北京大学数学丛书

代 数 学

下 册

莫宗坚 蓝以中 赵春来 著

北京大学出版社

北京大学数学丛书

代 数 学

下 册

莫宗坚 等著

北京大学出版社出版 (北京大学校内) 北京大学印刷厂印刷

新华书店北京发行所发行 各地新华书店经售 850×1168毫米 32开本 9,5印张 236千字 1986年12月第一版 1986年12月第一次印刷 印数: 1-12,000册

统一书号: 13209·142 定价: 2.30元

下册目录

符号说明

第六章	环论 (1))
§ 1	环的局部化····································)
§ 2	整数扩充(8))
§ 3	零点定理(16))
§ 4	环的谱集(23)	
§ 5	理想的分解(32	
§ 6	维数论(1)(40	
§ 7	分次环及分次模 (50	
§ 8	拓扑环····································	
§ 9	维数论(2))
第七章	赋值论 (92)	,
§ 1	定义)
§ 2	赋值的存在及扩充(105)
§ 3	A MARIA	
P 4	实赋值(113	
§ 4	Hensel 引埋(121)
§ 4 § 5	Hensel 引埋······(121 代数扩充······(128))
•	Hensel 引埋(121))
§ 5	Hensel 引埋······(121 代数扩充······(128))
§ 5 § 6	Hensel 引埋·······(121 代数扩充······(128 因子类群······(144))
§ 5 § 6 第八章	Hensel 引埋	
§ 5 § 6 第八章 § 1	Hensel 引埋 (121 代数扩充 (128 因子类群 (144 Dedekind 整环 (158) 定义 (158)	

第六章 环 论

§ 1 环的局部化

本书所说的环都是有幺元的交换环。读者请参考第三章 § 2 关于"比域"的讨论,特别是定义 3.7 中提出了"局部化环"的概念。在那里,我们假定了 S 是一整环,在本节中,我们将讨论一般环的情形。

定义6.1 设S为一环。S的一个非空子集D如果适合下列条件。

- 1) $0 \in D$;
- 2) $d_1, d_2 \in D \Longrightarrow d_1 \cdot d_2 \in D$,

则称之为一分母系.

讨论 类似于定义 3.7,我们想要定义 s/d,这里 $s \in S$, $d \in D$ 。自然的,就像从整数环 Z 引出有理数域 Q 的情形一样,我们要求

$$\frac{s_1}{d_1} + \frac{s_2}{d_2} = \frac{s_1 d_2 + s_2 d_1}{d_1 d_2}, \quad \frac{s_1}{d_1} \cdot \frac{s_2}{d_2} = \frac{s_1 s_2}{d_1 d_2}.$$

麻烦的问题是 $d \in D$ 可能是一个零因子,即有 $s \in S$, $s \neq 0$,但sd = 0 。则我们不免得出下面的自相矛盾的算式。

$$s = s \cdot 1 = s \cdot \left(d \cdot \frac{1}{d}\right) = \left(s \cdot d\right) \frac{1}{d} = 0 \cdot \frac{1}{d} = 0.$$

解决之道,是通过商环的步骤,消除这个难点。请见下定理。

定理6.1 令D为环S的一个分母系。又令

$$I = \{s: s \in S, 存在一个 d \in D, 使 sd = 0\}$$

则有

I 是 S 的一个理想;

2) 令 $\sigma: S \rightarrow S/I$ 为典型映射,则 $\sigma(D)$ 是S/I的一个分母系,而且,如果 $\sigma(s)\sigma(d)=0$,必有 $\sigma(s)=0$,此处 $d\in D$.

证明 1) 如果 $s_1, s_2 \in I$, 则有 $d_1, d_2 \in D$, 使

$$s_1 d_1 = 0$$
 , $s_2 d_2 = 0$.

显然立得

$$(s_1 \pm s_2)d_1d_2 = 0$$
,
 $(s_1)d_1 = s(s_1d_1) = s \cdot 0 = 0$, $\forall s \in S$,

于是 [是理想。

2) 显然, $\sigma(d_1)\sigma(d_2) = \sigma(d_1d_2) \in \sigma(D)$ 。 及如果 $0 = \sigma(d) \in \sigma(D)$,立得 $d \in I$,即存在 $d_1 \in D$,使 $0 = dd_1 \in D$ 。 这与D的性质不合,所以 $0 \in \sigma(D)$ 。 因此 $\sigma(D)$ 是一个分母系。

现设 $\sigma(s)\sigma(d)=0$,则 $\sigma(sd)=0$,即 $sd\in I$ 。故必存在 $d_1\in D$,使 $s(dd_1)=(sd)d_1=0$ 。立得 $s\in I$,即 $\sigma(s)=0$.

讨论 从上面的定理,我们知道:给定一个分母系D以后,我们从环S转移到环S/I来考虑,则σ(D)中沒有零因子。因此,零因子所产生的难点也即消失。

定义6.2 设S 是环,D 是 分 母 系。令I , σ 如 定 理 6.1 所 设。又令 S' = S/I , $D' = \sigma(D)$ 。则我们定义 S 对 D 的 局部化环 S 为下面的集合

$$S_D = S_D' = \left\{ \frac{s'}{d'} : s' \in S', d' \in D' \right\},$$

及其运算规则

$$\frac{s_1'}{d_1'} + \frac{s_2'}{d_2'} = \frac{s_1'd_2' + s_2'd_1'}{d_1'd_2'} ,$$

$$\frac{s_1'}{d_1'} \cdot \frac{s_2'}{d_2'} = \frac{s_1' s_2'}{d_1' d_2'}, \qquad \frac{s_1' d_2'}{d_1' d_2'} = \frac{s_1'}{d_1'} .$$

又如果 $s' = \sigma(s)$, $d' = \sigma(d)$, 则定义

$$\frac{s}{d} = \frac{s'}{d'} \bullet$$

讨论 1) 如果 5 为整环,则定义 6.2 与定义3.7相同。

2) 对于分母系的规定,我们也可以取消 $0 \in D$ 的 限 制。自然,如果 $0 \in D$ 时, $S_{p} = 0$.

例1 令 $S = Z \oplus Z$, $D = \{(n, 0): n \neq 0\}$ 。则显然D 是一个分母系。此时,不难看出

$$I = \{(0,m) : m \in \mathbb{Z}\},$$

 $S/I \approx \mathbb{Z}, \quad \sigma(D) = \{n : n \neq 0\}.$

于是,我们得出 $S_D \approx Q$.

我们任取 $s \in S$, 一般可以考虑

$$s\mapsto \sigma(s)\mapsto \frac{\sigma(s)\sigma(d)}{\sigma(d)}$$
.

这样把S的元素 s ,认同为 S_0 的元素 $\frac{\sigma(s)\sigma(d)}{\sigma(d)}$ 。例如,在例 1 中,把元素(n,m)认同为 n/1=n 。显然,这个认同映射不是单射。

在下面的讨论中,我们将证明,环的局部化法与取商环法, 是可以**交换的。**

定理6.2 设 S 是环,D 是分母系,J 是 S 的理想, $D \cap J = \emptyset$ 。令 $\tau: S \rightarrow S_D$ 是认同映射。再令 $J' = \tau(J) \cdot S_D$,即 J' 是J 的元素在认同映射下的象所生成 的 理 想。又令 $\pi: S \rightarrow S/J$ 是典型映射。则恒有

$$\pi(S_{-})_{\pi(D)} \approx S_{D}/J'$$
.

证明 我们先要说明上面的式子是有意义的。换句话说, $\pi(D)$ 是 $\pi(S)$ 的分母系。事实上,因为 $D \cap J = \emptyset$,自然 0 \in $\pi(D)$ 。又有 $\pi(d_1)\pi(d_2) = \pi(d_1d_2) \in \pi(D)$ ($\forall d_1, d_2 \in D$),所以 $\pi(D)$ 是一个分母系。

我们定义一个映射 a 如下:

$$a: \pi(S)_{\pi(D)} \rightarrow S_D/J'$$
,

$$a\left(\frac{\pi(s)}{\pi(d)}\right) = \frac{s}{d} + J'$$

请读者自行证明,这确实是个单满映射,故为同构。』

我们常见的局部化环,是取 $D=S\setminus p$,此处 $p \in S$ 的 一个 素理想。请注意,按照素理想的定义,我们有

$$ab \in \mathfrak{p} \Longrightarrow a \in \mathfrak{p} \text{ if } b \in \mathfrak{p},$$

 $a \in \mathfrak{p}, b \in \mathfrak{p} \Longrightarrow ab \in \mathfrak{p},$

 $a \in D$, $b \in D \implies ab \in D$.

也即

因此, $D = S \setminus p$ 确是一个分母系。

符号 设 $D = S \setminus p$, p 是素理想,则我们用S,表示 S_{D} 。又设 $J \subset S$, $\tau: S \to S$, 是认同映射,则我们用 JS,表示 $\tau(J)S$, 即由 $\tau(J)$ 生成的理想。

$$S_{\bullet} = \left\{ \frac{f(x,y)}{g(x,y)} : f,g \in S, \ g(a,b) \neq 0 \right\}_{\bullet}$$

不难看出,S,即是在点(a,b)有定义的有理函数的集合。

又令 $R = \{(f(x), g(y)): f, g \in S, f(0) = g(0)\}$, 即定义在 x 轴及 y 轴上的多项式组(任何一组中的两个多项式在原点 取 值相等)的集合。令 $q = \{(xf(x), yg(y))\}$, 则有

$$R_{\bullet} = \left\{ \left(\frac{f(x)}{r(x)}, \frac{g(x)}{s(x)} \right) : r(0) \neq 0, \ s(0) \neq 0, \ \frac{f(0)}{r(0)} = \frac{g(0)}{s(0)} \right\}.$$

不难看出,R, 即是在原点有定义的x 轴及y 轴上的有 理函 数组(每组中的两个有理函数在原点取值相等)的集合。

定义6.3 设环 S 中只有唯一的极大理想 m,则称 S 为 局部环。

讨论 定理 3.23 中已经证明,在任意环 5 中必有一极 大 理想。在局部环的定义中,我们强调只有唯一的极大理想。

定理6.3 1) $S \in S$ 部 $S \in S$ 部 可逆元 $S \in S$ 是局部 $S \in S$ 是一个理想。于是 $S \in S$ 的唯一的极大理想。

2) 设 p 是环 S 的素理想,则 pS,是 S,的唯一的极大理想。

于是S,是局部环。

证明 1) \Longrightarrow 。 \Leftrightarrow 的极大理想,则显然m = J。

← . 任取選想 $I \Rightarrow S$, 显然有 $I \subset J$. 于是 J 是 S 的 唯 - 的极大理想。

$$\frac{d}{s} \in S$$
, $\iff s \in \mathfrak{p}$.

所以 s/d为可逆元当且仅当 $s \in p$,也即 s/d 为非可逆元当且 仅当 $s \in p$ 。于是,pS,是S,中的所有非可逆元的集合,它显然是S,的一个理想。由 1),即知 2)成立。

例3 一般言之,任取环S的一个分母系D,则S对D 的 局部化环S_D 不一定是局部环。最简单的例子,令 $D = \{1\}$,则S_D = S,显然不一定是局部环。

现在我们取一个实例。令S = C[x,y], $p = (y - x^2)$. 请注意 $y - x^2 = 0$ 定义一条抛物线。我们考虑 S_* , 不难看出

$$S_{\bullet} = \left\{ \frac{f(x,y)}{g(x,y)} : g(x,x^2) \neq 0 \right\}.$$

此时,分母 g(x,y) 不在抛物线 $y-x^2=0$ 上恒等于零。然而,在抛物线的个别点上,g(x,y) 可以是零。例如,y 即 可 以 当 作 分母,而此多项式 y 在原点(0,0)等于零。自然,(0,0)是抛物线上的一点。

值得我们注意的是S的理想在局部化后的变动情形,即在 S_D 中生成的理想如何。我们有下面的定理。

定理6.4 1) 设D是环S的分母系,J是S的理想。则 $JS_{D}=S_{D} \longleftrightarrow J \cap D + \varnothing$;

2) 设p及J是S的素理想,J $\subset p$ 则下面的映射是由S中含于p的素理想集合到S,的素理想集合的单满映射。

$$J \mapsto JS_{\bullet,\bullet}$$

$$1 = \sum_{i} \tau(a_i) \frac{\tau(s_i)}{\tau(d_i)} = \frac{\tau(a)}{\tau(d)}, \quad s_i \in S, \ a_i, a \in J, \ d_i, d \in D.$$

III $\tau(a) = \tau(d), \quad a - d \in \ker(\tau).$

于是存在 $d' \in D$, 使(a-d)d' = 0, 立得 $J \ni ad' = dd' \in D$.

← . 显然.

2) 任取 I 为S,的素理想。令

$$J = \{a: a \in S, aS, \subset I \}$$

则J显然是S的一个理想,以及JS, $\subset I$ 。又任取 $a/d \in I$,则 $a \in J$,以及 $a/d = a(1/d) \in JS$ 。于是 I = JS 。又设 $ab \in J$,则 abS 。 C I 。用I 是素理想这个条件,立得 aS 。C I 或 bS 。C I ,即 $a \in J$ 或 $b \in J$ 。所以J 是S 的一个素理想。这样,我们证明了映射 $J \mapsto JS$ 。是满射。

现在我们假设 $JS_* = J'S_*$, J = J' 都是含于 P 的素理想,求证 J = J'。 任取 $a \in J$,则有 $a/1 \in JS_* = J'S_*$ 。 所以有

$$\frac{a}{1} = \sum_{i} a_{i}^{\prime} \frac{s_{i}}{d_{i}} = \frac{a'}{d}, \quad a'_{i}, a' \in J', \quad s_{i} \in S, \quad d_{i}, d \in \mathfrak{p}.$$

也即

$$ad - a' \in \ker(\tau)$$
.

于是,存在 $d' \in P$,使(ad-a') $d' = 0 \in J'$ 。但 $J' \subset P$,所以 $d' \in J'$,而 J' 为素理想,立得

$$ad - a' \in J'$$
, $ad \in J'$, $a \in J'$.

因此 $J \subset J'$ 。同法可证 $J' \subset J$ 。即得 J = J' 。故映射 $J \mapsto JS$,是单射 。【

例4 对一般分母系D而言, $J \mapsto JS_D$ 不一定是单射。例如,取 $S = Z \oplus Z$, $D = \{(2n,0): n \neq 0\}$ 。则不难 看出

$$S_D = \left\{ \frac{m}{2n} : m, n \in \mathbb{Z}, n \neq 0 \right\},$$

以及 $(0)S_{p} = (\{0\} \oplus Z)S_{p}$, 其中(0)表示 S 中 的 零 理 想。显然 $\{0\} \oplus Z \in S$ 的一个非零理想。 【

任给一环S及两个非零因子a,b。则显然ab也为非零因子。 所以,所有的非零因子的集合是一个分母系D。此时, S_D 称为S的全比环。不难看出,当S是整环时,S的全比环即是S的比域。

习 55

1. 证明局部化环可定义如下,设A是环,S是A的乘法封闭子集。一个环X称为A关于S的局部化环,如果存在一个环映射 $f: A \rightarrow X$,使得对任一环映射 $g: A \rightarrow B$,只要 g(s) 在B中可逆($\forall s \in S$),必存在唯一的环映射 $h: X \rightarrow B$, 使 得 下 面 的图表交换:

2. 设R是环,S是R的乘法封闭子集。如果对R的每个素理想p而言,

S∩p≠ø.

问\$是否一定在S中?

- 3. 求 $\mathbf{Z}/m\mathbf{Z}$ 的全比环,其中 $m \in \mathbf{Z}$.
- 4. 设R是主理想整环,证明局部化环 R_D 也是主理想整环。
- 5. 设R 是唯一分解环,证明 R_p 也是唯一分解环。
- 6。 设 R 是一个局部环, I 是 R 的真理想。证明 R / I 仍是局部环。

- 7. 证明 $K[[x_1,x_2,...,x_n]]$ 是一个局部环,这 里 K 是一个域。
 - 8. 证明在零点附近的复解析函数集 $C\{\{x\}\}$ 是一个局部环。
 - 9. 证明 Z/p^*Z 是一个局部环,其中p 为素数, $n \in N$
 - 10. 令R = Z/(60), p = 2R, 求 R。的基数、
- 11. 设R 是整环。证明 $R = \bigcap R_n$,此式右端的交 集 是 对R 的所有极大理想m而言的。
- 12. 设 $Z \subset R \subset Q$, R 是一个局部环。证明 $R = Z_{(*)}$ 或Q, 此处 P 是一个素数。
- 13. 设K 是域, $K[x] \subset R \subset K(x)$, R 是局部环。证明 $R = K[x]_{\{f(x)\}}$ 或 K(x),此处 f(x) 是 K[x] 中一个 不可约多项式。

§ 2 整数扩充

我们考虑 $Z \subset Q$ 。任意有理数 $\alpha \in Q$,都适合下面形式的整系数方程式

$$nx - m = 0$$
, $n, m \in \mathbb{Z}$, $(n, m) = 1$.

而且

$$a \in \mathbb{Z} \iff n = 1$$
.

又,我们熟悉的 $\sqrt{2} \in \mathbf{Q}$ 的一个古典证法如下:首先, $\sqrt{2}$ 适合下式。

$$x^2-2=0,$$

然后再应用下面的定理。

定理6.5 设α为有理数。如果α适合下面的整系数首一多项式

$$x^{n} + a_{1}x^{n-1} + \cdots + a_{n} = 0$$
, $a_{i} \in \mathbb{Z}$,

则α必为整数。

$$m^n = d(-a_1 m^{n-1} - \dots - a_n d^{n-1})_{\bullet}$$

即有 $d \mid m^*$,所以 $d = \pm 1$ 。于是 $\alpha = m/d \in Z$ 。

从定理6.5,我们知道,如果 $\sqrt{2}$ 是有理数,则必是整数。显然 $x^2-2=0$ 沒有整数根,因此 $\sqrt{2}$ 必非有理数。

类似于上面对整数的刻划方法,我们给出下面的定义。

定义6.4 给定两环 $S \subset R$ 。设 $r \in R$,如果 r 适 合下面的首一方程式 $f(x) \in S[x]$ 。

$$f(x) = x^n + a_1 x^{n-1} + \dots + a_n = 0$$
, $a_i \in S$,

则称 r 对 S 为整数相关的。

与定理6,5完全一样,我们可以证明下面的定理。

定理6.5' 设S 是唯一分解整环,K 是 S 的比域。如果 $r \in K$ 对S 为整数相关的,则r 必在S 中。

证明 读者自证之。 【

例5 取 $C[x,1/x] \supset C[x]$, 则1/x不是对 C[x]整数 相关的。我们可以把 C[x,1/x]表示成 C[x,y]/(xy-1)。从 几 何 观 点 来看,xy-1=0 当 x=0 时无解,即双曲线 xy-1=0 上 不 存在任何一点,它向 x 轴的投影为原点。这恰是 y=1/x 对 C[x] 非整数相关的几何意义。一般来说,如果 y 适合下面的方程式

$$a_0(x)y^n + a_1(x)y^{n-1} + \cdots + a_n(x) = 0$$
,

而其中 $a_0(x)$ 不是常数,则 $a_0(x) = 0$ 所决定的 x 点上, y 的 解数将少于 n 。因此, y 所适合的方程式是否是首一的,有很大的几何意义。

我们要仿照域论中对代数相关的研究来处理环论中的整数相 关。在域论中,我们应用向量空间的理论,在环论中,我们要采 用模论了。

定理6.6 给定两环 $S \subset R$, $r \in R$, 则下列条件是等同的:

- 1) r对S是整数相关的;
- 2) S[r]是有限 S 模;
- · 3) 存在一个有限 S 模 M⊂R, 使 1∈M, rM⊂M。

证明 1)→→ 2)。 设 r 适合 r* + a₁r* - l + ··· + a_n = 0 。则有

$$r^{n} = -a_{1}r^{n-1} - \dots - a_{n},$$

$$r^{n+1} = -a_{1}r^{n} - \dots - a_{n}r$$

$$= -a_{1}(-a_{1}r^{n-1} - \dots - a_{n}) - a_{2}r^{n-1} - \dots - a_{n}r$$

$$= b_{1}r^{n-1} + \dots + b_{n}, \quad b_{1}, \dots, b_{n} \in S,$$

等等。不难看出, $r^*, r^{*+1}, \dots \in S \cdot 1 + S \cdot r + \dots + S \cdot r^{*-1}$,于是 $\{1, r, \dots, r^{*-1}\}$ 是 S[r]的有限生成元集,即 S[r]是有限 S 模。

3) \Longrightarrow 1)。设 $\{m_1, \dots, m_n\}$ 是M的有限生成元集。按照条件3),我们得出

应用初等线性代数的 Cramer 法则, 立得

$$\det \begin{bmatrix} r - a_{11} & - a_{12} & \cdots & - a_{1n} \\ - a_{21} & r - a_{22} & \cdots & - a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ - a_{n1} & - a_{n2} & \cdots & r - a_{nn} \end{bmatrix} \cdot m_i = 0 , \quad i = 1, \dots, n.$$

将上式左端的"特征行列式"展开成

$$f(r) = r^{n} + a_{1}r^{n-1} + \cdots + a_{n} \quad (a_{i} \in S),$$

頭有

$$f(r) \cdot m = 0$$
, $\forall m \in M$.

取m=1,即有f(r)=0。所以r是对S整数相关的。

应用上面的定理,我们可以证明:

定理6.7 给定两环 $S \subset R$. 则 R 中所有对 S 为整数相关的元素构成一环 S'. 此环 S' 具有如下性质: 如果 $r \in R$ 对 S' 为整数相关的,则必有 $r \in S'$. S' 称为 S 在 R 中的整数闭包。

证明 任取 $r \in R$ 对 S 为整数相关的,再任取 $g(r) \in S[r]$.

在上面的定理中,令M = S[r],则显然有 $1 \in M$ 及 $g(r)M \subset M$ 。 所以 g(r)对 S 是整数相关的。我们证明了 $S[r] \subset S'$ 。

任取 $r_1, r_2 \in S'$ 。显然, r_2 是对 $S[r_1]$ 为整数相关的。于是 $S[r_1, r_2] = S[r_1][r_2]$

是有限 $S[r_1]$ 模。而 $S[r_1]$ 又是有限 S模,不难得出 $S[r_1,r_2]$ 是有限 S模。任取 $h(r_1,r_2) \in S[r_1,r_2]$,合 $M = S[r_1,r_2]$,应用定理 6.6,立得 $h(r_1,r_2)$ 对 S 是整数相关的。所以 $S[r_1,r_2] \subset S'$ 。 因此, S' 当然是一环。

我们又取 $r \in R$ 对 S' 是整数相关的。设 r 适合下式。

$$r'' + s'_1 r^{n-1} + \cdots + s'_n = 0$$
, $s'_1 \in S'$,

则 $S[s_1, \dots, s_n, r]$ 是有限 $S[s_1, \dots, s_n]$ 模。不难 看 出, $S[s_1, \dots, s_n]$ 是有限 S模,于是, $S[s_1, \dots, s_n, r]$ 是有限 S模。因 此, r是 对 S整数相关的, 也即 $r \in S'$ 。 【

为了眉目清晰起见,我们给出下面的定义。

定义6.5 设环S的全比环是R。如果S在R中的整数闭包就是S自身,则称S是整数封闭的。

讨论 参考定理6.5',任意一唯一分解整环都是整数封闭的。例如,任取一域K,则多项式环 $K[x_1, \dots, x_n]$ 是整数封闭的。 】 我们有下面的重要定理。

定理8.8 (诺德正規化定理) 设K 是城, $R = K[r_1, ..., r_m]$ 是一个整环,此处 $r_1, ..., r_m$ 不一定是变数。则必存在变数 $x_1, ..., x_n \in R$,使得R 的任意元素 r 都是对 $S = K[x_1, ..., x_n]$ 整数相关的。

证明(承田雅宜证法) 収变数 y_1, \dots, y_m 。 定义下面的环映射

$$\sigma \colon K[y_1, \cdots, y_m] \to K[r_1, \cdots, r_m],$$

$$\sigma(y_i) = r_i, \quad i = 1, \cdots, m.$$

如果 $\ker(\sigma) = (0)$,则 $K[y_1, \dots, y_m] \approx K[r_1, \dots, r_m]$,也即 r_1 , …, r_m 是变数。此时我们令 $x_i = r_i$, S = R 即可。以下, 我们假

设 $ker(\sigma)$ \div (0)。 任 取 $f(y_1, \dots, y_m) \in ker(\sigma)$, $f(y_1, \dots, y_m)$ \div 0,读者不难看出(请补足之),适当选取正整数

$$0 \ll l_2 \ll l_3 \ll \cdots \ll l_m$$

可以用下面的变数代换

$$z_1 = y_1,$$
 $z_2 = y_2 - y_1^{l/2} = y_2 - z_1^{l/2},$
 $z_m = y_m - y_1^{l/n} = y_m - z_1^{l/m},$

使得

$$f(z_1, z_2 + z_1^{l_2}, \dots, z_m + z_1^{l_m})$$

$$= a_0 z_1^l + a_1(z_2, \dots, z_m) z_1^{l-1} + \dots + a_l(z_2, \dots, z_m),$$

其中 $a_0 \in K$, $a_0 \neq 0$. 至此, 再相应地令

$$r_1^r = r_1,$$
 $r_2^r = r_2 - r_1^{l/2} = r_2 - (r_1^r)^{l/2},$
 $r_m^r = r_m - r_1^{l/m} = r_m - (r_1^r)^{l/m},$

不难看出, $K[r_1, \dots, r_m] = K[r_1', \dots, r_m']$,以及

$$a_0(r_1^t)^t + a_1(r_2^t, \cdots, r_m^t)(r_1^t)^{t-1} + \cdots + a_l(r_2^t, \cdots, r_m^t) = 0$$

所以 r'_1 对 $K[r'_2, ..., r'_n]$ 是整数相关的。于是,我们可以用 $K[r'_2, ..., r'_n]$ 代替上面的 $K[r_1, ..., r_m]$,然后再重新讨论。如此逐步作下去,即得本定理。

例6 考虑例 5, $C[x+(1/x)] \subset C[x,1/x]$ 适合定理6.8的要求,即C[x,1/x] 中任意元素都是对C[x+(1/x)]整数相关的。而 $C[x] \subset C[x,1/x]$ 与 $C[1/x] \subset C[x,1/x]$ 都不适合定理6.8的要求。从几何观点看来,就是说,从双曲线 xy-1=0 向 x 轴或 y 轴投影,都不适当。如果向直线 x+y=0 投影,则有某种正则性(即对于直线 x+y=0 上任一点P,都有双曲线 xy-1=0 上的两个点投影到P上)。其代数观点上的含意,请见下定理。

定理6.9(Cohen 及 Seidenberg 上升定理) 设有两环 S⊂R,

而且R的元素都对S整数相关。那么,任取素理想 $p \subset S$,必有素理想 $q \subset R$,使 $q \cap S = p$ 。

证明 我们先处理 S 是局部环, p 是它的唯一极大 理 想的情形。此时,任取 R 的 一 个 极 大 理 想 q , 自然, q 是素理想。 令 $p' = q \cap S$ 。 我们有下图:

$$\begin{array}{ccc} R & \longrightarrow & R/\mathfrak{q} \\ \cup & & \cup \\ S & \longrightarrow & S/\mathfrak{p}' \end{array}$$

显然,域 R/q 的元素对 S/p 都是整数相关的。下面的引 理 将 证明 S/p' 也是域。因此 p' 是一个极大理想,即有 p'=p。

在一般情形下,令 $D = S \setminus p$ 。 考虑 $S_D \not R_D$ 。此时,任取 $r/d \in R_D$,设 r 适合下式:

$$r^n + a_1 r^{n-1} + \cdots + a_n = 0$$
, $a_i \in S$,

則有

$$\left(\frac{r}{d}\right)^n + \frac{a_1}{d}\left(\frac{r}{d}\right)^{n-1} + \cdots + \frac{a^n}{d^n} = 0,$$

即 r/d 对 S_D 为整数相关的。请注 意 $R_D \supset S_D$, 面 且 S_D 是 局 部 环, pS_D 是它的唯一极大理想。因此,应用上半部的证明,我们 有 R_D 的素理想 $q'R_D$,使 $q'R_D \cap S_D = pS_D$ 。参考下图

$$\begin{array}{ccc} R & \xrightarrow{\tau} & R_{D} \\ U & & U \\ S & \xrightarrow{\tau} & S_{D} \end{array}$$

$$\mathbf{q} \cap S = \tau^{-1}(\mathbf{q}' R_D) \cap S = \tau^{-1}(\mathbf{q}' R_D \cap S_D)$$
$$= \tau^{-1}(\mathbf{p} S_D) = \mathbf{p}. \quad |$$

引理 设 $S \subset R$ 是二整环,R 的元素对S 都是整数 相关的。则S 是域 $\longleftrightarrow R$ 是域。

证明 => . 域论。

← . 任取 a∈S, a ≠ 0 . 则 a∈R, 1/a∈R。 令1/a 适合下式。

$$\left(\frac{1}{a}\right)^n + b_i \left(\frac{1}{a}\right)^{n-1} + \dots + b_n = 0, \quad b_i \in S_a$$

乘以 a**i, 立得

$$\frac{1}{a} = -b_1 - b_2 a - \cdots - b_n a^{n-1} \in \mathcal{S}.$$

即8的任意非零元素都是可逆的。因此8是城。

讨论 1) 这个引理也是定理6.9的特例。任取S的一个极大理想p,则必有R的一个素理想q,使 $p=q \cap S$ 。如果R是城,则它的唯一的素理想q=(0)。因此 $p=(0) \cap S=(0)$ 。 从这点我们易于推知S是城。

2) 回过头来,我们再看定理6.8. 在n维空间中任取一点 (a₁,...,a_n),它对应于素理想

$$(x_1-a_1,x_2-a_2,\cdots,x_n-a_n)\subset S=K[x_1,\cdots,x_n]$$

于是必存在一素 理想 $q \subset R$,使 $q \cap S = (x_1 - a_1, \dots, x_n - a_n)$. 用几何的术语来说, $q \cap S$ 即是向 n 维空间的投影。但是 q 相应于什么呢?在下一节中,我们将说明,q 相应于几何学中的 点。综上所述,定理6.8是说:给定了一个相应于R 的 "代 数 多样体" V,我们可以找到一个 n 维空间 A",使从V 到 A" 的 投 影 是满射。进而言之,它不仅是满射,还有其它的优良性质。详情见后。

3) 在定理6.9的条件下,如果有两个素理 想 $p_1 \subset p_2 \subset S$, 及 素理想 $q_1 \subset R$,使 $q_1 \cap S = p_1$,自然 $S/p_1 \subset R/q_1$ 同样适合定理6.9的条件。于是,存在 $q_2(R/q_1) \cap S/p_1 = p_2(S/p_1)$ 。不难看出, 素理 q_2 适合 $q_1 \subset q_2$ 及 $q_2 \cap S = p_2$ 。这可用下式表示:

$$R \supseteq q_2 \supseteq q_1$$
,
 $\bigcup \qquad q_1 \cap S = p_1, \quad q_1 \cap S = p_2$.
 $S \supseteq p_2 \supseteq p_1$,

我们很容易把上面的讨论 推广 到 S 的 一 个 素理想链 P*□P_{n-1}

 $\supset \cdots \supset p_i$ 及 R 的素理想 $q_i(q_i \cap S = p_i)$ 的情形。根据定理 6.9,必存在素理想 q_i ($i=1,\cdots,n$),适合下式

$$R \supset q_n \supset \cdots \supset q_1,$$

$$\bigcup \qquad \qquad q_1 \cap S = p_1,$$

$$S \supset p_n \supset \cdots \supset p_1,$$

我们将在环的"维数论"中,详细说明这个现象。

习 颞

- 1. 证明定理6.5/。
- 2. 设S 为整环,R 是S 在它的比域K 中的整数闭包。令 $C = \{a: a \in S, aR \subset S\}$.

称C为S的导子理想(conductor)。证明C是S的理想, 也是R的理想,并且C是同时为S及R的理想中的最大者。

- 3. 求 Z 在 p-adic 域 Qp 中的整数闭包。
- 4. 令 $R = C[x,y]/(x^2 y^3) = C[x,y]$ 。 求 R 在其比域中的 · 整数闭包。
- 5. 令 $R = C[x,y]/(x^2 y^2 y^3) = C[x,y]$. 求R在其比域中的整数闭包。
 - 6. $Z[x]/(x^2+3)$ 是否整数封闭? $Z[x]/(x^2+5)$ 呢?
- 7. 设有环 $A \subset B$. 如果 $B \setminus A$ 是 B 的乘法封闭子集,证明 A 在 B 中整数封闭。
- 8. 设整环R是整数封闭的,证明它的局部化环 R_D 也是整数封闭的。
 - 9. 设整环R是整数封闭的,证明R[x]也是整数封闭的。
- 10. 设A是整数封闭的整环,K是A的 比域,L/K 是有限 伽罗瓦扩张。设B是A在L中的整数闭包,证明
 - (1) $\sigma(B) = B$, $\forall \sigma \in G(L/K)$,
 - (2) $A = \{b: b \in B, \ \sigma(b) = b, \ \forall \ \sigma \in G(L/K)\}$
 - 11, 设有两个环 $R \subset T$, 如果对于 T 的每个案理想 p, 恒有

T/p对 $R/R \cap p$ 是整数相关的,证明 T 对 R 是整数相关的。

12. 令 $R = C[x,y,z]/(z^2-xy) = C[x,y,z] \supset C[x,y] = S$, 验证

$$(x,y)\supset (x+y^2)\supset (0)$$

是 S 的素理想链。 试把这个链上升成 R 的素理想链。

13. 令 R = C[x,y]/(xy-1). 求 $C[z] \subset R$, 使 得 R 对 C[z] 是整数相关的。参考定理6.8及例 6,考虑其几何意义。

§ 3 零点定理

代数学的一个大问题是解多项式。在第五章的域论中,我们花了很多时间,考虑一个一元多项式的解,由此得出许多代数扩域的性质。推广来说,我们要求解下面的可能是无限多个方程联立的方程组,

$$f_i(x_1, \dots, x_n) = 0, \quad i = 1, 2, \dots,$$

其中 f_1 都是多项式。我们先要确定它们有沒有公解。令 $I = (f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n), \dots)$ 为它们生成的理想。则显然有

$$g(a_1, \dots, a_n) = 0$$
, $\forall g(x_1, \dots, x_n) \in I$
 $\iff f_i(a_1, \dots, a_n) = 0$, $\forall i$.

于是,求一组多项式的公解的问题,可化为求一个理想中的所有。 多项式的公解的问题。

现在我们给定一个理想 $I \subset K[x_1, \dots, x_n]$, 此处K是一个域。如果 $1 \in I$, 则下面的方程

$$1 = 0$$

无解。我们有下面的定理。

定理6.10(希尔伯特零点定理的骗式) 设长是一个代数封闭域, I 是多项式环 $K[x_1, \cdots, x_n]$ 的一个理想。则有

1) I 是极大理想 $\iff I = (x_1 - a_1, x_2 - a_2, \dots, x_n - a_n)$, 其

中 $a_i \in K$ $(i=1,2,\cdots,n)$;

2) 1∈ /←→ / 无公解。

证明 1) ← . 取下面的映射 σ:

$$\sigma: K[x_1, \dots, x_n] \to K,$$

$$\sigma(f(x_1, \dots, x_n)) = f(a_1, \dots, a_n).$$

显然, σ 是满射,及 ker $(\sigma) = (x_1 - a_1, \dots, x_n - a_n)$ 。 而 K 是 城,故 $(x_1 - a_1, \dots, x_n - a_n)$ 是 极大理想。

 \longrightarrow 。令 $K[\bar{x}_1, \dots, \bar{x}_n] = K[x_1, \dots, x_n]/I$,则 $K[\bar{x}_1, \dots, \bar{x}_n]$ 是域。应用诺德正规化定理,存在变数 y_1, \dots, y_m ,使

$$K[\bar{x}_1,\cdots,\bar{x}_n]\supset K[y_1,\cdots,y_m],$$

且 $K[x_1, \dots, x_n]$ 的元素对 $K[y_1, \dots, y_m]$ 都是整数相关的。应用上一节的引理,已知 $K[x_1, \dots, x_n]$ 是城,所以 $K[y_1, \dots, y_m]$ 也必然是城。然而 $K[y_1, \dots, y_m]$ 又是多元多项式整环,通常不是城,除非沒有任何变数存在。故

$$K[y_1, \dots, y_m] = K_*$$

于是 $K[x_1, \dots, x_n]$ 是K的整数扩充,因此必是代数扩充。又已知K是代数封闭域,立得

$$K[\bar{x}_1,\cdots,\bar{x}_n]=K.$$

令

$$a_i = \bar{x}_i \in K \quad (i = 1, \dots, n),$$

则 有 $x_i - a_i \in I$, 即 $(x_1 - a_1, \dots, x_n - a_n) \subset I$ 。 又 前 面 已 证 出 $(x_1 - a_1, \dots, x_n - a_n)$ 是极大理想,故有 $(x_1 - a_1, \dots, x_n - a_n) = I$ 。

2) =>. 显然.

← 。设1 $\in I$,取一极大理想 $M \supset I$ 。根据 1),

$$M \approx (x_1 - a_1, \dots, x_n - a_n) \supset I_n$$

令 σ 为下面的映射:

$$o: K[x_1, \dots, x_n] \to K,$$

$$\sigma(f(x_1, \dots, x_n)) = f(a_1, \dots, a_n).$$

则 $\ker(\sigma) = M \supset I$,即

 $\sigma(f(x_1, \dots, x_n)) = f(a_1, \dots, a_n) = 0, \quad \forall f \in I.$ 于是, (a_1, \dots, a_n) 即是 I 的一个公解。

讨论 1) 希尔伯特零点定理建立了代数与几何的 联系, 一方面, 我们有代数学中的极大理想, 另一方面, 我们有几何学中的点(a₁,…,a_n). 这个定理告诉我们, 下面的对应

$$(x_1-a_1,\cdots,x_n-a_n)\mapsto (a_1,\cdots,a_n),$$

当域K 是代数封闭域时,是从多项式环 $K[x_1, \dots, x_n]$ 的 极大理想的集合到 A^* 中的点的集合的一个单满映射。

- 2) "K 是代数封闭域"的条件显然是必要的。例如,我们取K = R,则($x^2 + 1$)是 R[x]的一个极大理想,可是并不形如(x a)。
- 3) 1是否属于 1, 这 并不是一个一目了然的问题。可能 要 牵涉到繁复的计算才能决定。 1

在解多项式方程组 $f_i(x_1, \dots, x_n) = 0$ $(i=1,2,\dots)$ 时,或求一个理想 $I \subset K[x_1, \dots, x_n]$ 的公解时,我们常碰到另一个问题。例如,令 $I = (x_1^2)$,则显然, $a_1^2 = 0 \Longleftrightarrow a_1 = 0$ 。换句话说, (x_1^2) 与(x)的公解是相同的。为了进一步去繁入简,我们引入下面的定义。

定义6.6 设 I 是环 S 的一个理想。我们定义 I 的根理想为 $\sqrt{I} = \{a: a \in S, \text{ 存在某个正整数 } n$. 使 $a'' \in I\}$.

讨论 1) 易见 $\sqrt{1}$ 是一个包含I的理想。而且我们有

(a)
$$\sqrt{I \cdot I} = \sqrt{I \cap I} = \sqrt{I} \cap \sqrt{I}$$
,

(c)
$$\sqrt{I+J} = \sqrt{\sqrt{I+\sqrt{J}}}$$
.

事实上,设 $a,b\in\sqrt{I}$,则存在正整数n,m,使 $a^n\in I$, $b^n\in I$ 。于是

$$(a+b)^{n+m} = \sum_{i=0}^{m+n} {m+n \choose i} a^i b^{m+n-i}$$

显然,在上式中,或者 $(\geq t)$,或者 $(i)+t-i\geq t$ 。 于是易见 $(a+b)^{n+m}\in I$,

即 a + b € √ 「。由此,读者不难论证 √ 「是包含 I 的一个理想。 下面我们证明上面给出的三个公式。

(a) 一般實之,我们恒有(读者自证之) *I + J* ⊂ *I* ∩ *J* ⊂ *I* 。

不难得出, $\sqrt{I \cdot J} \subset \sqrt{I \cap J} \subset \sqrt{I} \cap \sqrt{J}$. 現在,我 们任取 $a \in \sqrt{I} \cap \sqrt{J}$,则 $a^* \in I$, $a^* \in I$,所以 $a^* * \in I \cdot J$,故 $a \in \sqrt{I \cdot J}$ 。 这就是说 $\sqrt{I} \cap \sqrt{J} \subset \sqrt{I \cdot J}$ 。 所以(a)中的三者都相等。

- (b) 显然。
- (c) 显然 有 $I + J \subset \sqrt{T} + \sqrt{J}$, 所以立得 $\sqrt{I+J} \subset \sqrt{\sqrt{T} + \sqrt{J}}$.

又有 $\sqrt{I+J}$ \supset \sqrt{I} , $\sqrt{I+J}$ \supset \sqrt{J} , 我们导出 $\sqrt{I+J}=\sqrt{\sqrt{I+J}}\supset\sqrt{\sqrt{I}+\sqrt{J}}$.

2) 设 $I \subset K[x_1, \dots, x_n]$,则 I 的公解与 \sqrt{I} 的公解 是 相 同的。 I

为了进一步建立代数与几何的联系,我们引入下面的定义.

定义6.7 1) 设 I 是 $K[x_1, \dots, x_n]$ 中的一个理想。定义 I 的代数多样体(即 I 的公解) $\mathscr{V}(I)$ 为 n 维仿射空间 K "的一个子集:

$$\mathscr{Y}(I) = \{(a_1, \cdots, a_n) : (x - a_1, \cdots, x - a_n) \supset I\}_I$$

2) 设 B ⊂ Kⁿ。 定 义 B 的理想 𝓕(B) 为
 𝓕(B) = {f(x₁, ..., x_n): f(b₁, ..., b_n) = 0,
 ∀ (b₁, ..., b_n) ∈ B}。

定理6.11(希尔伯特零点定理的强式) 设K 是代数封闭域, $I\subset K[x_1,\dots,x_n]$ 。则有

- 1) $\mathscr{I}(\mathscr{V}(I)) = \sqrt{I}$;
- 2) \mathscr{Y} : $I \rightarrow \mathscr{Y}(I)$ 是从 $\{I: I = \sqrt{I}\}$ 到代数多样体 集合的单 满映射;

证明 1) 显然有

$$f \in \sqrt{I} \Longrightarrow f'' \in I \Longrightarrow f''$$
 在 $\mathcal{F}(I)$ 上 恒 为 常 $\Longrightarrow f \in \mathcal{F}(\mathcal{F}(I))$,

这就是说, $\sqrt{I} \subset \mathcal{I}(\mathcal{Y}(I))$ 。反过来,我们任取 $g \in \mathcal{I}(\mathcal{Y}(I))$ 。

$$J = I \cdot K[x_1, \dots, x_n, x_{n+1}] + (1 - gx_{n+1}).$$

此时有两种可能性, 1 E J 或 1 E J。

在第一种情形下,应用定理6.10(希尔伯特零点定理的弱式),存在 $(x_1-a_1,\cdots,x_n-a_n,x_{n+1}-a_{n+1})$]。自 然, $(a_1,\cdots,a_n)\in$ $\mathscr{V}(I)$ 。于是我们得到下面两个互相矛盾的式于:

$$1 - g(a_1, \dots, a_n)a_{n+1} = 0$$
, $g(a_1, \dots, a_n) = 0$.

所以,不可能有1EJ。

现在,我们知道1∈ /。于是有

$$f_i(x_1, \dots, x_n) \in I$$
 $(i = 1, 2, \dots, l),$

使下式成立

$$1 = \sum_{i=1}^{l} h_i(x_1, \dots, x_{n+1}) f_i(x_1, \dots, x_n)$$

$$+(1-g(x_1,\cdots,x_n)x_{n+1})h_{l+1}(x_1,\cdots,x_{n+1}),$$

其中 $h_i(i=1,\cdots,l,l+1)$ 均为 $K[x_1,\cdots,x_n,x_{n+1}]$ 中的多项式。 既然上式是恒等式,我们可以令 $x_{n+1}=g^{-1}$ 。代入后,有

$$1 = \sum_{i=1}^{r} h_{i}(x_{1}, \dots, x_{n}, 1/g) f_{i}(x_{1}, \dots, x_{n}).$$

两边乘以g的适当的方幂g',得

$$g' = \sum_{i} g_i(x_1, \dots, x_n) f_i(x_1, \dots, x_n) \in I,$$

也即 $\theta \in \sqrt{I}$,所以 $\mathcal{I}(\mathcal{Y}(I)) \subset \sqrt{I}$.

2)及 3) $\mathcal{I}(\mathcal{V}(I)) = \sqrt{I} = I$, $\mathcal{V}(\mathcal{I}(\mathcal{V}(I))) = \mathcal{V}(\sqrt{I})$ = $\mathcal{V}(I)$. 所以 $\mathcal{I} \cdot \mathcal{V}$ 是恒等映射, $\mathcal{V} \cdot \mathcal{I}$ 是恒等映射。因此 \mathcal{I} , \mathcal{V} 都是单满映射。 |

讨论 上面的定理,建立了代数与几何的关系。进一步说,我们有下面的定理。

定理6.12 设 $I_{i}J_{i}I_{i}$ 是 $K[x_{i}, \cdots, x_{n}]$ 的理想,K 是代数封闭域, B_{i} 是仿射空间 Kⁿ的子集。我们恒有

- 1) $I \subset J \Longrightarrow \mathscr{V}(I) \supset \mathscr{V}(J)$;
- 2) $B_1 \subset B_2 \Longrightarrow \mathcal{I}(B_1) \supset \mathcal{I}(B_2)$;
- 3) $\mathscr{V}\left(\sum_{i}I_{i}\right)=\bigcap\mathscr{V}\left(I_{i}\right)$,
- 4) $\mathscr{V}(I \cap J) = \mathscr{V}(I) \cup \mathscr{V}(J)$.

证明 读者自证 1),2),3) . 根据 1),由于 *I*∩*J*⊂*I*, *I*∩*J*⊂*I*,

所以 $\mathscr{V}(I \cap I) \supset \mathscr{V}(I)$, $\mathscr{V}(I \cap I) \supset \mathscr{V}(I)$, 即有 $\mathscr{V}(I \cap I) \supset \mathscr{V}(I) \cup \mathscr{V}(I)$.

又设 (a_1, \cdots, a_n) $\in \mathscr{V}(I) \cup \mathscr{V}(J)$,则必有多项式 $f(x_1, \cdots, x_n) \in I$, $g(x_1, \cdots, x_n) \in J$,使

$$f(a_1, \dots, a_n) \neq 0$$
, $g(a_1, \dots, a_n) \neq 0$.

显然, $f \cdot g \in I \cap J$. 且

 $(f \cdot g)(a_1, \cdots, a_n) = f(a_1, \cdots, a_n)g(a_1, \cdots, a_n) \neq 0,$ 所以 $(a_1, \cdots, a_n) \in \mathscr{V}(I \cap J)$.

例7 任给一个理想 I , \sqrt{I} =? 我们可以用定理6、11 (希尔伯特零点定理的强式) 来求 解答。例如, $I=(x^2,xy)$ 。先 求 $\mathscr{V}(I)$,即 $x^2=0$ 与 xy=0 的公解。容易得出 $\mathscr{V}(I)=y$ 轴。再求 $\mathscr{I}(\mathscr{V}(I))$ 。显然,它是(x)。于是

$$\sqrt{l} = \mathcal{I}(\mathcal{V}(l)) = (x).$$

- 1. 证明定理 6,12的1),2),3)以及
- (1) $\mathscr{I}(\mathscr{Y}(I))\supset I$, $\mathscr{Y}(\mathscr{I}(B))\supset B_I$
- (2) $\mathscr{S}(\mathscr{S}(I)))=\mathscr{S}(I), \mathscr{S}(\mathscr{S}(B)))=\mathscr{S}(B),$ 这里 I 是理想、B 是仿射空间的子集。
 - 2. 设 a 和 b 是环R的理想。证明 $\sqrt{a} + \sqrt{b} = R \Longrightarrow a + b = R$.
- 3. 设有环映射 f: A→B。 又 设 a 和 b 分 别 是 A 和 B 的理想。证明
 - (1) $f(\sqrt{a})B = \sqrt{f(a)B}$,
 - (2) $f^{-1}(\sqrt{b}) = \sqrt{f^{-1}(b)}$.
- 4. 设R是环,I为R的理想。证明 \sqrt{I} 等于包含I的所有素理想的变。
- 5. 设K 是代数封闭城,I 是多项式环 $K[x_1,x_2,...,x_n]$ 的理想。证明 \sqrt{I} 是包含I 的所有极大理想的变。
 - 6. 在环 Z/mZ 中求√(0), 其中 m∈ Z.
 - 7. 找出环 2/1002 的所有幂零元和可逆元。
 - 8. 证明 (0) 是环中所有幂零元的集合。
 - 9. 令

$$I = (x^3 - yz, y^2 - xz, z^2 + x^2y) \subset C[x, y, z],$$

求**少**(1)。

10. 令

$$I = (x^2 + xy, x^3 + xy) \subset C[x, y],$$

求 \sqrt{I} :

11. $\forall f, g \in C[x_1, x_2, \dots, x_n], \exists L$ $g(a_1, a_2, \dots, a_n) = 0 \Longrightarrow f(a_1, a_2, \dots, a_n) = 0.$

证明 f 的案因子都是 g 的案因子。

12. 设 $f(x_1,x_2,...,x_n)$ 是 $C[x_1,x_2,...,x_n]$ 中的不可约多项

- 13. 证明 A*\{0}不是一个代数多样体。
- 14. 令 $V = \{(t, t^2, t^3); t \in C\} \subset A^3$. 求 $\mathcal{F}(V) \subset C[x_1, x_2, x_3]$. 证明V不能分解成两个代数多样体的非平凡并集。

§4 环的谱集

在上节中,我们讨论了 $K[x_1, \cdots, x_n]$ 的极大理想。此处 K 是一个代数封闭域。我们证明了 $K[x_1, \cdots, x_n]$ 中的所有极大理想的集合与n 维仿射空间 K^n 的所有点的集合之间有一个单 满映射。对任意的环S,定义其极大谱集为

mspec S = {m: m 是 S 的极大理想}。

我们可以把 mspec S 当成点集,而把 S 当成定义在这个点集上的函数集。具体地说,就是对 $f \in S$, $m \in mspec S$, $\diamondsuit \tau : S \longrightarrow S/m$ 为典型映射,则定义

$$f(m) = r(f) \in S/m$$
.

例 8 令 S=Z, 则 $mspecZ=\{(p): p$ 为 素数}。任 取 $n\in Z$, 则 n可以考虑成一个函数如下。

$$n((p)) = n \pmod{p} \in \mathbb{Z}/(p)$$
.

当然,这个函数 n 在不同点(p)的值,属于不同的 域 Z/(p)。这很不同于以前学过的函数。

把S作为 mspec S 上的函数集时,如果有环映射 $\sigma: S \rightarrow R$,能不能自然地产生一个映射 σ^* : mspec $R \rightarrow$ mspec S 呢? 一 般 言之,要求函数间的映射与点集间的映射,存在一些自然的对应关系。我们取一个例于: $\sigma: Z \rightarrow Q$ 为嵌入。显然,mspec $Q = \{(0)\}$ 。 $\sigma^*(0)$ 应是 $\sigma^{-1}(0) = (0) \subset Z$ 。 但 (0) \in mspec Z。 所以, mspec S 对映射而言,不是一个自然物。更适当的点集是 S 的囊谱集:

Spec S = {p: p 是 S 的素理想}。

同样的,我们可以把S的元素当成定义在这个点集上的函数,方法如下:对 $f \in S$, $p \in Spec S$, $\diamondsuit \tau: S \rightarrow S$, $\neg S$, /pS, 则定义 $f(p) = \tau(f) \in S$, /pS,

此时,如有环映射 $\sigma: S \rightarrow R$,我们定义

$$\sigma^*$$
: Spec $R \rightarrow$ Spec S ,

$$\sigma(\mathfrak{q}) = \sigma^{-1}(\mathfrak{q}) \in \operatorname{Spec} S_{\bullet}$$

在点集 Spec S 上,我们可以定义 如下 的 Zariski 拓 扑,使 Spec S 成为一个拓扑空间。

定理6.73 任给环S的理想I,令 $\mathscr{V}(I) = \{p: p \in Spec S, p \supset I\}$.

则我们恒有:

1)
$$\mathscr{V}((1)) = \varnothing$$
, $\mathscr{V}((0)) = \operatorname{Spec} S_1$

2)
$$\bigcap \mathscr{V}(I_i) = \mathscr{V}\left(\sum_i I_i\right)_i$$

3) $\mathscr{V}(I_1) \cup \mathscr{V}(I_2) = \mathscr{V}(I_1 \cdot I_1)$.

因此,我们令》(I)为 Spec S 的闭集,则以上三条保证了这是一个拓扑, 称为 Zariski 拓扑。

证明 参考定理6.12,读者自证之。

讨论 特别地,当 $S=K[x_1,\cdots,x_n]$ 时,我们把 $Spec\ S$ 的点 (即S 的素理想) p 与它的代数多样体 $\mathcal{V}(p)$ 对应起来,则 $Spec\ S$ 的 Zariski 拓扑就给出 n 维仿射空间 K^n 的一个拓扑(即其闭集均 为S 的理想 I 的代数多样体 $\mathcal{V}(I)$),称为 K^n 的 Zariski 拓扑。

例 9 令 S = C[x], 则 $Spec C[x] = \{(0)\} \cup \{(x-a): a \in C\}$. 它的几何意义是(0)对应于平面 C, (x-a) 对 应 于 点 a. Spec C[x]的闭集是什么?我们自然有 \emptyset 及 全 集 合 Spec C[x]. 若任取一理想 $I \neq (0)$, (1). 令 $I = (f(x)) = (\Pi(x-a_i))$. 则 立见

 $\mathscr{Y}(I) = \{(x-a_1)\} \cup \{(x-a_2)\} \cup \cdots \cup \{(x-a_n)\},$ 相当于 C 中的有限个点 $\{a_1,a_2,\cdots,a_n\}$ 。这就是所有的 闭 集。请

注意, 在一般拓扑下, 无限集{1,2,…,n,…}是一个 闭 集。可是它在 Zariski 拓扑下幷不是一个闭集。

例10 令 S = Z。则 Spec Z = {(0)} U {(p): p 为素数}。

任取理想(n) \Rightarrow (0),(1), $\triangle n = \prod_{i=1}^{n} p_i^{n_i}$, 不难看出

$$\mathscr{V}((n)) = \bigcup_{i=1}^{m} \{(p_i)\}_{\bullet}$$

这些有限点集,再加上《及全集合 Spec Z, 就构成了所有的闭集。

符号 任给 Spec S 的闭集 C ,以 $\mathcal{S}(C)$ 表示 C 中所 有 素 理想的变,即

$$\mathcal{I}(C) = \bigcap_{\mathfrak{p} \in \mathcal{C}} \mathfrak{p}_{\bullet}$$

定理6.14 任取 $q \in \text{Spec } S$. 则 $\{q\}$ 的闭包为 $\overline{\{q\}} = \{p: p \supseteq q\} = \mathscr{T}(q)$.

证明 显然闭集 $\mathscr{V}(q)$ \supset {q}。设另有 闭 集 $\mathscr{V}(I)$ \supset {q}。任 取 $\mathfrak{p} \in \mathscr{V}(q)$,则有 $\mathfrak{p} \supset \mathfrak{q} \supset I$,即 $\mathfrak{p} \in \mathscr{V}(I)$, $\mathscr{V}(q) \subset \mathscr{V}(I)$ 。 所 以 $\overline{\{q\}} = \mathscr{V}(q)$ 。 \blacksquare

例11 在例 9 中, $\{(x-a)\}$ 是闭集。 $\{(0)\}$ 不是 闭集,它的闭包 $\{(0)\}$ = Spec C[x]。同理,在例 10 中, $\{(p)\}$ 是闭集, $\{(0)\}$ 不是闭集。它的闭包 $\{(0)\}$ = Spec Z。

定理6.15 Spec S 是一拟紧致空间。这就是说,任给Spec S 的一个开覆盖 $\bigcup U_i = \operatorname{Spec} S$,必存在一个有限的子覆盖。

证明 任取 $a \in S$, 令 $X_a = \operatorname{Spec} S \setminus \mathscr{V}((a))$. 则 $\operatorname{Spec} S$ 的任意开集U 必形如

$$U = \operatorname{Spec} S \setminus \mathscr{Y}(I) = \bigcup_{a \in I} \operatorname{Spec} S \setminus \mathscr{Y}((a)) = \bigcup_{a \in I} X_{a}.$$

所以

$$\bigcup U_i = \bigcup_{a \in A} X_a,$$

其中 A 为 S 的一个子集。令 J 为 A 生成的理想,则不难看出

Spec
$$S = \bigcup U_i = \bigcup_{\sigma \in I} X_{\sigma} = \operatorname{Spec} S \setminus \mathscr{V}(I)$$
.

于是 $\mathscr{V}(J) = \varnothing$,也即J = (1)。所以存在 $s_1, \dots, s_m \in S$,使

$$\sum_{i=1}^m s_i a_i = 1, \quad a_i \in A_{\bullet}$$

立得

$$\bigcup_{i=1}^{n} X_{a_i} \approx \operatorname{Spec} S \backslash \mathscr{V}((a_1, \dots, a_m))$$

$$= \operatorname{Spec} S \backslash \mathscr{V}((1)) = \operatorname{Spec} S.$$

取出包含 X_{a_i} 的开集 $U_i(i=1,\dots,m)$, 立得

$$\bigcup_{i=1}^{n} U_i = \operatorname{Spec} S_{\bullet} \quad | \quad$$

回到原来引出素谱集 Spec S 的讨论。设有环映射 $\sigma: S \rightarrow R$, 自然得出 $\sigma^*: Spec R \rightarrow Spec S$ 。 我们要证明:

定理6.16 设σ: S→R 是 环 映 射,则σ*: Spec R→Spec S 是连续映射。

证明 任取 Spec S 的开集 $U = \bigcup X_a$ (参考上定理 的证明),则有

$$(\sigma^*)^{-1}(U) = \bigcup (\sigma^*)^{-1}(X_{\mathfrak{a}})_{\bullet}$$

显然,只要证明 $(\sigma^*)^{-1}(X_a)$ 是开集,便足够了。事实上,对于 $q \in \operatorname{Spec} R$,有

$$q \ni \sigma(a) \longleftrightarrow \sigma^{-1}(q) \ni a \longleftrightarrow \sigma^{*}(q) \ni a_{\bullet}$$

故 $(\sigma^*)^{-1}(X_a) = \operatorname{Spec} R \setminus \mathscr{Y}(\sigma(a))$ 为 $\operatorname{Spec} R$ 中的开集。

例12 设: $S \rightarrow R$ 是嵌入。換句话说, $S \not\in R$ 的 子 环。 不 难看出,任取 $q \in Spec R$,则

$$i^*(q) = i^{-1}(q) = q \cap S_*$$

这相当于几何学上的投影。例 如, 取

$$S = C[x] \subset C[x,y]/(y^2-x).$$

令
$$q_1 = (x-1,y-1)$$
, $q_2 = (x-1,y+1)$, 则 $i^*(q_1) = (x-1) = i^*(q_2)$.

从点集与函数的关系来考虑 Spec S = S,尚有一个问题: S中可能有幂零元素f,即 f = 0,但 $f^n = 0$ 。一般说来是不准许这样的函数出现的。补救的方法是考虑 S 的幂零根理想 nil rad(S),见下面的定理。

定理6.17 1) 令

 $nil rad(S) = \{f: 存在正整数 n, 使 f^n = 0\}$.

则 nil rad(S)是 S 的理想。

- 2) 令 I = nil rad(S), 则 nil rad(S/I) = (0)。 一般言之,如果 nil rad(R) = 0,则称 R 是约化了的。因此,S/I 是 约 化 了的环。
 - 3) 令 I = nil rad(S), $\sigma: S \rightarrow S/I$ 是典型映射,则 $\sigma^*: \text{Spec}(S/I) \rightarrow \text{Spec}(S)$

是同胚映射.

证明 1) 设 $f,g \in \text{nil rad}(S)$ 。则有正整数 n,m,使得 $f^n = 0$, $g^n = 0$ 。于是

$$(f+g)^{\frac{1}{n+n}} = \sum_{i=0}^{m+n} {m+n \choose i} f^i g^{m+n-i} = 0.$$

由此易知 nil rad(S)是一个理想。

- 2) 令 $h \in \text{nil rad}(S/I)$, 则存在正整数 n,使 $h^n = 0$, 即 $h^n \in I$. 所以有正整数 m,使 $(h^n)^n = 0$. 立得 $h \in I$, h = 0.
- 3) 任取 p∈Spec S, f∈I, 则 f*=0∈p。因为 p 是素理想, 所以 f∈p。于是 p⊃I。不难看出 σ*(p/I)=p。显 然, σ* 是 -个同胚映射。 ↓

讨论 1) 在我们讨论点集与函数的关系时,常常把环S约

化,即以S/nil rad(S)代替S。

2) 如果我们讨论微分形式、变形等, 环·S·自然有幂零元素, 这是不能由约化来取消的。

我们在拓扑空间的讨论中, 有下面的基本概念。

定义6.8 如果拓扑空间V的闭子集C不能表成 它的两个真闭子集 C_1,C_2 的拜集,也即, $C=C_1\cup C_2\Longrightarrow C=C_1$ 或 $C=C_2$,则称C为不可约子集。 n维仿射空间 K^* 在 Zariski 拓扑 下的不可约子集称为不可约代数多样体。 若此代数多样体为代数曲线,则称为不可约代数曲线。

讨论 取 V = C。如果我们用通常的拓扑,则 $C = \{x + iy : x \ge 0\} \cup \{x + iy : x \le 0\}$ 。

所以,对于通常的拓扑而言,C 不是不可约集。同样地 取 V = C,可是我们用 Zariski 拓扑,设 $C = C_1 \cup C_2$ 。由于 C_1 , C_2 只可能 是 \emptyset ,C或有限集,不难看出 $C_1 = C$ 或 $C_2 = C$ 。所以 C 对于 Zariski 拓扑是不可约的。

定理6.18 设C为 Spec S 的闭集。则C是不可约 子 集 \iff $C=\mathscr{V}(\mathfrak{p})$, 其中 $\mathfrak{p}\in \operatorname{Spec} S$ 。此时,称 \mathfrak{p} 为C的一般点。

证明 \Longrightarrow 。设 $C=\mathscr{V}(I')$ 。令 $I=\sqrt{I'}$,则 $C=\mathscr{V}(I)$,且 $I=\sqrt{I}$ 。我们来证明 I 是素理想。假若不然,则存在 f , $g\in I$,但 $f\cdot g\in I$ 。令

$$I_1 = I + (f), I_2 = I + (g).$$

则不难看出

 $I \supset I_1 \cdot I_2 = (I + (f))(I + (g)) = I^2 + (f)I + (g)I + (fg) \supset I^2$. 所以

 $\mathscr{V}(I)$ $\subset \mathscr{V}(I_1 \cdot I_2) = \mathscr{V}(I_1) \cup \mathscr{V}(I_2) \subset \mathscr{V}(I^2) = \mathscr{V}(I)$ 。 令 $C_1 = \mathscr{V}(I_1)$, $C_2 = \mathscr{V}(I_2)$, 立得 $C = C_1 \cup C_2$ 。 现在我们要证明 $C_1 \subseteq C$, $C_2 \subseteq C$ (如此,则 C 是可约的,与已知条件矛盾,也就证明了 I 是素理想)。因为 $I = \sqrt{I}$, $f \in I$, 所以 $f^n \in I$ $(n = 1, 2, \dots)$ 。 设

$$D = \{f^*: n = 1, 2, \cdots\},$$

 $\mathcal{F} = \{J: J$ 是理想, $J \supset I, J \cap D = \emptyset\}.$

不难用 Zorn 引趣证明 \mathcal{F} 中存在一极大元素 \mathfrak{q} ,而且 \mathfrak{q} 是一 个 繁 理想 (参考定理3.23的证明)。于是 $\mathfrak{q} \in C$, $\mathfrak{q} \in C_1$, 也即 $C \supseteq C_1$ 。同样可证 $C \supseteq C_2$ 。于是, $\mathfrak{p} = I$ 即可。

〇 设
$$C = \mathscr{V}(\mathfrak{p}) = C_1 \cup C_2$$
,其中 $C_1 = \mathscr{V}(I_1) + C$, $C_2 = \mathscr{V}(I_2) + C$ 。

显然, I_1 $\supseteq p$, I_2 $\supseteq p$ 。 $f \in I_1 \setminus p$, $g \in I_2 \setminus p$, 则有 $p \in \mathscr{V}(p) = \mathscr{V}(I_1) \cup \mathscr{V}(I_2) = \mathscr{V}(I_1 + I_2)$.

于是 $\mathfrak{p} \supset I_1 \cdot I_2 \ni f \cdot g$,这是不可能的。 |

一般在代数学里,我们极有兴趣的是S为诺德环的情形。为此,我们引入"诺德空间"的概念。

定义6.9 设V为一个拓扑空间。如果任给的闭子集的链 $C_1 \supset C_2 \supset \cdots \supset C_n \supset \cdots$

我们有下面的定理。

定理6.19 1) 如果 S 是诺德环, 则 Spec S 是诺德空间,

2) 如果V是诺德空间,则V的任意的闭子集C可以唯一地分解成互不包含的不可约子集 C_1 的纤集。

$$C = C_1 \cup \tilde{C}_2 \cup \cdots \cup C_n, \quad C_i \supset C_j \quad (i \neq j).$$

$$C_1 \supset C_2 \supset \cdots \supset C_n \supset \cdots$$

导出S中的理想链

$$I_1 \subset I_2 \subset \cdots \subset I_n \subset \cdots$$

因为S是诺德环,所以存在m,使 $n \ge m$ 时,必有 $I_{n-1}I_{n+1}$,即 有 $C_n = \mathscr{V}(I_n) = \mathscr{V}(I_{n+1}) = C_{n+1}$

2) 如果C是不可约子集,则令C=C。如果C是可约子集。

则存在闭子集 C_1 , C_2 , 使

$$C = C_1 \cup C_2$$
, $C \supseteq C_1$, $C \supseteq C_2$.

如果 C_1 , C_2 都是不可约子集,则上式即是一个分解式。否则,不妨设 C_1 是可约子集。令 $C_1 = C_{11} \cup C_{12}$ 。如此程序 可 以一直作下去。如果始终得不到不可约子集分解式,则有

$$C \supseteq C, \supseteq \cdots$$

这与V是诺德空间的条件相违。这样,我们证明了 f 解 的 存在性。

以下证明分解的唯一性。 设有

$$C = C_1 \bigcup C_2 \bigcup \cdots \bigcup C_n = C'_1 \bigcup C'_2 \bigcup \cdots \bigcup C'_n,$$

其中 C_i , C_i 均为不可约 子 集,且 C_i $\Rightarrow C_i$, C_i $\Rightarrow C_i$ ($i \Rightarrow i$)。 我们有

$$C_1 = C_1 \cap C = \sum_{i=1}^m (C_i \cap C_i^i).$$

因为 C_1 是不可约子集,所以必存在i,使

$$C_1 = C_1 \cap C_1'$$
, $C_1 \subset C_1'$.

同法可证存在 i, 使 C¦ ⊂ C_i。于是

$$C_1 \subset C_1' \subset C_1$$
.

所以必有 1=i, $C_1=C_1$ 。依次证明,不难看出,除了次 序 不同外,此二分解是完全一样的。

X 设S是诺德环,I是理想, $I=\sqrt{I}$ 则我们恒有

$$I = \bigcap_{i=1}^{n} \mathfrak{p}_{i}$$

其中 p_i 是素理想, p_i 年p_j。而且上式除了 p_i 的次序外, 是 由 I 唯一确定的。

证明 令 $C = \mathscr{V}(I)$ 。由上面的定理,存在 Spec S 中的 不可约子集 C_I ,使

$$C = \bigcup_{i=1}^{n} C_i, \quad C_i \supset C_i \quad (i \rightleftharpoons i),$$

且此分解是唯一的。设 $C_i = \mathcal{V}(p_i)$, p_i 为S的素理想。则立得

$$C \approx \sum_{i=1}^{n} \mathcal{Y}(\mathfrak{p}_{i}) = \mathcal{Y}\left(\bigcap_{i=1}^{n} \mathfrak{p}_{i}\right)_{\bullet}$$

于是
$$I = \mathscr{I}(C) = \mathscr{I}\left(\mathscr{V}\left(\bigcap \mathfrak{p}_i\right)\right) = \bigcap \mathfrak{p}_i$$
.

易见此分解也是唯一的。】

例13 取
$$f(x,y) = x^2(y-x^2)$$
。令 $C = \mathscr{V}((f))$,则
$$C = \mathscr{V}(\sqrt{(f)}) = \mathscr{V}((x(y-x^2)))$$
$$= \mathscr{V}((x)) \cup \mathscr{V}((y-x^2)),$$

即C是x=0 (y轴)及 $y-x^2=0$ (抛物线)的并集。令 $I=\sqrt{(f)}$ =($x(y-x^2)$),则有

$$I=(x)\cap(y-x^2),$$

即 / 分解成两个素理想的交集。 |

将定理6.19的结论 2) 翻译成 n 维仿射空间 K^n 中 的语言(参考定义6.8),即有

定理6.19' n 维仿射空间 K"中的任一代数多样 体 可 唯一 分解成互不包含的不可约代数多样体的并集。

习 顋

- 设R是环。证明 SpecR 是 T₀ 空间(即对 p₁, p₂∈ SpecR, p₁ \to p₂, 必存在一个开集含有 p₁ 但不 含 p₂, 或者含有 p₂ 但不含 p₁)。
- 2. 设 S 是环。任 取 $a \in S$, 令 $X_a = \operatorname{Spec}(R) \setminus \mathscr{Y}((a))$ 。证 明当 a 是幂等元(即 $a^2 = a$)时, X_a 是开集也是闭集。
 - 证明 Spec S是连通的 → S 的幂等元只有 0 和 1.
 - 4. 证明 Spec S 是不可约的 ←→ √(0) 是素理想。

- 5. 证明 Spec S (在包含关系下的) 极大的不可约子集是形如 2 (p)的闭集,这里 p 为 S 的极小素理想。
 - 6. 设σ: S→R 是环映射。σ 诱导出 σ*: Spec R→Spec S.

如果 σ 是满射, 证明

$$\sigma^*(\operatorname{Spec} R) = \mathscr{V}(\ker \sigma),$$

且 σ* 是到象集的同胚映射。

- 7. 设 p 是 R 的 个 素 理 想 f f : $R \rightarrow R$,是 认 同 映 射 . f 诱导出 f^* : Spec R , \rightarrow Spec R . 证 明 f^* (Spec R) 等于在 Spec R 中 P 的 所 有 开 邻 域 的 交 .
 - 8. 找出 Spec C[x]的所有闭集。
 - 9. 找出 Spec C[x,y]的所有闭集。
- 10. 证明 Spec C[x,y]不与 Spec $C[x] \times$ Spec C[y]同胚。把 C[x],C[y] 对应到 C^1 , 把 C[x,y] 对应到 C^2 , 考虑 上面结论的 几何意义。
 - 11. 找出 C[x,y]/(xy-1)的素谱空间的所有闭集。
- · 12. 设 R 是局部环,找出 R [[x]]的所有极大理想。
 - 13. 在C[x,y,z]中将 $\sqrt{(x^2(y^2-1),xz^2)}$ 分解成素理想的交。

§ 5 理想的分解

在上一节中,我们讨论了在任意诺德空间V里,任意的闭子集C分解成不可约子集C;的并集。相应地,在 诺德环S中,如果理想 $I=\sqrt{I}$,则 $I=\bigcap p_i$, p_i 是案理想。在本 节中,我们将讨论任意理想 I 的分解。

定义6.10 1)设理想I不能表成 $I = \bigcap_{i=1}^n I_i$,其中 $I_i \supseteq I$ 。则称I为不可约理想。

2) 设理想 I 有下列性质,则称 I 为准案理想, $ab \in I$, $a \in$

 $I \Longrightarrow$ 存在正整数 n, 使 $b^* \in I$.

讨论 1) 如果 I 是准素理想,考虑 \sqrt{I} 。 如果 $ab \in \sqrt{I}$, $a \in \sqrt{I}$ 。 则 $a^*b^* = (ab)^* \in I$, $a^* \in I$ 。 所 以 $(b^*)' \in I$, 即 $b \in \sqrt{I}$ 。 因此我们得出 \sqrt{I} 是一个素理想。

- 2) 反之,如果 \sqrt{I} 是素理想,则 I 不一定是 准 素理想。例如,取 $I = (x^2, xy) \subset C[x, y]$ 。不难看出, $\sqrt{I} = (x)$ 是素理想。但 $x \cdot y \in I$, $x \in I$, $y \in I$ ($\forall n = 1, 2, \cdots$),所以 I 不 是一个准素理想。
 - 3) 一个素理想必然是一个准素理想。
- 4) 一个素理想必然是一个不可约理想。事 实 上,设 p 为素理 想, $p = I_1 \cap I_2$ 。 假若 $I_1 \supseteq p$, $I_2 \supseteq p$,取 $f \in I_1 \setminus p$, $g \in I_2 \setminus p$,则 f , $g \in p$,但 $fg \in I_1 \cap I_2 = p$,这与 p 是素理想相违。
 - 5) 一个准素理想 I 不一定是一个不可约理想。例如,令 $I = (x^2, xy, y^2) \subset C[x, y]$ 。

读者自证 I 是一个准素理想。可是 $I=(I+(x))\cap (I+(y)), x\in I$, $y\in I$ 。所以 I 不是一个不可约理想。

引理 1) 令 S 是诺德环,则任意的 一 个理想 I ,都可以写成 $I = \bigcap I_i$,其中 I_i 是不可约理想;

2) 令 8 是诺德环, 1 是不可约理想, 则 1 是准素理想。

证明 1) 我们应用"极大原则"(参考定理3.25)。令

$$\mathcal{F} = \left\{ I: I$$
 不能写成 $\bigcap_{i=1}^{n} I_i$, I_i 为不可约理想 $\right\}$.

假者 \mathcal{F} 专 \emptyset , 令 I 是 \mathcal{F} 的极大元, $I=I_1\cap I_2$, I_1 $\supsetneq I$, I_2 $\supsetneq I$. 则 I_1 , I_2 \in \mathcal{F} 。 所以 I_1 , I_2 可以写成

$$I_1 = \bigcap_{i=1}^{n} I_{1i}, \qquad I_2 = \bigcap_{i=1}^{m} I_{2i},$$

其中 41,121 都是不可约理想。我们立得

$$I = \left(\bigcap_{i=1}^{n} I_{1i}\right) \bigcap \left(\bigcap_{i=1}^{m} I_{2i}\right) \in \mathcal{F}.$$

这是自相矛盾的结论, 所以 9 = Ø。

2) 假设I 不是准素理想,则存在a,b,使得 $ab \in I$, $a \in I$, $b \in I$ ($\forall n = 1, 2, \cdots$)。考虑如下定义的集合:

$$J_n = \{c \in S : cb^* \in I\} = I : (b^*).$$

不难看出, /, 是一个理想, 而且有

$$J_1 \subset J_2 \subset \cdots \subset J_n \subset \cdots$$

因为 S 是诺德环,所以必存 在 m ,使 $n \ge m$ 时, $J_n = J_{n+1}$ 。 我们 先证 $I = (I + (b^n)) \cap (I + (a))$ 。 显然

$$I\subset (I+(b^n))\cap (I+(a))$$

反之,任取 $c \in (I + (b^*)) \cap (I + (a))$,则有

$$c = i_1 + d_1b^n = i_2 + d_2a$$
, $i_1 \in I$, $i_2 \in I$, $d_1, d_2 \in S$.

