2003 Vol. 5, No. 10 1689–1692

Hetero [6+3] Cycloaddition of Fulvenes with *N*-Alkylidene Glycine Esters: A Facile Synthesis of the Delavayine and Incarvillateine Framework

Bor-Cherng Hong,*,† Arun Kumar Gupta,† Ming-Fun Wu,† Ju-Hsiou Liao,† and Gene-Hsiang Lee‡

Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi, 621, Taiwan, R.O.C, and Instrumentation Center, National Taiwan University, Tapei, 106, Taiwan, R.O.C.

chebch@ccunix.ccu.edu.tw

Received February 25, 2003

ABSTRACT

In contrast to the [3+2] or [4+3] cycloaddition of *N*-metalated azomethine ylides and various alkenes, *N*-benzylidene glycine ethyl ester reacts with fulvenes to give the hetero [6+3] cycloaddition adducts with high stereoselectivity, constituting an efficient and novel route to [2]-pyrindines.

The theoretical, mechanistic, and synthetic importance of fulvene and its derivatives have intrigued chemists for more than a century. Cycloadditions of fulvenes (e.g. [4+3], [2+2], [4+2], [4+4], [6+4], [6+2]) provide versatile and powerful approaches to various polycyclic systems and natural products. Recently, we reported a new type of reaction: the [6+3] cycloaddition of fulvenes for the facile

synthesis of indan derivatives. More recently, Barluenga et al. demonstrated that the [6+3] cycloaddition of chromium alkenyl carbene complexes with fulvene leads to indanes. Additionally, we recently reported a novel hetero [6+3] cycloaddition of fulvenes for the synthesis of 11-oxasteroids. In conjunction with our continuing efforts in fulvene chemistry, we have now developed a hetero [6+3] cycloaddition of fulvenes and *N*-benzylidene glycine ethyl ester that yields [2]pyrindines. To the best of our knowledge,

[†] National Chung Cheng University.

[‡] National Taiwan University.

⁽¹⁾ For a recent review on fulvene chemistry, see: Neuenschwander, M. In *Chemistry of Double-Bonded Functional Groups*; Patai, S., Ed.; Wiley: Chichester, UK, 1989; Vol. 2, p 1131.
(2) (a) Rawson, D. I.; Carpenter, B. K.; Hoffmann, H. R. *J. Am. Chem.*

^{(2) (}a) Rawson, D. I.; Carpenter, B. K.; Hoffmann, H. R. *J. Am. Chem. Soc.* **1979**, *101*, 1786. (b) Noyori, R.; Hayakawa, Y.; Takaya, H.; Murai, S.; Kobayashi, R.; Sonoda, N. *J. Am. Chem. Soc.* **1978**, *100*, 1759.

⁽³⁾ Imafuku, K.; Arai, K. Synthesis 1989, 501. Paquette, L. A.; Colapret, J. A.; Andrews, D. R. J. Org. Chem. 1985, 50, 201.

^{(4) (}a) Harre, M.; Raddatz, P.; Walenta, R.; Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1982, 21, 480. (b) Gleiter, R.; Borzyk, O. Angew. Chem., Int. Ed. Engl. 1995, 34, 1001.

^{(5) (}a) Himeda, Y.; Yamataka, H.; Ueda, I.; Hatanaka, M. *J. Org. Chem.* **1997**, *62*, 6529. (b) Nair, V.; Nair, A. G.; Radhakrishnan, K. V.; Nadakumar, M. V.; Rath, N. P. *Synlett* **1997**, 767.

^{(6) (}a) Gupta, Y. N.; Doa, M. J.; Houk, K. N. J. Am. Chem. Soc. **1982**, 104, 7336–7338. (b) Yoshida, Z.-I.; Shibata, M.; Ogino, E.; Sugimoto, T. Angew. Chem., Int. Ed. Engl. **1985**, 24, 60.

