COMPUTER PROGRAMMING

SPRING 2024

1. Projectile Motion Simulation

Description: Simulate the motion of a projectile launched at an angle to the horizontal and calculate its position at regular time intervals using a loop.

Formulas:

$$x(t) = v_0 \cdot \cos(\theta) \cdot t$$

$$y(t) = v_0 \cdot \sin(\theta) \cdot t - \frac{1}{2}gt^2$$

Constants:

$$v_0 = 20 \,\text{m/s}$$

$$\theta = 30^{\circ}$$

$$g = 9.81 \,\text{m/s}^2$$

Inputs: $v_0 = 20 \text{ m/s}, \ \theta = 30^\circ, \ g = 9.81 \text{ m/s}^2$

2. Orbit Simulator

Description: Simulate the orbit of a planet around a star using a loop to update the planet's position over time.

Formula: Newton's Law of Universal Gravitation

Constants:

$$M = 2 \times 10^{30} \text{ kg}$$

 $G = 6.67430 \times 10^{-11} \text{ m}^3/(\text{kg s}^2)$

Inputs: $M = 2 \times 10^{30} \text{ kg}$, $G = 6.67430 \times 10^{-11} \text{ m}^3/(\text{kg s}^2)$

3. Temperature Conversion Table

Description: Generate a table of temperature conversions from Celsius to Fahrenheit and vice versa using loops.

Formulas: Celsius to Fahrenheit ($F = \frac{9}{5}C + 32$), Fahrenheit to Celsius ($C = \frac{5}{9}(F - 32)$)

Constants: None

Inputs: None (generate a table for a range of temperatures)

4. Free Fall Calculator

Description: Calculate the time it takes for an object to fall freely from a certain height using a loop to increment time until the object hits the ground.

Formula: $y(t) = \frac{1}{2}gt^2$

Constants: $g = 9.81 \text{ m/s}^2$

Inputs: $g = 9.81 \text{ m/s}^2$, y (height)

5. Wave Motion Simulation

Description: Simulate the motion of waves on a string and update the position of points on the string over time using a loop.

Formula: Wave equation, e.g., $y(x,t) = A \sin(kx - \omega t)$

Constants:

$$A = 1$$
$$\lambda = 2 \,\mathrm{m}$$
$$f = 5 \,\mathrm{Hz}$$

Inputs: A = 1, $\lambda = 2$ m, f = 5 Hz

6. Simple Harmonic Oscillator

Description: Simulate the motion of a mass on a spring undergoing simple harmonic motion and calculate its position over time using a loop.

Formula: $x(t) = A\cos(\omega t)$

Constants:

$$A = 0.1 \,\mathrm{m}$$

 $\omega = 2\pi \,\mathrm{rad/s}$

Inputs: A = 0.1 m, $\omega = 2\pi$ rad/s

7. Magnetic Field Calculation

Description: Calculate the magnetic field at different points around a current-carrying wire using loops to perform the calculations.

Formula: Magnetic field due to a current-carrying wire $(B = \frac{\mu_0 I}{2\pi r})$

Constants:

$$\mu_0 = 4\pi \times 10^{-7} \,\text{T m/A}$$
 $I = 5 \,\text{A}$

Inputs: $\mu_0 = 4\pi \times 10^{-7}$ T m/A, I = 5 A, r (distance from wire)

8. Optics: Snell's Law Simulation

Description: Simulate the behavior of light rays passing through different mediums using Snell's Law and update the path of light rays at interfaces. Use a loop to trace the path of light.

Formulas: Snell's Law: $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$

Constants: Refractive indices (n_1, n_2) , angles (θ_1, θ_2)

Inputs: $n_1 = 1.5$, $n_2 = 1.0$, initial angle (θ_1)

9. Simple Pendulum Simulation

Description: Simulate the motion of a simple pendulum using the pendulum equation. Use a loop to calculate the angular displacement and position over time.

Formulas: Pendulum equation: $\theta(t) = \theta_0 \cos\left(\sqrt{\frac{g}{L}}t\right)$

Constants: Initial angle (θ_0) , acceleration due to gravity (g), pendulum length (L)

Inputs: $\theta_0 = 0.1$ radians, g = 9.81 m/s², L = 1 meter

10. Gas Laws Simulator

Description: Simulate the behavior of an ideal gas in a container using the ideal gas law (PV = nRT). Use a loop to calculate pressure, volume, or temperature changes.

Formulas: Ideal gas law: PV = nRT

Constants: Gas constant (R), initial conditions (e.g., P_0 , V_0 , T_0)

Inputs: $R = 8.314 \text{ J/(mol · K)}, P_0 = 100 \text{ kPa}, V_0 = 1 \text{ m}^3, T_0 = 300 \text{ K}$

11. Charging and Discharging Capacitor

Description: Simulate the charging and discharging of a capacitor in an RC circuit. Use loops to calculate the charge or voltage across the capacitor over time.

Formulas: Charging: $Q(t) = Q_{\text{max}} \left(1 - e^{-\frac{t}{RC}} \right)$, Discharging: $Q(t) = Q_0 e^{-\frac{t}{RC}}$

Constants: Resistance (R), Capacitance (C), initial conditions (Q_{max}, Q_0)

Inputs: R = 1000 ohms, C = 0.001 farads, $Q_{\text{max}} = 0.001$ coulombs, $Q_0 = 0.001$ coulombs

12. Heat Transfer in a Rod

Description: Simulate the heat transfer in a one-dimensional rod using the heat conduction equation. Use loops to calculate temperature changes over time.

Formulas: Heat conduction equation: $Q = \frac{kA\Delta T}{d}$

Constants: Thermal conductivity (k), Cross-sectional area (A), initial and boundary conditions (e.g., T_0 , T_L)

Inputs: $k = 200 \text{ W/(m·K)}, A = 0.01 \text{ m}^2, T_0 = 100 \text{ °C}, T_L = 20 \text{ °C}$

13. Atomic Decay Chain Simulation

Description: Simulate the decay of a radioactive element with multiple decay stages using loops. Track the populations of different isotopes over time.

Formulas: For a decay chain involving multiple isotopes, each isotope undergoes radioactive decay according to its own decay constant (λ). The decay of an isotope follows the formula:

$$N(t) = N_0 \cdot e^{-\lambda t}$$

where: -N(t) is the population of the isotope at time t. $-N_0$ is the initial population of the isotope. $-\lambda$ is the decay constant for the isotope.

Constants: Decay constants (λ) for each isotope, initial populations (N_0) of each isotope.

Sample Inputs:

Isotope 1 (N1):

 $\lambda_1 = 0.01$ per hour

 $N_{1_0} = 1000$ particles

Isotope 2 (N2):

 $\lambda_2 = 0.02 \ per \ hour$

 $N_{2_0} = 500$ particles

Time interval (Δt) for simulation: 24 hours

Simulation time steps: 0, 1, 2, ..., 24 hours