Special Topics on Basic EECS I Design Technology Co-Optimization Lecture 12

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

L12

Kinetic lattice Monte Carlo simulation

Monte Carlo

 Stochastic method for simulating discrete events over time

Lattice

 It assumes pre-defined atomic sites in a crystalline structure.

Implementation

A prototype has been implemented in AngstromCraft.

Atomic structure of crystalline silicon

Atomic structure

- We assume (001) wafer and [110] channel direction.
 - -Four layers are found.
 - -Using triplet, (i, j, k), for a unit and an integer, a layer, we can uniquely determine the atomic position.

Visualization in Paraview

- In this example, a 9×2 array of atoms in the (001) plane
 - Four layers are found.

Nearest neighbors

- First, second, third
 - -4 first NNs, their distance is $\frac{\sqrt{3}}{4}a$. 12 second NNs, their distance is $\frac{\sqrt{2}}{2}a$. 12 third NNs, their distance is $\frac{\sqrt{11}}{4}a$.

A 20-by-10 nm² rectangle

- A 52×26 array of atoms in the (001) plane
 - -Periodic boundary condition

Adsorption rate

Following R. Chen et al., the adsorption rate is calculated as

$$v_{ads} \propto \exp\left(\frac{E_b}{k_B T}\right)$$

- The total binding energy is calculated as

$$E_b = E_b^{1NN}(n_1) + n_2 E_b^{2NN} + n_3 E_b^{3NN}$$

- -R. Chen's parameters are $E_b^{2NN}=0.15 \text{ eV}$ and $E_b^{3NN}=0.12 \text{ eV}$.
- For each site, the adsorption rate is calculated.
- -On a clean (001) surface, we have $n_1 = 2$, $n_2 = 4$, and $n_3 = 6$.
- -When another atom is added next to that atom, we have $n_1 = 2$, $n_2 = 5$, and $n_3 = 6$.
- -At 600 °C, 0.15 eV yields 7.3 times higher adsorption rate.

GIST Lecture

Adding some atoms randomly

- 676 (= 52 X 26) atoms
 - -It is simulated at 600 °C.
 - The surface is not uniform.

Introducing "hard walls"

- These walls do not provide the nearest neighbors.
 - Reduction of NNs
 - -For a clean (001) surface, there are 2 1st NNs, 4 2nd NNs, and 6 3rd NNs.
 - -When a hard wall exists, there may be various cases.
 - $-n_1 = 2$, $n_2 = 2$, and $n_3 = 3 \rightarrow 0.66$ eV reduction
 - $-n_1=2$, $n_2=4$, and $n_3=6$ \longrightarrow No reduction
 - $-n_1 = 2$, $n_2 = 4$, and $n_3 = 4 \rightarrow 0.24$ eV reduction
 - $-n_1 = 1$, $n_2 = 2$, and $n_3 = 4 \rightarrow 0.64$ eV reduction
 - Therefore, hard walls significantly slow down the growth.

GIST Lecture

With/without hard walls

- 50-nm-long structure
 - Along the y-direction, only three units are assigned.
 - When 28 layers (~ 3.8 nm) are deposited without hard walls, we has an almost uniform profile.

- Hard walls (blue atoms)

12, 20, and 28 layers

• {311} surfaces and {111} surfaces

GIST Lecture

Another example, a 20-nm-thick fin

- 147 layers (~ 20 nm, when uniformly distributed)
 - -{111} surfaces become dominant.

294 layers

• A diamond-like shape is clearly observed.

Thank you!