上式乘以 b , 由于 $ab \in I$, 我们得

$$d_1b^{m+1} \in I \Longrightarrow d_1 \in I_{m+1} = I_m \Longrightarrow d_1b^m \in I$$

$$\Longrightarrow c = i_1 + d_1b^m \in I_a.$$

所以 $I = (I + (b^*)) \cap (I + (a))$ 。又显然 $I + (b^*) \supseteq I$, $I + (a) \supseteq I$. 于是I是可约理想。

上面的引理说明了,诺德环心的任意理想「都可以分解成

$$I = \bigcap_{i=1}^{n} I_{i},$$

其中 1, 是准案理想。对于这样的分解式,我们还 要 稍 加整理:

1) 如果 $I_1 \supset \bigcap_{i \neq i} I_i$,我们可以弃去 I_i ,2) 如果 $\sqrt{I_i} = \sqrt{I_i}$,则可以证明 $I_i \cap I_i$ 也是一个准素理想(设有 $ab \in I_i \cap I_i$, $a \in I_i \cap I_i$,不妨设 $a \in I_i$,则 $b'' \in I_i$, $b \in \sqrt{I_i} = \sqrt{I_i}$, $b''' \in I_i$,故 $b''''' \in I_i \cap I_i$,此时,可令 $I_k = I_i \cap I_i$,以取代 $I_i \cap I_i$ 。

根据上面的讨论,我们可以引入:

定义6.11 一个准素分解 $I = \bigcap_{i=1}^{I} I_i$,如果适合下面的条件,

则称为了的简略准案分解:

1)
$$I_i \supset \bigcap_{i \neq i} I_j$$
, $\forall i = 1, \dots, n_i$

2) $\sqrt{I_i} \neq \sqrt{I_i}$, $\forall i \neq j$.

定理6.20 设 S 是 诺德环,则任意的理想 I 都有一个简略准素分解。

证明 读者自证之。

例14 设 $S = Z \ni n = \prod p_i^{m_i}$, 则不难看出 $(n) = \bigcap (p_i^{m_i})$.

反之,Z的非零准素理想都是形如 $(p_i^{"i'})$,此处 p_i 是素数。因此,任给Z的一个理想(n) \neq (0),都可以写成

$$(n) = \bigcap (p_i^{m_i}) = \prod (p_i^{m_i}).$$

所以上面的定理在S = Z 时,相当于整数的分解定理。可是,一般言之,简略准素分解并不是唯一的。我们试举一例说明之。令 $I = (x^2, xy) \subset R[x,y]$ 。它定义了 y 轴及原点(0,0)(二重)。 「的简略分解可写为:

$$I=(x)\cap(y-ax,x^2).$$

前一个理想(x)定义了 y 轴,后一个理想(y-ax,x²)定义了一条 斜线(y-ax=0)与 y 轴相交两次($x^2=0$)。显然,(y-ax, x^2) 随 a 的值而变,所以不是唯一的。请注意,(x)及 $\sqrt{(y-ax,x^2)}=$ (x,y)是唯一的。这是下面要讨论的"唯一性定理"的要义。

定理6.27 设8是环,它的一个理想 1 的简略准案分解为

$$I = \bigcap_{i=1}^{n} I_{i,i}$$

证明 我们考虑下面的理想

$$I:(c) = \{a \in S: ac \in I\}.$$

1) 如果 $c \in I$, 自然得出 I:(c) = S. 2) 一般言之,不难看出

$$I:(C)=\left(\bigcap_{i=1}^{n}I_{i}\right):(e)=\bigcap_{i=1}^{n}\left(I_{i}:(e)\right),$$

$$\sqrt{I:(o)} = \sqrt{\bigcap (I_i:(o))} = \bigcap \sqrt{I_i:(o)}$$
.

我们指出,当c云石时,恒有

$$\sqrt{I_i;(c)} = p_i$$

证法如下: 设 $a^n \in I_i$: (c),即 $a^n c \in I_i$ 。而 $c \neq I_i$,故有 $a^{m i} \in I_i \subset p_i$,

所以 $a \in p_i$, 反之,设 $a \in p_i$, 则 $a^m \in I_i$, 于是 $a^m c \in I_i, \quad a^m \in I_i: (c), \quad a \in \sqrt{I_i: (c)}.$

3) 当我们取 $c \in \left(\bigcap_{i \neq i} I_i\right) \setminus I_i$ 时,就有 $\sqrt{I:(c)} = \mathfrak{p}_{i}$

综上所述,在集合 $\{\sqrt{I:(o)}: o \in S\}$ 中,所有的素理想 p_i 都出现了。反之,设

$$\mathfrak{p} \in \{ \sqrt{I:(c)}: c \in S \},$$

$$\prod a_i \in \bigcap p_i \subset p$$
.

这是不可能的。归结来说, $\{p_i\}$ 是 $\{\sqrt{I:(o)}: o \in S\}$ 中的 素理想的集合,因此是由I唯一确定的。

上面定理中那些由「唯一确定的素理想称为"「的素理想"。 $\{p_i\}$ 中的极小元称为「的孤立案理想,其余的称为「的嵌入案理想。例如,在例14中, $I=(x^2,xy)$, $p_i=(x)$, $p_i=(x,y)$ 。 p_i 是 孤立素理想, p_i 是 嵌入素理想。从几何 学 的 观 点,比 较 容 易理解这些术语: p_i 相当于 y 轴, p_i 相 当于嵌入 y 轴 的 原点。应用上面的观点,在简略准素分解 $I=\bigcap I_i$ 中,如果 $\sqrt{I_i}=p_i$ 是 I 的孤立素理想,则称 I_i 是 I 的孤立素理想,则称 I_i 是 I 的孤立准案分支:否则,则称 I_i 是 I 的嵌入准案分支。我们有下面的唯一性定理。

定理6.22 设S是环,它的一个理想 I 的简略准素分解为

$$I = \bigcap_{i=1}^{n} I_{i*}$$

则 I 的孤立准索分支是由 I 唯一确定的 证明 任取 I₁, 令

$$q_i = \{x : I : (x) \subset \sqrt{I_i}\}.$$

1) 如果 $a \in q_i$,即 $I:(a) \hookrightarrow \sqrt{I_i}$,于是存在 $c \in \sqrt{I_i}$, $c \in I:(a)$ 。 也即 $ca \in I \subset I_i$,立得 $a \in I_i$ 。 我 们 证 明 了 $q_i \subset I_i$ 。 2) q_i 是一个理想。事实上,若 $a \in q_i$,则不难看出,对 于 任 意 的 $b \in S$, $ab \in q_i$,又若 $a_1, a_2 \in q_i$,即存在 $c_1, c_2 \in \sqrt{I_i}$,使 $c_1 a_1, c_2 a_2 \in I$,于是 $c_1 c_2 \in \sqrt{I_i}$, $c_1 c_2 (a_1 + a_2) \in I$,也就 是 说 $a_1 + a_2 \in q_i$ 。因此 q_i 是一个理想。 3) 当 $\sqrt{I_i}$ 是 I 的孤立素理想时, $q_i = I_i$ 事实上,根据 1),恒有 $q_i \subset I_i$,所以仅须 证 明 $q_i \supset I_i$ 。由 于 $p_i = \sqrt{I_i}$ 是 I 的素理想中的极小者,所以 $p_i \hookrightarrow p_i$ ($\forall j \hookrightarrow i$)。取 $b_j \in p_i \backslash p_i$,设 $b_i^{**} \in I_j$,则

$$b = \prod_{i \neq i} b_i^{\#_i} \overline{\subset} \mathfrak{p}_i = \sqrt{I_i}.$$

显然,对任意的 $a \in I_i$,我们恒 有 $ab \in \bigcap I_i = I$,故 $a \in q_i$,即有 $I_i \subset q_i$ 。 4)根据定理6.21,易知 I 的孤立素理 想 $p_i = \sqrt{I_i}$ 是 由 I 唯一确定的,再根据 q_i 的定义,知 $I_i = q_i$ 也 是 由 I 唯一确定的。

讨论 1)本节的定理是所谓"存在性定理",而非"构造性定理",即沒有提供一个方法,能实际作出这些简略准素分解等等。

- 2) 这些定理一般称为 Lasker-Noether 定理。
- 3) 熟习本节后,很容易推广到"诺德模的准素分解"现论。
- 4) 我们考虑 nil rad(S) = \(\sqrt{0} \) (见定理6.17)的简略准素分解。因为

$$\sqrt{\text{nil rad}(S)} = \sqrt{\sqrt{(0)}} = \sqrt{(0)} = \text{nil rad}(S),$$

所以(参看定理6.19的系)

$$\sqrt{(0)} = \bigcap_{i=1}^n \mathfrak{p}_i,$$

此处 p_i 都是素理想、由分解的唯一性,立刻可 以看出 p_i 都是极小素理想(即任一素理想 $p \subset p_i$,则 $p = p_i$)。另一方面,设 $p \in P$ 是一个极小素理想,则有

$$\mathfrak{p}\ni 0\Longrightarrow \mathfrak{p}\bigcirc \checkmark \overline{(0)}\cong \bigcap_{\bullet}\mathfrak{p}_{\bullet}$$

⇒对某个i,p⊃p_i⇒⇒p≈p_i。

所以,我们得知在诺德环^S里,只有有限多个极小素理想,以及 幂零根理想是所有极小素理想的交,也即是所有素理想的交。

5) 以D表示诺德环S中所有零因子构成的集合: $D = \{a: a \in S, \text{ Fat } b \in S, b \neq 0, \text{ 使ab} = 0\}$.

则我们有

$$\bigcup_{ {\rm W.M. } \mathfrak{p}_i = D_{\bullet} } \mathfrak{p}_i = D_{\bullet}$$

证明如下: $合(0) = \bigcap I_i$ 是简略准 素分解, $\sqrt{I_i} = p_i$,则 p_i 为极小素理想。参看定理6.21的证明,对每个极小素理想 p_i ,都存在 $c \neq 0$,使 $p_i = \sqrt{(0) \cdot (c)}$ 。所以,任 取 $a \in p_i$, $a \neq 0$,必 存 在正整数 r ,使 a' c = 0。取满足此式的最 小 的 r ,则有 $a(a^{r-1}c) = 0$, $a'^{-1}c \neq 0$ 。放 $p_i \subset D$ 。即有 $\bigcup p_i \subset D$ 。反之,由于

(0):(a) =
$$\{b: ba = 0\}$$
,

所以

$$D = \{a: (0): (a) \neq (0)\}.$$

设 a ∈ D ,则存在 b∈(0):(a), b ≠0. 于是 a∈(0):(b), b ≠0. 故

$$D \subset \bigcup_{b \neq 0} ((0):(b)) \subset \bigcup_{b \neq 0} \sqrt{(0):(b)} = \bigcup \mathfrak{p}_{t_0}$$

习 魎

设R是环, a,b,c,a,b,是R的理想。证明
 (1) a□a:b, (2) (a:b)·b□a;

- (3) (a:b):c = a:bc = (a:c):b;

(5)
$$\alpha:\left(\sum_{i}b_{i}\right)=\bigcap\left(\alpha:b_{i}\right)$$
.

- 沒有环局态 f: R→S, a₁,a₂ 是 R 的理想, b₁,b₂ 是 S 的理想, 证明。
 - $(1) f(a_1;a_2)S \subset (f(a_1)S):(f(a_2)S);$
 - (2) $f^{-1}(b_1;b_2) \subset f^{-1}(b_1); f^{-1}(b_2)$.
 - 3. 证明 $I_1:I_2=I_1 \iff I_2$ 不含于 I_1 的任何素理想之中。
 - 4. 设 p 为环 R 的 素 理 想, a,b 为 理 想,且 ab⊂p。如果 a←p,证明 b⊂p。
 - 5. 设 q 为 R 的准素理想,a,b 为理想,且 b 是有限生成的。如果 $ab \subset q$,但 $a \subset q$,证明存在正整数 n,使得 $b^* \subset q$.
 - 6. 设 S 是 环, q 为 S 的 准 素 理 想 , √ q = p 。 令 q⁽ⁿ⁾ = q S . ∩ S .

称 $q^{(*)}$ 为 q 的符号方幂(symbolic power)。证 明 $q^{(*)}$ 是 S 的 准素 理想,且 $\sqrt{q^{(*)}} = p$.

- 7. 举例说明以素理想 p 为根的无穷多个准素理想的交不一定是以 p 为根的准素理想。
 - 8. 设 K 是域。证明在多项式环 $K[x_1,x_2,...,x_n]$ 中理想 $p_i = (x_1,x_2,...,x_i)$ (i=1,2,...,n)

都是素理想,它们的方幂都是准素理想。

9. 令 $I = \bigcap I_1$ 是环S 的理想的简略准素分解, $\sigma: S \rightarrow S/I$ 是典型映射、证明

$$(0) = \bigcap \sigma(I_t) \subset S/I$$

是 (0) 在 S/I 中的简略准案分解。 反之, 令

$$(0) = \bigcap I_1 \subset S/I$$

是 (0) 在 S/I 的简略准素分解, 证明

$$I = \bigcap \sigma^{-1}(I_1) \subset S$$

是 I 的一个简略准素分解。

- 10. 设有环满射 $f: R \rightarrow S$ 。设 q 是 S 的 理想。证明
 - (1) $q \in S$ 的准素理想当且仅当 $f^{-1}(q) \in R$ 的准素理想;
 - (2) q 是以 p 为根的准素理想,则 $f^{-1}(q)$ 以 $f^{-1}(p)$ 为根。
- 11. 设尽是环, * 是变元。证明
 - (1) 如果 $p \in R$ 的素理想, 则 $p[x] \in R[x]$ 的素理想,
- (2) 如果 q 是 R 中的 p 准素理想 (即 $\sqrt{q} = p$, q 准素),则 q[x] 是 R[x] 中的 p[x] 准素理想,
- (3) 如果 $a = \bigcap_{i=1}^n q_i$ 是 a 在 R 中 的 一个简略准素分解,则 $a[x] = \bigcap_{i=1}^n q[x]$ 是 R[x] 中的简略准素分解;
- (4) 如果 \mathfrak{p} 是 R 的极小素理 想,则 $\mathfrak{p}[x]$ 是 R[x] 的 极 小素 理想。
- 12. 设F为任一域。在F[x,y]中,合 $\alpha = (x^2,xy)$,证明下述分解都是简略准素分解:
 - (1) $a = (x) \cap (x^2, y);$ (2) $a = (x) \cap (x^2, x + y);$
 - (3) $a = (x) \cap (x^2, xy, y^2)$.
- 14. (I.S.Cohen) 证明 S 是诺德环 $\iff S$ 的每个素理想都是有限生成的。
 - 15. 平行于环的准素分解,建立模的准素分解的理论。

§ 6 维数论(1)

- 一个拓扑空间的基本性质之一是它的维数。一般言之,我们 有许多不同的方式来讨论维数,现列举几条如下。
 - 1) 空间的自由度。直观来说,n维仿 射 空间 A^n 的 维数应

该是n.如果有 $\sigma: V \rightarrow A$ "是一个满射,而且映射 σ 的纤维 $\sigma^{-1}(a)$ 都是有限集,则我们定义V的维数应当同于A"的维数n。请参考定理6.8。以后我们将详细讨论之。

- 2) 如果拓扑空间的任何一个开覆盖 $\bigcup U_i$ 都可细化 成一个开覆盖 $\bigcup V_j$ (即 $V_j \subset U_i$),使任何 $n+2 \wedge V_j$ 的交都 是 空集 \emptyset ,这种 n 的最小可能的正整数值称为 空间 V 的 维数。例如,我们取 V=R,即一条直线。不难看出,任给一个开覆盖 $\bigcup U_i$ (只要不是用 V 作自身的开覆盖),不可避免地会有两个 开集的交集非空。而适当地加细 $\bigcup U_i$ 以后,可以使得任何三个 新的开集的交为空集。所以,在这种定义下,R 的维数是 1 。同 样 的,R 的维数是 n 。本书中,我们将不讨论这种维数。
- 3) 在诺德空间里,我们定义闭点的维数 是 零。如果一个不可约子集 B 军不可约子集 C,而且在 B,C 间不能 插 入任何不可约子集,则我们定义

$$\dim B = \dim C + 1, \dots$$

即B的维数 = C的维数 + 1。例如,平面上有直线,直线上有点,因此,我们认为平面的维数是 2,直线的维数是 1。

我们先把 3)精确化,得出下面的定义。

定义6.12 设S是一个诺德环。S的 Krull 维数 dim S定义 为S的素理想链 p_0 $\Longrightarrow p_1$ $\Longrightarrow \cdots$ $\Longrightarrow p_n$ 的长度 n的最大 値、如果这个最大値不存在,则定义 dim $S=\infty$.

讨论 在一个诺德环S里,任何一个素理想的链都只有有限的长度,但是它们的长度可能越来越长,趋向于无限大。因此,可能有 dim $S = \infty$ 。永田雅宜在他的书"Local Ring"的附录中,提供了一个实例。

与定理6.9(Cohen 及 Seidenberg 上升定 理) 相 结 合, 我们 有下面的定理。

定理6.23 设环R是对环S整数相关的(即每一个 $r \in R$ 都是对S整数相关的), $R \supset S$ 。则恒有

 $\dim R = \dim S_{\bullet}$

证明 任取5的一个素理想的链

应用定理6.9后面的讨论, 我们立得 R 的一个素理想的链

(2)
$$q_0 = q_1 = \cdots = q_n, \quad q_i \cap S = p_i.$$

所以 $\dim R \geqslant \dim S$. 反之,任取 R 的素理想的链(2), $\Re q_1 \Re S = p_1$. 仅须证明

$$q_1 \not\supseteq q_{i+1} \Longrightarrow p_1 \not\supseteq p_{i+1}$$

便足以证明

令 $R' = R/q_{i+1}$, $q'_i = q_i/q_{i+1}$, $S' = S/p_{i+1}$, $p'_i = p_i/p_{i+1}$. 显然, $R' \supset S'$, $R' \bowtie S'$ 是整数相关的。于是,问题归结为:

$$q'_i \neq (0) \Longrightarrow p'_i = q'_i \cap S' \neq (0).$$

任取 $t \in \mathfrak{q}'_1$, $t \neq 0$. 令 $f(x) \in S'[x]$ 为 t 适合的最低次数的首一多项式。写出 f(x) 如下。

$$f(x) = x^n + s_1 x^{n-1} + \dots + s_n, \quad s_i \in S'$$

则 $s_n = 0$ 。这是因为,若 $s_n = 0$,由于 $R' = R/q_{i+1}$ 是整环,故 r 适合一个次数更低的首一多项式

$$g(x) \approx x^{n-1} + s_1 x^{n-1} + \cdots + s_{n-1}$$

于是立得

$$S' \ni s_n = -r^n - s_1 r^{n-1} - \cdots - s_{n-1} r \in \mathfrak{q}'_1$$

即 0≠sn∈S' ∩q' = p'. 【

与定理6.8(诺德正规化定理)结合,我们证明下面的两个定理。

定理6.24 dim $K[x_1, \dots, x_n] = n$, 此处K是域, x_1, \dots, x_n 是变数。

证明 应用数学归纳法。如果 n=0,显 然 $\dim K=0$ 。设已 知

$$\dim[x_1,\cdots,x_{n-1}]=n-1,$$

在 $K[x_1, \dots, x_n]$ 中任取一案理想链

取 $f \in q_m, f \Rightarrow 0$ 。 令 $f = \prod f_i$ 为 f 的素元分解式。 因为 q_m 是素理想,所以必有一不可分解的多项 式 $f_i \in q_m$ 。 即令 f 为 一 不可分解的多项式。 应用变数代换:

$$z_n = x_n, \quad z_{n-1} = x_{n-1} - x_n^{l_{n-1}}, \quad \cdots, \quad z_1 = x_1 - x_n^{l_1},$$

其中 $0 \ll l_{n-1} \ll \cdots \ll l_2 \ll l_1$ 。 令 f 为下面的形式

$$f = a_0 z_n^l + a_1(z_1, \dots, z_{n-1}) z_n^{l-1} + \dots + a_l(z_1, \dots, z_{n-1}),$$

其中 $a_0 \neq 0$ 。不难看出, $K[x_1, \dots, x_n] = K[z_1, \dots, z_n]$ 。令

$$R = K[z_1, \cdots, z_n]/(f),$$

$$S = K[z_1, \dots, z_{n-1}], \quad q'_i = q_i/(f).$$

则有: 1) Z_n 是对 S 整数相关的,因此 R 是对 S 整数 相 关 的, $R \supset S_n$ 所以 dim $R = \dim S_n$ 2) 根据归纳 法 的 假 设, dim S = n-1. 3) 下面是 R 的一个素理想链

综合以上的三点,立得 $m \le n-1$ 。考虑(+)式,不难推出 dim $K[x_1, \dots, x_n] \le n$ 。

又显然

$$(x_1, \dots, x_n) \not\equiv (x_1, \dots, x_{n-1}) \not\equiv \dots \not\equiv (x_1) \not\equiv (0)$$

是 $K[x_1, \dots, x_n]$ 的一个素理想链,所以

$$\dim K[x_1, \cdots, x_n] = n.$$

定理6.25 设 $R = K[r_1, \cdots, r_m]$ 是 整 环,此处 K 是 域。令 F 为 R 的比域,则恒有

$$\dim R = \operatorname{tr} \operatorname{deg} F/K,$$

即R的维数等于F对K的超越次数。

证明 应用定理 6.8, 存在 $S = K[x_1, \dots, x_n] \subset R$, R 对 $K[x_1, \dots, x_n]$ 是整数相关的, x_1, \dots, x_n 是变数。根据上面两个定理, 有 dim $R \approx$ dim S = n。不难看出,F 是 $K(x_1, \dots, x_n)$ 的代数扩域,所以

tr deg $F/K = \text{tr deg } K(x_1, \dots, x_n)/K = n$.

讨论 超越次数 tr deg F/K 可以当成空间的自由 度 的 代数定义。例如,定义在 n 维仿射空间上的有理函数集,即 $K(x_1, \dots, x_n)$,其超越次数也是 n ,等同于空间的自由度。上面的定 理 说明了,本节开始时讨论的维数的定义 1)及 3)在同时有意义时是相同的。 \blacksquare

以下、我们要用局部化来讨论维数。

定理6.26 设 S 是环。我们恒有

dim S=sup{dim S_■: m 是极大理想}。

证明 任取 5 的素理想链如下, 其中 m 是极大理想:

則有

所以

dim S≤sup {dim S_m; m 是极大理想}.

反之, 设有 S_m 的素理想链如下:

则令 $p_i = q_i \cap S$, 立得(1)式。于是

讨论 这个定理是说, 在几何的情形,一个代数多样体的 维数等于各几何点(相当于极大理想)邻域的维数的极大值。这是很合于几何直观的。 |

我们可以把以上的维数论的讨论,推广到一般的理想。现给 出下面的定义。

定义6.13 1) 令 p 是环 S 的素理想。定义 p 的高度为 ht(p) = sup {n: 存在一个素理想链 p ⊋ p₁ ⊋ ··· ⊋ p_n}。 如果 ht(p) = 0,则称 p 为 S 的极小素理想。

2) 令 I 是环 S 的任意理想,定义 I 的高度为 $ht(I) = \inf\{ht(p): p \supset I\}$ 。

讨论 1) 设 $I = (x) \cap (x-1,y) \subset C[x,y]$. 则不难看出, ht(x) = 1, ht(x-1,y) = 2, ht(I) = 1.

请注意, $\mathscr{V}(x)$ 是 y 轴, $\mathscr{V}(x-1,y)$ 是点(1,0)。 $\mathscr{V}(I)$ 是 y 轴与点(1,0)的并集。因此,高度 ht 相当于余维数(即 dim C[x,y] - dim $\mathscr{V}(I)$)。

ht(x) = 1 = 2 - dim
$$\mathscr{V}^{-}(x)$$
,
ht(x-1,y) = 2 = 2 - dim $\mathscr{V}^{-}(x-1,y)$,
ht(I) = 1 = 2 - dim $\mathscr{V}^{-}(I)$.

2) 不难看出,若 p 是素理想,则恒有 $ht(p) = \dim S_{\bullet\bullet}$ 】 为了便于后面的讨论,我们引入下面的有用的定义及引理。

定义6.14 设 S 是环, $S \Rightarrow 0$ 。S 的 Jacobson 根理想 定 义为 所有极大理想的交集,记为 rad(S)。

讨论 所有形如 $1 + a(a \in rad(S))$ 的元素,不属于 S 的任何极大理想,因此必然是可逆元。反之,设 I 是一个理想,如果对于任意的 $a \in I$, 1 + a 都是可逆元,则必有 $I \subset rad(S)$ 。这是因为,假若 $I \subset rad(S)$,则必有某个 $a \in I$,以及某个极大理想 m,使 $a \in m$ 。令 $\sigma: S \rightarrow S/m$ 为典型映射,则必存在 $b \in S$,使 $\sigma(ba) = -1$ 。不难看出, $ba \in I$,但 $\sigma(1 + ba) = 0$,即 $1 + ba \in m$,也即 1 + ba 不是可逆元,这与假设矛盾。

定理6.27(中山引理①) 设 S 是 S 表 S , I 是 S 想 S 想 S , I 是 S 想 S , I 是 S , I 是 S , I 是 S , I 是 S , I 是 I

$$M = N_{\bullet}$$

证明 1) $M/N = I(M/N) = I^2(M/N) = \cdots = 0$.

2) 记 M' = M/N, 则 M' = IM'。我们要 证明 M' = 0。显 然、M' 是有限生成的 S 模。令

① 此引理即 Nakayama 引理(Nakayama 的汉字写法是"中山正")。据永田雅宜研究,中山引理是 Krull 及東屋氏首先提出的,应称为"Krull-東屋引理"。因为中山引建已经广泛流传了,所以本书仍用旧名。

$$M' = \sum_{i=1}^{n} Sm_{i*}$$

我们用数学归纳法。如果 n=1,则有 $a \in I$,使 $m_1=am_1$,即(1-a) $m_1=0$ 。但 $a \in I \subset rad(S)$,故 1-a 是可逆元,所以 $m_1=0$,也即 M'=0。一般言之,我们要证明存在 $a' \in I$,使 (1+a')M'=0。令 $M''=M'/Sm_n$ 。由归纳法假设,存在 $a \in I$,使 (1+a)M''=0,即 $(1+a)M' \subset Sm_n$ 。用 M'=IM' 代入,即有

$$(1+a)M' = (1+a)IM' \subset ISm_n = Im_n$$

于是存在 $b \in I$, 使 $(1+a)m_n = bm_n$. 不难看出,下式 $(1+a)(1+a-b) = 1 + (2a-b+a^2-ab) = 1+a'$ 中的 a' 即所求。

我们要引入 S 模 M 的 "长度"的概念。所谓 M 的一个正规 **序列**,是指下面的一个子模链

$$M = M_0 \supset M_1 \supset M_2 \supset \cdots \supset M_r = 0$$

r即称为这个正规序列的长度。如果 $M_i
in M_{i+1} (\forall i = 0, 1, \dots, r-1)$,则称上面的正规序列是沒有重复的,如果上面的正规序列是沒有重复的,而且在 M_i 与 M_{i+1} 之间,沒有别的子模,则称之为一个合成序列。

一般言之,任给一个模,并不一定有合成序列。例如,在 Z中,我们有 (2) $<math>\mathbb{R}(2^{2})$ $\mathbb{R}(2^{8})$ \mathbb{R} …,这个子模链是永不终 止 的。 又如,在 C[x]中,我们有

$$(x)$$
 \preceq (x_5) \preceq (x_2) \preceq ...

但是我们有如下的定理。

定理6.28(Jordan **定理**) 如果 S 模 M 中有一个长度 为r 的合成序列,那么每一个合成序列的长度都是r,并且每一个 沒有 重复的正规序列都可以加细成一个合成序列。

证明 读者仿照群论的若当-荷德定理,自行证明。 | 定义6.75 设 S 模 M 有一个合成序列,则我们定义模 M 的长度即为此合成序列的长度,记为 length_sM、按照上面的定理、

这是所有合成序列的共同的长度。如果 M 沒有合成 序 列,则定义 $length_sM=\infty$ 。

我们从维数论的角度,研究最简单的环S,即 $\dim S = 0$ 的情形。设S 是城,则自然有 $\dim S = 0$ 。反之, $\dim S = 0$ 定义了什么样的环S 呢?事实上,S 必为 Artin 环。这是我们要在本节说明的。我们先给出下面的定义。

定义6.16 如果 S 的理想的任一下降的链必然终止,则称 S 为 Artin 环。即设有下面的链

$$I_1 \supset I_2 \supset \cdots \supset I_n \supset I_{n+1} \supset \cdots$$

其中 I_n 皆是 S 的理想。则必存在-m,使

$$I_m = I_{m+1} = \cdots$$

定理6.29 1) S 是 Artin 环←→length_sS<∞,

2) S 是Artin 环←→S 是诺德环, 且 dim S=0.

证明 1) ← 此时, S 当作 S 模, 它的子模即是 环 S 的 理想, 因此, S 必然是 Artin 环。

→ 我们先证明 S 只有有限多个极大理想。否则,设 m₁, m₂, ···, m_n, ··· 是 S 的无限多个互不相同的极大理想,考虑下面的理想链

$$\mathfrak{m}_1 \supset \mathfrak{m}_1 \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1 \mathfrak{m}_2 \cdots \mathfrak{m}_n \supset \cdots .$$

我们只要证明相邻的两个理想都不相等便足够了。假设:

$$\mathbf{m}_1 \mathbf{m}_2 \cdots \mathbf{m}_{n-1} = \mathbf{m}_1 \mathbf{m}_2 \cdots \mathbf{m}_{n-1} \mathbf{m}_n \subset \mathbf{m}_n$$

不难看出,必有某个 i < n, 使 $m_i \subset m_n$, 于是 $m_i = m_n$, 这与 m_i , m_2 , … 互不相同矛盾。

现设 m_1, m_2, \cdots, m_r 是 S 的所有的极大理想。令 $I = m_1 m_2 \cdots m_r$.

考虑下面的下降的理想键,

$$I \supset I^2 \supset I^3 \supset \cdots$$

由于S是 Artin 环, 所以必有一 m 存在, 使

$$I^m = I^{m+1} = \cdots.$$

$$J = (0): I^* = \{a: aI^* = (0)\}.$$

我们要证明J=S。如此,则I''=(0)。

假若 $J \Rightarrow S$. 令 J' 为包含 J 而且不等于 J 的選 想 中 的 极 小 者。为什么存在这样一个 J' 呢?请参考定理 3.25。在 那 里我们证明了诺德环与极大原则是等 同 的。同 样 的 道 理,可 以 证明 Artin 环与"极小原则"是等同的(读者试自证之)。因 此 有这样的 J' 存在。任取 $a \in J' \setminus J$,则 J' = J + (a)。 显然 , $I \subset rad(S)$,根据定理 6.27(Nakayama 引理),则知 $J + aI \Rightarrow J'$ 。 再根据 J' 的 选取, 立得 J + aI = J。于是 $aI \subset J$,即有

$$a \in I: I = ((0):I^m): I = (0):I^{m+1} = 0: I^m = I$$

这与 a 的选取是矛盾的。因此 f = S, $f'' = \{0\}$.

以下,我们考虑一个理想链:

$$S \supseteq m_1 \supseteq m_1 m_2 \supseteq \cdots \supseteq m_1 m_2 \cdots m_r \supseteq I m_1 \supseteq \cdots$$
$$\supseteq I^2 \supseteq I^2 m_1 \supseteq \cdots \supseteq I^n = (0).$$

相邻两项的商模是域 S/m, 上的向量空间,此向量空间的 子空间对应到这两项间的理想。根据 Artin 环的条件,知这些商模都 是有限维向量空间,于是它们都是有限长 度的 S 模。而 length S 即是这些长度的和,于是 length $S < \infty$ 。

2) => · 根据 1), S 显然是诺德环·我们用上面的符号 · 任取 p∈Spec(S), 则有

$$(m_1 m_2 \cdots m_r)^n = (0) \subset \mathfrak{p}$$

所以必有某个i,使 $p=m_{i*}$ 也即所有素理想都是极大 理 想。立 得 $\dim S=0$ 。

 \longleftarrow . \circ (0) = $\bigcap_{i=1}^{7} I_i$ 是理想(0)的简略准素分解, $\mathfrak{p}_i = \sqrt{I_i}$. 因为 \mathfrak{p}_i 是有限生成的,不难看出,存在正整 数 m_i ,使 $\mathfrak{p}_i^m : \subset I_i$ 。 \circ $m = \max\{m_1, \cdots, m_r\}$,则有

$$(\mathfrak{p}_1 \cdots \mathfrak{p}_r)^m \subset \bigcap_{i=1}^r I_i = (0),$$

所以 $(p_1\cdots p_r)^*=0$ 。自然,因为 $\dim S=0$,所 U 渚 p_1 都是极大理想。令 $I=p_1\cdots p_r$,我们应用 1) 的证明中的最后一段,立即得 $length_sS<\infty$ 。因此,S 是 Artin 环。

承 设诺德环的有限多个极大理想 m_1, \dots, m_n 的乘 积(或 交集)是(0),则 S 是 Artin 环。

证明 我们只要证明 $\dim S = 0$ 就足够了。換句话 说,我们要证明 S 的任意素理想 p 都是极大理想。自然,我们有

$$\mathfrak{p} \supset (0) = \mathfrak{m}_1 \cdots \mathfrak{m}_n \text{ if } \mathfrak{p} \supset (0) = \bigcap_{i=1}^n \mathfrak{m}_i.$$

所以 \$ 等于某个 m/。 |

例15 令

$$A = C[x,y]_{(x,y)}, S_1 = A/(x,y),$$

 $S_2 = A/(x,x+y^2), S_3 = A/(x+y^4,x+y^3),$

 S_1, S_2, S_3 都是 Artin 环。经过计算得

$$\dim_{\mathcal{O}} S_i = \operatorname{length}_{S} S_i = i$$
.

这正好是 S_i 对应的那两条曲线在原点相交的次数。

在第八章 "Dedekind 整环" 中,我们将讨论 $\dim S \leq 1$ 的情形。在那里,我们将统一讨论"代数曲线论"及"代数数论"。

习 驗

- - 2. 考察 $\mathscr{V}((xz,yz))$ $\subset A^3$ 在各点的维数,即令 R = C[x,y,z,]/(xy,yz),

考察 dim R_ (\ R的极大理想 m)。

- 3. 参考上题,求出 ht(xz,yz).
- 4. 令 R 是一个局部环,m 是它的极大理 想。设 x_1,x_2,\cdots , $x_n \in R$ 。如果

$$(x_1, x_2, \dots, x_n) + m^2 = m$$

证明(x1,x2,...,xn)=m.

- 5. 令 $R = C[x,y]_{(x,y)}$. 证明 R 中的理想的等式. $(x + x^{10}y, y + x^3y^6) = (x,y).$
- 6. 设 R 是局部环,m 为其极大理想,M 是 有限 R 模,则 M/mM 是域 R/m 上的有限 维 向量 空 间。设其基 为 z_1, z_2, \dots , z_n 。取 z_i 在 M 中的原象 z_i (即 $z_i = z_i + mM$)。由 Nakayama 引理 知 z_1, z_2, \dots, z_n 是 M 的 R 模生成元。试举一例,说明 z_1, z_2, \dots, z_n 可以 R 线性相关。
 - 7. 设K为城。再设有有限维K向量空间的正合序列

 $0 \xrightarrow{f_0} M_1 \xrightarrow{f_1} M_2 \xrightarrow{f_2} \cdots \longrightarrow M_{n-1} \xrightarrow{f_{n-1}} M_n \xrightarrow{f_n} 0,$ (即 f_i 为 K 线性映射, ker $f_i = \text{im } f_{i-1}, \ \forall i = 1, 2, \cdots, n$). 证明 length_K $M_i = \text{dim}_K M_i$

- 8. 证明 Artin 整环是域。
- 9. 设 R 是主理想整环, a 是 R 的非 零 理 想。证明 R/a 是 Artin 环。
 - 10. 设R是诺德环。证明R是 Artin 环←→Spec R是离散的。
- 11. 设化是域, $R = k[x_1, x_2, \cdots, x_n]$ $(x_i \, T 定代数无关)$ 。证明 R是 Artin $F \iff R$ 作为 k 模是有限的。
- 12. 只有一个素理想的局部环称为准案环 (primary ring)。证明每一个诺德准案环必是 Artin 环。
- 13. 证明每一个 Artin 环是有限多个诺德准案环的直和, 而这样的直和分解是唯一的。
 - 14. 构造一个无限维诺德整环。

§ 7 分次环及分次模

我们考虑常见的多元多项式环 $K[x_1, \dots, x_n] = S$ 。我们可以

自然地把S当作 n 维仿射空间K*上面的多项式函数的集合。当我们在K*里取坐标系 (x_1, \dots, x_n) 时,S 就 自 然 写 成 了 $K[x_1, \dots, x_n]$ 。 我们取不同的坐标系 (y_1, \dots, y_n) 时,S 当然就是 $K[y_1, \dots, y_n]$ 了。一般说来, (x_1, \dots, x_n) 与 (y_1, \dots, y_n) 两个坐标系 之 同的关系不一定是线性的。例如

$$y_1 = x_1$$
, $y_2 = x_2 + x_1^2$, ..., $y_n = x_n + x_1^n$.

此时, $f \in S$ 对两个坐标系可能有不同的次数。例如, y_i 对坐标系 (y_1, \dots, y_n) 是一次式,可是对坐标系 (x_1, \dots, x_n) 却 是 i 次式了。

但是,如果我们不是考虑仿射空间 K^* , 而是考虑射影空间 $P^* = \{K^{*+1} \text{ 中通过原点的直线}\}$,

那么 K^{n+1} 的两个坐标系 (x_0,x_1,\cdots,x_n) 与 (y_0,y_1,\cdots,y_n) 之 间只允许线性变换的差异了。如果令 $R=K[x_0,x_1,\cdots,x_n]$,则 $f\in R$ 的 次数是不随坐标变换而改变的。在这种情况下,R 自然地写成

$$R = \bigoplus_{i \ge 0} R_i$$
, $R_i = i$ 次齐次多项式的集合.

定义6.77 1) 设环 $R = \bigoplus_{i \geq 0} R_i$,此处 R_i 是加法子群。如果 $R_i R_j \subset R_{i+j}$, $\forall i,j \geq 0$,

則称R是一个**分次环**, R_i 的非零元素称为i次齐次元。对于 $r_i \in R_i$, $r_i \neq 0$,定义其次数为 $\deg r_i = i$,

2) 设 $R = \bigoplus_{i \ge 0} R_i$ 是分次环,M 是 R 模。如果 $M = \bigoplus_{i \ge 0} M_i$,此处 M_i 是子群,适合

$$R_iM_j\subset M_{i+j}$$

則称 M 是分次模, M_i 的非零元素称为i 次齐次 元。 如 果 $m_i \in M_i$, $m_i \neq 0$, 則 $\deg m_i = i$.

讨论 因为 $R_0R_0 \subset R_0$, 所以 R_0 对乘 法 是 封 闭 的,又因为 $1 \cdot R_i \subset R_i$, 所以 $1 \in R_0$. 不难推导出 R_0 是一环。令

$$R_* = \sum_{i>0} R_{ij}$$

容易看出 R. 是 R 的理想。

例16 设 $S = C[x^2, x^3]$, $I = (x^2, x^3)$. 合 $R_0 = S/I = C$, $R_1 = I/I^2, \dots, R_n = I^n/I^{n+1}, \dots$. 一般说来,

$$I^n = (x^{2^n}, x^{2^{n+1}}, x^{2^{n+2}}, \cdots) = (x^{2^n}, x^{2^{n+1}})_{\bullet}$$

记 $I^n/I^{n+1} = Cy^{2n} + Cy^{2n+1}$,则

$$R = \bigoplus_{i > 0} R_i = C \oplus [Cy^2 \oplus Cy^3] \oplus \cdots \oplus [Cy^{2^n} \oplus Cy^{2^{n+1}}] \oplus \cdots$$

是一分次环。|

通常说来,任取环S,理想I及S模M,则 $\{I^*\}$ ($I^0=S$)是下降的理想链, $\{I^*M\}$ 是下降的子模链。我们定义

$$G_1(S) = \bigoplus_{i=0}^{n} I^i/I^{i+1}, \quad G_1(M) = \bigoplus_{j=0}^{n} I^jM/I^{j+1}M.$$

自然 I'/I'^{+1} 及 $I'M/I'^{+1}M$ 都是加法交換群。我们认定它们的元素是i次齐式元。

我们定义 $G_I(S)$ 与 $G_I(M)$ 的乘法如下: 设

$$\bar{a} \in I^i/I^{i+1}$$
, $\bar{m} \in I^iM/I^{i+1}M$,

此处 $a \in I^{I}$, $m \in I^{I}M$ 。 定义

$$\bar{a} \cdot \bar{m} = \overline{am} \in I^{i+j} M / I^{i+j+1} M_{\bullet}$$

显然这个定义是良好的。我们再定义进步

$$\left(\sum_{i} \bar{a}_{i}\right) \cdot \left(\sum_{i} \bar{m}_{j}\right) = \sum_{i \neq j} \bar{a}_{i} \bar{m}_{j}.$$

不难看出,这样定义的乘法,当M = S时,使得 $G_I(S)$ 成为一环,当M为任意S模时,使得 $G_I(M)$ 为 $G_I(S)$ 模。我们称 $G_I(S)$ 为与理想I相伴的分次环, $G_I(M)$ 为与理想I相伴的分次模。

例17 令
$$S = C[x,y]_{(x,y)}$$
, $I = (x,y)$. 不难看出,
$$I' = (x^i, x^{i-1}y, \cdots, y^i),$$
$$I'/I^{i+1} = Cx^i \oplus Cx^{i-1}y \oplus \cdots \oplus Cy^i.$$

于是

$$G_{I}(S) = C[\bar{x}, \bar{y}] \approx C[x, y].$$

定理6.30 1) 设 R 是分次环。则 R 是诺德环 $\longleftrightarrow R_0$ 是诺德环,以及 $R = R_0[r_1, \cdots, r_n]$;

2) 设 R 是诺德分次环,M 是有限生成的分次 R 模。那么,每一个 M, 都是有限生成的 R。模。

证明 1) ← . 显然.

 \longrightarrow $R_0 \approx R/R_+$,所以 R_0 是诺德环。 R_+ 是有限生 成 的 理想。取它的生成元集 $\{f_1, \dots, f_n\}$ 。设

$$f_{i} = \sum_{i} g_{ij} \quad ,$$

其中 g_{ij} 是 j 次齐次元。则显然, $\{g_{ij}\}$ 也是 R_+ 的生成 元。所以可以取 R_+ 的一个 齐 次 生 成 元 集 $\{r_1, \dots, r_s\}$ 。现在要证明 $R=R_0[r_1, \dots, r_s]$ 。任取 R_+ 的齐次元 f,设

$$f = \sum_{i} g_{i} r_{i}, \quad , \quad ,$$

显然可以弃去所有 $\deg g_i + \deg r_i + \deg f$ 的项。所以可设 $\deg g_i = \deg f - \deg r_i < \deg f$.

用数学归纳法,立得 $g_i \in R_0[r_1, \cdots, r_s]$ 。 所以 $f \in R_0[r_1, \cdots, r_s]$ 。 即 $R = R_0[r_1, \cdots, r_s]$ 。

2) 我们可以同上面类似地选取 M 的一个齐次生成元集 $\{m_1, \dots, m_t\}$ 以及 R 的一个齐次生成元集 $\{r_1, \dots, r_s\}$ 。则有

$$R = R_0[r_1, \cdots, r_s].$$

显然, M_i 作为 R_0 模是由 $\{y_j m_j : y_j 是 r_1, \dots, r_s$ 的单项式, $\deg y_j + \deg m_i = i\}$ 生成的, 这显然是有限集。

我们考虑 R 是诺德分次环、 R_0 是 Artin 环、M 是 有限生成的分次 R 模的情形。按照定理6.30,每一个 M_1 都是有限生成的 R_0 模,因此都有一个合成序列(请读者想想,为什么?),所以

$$length_{R_0}M_i < \infty$$
.

令 $(M_i) = length_{B_0} M_i$,则下面的级数称为 M 的Poincaré 级数:

$$P(M,t) = \sum_{i=0}^{\infty} l(M_i)t^i.$$

我们先用几个例子来说明 Poincaré 级数的意义,然后再从事一般理论性的探讨。

例18 令 $M = S = K[x_1, \dots, x_n] = \bigoplus_{i \ge 0} S_i$, 其中 S_0 为域 K,

 S_i 为i 次齐次多项式的集合。经过简单计算,得出

$$l(S_i) = \binom{n+i-1}{i} = \binom{n+i-1}{n-1},$$

故

$$P(S,t) = \sum_{i=0}^{\infty} {n+i-1 \choose n-1} t^{i}.$$

我们要说明 $P(S,t) = 1/(1-t)^*$ 。

证法一。直接展开:

$$\frac{1}{(1-t)^n} = 1 + \sum_{i=1}^{\infty} {\binom{-n}{i}} (-1)^i t^i$$

$$= 1 + \sum_{i=1}^{\infty} \frac{(-n)(-n-1)\cdots(-n-i+1)}{i!} (-1)^i t^i$$

$$= 1 + \sum_{i=1}^{\infty} {\binom{n-1+i}{i}} t^i$$

证法二. 当n=1时,

$$P(S,t) = 1 + t + \cdots + t^{t} + \cdots = \frac{1}{1-t}$$

用归纳法。令 $S' = K[x_1, \dots, x_{n-1}] = \bigoplus S'_1, S'' = K[x_n] = \bigoplus S'_1.$ 则显然有

$$t(S_i) = \sum_{t+q-1} t(S_i^t) t(S_i^t),$$

代入,立得

$$P(S,t) = P(S',t)P(S'',t) = \frac{1}{(1-t)^{t-1}} \frac{1}{(1-t)} = \frac{1}{(1-t)^{t}}.$$

另外一个有趣的计算,是把 $l(S_i)$ 写成i的多项式 $\chi(i)$ 。合

$$\binom{x}{m} = \frac{x(x-1)\cdots(x-m+1)}{m!}.$$

不难看出

$$\begin{pmatrix} i+n-1 \\ n-1 \end{pmatrix} = \begin{pmatrix} i+n-2 \\ n-1 \end{pmatrix} + \begin{pmatrix} i+n-2 \\ n-2 \end{pmatrix}$$

$$= \begin{pmatrix} i+n-3 \\ n-1 \end{pmatrix} + 2 \begin{pmatrix} i+n-3 \\ n-2 \end{pmatrix} + \begin{pmatrix} i+n-3 \\ n-3 \end{pmatrix}$$

$$= \cdots \cdots$$

$$= \begin{pmatrix} i \\ n-1 \end{pmatrix} + \begin{pmatrix} n-1 \\ n-2 \end{pmatrix} \begin{pmatrix} i \\ n-2 \end{pmatrix} + \cdots$$

$$+ \begin{pmatrix} n-1 \\ n-2 \end{pmatrix} \begin{pmatrix} i \\ 1 \end{pmatrix} + 1 ,$$

即有

$$\chi(x) = {x \choose n-1} + {n-1 \choose 1} {x \choose n-2} + \cdots$$

$$+ {n-1 \choose n-2} {x \choose 1} + 1.$$

以后,我们将称 $\chi(x)$ 为 Hilbert 多项式。请注意, $K[x_1, \dots, x_n]$ 对应于 n-1 维射影空间 P^{n-1} ,此时 $\deg \chi(x) = n-1 = \dim P^{n-1}$. P^{n-1} 一般看成一次代数多样体,而(*)式的首项系数正好是1。 又有 P^{n-1} 的 "算术亏格"是 0 ,将(*)式的 常 数 项 $a_{n-1}(=1)$ 代入(-1)"—1($a_{n-1}-1$)后,此式正好等于 0。这些都不是偶然的 巧合。一般我们用(-1)"—1($a_{n-1}-1$)来定义所谓算术亏格。

例19 仿照上面的例子, 计算

$$R = C[x_1, x_2, x_3]/(f(x_1, x_2, x_3))$$

此处 $f(x_1,x_2,x_3)$ 是一个 m 次齐次式。 自然, $f(x_1,x_2,x_3)=0$ 定义 了射影平面 P^2 上的一条代数曲线。

 $AS = C[x_1, x_2, x_3] = \bigoplus_{i>0} S_i$, 共中 S_i 为 i 次 齐 次 式 的 集 A .

令 $R = \bigoplus_{i \ge 0} R_i$, 则当 $i \ge m$ 时, 有 $R_1 = S_i / f S_{i-m}$. 所以

$$\begin{split} l(R_i) &= l(S_i) - l(S_{i-m}) = \binom{i+2}{2} - \binom{i-m+2}{2} \\ &= m \binom{i}{1} + \left(1 - \frac{(m-1)(m-2)}{21}\right) \\ &= a_0 \binom{i}{1} + a_1 \,, \end{split}$$

其中 $a_0 = m$, $a_1 = 1 - (m-1)(m-2)/2$ 。此时, Hilbert 特征多项 式为(详见后文)

$$\chi(x) = m\left(\frac{x}{1}\right) + \left(1 - \frac{(m-1)(m-2)}{2}\right).$$

当 $i \ge m$ 时, $\chi(i) = l(R_i)$ 。 $\chi(x)$ 的次数 1 等于 $f(x_1, x_2, x_8) = 0$ 所定义的代数曲线的复维数,它的首项系数 m 等于代数曲线的**重数** (multiplicity)。 $(-1)^1(a_1-1) = (m-1)(m-2)/2$ 等于代数曲线的算术亏格。当代数曲线无奇异点时,它的算术亏格等于几何亏格。例如,

$$f(x_1, x_2, x_3) = x_1^3 + x_2^3 - x_3^3,$$

其相应的代数多样体的亏格是1,直观上形如图6.1 所示的中间有一洞的轮胎。请注意,这个代数多样体的实维数是2,但是它的复维数是1。

现在我们来计算R的 Poincaré 级数 P(R,t):

$$P(R,t)=1+\binom{3}{2}t+\cdots+\binom{m+1}{2}t^{m+1}+\left[\binom{m+2}{2}-\binom{2}{2}\right]t^m+$$

$$+ \cdots + \left[\binom{i+2}{2} - \binom{i-m+2}{2} \right] t' + \cdots$$

$$= \frac{1}{(1-t)^2} - t^m \frac{1}{(1-t)^2} = \frac{1-t^m}{(1-t)^2}.$$

为了得到 Poincaré 级数和 Hilbet 特征多项式的一般性质,我们先证明下面的引理。

引理 设 R_0 是 Artin 环, M_1 是有限生成的 R_0 模,设 下面的序列是 "正合"的:

$$0 \xrightarrow{\sigma_0} M_0 \xrightarrow{\sigma_1} M_1 \xrightarrow{\sigma_2} \cdots \xrightarrow{\sigma_s} M_s \xrightarrow{\sigma_{s+1}} 0_{\bullet}$$

这就是说,每个 σ_i 都是模映射,而且 $\operatorname{im} \sigma_i = \ker \sigma_{i+1}$ (i = 0,1, ...,s)。那么,我们恒有

$$\sum_{i=0}^{4} (-1)^{i} l(M_{i}) = 0.$$

证明 我们有下面的短正合序列

$$0 \longrightarrow \operatorname{im} \sigma_{i} \longrightarrow M_{i} \longrightarrow \operatorname{im} \sigma_{i+1} \longrightarrow 0.$$

显然, $M_i/\text{im }\sigma_i \approx \text{im }\sigma_{i+1}$ 不难得出

$$l(M_i) = l(\operatorname{im}\sigma_i) + l(\operatorname{im}\sigma_{i+1}).$$

所以

$$\sum_{i=0}^{\infty} (-1)^{i} l(M_i) = 0.$$

现在我们要证明下面的定理。请参看上面的两个例子。

定理6.31(Hilbert-Serre **定理**) 设 R 是诺德分 次 环, R_0 是 Artin 环, $R = R_0[r_1, \cdots, r_n]$, r_i 均为齐次元, $\deg r_i = e_i > 0$ 。 又 设 M 是一有限生成的分次 R 模。则存在一个多项式 $f(t) \in Z[t]$,使

$$P(M,t) = \frac{f(t)}{\prod (1-t^{\bullet_1})}$$

证明 对生成集 $\{r_1, \dots, r_n\}$ 的基数 n 作 归 纳 法。设 n=0, $R=R_0$ 。那么,当 m 大于 M 的 所有生成元 的 次数 时, $M_m=0$, $l(M_m)=0$ 。于是 $P(M,t)=f(t)\in Z[t]$ 。

设已证 n-1 的情形。考虑下面的映射。

$$r_*^*: M \to M,$$

$$r_*^*(m) = r_* m_*$$

自然, r*(M₁)⊂M₁+e_* 令

$$K = \ker r_*^* = \bigoplus K_i$$
, $C = M/\operatorname{im} r_*^* = \bigoplus C_i$,

于是我们有下面的正合序列

$$0 \longrightarrow K_i \xrightarrow{j} M_i \xrightarrow{r_a} M_{i+e_a} \longrightarrow C_{i+e_a} \longrightarrow 0,$$

其中 i 是嵌入映射, $\tau: M_{i+e_n} \to C_{i+e_n} = M_{i+e_n}/r_*^*(M_i)$ 是典型映射。不难看出,上面的序列确实是正合的。根据上面的引理,我们得到

$$l(K_i) - l(M_i) + l(M_{i+e_i}) - l(C_{i+e_i}) = 0.$$

乗以ti+**, 含i=0,1,2,… 取和, 得出

 $t^* \cdot P(K,t) - t^* \cdot P(M,t) + P(M,t) - P(C,t) + g(t) = 0$, 其中 g(t)是一个多项式,它是由 P(M,t)及 P(C,t)缺少最 初 的 e_n 项而产生的。又知 $r_nK = 0$, $r_nC = 0$,所 以 K,C 都 是 R/r_nR 模。而 R/r_nR 只须要次数为 e_1 , ..., e_{n-1} 的 n-1 个生成元,用归 纳法假设、立得

$$(1+t^**)P(M,t) = P(C,t) - t^**P(K,t) - g(t)$$

$$= \frac{f(t)}{\prod_{i=1}^{n-1} (1-t^*i)},$$

即有本定理。【

我们又有下面的重要定理(请参看上面的两个例子)。

定理6.32(Hilbet-Serre 定理) 条件如定理6.31, 更设e1=

 $\theta_1 = \dots = \theta_n = 1$ 。那么,存在一个多项式 $\chi(x) \in \mathbb{Q}[x]$,使 得 当 i 足够大时, $\chi(i) = l(M_i)$ 。这个 $\chi(x)$ 是唯一的,并且

$$\deg \chi(x) \leqslant n-1$$
.

证明 用上面的定理,即知存在 $f(t) \in Z[t]$,使

$$P(M,t) = \frac{f(t)}{(1-t)^*}.$$

我们用部分分式展开上式的右侧,则得

$$P(M,t) = g(t) + d_0 \frac{1}{(1-t)^n} + \cdots + d_{n-1} \frac{1}{1-t}.$$

参考例18, 立得

$$P(M,t) = g(t) + \sum_{j=0}^{\infty} \left(\sum_{i=0}^{n-1} d_i \binom{i+n-j-1}{n-j-1} \right) t^{-1}.$$

所以,当 $i > \deg g(t)$ 时,

$$l(M_i) = \sum_{i=0}^{n-1} d_i \binom{i+n-j-1}{n-j-1}.$$

即令
$$\chi(x) = \sum_{j=0}^{n-1} d_j \left(\frac{x+n-j-1}{n-j-1} \right),$$

其中
$$\binom{x}{s} = \frac{x(x-1)\cdots(x-s+1)}{s_1}.$$

显然, $\chi(x) \in \mathbb{Q}[x]$, $\deg \chi(x) \leq n-1$,当 $i \geq \deg g(t)$ 时, $\chi(i) = g(M_i)$ 。剩下的只须证唯一性了。设 $\chi^*(x)$ 是另外一个有 同 样 性质的多项式,则 $\chi(x) - \chi^*(x)$ 对无限多个大的整数而言取值为 零,因此必恒等于零,即 $\chi(x) = \chi^*(x)$ 。

讨论 不难看出,在上文取部分分 式 时, d_0,d_1, \dots, d_{n-1} 都 是整数(因为 $f(t) \in Z[t]$)。 我们通常不把

$$\chi(x) = \sum_{j=0}^{n-1} d_j \left(\frac{x+n-j-1}{n-j-1} \right)$$

展开成×的多项式,而是利用下面的恒等式

$$\binom{x+1}{s} = \binom{x}{s} + \binom{x}{s-1}$$

把 x(x)写成

$$\chi(x) = \sum_{j=0}^{n-1} d_j \binom{x+n-j-1}{n-j-1} = \sum_{j=0}^{n-1} a_j \binom{x}{n-j-1},$$

此时 $a_j \in \mathbb{Z}$ $(j=0,1,\cdots,n-1)$ 。第一个非零的 a_j 必然是正整数 (因为当 x 通过正整数趋于 ∞ 时, $\chi(x)>0$), 称为 M 的次数 (degree) 或重数 (multiplicity) 或阶数 (order)。 在本章最后一节,我们将证明,在某些情形下, $d=\deg\chi(x)$ 相当于 维数。 又, $p_a=(-1)^d(a_{n-1}-1)$ 是 "算术亏格" (参考例18及例19)。

我们现在回到 $G_1(S)$ 与 $G_1(M)$ 的讨论。设 $I = (a_1, \dots, a_n)$ 为一个有限生成的理想。那么 a_1, \dots, a_n 的 I 次单项式的集合 是 I^I 的一个生成元集。因此

$$G_1(S) = (S/I)[\bar{a}_1, \cdots, \bar{a}_n],$$

其中 $\tilde{a}_i \in I/I^2$ 。所以,如果 S 是诺德环,或 S/I 是诺德 环时, $G_i(S)$ 是诺德环。

如果M是有限生成的S模, $M = \sum_{i=1}^{n} Se_{i}$ 。那么 $I^{i}M$ 是由 a_{i} ,…, a_{n} 的 i 次单项式乘 e_{i} 生成的。不难看出 $G_{i}(M)$ 是由 $\{\bar{e}_{1},\dots,\bar{e}_{m}\}$ 生成的分次 $G_{i}(S)$ 模。自然, $\bar{e}_{j}\in M/IM$ 。

又设「包含有限多个极大理想的乘积或交集,那么,根据定理6.29的系,S/I是 Artin 环。综上所述,在S是诺德环,M是有限生成S模,I包含有限多个极大理想的乘积或交集的情形下, $G_I(S)$ 和 $G_I(M)$ 适合定理6.31及定理6.32的要求。因此,我们可以定义 Poincaré 级数 $P(G_I(M),\iota)$ 以及 Hilbert 特征多项式 $\chi(x)$ 、特别是S是局部环,「是它的极大理想,M是有限生成S模时,我们可以如此考虑。

这样的考虑,有沒有什么几何意义呢?我们回过头来研究例

17. $\leq S = C[x,y]_{(x,y)}, I = (x,y) \geq 1$

$$G_{I}(S) \cong C(x,y) = \bigoplus G_{I},$$

其中 G_i 为i次齐次式的集合。因此

$$l(G_i) = i + 1 = \binom{i}{1} + 1_i$$

$$\chi(x) = \binom{x}{1} + 1.$$

于是, $\deg \chi(x) = 1 \Rightarrow 2 = \dim S$. 这不太恰当。 补救的办法, 是取

$$l\left(\bigcap_{j=0}^{i-1}G_j\right)=\sum_{j=0}^{i-1}(j+1)=\frac{i(i+1)}{2}=\binom{i}{2}+\binom{i}{1}.$$

介

ď.

$$\chi_t^s(x) = \binom{x}{2} + \binom{x}{1}.$$

则有 deg χ; (x) = 2 = dim S。我们有下面的定理。

定理6.33 设 S 是诺德环, $I = (a_1, \dots, a_n)$,S/I 是 Artin 环。则存在唯一的多项式 $\chi_I^*(x)$,使得当 i 足够大时,

$$\chi_i^s(i) = l(S/I^i) = \sum_{i=0}^{i-1} l(I^i/I^{i+1}),$$

 $\chi_1^n(x)$ 称为S对I的 Hilbert 特征多项式。 $\deg \chi_1^n(x) \leq n$ 。 证明 用下面的恒等式:

$$\sum_{i=1}^{i-1} \binom{j}{i} = \binom{i}{i+1}.$$

按照定理6.32后面的讨论,当了足够大时,有

$$l(I^{j}/I^{j+1}) = \sum_{l=0}^{n-1} a_{l}^{l} \binom{j}{n+1-l} = \sum_{l=0}^{n-1} a_{l} \binom{j}{l},$$

其中 41 = 41 -1-1. 不难看出

$$\begin{split} l(S/I^{i}) &= \sum_{i=0}^{l-1} \sum_{i=0}^{n-1} a_{i} \binom{j}{l} + \mathring{\pi} \, \mathfrak{B} = \sum_{i=0}^{n-1} \sum_{i=0}^{l-1} a_{i} \binom{j}{l} + \mathring{\pi} \, \mathfrak{B} \\ &= \sum_{i=0}^{n-1} a_{i} \binom{i}{l+1} + \mathring{\pi} \, \mathfrak{B}, \end{split}$$

枚

$$\chi_{l}^{s}(x) = \sum_{i=0}^{n-1} a_{i} \left(\frac{x}{l+1}\right) + \hat{\mathbf{g}} \, \hat{\mathbf{g}}. \quad \blacksquare$$

例20 设 R 是 Artin 环, $S = R[x_1, \dots, x_n]$, $I = (x_1, \dots, x_n)$ 。 不难看出, $S = \bigoplus S_i$,其中 S_i 是 i 次齐次多项式 的 集 合。 易见 $S/I' \approx \{f(x_1, \dots, x_n) \in S: \deg f < i\}$ 。

因此

$$I(S/I^{i}) = {i+n-1 \choose n} = {i+n-2 \choose n} + {i+n-2 \choose n-1}$$
$$= {i \choose n} + \sum_{i=1}^{n-1} {n-1 \choose i} {i \choose n-i}.$$

于是

$$\chi_I^s(x) = {x \choose n} + \sum_{j=1}^{n-1} {n-1 \choose j} {x \choose n-j}, \quad \deg \chi_I^s(x) = n.$$

习 鰵

- 1. 设R是分次环,S是R的乘法封闭子集。证明 $S^{-1}R$ 也是分次环。
- 2、 设R是分次环,M是分次R模,N是M 的 子 模。证 明 M/N 是分次R模。
- 3. 设R是环, a是理想, 并且 ∩ a* = {0}. 若 G.(R) 是 整环, 证明R也是整环。
 - 4. 设f是定义在N上的整值函数(即f(N)⊂Z),这里N

表示自然数集合。设又 有 $g(x) \in \mathbb{Q}[x]$, deg g(x) = m-1。如果 f(n+1) - f(n) = g(n), $\forall n \in \mathbb{N}$,

证明 $f \in \mathbf{Q}[x]$, 且 $\deg f = m$.

5. 设 I 为 $C[x_1, \dots, x_n]$ 中由 x_1^2, \dots, x_n^2 生成的理想,令 $R = G_1(C[x_1, \dots, x_n])$,

试计算 P(R,t)。 又设 $S = C[x_1, \dots, x_n]/I$, m 为 S 中由 $\overline{x}_1, \dots, \overline{x}_n$ 生成的理想,试计算 $P(G_n(S),t)$ 。

6. 设 $R = (C[x,y]/(x^2 - y^2 - y^3))_{(x,\overline{y})}$, 其中 \bar{x} , 为 为 x, y 在典范映射

$$\sigma: C[x,y] \to C[x,y]/(x^2-y^2-y^3)$$

下的象。令 $m = \bar{x}R + yR$, 求 $G_{n}(R)$, 幷考虑其几何意义。

- 7. 令 $R = C[x_1, x_2, x_3, x_4]/(x_2x_4 x_1^2, x_3x_4^2 x_1^3)$. 计算 $P(R,t),\chi(x)$. 试猜想其几何意义。
- 8. 令 $R = C[x, y, z, w]/(x^2 yzw, y^2 xz, z^2w x^2y)$. 计算 $P(R,t), \chi(x)$.
- 9. 令 $R = C[x,y]_{(x,y)}$, f = x +高次项, S = R/(f), $I = (\bar{x}, \bar{y})$. 计算 $\chi_{i}^{n}(x)$.
- 10. 令 $R = C[x,y]_{(x,y)}$, $f(x,y) = f_m(x,y) +$ 高 次 项, $f_m(x,y)$ 是 m 次齐次式。令 S = R/(f), I = (x,y)。 计算 $\chi_i^s(x)$, 试猜想其几何意义。

§ 8 拓 卦 环

在本章 \S 4 中,我们给出了环S的素谱 集 Spec S 的 Zariski 拓扑,从而使 Spec S 成为一个拓扑空间。在本节中,我 们 将 换一个题材,研究 S (而不是 Spec S) 的各种拓扑。

一个环^S中,给定一个拓扑,如果^S的加法和乘法在这拓扑下都是连续的,则称^S为一个拓扑环。又设^S是拓扑环,^M是^S模,同时又是一个拓扑空间,而且^M的模运算(即^M的加法及^S

与M的乘法)都是连续的,则称M为一个 ${\bf 5}$ 有 ${\bf 5}$

我们主要有兴趣的,是S由它的一个理想I的诸方幂 $I \supset I^2 \supset \cdots \supset I^* \supset \cdots$

所定义的如下的拓扑:

- 1) $I \supset I^2 \supset \cdots \supset I^* \supset \cdots$ 规定为 0 的邻域基,这就是说, S 的 子集 L 在 0 点是开的 \iff 对某个 n , $L \supset I^*$;
- 2) $a+I\supset a+I^2\supset\dots\supset a+I^2\supset\dots$ 规定为 a 的邻 域 基。这 就是说,S 的子集在 a 点是开的 \Longleftrightarrow 对某个 n , $L\supset a+I^n$;
- 3) S的子集是开集 \iff 对任 $-a\in L$, 都 有 相 应 **的 n**,使 $L\supset a+I^*$.

不难看出,我们确实定义出5的一个拓扑。

定义6.18 以上所定义的拓扑,称S的 I-adic 拓扑。同样的,设M是S模。对 $m \in M$,取

$$m + IM \supset m + I^2M \supset \cdots \supset m + I^*M \supset \cdots$$

为m的邻域基,则定义出M的一个拓扑,称为M的 I-adic \overline{A} \overline{A} .

引理 1 取M的 I-adic 拓扑。则M是 Hausdorff 空间(即 对于任意两点 $a,b\in M$, a + b, 都有邻域 $U_a \ni a, U_b \ni b$, 使得 $U_a \cap U_b = \emptyset$) $\iff \bigcap_{n=1}^\infty I^n M = \{0\}$.

证明 \Longrightarrow . 假设 $\bigcap_{n=1}^{\infty} I^n M \Rightarrow \{0\}$, 则存在 $m \Rightarrow 0$, $m \in I^n M$

 $(n=1,2,\cdots)$ 。 考虑 0 的任一邻域 U_0 ,必存在某个 n ,使得 $U_0 \supset I^*M \ni m$ 。

即 $U_0 \cap U_m \neq \emptyset$,其中 U_m 为 m 的任一邻域。所以 M 不是 Hausdorff 空间。

← . 任取 $m,m' \in M$, m+m'. 则 m-m'+0, 所以必有 — n, 使 $I^*M \ni m-m'$. 令

$$U_m = m + I^*M, \qquad U_{m'} = m' + I^*M_{\bullet}$$

假若有 $m'' \in U_m \cap U_{m'}$, 那么立得

即有 $m'' = m + am_1 = m' + bm_2$, $a, b \in I^n$, $m_1, m_2 \in M$. 即有 $m - m' = bm_2 - am_1 \in I^n M$,

这是不可能的。【

引理 2 任取M的子集L,则L的闭包 $L = \bigcap_{i=1}^{\infty} (L + I^*M)$ 。

证明 设 $m \in L$ 。则 m 的每一个邻域 $m + I^*M$ 都含有 L 的一个元素 l_n ,即 $m + I^*M \ni l_n$,也即 $m \in l_n + I^*M \subset L + I^*M$ 。立

$$L \subset \bigcap_{n=1}^{\infty} (L + I^n M).$$

反之,设 $m \in \bigcap_{n=1}^{\infty} (L+I^*M)$,则有 $m \in L+I^*M(\forall n=1,2,$ …)。即有 $l_n \in L$,使 $m \in l_n + I^*M$, $l_n \in m + I^*M$ 。所以 $m \in L$,

一个有趣的问题是:设N是M的子模,那么N可能有两个不同的 I-adic 拓扑。其一是把N看成S模(不是看作S的子模),如此可得出N的一个 I-adic 拓扑;其二是先考虑M的 I-adic 拓扑,再由此拓扑在M的子集N上引生出一个拓扑。下面的定理将说明这两个拓扑是一致的。

定理6.34(Artin-Rees 引理) 设 S 是诺德环, I 是理想, M 是有限生成的 S 模, N 是M的子模。那么,必存在正整数 r ,使得当 n > r 时,我们恒有下式:

$$I^*M \cap N = I^{*-r}(I^rM \cap N)$$
.

说明 如果定理成立,我们就有

 $I"N \subset I"M \cap N \subset I"^{-r}(I'M \cap N) \subset I"^{-r}N \subset I"^{-r}M \cap N$,所以 $I"M \cap N$ 与 I"N(n=1,2,...) 规定了 N 的同一个拓朴。

证明 令 * 是变数。考虑

$$S' = \bigoplus_{i=0}^{\infty} I^i x^i \subset S[x].$$

设 $I = (a_1, \dots, a_l)$,不难看出 $S' = S[a_1x, \dots, a_lx]$ 。 所以 S' 是诺德环。

同法。令

$$M' = \bigoplus_{i=0}^{\infty} I^i x^i M_{\bullet}$$

对于 $bx' \in I'x'$, $cx'm \in I'x'M$, 定义

$$(bx^i)(cx^im) = bcx^{i+i}m \in I^{i+i}x^{i+i}M,$$

立得 M' 是 S' 模。我们又令 I'x' 及 I'x' M 的 元素为 i 次 齐次元,则 S' 成为分次环,M' 成为分次 S' 模。当然,M 的生成元集也是 M' 的生成元集,所以 M' 也是有限生成的 S' 模。

合

$$N' = \left\{ \sum_{\mathbf{A} \in \mathbf{Z}_i \mathbf{X}^i} : \mathbf{Z}_i \in I^i M \cap N \right\}.$$

显然 N' 是 M' 的一个子模,所以 N' 也是有限生成的 S' 模 (为什么?)。令 $\{n_1x^{\bullet_1}, \dots, n_qx^{\bullet_q}\}$ 是 N' 的一个齐次生 成元集, 此处 $n_i \in I^{\bullet_1}M \cap N$ 。令 $r = \max\{e_1, \dots, e_q\}$ 。任取 $m \in I^{\bullet_1}M \cap N$,此处 n > r。则 $mx^{\bullet_1} \in N'$ 。所以

$$mx^n = \sum_{i=1}^{q} (a_i x^{n-i}) (n_i x^{i}), \quad a_i \in I^{n-i}.$$

于是,我们得出

$$a_i n_i \in I^{*-\tau} I^{\tau-\sigma} : n_i \in I^{*-\tau} (I^{\dagger} M \cap N)$$

但 $m = \sum a_i n_i$,所以 $I^*M \cap N \subset I^{*-r}(I^*M \cap N)$ 。 反之, 显然有 $I^*M \cap N \supset I^{*-r}(I^*M \cap N)$ 。 |

定理6.35(交集定理) 设S 是诺德环,I 是理想,M 是有限生成的S 模。

- 2) 如果 I ⊂ rad(S), 则有 ⋂ I ™ M = {0}。換句话说, M 对
 I-adic 拓扑是 Hausdorff 空间;

S 为局部环, I 是它的极大理想时, ∩ I* = (0).

证明 1) 当 n 足够大时,

 $N = \bigcap I^*M = I^*M \cap N = I(I^{*-1}M \cap N) \subset IN \subset N$, 所以 IN = N.

- 2) 用中山引理, 立得。
- 3) 是 2)的特例。 |

$$\bigcap_{\bullet=1}^{\infty}I^{\bullet}=(0)_{\bullet}$$

当 $\bigcap_{n=1}^{\infty} I^n = (0)$ 时,S 不仅是 Hausdorff 空间,而且是一个度量空间。我们引入一个"距离"如下。令

$$v(x-y) = \sup\{n: x-y \in I^*\}.$$

应用 $\prod_{i=0}^{n}$ =(0),立得

$$v(x-y) = \infty \iff x-y = 0 \iff x = y$$

定义

$$d(x,y)=e^{-x(x-y)},$$

其中 θ 为任意指定的大于1的实数。我们要验证d(x,y)适合下面的三个条件,因此是一个距离。

- 1) $d(x,y) \geqslant 0$, $d(x,y) = 0 \Leftrightarrow x = y$,
- 2) d(x,y) = d(y,x);
- 3)(三角不等式) $d(x,z) \leq d(x,y) + d(y,z)$.
- 1)与2)两条是明显的。对于3),我们要证明更强的3'),

3')(强**三角不等式**) $d(x,z) \leq \max(d(x,y),d(y,z))$ 。不难看出,3')即是

$$v(x-z) \geqslant \min(v(x-y), v(y-z))$$
.

事实上,设上式右端等于1,则有

$$x-y, y-z \in I^1 \Longrightarrow (x-y)+(y-z) \in I^1 \Longrightarrow x-z \in I^1$$

 $\Longrightarrow v(x-y) \geqslant l$

在距离 d(x,y)作用下,S是一个度量空间,而且由距 离 d(x,y) 引生的拓扑,即是原来的 I-adic 拓扑。

以上的讨论容易推广到 S 模 M 上去。

在任何度量空间 M 里,我们都可以取它的完备化 集。其 作 法与第一章 \S 6 "p-adic 数与赋值"中的作法大同小异,我们 略 述如下。

M 的一个序列($m_1, m_2, \cdots, m_n, \cdots$)如适合下面的条件,则 称为一个何西序列: 任给一个实数 $\epsilon > 0$,必存在一个正整数 $N(\epsilon)$,使得

$$n, n' > N(\varepsilon) \Longrightarrow d(m_n, m_{n'}) < \varepsilon$$

两个柯西序列 $(m_1, m_2, \cdots, m_n, \cdots)$ 及 $(m'_1, m'_2, \cdots, m'_n, \cdots)$ 称 为 等 价的(记为 $(m_1, m_2, \cdots, m_n, \cdots) \sim (m'_1, m'_2, \cdots, m'_n, \cdots)$), 如果对于任一实数 $\epsilon > 0$,必存在一个正整数 $N(\epsilon)$,使得

$$n > N(\varepsilon) \Longrightarrow d(m_n, m'_n) < \varepsilon$$

令 C(M) 为 M 的所有柯西序列的集合。定 义 $\hat{M} = C(M)/\sim$,则称 \hat{M} 是 M 的完备化集。

设 S 为拓扑环,M 是拓扑模,S , M 都是度量空间。如上 定义 它 们的完备化集 S 及 M 。 我们可以 看 出 S 是 S 的 T 环,S 到 S 的认同映射 σ 是如下定义的:

$$\sigma: s \rightarrow (s, s, \dots, s, \dots) \rightarrow \hat{S}$$
.

拜且 A 是 B 模。与第一章 § 6完全一样,我们可以证明 B, A 都 是完备的,即

$$\hat{\hat{S}}_{i} = \hat{S}_{i}, \qquad \hat{\hat{M}} = \hat{M}_{i}.$$

定理6.36 设 S 是诺德环, M 是有限生成的 S 模, 则

$$\hat{M} = \hat{S} \cdot M$$
.

