuvant chemotherapy in premenopausal lymph node positive breast cancer patients with morphometry, DNA flow cytometry and HER-2/neu oncoprotein expression. Preliminary results. *Pathol Res Pract* 1992, 188:344-349.

Uyterlinde AM, Baak JP, Schipper NW, Peterse H, Matze E, Meijer CJ: Further evaluation of the prognostic value of morphometric and flow cytometric parameters in breast-cancer patients with long follow-up. *Int J Cancer* 1990, 45:1-7.

van Diest PJ, Baak JP, Matze-Cok P, Wisse-Brekelmans EC, van Galen CM, Kurver PH, Bellot SM, Fijnheer J, van Gorp LH, Kwee WS: Reproducibility of mitosis counting in 2,469 breast cancer specimens: results from the Multicenter Morphometric Mammary Carcinoma Project. *Hum Pathol* 1992, 23:603-607.

Jannink I, Risberg B, van Diest PJ, Baak JP: Heterogeneity of mitotic activity in breast cancer. *Histopathology* 1996, 29:421-428.

Baak JP, Wisse-Brekelmans EC, Kurver PH, van Gorp LH, Voorhorst FJ, Miettinen OS: Regional differences in breast cancer survival are correlated with differences in differentiation and rate of proliferation. *Hum Pathol* 1992, 23:989-992.

Baak JP, van Diest PJ, Benraadt T, Matze-Cok E, Brugghe J, Schuurmans LT, Littooy JJ: The Multi-Center Morphometric Mammary Carcinoma Project (MMMCP) in The Netherlands: value of morphometrically assessed proliferation and differentiation. *J Cell Biochem Suppl* 1993, 17G:220-225.

5

Tosi P, Luzi P, Sforza V, Santopietro R, Bindi M, Tucci E, Barbini P, Baak JP: Correlation between morphometrical parameters and disease-free survival in ductal breast cancer treated only by surgery. *Appl Pathol* 1986, 4:33-42.

10 Theissig F, Baak JP, Schuurmans L, Haroske G, Meyer W, Kunze KD: 'Blind' multicenter evaluation of the prognostic value of DNA image cytometric and morphometric features in invasive breast cancer. *Anal Cell Pathol* 1996, 10:85-99.

The Chipping Forecast (1999) *Nature Genetics*, 21(1):1-60.

15

Gwynne, P., and Page, G., (1999) Microarray Analysis: the next revolution in Molecular Biology, Science eMarketplace, Science, August 6. (sciencemag.org/feature/e-market/benchtop/micro.shl)

20 Wagner et al., *Nature Biotechnol.* (1996) 14:840-844.

Sainio, K., Saarma, M., Nonclercq, D., Paulin, L., and Sariola, H. (1994) Antisense inhibition of low-affinity nerve growth factor receptor in kidney cultures: power and pitfalls. *Cell Mol. Neurobiol.* 14(5):439-457.

25

Molecular Cloning: A Laboratory Manual, (1989) J. Sambrook, et al., eds., Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

30 *Current Protocols in Molecular Biology*, (1999) F.M. Ausubel, et al., eds., John Wiley & Sons, Inc., New York.

Mutter, G.L., Baak, J.P.A., Cai, T., Fitzgerald, J., Gray, R., Gentleman, R., Gullans, S., Ibrahim, J., Neuberg, D., and Wilcox, M. Altered Gene Expression in Endometrioid

-33-

Endometrial Adenocarcinomas Analyzed by High Density Microarrays. 8th International Workshop on Chromosomes in Solid Tumors (Tucson,AZ) . 2000.

The present invention is not limited in scope by the examples provided, since the
5 examples are intended as illustrations of various aspects of the invention and other functionally equivalent embodiments are within the scope of the invention. Various modifications of the invention in addition to those shown are described herein will become apparent to those skilled in the art for the foregoing description and fall within the scope of the appended claims. The advantages and objects of the invention are not necessarily
10 encompassed by each embodiment of the invention. All references, patents, and patent publications that are recited in this application are incorporated in their entirety herein by reference.

We claim:

Claims

1. A method for diagnosing breast cancer in a subject suspected of having breast cancer comprising:

5 obtaining from the subject a breast tissue sample suspected of being cancerous,
determining the expression of a set of nucleic acid molecules or expression products thereof in the breast tissue sample, wherein the set of nucleic acid molecules comprises at least two nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

10 2. The method of claim 1, wherein the set of nucleic acid molecules comprises at least 3 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

3. The method of claim 1, wherein the set includes at least 4 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

15 4. The method of claim 1, wherein the set includes at least 5 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

20 5. The method of claim 1, wherein the set includes at least 10 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

6. The method of claim 1, wherein the set includes at least 15 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

25 7. The method of claim 1, wherein the set includes at least 20 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

8. The method of claim 1, wherein the set includes at least 30 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

30 9. The method of claim 1, wherein the set includes at least 40 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

10. The method of claim 1, further comprising:

determining the expression of the set of nucleic acid molecules or expression products thereof in a non-cancerous breast tissue sample, and comparing the expression of the set of nucleic acid molecules or expression products thereof in the breast tissue sample suspected of being cancerous and the non-cancerous breast tissue sample.

11. A method for identifying a set of nucleic acid markers or expression products thereof effective for determining the prognosis of cancer, comprising:

obtaining a plurality of tumor tissue samples from a plurality of subjects afflicted with cancer,

classifying the plurality of tumor tissue samples according to mitotic activity index (MAI) into high MAI and low MAI groups,

determining differences in the expression of a plurality of nucleic acid molecules or expression products thereof in the tumor tissue samples, and

selecting as a set of nucleic acid markers the nucleic acid molecules or expression products thereof which are differentially expressed in the high MAI and the low MAI groups,

wherein the set of nucleic acid markers or expression products thereof effective for determining poor prognosis of cancer comprises one or more nucleic acid molecules or expression products thereof which are preferentially expressed in high MAI tumor tissue samples, and wherein the set of nucleic acid markers or expression products thereof effective for determining good prognosis of cancer comprises one or more nucleic acid molecules or expression products thereof which are preferentially expressed in low MAI tumor tissue samples.

25 12. The method of claim 11, wherein the cancer is breast cancer.

13. The method of claim 11, wherein the differences in the expression of a plurality of nucleic acid molecules are determined by a method selected from the group consisting of nucleic acid hybridization and nucleic acid amplification.

30 14. The method of claim 13, wherein the nucleic acid hybridization is performed using a solid-phase nucleic acid molecule array.

15. A method for selecting a course of treatment of a subject having or suspected of having cancer, comprising:

obtaining from the subject a tissue sample suspected of being cancerous,

determining the expression of a set of nucleic acid markers or expression products

5 thereof which are differentially expressed in high MAI tumor tissue samples to determine the MAI of the tissue sample of the subject, and

selecting a course of treatment appropriate to the cancer of the subject.

16. The method of claim 15 wherein the cancer is breast cancer.

10

17. The method of claim 16, further comprising:

determining the expression of a set of nucleic acid markers that are differentially expressed in low MAI breast tumor tissue samples.

15

18. The method of claim 15, wherein the expression of a set of nucleic acid markers is determined by a method selected from the group consisting of nucleic acid hybridization and nucleic acid amplification.

20

19. The method of claim 18, wherein the nucleic acid hybridization is performed using a solid-phase nucleic acid molecule array.

20. A method for evaluating treatment of cancer, comprising:

obtaining a first determination of the expression of a set of nucleic acid molecules or expression products thereof, which are differentially expressed in high MAI tumor tissue samples to determine the MAI of the tissue sample from a subject undergoing treatment for cancer,

obtaining a second determination of the expression of a set of nucleic acid molecules or expression products thereof, which are differentially expressed in high MAI tumor tissue samples to determine the MAI of the second tissue sample from the subject after obtaining the first determination,

comparing the first determination of expression to the second determination of expression as an indication of evaluation of the treatment.

21. The method of claim 20, wherein the cancer is breast cancer.

22. The method of claim 21, further comprising:

determining the expression of a set of nucleic acid markers which are differentially

5 expressed in low MAI breast tumor tissue samples.

23. The method of claim 20, wherein the expression of a set of nucleic acid markers is determined by a method selected from the group consisting of nucleic acid hybridization and nucleic acid amplification.

10

24. The method of claim 20, wherein the nucleic acid hybridization is performed using a solid-phase nucleic acid molecule array.

15

25. A solid-phase nucleic acid molecule array consisting essentially of at least two nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51 fixed to a solid substrate.

26. The solid-phase nucleic acid molecule array of claim 24, further comprising at least one control nucleic acid molecule.

20

27. The solid-phase nucleic acid molecule array of claim 24, wherein the set of nucleic acid molecules comprises at least 3 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

25

28. The solid-phase nucleic acid molecule array of claim 24, wherein the set includes at least 4 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

29. The solid-phase nucleic acid molecule array of claim 24, wherein the set includes at least 5 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

30

30. The solid-phase nucleic acid molecule array of claim 24, wherein the set includes at least 10 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.

31. The solid-phase nucleic acid molecule array of claim 24, wherein the set includes at least 15 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.
- 5 32. The solid-phase nucleic acid molecule array of claim 24, wherein the set includes at least 20 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.
33. The solid-phase nucleic acid molecule array of claim 24, wherein the set includes at least 30 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.
- 10 34. The solid-phase nucleic acid molecule array of claim 24, wherein the set includes at least 40 nucleic acid molecules selected from the group consisting of SEQ ID NOs:1-51.
- 15 35. The solid-phase nucleic acid molecule array of claim 24, wherein the solid substrate comprises a material selected from the group consisting of glass, silica, aluminosilicates, borosilicates, metal oxides such as alumina and nickel oxide, various clays, nitrocellulose, and nylon.
- 20 36. The solid-phase nucleic acid molecule array of claim 24, wherein the nucleic acid molecules are fixed to the solid substrate by covalent bonding.
37. A solid-phase protein microarray comprising at least two antibodies or antigen-binding fragments thereof, that specifically bind at least two different polypeptides selected from the group consisting of SEQ ID NOs:52-102, fixed to a solid substrate.
- 25 38. The protein microarray of claim 37, wherein the microarray further comprises an antibody or antigen-binding fragment thereof, that binds specifically to a cancer-associated polypeptide other than those selected from the group consisting of SEQ ID NOs:52-102.
- 30 39. The protein microarray of claim 38, wherein the cancer-associated polypeptide other than those selected from the group consisting of SEQ ID NOs:52-102 is a breast cancer associated polypeptide.

40. The protein microarray of claim 37, further comprising at least one control polypeptide molecule.

41. The protein microarray of claim 37, wherein the antibodies are monoclonal or
5 polyclonal antibodies.

42. The protein microarray of claim 37, wherein the antibodies are chimeric, human, or
humanized antibodies.

10 43. The protein microarray of claim 37, wherein the antibodies are single chain
antibodies.

44. The protein microarray of claim 37, wherein the antigen-binding fragments are
F(ab')₂, Fab, Fd, or Fv fragments.

15 45. A method for identifying lead compounds for a pharmacological agent useful in the
treatment of breast cancer, comprising:

contacting a breast cancer cell or tissue with a candidate pharmacological agent,
determining the expression of a set of nucleic acid molecules in the breast cancer cell

20 or tissue sample under conditions which, in the absence of the candidate pharmacological
agent, permit a first amount of expression of the set of nucleic acid molecules wherein the set
of nucleic acid molecules comprises at least two nucleic acid molecules selected from the
group consisting of SEQ ID NOs:1-51, and

25 detecting a test amount of the expression of the set of nucleic acid molecules, wherein
a decrease in the test amount of expression in the presence of the candidate pharmacological
agent relative to the first amount of expression indicates that the candidate pharmacological
agent is a lead compound for a pharmacological agent which is useful in the treatment of
breast cancer.

30 46. The method of claim 45, wherein the set of nucleic acid molecules is differentially
expressed in high MAI breast tumor tissue samples.

1/1

Fig. 1

- 1 -

SEQUENCE LISTING

<110> The Brigham and Women's Hospital, Inc
Baak, Jan

<120> Prognostic Classification of Breast Cancer

<130> B0801/7224WO(JRV)

<150> US 60/222,093
<151> 2000-07-28

<160> 102

<170> PatentIn version 3.0

<210> 1
<211> 2824
<212> DNA
<213> Homo Sapiens

<400> 1
gcggccgctt tcgatttcgc tttccccctaa atggctgagc ttctcgccag cgaggatca 60
gcctgttcct gggactttcc gagagccccg ccctcggtcc ctccccccagc cgccagtagg 120
ggaggactcg gcggtaaccgg gagcttcagg ccccacccggg gcgccggagag tcccagaccc 180
ggccgggacc gggacggcgt ccgagtgcga atggctagct cttaggtgtcc cgctccccgc 240
gggtgccgct gcctccccgg agcttctctc gcatggctgg ggacagtact gctacttctc 300
gccgactggg tgctgctccg gaccgcgcgt cccgcataat tctccctgct ggtgcccacc 360
gcgcgtgccac tgctccgggt ctgggcggtg ggcctgagcc gctggccgt gctctggctg 420
ggggcctgcg gggtcctcag ggcaacgggt ggctccaaga gcgaaaacgc aggtgcccag 480
ggctggctgg ctgctttgaa gccattagct gcggcactgg gcttggccct gccgggactt 540
gccttgcgtcc gagagctgat ctcatgggaa gccccccgggt ccgcggatag caccaggcta 600
ctgcactggg gaagtccaccc taccgccttc gttgtcagtt atgcagcggc actgcccgc 660
gcagccctgt ggcacaaaact cgggagcctc tgggtgcccgg gcggtcaggg cggctctgg 720
aacccctgtgc gtcggcttct aggctgcctg ggctcggaga cgccgcgcct ctgcgtttc 780
ctggtcctgg tggtcctctc ctctcttggg gagatggcca ttccattctt tacggccgc 840
ctcaactgact ggattctaca agatggctca gccgataacct tcactcgaaa cttaactctc 900
atgtccatcc tcaccatagc cagtgcagtg ctggagttcg tgggtgacgg gatctataac 960
aacaccatgg gccacgtgca cagccacttg cagggagagg tgtttggggc tgcctgcgc 1020
caggagacgg agttttcca acagaaccag acaggtaaca tcatgtctcg ggtaacagag 1080
gacacgtcca ccctgagtga ttctctgagt gagaatctga gcttatttct gtggtaacctg 1140

- 2 -

gtgcgaggcc tatgtctctt gggatcatg ctctgggat cagtgtccct caccatggtc	1200
accctgatca ccctgcctct gctttcctt ctgccaaga aggtggaaa atggtaccag	1260
ttgctggaag tgcaggtgcg ggaatctctg gcaaagtcca gccaggtggc cattgaggct	1320
ctgtcgccca tgcctacagt tcgaagcttt gccaacgagg agggcgaagc ccagaagttt	1380
agggaaaagc tgcaagaaat aaagacactc aaccagaagg aggctgtggc ctatgcagtc	1440
aactcctgga ccactagtat ttcaaggtatg ctgctgaaag tggaatcct ctacattgg	1500
gggcagctgg tgaccagtgg ggctgttaagc agtggaaacc ttgtcacatt tggatcctac	1560
cagatgcagt tcacccaggc tgtggaggta ctgctctcca tctaccccag agtacagaag	1620
gctgtggct cctcagagaa aatattttag tacctggacc gcacccctcg ctgcccaccc	1680
agtggctgt tgactccctt acacttggag ggccttgc agttccaaga tgtctcctt	1740
gcctacccaa accgcccaga tgtcttagtg ctacagggc tgacattcac cctacgccc	1800
ggcgaggtga cggcgctggt gggacccaaat gggcttggaa agagcacagt ggctgccctg	1860
ctgcagaatc tgtaccagcc caccggggc cagctgctgt tggatggaa gcccctccc	1920
caatatgagc accgctacct gcacaggcag gtggctgcag tggacaaga gcccacaggta	1980
tttggaaagaa gtcttcaaga aaatattgcc tatggcctga cccagaagcc aactatggag	2040
gaaatcacag ctgctgcagt aaagtctggg gcccatagtt tcatactctgg actccctcag	2100
ggctatgaca cagaggtaga cgaggctggg agccagctgt caggggtca ggcacaggca	2160
gtggcggtgg cccgagcatt gatccggaaa ccgtgtgtac ttatcctgga tggatccacc	2220
agtgcctgg atgcaaacag ccagttacag gtggagcagc tcctgtacga aagccctgag	2280
cggtaatccc gctcagtgc tctcatcacc cagcaccta gcctgggtga gcaggctgac	2340
cacatcctct ttctggagg aggccatatac cgggaggggg gaacccacca gcagctcatg	2400
gagaaaaagg ggtgctactg ggcctatggc caggctcctg cagatgctcc agaatgaaag	2460
ccttctcaga cctgcgcact ccatctccct ccctttctt ctctctgtgg tggagaacca	2520
cagctgcaga gtagcagctg cctccaggat gagttacttg aaatttgcct tggatgtgtt	2580
acctccttca caagctcctc gtgataatgc agacttcctg gagtacaaac acaggatttg	2640
taattcctac tgtaacggag tttagagcca gggctgatgc tttgggtgtgg ccagcactct	2700
gaaaactgaga aatgttcaga atgtacggaa agatgatcag ctatccaa cataactgaa	2760
ggcatatgct ggcctataaa caccctgttag gttcttgata tttataataa aattgggtgtt	2820
ttgt	2824

- 3 -

<211> 1330
<212> DNA
<213> Homo Sapiens

<400> 2
gcagccccagc caagcactgt caggaatcct gtgaagcagc tccagctatg tgtgaagaag 60
aggacagcac tgccttggtg tgtgacaatg gctctggct ctgtaaggcc ggctttgctg 120
gggacgatgc tcccagggtt gttttcccat ccattgtggg acgtcccaga catcaggggg 180
tgcgttggg aatggacaa aaagacagt acgtgggtga cgaagcacag agcaaaaagag 240
gaatcctgac cctgaagtac ccgatagaac atggcatcat caccaactgg gacgacatgg 300
aaaagatctg gcaccactt ttctacaatg agcttcgtgt tgccctgaa gagcatccca 360
ccctgctcac ggaggcaccc ctgaacccca aggccaaccg ggagaaaaatg actcaaatta 420
tgtttgagac tttcaatgtc ccagccatgt atgtggctat ccaggcggtg ctgtctct 480
atgcctctgg acgcacaact ggcacatgtc tggactctgg agatgggtgc acccacaatg 540
tccccatcta tgagggctat gccttgc(ccc) atgcccattat gcgtctggat ctggctggcc 600
gagatctcac tgactacctc atgaagatcc tgactgagcg tggctattcc ttcgttacta 660
ctgctgagcg tgagattgtc cgggacatca aggagaaaact gtgttatgta gctctggact 720
ttgaaaaatga gatggccact gccgcattccat catcctccct tgagaagagt tacgagttgc 780
ctgatggca agtgcattacc atcggaaaatg aacgttccg ctgcccagag accctgttcc 840
agccatcctt catcggatg gagtctgctg gcatccatga aaccacccat aacagcatca 900
tgaagtgtga tattgacatc aggaaggacc tctatgctaa caatgtccta tcagggggca 960
ccactatgtt ccctggcatt gccgaccgaa tgcagaagga gatcacggcc ctgcacccca 1020
gcaccatgaa gatcaagatc attgcccctc cggagcgcaa atactctgtc tggatcggtg 1080
gctccatccctt ggcctctctg tccaccccttcc agcagatgtg gatcagcaaa caggaatacg 1140
atgaagccgg gccttcattt gtccaccgca aatgcttcta aaacactttc ctgctcctct 1200
ctgtctcttag cacacaactg tgaatgtcct gtggattat gccttcagtt ctttccaaa 1260
tcattccctag ccaaagctct gactcggttac ctatgtgttt ttataataat ctgaaatagg 1320
ctactggtaa 1330

<210> 3
<211> 1805
<212> DNA
<213> Homo Sapiens

<400> 3
aagagactga actgtatctg cctctatttc caaaagactc acgttcaact ttcgctcaca 60

- 4 -

caaagccggg	aaaattttat	tagtcctttt	tttaaaaaaa	gttaatataa	aattatagca	120
aaaaaaaaaa	ggaacctgaa	ctttagtaac	acagctggaa	caatcgcagc	ggcggcggca	180
gcggcgggag	aagaggttta	athtagttga	ttttctgtgg	ttgttggttg	ttcgctagtc	240
tcacggtgat	ggaagctgca	catttttcg	aagggaccga	gaagctgctg	gaggtttggt	300
tctccggca	gcagccgac	gcaaaccaag	gatctggga	tcttcgcact	atcccaagat	360
ctgagtggga	catacttttgc	aaggatgtgc	aatgttcaat	cataagtgtg	acaaaaaactg	420
acaagcagga	agcttatgtta	ctcagtgaga	gtagcatgtt	tgtctccaag	agacgtttca	480
ttttaagac	atgtggtacc	accctcttgc	tgaaagcact	ggttcccctg	ttgaagcttg	540
ctagggatta	cagtgggaaa	gactcaattc	aaagcttctt	ttattctcgt	aagaatttca	600
tgaagccttc	tcaccaaggg	tacccacacc	ggaatttcca	ggaagaaaata	gagtttctta	660
atgcaatttt	ccccaaatgga	gcaggatatt	gtatggacg	tatgaattct	gactgttggt	720
acttatatac	tctggatttc	ccagagagtc	ggtaatcag	tcagccagat	caaaccttgg	780
aaattctgat	gagtgagctt	gacccagcag	ttatggacca	gttctacatg	aaagatggtg	840
ttactgcaaa	ggatgtcaact	cgtgagagtg	gaattcgtga	cctgataccca	ggttctgtca	900
ttgatgccac	aatgttcaat	ccttgtgggt	attcgatgaa	tggaatgaaa	tcggatggaa	960
cttattggac	tattcacatc	actccagaac	cagaattttc	ttatgttagc	tttgaaaacaa	1020
acttaagtca	gaccccttat	gatgacctga	tcagggaaagt	tgtagaagtc	ttcaagccag	1080
gaaaatttgt	gaccaccttg	tttgttaatc	agagttctaa	atgtcgacaca	gtgcttgctt	1140
cgcggcagaa	gattgaaggt	tttaagcgtc	ttgattgcca	gagtgctatg	ttcaatgatt	1200
acaattttgt	ttttaccagt	tttgctaaga	agcagcaaca	acagcagagt	tgattaagaa	1260
aaatgaagaa	aaaacgcaaa	aagagaacac	atgtagaagg	tggtggatgc	tttctagatg	1320
tcgatgctgg	gggcagtgct	ttccataacc	accactgtgt	agttgcagaa	agccctagat	1380
gtaatgatag	tgtaatcatt	ttgaattgtta	tgcatttatta	tatcaaggag	ttagatatct	1440
tgcatgaatg	ctctcttctg	tgttttaggtt	ttctctgcca	ctcttgcgtgt	gaaattgaag	1500
tggatgtaga	aaaaaaccttt	tactatatga	aactttacaa	cacttgtgaa	agcaactcaa	1560
tttggtttat	gcacagtgtta	atatttctcc	aagtatcatc	caaaattccc	cacagacaag	1620
gctttcgtcc	tcatttaggtt	ttggcctcag	cctaaccctc	taggactgtt	ctattaaatt	1680
gctgccagaa	ttttacatcc	agttacctcc	actttctaga	acatattctt	tactaatgtt	1740
attgaaacca	atttctactt	catactgtatg	tttttgaaa	cagcaattaa	agttttctt	1800
ccatg						1805

- 5 -

<210> 4
<211> 419
<212> DNA
<213> Homo Sapiens

<400> 4
ctcttgacga ctccacagat accccgaaagc catggcaagc aagggcttgc aggacctgaa 60
gcaacaggtg gaggggaccg cccaggaagc cgtgtcagcg gccggagcgg cagctcagca 120
agtggtggac caggccacag aggccccca gaaagccatg gaccagctgg ccaagaccac 180
ccaggaaacc atcgacaaga ctgctaacca ggcctctgac accttctctg ggatcgggaa 240
aaaattcggc ctccgtaaat gacagcaggg agacttgggt cggcctcctg aaatgatagc 300
agggagactt gggtgacccc cttccaggc gccatctagc acagcctggc cctgatctcc 360
ggcagccac cacccctcg gtctgcccc tcattaaat tcacgttccc accctgaaa 419

<210> 5
<211> 2333
<212> DNA
<213> Homo Sapiens

<400> 5
ggcacgaggg tagagcgatg cggggccgga gttgcgtcgc cttagtcctc ctggctgccg 60
ccgtcagctg tgccgtcgcg cagcacgcgc cgccgtggac agaggactgc agaaaaatcaa 120
cctatcctcc ttcaggacca acgtacagag gtgcagttcc atggtacacc ataaatctt 180
acttaccacc ctacaaaaga tggcatgaat tgatgcttga caaggcacca atgctaaagg 240
ttatagtgaa ttctctgaag aatatgataa atacattcgt gccaagtggaa aaagttatgc 300
agtggtgga tgaaaaattg cctggcctac ttggcaactt tcctggccct ttgaagagg 360
aaatgaaggg tattggcgct gttactgata tacctttagg agagattatt tcattcaata 420
tttttatga attatttacc atttgtactt caatagtagc agaagacaaa aaaggtcatc 480
taatacatgg gagaaacatg gattttggag tatttcggg gtggAACATA aataatgata 540
cctgggtcat aactgagcaa ctaaaacctt taacagtgaa tttggatttc caaagaaaca 600
acaaaactgt cttcaaggct tcaagcttg ctggctatgt gggcatgtta acaggattca 660
aaccaggact gttcagtctt acactgaatg aacgtttcag tataaatgggt gtttatctgg 720
gtattctaga atggattctg ggaaagaaaatg atgcccgttg gatagggttc ctcactagaa 780
cagttctgga aaatagcaca agttatgaaatg aagccaagaa tttattgacc aagaccaaga 840
tattggcccc agcctacttt atcctggag gcaaccagtc tggggaaaggt tgtgtgatta 900
cacgagacag aaaggaatca ttggatgtat atgaactcga tgctaagcag gtagatgg 960

- 6 -

atgtggtaca aacaaattat gaccgttgga aacatccctt cttccttgat gatgcagaa	1020
cgcctgcaaa gatgtgtctg aaccgcacca gccaaagagaa tatctcattt gaaaccatgt	1080
atgatgtcct gtcaacaaaa cctgtcctca acaagctgac cgtatacaca accttgatag	1140
atgttaccaa aggtcaattc gaaacttacc tgcgggactg ccctgaccct tgtataggtt	1200
ggtgagcaca cgtctggcct acagaatgcg gcctctgaga catgaagaca ccatctccat	1260
gtgaccgaac actgcagctg tctgaccttc caaagactaa gactcgccgc agtttctctt	1320
tgagtcaata gcttgtcttc gtccatctgt tgacaaatga cagatcttt ttttttccc	1380
cctatcagtt gattttctt atttacagat aacttctta ggggaagtaa aacagtcatc	1440
tagaattcac tgagtttgt ttcactttga catttggga tctggtgggc agtgcAACCA	1500
tggtaactc cacctccgtg gaataaatgg agattcagcg tgggtgttga atccagcacg	1560
tctgtgtgag taacgggaca gtaaacactc cacattcttc agttttcac ttctacctac	1620
atatttgtat gttttctgt ataacagcct tttcctctg gttctaactg ctgttaaaat	1680
taatatatca ttatcttgc tgttattgac agcgatatta ttttattaca tattcattaga	1740
gggatgagac agacattcac ctgtatattt ctttaatgg gcacaaaatg gccccttgcc	1800
tctaaatagc actttttggg gttcaagaag taatcagtat gcaaagcaat ctttatACA	1860
ataattgaag tgttccctt ttcataatta ctctacttcc cagtaaccct aaggaagttt	1920
ctaacttaaa aaactgcac ccacgttctg ttaatttagt aaataaacaa gtcaaagact	1980
tgtggaaaat aggaagtgaa cccatattt aaattctcat aagtagcatt gatgtataaa	2040
acaggTTTT agtttGTTCT tcagattgat agggagTTT aaAGAAATT tagtagttac	2100
taaaaattatg ttactgtatt tttcagaaat caaaactgctt atgaaaagta ctaatagaac	2160
ttgttaacct ttctaacctt cacgattaac tgtgaaatgt acgtcatttgc tgcaagaccg	2220
tttgcact tcattttgta taatcacagt tgtgttcctg acactcaata aacagtcaact	2280
ggaaagagtg ccagtcagca gtcacgcacg ctgataaaaa aaaaaaaaaaaa aaa	2333

<210> 6
<211> 2530
<212> DNA
<213> Homo Sapiens

<400> 6	
cagttccct gtggTTTCCC gaggcttcct tgcttcccgc tctgcgagga gcTTTcatc	60
cgaaggcggg acgatGCCGG ataatCGGA gCCGAGGAAC CGGCAGCCGA ggATCCGCTC	120
cggaaacgag cctcgTTCCG CGCCCGCCAT ggaACCggat ggtcgccgtg CCTGGGCCCC	180
cagtcgcGCC GCGCTCGACC GCCTGGAGAA GCTGCTGCgc TGCTCGCGTT GTACTAACAT	240

- 7 -

tctgagagag	cctgtgtgtt	taggaggatg	tgagcacatc	ttctgttagta	attgtgtaa	300
tgactgcatt	ggaactggat	gtccagtgtg	ttacaccccg	gcctggatac	aagacttgaa	360
gataaataga	caactggaca	gcatgattca	actttgttagt	aagcttcgaa	atttgctaca	420
tgacaatgag	ctgtcagatt	tgaaaagaaga	taaacctagg	aaaagtttgt	ttaatgatgc	480
aggaaacaag	aagaattcaa	ttaaaatgtg	gtttagccct	cgaagtaaga	aagtcagata	540
tgttgtgagt	aaagcttcag	tgcaaacc	gcctgcaata	aaaaaaagatg	caagtgctca	600
gcaagactca	tatgaatttg	tttccccaa	tcctcctgca	gatgtttctg	agagggctaa	660
aaaggcttct	gcaagatctg	aaaaaaagca	aaaaaaagaaa	actttagctg	aaatcaacca	720
aaaatggaat	ttagaggcag	aaaaagaaga	tggtaattt	gactccaaag	aggaatctaa	780
gcaaaagctg	gtatccttct	gtagccaacc	atctgttata	tccagtcc	agataaatgg	840
tgaaatagac	ttactagcaa	gtggctcc	gacagaatct	gaatgtttg	gaagtttaac	900
tgaagtctct	ttaccattgg	ctgagcaa	agagtctcca	gacactaaga	gcaggaatga	960
agtagtgact	cctgagaagg	tctgaaaaaa	ttatcttaca	tctaagaaat	cttgc	1020
agaaaataat	ggaaaacgtg	gccatcaca	tagactttcc	agtcccattt	ctaagagatg	1080
tagaaccagc	attctgagca	ccagtggaga	ttttgttaag	caaaccgtgc	cctcagaaaa	1140
tataccattg	cctgaatgtt	cttcaccacc	ttcatgcaaa	cgtaaagttg	gtgg tacatc	1200
agggaggaaa	aacagtaaca	tgtccgatga	attcattagt	cttcaccag	gtacaccacc	1260
ttcacatta	agtagttcaa	gttacagggca	agtatgtct	agtccctc	aatgaagct	1320
gttgc	ccaaat	atggctgtga	aaagaaatca	tagaggagag	actttgctcc	1380
tataagggc	gacatacctt	ctgttgaata	cctttacaa	aatgaaatgt	atccaaatgt	1440
taaagaccat	gctggatgga	caccattgca	tgaagcttgc	aatcatggc	acctgaaggt	1500
agtggattta	ttgctcc	ataggcatt	ggtgaacacc	accgggtatc	aaaatgactc	1560
accacttcac	gatgcagcc	agaatggca	cgtggatata	gtcaagctgt	tactttccta	1620
tggagcctcc	agaaatgctg	ttaatataatt	tggctcg	cctgtcgatt	atacagatga	1680
tgaaagtatg	aaatcgctat	tgctgctacc	agagaagaat	gaatcatc	cagctagcc	1740
ctgctcagta	atgaacactg	ggcagcgtag	ggatggac	cttgc	ttagcagtgg	1800
gctgtcttca	gaacaacaga	aaatgctc	tgagcttgc	gtaatttta	aggctaaaaa	1860
ataatactgag	tttgacagta	cagtaactca	tgttgg	cctgg	tgatgtatc	1920
taccttgaag	tgtatgttgc	ggattctcaa	tggatgtgg	attctaaaat	ttgaatgggt	1980
aaaagcatgt	ctacgaagaa	aagtatgtga	acaggaagaa	aagtatgaaa	ttcctgaagg	2040

- 8 -

tccacgcaga	agcaggctca	acagagaaca	gctgttgcca	aagctgtttg	atggatgcta	2100
cttctatttg	tggggAACCT	tcaaacacca	tccaaaggac	aaccttatta	agctcgtcac	2160
tgccaggtggg	ggccagatcc	tcagtagaaa	gcccaagcca	gacagtgacg	tgactcagac	2220
catcaataca	gtcgcataacc	atgcgagacc	cgattctgat	cagcgcttct	gcacacagta	2280
tatcatctat	gaagatttgt	gtaattatca	cccagagagg	gttcggcagg	gcaaagtctg	2340
gaaggctcct	tcgagctgg	ttatagactg	tgtgatgtcc	tttgagttgc	ttcctcttga	2400
cagctgaata	ttataccaga	tgaacatttc	aaattgaatt	tgcacggttt	gtgagagccc	2460
agtcatgtt	ctgttttaa	tgttcacatt	tttacaaata	ggttagagtca	ttcatatttg	2520
tctttgaatc						2530

<210> 7
 <211> 1203
 <212> DNA
 <213> Homo Sapiens

<400> 7	ggacgctgat	gcgttgggt	tctcgctgc	agaccctctg	gacctggta	cgattccata	60
	atgtaccaca	acagtagtca	gaagcggcac	tggaccttct	ccagcgagga	gcagctggca	120
	agactgcggg	ctgacgccaa	ccgcaaattc	agatgcaaag	ccgtggccaa	cggaaaggtt	180
	cttccgaatg	atccagtctt	tcttgagcct	catgaagaaa	tgacactctg	caaatactat	240
	gagaaaaggt	tatttgaatt	ctgttcggtg	tttaagccag	aatgccaag	atctgttgc	300
	ggtacggctt	gtatgtattt	caaacgtttt	tatcttaata	actcagtaat	ggaatatcac	360
	cccaggataa	taatgctcac	ttgtgcattt	ttggcctgca	aagttagatga	attcaatgtt	420
	tcttagtcctc	agtttgttgg	aaacctccgg	gagagtccctc	ttggacagga	gaaggcactt	480
	gaacagatac	tggaatatga	actacttctt	atacagcaac	ttaatttcca	ccttattgtc	540
	cacaatcctt	acagaccatt	tgagggcttc	ctcatcgact	taaagacccg	ctatcccata	600
	ttggagaatc	cagagatttt	gaggaaaaca	gctgatgact	ttcttaatag	aattgcattt	660
	acggatgctt	acctttata	cacaccttcc	caaattgccc	tgactgccat	tttatctagt	720
	gcctccaggg	ctggaattac	tatggaaaagt	tatttatcag	agagtctgat	gctgaaagag	780
	aacagaactt	gcctgtcaca	gttacttagat	ataatgaaaa	gcatgagaaa	cttagtaaag	840
	aagtatgaac	cacccagatc	tgaagaagtt	gctgttctga	aacagaagtt	ggagcgatgt	900
	cattctgctg	agcttgcact	taacgtaatc	acgaagaaga	ggaaaggcta	tgaagatgat	960
	gattacgtct	caaagaaaatc	caaacatgag	gaggaagaat	ggactgatga	cgacctggta	1020

- 9 -

gaatctctct aaccatttga agttgatttc tcaatgctaa ctaatcaaga gaagtaggaa	1080
gcatatcaaa cgtttaactt tatttaaaaa gtataatgtg aaaacataaa atatattaaa	1140
acttttctat tgtttcttt cccttcaca gtaactttat gtaaaataaa ccatcttcaa	1200
aag	1203

<210> 8
<211> 653
<212> DNA
<213> Homo Sapiens

<400> 8	
atggcgtccc ttcccttgc acctgttaac atcttaagg caggagctga tgaagagaga	60
gcagagacag ctgtctgac ttctttatt ggtgccatcg ccattggaga ctggtaaag	120
agcaccttgg gacccaaagg catggacaaa attcttctaa gcagtggacg agatgcctct	180
cttatggtaa ccaatgatgg tgccactatt ctaaaaaaca ttggtgttga caatccagca	240
gctaaagtt tagtgatat gtcaagggtt caagatgatg aagttggtga tggcactacc	300
tctgttaccg ttttagcagc agaattatta agggaaagcag aatcttaat tgcaaaaaag	360
attcatccac agaccatcat agcgggttgg agagaagcca cgaaggctgc aagagaggcg	420
ctgtttagtt ctgcagttga tcatggttcc gatgaagtta aattccgtca agatttaatg	480
aatattgcgg gcacaacatt atcctcaaaa cttcttactc atcacaaga ccacttaca	540
aagtttagctg tagaagcagt tctcagactg aaaggctctg gcaaccttggca ggcaattcat	600
attatcaaga agcttaggagg aagtttggca gattcctatt tagatgaagg tat	653

<210> 9
<211> 1686
<212> DNA
<213> Homo Sapiens

<400> 9	
ccacgcgtcc gggcgtaagc caggcgtgtt aaagccggc ggaactgctc cggagggcac	60
gggctccgta ggcaccaact gcaaggaccc ctccccctgc gggcgctccc atggcacagt	120
tgcgttgcg gagtgacctg cactcgctgc ttcaagcttga tgcacccatc cccaatgcac	180
cccctgcgcg ctggcagcgc aaagccaagg aagccgcagg cccggccccc tcacccatgc	240
ggcccgccaa ccgatcccac agcgccggca ggactccggg ccgaactcct ggcaaatcca	300
gttccaaggt tcagaccact cctagcaaac ctggcggtga ccgctatatac ccccatcgca	360
gtgctgccc gatggaggtg gccagcttcc tcctgagcaa ggagaaccag tctgaaaaca	420
gccagacgcc caccaagaag gaacatcaga aagcctggc tttgaacctg aacggtttg	480

-10-

atgttagagga agccaagatc ctccggctca gtggaaaacc aaaaaatgcg ccagagggtt	540
atcagaacag actgaaagta ctctacagcc aaaaggccac tcctggctcc agccggaaga	600
cctgccgtta cattccttcc ctgccagacc gtatcctgga tgcgcctgaa atccgaaatg	660
actattacct gaaccttgtg gattggagtt ctggaatgt actggccgtg gcactggaca	720
acagtgtgt a cctgtggagt gcaagctctg gtgacatcct gcagctttg caaatggagc	780
agcctgggaa atatatatcc tctgtggcct ggatcaaaga gggcaactac ttggctgtgg	840
gcaccaggcag tgctgaggtg cagctatggg atgtgcagca gcagaaacgg cticgaaata	900
tgaccagtca ctctgcccga gtgggctccc taagctggaa cagctatatac ctgtccagtg	960
gttcacgttc tggccacatc caccaccatg atgttcgggt agcagaacac catgtggcca	1020
cactgagtgg ccacagccag gaagtgtgtg ggctgcgctg ggccccagat ggacgacatt	1080
tggccagtgg tggtaatgt aacttggtca atgtgtggcc tagtgctcct ggagaggggtg	1140
gctgggttcc tctgcagaca ttcacccagc atcaaggggc tgtcaaggcc gtagcatgg	1200
gtccctggca gtccaaatgtc ctggcaacag gagggggcac cagtgatcga cacattcgca	1260
tctggaatgt gtgctctggg gcctgtctga gtgcgcgtgaa tgcccatc caggtgtgct	1320
ccatcctctg gtctccccat tacaaggagc tcatctcagg ccatggctt gcacagaacc	1380
agctagttat ttggaagtac ccaaccatgg ccaaggtggc tgaactcaaa ggtcacacat	1440
cccggtcct gagtctgacc atgagcccag atggggccac agtggcatcc gcagcagcag	1500
atgagaccct gaggctatgg cgctgtttt agttggaccc tgcgcggcgg cgggagcggg	1560
agaaggccag tgcagccaaa agcagcctca tccaccaagg catccgctga agaccaaccc	1620
atcacctcag ttgttttta ttttcta at aaagtcatgt ctcccttcat gtttttttt	1680
ttaaaaa .	1686

<210> 10
 <211> 1374
 <212> DNA
 <213> Homo Sapiens

<400> 10	
attgcggcgg cgccagagct gctggagcgc tcggggtccc cgggcggcgg cggcggcga	60
gaggaggagg caggcggcgg ccccgggtggc tccccccgg acggtgcgcg gcccggcccg	120
tctcgcaac tcgcgggtgt cgcgccggccc cgcgctgctc cgaccccccgg cccctccgccc	180
gccgcctatgg ctgcggcgt agtgcggcagc tcgcagaagg cgctgctgct ggagctcaag	240
gggctgcagg aagagccggt cgagggattc cgcgatcac tggtgacga gggcgatcta	300
tacaactggg aggtggccat ttccgggccc cccaaacaccc actacgaggg cggtacttc	360

-11-

aaggcgcc	tcaagttccc	catcgactac	ccatactctc	caccagcctt	tcggttcctg	420
accaagatgt	ggcacccctaa	catctacgag	acgggggacg	tgtgtatctc	catcctccac	480
ccgcccgtgg	acgaccccca	gagcggggag	ctgcctcag	agaggtggaa	ccccacgcag	540
aacgtcagga	ccattctcct	gagtgtgate	tccctcctga	acgagccaa	caccttctcg	600
cccgcaaacg	tggacgcctc	cgtgatgtac	aggaagtggaa	aagagagcaa	gggaaaggat	660
cgggagtaca	cagacatcat	ccggaagcag	gtcctgggaa	ccaagggtggaa	cgcggagcgt	720
gacggcgtga	aggtgcccac	cacgctggcc	gagtactgcg	tgaagaccaa	ggcgccggcgc	780
cccgacgagg	gctcagacact	cttctacgac	gactactacg	aggacggcga	ggtggaggag	840
gaggccgaca	gctgcttcgg	ggacgatgag	gatgactctg	gcacggagga	gtcctgacac	900
caccagaata	aacttgccga	gtttaccta	ctagggccgg	accctggct	ccttagacga	960
cagactacct	cacggagggtt	ttgtgctgg	ccccgtctcc	tctggttgtt	tcgtttggc	1020
tttttctccc	tccccatgtc	tgttctgggt	tttcacgtgc	ttcagagaag	aggggctgcc	1080
ccaccgccac	tcacgtca	cggggctcgg	tggacgggcc	cagggtggga	gcggccggcc	1140
cacctgtccc	ctcgggaggg	gagctgagcc	cgacttctac	cggggtcccc	cagcttccgg	1200
actggccgca	ccccggagga	gccacggggg	cgctgctgg	aacgtggcg	ggggggccgtt	1260
tcctgacact	accagcctgg	gaggcccagg	tgtagcggtc	cgaggggccc	ggtcctgcct	1320
gtcagctcca	ggtcctggag	ccacgtccag	cactgagtgg	acggattcac	caat	1374

<210> 11
 <211> 806
 <212> DNA
 <213> Homo Sapiens

<400>	11					
cgccacttgtt	ctcgacgtgg	ggcgccagc	gatggagccg	cccagttcaa	tacaaacaag	60
ttagtttgc	tcatcagatg	aagacccat	tgaagatgaa	cagactccaa	ttcatatatc	120
atggcttatct	ttgtcacgag	tgaattgttc	tcagttctc	gttttatgtg	ctttccagg	180
ttgttaaattt	aaagatgtta	gaagaaaatgt	ccaaaaagat	acagaagaac	taaagagctg	240
tggtatacaa	gacatatttgc	ttttctgcac	cagagggaa	ctgtcaaaat	atagagtccc	300
aaaccttctg	gatcttacc	agcaatgtgg	aattatcacc	catcatcatc	caatcgacg	360
tggagggact	cctgacatag	ccagctgctg	tgaaataatg	gaagagctta	caacctgcct	420
taaaaaattac	cgaaaaaacct	taatacactg	ctatggagga	cttggagat	cttgtcttgc	480
agctgcttgt	ctcctactat	acctgtctga	cacaatatca	ccagagcaag	ccatagacag	540

-12-

cctgcgagac ctaagaggat ccggggcaat acagaccatc aagcaataca attatcttca	600
ttagtttcgg gacaaattag ctgcacatct atcatcaaga gattcacaat caagatctgt	660
atcaagataa aggaattcaa atagcatata tatgaccatg tctgaaatgt cagttctcta	720
gcataatttg tattgaaatg aaaccaccag tgtttatcaac ttgaatgtaa atgtacatgt	780
gcagatattc ctaaagttt attgac	806

<210> 12
<211> 717
<212> DNA
<213> Homo Sapiens

<400> 12 agagcgatca tgtcgacaaa acaaatttac tattcgaca aatacgacga cgaggagttt	60
gagtatcgac atgtcatgct gcccaaggac atagccaagc tggccctaa aacccatctg	120
atgtctgaat ctgaatggag gaatcttggc gttcagcaga gtcagggatg ggtccattat	180
atgatccatg aaccagaacc tcacatctg ctgttccggc gcccactacc caagaaacca	240
aagaaatgaa gctggcaagc tactttcag cctcaagctt tacacagctg tccttacttc	300
ctaacatctt tctgataaca ttattatgtt gccttcttgt ttctcacttt gatatttaaa	360
agatgttcaa tacactgttt gaatgtgctg gtaactgctt tgcttcttga gtagagccac	420
caccaccata gcccagccag atgagtgctc tgtggaccca cagcctaagc tgagtgtgac	480
cccagaagcc acgatgtgct ctgtatccag aacacacttg gcagatggag gaagcatctg	540
agtttgagac catggctgtt acagggatca tgtaaacttg ctgttttgtt ttttctgcc	600
gggtgttgta tgtgtggta cttgcggatt tatgtttcag tgtactggaa actttccatt	660
ttattcaaga aatctgttca tggtaaaaagc cttgattaaa gaggaagttt ttataat	717

<210> 13
<211> 627
<212> DNA
<213> Homo Sapiens

<400> 13 agtctccggc gagttgtgc ctgggctgga cgtggtttg tctgctgcgc ccgctttcg	60
cgctctcggt tcattttctg cagcgcgcca cgaggatggc ccacaagcag atctactact	120
cggacaagta ctgcgacgaa cactacgagt accggcatgt tatgttaccc agagaacttt	180
ccaaacaagt acctaaaaact catctgatgt ctgaagagga gtggaggaga ctgggtgtcc	240
aacagagtct aggctgggtt cattacatga ttcattgagcc agaaccacat attcttctct	300
ttagacgacc tcttccaaaa gatcaacaaa aatgaagttt atctggggat cgtcaaatct	360

- 13 -

ttttcaaatt taatgtatat gtgtatataa ggttagtattc agtgaatact tgagaaatgt	420
acaaaatctt catccataacc tgtgcattgag ctgtattctt cacagcaaca gagctcagtt	480
aaatgcaact gcaaggtaggt tactgtaaga tggtaagat aaaagttctt ccagtcagtt	540
tttctcttaa gtgcctgttt gagtttactg aaacagttt ctttgttca ataaaagtttg	600
tatqttqcat taaaaaaaaaaaaaaa	627

<210> 14
<211> 341
<212> DNA
<213> Homo Sapiens

```
<400> 14
aggagaaggg aggtgactcc ggcggaagag gacaaggcag aatgcaggcc cttcggtgt 60
cccagggcgt gatccgctcc ttcagctcca ccgccccgaa ccgctttcag aaccgagtgc 120
gcgagaaaaca gaagctcttc caggaggaca atgacatccc gttgtacctg aagggcggca 180
tcgttgacaa catcctgtac cgagtgacaa tgacgctgtg tctggcgcc actgtctaca 240
gcttgtactc ccttggctgg gcctcccttcc ccaggaattt agaccaagaa gcctgggggg 300
cctqaqaqac ttqaacaact qtcataaaac qctggccctct q 341
```

```
<210> 15
<211> 1581
<212> DNA
<213> Homo Sapiens
```

```
<400> 15
ataactaaat tacatTTTct tggTCTTTg actatgaaat agtttaccct agcaacatga 60
aaaacaagag acctaagcta ttagaagaaa tgcaGTTcta tgtatCTTgt gtgtatAGtt
tttCCCTGGG tggtttcaa cgaccagtga ctccttagct ggTTCCtca gctgctagca 120
cttgctCTgg gtacttGTcc tcaacacgTC catctgcaac aatgtgtGCC taggaaataa 180
actcaactta ctactcaccc aaccaaaatg taattttta aacgcagcac acactgggtg 240
gattccaaag tcatgattat gcttactat gcactCTGta ctattcagac cactactTC 300
attcattact gcaattaact gcacacataa ctattttta ttgctaatta tacaccactg 360
atTTCCactt taaaaaaaca ttagcatttG tctctaatta aatatttact gcttGTgttt 420
tacagacccg atatcaggTT cttctttaga ctgggcttat gacctgggca tcaaacacac 480
atTTGCCTT gagCTCCGAG ataaaggcaa atTTGGTTT ctccttCCAG aatcccggat 540
aaagCCAACG tgcagAGAGA ccatgCTAGC tgtCAAATTt attGCCAAGt atATCCTCAA 600
qcataactcc taaaAGAACTG ccctCTGTtt qqaataaqcc aattaatCCT tttttqTqCC 660
qcatTTCC taaaAGAACTG ccctCTGTtt qqaataaqcc aattaatCCT tttttqTqCC 720
```

-14-

tttcatcaga aagtcaatct tcagtttatcc ccaaattgcag cttctatttc acctgaatcc	780
ttctttgct catttaagtc ccatgttact gctgttgct tttacttact ttcatgtacaa	840
ccataacgaa gtagcttaa gtgaaacctt ttaactacct ttctttgctc caagtgaagt	900
ttggaccagg cagaaagcat tattttgaaa ggtgatatac agtggggcac agaaaacaaa	960
tgaaaaccct cagtttctca cagattttca ccatgtggct tcatcaattt atgtgctaatt	1020
acaataaaat aaaatgcact taatgcttta aaattcatct ttttatgata aacaatattc	1080
tctgtatttc tctatagcat taataatcaa tattaatgcc attcattcag tctgttaata	1140
agaaataata tcttcaattt tcaaaaacat aatttgccta tcttttctg atagaagtag	1200
acattgttta tatcttcaaa aaagcaaaag gatgtcctag cagggaaataa agtggttcat	1260
atagagatga atctcagtcc tttaaataac cgatccagtt ctcatcagca taatgtacat	1320
taaattcaaa atagtttaat ttaacctgcc ataatcagaa gaaaccaccc gctaaaacat	1380
ctgtttgccg gtacagacac agacaagaca gtctggtcag ctgtgacccc tgccctccta	1440
atggatagaa aggaaacctg gaaacatact gtaagttgag gacggaaagt catgttgacc	1500
aaaggcaatc agggttaactt gctgcatttg taccatttactccttatta tttaagatag	1560
tattatttggaa tagcttctcc c	1581

<210> 16
 <211> 2443
 <212> DNA
 <213> Homo Sapiens

<400> 16	
aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtggtttctc ctgcagctcc	60
cctgggctcc gcggccagta gtgcagcccg tggagccgcg gctttgcccgtctcctctgg	120
gtggcccccag tgcgccggct gacactcatt cagccgggga aggtgaggcg agtagaggct	180
ggtgccgaac ttgccgcccc cagcagcggcc ggcgggctaa gcccagggcc gggcagacaa	240
aagaggccgc ccgcgttagga aggcacggcc ggcggcggcg gagcgcagcg atggccgggc	300
gagggggcag cgcgctgctg gctctgtcg gggcactggc tgcctgcggg tggctctgg	360
gcgcgcgaagc ccaggagccc gggcgcccg cggcgggcat gaggcggcgc cggcggctgc	420
agcaagagga cggcatctcc ttcgagtacc accgctaccc cgagctgcgc gaggcgctcg	480
tgtccgtgtg gctgcagtgc accgcccattca gcaggattta cacgggtggg cgcaagcttcg	540
aggggccggga gctcctggtc atcgagctgt ccgacaaccc tggcgtccat gagcctggtg	600
agcctgaatt taaatacatt gggaaatatgc atggaaatga ggctgttggaa cgagaactgc	660
tcattttctt ggcccagtac ctatgcaacg aataccagaa ggggaacgag acaattgtca	720

-15-

acctgatcca cagtaccgc attcacatca tgccttcctt gaacccagat ggctttgaga	780
aggcagcgta tcagcctgggt gaactcaagg actgggttgtt gggtcgaagc aatgcccagg	840
gaatagatctt gaaccggaac tttccagacc tggataggat agtgtacgtg aatgagaaaag	900
aagggtggtcc aaataaatcat ctgttgaaaa atatgaagaa aattgtggat caaaacacaa	960
agcttgctcc tgagaccaag gctgtcattt attggattat ggatattcctt tttgtgcttt	1020
ctgccaatctt ccatggagga gaccttgtgg ccaattatcc atatgatgag acgcggagtg	1080
gtagtgctca cgaatacagc tcctccccag atgacgccat tttccaaagc ttggcccgaa	1140
catactcttc tttcaacccg gccatgtctg accccaatcg gccaccatgt cgcaagaatg	1200
atgatgacag cagctttagt gatggAACCA ccaacgggtgg tgcttggta agcgtacctg	1260
gagggatgca agacttcaat taccttagca gcaactgttt tgagatcacc gtggagctta	1320
gctgtgagaa gttcccacctt gaagagactc tgaagaccta ctgggaggat aacaaaaact	1380
ccctcattttagt ctacctttagt cagatacacc gaggagttaa aggatttgc cgagaccc	1440
aaggtaaccc aattgcgaat gccaccatct ccgtggagg aatagaccac gatgttacat	1500
ccgcaaagga tggtgattac tggagattgc ttatacctgg aaactataaa cttacagcct	1560
cagctccagg ctatctggca ataacaaaga aagtggcagt tccttacagc cctgctgctg	1620
gggtttagtt tgaactggag tcattttctg aaaggaaaga agaggagaag gaagaattga	1680
tggaaatggtg gaaaatgtt gtcagaaactt taaattttta aaaaggcttc tagttagctg	1740
ctttaaatctt atcttatataa tttttttttt aatcattttaa atattaatca actttccctt	1800
cagttataac ttaacatttga tttttttttt aatcattttaa atattaatca actttccctt	1860
aaataaatag cctcttaggt aaaaatataa gaacttgata tatttcatcc tctttatag	1920
tattcattttt cctacctata ttacacaaaa aagtatagaa aagatttaag taattttgcc	1980
atcttaggct taaatgcaat attcctggta ttatttacaa tgcagaattt ttttagtaat	2040
tctagctttc aaaaattttttt gaaatgttt tactgttattt ggtgacaatg tcacataatg	2100
aatgctattt aaaaaggtaa cagatacagc tcggagttgtt gagcactcta ctgcaagact	2160
taaatagttc agtataaaattt gtcgtttttt tttttttttt actaactata agcatgatct	2220
tgttaatgca tttttgtatgg gaagaaaaagg tacatgttta caaagaggat ttatgaaaaag	2280
aataaaaaattt gacttcttgc ttgtacatat aggagcaata ctattatattt atgttagtccg	2340
ttaacactac ttaaaaatgtttt agggtttctt cttgtttgtt gagggtggccca gaattgcatt	2400
ctgaatgaat aaaggtaaa aaaaaatccc cagtggaaaaaaa aaa	2443

-16-

<210>	17					
<211>	3100					
<212>	DNA					
<213>	Homo Sapiens					
<400>	17					
actcgtctct	ggtaaagtct	gagcaggaca	gggtggctga	ctggcagatc	cagaggttcc	60
cttggcagtc	cacgccaggc	cttcaccatg	gatcagttcc	ctgaatcagt	gacagaaaaac	120
tttgagtagc	atgatttggc	tgaggcctgt	tatattgggg	acatcgtggt	ctttgggact	180
gtgttccctgt	ccatattcta	ctccgtcatc	tttgcattg	gcctggtggg	aaatttgttg	240
gttagtgtttg	ccctcaccaa	cagcaagaag	cccaagagtg	tcaccgacat	ttacctcctg	300
aacctggcct	tgtctgatct	gctgtttgt	gccactttgc	ccttctggac	tcactattt	360
ataaatgaaa	agggcctcca	caatgccatg	tgcaaattca	ctaccgcctt	cttcttcatc	420
ggctttttt	gaagcatatt	cttcatcacc	gtcatcagca	ttgataggt	cctggccatc	480
gtcctggccg	ccaactccat	gaacaaccgg	accgtgcagc	atggcgtcac	catcagccta	540
ggcgtctggg	cagcagccat	tttggtggca	gcaccccagt	tcatgttcac	aaagcagaaa	600
gaaaatgaat	gccttggta	ctaccccgag	gtcctccagg	aaatctggcc	cgtgctccgc	660
aatgtggaaa	caaattttct	tggcttccta	ctccccctgc	tcattatgag	ttattgctac	720
ttcagaatca	tccagacgct	gttttcctgc	aagaaccaca	agaaagccaa	agccattaaa	780
ctgatccttc	tgggtggcat	cgtgttttc	ctcttctgga	caccctacaa	cgttatgatt	840
ttcctggaga	cgcttaagct	ctatgactc	tttcccagtt	gtgacatgag	gaaggatctg	900
aggctggccc	tcagtgtgac	tgagacggtt	gcatttagcc	attgtgcct	gaatcctctc	960
atctatgcat	ttgctgggga	gaagttcaga	agatacctt	accacctgta	tggaaatgc	1020
ctggctgtcc	tgtgtggcg	ctcagtcac	gttgatttct	cctcatctga	atcacaaagg	1080
agcaggcatg	gaagtgttct	gagcagcaat	tttacttacc	acacgagtga	tggagatgca	1140
ttgctccttc	tctgaaggga	atcccaaagc	cttgtgtcta	cagagaacct	ggagttcctg	1200
aacctgatgc	tgactagtga	ggaaagattt	ttgtgttat	ttcttacagg	cacaaaatga	1260
tggacccaat	gcacacaaaa	caaccctaga	gtgttgtga	gaattgtgct	caaaatttga	1320
agaatgaaca	aattgaactc	tttgaatgac	aaagagtaga	catttctctt	actgcaaatg	1380
tcatcagaac	tttttgtttt	gcagatgaca	aaaattcaac	tcagactagt	ttagttaaat	1440
gagggtgtg	aatattgttc	atattgtgc	acaagaaaa	gggtgtctga	gcctcaaag	1500
tgaggggaaa	ccagggcctg	agccaagcta	gaattccctc	tctctgactc	tcaaatctt	1560
tagtcattat	agatccccca	gactttacat	gacacagctt	tatcaccaga	gagggactga	1620

-17-

cacccatgtt tctctggccc caagggaaaa ttcccaggga agtgctctga taggccaagt	1680
ttgtatcagg tgcccatccc tggaaggtgc tgttatccat ggggaaggga tatataagat	1740
ggaagcttcc agtccaatct catggagaag cagaaaataca tatttccaag aagttggatg	1800
ggtgggtact attctgatta cacaaaacaa atgccacaca tcacccttac catgtgcctg	1860
atccagcctc tcccctgatt acaccagcct cgttttcatt aagccctctt ccatcatgtc	1920
cccaaacctg caagggctcc ccactgccta ctgcacatcgag tcaaaaactca aatgcttggc	1980
ttctcatacg tccaccatgg ggtcctacca atagattccc cattgcctcc tccttcccaa	2040
aggactccac ccattcctatc agcctgtctc ttccatatga cctcatgtcat ctccacactgc	2100
tcccaggcca gtaagggaaa tagaaaaacc ctgcccccaa ataagaaggg atggattcca	2160
accccaactc cagtagcttg ggacaaatca agcttcagtt tcctggtctg tagaagaggg	2220
ataaggtacc tttcacatag agatcatcct ttccagcatg aggaacttagc caccaactct	2280
tgcaaggcttc aacccttttgc tctgcctctt agacttctgc tttccacacc tgcaactgctg	2340
tgctgtgccc aagttgtggc gctgacaaag cttggaagag cctgcaggtg cttggccgc	2400
gtgcatagcc cagacacaga agaggctggc tcttacatgc gcacccagtg agcactccca	2460
agtctacaga gtgatagcct tccgtaaccc aactctcctg gactgccttg aatatcccct	2520
cccaagtcacc ttgtgcaagc ccctgcccatt ctggggaaaat accccatcat tcatgctact	2580
gccaacctgg ggagccaggg ctatggagc agctttttt tccccctag aaacgtttgg	2640
aacaatgtaa aactttaaag ctcgaaaaca attgtataaa tgctaaagaa aaagtcatcc	2700
aatctaaccatca catcaatatt gtcattcctg tattcacccg tccagacctt gttcacactc	2760
tcacatgttt agagttgcaa tcgtaatgta cagatggttt tataatctga tttgtttcc	2820
tcttaacggtt agaccacaaa tagtgctcgc tttctatgta gtttgtaat tatcattttt	2880
gaagactcta ccagactgtg tattcattga agtcagatgt ggtaactgtt aaattgctgt	2940
gtatctgata gctcttggc agtctatatg tttgtataat gaatgagaga ataagtcatg	3000
ttccttcaag atcatgtacc ccaatttact tgccattact caattgataaa acatttaact	3060
tgtttccaat gtttagcaaa tacatatttt atagaacttc	3100

<210> 18
<211> 3995
<212> DNA
<213> Homo Sapiens

<400> 18 ggatccgcgg gacagatgag gaaggggctt aagtcaactgc agccagaggg atggaggtgg	60
actgatggga gggcttctcc ggtggggta gaagggaaaa gtagggaaag agaagtgtaa	120

ggtagatggc agagggcagag acatggaaag acagactcta gggttcctga tgatatctat	180
ctcgcccaac acaaaaaggga gggtacagtg gtgggggcac ccaagctagg gtgtgagtagc	240
cctaagtgtta ttcttctgag atgttaggcata ttcactaact ctggAACAG ctacagtttc	300
acagtaggaa gaccccccga gattcactgc ccctccctta gtAAAGCCTC tgagaccttc	360
ctgaacattc cttctgtct ttgccctctg ttccttccag agactatgtg cccaggcaga	420
tggattcctc ccgggCCTGA gaggaactgc aggaattctc ctgcctctta cccgtaaaaac	480
cccaacttct ctagccctag ggcaggaagt cccaaacaat ttctaccctt ttttctgcaa	540
tttcattgg ggtgagagga ggcccaggag gagagagagc tgggctcagc ttcttttga	600
gctgctggag ccctctgtga ggaggccctc tttgctggct tctcaggaga gtgtggctag	660
gttctgcctg cctatggaa gagggggcga gggtgtgtgg agcaagatgg tgcggtgctg	720
gtgccttggg acctggggga atggcacagc tggcggctc agagacggcc tactttactc	780
acagctggaa ttttagtgggg agaagcagct caactccaaat cctggaggat tagggagatt	840
aaagtgagag aagagagaga tgtcccagag accaagagct cccaggtcag ccctctggat	900
cctggcaccc ccactgctgc ggtgggcacc cccactcctc acagtgcgtc atagcgaccc	960
cttccaggcc ttgctggaca tcctggacta ttatgaggct tccctctcag agagtcagaa	1020
ataccgctac caagatgaag acacgcccc tctggagcac agcccggccc acctccccaa	1080
ccaggccaaat tctccccag tgattgtcaa cacagatacc cttagaagccc caggatatga	1140
gttgcaggtg aacgggaccg agggggagat ggaatacagag gaaatcacat tggaaagggg	1200
taactcaggt ctgggcttca gcatcgagg tggcactgac aacccacaca tcggtgacga	1260
cccatccatt ttcatcacca agatcattcc tgggtgggtc gcggcccagg atggccgcct	1320
cagggtcaac gacagcatcc tgTTTgtaaa tgaagtggac gtgcgcgagg tgacccactc	1380
agcggcggtg gaagccctca aagaggcagg ctccatcggt cgccctatg tcatgcgcgg	1440
gaagcccccg gctgagaagg tcatggagat caagctcatc aaggggccta aaggtcttgg	1500
cttcagcatc gcagggggcg taggaaacca gcacatccca ggagataata gcatctatgt	1560
aacaaagatc atcgaagggg gtgctgccc caaggatggg aggtgcaga ttggagacaa	1620
gatcctggcg gtcaacagtg tggggctaga ggacgtcatg catgaagatg ctgtggcagg	1680
cctgaagaac acgtatgtatg ttgtctaccc aaaggtggcc aagcccagca atgcctaccc	1740
gagtgcacagc tatgctcccc cagacatcac aacctcttat tcccagcacc tggacaatga	1800
gatcagtcac agcagctacc tgggcaccga ctacccacca gccatgaccc ccacttcccc	1860
tcggcgctac tctccagtgg ccaaggaccc gctcgggag gaagacattc cccgagaacc	1920

gaggcgaatt	gtgatccacc	ggggctccac	gggcctggc	ttcaacatcg	tgggtggcga	1980
ggacggtgaa	ggcatcttca	tctcctttat	cctggccggg	ggccctgcag	acctcagtgg	2040
ggagctgcgg	aagggggacc	agatcctgtc	ggtcaacggt	gtggacctcc	gaaatgccag	2100
ccatgagcag	gctgccattg	ccctgaagaa	tgcggttcag	acggtcacga	tcatcgctca	2160
gtataaacca	gaagagtaca	gccgattcga	ggccaagatc	cacgaccctc	gggaacagct	2220
catgaacagc	agcctggct	cagggactgc	gtccttgcgg	agcaacccc	aaaggggtt	2280
ctacatcagg	gccctgtttg	attacgacaa	gaccaaggac	tgcggttcc	tgagccaggc	2340
cctgagctc	cgcttgggg	atgtgctgca	tgtcatcgat	gctagtatg	aggagtggtg	2400
gcaggcacgg	cgggtccact	ctgacagtga	gaccgacgac	attgggttca	tccccagcaa	2460
acggcgggtt	gagcgacgag	agtggtcaag	gttaaaggcc	aaggactgg	gctccagctc	2520
tggatcgcag	ggtcgagaag	actcggttct	gagctacgag	acagtgacgc	agatggaagt	2580
gcactatgct	cgccccatca	tcatccttgg	gcccaccaag	gaccgcgcca	acgatgatct	2640
tctctccgag	ttccccgaca	agtttggatc	ctgtgttccc	catacgacac	ggcccaagcg	2700
ggagtatgag	atagatggcc	gggattacca	ctttgtgtcg	tcccgggaga	aatggagaa	2760
ggacattcag	gcgcacaagt	tcattgaggc	cggccagtac	aacagccacc	tctatggac	2820
cagcgtccag	tccgtgcag	aggtggcaga	gcaggggaag	cactgcaccc	tcgatgtctc	2880
ggccaatgcc	gtgcggcggc	tgcaggcggc	ccacctgcac	cccatgcaca	tcttcatccg	2940
cccccgctcc	ctggagaatg	tgctagatg	taacaagcg	atcacagagg	agcaagcccg	3000
caaaggccttc	gacagagcca	ccaagctgga	gcaggagttc	acagagtgt	tctcagccat	3060
cgtggagggt	gacagctttg	aggagatcta	ccacaagggt	aagcgtgtca	tcgaggaccc	3120
ctcaggcccc	tacatctggg	ttccagcccg	agagagactc	tgattcctgc	cctggcttgg	3180
cctggactcg	ccctgcctcc	atcacctggg	cccttggct	ggactgaatt	gcccaagccc	3240
ttggctcccc	ccggcctccc	tcccacccct	tcttattttat	ttcctttcta	actggatcca	3300
gcctgttgga	ggggggacac	tcctctgcat	gtatccccgc	accccagaac	tgggctcctg	3360
aacgccagga	acctggggtc	tgggggggag	ctgggctcct	tgttccgagc	ccttgcctcct	3420
taggatcccc	gcccccacct	gcccccaatg	cacacacaga	cccacgggg	gccacctgccc	3480
ctccccccatc	ctctcccaca	cacattccag	aagtcaaggc	cccctcgagg	agcacccgct	3540
gcagggatgc	agggccacag	gcctccgctc	tctcctaagg	cagggtctgg	ggtcacccct	3600
gcctcatcgt	aattccccat	gttaccttga	tttctcattt	attttttcca	ctttttttct	3660
tctcaaaggt	ggttttttgg	ggggagaagc	agggactcc	gcagcgggccc	cctgccttcc	3720

