

KV-Diagramm für 2 Variable:

	\overline{A}	Α
\overline{B}	$\overline{A} \wedge \overline{B}$	$A \wedge \overline{B}$
В	$\overline{A} \wedge B$	$A \wedge B$

Eine 1 auf einem Platz eines KV-Diagramms steht für eine Vollkonjunktion.

Beispiel:

Nr.	Α	В	Y
1	0	0	1
2	0	1	1
3	1	0	1
4	1	1	0

$$\overline{A}$$
 A
 \overline{B} 1 1
 B 1 0

Eine KV-Diagramm ist äquivalent zu einer Wertetabelle. Die Anordnung ist etwas anders.

KV-Diagramm für 3 Variable:

	$\overline{A}\overline{B}$	$A\overline{B}$	AB	$\overline{A}B$
\overline{C}	$\overline{A}\overline{B}\overline{C}$	$A\overline{B}\overline{C}$	$AB\overline{C}$	ĀBC
С	$\overline{A}\overline{B}C$	$A\overline{B}C$	ABC	ABC

Beispiel:

$$Y = \underline{ABC} \vee \underline{ABC} \vee \underline{ABC} \vee \overline{ABC}$$

	$\overline{A}\overline{B}$	$A\overline{B}$	AB	$\overline{A}B$
\overline{C}	0	0	1	0
С	0	1	1	1

Vereinfachen der Gleichung nach den Rechenregeln der Booleschen Algebra:

$$Y = AB\overline{C} \lor A\overline{B}C \lor ABC \lor \overline{A}BC$$

$$Y = AB(\overline{C} \lor C) \lor AC(\overline{B} \lor B) \lor BC(\overline{A} \lor A)$$

$$Y = AB \lor AC \lor BC$$

Vereinfachen der Gleichung mit Hilfe des KV-Diagramms:

$$Y = AB \lor AC \lor BC$$

Vereinfachen der Gleichung mit Hilfe des KV-Diagramms:

	$\overline{A}\overline{B}$	$A\overline{B}$	AB	ĀB	
\overline{C}	0	0	1	0	
С	0	1	1	1	

$$Y = \underline{AB} \vee \underline{AC} \vee \underline{BC}$$

Regeln für die Blockbildung:

- Jede 1 muss in mindestens einem Block erfasst werden.
- In einem Block sind 2ⁿ Einsen enthalten, also 1, 2, 4, 8, 16 ...
- Mit möglichst großen und möglichst wenigen Blöcken werden alle Einsen erfasst.
- Ein Block hat immer die Form eines Rechtecks.
- Der Term für einen Block wird durch die Variablen bestimmt, über die der Block geht.
 Variable, die sich über den Block ändern, entfallen. Die Variablen werden miteinander UND-verknüpft.
- Die einzelnen Terme (Blöcke) werden ODER-verknüpft.

Beispiel 1:

<i>X</i> ₁	X ₂	X ₃	У
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

	$\overline{X}_2 \overline{X}_1$	$X_2\overline{X_1}$	X_2X_2	1	$\overline{X_2}X_1$	
$\overline{X_3}$	0	0	1		1	
X ₃	0	1	1		1	

$$y = \underline{x_1} \vee \underline{x_3} \underline{x_2}$$

Beispiel 2:

<i>X</i> ₁	<i>X</i> ₂	X ₃	У
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

$$y = \overline{x_2} \vee x_3 \overline{x_1}$$

Beispiel 3:

$$y = \underline{x_3} \underline{x_2} \vee \overline{x_3} \overline{x_2}$$

Beispiel 4: "don't care"-Felder

	$\overline{X}_2 \overline{X}_1$	$X_2\overline{X_1}$	X_2X_1	$\overline{X_2}X_1$
$\overline{X_4}\overline{X_3}$	-	1	-	1
$\overline{X_4}X_3$	0	0	-	0
X_4X_3	-	1	-	0
$X_4\overline{X_3}$	0	-	1	-

Bei Feldern, die mit "-" gekennzeichnet sind, ist der Ausgangswert der Schaltfunktion beliebig, d.h., er kann 1 oder 0 sein.

Meist ist der Grund für diese "don't care"-Felder, dass die Eingangsbelegung praktisch nicht auftreten kann. Im Entwurf der Schaltung erhält man dadurch zusätzliche Freiheitsgrade.