证明 设 $M = \sum_{i=1}^r Sm_i$. 任取 $m \in \hat{M}$. 令

$$\hat{m} = [(m_1', m_2', \cdots, m_n', \cdots)].$$

 $(即(m'_1,m'_2,...,m'_m,...)$ 在柯西序列集合 C(M)中所决定的等价类)。 我们有

$$m_{n+1}^{r} - m_{n}^{r} \in I^{a} * M$$
,

其中 s_n 为正整数,且 $n \rightarrow \infty$ 时 $s_n \rightarrow \infty$ 。不难看出

$$I^{\bullet} \circ M = \sum_{i=1}^{t} I^{\bullet} \circ m_i,$$

放

$$\tilde{m}_{n+1}^{t} + m_{n}^{t} = \sum_{i=1}^{r} a_{ni} m_{i}, \quad a_{ni} \in I^{s_{n}},$$

令

$$m_1^i = \sum_{i=1}^{\tau} b_{ii} m_i, \quad b_{1i} \in S,$$

立得

$$m_{\pi}^{*} = m_{1}^{*} + (m_{2}^{*} - m_{1}^{*}) + \cdots + (m_{\pi}^{*} - m_{\pi-1}^{*}) = \sum_{i=1}^{r} b_{\pi i} m_{i},$$

其中

$$b_{ni} = b_{1i} + a_{1i} + \cdots + a_{n-1,i}$$

不难看出 $(b_{1i},b_{2i},\cdots,b_{ni},\cdots)$ 是S的一个柯西序列,故

$$\boldsymbol{m} = \sum_{i=1}^{r} [(b_{1i}, b_{2i}, \cdots, b_{ni}, \cdots)] m_{i} \in \sum_{i=1}^{r} \hat{S} m_{i} \subset \hat{S} m_{i}$$

反之,显然有*۩⊃\$M*。 【

例21 考虑

$$Z_n = \left\{ \frac{m}{n} : n \in \mathfrak{p} \right\},$$

此处 $p \in Z$ 的一个素理想,p = (p)。 又令 \hat{Z} ,为 Z,对理想 p 的完备化环,则 \hat{Z} ,是p-adic 整数环(参考第一章 \S 6)。

考虑 $S=K[x_1,\cdots,x_n],\ I=(x_1,\cdots,x_n)$ 。则S对I的完备化 环为

$$\begin{split} \hat{S} &= K[[x_1, \dots, x_n]] \\ &= \{ \sum_{i=1}^{n} a_{i_1 i_2 \dots i_n} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} : a_{i_1 i_2 \dots i_n} \in K, i_j \geqslant 0 \}, \end{split}$$

即从上的n元形式幂级数环。

例如,取K = R或C,则下列都是形式幂级数

$$\sum_{n=0}^{\infty} x^{n}, \qquad \sum_{n=1}^{\infty} n^{n} x^{n}, \qquad \sum_{n=1}^{\infty} n^{-n} x^{n},$$

它们分别是函数论中的收敛幂级数,发散幂级数及整函数。可是 在我们的考虑之下,它们都叫形式幂级数。在函数论中被驱逐出 境的发散幂级数,经过代数学又回到数学的领域了。

一个环K上的形式幂级数

$$f = \sum a_{i_1 \cdots i_n} x_1^{i_1} \cdots x_n^{i_n}, \quad a_{i_1 \cdots i_n} \in K$$

可能有无限多项,因此无最高次项,也沒有次数。自然,它有首项,也有最低次数,称为阶数,记为v(f)。它也就是我们在引入距离d(x,y)时所用的

$$\nu(f) = \sup\{m: f \in (x_1, \dots, x_n)^n\}.$$

- 一般地,我们有
 - 1) $v(f) \ge 0$, $v(f) = \infty \iff f = 0$;
 - 2) $v(f \cdot g) \geqslant v(f) + v(g)$;
 - 3) $v(f+g) \ge \min(v(f), v(g))$.

当 $S = K[[x_1, \dots, x_n]]$ 的常数环K是整环时,不难看出, 2)被

下面的 2′)所取代:

$$2') v(f \cdot g) = v(f) + v(g).$$

由 1)及 2'),我们立刻导出。如果 K 是整环,则 $K[[x_1, \cdots, x_n]]$ 也是整环。

如果 K 是诺德环,那么我们可以 证 明 $K[[x_1, \dots, x_n]]$ 也 是诺德环。证法有二:一是仿照定理3.26(希尔伯特基定理),只是我们要略加修改,令

$$I_n = \{a_n : a_n x^n + a_{n+1} x^{n+1} + \dots \in I\}_{\bullet}$$

读者试自行完成这个证明;二是下面的定理6.39的系。

一般言之,如果S 是整环,那么S 不一定是整环。我们以下面的例子来说明这个现象。

例22 设S = R[x,y], x,y适合下式:

$$xy - x^3 - y^3 = 0.$$

读者试自证明,对 变 数 X,Y 而言, $f(X,Y) = XY - X^3 - Y^3$ 是不可分解的。因此

$$S = R(x,y) \approx R[X,Y]/(f(X,Y))$$

是一个整环。令 I=(x,y), S 为 S 对 I 的完备化环。则 S=R[[x,y]],

而且 x, y 仍适合原来的等式。

$$xy - x^3 - y^3 = 0_{\bullet}$$

故

$$\hat{S} = R[[X,Y]]/(f(X,Y)).$$

可是,在 R[[X,Y]]中 f(X,Y)是可以分解的,即

$$f(X,Y) = (X - Y^2 + \cdots)(Y - X^2 + \cdots),$$

所以,我们有

$$x-y^2+\cdots = 0, \quad y-x^2+\cdots = 0,$$

徂

$$(x-y^2+\cdots)(y-x^2+\cdots)=0$$
,

因而 R[[x,y]]不是整环。

用几何图形来说明(见图6.2),多项式 f(X,Y) = 0的解是一条代数曲线,而形式幂级数 f(X,Y) = 0的解是两条解析曲线。

1. 多项式 f(X,Y) = 0的解

I. 虚线内, 相当于幂级数 f(X,Y) = 0的解

图 6.2

以下我们逐步证明,如果 S 是诺德环,那么 S 也是诺德 环。 我们先证明:

定理6.37 设 S 是 诺 德 环,I 是 理想, $\bigcap_{i=1}^{r}I^{i}=(0)$, S 是 S 对 I-adic 拓扑的完 备 化 环,I = I S (见上定理) , $G_{I}(S)$ 是 S 的与理想 I 相伴的分次环, $G_{\hat{I}}(S)$ 是 S 的与理想 I 相伴的分次环, $G_{\hat{I}}(S)$ 是 S 的,我们恒有

$$G_I(S) \approx G_{\hat{I}}(\hat{S})$$
.

证明 因为
$$\hat{I}' = (\hat{I}\hat{S})' = \hat{I}'\hat{S}$$
 ($i = 0, 1, 2, \cdots$),所以 $\hat{I}' \cap \hat{I}'^{+1} = \hat{I}'^{+1}$.

考虑映射

$$I^{i} \xrightarrow{\tau} \hat{I}^{i} \xrightarrow{\sigma} \hat{I}^{i} / \hat{I}^{i+1}$$

其中 τ 为认同映射, σ 为典型映射。显然,上面的映射引生出的

$$\sigma: I^{i}/I^{i+1} (= I^{i}/I^{i} \cap \hat{I}^{i+1}) \longrightarrow \hat{I}^{i}/\hat{I}^{i+1}$$

是单射。任取 $\delta = [(b_1, \dots, b_n, \dots)] \in f^i$,则存在 $b \in S$,使 $[(b_1, \dots, b_n, \dots) - (b, \dots, b, \dots)] \in f^{i+1}.$

于是 $b = [(b, \dots, b, \dots)] \in \hat{I}^i \cap S = I^i$, 且

$$\sigma(b) = \sigma(b_1, \cdots, b_n \cdots).$$

所以 σ 是满射, 也即 $I'/I^{i+1} \approx \hat{I}^i/\hat{I}^{i+1}$ 。 自然 $G_I(S) = \bigoplus I^i/I^{i+1} \approx \bigoplus \hat{I}^i/\hat{I}^{i+1} = G_{\hat{I}}(\hat{S})$ 。 【

我们以前已证明,如果 S/I 是诺德环,I 是有限生成的理想,那么 $G_1(S)$ 也是诺德环。现在我们要推出部分逆定理。

定理6.38 条件如上定理。设M 是S 模。如果 $G_{\hat{I}}(M)$ 是有限生成的 $G_{\hat{I}}(\hat{S})$ 模,则M 是有限生成的S 模。

证明 令 (m_1, \dots, m_n) 是 $G_{\hat{l}}(M)$ 的一个齐次生成元集, $m_i \in \hat{l}^* : M/\hat{l}^* : {}^{+1}M$ 。设 $m_i \in \hat{l}^* : M$,使 得 $m_i + \hat{l}^* : {}^{+1} = m_i$ 。我 们 要证明 $\{m_1, \dots, m_n\}$ 是M的一生成元集。任取 $m \in M$,设 $m \in \hat{l}^* : M$,则 $m \in \hat{l}^* : M/\hat{l}^* : {}^{+1}M$ 可以写成

$$\bar{m} = \sum_{i=1}^{\pi} a_{n_1 i} \bar{m}_i, \quad a_{n_1 i} \in \hat{I}^{n_1 - \sigma_i}$$

于是

$$m^{(1)} = m - \sum_{i=1}^{n} a_{n_1 i} m_i \in \hat{I}^{n_2} M \subset \hat{I}^{n_1 + 1} M_*$$

再令

$$\overline{m}^{(1)} = \sum_{i=1}^{n} a_{n_2 i} \overline{m}_i, \quad a_{n_2 i} \in \tilde{I}^{n_2 \cdots n_i}.$$

依此类推。因为 8 是完备的, 所以

$$a_i = \sum_{i=1}^{\infty} a_{n_i} \in \mathcal{S}_{\bullet}$$

我们考虑

$$m - \sum_{i=1}^{n} a_i m_i \in f^n : M, \quad n_j \rightarrow \infty,$$

立得

$$m - \sum_{i=1}^{n} a_i m_i \in \bigcap_{i=1}^{\infty} I^{n_i} = \{0\}.$$

定理6.39 条件如定理6.37。我们恒有 & 是诺德环。

证明 S 是诺德环 $\Longrightarrow G_1(S)$ 是诺德环 $\Longrightarrow G_{\hat{\Gamma}}(S)$ 是诺德环 (在上定理中取 M 为 S 的任一理想) $\Longrightarrow S$ 是诺德环。

X 设 X 是 诺 德 环,则 $K[[x_1, \cdots, x_n]]$ 是 诺 德 环,此 处 x_1, \cdots, x_n 是变数。

证明 令 $S = K[x_1, \dots, x_n]$, $I = (x_1, \dots, x_n)$ 。 那么, $S \to I$ 的完备化环 $S = K[[x_1, \dots, x_n]]$ 。 1

我们现在回到形式幂级数环 $K[[x_1, \cdots, x_n]]$ 的 讨 论。在§3中,我们建立了多项式环 $K[x_1, \cdots, x_n]$ 与仿射空间 K^* 的 联 系,此处 K 是一个代数封闭域。我们能用同样的方法,用 $K[[x_1, \cdots, x_n]]$ 建立几何学吗?问题是对任意的 $f \in K[[x_1, \cdots, x_n]]$, f = 0可能无解(f 是可逆的)或 f = 0仅有原点($0, \cdots, 0$)为唯一 解(f 是发散的)。例如

$$f(x_1,x_2) = \sum (i_1+i_2)^{i_1+i_2} x_1^{i_1} x_2^{i_2}.$$

如果我们用§4的谱集,则可避免这些困难。另外一个 方 法,设 K = R 或 C(或下一章所谈到的"赋值域"),那么我们可以考 虑 介于 $K[x_1, \dots, x_n]$ 与 $K[[x_1, \dots, x_n]]$ 之间的收敛幂级数环 $K\{\{x_1, \dots, x_n\}\}$,其定义如下:

此时,我们可以用 $K\{\{x_1,\dots,x_n\}\}$ 建立解析几何。请注意, $K\{\{x_1,\dots,x_n\}\}$

…, x_n }}对理想(x_1 ,…, x_n)的完备化集,也是 $K[[x_1,…,x_n]]$. 应用下面的恒等式:

$$\frac{1}{1-x} = 1 + x + x^2 + \cdots + x^n + \cdots,$$

我们立刻可以知道 $K[[x_1, \dots, x_n]]$ 中的可逆 元。事 实 上, $f(x_1, \dots, x_n)$ 是可逆元 $\longleftrightarrow f(0, \dots, 0)$ 是 K 的可逆元(在 K 是域的 情 形下,这就是说 $f(0, \dots, 0) \leftrightarrow 0$)。证明如下:

$$\Longrightarrow$$
。设 $f(x_1, \dots, x_n)$ 可逆,则有 $g(x_1, \dots, x_n)$,使
$$f(x_1, \dots, x_n) \cdot g(x_1, \dots, x_n) = 1,$$

即有 f(0,…,0)g(0,…,0)=1.

$$f(x_1, \dots, x_n) = a + g(x_1, \dots, x_n), \quad g(0, \dots, 0) = 0_{\bullet}$$

哵

$$f(x_1, \dots, x_n) = a(1 - h(x_1, \dots, x_n)), \quad h(0, \dots, 0) = 0.$$

$$f^{-1} = a^{-1} \left(1 + \sum_{i=1}^{\infty} (h(x_i, \dots, x_n))^i \right).$$

其中 $v(h') \ge iv(h) \to \infty$, 当 $i \to \infty$.

所以 $f^{-1} \in K[[x_1, \dots, x_n]]$.

我们有下面的重要定理.

定理6.40 (Weierstrass 预备定理) 设 K 是域, $f(x_1, \dots, x_n)$ $\in K[[x_1, \dots, x_n]]$, $f(0, \dots, 0, x_n) = 0$. 换句话 说, $f(x_1, \dots, x_n)$ 中有一项 ax_n^1 , $a \in K$, $a \neq 0$ 。那么

1) 任给 $g(x_1, \dots, x_n) \in K[[x_1, \dots, x_n]]$, 必存在唯一的 $d \in K[[x_1, \dots, x_n]]$ 及 $r \in K[[x_1, \dots, x_{n-1}]][x_n]$, 使

$$g = df + r$$
, $v(f(0, \dots, 0, x_n)) > \deg_x r$.

2) 存在唯一的可逆元 $\delta \in K[[x_1, \dots, x_n]]$ 及对 x_n 为首 一 多项式的 $f^* \in K[[x_1, \dots, x_{n-1}]][x_n]$,使

$$f = \delta f^*, \quad v(f(0, \dots, 0, x_n)) = \deg_x f^*$$

证明 1) 唯一性。设有
$$g = df + r = d'f + r'$$
。则 $(d-d')f = r' - r$ 。

假若 r'-r=0,则有

$$v((d(0, \dots, 0, x_n) - d'(0, \dots, 0, x_n)) \cdot f(0, \dots, 0, x_n))$$

$$= v(d(0, \dots, 0, x_n) - d'(0, \dots, 0, x_n)) + v(f(0, \dots, 0, x_n))$$

$$> \deg_{x_n}(r' - r) \geqslant v(r'(0, \dots, 0, x_n) - r((0, \dots, 0, x_n)),$$

这与(d-d')f=r'-r 矛盾。故必有r=r',也即有d=d'。 存在性。令 $R=K[[x_1, \dots, x_{n-1}]]$, $m=(x_1, \dots, x_{n-1})R$ 。设

$$f = \sum_{i \geq 0} f_i x_i^i, \quad f_i \in R;$$

$$l=v(f(0\,,\cdots,0\,,x_n))_3$$

$$f' = \sum_{0 \le i < l} f_i x_n^i, \qquad f^* = \left(\sum_{i \ge l} f_i x_n^i\right) / x_n^i = \sum_{i \le l} f_i x_n^{i-1}.$$

则 $f' \in m[x_n]$, f^* 是 $R[[x_n]] = K[[x_1, \cdots, x_n]]$ 的 可逆元。又令 $f = -f'/f^*,$

则 $f \in \mathfrak{m}[[x_n]]$,且有

$$f = f' + x_*^{l} f^* = (x_*^{l} - \overline{f}) f^*$$

为证明存在性,我们只须找到一个 $d \in K[[x_1, \dots, x_n]]$,使 $g - df \in R[x_n]$.

Ħ.

$$\deg_{x_*}(g-df) < l_*$$

也即只须找到一个 d(=f*d), 使得

$$\deg_{x_{-}}(\bar{g}-(x_{n}^{l}-\bar{f})\bar{d})< l,$$

这里 g = g,即任意给定的幂级数。我们由 g 及 f 去逐步 求 解 g 如下。设

(1)
$$\bar{g} = \sum_{i} g_i x_i^i$$
 $(g_i \in R)$, $\bar{f} = \sum_{i} \bar{f}_i x_i^i$ $(\bar{f}_i \in m)$.

令 u=0,1,2, ···。 我们归纳地定义

$$(2) d_{0e} \approx g_{1+e}, \quad \forall \ e \geqslant 0,$$

(3)
$$d_{u+1,e} = \sum_{i=0}^{l+e} \bar{f}_i d_{u,l+e-j}, \quad \forall u \ge 0, e > 0$$

$$d_u = \sum_{n \geq 0} d_{un} x_n^n, \quad \forall u \geqslant 0.$$

那么,易于看出

(5)
$$\deg_{x_n}(\bar{g} - d_0 x_n^1) < l,$$

(6)
$$\deg_{x_n}(-d_{n+1}x^i+d_n\overline{f}) < l, \quad \forall n > 0.$$

由于 $f_j \in \mathfrak{m}$,不难逐步得出

$$d_{ue} \in \mathfrak{m}^u$$
, $\forall u \geqslant 0$, $e \geqslant 0$.

合

$$\begin{split} d &= \sum_{u>0} d_u = \sum_{u>0} \sum_{e>0} d_{ue} x_e^e \\ &= \sum_{e>0} \left(\sum_{u>0} d_{ue} \right) x_e^e = \sum_{e>0} d_e^* x_e^e, \end{split}$$

此处 $d_{*}^{*} = \sum_{u \geq 0} d_{ue} \in R_{*}$ 显然,利用(5)与(6)二式及下式

$$\bar{g} - d_0 x_*^l + \sum_{u=0}^{\infty} (-d_{u+1} x_*^l + d_u \bar{f}) = \bar{g} - (x_*^l - \bar{f}) \bar{d},$$

即知 7 符合我们的要求。本定理的前半部得证。

2) 同 1)一样的,令 $l = \nu(f(0, ..., 0, x_n))$ 。应用 1),令 $g = x_n^l$,于是有

$$x_n^T = df + r$$
, $r \in R[x_n]$, $\deg_{x_n} r < l$.

即

$$x_n^T - r = df_{\bullet}$$

在上式中,合 $x_1 = x_2 = \cdots = x_{n-1} = 0$,比较两侧 x_n 的阶v,立得 $l \geqslant v(x_n^l - r(0, \cdots, 0, x_n)) = v(df)$ $= v(d(0, \cdots, 0, x_n)) + l$.

于基必有

$$v(d(0,\cdots,0,x_n))=0.$$

故有

$$d(0, \dots, 0, x_n) = a + \sum_{i=1}^{\infty} a_i x_n^i, \quad a, a_i \in K, \quad a = 0.$$

所以

$$d(0, \dots, 0, 0) = a \pm 0,$$

也即 $d(x_1, \dots, x_n)$ 是可逆元。我们令

$$d^{-1} = \delta$$
, $x_s^l - r = f^*$,

即得本定理的 2)。]

讨论 1) 上面这个定理,把形式幂级 数 环 $K[[x_1, ..., x_n]]$ 代数化了。仿此可以证明收敛幂级数环 $K\{\{x_1, ..., x_n\}\}$ 的Weier-strass 预备定理。许多解析几何的定理都可以从这里导出。例如,设 K = C, 任取 $f \in C\{\{x_1, ..., x_n\}\}$, 令

$$f = f_1(x_1, \dots, x_n) + f_{1+1}(x_1, \dots, x_n) + \dots$$

此处 f; 是i 次齐次式。如果适当地选取坐标

$$y_j = \sum_{i=1}^s a_{ji} x^i,$$

不难看出,我们可以假设

$$f_1(0, \dots, 0, x_n) = ax_*^1 \quad (a \neq 0).$$

于是,根据 Weierstrass 预备定理,可得

$$f = \delta f^*$$
,

其中δ可逆,

$$f^* = x_n^1 + \sum_{i=1}^l f_i^*(x_i, \dots, x_{n-1}) x_n^{l-1}$$

在原点附近, δ \neq 0,所以

$$f = 0 \Longrightarrow f^* = 0$$
.

易于看出,任取 x_1, \dots, x_{n-1} 充分接近0,则由 $f^* = 0$ 可以解出l个

 x_n 的值。这就是说,在原点附近, $f^* = 0$ 的解形成…个解析多样体,而它是 C^{*-1} 的原点的一个邻域的l 次覆盖(可能有分支点)。

2) 从代数的观点来看,立得

$$K[[x_1, \dots, x_n]]/(f) = K[[x_1, \dots, x_n]]/(f^*),$$

所以它是 $K[[x_1, \dots, x_{n-1}]]$ 的一个整数扩充。请与诺德正规化 定理相比较。

习 题

1. 令 $S = R[x_1, x_2, \cdots, x_n]$, 其 中 R 为 环, $I = (x_1, x_2, \cdots, x_n)$. 证明 S 的 I-adic 完备化环为

$$\hat{S} = R[[x_1, x_2, \cdots, x_n]],$$

2. 令 $S = K[x_1, x_2, \cdots, x_n]_{(x_1, x_2, \cdots, x_n)}$, 其 中 K 为 域, $I = (x_1, x_2, \cdots, x_n)$. 证明 S 的 I-adic 完备化环为

$$\hat{S} = K[[x_1, x_2, \cdots, x_n]].$$

- 3. 令 $S = Z_{(p)}$, 其中p为素数。令 $\hat{Z}_{(p)}$ 为S的p-adie完备化环。证明 $\hat{Z}_{(p)}$ 的比域为 Q_p (参见第一章§6)。
- 4. 设 R 是诺德环, I 是 R 的理想, R 的 I-adic 完备 化 环 记为 R. 对 $x \in R$, 以 x 表示 x 在认同映射 $R \to R$ 下 的 象。证明 x 不是 R 的零因子 \Longrightarrow x 不是 R 的零因子.
- 5. 令 $R = C[x,y]/(x^2 y^2 y^3)$, I = (x,y). 证明 R 是 整 环, 但**它的** I-adic 完备化环 R 不是整环.
- 6. 设R 是诺德局部环,m 是R 的极大理想。证 明 \hat{m} 是 R 的极大理想。
- 7. 设R是环,I是R的理想,S=1+I,则S是R的乘法封闭子集。证明环映射

$$f: S^{-1}R \rightarrow \hat{R},$$

$$\frac{r}{1+a} \mapsto r(1-a+a^2-\cdots)$$

(其中 a ∈ I)是嵌入。

8. 设R是诺德环,I是R的理想,M是有限R模。证明

$$\bigcap_{n=1}^{\infty} I^n M = \bigcap_{n=1}^{\infty} \ker(f_n),$$

其中 f_m 表示 M 到 M_m 的认同映射,上式右端的交是对所有包括I的极大理想 m 取的。

9. 设R是环, I是R的理想, M,N,S 都是R 模, 且

$$0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} S \longrightarrow 0$$

正合。证明在 I-adic 拓扑下,f,g 诱导出 \hat{R} 模 映 射 \hat{f} , \hat{g} , 使得

$$0 \longrightarrow \hat{M} \xrightarrow{\hat{j}} \hat{N} \xrightarrow{\hat{j}} \hat{S} \longrightarrow 0$$

正合.

- 10. 举例说明诺德环R上的非有限生成模M在I-adic 拓扑下的完备化不一定等于 R^M (这里I是R的一个理想)。
- 11. 令 $f(x,y) = y^2 + y^3 + xy + x^4$. 参考 Weierstrass 预备定理, 求 $\delta(x,y)$, $a_1(x)$, $a_2(x)$ 的次数小于 3 的项,适合

$$f(x,y) = \delta(x,y)(y^2 + a_1(x)y + a_2(x)).$$

§9 维数论(2)

因此、维数被局部化了。了解一个局部环的维数是很重要的。

在§7中,对于一个局部环S,我们讨论了分次环 $G_{\bullet}(S)$,此处 m 是 S 的极大理想。当我们把 $G_{\bullet}(S)$ 当作 $G_{\bullet}(S)$ 模时,又得出了它的Hilbert特征多项式 $\chi_{\bullet}^{S}(x)$ 。我们曾用例子指明 $d=\deg \chi_{\bullet}^{S}(x)$ 即是维数。在本节中,我们将对局部环S,给出证明。先引入下面的定义。

定义6.19 设 S 是一个诺德局部环,m 是它的极大理想。又设 I 是一个准案理想, \sqrt{I} = m,则称 I 是 S 的一个定义理想。

讨论 1) 根据希尔伯特零点定理,

$$\mathscr{Y}(I) = \mathscr{Y}(\sqrt{I}) = \mathscr{Y}(\mathfrak{m}) = \{\mathfrak{m}\},$$

2) 令 $m = (m_1, \dots, m_n)$, $m_i^{l} \in I$ 。 那么,当 s 足够大时,显然有 $m^{\bullet} \subset I \subset m$ 。 反之,如果存在 s ,使 $m^{\bullet} \subset I \subset m$,则 I 是准案理想, $\sqrt{I} = m$ 。 即,

I 是定义理想 ⇒ 对某个 s, m $^{\bullet}$ ⊂ I ⊂ m.

$$\mathfrak{p}=\sqrt{\mathfrak{p}}\supset\sqrt{\mathfrak{m}^*}=\mathfrak{m},$$

即有 $\dim(S/I) = 0$,所以 S/I 是 Artin 环。 — 。 取 I 的简略 催素 分解 $I = \bigcap I_I$ 。 如果有 $p_I = \sqrt{I_I} + m$, 则 $p_I = m$, 因此 $\dim(S/I) \ge 1$ 。 这是不可能的。 所以 I 的简略准素分解必然 是 I = I , $\sqrt{I} = m$, I 是准素理想。

引理 设 J_1I_1, \cdots, I_n 是环S的理想,而且最多只有两个 I_1 不是**案**理想。那么, $J \subset U_1 \Longrightarrow$ 存在一个 I_1 ,使 $J \subset I_1$ 。

证明 我们对n取归纳法。n=1时,本引理显然是正确的。我们现在考虑n>1的情形。如果存在某个i,使得

$$J \subset \bigcup_{i \in I} I_i$$
,

那么用归纳法, 立得本引理。因此, 只须考虑下面的情形:

$$J \subset \bigcup_{i + j} I_i, \quad j = 1, 2, \dots, n.$$

现在证明这是不可能的。

若发生上述情形, 则存在

$$a_j \in J \setminus \bigcup_{i \neq j} I_i$$
 $(j = 1, 2, \dots, n)$.

已知 $J \subset U I_1$, 立得 $a_i \in I_i$, 如果 n = 2, 我们得到 $a_1 + a_2 \in J \subset I$, $U I_2$.

于是 $a_1 + a_2 \in I_1 \Longrightarrow a_2 \in I_1$, $a_1 + a_2 \in I_2 \Longrightarrow a_1 \in I_2$, 两者都与

41,42的选法相违,因此是不可能的。设力>2.那么至少有一个人, 是素理想,不妨设人,是素理想。考虑下面的元素

$$b = a_1 + a_2 a_3 \cdots a_n \in I,$$

于是, $a_1 \in I_1$, $a_2, \dots, a_n \in I_1 \Longrightarrow b \in I_1$. 任取 j > 1, 则 $a_1 \in I_j$, $a_2 \cdots a_n \in I_j \Longrightarrow b \in I_j$,

所以 $I \ni b \in UI_i$,这是一个矛盾。

讨论 如果环 $S \supset K$,K是无限域,那么在上面的引理中,不需要假定任何 I_i 是素理想。此时,S,J,I 都是K 向量空间。J = $J \cap (\bigcup I_i) = \bigcup (J \cap I_i)$,当 $J \cap I_i \neq J$ 时,J 不可能是子空间 $J \cap I_i$ ($i = 1, \dots, n$)的纤集。

定理6.41 设 S 是诺德局部环, m 是它的极大理想。则下面三个数字是相同的:

- dim S;
- 2) 任取S的一个定义理想I, S对I的 Hilbert 特征多项式 $\chi^q(x)$ 的次数 d(S)=d,
 - 3) $n = \inf\{h: (a_1, \dots, a_k) \in S$ 的一个定义理想}。

证明 首先我们要说明, 2)中的d与定义理想 I 的选 取 无 关。这只须说明

$$\deg \chi_n^s(x) = \deg \chi_i^s(x)$$

就可以了。事实上,由于I是定义理想,所以有正整数s,使 $m^{\bullet}\subset I\subset m$ 。故对任意正整数i,有

$$l(S/m'') \geqslant l(S/I') \geqslant l(S/m')$$
.

而当 i 足够大以后,我们有 $\chi_{\alpha}^{\alpha}(i) = l(S/m') \mathbf{E} \chi_{\alpha}^{\beta}(i) = l(S/I')$,所以

$$\chi_{\mathbf{n}}^{g}(si) \geqslant \chi_{1}^{g}(i) \geqslant \chi_{\mathbf{n}}^{g}(i)$$
.

下面我们证明 $d \ge \dim S \ge n \ge d$,以完成本定理的证明。

1) 证明 $d \ge \dim S$ 。对 d 作归纳法。设 d = 0,则当 i 足够大时,

$$l(\tilde{S}/\dot{I}^i) = \sum_{i=0}^{l-1} l(I^i/I^{i+i})$$

是常数。 于是 $l(I'/I'^{+1}) = 0$,即 $I' = I'^{+1}$ 。应用 Nakayama 引理,立得 I' = (0)。由于 I 是定义理想,故有正整 s ,使 $m^* \subset I$,于是, $m^*' \subset I' = (0)$ 。根据定理6.29的系,S 是 Artin 环,即得 dim $S = 0 \leq d$ 。

现在讨论 d > 0 的情形。任取 S 的一个素理想链 $m = p_0 \rightleftharpoons p_1 \rightleftharpoons \cdots \rightleftharpoons p_1$,

我们只要证明 $l \leq d$ 就足够了。考虑 S/p_i ,这是一个整环 及 局部环,它的极大理想是 m/p_i 。同时我们有

$$(\mathfrak{m}/\mathfrak{p}_1)^* = (\mathfrak{m}^* + \mathfrak{p}_1)/\mathfrak{p}_1,$$

 $(S/p_i)/(m/p_i)' = (S/p_i)/((m'+p_i)/p_i) \approx S/(m'+p_i)$. 于是

 $l((S/p_i)/(m/p_i)^*) = l(S/(m^* + p_i)) \leq l(S/m^*)$ 。 也即 $d(S/p_i) \leq d(S)$ 。另一方面,

$$\mathfrak{m}/\mathfrak{p}_1 = \mathfrak{p}_0/\mathfrak{p}_1 \supseteq \mathfrak{p}_1/\mathfrak{p}_1 \supseteq \cdots \supseteq \mathfrak{p}_1/\mathfrak{p}_1 = (0)$$

是 S/p_i 的一个素理想链。显然。

$$l \leq d(S/p_1) \Longrightarrow l \leq d(S) = d_1$$

所以我们不妨假定 $p_i = (0)$, S 是一个整环。 现在, 利用这个假定,继续我们的证明。任取 $a \in p_{i-1}$, $a \Rightarrow 0$ 。 考虑 S/aS = R。 显然

$$m/aS \supseteq p_1/aS \supseteq \dots \supseteq p_{r-1}/aS$$

是R的一个案理想链,它的长度是l-1。如果我们能证明 $d(R) \leq d(S) - 1 = d - 1$.

那么,应用归纳法假设,立得

$$l-1 \leqslant d(R) \leqslant d-1$$
, $l \leqslant d$.

下面证明 $d(R) \leq d(S) - 1$. 我们有下面的算式: $l((S/aS)/(m/aS)^*) = l(S/(m^* + aS))$

$$= l(S/m^r) - l((m^r + aS)/m^r)$$

 $\pm i(S/m^*) - i(aS/m^* \cap aS).$

应用定理 6.34(Artin-Rees 引理),存在一 k,使 $m' \cap aS = m'^{-1}(m' \cap aS) \subset am'^{-1}$.

于是 l(aS/m' ∩ aS)≥l(aS/am'-1).

另一方面,我们已设S 是整环, $a \Rightarrow 0$,所以映射

$$a^*: S \rightarrow aS$$
,

$$a*(b) = ab$$

是一个模同构。因此 $aS/am^{r-k} \approx S/m^{r-k}$. 于是,得出 $l((S/aS)/(m/aS)^r) \leq l(S/m^r) - l(aS/am^{r-k})$ $= l(S/m^r) - l(S/m^{r-k}) = \chi_n^g(r) - \chi_n^g(r-k)$.

已知 $\chi_{\bullet}^{s}(x)$ 是 d 次多项式,显然上面的差最多是 τ 的d-1次多项式。因此我们得出

$$d(R) = d(S/aS) \leqslant d(S) - 1.$$

2) 证明 $\dim S \ge n$ 。前面已证 $\dim S \le d < \infty$ 。对 $\dim S$ 取归纳法。设 $\dim S = 0$,那么 S 是 Artin 环。应用定义 6.19 的 讨 论 3),(0)是 S 的定义理想。按照通常的约定,空集 \emptyset 生 成 (0)。因此 n = 0, $\dim S \ge n$ 。

现在考虑 $\dim S > 0$ 的情形。令 p_1, \dots, p_r 是S的所有的极小素理想(参看定理 6.22 的讨论 4))。应用上面的引理, $m \subset \bigcup_{i=1}^r p_i$ 。令

 $a \in \mathfrak{m}, \quad a \in \bigcup_{i=1}^r \mathfrak{p}_i, \quad R = S/aS.$

我们先证明 $\dim R \leq \dim S - 1$. 任取R的一个素理想链 $p_o'/aS \supseteq p_o'/aS \supseteq \cdots \supseteq p_o'/aS$.

此处 p_i 是 S 的包含 aS 的素理想。那么 p_i 必然包含一个极 小 素理想 p_i 。又因为 $a \in p_i$, $a \in p_i$,所以 $p_i \supseteq p_i$ 。于是

是S的一个素理想链。我们得出 $\dim R \leq \dim S - 1$ 。

应用归纳法假设于R, 立得R有一定义理想 I/aS, 其 生 成

元个数不超过 $\dim R = k$. 设此生成元集为 $\{\bar{a}_1, \dots, \bar{a}_k\}$, 其中 $a_i \in S(i=1,\dots,k)$. 不难看出 $I \in S$ 的定义理想, $I = (a_i,a_1,\dots,a_k)$, 其生成元集的基数 $\leq \dim R + 1 \leq \dim S$.

3) 证明 n ≥ 4. 定理 6.33 已证过。 1

系1 任何诺德局部环 S 的维数 dim S 都是有限的。

 x_2 诺德环 x_3 的素理想的下降的链必然终止。

证明 任取一个素理想的下降的链

₽0号47号…岩44号…。

对 p_0 局部化。在诺德局部环 S_{p_0} 里,我们有素理想链

所以它的长度 \leq dim $S_{\bullet,\bullet}<\infty$. |

从上面的定理, 我们得出下面的富有几何意味的定理,

定理6.42(Krull 主理想定理) 1) 设 I 是诺德环 S 的理想, $I \Rightarrow S$, I 由 n 个元素所生成。那么,令 p 是一个包含 I 的素理 想中的极小者,则有 $ht(p) \leq n$ 。

2) 设 a 是诺德环 S 的不可逆元、那么,令 p 是包含(a)的素 理想中的极小者,则有 $ht(p) \leq 1$.

证明 显然,2)是1)的特例。我们仅须证明1)。考虑局部环S,。不难看出,pS, 既是包含 IS, 的素理想中的极小者,又是S, 的极大理想,因此是唯一包含 IS, 的素理想。用 IS, 的 简略准素分解,立即导出 IS, 是准素理想,以及

$$\sqrt{IS_*} = \mathfrak{p}S_*$$

故 IS, 是 S, 的定义理想。而 IS, 是由 n 个元素生成的,应用定理 6.40, 立得

$$ht(p) = \dim S_p \leqslant n$$
.

讨论 在 $C[x_1, \dots, x_n] = S$ 中,任取 $f \in C$,应用上面 的 定理,立得 $ht((f)) \leq 1$.但是在 S 中只有(0)的高度是 0, 所以

$$ht((f)) = 1.$$

令 P1, ···, P1 是(f)的孤立案理想,则

$$ht(\mathfrak{p}_i)=1, \quad \mathscr{V}((f))=\cup \mathscr{V}(\mathfrak{p}_i).$$

以 codim 表示余维数(参见定义6,13的讨论),则

$$\operatorname{codim} \mathscr{V}(\mathfrak{p}_i) = \operatorname{ht}(\mathfrak{p}_i) = 1,$$

放 $\dim \mathscr{V}(\mathfrak{p}_i) = n - \operatorname{codim} \mathscr{V}(\mathfrak{p}_i) = n - 1.$

这就是说,f = 0 的解集是一些**超曲面的**拜集。这即证明了我们的一个几何直观。 \blacksquare

设 S 是诺德局部环,m是它的极大理想, $d = \dim S$ 。 那么存在一个定义理想 $I = (x_1, \dots, x_d)$ 。 任何一组如此的 $\{x_1, \dots, x_d\}$ 称为 S 的一个**参数系**。

令

$$K = S/m$$
,

则 K 是域。于是 m/m^2 是一个K向量空间。令 $\{a_1, \dots, a_n\}$ 是向量空间 m/m^2 的一组基(其中 $a_1 \in m$, $n = \dim_K(m/m^2)$),那么,我们有 $m = (a_1, \dots, a_n) + m \cdot m$ 。

应用定理6.27(Nakayama 引理), 请注意 rad(S) = m, 立得 $m = (a_1, \dots, a_n)$.

反之,设 $m = (a_1, \dots, a_n)$,那么, $\{a_1, \dots, a_n\}$ 显然是 m/m^2 的一个生成元集。综上所述,我们得到

 $\dim_x(m/m^2)=m$ 的最小生成元集的基数。

定义6.20 设S是诺德局部环,m是它的极大理想,

$$S/m = K$$
,

那么,

- 1) S的嵌入维数定义为 emb-dim S = dim_x (m/m²),
- 2) 如果 $\dim S = \operatorname{emb-dim} S$, 则称 $S \to -$ 个正则局部环。令 $\mathfrak{m} = (x_1, \dots, x_d)$,

此处 $d = \dim S$, 那么 $\{x_1, \dots, x_d\}$ 称为 S 的一个正则参数系。

论讨 1) 根据定理 6.41, 对任给的诺德局部环 S, 恒有 emb-dim S≥dim S.

2) 正则局部环相当于几何上的平滑点或非奇异点, 非正规

局部环相当于奇异点或非平滑点。参见下面的例子。

例23 令 k 是代数封闭域, $R = k[x_1, \cdots, x_n]$ 。 我们已经知道

 $n = \dim R = \sup\{l: l = \dim R_m, m 是极大理想\}$.

根据希尔伯特零点定理, R的极大理想 m 皆形如

$$m = (x_1 - a_1, \dots, x_n - a_n), \quad a_i \in k.$$

不难看出,在平移映射 $x_1 \rightarrow x_1 - a_1$ 作用下,所有的 R_n 都是同构的。因此,对任给的极大理想 $m = (x_1 - a_1, \cdots, x_n - a_n)$ 而言,我们恒有

 $\dim R_{\mathbf{n}} = n_{\bullet}$

自然, $\{x_1-a_1,\cdots,x_n-a_n\}$ 是 R_n 的一个参数系,所以 emb-dim R_n = dim R_n .

于是 R_* 都是正则局部环。换句话说,n 维仿射空间 K^* 的点都是非奇异点。

例24 令 $R = C[x,y]/(x^2 - y^3) = C[x,y]$, m = (x,y), $S = R_{\bullet}$. 显然, $R \supset C[x]$, $S \supset C[x]$, 而且 $S \supset C[x]$, 而且 $S \supset C[x]$ 是整数相关的,于是

 $\dim S = \dim C[\bar{x}]_{(\bar{x})} = 1.$

另一方面, m/m^2 是由 $\{x^*,y^*\}$ 生成 的 $\{x^*,y^*\}$ 是 x^*,y^* 是 x^*,y^* 在 mS/m^2S 中的象)。读者自行证明

 $emb-dim S = dim_C(m/m^2) = 2 \gg dim S$.

因此,S 是一个非正则局部环,这相应于(0,0) 是复数曲线 $x^2 - y^3 = 0$ 的奇异点。

对于参数系,我们有如下的定理。

定理6.43 设 S 是诺德局部环, $\{x_1, \dots, x_n\}$ 是它的一个参数系。那么, $\dim(S/(x_1, \dots, x_d)) = n - d$ 。

证明 令 $R = S/(x_1, \dots, x_d)$. 显然, $(\bar{x}_{d+1}, \dots, \bar{x}_n)$ 是R的一个定义理想。立得

 $\dim R \leq n - d$.

反之,令 $\{y_1,\cdots,y_a\}$ 是R的一个参数系, 显然, $\{x_1,\cdots,x_a,y_i\}$

…,y.)是R的一个定义理想。所以 $d+s \ge n$,即得 dim $R \ge n-d$ 。 1

由于正则诺德局部环在代数学与几何学中的重要性,我们给 出下面的定理。

定理6.44 设S是诺德局部环, $\dim S = n$,m 是它的极大理想,K = S/m,S是S对 m的完备化环。那么,我们有

- 1) S 是正则诺德局部环 \iff $G_n(S)$ 同构于 n 元多项式环 $K[t_1, \dots, t_n]$,
 - 2) S是正则诺德局部环 ←→ S 是正则诺德局部环。

证明 1) \leftarrow 显然, m/m^2 相当于 t_1, \dots, t_n 的一次齐次式的集合,所以

$$\dim_{\mathcal{E}}(m/m^2) = n = \dim S_{\bullet}$$

其中 $\bar{x}_1 \in m/m^2$ 。我们仅须证明 $\bar{x}_1, \cdots, \bar{x}_n$ 代数无关就足够了。设 $f \in K[X_1, \cdots, X_n]$, $f \rightleftharpoons 0$,

$$G_{\mathbf{n}}(\mathcal{S})\ni \bar{f}(\bar{x}_1,\cdots,\bar{x}_n)=\sum_i \bar{f}_i(\bar{x}_1,\cdots,\bar{x}_n)=0.$$

此处f,是i次齐次式。因为f₁,…,f_n都是一次齐次式,G_n(f₁)是分次环,所以每一个f₁(f₁,…,f_n)=0。因此,不妨即设f是一个f₂次齐次式。令

$$\sigma: K[X_1, \cdots, X_n] \rightarrow G_n(S),$$

$$\sigma(X_i) = \bar{x}_{i+1}$$

再令 $R = K[X_1, \dots, X_n]/(\overline{f}) = K[y_1, \dots, y_n]$ 。又设

$$l_n(i) = \operatorname{length}\{\bar{\mathbf{g}} \in K[\bar{x}_1, \dots, \bar{x}_n] : \operatorname{deg} \bar{\mathbf{g}} < i\},$$

$$l_n(i) = \operatorname{length}\{\bar{\mathbf{h}} \in K[\bar{\mathbf{g}}_1, \dots, \bar{\mathbf{g}}_n] : \operatorname{deg} \bar{\mathbf{h}} < i\}.$$

我们要比较 $I_1(i)$ 与 $I_2(i)$ 。由于 $f \in \ker \sigma$,所以有

(a)
$$l_1(i) \leq l_2(i)$$
;

我们又有

(b) 当 i 充分大时, $l_1(i) (= \chi_{\lambda}^{\alpha}(i))$ 是 i 的多项式,且 $\deg_{\lambda} l_1(i) = \deg_{\lambda} \chi_{\lambda}^{\alpha}(x) = \dim S = n$.

(参看例19, 请读者自证。)

(c) 当 i 充分大时, l₂(i)是 i 的多项式, 且 deg _i l₂(i)≤n-1.

上面的(a),(b),(c)显然是矛盾的。

2) 根据定理6.39, 我们知道 \$ 是诺德环. 又有 \$/m ≈ S/m
(为什么?), 所以 m 是 \$ 的一个极大理想. 任取 a ∈ m, 那么
(1-a)⁻¹=1+a+···+aⁿ+···∈ \$.

所以1-4都是可逆元。于是

$$\hat{\mathbf{m}} \subset \mathrm{rad}(\hat{S}) = \bigcap_{\mathbf{W} \neq \mathbf{u}} \mathfrak{p}_i$$
.

由此即知[^]是**多的唯一的极**大理想,**总**是一个局部环。因为

$$G_{\mathfrak{m}}(S) = \bigoplus_{i=0}^{\infty} (\mathfrak{m}^{i}/\mathfrak{m}^{i+1}) \approx \bigoplus_{i=0}^{\infty} (\widehat{\mathfrak{m}}^{i}/\widehat{\mathfrak{m}}^{i+1}) = G_{\widehat{\mathfrak{m}}}(\widehat{S}),$$

所以 dim S = dim S = n, 而且

$$G_{\hat{\mathbf{n}}}(S) \approx K[t_1, \cdots, t_n] \iff G_{\hat{\mathbf{n}}}(\hat{S}) \approx K[t_1, \cdots, t_n].$$

下面**这个定理的证明**,要用**到**同调代数**的**方法,我们不加证明了。

定理6.45(Auslander-Buchsbaum 定理) 任何正则诺德局部环都是唯一分解整环。

证明请见 Zariski-Samuel 著 《Commutative Algebra》, 2卷, 附录 7, 或 Matsumura 著《Commutative Algebra》, 142页。

从这个定理, 我们立刻看出, 任何正则诺德局部环 S 都是整数封闭的等等,

我们很容适证明正则诺德局部环必定是一个 整 环。 设 $a \neq 0$, $b \neq 0$, ab = 0. formall ab = 0.

 $\delta \in m^* : /m^* : ^{+1}, \quad \delta \rightleftharpoons 0,$ $\delta \in m^* : /m^* : ^{+1}, \quad \delta \rightleftharpoons 0,$

但 aδ = 0 ∈ G_(S)。 可是

$$G_{\mathbf{m}}(S) = \bigoplus (\mathbf{m}^{i}/\mathbf{m}^{i+1}) \approx K[t_1, \dots, t_n].$$

这显然是不可能的.

我们又有下面的重要定理。

定理6.46(I.S.Cohen 定理) 设 β 对 \hat{n} 是一个完备的诺德局部环。设 \hat{s} 的特征等于 \hat{s}/\hat{m} 的特征(所谓一个环 \hat{r} 的特征数或特征, 即是 $\min\{n: n\cdot 1=0, n\}$ 正整数 $\}$ 。如果 $n\cdot 1$ 永不为零,则称 \hat{r} 的特征为 0),那么

$$\hat{S} \approx K[[t_1, \cdots, t_n]].$$

证明请见 Zariski-Samual 著《Commutative Algebra》, 2卷, 304页。

讨论 当 \hat{s} 含有一个域k时,上定理显然是对的。如果取 $S = Z_{(p)}$, $\hat{s} = \hat{Z}_{(p)}$, 显然可见,上面的定理的假设是不可免去的。在一般的几何学中, \hat{s} 都包含一个域,因此我们可以用它的结论。

习 塾

- 1. 令 $R = C[[x,y,z]]/(x^2 + xy + z^2)$. 考虑(x,y),(x,z),(y,z), 它们之中哪些是定义理想?哪些不是定义理想? 其几何意义是什么?
 - 2. 设R是正则局部环。证明 dim $R=0 \iff R$ 是越。
- 3. 设R是诺德局部环, m是极大理想, R是R在m-adic 拓扑下的完备化环。证明 dim R = dim R.
- 4. 设^R是正则诺德局部环, m 是它的极大理想, m ≒ (0)。 证明m ≒ m², 取 x ∈ m \ m², 证明 R / (x) 是正则诺德局部环, 且 dim (R/(x)) = dim R - 1.
- 5. 参考上题。更一般地,设R是诺德局部环, m是 其 极大理想。设 $x \in m$,x 不是零因子,证明

$\dim(R/(x)) = \dim R - 1.$

6. 设 f(x₁,x₂,…,x_n)为C[x₁,x₂,…,x_n]中不可约多项式。 证明:

$$P = (a_1, a_2, \dots, a_n)$$
 是 f 的零点而 $\frac{\partial f}{\partial x_i} \Big|_{p}$ 不全为零

 \iff ($C[x_1, \dots, x_n]/(f(x_1, \dots, x_n)))$ ($x_1 - a_1, \dots, x_n - a_n$) 是正则诺德局部环。

- 7. 设R是环, $a_1, a_2, \dots, a_n \in R$. 如果
- (2) a_1 不是 $R/(a_1,a_2,\cdots,a_{i-1})$ 的零因子($\forall i=1,2,\cdots,n$),则称 $\{a_1,a_2,\cdots,a_n\}$ 是一个 R 序列。设 K 是域, R=K[x,y,z], $a_1=x(y-1)$, $a_2=y$, $a_8=z(y-1)$,试证 $\{a_1,a_2,a_8\}$ 是 R 序列,而 $\{a_1,a_3,a_2\}$ 不是 R 序列。
- 8. 参考上题。设 R = n,试证 m 可以由一个 $R \in M$ $\{a_1, a_2, \dots, a_n\}$ 生成。
- 9. 设R是诺德局部环, m是它的极大理想。又设 m可以由 R序列生成,证明R必是正则局部环。
- 10. 不应用 Auslander-Buchsbaum 定理, 直接证明正则诺德 局部环是整数封闭的。

第七章 赋值论

§1 定 义

读者请参看第一章 § 6 "p-adic 数与赋值"。 在本章 我们将 把那里的讨论充分地一般化。我们先引入。

定义7.1 设 G 是一个加法交换群。如果 G 含有一个半群 G_+ (即 $a,b \in G_+$) $a+b \in G_+$),使得 $G = (-G_+) \cup \{0\} \cup G_+$,而且这三个子集是两两不相交的,那么,称 G 为加法交换全序群,或简称全序群。我们用 G_- 表示 $-G_+$ 。此时,我们有一个全序,其定义如下。

$$a > b \iff a - b \in G_{+b}$$

讨论 1) 读者用 G_+ 是华群的性质,检验

$$a>b$$
, $b>c \implies a>c$,
 $a>b$, $c>d \implies a+c>b+d$,

等等。

2) 反之,设 G 有一个全序">",适合上面的不等式,那么,令 $G_+ = \{a: a > 0\}$,读者自行检验 G_+ 是一个半群,一 G_+ , $\{0\}$, G_+ 是两两不相交的,及 $G = (-G_+) \cup \{0\} \cup G_+$ 。

例1 R 的加法子群 G 都是全序群。易见

$$G = (R_{-} \cap G) \cup \{0\} \cup (R_{+} \cap G) = G_{-} \cup \{0\} \cup G_{+\bullet}$$

同样的,任何一个全序群的子群,也是全序群。

例2 在 $G = Z \oplus Z$ 中,我们可以定义一个字母全序: $G_* = \{(n_1, n_2): n_1 > 0 \text{ 或 } n_1 = 0, n_2 > 0\}$.

换一个方式来说,

$$(n_1, n_2) > (m_1, m_2) \iff (n_1 - m_1, n_2 - m_2) \in G_+$$

 $\iff n_1 > m_1 \text{ if } n_1 = m_1, n_2 > m_2.$

这和查英文字典一样,先看头一个数字,如果两个元素有相同的首项,再看第二个数字。

与上面一样的,设 G_1, \dots, G_n 都是全序群。 $今G = \bigoplus_{i=1}^n G_i$,我们可以定义一个"字母全序":

$$G_{+} = \{(g_{1}, \dots, g_{n}): 存在一个 i, 使 g_{i} > 0, g_{i} = 0, \forall j < i\}.$$

现在我们引入赋值的定义,

定义7.2 设K是一个域, $K^* = K \setminus \{0\}$, G 是一个全序群。 如果一个满 射 $\nu: K^* \to G$,适合下列的条件, 则称为K的一个指数赋值,或简称赋值。

- 1) v(ab) = v(a) + v(b);
- 2) $v(a+b) \geqslant \min\{v(a), v(b)\}$

讨论 1) 以上的定义中,用的是加法全序交换群 G. 同样,也可以用**乘法全序交换群** $G^* = G_i^{-1} \cup \{1\} \cup G_i$,这里 $G_i = \{g: g < 1\}$ 是一个乘法半群,与加法全序交换群 G 中的加法半群 $G_* = \{g: g > 0\}$ 相对应。赋值 g 的定义条件,也相应地改成。

$$1^*) \ \nu(ab) = \nu(a)\nu(b);$$

2*)
$$v(a+b) \leq \max\{v(a), v(b)\}.$$

与下面的三角不等式 3*)相比, 2*)称为强三角不等式:

$$3^*) v(a+b) \le v(a) + v(b)$$
.

不过,除了特别声明外,一般我们都用加法全序交换群,而不用乘法全序交换群。

2) 从定义7.2的条件1), 我们导出

$$v(b) = v(1 \cdot b) = v(1) + v(b) \implies v(1) = 0,$$

$$0 = v(1) = v(b \cdot b^{-1}) = v(b) + v(b^{-1})$$

$$\implies v(b^{-1}) = -v(b),$$

$$v(ab^{-1}) = v(a) + v(b^{-1}) = v(a) - v(b).$$

所以, v是从乘法群 K* 到加法群 G的一个群映射。

- 例3 1)第一章 § 6 中 Q 的 p 赋值 v_p 是用乘法全序交換群 $G^* = \{p^i : i \in Z\}$ 定义的赋值。
- 2) 令 K 为复变函数论的"在 x=0 附近的亚纯函数域",即 $C\{\{x\}\}$ (参见第六章 \S 8) 的比域。令 G=Z。以 $v_x(f)$ 表示 f 的阶,即设

$$f = \sum_{i=m}^{\infty} a_m x^i, \quad a_m = 0, \quad m \in \mathbb{Z},$$

那么 $v_x(f) = m$ 。读者自行检验, v_x 确实是一个赋值。

3) 令R是一个唯一分解的整环, a是一个不可分解元, K是R的比域, G=Z。任取

$$\frac{c}{b}a^n \in K$$
, $a \nmid b$, $a \nmid c$, $n \in \mathbb{Z}$,

我们定义

$$v_{a}\left(\frac{c}{b}a^{n}\right)=n_{a}$$

读者自行检验, va是一个赋值。

特别是当R = C[x], 那么, $a = c_0 x - c_1 (c_0 + 0)$. v_a 是 一个赋值.

4) 令K = C(x, y), $G = Z \oplus Z \sqrt{2}$. 按照例 2 的讨论, G 自然是一个全序群。令

$$\nu(f(x,y)) = \operatorname{ord}_t f(t,t^{\sqrt{2}}),$$

其中 ord, 表示 t 的阶。则 v 是一个赋值。

5) 我们可以把 ν 扩充到整个 K. 定义 ν (0) = ∞ , 其中的无限大 " ∞ ", 适合下列条件:

$$\infty > g$$
, $\forall g \in G$,

 $\infty \pm g = \infty$, $\infty + \infty = \infty$, $\infty - \infty$ 沒有定义。

那么,对于任意的 $a,b \in K$,我们恒有

$$v(ab) = v(a) + v(b), v(a+b) \ge \min\{v(a), v(b)\},\$$

定义7.3 设 K 是城, R 是 K 的子环。如果对于任取的 $a \in K$, $a \neq 0$ 而言, a, a^{-1} 二者之中至少有一个在 R 中,那么, R 称为 K 的一个赋值环。

讨论 R 的比域显然是K.

定理7.1 1) 设R是域K的子环,K是R的比域。那么,R是K的赋值环 \Longrightarrow m = {a: a 是R的不可逆元} 是R的唯一的极大理想,所以R是局部环。

2) 设 v 是 K 的赋值。令

$$R_v = \{a: a \in K, v(a) \ge 0\}$$

那么,R , 是K的一个赋值环。

证明 1) 显然, ab 是可逆元 \Longrightarrow a 及 b 是可逆元, 所以 $b \in m \Longrightarrow ab \in m$, $\forall a \in R$.

仅须证明 $a,b \in m \Longrightarrow a+b \in m$, 便知m是一个理想。

考虑 a/b 及 b/a,二者之一必在 R 中。无妨假定 $a/b \in R$ 。于

$$1 + (a/b) = (a+b)/b \in R_{\bullet}$$

假若a+b是可遊元,那么 $1/b \in R$,即b是可逆元,这与已知条件相违。所以 $a+b \in m$,m是一个理想,且显然是唯一的极大理想。

2) 设 a ∈ R_v, 则 v(a) < 0. 于是

$$v(a^{-1}) = -v(a) > 0 \implies a^{-1} \in R_{v_{\bullet}}$$

定理7.1 说明了,给定一个赋值 v 以后,我们自然得出一个赋值环 R_v。 反过来说,给定一个赋值环 R 以后,能 不能自然地得出一个赋值呢?这是能作到的。作法如下(这里我们用乘法全序交换群)。

令 m 是 R 的极大理想, m* = m\{0}, U 是 R 的所有可逆元的集合,即 $U = R \setminus m$,如果 $a \in R$,那么 $a^{-1} \in R$,但 $a^{-1} \in U$,所以 $a^{-1} \in m$, $a \in (m^*)^{-1}$,也即

$$K^* = K \setminus \{0\} \approx (m^*)^{-1} \bigcup U \bigcup m^*$$

这是一个乘法交换群,U是它的正规子群,所以

 $K*/U = ((m*)^{-1}/U) \cup \{J\} \cup (m*/U) = G_1^{-1} \cup \{1\} \cup G_1$, 这就给出 K*/U 的一个全 序。令 $U: K* \rightarrow K*/U$ 为典型映射,那么显然有(参见定义7.2的讨论 1))

$$v(ab) = v(a)v(b).$$

任取 $a,b \in K^*$, 设 $a/b \in R$, 那么

$$v(a+b) = v\left(b\left(1+\frac{a}{b}\right)\right) = v(b)v\left(1+\frac{a}{b}\right) \leqslant v(b)$$

$$\leqslant \max\{v(a),v(b)\}.$$

所以验证了强三角不等式 2*)。因此, v是一个赋值。

以上由赋值环R定义的赋值v, 称为赋值环R的典型赋值。

定义7.4 两个赋值 v_1, v_2 , 如果它们的赋值环相等,那么, 我们称 v_1, v_2 是**等价的**。

给定了K的一个赋值环R以后,我们可以定义一个映射

$$\sigma: K \rightarrow (R/\mathfrak{m}) \cup \{\infty\}$$

如下:

$$\sigma: R \rightarrow R/m$$
是典型映射, $\sigma(a) = \infty$. 如果 $a \in R$.

这个 σ 就是通常所说的"位"。

定义7.5 域 K的一个位是指一个映射 $\sigma: K \rightarrow L \cup \{\infty\}$,此处 L是域, σ 适合下列条件:

- σ⁻¹(L)是K的子环,σ:σ⁻¹(L)→L 是环映射;
- 2) 如果 $a \in \sigma^{-1}(\infty)$, 那么 $\sigma(a^{-1}) = 0$.

讨论 从上面的定义不难看出,在 $L \cup \{\infty\}$ 中

$$l \pm \infty = l \cdot \infty = \infty$$
, $l \in L^* = L \setminus \{0\}$,

$$\infty \cdot \infty = \infty, \quad \frac{1}{0} = \infty, \quad \frac{1}{\infty} = 0,$$

$$\infty \pm \infty$$
, $0 \cdot \infty$, $\frac{0}{0}$, ∞ 无定义.

例4 设 $K = C(x), L = C, R = C[x]_{(x=a)}, v(f) = \operatorname{ord}_{(x=a)} f(x),$ $\sigma(f) = f(a), \sigma(f)$ 即是 f(x)在"位"x = a的值。如果 $\sigma(f) = f(a) = \infty$,那么,f(x)在位 a 有一个极点。

上面我们已经说明了,给了一个赋值环R以后,自然得出一个位 σ 。反之,给定了一个位 σ ,令 $R = \sigma^{-1}(L)$,根据条件 2), $a \in R(\longleftrightarrow a \in \sigma^{-1}(\infty)) \Longrightarrow \sigma(a^{-1}) = 0 \in L \Longrightarrow a^{-1} \in \sigma^{-1}(L) \Longrightarrow a^{-1} \in R$,所以,我们自然得出一个赋值环R。

综上所述,这三个概念:赋值v,赋值环R,位 σ ,是自然 对应的。因此,从更高的抽象层次来看,这三者是完全一样的。

- 2) 设 $v(a_1 + \cdots + a_n) = \infty$, 即 $a_1 + \cdots + a_n = 0$, 那么,至少有 两个 a_i, a_j , 使 $v(a_i) = v(a_j) = \min\{v(a_i): l = 1, \cdots, n\}$;
 - 3) 设 / 是赋循环 R 的有限生成的理想, 那么 / 是主理想。

证明 1) $v(b/a) = v(b) - v(a) > 0 \Longrightarrow b/a \in \mathfrak{m} \subset R_v \Longrightarrow 1 + b/a \in \mathfrak{m} \Longrightarrow v(1+b/a) = v((a+b)/a) = 0 \Longrightarrow v(a+b) = v(a).$

2) 不难从 1) 导出。假如 $v(a_l) < v(a_l) (\forall l = 2, 3, \dots, n)$,则有

$$v(a_1 + a_2) = v(a_3) < v(a_3),$$

$$v(a_1 + a_2 + a_3) = v(a_1 + a_2) = v(a_1) < v(a_4),$$

$$v(a_1 + a_2 + \dots + a_n) = v(a_1),$$

3) 设 $I = (a_1, a_2), \ v(a_1) \leqslant v(a_2), \ 那么, v(a_2/a_1) \geqslant 0, \ 敬$ $a_2/a_1 \in R_v, \quad a_2 = (a_2/a_1)a_1 \in (a_1).$

所以 $I=(a_1)$,不难推广到I是有限生成的理想的情形。

定理7.3 1) 如果赋值环R是诺德 环,那么 $\dim R \leq 1$ 。此时只有两种可能, $\dim R = 0 \Longrightarrow R = K$, $\dim R = 1 \Longrightarrow R$ 是 正则诺德局部环。

2) R 是一维的正则诺德局部环 \iff R 是整环,且是它的 比域 K 的赋值环,相应的全序群 $G \approx Z$.

证明 1) 因为R的极大理想 m 是有限生 成 的,应 用 上定 理,m = (a). 根据定理6.41,立得

 $\dim R \leq 1$.

当 $\dim R = 0$ 时,因为R 是整环,所以(0)是R 的素理想,因而是极大理想。假若有 $b \in K$, $b \in R$,那么 $b^{-1} \in (0)$ 。这是不可能的。所以 R = K。当 $\dim R = 1$ 时,上面所说的 m 的生成元集 $\{a\}$ 就是R 的正则参数系,所以R 是正则局部环。

2) \Longrightarrow 根据定理 6.46 前面的讨论,我们知道 R 是整环。 令它的比域为 K ,极大理想为 m = (a) 。任取 $b \in R$, $b \neq 0$,设 $b \in m^{l}$, $b \in m^{l+1}$, $l \in Z$,

即 b=a'c, $c\in R\setminus m$ 。 那么, c 是 可逆元。 现考虑任意的 $b_1/b_2\in K(b_2 + 0)$ 。 令

$$b_1 = a^T \cdot c_1, \quad b_2 = a^T \cdot c_2, \qquad c_1, c_2 \in R \setminus m_{\bullet}$$

那么,

$$l_1 \geqslant l_2 \implies b_1/b_2 = a^t \cdot 1^{-t} \cdot 2c_1/c_2 \in R_*$$

所以R是K的赋值环。显然,

$$v(b) = l$$
, $v(0) = \infty$

是K的一个赋值, 且 $R_v \approx R_o$ 其相应的全序群是 Z_o

← 。 设 $t \in R$, 使得 $v(t) = 1 \in G = Z$ 。 任取 $a \in R$, 设 v(a) = l。 令 $b = a/t^l$, 即 $a = bt^l$, 则 v(b) = 0, 即 b 是可逆元。 所以 m = $\{a \in R: v(a) > 0\} = \{bt^l \in R, l \ge 1, b$ 可逆 $\} = (t)$ 。

现设 $I \in R$ 的理想,不难看出 I = (a),此处 a 满足

$$v(a) = \min\{v(a): a \in I\}.$$

于是 I=(t')。 立得(0)及 m 是 R 仅有的**紫翅想**。故 dim R=1, $\{t\}$ 是正则参数系。所以 R 是一维正则局部环。 $\{t\}$

定义7.6 如果一个赋值 ν 的全序群 G = Z,那么,称 R_0 为 (一秩) 离散赋值环,简称 D.V.R.

当赋值 ν 的赋值 $R_v = K$ 时,不难看出, ν 的全序 群 $G = \{0\}$ 。此时,称 ν 是一个平凡赋值。

我们举出下面的例子,说明赋值的全序群可以是任意的。例5 设 G 是任给的加法交换全序群, k 是任给的域。令 $S = \{a_1x^a_1 + \dots + a_nx^a_n : a_i \in k, g_i \in G, n$ 是 非负整数、 $x^0 = 1\}$ 。

定义

$$ax^{g} + bx^{g} = (a + b)x^{g}, \quad ax^{g_{1}} \cdot bx^{g_{2}} = abx^{g_{1} + g_{2}},$$

则S自然成一整环(为什么?)。 $令 K \in S$ 的比域。 定义

$$v(\sum a_i x^{g_i}) = \min\{g_i: a_i \neq 0\},\$$

$$v\left(\frac{\sum a_i x^{g_i}}{\sum b_j x^{g_j}}\right) = v\left(\sum a_i x^{g_i}\right) - v\left(\sum b_j x^{g_j}\right).$$

那么,v是K的一个赋值,而G是它的全序群。

根据定理 7.3, 一般来说,一个赋值环R 不一定是诺德环。 它有很多与诺德环不一样的性质。请看下面的定理。

定理7.4 1)设R是赋值环,K是其比域。设有环S,K $\supset S$ $\supset R$,那么,S 是一个赋值环。设 n 是S 的极大理想, $p=n \cap R$,则有S=R,;

2) 设 I_1, I_2 是 R 的两个理想,那么,必有 $I_1 \subset I_2$ 或 $I_2 \subset I_1$.

证明 1) 任取 $a \in K$, $a \neq 0$, 那么必有 $a \not \equiv a^{-1} \in R \subset S$ 。所以,S 是一个赋值环。令 n 是 S 的极大理想, $p = n \cap R$, p 显然是 R 的一个案理想。我们要证明 S = R,

任取 $a=c/b\in R$, $c,b\in R$, $b\in P$. 那么 $b\in S$, $b\in R$. 所以 b 在 S 中是可逆元。于是 $a\in S$ 。我们证明了R, $\subset S$ 。

反之,设 $a \in S$ 。如果 $a \in R$,则 $a \in R$,如果 $a \in R$,那么 $a^{-1} \in R \subset S$ 。于是 $a, a^{-1} \in S$,即 $a \in S$ 的可逆元,所以 $a, a^{-1} \in R \Longrightarrow a^{-1} \in n \cap R = p \Longrightarrow a = 1/a^{-1} \in R$ 。我们证明了 $S \subset R$ 。于是S = R。

2) 设 $I_1 \subset I_2$. 任取 $a \in I_1 \setminus I_2$, $b \in I_2$. 因为(a/b)b = a, 所以 $a/b \in R$. 散 $b/a \in R$, $b = (b/a)a \in aR \subset I_1$.

定义7.7 设 R 是一个赋值环。根据上面的定理, R 的素真 理想 p_i (即 $p_i \Rightarrow R$,(0)) 对于 " \subset " 而 言 构成一个全序集。它的 序数称为 R 的秩,记为 rank R。显然,当 rank R 是有限数时,

$$\operatorname{rank} R = \operatorname{dim} R_{-}$$

讨论 1) 在代数数论中, 我们对一秩的赋值有兴趣。 在代数几何学中, 我们对有限秩的赋值有兴趣, 特别是一秩的赋值。 详见后面。

2)我们也可以用一个赋值 v 的全序群 G,来定义 v 的秩。 G 的一个子群 H,如适合 F 列的条件,则称为 G 的 一个 **孤 立子 群**: (a) 任取 $h \in H$,那么,只要 $-h \leq g \leq h$,则 $g \in H$; (b) $H \not\models G$ 的 **点** 子群 (即 $H \not\models G$)。我们可以证明: (a) G 的所有孤立子群的集合,对"□"而言构成一个全序集; (b) 令 $p \not\models R$ 。的一个素理想,那么

$$\mathfrak{p} \mapsto G_{\bullet} = G \setminus (v(\mathfrak{p}^*) \cup v((\mathfrak{p}^*)^{-1}))$$

(这里 $p*=p\setminus\{0\}$)是从 R。的素真理想的集合到 G的孤立子群的集合的单满映射,而且保持序关系。因此,两者 的 序 数 是相同的。因而,我们又有下面的定义。

定义7.7' ν 的秩定义为G的孤立子群的序数。

例6 设 $\{0\}$ $\neq G \subset R$,我们称这样的贼值 v 为实赋值. 此时,G 的唯一的孤立子群是 $\{0\}$ (为什么?),所以 $rank R_v = 1$. 我们也可以从定义 7.7 直接导出 $rank(R_v) = 1$. 令 R_v 的极 大 理 想是 m_v . 任取 R_v 的真理想 $I \neq (0)$, 我们只要证明 $\sqrt{I} = m_v$ 就足够了(因为此时(0)与 m_v 是 R_v 的仅有的素理想,所以, $1 = \dim R_v = rank R_v$). 令 $0 \neq a \in I$,任取 $b \in m_v$, $b \neq 0$ 。那么, 对足够大的 n,我们有

$$v(b^n) = nv(b) > v(a),$$

即 $b^n/a \in R_v$, $b^n = (b^n/a)a \in I$, 即有 $\sqrt{I} = m_v$ 。 反过来说,只

要G的唯一的孤立子群是 $\{0\}$,那么,经过一些初等数论的、类似于 Dedekind 分割的步骤,我们可以把G嵌入 R。 综上所述,我们知道实赋值即是一秩赋值。

例7 设 v 是域 K 的一个一种赋值,也即是一个实 赋 值。那么,我们可以定义一个绝对值" $| \cdot |$ "如下,设 $a \in K$,则

$$|a|_{v} = 2^{-v(a)}$$
, $|0|_{v} = 2^{-\omega} = 0$.

这也就是把加法交换全序群 G 变成了一个乘法交换全序群 G^* \subset R_+ $(R_+$ 表示全体正实数构成的乘法群). 这个绝对值适合 (参见定义7.2的讨论 1)).

1*)
$$|ab|_{v} = |a|_{v} |b|_{v}$$
;

$$2^*$$
) $|a+b|_v \leq \max\{|a|_v, |b_v|\}$.

此时,域K称为一个赋值域。对于这样的域K,我们可以引入解析函数论及解析几何学。先定义n 元解析函数环,或n 元收敛函数环 $K\{\{x_1, \dots, x_n\}\}$ 如下(参见第六章 § 2):

$$K\{\{x_1, \dots, x_n\}\} = \left\{ \sum_{i_1 \dots i_n} f_{i_1 \dots i_n} x_1^{i_1} \dots x_n^{i_n} : 存在A及B \in \mathbf{R}, \ \text{使} \right.$$

$$\left. |f_{i_1 \dots i_n}|_{v} \leqslant AB^{i_1 + \dots + i_n} \right\},$$

显然 $K\{\{x_1,\cdots,x_n\}\}\subset K[[x_1,\cdots,x_n]]$. 经过它的谱集 $Spec K\{\{x_1,\cdots,x_n\}\}$ (见第六章),我们可以建立相应的解析几何学。

定义7.8 -1) 设 R_v 是v的赋值环、如果 $R_v \supset k$,此处k是 -- 个域。那么v也称为k**赋值**;

2) 设 ν 是 k 赋值。那么,它对 k 的剩余 维 数 $res-dim_k \nu$ 定 义为 $res-dim_k \nu = tr$ $deg((R_v/m_v)/k)$ 。如果 $res-dim_k \nu = 0$,则 称 ν 是 剩余代数性的,如果 $R_v/m_v = k$,则称 ν 是 剩余有理性的。

引理 1)设 k 是 k 在 k 里的代数闭包,那么, 任何一个 k 赋值 v,必定是 k 赋值;

2) 设化赋值 v 不是平凡的, $\operatorname{tr} \operatorname{deg}(K/k) = n < \infty$,那么 $\operatorname{res-dim}_k v \leq n - 1$.

证明 1) 任取 $0 \Rightarrow a \in \mathbb{Z}$, 适合下面的方程式

$$a^{l} + b_{1}a^{l-1} + \cdots + b_{l} = 0, \quad b_{l} \in k.$$

应用定理7.2, 必有 $0 \le i < i \le l$, 使

$$v(b_ia^{l-i}) = v(b_ia^{l-i}),$$

故

$$v(a^{i-1}) = v(b_i) - v(b_i) = 0 - 0 = 0.$$

所以 $v(a) = 0, a \in R_v$.

2) 由于v不是平凡的,所以 m_v =(0)。 任取 $x \in m_v \setminus \{0\}$ 。 根据 1),即知 $x \in K$ (因为 $K \setminus \{0\}$ 的元素都是可逆元)。 所以x 对 k 是超越的。而在典型映射 $\sigma: R_v \to R_v / m_v$ 之下, $\sigma(x) = 0$,所以

$$\operatorname{res-dim}_k v \leq n-1$$
.

下面的定理给出了 rank $v(=\operatorname{rank} R_v)$ 与 res-dim v 之间的关系。

定理7.5 设υ是た赋值、K对化的超越次数

$$\operatorname{tr} \operatorname{deg}(K/k) = n < \infty$$
.

那么

rank
$$v + res - \dim v \leq n$$
.

证明 设 $L_1 \supseteq L_2$ 是K的两个k赋值环。 m_1, m_2 是它们的极大理想。又设 $p = m_1 \cap L_2$ 。根据定理7.4,

$$L_1 = (L_2)_*, \quad \mathfrak{m}_1 = \mathfrak{p}(L_2)_*,$$

所以 $L_1/m_1 = (L_2)_*/p(L_2)_* \supset L_2/pL_2$. 令 $K = L_1/m_1$, $L_2 = L_2/pL_2$, 不难看出 $K \supset k$, L_2 是 K 的 k 赋值环,它的极大理想 $m_2/p \Rightarrow (0)$ (否则 $L_2 = (L_2)_* = L_1$, 矛盾),所以不是平凡的。显然

res-dim L_2 = res-dim L_2 , tr deg(K/k) = res-dim L_1 .

根据上面的引理, 我们得出

res-dim
$$L_2$$
L_{I \bullet}

回到本定理。设 rank $v = \dim R_v = r$,则存在 R_v 的 素 理 想 链

令 $L_i = (R_v)_{*,i}$, 则

$$L_1 \supseteq \cdots \supseteq L_r = R_{v \cdot}$$

故

 $n = \text{tr deg}(K/k) > \text{res-dim } L_1 > \dots > \text{res-dim } L_r = \text{res-dim } R_v$. 立得 $n > r + \text{res-dim } R_v = \text{res-dim } v + \text{rank } v$.

(我们常把v与R。等同起来,就像在上面证明中 把 rank R。记为 rank v, 把 res-dim v 记为 res-dim R。一样。) |

例8 参见例 3 的 4). 设 K = C(x,y), $G = Z + Z\sqrt{2}$, $\nu(f(x,y)) = \operatorname{ord}_t f(t,t^{\sqrt{2}})$.

那么, $\operatorname{tr} \operatorname{deg}(K/C) = 2$, $\operatorname{res-dim} v = 0$, $\operatorname{rank} v = 1$. 所以 $\operatorname{tr} \operatorname{deg}(K/C) > \operatorname{res-dim} v + \operatorname{rank} v$.

习 藪

- 1. 写出 Q 的所有赋值。
- 2. 设K是域,找出K(x)的所有赋值 v,使 ∀ a∈K, v(a)
 =0.
 - 3. 设R是唯一分解整环,p是素元,证明 $R_{(p)}$ 是赋值环。
- 4. 设 v_p 表示 Q 內的 p-adic 赋值。在域 $K = Q(\sqrt{5})$ 內, 对 $5k \pm 2$ 型素数 p 及 $a = a + b\sqrt{5} \div 0$ ($a,b \in Q$),定义

$$v(a) = \frac{1}{2}v_p(a^2 - 5b^2).$$

证明v是K內的一个赋值。

- 5. 试找出一个整环R及其中一个分母系D, 使 R_D 不是 R 的比域K的赋值环。
- 6. 令 $K = C(x_1, \dots, x_n)$, 又设 $a_1, \dots, a_n \in R$, 在 Q 上线性 无关。作变换 $x_i \mapsto t^{\alpha_i}$, 对 $f(x_1, \dots, x_n) \in C[x_1, \dots, x_n]$, 有 $f(x_1, \dots, x_n) \mapsto f(t^{\alpha_1}, \dots, t^{\alpha_n})$.

令 $v(f) = \text{ord } f(t^{e_1}, \dots, t^{e_n})$ 。 对 $f, g \in C[x_1, \dots, x_n]$,令

$$v\left(\frac{f}{g}\right) = v(f) - v(g).$$

证明 v 是 X 的一个赋值, 拜求 rank v.