-20-

acatcccccc accattttc tttgccggtt tgcatgagtg gaaggctaa atgtggctt	3780
ttttttttttt ttcctggaa ttttttggg gaaaagggag ggatgggtct agggagtg	3840
aaatgcggga gggagggtgg ggcaggggtc ggggtcggt tgccggag ccagggaa	3900
ctggaaatgc tgccgccttc tgcaatttat ttatTTTTT ctttgagag agtcaaaggaa	3960
agagacagat acttgaaaaa aaaaaaaaaa aaaaa	3995

<210> 19
 <211> 3025
 <212> DNA
 <213> Homo Sapiens

<400> 19	
gcacgagcag gcagttcaga ttaaagaagc taattgatca agaaatcaag tctcaggagg	60
agaaggagca agaaaaggag aaaagggtca ccaccctgaa agaggagctg accaagctga	120
agtctttgc tttgatggtg gtggatgaac agcaaaggct gacggcacag ctcacccttc	180
aaagacagaa aatccaagag ctgaccacaa atgcaaagga aacacatacc aaactagccc	240
ttgctgaagc cagagttcag gaggaagagc agaaggcaac cagactagag aaggaactgc	300
aaacgcagac cacaaagtcc caccaagacc aagacacaat tatggcgaag ctcaccaatg	360
aggacagtca aaatcgccag cttcaacaaa agctggcagc actcagccgg cagattgatg	420
agttagaaga gacaaacagg tctttacgaa aagcagaaga ggagctcaa gatataaaag	480
aaaaaatcag taagggagaa tatggaaacg ctggtatcat ggctgaagtg gaagagctca	540
taaaaatgga ggagcagtgc agagatctca ataagaggct tgaaagggag acgttacaga	600
gtaaagactt taaactagag gttaaaaac tcagtaaaag aattatggct ctggaaaagt	660
tagaagacgc tttcaacaaa agcaaacaag aatgctactc tctgaaatgc aatTTAGAAA	720
aagaaaggat gaccacaaag cagttgttc aagaactgga gagttaaaa gtaaggatca	780
aagagctaga agccattgaa agtcggctag aaaagacaga attcactcta aaagaggatt	840
taactaaact gaaaacatta actgtgatgt ttgttagatga acggaaaaca atgagtgaaa	900
aatTTAAAGAA aactgaagat aaattacaag ctgcttc tcaagttcaa gtggagcaaa	960
ataaaagtaac aacagttact gagaagttaa ttgaggaaac taaaaggcg ctcagtc	1020
aaaccgatgt agaagaaaag atgtacagcg taaccaagga gagagatgat taaaaaaca	1080
aattgaaagc ggaagaagag aaaggaaatg atctcgttc aagagttaat atgttgaaaa	1140
ataggcttca atcatggaa gcaattgaga aagatttcct aaaaaacaaa ttaaatcaag	1200
actctggaa atccacaaca gcattacacc aagaaaacaa taagattaag gagctctc	1260

-21-

aagaagtggaa aagactgaaa ctgaagctaa aggacatgaa agccatttag gatgaccta	1320
tgaaaacaga agatgaatat gagactctag aacgaaggta tgctaattgaa cgagacaaag	1380
ctcaattttt atctaaagag ctagaacatg ttaaaatgga acttgcttaag tacaagtttag	1440
cagaaaagac agagaccagc catgaacaat ggctttcaa aaggcttcaa gaagaagaag	1500
ctaagtcagg gcacctctca agagaagtgg atgcattaaa agagaaaaatt catgaataca	1560
tggcaactga agacctaata tgtcacctcc agggagatca ctcagtctgc aaaaaaaaaac	1620
taaatcaaca agaaaacagg aacagagatt taggaagaga gattgaaaac ctcactaagg	1680
agtttagagag gtacccggcat ttcaagtaaga gcctcaggcc tagtctcaat ggaagaagaa	1740
tttccgatcc tcaagtattt tctaaagaag ttcaagacaga agcagtagac aatgaaccac	1800
ctgattacaa gagcctcatt cctctggaac gtgcagtcat caatggtcag ttatatgagg	1860
agagtgagaa tcaagacgag gaccctaattg atgagggatc tgtgctgtcc ttcaaatgca	1920
gccagtctac tccatgtcct gttAACAGAA agctatggat tccctggatg aaatccaagg	1980
aggccatct tcagaatgga aaaatgcaaa ctaaacccaa tgccaaacttt gtcaacctg	2040
gagatctagt cctaagccac acacctggc agccacttca tataaagggtt actccagacc	2100
atgtacaaaa cacagccact ttgaaatca caagtccaaac cacagagagt cctcaactt	2160
acacgagtac tgcagtgata ccgaactgtg gcacGCCAA gcaaaggata accatcctcc	2220
aaaacgcctc cataacacca gtaaagtcca aaacctctac cgaagacctc atgaatttag	2280
aacaaggcat gtccccaaatt accatggcaa ctttgccag agcacagacc ccagagtctt	2340
gtggttctct aactccagaa aggacaatgt ccctattcag gttttggctg tgactggttc	2400
agctagctct cctgagcagg gacgctcccc agaaccaaca gaaatcagtg ccaagcatgc	2460
gatattcaga gtctccccag accggcagtc atcatggcag tttcagcggtt caaacagcaa	2520
tagctcaagt gtgataacta ctgaggataa taaaatccac attcacttag gaagtcctta	2580
catgcaagct gtagccagcc cttagcacc actgcaggat aaccgaactc aaggcttaat	2640
taacggggca ctaaacaaaa caaccaataa agtcaccagc agtattacta tcacaccaac	2700
agccacacccct ttccctcgac aatcacaaat tacagtaagt aatatatata actgaccacg	2760
ctcacccctca tccagtcct actgatattt ttgcaaggaa ctcaatcctt tttaatcat	2820
ccctccatat ccccccaagac tgactgaact cgtactttgg gaaggtttgt gcatgaacta	2880
tacaagagta tctgaaacta actgttgct gcatagtcat atcgagtgtg cacttactgt	2940
atatcttttca atttacatac ttgtatggaa aatatttagt ctgcacttgt ataaatacat	3000
ctttatgtat ttgaaaaaaaaaaaa	3025

-22-

<210>	20					
<211>	599					
<212>	DNA					
<213>	Homo Sapiens					
<400>	20					
cgggacgcgg	atgcagacgc	aggcggaggc	gctgacggcg	gggatggccg	gggtggccac	60
agctgccgcg	ggggcgtgga	cacagccgca	gctccggccg	gtggagctcc	cccagcgcac	120
gcgccaggtc	cgggcagaga	cgccgcgtct	gccgcagggg	gtcacgaatg	cggccgcaca	180
tattcaccct	cagcgtgcct	ttcccgaccc	ccttggaggc	ggaaatcgcc	catgggtccc	240
tggcaccaga	tgccgagccc	caccaaaggg	tggttggaa	ggatctcaca	gtgagtggca	300
ggatcctggt	cgtccgctgg	aaagctgaag	actgtcgct	gctccgaatt	tccgtcatca	360
actttcttga	ccagctttcc	ctggtgtgtc	ggaccatgca	gcgctttggg	ccccccgttt	420
cccgctaagc	ctggcctggg	caaatggagc	gaggtcccac	tttgcgctc	ctttaggca	480
gtgcgtccat	cattccctag	ggcaggaatt	cccacagttg	ctactttcct	gggagggcct	540
catgttttat	ctggttctta	aatgtttgtt	actacagaaa	ataaaaactga	ggtattatt	599
<210>	21					
<211>	890					
<212>	DNA					
<213>	Homo Sapiens					
<400>	21					
ggcggaccga	agaacgcagg	aagggggccg	gggggacccg	ccccggccg	gccgcagcca	60
tgaactccaa	cgtggagaac	ctaccccccgc	acatcatccg	cctggtgtac	aaggaggtga	120
cgacactgac	cgcagaccca	cccgatggca	tcaaggtctt	tcccaacgag	gaggacctca	180
ccgacctcca	ggtcaccatc	gagggccctg	aggggacccc	atatgctgga	ggtctgttcc	240
gcatgaaact	cctgctgggg	aaggacttcc	ctgcctcccc	acccaagggc	tacttcttga	300
ccaagatctt	ccacccgaac	gtggcgcaca	atggcgagat	ctgcgtcaac	gtgctcaaga	360
gggactggac	ggctgagctg	ggcatccgac	acgtactgct	gaccatcaag	tgcctgctga	420
tccaccctaa	ccccgagtct	gcactcaacg	aggaggcggg	ccgcctgctc	ttggagaact	480
acgaggagta	tgccggctcgg	gcccgtctgc	tcacagagat	ccacgggggc	gccggcgggc	540
ccagcggcag	ggccgaagcc	ggtcgggccc	tggccagtgg	cactgaagct	tcctccaccg	600
accctggggc	cccagggggc	ccgggagggg	ctgagggtcc	catggccaag	aagcatgctg	660
gcgagcgcga	taagaagctg	gcggccaaga	aaaagacgga	caagaagcgg	gctgtgcggg	720
cgctgcggcg	gctgttagtgg	gctctttcc	tccttccacc	gtgaccctaa	cctctcctgt	780

-23-

ccccctccctc caactctgtc tctaagttat ttaaattatg gctggggtcg gggagggtac	840
aggggggact gggacctgga tttgttttc taaataaaagt tggaaaagca	890

<210> 22
<211> 1449
<212> DNA
<213> Homo Sapiens

<220>
<221> Unsure
<222> (1316)..(1316)
<223> n = a, c, g, or t

<220>
<221> Unsure
<222> (1360)..(1360)
<223> n = a, c, g, or t

<220>
<221> Unsure
<222> (1366)..(1367)
<223> n = a, c, g, or t

<220>
<221> Unsure
<222> (1369)..(1369)
<223> n = a, c, g, or t

<400> 22 agccgaaact gagaggggcc ggactcacag tgatgtgcac ctcccccgt ccaggtgggg	60
cctgcctggg gaaagcttgt ggccggaaga gaaaatgagc ttccctaggac ccctgactca	120
cgacctcatc aacgttggtg ctactgctg gtggagaatg taaacccttt gtaaccccat	180
cccatgcccc tccgactccc caccccagga gggAACGGGC aggCCGGGCG gccttgcaga	240
tccacagggc aaggaaacaa gaggggagcg gccaagtgcc ccgaccagga ggccccctac	300
ttcagaggca agggccatgt ggtcctggcc ccccacccca tcccttccca cctaggagct	360
ccccctccac acagcctcca tctccagggg aacttggtgc tacacgctgg tgctttatc	420
ttcctgggg gagggaggag ggaagggtgg cccctgggg aacccctac ctggggctcc	480
tctaaagatg gtgcagacac ttccctggca gtcccaagtc cccctgcccc ccaggaccca	540
ccgttggctg ccatccagtt ggtacccaag cacctgaagc ctcaaagctg gattcgctct	600
agcatccctc ctctccctggg tccacttggc cgtctccctcc ccaccgatcg ctgttccccca	660
catctggggc gctttgggt tggaaaacca ccccacactg ggaatagcca ctttgcaccc	720
tgtagaatcc atccgcgcattc ccgtccattc atccatcggt ccgtccatcc atgtccccag	780

-24-

ttgaccgccc	ggcaccatta	gctggctggg	tgcacccacc	atcaacctgg	ttgacctgtc	840
atggccgcct	gtgccctgcc	tccaccccca	tcctacactc	ccccagggcg	tgcggggctg	900
tgcagactgg	ggtgccaggc	atctccccc	cacccggggt	gtccccacat	gcagtactgt	960
atacccccca	tccctccctc	ggtccactga	acttcagagc	agttcccatt	cctgccccgc	1020
ccatctttt	gtgtctcgct	gtgatagatc	aataaatatt	ttatTTTTG	tcctggatat	1080
ttggggatta	tttttGattG	ttgatattct	ctttggttt	tattgtgtg	gttcattgaa	1140
aaaaaaaagat	aattttttt	tctgatccgg	ggagctgtat	ccccagtaga	aaaaacattt	1200
taatcactct	aatataactc	tggatgaaac	acacccccc	tttaataag	aaaagagaat	1260
taactgcttc	agaaatgact	aataaatgaa	aaccctttaa	aggaaactgt	gtcttngctt	1320
ccttggatag	atTTAATCTG	cTTcaactg	ttggcctggn	tgggnnang	ggctctgctt	1380
cagggAACCT	ccaccaccca	aattgtattt	gagaggttgc	ccaaccaaaa	gcccctgctg	1440
cctggcttc						1449

<210> 23
 <211> 736
 <212> DNA
 <213> Homo Sapiens

<400> 23	cgagctggag	aggtggtcg	agaagtagga	acccctgccc	gggctcggt	cggtttctgt	60
	ccgctcccg	gagggaaagcg	cTTccccac	aggacatcaa	tgcaagcttg	aataagaaaa	120
	acaaattctt	cTCCtaAGC	catggcatat	cagttataca	gaaataactac	tttggaaac	180
	agtcttcagg	agagcctaga	tgagctcata	cagtctcaac	agatcacccc	ccaacttgcc	240
	cttcaagttc	tacttcagg	tgataaggct	ataaatgcag	cactggctca	gagggtcagg	300
	aacagagtca	atTCAGGGG	ctctctaaat	acgtacagat	tctgcgataa	tgtgtggact	360
	tttgtactga	atgatgtga	attcagagag	gtgacagaac	ttattaaagt	ggataaaagt	420
	aaaattgtag	cctgtgatgg	taaaaatact	ggctccaata	ctacagaatg	aatagaaaaa	480
	atatgacttt	tttacaccat	cttctgttat	tcattgcttt	tgaagagaag	catagaagag	540
	actttttatt	tattctagaa	ttgcagaaat	gactacactg	tgctatacca	gagaattcca	600
	gtagaaaagaa	acttgtaact	ctgtagcctc	ttacatcacc	tttattatac	agcatgaaaa	660
	accataactt	tttttaagg	acaaaagttg	ttgccttcct	aagaacccttc	tttaataaaac	720
	tcattttaaa	actctg					736

<210> 24

-25-

<211>	2212					
<212>	DNA					
<213>	Homo Sapiens					
<400>	24					
tgccggctgc	tcctcgacca	ggcctccttc	tcaacctcag	cccgcggcgc	cgacccttcc	60
ggcacccctcc	cgtactgtcg	ccgtcaccgc	cgccggctccg	gccctggccc		120
cgtatggctct	gtgcaacgga	gactccaagc	tggagaatgc	tggaggagac	cttaaggatg	180
gccaccacca	ctatgaagga	gctgttgtca	ttctggatgc	tggtgctcag	tacgggaaag	240
tcatagaccg	aagagtgagg	gaactgttcg	tgcagtctga	aattttcccc	ttggaaacac	300
cagcatttgc	tataaaggaa	caaggattcc	gtgcttattat	catctctgga	ggacctaatt	360
ctgtgtatgc	tgaagatgct	ccctggtttgc	atccagcaat	attcactatt	ggcaagcctg	420
ttcttggaat	ttgctatggt	atgcagatga	tgaataaggt	atttggaggt	actgtgcaca	480
aaaaaaagtgt	cagagaagat	ggagtttca	acattagtgt	ggataataca	tgttcattat	540
tcaggggcct	tcagaaggaa	gaagttgtt	tgcttacaca	tggagatagt	gtagacaaag	600
tagctgatgg	attcaagggtt	gtggcacgtt	ctggaaacat	agtagcaggc	atagcaaatg	660
aatctaaaaa	gttatatgga	gcacagttcc	accctgaagt	tggccttaca	gaaaatggaa	720
aagtaatact	gaagaatttc	ctttatgata	tagctggatg	cagtggAACCC	ttcaccgtgc	780
agaacagaga	acttgagtgt	attcgagaga	tcaaagagag	agtaggcacg	tcaaaagttt	840
tggttttact	cagtggtgga	gtagactcaa	cagttgtac	agcttgcta	aatcgtgctt	900
tgaaccaaga	acaagtcat	gctgtgcaca	ttgataatgg	ctttatgaga	aaacgagaaa	960
gccagtctgt	tgaagaggcc	ctcaaaaaagc	ttggaaattca	ggtcaaagtg	ataaatgctg	1020
ctcattcttt	ctacaatgga	acaacaaccc	taccaatatc	agatgaagat	agaaccccac	1080
ggaaaagaat	tagcaaaacg	ttaaatatga	ccacaagtcc	tgaagagaaa	agaaaaatca	1140
ttggggatac	ttttgttaag	attgccaatg	aagtaattgg	agaaatgaac	ttgaaaccag	1200
aggaggtttt	ccttgcccaa	ggtactttac	ggcctgatct	aattgaaagt	gcatcccttg	1260
ttgcaagtgg	caaagctgaa	ctcatcaaaa	cccatcacaa	tgacacagag	ctcatcagaa	1320
agttgagaga	ggagggaaaa	gtaatagaac	ctctgaaaga	ttttcataaaa	gatgaagtga	1380
gaattttggg	cagagaactt	ggacttccag	aagagttagt	ttccaggcat	ccatttccag	1440
gtcctggcct	ggcaatcaga	gtaatatgtg	ctgaagaacc	ttatatttgt	aaggactttc	1500
ctgaaaccaa	caatattttg	aaaatagtag	ctgattttc	tgcaagtgtt	aaaaagccac	1560
ataccctatt	acagagagtc	aaagcctgca	caacagaaga	ggatcaggag	aagctgatgc	1620
aaatttaccag	tctgcattca	ctgaatgcct	tcttgctgcc	aattaaaact	gtaggtgtgc	1680

-26-

agggtgactg tcgttcctac agttacgtgt gtggaatctc cagtaaagat gaacctgact	1740
ggaaatcaact tattttctg gctaggctta tacctcgcat gtgtcacaac gttAACAGAG	1800
ttgtttatat atttggccca ccagttaaag aaccccttac agatgttact cccactttct	1860
tgacaacagg ggtgctcagt actttacgcc aagctgattt tgaggcccat aacattctca	1920
gggagtctgg gtatgctggg aaaatcagcc agatgccgtt gatTTGACA CCATTACATT	1980
ttgatcggga cccacttcaa aagcagcctt catgccagag atctgtggtt attcgaacct	2040
ttattactag tgacttcatg actggtatac ctgcaacacc tggcaatgag atccctgttag	2100
aggtgttatt aaagatggtc actgagatta agaagattcc tggTATTCT CGAATTATGT	2160
atgacttaac atcaaagccc ccaggaacta ctgagtggga gtaataaact tc	2212

<210> 25
 <211> 1585
 <212> DNA
 <213> Homo Sapiens

<400> 25	
acagcagtta cactgcggcg ggCGTCTGTT CTAGTGTGGT AGCCGTCGTG CTCACCCGGT	60
CTACCTCGCT AGCATGTCGG GCGCGGCCAA GACTGGCGGC AAGGCCCGCG CCAAGGCCAA	120
GTCGCGCTCG TCGCGCGCCG GCCTCCAGTT CCCAGTGGGC CGTGTACACC GGCTGCTCG	180
GAAGGGCCAC TACGCCGAGC GCGTTGGCGC CGGCCGCCA GTGTACCTGG CGGCAGTGCT	240
GGAGTACCTC ACCGCTGAGA TCCTGGAGCT GGCGGGCAAT GCGGCCCGCG ACAACAAGAA	300
GACGCGAATC ATCCCCGCC ACCTGCAGCT GGCCATCCGC AACGACGAGG AGCTCAACAA	360
GCTGCTGGGC GGCGTGACGA TCGCCCAGGG AGGCAGTCCTG CCCAACATCC AGGCCGTGCT	420
GCTGCCCAAG AAGACCAGCG CCACCGTGGG GCCGAAGCG CCCTCGGGCG GCAAGAAGGC	480
CACCCAGGCC TCCCAGGAGT ACTAAGAGGG CCGCGCCGC GGCGGCCGC CCCAGCTCCC	540
CATGCCACCA CAAAGGCCCT TTAAAGGGCC ACCACCGCCC TCATGGAAAG AGCTGAGCCG	600
CTTCAGACTG CGGGGCAAGC GGGCGCGGC TCCATTCCCC TCCCCTCCCC TCGCCCGCCT	660
TCGCCGCCCG GCCTCGAGTC CCCGCCCGCC CCCGCTCCCC TCCCGCACCG CCTGCCGCGT	720
CGGCCTCGGG CCTGCCCTGT CGGCCGTCCG CCCTCCGGTA GGTTCGGGC CTTCGGATG	780
CGGCTTGGGC GCTCTTCGGG GACCTCCGTG GCGCGGAAGA CCCGAGCCTG CGGGGGGGAG	840
GCGGGCGGC CGCACCTGC CGCCCTCGGC GTTCGTGACT CAGCCGCCCC ATCCCGAGTC	900
GCTAAGGGGC TGCGGGGAGG CGCAGCACC TTCTGGAAAGA CTTGGCCTTC CGCTCTGACG	960
CGGGCCGAG GTGGGCAGTC CAGGCCGAGA GCGGGCGGCC CTGAAGGTGA GTGAGGCCCT	1020

-27-

cggcagctgc	agccggggtg	tctggtaccc	ccccggcgtg	gtgccttagcc	caggactttc	1080
agacggccgc	tggccgggag	gctttggtgg	gagagacgcg	atcgccgatt	tcggtgtggc	1140
gccccttctg	cggccgggac	ccaggccttt	cacatcagct	ctccctccat	cttcattcat	1200
aggctctgcgc	tggggccggg	acgaagcaact	tggtaacagg	cacatcttcc	tcccgagtga	1260
ctgcctccta	ggaggacatt	taggggaggg	cagaggcctg	cagtttgct	tcacggctgg	1320
ctatgtggac	agcaagagtc	gttttgcgga	acgcgactgg	cagccaggcc	tgtcgggccc	1380
ccgacgcccgc	cccatttccc	ttccagcaaa	ctcaactcgg	caatccaagc	acctagatac	1440
cagcacaagt	cggtaatcc	ctgtctggac	tgaggctccg	ttggcttctg	aactggaatt	1500
ctgcagctaa	cccttccacg	actagaacct	taggcattgg	ggagttttag	atggactaat	1560
tttattaaag	gattgttttt	ttttt				1585

<210> 26
 <211> 847
 <212> DNA
 <213> Homo Sapiens

<400> 26						
agtggcttcc	taacagcaga	agaactaaca	atccactgaa	taaagaaaaa	gaatgggctc	60
gatggaggaa	taagaagcta	gttatagtca	tcggtagaat	tgtgaaaggc	gcaatttgat	120
tggtaaaat	tgttcttga	cgagccaacc	aattagaaaag	gaaataaggt	gaaggctatt	180
ttacatgtat	gcgtcactga	cacattgcc	aatcagagct	ggatatttg	aattctttat	240
ttgcatgaaa	ggcctataaa	aggagagact	ctagacacga	gcttttattt	aagtgcgttc	300
attctcactg	ctgttattgt	tttctgacag	catgcctgaa	ccagctaagt	cagctcctgc	360
tccgaagaag	ggttccaaga	aggctgtac	caaggcgcag	aagaaggatg	gcaagaagcg	420
caagcgcagt	cgttaaggaga	gctactccgt	gtatgtgtac	aaggtgctaa	aacaggttca	480
cccccatact	ggcatctcat	ccaaggccat	gggcatcatg	aattccttcg	ttaacgacat	540
cttcgaacgc	atcgcaggcg	aggctcccg	tctggcccac	tacaacaagc	gctcgaccat	600
tacctccagg	gagatccaga	ccgcccgtcg	tctgctgctt	cccggagagc	tggccaagca	660
cgcagtgtcc	gaaggtacca	aggctgtcac	caagtataca	agctccaagt	aaatgtgtgc	720
ttaggtgctt	taaaactcaa	aggctcttt	cagagccact	caagtctcac	ataaaagagct	780
ttaatattga	atttcaccgt	tttctaggga	ataaggaaat	tttgcattt	tgtaatccca	840
gcacttt						847

<210> 27
 <211> 2808

-28-

<212> DNA

<213> Homo Sapiens

<400> 27

cgccatgaga ggccagcctg ccagggaaat ccaggaatct gcaacaaaaa cgatgacagt	60
ctgaaatact ctctggtgcc aacctccaaa ttctcgtctg tcacttcaga cccccactag	120
ttgacagagc agcagaatat caactccagt agacttgaat gtgcctctgg gcaaagaagc	180
agagctaacg aggaaaggga tttaaagagt ttttcttggg tgtttgtcaa acttttattc	240
cctgtctgtg tgcagagggg attcaacttc aattttctgc agtggctctg ggtccagccc	300
cttacttaaa gatctggaaa gcatgaagac tgggccttt ttcctatgtc tcttgggaac	360
tgcagctgca atcccgacaa atgcaagatt attatctgat cattccaaac caactgctga	420
aacggtagca cctgacaaca ctgcaatccc cagtttatgg gctgaagctg aagaaaaatga	480
aaaagaaaaca gcagtatcca cagaagacga ttcccaccat aaggctgaaa aatcatcagt	540
actaaagtca aaagaggaaa gccatgaaca gtcagcagaa cagggcaaga gttctagcca	600
agagctggga ttgaaggatc aagaggacag tcatggtcac ttaagtgtga atttggagta	660
tgcaccaact gaaggtacat tggacataaa agaagatatg attgagccctc aggagaaaaa	720
actctcagag aacactgatt tttggctcc tgggttagt tccttcacag attctaacca	780
acaagaaaagt atcacaaaga gagagggaaa ccaagaacaa cctagaaatt attcacatca	840
tcagttgaac aggagcagta aacatagcca aggcttaagg gatcaaggaa accaagagca	900
ggatccaaat atttccaaat gagaagagga agaagaaaaa gagccaggtg aagttggtagc	960
ccacaatgat aaccaagaaa gaaagacaga attgcccagg gagcatgcta acagcaagca	1020
ggaggaagac aataccaaat ctgatgatat tttggaagag tctgatcaac caactcaagt	1080
aagcaagatg caggaggatg aatttcatca gggtaaccaa gaacaagaag ataactccaa	1140
tgcagaaatg gaagaggaaa atgcatcgaa cgtcaataag cacattcaag aaactgaatg	1200
gcagagtcaa gagggtaaaa ctggcctaga agctatcagc aaccacaaag agacagaaga	1260
aaagactgtt tctgaggctc tgctcatgga acctactgat gatggtaata ccacgcccag	1320
aaatcatgga gttgatgatg atggcgatga tcatggcgat gatggcggca ctgatggccc	1380
caggcacagt gcaagtgtatg actacttcat cccaaagccag gcctttctgg aggccgagag	1440
agctcaatcc attgcctatc acctcaaaat tgaggagcaa agagaaaaag tacatgaaaa	1500
tgaaaatata ggtaccactg agcctggaga gcaccaagag gccaagaaag cagagaactc	1560
atcaaatgag gaggaaacgt caagtgaagg caacatgagg gtgcattgctg tggattcttg	1620
catgagcttc cagtgtaaaaa gaggccacat ctgtaaggca gaccaacagg gaaaacctca	1680

-29-

ctgtgtctgc caggatccag tgacttgc tccaacaaaa ccccttgatc aagtttgtgg	1740
cactgacaat cagacctatg ctatccctg tcatctattc gctactaaat gcagactgga	1800
ggggaccaaa aaggggcatac aactccagct ggattatttt ggagcctgca aatctattcc	1860
tacttgtacg gactttgaag tgattcagtt tcctctacgg atgagagact ggctcaagaa	1920
tatcctcatg cagctttatg aagccaactc tgaacatgct ggttatctaa atgagaagca	1980
gagaaataaa gtcaagaaaa ttacctgga tgaaaagagg ctttggctg gggaccatcc	2040
cattgatctt ctcttaaggg actttaagaa aaactaccac atgtatgtgt atcctgtgca	2100
ctggcagttt agtgaacttg accaacacccc tatggataga gtcttgacac attctgaact	2160
tgctcctctg cgagcatctc tggtgcccat ggaacactgc ataaccggtt tcttgagga	2220
gtgtgacccc aacaaggata agcacatcac cctgaaggag tggggccact gctttggaat	2280
taaagaagag gacatagatg aaaatctttt gtttgaacg aagattttaa agaactcaac	2340
tttccagcat cctcctctgt tctaaccact tcagaaatat atgcagctgt gatacttgta	2400
gatttatatt tagcaaaatg ttagcatgta tgacaagaca atgagagtaa ttgcttgaca	2460
acaacctatg caccaggtat ttaacattaa ctggaaac aaaaatgtac aattaagtaa	2520
agtcaacata tgcaaaatac tgtacattgt gaacagaagt ttaattcata gtaatttcac	2580
tctctgcatt gacttatgag ataattaatg attaaactat taatgataaa aataatgcat	2640
ttgtattgtt cataatatca tgtgcacttc aagaaaatgg aatgctactc ttttggtt	2700
tacggttatt atttcaata tcttaataacc ctaataaaga gtccataaaaa atccaaaaaa	2760
aaaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa	2808

<210> 28
<211> 2220
<212> DNA
<213> Homo Sapiens

<400> 28	
ggaaaattac ccggtatcgt tagagctaca ccaaaattgc attgagccaa acttgccacc	60
aagagccaa caatcaccat gatgctgagc acggaaggca gggaggggtt cgtggtaag	120
gtcaggggcc taccctggtc ctgctcagcc gatgaagtga tgcgcttctt ctctgattgc	180
aagatccaaa atggcacatc aggtattcgt ttcatctaca ccagagaagg cagaccaagt	240
ggtgaagcat ttgttgaact tgaatctgaa gaggaagtga aattggcttt gaagaaggac	300
agagaaaacca tgggacacag atacgttcaa gtattcaagt ctaacagtgt tgaatggat	360
tgggtgttga agcatacagg tccgaatagc cctgatactg ccaacgatgg ctgcgtccgg	420
cttagaggac tcccatttgg ctgttagcaag gaagagattt ttcagttctt ttcagggttt	480

- 30 -

gaaatttgtc caaatggat gacactgccca gtggactttc aggggcgaag cacagggaa 540
gccttgc agtttgcttc acaggagata gctgagaagg ccttaaagaa acacaaggaa 600
agaatagggc acaggtacat tgagatcttc aagagtagcc gagctgaagt tcgaaccac 660
tatgatcccc ctgcggaaagct catggctatg cagcggccag gtccttatga taggcgggg 720
gctggcagag ggtataatag cattggcaga ggagctgggt ttgaaaggat gaggcgtgg 780
gcctatggtg gagggtatgg aggctatgt gactatggtg gctataatga tggatatggc 840
tttgggtctg atagatttgg aagagaccc aattactgtt tttcaggaat gtctgatcat 900
agatacggag atgggtgggtc cagttccag agcaccacag ggcactgtgt acacatgagg 960
gggttacctt acagagccac tgagaatgtat atttataatt tcttctcacc tcttaatccc 1020
atgagagtac atattgaaat tggacccgat ggcagagttt ccggtgagggc agatgttcaa 1080
tttgctactc atgaagatgc tgtggcagct atggcaaaag acaaagctaa tatgcaacac 1140
agatatgtgg agctcttctt aaattctact gcaggaacaa gtgggggtgc ttacgatcac 1200
agctatgttag aactttttt gaattctaca gcaggggcaa gtggtggcgc ttatggtagc 1260
caaatgtgg gagggatggg cttatccaac cagtctagtt atggaggtcc tgctagccag 1320
cagctgagtg gtggatatgg aggtggttat ggtggcaga gcagtatgag tggatatgac 1380
caagttctgc aggaaaactc cagtgactat cagtcaaacc ttgcttaggt agagaaggag 1440
cactaaatag ctactccaga tataaaagct gtacatttggtt gggagttgaa tagaatggaa 1500
gggatgttta gtatatccag tatgattggt aaatggaaa tataattgtat tctgatcact 1560
cttggcagc ttctctttct ttatctttct gtctcctttt ttaagaaaac gagttaagtt 1620
taacagttttt gcattacagg ctttgattc atgcttactg taaagtggaa gttgagatta 1680
ttttaaaact tcaagctcag taatttgaa ccactgaaac attcatctag gacataataa 1740
caaagttcag tattgaccat aactgtaaa acaattttta gcttcctca agttagttat 1800
gttggtaggat tgtacctaag cagtaagcgt atttaggtt atgcagttc actttagttta 1860
aatgttgctc ttataccaca aatacattga aaacttcgga tgcattgtga gaaacatgcc 1920
tttctgtaaa actcaaataat aggagctgtg tctacgattc aaagtgaaaa catttggcat 1980
gtttgttaat tctagctttt tggttaata tcctgttaagg cacgtgagtg tacacttttt 2040
tttttttaa ggatacggga caatttttaag atgtaataacc aataacttttag aagtttggtc 2100
gtgtcggttgc tatgaaaatc tgaggctttg gtttaaatct ttccctgtat tgtgattttcc 2160
attttagatgtt attgtactaa gtgaaacttg taaaataaaat cttccctttta aaaactggaa 2220

-31-

<210>	29	
<211>	2203	
<212>	DNA	
<213>	Homo Sapiens	
<400>	29	
cgccggccgc	gcccctggttg ggtccccact gctctcgaaaa gcgccatggaa cgaggccgtg	60
ggcgacctga	agcagggcgct tccctgtgtg gccgagtcgc caacggtcca cgtggaggtg	120
catcagcgcg	gcagcagcac tgcaaagaaa gaagacataa acctgagtgt tagaaagcta	180
ctcaacagac	ataatattgt gtttggtat tacacatggaa ctgagttga tgaaccttt	240
ttgaccagaa	atgtgcagtc tgtgtctatt attgacacag aattaaaggt taaagactca	300
cagccccatcg	atttgagtgc atgcactgtt gcacttcaca ttttccagct gaatgaagat	360
ggccccagca	gtgaaaatct ggaggaagag acagaaaaca taattgcagc aaatcactgg	420
gttctacctg	cagctgaatt ccatggcatt tggacagct tggatacga tgtggaaagtc	480
aaatcccatac	tcctcgatta tgtgatgaca actttactgt tttcagacaa gaacgtcaac	540
agcaacctca	tcacctggaa cccgggtggtg ctgctccacg gtcctcctgg cactggaaaa	600
acatccctgt	gtaaagcgtt agcccagaaa ttgacaatta gactttcaag caggtaccga	660
tatggccaat	taattgaaat aaacagccac agcctcttt ctaagtggtt ttcggaaagt	720
ggcaagctgg	taaccaagat gttcagaag attcaggatt tgattgatga taaagacgcc	780
ctgggtttcg	tgctgattga tgaggtggag agtctcacag ccgcccggaaa tgccctgcagg	840
gcgggcacccg	agccatcaga tgccatccgc gtggtaatg ctgtcttgac ccaaattgat	900
cagattaaaa	ggcattccaa tgggtgtatt ctgaccactt ctaacatcac cgagaagatc	960
gacgtggcct	tcgtggacag ggctgacatc aagcagtaca ttggccacc ctctgcagca	1020
gccatcttca	aaatctacct ctcttggtttgaagaactga tgaagtgtca gatcatatac	1080
cctcgccagc	agctgctgac cctccgagag ctagagatga ttggcttcat tgaaaacaac	1140
gtgtcaaaat	tgagccttct tttgaatgac atttcaagga agagcgaggg cctcagcggc	1200
cgggtcctga	gaaaactccc ctttctggct catgcgtgt atgtccaggg ccccacccgtc	1260
accatagagg	ggttcctcca ggccctgtct ctggcagtgg acaaggagtt tgaagagaga	1320
aagaagcttg	cagcttacat ctgatcctgg gcttccccat ctggtgcttt tcccatggag	1380
aacacacaac	cagtaagtga gttgccccca cacagccgtc tcccaggaa tcccttctgc	1440
aaacccaaacg	ttacttagac tgcaagctag aaagccacca aggccaggct ttgtaaaaag	1500
aagtgtattc	tatttatgtt gtttaaaat gcatactgag agacaaacat cttgtcattt	1560
tcactgtttg	taaaagataa ttcatgattgt ttgtctcctt gtgaagaacc atcgaaacct	1620

-32-

gtttgttccc agcccacccc cagtggatgg gatgcataat gccagcaagt tttgtttaac	1680
agcaaaaaaaag gaagattaat gcaggtgtta tagaagccag aagagaaaact gtgtcaccct	1740
aaagaagcat ataatcatag cattaaaaat gcacacatta ctccaggtgg aaggtggcaa	1800
ttgctttctg atatcagctc gtttgattta gtgcaaaaat gtttcaaga ctatthaatg	1860
gatgtaaaaa agcctatttc tacattatac caactgagaa aaaaatggtc ggtaaagtgt	1920
tctttcataa taaataatca agacatggc ccattgcag gaaaagtgc gactctgagt	1980
gttccaggga aacacatgct ggacatccct tgtaacccgg tatggcgcc cctgcattgc	2040
tggatgttt ctgcccacgg ttttgttgt gcaataacgt taticacattt ctaatgagga	2100
ttcacattaa tataatataa aataaatagg tcagttactg gtctcttct gccgaatgtt	2160
atgtttgct tttatctcac agtaaaataa atataattaa aaa	2203

<210> 30
<211> 2155
<212> DNA
<213> Homo Sapiens

<400> 30	
gtcacatggg gtgcgcgccc agactccgac ccggaggcg aaccggcagt gcagcccgaa	60
cccccgca gtcccgacac gcgtggccat gcgtccccctg cgcccccg cgccgcgtgct	120
ggcgctcctg gcctcgctcc tggccgcgc cccgggtggcc ccggccgagg ccccgacact	180
ggtgcaggtg gacgcggccc gcgcgtgtg gcccctgcgg cgcttctgga ggagcacagg	240
cttctgcccc ccgctgccac acagccaggc tgaccagtac gtcctcagct gggaccagca	300
gctcaacctc gcctatgtgg gcgccgtccc tcaccgcggc atcaagcagg tccggaccca	360
ctggctgctg gagcttgtca ccaccagggt gtccactgga cggggctga gctacaactt	420
cacccacctg gacgggtact tggaccttct cagggagaac cagctcctcc cagggtttga	480
gctgatggc agcgcctcgg gccacttac tgacttttag gacaagcagc aggtgtttga	540
gtggaaggac ttggcttcca gcctggccag gagatacatc ggttaggtacg gactggcgca	600
tgtttccaag tggaacttcg agacgtggaa tgagccagac caccacgact ttgacaacgt	660
ctccatgacc atgcaaggct tcctgaacta ctacgatgcc tgctcgagg gtctgcgcgc	720
cgcacccccc gccctgcggc tgggaggccc cggcgactcc ttccacaccc caccgcgatc	780
cccgctgagc tggggcctcc tgccactg ccacgacggt accaacttct tcactgggaa	840
ggcgggcgtg cggctggact acatctccct ccacaggaag ggtgcgcgca gctccatctc	900
catcctggag caggagaagg tcgtcgccgca gcagatccgg cagcttcc ccaagttcgc	960
ggacacccccc attacaacg acgaggcgaa cccgctggtg ggctggtccc tgccacagcc	1020

-33-

gtggagggcg gacgtgacct acgcggccat ggtggtaag gtcatcgac agcatcaga	1080
cctgctactg gccaacacca cctccgcctt cccctacgcg ctccctgagca acgacaatgc	1140
cttcctgagc taccacccgc accccttcgc gcagcgcacg ctcaccgcgc gcttccaggt	1200
caacaacacc cgcccgccgc acgtgcagct gttgcgaag ccggtgctca cggccatggg	1260
gctgctggcg ctgctggatg aggagcagct ctggccgaa gtgtcgagg ccgggaccgt	1320
cctggacagc aaccacacgg tgggcgtcct ggccagcgcc caccgcggcc agggccggc	1380
cgacgcctgg cgccgcgg tgctgatcta cgcgagcgac gacacccgcg cccaccccaa	1440
ccgcagcgac gcggtgaccc tgccgcgtcg cgggtgccc cccggccgg gcttggtcta	1500
cgtcacgcgc tacctggaca acgggctctg cagcccgac ggcgagtggc ggccgcctggg	1560
ccggcccgac ttccccacgg cagagcagtt ccggcgcatg cgccggctg aggacccgg	1620
ggccgcggcg ccccgccctt taccgcggc cggccgcctg accctgcgc cccgcgtcg	1680
gctgccgtcg ctggctgg tgacgtgtg tgccgcggcc gagaagccgc ccgggcaggt	1740
cacgcggctc cgccgcctgc ccctgaccga agggcagctg gttctggatgatgatgatg	1800
acacgtgggc tccaagtgcc tgtggacata cgagatccag ttctctcagg acggtaaggc	1860
gtacaccccg gtcagcagga agccatcgac cttcaacctc tttgtttca gcccagacac	1920
agggtgtgtc tctggctctt accgagttcg agccctggac tactggccc gaccaggccc	1980
cttctcgac cctgtgccgt acctggaggt ccctgtgcga agagggccccc catcccccgg	2040
caatccatga gcctgtgtcg agcccccagtg gttgcaccc ctaccggcag tcagcgagct	2100
ggggctgcac tgtgcccattt ctgcctccc atcacccctt ttgtcaatata ttttt	2155

<210> 31
 <211> 7260
 <212> DNA
 <213> Homo Sapiens

tcactgtcac tgctaaattc agagcagatt agagcctgcg caatggaata aagtccctaa	60
aattgaaatg tgacattgct ctaaacatct cccatctctc tggatttcct tttgtttcat	120
tattcctgct aaccaattca ttttcagact ttgtacttca gaagcaatgg gaaaaatcag	180
cagtcttcca acccaattat ttaagtgcgt cttttgtat ttcttgaagg tgaagatgca	240
caccatgtcc tcctcgcatc tcttctacat ggcgcgtgtgc ctgctcacct tcaccagctc	300
tgccacggct ggaccggaga cgctctgcgg ggctgagctg gtggatgctc ttcaatgcgt	360
gtgtggagac aggggctttt atttcaacaa gcccacaggg tatggctcca gcagtcggag	420

-34-

ggcgccctcag acaggcatcg tggatgagtg ctgcctccgg agctgtgatc taaggaggct	480
ggagatgtat tgcgcacccc tcaagcctgc caagtcagct cgctctgtcc gtgcccgacg	540
ccacaccgac atgcccaga cccagaagga agtacattt aagaacgcaa gtagagggag	600
tgcagggaaac aagaactaca ggatgttagga agaccctcct gaggagtgaa gagtgacatg	660
ccaccgcagg atcctttgct ctgcacgagt tacctgttaa actttggaac acctaccaaa	720
aaataagttt gataacattt aaaagatggg cgttcccccc aatgaaatac acaagtaaac	780
attccaacat tgtctttagg agtgattgc accttgcaaa aatggtcctg gagttggtag	840
attgctgttg atctttatc aataatgttc tatagaaaag aaaaaaaaaat atatatata	900
atatatctta gtccctgcct ctcaagagcc acaaatgcat gggtgttgc tagatccagt	960
tgcactaaat tcctctctga atcttggctg ctggagccat tcattcagca accttgtcta	1020
agtggtttat gaattgttc cttatttgca cttctttcta cacaactcgg gctgtttgtt	1080
ttacagtgtc tgataatctt gtttgtctat acccaccacc tcccttcata acctttatata	1140
ttgccgaatt tggcctcctc aaaagcagca gcaagtgc aagaagcaca ccaattctaa	1200
ccacacaagat tccatctgtg gcatttgtac caaatataag ttggatgcat ttatTTTtag	1260
acacaaagct ttatTTTcc acatcatgct tacaaaaaaag aataatgcaa atagttgcaa	1320
ctttagggcc aatcattttt aggcatatgt tttaaacata gaaagtttct tcaactcaaa	1380
agagttcctt caaatgatga gttaatgtgc aacctaatta gtaactttcc tcttttatt	1440
ttttccatat agagcactat gtaaattttag catatcaatt atacaggata tatcaaacag	1500
tatgtaaaac tctgtttttt agtataatgg tgctatttg tagttgtta tatgaaagag	1560
tctggccaaa acggtaatac gtgaaagcaa aacaataggg gaagcctgga gccaaagatg	1620
acacaagggg aagggtactg aaaacaccat ccatttggaa aagaaggcaa agtcccccca	1680
gttatgcctt ccaagaggaa cttcagacac aaaagtccac tgatgcaaat tggactggcg	1740
agtccagaga ggaaactgtg gaatggaaaa agcagaaggc taggaatttt agcagtcctg	1800
gtttctttt ctcatggaaag aatgaacat ctgccagctg tgtcatggac tcaccactgt	1860
gtgaccttgg gcaagtcaact tcacctctct gtgcctcagt ttcctcatct gcaaaatggg	1920
ggcaatatgt catctaccta cctcaaaggg gtggtataag gttaaaaaaag ataaagattc	1980
agatTTTTT accctgggtt gctgtaaagg tgcaacatca gggcgcttga gttgctgaga	2040
tgcaaggaat tctataaata acccattcat agcatagcta gagattggtg aattgaatgc	2100
tcctgacatc tcagttcttg tcagtgaagc tatccaaata actggccaac tagttgttaa	2160
aagctaacag ctcaatctct taaaacactt ttcaaaatata gtggaaagca tttgatTTTc	2220

-35-

aatttgattt tgaattctgc atttggtttt atgaatacaa agataagtga aaagagagaa	2280
aggaaaagaa aaaggagaaa aacaaagaga tttctaccag tgaaagggga attaattact	2340
ctttagtc actcactgac tcttctatgc agttactaca tatctagtaa aaccttgttt	2400
aatactataa ataatattct attcatttg aaaaacacaa tgattccccc ttttcttaggc	2460
aatataagga aagtgatcca aaattgaaa tattaaaata atatctaata aaaagtcaca	2520
aagttatctt cttaacaaa ctttactctt attcttagct gtatatacat tttttaaaaa	2580
agttgttaa aatatgcttg actagagtt cagttgaaag gcaaaaactt ccatcacaac	2640
aagaaatttc ccatgcctgc tcagaagggt agcccttagc tctctgtgaa tgtgttttat	2700
ccattcaact gaaaatttgtt atcaagaaag tccactgggt agtgtactag tccatcatag	2760
cctagaaaat gatccctatc tgcagatcaa gattttctca ttagaacaat gaattatcca	2820
gcattcagat ctttctagtc accttagaaac tttttggta aaagtaccca ggcttgatta	2880
tttcatgcaa attctatatt ttacattctt ggaaagtcta tatgaaaaac aaaaataaca	2940
tttcagttt ttctccact gggcaccc aaggatcaga ggccaggaaa aaaaaaaaaag	3000
actccctgga tctctgaata tatgaaaaaa gaaggccccca ttttagtggag ccagcaatcc	3060
tgttcagtca acaagtattt taactctcag tccaacatta tttgaattga gcacctcaag	3120
catgcttagc aatgttctaa tcactatgga cagatgtaaa agaaactata catcatttt	3180
gccctctgcc tgtttccag acatacaggt tctgtggaaat aagatactgg actcctcttc	3240
ccaaagatggc acttctttt atttcttgc cccagtgtgt acctttaaa attattccct	3300
ctcaacaaaa ctttataggc agtctctgc agacttaaca tgtttctgt catagtttaga	3360
tgtgataatt ctaagagtgt ctatgactta tttccttcac ttaattctat ccacagtcaa	3420
aaatccccca aggagggaaag ctgaaagatg caactgccaa tattatctt cttactttt	3480
tccaacacat aatcctctcc aactggatta taaataaatt gaaaataact cattataccaa	3540
attcactatt ttatTTTA atgaattaaa actagaaaac aaattgatgc aaaccctgga	3600
agtcaGTTGA ttactatata ctacagcaga atgactcaga tttcatagaa aggagcaacc	3660
aaaatgtcac aaccaaaact ttacaaggct tgcttcagaa tttagattgct ttataattct	3720
tgaatgaggg aatttcaaga tatttgtaaa agaacagtaa acattggtaa gaatgagctt	3780
tcaactcata ggcttatttc caatttaatt gaccatactg gatacttagg tcaaatttct	3840
gttctctctt gcccaaataa tattaaagta ttatttgaac ttttaagat gaggcagttc	3900
ccctgaaaaa gttaatgcag ctctccatca gaatccactc ttcttagggat atgaaaatct	3960
cttaacaccc accctacata cacagacaca cacacacaca cacacacaca cacacacaca	4020

-36-

cacacattca ccctaaggat ccaatggaat actgaaaaga aatcacttcc ttgaaaattt	4080
tattaaaaaaa caaacaaaca aacaaaaaagc ctgtccaccc ttgagaatcc ttcctctcct	4140
tggaacgtca atgtttgtgt agatgaaacc atctcatgct ctgtggctcc agggtttctg	4200
ttactatttt atgcacttgg gagaaggctt agaataaaag atgttagcaca ttttgctttc	4260
ccatTTATTG tttggccagc tatgccaatg tggtgctatt gtttcttaa gaaagtactt	4320
gactaaaaaa aaaagaaaaa aagaaaaaaa agaaagcata gacatatTTT tttaaagtat	4380
aaaaacaaca attctataga tagatggctt aataaaatag cattaggtct atctagccac	4440
caccacCTTT caactTTTA tcactcacaa gtagtgtact gttcaccaaa ttgtgaattt	4500
gggggtgcag gggcaggagt tggaaattt ttaaagttag aaggctccat tgTTTGTG	4560
gctctcaaAC ttagcaaaat tagcaatata ttatccaatc ttctgaactt gatcaagagc	4620
atggagaata aacgcgggaa aaaagatctt ataggcaaAT agaagaattt aaaagataag	4680
taagttcctt attgattttt gtgcactctg ctctaaaaca gatattcagc aagtggagaa	4740
aataagaaca aagagaaaaaa atacatagat ttacctgcaa AAAATAGCTT ctgccaatc	4800
ccccttgggt attcttggc atttacttgt ttatagaaga cattctccct tcacccagac	4860
atctcaaaga gcagtagctc tcatgaaaag caatcactga tctcatttgg gaaatgtgg	4920
aaagtatttc cttatgagat ggggttATC tactgataaa gaaagaattt atgagaaatt	4980
gttggaaagag atggctaaca atctgtgaag attttttgtt tcttgTTTT gttttttttt	5040
ttttttttac tttatacagt ctttatgaat ttcttaatgt tcaAAATGAC ttggTTCTT	5100
tcttctttt tttatatcag aatgaggaat aataagttaa acccacatag actctttaaa	5160
actataggct agatagaaat gtatgttgA CTTGTTGAAG ctataatcag actattttaa	5220
atgttttgcT atttttaatc taaaagatt gtgctaattt attagagcag aacctgtttg	5280
gctctcctca gaagaaagaa tctttccatt caaatcacat ggcttccac caatatttc	5340
aaaagataaa tctgatttat gcaatggcat catttattt AAAACAGAAG aattgtgaaa	5400
gtttatgccc ctcccttgca aagaccataa agtccagatc tggttagggg gcaacaacaa	5460
aaggaaaaatg ttgttgattc ttggTTTTGG attttgtttt gtttcaatg ctatgtttta	5520
atcctgtagt acatatttgc ttattgctat tttaatattt tataagacct tcctgttagg	5580
tattagaaag tgatacatag atatctttt tgtgttaattt ctatttaaaa aagagagaag	5640
actgtcagaa gcttaagtg catatggtaC aggataaaaga tatcaatttA aataaccaat	5700
tcctatctgg aacaatgctt ttgtttttta aagaaacctc tcacagataa gacagaggcc	5760
caggggattt ttgaagctgt ctTATTCTG cccccatccc aacccagccc ttatttttt	5820

-37-

agtatctgcc	tcagaatttt	atagagggct	gaccaagctg	aaactctaga	attaaaggaa	5880
cctcaactgaa	aacatatatt	tcacgtgtc	cctctttttt	tttcctttt	tgtgagatgg	5940
ggtctcgcac	tgtccccag	gctggagtgc	agtggcatga	tctcggtca	ctgcaacctc	6000
cacccctctgg	gttaagcga	ttctctgcc	tcagcctcct	gagtagctgg	gattacaggc	6060
accaccact	atgcccggct	aatttttgg	attttaata	gagacggggt	tttaccatgt	6120
tggccagggtt	ggactcaaac	tcctgacctt	gtgatttgcc	cgcctcagcc	tcccaaattg	6180
ctgggattac	aggcatgagc	caccacaccc	tgcccatgtg	ttccctctta	atgtatgatt	6240
acatggatct	taaacatgat	ccttctctcc	tcattcttca	actatcttg	atgggtctt	6300
tcaaggggaa	aaaaatccaa	gctttttaa	agtaaaaaaa	aaaaaagaga	ggacacaaaa	6360
ccaaatgtta	ctgctcaact	gaaatatgag	ttaagatgga	gacagagttt	ctcctaataa	6420
ccggagctga	attaccttcc	actttcaaaa	acatgacctt	ccacaatcct	tagaatctgc	6480
cttttttat	attactgagg	cctaaaagta	aacattactc	attttatttt	gcccaaaaatg	6540
cactgatgta	aagtaggaaa	aataaaaaca	gagctctaaa	atcccttca	agccacccat	6600
tgaccccaact	caccaactca	tagcaaagtc	acttctgttta	atcccttaat	ctgattttgt	6660
ttggatattt	atcttgtacc	cgctgctaaa	cacactgcag	gagggactct	gaaacctcaa	6720
gctgtctact	tacatctttt	atctgtgtct	gtgtatcatg	aaaatgtcta	ttcaaaaatat	6780
caaaaccttt	caaatatcac	gcagcttata	ttcagtttac	ataaaggccc	caaataccat	6840
gtcagatctt	tttggtaaaa	gagttatga	actatgagaa	ttgggattac	atcatgtatt	6900
ttgcctcatg	tattttatac	acacttatag	gccaaagtgtg	ataaataaac	ttacagacac	6960
tgaattaatt	tcccctgcta	cttgaaacc	agaaaataat	gactggccat	tcgttacatc	7020
tgtcttagtt	gaaaagcata	ttttttatta	aattaattct	gattgtattt	gaaatttatta	7080
ttcaattcac	ttatggcaga	ggaatatcaa	tcctaatgac	ttctaaaaat	gtaactaatt	7140
gaatcattat	tttacattta	ctgtttaata	agcatatttt	gaaaatgtat	ggctagagtg	7200
tcataataaa	atggtatatc	tttcttttagt	aattacaaaa	aaaaaaaaaa	aaaaaaaaaa	7260

<210> 32
<211> 5767
<212> DNA
<213> Homo Sapiens

<400> 32	60					
gagggaggag	agttcacttt	tacttcagtg	tcagcgcccg	gcggccgtgg	ctggctctgg	60
cgagagagca	ccgagggagt	gggtcgcaga	tcttcggcg	gctaggggaa	atcggcgaga	120
ggcgggatcc	gagcgcccg	gcggggcgca	gagcccgca	gcctggccag	cgaggtagc	180

cgcggggggc	gcccgggg cggccccccg	gagacgcgca	ggatgccaca	cgaagagctg	240
ccgtcgctgc	agagaccccg	ctatggctct	attgtggacg	atgaaaggct	300
gagatggatg	agaggaggcg	gcagaacatt	gcttatgaat	atctgtgcc	360
gccaaaaggt	ggatggaagt	ttgcttagtt	gaagaattgc	caccaaccac	420
gaagggctcc	ggaatggagt	ttaccttgc	aagttagcca	agttcttgc	480
gtatcagaga	aaaagatcta	tatgtggaa	caaacacgtt	ataagaagtc	540
tttcgacaca	cagataatac	cgtccagtgg	ttaagagcga	tggagtctat	600
aagatattt	atccagaaac	aacagatgtc	tatgatcgga	aaaacatacc	660
tattgcattc	acgcactgag	tttgtatctg	ttcaaactag	aatagcacc	720
gatttgttg	gcaaagtaga	cttcacagag	gagaaaatca	gtatatgag	780
gagaaatatg	gaatacagat	gccatcttc	agcaaaaatag	gtggtattct	840
ctgtccgtgg	atgaagctgc	attacatgtc	gcagttatag	ccattaatga	900
aaaggaatag	cagagcaaac	cgttgtaca	ctaagaaacc	caaatgcgt	960
gtggatgaca	accttgcacc	agaatatcag	aaagaactct	gggatccaa	1020
gagaaaaatg	caagactgaa	gaatagctgt	atttcagaag	aagaaagaga	1080
gaactgctga	cacaagcaga	aatccaaggc	aatattaata	aagtcaacag	1140
gtggaccata	tcaatgctgt	cattccggaa	ggtgaccccg	agaatacgct	1200
aagaaaaccag	aggcccagct	gcctgctgtt	tatcccttg	ctgctgccat	1260
gaactttca	acctccagaa	acagaacacc	atgaactact	tggcccacga	1320
attgctgtgg	aaatgttgc	tgctgttgct	ttactaaacc	aggccttgaa	1380
cttgtgtctg	tgcagaatca	actcagaagc	cccgcaatag	gcttaaaca	1440
gcatatgtgg	aacgttatgc	aaacacacta	ctctctgtta	aactagaagt	1500
ggccaagata	acttaagctg	aatgaaatt	cagaattgt	ttgatatggt	1560
attcaagaag	aaaatgaccg	agttgtagct	gtagggtaca	tcaatgaagc	1620
gggaatcctt	tgaggacttt	agaaactttg	ctcctaccta	ctgcgaatat	1680
gacccagccc	atgcccagca	ctaccaggat	gtttataacc	atgctaaatc	1740
ggagactctg	agagtgttcc	caaagtgc	ttggctggatg	agatacagca	1800
gaggccaaacg	tggacgagga	cagagcaaaa	caatgggtt	ctctgggt	1860
cagtgtttgg	aaggaaaaaa	atcaagtgtat	atttgtctg	tattgaagtc	1920
aatgcaaatg	acataatccc	ggagtgtgct	gacaaatact	atgatccct	1980

aaagagctca aatctgaaag agtgtctagt gacggttcat ggctcaaact caacctgcac	2040
aaaaaatatg actactatta caacactgat tcaaaagaga gttcctgggt cacacctgaa	2100
tcatgcttct ataaagaatc atggctcaca ggaaaagaaa tcgaggacat tattgaggaa	2160
gtcacagtag gttacattcg tgagaatata tggctcgctt cagaagagtt gcttcggc	2220
tttcaagcca caagctcagg acccatccctt agggaaagagt ttgaagctag aaaatcattt	2280
ttgcatgaac aagaagagaa tgtggtcaaa atacaggctt tttggaaagg atataaacaa	2340
cggaggagt atatgcacag gcggcaaaccg ttcattgata atactgattc tgggtgaag	2400
attcagtcct ggttccgaat ggcaactgca agaaagagct atctttcaag actacagtat	2460
ttcagagatc ataataatga aattgtgaaa atacagtcac tggagagc gaacaaagct	2520
agagatgact acaaaacatt ggttggctct gaaaacccac cattaacagt aattcgcaaa	2580
tttgtataacc tgctggacca aagtgatttg gatttccagg aggaactaga ggttgcacga	2640
ttaagggaaag aagtagtgac caagatcagg gccaatcaac agctggaaaa agacctgaac	2700
ctgatggaca tcaagattgg actgctggtg aagaacagga tcacactaga ggatgttaatt	2760
tcacacagta aaaagctgaa caagaaaaaaaaa ggaggagaaa tggaaatact gaataacacc	2820
gacaaccaag gaataaaaag tttgagtaag gagaggagaa aaacactaga aacatatcag	2880
cagctgtttt acctttaca gaccaaccct ttatacttgg ctaagctgat ttccagatg	2940
ccacagaaca agtccactaa atttatggat actgttattt tcacactata taattatgcc	3000
tctaattcagc gagaagaata tctacttctc aagctttta aaactgctct ggaggaagaa	3060
ataaaatcaa aagtggacca ggtacaggac atagttactg gtaaccctac agtcatcaag	3120
atggcgtca gcttcaatag aggtgccccgg ggacagaaca ccctgcgcca actcctggct	3180
ccagtggtaa aagagatcat cgacgacaag tcgctgatta tcaacacaaa ccctgttagag	3240
gtgtacaagg cttgggtgaa ccaactagaa acacagactg gagaggccag caagttgcct	3300
tatgatgtga ccacagaaca agctctaaca tacccagaag taaaaataa actggaggct	3360
tccattgaga acctgagaag ggtcaccgac aaagtccctga attctatcat ttctccctt	3420
gatctactgc cttatggatt gaggtatata gccaaagtac tgaagaattc gatccatgag	3480
aaattccccg atgcaacaga agatgagcta taaaagattt tggaaacct cctgtactat	3540
cggtagatga atccagccat ttagctcca gatggctttg atatcatcga catgacagct	3600
ggaggtcaga taaattctga ccaaaggaga aacttaggat cagtgccaa ggttccctcag	3660
cacgcagcct ccaacaagct gtttgaaggaa gaaaatgagc atctctcatc tatgaacaat	3720
tatattatcag agacgtatca ggaattcagg aaatatttca aagaagcatg taatgtccct	3780

-40-

gagccagaag agaagttaa tatggacaaa tacacagacc tggtgacagt cagcaaacca	3840
gtcatttata tttcaattga agaaaatcatc agcacacact cactcctgtt ggaacaccag	3900
gatgcatttgc cccctgagaa aaatgactta ctgagtgaat tgctgggtc gctggagag	3960
gtgccaaccg tggaatcttt tcttgggaa ggagcagttg accccaatga ccctaacaag	4020
gcaaatacac taagtcagct ttcaaagacc gagatttctc ttgtcttgac aagcaaataat	4080
gacatagagg acggtgaagc tatagatagc cgaaggctca tgataaagac caagaagctg	4140
ataattgatg tgatccggaa ccagccaggg aacacattga cagaaatctt agagacacca	4200
gcaactgcgc aacaggaggt agaccatgcc acggacatgg tgagccgtgc aatgatagat	4260
tccaggactc cagaagaaat gaagcatagc caatctatga ttgaagatgc acagctgcct	4320
ctttagcaga agaagaggaa aatccagagg aatcttcgga cgttggaaaca gactggacac	4380
gtgtcatccg aaaataaaata ccaagacatt ctcaatgaga ttgccaagga tattcgaaat	4440
caaagaatct atcgtaagct tcgaaaagct gaattggcaa aacttcagca gaccctgaat	4500
gcacttaaca agaaggcagc atttttatgaa gagcaaatca attattatga cacctacata	4560
aagacttgtt tagacaactt aaaaagaaaa aataacttcgga gatcaattaa actagatgga	4620
aaaggagaac ccaaaggggc gaagagagcg aagccagtga agtacactgc agcaaagctg	4680
catgagaaag gtgtcctgct agatatacat gatcttcaaa caaaccagtt taagaatgtt	4740
acatttgata tcatagctac tgaagatgta ggcattttcg atgtaagatc aaaattcctt	4800
ggtgttggaa tggaaaaggt gcaactcaat attcaggatt tacttcagat gcaatatgaa	4860
ggagtagctg taatgaaaat gtttgataag gttaaagtga atgtaaacct tctcatatac	4920
ctgctgaaca agaagttcta tggaaagtga agtgcctaca gaaatttctt ggattctgta	4980
tcatctggat taggaaatga atttgtttaa tattttgtt tttaaacatg attgaaatca	5040
ctgcttataa atgtgtgatt ttttttaat gaccaaaact gttctgaaga atgtacccag	5100
gtgcctttt gctaatttga tactataata gaatgagaca taaaatgaat taatggaaac	5160
atatccacac tgtactgtga tataaggact ctgatitaaa actttggaca tcctgtgatc	5220
tgttttaaag ttggggggtg gcaaatttag ctgactaggg acaaacatgt aaacctattt	5280
tcctatgaaa aaagtttaa atgtcccact tgaataacgt aattcttcat agtttttta	5340
atctatggat aaatggaaac ctaattatgtt gtaatgaatt atttagacag ttctaagccc	5400
tgtcttctgg gagttatcaa ttttaaagag aactttgtg caattcaaat gaagttttta	5460
taagtaatttggaaa aaaaatgacaa cacaataaca ctttctgtat aaaagtatat attttatgtg	5520
atttatttcctt actaaatgaa agtgcactac tgcctcatgt aaagactctt gcacgcagag	5580