^{(7) (}a) For an example of intermolecular [6+2] cycloaddition, see: Hong, B. C.; Shr, Y. J.; Wu, J. L.; Gupta, A. K.; Lin, K. J. *Org. Lett.* **2002**, *4*, 2249–2252. (b) For an example of intramolecular [6+2] cycloaddition, see: Suda, M.; Hafner, K. *Tetrahedron Lett.* **1977**, 2453. Wu, T. C.; Houk, K. N. *J. Am. Chem. Soc.* **1985**, *107*, 5308.

<sup>K. N. J. Am. Chem. Soc. 1985, 107, 5308.
(8) Hong, B.-C.; Sun, S.-S.; Tsai, Y.-C. J. Org. Chem. 1997, 62, 7717.
(9) For a recent review on the synthesis of indan systems, see: Hong, B.-C.; Sarshar, S. Org. Prep. Proced. Int. 1999, 31, 1.</sup>

⁽¹⁰⁾ Barluenga, J.; Martinez, S.; Suárez-Sobrino, A. L.; Tomás, M. J. Am. Chem. Soc. **2001**, 123, 11113–11114.

⁽¹¹⁾ Hong, B.-C.; Chen, Z.-Y.; Chen, W.-H. Org. Lett. 2000, 2, 2647–2649

⁽¹²⁾ For previous papers in this series, see: (a) Hong, B.-C.; Shr, Y.-J.; Liao, J.-H. *Org. Lett.* **2002**, *4*, 663–666. (b) Hong, B.-C.; Shen, I.-C.; Liao, J.-H. *Tetrahedron Lett.* **2001**, *42*, 935–938. (c) Hong, B.-C.; Jiang, Y.-F.; Kumar, E. S. *Bioorg. Med. Chem. Lett.* **2001**, *11*, 1981–1984. (d) Hong,

Scheme 1

the synthesis of [2]pyrindines via a hetero [6+3] cycloaddition has never been reported. [2]Pyrindine systems can be found in a variety of natural products including delavayine A, SB-203208, Incarvillateine, Is louisianin A, Is and racemigerine CScheme 1). Is The 1,3-dipolar cycloaddition of N-alkyl glycine ester to alkenes via a [3+2] pathway or with a diene via a [4+3] pathway represents an efficient and convergent approach to pharmacologically active alkaloids (e.g. the synthesis of pyrrolidines via the [3+2] cycloaddition reaction of azomethine ylides and alkenes). The 1,3-dipolar cycloaddition of fulvene has received much less attention, but examples of the [6+4], [4+2], and [3+2] cycloadditions of fulvene have been reported.

B.-C.; Sun, H.-I.; Chen, Z.-Y. *Chem. Commun.* **1999**, 2125. (e) Hong, B.-C.; Chen, Z.-Y.; Kumar, E. S. *J. Chem. Soc, Perkin Trans. 1* **1999**, 1135. (f) Hong, B.-C.; Hong, J.-H. *Tetrahedron Lett.* **1997**, *38*, 255. (g) Hong, B.-C.; Sun, S.-S.; Tsai, Y.-C. *J. Org. Chem.* **1997**, *62*, 7717.

