

F.E. (Semester – II) (RC 2016-17) Examination, May/June 2018 FUNDAMENTALS OF ELECTRONICS AND TELECOMMUNICATION ENGINEERING

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer five questions atleast two from Part A, two from Part B and one from Part C.

- 2) Assume suitable data if necessary.
- 3) Figures to the right indicate full marks.

PART - A

Answer any two full questions.

- 1. a) With the help of a neat diagram, explain the formation of a depletion region in a pn junction under the forward bias condition.
 - b) Differentiate between npn and pnp transistor.
 - c) Find the maximum and minimum values of the current through the zener diode for the following circuit.

- d) Obtain the expression for ripple factor and rectification efficiency of a full wave rectifier.
- a) Draw and explain the output characteristics of a pnp transistor in CE configuration. Also mark the three regions of operation.
 - b) What is the effect of increase in V_{CB} on I_E, when V_{EB} is kept constant for pnp transistor in CB configuration. Explain.

5

2

5

8

6

- Explain the working a p-channel junction field effect transistor. Also draw the drain and transfer characteristics.
 - nt for

6

6

d) Using Thevenin's theorem, find the coordinates of the operating point for the circuit shown below.

3. a) Explain the working of a bridge rectifier.

4

 Explain the construction and working of a p-channel depletion type MOSFET.

6

c) What is the significance PIV of a diode? Explain how PIV is measured for a full wave and bridge rectifier.

5

- d) In a half wave rectifier, the load resistance $R_L = 1.5\Omega$. Each diode has a forward bias resistance of 15Ω . The voltage across the secondary winding is 200 sin 314t. Find
 - a) Peak value of current
 - b) Average value of current
 - c) Rms value of current
 - d) Ripple factor medification and rectification and rectification of the supplementary of the
 - e) Rectification efficiency.

5

B-TRAP resistor in CE

Answer any two full questions. In a vini ease on to the effect of the ef

4. a) Implement the following gates using only NAND gate.

1

i) OR gate

0

0.1.9

ii) XOR gate

	b)	Explain the symbol, construction and operation of a silicon controlled rectifier.	8
	c)	Explain the functions of transmitter and receiver block of an electronic communication system.	4
	d)	With the help of a block diagram, explain the basic parts of a microcontroller.	4
5.	a)	Write distributive law, associative law and commutative law and verify using truth table.	6
	b)	Two square waves, A of frequency 200 kHz and B of frequency 400 kHz are applied as inputs to the logic gates. Draw the output waveform in each case. i) NAND gate ii) NOR gate	4
	c)	Explain the need for modulation. Mention the different modulation methods.	4
	d)	Draw a neat diagram and input-output waveforms of an inverting operational amplifier. Also obtain the expression for closed loop gain.	6
6.	a)	What is a strain gauge? Explain the importance of gauge factor of the strain gauge.	4
	b)	Draw and explain the block diagram of programmable logic controller.	5
	c)	Reduce the following Boolean expression and draw the logic diagram of the simplified expression. Also verify using the truth table	5
		$\overline{W}XY\overline{Z} + XY\overline{Z} + X\overline{Y}\overline{Z} + X\overline{Y}Z$	
	d)	With the help of neat diagrams, explain the procedure of fabrication of a single sided PCB.	6
		PART – C	
Aı	ารพ	ver any one full question.	
7.	a)	With the help of a neat diagram, differentiate between depletion and enhancement types MOSFET.	4
	b)	Explain the avalanche and zener breakdown mechanism in a pn junction diode.	5
	c)	Explain the working of a zener diode as a voltage regulator.	6
	d)	Explain the construction and operation of a CMOS inverter.	5

- 8. a) With the help of neat diagrams classify the solid materials on the basis of conductivity and energy band diagram.
- 6
- b) What is positive logic and negative logic?
- 6

c) Using the Boolean laws, prove the following.

- 4
- With the help of a block diagram, explain the basic X + Y = XY + X + YX (in
- a) Write distributive law, associative law and $cc\overline{Y}X = \overline{Y}X$. $(Y + X) + \overline{Y}X$ (iii.ing
- d) The input characteristics of a transistor are given in figure below. Determine the dynamic input resistance of the transistor at point P where V_{CB} = 4V. Also mention the type and configuration of the transistor.
- 4

- Answer any one full question.