

Cost Function and Backpropagation

- Video: Cost Function 6 min
- **Reading:** Cost Function 4 min
- Video: Backpropagation Algorithm 11 min
- **Reading:** Backpropagation Algorithm 10 min
- Video: Backpropagation Intuition 12 min
- Reading: Backpropagation Intuition 4 min

Backpropagation in Practice

Application of Neural Networks

Review

Backpropagation Algorithm

"Backpropagation" is neural-network terminology for minimizing our cost function, just like what we were doing with gradient descent in logistic and linear regression. Our goal is to compute:

 $\min_{\Theta} J(\Theta)$

That is, we want to minimize our cost function J using an optimal set of parameters in theta. In this section we'll look at the equations we use to compute the partial derivative of $J(\Theta)$:

$$rac{\partial}{\partial \Theta_{i,j}^{(l)}} J(\Theta)$$

To do so, we use the following algorithm:

Backpropagation algorithm

Backpropagation algorithm

Training set
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$

Set $\underbrace{\Delta_{ij}^{(l)}} = 0$ (for all l, i, j).

For $i = 1$ to $m \in \underbrace{(x^{(i)}, y^{(i)})}$.

Perform forward propagation to compute $a^{(l)}$ for $l = 2, 3, \dots, L$

Using $y^{(i)}$, compute $\delta^{(L)} = \underbrace{a^{(L)}} - y^{(i)}$

Compute $\delta^{(L-1)}, \delta^{(L-2)}, \dots, \delta^{(2)}$

Compute $\delta^{(L)} = \underbrace{a^{(L)}}_{ij} + a^{(l)}_{ij} \delta^{(l+1)}_{ij}$

Differentially $a^{(l)} = a^{(l)} + a^{(l)}_{ij} \delta^{(l+1)}_{ij}$

Back propagation Algorithm

Given training set $\{(x^{(1)}, y^{(1)}) \cdots (x^{(m)}, y^{(m)})\}$

• Set $\Delta_{i,j}^{(l)}$:= 0 for all (l,i,j), (hence you end up having a matrix full of zeros)

For training example t =1 to m:

1. Set
$$a^{(1)} := x^{(t)}$$