

Reminder vector

Complexitate	Vector			
Acces	O(1)			
Inserție	O(N)			
Inserție capete	O(N)/O(1)			
Ştergere	O(N)			
Ștergere capete	O(N)/O(1)			
Căutare ordonat/neordonat	O(log(N))/O(N)			

Key	Value		
063	xxx \$		

Key	Value		
065	ууу \$		

Map – operații

```
valueType search(keyType key) {
    return T[key];
void insert(keyType key, valueType value) {
    T[key] = value;
void delete(keyType key) {
   T[key] = NULL;
```


Dezavantaj

- Nu sunt multe cazuri în care avem chei numere întregi.
- Dorim chei mai complexe, de exemplu string-uri.

HashMap (Tabelă hash) pe scurt

Key	Value		
Nume_Prenume	xxx \$		

Key	Value			
Nume_Prenume2	ууу \$			

Complexitate HashMap

Complexitate	Vector	Hash Map		
Acces	O(1)	O(1)		
Inserție	O(N)	O(1)		
Inserție capete	O(N)/O(1)	n/a		
Ştergere	O(N)	O(1)		
Ștergere capete	O(N)/O(1)	n/a		
Căutare ordonat	O(log(N))/O(N)	O(1)		

Funcție hash

- Întoarce mereu aceeași valoare pentru același input.
- Pentru un input de dimensiune arbitrară returnează valori dintr-un anumit set.

Conversie simplă String -> Număr întreg

```
int textToInteger(char* text, int MAX)
    int 1 = strlen(text);
    int rez = 0;
   for (int i = 0; i < 1; i++) {
        rez = rez * 256 + text[i];
        rez %= MAX;
    return rez; // numere între 0 și MAX-1
```


Funcții hash naivă

```
int sizeOfHashMap = 11; // M
int h(int val)
    return val % sizeOfHashMap;
int hashString(char* text)
    int val = textToInteger(text, 256);
    return h(val);
```


Funcții și tabele hash

- *K* este mulțimea de chei.
- M mărimea hashMap.

$$h: K \to \{0,1,...,M-1\}$$

 $h(x) = x \mod M$

Poziție	0	1	2	3	4	5	6	7	8	9	10
Cheie	-	34	-	25	48	-	-	7	96	-	87

Unde este introdus 60? Dar 59?

Coliziuni

Se numește coliziune momentul în care două chei au același hash

$$A \neq B$$

 $hash(A) = hash(B)$

Rezolvare coliziunilor prin înlănțuire (chaining)

Se folosesc liste înlănțuite (chiar dublu înlănțuite)

Rezolvare coliziunilor prin înlănțuire (chaining)

```
valueType search(keyType key)
    return listSearch(T[hash(key)], key);
void insert(keyType key, valueType value)
    listInsertHead(T[hash(key)], key, value);
void delete (keyType key)
    listDelete(T[hash(key)], key);
```


Complexitate?

- N chei
- M sloturi în tabela hash
- Funcția hash are complexitate O(1)

Cel mai defavorabil?

- N chei
- M sloturi în tabela hash
- Funcția hash are complexitate O(1)
- Cel mai defavorabil?
 - Toate cheile au același hash.
 - Toate sunt coliziuni
 - Se foloseşte un singur slot.
 - \circ O(N)

- N chei
- M sloturi în tabela hash
- Funcția hash are complexitate O(1)
- Cel mai favorabil?
 - Cheile sunt distribuite uniform.
 - Simple uniform hashing.
 - α Sunt $\alpha = \frac{N}{M}$ chei pentru fiecare slot din tabelă

- N chei
- M sloturi în tabela hash
- Funcția hash are complexitate O(1)
- Cel mai favorabil?
 - Cheile sunt distribuite uniform.
 - Simple uniform hashing.
 - \square Sunt $lpha = rac{N}{M}$ chei pentru fiecare slot din tabelă
 - $lacktriangleq O(\alpha)$ (demonstrație în Cormen)

