InfiniiVision 1000 X 系列示波器

2 通道和 4 通道包括 50 MHz 到 200 MHz 頻寬機種

目錄

技術領先,價格實惠的示波器 (DSOX 機型)	3
技術領先,價格實惠的示波器(教育機型)	4
領先技術	5
6 合 1 儀器的整合性	6
更多可提高產出的工具	8
真正的示波器	. 10
效能特性	. 12
設定您的 InfiniiVision 1000 X 系列示波器	21

需要更大頻寬、取樣率與分析?

請參考 InfiniiVision 3000T X 系列

- 350 MHz、500 MHz 和 1 GHz
- 5 GSa/s
- 效能絕不打折的 1,000,000 個波形更新速率
- 電容式觸控螢幕
- 業界獨家的區域觸控觸發功能
- 大量解碼觸發器
- 閘控快速傅立葉轉換

技術領先,價格實惠的示波器(DSOX機型)

Keysight InfiniiVision 1000 X 系列示波器旨在提供高品質、經過驗證的技術,以及令人難以置信的超低價格。 現在起,專業量測技術和專業知識變得唾手可得,想要有效測試,不能退而求其次!

- 70 至 200 MHz
- 頻率響應分析(波特圖的增益和相位),包含在 WaveGen 模型中
- 以每秒 200,000 個波形的更新率查看更多信號細節
- 利用基於是德科技超過60年示波器專業知識所開發的客製技術,以極高自信度進行量測
- 透過簡單直覺的操作介面、內建的輔助說明和訓練信號,快速、輕鬆地進行測試
- 獲得專業級功能、領先業界的軟體分析能力,以及6合1儀器整合性

	DSOX1202A	DSOX1202G	DSOX1204A	DSOX1204G
	2 通道	2 通道	4 通道	4 通道
		具備函數產生器		具備函數產生器
頻寬	70 MHz (基礎型)	70 MHz (基礎型)
	,	D1202BW1A)	,)1200BW1A)
	200 MHz (I	D1202BW2A)	200 MHz (E)1200BW2A)
類比通道數		2		4
外部觸發	前面村	反輸入	後面	板輸入
	(或第3數	位通道)	(無	顯示)
最大取樣率	2 GSa/s (單通道或			注通道 ¹ 操作)
	1 GSa/s (如果外部]或四通道操作)
最大記憶體深度	2 M 點(單通道或			花半通道 ¹ 操作)
	1 M 點(如果外部			國或四通道操作)
WaveGen	不提供	20-MHz 函數產生器	不提供	20-MHz 函數產生器
波特圖測試	不提供	不提供標配標配		標配
波形更新率	每秒 200,000 個波形更新率			
串列協定分析	標配: I²C, SPI, UART/RS-232, CAN, LIN			
	標配			
波罩/限制測試	標配			
內建訓練信號	標配			
整合式電壓錶		標配		
 計頻器	標配			
波形數學運算		加,滅,乘,除,FFT(振幅和相位),低通濾波器		
自動量測功能		14 振幅、14 個正時和 4 個脈衝計數量測		
顯示器	7 时 TFT LCD 顯示器			
連接介面		USB 2.0 (主機與	裝置連接埠) LAN	

^{1. 4} 通道模型上的半通道操作是指使用通道 1 或通道 2 和通道 3 或通道 4 時雙通道操作。如果只查看通道 1 和通道 3, 則最大採樣速率為 2 GSa/s, 最大記憶體為 2 M 點。如果查看通道 1 和通道 2,則最大取樣速率為 1 GSa/s, 最大記憶體為 1 M 點。

技術領先,價格實惠的示波器(EDUX機型)

EDUX1052A 和 EDU1052G

為學生提供優質教育,並打造專業級儀器為業界做好準備。1000 X 系列採用與高階 InfiniiVision 示 波器相同的技術,讓學生能夠使用媲美頂尖研發實驗室的軟硬體進行學習。想讓您的學生取得成功,不能退而求其次!

