Bi-LSTM Chinese POS Tagging

https://github.com/tracy2811/chinese-pos-tagging-bi-lstm

Trang Nguyen - BS18-DS01

Table of Contents

- Why Chinese POS Tagging
- 2. Dataset
- 3. Preprocessing
- 4. Models
- 5. Train and Test Results
- 6. Web Demo
- 7. Discussion

Bi-LSTM Chinese POS Tagging

https://github.com/tracy2811/chinese-pos-tagging-bi-lstm

Trang Nguyen - BS18-DS01

Why Chinese Part-of-Speech (POS) Tagging?

- A pre-requisite task to simplify many different NLP problems.
 - Text to speech conversion
 - Word sense disambiguation
 - 0 ...
- An intriguing task
 - Chinese word is not demarcated
 - Word Segmentation (WS) task is vital
- Helpful for language learners
 - "…常常他们的盐一样咸的咸菜…"《活着》余华
 - To taste their salt or their pickles?
- We already have <u>Jieba</u>, <u>kcws</u>? Educational Purpose!

Dataset

<u>UD Chinese-GSDSimp</u> dataset from <u>Universal Dependencies</u>

15 UPOS tags (out of 17 possible)

Open class word	Closed class word	Other
ADJ, ADV, NOUN, PROPN, VERB	ADP, AUX, CCONJ, DET, NUM, PART, PRON	PUNCT, SYM, X

	Train	Test	Total
#Sentences	3997	500	4997

Preprocessing

Mapping: token - index, POS tag - index

- For POS-tagging-only models (LSTM, Bi-LSTM)
 - No extra step before mapping
 - No new POS tag
 - One token may contain one or more characters.
- For Joint WS and POS tagging model (Joint Bi-LSTM)
 - One character = one token
 - NC tag = this character joins with the previous character

Preprocessing - Example

	然	而	,	这	样	的	处	理	也	衍	生	了	_	些	问	题	0
Or	AD\	/	P U N C T	PRO	ON	P A R T	NO	UN	A D V	VEF	RB	A U X	AD	J	NO	UN	P U N C T
Bi	A D V	N C	P U N C T	P R O N	N C	P A R T	N O U N	N C	A D V	V E R B	N C	A U X	A DJ	N C	N O U N	N C	P U N C T

Models

3 models:

- 1. LSTM
- 2. Bi-LSTM
- 3. Joint Bi-LSTM

Same structure - 3 layers:

- 1. Embedding
- 2. LSTM (bidirectional or not)
- 3. Linear

```
EMBEDDING DIM = 64
HIDDEN DIM = 64
BiLSTMTagger(
 (word embeddings): Embedding(3514,
64)
 (lstm): LSTM(64, 64, bidirectional=True)
 (hidden2tag): Linear(in features=128,
out features=16, bias=True)
```

Train and Test Results

Loss function: negative log likelihood loss NLLLoss

Optimizer: gradient descent optimizer SGD

Metric: F1 score

Number of Epochs: 10

Model	F1 average	F1
LSTM	0.7933	0.7930
Bi-LSTM	0.8185	0.8140
Joint Bi-LSTM	0.8461	0.8471

Train and Test Results - Example LSTM, Bi-LSTM result

他/担任/多/媒体/音乐/剧/《/琥珀/》/以及/儿童/狂欢/剧/《/魔山/》/的/音乐/总监/。

['PRON', 'VERB', 'PART', 'NOUN', 'NOUN', 'PART', 'PUNCT', 'NOUN', 'PUNCT', 'CCONJ', 'NOUN', 'VERB', 'PART', 'PUNCT', 'NOUN', 'PUNCT', 'PART', 'NOUN', 'NOUN', 'PUNCT']

LSTM

['PRON', 'VERB', 'NUM', 'NOUN', 'NOUN', 'NOUN', 'PUNCT', 'NOUN', 'PUNCT', 'CCONJ', 'NOUN', 'NOUN', 'NOUN', 'PUNCT', 'PART', 'PUNCT', 'PART', 'NOUN', 'NOUN', 'PUNCT']

0.7458333333333333

Bi-LSTM

['PRON', 'VERB', 'NUM', 'NOUN', 'NOUN', 'NOUN', 'PUNCT', 'NOUN', 'PUNCT', 'CCONJ', 'NOUN', 'NOUN', 'PART', 'PUNCT', 'NOUN', 'PUNCT', 'PUNC

0.85625

Train and Test Results - Example Joint Bi-LSTM result

Sentence: 由于认为德义军队战力已就绪, 隆美尔决定再发动攻势。

Tags: ['ADP', 'NC', 'VERB', 'NC', 'PROPN', 'PROPN', 'NOUN', 'NC', 'NOUN', 'NC', 'ADV', 'VERB', 'NC', 'PUNCT', 'PROPN', 'NC', 'NC', 'VERB', 'NC', 'ADV', 'VERB', 'NC', 'NOUN', 'NC', 'PUNCT']

Predicted: ['ADP', 'NC', 'VERB', 'NC', 'PROPN', 'NC', 'NOUN', 'NC', 'NOUN', 'NC', 'ADV', 'VERB', 'NC', 'PUNCT', 'PROPN', 'NC', 'NOUN', 'NC', 'ADV', 'VERB', 'NC', 'NOUN', 'NC', 'PUNCT']

F1 score: 0.916952380952381

Web Demo

Joint Bi-LSTM model + Flask

Enter a sentence

Get result

Web Demo

https://drive.google.com/file/d/1ZPJKeY0I-8Y7n556Ot6v2S3fz0MwOITG/view?usp=sharing

Future work

- Tuning: embedding dimension, hidden dimension
- Adding Attention
- Adding more features to the Web app, such as showing definition of each token

References

- https://www.kaggle.com/krishanudb/lstm-character-word-pos-tag-model-pytor
 ch
- https://towardsdatascience.com/joint-khmer-word-segmentation-and-pos-tagging-cad650e78d30
- https://github.com/crownpku/awesome-chinese-nlp