Textured 3D models derived automatically from photographs

Paul Bourke

Collaborators

Centre for Rock Art Research, UWA
Centre for Exploration Technology, UWA
Andrew Hutchinson and Andrew Woods, Curtin University
Western Australia Museum
City University, Hong Kong
University of Malaya, Kuala Lumpur

Outline

- Goal of this presentation
 - Provide an overview of the state of the technology
 - Indicate some of the remaining challenges
- Motivation
 - Mine site capture
 - Cultural heritage
 - Asset generation for virtual environments
 - Richer data capture in Archaeology
 - Non-intrusive 3D capture (Medical)
 - Heritage preservation
- Workflow example
- Limitations
 - Movement
 - Shadows
 - Mirror surfaces
- Challenges and future work
 - Real vs apparent detail
 - Database integration and online delivery
 - Geometric form based queries

Movie

Introduction

- Goal: Automatically construct high quality 3D geometry and texture based solely upon a number of photographs.
- Photogrammetry is the general term for deriving geometric knowledge from a series of images.
- Big step forward was the development of SfM algorithms: structure from motion.
- Wish to avoid any in-scene markers required by some solutions.
 Often impractical (access) or not allowed (heritage).
- Need to target fast and automated approaches as much as possible.

Motivation: Artefacts in cultural heritage

Motivation: Assets for virtual environments

Motivation: Richer capture in Archaeology

Panel (512858mE 7714203mN)

Aspect: North
Technique: Pecked
Style: In filled
Form: Enigmatic
Clarity: High
Weathering: Low

Boulder Size (mm): 590 x 380 x 330 Motif Size (mm): 120 x 110

Location of Panels: Small rock outcrop (rock pile)

Lithology: Basalt
Disturbance (%): 10
Erosion: Low
Rock and Motif Color: Brown/Light

Wanmanna: Centre for Rock Art Research, UWA

Motivation: Marine Archaeology

Workflow: Photography

- Fixed focal lens (Prime lens).
- Most point and click cameras have fixed focal lenses, mobile phones, etc.
- Range of prime lenses for SLR cameras.

Workflow: Photographs

- Don't take two photos from the same position.
- Obviously can't reconstruct what is not photographed.
- In general, more is better.

Workflow: Sparce point cloud

- Find matching points between photographs, feature point detection.
 SIFT scale invariant feature transform
- Compute camera positions and other intrinsic camera parameters.
 Bundler, SfM Structure from Motion

Workflow: Compute dense cloud

CMVS - Clustering Views for Multi-view Stereo.

Workflow: Compute dense cloud

Workflow: Create mesh

- Various algorithms: Ball pivoting, Poisson Surface Reconstruction, Marching Cubes.
- Optionally simplify mesh (eg: quadratic edge collapse decimation) and fill holes.

Workflow: create textures

• Re-project photographs from derived camera positions onto mesh.

Workflow: Export to favourite 3D environment

Movie

Limitations: Movement

- Movement in the scene generally destroys fidelity.
 For example grass blowing in the wind.
- One solution is to create a camera array.

Limitations: Shadows

- Shadows are baked into the textures.
- Possible solutions include HDR textures or clever editing.

Limitations: Mirror surfaces

- Mirror surfaces obviously provide a reflection of the world that influence the feature point detection.
- Gives rise to a new artform Photogrammetry that goes wrong in "interesting" ways.

Challenges: Real vs apparent detail

- Geometric detail vs texture detail.
- For realtime environments require low geometric complexity and high texture detail.
- Analysis generally requires high geometric detail.
- As a recording of an object one wants both high resolution geometry and high texture detail.

	Geometric resolution	Texture resolution
Gaming	Low	High
Analysis	High	Don't care
Education	Medium	High
Archive/heritage	High	High
Online	Low/Average	Low/average

Challenges: Real vs apparent detail

Challenges: Database integration and delivery

- Claim that the need to store these higher level forms of data capture will increase.
- Will this replace the need for storing photographic data?
- Surprisingly (depressingly) even after all these years of online delivery there are still no satisfactory ways of distributing 3D data.
- Options
 - VRML, x3d : very poor cross platform support.
 - 3D PDF: dropped by Adobe some years back.
 - WebGL? HTML5 / Canvas?
- Key missing components:
 - progressive texture.
 - progressive geometry.

Movie

Challenges: Geometric form based queries

- Can we interrogate data besides what is baked in via meta data.
- Form based queries,
 - "Find rock art of emu forms, facing north, on vertical smooth rock face, less than Im high".
 - "Find forms looking like this [sketch]".

Movie

Questions?

