摘要

关键词:关键词1,关键词2,关键词3

1 问题复述

1.1 问题背景

生鲜商超中的蔬菜类商品具有显著的易腐性特征,其保鲜期通常极短, 且品相会随销售时间的增加而持续变差。对于大多数蔬菜品种而言,如果 当日未能售出,次日便无法继续销售,这直接导致了高昂的损耗风险和对 每日精准补货的迫切需求。为了应对这一挑战,商超通常会根据各类商品 的历史销售和需求情况进行每日补货。

然而,补货决策的制定面临多重复杂性。蔬菜的进货交易时间通常在凌晨3:00至4:00之间,这意味着商家必须在不确切了解具体单品和其进货价格的情况下,做出当日各蔬菜品类的补货决策。这种固有的不确定性构成了决策过程中的核心挑战,我们需要结合附件中各品种的各方面数据,建立一个有效的模型来指导商超的补货决策。

1.2 问题一

蔬菜类商品的不同种类间可能存在一种内在联系,例如某些蔬菜可能 在销售上存在着竞争、替补或相互依存的关系。我们需要对各蔬菜品种的 销售分布进行分析,得出各蔬菜品种之间的规律及其相互关系。

1.3 问题二

蔬菜类商品通常以品类为单位进行补货决策。为了得到最大收益,实 现最优补货决策,需要我们对蔬菜的销售情况与成本加成定价的关系进行 平衡。以过往数据为基础,为未来一周的蔬菜品类的日进货总量和定价策略给出最优方案。

- 1.4 问题三
- 1.5 问题四
- 2 问题分析
- 2.1 问题一分析
- 2.2 问题二分析
- 2.3 问题三分析
- 2.4 问题四分析
- 3 符号说明
- 4 数据预处理
- 5 模型假设
- 6 模型求解
- 6.1 问题一模型求解
- 6.2 问题二模型求解
- 6.3 问题三模型求解
- 6.4 问题四模型求解
- 7 模型检验
- 8 模型优点和展望