Cálculo integral

Contenidos

1	Ser	ies Numéricas e Integrales Impropias	1
	1.1	Series numéricas	
	1.2	Series de números positivos	,
	1.3	Series absolutamente convergentes y condicionalmente convergentes	9
		Teorema de Riemman para series condicionalmente convergentes	10
	1.4	Aplicación: Series de potencias	1:
		Teorema de Cauchy-Hadamard	1
		1.4.1 Series de números complejos	1
	1.5	Integrales impropias: definición y ejemplos	1
	1.6	Criterios de convergencia de integrales impropias	1
2	Integración multiple		2
	2.1	Integral de Riemann sobre rectangulos compactos	2

1 Series Numéricas e Integrales Impropias

1.1 Series numéricas

Definición 1.1.1

Una serie de números reales es una pareja de sucesiones de números reales $(a_n)_{n\geq 0}$, $(s_n)_{n\geq 0}$, relacionadas por

$$s_n = \sum_{i=0}^n a_n$$

Denominaremmos término n-ésimo de la serie al elemento a_n y llamaremos suma parcial n-ésima de la serie a s_n

Observación Las sumas parciales definen los términos

$$a_0 = s_0$$
 $a_n = s_n - s_{n-1}$ $(n \ge 1)$

Definición 1.1.2

Llamaremos suma de una serie a

$$s = \lim s_n = \lim_{n \to \infty} \sum_{k=0}^n a_n$$

suponiendo que existe

Observación Denotaremos $s=\sum_{n\geq 0}a_n=\sum_{n\geq 0}^\infty a_n$. Esta misma notación nor servirá para representar la serie.

Definición 1.1.3

Diremos que una serie $\sum a_n$ es convergente o divergente si lo es la sucesión de sumas parciales

- convergente $\lim s_n \in \mathbb{R}$
- divergente $\lim s_n = \pm \infty$
- oscilante $\nexists \lim s_n$

Observación 1.1.4 Una serie no tiene por qué comenzar por el índice 0, y por tanto, podemos considerar series con términos a_n donde $n \ge n_0$. En tal caso, las sumas parciales son $s_n = \sum_{k=n_0}^n a_n$, y la suma (si existe) $\sum_{k=n_0}^{\infty} a_n = \lim_{n\to\infty} \sum_{k=n_0}^n a_n$.

Definición 1.1.5

Sea $r \in \mathbb{R}$. Llamaremos serie geométrica de razón r a la serie

$$\sum_{n\geq 0} r^n$$

Proposición

La serie geométrica es convergente si y solo si |r| < 1, en tal caso la suma es

$$\sum_{n>0} r^n = \frac{1}{1-r}$$

Demostración

Primero, calculamos el término n-ésimo

$$s_n = 1 + r + \dots + r^n = \begin{cases} n+1 & \text{si } r = 1\\ \frac{r^{n+1}-1}{r-1} & \text{si } r \neq 1 \end{cases}$$

- Si r = 1, $\lim s_n = \lim_{n \to \infty} n + 1 = \infty$
- Si |r| > 1, $\lim s_n = \lim_{n \to \infty} \frac{r^{n+1} 1}{r 1} = \infty$
- Si |r| < 1, $\lim s_n = \lim_{n \to \infty} \frac{r^{n+1} 1}{r 1} = \frac{-1}{r 1}$
- $\bullet\,$ Si $r=-1,\,s_n=0$ si n par y $s_n=1$ si n impar. Por lo tanto la serie es oscilante

Proposición 1.1.6

Si $\sum a_n$ es convergente, entonces $\lim a_n = 0$

Demostración

Sabemos que $a_n = s_n - s_{n-1}$, por lo tanto $\lim a_n = \lim (s_n - s_{n-1})$, como $\lim s_n$ existe (y por lo tanto también $\lim s_{n-1}$)

$$\lim a_n = \lim (s_n - s_{n-1}) = \lim s_n - \lim s_{n-1} = 0$$

Proposición 1.1.7 (Criterio de Cauchy para series)

La serie $\sum a_n$ es convergente si $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}$ tal que

$$m, n \ge n_0 \implies |s_m - s_n| = |a_m + a_{m-1} \cdots + a_n| < \varepsilon$$

Proposición 1.1.8 (linealidad)

Sean $\alpha, \beta \in \mathbb{R}$ y sean $\sum a_n$ y $\sum b_n$ series convergentes. Entonces $\sum (\alpha a_n + \beta b_n)$ también lo es y $\sum (\alpha a_n + \beta b_n) = \alpha \sum a_n + \beta \sum b_n$.

Proposición 1.1.9

Sean dos sucesiones $(a_n)y$ (b_n) , son iguales salvo en número finito de términos, entonces las series $\sum a_n$ y $\sum b_n$ tienen la misma convergencia.

Demostración

Sea $d_n = b_n - a_n$, que vale 0 salvo en número finito de términos

• Si $\sum a_n$ converge $\sum b_n = \sum a_n + \sum d_n \implies \sum b_n$ converge

• Si $\sum a_n$ diverge $\sum b_n = \sum a_n + \sum d_n \implies \sum b_n$ diverge

• Si $\sum a_n$ oscila $\sum b_n = \sum a_n + \sum d_n \implies \sum b_n$ oscila

Proposición 1.1.10 (Asociatividad)

Sea $\sum a_n$ una serie y $(n_k)_{k\geq 0}$ una sucesión estrictamente creciente de números naturales. Definimos

$$b_0 = a_0 + \dots + a_{n_0}$$
 $b_k = a_{(n_{k-1}+1)} + \dots + a_{n_k}$

Si existe la suma de $\sum a_n$, entonces también existe la suma de $\sum b_k$ y son iguales.

Demostración

Sea $A_n = \sum_{i=0}^n a_i$ y $B_k = \sum_{i=0}^k b_i$, por la definición anterior se tiene que $B_k = A_{n_k}$ y por lo tanto (B_k) es una sucesión parcial de (A_n) , lo cual implica que si (A_n) converge, (B_k) también y lo hace al mismo número.

1.2 Series de números positivos

Proposición 1.2.1

Si una serie $\sum a_n$ es de *términos positivos* $(a_n \geq 0)$ entonces la sucesión (s_n) de sumas parciales es *creciente*, y por tanto, siempre tiene límite:

$$\sum a_n = \lim s_n = \sup_{n \in \mathbb{N}} s_n$$

Este puede ser finito (si la sucesión de sumas parciales es acotada) o infinito (en caso contrario).

Proposición 1.2.2 (Criterio de comparación directa)

Sean $\sum a_n$ y $\sum b_n$ series de términos positivos. Si $\exists n_0$ tal que $a_n \leq b_n$ ($\forall n \geq n_0$). Entonces

$$\sum_{n=n_0}^{\infty} a_n \le \sum_{n=n_0}^{\infty} b_n$$

Por tanto, la convergencia de $\sum b_n$ implica la de $\sum a_n$ y la divergencia de $\sum a_n$ implica la de $\sum b_n$.

Demostración

Por el enunciado

$$\sum_{i=n_0}^n a_i \le \sum_{k=n_0}^n b_k \implies \sum_{i=n_0}^\infty a_i \le \sum_{k=n_0}^\infty b_k$$

Los términos a_0, \dots, a_{n_0} se pueden añadir al sumatorio y no alteran la convergencia.