- 內建訓練信號,讓學生能快速學會如何擷取和分析信號。
- 教育工作者的資源套件,包含動態教學實驗指南、詳盡的實驗室指南、專為大專院校學生撰寫的使用說明書,以及專為教授及實驗室助教開發的示波器基本原理系列簡報檔。
- IoT 系統設計應用課程。U3800A 物聯網 (IoT) 系統設計應用課程,可搭配 1000 X 系列示波器一起使用。
- 波特圖是很基本的概念。Keysight 1000 X 系列的頻率響應分析儀功能,是協助學生了解被動式 LRC 電路或主動式運算放大器的增益和相位效能的理想工具。
- Keysight BV0004B 示波器應用程式和 BenchVue 軟體,能讓您同時查看 1000 X 系列和多個量測的資料。

	EDUX1052A 2 通道	EDUX1052G 2 通道 具備函數產生器	
頻寬	50	MHz	
類比通道數	2+1(擴展觸發)	可視為數位通道)	
外部觸發(或第3數位通道)		1	
最大取樣率	1 GSa/s	(所有通道)	
最大記憶體深度	200,000 點 (所有通道)		
波形更新率	每秒 100,000 個波形更新率		
WaveGen	不提供	20-MHz 函數產生器	
波特圖測試	不提供	標配	
串列協定分析	標配: I ² C, UART/RS-232		
整合式電壓錶	標配		
計頻器			
內建訓練信號	標配		
波形數學運算	加,滅,乘,除,FFT (振幅和相位),低通濾波器		
自動量測功能	14 振幅、14 個正時和 4 個脈衝計數量測		
顯示器	7 吋 TFT LCD 顯示器		
連接介面	USB 2.0 (主機與裝置連接埠) LAN		

領先技術

利用基於是德科技超過 60 年示波器專業知識所開發的客製技術,以極高自信度進行量測。

低成本數位示波器不一定是低品質。自從我們在 1939 年製造全球第一個振盪器至今,設計出優質測試解決方案一直是是德科技的首要目標。現在,我們以相同的理念,推出了價格最平實的專業級示波器。

每秒高達 200,000 個波形更新率, 讓您輕鬆找出突波信號。

▷訓練信號

▶ 直覺的控制/內建的輔助說明

6合1儀器的整合性

獲得專業級功能、領先業界的軟體分析能力,以及 6 合 1 儀器整合性。Keysight 1000 X 系列提供以下省錢、省空間的功能。

小示波器

Keysight 1000 X 系列是一系列價格經濟、品質不打折的專業示波器。 其量測和軟體分析能力媲美價格高出 3 倍之專業級示波器。

→ WaveGen(內建的 20 MHz 函數產生器,具調變功能)

(僅限於 EDUX1052G、DSOX1202G 和 DSOX1204G 機型)

Keysight 1000 X 系列提供業界首款整合式 20 MHz 函數產生器, 具備信號調變功能。適合工作台空間有限,預算也不多的教學 或設計實驗室使用。這款整合式函數產生器可為待測裝置提供正 弦波、方波、斜波、脈衝波、直流電壓和雜訊波形等測試信號。 使用客製的 AM、FM 和 FSK 設定,為信號添加調變。既然您 的示波器已經整合了函數產生器功能,就不需要另外購買函數產 生器。

🧭 硬體串列協定解碼與觸發

添加選配的軟體後,Keysight 1000 X 系列可變成功能強大的協定分析儀,以便執行強大的解碼和硬體觸發,進而實現專用的串列通訊分析。其他供應商的示波器使用軟體後處理技術,這會導致波形和解碼更新速率變慢。相較之下,Keysight 1000 X 系列藉由使用基於硬體的技術來提高解碼速度、增進示波器易用性,並提升示波器擷取到偶發串列通訊錯誤的概率。

EDUX 機種標配支援 I²C, UART/RF-232 串列協 定分析, DSOX 機種標配支援 I²C, SPI, UART/RF-232, CAN, LIN 串列協定分析。

6合1儀器的整合性(續)

▲ 頻率響應分析(僅限於 EDUX1052G、DSOX1202G 和 DSOX1204G 機型)

頻率響應分析是評估反饋網路和切換式電源供應器之穩定度的重要量測。而波特圖是每位電機系學生必須知道的基本概念。Keysight 1000 X 系列的頻率響應分析儀功能,是協助學生了解被動式 LRC電路或主動式運算放大器的增益和相位效能的理想工具。增益和相位量測結果與頻率(波特圖)的比較,可實現這項功能。