-41-

cctttaagtg actaaggaac aacatagata gtgagcatag tccccacctc caccctcac	5640
aatttatttg aataacttcaa ttgtgcctct caatttttg taatgctaaa aaatcagtat	5700
ctagatggtt tttaaatgta ttctctggaa attgtttat gtaaaataaa tgttacttaa	5760
ttccatt	5767

<210> 33
<211> 634
<212> DNA
<213> Homo Sapiens

<400> 33	
cggtgagag gcagcgaact catcttgcc agtacaggag ctgtgccgt ggcccacagc	60
ccacagccca cagccatggg ctgggacctg acggtaaga tgctggcggg caacgaattc	120
caggtgtccc tgagcagctc catgtcggtg tcagagctga aggcgccagat cacccagaag	180
attggcgtgc acgccttcca gcagcgtctg gctgtccacc cgagcggtgt ggctgcag	240
gacagggtcc cccttgccag ccagggcctg ggccctggca gcacggtcct gctggtggtg	300
gacaaatgctg acgaacctct gagcatcctg gtgaggaata acaaggccg cagcagcacc	360
tacgaggtcc ggctgacgca gaccgtggcc cacatgaagc agcaagttag cggctggag	420
ggtgtgcagg acgacctgtt ctggctgacc ttcgagggga agccctgga ggaccagctc	480
ccgctggggg agtacggcct caagccccctg agcaccgtgt tcatgaatct gcgcctgcgg	540
ggaggcggca cagagcctgg cgggcggagc taagggcctc caccagcatc cgagcaggat	600
caagggccgg aaataaaggc tgttgttaaga gaat	634

<210> 34
<211> 4855
<212> DNA
<213> Homo Sapiens

<400> 34	
gaattcccttcccccttt tccatgcagc tgatctaaaa gggataaaaa ggctgcgcatt	60
aatcataata ataaaagaag gggagcgcga gagaaggaaa gaaagccggg aggtggaaaga	120
ggagggggag cgtctcaaag aagcgatcag aataataaaa ggaggccggg ctcttgcct	180
tctggAACGG gcccctcttgg aaagggttt tgaaaagtgg tgttgtttc cagtcgtgca	240
tgctccaatc ggccggagtat attagagccg ggacgcggcc gcagggcag cggcgacggc	300
agcaccggcg gcagcaccag cgcgaacagc agcggcggcg tcccaggtgc ccgcggcggc	360
gcgcgcagcg atgcgttccc cacggacacg cggccggtcc gggcgccccc taagcctcct	420
gctcgccctg ctctgtgccc tgcgagccaa ggtgtgtggg gcctcggtc agttcgagtt	480

ggagatcctg tccatgcaga acgtgaacgg ggagctgcag aacggaaact gctgcggcgg	540
cgcgggaac ccgggagacc gcaagtgcac ccgcgacgag tgtgacacat acttcaaagt	600
gtgcctcaag gagtatcagt cccgcgtcac ggccgggggg ccctgcagct tcggctcagg	660
gtccacgcct gtcatcgggg gcaacacatt caacctaag gccagcccg gcaacgaccc	720
gaaccgcatt gtgctgcctt tcagttcgc ctggccgagg tcctatacgt tgcttgttgg	780
ggcgtggat tccagtaatg acaccgttca acctgacagt attattgaaa aggcttctca	840
ctcgggcatg atcaacccc gccggcagtgcagacgctg aagcagaaca cgggcgttgc	900
ccacttttag tatcagatcc gcgtgacdtg tcatgactac tactatggct ttggctgttaa	960
taagttctgc cgccccagag atgacttott tggacactat gcctgtgacc agaatggcaa	1020
caaaaacttgc atggaaggct gnatggccc cgaatgtaac agagctattt gccgacaagg	1080
ctgcagtcct aagcatgggt cttgcaaact cccaggtgac tgcaggtgcc agtacggctg	1140
gcaaggcctg tactgtgata agtgcattcc acacccggga tgcgtccacg gcatctgtaa	1200
tgagccctgg cagtgcctct gtgagaccaa ctggggcggc cagctctgtg acaaagatct	1260
caattactgt gggactcattc agccgtgtct caacggggaa actttagca acacaggccc	1320
tgacaaaatat cagtgttccct gcccgtgggg gtattcagga cccaaactgtg aaattgctga	1380
gcaaggcctgc ctctctgatc cctgtcacaa cagaggcagc tgtaaggaga cctccctggg	1440
ctttgagtgt gagtgttccc caggctggac cggccccaca tgctctacaa acattgatga	1500
ctgttctccct aataactgtt cccacgggg cacotgccag gacctgggta acggatttaa	1560
gtgtgtgtgc cccccacagt ggactggaa aacgtgccag ttagatgcaa atgaatgtga	1620
ggccaaacct tttgtttaacg ccaaattctg taagaatctc attgccagct actactgcga	1680
ctgttctccc ggctggatgg gtcagaattt tgacataaat attaatgact gccttggcca	1740
gtgtcagaat gacgcctcct gtcgggattt ggttaatgggt tatcgctgtt tctgtccacc	1800
tggctatgca ggcgatcact gtgagagaga catcgatgaa tgtgccagca acccctgttt	1860
gaatgggggt cactgtcaga atgaaatcaa cagattccag tgtctgtgtc ccactggttt	1920
ctctggaaac ctctgtcagc tggacatcga ttattgtgag cctaattccct gccagaacgg	1980
tgcccagtgc tacaaccgtg ccagtacta tttctgcaag tgcccccagg actatgaggg	2040
caagaactgc tcacacctga aagaccactg ccgcacgacc ccctgtgaag tgattgacag	2100
ctgcacagtgc cccatggctt ccaacgacac acctgaaggg gtgcggataa ttccctccaa	2160
cgtctgtggc cttcacggga agtgcaagag tcagtcggga ggcaaattca cctgtgactg	2220
taacaaaggc ttacacggaa catactgcac tgaaaatatt aatgactgtg agagcaaccc	2280

ttgttagaaac ggtggcactt gcatcgatgg tgtcaactcc tacaagtgc a tctgttagtga	2340
cggctggag ggggcctact gtgaaaccaa tattaatgac tgcagccaga acccctgcc a	2400
caatggggc acgtgtcg cg acctggtcaa tgacttctac tgtgactgta aaaatgggtg	2460
gaaaggaaag acctgccact cacgtgacag tcagtgtgat gaggccacgt gcaacaacgg	2520
tggcacctgc tatgatgagg gggatgctt taagtgc atg tgc tggcg gctgggaagg	2580
aacaacctgt aacatagccc gaaacagtag ctgcctgccc aaccctgccc ataatgggg	2640
cacatgtgtg gtcaacggcg agtccttac gtgcgtctgc aaggaaggct gggagggcc	2700
catctgtgct cagaatacca atgactgcag ccctcatccc tttacaaca gcggcacctg	2760
tgtggatgga gacaactggt accggtgcg a atgtgccccg gttttgctg ggcccgactg	2820
cagaataaac atcaatgaat gccagtcttc accttgc tttggagcga cctgtgtgga	2880
tgagatcaat ggctaccggt gtgtctgccc tccagggcac agtggtgcc a gtgccagga	2940
agtttcagg agaccttgca tcaccatggg gagtgtgata ccagatggg ccaa atggg	3000
tgatgactgt aatacctgccc agtgcctgaa tggacggatc gcctgctcaa agtctgg	3060
tggccctcg a cttgcctgc tccacaaagg gcacagcg a tgc tggcc ggcagagctg	3120
catccccatc ctggacgacc agtgc ttcg ccacccctgc actgggtgtgg gcgagtgtcg	3180
gtttccagt ctccagccgg tgaagacaaa gtgcacctct gactcctatt accaggataa	3240
ctgtgcgaac atcacattt a ctttaacaa ggagatgatg tcaccaggc ttactacgg	3300
gcacatttgc agtgaattga ggaattt gaa tatttgaag aatgttccg ctgaatattc	3360
aatctacatc gttgcgagc cttcccttc agcgaacaa gaaatacatg tggccatttc	3420
tgtgaagat atacggatg atggaaaccc gatcaaggaa atcaactgaca aaataatcga	3480
tcttggtagt aaacgtgtatg gaaacagctc gctgattgct gccgttgc aagtaagagt	3540
tcagaggcgg cctctgaaga acagaacaga tttcctt gttt cccttgc tga gctctgtctt	3600
aactgtggct tggatctgtt gtttggatgac ggccttctac tggatctgc ggaagcggcg	3660
gaagccggc agccacacac actcagcctc tgaggacaac accaccaaca acgtgcggg	3720
gcagctgaac cagatcaaaa accccattga gaaacatggg gccaacacgg tccccatcaa	3780
ggattacgag aacaagaact caaaaatgtc taaaataagg acacacaatt ctgaagttaga	3840
agaggacgac atggacaaac accagcagaa agcccggtt gccaagcagc cggcgtacac	3900
gctggtagac agagaagaga agccccccaa cggcacgccc acaaaacacc caaaactggac	3960
aaacaaacag gacaacagag acttggaaag tgcccagagc ttaaaccgaa tggagtacat	4020
cgtatagcag accgcgggca ctgcccgc tagtagt ctgaggc tttt gtagt	4080

- 44 -

aaactgtcgt gtcatactcg agtctgaggc cgttgctgac tttagaatccc tgtgttaatt	4140
tagttgaca agctggctta cactggcaat ggttagttctg tgggtggctg ggaaatcgag	4200
tggcgcatct cacagctatg caaaaaagcta gtcaacagta cccctggttg tgtgtccccct	4260
tgcagccgac acggtctcggt atcaggctcc caggagctgc ccagccccct ggtactttga	4320
gctcccaactt ctgccagatg tctaattggtg atgcagtctt agatcatagt tttatttata	4380
tttatttgcactt cttgagttgt ttttgtatat tggttttatg atgacgtaca agtagttctg	4440
tatttgaaag tgcccttgca gctcagaacc acagcaacga tcacaaaatga ctttatttatt	4500
tatttttttt aattgttattt ttgttgttgg gggaggggag actttgtatgt cagcagttgc	4560
tggtaaaatg aagaatttaa agaaaaaaatg tccaaaaagta gaactttgtatgtttagtgc	4620
aataattctt ttttatttaat cactgtgtat atttgtatgttta ttaacttaat aatcaagagc	4680
cttaaaaacat cattccctttt tatttatatg tatgtgttta gaattgaagg tttttgtatgt	4740
cattgttaagc gtatggctttt atttttttga actcttctca ttacttggcgttgc cctataagcc	4800
aaaaagggaaa ggggtgtttttt aaaaatgtttt attttttttttt aataggatgg gctac	4855

<210> 35
<211> 9534
<212> DNA
<213> Homo Sapiens

<400> 35
cagcgactcc tctggctccc gagaagtgga tccggtcgcg gccactacga tgccgggagc 60
cgccggggtc ctccctccccc tgctgctc cggaggcctc gggggcgtac aggccgcagcg 120
gccgcagcag cagcggcagt cacaggcaca tcagcaaaga ggtttattcc ctgctgtct 180
gaatcttgct tctaattgctc ttatcacgac caatgcaaca tgtggagaaaa aaggacctga 240
aatgtactgc aaattggtag aacatgtccc tgggcagcct gtgaggaacc cgcaagtgtcg 300
aatctgcaat caaaacagca gcaatccaaa ccagagacac ccgattacaa atgctattga 360
tggaaagaac acttggtaggc agagtcccag tattaagaat ggaatcgaat accattatgt 420
gacaattaca ctggatttac agcaggtgtt ccagatcgcg tatgtgattt tgaaggcagc 480
taactcccc cggcctggaa actggatttt ggaacgcgtct cttgatgtatg ttgaatacaa 540
gccctggcag tatcatgctg tgacagacac ggagtgccta acgctttaca atatttatcc 600
ccgcactggg ccaccgtcat atgccaaaga tggatgaggc atctgcactt cattttactc 660
caagatacac cccttagaaa atggagagat tcacatctt ttaatcaatg ggagaccaag 720
tgcggatqat ccttctccaaq aactqctaga atttacacctt qctcqctata ttcqccctqag 780

-45-

atttcagagg atccgcacac tgaatgctga cttgatgatg tttgctcaca aagaccuaag	840
agaaaattgac cccattgtca ccagaagata ttactactcg gtcaaggata tttcagttgg	900
aggatgtgc atctgctatg gtcatgccag ggcttgcaca cttgatccag cgacaaataa	960
atctcgctgt gagtgtagc ataacacatg tggcgatagc tgtgatcagt gctgtccagg	1020
attccatcag aaaccctgga gagctggaac ttttctaact aaaactgaat gtgaagcatg	1080
caattgtcat ggaaaagctg aagaatgcta ttatgatgaa aatgttgcca gaagaaatct	1140
gagtttgaat atacgtggaa agtacattgg aggggggtgtc tgcattaatt gtacccaaaa	1200
cactgctggt ataaactgcg agacatgtac agatggcttc ttcagaccca aaggggtatc	1260
tccaaattat ccaaggccat gccagccatg tcattgcgtat ccaattggtt ctttaaatga	1320
agtctgtgtc aaggatgaga aacatgctcg acgaggtttgc acacctggat cctgtcatttgc	1380
caaaaactggt tttggaggtg tgagctgtga tcgggtgtcc aggggctaca ctggctaccc	1440
ggactgcaaa gcctgttaact gcagtgggtt agggagcaaa aatgaggatc cttgttttgg	1500
cccctgtatc tgcaaggaaa atgttgaagg aggagactgt agtcgttgca aatccggctt	1560
cttcaatttgc caagaggata attggaaagg ctgcgtatgag tgtttctgtt caggggtttc	1620
aaacagatgt cagagttcct actggaccta tggcaaaata caagatatga gtggctggta	1680
tctgactgac cttcctggcc gcattcgagt ggctccccag caggacgact tggactcacc	1740
tcagcagatc agcatcagta acgcggaggc ccggcaagcc ctgcccgcaca gctactactg	1800
gagcgcgcgcg gctccctatc tggaaaccaa actcccagca gtaggaggac agttgacatt	1860
taccatatca tatgaccttg aagaagagga agaagataca gaacgtgttc tccagcttat	1920
gattatctta gagggtaatg acttgagcat cagcacagcc caagatgagg tgtacctgca	1980
cccatctgaa gaacatacta atgtatttttactttaagaa gaatcattta ccatacatgg	2040
cacacatttt ccagtccgtat gaaaggaatt tatgacagtgc ttgcgtatc tgaagagagt	2100
cctcctacaa atcacatatacata gctttggat ggatgccatc ttgcgtatc gctctgttac	2160
ccttgaatcc gctgtctcct atcctactgat tggaaagcatt gcagcagctg tagaagtgtg	2220
tcagtgcacca ccagggata ctggctcctc ttgtgaatct tggtggccata ggcacaggcg	2280
agttaacggc actattttg gtggcatctg tgagccatgt cagtgcatttgc gtcgtatgcgg	2340
gtcctgtatc gacgtcactg gagaatgcct gaaactgtaaag gatcacacag gtggccata	2400
tttgtgataaa tgtcttcctg gtttctatgg cgagcctact aaaggaacct ctgaagactg	2460
tcaaccctgtt gcctgtccac tcaatatccc atccaataac tttagccaa cgtgccattt	2520
agaccggagt cttggattga tctgtatgg atgcctgtc gggtacacag gaccacgctg	2580

-46-

tgagagggtgt gcagaaggct attttggaca accctctgta cctggaggat catgtcagcc	2640
atgccaatgc aatgacaacc ttgacttctc catccctggc agctgtgaca gcttgtctgg	2700
ctcctgtctg atatgtaaac caggtacaac aggccggtac tgtgagctct gtgctgatgg	2760
atattttgga gatgcagttg atgcgaagaa ctgtcagccc tgtcgctgta atgcccgtgg	2820
ctctttctct gaggtttgcc acagtcaaac tggacagtgt gagtgcagag ccaacgttca	2880
gggtcagaga tgtgacaaat gcaaggctgg gacctttggc ctacaatcag caaggggctg	2940
tgttccctgc aactgcaatt cttttgggtc taagtcattc gactgtgaag agagtggaca	3000
atgttggtgc caacctggag tcacaggaa gaaatgtgac cgctgtgccc acggctattt	3060
caacttccaa gaaggaggct gcacagctg tgaatgttct catctggta ataattgtga	3120
cccaaagact gggcgatgca tttgcccacc caataccatt ggagagaaaat gttctaaatg	3180
tgcacccaat acctggggcc acagcattac cactggttgt aaggcttgta actgcagcac	3240
agtgggatcc ttggatttcc aatgcaatgt aaatacaggc caatgcaact gtcatccaaa	3300
attctctggt gcaaaatgta cagagtgcag tcgaggtcac tggaactacc ctcgctgcaa	3360
tctctgtgac tgcttcctcc ctggacaga tgccacaacc tgtgatttag agactaaaaaa	3420
atgctcctgt agtcatcaaa ctgggcagtg cacttgtaag gtgaatgtgg aaggcatcca	3480
ctgtgacaga tgccggcctg gcaaattcgg actcgatgcc aagaatccac ttggctgcag	3540
cagctgctat tgcttcggca ctactaccca gtgctctgaa gcaaaaggac tgatccggac	3600
gtgggtgact ctgaaggctg agcagaccat tctaccctg gtagatgagg ctctgcagca	3660
cacgaccacc aagggcattt ttttcaaca tccagagatt gttgcccaca tggacctgat	3720
gagagaagat ctccatttgg aacctttta ttggaaaactt ccagaacaat ttgaaggaaa	3780
gaagttgatg gcctatgggg gcaaactcaa gtatgcaatc tatttcgagg ctcggaaaga	3840
aacaggtttc tctacatata atcctaagt gatcattcga ggtggacac ctactcatgc	3900
tagaattatc gtcaggcata tggctgctcc tctgattggc caattgacaa ggcattgaaat	3960
tgaaaatgaca gagaaagaat gaaaatatta tggggatgat cctcgagtcc atagaactgt	4020
gacccgagaa gacttcttgg atatactata tgatattcat tacattctt tcaaagctac	4080
ttatggaaat ttcatgcgac aaagcaggat ttctgaaatc tcaatggagg tagctgaaca	4140
aggacgtgga acaacaatga ctcctccagc tgacttgatt gaaaaatgtg attgtcccct	4200
gggctattct ggcctgtct gtgaggcatg cttgccggga ttttatcgac tgcgttctca	4260
accaggtggc cgcacccctg gaccaaccct gggcacctgt gttccatgtc aatgtaatgg	4320
acacagcagc ctgtgtgacc ctgaaacatc gatatgccag aattgtcaac atcacactgc	4380

-47-

tggtgacttc tgtgaacgat gtgctttgg atactatgga attgtcaagg gattgccaaa	4440
tgactgtcag caatgtgcct gccctctgat ttcttccagt aacaatttca gcccctttg	4500
tgtcgagaa ggacttgacg actaccgctg cacggcttgt ccacggggat atgaaggcca	4560
gtactgtgaa aggtgtgccc ctggctatac tggcagtcca ggcaaccctg gaggctcctg	4620
ccaagaatgt gagtgtgatc cctatggctc actgcctgtg ccctgtgacc ctgtcacagg	4680
attctgcacg tgccgacctg gagccacggg aaggaagtgt gacggctgca agcactggca	4740
tgcacgcgag ggctggaggt gtgtttttg tggagatgag tgcactggcc ttcttctcgg	4800
tgacttggct cgccctggagc agatggtcat gagcatcaac ctcactggtc cgctgcctgc	4860
gccatataaa atgctgtatg gtcttgaaaa tatgactcag gagctaaagc acttgctgtc	4920
acctcagcgg gccccagaga ggcttattca gctggcagag ggcaatctga atacactcgt	4980
gaccgaaatg aacgagctgc tgaccagggc taccaaagtg acagcagatg gcgagcagac	5040
cggacaggat gctgagagga ccaacacaag agcaaagtcc ctgggagaat tcattaagga	5100
gcttgcggg gatgcagaag ctgtaaatga aaaagctata aaactaaatg aaactctagg	5160
aactcgagac gaggccttg agagaaattt ggaaggcctt cagaaagaga ttgaccagat	5220
gattaaagaa ctgaggagga aaaatctaga gacacaaaag gaaattgctg aagatgagtt	5280
ggtagctgca gaagcccttc tgaaaaaaagt gaagaagctg tttggagagt cccggggggga	5340
aatgaagaa atggagaagg atctccggga aaaactggct gactacaaaa acaaagttga	5400
tgatgcttgg gacctttga gagaagccac agataaaatc agagaagcta atgccttatt	5460
tgcagtaaat cagaaaaaca tgactgcatt ggagaaaaag aaggaggctg ttgagagcgg	5520
caaacgacaa attgagaaca cttaaaaaga aggcaatgac atactcgatg aagccaaccg	5580
tcttgcagat gaaatcaact ccatcataga ctatgttcaa gacatccaaa ctaaattgcc	5640
acctatgtct gaggagctt atgataaaat agatgacctc tcccaagaaa taaaggacag	5700
gaagcttgct gagaaggtgt cccaggctga gagccacgca gctcagttga atgactcatc	5760
tgctgtcctt gatggaatcc ttgatgaggc taaaaacatc tccttcaatg ccactgcagc	5820
cttcaaagct tacagcaata ttaaggacta tattgtgaa gctgagaaag ttgccaaaga	5880
agccaaagat cttgcacatg aagctacaaa actggcaaca ggtcctcggg gtttattaaa	5940
ggaagatgcc aaaggctgtc ttcagaaaaag cttaggatt cttaacgaag ccaagaagtt	6000
agccaaatgt gtaaaagaaa atgaagacca tctaaatggc taaaaacca ggatagaaaa	6060
tgctgatgct agaaatgggg atctcttgag aactttgaat gacactttgg gaaagttatc	6120
agctattcca aatgatacag ctgctaaact gcaagctgtt aaggacaaaag ccagacaagc	6180

-48-

caacgacaca gctaaagatg tactggcaca gattacagag ctccaccaga acctcgatgg	6240
cctgaagaag aattacaata aactagcaga cagcgtgcc aaaacgaatg ctgtggtaa	6300
agatccttcc aagaacaaaa tcattgccga tgcagatgcc actgtcaaaa atttagaaca	6360
ggaagctgac cggttaatag ataaactcaa acccatcaag gaacttgagg ataacctaaa	6420
gaaaaacatc tctgagataa aggaattgt aaaccaagct cgaaacaag ccaattctat	6480
caaagtatct gtgtttcag gaggtgactg cattcgaaca tacaaaccag aaatcaagaa	6540
aggaagttac aataatattg ttgtcaacgt aaagacagct gttgctgata acctcctctt	6600
ttatcttggg agtgccaaat ttattgactt tctggctata gaaatgcgt aaggcaaagt	6660
cagtttcctc tggatgttg gatctggagt tggacgtgta gagtacccag atttgactat	6720
tgtgactca tattggtacc gtatcgtac atcaagaact gggagaaatg gaactatttc	6780
tgtgagagcc ctggatggac ccaaagccag cattgtgccc agcacacacc attcgacgtc	6840
tcctccaggg tacacgattc tagatgtgga tgcaaattgca atgcttttggatggcct	6900
gactggaaa ttaaagaagg ctgatgtgt acgtgtgatt acattcactg gctgcatggg	6960
agaaacatac tttgacaaca aacctatagg tttgtgaaat ttccgagaaa aagaaggtga	7020
ctgcaaagga tgcactgtca gtcctcagg ggaagatagt gaggggacta ttcaatttga	7080
tggagaaggt tatgcattgg tcagccgtcc cattcgctgg taccccaaca tctccactgt	7140
catgttcaag ttcagaacat tttcttcgag tgctttctg atgtatcttgc acacacgaga	7200
cctgagagat ttcatgagtg tggagctcac .tgatggcac ataaaagtca gttacgatct	7260
gggctcagga atggcttcg ttgtcagcaa tcaaaaccat aatgatgggaaatggaaatc	7320
attcactctg tcaagaattc aaaaacaagc caatatatca attgttagata tagataactaa	7380
tcaggaggag aatatacgaa cttcgcttc tggaaacaac tttggctttg acttgaaagc	7440
agatgacaaa atatattttg gtggcctgcc aacgctgaga aacttgagta taaaagcaag	7500
gccagaagta aatctgaaga aatattccgg ctgcctcaaa gatattgaaa ttcaagaac	7560
tccgtacaat atactcagta gtcccgatta tggttgtt accaaaggat gttccctgg	7620
aatgtttac acagtttagct ttcctaagcc tgggtttgtg gagctctccc ctgtgccaat	7680
tgtatgttagga acagaaatca acctgtcatt cagcaccaag aatgagtcg gcatcattct	7740
tttggaaagt ggagggacac cagcaccacc taggagaaaa cgaaggcaga ctggacaggc	7800
ctattatgtta atactcctca acagggccg tctgaaagtgcatctcca cagggccacg	7860
aacaatgagg aaaattgtca tcagaccaga gccgaatctg tttcatgtatg gaagagaaca	7920
ttccgttcat gtagagcgaa ctagaggcat ctttacagtt caagtggatg aaaacagaag	7980

- 49 -

atacatgcaa aacctgacag ttgaacagcc tatcgaagtt aaaaagctt tcgttggggg 8040
tgctccacct gaattcaac cttccccact cagaaatatt ctccttttgc aaggctgcatt 8100
atggaatctt gttattaact ctgtccccat ggactttgca aggctgtgt cttcaaaaa 8160
tgctgacatt ggtcgctgtg cccatcagaa actccgtgaa gatgaagatg gagcagctcc 8220
agctgaaata gttatccagc ctgagccagt tcccacccca gccttccta cgcccacccc 8280
agttctgaca catggtcctt gtgctgcaga atcagaacca gctctttga tagggagcaa 8340
gcagttcggg ctttcaagaa acagtcacat tgcaattgca tttgatgaca ccaaagttaa 8400
aaaccgtctc acaattgagt tggaaagtaag aaccgaagct gaatccggct tgcttttta 8460
catggctgctg atcaatcatg ctgattttgc aacagttcag ctgagaaatg gattgcccta 8520
cttcagctat gacttgggaa gtggggacac ccacaccatg atccccacca aaatcaatga 8580
tggccagttgg cacaagatta agataatgag aagtaagcaa gaaggaattc tttatgtaga 8640
tggggcttcc aacagaacca tcagtccaa aaaagccgac atcctggatg tcgtggaaat 8700
gctgtatgtt ggtgggttac ccatcaacta cactaccgaa agaattggtc cagtgaccta 8760
tagcattgtat ggctgcgtca ggaatctcca catggcagag gcccctgccc atctggaaaca 8820
acccacccctcc agcttccatg ttgggacatg ttttgc当地 gctcagaggg gaacatattt 8880
tgacggaaacc ggttttgccaa aagcagttgg tggattcaaa gtgggattgg accttcttgt 8940
agaatttgaa ttgcgcacaa ctacaacgac tggagttttt ctggggatca gtgtcaaaaa 9000
aatggatgga atgggtatttga aatgattga tgaaaagttg atgtttcatg tggacaatgg 9060
tgcgggcaga ttcaactgctg tctatgatgc tggggttccaa gggcatttgc gtgtatggaca 9120
atggcataaa gtcactgcca acaagatcaa acaccgcatt gagctcacag tcgtatggaa 9180
ccaggtggaa gcccaaagcc caaacccagc atctacatca gctgacacaa atgaccctgt 9240
gtttgttggaa ggcttcccag atgaccta gcaagttggc ctaacaacca gtattccgtt 9300
ccgagggttgc atcagatccc tgaagctcac caaaggcaca gcaagccact ggaggttaat 9360
tttgc当地agg ccctggaaact gaggggcgtt caacctgtat catgcccagc caactaataa 9420
aaataagtgt aaccccccagga agagtctgtc aaaacaagta tatcaagtaa aacaaacaaa 9480
tatattttac ctatatatgt taattaaact aatttgc当地 tgtacataga attc 9534

```
<210> 36
<211> 5683
<212> DNA
<213> Homo Sapiens
```

<400> 36 ccggccggtg ttgcgctcct tccccagaatc cgctccggcc tttctttcct gcccgcattc 60

-50-

ccaaactttgc tcaaagtgcg cggactctaa gctgtcggag ggaccgctgg acagacctgg	120
gaactgacag agggcctgga gggaaatagg ccaaagaccc acaggatgga gctgaccta	180
accgaaagag ggaggggaca gcctctgccc tggaaacttc gactgcccct actgctaagc	240
gtgctggctg ccacactggc acaggcccct gccccggatg tccctggctg ttccagggga	300
agctgctacc cgcgcacggc cgacctgctg gtggccgag ctgacagact gactgcctca	360
tccacttgtg gcctgaatgg cgcgcagccc tactgcatcg tcagtcacct gcaggacgaa	420
aagaagtgct tcctttgtga ctcccggcgc cccttctctg ctagagacaa cccacacacc	480
catcgcatcc agaatgttagt caccagctt gcaccacagc ggcgggcagc ttgggtggcag	540
tcacagaatg gatatccctgc ggtcaccatc cagctggacc tggaggctga gtttcatttc	600
acacacctca ttatgacattt caagacattt cgcctgctg ccatgcttgt cgaacgctca	660
gcagactttg gccgcacctg gcatgtgtac cgatatttct cctatcactg tggggctgac	720
ttcccaggag tcccactagc acccccacgg cactggatg atgtagtcgt tgagtcccgc	780
tactcagaga ttgagccatc cactgaaggc gaggtcatct atcgtgtgct ggaccctgccc	840
atccctatcc cagaccctta cagctcacgg attcagaacc tttgaagat caccaaccta	900
cgggtgaacc tgactcgtct acacacgttg ggagacaacc tactcgaccc acggagggag	960
atccgagaga agtactacta tgccctctat gagctggttg tacgtggcaa ctgcttctgc	1020
tacggacacg cctcagagtg tgcacccgcc ccagggcac cagcccatgc tgagggcatg	1080
gtgcacggag cttgcacatctg caaacacaac acacgtggcc tcaactgcga gcagtgtcag	1140
gatttctatc gtgacctgccc ctggcgtccg gctgaggacg gccatagtca tgcctgttagg	1200
aagtgtgatc ggcattggca cacccacagc tgccacttcg acatggccgt atacctcgga	1260
tctggcaatg tgagtggagg tgtgtgtat ggatgtcagc ataacacagc gtggcgccac	1320
tgtgagctct gtcggccctt cttctaccgt gacccaacca aggacctgacg ggatccggct	1380
gtgtgccgct cctgtgattt tgaccccatg gtttctcaag acggtggtcg ctgtgattcc	1440
catgatgacc ctgcactggg actggctcc ggcacgtgtc gctgcaaaga acacgtggtg	1500
ggcactcgct gccagcaatg ccgtgatggc ttctttggc tcagcatcag tgaccgtct	1560
gggtgccggc gatgtcaatg taatgcacgg ggcacagtgc ctgggagcac tccttgcac	1620
cccaacagtg gatcctgtta ctgcaaacgt ctgtgactg gacgtggatg tgaccgtgc	1680
ctgcctggcc actggggcct gagcctcgac ctgctcggct gccgcctg tgactgcac	1740
gtgggtggtg ctttggatcc ccagtgtat gagggcacag gtcaatgcca ctgcccag	1800
cacatggttg ggcacgtgc tgagcaggatg caacctggct acttccggcc ctgcctggac	1860

cacctaattt	gggaggctga	gaacacccga	gggcaggtgc	tcgatgtgg	ggagcgccctg	1920
gtgacccccc	gggaaaactcc	atcctggact	ggctcaggct	tcgtgcgact	acaggaaggt	1980
cagaccctgg	agttcctgg	ggcctctgtg	ccgaacgcga	tggactatga	cctgctgctg	2040
cgcttagagc	cccaggtccc	tgagcaatgg	gcagagttgg	aactgattgt	gcagcgtcca	2100
gggcctgtgc	ctgcccacag	cctgtgtgg	catttggtgc	ccagggatga	tcgcacatccaa	2160
gggactctgc	aaccacatgc	caggtacttg	atatttccta	atcctgtctg	ccttgagcct	2220
ggtatctcct	acaagctgca	tctgaagctg	gtacggacag	ggggaagtgc	ccagcctgag	2280
actccctact	ctggacacctgg	cctgctcatt	gactcgctgg	tgctgctgcc	ccgtgtccctg	2340
gtgctagaga	tgttagtgg	gggtgatgct	gctgccctgg	agcgccaggc	cacctttgaa	2400
cgcataccat	gccatgagga	gggtctgg	cccagcaaga	cttctccctc	tgaggcctgc	2460
gcacccctcc	tcatcagcct	gtccaccctc	atctacaatg	gtgccctgcc	atgtcagtgc	2520
aaccctcaag	gttcactgag	ttctgagtgc	aaccctcatg	gtggtcagtg	cctgtgcaag	2580
cctggagtgg	ttggcgccg	ctgtgacacg	tgtgccctg	gctactatgg	cttggcccc	2640
acaggctgtc	aagcctgcca	gtgcagccca	cgagggcac	tcagcagtct	ctgtgaaagg	2700
accagtgggc	aatgtctctg	togaactgg	gccttgggc	ttcgctgtga	cgccctgccag	2760
cgtggccagt	ggggattccc	tagctgccgg	ccatgtgtct	gcaatggca	tgcagatgag	2820
tgcaacacccc	acacaggcgc	ttgcctggc	tgccgtgatc	tcacaggggg	tgagcactgt	2880
gaaagggtgca	ttgctggttt	ccacggggac	ccacggctgc	catatgggc	gcagtgccgg	2940
ccctgtccct	gtcctgaagg	ccctgggagc	caacggcact	ttgctacttc	ttgccaccag	3000
gatgaatatt	cccagcagat	tgtgtgccac	tgccggcag	gctatacggg	gctgcgatgt	3060
gaagcttgtg	cccctggca	gtttggggac	ccatcaaggc	caggtggccg	gtgccaactg	3120
tgtgagtgca	gtgggaacat	tgacccaatg	gatctgtatg	cctgtgaccc	acaccccccgg	3180
caatgcctgc	gctgttaca	ccacacagag	ggtccacact	gtgcccaactc	gaagcctggc	3240
ttccatggcc	aggctgccc	gcagagctgt	caccgctgca	catgcaacct	gctgggcaca	3300
aatccgcagc	agtgcacatc	tcctgaccag	tgccactgtg	atccaagcag	tggcagtg	3360
ccatgcctcc	ccaatgtcca	ggccctagct	gtagaccgct	gtgcccccaa	cttctggAAC	3420
ctcaccagtg	ccatgggttg	ccagccttgt	gcctgcctcc	caagccccga	agaaggcccc	3480
acctgcaacg	agttcacagg	gcagtgccac	tgcctgtgcg	gctttggagg	gcggacttgt	3540
tctgagtgca	aagagctcca	ctggggagac	cctgggttgc	agtgccatgc	ctgtgattgt	3600
gactctcg	gaatagatac	acctcagtgt	caccgcttca	caggtcactg	cacgtgccgc	3660

ccaggggtgt ctggtgtgcg ctgtgaccag tgtgcccgtg gcttctcagg aatcttcct	3720
gcctgccatc cctgccatgc atgcttcggg gattgggacc gagtggtgca ggacttggca	3780
gccccgtacac agcgcctaga gcagcgggcg caggagttgc aacagacggg tgtgctgggt	3840
gccttgaga gcagcttctg gcacatgcag gagaagctgg gcattgtgca gggcatcgta	3900
ggtgcccgca acacctcagc cgccctccact gcacagcttgc tggaggccac agaggagctg	3960
cggcgtgaaa ttggggaggc cactgagcac ctgactcagc tcgaggcaga cctgacagat	4020
gtgcaagatg agaacttcaa tgccaaccat gcactaagtg gtctggagcg agataggctt	4080
gcacttaatc tcacactgcg gcagctcgac cagcatcttgc acttgctcaa acattcaaac	4140
ttcctgggtg cctatgacag catccggcat gcccatagcc agtctgcaga ggcagaacgt	4200
cgtgccaata cctcagccct ggcagtagcccttgc aacttgcaga aagtgtcg	4260
catcgacag aggcaactgat ggatgctcag aaggaggact tcaacagcaa acacatggcc	4320
aaccagcggg cacttggcaa gctctctgcc cataccaca ccctgagccct gacagacata	4380
aatgagctgg tgtgtgggc ccagggatttgc catcatgatc gtacaagccc ttgtgggggt	4440
gccggctgtc gagatgagga tggcagccg cgctgtgggg gcctcagctg caatggggca	4500
gcggctacag cagacccatgc actggggccgg gccggcaca cacaggcaga gctgcagcgg	4560
gcactggcag aaggtggtag catcctcagc agagtggctg agactcgctg gcaggcaagc	4620
gagggcacagc agcgggccc ggcagccctg gacaaggcta atgcttccag gggacaggtg	4680
gaacaggcca accaggaact tcaagaactt atccagagtg tgaaggactt cctcaaccag	4740
gagggggctg atcctgatag cattgaaatg gtggccacac gggtgctaga gctctccatc	4800
ccagcttcag ctgagcagat ccagcacctg gggcgccgat ttgcagagcg agtccggagc	4860
ctggcagatg tggatgctgat cctggcacgt actgttaggat atgtgcgtcg tgccgagcag	4920
ctactgcagg atgcacggcg ggcaaggagc tggctgtgagg atgagaaaca gaaggcagag	4980
acagtacagg cagcactgga ggaggcccag cgggcacagg gtattgccc ggggccatc	5040
cggggggcag tggctgacac acgggacaca gagcagaccc tgtaccaggt acaggagagg	5100
atggcaggtg cagagcgggc actgagctt gcaggtgaaa gggctggca gttggatgct	5160
ctcctggagg ctctgaaatt gaaacggca gaaatagtc tggcagccctc tacagcagaa	5220
gaaacggcag gcagtgccc gggctgtgcc caggaggctg agcagctgct acgcggct	5280
ctgggtgatc agtaccagac ggtgaaggcc ctagctgagc gcaaggccc aggtgtgctg	5340
gctgcacagg caagggcaga acaactgccc gatgaggctc gggacctgtt gcaagccgct	5400
caggacaagc tgcagcggct acaggaatttgc gaaggcacct atgagaaaaa tgagcgggca	5460

- 53 -

ctggagagta aggcagccca gttggacggg ttggaggcca ggatgcgcag cgtgcttcaa	5520
gccatcaact tgcaggtgca gatctacaac acctgccagt gaccctgcc caaggcctac	5580
cccagttcct agcactgccc cacatgcattg tctgcctatg cactgaagag ctcttggccc	5640
ggcagggccc ccaataaaacc agtgtgaacc cccaaaaaaaaaaa aaa	5683

<210> 37
<211> 3714
<212> DNA
<213> Homo Sapiens

<400> 37	
ccgggttgct gtgcgactat tctccggag ccgttcgtgt caccgccccga acctggcgca	60
ggtaattat agaaaatgcc aagtaggaaa tttgccatgt gtgaagtgggt aagaggtcga	120
tggcctggga gttcacttta ttatgaagta gaaattctga gccacgacag cacctcccag	180
ctttacactg tgaagtataa agatggaaca gagcttgaat tgaaagagaa tgatattaag	240
cctttaactt cctttaggca aaggaaaggt ggctcaactt ccagttcccc ttccagacgc	300
cgagggagtc gatcaaggc acgctcccgta tccctggc gaccaccta aagtgcggcgc	360
cgatctgctt ctgcttccca ccaggccgac attaaggaag caaggaggaa agtggaaagtt	420
aaattgactc cgctgattct gaagccattt ggaaatagca tcagcagata taatggggag	480
cctgagcata ttgagagaaa tgacgcacccataaaaaata cacagggaaa attcagtttg	540
tcacaagaaa gcagttacat agcaacacag tatagccttc gtccaagaag agaagaagtc	600
aaattaaaaag aaatagattc taaggaagaa aaatacgtt caaaagaact ggcagtgaga	660
acctttgaag tgaccccat ccgggcaaaag gacttggagt ttggaggagt acctgggtgt	720
tttctcatca tgtttggcct gcctgtgtc ctcttcctgt tgctgttgat gtgtaaacag	780
aaagatccca gtcttctgaa tttccctcct ctttgccag ctttgtatga gttatggaa	840
accagagtat ttggggtcta ctcctgtgg ttttgattt aagtcctgtt ctacctactg	900
ccaattggaa aggttgtaga aggaacgcct cttattgtatg gaagaagact caagtataga	960
ttaaatggat tctatccttt tatcctgaca tctgcgtca tcggAACATC tctcttccag	1020
ggcgttagagt ttcattacgt gtacagtcat tttcttcagt ttgcacttgc ggccactgtt	1080
ttttgtgtgg tcttgagtgt gtatctctac atgcgtcttt tgaaagcgcc ccggaaatgac	1140
ctgtcgccctg ccagctctgg aaatgctgtc tatgatttct tcattggccg tgaattaaac	1200
cctcgaattt gtacttttga tctcaaatac ttttgtgaat tgcccccgg attgatttgg	1260
tgggtggta ttaacttgggt gatgcttttgc gctgaaatga aaatacagga ccgcgcgtt	1320

-54-

ccatccttgg ccatgatttt agttaatagt ttccagcttc tctatgtggt ggatgctctc	1380
tggaatgagg aagcggttggt gacgaccatg gacatcatcc acgatggatt tggattcatg	1440
ctggcttttg gagacttggt gtgggttccc ttttattaca gcttccaagg cttttattta	1500
gtcagtcatc caaatgaagt gtcttggcca atggcttctc taattattgt tctgaaaactt	1560
tgtggttatg taatcttccg aggtgcaa at tctcagaaaa atgcattccg gaaaaatccc	1620
agtgatccaa agcttgcaca tttaaaaacc attcatactt caagtggaaa aaatcttcta	1680
gtttctggat ggtggggcctt tggtcgccac cccaaattact tgggtgatct catcatggcc	1740
ttggcgtggt ccctccccatg tggtttaac cacattctgc cttatttcta cataatttat	1800
ttcacccatgt tgcttgcaca ccgagaagct cgtgacgagt accactgtaa gaagaaatac	1860
ggcgtggcctt gggaaaagta ctgtcagcgt gtgccttacc gtatatttcc atacatctac	1920
taatgctctt ctggcttttc tacaaaatac tcctgcaatt ccagctgccca tttgcaaaaa	1980
caggaaaaaaaa atccgaaaact ttctttgtt gcactgacag ggtctgtact ttttttttc	2040
ttttttagtc aggactatgg agccgagtag ttgatctttt aatatagccg tgtttacttg	2100
tattaactta cagttAACat aggaaaaata caagtaagga tgtgagaatt tgcatTTAA	2160
tggaaattt tcaaccctta atctgaaaac agaagacagt cttaatataa atgtactgtg	2220
aagaatgcta ttgatgtta tggttctga ttactttca aattttgatg ttttttgcc	2280
agttggcttt tcttaaatga aaacactgtt ccattaaag tacattttag ttttattcag	2340
taagagaata gaattttcat ttgttttct ttaaatcctt tactaattat ataatttgaa	2400
agcaaaaaga agggcctata ttaaatgctg aaagtggaaa gtgatgacat tattagcaga	2460
cactgcttaa aggagaccat ttgttagcagt tggcttaacc tcaacttcta aaactacatt	2520
gaaaatgtaa atacatagct tagtttttg taatatatgg tgacttcaga ttttttgta	2580
cagtattttg aatgtgagat gattgtcagg actaactgtc ttttaacaa aacattttca	2640
gtatTTAAA taaaattttg taaagtaatg tgaattaaaa attttggAAC aattagaatt	2700
cattcactat tgtatagaag atgctgttaa aacataggaa gggtatTTTt ctgatccaa	2760
agtttgcgaa ttggctttg ctacctcaat tgcagggttt tgttgcctt tataaactgt	2820
tgcAAataga aaaaaaatag aataagtata tattttggA gtaacatcaa tattttaaaca	2880
tttttacaca gatcggtgtt tgaaaatttg ccatttcagg ctaatattt tatataatttt	2940
tgactttta aaagttcatc agtgttttg ctactgttaa gcttatgcag ttataactgt	3000
atttttatg tattttttat atttacaaa cctgactccc tggtaaggAG tgctgtctta	3060
aaaacaactg aaggggttaa agtcgtttct ttttagttaa tagatgtgca taaggttagct	3120

-55-

ttagcaatta aattcttagtg aagttgatata gtcattt ttaattgtcc tgtaatggaa	3180
cagtagcaaa ttcaactaaac ttttgtgttc agagttaaat tgttctcagt actttcaatg	3240
taggggaatg taataaacat agtgtgtatg tttgggtttt aattacacat tttatatatg	3300
agccattnag atatgcagtg ttaattctat actgcatttg aagtgtatgt aacttagctt	3360
atgttaatgc agtcatgaag ttgggttgct ccagcatccg gtagtcttta aacattcttt	3420
tagtcaaatt gtcattgttt tatcagtgtct aatgtgtgca agcagttttt ttatggct	3480
tttctccctgg catcagaaag tgggtggcggtt ttctgtactg gattgcacca aggaagcttt	3540
tggggaggaa ggaaggacat taaattcttt ccctggtaat gaaaagagcc ctttatcaat	3600
acagtgcgtgc aatttctgga tatcagctac actttgtttt taagttgtt tttgacatgt	3660
ttatggca aattttataa tgaagtttta agttgaaaat aaaatgttagc aaca	3714

<210> 38
 <211> 911
 <212> DNA
 <213> Homo Sapiens

<400> 38	
tctatcccag gtcacagcta cttcttcaag ggtgcctatt acctgaagct ggagaaccaa	60
agtctgaaga gcgtgaagtt tggaaagcatc aaatccgact ggctaggctg ctgagctggc	120
cctggctccc acaggccctt cctctccact gccttcgata caccgggcct ggagaactag	180
agaaggaccc ggaggggcct ggcagccgtg cttcagctc tacagctaat cagcattctc	240
actcctacct ggttaattaa gattccagag agtggctctt cccggtgccc aagaatagat	300
gctgactgta ctcccccag gcgccttc cccctccaat cccaccaacc ctcagagccca	360
cccttaaaga gatccttga tattttcaac gcagccctgc tttgggctgc cctggtgctg	420
ccacacttca ggctttctc cttcacaac cttctgtggc tcacagaacc ctggagccca	480
atggagactg tctcaagagg gcactggtg cccgacagcc tggcacaggg cagtggaca	540
gggcatggcc aggtggccac tccagacccc tggctttca ctgctggctg ccttagaacc	600
tttcttacat tagcagttt ctttgtatgc actttgtttt tttctttggg tcttgtttt	660
ttttccact tagaaattgc atttcctgac agaaggactc aggttgtctg aagtcaactgc	720
acagtgcata tcagccccaca tagtgatggt tccctgttc actctactta gcatgtccct	780
accgagtctc ttctccactg gatggaggaa aaccaagccg tggctcccg ctcagccctc	840
cctggccctc cttcaacca ttccccatgg gaaatgtcaa caagtatgaa taaagacacc	900
tactgagtgg c	911

-56-

<210>	39					
<211>	1423					
<212>	DNA					
<213>	Homo Sapiens					
<400>	39					
ctccgctatac	aacaacttat	taaagaaaac	ttgaaagaaa	ttgccaagtt	aatcacattg	60
gaacaaggga	agacccttagc	tgatgctgaa	ggagatgtat	ttcgaggcct	tcaggtggtt	120
gagcatgcct	gtagtgtgac	atccctcatg	atgggagaga	ccatgccatc	catcaccaaa	180
gacatggacc	tttattccta	cctgtctgcct	ctgggagtgt	gtgcaggcat	tgctccattc	240
aattttcctg	ccatgatccc	cctttggatg	tttcccatgg	ccatggtgtg	tggaaataacc	300
ttcctaata	gacatctga	gcgagtcct	ggagcaacta	tgcttcitgc	taagttgctc	360
caggattctg	gtgcccctga	tggAACATTA	aacatcatcc	atggacagca	tgaagctgt	420
aattttat	gcatcatcc	ggacatcaa	gcaatcagct	ttgtggatc	caacaaggca	480
ggagagtata	tcttcgagag	aggatcaaga	catggcaaga	gggttcaagc	caatatggga	540
gccaagaacc	atggggtagt	catgccagat	gccaataagg	aaaataccct	gaaccagctg	600
gttggggcag	catttggagc	tgctggtcag	cgctgcatgg	ctcttcaac	agcagtcctt	660
gtgggagaag	ccaagaagtg	gctgccagag	ctggtgagc	atgccaaaaa	cctgagagtc	720
aatgcaggag	atcagcctgg	agctgatctt	ggccctctga	tcactcccc	ggccaaagag	780
cgagtctgt	atctgattga	tagtggaaaca	aaggagggag	cttccatcct	tcttgatgga	840
cgaaaaatta	aagtggaaagg	ctatgaaaat	ggcaactttg	ttggaccaac	catcatctcg	900
aatgtcaagc	caaataatgac	ctgttacaaa	gaggagattt	ttggtccagt	tcttgatgg	960
ctggagacag	aaacatttga	tgaagccatc	cagattgtaa	ataacaaccc	atatggaaat	1020
ggaactgcca	tcttcaccac	caatggagcc	actgctcgga	aatatgccc	ctgggtggat	1080
gttggacagg	tgggagtgaa	tgtccccatt	ccagtgcctt	tgccaatgtt	ctcattcacc	1140
ggctctcgat	cctccttcag	gggagacacc	aatttctatg	gcaaacaggg	catccaattc	1200
tacactcagt	taaagaccat	tacttctcag	tggaaagaag	aagatgctac	tcttcctca	1260
cctgctgttg	tcatgcctac	catggccgt	tagaaacaag	tttgtttaag	actgactcca	1320
tcctgagtaa	tctcccttta	tttttgacca	gcttcatttg	tcagcttgc	tcagatcaga	1380
tcgatggat	tggaaatacat	tgtactaaa	atcttaaaaa	aaa		1423

<210>	40	
<211>	5574	
<212>	DNA	
<213>	Homo Sapiens	

<400>	40					
acgtactctg	gcctcttctg	cgtggtgttc	aaccctata	aacacctgcc	catctactcg	60
gagaagatcg	tcgacatgta	caagggcaag	aagaggcacf	agatgccgcc	tcacatctac	120
gccatcgccag	acacggccta	ccggagcatg	cttcaagatc	gggaggacca	gtccattcta	180
tgcacaggcg	agtctggagc	cggaaaaacc	gaaaacacca	agaaggcat	tcagtacctg	240
gccgtgggg	cctcctccca	caagggcaag	aaagacacaa	gtatcacggg	agagctggaa	300
aagcagctc	tacaagcaaa	cccgattctg	gaggcttctg	gcaacgccaa	aacagtgaag	360
aacgacaact	cctcacgatt	cggcaaattc	atccgcata	acttcgacgt	cacgggttac	420
atcggtggag	ccaacattga	gacctatctg	ctagaaaaat	cacggcaat	tcgccaagcc	480
agagacgaga	ggacattcca	catctttac	tacatgattg	ctggagccaa	ggagaagatg	540
agaagtgact	tgcttttgg	gggcttcaac	aactacacct	tcctctccaa	tggctttgtg	600
cccatcccag	cagcccagga	tgatgagatg	ttccaggaaa	ccgtggaggc	catggcaatc	660
atgggtttca	gcgaggagga	gcagctatcc	atattgaagg	tggtatcatc	ggcctgcag	720
cttggaaata	tcgtcttcaa	gaaggaaaga	aacacagacc	aggcgtccat	gccagataac	780
acagctgctc	agaaagttt	ccacctcatg	ggaatthaatg	tgacagattt	caccagatcc	840
atcctcactc	ctcgatcaa	gttgggcga	gatgtggtac	agaaagctca	gacaaaagaa	900
caggctgact	ttgctttaga	ggctttggcc	aaggcaacat	atgagcgcct	tttccgctgg	960
ataactcaccc	gcgtgaacaa	agccctggac	aagacccatc	ggcaaggggc	ttccttcctg	1020
gggatcctgg	atatactgg	atttgagatc	tttgaggatg	actccttcga	gcagctgtgc	1080
atcaactaca	ccaacgagaa	gctgcagcag	ctcttcaacc	acaccatgtt	catcctggag	1140
caggaggagt	accagcgcga	gggcacatcgag	tggacttca	tcgactttgg	gctggaccta	1200
cagccctgca	tcgagctcat	cgagcgaccg	aacaaccctc	caggtgtgct	ggccctgctg	1260
gacgaggaat	gctggttccc	caaagccacg	gacaagtctt	tcgtggagaa	gctgtgcacg	1320
gagcagggca	gccaccccaa	gttccagaag	cccaagcagc	tcaaggacaa	gactgagttc	1380
tccatcatcc	attatgctgg	gaaggtggac	tataatgcga	gtgcctggct	gaccaagaat	1440
atggacccgc	tgaatgacaa	cgtgacttcc	ctgctcaatg	cctcctccga	caagtttgg	1500
gccgacctgt	ggaaggacgt	ggaccgcac	gtgggcctgg	accagatggc	caagatgacg	1560
gagagctcgc	tgcccagcgc	ctccaagacc	aagaaggcga	tgttccgcac	agtggggcag	1620
ctgtacaagg	agcagctggg	caagctgatg	accacgctac	gcaacaccac	gcccaacttc	1680
gtgcgctgca	tcatccccaa	ccacgagaag	aggccggca	agctggatgc	gttcctggtg	1740
ctggagcago	tgcggtgcaa	tggggtgctg	gaaggcattc	gcatctgccg	gcagggcttc	1800

cccaaccgga tcgtttcca ggagttccgc caacgctacg agatcctggc ggcgaatgcc	1860
atccccaaag gcttcatgga cgggaagcag gcctgcattc tcatgatcaa agccctggaa	1920
cttgaccccacttatacag gatagggcag agcaaaatct tcttccgaac tggcgtcctg	1980
gcccacctaggaggagcg agatggagatcaccgatg tcatcatggc ctccaggcg	2040
atgtgtcgtg gctacttggc cagaaaggct tttgccaaga ggcagcagca gctgaccgccc	2100
atgaaggtatcagaggaa ctgcgcgc tacctaagc tgccgaactg gcagtgggtgg	2160
aggctttca ccaaagtgaa gccactgctg caggtgacac ggcaggagga ggagatgcag	2220
gccaaggagg atgaactgca gaagaccaag gagcggcagc agaaggcaga gaatgagctt	2280
aaggagctgg aacagaagca ctcgcagctg accgaggaga agaacctgct acaggaacag	2340
ctgcaggcag agacagagct gtatgcagag gctgaggaga tgccgggtgcg gctggcggcc	2400
aagaagcagg agctggagga gatactgcat gagatggagg cccgcctgga ggaggaggaa	2460
gacaggggcccagcactaca ggctgaaagg aagaagatgg cccagcagat gctggacctt	2520
gaagaacagc tggaggagga ggaagctgcc aggcagaagc tgcaacttga gaaggtcacg	2580
gctgaggcca agatcaagaa actggaggat gagatcctgg tcatggatga tcagaacaat	2640
aaactatcaa aagaacgaaa actcctttag gagaggatta gtgacttaac gacaaatctt	2700
gcagaagagg aagaaaaggc caagaatctt accaagctga aaaacaagca tgaatctatg	2760
atttcagaac tggaaagtgcg gctaaagaag gaagagaaga gccgacagga gctggagaag	2820
ctgaaacgga agctggaggg tgatgccagc gacttccacg agcagatcgc tgacctccag	2880
gcgcagatcg cagagctcaa gatgcagctg gccaagaagg aggaggagct gcaggcggcc	2940
ctggccaggg ttgacgatga aatcgcttag aagaacaatg ccctgaagaa gatccgggag	3000
ctggaggggcc acatctcaga cctccaggag gacctggact cagagcgggc cgccaggaac	3060
aaggctgaaa agcagaagcg agacctcgcc gaggagctgg aggcctaaa gacagagctg	3120
gaagacacac tggacagcac agccacttag caggagctca gggccaagag ggagcaggag	3180
tgacgggtgc tgaagaaggc cctggatgaa gagacgcggc cccatgaggc tcaggtccag	3240
gagatgaggc agaaacacgc acaggcggtg gaggagctca cagagcagct tgacgttcc	3300
aagagggcca aggcgaacct agacaagaat aagcagacgc tggagaaaga gaacgcagac	3360
ctggccgggg agctgcgggt cctggccag gccaagcagg aggtggaaca taagaagaag	3420
aagctggagg cgcaggtgca ggagctgcag tccaaagtgc gcatgggaa gcgccggccgg	3480
gcggagctca atgacaaagt ccacaagctg cagaatgaag ttgagagcgt cacagggatg	3540
cttaacgagg ccgaggggaa ggccatthaag ctggccaagg acgtggcgcc cctcagttcc	3600

cagctccagg acacccagga gctgcttcaa gaagaaaccc ggcagaagct caacgtgtct	3660
acgaagctgc gccagctgga ggaggagcgg aacagcctgc aagaccagct ggacgaggag	3720
atggaggcca agcagaacct ggagcgccac atctccactc tcaacatcca gctctccgac	3780
tcgaagaaga agctgcagga ctttgccagc accgtggaag ctctggaaga ggggaagaag	3840
aggttccaga aggagatcga gaacctcacc cagcagtacg aggagaaggc ggccgcttat	3900
gataaactgg aaaagaccaa gaacaggctt cagcaggagc tggacgacct gtttgtat	3960
ttggacaacc agcggcaact cgtgtccaac ctggaaaaga agcagagggaa atttgatcag	4020
ttgttagccg aggagaaaaa catctttcc aaatacgcgg atgagagggc cagagctgag	4080
gcagaagcca gggagaagga aaccaaggcc ctgtccctgg ctcggccct tgaagaggcc	4140
ttggaagcca aagaggaact cgagcggacc aacaaaatgc tcaaagccga aatggaagac	4200
ctggtcagct ccaaggatga cgtggcaag aacgtccatg agctggagaa gtccaagcgg	4260
gccctggaga cccagatgga ggagatgaag acgcagctgg aagagctgga ggacgagctg	4320
caagccacgg aggacgccaa actgcggctg gaagtcaaca tgcaggcgct caagggccag	4380
ttcgaaaggg atctccaagc ccgggacgag cagaatgagg agaagagggag gcaactgcag	4440
agacagcttc acgagtatga gacggaactg gaagacgagc gaaagcaacg tgccctggca	4500
gctgcagcaa agaagaagct ggaagggac ctgaaagacc tggagcttca ggccgactct	4560
ccatcaagg ggagggagga agccatcaag cagctacgca aactgcaggc tcagatgaag	4620
gactttcaaa gagagctgga agatgcccgt gcctccagag atgagatctt tgccacagcc	4680
aaagagaatg agaagaaagc caagagcttg gaagcagacc tcatgcagct acaagaggac	4740
ctcgccgccc ctgagagggc tcgcaaacaa gcggacctcg agaaggagga actggcagag	4800
gagctggcca gtagcctgtc gggaggaac gcactccagg acgagaagcg ccgcctggag	4860
gcccgatcg cccagctgga ggaggagctg gaggaggagc agggcaacat ggaggccatg	4920
agcgaccggg tccgcaaagc cacacagcag gccgagcagc tcagcaacga gctggccaca	4980
gagcgcagca cggcccagaa gaatgagagt gcccggcagc agctcgagcg gcagaacaag	5040
gagctccgga gcaagctcca cgagatggag gggccgtca agtccaagtt caagtccacc	5100
atcgccggcgc tggaggccaa gattgcacag ctggaggagc aggtcgagca ggaggccaga	5160
gagaaacagg cggccaccaa gtcgctgaag cagaaagaca agaagctgaa ggaaatcttgc	5220
ctgcaggtgg aggacgagcg caagatggcc gagcagtaca aggacgaggc agagaaaggc	5280
aatgccaggg tcaagcagct caagaggcag ctggaggagg cagaggagga gtcccagcgc	5340
atcaacgcca accgcaggaa gtcgagcgg gagctggatg aggccacgga gagcaacgag	5400

-60-

gccatgggcc	gcgagggtgaa	cgcactcaag	agcaagctca	ggcgaggaaaa	cgagacctct	5460
ttcgttcctt	ctagaaggtc	tggaggacgt	agagttattg	aaaatgcaga	tggttctgag	5520
gaggaaacgg	acactcgaga	cgcagacttc	aatggaacca	aggccagtga	ataa	5574
<210>	41					
<211>	5926					
<212>	DNA					
<213>	Homo Sapiens					
<400>	41					
ccggctgcct	ctgctgcagt	tcagagcaac	ttcaggagct	tcccagccga	gagcttcagg	60
acgcctttcc	tgtccccactg	gcccagttgc	cacaacaaac	aacagagaag	acggtgacca	120
tggggatgt	gaagctggtt	gcctcgacac	acatttccaa	aacctccctc	agtgtggatc	180
cctcaagagt	tgactccatg	cccctgacag	aggccccctgc	tttcattttg	ccccctcgga	240
acctctgcac	caaagaagga	gccaccgcac	agttcgaagg	gcgggtccgg	ggttacccag	300
agccccaggt	gacatggcac	agaaacgggc	aaccatcac	cagcgggggc	cgcttcctgc	360
tggattgcgg	catccggggg	actttcagcc	tttgtgattca	tgctgtccat	gaggaggaca	420
ggggaaagta	tacctgtgaa	gccaccaatg	gcagtgggtgc	tcgcccagggt	acagtggagt	480
tgacagtaga	aggaagttt	gcgaagcagc	ttggtcagcc	tgttgtttcc	aaaaccttag	540
gggatagatt	ttcagcttca	gcagtggaga	cccgtcctag	catctggggg	gagtgcac	600
caaagttgc	taccaagctg	ggccgagttg	tggtaaaaga	aggacagatg	ggacgattct	660
cctgcaagat	cactggccgg	ccccaaaccgc	aggcacctg	gctcaaggga	aatgttccac	720
tgcagccgag	tgcccggtgt	tctgtgtctg	agaagaacgg	catgcagggtt	ctggaaatcc	780
atggagtcaa	ccaagatgac	gtggaggtgt	acacgtgcct	ggtggtaac	gggtcgggga	840
aggcctcgat	gtcagctgaa	ctttccatcc	aaggtttgg	cagtgcac	agtcatttg	900
tgagagaaac	aaaagccacc	aattcagatg	tcagggaaaga	ggtgcaccaat	gtaatctcaa	960
aggagtcgaa	gctggacagt	ctggaggctg	cagccaaaag	caagaactgc	tccagcccc	1020
agagaggtgg	ctccccaccc	tgggctgcaa	acagccagcc	tcagccccca	aggagtcac	1080
agctggagtc	atgcaaggac	tgcggcagaa	cggccccgca	gaccccggtc	cttcagaaga	1140
cttccagctc	catcacccctg	caggccgcaa	gagttcagcc	ggaaccaaga	gcaccaggcc	1200
tgggggtcct	atcacccctt	ggagaagaga	ggaagaggcc	agtcctccc	cgtccagcc	1260
cttcccccac	caggcagcct	ggcctgggaa	gccaagatgt	tgtgagcaag	gctgctaaca	1320
ggagaatccc	catggagggc	cagaggatt	cagcattccc	caaatttgag	agcaagcccc	1380

-61-

aaggccagga ggtcaaggaa aatcaaactg tcaagttcag atgtgaagtt tccgggattc	1440
caaaggcctga agtggcctgg ttcctggaag gcaccccccgt gaggagacag gaaggcagca	1500
ttgagggtta tgaagatgct ggctcccatt acctctgcct gctgaaagcc cggaccaggg	1560
acagtgggac atacagctgc actgcttcca acgccccagg ccaggtgtcc tgtagctgga	1620
ccctccaagt ggaaaggcctt gccgtgatgg aggtggccccc ctccctctcc agtgtcctga	1680
aggactgcgc tgttatttag ggcaggatt ttgtgctgca gtgctccgta cgggggaccc	1740
cagtgccccg gatcacttgg ctgctgaatg ggcagcccat ccagtacgct cgctccacct	1800
gcgaggccgg cgtggctgag ctccacatcc aggatgcctt gccggaggac catggcacct	1860
acacctgcct agctgagaat gccttgggc aggtgtcctg cagcgcctgg gtcaccgtcc	1920
atgaaaagaa gagtagcagg aagagtgagt accttctgcc tgtggctccc agcaagccca	1980
ctgcacccat cttcctgcag ggcctctctg atctcaaagt catggatgga agccaggtca	2040
ctatgactgt ccaagtgtca gggaatccac cccctgaagt catctggctg cacaatggga	2100
atgagatcca agagtcagag gacttccact ttgaacagag aggaactcag cacagccttt	2160
ggatccagga agtgttcccg gaggacacgg gcacgtacac ctgcgaggcc tggAACAGCG	2220
ctggagaggt ccgcacccag gccgtgctca cggtaaaaaa gcctcacgat ggcacccagc	2280
cctggttcat cagtaagccct cgctcagtga cagccctccct gggccagagt gtcctcatct	2340
cctgcgccat agctggtgac ccctttccctt ccgtgcactg gctcagagat ggAAAGCCC	2400
tctgcaaaga cactggccac ttcgaggtgc ttcaaaaaatggaa ggacgtgttc accctgggttc	2460
taaagaaggt gcagccctgg catgccggcc agtatgagat cctgctcaag aaccgggttg	2520
gcgaatgcag ttgccaggtg tcactgatgc tacagaacag ctctgccaga gcccttccac	2580
gggggaggga gcctgccagc tgcgaggacc tctgtgggtgg aggagttggc gctgatggtg	2640
gtggtagtga ccgctatggg tccctgaggc ctggctggcc agcaagaggg cagggttggc	2700
tagaggagga agacggcgag gacgtgcgag ggggtgtgaa gaggcgctg gagacgaggc	2760
agcacacactga ggagggcgatc cgccagcagg aggtggagca gctggacttc cgagacctcc	2820
tggggaaagaa ggtgagttaca aagaccctat cgaaagacga cctgaaggag atcccgcccg	2880
agcagatggaa ttccctgtcc aacctgcagc ggcaagtgaa gccaaagact gtgtctgagg	2940
aagagaggaa ggtgcacagc ccccagcagg tcgattttcg ctctgtcctg gccaagaagg	3000
ggacttccaa gaccccccgtg cctgagaagg tgccaccgccc aaaacctgccc accccggatt	3060
ttcgctcagt gctgggtggc aagaagaaat taccagcaga gaatggcagc agcagtgccg	3120
agaccctgaa tgccaaaggca gtggagagtt ccaagccct gagcaatgca cagccttcag	3180