Definición

Llamamos serie harmónica a la serie

$$\sum_{n>1} \frac{1}{n}$$

Definición 1.2.3 (Serie de Riemman)

Sea $p \in \mathbb{R}$. Llamaremos serie harmónica generalizada o serie de Riemman de parámetro p a la serie

$$\sum_{n\geq 1} \frac{1}{n^p}$$

Proposición

La serie de Riemman es convergente si y solo si p > 1.

Demostración

Distinguiremos entre varios casos

• Si p=1. Suponemos que la serie es convergente con suma s

$$s = \left(1 + \frac{1}{2}\right) + \left(\frac{1}{3} + \frac{1}{4}\right) + \dots > \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} + \frac{1}{4}\right) + \dots = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = s$$

absurdo ya que s > s.

• Si p < 1.

$$n^p \le n \implies \frac{1}{n^p} \ge \frac{1}{n}$$

y por comparación directa con la serie harmónica, diverge.

• Si p > 1.

$$\sum_{n\geq 1} \frac{1}{n^p} = 1 + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) + \left(\frac{1}{4^p} + \frac{1}{5^p} + \frac{1}{6^p} + \frac{1}{7^p}\right) + \dots \le$$

$$\le 1 + \left(\frac{1}{2^p} + \frac{1}{2^p}\right) + \left(\frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p} + \frac{1}{4^p}\right) = 1 + \frac{1}{2^{p-1}} + \frac{1}{2^{2(p-1)}} + \dots$$

que es una serie geométrica de razón $\frac{1}{2^{p-1}} < 1$ y por lo tanto convergente.

Proposición 1.2.4 (Criterio de comparación en el límite)

Sean $\sum a_n$ y $\sum b_n$ series de términos estrictamente positivos. Suponemos que existe el límite

$$\lim \frac{\sum a_n}{\sum b_n} = l \in [0, +\infty]$$

- Si $l < +\infty$. $\sum b_n$ converge $\implies \sum a_n$ converge y $\sum a_n$ diverge $\implies \sum b_n$ diverge.
- Si l > 0. $\sum a_n$ converge $\implies \sum b_n$ converge y si $\sum b_n$ diverge $\implies \sum a_n$ diverge.
- Si $0 < l < +\infty$. Entonces las dos series tienen el mismo caracter.

Demostración

Provaremos cada caso de manera individual

• Caso $l < +\infty$. Fijado $\varepsilon > 0$, por definición de límite, existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_n}{b_n} < l + \varepsilon \implies a_n < (l + \varepsilon)b_n$$

y el resultado queda provado por comparación directa.

• Caso l > 0. Se deduce del primer caso, considerando

$$\lim \frac{b_n}{a_n} = \frac{1}{l}$$

 \bullet Caso $0 < l < +\infty$. Se trata de una conjunción de los casos anteriores

Lema 1.2.5 Sea $\sum a_n$ una serie de términos positivos.

• Suponemos que hay $n_0 \in \mathbb{N}$ y r < 1 tal que

$$n \ge n_0 \implies a_n^{1/n} < r$$

entonces $\sum a_n < +\infty$

• Suponemos que existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies a_n^{1/n} \ge 1$$

entonces $\sum a_n = +\infty$

Demostración

Provaremos cada caso por separado

- $a_n^{1/n} < r \implies a_n < r^n$ que es la serie geométrica de razón r < 1, de modo que por comparación directa el resultado queda demostrado.
- $a_n^{1/n} \ge 1 \implies a_n \ge 1$ y por lo tanto diverge.

Proposición 1.2.6 (Criterio de la raíz de Cauchy)

Sea $\sum a_n$ una serie de términos positivos. Suponemos que existe $\lim a_n^{1/n} = \alpha$, entonces, si $\alpha > 1$ la serie diverge y si $\alpha < 1$ la serie converge.

Demostración

Demostraremos cada caso por separado

• Caso $\alpha < 1$. Sea $\alpha < r < 1$. Existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies a_n^{1/n} \le r$$

Y el resultado queda provado aplicando el lema anterior.

• Caso $\alpha > 1$. Existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies a_n^{1/n} \ge 1$$

y aplicamos el lema anterior.

Lema 1.2.7 Sea $\sum a_n$ una serie de términos estrictamente positivos.

• Suponemos que hay $n_0 \in \mathbb{N}$ y r < 1 tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \le r$$

entonces $\sum a_n < +\infty$

• Suponemos que existe $n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \ge 1$$

entonces $\sum a_n = +\infty$

Demostración

Separaremos los casos.

 $\frac{a_n+1}{a_n} \le r \implies a_{n+1} \le ra_n \implies a_n \le Cr^n \quad (n \ge n_0)$

donde $C = \frac{a_{n_0}}{r^{n_0}}$ y por el criterio de comparación directa $\sum a_n$ converge.

• $\frac{a_{n+1}}{a_n} \ge 1 \implies a_{n+1} \ge a_n \implies a_n$ es creciente $\implies \sum a_n$ diverge

Proposición 1.2.8 (Criterio del cociente de Alembert)

Sea $\sum a_n$ una serie de términos estrictamente positivos. Suponemos que existe $\lim \frac{a_{n+1}}{a_n} = \alpha$, entonces

- Si $\alpha > 1$ la serie diverge
- Si $\alpha < 1$ la serie converge

Demostración

Separamos los dos casos

• Si $\alpha < 1$. Sea $\alpha < r < 1$ entonces $\exists n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \le r$$

y aplicamos el lema anterior.

• Si $\alpha > 1$. Entonces $\exists n_0 \in \mathbb{N}$ tal que

$$n \ge n_0 \implies \frac{a_{n+1}}{a_n} \ge 1$$

y aplicamos el lema anterior.

Ejemplo

Estudiar la convergencia de

- $\sum_{n\geq 0} \frac{1}{n!}$. n! crece más que n^2 $(n!>n^2) \Longrightarrow \frac{1}{n!} < \frac{1}{n^2}$ que es la serie de Riemman de parámetro 2 (convergente). Por tanto, $\sum_{n\geq 0}^{\infty} \frac{1}{n!}$ es convergente.
- $\sum \frac{x^n}{n!}$ para x > 0.

$$\lim_{n \to \infty} \frac{\frac{x^{n+1}}{(n+1)!}}{\frac{x^n}{n!}} = \lim_{n \to \infty} \frac{x^{n+1}n!}{x^n(n+1)n!} = \lim_{n \to \infty} \frac{x}{n+1} = 0 < 1$$

Por lo tanto, aplicando el criterio del cociente de Alembert, la serie coverge.

• $\sum \alpha^{n+\sqrt{n}}$

$$\lim_{n \to \infty} \alpha^{\frac{n + \sqrt{n}}{n}} = \lim_{n \to \infty} \alpha^{1 + \frac{1}{\sqrt{n}}} = \alpha$$

Por lo tanto, por el criterio de la raíz, $\begin{cases} \alpha < 1 \text{ convergente} \\ \alpha > 1 \text{ divergente} \end{cases}$. Si $\alpha = 1$, la serie es $\sum 1^{n+\sqrt{n}} = \sum 1 \text{ que es divergente}.$

Observación 1.2.9 Los criterios anteriores no deciden cuando $\alpha = 1$. Como $a_{n+1}/a_n \to \alpha$ implica que $a_n^{1/n} \to \alpha$, si el criterio del cociente no decide, entonces el de la raíz tampoco.

