```
modifier_ob.
  mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
mirror_mod.use_x = True
irror_mod.use_y = False
irror_mod.use_z = False
 _operation == "MIRROR_Y"
__rror_mod.use_x = False
lrror_mod.use_y = True
 lrror_mod.use_z = False
  operation == "MIRROR_Z";
  rror_mod.use_x = False
  rror_mod.use_y = False
  rror_mod.use_z = True
 melection at the end -add
   _ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
   "Selected" + str(modified
   rror ob.select = 0
  bpy.context.selected_obj
  ata.objects[one.name].sel
  int("please select exactle
  --- OPERATOR CLASSES ----
    X mirror to the selected
   ject.mirror_mirror_x"
  ext.active_object is not
```

Sentiment Analysis e Text Classification delle recensioni dei farmaci

- Della Mura Dario, matricola 793751
- Doci David, matricola 799647
- Filip Sara, matricola 852864

Pipeline

0

Obiettivi

- Eseguire una Text Classification per classificare le recensioni in positive o negative, confrontando diversi approcci metodologici
- Eseguire la Sentiment Analysis sulle recensioni
- Eseguire una classificazione usando un nuovo algoritmo di Google per classificare recensioni positive, negative, neutre

Dataset

Pre-processing

Tokenizzazione

 Creazione di token

Normalizzazione

- Trasformazione in lettere minuscole
- Rimozione spazi bianchi
- Rimozione caratteri speciali

Stemming

Snowball

Rimozione stopwords

 Rimozione di parole comuni e non comuni con poco significato semantico

Text Representation

+

O

Modello Bag-of-Word

Matrice TF-IDF

Text Classification - Sentiment Analysis

+

O

Vader

- basato sul lessico
- coglie sia la polarità che l'intensità del sentimento
- punteggio composto (compound)

Valutazione

Vader

ACCURACY 0.63

Modelli di Machine Learning

Modelli:

Support Vector Machine (SVM)

Regressione logistica

Random Forest

Decision Tree

XGBoost

Guassian Naive Bayes

KNeighbors

Tecniche di riduzione della dimensionalità:

- kBest
- PCA

Valutazioni modelli ML

BERT

- Utilizza Transformer
- È uno stack di encoders
- Crea rappresentazioni della parola
- Prevede parole mascherate in una frase

+

	FIECISIOII	Necali	score	Support
Positive	0.82	0.74	0.78	265
Neutral	0.71	0.67	0.69	265
Negative	0.59	0.68	0.63	265
Accuracy			0.70	795
Macro avg	0.71	0.70	0.70	795
Weighted avg	0.71	0.70	0.70	795

Valutazioni

BERT

Conclusioni

- SVM è risultato il miglior modello di ML indipendentemente dalla *text* representation utilizzata
- Non risulta corretto il confronto tra i tre approcci poiché si basano su fondamenti teorici diversi
- Con tutti gli approcci implementati si sono ottenuti risultati soddisfacenti

Grazie per l'attenzione!