C03 – Hoare Logic (cont.)

Program Verification

FMI · Denisa Diaconescu · Spring 2025

Proof rules for Hoare logic

The assignment axiom:

$$\{Q(\mathbb{E})\}$$
 x := \mathbb{E} $\{Q(x)\}$

Precondition Strengthening rule:

$$\boxed{ \frac{P_s \to P_w \quad \{P_w\} \ \mathbb{C} \ \{Q\}}{\{P_s\} \ \mathbb{C} \ \{Q\}} }$$

Postcondition Weakening rule:

$$\frac{\{P\}\;\mathbb{C}\;\{Q_s\}\qquad Q_s\to Q_w}{\{P\}\;\mathbb{C}\;\{Q_w\}}$$

Sequencing rule:

$$\frac{\{P\}\mathbb{C}_1\{Q\} \qquad \{Q\}\mathbb{C}_2\{R\}}{\{P\}\mathbb{C}_1;\mathbb{C}_2\{R\}}$$

Conditional rule:

$$\frac{\{P \wedge \mathbb{B}\} \ \mathbb{C}_1 \ \{Q\} \qquad \{P \wedge \neg \mathbb{B}\} \ \mathbb{C}_2 \ \{Q\}}{\{P\} \ \text{if} \ \mathbb{B} \ \text{then} \ \mathbb{C}_1 \ \text{else} \ \mathbb{C}_2 \ \{Q\}}$$

Suppose we want to prove

$$\{P\}$$
 while $\mathbb B$ do $\mathbb C$ $\{Q\}$

Suppose we want to prove

$$\{P\}$$
 while $\mathbb B$ do $\mathbb C$ $\{Q\}$

While rule:

$$\frac{\{I \wedge \mathbb{B}\} \mathbb{C} \{I\}}{\{I\} \text{ while } \mathbb{B} \text{ do } \mathbb{C} \{I \wedge \neg \mathbb{B}\}}$$

- *I* is called loop invariant
- I is true before we encounter the while statement, and remains true after each iteration of the loop (although not necessarily midway during execution of the loop body).
- \bullet If the loop terminates the loop condition must be false, so $\neg \mathbb{B}$ appears in the postcondition.
- \bullet For the body of the loop $\mathbb C$ to execute, $\mathbb B$ needs to be true, so it appears in the precondition.

Suppose we want to prove

$$\{P\}$$
 while $\mathbb B$ do $\mathbb C$ $\{Q\}$

While rule:

$$\frac{\{I \land \mathbb{B}\} \ \mathbb{C} \ \{I\}}{\{I\} \text{ while } \mathbb{B} \text{ do } \mathbb{C} \ \{I \land \neg \mathbb{B}\}}$$

- I is called loop invariant
- I is true before we encounter the while statement, and remains true after each iteration of the loop (although not necessarily midway during execution of the loop body).
- If the loop terminates the loop condition must be false, so $\neg \mathbb{B}$ appears in the postcondition.
- For the body of the loop $\mathbb C$ to execute, $\mathbb B$ needs to be true, so it appears in the precondition.
- The most difficult part is to come up with the invariant.
- This requires intuition. There is no algorithm that will find the invariant.

How does the while rule helps to solve our problem?

$$\{P\}$$
 while $\mathbb B$ do $\mathbb C$ $\{Q\}$

$$\frac{\{I \wedge \mathbb{B}\} \ \mathbb{C} \ \{I\}}{\{I\} \text{ while } \mathbb{B} \text{ do } \mathbb{C} \ \{I \wedge \neg \mathbb{B}\}}$$

How does the while rule helps to solve our problem?

$$\{P\}$$
 while $\mathbb B$ do $\mathbb C$ $\{Q\}$

```
\cfrac{\{\mathit{I} \land \mathbb{B}\} \ \mathbb{C} \ \{\mathit{I}\}}{\{\mathit{I}\} \ \text{while} \ \mathbb{B} \ \text{do} \ \mathbb{C} \ \{\mathit{I} \land \neg \mathbb{B}\}}
```

• The postcondition we get after applying our rule has the form $I \wedge \neg \mathbb{B}$. This might not be the same as the postcondition Q we want!

How does the while rule helps to solve our problem?

