Homework 12: The Fubini-Study Structure

The purpose of the following exercises is to describe the natural Kähler structure on complex projective space, \mathbb{CP}^n .

1. Show that the function on \mathbb{C}^n

$$z \longmapsto \log(|z|^2 + 1)$$

is strictly plurisubharmonic. Conclude that the 2-form

$$\omega_{\text{ES}} = \frac{i}{2} \partial \bar{\partial} \log(|z|^2 + 1)$$

is a Kähler form. (It is usually called the **Fubini-Study form** on \mathbb{C}^n .)

Hint: A hermitian $n \times n$ matrix H is positive definite if and only if $v^*Hv > 0$ for any $v \in \mathbb{C}^n \setminus \{0\}$, where v^* is the transpose of the vector \bar{v} . To prove positive-definiteness, either apply the Cauchy-Schwarz inequality, or use the following symmetry observation: $\mathrm{U}(n)$ acts transitively on S^{2n-1} and ω_{FS} is $\mathrm{U}(n)$ -invariant, thus it suffices to show positive-definiteness along *one* direction.

2. Let \mathcal{U} be the open subset of \mathbb{C}^n defined by the inequality $z_1 \neq 0$, and let $\varphi: \mathcal{U} \to \mathcal{U}$ be the map

$$\varphi(z_1,\ldots,z_n) = \frac{1}{z_1}(1,z_2,\ldots,z_n)$$
.

Show that φ maps $\mathcal U$ biholomorphically onto $\mathcal U$ and that

$$\varphi^* \log(|z|^2 + 1) = \log(|z|^2 + 1) + \log \frac{1}{|z_1|^2}$$
. (*)

3. Notice that, for every point $p \in \mathcal{U}$, we can write the second term in (\star) as the sum of a holomorphic and an anti-holomorphic function:

$$-\log z_1 - \log \overline{z_1}$$

on a neighborhood of p. Conclude that

$$\partial \bar{\partial} \varphi^* \log(|z|^2 + 1) = \partial \bar{\partial} \log(|z|^2 + 1)$$

and hence that $\varphi^*\omega_{{\scriptscriptstyle \mathrm{FS}}}=\omega_{{\scriptscriptstyle \mathrm{FS}}}.$

Hint: You need to use the fact that the pullback by a holomorphic map φ^* commutes with the ∂ and $\bar{\partial}$ operators. This is a consequence of φ^* preserving form type, $\varphi^*(\Omega^{p,q})\subseteq \Omega^{p,q}$, which in turn is implied by $\varphi^*dz_j=\partial\varphi_j\subseteq \Omega^{1,0}$ and $\varphi^*dz_j=\bar{\partial}\overline{\varphi_j}\subseteq \Omega^{0,1}$, where φ_j is the jth component of φ with respect to local complex coordinates (z_1,\ldots,z_n) .

4. Recall that \mathbb{CP}^n is obtained from $\mathbb{C}^{n+1}\setminus\{0\}$ by making the identifications $(z_0,\ldots,z_n)\sim(\lambda z_0,\ldots,\lambda z_n)$ for all $\lambda\in\mathbb{C}\setminus\{0\};\ [z_0,\ldots,z_n]$ is the equivalence class of (z_0,\ldots,z_n) .

HOMEWORK 12 97

For i = 0, 1, ..., n, let

$$\mathcal{U}_i = \{ [z_0, \dots, z_n] \in \mathbb{CP}^n | z_i \neq 0 \}$$

$$\varphi_i : \mathcal{U}_i \to \mathbb{C}^n \qquad \varphi_i([z_0, \dots, z_n]) = \left(\frac{z_0}{z_i}, \dots, \frac{z_{i-1}}{z_i}, \frac{z_{i+1}}{z_i}, \dots, \frac{z_n}{z_i}\right).$$

Homework 11 showed that the collection $\{(\mathcal{U}_i,\mathbb{C}^n,\varphi_i), i=0,\dots,n\}$ is a complex atlas (i.e., the transition maps are biholomorphic). In particular, it was shown that the transition diagram associated with $(\mathcal{U}_0,\mathbb{C}^n,\varphi_0)$ and $(\mathcal{U}_1,\mathbb{C}^n,\varphi_1)$ has the form

where $\mathcal{V}_{0,1}=\mathcal{V}_{1,0}=\{(z_1,\ldots,z_n)\in\mathbb{C}^n\,|\,z_1\neq0\}$ and $\varphi_{0,1}(z_1,\ldots,z_n)=(\frac{1}{z_1},\frac{z_2}{z_1},\ldots,\frac{z_n}{z_1})$. Now the set \mathcal{U} in exercise 2 is equal to the sets $\mathcal{V}_{0,1}$ and $\mathcal{V}_{1,0}$, and the map φ coincides with $\varphi_{0,1}$.

Show that $\varphi_0^*\omega_{_{\mathrm{FS}}}$ and $\varphi_1^*\omega_{_{\mathrm{FS}}}$ are identical on the overlap $\mathcal{U}_0\cap\mathcal{U}_1$.

More generally, show that the Kähler forms $\varphi_i^*\omega_{{}_{\mathrm{FS}}}$ "glue together" to define a Kähler structure on \mathbb{CP}^n . This is called the **Fubini-Study form** on complex projective space.

5. Prove that for \mathbb{CP}^1 the Fubini-Study form on the chart $\mathcal{U}_0=\{[z_0,z_1]\in\mathbb{CP}^1|z_0\neq 0\}$ is given by the formula

$$\omega_{\scriptscriptstyle{\mathrm{FS}}} = \frac{dx \wedge dy}{(x^2 + y^2 + 1)^2}$$

where $\frac{z_1}{z_0}=z=x+iy$ is the usual coordinate on $\mathbb C.$

6. Compute the total area of $\mathbb{CP}^1=\mathbb{C}\cup\{\infty\}$ with respect to ω_{FS} :

$$\int_{\mathbb{CP}^1} \omega_{\scriptscriptstyle{\mathrm{FS}}} = \int_{\mathbb{R}^2} \frac{dx \wedge dy}{(x^2 + y^2 + 1)^2} \ .$$

7. Recall that $\mathbb{CP}^1 \simeq S^2$ as real 2-dimensional manifolds (Homework 11). On S^2 there is the standard area form ω_{std} induced by regarding it as the unit sphere in \mathbb{R}^3 (Homework 6): in cylindrical polar coordinates (θ,h) on S^2 away from its poles $(0 \le \theta < 2\pi$ and $-1 \le h \le 1$), we have

$$\omega_{\text{\tiny etd}} = d\theta \wedge dh$$
.

Using stereographic projection, show that

$$\omega_{\scriptscriptstyle \mathrm{FS}} = \frac{1}{4} \omega_{\scriptscriptstyle \mathrm{std}}$$
 .