92586 Computational Linguistics

Lesson 19b. Long Short-Term Memory Networks

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

06/05/2021

► Recurrent neural networks Introduction

Previously

Table of Contents

Introduction

LSTM

Chapter 9 of Lane et al. (2019)

Short effect from the past

The effect of token x_t dilutes significantly as soon as in t+2

Consider the following —fairly plausible— texts...

The young woman went to the movies with her friends.

The young woman, having found a free ticket on the ground, went to the movies.

- ▶ In both cases, went is the main verb
- ► A (Bi)RNN would hardly consider that in the second case
- ▶ We need an architecture able to "remember" the entire input

State: the memory of an LSTM

- ► The memory state contains attributes
- ► The attributes are updated with every instance
- ► The *rules* of the state are trained NNs

Now we have two learning objectives:

- ► Learn to predict the target labels
- ► Learn to identify what has to be remembered

(Lane et al., 2019, p. 276)

LSTM

Unrolled LSTM

- ightharpoonup Activation from t-1 plus memory state
- ► The memory state sends a vector with the state of each LSTM cell, of cardinality number_of_units

(Lane et al., 2019, p. 277)

LSTM Output Gate t-1 output Update gate n neurons with sigmoid activations Output values Layer's output to between 0 and n-dimensional n-dimensiona + 2 vectors added itself at time step t+1 elementwise output n-dimensional output tanh applied elementwise to memory vector Layer's output at time step t * The figure says "added". It is a product (Lane et al., 2019, p. 284)

LSTM Output Gate

Input:

$$[x_{[t,0]},x_{[t,1]},\ldots,x_{[t,299]},h_{[t-1,0]},h_{[t-1,1]},\ldots h_{[t-1,49]},1]$$

Output: produces the output vector —both for the actual task and back to the memory

- ► sigmoid to the input
- ► tanh to the state

LSTM: Wrapping Up

- ► The *main* network uses the output of the memory in the same fashion as in a RNN
- ► The memory *decides* what to keep/feed to the network
- ► The weights of the memory are also learned by back-propagation

■ Let us see

1 (1 1/	١.	$D_{\Delta CII}$	1+
LJ	1 17	Ι.	Resu	ΙL

arch	units	Acc	\mathbf{Acc}_{val}
BiRNN	50	0.8156	0.7662
BiRNN	40	0.8244	0.7540
BiRNN	30	0.8259	0.7874
BiRNN	20	0.8072	0.8076
BiRNN	10	0.8007	0.8016
BiRNN	5	0.7973	0.8006
BiRNN	1	0.7070	0.7822
LSTM	50	0.7121	0.8678

References

Lane, H., C. Howard, and H. Hapkem 2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.