Scale Uncertainty in ALDEx2

Michelle Nixon

May 13, 2024

Recap: Sequencing depth can confound conclusions.

Observed data (Y)	Sample 1	Sample 2	Sample 3	
Condition	Health	Health	Disease	Conclusion
Entity 1	5	10	100	Increase
Entity 2	10	25	3	Decrease
Entity 3	0	1	8	Increase
Entity 4	0	0	19	Increase
Sampling Depth	15	36	130	

This can mislead analyses.

System data (W)	Sample 1	Sample 2	Sample 3	
Condition	Health	Health	Disease	Conclusion
Entity 1	227	351	154	Decrease
Entity 2	684	891	3	Decrease
Entity 3	48	32	15	Decrease
Entity 4	43	39	27	Decrease
Scale (W^{\perp})	1,002	1,313	200	

. and lead to unacknowledged bias.

Section 1

Problem Set-Up

Observed Data as a Sample from the System

Observed Data as a Sample from the System

Notation

- \mathbf{Y} : a measurement of the underlying system W.
- **W**: depends on both the composition (W_{dn}^{\parallel}) and system scale (W_{n}^{\perp}) :

$$\mathbf{W}_{dn} = \mathbf{W}_{dn}^{\parallel} W_n^{\perp}$$

$$W_n^{\perp} = \sum_{d=1}^D \mathbf{W}_{dn}$$

• θ : what we want to estimate.

Differential Abundance/Expression Analysis

- Question: How do entities (e.g., taxa or genes) change between conditions?
- In this case, θ is the log-fold change (LFC):

$$\theta_d = \mathsf{mean}_{\mathsf{case}}(\mathsf{log}\,\mathbf{W}_{dn}) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}\,\mathbf{W}_{dn})$$

The Original ALDEx2 Model

Step 1: Model Sampling Uncertainty

$$\mathbf{Y}_{\cdot n} \sim \mathsf{Multinomial}(\mathbf{W}_{\cdot n}^{\parallel})$$

 $\mathbf{W}_{\cdot n}^{\parallel} \sim \mathsf{Dirichlet}(lpha)$

Step 2: Centered Log-Ratio Transformation

$$\log \mathbf{W}_{\cdot n} = \left[\log \mathbf{W}_{1n}^{\parallel} - \operatorname{mean}(\log \mathbf{W}_{\cdot n}^{\parallel}), ..., \log \mathbf{W}_{Dn}^{\parallel} - \operatorname{mean}(\log \mathbf{W}_{\cdot n}^{\parallel})\right]$$

Step 3: Calculate LFCs and Test if Different from Zero.

$$\theta_d = \mathsf{mean}_{\mathsf{case}}(\mathsf{log}\,\mathbf{W}_{dn}) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}\,\mathbf{W}_{dn})$$

Implied Assumptions about Scale

Step 1: Model Sampling Uncertainty

$$\mathbf{Y}_{\cdot n} \sim \mathsf{Multinomial}(\mathbf{W}_{\cdot n}^{\parallel})$$

 $\mathbf{W}_{\cdot n}^{\parallel} \sim \mathsf{Dirichlet}(\alpha)$

Step 2: Centered Log-Ratio Transformation

$$\log \mathbf{W}_{\cdot n} = \left[\log \mathbf{W}_{1n}^{\parallel} - \operatorname{mean}(\log \mathbf{W}_{\cdot n}^{\parallel}), ..., \log \mathbf{W}_{Dn}^{\parallel} - \operatorname{mean}(\log \mathbf{W}_{\cdot n}^{\parallel})\right]$$

Step 3: Calculate LFCs and Test if Different from Zero.

$$\theta_d = \mathsf{mean}_{\mathsf{case}}(\mathsf{log}\,\mathbf{W}_{dn}) - \mathsf{mean}_{\mathsf{control}}(\mathsf{log}\,\mathbf{W}_{dn})$$

Implied Assumptions about Scale, cont.

Using the relationship $\mathbf{W}_{dn} = \mathbf{W}_{dn}^{\parallel} W_n^{\perp}$ and some math, the CLR normalization implies:

$$\log W_n^{\perp} = \operatorname{mean}(\log \mathbf{W}_{\cdot n}^{\parallel}).$$

What does this mean? What does this imply for analyses?

Unacknowledged bias!

Adding Uncertainty in Scale can Help.

