Fundamental Limits to Performance of Quantum Well Infrared Detectors

Amnon Yariv

California Institute of Technology

Pasadena, California 91125

ABSTRACT

Radiometric, density of states (material), and thermal considerations are used to obtain the figure of merit of the quantum-well GaAs/GaAlAs infrared detctors described by Smith et. al⁽¹⁾. The results are compared with HgCdTe, the present industry standard, as well as with recent experiments at other laboratories.

⁽¹⁾ J.S. Smith, L.C. Chiu, S. Margalit, A. Yariv and A.Y. Cho, J. Vac. Sci. Tech. B, 376 (1986).

Fundamental
Limits to
Quantum Well
Infrared
Detectors

Amnon Yariv California Institute of Technology

> Michael Kinch Texas Instruments

S. Borenstain Jet Propulsion Laboratory

I. Gravé California Institute of Technology

Fig. 3. (a) A schematic drawing of the proposed detector.
(b) Band diagram of the proposed structure.
(Smith et. al., Infrared Phys., Vol 23, p. 93, 1983)

Wavelength (µm)

$$\lambda$$
 PEAK = 8.00 μ m

$$\frac{\Delta\lambda}{\lambda}$$
 = 20%

#1045 L = 300 Å d = 50 Å 50 periods Ga .76 AL .24 As

DARK CURRENT OF GaAs/GaAIAs MQW DETECTOR AT 77K

Configuration

NOISE PHYSICS — P.C. DETC.

$$\overline{I} = (n_B + n_t) e \overline{V} A$$

$$\frac{\overline{i}_{N}^{2} = 4e\overline{i} \frac{\tau_{0}}{\tau_{d}} \Delta v}{\tau_{d}} = g \quad \tau_{d} = \frac{t}{v} = DRIFT TIME$$

GENERATION-RECOMBINATION NOISE

= 4e (
$$n_B + n_t$$
) $e\overline{V}A\left(\frac{\tau_o}{\tau_d}\right) \Delta v$

$$n_{B} = \frac{(P_{B}/A) \eta \tau_{O}}{h v t} = \frac{2\pi h v^{3} \Delta v (Sin^{2} \theta/2)}{c^{2} (e^{h v/k} T_{B} - 1)} \left(\frac{\eta \tau_{O}}{h v t}\right)$$

NEED TO COOL TILL

BLIP AND D*B

ASSUME $n_t < n_B (BLIP)$

$$\overline{i}_{NB}^2 = 4e (n_B e \overline{v}A) \frac{\tau_o}{\tau_d} \Delta v, \quad \tau_d = \frac{t}{\overline{v}}$$

$$= \frac{4e^2 P_B \eta \Delta v}{h v} \left(\frac{\tau_0}{\tau_d}\right)^2, \quad n_B = \left(\frac{P_B \eta \tau_0}{Ah v t}\right)$$

$$\overline{i_s^2} = \left(\frac{\eta P_s e}{hv}\right)^2 \left(\frac{\tau_o}{\tau_d}\right)^2$$

DEFINE: NEP = VALUE OF P S WHICH MAKES

$$\overline{i_s^2} = \overline{i_{NB}^2}$$

$$NEP = 2\sqrt{\frac{A\Delta v(P_B / A)}{\eta}}$$

$$D_{B}^{\star} \equiv \frac{\sqrt{A\Delta\nu}}{NEP} = \frac{1}{2}\sqrt{\frac{\eta}{h\nu(P_{B}/A)}}$$

REMINDER:

TO OBTAIN D_B^* MUST COOL SO $n_t < n_B$. SO <u>NEED TO FIND DEPENDENCE OF</u> n_t ON T.

$$n_{t} = \frac{m^{*}}{\pi h^{2} L} \int_{V}^{\infty} \left\{ 1 + Int \left[L \left(\frac{2m^{*}(E-V)}{\pi^{2} h^{2}} \right)^{1/2} \right] \right\} \times \frac{dE}{e(E-E_{F})/kT+1}$$

$$n_t = n_0 \left(\frac{d}{L}\right) \frac{kT}{E_F} \exp\left[-(V - E_F)/kT\right]$$

SUMMARY

$$D_{B}^{\star} = \frac{1}{2} \sqrt{\frac{\eta}{h\nu(P_{B}/A)}}$$

 $n_t < n_B$ FOR BLIP i.e.

$$n_{o} \frac{kT}{E_{F}} \frac{d}{L} e^{-(V-E_{F})/kT} \approx \frac{P_{B} \eta \tau_{o}}{Ahvt}$$

$$\Rightarrow \text{ IF } \tau_{\text{O}} \uparrow \text{ T } \uparrow$$
 Q. WELL $\tau \sim 10^{-11} \text{ s}$ HCT $\tau \sim 10^{-6} \text{ s}$

Thermal generation current vs temperature for GaAs/AlGaAs IR superlattices and HgCdTe alloys at $\lambda_c = 8.3$ and 10 μ m. The assumed effective quantum efficiencies are $\eta = 0.125$ and 0.7 for GaAs/AlGaAs and HgCdTe, respectively.

M. A. Kinch and A. Yariv 2094

(APL, Vol. 55, Nov., 1989)

$$t_{q} = \text{TIME OVER WELL} = \frac{d}{\mu\epsilon} \sim 5 \text{x} 10^{-14} \, \text{s}$$

$$t_{op} = \text{TIME TO EMIT LO PHONON}$$

$$\sim 10^{-13} \, \text{s}$$

$$t_{op}/t_{q} \sim 2 - 5$$

$$P_{cap}(E) = 1 - \sum_{x=0}^{I_n(E/h\omega_{op})} \frac{(\tau_{opt}/t_q)^x}{X!} e^{-\tau_{opt}/t_q}$$

probability of capture by optical phonon emission as a function of the energy at injection and $(\tau_{
m op}/t_q)$

(S. Smith, Ph.D. Thesis, Caltech, April, 1986)