2023年研究生机器学习课程项目

提交日期:二零二四年一月十日中午12点前(实际完成需至少一个月,视调试经验或有長短)。以邮件提交时间为准,逾期恕不接收。

合作方式:可以至多三人组队,请在报告上写明各位作者的贡献。且请注明各自所在的研究领域。队内讨论为主,但不阻碍队间交流,但从其他队凡有借鉴之处,须在参考文献中注明,否则视为剽窃。

问题的来源:现代的电网需要根据时序变化的需求来把电力分配到不同用户区域。但实际中,要预测特定用户区域的未来需求很困难,因为它随工作日/假日、季节、天气、温度等的不同因素变化而变化。由于当前没有一种有效的方法来预测未来的用电量,电力公司就不得不根据经验值做出决策,而经验值的阈值通常远高于实际需求。保守的策略导致不必要的电力和设备折旧浪费。值得注意的是,变压器的油温可以有效反映电力变压器的工况。因此预测变压器的油温可以用来研究电力变压器极限负载能力,设法避免不必要的浪费。

我们现在就要通过一个电力变压器数据集ETTh1来预测电力变压器的油温。这个数据集提供了两年的记录,每个数据点每小时记录一次。数据集包含2年X 365天X 24小时= 17520个数据点。每个数据点均包含8维特征,包括数据点的记录日期、预测值"油温"以及6个不同类型的外部负载值。所有的数据都经过了预处理,并且以.csv的格式存储。

具体数据形式如下:

	date	HUFL	HULL	MUFL	MULL	LUFL	LULL	ОТ
0	2016-07-01 00:00:00	5.827	2.009	1.599	0.462	4.203	1.340	30.531000
1	2016-07-01 00:15:00	5.760	2.076	1.492	0.426	4.264	1.401	30.459999
2	2016-07-01 00:30:00	5.760	1.942	1.492	0.391	4.234	1.310	30.038000
3	2016-07-01 00:45:00	5.760	1.942	1.492	0.426	4.234	1.310	27.013000
4	2016-07-01 01:00:00	5.693	2.076	1.492	0.426	4.142	1.371	27.787001

数据中各列的含义:

Field	date	HUFL	HULL	MUFL	MULL	LUFL	LULL	ОТ
Description	The recorded date	High UseFul Load	High UseLess Load	Middle UseFul Load	Middle UseLess Load	Low UseFul Load	Low UseLess Load	Oil Temperature (target)

此数据集在此下载并可进一步获得数据的详情: https://github.com/zhouhaoyi/ETDataset

预测任务:为根据过去I=96小时的曲线来预测将来(i) O=96小时(見示意图)和(ii) O=336小时两种長度的变化曲线(须分别训练,即長程预测的模型参数不能用来进行短程预测)。注意这是多变量预测问题,输入是:样本数X输入序列長度X变量数,输出是:样本数X预测序列長度X变量数。按方法分为三部分。

前两部分为基础题,第三部分为开放题,各占三分之一: 1.用

LSTM模型预测, 2.用

Transformer模型预测, 3. 用

自己提出的改进模型预测,结构不限,此部分以原理的新颖程度为第一、性能为第二的标准评分。

训练与测试:Train/Val/Test划分为6:2:2。数据集采用滑动窗口制作,请参考教程。请用两种标准测试,即MSE与MAE。至少五轮结果平均,并提供std。

预测结果示意图(输入96小时,预测長度96小时)。仅显示了最后一个变量即油温的曲线,实际需预测七个变量。

提交方式:实验报告由1.问题介绍、2.模型(可以包含少量伪代码)、3.结果与分析、4.讨论四部分构成,同时提交代码(可以给出Github)。 结果须截图贴在报告里,并画出油温预测与Ground Truth曲线的对比。请注意三种方法之间的比较。如果自行提出的方法虽新颖而性能欠佳,但原因分析有力,同样可以得到较佳的分数。务请注明参考文献,否则视为剽窃,每剽窃一处扣33分。允许用ChatGPT一类工具写报告,但仅限于撰写并请注明,必要处参考文献仍不可缺。