Proposición 1.2.10 (Criterio de Raabe)

Sea $\sum a_n$ una serie de términos estrictamente positivos tal que existe el límite

$$L = \lim_{n \to \infty} n \left(1 - \frac{a_{n+1}}{a_n} \right)$$

7

Si L > 1, la serie $\sum a_n$ es convergente. Si L < 1, la serie $\sum a_n$ es divergente.

Proposición (Criterio de condensación)

Sea (a_n) una sucesión de números positivos decreciente. Entonces

$$\sum_{n=0}^{\infty} a_n \text{ converge } \iff \sum_{n=0}^{\infty} 2^n a_{2^n} \text{ converge}$$

Proposición (Criterio logarítmico)

Sea $\sum a_n$ una serie de términos positivos tal que existe el límite

$$L = \lim_{n \to \infty} \frac{-\ln(a_n)}{\ln(n)} = \lim_{n \to \infty} \frac{\ln\left(\frac{1}{a_n}\right)}{\ln(n)}$$

Si L > 1, la serie $\sum a_n$ es convergente. Si L < 1, la serie $\sum a_n$ es divergente.

Proposición 1.2.11 (Criterio de la integral)

Sea $n_0 \in \mathbb{N}$ y $f: [n_0, +\infty) \to \mathbb{R}$ positiva, localmente integrable y decreciente. Consideramos $a_n = f(n) \ (n \ge n_0)$ entonces

- i) La serie $\sum a_n$ y la integral impropia $\int_{n_0}^{+\infty} f$ tienen el mismo carácter.
- ii) Para $N \geq n_0$

$$\sum_{n>n_0}^{\infty} a_n = \sum_{n=n_0}^{N-1} + \int_N^{+\infty} f + \varepsilon_n$$

donde $\varepsilon_n \in [0, a_n]$

Ejemplo

- $\sum \frac{1}{n^{\alpha}}$ tiene el mismo carácter que $\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx$ (convergente $\iff \alpha > 1$)
- Calcular $\sum_{n\geq 1} \frac{1}{n^{1.01}}$ con error $< 10^{-3}$.

Necesitamos que

$$\frac{1}{N^{1.01}} < 10^{-3} \implies N > 1000^{1/1.01} \implies N \ge 934$$

Calculamos ahora

$$\sum_{n=1}^{933} \frac{1}{n^{1.01}} + \int_{934}^{+\infty} \frac{\mathrm{d}x}{x^{1.01}} \simeq 100.577 \simeq \sum_{n>1} \frac{1}{n^{1.01}}$$

Proposición 1.2.12

Sea $\sum a_n$ una serie de términos positivos. Dada cualquier permutación $\sigma \colon \mathbb{N} \to \mathbb{N}$, la serie $\sum a_{\sigma(n)}$ tiene la misma suma que $\sum a_n$.

Demostración

Sea $A_n = \sum_{k=0}^n a_k$ y $B_n = \sum_{k=0}^n a_{\sigma(k)}$ y sean $A = \lim A_n$ y $B = \lim B_n$. Sea $m \in \mathbb{N}$, entonces $\exists n \in \mathbb{N}$ tal que

$$\{0, 1, \dots, m\} \le \{\sigma(0), \sigma(1), \dots, \sigma(n)\}$$

ya que σ es suprayectiva. Entonces $a_0 + a_1 + \cdots + a_m \leq a_{\sigma(0)} + a_{\sigma(1)} + \cdots + a_{\sigma(n)}$ por lo tanto, $A_m \leq B_n \implies A \leq B$. Haciendo el mismo razonamiento para σ^{-1} (biyectiva), obtenemos que $B \leq A$. Y por lo tanto, $A = \sum a_n = \sum a_{\sigma(n)} = B$.

1.3 Series absolutamente convergentes y condicionalmente convergentes

Definición 1.3.1

Diremos que una serie $\sum a_n$ es absolutamente convergente, si la serie $\sum |a_n|$ es convergente.

Proposición 1.3.2

Toda serie absolutamente convergente es convergente.

Demostración

Aplicamos criterio de Cauchy para series a $\sum |a_n|$: $\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N}$ tal que

$$m > n \ge n_0 \implies ||a_{n+1}| + \dots + |a_m|| < \varepsilon \implies |a_{n+1}| + \dots + |a_m| < \varepsilon$$

De donde se deduce que

$$|a_{n+1} + \dots + a_n| < |a_{n+1}| + \dots + |a_m| < \varepsilon$$

(por la desigualdad triangular). Y por lo tanto, $\sum a_n$ cumple el criterio de Cauchy.

Definición 1.3.3

Una serie convergente, que no es absolutamente convergente, se dice que es condicionalmente convergente.

Ejemplo

La serie armónica alternada $\sum \frac{(-1)^n}{n}$ es condicionalmente convergente.

Proposición 1.3.4

Si $\sum a_n$ y $\sum b_n$ son absolutamente convergentes, y $\lambda \in \mathbb{R}$, entonces $\sum (a_n + b_n)$ y $\sum \lambda a_n$ son absolutamente convergentes.

Definición 1.3.5

Sea $a \in \mathbb{R}$. Definimos a_+ (la parte positiva de a) como $a_+ = \max(a, 0)$, asimismo, definimos la parte negativa de a como $a_- = \max(-a, 0)$.

Observación Dado un a, podemos expresar $a = a_+ - a_-$ y $|a| = a_+ + a_-$

Observación Dada $f: X \to \mathbb{R}$, podemos hacer exactamente lo mismo, $(f = f_+ - f_-, |f| = f_+ + f_-)$

Ejemplo

Lema 1.3.6 Sea (a_n) una sucesión de números reales. Sean (p_n) y (q_n) sus partes positiva y negativa (respectivamente).

- i) $\sum a_n$ converge absolutamente $\iff \sum p_n, \sum q_n$ son convergences.
- ii) Si $\sum a_n$ es condicionalmente convergente, entonces $\sum p_n$ y $\sum q_n$ son divergentes

Demostración

i) Se tiene que

$$\sum_{k=0}^{n} |a_k| = \sum_{k=0}^{n} p_k + \sum_{k=0}^{n} q_k$$

Si $\sum |a_n|$ converge $\implies \sum p_n$ y $\sum q_n$ tienen el mismo carácter, como ambas son series de términos positivos, $\sum a_n$ y $\sum b_n$ convergen.

El reciproco es directo por linealidad.

ii) Se tiene que

$$\sum_{k=0}^{n} a_k = \sum_{k=0}^{n} p_k - \sum_{k=0}^{n} q_k$$

 $\sum p_n$ y $\sum q_n$ no pueden ser las dos convergentes por i y tampoco puede ser que solo una de las dos sea divergente, porque entonces $\sum a_n$ divergería.

Proposición 1.3.7

Si una serie es absolutamente convergente, entonces todas sus series reordenadas son convergentes con la misma suma.