Beispiel 4: "don't care"-Felder

	$\overline{X_2}\overline{X_1}$	$X_2\overline{X_1}$	X_2X_1	$\overline{X_2}X_1$
$\overline{X_4}\overline{X_3}$	-	1	-	1
$\overline{X_4}X_3$	0	0	-	0
X_4X_3	-	1	-	0
$X_4\overline{X_3}$	0	-	1	-

y =

Regeln:

- Es müssen alle Einsen (oder Nullen) mindestens einmal erfasst werden.
- "Don't care"-Felder können hinzu genommen werden, wenn dadurch die Blöcke größer gewählt werden können.
- Es werden nur so viele "don't care"-Felder hinzu genommen wie unbedingt notwendig.

Beispiel 4: "don't care"-Felder

	$\overline{X_2}\overline{X_1}$	$X_2\overline{X_1}$	$\boldsymbol{X}_2 \boldsymbol{X}_1$	$\overline{X_2}X_1$
$\overline{X_4}\overline{X_3}$	-	1	-	1
$\overline{X_4}X_3$	0	0	-	0
X_4X_3	-	1	-	0
$X_4\overline{X_3}$	0	-	1	-

$$y = \underline{X_4} \underline{X_2} \vee \overline{\underline{X_4}} \overline{X_3}$$

Regeln:

- Es müssen alle Einsen (oder Nullen) mindestens einmal erfasst werden.
- "Don't care"-Felder können hinzu genommen werden, wenn dadurch die Blöcke größer gewählt werden können.
- Es werden nur so viele "don't care"-Felder hinzu genommen wie unbedingt notwendig.

Übungsaufgaben (1)

- 1. Bestimmen Sie die minimalen Schaltausdrücke für $y_1 \dots y_4$ in disjunktiver Normalform.
- 2. Bestimmen Sie die minimalen Schaltausdrücke für $y_1 \dots y_4$ in konjunktiver Normalform.

	$\overline{X}_2\overline{X}_1$	$\overline{X_2}X_1$	X_2X_1	$X_2\overline{X_1}$
$\overline{X}_4\overline{X}_3$	1	1	1	1
$\overline{X_4}X_3$	0	0	1	0
X_4X_3	0	0	1	0
$X_4\overline{X_3}$	1	0	0	1

$$y_1 =$$

	$\overline{X}_2 \overline{X}_1$	$\overline{X}_2 X_1$	X_2X_1	$X_2\overline{X_1}$
$\overline{X_4}\overline{X_3}$	0	1	0	0
$\overline{X_4}X_3$	0	1	0	0
X_4X_3	0	0	1	1
$X_4\overline{X_3}$	0	1	0	0

$$y_2 =$$

$$y_3 =$$

$$y_4 =$$

Übungsaufgaben (2)

3. Bestimmen Sie die minimalen Schaltausdrücke für $y_5 \dots y_8$. Wählen Sie die Normalform, die zu einer kleineren Gleichung führt.

	$\overline{X}_2\overline{X}_1$	$\overline{X_2}X_1$	X_2X_1	$X_2\overline{X_1}$
$\overline{X_4}\overline{X_3}$	1	0	0	0
$\overline{X_4}X_3$	0	1	1	1
X_4X_3	0	-	0	0
$X_4\overline{X_3}$	-	0	0	1

$$y_5 =$$

	$\overline{X}_2 \overline{X}_1$	$\overline{X}_2 X_1$	X_2X_1	$X_2\overline{X_1}$
$\overline{X_4}\overline{X_3}$	-	0	-	0
$\overline{X_4}X_3$	0	1	-	1
X_4X_3	-	0	1	0
$X_4\overline{X_3}$	-	1	1	-

$$y_6 =$$

	$\overline{X}_2\overline{X}_1$	$\overline{X}_2 X_1$	X_2X_1	$X_2\overline{X_1}$
$\overline{X_4}\overline{X_3}$	1	1	0	-
$\overline{X_4}X_3$	0	0	-	0
X_4X_3	1	-	1	1
$X_4\overline{X_3}$	-	1	0	-

$$y_7 =$$

$$y_8 =$$

Übungsaufgaben (3)

Kürzen Sie mit Hilfe des Karnaugh-Verfahrens folgende Ausdrücke:

$$y_{10} = \overline{X_1} \, \overline{X_2} \vee \overline{X_1} \, X_2 \, X_3 \vee X_1 \, \overline{X_2} \, \overline{X_4} \vee X_1 \, \overline{X_2} \, X_3 \, \overline{X_4}$$

$$y_{11} = \overline{X_1} \, \overline{X_2} \, \overline{X_3} \vee X_1 \, \overline{X_2} \, \overline{X_3} \vee \overline{X_1} \, X_2 \, X_3 \vee X_1 \, X_2 \, X_3$$

$$y_{12} = \overline{a} \, b \, \overline{c} \vee a \, \overline{c} \, d \vee \overline{a} \, c \, d \vee a \, b \, c \vee b \, d$$