Математический анализ. Подготовка к РК №1

1 Теоретические вопросы

1.1 Определения

Вопрос 1. Сформулируйте определение окрестности точки $x \in \mathbb{R}$.

Ответ. Окрестностью точки x называется любой интервал, содержащий данную точку.

Вопрос 2. Сформулируйте определение ε -окрестности точки $x \in \mathbb{R}$.

Ответ. ε -окрестностью точки x называется интервал с центром в точке x и длиной 2ε .

 $S(x,\varepsilon)$ или $u_{\varepsilon}(x)$

Вопрос 3. Сформулируйте определение окрестности $+\infty$.

Ответ. Окрестностью $+\infty$ называется любой интервал вида:

$$S(a, +\infty), a > 0$$

Вопрос 4. Сформулируйте определение окрестности $-\infty$.

Ответ. Окрестностью $-\infty$ называется любой интервал вида:

$$S(-\infty, -a), a > 0$$

Вопрос 5. Сформулируйте определение окрестности ∞ .

Ответ. Окрестностью ∞ называется любой интервал вида:

$$\begin{split} S(\infty,a) &= S(-\infty,-a) \cup S(a,+\infty) \\ &= (-\infty,-a) \cup (+\infty,a), a > 0 \end{split}$$

Вопрос 6. Сформулируйте определение предела последовательности.

Ответ. Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε найдётся натуральное число $N(\varepsilon)$ такое, что если порядковый номер n члена последовательности станет

больше $N(\varepsilon)$, то имеет место неравенство $|x_n - a| < \varepsilon$.

$$\lim_{n \to \infty} = a \Leftrightarrow (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N})(\forall n > N(\varepsilon) \Rightarrow |x_n - a| < \varepsilon)$$

Вопрос 7. Сформулируйте определение сходящейся последовательности.

Ответ. Последовательность, имеющая предел, назыается сходящейся.

Вопрос 8. Сформулируйте определение ограниченной последовательности.

Ответ. Последовательность $\{x_n\}$ называется ограниченной, если она ограничена и сверху, и снизу, т.е.:

$$\forall n \in \mathbb{N} \Rightarrow x_n < M \Leftrightarrow |x_n| < M$$

Вопрос 9. Сформулируйте определение монотонной последовательности.

Вопрос 10. Сформулируйте определение возрастающей последовательности.

Ответ. Последовательность чисел $\{x_n\}$ называется возрастающей, если каждый последующий член $x_{n+1} > x_n, n \in \mathbb{N}$.

Вопрос 11. Сформулируйте определение убывающей последовательности.

Ответ. Последовательность чисел $\{x_n\}$ называется убывающей, если каждый последующий член $x_{n+1} < x_n$.

Вопрос 12. Сформулируйте определение невозрастающей последовательности.

Ответ. Последовательность чисел $\{x_n\}$ называется невозрастающей, если каждый последующий член $x_{n+1} \le x_n$.

Вопрос 13. Сформулируйте определение неубывающей последовательности.

Ответ. Последовательность чисел $\{x_n\}$ называется неубывающей, если каждый последующий член $x_{n+1} \ge x_n$.

Вопрос 14. Сформулируйте определение фундаментальной последовательности.

Ответ. Последовательность $\{x_n\}$ называется фундаментальной, если для любого $\varepsilon>0$ \exists свой порядковый номер $N(\varepsilon)$ такой, что при всех $n\geq N(\varepsilon)$ и $m\geq N(\varepsilon)$ выполнено неравенство $|x_n-x_m|<\varepsilon$.

Вопрос 15. Сформулируйте критерий Коши существования предела последовательности.

Ответ. Для того, чтобы последовательность была сходящейся, необходимо и достаточно чтобы она была фундаментальной.

Вопрос 16. Сформулируйте определение по Гейне предела функции.

Ответ. Число а называется пределом y = f(x) в точке x_0 , если эта функция определена в окрестности точки a и \forall последовательнсти $\{x_n\}$ из области определения этой функции, сходящейся к x_0 соответствующая последовательность функций $\{f(x_n)\}$ сходится к a.

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow (\forall x_n \in D_f) (\lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = a)$$

Вопрос 17. Сформулируйте определение бесконечно малой функции при $x \to x_0$.

Ответ. Функция называется бесконечно малой при $x \to x_0$, если:

$$\lim_{x \to x_0} f(x) = 0$$

Вопрос 18. Сформулируйте определение бесконечно большой функции.

Ответ. Функция называется бесконечно большой при $x \to x_0$, если:

$$\lim_{x \to x_0} f(x) = \infty$$

Вопрос 19. Сформулируйте определение бесконечно малых функций одного порядка.

Ответ. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются одного порядка малости, если:

 $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = const \neq 0$

Вопрос 20. Сформулируйте определение несравнимых бесконечно малых функций.