過去工程師通常使用向量網路分析儀 (VNA) 和經濟型頻率響應分析儀來執行這些量測。現在他們可使用 Keysight 1000 X 系列內建的 WaveGen,輕鬆執行增益和相位分析。

🖟 數位電壓錶

Keysight 1000 X 系列在一台示波器中提供整合式 3 位數電壓錶 (DVM)。電壓錶使用連接到示波器通道的探棒,但與示波器觸發系統分開進行量測,因此您可透過同一連結同時執行電壓量測和觸發示波器量測。您無需配置示波器擷取功能,便可快速量測 AC RMS、DC 和 DC RMS。示波器配備的顯示器會持續顯示電壓錶量測結果,讓您在彈指間便迅速完成特性分析量測。內建整合式電壓錶在 1000X 系列為標配。

₩ 計頻器

每一台示波器中均提供整合式 5 位數計頻器。它使用連接到示波器通道的探棒,但與示波器觸發系統分開進行量測,因此您可透過同一連結同時執行計頻器量測和觸發示波器量測。您無需配置示波器擷取功能,便可快速執行頻率量測。示波器配備的顯示器會持續顯示電壓錶量測結果,讓您在彈指間便迅速完成特性分析量測。

更多可提高產出的工具

各國語言版本的使用者介面和輔助說明

用您最熟悉的語言來操作示波器。圖形使用者介面、內建輔助說明系統、前面板和使用者手冊支援:英文、簡體中文、繁體中文、日文、韓文、法文、德文、義大利文、葡萄牙文、俄文和西班牙文。圖形使用者介面和前面板語言亦提供波蘭文、泰文和捷克文,而內建輔助說明系統另有波蘭文和泰文可以選擇。如有任何不清楚的地方,只需持續按壓任何按鈕,便可進入內建的輔助說明系統。

探棒解決方案

要實現 1000 X 系列示波器的最高使用效能,必須根據應用需要選用適宜的探棒和附件。是德科技提供一系列適合 Keysight InfiniiVision 1000 X 系列示波器使用的創新探棒和配件。InfiniiVision 1000 X 系列示波器標配了可切換的 1:1/10:1 高阻抗被動探棒,可使用於示波器的每個涌道。

示波器基礎課程

教育工作者示波器教育訓練套件,包括各種內建的教學用訓練信號,可幫助電機工程和物理系學生了解示波器功能並學習如何執行基本的示波器量測。該套件還包括詳盡的示波器實驗室指南和專為大專院校學生撰寫的使用說明書。是德科技更提供了一系列簡報檔,供教授及實驗室助教作為示波器基本原理課前預習使用。這份簡報應在電機工程和物理系學生進行首次電路實驗之前講授,大約需30分鐘。註:此簡報檔包括完整的演講者備忘稿。

更多可提高產出的工具(續)

連線和遠端控制

內建 USB 主控埠和 USB 連接埠,方便您將電腦連上示波器。Keysight BV0004B 示波器應用程式和 BenchVue 軟體,能讓您同時查看 1000 X 系列和多個量測的資料。建立自動化測試序列,就和使用前面板操作一樣簡單。按三下滑鼠按鍵就可將量測資料匯出到 Excel、Word 和 MATLAB 的功能,可為您節省不少寶貴時間。您可以透過行動裝置,從任何地方監測及控制您的 Keysight 1000 X 系列。

標準 LAN 埠支援虛擬前面板網頁介面,可供使用者進行遠端控制,儲存資料或圖片等。

虛擬前面板網頁介面

示波器分析軟體

有了可在 PC 上執行的 Keysight D9010BSEO Infiniium 示波器分析軟體,即便示波器不在身邊,您仍然可以深入檢視、分析並記錄信號。 有了在 PC 上執行的 Infiniium Offline 軟體,您可使用示波器擷取波形、儲存檔案、並且叫出波形。

BenchVue 示波器應用軟體

BenchVue 示波器應用軟體可以控制示波器快速進行擷取並且在 螢幕擷圖中加入註釋,以便記錄軌跡資料並進行資料記錄量測 (BV0000A內建功能)建立自動化測試序列,就和使用前面板 操作一樣簡單。按三下滑鼠按鍵就可將量測資料匯出到 Excel、 Word 和 MATLAB 的功能,可為您節省不少寶貴時間。您可以透 過行動裝置,從任何地方監測及控制您的 Keysight 1000 X 系列。

