National University of Singapore Electrical and Computer Engineering

CG2027 (Transistor-Level Digital Circuits) Assignment #2 Solution

AY21/22 Semester 1

Issued: Aug. 17, 2021 Due: Aug. 22, 2021 (18:00)

Problem 1: Load Estimate (Capacitance and Resistance)

We assume a wire length of 200um, and width of 0.2um.

- a) Calculate the value of C_{wire} for the wire segment A to B of the metal. Assume area capacitance is 19 aF/um², and fringe capacitance is 61 aF/um.
 - → Area Capacitance = $(19 \text{ aF/um}^2) * 200 \text{ um} * 0.2 \text{ um} = 0.76 \text{ fF}$

Fringe Capacitance= (
$$61 \text{ aF/um}$$
) * 200 um * $2 = 24.4 \text{ fF}$

$$C_{Total} = C_{Area} + C_{Fringe} = 0.76 \text{ fF} + 24.4 \text{ fF} = 25.16 \text{ fF}.$$

- b) Calculate the value of R_{wire} for the segment A to B. Assume the sheet resistance of the metal is given as $0.04/\Box$.
 - → Wire Resistance = $(0.04 \text{ ohm}/\Box)*200 \text{ um} / 0.2 \text{um} = 40 \text{ ohm}$

Problem 2: Propagation Delay and IR Drop

- a) For the wire given in Problem 1, assuming 4mA of current is flowing through the segment, what is the IR drop?
 - → IR drop = 4mA * 40 ohm = 160 (mV)
- b) If a voltage source with 50Ω output impedance is driving this wire segment, what is the propagation delay t_p ?
 - \rightarrow t_p = 0.69RC = 0.69 * (50+40) ohm * 25.16*10⁻¹⁵ = **1.562** (ps) (5% difference allowed)

Problem 3: Inverter Output Voltage

We assume two inverters: (a) an NMOS inverter with pull-up resistor, and (b) a CMOS inverter, as shown below. Assume the on resistance of all the transistors (M1-M3) is $10k\Omega$.

- a) For the NMOS inverter shown in the figure 3 (a), what is the steady-state V_{out} value when V_{in} =0V and 1V, respectively?
 - \rightarrow When $V_{in}=0V$, M1 is turned off, and V_{out} is charged to VDD=1(V) through R_D . Therefore, $V_{out}=1(V)$.
 - → When V_{in} =1V, M1 is turned on, and a voltage divider is formed between R_D (90kΩ) and $R_{on,M1}$ (10kΩ). Therefore, V_{out} =1*(10k)/(10k+90k) = 0.1(V).
- b) For the CMOS inverter shown in Fig. 3(b), what is the steady-state V_{out} value when V_{in}=0V and 1V, respectively?
 - → V_{in} =0V, M2 is turned off, and V_{out} is charged to VDD=1(V) through M3. Therefore, V_{out} =1(V).
 - \rightarrow V_{in}=1V, M3 is turned off, and V_{out} is discharged to GND through M2. Therefore, V_{out}=0 (V).

Note the output voltage of the CMOS inverter is independent of the on resistance of M2 and M3.