Es decir, $\forall \sigma \colon \mathbb{N} \to \mathbb{N}$ permutación, $\sum a_n = \sum a_{\sigma(n)}$

Demostración

Primero, escribimos

$$a_n = p_n - q_n \stackrel{a_n \text{ abs. conv.}}{\Longrightarrow} \sum a_n = \sum p_n - \sum q_n$$

Consideramos ahora $\sigma \colon \mathbb{N} \to \mathbb{N}$ permutación, entonces, $\sum a_{\sigma(n)}$ también es absolutamente convergente ($\sum |a_{\sigma n}| = \sum |a_n|$ reordenando términos positivos). Ahora tenemos que

$$\sum a_{\sigma(n)} = \sum p_{\sigma(n)} - \sum q_{\sigma(n)} \underset{\text{positives}}{\text{términos}} \sum p_n - \sum q_n = \sum a_n$$

Teorema de Riemman para series condicionalmente convergentes (1.3.8)

Sea $\sum a_n$ una serie condicionalmente convergente. $\forall s \in [-\infty, +\infty]$ existe una reorenación de la serie $\sigma \colon \mathbb{N} \to \mathbb{N}$ (permutación) tal que $\sum a_{\sigma(n)} = s$.

Definición 1.3.9

Una serie alternada es una serie donde los términos cambian de signo alternativamente. Es decir, una serie de la forma $\sum (-1)^n a_n$ donde $a_n \geq 0$.

Proposición 1.3.10 (Criterio de Leibnitz)

Si (a_n) es una sucesión descendiente de términos positivos con lim $a_n = 0$, entonces $\sum (-1)^n a_n$ es convergente.

Además, si S_N es la N-ésima suma parcial de $\sum (-1)^n a_n$ y S es su suma, $|S - S_n| \le a_{n+1}$.

Demostración

Consideramos la serie (S_{2N})

$$S_{2N+2} = S_{2N} + \overbrace{\left(a_{2N+1} + a_{2N+2}\right)}^{\leq 0} \leq S_{2N}$$

Por lo tanto, (S_{2N}) es descendiente, acotada inferiormente por $a_0 - a_1$. Consideramos ahora (S_{2N+1})

$$S_{2N+3} = S_{2N+1} + \overbrace{(a_{2N+2} + a_{2N+3})}^{\geq 0} \geq S_{2N+1}$$

Con lo cual (S_{2N+1}) es creciente. Además se tiene que

$$a_0 - a_1 = S_1 \le S_{2N+1} \le S_{2N} \le S_0 = a_0 \tag{1}$$

Con lo cual deducimos que tanto (S_{2N}) como (S_{2N+1}) son convergentes (monótonas y acotadas). Por último, tenemos que

$$\lim(S_{2N} - S_{2N-1}) = \lim a_{2N} = 0 \implies \lim S_{2N} = S$$

$$\lim S_{2N} = S$$

$$\lim S_{2N+1} = S$$

Para acabar, sabemos por (1) que S está dentro del intervalo de extremos S_N y S_{N+1} de longitud a_{N+1} , por lo tanto $|S-S_N| \le a_{N+1}$

Ejemplo

La serie harmónica alternada, $\sum \frac{(-1)^n}{n}$ es convergente por el criterio de Laibnitz.

Hay otros criterios de convergencia para series cualesquiera, entre los cuales destaca el criterio de Dirichlet.

Proposición 1.3.11 (Critero de Dirichlet)

Sean (a_n) y (b_n) dos sucesiones numéricas. Suponemos que

- i) las sumas parciales s_n de la serie $\sum a_n$ están acotadas.
- ii) la sucesión (b_n) es positiva y decreciente con límite 0.

Entonces la serie $\sum a_n b_n$ es convergente.

1.4 Aplicación: Series de potencias

Definición 1.4.1

Una serie de potencias (centrada en 0) es una expresión

$$\sum_{n\geq 0} a_n x^n$$

donde a_n son los coeficientes de la serie.

Lema 1.4.2 Sea $\sum a_n x^n$ una serie de potencias. El conjunto de los $r \geq 0$ tales que $\sum |a_n| r^n$ converge es un intervalo que contiene al 0.

Demostración

Si $0 \le s \le r$ y $\sum |a_n| r^n$ converge, entonces $\sum |a_n| s^n$ converge también por comparación directa $(|a_n| s^n \le |a_n| r^n)$ y $\sum |a_n| 0^n$ converge a 0 trivialmente.

Definición 1.4.3

Sea $\sum a_n x^n$ una serie de potencias y sea I el intervalo de los $r \geq$ tales que $\sum |a_n| r^n$ converge. Llamamos radio de convergencia de la serie a R el extremo superior del intervalo I. Denominamos dominio de convergencia de la serie al intervalo (-R,R)

Observación La serie puede converger en los puntos frontera del dominio de convergencia.

Observación Los casos extremos corresponden a R = 0 (la serie solo converge para x = 0) y $R = +\infty$ (la serie converge para todo x).

Teorema de Cauchy-Hadamard (1.4.4)

Sea $\sum a_n x^n$ una serie de potencias. Su radio de convergencia R viene dado por

$$\frac{1}{R} = \lim \sup |a_n|^{1/n}$$

La serie de potencias es absolutamente convergente si |x| < R y es divergenete si |x| > R.

Observación A priori no se puede afirmar nada cuando |x| = R.

Demostración

Separaremos la demostración en varios casos

• Caso $0 < R < +\infty$. Sea 0 < |x| < R. Existe C < 1 tal que

$$|x| < CR \implies \frac{1}{R} < \frac{C}{|x|}$$

Por lo tanto, si n es suficientemente grande

$$|a_n|^{1/n} \le \frac{C}{|x|} \implies |a_n x^n| \le C^n$$

Como C^n es la serie geométrica de razón C < 1, la serie converge.

Sea ahora |x| > R, tenemos que $\frac{1}{R} > \frac{1}{|x|}$. Hay infinitos n tal que

$$|a_n|^{1/n} > \frac{1}{|x|} \implies |a_n x^n| > 1$$

Por lo tanto $a_n x^n$ no tiende a 0 y por lo tanto la serie no converge.

- Caso $R = +\infty$. Entonces $\limsup |a_n|^{1/n} = 0$. Por lo tanto, para n suficientemente grande $\exists C < 1$ tal que $|a_n|^{1/n} < \frac{C}{|x|} \Longrightarrow |a_n x^n| < C^n$ y por lo tanto la serie converge.
- Caso R = 0. Entonces $\forall x$ hay infinitos n tales que $|a_n|^{1/n} > \frac{1}{|x|} \implies |a_n x^n| > 1 \neq 0$ y por lo tanto, la serie diverge.

Observación 1.4.5 El radio de convergencia también se puede calcular con las expresiones

$$\frac{1}{R} = \lim |a_n|^{1/n}$$
 $\frac{1}{R} = \lim \frac{|a_{n+1}|}{|a_N|}$

Suponiendo que los límites existan.