参考和提示:对于前两个部分,我们提供了几个Tutorials。其中以单变量为主,我们的数据是多变量的。对第三部分我们提供了一些近年有代表性的参考文章,并作了简介。但请注意不允许照抄其中的模型,必须自行设计。时间序列预测和其它机器学习问题,如语言处理、语音辨识、基因序列预测等有很多相似之处,可以充分借鉴这些领域的方法,但同时要注意时间序列的特点,尤其是数据本身的特征。值得提醒的是,许多非

Transformer型模型有卓越的表现,且训练时间远短于Transformers,如卷积类的模型。

以上是一个有实际应用场景的问题,可以为电力工业提供切实的工具。希望各位在这个课程项目中有所获益,或可预测自家用电情况,或可在电力公司谋一份美差。 Have fun!!

参考教程(第1、2题):

- [1] https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/ [2] https://weibaohang.blog.csdn.net/article/details/128595011
- [3]https://towardsdatascience.com/how-to-use-transformer-networks-to-build-a-forecasting-model-297f9270e630

参考文章(第3题):

[1] Zhou H, Zhang S, Peng J, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]// Proceedings of the AAAI conference on artificial intelligence. 2021, 35(12): 11106-11115. 基于Transformer改进的 長序列预测模型,解决了二次时间复杂度、高内存占用以及编码器-解码器架构的固有限制的问题。主要提出ProbSparse自注意力机制,利用稀疏注意力在时间复杂度和内存使用方面实现了O(L log L)。

[2] 吴华,徐静,王静,等。 Autoformer:具有长期自相关性的分解变压器

系列预测[J].神经信息处理系统的进展,2021,34:22419-22430。 基于Transformer的具有自相关机制的分解架构。主要提出了基于序列周期性的自相关机制,在子序列级别进行依赖关系发现和表示聚合,以及将序列分解嵌入到深度模型中。

[3]周涛,马Z,文Q,等。 Fedformer:用于长期序列预测的频率增强分解变压器[C]//机器学习国际会议。 PMLR,2022 年: 27268-27286。

基于Transformer的频率增强分解模型,主要利用大多数时间序列在傅里叶变换中往往具有稀疏表示的事实,提出了频率增强模块,以及与季节趋势分解方法相结合。

[4]曾安,陈明,张立,等。 Transformer 对于时间序列预测有效吗?[C]//AAAI 人工智能会议论文集。 2023, 37(9): 11121-11128。

质疑Transformer的有效性,认为排列不变自注意力机制的本质不可避免地会导致时间信息丢失。主要引入了一组极其简单的单层线性模型来实现并比较。

[5]张Y,严J. Crossformer:利用跨维度依赖进行多元时间序列预测的Transformer[C]//第十一届学习表示国际会议。 2022 年。

在现有的基于Transformer 的模型主要侧重于对时间依赖性(跨时间依赖性)进行建模的基础上,再关注不同变量之间的依赖性(跨维度依赖性),从而保留时间和维度信息。

[6] 聂Y,Nguyen NH,Sinthong P,等。一个时间序列相当于 64 个字:使用 Transformer 进行长期预测[J]. arXiv 预印本 arXiv:2211.14730, 2022。

主要提出将时间序列分割为子序列级别的补丁,作为Transformer的输入标记,以及多变量时间序列的通道独立性,其中每个通道包含单个单变量时间序列。

[7]吴华,胡涛,刘Y,等。 Timesnet:用于一般时间序列分析的时间二维变化建模[J]。 arXiv 预印本 arXiv:2210.02186, 2022。

基于时间序列的多周期性,将复杂的时间变化分解为多个周期内和周期间的变化。主要提出将一维时间序列转换为一组基于多个周期的二维张量,将时间变化的分析扩展到二维空间。

(谢谢N.Bian同学的大力协助。)