AMENDMENT

1. (Currently Amended) Anthraquinone dye compounds having the formulae:

I.
$$R_{1}NH O S \longrightarrow X-L \longrightarrow Z-Q$$

$$X-L \longrightarrow Z-Q$$

$$X-L \longrightarrow Z-Q$$

III.

$$\begin{array}{c|cccc}
N - N - L - Z & D & Q \\
R_1NH & O & S - C & C & R_2
\end{array}$$

$$\begin{array}{c|cccc}
N - C & N & R_2
\end{array}$$

$$\begin{array}{c|cccc}
N - C & N & R_2
\end{array}$$

$$\begin{array}{c|cccc}
N - C & N & R_2
\end{array}$$

$$R_6S$$
 R_6S
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7

VIII.
$$R_{s}S O S \longrightarrow X-L \longrightarrow Z-Q$$

$$S O S-R_{s}$$

$$X-L \longrightarrow Z-Q$$

XI. $R_{5}-S O S X_{2}CH_{2} C(R_{9})=CH$

XII. $R_{s}S \longrightarrow R \times L \longrightarrow Z - Q$ $R_{s}-S \longrightarrow S \longrightarrow X - L \longrightarrow Z - Q$

XIII. $\begin{array}{c}
N-N-L-Z \downarrow_{m}Q \\
N-N-L-Z \downarrow_{m}Q \\
R_{5}-S & O & S-C \downarrow_{N-C} \\
R_{2} & & \\
N-C \downarrow_{N-C} \\
R_{2} & & \\
R_{2} & & \\
\end{array}$

XV. $R_5 - S$ O S $R_5 - S$ $C(R_8) = CH_2$ X_2CH_2 $C(R_8) = CH_2$

XVI.

XVⅢ.

O NH
$$X_4CH_2 - C(R_8) = CH_2$$

$$X_4CH_2 - C(R_8) = CH_2$$

XIX.

XX.

$$\begin{array}{c|c}
N-N-\left[L-z\right]_{m}Q \\
N-C & O \\
N-C & N
\end{array}$$

$$\begin{array}{c|c}
N-N-\left[L-z\right]_{m}Q \\
N-C & O \\
R_{2} & N
\end{array}$$

$$\begin{array}{c|c}
L-z & O \\
R_{2} & O
\end{array}$$

<u>or</u>

XXI.
$$\bigcirc S \longrightarrow X_4CH_2 \longrightarrow C(R_8)=CH_2$$

$$X_4CH_2 \longrightarrow C(R_8)=CH_2$$

wherein:

R is selected from hydrogen or 1-3 groups selected from C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and halogen;

 R_1 is selected from C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, C_3 - C_8 -alkenyl, C_3 - C_8 -cycloalkyl, aryl and -L₁-Z-Q; R_2 = selected from hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and aryl;

R₃ and R₄ are independently selected from C₁ - C₆-alkyl and bromine;

 R_5 is selected from C_1 - C_6 -alkyl, substituted C_1 - C_6 alkyl, C_3 - C_8 -cycloalkyl, aryl, heteroaryl, -L₁-Z-Q,

R₆-is selected from

 R_7 is selected from hydrogen, substituted or unsubstituted C_4 – C_6 -alkyl, C_4 – C_6 -alkyl, halogen, hydroxy, substituted or unsubstituted C_4 – C_6 -alkylthio, sulfamoyl and substituted sulfamoyl;

R₈ is selected from hydrogen and C₁ - C₆-alkyl;

 R_9 is selected from the groups represented by R_1 and -L - Z - Q;

R₁₀ is selected from hydrogen and halogen;

X is a covalent bond or a divalent linking group selected from -O-, -S-, -SO₂-, -CO₂-, -CON(Y) - and -SO₂N(Y)-, wherein Y is selected from hydrogen, C₁- C₆-alkyl, substituted C₁-C₆-alkyl, C₃-C₈-cycloalkyl, C₃-C₈-alkenyl, aryl and -L-Z- Q;

 X_1 is selected from -O-, -S-, -SO₂- and -SO₂N(Y)-;

