Discrete & Continous Random Number

STK473 - Praktikum 3

Discrete Random Number

Bernoulli (p)

Uniform (0,1)

Bernoulli (p)

$$0 \leq F_X(x) \leq 1$$

$$0 \le X \le 1$$

→ Y ~ Bernoulli (p)

Bernoulli(p)

$$pmf$$
 $P(X = x|p) = p^{x}(1-p)^{1-x}; x = 0, 1; 0 \le p \le 1$

$$\frac{mean \ and}{variance}$$
 $EX = p$, $Var X = p(1-p)$

$$mgf M_X(t) = (1-p) + pe^t$$

```
i < -1000
p < -.65
X<-runif(i)
Y < -NUII_II_I
for (z \text{ in } 1:i) \text{ ifelse } (X[z] \le p, Y[z] \le -1, Y[z] \le -0)
(tabel<-table(Y)/length(Y))</pre>
barplot(tabel, main="Bernoulli")
i<-1000
p < -.65
X<-runif(i)</pre>
0 + (q = > X) - Y
(tabel<-table(Y)/length(Y))</pre>
barplot(tabel, main="Bernoulli")
```

Discrete Uniform (N)

Uniform (0,1) $F_X(x)$

Discrete uniform

$$pmf$$
 $P(X = x|N) = \frac{1}{N}; \quad x = 1, 2, ..., N; \quad N = 1, 2, ...$

mean and variance
$$EX = \frac{N+1}{2}$$
, $Var X = \frac{(N+1)(N-1)}{12}$

$$mgf M_X(t) = \frac{1}{N} \sum_{i=1}^{N} e^{it}$$

```
i < -1000
N < -4
X<-runif(i)</pre>
DU<-NULL
for (z in 1:i) {
  if (X[z] \le 1/N) DU[z] < -1
  else if (X[z] \le 2/N) DU[z] < -2
  else if (X[z] \le 3/N) DU[z] \le -3
  else DU[z] < -4
(tabel<-table(DU)/length(DU))</pre>
barplot(tabel, main="Seragam Diskret")
```

```
i < -1000
N < -4
X<-runif(i)</pre>
DU < -as.numeric(cut(X,breaks=c(0,1/N,2/N,3/N,1),
   include.lowest = T))
(tabel<-table(DU)/length(DU))</pre>
barplot(tabel, main="Seragam Diskret")
i < -1000
N < -4
X<-runif(i)</pre>
DU < -1 + floor(N*X)
(tabel<-table(DU)/length(DU))</pre>
barplot(tabel, main="Seragam Diskret")
```

Binomial (n,p)


```
#Binomial (5, 0.65)
i < -1000
n < -5
p < -0.65
Binom<-NULL
for (z in 1:i) {
  m < -0
  for (k in 1:n) {
     y < - (runif(1) < = p) + 0
    m < -m + y
  Binom[z] < -m
(tabel<-table(Binom)/length(Binom))</pre>
barplot(tabel, main="Binomial")
```

```
#Binomial (3,0.5)
i<-1000
X<-runif(i)
Binom<-as.numeric(cut(X,breaks=c(0,1/8,4/8,7/8,1),
   include.lowest = T))-1
(tabel<-table(Binom)/length(Binom))
barplot(tabel,main="Binomial")</pre>
```

Geometric (p)

 $X \sim Uniform (0,1)$

Geometric(p)

pmf
$$P(X=x|p)=p(1-p)^{x-1}; \quad x=1,2,\ldots; \quad 0 \leq p \leq 1$$
mean and variance
$$EX=\frac{1}{p}, \quad \text{Var } X=\frac{1-p}{p^2}$$
mgf
$$M_X(t)=\frac{pe^t}{1-(1-p)e^t}, \quad t<-\log(1-p)$$
notes
$$Y=X-1 \text{ is negative bihoral}(1,p). \text{ The distribution is memoryless:}$$

$$P(X>s|X>t)=P(X>s-t).$$

Negative Binomial (r,p)

X ~ Uniform (0,1)
$$F_X(x)$$
 $F_X(x)$ $F_X(x)$ $F_X(x)$ Y ~ Neg Binomial (r,p)

Negative binomial(r, p)

$$\begin{array}{ll} pmf & P(X=x|r,p) = {r+x-1 \choose x} p^r (1-p)^x; \quad x=0,1,\ldots; \quad 0 \leq p \leq 1 \\ \\ \frac{mean \ and}{variance} & EX = \frac{r(1-p)}{p}, \quad \mathrm{Var} \ X = \frac{r(1-p)}{p^2} \\ \\ mgf & M_X(t) = \left(\frac{p}{1-(1-p)e^t}\right)^r, \quad t < -\log(1-p) \end{array}$$

An alternate form of the pmf is given by $P(Y = y|r,p) = {y-1 \choose r-1}p^r(1-p)^{y-r}$, $y = r, r+1, \ldots$ The random variable Y = X + r. The negative binomial can be derived as a gamma mixture of Poissons. (See Exercise 4.34.)

Tugas 1

Buatlah program R untuk membangkitkan 1000 bilangan acak yang menyebar:

- Geometrik
- Binomial Negatif

Dikumpulkan paling lambat hari di GCR.

