Portas XOR/XNOR - Funções de habilitação

ELEVENTH EDITION

Digital Systems

Principles and Applications

Tradução e adaptação: Profa. Denise Stringhini

Ronald J. Tocci

Monroe Community College

Neal S. Widmer

Purdue University

Gregory L. Moss

Purdue University

Circuito XOR e tabela verdade.

Expressão de saída: $x = \overline{AB} + A\overline{B}$

Este circuito produz uma saída ALTA sempre que as duas entradas estão em níveis opostos.

Traditional **XOR** gate symbol.

Uma porta **XOR** possui apenas duas entradas tal que $x = \overline{AB} + A\overline{B}$.

A forma abreviada que indica a expressão de saída XOR é: $\mathbf{x} = \mathbf{A} \oplus \mathbf{B}$.

...onde o símbolo ⊕ representa a operação **XOR**.

A saída será ALTA somente quando as duas entradas estão em níveis diferentes.

Quad XOR chips containing four XOR gates.

74LS86 Quad **XOR** (TTL family) 74C86 Quad **XOR** (CMOS family) 74HC86 Quad **XOR** (high-speed CMOS)

Circuito XNOR e tabela verdade.

Expressão de saída: $x = AB + \overline{AB}$

XNOR produz uma saída ALTA sempre que as duas entradas estão no mesmo nível.

Traditional XNOR gate symbol.

Uma porta **XNOR** tem somente duas entradas, tal que $x = AB + \overline{AB}$.

A forma abreviada de indicar a expressão de saída **XOR**:

$$x = \overline{A \oplus B}$$
.

XNOR representa o inverso da operação XOR.

A saída é ALTA sempre as duas entradas estão no mesmo nível.

Quad XNOR chips with four XNOR gates.

74LS266 Quad XNOR (TTL family)

74C266 Quad XOR (CMOS)

74HC266 Quad XOR (high-speed CMOS)

Tabela verdade e circuito para detectar se dois números binários de dois bits são iguais.

<i>X</i> ₁	x ₀	<i>y</i> ₁	y 0	z (Output)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Situações que exigem habilitar/desabilitar (ativar/desativar) circuitos ocorrem frequentemente em projetos de circuito digital.

- Um circuito é habilitado quando ele permite a passagem de um sinal de entrada para a saída.
- Um circuito é desabilitado quando impede a passagem de um sinal de entrada para a saída.

Exemplo: circuito lógico que permite um sinal passar para a saída apenas quando as entradas de controle B e C são ambas ALTAS.

Caso contrário, a saída vai ficar BAIXA.

Exemplo: circuito lógico que permite um sinal passar para a saída apenas quando uma, mas não ambas as entradas de controle são ALTAS.

Caso contrário, a saída vai ficar ALTA.

Exemplo: circuito lógico com sinais de entrada A e controle B, e saídas X e Y, que opera como:

Quando B = 1, a saída X seguirá a entrada A, e a saída Y será 0. Quando B = 0, a saída X será 0, e a saída Y seguirá a entrada A.