7. 合 $K = C(x_1, ..., x_n)$, 对 $f(x_1, ..., x_n) \in C[x_1, ..., x_n]$, 定义

 $\nu(f) = f(x_1, \dots, x_n)$ 中最低次项的次数。

又介v(f/g) = v(f) - v(g)。证明v是K的一个赋值,试术rankv及v的赋值环。

- 8. 设R是一个局部主理想整环,证明R是它的比域K的一个赋值环,且对应的赋值是离散赋值。
 - 9. 设 v 是域K的赋值,任取 $f(x) = \sum_{i=0}^{n} a_i x^{n-i} \in K[x]$,定

义

$$v(f) = \min_{i} \{v(a_i)\}.$$

又令 v(f/g) = v(f) - v(g)。 问 v 是否为域 K(x)的赋值?

10. 续上题。设 0 是实赋值。我们定义

$$v(f) = \min_{0 \le i \le n} \{v(a_i)/i\}_*$$

又合v(f/g) = v(f) - v(g), 同v是否为K(x)的赋值?

- 11. 证明赋值 v 是一秩的 \iff v 的全序群 G 有阿 基 米 得性质,即任给 $a,b\in G$, a>0, 那么存在 n, 使 na>b.
- 12. 设 $f(x,y) \in C[x,y]$, 不可约. 又 设 $(a_1,a_2) \in C^2$, 使得

$$f(a_1,a_2)=0,$$

但 $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial y}$ 在点 (a_1,a_2) 不全为0,令

$$R = \mathbf{C}[x,y]/(f(x,y)) = \mathbf{C}[x,y].$$

又设 $m = (\mathbf{z} - a_1, \mathbf{y} - a_2)$ 为 R 的一个极大理想, 证 明 R_u 是 R 的 比域 R 的一个赋值环, 且对应的赋值是离散赋值。

- 13. 设R是整环但不是域,证明下列命题等价,
 - (1) R是局部诺德环, 共极大理想是主理想;

(2) 存在一个素元 $t \in R$, 使 R 內每个非常元素 $x = \pi U$ 以唯一 地表示成 $x = ut^n$,其中 u 为可逆元而 n 是非负整数。

§ 2 赋值的存在及扩充

设已给一域 K, ν 是它的一个赋值,赋值环为 R_v , 极大理想为 m_v 。又设 S 是 K 的一个子环。当 R_v $\supset S$ 时,我们称 ν 在 S 上是**有限的。**例如,K = C(x),S = C[x]。任何一个

$$R_v = \mathbf{C}[x]_{(x-a)} \quad (a \in \mathbf{G})$$

在5上都是有限的。另有一个

$$R_v = C[x^{-1}]_{t=x^{-1}}$$

在 S 上是无限的。当 R_v \supset S 时, m_v \cap S=p 是 S 的素理想,称为 v 在 S 上的中心。例如,在上面的例子中, $C[x]_{(x-a)}$ 的 中心即是 (x-a),相应于几何上的点 x=a。而 $C[x^{-1}]_{(x^{-1})}$ 相应于无穷远点 $x=\infty$ 。它在C[x] 上是无限的,也没有中心。

如果S是一个局部环,m是它的极大理想,那么是否存在一个赋值环 R_{ν} ,使 ν 在S上是有限的,而且 ν 在S的中心即是m呢?我们将证明确实存在这样一个 ν 。

引理 设S是域K的子环,I是S的真理想。任取 $0 \Rightarrow a \in K$,那么,IS[a]是S[a]的真理想,或者 $IS[a^{-1}]$ 是 $S[a^{-1}]$ 的真理想。

证明 假设 IS[a] = S[a], 且 $IS[a^{-1}] = S[a^{-1}]$, 我们要导出一个矛盾。我们有下面二式

(1)
$$1 = \sum_{i=0}^{n} b_{i} a^{i}, \quad b_{i} \in I,$$

(2)
$$1 = \sum_{j=0}^{l} c_{j} a^{-j}, \quad c_{j} \in I_{\bullet}$$

今n. 为 满足(1),(2)二式的最小的正整数,不妨又设 $n \ge l$. 由 (2)式又得

(3)
$$(1-c_0)a^n = \sum_{j=1}^{i} c_j a^{n-j},$$

将(1)式乘以 $(1-a_0)$ 后,以(3)式代入其右端最高次项,有

$$1 - c_0 = (1 - c_0) \sum_{i=0}^{n-1} b_i a^i + b_n \sum_{j=1}^{l} c_j a^{n-j}.$$

将此式左端的 c_0 移至右端幷整理,则得到一个系数均在了中但次数小于n的a的多项式,这与n的选取相矛盾。

定理7.6(存在定理) 1) 设S是域K的F 环,I是S的理想, $I \Rightarrow S$ 。那么,存在K的一个赋值v,使

$$R_v \supset S$$
, $m_v \cap S \supset I_1$

2) 更进一步,设S是局部环,m是它的极大理想。那么,存在K的一个赋值v,使 $R_v \supset S$, $m_v \cap S = m$,即 v在S的中心是 m_v

证明 1) 应用 Zorn 引理。令

$$\mathcal{F} = \{R: R \in K$$
的子环, $R \supset S$, $IR \rightarrow R\}$.

显然 $S \in \mathcal{F}$,所以 $\mathcal{F} \neq \emptyset$ 。包含关系"二"给出 \mathcal{F} 的一个半序。设 $\{R_a\}$ 是 \mathcal{F} 的一个链(即全序子集)。令 $R^* = \bigcup R_a$ 。我 们 要说明 $R^* \in \mathcal{F}$ 。假设 $IR^* = R^*$,那么有

$$1 = \sum_{i=1}^{t} a_i b_i, \quad a_i \in I, \ b_i \in R^* = \bigcup R_{a_\bullet}$$

于是,存在一个 α ,使 $b_i \in R_a$ ($\forall i=1,\dots,l$)。 立得 $IR_a=R_a$,与 $R_a \in \mathcal{F}$ 相违。所以 $IR^* \rightleftharpoons R^*$,即 $R^* \in \mathcal{F}$ 。因此, \mathcal{F} 适合 Zorn引 理的条件。

令R是**牙的**一个极大元。我们要证明R是一个赋值环。任取 $0 \Rightarrow a \in K$,应用上面的引理, $IR[a] \Rightarrow R[a]$ 或 $IR[a^{-1}] \Rightarrow R[a^{-1}]$ 。因此, $R[a] \in \mathcal{F}$ 或 $R[a^{-1}] \in \mathcal{F}$ 。但已经知道R是 \mathcal{F} 的极大元,立得R[a] = R或 $R[a^{-1}] = R$,即 $a \in R$ 或 $a^{-1} \in R$ 。

2) 由于 $1 \in m_v$, 所以 $m_v \cap S = S$ 。 于是 必有 $m_v \cap S = m$ 。 【 **采** 1 设 S 是一个整环,但不是域。又设 域 $K \supset S$ 。 那么存

在K的一个非平凡的赋值 v. 使得 v 在S上是有限的,即 $R_v \supset S_{\bullet}$.

证明 取 S 的一个非零素理想p。在上定理的 1)中令 I = p即可。

 \mathbf{x} 2 一个域 K 只有平凡赋值 \longleftrightarrow K 是素域 $\mathbf{z}/p\mathbf{z}$ 的代数扩域、

证明 \Longrightarrow . 假若K的特征是 0,则 $K \supset Z$. 应用系 1,令 S = Z ,则导致 K 有一个非平凡的赋值,与已知条**件 相 违** . 所以 K 的特征 $p \neq 0$. 又假设 K 不是 Z/pZ 的代数扩域,则存在 $y \neq Z$ 超越的元素 $x \in K$. 于是 $K \supset (Z/pZ)[x]$ 。 又应用系 1,令 S = (Z/pZ)[x] ,又得出 K 的一个非平凡赋值 .

一、令 R_v 是K的一赋值环,则 R_v \ni 1, 所以 R_v \bigcirc Z/pZ. 于是v 是Z/pZ赋值。根据定理 7.5 前面的引理中的 1), 立得本系。】

定理7.7(扩充定理) 设 $L \in K$ 的扩域。那么,任给K的赋值环 R_v ,都存在L的一个赋值环 R_v ,使

$$R_{w} \cap K = R_{v}$$
, $m_{w} \cap K = m_{v}$,

这里 m_w 和 m_s 分别是 R_w 和 R_s 的极大理想。

证明 用上面的定理,存在L的赋值环 R_{10} ,使

$$R_w \supset R_v$$
, $m_w \supset m_{v*}$

任取 $a \in K \setminus R_v$,則 $a^{-1} \in m_v \subset m_v$,所以 a^{-1} 在 R_v 中不是可逆元。因此 $a \in R_v$, $a \in R_v \cap K$ 。这就证明了 $R_v \cap K = R_v$ 。于是也有

$$\operatorname{Tm}_{w} \bigcap K = \operatorname{m}_{v}. \quad \blacksquare$$

系 设K是k的扩域。那么,K只有平凡的k 赋值 $\longleftrightarrow K$ 是k的代数扩域。

证明 \Longrightarrow . 任取 $a \in K$. 如果 a对k是超越的,那么,k(a)有一个非平凡的 k 赋值环 $k[a]_{(a)}$. 根据上面的定理,它可以扩充成K的一个非平凡的 k 赋值.

❤️. 应用定理7.5前面的引理。 【

定理7.7中所说的 R_w 称为 R_v 的一个扩充, R_v 称为 R_w 在K上

的限制。

例 9 设 K = C(x,y), $S = C[x,y]_{(x,y)}$. 则 S 是一个局部 环。我们考虑在S 上是有限的,而且在S 的中心是(x,y)S的C 赋 值 v.

根据定理7.5,

rank $v + \text{res-dim } v \leq 2 = \text{tr deg}(K/C)$.

所以rank v=1或 2. 当rank v=1时, v是一个实赋值(参见例6), res-dim v=0 或 1.

v 按照其全序群G的性质又可分成三类: 1) $G\approx Z$; 2) $G \not\approx Z$, $G\approx G^*\subset Q$; 3) $G\approx Z+Zr$, 此处 r 是一个 无理数。 我们分别举一些例子如下。

1) $\operatorname{rank} v = 1$, $\operatorname{res-dim} v = 1$, $G \approx \mathbb{Z}$. \diamondsuit $R_v = \mathbb{C}(x/y)[y]_{(y)}.$

不难看出, $R_v \supset S$, $m_v = yR_v \ni x$, $m_v \cap S = (x,y)S$, $R_v \not= L$ 诺德正则局部环, 也即是赋值环。 又易见 $R_v / m_v \approx C(x/y)$, 故 res-dim v = 1.

叉,如果我们用 $x-y^*$ 代替x,就得出许多不同的例子了。

2) rank v = 1, res-dim v = 0, $G \approx Z$ 。定义映射a: C(x,y) $\rightarrow C((t))$, a(x) = t, $a(y) = te^t$, 这里 e 是对数函数的底。因为 e^t 是超越函数,所以 t 与 te^t 是代数无关的,因此 a 是一个嵌入 映射。已知 C[[t]] 是一个一维 诺 德正则局部环,C((t)) 是它的 比域,所以 C[[t]] 是 C((t))的一个赋值环。不难检验,

 $C[[t]] \supseteq a(S), \quad tC[[t]] \cap a(S) = a((x,y)S),$

$$C \subseteq C[x,y]_{(x,y)}/(x,y)C[x,y]_{(x,y)} \subseteq R_v/m_v$$
$$\subseteq C[[t]]/tC[[t]] = C,$$

所以 $R_v/m_v = C$, res-dim v = 0. 又因为C[[t]]的全序群是Z,不难看出,v的全序群也是Z.

rank v = 1, res-dim v = 0, G≈Z, G≈G*⊂Q. 类似于
 2)的构造方法, 令

$$C((i)) = \left\{ \sum_{n=1}^{\infty} a_i t^n : \{n_i\}$$
 是Q的离散子集 $\right\}$.

(所谓离散子集即无极限点的子集。)读者自行证明 C《《》是一个域。任意取定一个

$$h(t) \in C(\langle t \rangle), \qquad h(t) = \sum_{i=1}^{\infty} a_i t^{n_i},$$

其中n>0,诸n的公分母沒有上限。我们定义,对于 $f(x,y)\in C(x,y)$,

$$v(f(x,y)) = \operatorname{ord}_{t} f(t,h(t)).$$

读者自行证明,这就是我们所要的赋值。

4) $\operatorname{rank} v = 1$, $\operatorname{res-dim} v = 0$, $G \approx Z + Zr$, r 是 无 理 数。定义映射 β : $C(x,y) \rightarrow C(t,t')$, $\beta(x) = t$, $\beta(y) = t'$ 。定义赋值 v 如下。

$$v(f(x,y)) = \operatorname{ord}_t(\beta(f(x,y))).$$

5) rank v = 2(res-dim v 自然是 0) 。取G=Z⊕Z, 用字母全序, 定义v(x) = (1,0), v(y) = (0,1)。

从上面这个例子,我们看到C(x,y)有无穷无尽的赋值。这是因为 $\dim S=2>1$ 的关系。我们再举一些比较简单的例子。

例10 1) 讨论在Z上有限的赋值。设Q的赋值 v 在Z上是有限的。令 R_v 是它的赋值环, m_v 是 R_v 的极 大 理想。又令 $(p)=m_v$ $\cap Z$ 。如果(p)=(0),那么, $Z^*=Z\setminus\{0\}$ 是 R_v 的可逆元集,故 $R_v=Q$,即 v 是平凡赋值。否则,p 是一个素 数, $Z\setminus\{p\}$ 是 R_v 的可逆元集。因此 $R_v \supset Z_{(p)}$,由定理 T_v 4,即有

$$R_v = (\boldsymbol{Z}_{(p)})_{(p)} = \boldsymbol{Z}_{(p)}$$

于是我们得出了所有在2上有限的赋值。

2) 设S=k[x], K=k(x), 此处 k 是域、设K的 k 赋値 v 在

S上是有限的, R_v 是它的赋值环, m_v 是 R_v 的极大理想。令 $(f(x)) = m_v \cap S_v$

与上面一样,我们得出f(x) = 0或f(x)是一个不可约多项式, $R_{v'} = K \text{ 或 } R_{v} = k[x]_{\{f(x)\}}.$

设K的 k 赋值在S 上不是有限的,那么 $x \in R_v$ (否则, $R_v \supset k$, $x \in R_v \Longrightarrow R_v \supset k[x] = S$),

$$x^{-1} \in \mathfrak{m}_{v} \subset R_{v}$$
, $R_{v} \supset k[x^{-1}]$,

$$\mathbf{m}_{v} \cap k[x^{-1}] = x^{-1}, \quad R_{v} = k[x^{-1}]_{(x^{-1})}.$$

赋值的用途之一是下面的定理。

定理7.8 1) 赋值环R。是整数封闭的;

- 2) 任给域K的一个子环S,那么,S在K内的整数闭包S是在S上有限的所有赋值环的交集,
- 3) 更进一步,设p是S的一个素理想,S是在S上的中心为p的所有赋值环的集合,那么

$$S$$
,的整数闭包 $S_* = \bigcap_{R_v \in \mathcal{I}} R_v$.

证明 1) 设 $x \in K$ 对 R_v 是整数相关的,即 x 适合 $x^n + a_1 x^{n-1} + \cdots + a_n = 0$, $a_i \in R_v$.

如果 $x \in R_v$,那么 $x^{-1} \in R_v$,以 x^{n-1} 去除上式,得到矛盾的结果。 $x = -a_1 - a_2 x^{-1} - \dots - a_n x^{-(n-1)} \in R_v.$

2) 由 1),S 含于所有在 S 上是有限 的 赋 值 环里。反过来说,设 x 不是对 S 整数相 关 的,令 $y = x^{-1}$,S' = S[y]。我们要先说明 y 不是 S' 的可逆元。假若它是可逆元,那么,有

$$x = y^{-1} = b_0 y^m + b_1 y^{m-1} + \cdots + b_m, \quad b_i \in S_*$$

两边乘以x**,得

$$x^{m+1} - b_m x^m - \cdots - b_1 x - b_0 = 0$$
,

即x对S为整数相关的,这与对x的假设相违。所以y不是S'

的可逆元,故 $yS' \Rightarrow S'$ 。根据定理7.6,存在一个赋值环 R_v ,使 $R_v \supset S' \supset S$, $y \in m_v$,这里 $m_v \in R_v$ 的极大理想。所以 y 在 R_v 中不是可逆元,即 $x = y^{-1} \in R_v$ 。

3) 应用 2), 只要证明 " $R_w \supset S$, \Longrightarrow 存在 $R_v \in \mathcal{F}$, 使 $R_w \supset R_v$ " 就足够了, 这里 R_w 是 K 的赋值环,

设 $\mathbf{m}_{w} \cap S = \mathbf{q} \leq \mathbf{p}_{w}$ 在与w 相伴的位 σ 的作用下,也就是在典型映射 $\sigma: R_{w} \rightarrow R_{w}/\mathbf{m}_{w} = K_{1}$ 的作用下,记

$$S_1 = \sigma(S_*), \quad \mathfrak{p}_1 = \sigma(\mathfrak{p}S_*),$$

则 p_1 是 S_1 的极大理想。于是,存在 S_1 的一个赋值u,使

$$R_u \supset S_1$$
, $m_u \cap S_1 = p_1$.

 $\Phi R_v = \sigma^{-1}(R_u)$, 显然有 $R_w \supset R_v \supset S$ 。 我们要说明 R_v 是一个赋值环及 $m_v \cap S = p$ 。 任取 $a \in R_v$ 。 如果 $a \in R_w$,则

 $a \in R_v \iff \sigma(a) \in R_u \Longrightarrow \sigma(a)^{-1} \in R_u \Longrightarrow a^{-1} \in R_v$.

如果a ⊂ R_w, 则a-1 ∈ m_w, 于是

$$\sigma(a^{-1}) = 0 \in R_u \Longrightarrow a^{-1} \in R_u$$

所以R。是赋值环。我们又有

$$\mathfrak{m}_{\mathfrak{p}} \cap S = \mathfrak{p} \iff \mathfrak{m}_{\mathfrak{p}} \cap S_{\mathfrak{p}} = \mathfrak{p} S_{\mathfrak{p}} \iff \mathfrak{m}_{\mathfrak{u}} \cap S_{\mathfrak{1}} = \mathfrak{p}_{\mathfrak{1}}.$$

 \mathbf{X} 如果 S 是整数封闭的,那么 $S_v = \bigcap_{R_v \in \mathcal{F}} R_v$.

习 题

- 1. 在Q內找一个赋值 v, 使满足下列两条件中某一条:
 - (1) $R_{\nu} \supset Z$, $m_{\nu} \cap Z \supset 6Z$,
 - (2) $\mathcal{L} S = Z_{(7)}$. $R_v \supset S$, $m_v \cap S = 7S$.
- 在Q(i)內找一个赋值 v , 使
 R_n□Z[i] , m_n∩Z[i] = (2+i)Z[i].
- 3. 在Q內给定赋值环 $S = Z_{(1)}$. 试在Q(i)內找出赋值w,使

$$R_{w} \cap Q = S \approx m_{w} \cap Q = 7S_{\bullet}$$

- 4. 设 k 为域,在k(x,y) 內 考虑子 环 k[x,y] 对素理想(x)的局部化环 $S = k[x,y]_{(x)}$. 试求 k(x,y)的一个赋值 v ,使得 $R_v \supset S$,且 $m_v \cap S = (x)S$ 。
- 5. 设R 是域K的子环但不是域,而且不存在K的非域子环 真包含R (即R 具有极大性),证明R 是K 的一个赋值环。
- 6. 设R 是域K的子环,p 是R的一个旗素理想。证明存在 K的一个赋值环 R_p ,使 $R_p \supset R$ 且 $m_p \cap R = p$.
- 7. 利用上一题证明: 设R 是整环, S 是R 的子环, R 对 S 整数相关, 那么对 S 内任一素理想p, 存在R 内素理想q, 使 $q \cap S = p$.
- 8. 试求一整环S,它整数封闭,但 不 是 它 的比域的赋值 环。
 - 9. 设p为素数, $Z_{(p)}$ 为Z对(p)的局部化环,证明

$$\bigcap_{\mathbf{Z}_{(p)}} \mathbf{Z}_{(p)} = \mathbf{Z}_{\bullet}$$

10, 参考例 9 的 3), 证明 C 《t》是一个域。

11. 令

12. 设R 是环S 的孑环, $x_1, \dots, x_n \in S$, 满足下列方程,

$$x_{i}^{n} + f_{i}(x_{1}, \dots, x_{n}) = 0$$

其中 $f_i(y_1, \dots, y_n) \in R[y_1, \dots, y_n]$, $\deg f_i(y_1, \dots, y_n) < n_i$ 。 证明 x_1, \dots, x_n 对 R 都 是 整 数 相 关 的 。

- 13. 任取 $m/n \in \mathbb{Q}$, (m,n) = 1, $n = \pm 1$. 用定 選 7.8 证 明 m/n 不是对 \mathbb{Z} 整数相关的。
 - 14. 判断 x/y^3 是否对 $C\left[\frac{x^2-y^3}{x}, \frac{x}{y}\right]$ 整数相关。

§3 实 赋 值

设 v 是域 K 的一个非平凡的实赋值,这就是说,它的全序群 $G_{v}\subset R$, $G_{v}\to \{0\}$ 。 也等于说, r ank v=1。 读者请参见例 6 及例 7 . 此时 域 K 称 为 一 个 赋 值 域。我们用 v 定义一个绝对值 " $\{0\}$ "。

$$|a|_{v} = e^{-v(a)},$$

 $|a|_{v} = e^{-w} = 0.$
 $|a|_{v} = e^{-w} = 0.$

此处, e不一定是自然对数的底。那么, 它适合:

$$1^*) |ab|_v = |a|_v |b|_v$$

2*)
$$|a+b|_v \leq \max\{|a|_v, |b|_v\},$$

而赋值 $KR_v = \{a: |a|_v \le 1\}$, R_v 的极大理想 $m_v = \{a: |a|_v < 1\}$. 应用 I^*)及 2^*),我们在 K 里定义一个距离 d_v 如下:

$$d_v(a,b) = |a-b|_{v_\bullet}$$

不难看出, do适合距离的三个条件:

- 1) $d_v(a,b) \geqslant 0$, $\coprod d_v(a,b) = 0 \iff a = b$;
- 2) $d_v(a,b) = d_v(b,a)$;

Ę.

3) $d_v(a,c) \leq d_v(a,b) + d_v(b,c)$.

(事实上,可以用强三角不等式代替 3)。) 因此,对 d_v 而言, K 是一个度量空间。于是,我们可以通过柯西序列 $\{a_i\}$ 得到K 的完备化集K。请注意,嵌入映射 $a: K \to K$,即是 $a(a) = \{a,a,\dots,a,\dots\} = \{a\}$ 。如通常一样, $\hat{K} = \hat{K}$,即 \hat{K} 是一个完备化集。请参见第一章 $\{a,b\}$ 6及第六章 $\{a,b\}$

$$v(\{a_i\}) = \lim_{i \to \infty} v(a_i),$$

2) $\hat{R}_{v}/\hat{m}_{v} \approx \hat{R}_{v}/\hat{m}_{v}$, $G_{v} = \hat{G}_{v} = \{v(\{a_{i}\}): \{a_{i}\} \in \hat{R}\}$.

证明 1) 不难看出K是一个环。我们仅证 K 的每一个非常元素 $\{a_i\}$ 都是可逆元。任给 $0<\varepsilon\in R$,都存在一个正整数 $N(\varepsilon)$,使 $n,l>N(\varepsilon)\Longrightarrow |a_n-a_i|_v<\varepsilon$ 。

于是显见存在正整数L, 使

$$l>L \Longrightarrow |a_1|_{v} > r>0$$

令 $b_i = 1(\forall 1 \leq i \leq L)$, $b_i = a_i^{-1}(\forall i > L)$. 则

$$\{a_i\}\{b_i\} = \{a_1, \dots, a_L, 1, \dots, 1, \dots\} \sim \{1\}$$

现在我们只要证明 $\{b_i\}$ 是柯西序列便足够了。当 $n,l>\max\{N(\epsilon),L\}$ 时,有

$$|b_n - b_i|_v = \left| \frac{a_i - a_n}{a_n a_i} \right|_v \leqslant r^{-2} \varepsilon.$$

放{b_i}是柯西序列。

显然, $v(\{a_i\}) = \lim_{i \to \infty} v(a_i)$ 是 R的一个赋值。

2) 我们先证 $G_v = G_v$ 。因为

$$v(\{a\}) = \lim v(a) = v(a),$$

所以 $G_v \subset G_v$ 、反之,假设有 $l \in G_v \setminus G_v$,那么 $l = v(\{a_i\})$ 必然是 G_v 的一个极限点。我们可以选取 $\{a_i\}$ 的一个子序列 $\{b_i\}$,使 $v(b_i)$ 皆不相同。于是当i,j充分大时(无妨设 $v(b_i) < v(b_j) < (+1)$,有(参见定理7.2)

$$v(b_i - b_j) = \min\{v(b_i), v(b_j)\} = v(b_i) < l + 1,$$

即 $d_{v}(b_{i},b_{j}) > e^{-1-1} > 0$ 。 所以 $\{b_{i}\}$ 沒有极限(实际上证明了一个较强的事实: 如果 $\lim |a_{i}|_{v} \neq 0$,此处 $\{a_{i}\}$ 是一个柯西序列,那么, $v(a_{i})$ 当:充分大后必取一定值)。

我们现在证明 $R_v/m_v \approx \hat{R}_v/m_v$. 不难看出,由嵌入映射 $\sigma: K \rightarrow K$

诱导出 R_o/m_o 到 R_o/\hat{m}_o 的一个环映射。由于二者是域,所以仅须说明这个环映射是满射、设有柯西序列 $\{a_i\}\in R_o\backslash\hat{m}_o$,则 $v(\{a_i\})$

=0。由于 $\{a_i\}$ 是柯西序列,所以必存在正整数 i ,使 $v(a_i-a_i)>0$ 、 $\forall i,j \geq i$ 。

由我们在证明 1)的最后所作的说明,不妨假定

$$v(a_i) = 0, \forall i \geq l$$

于是 $a_i \in R_v$,而且 $v(a_i - a_i) > 0$ ($\forall i \ge l$) $\Longrightarrow v(\{a_i\} - \{a_i\}) > 0$ $\Longrightarrow \{a_i\} - \{a_i\} \in \mathring{m}_v$,即 $\{a_i\} \in \mathring{R}_v/\mathring{m}$ 中的象与 $\{a_i\}$ 的象相同,也即前面所说环映射是满射。

例11 设在是如上所述的完备域。考虑

$$\subset R[[x_1,\cdots,x_n]].$$

$$f(x_1, \dots, x_n) = \sum f_{1_1 \dots 1_n} x_1^{i_1} \dots x_n^{i_n},$$

那么,它的收敛半径是

 $r = \sup\{L^{-1}: 存在 A \in R, \ \phi|f_{i_1\cdots i_n}|_v \leq AL^{i_1+\cdots+i_n}\}$ 。 显然,r > 0。我们要说明,只要 $|a_i|_v < r(\forall i = 1, \cdots, n)$,那么 $f(a_1, \cdots, a_n) \in R$ 。这就是说,在原点 $(0, \cdots, 0)$ 附近可以计算 $f(a_1, \cdots, a_n)$ 。设 $a = \max\{|a_i|_v\}$,则 a < r。故存在 A, L,使 $a < L^{-1} < r$ 且 $|f_{i_1\cdots i_n}|_v \leq AL^{i_1+\cdots+i_n}$ 。令 $f(x_1, \cdots, x_n)$ 的部分和为

$$f_1^*(x_1, \dots, x_n) = \sum_{i_1 + \dots + i_n \le 1} f_{i_1 \dots i_n} x_1^{i_1} \dots x_n^{i_n}$$

那么,按照强三角不等式,有

所以
$$|f(a_1, \dots, a_n) - f_i^*(a_1, \dots, a_n)|_v \leq A(aL)^i$$

$$f(a_1, \dots, a_n) = \lim_{l \to \infty} f_i^*(a_1, \dots, a_n) \in K.$$

这与初等分析学的方法是一致无二的。

我们考虑三个代数实体:

$$\hat{K}[x_1,\cdots,x_n] \subset \hat{K}\{\{x_1,\cdots,x_n\}\} \subset \hat{K}[[x_1,\cdots,x_n]].$$

在诸集的意义下,三者都建立了几何学,即代数 几 何 学、解 析 几 何 学 及 形式几何学。在解方程式的意义下, $K[x_1, \cdots, x_n]$ 中 元素的解是全局性的, $K\{\{x_1, \cdots, x_n\}\}$ 的元素求解是在微区内进行的,而形式幂级数的解是沒有意思的。 \blacksquare

设域 K上有 n个实赋值 v_1 , w_n , 各自在 K 上定义了一个距离 d_{v_1} , w_i , 各自引生了一个拓扑。这些拓扑之间有沒有什么关系?我们看一些例子。令 K=Q。在第一章 § 4,我们 研 究了中国剩余定理。设 d_i 是与素数 p_i 相对应的距离。由中国剩余定理,对于任给的 $a_i \in Z$,下面的一组同余式有解。

$$x \equiv a_i \pmod{p_i^{m_i}}, \quad i = 1, \dots, n_*$$

换句话说,即存在x∈Z,使

$$d_i(x,a_i) < e^{-\pi i}$$
, $\forall i = 1, \dots, n$,

这里 e 是一个大于 1 的实数。这也就是说, x 对这些不同的拓扑而言,可以同时逼近 a_1, \dots, a_n 到任何精确度。这 表 现 了这些拓扑的独立性。我们再看另外一个例子。

例12 复变函数中有所谓"Mittag-Leffler 定理",任给 C的一个离散子集 $\{a_i\}$ 及在每一个 a_i 附近的一个亚纯函数的主部

$$g_i(x-a_i) = \sum_{i=1}^{\sigma_i} a_{ij}(x-a_i)^{-i},$$

那么,存在一个亚纯函数 f(x), 使得: 1) 它在 $\{a_i\}$ 之 外是全纯的; 2) g_i 是它在 a_i 的主部。

令 $K = \{$ 极点集是离散的亚纯函数 $\} \cup \{ 0 \}$ 。 用黎曼 定理,我们可以证明 K 是域。令

$$v_a(f(x)) = \operatorname{ord}_{x-a}(f(x)), \quad f(x) \in K$$

不难看出, v_a 是K的一个赋值。我们 可以把Mittag-Leffler定理的结论改写如下。

$$d_{\mathfrak{p}_b}(f) \leqslant 1, \quad \forall b \in \{a_i\};$$
 $d_{\mathfrak{p}_a}(f - g_i) \leqslant 1, \quad \forall a \in \{a_i\}.$

与例12不同的,在代数学中,只处理有限 多 个 赋 值 v_1 , …, v_n 。 我们先证明下面的引理。

引理 设 v_1, \dots, v_n 是K的不等价的赋值,即 $R_{v_i} \neq R_{v_j}$ ($i \neq i$).

- 1) 如果 v_i 都是一秧的,那么 $R_{v_i} \subset R_{v_i} (\forall i \pm j)$;
- 如果 R_{v_i} ← R_{v_i} (∀ i ← i), 那么,存在 b₁, ..., b_n ∈ K, 使

 $b_i \in R_{v_i} \setminus m_{v_i}$ ($\forall i=1,2,\cdots,n$), $b_i \in m_{v_i}$ ($\forall j \neq i$)。 此处 m_{v_i} 是 R_{v_i} 的极大理想。

证明 1) 假设R_{v₁} ⊂ R_{v₁}, 那么, 根据定理7.4,

$$R_{v_i} = (R_{v_i})_{i,j}$$

其中 $p=m_{v_i}\cap R_{v_i}$ 。由于 R_{v_i} 是一秩的,所以p=(0)或 m_{v_i} ,故 $R_{v_i}=K$ 或 R_{v_i} 。

2) 先考虑 n=2 的情形。已知 $R_{v_1} \subset R_{v_2}$,那么,存在 $c \in R_{v_1} \setminus R_{v_2}$,如果 $c \in R_{v_1} \setminus m_{v_1}$,那么

$$b_1 = c^{-1} \in R_{v_1} \setminus m_{v_1}, \quad b_1 \in m_{v_2},$$

 b_1 即符合引**理的**要求。如果 $o \in m_{v_1}$,则 $1 + c \in R_{v_1} \setminus R_{v_2}$ 且 $1 + c \in R_{v_1} \setminus m_{v_1}$,那么 $b_1 = (1 + c)^{-1} \in R_{v_1} m_{v_1}$, $b_1 \in m_{v_2}$ 。同法可作出 $b_1 \in R_{v_1} \setminus m_{v_2}$,可法可作出 $b_2 \in R_{v_1} \setminus m_{v_2}$,可法可作出 $b_3 \in R_{v_3} \setminus m_{v_3}$,

考虑 n>2 的情形。用归纳法。假设已经解决 n-1 的情形,即存在 $c \in R_{v_1} \setminus m_{v_1}$, $c \in m_{v_i}$ $(i=2,\cdots,n-1)$ 。 我们先找一个 c_n ,使 $c_n \in R_{v_1} \setminus m_{v_1}$, $c_n \in m_{v_i}$ $(i=2,\cdots,n-1)$,且 $c_n \in R_{v_i}$ 。 如果 $c \in R_{v_i}$,即令 $c_n = c$ 。如果 $c \in R_{v_i}$,我们考虑几种可能性,令 σ : $R_{v_i} \to R_{v_i} / m_{v_i}$ 为典型映射,

(a) 如果 $\sigma(c) = 1$, 我们令 $c_n = c/(c-1)$,

- (b) 如果 $\sigma(c) = 1$, $\sigma(R_{\nu_1})$ 的特征 +2, 我们令 $\sigma_n = c/(c+1)$;
- (c) 如果 $\sigma(c) = 1$, $\sigma(R_{v_1})$ 的特征 = 2, 我们令 $c_n = (c^3 + c^2 + c)/(c^3 + c + 1)$.

通过对 c_n 的各个赋值的简单计算,即知 c_n 符合上面的 要求。同样地,我们找出 c_i $(i=2,\cdots,n-1)$,使

$$c_i \in R_{v_1} \setminus m_{v_1}$$
, $c_i \in m_{v_i} (j \pm 1, i)$, $c_i \in R_{v_i}$.

令

$$b_1 = \prod_{i=2}^n c_i,$$

则 b₁即符合本引理的要求。同法可求出 b₂, ···, b_n。

定理7.10(運近定理) 设 v_1, \dots, v_n 是域K的实赋值, $G_1, \dots, G_n \subset R$ 是它们的全序群。我们任给 $a_1, \dots, a_n \in K$, $l_1 \in G_1, \dots, l_n \in G_n$ 。那么,存在 $a \in K$,使

$$v_i(a-a_i)=l_i, \quad \forall i=1,\cdots,n.$$

证明 我们分成几段来证明。

1) 只要证明对任意的整数 ℓ, 都存在相应的 ε Κ, 使得

(1)
$$v_i(c-a_i) \geqslant l, \quad \forall i=1,2,\cdots,n$$

便足够了。这因为,我们可以 取 $l>l_i(\forall i)$. 任 取 d_i , 使 $v_i(d_i)$ = l_i . 那么,存在 d ,使

$$v_i(d-d_i) \ge l > l_i$$
, $\forall i = 1, 2, \dots, n_i$

而 $d = (d - d_i) + d_i$, 所以

$$v_i(d) = l_i, \quad \forall i = 1, 2, \cdots, n_i$$

又设 c 适合(1)式, 合 a=c+d, 则有

$$v_i(c+d-a_i) = v_i(d) = l_i, \quad \forall i = 1, 2, \dots, n.$$

2) 应用上面的引理,存在 $b_1, \dots, b_n \in K$,使 $v_i(b_i) = 0$, $v_j(b_i) > 0$, $\forall i \neq i$.

令
$$e_i = b_i / \sum_{j=1}^n b_j$$
. 则

 $v_i(e_i) = 0$, $v_j(e_i) > 0$, $\forall j \neq i$.

而且在典型映射 σ_i : $R_{v_i} \rightarrow R_{v_i} / m_{v_i}$ 作用下, $\sigma_i(e_i) = 1$. 于是 $v_i(e_i - 1) > 0$ ($\forall i$).

3) 令正整数 s 适合下列不等式:

(2)
$$sv_i(e_i-1)+v_i(a_i)\geqslant l, \quad \forall i=1,\dots,n,$$

$$(3) sv_j(e_i) + v_j(a_i) \geqslant l, \forall j \neq i.$$

取 $f_i \in K$ 如下:

$$f_i = 1 - (1 - \theta_i^s)^s$$
, $i = 1, \dots, n_s$

那么

(4)
$$v_i(a_i(f_i-1)) = v_i(f_i-1) + v_i(a_i) = sv_i(1-e_i^s) + v_i(a_i)$$

$$= s(v_i(1-e_i) + v_i(1+e_i + \cdots + e_i^{s-1})) + v_i(a_i)$$

$$\geq sv_i(1-e_i) + v_i(a_i) \geq l_*$$

同时,我们可以看出 $f_i = e_i^* g(e_i)$,此处 g(x)为整系数多项式。 所以 $\nu_j(f_i) \geqslant s\nu_j(e_i)$ 。代入(3)式,立得

$$(5) v_j(f_ia_i) \geqslant l_*$$

令 $c = f_1 a_1 + f_2 a_2 + \cdots + f_n a_n$. 应用 (4)及(5)式,立得(1)式。 讨论 1)上面的定理可以看成中国剩余定理的一般化。

- 2) 上面的定理说明了实赋值的独立性。对任 意 的 赋 值 ν_1 , \dots , ν_n 而言,当 $R_{v_i} \subset R_{v_j} (\forall i \neq j)$ 时,我们称它 们 是 **独立的**。那么,只要它们是独立的,上面的定理还是成立的。
- 3) 应用上面的定理到 C(x)上,我们得出一个类似于Mittag-Leffler 定理的命题。读者试讨论之。

习 题

- 1. 设 v_2, v_3, v_6, v_7 是Q内由素数2,3,5,7决定的赋值。试在Q内找—a, 使 $v_i(a-i)=i$.
 - 2. 在有理函数域Q(x)内由不可约多项式

$$f(x) = x^2 + x + 1$$
; $g(x) = x^3 - 2$

定义两个赋值ロュ,ロ。;

$$v_1\left(f(x)^{\frac{1}{n}}\frac{m(x)}{n(x)}\right)=l, \quad (m(x),f(x))=(n(x),f(x))=1;$$

$$v_2\left(g(x)^{\frac{1}{2}}\frac{m(x)}{n(x)}\right)=l, \quad (m(x),g(x))=(n(x),g(x))=1.$$

试求 $h(x) \in \mathbf{Q}(x)$, 使

$$v_1(h(x)) = -2, v_2(h(x)) = 2,$$

3. 给定域K的互不等价的实驗值 ν_1, \dots, ν_n , 证明对任意不全为零的整数 l_1, \dots, l_n , 关系式

$$l_1v_1(x) + \cdots + l_nv_n(x) = 0$$

不可能对一切K內的非零元素x都成立。

- 4. 试求R(x)对赋值R[x](x2+1)的完备化域。
- 5. 在C(x)內,由赋值环 $C[x]_{(x-n)}$ (n=1,2,3)决定的赋值记为 ν_n . 试求 $f(x) \in C(x)$,使

$$v_n(f(x) - \frac{1}{(x-n)^n}) = n \quad (n = 1, 2, 3)_{\bullet}$$

6. 设 K 是一个完备域, 令

$$(*) \qquad a_0 + a_1 x + \cdots \qquad (a_i \in K)$$

是K上的一个幂级数。以 $|a|(a \in K)$ 表K內的乘法实驗值。若对 $x \in K$,幂级数

$$|a_0| + |a_1| |x| + \cdots$$

在 R 內收敛,則称(*)在点 x 处绝对收敛。证明:存在实数 $r \ge 0$,使当|x| < r 时(*)绝对收敛,而当|x| > r 时不收敛。r 称为(*)的收敛半径。

7. 续上题, 令

$$l = \overline{\lim}_{n \to +\infty} |a_n|^{1/4} .$$

证明r = 1/l。

8. 令 $R = C[x,y]/(y^2 + 2x - 1)$, 又取R的两个极大理想 $m_1 = (x-1,y-i)$, $m_2 = (x-1,y+i)$

(Z, I)为 X, Y 在 R 内的象)。由 R_{**}, R_{**} 所决定的 R 的比域 K 的赋值分别记为 V_1, V_2 。试在 K 内找 — 元素 α ,使

$$v_1(a-1) > 0$$
, $v_2(a+1) \le 0$.

9. 设域K代数封闭,具有实赋值v,证明K对v的完备化域也是代数封闭的。

§ 4 Hensel 引 理

在有理数域 Q 里,我们有普通的绝对值"| |"及实赋值 v_p (它的赋值环是 $Z_{(p)}$)。我们可对它们 取 完备化域,得出 R 及 Q_p (p-adic 数域)。从纯理论的观点来看,R 及 Q_p 都是一样可用的。于是发生了求解 $Q_p[x]$ 的方程式的问题。显然,下面的方程式

$$x^* - p = 0$$
 $(n > 1)$

在 Q_p 中无解。这因为,设 $a^*-p=0$, $a \in Q_p$,则 $nv_p(a) = v_p(a^*) = v_p(p) = 1$.

故 $v_p(a) = 1/n$,但 $1/n \in \mathbb{Z} = G_{v_p}$,矛盾。所以,完备 域 Q_p 不 是代数封闭的。但是, $x^2 + 2 \in Q_s[x]$ 在 Q_s 里有沒有根呢?答案是肯定的。下面的 Hensel 引理,可以部分地回答这 类 问题。我们先证明一个引理。

引理 设 $\delta(x)$ 是 R[x]中的首一多项式,此处 R 是 一个环。 J 是 R 的一个理想。任取 $q(x) \in J[x]$,那么,存在 d(x), $r(x) \in J[x]$,使

$$q(x) = d(x)\delta(x) + r(x)$$
, $\deg r(x) < \deg \delta(x)$.

证明 用欧几里得算法,立得。 |

定理7.11(Hensel 引理) 设域 K 对离散实赋值 v 是完备的。 又设 $\sigma: R_v \rightarrow R_v/m_v$ 是典型映射, $\sigma(a) = \bar{a}$ 、对 $f(x) \in R_v[x]$, 共中 p(x), $\delta(x)$ 均是 $(R_v/m_v)[x]$ 中的首一多项式,且

$$(p(x), \overline{\delta}(x)) = (1)$$
.

那么,存在 $R_v[x]$ 中的两个首一 多 项 式 g(x),h(x),使得 g(x) = g(x), h(x) = $\delta(x)$, 且

$$f(x) = g(x)h(x).$$

证明 由于 $(p(x),\delta(x))=(1)$, 所以 -定存在 $\alpha(x)$, $\beta(x)\in (R_v/m_v)[x]$, 使得

$$\ddot{a}(x)\ddot{y}(x) + \ddot{\beta}(x)\ddot{\delta}(x) = 1.$$

应用欧几里得算法,令

 $\bar{a}(x) = \bar{d}(x) \, \bar{\delta}(x) + \bar{a}(x), \quad \deg \bar{a}'(x) < \deg \bar{\delta}(x),$

再令 $\overline{\beta'}(x) = \overline{\beta}(x) + \overline{d}(x) p(x)$,则有

$$\overline{a}(x) p(x) + \overline{\beta'}(x) \delta(x) = 1.$$

不难看出, $\deg \overline{\beta}(x) < \deg p(x)$. 我们可令 $a(x) = \overline{\alpha'}(x)$, $\beta(x) = \overline{\beta'}(x)$. 取 y(x), $\delta(x)$ 为 $R_v[x]$ 的首一多项式,使

deg
$$\gamma(x) = \deg \gamma(x)$$
, deg $\delta(x) = \deg \delta(x)$, $\sigma(\gamma(x)) = \gamma(x)$, $\sigma(\delta(x)) = \delta(x)$.

类似地选取 a(x)及 $\beta(x)$ 在 $R_{v}[x]$ 中的 原 象 a(x)及 $\beta(x)$,使它们的次数对应相等。于是有

(1)
$$a(x)\gamma(x) + \beta(x)\delta(x) \equiv 1 \mod \operatorname{th}_{\nu}[x].$$

- 1) $g_n(x), h_n(x)$ (皆 $\in R_v[x]$)都是首一多项式,且 $\deg g_n(x) + \deg h_n(x) = \deg f(x)$;
- 2) $f(x) \equiv g_n(x)h_n(x) \pmod{m_n^{n+1}[x]}$;
- 3) $\bar{q}_n(x) = \bar{\gamma}(x)$, $\bar{h}_n(x) = \bar{\delta}(x)$;
- 4) $g_n(x) g_{n-1}(x) \in \mathfrak{m}_{\mathfrak{g}}^n(x) (n \ge 1)$.

在这些条件下,令 $g(x) = \lim_{n \to \infty} g_n(x)$, $h(x) = \lim_{n \to \infty} h_n(x)$,则 g(x),

h(x)就符合定理的要求。

用归纳法。上面已有 $g_0(x)$, $h_0(x)$ 。 现在假设我们已经作出了 $g_n(x)$, $h_n(x)$ 。则

(2)
$$s_n(x) = f(x) - g_n(x)h_n(x) \in \mathfrak{m}_0^{n+1}[x].$$

以 s_n(x)乘(1)式,有

(3) $s_n(x) = a(x) \gamma(x) s_n(x) + \beta(x) \delta(x) s_n(x) \pmod{m_*^{+2}[x]}$. 应用引理,存在 d(x)及 $a_n(x) \in m_*^{+1}[x]$,使

(4) $a(x)s_n(x) = d(x)\delta(x) + a_n(x)$, $\deg a_n(x) < \deg \delta(x)$.

(5)
$$\beta_n^*(x) = \beta(x)s_n(x) + d(x)\gamma(x).$$

我们来考察 $\beta_*^*(x) \pmod{m_*^{1/2}[x]}$ 的次数、令

$$r: R_v[x] \rightarrow (R_v/m_v^{n+2})[x]$$

为由典型映射 $R_v \rightarrow R_v/m_v$ 诱导出的 环映 射,对 $l(x) \in R_v[x]$,记 $\tau(l(x)) = \overline{l}(x)$,由(5)式,有

(6)
$$\beta(x)s_n(x) = -d(x)\gamma(x) + \beta_*^*(x).$$

48γ(x) × (4) + δ(x) × (6), 即有

 $a(x)\gamma(x)s_n(x) + \beta(x)\delta(x)s_n(x) = \gamma(x)\alpha_n(x) + \delta(x)\beta_n^*(x).$

根据(3)式,即有。

(7)
$$\tilde{\delta}_n(x) = \tilde{\gamma}(x)\tilde{\alpha}_n(x) + \tilde{\delta}(x)\tilde{\beta}_n^*(x).$$

根据上面的条件 1)及(1)式,知 $\deg s_n(x) < \deg f(x)$,故

(8)
$$\deg \, \mathfrak{F}_n(x) < \deg f(x).$$

再由(4) 式的 $\deg \alpha_n(x) < \deg \delta(x)$,以及 $\deg \gamma(x) + \deg \delta(x) = \deg f(x)$,知

(9)
$$\deg(p(x)\alpha_n(x)) < \deg f(x).$$

由(7),(8),(9)三式即有

$$\operatorname{deg} \widetilde{\delta}(x) + \operatorname{deg} \widetilde{\beta}_{n}^{*}(x) < \operatorname{deg} f(x).$$

但 $\delta(x)$ 是首一多项式,所以 $\deg \delta(x) = \deg \delta(x)$,于是 $\deg \beta_*^*(x) < \deg f(x) - \deg \delta(x) = \deg \gamma(x)$.

又,由(5)式, $\beta_*^*(x) \in \mathfrak{m}_*^{+1}[x]$,所以可以适当选取 $\beta_*^*(x)$ 在 τ 作用

下的反象 $\beta_n(x) \in \mathfrak{m}_+^{n+1}[x]$ (即 $\beta_n(x) = \beta_n^*(x)$ (mod $\mathfrak{m}_+^{n-2}[x]$)), 使

$$\deg \beta_n(x) < \deg \gamma(x)$$
.

令

 $g_{n+1}(x) = g_n(x) + \beta_n(x)$, $h_{n+1}(x) = h_n(x) + \alpha_n(x)$. 我们只验证 $g_{n+1}(x)$ 与 $h_{n+1}(x)$ 适合条件 2),其余各条 都 是自明的:

$$f(x) - g_{n+1}(x)h_{n+1}(x) = f(x) - (g_n(x) + \beta_n(x))(h_n(x) + a_n(x))$$

$$\equiv s_n(x) - \beta_n^*(x)h_n(x) - a_n(x)g_n(x)$$

$$\equiv s_n(x)(1 - (a(x)\gamma(x) + \beta(x)\delta(x)))$$

$$- d(x(\delta(x)\gamma(x) - \gamma(x)\delta(x))$$

$$\equiv 0 \pmod{\frac{n}{n}+2}[x]),$$

讨论 上文提到 $x^2 + 2 \in \mathbf{Q}_3[x]$ 任 \mathbf{Q}_3 中有根。事实上, $x^2 + \overline{2} = (x + \overline{1})(x + \overline{2}) \in (\mathbf{Z}/3\mathbf{Z})[x]$,

符合上面定理的条件,因此 $x^2 + 2$ 在 $Q_a[x]$ 中可以分解 成一次式的乘积。]

下面是一个在复变函数论及代数几何学中有意义的定理。

定理7.12(Newton-Puiseux 定理) 设 是一个特征 零的代数封闭域, 那么, 并集

$$\bigcup_{n=1}^{\infty} K((x^{1/n}))$$

是 K((x))的代数闭包。

证明 1) $K((x^{1/3})) = K((x))[x^{1/3}]$,所以, $K((x^{1/3}))$ 的每一个元素都是对K((x))的代数元。又显然有

$$K((x^{1/n})) \cup K((x^{1/t})) \subset K((x^{1/n-t})).$$

由此即知, $\bigcup_{n=1}^{\infty} K((x^{1/n}))$ 是一域,因此它是 K((x))的一代数扩域。

2) 任取一个关于变数 y的多项式 $f(y) \in K[[x]][y]$. 我 们只要证明 f(y)在

$$\bigcup_{n=1}^{n} K((x^{1/n}))$$

中有解就足够了。(为什么?)

设 f(y) = 0的展开式如下(n > 1):

(1) $a_0(x)y'' + a_1(x)y''^{-1} + \cdots + a_n(x) = 0$, $a_i(x) \in K[[x]]$. 用 $a_0(x)''^{-1}$ 乘上式,幷用 $a_0(x)y$ 取代 y,即不妨没 f(y)是首一多项式,即有

(2)
$$y^n + b_1(x)y^{n-1} + \cdots + b_n(x) = 0$$
, $b_i(x) \in K[[x]]$.

我们用 y 取代 $y + \frac{1}{n}b_1(x)$, 即不妨设 $b_1(x) = 0$. 令

$$v(b_i(x)) = \text{ord } b_i(x)$$

是K[[x]]规定的赋值。又令既约分数

(3)
$$\frac{l}{s} = \min \left\{ \frac{v(b_i(x))}{i} : i = 2, 3, \dots, n \right\}.$$

取 $t=x^{1/2}$, $y=t^{1}z$, 代入(2)式, 得

$$t^{n}\left(z^{n}+\frac{0}{t^{i}}z^{n-1}+\cdots+\frac{b_{i}(t^{i})}{t^{i}}z^{n-i}+\cdots+\frac{b_{n}(t^{i})}{t^{n}}\right)=0,$$

即

(4)
$$g(z) = z^n + c_2(t)z^{n-2} + \cdots + c_n(t) = 0$$
, $c_i(t) = \frac{b_i(t^i)}{t^{ij}}$.

令 $w(c_i(t)) = \operatorname{ord}_i c_i(t)$ 是K((t))的赋值,根据(3)式不难看出 $w(c_i(t)) = \operatorname{sv}(b_i(x)) - il \geq 0$, $i = 2, \dots, n$,

而且最少有一个f,使 $w(c_f(t)) = 0$ 。对(4)式用 Hensel 引理。 在 $mod\ tK[[t]]$ 的意义下,有

(5)
$$\overline{g}(z) = z^n + c_2(0)z^{n-2} + \cdots + c_n(0) \in K[z]$$

因为K是代数封闭的,又是特征零的,所以(5)式不可能 是(z-a)"(否则, $a=0\Longrightarrow o_1(0)=0$,与 $w(o_1(t))=0$ 矛盾; $a \ne 0\Longrightarrow o_1(0) \ne 0$,亦矛盾)。因此(5)式可以分解成两个沒有公根的多 项

式 p(z)与 $\delta(z)$ 的乘积。按照 Hensel 引理,(4)式也可以分解成 g(z) = h(z)q(z).

我们只要对次数 n 取归纳法, 便证明了本定理。 |

讨论 1) Hensel 引理的要求过强了。事实上,域K不一定要求是完备的,同样也可能有它的结论。最有意义的例子,是K为亚纯函数域 $K\{\{x\}\}$ (K为特征零的代数封闭域)。因此,同样地,Newton-Puiseux 定理对亚纯函数域也是对的,即

$$k\{\{x\}\}$$
的代数闭包 = $\bigcup_{n=1}^{\infty} k\{\{x^{1}/n\}\}$.

2) Newton-Puiseux 定理只对 K 是特征 零 的 情 形 才是正确的,对 K 是特征 $p \neq 0$ 的情形是不正确的。例如,下面 的 多项式在 $\bigcup_{n=1}^{\infty} K((x^{1/n}))$ 中即无解:

$$y^{p} - y - x^{-1} = 0$$
.

读者自行检验之。

3) 在第五章中,我们已经证明了域 L 的代数闭包的存在性。可是那是太抽象了,不够具体。正像我们不能 满 足 于 R 的代数闭包的抽象存在,而要构造出具 体 的 C — 样,Newton-Puiseux 定理也有同样的精神。

与定理7.11几乎完全一样地,我们可以证明下面的定理。

定理7.13(Hensel 引理) 设 R 是一个完备的局部环, m 是它的极大理想。 $\sigma: R \to R/m$ 是典型映射, $\sigma(a) = 0$, $\sigma(f(x)) = f(x)(f(x) \in R[x])$ 。 又设 f(x) 是 R[x] 的 首一多项式, $f(x) = p(x)\delta(x)$, p(x), $\delta(x)$ 是 (R/m)[x] 中的首一多 项 式, (p(x), $\delta(x)) = (1)$ 。 那么存在 R[x] 的两个首一多项式 g(x), h(x), 使

$$f(x) = g(x)h(x), \quad \overline{g}(x) = \overline{y}(x), \quad \overline{h}(x) = \overline{\delta}(x).$$

证明 读者仿照定理7.11的证明,自行证之。

- 1. 证明 $f(x,y) = x^2 y^2 x^3$ 在形式幂级数 环 C[[x,y]]内可以分解。
- · 2. 设 p 是一个素数, $f(x) = x^n + a_1 x^{n-1} + \dots + a_n \in \mathbb{Z}[x]$. 又令

$$f(x) = f(x) \pmod{p}.$$

设 f(x)在 Z/pZ 內不可约, 试证明 f(x)在 Q_p 內也不可约.

3. 设 $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n \in Q_p[x]$, 且不可约。证明: 对 Q_p 的赋值 v_p , 有

 $\min\{v_p(a_0), v_p(a_1), \dots, v_p(a_n)\} = \min\{v_p(a_0), v_p(a_n)\}.$

- 4. 试将多项式 x^2+1 , x^2+2 , x^3-3 在 3-adic 数 域内进行因式分解。
 - 5. 设域 K 对离散实赋值 v 是完备的,又设 $f(x) = x^* + a_1 x^{n-1} + \cdots + a_n \in K[x]$.

如果 $a_i \in m_n (i=1,2,\dots,n)$,但 a_n 不能**表**成 m_n 内**两个元素的**乘积,则 f(x) 在 $R_n[x]$ 内不可约。

- 6. 设 K 对离散实赋值 ν 是完备的。令 $R = R_v/m_v$ 。 若 f(x) 是 $R_v[x]$ 內首一不可约多项式,证明。 f(x) = f(x) (mod m_v) 是 R[x]內一个不可约多项式的方幂。
 - 7. 证明在 Q_p 內有 p-1 个不同的 p-1 次单位根。
- 8. 设 R_0 是域 K 的离散赋值环,若 $f(x) \in R_0[x]$ 的某些系数在 R_0 中可逆,则称 f(x) 是本原多项式。证明两个本原多项式的乘积仍是本原多项式。证明 K[x] 内任一非零多项式可以写成 cg(x),其中 $c \neq 0$,而 g(x) 是一个本原多项式。如果 g(x) 是 $R_0[x]$ 内本原不可约多项式,试证明: g(x) 在 K[x] 内不可约。
- 9. 在 $Q_p[x]$ 內分解 x^5-1 , 此处 p=3,5,11, 并 考 虑各 因子所引生的域扩充。
 - 10. 设域K的特征p>0,证明下列代数方程

$$y^* - y - x^{-1} = 0$$

在 $\bigcup_{x=1}^{+\infty} K((x^{1/x}))$ 中无解,由此导出 $\bigcup_{x=1}^{+\infty} K((x^{1/x}))$ 不是代数封闭 域。

11. 设域 K 关于离散赋值 v 是 完 备 域, $R = R_v/m_v$. 又 设 f(x) 是 $R_v[x]$ 内首一多项式。如果 f(x) = f(x) (mod m_v) 在 R[x] 内有一个单重一次因子 x = p, 证明 f(x) 在 $R_v[x]$ 内有一个一次 因子 (x-r), 且 r = p.

12. 证明方程 x8=4 在 Qs 內有根。

§ 5 代数扩充

设L是K的代数扩域,v是K的赋值, w_i ($i=1,\cdots,g$)是 v在L的扩充赋值,即 $R_{w_i} \cap K = R_v$, $m_{w_i} \cap K = m_v$ 。 我们要研究构 造 R_{w_i} 的方法, w_i 与v的一些数据以及 w_i 的个数等等。

定理7.14 设 L 是 K 的代数扩域, v 是 K 的赋值, w 是 L 的赋值, $R_w \cap K = R_v$, $m_w \cap K = m_v$ 。 令 S 为 R_v 在 L 中的整数闭包, $p = m_w \cap S$, 那 $\Delta R_w = S$ 。

证明 根据定理 7.8, $R_w \supset R_v \longrightarrow R_w \supset S \Longrightarrow R_w \supset S$ 。 反之,任取 $\alpha \in R_w$, $\alpha \in R_w$ $\alpha \in R_w$

(*)
$$a_0a^n + a_1a^{n-1} + \cdots + a_n = 0$$
, $a_i \in K$, $a_0 \neq 0$.

又令 $j = \min\{j: v(a_j) \leq v(a_i), \forall i = 1, 2, \dots, n\}$ 。用 a_j 去除(*)式,得

$$b_0 a^n + b_1 a^{n-1} + \dots + b_n = 0, \qquad b_j = 1, \quad b_i \in R_{v_0}$$

$$c = b_0 a^j + b_1 a^{j-1} + \dots + b_j,$$

$$d = b_{j+1} + b_{j+2} a^{-1} + \dots + b_n a^{-n+j+1}.$$

则有一

$$ca^{n-j} + da^{n-j-1} = 0,$$
 $a = -d/c.$

我们要说明 $o,d \in S$, $o \in P$ 。如此就证明了 $a \in S$ 。

应用定 租 7.8。任取 L 的赋值环 $R_u \supset S$ 。如果 $a \in R_u$,那么 $a \in R_u$, $d = -ac \in R_u$ 。如果 $a \in R_u$,那么 $a^{-1} \in R_u$, $d \in R_u$, $c = da^{-1} \in R_u$,又因为 $b_0, b_1, \cdots, b_{j-1} \in m_v \subset m_w$, $b_j = 1$, $a \in R_w$,所以 $a \in R_w$,立得 $a \in P_v$,于是 $a \in S_v$ 中是可逆元,

$$a = -d/c \in S_{\bullet \bullet}$$

菜 设L,K, ν ,R,S如上定理, ρ 为S的一个案理想,那么,S,E ν 的扩充赋值 \longleftrightarrow ρ ES的极大理想。

证明 \longrightarrow 由于 $p \cap R_v = m_v$,所以 $S/p \supset R_v/m_v$ 。显然, $S/p \to R_v/m_v$ 是整数相关的。而 R_v/m_v 是城,根据第六章 § 2 中的引理, $S/p \to k$ 。即 $p \in S$ 的极大理想。

◆ 根据定理 7.6, 存在赋值环 $R_w \supset S_*$, 使得 $m_w \cap S_* = pS_*$. 于是不难看出, $R_w \cap K \supset R_v$, $m_w \cap K \supset m_v$. 我们先证明上面的两个包含式都是等式。任取 $a \in K \setminus R_v$, 那么

$$a^{-1} \in \mathfrak{m}_{v} \subset \mathfrak{m}_{w}$$

得 $a \in R_w$ 。 又任取 $a \in K \setminus m_v$,那么 $a^{-1} \in R_v \subset R_w$,得 $a \in m_w$ 。所以w 是v 的扩充。而且

$$m_w \cap S = m_w \cap S$$
, $\cap S = pS$, $\cap S = p$,

根据上定理,即有 $R_{w}=S_{\bullet \bullet}$ |

我们定义一个符号。 $\Delta_v = R_v/m_v$ 。 像以前一样,用 G_v 表 示 v 的全序群。当 w 是 v 的扩充时,我们有两个 重 要 的 数:一是 $[\Delta_w : \Delta_v]$,即 Δ_w 被考虑成 Δ_v 上的线性空间时的维数,称为 w 对 v 的相对次数(或剩余次数),记为 f(w/v) (简记为 f); 二是群指数 $[G_w : G_v]$,称为 w 对 v 的缩分歧指数,记为 $\theta(w/v)$ (简记为 $\theta(w/v)$) (例记为 $\theta(w/v)$) (例记》 $\theta(w/v)$) (例记为 $\theta(w/v)$) (例记》 $\theta(w/v)$) (例记为 $\theta(w/v)$) (例记》 $\theta(w/v$

例 13 设 K = C(x), $L = C(x)[x^{1/2}] = C(t)$, $t^2 = x$ 。 我们知道K的赋值是

$$v_{a^2} \longleftrightarrow C[x]_{(x=a^2)}$$
 及 $v_{\omega} \longleftrightarrow C[x^{-1}]_{(x^{-1})_{\bullet}}$ 设 $a^2 \leftrightarrows 0$,那么 v_{a^2} 的扩充是

$$w_{\pm \bullet} \longleftrightarrow C(t)_{(t+a)}$$

这是两个不同的扩充。易见

$$w_a(t-a) = 1$$
, $w_a(t+a) = w_a(t-a+2a) = 0$,
 $w_a(x-a^2) = w_a((t-a)(t+a)) = 1$.

所 以 $G_{w_a} = G_{v_a 2}$, $[G_{w_a} : G_{v_a 2}] = 1$, 但即 w_a 是 v_a 2 的非分歧性扩充。

设 $a^2=0$,那么 v_0 的扩充是 $w_0 \longleftrightarrow C[t]_{(t)}$, 且 $w_0(x)=w_0(t^2)=2w_0(t)$ 。所以,取 $G_{w_0}=Z$ 时,子群 $G_{v_0}=2Z$, [$G_{w_0}:G_{v_0}]=2$,所以 w_0 是 v_0 的分歧性扩充,缩分歧指数是 2 。同样的, w_0 是 v_0 的分歧性扩充,缩分歧指数也是 2 。参考图7.1(参考复变函数论中的"黎曼曲面")。

图 7.1

引理1 设[L:K]=n, w是v的扩充。那么

- 1) w 对 v 的相对 y 数 f ≤ n;
- 2) w对 v 的缩分歧指数≤n。

证明 1) 设 $\Delta_w = R_w/m_w$, $\Delta_v = R_v/m_v$ 。 又设 a是 a 在典型映射 $R_w \rightarrow \Delta_w$ 下的象。我们仅须证明: 当 $a_1, \cdots, a_l \in R_w$ 对 K 线性相关时,它们的象 a_1, \cdots, a_l 必对 Δ_v 线性相关。 设 a_1, \cdots, a_l 适合下面的线性方程

$$b_i a_i + \dots + b_l a_l = 0$$
, $b_i \in K$, b_i 不全为零。

令 $v(b_i) \leq v(b_i)$ ($\forall i=1,\dots,l$)。以 b_i 去除上式,立得 $c_1a_1+\dots+c_la_l=0$, $c_i \in R_v$, $c_j=1$, $\overline{c_i}\overline{d_1}+\dots+\overline{c_l}\overline{a_l}=0$, $\overline{c_i} \in \Delta_v$, $\overline{c_j}=1$.

2) 仅须证明:如果 $w(a_1), \dots, w(a_l)$ 是属于关于 G_v 的不同的 陪集,那么 a_1, \dots, a_l 对K线性无关。设有

 $b,a_1+\cdots+b_1a_1=0$, $b_i\in K$, b_i 不全为零,

那么最少有两项 $i \neq j$, 使 $w(b_i a_i) = w(b_j a_j)$, 即

$$w(a_i) - w(a_j) = w(b_j) - w(b_i) \in G_{v_i}$$

 \mathbf{X} rank w = 1 ←⇒ rank v = 1.

证明 🛶 . 显然。

参与,对于 $G_w \to G_v \subset R$,n'(g) = ng, $\forall g \in G_w$ 。 此处 $n = [G_w : G_v]$ 。

引題2 设L是K的有限代数扩域。那么 rank w = rank v.

证明 用定义7.7′、我们需要建立 G_w 与 G_v 的孤立子群集合之间的一个单满映射、任取 G_w 的一个孤立子群 H_w ,把它对应到 $H_v = G_v \cap H_w$. 只要证明 $H_v \neq G_v$,即不难看出, H_v 确是 G_v 的孤立子群。任取 $g \in H_w$. 应用引理 1,知

$$[G_w:G_v] = e \leq [L:K] < \infty,$$

那么 $eg \in G_v$. 如果 $eg \in H_v$, 则 $eg \in H_w$. 于 是 $-eg \leq g \leq eg$ 或 $eg \leq g \leq -eg$, 从而推出 $g \in H_w$, 与 g 的选取矛盾。因 此 $H_v \Rightarrow G_v$, $H_v \not = G_v$ 的孤立子群。

反过来,任取 G_u 的孤立子群 H_v ,我们把它对应到 $H_w = \{g \in G_w: 存在整数 s, 使 sg \in H_v\}$ 。

不难看出, H_w 是 G_w 的孤立子群。其余的证明请读者补充。

引**理3** 设[L:K] $<\infty$,域L有两个赋值 w,w_1 , $R_w \subset R_{w_1} +$ L, $R_v = R_w \cap K$, $R_{v_1} = R_{w_1} \cap K$ 。它们的全序 群 分 別 是 G_w , G_{w_1} , G_{v_1} 。 又如 通 常 一 样,设

 $\Delta_{w} = R_{w}/m_{w}$, $\Delta_{w} = R_{w}/m_{w}$, $\Delta_{v} = R_{v}/m_{v}$, $\Delta_{v} = R_{v}/m_{v}$

又设 rank w<∞。那么,我们有

1) R_w 在 Δ_{w_1} 中的象定义了一个赋值 θ_1 , R_w 在 Δ_{v_1} 中的象定义了一个赋值 θ_1 。 θ_1 是 θ_1 的扩充,并且

rank
$$v_1 < rank w$$
, rank $v_1 < rank v$;

- 2) w 对 v 的相对次数 = 00,对 5,的相对次数;
- 3) w 对 v 的缩分歧指数 $[G_w:G_v]=[G_{w_*}:G_{v_*}][G_{\overline{w}_*}:G_{\overline{v_*}}].$

证明 1) 应用定理 7.4, 由于 $R_{w_1}
in L$, 所以 $m_{w_1} \cap R_{w}
in$ (0)。因为 $R_{\overline{w}_1}
in R_{w} / (m_{w_1} \cap R_{w})$, 而且 R_{w} 的素理想是互相包含的,自然有

$$\dim R_{\overline{w}_1} < \dim R_{w}$$
.

其余各点都是很容易验证的。

- 2) 在自然映射下, $\Delta_w \approx \Delta_{\overline{w}_1}$, $\Delta_v \approx \Delta_{\overline{v}_1}$,所以 $[\Delta_w : \Delta_v] = [\Delta_{\overline{w}_1} : \Delta_{\overline{v}_1}]$ 。
- 3) 参见定理7.1后面的两段文字。我们用乘法全序群来代替加法全序群,有

$$G_{w} = L^{*}/U_{w}, \quad G_{w_{1}} = L^{*}/U_{w_{1}},$$

$$G_{v} = K^{*}/U_{v}, \quad G_{v_{1}} = K^{*}/U_{v_{1}},$$

$$G_{\overline{w}_{1}} = \Delta_{w_{1}}/U_{\overline{w}_{1}}, \quad G_{\overline{v}_{1}} = \Delta_{v_{1}}/U_{\overline{v}_{1}},$$

其中U表示赋值环中的可逆元集,例如 $U_w = R_w \setminus m_w$ 等等。

显然有 $U_w \cap K^* = U_v$, $U_{w_1} \cap K^* = U_{v_1}$. 所以有自然的嵌入 $G_v \rightarrow G_w$, $G_{v_1} \rightarrow G_{w_1}$.

应用定理7.4,

$$R_{w_1} = (R_w)_{w_1 \cap R_w}, \qquad R_{v_1} = (R_v)_{w_v \cap R_w},$$

所以,不难看出 $U_{w_1} \supset U_{w_2} \cup U_{v_1} \supset U_{v_2}$ 因此,又有一个自然映射的正合序列

$$1 \rightarrow U_{w_1}/U_w \rightarrow G_w \rightarrow G_{w_1} \rightarrow 1$$

(这无非是说 $G_w/(U_{w_1}/U_w) \approx G_{w_1}$). 考虑自然映射

$$\sigma: U_{w_1} \rightarrow \Delta_{w_2}^*$$

不难看出, $\sigma^{-1}(U_{\overline{w}_1}) \approx U_{w}$. 而 σ 显然是满射,故有 $U_{w_1}/U_{w} \approx \Delta_{w_1}^{\bullet}/U_{\overline{w}_1} = G_{\overline{w}_1}$.

结合上面的正合序列,即有 $G_{w}/G_{\overline{w}_{1}} \approx G_{w_{1}}$, 类似地,有 $G_{v}/G_{\overline{v}_{1}} \approx G_{w_{1}}$ 。 又有

 $G_{w} \supset G_{v}$, $G_{w_{1}} \supset G_{v_{1}}$, $G_{\overline{w}_{1}} \supset G_{\overline{v}_{1}}$, $G_{\overline{v}_{1}} = G_{v} \cap G_{\overline{w}_{1}}$, 应用群论,得

$$(G_w/G_v)/(G_{\overline{w}_1}/G_{\overline{v}_1}) \approx G_w/G_v$$
.

定理7.15 设n = [L:K], $v \in K$ 的一个有限秩的赋值。又设 $w_i(i=1,\cdots,g)$ 是 $v \in L$ 的扩充, w_i 对v的相对次数是 f_i ,缩分歧指数是 e_i 。那么,我们恒有

$$e_1 f_1 + e_2 f_2 + \cdots + e_q f_q \leq n$$

证明 我们对 rank v 取归纳法。

1) 设rank v=1。设 $\Delta_i = R_{w_i}/m_{w_i}$, $\Delta_v = R_v/m_v$, G_{w_i} 与 G_v 分别是 w_i 和 v 的全序群。根据引理 1 的系,rank $w_i = 1$.

在 G_{w_i} 对 G_v 的每个陪集中分别取一个元素 $l_{iv}(s=1,\cdots,e_i)$ 。 又在 R_{w_i} 中取 f_i 个元素 a_{i1},\cdots,a_{if_i} ,使它们在 Δ_{w_i} 中 的象是对 Δ_v 线性无关的。

我们要应用定理 7.10(逼近定理)。 对每 个 i ($i=1, \dots, g$), $s(s=1, \dots, e_i)$, $t(t=1, \dots, f_i)$, 选取 $b_{i*}, c_{i*} \in L$, 使之适合下列 方程:

$$w_{i}(b_{1s}) = w_{i}(b_{1s} - 0) = l_{is},$$
 $w_{j}(b_{1s}) = w_{j}(b_{it} - 0) (= l)$
 $> \max\{l_{is}: i = 1, \dots, g, s = 1, \dots, e_{i}\}, j \neq i,$
 $w_{i}(c_{it} - a_{it}) (= \varepsilon_{i}) > 0,$
 $w_{j}(c_{it}) (= \varepsilon_{j}) > 0, j \neq i.$

只要证明 $\{b_i, \cdot c_{ii}\}$ 是对K线性无关的便足够了(因为这个集合的基数是 $e_i f_1 + e_2 f_2 + \cdots + e_n f_n$).

假设bu·cu 适合如下的线性方程:

$$\sum_{i,s,t} d_{ist}b_{is}c_{it} = 0, \quad d_{ist} \in K, \quad \text{A.2.}$$

应用我们多次用过的技巧,不妨令 $d_{111}=1$, $d_{int}\in R_{vo}$ 把上式分成两部分

$$\sum_{s,t} d_{1st} b_{1s} c_{1t} + \sum_{i>1} \sum_{s,t} d_{ist} b_{is} c_{it} = 0.$$

根据bis,cit选取的条件,不难看出

$$w_1(b_{is}c_{it}) > l_{11}, \quad i \ge 2,$$

所以

$$w_1 \left(\sum_{i>1} \sum_{i=1}^{n} d_{isi} b_{is} c_{it} \right) > l_{11}$$

只要证明下式, 便得出了一个矛盾:

$$w_1\Big(\sum_{t>t}d_{1st}b_{1s}c_{1t}\Big)\leqslant l_{1t}.$$

令

$$c_s = \sum_t d_{1st} c_{1t}, \quad \Box$$

厕

$$\sum_{t=1}^{n} d_{1st} b_{1s} c_{1t} = \sum_{t=1}^{n} c_{s} b_{1s}.$$

我们将证明

$$w_1(e_n) = \min\{v(d_{1st}): t = 1, \dots, f_n\} \subset G_{v_n}$$

从这里我们就可以得到! (a) $w_1(c_*b_{1*})$ 属于 l_{1*} 所在的关于 G_* 的陪集,因此都不相等。所以

$$w_1\Big(\sum_s c_s b_{1s}\Big) = \min\{w_1(c_s b_{1s})\};$$
(b) $w_1(c_1) = v(d_{111}) = v(1) = 0$, $w_1(c_1 b_{11}) = l_{11}$. $\mp \mathbb{E}$

$$w_1\Big(\sum_s c_s b_{1s}\Big) \leqslant l_{11}.$$

综上所述,问题归结为证明下式:

$$w_1(e_t) = \min\{v(d_{1:t}): t = 1, \dots, f_n\}_{\bullet}$$

设上式右端为 $v(d_1,\ldots)$ 。那么 c_* 可以改写成

$$c_* = d_{1*, \dots} \left(\sum_t d_t^* c_{1t} \right),$$

此处 $d_i^* \in R_v$,而且至少有一个 $d_i^* = 1$ 。我们只要证明 $\sum_i d_i^* c_{1i}$

是
$$R_{w_i}$$
的一个可逆元 $\left(\mathbb{D}w_i\left(\sum d_i^*c_{ii}\right)=0\right)$ 就足够了。

显然, $w_1(c_{1t} - a_{1t}) > 0 \Longrightarrow \bar{c}_{1t} = \bar{a}_{1t} \in \Delta_{w_1} \Longrightarrow \{\bar{c}_{1t}\}$ 对 Δ_v 线性 无关 $\Longrightarrow \sum_i \bar{d}_{1t}^* \bar{c}_{1t} + 0 \Longrightarrow \sum_i \bar{d}_{1t}^* c_{1t} \mathbb{E} R_{w_1}$ 的可逆元。

2) 设已知对小于n秩的赋值,本定理是正确的。现设 rank v=n=rank w; (引理2).

设 p_i 是 R_{w_i} 的仅次于极大理想 m_{w_i} 的素理想,易于看 出 $(R_{w_i})_{i,j}$ 是一个赋值环。令相应的赋值 为 $w'_i(i=1,\cdots,g)$ 。设其中不等价的赋值为 w'_1,\cdots,w'_i ,它们在K上的限制是 v_1,\cdots,v_n 。显然,

$$\operatorname{rank} w'_{i} = n - 1 = \operatorname{rank} v_{i},$$

所以 $R_{v_1}(i=1,\cdots,s)$ 都是 R_v 对仅次于极大理想的素理想的局部化环,而这样的素理想是唯一的,于是 $v_1=\cdots=v_s$.

