PROPOSED FORMULA FOR COUNTING MAGMA EQUATIONS

STANLEY BURRIS

The symbol + will be used for the binary operation of magma equations. The order of a magma term is the number of occurrences of + in the term. Thus the order of (x + y) + (x + z) is 3. There is an obvious 1-1 correspondence between magma terms of order n and plane binary trees of order n with the leaves labelled by the variables in the term. Let

$$T(n) \coloneqq \frac{1}{n+1} \cdot \binom{2n}{n}$$

This counts the number of plane binary trees of order n.

The order of a magma equation is the sum of the orders of the two sides. Thus the order of (x+y)+(x+z)=z+(x+x) is 5. The equation (v+w)+(v+u)=u+(v+v) obtained by relabelling the variables is considered to be "the same" as the previous equation as far as counting is concerned, as is the equation z+(x+x)=(x+y)+(x+z) obtained by switching the two terms. The only equation of the form t=t that will be included in the count is x=x.

The Stirling numbers $\binom{n}{m}$ of the second kind count the number of ways to partition a set of n elements into m non-empty subsets.

The number of bijections α of a set of n elements to itself is n!. The number of idempotent bijections α (that is, $\alpha^2 = \alpha$) is given by

$$\mathsf{Idem}(n) = \sum_{0 \le k \le \lfloor n/2 \rfloor} \binom{n}{2k} (2k-1)!!.$$

For integers $0 \le a \le b$ let E(a,b) be the number of magma equations $t_1 = t_2$ with t_1 of order a, t_2 of order b, counting up to relabelling, up to switching terms, and only allowing the equation x = x of the form t = t.

Date: October 1, 2025.

• If
$$a \neq b$$
:

$$E(a,b) = \frac{1}{2}T(a)(T(a)-1) \cdot \sum_{\substack{1 \le p \le a+1\\1 \le q \le b+1\\0 \le s \le \min\{p,q\}}} {a+1 \choose p} {b+1 \choose q} {p \choose s} {q \choose s} s! .$$

• If
$$a = b$$
:

$$\begin{split} E(a,b) &= \frac{1}{2} T(a)^2 \cdot \sum_{\substack{1 \leqslant p,q \leqslant a+1 \\ 0 \leqslant s \leqslant \min(p,q)}} \binom{a+1}{p} \binom{a+1}{q} \binom{p}{s} \binom{q}{s} s! \\ &+ \frac{1}{2} T(a) \cdot \sum_{\substack{1 \leqslant p \leqslant a+1 \\ 0 \leqslant s \leqslant p}} \binom{a+1}{p} \binom{p}{s} \mathrm{Idem}(s) \\ &- T(a) \cdot \sum_{\substack{1 \leqslant p \leqslant a+1 \\ p \leqslant s \leqslant a+1}} \binom{a+1}{p} \cdot \frac{a+1}{s} \end{split}$$

Let $\mathsf{Eqns}(n)$ be the number of magma equations of order n (under the given constraints). Then

$$\mathsf{Eqns}(n) = \sum_{0 \leqslant a \leqslant \lfloor n/2 \rfloor} E(a, n-a).$$

Let Eqns*(n) be the number of magma equations of order $\leq n$. Then

$$\mathsf{Eqns}^{\star}(n) = \sum_{0 \leqslant k \leqslant n} \mathsf{Eqns}(k).$$

Maple calculations for E(a, b) with $0 \le a \le 2$, $0 \le b \le 5$, and for Eqns(n), $Eqns^*(n)$ with $0 \le n \le 5$:

							n	Eqns(n)	$Eqns^{\star}(n)$
E	0	1	2	3	4	5	0	2	2
0	2	5	30	260	2842	36834	1	5	7
1		9	104	1015	12278	173880	2	39	46
2			427	8770	115920	1776348	3	364 4284	$410 \\ 4694$
							5	57882	62576

Email address: snburris@uwaterloo.ca