 X_2 is selected from -CO₂ - and -SO₂N(Y₁), wherein Y₁ is a group selected from hydrogen, C₁-C₆-alkyl, substituted C₁-C₆-alkyl, C₃-C₈-alkenyl, C₃-C₈-cycloalkyl, aryl, heteroaryl and -CH₂-p-C₆H₄-C(R₈)=CH₂;

 X_3 is selected from -CO₂-, -SO₂N(Y)-;

X₄ is selected from -CO₂-, -O- and -SO₂N(Y₁)-;

L is a divalent linking group selected from C_1 - C_8 -alkylene, C_1 - C_6 -alkylene-arylene, arylene, C_1 - C_6 -alkylene-arylene - C_1 - C_6 -alkylene, C_3 - C_8 -cycloalkylene, C_1 - C_6 -alkylene - C_3 - C_8 -cycloalkylene - C_1 - C_6 -alkylene, C_1 - C_6 -alkylene - Z_1 -arylene - Z_1 - Z_1 - Z_1 - Z_2 - Z_3 -alkylene and Z_2 - Z_3 -alkylene- Z_1 - Z_3 -and Z_4 -alkylene- Z_1 - Z_3 -and Z_4 -and Z_4 -and Z_4 - Z_5 -and Z_5 -and Z_6 -alkylene- Z_6

 L_1 is a divalent linking group selected from C_2 - C_6 -alkylene, C_1 - C_6 -alkylene- C_3 - C_8 -cycloalkylene- C_1 - C_6 -alkylene, C_1 - C_6 -alkylene, arylene,

 C_3 - C_8 -cycloalkylene, and C_2 - C_6 -alkylene- $[-Z_1$ - C_2 - C_6 -alkylene- $]_n$ -;

 L_2 -is-selected from C_2 - C_6 -alkylene, C_4 - C_6 -alkylene-arylene- C_4 - C_6 -alkylene- C_3 - C_6 -alkylene- C_4 - C_6 -alkylene;

Z is a divalent group selected from -O-, -S-, -NH-, -N(C_1 - C_6 -alkyl)-, -N(C_3 - C_8 alkenyl)-, -N(C_3 - C_8 cycloalkyl)-, -N(aryl)-, -N(SO_2C_1 - C_6 -alkyl) and -N(SO_2 aryl)-, provided that when Q is a photopolymerizable optionally substituted maleimide radical, Z represents a covalent bond; Q is an ethylenically-unsaturated, photosensitive polymerizable group; and

m and m₁ each is 0 or 1.

2. (Original) Anthraquinone compounds according to Claim 1 wherein the ethylenically-unsaturated, photosensitive copolymerizable groups represented by Q are selected from the following organic radicals:

Docket: 71268 (US06)

PATENT

la $-COC(R_{11})=CH-R_{12}$

IIa $-CONH-COC(R_{11})=CH-R_{12}$

IIIa -CONH-C₁ - C₆-alkylene OCOC(R₁₁) -CH=CH-R₁₂

 $\begin{array}{c} \text{IVa} & \underset{|}{\overset{R_{13}}{\underset{|}{\text{-CO-C-NHCOC(R_{11})=CH-R_{12}}}}} \\ \text{-} & \underset{R_{14}}{\overset{R_{13}}{\underset{|}{\text{-CH-R_{12}}}}} \end{array}$

Va -COCH=CH-CO₂R₁₅

VIa -CO-(C(R₁₁)=CH₂

VIIIa $CONH C C(R_{11}) = CH_2$

IXa $-SO_2C(R_{11})=CH_2$

Xa -N R₁₆ And

wherein:

R₁₁ is selected from hydrogen and C₁-C₆-alkyl;

 R_{12} is selected from hydrogen; C_1 - C_6 -alkyl; phenyl and phenyl substituted with one or more groups selected from C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, -N(C_1 - C_6 -alkyl), nitro, cyano, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkanoyloxy and halogen; 1- and 2-naphthyl which may be substituted with C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy; 2- and 3-thienyl which may be substituted with C_1 - C_6 -alkyl or halogen; 2- or 3-furyl which may be substituted with C_1 - C_6 -alkyl;

 R_{13} and R_{14} are selected from hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, aryl or may be combined to represent a $-[-CH_2-]_{3-5}$ - radical;

 R_{15} is selected from hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, C_3 - C_8 -alkenyl, C_3 - C_8 -cycloalkyl and aryl;

R₁₆ is selected from hydrogen, C₁ - C₆-alkyl and aryl.