令 w_i 在 $\Delta_{w'_i} \approx R_{w'_i}/m_{w'_i}$ 上定义的赋值为 w_i ,v 在 Δ_{v_i} 上定义的赋值为 v_1 。按照引理 3 的结论 1), 我们 知 道 rank $v_i < n$ 。因此,我们可对 v_1 及 v_1 用归纳法假设,有

(1)
$$\sum_{i=1}^{i} \left[G_{w_{i}'} : G_{v_{i}} \right] \left[\Delta_{w_{i}'} : \Delta_{v_{i}} \right] \leqslant n.$$

又设 $S_i = \{w_i; R_{w_i} \subset R_{w_i'}\} \subset \{w_1, \dots, w_g\}$,那么

(2)
$$\sum_{w_i \in S_i} \left[G_{\overline{w}_{i,i}'} : G_{\overline{v}_i} \right] \left[\Delta_{\overline{w}_{i,i}'} : \Delta_{\overline{v}_i} \right] \leqslant \left[\Delta_{w_i'} : \Delta_{v_i} \right],$$

其中 Ø/1,是wi在 △wi上定义的赋值。又根据引理 3,

以(2)式代入(1)式后, 再将上两式代入, 立得

$$\sum_{i=1}^{r} e_i f_i \leqslant n.$$

讨论 I) 一般说来,在定理7.15中,既使 w_1, \dots, w_g 是v 的 所有的扩充,也不能保证 $e_1f_1 + e_2f_2 + \dots + e_gf_g = n$.

2) 如果△o的特征是零,那么,取v的所有的扩充 w₁,…,w_g,则 有 e₁f₁ + ··· + e₀f_g = n₀ 见 Zariski-Samuel 著 《Commutative Algebra》,二卷,77页。

例14 设 K = R(x), $L 为 R[x,y]/(x^2 + y^2 + 1)$ 的 比 域。可以认为 $L \supset K$ 。如同前面一样的讨论,我们不难看出,K的赋值有下面两类:

$$R_v = R[x]_{(h(x))}, h(x)$$
不可约; $R_v = R[x^{-1}]_{(x^{-1})}.$

我们知道R[x]中的不可约多项式都形如 x-a 或 $x^2-2ax+(a^2+b^2)$,以下我们分类讨论。请注意:[L:K]=2。

1)
$$h(x) = x - a$$
。此时 $\Delta_v = R$ 。令w 是 v 的扩充。立得 $w(v^2) = v(x^2 + 1) = 0$,

即 2w(y)=0. 易于看出

$$\Delta_{w} = \Delta_{v}(\bar{y}) \approx R[x,y]/(x-a,y^{2}+x^{2}+1)$$
$$\approx R[y]/(y^{2}+a^{2}+1),$$
$$[\Delta_{w}:\Delta_{v}] = 2.$$

所以根据定理7.15,w 是v 的唯一的扩充赋值,它 的 相 对 次数 f=2,缩分歧指数 e=1。

1') $R[x^{-1}]_{(x^{-1})}$. $\Leftrightarrow x_1 = x^{-1}, y_1 = x_1 y_1$, 经变数替换后,立得 $R[x^{-1}]_{(x^{-1})}$, 与 $R[x]_{(x)}$ 是一样的。

2)
$$h(x) = x^2 + 1$$
, $\text{Mil}_2 w(y) = w(y^2) = v(x^2 + 1)$, $\text{Mil}_2 v(x^2 + 1)$

是 b 的全序群 G。的生成元。从上式立得

$$e = [G_w : G_v] = 2.$$

根据定理7.15, $\nu \neq \nu$ 的唯一的扩充赋值, f=1, $\theta=2$.

3) h(x)是二次式, $h(x) \div x^2 + 1$ 。即 $h(x) = x^2 - 2ax + (a^2 + b^2)$, $b \div 0$,且当a = 0时, $b \div \pm 1$ 。经过计算,得

$$0=y^2+x^2+1$$

 $=(y+cx+d)(y-cx-d)+(c^2+1)(x^2-2ax+a^2+b^2),$ 此处 c,d 适合下列的联立方程式:

$$\begin{cases} -(c^2+1)a = cd, \\ (c^2+1)(a^2+b^2) = d^2+1. \end{cases}$$

在我们的条件下(即 $b \Rightarrow 0$, 当 a = 0 时 $b \Rightarrow \pm 1$), 经过简单计算,可以证明 $ex + d \Rightarrow 0$. 设业是 v 的一个扩充赋值,那么

$$2w(y) = w(y^2) = v(-x^2 - 1) \geqslant 0 \implies w(y) \geqslant 0,$$

$$(y + cx + d)(y - cx - d) \in m_y \subset m_y.$$

所以, $y+cx+d\in m_w$ 或 $y-cx-d\in m_w$ 。如果两者都属于 m_w ,那么,它们的 差 $2(cx+d)\in m_w$,这是不可能的。不难看出,相应于(y+cx+d)及(y-cx-d),有两个 v 的扩充赋值 w_1,w_2 。它们的相对次数 f 都是 1 (此时 $\Delta_v=R[x]/(h(x))\approx R[a+bi]=C$,为代数封闭域,故 Δ_v 上不能有次数大于 1 的代数扩张)。它们的缩分歧指数 e 都是 1 。

请把这个例子与第一章 § 5 "复整数集"对照。1) 及 1′)相当于那里的惯性型,2)相当于那里的分歧型,3)相当于那里的分解型。

现在我们来考虑一秩赋值,即实赋值的情形。我们有下面的定理。

定理7.16 设L是K的有限 扩域,[L:K]=n,v是K的实 賦値,K对v是完备域。那么,v在L上只有一个扩充w,L对w是完备域。 证明 我们先证 L 对 w 是完备域。设 $\{u_1, \dots, u_n\}$ 是 L 对 K 的一组基。任取 L 的序列 $\{a_i\}$ 。设

$$a_i = \sum_{j=1}^{k} b_{ij} u_{j_{\bullet}}$$

我们要说明: $\{a_i\}$ 是 L 对 w 的柯西序列 (注意, rank w = rank v = 1, 所以 w 也是实赋值) $\longleftrightarrow \{b_{ij}\}$ 是对 v 的柯西序列 ($\forall j = 1$, \cdots , n). 如此,则

$$\lim a_i = \sum (\lim_i b_{ij}) u_j \in L,$$

即证明了 L 是完备的。

⇐━. 显然.

 \Longrightarrow n=1时,结论是显然的。现在我们用数 学 归 纳 法。当 $b_{in}=0$ ($\forall i=1,2,\cdots$)时,结论是正确的。假若 $\{a_i\}$ 是 L 的柯西序列,而 $\{b_{in}\}$ 不是 K 的柯西序列,则将导致一矛盾。事实上,此时 $v(b_{in}-b_{jn})$ $\to \infty$ (注意,距离 $|b_{in}-b_{jn}|=\exp(-v(b_{in}-b_{jn}))$)。那么,存在一个 l ,及一序列的整数对 (p_i,q_i) ,使 $p_i,q_i \to \infty$,而且

$$v(b_{p_i,n}-b_{q_i,n})< l_i$$

令

$$c_{i} = \frac{a_{p_{i}} - a_{q_{i}}}{b_{p_{i}n} - b_{q_{i}n}} = d_{i1}u_{1} + \cdots + d_{i,n-1}u_{n-1} + u_{n},$$

刎

$$w(c_i) = w(a_{p_i} - a_{q_i}) - v(b_{p_i} - b_{q_i}) \rightarrow \infty.$$

所以 $\{c_i-u_n\}$ 是一个柯西序列,并且适合归纳法前提的要求,因此 $\{d_{ij}\}(j=1,\cdots,n-1)$ 是K的柯西序列。取极限后,得

$$0 = \lim c_i = (\lim d_{i_1})u_i + \dots + (\lim d_{i_n-1})u_{i-1} + u_n$$

= $d_1u_1 + \dots + d_{n-1}u_{n-1} + u_n$, $d_i \in K$,

它与 $\{u_1, \dots, u_n\}$ 是L对K的一组基的已知条件不合。这就是我们

要导出的矛盾。

现在证明w的唯一性。设 w_1 与 w_2 是v的两个扩充。那么,任取L的序列 $\{a_i\}$,我们有

 $\lim w_1(a_i) = \infty \iff \lim a_i = 0 \iff \lim w_2(a_i) = \infty$. 设 $a \in \mathfrak{m}_{w_1}$, 那么

$$\lim w_1(a^i) = \infty \implies \lim w_2(a^i) = \infty \implies w_2(a) > 0$$

$$\implies a \in m_{w_2}.$$

所以 $m_{w_1} \subset m_{w_2}$ 。同样可证 $m_{w_2} \subset m_{w_1}$ 。 所以 $m_{w_2} = m_{w_1}$ 。 若 $a \in R_{w_1} \setminus m_{w_1}$,显然 $a^{-1} \subset m_{w_1} = m_{w_2}$,故 $a \in R_{w_2}$ 。 所以 $R_{w_1} \subset R_{w_2}$ 。 同 法可证 $R_{w_2} \subset R_{w_1}$ 。 于是 $R_{w_1} = R_{w_2}$,即 $w_1 = w_2$ 。 【

讨论 事实上, $w(a) = v(N_{L/K}(a))/n$. 参看定义5.16.

定理7.17 设L是K的有限可离代数扩域,[L:K]=n、设v是K的一个实赋值, w_1 ,…, w_g 是v在L上的所有的扩充。设 \hat{L}_i 是L对 w_i 的完备化域, \hat{R} 是K对v的完备化域, $n_i=[\hat{L}_i:K_i]$ 。那么,我们恒有

$$n = \sum_{i=1}^{r} n_{i}.$$

证明 设 $L = K[a] \approx K[x]/(f(x))$. 又设 f(x)在 K[x]中分解为首一的不可约多项式的乘积如下:

$$f(x) = \prod_{i} f_i(x).$$

取定於的一个代数闭包 Ω 。对 L 的任一赋值 w_i ,其相应的完备域 \hat{L}_i 是於的代数扩张,故存在由 \hat{L}_i 到 Ω 的 於嚴射(即保持於不动的 嚴射) σ_i 。 K 的赋值 v 可以自然地扩充为 K 的赋值,仍记为 v 。 根据上定理, v 在 $\sigma_i(\hat{L}_i)$ 中有唯一的扩充 w_i^* 。容易看出,映射

$$w_i': L_i \rightarrow R,$$

$$w_i'(a) = w_i^*(\sigma_i(a))$$

是 \hat{L}_i 的一个赋值,而且是 \hat{K} 的赋值 ν 的扩充。根据上定理,即知

いこい 按照同样的道理, 易知

$$w_j + w_i \longrightarrow \sigma_j(\hat{L}_j) \not\approx \sigma_i(\hat{L}_i),$$

这里的同构是指众同构。

易知 $\sigma_i(L_i) = \sigma_i(L) \cdot \hat{K} = \hat{K}[\sigma_i(a)], \ \sigma_i(a)$ 显然是 f(x)的某个因子 $f_{(i)}(x)$ 的根。而且不难看出,当i = j时,必有

$$f_{1(i)}(x) \neq f_{1(i)}(x)$$
.

事实上,否则

 $\sigma_i(L_i) \approx R[x]/(f_{1(i)}(x)) = R[x]/(f_{1(i)}(x)) \approx \sigma_i(L_i)$, 与上面的结果矛盾。这样,我们就建立了由 $\{w_1, \dots, w_g\}$ 到 $\{f_1(x), f_2(x), \dots\}$ 的一个单射。

反之,任取 $f_i(x)$,视 $K[x]/(f_i(x))$ 为 Ω 的子城,我们可以作由 L 到 Ω 的 K 嵌射 σ ,使

$$\sigma(a) = \bar{x} \in \hat{K}[x]/(f_1(x)) \subset \Omega_{\bullet}$$

 $\hat{\mathbf{x}}$ 的赋值 v 在 $\hat{\mathbf{x}}[x]/(f_1(x))$ 上有唯一的扩充 w , w 在 $\sigma(L)$ 上的限制唯一决定了 L 的一个 赋 值 w_1 ,于是,我们上面所建立的由 $\{w_1, \cdots, w_q\}$ 到 $\{f_1(x), f_2(x), \cdots\}$ 的单射也是满射。所以

$$n = [L:K] = \deg f(x) = \sum_{i} \deg f_{i}(x)$$
$$= \sum_{i} [\hat{L}_{i}:\hat{K}] = \sum_{i} n_{i}.$$

讨论 本定理中的 \hat{K} 及 \hat{L}_i 都 称 为局部域, \hat{L}_i 、 \hat{K} 称为整体域, $[\hat{L}_i:\hat{K}]$ 称为局部次数。 上 面 的定理又可以叙述为

例 15 令

 $L = Q[a] \approx Q[x]/(x^3+2)$, K = Q, $R_v = Z_{(3)}$, $\hat{K} = Q_{3}$. 应用Hensel引建,因为

$$x^{8} + \overline{2} = (x - \overline{1})(x^{2} + \overline{1} \cdot x - \overline{2}) \in \mathbb{Z}/3\mathbb{Z}[x],$$

所以

$$x^{3} + 2 = (x - (1 + \cdots))(x^{2} + (1 + \cdots)x - (2 + \cdots))$$
$$= (x - a)(x^{2} + ax - \beta) \in Q_{b}[x].$$

因此, R_v 在L中有两个扩充,一个是由映射 $L \rightarrow Q_8$, $a \mapsto a$ 所引生的,另一个是由映射 $L \rightarrow Q_3[x]/(x^2 + ax - \beta)$, $a \mapsto x$ 所引生的。 我们有

整体次数 = 3 =
$$\sum$$
 局部次数 = 1 + 2.

定理 7.18 设 L 是 K 的有限 f 域, [L:K]=n, v 是 K 的一 秩 离 散 赋 値 (即 $G_v\approx Z$), K 对 v 是 完 备 域, w 是 v 在 L 中 的 唯 一 扩 充 . 那 么 , ef=n .

证明 令 $m_v = (t)$, $m_w = (\tau)$, $t = a\tau^*$, 其中 $a \to R_w$ 的可逆元。在L中取 a_1, \dots, a_f , 使它们在 Δ_w 中的象是对 Δ_v 线性无关的。我们只要证明

$$\{a_i \mathbf{r}^j: i=1, \dots, f, j=0, \dots, e-1\}$$

是L对K的生成元集,便得出 $ef \ge n$. 结合定理7.15, 立得本定理.

作取 $b \in L$ 。显然,当 $s \to ∞$ 时,

$$w(t^s b) = sw(t) + w(b) = s\theta + w(b) \rightarrow \infty$$
.

这就是说,当 s 充分大时, $t'b \in R_w$ 。因此,我们只要 对 于 $b \in R_w$,证明 b 可以写成下列的线性式便足够了。

$$b = \sum_{i,j} c_{ij} a_i \tau^i, \quad c_{ij} \in R_{v}.$$

令 σ : R_{ω} → R_{ω} / m_{ω} 是典型映射,那么根据{ a_{i} }的选取,

$$\sigma(b) = \sum_{i} \bar{\sigma}_{i0}^{(0)} \sigma(a_i), \ \bar{\sigma}_{i0}^{(0)} \in \Delta_{v}.$$

取σ(0∈Rν, 使σ(σ(8))=σ(8), 即有

$$b = \sum_{i} c_{i|0}^{(0)} a_{i} \in (\tau).$$

同法考虑 $\left(b-\sum_{i}c_{i}^{(0)}a_{i}\right)\tau^{-1}$,得

$$b = \sum_{i} c_{i0}^{(n)} a_{i} - \sum_{i} c_{i1}^{(n)} a_{i} \tau \in (\tau^{2}).$$

不难依次作下去。当我们必须用 τ °时,利用 $t = a\tau$ °, τ ° = $a^{-1}t$,以 $a^{-1}t$ 取代 τ °。经过整理,不难得出

$$b = \sum_{i \neq j} \left(\sum_{i=0}^{\infty} c_{ij}^{(i)} \right) a_i \tau^j = \sum_{i \neq j} c_{ij} a_i \tau^j. \quad \blacksquare$$

例 16 设 k,k' 是域, $k'((\tau)) \supset k((t))$,其 中 t 为变数, $[k'(\tau):k(t)] = n$,那么, $t = a\tau^{\bullet}$, a 为 $k'[[\tau]]$ 的可逆元, $k' = R_w/m_w$, $k = R_v/m_v$,f = [k':k]。

定理7.19 设L是K的有限可离代数扩域,v是K的一秩离散赋值, w_1, \dots, w_g 是v在L上的所有的扩充, w_i 对v的相对次数是 f_i ,缩分歧指数是 θ_i 。那么

$$\sum_{i} e_{i} f_{i} = n_{\bullet}$$

证明 根据定理7.17, $\sum_{i}n_{i}=n$,这里 $n_{i}=[L_{i}:K]$, L_{i} 与 K是L($树 w_{i}$)及K(ឋ v)的完备化域。根据定理 7.9,在完备化作用下,全序群 $G_{w_{i}}$, G_{v} ,剩余 域 $\Delta_{w_{i}}$, Δ_{v} 皆不变,因此相对次数 f_{i} 及缩分歧指数 θ_{i} 也皆不变。根据定理 7.18,即有 $n_{i}=\theta_{i}f_{i}$ 。 所以立得

$$\sum_{i} e_{i} f_{i} = \sum_{i} n_{i} = n_{\bullet}^{-1} \mid$$

- 1. 在 p-adic 数域 Q,內确定其赋值的值群、赋值环和赋值环的极大理想,证明其剩余域同构于Z/pZ.
- 2. 试决定Q(i)内的赋值,使它们是Q内7-adic 赋值的扩充。
 - 3. 试决定Q(i)的所有可能的赋值。
- 4. 设 L , L '是域 K 的两个有限次扩域,且 L 到 L '存在一个保持 K 的元素不动的同构 $^\sigma$ 。又设 K 內赋值 v 在 L '有一扩充 w '。证明

$$w(x) = w'(\sigma(x)) \quad (x \in L)$$

是L的一个赋值,且为v的一个扩充。

- 5. 设K是p-adic数域Q,的有限次扩域, α , β 是Q,上不可约多项式f(x)在K内的两个根,又设Q,内赋值 ν 在K上扩充为 ν ,证明: $w(\alpha) = w(\beta)$.
- 6. 设 K 是 Q 的伽罗瓦扩域,证明 Q 內赋值 v 在 K 的任意两个扩充 w 1, w 2都有相同的相对次数和缩分歧指数。
- 7. 设K是域,v是K上一秩离散赋值。证 明v的 剩 余 域 R_v/m_v 与K特征相同的充分必要条件是, R_v 包含K的素域。
- 8. 设K关于离散赋值 v 是完备域, L 是K 的有限次扩域, v 在L 内的扩充记为 w 。 如果 w 对 v 的缩分歧指数等于[L:K],则称扩充 L/K 是**全分歧的**。现令 π ,p 分别为 m_w ,m。的生成元。证明L/K全分歧的充要条件是: π 满足方程

$$x^{n} + a_{1}px^{n-1} + \cdots + a_{n-1}px + a_{n}p = 0,$$

其中 $a_i \in K$, $v(a_i) \ge 0$, $v(a_i) = 0$, n = [L:K], $L = K(\pi)$.

- 9. 设K是完备域,证明K的赋值可唯一地扩充为它的代数闭包K的赋值。
 - 10. 证明p-adic数域Q,的代数闭包Q,不是完备的。
 - 11. 令 $\zeta = \exp(2\pi i/5)$, $K = Q(\zeta)$, 试求 Q 的 p-adic 赋值在

K內互不等价的扩充的个数,此处p=3,5,11。

§6 因子类群

关于赋值论在代数数论中的应用,请见下一章"Dedekind整环"。我们在本节里,讨论赋值论在代数几何学中的应用。

设 k 是一个域,或称为"数域"。我们常常假设 k 是代数封闭的(参考第六章的希尔伯特零点定 理), $K = k(x_1, \dots, x_n)$,此处 x_1, \dots, x_n 一定是代数无关的。K 称为**代数函数 域**。设

$$\operatorname{tr} \operatorname{deg}(K/k) = n_{\bullet}$$

定义7.9 设v 是K 的k 賦値。如果 $tr \deg(\Delta_{\bullet}/k) = n-1$,则称v 是K 的素因子。

讨论 根据定 理7.5, rank v + res-dim v≤n. 请注意, res-dim v = tr deg(Δ./k),

因此 rank v≤1. 又知 rank v = 0, 所以 rank v = 1.

例17 设 $K = k(x_1, \dots, x_n)$, $\operatorname{tr} \operatorname{deg}(K/k) = n$, $v \in K$ 的素因子。如果 $v(x_i) < 0$,则用 x_i^{-1} 取代 x_i ,即 不妨设 $v(x_i) \ge 0$ ($\forall i = 1, 2, \dots, n$)。所以 $R_* \supset k[x_1, \dots, x_n]$ 。我们要说明,当 $\operatorname{tr} \operatorname{deg}((k[x_1, \dots, x_n]/p)/k) = n-1$

时,ht(p) = 1,此处 $p = m_* \cap k[x_1, \dots, x_n]_*$

假设有(0)\\pip\\pip, 此处p,是一个素理想、令

 $S = k[x_1, \dots, x_n]/p_1 = k[\bar{x}_1, \dots, \bar{x}_n], \quad \bar{p} = p/p_1.$

那 么, $\operatorname{tr} \operatorname{deg}(S/k) < n$ 。 用诺德正规化 定 理,存 在 $S_1 = k[y_1, \dots, y_r]$, y_1, \dots, y_r 是代数无关的,S 对 S_1 是整数相关的。不难看出, $\bar{\mathbf{p}} \cap S_1 \neq (0)$,

tr deg((S/\bar{p})/k) = tr deg(($S_1/\bar{p} \cap S_1$)/k) $\leq n-2$, 而且 $k[x_1, \dots, x_n]/p = S/\bar{p}$, Δ . 是 $k[x_1, \dots, x_n]/p$ 的比域。因此得到一个与前提相矛盾的结论: tr deg(Δ ./k) $\leq n-2$. 所以我们知道ht(p) = 1.

任取 $f \in p$,设f的素因子分解式为 $f = \prod f_i$ 。因为p是素理想,所以必有一个 $f_i \in p$ 。但是 (f_i) 也是一个素理想,且ht(p) = 1,所以 $(f_i) = p$ 。这就说明了在一个唯一分解的整环里, $ht(p) = 1 \Longrightarrow p$ 是主理想。

显然, $k[x_1, \cdots, x_n]_{\langle f_i \rangle}$ 是一个一秩离散赋值环,而且它含于R,中。因此,我们得出 $R_* = k[x_1, \cdots, x_n]_{\langle f_i \rangle}$ 。

从几何与代数的联系来看,在 $k[x_1, \dots, x_n]$ 上有限的而且 $tr \deg((k[x_1, \dots, x_n]/p)/k) = n-1$

的素因子,相当于A*中由 $f_1 = 0$ 定义的n - 1维不可分解 的 代数 多样体。

定理7.20 K的素因子υ必然是一秩离散赋值。

证明 仅须证明 v 是离散的(参看上面的讨论)。取 x_1, \dots, x_{n-1} ,使它们在 Δ 。中的象对 k 是代数无关的。又取 x_n ,使 x_1, \dots, x_n 对 k 是代数无关的,以及 $v(x_n) \ge 0$ (如果 $v(x_n) < 0$,就用 x_n^{-1} 取代 x_n)。令 $S = k[x_1, \dots, x_n]$,它的比域为 $K_1 = k(x_1, \dots, x_n)$, u 是 v 在 K_1 上的限制。

因为 $K \in K_1$ 的代数扩域,所以 $\operatorname{rank} u = \operatorname{rank} v = 1$ 。由于 $[A_*:A_*] \geqslant [K:K_1]$,

所以4.是4。的代数扩域,即有

 $\operatorname{tr} \operatorname{deg}(\Delta_{\bullet}/k) = \operatorname{tr} \operatorname{deg}(\Delta_{\bullet}/k) = n - 1,$

于是 u 是 K_1 的素因子。

我们要说明 $\operatorname{tr} \operatorname{dog}((S/p)/k) = n-1$,这里 $p = m_u \cap S$ 。显然, $S/p = k[\bar{x}_1, \dots, \bar{x}_n] \subset \Delta$,

已经知道其中的 $\bar{z}_1,\cdots,\bar{z}_{n-1}$ 是代数无关的。假若 $\bar{z}_1,\cdots,\bar{z}_n$ 是代数无关的,那么, $S\to S/p$ 是单满映射,于是

$$p = (0), R_* \supset S_{(0)} = K_1, \text{ rank } u = 0.$$

这与 rank u= 1 不合。

根据例17的讨论, 2是一秩离散赋 值。又 根据 § 5中 定 理

7.15的引理 1 ,存在整数 s ,使sG , $\subset G_u \approx Z$,不难导出 $G_* \approx Z$.

 \mathbf{x} 设v是K的素因子,那么,R。是一维的正则 诺 德 局部 环。

证明 应用定理7.3的 2). |

讨论 一秩离散赋值 2 不一定是素因子。请看下面的例子。

例18 令 $\sigma(x) = t$, $\sigma(y) = e^t$. 由于 t 及 e^t 是代数无关的,所以 σ : $C(x,y) \rightarrow C((t))$ 是域的嵌射。又令w 是C((t))的赋值。 $w(f(t)) = \text{ord}_{s} f(t)$, $f(t) \in C((t))$ 。

 σ 是w在C(x,y)上的限制。显然

$$G_{\bullet} \subset G_{\bullet} \approx \mathbf{Z}$$
,

所以, υ是一秧离散赋值, 但是

$$C \subset \Delta_{\bullet} \subset \Delta_{\omega} = C$$
,

即 $\operatorname{tr} \operatorname{deg}(\Delta_{\bullet}/\mathbf{C}) = 0$,所以v不是一个素因子。

例19 设 $v \in K = k(x_1, \dots, x_n)$ 的素因子, $v = m \cdot \bigcap k[x_1, \dots, x_n]$ 。那么, $tr \deg((k[x_1, \dots, x_n]/v)/k)$ 不一定等于n-1,这里 $n = tr \deg(K/k)$ 。因此不一定合于例17的讨论。现在我 们 举一个与例17不同的例子。

设 $K = k[x_1, x_2]$, tr deg(K/k) = 2. 含 $\nu = \text{ord}$, 即, 如果 $f(x_1, x_2) = g(x_1, x_2) \in k[x_1, x_2]$, 则令

$$v(f(x_1,x_2)) = f(x_1,x_2)$$
的最低次数,

 $v(f(x_1,x_2)/g(x_1,x_2)) = v(f(x_1,x_2)) - v(g(x_1,x_2)).$

事实上、此时 $R_* = k[x_1, x_2/x_1]_{(x_1)}$ 、 $G_* \approx Z$ 、 $\Delta_* \approx k(x_2/x_1)$ 。 所以v是K的素因子、可是

$$p = m_* \cap k[x_1, x_2] = (x_1, x_2),$$

即 tr deg($(k[x_1,x_2]/p)/k$) = 0 < 1. 这也就是说,ht(m. $\bigcap k[x_1,x_2]$) = 2 > 1, v 在 $k[x_1,x_2]$ 上的中心是 (x_1,x_2) ,相当于几何学的一点。

考虑例17以及例19,我们给出下面的定义。

定义7.10 设有整环 $S = k[x_1, \dots, x_r]$, K是它的比域。又设 v 是 K 的素因子,p = m, $\bigcap S$ 。如果

 $\operatorname{tr} \operatorname{deg}((S/\mathfrak{p})/k) = \operatorname{tr} \operatorname{deg}(\Delta_{\bullet}/k) = n-1,$

那么,称v 为对S 的第一类素因子。否则称v 为对S 的第二类素因子。

我们先证明下面的引理.

引理1 设有整环 $S = k[x_1, \dots, x_r]$, K是它的比域。那 么,对素理想 p 而言,

 $\operatorname{tr} \operatorname{deg}((S/p)/k) = \operatorname{tr} \operatorname{deg}(K/k) - 1 = n - 1 \iff \operatorname{ht}(p) = 1.$

证明 用诺德正规化定理,选 取 y_1, \dots, y_n ,使 y_1, \dots, y_n 对 k是代数无关的,而且 S 是对 $S_1 = k[y_1, \dots, y_n]$ 整数相关的。令 $p_1 = p \cap S_1$ 。不难看出,

$$ht(p) = ht(p_i)$$
 (为什么?),
 $tr \deg((S/p)/k) = tr \deg((S_1/p_i)/k)$.

因此,本引趣简化成Si,pi的情形了。

 \longleftarrow 因为 S_1 是唯一分解整环,所以 $p_1 = (f)$, f 是 不 可分解的多项式(参看例17) , $f \rightleftharpoons 1$, 0 。于是,不难看出,

$$\operatorname{tr} \operatorname{deg}((S_1/p_1)/k) = n-1.$$

 \Longrightarrow 。设有素理想 p_2 ,使 $0 \subseteq p_2 \subseteq p_1$ 。那么,令 $S_2 = S_1/p_2$,则 $\operatorname{tr} \operatorname{deg}(S_2/k) \leq n-1$ 。易见

$$S_1/\mathfrak{p}_1 \approx S_2/(\mathfrak{p}_1/\mathfrak{p}_2)$$
, $\operatorname{ht}(\mathfrak{p}_1/\mathfrak{p}_2) \leqslant 1$.

所以,同理得出

tr $\deg((S_1/\mathfrak{p}_1)/k) \leqslant \operatorname{tr} \deg(S_2/k) - 1 \leqslant n - 2$.

这与已知条件不合。【

讨论 根据引理, $k[x_1, \dots, x_r]$ 的任意一个不能加长 的 素理想链 (0)军 p_1 军 p_2 军…军 p_1 ,必定有长度 n。同理可以看出,两个素理想pCq之间的不能加长的素理想链p军 q_1 军…军q、军q必有相同的长度。我们称这种性质为**垂链性。**上 交 说 明 了 $k[x_1, \dots, x_r]$ 有垂链性。

定义7.10′如果 $bt(m, \cap S) = 1$,则称v 是对S 的第一类案因子,此处v, S 等是与定义7.10一样的。

讨论 考虑满射

$$\sigma: k[X_1, \dots, X_\tau] \rightarrow k[x_1, \dots, x_\tau] = S$$

 $\sigma(X_1) = x_1$, 这里 X_1 , …, X, 是变数。 $q = \sigma^{-1}(0)$ 是 $k[X_1$, …, X,] 的一素理想, $\mathscr{S}(q)$ 是r维仿射空间A'中的一代数多样体V, $k[x_1$, …, x,]是V上的多项式函数环。设 p 是 $k[x_1$, …, x,]的一素理想, $\phi\sigma^{-1}(p) = q_1$,则 $\mathscr{S}(q_1) = W$ 是V的一子代数多样体。此时有 $ht(p) = 1 \iff \dim W = \dim V - 1$

(见上面的引理)。于是, υ是对S的第一类素因子←→ υ在S的中心 申相应于一个n-1维的不可分解的子多样体。一般言之, υ→ν的对应不是单射(请看下面的解说)。

我们要讨论整数封闭的环S。整数封闭的环也称为正规环。 有下面的定理。

定理7.21 一个一维诺德正规局部整环S必定是它的比域K的一个一秩离散赋值环。

证明 根据定理7.3,仅须证明8是一个正则环便足够了。 这就是说,我们仅须证明8的极大理想m是一个主理想。以下分段说明。

1) 今m⁻¹ = {b∈K: bm⊂S}。显然, m⁻¹是一个S模, m⁻¹⊃S, m⊂mm⁻¹⊂S。

不难看出, mm^{-1} 是S的一个理想,所以 $mm^{-1} = m$ 或S。

我们先证明 $m^{-1}
ildas S$, 任取a
ildas m, a
ildas 0, 考虑理想(a)的简略准素分解,因为S只有一个非零的素理想 m,所以(a)是一准案理想,m是它的相伴素理想。因此存在c
ildas S, 使 m = ((a):c) (见定理6.21的证明)。显然c
ildas C (否则((a):c) = S
ildas m),所以c/a
ildas S, $c/a
ildas m^{-1}$, 因此 $m^{-1}
ildas S$.

2) 证明mm⁻¹ = S。假若不然,则mm⁻¹ = m,任取 a ∈ m⁻¹, 则am ⊂ m。 令m = (b₁, ···, b₁),那么

$$ab_i = \sum_{j=1}^{t} c_{ij}b_j, \quad c_{ij} \in \mathcal{S}(i \leq 1, \dots, l).$$

于是令

$$\det \begin{bmatrix} a - c_{11} & -c_{12} & \cdots & -c_{11} \\ -c_{21} & a - c_{22} & \cdots & -c_{21} \\ \vdots & \vdots & \vdots & \vdots \\ -c_{11} & -c_{12} & \cdots & a - c_{11} \end{bmatrix} = a^{1} + c_{1}a^{1-1} + \cdots + c_{1} = \lambda,$$

即有 $\lambda m \approx (0)$ (参见定理6.6的证明)。所以 $\lambda = 0$,也 即 α 对 S 是整数相关的。已知 S 是正规环,立得 $m^{-1} \subset S$,这与 1) 相冲突。因此 $mm^{-1} = S$ 。

3) 根据定理6.35, 我们 有 ∩ m' = (0)。所 以 m ≒ m²。任取 a ∈ m \ m²。不难看出 a m ¬¹ 是 S 的 理想。我们要说明 a m ¬¹ = S。假若不然,a m ¬¹ ⊂ m,那么,a ∈ a m ¬¹ m ⊂ m²,与 a 的选取不合。因此 a m ¬¹ = S。于是立得

$$(a) = aS = am^{-1}m = Sm = m,$$

即m是主理想。」

讨论 1)设 $S=k[x_1,\cdots,x_r]$ 是诺德正规整环,K是 它的比域。设v是对S的第一类素因 子。令 m_o $\cap S=p$,则有 ht(p)=1,S。是一维诺德正规局部环,因此是一个一秩离散赋值 环。自然 R_o $\supset S$ 。, rank $R_o = rank$ S。。应用定理 7.4,立得 $R_o = S$ 。。因此,对S的第一类素因于v的赋值环,即是S对高度为1的素理想的局部化环。

2) 从几何的观点来看,当 $S=k[x_1,\cdots,x_n]$ 是正 规整环时,对 S的第一类素因子 ν 即相当于代数多样体 V的 n-1 维 子 代数 多样体 W,此处 S 是 V 的 S 项式函数环, $n=\dim V$ 。

例20 取 $S = k[t^2, t^3]$,则 S 不是一个正规环。这是因为 $t \in K(K)$ 的比域), $t^2 \in S$, $t \in S$ 。 令 $p = (t^2, t^3)$,不难 看 出, ht(p) = 1,但 S,不是正规环,因此 S,也不是一个赋值环。

设V是 n 维不可分解的正规代数多样体,这 就 是 说,它 的 多项式函数环 $S = k[x_1, \cdots, x_r]$ 是正规的,而 且 $\dim S = n$ 。 我们 引入它的所有的 n-1 维不可分解的子代数 多 样体 W_i 所生成的 自由交换群 D(V) (也记为 D(S)),即

解的子代数多样体 }。

这个群 D(V) 称为 V 的因子群,其元素称为因子。

任取 $f \in S$, 考虑理想(f). 我们要说明: 包含(f)的高度为 1 的素理想 P 只有有限多个. 这是因为,考虑(f)的 简 略准素分解以后,不难得出,P 必然是(f)的一个孤立素理想. 以 ν_w 表示与 n-1 维子多样体W 相对应的赋值,那么

$$\nu_w(f) > 0 \iff (f) \subset \mathfrak{p}, \ \mathfrak{p} = \mathfrak{m}_{\mathfrak{p}_w} \cap S_{\bullet}$$

因此, 任取 $h = f/g \in K(K)$ 表示 S 的比域), 定义

$$(h) = \sum v_{w}(h)W_{\bullet}$$

则只有有限多个 $v_w(h) \Rightarrow 0$,所以 $(h) \in D(V)$ 。这样 定 义的 h 的 因子(h) 称为**主因子**。显然,我们有

$$(h_1 h_2) = \sum v_w (h_1 h_2) W = \sum v_w (h_1) W + \sum v_w (h_2) W$$

$$= (h_1) + (h_2).$$

因此,所有的主因子形成 D(S)的一个子群 F(S)。 商群

$$C(S) = D(S)/F(S)$$

称为 S 的因子类群。

设 h的因子(h)=0, h有什么性质? 我们先证明:

引理 2 设S是正规诺德整环,那么任意的 主 理想(a)的相 件素理想 p_i 都有相同的高度 1 .

证明 应用 Krull 主理想定理, (a)的孤立的相伴 素 理想的 高度都是 1. 所以只要证明(a)沒有嵌入素理想便足够了.

假设(a)有相伴的素理想 p = q。对 q 作局部化后, aS。有相

件素理想 pS_* 军 qS_* 。 根据定理6.21 的证明,存在 $b \in S_*$,使得 $qS_* = (aS_*;b)$,此处 $b \in aS_*$ (否则, $(aS_*;b) = S_*$)。 于是

$$b(qS_4) \subset aS_4$$
, $(b/a)(qS_4) \subset S_4$.

不难看出, $(b/a)(qS_a)$ 是 S_a 的一个理想。只有两种可能:

- 1) $(b/a)(qS_{\bullet}) = S_{\bullet};$
- (b/a)(qS₁)⊂qS₄₁

在情形 1) 下,存在 $c \in qS_{\bullet}$,使 $(b/a) \cdot c = 1$,即有

a = bc, $(c) = (aS_q:b) = qS_q$,

故

dim $S_{\bullet} \leqslant 1_{\bullet}$

这与S,中存在素理想链 $0 \subseteq pS$, $\subseteq qS$, (即 $\dim S$, ≥ 2)不合。所以情形 1)是不可能发生的。

在情形 2)下,令 d=b/a, $qS_a=(c_1,\cdots,c_r)$ 。那 么,我们得出联立方程式

$$de_i = \sum_i a_{ij}e_j, \quad a_{ij} \in S_*(i=1,\cdots,r).$$

不难得出(参见定理7.21及定理6.6的证明), d 对 S 是整数相关的,所以 $d \in S$ 。 即 $b = ad \in aS$ 。,与 b 的已知性质矛盾。

讨论 当理想 I 的相伴素理想都有相同的高度时,我们称 I 是不杂的。在几何的情形下,不杂的理想 I 定义的多样体的各个分支有相同的维数。

定理7.22 设S是整环,那么,我们有

- 1) $S = \bigcap S_{\bullet}$, p取所有可能的繁理想,
- 2) $S = \bigcap S_n$, m取所有可能的极大理想;
- 3) 如果S是正规诺德环,则S=∩S,, bt(p)=1.

证明 1) 显然有 $S \subset S_1$, $S \subset \bigcap S_2$. 任取 $a/b \in S_3$, $a,b \in S_3$. 这就是说 $a \in (b)$. 令 p 是与 $\{a^*: n=0,1,2,\cdots\}$ 交集为 空集而且含有b 的所有理想中的极大者,不难看出,p 是一个素理想。在 S_1 中,a 是可逆元,b 不是可逆元,因此 $a/b \in S_3$.

2) 任取素理想 p, 设极大理想 m⊃p. 显然有 S_{*}⊂S_{*}.

3) 应用定理7.21, S, 都是一秩离散赋值环。 令 v, 是与S, 相 对应的赋值。任取 $b/a \in \bigcap S_*(ht(p) = 1)$, 立得

$$v_*\left(\frac{b}{a}\right) \geqslant 0, \quad v_*(b) \geqslant v_*(a).$$

 $\mathcal{C}(a)$,(b)的简略准素分解如下,

$$(a) = \bigcap I_i, \qquad \sqrt{I_i} = \mathfrak{p}_i,$$

$$(b) = \bigcap J_j, \qquad \sqrt{J_j} = \mathfrak{q}_{j,\bullet}$$

应用引理, ht(p_i) = ht(q_i) = 1(∀i,j)。于是

$$v_{\bullet_i}(b) \geqslant v_{\bullet_i}(a), \quad v_{\bullet_i}(b) \geqslant v_{\bullet_i}(a).$$

不难得出,{p_i}⊂{q_j},以及 /

$$(a)S_{\bullet_{j}}\supset (b)S_{\bullet_{j}}$$

不妨设 $p_i = q_i$, 如果 $q_i \in \{p_i\}$,则令 $I_i = S$ 。经过 这样的整理以 后,由

$$(a)S_{\mathfrak{p}_{i}}=I_{i}S_{\mathfrak{p}_{i}}, \qquad (b)S_{\mathfrak{q}_{j}}=J_{j}S_{\mathfrak{q}_{j}},$$

即知

$$I_{j}S_{q_{j}}\supset J_{j}S_{q_{j}}, \quad \forall j.$$

现在要说明

$$I_jS_{q_j}\cap S=I_j$$
, $I_jS_{q_j}\cap S=I_{j_k}$

显然, $I_iS_{\bullet_i} \cap S \supset I_i$. 任取 $c \in I_iS_{\bullet_i} \cap S$, 那么 c = r/s, 其中 $r \in I_{i}$, $s \in q_{i}$, $c \in S$. 如果 $I_{i} = S(p_{i})$ 时),则显然 $c \in S$ I_{j} 。否则 I_{j} 是 S 的准素理想, $\sqrt{I_{j}} = q_{j}$ 。由 r = cs,根据 准素理 想的定义,即知 $c \in I_{j_*}$ 于是 $I_{j_*}S_{*_j} \cap S = I_{j_*}$ 类似地可证。

$$J_j S_{q_j} \cap S = J_{j_{\bullet}}$$

所以,我们得出

$$I_{j} = I_{j}S_{*_{j}} \cap S \supset J_{j}S_{*_{j}} \cap S = J_{j*}$$

即有

于是有
$$(a) = \bigcap I_j \supset \bigcap J_j = (b), b \in (a),$$
 即有 $b/a \in S.$

讨论 在几何的情形下, $S = k[x_1, \dots, x_n]$ 等于一个代数文 样体 V的多项式函数环、S。是在m 定义的一点上的 不等 于 ∞ 的 有理函数环。定义7.22的 2)的意义是,在V上有定义 的多项式函 数,即是在各点都不等于∞的有理函数。

在代数的情形下,引用谱集 $Spec\ S$,我们把 S 的比域 K 中的元素当作在 $Spec\ S$ 上定义的函数,把 S 当作 $Spec\ S$ 上的 多项式函数。那么,定理7.22的 2)也有与上面相同的意义。

 \mathbf{X} 设 $S = k[x_1, \dots, x_r]$ 是正规整环, K 是它 的 比域, $f \in K$. 那么,因子 $(f) = 0 \iff f$ 是 S 的可逆元。

证明
$$v_*(f) = 0 \Longleftrightarrow v_*(f^{-1}) = 0 \Longleftrightarrow f, f^{-1} \in S_*$$
.

一般说来,因子群 D(S)是一个很大的自由交 換群,提供不了什么有用的数据,而因子类群 C(S)是可以表现一些 有用的现象的。我们先证明下面的引理。

引理 3 设 S 是诺德整环,那 么,下面 的 三 个性质是等同的。

- 1) S是唯一分解整环;
- 2) S的不可分解的元素 f 都生成素理想;
- 3) 高度为1的素理想都是主理想.

证明 在 S 是诺德环的条件下,我们已有分解的存在性,以下仅讨论分解的唯一性。

- 1) \Longrightarrow 2) . 设 S 是 唯一分解的整环, f 是 不 可 分 解 的 元素。设 $gh \in (f)$,即存在 $h' \in S$,使 gh = fh' 。 于 是 , $f \mid g$ 或 $f \mid h$,即 $g \in (f)$ 或 $h \in (f)$ 。 因此 (f) 是 一 个 素 理 想 。
 - 2) =>1),设

$$\prod f_i = \prod g_j,$$

 f_i, g_j 都是不可分解的。那么 $\prod g_i \in (f_i)$,必有某个 $g_i \in (f_i)$,即 $f_i | g_j$ 。因 g_i 也是不可分解的,不难导出 $f_i \mid g_j$,相 伴。我 们从 (*) 式两侧消去 f_i 以后,应用归纳法,便可得出分解的唯一性。

- 2) \Longrightarrow 3)。设 ht(p) = 1。取不可分解元 $f \in p$,那么(f) $\subset p$,于是(f) = p。
 - 3) =>> 2) . 取包含(f)的极小素理想 p. 根据 Krull 主理

想定理, ht(p)=1。因此 $p=(y)\ni f$, 立得 f=gh。 所以 f,g 是相伴的,(f)=p。 【

下面的定理告诉我们因子类群的一个用途。

定理7.23 设 $S = k[x_1, \dots, x_r]$ 是正 规整环。则S是唯一分解的整环 $\iff C(S) = 0$.

证明 \Longrightarrow 设W对应于素理想 p, ht(p) = 1, 根 据上面的引理, p = (f). 所以(参见例20后面引入的记号)

主因子
$$(f) = \sum v_{w_i}(f)W_i = W_i$$

立得 D(S) = F(S), C(S) = 0.

 \leftarrow . 任取一个高度为 1 的素理想 \mathfrak{p} , 令W 与它对应。那么,存在 f , 使

主因子
$$(f) = W$$
,

即 $\nu_w(f) = 1$, $p \ni f$, $\nu_{w_i}(f) = 0$, $\forall W_i \rightleftharpoons W$ 。这就是说,对于任一高度为 I 的素理想 $p_i \rightleftharpoons p$,总有 $f \in p_i$ 。利用定理7.22的3),立得

$$(f) = fS = f\left(\bigcap_{i} S_{*,i} \cap S_{*}\right) = \left(\bigcap_{i} fS_{*,i}\right) \cap fS_{*}$$
$$= \left(\bigcap_{i} S_{*,i}\right) \cap pS_{*} = p\left(\bigcap_{i} S_{*,i} \cap S_{*}\right) = pS = p_{*}$$

这就是说,高度为1的素理想都是主理想。应用引理3,立得本定理。 |

例21 设 $S = C[x,y]/(x^2 - y(y-1)) \supseteq C[y], K$ 是S的比域。

1) S 是正规的。我们只须证明 S 是 C[y] 在 K 中的整数闭包 $\overline{C[y]}$ 便足够了。显然, x 对 C[y] 是整数相关的,所以 $S \supset \overline{C[y]}$ 。在 K 中任取对 C[y] 整数相关的元素 $\alpha(y)x + \beta(y)$,此处 $\alpha(y)$, $\beta(y) \in C(y)$ 。它的迹和范数

$$Tr(a(y)x + \beta(y)) = 2\beta(y),$$

$$N(a(y)x + \beta(y)) = -a^{2}(y)(y(y-1)) + \beta^{2}(y)$$

都应属于C[y]、于是

$$\beta(y) \in C[y],$$

$$\alpha^{2}(y)y(y-1) \in C[y] \implies \alpha(y) \in C[y].$$

所以 $S = \overline{C[y]}$.

2) 设 v 是对 S 的第一类素因子, σ : $R_v \rightarrow \Delta_v = R_v/m_v = C$ 是典型映射。设 $\sigma(x) = a$, $\sigma(y) = b$ 。不难看出,

$$\mathfrak{p}=\mathfrak{m}_n\cap\mathcal{S}=(x-a,y-b)\mathcal{S},$$

即収对应到曲线

$$x^2 - y(y - 1) = 0$$

上的一点(a,b)。 反之,任取曲线上的一点(a,b),考虑素理想 (x-a,y-b)=p.

因为 $\dim S = \dim C[y] = 1$,所以 $ht(p) \leq 1$ 。 于是显 然,ht(p) = 1。 所以 S,是对 S 的第一类素因子。综上所述,因子 群 D(S) 即是曲线上的点所生成的自由交换群

$$\left\{\sum n_i W_i: W_i$$
 是曲线上的点 $\right\}$.

3) 任取曲线上一点(a,b)。考虑下面的多项式 $f(x,y) = x + y - a - b \in S$,

读者自行验证S的理想(f) = (x-a,y-b)。于是

因子
$$(f) = (a,b)$$
.

因此,C(S) = D(S)/F(S) = 0。所以S 是喻一分解的整环。

例22 设 $S = C[x,y]/(x^2 - y(y-1)(y-2)) \supset C[y]$, K 是 S 的比域。就像上面的例子一样,我们可以验证

S 是正规的;

上的点},

3) C(S) ⇒0, 这就是说, S不是唯一分解的整环。为证明这一点,应用引理3,我们仅须证明素理想(₹,₹)不是主理想便可以了。

假设 $(\bar{x},\bar{y})=(g(\bar{x},\bar{y}))$ 。 令 $f(x,y)=x^2-y(y-1)(y-2)$,立得

$$(x,y) = (g(x,y),f(x,y)).$$

木难看出(为什么?)

 $g(x,y) = a(y)x + \beta(y) + y$, $(a(y),\beta(y)) = (1)$ 。 我们要说明 $(g(x,y),f(x,y)) \cap C[y] = (h(y))$, 此处

$$h(y) = \beta^2(y) - \alpha^2(y)y(y-1)(y-2).$$

从这里立刻可以导出 $\deg h(y) + 1$, $h(y) \in C$, 所 以 $y \in (h(y))$,

$$(x,y) \cap C[y] \neq (g(x,y),f(x,y)) \cap C[y], \cdots$$

$$(x,y) \neq (g(x,y),f(x',y)).$$

设r(y)是 $(g(x,y),f(x,y))\cap C[y]$ 中的任一多项式。则存在 $a(x,y),b(x,y)\in C[x,y]$,使

(1)
$$r(y) = a(x,y)g(x,y) + b(x,y)f(x,y).$$

用欧几里得算法,有

 $a(x,y) = d(x,y)f(x,y) + a'(x,y), \operatorname{deg}_x a'(x,y) \leqslant 1.$ 代入(1)式,得

$$r(y) = a'(x,y)g(x,y) + b'(x,y)f(x,y).$$

比较两侧x的次数,不难看出

$$\deg_x a'(x,y) = 1, \qquad \deg_x b'(x,y) = 0$$

令

$$a'(x,y) = \delta(y)x + \varepsilon(y), \quad b'(x,y) = \pi(y).$$

于是得

(2) $r(y) = (\delta x + \varepsilon)(\alpha x + \beta) + \pi(x^2 - y(y - 1)(y - 2)).$

比较两侧x的系数,有

$$\delta \alpha = -\pi$$
, $\delta \beta + \epsilon \alpha = 0$.

因为 $(\alpha,\beta)=(1)$, 所以 $\delta=\lambda\alpha$, $\epsilon=-\lambda\beta$, $\pi=-\lambda\alpha^2$, 其中 $\lambda\in$

C[y]。代入(2)式,即得

 $r(y) = -\lambda h(y).$

河 题

- 1. 令 $R = C[x,y]/(x^2-y^2-x^3)$ 。证明 R 是 整 环, 试求 R 的比域 K 的一个第一类素因子。
 - 2. 续上题。证明 R 不是整数封闭的。
 - 3. $6R = C[x,y]/(y^2-x^2+1)$,证明R是整闭整环。
 - 4. 续上题。试确定R的比域K的所有第一类案因子。
 - 5. 续上题。判断 R 是否唯一分解整环。
- 7. 设 f(x,y)是 C[x,y]內不可约多项式,由它生成的理想 (f)对应的不可约代数多样体Y(f)上每一个点都是平滑的。 + C[x,y]/(f(x,y)),R 的比域 K 的因子群中一元素

$$a = \sum n_i W_i$$

其次数定义为 $deg\ a = \sum_{i} n_{i}$. 如果所有 $n_{i} \ge 0$,则 α 称为正因子。给定因子 α ,令 $L(\alpha)$ 表示 K 中满足如下条件的元素 α 所成的 集合: $L(\alpha)$ + α 为正因子。证明 $L(\alpha)$ 是域 α 上的一个线性空间。

8. 续上题.设u∈K\C. 介

$$(u)_0 = \sum_{\mathbf{v}(u) > 0} v_{\mathbf{w}}(u) W, \qquad (u)_{\infty} = \sum_{\mathbf{v}(u) < 0} v_{\mathbf{w}}(u) W_{\bullet}$$

证明: $\deg(u)_0 = -\deg(u)_\omega = [K:C(u)]$, 从而 $\deg u = 0$.

第八章 Dedekind 整 环

§ 1 定 义

本章的题材主要源自"代数数论"及"仿射代数曲线论"。 仿射代数曲线加上无穷远点集即是射影代数曲线,也即相当于黎 曼曲面。因此,本章的结果可以应用到数论、几何学及复变函数 论。

设K是Q的有限代数扩域。我们要研究K的代数整数环S。 显然,S应该包含 1, S应该以K为比域,S应该是整数封闭的 (即S是正规环)。在上面的三个自然条件下,S的自然选择应 该是 Z 在K中的整数闭包。此时,S是一维正规诺德整环(参见 定理6.7与6.23,以及下面的定理8.3)。

设 k 是一个常数域, C 是一个一维仿射正则代数曲线, S 是 C 的多项式函数环, $S = k[x_1, \cdots, x_n]$ 。这时, S 是一个正则环,即对任意的极大理想 p 而言, S ,是正则局 部 环。由于 S 是一维的,所以 ht(p) = 1 。根据定理 f 。21, f ,都是赋值 f ,因此 都是整数封闭的。根据定理 f 。22, 我们知道

$$S = \bigcap S_{\bullet}$$
,

因此S 也是整数封闭的(事实上,只要S 是正则 诺 德环,S 一定是正规的)。所以S 是一个一维正规诺德整环。

综上所述,我们给出如下的定义:

定义8.1 设D是一个整环。若D适合下面的条件。

- 1) D 是诺德环;
- 2) D是正规的;
- dimD≤1.

则称之为 Dedekind 整环、

讨论 1) 如果 $\dim D = 0$,则 D 是域。如果 $\dim D = 1$,则 D 是一维正规诺德整环。

2) Artin 环的定义是什么? 【

在本节里,我们将证明 Dedekind 整环的一些等价的定义。 先引入"分理想"的概念。设S是一个整环,K是它的比域,J是K的一个子集,而且是S模。如果J的所有元素有一个公分母 d,即J \subset (1/d)S,那么,J就称为一个分理想。显然,S的理想 I有公分母 1,I \subset S,所以I是一个分理想。S的理想 I 也称为整理想。形如(a/b)S的分理想称为主分理想。

固定了S以后,令牙是所有分理想的集合。那么,在牙中有自然的"+","·","门"等运算。我们可以定义运算":"(即"比"):

$$J_1: J_2 = \{a: a \in K, aJ_2 \subset J_1\}_{\bullet}$$

不难看出, $J_1:J_2$ 是一个S模。设 J_2 =(0),令 d_1 是 J_1 的 公分母,任取 $b \in J_2$,b=0,显然 有 $d_1b(J_1:J_2)\subset S$,所 以当 J_2 =(0)时, $J_1:J_2$ 也是一个分理想。

对"·"而言,S显然是 \mathcal{F} 的幺元。SJ=J。我们定义非零的分理想J的**拟逆元**。

$$J^{-1} = \{a: aJ \subset S\} = S: J_{\bullet}$$

请注意, JJ^{-1} 不一定等于S,当 $JJ^{-1}=S$ 时,我们称J是可逆的。当J为非零的主分理想(a/b)S时,

$$J^{-1}=(b/a)S, \qquad JJ^{-1}=S,$$

故 J 是可逆的。

我们先证明一些引理。

引理 1 设 $J \in \mathcal{F}$ 。如果 $J' \in J$ 的一个乘法逆元,则 $J' = J^{-1}$ 。

证明 设 J' 是 J 的乘法逆元,则 $JJ' \subset S$ 。那 么 $J' \subset S: J = J^{-1}$ 。我们又有 $S: J = J' J(S: J) \subset J' S = J'$,所以 $J' = J^{-1}$.

引理2 如果每一非零整理想「都是可逆的,那么多\{(0)} 是一个乘法群。

证明 取 $J \in \mathcal{F} \setminus \{(0)\}$ 。则存在d,使J = (1/d)I,此 处 I是一个整理想。显然,

$$J^{-1} = dI^{-1}$$
 $(JJ^{-1} = (1/d)IdI^{-1} = S)$.

引理3 每一个可逆的分理想 J 必定是一个有限 S 模。

证明 已知 $JJ^{-1}=S$ 。那么,存在有限 集 $\{a_i\}\subset J$, $\{a_i'\}\subset J^{-1}$,使

$$\sum a_i a_i' = 1.$$

任取 $a \in I$, 显然 $aa' \in S$. 于是

$$a = a \sum_{i} a_i a'_i = \sum_{i} (aa'_i) a_i,$$

可见{a_i}是 J 的生成元集。 【

引理 4 设 I_1, \dots, I_n 是整理想, $\prod_{i=1}^n I_i$ 是可逆的,那么每个 $I_j(j=1,\dots,n)$ 都是可逆的。

证明 令 J 是 $\prod_{i=1}^{n} I_i$ 的乘法逆元,那么 I_i $\left(J\prod_{i=1}^{n} I_i\right) = S$.

引理 5 设 p₁,…,p_n 是可逆的素整 理 想,q₁,…,q₁ 是素整 理想,

$$\prod \mathfrak{p}_i = \prod \mathfrak{q}_{f_\bullet}$$

那么, n=l, 且经过整理以后, 有 $p_1=q_1, \cdots, p_n=q_n$. 证明 设 p_1 是 $\{p_1, \cdots, p_n\}$ 中的极小者。由于

$$\mathfrak{p}_i \supset \prod \mathfrak{p}_i = \prod \mathfrak{q}_i$$
,

所以必有某个 qj⊂p₁。同理,必有某个 ° ° ° p₄⊂qj。

由 $p_1 \supset q_2 \supset p_s$, 立得 $p_1 = q_2 = p_s$ 。在(*)式两侧乘以 p_1^{-1} , 应用 归纳独立得本引理。

引理 6 设 S 是正规诺德整环, $a \in S$ 。设 p 是主理想 Sa 的相伴素理想。如果 p 是一个极大理想,那么,p 是可逆的。

证明 假设 p 不是可逆的。那么 p \subset p(S:p) \subseteq S。因为 p 是 极大理想,而 p(S:p) 是 S 的理想,所以 p = p(S:p)。于 是,任 取 r \in (S:p),则有 r p \subset p。因为 S 是诺德环,所以可令

$$\mathfrak{p}=(b_1,\cdots,b_n)_\bullet$$

不难看出,我们得出一组联立方程式。

$$ab_i = \sum_i c_{ij}b_j, \quad c_{ij} \in S \ (i=1,\cdots,n).$$

所以, r适合 [aij]的特征多项式

$$\det(rI = (a_{ij}) = 0.$$

因此r对S是整数相关的。已知S是正规的,所以 $r \in S$ 。于是, $(S:p) \subset S$ 。

又显然(S:p) $\supset S$, 故有(S:p)=S, 以及(Sa:p)=Sa. 以下我们要证明,在诺德环里,p为极大理想,那么(Sa:p)=Sa与p是 Sa的相伴素理想,二者不能相容。

令 $Sa = \bigcap q_i$ 是 Sa 的简略准素分解, $\sqrt{q_i} = p$ 。设 $q_i \supset p'$ 。我们有

$$Sa = (Sa; \mathfrak{p}) = ((Sa; \mathfrak{p}); \mathfrak{p}) = (Sa; \mathfrak{p}^2) = \cdots = (Sa; \mathfrak{p}^{\bar{1}})$$
$$= (\bigcap \mathfrak{q}_i : \mathfrak{p}^1) = \bigcap (\mathfrak{q}_i : \mathfrak{p}^1) = \bigcap ((\mathfrak{q}_i : \mathfrak{p}^1) \cap S).$$

显然 $(q_i:p') \cap S = S$ 。 我们要说 明 $(q_i:p') \cap S = q_i(\forall i \neq 1)$ 。 这只要说明 $(q_i:p) \cap S \subset q_i$ 。 任取 $b \in (q_i:p) \cap S$,则 $bp \subset q_i$ 。 假 若 $b \in q_i$,由于 p 是有限生成的理想,必有充分大的整数 m, 使

$$\mathfrak{p} \subset \mathfrak{q}_i \subset \sqrt{\mathfrak{q}_i} = \mathfrak{p}_i$$

于是 $p \subset p_i$, 而 $p \in \mathcal{P}_i$,而 $p \in \mathcal{P}_i$,为是极大理想,所以 $p = p_i$ 。这与简 略 催素分解的定义相矛盾。因此必有 $b \in q_i$,却

于是,我们得出了 Sa 的另一个简略准素分解。

$$Sa = \bigcap_{i \neq 1} q_{i}$$

这是不可能的。【

引理 7 设 S 是一个诺德整环。如果 S 的每个极大理想都是可逆的,那么,每一个非零的理想 I 都是 S 的极大理想的乘积。

证明 设有一个非零的整理想不是极大理想的乘积,根据诺德环的条件,必有一个整理想 I 是适合此种条件的整理想中的极大者。自然, I 不是极大理想。设 I \subseteq m, m 是极大理想。考虑 $m^{-1}I$ 。 显然有 I \subseteq $m^{-1}I$ \subseteq S

假若 $I=m^{-1}I$, 立得 mI=I。应用中山引理的证明,易于得出,存在 $a\in m$,使 (1-a)I=(0)。那么,I=(0),与 I 是 非 零整理想矛盾。所以 $I\subseteq m^{-1}I$ 。根据 I 的选取,

$$\mathfrak{m}^{-1}I=\prod\mathfrak{m}_{4},$$

这里 \mathfrak{m}_i 是 S 的极大理想,即 $I=\mathfrak{m}\prod\mathfrak{m}_i$, 这 \exists I 的选法矛盾 . I

请注意下面的定理的条件3)。一般说来,在代数整数环里, 沒有整数的唯一分解定理。Kummer 发现了"理想的唯一分解定 理",弥补了部分缺憾。

定理8.1 设 D是 一整环。那 么,下面的三个条件 是 等同的。

- 1) D是 Dedekind 整环;
- 2) 如果D不是域,则牙\(0)是一个乘法群;
- 3) 每一个理想 I 可以唯一地写成素理想的 乘积 $I = \prod p_{i,j}$

证明 1) \Longrightarrow 3)。我们只须讨论D 不是域,I \succcurlyeq (0) 的情形。 于是,dim D=1。任取一个案理想 $p \rightleftharpoons$ (0),那么,p 是一极大理想。任取 $0 \rightleftharpoons a \in p$ 。显然,p 包含 Da 的一个相伴素理想;因此 p 是 Da 的一个相伴素理想。我们应用引理 6,得出 P 是可逆的。 再应用引理 7,得出每一个理想「都是极大理想的乘积;又根据 引理 5,得出乘积的唯一性。

3) \Longrightarrow 2)。仅须证明每一个非零的分理想 \int 都是可逆的。设 $\int \Box (1/d)D$ 。不难看出,dJ = I 是 D 的理想。令

$$I = \prod \mathfrak{p}_i$$
, $(d) = \prod \mathfrak{q}_i$

我们先证明每一个非零素理想 p 都是可逆的。任取 $0 \neq a \in p$,设 $Sa = \prod p_i' \subset p$.

由于主理想都是可逆的,应用引理 4 ,那么,每个 p, 都是 可逆的。此时,p 必包含某个 p, 所以我们只要证明。在 3)的 条 件下,每一个可逆的素理想都是极大理 想(如 此,则 $p \supset p$, $\Longrightarrow p$ = p, $\Longrightarrow p$ 可逆)。

任取 $b \in D \setminus p_1'$, $p_1' = D \cap p_2' + Db$. 考虑 $p_1' + Db^2$.

根据条件3),我们有下式

$$\mathfrak{p}_1' + Db = \prod \mathfrak{q}_1', \qquad \mathfrak{p}_1' + Db^2 = \prod \mathfrak{q}_1'',$$

此处 q_1',q_1' 都是素理 想。自然, $q_1' \supset p_1',q_1' \supset p_1'$ 。作 典 型 映射 $\sigma: D \rightarrow D/p_1'$,立得

$$\overline{Db} = \sigma(\mathfrak{p}_1' + Db) = \prod \mathfrak{q}_k'/\mathfrak{p}_1',$$

$$\bar{D}b^2 = \sigma(\mathfrak{p}_1' + Db^2) = \prod \mathfrak{q}_1''/\mathfrak{p}_1'$$

利用引理 4 ,主理想 $D\delta$ 与 $D\delta^2$ 都是可逆的,于 是 $q_1'/p_1', q_1''/p_1'$ 都是可逆的素理想。但 $(D\delta)^2 = D\delta^2$,应用引理 5 ,即知 $\{q_1''/p_1'\}$ 是 $\{q_1'/p_1'\}$ 的两倍重复,即有

$$\mathfrak{p}_1' \subset \mathfrak{p}_1' + Db^2 = \prod \mathfrak{q}_1'' = \left(\prod \mathfrak{q}_1'\right)^2 = (\mathfrak{p}_1' + Db)^2 \subset (\mathfrak{p}_2')^2 + Db.$$
 任取 $c \in \mathfrak{p}_1'$, 由上式即知,存在 $d_1, d_2 \in \mathfrak{p}_1'$, $s \in D$, 使

$$c = d_1 d_2 + sb_1$$

因为 $b \in P_1$,所以 $s \in P_1$,于是 $P_1' \subset (P_1')^2 + P_1'b \subset P_1'$,即有 $P_1' = (P_1')^2 + P_1'b = P_1'(P_1' + Db)$.

由于 p_1' 是可逆的,以 $(p_1')^{-1}$ 乘上式,得 $D=p_1'+Db$ 。这 就 是说 p_1' 是极大理想。

上面已证明,每一个素理想 P_i,q_j 都是 可 逆 的。回 到 起始处,

$$J = d^{-1}I = I(Dd)^{-1} = \prod \mathfrak{p}_i \left(\prod \mathfrak{q}_i\right)^{-1} = \prod \mathfrak{p}_i \prod \mathfrak{q}_i^{-1}$$

是可逆的。

- 2)→3)。应用引理3,即知D是一诺德环。应用引理7,即知每一个非零的理想都可以分解成素理想的乘积。再应用引理5,得出分解的唯一性。
- 2)与3) \Longrightarrow 1)。如 果D是域,则D是 Dedekind 整环。我们仅须考虑D不是域的情形。

应用引壓 3, 立得 D 是诺德环。先证 D 是一维的。应用引理 7, 我们可把任意的非零素理想 P 写成 $\prod m_i$, m_i 是极大理想。立得 P 包含一个极大理想,因此必然等于这个极大理想。所以 D 是一维的。

现在要证明D是正规的。应用定理7.22,我们仅须 证 明 D,是正规的,此处 P 是任意的非零素理想。只要证明 D,是一个赋值环就足够了。任给 $a \in D$,令

$$(a) = \mathfrak{p}^* \prod \mathfrak{p}_i^n$$
, $\mathfrak{p}_i + \mathfrak{p}_i$

定义 $\nu(a) = n$ 。 又若 $\nu(b) = l$,那么

$$(a/b)=\mathfrak{p}^{n-1}\prod\mathfrak{p}_{i}^{n}, \qquad .$$

定义 v(a/b) = n - l = v(a) - v(b)。 显然 v 是一个一秩离散赋值。

现在我们要说明,v的赋值环 $R_v = D_v$,不难看出, $v(b) = 0 \iff b = 0$.

此处 $b \in D$ 。因此 $R_v \supset D$, 又设

$$\frac{a}{b} \in R_{v}, \ a, b \in D, \ (a) = \mathfrak{p}^{n} \prod \mathfrak{p}_{i}^{n}, \ (b) = \mathfrak{p}^{j} \prod \mathfrak{p}_{i}^{t}.$$

则 n ≥ l。那么

$$(a/b)D_{\mathfrak{p}}=\mathfrak{p}^{n-1}D_{\mathfrak{p}},$$

即存在 $c,d \in D$, 使

$$\frac{a}{b} = \frac{c}{d}, \quad e \in \mathfrak{p}^{n-1}, \quad d \in D \setminus \mathfrak{p},$$

也即 $a/b \in D$ 。 所以 $R_v = D$ 。 因此 D 是正规的。]

定理8.2 设D是诺德整环、那么,D是 Dedekind 整环 \iff 任取极大理想 p, D, 是赋值环、

证明 如果D是域,则无可证之处。设D不是域。

-->. P的高度是 1,应用定理7.21,立得。

← D. 是诺德环。应用定理7.3, 立得 $\dim D_{*}=1(\forall p)$. 所以 $\dim D=1$ (定理6.26)。又根据定理7.22,立得D是正规的。

例 1 用第七章的例22。 令

$$D = C[x,y]/(x^2 - y(y-1)(y-2)).$$

不难验证,D是一维正规诺德环,即 Dedekind 整环。在例22中,我们已经知道了D不是一个唯一分解的整环。但是D的每一个理想,都可以分解成素理想的唯一乘积。例如,考虑 理想(3)。现在我们要说明

$$(\bar{y}) = (\bar{x}, \bar{y})^2$$

显然

$$\bar{x}^2 = \bar{y}(\bar{y} - 1)(\bar{y} - 2) \in (\bar{y}),$$

所以(\bar{y}) \supset ($\bar{x}^2, \bar{x}\bar{y}, \bar{y}^2$) = (\bar{x}, \bar{y}) 2 , 又有

$$\bar{y} = \frac{1}{2} (\bar{x}^2 - \bar{y}^3 + 3\bar{y}^2) \in (\bar{x}, \bar{y})^2,$$

立得(y) = (x,y)²。从几何学的观点来看,这无非是说,y = 0 定义的曲线与 x² - y(y - 1)(y - 2) = 0 定义的曲线,在(0,0) 点 有一个重数为 2 的交点而已。

例 2 令
$$S = Z[\sqrt{-3}]$$
。此时 S 不是正规的,因为 $\omega = (-1 + \sqrt{-3})/2$

在S的比域 $Q[\sqrt{-3}]$ 中,而且适合

$$\omega^2 + \omega + 1 = 0,$$

但是不在S中。令 $D = \mathbf{Z}[\omega]$ 。不难看出,D是一个诺 德 环。现在要说明D是正规的。

任取 $a+b\omega\in \mathbb{Q}[\omega]=\mathbb{Q}[\sqrt{-3}]$, $a,b\in\mathbb{Q}$. 众所周知, ω^2 也适合 (1) 式,与 ω 共轭。因此 $a+b\omega^2$ 与 $a+b\omega$ 共轭。由此可以算出

$$Tr(a + b\omega) = (a + b\omega) + (a + b\omega^2) = 2a - b$$
,
 $N(a + b\omega) = (a + b\omega)(a + b\omega^2) = a^2 + b^2 - ab$.

设 $a+b\omega$ 是对 Z整数相关的,那么, $a+b\omega^2$ 也对 Z整数 相关, 所以 $2a-b\in Z$, $a^2+b^2-ab\in Z$ 。即有

$$(2) 2a-b=n, n\in \mathbf{Z}.$$

(3)
$$a^2 + b^2 - ab = l, \quad l \in \mathbb{Z}$$

解出(2) 式中的 b, 代入(3) 式,整理后,得

(4)
$$(3a)^2 - 3n(3a) + 3(n^2 - l) = 0.$$

因 Z 是整数封闭的(正规的),所以 $3a \in Z$ 。由(4)式亦知3|3a,所以 $a \in Z$ 。立得 $b \in Z$ 。这样,我们证明了 D 是 Z 在 $Q[\omega]$ 中的整数闭包,因此是正规的。所以 D 是一个 D ed e k ind 整 环,也就是 $Q[\sqrt{-3}]$ 中的代数整数环。

定理8.2建立了 Dedekind 整环与赋值论的联系。我 们 要 进一步地发展两者的关系。

设D为 Dedekind 整环。令F为D的比域K的所有 在D上为有限的非平凡的赋值v的集合。令 R_v 是v的赋 值 环, m_v 是 R_v 的极大理想。令 $p=m_v\cap D_v$ 不难看出, $R_v=D_v$ (定 理 7.21)。

因此が是一秩离散赋値。即

(K₁) F中的赋值υ都是一秩离散赋值。

又根据定理7.22、 $D = \bigcap D_* = \bigcap R_*$ 、即

 (K_2) D是所有 R_v 的交集 $(v \in F)_v$

任取 $0 \Rightarrow a \in D$, $(a) = \prod_{i=1}^{r} p_{i}^{-1}$, 那么,当 $p \Rightarrow p_{i}(\forall i)$ 时, $v_{\bullet}(a) = 0$. 因此有

 (K_a) 任取 $0 \Rightarrow a \in D$,除了有限多个 $v_i \in F$ 外, v(a) = 0。 我们还有

 (K_{\bullet}) 任给 $v \in F$, 恒有 $p \subset D$, 使 $R_v = D_{\bullet,\bullet}$

一般地,我们有下面的定义:

定义8.2 任何一个整环,适合上面的条件 (K_1) , (K_2) , (K_3) , (K_4) ,则称为一个 Krull 整环。F 中的赋值 v, 称为D的主要赋值。

讨论 1) 上面的讨论说明了,任意的 Dedekind 整 环 都 是 Krull 整环。

- 2) 可以证明, F = {D,: ht(p) = 1}.
- 3) 可以证明, Krull 整环D是 Dedekind 整 环<→> dim D ≤ 1.
 - 4) 任意正规诺德整环都是 Krull 整环。 |

以下,我们仿照第七章 \S 6,构造 Dedekind 整环的 因 子 类群。我们将仅应用条件 (K_1) , (K_2) , (K_3) , (K_4) 。所以,下面 的讨论可以自然地推广到 Krull 整环上。

我们令 Dedekind 整环 S 的因字器

$$D(S) = \left\{ \sum_{\mathbf{\hat{q}} \in \mathbf{Z}} n_i v_i \colon \ n_i \in \mathbf{Z}, \ v_i \in \mathbf{F} \right\},$$

其中P如前所述。任取 $a \in S$,令a的因子

$$(a) = \sum_i v_i(a) v_{i\bullet}$$

应用(K_3), 上式右端是有限和, 因此(a) $\in D(S)$. 令

$$F(S) = \left\{ \sum_{j \in \mathbb{N}} n_j(a_j) : a_j \in S \right\},$$

即为由因子 $(a)(a \in S)$ 生成的子群。定义S的因子类群为 C(S) = D(S)/F(S)。

因子类群又称为理想类群。

当 Dedekind 整环 $S = k[x_1, \cdots, x_n]$ 时(此处 k 是域),这里定义的因子类群与第七章 \S 6定义的因子类群是完全一样的,因为一个赋值 v ,只要在 S 上是有限的,必然是一个 k 赋值。

仿照定理7.22的系,我们也可以证明: 因子(a) = 0 \longleftrightarrow a 是 S 的可逆元。在这个证明中,我们须应用(K_2)。

。 仿照定理7.23,我们可以证明。 S 是唯一分解的整环 \longleftrightarrow C(S) = 0.

有兴趣的读者,请参考华罗庚著《数论导引》第十六章"代数数论介绍"中有关"单位数"(即上面提到的可逆元)、"理想类数"的讨论。

图 8.1

例3 我们在 第一章 § 5 中,已 经证明了 Z[订]是 一个欧几里得至几里得 以一个的整环。 第二个个整环。 第二个个整环。 的整环。 的整环。

C(Z[i]) = 0

现在我们返回 去考虑例2,证明

 $C(Z[\omega]) = 0$. 证法与第一章§5类似。我们先在复平面上,对任

$$N(\alpha-(b_1+b_2\omega)(d_1+d_2\omega)) < N(d_1+d_2\omega).$$

令 $r = \alpha - (b_1 + b_2 \omega)(d_1 + d_2 \omega)$, $\beta = b_1 + b_2 \omega$, 即得

$$a = \beta(d_1 + d_2\omega) + r$$
, $N(r) < N(d_1 + d_2\omega)$.