Section 2

Scale Reliant Inference (Informal)

Scale Reliant Inference: The Basics

- The CoDA perspective: Research questions that depend on scale are not possible.
- The Normalization perspective: Research questions that depend on scale can be answered after normalization.
- Who is right?

Scale Reliant Inference: The Basics

- The CoDA perspective: Research questions that depend on scale are not possible.
- The Normalization perspective: Research questions that depend on scale can be answered after normalization.
- Who is right?
- The CoDA perspective: Technically yes, but limiting.
- The Normalization perspective: Technically no, but attempting to answer relevant questions.

Scale Reliant Inference: The Basics

- What happens if θ depends on W^{\perp} ?
- Consider LFCs: how are taxa changing between two conditions?

$$\begin{split} \theta_d &= \mathsf{mean}_{\mathsf{case}}(\log \mathbf{W}_{dn}) - \mathsf{mean}_{\mathsf{control}}(\log \mathbf{W}_{dn}) \\ &= \dots \\ &= (\mathsf{mean}_{\mathsf{case}}(\log \mathbf{W}_{dn}^{\parallel}) - \mathsf{mean}_{\mathsf{control}}(\log \mathbf{W}_{dn}^{\parallel})) \\ &- (\mathsf{mean}_{\mathsf{case}}(\log W_n^{\perp}) - \mathsf{mean}_{\mathsf{control}}(\log W_n^{\perp})) \\ &= \theta^{\parallel} + \theta^{\perp} \end{split}$$

Don't we need θ^{\perp} ?

Scale Reliant Inference: Theory Intro

Recall for LFCs:

$$egin{aligned} heta_d &= \mathsf{mean}_\mathsf{case}(\log \mathbf{W}_{dn}) - \mathsf{mean}_\mathsf{control}(\log \mathbf{W}_{dn}) \ &= heta^{\parallel} + heta^{\perp} \end{aligned}$$

- What can we say about θ from θ^{\parallel} alone?
- E.g. If $\theta^{\parallel}=20$, what does that say about θ ? If there are no restrictions, nothing!
- Statistical perspective: θ is not identifiable without θ^{\perp} .
- Practical issues: unbiased estimators, calibrated confidence sets, and type-I error control NOT possible!

Scale Simulation Random Variables

Goal: Estimate $\theta = f(\mathbf{W}^{\parallel}, W^{\perp})$.

- Draw samples of \mathbf{W}^{\parallel} from a measurement model (can depend on \mathbf{Y}).
- ② Draw samples of W^{\perp} from a scale model (can depend on \mathbf{W}^{\parallel}).
- **3** Estimate samples of $\theta = f(\mathbf{W}^{\parallel}, W^{\perp})$.

Section 3

The Updated ALDEx2 Software

ALDEx2 as an SSRV

Step 1: Model Sampling Uncertainty

$$\mathbf{Y}_{\cdot n} \sim \mathsf{Multinomial}(\mathbf{W}_{\cdot n}^{\parallel})$$

 $\mathbf{W}_{\cdot n}^{\parallel} \sim \mathsf{Dirichlet}(\alpha)$

Step 2: Draw Samples from a Scale Model

$$\log W_n^{\perp} \sim Q$$
 $\log \mathbf{W}_{\cdot n} = \log \mathbf{W}_{\cdot n}^{\parallel} + \log W_n^{\perp}$

Step 3: Calculate LFCs and Test if Different from Zero.

$$\theta_d = \text{mean}_{\text{case}}(\log \mathbf{W}_{dn}) - \text{mean}_{\text{control}}(\log \mathbf{W}_{dn})$$

Benefits of Moving Past Normalizations to Scale

Intro to Scale Models

Normalizations are replaced by a scale model:

$$\log W_n^{\perp} \sim Q$$

There are no restrictions on Q, although there are some helpful options:

- Based on normalizations.
- 2 Based on biological knowledge.
- 3 Based on outside measurements.

Section 4

Coding Changes to ALDEx2

Including scale

The new ALDEx2 model removes normalizations in lieu of scale models.

Major updates:

- A new argument gamma which makes it easy to incorporate scale uncertainty.
- A new function aldex.senAnalysis to see how analysis results change as a function of scale uncertainty.

The gamma argument

- Added as argument to the aldex and aldex.clr function.
- gamma can either be a single numeric or a matrix.
 - Single numeric: controls the noise on the default scale model.
 - 2 Matrix: A $N \times S$ matrix of samples of W.
- gamma = NULL returns the default behavior of ALDEx2.

