Search Problem

Property	BFS	UCS	DFS	DLS	GFS	A*
Completeness	\mathbf{YES} , b finite	YES*	NO	NO	NO	YES*
Optimal	NO	YES	NO	NO	NO	YES*
Time	$\mathcal{O}(b^{d+1})$	$\mathcal{O}(b^{1+\lfloor C^*/\epsilon \rfloor})$	$\mathcal{O}(b^{m+1})$	$\mathcal{O}(b^{\ell+1})$	-	$\mathcal{O}(b^{1+\lfloor C^*/\epsilon \rfloor})$
Space	$\mathcal{O}(b^{d+1})$	$\mathcal{O}(b^{1+\lfloor C^*/\epsilon \rfloor})$	$\mathcal{O}(bm)$	$\mathcal{O}(b\ell)$	-	
Frontier	Queue	Priority Queue	Stack	Stack	-	

*Condition: if b is finite, $cost > \epsilon > 0$

Notation: b: max num of successor (branching) of any node (maybe ∞); d: depth of (shallowest) goal node: m: max depth of a node from start node: C^* : optimal cost. $cost > \epsilon$

Definition: Complete: always find a solution; Optimal: find a least-cost solution; Time C.: number of nodes generated; Space C.: max number of nodes in memory

Uninformed Search

Path Checking: In every path $\langle p_k, c \rangle$, ensure that the final state c is not equal to any ancestors of c along this path: $c \notin \{s_0, s_1, ..., s_k\}$ (make sure does not go back). No increase time and space C. Cycle Checking: Keep track of all nodes previously expanded during the search using a list (close list). When expand n_k to obtain successor c: (1) Ensure c is not equal to any previously expanded node (2) If it is, do not add c to Frontier; Expansive S.C.: $\mathcal{O}(b^{d+1})$

Bread-first Search: children at end of Frontier (queue: last in last out), extract first of the F Depth-first Search: children at front of Frontier (stack: last in first out), extract first of the F

Depth-limited Search: DFS but only to a pre-specified depth limit D

Iterative Deepening Search: Starting at d = 0, loop DLS til solution or fail without cutting off Uniform Cost Search: expand least cost node on F. (Priority Queue), same as BFS if all same cost

Informed Search

Greedy Bread-first Search: f(n) = h(n); ignore cost of n; not complement or optimal

A* Search: f(n) = g(n) + h(n); g: cost path; h: heuristic estimate of cost: run out of time&memory

Poof C. Implies Admissible: $(\forall n_1, n_2, a)$ $h(n_1) \leq C(n_1, a, n_2) + h(n_2) \Longrightarrow (\forall n)$ $h(n) \leq h^*(n)$ (1)Base case: k = 1, one step away from s_g , since consistent: $h(s_i) \geq C(s_i, s_g) + h(s_g)$, since $h(s_g) = 0$, $h(s_i) \geq C(s_i, s_g) = h^*(s_i)$, therefore admissible

- (2) Induction step: Suppose assumption holds for every node that is k-1 action away from s_g , given a node s_i , it is k action away from s_g , thus optimal path has k > 1 steps
- (3) Since h is consistent, have: $h(s_i) \leq C(s_i, s_{i+1}) + h(s_{i+1})$
- (4) Note that s_{k+1} is on a least-cost path from s_i , must have the path s_{i+1} to s_g as well, by induction hypothesis have: $h(s_{i+1}) \leq h^*(s_{i+1})$
- (5) Combine inequality: $h(s_i) \leq C(s_i, s_{i+1}) + h^*(s_{i+1})$

Proof of Optimal with Consistency: $\forall n_1, n_2, h(n_1) \leq h(n_2) + C(n_1, a, n_2)$