所以,立得 $Z[\omega]$ 是一个欧几里得整环。 于是它是一个唯一分解的整环。所以 $C(Z[\omega]) = 0$ 。

现在来计算 $Z[\omega]$ 的可逆元。不难看出, $d_1+d_2\omega$ 是 可 逆 元 \longleftrightarrow $N(d_1+d_2\omega)=(d_1+d_2\omega)(d_1+d_2\omega^2)=1$ 。 经进一步计算得

$$(d_1 + d_2\omega)(d_1 + d_2\omega^2) = (d_1^2 + d_2^2) - d_1d_2 = 1.$$

在 $Z[\omega]$ 中,满足上式的 $d_1 + d_2\omega$ 只有 $\{\pm 1, \pm \omega, \pm (1 + \omega)\}$,即 是 $\{\pm 1, \pm \omega, \pm \omega^2\}$ 。

例 4 我们用例 3 的结果来解决**赞马**问题的一个部分,下列 方程式

(1)
$$x^3 + y^3 = z^3$$

的整数解x,y,z,必然是x,y,z三者之一为零。这就是说,x,y,z必定是"平凡解"。

我们进一步研究 $Z[\omega]$ 的算术结构。令 $\lambda=1-\omega$ 。那么, $N(\lambda)=(1-\omega)(1-\omega^2)=1-\omega-\omega^2+\omega^3=3$ 。

3 是素整数,不难由此推知 λ 是不可分解的、现 在,我们 计 算 $Z[\omega]/(\lambda)$ 。显然

$$(\lambda) \cap Z = (3),$$

$$Z[\omega]/(\lambda) \approx Z[x]/(x^2 + x + 1, 1 - x)$$

$$\approx (Z/(3))[x]/(x^2 + x + 1, 1 - x)$$

$$\approx (Z/(3))[x]/(1 - x) \approx Z/(3).$$

所以,任取 $a \in \mathbb{Z}[\omega]$, $a \cong 0$ 或 1 或 $-1 \pmod{\lambda}$ 。

我们考虑(1)式的非平凡的解组 x,y,z 的两种情形。 $\lambda + xyz$,

或 A | xyz.

1) $\lambda \downarrow xyz$ 。于是 $x,y,z=\pm 1 \pmod{\lambda}$ 。代入(1)式得 $\pm 1 \pm 1 = \pm 1 \pmod{\lambda^3}$ 。

但是 $3 = -\omega^2 \lambda^2$, 所以 $\lambda^3 \setminus 3$ 。因此不可能有上式。

2) $\lambda \mid xyz$ 。如果有这种不平凡的解组,那么,我们 可以选取其中一组,使 xyz 有最少数目的不可分解的因子。不 妨 假 设 $\lambda \mid z$ 。那么

$$\lambda|x \iff \lambda|y \Longrightarrow \frac{x}{\lambda}, \frac{y}{\lambda}, \frac{z}{\lambda}$$
是因子数更少的解组。

所以 $\lambda \nmid x$, $\lambda \nmid y$ 。设 $z = \lambda^* v$, $\lambda \nmid v$ 。考虑下面的比较广义 的 命题。设 μ 是 $Z[\omega]$ 的可逆元,那么,下面的方程式

(2) $x^3 + y^3 + \mu \lambda^3 \cdot v^3 = 0$, $s \ge 1$, $xyv \ne 0$, $\lambda \nmid xyv$ 在 $Z[\omega]$ 中无解。

现在我们来证明这个命题。假设存在满足(2)的解组 x,y,v。对于 $s=1,2,\cdots$, (2) 式给出一系列方程。考虑所有 这些方程的所有可能的解,从其中选择一组 x,y,v,使 xyv 的 因子数目为最少。读者容易证明,x,y,v 不可能都是 $Z[\omega]$ 中的可逆元(因为这些可逆元的立方皆为 ± 1)。如果 x,y 有不可分解的公因 元 a,那么, $a \mid v$,这样,x/a,y/a,v/a 及是一组解,而且 因子数目更少。所以,在我们的选取下,必有

$$(x,y) = (y,v) = (x,v) = (1).$$

因为 $x^3 + y^3 = x^3 + y^3 + \mu \lambda^3 \cdot v^3 = 0 \pmod{\lambda}$, 所以,

 $x=\pm 1 \pmod{\lambda}$, $y=\mp 1 \pmod{\lambda}$ (为什么?).

不妨令 $x=1+\lambda a$, $y=-1+\lambda b$, 此处 $a,b\in Z[\omega]$. 代入 x^3+y^3 后得(请注意 $3=-\omega^2\lambda^2$, $\omega=1\pmod{\lambda}$):

$$x^{3} + y^{3} = 3\lambda(a+b) + 3\lambda^{2}(a^{2} - b^{2}) + \lambda^{3}(a^{8} + b^{8})$$

$$\equiv \lambda^{3}(-\omega^{2}(a+b) + (a^{3} + b^{3}))$$

$$\equiv \lambda^{3}(-(a+b) + (a^{3} + b^{3})) \pmod{\lambda^{4}}.$$

又不难看出, $a^3 - a = 0 \pmod{\lambda}$, $b^3 - b = 0 \pmod{\lambda}$,因此 $x^3 + y^3 = 0 \pmod{\lambda^4}$.

结合(2)式, 即知 s≥2.

(2)式及可以改写如下

(3)
$$(x+y)(x+\omega y)(x+\omega^2 y) = -\mu \lambda^{3} v^3$$

在 $x = 1 \pmod{\lambda}$, $y = -1 \pmod{\lambda}$ 的假设下,不难看出,

$$\lambda \mid x+y, \quad \lambda \mid x+\omega y, \quad \lambda \mid x+\omega^2 y.$$

令

$$x' = \frac{x + \omega y}{\lambda}, \quad y' = \frac{\omega(x + \omega^2 y)}{\lambda}, \quad z' = \frac{\omega^2(x + y)}{\lambda},$$

则有 $x',y',z' \in Z[\omega]$ 。因为

$$(1-\omega^2)x = \lambda x' - \lambda \omega y',$$

所以x',y'的公因子 β 必然是x的因子。同法可证 β 必然是y的因子。因此(x',y') = (1)。经同样的计算,可得

$$(x',z')=(y',z')=(1)$$

(3)式可以重新写成

(4)
$$x'y'z' = -\mu\lambda^{3(s-1)}v^3, \quad s-1 \ge 1.$$

又容易看出

(5)
$$x' + y' + z' = 0.$$

因为 x', y', x'无公因子, 所以, 从(4)式立得

(6)
$$x' = \mu_1 x_1^3, \quad y' = \mu_2 y_1^3, \quad z' = \mu_3' z_1^3,$$

此处 μ_1, μ_2, μ_3 是可逆元。又知 λ 整 除 x', y', z' 之一, 不 妨 设 $\lambda(z')$,由(4)式即知

$$z' = \mu_s \lambda^{3(s-1)} v_1,$$

这里 με 是可逆元, λ \ ν₁、代入(5)式, 立得

(7)
$$\mu_1 x_1^3 + \mu_2 y_1^3 + \mu_3 \lambda^{3(x-1)} v_1 = 0,$$

其中
$$s-1 \ge 1$$
, $x_1y_1v_1 \ne 0$, $\lambda \mid x_1y_1v_1$.

(7)式与(2)式是十分类似的。我们不难证明 $\mu_1 = \pm \mu_2$ 。事实上,把(7)式 $mod \lambda^3$,利用 $x_1,y_1 = \pm 1 \pmod{\lambda}$ 以及 μ_1,μ_2 都是可逆

元(即只能是±1,± ω ,± ω ²),即可得出 $\mu_1 = \pm \mu_2$ 。用 μ_1 去除(7)式,立得

(8)
$$x_1^3 + (\pm y_1)^3 + \mu' \lambda^{3(s-1)} v_1^3 = 0.$$

此式与(2)式完全相同,即 x_1 , $\pm y_1$, v_1 是形如(2)式的方程的又一组解,而且具有较少的不可分解的因子数目。这就是我们所要找的矛盾。

习 题

- 1. 设R是整环。如果对于R的每个极大理想 m, R 和是 D.V.R.,且对每个非零元素 $a \in R$, R中只有有限多个极大理想包含 a,证明 R 是 Dedekind 整环。
- 2. 设D是 Dedekind 整环,a是D的非零理想。证 明 D/a中每个理想都是主理想。由此导出D的任一理想都可由至多两个元素生成。
- 3. 证明只有有限多个极大理想 的 Dedekind 整 环 是 P.I. D...
- 4. 设R是局部整环,但不是域,其极大理想 m 是主理想, 且

$$\bigcap_{n=1}^{\infty} \operatorname{in}^{n} = \{0\}.$$

证明R是离散赋值环。

- 5. 设R是整环,举例说明 R 的分理想与其拟逆元的乘积不一定等于 R
- 6. 设^R是诺德整环。证明: a 是 R 的分理 想 < → a 是有限 R 模。
- 7. 设 R 是一个整环, $^\alpha$ 是 R 的 分理想,试证下述三条是等价的。
 - (1) a是可逆的;
 - (2) a 是有限 R 模,并且对 R 的任一素理想 p, 都有 aR, 可

遊,

- (3) α 是有限 R 模,并且对 R 的任一极大理想m,都有 αR_m 可逆。
 - 8. 在本节例 1 中,将(毫)分解为素理想乘积。
 - 9. 证明 $Z[\sqrt{2}]$ 是整数封闭的。
 - 10, 证明 2[/2]的因子类群为零。
 - 11. 证明 Z[e2 x i/5] 是欧几里得环。
 - 12. 设D为 Dedekind 整环, a,b,c 为D的理想。证明
 - (1) $a \cap (b + c) = (a \cap b) + (a \cap c);$
 - (2) $a + (b \cap c) = (a + b) \cap (a + c)$

§ 2 整数扩充

代数数论中讨论的代数整数环D是 Z 在一个代数 扩域K 中的整数闭包。代数几何学中的一维正则多项式整 环 $k[x_1, \cdots, x_n]$ 也是 $k[x_1]$ 在一个代数扩域 $k(x_1, \cdots, x_n)$ 中的整数 闭 包,此处 x_1 是一个变数。已知 Z 及 $k[x_1]$ 都是 Dedekind 整环。我们 要说明 D 及 $k[x_1, \cdots, x_n]$ 也是 Dedekind 整环。不难看出,D 及 $k[x_1, \cdots, x_n]$ 都是一维的及正规的。我们仅须证明它们是诺德环。

我们先证明:

引理 1 设D是一个正规诺德整环,K是它的比域,L是K的一个有限可离扩域,S是D在L中的整数闭包。那么,S是一个有限D模。

证明 1) 设 n=[L:K]。 又设 Ω 是 K 的一代数闭包。那么,存在 $\sigma_1, \dots, \sigma_n$: $L\to \Omega$ 是 $n \cap K$ 嵌入。 任取 $a\in L$,参 考 第五章 § 8,有

$$\operatorname{Tr}_{L/K}(a) = \sum_{i} \sigma_{i}(a)$$

因此,如果a是对D整数相关的,那么, $\operatorname{Tr}_{L/K}(a)$ 也是对D整数

相关的,又在K中,所以 $Tr_{L/K}(a) \in D$ 。

2) 任取 L 的一组 K 基 {a1, ···, an}。 合 a1 适合

$$\sum_{j=0}^{i} b_{ij} a_{i}^{i-j} = 0, \quad b_{ij} \in D_{\bullet}$$

那么,上式乘以 b_{io}^{1} 以后,不难得出 $b_{io}a_{i}$ 是对D整数相关的。因此,存在L的一组K 基 $\{a_{1},\cdots,a_{n}\}$,使得 a_{i} 对D 皆为整数相关的。

3) 任取
$$r \in S$$
, $r = \sum_{i} d_{i}c_{i}$, $d_{i} \in K$. 令
$$d = \det[\operatorname{Tr}_{L/K}(c_{i}c_{j})] \neq 0$$

(参见第五章 § 8定理5.33)。 于是

$$\begin{split} D \ni \mathrm{Tr}_{L/K}(re_j) &= \mathrm{Tr}_{L/K} \bigg(\sum_i d_i e_i e_j \ \bigg) \\ &= \sum_i d_i \mathrm{Tr}_{L/K}(e_i e_j) \ , \quad j = 1 \ , \cdots \ , n_* \end{split}$$

由上面这一组线性方程式,可以解出 d_i ,

$$d_i \in d^{-1}D_{\bullet}$$

于是, $S \subset \sum_{i} (c_i/d)D = M$ 。M显然是一个有限D模,而D是诺德环,所以,S是有限D模。

 \mathbf{x} S 是诺德环。

当 L 不是 K 的可离扩域时,我们需要下面的引理。

引理 2 设 L E K 的纯不可离扩域, P 为 K 的特征, L^{P} \subset K 、 又设 S 是一个以 L 为其比域的 D edekind 整环。那 A , $S \cap K$ 也是一个 D edekind 整环。

证明 令 $q=p^n$, $D=S\cap K$ 。利用定理8.1, 我们仅须证明 D的非零理想 I 都是可逆的。已知 SI 是可逆的,因此存在 $a_i\in I$, $s_i\in (SI)^{-1}=(S:SI)$,使

$$\sum_{i} a_{i} s_{i} = 1.$$

q 是特征 p 的方幂,所以上式取 q 次方以后,得

(2)
$$\sum_{i} a_{i}^{q} s_{i}^{q} = 1, \quad s_{i}^{q} \in L^{q} \subset K,$$

(3)
$$\sum_{i} a_{i} a_{i}^{q-1} s_{i}^{q} = \sum_{i} a_{i} b_{i} = 1,$$

此处 $b_i = a_i^{s-1} s_i^s \in K$ 。我们又有 $b_i I \subset I^s s_i^s \subset S$,所以 $b_i I \subset K \cap S = D$,

也即 $b_i \in (D:I) = I^{-1}$ 。从(3)式立得

$$1 = \sum_i a_i b_i \in II^{-i},$$

即 $II^{-1} \supset D$,又显然 $II^{-1} \subset D$,所以 $II^{-1} = D$ 。

应用上面的引理,我们可以证明:

定理8.3 设D是 Dedekind 整环,K是它的比域,L是K的 一个有限扩域,S是D在L中的整数闭包。那么,S 也 是 一个 Dedekind 整环。

证明 设 L' 是 K 在 L 中的可离闭包, D' 是 D 在 L' 中的整数闭包,那么 D' 是一维正规环。应用引 理 1 的 系, D' 是 诺 德 环,因此 D' 是 D edekind 整环。

L是 L' 的纯不可离扩域。根据第五章的定 理 5.20,存在一个 q=p',使 $L'\subset L'$ 。令 Ω 是 L 的一个代数闭包,在 Ω 中 取 $L^*=(L')^{1/4}\supset L$.

那么,映射

$$\sigma: L^* \to L',$$

$$x \mapsto x^*$$

是一个同构。令 $D^* = \sigma^{-1}(D')$,显然, D^* 也是一个 D^* edekind整环。

我们要说明 $D^* \cap L = S$ 。如此,则由于 $(L^*)^* = U \subset L$,应用引理 2,即得 S 是一个 Dedekind 整环。

任取 $a \in S$, 令 $b = a' \in L'$. 因为 a 是对 D' 整数相关 的,所以 b 也对 D' 整数相关。而 D' 是整数封闭的,因此, $b \in D'$,即

$$a \in \sigma^{-1}(D') = D^*, \quad \mathcal{S} \subset D^* \cap L_{\bullet}$$

反过来,任取 $c \in D^* \cap L$,则 $c^* \in D'$ 。于是 c 对 D' 是整数相关的,所以 $c \in S$,即 $D^* \cap L \subset S$ 。

定理8.4(古典理想理论) 在一个代数整数环D中,每一个理想 I 都可以唯一地分解成素理想的乘积。

证明 应用定理8.3及8.1.

设D是一个 Dedekind 整环,K是它的 比 域,p是D的一个素理想。设L是K的一个有限扩域,S是D在L中的整数闭包。那么,根据定理8.3,S也是一个 Dedekind 整 环。因此,我们有

(*)
$$pS = \prod_{i} q_{i}^{i} i, \quad q_{i} \neq q_{i} (i \neq j), \quad q_{i} = q_{i} (i \neq j)$$

此处 q_i 是 S 的素理想。显然有 $q_i \cap D \supset p$ 。而 p 是极大理想,1 \in $q_i \cap D$,于是

$$q_i \cap D = p_i \quad \forall i$$

反之,设S的素理想 q 适合 q $\cap D = p$, 那么

$$q \supset pS = \prod_{i} q_{i}^{\sigma_{i}}$$

于是,必有某个i,使 $q \supset q_i$,即有 $q = q_i$ 。

所以
$$m_{w_i} \cap D = m_{w_i} \cap S \cap D = q_i \cap D = \mathfrak{p}_*$$
 所以
$$m_{w_i} \cap D_* = \mathfrak{p}_D = m_{v_*}$$

不难看出, w.是v在上的一个扩充。根据(*)式, 我们又有

$$pS_{Y_i} = q_i^{r_i} S_{r_i}$$

因此v的全序群 G_v 对 w_i 的全序群 G_w ,的指数(即 w_i 对v的缩分 歧指数)为 $[G_w : G_v] = e_i.$

$$[G_{\boldsymbol{w}_i}:G_{\boldsymbol{v}}]=e_{i,\cdot}$$

我们知道。

$$\Delta_{w_i} = R_{w_i}/m_{w_i} = S/q_i, \qquad \Delta_v = R_v/m_v = D/p_*$$

所以, wi対 v 的相对次数为

$$f_i = [\Delta_{w_i} : \Delta_{v}] = [S/\mathfrak{q}_i : D/\mathfrak{p}]_{\bullet}$$

 $f_i = [\Delta_{w_i}: \Delta_{v}] = [S/q_i: D/p]$ 。 定义8.4 考虑上文,我们定义 q_i 对 p 的缩分歧指数为 w_i 对 v 的缩分歧指数 e_i , q_i 对 p 的相对次数(或称剩余次数) 为 w_i 对 υ的相对次数 fia

我们立得下面的定理。

定理8.5 1) 设D是一个Dedekind 整环,K是它的比域,p 是它的一个非零素理想。设L是K的一个有限扩域,S是D在L中的整数闭包(一个Dedekind整环)、合

$$pS = \prod q_i^{r_i}, \quad q_i \neq q_i \ (i \neq i).$$

那么
$$\sum_{k} e_{i} f_{i} \leqslant [L:K],$$

这里fi表示qi对p的相对次数。

2) 更进一步,如果 L 是 K 的可离扩域, 那么,我们有

$$\sum_{i} e_{i} f_{i} = [L:K]_{\bullet}$$

证明 应用定理7.15及定理7.19.] 下面的定理将联系到域论中的伽罗瓦理论。 定理8.6 1)条件如同定理8.5的1),又假设L是K的正规扩域。那么,所有的 θ 。 都相等,令它是 θ ; 所有的f。都相等,令它是f。 又令g。 的个数是g。 我们有 $efg \leq [L:K]$ 。

2) 更进一步,如果 L 是 K 的伽罗瓦扩域,则有

$$efg = [L:K]_{\bullet}$$

你罗瓦群在{q1,q2,…,q9}上有传递性。

证明 令 G 是 L 的 K 自同构群 . 先证明 G 在 $\{q_1,q_2,\cdots,q_g\}$ 上的作用是封闭的,而且有传递性。任取 $\sigma \in G$ 。显然,如果 $a \in S$,那么 a 对 D 整数相关,所以 $\sigma(a)$ 对 D 也整数相关, $\sigma(a) \in S$,即 $\sigma(S) = S$ 。又知

$$\sigma(\mathfrak{q}_l) \cap D \supset \mathfrak{p}_l$$

所以 $\sigma(q_i) \cap D = \mathfrak{p}$. 显然 $\sigma(q_i)$ 是 S 的素理想,按照定理8.4 后面的讨论, $\sigma(q_i) \in \{q_1, \dots, q_g\}$,即 σ 在 $\{q_1, \dots, q_g\}$ 上的作用是封闭的。现假设存在 q_i 不属于 q_i 的轨道

$$Orb(q_1) = \{q_1, \dots, q_i\}$$

那么, $q_i \subset q_1 \cup \dots \cup q_i$ 。取 $a \in q_i \setminus (q_1 \cup \dots \cup q_i)$ 。不难看出, $\sigma_r(a) \in q_1 \cup \dots \cup q_i \quad (\forall \sigma_r \in G)$ 。

令s = [L: K]/o(G), 则

$$\left(\prod_{\sigma_{\tau} \in G} \sigma_{\tau}(a)\right)^{\bullet} = N_{L \times K}(a) \in \mathfrak{q}_{j} \cap D = \mathfrak{p} \subset \mathfrak{q}_{1},$$

所以必有某个 τ , 使 $\sigma_{\tau}(a) \in q_1$ 。这是自相矛盾的。因此,G作用在 $\{q_1, \dots, q_g\}$ 上是传递的。

由此易见,所有的 e₁ 都相同,所有的f₁也都相同。本定理的 其余部分,可以自定理8.5导出。 ┃

例5 我们现在来举一个例于(F.K.Schmidt),说明定理8.5 及定理7.15的不等式幷不一定能由等式来代替。任何一个一秩离散赋值环R,是一维正规诺德整环,因此是一个Dedekind整环。

令
$$\{z_0, z_1, \dots, z_n, \dots\}$$
是对 $k_0 = \mathbb{Z}/(p)$ 代数无关的。令 $k = k_0(z_0, z_1, \dots, z_n, \dots)$, $K = k(x, y)$,

$$\varphi(x) = z_0^* + z_1^* x^* + \dots + z_n^* x^{**} + \dots \in k[[x]].$$

显然, $X \nmid f(X,Y)$, 即 $f(0,Y) \neq 0$ 。 已 知 $f(x,\varphi(x)) = 0$, 故

$$f(0,\varphi(0)) = f(0,z_0^{\flat}) = 0.$$

所以, z。对 k, 是代数相关的, 令

$$f(X,X^{\theta Y}+z_0^{\theta})=X^{1}f_1(X,Y), X \nmid f_1(X,Y),$$

那么 $f_i(X,Y) \in k_i[X,Y]$,以及

$$f_1(x, x_1^s + \dots + x_n^s x^{(n-1)s} + \dots) = 0,$$

立得

$$f_1(0,z_1^p)=0.$$

所以 z_1 对 k_1 代数相关。以此类推,不难得出, k_0 上的代数无关集 $\{z_0, \dots, z_n, \dots\}$ 中每个元素都对 k_1 代数相关。这是不可能的。所以, σ : $k(x,y) \rightarrow k((x))$ 是一个嵌入。

应用 σ , 一秩离散赋值环 $R_u = k[[x]]$ 在k(x,y)上引生一个一 秩离散赋值 v。 不难看出, $G_v = G_u \approx Z$, $\Delta_v = \Delta_u = k$ 。

我们现在要作一个纯不可离扩域

$$L = k(x, y) [y'] = k(x, y'),$$

此处 $y' = y^{1/2}$ 。 不难看出, v 在 L 上只有唯一的扩充 w ,它 是 由

$$\sigma': k(x,y') \rightarrow k((x)),$$

$$\sigma'(x) = x$$
, $\sigma'(y') = z_0 + z_1 x + \cdots + z_n x^n + \cdots$

引生的。此时, $G_w = G_v \approx \mathbb{Z}$, $\Delta_w = \Delta_v \approx k$ 。所以

$$e=1$$
, $f=1$, $ef .$

设C是 n 维仿射空间的不可分解的曲线。这就是说,C 的多项式函数环 $k[C] = k[x_1, \dots, x_n]/p$ 是一维的整环,这里 $p = \mathcal{I}(C)$ 。又设C是无奇异点的曲线,则对 k[C] 的任意素 理 想 q,k[C]。

是正则局部环,应用定理6.45,它是唯一分解的整环,因此是正规环。于是,根据定理7.22,

$$k[C] = \bigcap k[C]$$

是一个正规环。这样,我们就证明了:

定理8.7 设 k[C]是一个不可分解的、无奇异点的仿射曲线 C的多项式函数环,那么,k[C]是一个Dedekind整环。

习 题

- 1. 设D是Dedekind整环,K是它的比域,L/K 为有限扩张,S为D在L中的整数闭包,p为D的一个非零理想。证明 SD,为主理想整环。
- 2. 设R是主理想整环,K是它的比域,L/K是有限可离扩张,R在L中的整数闭包为S。证明S是自由R模,且

$$\operatorname{rank}_{R}S = [L:K]_{\bullet}$$

3. 本习题(Kummer引理)给出一大类Dedekind环在扩充时素理想分解式的求法。

设D为Dedekind 整环,K为D的比域,L/K 是有限可离 扩张,D在L中的整数闭包为S,且存在 $\theta \in S$,使得 $S = D[\theta]$ 。设 θ 适合K上的首一不可约多项式为f(x)。对于D的非零素理想p,设

$$f(x) \pmod{p} = \overline{f}_1(x) \cdot \cdots \overline{f}_g(x) \cdot s,$$

其中 f_i 均为(D/p)[x]中首一不可约多项式,两两互异。证明

$$pS = q_1^{\sigma_1} \cdots q_g^{\sigma_g}$$
,

其中 q_i 皆为S中的素理想, $q_i = (f_i(\theta), p)$,而 $f_i(x)$ 是D[x]中的多项式,满足下列三个条件。(a) 首一;(b) $\deg f_i = \deg f_i$;(c) $f_i(x) \pmod{p} = f_i(x)$.

- 4. 在 $Q(\sqrt{-5})$ 中分解(3),(5),(7),(11) 为素理想乘积。
- 5. 设 $\zeta = \exp(2\pi i/15)$. 将理想(3)和(5)在 $Q(\zeta)$ 中分解为素理想的乘积。

- 6. 证明 $S = C[x,y]/(x^2 y^3)$ 示是 Dedekind 整环,并画出 $x^2 - y^3 \simeq 0$ 的实图形。
- 7. 证明 $S = C[x,y]/(x^2 y(y^2 1)(y^2 4)\cdots(y^2 g^2))$ 是 一个Dedekind整环(其中 g 为正整数), 幷画出相应的实图形。
- 8. 符号如题7。在S中将理想(x)及(y-n)分解为素理想的 乘积(n为整数)。

§ 3 判别式及表差式

在代数数论与代数几何学中,用到的Dedekind整环D,都分 别包含一个主理想整环Z或k[x],因此可以看成一个Dedekind整 环的整数扩充。从Dedekind整环扩充的观点来看,有两个问题: 一是求它在一个代数扩域中的整数闭包,另一个是考虑分歧点的 问题。

我们先考虑第二个问题。设有两个Dedekind 整环 $D \subset S$ 。 S是D的整数扩充。任取D的一个素理想p,令

$$\mathfrak{pS}=\prod_{i}\mathfrak{q}_{i}^{\P_{i}}.$$

定义8.5 如果 $e_i = 1$,且 S/q_i 是D/p的可离扩域,则称 q_i 对D是非分歧的。如果所有的 q_i 都是非分歧的,则称p对S是非分歧的。

$$y^2 - x(x-1)(x-2) = 0$$
,

D = C[x], 如果 $a \neq 0,1,2$, 令p = (x - a), 以及

$$\beta_1 = \sqrt{a(a-1)(a-2)}, \quad \beta_2 = -\sqrt{a(a-1)(a-2)},$$
 $q_1 = (x-a, y-\beta_1), \quad q_2 = (x-a, y-\beta_2).$

则

 $pS = q_1q_2$

这些 p,q1,q2 都是非分歧的。令b=0,1,2。不难看出

$$(x-b)S = (x-b,y)^2.$$

所以, (x-b), (x-b,y) 都是分歧的, 请看图8.2(见下页)。因为

图 8,2

事实上这两个曲面不相交,所以在三维空间中无法作出图解,——定要到高维空间才行。

分歧点即是复叠映射的分支点。我们向 x 平面作复叠映射。在 x 平面上看,有三个点x=0,1,2,其象源都不足两个点。它们上面有分支点(0,0),(1,0),(2,0)。

2) 令
$$S = C[x,y]$$
, x,y 适合
$$f(x,y) = y^2(y-1) - x^2 - 1 = 0.$$

应用代数几何学,不难看出,上面的方程式定义了无奇异点的曲线,因此S是一个Dedekind整环。令D = C[x]。不难看出

$$[C(x,y):C(x)] = 3.$$

任取D的素理想p = (x - a), 令

$$\mathfrak{pS} = \prod \mathfrak{q}_i^{\mathfrak{s}_i}.$$

应用定理8.5,我们有

$$\sum_{i} e_{i} f_{i} \leqslant [C(x,y):C(x)] = 3.$$

考虑f(x,y)的y判别式 $Dis_y(f(x,y))$ 。经计算得出

 $= (27x^3 + 31)(x^3 + 1).$

令 $g(x) = Dis_y(f(x,y))$,当 a 不适合 g(x) = 0时,f(a,y)有三个不同的根 β_1,β_2,β_3 ,因此

$$(x-a)S = \prod_{i=1}^{3} (x-a, y-\beta_i).$$

于是 $e_1=e_2=e_3=1$, $f_1=f_2=f_3=1$. 因为D/(x-a)=C, 其特征是零,所以定义8.5中的《可离扩域"的条件也适合了。因此,这些P=(x+a)都是非分歧的。

g(x) = 0有六个解。我们试取x = -1来讨论。我们得出

$$(x+1)S = (x+1,y)^{2}(x+1,y-1).$$

$$(a,\beta_{2})$$

$$(a,\beta_{1})$$

$$(a,\beta_{1})$$

所以(x+1,x)是分歧的;(x,+1,x-1).是非分歧的。我们无法作出图解。但是如果只考虑实数部分,可以作出如图8,3的示意图。

从另外的观点来看,

 $Dis_{y}(f(x,y)) = (f(x,y), f_{y}(x,y)) = f_{y}(x,y)S$ (因为在§里, f(x,y)=0) (这也就是说 $x \in \mathbb{C}$ (ない) $y \in \mathbb{C}$ $g(x)S = (f_y(x,y)) = (3y^2 - 2y)S$.

所以,我们通过计算fu(x,y)便可得出分歧的理想。

为了叙述方便起见,先引入下面的定理,其证明留待以后再

定理8.8 设D是一个 Dedekind 整环, K是它的比较, L是 K的一个有限可离扩域, S 是 D 在 L 中的整数闭 包。我们发 设 S =D[y],f(y)是y对K的极小多项武。,那么,f'(y)规定了S的所 有的分歧理想, 即 S 的素理想 q 是分歧的 \iff q 是 f'(y)S 的素理

一般说来,S=P[y]的条件不能满足。Dedekind分案出例子 (见 Hasse 著《Number Theory》)。 为了处理一般的精形、我们 引入"互杂模"的概念(1) 以对于证明、把工人证证(*)。

考虑L是K的一个有限可离扩域。那么,迹函数 $Tr_{L/E}(a)$ 相当于内积。我们有下面的引理。

引理1 设[L:K] = n。任取 $a_1, \dots, a_n \in K$ 以及 L 的一组 K 基 $\{\omega_1, \dots, \omega_n\}$,那么,存在唯一的一个 $\alpha \in L$,使得

$$\operatorname{Tr}_{L \times K}(a\omega_i) = a_i (\forall i = 1, \dots, n)_{i \in I}$$

证明 令
$$a = \sum_{i} x_{i}\omega_{i}$$
, x_{i} 是待定系数。那么
$$\operatorname{Tr}_{L/\mathbb{Z}}(\alpha\omega_{i})_{i} = \sum_{i} x_{i}\operatorname{Tr}_{L/\mathbb{Z}}(\omega_{i}\omega_{i}) = a_{i} \quad (i = 1, \dots, n)$$

是一组线性方程式。根据定理5.33,它的系数行列式 $\det(\operatorname{Tr}_{L/L}(\omega_{\underline{i}}\omega_{\underline{j}})) \neq 0.$

所以有唯一解。】

应用上面的引理即知,任给上的一组基(如,,如,如,), 都存在

这里8ij是Kronecker 符号。互余基也即是共轭基。

设R是一个正规环,以K为比域,L是K的有限可离扩域。 又设T是L的子集。那么,集合

$$T' = \{z \in L: \operatorname{Tr}_{L/K}(zT) \subset R\}$$

称为T对R的互余集。显然有

$$T_1 \subset T_2 \implies T_1' \supset T_2'$$

当T是L的子环,而且T的比域是L时,则称T'是T对R的互**余模**。我们看几个例子。

例 7 1) 设 $\{\omega_1, \dots, \omega_n\}$ 是 L 的一组 K 基, $T = \sum_i R\omega_i$. 任 取 $t' \in T'$, 合

$$t' = \sum_{i} a_i \omega_i', \quad a_i \in K,$$

其中 $\{\omega'_1, \dots, \omega'_i\}$ 是L的互余基。那么

$$\alpha_j = \operatorname{Tr}_{L/K}(t'\,\omega_j) \in R_{\bullet}$$

由此不难看出, $T' = \sum_{i=1}^{n} R\omega_i'$, $(T')' = T_*$

$$f(x) = x^n + b_1 x^{n-1} + \cdots + b_n = \prod_{i=1}^n (x - a_i),$$

其中 $a_1 = a_2$, a_3 在L的一个代数闭包Q中。应用内插法的公式,

$$\sum_{i=1}^{n} \frac{f(x)}{x - a_i} \frac{a_i^r}{f'(a_i)} = x^r, \quad r = 0, 1, \dots, n - 1.$$

上武叉可以改写为。時に「こう」になっている。

(1)
$$\operatorname{Tr}_{L \times K} \left(\frac{f(x)}{x - a} \frac{a^{r}}{f'(a)} \right) = x^{r}, \quad r = 0, 1, \dots, n - 1.$$

我们研究f(x)。 应用下面的计算 f(x) 。

_* [, *

(2)
$$\frac{f(x)}{x-a} = \frac{f(x) - f(a)}{x-a} = \sum_{i} b_{i} \frac{x^{x-i} - a^{n-i}}{x-a}$$
$$= \sum_{i} b_{i} (x^{n-i-1} + ax^{x-i-2} + \dots + a^{n-i-1})$$
$$= c_{0} x^{x-1} + c_{1} x^{n-2} + \dots + c_{n-1}$$

其中

(3)
$$\begin{cases} c_0 = b_0 = 1, \\ c_1 = b_1 + b_0 a = b_1 + a, \\ c_{n-1} = b_{n-1} + b_{n-2} a + \cdots + b_0 a^n \end{cases}$$

以(2)式代入(1)式,比较两边的系数,立得

$$\operatorname{Tr}_{L/K}\left(\frac{c_{n-1-i}}{f'(a)}\cdot a^{\tau}\right)=\delta_{i\tau}.$$

因此

$$\left\{\frac{c_0}{f'\left(a\right)},\frac{c_1}{f'\left(a\right)},\cdots,\frac{c_{k-1}}{f'\left(a\right)}\right\}$$

是 L 的 I 会 基。 T 的 I 会 模 $T' = \sum_{f'(a)} \frac{c_{n-1}}{f'(a)} R$ 。

3) 更进一步,设 α 对 R 是整数相关的。那么, $b_1, \dots, b_n \in R$, 所以

$$T' = \frac{1}{f'(a)} R + \frac{a}{f'(a)} R + \dots + \frac{a^{n-1}}{f'(a)} R = \frac{1}{f'(a)} R,$$

此时 $(T')^{-1} = f'(a)T_{!!!}$

定理8.9 设T,R如上。

- 1) T 对 R 的 \mathbb{Z} 会模 T' 是 T 的 个 \mathcal{D} 理想;
- 2) (T')-1是T的一个非零理想。

证明 1) 如 § 2中引理 1 的证明。

2) T'□T. 显然。]

定义8.6 符号如上。 $(T')^{-1}$ 称为T在R上的表差式(或 兼

积),用符号 37/8表示之。

讨论 重新考虑定理8.8. 应用例 7 的 3), 我们知道 $\mathscr{D}_{S/D} = f'(y)S$.

那么,定理8.8无非是说,在S=D[y]时, $\mathscr{D}_{S/D}$ 规定了S的所有的分歧理想。下面,我们将对一般的情形证明这一点。

设R是Dedekind整环,T是R在L中的整数闭包。那么T也是Dedekind整环。于是,表差式 $\mathcal{D}_{T/R}$ 可以写成T的素理想的乘积

$$\mathscr{F}_{T/R} = \prod_{\bullet} q^{m(\bullet)} .$$

自然,除了有限多个素理想q之外,m(q)皆为零。m(q)称为 q 对 R 的**要差指数**。设 $p = q \cap R$,

$$pT = q^{\sigma(\bullet)} \prod_i q_i^{\sigma(\bullet_i)}, \quad q_i \neq q_a$$

那么,e(q)是q的缩分歧指数。我们要比较 m(q)及e(q)-1。请注意,e(q)>1时,q是一个好R的分歧素理想。

我们先证明表差式可以局部化. 见下定理。

$$\mathcal{G}_{T/R}T_M^{i} = \mathcal{G}_{T_M/R_M^*}$$

证明 显然, $R_M = R$,也是一个Dedekind整环, T_M 是它在L中的整数闭包。

C。任取 $a=a'/m\in \mathcal{G}_{T/R}T_M$,此处 $a'\in \mathcal{G}_{T/R}$, $m\in M$ 。再任取 T_M 对 R_M 的互余模 $(T_M)'$ 的一个元素b。我们只须证明 $ab\in T_M$ 便足够了。因为,这样就有

$$a\in ((T_M)')^{-1}=\mathscr{F}_{T_M/R_M}.$$

已知 $Tr(bT_M)$ $\subset R_M$ 。那么,Tr(bT) $\subset R_M$ 。 又已知 T 是一个

有限 R 模,所以Tr(bT)的所有元素有一个公分母 m_0 。这就是说明 $Tr(m_0bT) = m_0Tr(bT) \subset R$ 。

換言之, $m_0b \in T'$,此处T'是T对R的互余模。应用a'的性质,立得 $a'm_0b \in T$ 。所以

列以 $ab = (a' m_0 b)/(m m_0) \in T_M$.

 \supset 。任取 $a\in \mathcal{D}_{T_{H}/R_{H}}$ 。再任取 $b\in T_{c}(T_{c})$ 对风的互众模)。 显然

$$\operatorname{Tr}(bT_M)\subset R_M$$

即 $b \in (T_M)'$ $(T_M \rtimes R_M$ 的互余模)。于是, $ab \in R_M$ 。现在 我 们 在 T' 中变动 b ,即考虑 $(T_M \wr T_M)$, $(T_M \wr T_M)$, (

 $U = \{ab: b \in T'\}$ 。 一步, 。遂對麼多人。

因为T'是一个有限R模,所以U也是一个有限R模。那么,U的 所有元素有一个公分母m。这就是说, $mab \in R(\forall b \in T')$,也即 $ma \in \mathcal{O}_{T/R}$, $a \in \mathcal{O}_{T/R}T_M$ 。

为证明定理8.11,我们先证据下面的引理。" 01.2至今

引理2 设R是Dedekind 整环,从是它的比域,以上是K的有限可离扩域,T是R在L中的整数闭包、合p是R的素理想,

$$pT = \prod_{i=1}^{g} q_{i}^{\sigma_{i}} \cdot \dots \cdot \sum_{i=1}^{g} q_{i}^{\sigma_{i$$

又令 $\sigma_1\sigma_1$ 为下面的典型映射 $\beta_1=\beta_1\beta_1$ $\beta_2=\beta_1\beta_2$

$$\sigma: R \rightarrow R/\mathfrak{p} = k$$
,

$$\sigma_i$$
: $T \rightarrow T/q_i = k_i$, $i = 1, \dots, g_* \rightarrow \beta_i$

那么,对于 $4\in T$,慎有 $\{1, \dots, n\}$ $\{1, \dots, n\}$ $\{1, \dots, n\}$

$$\sigma(\operatorname{Tr}_{L\times K}(a)) = \sum_{i=1}^{g} e_{i} \operatorname{Tr}_{k_{i}} \rangle_{K}(\sigma_{i}(a)). \cdot \operatorname{Tr}_{k_{i}} = 0$$

证明 设 $n = [L: K] = \sum_{i} e_{i} f_{i}$, 其中 $f_{i} = [k_{i}:k]$ (定理8.5)。

应用定理7.15的 1)的证明,我们可以选取工的 K 基

$$\{b_{is}e_{it}: i=1,...,g, s=1,...,e_i, t=1,...,f_i\},$$

$$\overset{\text{in }}{\sim}_{1}) \hat{b}_{is}, c_{it} \in \mathcal{T} (\Longrightarrow b_{is}c_{it} \in T),$$

2) {σ_i(o_{ii}): t=1,···,f_i}是 k_i 对 k 的基1

3)
$$\sigma_j(c_{it}) = 0$$
, $\forall f \neq i$,
4) $b_{is} \in \mathfrak{q}_i^{i-1} \setminus \mathfrak{q}_i^{i}$

将基{bi,cit}先按 t, 次按 s, 再按 i 的次序排好:

$$\{b_{11}c_{11}, b_{11}c_{12}, \cdots, b_{11}c_{1f_1}, b_{12}c_{11}, \cdots, b_{12}c_{1f_1}, \cdots \\ b_{ge_g}^{(i)}c_{gi_1}, \cdots, b_{ge_g}^{(i)}c_{gf_g}\} = \{\omega_1, \cdots, \omega_n\},$$

合A为矩阵[aij]nxn, 此处 aij 是如下定义的。

$$a\omega_i = \sum_{i=1}^n a_{ij}\omega_j.$$

那么,

$$(\operatorname{Tr}_{L/K}(a) = \operatorname{Tr} A = \sum a_{i,i}.$$

 $V_{1} = \sum_{l=1}^{p_{1} + p_{2}} \frac{1}{R} \omega_{l}, \quad V_{2} = \sum_{l=1}^{q_{1} + p_{2}} \frac{1}{R} \omega_{l}, \quad \cdots,$

$$\begin{split} V_{e_1} &= \sum_{i=(\mathbf{e}_1 \sim i)}^{\mathcal{A}_{\mathbf{F}} f_1 \sim i, i \sim i} \frac{\mathcal{A}_{\mathbf{F}} f_1}{R \omega_1}, \end{split}$$

$$V_{e_1+e_2} = \sum_{i=e_1}^{e_1} \sum_{f_1+i\sigma_2=D}^{f_2} R\omega_i, \quad \cdots,$$

显然, $V_1 \supset V_2 \supset \cdots \supset V_{e_1}$, $V_{e_1+1} \supset V_{e_1+2} \supset \cdots \supset V_{e_1 h^{e_2}}$,…. 现在 我们考察

$$\nabla (\operatorname{Tr}_{L \times K}(a)) = \sigma(\sum a_{ii}).$$

为此,考虑映射

$\sigma: T \rightarrow T/pT$

自然,T/pT 是 n 维 k 向量空间,它以 $\{\sigma(\omega_1), \cdots, \sigma(\omega_n)\}$ 为一組 基。令 $U_i = \sigma(V_i)$, 显然, U_i 是在 $\sigma(A)$ 作用下的不变子空间, 这里 $\sigma(A) = [\sigma(a_{ij})]_{\text{aven}}$

$$\sigma(A) = [\sigma(a_{ij})]_{n \times n}$$

现取 $U_1 \supset U_2 \supset \cdots \supset U_{e_1}$ 来研究。不难看出,对于 $i=1,2,\cdots$, e₁-1,都有

$$U_i/U_{i+1} \approx q_i^{i-1}/q_i \approx T/q_i = k_i$$

还有 $U_{e_1} \sim k_1$ 。 并且 $\sigma(A)$ 在它们上面的线性作用都等于 $\sigma_1(a)$ 在k向量空间 4. 上的作用。因此,同样地考虑

$$U_{e_1+1} \supset U_{e_1+2} \supset \cdots \supset U_{e_1+e_2}, \cdots$$

之后,立得

$$\sigma(\operatorname{Tr}_{L\times K}(a)) = \sum_{i} e_{i} \operatorname{Tr}_{k_{i}\times k}(\sigma_{i}(a)).$$

定理8.11 设R是 Dedekind 整环,K是它的比域,L是K的 有限可离扩域,T是R在L中的整数闭包。任给T的素理想q,设 $q \cap R = \mathfrak{p}$.

今m与e分别是q对R的表差指数及缩分歧指数。那么,我们恒 有

$$m \geqslant e - 1$$

更进一步说, $m = e - 1 \iff e$ 不 是 R/p 的 特 征的倍数,并且 T/\mathfrak{q} 是 R/\mathfrak{p} 的可离扩域。

证明 应用定理8.10, 我们可以局部化, 即假设 R 是一秩离 散赋值环。设 $p \approx R\pi$ 。令

$$\mathfrak{p}T = T\pi = \prod_{i} \mathfrak{q}_{i}^{\bullet_{i}}, \qquad \mathscr{D}_{T \times R} = \prod_{i} \mathfrak{q}_{i}^{m_{i}},$$

则 $T' = \prod q_i^{m_i}$ 。 所谓 $m_i \ge e_i - 1$, 无非是说 $\prod q_i^{m_i} \subset T'$ 。

任取 $a \in \prod q_{i}^{-1}$, 则 $a\pi \in \prod q_{i}$, $a\pi \in q_{i}(\forall i)$. 令 $N \in \mathbb{R}$ 的包含 L 的最小正规扩域。那么 $a\pi$ 在 N 中的所有共轭元,必然也有同样的性质。由此不难导出

 $\operatorname{Tr}_{L \setminus R}(a\pi) = \sum a\pi$ 的共轭元 $\in \mathfrak{q}_i \cap R = \mathfrak{p}_i$

也即

 $\pi \operatorname{Tr}_{L \nearrow K}(a) = \operatorname{Tr}_{L \nearrow K}(a\pi) \in R\pi, \quad \operatorname{Tr}_{L \nearrow K}(a) \in R,$

因为对于任给的 $a \in \prod_i \mathfrak{q}_i^{1-a_i}$, 我们恒有 $\mathrm{Tr}(a) \in R$,于是 $\mathrm{Tr}_{L/K}(aT) \subset R$,

即 $a \in T'$ 。至此定理的第一部分已证完。

现在我们证明定理的第二部分。

因为T/q是R/p的可离扩域,所以存在 $\delta \in T/q$,使 $T_r(\delta) \pm 0$ 。

应用上面的讨论,令 $q = q_1$ 。由于 $\prod_{i \ge 1} q_i^{r_i}$ 与 q_1 是 互 为 极 大 的

 $(即 \prod q_1^{r_1} + q_1 = R)$, 于是可以找到 δ 的象源 $b \in \prod q_1^{r_2}$ 。那么,

应用上面的引趣运算有

 $\sigma(\operatorname{Tr}_{L/K}(b)) = e_{i}\operatorname{Tr}_{k_{i}/k}(\delta) \pm 0,$

此处 $k_1 = T/q_1$, k = R/p. 于是, $(b/\pi) \in q_1^{-\epsilon_1}$, $Tr_{L/K}(b/\pi) \in R$ (为什么?)。 所以 $b/\pi \in T'$ 。 假若 $m_1 \ge e_1$, 则有

$$\mathfrak{q}_1^{-\mathfrak{s}_1} {:} \subset q_1^{-\mathfrak{s}_1} {:} \subset T'_{\bullet}$$

因此,从 $b/\pi \in q^{-\epsilon_1}$, $b/\pi \in T'$,立得 $m_1 = e_1 - 1$ 。

→ 。假设 e_1 是R/p(=k)的特征的倍数,或者 T/q_1 (= k_1)是 k的不可再扩域。令

$$q^* = q_1^{-\epsilon_1} \prod_{i>1} q_i^{1-\epsilon_i}$$
.

任取 $c \in q^*$ 。那么 $c\pi \in q_i(\forall i > 1)$ 。又用上面的引理, $\sigma(\operatorname{Tr}_{L/R}(c\pi)) = e_1\operatorname{Tr}_{k_1/k}(\sigma_1(c\pi)) = 0$

所以 $\operatorname{Tr}_{L/R}(o\pi) \in R\pi$ 。故有 \mathbb{R}^n 、 \mathbb

 $\pi \operatorname{Tr}_{L/K}(e) = \operatorname{Tr}_{L/K}(e\pi) \in R\pi$, $Tr_{L/K}(e) \in R$, 操作。
那么, $\operatorname{Tr}_{L/K}(eT) \subset R(\forall e \in \mathfrak{g}^*)$, 所以 $\mathfrak{g}^* \subset T'$, 即有 $\mathfrak{m}_1 \geqslant e_1$.

定理8.12 T的素理想q对R是分歧的 $\Leftrightarrow q$] $\mathscr{D}_{L/K}$.

证明 应用上定理,立得。]

系 定理8.8.

证明 见定义8.6后面的讨论。 1

从定理8.12中,我们立刻得知只有有限多个 $q \in T$ 是分歧的。在黎曼曲面论中,有更精确的Hurwitz公式。

$$2g_{C_1} - 2 = (2g_{C_2} - 2)n + \sum_{p} (e(p) - 1),$$

. : : 7

此处, n 是黎曼曲面 C_1 对 C_2 的复叠次数, $g_{C_1}(i=1,2)$ 是 C_i 的亏格。

定理8.12告诉我们T中对R分歧的素理想 q的分布情形,但是,R的分歧的素理想 $p=q\cap R$ 的分布情形呢?固然,我们可以先求 $\mathcal{D}_{T/R}$ 的素理想因子q与R相变以得出 p。这种方法繁复不便。我们要用判别式的方法来解决这个问题。

现在返回来研究定理 8.8. 那是一个比较简单的情形,在它 个代数封闭域 0里,求首一多项式 f(x)的分解式

$$f(x) = \prod_{i=1}^{n} (x_i - y_i), \quad y = y_i, \quad y_i = y_i$$

那么, $f'(y_1) = \prod_{i>1} (y_1 - y_i)$,而f(x)的判别式为 $x_1 = x_1 + x_2 = x_2 = x_2 = x_1 + x_2 = x_2 = x_1 = x_1 + x_2 = x_2 = x_1 = x_1 + x_2 = x_2 = x_1 = x_1 + x_2 = x_1 = x_1 = x_1 + x_2 = x_2 = x_1 = x_1 = x_1 = x_1 = x_1 = x_2 = x_1 = x_1 = x_1 = x_2 = x_1 = x_1$

$$\operatorname{Dis}_{x}f(x) = \prod_{i=1}^{n} \left(\prod_{i \neq j} (y_{i} - y_{i}) \right) = \operatorname{N}_{L \neq K} \left(f_{i}^{K}(y_{i}) \right) + \operatorname{N}_{L \neq K} \left(f_{i}^{K}(y_{i}) \right)$$

从这个例子中,我们不难看出,检查重根的判别式 $\mathrm{Dis}_x f(x)$ 与表

差式(在这里是f'(y₁)的范数)有密切的关系,这是我们要探明的,

相对于几何学而言,范数的作用相当于投影,而且照顾到代数重数。因此,自然的,我们对于理想 $I\subset T$,也定义它的"范理想"(对应到R 所规定的代数多样体的点集)如下:

此处 f_1 是 q_1 对R的剩余次数(即相对次数)。

讨论 不难看出,映射 NL/x 具有下列的性质:

- 1) $N_{L/K}(I \cdot J) = N_{L/K}(I) \cdot N_{L/K}(J)$, $I \subset J \Longrightarrow N_{L/K}(I) \subset N_{L/K}(J)$;
 - (I); (I); (I) 当 $K \subset L \subset F$ 时, $N_{L/R}(N_{F/L}(I)) = N_{F/R}(I)$;
 - 3) 令 I 是 R 的理想,n = [L:K],那么, $N_{L/K}(T \cdot I) = I^n$.

上面的性质 3) 是说,任取点集(对应于 I),先找出此点集在映射 $N_{Z/E}$ 下的象源(对应于I · I ·

我们现在证明两个引理。

引躍る 任取 $a \in T$ 。那么 $N_{L/K}(Ta) = RN_{L/K}(a)$ 。

□ 证明 请注意,N_{□/} 对理想 Ta 及对元素 a 是分别定义的。 这个引理是要说明这两个定义是一致的。以下分两个步骤来证明。

$$Ta = \prod_{q} q^{v(q+a)}$$
.

考虑。

 $TN_{L\times K}(a) = \prod_{\alpha} \mathfrak{g}^{v(\alpha)N(\alpha)}$.

因为

$$N(a)(=N_{L\times K}(a))=\prod_{\sigma\in \sigma}\sigma(a),$$

所以

$$v(q, N(a)) = \sum_{\sigma \in a} v(q, \sigma(a)) = \sum_{\sigma \in a} v(\sigma^{-1}(q), a).$$

应用定理8.7, 在上式中, 每一个o-i(q)都出现 ef 次, 而且一共 有 g个不同的 $\sigma^{-1}(q)$ (即 q_1, \dots, q_g)。因此上式可以缩写成

$$v(q,N(a)) = of \sum_{i=1}^{n} v(q_i,a).$$

现在考虑在R中的分解式,用下面的符号

$$Rb = \prod_{a} \mathfrak{p}^{a(a)}, b \in R.$$
令 $\mathfrak{p} = \mathfrak{q} \cap R, b = N(a)$. 那么

$$\mathfrak{p} = \prod_{\mathbf{q} \in \mathbb{R}^{n}} \mathfrak{q}_{\mathbf{q}}^{\mathfrak{q}}.$$

比较上面三式,不难得出 $u(p,N(a))=\sum fv(q_i,a)$ 。从而

$$N(Ta) = \prod_{q} (q \cap R)^{\alpha (q+a)f} = \prod_{q \in R} \prod_{q \in R} (q \cap R)^{\nu (q+a)f}$$
$$= \prod_{q} p^{\nu f \nu (q+a)} = RN(a).$$

2) 在一般情形下,令 L^* 是 K 的包含 L 的最小伽罗瓦扩域, T*是R在L*中的整数闭包。那么,L*也是L的伽罗瓦扩域。因此 我们可以用1)以及上面定义8.7后面的讨论中的1),2),3)。

$$(N_{L/R}(Ta))^m = N_{L/R}(Ta)^m \qquad (公式 1))$$

$$= N_{L/R}(N_{L^*/L}(T^*a)) \qquad (公式 3))$$

$$= N_{L^*/R}(T^*a) \qquad (公式 2))$$

利用 Dedekind 整环的理想的唯一分解定理,立得本引理。

下面的引理 4 进一步阐明了 N_{L/K}·对 理想及元素的两个定义 是一致的。

引3 理 4 理想 $N_{L/R}(I)$ 是由I 的元素的范数生成的,即是由 $\{N_{E/E}(a): a \in I\}$

生成的理想。

证明 因为(4)⊂1,由引理3,显然有 $(N(a)) = N((a)) \subset N(I),$

所以 N(I)包含 $\{N(a): a \in I\}$ 所生成的理想 J。 令 $I = \prod_{i=1}^n q_i^{-1}$,则

$$\mathbf{N}(I) = \prod_{\mathbf{r} = \mathbf{r}_i \cap R} \mathbf{p}^{zf(\mathbf{r}_i) \cdot \mathbf{r}_i} = \prod_{\mathbf{r}_i \in I} \mathbf{p}_i^{t_i},$$

中其

$$I_{j} = \sum_{\mathbf{q}_{i} \mid \mathbf{r}_{j} T} f(\mathbf{q}_{i}) n_{i*}$$

两令
$$J = \prod_{i,j} p_i^{n_j}.$$

我们已经说明了 15≤mi。现在只要证明: 任给一个pi, 必有一个 **4∈**∫,使』

$$N(a) \in p_j^{i,j} \setminus p_j^{i,j+1}$$
.

因为这样我们即可得出「

$$N(a)\subset J \Longrightarrow l_j \geqslant m_j$$

应用引 \mathbf{a} 1,我们只要找到 $a \in I$ 。使

$$a \in q_i^{*_i} \setminus q_i^{*_i+1}, \quad \forall q_i \cap R = p_i$$

简而首之,因为 $a \in I \longrightarrow a \in q_1$, 所以即是求 $a \in I$, 使

$$a \in \mathfrak{q}_i^{n+1}, \quad \forall \mathfrak{q}_i \cap R = \mathfrak{p}_i.$$

用了的理想唯一分解的性质,知

所以可以找到这样的 a . 1

我们定义T对R的"判别式"如下。

定义8.8 令T对R的表差式是 $\mathcal{D}_{T/R}$ 。那么,T对R的判别 式定义为

$$\delta_{T/R} = \mathbf{N}_{L/R} (\mathscr{D}_{T/R}).$$

讨论 从上面的定义,立得判别式8~~ 规定了 R 的 分 歧理 想。下面的定理将说明,如此定义的判别式 $\delta_{\pi/\pi}$ 与第五章 \S 8 定 义的域判别式

$$\det [\operatorname{Tr}_{L \times K}(u_1 u_1)] = \operatorname{Dis}(u_1, \dots, u_n)$$

的关系,从而提供了直接计算8,2,8的方法。

定理8.13 符号如上。任取 L在T中的一组X基 $\{u_1, \dots, u_n\}$ 。 $合 d(u) = Dis(u_1, \dots, u_n)$ 。 那么

- 1) $\delta_{\pi/\kappa}$ 是由所有的d(u)生成的组想;
- 2) $\delta_{\pi/R} = R \cdot d(u) \iff \{u_1, \dots, u_n\} \in T$ 的一组 R 基。

证明 1) 令 / 为由所有的 4(4) 生成的理想。 本定理是要此 较理想 $\delta_{T/R}$, J 及 $R \cdot d(u)$ 。 应用 R 是 Dedekind 整环的性质,我 们仅须研究它们对任意一案理想中的指数、已知表差或多少。可 以局部化(定理8,10),那么,显然的, $\delta_{r/s}$ 也可以局部化。为了 书写方便起见,我们令 $\delta = \delta_{T/R}$ 。

任取R的一个素理想p,令 $M=R\setminus p$...我们现在考虑R...(证 R_{\bullet}), T_{M} , δ_{M} (= δR_{M})等。已知 R_{M} 是一个一秩离散赋值环,所以是 一个主理想整环。易见 T_{ν} 是主理想整环 T_{ν} 的有疑生成模。因此。 根据第四章,有{u1,···,un}⊂T_M,使

$$T_M = \bigoplus_{i=1}^n R_M u_{i+1,\dots,i-1} + \sum_{i=1}^n \{1,\dots,i-1\}_i \in \mathbb{R}_m$$

771

自然n{m1, m, min}是L对系的一组基。取它的至余基(v1, m, vn), 即

那么, $\{v_1,\cdots,v_n\}$ 即是 T_M 对 R_M 的互众模 $(T_M)'$ 的一组 R_M 基,即

$$(T_M)' = \bigoplus_{i=1}^n R_M \cdot v_i.$$

 $(T_M)' = \bigoplus_{i=1}^N R_M \cdot v_i$, 又因为 T_M 只有有限多个素理想,根据本章 § 1的习题 3 , T_M 也是一个主理想整环。那么, (T_{μ}) 作为 T_{μ} 的一个分理想,是由 一个元素 $b \in L$ 生成的, $\mathbb{D}(T_M)' = T_M \cdot b$. 因此

$$\{bu_0, \dots, bu_n\}_{i,j}$$

是 $(T_{u})'$ 对 R_{M} 的一组基、计算这组基的判别式,令 $c^{(a)}$ 表示。在 L的工个代数闭包的中的共轭元素,

$$= \det \left[\sum_{n=1}^{n} (bu_n)^{(n)} (bu_n)^{(n)} \right]$$

$$(bu_1)^{(1)} = \det \left(bu_1 \right)^{(1)} = \cot \left(bu_n \right)^{(1)}$$

$$(bu_1)^{(1)} = \cot \left(bu_n \right)^{(1)} = \cot \left(bu_n \right)^{(1)}$$

$$= \det \begin{bmatrix} b^{(1)} & b^{(2)} \\ b^{(2)} & b^{(3)} \end{bmatrix}^{2}$$

$$\downarrow b \quad \downarrow b \quad$$

$$\times \det \begin{bmatrix} u_1^{(1)} & \dots & u_n^{(1)} \\ \dots & \dots & \dots \\ u_n^{(d)} & \dots & u_n^{(d)} \end{bmatrix}^2$$

 $F(\omega) = \mathbf{N}(b)^2 d(u).$

考虑 $(T_{N})'$ 的两组基 $\{v_1, \dots, v_n\}$ 及 $\{bu_1, \dots, bu_n\}$ 的关系式, 立刻

可以导出 $N(b)^2 d(u)/d(v)$ 是 R_B 的可逆元。又,因为 v 是 u 的互 x 未 。 我们自然有 d(u)d(v)=1 。 所以

$$(N(b)d(u))^2 = N(b)^2 d(u)/d(v)$$

是 R_H 的可逆元。因此N(b)d(u)必是 R_H 的可逆元。于是 $N(b)^{-1}R_H = d(u)R_H$ 。

我们知道(见引理 4) δ_M 是由 $\mathcal{D}_M(=\mathcal{D}_{T/A}T_M=\mathcal{D}_{T_{M'}R_M})$ 的所有元素 a 的范数N(a)生成的。又知

$$a \in \mathcal{D}_M \iff aT_M' \subset T_M \iff ab \in T_M.$$

由此立得

$$\delta_{M} = \mathbf{N}(b)^{-1}R_{M} = d(u)R_{M\bullet}$$

现在我们任取 L 对 K 的基 $\{u'_1, \cdots, u'_n\}$,此处 $u'_n \in T$ 。那么,它的判别式d(u') 在 R_M 中是d(u) 的倍数。因此,对任给的素理想 p 而言(有相应的 $M = R \setminus p$ 及相应的 $\{u_1, \cdots, u_n\}$),总有

$$d(u') \in d(u)R_M = \delta_{M_*}$$

那么,考虑 p 的指数, 立得 $d(u') \in \delta$, 所以 $J \subset \delta$.

我们现在要证明 δ 是由所有 d(u') 生成的。 对于上述的 $\{u_1, \dots, u_n\}$,乘以 R_M 的可逆元素, 可以消去分母。故不妨令 $u_i \in T$ $(\forall i)$ 。此时 $d(u) \in R$,且它的 P 的指数 = δ 的 P 的指数,因此,

· J 的 P 的指数≤δ 的 P 的指数,

即 $J \supset \delta$ 。上面又已证过 $J \subset \delta$,所以 $J = \delta$ 。

2) 在给出的条件下, $\{u_1, \dots, u_n\}$ 显然是 T_M 对 R_M 的一组基。上面已证 $d(u)R_M = \delta_M$,此式对任意 P 都成立, 所以立得 $d(u)R = \delta_n$

一一。设 $\delta = d(u)R$ 。考虑对任给的素理想P取局部化如上,则 $\delta_M = d(u)R_M$,此处 $M = R \setminus P$ 。任取 T_M 对 R_M 的一组基 $\{u_1^*, \cdots, u_n^*\}$ 。考虑它与 $\{u_1, \cdots, u_n\}$ 的关系式,不难导出 $\{u_1, \cdots, u_n\}$ 是 T_M 对 R_M 的一组基。现在要证明 $\{u_1, \cdots, u_n\}$ 是 T对 R的基。

· 任取 $a \in T$,可以写成 ·

 $a_i \in K_{\bullet},$

在 T_M 中考虑上式,立得 $a_i \in R_M (=R_*)$ 。所以 $a_i \in \bigcap R_M = \bigcap R_* = R_*$

例 8 我们考虑 Q 的二次扩减的代数 整数 环T。 令 L= $Q(\sqrt{m})$, $m \in \mathbb{Z}$, 不妨令 m 沒有重因子。于是 $m \ge 0$ (mod 4)。 我们先计算了。

任取 $a+b\sqrt{m} \in L$, $a,b \in Q$ 。它的共轭元素是 $a-b\sqrt{m}$ 。那 么, a +b√m 对2为整数相关的充要条件是:

$$(a+b\sqrt{m})+(a-b\sqrt{m})=2a\in Z,$$

且

$$(a+b\sqrt{m})(a-b\sqrt{m})=a^2-b^2m\in Z.$$

不难导出, a=a'/2, b=b'/2, a', $b' \in Z$ 以及 $(a')^2-(b')^2n$ ■ 0 (mod 4)。因此有下面的结论。

- 1) 如果 $m=2,3 \pmod{4}$, $\emptyset a+b\sqrt{m} \in T \iff a,b \in Z$,
- 2) 如果 m ≡ 1 (mod 4), 则 a + b√m ∈ T ←> a', b' 同时是 奇数或偶数。

于是, 了可以如下写出,

- 1) 如果 $m=2,3 \pmod{4}$, 则 $T=Z[\sqrt{m}]$;
 2) 如果 $m=1 \pmod{4}$, 则 $T=Z[(1+\sqrt{m})/2]$. 应用定理8.8及8.13, 立得
- 1) 如果m=2,3 (mod 4), 则表差式 Ø*/z=2√mT, 判别 式 $\delta_{r/z} = 4mZ$,
- 2) 如果 $m \equiv 1 \pmod{4}$,则表差式 $\mathcal{G}_{T/2} = \sqrt{mT}$,判别式 $\delta_{\pi/2} = mZ$

如果令m=-1,立得2Z在扩坡 $Q[\sqrt{-1}]$ 中是分歧的。参考 第一章 § 5.

 $g_v(x) = (x^j - 1)/(x - 1)$

(参看第五章 § 6例7、例16的讨论)。令6是它的一个根。我们将 证明 Z[s] 即是 L=Q[s] 的代数整数环T, 并求其判别式及表差

式。 已知 $\varphi_p(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$ 是不可分解的,所以 $[Q[\zeta]:Q] = p-1$ 。 又知 $\zeta \in T$, $\zeta - 1 \in T$, 以及 $\zeta - 1$ 适合下面的方程式 $F(x) = (x+1)^{p-1} + (x+1)^{p-2} + \cdots + 1$

因此, $N_{L/Q}(\zeta-1)=p_0$.

我们又知
$$\varphi_p(x) = \prod_{i=1}^{p-1} (x - \zeta^i),$$
 以 $x \in 1$ 代入,得

$$p = \prod_{i=1}^{p-1} \{1, 2, 3, \dots, 2, \dots, 2,$$

任取1,1,我们可以求出1116Z,使5'=(5')'((换句话说, ζ',ζ'都是本原单位根)。那么,

$$(1-\zeta')/(1-\zeta') \in \mathbf{Z}[\zeta] \subset T_{\bullet} \xrightarrow{(\beta_{\bullet})_{A,b} \in \mathcal{F}}$$

因此

$$p = (1 - \zeta)^{t-1} \varepsilon$$
, ε 为 T 的可逆元。

考虑 $N_{L/Q}(1-\zeta)=p$,立得 $q=(1-\zeta)T$ 是一个素理想。在扩域L中,(p)的缩分歧指数 $\theta = p-1(=[L:Q])$,所以 f=1, g=1.

到此为止,我们还不知道 T。为此现在我们来计算 $\delta_{T/2}$ 。再 用定理8.13, 求 T 及表差式 Ø 7/3.

我们用局部化的方法。对 p 取局部化, $Z_{(p)} \subset T_{\bullet, v}$ 而且(p)= q*-1。不难看出,一秩离散赋值环 T_{*}=Z_(p) + (1-5)Z_(p) + ··· + (1-5)*-*Z_(p)。

$$T_{+} = Z_{(p)} + (1 - \zeta)Z_{(p)} + \cdots + (1 - \zeta)^{p-2}Z_{(p)}$$

应用定理8.13, 有
$$\delta_{T_4/Z_{(p)}} = (d(1,\zeta-1,\cdots,(\zeta-1)^{p-2}))$$

$$= \left(\prod_{i=1}^{p-1} F'(\zeta^i - \prod_{i=1}^{p})\right) = \left(\prod_{i=1}^{p-1} \varphi_p'(\zeta^i)\right)$$

$$= \left(\prod_{i=1}^{p-1} \frac{p(\zeta^i)^{p-1}}{\zeta^{-i} - 1}\right) = p^{p-2} \mathbf{Z}.$$

又在城扩张 $Q[\zeta]/Q$ 下,考虑 $d(1,\zeta-1,\cdots,(\zeta-1)^{s-2})$,自然也得同数 p^{s-2} 。根据定理8.13, $\delta_{T/2}|p^{s-2}Z$ 。所以 $\delta_{T/2}$ 沒有别的案理想因子。那么,因为判别式 $\delta_{T/2}$ 可以局部化,所以易于得出 $\delta_{T/2}=p^{s-2}Z$ 。

再次应用定理8.13, 立得 $T = Z[1 - \zeta] = Z[\zeta]$.

应用定理8.8,我们得出 Ø T/Z = (\$\(\sigma\((\sigma\))).

例10 我们讨论不适合定理 8.8 的条件的情形。前交提过,Dedekind找出了数论的例子。现在我们就代数曲线论的范围来研究。已知在这个范围内,Dedekind整环厂相当于无奇异点的仿射曲线 C的多项式函数环。定理 8.8 的条件即是对适当选取的x,y而 3.

$$\mathcal{A}^{r}$$
 if \mathcal{A}^{r} is \mathcal{A}^{r} in \mathcal{A}^{r} in

换言之, C是一个平面曲线。那么, 只要找出一个无法表现成仿射平面曲线的仿射空间曲线, 便足以使定理8.8的条件不成立了。

我们可以取一个射影平面曲线 $C \subset P_c$ 。选取C的一点P,使P不为任意典型因子(参见附录 2)的零点集、即

$$(2g-2)P \pm K_0$$

此处 9 是 C 的亏格, K 是任取的典型因子。那么 C P可以表现成一个仿射空间曲线,但是不能表现成仿射平面曲线。

具体一点,令C是由 $x^i + (x-z)^i = y^i$ 定义的射影平面曲线。令

$$P = (a, 1, 0), \dots$$

此处 $a^t=1$ 程。那么,C 的污格 g=3,典型因子的零点集 $K_0=$ 直线与C 的交集。不难看出,沒有直线 l 与C 交子 $(2\times 3-2)P=4P$,

即沒有直线(仅与C交于P点。这时,C\P不能表示为仿射平面曲线,它的多项式函数环也因此不能写成C[u,v]。

请看代数几何学的专书,以了解这个例子。

习 题

- 1 设D为 Dedekind 整环,K为其比域,L/K是有限可离扩张,D在L中的整数闭包为S,T为L的子集,T'为T对D的互杂集。证明:
 - (1) $\forall a \in K^*$, $(aT)' = a^{-1}T'$;
 - (2) 者*T⊂S*,则*T⊂T′*,
 - (3) 若T为L的非零分理想,则T'亦是L的非零分理想。
 - 2. 符号如题 1,证明

$$T' = \bigcap_{\mathbf{z} \in \mathcal{D}} (D, T') = \bigcap_{\mathbf{z} \in \mathcal{D}} (D, T)', \qquad \text{where } T \in \mathcal{D}$$

其中p取逼D中的素理想,(D,T)/表示D,T对D,的互杂集。

3. 设D为Dedekind整环,K为其比域,L/K 与F/L 均为有限可离扩张,D在L及F中的整数闭包分别为S和R. 证明。

其中 40 为表差式。

4. 符号如题 3. 证明

$$\delta_{F/K} = (\delta_{L/K})^{(F+L)} \mathbf{N}_{L/K} (\delta_{F/L})$$

(δ 为判别式)。

5. 设D为Dedekind整环,K为其比域,L/K,E/K为有限可离扩张,且L和E在K的同一代数闭包内,D在L及E中的整数闭包分别为S和R,D在LE中的整数闭包为O,L\\(\text{E}=K\), $(\delta_{8/0}, \delta_{8/0}) = (1)$ 。证明:

$$\delta_{O/D} = (\delta_{B/D})^{(R+K)} (\delta_{R/D})^{(L+K)}.$$

6. D, K, L, S 均如上题。设 P 为 D 的一个非零素理想, P 在 L 中有 r 个不同的素因子 q_1, q_2, \cdots, q_r 。 D, K 分别表示 D 和 K 在

P-adio拓扑下的完备化, S_1 和 L_1 分别表示S和L在 q_1 -adio 拓扑下的完备化。证明对S的任一理想 α ,有

$$N_{L/K}(a)D = \prod_{i=1}^{r} N_{L_i/K}^2(aS_i).$$

- 7. 设D为Dedekind 环,K为D的比域,V是K上的n维向量 空间。如果V的子集M适合条件: (a) M是有限D模; (b) M中含有V的一组K基,则称M是一个D格。证明:
 - (1) 对任一D格M, $M = \bigcap_{i \in S} D_i D_i$,
 - (2) 任给两个D格M和N, 总有 $a \in D$, 使 $aM \subset N$;
- (3) 任给两个D格M 和N,则对于几乎所有的 p∈SpecD, 都有

$$D_{\bullet}M = D_{\bullet}N_{\bullet}$$

8、设M,N是D格,且都是自由D模,M和N作为D 模的基分别为 $\{x_1,x_2,\cdots,x_n\}$ 和 $\{y_1,y_2,\cdots,y_n\}$ 。再设

$$A\left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right] = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array}\right],$$

其中A为K上的 $n \times n$ 矩阵。则定义N对M的D模指数为(det A)D,记为[M:N] $_{D}$ 。

若M和N不全是自由D模,则定义模指数为

$$[M:N]_D = \prod_{\bullet \in S : \bullet \bullet D \setminus \{\{\emptyset\}\}} (\mathfrak{p}D_{\bullet})^{\sigma_{\bullet}(\{D_{\bullet}M:D_{\bullet}N\}_{D_{\bullet}})}.$$

现设L/K为有限可离扩张,S为D在L中的整数闭包。证明。

(1) 对S中任一非零理想 a(可视为D格), 有

$$\mathbf{N}_{\mathbf{L}/\mathbf{x}}(a) = [S:a]_{\mathbf{D}}.$$

- (2) δ_{8/0}=[S':S]_D, 其中S'为S对D的互余模。
- 9、 设D, K, L, S, E, R, O均如题 5、 设 P 为 D 的 个素

 $pS = q^{(4+8)}, \qquad (4) \qquad (5)_{ab} \qquad (5)_{ab} \qquad (5)_{ab}$

The state of the s

这里q是S中的素理想(此时称 p 在S 中全分歧,参见第七章 § 5习 题8)。又p在E中非分歧,m为E的一素理想,m $\cap S = p$ 。证明:

- (1) $K = L \cap E$,
- 10. 设 $\zeta = \exp(2\pi i/p^n)$, 这里 p 是奇素数. 在 $Q(\zeta)$ 中将(p) 分解为素理想的乘积.
- 11. 设 $\zeta = \exp(2\pi i/m)$, 其中m为正整数, m为奇数或4/m. 证明: $p/m \longleftrightarrow (p)$ 在 $Q(\zeta)$ 中分歧.
- 12. 证明: $(2,\sqrt{10})$ 不是 $Z[\sqrt{10}]$ 中的主題想是由此可知 $Z[\sqrt{10}]$ 的因子类群不等于零。
 - 13. 设 $S = C[x,y]/(x^2 y(y-1))$. 计算 $\delta_{S/G[x]}$.
- -14, 设 $S = C[x,y]/(x^2-y(y^2+1))$ 。 分别计算 $\mathcal{D}_{S/C[x]}$ 及 $\delta_{S/C[x]}$.

§ 4 分 坡 论

设D是一个 Dedekind 整环,K是它的比域,L是K的有限可离扩域,S是D在L中的整数闭包。在L一节中,我们已经证明了,D中只有有限多个素理想 p_i 在S 中是分歧的。它们是由S对D的判别式规定了的。同样,S 中只有有限多个素理想 q_i 是对D分歧的。它们是由S对D的表差式规定了的。在本节中,我们假定 L是K的伽罗瓦扩域,对一个特定的素理想 p C D ,研究 p E S 中的分歧状况。

以下,令G = G(L/K),即为L对K的伽罗瓦群。令Q是一个特定的在P之上的素理想,即Q是S的素理想以及 $Q \cap D = P$ 。

显然,G作用在 q 的共轭集 $\{q_1, \dots, q_p\}$ (即是 S 的 所有 在 p 之上的素理想的集合)上,此处 $q_1 = q$ 。应用定理8.6,q 的轨道

 $\text{Orh}(q) = \{q_1, \dots, q_g\},$

我们有定义(参看第二章):

定义8.9 9的分解群定义为

Gz = {σ: σ(q) = q} = q 的稳定子群 Stab(q).

讨论 1) 用第二章关于稳定子群的讨论,可知 G_z 的阶 f_z 。 f_z

这里n=[L:K], e,f分别为q的缩分歧指数和剩余次数。

- 2) q_1 的分解群 = $\sigma_1G_2\sigma_1$,即 G_2 的共轭子群,此处 σ_1 满足 $q_1 = \sigma_1(q)$.
- 3)德文 "Zerlegung" 是"分解"的意思,因此,我们用 $G_{\mathbf{Z}}$ 表示分解群。

令 K_z 为 G_z 的不变域。 K_z 称为 q 的分解域。应用伽罗瓦理论,立得 $L \supset K_z \supset X$, $L \supseteq K_z$ 的伽罗瓦扩域, 而且其伽罗瓦群 $G(L/K_z) \approx G_i$, $[L:K_z] = ef$, $[K_z:K] = g$.

