PROYECTO COMPILANDO CONOCIMIENTO

MATEMÁTICAS AVANZADAS

Análisis Complejo

Una Pequeña (Gran) Introducción

AUTORES:

Rosas Hernandez Oscar Andrés Lopez Manriquez Angel

Índice general

Ι	Νί	imeros Complejos	3			
1.	Definiciones					
	1.1.	Definición de Números Complejos	5			
	1.2.	Términos Comúnes	5			
2.	Aritmética Compleja					
	2.1.	Operaciones Básicas	7			
	2.2.	Campo de los Complejos	8			
	2.3.	Cero y la Identidad	9			
	2.4.	Conjugados	9			
	2.5.	Módulo o Valor Absoluto	10			
	2.6.	Inverso Multiplicativo	12			
	2.7.	n-Raíces de un Numero z	13			
3.	For	ma Polar y Argumentos	14			
	3.1.	Forma Polar	15			
		3.1.1. De forma Polar a forma Rectangular	15			
		3.1.2. De forma Rectangular a forma Polar	15			
	3.2.	Argumento de z	16			
	3.3.	Leyes de Aritmetica	17			
	3.4.	Ley de Moivre's	18			
4.	For	ma Exponencial	19			
	4.1.	Fórmula de Euler	20			

ÍNDICE GENERAL				ÍNDICE GENERAL		
	4.2.	Identidad de Lagrange			21	
5.	Fun	nciones complejas			22	

Parte I Números Complejos

Definiciones

1.1. Definición de Números Complejos

Definición 1.1.1 (Números Complejos) Definamos al Conjunto de los números complejos \mathbb{C} como:

$$\mathbb{C} = \left\{ a + bi \mid a, b \in \mathbb{R} \quad y \quad i = \sqrt{-1} \right\}$$
 (1.1)

Podemos usar la notación a+bi, a+ib y (a,b) de manera intercambiable (pero personalmente la primera se me hace la más cool pero la ultima mas concreta).

1.2. Términos Comúnes

- Unidad Imaginaria: Usamos el símbolo i para simplificar $i = \sqrt{-1}$, de ahí la propiedad famosa $i^2 = -1$.
- Parte Real: Considere el complejo $z = a + bi \in \mathbb{C}$, entonces decimos que Re(z) = a
- Parte Imaginaria: Considere el complejo $z = a + bi \in \mathbb{C}$, entonces decimos que Im(z) = b

Aritmética Compleja

2.1. Operaciones Básicas

Si $z_1 = a_1 + b_1 i \in \mathbb{C}$ y $z_2 = a_2 + b_2 i \in \mathbb{C}$ entonces:

■ Definición 2.1.1 (Suma de Complejos)

$$z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i (2.1)$$

■ Definición 2.1.2 (Resta de Complejos)

$$z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i (2.2)$$

■ Definición 2.1.3 (Multiplicación de Complejos)

$$z_1 z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 + b_1 b_2 i^2) + (a_1 b_2 + b_1 a_2) i$$

= $(a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) i$ (2.3)

■ Definición 2.1.4 (División de Complejos)

$$\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{(a_1 a_2 + b_1 b_2) - (a_1 b_2 - a_2 b_1) i}{(a_2)^2 + (b_2)^2} \qquad z_2 \neq 0$$
(2.4)

2.2. Campo de los Complejos

Recuerda que el hecho de que los Complejos sean un campo nos dice que cumple con que:

■ Definición 2.2.1 (Ley Aditiva Asociativa)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$$
(2.5)

■ Definición 2.2.2 (Ley Aditiva Conmutativa)

$$\forall z_1, z_2 \in \mathbb{C}, \ z_1 + z_2 = z_2 + z_1 \tag{2.6}$$

Definición 2.2.3 (Elemento Indentidad Aditivo)

$$\exists 0 \in \mathbb{C}, \ \forall z_1 \in \mathbb{C}, \ 0 + z_1 = z_1 + 0 = z_1 \tag{2.7}$$

Definición 2.2.4 (Existen Inversos Aditivos)

$$\forall z_1 \in \mathbb{C}, \ \exists z_2 \in \mathbb{C}, \ z_1 + z_2 = z_2 + z_1 = 0 \tag{2.8}$$