- The postcondition we get after applying our rule has the form $I \land \neg \mathbb{B}$. This might not be the same as the postcondition Q we want!
- If $(I \wedge \neg \mathbb{B}) \leftrightarrow Q$, we can replace $I \wedge \neg \mathbb{B}$ with Q.
- If $(I \land \neg \mathbb{B}) \to Q$ we can use the Postcondition weakening rule:

$$\frac{\{I \land \mathbb{B}\} \ \mathbb{C} \ \{I\}}{\{I\} \text{ while } \mathbb{B} \text{ do } \mathbb{C} \ \{I \land \neg \mathbb{B}\} \qquad I \land \neg \mathbb{B} \to Q}{\{I\} \text{ while } \mathbb{B} \text{ do } \mathbb{C} \ \{Q\}}$$

How does the while rule helps to solve our problem?

• Similarly, P and I might be different formulas.

How does the while rule helps to solve our problem?

$$\{P\}$$
 while $\mathbb B$ do $\mathbb C$ $\{Q\}$

- Similarly, P and I might be different formulas.
- If $I \leftrightarrow P$, we can replace I with P to complete our proof.
- If $P \rightarrow I$ we can use the Precondition strengthening rule:

$$\frac{P \to I \qquad \{I\} \text{ while } \mathbb{B} \text{ do } \mathbb{C} \text{ } \{Q\}}{\{P\} \text{ while } \mathbb{B} \text{ do } \mathbb{C} \text{ } \{Q\}}$$

Example

Suppose we want to find a precondition P such that

$$\{P\}$$
 while (n > 0) do n := n-1 $\{n = 0\}$

Example

Suppose we want to find a precondition P such that

$$\{P\}$$
 while $(n > 0)$ do $n := n-1 \{n = 0\}$

We want a loop invariant I such that

- if I is true initially
- I remains true each time around the loop
- $I \land \neg (n > 0) \rightarrow (n = 0)$

Example

Suppose we want to find a precondition P such that

$$\{P\}$$
 while $(n > 0)$ do $n := n-1 \{n = 0\}$

We want a loop invariant I such that

- if I is true initially
- I remains true each time around the loop
- $I \land \neg (n > 0) \rightarrow (n = 0)$

 $l \equiv n \ge 0$ looks like a reasonable loop invariant.

While rule:

$$\frac{\{I \wedge \mathbb{B}\} \ \mathbb{C} \ \{I\}}{\{I\} \ \text{while} \ \mathbb{B} \ \text{do} \ \mathbb{C} \ \{I \wedge \neg \mathbb{B}\}}$$

Example (cont.)

Suppose we want to find a precondition P such that

$$\{P\}$$
 while (n > 0) do n := n-1 $\{n = 0\}$

We consider the loop invariant $l \equiv n \geq 0$. Let's try to find P.

1.
$$\{n-1\geq 0\}$$
 n := n-1 $\{n\geq 0\}$ (Assignment rule)

While rule:

$$\frac{\{\mathit{I} \land \mathbb{B}\} \ \mathbb{C} \ \{\mathit{I}\}}{\{\mathit{I}\} \ \text{while} \ \mathbb{B} \ \text{do} \ \mathbb{C} \ \{\mathit{I} \land \neg \mathbb{B}\}}$$

Example (cont.)

Suppose we want to find a precondition P such that

$$\{P\}$$
 while (n > 0) do n := n-1 $\{n = 0\}$

We consider the loop invariant $I \equiv n \ge 0$. Let's try to find P.

1.
$$\{n-1 \ge 0\}$$
 n := n-1 $\{n \ge 0\}$ (Assignment rule)

2.
$$\{n \ge 0 \land n > 0\}$$
 n := n-1 $\{n \ge 0\}$ (1, Precond. Equiv.)

While rule:

$$\frac{\{\mathit{I} \land \mathbb{B}\} \ \mathbb{C} \ \{\mathit{I}\}}{\{\mathit{I}\} \ \text{while} \ \mathbb{B} \ \text{do} \ \mathbb{C} \ \{\mathit{I} \land \neg \mathbb{B}\}}$$

Example (cont.)

Suppose we want to find a precondition P such that

$$\{P\}$$
 while (n > 0) do n := n-1 $\{n = 0\}$

We consider the loop invariant $l \equiv n \geq 0$. Let's try to find P.