Ответ. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются *несравнимыми*, если:

$$\exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Вопрос 21. Сформулируйте определение эквивалентных бесконечно малых функций.

Ответ. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются *эквивалентными* , если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

Bonpoc 22. Сформулируйте определение порядка малости одной функции относительно другой.

Ответ. Б.м.ф. $\alpha(x)$ имеет порядок малости k относительно функции б.м.ф. $\beta(x)$, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{[\beta(x)]^k} = const \neq 0$$

Вопрос 23. Сформулируйте определение приращения функции.

Вопрос 24. Сформулируйте определение непрерывности функции в точке (любое).

Вопрос 25. Сформулируйте определение непрерывности функции на интервале.

Вопрос 26. Сформулируйте определение непрерывности функции на отрезке.

Вопрос 27. Сформулируйте опредление точки разрыва.

Вопрос 28. Сформулируйте определение точки устранимого разрыва.

Вопрос 29. Сформулируйте определение точки разрыва І рода.

Вопрос 30. Сформулируйте определение точки разрыва II рода.

1.2 Определение предела по Коши

Вопрос 31. Сформулируйте определение по Коши $\lim_{x\to 0} f(x) = b$, где $b\in\mathbb{R}$. Приведите соответствующий пример (с геометрической иллюстрацией).

Ответ. Определение:

$$\lim_{x \to 0} f(x) = b$$

$$\Leftrightarrow$$

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(0, \delta) \Rightarrow |f(x) - b| < \varepsilon)$$

Пример:

$$\lim_{x \to 0} (x+b) = b$$

Вопрос 32. Сформулируйте определение по Коши $\lim_{x\to a} = +\infty$, где $a\in\mathbb{R}$. Приведите соответствующий пример (с геометрической иллюстрацией).

Ответ. Определение:

$$\lim_{x \to a} = +\infty$$

$$\Leftrightarrow$$

$$(\forall M > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in S(a, \delta) \Rightarrow f(x) > M)$$

Пример:

$$\lim_{x \to a} \frac{1}{|x - a|} = +\infty$$

Вопрос 33. Сформулируйте определние по Коши $\lim_{x\to\infty} f(x) = 0$. Приведите соответствующий пример (с геометрической иллюстрацией).

Ответ. Определение:

$$\lim_{x\to\infty} f(x) = 0$$

$$\Leftrightarrow$$

$$(\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall |x| > N \Rightarrow |f(x)| < \varepsilon)$$

Пример:

$$\lim_{x \to \infty} \frac{1}{x} = 0$$

Вопрос 34. Сформулируйте определние по Коши $\lim_{x\to a-0} f(x) = -\infty$, где $a\in\mathbb{R}$. Приведите соответствующий пример (с геометрической иллюстрацией).

Ответ. Определение:

$$\lim_{x\to a-0} f(x) = -\infty$$

$$\Leftrightarrow$$

$$(\forall M>0)(\exists \delta(\varepsilon)>0)(\forall x\in (a-\delta,a)\Rightarrow f(x)<-M)$$

Пример:

$$\lim_{x\to a-0}\frac{1}{x-a}=-\infty$$

1.3 Формулировка теорем

Вопрос 35. Сформулируйте теорему об ограниченности сходящейся числовой последовательности.

Ответ. Любая сходящаяся последовательность ограничена.

Вопрос 36. Сформулируйте теорему о связи функции, ее предела и бесконечно малой.

Ответ. Функция y=f(x) имеет конечный предел в точке x_0 тогда и только тогда, когда её можно представить в виде суммы предела и некоторой бесконечно малой функции.

Вопрос 37. Сформулируйте теорему о сумме конечного числа бесконечно малых функций.

Ответ. Конечная сумма бесконечно малых функции есть бесконечно малая функция.

Вопрос 38. Сформулируйте теорему о произведении бесконечно малой на ограниченную функцию.

Ответ. Произведение бесконечно малой функции на ограниченную есть величина бесконечно малая.

Вопрос 39. Сформулируйте теорему о связи бесконечно малой и бесконечно большой функций.

Ответ. Если $\alpha(x)$ - бесконечно большая функция при $x \to x_0$, то $\frac{1}{\alpha(x)}$ - бесконечно малая функция при $x \to x_0$.

Вопрос 40. Сформулируйте теорему о необходимом и достаточном условии эквивалентности бесконечно малых.

Ответ. Две функции $\alpha(x)$ и $\beta(x)$ эквивалентны тогда и только тогда, когда их разность имеет более высокий порядок малости по сравнению с каждой из них.

Вопрос 41. Сформулируйте теорему о сумме бесконечно малых разных порядков

Ответ. Сумма бесконечно малых функций разных порядком малости эквивалентно слагаемому низшего порядка малости.