令 D_z 是D 在 K_z 中的整数闭包, $\mathfrak{q}_z=\mathfrak{q}\cap D_z$ 。我们有下面的定理。 • 1995年 1995年

定理8.14 1)我们有下面的关系式。 $q_zS=q^z$ 。这就是说, q是 q_z 之上的唯一的素理想,而且 q 对 D_z 的缩分歧指数等于 q 对 D 的缩分歧指数。自然的,q 对 D_z 的剩余 次数 f 等于 q 对 D 的剩余次数。

2) 更进一步说,如果 G_2 是G的正规子群,那么, K_Z 自然是K的伽罗瓦扩域。此时

$$pD_z = \prod_{i=1}^r (q_i)_z, \quad (q_i)_z = q_i \cap D_z.$$

 G_{2} 的定义,它的元素 α 全部保持 α 映 到 自身,因此,在 G_{2} 作用下, $Orb(q) = \{q\}$,用定理8.6,立得 α 是 α 之上的唯一的素理想,即

$$q_z S = q^{\sigma^*}$$
.

我们现在要证明 $e = e^*$.

令 $f^* = [S/q:D_z/q_z]$ 。 考虑 $D/p \subset D_z/q_z \subset S/q$,不难得出 $f^* \leq f = [S/q:D/p]$ 。

显然, $\mathfrak{p}S=\mathfrak{p}D_zS$, $\mathfrak{p}D_z=\mathfrak{q}_z^*I$, $a\geqslant 1$, I 是 D_z 的理想, 从此立得。

$$q^{\bullet,\bullet}IS = pS = q^{\bullet}\prod_{i>1}q_i^{\bullet}$$

由 Dedekind 整环的理想唯一分解定理,即知 $ae^* \leq e \Longrightarrow e^* \leq e$.

又显然 $e^*f^* = [L:K_z] = ef$,结合前面已证的 $f^* \leq f$,立得 $e = e^*$, $f = f^*$, a = 1.

2) 上面已证a=1以及[D_z/q_z :D/p] = 1。从定理8,6立刻导出, q_z 在 K_z 中有g个不同的共轭理想,以及

$$\mathfrak{p}D_z = \prod (\mathfrak{q}_i)_z.$$

讨论 当 G 是交换群时,每一个子群都是正规子群。令

$$\mathfrak{pS} = \prod \mathfrak{q}_{i}$$
.

因为 q_1 的分解群是互相共轭的,所以在这种情形下,它们 全相等。因此, G_z , K_z 是所有 q_1 共有的。上定理说,在 K_z 里,

$$\mathfrak{p}D_z = \prod (\mathfrak{q}_1 \cap D_z),$$

即 pD_z 分解成 g 个不同的素理想。自然,每一个 $q_1 \cap D_z$ 对 D 的缩分歧指数及剩余次数都是 1 。换句话说,从 K 到 K_z 作 域的扩充时,单纯而完全地表现了素理想 P 的分解现象。

以下我们进一步求 K_z 的扩域,以单纯而完全地表现紧理想q的剩余次数。我们给出定义:

定义8.10 令 $G_T = \{\sigma \in G : \sigma(a) = a \pmod{q}, \forall a \in S\}$ 。 称 G_T 为 q 的惯性群。

讨论 1) 任取 $\sigma \in G_{\tau}$, $a \in \mathfrak{q}$. 那么

$\sigma(a) = a = 0 \pmod{q}$,

即 $\sigma(a) \in \mathbf{q}$ 。換句话说, $\sigma(\mathbf{q}) \subset \mathbf{q}$ 。以 σ^{-1} 代入此式,"又得 $\mathfrak{q} \subset \sigma(\mathfrak{q})$ 。

所以 $\sigma(q) = q$ 。这也就是说 G_T 是 G_Z 的子群。

2) 更进一步说, G_T 是 G_Z 的正规子群。任取 $\sigma \in G_T$, $\tau \in G_Z$, $a \in S$,则有

$$\tau \sigma \tau^{-1}(a) - a = \tau (\sigma \tau^{-1}(a) - \tau^{-1}(a)),$$

由于 $\sigma \tau^{-1}(a) - \tau^{-1}(a) \in \mathfrak{q}, \ \tau(\mathfrak{q}) = \mathfrak{q}, \ 所以$

$$t\sigma \tau^{-1}(a) - a \in q$$
.

即 $\tau \sigma \tau^{-1} \in G_{\tau}$.

3) 德文 "Trägheit" 是"惯性"的意思,所以我们用 G_r 表示惯性群。【

令 K_r 表示 G_r 的不变域。 K_r 称为 q 的惯性域。 用伽罗瓦玛论,我们根据上面的讨论,即知

$$K \subset K_2 \subset K_2 \subset L$$

而且 L 对 K_T 对 K_Z 都是伽罗瓦扩城, 它们的伽罗瓦群分别是 G_T 及 G_Z/G_T 。 令 D_T 是 D 在 K_T 中的整数闭包, $Q_T = Q \cap D_T$ 。 我们有下面的定理:

定理8. 15 1) S/q 是 D/p 的正规扩域,它的 伽 罗 瓦 群 与 G_z/G_r 同构,

2) 令 L^* 为 D/p 在 S/q 中的可离闭包, $f_0 = [L^*:D/p], p'$ 为 D/p 的特征数, $[S/q:D/p] = f_0 \cdot (p')$ "。那么,

$$[K_T; K_Z] = f_0, \quad q_Z D_T = q_T.$$

自然, q_x 对 K_z 的缩分歧指数是 1 ,剩余次数是 f_0 。

3) $[L:K_T] = e(p')^*$, $[S/q:D_T/q_T] = (p')^*$, S/q 是 D_T/q_T 的纯不可离扩城, $q_TD = q'$ 。自然, $q \to K_T$ 的缩分歧指数是 e ,剩余次数是 $(p')^*$ 。

证明 1)及 2),任取 $\mathbf{a} \in S/q$,令 a 是 a 的象源。 设 a 对 K 的极小多项式为

$$f(x) = x^n + e_1 x_n^{n-1} + \operatorname{supph} e_n, \quad e_n \in D_n$$

因为L是K的正规扩域,所以上式可以分解成。

$$f(x) = \prod_{i=1}^{n} (x - a_i), \quad a_i \in S, \quad a_1 = a,$$

对 9 取剩余,立得

$$f(x) = \prod_{i=1}^{n} (x - \overline{a}_i), \quad \overline{a}_i = \overline{a}_i$$

因而 a 对 D/p 的极小多项式必是 f(x) 的因子,它在 S/q 中有所有的根。我们立刻导出 S/q 是 D/p 的正规扩域。

1. 令 G 为 S/g 对 D/D 的自同物群、我们定义由 $\sigma \mapsto \sigma$ 所 引 生的映射 $G_z/G_z \rightarrow G$,这里

 $\sigma(a) = \overline{\sigma(a)}, \quad \alpha \in G_{g_a}$

令 b 是 b 的象源。又令 $b_i \in S$ 是 b 对于 K_z 的 典额元素 这里 $b_1 = b$ 。那么,与前面一样,b 对于 D_z/q 的 共 轭 元 素 不出 $\{b_1, \dots, b_j, \dots\}$ 之外。我们应用定理8.14,不难导出 $[D_z/q_z: D/P] = 1,$

即 $D_z/q_z = D/p$ 。因此, δ 对于 D/p 的共轭元素也不出 $\{\delta_t, \cdots, \delta_t\}$ …}之外。于是 $\sigma'(\delta) = \delta_j($ 对某个 j)。自然有一个点电 G_z ,分使 $\sigma(b) = b_j$,那么, $\sigma' = \sigma$ 。这样就证明了 1)。

这样,即行 $[K_T:K_Z] = o(G_Z/G_T) = [L^*:D/p]$ 更加设数 们把

且面的讨论,应用到 $K^*=K_K$ 二L 的情形(即以 K^* 取 代 上面的 K)。那么, $K_z^*=K_z^*=K^*$,相应的群 $G_z^*=G_z^*=G^*$ 。于是 $f_0^*=\{K_z^*:K_z^*\}=1$.

这就是说 S/\mathfrak{q} 是 $D^*/\mathfrak{p}^* = D_T/\mathfrak{q}_T$ 的纯不可离扩域。换言之, $L^* \subset D_T/\mathfrak{q}_T$; $[D_T/\mathfrak{q}_T:D/\mathfrak{q}] \geqslant f_0$.

又从另外一方面来考虑, 我们有

$$[D_T/q_T:D/p] \cdot \theta(q_T) \leq f_0,$$

其中 $e(q_T)$ 为 q_T 对 K 的缩分歧指数。因此立得 $D_T/q_T = L^*$, $[D_T/q_T:D/p] = [D_T/q_T:D_Z/q_Z] = f_0,$

 q_T 对 D_z 的缩分歧指数等于 1, $q_z D_T = q_T$.

3)已经知道 $[L:K_z]=ef=ef_0\bullet(p')$ ", $[K_T:K_z]=f_0$,所以 上述 \mathbb{Z} [$\Sigma:K_T$] $\cong e\bullet(p')$ "。

显然, $q_r S = q^r > 那么, q 对 K_r$ 的剩余次数必然是(p')"。 1

讨论 上面两个定理是说,从K到L的伽罗瓦扩张,可以插入两个扩域,从K到 K_z ,及开了,上面的素理想 $\{q_z\}$,任 取 出一个 q_z ,再从 K_z 扩充到 K_r ,此时单纯地显现了商域(或称剩余域)的可离扩张, $A_{\!\!\!\!\!>}$ 种无分解现象,也无缩分枝指数的增加,从 K_T 扩充到 L ,此时显现了缩分歧指数的全部增加,以及商域的纯不可离扩张。我们可以列出下表:

例11 参考例8。 令 L = Q的二次扩域, $L = Q(\sqrt{m})$, $m \in$

- Z, m 无重因子。那么, L 显然是 Q 的伽罗瓦扩 域。 令 T 是 L 的代数整数环。根据例 8 的计算,我们已知:
 - 1) 如果 $m=2,3 \pmod{4}$,则表尝式 $\mathcal{D}_{T/Z}=2\sqrt{m}T$,判别式 $\delta_{T/Z}=4mZ$;
 - 2) 如果 $m = 1 \pmod{4}$, 则表差式 $\mathcal{D}_{T/Z} = \sqrt{mT}$, 判别式 $\delta_{T/Z} = mZ$.

因此,我们立刻算出 2 中对 L 分歧的素数如下:

- 1) p是m的奇素因子;
- 2) 如果 $m=2,3 \pmod{4}$, 则 2 也是分歧素数。 在这种情形下, $pT=q^2T$ 。

我们考虑其余的素数 p \ m.

1) 如果 $m=2,3 \pmod{4}$, 则 $T=Z+Z\sqrt{m}$ 。令 q 为 T 的素理想, $q \cap Z = pZ$ 。那么,令 σ : $Z[x] \rightarrow T = Z[\sqrt{m}]$ 为 $\sigma(x)$ $=\sqrt{m}$ 引生的环映射,则

 $T/q \approx Z[x]/\sigma^{-1}(q) \approx ((Z/pZ)[x]/(x^2-m))/q$,其中 q 为 $\sigma^{-1}(q)$ 在自然映射

$$Z[x] \rightarrow (Z/pZ)[x] \rightarrow (Z/pZ)[x]/(x^2-m)$$

下的象.

如果方程式 $x^2 - m = 0$ 在 Z/pZ 中有解,则 $(Z/pZ)[x]/(x^2 - m) \approx (Z/pZ) \oplus (Z/pZ)$,

于是不难看出, $T/q = \mathbb{Z}/p\mathbb{Z}$, 即 $f = [T/q: \mathbb{Z}/p\mathbb{Z}] = 1$, g = 2. 所以

$$pT = q_1q_2, \quad q_1 \neq q_2.$$

我们称这种 p 为分解型的。 请注意, 上面的条件($x^2-m=0$ 在 $\mathbb{Z}/p\mathbb{Z}$ 中有解)即是 Legendre 符号 $\left(\frac{m}{p}\right)=1$ 。

如果方程式 $x^2-m=0$ 在 Z/pZ 中无解,则不难看出 $T/q=(Z/pZ)[\sqrt{m}]$, [T/q:Z/pZ]=2, g=1.

此时 pT=q。 我们称这样的 p 为惯性型的。这时的条件即是 Legendre 符号 $\left(\frac{m}{p}\right)=-1$ 。

2) 如果 $m=1 \pmod{4}$, 则奇素数的分解 情况 与 1) 全 同。 但关于素数 2 的讨论科沒有 完 成。 $合 e^* = (1+\sqrt{m})/2$, 那 么 $T=Z[e^*]$. e^* 对于 Q 的极小方程式是

$$x^2 - x - (m-1)/4 = 0$$

上式 mod 2 以后,当 $m=1 \pmod{8}$ 时,此方程式在($\mathbb{Z}/2\mathbb{Z}$)[x]中可以分解。此时 2 是分解型的。当 $m=5 \pmod{8}$ 时,此方程式在 $\mathbb{Z}/2\mathbb{Z}$ 中无根, 2 是惯性型的。

当 p 是分解型时, $K_2 = K_T = L$, $G_Z = G_T = \{e\}$;

当 P 是惯性型时, $K = K_z$, $K_T = L$, $G_z = \{e, \tau\} = G$, $G_T = \{e\}$, 当 P 是分歧型时, $K = K_z = K_T$, $G_z = G_T = G = \{e, \tau\}$,

上面的で是由√m→・√m引生出的し的自同构。

令 ξ 是它的一个根。则 $Q[\xi] = L$ 的代数整数环 $T = Z[\xi]$ 。

我们经知道 $\delta_{T/Z} = (p^{t-2})$, $\mathfrak{A}_{T/Z} = (q^t, (\zeta)) = ((1-\zeta)^{t-2})$. 因此,在有理案数中,p是唯一的分歧素数,

$$pT = (1 - \zeta)^{\frac{1}{2} - 1}T.$$

対(1-5)而含, $K=K_z=K_{r*}$

任取一个素数 $p_1 \rightleftharpoons p$ 。 不难看出,它的缩分歧指数 e=1,而且 因为 Z/p_1Z 是完全域,所以,上面定理中的 $f_0 = f$ 。

已知 L 对 Q 的伽罗瓦群 G 是循环群,o(G) = p-1, 所 以 在 $m \mid p-1$ 时,它有唯一的 m 阶子群。因此,对一个固定 的 p_i ,想要决定 G_A , G_r 等,无非是决定它们的阶。

已知 $p_1(\Rightarrow p)$ 是非分歧的, $\theta=1$,所以fg=p-1。我们现在来计算f。令 q_1 是T的崇理想, q_1 八 $Z=p_1Z$ 。令

$$\sigma: Z[x] \rightarrow T = Z[x]$$

为 $\sigma(x) = \zeta$ 引生的环映射 χ 、则

 $T/q \approx Z[x]/\sigma^{-1}(q) \approx ((Z/p_1Z)[x]/(\varphi_p(x)))/\overline{q},$ 其中 $\varphi_p(x)$ 为 $\varphi_p(x)$ 在自然映射 $Z[x] \rightarrow (Z/p_1Z)[x]$ 下的象, q为 σ⁻¹(q)在映射 Z[x]→(Z/p,Z)[x]→(Z/p,Z)[x]/(φp(x))下的 象。我们考虑(Z/p₁Z)[x]/(φ_p(x))。易见

$$\overline{\varphi}_{p}(x) = \prod_{i=1}^{l} h_{i}(x), \quad h_{i}(x) \in (\mathbb{Z}/p_{i}\mathbb{Z})[x],$$

其中诸 $h_i(x)$ 是不可分解的多项式,而且两两不同(因为 $\phi_{\phi}(x)$ 无 重根). 于是

$$(Z/p_1Z)[x]/(\varphi_p(x)) \approx \bigoplus_{i=1}^{n} (Z/p_1Z)[x]/(k_i(x)) = \bigoplus_{i=1}^{n} k_i,$$

此处 k: 都是城。于是, 不难看出, T/q 与某个 k: 自然 同、构。注 意到 pp(x)的每一个根都是.p.次本原单位根,应用伽罗瓦 理论, 可知诸 h(x)次数皆相等。 分

$$f_i = \deg h_i(x)$$
, f_i

则 f 即是 q 对 Q 的剩余衣数。易知 l = g.

现在我们要说明

$$f = \min\{f^*: f^* 为正整数, p_1^{f^*} \equiv 1 \pmod{p}\}$$

这是因为, h_i(x)的任一个根 ζ_i(\(\pm\)), 同时适合

$$\zeta_{i}^{*}=1, \quad \zeta_{i}^{*}^{i-1}=1,$$

所以p[p[-1: 反之, 设有f*, 使p[p[*-1. 那么,]]]。
x*-1|x*(-1-1)

$$x^{2}-1|x^{2}|^{2}-1-1$$

所以 x²-1 的根在基数 为 p┆ 的有限域 ₹* 中。 在 k* 中, 所以 f≤f*.

上面我们已经算出了1. 于是 g=(p-1)/f. 这样。我们就 可以知道 $G_{\mathbf{Z}}(G_{\mathbf{T}} = \{e\})$ 及 $\mathbf{X}_{\mathbf{Z}}(\mathbf{X}_{\mathbf{T}} = \mathbf{L} \Rightarrow \mathbf{Q}[\mathbf{X}])$.

- 工作 设力为 Dedekind 整环, K 为其比域, L/K 为有限伽罗瓦扩张, F 为 L/K 的中间域, H=G(L/F), q 为 L 中的素理想, A 类于 L/K 的分解群和惯性群分别为 G_z 和 G_T 证明。 G 关于 L/F 的分解群和惯性群分别为 $G_z \cap H$ 及 $G_T \cap H$.
- 2. 设D为 Dedekind 整环,K为其比域,F/K为有限可离扩张,D是包含F的K上的最小伽罗瓦扩域,中是D的一个非零条理想。证明
- (1) P在F內完全分裂↔→P在L內完全分裂(所谓P在F內 完全分裂(splits completely),即p在F內分解为[F:K]个不同的 案因子),(salon)(=1/2) (bon)
 - (2) p在F內非分歧 ←→ p在L內非分歧。
- 3. 设力为 Dedekind 整彩,K 为其 比域,F/K,E/K 为有限可离扩张 为产品的同义代数闭包 当中)。R 为D 在 E 中的整数闭包,P 为D 的一类理想,P 为P 的素理想,P 为P 分完全域。证明:
 - (1) 如果 p在 F中完全分裂,则 q在 EF 中完全分裂,
 - (2) 如果 p 在 F 中非分歧, 则 q 在 BF 中非分歧。
- 4. 读D例 Dodekind 整环,从为其比域,E/K 为有限伽罗瓦扩张,S 为D 在L 中的整数闭包,q 为S 中非零 素 理 想,P = $q \cap D$, q 的分解群和惯性群分别记为 G_2 和 G_1 . 证明:
 - (1) $G_z \cong G(\hat{L}/\hat{K})$,
- (2) G_r 同构于 qS 对 L/R 的惯性群,其中 L,S 和 R 分别表示 L,S (对 q-adic 拓 扑) 和 K (对 p-adic 拓扑) 的完备化。
- 5. 设K为数域,L/K为伽罗瓦扩张,D和S分别表示K和L中的代数整数环,q为S中的非零素理想。定义

 $\Gamma_i = \{ \sigma \in G(L/K) : \sigma(x) \equiv x \pmod{q^{i+1}}, \forall x \in S \}$

 $(i=1,2,\cdots)$,称 Γ_i 为 q 的第i 个**分歧群。**证明。

- (1) $G_{\mathbf{r}} \supset \Gamma_1 \supset \Gamma_2 \supset \cdots$,
- (2) G_T/Γ_1 与城 S/q 的非零元素乘法群的某一个群 同 构,故 G_T/Γ_1 为循环群,
- (3) $\Gamma_i/\Gamma_{i+1}(i=1,2,...)$ 与心(加速群的子群開构、放为交換 p 群。 ロージン management (1) 1 management (1) 1
- 6. 设了=exp(2ni/m), 其中m为奇数或4]m. 令Q(5)的代数整数环为R. 设力为素数, p为R的一个素理想, pfl 不用pZ. 证明:
- p · (1) [Q(ζ):Q] = φ(m), ψ 为龙拉函数」。 (injury con x in
 - (2) 若p\m, 则 ζ'=ζ'(mod p) ←→i≈j(mod m) j(□ ધ___
- (3) 若 $p \nmid m$,则 $p \in P_1$ $p \in P_2$ 的剩余次数是值得 $p \in P_3$ $p \in P_4$ $p \in P_4$
- 其中 p_i 为R中的素理想, p_i 对 p_i 和剩余或数是數據 $p' \equiv 1 \pmod{m^2}$
- - $\frac{1}{2} \left(-\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2}$

第九章 同调代数

§ 1 复合形

同调代数起源于拓扑学。 我们考虑如下的情形。取一个 三角形 (图9.1)。 令有向三角 形ABC为 a ,有向线 段 AB , BC ,CA 为 b_1 , b_2 , b_3 ,三点 A , B ,C 为 c_1 , c_2 , c_8 。又令 d 为边 **缘算子**。我们立得

$$d(a) = b_1 + b_2 + b_3$$
,

$$d(b_1) = c_2 - c_1, \quad d(b_2) = c_3 - c_2, \quad d(b_3) = c_1 - c_3,$$
$$d(c_i) = 0, \quad i = 1, 2, 3.$$

容易验证

$$d^2(a) = d(d(a)) = 0$$
, $d^2(b_i) = 0$, $i = 1, 2, 3$.

我们可以引入代数结构: 令 C_2 为 a 生成的自由交换群, C_1 为 b_1 , b_2 , b_3 生成的自由交换群, C_0 为 c_1 , c_2 , c_3 生成的自由交换群。我们自然扩充 d 为 $C_2 \rightarrow C_1$, $C_1 \rightarrow C_0$, $C_0 \rightarrow 0$ 的群映射,得出下图。

$$C_2 \xrightarrow{d} C_1 \xrightarrow{d} C_0 \xrightarrow{d} 0_{\bullet}$$

为了清楚起见,我们把上面的 4 用三种符号表示如下:

$$C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} 0.$$

显然,di 适合

$$d_{i-1}d_i = 0$$
, $i = 1, 2$.

我们注意到"交换群"是一种"~模",因此,可以推广上面的讨

论到一般的环R的模上去。

定义9.1 设R为一环。所谓一个R复合形(C,d),即是一组 R模 C_i ($i \in Z$) 及 R 映射 d_i : $C_i \rightarrow C_{i-1}$, 适合 $d_{i-1}d_i \approx 0$. 又设 (C,d),(C',d')为两个 R 复合形,所谓(C,d)到(C',d')的映射 a 是指一组映射 a_i : $C_i \rightarrow C'_i$,使

$$a_{t-1}d_t = d_t^t a_t$$
,

或写成

$$ad = da$$
.

也即是说,下图

$$C_{i} \xrightarrow{d_{i}} C_{i-1}$$

$$C'_{i} \xrightarrow{d'_{i}} C'_{i-1}$$

是可交換的。

例1 在上面讨论的拓扑学的例子中,我们可以令

$$C_8 = C_4 = \cdots = 0,$$
 $C_{-1} = C_{-2} = \cdots = 0,$ $d_3 = d_4 = \cdots = 0,$ $d_{-1} = d_{-2} = \cdots = 0.$

则(C,d)成为一个适合定义9.1的 Z 复合形、

例 2 设
$$K = C[x,y,z]$$
,

$$C_0 = K$$
, $C_{-1} = Kdx \oplus Kdy \oplus Kdz$,
 $C_{-2} = K(dy \wedge dz) \oplus K(dz \wedge dx) \oplus K(dx \wedge dy)$,
 $C_{-3} = K(dx \wedge dy \wedge dz)$,

此处"人"是外积,即

$$dx \wedge dx = dy \wedge dy = dz \wedge dz = 0$$
,

 $dx \wedge dy = -dy \wedge dx$, $dy \wedge dz = -dz \wedge dy$, $dz \wedge dx = -dx \wedge dz$. 我们定义

$$d_{0}(f(x,y,z)) = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz,$$

$$d_{-1}(f_1dx + f_2dy + f_3dz)$$

$$= \left(\frac{\partial f_3}{\partial y} - \frac{\partial f_2}{\partial z}\right) dy \wedge dz + \left(\frac{\partial f_1}{\partial z} - \frac{\partial f_3}{\partial x}\right) dz \wedge dx$$

$$+ \left(\frac{\partial f_2}{\partial x} - \frac{\partial f_1}{\partial y}\right) dx \wedge dy$$

$$d_{-2}(f_1 dy \wedge dz + f_2 dz \wedge dx + f_3 dx \wedge dy)$$

$$= \left(\frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}\right) dx \wedge dy \wedge dz.$$

请注意: d_0 即是高等微积分中的梯度算子, d_{-1} 即旋度算子, d_{-2} 即散度算子。我们定义其余的 C_i 及 d_i 皆为 0 。如 此则定义出一个 C 复合形。

设
$$(C, d)$$
是一个 R 复合形。从下式 $d_i d_{i+1} C_{i+1} = 0$

立得 d_{i+1} 的象 $d_{i+1}C_{i+1}$ 包含在 d_i 的核之中。我 们 常 用 Z_i 表示 d_i 的核,其中的元素称为 i 阶闭链,或简称为闭链;又 用 B_i 表示 $d_{i+1}C_{i+1}$,其中的元素称为 i 阶边缘,或简称为边缘。 于是有 $B_i \subset Z_i$,二者皆是 R 模。

定义9.2 商模 Z_i/B_i 称为 R 复合形 (C,d) 的 i 阶周调模, 记为 $H_i = H_i(C)$.

例 3 计算上面两个例子的周调模。在例 1 中,

$$Z_0 = Z o_1 \oplus Z c_2 \oplus Z o_3$$
,
 $B_0 = Z (c_2 - c_1) + Z (c_3 - c_2) + Z (c_1 - c_3)$,
所以
 $H_0 = Z_0/B_0 \approx Z$ 。

又
 $Z_1 = Z (b_1 + b_2 + b_3) = B_1$,
所以
 $H_1 = Z_1/B_1 = 0$ 。
又
 $Z_2 = 0 = B_2$,
所以
所以
 $H_2 = Z_2/B_2 = 0$ 。

其余的 H_1 皆为0。

现在计算例2. 显然有

$$d_0(f(x,y,z)) = 0 \iff f(x,y,z) \in \mathbb{C},$$

立得 $H_0 = Z_0/B_0 = \mathbb{C}/(0) \approx \mathbb{C}$ 。又有

$$d_{-1}(f_1dx + f_2dy + f_3dz) = 0$$

$$\iff \frac{\partial f_3}{\partial y} = \frac{\partial f_2}{\partial z}, \quad \frac{\partial f_1}{\partial z} = \frac{\partial f_3}{\partial x}, \quad \frac{\partial f_2}{\partial x} = \frac{\partial f_1}{\partial y}$$

←⇒存在g(x,y,z), 使得

$$d_0(g(x,y,z)) \approx f_1 dx + f_2 dy + f_3 dz$$

(高等微积分定理)

$$\iff f_1 dx + f_2 dy + f_3 dz \in B_1$$

所以 $H_{-1}=Z_{-1}/B_{-1}=0$ 。又有

$$d_{-2}(f_1dy \wedge dz + f_2dz \wedge dx + f_3dx \wedge dy) = 0$$

$$\iff \frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y} = \frac{\partial f_3}{\partial z} = 0$$

今存在
$$h_1dx + h_2dy + h_3dz$$
, 使得
$$d_{-1}(h_1dx + h_2dy + h_3dz)$$
$$= f_1dy \wedge dz + f_2dz \wedge dx + f_3dx \wedge dy$$

(高等微积分定理)

$$\iff f_1 dy \wedge dz + f_2 dz \wedge dx + f_3 dx \wedge dy \in B_{-2},$$

所以

$$H_{-2} = Z_{-2}/B_{-2} = 0$$

又不难看出

$$Z_{-a} = K(dx \wedge dy \wedge dz),$$

及任取 $g(x,y,z)dx \wedge dy \wedge dz$, 总可以找到 f(x,y,z), 使得

$$\frac{\partial f}{\partial x} = g(x, y, z),$$

也即

$$d_{-2}(fdy \wedge dz) = g(x, y, z) dx \wedge dy \wedge dz,$$

 $H_{-3} = Z_{-3}/B_{-3} = 0.$

所以

共众的H,皆为0。

请问读者,本例中两次提到的高等微积分中的定理,是指什么?请向梯度、旋度、散度三算子的方向去追查。

例4 令 K = C((x)), 即所有的形式的亚纯函数构成 的域。令 $C_0 = K$, $C_{-1} = K dx$, d_0 的定义如下:

$$d_0f(x) = f'(x)dx.$$

我们定义其余的 C_i 及 d_i 皆为0。则(C,d)显然是C复合形。现在我们来计算 H_i 。首先,

$$Z_0 = C$$
, $B_0 = 0$,
 $H_0 = Z_0/B_0 \approx C$

所以

不难看出, $Z_{-1} = C_{-1} = Kdx$ 。 任取 $g(x) \in K$,

$$g(x) = \sum_{i=-m}^{\infty} a_i x^i,$$

则,存在 $f(x) \in K$,使 $f'(x) = g(x) \iff a_{-1} = 0$ 。所以

$$B_{-1} = \left\{ \sum_{i} a_{i} x^{i} dx : a_{-1} = 0 \right\}$$

于是,映射

$$r: H_{-1} = Z_{-1}/B_{-1} \to C,$$

$$r\left(\sum_{i} a_{i}x^{i} dx\right) = a_{-1}$$

是同构。所以 $H_{-1} \approx C$ 。这里的「即是复变函数论中的"剩余映射"。与前面的例子相同,其余的 H_i 皆为0。

如果对所有的 i<0, C_i 皆为 0 ,我们常称此种复合形为正复合形或链复合形;反之,如果对所有的 i>0, C_i 皆 为 0 ,则 称此种复合形为负**复合形**或上链**复合形**。在上链复合形中,通常改变符号,记

$$C^i = C_{-i}, \quad d^i = d_{-i},$$

于是有

$$0 \longrightarrow C^0 \xrightarrow{2^0} C^1 \xrightarrow{2^1} C^2 \xrightarrow{d^2} \cdots$$

所有的术语也仿此改称为上闭链、上边缘、上同调模等等,

当 $H_i(C) = 0$ 时,我们自然得出

$$Z_i = B_i$$
, $\ker d_i = \operatorname{im} d_{i+1}$.

此时我们称复合形在 i 处是"正合的"。一般言之,我们有 定义9.3 设A,B,C 是R 模。在下列图形中,

$$A \xrightarrow{\pi} B \xrightarrow{\pi} C$$
.

此处 α,β 是模映射,如果有

im
$$a = \ker \beta$$
,

则称上面的序列在B处是正合的,或在中央处是正合的。

习 鰒

- 1. 计算8字形的同调模。复合形如图。
- 2. 计算圆环面的周调模。复合形如图。〔把正方形两边对 粘起来,成为一个筒形,再把筒形的两圆边粘起来,则成一圆环 面。〕

3. 计算实射影平面(real projective plane)的同调模: 复合形如图. (实射影平面即粘合二维球面的对径点所得出的拓扑空

间。)

- 4. 本节例3中所提到的"高 等微积分"中的定理是什么?
 - 参考例2及例3,令
 K={三维空间 R³ 上的可微函数}.

定义

 $C_0 = K$,

 $C_{-1} = Kdx \oplus Kdy \oplus Kdz$,

超3图

 $C_{-2} = K dy \wedge dz \oplus K dz \wedge dx \oplus K dx \wedge dy$, $C_{-3} = K dx \wedge dy \wedge dz$. 定义 d_0, d_{-1}, d_{-2} 如例2. 证明 $H_0(C) \approx R$, 其余 $H_1(C) = 0$.

- 6. 仿照例 4, 用 $C\{\{x\}\}=\{$ 在 0 点附近的亚纯函数 $\}$ 代替 C((x)), 构造复合形C, 再计算 $H_1(C)$ 。 请注意 $C\{\{x\}\}$ 的元素 在 0 点的一个邻域 $N\setminus\{0\}$ 是解析函数。
 - 7. 设K是域,(C,d)是一个K模复合形。假设 $\sum \dim C_i < +\infty$.

证明

$$\sum (-1)^{i} \dim C_{i} = \sum (-1)^{i} \dim H_{i}(C)$$

- 8. 设 M是一个 R 模,令 $C_i = M(i \in \mathbb{Z})$,及 $d_i = 0$ 。证明这样得到一个 R 模复合形,并求 $H_i(C)$ 。
 - 9. 给定 R 模正合序列

$$0 \longrightarrow M_1 \stackrel{s}{\longrightarrow} M \stackrel{f}{\longrightarrow} M_2 \longrightarrow 0,$$

我们令 $C_1 = 0$ ($i \le 0$), $C_1 = M_2$, $C_2 = M$, $C_3 = M_1$, $C_j = 0$ ($j \ge 4$)。 又令 $d_2 = \beta$, $d_3 = \alpha$, $d_j = 0$ ($j \ne 2$, 3)。 证明这样得到一个 R 模复合形,并求 H_1 (C)。

10. 设G是有限交換群 $_{R}$ = Z[G] 为整系数群环。作G的笛卡尔乘积。

$$G^{i+1} = \overbrace{G \times G \times \cdots \times G}^{i+1} \quad (i \ge 0),$$

令 C_i 是由 G^{i+1} 生成的自由交換群,而 $C_j=0$ (j<0)。 对任意 $g \in G$,定义它在 C_i 的基元素的作用为

$$g(g_0, g_1, \dots, g_i) = (gg_0, gg_1, \dots, gg_i).$$

按线性原则扩充为R在 C_i 上的作用,使 C_i 成为R模。定义 d_i 在 C_i 的基元素上的作用为

$$d_i(g_0, \dots, g_i) = \sum_{i=0}^{i} (-1)^{i}(g_0, \dots, g_{i-1}, g_{i+1}, \dots, g_i) \quad (i \ge 0),$$

$$d_i = 0 \quad (i < 0)$$

再按线性原则扩充为 C_1 到 C_{l-1} 的R模映射。证明这样 得 出一个R模复合形。

11. 设 α 是 R 模复合形(C,d)到 R 模复合形(C',d')的映射, 使下图

交換。令 $C_i' = C_{i-1} \oplus C_i' (i \in \mathbb{Z})$,对 $x_{i-1} \in C_{i-1}$ 和 $x_i' \in C_i'$,定义 $d_i''(x_{i-1},x_i') = (-d_{i-1}x_{i-1},a_{i-1}x_{i-1}+d_i'x_i').$

证明(C'', d'')是一个R模复合形。

12. 设(C,d)是Z模复合形,其中每个C,都是自由Z模,证明Z,和B,也是自由Z模,且Z,是C,的直和因子。

§ 2 同调序列

设 (C,d) 及 (C'',d'') 为两个复合 形, $\beta = \{\beta_i\}: C \rightarrow C''$ 为映射。在下列图形中,

$$\longrightarrow C_{i+1} \xrightarrow{d_{i+1}} C_i \xrightarrow{d_i} C_{i-1} \longrightarrow$$

$$\downarrow^{p_i} \qquad \qquad \downarrow^{p_{i-1}} \qquad \qquad \downarrow^{p_{i-1}} \qquad \qquad \downarrow^{p_{i-1}} \qquad \qquad \downarrow^{p_{i+1}} \qquad \qquad \downarrow^{p$$

任取 $z_i \in Z_i$, $b_i \in B_i$, 则有

$$0 = \beta_{i-1} d_i(z_i) = d_i'\beta_i(z_i),$$

所以β,(≥,)∈Z″。令

$$b_i = d_{i+1}(a_{i+1}), \quad a_{i+1} \in C_{i+1},$$

狈

$$\beta_{i}(b_{i}) = \beta_{i}d_{i+1}(a_{i+1}) = d_{i+1}''(\beta_{i+1}(a_{i+1})),$$

即 $\beta_i(b_i) \in B_i^*$ 。所以可以定义

$$\beta_i: H_i(C) \to H_i(C''),$$

$$\beta_i([z_i]) = [\beta_i(z_i)].$$

这里 $[z_i]$ 表示 z_i 在同调群 $H_i(C)$ 中代表的元素(同调类).

例5 我们应用例1. 令(C,d)为例1的 Z 复合形,(C',d')相应于三角形的边界,即

$$C'_1 = Zb_1 \oplus Zb_2 \oplus Zb_3$$
, $C'_0 = Zc_1 \oplus Zc_2 \oplus Zc_3$, $C'_i = 0$, $\forall i \neq 0, 1$.

我们定义映射 $\alpha = \{\alpha_i\}: C' \rightarrow C$, 其中 α_1, α_0 为等同映射, 其余的 α_i 皆为 0 . 不难算出

$$Z'_1 = Z(b_1 + b_2 + b_3), \quad B'_1 = 0,$$

 $H_1(C') \approx Z, \quad H_0(C') \approx Z,$

其余的 $H_{\iota}(C')$ 均为 0 。此时 σ_0 为等同映射, σ_1 为 0 映射,其余的 σ_{ι} 均为 0 映射。 1

参考上面的例子,设有R复合形(C,d),(C',d')及映射 α : $C' \rightarrow C$, 我们可以进一步地构成一个R复合形(C'',d'')如下: 令 $C'_i = C_i/\alpha_i(C'_i)$,

又, 当 $a_i' = a_i \in C_i'$ 时, 令

$$d_i''(a_i'') = \overline{d_i(a_i)}.$$

显而易见,当 $a_i = f_i$ 时,有 $a_i = f_i + \alpha(a_i')$, $\alpha_i' \in C_i'$ 。于是有 $\overline{d_i(a_i)} = \overline{d_i(f_i) + d_i a_i(a_i')}$

$$=\overline{d_i(f_i)}+a_{i-1}\overline{d_i'(a_i')}=\overline{d_i(f_i)},$$

所以d"的定义是良好的。易于验证(C'',d'')为一个R复合形。

如此得出的三组同调模序列 $H_i(C)$, $H_i(C')$, $H_i(C'')$ 之间有何关系?为此,我们引入定义:

定义9.4 设有复合形C',C,C''及映射

$$C' \xrightarrow{*} C \xrightarrow{*} C''$$

如果对任意的:, 序列

$$0 \longrightarrow C_i' \xrightarrow{\alpha_i} C_i \xrightarrow{\beta_i} C_i' \longrightarrow 0$$

都是正合的,即: α_i 是单射, β_i 是满射,im $\alpha_i = \ker \beta_i$,则我们称 $C' \xrightarrow{\sigma} C \xrightarrow{\rho} C''$ 为短正合序列。

定理9.1 设 $C' \xrightarrow{a} C'' \to C''$ 是短正合序列,则存在一组**连** 结映射 $\Delta_i (i \in \mathbb{Z})$,使下面的同调模序列为正合序列:

$$\cdots \longrightarrow H_i(C') \xrightarrow{\tilde{s}_i} H_i(C) \xrightarrow{\tilde{s}_i} H_i(C'') \xrightarrow{\Delta_i} H_{i-1}(C') \xrightarrow{\tilde{s}_{i-1}} \cdots$$

证明 此定理的证法是所谓"查图法"。这是同调代数的标准证明方法之一、读者应该细心体会。我们作下图:

取 $z_i' \in Z_i'$ 。因为 i 列是正合的,所以必有 $z_i \in C_i$,使

$$z_i'' = \beta_i(z_i),$$

此处所取的 2, 有几分任意性。我们有

$$\beta_{i-1}d_i(z_i) = d_i''\beta_i(z_i) = d_i''(z_i'') = 0.$$

因为 i-1 列是正合的, 即

im
$$\alpha_{i-1} = \ker \beta_{i-1} \ni d_i(z_i)$$
,

所以存在唯一的 $z'_{i-1} \in C'_{i-1}$, 使

$$a_{i-1}(z'_{i-1}) = d_i(z_i).$$

令 A₁([z″]) = [z′,-₁]。自然有

$$a_{i-2}d'_{i-1}(z'_{i-1}) = d_{i-1}a_{i-1}(z'_{i-1}) = d_{i-1}d_i(z_i) = 0,$$

因为 a_{i-2} 是单射,所以 $d_{i-1}(z'_{i-1})=0$,即 $z'_{i-1}\in Z'_{i-1}$,[z'_{i-1}] 确为 $H_{i-1}(C')$ 中的元素。

如此规定的 Δ_i 是否是良好的? 我们研究 z_i 的任意性。设 另有一个 z_i 。同样适合 $z_i'' = \beta_i(z_i)$,则

$$\beta_i(z_i-z_i)=z_i'-z_i'=0.$$

利用:列的正合性,立得

$$z_i - \overline{z}_i = \alpha_i(z_i') \in \operatorname{im} \alpha_i = \ker \beta_i, \quad z_i' \in C_i'.$$

令相当于 z'_{i-1} 的元素为 z'_{i-1} ,即 $a_{i-1}(z'_{i-1}) = d_i(z_i)$,则有

$$a_{i-1}(z'_{i-1} - \overline{z}'_{i-1}) = d_i(z_i - \overline{z}_i) = d_i a_i(z'_i) = a_{i-1} d'_i(z'_i).$$

因为a:-1是单射, 所以得出

$$z'_{i-1} - z'_{i-1} = d'_i(z'_i) \in B'_{i-1}$$

所以,当考虑商模 $H_{i-1}(C') = Z'_{i-1}/B'_{i-1}$ 时,此种任意性立刻消失了。

以下我们分三个步骤来证明本定理考虑的同调模序列的正合性。1) im $a_i \approx \ker \beta_i$; 2) im $\beta_i = \ker \Delta_i$; 3) im $\Delta_i = \ker \alpha_{i-1}$.

1) 任取 $[z'_i] \in H_i(C')$, $z'_i \in Z'_i$ 。则有

$$\widetilde{\boldsymbol{\beta}}_{i} \boldsymbol{\alpha}_{i} (\lceil \boldsymbol{z}_{i}' \rceil) = \widetilde{\boldsymbol{\beta}}_{i} (\lceil \boldsymbol{\alpha}_{i}(\boldsymbol{z}_{i}') \rceil) = \lceil \boldsymbol{\beta}_{i} \boldsymbol{\alpha}_{i}(\boldsymbol{z}_{i}') \rceil = 0,$$

也即 im $a_i \subset \ker \beta_i$ 。反过来,任取 $z_i \in Z_i$,使得 $[z_i] \in \ker \beta_i$ 。则有 $0 = \beta_i([z_i]) = [\beta_i(z_i)]$,即

$$\beta_i(z_i) \in B_i' = \operatorname{im} d_{i+1}'$$

所以存在 Zin 及 Zin, 使

$$\beta_i(z_i) = d''_{i+1}(z''_{i+1}), \quad z''_{i+1} = \beta_{i+1}(z_{i+1}).$$

于是 $\beta_i(z_i) = d_{i+1}^n \beta_{i+1}(z_{i+1}) = \beta_i d_{i+1}(z_{i+1})$,所以

$$0 = \beta_i(z_i - d_{i+1}(z_{i+1})),$$

也即

$$z_i - d_{i+1}(z_{i+1}) \in \ker \beta_i = \operatorname{im} a_{i\bullet}$$

于是存在 $z'_i \in C'_i$,使

$$z_i - d_{i+1}(z_{i+1}) = a_i(z_i')$$
.

从上式立得

$$[z_i] = [z_i - d_{i+1}(z_{i+1})] = [a_i(z_i')]$$
$$= a_i([z_i']) \in \operatorname{im} a_i.$$

2) 任取 $[z_i] \in H_i(C)$, $z_i \in Z_i$, 则有

$$\Delta_i \widetilde{\beta}_i([z_i]) = [z'_{i-1}],$$

其中 z'_{i-1} 是由 $a_{i-1}(z'_{i-1}) = d_i(z_i)$ 决定的。立得

$$a_{i-1}(z_{i-1}')\approx d_i(z_i)=0.$$

而 α_{1-1} 是单射,所以 $z_{1-1}=0$,也即

$$\Delta_i \tilde{\beta}_i([z_i]) = 0$$
, im $\tilde{\beta}_i \subset \ker \Delta_i$.

现在我们任取 $z'_i \in Z'_i$, 适合 $\Delta_i([z'_i]) = 0$. 任取 $z_i \in C_i$, 使

$$\boldsymbol{z}_i'' = \boldsymbol{\beta}_i(\boldsymbol{z}_i),$$

则 $\beta_{i-1}(d_1(z_i)) = d_i^*(\beta_i(z_i)) = d_i^*(z_i^*) = 0$.

于是存在 $z'_{i-1} \in C'_{i-1}$, 使 $a_{i-1}(z'_{i-1}) = d_i(z_i)$ 。则有

$$0 = \Delta_i([z_i^*]) = [z_{i-1}^*].$$

于是

$$z'_{i-1} \in B'_{i-1} = \text{im } d'_i$$
,

也即存在 $z_i' \in C_i'$,使 $z_{i-1} = d_i'(z_i')$ 。代入上式,得

$$d_i(z_i) = a_{i-1}(z'_{i-1}) = a_{i-1}d'_i(z'_i) = d_ia_i(z'_i),$$

所以

$$d_i(z_i - a_i(z_i')) = 0.$$

我们同时有

$$\beta_i(\boldsymbol{z}_i - \boldsymbol{a}_i(\boldsymbol{z}_i')) = \beta_i(\boldsymbol{z}_i) - \beta_i \boldsymbol{a}_i(\boldsymbol{z}_i') = \beta_i(\boldsymbol{z}_i) = \boldsymbol{z}_i'.$$

因此,我们令 $Z_i = Z_i - a_i(Z_i) \in Z_i$,则有

$$\widetilde{\beta}_{i}(\lceil \overline{z}_{i} \rceil) = \lceil \beta_{i}(\overline{z}_{i}) \rceil = \lceil z_{i}^{n} \rceil,$$

即[z_i'] \in im β_i .

3) 任取 $z_i' \in Z_i'$, $[z_i''] \in H_i(C'')$. $f_i' \in Z_i'$, 适合下式

$$z_i'' \approx \beta_i(z_i), \quad d_i(z_i) \approx a_{i-1}(z'_{i-1}),$$

则

$$\Delta_i([z_i']) = [z_{i-1}'].$$

立得 **a**₁₋₁,

$$a_{i-1}\Delta_i([z_i]) = [a_{i-1}(z_{i-1})] = [d_i(z_i)] = 0$$

于是

现在我们任取[21_1]∈ker ai-1,则

$$0 = a_{i-1}([x'_{i-1}]) = [a_{i-1}(x'_{i-1})],$$

即

$$a_{i-1}(z'_{i-1}) \in B_{i-1},$$

也即存在zieCi, 使

$$d_{i}(z_{i}) = a_{i-1}(z'_{i-1}).$$

令 $z'_i = \beta_i(z_i)$,则有

$$d_i''(z_i'') = d_i''\beta_i(z_i) = \beta_{i-1}d_i(z_i) = \beta_{i-1}a_{i-1}(z_{i-1}') = 0,$$

멠

$$z' \in Z''$$
.

根据 4. 的定义, 我们有

$$\Delta_i([z_i']) = [z_{i-1}'].$$

例 6 考虑例 5, 合(C'', 4'')为下面的Z复合形。

$$C_2' = C_2/\alpha(C_2') \approx C_2$$

$$C_1'' = C_1/a(C_1') = 0$$

$$C_0'' = C_0/\alpha(C_0') = 0$$
,

其余的C。皆为 0。又令 $\beta_i: C_i \to C$ 。为典型映射,则显然有一短正合列

$$0 \longrightarrow C' \xrightarrow{\bullet} C \xrightarrow{\bullet} C'' \longrightarrow 0.$$

于是,按照本定理,有下面的长正合列,

经过实际计算后,代入 H_i 的值,则得出

$$\cdots \longrightarrow 0 \xrightarrow{d_3} 0 \xrightarrow{\tilde{\alpha}_2} 0 \xrightarrow{\tilde{\beta}_2} Z \xrightarrow{d_2} Z \xrightarrow{\tilde{\alpha}_1} 0$$

$$\xrightarrow{\tilde{\beta}_1} 0 \xrightarrow{d_1} Z \xrightarrow{\tilde{\alpha}_0} Z \xrightarrow{\tilde{\beta}_0} 0 \xrightarrow{d_{-1}} 0 \longrightarrow \cdots$$

在拓扑学看来, $H_{\bullet}(C'')$ 可以理解成相对同调辩。

在同调代数中,有一个起源于拓扑学的概念:同伦。

定义9.5 设 α , β 是两个从复合形(C',d')到(C,d) 的映射。

如果存在一组模映射 $s = \{s_i\}$, $s_i : C_i \rightarrow C_{i+1}$, 使得

$$\alpha_i - \beta_i = d_{i+1}s_i + s_{i-1}d_i', \quad \forall i,$$

则称 α , β **同伦**, 以符号 $\alpha \sim \beta$ 表示之。

对上面的定义, 我们可以图解如下。

同伦的意义在于下面的定理:

定理9.2 设 a, β 同伦, 即 $a \sim \beta$, 则 $\alpha_i = \beta_i$; $H_i(C') \rightarrow H_i(C)$.

证明 任取 $z'_i \in Z'_i$,则有

$$\begin{aligned} \boldsymbol{\alpha}_{i}([\boldsymbol{z}'_{i}]) &= [\alpha_{i}(\boldsymbol{z}'_{i})] \approx [(\beta_{i} + d_{i+1}s_{i} + s_{i-1}d'_{i})(\boldsymbol{z}'_{i})] \\ &= [(\beta_{i} + d_{i+1}s_{i})(\boldsymbol{z}'_{i})] \approx [\beta_{i}(\boldsymbol{z}'_{i})] \\ &\approx \tilde{\beta}_{i}([\boldsymbol{z}'_{i}]). \end{aligned}$$

例7 我们应用例 5 的讨论, $6 = \{\beta_i\}$ 定义如下,

$$\beta_{i}=0$$
, $i\neq 0$,

 $\beta_0(n_1c_1 + n_2c_2 + n_3c_3) = (n_1 + n_2 + n_3)c_{1*}$

显然, β 是C'到C的映射。我们定义一组模映射 $s = \{s_i\}$ 如下。

$$s_{i} = 0, i \neq 0,1,$$

$$s_{0}(c_{i}) = \begin{cases} 0, & i = 1, \\ -b_{1}, & i = 2, \\ b_{0}, & i = 3. \end{cases}$$

$$s_{1}(b_{i}) = \begin{cases} 0, & i = 1, \\ a, & i = 2, \\ 0, & i = 3. \end{cases}$$

不难验证

$$a_i - \beta_i = d_{i+1}s_i + s_{i-1}d_{i}$$

也即 $a \sim \beta$,所以 $a_1 = \beta_1$ 。从拓扑学的观点来看,a 相当于三 角形的等同映射, β 相当于把三角形映射到一个顶点 c_1 ,在 允许考虑三角形内部的情形下,这两个映射是同伦的。

习题

1. 设有R模映射交换图:

$$0 \longrightarrow M' \xrightarrow{u} M \xrightarrow{v} M'' \longrightarrow 0$$

$$\downarrow f' \qquad \downarrow f \qquad \downarrow f''$$

$$0 \longrightarrow N' \xrightarrow{u'} N \xrightarrow{v'} N'' \longrightarrow 0$$

其中上、下两行正合。证明存在 ker(f'')到 N'/im(f')的模 映射 d,使下面序列正合。

$$0 \longrightarrow \ker(f') \xrightarrow{\tilde{u}} \ker(f) \xrightarrow{\tilde{v}} \ker(f'') \xrightarrow{\tilde{u}} N'' / \operatorname{im}(f'')$$

$$\xrightarrow{\tilde{u}'} N / \operatorname{im}(f) \xrightarrow{\tilde{v}'} N'' / \operatorname{im}(f'') \longrightarrow 0,$$
其中 $\tilde{u}, \tilde{v}, \tilde{u}', \tilde{v}'$ 分别由 u, v, u', v' 诱导而得。

中心,心,心,少分别田山,心,山,心以于川代

2. 给定 R 模映射交換图如下。

在图中每个列和中间两 行 是 正 合的。令 $x'' \in K''$, $y \in M$, 满足 $\mu y = f'' x''$ 。那么 $\nu g y = g'' \mu y = g'' f'' x'' = 0$,且存在唯一的 $z' \in N'$. 使得 $\nu' z' = g y$ 。定义 $\Delta x'' = h' z'$ 。证明 $\Delta x''$ 与 y的选择无关,且 $\Delta : K'' \rightarrow C'$ 是一个模映射。验证

$$K' \xrightarrow{b'} K \xrightarrow{b} K'' \xrightarrow{A} C' \xrightarrow{\gamma'} C \xrightarrow{\gamma} C''$$

是正合的。证明若 μ' 是单射,那么 δ' 也是单射、若 ν 是满射,那么 ν 也是满射。

3. 设R模复合形(C,d) 到 (C',d')的两个映射 α,β 是同伦的, $\alpha \sim \beta$, 又设R模复合形 (C',d') 到 (C'',d'')的两个映射 γ , δ 也同伦, $\gamma \sim \delta$ 。试证明R 模复合形 (C,d) 到 (C'',d'') 的两个映

射 γα,δβ 必同伦: γα~δβ.

4. 证明"3×3引趣",在下列复合形图中

假设在三行与三列中,除了一行(或一列)以外,其它都正合,证 明该行(或该列)必定也是正合的。

提示: 读者可以利用每一行都是复合形, 再利用定理9.1.

5. 考虑 Z 模复合形(C,d), (C',d'), 其中

$$C_1 = (s_1) \approx Z$$
, $C_0 = (s_0) \approx Z$, $C_n = 0$ $(n \pm 0, 1)$, $d_1(s_1) = 2s_0$, $d_i = 0$ $(i \pm 1)$; $C'_1 = (t_1) \approx Z$, $C'_n = 0$ $(n \pm 1)$.

定义(C,d)到(C',d')的映射 φ 如下。

$$\varphi_1(s_1) = t_1, \quad \varphi_i = 0 \quad (i \rightleftharpoons 1).$$

证明 φ 与(C,d)到(C',d')的零映射不同伦。

6. 举例说明: 如果 R 模复合形 (C,d) 到 (C',d') 的两个映射 α,β 诱导出它们的同调模 $H_1(C)$ 与 $H_1(C')$ 之间的同一个模映射, α 与 β 可能并不同伦。

§ 3 模的化解

模论与向量空间论的不同点之一是一般的模样非自由模。我

们可以用下面的方法来研究一般的模。

$$\cdots \longrightarrow C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots \longrightarrow C_1 \xrightarrow{d_1} C_0 \longrightarrow 0$$
,

如果存在一个模映射 $\varepsilon: C_0 \to M$,使 $\varepsilon d_1 = 0$, 则称 (C, d) 为 M 上的 **复合形**, ε 为 **投入映射**。 更进一步, 如果下面的序列是正合的, 则称 C 是 M 的 C 的 C 是 C — C

$$\cdots \longrightarrow C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \cdots \longrightarrow C_1 \xrightarrow{d_1} C_0 \xrightarrow{a} M \longrightarrow 0.$$

讨论 1) 如果C 是M的化解序列,则显然有

$$H_i(C) = 0, \quad \forall i > 0,$$
 $H_0(C) = C_0/d_1(C_1) = C_0/\ker \epsilon \approx M.$

2) 如果 C_i 又皆是自由模,则称 C 是 M 的自由化解序列。任给 M,可以用下面的方法建造 M 的一个自由化解序列,令 $\{m_i\}$ 是 M 的一个生成元集,取符号 x_i ,令 $C_0 = \bigoplus Rx_i$,定义

$$\varepsilon \left(\sum_{i} r_{i} x_{i} \right) = \sum_{i} r_{i} m_{i}.$$

$$d_1\left(\sum_i r_i x_i^{\circ}\right) = \sum_i r_i k_i^{\circ}.$$

再设 $K_1 = \ker d_1$. 以此顺序建造 $C_2, d_2, C_3, d_8, \cdots$, 即得M的自由 化解序列 C = (C, d).

例 8 设R = C[x,y], M = (f(x,y)), N = (g(x,y), h(x,y)),其中g(x,y), h(x,y)无公因子。则M,N有下列的自由化解序列。

$$0 \longrightarrow R \xrightarrow{i_1} M \longrightarrow 0,$$

$$0 \longrightarrow R \xrightarrow{d_1} R \oplus R \xrightarrow{i_2} N \longrightarrow 0,$$

此处

$$\varepsilon_1(1)=f(x,y),$$

$$\varepsilon_{2}((1,0)) = g(x,y), \quad \varepsilon_{2}((0,1)) = h(x,y),
d_{1}(1) = (h(x,y), -g(x,y)).$$

讨论 不难看出,任给R及一自由模M,则存在一个自由化解序列

$$0 \longrightarrow M \longrightarrow M \longrightarrow 0$$

所以我们可以用模N的最短自由化解序列的长度来度量N与自由模的偏差。上面的例子中,模M是自由模,模N虽非自由模,可是"偏差度"是 1.

更进一步说,如果环R是域,则任意R模都是自由模。所以对任意环R,我们研究所有的R模与自由模的偏差,这可以当成环R与域的偏差性的度量。

比自由模广义且一样好用的是"射影模"。我们定义如下。

定义9.7 如果对任意的模映射 $a: M \to L$ 及 任 意 的 模满射 $\beta: N \to L$,必有模映射 $\gamma: M \to N$,使 $a = \beta \gamma$, 则称模 $M \to M$ 模 . 换言之,在下面的图形中

虚线部分可用γ补足,使此图形为可交换的。

讨论 1) 任意的自由模都是射影模。事实上,设M是自由模,

$$M = \bigoplus_{i} Rm_{i}.$$

$$a(m_i) = \beta(n_i), \quad \forall i,$$

又分 $\gamma: M \rightarrow N$, 定义如下

$$\gamma(m_i) = n_i, \quad \forall i,$$

则显然有

$$\alpha = \beta \gamma_{\bullet}$$

2) 一个模 M 是射影模的充要条件是。它是一个自由模 F 的 **直和因子**。换言之,即存在一个模 G ,使 $F = M \oplus G$

我们先讨论充分性, 请见下图:

此处 $\pi(m,g) = m(m \in M, g \in G)$ 为 F 到 M 的投影映射。根据上面的讨论 1) ,存在 σ ,使 $\alpha\pi = \beta\sigma$ 。令 $\gamma = \sigma|_{M}$ (即 γ 为 σ 在 M 上的限制)即可。

现在我们讨论必要性。用定义 9.6 后面的讨论 2) ,令 F 为一个自由模(即 C_0),则有下图:

此处 a = id 是恒同映射。于是存在 γ ,使 $a = \beta \gamma$ 。

令 $G = \ker \beta$, 则有 $G \cap \gamma(M) = \{0\}$, $F = G + \gamma(M)$. 从这里我们立得 $F = G \oplus \gamma(M)$. 又因为 γ 是单射,所以存在自由模 $F^* \approx F$,使 $F^* = G \oplus M$.

3) 我们可以用同样的方法得出 M 是射影模的另一个充要条件如下,任给一个短正合序列

$$0 \longrightarrow N \xrightarrow{a} L \xrightarrow{b} M \longrightarrow 0$$

必存在 $\gamma: M \to L$, 使得 $\beta \gamma = 1_M$ (即 M 的恒同映射).

4) 应用上面的讨论,及中国剩余定理,令R=Z/(mn),
 (m,n)=1,及M=Z/(m),G=Z/(n),则M,G都是R模,而且
 R=G⊕M。

所以 M 是射影模,且显然不是自由模(数一数,M中有多少个元繁?)。由此可知,并非所有的射影模都是自由模。

我们引入如下的定义:

定义9.8 如果 C, 都是射影模,则称复合形(C,d)为射影复合形, 如果 C是 M的化解序列, C, 都是射影模,则称 C 为 M的射影化解序列。

我们有下面的定理:

定理9.3 设C, ε 是M上的射影复合形,C', ε' 是 M' 的化解序列,以及 μ : $M \to M'$ 是模映射。则存在映射 α : $C \to C'$, 使 $\mu \varepsilon = \varepsilon' \alpha_0$ 。更进一步说,如果存在另一个 β : $C \to C'$,使 $\mu \varepsilon = \varepsilon' \beta_0$,则 $\alpha = \beta$ 同伦(即 $\alpha \sim \beta$), $\alpha_n = \beta_n (\forall n \geq 0)$ 。

证明 为了眉目清晰,我们作下图:

图中实线部分已给定, 虚线部分为待定。

因为 C_0 为射影模, ε_1' 为满射,所以按照射影模的定义,存在 α_0 ,使

$$\varepsilon' a_0 \approx \mu \varepsilon_{\bullet}$$

应用数学归纳法,设已作出 a0, a1, ···, an_1, 使

$$a_0d_1 = d_1'a_1, \dots, a_{n-2}d_{n-1} = d_{n-1}'a_{n-1}.$$

现在我们要作an. 考虑

$$a_{n-1}d_n: C_n \rightarrow C'_{n-1}$$

因为 C', ε' 是 M' 的化解序列,即 (C', d') 是正合的,所以有

im
$$d'_* = \ker d'_{*-1}$$
.

已知

$$d'_{n-1}(a_{n-1}d_n)=a_{n-2}d_{n-1}d_n=0,$$

令 $K = im(a_{n-1}d_n)$, 则有

$$a_{n-1}d_n: C_n \longrightarrow K \subset C'_{n-1},$$

$$d'_{n-1}(K) = 0$$
, $K \subset \ker d'_{n-1}$,

所以 K⊂im d'.. 也即有下图:

因为 C_n 是射影模,所以存在 a_n ,使

$$d_n' a_n = a_{n-1} d_{nn}$$

现设有一个 β ,与 α 有同样的性质。我们要证明 α 与 β 同伦。按照同伦的定义,我们要定义出 $s_0, s_1, \dots, s_n, \dots$,使

$$s_i: C_i \rightarrow C'_{i+1},$$

 $a_i - \beta_i = d'_{i+1}s_i + s_{i-1}d_i \quad (s_{-1} = 0)_{\bullet}$

与上面的证法类似,先考虑 $a_0 - \beta_0$,由于

$$\varepsilon'(\alpha_0 - \hat{\beta}_0) = \mu \varepsilon - \mu \varepsilon = 0$$

即

$$\operatorname{im}(a_0 - \beta_0) \subset \ker \varepsilon' = \operatorname{im} d'_1$$

所以存在下图:

因为 C_0 是射影模,所以存在 s_0 ,使

$$a_0 - \beta_0 = d_1' s_{0*}$$

应用数学归纳法,设已求出 s_0, s_1, \dots, s_{n-1} ,现在来求 s_n 。 考虑 $\gamma = a_n - \beta_n - s_{n-1} d_n \colon C_n \to C'_n$.

我们有

$$\begin{split} d_{*}'\gamma &= d_{n}'a_{n} - d_{n}'\beta_{n} - d_{n}'s_{n-1}d_{n} = a_{n-1}d_{n} - \beta_{n-1}d_{n} - d_{n}'s_{n-1}d_{n} \\ &= (a_{n-1} - \beta_{n-1} - d_{n}'s_{n-1})d_{n} = s_{n-1}d_{n-1}d_{n} = 0 \,, \end{split}$$

所以 im $\gamma \subset \ker d'_* = \operatorname{im} d'_{*+1}$. 于是有下图:

因为 C_n 是射影模, 所以存在 s_n , 使

$$a_n - \beta_n - s_{n-1}d_n = \gamma = d'_{n+1}s_n$$

例9 我们举一个几何学的例子。任取一个平滑的曲面 f(x,y,z) = 0.

平滑的条件即 f_x , f_y , f_z 在曲面上任一点不同时为零。于是通过曲面上的任意点 P = (a,b,c), 存在一个唯一的切面 T_P :

$$(X-a)f_x + (Y-b)f_y + (Z-c)f_z = 0$$

这些切面构成一个切束。

设曲面的定义方程式是代数方程式。读者不妨设想它是单位 球面 $x^2 + y^2 + z^2 - 1 = 0$ 。 $\Rightarrow R = R[x,y,z]/(f(x,y,z))$,以及

$$\sigma: M = Ru \oplus Rv \oplus Rw \rightarrow R$$

$$\sigma(u) = f_x, \quad \sigma(v) = f_y, \quad \sigma(w) = f_{z}$$

又令 $T = \ker(\sigma)$, $N = (f_x u + f_y v + f_z w)R$ 。 我们可以证明T 即切束,N即法线束。 平滑的条件可以写成下式。

$$(f, f_x, f_y, f_z) = 1$$

也即在R中 $(f_x, f_y, f_z) = 1$ 。 所以 σ 是满射。 而 R 是自由 R 模, 故是射影模,于是存在 γ : $R \rightarrow M$,使 $\sigma \gamma = 1_R$ 。 所以

$$M = \gamma(R) \oplus T \approx N \oplus T$$
,

于是得出切束是射影模。|

同调代数论中,我们常用"共轭化"的方法:反转箭头。例如,我们把射影模定义中的箭头一律反转,则得出如下的定义。

定义9.9 如果对于任意 模映射 $a: L \rightarrow M$,以及任意模单射 $\beta: L \rightarrow N$,必有模映射 $\gamma: N \rightarrow M$,使 $\alpha = \gamma \beta$,则称M 是**內射模**。 換言之,在下面的图形中:

虚线部分可用γ补足,使此图形为可交换的。

我们把定义9.6 共轭化,得出下面的定义。

定义9.10 令 M 为 R 模。对于负复合形(C,d):

$$0 \longrightarrow C^0 \xrightarrow{d^0} C^1 \xrightarrow{d^1} \cdots \longrightarrow C^{n-1} \xrightarrow{d^{n-1}} C^n \longrightarrow \cdots,$$

如果有一映射 ε : $M \to C^0$, 使 $d^0 \varepsilon = 0$, 则称(C,d)为 M 下的复合形, ε 为 投入映射。如果下面的序列是正合的,则称 $C \in M$ 的上 化解序列。

$$0 \longrightarrow M \xrightarrow{r} C^0 \xrightarrow{d^0} C^1 \xrightarrow{d^1} \cdots \longrightarrow C^{n-1} \xrightarrow{d^{n-1}} C^n \longrightarrow \cdots$$

更进一步说,如果所有的C'都是內射模,则称C是M的內射上化解序列。

我们对定理9.3 共轭化,得出下面的定理。

定理9.4 设C, ε 是M下的內射复合形,C', ε' 是M的上化解序列,以及 μ : $M' \rightarrow M$ 是模映射。则存在映 射 α : $C' \rightarrow C$,使得 $\varepsilon \mu = \alpha^0 \varepsilon'$ 。更进一步说,如果存在另一个具有 同样性质的 映 射 β : $C' \rightarrow C$,则 α 必与 β 同伦(即 $\alpha \sim \beta$), $\alpha^* = \beta^* (\forall n \geq 0)$ 。

证明 读者自证之。!

讨论 任给模M,是否必存在一个内**射**上化解序列呢?我们考虑射影化解的第一步。

$$C_0 \xrightarrow{\cdot} M \longrightarrow 0$$
,

反转箭头后,得出

$$0 \longrightarrow M \stackrel{\bullet}{\longrightarrow} C^0,$$

此处 ε 是单射 . 换言之,能不能把任给的模M,嵌入一个內射模 C° ? 如果能作到这点,同法我们可以把 $C^{\circ}/\varepsilon(M)$ 嵌入內射模 C° ,于是作出下图:

因此,內射上化解序列的存在性,归结成下面的定理。

定理9.5 任给模M,都可以嵌入一个內射模N。 此定理与后文无关,其证明又较复杂,所以不给出其证明。 给定一个短正合序列

$$0 \longrightarrow N \longrightarrow L \longrightarrow M \longrightarrow 0$$

我们要建造N, L, M的射影化解序列C, D, E,使下面的图形

为可交换的,以及每一直列都是正合的(请参考定理 9.1). 我们先任取N的射影化解序列C及M的射影化解序列E,然后逐步地建造 D_{1} . 令

$$D_0 = C_0 \oplus E_{0}$$

 i_0 为嵌入映射, π_0 为投影映射。因为 β 是满射, E_0 是射影模,所以存在映射

$$\rho: E_0 \rightarrow L$$

使

$$\beta \rho = \mu_{\bullet}$$

我们定义 4 如下:

$$\lambda(c_0,e_0) = a\varepsilon(c_0) + \rho(e_0)_{\bullet}$$

不难看出,

$$\lambda i_0(c_0) = \lambda(c_0, 0) = \alpha \varepsilon(c_0),$$

$$\beta \lambda(c_0, e_0) = \beta \alpha \varepsilon(c_0) + \beta \rho(e_0) = \mu \pi_0(c_0, e_0).$$

所以,此部分图形是可交换的。我们现在要证明 λ 是满射。任取 $l \in L$ 。因为

$$\operatorname{im} \beta = M = \operatorname{im} \mu$$
.

所以存在 $e_0 \in E_0$, 使 $\beta(l) = \mu(e_0) = \beta \rho(e_0)$, 即 $\beta(l - \rho(e_0)) = 0, \quad l - \rho(e_0) \in \ker \beta = \operatorname{im} a.$

于是,存在 $n \in N$,使

$$l-\rho(e_0)=a(n).$$

$$\lambda(e_0,e_0) = a\varepsilon(e_0) + \rho(e_0) = a(n) + \rho(e_0) = l_0$$

因此 ¹ 是满射。我们再建造 D₁。 考虑下面的图形:

其中 $N' = \ker \varepsilon$, $L' = \ker \lambda$, $M' = \ker \mu$. 我们仅须证明 $0 \longrightarrow N' \longrightarrow L' \longrightarrow M' \longrightarrow 0$

是正合的,就可以再次运用上面 D_0 的作法,作出 D_{10} 显然,任 取 $c_0 \in \ker s = N'$,则有

$$\lambda i_0(c_0) = \lambda(c_0,0) = a\varepsilon(c_0) = 0$$

所以 $i_0(N')$ $\subset L'$ 。自然 $,i_0:N'\to L'$ 是单射。任取 $l'\in L'=\ker\lambda,$ 则有

$$\mu\pi_0(l')=\beta\lambda(l')=0,$$

所以 $\pi_0(L')$ $\subset M'$, 也即 π_0 : $L' \to M'$ 是 一个映射。现在我们要说明 π_0 : $L' \to M'$ 是一个满射。任取 $e_0 \in M' = \ker \mu$,则有

$$0 = \mu(e_0) = \beta(\rho(e_0)),$$

所以

$$\rho(e_0) \in \ker \beta = \operatorname{im} a_{\bullet}$$

即存在 $n \in N$, $c_0 \in C_0$, 使

$$\rho(e_0) = \alpha(n), \quad \varepsilon(e_0) = n.$$

令 $l' = (-c_0, e_0)$, 则有

$$\lambda(l') = -a\varepsilon(e_0) + \rho(e_0) = -a(n) + \rho(e_0) = 0,$$

即 $l' \in \ker \lambda = L'$, 且

$$\pi_0(l') = e_{0\bullet}$$

所以 $\pi_0: L' \to M'$ 是满射。

最后一步,我们要证明 $\ker \pi_0 = \operatorname{im} \varepsilon_0$ 。因 $\pi_0 i_0 = 0$: $C_0 \rightarrow E_0$,所以 $\pi_0 i_0 = 0$: $N' \rightarrow M'$ 。如此得出

im
$$i_0 \subset \ker \pi_{0\bullet}$$

反之,任取 $l'=(c_0,e_0)\in L'$,适合 $\pi_0(l')=0$,即有 $e_0=0$ 。于是 $\lambda(c_0,0)=\alpha\,\epsilon(c_0)=0$ 。

因为 α 是单射,所以必有 $\varepsilon(c_0) = 0$,即 $c_0 \in \ker \varepsilon = N'$ 。故 $l' = (c_0, 0) = i_0(c_0) \in \operatorname{im} i_{0s}$

综上所述, 我们给出下面的定义及定理。

定义9.11 任给一个短正合序列 $0 \longrightarrow N \longrightarrow L \longrightarrow M \longrightarrow 0$. 上文所讨论的射影化解序列的短正合列 $0 \longrightarrow C \longrightarrow D \longrightarrow E \longrightarrow 0$ 称为短正合序列 $0 \longrightarrow N \longrightarrow L \longrightarrow M \longrightarrow 0$ 的射影化解序列。

定理9.6 任给一个短正合序列 $0 \longrightarrow N \longrightarrow L \longrightarrow M \longrightarrow 0$,都必存在它的射影化解序列 $0 \longrightarrow C \longrightarrow D \longrightarrow E \longrightarrow 0$.

习 題

1. 证明R模M是有限生成的射影模的充要条件是: 它是具 242 有有限基的自由R模F的直和因子,即存在F的子模G,使得 $F = M \cap G$ 。

- 2. 设 M_i ($i \in I$, I 为指标集)是射影模,证明 $\bigoplus_{i \in I} M_i$ 也是射影模。
- 3. 设 e 是 R 的一个 幂 等 元素。 $e^2 = e$ 。 证明 eR 是 射 影 R 模 。
 - 4. 设 $M_i(i \in I)$ 是內射模,证明 $\prod_{i \in I} M_i$ 也是內射模。
 - 5. 证明每个R模M都与一自由R模F的某个商模同构。
- 6. 给定两个影射 R模M,N, 证明存在一个自由 R模 F, 使得

$$M \oplus F \approx N \oplus F$$
,

且两者都是自由R模。

- 7. 证明 Q 不是自由 Z 模。
- 8. 设M.N是射影R模,且下面两个序列正合:

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$
$$0 \longrightarrow N' \longrightarrow N \longrightarrow M'' \longrightarrow 0$$

证明: $M \oplus N' \approx N \oplus M'$.

- 9. 证明主理想整环 R 上的射影模都是自由模。
- 10. 设M是环 Z内由 6,8生成的理想。把M看作 Z模,试求 M的两个不同的自由化解序列。
 - 11. 给定正复合形

$$\cdots \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_1 \longrightarrow C_0 \longrightarrow 0$$
.

证明, $H_n(C) = 0$ ($n \ge 1$)的充要条件是下面的序列正合:

$$\cdots \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_1 \longrightarrow C_0 \longrightarrow H_0(C) \longrightarrow 0$$

12. 设

$$\cdots \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_1 \longrightarrow C_0$$

是一个射影正复合形, 又设有正复合形

$$\cdots \longrightarrow D_n \longrightarrow D_{n-1} \longrightarrow \cdots \longrightarrow D_1 \longrightarrow D_0$$

其同调模 $H_n(D) = 0$ ($n \ge 1$). 那么,对 $H_0(C)$ 到 $H_0(D)$ 的每个模映射 φ ,都存在 C 到 D 的映射 α ,使得 φ 由 α 诱导出,即

$$\varphi = \alpha_{\bullet \bullet}$$

且如果C到D的两个映射 α, β 都诱导出 φ ,则 $\alpha \sim \beta$.

13. 证明题12的共轭(或称对偶)命题。

§ 4 Ext

任给两个R 模M及A,令

Hom(M,A) = $\{\sigma: \sigma 为 M \rightarrow A$ 的模映射 $\}$.

我们自然可以引入下面的代数运算。对于 $f_1, f_2 \in \text{Hom}(M, A)$, $r_1, r_2 \in R$,定义

 ΦC , ε 是模M的 · 个射影化解序列, 即有

$$0 \longleftarrow M \stackrel{*}{\longleftarrow} C_0 \stackrel{i_1}{\longleftarrow} C_1 \longleftarrow \cdots \stackrel{i_n}{\longleftarrow} C_n \longleftarrow \cdots.$$

我们可以用ε定义如下的映射ε*;

$$\varepsilon^*$$
: Hom $(M, A) \rightarrow \text{Hom}(C_0, A)$,
 $\varepsilon^*(f) = f\varepsilon$.

请注意,箭头的方向反转了。不难验证 ε^* 确是模映射。同法我们。可以考虑 $d_1^*, d_2^*, \cdots, d_n^*, \cdots$ 。于是得出下面的负复合形:

$$0 \longrightarrow \operatorname{Hom}(C_0, A) \xrightarrow{d_1^*} \operatorname{Hom}(C_1, A) \longrightarrow \cdots$$

$$\xrightarrow{d_n^*} \operatorname{Hom}(C_n, A) \longrightarrow \cdots$$

它是一个复合形的原因是

$$d_{n+1}^* d_n^*(g) = d_{n+1}^*(gd_n) = gd_nd_{n+1} = 0,$$

$$\forall g \in \text{Hom}(C_{n-1}, A), \quad n = 1, 2, \dots$$

令其 i 阶上同调模为 H'(C,A)。 我们需要应用定理 9.3 来 证明 H'(C,A) 与 C 无关。 換言之, 设 C' $, \epsilon'$ 是 M 的 S 一个射影化解序 列,则必有

$$H^{+}(C,\Lambda)\approx H^{+}(C',\Lambda), \quad \forall i=0,1,2,\dots$$

证法如下。根据定理9.3,存在 α_i,β_i ,使下图

的上两行交換。于是从中间一行到下面一行存在映射 $\{a_i\beta_i\}$ 。另一方面,下两行之间自然有一等同恒射 1 ,故

$$a_i\beta_i \sim 1$$
.

