Comprehensive List of Machine Learning Models

1. Linear Regression

Definition

Linear Regression models the relationship between a dependent variable and one or more independent variables using a linear approach.

Working Algorithm

- Fits a line
- y=mx+b
- y=mx+b to minimize the **Mean Squared Error (MSE)**.
- Uses gradient descent or ordinary least squares for optimization.

Use Cases

- Predicting house prices.
- Sales forecasting.

2. Polynomial Regression

Definition

Polynomial Regression extends linear regression by modeling the relationship as an nth-degree polynomial.

Working Algorithm

- Fits a curve
- $y=b0+b1x+b2x2+\cdots+bnxn$
- Minimizes MSE using gradient descent.

- Modeling non-linear relationships (e.g., growth rates).
- Economic trend analysis.

3. Ridge Regression

Definition

Ridge Regression is a regularized version of linear regression that adds an L2 penalty to prevent overfitting.

Working Algorithm

• Minimizes the cost function:

$$ext{MSE} + \lambda \sum_{i=1}^n w_i^2$$

where λ is the regularization parameter.

Use Cases

- Handling multicollinearity in data.
- Improving model generalization.

4. Lasso Regression

Definition

Lasso Regression adds an L1 penalty to linear regression, which can shrink some coefficients to zero, effectively performing feature selection.

Working Algorithm

Minimizes the cost function:

$$\mathrm{MSE} + \lambda \sum_{i=1}^n |w_i|$$

- Feature selection in high-dimensional datasets.
- Sparse data modeling.

5. Logistic Regression

Definition

Logistic Regression is used for binary classification by modeling the probability of a binary outcome.

Working Algorithm

• Uses the sigmoid function:

$$P(y=1) = rac{1}{1 + e^{-(mx+b)}}$$

Optimizes using Maximum Likelihood Estimation (MLE).

Use Cases

- Spam detection.
- Medical diagnosis.

6. Decision Trees

Definition

Decision Trees split data into branches based on feature values to make predictions.

Working Algorithm

- Uses metrics like Gini Impurity or Information Gain to split data.
- Stops splitting based on criteria like maximum depth or minimum samples.

- Customer segmentation.
- Fraud detection.

7. Random Forest

Definition

Random Forest is an ensemble of decision trees that improves accuracy and reduces overfitting.

Working Algorithm

- Trains multiple trees on random subsets of data (bagging).
- Combines predictions through majority voting (classification) or averaging (regression).

Use Cases

- Credit scoring.
- Stock price prediction.

8. Gradient Boosting Machines (GBM)

Definition

GBM builds trees sequentially, where each tree corrects the errors of the previous one.

Working Algorithm

- Uses gradient descent to minimize loss.
- Popular implementations: XGBoost, LightGBM, CatBoost.

Use Cases

- Winning Kaggle competitions.
- Predictive modeling in finance.

9. Support Vector Machines (SVM)

Definition

SVM finds the optimal hyperplane to separate data points of different classes.

Working Algorithm

- Maximizes the margin between support vectors.
- Uses kernel functions for non-linear data.

Use Cases

- Handwritten digit recognition.
- Text classification.

10. K-Nearest Neighbors (KNN)

Definition

KNN predicts based on the similarity to the k-nearest data points.

Working Algorithm

- Computes distances (e.g., Euclidean) to find nearest neighbors.
- Uses majority voting or averaging for prediction.

Use Cases

- Recommendation systems.
- Image recognition.

11. K-Means Clustering

Definition

K-Means groups data into k clusters based on feature similarity.

Working Algorithm

- Initializes k centroids and assigns points to the nearest centroid.
- Repeats until convergence.

Use Cases

- Customer segmentation.
- Image compression.

12. Hierarchical Clustering

Definition

Hierarchical Clustering builds a tree of clusters (dendrogram) without specifying the number of clusters.

Working Algorithm

- Agglomerative: Starts with each point as a cluster and merges the closest pairs.
- Divisive: Starts with one cluster and splits recursively.

Use Cases

- Gene sequence analysis.
- Social network analysis.

13. DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Definition

DBSCAN groups data points based on density and identifies outliers as noise.

