

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN LÓGICA

Nombre y Apellido:

Legajo:

Examen Parcial

1. Sean $\phi, \psi \in PROP$. Sin usar soundness/corrección, demuestre:

a)
$$\phi \to \psi \models \phi \leftrightarrow (\phi \land \psi)$$

b)
$$(p_1 \wedge p_2) \rightarrow p_3 \not\models p_1 \rightarrow p_3$$

2. Sean $\phi, \psi \in \mathsf{PROP}$. Pruebe la validez del siguiente secuente:

$$\neg(\neg\phi\vee\neg\psi)\vdash\phi\wedge\psi$$

3. El operador binario XOR (\oplus) tiene la siguiente tabla de verdad:

\overline{p}	\overline{q}	$p \oplus q$
F	F	F
F	Τ	${ m T}$
Τ	\mathbf{F}	${ m T}$
${\rm T}$	T	\mathbf{F}

- a) Extender la definición de semántica para incluir al operador \oplus
- b) Definir reglas de introducción y eliminación para \oplus
- c) Demostrar:

$$p \oplus q \vdash \neg(p \to q) \lor \neg(q \to p)$$

- 4. Para cada caso, determine si es posible encontrar un conjunto de fórmulas Γ tales que se cumplan las condiciones pedidas.
- (a) $\Gamma = {\alpha, \beta, \gamma}, \gamma \models \alpha \lor \beta, \gamma \models \alpha \to \beta \ y \ \gamma \not\models \beta \to \alpha.$
- (b) $\Gamma = \{\alpha', \beta', \gamma'\}, \{\alpha' \to \beta' \land \gamma', \beta' \to \neg \gamma', \neg \alpha' \to \bot\}$ es consistente.
- (c) $\Gamma = \{\alpha'', \beta'', \gamma''\}$ tal que Γ es inconsistente, pero todos sus subconjuntos propios son consistentes.