- (1) WTS: $\hat{f}_{pop}(s_q) = f(s_i)$, when goal node is pooped, have found optimal
- (2) Base case: $\hat{f}_{pop}(s_0) = f(s_0) h(s_0)$
- (3) Induction step: Assume $\forall s_0, s_1, ..., s_k, \hat{f}_{pop}(s_i) = f(s_i)$, given:

$$\hat{f}_{pop}(s_{k+1}) = \hat{g}_{pop}(s_{k+1}) + h(s_{k+1}) \ge g(s_{k+1}) + h(s_{k+1}) = f(s_{k+1})$$

For s_{k+1} is only explored after s_k , require $f(s_i) \leq f(s_{k+1})$, need of consistency of h, pooping s_k

$$\begin{split} \hat{f}_{pop}(s_{k+1}) &= \min\{\hat{f}(s_{k+1}),\,\hat{g}_{pop}(s_k) + c(s_k,s_{k+1}) + h(s_{k+1})\} \\ &\leq \hat{g}_{pop}(s_k) + c(s_k,s_{k+1}) + h(s_{k+1}) \\ &= g(s_k) + c(s_k,s_{k+1}) + h(s_{k+1}) \\ &= g(s_{k+1}) + h(s_{k+1}) \\ &= f(s_{k+1}) \end{split}$$
 from IH

IDA* Search: reduce memory requirements of A*; cutoff is the f-value rather than the depth; at each iteration, the cutoff is the smallest f-value of any node that exceeded the cutoff on the previous iteration; avoids overhead with keeping a sorted queue of nodes, the Frontier occupies linear space.

CSPs

- (1) A set of variables V_1, \dots, V_n :
- (2) A (finite) domain of possible values $Dom[V_i]$ for each variable V_i
- (3) A set of constraints $C_1, ..., C_m$,

Unary: over one variable: C(X): X=2

Binary: over two variable: $C(X,Y): X+Y \geq 2$

Higher-order: over ¿3 variable: $All - Diff(V_1, ..., V_n) : V_1 \neq V_2, ..., V_2 \neq V_1, ... V_n \neq V_{n-1}$

- (4) Each variable V_i can be assigned any value from its domain: $V_i = d$ where $d \in Dom[V_i]$
- (5) Each constraint C Has a set of variables it operates over, called its scope.
- (6) Solution to a CSP: An assignment of a value to all of the variables such that every constraint is satisfied; unsatisfiable if no solution exists.

Back Tracking Search: searching through the space of partial assignments, rather than paths. Decide on a suitable value for one variable at a time. Order in which we assign the variables does not matter. If a constraint is falsified during the process of partial assignment, immediately reject the current partial assignment.

Back Tracking Search with Inference: every time assign a value to variable V, check all constrains over V and prune values from the current domain of the unassigned variables of the constrains

- (1) Value Assignment: define current domain (CurDom) of a value; first step to infer other values
- (2) **Degree Heuristic**: select the variable that is involved in the largest number of constrains on other unassigned variables
- (3) Minimum Remaining Values Heuristics: always branch on a variable with the smallest remaining values (smallest CurDom)
- (4) Least Construing Value Heuristic: always pick a value in CurDom that rules out the least domain values of other neighboring values in the constraint

Games

Properties: two player; finite number of states and moves (large- heuristic cutoffs); deterministic (perfect info/observable); **zero-sum**: fully competitive, total payoff to all players is constant

- 2 players Max and Min
- A set of positions P (states of the game)
- A starting positions $P \in P$ (game begins)
- A set of Terminal positions $T \subseteq P$ (game end)
- A set of directed edges E_{Max} between some positions, representing Max's move
- A set of directed edges E_{Min} between some positions, representing Min's move
- A utility/payoff function $U: T \to \mathbb{R}$, representing quality each terminal state is for player Max

Minmax Search

Max plays a move to change the state to the highest valued child $U(S_0) = max \{U(S_i), ..., U(S_n)\}$ Min plays a move to change the state to the lowest valued child $U(S_0) = min \{U(S_i), ..., U(S_n)\}$ Use **DFS** to save space (finite depth); T.C.: $\mathcal{O}(b^d)$; S.C: $\mathcal{O}(b^d)$