Ejemplo

- $\sum n! x^n$, $\frac{1}{R} = \lim \frac{(n+1)!}{n!} = \lim (n+1) = +\infty \implies R = 0$
- $\sum x^n$, $\frac{1}{R} = \lim 1^{1/n} = 1^0 = 1 \implies R = 1$
- $\sum \frac{x^n}{n!}$, $\frac{1}{R} = \lim \frac{n!}{(n+1)!} = \lim \frac{1}{n+1} = 0 \implies R = +\infty$
- Las $\sum_{n\geq 0} x^n$, $\sum_{n\geq 1} \frac{x^n}{n}$ y $\sum \frac{1}{n^2}$ tienen R=1, pero tienen comportamiento distinto en la frontera

Definición 1.4.6

Si una serie de potencias $\sum a_n x^n$ tiene radio de convergencia R > 0, define una función

$$f: (-R, R) \to \mathbb{R}$$

 $x \mapsto f(x) = \sum a_n x^n$

Observación Se puede probar que f es continua, integrable y derivable "término" término"

Observación La serie derivada término a término tiene radio de convergencia R, y por lo tanto, la función es de clase \mathcal{C}^{∞}

Demostración

Primero, consideramos la función derivada $f'(x) = \sum_{n\geq 0} na_n x^{n-1} = \sum_{k\geq 0} (k+1)a_{k+1}x^k$, calculamos ahora el raido de convergencia por la definición.

$$\lim \sup |n+1|^{1/n} |a_{n+1}|^{1/n} = \lim \sup |n|^{1/n-1} |a_n|^{1/n-1} = \lim \sup \left(n^{1/n} |a_n|^{1/n}\right)^{\frac{n}{n-1}} = \frac{1}{R}$$

Además

$$f^{(k)}(0) = k! a_k \to f(x) = \sum_{k>0} \frac{f^{(k)}(0)}{k!} x^k$$

Definición

Una función tal que alrededor de cada punto se puede expresar como una serie de potencias (convergente) se llama analítica.

Definición 1.4.7

Sea D un intervalo abierto tal que $0 \in D$ y sea $f: D \to \mathbb{R}$ de clase \mathcal{C}^{∞} . Entonces, f define una serie de potencias

$$\sum_{n>0} \frac{f^{(n)}(0)}{n!} x^n$$

que es la serie de Taylor de f (centrada en 0).

Proposición

Sea D un intervalo abierto tal que $0 \in D$ y sea $f: D \to \mathbb{R}$ de clase \mathcal{C}^{∞} . Suponemos que la serie de Taylor de f tiene radio de convergencia R > 0. Recordando la formula de Taylor $f(x) = P_n(x) + R_n(x)$ (donde P_n es el polinomio de Taylor de grado $\leq n$ de f en 0, y R_n el correspondiente residuo de Taylor), por tanto en $D \cap (-R, R)$

$$f(x) = \sum_{n>0} \frac{f^{(n)}(0)}{n!} x^n \iff \lim_{n\to\infty} R_n(x) = 0$$

Observación 1.4.8 Hay funciones $f: \mathbb{R} \to \mathbb{R}$ de clase \mathcal{C}^{∞} tales que su serie de Taylor (centrada en 0) converge para todo x, pero no coincide con f(x) en ningún punto salvo el origen.

Hay funciones $f: \mathbb{R} \to \mathbb{R}$ de clase \mathcal{C}^{∞} tales que su serie de Taylor (centrada en 0) tiene radio de convergencia 0.

Ejemplo

La función
$$f(x) = \begin{cases} 0 & \text{si } x \le 0 \\ e^{-1/x} & \text{si } x > 0 \end{cases}$$

Su serie de Taylor es nula $(f^{(k)}(0) = 0 \ \forall k \in \mathbb{N})$. Pero f no se anula en ningún entorno de $0 \implies f$ no coincide con la serie de Taylor en ningún entorno de 0.

Proposición 1.4.9 (Algunas series de Taylor importantes)

•
$$e^x = \sum_{n>0} \frac{x^n}{n!} \quad \forall x \in \mathbb{R}$$

•
$$\cos(x) = \sum_{n\geq 0} (-1)^n \frac{x^{2n}}{(2n)!} \quad \forall x \in \mathbb{R}$$

•
$$\sin(x) = \sum_{n>0} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \quad \forall x \in \mathbb{R}$$

•
$$\log(1+x) = \sum_{n>1} (-1)^{n+1} \frac{x^n}{n}$$
 $|x| < 1$

•
$$(1+x)^p = \sum_{n\geq 0} \binom{p}{n} x^n$$

$$\begin{cases} x \in \mathbb{R} & \text{si } p \in \mathbb{N} \\ |x| < 1 & \text{si } p \notin \mathbb{N} \end{cases}$$

•
$$a = \sum_{n>0} (-1)^n x^n$$
 $|x| < 1$

Ejemplo

$$\bullet \sum_{n\geq 0} \frac{1}{n!} = e^1 = e$$

•
$$\frac{1}{(1-x)} = \sum_{n>0} x^n \implies \sum_{n>1} nx^{n-1} = \left(\frac{1}{(1-x)}\right)' = \frac{1}{(1-x)^2}.$$

Por lo tanto

$$\sum_{n\geq 1} nx^n = \frac{x}{(1-x)^2}$$

• $f = \arctan(x) \operatorname{con} |x| < 1(\operatorname{a partir de} f'(x) = \frac{1}{1+x^2})$

$$\frac{1}{1+x^2} = \sum_{n\geq 0} (-1)^n x^{2n} \implies \arctan(x) = \int \frac{1}{1+x^2} \, \mathrm{d}x = \sum_{n\geq 0} (-1)^n \frac{x^{2n+1}}{2n+1}$$

1.4.1 Series de números complejos

Definición

La definición de serie, de serie convergente y de serie absolutamente convergente, es la misma si, en vez de considerar números reales, consideramos números complejos.

Proposición

Una serie $\sum c_n$ de números complejos es convergente si y solo si lo son separadamente sus partes real e imaginaria.

Proposición

Toda serie $\sum c_n$ de números complejos absolutamente convegente, es convergente.

Observación El estudio de las series de potencias es completamente análogo. En el caso complejo, si la serie de potencias $\sum c_n z^n$ tiene radio de convergencia R ($\frac{1}{R} = \limsup |c_n|^{1/n}$). Entonces, el dominio de convergencia es un disco abierto |z| < R del plano complejo.

Observación La serie de Taylor de la función exponencial real permite definir la exponencial compleja como

$$e^z = \sum_{n>0} \frac{z^n}{n!}$$

para todo $z \in \mathbb{C}$.

Proposición

Tomando $z \in \mathbb{C}$ un imaginario puro, y separando las partes real e imaginaria de las potencias, obtenemos la formula de Euler.

$$e^{ix} = \cos(x) + i\sin(x)$$

En particular para $x = \pi$, se tiene que $e^{i\pi} + 1 = 0$.

1.5 Integrales impropias: definición y ejemplos

Definición 1.5.1

Sea $D \subset \mathbb{R}$ un intervalo, y $f \colon D \to \mathbb{R}$ una función. Diremos que f es localmente integrable si es integrable para todo intervalo compacto $K \subset D$.

Observación 1.5.2 Si consideramos por ejemplo, $f:[a,b) \to \mathbb{R}$ con $a < b \le +\infty$. Entonces, f es localmente integrable si es integrable en cualquier intervalo [a,M] donde a < M < b. En tal caso, podemos estudiar la integral impropia

$$\int_{a}^{b} f := \lim_{M \to b^{-}} \int_{a}^{M} f$$

Observación A veces se dice que una integral impropia es

- De primera especie, si el intervalo no es acotado.
- De segunda especie, si la función no es acotada.
- De tercera especie, sin ni la función ni el intervalo son acotados.