-62-

ggcccttcaa	acccgtggc	aacgccaagc	ctgctgagac	cctgaagcca	atggcaacg	3240
ccaaggcctgc	cgagaccctg	aagccatgg	gcaatgccaa	gcctgatgag	aacctgaaat	3300
ccgctagcaa	agaagaactc	aagaaagacg	ttaagaatga	tgtgaactgc	aagagaggcc	3360
atgcagggac	cacagataat	gaaaagagat	cagagagcca	ggggacagcc	ccagccttca	3420
agcagaagct	gcaagatgtt	catgtggcag	agggcaagaa	gctgctgctc	cagtgccagg	3480
tgtcttctga	ccccccagcc	accatcatct	ggacgctgaa	tggaaagacc	ctcaagacca	3540
ccaagttcat	catcctctcc	caggaaggct	cactctgctc	cgtctccatc	gagaaggcac	3600
tgcctgagga	cagaggctt	tacaagtgt	tagccaagaa	tgacgctggc	caggcggagt	3660
gctcctgcca	agtccaccgt	gatgatgctc	cagccagtga	gaacaccaag	gccccagaga	3720
tgaaatcccg	gaggcccaag	agctctcttc	ctccctgct	aggaactgag	agtgatgcga	3780
ctgtaaaaaa	gaaacctgcc	ccaaagacac	ctccgaaggc	agcaatgccc	cctcagatca	3840
tccagttccc	tgaggaccag	aaggtacg	caggagagtc	agtggagctg	tttggcaaag	3900
tgacaggcac	tcagcccatc	acctgtacct	ggatgaagtt	ccgaaagcag	atccaggaaa	3960
cgagcacat	gaaggtggag	aacagcgaga	atggcagcaa	gctcaccatc	ctggccgcgc	4020
gccaggagca	ctgcggctgc	tacacactgc	tggtggagaa	caagctggc	agcaggcagg	4080
cccaggtcaa	cctcactgtc	gtggataagc	cagacccccc	agctggcaca	ccttgtgcct	4140
ctgacattcg	gagctcctca	ctgaccctgt	cctggtatgg	ctcctcatat	gatggggca	4200
gtgctgtaca	gtcctacagc	atcgagatct	gggactcagc	caacaagacg	tggaaggaac	4260
tagccacatg	ccgcagcacc	tcttcaacg	tccaggacct	gctgcctgac	cacgaatata	4320
agttccgtgt	acgtgcaatc	aacgtgtatg	gaaccagtga	gccaaaggcag	gagtctgaac	4380
tcacaacggt	aggagagaaa	cctgaagagc	cgaaggatga	agtggaggtg	tcagatgt	4440
atgagaagga	gcccggggtt	gattaccgga	cagtgacaat	caatactgaa	caaaaagtat	4500
ctgacttcta	cgacattgag	gagagattag	gatctggaa	atttggacag	gtcttcgac	4560
tttagaaaaa	gaaaactcga	aaagtctgg	cagggaaagtt	cttcaaggca	tattcagcaa	4620
aagagaaaaga	gaatatccgg	caggagatta	gcatcatgaa	ctgcctccac	caccctaagc	4680
tggccagg	tgtggatgcc	tttgaagaaa	aggccaacat	cgtcatggc	ctggagatcg	4740
tgtcaggagg	ggagctgttt	gagcgcac	ttgacgagga	ctttgagctg	acggagcgtg	4800
agtgcataa	gtacatgcgg	cagatctcg	agggagtgg	gtacatccac	aagcagggca	4860
tcgtgcac	ggacctcaag	ccggagaaca	tcatgtgt	caacaagacg	ggcaccagga	4920
tcaagctcat	cgacttttgt	ctggccagga	ggctggagaa	tgcgggtct	ctgaaggtcc	4980

-63-

tctttggcac	cccagaattt	gtggctcctg	aagtgtatcaa	ctatgagccc	atcggtacg	5040
ccacagacat	gtggagcatc	ggggtcatct	gctacatcct	agtcagtggc	ctttccccct	5100
tcatggaga	caacgataac	gaaaccttgg	ccaacgttac	ctcagccacc	tgggacttcg	5160
acgacgaggc	attcgatgag	atctccgacg	atgccaagga	tttcatcagc	aatctgctga	5220
agaaagatat	gaaaaaccgc	ctggactgca	cgcagtgcct	tcagcatcca	tggctaata	5280
aagataccaa	gaacatggag	gccaaagaaac	tctccaagga	ccggatgaag	aagtacatgg	5340
caagaaggaa	atggcagaaa	acgggcaatg	ctgtgagagc	cattggaaga	ctgtcctcta	5400
tggcaatgtat	ctcagggctc	agtggcagga	aatcctcaac	agggtcacca	accagccgc	5460
tcaatgcaga	aaaactagaa	tctgaagaag	atgtgtccca	agctttcctt	gaggctgttg	5520
ctgagggaaaa	gcctcatgta	aaaccctatt	tctctaagac	cattcgcgat	ttagaagttg	5580
tggagggaaag	tgctgctaga	tttgactgca	agattgaagg	ataccagac	cccgaggttg	5640
tctggttcaa	agatgaccag	tcaatcaggg	agtccgcaca	cttccagata	gactacgatg	5700
aggacgggaa	ctgctctta	attatttagt	atgtttgcgg	ggatgacgat	gccaagtaca	5760
cctgcaaggc	tgtcaacagt	cttggagaag	ccacctgcac	agcagagctc	attgtggaaa	5820
cgtggagga	aggtgaaggg	gaaggggaag	aggaagaaga	gtgaaacaaa	gccagagaaa	5880
agcagtttct	aagtcatatt	aaaaggacta	tttctctcaa	aatcca		5926

<210> 42
 <211> 3705
 <212> DNA
 <213> Homo Sapiens

<400> 42	60					
ggaattcccg	gccgggcgca	cccgccccgc	cctgggctcg	ctggcttgcg	cgcagctgag	60
cgggtgttag	gttggaaaggg	ccagggcccc	tggggcgcaa	gtgggggccc	gcgcctatgga	120
accccccacc	gtccccctcg	aaaggagcct	gtctctgtca	ctgccccggc	cccgggaggg	180
ccaggccacc	ctgaaggcctc	ccccgcagca	cctgtggcg	cagcctcgga	cccccatccg	240
tatccagcag	cgcggctact	ccgacagcgc	ggagcgcgc	gagcgggagc	ggcagccgca	300
ccggcccata	gagcgcgcgc	atgccccatgga	caccagcgac	cggcccgcc	tgcgcacgac	360
ccgcatgtcc	tggccctcg	ccttccatgg	cactggcacc	ggcagcggcg	gcgcggggcg	420
aggcagcagc	aggcgcttcg	aggcagagaa	tggggccaca	ccatctcctg	gccgcagccc	480
cctggactcg	caggcgagcc	caggactcg	gctgcacgccc	ggggcggcc	ccagccagcg	540
ccgggagtcc	ttcctgtacc	gctcagacag	cgactatgac	atgtcacccca	agaccatgtc	600
ccggaactca	tcggtcacca	gcgaggcgca	cgctgaagac	ctcatcgtaa	caccatggc	660

- 64 -

tcagggtgctg gccagcctcc ggagcgtccg tagcaacttc tcactcctga ccaatgtgcc 720
cgttcccagt aacaagcggt cccccgtggg cggccccacc cctgtctgca aggccacgct 780
gtcagaagaa acgtgtcagc agttggcccg ggagactctg gaggagctgg actggtgtct 840
ggagcagctg gagaccatgc agacctatcg ctctgtcagc gagatggcct cgacacaagtt 900
caaaaaggatg ttgaaccgtg agctcacaca cctgtcagaa atgagcaggt ccggaaaccca 960
ggtctcagag tacatttcca caacattcct ggacaaacag aatgaagtgg agatcccata 1020
acccacgatg aaggaacgag aaaaacagca agcgccgcga ccaagaccct cccagccgc 1080
cccgccccct gtaccacact tacagcccat gtcccaaattc acagggttga aaaagttgat 1140
gcatacgttaac agcctgaaca actctaacat tccccgattt ggggtgaaga ccgatcaaga 1200
agagctcctg gcccaagaac tggagaacct gaacaagtgg ggcctgaaca tctttgcgt 1260
gtcggattac gctggaggcc gtcactcac ctgcatcatg tacatgatat tccaggagcg 1320
ggacctgctg aagaaattcc gcatcccggt ggacacgatg gtgacataca tgctgacgct 1380
ggaggatcac taccacgctg acgtggccta ccataacagc ctgcacgcag ctgacgtgct 1440
gcagtcacc accgtactgc tggccacgccc tgcactagat gcagtgttca cggacctgga 1500
gattctcgcc gccctttcg cggctgccat ccacgatgtg gatcaccctg gggctccaa 1560
ccagttcctc atcaacacca attcgagct ggcgctcatg tacaacgatg agtcggtgct 1620
cgagaatcac cacctggccg tgggctcaa gctgctgcag gaggacaact gcgacatctt 1680
ccagaacctc agcaagcgcc agcggcagag cctacgcaag atggtcatcg acatggtgct 1740
ggccacggac atgtccaagc acatgaccct cctggctgac ctgaagacca tggtgagac 1800
caagaaagtg accagcttag gggctctct gctagataac tactccgacc gcatccaggt 1860
cctccggaac atggtgcaact gtgcccacct cagcaacccc accaagccgc tggagctgta 1920
ccgcccagtgg acagaccgca tcatggccga gttctccag cagggtgacc gagagcgcga 1980
gcgtggcatg gaaatcagcc ccatgtgtga caagcacact gcctccgtgg agaagtctca 2040
ggtgtggttt attgactaca ttgtgcaccc attgtggag acctggccgg accttgcata 2100
cccagatgcc caggagatct tggacacttt ggaggacaac cggactggg actacagcgc 2160
catccggcag agccccatctc cgccacccga ggaggagtca agggggccag gccacccacc 2220
cctgcctgac aagttccagt ttgagctgac gctggaggag gaagaggagg aagaaatatc 2280
aatggcccag ataccgtgca cagccaaaga ggcattgact gcgcaggat tgtcaggagt 2340
cgaggaagct ctggatgcaa ccatagcctg ggaggcatcc cggcccccagg agtcgttgg 2400
agttatggca caggaagcat ccctggaggg ctagctggag gcagtgttatt tgacacagca 2460

-65-

ggcacagtcc	acaggcagtg	cacctgtggc	tccggatgag	ttctcgccc	gggaggaatt	2520
cgtggttgct	gtaagccaca	gcagccccctc	tgccctggct	cttcaaagcc	cccttctccc	2580
tgcttggagg	accctgtctg	tttcagagca	tgccccgggc	ctccccggcc	tcccctccac	2640
ggcggcccgag	gtggagggccc	aacgagagca	ccaggctgcc	aagagggctt	gcagtgcctg	2700
cgcagggaca	tttggggagg	acacatccgc	actcccagct	cctggtggcg	gggggtcagg	2760
tggagaccct	acctgatccc	cagacctctg	tccctgttcc	cctccactcc	tcccctcact	2820
ccctgctcc	cccgaccacc	tcctcctctg	cctcaaagac	tcttgtcctc	ttgtccctcc	2880
tgagaaaaaa	gaaaacgaaa	agtggggttt	ttttctgttt	tctttttttc	ccctttcccc	2940
ctgcccccac	ccacggggcc	tttttttgg	ggtgggggct	gggaaatgag	gggctgaggt	3000
cccggaagga	tttttttttt	ttgaatttt	attgtAACAT	tttttagaaaa	agaacaaaaaa	3060
aagaaaaaaa	aaagaaagaa	acacagcaac	tgtAGATGCT	cctgttcctg	gttcccgcTT	3120
tccacttcca	aatccctccc	ctcaccttcc	cccactgccc	cccaagttcc	aggctcagtc	3180
ttccagccgc	ctggggagtc	tctacctggg	cccaAGCAGG	tgtggggcct	ccttctggc	3240
ttttcttctg	aatttagagg	atttctagaa	cgtggtcagg	aatAGCCATT	ctaggcgggg	3300
ctggggccag	ggtggggggc	agtcaCTGTG	ggaggtcccA	gctccAGCCC	ccctctgggt	3360
tgctgcctcc	tctccctct	aaaaaaAGTCT	tccgcttGAT	tttgcacaat	cccgccgata	3420
ctcctggcga	tactgactag	aagtCAGGGA	gctgggggag	ctgttcaCTT	taggatacgg	3480
gggatggaa	gggagcgttc	acaccGCCAG	cctcgccct	gggatttGAG	gagggcccta	3540
gacctcctcc	actctccatc	ccctttccct	tccactttgg	gttcaCTTTG	aattttctcc	3600
gttttttggg	gcagtggctc	tgatccactc	accccccCGC	cccgtAAGTT	atagccactg	3660
tggaaagtag	tatgaaagtt	cctcaagaaa	ctaaaaatgg	aattc		3705

<210> 43
<211> 3151
<212> DNA
<213> Homo Sapiens

<400> 43	ccggccagcg	ggcgggctcc	ccagccaggc	cgctgcacct	gtcaggggaa	caagctggag	60
	gagcaggacc	ctagacctct	gcagcccata	ccaggtctca	tggagggaa	caagctggag	120
	gagcaggact	ctagccctcc	acagtccact	ccagggctca	tgaagggaa	caagcgtgag	180
	gagcaggggc	tgggccccga	acctgcggcg	ccccagcagc	ccacggcgga	ggaggaggcc	240
	ctgatcgagt	tccaccgctc	ctaccgagag	ctcttcgagt	tcttctgcaa	caacaccacc	300

-66-

atccacggcg ccataccgcct ggtgtgctcc cagcacaacc gcatgaagac ggccttctgg	360
gcagtgctgt ggctctgcac ctttggcatg atgtactggc aattcggcct gctttcgga	420
gagtaacctca gctaccccggt cagcctcaac atcaacctca actcggacaa gctcgcttc	480
cccgcagtga ccatactgcac cctcaatccc tacaggtacc cgaaaattaa agaggagctg	540
gaggagctgg accgcatacac agagcagacg ctctttgacc tgtacaaata cagctccttc	600
accactctcg tggccggctc ccgcagccgt cgcgacctgc gggggactct gccgcacccc	660
ttgcagcgcc tgagggtccc gcccccgctt cacggggccc gtcgagcccg tagcgtggcc	720
tccagcttgc gggacaacaa cccccaggtg gactggaagg actggaagat cggtttccag	780
ctgtgcaacc agaacaatac ggactgcttc taccagacat actcatcagg ggtggatgcg	840
gtgagggagt ggtaccgctt ccactacatc aacatcctgt cgaggctgcc agagactctg	900
ccatccctgg aggaggacac gctgggcaac ttcatcttcg cctgccgctt caaccaggcc	960
tcctgcaacc aggccaattt ctctcaattc caccacccga tgtatggaaa ctgtataact	1020
ttcaatgaca agaacaactc caacctctgg atgtcttcca tgcctggaat caacaacgg	1080
ctgtccctga tgctgcgcgc agagcagaat gacttcattt ccctgctgtc cacagtgact	1140
ggggccccggg taatggtgca cgggcaggat gaacctgcct ttatggatga tggggcttt	1200
aacttgcggc ctggcgtgga gacctccatc agcatgagga aggaaaccct ggacagactt	1260
ggggcgatt atggcgactg caccaagaat ggcagtgtatg ttccctgttga gaacctttac	1320
ccttcaaagt acacacagca ggtgtgtatt cactcctgct tccaggagag catgtcaag	1380
gagtggtggct gtgcctacat cttctatccg cggccccaga acgtggagta ctgtgactac	1440
agaaagcaca gttcctgggg gtactgctac tataagctcc aggttgactt ctcctcagac	1500
cacctgggct gtttaccaa gtgccggaaag ccatgcagcg tgaccagcta ccagctctct	1560
gctggttact cacgatggcc ctcggtgaca tcccaggaat gggcttcca gatgctatcg	1620
cgacagaaca attacaccgt caacaacaag agaaatggag tggccaaagt caacatcttc	1680
ttcaaggagc tgaactacaa aaccaattct gagtctccct ctgtcacgtat ggtcaccctc	1740
ctgtcccaacc tgggcagcca gtggagcctg tgggtcggtc cctcggtgtt gtctgtggtg	1800
gagatggctg agctcgctt tgacctgctg gtcatcatgt tcctcatgct gctccgaagg	1860
ttccgaagcc gatactggtc tccaggccga gggggcaggg gtgctcagga ggttagcctcc	1920
accctggcat cctcccccgtcc ttcccacttc tgccccacc ccatgtctct gtccctgtcc	1980
cagccaggcc ctgctccctc tccagccttg acagccccctc cccctgccta tgccaccctg	2040
ggccccccgccc catctccagg gggctctgca gggccagtt cctccacctg tcctctgggg	2100

-67-

ggccctgag	agggaaggag	aggttctca	caccaaggca	gatgctcctc	tggtggagg	2160
gtgctggccc	tggcaagatt	gaaggatgtg	cagggcttcc	tctcagagcc	gcccaaactg	2220
ccgttcatgt	gtggagggga	agcaagatgg	gtaaggcctc	aggaagttgc	tccaagaaca	2280
gtagctgatg	aagctgccc	gaagtgcctt	ggctccagcc	ctgtaccctt	tggtaactgcc	2340
tctgaacact	ctggttcccc	cacccaaactg	cggctaagtc	tcttttccc	ttggatcagc	2400
caagcgaaac	ttggagcttt	gacaaggaac	tttcctaaga	aaccgctgat	aaccaggaca	2460
aaacacaacc	aagggtacac	gcaggcatgc	acgggttcc	tgcccagcga	cggcttaagc	2520
cagcccccg	ctggcctggc	cacactgctc	tccagtagca	cagatgtctg	ctcctcctct	2580
tgaacttggg	tggaaaccc	cacccaaaag	cccccttgt	tacttaggca	attccccctc	2640
cctgactccc	gagggctagg	gctagagcag	acccgggtaa	gtaaaggcag	acccagggct	2700
cctctagcct	catacccg	ccctcacaga	gccatgcccc	ggcacctctg	ccctgtgtct	2760
ttcatacctc	tacatgtctg	ctttagat	ttcctcagcc	tgaaagttc	cccaaccatc	2820
tgccagagaa	ctcctatgca	tcccttagaa	ccctgctcag	acaccattac	ttttgtgaac	2880
gcttctgcca	catcttgtct	tccccaaaat	tgatcactcc	gccttctcct	gggctcccg	2940
agcacactat	aacatctgct	ggagtgttgc	tgttgcacca	tactttcttg	tacatttgt	3000
tctcccttcc	caactagact	gtaagtgcct	tgcggtcagg	gactgaatct	tgcccgaaaa	3060
tgtatgctcc	atgtctagcc	catcatcctg	cttggagcaa	gtaggcagga	gctcaataaaa	3120
tgtttgttgc	atgaaaaaaaaa	aaaaaaaaaa	a			3151

<210> 44
 <211> 1172
 <212> DNA
 <213> Homo Sapiens

<400> 44	gagacattcc	tcaattgctt	agacatattc	tgaggctaca	gcagaggaac	ctccagtctc	60
	agcaccatga	atcaaactgc	gattctgatt	tgctgcctt	tctttctgac	tctaagtggc	120
	attcaaggag	tacctctctc	tagaaccgt	cgctgtacct	gcatcagcat	tagtaatcaa	180
	cctgttaatc	caaggtcttt	agaaaaaactt	gaaattattc	ctgcaagcca	attttgtcca	240
	cgtgttggaa	tcattgctac	aataaaaaag	aagggtgaga	agagatgtct	gaatccagaa	300
	tcgaaggcca	tcaagaattt	actgaaagca	gttagcaagg	aaatgtctaa	aagatctcct	360
	taaaaccaga	ggggagcaaa	atcgatgcag	tgcttccaag	gatggaccac	acagaggctg	420
	cctctcccat	cacttcccta	catggagtat	atgtcaagcc	ataattgttc	ttagtttgca	480
	gttacactaa	aaggtgacca	atgatggtca	ccaaatcagc	tgctactact	cctgttaggaa	540

ggttaatgtt catcatccta agctattcag taataactct accctggcac tataatgtaa	600
gctctactga ggtgctatgt tcttagtgga tgttctgacc ctgcttcaaa tatttcctc	660
acctttccca tcttccaagg gtactaagga atcttctgc tttggggttt atcagaattc	720
tcagaatctc aaataactaa aaggtatgca atcaaatctg cttttaaag aatgctctt	780
acttcatgga ctccactgc catcctccca aggggccaa attcttcag tggctaccta	840
catacaattc caaacacata caggaaggtt gaaatatctg aaaatgtatg tgtaagtatt	900
cttatttaat gaaagactgt acaaagtata agtcttagat gtatataattt cctatattgt	960
tttcagtgtt catggaataa catgtattt agtactatgt atcaatgagt aacaggaaaa	1020
ttttaaaaat acagatagat atatgctctg catgttacat aagataaatg tgctgaatgg	1080
tttcaaata aaaatgaggt actctcctgg aaatattaag aaagactatc taaatgttga	1140
aagatcaaaa ggttaataaa gtaattataa ct	1172

<210> 45
 <211> 1044
 <212> DNA
 <213> Homo Sapiens

<400> 45	
gaattccctg aggaggcgaa tccggcgggt atcagagcca tcagaaccgc caccatgacg	60
gtggcaaga gcagcaagat gctgcagcat attgattaca ggatgaggtg catcctgcag	120
gacggccgga tcttcattgg caccttcaag gctttgaca agcacatgaa tttgatcctc	180
tgtgactgtt atgagttcag aaagatcaag ccaaagaact ccaaacaagc agaaagggaa	240
gagaagcgag tcctcggtct ggtgctgctg cgaggggaga atctggtctc aatgacagta	300
gagggacctc ctcccaaaga tactggtatt gctcgatgtc cacttgctgg agctgccggg	360
ggcccaggga tcggcaggc tgctggcaga ggaatcccag ctgggttcc catgccccag	420
gctcctgcag gacttgctgg gccagtcgtt ggggttggcg ggccatccca acaggtgatg	480
accccacaag gaagaggtac tggcagcc gctgcagctg ctgccacagc cagtattgcc	540
ggggctccaa cccagtaccc acctggccgt ggggttcctc ccccacctat gggccgagga	600
gcacccccctc caggcatgtt gggcccaccc cctggtatga gacctccat ggtccccca	660
atggggatcc cccctggaag agggactcca atggcattgc cccctccggg aatgcggcct	720
cctccccctg ggatgcgagg cttctttga ccctggcca cagagtatgg aagtagctcc	780
gcagaggcgt gggctcgatt ctcaggccc acgttaccac agacctgttt gtttcttatg	840
ctgttgcgtt gggagtctca tggattgtc tggttccct tacaggccc cctccccgg	900

- 69 -

gaatgcgccc accaaggccc tagactcatc ttggccctcc tcagctccct gcctgtttcc	960
cgttaaggctg tacatagtcc ttttatctcc ttgtggccta tgaaactggt ttataataaa	1020
ctcttaagag aacattataa ttgc	1044

<210> 46
<211> 2607
<212> DNA
<213> Homo Sapiens

<400> 46	
attaaacctc tcgcccagcc cctccgcaga ctctgcgccc gaaagttca tttgctgtat	60
gccatcctcg agagctgtct aggttaacgt tcgcactctg tgtatataac ctgcacagtc	120
ttggcaccta acgtgctgtg ctagctgct ccttggttg aatccccagg cccttgttgg	180
ggcacaagg ggcaggatgt ctcagtggta cgaacttcag cagcttgact caaaattcct	240
ggagcaggtt caccagctt atgatgacag ttttccatg gaaatcagac agtacctggc	300
acagtggta gaaaagcaag actgggagca cgctgccaat gatgttcat ttgccaccat	360
ccgaaaaatcat gacccctgt cacagctgga tgatcataat agtcgccttt ctttggagaa	420
taacttctt ctacagcata acataaggaa aagcaagcgt aatcttcagg ataattttca	480
ggaagaccca atccagatgt ctatgatcat ttacagctgt ctgaaggaag aaaggaaaat	540
tctggaaaac gcccagagat ttaatcaggg tcagtcgggg aatattcaga gcacagtgtat	600
gttagacaaa cagaaagagc ttgacagtaa agtcagaaat gtgaaggaca aggttatgtg	660
tatagagcat gaaatcaaga gcctggaaga tttacaagat gaatatgact tcaaattgca	720
aaccttgcag aacagagaac acgagaccaa tggtgtggca aagagtgtac agaaacaaga	780
acagctgtta ctcaagaaga tgtatTTTGT gcttgacaat aagagaaaagg aagttagttca	840
caaaataata gagttgctga atgtcactga acttacccag aatgcctga ttaatgtga	900
actagtggag tggaaagcgg aacagcagag cgcctgtatt gggggggccgc ccaatgcttgc	960
cttggatcag ctgcagaact gttcactat agttgcggag agtctgcagc aagttcggca	1020
gcagcttaaa aagttggagg aatttggaaaca gaaatacacc tacgaacatg accctatcac	1080
aaaaaaacaaa caagtgttat gggaccgcac cttcagtctt ttccagcagc tcattcagag	1140
ctcgTTTGTG gtggaaagac agccctgcac gccaacgcac cctcagggc cgctggtctt	1200
gaagacaggg gtccagttca ctgtgaagtt gagactgttgc tgaaattgc aagagctgaa	1260
ttataatttg aaagtcaaag tcttatttga taaagatgtg aatgagagaa atacagtaaa	1320
aggatTTAGG aagttcaaca ttttggcac gcacacaaaa gtgatgaaca tggaggagtc	1380
caccaatggc agtctggcgg ctgaatttcg gcacctgcaa ttgaaagaac agaaaaatgc	1440

- 70 -

tggcaccaga acgaatgagg gtcctctcat cgttactgaa gagcttcact cccttagttt	1500
tgaaacccaa ttgtgccagc ctggtttgtt aattgacctc gagacgacct ctctgcccgt	1560
tgtggtgatc tccaacgtca gccagctccc gagcggttgg gcctccatcc tttggtacaa	1620
catgctggtg gcggaaccca ggaatctgtc cttcttcctg actccaccat gtgcacgatg	1680
ggctcagctt tcagaagtgc tgagttggca gttttcttct gtcaccaaaa gaggtctcaa	1740
tgtggaccag ctgaacatgt tgggagagaa gcttcttgtt cctaacgcca gccccgatgg	1800
tctcattccg tggacgaggt tttgttaagga aaatataaat gataaaaaatt ttcccttctg	1860
gctttggatt gaaagcatcc tagaactcat taaaaaacac ctgctccctc tctggaatga	1920
tgggtgcattc atgggcttca tcagcaagga gcgagagcgt gccctgttga aggaccagca	1980
gccggggacc ttccctgctgc gttcagtga gagctcccg gaaggggcca tcacattcac	2040
atgggtggag cggtcccaga acggaggcga acctgacttc catgcggttg aaccctacac	2100
gaagaaagaa ctttctgctg ttactttccc tgacatcatt cgcaattaca aagtcatggc	2160
tgctgagaat attcctgaga atccccctgaa gtatctgtat ccaaataattg acaaagacca	2220
tgcctttgga aagtattact ccaggccaaa ggaagcacca gagccaatgg aacttgtatgg	2280
ccctaaagga actggatata tcaagactga gttgatttct gtgtctgaag tgtaagtgaa	2340
cacagaagag tgacatgttt acaaaccctca agccagcctt gctcctggct ggggcctgtt	2400
gaagatgctt gtatttact tttccattgt aattgctatc gccatcacag ctgaacttgc	2460
tgagatcccc gtgttactgc ctatcagcat tttactactt taaaaaaaaa aaaaaaaagcc	2520
aaaaaaccaaa tttgtattta aggtatataa atttcccaa aactgataacc ctggaaaaaa	2580
gtataaataa aatgagcaaa agttgaa	2607

<210> 47
<211> 5257
<212> DNA
<213> Homo Sapiens

<400> 47	
gaattccttt tttttttgag cttaaataa agcatttatt catgagcgga agttacagt	60
ttgcatagat ttttcataacc ttatctggaa gggcgatgga aaccccaagg cactagagag	120
catcagaaga aatcagtgac atgatttgag tagggctggg ggactgggtc cctgcacccc	180
agccacatcc tatgggcctt aggcccatac tcggagaacg agtccattgg acaaagaaca	240
tggctgagag accttctggg ggccttgaag aggccgcctc cttggcttcc tcaaccccaag	300
tgtaagtctg gggaggccca aggtgagggt catgtatcgg gatgaatgta agaagcactt	360

-71-

ggcaggcttg	ggggctttgg	ggctgggcag	cctgatcaact	gaactcacgg	caaataa	420
attgaccggg	actgacggtg	ccttggtaaa	tgtatgaaggg	tgggttagga	gtacagaaga	480
tgctgtggac	tattcagaca	tcaatgaggt	ggcagaagat	gaaagccaa	gataccagca	540
gacgatgggg	agcttgcagc	cccttgc当地	ctcagattat	gatgaagatg	actatgatgc	600
tgattgtgaa	gacattgatt	gcaagttgat	gcctcctcca	cctccacccc	cgggaccaat	660
gaagaaggat	aaggaccagg	attctattac	tggtgagaaa	gtggacttca	gtagttcctc	720
tgactcagaa	tctgagatgg	gacctcagga	agcaacacag	gcagaatctg	aagatggaaa	780
gctgaccctt	ccattggctg	ggattatgca	gcatgatgcc	accaagctgt	tgccaaagtgt	840
cacagaactt	tttccagaat	ttcgacctgg	aaaggtgtta	cgttttctac	gtcttttgg	900
accagggaaag	aatgtcccat	ctgtttggcg	gagtgc当地	agaaagagga	agaagaagca	960
ccgtgagctg	atacaggaag	agcagatcca	ggaggtggag	tgctcagtag	aatcagaagt	1020
cagccagaag	tctttgtgga	actacgacta	cgctccacca	ccacctccag	agcagtgtct	1080
ctctgatgat	gaaatcacga	tgtatggctcc	tgtggagtc当地	aaattttccc	aatcaactgg	1140
agatatacat	aaagtgacag	ataccaaacc	aagagtggct	gagtggcggt	atgggcctgc	1200
ccgactgtgg	tatgatatgc	tgggtgtccc	tgaagatggc	agtgggtttg	actatggctt	1260
caaactgaga	aagacagaac	atgaacctgt	gataaaatct	agaatgatag	aggaatttag	1320
gaaaactttag	gaaaacaatg	gcactgatct	tctggctgat	gaaaacttcc	tgtatggtgc当地	1380
acagctgcat	tgggaggatg	atatcatctg	ggatggggag	gatgtcaaac	acaaagggac	1440
aaaacctcag	cgtgcaagcc	tggcaggctg	gcttccttct	agcatgacta	ggaatgc当地	1500
ggcttacaat	gttcagcaag	gttttgc当地	cactcttct	gatgacaaac	cttggtactc	1560
cattttccc	attgacaatg	aggatctggt	atatggacgc	tgggaggaca	atatcatttg	1620
ggatgctcag	gccatgcccc	gctgttgga	acctcctgtt	ttgacacttg	atcccaatga	1680
tgagaacctc	attttggaaa	ttcctgatga	gaaggaagag	gccacctcta	actccccctc	1740
caaggagagt	aagaaggaat	catctctgaa	gaagagtc当地	attctcttag	ggaaaacacagg	1800
agtcatcaag	gaggaaccac	agcagaacat	gtctcagcca	gaagtgaaag	atccatggaa	1860
tctctccaaat	gatgagtttatt	attatccaa	gcaacagggt	cttcgaggca	cctttggagg	1920
gaatattatc	cagcattcaa	ttcctgctgt	ggaattacgg	cagcccttct	ttccccaccca	1980
catggggccc	atcaaactcc	ggcagttcca	tcgccc当地	ctgaaaaagt	actcattttg	2040
tgcaacttct	cagccaggc当地	cccactcag	ccaaccttgc当地	ctaaagcaca	tcaaaaaaaaaa	2100
ggccaagatg	agagaacaag	agaggcaagc	ttcaggtgg	ggagagatgt	tttttatgc当地	2160

-72-

cacacacctcag gacctcacag gcaaagatgg tgatcttatt cttgcagaat atagtgagga	2220
aaatggaccc ttaatgatgc aggttggcat ggcaaccaag ataaaagaact attataaaacg	2280
gaaacacctgga aaagatcctg gagcaccaga ttgtaaatat ggggaaactg tttactgcc	2340
tacatctcct ttcctgggtt ctctccatcc tggccaattt ctgcaagcat ttgagaacaa	2400
ccttttcgt gctccaattt atcttcataa gatgccagaa actgatttct tgcattcg	2460
gacaagacag ggtaactata ttcgggaaatt agtggatatt tttgtgggtt gccagcagt	2520
tcccttgaaa gaagttcctg ggcctaactc caaaaggccc aatacgcata ttgcagactt	2580
tctacagggtt ttatattacc gcctttctg gaaaagtaaa gatcggccac ggaggatacg	2640
aatggaagat ataaaaaaag ctttccttc ccattcagaa agcagcatcc ggaagaggct	2700
aaagctctgc gctgacttca aacgcacagg gatggactca aactgggtgg tgcttaagtc	2760
tgatttcgt ttaccaacgg aagaagagat cagagctatg gtgtcaccag agcagtgc	2820
tgcttattat agcatgatag ctgcagagca acgactgaag gatgctggct atggtgagaa	2880
atcccttttt gctccagaag aagaaaatga ggaagatttcc cagatgaaga ttgatgatga	2940
agttcgact gccccttggaa acaccacaag ggccttcatt gctgccatga agggcaagt	3000
tctgctagag gtgactgggg tggcagatcc cacgggtgt ggtgaaggat tctcctatgt	3060
gaagattcca aacaaaccaa cacagcagaa ggatgataaa gaaccgcagc cagtgaagaa	3120
gacagtgaca ggaacagatg cagaccttcg tcgccttcc ctgaaaaatg ccaagcaact	3180
tctacgtaaa ttgggtgtgc ctgaggaaga gattaaaaag ttgtcccgct gggaaagtgt	3240
tgatgtggtg cgccacaatgt caacagaaca ggctcggtct ggagagggc ccatgagtaa	3300
atttgcccgt ggtcaaggt tttctgtggc tgagcatcaa gagcgttaca aagaggaatg	3360
tcagcgcattc ttgacctac agaacaaggt tctgtcatca actgaagtct tatcaactga	3420
cacagacagc agctcagctg aagatagtga ctggaaatggaa atggaaaga acattgagaa	3480
catgttgcag aacaagaaaa ccagctctca gcttcacgt gaacgggagg aacaggagcg	3540
gaaggaacta cagcgaatgc tactggcagc aggctcagca gcatccggaa acaatcacag	3600
agatgatgac acagcttccg tgactagcct taactcttct gccactggac gctgtctcaa	3660
gatttatcgc acgtttcgag atgaagaggg gaaagagtat gttcgctgtg agacagtccg	3720
aaaaccagct gtcattgtatg cctatgtgcg catacgact acaaaagatg aggaattcat	3780
tcgaaaaattt gccccttttgc atgaacaaca tcggaaagag atgcgaaaag aacggcggag	3840
gattcaagag caactgaggc ggcttaagag gaaccaggaa aaggagaagc ttaagggtcc	3900
tcctgagaag aagcccaaga aaatgaagga gcgtcctgac ctaaaactga aatgtggggc	3960

- 73 -

atgtggtgcc	attggacaca	tgaggactaa	caaattctgc	cccctctatt	atcaaacaaa	4020
tgcgccacct	tccaaccctg	ttgccatgac	agaagaacag	gaggaggagt	tggaaaagac	4080
agtcatccat	aatgataatg	aagaacttat	caaggttcaa	gggaccaaaa	ttgtcttggg	4140
gaaacagcta	attgagagtg	cggatgaggt	tcgcagaaaa	tctctggttc	tcaagttcc	4200
taaacacgag	cttcctccaa	agaagaaacg	gcgagttgga	accactgttc	actgtgacta	4260
tttgaataga	cctcataagt	ccatccacccg	gcgcgcaca	gaccctatgg	tgacgctgtc	4320
gtccatcttgc	gagtctatca	tcaatgacat	gagagatctt	ccaaatacat	accctttcca	4380
cactccagtc	aatgcaaagg	ttgtaaagga	ctactacaaa	atcatcactc	ggccaatggg	4440
cctacaaaaca	ctcccgaaaa	acgtgcgtaa	acgcctctac	ccatctcgaa	aagagttcag	4500
agagcatctg	gagctaatttgc	tgaaaaatag	tgcaacctac	aatggccaa	aacactcatt	4560
gactcagatc	tctcaatcca	tgctggatct	ctgtgatgaa	aaactcaaag	agaaagaaga	4620
caaattagct	cgcttagaga	aagctatcaa	ccccttgctg	gatgatgatg	accaagtggc	4680
gttttcttcc	attctggaca	acattgtcac	ccagaaaaatg	atggcagttc	cagattcttgc	4740
gccatttcat	cacccagtta	ataagaaatt	tgttccagat	tattacaaag	tgattgtcaa	4800
tccaatggat	ttagagacca	tacgtaagaa	catctccaag	cacaagtatc	agagtcgggaa	4860
gagcttctg	gatgatgtaa	accttattct	ggccaaacagt	gttaagtata	atgacaatga	4920
gtgttcatct	aaagcaaatg	acatagtttg	cctaattccag	tactgttagtt	cacagataga	4980
agaattaaga	ttttaatggg	acggtgattt	gccagcagtc	cctactgaat	ttcttaattha	5040
agatttgc	ccaaactgtcc	ttgtctctaa	actggtgtca	tgtttccctcc	ttattccatc	5100
atgtccctga	tcatagcctg	ccaatctggaa	tgtagaactc	tctgctgctc	tcctggaaatg	5160
atgtctaccc	gcatgctgcc	atgcctccca	ccatgacaat	aattgactga	agctctgaac	5220
tgtaaggcag	ccccaaattaa	atgctttcct	ttatagg			5257

<210> 48
<211> 1174
<212> DNA
<213> Homo Sapiens

<400> 48	gcctgtccac	catctcccta	ttaccctttg	gtcgagaggg	aaagcagaag	aagtctgtcg	60
	gtcacacggg	ggcaccccg	ggagaggacg	actaggagca	cacggcccg	aaaggtccag	120
	gtcagggaaag	ggaataactg	tgcttgaaga	agaaaaattcc	caacatggac	aaaccacgca	180
	aagaaaaatga	agaagagccg	cagagccgcc	caagaccgat	gaggagaggc	ctccgggtgga	240
	gcactctccc	gaaaaggcagt	cccccgagga	gcagtcttcg	gaggagcagt	cctcggagga	300

-74-

ggagttcttt	cctgaggagc	tcttgccctga	gctcctgcct	gagatgctcc	tctcgagga	360
ctccctccgc	aggctttcc	aggaaggacc	tgttgaggt	tcgcctccc	atggagcagc	420
ctccttgtgg	agtaggaaaa	cataaccttg	aagaaggaat	ctttaaagaa	aggttggctc	480
gttctcgccc	gcaatttaga	ggggacatac	atggcagaaa	tttaagcaat	gaggagatga	540
tacaggcagc	agatgagcta	gaagagatga	aaagagtaag	aaacaaactg	atgataatgc	600
actggagggc	aaaacggggc	ggtccttatac	ctattaatg	tgttcggcct	ttaattctgt	660
tttgcctgct	atagtattgc	cattgccacc	tggactttct	gtttgcattt	tcttaatgcc	720
tttccctat	ttctgaattt	taacttttg	tgaggctta	tttagatgt	ttagcatgta	780
actcgcttaa	agttgagggtt	tccccctaaa	atctacaagt	ttccctcttt	cagtcatgag	840
ccctacacat	ttgcatgaaa	gatgtacata	tatattgtga	acgaaaaaaag	caattttcaa	900
atggtatata	tgtatccat	tttgtaaaaaa	atgtatatta	tatattaata	tgcaaagaaaa	960
aagctaaaag	tatagacttc	aaaggcataa	cagtggttgt	gtggtaagat	ataggtgatt	1020
ttttaaattt	ttgttttatac	tgaatttctc	atttttcag	gacaaacgtt	ttacttgtgt	1080
tgcaaaaata	tataatgaaa	aaatcacaca	atttgaaga	aaactgtcaa	tcagcttata	1140
acgacaatgt	ggcacttaat	aaatacttgt	cagg			1174

<210> 49
 <211> 1569
 <212> DNA
 <213> Homo Sapiens

<400> 49						
caaaatctca	accatgatct	tgagatggca	aaggtttaa	atacgtttg	gaaatatact	60
cattggata	tttctttga	gaaggctgaa	atgtagctgg	ggacagcagg	ttgatcacaa	120
gggacgatga	tatgaggtaa	gcacacaaga	gctatggaca	agacaaggc	taaaggattt	180
tgaatacaaa	gcagaaatat	ttcgaccttc	tcatttctgg	ggtggagtg	gggagtgttc	240
attaagtaca	tatgacaaga	gggagtgtgg	ggagaagggtg	aaacagtaga	ctacatttat	300
ggattaagta	ggaatgtga	acaaagatgt	taaagtcatg	gcgatccggt	agacagatta	360
cacagaaggg	gaccgaagat	gaactggaca	aatactctga	ggctctcaa	gatgcccagg	420
agaagctgga	gctggcagag	aaaaaggcca	ccgatgctga	agccgacgta	gcttctctga	480
acagacgcat	ccagctggtt	gaggaagagt	tggatcgtgc	ccaggagcgt	ctggcaacag	540
cttgcagaa	gctggaggaa	gctgagaagg	cagcagatga	gagtgagaga	ggcatgaaag	600
tcattgagag	tcgagccaa	aaagatgaag	aaaaaatgga	aattcaggag	atccaactga	660

-75-

aagaggccaa	gcacattgct	gaagatgccg	accgcaaata	tgaagaggtg	gcccgttaagc	720
tggtcatcat	tgagagcgac	ctggaacgtg	cagaggagcg	ggctgagctc	tcagaaggcc	780
aagtccgaca	gctggaagaa	caattaagaa	taatggatca	gaccttgaaa	gcattaatgg	840
ctgcagagga	taagtactcg	cagaaggaag	acagatatga	ggaagagatc	aaggtccttt	900
ccgacaagct	gaaggaggct	gagactcggg	ctgagtttgc	ggagaggtca	gtaactaaat	960
tggagaaaag	cattgatgac	ttagaagaga	aagtgcctat	gccaaagaag	aaaaccttag	1020
tatgcacat	atgctggatc	agactttact	ggagttaaac	aacatgtgaa	aaccccttta	1080
gctgcgacca	cattcttca	ttttgttttgc	ttttgttttgc	tttttaaaca	cctgcttacc	1140
ccttaaatgc	aatttattta	cttttaccac	tgtcacagaa	acatccacaa	gataccagct	1200
aggtcaggggg	gtggggaaaa	cacatacataa	aagcaagccc	atgtcagggc	gatcctggtt	1260
caaatgtgcc	atttccccggg	ttgatgctgc	cacactttgt	agagagttt	gcaacacagt	1320
gtgcttagtc	agtgttagaa	tcctcactaa	agcagaagaa	gttccattcc	tttctgatttgc	1380
gcacacgtgc	agctcatgac	aatctgttagg	ataacaatca	gtgtggattt	ccactctttt	1440
cagtccttca	tgttaaagat	ttagacacca	catacaactg	gtaaaggacg	ttttctttag	1500
agtttaact	atatgtaaac	attgtataat	gatatggaaat	aaaatgcaca	ttttaggaca	1560
ttttctaaa						1569

<210> 50
 <211> 1081
 <212> DNA
 <213> Homo Sapiens .

<400> 50						
gctccccgtc	ctggcgagcc	gcmcctacgc	ggcccccgtcc	ccaggccagg	ccctgcagcg	60
agtgggcatac	gttgggggtc	aggaggccccc	caggagcaag	tggccctggc	aggtgagcct	120
gagagtccgc	gaccgatact	ggatgcactt	ctgcgggggc	tccctcatcc	accccccagt	180
ggtgctgacc	gcagcgcact	gcgtggacc	ggacgtcaag	gatctggccg	ccctcagggt	240
gcaactgcgg	gagcagcacc	tctactacca	ggaccagctg	ctgcccgtca	gcaggatcat	300
cgtgcaccca	cagttctaca	ccgcccagat	cggagcggac	atgccttgc	tggagctgga	360
ggagccggtg	aaggcttcca	gccacgtcca	cacggtcacc	ctgccccctg	cctcagagac	420
cttcccccccg	gggatgccgt	gctgggtcac	tggctggggc	gatgtggaca	atgtgagcgt	480
cctccccaccg	ccatccctc	tgaagcaggt	gaaggtcccc	ataatggaaa	accacatttgc	540
tgacgcacaaa	taccaccttgc	gcmcctacac	gggagacgac	gtccgcatacg	tccgtgacga	600
catgctgtgt	gccgggaaca	cccgaggaga	ctcatgccag	ggcgactccg	gagggccccct	660

- 76 -

ggtgtgcaag gtgaatggca cctggctgca ggcgggcgtg gtcagctggg gcgaggcgtg	720
tgcggcggccc aaccggccctg gcatctacac ccgtgtcacc tactacttgg actggatcca	780
ccactatgtc cccaaaaagc cgtgagtcag gcctgggtg tccacctggg tcactggagg	840
accagccccct cctgtccaaa acaccactgc ttcctaccca ggccggcgact gcccccaca	900
ccttcctgc cccgtcctga gtgccccttc ctgtcctaag cccctgctc tcttctgagc	960
cccttccctt gtcctgagga cccttccca tcctgagccc cttccctgt cctaagcctg	1020
acgcctgcac cgggcccctcc ggccctcccc tgcccaggca gctggtggtg ggcgctaata	1080
c	1081

<210> 51
<211> 783
<212> DNA
<213> Homo Sapiens

<400> 51	
ggcacgagcg agttcctgtc tctctgccaa cgccgcccgg atggcttccc aaaaccgcga	60
cccagccgcc actagcgtcg ccgcgcggccg taaaggagct gagccgagcg ggggcgcgc	120
ccgggggtccg gtggggcaaaa ggctacagca ggagctgatg accctcatga tgtctggcga	180
taaagggatt tctgccttcc ctgaatcaga caacctttc aaatggtag ggaccatcca	240
tggagcagct ggaacagtat atgaagacct gaggtataag ctctcgctag agttccccag	300
tggctaccct tacaatgcgc ccacagtgaa gttcctcacf ccctgctatc accccaacgt	360
ggacacccag ggtaacatat gcctggacat cctgaaggaa aagtggctg ccctgtatga	420
tgtcaggacc attctgctct ccatccagag cttcttagga gaacccaaca ttgatagtcc	480
cttgaacaca catgctgccg agctctggaa aaacccaca gcttttaaga agtacctgca	540
agaaacctac tcaaaggcagg tcaccagcca ggagccctga cccaggctgc ccagcctgtc	600
cttgtgtcgt cttttaatt tttccttaga tggctgtcc ttttgtat ttctgtatag	660
gactctttat cttagctgt ggtattttg ttttgggggtt gtctttaaa ttaagcctcg	720
gttgagccct tgtatattaa ataaatgcat ttttgcctt ttttaaaaaa aaaaaaaaaa	780
aaa	783

<210> 52
<211> 808
<212> PRT
<213> Homo Sapiens

<400> 52

-77-

Met Ala Glu Leu Leu Ala Ser Ala Gly Ser Ala Cys Ser Trp Asp Phe		
1	5	10
15		
Pro Arg Ala Pro Pro Ser Phe Pro Pro Pro Ala Ala Ser Arg Gly Gly		
20	25	30
Leu Gly Gly Thr Arg Ser Phe Arg Pro His Arg Gly Ala Glu Ser Pro		
35	40	45
Arg Pro Gly Arg Asp Arg Asp Gly Val Arg Val Pro Met Ala Ser Ser		
50	55	60
Arg Cys Pro Ala Pro Arg Gly Cys Arg Cys Leu Pro Gly Ala Ser Leu		
65	70	75
80		
Ala Trp Leu Gly Thr Val Leu Leu Leu Ala Asp Trp Val Leu Leu		
85	90	95
Arg Thr Ala Leu Pro Arg Ile Phe Ser Leu Leu Val Pro Thr Ala Leu		
100	105	110
Pro Leu Leu Arg Val Trp Ala Val Gly Leu Ser Arg Trp Ala Val Leu		
115	120	125
Trp Leu Gly Ala Cys Gly Val Leu Arg Ala Thr Val Gly Ser Lys Ser		
130	135	140
Glu Asn Ala Gly Ala Gln Gly Trp Leu Ala Ala Leu Lys Pro Leu Ala		
145	150	155
160		
Ala Ala Leu Gly Leu Ala Leu Pro Gly Leu Ala Leu Phe Arg Glu Leu		
165	170	175
Ile Ser Trp Gly Ala Pro Gly Ser Ala Asp Ser Thr Arg Leu Leu His		
180	185	190
Trp Gly Ser His Pro Thr Ala Phe Val Val Ser Tyr Ala Ala Ala Leu		
195	200	205
Pro Ala Ala Ala Leu Trp His Lys Leu Gly Ser Leu Trp Val Pro Gly		
210	215	220
Gly Gln Gly Gly Ser Gly Asn Pro Val Arg Arg Leu Leu Gly Cys Leu		
225	230	235
240		
Gly Ser Glu Thr Arg Arg Leu Ser Leu Phe Leu Val Leu Val Val Leu		
245	250	255
Ser Ser Leu Gly Glu Met Ala Ile Pro Phe Phe Thr Gly Arg Leu Thr		
260	265	270
Asp Trp Ile Leu Gln Asp Gly Ser Ala Asp Thr Phe Thr Arg Asn Leu		
275	280	285
Thr Leu Met Ser Ile Leu Thr Ile Ala Ser Ala Val Leu Glu Phe Val		
290	295	300
Gly Asp Gly Ile Tyr Asn Asn Thr Met Gly His Val His Ser His Leu		
305	310	315
320		

- 78 -

Gln Gly Glu Val Phe Gly Ala Val Leu Arg Gln Glu Thr Glu Phe
 325 330 335
 Gln Gln Asn Gln Thr Gly Asn Ile Met Ser Arg Val Thr Glu Asp Thr
 340 345 350
 Ser Thr Leu Ser Asp Ser Leu Ser Glu Asn Leu Ser Leu Phe Leu Trp
 355 360 365
 Tyr Leu Val Arg Gly Leu Cys Leu Leu Gly Ile Met Leu Trp Gly Ser
 370 375 380
 Val Ser Leu Thr Met Val Thr Leu Ile Thr Leu Pro Leu Leu Phe Leu
 385 390 395 400
 Leu Pro Lys Lys Val Gly Lys Trp Tyr Gln Leu Leu Glu Val Gln Val
 405 410 415
 Arg Glu Ser Leu Ala Lys Ser Ser Gln Val Ala Ile Glu Ala Leu Ser
 420 425 430
 Ala Met Pro Thr Val Arg Ser Phe Ala Asn Glu Glu Gly Glu Ala Gln
 435 440 445
 Lys Phe Arg Glu Lys Leu Gln Glu Ile Lys Thr Leu Asn Gln Lys Glu
 450 455 460
 Ala Val Ala Tyr Ala Val Asn Ser Trp Thr Thr Ser Ile Ser Gly Met
 465 470 475 480
 Leu Leu Lys Val Gly Ile Leu Tyr Ile Gly Gly Gln Leu Val Thr Ser
 485 490 495
 Gly Ala Val Ser Ser Gly Asn Leu Val Thr Phe Val Leu Tyr Gln Met
 500 505 510
 Gln Phe Thr Gln Ala Val Glu Val Leu Leu Ser Ile Tyr Pro Arg Val
 515 520 525
 Gln Lys Ala Val Gly Ser Ser Glu Lys Ile Phe Glu Tyr Leu Asp Arg
 530 535 540
 Thr Pro Arg Cys Pro Pro Ser Gly Leu Leu Thr Pro Leu His Leu Glu
 545 550 555 560
 Gly Leu Val Gln Phe Gln Asp Val Ser Phe Ala Tyr Pro Asn Arg Pro
 565 570 575
 Asp Val Leu Val Leu Gln Gly Leu Thr Phe Thr Leu Arg Pro Gly Glu
 580 585 590
 Val Thr Ala Leu Val Gly Pro Asn Gly Ser Gly Lys Ser Thr Val Ala
 595 600 605
 Ala Leu Leu Gln Asn Leu Tyr Gln Pro Thr Gly Gly Gln Leu Leu Leu
 610 615 620
 Asp Gly Lys Pro Leu Pro Gln Tyr Glu His Arg Tyr Leu His Arg Gln
 625 630 635 640

- 79 -

Val Ala Ala Val Gly Gln Glu Pro Gln Val Phe Gly Arg Ser Leu Gln
 645 650 655

Glu Asn Ile Ala Tyr Gly Leu Thr Gln Lys Pro Thr Met Glu Glu Ile
 660 665 670

Thr Ala Ala Ala Val Lys Ser Gly Ala His Ser Phe Ile Ser Gly Leu
 675 680 685

Pro Gln Gly Tyr Asp Thr Glu Val Asp Glu Ala Gly Ser Gln Leu Ser
 690 695 700

Gly Gly Gln Arg Gln Ala Val Ala Leu Ala Arg Ala Leu Ile Arg Lys
 705 710 715 720

Pro Cys Val Leu Ile Leu Asp Asp Ala Thr Ser Ala Leu Asp Ala Asn
 725 730 735

Ser Gln Leu Gln Val Glu Gln Leu Leu Tyr Glu Ser Pro Glu Arg Tyr
 740 745 750

Ser Arg Ser Val Leu Leu Ile Thr Gln His Leu Ser Leu Val Glu Gln
 755 760 765

Ala Asp His Ile Leu Phe Leu Glu Gly Ala Ile Arg Glu Gly Gly
 770 775 780

Thr His Gln Gln Leu Met Glu Lys Lys Gly Cys Tyr Trp Ala Met Val
 785 790 795 800

Gln Ala Pro Ala Asp Ala Pro Glu
 805

<210> 53

<211> 377

<212> PRT

<213> Homo Sapiens

<400> 53

Met Cys Glu Glu Glu Asp Ser Thr Ala Leu Val Cys Asp Asn Gly Ser
 1 5 10 15

Gly Leu Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val
 20 25 30

Phe Pro Ser Ile Val Gly Arg Pro Arg His Gln Gly Val Met Val Gly
 35 40 45

Met Gly Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg
 50 55 60

Gly Ile Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Ile Thr Asn
 65 70 75 80

Trp Asp Asp Met Glu Lys Ile Trp His His Ser Phe Tyr Asn Glu Leu
 85 90 95

Arg Val Ala Pro Glu Glu His Pro Thr Leu Leu Thr Glu Ala Pro Leu
 100 105 110

-80-

Asn	Pro	Lys	Ala	Asn	Arg	Glu	Lys	Met	Thr	Gln	Ile	Met	Phe	Glu	Thr
115						120						125			
Phe	Asn	Val	Pro	Ala	Met	Tyr	Val	Ala	Ile	Gln	Ala	Val	Leu	Ser	Leu
130						135						140			
Tyr	Ala	Ser	Gly	Arg	Thr	Thr	Gly	Ile	Val	Leu	Asp	Ser	Gly	Asp	Gly
145						150					155				160
Val	Thr	His	Asn	Val	Pro	Ile	Tyr	Glu	Gly	Tyr	Ala	Leu	Pro	His	Ala
						165					170				175
Ile	Met	Arg	Leu	Asp	Leu	Ala	Gly	Arg	Asp	Leu	Thr	Asp	Tyr	Leu	Met
						180					185				190
Lys	Ile	Leu	Thr	Glu	Arg	Gly	Tyr	Ser	Phe	Val	Thr	Thr	Ala	Glu	Arg
						195					200				205
Glu	Ile	Val	Arg	Asp	Ile	Lys	Glu	Lys	Leu	Cys	Tyr	Val	Ala	Leu	Asp
						210					215				220
Phe	Glu	Asn	Glu	Met	Ala	Thr	Ala	Ala	Ser	Ser	Ser	Ser	Leu	Glu	Lys
						225					230				240
Ser	Tyr	Glu	Leu	Pro	Asp	Gly	Gln	Val	Ile	Thr	Ile	Gly	Asn	Glu	Arg
						245					250				255
Phe	Arg	Cys	Pro	Glu	Thr	Leu	Phe	Gln	Pro	Ser	Phe	Ile	Gly	Met	Glu
						260					265				270
Ser	Ala	Gly	Ile	His	Glu	Thr	Thr	Tyr	Asn	Ser	Ile	Met	Lys	Cys	Asp
						275					280				285
Ile	Asp	Ile	Arg	Lys	Asp	Leu	Tyr	Ala	Asn	Asn	Val	Leu	Ser	Gly	Gly
						290					295				300
Thr	Thr	Met	Tyr	Pro	Gly	Ile	Ala	Asp	Arg	Met	Gln	Lys	Glu	Ile	Thr
						305					310				320
Ala	Leu	Ala	Pro	Ser	Thr	Met	Lys	Ile	Lys	Ile	Ile	Ala	Pro	Pro	Glu
						325					330				335
Arg	Lys	Tyr	Ser	Val	Trp	Ile	Gly	Gly	Ser	Ile	Leu	Ala	Ser	Leu	Ser
						340					345				350
Thr	Phe	Gln	Gln	Met	Trp	Ile	Ser	Lys	Gln	Glu	Tyr	Asp	Glu	Ala	Gly
						355					360				365
Pro	Ser	Ile	Val	His	Arg	Lys	Cys	Phe							
						370					375				
<210>	54														
<211>	334														
<212>	PRT														
<213>	Homo Sapiens														
<400>	54														
Met	Glu	Ala	Ala	His	Phe	Phe	Glu	Gly	Thr	Glu	Lys	Leu	Leu	Glu	Val

-81-

1	5	10	15												
Trp	Phe	Ser	Arg	Gln	Gln	Pro	Asp	Ala	Asn	Gln	Gly	Ser	Gly	Asp	Leu
				20				25						30	
Arg	Thr	Ile	Pro	Arg	Ser	Glu	Trp	Asp	Ile	Leu	Leu	Lys	Asp	Val	Gln
				35				40				45			
Cys	Ser	Ile	Ile	Ser	Val	Thr	Lys	Thr	Asp	Lys	Gln	Glu	Ala	Tyr	Val
				50				55			60				
Leu	Ser	Glu	Ser	Ser	Met	Phe	Val	Ser	Lys	Arg	Arg	Phe	Ile	Leu	Lys
				65				70		75			80		
Thr	Cys	Gly	Thr	Thr	Leu	Leu	Leu	Lys	Ala	Leu	Val	Pro	Leu	Leu	Lys
				85				90				95			
Leu	Ala	Arg	Asp	Tyr	Ser	Gly	Phe	Asp	Ser	Ile	Gln	Ser	Phe	Phe	Tyr
				100				105				110			
Ser	Arg	Lys	Asn	Phe	Met	Lys	Pro	Ser	His	Gln	Gly	Tyr	Pro	His	Arg
				115				120				125			
Asn	Phe	Gln	Glu	Glu	Ile	Glu	Phe	Leu	Asn	Ala	Ile	Phe	Pro	Asn	Gly
				130				135			140				
Ala	Gly	Tyr	Cys	Met	Gly	Arg	Met	Asn	Ser	Asp	Cys	Trp	Tyr	Leu	Tyr
				145				150			155			160	
Thr	Leu	Asp	Phe	Pro	Glu	Ser	Arg	Val	Ile	Ser	Gln	Pro	Asp	Gln	Thr
				165				170				175			
Leu	Glu	Ile	Leu	Met	Ser	Glu	Leu	Asp	Pro	Ala	Val	Met	Asp	Gln	Phe
				180				185				190			
Tyr	Met	Lys	Asp	Gly	Val	Thr	Ala	Lys	Asp	Val	Thr	Arg	Glu	Ser	Gly
				195				200				205			
Ile	Arg	Asp	Leu	Ile	Pro	Gly	Ser	Val	Ile	Asp	Ala	Thr	Met	Phe	Asn
				210				215			220				
Pro	Cys	Gly	Tyr	Ser	Met	Asn	Gly	Met	Lys	Ser	Asp	Gly	Thr	Tyr	Trp
				225				230			235			240	
Thr	Ile	His	Ile	Thr	Pro	Glu	Pro	Glu	Phe	Ser	Tyr	Val	Ser	Phe	Glu
				245				250				255			
Thr	Asn	Leu	Ser	Gln	Thr	Ser	Tyr	Asp	Asp	Leu	Ile	Arg	Lys	Val	Val
				260				265				270			
Glu	Val	Phe	Lys	Pro	Gly	Lys	Phe	Val	Thr	Thr	Leu	Phe	Val	Asn	Gln
				275				280				285			
Ser	Ser	Lys	Cys	Arg	Thr	Val	Leu	Ala	Ser	Pro	Gln	Lys	Ile	Glu	Gly
				290				295			300				
Phe	Lys	Arg	Leu	Asp	Cys	Gln	Ser	Ala	Met	Phe	Asn	Asp	Tyr	Asn	Phe
				305				310			315			320	
Val	Phe	Thr	Ser	Phe	Ala	Lys	Lys	Gln	Gln	Gln	Gln	Gln			

-82-

325 330

<210> 55
<211> 76
<212> PRT
<213> Homo Sapiens

<400> 55

Met Ala Ser Lys Gly Leu Gln Asp Leu Lys Gln Gln Val Glu Gly Thr
1 5 10 15

Ala Gln Glu Ala Val Ser Ala Ala Gly Ala Ala Ala Gln Gln Val Val
20 25 30

Asp Gln Ala Thr Glu Ala Gly Gln Lys Ala Met Asp Gln Leu Ala Lys
35 40 45

Thr Thr Gln Glu Thr Ile Asp Lys Thr Ala Asn Gln Ala Ser Asp Thr
50 55 60

Phe Ser Gly Ile Gly Lys Lys Phe Gly Leu Leu Lys
65 70 75

<210> 56
<211> 395
<212> PRT
<213> Homo Sapiens

<400> 56

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu Leu Ala Ala Ala Val
1 5 10 15

Ser Cys Ala Val Ala Gln His Ala Pro Pro Trp Thr Glu Asp Cys Arg
20 25 30

Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val Pro
35 40 45

Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His Glu
50 55 60

Leu Met Leu Asp Lys Ala Pro Met Leu Lys Val Ile Val Asn Ser Leu
65 70 75 80

Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Val Met Gln Val
85 90 95

Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro Phe
100 105 110

Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu Gly
115 120 125

Glu Ile Ile Ser Phe Asn Ile Phe Tyr Glu Leu Phe Thr Ile Cys Thr
130 135 140

Ser Ile Val Ala Glu Asp Lys Lys Gly His Leu Ile His Gly Arg Asn
145 150 155 160

- 83 -

Met	Asp	Phe	Gly	Val	Phe	Leu	Gly	Trp	Asn	Ile	Asn	Asn	Asp	Thr	Trp
				165				170						175	
Val	Ile	Thr	Glu	Gln	Leu	Lys	Pro	Leu	Thr	Val	Asn	Leu	Asp	Phe	Gln
				180				185					190		
Arg	Asn	Asn	Lys	Thr	Val	Phe	Lys	Ala	Ser	Ser	Phe	Ala	Gly	Tyr	Val
				195			200					205			
Gly	Met	Leu	Thr	Gly	Phe	Lys	Pro	Gly	Leu	Phe	Ser	Leu	Thr	Leu	Asn
				210		215					220				
Glu	Arg	Phe	Ser	Ile	Asn	Gly	Gly	Tyr	Leu	Gly	Ile	Leu	Glu	Trp	Ile
				225		230			235			240			
Leu	Gly	Lys	Lys	Asp	Ala	Met	Trp	Ile	Gly	Phe	Leu	Thr	Arg	Thr	Val
				245			250					255			
Leu	Glu	Asn	Ser	Thr	Ser	Tyr	Glu	Glu	Ala	Lys	Asn	Leu	Leu	Thr	Lys
				260			265				270				
Thr	Lys	Ile	Leu	Ala	Pro	Ala	Tyr	Phe	Ile	Leu	Gly	Gly	Asn	Gln	Ser
				275			280				285				
Gly	Glu	Gly	Cys	Val	Ile	Thr	Arg	Asp	Arg	Lys	Glu	Ser	Leu	Asp	Val
				290		295				300					
Tyr	Glu	Leu	Asp	Ala	Lys	Gln	Gly	Arg	Trp	Tyr	Val	Val	Gln	Thr	Asn
				305		310			315			320			
Tyr	Asp	Arg	Trp	Lys	His	Pro	Phe	Phe	Leu	Asp	Asp	Arg	Arg	Thr	Pro
				325			330					335			
Ala	Lys	Met	Cys	Leu	Asn	Arg	Thr	Ser	Gln	Glu	Asn	Ile	Ser	Phe	Glu
				340			345				350				
Thr	Met	Tyr	Asp	Val	Leu	Ser	Thr	Lys	Pro	Val	Leu	Asn	Lys	Leu	Thr
				355			360				365				
Val	Tyr	Thr	Thr	Leu	Ile	Asp	Val	Thr	Lys	Gly	Gln	Phe	Glu	Thr	Tyr
				370		375			380						
Leu	Arg	Asp	Cys	Pro	Asp	Pro	Cys	Ile	Gly	Trp					
				385		390			395						
<210>	57														
<211>	777														
<212>	PRT														
<213>	Homo Sapiens														
<400>	57														
Met	Pro	Asp	Asn	Arg	Gln	Pro	Arg	Asn	Arg	Gln	Pro	Arg	Ile	Arg	Ser
1				5				10					15		
Gly	Asn	Glu	Pro	Arg	Ser	Ala	Pro	Ala	Met	Glu	Pro	Asp	Gly	Arg	Gly
				20				25				30			
Ala	Trp	Ala	His	Ser	Arg	Ala	Ala	Leu	Asp	Arg	Leu	Glu	Lys	Leu	Leu