Alpha-Beta Pruning

At a Max node s

- $(1.1) \alpha_s$: the highest value of s children examine so far (changes as examine more children)
- (1.2) β : the lowest value of s parent examine so far (fixed)
- (2) If α_s becomes $\geq \beta$, stop expanding children of s; Min never choose to move from s parent, would choose one of s lower valued siblings

At a Min node s

- $(1.1) \alpha$: the highest value found so far by s parent by previous explored siblings (fixed)
- $(1.2) \beta_s$: the lowest value of value of s children examine so far (changes as explore more children)
- (2) If α_s becomes $\geq \beta_s$, stop expanding children of s; Max never choose to move from s parent, would choose one of s higher valued siblings
 - Set initial values: $\alpha = -\infty$ and $\beta = \infty$
 - While backing the utility values up the tree, identity α, β for each node (α/β) : best already explored along the path to the root of MAX/MIN)
 - At every node s, if $\alpha \ge \beta$ prune (remaining) children of s (α/β -cuts: pruning of MAX/MIN nodes)

Ordering Moves: Max prune best if best move for Max explored first; Min prune best if best move for Min explored first; can use heuristics to estimate and choose

Effectiveness: no pruning $(\mathcal{O}(b^d))$; if move **ordering is optimal** $(\mathcal{O}(b^{d/2}))$

Bayesian Networks

Probability

∩: **OR**; ∪: **AND**

Basic Rules: $P(U) = 1, P(A) \in [0, 1], P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Summing out Rule: $P(A) = \sum_{C_i} P(A \cap C_i)$, $P(A \mid B) = \sum_{C_i} P(A \mid B \cap C_i) P(C_i \mid B)$

Normalizing: dividing each number by the sum of the numbers:

- (1) normalize $[x_1, x_2, ...x_k] = \left[\frac{x_1}{\alpha}, \frac{x_2}{\alpha}, ..., x_k/\alpha\right]$, where α is the sum of all x_k
- (2) normalize $[x_1, x_2, ...x_k] = [x_1 \cdot \beta, x_2 \cdot \beta, ..., x_k \cdot \beta]$, where β is any constant

Conditional Probability:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Bayes Rule:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Chain Rule:

$$P(A_1 \cap A_2 \dots \cap A_n) = P(A_n \mid A_1 \dots \cap A_{n-1}) \cdot P(A_{n-1} \mid A_1 \dots \cap A_{n-1}) \cdot \dots \cdot P(A_2 \mid A_1) \cdot P(A_1)$$

Independence: $P(V_1 \mid V_2) = P(V_1)$ (V_1, V_2 are independent)

$$P(A \mid B) = P(A) \quad P(A \cap B) = P(A) \cdot P(B)$$

Conditional Independence: A is conditionally independent of B given C

$$P(A \mid B \cap C) = P(A \mid C) \quad P(A \cap B \mid C) = P(A \mid C) \cdot P(B \mid C)$$

Joint Distribution: $Dom[V_1] = Dom[V_2] = \{1, 2, 3\}, P(V_1, V_2)$ are vector of 9

$$P(v_1 = 1, V_2 = 1), P(V_1 = 1, V_2 = 2), ..., P(V_1 = 2, V_2 = 1), ..., P(V_1 = 3, V_2 = 3)$$

Conditional Probabilty Table (CPT): $Dom[V_1] = Dom[V_2] = Dom[V_3] \{1, 2, 3\}$, $P(V_1 \mid V_2, V_3)$ are 27 values; $P(V_1 = 1 \mid V_2 = 1, V_3 = 1), ..., P(V_1 = 3 \mid V_2 = 3, V_3 = 3)$

Bayesian Network

Conditional Independence:

 $E \rightarrow C \rightarrow A \rightarrow B \rightarrow H$:

- (1) B is independent of E, and C, given A, A is independent of E given C
- (2) Computation: $P(H \mid B, \{A, C, E\}) = P(H \mid B)$
- (3) Chain rule: $P(H, B, A, C, E) = P(H \mid B, A, C, E)P(B \mid A, C, E)P(A \mid C, E)P(C \mid E)P(E)$
- (4) Independence assumption: $P(H, B, A, C, E) = P(H \mid B)P(B \mid A)P(A \mid C)P(C \mid E)P(E)$
- (5) Joint distributions:

$$P(\mathcal{A} = \sum_{x_i \in Dom(X)} P(\mathcal{A} \mid x_i) P(x_i) = \sum_{x_i \in Dom(X)} P(\mathcal{A} \mid x_1) \sum_{y_i \in Dom(Y)} P(x_i \mid y_i) P(y_i)$$

Ex. $P(c) = P(c \mid e) P(e) + P(c \mid \neg e) P(\neg e)$

Network and Chain Rule

Variable Elimination & Factoring

VE sum out the innermost variable, computing a new function over variables in that sum.

D-Separation (Independence)

Independence: every X_i is conditionally independent of all of its nondescendants given it parents

- (1) A set of variables E d-separates X, Y if it blocks every undirected path in the BN between X, Y Let P be an undirected path from X, Y in a BN; let E (evidence) be a set of variables E blocks path P iff there is some node Z on path P such that:
 - $Z \in E$ and one arc on P enters (goes into) Z and one leaves (goes out of) Z
 - $Z \in E$ and both arcs on P leave Z
 - \bullet Both arcs on P enter Z and neither Z, nor any of its descendants are in E
- (2) X, Y are conditionally independent given evidence E if E d-separates X, Y

Knowledge Representation

Representation: Symbolic encoding of propositional believed

Reasoning: Manipulation of symbolic encoding of propositions to produce propositions that believed by the agent but are not explicitly stated

First-order Logic

Syntax: A grammar specifying what are legal syntactic constructs of the representation.

- Propositional variable: True or False variables
- $A \wedge B$ (conjection); $A \vee B$ (disjection); $A \Longrightarrow B$ (implication); $A \Longleftrightarrow B$ (bi-implication)
- ullet A st V of variables; A set of F of function symbols; A set of P of predicate/relation symbols

Let \mathcal{L} be a vocabulary, the set of first-order \mathcal{L} -formulas as defined:

- Atomic formula: $P(t_1, t_2, ..., t_n)$ where P is an n-ary predicate symbol in \mathcal{L} , and t_n are \mathcal{L} terms
- Negation: $\neg f$, where f is a \mathcal{L} -formula
- Conjection: $f_1 \wedge f_2 \wedge ... \wedge f_n$, where $f_1, ..., f_n$ are \mathcal{L} -formula
- Disjunction $f_1 \vee f_2 \vee ... \vee f_n$, where $f_1, ..., f_n$ are \mathcal{L} -formula
- Implication: $f_1 \implies f_2$, where f_1, f_2 are \mathcal{L} -formula
- Existential: $\exists x f$, where x is a variable and f is a \mathcal{L} -formula
- Universal $\forall x f$, where x is a variable and f is a \mathcal{L} -formula

Ex. AC(x): x belongs to Alpine Club; L(x, y): x likes y

Semantics: A formal mapping from syntactic constructs to set theoretic assertions Truth Assignment: a function τ from the propositional variables into the set of $\{T, F\}$

Let τ be a t.a. extension $\bar{\tau}$ of τ assigns either T, F to every formula and is defined as:

- If A = x, where x is a variable, then $\bar{\tau} = \tau(x)$
- $\bar{\tau}(\neg A) = T$, IFF $\bar{\tau}(A) = F$
- $\bar{\tau}(A \wedge B) = T$ IFF $\bar{\tau}(A) = T$ AND $\bar{\tau}(B) = T$
- $\bar{\tau}(A \vee B)$ IFF $\bar{\tau}(A) = T$ OR $\bar{\tau}(B) = T$
- $\bar{\tau}(A \implies B) = F \text{ IFF } \bar{\tau}(A) = T \text{ AND } \bar{\tau}(B) = F$

au satisfies a set Φ of formulas IFF au satisfies all formula in Φ

a formula A is a logical consequence of $\Phi \vDash A$ IFF for every t.a. τ satisfies Φ , then τ satisfies A **Structure**: let \mathcal{L} be a first order vocabulary, an \mathcal{L} -structure \mathcal{M} consists:

- Nonempty set M called the universe (domain) of discourse
- For each n-ary function symbol $f \in \mathcal{L}$, and associated function $f^{\mathcal{M}}: M^n \to M$ (if n = 0, then f is a constant symbol and $f^{\mathcal{M}}$ is simply an element of M. $f^{\mathcal{M}}$ is called the extension of the function symbol f in \mathcal{M})
- For each n-ary predicate symbol $P \in \mathcal{M}$, an assorted relation $P^{\mathcal{M}} \subseteq M^n$. $P^{\mathcal{M}}$ is called the extension of the predicate symbol P in \mathcal{M}

Variable Assignments: let \mathcal{M} be a structure and X be a set of variables. An object assignment σ for \mathcal{M} is mapping from variables in X to the universe of M

Recursive definition: let \mathcal{L} be a set of function and predicate symbols

- (1) Every variable x is a term;
- (2) if f is an n-ary function symbol in \mathcal{L} and $t_1, t_2, ..., t_n$ are \mathcal{L} -terms, then $f(t_1, t_2, ..., t_n)$ is a \mathcal{L} -term Let \mathcal{L} be a vocabulary and \mathcal{M} be an \mathcal{L} -structure, the extension $\bar{\sigma}$ of σ is defined recursively:
- (1) For every variable $x, \bar{\sigma}(x) = \sigma(x)$;
- (2) For every function symbol $f \in \mathcal{L}, \bar{\sigma}(f(t_1,...t_n)) = f^{\mathcal{M}}(\bar{\sigma}(t_1),...,\bar{\sigma}(t_n))$

Model Interpretation

For an \mathcal{L} -formula C, $\mathcal{M} \models C[\sigma]$ (\mathcal{M} satisfies C under σ , or \mathcal{M} is a model of C under σ) is defined recursively on the structure of C as:

- $\mathcal{M} \models P(t_1, ..., t_n) [\sigma] \iff \langle \bar{\sigma}(t_1), ..., \bar{\sigma}(t_n) \rangle \in P^{\mathcal{M}}$
- $\mathcal{M} \models (s = t) [\sigma] \iff \bar{\sigma}(s) = \bar{\sigma}(t)$
- $\mathcal{M} \vDash \neg A[\sigma] \iff \mathcal{M} \nvDash A[\sigma]$
- $\mathcal{M} \models (A \lor B)[\sigma] \iff \mathcal{M} \models A[\sigma] \lor \mathcal{M} \models B[\sigma]$
- $\mathcal{M} \models (A \land B)[\sigma] \iff \mathcal{M} \models A[\sigma] \land \mathcal{M} \models B[\sigma]$
- $\mathcal{M} \vDash (\forall x A) [\sigma] \iff \mathcal{M} \vDash A [\sigma(m/x)] \text{ for all } m \in M$
- $\mathcal{M} \models (\exists x A) [\sigma] \iff \mathcal{M} \models A [\sigma(m/x)] \text{ for some } m \in M$

 $\sigma(m/x)$ is an o.a. function exactly like σ , but maps the variable x to the individual $m \in M$: (1) For $y \neq x : \sigma(m/x)(y) = \sigma(y)$ (2) For $x : \sigma(m/x)(x) = m$

Bounded: an occurrence of $x \in A$ is bounded iff it is an sub-formula of A of the form $\forall xB$ or $\exists xB$; otherwise the occurrence is free

In a structure \mathcal{M} , formula with free variables might be true for some object assignments to the free variable and false to others