- (13) Nakamura, M.; Kido, K.; Kinjo, J.; Nohara, T. *Phytochemistry* **2000**, 53, 253–256.
- (14) Stefanska, A. L.; Cassels, R.; Ready, S. J.; Warr, S. R. J. Antibiot. **2000**, *53*, 357–363.
- (15) Nakamura, M.; Chi, Y.-M.; Yan, W.-M.; Yonezawa, A.; Nakasugi, Yumiko; Y., Toyokichi; Hashimoto, F.; Kinjo, J.; Nohara, T.; Sakurada, S. *Planta Med.* **2001**, *67*, 114–117.
- (16) Sunazuka, T.; Zhi-Ming, T.; Harigaya, Y.; Takamatsu, S.; Hayashi, M. J. Antibiot. **1997**, *50*, 274–275.
- (17) Skaltsounis, A.-L.; Michel, S.; Tillequin, F.; Koch, M.; Pusset, J.; Chauviere, G. *Helv. Chim. Acta* **1985**, *68*, 1679–1685.
- (18) (a) Cook, C. E.; Wani, M. C.; Jump, J. M.; Lee, Y.-W.; Fail, P. A. *J. Med. Chem.* **1995**, *38*, 753–763. (b) Jump, J. M.; McPhail, A. T.; Cook, C. E. *Tetrahedron Lett.* **1997**, *38*, 3691–3694.
- (19) The method represents an efficient and convergent method for the construction of the pyrrolidine structure unit, see: (a) Wilson, N. S.; Sarko, C. R.; Roth, G. P. Tetrahedron Lett. 2001, 42, 8939-8942. (b) Abellán, T.; Mancheño, B.; Nájera, C.; Sansano, J. Tetrahedron 2001, 57, 6627-6640. (c) Casas, J.; Grigg, R.; Najera, C.; Sansano, J. M. Eur. J. Org. Chem. 2001, 10, 1971-1982. (d) Subramaniyan, G.; Raghunathan, R. Tetrahedron 2001, 57, 2909-2916. (e) Grigg, R.; Liu, A.; Shaw, D.; Suganthan, S.; Washington, M. L.; Woodall, D. E.; Yoganathan, G. Tetrahedron Lett. 2000, 41, 7129-7134. (f) Nyerges, M.; Fejes, I.; Toeke, L. Tetrahedron Lett. 2000, 41, 7951-7954. (g) Vivanco, S.; Lecea, B.; Arrieta, A.; Prieto, P.; Morao, I.; Linden, A.; Cossio, F. P. J. Am. Chem. Soc. 2000, 122, 6078-6092. (h) Dondas, H. A.; Duraisingham, J.; Grigg, R.; MacLachlan, W. S.; MacPherson, D. T.; Thornton-Pett, M.; Sridharan, V.; Suganthan, S. Tetrahedron 2000, 56, 4063-4070. (i) Fejes, I.; Toke, L.; Nyerges, M.; Pak, C. S. Tetrahedron 2000, 56, 639-644. (j) Fejes, I.; Toke, L.; Blasko, G.; Nyerges, M.; Pak, C. S. *Tetrahedron* **2000**, *56*, 8545–8554. (k) Gong, Y.-D.; Najdi, S.; Olmstead, M. M.; Kurth, M. J. *J. Org. Chem.* **1998**, *63*, 3081-3086. (l) Pejes, I.; Nyerges, M.; Szoellosy, A.; Blasko, G.; Toke, L. Tetrahedron 2001, 57, 1129-1138. (m) Nyerges, M.; Gajdics, L.; Szoelloesy, A.; Toeke, L. Synlett 1999, 1, 111-113.
- (20) (a) Dimroth, F. Chem. Ber. **1957**, 90, 1628–1633. (b) Dallacker, F. Justus Liebigs Ann. Chem. **1961**, 643, 82–90. (c) Waly, M. A. Boll. Chim. Farm. **2000**, 139, 217–221.
 - (21) Dell, C. P. J. Chem. Soc., Perkin Trans. 1 1998, 3873-3905.
- (22) For a review on *N*-metalated azomethine ylides, see: Kanemasa, S.; Tsuge, O. *Adv. Cycloaddit.* **1993**, *3*, 99–159.

On the basis of our previous observations, we suspected that the addition of a heterodipolar reagent, such as an azomethine ylide, to fulvene could afford the hetero [6+3] cycloadduct and provide a novel route to the [2]pyrindine skeleton. In a model study, we have found that the Nbenzylidene glycine ethyl ester derived from benzaldehyde and glycine ethyl ester in the presence of LDA in dry THF reacts with 6,6-dimethylfulvene (1) to yield the predicted hetero [6+3] cycloadduct 4 as the only isolable product in 80% yield (Scheme 2). The structure of 4 was assigned based on IR, ¹H, ¹³C NMR, COSY, DEPT, HMQC, HMBC, MS, and HRMS analysis. The formation of 4 may be rationalized via the stepwise mechanism shown in Scheme 2. Initial addition of the metalloazomethine ylide 2 to the C-6 position of fulvene 1 generates the zwitterionic intermediate 3. This is followed by cyclization to give the [2]pyrindine 4. The chairlike transition state places the alkyl substituents at the equatorial positions throughout the cyclization process and leads to the formation of adduct 4 with high stereoselectivity. The azomethine ylides were generated by using a variety of methods (Table 1, entry 1, methods B-F). Among these, method D (Ag₂O in Et₃N-THF) gave the highest yield (92%) along with 8% of the uncyclized imine.