Option 1: Default Scale Model

The default scale model is based on errors in the CLR normalization.

$$egin{aligned} \log \hat{W}_n^{\perp(s)} &= -\mathrm{mean}\left(\log \hat{W}_n^{\parallel(s)}
ight) + \Lambda^{\perp} x_n \ \Lambda^{\perp} \sim & N(0, \gamma^2). \end{aligned}$$

Advantages of the Default Scale Model

- 1 It is built off the status quo for ALDEx2.
- ② Any value of $\gamma > 0$ will reduce false positives compared to the CLR normalization.
- It has a concrete interpretation to contextualize scale assumptions.

Interpreting the Default Scale Model

$$\log \hat{W}_n^{\perp(s)} = -\mathrm{mean}\left(\log \hat{W}_n^{\parallel(s)}\right) + \Lambda^{\perp} x_n$$

$$\Lambda^{\perp} \sim N(0, \gamma^2).$$

Empirical Rule: 95% of samples of Λ^{\perp} fall within a factor of $\pm 2\gamma$.

Interpreting the Default Scale Model, cont.

$$\log \hat{W}_{n}^{\perp(s)} = -\text{mean}\left(\log \hat{W}_{n}^{\parallel(s)}\right) + \Lambda^{\perp} x_{n}$$
$$\Lambda^{\perp} \sim N(0, \gamma^{2}).$$

For case/control experiments:

- If $x_n = 1$: 95% of samples of $\log \hat{W}_n^{\perp(s)}$ fall within a factor of $\pm 2\gamma$ of the negative geometric mean.
- ② If $x_n = 0$: $\log \hat{W}_n^{\perp(s)}$ is equal to the negative geometric mean.

Interpreting the Default Scale Model, cont.

Recall that with the CLR normalization:

$$\log W_n^{\perp} = \operatorname{mean}(\log \mathbf{W}_{\cdot n}^{\parallel}) = \operatorname{mean}(\operatorname{GM}(\mathbf{W}_{\cdot n}^{\parallel})).$$

Thus, when using the CLR normalization:

$$\theta^{\perp} = \mathsf{mean}_{\mathsf{case}}(-\mathsf{GM}(\mathbf{W}_{\cdot n}^{\parallel})) - \mathsf{mean}_{\mathsf{control}}(-\mathsf{GM}(\mathbf{W}_{\cdot n}^{\parallel}))$$

This is same mean that the default scale model is centered on.

Interpreting the Default Scale Model, cont.

Taken together, the default scale model implies that:

- The value of θ^{\perp} is within $\pm 2\gamma$ of the value of θ^{\perp} implied by the CLR.
- ② The true difference in scales falls within the the range $2^{\theta^{\perp}\pm2\gamma}$ with 95% certainty.

Option 2: More Complex Scale Models

Alternatively, can pass a matrix of scale samples to gamma so long as:

- The dimension is $N \times S$.
- 2 They are samples of W^{\perp} not $\log W^{\perp}$.

Reasons to do this:

- Biological beliefs: Scale is guided by the biological system or the researcher's prior beliefs.
- **Outside Measurements:** These can be used in building a scale model if they are informative on the scale of interest (e.g., qPCR, flow cytometry).

Sensitivity Analyses

- \bullet Recall that the default scale model has a parameter γ controlling the amount of noise added.
- Instead of picking γ , why not test over a range instead?
- Enter sensitivity analyses.

Sensitivity Analyses

Step 1: Model Sampling Uncertainty

$$\mathbf{Y}_{\cdot n} \sim \mathsf{Multinomial}(\mathbf{W}_{\cdot n}^{\parallel})$$

 $\mathbf{W}_{\cdot n}^{\parallel} \sim \mathsf{Dirichlet}(\alpha)$

Step 2: Draw Samples from a Scale Model

For a given γ :

$$\log W_n^{\perp,\gamma} = -\text{mean}\left(\log \hat{W}_n^{\parallel(s)}\right) + \Lambda^{\perp} x_n$$

$$\Lambda^{\perp} \sim N(0, \gamma^2)$$

$$\log \mathbf{W}_{\cdot n}^{\gamma} = \log \mathbf{W}_{\cdot n}^{\parallel} + \log W_n^{\perp,\gamma}$$

Step 3: Calculate LFCs and Test if Different from Zero.

Step 4: Repeat for all desired values of γ .

Section 5

Real Data Examples

Simulation Study

Real Example: SELEX

Real Example: Vandputte