Format:

- -Nama file: "Tugas 1 Kelompok [no kelompok]"
- -Ekstensi file: ".r" atau ".txt"

Continous Random Numbers

Inverse Transform Method

- Metode Transformasi Kebalikan
- Dikenal juga sebagai Look-Up Table Method
- Didasari pada kenyataan bahwa
 - jika U adalah bilangan acak Seragam(0, 1)
 - dan didefinisikan $X = F^{-1}(U)$, dengan $F^{-1}(U)$ adalah fungsi kebalikan dari F(X)
 - maka X akan memiliki sebaran yang diinginkan
- Algoritma untuk mendapatkan bilangan acak X dengan sebaran tertentu
 - Tentukan bentuk dari fungsi sebaran kumulatif X yang diinginkan, misal F(x)
 - Cari fungsi kebalikan dari F(x), yaitu F⁻¹(x)
 - Bangkitkan bilangan acak Seragam (0, 1), misal dilambangkan U
 - Hitung $X = F^{-1}(U)$

Inverse Transform Method

Seragam (a, b)

- Ilustrasi untuk membangkitkan sebaran Seragam(a, b)
- X ~ Seragam(a, b)
 - F(x) = (x a) / (b a)
 - U = (x a) / (b a)
 - X = a + (b a) U
- Algoritma:
 - Bangkitkan U, bilangan acak Seragam(0, 1)
 - Hitung X = a + (b a) * U
 - Ulangi berkali-kali sesuai dengan banyaknya bilangan yang diinginkan

Inverse Transform Method Eksponensial (λ)

- Ilustrasi untuk membangkitkan sebaran Eksponensial(λ)
- X ~ Eksponensial(λ)
 - $f(x) = \lambda e^{-\lambda x}$, untuk $x \ge 0$
 - $F(x) = 1 e^{-\lambda x}$, untuk $x \ge 0$
 - $U = 1 e^{-\lambda x}$, untuk $x \ge 0$
 - $X = -\ln(1 U) / \lambda$
- Algoritma:
 - Bangkitkan U, bilangan acak Seragam(0, 1)
 - Hitung $X = -\ln(1 U) / \lambda$
 - Ulangi berkali-kali sesuai dengan banyaknya bilangan yang diinginkan

```
#Eksponensial(λ=3)
i<-1000
lambda<-3
U<-runif(i)
X<--log(U)/lambda
hist(X)</pre>
```

Gam (α,β) ma

U~Unifor (0,1) m
$$X = \frac{-\ln U}{\lambda}$$

$$G = \frac{-\frac{n}{i+1} \ln U_i}{\lambda}$$

$$X \sim \text{Eksponensial } (\lambda)$$

$$G = X_i$$

$$i=1$$

$$G = \lambda$$

```
\#Gamma(\alpha=5, \beta=3)
i<-1000
lambda < -3
alpha<-5
U<-log(runif(i*alpha))</pre>
Um<-matrix(U,i)</pre>
Y<-apply(Um, 1, sum)
Gama<--Y/lambda
hist (Gama)
```

Chi-Square (m)

G~Gam (
$$a=n,\beta=\lambda$$
)
ma

Gamma($2n/2,2$

$$\chi^2_{db=m=2n}$$

Sehingga ketika vganjil maka n = v/2akan menghasilkan bilangan pecahan → tidak sesuai

Ingat:

- Jika Z~N(0,1), maka Z~ $\chi^2_{db=1}$ Jika X₁~ $\chi^2_{db=m}$ dan X₂~ $\chi^2_{db=n}$, maka X₃=X₁+X₂~ $\chi^2_{db=(m+n)}$

Sehingga


```
#chi-square(10)
                               #chi-square(11)
i < -1000
                               i < -1000
lambda<-2
                               lambda<-2
alpha<-5
                               alpha < -5
U<-log(runif(i*alpha))</pre>
                               U<-log(runif(i*alpha))</pre>
                               Um<-matrix(U,i)</pre>
Um<-matrix(U,i)
Y<-apply(Um, 1, sum)
                               Y<-apply(Um, 1, sum)
chi<--Y/lambda
                               chi<--Y/lambda
                               chi<-chi+(rnorm(i))^2</pre>
hist (chi)
                               hist (chi)
```

Inverse Transform Method

 Kesulitan utama: memperoleh kebalikan dari fungsi sebaran kumulatif

 Keunggulan: bisa digunakan untuk berbagai sebaran (termasuk sebaran diskret)

Memanfaatkan pengetahuan mengenai transformasi dan sifat sebaran peubah acak

- $Y_i \sim \text{Eksponensial}(\lambda) \rightarrow G = \Sigma_i^n Y_i$ $\sim \text{Gamma}(n,\lambda)$
- Gamma(m/2, 2) = Chi-square(m)
- Chi-square(db = 1) = Kuadrat dari Normal(0, 1)
- Jika X₁~Chi-square(m), X₂~Chi-square(n),
 maka X₃=X₁+X₂~Chi-square(m+n)
- dsb

Poisson(λ)

- Proses Poisson dengan laju sebesar λ
 - Waktu antar kejadian \rightarrow saling bebas \rightarrow Eksponensial (λ)
 - Banyaknya kejadian pada setiap selang waktu t menyebar Poisson(λt)

Poisson (λ)


```
#Poisson(1) melalui ekponensial
i<-1000
lambda < -1
K<-NULL
for (z in 1:i) {
  sk < -0
  k < -0
  while (sk \le 1) {
    u<-runif(1)
    y<--log(u)/lambda
    sk < -y + sk
    k < -k+1
  K[z] < -k-1
(tabel<-table(K)/length(K))</pre>
barplot(tabel)
```

```
#Poisson(1) melalui seragam
i<-1000
lambda < -1
K<-NULL
for (z in 1:i) {
  k < -0
  sk < -1
  while(sk>=exp(-lambda)) {
    u<-runif(1)
    sk<-sk*u
    k < -k+1
  K[z] < -k
(tabel<-table(K)/length(K))</pre>
barplot(tabel)
```

thank you!