1. [5 marks] Short answer. You do not need to show your work for any part of this question.	
(a) [1 mark] Consider a predicate $P(n)$, where $n \in \mathbb{N}$, and suppose that you have proven True, and also that $\forall k \in \mathbb{N}$, $P(k) \Rightarrow P(2k+1)$. Put an "X" in the box next to each statement below that you can conclude to be True.	that $P(1)$ i
	P(9)
(b) [1 mark] Consider the natural number n whose decimal representation is $(13)_{10}$. Put an "X" in the box next to each correct statement below.	
Solution $ \boxed{ n = (1010)_2 } \boxed{ X } n = (1101)_2 \qquad \boxed{ X } n = (111)_3 \qquad \boxed{ n = (101)_2 } $	$(1)_{5}$
(c) [1 mark] Put an "X" in the box next to each correct statement below about functions $f, g: \mathbb{N} \to \mathbb{R}^{\geq 0}$ where: $f(n) = n^2 \text{and} g(n) = 4n + 1$	
	stant factor
(d) [1 mark] Let $RT_f(n): \mathbb{N} \to \mathbb{R}^{\geq 0}$ be the running time function of the following algorithm	
<pre>def f(n: int) -> None: """Precondition: n >= 0.""" i = 1 while i < n:</pre>	

Put an "X" in the box next to each correct statement below.

i = i * 3

Solution	
X $RT_f(n) \in \Omega(1)$	$RT_f(n) \in \Omega(n)$
$X RT_f(n) \in \Omega(\log_2 n)$	X $RT_f(n) \in \mathcal{O}(n)$

(e) [1 mark] Let S be a non-empty finite set of real numbers, and let $m \in \mathbb{R}$. Put an "X" in the box next to the expression below that is equivalent to the English statement "m is an upper bound on the minimum value of S"? Solution

 $\forall x \in S, x \leq m$

 $\boxed{\mathsf{X}} \ \exists x \in S, x \leq m$

 $\exists x \in S, m \le x$

2. [5 marks] Induction.

Prove the following statement using induction.

$$\forall n \in \mathbb{N}, \ (n \ge 2) \Rightarrow \left(\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \frac{n+1}{2n}\right)$$

Solution

Note: This solution is wordier than expected and provides more intermediate steps than some might find necessary.

Proof. Base case: Let n = 2. Then

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2}\right) = \prod_{i=2}^{2} \left(1 - \frac{1}{i^2}\right)$$

$$= \left(1 - \frac{1}{2^2}\right)$$

$$= \left(1 - \frac{1}{4}\right)$$

$$= \frac{3}{4}$$

$$= \frac{2+1}{2 \cdot 2}$$

$$= \frac{n+1}{2n},$$

as required. The base case is satisfied.

(Or take a 'compute left hand side', 'compute right hand side' approach, and compare.)

<u>Induction step</u>: Let $k \in \mathbb{N}$, and assume that $k \geq 2$ and $\prod_{i=2}^k \left(1 - \frac{1}{i^2}\right) = \frac{k+1}{2k}$. We'll prove that

$$\prod_{i=2}^{k+1} \left(1 - \frac{1}{i^2}\right) = \frac{(k+1)+1}{2(k+1)}.$$

We have:

$$\prod_{i=2}^{k+1} \left(1 - \frac{1}{i^2} \right) = \left(\prod_{i=2}^k \left(1 - \frac{1}{i^2} \right) \right) \cdot \left(1 - \frac{1}{(k+1)^2} \right)
= \left(\frac{k+1}{2k} \right) \cdot \left(1 - \frac{1}{(k+1)^2} \right)$$
 (by the I.H.)
$$= \left(\frac{k+1}{2k} \right) \cdot \left(\frac{(k+1)^2 - 1}{(k+1)^2} \right)$$

$$= \left(\frac{k+1}{2k}\right) \cdot \left(\frac{\left((k+1)+1\right)\left((k+1)-1\right)}{(k+1)^2}\right)$$

$$= \left(\frac{k+1}{2k}\right) \cdot \left(\frac{\left(k+2\right)\left(k\right)}{(k+1)^2}\right)$$

$$= \frac{\left(k+2\right)}{2(k+1)}$$

$$= \frac{\left((k+1)+1\right)}{2(k+1)},$$

as required.

Please do not write below this line.

3. [5 marks] Asymptotic analysis.