-84-

35	40	45
Arg Cys Ser Arg Cys Thr Asn Ile Leu Arg Glu Pro Val Cys Leu Gly		
50	55	60
Gly Cys Glu His Ile Phe Cys Ser Asn Cys Val Ser Asp Cys Ile Gly		
65	70	75
80		
Thr Gly Cys Pro Val Cys Tyr Thr Pro Ala Trp Ile Gln Asp Leu Lys		
85	90	95
Ile Asn Arg Gln Leu Asp Ser Met Ile Gln Leu Cys Ser Lys Leu Arg		
100	105	110
Asn Leu Leu His Asp Asn Glu Leu Ser Asp Leu Lys Glu Asp Lys Pro		
115	120	125
Arg Lys Ser Leu Phe Asn Asp Ala Gly Asn Lys Lys Asn Ser Ile Lys		
130	135	140
Met Trp Phe Ser Pro Arg Ser Lys Lys Val Arg Tyr Val Val Ser Lys		
145	150	155
160		
Ala Ser Val Gln Thré Gln Pro Ala Ile Lys Lys Asp Ala Ser Ala Gln		
165	170	175
Gln Asp Ser Tyr Glu Phe Val Ser Pro Ser Pro Pro Ala Asp Val Ser		
180	185	190
Glu Arg Ala Lys Lys Ala Ser Ala Arg Ser Gly Lys Lys Gln Lys Lys		
195	200	205
Lys Thr Leu Ala Glu Ile Asn Gln Lys Trp Asn Leu Glu Ala Glu Lys		
210	215	220
Glu Asp Gly Glu Phe Asp Ser Lys Glu Glu Ser Lys Gln Lys Leu Val		
225	230	235
240		
Ser Phe Cys Ser Gln Pro Ser Val Ile Ser Ser Pro Gln Ile Asn Gly		
245	250	255
Glu Ile Asp Leu Leu Ala Ser Gly Ser Leu Thr Glu Ser Glu Cys Phe		
260	265	270
Gly Ser Leu Thr Glu Val Ser Leu Pro Leu Ala Glu Gln Ile Glu Ser		
275	280	285
Pro Asp Thr Lys Ser Arg Asn Glu Val Val Thr Pro Glu Lys Val Cys		
290	295	300
Lys Asn Tyr Leu Thr Ser Lys Lys Ser Leu Pro Leu Glu Asn Asn Gly		
305	310	315
320		
Lys Arg Gly His His Asn Arg Leu Ser Ser Pro Ile Ser Lys Arg Cys		
325	330	335
Arg Thr Ser Ile Leu Ser Thr Ser Gly Asp Phe Val Lys Gln Thr Val		
340	345	350
Pro Ser Glu Asn Ile Pro Leu Pro Glu Cys Ser Ser Pro Pro Ser Cys		

-85-

355	360	365	
Lys Arg Lys Val Gly Gly Thr Ser Gly Arg Lys Asn Ser Asn Met Ser			
370	375	380	
Asp Glu Phe Ile Ser Leu Ser Pro Gly Thr Pro Pro Ser Thr Leu Ser			
385	390	395	400
Ser Ser Ser Tyr Arg Gln Val Met Ser Ser Pro Ser Ala Met Lys Leu			
405	410	415	
Leu Pro Asn Met Ala Val Lys Arg Asn His Arg Gly Glu Thr Leu Leu			
420	425	430	
His Ile Ala Ser Ile Lys Gly Asp Ile Pro Ser Val Glu Tyr Leu Leu			
435	440	445	
Gln Asn Gly Ser Asp Pro Asn Val Lys Asp His Ala Gly Trp Thr Pro			
450	455	460	
Leu His Glu Ala Cys Asn His Gly His Leu Lys Val Val Glu Leu Leu			
465	470	475	480
Leu Gln His Lys Ala Leu Val Asn Thr Thr Gly Tyr Gln Asn Asp Ser			
485	490	495	
Pro Leu His Asp Ala Ala Lys Asn Gly His Val Asp Ile Val Lys Leu			
500	505	510	
Leu Leu Ser Tyr Gly Ala Ser Arg Asn Ala Val Asn Ile Phe Gly Leu			
515	520	525	
Arg Pro Val Asp Tyr Thr Asp Asp Glu Ser Met Lys Ser Leu Leu Leu			
530	535	540	
Leu Pro Glu Lys Asn Glu Ser Ser Ser Ala Ser His Cys Ser Val Met			
545	550	555	560
Asn Thr Gly Gln Arg Arg Asp Gly Pro Leu Val Leu Ile Gly Ser Gly			
565	570	575	
Leu Ser Ser Glu Gln Gln Lys Met Leu Ser Glu Leu Ala Val Ile Leu			
580	585	590	
Lys Ala Lys Lys Tyr Thr Glu Phe Asp Ser Thr Val Thr His Val Val			
595	600	605	
Val Pro Gly Asp Ala Val Gln Ser Thr Leu Lys Cys Met Leu Gly Ile			
610	615	620	
Leu Asn Gly Cys Trp Ile Leu Lys Phe Glu Trp Val Lys Ala Cys Leu			
625	630	635	640
Arg Arg Lys Val Cys Glu Gln Glu Lys Tyr Glu Ile Pro Glu Gly			
645	650	655	
Pro Arg Arg Ser Arg Leu Asn Arg Glu Gln Leu Leu Pro Lys Leu Phe			
660	665	670	
Asp Gly Cys Tyr Phe Tyr Leu Trp Gly Thr Phe Lys His His Pro Lys			

-86-

675	680	685
-----	-----	-----

Asp Asn Leu Ile Lys Leu Val Thr Ala Gly Gly Gln Ile Leu Ser	690	695
		700

Arg Lys Pro Lys Pro Asp Ser Asp Val Thr Gln Thr Ile Asn Thr Val	705	710
		715
		720

Ala Tyr His Ala Arg Pro Asp Ser Asp Gln Arg Phe Cys Thr Gln Tyr	725	730
		735

Ile Ile Tyr Glu Asp Leu Cys Asn Tyr His Pro Glu Arg Val Arg Gln	740	745
		750

Gly Lys Val Trp Lys Ala Pro Ser Ser Trp Phe Ile Asp Cys Val Met	755	760
		765

Ser Phe Glu Leu Leu Pro Leu Asp Ser	770	775
-------------------------------------	-----	-----

<210> 58

<211> 323

<212> PRT

<213> Homo Sapiens

<400> 58

Met Tyr His Asn Ser Ser Gln Lys Arg His Trp Thr Phe Ser Ser Glu	1	5
		10
		15

Glu Gln Leu Ala Arg Leu Arg Ala Asp Ala Asn Arg Lys Phe Arg Cys	20	25
		30

Lys Ala Val Ala Asn Gly Lys Val Leu Pro Asn Asp Pro Val Phe Leu	35	40
		45

Glu Pro His Glu Glu Met Thr Leu Cys Lys Tyr Tyr Glu Lys Arg Leu	50	55
		60

Leu Glu Phe Cys Ser Val Phe Lys Pro Ala Met Pro Arg Ser Val Val	65	70
		75
		80

Gly Thr Ala Cys Met Tyr Phe Lys Arg Phe Tyr Leu Asn Asn Ser Val	85	90
		95

Met Glu Tyr His Pro Arg Ile Ile Met Leu Thr Cys Ala Phe Leu Ala	100	105
		110

Cys Lys Val Asp Glu Phe Asn Val Ser Ser Pro Gln Phe Val Gly Asn	115	120
		125

Leu Arg Glu Ser Pro Leu Gly Gln Glu Lys Ala Leu Glu Gln Ile Leu	130	135
		140

Glu Tyr Glu Leu Leu Leu Ile Gln Gln Leu Asn Phe His Leu Ile Val	145	150
		155
		160

His Asn Pro Tyr Arg Pro Phe Glu Gly Phe Leu Ile Asp Leu Lys Thr	165	170
		175

- 87 -

Arg Tyr Pro Ile Leu Glu Asn Pro Glu Ile Leu Arg Lys Thr Ala Asp
180 185 190

Asp Phe Leu Asn Arg Ile Ala Leu Thr Asp Ala Tyr Leu Leu Tyr Thr
195 200 205

Pro Ser Gln Ile Ala Leu Thr Ala Ile Leu Ser Ser Ala Ser Arg Ala
210 215 220

Gly Ile Thr Met Glu Ser Tyr Leu Ser Glu Ser Leu Met Leu Lys Glu
225 230 235 240

Asn Arg Thr Cys Leu Ser Gln Leu Leu Asp Ile Met Lys Ser Met Arg
245 250 255

Asn	Leu	Val	Lys	Lys	Tyr	Glu	Pro	Pro	Arg	Ser	Glu	Glu	Val	Ala	Val
			260				265						270		

Leu Lys Gln Lys Leu Glu Arg Cys His Ser Ala Glu Leu Ala Leu Asn
275 280 285

Lys Lys Ser Lys His Glu Glu Glu Glu Trp Thr Asp Asp Asp Asp Leu Val
305 310 315 320

Glu Ser Leu

<210> 59
<211> 217
<212> PRT
<213> Homo Sapiens

<400> 59

```

Met Ala Ser Leu Ser Leu Ala Pro Val Asn Ile Phe Lys Ala Gly Ala
1           5           10          15

```

Asp Glu Glu Arg Ala Glu Thr Ala Arg Leu Thr Ser Phe Ile Gly Ala
20 25 . 30

Ile Ala Ile Gly Asp Leu Val Lys Ser Thr Leu Gly Pro Lys Gly Met
 35 40 45

Asp Lys Ile Leu Leu Ser Ser Gly Arg Asp Ala Ser Leu Met Val Thr
50 55 60

Asn Asp Gly Ala Thr Ile Leu Lys Asn Ile Gly Val Asp Asn Pro Ala
65 70 75 80

Ala Lys Val Leu Val Asp Met Ser Arg Val Gln Asp Asp Glu Val Gly
85 90 95

Ala Glu Ser Leu Ile Ala Lys Lys Ile His Pro Gln Thr Ile Ile Ala
115 120 125

-88-

Gly Trp Arg Glu Ala Thr Lys Ala Ala Arg Glu Ala Leu Leu Ser Ser
 130 135 140

Ala Val Asp His Gly Ser Asp Glu Val Lys Phe Arg Gln Asp Leu Met
 145 150 155 160

Asn Ile Ala Gly Thr Thr Leu Ser Ser Lys Leu Leu Thr His His Lys
 165 170 175

Asp His Phe Thr Lys Leu Ala Val Glu Ala Val Leu Arg Leu Lys Gly
 180 185 190

Ser Gly Asn Leu Glu Ala Ile His Ile Ile Lys Lys Leu Gly Gly Ser
 195 200 205

Leu Ala Asp Ser Tyr Leu Asp Glu Gly
 210 215

<210> 60
<211> 499
<212> PRT
<213> Homo Sapiens

<400> 60

Met Ala Gln Phe Ala Phe Glu Ser Asp Leu His Ser Leu Leu Gln Leu
 1 5 10 15

Asp Ala Pro Ile Pro Asn Ala Pro Pro Ala Arg Trp Gln Arg Lys Ala
 20 25 30

Lys Glu Ala Ala Gly Pro Ala Pro Ser Pro Met Arg Ala Ala Asn Arg
 35 40 45

Ser His Ser Ala Gly Arg Thr Pro Gly Arg Thr Pro Gly Lys Ser Ser
 50 55 60

Ser Lys Val Gln Thr Thr Pro Ser Lys Pro Gly Gly Asp Arg Tyr Ile
 65 70 75 80

Pro His Arg Ser Ala Ala Gln Met Glu Val Ala Ser Phe Leu Leu Ser
 85 90 95

Lys Glu Asn Gln Ser Glu Asn Ser Gln Thr Pro Thr Lys Lys Glu His
 100 105 110

Gln Lys Ala Trp Ala Leu Asn Leu Asn Gly Phe Asp Val Glu Glu Ala
 115 120 125

Lys Ile Leu Arg Leu Ser Gly Lys Pro Gln Asn Ala Pro Glu Gly Tyr
 130 135 140

Gln Asn Arg Leu Lys Val Leu Tyr Ser Gln Lys Ala Thr Pro Gly Ser
 145 150 155 160

Ser Arg Lys Thr Cys Arg Tyr Ile Pro Ser Leu Pro Asp Arg Ile Leu
 165 170 175

Asp Ala Pro Glu Ile Arg Asn Asp Tyr Tyr Leu Asn Leu Val Asp Trp

-89-

180	185	190
Ser Ser Gly Asn Val Leu Ala Val Ala Leu Asp Asn Ser Val Tyr Leu		
195	200	205
Trp Ser Ala Ser Ser Gly Asp Ile Leu Gln Leu Leu Gln Met Glu Gln		
210	215	220
Pro Gly Glu Tyr Ile Ser Ser Val Ala Trp Ile Lys Glu Gly Asn Tyr		
225	230	240
Leu Ala Val Gly Thr Ser Ser Ala Glu Val Gln Leu Trp Asp Val Gln		
245	250	255
Gln Gln Lys Arg Leu Arg Asn Met Thr Ser His Ser Ala Arg Val Gly		
260	265	270
Ser Leu Ser Trp Asn Ser Tyr Ile Leu Ser Ser Gly Ser Arg Ser Gly		
275	280	285
His Ile His His His Asp Val Arg Val Ala Glu His His Val Ala Thr		
290	295	300
Leu Ser Gly His Ser Gln Glu Val Cys Gly Leu Arg Trp Ala Pro Asp		
305	310	315
Gly Arg His Leu Ala Ser Gly Gly Asn Asp Asn Leu Val Asn Val Trp		
325	330	335
Pro Ser Ala Pro Gly Glu Gly Gly Trp Val Pro Leu Gln Thr Phe Thr		
340	345	350
Gln His Gln Gly Ala Val Lys Ala Val Ala Trp Cys Pro Trp Gln Ser		
355	360	365
Asn Val Leu Ala Thr Gly Gly Thr Ser Asp Arg His Ile Arg Ile		
370	375	380
Trp Asn Val Cys Ser Gly Ala Cys Leu Ser Ala Val Asp Ala His Ser		
385	390	395
Gln Val Cys Ser Ile Leu Trp Ser Pro His Tyr Lys Glu Leu Ile Ser		
405	410	415
Gly His Gly Phe Ala Gln Asn Gln Leu Val Ile Trp Lys Tyr Pro Thr		
420	425	430
Met Ala Lys Val Ala Glu Leu Lys Gly His Thr Ser Arg Val Leu Ser		
435	440	445
Leu Thr Met Ser Pro Asp Gly Ala Thr Val Ala Ser Ala Ala Ala Asp		
450	455	460
Glu Thr Leu Arg Leu Trp Arg Cys Phe Glu Leu Asp Pro Ala Arg Arg		
465	470	475
Arg Glu Arg Glu Lys Ala Ser Ala Ala Lys Ser Ser Leu Ile His Gln		
485	490	495
Gly Ile Arg		

-90-

<210>	61			
<211>	298			
<212>	PRT			
<213>	Homo Sapiens			
<400>	61			
Ile Ala Ala Ala Pro Glu Leu Leu Glu Arg Ser Gly Ser Pro Gly Gly				
1	5	10	15	
Gly Gly Gly Ala Glu Glu Glu Ala Gly Gly Gly Pro Gly Gly Ser Pro				
20	25	30		
Pro Asp Gly Ala Arg Pro Gly Pro Ser Arg Glu Leu Ala Val Val Ala				
35	40	45		
Arg Pro Arg Ala Ala Pro Thr Pro Gly Pro Ser Ala Ala Ala Met Ala				
50	55	60		
Arg Pro Leu Val Pro Ser Ser Gln Lys Ala Leu Leu Leu Glu Leu Lys				
65	70	75	80	
Gly Leu Gln Glu Glu Pro Val Glu Gly Phe Arg Val Thr Leu Val Asp				
85	90	95		
Glu Gly Asp Leu Tyr Asn Trp Glu Val Ala Ile Phe Gly Pro Pro Asn				
100	105	110		
Thr Tyr Tyr Glu Gly Tyr Phe Lys Ala Arg Leu Lys Phe Pro Ile				
115	120	125		
Asp Tyr Pro Tyr Ser Pro Pro Ala Phe Arg Phe Leu Thr Lys Met Trp				
130	135	140		
His Pro Asn Ile Tyr Glu Thr Gly Asp Val Cys Ile Ser Ile Leu His				
145	150	155	160	
Pro Pro Val Asp Asp Pro Gln Ser Gly Glu Leu Pro Ser Glu Arg Trp				
165	170	175		
Asn Pro Thr Gln Asn Val Arg Thr Ile Leu Leu Ser Val Ile Ser Leu				
180	185	190		
Leu Asn Glu Pro Asn Thr Phe Ser Pro Ala Asn Val Asp Ala Ser Val				
195	200	205		
Met Tyr Arg Lys Trp Lys Glu Ser Lys Gly Lys Asp Arg Glu Tyr Thr				
210	215	220		
Asp Ile Ile Arg Lys Gln Val Leu Gly Thr Lys Val Asp Ala Glu Arg				
225	230	235	240	
Asp Gly Val Lys Val Pro Thr Thr Leu Ala Glu Tyr Cys Val Lys Thr				
245	250	255		
Lys Ala Pro Ala Pro Asp Glu Gly Ser Asp Leu Phe Tyr Asp Asp Tyr				
260	265	270		

-91-

Tyr Glu Asp Gly Glu Val Glu Glu Ala Asp Ser Cys Phe Gly Asp
 275 280 285

Asp Glu Asp Asp Ser Gly Thr Glu Glu Ser
 290 295

<210> 62
 <211> 212
 <212> PRT
 <213> Homo Sapiens

<400> 62

Met Glu Pro Pro Ser Ser Ile Gln Thr Ser Glu Phe Asp Ser Ser Asp
 1 5 10 15

Glu Glu Pro Ile Glu Asp Glu Gln Thr Pro Ile His Ile Ser Trp Leu
 20 25 30

Ser Leu Ser Arg Val Asn Cys Ser Gln Phe Leu Gly Leu Cys Ala Leu
 35 40 45

Pro Gly Cys Lys Phe Lys Asp Val Arg Arg Asn Val Gln Lys Asp Thr
 50 55 60

Glu Glu Leu Lys Ser Cys Gly Ile Gln Asp Ile Phe Val Phe Cys Thr
 65 70 75 80

Arg Gly Glu Leu Ser Lys Tyr Arg Val Pro Asn Leu Leu Asp Leu Tyr
 85 90 95

Gln Gln Cys Gly Ile Ile Thr His His His Pro Ile Ala Asp Gly Gly
 100 105 110

Thr Pro Asp Ile Ala Ser Cys Cys Glu Ile Met Glu Glu Leu Thr Thr
 115 120 125

Cys Leu Lys Asn Tyr Arg Lys Thr Leu Ile His Cys Tyr Gly Gly Leu
 130 135 140

Gly Arg Ser Cys Leu Val Ala Ala Cys Leu Leu Leu Tyr Leu Ser Asp
 145 150 155 160

Thr Ile Ser Pro Glu Gln Ala Ile Asp Ser Leu Arg Asp Leu Arg Gly
 165 170 175

Ser Gly Ala Ile Gln Thr Ile Lys Gln Tyr Asn Tyr Leu His Glu Phe
 180 185 190

Arg Asp Lys Leu Ala Ala His Leu Ser Ser Arg Asp Ser Gln Ser Arg
 195 200 205

Ser Val Ser Arg
 210

<210> 63
 <211> 79
 <212> PRT
 <213> Homo Sapiens

-92-

<400> 63

Met	Ser	His	Lys	Gln	Ile	Tyr	Tyr	Ser	Asp	Lys	Tyr	Asp	Asp	Glu	Glu
1				5				10				15			

Phe	Glu	Tyr	Arg	His	Val	Met	Leu	Pro	Lys	Asp	Ile	Ala	Lys	Leu	Val
				20			25				30				

Pro	Lys	Thr	His	Leu	Met	Ser	Glu	Ser	Glu	Trp	Arg	Asn	Leu	Gly	Val
				35			40			45					

Gln	Gln	Ser	Gln	Gly	Trp	Val	His	Tyr	Met	Ile	His	Glu	Pro	Glu	Pro
				50			55			60					

His	Ile	Leu	Leu	Phe	Arg	Arg	Pro	Leu	Pro	Lys	Lys	Pro	Lys	Lys
65				70				75						

<210> 64

<211> 79

<212> PRT

<213> Homo Sapiens

<400> 64

Met	Ala	His	Lys	Gln	Ile	Tyr	Tyr	Ser	Asp	Lys	Tyr	Phe	Asp	Glu	His
1				5				10				15			

Tyr	Glu	Tyr	Arg	His	Val	Met	Leu	Pro	Arg	Glu	Leu	Ser	Lys	Gln	Val
				20			25			30					

Pro	Lys	Thr	His	Leu	Met	Ser	Glu	Glu	Glu	Trp	Arg	Arg	Leu	Gly	Val
				35			40			45					

Gln	Gln	Ser	Leu	Gly	Trp	Val	His	Tyr	Met	Ile	His	Glu	Pro	Glu	Pro
				50			55			60					

His	Ile	Leu	Leu	Phe	Arg	Arg	Pro	Leu	Pro	Lys	Asp	Gln	Gln	Lys
65				70				75						

<210> 65

<211> 79

<212> PRT

<213> Homo Sapiens.

<400> 65

Met	Gln	Ala	Leu	Arg	Val	Ser	Gln	Ala	Leu	Ile	Arg	Ser	Phe	Ser	Ser
1				5				10				15			

Thr	Ala	Arg	Asn	Arg	Phe	Gln	Asn	Arg	Val	Arg	Glu	Lys	Gln	Lys	Leu
				20			25			30					

Phe	Gln	Glu	Asp	Asn	Asp	Ile	Pro	Leu	Tyr	Leu	Lys	Gly	Gly	Ile	Val
				35			40			45					

Asp	Asn	Ile	Leu	Tyr	Arg	Val	Thr	Met	Thr	Leu	Cys	Leu	Gly	Gly	Thr
				50			55			60					

Val	Tyr	Ser	Leu	Tyr	Ser	Leu	Gly	Trp	Ala	Ser	Phe	Pro	Arg	Asn
65				70			75							

-93-

<210> 66
<211> 417
<212> PRT
<213> Homo Sapiens

<400> 66

Met Arg Leu Ile Leu Pro Val Gly Leu Ile Ala Thr Thr Leu Ala Ile
1 5 10 15

Ala Pro Val Arg Phe Asp Arg Glu Lys Val Phe Arg Val Lys Pro Gln
20 25 30

Asp Glu Lys Gln Ala Asp Ile Ile Lys Asp Leu Ala Lys Thr Asn Glu
35 40 45

Leu Asp Phe Trp Tyr Pro Gly Ala Thr His His Val Ala Ala Asn Met
50 55 60

Met Val Asp Phe Arg Val Ser Glu Lys Glu Ser Gln Ala Ile Gln Ser
65 70 75 80

Ala Leu Asp Gln Asn Lys Met His Tyr Glu Ile Leu Ile His Asp Leu
85 90 95

Gln Glu Glu Ile Glu Lys Gln Phe Asp Val Lys Glu Asp Ile Pro Gly
100 105 110

Arg His Ser Tyr Ala Lys Tyr Asn Asn Trp Glu Lys Ile Val Ala Trp
115 120 125

Thr Glu Lys Met Met Asp Lys Tyr Pro Glu Met Val Ser Arg Ile Lys
130 135 140

Ile Gly Ser Thr Val Glu Asp Asn Pro Leu Tyr Val Leu Lys Ile Gly
145 150 155 160

Glu Lys Asn Glu Arg Arg Lys Ala Ile Phe Met Asp Cys Gly Ile His
165 170 175

Ala Arg Glu Trp Val Ser Pro Ala Phe Cys Gln Trp Phe Val Tyr Gln
180 185 190

Ala Thr Lys Thr Tyr Gly Arg Asn Lys Ile Met Thr Lys Leu Leu Asp
195 200 205

Arg Met Asn Phe Tyr Ile Leu Pro Val Phe Asn Val Asp Gly Tyr Ile
210 215 220

Trp Ser Trp Thr Lys Asn Arg Met Trp Arg Lys Asn Arg Ser Lys Asn
225 230 235 240

Gln Asn Ser Lys Cys Ile Gly Thr Asp Leu Asn Arg Asn Phe Asn Ala
245 250 255

Ser Trp Asn Ser Ile Pro Asn Thr Asn Asp Pro Cys Ala Asp Asn Tyr
260 265 270

Arg Gly Ser Ala Pro Glu Ser Glu Lys Glu Thr Lys Ala Val Thr Asn

-94-

275	280	285
-----	-----	-----

Phe Ile Arg Ser His Leu Asn Glu Ile Lys Val Tyr Ile Thr Phe His		
290	295	300

Ser Tyr Ser Gln Met Leu Leu Phe Pro Tyr Gly Tyr Thr Ser Lys Leu		
305	310	315
		320

Pro Pro Asn His Glu Asp Leu Ala Lys Val Ala Lys Ile Gly Thr Asp		
325	330	335

Val Leu Ser Thr Arg Tyr Glu Thr Arg Tyr Ile Tyr Gly Pro Ile Glu		
340	345	350

Ser Thr Ile Tyr Pro Ile Ser Gly Ser Ser Leu Asp Trp Ala Tyr Asp		
355	360	365

Leu Gly Ile Lys His Thr Phe Ala Phe Glu Leu Arg Asp Lys Gly Lys		
370	375	380

Phe Gly Phe Leu Leu Pro Glu Ser Arg Ile Lys Pro Thr Cys Arg Glu		
385	390	395
		400

Thr Met Leu Ala Val Lys Phe Ile Ala Lys Tyr Ile Leu Lys His Thr		
405	410	415

Ser

<210>	67		
<211>	476		
<212>	PRT		
<213>	Homo Sapiens		

<400>	67		
-------	----	--	--

Met Ala Gly Arg Gly Gly Ser Ala Leu Leu Ala Leu Cys Gly Ala Leu		
1	5	10
		15

Ala Ala Cys Gly Trp Leu Leu Gly Ala Glu Ala Gln Glu Pro Gly Ala		
20	25	30

Pro Ala Ala Gly Met Arg Arg Arg Arg Leu Gln Gln Glu Asp Gly		
35	40	45

Ile Ser Phe Glu Tyr His Arg Tyr Pro Glu Leu Arg Glu Ala Leu Val		
50	55	60

Ser Val Trp Leu Gln Cys Thr Ala Ile Ser Arg Ile Tyr Thr Val Gly		
65	70	75
		80

Arg Ser Phe Glu Gly Arg Glu Leu Leu Val Ile Glu Leu Ser Asp Asn		
85	90.	95

Pro Gly Val His Glu Pro Gly Glu Pro Glu Phe Lys Tyr Ile Gly Asn		
100	105	110

Met His Gly Asn Glu Ala Val Gly Arg Glu Leu Leu Ile Phe Leu Ala		
115	120	125

-95-

Gln	Tyr	Leu	Cys	Asn	Glu	Tyr	Gln	Lys	Gly	Asn	Glu	Thr	Ile	Val	Asn
130					135						140				
Leu	Ile	His	Ser	Thr	Arg	Ile	His	Ile	Met	Pro	Ser	Leu	Asn	Pro	Asp
145					150				155					160	
Gly	Phe	Glu	Lys	Ala	Ala	Ser	Gln	Pro	Gly	Glu	Leu	Lys	Asp	Trp	Phe
				165					170				175		
Val	Gly	Arg	Ser	Asn	Ala	Gln	Gly	Ile	Asp	Leu	Asn	Arg	Asn	Phe	Pro
				180				185				190			
Asp	Leu	Asp	Arg	Ile	Val	Tyr	Val	Asn	Glu	Lys	Gly	Gly	Pro	Asn	
				195			200				205				
Asn	His	Leu	Leu	Lys	Asn	Met	Lys	Lys	Ile	Val	Asp	Gln	Asn	Thr	Lys
				210			215			220					
Leu	Ala	Pro	Glu	Thr	Lys	Ala	Val	Ile	His	Trp	Ile	Met	Asp	Ile	Pro
				225			230			235			240		
Phe	Val	Leu	Ser	Ala	Asn	Leu	His	Gly	Gly	Asp	Leu	Val	Ala	Asn	Tyr
				245				250				255			
Pro	Tyr	Asp	Glu	Thr	Arg	Ser	Gly	Ser	Ala	His	Glu	Tyr	Ser	Ser	Ser
				260			265				270				
Pro	Asp	Asp	Ala	Ile	Phe	Gln	Ser	Leu	Ala	Arg	Ala	Tyr	Ser	Ser	Phe
				275			280				285				
Asn	Pro	Ala	Met	Ser	Asp	Pro	Asn	Arg	Pro	Pro	Cys	Arg	Lys	Asn	Asp
				290			295				300				
Asp	Asp	Ser	Ser	Phe	Val	Asp	Gly	Thr	Thr	Asn	Gly	Gly	Ala	Trp	Tyr
				305			310			315			320		
Ser	Val	Pro	Gly	Gly	Met	Gln	Asp	Phe	Asn	Tyr	Leu	Ser	Ser	Asn	Cys
					325			330				335			
Phe	Glu	Ile	Thr	Val	Glu	Leu	Ser	Cys	Glu	Lys	Phe	Pro	Pro	Glu	Glu
				340			345				350				
Thr	Leu	Lys	Thr	Tyr	Trp	Glu	Asp	Asn	Lys	Asn	Ser	Leu	Ile	Ser	Tyr
				355			360				365				
Leu	Glu	Gln	Ile	His	Arg	Gly	Val	Lys	Gly	Phe	Val	Arg	Asp	Leu	Gln
				370			375				380				
Gly	Asn	Pro	Ile	Ala	Asn	Ala	Thr	Ile	Ser	Val	Glu	Gly	Ile	Asp	His
				385			390			395			400		
Asp	Val	Thr	Ser	Ala	Lys	Asp	Gly	Asp	Tyr	Trp	Arg	Leu	Leu	Ile	Pro
					405			410			415				
Gly	Asn	Tyr	Lys	Leu	Thr	Ala	Ser	Ala	Pro	Gly	Tyr	Leu	Ala	Ile	Thr
				420			425				430				
Lys	Lys	Val	Ala	Val	Pro	Tyr	Ser	Pro	Ala	Ala	Gly	Val	Asp	Phe	Glu
				435			440				445				

-96-

Leu Glu Ser Phe Ser Glu Arg Lys Glu Glu Glu Lys Glu Glu Leu Met
 450 455 460

Glu Trp Trp Lys Met Met Ser Glu Thr Leu Asn Phe
 465 470 475

<210> 68
 <211> 355
 <212> PRT
 <213> Homo Sapiens

<400> 68

Met Asp Gln Phe Pro Glu Ser Val Thr Glu Asn Phe Glu Tyr Asp Asp
 1 5 10 15

Leu Ala Glu Ala Cys Tyr Ile Gly Asp Ile Val Val Phe Gly Thr Val
 20 25 30

Phe Leu Ser Ile Phe Tyr Ser Val Ile Phe Ala Ile Gly Leu Val Gly
 35 40 45

Asn Leu Leu Val Val Phe Ala Leu Thr Asn Ser Lys Lys Pro Lys Ser
 50 55 60

Val Thr Asp Ile Tyr Leu Leu Asn Leu Ala Leu Ser Asp Leu Leu Phe
 65 70 75 80

Val Ala Thr Leu Pro Phe Trp Thr His Tyr Leu Ile Asn Glu Lys Gly
 85 90 95

Leu His Asn Ala Met Cys Lys Phe Thr Thr Ala Phe Phe Phe Ile Gly
 100 105 110

Phe Phe Gly Ser Ile Phe Phe Ile Thr Val Ile Ser Ile Asp Arg Tyr
 115 120 125

Leu Ala Ile Val Leu Ala Ala Asn Ser Met Asn Asn Arg Thr Val Gln
 130 135 140

His Gly Val Thr Ile Ser Leu Gly Val Trp Ala Ala Ala Ile Leu Val
 145 150 155 160

Ala Ala Pro Gln Phe Met Phe Thr Lys Gln Lys Glu Asn Glu Cys Leu
 165 170 175

Gly Asp Tyr Pro Glu Val Leu Gln Glu Ile Trp Pro Val Leu Arg Asn
 180 185 190

Val Glu Thr Asn Phe Leu Gly Phe Leu Leu Pro Leu Leu Ile Met Ser
 195 200 205

Tyr Cys Tyr Phe Arg Ile Ile Gln Thr Leu Phe Ser Cys Lys Asn His
 210 215 220

Lys Lys Ala Lys Ala Ile Lys Leu Ile Leu Leu Val Val Ile Val Phe
 225 230 235 240

Phe Leu Phe Trp Thr Pro Tyr Asn Val Met Ile Phe Leu Glu Thr Leu
 245 250 255

-97-

Lys Leu Tyr Asp Phe Phe Pro Ser Cys Asp Met Arg Lys Asp Leu Arg
 260 265 270

Leu Ala Leu Ser Val Thr Glu Thr Val Ala Phe Ser His Cys Cys Leu
 275 280 285

Asn Pro Leu Ile Tyr Ala Phe Ala Gly Glu Lys Phe Arg Arg Tyr Leu
 290 295 300

Tyr His Leu Tyr Gly Lys Cys Leu Ala Val Leu Cys Gly Arg Ser Val
 305 310 315 320

His Val Asp Phe Ser Ser Ser Glu Ser Gln Arg Ser Arg His Gly Ser
 325 330 335

Val Leu Ser Ser Asn Phe Thr Tyr His Thr Ser Asp Gly Asp Ala Leu
 340 345 350

Leu Leu Leu
 355

<210> 69
 <211> 767
 <212> PRT
 <213> Homo Sapiens

<400> 69

Met Ser Gln Arg Pro Arg Ala Pro Arg Ser Ala Leu Trp Leu Leu Ala
 1 5 10 15

Pro Pro Leu Leu Arg Trp Ala Pro Pro Leu Leu Thr Val Leu His Ser
 20 25 30

Asp Leu Phe Gln Ala Leu Leu Asp Ile Leu Asp Tyr Tyr Glu Ala Ser
 35 40 45

Leu Ser Glu Ser Gln Lys Tyr Arg Tyr Gln Asp Glu Asp Thr Pro Pro
 50 55 60

Leu Glu His Ser Pro Ala His Leu Pro Asn Gln Ala Asn Ser Pro Pro
 65 70 75 80

Val Ile Val Asn Thr Asp Thr Leu Glu Ala Pro Gly Tyr Glu Leu Gln
 85 90 95

Val Asn Gly Thr Glu Gly Glu Met Glu Tyr Glu Glu Ile Thr Leu Glu
 100 105 110

Arg Gly Asn Ser Gly Leu Gly Phe Ser Ile Ala Gly Gly Thr Asp Asn
 115 120 125

Pro His Ile Gly Asp Asp Pro Ser Ile Phe Ile Thr Lys Ile Ile Pro
 130 135 140

Gly Gly Ala Ala Ala Gln Asp Gly Arg Leu Arg Val Asn Asp Ser Ile
 145 150 155 160

Leu Phe Val Asn Glu Val Asp Val Arg Glu Val Thr His Ser Ala Ala

-98-

165	170	175
Val Glu Ala Leu Lys Glu Ala Gly Ser Ile Val Arg Leu Tyr Val Met		
180	185	190
Arg Arg Lys Pro Pro Ala Glu Lys Val Met Glu Ile Lys Leu Ile Lys		
195	200	205
Gly Pro Lys Gly Leu Gly Phe Ser Ile Ala Gly Gly Val Gly Asn Gln		
210	215	220
His Ile Pro Gly Asp Asn Ser Ile Tyr Val Thr Lys Ile Ile Glu Gly		
225	230	235
Gly Ala Ala His Lys Asp Gly Arg Leu Gln Ile Gly Asp Lys Ile Leu		
245	250	255
Ala Val Asn Ser Val Gly Leu Glu Asp Val Met His Glu Asp Ala Val		
260	265	270
Ala Ala Leu Lys Asn Thr Tyr Asp Val Val Tyr Leu Lys Val Ala Lys		
275	280	285
Pro Ser Asn Ala Tyr Leu Ser Asp Ser Tyr Ala Pro Pro Asp Ile Thr		
290	295	300
Thr Ser Tyr Ser Gln His Leu Asp Asn Glu Ile Ser His Ser Ser Tyr		
305	310	315
Leu Gly Thr Asp Tyr Pro Thr Ala Met Thr Pro Thr Ser Pro Arg Arg		
325	330	335
Tyr Ser Pro Val Ala Lys Asp Leu Leu Gly Glu Glu Asp Ile Pro Arg		
340	345	350
Glu Pro Arg Arg Ile Val Ile His Arg Gly Ser Thr Gly Leu Gly Phe		
355	360	365
Asn Ile Val Gly Gly Glu Asp Gly Glu Gly Ile Phe Ile Ser Phe Ile		
370	375	380
Leu Ala Gly Gly Pro Ala Asp Leu Ser Gly Glu Leu Arg Lys Gly Asp		
385	390	395
Gln Ile Leu Ser Val Asn Gly Val Asp Leu Arg Asn Ala Ser His Glu		
405	410	415
Gln Ala Ala Ile Ala Leu Lys Asn Ala Gly Gln Thr Val Thr Ile Ile		
420	425	430
Ala Gln Tyr Lys Pro Glu Glu Tyr Ser Arg Phe Glu Ala Lys Ile His		
435	440	445
Asp Leu Arg Glu Gln Leu Met Asn Ser Ser Leu Gly Ser Gly Thr Ala		
450	455	460
Ser Leu Arg Ser Asn Pro Lys Arg Gly Phe Tyr Ile Arg Ala Leu Phe		
465	470	475
Asp Tyr Asp Lys Thr Lys Asp Cys Gly Phe Leu Ser Gln Ala Leu Ser		

-99-

	485	490	495
Phe Arg Phe Gly Asp Val Leu His Val Ile Asp Ala Ser Asp Glu Glu			
500	505	510	
Trp Trp Gln Ala Arg Arg Val His Ser Asp Ser Glu Thr Asp Asp Ile			
515	520	525	
Gly Phe Ile Pro Ser Lys Arg Arg Val Glu Arg Arg Glu Trp Ser Arg			
530	535	540	
Leu Lys Ala Lys Asp Trp Gly Ser Ser Ser Gly Ser Gln Gly Arg Glu			
545	550	555	560
Asp Ser Val Leu Ser Tyr Glu Thr Val Thr Gln Met Glu Val His Tyr			
565	570	575	
Ala Arg Pro Ile Ile Leu Gly Pro Thr Lys Asp Arg Ala Asn Asp			
580	585	590	
Asp Leu Leu Ser Glu Phe Pro Asp Lys Phe Gly Ser Cys Val Pro His			
595	600	605	
Thr Thr Arg Pro Lys Arg Glu Tyr Glu Ile Asp Gly Arg Asp Tyr His			
610	615	620	
Phe Val Ser Ser Arg Glu Lys Met Glu Lys Asp Ile Gln Ala His Lys			
625	630	635	640
Phe Ile Glu Ala Gly Gln Tyr Asn Ser His Leu Tyr Gly Thr Ser Val			
645	650	655	
Gln Ser Val Arg Glu Val Ala Glu Gln Gly Lys His Cys Ile Leu Asp			
660	665	670	
Val Ser Ala Asn Ala Val Arg Arg Leu Gln Ala Ala His Leu His Pro			
675	680	685	
Ile Ala Ile Phe Ile Arg Pro Arg Ser Leu Glu Asn Val Leu Glu Ile			
690	695	700	
Asn Lys Arg Ile Thr Glu Glu Gln Ala Arg Lys Ala Phe Asp Arg Ala			
705	710	715	720
Thr Lys Leu Glu Gln Glu Phe Thr Glu Cys Phe Ser Ala Ile Val Glu			
725	730	735	
Gly Asp Ser Phe Glu Glu Ile Tyr His Lys Val Lys Arg Val Ile Glu			
740	745	750	
Asp Leu Ser Gly Pro Tyr Ile Trp Val Pro Ala Arg Glu Arg Leu			
755	760	765	
<210> 70			
<211> 752			
<212> PRT			
<213> Homo Sapiens			
<400> 70			

-100-

Met	Val	Val	Asp	Glu	Gln	Gln	Arg	Leu	Thr	Ala	Gln	Leu	Thr	Leu	Gln
1				5				10					15		
Arg	Gln	Lys	Ile	Gln	Glu	Leu	Thr	Thr	Asn	Ala	Lys	Glu	Thr	His	Thr
			20				25						30		
Lys	Leu	Ala	Leu	Ala	Glu	Ala	Arg	Val	Gln	Glu	Glu	Gln	Lys	Ala	
			35				40					45			
Thr	Arg	Leu	Glu	Lys	Glu	Leu	Gln	Thr	Gln	Thr	Thr	Lys	Phe	His	Gln
			50				55				60				
Asp	Gln	Asp	Thr	Ile	Met	Ala	Lys	Leu	Thr	Asn	Glu	Asp	Ser	Gln	Asn
				70					75				80		
Arg	Gln	Leu	Gln	Gln	Lys	Leu	Ala	Ala	Leu	Ser	Arg	Gln	Ile	Asp	Glu
			85				90					95			
Leu	Glu	Glu	Thr	Asn	Arg	Ser	Leu	Arg	Lys	Ala	Glu	Glu	Leu	Gln	
			100				105					110			
Asp	Ile	Lys	Glu	Lys	Ile	Ser	Lys	Gly	Glu	Tyr	Gly	Asn	Ala	Gly	Ile
			115				120					125			
Met	Ala	Glu	Val	Glu	Glu	Leu	Ile	Lys	Met	Glu	Glu	Gln	Cys	Arg	Asp
			130				135					140			
Leu	Asn	Lys	Arg	Leu	Glu	Arg	Glu	Thr	Leu	Gln	Ser	Lys	Asp	Phe	Lys
			145				150			155			160		
Leu	Glu	Val	Glu	Lys	Leu	Ser	Lys	Arg	Ile	Met	Ala	Glu	Lys	Leu	
			165				170					175			
Glu	Asp	Ala	Phe	Asn	Lys	Ser	Lys	Gln	Glu	Cys	Tyr	Ser	Leu	Lys	Cys
			180				185					190			
Asn	Leu	Glu	Lys	Glu	Arg	Met	Thr	Thr	Lys	Gln	Leu	Ser	Gln	Glu	Leu
			195				200					205			
Glu	Ser	Leu	Lys	Val	Arg	Ile	Lys	Glu	Leu	Glu	Ala	Ile	Glu	Ser	Arg
			210				215					220			
Leu	Glu	Lys	Thr	Glu	Phe	Thr	Leu	Lys	Glu	Asp	Leu	Thr	Lys	Leu	Lys
			225				230			235			240		
Thr	Leu	Thr	Val	Met	Phe	Val	Asp	Glu	Arg	Lys	Thr	Met	Ser	Glu	Lys
			245				250					255			
Leu	Lys	Lys	Thr	Glu	Asp	Lys	Leu	Gln	Ala	Ala	Ser	Ser	Gln	Leu	Gln
			260				265					270			
Val	Glu	Gln	Asn	Lys	Val	Thr	Thr	Val	Thr	Glu	Lys	Leu	Ile	Glu	Glu
			275				280					285			
Thr	Lys	Arg	Ala	Leu	Lys	Ser	Lys	Thr	Asp	Val	Glu	Glu	Lys	Met	Tyr
			290				295					300			
Ser	Val	Thr	Lys	Glu	Arg	Asp	Asp	Leu	Lys	Asn	Lys	Leu	Lys	Ala	Glu
			305				310			315			320		

-101-

Glu	Glu	Lys	Gly	Asn	Asp	Leu	Leu	Ser	Arg	Val	Asn	Met	Leu	Lys	Asn
				325				330				335			
Arg	Leu	Gln	Ser	Leu	Glu	Ala	Ile	Glu	Lys	Asp	Phe	Leu	Lys	Asn	Lys
	340				345			345				350			
Leu	Asn	Gln	Asp	Ser	Gly	Lys	Ser	Thr	Thr	Ala	Leu	His	Gln	Glu	Asn
	355				360			360				365			
Asn	Lys	Ile	Lys	Glu	Leu	Ser	Gln	Glu	Val	Glu	Arg	Leu	Lys	Leu	Lys
	370			375			375		380			380			
Leu	Lys	Asp	Met	Lys	Ala	Ile	Glu	Asp	Asp	Leu	Met	Lys	Thr	Glu	Asp
	385			390			390		395			395		400	
Glu	Tyr	Glu	Thr	Leu	Glu	Arg	Arg	Tyr	Ala	Asn	Glu	Arg	Asp	Lys	Ala
	405				410			410				415			
Gln	Phe	Leu	Ser	Lys	Glu	Leu	Glu	His	Val	Lys	Met	Glu	Leu	Ala	Lys
	420				425			425				430			
Tyr	Lys	Leu	Ala	Glu	Lys	Thr	Glu	Thr	Ser	His	Glu	Gln	Trp	Leu	Phe
	435				440			440				445			
Lys	Arg	Leu	Gln	Glu	Glu	Ala	Lys	Ser	Gly	His	Leu	Ser	Arg	Glu	
	450				455			455				460			
Val	Asp	Ala	Leu	Lys	Glu	Lys	Ile	His	Glu	Tyr	Met	Ala	Thr	Glu	Asp
	465				470			470		475			480		
Leu	Ile	Cys	His	Leu	Gln	Gly	Asp	His	Ser	Val	Cys	Lys	Lys	Lys	Leu
				485				485		490			495		
Asn	Gln	Gln	Glu	Asn	Arg	Asn	Arg	Asp	Leu	Gly	Arg	Glu	Ile	Glu	Asn
				500				500		505			510		
Leu	Thr	Lys	Glu	Leu	Glu	Arg	Tyr	Arg	His	Phe	Ser	Lys	Ser	Leu	Arg
		515				520		520				525			
Pro	Ser	Leu	Asn	Gly	Arg	Arg	Ile	Ser	Asp	Pro	Gln	Val	Phe	Ser	Lys
			530			535		535				540			
Glu	Val	Gln	Thr	Glu	Ala	Val	Asp	Asn	Glu	Pro	Pro	Asp	Tyr	Lys	Ser
			545			550		550			555			560	
Leu	Ile	Pro	Leu	Glu	Arg	Ala	Val	Ile	Asn	Gly	Gln	Leu	Tyr	Glu	Glu
				565			565		570			575			
Ser	Glu	Asn	Gln	Asp	Glu	Asp	Pro	Asn	Asp	Glu	Gly	Ser	Val	Leu	Ser
				580			580		585			590			
Phe	Lys	Cys	Ser	Gln	Ser	Thr	Pro	Cys	Pro	Val	Asn	Arg	Lys	Leu	Trp
				595			595		600			605			
Ile	Pro	Trp	Met	Lys	Ser	Lys	Glu	Gly	His	Leu	Gln	Asn	Gly	Lys	Met
			610			615		615			620				
Gln	Thr	Lys	Pro	Asn	Ala	Asn	Phe	Val	Gln	Pro	Gly	Asp	Leu	Val	Leu
				625			630		635			640			

-102-

Ser His Thr Pro Gly Gln Pro Leu His Ile Lys Val Thr Pro Asp His
 645 650 655

Val Gln Asn Thr Ala Thr Leu Glu Ile Thr Ser Pro Thr Thr Glu Ser
 660 665 670

Pro His Ser Tyr Thr Ser Thr Ala Val Ile Pro Asn Cys Gly Thr Pro
 675 680 685

Lys Gln Arg Ile Thr Ile Leu Gln Asn Ala Ser Ile Thr Pro Val Lys
 690 695 700

Ser Lys Thr Ser Thr Glu Asp Leu Met Asn Leu Glu Gln Gly Met Ser
 705 710 715 720

Pro Ile Thr Met Ala Thr Phe Ala Arg Ala Gln Thr Pro Glu Ser Cys
 725 730 735

Gly Ser Leu Thr Pro Glu Arg Thr Met Ser Leu Phe Arg Phe Trp Leu
 740 745 750

<210> 71

<211> 105

<212> PRT

<213> Homo Sapiens

<400> 71

Met Gln Thr Gln Ala Glu Ala Leu Thr Ala Gly Met Ala Gly Val Ala
 1 5 10 15

Thr Ala Ala Ala Gly Ala Trp Thr Gln Pro Gln Leu Arg Pro Val Glu
 20 25 30

Leu Pro Gln Arg Thr Arg Gln Val Arg Ala Glu Thr Pro Arg Leu Pro
 35 40 45

Gln Gly Val Thr Asn Ala Ala Ala His Ile His Pro Gln Arg Ala Phe
 50 55 60

Pro Asp Pro Leu Gly Gly Asn Arg Pro Trp Val Pro Gly Thr Arg
 65 70 75 80

Cys Arg Ala Pro Pro Lys Gly Gly Trp Glu Gly Ser His Ser Glu Trp
 85 90 95

Gln Asp Pro Gly Arg Pro Leu Glu Ser
 100 105

<210> 72

<211> 225

<212> PRT

<213> Homo Sapiens

<400> 72

Met Asn Ser Asn Val Glu Asn Leu Pro Pro His Ile Ile Arg Leu Val
 1 5 10 15

Tyr Lys Glu Val Thr Thr Leu Thr Ala Asp Pro Pro Asp Gly Ile Lys

-103-

20	25	30
Val Phe Pro Asn Glu Glu Asp Leu Thr Asp Leu Gln Val Thr Ile Glu		
35	40	45
Gly Pro Glu Gly Thr Pro Tyr Ala Gly Gly Leu Phe Arg Met Lys Leu		
50	55	60
Leu Leu Gly Lys Asp Phe Pro Ala Ser Pro Pro Lys Gly Tyr Phe Leu		
65	70	75
Thr Lys Ile Phe His Pro Asn Val Gly Ala Asn Gly Glu Ile Cys Val		
85	90	95
Asn Val Leu Lys Arg Asp Trp Thr Ala Glu Leu Gly Ile Arg His Val		
100	105	110
Leu Leu Thr Ile Lys Cys Leu Leu Ile His Pro Asn Pro Glu Ser Ala		
115	120	125
Leu Asn Glu Glu Ala Gly Arg Leu Leu Leu Glu Asn Tyr Glu Glu Tyr		
130	135	140
Ala Ala Arg Ala Arg Leu Leu Thr Glu Ile His Gly Gly Ala Gly Gly		
145	150	155
Pro Ser Gly Arg Ala Glu Ala Gly Arg Ala Leu Ala Ser Gly Thr Glu		
165	170	175
Ala Ser Ser Thr Asp Pro Gly Ala Pro Gly Gly Pro Gly Gly Ala Glu		
180	185	190
Gly Pro Met Ala Lys Lys His Ala Gly Glu Arg Asp Lys Lys Leu Ala		
195	200	205
Ala Lys Lys Lys Thr Asp Lys Lys Arg Ala Leu Arg Ala Leu Arg Arg		
210	215	220
Leu		
225		
<210> 73		
<211> 208		
<212> PRT		
<213> Homo Sapiens		
<400> 73		
Pro His Pro Met Pro Leu Arg Leu Pro Thr Pro Gly Gly Asn Gly Gln		
1	5	10
15		
Ala Gly Arg Pro Cys Arg Ser Thr Gly Gln Gly Asn Lys Arg Gly Ala		
20	25	30
Ala Lys Cys Pro Asp Gln Glu Ala Pro Tyr Phe Arg Gly Lys Gly His		
35	40	45
Val Val Leu Ala Pro His Pro Ile Pro Ser His Leu Gly Ala Pro Pro		
50	55	60

-104-

Pro His Ser Leu His Leu Gln Gly Asn Leu Val Leu His Ala Gly Ala
 65 70 75 80

Leu Ile Phe Leu Gly Gly Arg Arg Glu Gly Trp Pro Leu Gly Glu
 85 90 95

Pro Pro Thr Trp Gly Ser Ser Lys Asp Gly Ala Asp Thr Ser Trp Ala
 100 105 110

Val Pro Ala Pro Pro Ala His Gln Asp Pro Pro Leu Ala Ala Ile Gln
 115 120 125

Leu Val Pro Lys His Leu Lys Pro Gln Ser Trp Ile Arg Ser Ser Ile
 130 135 140

Pro Pro Leu Leu Gly Pro Leu Gly Arg Leu Leu Pro Thr Asp Arg Cys
 145 150 155 160

Ser Pro His Leu Gly Arg Phe Trp Val Gly Lys Pro Pro His Thr Gly
 165 170 175

Asn Ser His Leu Ala Pro Cys Arg Ile His Pro Arg Ile Arg Pro Phe
 180 185 190

Ile His Arg Ser Val His Pro Cys Pro Gln Leu Thr Ala Arg His His
 195 200 205

<210> 74

<211> 109

<212> PRT

<213> Homo Sapiens

<400> 74

Met Ala Tyr Gln Leu Tyr Arg Asn Thr Thr Leu Gly Asn Ser Leu Gln
 1 5 10 15

Glu Ser Leu Asp Glu Leu Ile Gln Ser Gln Gln Ile Thr Pro Gln Leu
 20 25 30

Ala Leu Gln Val Leu Leu Gln Phe Asp Lys Ala Ile Asn Ala Ala Leu
 35 40 45

Ala Gln Arg Val Arg Asn Arg Val Asn Phe Arg Gly Ser Leu Asn Thr
 50 55 60

Tyr Arg Phe Cys Asp Asn Val Trp Thr Phe Val Leu Asn Asp Val Glu
 65 70 75 80

Phe Arg Glu Val Thr Glu Leu Ile Lys Val Asp Lys Val Lys Ile Val
 85 90 95

Ala Cys Asp Gly Lys Asn Thr Gly Ser Asn Thr Thr Glu
 100 105

<210> 75

<211> 693

<212> PRT

<213> Homo Sapiens

-105-

<400> 75

Met	Ala	Leu	Cys	Asn	Gly	Asp	Ser	Lys	Leu	Glu	Asn	Ala	Gly	Gly	Asp
1									10						15
Leu	Lys	Asp	Gly	His	His	His	Tyr	Glu	Gly	Ala	Val	Val	Ile	Leu	Asp
	20							25						30	
Ala	Gly	Ala	Gln	Tyr	Gly	Lys	Val	Ile	Asp	Arg	Arg	Val	Arg	Glu	Leu
							35		40					45	
Phe	Val	Gln	Ser	Glu	Ile	Phe	Pro	Leu	Glu	Thr	Pro	Ala	Phe	Ala	Ile
	50					55				60					
Lys	Glu	Gln	Gly	Phe	Arg	Ala	Ile	Ile	Ser	Gly	Gly	Pro	Asn	Ser	
65						70			75					80	
Val	Tyr	Ala	Glu	Asp	Ala	Pro	Trp	Phe	Asp	Pro	Ala	Ile	Phe	Thr	Ile
						85			90					95	
Gly	Lys	Pro	Val	Leu	Gly	Ile	Cys	Tyr	Gly	Met	Gln	Met	Met	Asn	Lys
						100		105						110	
Val	Phe	Gly	Gly	Thr	Val	His	Lys	Lys	Ser	Val	Arg	Glu	Asp	Gly	Val
	115						120				125				
Phe	Asn	Ile	Ser	Val	Asp	Asn	Thr	Cys	Ser	Leu	Phe	Arg	Gly	Leu	Gln
	130					135				140					
Lys	Glu	Glu	Val	Val	Leu	Leu	Thr	His	Gly	Asp	Ser	Val	Asp	Lys	Val
145					150				155					160	
Ala	Asp	Gly	Phe	Lys	Val	Val	Ala	Arg	Ser	Gly	Asn	Ile	Val	Ala	Gly
					165				170					175	
Ile	Ala	Asn	Glu	Ser	Lys	Lys	Leu	Tyr	Gly	Ala	Gln	Phe	His	Pro	Glu
					180			185				190			
Val	Gly	Leu	Thr	Glu	Asn	Gly	Lys	Val	Ile	Leu	Lys	Asn	Phe	Leu	Tyr
					195			200			205				
Asp	Ile	Ala	Gly	Cys	Ser	Gly	Thr	Phe	Thr	Val	Gln	Asn	Arg	Glu	Leu
	210					215				220					
Glu	Cys	Ile	Arg	Glu	Ile	Lys	Glu	Arg	Val	Gly	Thr	Ser	Lys	Val	Leu
225						230			235					240	
Val	Leu	Leu	Ser	Gly	Gly	Val	Asp	Ser	Thr	Val	Cys	Thr	Ala	Leu	Leu
					245			250				255			
Asn	Arg	Ala	Leu	Asn	Gln	Glu	Gln	Val	Ile	Ala	Val	His	Ile	Asp	Asn
					260			265				270			
Gly	Phe	Met	Arg	Lys	Arg	Glu	Ser	Gln	Ser	Val	Glu	Glu	Ala	Leu	Lys
		275				280					285				
Lys	Leu	Gly	Ile	Gln	Val	Lys	Val	Ile	Asn	Ala	Ala	His	Ser	Phe	Tyr
		290				295				300					
Asn	Gly	Thr	Thr	Thr	Leu	Pro	Ile	Ser	Asp	Glu	Asp	Arg	Thr	Pro	Arg

-106-

305	310	315	320
Lys Arg Ile Ser Lys Thr Leu Asn Met		Thr Thr Ser Pro Glu Glu Lys	
325		330	335
Arg Lys Ile Ile Gly Asp Thr Phe Val	Lys Ile Ala Asn Glu Val Ile		
340	345		350
Gly Glu Met Asn Leu Lys Pro Glu Glu Val Phe	Leu Ala Gln Gly Thr		
355	360		365
Leu Arg Pro Asp Leu Ile Glu Ser Ala Ser	Leu Val Ala Ser Gly Lys		
370	375		380
Ala Glu Leu Ile Lys Thr His His Asn Asp	Thr Glu Leu Ile Arg Lys		
385	390		400
Leu Arg Glu Glu Gly Lys Val Ile Glu Pro	Leu Lys Asp Phe His Lys		
405	410		415
Asp Glu Val Arg Ile Leu Gly Arg Glu	Leu Gly Leu Pro Glu Glu Leu		
420	425		430
Val Ser Arg His Pro Phe Pro Gly Pro	Gly Leu Ala Ile Arg Val Ile		
435	440		445
Cys Ala Glu Glu Pro Tyr Ile Cys Lys Asp	Phe Pro Glu Thr Asn Asn		
450	455		460
Ile Leu Lys Ile Val Ala Asp Phe Ser	Ala Ser Val Lys Lys Pro His		
465	470		480
Thr Leu Leu Gln Arg Val Lys Ala Cys	Thr Thr Glu Glu Asp Gln Glu		
485	490		495
Lys Leu Met Gln Ile Thr Ser Leu His	Ser Leu Asn Ala Phe Leu Leu		
500	505		510
Pro Ile Lys Thr Val Gly Val Gln Gly Asp	Cys Arg Ser Tyr Ser Tyr		
515	520		525
Val Cys Gly Ile Ser Ser Lys Asp	Glu Pro Asp Trp Glu Ser Leu Ile		
530	535		540
Phe Leu Ala Arg Leu Ile Pro Arg Met	Cys His Asn Val Asn Arg Val		
545	550		560
Val Tyr Ile Phe Gly Pro Pro Val Lys	Glu Pro Pro Thr Asp Val Thr		
565	570		575
Pro Thr Phe Leu Thr Thr Gly Val Leu	Ser Thr Leu Arg Gln Ala Asp		
580	585		590
Phe Glu Ala His Asn Ile Leu Arg Glu	Ser Gly Tyr Ala Gly Lys Ile		
595	600		605
Ser Gln Met Pro Val Ile Leu Thr Pro	Leu His Phe Asp Arg Asp Pro		
610	615		620
Leu Gln Lys Gln Pro Ser Cys Gln Arg Ser Val Val Ile Arg Thr Phe			

-107-

625	630	635	640
-----	-----	-----	-----

Ile Thr Ser Asp Phe Met Thr Gly Ile Pro Ala Thr Pro Gly Asn Glu			
645	650	655	

Ile Pro Val Glu Val Val Leu Lys Met Val Thr Glu Ile Lys Lys Ile			
660	665	670	

Pro Gly Ile Ser Arg Ile Met Tyr Asp Leu Thr Ser Lys Pro Pro Gly			
675	680	685	

Thr Thr Glu Trp Glu			
690			

<210> 76

<211> 143

<212> PRT

<213> Homo Sapiens

<400> 76

Met Ser Gly Arg Gly Lys Thr Gly Gly Lys Ala Arg Ala Lys Ala Lys			
1	5	10	15

Ser Arg Ser Ser Arg Ala Gly Leu Gln Phe Pro Val Gly Arg Val His			
20	25	30	

Arg Leu Leu Arg Lys Gly His Tyr Ala Glu Arg Val Gly Ala Gly Ala			
35	40	45	

Pro Val Tyr Leu Ala Ala Val Leu Glu Tyr Leu Thr Ala Glu Ile Leu			
50	55	60	

Glu Leu Ala Gly Asn Ala Ala Arg Asp Asn Lys Lys Thr Arg Ile Ile			
65	70	75	80

Pro Arg His Leu Gln Leu Ala Ile Arg Asn Asp Glu Glu Leu Asn Lys			
85	90	95	

Leu Leu Gly Gly Val Thr Ile Ala Gln Gly Gly Val Leu Pro Asn Ile			
100	105	110	

Gln Ala Val Leu Leu Pro Lys Lys Thr Ser Ala Thr Val Gly Pro Lys			
115	120	125	

Ala Pro Ser Gly Gly Lys Lys Ala Thr Gln Ala Ser Gln Glu Tyr			
130	135	140	

<210> 77

<211> 126

<212> PRT

<213> Homo Sapiens

<400> 77

Met Pro Glu Pro Ala Lys Ser Ala Pro Ala Pro Lys Lys Gly Ser Lys			
1	5	10	15

Lys Ala Val Thr Lys Ala Gln Lys Lys Asp Gly Lys Lys Arg Lys Arg			
20	25	30	

-108-

Ser Arg Lys Glu Ser Tyr Ser Val Tyr Val Tyr Lys Val Leu Lys Gln
 35 40 45

Val His Pro Asp Thr Gly Ile Ser Ser Lys Ala Met Gly Ile Met Asn
 50 55 60

Ser Phe Val Asn Asp Ile Phe Glu Arg Ile Ala Gly Glu Ala Ser Arg
 65 70 75 80

Leu Ala His Tyr Asn Lys Arg Ser Thr Ile Thr Ser Arg Glu Ile Gln
 85 90 95

Thr Ala Val Arg Leu Leu Leu Pro Gly Glu Leu Ala Lys His Ala Val
 100 105 110

Ser Glu Gly Thr Lys Ala Val Thr Lys Tyr Thr Ser Ser Lys
 115 120 125

<210> 78
 <211> 664
 <212> PRT
 <213> Homo Sapiens

<400> 78

Met Lys Thr Gly Pro Phe Phe Leu Cys Leu Leu Gly Thr Ala Ala Ala
 1 5 10 15

Ile Pro Thr Asn Ala Arg Leu Leu Ser Asp His Ser Lys Pro Thr Ala
 20 25 30

Glu Thr Val Ala Pro Asp Asn Thr Ala Ile Pro Ser Leu Trp Ala Glu
 35 40 45

Ala Glu Glu Asn Glu Lys Glu Thr Ala Val Ser Thr Glu Asp Asp Ser
 50 55 60

His His Lys Ala Glu Lys Ser Ser Val Leu Lys Ser Lys Glu Glu Ser
 65 70 75 80

His Glu Gln Ser Ala Glu Gln Gly Lys Ser Ser Ser Gln Glu Leu Gly
 85 90 95

Leu Lys Asp Gln Glu Asp Ser Asp Gly His Leu Ser Val Asn Leu Glu
 100 105 110

Tyr Ala Pro Thr Glu Gly Thr Leu Asp Ile Lys Glu Asp Met Ile Glu
 115 120 125

Pro Gln Glu Lys Lys Leu Ser Glu Asn Thr Asp Phe Leu Ala Pro Gly
 130 135 140

Val Ser Ser Phe Thr Asp Ser Asn Gln Gln Glu Ser Ile Thr Lys Arg
 145 150 155 160

Glu Glu Asn Gln Glu Gln Pro Arg Asn Tyr Ser His His Gln Leu Asn
 165 170 175

Arg Ser Ser Lys His Ser Gln Gly Leu Arg Asp Gln Gly Asn Gln Glu

-109-

180	185	190
Gln Asp Pro Asn Ile Ser Asn Gly Glu Glu Glu Glu Lys Glu Pro		
195	200	205
Gly Glu Val Gly Thr His Asn Asp Asn Gln Glu Arg Lys Thr Glu Leu		
210	215	220
Pro Arg Glu His Ala Asn Ser Lys Gln Glu Asp Asn Thr Gln Ser		
225	230	240
Asp Asp Ile Leu Glu Glu Ser Asp Gln Pro Thr Gln Val Ser Lys Met		
245	250	255
Gln Glu Asp Glu Phe Asp Gln Gly Asn Gln Glu Gln Glu Asp Asn Ser		
260	265	270
Asn Ala Glu Met Glu Glu Asn Ala Ser Asn Val Asn Lys His Ile		
275	280	285
Gln Glu Thr Glu Trp Gln Ser Gln Glu Gly Lys Thr Gly Leu Glu Ala		
290	295	300
Ile Ser Asn His Lys Glu Thr Glu Glu Lys Thr Val Ser Glu Ala Leu		
305	310	320
Leu Met Glu Pro Thr Asp Asp Gly Asn Thr Thr Pro Arg Asn His Gly		
325	330	335
Val Asp Asp Asp Gly Asp Asp Gly Asp Asp Gly Gly Thr Asp Gly		
340	345	350
Pro Arg His Ser Ala Ser Asp Asp Tyr Phe Ile Pro Ser Gln Ala Phe		
355	360	365
Leu Glu Ala Glu Arg Ala Gln Ser Ile Ala Tyr His Leu Lys Ile Glu		
370	375	380
Glu Gln Arg Glu Lys Val His Glu Asn Glu Asn Ile Gly Thr Thr Glu		
385	390	400
Pro Gly Glu His Gln Glu Ala Lys Lys Ala Glu Asn Ser Ser Asn Glu		
405	410	415
Glu Glu Thr Ser Ser Glu Gly Asn Met Arg Val His Ala Val Asp Ser		
420	425	430
Cys Met Ser Phe Gln Cys Lys Arg Gly His Ile Cys Lys Ala Asp Gln		
435	440	445
Gln Gly Lys Pro His Cys Val Cys Gln Asp Pro Val Thr Cys Pro Pro		
450	455	460
Thr Lys Pro Leu Asp Gln Val Cys Gly Thr Asp Asn Gln Thr Tyr Ala		
465	470	480
Ser Ser Cys His Leu Phe Ala Thr Lys Cys Arg Leu Glu Gly Thr Lys		
485	490	495
Lys Gly His Gln Leu Gln Leu Asp Tyr Phe Gly Ala Cys Lys Ser Ile		