Definición 1.5.3

Diremos que la integral impropia es convergente, si $\exists \left| \int_a^b f \right| < +\infty$ y divergente , di $\exists \int_a^b f = \pm \infty$

Observación 1.5.4 De forma totalmente análoga, podemos considerar la integral impropia de una función $f:(a,b] \to \mathbb{R}$ localmente integrable, con $-\infty \le a < b$.

Definición 1.5.5

Consideramos una función localmente integrable $f:(a,b) \to \mathbb{R}$. Si tomamos un punto arbitrario c tal que a < c < b, podemos descomponer

$$\int_{b}^{a} f := \int_{a}^{c} f + \int_{c}^{b} f = \lim_{M \to a^{+}} \int_{M}^{c} + \lim_{N \to b^{-}} \int_{c}^{N} f$$

y estudiar las dos integrales imporopias. Si las dos convergentes, una convergente y la otra divergente o las dos son divergentes con el mismo signo, entonces se define la integral imporpia del primer miembro como la suma de las dos del segundo miembro.

Observación Mas generalmente, podemos considerar una función localmente integrable definida en un dominio D que sea unión finita y disjunta de intervalos. Entonces, definimos $\int_D f$ como la suma de las integrales sobre estos intervalos, suponiendo que sean convergentes.

Proposición 1.5.6

Consideramos una función integrable por Riemman, $f:[a,b]\to\mathbb{R}$. Entonces

$$\int_{b}^{a} f = \lim_{M \to b^{-}} \int_{a}^{M} f$$

Observación Así, la notación introducida para las integrales impropias, no produce ningún conflicto con la notación habitual definida para integrales "propias"

Ejemplo 1.5.7

Algunos ejemplos de integrales inportantes son

• $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}$ Es convergente sii $\alpha > 1$ (y vale $\frac{1}{\alpha - 1}$). Y es divergente si $\alpha \le 1$.

$$\lim_{M \to +\infty} \int_1^M \frac{\mathrm{d}x}{x^\alpha} = \begin{cases} \alpha = 1 & \lim_{M \to +\infty} \left[\log x \right]_1^M = +\infty \\ \alpha \neq 1 & \lim_{M \to +\infty} \left[\frac{x^{-\alpha+1}}{-\alpha+1} \right]_1^M = \lim_{M \to +\infty} \frac{M^{-\alpha+1}-1}{-\alpha+1} = \begin{cases} \frac{1}{\alpha-1} & \text{si } \alpha > 1 \\ +\infty & \text{si } \alpha < 1 \end{cases}$$

• $\int_0^1 \frac{\mathrm{d}x}{x^{\alpha}}$ Es convergente sii $\alpha < 1$ (y vale $\frac{1}{1-\alpha}$). Y es dievergente si $\alpha \ge 1$.

Podemos observar que

$$\int_0^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} = \int_0^1 \frac{\mathrm{d}x}{x^{\alpha}} + \int_1^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} = +\infty$$

independientemente del valor de α .

• $\int_0^{+\infty} e^{-ax} dx$ Es convergente sii $\alpha > 0$ (y vale $\frac{1}{\alpha}$).

Ejemplo

$$\int_{0}^{+\infty} \frac{\mathrm{d}x}{1+x^{2}} = \lim_{M \to +\infty} \left[\arctan x\right]_{0}^{M} = \frac{\pi}{2}$$
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{1+x^{2}} = \int_{-\infty}^{0} \frac{\mathrm{d}x}{1+x^{2}} + \int_{0}^{+\infty} \frac{\mathrm{d}x}{1+x^{2}} = \pi$$

$$\int_{-1}^{1} \frac{\mathrm{d}x}{x^2} = \int_{-1}^{0} \frac{\mathrm{d}x}{x^2} + \int_{0}^{1} \frac{\mathrm{d}x}{x^2} = +\infty$$

Pero $\left[-\frac{1}{x}\right]_{-1}^{1} = -2$, es decir, que no poedemos aplicar la regla de Barrow.

•
$$\int_{-\infty}^{+\infty} x \, \mathrm{d}x$$
 No existe

$$\int_0^1 \frac{1}{x^2} \cos x \, \mathrm{d}x = \left[\cos \frac{1}{x} \right]_0^1 = \cdots$$
 No existe.

Observación 1.5.8 Las reglas de cálculo de integrales se aplican a las integrales impropias teniendo en cuenta que hay que aplicar un límite. Explicitamos algunas.

Proposición 1.5.9 (Linealidad)

Si $\int_a^{\tilde{b}} f$, $\int_a^b g$ son integrales impropias convergentes, también lo es $\int_a^b (f+g) = \int_a^b f + \int_a^b g$. Si $\int_a^b f$ es convergente y $\lambda \in \mathbb{R}$ $\int_a^b \lambda f = \lambda \int_a^b f$.

Proposición 1.5.10 (Regla de Barrow)

Si f es continua y f = F' en [a, b), entonces

$$\int_{a}^{b} f = \lim_{M \to b} F(M) - F(a)$$

Suponiendo que el límite exista.

Proposición 1.5.11 (Integración por partes)

Suponemos que f,g son funciones de clase \mathcal{C}^1 en [a,b). Entonces

$$\int_{a}^{b} f'g = \lim_{t \to b} \left[f(x)g(x) \right]_{x=a}^{x=t} - \int_{a}^{b} g'f$$

Suponiendo que los miembros del segundo término existan.

1.6 Criterios de convergencia de integrales impropias

Proposición 1.6.1 (Criterio de Cauchy par aintegrales impropias)

Sea $f:[a,b)\to\mathbb{R}$ una función localmente integrable. La integral impropia $\int_a^b f$ es convergente sii $\forall \varepsilon>0 \ \exists c_0\in[a,b)$ tal que

$$c_0 \le c_1 < c_2 < b \implies \left| \int_{c_1}^{c_2} f \right| < \varepsilon$$

Demostración

Es consecuencia del criterio de Cauchy aplicado a la función

$$F: [a,b) \to \mathbb{R}$$

$$x \mapsto F(x) = \int_{a}^{x} f(x) dx$$

y el límite $\lim_{x\to b^-} F(x)$ existe sii para todo $\varepsilon>0$ existe c_0 tal que

$$a \le c_0 \le c_1 < c_2 < b \implies |F(c_2) - F(c_1)| = \left| \int_{c_1}^{c_2} f \right| < \varepsilon$$

Definición 1.6.2

Diremos que una integral impropia $\int_a^b f$ es absolutamente convergente, si la integral impropia $\int_a^b |f|$ es convergente.

Proposición 1.6.3 Si $\int_a^b f$ es absolutamente convergente, es convergente.

Aplicamos el criterio de Cauchy a $\int_a^b |f|$. $\forall \varepsilon > 0$, $\exists c_0 \ge a$ tal que $c_0 \le c_1 < c_2 < b \implies \left| \int_a^b |f| \right| = \int_a^b |f| < \varepsilon$ y utilizando que $\left| \int_a^b f \right| \le \int_a^b |f|$, tenemos que

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f| < \varepsilon$$

Y por lo tanto, $\int_a^b f$ también satisface el criterio de Cauchy, y por lo tanto, es convergente.

Definición 1.6.4

Una integral impropia convergente pero no absolutamente convegente, diremos que es condicionalmente convergente.

