Année 2024-2025

1ères STD2A

Fiche d'exercices corrigée

N. Bancel

15 Mai 2025

Probabilité de Défectuosité d'Aiguilles par Site de Production

Exercice 4 5 points

Une entreprise qui fabrique des aiguilles dispose de deux sites de production, le site A et le site B.

Le site A produit les trois-quarts des aiguilles, le site B l'autre quart.

Certaines aiguilles peuvent présenter un défaut. Une étude de contrôle de qualité a révélé que :

- 2% des aiguilles du site A sont défectueuses;
- 4 % des aiguilles du site B sont défectueuses.

Les aiguilles provenant des deux sites sont mélangées et vendues ensemble par lots. On choisit une aiguille au hasard dans un lot et on considère les évènements suivants :

- A: l'aiguille provient du site A;
- B: l'aiguille provient du site B;
- $\bullet \quad D: \mbox{l'aiguille présente un défaut}.$

L'évènement contraire de D est noté $\overline{D}.$

- 1. D'après les données de l'énoncé, donner la valeur de la probabilité de l'évènement A que l'on notera P(A).
- 2. Recopier et compléter sur la copie l'arbre de probabilités ci-dessous en indiquant les probabilités sur les branches.
- $\textbf{3.} \ \ Quelle \ est \ la \ probabilit\'e \ que \ l'aiguille \ ait \ un \ d\'efaut \ et \ provienne \ du \ site \ A?$
- **4.** Montrer que P(D) = 0,025.
- 5. Après inspection, l'aiguille choisie se révèle défectueuse.Quelle est la probabilité qu'elle ait été produite sur le site A?

1. Probabilité de l'évènement A

D'après les données de l'énoncé, on sait que le site A produit les trois-quarts des aiguilles. Ainsi, la probabilité que l'aiguille choisie provienne du site A est :

$$P(A) = \frac{3}{4}$$

2. Arbre de probabilités

L'arbre de probabilités se complète de la manière suivante :

- Probabilité que l'aiguille provienne du site $B: P(B) = \frac{1}{4}$
- Probabilité que l'aiguille soit défectueuse et provienne du site A: P(D|A) = 0,02
- Probabilité que l'aiguille ne soit pas défectueuse et provienne du site $A\colon P(\bar{D}|A)=1-0,02=0.98$
- Probabilité que l'aiguille soit défectueuse et provienne du site B: P(D|B) = 0,04
- Probabilité que l'aiguille ne soit pas défectueuse et provienne du site B: $P(\bar{D}|B) = 1 0,04 = 0.96$

3. Probabilité que l'aiguille soit défectueuse et provienne du site A

On cherche la probabilité que l'aiguille ait un défaut et provienne du site A. Cela se calcule via :

$$P(D \cap A) = P(A) \times P(D|A)$$

1. Raisonnement avec formules mathématiques :

$$P(D \cap A) = \frac{3}{4} \times 0{,}02$$

2. Application numérique :

$$P(D \cap A) = 0.015$$

4. Montrer que P(D) = 0.025

La probabilité qu'une aiguille ait un défaut est donnée par :

$$P(D) = P(A) \times P(D|A) + P(B) \times P(D|B)$$

1. Raisonnement avec formules mathématiques :

$$P(D) = \frac{3}{4} \times 0.02 + \frac{1}{4} \times 0.04$$

2. Application numérique :

$$P(D) = 0.015 + 0.01 = 0.025$$

3. Conclusion: Ainsi, la probabilité qu'une aiguille soit défectueuse est bien de 0,025.

5. Probabilité que l'aiguille ait été produite sur le site A sachant qu'elle est défectueuse

On cherche P(A|D), la probabilité que l'aiguille provienne de A sachant qu'elle a un défaut. Cela se calcule via la formule de Bayes :

$$P(A|D) = \frac{P(D \cap A)}{P(D)}$$

1. Raisonnement avec formules mathématiques :

$$P(A|D) = \frac{0,015}{0,025}$$

2. Application numérique :

$$P(A|D) = 0,6$$

3. Conclusion: La probabilité que l'aiguille ait été produite sur le site A sachant qu'elle est défectueuse est de 0,6, soit 60%.

Probabilités conditionnelles avec arbre pondéré

rcice 4 5 point

Une agence a lancé une campagne de publicité afin de faire connaître un nouveau produit. Elle a réalisé un sondage dans une zone géographique déterminée afin de connaître l'impact de cette campagne.

- 28 % des personnes interrogées ont plus de 60 ans. Parmi elles, 40 % ont déclaré connaître le produit.
- 42 % des personnes interrogées ont entre 25 et 60 ans. Parmi elles, 55 % ont déclaré connaître le produit.
- Parmi les personnes de moins de 25 ans, 75 % ont déclaré connaître le produit.

On choisit au hasard une personne interrogée par l'agence de publicité et on considère les évènements suivants :

- S : « la personne interrogée a plus de 60 ans»;
- M: « la personne interrogée a entre 25 et 60 ans»;
- J: « la personne interrogée a moins de 25 ans»;
- C: « la personne interrogée déclare connaître le produit ».
- 1. Recopier et compléter l'arbre pondéré ci-contre.
- 2. Calculer la probabilité que la personne interrogée ait entre 25 et 60 ans et déclare ne pas connaître le produit.
- 3. a. Calculer la probabilité de l'évènement $S \cap C$.
 - ${\bf b.}\;$ Calculer la probabilité de l'évènement C.
- Calculer la probabilité que la personne ait plus de 60 ans, sachant qu'elle déclare connaître le produit. Arrondir le résultat au millième.

1. Compléter l'arbre pondéré

L'arbre pondéré se décompose avec les probabilités suivantes :

- Noeud S:
 - -P(S) = 0.28
 - -P(C|S) = 0.40
 - P(C|S) = 0.60
- Noeud M:
 - -P(M) = 0.42
 - -P(C|M) = 0.55
 - $P(\overline{C}|M) = 0.45$
- Noeud J:
 - P(J) = 0.30 (par complémentarité)
 - P(C|J) = 0.75
 - $P(\overline{C}|J) = 0.25$

2. Probabilité qu'une personne ait entre 25 et 60 ans et ne connaisse pas le produit

Calcul de $P(M \cap \overline{C})$.

$$P(M \cap \overline{C}) = P(M) \cdot P(\overline{C}|M)$$
$$= 0.42 \cdot 0.45$$
$$= 0.189$$

3.a. Probabilité de l'événement $S \cap C$

Calcul de $P(S \cap C)$.

$$P(S \cap C) = P(S) \cdot P(C|S)$$
$$= 0.28 \cdot 0.40$$
$$= 0.112$$

3.b. Probabilité de l'événement C

Calcul de P(C) par la formule de la probabilité totale.

$$\begin{split} P(C) &= P(S \cap C) + P(M \cap C) + P(J \cap C) \\ &= P(S) \cdot P(C|S) + P(M) \cdot P(C|M) + P(J) \cdot P(C|J) \\ &= 0.28 \cdot 0.40 + 0.42 \cdot 0.55 + 0.30 \cdot 0.75 \\ &= 0.112 + 0.231 + 0.225 \\ &= 0.568 \end{split}$$

4. Probabilité qu'une personne ait plus de 60 ans sachant qu'elle déclare connaître le produit

Calcul de P(S|C).

$$P(S|C) = \frac{P(S \cap C)}{P(C)} = \frac{0.112}{0.568} \approx 0.197$$

Conclusion: La probabilité qu'une personne ait plus de 60 ans, sachant qu'elle déclare connaître le produit, est de 0.197.