Working Algorithm

- Defines clusters as dense regions separated by low-density areas.
- Uses two parameters: **eps** (radius) and **min_samples**.

Use Cases

- Anomaly detection.
- Geographic data analysis.

14. Principal Component Analysis (PCA)

Definition

PCA reduces dimensionality by transforming data into principal components.

Working Algorithm

- Computes eigenvectors and eigenvalues of the covariance matrix.
- Projects data onto the top k eigenvectors.

Use Cases

- Data visualization.
- Noise reduction.

15. Neural Networks

Definition

Neural Networks are deep learning models inspired by the human brain.

Working Algorithm

- Consists of layers of neurons with activation functions.
- Trained using backpropagation and gradient descent.

Use Cases

- Image and speech recognition.
- Natural language processing.

16. Naive Bayes

Definition

Naive Bayes is a probabilistic classifier based on Bayes' theorem, assuming feature independence.

Working Algorithm

Computes posterior probabilities:

$$P(y|X) = \frac{P(X|y)P(y)}{P(X)}$$

Use Cases

- · Spam filtering.
- Sentiment analysis.

17. Reinforcement Learning (Q-Learning)

Definition

Reinforcement Learning involves an agent learning to make decisions by interacting with an environment.

Working Algorithm

- Uses a Q-table to store expected rewards for state-action pairs.
- Updates Q-values using the Bellman equation.

Use Cases

- Game playing (e.g., AlphaGo).
- Robotics.

18. Gaussian Mixture Models (GMM)

Definition

GMM is a probabilistic model that assumes data is generated from a mixture of Gaussian distributions.

Working Algorithm

- Uses the Expectation-Maximization (EM) algorithm to estimate parameters.
- Assigns probabilities to data points for each cluster.

Use Cases

- Image segmentation.
- Anomaly detection.

19. Elastic Net Regression

Definition

Elastic Net Regression is a regularized regression method that combines the **L1 penalty (Lasso)** and **L2 penalty (Ridge)**. It is useful when dealing with datasets that have highly correlated features or when the number of features is greater than the number of samples.

Working Algorithm

• The cost function for Elastic Net is:

$$ext{MSE} + \lambda_1 \sum_{i=1}^n |w_i| + \lambda_2 \sum_{i=1}^n w_i^2$$

where:

- \circ λ_1 controls the L1 penalty (sparsity).
- \circ λ_2 controls the L2 penalty (ridge regularization).
- The model is optimized using coordinate descent or gradient descent.

Use Cases

- Feature selection in high-dimensional datasets (e.g., genomics).
- Predicting outcomes in datasets with multicollinearity (e.g., financial data).
- Regularization in cases where both Ridge and Lasso are needed.

20. Isolation Forest

Definition

Isolation Forest is an **unsupervised anomaly detection algorithm** that isolates anomalies instead of profiling normal data points. It works on the principle that anomalies are few and different, making them easier to isolate.

Working Algorithm

- The algorithm builds an ensemble of isolation trees (iTrees).
- Each tree randomly selects a feature and splits the data into two partitions.
- Anomalies are identified as points that require fewer splits to be isolated.
- The anomaly score is calculated based on the average path length from the root to the leaf node.

Use Cases

- Fraud detection in financial transactions.
- Network intrusion detection.
- Identifying defective products in manufacturing.

21. Long Short-Term Memory (LSTM)

Definition

LSTM is a type of **Recurrent Neural Network (RNN)** designed to model sequential data by capturing long-term dependencies. It overcomes the vanishing gradient problem in traditional RNNs.

Working Algorithm

- LSTMs use a memory cell and three gates (input, forget, and output) to control information flow.
 - o **Input Gate**: Decides what new information to store.
 - o Forget Gate: Decides what information to discard.
 - Output Gate: Decides what information to output.
- The memory cell retains information over long periods, making LSTMs effective for sequential data.

- Time-series forecasting (e.g., stock prices, weather).
- Natural language processing (e.g., text generation, machine translation).
- Speech recognition and audio analysis.
- Anomaly detection in sequential data (e.g., sensor data).