-110-

500

505

510

Pro Thr Cys Thr Asp Phe Glu Val Ile Gln Phe Pro Leu Arg Met Arg
 515 520 525

Asp Trp Leu Lys Asn Ile Leu Met Gln Leu Tyr Glu Ala Asn Ser Glu
 530 535 540

His Ala Gly Tyr Leu Asn Glu Lys Gln Arg Asn Lys Val Lys Lys Ile
 545 550 555 560

Tyr Leu Asp Glu Lys Arg Leu Leu Ala Gly Asp His Pro Ile Asp Leu
 565 570 575

Leu Leu Arg Asp Phe Lys Lys Asn Tyr His Met Tyr Val Tyr Pro Val
 580 585 590

His Trp Gln Phe Ser Glu Leu Asp Gln His Pro Met Asp Arg Val Leu
 595 600 605

Thr His Ser Glu Leu Ala Pro Leu Arg Ala Ser Leu Val Pro Met Glu
 610 615 620

His Cys Ile Thr Arg Phe Phe Glu Glu Cys Asp Pro Asn Lys Asp Lys
 625 630 635 640

His Ile Thr Leu Lys Glu Trp Gly His Cys Phe Gly Ile Lys Glu Glu
 645 650 655

Asp Ile Asp Glu Asn Leu Leu Phe
 660

<210> 79
 <211> 460
 <212> PRT
 <213> Homo Sapiens

<400> 79

Ala Lys Leu Ala Thr Lys Ser Pro Thr Ile Thr Met Met Leu Ser Thr
 1 5 10 15

Glu Gly Arg Glu Gly Phe Val Val Lys Val Arg Gly Leu Pro Trp Ser
 20 25 30

Cys Ser Ala Asp Glu Val Met Arg Phe Phe Ser Asp Cys Lys Ile Gln
 35 40 45

Asn Gly Thr Ser Gly Ile Arg Phe Ile Tyr Thr Arg Glu Gly Arg Pro
 50 55 60

Ser Gly Glu Ala Phe Val Glu Leu Glu Ser Glu Glu Glu Val Lys Leu
 65 70 75 80

Ala Leu Lys Lys Asp Arg Glu Thr Met Gly His Arg Tyr Val Glu Val
 85 90 95

Phe Lys Ser Asn Ser Val Glu Met Asp Trp Val Leu Lys His Thr Gly
 100 105 110

-111-

Pro Asn Ser Pro Asp Thr Ala Asn Asp Gly Phe Val Arg Leu Arg Gly
 115 120 125
 Leu Pro Phe Gly Cys Ser Lys Glu Glu Ile Val Gln Phe Phe Ser Gly
 130 135 140
 Leu Glu Ile Val Pro Asn Gly Met Thr Leu Pro Val Asp Phe Gln Gly
 145 150 155 160
 Arg Ser Thr Gly Glu Ala Phe Val Gln Phe Ala Ser Gln Glu Ile Ala
 165 170 175
 Glu Lys Ala Leu Lys Lys His Lys Glu Arg Ile Gly His Arg Tyr Ile
 180 185 190
 Glu Ile Phe Lys Ser Ser Arg Ala Glu Val Arg Thr His Tyr Asp Pro
 195 200 205
 Pro Arg Lys Leu Met Ala Met Gln Arg Pro Gly Pro Tyr Asp Arg Pro
 210 215 220
 Gly Ala Gly Arg Gly Tyr Asn Ser Ile Gly Arg Gly Ala Gly Phe Glu
 225 230 235 240
 Arg Met Arg Arg Gly Ala Tyr Gly Gly Tyr Gly Gly Tyr Asp Asp
 245 250 255
 Tyr Gly Gly Tyr Asn Asp Gly Tyr Gly Phe Gly Ser Asp Arg Phe Gly
 260 265 270
 Arg Asp Leu Asn Tyr Cys Phe Ser Gly Met Ser Asp His Arg Tyr Gly
 275 280 285
 Asp Gly Gly Ser Ser Phe Gln Ser Thr Thr Gly His Cys Val His Met
 290 295 300
 Arg Gly Leu Pro Tyr Arg Ala Thr Glu Asn Asp Ile Tyr Asn Phe Phe
 305 310 315 320
 Ser Pro Leu Asn Pro Met Arg Val His Ile Glu Ile Gly Pro Asp Gly
 325 330 335
 Arg Val Thr Gly Glu Ala Asp Val Glu Phe Ala Thr His Glu Asp Ala
 340 345 350
 Val Ala Ala Met Ala Lys Asp Lys Ala Asn Met Gln His Arg Tyr Val
 355 360 365
 Glu Leu Phe Leu Asn Ser Thr Ala Gly Thr Ser Gly Gly Ala Tyr Asp
 370 375 380
 His Ser Tyr Val Glu Leu Phe Leu Asn Ser Thr Ala Gly Ala Ser Gly
 385 390 395 400
 Gly Ala Tyr Gly Ser Gln Met Met Gly Gly Met Gly Leu Ser Asn Gln
 405 410 415
 Ser Ser Tyr Gly Gly Pro Ala Ser Gln Gln Leu Ser Gly Gly Tyr Gly
 420 425 430

-112-

Gly Gly Tyr Gly Gly Gln Ser Ser Met Ser Gly Tyr Asp Gln Val Leu
 435 440 445

Gln Glu Asn Ser Ser Asp Tyr Gln Ser Asn Leu Ala
 450 455 460

<210> 80
 <211> 432
 <212> PRT
 <213> Homo Sapiens

<400> 80

Met Asp Glu Ala Val Gly Asp Leu Lys Gln Ala Leu Pro Cys Val Ala
 1 5 10 15

Glu Ser Pro Thr Val His Val Glu Val His Gln Arg Gly Ser Ser Thr
 20 25 30

Ala Lys Lys Glu Asp Ile Asn Leu Ser Val Arg Lys Leu Leu Asn Arg
 35 40 45

His Asn Ile Val Phe Gly Asp Tyr Thr Trp Thr Glu Phe Asp Glu Pro
 50 55 60

Phe Leu Thr Arg Asn Val Gln Ser Val Ser Ile Ile Asp Thr Glu Leu
 65 70 75 80

Lys Val Lys Asp Ser Gln Pro Ile Asp Leu Ser Ala Cys Thr Val Ala
 85 90 95

Leu His Ile Phe Gln Leu Asn Glu Asp Gly Pro Ser Ser Glu Asn Leu
 100 105 110

Glu Glu Glu Thr Glu Asn Ile Ile Ala Ala Asn His Trp Val Leu Pro
 115 120 125

Ala Ala Glu Phe His Gly Leu Trp Asp Ser Leu Val Tyr Asp Val Glu
 130 135 140

Val Lys Ser His Leu Leu Asp Tyr Val Met Thr Thr Leu Leu Phe Ser
 145 150 155 160

Asp Lys Asn Val Asn Ser Asn Leu Ile Thr Trp Asn Arg Val Val Leu
 165 170 175

Leu His Gly Pro Pro Gly Thr Gly Lys Thr Ser Leu Cys Lys Ala Leu
 180 185 190

Ala Gln Lys Leu Thr Ile Arg Leu Ser Ser Arg Tyr Arg Tyr Gly Gln
 195 200 205

Leu Ile Glu Ile Asn Ser His Ser Leu Phe Ser Lys Trp Phe Ser Glu
 210 215 220

Ser Gly Lys Leu Val Thr Lys Met Phe Gln Lys Ile Gln Asp Leu Ile
 225 230 235 240

Asp Asp Lys Asp Ala Leu Val Phe Val Leu Ile Asp Glu Val Glu Ser
 245 250 255

-113-

Leu Thr Ala Ala Arg Asn Ala Cys Arg Ala Gly Thr Glu Pro Ser Asp
 260 265 270

Ala Ile Arg Val Val Asn Ala Val Leu Thr Gln Ile Asp Gln Ile Lys
 275 280 285

Arg His Ser Asn Val Val Ile Leu Thr Thr Ser Asn Ile Thr Glu Lys
 290 295 300

Ile Asp Val Ala Phe Val Asp Arg Ala Asp Ile Lys Gln Tyr Ile Gly
 305 310 315 320

Pro Pro Ser Ala Ala Ala Ile Phe Lys Ile Tyr Leu Ser Cys Leu Glu
 325 330 335

Glu Leu Met Lys Cys Gln Ile Ile Tyr Pro Arg Gln Gln Leu Leu Thr
 340 345 350

Leu Arg Glu Leu Glu Met Ile Gly Phe Ile Glu Asn Asn Val Ser Lys
 355 360 365

Leu Ser Leu Leu Leu Asn Asp Ile Ser Arg Lys Ser Glu Gly Leu Ser
 370 375 380

Gly Arg Val Leu Arg Lys Leu Pro Phe Leu Ala His Ala Leu Tyr Val
 385 390 395 400

Gln Ala Pro Thr Val Thr Ile Glu Gly Phe Leu Gln Ala Leu Ser Leu
 405 410 415

Ala Val Asp Lys Gln Phe Glu Glu Arg Lys Lys Leu Ala Ala Tyr Ile
 420 425 430

<210> 81

<211> 653

<212> PRT

<213> Homo Sapiens

<400> 81

Met Arg Pro Leu Arg Pro Arg Ala Ala Leu Leu Ala Leu Leu Ala Ser
 1 5 10 15

Leu Leu Ala Ala Pro Pro Val Ala Pro Ala Glu Ala Pro His Leu Val
 20 25 30

Gln Val Asp Ala Ala Arg Ala Leu Trp Pro Leu Arg Arg Phe Trp Arg
 35 40 45

Ser Thr Gly Phe Cys Pro Pro Leu Pro His Ser Gln Ala Asp Gln Tyr
 50 55 60

Val Leu Ser Trp Asp Gln Gln Leu Asn Leu Ala Tyr Val Gly Ala Val
 65 70 75 80

Pro His Arg Gly Ile Lys Gln Val Arg Thr His Trp Leu Leu Glu Leu
 85 90 95

Val Thr Thr Arg Gly Ser Thr Gly Arg Gly Leu Ser Tyr Asn Phe Thr

-114-

100	105	110
His Leu Asp Gly Tyr Leu Asp Leu Leu Arg Glu Asn Gln Leu Leu Pro		
115	120	125
Gly Phe Glu Leu Met Gly Ser Ala Ser Gly His Phe Thr Asp Phe Glu		
130	135	140
Asp Lys Gln Gln Val Phe Glu Trp Lys Asp Leu Val Ser Ser Leu Ala		
145	150	155
Arg Arg Tyr Ile Gly Arg Tyr Gly Leu Ala His Val Ser Lys Trp Asn		
165	170	175
Phe Glu Thr Trp Asn Glu Pro Asp His His Asp Phe Asp Asn Val Ser		
180	185	190
Met Thr Met Gln Gly Phe Leu Asn Tyr Tyr Asp Ala Cys Ser Glu Gly		
195	200	205
Leu Arg Ala Ala Ser Pro Ala Leu Arg Leu Gly Gly Pro Gly Asp Ser		
210	215	220
Phe His Thr Pro Pro Arg Ser Pro Leu Ser Trp Gly Leu Leu Arg His		
225	230	235
Cys His Asp Gly Thr Asn Phe Phe Thr Gly Glu Ala Gly Val Arg Leu		
245	250	255
Asp Tyr Ile Ser Leu His Arg Lys Gly Ala Arg Ser Ser Ile Ser Ile		
260	265	270
Leu Glu Gln Glu Lys Val Val Ala Gln Gln Ile Arg Gln Leu Phe Pro		
275	280	285
Lys Phe Ala Asp Thr Pro Ile Tyr Asn Asp Glu Ala Asp Pro Leu Val		
290	295	300
Gly Trp Ser Leu Pro Gln Pro Trp Arg Ala Asp Val Thr Tyr Ala Ala		
305	310	315
Met Val Val Lys Val Ile Ala Gln His Gln Asn Leu Leu Leu Ala Asn		
325	330	335
Thr Thr Ser Ala Phe Pro Tyr Ala Leu Leu Ser Asn Asp Asn Ala Phe		
340	345	350
Leu Ser Tyr His Pro His Pro Phe Ala Gln Arg Thr Leu Thr Ala Arg		
355	360	365
Phe Gln Val Asn Asn Thr Arg Pro Pro His Val Gln Leu Leu Arg Lys		
370	375	380
Pro Val Leu Thr Ala Met Gly Leu Leu Ala Leu Leu Asp Glu Glu Gln		
385	390	395
Leu Trp Ala Glu Val Ser Gln Ala Gly Thr Val Leu Asp Ser Asn His		
405	410	415
Thr Val Gly Val Leu Ala Ser Ala His Arg Pro Gln Gly Pro Ala Asp		

-115-

420	425	430
-----	-----	-----

Ala Trp Arg Ala Ala Val Leu Ile Tyr Ala Ser Asp Asp Thr Arg Ala		
435	440	445

His Pro Asn Arg Ser Val Ala Val Thr Leu Arg Leu Arg Gly Val Pro		
450	455	460

Pro Gly Pro Gly Leu Val Tyr Val Thr Arg Tyr Leu Asp Asn Gly Leu		
465	470	480

Cys Ser Pro Asp Gly Glu Trp Arg Arg Leu Gly Arg Pro Val Phe Pro		
485	490	495

Thr Ala Glu Gln Phe Arg Arg Met Arg Ala Ala Glu Asp Pro Val Ala		
500	505	510

Ala Ala Pro Arg Pro Leu Pro Ala Gly Gly Arg Leu Thr Leu Arg Pro		
515	520	525

Ala Leu Arg Leu Pro Ser Leu Leu Leu Val His Val Cys Ala Arg Pro		
530	535	540

Glu Lys Pro Pro Gly Gln Val Thr Arg Leu Arg Ala Leu Pro Leu Thr		
545	550	560

Gln Gly Gln Leu Val Leu Val Trp Ser Asp Glu His Val Gly Ser Lys		
565	570	575

Cys Leu Trp Thr Tyr Glu Ile Gln Phe Ser Gln Asp Gly Lys Ala Tyr		
580	585	590

Thr Pro Val Ser Arg Lys Pro Ser Thr Phe Asn Leu Phe Val Phe Ser		
595	600	605

Pro Asp Thr Gly Ala Val Ser Gly Ser Tyr Arg Val Arg Ala Leu Asp		
610	615	620

Tyr Trp Ala Arg Pro Gly Pro Phe Ser Asp Pro Val Pro Tyr Leu Glu		
625	630	640

Val Pro Val Pro Arg Gly Pro Pro Ser Pro Gly Asn Pro		
645	650	

<code><210></code>	82	
<code><211></code>	153	
<code><212></code>	PRT	
<code><213></code>	Homo Sapiens	

<code><400></code>	82	
--------------------------	----	--

Met Gly Lys Ile Ser Ser Leu Pro Thr Gln Leu Phe Lys Cys Cys Phe		
1	5	10
		15

Cys Asp Phe Leu Lys Val Lys Met His Thr Met Ser Ser Ser His Leu		
20	25	30

Phe Tyr Leu Ala Leu Cys Leu Leu Thr Phe Thr Ser Ser Ala Thr Ala		
35	40	45

-116-

Gly Pro Glu Thr Leu Cys Gly Ala Glu Leu Val Asp Ala Leu Gln Phe
 50 55 60
 Val Cys Gly Asp Arg Gly Phe Tyr Phe Asn Lys Pro Thr Gly Tyr Gly
 65 70 75 80
 Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu Cys Cys
 85 90 95
 Phe Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Pro Leu
 100 105 110
 Lys Pro Ala Lys Ser Ala Arg Ser Val Arg Ala Gln Arg His Thr Asp
 115 120 125
 Met Pro Lys Thr Gln Lys Glu Val His Leu Lys Asn Ala Ser Arg Gly
 130 135 140
 Ser Ala Gly Asn Lys Asn Tyr Arg Met
 145 150
 <210> 83
 <211> 1575
 <212> PRT
 <213> Homo Sapiens
 <400> 83
 Met Pro His Glu Glu Leu Pro Ser Leu Gln Arg Pro Arg Tyr Gly Ser
 1 5 10 15
 Ile Val Asp Asp Glu Arg Leu Ser Ala Glu Glu Met Asp Glu Arg Arg
 20 25 30
 Arg Gln Asn Ile Ala Tyr Glu Tyr Leu Cys His Leu Glu Glu Ala Lys
 35 40 45
 Arg Trp Met Glu Val Cys Leu Val Glu Glu Leu Pro Pro Thr Thr Glu
 50 55 60
 Leu Glu Glu Gly Leu Arg Asn Gly Val Tyr Leu Ala Lys Leu Ala Lys
 65 70 75 80
 Phe Phe Ala Pro Lys Met Val Ser Glu Lys Lys Ile Tyr Asp Val Glu
 85 90 95
 Gln Thr Arg Tyr Lys Lys Ser Gly Leu His Phe Arg His Thr Asp Asn
 100 105 110
 Thr Val Gln Trp Leu Arg Ala Met Glu Ser Ile Gly Leu Pro Lys Ile
 115 120 125
 Phe Tyr Pro Glu Thr Thr Asp Val Tyr Asp Arg Lys Asn Ile Pro Arg
 130 135 140
 Met Ile Tyr Cys Ile His Ala Leu Ser Leu Tyr Leu Phe Lys Leu Gly
 145 150 155 160
 Ile Ala Pro Gln Ile Gln Asp Leu Leu Gly Lys Val Asp Phe Thr Glu
 165 170 175

-117-

Glu	Glu	Ile	Ser	Asn	Met	Arg	Lys	Glu	Leu	Glu	Lys	Tyr	Gly	Ile	Gln
					180			185						190	
Met	Pro	Ser	Phe	Ser	Lys	Ile	Gly	Gly	Ile	Leu	Ala	Asn	Glu	Leu	Ser
	195					200						205			
Val	Asp	Glu	Ala	Ala	Leu	His	Ala	Ala	Val	Ile	Ala	Ile	Asn	Glu	Ala
	210					215					220				
Val	Glu	Lys	Gly	Ile	Ala	Glu	Gln	Thr	Val	Val	Thr	Leu	Arg	Asn	Pro
	225					230			235				240		
Asn	Ala	Val	Leu	Thr	Leu	Val	Asp	Asp	Asn	Leu	Ala	Pro	Glu	Tyr	Gln
	245						250					255			
Lys	Glu	Leu	Trp	Asp	Ala	Lys	Lys	Lys	Glu	Glu	Asn	Ala	Arg	Leu	
	260					265					270				
Lys	Asn	Ser	Cys	Ile	Ser	Glu	Glu	Glu	Arg	Asp	Ala	Tyr	Glu	Leu	
	275					280					285				
Leu	Thr	Gln	Ala	Glu	Ile	Gln	Gly	Asn	Ile	Asn	Lys	Val	Asn	Arg	Gln
	290					295					300				
Ala	Ala	Val	Asp	His	Ile	Asn	Ala	Val	Ile	Pro	Glu	Gly	Asp	Pro	Glu
	305					310			315				320		
Asn	Thr	Leu	Leu	Ala	Leu	Lys	Lys	Pro	Glu	Ala	Gln	Leu	Pro	Ala	Val
	325						330					335			
Tyr	Pro	Phe	Ala	Ala	Ala	Met	Tyr	Gln	Asn	Glu	Leu	Phe	Asn	Leu	Gln
	340					345					350				
Lys	Gln	Asn	Thr	Met	Asn	Tyr	Leu	Ala	His	Glu	Glu	Leu	Leu	Ile	Ala
	355					360					365				
Val	Glu	Met	Leu	Ser	Ala	Val	Ala	Leu	Leu	Asn	Gln	Ala	Leu	Glu	Ser
	370					375					380				
Asn	Asp	Leu	Val	Ser	Val	Gln	Asn	Gln	Leu	Arg	Ser	Pro	Ala	Ile	Gly
	385					390			395				400		
Leu	Asn	Asn	Leu	Asp	Lys	Ala	Tyr	Val	Glu	Arg	Tyr	Ala	Asn	Thr	Leu
	405						410					415			
Leu	Ser	Val	Lys	Leu	Glu	Val	Leu	Ser	Gln	Gly	Gln	Asp	Asn	Leu	Ser
	420						425					430			
Trp	Asn	Glu	Ile	Gln	Asn	Cys	Ile	Asp	Met	Val	Asn	Ala	Gln	Ile	Gln
	435					440					445				
Glu	Glu	Asn	Asp	Arg	Val	Val	Ala	Val	Gly	Tyr	Ile	Asn	Glu	Ala	Ile
	450					455					460				
Asp	Glu	Gly	Asn	Pro	Leu	Arg	Thr	Leu	Glu	Thr	Leu	Leu	Leu	Pro	Thr
	465					470			475				480		
Ala	Asn	Ile	Ser	Asp	Val	Asp	Pro	Ala	His	Ala	Gln	His	Tyr	Gln	Asp
	485						490					495			

Val Leu Tyr His Ala Lys Ser Gln Lys Leu Gly Asp Ser Glu Ser Val
 500 505 510

Ser Lys Val Leu Trp Leu Asp Glu Ile Gln Gln Ala Val Asp Glu Ala
 515 520 525

Asn Val Asp Glu Asp Arg Ala Lys Gln Trp Val Thr Leu Val Val Asp
 530 535 540

Val Asn Gln Cys Leu Glu Gly Lys Lys Ser Ser Asp Ile Leu Ser Val
 545 550 555 560

Leu Lys Ser Ser Thr Ser Asn Ala Asn Asp Ile Ile Pro Glu Cys Ala
 565 570 575

Asp Lys Tyr Tyr Asp Ala Leu Val Lys Ala Lys Glu Leu Lys Ser Glu
 580 585 590

Arg Val Ser Ser Asp Gly Ser Trp Leu Lys Leu Asn Leu His Lys Lys
 595 600 605

Tyr Asp Tyr Tyr Tyr Asn Thr Asp Ser Lys Glu Ser Ser Trp Val Thr
 610 615 620

Pro Glu Ser Cys Phe Tyr Lys Glu Ser Trp Leu Thr Gly Lys Glu Ile
 625 630 635 640

Glu Asp Ile Ile Glu Glu Val Thr Val Gly Tyr Ile Arg Glu Asn Ile
 645 650 655

Trp Ser Ala Ser Glu Glu Leu Leu Leu Arg Phe Gln Ala Thr Ser Ser
 660 665 670

Gly Pro Ile Leu Arg Glu Glu Phe Glu Ala Arg Lys Ser Phe Leu His
 675 680 685

Glu Gln Glu Glu Asn Val Val Lys Ile Gln Ala Phe Trp Lys Gly Tyr
 690 695 700

Lys Gln Arg Lys Glu Tyr Met His Arg Arg Gln Thr Phe Ile Asp Asn
 705 710 715 720

Thr Asp Ser Val Val Lys Ile Gln Ser Trp Phe Arg Met Ala Thr Ala
 725 730 735

Arg Lys Ser Tyr Leu Ser Arg Leu Gln Tyr Phe Arg Asp His Asn Asn
 740 745 750

Glu Ile Val Lys Ile Gln Ser Leu Leu Arg Ala Asn Lys Ala Arg Asp
 755 760 765

Asp Tyr Lys Thr Leu Val Gly Ser Glu Asn Pro Pro Leu Thr Val Ile
 770 775 780

Arg Lys Phe Val Tyr Leu Leu Asp Gln Ser Asp Leu Asp Phe Gln Glu
 785 790 795 800

Glu Leu Glu Val Ala Arg Leu Arg Glu Glu Val Val Thr Lys Ile Arg
 805 810 815

Ala Asn Gln Gln Leu Glu Lys Asp Leu Asn Leu Met Asp Ile Lys Ile
 820 825 830

Gly Leu Leu Val Lys Asn Arg Ile Thr Leu Glu Asp Val Ile Ser His
 835 840 845

Ser Lys Lys Leu Asn Lys Lys Gly Gly Glu Met Glu Ile Leu Asn
 850 855 860

Asn Thr Asp Asn Gln Gly Ile Lys Ser Leu Ser Lys Glu Arg Arg Lys
 865 870 875 880

Thr Leu Glu Thr Tyr Gln Gln Leu Phe Tyr Leu Leu Gln Thr Asn Pro
 885 890 895

Leu Tyr Leu Ala Lys Leu Ile Phe Gln Met Pro Gln Asn Lys Ser Thr
 900 905 910

Lys Phe Met Asp Thr Val Ile Phe Thr Leu Tyr Asn Tyr Ala Ser Asn
 915 920 925

Gln Arg Glu Glu Tyr Leu Leu Lys Leu Phe Lys Thr Ala Leu Glu
 930 935 940

Glu Glu Ile Lys Ser Lys Val Asp Gln Val Gln Asp Ile Val Thr Gly
 945 950 955 960

Asn Pro Thr Val Ile Lys Met Val Val Ser Phe Asn Arg Gly Ala Arg
 965 970 975

Gly Gln Asn Thr Leu Arg Gln Leu Leu Ala Pro Val Val Lys Glu Ile
 980 985 990

Ile Asp Asp Lys Ser Leu Ile Ile Asn Thr Asn Pro Val Glu Val Tyr
 995 1000 1005

Lys Ala Trp Val Asn Gln Leu Glu Thr Gln Thr Gly Glu Ala Ser
 1010 1015 1020

Lys Leu Pro Tyr Asp Val Thr Thr Glu Gln Ala Leu Thr Tyr Pro
 1025 1030 1035

Glu Val Lys Asn Lys Leu Glu Ala Ser Ile Glu Asn Leu Arg Arg
 1040 1045 1050

Val Thr Asp Lys Val Leu Asn Ser Ile Ile Ser Ser Leu Asp Leu
 1055 1060 1065

Leu Pro Tyr Gly Leu Arg Tyr Ile Ala Lys Val Leu Lys Asn Ser
 1070 1075 1080

Ile His Glu Lys Phe Pro Asp Ala Thr Glu Asp Glu Leu Leu Lys
 1085 1090 1095

Ile Val Gly Asn Leu Leu Tyr Tyr Arg Tyr Met Asn Pro Ala Ile
 1100 1105 1110

Val Ala Pro Asp Gly Phe Asp Ile Ile Asp Met Thr Ala Gly Gly
 1115 1120 1125

-120-

Gln	Ile	Asn	Ser	Asp	Gln	Arg	Arg	Asn	Leu	Gly	Ser	Val	Ala	Lys
1130					1135						1140			
Val	Leu	Gln	His	Ala	Ala	Ser	Asn	Lys	Leu	Phe	Glu	Gly	Glu	Asn
1145						1150					1155			
Glu	His	Leu	Ser	Ser	Met	Asn	Asn	Tyr	Leu	Ser	Glu	Thr	Tyr	Gln
1160					1165						1170			
Glu	Phe	Arg	Lys	Tyr	Phe	Lys	Glu	Ala	Cys	Asn	Val	Pro	Glu	Pro
1175						1180					1185			
Glu	Glu	Lys	Phe	Asn	Met	Asp	Lys	Tyr	Thr	Asp	Leu	Val	Thr	Val
1190					1195						1200			
Ser	Lys	Pro	Val	Ile	Tyr	Ile	Ser	Ile	Glu	Glu	Ile	Ile	Ser	Thr
1205						1210					1215			
His	Ser	Leu	Leu	Leu	Glu	His	Gln	Asp	Ala	Ile	Ala	Pro	Glu	Lys
1220						1225					1230			
Asn	Asp	Leu	Leu	Ser	Glu	Leu	Leu	Gly	Ser	Leu	Gly	Glu	Val	Pro
1235						1240					1245			
Thr	Val	Glu	Ser	Phe	Leu	Gly	Glu	Gly	Ala	Val	Asp	Pro	Asn	Asp
1250						1255					1260			
Pro	Asn	Lys	Ala	Asn	Thr	Leu	Ser	Gln	Leu	Ser	Lys	Thr	Glu	Ile
1265						1270					1275			
Ser	Leu	Val	Leu	Thr	Ser	Lys	Tyr	Asp	Ile	Glu	Asp	Gly	Glu	Ala
1280						1285					1290			
Ile	Asp	Ser	Arg	Ser	Leu	Met	Ile	Lys	Thr	Lys	Lys	Leu	Ile	Ile
1295						1300					1305			
Asp	Val	Ile	Arg	Asn	Gln	Pro	Gly	Asn	Thr	Leu	Thr	Glu	Ile	Leu
1310						1315					1320			
Glu	Thr	Pro	Ala	Thr	Ala	Gln	Gln	Glu	Val	Asp	His	Ala	Thr	Asp
1325						1330					1335			
Met	Val	Ser	Arg	Ala	Met	Ile	Asp	Ser	Arg	Thr	Pro	Glu	Glu	Met
1340						1345					1350			
Lys	His	Ser	Gln	Ser	Met	Ile	Glu	Asp	Ala	Gln	Leu	Pro	Leu	Glu
1355						1360					1365			
Gln	Lys	Lys	Arg	Lys	Ile	Gln	Arg	Asn	Leu	Arg	Thr	Leu	Glu	Gln
1370						1375					1380			
Thr	Gly	His	Val	Ser	Ser	Glu	Asn	Lys	Tyr	Gln	Asp	Ile	Leu	Asn
1385						1390					1395			
Glu	Ile	Ala	Lys	Asp	Ile	Arg	Asn	Gln	Arg	Ile	Tyr	Arg	Lys	Leu
1400						1405					1410			
Arg	Lys	Ala	Glu	Leu	Ala	Lys	Leu	Gln	Gln	Thr	Leu	Asn	Ala	Leu
1415						1420					1425			

-121-

Asn	Lys	Lys	Ala	Ala	Phe	Tyr	Glu	Glu	Gln	Ile	Asn	Tyr	Tyr	Asp
1430						1435					1440			
Thr	Tyr	Ile	Lys	Thr	Cys	Leu	Asp	Asn	Leu	Lys	Arg	Lys	Asn	Thr
1445						1450					1455			
Arg	Arg	Ser	Ile	Lys	Leu	Asp	Gly	Lys	Gly	Glu	Pro	Lys	Gly	Ala
1460						1465					1470			
Lys	Arg	Ala	Lys	Pro	Val	Lys	Tyr	Thr	Ala	Ala	Lys	Leu	His	Glu
1475						1480					1485			
Lys	Gly	Val	Leu	Leu	Asp	Ile	Asp	Asp	Leu	Gln	Thr	Asn	Gln	Phe
1490						1495					1500			
Lys	Asn	Val	Thr	Phe	Asp	Ile	Ile	Ala	Thr	Glu	Asp	Val	Gly	Ile
1505						1510					1515			
Phe	Asp	Val	Arg	Ser	Lys	Phe	Leu	Gly	Val	Glu	Met	Glu	Lys	Val
1520						1525					1530			
Gln	Leu	Asn	Ile	Gln	Asp	Leu	Leu	Gln	Met	Gln	Tyr	Glu	Gly	Val
1535						1540					1545			
Ala	Val	Met	Lys	Met	Phe	Asp	Lys	Val	Lys	Val	Asn	Val	Asn	Leu
1550						1555					1560			
Leu	Ile	Tyr	Leu	Leu	Asn	Lys	Lys	Phe	Tyr	Gly	Lys			
1565						1570					1575			

<210> 84
<211> 165
<212> PRT
<213> Homo Sapiens

<400> 84

Met	Gly	Trp	Asp	Leu	Thr	Val	Lys	Met	Leu	Ala	Gly	Asn	Glu	Phe	Gln
1				5				10				15			

Val	Ser	Leu	Ser	Ser	Ser	Met	Ser	Val	Ser	Glu	Leu	Lys	Ala	Gln	Ile
				20				25				30			

Thr	Gln	Lys	Ile	Gly	Val	His	Ala	Phe	Gln	Gln	Arg	Leu	Ala	Val	His
			35			40					45				

Pro	Ser	Gly	Val	Ala	Leu	Gln	Asp	Arg	Val	Pro	Leu	Ala	Ser	Gln	Gly
			50			55				60					

Leu	Gly	Pro	Gly	Ser	Thr	Val	Leu	Leu	Val	Val	Asp	Lys	Cys	Asp	Glu
65									75				80		

Pro	Leu	Ser	Ile	Leu	Val	Arg	Asn	Asn	Lys	Gly	Arg	Ser	Ser	Thr	Tyr
			85			90					95				

Glu	Val	Arg	Leu	Thr	Gln	Thr	Val	Ala	His	Leu	Lys	Gln	Gln	Val	Ser
			100				105					110			

Gly Leu Glu Gly Val Gln Asp Asp Leu Phe Trp Leu Thr Phe Glu Gly

-122-

115	120	125
Lys Pro Leu Glu Asp Gln Leu Pro Leu Gly Glu Tyr Gly Leu Lys Pro		
130	135	140
Leu Ser Thr Val Phe Met Asn Leu Arg Leu Arg Gly Gly Gly Thr Glu		
145	150	155
Pro Gly Gly Arg Ser		
165		
<210> 85		
<211> 1218		
<212> PRT		
<213> Homo Sapiens		
<400> 85		
Met Arg Ser Pro Arg Thr Arg Gly Arg Ser Gly Arg Pro Leu Ser Leu		
1	5	10
Leu Leu Ala Leu Leu Cys Ala Leu Arg Ala Lys Val Cys Gly Ala Ser		
20	25	30
Gly Gln Phe Glu Leu Glu Ile Leu Ser Met Gln Asn Val Asn Gly Glu		
35	40	45
Leu Gln Asn Gly Asn Cys Cys Gly Gly Ala Arg Asn Pro Gly Asp Arg		
50	55	60
Lys Cys Thr Arg Asp Glu Cys Asp Thr Tyr Phe Lys Val Cys Leu Lys		
65	70	75
80		
Glu Tyr Gln Ser Arg Val Thr Ala Gly Gly Pro Cys Ser Phe Gly Ser		
85	90	95
Gly Ser Thr Pro Val Ile Gly Gly Asn Thr Phe Asn Leu Lys Ala Ser		
100	105	110
Arg Gly Asn Asp Pro Asn Arg Ile Val Leu Pro Phe Ser Phe Ala Trp		
115	120	125
Pro Arg Ser Tyr Thr Leu Leu Val Glu Ala Trp Asp Ser Ser Asn Asp		
130	135	140
Thr Val Gln Pro Asp Ser Ile Ile Glu Lys Ala Ser His Ser Gly Met		
145	150	155
160		
Ile Asn Pro Ser Arg Gln Trp Gln Thr Leu Lys Gln Asn Thr Gly Val		
165	170	175
Ala His Phe Glu Tyr Gln Ile Arg Val Thr Cys Asp Asp Tyr Tyr Tyr		
180	185	190
Gly Phe Gly Cys Asn Lys Phe Cys Arg Pro Arg Asp Asp Phe Phe Gly		
195	200	205
His Tyr Ala Cys Asp Gln Asn Gly Asn Lys Thr Cys Met Glu Gly Trp		
210	215	220

-123-

Met Gly Pro Glu Cys Asn Arg Ala Ile Cys Arg Gln Gly Cys Ser Pro
 225 230 235 240
 Lys His Gly Ser Cys Lys Leu Pro Gly Asp Cys Arg Cys Gln Tyr Gly
 245 250 255
 Trp Gln Gly Leu Tyr Cys Asp Lys Cys Ile Pro His Pro Gly Cys Val
 260 265 270
 His Gly Ile Cys Asn Glu Pro Trp Gln Cys Leu Cys Glu Thr Asn Trp
 275 280 285
 Gly Gly Gln Leu Cys Asp Lys Asp Leu Asn Tyr Cys Gly Thr His Gln
 290 295 300
 Pro Cys Leu Asn Gly Gly Thr Cys Ser Asn Thr Gly Pro Asp Lys Tyr
 305 310 315 320
 Gln Cys Ser Cys Pro Glu Gly Tyr Ser Gly Pro Asn Cys Glu Ile Ala
 325 330 335
 Glu His Ala Cys Leu Ser Asp Pro Cys His Asn Arg Gly Ser Cys Lys
 340 345 350
 Glu Thr Ser Leu Gly Phe Glu Cys Glu Cys Ser Pro Gly Trp Thr Gly
 355 360 365
 Pro Thr Cys Ser Thr Asn Ile Asp Asp Cys Ser Pro Asn Asn Cys Ser
 370 375 380
 His Gly Gly Thr Cys Gln Asp Leu Val Asn Gly Phe Lys Cys Val Cys
 385 390 395 400
 Pro Pro Gln Trp Thr Gly Lys Thr Cys Gln Leu Asp Ala Asn Glu Cys
 405 410 415
 Glu Ala Lys Pro Cys Val Asn Ala Lys Ser Cys Lys Asn Leu Ile Ala
 420 425 430
 Ser Tyr Tyr Cys Asp Cys Leu Pro Gly Trp Met Gly Gln Asn Cys Asp
 435 440 445
 Ile Asn Ile Asn Asp Cys Leu Gly Gln Cys Gln Asn Asp Ala Ser Cys
 450 455 460
 Arg Asp Leu Val Asn Gly Tyr Arg Cys Ile Cys Pro Pro Gly Tyr Ala
 465 470 475 480
 Gly Asp His Cys Glu Arg Asp Ile Asp Glu Cys Ala Ser Asn Pro Cys
 485 490 495
 Leu Asn Gly Gly His Cys Gln Asn Glu Ile Asn Arg Phe Gln Cys Leu
 500 505 510
 Cys Pro Thr Gly Phe Ser Gly Asn Leu Cys Gln Leu Asp Ile Asp Tyr
 515 520 525
 Cys Glu Pro Asn Pro Cys Gln Asn Gly Ala Gln Cys Tyr Asn Arg Ala
 530 535 540

-124-

Ser	Asp	Tyr	Phe	Cys	Lys	Cys	Pro	Glu	Asp	Tyr	Glu	Gly	Lys	Asn	Cys
545				550					555					560	
Ser	His	Leu	Lys	Asp	His	Cys	Arg	Thr	Thr	Pro	Cys	Glu	Val	Ile	Asp
	565					570								575	
Ser	Cys	Thr	Val	Ala	Met	Ala	Ser	Asn	Asp	Thr	Pro	Glu	Gly	Val	Arg
	580						585						590		
Tyr	Ile	Ser	Ser	Asn	Val	Cys	Gly	Pro	His	Gly	Lys	Cys	Lys	Ser	Gln
	595					600					605				
Ser	Gly	Gly	Lys	Phe	Thr	Cys	Asp	Cys	Asn	Lys	Gly	Phe	Thr	Gly	Thr
	610					615					620				
Tyr	Cys	His	Glu	Asn	Ile	Asn	Asp	Cys	Glu	Ser	Asn	Pro	Cys	Arg	Asn
	625					630				635				640	
Gly	Gly	Thr	Cys	Ile	Asp	Gly	Val	Asn	Ser	Tyr	Lys	Cys	Ile	Cys	Ser
	645					650					655				
Asp	Gly	Trp	Glu	Gly	Ala	Tyr	Cys	Glu	Thr	Asn	Ile	Asn	Asp	Cys	Ser
	660					665					670				
Gln	Asn	Pro	Cys	His	Asn	Gly	Gly	Thr	Cys	Arg	Asp	Leu	Val	Asn	Asp
	675					680					685				
Phe	Tyr	Cys	Asp	Cys	Lys	Asn	Gly	Trp	Lys	Gly	Lys	Thr	Cys	His	Ser
	690					695					700				
Arg	Asp	Ser	Gln	Cys	Asp	Glu	Ala	Thr	Cys	Asn	Asn	Gly	Gly	Thr	Cys
	705					710					715				720
Tyr	Asp	Glu	Gly	Asp	Ala	Phe	Lys	Cys	Met	Cys	Pro	Gly	Gly	Trp	Glu
	725					730						735			
Gly	Thr	Thr	Cys	Asn	Ile	Ala	Arg	Asn	Ser	Ser	Cys	Leu	Pro	Asn	Pro
	740					745						750			
Cys	His	Asn	Gly	Gly	Thr	Cys	Val	Val	Asn	Gly	Glu	Ser	Phe	Thr	Cys
	755					760					765				
Val	Cys	Lys	Glu	Gly	Trp	Glu	Gly	Pro	Ile	Cys	Ala	Gln	Asn	Thr	Asn
	770					775					780				
Asp	Cys	Ser	Pro	His	Pro	Cys	Tyr	Asn	Ser	Gly	Thr	Cys	Val	Asp	Gly
	785					790					795				800
Asp	Asn	Trp	Tyr	Arg	Cys	Glu	Cys	Ala	Pro	Gly	Phe	Ala	Gly	Pro	Asp
	805					810						815			
Cys	Arg	Ile	Asn	Ile	Asn	Glu	Cys	Gln	Ser	Ser	Pro	Cys	Ala	Phe	Gly
	820					825						830			
Ala	Thr	Cys	Val	Asp	Glu	Ile	Asn	Gly	Tyr	Arg	Cys	Val	Cys	Pro	Pro
	835					840					845				
Gly	His	Ser	Gly	Ala	Lys	Cys	Gln	Glu	Val	Ser	Gly	Arg	Pro	Cys	Ile
	850					855					860				

-125-

Thr	Met	Gly	Ser	Val	Ile	Pro	Asp	Gly	Ala	Lys	Trp	Asp	Asp	Asp	Cys
865						870					875				880
Asn	Thr	Cys	Gln	Cys	Leu	Asn	Gly	Arg	Ile	Ala	Cys	Ser	Lys	Val	Trp
						885				890				895	
Cys	Gly	Pro	Arg	Pro	Cys	Leu	Leu	His	Lys	Gly	His	Ser	Glu	Cys	Pro
						900			905				910		
Ser	Gly	Gln	Ser	Cys	Ile	Pro	Ile	Leu	Asp	Asp	Gln	Cys	Phe	Val	His
						915		920			925				
Pro	Cys	Thr	Gly	Val	Gly	Glu	Cys	Arg	Ser	Ser	Ser	Leu	Gln	Pro	Val
						930		935			940				
Lys	Thr	Lys	Cys	Thr	Ser	Asp	Ser	Tyr	Tyr	Gln	Asp	Asn	Cys	Ala	Asn
						945		950		955		960			
Ile	Thr	Phe	Thr	Phe	Asn	Lys	Glu	Met	Met	Ser	Pro	Gly	Leu	Thr	Thr
						965		970			975				
Glu	His	Ile	Cys	Ser	Glu	Leu	Arg	Asn	Leu	Asn	Ile	Leu	Lys	Asn	Val
						980		985			990				
Ser	Ala	Glu	Tyr	Ser	Ile	Tyr	Ile	Ala	Cys	Glu	Pro	Ser	Pro	Ser	Ala
						995		1000			1005				
Asn	Asn	Glu	Ile	His	Val	Ala	Ile	Ser	Ala	Glu	Asp	Ile	Arg	Asp	
						1010		1015			1020				
Asp	Gly	Asn	Pro	Ile	Lys	Glu	Ile	Thr	Asp	Lys	Ile	Ile	Asp	Leu	
						1025		1030			1035				
Val	Ser	Lys	Arg	Asp	Gly	Asn	Ser	Ser	Leu	Ile	Ala	Ala	Val	Ala	
						1040		1045			1050				
Glu	Val	Arg	Val	Gln	Arg	Arg	Pro	Leu	Lys	Asn	Arg	Thr	Asp	Phe	
						1055		1060			1065				
Leu	Val	Pro	Leu	Leu	Ser	Ser	Val	Leu	Thr	Val	Ala	Trp	Ile	Cys	
						1070		1075			1080				
Cys	Leu	Val	Thr	Ala	Phe	Tyr	Trp	Cys	Leu	Arg	Lys	Arg	Arg	Lys	
						1085		1090			1095				
Pro	Gly	Ser	His	Thr	His	Ser	Ala	Ser	Glu	Asp	Asn	Thr	Thr	Asn	
						1100		1105			1110				
Asn	Val	Arg	Glu	Gln	Leu	Asn	Gln	Ile	Lys	Asn	Pro	Ile	Glu	Lys	
						1115		1120			1125				
His	Gly	Ala	Asn	Thr	Val	Pro	Ile	Lys	Asp	Tyr	Glu	Asn	Lys	Asn	
						1130		1135			1140				
Ser	Lys	Met	Ser	Lys	Ile	Arg	Thr	His	Asn	Ser	Glu	Val	Glu	Glu	
						1145		1150			1155				
Asp	Asp	Met	Asp	Lys	His	Gln	Gln	Lys	Ala	Arg	Phe	Ala	Lys	Gln	
						1160		1165			1170				

-126-

Pro Ala Tyr Thr Leu Val Asp Arg Glu Glu Lys Pro Pro Asn Gly
 1175 1180 1185

Thr Pro Thr Lys His Pro Asn Trp Thr Asn Lys Gln Asp Asn Arg
 1190 1195 1200

Asp Leu Glu Ser Ala Gln Ser Leu Asn Arg Met Glu Tyr Ile Val
 1205 1210 1215

<210> 86

<211> 3110

<212> PRT

<213> Homo Sapiens

<400> 86

Met Pro Gly Ala Ala Gly Val Leu Leu Leu Leu Leu Ser Gly Gly
 1 5 10 15

Leu Gly Gly Val Gln Ala Gln Arg Pro Gln Gln Gln Arg Gln Ser Gln
 20 25 30

Ala His Gln Gln Arg Gly Leu Phe Pro Ala Val Leu Asn Leu Ala Ser
 35 40 45

Asn Ala Leu Ile Thr Thr Asn Ala Thr Cys Gly Glu Lys Gly Pro Glu
 50 55 60

Met Tyr Cys Lys Leu Val Glu His Val Pro Gly Gln Pro Val Arg Asn
 65 70 75 80

Pro Gln Cys Arg Ile Cys Asn Gln Asn Ser Ser Asn Pro Asn Gln Arg
 85 90 95

His Pro Ile Thr Asn Ala Ile Asp Gly Lys Asn Thr Trp Trp Gln Ser
 100 105 110

Pro Ser Ile Lys Asn Gly Ile Glu Tyr His Tyr Val Thr Ile Thr Leu
 115 120 125

Asp Leu Gln Gln Val Phe Gln Ile Ala Tyr Val Ile Val Lys Ala Ala
 130 135 140

Asn Ser Pro Arg Pro Gly Asn Trp Ile Leu Glu Arg Ser Leu Asp Asp
 145 150 155 160

Val Glu Tyr Lys Pro Trp Gln Tyr His Ala Val Thr Asp Thr Glu Cys
 165 170 175

Leu Thr Leu Tyr Asn Ile Tyr Pro Arg Thr Gly Pro Pro Ser Tyr Ala
 180 185 190

Lys Asp Asp Glu Val Ile Cys Thr Ser Phe Tyr Ser Lys Ile His Pro
 195 200 205

Leu Glu Asn Gly Glu Ile His Ile Ser Leu Ile Asn Gly Arg Pro Ser
 210 215 220

Ala Asp Asp Pro Ser Pro Glu Leu Leu Glu Phe Thr Ser Ala Arg Tyr
 225 230 235 240

-127-

Ile	Arg	Leu	Arg	Phe	Gln	Arg	Ile	Arg	Thr	Leu	Asn	Ala	Asp	Leu	Met
				245					250					255	
Met	Phe	Ala	His	Lys	Asp	Pro	Arg	Glu	Ile	Asp	Pro	Ile	Val	Thr	Arg
	260							265					270		
Arg	Tyr	Tyr	Tyr	Ser	Val	Lys	Asp	Ile	Ser	Val	Gly	Gly	Met	Cys	Ile
	275							280				285			
Cys	Tyr	Gly	His	Ala	Arg	Ala	Cys	Pro	Leu	Asp	Pro	Ala	Thr	Asn	Lys
	290						295				300				
Ser	Arg	Cys	Glu	Cys	Glu	His	Asn	Thr	Cys	Gly	Asp	Ser	Cys	Asp	Gln
	305				310				315					320	
Cys	Cys	Pro	Gly	Phe	His	Gln	Lys	Pro	Trp	Arg	Ala	Gly	Thr	Phe	Leu
	325							330					335		
Thr	Lys	Thr	Glu	Cys	Glu	Ala	Cys	Asn	Cys	His	Gly	Lys	Ala	Glu	Glu
	340							345					350		
Cys	Tyr	Tyr	Asp	Glu	Asn	Val	Ala	Arg	Arg	Asn	Leu	Ser	Leu	Asn	Ile
	355						360					365			
Arg	Gly	Lys	Tyr	Ile	Gly	Gly	Gly	Val	Cys	Ile	Asn	Cys	Thr	Gln	Asn
	370						375				380				
Thr	Ala	Gly	Ile	Asn	Cys	Glu	Thr	Cys	Thr	Asp	Gly	Phe	Phe	Arg	Pro
	385					390				395			400		
Lys	Gly	Val	Ser	Pro	Asn	Tyr	Pro	Arg	Pro	Cys	Gln	Pro	Cys	His	Cys
	405								410				415		
Asp	Pro	Ile	Gly	Ser	Leu	Asn	Glu	Val	Cys	Val	Lys	Asp	Glu	Lys	His
	420						425					430			
Ala	Arg	Arg	Gly	Leu	Ala	Pro	Gly	Ser	Cys	His	Cys	Lys	Thr	Gly	Phe
	435						440					445			
Gly	Gly	Val	Ser	Cys	Asp	Arg	Cys	Ala	Arg	Gly	Tyr	Thr	Gly	Tyr	Pro
	450						455				460				
Asp	Cys	Lys	Ala	Cys	Asn	Cys	Ser	Gly	Leu	Gly	Ser	Lys	Asn	Glu	Asp
	465							470			475			480	
Pro	Cys	Phe	Gly	Pro	Cys	Ile	Cys	Lys	Glu	Asn	Val	Glu	Gly	Asp	
	485							490					495		
Cys	Ser	Arg	Cys	Lys	Ser	Gly	Phe	Phe	Asn	Leu	Gln	Glu	Asp	Asn	Trp
	500							505				510			
Lys	Gly	Cys	Asp	Glu	Cys	Phe	Cys	Ser	Gly	Val	Ser	Asn	Arg	Cys	Gln
	515							520				525			
Ser	Ser	Tyr	Trp	Thr	Tyr	Gly	Lys	Ile	Gln	Asp	Met	Ser	Gly	Trp	Tyr
	530							535				540			
Leu	Thr	Asp	Leu	Pro	Gly	Arg	Ile	Arg	Val	Ala	Pro	Gln	Gln	Asp	Asp
	545							550				555			560

-128-

Leu	Asp	Ser	Pro	Gln	Gln	Ile	Ser	Ile	Ser	Asn	Ala	Glu	Ala	Arg	Gln
				565					570					575	
Ala	Leu	Pro	His	Ser	Tyr	Tyr	Trp	Ser	Ala	Pro	Ala	Pro	Tyr	Leu	Gly
	580					585							590		
Asn	Lys	Leu	Pro	Ala	Val	Gly	Gly	Gln	Leu	Thr	Phe	Thr	Ile	Ser	Tyr
	595					600						605			
Asp	Leu	Glu	Glu	Glu	Glu	Asp	Thr	Glu	Arg	Val	Leu	Gln	Leu	Met	
	610				615					620					
Ile	Ile	Leu	Glu	Gly	Asn	Asp	Leu	Ser	Ile	Ser	Thr	Ala	Gln	Asp	Glu
	625				630					635			640		
Val	Tyr	Leu	His	Pro	Ser	Glu	Glu	His	Thr	Asn	Val	Leu	Leu	Leu	Lys
	645					650					655				
Glu	Glu	Ser	Phe	Thr	Ile	His	Gly	Thr	His	Phe	Pro	Val	Arg	Arg	Lys
	660					665					670				
Glu	Phe	Met	Thr	Val	Leu	Ala	Asn	Leu	Lys	Arg	Val	Leu	Leu	Gln	Ile
	675					680					685				
Thr	Tyr	Ser	Phe	Gly	Met	Asp	Ala	Ile	Phe	Arg	Leu	Ser	Ser	Val	Asn
	690					695					700				
Leu	Glu	Ser	Ala	Val	Ser	Tyr	Pro	Thr	Asp	Gly	Ser	Ile	Ala	Ala	
	705				710					715			720		
Val	Glu	Val	Cys	Gln	Cys	Pro	Pro	Gly	Tyr	Thr	Gly	Ser	Ser	Cys	Glu
	725					730					735				
Ser	Cys	Trp	Pro	Arg	His	Arg	Arg	Val	Asn	Gly	Thr	Ile	Phe	Gly	Gly
	740					745					750				
Ile	Cys	Glu	Pro	Cys	Gln	Cys	Phe	Gly	His	Ala	Glu	Ser	Cys	Asp	Asp
	755					760					765				
Val	Thr	Gly	Glu	Cys	Leu	Asn	Cys	Lys	Asp	His	Thr	Gly	Gly	Pro	Tyr
	770					775					780				
Cys	Asp	Lys	Cys	Leu	Pro	Gly	Phe	Tyr	Gly	Glu	Pro	Thr	Lys	Gly	Thr
	785					790					795			800	
Ser	Glu	Asp	Cys	Gln	Pro	Cys	Ala	Cys	Pro	Leu	Asn	Ile	Pro	Ser	Asn
	805						810					815			
Asn	Phe	Ser	Pro	Thr	Cys	His	Leu	Asp	Arg	Ser	Leu	Gly	Leu	Ile	Cys
	820						825					830			
Asp	Gly	Cys	Pro	Val	Gly	Tyr	Thr	Gly	Pro	Arg	Cys	Glu	Arg	Cys	Ala
	835					840					845				
Glu	Gly	Tyr	Phe	Gly	Gln	Pro	Ser	Val	Pro	Gly	Gly	Ser	Cys	Gln	Pro
	850					855					860				
Cys	Gln	Cys	Asn	Asp	Asn	Leu	Asp	Phe	Ser	Ile	Pro	Gly	Ser	Cys	Asp
	865					870					875			880	

Ser Leu Ser Gly Ser Cys Leu Ile Cys Lys Pro Gly Thr Thr Gly Arg
 885 890 895
 Tyr Cys Glu Leu Cys Ala Asp Gly Tyr Phe Gly Asp Ala Val Asp Ala
 900 905 910
 Lys Asn Cys Gln Pro Cys Arg Cys Asn Ala Gly Gly Ser Phe Ser Glu
 915 920 925
 Val Cys His Ser Gln Thr Gly Gln Cys Glu Cys Arg Ala Asn Val Gln
 930 935 940
 Gly Gln Arg Cys Asp Lys Cys Lys Ala Gly Thr Phe Gly Leu Gln Ser
 945 950 955 960
 Ala Arg Gly Cys Val Pro Cys Asn Cys Asn Ser Phe Gly Ser Lys Ser
 965 970 975
 Phe Asp Cys Glu Glu Ser Gly Gln Cys Trp Cys Gln Pro Gly Val Thr
 980 985 990
 Gly Lys Lys Cys Asp Arg Cys Ala His Gly Tyr Phe Asn Phe Gln Glu
 995 1000 1005
 Gly Gly Cys Thr Ala Cys Glu Cys Ser His Leu Gly Asn Asn Cys
 1010 1015 1020
 Asp Pro Lys Thr Gly Arg Cys Ile Cys Pro Pro Asn Thr Ile Gly
 1025 1030 1035
 Glu Lys Cys Ser Lys Cys Ala Pro Asn Thr Trp Gly His Ser Ile
 1040 1045 1050
 Thr Thr Gly Cys Lys Ala Cys Asn Cys Ser Thr Val Gly Ser Leu
 1055 1060 1065
 Asp Phe Gln Cys Asn Val Asn Thr Gly Gln Cys Asn Cys His Pro
 1070 1075 1080
 Lys Phe Ser Gly Ala Lys Cys Thr Glu Cys Ser Arg Gly His Trp
 1085 1090 1095
 Asn Tyr Pro Arg Cys Asn Leu Cys Asp Cys Phe Leu Pro Gly Thr
 1100 1105 1110
 Asp Ala Thr Thr Cys Asp Ser Glu Thr Lys Lys Cys Ser Cys Ser
 1115 1120 1125
 Asp Gln Thr Gly Gln Cys Thr Cys Lys Val Asn Val Glu Gly Ile
 1130 1135 1140
 His Cys Asp Arg Cys Arg Pro Gly Lys Phe Gly Leu Asp Ala Lys
 1145 1150 1155
 Asn Pro Leu Gly Cys Ser Ser Cys Tyr Cys Phe Gly Thr Thr Thr
 1160 1165 1170
 Gln Cys Ser Glu Ala Lys Gly Leu Ile Arg Thr Trp Val Thr Leu
 1175 1180 1185

-130-

Lys	Ala	Glu	Gln	Thr	Ile	Leu	Pro	Leu	Val	Asp	Glu	Ala	Leu	Gln
1190						1195					1200			
His	Thr	Thr	Thr	Lys	Gly	Ile	Val	Phe	Gln	His	Pro	Glu	Ile	Val
1205						1210					1215			
Ala	His	Met	Asp	Leu	Met	Arg	Glu	Asp	Leu	His	Leu	Glu	Pro	Phe
1220						1225					1230			
Tyr	Trp	Lys	Leu	Pro	Glu	Gln	Phe	Glu	Gly	Lys	Lys	Leu	Met	Ala
1235						1240					1245			
Tyr	Gly	Gly	Lys	Leu	Lys	Tyr	Ala	Ile	Tyr	Phe	Glu	Ala	Arg	Glu
1250						1255					1260			
Glu	Thr	Gly	Phe	Ser	Thr	Tyr	Asn	Pro	Gln	Val	Ile	Ile	Arg	Gly
1265						1270					1275			
Gly	Thr	Pro	Thr	His	Ala	Arg	Ile	Ile	Val	Arg	His	Met	Ala	Ala
1280						1285					1290			
Pro	Leu	Ile	Gly	Gln	Leu	Thr	Arg	His	Glu	Ile	Glu	Met	Thr	Glu
1295						1300					1305			
Lys	Glu	Trp	Lys	Tyr	Tyr	Gly	Asp	Asp	Pro	Arg	Val	His	Arg	Thr
1310						1315					1320			
Val	Thr	Arg	Glu	Asp	Phe	Leu	Asp	Ile	Leu	Tyr	Asp	Ile	His	Tyr
1325						1330					1335			
Ile	Leu	Ile	Lys	Ala	Thr	Tyr	Gly	Asn	Phe	Met	Arg	Gln	Ser	Arg
1340						1345					1350			
Ile	Ser	Glu	Ile	Ser	Met	Glu	Val	Ala	Glu	Gln	Gly	Arg	Gly	Thr
1355						1360					1365			
Thr	Met	Thr	Pro	Pro	Ala	Asp	Leu	Ile	Glu	Lys	Cys	Asp	Cys	Pro
1370						1375					1380			
Leu	Gly	Tyr	Ser	Gly	Leu	Ser	Cys	Glu	Ala	Cys	Leu	Pro	Gly	Phe
1385						1390					1395			
Tyr	Arg	Leu	Arg	Ser	Gln	Pro	Gly	Gly	Arg	Thr	Pro	Gly	Pro	Thr
1400						1405					1410			
Leu	Gly	Thr	Cys	Val	Pro	Cys	Gln	Cys	Asn	Gly	His	Ser	Ser	Leu
1415						1420					1425			
Cys	Asp	Pro	Glu	Thr	Ser	Ile	Cys	Gln	Asn	Cys	Gln	His	His	Thr
1430						1435					1440			
Ala	Gly	Asp	Phe	Cys	Glu	Arg	Cys	Ala	Leu	Gly	Tyr	Tyr	Gly	Ile
1445						1450					1455			
Val	Lys	Gly	Leu	Pro	Asn	Asp	Cys	Gln	Gln	Cys	Ala	Cys	Pro	Leu
1460						1465					1470			
Ile	Ser	Ser	Ser	Asn	Asn	Phe	Ser	Pro	Ser	Cys	Val	Ala	Glu	Gly
1475						1480					1485			

-131-

Leu	Asp	Asp	Tyr	Arg	Cys	Thr	Ala	Cys	Pro	Arg	Gly	Tyr	Glu	Gly
1490						1495					1500			
Gln	Tyr	Cys	Glu	Arg	Cys	Ala	Pro	Gly	Tyr	Thr	Gly	Ser	Pro	Gly
1505						1510					1515			
Asn	Pro	Gly	Gly	Ser	Cys	Gln	Glu	Cys	Glu	Cys	Asp	Pro	Tyr	Gly
1520						1525					1530			
Ser	Leu	Pro	Val	Pro	Cys	Asp	Pro	Val	Thr	Gly	Phe	Cys	Thr	Cys
1535						1540					1545			
Arg	Pro	Gly	Ala	Thr	Gly	Arg	Lys	Cys	Asp	Gly	Cys	Lys	His	Trp
1550						1555					1560			
His	Ala	Arg	Glu	Gly	Trp	Glu	Cys	Val	Phe	Cys	Gly	Asp	Glu	Cys
1565						1570					1575			
Thr	Gly	Leu	Leu	Leu	Gly	Asp	Leu	Ala	Arg	Leu	Glu	Gln	Met	Val
1580						1585					1590			
Met	Ser	Ile	Asn	Leu	Thr	Gly	Pro	Leu	Pro	Ala	Pro	Tyr	Lys	Met
1595						1600					1605			
Leu	Tyr	Gly	Leu	Glu	Asn	Met	Thr	Gln	Glu	Leu	Lys	His	Leu	Leu
1610						1615					1620			
Ser	Pro	Gln	Arg	Ala	Pro	Glu	Arg	Leu	Ile	Gln	Leu	Ala	Glu	Gly
1625						1630					1635			
Asn	Leu	Asn	Thr	Leu	Val	Thr	Glu	Met	Asn	Glu	Leu	Leu	Thr	Arg
1640						1645					1650			
Ala	Thr	Lys	Val	Thr	Ala	Asp	Gly	Glu	Gln	Thr	Gly	Gln	Asp	Ala
1655						1660					1665			
Glu	Arg	Thr	Asn	Thr	Arg	Ala	Lys	Ser	Leu	Gly	Glu	Phe	Ile	Lys
1670						1675					1680			
Glu	Leu	Ala	Arg	Asp	Ala	Glu	Ala	Val	Asn	Glu	Lys	Ala	Ile	Lys
1685						1690					1695			
Leu	Asn	Glu	Thr	Leu	Gly	Thr	Arg	Asp	Glu	Ala	Phe	Glu	Arg	Asn
1700						1705					1710			
Leu	Glu	Gly	Leu	Gln	Lys	Glu	Ile	Asp	Gln	Met	Ile	Lys	Glu	Leu
1715						1720					1725			
Arg	Arg	Lys	Asn	Leu	Glu	Thr	Gln	Lys	Glu	Ile	Ala	Glu	Asp	Glu
1730						1735					1740			
Leu	Val	Ala	Ala	Glu	Ala	Leu	Leu	Lys	Lys	Val	Lys	Lys	Leu	Phe
1745						1750					1755			
Gly	Glu	Ser	Arg	Gly	Glu	Asn	Glu	Glu	Met	Glu	Lys	Asp	Leu	Arg
1760						1765					1770			
Glu	Lys	Leu	Ala	Asp	Tyr	Lys	Asn	Lys	Val	Asp	Asp	Ala	Trp	Asp
1775						1780					1785			