A series of homologous metalloazomethine ylides were then reacted with various fulvenes to afford the corresponding products **6**, **8**, **10**, and **12** (entries 2–5, Table 1).²⁶ The structure of **8** was unambiguously assigned by single-crystal X-ray analysis (Figure 1).²⁷ The reaction of various monoalkylfulvenes with metalloazomethine ylides gave similar adducts **14**, **17** and **15**, **18** in a 1:1 ratio of stereoisomers, respectively (entries 6–7, Table 1). The structure of **14** was also unambiguously assigned by single-crystal X-ray analysis (Figure 1).²⁸

Org. Lett., Vol. 5, No. 10, 2003

⁽²³⁾ Kato, H.; Kobayashi, T.; Ciobanu, M. Tetrahedron 1997, 53, 9921–9934.

⁽²⁴⁾ Djapa, F.; Ciamala, K.; Melot, J.-M.; Vebrel, J.; Herlem, G. *J. Chem. Soc., Perkin Trans.* 1 **2002**, 687–695.

⁽²⁵⁾ Nair, V.; Nandakumar, M. V.; Maliakal, D.; Mathen, J. S.; Rath, N. P. *Tetrahedron* **2000**, *56*, 8001–8005.

⁽²⁶⁾ All new compounds were fully characterized by ¹H NMR, ¹³C NMR, DEPT, IR, MS, and HRMS. In most cases COSY and HMQC spectra were also obtained. Yields refer to spectroscopically and chromatographically homogeneous (>95%) materials.

⁽²⁷⁾ Crystallographic data for **8**: $C_{22}H_{27}NO_2$, M=337.45, monoclinic, space group $P2_1/c$, T=295 K, a=8.2285(1) Å, b=23.0207(4) Å, c=10.2019(2) Å, $\beta=99.0300(6)^\circ$, V=1908.55(6) Å³, Z=4, D=1.174 g/cm³, λ (Mo $K\alpha$) = 0.71073 Å, 13582 reflections collected, 4381 unique reflections, 227 parameters refined on F^2 , R=0.0669, $wR2[F^2]=0.1773$ [2341 data with $F^2>2\sigma(F^2)$].

Table 1. Reaction of N-Alkylidene Glycine Ester with Fulvenes

$$R_1$$
 R_2 R_2 R_2 R_2 R_2 R_2 R_2 R_2 R_2 R_3 R_4 R_4 R_5 R_5 R_5 R_5 R_6 R_7 R_7 R_8 R_9 R_9

entry	fulvene	product	method	time (h)	yield (%) ^a
			A	1	80
	Me、 _Me	Mę "Me	В	24	75
	Y	CO ₂ Et	C	24	20
1		NH	D	12	92^b
	<u> </u>	H I Ph 4	Е	12.5	7^c
		'' Ph 4	F	4	53 ^d
			G	6 for step 1 4 for step 2	75 ^b
	\bigcirc	CO ₂ Et	A	1	57
2		, NH	D	12	70^b
	<u></u> 5	H Ph 6			
	\bigcirc	\bigcirc	A	1	73
3	\mathbf{Y}	CO ₂ Et	D D	12	86^b
3	\bigcirc 7	NH Ph 8	D	12	80
		Å			
	\forall	CO ₂ Et	A	1	66
4	₩,	NH Ph 10	D	12	78 ^b
	Bn	Bn			
			A	1	75
5	\forall	CO ₂ Et	D	12	89^b
-		NH NH 12	_		~~
		Ph Ph			
	Ph → H	CO ₂ Et CO ₂ Et	A	1	71
6		NH	D	12	63^b
	13	H Ph 14 H Ph 15 (1:1)	Ъ	12	03
7	CI				
,	Ľ J ⊢	Ÿ	٨	1	74
	Ţ	CO ₂ Et CO ₂ Et	A	1	
	(16	NH NH NH Ph 17 18 (1:1)	D	12	68^b
		Me Me			
8	Me Me	CO ₂ Et	G	6 for step 1	$67^{e,f}$
Ü		NH	-	4 for step 2	6/5,5
	<u> </u>	H Pr 19		-	