- N chei
- M sloturi în tabela hash
- Funcția hash are complexitate O(1)
- Cel mai favorabil?
 - Cheile sunt distribuite uniform.
 - Simple uniform hashing.
 - α Sunt $\alpha = \frac{N}{M}$ chei pentru fiecare slot din tabelă
 - $\mathbf{O}(\alpha)$ Dar dacă N proporțional cu M, adică N=cM => $O\left(\frac{cM}{M}\right) = O(1)$

Funcții hash – Metoda Diviziunii

- $\bullet h(x) = x \mod M$
- Cum alegem M?
 - Dorim simple uniform hashing Fiecare cheie are aceeași probabilitate să ajungă în oricare din cele M slot-uri.

Funcții hash – Metoda Diviziunii

- $\bullet h(x) = x \mod M$
- Cum alegem M?
 - Dorim simple uniform hashing Fiecare cheie are aceeași probabilitate să ajungă în oricare din cele M slot-uri.
 - Dacă M are un divizor d avem multe coliziuni.
 - ullet Cheile care sunt multipli de d vor ajunge pe poziții multipli cu d.

Funcții hash – Metoda Diviziunii

- $\bullet h(x) = x \mod M$
- Cum alegem M?
 - Dorim simple uniform hashing Fiecare cheie are aceeași probabilitate să ajungă în oricare din cele M slot-uri.
 - Dacă M are un divizor d avem multe coliziuni.
 - ullet Cheile care sunt multipli de d vor ajunge pe poziții multipli cu d.

$$\mathbf{x} = yd$$

 \square $yd \mod M = r \Rightarrow yd = zM + r \Rightarrow r = r'd$

Funcții hash – Metoda Diviziunii

- $\bullet h(x) = x \mod M$
- Cum alegem M?
 - Dorim simple uniform hashing Fiecare cheie are aceeaşi probabilitate să ajungă în oricare din cele M slot-uri.
 - □ Dacă $M = 2^p$ atunci toate hash-urile vor fi formate din p biţi ai lui x.
 - **00000000 00000000 00000100 000000000**

1

p

Funcții hash – Metoda Diviziunii

- $\bullet h(x) = x \mod M$
- Cum alegem M?
 - Dorim simple uniform hashing Fiecare cheie are aceeaşi probabilitate să ajungă în oricare din cele M slot-uri.

 \blacksquare *M* în general se alege ca fiind un număr prim dar nu de forma 2^p-1

Funcții hash metoda multiplicării

- $\bullet h(k) = \lfloor M(kA \bmod 1) \rfloor$
- $A \in (0,1)$ constantă
 - □ Knuth propune $A \approx \frac{(\sqrt{5}-1)}{2} = 0.618033$
- $kA \mod 1 = kA \lfloor kA \rfloor$
 - este partea fracționară a lui kA
- M poate lua orice valoare, de obicei 2^p

Funcții hash metoda multiplicării

- $\bullet h(k) = \lfloor M(kA \bmod 1) \rfloor$
- $A \in (0,1)$ constantă
 - □ Knuth propune $A \approx \frac{(\sqrt{5}-1)}{2} = 0.618033$
 - $\Box A = \frac{s}{2^w}$. Cât poate fi s?
- \bullet $kA \mod 1 = kA \lfloor kA \rfloor$
 - este partea fracționară a lui kA
- M poate lua orice valoare, de obicei 2^p

Funcții hash metoda multiplicării

- $\bullet h(k) = \lfloor M(kA \bmod 1) \rfloor$
- $\blacksquare A = \frac{s}{2^w}$
- $M = 2^{p}$

Din Cormen

Rezolvare coliziunilor prin Adresare deschisă

Se pune pe următoarea poziție goală

Rezolvare coliziunilor prin Adresare deschisă

- Tabela poate fi complet consumată
- $\alpha = 1$
- Poziția exactă depinde de ordinea în care facem inserțiile
- Extindem funcția de hash pentru a permite mai multe încercări.
 - h(k,i)
 - □ Se va apela pe rând cu i = 0,1,...,M-1

