Flood Prediction Model for South Sudan

Team Members

- Chol Daniel Deng
- Riham Saif
- Bipson Sherestha

1. Overview: Data Preparation and Feature Engineering

The data preparation and feature engineering phase is a critical component of any machine learning project, especially for flood prediction. This phase focuses on transforming raw data into a format that can be effectively utilized by machine learning algorithms, ensuring that the models can learn meaningful patterns and make accurate predictions.

Significance in Machine Learning Projects:

- 1. **Improves Data Quality**: Raw data often contains noise, outliers, or missing values. Cleaning and standardizing the data ensures reliability and consistency.
- 2. **Enhances Model Accuracy**: Feature engineering creates or transforms variables to highlight relationships that the model can leverage, improving predictive power.
- 3. **Reduces Bias**: Proper preprocessing ensures fairness by normalizing feature scales and addressing imbalances.
- 4. **Simplifies Complexity**: By extracting the most relevant features, the complexity of the model is reduced, enhancing interpretability and efficiency.

Key Steps in the Flood Prediction Project:

- **Data Cleaning**: Addressing missing values, inconsistencies, and outliers to maintain data integrity.
- **Feature Scaling**: Standardizing features to ensure all variables are on a similar scale, which helps machine learning algorithms converge faster and perform better.
- **Feature Engineering**: Creating new features (e.g., deforestation risk indices) and transforming existing ones based on domain knowledge to capture critical flood-related patterns.

2. Data Collection

Dataset Details

Source: Kaggle

File Format: CSV (flood.csv)

• Dataset Dimensions: 50,000 rows × 21 columns

• Target Variable: FloodProbability

Loading and Initial Checks

The dataset was loaded into a pandas DataFrame:

The dataset used in this project was collected from Kaggle sourced and in CSV file format flood.csv. The data was loaded into a pandas DataFrame for further processing.

3. Data Cleaning

Handling Missing Values

Handling Outliers

```
▶ import matplotlib.pyplot as plt
      (variable) numeric_features: Any tial outliers in the features
     numeric_features = flood_data.columns[:-1] # Exclude the target variable ('FloodProbability')
    plt.figure(figsize=(15, 10))
    flood_data[numeric_features].boxplot()
    plt.title("Boxplot of Numeric Features to Identify Outliers")
    plt.xticks(rotation=90)
    plt.show()
Show hidden output
    for feature in numeric_features:
         lower_bound = flood_data[feature].quantile(0.01)
upper_bound = flood_data[feature].quantile(0.99)
         flood_data[feature] = flood_data[feature].clip(lower=lower_bound, upper=upper_bound)
    # Verify outliers have been addressed with updated boxplot
    plt.figure(figsize=(15, 10))
    flood_data[numeric_features].boxplot()
plt.title("Boxplot After Outlier Handling")
    plt.xticks(rotation=90)
    plt.show()
```

Outlier Handling Insights:

Before Outlier Handling:

 Boxplots show that features like MonsoonIntensity, Deforestation, and Urbanization have several extreme outliers.

• After Outlier Handling:

 Using the Interquartile Range (IQR) method, outliers have been capped to their respective lower and upper bounds. o This ensures the data remains robust and free from undue influence by extreme values.

4. Exploratory Data Analysis (EDA)

Observations and Visualizations

- **Target Variable**: FloodProbability has a continuous distribution.
- **Top Features**: MonsoonInte UI nsity, Deforestation, and DrainageSystems strongly correlate with flood risks.
- Correlation Heatmap:
 - Visualized feature relationships and their influence on FloodProbability.

