Rewriting Modulo Symmetric Monoidal Structure

Fabio Zanasi

Radboud University, Nijmegen

Joint work with

Filippo Bonchi CNRS Aleks Kissinger Radboud U. Fabio Gadducci U. Pisa

Pawel Sobocinski U. Southampton

PROPs: algebras of network diagrams

``Linear" Lawvere theory

A PROP is (just) a symmetric monoidal category with set of objects N

Rewriting in a PROP

Perspective of this work: see *E* as a **rewriting system** on network diagrams

Our question

How to implement rewriting modulo symmetric monoidal structure in a simple, yet rigorous way?

Outline

Rewriting modulo symmetric monoidal structure

Rewriting modulo SM + Frobenius structure

Sound & complete

Sound & complete

Double pushout (DPO) hypergraph rewriting

Convex DPO hypergraph rewriting

Hypergraph interpretation

PROP $Syn(\Sigma)$ of syntax freely generated by $\Sigma = \{ \begin{array}{c} o_1 \\ \end{array}, \begin{array}{c} o_2 \\ \end{array}, \begin{array}{c} o_3 \\ \end{array} \}$

Operations from Σ ~ hyperedges

Left/right boundary~ Cospan structure

 $\llbracket \cdot \rrbracket$

PROP of (Rischeré) Cospans

A-Labebledteltyppergraphshs

CsH(M)(Σ)(Σ))

Proposition: $Syn(\Sigma) \stackrel{\llbracket \cdot \rrbracket}{\to} Csp(Hyp(\Sigma))$ is faithful

DPO hypergraph rewriting

Hyp(Σ) is an adhesive category (Lack & Sobocinski) and thus adapted to double-pushout rewriting.

DPO hypergraph rewriting

Hyp(Σ) is an *adhesive category* (Lack & Sobocinski) and thus adapted to double-pushout rewriting.

DPO rewriting is unsound

DPO hypergraph rewriting is complete but generally not sound.

DPO rewriting is unsound

DPO hypergraph rewriting is complete but generally not sound.

Frobenius makes DPO rewriting sound

Theorem I

DPO hypergraph rewriting is sound and complete for symmetric monoidal categories with a chosen separable Frobenius structure.

Frobenius makes DPO rewriting sound

Where we are, so far

Rewriting modulo symmetric monoidal structure

Rewriting modulo SM + Frobenius structure

Sound & complete

Sound but incomplete

THE REAL PROPERTY.

Sound & complete

DPO hypergraph rewriting

Convex DPO hypergraph rewritng

How does a sound DPO rewriting look like?

How does a sound DPO rewriting look like?

Leading Intuition

a rewriting steps
is sound
iff
the rewriting context
has this shape

 $Hyp(\Sigma)$

Back to the soundness counterexample

Back to the soundness counterexample

Convex DPO rewriting is sound

Theorem II

Convex DPO hypergraph rewriting is sound and complete for symmetric monoidal categories.

Discussion

- Ongoing and future work
 - More examples
 - Frobenius structures are commonplace in algebras of circuit diagrams.
 - Study of critical pairs, confluence, termination.
 - Relationship with equational theories generated by distributive laws of PROPs.