真正的示波器

快速波形更新率

每秒高達 200,000 個波形的更新速率,讓您能快速查看隨機和偶發的信號突波和錯誤

數位電壓錶/計頻器

整合式 3 位數電壓錶 5 位數計頻器

USB 儲存

利用內建的 USB 埠和您的 USB 隨身碟, 讓您快速輕易地儲存螢幕截圖和資料

訓練信號

所有型號都包含標準的訓練 信號,方便您快速了解如何 排除許多常見的信號問題

量測結果

分析功能

波罩限制測試 DVM 頻率響應分析串列匯流排解碼 使用量測按鍵選擇32種內建自動量測功能

Infinii /ision MEGA Z)oom 70 MHz 2 GSa/s Run Hor zontal Stop -40.0♥ KEYSIGHT Single Normal 100MSa/s Entry Channels DC DC DC 10.0:1 Save to USB Trigger Vertical Ch1 + Ch 1.00V/ Ref FFT Trigger 3 03:29 PM Help May 08, 2018

游標

使用游標輕易客製量測。使用 4 個強大 的游標量測任何數值或差值

波形工具

快速存取波形數學運算功能 (+ - × ÷) 和 FFT。參考波形讓您能快速比較儲存 的波形

函數產生器

內建的函數產生器讓您能產生 所需的信號,以便快速模擬設計 和實現增益和相位分析

內建各國語言的輔助說明

所有按鍵均提供多種語言的小幫手說明, 只要持續按壓按鍵,便會出現內建的輔助說明

領先業界的使用者介面

簡單又快速地操作示波器

效能特性

示波器概述

	EDUX1052A/EDUX1052G	DSOX1202A/DSOX1202G	DSOX1204A/DSOX1204G
頻寬 (-3 dB) ^{1, 2}	50 MHz	70 MHz	70 MHz
		100 MHz (選項 D1202BW1A)	100 MHz (選項 D1200BW1A)
		200 MHz (選項 D1202BW2A)	200 MHz (選項 D1200BW2A)
上升時間計算值 (10-90%)	≤ 7 ns	≤5 ns (70 MHz 機型)	≤5 ns (70 MHz 機型)
		≤3.5 ns (100 MHz 機型)	≤3.5 ns (100 MHz 機型)
		≤1.7 ns (200 MHz 機型)	≤1.7 ns (200 MHz 機型)
輸入通道數	2	2	4
最大取樣率	1 GSa/s (所有通道)	2 GSa/s (所有通道)	2GSa/s(單或半通道3操作)
		1GSa/s (若外部觸發器已打開)	1GSa/s (三個或四通道操作)
最大記憶體深度	200 kpts (所有通道)	2M (所有通道)	2M(單或半通道3操作)
		1M (若外部觸發器已打開)	1M (三個或四通道操作)
波形更新率	≥ 100,000 waveforms/sec	≥ 200,000 waveforms/sec	≥ 200,000 waveforms/sec

垂直系統

	所有機型
輸入耦合	DC,AC (10 Hz 截止頻率)
輸入阻抗/電容	$1 \text{ M}\Omega \pm 2\%/16 \text{ pF} \pm 3 \text{ pF}$
輸入靈敏度範圍4	500 μV/div 至 10 V/div
標準探棒	N2142A 1/10 可切換式 75 MHz(EDUX1052A/EDUX1052G 隨附 2 支)
	N2140A 1/10 可切换式 200 MHz(DSOX1202A/DSOX1202G 隨附 2 支)
	N2140A 1/10 可切換式 200 MHz(DSOX1204A/DSOX1204G 隨附 4 支)
探棒衰減係數	0.1 X 至 1000 X,依 1-2-5 的順序(-20 dB 至 + 80 dB,以 0.1 dB 為單位步進)
硬體頻寬限制	約 20 MHz (可選擇)
垂直解析度	8 位元
反轉信號	可選擇
最高輸入電壓	150 Vrms • 200 Vpk
直流垂直準確度	±[直流垂直增益準確度+直流垂直偏移準確度+全刻度的0.25%]
直流垂直增益準確度「	+ 3% 全刻度 (> 10 mV/div)
	+ 4% 全刻度 (< 10 mV/div)
直流垂直偏移準確度	偏移設定值的 ± 0.1 div ± 2 mV ± 1%
時序不對稱度	通道對通道:1 ns(無時差校正)
	通道對外部:2 ns(無時差校正)
偏移範圍	500 uV/div 至 200 mV/div:+ 2 V
	> 200 mV/div 至 10 V/div:+ 100 V