Definición 2.2.5 (Ley Distributiva)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ z_1 \cdot (z_2 + z_3) = (z_1 \cdot z_2) + (z_1 \cdot z_3)
\forall z_1, z_2, z_3 \in \mathbb{C}, \ (z_2 + z_3) \cdot z_1 = (z_2 \cdot z_1) + (z_3 \cdot z_1)$$
(2.9)

Definición 2.2.6 (Ley Multiplicativa Asociativa)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ z_1 \cdot z_2 = z_2 \cdot z_1 \tag{2.10}$$

■ Definición 2.2.7 (Ley Multiplicativa Distributiva)

$$\forall z_1, z_2, z_3 \in \mathbb{C}, \ (z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3) \tag{2.11}$$

■ Definición 2.2.8 (Elemento Indentidad Multiplicativo)

$$\exists 1 \in \mathbb{C}, \ \forall z_1 \in \mathbb{C}, \ 1 \cdot z_1 = z_1 \cdot 1 = z_1 \tag{2.12}$$

■ Definición 2.2.9 (Existen Inversos Multiplicativos)

$$\forall z_1 \in \mathbb{C} - \{0\}, \ \exists z_2 \in \mathbb{C}, \ z_1 + z_2 = z_2 + z_1 = 1$$
 (2.13)

V

2.3. Cero y la Identidad

- Denotamos a 0 = 0 + 0i como el elemento cero o identidad aditiva, ya que se cumple $\forall z \in \mathbb{C}, \ z + 0 = 0 + z = z$
- \blacksquare Denotamos a 1=1+0i como el elemento identidad multiplicatica, ya que se cumple $\forall z\in\mathbb{C},\ z\cdot 1=1\cdot z=z$

2.4. Conjugados

Tenemos que el Conjugado de $z=a+bi\in\mathbb{C}$ es simplemente $\overline{z}=a-bi$ Además tenemos que:

- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\blacksquare \ \overline{\prod_{j=1}^n z_j} = \prod_{j=1}^n \overline{z_j}$
- $\overline{\overline{z}} = z$
- $z \cdot \overline{z} = (a+ib)(a-ib) = a^2 + b^2 = |z|^2$
- $Re(z) = \frac{z + \overline{z}}{2}$
- $Im(z) = \frac{z \overline{z}}{2i}$

2.5. Módulo o Valor Absoluto

Tenemos que el Módulo de $z=a+bi\in\mathbb{C}$ es simplemente $|z|=\sqrt{a^2+b^2}$.

- $|z| = \sqrt{z \cdot \overline{z}}$
- $|z| = \sqrt{a^2 + b^2} = \sqrt{a^2 + (-b)^2} = |\overline{z}|$
- Lemma 2.5.1 $|Re(z)| \le |z| \ y \ |Im(z)| \le |z|$

Demostración:

Ya habiamos visto que $|z|^2 = x^2 + y^2 = Re(z)^2 + Im(z)^2$

Entonces podemos ver que $|z|^2 - Im(z)^2 = Re(z)$ (recuerda que $Im(z)^2 > 0$) por lo tanto tenemos que $|Re(z)|^2 \le |z|^2$ ya que |Re(z)| = Re(z)

Entonces podemos ver que $|z|^2 - Re(z)^2 = Im(z)$ (recuerda que $Re(z)^2 > 0$) por lo tanto tenemos que $|Im(z)|^2 \le |z|^2$ ya que |Im(z)| = Im(z)

■ Lemma 2.5.2 $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2Re(z_1\overline{z_2})$

Demostración:

Ya sabemos que $|z + \overline{z}|^2 = z \cdot \overline{z}$ y recuerda que $2Re(z) = z + \overline{z}$, $|z|^2 = z \cdot \overline{z}$ entonces tenemos que:

$$|z_1 + z_2|^2 = (z_1 + z_2) \cdot \overline{(z_1 + z_2)}$$

$$= (z_1 + z_2) \cdot (\overline{z_1} + \overline{z_2})$$

$$= z_1 \overline{z_1} + (z_1 \overline{z_2} + \overline{z_1} z_2) + z_2 \overline{z_2}$$

$$= z_1 \overline{z_1} + (z_1 \overline{z_2} + \overline{z_1} \overline{z_2}) + z_2 \overline{z_2}$$

$$= |z_1|^2 + 2Re(z_1 \overline{z_2}) + |z_2|^2$$

■ Lemma 2.5.3 $(|z_1| + |z_2|)^2 = |z_1|^2 + |z_2|^2 + 2|z_1\overline{z_2}|$

Demostración:

