Escuela Politécnica Nacional

Nombre: Marco Marcillo

Fecha: 27/04/2025

CONJUNTO DE EJERCICIOS 1

Resuelva los siguientes ejercicios, tome en cuenta que debe mostrar el desarrollo completo del ejercicio.

1. Calcule los errores absoluto y relativo en las aproximaciones de p por $p \ast$

a.
$$p = \pi, p * = 22/7$$

Error absoluto	Error relativo
$error_{abs} = p - p^* $ $error_{abs} = \pi - 22/7 $ $error_{abs} = 0.001264489$	$error_{rel} = \left \frac{p - p^*}{p} \right $ $error_{rel} = \left \frac{\pi - 22/7}{\pi} \right $ $error_{rel} = 0.000402499$

b. $p = \pi, p * = 3.1416$

Error absoluto	Error relativo
$error_{abs} = p - p^* $ $error_{abs} = \pi - 3.1416 $ $error_{abs} = 0.000007346$	$error_{rel} = \left \frac{p - p^*}{p} \right $ $error_{rel} = \left \frac{\pi - 3.1416}{\pi} \right $
	$error_{rel} = 0.000002338$

c. p = e, p * = 2.718

Error absoluto	Error relativo
$error_{abs} = p - p^* $ $error_{abs} = e - 2.718 $ $error_{abs} = 0.000281845$	$error_{rel} = \left \frac{p - p^*}{p} \right $ $error_{rel} = \left \frac{e - 2.718}{e} \right $ $error_{rel} = 0.00010367889$

d. $p = \sqrt{2}, p * = 1.414$

Error absoluto	Error relativo
$error_{abs} = p - p^* $ $error_{abs} = \sqrt{2} - 1.414 $ $error_{abs} = 0.00021356237$	$error_{rel} = \left rac{p-p^*}{p} ight $ $error_{rel} = \left rac{\sqrt{2-1.414}}{\sqrt{2}} ight $ $error_{rel} = 0.00015101140222$

2. Calcule los errores absoluto y relativo en las aproximaciones de p por $p \ast$.

a. $p = e^{10}$, p * = 22000

Error absoluto	Error relativo
$error_{abs}= p-p^* $ $error_{abs}= e^{10}-22000 $ $error_{abs}=26.4657948067$	$error_{rel} = \left \frac{p - p^*}{p} \right $ $error_{rel} = \left \frac{e^{10} - 22000}{e^{10}} \right $ $error_{rel} = 0.0012015452253$

b. p = 10 $^{\pi}$, p * = 1400

Error absoluto	Error relativo
$error_{abs} = p-p^* $ $error_{abs} = 10^\pi - 1400 $ $error_{abs} = 14.544280084$	$error_{rel}=\left rac{p-p^*}{p} ight $ $error_{rel}=\left rac{10^\pi-1400}{10^\pi} ight $ $error_{rel}=0.01049783105$

c. *p* = 8!, *p* * = 39900

Error absoluto	Error relativo
$error_{abs} = p - p^* $ $error_{abs} = 8! - 39900 $	$error_{rel} = \left rac{p-p^*}{p} ight $

$$error_{abs} = 420$$
 $error_{rel} = \left| \frac{8! - 39900}{8!} \right|$ $error_{rel} = 0.01041666666$

d. p = 9!, $p * = \sqrt{18\pi(9/e)^9}$

Error absoluto	Error relativo
$error_{abs} = p - p^* $ $error_{abs} = 9! - \sqrt{18\pi(9/e)9} $ $error_{abs} = 3343.1273634670$	$error_{rel} = \left \frac{p - p^*}{p} \right $ $error_{rel} = \left \frac{9! - \sqrt{18\pi(9/e)9}}{9!} \right $ $error_{rel} = 0.0092127627961$

3. Encuentre el intervalo más largo en el que se debe encontrar p * para aproximarse a <math>p con error relativo máximo de 10–4 para cada valor de p.

Para determinar los limites inferiores y superiores utilizaremos la siguiente formula:

$$I_{inferior} = p * (1 - 10^4)$$

$$I_{superior} = p * (1 + 10^4)$$

a. π	[3.1413 – 3,1419]		
b. <i>e</i>	[2.7180 - 2.7185]		
c. V2	[1.4140 - 1.4144]		
d. √7	[1.9128 – 1.9131]		

4. Use la aritmética de redondeo de tres dígitos para realizar lo siguiente. Calcule los errores absoluto y relativo con el valor exacto determinado para por lo menos cinco dígitos.

	Valor en cinco dígitos	Error absoluto	Error relativo
$\frac{\frac{13}{14} - \frac{5}{7}}{2e - 5.4}$	5.860620418 ≈ 5.86062	0.00038	6.484e – 05
$-10\pi + 6e - \frac{3}{61}$	-15.15541589 ≈ -15.15542	0.00042	2.771e – 05
$\left(\frac{2}{9}\right)*\left(\frac{9}{11}\right)$	0.18181818 ≈ 0.18181	0.00018	0.001

$\frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} - \sqrt{11}}$	23.95826074 ≈ 23.95826	0.00026	1.085e – 05
---	------------------------	---------	-------------

5.- Los primeros tres términos diferentes a cero de la serie de Maclaurin para la función arco tangente son: $x - (1/3)x^3 + (1/5)x^5$. Calcule los errores absoluto y relativo en las siguientes aproximaciones de π mediante el polinomio en lugar del arco tangente:

$$a.4[\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right)$$

$$b.16 \arctan\left(\frac{1}{5}\right) - 4 \arctan\left(\frac{1}{239}\right)$$

6. El número e se puede definir por medio de $e = \sum_{n=0}^{\infty} \left(\frac{1}{n!}\right)$, donde n!= n(n-1) ... 2*1 para n≠0 y 0!=1. Calcule los errores absoluto y relativo en la siguiente aproximación de e:

$$\sum_{n=0}^{5} \left(\frac{1}{n!} \right) = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{5!} = 2.716666666$$

$$\sum_{n=0}^{10} \left(\frac{1}{n!} \right) = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{4!} + \frac{1}{5!} + \frac{1}{6!} + \frac{1}{7!} + \frac{1}{8!} + \frac{1}{9!} + \frac{1}{10!} = 2.7182818011$$

7. Suponga que dos puntos (x_0, y_0) y (x_1, y_2) se encuentran en línea recta con $y_1 \neq y_0$. Existen dos fórmulas para encontrar la intersección x de la línea:

$$x = \frac{x_0 y_1 - x_1 y_0}{y_{1-} y_0}$$

$$x = x_0 - \frac{(x_1 - x_0)y_0}{y_1 - y_0}$$

a. Use los datos (x_0 , y_0) = (1.31, 3.24) y (x_1 , y_1) = (1.93, 5.76) y la aritmética de redondeo de tres dígitos para calcular la intersección con x de ambas maneras. ¿Cuál método es mejor y por qué?

Primera Formula:

$$x = \frac{1.31 * 5.76 - 1.93 * 3.24}{5.76 - 3.24}$$
$$x = 0.513$$

Segunda Formula:

$$x = x_0 - \frac{(x_1 - x_0)y_0}{y_1 - y_0}$$
$$x = x_0 - \frac{(1.93 - 1.31)3.24}{5.76 - 3.24}$$
$$x = 0.513$$

Conclusión: La segunda fórmula resulta preferible debido a su mayor estabilidad numérica, lo que ayuda a reducir la acumulación de errores por redondeo durante el proceso de cálculo. Además, evita multiplicaciones superfluas que podrían aumentar esos errores