Proposición 1.6.5

Sea $f \colon [a,b) \to \mathbb{R}$ (con $a < b \le +\infty$) localmente integrable y positiva $(f \ge 0)$, entonces, la función

$$F(x) = \int_{a}^{x} f$$

es creciente, y por lo tanto, siempre existe el límite

$$\lim_{x \to b} F(x) = \sup_{x \ge a} F(x)$$

Si F es acotada, entonces la integral imporopia $\int_a^b f$ es convergente, en caso contrario, es divergente.

Proposición 1.6.6 (Criterio de commparación directa)

Sean $f, g: [a, b) \to \mathbb{R}$ funciones positivas y localmente integrables. Si $f \leq g$, entonces

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

Por lo tanto, si la segunda converge, la primera también y si la primera diverge, la segunda también.

Demostración

$$f \leq g \stackrel{\text{Cálculo I}}{\Longrightarrow} \int_{a}^{x} f \leq \int_{a}^{x} g \implies \lim_{x \to b} \int_{a}^{x} f \leq \lim_{x \to b} \int_{a}^{x} g \implies \int_{a}^{b} f \leq \int_{a}^{b} g$$

Proposición 1.6.7 (Criterio de comparación en el límite)

Sean $f, g: [a, b) \to \mathbb{R}$ estrictamente positivas y localmente integrables. Suponemos que existe el límite

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = L \in [0, +\infty]$$

Entonces,

i) Si
$$L < +\infty$$
, si $\int_a^b g < +\infty \implies \int_a^b f < +\infty \left(\int_a^b f = +\infty \implies \int_a^b g = +\infty \right)$

ii) Si
$$L > 0$$
, si $\int_a^b f < +\infty \implies \int_a^b g < +\infty \left(\int_a^b g = +\infty \implies \int_a^b f = +\infty \right)$

iii) Si $0 < L < +\infty$ Ambas integrales tienen el mismo carácter.

Demostración

i) Fijada $\varepsilon > 0$, existe x_0 con $a < x_0 < b$ tal que

$$x_0 \le x < b \implies \frac{f(x)}{g(x)} < L + \varepsilon \implies f(x) < (L + \varepsilon)g(x)$$

Y aplicamos comparación directa.

ii) Consideramos

$$\lim_{x \to b^{-}} \frac{g(x)}{f(x)} = \lim_{x \to b^{-}} \frac{1}{\frac{f(x)}{g(x)}} = \frac{1}{L} < +\infty$$

Por álgebra de llímites. Ahora, aplicamos i.

iii) Es consecuencia directa de i y de ii

Proposición 1.6.8 (Criterio de Dirichlet)

Sean $f, g: [a, b) \to \mathbb{R}$ funciones localmente integrables. Suponemos que

• hay una constante M > 0 tal que, si $a < c < b, \left| \int_a^c f \right| < M$.

• g es decreciente con $\lim_{x \to b} g(x) = 0$

Entonces, la integral impropia $\int_a^b f(x)g(x) dx$ es convergente.

Ejemplo

•

$$\int_{-\infty}^{+\infty} e^{-x^2} \, \mathrm{d}x = 2 \int_{0}^{+\infty} e^{-x^2} < +\infty$$

Ya que

$$e^{-x^2} \le e^{-x} \implies \int_1^{+\infty} e^{-x} \, \mathrm{d}x < +\infty \implies \int_1^{+\infty} e^{-x^2} \, \mathrm{d}x < +\infty$$

•

$$\int_{1}^{+\infty} \left(1 - \cos \frac{1}{x} \right) \mathrm{d}x < +\infty$$

Ya que

$$\cos z = 1 - \frac{z^2}{2} + o(z^3) \implies 1 - \cos z \sim \frac{z^2}{2} \implies 1 - \cos \frac{1}{x} \sim \frac{1}{2x^2}$$

por lo tanto, $1 - \cos \frac{1}{x}$ y $\frac{1}{2x^2}$ son infinitesimos equivalentes, es decir,

$$\lim_{x \to \infty} \frac{1 - \cos\frac{1}{x}}{\frac{1}{2x^2}} = 1$$

Y, como sabemos que $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2} < +\infty$ y aplicamos comparación en el límite.

Ejemplo

La integral impropia $\int_0^{+\infty} \frac{\sin x}{x} dx$ es condicionalmente convergente.

Primero, observamos que la función es el seno cardinal

$$\operatorname{sinc} x = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

que es de clase C^{∞} , por lo tanto, la integral es de primera especie (es impropia por el intervalo). Por lo tanto, podemos estudiar la integral $\int_{1}^{+\infty} \frac{\sin x}{x} dx$ que tendrá el mismo carácter que la original.

Primero vemos que es convergente

$$\int_{1}^{+\infty} \frac{\sin x}{x} \, \mathrm{d}x = \left[-\frac{\cos x}{x} \right]_{1}^{+\infty} - \int_{1}^{+\infty} -\frac{\cos x}{x^2} \, \mathrm{d}x$$

Ahora observamos que el primero de los sumandos vale cos(1) y el segundo sumando, es absolutamente convergente porque

$$\frac{|\cos x|}{x^2} \le \frac{1}{x^2} \quad \text{y} \quad \int_0^{+\infty} \frac{\mathrm{d}x}{x^2} < +\infty$$

Ahora, veremos que $\int_1^{+\infty} \frac{|\sin x|}{x}$ es divergente. Primero, tenemos que $\frac{\sin^2 x}{x} < \frac{|\sin x|}{x}$ y, también

$$\int_{1}^{+\infty} \frac{\sin^{2} x}{x} dx = \int_{1}^{+\infty} \frac{1 - \cos(2x)}{2} \frac{1}{x} dx = \left[\frac{x - \frac{1}{2}\sin(2x)}{2} \frac{1}{x} \right]_{1}^{+\infty} + \int_{1}^{+\infty} \frac{x - \frac{1}{2}\sin(2x)}{2} \frac{1}{x^{2}} dx =$$

$$= \frac{1}{2} - \frac{1}{2} + \frac{\sin 2}{4} + \frac{1}{2} \int_{1}^{+\infty} \frac{dx}{x} + \frac{1}{4} \int_{1}^{+\infty} \frac{\sin(2x)}{x^{2}} dx = +\infty$$

Ya que la segunda integral es absolutamente convergente (por la misma razón que lo era $\int_1^{+\infty} \frac{\cos x}{x}$).

2 Integración multiple

2.1 Integral de Riemann sobre rectangulos compactos

Definición 2.1.1

Un rectángulo de \mathbb{R}^n es un producto $A := I_1 \times \cdots \times I_n$ donde $I_j \in \mathbb{R}$ son intervalos que suponemos acotados y no degenerados, es decir, ni vacios, ni reducidos a un punto.

Si los I_i son compactos o abiertos, también lo es A.

Definición 2.1.2

La medida o volúmen n-dimensional (o área si n=2) de un rectángulo acotado $A=I_1\times\cdots\times I_n$ es el producto de las longitudes de sus costados, es decir

$$vol(A) = long(I_1) \times \cdots \times long(I_n)$$

Observación 2.1.3 Recoredemos que denominamos partición de un intervalo compacto [a,b] a un subconjunto finito de puntos $\mathcal{P} = \{x_0, x_1, \dots, x_n\}$ tales que $a = x_0 < x_1 < \dots < x_{N-1} < x_N = b$. La partición expresa el intervalo como la unión de N subintervalos

$$[a, b] = [x_0, x_1] \cup \cdots \cup [x_{N-1}, x_N]$$

Observación Una partición \mathcal{P}' se dice que es más fina que otra \mathcal{P} cuando $\mathcal{P} \subset \mathcal{P}'$ (es decir, cuando tiene más puntos).