-132-

Leu	Leu	Arg	Glu	Ala	Thr	Asp	Lys	Ile	Arg	Glu	Ala	Asn	Arg	Leu
1790						1795						1800		
Phe	Ala	Val	Asn	Gln	Lys	Asn	Met	Thr	Ala	Leu	Glu	Lys	Lys	Lys
1805						1810						1815		
Glu	Ala	Val	Glu	Ser	Gly	Lys	Arg	Gln	Ile	Glu	Asn	Thr	Leu	Lys
1820						1825						1830		
Glu	Gly	Asn	Asp	Ile	Leu	Asp	Glu	Ala	Asn	Arg	Leu	Ala	Asp	Glu
1835						1840						1845		
Ile	Asn	Ser	Ile	Ile	Asp	Tyr	Val	Glu	Asp	Ile	Gln	Thr	Lys	Leu
1850						1855						1860		
Pro	Pro	Met	Ser	Glu	Glu	Leu	Asn	Asp	Lys	Ile	Asp	Asp	Leu	Ser
1865						1870						1875		
Gln	Glu	Ile	Lys	Asp	Arg	Lys	Leu	Ala	Glu	Lys	Val	Ser	Gln	Ala
1880						1885						1890		
Glu	Ser	His	Ala	Ala	Gln	Leu	Asn	Asp	Ser	Ser	Ala	Val	Leu	Asp
1895						1900						1905		
Gly	Ile	Leu	Asp	Glu	Ala	Lys	Asn	Ile	Ser	Phe	Asn	Ala	Thr	Ala
1910						1915						1920		
Ala	Phe	Lys	Ala	Tyr	Ser	Asn	Ile	Lys	Asp	Tyr	Ile	Asp	Glu	Ala
1925						1930						1935		
Glu	Lys	Val	Ala	Lys	Glu	Ala	Lys	Asp	Leu	Ala	His	Glu	Ala	Thr
1940						1945						1950		
Lys	Leu	Ala	Thr	Gly	Pro	Arg	Gly	Leu	Leu	Lys	Glu	Asp	Ala	Lys
1955						1960						1965		
Gly	Cys	Leu	Gln	Lys	Ser	Phe	Arg	Ile	Leu	Asn	Glu	Ala	Lys	Lys
1970						1975						1980		
Leu	Ala	Asn	Asp	Val	Lys	Glu	Asn	Glu	Asp	His	Leu	Asn	Gly	Leu
1985						1990						1995		
Lys	Thr	Arg	Ile	Glu	Asn	Ala	Asp	Ala	Arg	Asn	Gly	Asp	Leu	Leu
2000						2005						2010		
Arg	Thr	Leu	Asn	Asp	Thr	Leu	Gly	Lys	Leu	Ser	Ala	Ile	Pro	Asn
2015						2020						2025		
Asp	Thr	Ala	Ala	Lys	Leu	Gln	Ala	Val	Lys	Asp	Lys	Ala	Arg	Gln
2030						2035						2040		
Ala	Asn	Asp	Thr	Ala	Lys	Asp	Val	Leu	Ala	Gln	Ile	Thr	Glu	Leu
2045						2050						2055		
His	Gln	Asn	Leu	Asp	Gly	Leu	Lys	Lys	Asn	Tyr	Asn	Lys	Leu	Ala
2060						2065						2070		
Asp	Ser	Val	Ala	Lys	Thr	Asn	Ala	Val	Val	Lys	Asp	Pro	Ser	Lys
2075						2080						2085		

Asn	Lys	Ile	Ile	Ala	Asp	Ala	Asp	Ala	Thr	Val	Lys	Asn	Leu	Glu
2090						2095					2100			
Gln	Glu	Ala	Asp	Arg	Leu	Ile	Asp	Lys	Leu	Lys	Pro	Ile	Lys	Glu
2105						2110					2115			
Leu	Glu	Asp	Asn	Leu	Lys	Lys	Asn	Ile	Ser	Glu	Ile	Lys	Glu	Leu
2120						2125					2130			
Ile	Asn	Gln	Ala	Arg	Lys	Gln	Ala	Asn	Ser	Ile	Lys	Val	Ser	Val
2135						2140					2145			
Ser	Ser	Gly	Gly	Asp	Cys	Ile	Arg	Thr	Tyr	Lys	Pro	Glu	Ile	Lys
2150						2155					2160			
Lys	Gly	Ser	Tyr	Asn	Asn	Ile	Val	Val	Asn	Val	Lys	Thr	Ala	Val
2165						2170					2175			
Ala	Asp	Asn	Leu	Leu	Phe	Tyr	Leu	Gly	Ser	Ala	Lys	Phe	Ile	Asp
2180						2185					2190			
Phe	Leu	Ala	Ile	Glu	Met	Arg	Lys	Gly	Lys	Val	Ser	Phe	Leu	Trp
2195						2200					2205			
Asp	Val	Gly	Ser	Gly	Val	Gly	Arg	Val	Glu	Tyr	Pro	Asp	Leu	Thr
2210						2215					2220			
Ile	Asp	Asp	Ser	Tyr	Trp	Tyr	Arg	Ile	Val	Ala	Ser	Arg	Thr	Gly
2225						2230					2235			
Arg	Asn	Gly	Thr	Ile	Ser	Val	Arg	Ala	Leu	Asp	Gly	Pro	Lys	Ala
2240						2245					2250			
Ser	Ile	Val	Pro	Ser	Thr	His	His	Ser	Thr	Ser	Pro	Pro	Gly	Tyr
2255						2260					2265			
Thr	Ile	Leu	Asp	Val	Asp	Ala	Asn	Ala	Met	Leu	Phe	Val	Gly	Gly
2270						2275					2280			
Leu	Thr	Gly	Lys	Leu	Lys	Lys	Ala	Asp	Ala	Val	Arg	Val	Ile	Thr
2285						2290					2295			
Phe	Thr	Gly	Cys	Met	Gly	Glu	Thr	Tyr	Phe	Asp	Asn	Lys	Pro	Ile
2300						2305					2310			
Gly	Leu	Trp	Asn	Phe	Arg	Glu	Lys	Glu	Gly	Asp	Cys	Lys	Gly	Cys
2315						2320					2325			
Thr	Val	Ser	Pro	Gln	Val	Glu	Asp	Ser	Glu	Gly	Thr	Ile	Gln	Phe
2330						2335					2340			
Asp	Gly	Glu	Gly	Tyr	Ala	Leu	Val	Ser	Arg	Pro	Ile	Arg	Trp	Tyr
2345						2350					2355			
Pro	Asn	Ile	Ser	Thr	Val	Met	Phe	Lys	Phe	Arg	Thr	Phe	Ser	Ser
2360						2365					2370			
Ser	Ala	Leu	Leu	Met	Tyr	Leu	Ala	Thr	Arg	Asp	Leu	Arg	Asp	Phe
2375						2380					2385			

Met Ser Val Glu Leu Thr Asp Gly His Ile Lys Val Ser Tyr Asp
 2390 2395 2400

Leu Gly Ser Gly Met Ala Ser Val Val Ser Asn Gln Asn His Asn
 2405 2410 2415

Asp Gly Lys Trp Lys Ser Phe Thr Leu Ser Arg Ile Gln Lys Gln
 2420 2425 2430

Ala Asn Ile Ser Ile Val Asp Ile Asp Thr Asn Gln Glu Glu Asn
 2435 2440 2445

Ile Ala Thr Ser Ser Ser Gly Asn Asn Phe Gly Leu Asp Leu Lys
 2450 2455 2460

Ala Asp Asp Lys Ile Tyr Phe Gly Gly Leu Pro Thr Leu Arg Asn
 2465 2470 2475

Leu Ser Met Lys Ala Arg Pro Glu Val Asn Leu Lys Lys Tyr Ser
 2480 2485 2490

Gly Cys Leu Lys Asp Ile Glu Ile Ser Arg Thr Pro Tyr Asn Ile
 2495 2500 2505

Leu Ser Ser Pro Asp Tyr Val Gly Val Thr Lys Gly Cys Ser Leu
 2510 2515 2520

Glu Asn Val Tyr Thr Val Ser Phe Pro Lys Pro Gly Phe Val Glu
 2525 2530 2535

Leu Ser Pro Val Pro Ile Asp Val Gly Thr Glu Ile Asn Leu Ser
 2540 2545 2550

Phe Ser Thr Lys Asn Glu Ser Gly Ile Ile Leu Leu Gly Ser Gly
 2555 2560 2565

Gly Thr Pro Ala Pro Pro Arg Arg Lys Arg Arg Gln Thr Gly Gln
 2570 2575 2580

Ala Tyr Tyr Val Ile Leu Leu Asn Arg Gly Arg Leu Glu Val His
 2585 2590 2595

Leu Ser Thr Gly Ala Arg Thr Met Arg Lys Ile Val Ile Arg Pro
 2600 2605 2610

Glu Pro Asn Leu Phe His Asp Gly Arg Glu His Ser Val His Val
 2615 2620 2625

Glu Arg Thr Arg Gly Ile Phe Thr Val Gln Val Asp Glu Asn Arg
 2630 2635 2640

Arg Tyr Met Gln Asn Leu Thr Val Glu Gln Pro Ile Glu Val Lys
 2645 2650 2655

Lys Leu Phe Val Gly Gly Ala Pro Pro Glu Phe Gln Pro Ser Pro
 2660 2665 2670

Leu Arg Asn Ile Pro Pro Phe Glu Gly Cys Ile Trp Asn Leu Val
 2675 2680 2685

Ile	Asn	Ser	Val	Pro	Met	Asp	Phe	Ala	Arg	Pro	Val	Ser	Phe	Lys
2690						2695						2700		
Asn	Ala	Asp	Ile	Gly	Arg	Cys	Ala	His	Gln	Lys	Leu	Arg	Glu	Asp
2705						2710						2715		
Glu	Asp	Gly	Ala	Ala	Pro	Ala	Glu	Ile	Val	Ile	Gln	Pro	Glu	Pro
2720						2725						2730		
Val	Pro	Thr	Pro	Ala	Phe	Pro	Thr	Pro	Thr	Pro	Val	Leu	Thr	His
2735						2740						2745		
Gly	Pro	Cys	Ala	Ala	Glu	Ser	Glu	Pro	Ala	Leu	Leu	Ile	Gly	Ser
2750						2755						2760		
Lys	Gln	Phe	Gly	Leu	Ser	Arg	Asn	Ser	His	Ile	Ala	Ile	Ala	Phe
2765						2770						2775		
Asp	Asp	Thr	Lys	Val	Lys	Asn	Arg	Leu	Thr	Ile	Glu	Leu	Glu	Val
2780						2785						2790		
Arg	Thr	Glu	Ala	Glu	Ser	Gly	Leu	Leu	Phe	Tyr	Met	Ala	Ala	Ile
2795						2800						2805		
Asn	His	Ala	Asp	Phe	Ala	Thr	Val	Gln	Leu	Arg	Asn	Gly	Leu	Pro
2810						2815						2820		
Tyr	Phe	Ser	Tyr	Asp	Leu	Gly	Ser	Gly	Asp	Thr	His	Thr	Met	Ile
2825						2830						2835		
Pro	Thr	Lys	Ile	Asn	Asp	Gly	Gln	Trp	His	Lys	Ile	Lys	Ile	Met
2840						2845						2850		
Arg	Ser	Lys	Gln	Glu	Gly	Ile	Leu	Tyr	Val	Asp	Gly	Ala	Ser	Asn
2855						2860						2865		
Arg	Thr	Ile	Ser	Pro	Lys	Lys	Ala	Asp	Ile	Leu	Asp	Val	Val	Gly
2870						2875						2880		
Met	Leu	Tyr	Val	Gly	Gly	Leu	Pro	Ile	Asn	Tyr	Thr	Thr	Arg	Arg
2885						2890						2895		
Ile	Gly	Pro	Val	Thr	Tyr	Ser	Ile	Asp	Gly	Cys	Val	Arg	Asn	Leu
2900						2905						2910		
His	Met	Ala	Glu	Ala	Pro	Ala	Asp	Leu	Glu	Gln	Pro	Thr	Ser	Ser
2915						2920						2925		
Phe	His	Val	Gly	Thr	Cys	Phe	Ala	Asn	Ala	Gln	Arg	Gly	Thr	Tyr
2930						2935						2940		
Phe	Asp	Gly	Thr	Gly	Phe	Ala	Lys	Ala	Val	Gly	Gly	Phe	Lys	Val
2945						2950						2955		
Gly	Leu	Asp	Leu	Leu	Val	Glu	Phe	Glu	Phe	Ala	Thr	Thr	Thr	Thr
2960						2965						2970		
Thr	Gly	Val	Leu	Leu	Gly	Ile	Ser	Ser	Gln	Lys	Met	Asp	Gly	Met
2975						2980						2985		

-136-

Gly Ile Glu Met Ile Asp Glu Lys Leu Met Phe His Val Asp Asn
 2990 2995 3000

Gly Ala Gly Arg Phe Thr Ala Val Tyr Asp Ala Gly Val Pro Gly
 3005 3010 3015

His Leu Cys Asp Gly Gln Trp His Lys Val Thr Ala Asn Lys Ile
 3020 3025 3030

Lys His Arg Ile Glu Leu Thr Val Asp Gly Asn Gln Val Glu Ala
 3035 3040 3045

Gln Ser Pro Asn Pro Ala Ser Thr Ser Ala Asp Thr Asn Asp Pro
 3050 3055 3060

Val Phe Val Gly Gly Phe Pro Asp Asp Leu Lys Gln Phe Gly Leu
 3065 3070 3075

Thr Thr Ser Ile Pro Phe Arg Gly Cys Ile Arg Ser Leu Lys Leu
 3080 3085 3090

Thr Lys Gly Thr Ala Ser His Trp Arg Leu Ile Leu Pro Arg Pro
 3095 3100 3105

Trp Asn
 3110

<210> 87
 <211> 1798
 <212> PRT
 <213> Homo Sapiens

<400> 87

Met Glu Leu Thr Ser Thr Glu Arg Gly Arg Gly Gln Pro Leu Pro Trp
 1 5 10 15

Glu Leu Arg Leu Pro Leu Leu Ser Val Leu Ala Ala Thr Leu Ala
 20 25 30

Gln Ala Pro Ala Pro Asp Val Pro Gly Cys Ser Arg Gly Ser Cys Tyr
 35 40 45

Pro Ala Thr Ala Asp Leu Leu Val Gly Arg Ala Asp Arg Leu Thr Ala
 50 55 60

Ser Ser Thr Cys Gly Leu Asn Gly Arg Gln Pro Tyr Cys Ile Val Ser
 65 70 75 80

His Leu Gln Asp Glu Lys Lys Cys Phe Leu Cys Asp Ser Arg Arg Pro
 85 90 95

Phe Ser Ala Arg Asp Asn Pro His Thr His Arg Ile Gln Asn Val Val
 100 105 110

Thr Ser Phe Ala Pro Gln Arg Arg Ala Ala Trp Trp Gln Ser Gln Asn
 115 120 125

Gly Ile Pro Ala Val Thr Ile Gln Leu Asp Leu Glu Ala Glu Phe His

-137-

130	135	140
Phe Thr His Leu Ile Met Thr Phe Lys Thr Phe Arg Pro Ala Ala Met		
145	150	155
Leu Val Glu Arg Ser Ala Asp Phe Gly Arg Thr Trp His Val Tyr Arg		
165	170	175
Tyr Phe Ser Tyr His Cys Gly Ala Asp Phe Pro Gly Val Pro Leu Ala		
180	185	190
Pro Pro Arg His Trp Asp Asp Val Val Cys Glu Ser Arg Tyr Ser Glu		
195	200	205
Ile Glu Pro Ser Thr Glu Gly Glu Val Ile Tyr Arg Val Leu Asp Pro		
210	215	220
Ala Ile Pro Ile Pro Asp Pro Tyr Ser Ser Arg Ile Gln Asn Leu Leu		
225	230	235
Lys Ile Thr Asn Leu Arg Val Asn Leu Thr Arg Leu His Thr Leu Gly		
245	250	255
Asp Asn Leu Leu Asp Pro Arg Arg Glu Ile Arg Glu Lys Tyr Tyr Tyr		
260	265	270
Ala Leu Tyr Glu Leu Val Val Arg Gly Asn Cys Phe Cys Tyr Gly His		
275	280	285
Ala Ser Glu Cys Ala Pro Ala Pro Gly Ala Pro Ala His Ala Glu Gly		
290	295	300
Met Val His Gly Ala Cys Ile Cys Lys His Asn Thr Arg Gly Leu Asn		
305	310	315
Cys Glu Gln Cys Gln Asp Phe Tyr Arg Asp Leu Pro Trp Arg Pro Ala		
325	330	335
Glu Asp Gly His Ser His Ala Cys Arg Lys Cys Asp Arg His Gly His		
340	345	350
Thr His Ser Cys His Phe Asp Met Ala Val Tyr Leu Gly Ser Gly Asn		
355	360	365
Val Ser Gly Gly Val Cys Asp Gly Cys Gln His Asn Thr Ala Trp Arg		
370	375	380
His Cys Glu Leu Cys Arg Pro Phe Phe Tyr Arg Asp Pro Thr Lys Asp		
385	390	395
Leu Arg Asp Pro Ala Val Cys Arg Ser Cys Asp Cys Asp Pro Met Gly		
405	410	415
Ser Gln Asp Gly Gly Arg Cys Asp Ser His Asp Asp Pro Ala Leu Gly		
420	425	430
Leu Val Ser Gly Gln Cys Arg Cys Lys Glu His Val Val Gly Thr Arg		
435	440	445
Cys Gln Gln Cys Arg Asp Gly Phe Phe Gly Leu Ser Ile Ser Asp Pro		

-138-

450	455	460
Ser Gly Cys Arg Arg Cys Gln Cys Asn Ala Arg Gly Thr Val Pro Gly		
465	470	475
Ser Thr Pro Cys Asp Pro Asn Ser Gly Ser Cys Tyr Cys Lys Arg Leu		
485	490	495
Val Thr Gly Arg Gly Cys Asp Arg Cys Leu Pro Gly His Trp Gly Leu		
500	505	510
Ser Leu Asp Leu Leu Gly Cys Arg Pro Cys Asp Cys Asp Val Gly Gly		
515	520	525
Ala Leu Asp Pro Gln Cys Asp Glu Gly Thr Gly Gln Cys His Cys Arg		
530	535	540
Gln His Met Val Gly Arg Arg Cys Glu Gln Val Gln Pro Gly Tyr Phe		
545	550	555
Arg Pro Phe Leu Asp His Leu Ile Trp Glu Ala Glu Asn Thr Arg Gly		
565	570	575
Gln Val Leu Asp Val Val Glu Arg Leu Val Thr Pro Gly Glu Thr Pro		
580	585	590
Ser Trp Thr Gly Ser Gly Phe Val Arg Leu Gln Glu Gly Gln Thr Leu		
595	600	605
Glu Phe Leu Val Ala Ser Val Pro Asn Ala Met Asp Tyr Asp Leu Leu		
610	615	620
Leu Arg Leu Glu Pro Gln Val Pro Glu Gln Trp Ala Glu Leu Glu Leu		
625	630	635
Ile Val Gln Arg Pro Gly Pro Val Pro Ala His Ser Leu Cys Gly His		
645	650	655
Leu Val Pro Arg Asp Asp Arg Ile Gln Gly Thr Leu Gln Pro His Ala		
660	665	670
Arg Tyr Leu Ile Phe Pro Asn Pro Val Cys Leu Glu Pro Gly Ile Ser		
675	680	685
Tyr Lys Leu His Leu Lys Leu Val Arg Thr Gly Gly Ser Ala Gln Pro		
690	695	700
Glu Thr Pro Tyr Ser Gly Pro Gly Leu Leu Ile Asp Ser Leu Val Leu		
705	710	715
Leu Pro Arg Val Leu Val Leu Glu Met Phe Ser Gly Gly Asp Ala Ala		
725	730	735
Ala Leu Glu Arg Gln Ala Thr Phe Glu Arg Tyr Gln Cys His Glu Glu		
740	745	750
Gly Leu Val Pro Ser Lys Thr Ser Pro Ser Glu Ala Cys Ala Pro Leu		
755	760	765
Leu Ile Ser Leu Ser Thr Leu Ile Tyr Asn Gly Ala Leu Pro Cys Gln		

-139-

770	775	780
Cys Asn Pro Gln Gly Ser Leu Ser Ser Glu Cys Asn Pro His Gly Gly		
785	790	795
Gln Cys Leu Cys Lys Pro Gly Val Val Gly Arg Arg Cys Asp Thr Cys		
805	810	815
Ala Pro Gly Tyr Tyr Gly Phe Gly Pro Thr Gly Cys Gln Ala Cys Gln		
820	825	830
Cys Ser Pro Arg Gly Ala Leu Ser Ser Leu Cys Glu Arg Thr Ser Gly		
835	840	845
Gln Cys Leu Cys Arg Thr Gly Ala Phe Gly Leu Arg Cys Asp Ala Cys		
850	855	860
Gln Arg Gly Gln Trp Gly Phe Pro Ser Cys Arg Pro Cys Val Cys Asn		
865	870	875
Gly His Ala Asp Glu Cys Asn Thr His Thr Gly Ala Cys Leu Gly Cys		
885	890	895
Arg Asp Leu Thr Gly Gly Glu His Cys Glu Arg Cys Ile Ala Gly Phe		
900	905	910
His Gly Asp Pro Arg Leu Pro Tyr Gly Ala Gln Cys Arg Pro Cys Pro		
915	920	925
Cys Pro Glu Gly Pro Gly Ser Gln Arg His Phe Ala Thr Ser Cys His		
930	935	940
Gln Asp Glu Tyr Ser Gln Ile Val Cys His Cys Arg Ala Gly Tyr		
945	950	960
Thr Gly Leu Arg Cys Glu Ala Cys Ala Pro Gly Gln Phe Gly Asp Pro		
965	970	975
Ser Arg Pro Gly Gly Arg Cys Gln Leu Cys Glu Cys Ser Gly Asn Ile		
980	985	990
Asp Pro Met Asp Pro Asp Ala Cys Asp Pro His Pro Gly Gln Cys Leu		
995	1000	1005
Arg Cys Leu His His Thr Glu Gly Pro His Cys Ala His Ser Lys		
1010	1015	1020
Pro Gly Phe His Gly Gln Ala Ala Arg Gln Ser Cys His Arg Cys		
1025	1030	1035
Thr Cys Asn Leu Leu Gly Thr Asn Pro Gln Gln Cys Pro Ser Pro		
1040	1045	1050
Asp Gln Cys His Cys Asp Pro Ser Ser Gly Gln Cys Pro Cys Leu		
1055	1060	1065
Pro Asn Val Gln Ala Leu Ala Val Asp Arg Cys Ala Pro Asn Phe		
1070	1075	1080
Trp Asn Leu Thr Ser Gly His Gly Cys Gln Pro Cys Ala Cys Leu		

-140-

1085	1090	1095
Pro Ser Pro Glu Glu Gly	Pro Thr Cys Asn Glu	Phe Thr Gly Gln
1100	1105	1110
Cys His Cys Leu Cys Gly	Phe Gly Gly Arg Thr	Cys Ser Glu Cys
1115	1120	1125
Gln Glu Leu His Trp Gly	Asp Pro Gly Leu Gln	Cys His Ala Cys
1130	1135	1140
Asp Cys Asp Ser Arg Gly	Ile Asp Thr Pro Gln	Cys His Arg Phe
1145	1150	1155
Thr Gly His Cys Thr Cys	Arg Pro Gly Val Ser	Gly Val Arg Cys
1160	1165	1170
Asp Gln Cys Ala Arg Gly	Phe Ser Gly Ile Phe	Pro Ala Cys His
1175	1180	1185
Pro Cys His Ala Cys Phe	Gly Asp Trp Asp Arg	Val Val Gln Asp
1190	1195	1200
Leu Ala Ala Arg Thr Gln	Arg Leu Glu Gln Arg	Ala Gln Glu Leu
1205	1210	1215
Gln Gln Thr Gly Val Leu	Gly Ala Phe Glu Ser	Ser Phe Trp His
1220	1225	1230
Met Gln Glu Lys Leu Gly	Ile Val Gln Gly Ile	Val Gly Ala Arg
1235	1240	1245
Asn Thr Ser Ala Ala Ser	Thr Ala Gln Leu Val	Glu Ala Thr Glu
1250	1255	1260
Glu Leu Arg Arg Glu Ile	Gly Glu Ala Thr Glu	His Leu Thr Gln
1265	1270	1275
Leu Glu Ala Asp Leu Thr	Asp Val Gln Asp Glu	Asn Phe Asn Ala
1280	1285	1290
Asn His Ala Leu Ser Gly	Leu Glu Arg Asp Arg	Leu Ala Leu Asn
1295	1300	1305
Leu Thr Leu Arg Gln Leu	Asp Gln His Leu Asp	Leu Leu Lys His
1310	1315	1320
Ser Asn Phe Leu Gly Ala	Tyr Asp Ser Ile Arg	His Ala His Ser
1325	1330	1335
Gln Ser Ala Glu Ala Glu	Arg Arg Ala Asn Thr	Ser Ala Leu Ala
1340	1345	1350
Val Pro Ser Pro Val Ser	Asn Ser Ala Ser Ala	Arg Arg His Arg Thr
1355	1360	1365
Glu Ala Leu Met Asp Ala	Gln Lys Glu Asp Phe	Asn Ser Lys His
1370	1375	1380
Met Ala Asn Gln Arg Ala	Leu Gly Lys Leu Ser	Ala His Thr His

-141-

1385	1390	1395
Thr Leu Ser Leu Thr Asp Ile Asn Glu Leu Val Cys Gly Ala Gln		
1400	1405	1410
Gly Leu His His Asp Arg Thr Ser Pro Cys Gly Gly Ala Gly Cys		
1415	1420	1425
Arg Asp Glu Asp Gly Gln Pro Arg Cys Gly Gly Leu Ser Cys Asn		
1430	1435	1440
Gly Ala Ala Ala Thr Ala Asp Leu Ala Leu Gly Arg Ala Arg His		
1445	1450	1455
Thr Gln Ala Glu Leu Gln Arg Ala Leu Ala Glu Gly Gly Ser Ile		
1460	1465	1470
Leu Ser Arg Val Ala Glu Thr Arg Arg Gln Ala Ser Glu Ala Gln		
1475	1480	1485
Gln Arg Ala Gln Ala Ala Leu Asp Lys Ala Asn Ala Ser Arg Gly		
1490	1495	1500
Gln Val Glu Gln Ala Asn Gln Glu Leu Gln Glu Leu Ile Gln Ser		
1505	1510	1515
Val Lys Asp Phe Leu Asn Gln Glu Gly Ala Asp Pro Asp Ser Ile		
1520	1525	1530
Glu Met Val Ala Thr Arg Val Leu Glu Leu Ser Ile Pro Ala Ser		
1535	1540	1545
Ala Glu Gln Ile Gln His Leu Ala Gly Ala Ile Ala Glu Arg Val		
1550	1555	1560
Arg Ser Leu Ala Asp Val Asp Ala Ile Leu Ala Arg Thr Val Gly		
1565	1570	1575
Asp Val Arg Arg Ala Glu Gln Leu Leu Gln Asp Ala Arg Arg Ala		
1580	1585	1590
Arg Ser Trp Ala Glu Asp Glu Lys Gln Lys Ala Glu Thr Val Gln		
1595	1600	1605
Ala Ala Leu Glu Glu Ala Gln Arg Ala Gln Gly Ile Ala Gln Gly		
1610	1615	1620
Ala Ile Arg Gly Ala Val Ala Asp Thr Arg Asp Thr Glu Gln Thr		
1625	1630	1635
Leu Tyr Gln Val Gln Glu Arg Met Ala Gly Ala Glu Arg Ala Leu		
1640	1645	1650
Ser Ser Ala Gly Glu Arg Ala Arg Gln Leu Asp Ala Leu Leu Glu		
1655	1660	1665
Ala Leu Lys Leu Lys Arg Ala Gly Asn Ser Leu Ala Ala Ser Thr		
1670	1675	1680
Ala Glu Glu Thr Ala Gly Ser Ala Gln Gly Arg Ala Gln Glu Ala		

-142-

1685	1690	1695
Glu Gln Leu Leu Arg Gly Pro	Leu Gly Asp Gln Tyr	Gln Thr Val
1700	1705	1710
Lys Ala Leu Ala Glu Arg Lys	Ala Gln Gly Val Leu	Ala Ala Gln
1715	1720	1725
Ala Arg Ala Glu Gln Leu Pro	Asp Glu Ala Arg Asp	Leu Leu Gln
1730	1735	1740
Ala Ala Gln Asp Lys Leu Gln	Arg Leu Gln Glu Leu	Glu Gly Thr
1745	1750	1755
Tyr Glu Glu Asn Glu Arg Ala	Leu Glu Ser Lys Ala	Ala Gln Leu
1760	1765	1770
Asp Gly Leu Glu Ala Arg Met	Arg Ser Val Leu Gln	Ala Ile Asn
1775	1780	1785
Leu Gln Val Gln Ile Tyr Asn	Thr Cys Gln	
1790	1795	

<210> 88
<211> 615
<212> PRT
<213> Homo Sapiens

<400> 88

Met Pro Ser Arg Lys Phe Ala Asp Gly Glu Val Val Arg Gly Arg Trp			
1	5	10	15
Pro Gly Ser Ser Leu Tyr Tyr Glu Val Glu Ile Leu Ser His Asp Ser			
20	25	30	
Thr Ser Gln Leu Tyr Thr Val Lys Tyr Lys Asp Gly Thr Glu Leu Glu			
35	40	45	
Leu Lys Glu Asn Asp Ile Lys Pro Leu Thr Ser Phe Arg Gln Arg Lys			
50	55	60	
Gly Gly Ser Thr Ser Ser Pro Ser Arg Arg Arg Gly Ser Arg Ser			
65	70	75	80
Arg Ser Arg Ser Arg Ser Pro Gly Arg Pro Pro Lys Ser Ala Arg Arg			
85	90	95	
Ser Ala Ser Ala Ser His Gln Ala Asp Ile Lys Glu Ala Arg Arg Glu			
100	105	110	
Val Glu Val Lys Leu Thr Pro Leu Ile Leu Lys Pro Phe Gly Asn Ser			
115	120	125	
Ile Ser Arg Tyr Asn Gly Glu Pro Glu His Ile Glu Arg Asn Asp Ala			
130	135	140	
Pro His Lys Asn Thr Gln Glu Lys Phe Ser Leu Ser Gln Glu Ser Ser			
145	150	155	160

-143-

Tyr Ile Ala Thr Gln Tyr Ser Leu Arg Pro Arg Arg Glu Glu Val Lys
 165 170 175
 Leu Lys Glu Ile Asp Ser Lys Glu Glu Lys Tyr Val Ala Lys Glu Leu
 180 185 190
 Ala Val Arg Thr Phe Glu Val Thr Pro Ile Arg Ala Lys Asp Leu Glu
 195 200 205
 Phe Gly Gly Val Pro Gly Val Phe Leu Ile Met Phe Gly Leu Pro Val
 210 215 220
 Phe Leu Phe Leu Leu Leu Met Cys Lys Gln Lys Asp Pro Ser Leu
 225 230 235 240
 Leu Asn Phe Pro Pro Pro Leu Pro Ala Leu Tyr Glu Leu Trp Glu Thr
 245 250 255
 Arg Val Phe Gly Val Tyr Leu Leu Trp Phe Leu Ile Gln Val Leu Phe
 260 265 270
 Tyr Leu Leu Pro Ile Gly Lys Val Val Glu Gly Thr Pro Leu Ile Asp
 275 280 285
 Gly Arg Arg Leu Lys Tyr Arg Leu Asn Gly Phe Tyr Pro Phe Ile Leu
 290 295 300
 Thr Ser Ala Val Ile Gly Thr Ser Leu Phe Gln Gly Val Glu Phe His
 305 310 315 320
 Tyr Val Tyr Ser His Phe Leu Gln Phe Ala Leu Ala Ala Thr Val Phe
 325 330 335
 Cys Val Val Leu Ser Val Tyr Leu Tyr Met Arg Ser Leu Lys Ala Pro
 340 345 350
 Arg Asn Asp Leu Ser Pro Ala Ser Ser Gly Asn Ala Val Tyr Asp Phe
 355 360 365
 Phe Ile Gly Arg Glu Leu Asn Pro Arg Ile Gly Thr Phe Asp Leu Lys
 370 375 380
 Tyr Phe Cys Glu Leu Arg Pro Gly Leu Ile Gly Trp Val Val Ile Asn
 385 390 395 400
 Leu Val Met Leu Leu Ala Glu Met Lys Ile Gln Asp Arg Ala Val Pro
 405 410 415
 Ser Leu Ala Met Ile Leu Val Asn Ser Phe Gln Leu Leu Tyr Val Val
 420 425 430
 Asp Ala Leu Trp Asn Glu Glu Ala Leu Leu Thr Thr Met Asp Ile Ile
 435 440 445
 His Asp Gly Phe Gly Phe Met Leu Ala Phe Gly Asp Leu Val Trp Val
 450 455 460
 Pro Phe Ile Tyr Ser Phe Gln Ala Phe Tyr Leu Val Ser His Pro Asn
 465 470 475 480

-144-

Glu	Val	Ser	Trp	Pro	Met	Ala	Ser	Leu	Ile	Ile	Val	Leu	Lys	Leu	Cys
				485					490				495		
Gly	Tyr	Val	Ile	Phe	Arg	Gly	Ala	Asn	Ser	Gln	Lys	Asn	Ala	Phe	Arg
					500			505				510			
Lys	Asn	Pro	Ser	Asp	Pro	Lys	Leu	Ala	His	Leu	Lys	Thr	Ile	His	Thr
					515		520				525				
Ser	Ser	Gly	Lys	Asn	Leu	Leu	Val	Ser	Gly	Trp	Trp	Gly	Phe	Val	Arg
					530		535			540		540			
His	Pro	Asn	Tyr	Leu	Gly	Asp	Leu	Ile	Met	Ala	Leu	Ala	Trp	Ser	Leu
					545		550		555				560		
Pro	Cys	Gly	Phe	Asn	His	Ile	Leu	Pro	Tyr	Phe	Tyr	Ile	Ile	Tyr	Phe
					565			570				575			
Thr	Met	Leu	Leu	Val	His	Arg	Glu	Ala	Arg	Asp	Glu	Tyr	His	Cys	Lys
					580		585				590				
Lys	Lys	Tyr	Gly	Val	Ala	Trp	Glu	Lys	Tyr	Cys	Gln	Arg	Val	Pro	Tyr
					595		600			605					
Arg	Ile	Phe	Pro	Tyr	Ile	Tyr									
					610		615								
<210>	89														
<211>	660														
<212>	PRT														
<213>	Homo Sapiens														
<400>	89														
Met	Glu	Ala	Leu	Met	Ala	Arg	Gly	Ala	Leu	Thr	Gly	Pro	Leu	Arg	Ala
				1		5			10				15		
Leu	Cys	Leu	Leu	Gly	Cys	Leu	Leu	Ser	His	Ala	Ala	Ala	Ala	Pro	Ser
					20		25			30					
Pro	Ile	Ile	Lys	Phe	Pro	Gly	Asp	Val	Ala	Pro	Lys	Thr	Asp	Lys	Glu
					35		40			45					
Leu	Ala	Val	Gln	Tyr	Leu	Asn	Thr	Phe	Tyr	Gly	Cys	Pro	Lys	Glu	Ser
					50		55			60					
Cys	Asn	Leu	Phe	Val	Leu	Lys	Asp	Thr	Leu	Lys	Lys	Met	Gln	Lys	Phe
					65		70			75			80		
Phe	Gly	Leu	Pro	Gln	Thr	Gly	Asp	Leu	Asp	Gln	Asn	Thr	Ile	Glu	Thr
					85			90			95				
Met	Arg	Lys	Pro	Arg	Cys	Gly	Asn	Pro	Asp	Val	Ala	Asn	Tyr	Asn	Phe
					100			105			110				
Phe	Pro	Arg	Lys	Pro	Lys	Trp	Asp	Lys	Asn	Gln	Ile	Thr	Tyr	Arg	Ile
					115		120				125				
Ile	Gly	Tyr	Thr	Pro	Asp	Leu	Asp	Pro	Glu	Thr	Val	Asp	Asp	Ala	Phe
					130		135			140					

-145-

Ala	Arg	Ala	Phe	Gln	Val	Trp	Ser	Asp	Val	Thr	Pro	Leu	Arg	Phe	Ser
145					150					155					160
Arg	Ile	His	Asp	Gly	Glu	Ala	Asp	Ile	Met	Ile	Asn	Phe	Gly	Arg	Trp
	165					170					175				
Glu	His	Gly	Asp	Gly	Tyr	Pro	Phe	Asp	Gly	Lys	Asp	Gly	Leu	Leu	Ala
	180					185					190				
His	Ala	Phe	Ala	Pro	Gly	Thr	Gly	Val	Gly	Gly	Asp	Ser	His	Phe	Asp
	195					200					205				
Asp	Asp	Glu	Leu	Trp	Thr	Leu	Gly	Glu	Gly	Gln	Val	Val	Arg	Val	Lys
	210					215					220				
Tyr	Gly	Asn	Ala	Asp	Gly	Glu	Tyr	Cys	Lys	Phe	Pro	Phe	Leu	Phe	Asn
	225					230				235					240
Gly	Lys	Glu	Tyr	Asn	Ser	Cys	Thr	Asp	Thr	Gly	Arg	Ser	Asp	Gly	Phe
	245					250					255				
Leu	Trp	Cys	Ser	Thr	Thr	Tyr	Asn	Phe	Glu	Lys	Asp	Gly	Lys	Tyr	Gly
	260					265					270				
Phe	Cys	Pro	His	Glu	Ala	Leu	Phe	Thr	Met	Gly	Gly	Asn	Ala	Glu	Gly
	275					280					285				
Gln	Pro	Cys	Lys	Phe	Pro	Phe	Arg	Phe	Gln	Gly	Thr	Ser	Tyr	Asp	Ser
	290					295					300				
Cys	Thr	Thr	Glu	Gly	Arg	Thr	Asp	Gly	Tyr	Arg	Trp	Cys	Gly	Thr	Thr
	305					310				315					320
Glu	Asp	Tyr	Asp	Arg	Asp	Lys	Tyr	Gly	Phe	Cys	Pro	Glu	Thr	Ala	
	325					330					335				
Met	Ser	Thr	Val	Gly	Gly	Asn	Ser	Glu	Gly	Ala	Pro	Cys	Val	Phe	Pro
	340					345					350				
Phe	Thr	Phe	Leu	Gly	Asn	Lys	Tyr	Glu	Ser	Cys	Thr	Ser	Ala	Gly	Arg
	355					360					365				
Ser	Asp	Gly	Lys	Met	Trp	Cys	Ala	Thr	Thr	Ala	Asn	Tyr	Asp	Asp	
	370					375					380				
Arg	Lys	Trp	Gly	Phe	Cys	Pro	Asp	Gln	Gly	Tyr	Ser	Leu	Phe	Leu	Val
	385					390					395				400
Ala	Ala	His	Glu	Phe	Gly	His	Ala	Met	Gly	Leu	Glu	His	Ser	Gln	Asp
						405			410				415		
Pro	Gly	Ala	Leu	Met	Ala	Pro	Ile	Tyr	Thr	Tyr	Thr	Lys	Asn	Phe	Arg
						420			425				430		
Leu	Ser	Gln	Asp	Asp	Ile	Lys	Gly	Ile	Gln	Glu	Leu	Tyr	Gly	Ala	Ser
						435			440				445		
Pro	Asp	Ile	Asp	Leu	Gly	Thr	Gly	Pro	Thr	Pro	Thr	Leu	Gly	Pro	Val
						450			455				460		

-146-

Thr	Pro	Glu	Ile	Cys	Lys	Gln	Asp	Ile	Val	Phe	Asp	Gly	Ile	Ala	Gln
465					470					475					480
Ile	Arg	Gly	Glu	Ile	Phe	Phe	Phe	Lys	Asp	Arg	Phe	Ile	Trp	Arg	Thr
					485				490					495	
Val	Thr	Pro	Arg	Asp	Lys	Pro	Met	Gly	Pro	Leu	Leu	Val	Ala	Thr	Phe
					500			505						510	
Trp	Pro	Glu	Leu	Pro	Glu	Lys	Ile	Asp	Ala	Val	Tyr	Glu	Ala	Pro	Gln
						515		520				525			
Glu	Glu	Lys	Ala	Val	Phe	Phe	Ala	Gly	Asn	Glu	Tyr	Trp	Ile	Tyr	Ser
						530		535			540				
Ala	Ser	Thr	Leu	Glu	Arg	Gly	Tyr	Pro	Lys	Pro	Leu	Thr	Ser	Leu	Gly
						545		550			555				560
Leu	Pro	Pro	Asp	Val	Gln	Arg	Val	Asp	Ala	Ala	Phe	Asn	Trp	Ser	Lys
					565			570						575	
Asn	Lys	Lys	Thr	Tyr	Ile	Phe	Ala	Gly	Asp	Lys	Phe	Trp	Arg	Tyr	Asn
					580			585						590	
Glu	Val	Lys	Lys	Lys	Met	Asp	Pro	Gly	Phe	Pro	Lys	Leu	Ile	Ala	Asp
					595			600				605			
Ala	Trp	Asn	Ala	Ile	Pro	Asp	Asn	Leu	Asp	Ala	Val	Val	Asp	Leu	Gln
						610		615				620			
Gly	Gly	Gly	His	Ser	Tyr	Phe	Phe	Lys	Gly	Ala	Tyr	Tyr	Leu	Lys	Leu
					625			630			635			640	
Glu	Asn	Gln	Ser	Leu	Lys	Ser	Val	Lys	Phe	Gly	Ser	Ile	Lys	Ser	Asp
					645			650						655	
Trp	Leu	Gly	Cys												
			660												
<210>	90														
<211>	430														
<212>	PRT														
<213>	Homo Sapiens														
<400>	90														
Leu	Arg	Tyr	Gln	Gln	Leu	Ile	Lys	Glu	Asn	Leu	Lys	Glu	Ile	Ala	Lys
1					5					10					15
Leu	Ile	Thr	Leu	Glu	Gln	Gly	Lys	Thr	Leu	Ala	Asp	Ala	Glu	Gly	Asp
						20			25					30	
Val	Phe	Arg	Gly	Leu	Gln	Val	Val	Glu	His	Ala	Cys	Ser	Val	Thr	Ser
						35		40						45	
Leu	Met	Met	Gly	Glu	Thr	Met	Pro	Ser	Ile	Thr	Lys	Asp	Met	Asp	Leu
						50		55				60			
Tyr	Ser	Tyr	Arg	Leu	Pro	Leu	Gly	Val	Cys	Ala	Gly	Ile	Ala	Pro	Phe

-147-

65	70	75	80
Asn	Phe	Pro	Ala
Met	Ile	Pro	Leu
Trp		Met	Phe
85		90	
Cys	Gly	Asn	Thr
Met	Phe	Leu	Met
Lys	Pro	Ser	Glu
100		105	
Thr	Met	Leu	Leu
Ala	Lys	Leu	Gln
Asp	Ser	Gly	Ala
115		120	
Thr	Leu	Asn	Ile
Ile	His	Gly	Gln
130		135	
Asp	His	Pro	Asp
Ile	Lys	Ala	Ile
Ser	Phe	Val	Gly
145		150	
Gly	Glu	Tyr	Ile
Phe	Glu	Arg	Gly
Ser	Arg	His	Gly
165		170	
Ala	Asn	Met	Gly
Ala	Lys	Asn	His
Gly	Val	Val	Val
180		185	
Lys	Glu	Asn	Thr
Leu	Asn	Gln	Leu
Val			Gly
195		200	
Gly	Gln	Arg	Cys
Met	Ala	Leu	Ser
Thr	Ala	Val	Leu
210		215	
Lys	Lys	Trp	Leu
Pro	Glu	Leu	Val
His			Glu
225		230	
Asn	Ala	Gly	Asp
Gln	Pro	Gly	Ala
Asp	Leu	Gly	Pro
245		250	
Gln	Ala	Lys	Glu
Arg	Val	Cys	Asn
260		265	
Gly	Ala	Ser	Ile
Ile	Leu	Leu	Asp
275		280	
Glu	Asn	Gly	Asn
Phe	Val	Gly	Phe
290		295	
Asn	Met	Thr	Cys
Tyr	Lys	Glu	Glu
305		310	
Leu	Glu	Thr	Glu
Thr	Ile	Asp	Ala
325		330	
Pro	Tyr	Gly	Asn
Gly	Thr	Ala	Ile
340		345	
Arg	Lys	Tyr	Ala
His	Leu	Val	Asp
355		360	
Pro	Ile	Pro	Val
Leu	Pro	Met	Phe
370		375	
Ser	Phe	Arg	Gly
Gly	Asp	Thr	Asn
Phe	Tyr	Gly	Lys
			Gln
			Gly
			Ile
			Gln
			Phe

-148-

385	390	395	400
Tyr Thr Gln Leu Lys Thr Ile Thr Ser Gln Trp Lys Glu Glu Asp Ala			
405	410	415	
Thr Leu Ser Ser Pro Ala Val Val Met Pro Thr Met Gly Arg			
420	425	430	
<210> 91			
<211> 1857			
<212> PRT			
<213> Homo Sapiens			
<400> 91			
Thr Tyr Ser Gly Leu Phe Cys Val Val Val Asn Pro Tyr Lys His Leu			
1	5	10	15
Pro Ile Tyr Ser Glu Lys Ile Val Asp Met Tyr Lys Gly Lys Lys Arg			
20	25	30	
His Glu Met Pro Pro His Ile Tyr Ala Ile Ala Asp Thr Ala Tyr Arg			
35	40	45	
Ser Met Leu Gln Asp Arg Glu Asp Gln Ser Ile Leu Cys Thr Gly Glu			
50	55	60	
Ser Gly Ala Gly Lys Thr Glu Asn Thr Lys Lys Val Ile Gln Tyr Leu			
65	70	75	80
Ala Val Val Ala Ser Ser His Lys Gly Lys Lys Asp Thr Ser Ile Thr			
85	90	95	
Gly Glu Leu Glu Lys Gln Leu Leu Gln Ala Asn Pro Ile Leu Glu Ala			
100	105	110	
Phe Gly Asn Ala Lys Thr Val Lys Asn Asp Asn Ser Ser Arg Phe Gly			
115	120	125	
Lys Phe Ile Arg Ile Asn Phe Asp Val Thr Gly Tyr Ile Val Gly Ala			
130	135	140	
Asn Ile Glu Thr Tyr Leu Leu Glu Lys Ser Arg Ala Ile Arg Gln Ala			
145	150	155	160
Arg Asp Glu Arg Thr Phe His Ile Phe Tyr Tyr Met Ile Ala Gly Ala			
165	170	175	
Lys Glu Lys Met Arg Ser Asp Leu Leu Leu Glu Gly Phe Asn Asn Tyr			
180	185	190	
Thr Phe Leu Ser Asn Gly Phe Val Pro Ile Pro Ala Ala Gln Asp Asp			
195	200	205	
Glu Met Phe Gln Glu Thr Val Glu Ala Met Ala Ile Met Gly Phe Ser			
210	215	220	
Glu Glu Glu Gln Leu Ser Ile Leu Lys Val Val Ser Ser Val Leu Gln			
225	230	235	240

-149-

Leu	Gly	Asn	Ile	Val	Phe	Lys	Lys	Glu	Arg	Asn	Thr	Asp	Gln	Ala	Ser	
245						250								255		
Met	Pro	Asp	Asn	Thr	Ala	Ala	Gln	Lys	Val	Cys	His	Leu	Met	Gly	Ile	
260							265						270			
Asn	Val	Thr	Asp	Phe	Thr	Arg	Ser	Ile	Leu	Thr	Pro	Arg	Ile	Lys	Val	
275						280							285			
Gly	Arg	Asp	Val	Val	Gln	Lys	Ala	Gln	Thr	Lys	Glu	Gln	Ala	Asp	Phe	
290						295						300				
Ala	Val	Glu	Ala	Leu	Ala	Lys	Ala	Thr	Tyr	Glu	Arg	Leu	Phe	Arg	Trp	
305						310				315			320			
Ile	Leu	Thr	Arg	Val	Asn	Lys	Ala	Leu	Asp	Lys	Thr	His	Arg	Gln	Gly	
325							330						335			
Ala	Ser	Phe	Leu	Gly	Ile	Leu	Asp	Ile	Ala	Gly	Phe	Glu	Ile	Phe	Glu	
340							345						350			
Val	Asn	Ser	Phe	Glu	Gln	Leu	Cys	Ile	Asn	Tyr	Thr	Asn	Glu	Lys	Leu	
355							360						365			
Gln	Gln	Leu	Phe	Asn	His	Thr	Met	Phe	Ile	Leu	Glu	Gln	Glu	Glu	Tyr	
370							375						380			
Gln	Arg	Glu	Gly	Ile	Glu	Trp	Asn	Phe	Ile	Asp	Phe	Gly	Leu	Asp	Leu	
385							390				395			400		
Gln	Pro	Cys	Ile	Glu	Leu	Ile	Glu	Arg	Pro	Asn	Asn	Pro	Pro	Gly	Val	
							405			410			415			
Leu	Ala	Leu	Leu	Asp	Glu	Glu	Cys	Trp	Phe	Pro	Lys	Ala	Thr	Asp	Lys	
							420		425				430			
Ser	Phe	Val	Glu	Lys	Leu	Cys	Thr	Glu	Gln	Gly	Ser	His	Pro	Lys	Phe	
							435		440				445			
Gln	Lys	Pro	Lys	Gln	Leu	Lys	Asp	Lys	Thr	Glu	Phe	Ser	Ile	Ile	His	
							450		455				460			
Tyr	Ala	Gly	Lys	Val	Asp	Tyr	Asn	Ala	Ser	Ala	Trp	Leu	Thr	Lys	Asn	
							465		470				475			
Met	Asp	Pro	Leu	Asn	Asp	Asn	Val	Thr	Ser	Leu	Leu	Asn	Ala	Ser	Ser	
							485		490				495			
Asp	Lys	Phe	Val	Ala	Asp	Leu	Trp	Lys	Asp	Val	Asp	Arg	Ile	Val	Gly	
							500		505				510			
Leu	Asp	Gln	Met	Ala	Lys	Met	Thr	Glu	Ser	Ser	Leu	Pro	Ser	Ala	Ser	
							515		520				525			
Lys	Thr	Lys	Lys	Gly	Met	Phe	Arg	Thr	Val	Gly	Gln	Leu	Tyr	Lys	Glu	
							530		535				540			
Gln	Leu	Gly	Lys	Leu	Met	Thr	Thr	Leu	Arg	Asn	Thr	Thr	Pro	Asn	Phe	
							545		550				555			

-150-

Val	Arg	Cys	Ile	Ile	Pro	Asn	His	Glu	Lys	Arg	Ser	Gly	Lys	Leu	Asp
									565						575
Ala	Phe	Leu	Val	Leu	Glu	Gln	Leu	Arg	Cys	Asn	Gly	Val	Leu	Glu	Gly
								580		585					590
Ile	Arg	Ile	Cys	Arg	Gln	Gly	Phe	Pro	Asn	Arg	Ile	Val	Phe	Gln	Glu
								595		600					605
Phe	Arg	Gln	Arg	Tyr	Glu	Ile	Leu	Ala	Ala	Asn	Ala	Ile	Pro	Lys	Gly
						610		615				620			
Phe	Met	Asp	Gly	Lys	Gln	Ala	Cys	Ile	Leu	Met	Ile	Lys	Ala	Leu	Glu
						625		630		635					640
Leu	Asp	Pro	Asn	Leu	Tyr	Arg	Ile	Gly	Gln	Ser	Lys	Ile	Phe	Phe	Arg
						645		650				655			
Thr	Gly	Val	Leu	Ala	His	Leu	Glu	Glu	Glu	Arg	Asp	Leu	Lys	Ile	Thr
						660		665				670			
Asp	Val	Ile	Met	Ala	Phe	Gln	Ala	Met	Cys	Arg	Gly	Tyr	Leu	Ala	Arg
						675		680				685			
Lys	Ala	Phe	Ala	Lys	Arg	Gln	Gln	Gln	Leu	Thr	Ala	Met	Lys	Val	Ile
						690		695				700			
Gln	Arg	Asn	Cys	Ala	Ala	Tyr	Leu	Lys	Leu	Arg	Asn	Trp	Gln	Trp	Trp
						705		710		715					720
Arg	Leu	Phe	Thr	Lys	Val	Lys	Pro	Leu	Leu	Gln	Val	Thr	Arg	Gln	Glu
						725		730				735			
Glu	Glu	Met	Gln	Ala	Lys	Glu	Asp	Glu	Leu	Gln	Lys	Thr	Lys	Glu	Arg
						740		745				750			
Gln	Gln	Lys	Ala	Glu	Asn	Glu	Leu	Lys	Glu	Leu	Glu	Gln	Lys	His	Ser
						755		760				765			
Gln	Leu	Thr	Glu	Glu	Lys	Asn	Leu	Leu	Gln	Glu	Gln	Leu	Gln	Ala	Glu
						770		775				780			
Thr	Glu	Leu	Tyr	Ala	Glu	Ala	Glu	Glu	Met	Arg	Val	Arg	Leu	Ala	Ala
						785		790		795					800
Lys	Lys	Gln	Glu	Leu	Glu	Glu	Ile	Leu	His	Glu	Met	Glu	Ala	Arg	Leu
							805		810						815
Glu	Glu	Glu	Glu	Asp	Arg	Gly	Gln	Gln	Leu	Gln	Ala	Glu	Arg	Lys	Lys
							820		825						830
Met	Ala	Gln	Gln	Met	Leu	Asp	Leu	Glu	Glu	Gln	Leu	Glu	Glu	Glu	Glu
						835		840				845			
Ala	Ala	Arg	Gln	Lys	Leu	Gln	Leu	Glu	Lys	Val	Thr	Ala	Glu	Ala	Lys
						850		855				860			
Ile	Lys	Lys	Leu	Glu	Asp	Glu	Ile	Leu	Val	Met	Asp	Asp	Gln	Asn	Asn
							865		870		875				880

-151-

Lys	Leu	Ser	Lys	Glu	Arg	Lys	Leu	Leu	Glu	Glu	Arg	Ile	Ser	Asp	Leu
							885		890						895
Thr	Thr	Asn	Leu	Ala	Glu	Glu	Glu	Lys	Ala	Lys	Asn	Leu	Thr	Lys	
							900		905						910
Leu	Lys	Asn	Lys	His	Glu	Ser	Met	Ile	Ser	Glu	Leu	Glu	Val	Arg	Leu
							915		920						925
Lys	Lys	Glu	Glu	Lys	Ser	Arg	Gln	Glu	Leu	Glu	Lys	Leu	Lys	Arg	Lys
							930		935						940
Leu	Glu	Gly	Asp	Ala	Ser	Asp	Phe	His	Glu	Gln	Ile	Ala	Asp	Leu	Gln
							945		950						960
Ala	Gln	Ile	Ala	Glu	Leu	Lys	Met	Gln	Leu	Ala	Lys	Lys	Glu	Glu	
							965		970						975
Leu	Gln	Ala	Ala	Leu	Ala	Arg	Leu	Asp	Asp	Glu	Ile	Ala	Gln	Lys	Asn
							980		985						990
Asn	Ala	Leu	Lys	Ile	Arg	Glu	Leu	Glu	Gly	His	Ile	Ser	Asp	Leu	
							995		1000						1005
Gln	Glu	Asp	Leu	Asp	Ser	Glu	Arg	Ala	Ala	Arg	Asn	Lys	Ala	Glu	
							1010		1015						1020
Lys	Gln	Lys	Arg	Asp	Leu	Gly	Glu	Glu	Leu	Glu	Ala	Leu	Lys	Thr	
							1025		1030						1035
Glu	Leu	Glu	Asp	Thr	Leu	Asp	Ser	Thr	Ala	Thr	Gln	Gln	Glu	Leu	
							1040		1045						1050
Arg	Ala	Lys	Arg	Glu	Gln	Glu	Val	Thr	Val	Leu	Lys	Lys	Ala	Leu	
							1055		1060						1065
Asp	Glu	Glu	Thr	Arg	Ser	His	Glu	Ala	Gln	Val	Gln	Glu	Met	Arg	
							1070		1075						1080
Gln	Lys	His	Ala	Gln	Ala	Val	Glu	Glu	Leu	Thr	Glu	Gln	Leu	Glu	
							1085		1090						1095
Gln	Phe	Lys	Arg	Ala	Lys	Ala	Asn	Leu	Asp	Lys	Asn	Lys	Gln	Thr	
							1100		1105						1110
Leu	Glu	Lys	Glu	Asn	Ala	Asp	Leu	Ala	Gly	Glu	Leu	Arg	Val	Leu	
							1115		1120						1125
Gly	Gln	Ala	Lys	Gln	Glu	Val	Glu	His	Lys	Lys	Lys	Lys	Leu	Glu	
							1130		1135						1140
Ala	Gln	Val	Gln	Glu	Leu	Gln	Ser	Lys	Cys	Ser	Asp	Gly	Glu	Arg	
							1145		1150						1155
Ala	Arg	Ala	Glu	Leu	Asn	Asp	Lys	Val	His	Lys	Leu	Gln	Asn	Glu	
							1160		1165						1170
Val	Glu	Ser	Val	Thr	Gly	Met	Leu	Asn	Glu	Ala	Glu	Gly	Lys	Ala	
							1175		1180						1185

-152-

Ile	Lys	Leu	Ala	Lys	Asp	Val	Ala	Ser	Leu	Ser	Ser	Gln	Leu	Gln
1190						1195						1200		
Asp	Thr	Gln	Glu	Leu	Leu	Gln	Glu	Glu	Thr	Arg	Gln	Lys	Leu	Asn
1205						1210					1215			
Val	Ser	Thr	Lys	Leu	Arg	Gln	Leu	Glu	Glu	Arg	Asn	Ser	Leu	
1220						1225					1230			
Gln	Asp	Gln	Leu	Asp	Glu	Glu	Met	Glu	Ala	Lys	Gln	Asn	Leu	Glu
1235						1240					1245			
Arg	His	Ile	Ser	Thr	Leu	Asn	Ile	Gln	Leu	Ser	Asp	Ser	Lys	Lys
1250						1255					1260			
Lys	Leu	Gln	Asp	Phe	Ala	Ser	Thr	Val	Glu	Ala	Leu	Glu	Glu	Gly
1265						1270					1275			
Lys	Lys	Arg	Phe	Gln	Lys	Glu	Ile	Glu	Asn	Leu	Thr	Gln	Gln	Tyr
1280						1285					1290			
Glu	Glu	Lys	Ala	Ala	Ala	Tyr	Asp	Lys	Leu	Glu	Lys	Thr	Lys	Asn
1295						1300					1305			
Arg	Leu	Gln	Gln	Glu	Leu	Asp	Asp	Leu	Val	Val	Asp	Leu	Asp	Asn
1310						1315					1320			
Gln	Arg	Gln	Leu	Val	Ser	Asn	Leu	Glu	Lys	Lys	Gln	Arg	Lys	Phe
1325						1330					1335			
Asp	Gln	Leu	Leu	Ala	Glu	Glu	Lys	Asn	Ile	Ser	Ser	Lys	Tyr	Ala
1340						1345					1350			
Asp	Glu	Arg	Asp	Arg	Ala	Glu	Ala	Glu	Ala	Arg	Glu	Lys	Glu	Thr
1355						1360					1365			
Lys	Ala	Leu	Ser	Leu	Ala	Arg	Ala	Leu	Glu	Glu	Ala	Leu	Glu	Ala
1370						1375					1380			
Lys	Glu	Glu	Leu	Glu	Arg	Thr	Asn	Lys	Met	Leu	Lys	Ala	Glu	Met
1385						1390					1395			
Glu	Asp	Leu	Val	Ser	Ser	Lys	Asp	Asp	Val	Gly	Lys	Asn	Val	His
1400						1405					1410			
Glu	Leu	Glu	Lys	Ser	Lys	Arg	Ala	Leu	Glu	Thr	Gln	Met	Glu	Glu
1415						1420					1425			
Met	Lys	Thr	Gln	Leu	Glu	Glu	Leu	Glu	Asp	Glu	Leu	Gln	Ala	Thr
1430						1435					1440			
Glu	Asp	Ala	Lys	Leu	Arg	Leu	Glu	Val	Asn	Met	Gln	Ala	Leu	Lys
1445						1450					1455			
Gly	Gln	Phe	Glu	Arg	Asp	Leu	Gln	Ala	Arg	Asp	Glu	Gln	Asn	Glu
1460						1465					1470			
Glu	Lys	Arg	Arg	Gln	Leu	Gln	Arg	Gln	Leu	His	Glu	Tyr	Glu	Thr
1475						1480					1485			

-153-

Glu	Leu	Glu	Asp	Glu	Arg	Lys	Gln	Arg	Ala	Leu	Ala	Ala	Ala	Ala
1490						1495						1500		
Lys	Lys	Lys	Leu	Glu	Gly	Asp	Leu	Lys	Asp	Leu	Glu	Leu	Gln	Ala
1505						1510						1515		
Asp	Ser	Ala	Ile	Lys	Gly	Arg	Glu	Glu	Ala	Ile	Lys	Gln	Leu	Arg
1520						1525						1530		
Lys	Leu	Gln	Ala	Gln	Met	Lys	Asp	Phe	Gln	Arg	Glu	Leu	Glu	Asp
1535						1540						1545		
Ala	Arg	Ala	Ser	Arg	Asp	Glu	Ile	Phe	Ala	Thr	Ala	Lys	Glu	Asn
1550						1555						1560		
Glu	Lys	Lys	Ala	Lys	Ser	Leu	Glu	Ala	Asp	Leu	Met	Gln	Leu	Gln
1565						1570						1575		
Glu	Asp	Leu	Ala	Ala	Ala	Glu	Arg	Ala	Arg	Lys	Gln	Ala	Asp	Leu
1580						1585						1590		
Glu	Lys	Glu	Glu	Leu	Ala	Glu	Glu	Leu	Ala	Ser	Ser	Leu	Ser	Gly
1595						1600						1605		
Arg	Asn	Ala	Leu	Gln	Asp	Glu	Lys	Arg	Arg	Leu	Glu	Ala	Arg	Ile
1610						1615						1620		
Ala	Gln	Leu	Glu	Glu	Glu	Leu	Glu	Glu	Gln	Gly	Asn	Met	Glu	
1625						1630						1635		
Ala	Met	Ser	Asp	Arg	Val	Arg	Lys	Ala	Thr	Gln	Gln	Ala	Glu	Gln
1640						1645						1650		
Leu	Ser	Asn	Glu	Leu	Ala	Thr	Glu	Arg	Ser	Thr	Ala	Gln	Lys	Asn
1655						1660						1665		
Glu	Ser	Ala	Arg	Gln	Gln	Leu	Glu	Arg	Gln	Asn	Lys	Glu	Leu	Arg
1670						1675						1680		
Ser	Lys	Leu	His	Glu	Met	Glu	Gly	Ala	Val	Lys	Ser	Lys	Phe	Lys
1685						1690						1695		
Ser	Thr	Ile	Ala	Ala	Leu	Glu	Ala	Lys	Ile	Ala	Gln	Leu	Glu	Glu
1700						1705						1710		
Gln	Val	Glu	Gln	Glu	Ala	Arg	Glu	Lys	Gln	Ala	Ala	Thr	Lys	Ser
1715						1720						1725		
Leu	Lys	Gln	Lys	Asp	Lys	Lys	Leu	Lys	Glu	Ile	Leu	Leu	Gln	Val
1730						1735						1740		
Glu	Asp	Glu	Arg	Lys	Met	Ala	Glu	Gln	Tyr	Lys	Glu	Gln	Ala	Glu
1745						1750						1755		
Lys	Gly	Asn	Ala	Arg	Val	Lys	Gln	Leu	Lys	Arg	Gln	Leu	Glu	Glu
1760						1765						1770		
Ala	Glu	Glu	Glu	Ser	Gln	Arg	Ile	Asn	Ala	Asn	Arg	Arg	Lys	Leu
1775						1780						1785		

-154-

Gln Arg Glu Leu Asp Glu Ala Thr Glu Ser Asn Glu Ala Met Gly
 1790 1795 1800

Arg Glu Val Asn Ala Leu Lys Ser Lys Leu Arg Arg Gly Asn Glu
 1805 1810 1815

Thr Ser Phe Val Pro Ser Arg Arg Ser Gly Gly Arg Arg Val Ile
 1820 1825 1830

Glu Asn Ala Asp Gly Ser Glu Glu Glu Thr Asp Thr Arg Asp Ala
 1835 1840 1845

Asp Phe Asn Gly Thr Lys Ala Ser Glu
 1850 1855

<210> 92

<211> 1953

<212> PRT

<213> Homo Sapiens

<400> 92

Gly Cys Leu Cys Cys Ser Ser Glu Gln Leu Gln Glu Leu Pro Ser Arg
 1 5 10 15

Glu Leu Gln Asp Ala Phe Pro Val Pro Leu Ala Gln Leu Pro Gln Gln
 20 25 30

Thr Thr Glu Lys Thr Val Thr Met Gly Asp Val Lys Leu Val Ala Ser
 35 40 45

Ser His Ile Ser Lys Thr Ser Leu Ser Val Asp Pro Ser Arg Val Asp
 50 55 60

Ser Met Pro Leu Thr Glu Ala Pro Ala Phe Ile Leu Pro Pro Arg Asn
 65 70 75 80

Leu Cys Ile Lys Glu Gly Ala Thr Ala Lys Phe Glu Gly Arg Val Arg
 85 90 95

Gly Tyr Pro Glu Pro Gln Val Thr Trp His Arg Asn Gly Gln Pro Ile
 100 105 110

Thr Ser Gly Gly Arg Phe Leu Leu Asp Cys Gly Ile Arg Gly Thr Phe
 115 120 125

Ser Leu Val Ile His Ala Val His Glu Glu Asp Arg Gly Lys Tyr Thr
 130 135 140

Cys Glu Ala Thr Asn Gly Ser Gly Ala Arg Gln Val Thr Val Glu Leu
 145 150 155 160

Thr Val Glu Gly Ser Phe Ala Lys Gln Leu Gly Gln Pro Val Val Ser
 165 170 175

Lys Thr Leu Gly Asp Arg Phe Ser Ala Ser Ala Val Glu Thr Arg Pro
 180 185 190

Ser Ile Trp Gly Glu Cys Pro Pro Lys Phe Ala Thr Lys Leu Gly Arg
 195 200 205

-155-

Val	Val	Val	Lys	Glu	Gly	Gln	Met	Gly	Arg	Phe	Ser	Cys	Lys	Ile	Thr
210						215							220		
Gly	Arg	Pro	Gln	Pro	Gln	Val	Thr	Trp	Leu	Lys	Gly	Asn	Val	Pro	Leu
225						230				235				240	
Gln	Pro	Ser	Ala	Arg	Val	Ser	Val	Ser	Glu	Lys	Asn	Gly	Met	Gln	Val
					245				250				255		
Leu	Glu	Ile	His	Gly	Val	Asn	Gln	Asp	Asp	Val	Gly	Val	Tyr	Thr	Cys
					260			265				270			
Leu	Val	Val	Asn	Gly	Ser	Gly	Lys	Ala	Ser	Met	Ser	Ala	Glu	Leu	Ser
						275		280				285			
Ile	Gln	Gly	Leu	Asp	Ser	Ala	Asn	Arg	Ser	Phe	Val	Arg	Glu	Thr	Lys
						290		295			300				
Ala	Thr	Asn	Ser	Asp	Val	Arg	Lys	Glu	Val	Thr	Asn	Val	Ile	Ser	Lys
					305		310			315			320		
Glu	Ser	Lys	Leu	Asp	Ser	Leu	Glu	Ala	Ala	Ala	Lys	Ser	Lys	Asn	Cys
					325			330				335			
Ser	Ser	Pro	Gln	Arg	Gly	Gly	Ser	Pro	Pro	Trp	Ala	Ala	Asn	Ser	Gln
					340			345			350				
Pro	Gln	Pro	Pro	Arg	Glu	Ser	Lys	Leu	Glu	Ser	Cys	Lys	Asp	Ser	Pro
					355		360				365				
Arg	Thr	Ala	Pro	Gln	Thr	Pro	Val	Leu	Gln	Lys	Thr	Ser	Ser	Ile	
					370		375			380					
Thr	Leu	Gln	Ala	Ala	Arg	Val	Gln	Pro	Glu	Pro	Arg	Ala	Pro	Gly	Leu
					385		390			395			400		
Gly	Val	Leu	Ser	Pro	Ser	Gly	Glu	Glu	Arg	Lys	Arg	Pro	Ala	Pro	Pro
					405			410			415				
Arg	Pro	Ala	Thr	Phe	Pro	Thr	Arg	Gln	Pro	Gly	Leu	Gly	Ser	Gln	Asp
					420			425			430				
Val	Val	Ser	Lys	Ala	Ala	Asn	Arg	Arg	Ile	Pro	Met	Glu	Gly	Gln	Arg
					435			440			445				
Asp	Ser	Ala	Phe	Pro	Lys	Phe	Glu	Ser	Lys	Pro	Gln	Ser	Gln	Glu	Val
					450			455			460				
Lys	Glu	Asn	Gln	Thr	Val	Lys	Phe	Arg	Cys	Glu	Val	Ser	Gly	Ile	Pro
					465		470			475			480		
Lys	Pro	Glu	Val	Ala	Trp	Phe	Leu	Glu	Gly	Thr	Pro	Val	Arg	Arg	Gln
					485			490			495				
Glu	Gly	Ser	Ile	Glu	Val	Tyr	Glu	Asp	Ala	Gly	Ser	His	Tyr	Leu	Cys
					500			505			510				
Leu	Leu	Lys	Ala	Arg	Thr	Arg	Asp	Ser	Gly	Thr	Tyr	Ser	Cys	Thr	Ala
					515			520			525				