即存在映射Si,使

$$a_i\beta_i = 1 + s_{i-1}d_i + d_{i+1}s_{i+1}$$

由此立得

$$(a_i\beta_i)^* = 1^* + d_i^*s_{i-1}^* + s_i^*d_{i+1}^*$$

参考下图

所以我们有 $(a_i\beta_i)^* \sim 1^*$.于是对上同调模 H^i 而言,

$$(\widehat{a_i\beta_i})^* = \widetilde{1}^*$$

也即

$$(\widehat{\alpha_i \beta_i})^* = \widetilde{\beta_i^* \alpha_i^*} : H^i(C,A) \longrightarrow H^i(C,A)$$

是一同构映射。由此立得 a_i^* 是单射, β_i^* 是满射。在上面的考虑中,我们交换 a_i,β_i ,也即考虑 β_ia_i : $C_i' \rightarrow C_i'$,则同法可得: β_i^* 是单射, a_i^* 是满射。于是我们证明了

$$\alpha^*: H^i(C,A) \approx H^i(C',A)$$
.

我们给出如下的定义。

定义9.12 任给二R模M,A, 任取M的一个射影化 解 序列 C, ε , 我们定义

$$\operatorname{Ext}_{R}^{i}(M,A) = H^{i}(C,A) = H^{i}(\operatorname{Hom}_{R}(M,A)).$$

讨论 1) 如上面所指出的, $Ext_k(M,A)$ 与射影化解序列的 选取无关。

- 2) Ext_k的原来定义是"用 M得出的 A 的: 次扩充所构成的模",这比较复杂。因此,我们采用了上面那 个 定 义。请 注意 Ext 即 extension 的头三个字母。
- 3) Ext⁰_R(M,A)≈Hom_R(M,A)。原因如下: 首先,按照定义,我们知道

$$\operatorname{Ext}_{R}^{0}(M,A) = \ker d_{1}^{*}.$$

其次,已知下面的序列是正合的:

$$C_1 \xrightarrow{d_1} C_0 \xrightarrow{\epsilon} M \longrightarrow 0$$
,

考虑与它相应的序列

 $\operatorname{Hom}(C_1,A) \overset{\overset{\circ}{\longleftarrow}}{\longleftarrow} \operatorname{Hom}(C_0,A) \overset{\overset{\circ}{\longleftarrow}}{\longleftarrow} \operatorname{Hom}(M,A) \longleftarrow 0.$ 我们要证明它也是正合的。证明了这一点之后,我们立得 $\operatorname{Ext}_{\mathcal{C}}^{0}(M,A) = \ker d_{1}^{\bullet} = \operatorname{im} \varepsilon^{*} \approx \operatorname{Hom}(M,A).$

证法如下:

(a) ε*是单射。原因是

$$\varepsilon^*(f) = 0 \iff f\varepsilon(c) = 0, \quad \forall c \in C_0$$
 $\iff f(m) = 0, \quad \forall m \in M (\boxtimes \varepsilon(C_0) = M)$
 $\iff f = 0.$

(b) im ε* = ker d*, 原因是; 首先,

$$d_1^{\bullet} \varepsilon^*(f) = f \varepsilon d_1 = f \cdot 0 = 0,$$

所以 im e^* Cker d_1^* 。其次,任取 $g \in \ker d_1^*$,见下图:

我们要找一个f,使上面的图可交换。任取 $m \in M$,令 $\epsilon(c_0) = m$ 。 定义

$$f(m) = g(c_0).$$

如果取不同的 $c_0' = c_0 + d_1(c_1)$,则

$$f(m) = g(c_0 + d_1(c_1)) = g(c_0) + gd_1(c_1) = g(c_0).$$

所以,对所有可取的 c_0 , f(m)是唯一确定的,即 f 是一个定义良好的映射。于是,不难看出 $g = f \varepsilon = \varepsilon^*(f) \in \operatorname{im} \varepsilon^*$, 即有

im
$$\varepsilon^* = \ker d_{1}^*$$

4) 定义 9,12 给出了一个典范的方法,自一化解序列(C,d),得另一复合形(Hom(C,A),d*),又导出它的同调模 $Ext_{a}^{\dagger}(M,A)$,这是**导出函子的**方法。自然,如果导出的同调模

$$\operatorname{Ext}_{\mathbb{R}}^{1}(M,A) \quad (i \geq 1)$$

都是零,換句话说,如果复合形 ($Hom(M,A),d^*$) 是正合的,则这个方法的意义将大为减少了。我们举出下面的例10,说明一般导出的同调模不是零。

例10 考虑 Z/mZ 的下面的自由化解序列(当然是射影化解序列)

$$0 \longrightarrow Z \xrightarrow{\pi} Z \xrightarrow{\tau} Z/mZ \longrightarrow 0,$$

此处 $m: Z \rightarrow Z$ 表示映射 $m(n) = mn(\forall n \in Z)$, τ 是典型映射。任给**Z 模** A (即一交換群),我们得出

$$0 \leftarrow A/mA \leftarrow \text{Hom}(Z, A) \leftarrow \text{Hom}(Z, A)$$

$$\leftarrow \text{Hom}(Z/mZ, A) \leftarrow 0.$$

因为任给一个 $a \in A$,则 f(1) = a 引生出 Hom(Z, A) 中的一个元素 f ,而且 f 是由 f(1)唯一确定的,所以

 $\operatorname{Hom}(\mathbf{Z}, A) \approx A$, $m + \operatorname{Hom}(\mathbf{Z}, A) \approx mA$.

因此上面得出的复合形是正合的。这也就是说

$$\operatorname{Ext}_{\mathbf{Z}}^{1}(\mathbf{Z}/m\mathbf{Z},A) \pm 0.$$

例11 参考例 8. 我们取 R = C[x,y], g(x,y) 与 h(x,y) 无公因子, N = (g(x,y),h(x,y)). 则有下列的自由化解序列

$$0 \longrightarrow R \xrightarrow{[-a]} R \oplus R \xrightarrow{(a)} N \longrightarrow 0.$$

此时R

R 的元素都写成直列

$$\begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$
.

我们考虑 H'(N,R)。 先取下面的复合形

 $0 \longleftarrow \operatorname{Hom}_R(R,R) \stackrel{\left[\begin{smallmatrix} A \\ -R \end{smallmatrix}\right]^*}{\longleftarrow} \operatorname{Hom}_R(R \oplus R,R) \longleftarrow 0.$ 子是

$$H^0(N,R) = \ker \begin{bmatrix} h \\ -g \end{bmatrix}^* / (0) \approx \ker \begin{bmatrix} h \\ -g \end{bmatrix}^*,$$

$$H^1(N,R) = \operatorname{Hom}_R(R,R) / \operatorname{im} \begin{bmatrix} h \\ -g \end{bmatrix}^*$$

进一步实际计算。取 $f \in \text{Hom}_R(R \oplus R, R)$, 设

$$f\left(\left[\begin{array}{c}1\\0\end{array}\right]\right)=f_1,\qquad f\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=f_1,$$

则

$$\begin{bmatrix} h \\ -g \end{bmatrix}^*(f) = 0 \iff \left(\begin{bmatrix} h \\ -g \end{bmatrix}^*(f) \right) (1) = 0$$

$$\iff \left(f \begin{bmatrix} h \\ -g \end{bmatrix} \right) (1) = 0$$

$$\iff hf_1 - gf_2 = 0 \iff f_1 = sg, f_2 = sh \iff f = s\sigma,$$

其中
$$s \in R$$
, $\sigma(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) = g$, $\sigma(\begin{bmatrix} 0 \\ 1 \end{bmatrix}) = h$. 所以

$$H^0(N,R) \approx \ker \left[\begin{array}{c} h \\ -g \end{array}\right]^* = R\sigma \approx R_*$$

现在计算 $H^1(N,R)$ 。 取 $1_R \in \text{Hom}_R(R,R)$ 为

$$1_R(r) = r, \quad \forall r \in R_{\bullet}$$

则有 $\operatorname{Hom}_R(R,R) = R \cdot 1_R \approx R$ 。 令 π_1, π_2 定义如下

$$\pi_1\left(\left[\begin{array}{c}1\\0\end{array}\right]\right)=1$$
, $\pi_1\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=0$, $\pi_2\left(\left[\begin{array}{c}1\\0\end{array}\right]\right)=0$, $\pi_2\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=1$.

我们立得

$$f = f_1 \pi_1 + f_2 \pi_2,$$

$$\left(\begin{bmatrix} h \\ -g \end{bmatrix}^* (f) \right) (1) = \left(f \begin{bmatrix} h \\ -g \end{bmatrix} \right) (1)$$

$$= f \left(\begin{bmatrix} h \\ -g \end{bmatrix} (1) \right) = f_1 h - f_2 g,$$

$$\operatorname{im} \begin{bmatrix} h \\ -g \end{bmatrix}^* \approx (g, h) = N \subset R,$$

所以

即有

$$H^1(N,R) \approx R/N$$
.

引理 在下列的短正合列中,如果 E_n 是射影模。

$$(*) \qquad 0 \longrightarrow C_n \xrightarrow{i} D_n \rightleftharpoons E_n \longrightarrow 0,$$

则我们恒有

 $0 \leftarrow \text{Hom}(C_n, N) \leftarrow \text{Hom}(D_n, N) \leftarrow \text{Hom}(E_n, N) \leftarrow 0$ 是正合的。

证明 我们应证明三点: 1) π^* 是单射, 2) $\operatorname{im} \pi^* = \ker i^*$, 3) i^* 是满射。前两点在一般情形下(即不要求 E_n 是射影模)都是正确的,读者自证之。我们来证 3)。

因为 E_n 是射影模,所以序列(*)的虚线部分可以用 1 足,使 $\pi i = 1$ 。不难看出

$$D_n = i(C_n) \oplus j(E_n)$$
.

任取 $h \in \text{Hom}(C_n, N)$ 令

$$g(i(c_n),j(e_n)) = h(c_n) \ (\forall c_n \in C_n, e_n \in E_n),$$

则 $g \in \text{Hom}(D_n, N)$, 而且 $i^*(g) = h$. 所以 i^* 是一个满射。

定理9.7 设有一个短正合序列

$$0 \longrightarrow N \longrightarrow L \longrightarrow M \longrightarrow 0$$

则有下面的长正合序列

$$0 \longrightarrow \operatorname{Ext}^{0}(M,A) \longrightarrow \operatorname{Ext}^{0}(L,A) \longrightarrow \operatorname{Ext}^{0}(N,A)$$

$$\xrightarrow{A^{*}} \operatorname{Ext}^{1}(M,A) \longrightarrow \cdots \longrightarrow \operatorname{Ext}^{i}(N,A)$$

$$\xrightarrow{A^{*}} \operatorname{Ext}^{i+1}(M,A) \longrightarrow \operatorname{Ext}^{i+1}(L,A) \longrightarrow \cdots$$

证明 根据定 \mathfrak{A} 9.6, 我们可以取此短正合序列的一个射影 化解序列 0 \longrightarrow $C\longrightarrow D\longrightarrow E\longrightarrow 0$, 即

对此图取 Hom(-,N), 则得下图,

我们仅须说明每一列都是正合的,便可用定理9.1导出本定理了。 前面的引**理正好证明了这一点。** |

应用上定理,我们可以得出射影模的同调代数论的定义,即下定理。

定理9.8 对任意模M而首,下面的三个性质是等同的:

- 1) M是射影模;
- 2) 对所有的 $n \ge 1$ 及所有的模N, $Ext^n(M,N) = 0$;
- 3) 对所有的模N, Ext¹(M,N) = 0.

证明 1) \Longrightarrow 2). 已知 M 是射影模,所以下面的序列是 M 的射影化解序列:

$$0 \longrightarrow M \longrightarrow M \longrightarrow 0,$$
即取 $C_0 = M$, $C_1 = C_2 = \cdots = 0$. 于是序列
$$0 \longrightarrow \operatorname{Hom}(C_0, N) \longrightarrow \operatorname{Hom}(C_1, N) \longrightarrow \cdots$$
即是
$$0 \longrightarrow \operatorname{Hom}(M, N) \longrightarrow 0 \longrightarrow \cdots.$$

计算共同调模, 立得2)。

- 2) ---> 3). 立得.
- $3) \longrightarrow 1$)、我们任取一个短正合序列 $0 \longrightarrow K \stackrel{\prime}{\longrightarrow} F \stackrel{\prime}{\longrightarrow} M \longrightarrow 0$.

此处F是自由模。应用定理9.7 及性质 3),我们立得正合序列 $0 \longrightarrow \operatorname{Ext}^0(M,K) \longrightarrow \operatorname{Ext}^0(F,K) \longrightarrow \operatorname{Ext}^0(K,K) \longrightarrow 0$, 也即

 $0 \longrightarrow \operatorname{Hom}(M,K) \xrightarrow{\mathbb{F}^{\bullet}} \operatorname{Hom}(F,K) \xrightarrow{!^{\bullet}} \operatorname{Hom}(K,K) \longrightarrow 0$.
取 $1_K \in \operatorname{Hom}(K,K)$, 则必存在 $f \in \operatorname{Hom}(F,K)$, 使 $i^*(f) = fi = 1_K.$

$$0 \longrightarrow M' \stackrel{!}{\longrightarrow} F \stackrel{!}{\longleftarrow} K \longrightarrow 0,$$

其中 ; 为嵌入映射。由此立得 K 是射影模, 以及

 $F = j(M') \oplus i(K), \quad M' \approx j(M') \approx F/i(K) \approx M.$

所以, M是一个自由模的直和因子, 也即是一个射影模.

讨论 本定理将在 § 6 "同调维数"中推广。 【 我们也可以用内射上化解序列来定义 Ext'。

为了眉目清晰起见,我们先用內射上化解序列定义 \overline{Ext}' ,然后证明 $\overline{Ext}' = \overline{Ext}'$ 。

定义9.13 令 D, ε 是 A 的一个內射上化解序列。

$$0 \longrightarrow A \xrightarrow{\bullet} D^0 \xrightarrow{g^0} D^1 \xrightarrow{g^1} D^2 \longrightarrow \cdots$$

令 Hom(M,D)为下面的复合形

$$0 \longrightarrow \operatorname{Hom}(M,D^0) \longrightarrow \operatorname{Hom}(M,D^1) \longrightarrow \cdots$$

我们定义 $Ext^i(M,A)$ 为它的i阶上同调模。

我们要证明:

定理9.9 Ext'(M,A) = Ext'(M,A).

证明 不难看出

$$\operatorname{Ext}^{0}(M,A) = \operatorname{Hom}(M,A) = \operatorname{Ext}^{0}(M,A)$$

任取一个短正合序列如下(其中P是射影模):

$$0 \longrightarrow K \xrightarrow{i} P \xrightarrow{r} M \longrightarrow 0$$

应用定理9.8及定型9.7,我们得出

$$0 \longrightarrow \operatorname{Hom}(M,A) \xrightarrow{r^*} \operatorname{Hom}(P,A) \xrightarrow{f^*} \operatorname{Hom}(K,A)$$

$$\xrightarrow{A^*} \operatorname{Ext}^1(M,A) \longrightarrow 0 \longrightarrow \operatorname{Ext}^1(K,A)$$

$$\xrightarrow{A^*} \operatorname{Ext}^2(M,A) \longrightarrow 0 \longrightarrow \cdots$$

用同样方法,不难得出

$$0 \longrightarrow \operatorname{Hom}(M, A) \xrightarrow{\overline{t}^*} \operatorname{Hom}(P, A) \xrightarrow{I^*} \operatorname{Hom}(K, A)$$

$$\xrightarrow{\overline{J}^*} \overline{\operatorname{Ext}^1}(M, A) \longrightarrow 0 \longrightarrow \overline{\operatorname{Ext}^1}(K, A)$$

$$\xrightarrow{\overline{J}^*} \overline{\operatorname{Ext}^2}(M, A) \longrightarrow 0 \longrightarrow \cdots$$

由此立得

 $\operatorname{Ext}^1(M,A) \approx \operatorname{Hom}(K,A)/i^*(\operatorname{Hom}(P,A)) \approx \operatorname{Ext}^1(M,A),$ $\operatorname{Ext}^n(M,A) \approx \operatorname{Ext}^{n-1}(K,A),$ $\operatorname{Ext}^n(M,A) \approx \operatorname{Ext}^{n-1}(K,A).$ 应用数学归纳法,已知 $\operatorname{Ext}^{n-1}(K,A) \approx \operatorname{Ext}^{n-1}(K,A),$ 于是立得本定理。

与定理 9.8 相同的,我们可以证明下面的定理。

定理9.10 对任意模N而言,下面的三个性质是等同的。

- 1) N是內射模;
- 2) 对所有的 n≥1 及所有的模M, Extn(M,N)=0;
- 3) 对所有的模M, Ext1(M,N)=0.

习 瘛

1. 设有R 模映射序列

$$M' \xrightarrow{u} M \xrightarrow{v} M'' \longrightarrow 0$$

证明这个序列正合的充要条件是:对任意R模N,下面的序列正合

 $0 \longrightarrow \operatorname{Hom}(M'', N) \xrightarrow{v^*} \operatorname{Hom}(M, N) \xrightarrow{u^{\bullet}} \operatorname{Hom}(M', N),$ 其中 u^*, v^* 是由 u, v 诱导得出的。

2. 设有R模映射序列

$$0 \longrightarrow N' \stackrel{u}{\longrightarrow} N \stackrel{v}{\longrightarrow} N''$$

证明这个序列正合的充要条件是。对任意R模M,下面的序列正合。

$$0 \longrightarrow \operatorname{Hom}(M, N') \xrightarrow{\overline{u}} \operatorname{Hom}(M, N) \xrightarrow{\overline{v}} \operatorname{Hom}(M, N''),$$

其中 0 定义如下。 $\forall f \in \text{Hom}(M,N')$,其在 0 下映成Hom(M,N) 内的 uf; 0 的定义方法相同。

3、 证明R模M是射影模的充要条件是, 对任意的R模短正合序列

$$0 \longrightarrow A \xrightarrow{u} B \xrightarrow{v} C \longrightarrow 0$$

下面的序列正合。

$$0 \longrightarrow \operatorname{Hom}(M,A) \xrightarrow{\overline{u}} \operatorname{Hom}(M,B) \xrightarrow{\overline{v}} \operatorname{Hom}(M,C) \longrightarrow 0$$
,
其中 \overline{u} , v 的定义同题 2 .

4. 令 R = D为主理想整环, $a \in D$. 令 M = D/(a)为 R 模, 它的一个射影化解序列为

$$\cdots \longrightarrow 0 \longrightarrow D \longrightarrow D \longrightarrow M \longrightarrow 0$$

其中 $D\longrightarrow D$ 是乘a的映射,而 $D\longrightarrow M$ 是 典 型 映 射。对 R 模 N, 考虑 Hom(D,N)到N的映射如下。 $\forall \eta \in Hom(D,N)$,定义 $\eta \mapsto \eta(1)$ 。 利用它们证明

$$\operatorname{Ext}^{1}(M,N)\approx N/aN$$
,

并证明: 者N = D/(b) ,则

$$\operatorname{Ext}^{1}(M,N) \approx D/(a,b),$$

这里(a,b) 表示 a,b 在D内生成的理想。

5. 设M,N是R模,如果R模E使下面序列正合:

$$0 \longrightarrow N \stackrel{\sigma}{\longrightarrow} E \stackrel{\beta}{\longrightarrow} M \longrightarrow 0.$$

则称 $E \ge M$ 关于N的一个扩充。设 E_1, E_2 是两个扩充, $\gamma \ge E_1$ 到

 E_1 的模映射,使下图交换。

证明 γ 必是一个模同构,并证明R模关于N的扩充B总是存在的。

6. 设M,N是R 模,M关于N的两个扩充E,与E,称为等价, 若存在E,到E,的同构y,使下图交换;

命 E(M,N) 表示 M 关于 N 的扩充的等价类所成的集合。证明 E(M,N) 和 $Ext^1(M,N)$ 之间存在——对应。

7. 对R模 M_i ,N ($i \in I$),证明

(1)
$$\operatorname{Ext}^{\mathfrak{n}}(\bigoplus_{i\in I}M_{i},N)\approx\prod_{i\in I}\operatorname{Ext}^{\mathfrak{n}}(M_{i},N),$$

(2)
$$\operatorname{Ext}^n(N, \prod_{i \in I} M_i) \approx \prod_{i \in I} \operatorname{Ext}^n(N, M_i)$$
.

8. 证明: R 模M 是內射模的充要条件是,对R 的任意理想 I ,

$$\operatorname{Ext}^1(R/I,M)=0.$$

§ 5 张 量 积 与 Tor

张量源出于物理学中计算物体内的张力。后来在微分几何学中有了广泛的应用。例如,三维空间的位移微分 ds 可以写成下式

$$ds^2 = \sum_{i,j} g_{ij} dx^i dx^j.$$

当我们变换坐标 $\{x^1\}$ → $\{x^{**}\}$ 时,

$$ds^{2} = \sum_{i \neq j} g_{ij} dx^{i} dx^{j} = \sum_{i \neq j \neq j} g_{ij} \frac{\partial x^{i}}{\partial x^{*k}} \frac{\partial x^{j}}{\partial x^{*k}} dx^{*k} dx^{*l}$$

$$= \sum_{k \neq j} \left(\sum_{i \neq j} g_{ij} \frac{\partial x^{i}}{\partial x^{*k}} \frac{\partial x^{j}}{\partial x^{*l}} \right) dx^{*k} dx^{*l}$$

$$= \sum_{k \neq j} g_{kj}^{*} dx^{*k} dx^{*l},$$

其中

$$g_{kl}^{\bullet} = \sum_{i=1}^{l} g_{ij} \frac{\partial x^{i}}{\partial x^{*k}} \frac{\partial x^{i}}{\partial x^{*l}}$$

此时, $\{g_{ij}\}$ 称为共变张量,而 $\{dx'\}$ 称为反变张量,因为它适合

$$dx^{*k} = \sum_{i} \frac{\partial x^{*k}}{\partial x^{i}} dx^{i}.$$

一般而言,取一向量空间 $V = \sum_{i} Ke^{i}$,我们定义张量积

$$V \otimes V = \sum_{i,j} K e^{i} \otimes e^{j},$$

适合下列公式:

$$(v_1 + v_2) \otimes u = v_1 \otimes u + v_2 \otimes u,$$

$$v \otimes (u_1 + u_2) = v \otimes u_1 + v \otimes u_2,$$

$$(kv) \otimes u = v \otimes (ku) = k(v \otimes u),$$

其中 $v,u,v_1,u_1\in V$, $k\in K$ 。任取 $w\in V\otimes V$,则w可以写成下式

$$w = \sum_{i \in I} f_{ij} e^i \bigotimes e^i.$$

当我们进行下述坐标变换时:

 $M \otimes_{\mathbb{R}} N_{-}$

$$e^i = \sum_k a_k^i e^{*k},$$

则有 $w = \sum_{i,j,k,l} f_{ij} a_k^i a_l^j e^{*k} \otimes e^{*l} = \sum_{k,l} f_{k,l}^* e^{*l} \otimes e^{*l},$

此处 $f_{i,i}^* = \sum_{i=1}^n f_{i,i} a_i^* a_i^*.$

与前段有关 ds^2 的计算相比,可知 $\{f_{1i}\}$ 即相当于共变张量 $\{g_{ij}\}$ 。 在本节中,我们将要讨论 任 意 的 R 模 M , N 的 "张量积"

定义9.14 $M \bigotimes_R N$ 即由符号 $m \bigotimes n$ 生成而且适合下列公式的 R 模。

 $(m_1 + m_2) \otimes n = m_1 \otimes n + m_2 \otimes n$, $m \otimes (n_1 + n_2) = m \otimes n_1 + m \otimes n_2$, $(\tau m) \otimes n = m \otimes (\tau n) = r(m \otimes n)$,

其中 $m, m_1, m_2 \in M, n, n_1, n_2 \in N, r \in R_*$

讨论 是否存在这样的 R 模 $M \bigotimes_R N$ 呢? 于是,下面的定义 9.14' 较好。

定义9.14′ 取 $M \circ N$ 为由所有符号 $m \circ n$ 生成的自由 R 模。 再取 K 为由所有符号 $(m_1 + m_2) \circ n - m_1 \circ n - m_2 \circ n$, $m \circ (n_1 + n_2) - m \circ n_1 - m \circ n_2$, $(rm) \circ n - r(m \circ n)$, $m \circ (rn) - r(m \circ n)$ 生成的子模。令

 $M \circ N \xrightarrow{\sigma} M \circ N/K = M \bigotimes_R N$, $\sigma(m \circ n) = m \bigotimes n$. 则立得 $M \bigotimes_R N$ 是一个 R 模。

讨论 上面的定义确实构造出了 $M \otimes_R N$,然而比较 复杂。通常我们可以用下面的定理,得出张量积的又一个定义。

定理9.11 给定 R 模 M ,N , 则 $M \otimes_R N$ 是唯一能适合下面条件的 R 模 L (参考下图,见下页)。存在 α : $M \times N \rightarrow L$ 为一双线

性映射, 使得对于任意给定的模 Q 及双线性映射 β : $M \times N \rightarrow Q$. 必存在唯一的模映射 γ : $L \rightarrow Q$,使

$$\gamma \alpha = \beta_{\bullet}$$

证明 令 $L = M \bigotimes_R N$, $a: M \times N \rightarrow L$ 定义为 $a((m,n)) = m \bigotimes n$.

a 显然对 M 及 N 都是线性的,所以是双线性映射。定义

$$\pi: M \circ N \rightarrow M \times N,$$

$$\pi(m \circ n) = (m, n).$$

显然 π 是模映射。对于任给的模 Q 及 双线性映射 β : $M \times N \to Q$, β 可以扩充为映射 β : $M \circ N \to M \times N \to Q$, 即 $\beta = \beta \pi$ 。由于 β 是 双线性的,所以 $\beta(K) = 0$ 。于是 β 诱导出 $M \otimes_R N = M \circ N/K$ 到 Q 的模映射 γ 。显然 $\gamma \alpha = \beta$ 。又因为 在 α 下 $M \otimes_R N$ 中的任 一元素被 $M \times N$ 中的某些元素完全确定,不难看出,满足 $\gamma \alpha = \beta$ 的 模映射 γ 是唯一的。

反之,设L适合本定理给出的条件。则有交换图:

(即取 $Q = M \bigotimes_R N$, $\beta = \alpha$, 得到 γ' ; 又取 Q = L, $\beta = \alpha'$, 得到 γ), 即有

$$\gamma'\alpha' = \alpha$$
, $\gamma\alpha = \alpha'$, $\gamma\gamma'\alpha' = \alpha'$.

但显然 1_L 满足 $1_L\alpha' = \alpha'$, 由唯 一 性, 即有 $\gamma\gamma' = 1_L$ 。同 样, $\gamma\gamma' = 1_{M\otimes N}$ 。于是 γ,γ' 均为同构。

例12 1) 设M,N 都是自由模, $M = \sum_{i} Re_{i}$, $N = \sum_{i} Rf_{i}$.
不难看出, $M \otimes_{R} N = \sum_{i} Re_{i} \otimes f_{i}$. 如果 R 是域,M,N 都 是有限维向量空间,则有

 $\dim M \bigotimes_R N = (\dim M)(\dim N).$

2) $m \otimes n = ?$ 这是一个含意不清的问题。我们举例说明这一点。取 $R = Z \supset M = mZ$, N = Z/mZ. $m \otimes 1$ 有如下两种不同的含意。

$$m \otimes \overline{1} \in Z \otimes_{\mathbf{z}} N \approx N;$$

$$m \otimes \overline{1} \in M \otimes_{\mathbf{z}} N.$$

在第一种情形, $m\otimes \overline{1} = m(1\otimes \overline{1}) = 1\otimes m\overline{1} = 1\otimes 0 = 0$ 。在第二种情形,我们不能自由移动 m (因为 $1\in M$)。所以,在下面的同构作用下

$$\sigma \colon M \otimes_{\mathbf{z}} N \approx N,$$

$$\sigma(\operatorname{lm} \otimes \widetilde{1}) = l \ \widetilde{1},$$

我们有 $\sigma(m\otimes 1)=1 \Rightarrow 0$,即 $m\otimes 1 \Rightarrow 0$ 。因此,在考虑 $m\otimes n$ 时,我们必须说明它在哪儿。

定理9.12 我们有下列的自然同构:

- 1) $M \otimes N \approx N \otimes M$; $m \otimes n \rightleftharpoons n \otimes m$;
- 2) $(M \otimes N) \otimes L \approx M \otimes (N \otimes L)$: $(m \otimes n) \otimes l \rightleftharpoons m \otimes (n \otimes l)$. 所以我们可以用 $M \otimes N \otimes L$ 表示 $(M \otimes N) \otimes L$ 或 $M \otimes (N \otimes L)$.

证明 读者自证之。 1

根据上面的定理,我们可以讨论 $M_1 \otimes M_2 \otimes \cdots \otimes M_n$,并不至于引起混淆。

与定义 $Ext_{R}(M,N)$ 一样地,我们可以定义 $Tor_{R}(M,N)$ 如

下, 任取 N 的一个射影化解序列

$$0 \longleftarrow N \longleftarrow C_0 \longleftarrow C_1 \longleftarrow \cdots \longleftarrow C_n \longleftarrow \cdots,$$

对 M 取张量积,得出下面的复合形:

$$0 \longleftarrow M \bigotimes_{R} C_{0} \stackrel{1 \otimes d_{1}}{\longleftarrow} M \bigotimes_{R} C_{1} \stackrel{1 \otimes d_{2}}{\longleftarrow} M \bigotimes_{R} C_{2} \longleftarrow \cdots,$$

其中,映射 1⊗dn 是如下自然定义的:

$$(1 \otimes d_n)(m \otimes c_n) = m \otimes d_n(c_n).$$

易于得出

$$(1 \bigotimes d_{n-1}) (1 \bigotimes d_n) = 1 \bigotimes d_{n-1} d_n = 1 \bigotimes 0 = 0.$$

所以,上面的张量积序列确是一个复合形。我们对它取同调模 $H_1(M \otimes C)$ 。应用上节关于 $\operatorname{Ext}_k(C,N)$ 的讨论,不难看出, $H_1(M \otimes C)$ 与 N 的射影化解序列 C 无关。 因此我们有下面的定义。

定义9.75 $\operatorname{Tor}^{R}(M,N) = H_{1}(M \otimes C)$.

讨论 $\operatorname{Tor}_0^R(M,N) = M \bigotimes_R N$ 。证法如下:我们已知 $\operatorname{Tor}_0^R(M,N) = M \bigotimes_R C_0 / \operatorname{im}(1 \bigotimes_1 d_1).$

令 $L = M \bigotimes_R C_0 / \text{im} (1 \bigotimes d_1)$ 。 我们有下图:

因为

$$(1 \otimes \varepsilon)(1 \otimes d_1) = 1 \otimes \varepsilon d_1 = 1 \otimes 0 = 0,$$

所以

$$\ker(1 \otimes \varepsilon) \supset \operatorname{im}(1 \otimes d_1) = \ker \pi$$
.

于是自然定义出一个映射 i、又因 ε 是满射,任取 $(m,n) \in M \times N$,必有 $m \otimes c_0 \in M \otimes_R C_0$,使 $(1 \otimes \varepsilon) (m \otimes c_0) = m \otimes n$ 。设 c_0 与 c_0 有 同样的性质,则有

$$n = \varepsilon(c_0) \approx \varepsilon(c_0') \iff c_0 - c_0' \in \ker \varepsilon = \operatorname{im} d_1$$

$$\iff \pi(m \otimes c_0) = \pi(m \otimes c_0').$$

于是我们可以定义一个双线性映射

$$a: M \times N \rightarrow L$$

$$a((m,n)) = \pi(m \otimes c_0).$$

根据定理9.11,必存在唯一的映射 j. 不难看出,ij=1, ji=1. 立得 $M \otimes_B N \approx \text{Tor}(M,N)$.

我们现在仿照上一节建立 Tor P(M,N) 的性质。首先证明。引理 在下列短正合序列中。

$$(*) \qquad 0 \longleftarrow E_n \stackrel{\stackrel{\pi}{\longleftarrow}}{\longrightarrow} D_n \longleftarrow C_n \longleftarrow 0,$$

如果 E_n 是射影模,则我们恒有

$$0 \longleftarrow M \bigotimes_R E_n \stackrel{1 \otimes r}{\longleftarrow} M \bigotimes_R D_n \stackrel{1 \otimes t}{\longleftarrow} M \bigotimes_R C_n \longleftarrow 0$$
是正合的。

证明 我们应该证明三点: 1) $1 \otimes \pi$ 是满射: 2) $\ker(1 \otimes \pi)$ = $\operatorname{im}(1 \otimes i)$: 3) $1 \otimes i$ 是单射。在一般情形下(即不要 求 E_n 是射 影模),前二者都是正确的。读者自证之。我们来证 3)。

因为 E_n 是射影模,所以序列(*)的虚线部分可以用 i 补足,使 $\pi i = 1$ 。不难看出, $D_n = i(C_n) \oplus j(E_n)$ 。 因此

$$M \otimes D_n = M \otimes i(C_n) \oplus M \otimes j(E_n).$$

显然

$$1 \otimes i : M \otimes C_n \approx M \otimes i(C_n)$$
.

与定理9.7的证法类似,我们可以证明:

定理9.13 设有一个短正合序列

$$0 \leftarrow N'' \leftarrow N \leftarrow N' \leftarrow 0$$
,

则有下面的长正合序列:

$$0 \longleftarrow \operatorname{Tor}_{0}^{R}(M, N'') \longleftarrow \operatorname{Tor}_{0}^{R}(M, N) \longleftarrow \operatorname{Tor}_{0}^{R}(M, N')$$

$$\longleftarrow \operatorname{Tor}_{1}^{R}(M, N'') \longleftarrow \longleftarrow \operatorname{Tor}_{1}^{R}(M, N')$$

$$\longleftarrow \operatorname{Tor}_{1+1}^{R}(M, N'') \longleftarrow \operatorname{Tor}_{1+1}^{R}(M, N)$$

$$\leftarrow$$
 Tor $_{i+1}^R(M,N') \leftarrow \cdots$.

与定理 9.9 类似,我们可以取 M 的一个射影化解序 列 G', ε' , 然后用它来定义Tor f(M,N)。不难看出

$$\overline{\operatorname{Tor}}_{i}^{R}(M,N) \approx \operatorname{Tor}_{i}^{R}(N,M)$$

我们又有下面的定理(证明略)。

定理9.14 $Tor^R(M,N) = Tor^R(N,M)$.

参考定理9.8,我们可以用同调代数论的 方 法,即 Ext_n 的性质来定义射影模。相应地, $Tor^q(M,N)$ 定义了什么呢?为此,我们进行下面的讨论。

设 M 是自由模, $M = \bigoplus Re_i$ 。令 $x_j \in M$,适合下列的方程式 $\sum_i r_j x_j = 0 , \quad r_j \in R.$

用 $\{e_i\}$ 表出 x_i 如下:

$$x_{j} = \sum_{i} s_{ji} e_{i}, \quad s_{ji} \in R_{\bullet}$$

代入上式,立得

$$\sum_{i,j} r_j s_{ji} e_i = 0 ,$$

(3)
$$\sum_{i} r_{i} s_{i} = 0 , \quad i = 1, 2, \dots.$$

定义9.16 如果在模M中,方程式(1)均 可 由(2)及(3)求解(此时 $\{e_i\}$ 不必是M的R基),则称M为**平模**。

讨论 自由模显然是平模。一般言之,平模可以理解成自由 **模的**极限。

例13 1) Q 不是自由 Z 模, 但显然是平 Z 模。

- 2) 令 $M = C[x,y,z]/(x^2 f(x,y)) \approx C[x,y] \oplus C[x,y]z$. 则M是一个自由 C[x,y]模,所以是平C[x,y]模。从几何观点来看, $x^2 f(x,y)$ 定义了复平面(相当于 C[x,y])的一个复叠曲面,而这个复叠确实是"平"的。
 - 3) 令M = C[x,y,z]/(xz-y)。视M为 C[x,y]模。显然

$$M \approx C[x,y][y/x] = C[x,y/x].$$

现在我们要证明M不是平C[x,y]模。考虑下面的方程式

$$x\bar{z} - y \cdot 1 = 0$$
, $\bar{z}, 1 \in M$, $x, y \in R = C[x, y]$.

如有下面的解。

$$\bar{z} = \sum_{i} s_{i1} e_{i}, e_{i} \in M, s_{i1} \in R,$$

$$1 = \sum_{i} s_{i2} e_{i}, s_{i2} \in R,$$

$$xs_{i1} = ys_{i2} = 0, i = 1, 2, \dots.$$

则立得 $x \mid s_{i2}$, 即有

$$1 \in (x) \subset C[x,y/x].$$

此式显然是不可能成立的。于是M不是平 C[x,y] 模。从几何观点来看,xz-y=0 定义的曲面,当 $x\to 0$ 时,曲面渐成垂直的,自然不是 "平"的。

用同调代数的方法,我们可以重新定义平模如下。

定理9.15 M是平模的充要条件是,对任给的正合序列

$$\cdots \longleftarrow N_1 \longleftarrow N_2 \longleftarrow \cdots$$

则对M作张量积以后的序列

$$\cdots \longleftarrow N_1 \otimes M \longleftarrow N_2 \otimes M \longleftarrow \cdots$$

仍然正合。

证明 充分性,设有下列方程式

$$\sum_{j=1}^n r_j x_j = 0, \quad x_j \in M, \quad r_j \in R_*$$

考虑下面的正合序列

$$R \stackrel{\sigma}{\longleftarrow} R^* \longleftarrow K \longleftarrow 0 ,$$

$$\sigma(t_1, \cdots, t_n) = \sum_i r_i t_i, \quad K = \ker \sigma_*$$

对M作张量积,得正合序列

$$R \otimes M \stackrel{\overline{\sigma}}{\longleftarrow} R^* \otimes M \longleftarrow K \otimes M \longleftarrow 0$$
,

即

$$M \stackrel{\overline{\sigma}}{\longleftarrow} M^{\bullet} \longleftarrow K \bigotimes M \longleftarrow 0,$$

$$\ker \overline{\sigma} = K \bigotimes M.$$

于是

$$\sum_{i} r_{i} x_{i} = 0 \iff \sigma(x_{1}, \dots, x_{n}) = 0$$

$$\iff (x_{1}, \dots, x_{n}) \in K \otimes M$$

$$\iff (x_{1}, \dots, x_{n}) = \sum_{i} k_{i} \otimes m_{i},$$

令 $k_i = (s_{1i}, \dots, s_{mi})$ 。 则有 $x_j = \sum_i s_{ji} m_i, \qquad \sum_i r_j s_{ji} = 0.$ 必要性。任给一正合序列

$$\cdots \stackrel{i_1}{\longleftarrow} N_1 \stackrel{d_2}{\longleftarrow} N_2 \stackrel{d_3}{\longleftarrow} N_3 \stackrel{d_4}{\longleftarrow} N_4 \longleftarrow \cdots$$

都可以分解成下面的短正合序列:

其中 $K_2 = \text{im} d_4 = \text{ker} d_3$, $K_2 = \text{im} d_3 = \text{ker} d_2$, $K_1 = \text{im} d_2 = \text{ker} d_1$, **斜线上的映射**都是自然导出的。显然,要证明

 $\cdots \longleftarrow N_1 \otimes M \longleftarrow N_2 \otimes M \longleftarrow N_3 \otimes M \longleftarrow N_4 \otimes M \longleftarrow \cdots$ 是正合的,仅须证明

$$0 \longleftarrow K_{i-1} \otimes M \longleftarrow N_i \otimes M \longleftarrow K_i \otimes M \longleftarrow 0$$

都是正合的。对张量积而言, $K_{i-1}\otimes M \otimes N_i\otimes M$ 两处正合性都是易证的。我们仅证明较难的 $K_i\otimes M$ 处的正合性。即已知

$$N \stackrel{\sigma}{\longleftarrow} K \longleftarrow 0$$

是正合的, M是平模, 求证

$$N \otimes M \stackrel{\sigma \otimes 1}{\longleftarrow} K \otimes M \longleftarrow 0$$

是正合的。以下我们分成几步 来 证 明。1) 设 R = N, K = R的 理想;2) 设 N 是自由模;3) 一般情形。

1) 设
$$(\sigma \otimes 1) \left(\sum_{i} r_{i} \otimes x_{i} \right) = 0$$
, $r_{i} \in K$, $x_{i} \in M$, 即
$$\sum_{i} r_{i} \otimes x_{i} = 0 \in R \otimes M \approx M$$
,
$$1 \otimes \sum_{i} r_{i} x_{i} = 0$$
, $\sum_{i} r_{i} x_{i} = 0$.

按照平模的定义,有 $x_i = \sum_i s_{ji}e_i$, $\sum_i r_j s_{ji} = 0$. 代入,得

$$\sum_{i} \left(r_{i} \otimes \sum_{i} s_{ji} e_{i} \right) = \sum_{i} \left(\left(\sum_{i} r_{i} s_{ji} \right) \otimes e_{i} \right) = 0 \in K \otimes M.$$

2) 设
$$N = \bigoplus Rf_i$$
 及 $r_i = \sum_i k_{ii}f_i$, $\sum_i r_i \otimes x_i = 0 \in N \otimes M$,

即

$$\sum_{i \neq j} k_{ij} f_i \otimes x_j = \sum_i f_i \otimes \left(\sum_i k_{ij} x_j \right) = 0.$$

因为 $N \otimes M = \bigoplus (Rf_i \otimes M)$, 所以上式即

$$f_i \otimes \left(\sum_i k_{ij} x_j\right) = 0, \quad i = 1, 2, \dots,$$

亦即

$$\sum_i k_i j f_i \bigotimes x_j = 0.$$

以下证法与 1) 全同。

3) 取自由模F,使 $F \xrightarrow{\epsilon} N \longrightarrow 0$ 正合。令 $L = \alpha^{-1}(K)$, $P = \alpha^{-1}(0)$,则有下面左边的图:

取张量积,则得上面右边的图。显然有 $F \otimes M \supset L \otimes M \supset P \otimes M$,以及

 $N \otimes M \approx F \otimes M/P \otimes M \supset L \otimes M/P \otimes M = K \otimes M$. 请把下面的定理与定理9.8相比。

定理9.16 对任意模M而言,下面的三个性质是等同的:

- 1) M是平模;
- 2) 对所有的 $n \ge 1$ 及所有的模 N、 $Tor_{\bullet}^{R}(M, N) = 0$:
- 3) 对所有的模 N, $Tor \{(M, N) = 0$.

证明 1) \Longrightarrow 2). 任取 N的一个射影化解序列 $0 \longleftarrow N \longleftarrow \hat{C}_0 \longleftarrow C_1 \longleftarrow \cdots$,

对M作张量积。根据上定理,

$$0 \longleftarrow N \otimes M \longleftarrow C_0 \otimes M \longleftarrow C_1 \otimes M \longleftarrow \cdots$$

也是正合的。所以 $Tor\{(M,N)=0 \ (\forall n \ge 1)$.

- 2) ==> 3)。 显然。
- 3) => 1)。 参考定理 9.15 的证明,我们仅须取一个短正合序列

$$0 \longleftarrow N' \longleftarrow N \longleftarrow N'' \longleftarrow 0$$

则有

 $0 \longleftarrow N' \otimes M \longleftarrow N \otimes M \longleftarrow N'' \otimes M \longleftarrow Torf(M,N) = 0$ 是正合的。所以M是平模。

对 競

- 1. 设L,M,N是R模,证明有如下模同构: Hom($M \otimes N,L$) \approx Hom(M,Hom(N,L)).
- 2. 设有R模正合序列

$$M' \xrightarrow{1} M \xrightarrow{r} M^{n} \longrightarrow 0$$

N是任意R模。证明下面序列正合。

$$M' \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{f \otimes 1} M'' \otimes N \longrightarrow 0$$
.

3. 设R=Z, p是素数,则 M=Z, N=Z/pZ

都是R模。定义模映射正合序列:

$$0 \longrightarrow M \xrightarrow{\prime} M$$

其中 $f(x) = px(对一切 x \in M)$ 。证明模映射序列

$$0 \longrightarrow M \otimes N \xrightarrow{f \otimes 1} M \otimes N$$

·不正合。

- 4. 设R=Z, m,n是正整数, d=(m,n). 又设M=Z/mZ, N=Z/nZ, L=Z/dZ 均为R 模。证明: $M\otimes N\approx L$.
 - 5. 证明射影模都为平模。
 - 6. 设 $M_1(i \in I)$ 是 R 模。证 明 $M = \bigoplus_{i \in I} M_i$ 是 平模的 充要条件是:每个 M_i 都是 平模。
 - 7. 设N是R模,证明N是平模的充要条件是,从任意R模 映射 $f: M' \rightarrow M$ 是单射可推出

$$f \otimes 1: M' \otimes N \rightarrow M \otimes N$$

也是单射。

8. 设M,N是两个循环群,视其为Z模,求 $Tor_{i}^{2}(M,N)$ 。

9. 设 M,N 是两个Z模, 证明 Tor (M,N) 作 为 加法群是一个挠群(torsion group).

§6 同调维数

我们把任意模M与射影模(或內射模)相比,自然有下面定义。 定义9.17 1)如果

$$0 \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_0 \longrightarrow M \longrightarrow 0$$

是M的最短的射影 化 解 序 列,则定义M的射影维数为 n ,记为 proj. dim M=n 。 如果不存在一个有限长的射影化解序列,则称M的射影维数为 ∞ 。

2) 如果

$$0 \longrightarrow M \longrightarrow C^0 \longrightarrow C^1 \longrightarrow \cdots \longrightarrow C^* \longrightarrow 0$$

是M的最短的內射上化解序列,则定义M的內射维数为n,记为 inj.dim M=n。如果不存在一个有限长的內射上化解序列,则称M的內射维数为 ∞ 。

讨论 1) 显然,

2) 取 $M = \mathbb{Z}/m\mathbb{Z}$. 显然M不是射影 \mathbb{Z} 模。我们有

$$0 \longrightarrow Z \xrightarrow{\pi} Z \longrightarrow Z/mZ \longrightarrow 0$$

所以 proj.dim M = 1.

我们有下面的定理:

定理9.17 设M是模, n是非负整数。则下面的条件等价。

- proj.dim M≤n;
- 2) 对任意模N, Ext*+1(M,N)=0;
- 3) 任给一个正合序列

$$0 \longrightarrow C_n \xrightarrow{i_n} C_{n-1} \xrightarrow{i_{n-1}} \cdots \xrightarrow{i_1} C_0 \longrightarrow M \longrightarrow 0$$
. 如果所有的 C_i $(i < n)$ 都是射影模,则 C_n 也是射影模。

证明 1) \Longrightarrow 2). 取M的长度不超过n的射影化解序列 $0 \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_0 \longrightarrow M \longrightarrow 0$, 计算 $Ext^{1+1}(M,N)$ 即可。

2) \longrightarrow 3). 把正合序列 $0 \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \cdots \longrightarrow C_0 \longrightarrow M \longrightarrow 0$

分解成短正合序列:

此处 $K_i = \ker d_i = \operatorname{im} d_{i+1}$. 应用定理9.7于短正合序列 $0 \longrightarrow K_i \longrightarrow C_i \longrightarrow K_{i-1} \longrightarrow 0$,

以及

$$\operatorname{Ext}^{i}(C_{i},N)=0 \quad (\forall j \geq 1),$$

立得

 $\operatorname{Ext}^1(K_{n-1},N) \approx \operatorname{Ext}^2(K_{n-2},N) \approx \cdots \approx \operatorname{Ext}^{n+1}(M,N) = 0.$ 所以,根据定理9.8, $C_n \approx K_{n-1}$ 是射影模。

3) ⇒ 1). 先构造一个自由化解序列

$$C_{n-1} \xrightarrow{\mathcal{X}_{n-1}} C_{n-2} \longrightarrow \cdots \longrightarrow C_0 \xrightarrow{\bullet} M \longrightarrow 0$$

 $\Phi C_n = \ker d_{n-1}$, 则自然有

$$0 \longrightarrow C_n \longrightarrow C_{n-1} \xrightarrow{d_{n-1}} C_{n-2} \longrightarrow \cdots \longrightarrow C_0 \xrightarrow{\sigma} M \longrightarrow 0$$

正合。根据 3) , C_n 是射影模。立得

proj.dim M≤n. 1

例14 1) 如果环R是域,则任意R模都是向量空间,也即自由R模。此时我们恒有

proj. dim
$$M = 0$$
.

2) 如果R是主理想整环,任取R模M及一个自由R模F,使

$$F \xrightarrow{\sigma} M \longrightarrow 0$$

正合。则 $K = \ker \sigma$ 也是一个自由模。于是,立得

$$0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0$$

是M的一个自由化解序列,即

proj.dim
$$M \leq 1$$
.

ı.

以上的例子表明了 $proj.dim\ M$ 显示环 R 的某种性质。请见下面的定理。

定理9.18 设R是一环,n是非负整数。则下面的条件是等同的。

1) 对所有的R模M, proj.dim M≤n₁

270

- 2) 对所有的R模N, inj.dim N≤n;
- 3) 对所有的R模M及N, $Ext_R^{n+1}(M,N) = 0$.

证明 1) ↔ 3). 见上面的定理9.17.

- $2) \Longrightarrow 3$)。 应用 N 的长度不超过 n 的内射上化解序列计算 $\operatorname{Ext}_{R}^{*+1}(M,N)$,立得。
 - 3) → 2). 取正合序列

$$0 \longrightarrow N \longrightarrow C^0 \longrightarrow C^1 \longrightarrow \cdots \longrightarrow C^{n-1} \longrightarrow D \longrightarrow 0,$$

此处 C^0 , C^1 , ..., C^{n-1} 是內射模。与上面定理9,17的证明一样,我们可以得出

$$\operatorname{Ext}^{1}(M,D) \approx \operatorname{Ext}^{*+1}(M,N) = 0.$$

所以D是內射模,也即上面的正合序列是N的內射上化解序列。于是 inj.dim $N \leq n$ 。

从上面的定理,我们立即导出,对给定的环R, sup(proj.dim M)=sup(inj.dim M)。

定义9.18 上面的那个值(可能是∞)称为R的整体维数,记为 gl dim R.

讨论 例 14 的意义是: 1) 如果R是域,则有 gl dim R=0;

2) 如果 R 是主理想整环,则有

gl dim $R \leq 1$.

例15 我们现举一例,说明gldim R可以是 ∞ . 令 K 是一城, $R = K[t^1, t^3]$ 。用如下的定义,可以使 K 成为 R 模:

$$f(t^{1},t^{3})k = f(0,0)k, k \in K.$$

我们要给出R模K的一个射影化解序列如下:

$$0 \longleftarrow K \stackrel{\bullet}{\longleftarrow} R \stackrel{d_1}{\longleftarrow} R \oplus R \stackrel{d_2}{\longleftarrow} R \oplus R \stackrel{d_3}{\longleftarrow} R \oplus R$$

$$\stackrel{d_4}{\longleftarrow} R \oplus R \stackrel{d_5}{\longleftarrow} R \oplus R \longleftarrow \cdots,$$

此处我们把 $R \oplus R$ 的元素写成直列 $\begin{bmatrix} a \\ b \end{bmatrix}$,而

$$d_1 = \begin{bmatrix} t^3 & -t^2 \end{bmatrix}, \quad d_2 = \begin{bmatrix} t^3 & t^2 \\ t^4 & t^3 \end{bmatrix}, \quad d_3 = \begin{bmatrix} t^3 & -t^2 \\ -t^4 & t^3 \end{bmatrix},$$

$$d_4 = d_2, \quad d_5 = d_3, \quad \cdots,$$

映射 ϵ , d_1 , d_2 , d_8 的定义即为

$$\varepsilon(f(t^2, t^3)) = f(0, 0),$$

$$d_1(\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} t^3 & -t^2 \end{bmatrix} (\begin{bmatrix} a \\ b \end{bmatrix}) = at^3 - bt^2,$$

$$d_2(\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} t^3 & t^2 \\ t^4 & t^3 \end{bmatrix} (\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} at^3 + bt^2 \\ at^4 + bt^3 \end{bmatrix},$$

$$d_3(\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} t^3 & -t^2 \\ -t^4 & t^3 \end{bmatrix} (\begin{bmatrix} a \\ b \end{bmatrix}) = \begin{bmatrix} at^3 - bt^2 \\ -at^4 + bt^3 \end{bmatrix}.$$

读者自行检验,上面的序列确是K的一个射影化解序列。我们现在用这个序列来计算 $Ext^*(K,K)$ 。先得到复合形

$$0 \longrightarrow \operatorname{Hom}(R,K) \xrightarrow{d_1^*} \operatorname{Hom}(R \oplus R,K) \xrightarrow{d_2^*} \cdots$$

任取 $f \in \text{Hom}(R,K)$ 及 $g \in \text{Hom}(R \oplus R,K)$ 。 令

$$f(1) = k_1, \quad g\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) = k_2, \quad g\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix}\right) = k_3.$$

不难看出,任取 $t \in R = K[t^2, t^3]$,有

$$f(r \cdot 1) = rf(1) = rk_1 = r(0,0)k_1,$$

$$g\left(r\left[\begin{array}{c}1\\0\end{array}\right]\right)=r(0,0)k_2,\quad g\left(r\left[\begin{array}{c}0\\1\end{array}\right]\right)=r(0,0)k_3.$$

立得

$$(d_1^*(f)) \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = f \left(d_1 \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) \right) = f (at^8 - bt^2)$$

$$= (at^8 - bt^2) k_1 = 0 \cdot k_1 = 0,$$

끠

 $d_1^{\bullet} = 0$.

聞法可知

 $d_2^* = d_3^* = \cdots = 0.$

于是

 $\operatorname{Ext}^{n+1}(K,K) = \operatorname{Hom}(R \oplus R,K) \neq 0.$

因此

proj.dim $K = \infty$, gl dim $R = \infty$.

下面的定理是"Hilbert 合冲定理"的一种形式。证法较繁,因此略去了。

定理 9.19 令 K 为域, $R = K[x_1, \dots, x_n]$, 其中 x_i 为变数。则有

gl dim
$$R = n_{\bullet}$$

有一个著名的 "Serre猜想"。

在1977年, Suslin及Quillen 分别独立地证明了 Serre 猜想。与定理9.19结合, 我们得出:

定理9.20 令 R 如定理9.19,则任意 R 模M都有一个长度不一超过n的自由化解序列。

习 騒

- 设环R的每个理想都是射影R模,证明对任意一个R模M, proj.dim M≤1.
- 2. 设 I 是环R 的理想。证明: 或 者 R/I 是射影R 模, 或 者

$$proj.dim(R/I) = proj.dim(I) + 1.$$

(这里认为 $+\infty = +\infty + 1.$)

- 3. 设0→M'→M→M"→→0是R模正合序列,而M是射影R模。证明:或者三个模都是射影R模,或者proj.dim(M") = proj.dim(M') +1.
- 4. 设 $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ 是 R 模正合序列。如果其中两个模射影维数有限,那么第三个模射影维数也有限。特别地,如果

proj.dim(M') = n, proj.dim $(M'') \le n$, 那么 proj.dim(M) = n.

5. 设 0 \longrightarrow M' \longrightarrow M' \longrightarrow 0 是 R 模正合序列,证明

proj.dim $M'' \leq \max\{\text{proj.dim } M', \text{proj.dim } M\} + 1$.

6. 设 $0 \longrightarrow M' \longrightarrow M' \longrightarrow 0$ 是 R 模正合序列,证明

proj.dim $M \leq \max\{\text{proj.dim } M', \text{ proj.dim } M''\}$.

- 7. 证明 gl dim R≤1的充要条件是R的每个理想都是射影 R 模。
 - 8. 试求proj.dim(Q)和inj.dim(Z)。(Q,Z都看作Z模。)
 - 9. 设 $M_i(i \in I)$ 是R模, $M = \prod_{i \in I} M_i$. 证明

inj.dim $M = \sup\{\text{inj.dim } M_i\}$.

10. 证明 gl dim(Z) = 1.

附录 代数曲线论简介

(一) 在微积分学中, 我们用部分**分式的方法, 可以求下列** 积分:

此处f(x)是一个一元有理函数。进一步考虑

(2)
$$\int f(\sin\theta,\cos\theta)d\theta,$$

此处 $f(\sin\theta,\cos\theta)$ 是 $\sin\theta$ 与 $\cos\theta$ 的有理函数。令 $\sin\theta = y$, $\cos\theta = x$, 那么x,y适合圆的方程式

$$x^2+y^2=1.$$

如图 1, 连接(-1,0)与 $(\cos\theta,\sin\theta)$ 成一直线 ℓ 。我们用直线 ℓ 得出圆的参数方程如下。

i:
$$y = t(x+1)$$
, $t = tg \frac{\theta}{2}$.

将其与圆的方程式联立求解科弃去×=-1, y=0, 得

$$x = \frac{1 - t^2}{1 + t^2}, \qquad y = \frac{2t}{1 + t^2}.$$

又有

$$-\sin\theta d\theta = dx$$
,

代入(2)式, 立得

$$\int f(\sin\theta,\cos\theta)\,d\theta = \int h(t)\,dt,$$

此处h(t)是t的一元有理函数。

总结上面的讨论,一般言之,我们可以讨论下列的积分:

$$(3) \qquad \qquad \int f(x,y)dx,$$

此处f(x,y)是一个有理函数,而且x,y适合下面的代数方程 (4) g(x,y)=0.

我们可以立刻把对(2)式的讨论推广到下面的情形:设(4)式有一有理参数表示式。

$$x = a(t), y = \beta(t), a(t), \beta(t) \in C(t).$$

那么(3)式可以变换成

(5)
$$\int h(t)dt, \quad h(t) \in C(t),$$

因此上式归结成(1)式,可用部分分式求积分。

由此可见,(3)式的积分问题,可以归结成(4)式所定义的"代数曲线"的性质问题。我们给出如下的定义。

定义1 由(4)式定义的代数曲线 C_1 , 如果有形如(5)式的有理参数表示式、则称 C_1 的亏格为 0.

- (二) 在数学中,有三个概念是一致的,即,
- 1) {无奇异点的复数射影代数曲线},
- 2) {紧致黎曼曲面};
- 3) {C上超越次数为1的域L}。

以下我们将自由地交错使用这三个概念,尤其是前两个概念。

在拓扑学中,我们知道,任取一个紧致曲面 C_1 ,用三角剖分 (trianglization)分解 C_1 ,令 δ_0 为点数, δ_1 为线段数, δ_2 为面数,那么,我们恒有下面的公式。

尤拉特征公式

尤拉特征 = $\chi = \delta_0 - \delta_1 + \delta_2 = 2 - 2g$,

其中g是紧致曲面 C_1 的"洞数",即亏格。

图 2 给出了亏格是 0,1,2 的图形。

据 2

(三)以下我们要用尤拉特征公式及贝朱定理(第三章)计算一个无奇异点的平面射影代数曲线 C_1 的亏格。

设齐次式 f(x,y,z) = 0定义了平面射影代数曲线 C_1 。适当选取无穷远直线z = 0,使 f(x,y,z)与 $f_z(x,y,z)$ 在 z = 0无交点。应用贝朱定理,立得

 $\#(\{f(x,y,1)=0\}\cap\{f_x(x,y,1)=0\})=n(n-1),$

此处 $n = \deg f(x,y,z) = C_1$ 的次数。

从代数几何的观点来看(见图 3), f=0与f; =0的交点正是

在作了上面的安排之后,我们可以如下计算 C_1 的亏格。在球面(x 轴加上无穷远点)上选取一个三角剖分,使垂直切线在x 轴上的落点,都是三角剖分的点。令球面三角剖分的点数 = δ_0 ,线

段数 = δ_1 ,面数 = δ_2 。然后把这个三角剖分上升成黎曼曲面 C_1 的一个三角剖分。又令它的点数 = Δ_0 ,线段数 = Δ_1 ,面数 = Δ_2 。显然,我们有下列的关系式。

$$\delta_0-\delta_1+\delta_2=2\,,$$

$$\Delta_0=n\delta_0-n(n-1)\,,\qquad \Delta_1=n\delta_1\,,\qquad \Delta_2=n\delta_2\,.$$

于是算出 C_1 的亏格g如下

$$\Delta_0 - \Delta_1 + \Delta_2 = 2 - 2g,$$

$$(n\delta_0 - n(n-1)) - (n\delta_1) + (n\delta_2) = 2 - 2g,$$

$$2n - n(n-1) - 2 = -2g,$$

Ŋĵ

$$g = \frac{1}{2}(n-1)(n-2)$$
,

不难看出、无奇异点的三次平面射影代数曲线的亏格是 1。

(四)与上面讨论类似地,我们可以得出Hurwitz公式如下:

$$2g_{C_1} - 2 = n(2g_{C_2} - 2) + \sum_{i} (e_i - 1),$$

此处自黎曼曲面 C_1 到黎曼曲面 C_2 有一个 n 次代数复叠映射, g_{C_1} 是 G_1 的亏格, g_{C_2} 是 G_2 的亏格, g_{C_3} 是 G_3 的亏格, g_{C_4} 是 G_4 是 G_4 的亏格, G_4 是 G_4 是 G_4 的亏格, G_4 是 G_4 是 G_4 的亏 G_4 是 G_4 是

(五) 我们回到积分(3)的讨论:

$$\int f(x,y)dx.$$

如果把积分号" \int "取消,则成了f(x,y)dx,称为域 $L \simeq C(x,y)$ 的微分形式。

对于一个函数 $f \in L = C(x, y)$,我们可以考虑它的零因子(f)。(zero-divisor)及极因子(f)。(pole-divisor)。

$$(f)_0 = \sum_i n_i p_i, \qquad (f)_\infty = \sum_i m_j q_j,$$

此处 $\sum_{i} n_{i}p_{i}$ 是 f 的零点的形式和, 而 n_{i} 是 零点 p_{i} 的 重 数; $\sum_{i} m_{i}q_{i}$ 是 f 的极点的形式和,而 m_{i} 是极点 q_{i} 的重数。 与复变 函数论类似,不难证明,一个有理函数的零点数等于极点数。 换 言之,我们有下列公式;

$$\deg(f) = \deg(f)_0 - \deg(f)_\infty = \sum_i n_i - \sum_i m_i = 0.$$

对于一个微分形式fdx 及任意点 p_i ,我们可以考虑 fdx/dt 在 p_i 点的零阶 n_i 或极阶 m_i ,此处 t 是在 p_i 点附近的参数。如此,我们可以定义 fdx 的因子为

$$\sum_{i} n_{i} p_{i} = \sum_{i} m_{j} q_{j},$$

以及 fdx 的次数 $deg(fdx) = \sum_{i} n_{i} - \sum_{i} m_{i}$ 。 任取另 一微分形式 gdy,则立得

$$\frac{fdx}{gdy}$$

是一函数。因此, 我们有

$$0 = \deg\left(\frac{fdx}{gdy}\right) = \deg(fdx) - \deg(gdy).$$

于是我们有下面的定义及定理。

定义2 任意微分形式 fdx 的因子 K 称为域 L 的典型因子。

定理1 域 L的任意两个典型因子 K_1,K_2 有相同的次数。

这种典型因子的次数是多少呢?见下定理。

定理2 令超越次数为 1 的域 L 的写格为 g (即与 L 相应的紧致黎曼曲面的写格是 g),fdx 是 L 的微分形式,那么

$$\deg(fdx) = 2g - 2.$$

证明 1) 设g=0, L=C(t). 我们仅须对dt证明 deg(dt)=

-2、 显然, 在 a 点处, t-a是它附近的参数, 以及

$$\frac{dt}{d(t-a)}=1.$$

所以dt在有限点 a 处的零阶或极阶恒为 0。在无穷远点附近, $t=t^{-1}$ 是参数,以及

$$\frac{dt}{d\tau} = \frac{d\tau^{-1}}{d\tau} = -\frac{1}{\tau^2}.$$

因此 dt 在无穷远点有极阶 2. 所以

$$\deg(4t) = -2 = 2g - 2.$$

2) 以下对g>0证明。令 $L=C(x,y) \supset C(x)=F$ 。取 dx 为 F 及 L 的微分形式。我们有,在对 F 计算时,

$$\deg(dx) = -2 = 2g_F - 2.$$

L是F的 n 次代数重叠。对非分歧点考虑,dx对F的一个零点将上升到L为 n 个零点;同样的,dx对F的一个极点将上升到L为 n 个极点。我们再对分歧点考虑。设L的点 q_1 为分歧指数 e_1 的对F的 p_1 的复叠。设 q_1 点附近的参数为 i ,则有

$$x = \varepsilon t^{\bullet} \iota, \quad \varepsilon(q_i) \neq 0.$$

即有

$$\frac{dx}{dt} = e_i \varepsilon t^{\bullet} i^{-1} + \frac{d\varepsilon}{dt} t^{\bullet} i.$$

于是dx在 q_i 点的零阶为 $e_i - 1$ 。综上所述,不难看出(参考Hurwitz 公式),在对L计算时,

$$\deg(dx) = n(2g_F - 2) + \sum_i (e_i - 1) = 2g_L - 2.$$

(六) 令D是城L的一个因子。换句话说,

$$D = \sum_{i} n_i p_i - \sum_{i} m_i q_i,$$

以上的和是有限形式和, p_i 及 q_j 是 L 的点(即 L 的赋值), n_i , m_j 均为非负整数。令

$$\deg D = \sum_{i} n_{i} - \sum_{j} m_{j},$$

$$l(D) = \dim_{\Omega} \{ f \in L : (f) + D \geqslant 0 \},$$

上面的不等式 $(f) + D \ge 0$ 即因子(f) + D中无负项的意思。我们有下列的著名定理。

Riemann-Roch定理 恒有

$$l(D) = \deg D - g + 1 + l(K - D)$$

此处 凡是一个典型因子。

我们不给出 Riemann-Roch 定理的证明,而是给出它的一些应用如下。

定理 3 l((dx)) = g.

证明 在Riemann-Roch定理中, 取D = K = (dx). 此时 K - D = 0.

 $l(0) = \{ 无极点的函数 \}$ 的维数 = $\dim_a C = 1$.

以定理 2 的结果代入Riemann-Roch 定理, 立得

$$l((dx)) = (2g-2) - g + 1 + 1 = g$$
,

无极点的微分形式 fdx 称为 L 的正则微分形式。

定理 4 L的所有正则微分形式构成的 C 向量空间的维数 = g.

证明 fdx 是正则的 \iff $(fdx) = (f) + (dx) \ge 0$. 于是自上 定理立得本定理。

例 考虑下面的代数曲线C:

$$f(x,y) = y^2 - x(x-1)(x-2) \approx 0.$$

考虑 (f,f_x,f_y) ,不难看出,C在所有有限点都是非奇异的。在无穷远点来考虑,我们首先把f(x,y) 齐次化,得出

$$F(x,y,z) = y^{2}z - x(x-z)(x-2z).$$

再求z = 0时(相当于无穷远直线上)的解,即x = 0,z = 0, $y \neq 0$ 。可令y = 1。得出

$$z-x(x-z)(x-2z)=0.$$

此曲线在x=0, x=0点显然是非奇异的。因此我们知道此代数曲线是无奇异点的三次曲线。应用第三部分的算式,立得

$$g = \frac{1}{2}(3-1)(3-2) = 1.$$

根据定理 4 , 我们知道有一个正则微分形式。实际上,此微分形式可以如下算出,

$$0 = df = 2ydy - [x(x-1)(x-2)]'dx,$$

囬

$$\frac{2dy}{[x(x-1)(x-2)]'}=\frac{dx}{y}.$$

读者自证 dx/y 即是所求的正则微分形式。 |

我们给出下面的定义:

定义3 设域 $L \supset C$, $\operatorname{tr} \operatorname{deg}(L/C) = 1$. 那么,L 的正则微分形式构成的 C 向量空间的维数称为L 的几何亏格。

于是,上面的定理 4 即是说,一个无奇异点的代数曲线(或者说,一个紧致黎曼曲面)的几何亏格等于亏格。

汉英名词索引

_ **=**0

一秩离散赋值环 discrete valuation ring of rank 1	98
一般点 generic point	28
Artin-Rees 引理 Artin-Rees lemma	65
Artiom artinian ring	47
Auslander-Buchsbaum定理 Auslander-Buchsbaum theorem	89
Cohen-Seidenberg 上升定理 Cohen-Seidenberg going-up theorem	12
Dedekind整环 Dedekind domain	168
F.K.Schmidt的例 F.K.Schmidt's example	178
Hensel引建 Hensel's lemma	121,126
Hilbert-Serre 定理 Hilbert-Serre theorem	57,58
Hilbert合冲定理 Hilbert syzygy theorem	273
Hilbert特征多项式 Hilbert characteristic polynomial	61
Hurwitz公式 Hurwitz formula	192,279
I-adic 拓扑 I-adic topology	64
I.S.Cohen定理 I.S.Cohen's theorem	90
Jacobson根理想 Jacobson radical	45
Jordan定理 Jordan's theorem	46
Krull主題想定理 Krull's principal ideal theorem	85
Krull dimension	41
Krull &环 Krull domain	167
k-赋值 k-valuation	101
Lasker-Noether定理 Lasker-Noether theorem	37
Mittag-Leffler定理 Mittag-Leffler theorem	118
Newton-Puiseux 定理 Newton-Puiseux theorem	124
Poincaré級數 Poincaré series	53
Riemann-Roch 定理 Riemann-Roch theorem	282
Serre猜想 Serre's conjecture	273
Weierstrass限备定理 Weierstrass* preparation theorem	75

① 凡英文字母开始的词汇都并入一面之内。

Zariski 折抖 Zariski topology	2
几何号格 geometric genus	28
三角不等式 triangle inequality	93
写格 genus	276
上边缘 coboundary	220
上闭链 cocycle	220
上周调模 cohomology module	220
上链复合形 cochain complex	219
上化解序列 coresolution	239
与理想「相伴的分次环 graded ring associated with ideal f	52
与理想「相伴的分次模 graded module associated with ideal I	52
不可约子集 irreducible subset	28
不可约理想 irreducible ideal	32
不可约代数曲线 irreducible algebraic curve	28
不杂的 unmixed	151
中心 center	105
中山引運 Nakayama's lemma	45
分解型 decomposed	210
分解群 decomposition group	205
分解域 decomposition field	205
分歧性扩充 ramified extension	129
分歧型 ramified	210
分歧指数 ramification index	209
分次环 graded sing	51
分次模 graded module	51
分理想 fractional ideal	159
分母系 multiplicative system	1
内射模 injective module	238
为射上化解序列 injective coresolution	239
内射维数 injective dimension	288

互余集 complementary set	185
互余模 complementary module	185
互余基 complementary basis	184
无限的赋值 infinite valuation	105
尤拉特征公式 Euler's characteristic formula	277
认词 identify	3
化解序列 resolution	232
反变张量 contravariant tensor	256
五三	
代数多样体(代数集) algebraic variety	19
代数函数域 field of algebraic functions	144
代數整数环 ring of algebraic integers	158,176
正合序列 exact sequence	220
正規序列 normal series	46
正幾环 normal ring	148
正規代数多样体 normal variety	150
正则局都环 regular local ring	86
正用金数系 regular system of parameters	86
正異微分形式 regular differential form	282
正复合形 positive complex	219
主分週類 principal fractional ideal	159
主因子 principal divisor	150
主要赋值 essential valuation	167
平滑点 smooth point	86
平凡赋值 trivial valuation	99
平模 flet module	262
边缘 boundary	217
边缘算子 boundary operator	215
可逆的分理想 invertible fractional ideal	159
加法全序交换群 additive commutative totally ordered group	92
长度 length	46
古典理想理论 classical ideal theory	176

大 当

因子 divisor	150,280
因子群 group of divisors	150,167
因子类群 divisor class group	150,168
同调模 homology module	217
间伦 homotopy	228
共轭基 dual basis	185
共变张量 corariant tensor	256
全比环 total quotient ring	7
全序群 totally ordered group	92
有限的赋值 finite valuation	106
交集定理 intersection theorem	66
自由化解序列 free resolution	232
合成序列 composition series	46
约化了的环 reduced ring	27
导出函子 derived functor	247
收敛幂级数环 ring of convergent power serieses	74
多項式函数环 ring of polynomial functions	152
) 的数 order	70
齐庆元 homogeneous element	51
字母全序 lexicographic order	92
郑觟 cycle	217
负复合形 negative complex	219
七直	
局部化环 localized ring	2
局部环 local ring	4
馬部城 local field	140
馬部次数 local degree	140
希尔伯特零点定理(弱式) Hilbert Nullstellensatz(weak	form) 16
希尔伯特零点定理(强式) Hilbert Nullstellensatz(strong	form) 18
拟聚数空间 quasi-compact space	25
报业元 quasi-inverse	156
形式幂級数环 ring of formal power serieses	70

判别式	discriminant	190
余维数	codimension	48
位 pla	ace	96
连结映射	connecting mapping	22
投入映射	augmentation	232,23
	八直	
极小素理	想 minimal prime ideal -	4.4
极大谱集	maximum spectrum	23
极因子	pole divisor	279
非奇异点	non-singular point	86
非平滑点	non-smooth point	86
非分歧的	unramified	181
非分歧扩	nnramified extension	130
後差式	different	186
表差指数	differential exponent	187
典型赋值	canonical valuation	96
典型因子	canonical divisor	280
孤立素理想	isolated prime ideal	36
孤立准素组	b支 isolated primary component	36
孤文子群	isolated subgroup	100
拓扑环	topological ring	63
拓扑模	topological module	. 64
实赋 值	real valuation	100
直和因子	direct summand	234
范理想	norm of an ideal	193
奇异点	singular point	86
定义理想	ideal of definition	80
参数系	system of parameters	86
垂鮭性	catenary	147
	九 画	
相伴分次3	F associated graded ring	52
相伴分次机	associated graded module	52
相对次数	relative degree	177

相对同调群 relative homology group	ŹŹŠ
复合形 complex	216
映射 mapping	216
重数 multiplicity	52
指數賦值 exponential valuation	93
墊积 different	186
张置联 tensor product	258
独立的赋值 independent valuation	119
· · · · · · · · · · · · · · · · · · ·	
素因子 prime divisor	144
素清集 prime spectrum	23
诺德正规化定理 Noether's normalization theorem	11
谐德空间 noetherian space	29
射影代数曲线 projective algebraic curve	158
射影模 projective module	283
射影复合形 projective complex	235
射影化解序列 projective resolution	235,242
射影维数 projective dimension	268
惯性型 inertial	211
微性群 inertial group	206
惯性域 inertial field	207
根類想 radical	18
秩 rank	t00
准素理想 primary ideal	32
乘法全序交换群 multiplicative commutative totally ordered	group 93
+ - 5	
第一类素因子 first kind of prime divisor	147,148
第二类素因子 second kind of prime divisor	147
高度 hight	44
理想类群 ideal class group	168
十二 画	
默值 valuation	93

默值环 valuation ring	95
赋值域 valued field	101
赋值的限制 restriction of valuation	108
赋值的扩充 extension of valuation	107
剩余次数 residue degree	129,177
剩余维数 residue-dimension	101
剩余代数性的 residuely algebraic	101
剩余有理性的 residuely rational	101
幂零元素 nilpotent element	27
幂零根理想 nilradical	27
嵌入素理想 embedded prime ideal	36
嵌入准囊分支 embedded primary component	36
嵌入维数 embedding dimension	86
超曲面 hypersurface	86
等价的赋值 equivalent valuation	96
链复合形 chain complex	219
强三角不等式 strong triangle inequality	68,93
逼近定理 approximation theorem	117
短正合序列 short exact sequence	224
十二 画	
撤区 germ	116
量分形式 differential form	279
簡略准素分解 irredundant primary decomposition	34
算术亏格 arithmetic genus	55
十四 画	
缩分歧指数 reduced ramification index	129,177
1. 1 iii	
十 六 画 整数相关 integral dependence	9
	10
	· 11
	159
4 . 4 . 4 . 4	140
	140
整体次数 global degree 數体維数 global dimension	273