- 1. $\{n-1 \ge 0\}$ n := n-1 $\{n \ge 0\}$ (Assignment rule)
- 2. $\{n \ge 0 \land n > 0\}$ n := n-1 $\{n \ge 0\}$ (1, Precond. Equiv.)
- 3. $\{n \geq 0\}$ while (n>0) do n := n-1 $\{n \geq 0 \land \neg (n > 0)\}$ (2, While rule)

While rule:

$$\frac{\{I \wedge \mathbb{B}\} \ \mathbb{C} \ \{I\}}{\{I\} \ \text{while} \ \mathbb{B} \ \text{do} \ \mathbb{C} \ \{I \wedge \neg \mathbb{B}\}}$$

Example (cont.)

Suppose we want to find a precondition P such that

$$\{P\}$$
 while (n > 0) do n := n-1 $\{n = 0\}$

We consider the loop invariant $l \equiv n \ge 0$. Let's try to find P.

- 1. $\{n-1 \ge 0\}$ n := n-1 $\{n \ge 0\}$ (Assignment rule)
- 2. $\{n \ge 0 \land n > 0\}$ n := n-1 $\{n \ge 0\}$ (1, Precond. Equiv.)
- 3. $\{n \geq 0\}$ while (n>0) do n := n-1 $\{n \geq 0 \land \neg (n > 0)\}$ (2, While rule)
- 4. $\{n \ge 0\}$ while (n>0) do n := n-1 $\{n = 0\}$ (3, Postcond. Equiv.)

So we take P to be n > 0.

Proof rules for Hoare logic

The assignment axiom:

$$\{Q[x/\mathbb{E}]\} \times := \mathbb{E} \{Q\}$$

Precondition Strengthening rule:

$$\frac{P_s \to P_w \quad \{P_w\} \ \mathbb{C} \ \{Q\}}{\{P_s\} \ \mathbb{C} \ \{Q\}}$$

Postcondition Weakening rule:

$$\boxed{ \frac{\{P\} \; \mathbb{C} \; \{Q_s\} \qquad Q_s \to Q_w}{\{P\} \; \mathbb{C} \; \{Q_w\}} }$$

Sequencing rule:

$$\frac{\{P\}\mathbb{C}_1\{Q\} \qquad \{Q\}\mathbb{C}_2\{R\}}{\{P\}\mathbb{C}_1;\mathbb{C}_2\{R\}}$$

Conditional rule:

$$\boxed{ \begin{aligned} & \{P \wedge \mathbb{B}\} \ \mathbb{C}_1 \ \{Q\} & \{P \wedge \neg \mathbb{B}\} \ \mathbb{C}_2 \ \{Q\} \\ & \{P\} \ \text{if} \ \mathbb{B} \ \text{then} \ \mathbb{C}_1 \ \text{else} \ \mathbb{C}_2 \ \{Q\} \end{aligned} }$$

While rule:

Example

Consider the Program:

```
i := 0;
s := 0;
while (i != n) do
i := i+1;
s := s+(2*i-1)
```

Goal: prove $\{\top\}$ Program $\{s=n^2\}$

The sum of the first n odd numbers is n^2 .

Example (cont.)

Let us check some examples:

- $1 = 1 = 1^2$
- $1+3=4=2^2$
- $1+3+5=9=3^2$
- $1+3+5+7=16=4^2$

It looks OK. Let us see if we can prove it!

Goal: prove $\{\top\}$ Program $\{s=n^2\}$

9

Example (cont.)

First we need a loop invariant 1.

```
\frac{\{\mathit{I} \land \mathbb{B}\} \ \mathbb{C} \ \{\mathit{I}\}}{\{\mathit{I}\} \ \text{while} \ \mathbb{B} \ \text{do} \ \mathbb{C} \ \{\mathit{I} \land \neg \mathbb{B}\}}
```

```
while (i != n) do

i := i+1;

s := s+(2*i-1)

\{s = n^2\}
```

From the while rule, we want $I \wedge (i = n) \rightarrow (s = n^2)$ in order to be able to apply Postcond. Weak.

In the loop body, each time, i increments and s moves on the next square number.

Example (cont.)

First we need a loop invariant I.

```
\frac{\{I \wedge \mathbb{B}\} \ \mathbb{C} \ \{I\}}{\{I\} \text{ while } \mathbb{B} \text{ do } \textcolor{red}{\mathbb{C}} \ \{I \wedge \neg \mathbb{B}\}}
```

```
while (i != n) do

i := i+1;

s := s+(2*i-1)

\{s = n^2\}
```

From the while rule, we want $I \wedge (i = n) \rightarrow (s = n^2)$ in order to be able to apply Postcond. Weak.

In the loop body, each time, i increments and s moves on the next square number.