Ser Asn Ala Gln Gly Gln Val Ser Cys Ser Trp Thr Leu Gln Val Glu
 530 535 540
 Arg Leu Ala Val Met Glu Val Ala Pro Ser Phe Ser Ser Val Leu Lys
 545 550 555 560
 Asp Cys Ala Val Ile Glu Gly Gln Asp Phe Val Leu Gln Cys Ser Val
 565 570 575
 Arg Gly Thr Pro Val Pro Arg Ile Thr Trp Leu Leu Asn Gly Gln Pro
 580 585 590
 Ile Gln Tyr Ala Arg Ser Thr Cys Glu Ala Gly Val Ala Glu Leu His
 595 600 605
 Ile Gln Asp Ala Leu Pro Glu Asp His Gly Thr Tyr Thr Cys Leu Ala
 610 615 620
 Glu Asn Ala Leu Gly Gln Val Ser Cys Ser Ala Trp Val Thr Val His
 625 630 635 640
 Glu Lys Lys Ser Ser Arg Lys Ser Glu Tyr Leu Leu Pro Val Ala Pro
 645 650 655
 Ser Lys Pro Thr Ala Pro Ile Phe Leu Gln Gly Leu Ser Asp Leu Lys
 660 665 670
 Val Met Asp Gly Ser Gln Val Thr Met Thr Val Gln Val Ser Gly Asn
 675 680 685
 Pro Pro Pro Glu Val Ile Trp Leu His Asn Gly Asn Glu Ile Gln Glu
 690 695 700
 Ser Glu Asp Phe His Phe Glu Gln Arg Gly Thr Gln His Ser Leu Trp
 705 710 715 720
 Ile Gln Glu Val Phe Pro Glu Asp Thr Gly Thr Tyr Thr Cys Glu Ala
 725 730 735
 Trp Asn Ser Ala Gly Glu Val Arg Thr Gln Ala Val Leu Thr Val Gln
 740 745 750
 Glu Pro His Asp Gly Thr Gln Pro Trp Phe Ile Ser Lys Pro Arg Ser
 755 760 765
 Val Thr Ala Ser Leu Gly Gln Ser Val Leu Ile Ser Cys Ala Ile Ala
 770 775 780
 Gly Asp Pro Phe Pro Thr Val His Trp Leu Arg Asp Gly Lys Ala Leu
 785 790 795 800
 Cys Lys Asp Thr Gly His Phe Glu Val Leu Gln Asn Glu Asp Val Phe
 805 810 815
 Thr Leu Val Leu Lys Lys Val Gln Pro Trp His Ala Gly Gln Tyr Glu
 820 825 830
 Ile Leu Leu Lys Asn Arg Val Gly Glu Cys Ser Cys Gln Val Ser Leu
 835 840 845

Met Leu Gln Asn Ser Ser Ala Arg Ala Leu Pro Arg Gly Arg Glu Pro
 850 855 860
 Ala Ser Cys Glu Asp Leu Cys Gly Gly Val Gly Ala Asp Gly Gly
 865 870 875 880
 Gly Ser Asp Arg Tyr Gly Ser Leu Arg Pro Gly Trp Pro Ala Arg Gly
 885 890 895
 Gln Gly Trp Leu Glu Glu Asp Gly Glu Asp Val Arg Gly Val Leu
 900 905 910
 Lys Arg Arg Val Glu Thr Arg Gln His Thr Glu Glu Ala Ile Arg Gln
 915 920 925
 Gln Glu Val Glu Gln Leu Asp Phe Arg Asp Leu Leu Gly Lys Lys Val
 930 935 940
 Ser Thr Lys Thr Leu Ser Glu Asp Asp Leu Lys Glu Ile Pro Ala Glu
 945 950 955 960
 Gln Met Asp Phe Arg Ala Asn Leu Gln Arg Gln Val Lys Pro Lys Thr
 965 970 975
 Val Ser Glu Glu Glu Arg Lys Val His Ser Pro Gln Gln Val Asp Phe
 980 985 990
 Arg Ser Val Leu Ala Lys Lys Gly Thr Ser Lys Thr Pro Val Pro Glu
 995 1000 1005
 Lys Val Pro Pro Pro Lys Pro Ala Thr Pro Asp Phe Arg Ser Val
 1010 1015 1020
 Leu Gly Gly Lys Lys Lys Leu Pro Ala Glu Asn Gly Ser Ser Ser
 1025 1030 1035
 Ala Glu Thr Leu Asn Ala Lys Ala Val Glu Ser Ser Lys Pro Leu
 1040 1045 1050
 Ser Asn Ala Gln Pro Ser Gly Pro Leu Lys Pro Val Gly Asn Ala
 1055 1060 1065
 Lys Pro Ala Glu Thr Leu Lys Pro Met Gly Asn Ala Lys Pro Ala
 1070 1075 1080
 Glu Thr Leu Lys Pro Met Gly Asn Ala Lys Pro Asp Glu Asn Leu
 1085 1090 1095
 Lys Ser Ala Ser Lys Glu Glu Leu Lys Lys Asp Val Lys Asn Asp
 1100 1105 1110
 Val Asn Cys Lys Arg Gly His Ala Gly Thr Thr Asp Asn Glu Lys
 1115 1120 1125
 Arg Ser Glu Ser Gln Gly Thr Ala Pro Ala Phe Lys Gln Lys Leu
 1130 1135 1140
 Gln Asp Val His Val Ala Glu Gly Lys Lys Leu Leu Leu Gln Cys
 1145 1150 1155

Gln Val Ser Ser Asp Pro Pro Ala Thr Ile Ile Trp Thr Leu Asn
 1160 1165 1170
 Gly Lys Thr Leu Lys Thr Thr Lys Phe Ile Ile Leu Ser Gln Glu
 1175 1180 1185
 Gly Ser Leu Cys Ser Val Ser Ile Glu Lys Ala Leu Pro Glu Asp
 1190 1195 1200
 Arg Gly Leu Tyr Lys Cys Val Ala Lys Asn Asp Ala Gly Gln Ala
 1205 1210 1215
 Glu Cys Ser Cys Gln Val Thr Val Asp Asp Ala Pro Ala Ser Glu
 1220 1225 1230
 Asn Thr Lys Ala Pro Glu Met Lys Ser Arg Arg Pro Lys Ser Ser
 1235 1240 1245
 Leu Pro Pro Val Leu Gly Thr Glu Ser Asp Ala Thr Val Lys Lys
 1250 1255 1260
 Lys Pro Ala Pro Lys Thr Pro Pro Lys Ala Ala Met Pro Pro Gln
 1265 1270 1275
 Ile Ile Gln Phe Pro Glu Asp Gln Lys Val Arg Ala Gly Glu Ser
 1280 1285 1290
 Val Glu Leu Phe Gly Lys Val Thr Gly Thr Gln Pro Ile Thr Cys
 1295 1300 1305
 Thr Trp Met Lys Phe Arg Lys Gln Ile Gln Glu Ser Glu His Met
 1310 1315 1320
 Lys Val Glu Asn Ser Glu Asn Gly Ser Lys Leu Thr Ile Leu Ala
 1325 1330 1335
 Ala Arg Gln Glu His Cys Gly Cys Tyr Thr Leu Leu Val Glu Asn
 1340 1345 1350
 Lys Leu Gly Ser Arg Gln Ala Gln Val Asn Leu Thr Val Val Asp
 1355 1360 1365
 Lys Pro Asp Pro Pro Ala Gly Thr Pro Cys Ala Ser Asp Ile Arg
 1370 1375 1380
 Ser Ser Ser Leu Thr Leu Ser Trp Tyr Gly Ser Ser Tyr Asp Gly
 1385 1390 1395
 Gly Ser Ala Val Gln Ser Tyr Ser Ile Glu Ile Trp Asp Ser Ala
 1400 1405 1410
 Asn Lys Thr Trp Lys Glu Leu Ala Thr Cys Arg Ser Thr Ser Phe
 1415 1420 1425
 Asn Val Gln Asp Leu Leu Pro Asp His Glu Tyr Lys Phe Arg Val
 1430 1435 1440
 Arg Ala Ile Asn Val Tyr Gly Thr Ser Glu Pro Ser Gln Glu Ser
 1445 1450 1455

Glu Leu Thr Thr Val Gly Glu Lys Pro Glu Glu Pro Lys Asp Glu
 1460 1465 1470
 Val Glu Val Ser Asp Asp Asp Glu Lys Glu Pro Glu Val Asp Tyr
 1475 1480 1485
 Arg Thr Val Thr Ile Asn Thr Glu Gln Lys Val Ser Asp Phe Tyr
 1490 1495 1500
 Asp Ile Glu Glu Arg Leu Gly Ser Gly Lys Phe Gly Gln Val Phe
 1505 1510 1515
 Arg Leu Val Glu Lys Lys Thr Arg Lys Val Trp Ala Gly Lys Phe
 1520 1525 1530
 Phe Lys Ala Tyr Ser Ala Lys Glu Lys Glu Asn Ile Arg Gln Glu
 1535 1540 1545
 Ile Ser Ile Met Asn Cys Leu His His Pro Lys Leu Val Gln Cys
 1550 1555 1560
 Val Asp Ala Phe Glu Glu Lys Ala Asn Ile Val Met Val Leu Glu
 1565 1570 1575
 Ile Val Ser Gly Gly Glu Leu Phe Glu Arg Ile Ile Asp Glu Asp
 1580 1585 1590
 Phe Glu Leu Thr Glu Arg Glu Cys Ile Lys Tyr Met Arg Gln Ile
 1595 1600 1605
 Ser Glu Gly Val Glu Tyr Ile His Lys Gln Gly Ile Val His Leu
 1610 1615 1620
 Asp Leu Lys Pro Glu Asn Ile Met Cys Val Asn Lys Thr Gly Thr
 1625 1630 1635
 Arg Ile Lys Leu Ile Asp Phe Gly Leu Ala Arg Arg Leu Glu Asn
 1640 1645 1650
 Ala Gly Ser Leu Lys Val Leu Phe Gly Thr Pro Glu Phe Val Ala
 1655 1660 1665
 Pro Glu Val Ile Asn Tyr Glu Pro Ile Gly Tyr Ala Thr Asp Met
 1670 1675 1680
 Trp Ser Ile Gly Val Ile Cys Tyr Ile Leu Val Ser Gly Leu Ser
 1685 1690 1695
 Pro Phe Met Gly Asp Asn Asp Asn Glu Thr Leu Ala Asn Val Thr
 1700 1705 1710
 Ser Ala Thr Trp Asp Phe Asp Asp Glu Ala Phe Asp Glu Ile Ser
 1715 1720 1725
 Asp Asp Ala Lys Asp Phe Ile Ser Asn Leu Leu Lys Lys Asp Met
 1730 1735 1740
 Lys Asn Arg Leu Asp Cys Thr Gln Cys Leu Gln His Pro Trp Leu
 1745 1750 1755

-160-

Met Lys Asp Thr Lys Asn Met Glu Ala Lys Lys Leu Ser Lys Asp
 1760 1765 1770
 Arg Met Lys Lys Tyr Met Ala Arg Arg Lys Trp Gln Lys Thr Gly
 1775 1780 1785
 Asn Ala Val Arg Ala Ile Gly Arg Leu Ser Ser Met Ala Met Ile
 1790 1795 1800
 Ser Gly Leu Ser Gly Arg Lys Ser Ser Thr Gly Ser Pro Thr Ser
 1805 1810 1815
 Pro Leu Asn Ala Glu Lys Leu Glu Ser Glu Glu Asp Val Ser Gln
 1820 1825 1830
 Ala Phe Leu Glu Ala Val Ala Glu Glu Lys Pro His Val Lys Pro
 1835 1840 1845
 Tyr Phe Ser Lys Thr Ile Arg Asp Leu Glu Val Val Glu Gly Ser
 1850 1855 1860
 Ala Ala Arg Phe Asp Cys Lys Ile Glu Gly Tyr Pro Asp Pro Glu
 1865 1870 1875
 Val Val Trp Phe Lys Asp Asp Gln Ser Ile Arg Glu Ser Arg His
 1880 1885 1890
 Phe Gln Ile Asp Tyr Asp Glu Asp Gly Asn Cys Ser Leu Ile Ile
 1895 1900 1905
 Ser Asp Val Cys Gly Asp Asp Asp Ala Lys Tyr Thr Cys Lys Ala
 1910 1915 1920
 Val Asn Ser Leu Gly Glu Ala Thr Cys Thr Ala Glu Leu Ile Val
 1925 1930 1935
 Glu Thr Met Glu Glu Gly Glu Gly Glu Gly Glu Glu Glu Glu Glu
 1940 1945 1950
 <210> 93
 <211> 901
 <212> PRT
 <213> Homo Sapiens
 <400> 93
 Val Gly Arg Ala Arg Ala Pro Gly Ala Gln Val Gly Ala Gly Ala Met
 1 5 10 15
 Glu Pro Pro Thr Val Pro Ser Glu Arg Ser Leu Ser Leu Ser Leu Pro
 20 25 30
 Gly Pro Arg Glu Gly Gln Ala Thr Leu Lys Pro Pro Pro Gln His Leu
 35 40 45
 Trp Arg Gln Pro Arg Thr Pro Ile Arg Ile Gln Gln Arg Gly Tyr Ser
 50 55 60
 Asp Ser Ala Glu Arg Ala Glu Arg Glu Arg Gln Pro His Arg Pro Ile

-161-

65	70	75	80
Glu Arg Ala Asp Ala Met Asp Thr Ser Asp Arg Pro Gly Leu Arg Thr			
85	90		95
Thr Arg Met Ser Trp Pro Ser Ser Phe His Gly Thr Gly Thr Gly Ser			
100	105		110
Gly Gly Ala Gly Gly Ser Ser Arg Arg Phe Glu Ala Glu Asn Gly			
115	120		125
Pro Thr Pro Ser Pro Gly Arg Ser Pro Leu Asp Ser Gln Ala Ser Pro			
130	135		140
Gly Leu Val Leu His Ala Gly Ala Ala Thr Ser Gln Arg Arg Glu Ser			
145	150	155	160
Phe Leu Tyr Arg Ser Asp Ser Asp Tyr Asp Met Ser Pro Lys Thr Met			
165	170		175
Ser Arg Asn Ser Ser Val Thr Ser Glu Ala His Ala Glu Asp Leu Ile			
180	185		190
Val Thr Pro Phe Ala Gln Val Leu Ala Ser Leu Arg Ser Val Arg Ser			
195	200		205
Asn Phe Ser Leu Leu Thr Asn Val Pro Val Pro Ser Asn Lys Arg Ser			
210	215		220
Pro Leu Gly Gly Pro Thr Pro Val Cys Lys Ala Thr Leu Ser Glu Glu			
225	230	235	240
Thr Cys Gln Gln Leu Ala Arg Glu Thr Leu Glu Glu Leu Asp Trp Cys			
245	250		255
Leu Glu Gln Leu Glu Thr Met Gln Thr Tyr Arg Ser Val Ser Glu Met			
260	265		270
Ala Ser His Lys Phe Lys Arg Met Leu Asn Arg Glu Leu Thr His Leu			
275	280		285
Ser Glu Met Ser Arg Ser Gly Asn Gln Val Ser Glu Tyr Ile Ser Thr			
290	295	300	
Thr Phe Leu Asp Lys Gln Asn Glu Val Glu Ile Pro Ser Pro Thr Met			
305	310	315	320
Lys Glu Arg Glu Lys Gln Gln Ala Pro Arg Pro Arg Pro Ser Gln Pro			
325	330		335
Pro Pro Pro Pro Val Pro His Leu Gln Pro Met Ser Gln Ile Thr Gly			
340	345		350
Leu Lys Lys Leu Met His Ser Asn Ser Leu Asn Asn Ser Asn Ile Pro			
355	360		365
Arg Phe Gly Val Lys Thr Asp Gln Glu Glu Leu Leu Ala Gln Glu Leu			
370	375		380
Glu Asn Leu Asn Lys Trp Gly Leu Asn Ile Phe Cys Val Ser Asp Tyr			

-162-

385	390	395	400
Ala Gly Gly Arg Ser Leu Thr Cys Ile Met Tyr Met Ile Phe Gln Glu			
405	410	415	
Arg Asp Leu Leu Lys Lys Phe Arg Ile Pro Val Asp Thr Met Val Thr			
420	425	430	
Tyr Met Leu Thr Leu Glu Asp His Tyr His Ala Asp Val Ala Tyr His			
435	440	445	
Asn Ser Leu His Ala Ala Asp Val Leu Gln Ser Thr His Val Leu Leu			
450	455	460	
Ala Thr Pro Ala Leu Asp Ala Val Phe Thr Asp Leu Glu Ile Leu Ala			
465	470	475	480
Ala Leu Phe Ala Ala Ala Ile His Asp Val Asp His Pro Gly Val Ser			
485	490	495	
Asn Gln Phe Leu Ile Asn Thr Asn Ser Glu Leu Ala Leu Met Tyr Asn			
500	505	510	
Asp Glu Ser Val Leu Glu Asn His His Leu Ala Val Gly Phe Lys Leu			
515	520	525	
Leu Gln Glu Asp Asn Cys Asp Ile Phe Gln Asn Leu Ser Lys Arg Gln			
530	535	540	
Arg Gln Ser Leu Arg Lys Met Val Ile Asp Met Val Leu Ala Thr Asp			
545	550	555	560
Met Ser Lys His Met Thr Leu Leu Ala Asp Leu Lys Thr Met Val Glu			
565	570	575	
Thr Lys Lys Val Thr Ser Ser Gly Val Leu Leu Leu Asp Asn Tyr Ser			
580	585	590	
Asp Arg Ile Gln Val Leu Arg Asn Met Val His Cys Ala Asp Leu Ser			
595	600	605	
Asn Pro Thr Lys Pro Leu Glu Leu Tyr Arg Gln Trp Thr Asp Arg Ile			
610	615	620	
Met Ala Glu Phe Phe Gln Gln Gly Asp Arg Glu Arg Glu Arg Gly Met			
625	630	635	640
Glu Ile Ser Pro Met Cys Asp Lys His Thr Ala Ser Val Glu Lys Ser			
645	650	655	
Gln Val Gly Phe Ile Asp Tyr Ile Val His Pro Leu Trp Glu Thr Trp			
660	665	670	
Ala Asp Leu Val His Pro Asp Ala Gln Glu Ile Leu Asp Thr Leu Glu			
675	680	685	
Asp Asn Arg Asp Trp Tyr Tyr Ser Ala Ile Arg Gln Ser Pro Ser Pro			
690	695	700	
Pro Pro Glu Glu Glu Ser Arg Gly Pro Gly His Pro Pro Leu Pro Asp			

-163-

705	710	715	720
Lys Phe Gln Phe Glu Leu Thr Leu Glu Glu Glu Glu Glu Glu Ile			
725	730	735	
Ser Met Ala Gln Ile Pro Cys Thr Ala Gln Glu Ala Leu Thr Ala Gln			
740	745	750	
Gly Leu Ser Gly Val Glu Glu Ala Leu Asp Ala Thr Ile Ala Trp Glu			
755	760	765	
Ala Ser Pro Ala Gln Glu Ser Leu Glu Val Met Ala Gln Glu Ala Ser			
770	775	780	
Leu Glu Ala Glu Leu Glu Ala Val Tyr Leu Thr Gln Gln Ala Gln Ser			
785	790	795	800
Thr Gly Ser Ala Pro Val Ala Pro Asp Glu Phe Ser Ser Arg Glu Glu			
805	810	815	
Phe Val Val Ala Val Ser His Ser Ser Pro Ser Ala Leu Ala Leu Gln			
820	825	830	
Ser Pro Leu Leu Pro Ala Trp Arg Thr Leu Ser Val Ser Glu His Ala			
835	840	845	
Pro Gly Leu Pro Gly Leu Pro Ser Thr Ala Ala Glu Val Glu Ala Gln			
850	855	860	
Arg Glu His Gln Ala Ala Lys Arg Ala Cys Ser Ala Cys Ala Gly Thr			
865	870	875	880
Phe Gly Glu Asp Thr Ser Ala Leu Pro Ala Pro Gly Gly Gly Ser			
885	890	895	
Gly Gly Asp Pro Thr			
900			
<210> 94			
<211> 702			
<212> PRT			
<213> Homo Sapiens			
<400> 94			
Pro Ala Ser Gly Arg Ala Pro Gln Pro Gly Arg Cys Thr Cys Gln Gly			
1	5	10	15
Asn Lys Leu Glu Glu Gln Asp Pro Arg Pro Leu Gln Pro Ile Pro Gly			
20	25	30	
Leu Met Glu Gly Asn Lys Leu Glu Glu Gln Asp Ser Ser Pro Pro Gln			
35	40	45	
Ser Thr Pro Gly Leu Met Lys Gly Asn Lys Arg Glu Glu Gln Gly Leu			
50	55	60	
Gly Pro Glu Pro Ala Ala Pro Gln Gln Pro Thr Ala Glu Glu Ala			
65	70	75	80

-164-

Leu	Ile	Glu	Phe	His	Arg	Ser	Tyr	Arg	Glu	Leu	Phe	Glu	Phe	Phe	Cys
85	90	95
Asn	Asn	Thr	Thr	Ile	His	Gly	Ala	Ile	Arg	Leu	Val	Cys	Ser	Gln	His
100	105	110	
Asn	Arg	Met	Lys	Thr	Ala	Phe	Trp	Ala	Val	Leu	Trp	Leu	Cys	Thr	Phe
115	120	125	.	.	
Gly	Met	Met	Tyr	Trp	Gln	Phe	Gly	Leu	Leu	Phe	Gly	Glu	Tyr	Phe	Ser
130	135	140	
Tyr	Pro	Val	Ser	Leu	Asn	Ile	Asn	Leu	Asn	Ser	Asp	Lys	Leu	Val	Phe
145	.	.	.	150	155	.	.	.	160	
Pro	Ala	Val	Thr	Ile	Cys	Thr	Leu	Asn	Pro	Tyr	Arg	Tyr	Pro	Glu	Ile
165	170	175	.	
Lys	Glu	Glu	Leu	Glu	Glu	Leu	Asp	Arg	Ile	Thr	Glu	Gln	Thr	Leu	Phe
180	185	190	.	
Asp	Leu	Tyr	Lys	Tyr	Ser	Ser	Phe	Thr	Thr	Leu	Val	Ala	Gly	Ser	Arg
195	200	205	.	.	.	
Ser	Arg	Arg	Asp	Leu	Arg	Gly	Thr	Leu	Pro	His	Pro	Leu	Gln	Arg	Leu
210	215	220	
Arg	Val	Pro	Pro	Pro	Pro	His	Gly	Ala	Arg	Arg	Ala	Arg	Ser	Val	Ala
225	230	.	.	.	235	240	
Ser	Ser	Leu	Arg	Asp	Asn	Asn	Pro	Gln	Val	Asp	Trp	Lys	Asp	Trp	Lys
245	250	255	.	.	
Ile	Gly	Phe	Gln	Leu	Cys	Asn	Gln	Asn	Lys	Ser	Asp	Cys	Phe	Tyr	Gln
260	265	.	.	.	270	
Thr	Tyr	Ser	Ser	Gly	Val	Asp	Ala	Val	Arg	Glu	Trp	Tyr	Arg	Phe	His
275	280	.	.	285	
Tyr	Ile	Asn	Ile	Leu	Ser	Arg	Ile	Pro	Glu	Thr	Leu	Pro	Ser	Leu	Glu
290	295	.	.	.	300	
Glu	Asp	Thr	Leu	Gly	Asn	Phe	Ile	Phe	Ala	Cys	Arg	Phe	Asn	Gln	Val
305	310	.	.	.	315	.	.	.	320	.	
Ser	Cys	Asn	Gln	Ala	Asn	Tyr	Ser	His	Phe	His	His	Pro	Met	Tyr	Gly
325	330	.	.	.	335	
Asn	Cys	Tyr	Thr	Phe	Asn	Asp	Lys	Asn	Asn	Ser	Asn	Leu	Trp	Met	Ser
340	345	.	.	.	350	
Ser	Met	Pro	Gly	Ile	Asn	Asn	Gly	Leu	Ser	Leu	Met	Leu	Arg	Ala	Glu
355	360	.	.	365	
Gln	Asn	Asp	Phe	Ile	Pro	Leu	Leu	Ser	Thr	Val	Thr	Gly	Ala	Arg	Val
370	375	.	.	380	
Met	Val	His	Gly	Gln	Asp	Glu	Pro	Ala	Phe	Met	Asp	Asp	Gly	Gly	Phe
385	390	.	.	.	395	400	

-165-

Asn Leu Arg Pro Gly Val Glu Thr Ser Ile Ser Met Arg Lys Glu Thr
 405 410 415
 Leu Asp Arg Leu Gly Gly Asp Tyr Gly Asp Cys Thr Lys Asn Gly Ser
 420 425 430
 Asp Val Pro Val Glu Asn Leu Tyr Pro Ser Lys Tyr Thr Gln Gln Val
 435 440 445
 Cys Ile His Ser Cys Phe Gln Glu Ser Met Ile Lys Glu Cys Gly Cys
 450 455 460
 Ala Tyr Ile Phe Tyr Pro Arg Pro Gln Asn Val Glu Tyr Cys Asp Tyr
 465 470 475 480
 Arg Lys His Ser Ser Trp Gly Tyr Cys Tyr Tyr Lys Leu Gln Val Asp
 485 490 495
 Phe Ser Ser Asp His Leu Gly Cys Phe Thr Lys Cys Arg Lys Pro Cys
 500 505 510
 Ser Val Thr Ser Tyr Gln Leu Ser Ala Gly Tyr Ser Arg Trp Pro Ser
 515 520 525
 Val Thr Ser Gln Glu Trp Val Phe Gln Met Leu Ser Arg Gln Asn Asn
 530 535 540
 Tyr Thr Val Asn Asn Lys Arg Asn Gly Val Ala Lys Val Asn Ile Phe
 545 550 555 560
 Phe Lys Glu Leu Asn Tyr Lys Thr Asn Ser Glu Ser Pro Ser Val Thr
 565 570 575
 Met Val Thr Leu Leu Ser Asn Leu Gly Ser Gln Trp Ser Leu Trp Phe
 580 585 590
 Gly Ser Ser Val Leu Ser Val Val Glu Met Ala Glu Leu Val Phe Asp
 595 600 605
 Leu Leu Val Ile Met Phe Leu Met Leu Leu Arg Arg Phe Arg Ser Arg
 610 615 620
 Tyr Trp Ser Pro Gly Arg Gly Arg Gly Ala Gln Glu Val Ala Ser
 625 630 635 640
 Thr Leu Ala Ser Ser Pro Pro Ser His Phe Cys Pro His Pro Met Ser
 645 650 655
 Leu Ser Leu Ser Gln Pro Gly Pro Ala Pro Ser Pro Ala Leu Thr Ala
 660 665 670
 Pro Pro Pro Ala Tyr Ala Thr Leu Gly Pro Arg Pro Ser Pro Gly Gly
 675 680 685
 Ser Ala Gly Ala Ser Ser Ser Thr Cys Pro Leu Gly Gly Pro
 690 695 700
 <210> 95
 <211> 109
 <212> PRT

-166-

<213> Homo Sapiens

<400> 95

Ala	Tyr	Ser	Arg	Gly	Thr	Ser	Ser	Leu	Ser	Thr	Met	Asn	Gln	Thr	Ala
1				5					10					15	
Ile	Leu	Ile	Cys	Cys	Leu	Ile	Phe	Leu	Thr	Leu	Ser	Gly	Ile	Gln	Gly
					20			25					30		
Val	Pro	Leu	Ser	Arg	Thr	Val	Arg	Cys	Thr	Cys	Ile	Ser	Ile	Ser	Asn
					35			40				45			
Gln	Pro	Val	Asn	Pro	Arg	Ser	Leu	Glu	Lys	Leu	Glu	Ile	Ile	Pro	Ala
					50			55			60				
Ser	Gln	Phe	Cys	Pro	Arg	Val	Glu	Ile	Ile	Ala	Thr	Met	Lys	Lys	Lys
					65			70			75		80		
Gly	Glu	Lys	Arg	Cys	Leu	Asn	Pro	Glu	Ser	Lys	Ala	Ile	Lys	Asn	Leu
					85				90				95		
Leu	Lys	Ala	Val	Ser	Lys	Glu	Met	Ser	Lys	Arg	Ser	Pro			
					100			105							

<210> 96

<211> 249

<212> PRT

<213> Homo Sapiens

<400> 96

Glu	Phe	Pro	Glu	Glu	Ala	Asn	Pro	Ala	Gly	Ile	Arg	Ala	Ile	Arg	Thr	
1					5				10				15			
Ala	Thr	Met	Thr	Val	Gly	Lys	Ser	Ser	Lys	Met	Leu	Gln	His	Ile	Asp	
					20			25				30				
Tyr	Arg	Met	Arg	Cys	Ile	Leu	Gln	Asp	Gly	Arg	Ile	Phe	Ile	Gly	Thr	
					35			40				45				
Phe	Lys	Ala	Phe	Asp	Lys	His	Met	Asn	Leu	Ile	Leu	Cys	Asp	Cys	Asp	
					50			55			60					
Glu	Phe	Arg	Lys	Ile	Lys	Pro	Lys	Asn	Ser	Lys	Gln	Ala	Glu	Arg	Glu	
					65			70			75		80			
Glu	Lys	Arg	Val	Leu	Gly	Leu	Val	Leu	Leu	Arg	Gly	Glu	Asn	Leu	Val	
					85			90				95				
Ser	Met	Thr	Val	Glu	Gly	Pro	Pro	Lys	Asp	Thr	Gly	Ile	Ala	Arg		
					100			105				110				
Val	Pro	Leu	Ala	Gly	Ala	Ala	Gly	Gly	Pro	Gly	Ile	Gly	Arg	Ala	Ala	
					115			120				125				
Gly	Arg	Gly	Ile	Pro	Ala	Gly	Val	Pro	Met	Pro	Gln	Ala	Pro	Ala	Gly	
					130			135			140					
Leu	Ala	Gly	Pro	Val	Arg	Gly	Val	Gly	Gly	Pro	Ser	Gln	Gln	Val	Met	

-167-

145	150	155	160
Thr Pro Gln Gly Arg Gly Thr Val Ala Ala Ala Ala Ala Ala Ala Thr			
165	170	175	
Ala Ser Ile Ala Gly Ala Pro Thr Gln Tyr Pro Pro Gly Arg Gly Gly			
180	185	190	
Pro Pro Pro Met Gly Arg Gly Ala Pro Pro Pro Gly Met Met Gly			
195	200	205	
Pro Pro Pro Gly Met Arg Pro Pro Met Gly Pro Pro Met Gly Ile Pro			
210	215	220	
Pro Gly Arg Gly Thr Pro Met Gly Met Pro Pro Pro Gly Met Arg Pro			
225	230	235	240
Pro Pro Pro Gly Met Arg Gly Leu Leu			
245			
<210> 97			
<211> 729			
<212> PRT			
<213> Homo Sapiens			
<400> 97			
Leu Leu Leu Trp Leu Asn Pro Gln Ala Leu Val Gly Ala Gln Gly Gly			
1	5	10	15
Arg Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe Leu			
20	25	30	
Glu Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile Arg			
35	40	45	
Gln Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala Ala			
50	55	60	
Asn Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser Gln			
65	70	75	80
Leu Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu Leu			
85	90	95	
Gln His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe Gln			
100	105	110	
Glu Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys Glu			
115	120	125	
Glu Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln Ser			
130	135	140	
Gly Asn Ile Gln Ser Thr Val Met Leu Asp Lys Gln Lys Glu Leu Asp			
145	150	155	160
Ser Lys Val Arg Asn Val Lys Asp Lys Val Met Cys Ile Glu His Glu			
165	170	175	

-168-

Ile	Lys	Ser	Leu	Glu	Asp	Leu	Gln	Asp	Glu	Tyr	Asp	Phe	Lys	Cys	Lys
180							185						190		
Thr	Leu	Gln	Asn	Arg	Glu	His	Glu	Thr	Asn	Gly	Val	Ala	Lys	Ser	Asp
195							200						205		
Gln	Lys	Gln	Glu	Gln	Leu	Leu	Lys	Lys	Met	Tyr	Leu	Met	Leu	Asp	
210						215						220			
Asn	Lys	Arg	Lys	Glu	Val	Val	His	Lys	Ile	Ile	Glu	Leu	Leu	Asn	Val
225						230				235			240		
Thr	Glu	Leu	Thr	Gln	Asn	Ala	Leu	Ile	Asn	Asp	Glu	Leu	Val	Glu	Trp
245							250						255		
Lys	Arg	Arg	Gln	Gln	Ser	Ala	Cys	Ile	Gly	Gly	Pro	Pro	Asn	Ala	Cys
260							265						270		
Leu	Asp	Gln	Leu	Gln	Asn	Trp	Phe	Thr	Ile	Val	Ala	Glu	Ser	Leu	Gln
275						280				285					
Gln	Val	Arg	Gln	Gln	Leu	Lys	Lys	Leu	Glu	Glu	Leu	Glu	Gln	Lys	Tyr
290						295				300					
Thr	Tyr	Glu	His	Asp	Pro	Ile	Thr	Lys	Asn	Lys	Gln	Val	Leu	Trp	Asp
305						310				315			320		
Arg	Thr	Phe	Ser	Leu	Phe	Gln	Gln	Leu	Ile	Gln	Ser	Ser	Phe	Val	Val
325							330						335		
Glu	Arg	Gln	Pro	Cys	Met	Pro	Thr	His	Pro	Gln	Arg	Pro	Leu	Val	Leu
340						345							350		
Lys	Thr	Gly	Val	Gln	Phe	Thr	Val	Lys	Leu	Arg	Leu	Leu	Val	Lys	Leu
355						360						365			
Gln	Glu	Leu	Asn	Tyr	Asn	Leu	Lys	Val	Lys	Val	Leu	Phe	Asp	Lys	Asp
370						375				380					
Val	Asn	Glu	Arg	Asn	Thr	Val	Lys	Gly	Phe	Arg	Lys	Phe	Asn	Ile	Leu
385						390				395			400		
Gly	Thr	His	Thr	Lys	Val	Met	Asn	Met	Glu	Glu	Ser	Thr	Asn	Gly	Ser
405						410						415			
Leu	Ala	Ala	Glu	Phe	Arg	His	Leu	Gln	Leu	Lys	Glu	Gln	Lys	Asn	Ala
420						425						430			
Gly	Thr	Arg	Thr	Asn	Glu	Gly	Pro	Leu	Ile	Val	Thr	Glu	Glu	Leu	His
435						440					445				
Ser	Leu	Ser	Phe	Glu	Thr	Gln	Leu	Cys	Gln	Pro	Gly	Leu	Val	Ile	Asp
450						455				460					
Leu	Glu	Thr	Thr	Ser	Leu	Pro	Val	Val	Ile	Ser	Asn	Val	Ser	Gln	
465						470				475			480		
Leu	Pro	Ser	Gly	Trp	Ala	Ser	Ile	Leu	Trp	Tyr	Asn	Met	Leu	Val	Ala
485						490						495			

-169-

Glu	Pro	Arg	Asn	Leu	Ser	Phe	Phe	Leu	Thr	Pro	Pro	Cys	Ala	Arg	Trp
500						505							510		
Ala	Gln	Leu	Ser	Glu	Val	Leu	Ser	Trp	Gln	Phe	Ser	Ser	Val	Thr	Lys
515				520									525		
Arg	Gly	Leu	Asn	Val	Asp	Gln	Leu	Asn	Met	Leu	Gly	Glu	Lys	Leu	Leu
530					535						540				
Gly	Pro	Asn	Ala	Ser	Pro	Asp	Gly	Leu	Ile	Pro	Trp	Thr	Arg	Phe	Cys
545					550					555			560		
Lys	Glu	Asn	Ile	Asn	Asp	Lys	Asn	Phe	Pro	Phe	Trp	Leu	Trp	Ile	Glu
565						570							575		
Ser	Ile	Leu	Glu	Leu	Ile	Lys	Lys	His	Leu	Leu	Pro	Leu	Trp	Asn	Asp
580						585						590			
Gly	Cys	Ile	Met	Gly	Phe	Ile	Ser	Lys	Glu	Arg	Glu	Arg	Ala	Leu	Leu
595						600						605			
Lys	Asp	Gln	Gln	Pro	Gly	Thr	Phe	Leu	Leu	Arg	Phe	Ser	Glu	Ser	Ser
610					615					620					
Arg	Glu	Gly	Ala	Ile	Thr	Phe	Thr	Trp	Val	Glu	Arg	Ser	Gln	Asn	Gly
625					630					635			640		
Gly	Glu	Pro	Asp	Phe	His	Ala	Val	Glu	Pro	Tyr	Thr	Lys	Lys	Glu	Leu
645						650						655			
Ser	Ala	Val	Thr	Phe	Pro	Asp	Ile	Ile	Arg	Asn	Tyr	Lys	Val	Met	Ala
660						665						670			
Ala	Glu	Asn	Ile	Pro	Glu	Asn	Pro	Leu	Lys	Tyr	Leu	Tyr	Pro	Asn	Ile
675					680						685				
Asp	Lys	Asp	His	Ala	Phe	Gly	Lys	Tyr	Tyr	Ser	Arg	Pro	Lys	Glu	Ala
690					695						700				
Pro	Glu	Pro	Met	Glu	Leu	Asp	Gly	Pro	Lys	Gly	Thr	Gly	Tyr	Ile	Lys
705					710					715			720		
Thr	Glu	Leu	Ile	Ser	Val	Ser	Glu	Val							
					725										
<210>	98														
<211>	1575														
<212>	PRT														
<213>	Homo Sapiens														
<400>	98														
Arg	Gly	Arg	Leu	Leu	Gly	Leu	Leu	Asn	Pro	Ser	Val	Ser	Leu	Gly	Arg
1					5				10				15		
Pro	Lys	Val	Arg	Val	Met	Tyr	Arg	Asp	Glu	Cys	Lys	Lys	His	Leu	Ala
					20				25				30		
Gly	Leu	Gly	Ala	Leu	Gly	Leu	Gly	Ser	Leu	Ile	Thr	Glu	Leu	Thr	Ala
								40				45			

-170-

Asn	Glu	Glu	Leu	Thr	Gly	Thr	Asp	Gly	Ala	Leu	Val	Asn	Asp	Glu	Gly
50						55						60			
Trp	Val	Arg	Ser	Thr	Glu	Asp	Ala	Val	Asp	Tyr	Ser	Asp	Ile	Asn	Glu
65						70				75				80	
Val	Ala	Glu	Asp	Glu	Ser	Arg	Arg	Tyr	Gln	Gln	Thr	Met	Gly	Ser	Leu
					85				90				95		
Gln	Pro	Leu	Cys	His	Ser	Asp	Tyr	Asp	Glu	Asp	Asp	Tyr	Asp	Ala	Asp
						100			105				110		
Cys	Glu	Asp	Ile	Asp	Cys	Lys	Leu	Met	Pro						
						115			120				125		
Gly	Pro	Met	Lys	Lys	Asp	Lys	Asp	Gln	Asp	Ser	Ile	Thr	Gly	Glu	Lys
						130			135				140		
Val	Asp	Phe	Ser	Ser	Ser	Ser	Asp	Ser	Glu	Ser	Glu	Met	Gly	Pro	Gln
						145			150			155			160
Glu	Ala	Thr	Gln	Ala	Glu	Ser	Glu	Asp	Gly	Lys	Leu	Thr	Leu	Pro	Leu
						165			170				175		
Ala	Gly	Ile	Met	Gln	His	Asp	Ala	Thr	Lys	Leu	Leu	Pro	Ser	Val	Thr
						180			185				190		
Glu	Leu	Phe	Pro	Glu	Phe	Arg	Pro	Gly	Lys	Val	Leu	Arg	Phe	Leu	Arg
						195			200				205		
Leu	Phe	Gly	Pro	Gly	Lys	Asn	Val	Pro	Ser	Val	Trp	Arg	Ser	Ala	Arg
						210			215			220			
Arg	Lys	Arg	Lys	Lys	Lys	His	Arg	Glu	Leu	Ile	Gln	Glu	Gln	Ile	
						225			230				235		240
Gln	Glu	Val	Glu	Cys	Ser	Val	Glu	Ser	Glu	Val	Ser	Gln	Lys	Ser	Leu
						245			250				255		
Trp	Asn	Tyr	Asp	Tyr	Ala	Pro	Pro	Pro	Pro	Glu	Gln	Cys	Leu	Ser	
						260			265				270		
Asp	Asp	Glu	Ile	Thr	Met	Met	Ala	Pro	Val	Glu	Ser	Lys	Phe	Ser	Gln
						275			280				285		
Ser	Thr	Gly	Asp	Ile	Asp	Lys	Val	Thr	Asp	Thr	Lys	Pro	Arg	Val	Ala
						290			295				300		
Glu	Trp	Arg	Tyr	Gly	Pro	Ala	Arg	Leu	Trp	Tyr	Asp	Met	Leu	Gly	Val
						305			310				315		320
Pro	Glu	Asp	Gly	Ser	Gly	Phe	Asp	Tyr	Gly	Phe	Lys	Leu	Arg	Lys	Thr
						325			330				335		
Glu	His	Glu	Pro	Val	Ile	Lys	Ser	Arg	Met	Ile	Glu	Glu	Phe	Arg	Lys
						340			345				350		
Leu	Glu	Glu	Asn	Asn	Gly	Thr	Asp	Leu	Leu	Ala	Asp	Glu	Asn	Phe	Leu
						355			360				365		

-171-

Met	Val	Thr	Gln	Leu	His	Trp	Glu	Asp	Asp	Ile	Ile	Trp	Asp	Gly	Glu
370						375						380			
Asp	Val	Lys	His	Lys	Gly	Thr	Lys	Pro	Gln	Arg	Ala	Ser	Leu	Ala	Gly
385						390						395			400
Trp	Leu	Pro	Ser	Ser	Met	Thr	Arg	Asn	Ala	Met	Ala	Tyr	Asn	Val	Gln
						405						410			415
Gln	Gly	Phe	Ala	Ala	Thr	Leu	Asp	Asp	Asp	Lys	Pro	Trp	Tyr	Ser	Ile
						420						425			430
Phe	Pro	Ile	Asp	Asn	Glu	Asp	Leu	Val	Tyr	Gly	Arg	Trp	Glu	Asp	Asn
						435						440			445
Ile	Ile	Trp	Asp	Ala	Gln	Ala	Met	Pro	Arg	Leu	Leu	Glu	Pro	Pro	Val
						450						455			460
Leu	Thr	Leu	Asp	Pro	Asn	Asp	Glu	Asn	Leu	Ile	Leu	Glu	Ile	Pro	Asp
465						470						475			480
Glu	Lys	Glu	Glu	Ala	Thr	Ser	Asn	Ser	Pro	Ser	Lys	Glu	Ser	Lys	Lys
						485						490			495
Glu	Ser	Ser	Leu	Lys	Lys	Ser	Arg	Ile	Leu	Leu	Gly	Lys	Thr	Gly	Val
						500						505			510
Ile	Lys	Glu	Glu	Pro	Gln	Gln	Asn	Met	Ser	Gln	Pro	Glu	Val	Lys	Asp
						515						520			525
Pro	Trp	Asn	Leu	Ser	Asn	Asp	Glu	Tyr	Tyr	Tyr	Pro	Lys	Gln	Gln	Gly
						530						535			540
Leu	Arg	Gly	Thr	Phe	Gly	Gly	Asn	Ile	Ile	Gln	His	Ser	Ile	Pro	Ala
545						550						555			560
Val	Glu	Leu	Arg	Gln	Pro	Phe	Phe	Pro	Thr	His	Met	Gly	Pro	Ile	Lys
						565						570			575
Leu	Arg	Gln	Phe	His	Arg	Pro	Pro	Leu	Lys	Lys	Tyr	Ser	Phe	Gly	Ala
						580						585			590
Leu	Ser	Gln	Pro	Gly	Pro	His	Ser	Val	Gln	Pro	Leu	Leu	Lys	His	Ile
						595						600			605
Lys	Lys	Lys	Ala	Lys	Met	Arg	Glu	Gln	Glu	Arg	Gln	Ala	Ser	Gly	Gly
						610						615			620
Gly	Glu	Met	Phe	Phe	Met	Arg	Thr	Pro	Gln	Asp	Leu	Thr	Gly	Lys	Asp
						625						630			640
Gly	Asp	Leu	Ile	Leu	Ala	Glu	Tyr	Ser	Glu	Glu	Asn	Gly	Pro	Leu	Met
						645						650			655
Met	Gln	Val	Gly	Met	Ala	Thr	Lys	Ile	Lys	Asn	Tyr	Tyr	Lys	Arg	Lys
						660						665			670
Pro	Gly	Lys	Asp	Pro	Gly	Ala	Pro	Asp	Cys	Lys	Tyr	Gly	Glu	Thr	Val
						675						680			685

-172-

Tyr	Cys	His	Thr	Ser	Pro	Phe	Leu	Gly	Ser	Leu	His	Pro	Gly	Gln	Leu
690						695					700				
Leu	Gln	Ala	Phe	Glu	Asn	Asn	Leu	Phe	Arg	Ala	Pro	Ile	Tyr	Leu	His
705					710				715					720	
Lys	Met	Pro	Glu	Thr	Asp	Phe	Leu	Ile	Ile	Arg	Thr	Arg	Gln	Gly	Tyr
				725					730				735		
Tyr	Ile	Arg	Glu	Leu	Val	Asp	Ile	Phe	Val	Val	Gly	Gln	Gln	Cys	Pro
				740			745				750				
Leu	Phe	Glu	Val	Pro	Gly	Pro	Asn	Ser	Lys	Arg	Ala	Asn	Thr	His	Ile
				755			760				765				
Arg	Asp	Phe	Leu	Gln	Val	Phe	Ile	Tyr	Arg	Leu	Phe	Trp	Lys	Ser	Lys
				770			775			780					
Asp	Arg	Pro	Arg	Arg	Ile	Arg	Met	Glu	Asp	Ile	Lys	Lys	Ala	Phe	Pro
785					790				795				800		
Ser	His	Ser	Glu	Ser	Ser	Ile	Arg	Lys	Arg	Leu	Lys	Leu	Cys	Ala	Asp
					805				810				815		
Phe	Lys	Arg	Thr	Gly	Met	Asp	Ser	Asn	Trp	Trp	Val	Leu	Lys	Ser	Asp
					820			825			830				
Phe	Arg	Leu	Pro	Thr	Glu	Glu	Ile	Arg	Ala	Met	Val	Ser	Pro	Glu	
					835		840				845				
Gln	Cys	Cys	Ala	Tyr	Tyr	Ser	Met	Ile	Ala	Ala	Glu	Gln	Arg	Leu	Lys
					850		855			860					
Asp	Ala	Gly	Tyr	Gly	Glu	Lys	Ser	Phe	Phe	Ala	Pro	Glu	Glu	Asn	
865					870				875			880			
Glu	Glu	Asp	Phe	Gln	Met	Lys	Ile	Asp	Asp	Glu	Val	Arg	Thr	Ala	Pro
					885			890			895				
Trp	Asn	Thr	Thr	Arg	Ala	Phe	Ile	Ala	Ala	Met	Lys	Gly	Lys	Cys	Leu
					900			905			910				
Leu	Glu	Val	Thr	Gly	Val	Ala	Asp	Pro	Thr	Gly	Cys	Gly	Glu	Gly	Phe
					915		920			925					
Ser	Tyr	Val	Lys	Ile	Pro	Asn	Lys	Pro	Thr	Gln	Gln	Lys	Asp	Asp	Lys
					930		935			940					
Glu	Pro	Gln	Pro	Val	Lys	Lys	Thr	Val	Thr	Gly	Thr	Asp	Ala	Asp	Leu
945					950				955			960			
Arg	Arg	Leu	Ser	Leu	Lys	Asn	Ala	Lys	Gln	Leu	Leu	Arg	Lys	Phe	Gly
					965			970				975			
Val	Pro	Glu	Glu	Glu	Ile	Lys	Lys	Leu	Ser	Arg	Trp	Glu	Val	Ile	Asp
					980			985			990				
Val	Val	Arg	Thr	Met	Ser	Thr	Glu	Gln	Ala	Arg	Ser	Gly	Glu	Gly	Pro
					995			1000			1005				

-173-

Met	Ser	Lys	Phe	Ala	Arg	Gly	Ser	Arg	Phe	Ser	Val	Ala	Glu	His
1010							1015					1020		
Gln	Glu	Arg	Tyr	Lys	Glu	Glu	Cys	Gln	Arg	Ile	Phe	Asp	Leu	Gln
1025						1030						1035		
Asn	Lys	Val	Leu	Ser	Ser	Thr	Glu	Val	Leu	Ser	Thr	Asp	Thr	Asp
1040						1045						1050		
Ser	Ser	Ser	Ala	Glu	Asp	Ser	Asp	Phe	Glu	Glu	Met	Gly	Lys	Asn
1055						1060						1065		
Ile	Glu	Asn	Met	Leu	Gln	Asn	Lys	Lys	Thr	Ser	Ser	Gln	Leu	Ser
1070						1075						1080		
Arg	Glu	Arg	Glu	Glu	Gln	Glu	Arg	Lys	Glu	Leu	Gln	Arg	Met	Leu
1085						1090						1095		
Leu	Ala	Ala	Gly	Ser	Ala	Ala	Ser	Gly	Asn	Asn	His	Arg	Asp	Asp
1100						1105						1110		
Asp	Thr	Ala	Ser	Val	Thr	Ser	Leu	Asn	Ser	Ser	Ala	Thr	Gly	Arg
1115						1120						1125		
Cys	Leu	Lys	Ile	Tyr	Arg	Thr	Phe	Arg	Asp	Glu	Glu	Gly	Lys	Glu
1130						1135						1140		
Tyr	Val	Arg	Cys	Glu	Thr	Val	Arg	Lys	Pro	Ala	Val	Ile	Asp	Ala
1145						1150						1155		
Tyr	Val	Arg	Ile	Arg	Thr	Thr	Lys	Asp	Glu	Glu	Phe	Ile	Arg	Lys
1160						1165						1170		
Phe	Ala	Leu	Phe	Asp	Glu	Gln	His	Arg	Glu	Glu	Met	Arg	Lys	Glu
1175						1180						1185		
Arg	Arg	Arg	Ile	Gln	Glu	Gln	Leu	Arg	Arg	Leu	Lys	Arg	Asn	Gln
1190						1195						1200		
Glu	Lys	Glu	Lys	Leu	Lys	Gly	Pro	Pro	Glu	Lys	Lys	Pro	Lys	Lys
1205						1210						1215		
Met	Lys	Glu	Arg	Pro	Asp	Leu	Lys	Leu	Lys	Cys	Gly	Ala	Cys	Gly
1220						1225						1230		
Ala	Ile	Gly	His	Met	Arg	Thr	Asn	Lys	Phe	Cys	Pro	Leu	Tyr	Tyr
1235						1240						1245		
Gln	Thr	Asn	Ala	Pro	Pro	Ser	Asn	Pro	Val	Ala	Met	Thr	Glu	Glu
1250						1255						1260		
Gln	Glu	Glu	Glu	Leu	Glu	Lys	Thr	Val	Ile	His	Asn	Asp	Asn	Glu
1265						1270						1275		
Glu	Leu	Ile	Lys	Val	Glu	Gly	Thr	Lys	Ile	Val	Leu	Gly	Lys	Gln
1280						1285						1290		
Leu	Ile	Glu	Ser	Ala	Asp	Glu	Val	Arg	Arg	Lys	Ser	Leu	Val	Leu
1295						1300						1305		

Lys Phe Pro Lys Gln Gln Leu Pro Pro Lys Lys Lys Arg Arg Val
 1310 1315 1320

Gly Thr Thr Val His Cys Asp Tyr Leu Asn Arg Pro His Lys Ser
 1325 1330 1335

Ile His Arg Arg Arg Thr Asp Pro Met Val Thr Leu Ser Ser Ile
 1340 1345 1350

Leu Glu Ser Ile Ile Asn Asp Met Arg Asp Leu Pro Asn Thr Tyr
 1355 1360 1365

Pro Phe His Thr Pro Val Asn Ala Lys Val Val Lys Asp Tyr Tyr
 1370 1375 1380

Lys Ile Ile Thr Arg Pro Met Asp Leu Gln Thr Leu Arg Glu Asn
 1385 1390 1395

Val Arg Lys Arg Leu Tyr Pro Ser Arg Glu Glu Phe Arg Glu His
 1400 1405 1410

Leu Glu Leu Ile Val Lys Asn Ser Ala Thr Tyr Asn Gly Pro Lys
 1415 1420 1425

His Ser Leu Thr Gln Ile Ser Gln Ser Met Leu Asp Leu Cys Asp
 1430 1435 1440

Glu Lys Leu Lys Glu Lys Glu Asp Lys Leu Ala Arg Leu Glu Lys
 1445 1450 1455

Ala Ile Asn Pro Leu Leu Asp Asp Asp Asp Gln Val Ala Phe Ser
 1460 1465 1470

Phe Ile Leu Asp Asn Ile Val Thr Gln Lys Met Met Ala Val Pro
 1475 1480 1485

Asp Ser Trp Pro Phe His His Pro Val Asn Lys Lys Phe Val Pro
 1490 1495 1500

Asp Tyr Tyr Lys Val Ile Val Asn Pro Met Asp Leu Glu Thr Ile
 1505 1510 1515

Arg Lys Asn Ile Ser Lys His Lys Tyr Gln Ser Arg Glu Ser Phe
 1520 1525 1530

Leu Asp Asp Val Asn Leu Ile Leu Ala Asn Ser Val Lys Tyr Asn
 1535 1540 1545

Asp Asn Glu Cys Ser Ser Lys Ala Asn Asp Ile Val Cys Leu Ile
 1550 1555 1560

Gln Tyr Cys Ser Ser Gln Ile Glu Glu Leu Arg Phe
 1565 1570 1575

<210> 99
 <211> 166
 <212> PRT
 <213> Homo Sapiens

-175-

<400> 99

Leu	Cys	Leu	Lys	Lys	Ile	Pro	Asn	Met	Asp	Lys	Pro	Arg	Lys	Glu		
1					5				10				15			
Asn	Glu	Glu	Glu	Pro	Gln	Ser	Arg	Pro	Arg	Pro	Met	Arg	Arg	Gly	Leu	
								20			25			30		
Arg	Trp	Ser	Thr	Leu	Pro	Lys	Ser	Ser	Pro	Pro	Arg	Ser	Ser	Leu	Arg	
									35		40			45		
Arg	Ser	Ser	Pro	Arg	Arg	Arg	Ser	Ser	Phe	Leu	Arg	Ser	Ser	Cys	Leu	
									50		55			60		
Ser	Ser	Cys	Leu	Arg	Cys	Ser	Ser	Arg	Arg	Thr	Pro	Ser	Ala	Gly	Leu	
									65		70			75		80
Ser	Arg	Lys	Asp	Leu	Phe	Glu	Val	Arg	Pro	Pro	Met	Glu	Gln	Pro	Pro	
									85		90			95		
Cys	Gly	Val	Gly	Lys	His	Asn	Leu	Glu	Glu	Gly	Ile	Phe	Lys	Glu	Arg	
									100		105			110		
Leu	Ala	Arg	Ser	Arg	Pro	Gln	Phe	Arg	Gly	Asp	Ile	His	Gly	Arg	Asn	
									115		120			125		
Leu	Ser	Asn	Glu	Glu	Met	Ile	Gln	Ala	Ala	Asp	Glu	Leu	Glu	Glu	Met	
									130		135			140		
Lys	Arg	Val	Arg	Asn	Lys	Leu	Met	Ile	Met	His	Trp	Arg	Ala	Lys	Arg	
									145		150			155		160
Gly	Gly	Pro	Tyr	Pro	Ile											
									165							

<210> 100

<211> 245

<212> PRT

<213> Homo Sapiens

<400> 100

Thr	Lys	Met	Leu	Lys	Ser	Trp	Arg	Ser	Gly	Arg	Gln	Ile	Thr	Gln	Lys
1						5				10					15
Gly	Thr	Glu	Asp	Glu	Leu	Asp	Lys	Tyr	Ser	Glu	Ala	Leu	Lys	Asp	Ala
					20				25					30	
Gln	Glu	Lys	Leu	Glu	Leu	Ala	Glu	Lys	Lys	Ala	Thr	Asp	Ala	Glu	Ala
					35			40				45			
Asp	Val	Ala	Ser	Leu	Asn	Arg	Arg	Ile	Gln	Leu	Val	Glu	Glu	Glu	Leu
						50		55	.			60			
Asp	Arg	Ala	Gln	Glu	Arg	Leu	Ala	Thr	Ala	Leu	Gln	Lys	Leu	Glu	Glu
						65		70			75			80	
Ala	Glu	Lys	Ala	Ala	Asp	Glu	Ser	Glu	Arg	Gly	Met	Lys	Val	Ile	Glu
						85			90					95	

-176-

Ser	Arg	Ala	Gln	Lys	Asp	Glu	Glu	Lys	Met	Glu	Ile	Gln	Glu	Ile	Gln
									100		105			110	
Leu	Lys	Glu	Ala	Lys	His	Ile	Ala	Glu	Asp	Ala	Asp	Arg	Lys	Tyr	Glu
									115		120			125	
Glu	Val	Ala	Arg	Lys	Leu	Val	Ile	Ile	Glu	Ser	Asp	Leu	Glu	Arg	Ala
									130		135			140	
Glu	Glu	Arg	Ala	Glu	Leu	Ser	Glu	Gly	Gln	Val	Arg	Gln	Leu	Glu	Glu
									145		150			155	
Gln	Leu	Arg	Ile	Met	Asp	Gln	Thr	Leu	Lys	Ala	Leu	Met	Ala	Ala	Glu
									165		170			175	
Asp	Lys	Tyr	Ser	Gln	Lys	Glu	Asp	Arg	Tyr	Glu	Glu	Glu	Ile	Lys	Val
									180		185			190	
Leu	Ser	Asp	Lys	Leu	Lys	Glu	Ala	Glu	Thr	Arg	Ala	Glu	Phe	Ala	Glu
									195		200			205	
Arg	Ser	Val	Thr	Lys	Leu	Glu	Lys	Ser	Ile	Asp	Asp	Leu	Glu	Glu	Lys
									210		215			220	
Val	Leu	Met	Pro	Lys	Lys	Lys	Thr	Leu	Val	Cys	Ile	Arg	Cys	Trp	Ile
									225		230			235	
Arg	Leu	Tyr	Trp	Ser											
															245

<210> 101
<211> 267
<212> PRT
<213> Homo Sapiens

<400> 101

Leu	Pro	Val	Leu	Ala	Ser	Arg	Ala	Tyr	Ala	Ala	Pro	Ala	Pro	Gly	Gln
1									10					15	

Ala	Leu	Gln	Arg	Val	Gly	Ile	Val	Gly	Gly	Gln	Glu	Ala	Pro	Arg	Ser
									20		25			30	

Lys	Trp	Pro	Trp	Gln	Val	Ser	Leu	Arg	Val	Arg	Asp	Arg	Tyr	Trp	Met
									35		40			45	

His	Phe	Cys	Gly	Gly	Ser	Leu	Ile	His	Pro	Gln	Trp	Val	Leu	Thr	Ala
									50		55			60	

Ala	His	Cys	Val	Gly	Pro	Asp	Val	Lys	Asp	Leu	Ala	Ala	Leu	Arg	Val
									65		70			75	

Gln	Leu	Arg	Glu	Gln	His	Leu	Tyr	Tyr	Gln	Asp	Gln	Leu	Leu	Pro	Val
									85		90			95	

Ser	Arg	Ile	Ile	Val	His	Pro	Gln	Phe	Tyr	Thr	Ala	Gln	Ile	Gly	Ala
									100		105			110	

Asp	Ile	Ala	Leu	Leu	Glu	Leu	Glu	Glu	Pro	Val	Lys	Val	Ser	Ser	His
									115		120			125	

-177-

Val	His	Thr	Val	Thr	Leu	Pro	Pro	Ala	Ser	Glu	Thr	Phe	Pro	Pro	Gly
130					135					140					
Met	Pro	Cys	Trp	Val	Thr	Gly	Trp	Gly	Asp	Val	Asp	Asn	Asp	Glu	Arg
145					150				155						160
Leu	Pro	Pro	Pro	Phe	Pro	Leu	Lys	Gln	Val	Lys	Val	Pro	Ile	Met	Glu
					165				170						175
Asn	His	Ile	Cys	Asp	Ala	Lys	Tyr	His	Leu	Gly	Ala	Tyr	Thr	Gly	Asp
					180				185						190
Asp	Val	Arg	Ile	Val	Arg	Asp	Asp	Met	Leu	Cys	Ala	Gly	Asn	Thr	Arg
					195			200				205			
Arg	Asp	Ser	Cys	Gln	Gly	Asp	Ser	Gly	Gly	Pro	Leu	Val	Cys	Lys	Val
					210		215				220				
Asn	Gly	Thr	Trp	Leu	Gln	Ala	Gly	Val	Val	Ser	Trp	Gly	Glu	Gly	Cys
					225		230			235					240
Ala	Gln	Pro	Asn	Arg	Pro	Gly	Ile	Tyr	Thr	Arg	Val	Thr	Tyr	Tyr	Leu
					245			250							255
Asp	Trp	Ile	His	His	Tyr	Val	Pro	Lys	Lys	Pro					
					260			265							
<210>	102														
<211>	192														
<212>	PRT														
<213>	Homo Sapiens														
<400>	102														
Ala	Arg	Ala	Ser	Ser	Cys	Leu	Ser	Ala	Asn	Ala	Ala	Arg	Met	Ala	Ser
1					5				10						15
Gln	Asn	Arg	Asp	Pro	Ala	Ala	Thr	Ser	Val	Ala	Ala	Ala	Arg	Lys	Gly
					20			25							30
Ala	Glu	Pro	Ser	Gly	Gly	Ala	Ala	Arg	Gly	Pro	Val	Gly	Lys	Arg	Leu
					35			40				45			
Gln	Gln	Glu	Leu	Met	Thr	Leu	Met	Met	Ser	Gly	Asp	Lys	Gly	Ile	Ser
					50		55				60				
Ala	Phe	Pro	Glu	Ser	Asp	Asn	Leu	Phe	Lys	Trp	Val	Gly	Thr	Ile	His
					65			70		75					80
Gly	Ala	Ala	Gly	Thr	Val	Tyr	Glu	Asp	Leu	Arg	Tyr	Lys	Leu	Ser	Leu
					85				90						95
Glu	Phe	Pro	Ser	Gly	Tyr	Pro	Tyr	Asn	Ala	Pro	Thr	Val	Lys	Phe	Leu
					100			105				110			
Thr	Pro	Cys	Tyr	His	Pro	Asn	Val	Asp	Thr	Gln	Gly	Asn	Ile	Cys	Leu
					115			120				125			
Asp	Ile	Leu	Lys	Glu	Lys	Trp	Ser	Ala	Leu	Tyr	Asp	Val	Arg	Thr	Ile

130

135

140

Leu Leu Ser Ile Gln Ser Leu Leu Gly Glu Pro Asn Ile Asp Ser Pro
145 150 155 160

Leu Asn Thr His Ala Ala Glu Leu Trp Lys Asn Pro Thr Ala Phe Lys
165 170 175

Lys Tyr Leu Gln Glu Thr Tyr Ser Lys Gln Val Thr Ser Gln Glu Pro
180 185 190