3. (Original) Anthraquinone compounds according to Claim 2 having the formula:

I.
$$R_{1}NH O S \longrightarrow X - L \longrightarrow_{m} Z - Q$$

$$X - L \longrightarrow_{m} Z - Q$$

- 4. (Canceled)
- 5. (Original) Anthraquinone compounds according to Claim 2 having the formula:

III.

$$\begin{array}{c}
N-N-\left[L-Z\right]_{m}C \\
R_{1}NH & O & S-C \\
N & C \\
N & R_{2}
\end{array}$$

$$\begin{array}{c}
N-N-\left[L-Z\right]_{m}C \\
N & C \\
N & C
\end{array}$$

$$\begin{array}{c}
N-C \\
N & C
\end{array}$$

wherein Z is -O-.

6. (Original) Anthraquinone compounds according to Claim 2 having the formula:

- 7. (Canceled)
- 8. (Canceled)

9. (Original) Anthraquinone compounds according to Claim 2 having the formula:

VШ.

wherein Z is -O-.

10. (Original) Anthraquinone compounds according to Claim 2 having the formula:

IX.

wherein Z is -O-.

- 11. (Canceled)
- 12. (Original) Anthraquinone compounds according to Claim 2 having the formula:

XII.

13. (Original) Anthraquinone compounds according to Claim 2 having the formula:

XIII.

$$R_{5}-S \longrightarrow O \longrightarrow S-C \longrightarrow N-\{L-Z\}_{m}Q$$

$$R_{5}-S \longrightarrow O \longrightarrow S-C \longrightarrow N-\{L-Z\}_{m}Q$$

$$R_{2}$$

wherein Z is -O-.

- 14. (Canceled)
- 15. (Original) Anthraquinone compounds according to Claim 2 having the formula:

XVI.

wherein Z is -O-.

- 16. (Canceled)
- 17. (Original) Anthraquinone compounds according to Claim 2 having the formula:

XIX.

18. (Original) Anthraquinone compounds according to Claim 2 having the formula:

- 19. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical la.
- 20. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical la wherein R_{11} is hydrogen or methyl and R_{12} is hydrogen.
- 21. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIa.
- 22. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIa wherein R_{11} is hydrogen.
- 23. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIIa.
- 24. (Original) Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIIa wherein R_{11} is hydrogen or methyl and R_{13} and R_{14} are methyl.
- 25. (Original) Anthraquinone compounds according to Claim 3 wherein X is $-CO_2$ -, L is $-CH_2CH_2$ -, and m is 1.

26. (Original) Anthraquinone compounds according to Claim 5 wherein L is – CH₂CH₂-, m is 1, and R₂ is hydrogen.

- 27. (Canceled)
- 28. (Original) Anthraquinone compounds according to Claim 9 wherein X is –CO₂-, L is -CH₂CH₂-, and m is 1.
- 29. (Original) Anthraquinone compounds according to Claim 10 wherein L is -CH₂CH₂-, R₂ is hydrogen and m is 1.
- 30. (Original) Anthraquinone compounds according to Claim 12 wherein X is $-CO_2$ -, L is $-CH_2CH_2$ -, and m is 1.
- 31. (Original) Anthraquinone compounds according to Claim 13 wherein L is -CH₂CH₂-, R₂ is hydrogen and m is 1.
- 32. (Original) Anthraquinone compounds according to Claim 15 wherein X_3 is $-CO_2$ -, L is $-CH_2CH_2$ -, and R is hydrogen or bromine.
- 33. (Original) Anthraquinone compounds according to Claim 15 wherein X_3 is $-CO_2$ -, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is -O-, and Q is an organic radical having the structure $-COC(R_{11})=CH_2$ wherein R_{11} is hydrogen, methyl or ethyl.
- 34. (Original) Anthraquinone compounds according to Claim 15 wherein X_3 is $-CO_2$ -, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is -O-, and Q is an organic radical having structure VIIIa wherein R_{11} , R_{13} and R_{14} each is methyl.

