Homework 5.

(Due May. 14)

Problem 21 (Exercise 5.15). Suppose f is defined in a neighborhood of x, and suppose f''(x) exists. Show that

 $\lim_{h \to 0} \frac{f(x+h) + f(x-h) - 2f(x)}{h^2} = f''(x).$

Show by an example that the limit may exist even if f''(x) does not exist.

Problem 22 (Exercise 6.5). Suppose f is a bounded real function on [a, b], and $f^2 \in \mathcal{R}$ on [a, b]. Does it follow that $f \in \mathcal{R}$? Does the answer change if we assume that $f^3 \in \mathcal{R}$?

Problem 23 (Exercise 6.6). Let P be the Cantor set constructed in Sec. 2.44. Let f be a bounded real function on [0,1] which is continuous at every point outside P. Prove that $f \in \mathcal{R}$ on [0,1].

Problem 24 (Exercise 6.11). Let α be a fixed increasing function on [a,b]. For $u \in \mathcal{R}(\alpha)$, define

$$||u||_2 = \left(\int_a^b |u|^2 d\alpha\right)^{1/2}.$$

Suppose $f, g, h \in \mathcal{R}(\alpha)$, and prove the triangle inequality

$$||f - h||_2 \le ||f - g||_2 + ||g - h||_2$$

as a consequence of the Schwarz inequality, as in the proof of Theorem 1.37.

Problem 25 (Exercise 6.15). Suppose f is a real, continuously differentiable function on [a, b], f(a) = f(b) = 0, and

$$\int_a^b f^2(x) \, dx = 1.$$

Prove that

$$\int_a^b x f(x) f'(x) dx = -\frac{1}{2}$$

and that

$$\int_{a}^{b} [f'(x)]^{2} dx \cdot \int_{a}^{b} x^{2} f^{2}(x) dx > \frac{1}{4}.$$