Sentence: a formula A is closed if it contains no free occurrence of a variable If σ and σ' agree on the free variables of A, then $\mathcal{M} \models A[\sigma] \iff \mathcal{M} \models A[\sigma']$

Corollary: if A is a sentence, then for any object assignments σ , and σ' :

$$\mathcal{M} \models A[\sigma] \iff \mathcal{M} \models A[\sigma']$$

so if A is a sentence (no free variables), σ is irrelevant and omit mention of σ , $\mathcal{M} \models A$ Satisfiability: let Φ be a set of sentences

- \mathcal{M} satisfies Φ ($\mathcal{M} \models \Phi$), if for every sentence $A \in \Phi$, $\mathcal{M} \models A$
- If $\mathcal{M} \models \Phi$, say \mathcal{M} is a model of Φ
- Say that Φ is satisfiable if there is a structure \mathcal{M} such that $\mathcal{M} \models \Phi$

Unsatisfiable: if A is a **logical consequence** of Φ , then there is no \mathcal{M} such that $\mathcal{M} \models \Phi \cup \{\neg A\}$

Resolution by Refutation

Knowledge Base: a collection of sentences that represent what the agent believes about the world Sentences in KB are explicit knowledge; logical consequences of the KB are implicit

Resolution works with formulas expressed in clausal form

 $\textit{Literal:} \ \ \text{an atomic formula or the negation of an a.f.} \ \ (\text{ex.} \ \ dog(Fido), \neg cat(fido))$

Clause: disjunction of literals (ex. $P(x) \vee \neg Q(x,y) \neg O(fido) \vee \neg Dog(fido)$)

Clausal Theory: a set of clauses, can be considered as conjection of clauses $(P(x) \lor \neg Q(x, y), \neg O(fido))$

Resolution Proof using inference rule

$$\frac{a_1 \vee a_2 \vee \ldots \vee a_n \vee c \quad b_1 \vee b_2 \vee \ldots \vee b_m \vee \neg c}{a_1 \vee a_2 \vee \ldots \vee a_n \vee b_1 \vee b_2 \vee \ldots \vee b_m}$$

Resolution by Refutation to Show: KMA

- Assume $\neg A$ is true to generate a contradiction (refutation)
- ullet Convert $\neg A$ and all sentences in KM to a clausal theory C
- Resolve the clauses in C until an empty clause is obtained

Eliminate Implications

Implication Rule: $A \to B \iff \neg A \lor B$

- $\neg (A \land B) \iff \neg A \lor \neg B$
- $\bullet \neg (A \lor B) \iff \neg A \land \neg B$
- $\bullet \ \, \neg \forall x A \iff \exists x \neg A$
- $\bullet \neg \exists x A \iff \forall x \neg A$

Standardize Variables: rename variables so that each quantified variable is unique Skolemizaation: remove existential quantifiers by introducing new function symbols

Convert to Prenex Form: bring all quantifiers to the front

 $(1) \forall x P \land Q \iff Q \land \forall x P \iff \forall x (P \land Q); (2) \forall x P \lor Q \iff Q \lor \forall x P \iff \forall x (P \lor Q);$

Conjunctions over disjunctions: $A \vee (B \wedge C) \iff (A \vee B) \wedge (A \vee C)$

Flatten nested $\land, \lor: A \lor (B \lor C)$ to $(A \lor B \lor C)$

Convert to Clauses

Resolution is refutation complete: If a set of clauses is unsatisfiable (i.e., when the answer is "YES") and so some branch contains [], a breadth-first search guaranteed to find [].

First-order unsatisfiability is semi-decidable, but not decidable. Thus, calculating entailments is semi-decidable and undecidable. First-order satisfiability is undecidable.

Decidable if there is some algorithm that correctly generates a "YES-NO" answer for every possible input. Otherwise, it's undecidable.

Semi-decidable if there is some algorithm that correctly generates "YES" answers, but does not terminate on some inputs for which the answer is "NO"