- 35. (Canceled)
- 36. (Original) Anthraquinone compounds according to Claim 17 wherein X_3 is $-CO_2$ -, L is $-CH_2CH_2$ -, and R is hydrogen.
- 37. (Original) Anthraquinone compounds according to Claim 17 wherein X_3 is $-CO_2$ -, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is -O-, and Q is an organic radical having the structure $-COC(R_{11})=CH_2$ wherein R_{11} is hydrogen, methyl or ethyl.
- 38. (Original) Anthraquinone compounds according to Claim 17 wherein X_3 is $-CO_2$ -, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is -O-, and Q is an organic radical having structure VIIIa wherein R_{11} , R_{13} and R_{14} each is methyl.
- 39. (Original) Anthraquinone compounds according to Claim 18 wherein L is -CH₂CH₂-, R₂ is hydrogen, and m is 1.
- 40. (Original) Anthraquinone compounds according to Claim 6 wherein X is $SO_2N(Y)$ -, L is C_2 - C_6 alkylene, R_3 and R_4 are methyl or ethyl, Y is hydrogen, m is 1 and m_1 is 0.
- 41. (Original) Anthraquinone compounds according to Claim 6 wherein X is $SO_2N(Y)$ -, L is C_2 - C_6 alkylene, R_3 and R_4 are methyl or ethyl, Y is hydrogen, m is 1 and m_1 is 1.
- 42. (Original) Anthraquinone compounds according to Claim 1 having formula VII wherein X₂ is -CO2- and R and R₈ are hydrogen.
- 43. (Original) Anthraquinone compounds according to Claim 1 having formula XI wherein X_2 is -CO2- and R_1 and R_8 are hydrogen.

44. (Canceled)

45. (Original) Anthraquinone compounds according to Claim 1 having formula XXI wherein X_4 is -CO2- and R and R_8 are hydrogen.

- 46. (Original) Anthraquinone compounds according to Claim 1 having formula IV wherein X_1 is -O-, Z is -O-, L is -CH₂CH₂-, R_3 and R_4 are methyl or ethyl, m is 1 and m_1 is 0.
- 47. (Original) A coating composition comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the dye compounds of Claim 1, and (iii) a photoinitiator.
- 48. (Currently amended) A coating composition according to Claim 47 comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the dye compounds of Claim 2 present in a concentration of about 0.05 to 15 weight percent based on the weight of component (i), and (iii) a photoinitiator present in a concentration of about 1 to 15 weight percent based on the weight of the polymerizable vinyl compound(s) present in the coating composition.
- 49. (Original) A coating composition according to Claim 48 wherein the polymerizable vinyl compounds comprise a solution of a polymeric, polymerizable vinyl compound selected from acrylated and methacrylated polyesters, acrylated and methacrylated polyethers, acrylated and methacrylated epoxy polymers, acrylated or methacrylated urethanes, and mixtures thereof, in a diluent selected from monomeric acrylate and methacrylate esters.
- 50. (Currently amended) A polymeric coating composition comprising a polymer of one or more acrylic acid esters, one or more methacrylic acid esters and/or other or other copolymerizable vinyl compounds, having copolymerized therein one or more of the dye compounds defined in Claim 1.

51. (Currently amended) A polymeric <u>coating</u> composition according to Claim 50 comprising a coating of an acrylic polymer of one or more acrylic acid esters, one or more methacrylic acid esters or a mixture thereof having copolymerized therein one or more of the dye compounds defined in Claim 2.

- 52. (Currently amended) A polymeric coating composition according to Claim 50 comprising a coating of an unsaturated polyester containing one or more maleate/fumarate residues; one or more monomers which contain one or more vinyl ether groups, one or more vinyl ester groups, or a combination thereof, and, optionally, one or more acrylic or methacrylic acid esters; or a mixture thereof having copolymerized therein one or more of the dye compounds defined in Claim 2.
- 53. (Currently amended) A polymeric coating according to Claim 51 containing from about 0.05 to 15.0 weight percent of the residue of one or more of the dye compounds of Claim-2 based on the weight of the coating.