- 1. 代表保證的規格;其餘為典型的規格。這些規格在 30 分鐘的暖機時間過後,且溫度變化在使用者校準溫度 ± 10°C 範圍內有效。
- 2. 適用於 1 mV/div 至 10 V/div 的設定。500 μ V/div 設定下,頻寬為 20 MHz。
- 3. 2通道模型上的半通道操作是指使用通道1或通道2和通道3或通道4時雙通道操作。
- 4. 500 μV/div 是由 1 mV/div 的設定放大 2 倍而來。

水平系統

	所有機型
時基範圍	5 ns/div 至 50 s/div
水平解析度	2.5 ps
時基準確度 ⁵	50 ppm ± 5 ppm(逐年老化)
時基延遲時間範圍	預觸:取1個螢幕寬度或 200 μs
	後觸:1至500s
通道對通道的時間差	± 100 ns
Δ 時間準確度(使用游標)	± (時基準確度 x 讀值) ± (0.0016 x 螢幕寬度) ± 200 ps (同通道)
模式	主要、放大、roll、XY
XY	X = 通道 1,Y = 通道 2,Z = 外部觸發,1.4 V blanking
	頻寬:最大頻寬。1 MHz 時的相位誤差:< 0.5 度

擷取系統

		EDUX1052A/EDUX1052G	DSOX1202A/DSOX1202G DSOX1204A/DSOX1204G
最大取樣率		1 GSa/s	2 GSa/s(2通道), 1 GSa/s(4通道)
最大類比通道記錄長度		200 kpts	2 Mpts (2 通道),1 Mpts (4 通道)
擷取模式	正常	預設模式	預設模式
	峰值檢測模式	可在所有時基設定下擷取最窄 10 ns 的突波	可在所有時基設定下擷取最窄的突波: 10 ns 的突波 (70 MHz 機型) 5 ns 的突波 (100 MHz 機型) 2.5 ns 的突波 (200 MHz 機型)
	平均模式	可選擇 2、4、8、16、64…至 65,536	可選擇 2、4、8、16、64… 至 65,536
	高解析度模式	即時 boxcar 平均運算可降低隨機雜訊, 並有效提高垂直解析度,在 1 GSa/s、 ≥ 20 µs/div 時,最高可達 12 位元	即時 boxcar 平均運算可降低隨機雜訊, 並有效提高垂直解析度,在 2 GSa/s、 ≥ 20 µs/div 時,最高可達 12位元
	分段式記憶體 模式	不提供	分段式記憶體可充分善用可用的記憶體, 適合用來儲存各種活動之間閒置時間較長的 資料流。最大分段=500,重新預觸時間=1 us (在分段擷取模式下每秒1,000,000 個波形)
時間模式	正常	預設模式	預設模式
	捲動模式	可由螢幕右邊捲動到左邊來顯示波形。 在 50 ms/div 或更慢的時基下適用	可由螢幕右邊捲動到左邊來顯示波形。 在 50 ms/div 或更慢的時基下適用
	XY	可顯示電壓 vs 電壓狀態	可顯示電壓 vs 電壓狀態
		X = 通道 1,Y = 通道 2	X = 通道 1,Y = 通道 2
		Z = 外部觸發,1.4 V blanking	Z = 外部觸發,1.4 V blanking
-		1 MHz 時的相位誤差:< 0.5 度	1 MHz 時的相位誤差:< 0.5 度
自動定標		發現並顯示所有運作中的通道和外部觸發。 首先在外部觸發上設定信號緣觸發方式, 然後設定最高編號的運作中通道。設定垂 直靈敏度。設定時基以顯示約 1.8 週期。 要求 10 mVpp 的最小電壓(通道)	發現並顯示所有運作中的通道和外部觸發。 首先在外部觸發上設定信號緣觸發方式, 然後設定最高編號的運作中通道。設定垂 直靈敏度。設定時基以顯示約1.8週期。 要求10mVpp的最小電壓(通道)