HashMap – Adresare deschisă - Insert

```
void insert(keyType key, valueType value)
    for (int i = 0; i < sizeOfHashMap; i++) { // M == sizeOfHashMap</pre>
        int j = hash(key, i);
        if (T[j] == NULL) {
            T[j] = value;
            return;
    printf("hashMap full");
```


HashMap – Adresare deschisă - Search

```
valueType search(keyType key)
    for (int i = 0; i < sizeOfHashMap; i++) { // M == sizeOfHashMap</pre>
        int j = hash(key, i);
        if (T[j] == NULL)
            return NULL;
        if (T[j] == key)
            return T[j];
```


HashMap – Adresare deschisă - Delete

```
valueType search(keyType key)
    for (int i = 0; i < sizeOfHashMap; i++) { // M == sizeOfHashMap</pre>
        int j = hash(key, i);
        if (T[j] == NULL)
            return NULL;
        if (T[j] == key)
            return T[j];
```


HashMap – Adresare deschisă – verificare liniară

- $\bullet h(k,i) = (h(k) + i) \bmod M$
- Elementele sunt puse la rând.
- Problemă: Se pot crea zone mari ocupate, astfel creşte timpul fiecărei noi inserții. – primary clustering.

HashMap – Adresare deschisă – verificare pătratică (quadatric)

- $h(k,i) = (h(k) + c_1i + c_2i^2) \mod M$
- c_1 și c_2 sunt constante pozitive
- Elementele sunt puse dispersate quadratic.
- Dacă $h(k_1, 0) = h(k_2, 0)$ atunci $h(k_1, i) = h(k_2, i)$.
- Se numeşte secondary clustering.

HashMap – Adresare deschisă – double hashing

$$h(k,i) = (h_1(k) + ih_2(k)) \bmod M$$

- \bullet $h_1(k) = k \mod M$
- $h_2(k) = 1 + (k \mod M')$
 - M' < M (poate fi M 1)

HashMap – Adresare deschisă – double hashing

- $h(k,i) = (h_1(k) + ih_2(k)) \mod M$
- \bullet $h_1(k) = k \mod M$
- $h_2(k) = 1 + (k \mod M')$ • M' < M (poate fi M - 1)

Din Cormen

Figure 11.5 Insertion by double hashing. Here we have a hash table of size 13 with $h_1(k) = k \mod 13$ and $h_2(k) = 1 + (k \mod 11)$. Since $14 \equiv 1 \pmod 13$ and $14 \equiv 3 \pmod 11$, we insert the key 14 into empty slot 9, after examining slots 1 and 5 and finding them to be occupied.

Hash – Stringuri - Naiv

```
int hash(char *str, int M)
    int sum = 0;
    for (; *str; str++) {
        sum += *str;
        sum %= M;
    return sum % M;
```


Performanță

- Testăm cu dicţionar în engleză care conţine 219.154 cuvinte.
- Tabela de hash are 10.007 (număr prim) intrări.
- Încărcarea ideală (uniformă) a tabelei este

$$\frac{219.154}{10.007} \cong \mathbf{21}, \mathbf{9}$$

Numărul mediu de comparaţii optim este:

$$\frac{21,9+1}{2} \cong \mathbf{11}, \mathbf{45}$$

Hash – Stringuri - Naiv

Hash – Stringuri – Berkley

```
H(c_n c_{n-1} \dots c_0) = c_n K^n + c_{n-1} K^{n-1} + \dots + c_0 K^0 \mod M
static unsigned long sdbm(unsigned char *str)
    unsigned long hash = 0;
    int c;
    while (c = *str++)
         hash = c + (hash << 6) + (hash << 16) - hash;
    return hash;
```


Hash – Stringuri – Berkley

Hash – Stringuri - Bernstein

```
unsigned long djb2(unsigned char *str)
    unsigned long hash = 5381;
    int c;
    while (c = *str++)
        hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
    return hash;
```


Hash – Stringuri - Bernstein