Esta la vamos a empezar al réves, solo recuerda que $|z| = |\overline{z}|$:

$$|z_1|^2 + |z_2|^2 + 2|z_1\overline{z_2}| = |z_1|^2 + |z_2|^2 + 2|z_1||\overline{z_2}|$$

$$= |z_1|^2 + |z_2|^2 + 2|z_1||z_2|$$

$$= (|z_1| + |z_2|)^2$$

■ Lemma 2.5.4 (Designaldad del Triángulo) $|z_1| - |z_2| \le |z_1 + z_2| \le |z_1| + |z_2|$

Demostración:

Ok, esto aún estará intenso, así que sígueme, vamos a hacerlo más interesante, ya tenemos las piezas necesarias. Así que vamos a hacerlo al réves:

 $|z_1 + z_2| \le |z_1| + |z_2|$ si y solo si $|z_1 + z_2|^2 = (|z_1| + |z_2|)^2$ y además $|z_1 + z_2|, |z_1|, |z_2| \ge 0$ lo cual si que se cumple, pues los módulos nunca son negativos.

Y lo que dije anteriormente se cumple si y solo si $|z_1 + z_2|^2 = (|z_1| + |z_2|)^2 + k$ donde $k \ge 0$.

Ya sabemos que $|z_1+z_2|^2=|z_1|^2+|z_2|^2+2Re(z_1\overline{z_2})$ y $(|z_1|+|z_2|)^2=|z_1|^2+|z_2|^2+2|z_1\overline{z_2}|$, ahora vamos a acomodar un poco, podemos poner lo último como $(|z_1|+|z_2|)^2-2|z_1\overline{z_2}|=|z_1|^2+|z_2|^2$

Ahora veamos que:

$$|z_1 + z_2|^2 = [|z_1|^2 + |z_2|^2] + 2Re(z_1\overline{z_2}) = [(|z_1| + |z_2|)^2 - 2|z_1\overline{z_2}|] + 2Re(z_1\overline{z_2})$$

= $(|z_1| + |z_2|)^2 + k$

Donde $k=2Re(z_1\overline{z_2})-2|z_1\overline{z_2}|$, ahora además podemos decir que si $k\geq 0$ entonces así lo será $\frac{k}{2}$, por lo tanto: $\frac{k}{2}=Re(z_1\overline{z_2})-|z_1\overline{z_2}|$, pero si les cambias en nombre ves que todo se simplifica $w=z_1\overline{z_2}$ y tenemos que Re(w)-|w|. Espera, recuerda que ya habíamos demostrado que $|Re(z)|\leq |z|$, así que por lo tanto $k\geq 0$ y la propiedad siempre se cumple.

Sabemos que $z_1 = z_1 + z_2 + (-z_2)$ además ahora sabemos que: $|z_1| = |z_1 + z_2 + (-z_2)| \le |z_1 + z_2| + |-z_2|$ y como |z| = |-z| Que es lo mismo que $|z_1| - |z_2| \le |z_1 + z_2|$.

Y listo, todas las propiedades están listas.

Además creo que es bastante obvio que por inducción tenemos que: $|z_1+z_2+z_3+\cdots+z_n| \le |z_1|+|z_2|+|z_3|+\cdots+|z_n|$

2.6. Inverso Multiplicativo

Si $z = a + bi \in \mathbb{C} - \{0\}$ entonces podemos denotar al inverso de z como z^{-1} Creo que es más que obvio que $z^{-1} = \frac{1}{a + bi}$.