Definición 2.1.4

Dado un rectángulo compacto $A = I_1 \times \cdots \times I_n$, denominamos una partición \mathcal{P} de A al resultado de hacer una partición \mathcal{P}_j a cada intervalo I_j . La partición de A viene representada por $\mathcal{P} = \mathcal{P}_1 \times \cdots \times \mathcal{P}_n$ y expresa el rectángulo A como unión de $N = (|\mathcal{P}_1| - 1) \times \cdots \times (|\mathcal{P}_n| - 1)$ subrectángulos más pequeños.

Observación Sean $A', A'' \subset A$ rectángulos de la partición, entonces $\mathring{A}' \cap \mathring{A}'' = \emptyset$

Lema 2.1.5 Si A es un rectángulo, y \mathcal{P} una partición de A, se tiene que

$$\operatorname{vol}(A) = \sum_{R \in \mathcal{P}} \operatorname{vol}(R)$$

Definición 2.1.6

Dadas dos particiones $\mathcal{P} = \prod_{j=1}^{n} \mathcal{P}_{j}$ y $P' = \prod_{j=1}^{n} \mathcal{P}'_{j}$ de un rectángulo A. Diremos que la partición P' es más fina que \mathcal{P} si cada \mathcal{P}'_{j} es más fina que \mathcal{P}_{j} (es decir, $P_{j} \subset P'_{j} \ \forall j \iff \mathcal{P} \subset \mathcal{P}$). Entonces, cada subrectángulo de \mathcal{P} es unión de subrectángulos de \mathcal{P}'

Definición 2.1.7

Sea $A \subset \mathbb{R}^n$ un rectángulo compacto y $f: A \to \mathbb{R}$ una función acotada. Sea \mathcal{P} una partición de A. Para cada subrectángulo R de \mathcal{P} escribimos

$$m_R = \inf_{x \in R} f(x)$$
 $M_R = \sup_{x \in R} g(x)$

Denominamos suma inferior y suma superior de f respecto a \mathcal{P} a los números

$$s(f; \mathcal{P}) = \sum_{R} m_R \operatorname{vol}(R)$$
 $S(f; \mathcal{P}) = \sum_{R} M_R \operatorname{vol}(R)$

Observación 2.1.8 Sea \mathcal{P} una partición de A

$$m_A \operatorname{vol}(A) \le s(f; \mathcal{P}) \le S(f; \mathcal{P}) \le M_A \operatorname{vol}(A)$$

Observación 2.1.9 Si \mathcal{P} y \mathcal{P}' son dos particiones y \mathcal{P}' es más fina que \mathcal{P} , entonces

$$s(f; \mathcal{P}) \le s(f; \mathcal{P}') \le S(f; \mathcal{P}') \le S(f; \mathcal{P})$$

Lema 2.1.10 Si \mathcal{P} y \mathcal{P}' son dos particiones de un rectángulo A, existe una partición \mathcal{P}'' de A que es más fina que \mathcal{P} y que \mathcal{P}' .

Corolario

Si $\mathcal{P}, \mathcal{P}'$ son dos particiones de A, entonces, $s(f; \mathcal{P}) \leq S(f; \mathcal{P}')$. Por lo tanto, $\{s(f; \mathcal{P}) | \mathcal{P} \text{ partición de } A\}$ está acotado superiormente y $\{S(f; \mathcal{P}) | \mathcal{P} \text{ partición de } A\}$ está acotado inferiormente.

Definición 2.1.11

Sea A un rectángulo compacto y sea $f: A \to \mathbb{R}$ una función acotada. Denominamos integral inferior e integral superior de f en A a los números

$$\underline{\int}_{A} f = \sup_{\mathcal{P}} s(f; \mathcal{P}) \qquad \mathbf{y} \qquad \overline{\int}_{A} f = \inf_{\mathcal{P}} S(f; \mathcal{P})$$

donde el supremo y el ínfimo se toman sobre el conjunto de todas las posibles particiones \mathcal{P} de A. Obviamente, $\int_A f \leq \overline{\int}_A f$.

Definición 2.1.12

Diremos que una función f acotada, es integrable en A cuando sus integrales inferior y superior coinciden. En este caso, su valor común se denomina integral de Riemmand de f en A y se denota por

$$\int_A f, \quad \int_A f(x) \, \mathrm{d}^n x, \quad \int_A f(x_1, \dots, x_n) \, \mathrm{d} x_1 \cdots \mathrm{d} x_n \quad \text{o} \quad \int_A f \, \mathrm{d} V$$

En el caso de n = 2 o n = 3 se habla de integral doble o integral triple respectivamente, ya que es habitual poner dos o tres signos de integral para representarlas.

Proposición 2.1.13 (Criterio de Riemman)

Sea $A \subset \mathbb{R}^n$ un rectángulo compacto y $f: A \to \mathbb{R}$ una función acotada. f es integrable Riemman sii $\forall \varepsilon > 0$, $\exists \mathcal{P}$ partición de A tal que $S(f; \mathcal{P}) - s(f; \mathcal{P}) < \varepsilon$.

Demostración

Cálculo I

Ejemplo

• Si $f: A \to \mathbb{R}$ constante, entonces f(x) = c y $m_R = M_R = c \ \forall R$

$$s(f; \mathcal{P}) = \sum_{R} m_R \operatorname{vol}(R) = c \sum_{R} \operatorname{vol}(R) = c \operatorname{vol}(A) = S(f; \mathcal{P})$$

Por lo tanto, f es integrable Riemman, y además

$$\int_{A} f = c \operatorname{vol}(a) \implies \int_{A} 1 = \operatorname{vol}(A)$$

• Consideramos la función $f: [0,1] \times [0,1] \to \mathbb{R}$ definida por $f(x,y) = \begin{cases} 0 & \text{si } x,y \in \mathbb{Q} \\ 1 & \text{En otro caso} \end{cases}$, entonces, $m_R = 0$ y $M_R = \text{vol}(R)$ para todo R, y entonces

$$\int_{A} f = 0 \qquad \overline{\int}_{A} f = \text{vol}(A) = 1 \times 1 = 1$$

Y por lo tanto, f no es integrable Riemman.

Proposición 2.1.14 (Linealidad)

Sea A un rectángulo compacto y $f,g\colon A\to\mathbb{R}$ integrables Riemman. Entonces

- i) f + g es integrable Riemman y $\int_A (f + g) = \int_A f + \int_A g$.
- ii) Si $\lambda \in \mathbb{R}$, entonces λf es integrable Riemman y $\int_A (\lambda f) = \lambda \int_A f$.

Es decir, $\mathrm{Rie}(A) = \big\{ f \colon A \to \mathbb{R} | f \text{ integrable Riemman} \big\}$ es un \mathbb{R} -espacio vectorial y

$$\operatorname{Rie}(A) \to \mathbb{R}$$

$$f \mapsto \int_A f$$

es una forma lineal.

Demostración