Loop invariant $I \equiv (s = i^2)$ seems plausible.

Example (cont.)

We check that $I \equiv (s = i^2)$ is an invariant. Let us prove $\{I \land (i \neq n)\} \ \mathbb{C} \ \{I\}$.

$$\frac{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1\{Q\} \qquad \{Q\} \text{s} := \text{s} + (2 * \text{i} - 1)\{s = i^2\}}{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1; \text{s} := \text{s} + (2 * \text{i} - 1)\{s = i^2\}}$$

Example (cont.)

We check that $I \equiv (s = i^2)$ is an invariant. Let us prove $\{I \land (i \neq n)\} \subset \{I\}$.

$$\frac{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1\{Q\} \qquad \{Q\} \text{s} := \text{s} + (2*\text{i} - 1)\{s = i^2\}}{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1; \text{s} := \text{s} + (2*\text{i} - 1)\{s = i^2\}}$$

- 1. $\{Q\}$ s:=s+(2*i-1) $\{s = i^2\}$
- 2.

3.
$$\{s = i^2 \land i \neq n\}$$
 i:=i+1 $\{Q\}$

4.
$$\{s = i^2 \land i \neq n\}$$
 i:=i+1; s:=s+(2*i-1) $\{s = i^2\}$ (1,3, Seq.)

Example (cont.)

Check $I \equiv (s = i^2)$ is an invariant: prove $\{I \land (i \neq n)\} \ \mathbb{C} \ \{I\}$

$$\frac{\{s=i^2 \land i \neq n\} \mathtt{i} := \mathtt{i} + 1\{Q\} \qquad \{Q\}\mathtt{s} := \mathtt{s} + (2*\mathtt{i} - 1)\{s=i^2\}}{\{s=i^2 \land i \neq n\} \mathtt{i} := \mathtt{i} + 1; \ \mathtt{s} := \mathtt{s} + (2*\mathtt{i} - 1)\{s=i^2\}}$$

Q is
$$\{s + (2*i - 1) = i^2\}$$

- 1. $\{s + (2*i-1) = i^2\}$ s := s+(2*i-1) $\{s = i^2\}$ (Assignment)
- 2.
- 3. $\{s = i^2 \land i \neq n\}$ i := i+1 $\{Q\}$
- 4. $\{s = i^2 \land i \neq n\}$ i := i+1; s := s+(2*i-1) $\{s = i^2\}$ (1,3, Seq.)

Example (cont.)

Check $I \equiv (s = i^2)$ is an invariant: prove $\{I \land (i \neq n)\} \subset \{I\}$

$$\frac{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1\{Q\} \qquad \{Q\} \text{s} := \text{s} + (2*\text{i} - 1)\{s = i^2\}}{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1; \text{ s} := \text{s} + (2*\text{i} - 1)\{s = i^2\}}$$

Q is
$$\{s + (2 * i - 1) = i^2\}$$

- 1. $\{s + (2*i-1) = i^2\}$ s := s+(2*i-1) $\{s = i^2\}$ (Assignment)
- 2.

3.
$$\{s = i^2 \land i \neq n\}$$
 i := i+1 $\{s + (2*i - 1) = i^2\}$

4.
$$\{s = i^2 \land i \neq n\}$$
 i := i+1; s := s+(2*i-1) $\{s = i^2\}$ (1,3, Seq.)

Example (cont.)

Check $I \equiv (s = i^2)$ is an invariant: prove $\{I \land (i \neq n)\} \subset \{I\}$

$$\frac{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1\{Q\} \qquad \{Q\} \text{s} := \text{s} + (2*\text{i} - 1)\{s = i^2\}}{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1; \text{ s} := \text{s} + (2*\text{i} - 1)\{s = i^2\}}$$

Q is
$$\{s + (2 * i - 1) = i^2\}$$

- 1. $\{s + (2*i 1) = i^2\}$ s := s+(2*i-1) $\{s = i^2\}$ (Assignment)
- 2. $\{s + (2*(i+1) 1) = (i+1)^2\}$ i := i+1 $\{s + (2*i 1) = i^2\}$ (Assignment)
- 3. $\{s = i^2 \land i \neq n\}$ i := i+1 $\{s + (2*i 1) = i^2\}$
- 4. $\{s=i^2 \land i \neq n\}$ i := i+1; s := s+(2*i-1) $\{s=i^2\}$ (1,3, Seq.)

Example (cont.)

