Recovering Cholesky Factor in Smoothing and Mapping

Sébastien Touchette June 27th, 2018

Table of Content

Problem Definition

Current Work

Propositions

summary

Results

Datasets

Improved Cost Function

Optimised Cost Function

Contributions

Future Work

Questions and Comments

Problem Definition Simultaneous Localisation and Mapping (SLAM)

- Robot localising itself while mapping an unknown environment
- Pose (s) and map of landmarks ($\mathcal{M} = \{I_1, I_2, \dots\}$) given observations (z) and odometry (u)

Problem Definition Current State of the Art

Incremental reordering

- Reorder affected nodes
- Resumed Cholesky

Full reordering

- Reorder all nodes
- Cholesky

Current Work - Propositions Proposition 1 : numerical changes

When two adjacent column in C change position, the new Cholesky factor $\bar{\mathbf{L}}$ can be recovered from \mathbf{L} as follows:

Current Work - Propositions Proposition 2 and 3 - Structural Changes

- The elimination tree needs to be update
- The multiplicity of column elements may need to be updated

indep. columns $(\max\{\pi^{-1}(j)\} < k < \pi(j))$ dependent columns $(\pi(j) = j + 1)$

$$\bar{\pi} = \pi | \pi(\pi^{-1}(j)) = k$$

$$\bar{\mathcal{L}}_{j}^{\sharp} = \mathcal{L}_{k}^{\sharp}$$

$$\bar{\mathcal{L}}_{k}^{\sharp} = \mathcal{L}_{i}^{\sharp}$$

$$\begin{split} \bar{\pi}(\mathit{I}) &= \begin{cases} j+1 & \mathit{I} \in \{\pi^{-1}(j)\} \setminus \mathcal{U}_{\mathit{C}} \\ j & \mathit{I} \in \{\pi^{-1}(j+1)\} \setminus \mathcal{U}_{\mathit{C}} \\ \pi(\mathit{I}) & \text{otherwise} \end{cases} \\ \bar{\mathcal{L}}_{j+1}^{\sharp} &= \mathcal{L}_{j+1}^{\sharp} - \mathcal{L}_{j} + \sum_{i \in \mathit{I},\mathit{I}} \mathcal{L}_{i} \end{split}$$

$$ar{\mathcal{L}}_{j}^{\sharp} = \mathcal{L}_{j}^{\sharp} + ar{\mathcal{L}}_{j+1} - \sum_{i \in \mathcal{U}_{c}} \mathcal{L}_{i}$$

Current Work - summary Hybrid Cholesky

- All nodes can be reordered
- Fraction of the cost of Full Cholesky (ordering dependent)

Results - Datasets Description

- Popular datasets in the literature
- Indoor/Outdoor, Experimental/Simulated

Dataset	Size	Loop Closings	Total Reordering	Reordered Using Factor Recovery	Author	Source
		Closings	rteordering	ractor recovery		
10k	64311	1431	32	6	Grisetti et al.	$SLAM++^{1}$
City10k	20687	10688	13	3	M. Kaess et al.	SLAM++
CityTrees10k	14442	4343	13	0	C. Stachniss	SLAM benchmarking ²
CSAIL	1172	128	11	8	C. Stachniss	SLAM benchmarking
FR079	1217	229	8	8	C. Stachniss	SLAM benchmarking
FRH	2820	1505	13	13	B, Steder et al.	SLAM benchmarking
Intel	1835	895	19	9	D. Hahnel Freiburg	SLAM++
Killian	3995	2055	11	8	M. Bosse and J. Leonard	SLAM++
Victoria Park	10608	3489	14	6	Jose Guivant	SLAM++

¹L. Polok and I. Viorela, Slam++, 2015.

²R. Kummerle, B. Steder, C. Dornhege, et al., Slam benchmarking, 2015. ← □ → ← ② → ← ② → ← ③ → ← ② → ○ ② ○

Results - Datasets Summary

- Performance gain, fact. time excluding overhead: 11.68%
- Performance gain, total time including overhead: -1.9%
- ullet Density reordering has high variability (< 12 samples)
- Overhead is a significant portion of the cost
- Overhead is higher for outdoor datasets
- Total runtime performance of CSAIL is unexpected

Results - Improved Cost Function Summary

- Performance gain, factorisation time: 12.21%
- Performance gain, total time : 1.9%
- Performs better than initial threshold
- Factorisation performance gain positive for almost all datasets

Results - Optimised Cost Function Threshold Selection

Table: Calculated and Optimized Thresholds

	Threshold		
Dataset	Calculated	Optimized	
10k	1	1.57	
City10k	32	56.98	
CityTrees10k	15	13.70	
CSAIL	144	208.82	
FR079	40	56.04	
FRH	96	4.99	
Intel	20	41.01	
Killian	53	25.97	
Victoria Park	9	8.44	

Results - Optimised Cost Function Summary

- Average performance gain, total time: 1.9%
- Performance gain, factorisation time: 17.6%
- Varying performance improvement over previous threshold
- Normalizing effect on the data

Contributions

- Factor Recovery
 - · Perform full reordering
 - Fraction of the cost of Full Cholesky
- Hybrid Cholesky³
 - Chooses between Factor Recovery and Full Cholesky
 - The best method is selected
- Comparison
 - Comparison with Full Cholesky
 - Multiple datasets spanning a variety of situations

³S. Touchette, W. Gueaieb, and E. Lanteigne, "Efficient cholesky factor recovery for column reordering in simultaneous localisation and mapping", *Journal of Intelligent & Robotic Systems*, vol. 84, no. 1, pp. 859–875, Dec. 2016, ISSN: 1573-0409. DOI: 10.1007/s10846-016-0367-7.

Future Work

Possible avenues of research include

- Further integrate in SLAM algorithm
- Correlate threshold to dataset characteristics
- Refine cost function

Questions and Comments

Thank you.