■ Podemos escribir a z^{-1} como $\frac{a-ib}{a^2+b^2}$

Demostración:

Veamos como llegar a eso paso a paso:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{1}{a+bi} \left(\frac{a-bi}{a-bi}\right) = \frac{a-bi}{(a+bi)(a-bi)}$$
$$= \frac{a-bi}{a^2+b^2}$$

• Gracias al inciso anterior podemos separar la parte real y la imaginaria como:

$$\frac{1}{z} = \left(\frac{a}{a^2 + b^2}\right) - \left(\frac{b}{a^2 + b^2}\right)i\tag{2.14}$$

• Gracias al inciso anterior podemos separar la parte real y la imaginaria como:

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2} \tag{2.15}$$

Recuerda: $\overline{z} = a - bi$ y $|z| = a^2 + b^2$

2.7. n-Raíces de un Numero z

En general decir que un número w es un raíz enesíma de un número complejo z (siempre que $z \neq 0$) si cumpla que:

$$w^n = z (2.16)$$

Donde obviamente $n \in \mathbb{Z}^+$.

Teorema 2.7.1 Existen exactamente n raíces para $w^n = z$

Y puedes encontrar las n raíces variando k de 0 a n:

$$w_k = n\sqrt{r}\cos\left(\frac{\theta + (2\pi)k}{n}\right) + i\sin\left(\frac{\theta + (2\pi)k}{n}\right)$$
(2.17)

Demostración:

Tengamos dos números:

- $z = r(\cos(\theta) + i\sin(\theta))$
- $w = p(\cos(\phi) + i\sin(\phi))$

Entonces de la ecuación:

$$w^{n} = z$$
$$[p(\cos(\phi) + i\sin(\phi))]^{n} = r(\cos(\theta) + i\sin(\theta)) \quad \text{Simplemente sustituimos}$$

Tenemos que:

 $p^n = r$

Por lo tanto podemos definir a $p = \sqrt{n}$ donde \sqrt{n} es la única raíz positiva de un número $r \in \mathbb{R}$.

 $\cos(\theta) + i\sin(\theta)^n = \cos(\phi) + i\sin(\phi)$

Gracias por $\cos(n\theta) + i\sin(n\theta) = \cos(\phi) + i\sin(\phi)$ Por lo tanto podemos decir que:

- $\cos(n\theta) = \cos(\phi)$
- $\sin(n\theta) = \sin(\phi)$

Por $\phi = \frac{\theta + 2(n+m)\pi}{n} = \frac{\theta + 2mn\pi}{n} + 2\pi$ y por lo tanto tener que:

•
$$\sin(\phi) = \sin\left(\frac{\theta + (2\pi)k}{n}\right)$$

•
$$\cos(\phi) = \cos\left(\frac{\theta + (2\pi)k}{n}\right)$$

Por lo tanto podemos generalizar los resultados como:

$$w_k = n\sqrt{r}\cos\left(\frac{\theta + (2\pi)k}{n}\right) + i\sin\left(\frac{\theta + (2\pi)k}{n}\right)$$
(2.18)

Forma Polar y Argumentos

3.1. Forma Polar

Podemos expresar un punto en el plano complejo mediante la tupla (r, θ) , donde $r \ge 0$ y θ esta medido en radianes.

Entonces podemos pasar rápido y fácil de un sistema de coordenadas a otro como:

3.1.1. De forma Polar a forma Rectangular

Supongamos que tenemos un punto que podemos describir como (r, θ) , donde $r \ge 0$ y θ medido como radianes.

Entonces tenemos que:

- $a = r \cos(\theta)$
- $b = r \sin(\theta)$

Otra forma de escribirlo es $r(\cos(\theta) + i\sin(\theta))$

3.1.2. De forma Rectangular a forma Polar

Supongamos que tenemos un punto que podemos describir como (a + bi), entonces podemos decir que:

$$r = \sqrt{a^2 + b^2}$$

$$\theta = \begin{cases} \tan(\frac{b}{a})^{-1} & \text{si } a > 0 \\ \tan(\frac{b}{a})^{-1} + \pi & \text{si } a < 0 \text{ y } b > 0 \\ \tan(\frac{b}{a})^{-1} - \pi & \text{si } a < 0 \text{ y } b < 0 \end{cases}$$

3.2. Argumento de z

Definimos al argumento de un número $z = a + bi \in \mathbb{C}$ como $\theta = arg(z)$, es decir, al final del día arg(z) es un ángulo.