Check $I \equiv (s = i^2)$ is an invariant: prove $\{I \land (i \neq n)\} \subset \{I\}$

$$\frac{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1\{Q\} \qquad \{Q\} \text{s} := \text{s} + (2*\text{i} - 1)\{s = i^2\}}{\{s = i^2 \land i \neq n\} \text{i} := \text{i} + 1; \text{ s} := \text{s} + (2*\text{i} - 1)\{s = i^2\}}$$

Q is
$$\{s + (2 * i - 1) = i^2\}$$

- 1. $\{s + (2*i 1) = i^2\}$ s := s+(2*i-1) $\{s = i^2\}$ (Assignment)
- 2. $\{s + (2*(i+1) 1) = (i+1)^2\}$ i := i+1 $\{s + (2*i 1) = i^2\}$ (Assignment)
- 3. $\{s = i^2 \land i \neq n\}$ i := i+1 $\{s + (2*i 1) = i^2\}$ (2, Strength. Precond.)
- 4. $\{s = i^2 \land i \neq n\}$ i := i+1; s := s+(2*i-1) $\{s = i^2\}$ (1,3, Seq.)

So far, so good.

Example (cont.)

Completing the proof of $\{\top\}$ Program $\{s=n^2\}$

1. We have

$$\left\{\left(s=i^2\right)\wedge\left(i\neq n\right)\right\} \text{ i } := \text{ i+1; s } := \text{ s+(2*i-1) } \left\{s=i^2\right\}$$

Example (cont.)

Completing the proof of $\{\top\}$ Program $\{s=n^2\}$

1. We have

$$\big\{ \big(s = i^2 \big) \land \big(i \neq n \big) \big\} \text{ i } := \text{ i+1; s } := \text{ s+}(2*\text{i-1}) \ \big\{ s = i^2 \big\}$$

2. Apply the While rule and Postcondition Weakening rule since

$$(s=i^2) \wedge (i=n) \rightarrow s=n^2$$

$$\{s=i^2\} \text{ while } \ldots \quad \text{s:=s+(2*i-1)} \ \{s=n^2\}$$

Example (cont.)

Completing the proof of $\{\top\}$ Program $\{s=n^2\}$

1. We have

$$\{(s=i^2) \land (i \neq n)\}\ i := i+1;\ s := s+(2*i-1)\ \{s=i^2\}$$

2. Apply the While rule and Postcondition Weakening rule since

$$(s=i^2) \wedge (i=n) \rightarrow s=n^2$$

$$\{s=i^2\} \text{ while } \ldots \quad \text{s:=s+(2*i-1)} \ \{s=n^2\}$$

3. Check that the initialization establishes the invariant:

$$\frac{\{0=0^2\}i := 0\{0=i^2\} \qquad \{0=i^2\}s := 0\{s=i^2\}\}}{\{0=0^2\}i := 0; s := 0\{s=i^2\}}$$

Example (cont.)

Completing the proof of $\{\top\}$ Program $\{s=n^2\}$

1. We have

$$\{(s=i^2) \land (i \neq n)\}\ i := i+1;\ s := s+(2*i-1)\ \{s=i^2\}$$

2. Apply the While rule and Postcondition Weakening rule since

$$(s=i^2) \wedge (i=n) \rightarrow s=n^2$$
 $\{s=i^2\}$ while ... $s:=s+(2*i-1)$ $\{s=n^2\}$

3. Check that the initialization establishes the invariant:

$$\frac{\{0=0^2\}i := 0\{0=i^2\} \qquad \{0=i^2\}s := 0\{s=i^2\}}{\{0=0^2\}i := 0; s := 0\{s=i^2\}}$$

4. $(0 = 0^2) \leftrightarrow \top$, so putting it all together with Sequencing we have $\{\top\}$ i:=0; s:=0; while (i != n) do S $\{s = n^2\}$

Verifying programs with Hoare Logic

Exercise:

```
Consider the program Factorial:
    y := 1;
    z := 0;
    while (z != x) do
    z := z+1;
    y := y*z
Goal: prove {T} Program {y = x!}
```

Verifying programs with Hoare Logic

Exercise:

```
Consider the program Factorial:
    y := 1;
    z := 0;
    while (z != x) do
     z := z+1;
     y := y*z
Goal: prove \{\top\} Program \{y = x!\}
Hint! Use the loop invariant I \equiv y = z!
```

Quiz time!

https://tinyurl.com/FMI-PV2023-Quiz3