In this question, refer to the following definition:

$$g \in \Omega(f): \exists c, n_0 \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow g(n) \geq c \cdot f(n), \text{ where } f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$$

Prove or disprove the following statement, using only the definition of Ω :

$$\forall f,g: \mathbb{N} \to \mathbb{R}^{\geq 0}, \ \left(\left(\forall n \in \mathbb{N}, \ n \geq 223 \Rightarrow g(n) \geq 200 \ n \right) \land \left(\forall n \in \mathbb{N}, \ n \geq 137 \Rightarrow n \geq 3 \ f(n) \right) \right) \Rightarrow g \in \Omega(f)$$

Solution

Proof. Let f, g be arbitrary functions from $\mathbb{N} \to \mathbb{R}^{\geq 0}$.

Assume $\forall n \in \mathbb{N}, n \geq 223 \Rightarrow g(n) \geq 200 \ n \ \text{and} \ \forall n \in \mathbb{N}, n \geq 137 \Rightarrow n \geq 3 \ f(n)$.

We need to prove $g \in \Omega(f)$.

That is, we need to prove $\exists c, n_0 \in \mathbb{R}^+, \ \forall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow g(n) \geq c \cdot f(n)$

Let c = 600 and $n_0 = 223$. (Any $c \le 600$ or $n_0 \ge 223$ work too.)

Let $n \in \mathbb{N}$ and assume $n \geq n_0$.

Since $n \ge 223$, $g(n) \ge 200 \ n$.

Since $n \ge 137$, $n \ge 3$ f(n).

Together, we have

$$g(n) \ge 200 \ n$$

 $\ge 200 \ (3 \ f(n))$
 $= 600 \ f(n)$
 $= c \cdot f(n),$

as required.

At the marking meeting we decided to give students who attempt a disproof a maximum grade of 1 out of 5. They can get 0.5 for showing what statement they want to prove and 0.5 for introducing functions f, g but not much else will be correct.

- 4. [10 marks] Running time analysis.
 - (a) [4 marks] Consider the following algorithm.

```
def f(n: int) -> None:
    """Precondition: n >= 3."""
    i = 3
    while i <= n:  # Loop 1
        j = 0
        while j < n:  # Loop 2
        j = j + (n / i)
        i = i + 3</pre>
```

Find the exact total number of iterations of the Loop 2 body, across all iterations of Loop 1 when f is run, in terms of its input n, assuming $n \ge 3$. To simplify your calculations, you may ignore floors and ceilings.

Note: make sure to explain your analysis in English, rather than writing only calculations.

Solution

The values of i executing the Loop 1 body are $i = 3, 6, 9, \ldots$, up to and including n - 2, n - 1 or n, i.e. $i = 3 \cdot 1, 3 \cdot 2, 3 \cdot 3, \ldots, 3 \cdot \lfloor n/3 \rfloor$ (or just n/3 ignoring floors and ceilings).

For each i, the values of j executing the Loop 2 body are $j = 0 \cdot (n/i), 1 \cdot (n/i), 2 \cdot (n/i), 3 \cdot (n/i), \ldots$, up to just before $n = i \cdot (n/i)$ (trace with a concrete n and some is for intuition), which is (ignoring floors and ceilings) i iterations.

The total is
$$\sum_{k=1}^{n/3} 3k = 3\sum_{k=1}^{n/3} k = 3(n/3)(1+n/3)/2 = n(3+n)/6 = (3n+n^2)/6.$$

(b) [6 marks] Consider the following algorithm, which takes as input a list of nonnegative integers.

NOTE: range(a, b) is empty when b <= a.

Prove matching upper (Big-O) and lower (Omega) bounds on the worst-case running time of alg, where the size n of the input is the length of the list. Clearly label which part of your solution is a proof of the upper bound, and which part is a proof of the lower bound.

Solution

Upper bound on worst-case running time.

Let $n \in \mathbb{N}$ and A be a list of integers of non-negative integers of length n.

Loop 1 iterates no more than n times.

Its body takes 1 step each time, except at most once if the if condition is true in which case it executes Loop 2 and then ends execution.

Loop 2 executes its body $\max(n - A[i], 0)$ times (the minimum is for when there are no iterations due to $A[i] \ge n$). This is at most n times since A[i] is non-negative. The body is 1 step each time. Then there is 1 more step for the return which ends the execution.

So the total number of steps is no more than $n \cdot 1 + n \cdot 1 + 1 = 2n + 1 \in \mathcal{O}(n)$.

Lower bound on worst-case running time.

Let $n \in \mathbb{N}$ and $A = [0, \dots, 0]$ be the list of length n with non-negative integer 0 for each element.

Then each element is even so the if condition is always false, so Loop 1 iterates to the end taking 1 step each time, for a total number of steps $n \cdot 1 = n \in \Omega(n)$.