^a Isolated yield based on starting fulvene. Method A: LDA, THF, −78 °C. Method B: LiBr, Et₃N, THF, 25 °C. Method C: toluene, reflux. Method D: Ag₂O, Et₃N, THF, 25 °C. Method E: LiBr, DBU, 25 °C. Method F: AgOAc, Et₃N, 25 °C. Method G: glycine ethyl ester, C₆H₅CHO, MgSO₄, toluene, reflux, 12 h; fulvene 1, Ag₂O, Et₃N, 25 °C, 12 h. ^b 8% of the uncyclized imine was obtained. ^c 90% of the uncyclized imine was obtained. ^d 47% of the uncyclized imine was obtained. ^e Reacted with N-propyl glycine ethyl ester hydrochloride. ^f Total yield for two steps.

Org. Lett., Vol. 5, No. 10, 2003

Scheme 2

The two-step reaction can be carried out in one pot by heating a 64 mM solution of benzaldehyde (1 equiv), glycine ethyl ester hydrochloride (1.3 equiv), Et_3N (5 equiv), and $MgSO_4$ in toluene to reflux for 6 h, followed by addition of

Scheme 3 $R_1 \stackrel{\bigcirc}{\longleftarrow} H + H_2 N \stackrel{\bigcirc}{\longleftarrow} R_2 + R_3 \stackrel{\bigcirc}{\longleftarrow} R_4 \stackrel{\bigcirc}{\longleftarrow} NH$

 $R_1 = C_6H_5$, p-ClC₆H₄, p-OMeC₆H₄, C_3H_7 , c-C₆H₁₁; $R_2 = Me$, Et; $R_3 = Me$, -(CH₂)₅-, Ph; R_4 = -(CH₂)₅-, H

a THF solution of fulvene 1 (1.2 equiv), Et_3N , and Ag_2O at ambient temperature and stirring for 4 h (Table 1, entry 1, method G, Table 1). This process yields adduct 4 in 75% yield without the need for isolation of the N-alkylidene glycine ester.

Next a selection of 3 fulvenes, 2 glycine esters, and 5 aldehydes were reacted according to Method G to yield a 30-membered [2]pyrindine library. During this process, heating in toluene was maintained for 12 h and the cyclization was allowed to proceed at ambient temperature for 8 h. Simple filtration through Celite and removal of the solvent afforded the final products in good yield and pure enough for MS and/or NMR analysis without further purification.

In summary, we have developed a novel synthesis of [2]-pyrindine derivatives (delavayine and incarvillateine skeletons) via a stereoselective one-pot hetero [6+3] cycloaddition of *N*-alkylidene glycine esters to fulvenes. We are currently pursuing the application of this methodology to the solid-phase synthesis of a large [2]pyrindine library and other natural products.

Figure 1. ORTEP plots for X-ray crystal structures of 8 and 14.

Acknowledgment. We are grateful to Dr. Sepehr Sarshar for valuable discussions. Financial support from National Science Council and National Health Research Institute are gratefully acknowledged.

Supporting Information Available: Crystallographic information files (CIF) for **8** and **14** and experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034329B

Org. Lett., Vol. 5, No. 10, 2003

⁽²⁸⁾ Crystallographic data for **14**: C₂₃H₂₃NO₂, M = 345.42, monoclinic, space group $P2_1/c$, T = 295 K, a = 11.0990(9) Å, b = 8.6516(7) Å, c = 20.1131(16) Å, β = 101.3730(10)°, V = 1893.4(3) ų, Z = 4, D = 1.212 g/cm³, λ (Mo $K\alpha$) = 0.71073 Å, 8110 reflections collected, 2732 unique reflections, 237 parameters refined on F^2 , R = 0.0473, $wR2[F^2]$ = 0.1338 [2339 data with $F^2 > 2\sigma(F^2)$].