Este ángulo tiene que cumplir las dos siguientes ecuaciones:

$$\bullet \cos(\theta) = \frac{x}{\sqrt{a^2 + b^2}}$$

$$\bullet \sin(\theta) = \frac{y}{\sqrt{a^2 + b^2}}$$

Pero como sin y cos con funciones periodicas con 2π , es decir arg(z) no es único.

Además para encontrarlo usamos $\tan(\frac{b}{a})^{-1}$ pero resulta que esta función solo regresa ángulos entre $-\frac{\pi}{2}$ y $\frac{\pi}{2}$ por lo tanto habrá problemas con números en el segundo y tercer cuadrante.

Argumento Principal

Ya que arg(z) es más bien un conjunto de ángulos, podemos considerar al ángulo o argumento principal de z como Arg(z) y que será el ángulo que cumpla con que:

$$\bullet \cos(Arg(z)) = \frac{x}{\sqrt{a^2 + b^2}}$$

$$\bullet \sin\left(Arg(z)\right) = \frac{y}{\sqrt{a^2 + b^2}}$$

$$-\frac{\pi}{2} < Arg(z) \leq \frac{\pi}{2}$$

Podemos probar que Arg(z) para alguna z cualquiera será única.

Por lo tanto ahora podemos definir a arg(z) como:

$$arg(z) = \{ Arg(z) + 2n\pi \mid n \in \mathbb{Z} \}$$
(3.1)

3.3. Leyes de Aritmetica

Supón dos números complejos de manera polar como $z_1 = (r_1, \theta_1)$ y $z_1 = (r_2, \theta_2)$ es decir $z_1 = r_1(\cos(\theta_1) + i\sin(\theta_1))$ y $z_2 = r_2(\cos(\theta_2) + i\sin(\theta_2))$ entonces tenemos que:

Producto de Números Complejos:

$$z_1 z_2 = [(r_1 r_2), (\theta_1 + \theta_2)]$$

Demostración:

Esto es muy sencillo, primero ya que tenemos los dos números en forma rectangular podemos multiplicar como ya sabemos:

$$z_1 z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2)i$$

$$z_1 z_2 = r_1 r_2 [(\cos(\theta_1)\cos(\theta_2) - \sin(\theta_1)\sin(\theta_2)) + (\cos(\theta_1)\sin(\theta_2) + \sin(\theta_1)\cos(\theta_2))i]$$

Usando las leyes de senos y cosenos:

- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$
- $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$

Podemos reducirlo a: $z_1z_2 = r_1r_2[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$ y creo que de ahí podemos reducirlo casi mentalmente ya que $(r, \theta) = r(\cos(\theta) + i\sin(\theta))$

División de Números Complejos:

$$\frac{z_1}{z_2} = [(\frac{r_1}{r_2}), (\theta_1 - \theta_2)]$$

Demostración:

Esto es muy sencillo, primero ya que tenemos los dos números en forma rectangular podemos dividir como ya sabemos, pero vamos a hacer un poco de trampa ingeniosa, usamos la idea de que $\frac{1}{z} = \frac{\overline{z}}{|z|^2}$ y hacer:

$$\begin{split} \frac{z_1}{z_2} &= z_1 \frac{\overline{z_2}}{|z_2|^2} = z_1 \frac{\overline{z_2}}{(r_2)^2} \\ &= \frac{1}{(r_2)^2} z_1 \overline{z_2} = \frac{1}{(r_2)^2} (a_1 + ib_1)(a_2 - ib_2) \\ &= \frac{1}{(r_2)^2} (a_1 a_2 - b_1 b_2) + (a_1 b_2 - b_1 a_2)i \\ &= \frac{r_1}{r_2} [(\cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2)) + (\cos(\theta_1)\sin(\theta_2) - \sin(\theta_1)\cos(\theta_2))i] \end{split}$$

Usando las leyes de senos y cosenos:

- $\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$
- $\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$

Podemos reducirlo a: $z_1z_2=\frac{r_1}{r_2}[\cos{(\theta_1-\theta_2)}+i\sin{(\theta_1-\theta_2)}]$ y creo que de ahí podemos reducirlo casi mentalmente ya que $(r,\theta)=r(\cos{(\theta)}+i\sin{(\theta)})$

3.4. Ley de Moivre's

$$z^n = r^n(\cos(n\theta) + i\sin(n\theta)), \text{ donde } n \in \mathbb{Z}$$

Demostración:

Se puede dar una demostracion muy sencilla, no se porque los libros usan induccion matematica para demostrar el teorema de Moivre... en fin, expresando a z en su forma polar y usando la formula de Euler, tenemos:

$$z^{n} = (r(\cos(\theta) + i\sin(\theta))^{n}) = r^{n}(\cos(\theta) + i\sin(\theta))^{n}$$
(3.2)

$$= r^n e^{n\theta i} = r^n (\cos(n\theta) + i\sin(n\theta)) \tag{3.3}$$

(3.4)

Forma Exponencial

4.1. Fórmula de Euler

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Esta formula sale de a partir de la serie de McLaurin para la funcion exponencial

$$e^k = 1 + \frac{k}{1!} + \frac{k^2}{2!} + \frac{k^3}{3!} + \cdots$$

Pasa algo muy interesante al hacer $k=i\theta,$ pues vemos que se hayan las series de McLaurin del seno y coseno:

$$e^{i\theta} = \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \cdots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots\right)$$
$$= \cos(\theta) + i\sin(\theta)$$

4.2. Identidad de Lagrange

$$1 + \cos(1\theta) + \cos(2\theta) + \dots + \cos(n\theta) = \frac{1}{2} \left(\frac{\sin\left((n + \frac{1}{2})\theta\right)}{\sin\left(\frac{\theta}{2}\right)} + 1 \right)$$
(4.1)

$$\begin{split} \sum_{k=0}^{n}\cos\left(k\theta\right) &= \frac{1}{2}\sum_{k=0}^{n}\left(e^{ik\theta} + e^{-ik\theta}\right) \\ &= \frac{1}{2}\left(\frac{e^{(n+1)i\theta} - 1}{e^{i\theta} - 1} + \frac{e^{(n+1)-i\theta} - 1}{e^{-i\theta} - 1}\right) \\ &= \frac{1}{2}\left(\frac{e^{(n+1)i\theta} - 1}{e^{i\theta} - 1}\left(\frac{e^{-i\frac{\theta}{2}}}{e^{-i\frac{\theta}{2}}}\right) + \frac{e^{(n+1)-i\theta} - 1}{e^{-i\theta} - 1}\left(\frac{-e^{i\frac{\theta}{2}}}{-e^{i\frac{\theta}{2}}}\right)\right) \\ &= \frac{1}{2}\left(\frac{e^{(n+1)i\theta} - 1}{e^{i\theta} - 1}\left(\frac{e^{-i\frac{\theta}{2}}}{e^{-i\frac{\theta}{2}}}\right) + \frac{e^{(n+1)-i\theta} - 1}{e^{-i\theta} - 1}\left(\frac{-e^{i\frac{\theta}{2}}}{-e^{i\frac{\theta}{2}}}\right)\right) \\ &= \frac{1}{2}\left(\frac{e^{(n+\frac{1}{2})i\theta} - e^{i\frac{\theta}{2}}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}} + \frac{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}}\right) \\ &= \frac{1}{2}\left(\frac{e^{(n+\frac{1}{2})i\theta} - e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}} + e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}\right) \\ &= \frac{1}{2}\left(\frac{e^{(n+\frac{1}{2})i\theta} - e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}} + 1\right) \\ &= \frac{1}{2}\left(\frac{e^{(n+\frac{1}{2})i\theta} - e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}} + 1\right) \\ &= \frac{1}{2}\left(\frac{e^{(n+\frac{1}{2})i\theta} - e^{(n+\frac{1}{2})-i\theta}}{e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}}} + 1\right) \\ &= \frac{1}{2}\left(\frac{\sin\left((n+\frac{1}{2})\theta\right)}{\sin\left(\frac{\theta}{2}\right)} + 1\right) \\ &= \frac{1}{2}\left(\frac{\sin\left((n+\frac{1}{2})\theta\right)}{\sin\left((n+\frac{1}{2})\theta\right)} + 1\right) \\ \\ &= \frac{1}{2}\left(\frac{\sin\left((n+\frac{1}{2})\theta\right)}{$$

Funciones complejas

Cualquier funcion compleja w=f(z) puede ser representada como f(z)=u(x,y)+iv(x,y) donde $x,y\in\mathbb{R}$