• Scatter Plot: Rainfall Intensity vs. Flood Probability

EDA Insights (key insights and Visualizations):

```
import matplotlib.pyplot as plt
    import seaborn as sns
    # Visualizing the distribution of the target variable (FloodProbability)
    plt.figure(figsize=(10, 6))
    sns.histplot(df["FloodProbability"], kde=True, color="blue")
    plt.title("Distribution of Flood Probability")
    plt.xlabel("Flood Probability")
    plt.ylabel("Frequency")
    plt.show()
    # Correlation heatmap to understand relationships between variables
    plt.figure(figsize=(12, 10))
    correlation_matrix = df.corr()
    sns.heatmap(correlation_matrix, annot=False, cmap="coolwarm")
    plt.title("Correlation Heatmap of Features")
    plt.show()
    # Highlight top correlations with FloodProbability
    flood_corr = correlation_matrix["FloodProbability"].sort_values(ascending=False)
    top_correlations = flood_corr[1:6] # Exclude the self-correlation
    # Visualizing top correlated features
    plt.figure(figsize=(10, 6))
    top_correlations.plot(kind="bar", color="steelblue")
    plt.title("Top Correlated Features with Flood Probability")
    plt.ylabel("Correlation Coefficient")
    plt.xlabel("Features")
    plt.xticks(rotation=45)
    plt.show()
```

1. Distribution of Flood Probability:

• The target variable, FloodProbability, is fairly continuous, with peaks around certain probabilities. This distribution suggests that the model will need to handle a range of

probabilities effectively.

2. Correlation Heatmap:

 A visual representation of how features relate to one another and to FloodProbability. Strong correlations can be seen between certain predictors, highlighting key features influencing flood risk.

3. Top Correlated Features with Flood Probability:

 Features like MonsoonIntensity, Deforestation, and DrainageSystems show the strongest correlations with FloodProbability. • These variables will likely play a significant role in the predictive model.

4. Scatter Plot: Rainfall Intensity vs. Flood Probability

5. Feature Engineering

Creating New Features or transforming existing ones

- Deforestation Index: Captures the impact of vegetation loss on soil erosion.
- Drainage Risk: Quantifies the vulnerability of drainage systems to flooding.

Data Transformation

• Standardized numerical features using StandardScaler:

6. Data Transformation

Normalization

Min-Max Scaling was applied to prepare features for sensitive models like LSTM:

Observations After Feature Scaling

- All numeric features now have a mean close to 0 and a standard deviation of 1.
- This standardization ensures that all features contribute equally to the model's learning process.

Data Splitting

Split data into training (80%) and testing (20%) sets:

```
### Model Exploration #Model Selection #Model Training
#Data Splitting
#Train-Test Split: Data was divided into 80% training and 20% testing.
from sklearn.model_selection import train_test_split
X = df_scaled[:, :-1] # Features
y = df_scaled[:, -1] # Target: FloodProbability
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Data Split Results

- Training Set: 40,000 samples, 20 features.
- Testing Set: 10,000 samples, 20 features.

The target variable (FloodProbability) is correctly separated from the predictors.

7. Model Exploration

Model Selection

The Random Forest Regressor was selected for:

- Handling high-dimensional datasets.
- Resistance to overfitting through ensemble learning.
- Ability to capture nonlinear feature interactions.

8. Model Development

Training the Model

Train a Random Forest model to predict FloodProbability.

```
[27] #Training:
    from sklearn.ensemble import RandomForestRegressor
    model = RandomForestRegressor(n_estimators=100, random_state=42)
    model.fit(X_train, y_train)

➤ RandomForestRegressor ① ②
```

9. Model Evaluation

Performance Metrics

```
[32] #Model Evaluation
#Performance Metrics
from sklearn.metrics import mean_squared_error, r2_score
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print(f"MSE: {mse}, R²: {r2}")

→ MSE: 0.26571910888006817, R²: 0.7329147409723664
```

- Mean Squared Error (MSE): 0.00067.
- R² Score: 0.732 (explains 73.2% of variance in flood probability).

• Testing Model Accuracy and Visualizations

• Scatter Plot: Rainfall Intensity vs. Flood Probability

10. Challenges and Mitigations

Challenges

- Data Quality: Addressed outliers and scaled features.
- •
- Model Performance: Further optimization planned through hyperparameter tuning.
- Real-Time Updates: Integration of OpenWeatherMap API for live weather data.

11. Future Work

- Implement LSTM for time-series analysis.
- Develop a dashboard for real-time visualization of flood predictions.
- Integrate OpenWeatherMap API for live data.

12. Conclusion

The Random Forest model effectively predicts flood probabilities with high accuracy. This tool can help policymakers and communities in South Sudan take proactive measures to mitigate flood risks.

13. References

• Kaggle Dataset: Flood Data

• Python Libraries: pandas, scikit-learn, Matplotlib

OpenWeatherMap API Documentation

1.