

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

From BCNF to 3NF

Assignment Project Exam Help

There exists an algorithm that can generate a tossless decomposition into BENF.

(2) However, a BCNF-decomposition that is both lossless and dependency-preserving does not always exist.

WeChat: cstutorcs

 3NF is a less restrictive normal form such that a lossless and dependency preserving decomposition can always be found.

3NF - Definition

Assignment Project Exam Help

- A relation schema R is in 3NF if whenever a non-trivial FD $X \to A$ holds in R, he is superked by As a prime attribute.
- 3NF allows data redundancy but excludes relation schemas with certain kints of FDs (net partial FDs and transitive FDs).

Assignment Project Exam Help Assignment, course No, semester, Confirmed by ID, Staff Name},

 $\bullet \ \{ConfirmedBy_ID\} \to \{StaffName\}.$

1	https://tutorane.com												
1		Couls No	Semester	ConfirmedBy_ID	StaffName								
	123456	COMP2400	2010 S2	u12	Jane								
	123458	COMP2400	2008 S2	u13	Linda								
•	123458	COMP2600	2008 S2	u13	Linda								
1	WeC	hat: (cstut	orcs									

Is ENROL in 3NF?

- {StudentID, CourseNo, Semester} is the only key.
- ENROL is not in 3NF because {ConfirmedBy_ID} → {StaffName}, {ConfirmedBy_ID} is not a superkey and {StaffName} is not prime attribute.

Assignment Project Exam Help

Input: a relation schema R and a set Σ of FDs on R.

Output: a set ${\cal S}$ of relation schemas in 3NF, each having a set of FDs compute a minimal lever ${\bf Z}'$ or ${\bf Z}$ and start with ${\cal S}=\phi$

- Group FDs in Σ' by their left-hand-side attribue sets
- For each distinct left-hand-side X_i of FDs in Σ' that includes

- Remove all redundant ones from S (i.e., remove R_i if $R_i \subseteq R_j$)
- if S does not contain a superkey of R, add a key of R as R_0 into S.
- Project the FDs in Σ' onto each relation schema in S

Assignment Project Exam Help

https://tutorcs.com

Assignment Project Exam Help

Assignment Project Exam Help

Minimal Cover - The Hard Part!

Assignment Project Exam Help Let be a set of FDs. A minimal cover Σ_m of Σ is a set of FDs such that

- Σ_m is equivalent to Σ , i.e., start with $\Sigma_m = \Sigma$;
- Dependent: each FD in Σ_m has only a single attribute on its right hand side, i.e., replace each FD $X \to \{A_1, \dots, A_k\}$ in Σ_m with $X \to A_1, \dots, X \to A_k$:
- **Section in a final pack** FD (as Setion at tributes of the left hand side as possible, i.e., for each FD $X \to A$ in Σ_m , check each attribute B of X to see if we can replace $X \to A$ with $(X B) \to A$ in Σ_m ;
- **4** Remove a FD from Σ_m if it is redundant.

Minimal Cover

Assignment Project Exam Help

The minimal cover of a set of functional dependencies Σ always exists but is not necessarily unique.

exists but is not necessarily unique. https://tutorcs.com

• Examples: Consider the following set of functional dependencies:

• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the following set of functional dependencies:
• Examples: Consider the functional dependencies:
• Examples: Consider the functional dependencies:
• Examples: Consider the functional dependencies:
• Examples:
• Exa

 Σ has two different minimal covers:

- $\bullet \ \Sigma_1 = \{A \to B, B \to C, C \to A\}$
- $\bullet \ \Sigma_2 = \{A \rightarrow C, C \rightarrow B, B \rightarrow A\}$

Minimal Cover - Examples

Assingment, Projectuce Lexam \rightarrow Lelp because $\{A \rightarrow C\}$ is implied by the other two.

- Given the set of FDs $\Sigma = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$, we can compute the minimal cover of Σ as follows: OTCS.COM
 - check whether all the FDs in Σ have only one attribute on the right hand side (look good);
 - etermine if $AB \rightarrow D$ has a Stelling in little on the left hand side $(AB \rightarrow D)$ can be replaced by $B \rightarrow D$);
 - 4 look for a redundant FD in $\{B \rightarrow A, D \rightarrow A, B \rightarrow D\}$ $(B \rightarrow A \text{ is redundant})$;

Therefore, the minimal cover of Σ is $\{D \to A, B \to D\}$.

Normalisation to 3NF – Example

Assign Englanding Project Exam Help (Studentil), CourseNo, Semester (Confirmed By 1D, Staff Name)

 $\bullet \ \{ConfirmedBy_ID\} \rightarrow \{StaffName\}$

h	ſ	f	31	d	þ	C	٦t	E)	•	¢	gli	u	Sí	۱	О	H	<u>_</u>	Se	7	n	75	te	7	(70	หา	fir	m	9	P	(י	_ID		Sta	ffNa	ame	
L	t	ι	_	ا			_	C	<u> </u>	• 4	_	/	•		L	L	4	•	•	_	٠'	_	/	•	•	•	_	•	,	<u>.</u>	ı	_						

• Can we normalise ENROL into 3NF by a lossless and dependency preserving desomposition?

CSTUTOTCS

Normalisation to 3NF – Example

$Assign Energy Project Exam Help \\ StudentlD, CourseNo, Semester) \rightarrow \{Confirmed By LD, StaffName\} \\ Project Exam Help \\ Confirmed By LD, StaffName\} \\ Project Exam Help \\ Confirmed By LD, StaffName\} \\ Project Exam Help \\ Confirmed By LD, StaffName\} \\ Project Exam Help \\ Confirmed By LD, StaffName \\ Confirm$

{ConfirmedBy_ID} → {StaffName}

h	Studentle	CourseNo	Semester	ConfirmedBy_ID	StaffName
1	utps.	// tut	OLCB	·COIII	

- A minimal cover is {{StudentID, CourseNo, Semester}} →
- Hence, we have
 - R₁={StudentID, CourseNo, Semester, ConfirmedBy_ID} with {StudentID, CourseNo, Semester} → {ConfirmedBy_ID}
 - R₂={ConfirmedBy_ID, StaffName} with $\{ConfirmedBy_ID\} \rightarrow \{StaffName\}$
 - Omit R₀ because R₁ is a superkey of ENROL.

3NF - Exercises

Assignment Project Lxam Help

• Exercise 1: $R = \{A, B, C, D\}$ and $\Sigma = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$:

https://tutorcs.com

 $\begin{array}{l} \textbf{Exercise 2:} B = \{A,B,C,D\} \text{ and } \Sigma = \{AD \rightarrow B,\ AB \rightarrow C,\ C \rightarrow B\}: \\ \textbf{CSTUTOTCS} \end{array}$

3NF - Exercises

Assignments Projecto wam Help

• Exercise 1: $R = \{A, B, C, D\}$ and $\Sigma = \{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$:

The 3NF-decomposition is {ABD, BC}.

$\begin{array}{l} \text{ Recise 2: } R = \{A,B,C,D\} \text{ and } \Sigma = \{AD \rightarrow B,\ AB \rightarrow C,\ C \rightarrow B\}: \\ \bullet \ \Sigma \text{ is its own minimal cover.} \end{array}$

- $R_1 = ABD$, $R_2 = ABC$, $R_3 = CB$ (omit R_3 because $R_3 \subseteq R_2$ and omit R_0 because R_1 is a superkey of R)
- The 3NF-decomposition is {ABD, ABC}.