^{5.} 代表保證的規格;其餘為典型的規格。這些規格在 30 分鐘的暖機時間過後,且溫度變化在校準溫度 \pm 10°C 範圍內有效。

觸發系統

	所有機型	
觸發信號源	類比通道,線 ⁶ ,外部,WaveGen,WaveGen 調變 FM/FSK	
觸發模式	正常模式(已觸發):需要有可以讓示波器執行觸發的觸發事件	
	自動模式:即使沒有觸發事件也可自動進行觸發	
	單次模式:每個觸發事件僅觸發一次	
	強制模式:按面板上的強制觸發鍵以便強制進行觸發	
觸發耦合	直流:直流耦合觸發	
	交流:交流耦合觸發,截止頻率:~ 10 Hz	
	高頻拒斥,截止頻率:~ 50 kHz	
	低頻拒斥,截止頻率:~50 kHz	
	雜訊拒斥:可選擇開啟或關閉,靈敏度會下降2倍	
觸發延滯範圍	60 ns 至 10 s	

觸發靈敏度

	EDUX1052A/EDUX1052G	DSOX1202A/DSOX1202G DSOX1204A/DSOX1204G
內部 ⁷	大於: 0.6 div 或 2.5 mV(≤ 10 MHz) 0.9 div 或 3.8 mV(10 至 50 MHz)	大於: 0.6 div 或 2.5 mV(≤ 10 MHz) 0.9 div 或 3.8 mV(10 至 70 MHz) 1.2 div 或 5 mV(70 至 200 MHz)
外部	≤ 10 MHz : 250 mVpp	≤ 10 MHz: 20 mVpp(1.6 V 範圍) 100 mVpp(8 V 範圍)
	10 至 50 MHz:500 mVpp	10 至 200 MHz: 100 mVpp(1.6 V 範圍) 500 mVpp(8 V 範圍)

觸發位準範圍

	EDUX1052A/EDUX1052G	DSOX1202A/DSOX1202G DSOX1204A/DSOX1204G
內部	從畫面中央算起 ± 6 div	從畫面中央算起 ± 6 div
外部 8	± 8 V	± 1.6 V 或 ± 8 V 可選擇

- 6. 電源觸發至≤60 Hz。
- 7. 代表保證的規格;其餘為典型的規格。這些規格在 30 分鐘的暖機時間過後,且溫度變化在韌體校準溫度 ± 10°C 範圍內有效。
- 8. 輸入電壓必須維持在這些極限範圍內,以進行正常運作。

觸發類型選擇

	EDUX1052A/EDUX1052G	DSOX1202A/DSOX1202G DSOX1204A/DSOX1204G
信號緣	可針對任何來源的上升緣、下降緣、交	替信號緣,或任一信號緣進行觸發
碼型	不支援	當指定碼型為進入時 ⁹ ,進行觸發
脈衝寬度	最小持	、大於、或落在指定的時間範圍內時,予以觸發。 續時間設定: 10 ns 續時間設定: 10 s
建立與維持時間	不支援	出現違反建立和維持時間的事件時予以觸發。建立時間可設為 -7 s 至 10 s,維持時間可設為 0 s 至 10 ns。
上升/下降時間	不支援	當上升時間緣或下降時間緣的速度違反 (〈或〉)使用者選擇的臨界值時和時間設定 範圍為5ns到10s之間,即予以觸發。
視訊觸發	可針對所有掃描線或個別掃描線、奇 (NTSC、PAL、SI	數/偶數或所有來自複合視訊的圖場或廣播標準 ECAM、PAM-M)進行觸發。
1 ² C	進行觸發。也可以在沒有回應確認信	用者定義的訊框內出現特定的位址和/或資料值時, 記號、有位址但沒有相應的擷取動作、重新開始、 進行10 位元寫入時,予以觸發。
RS-232/422/485/UART	可對接收器或發射器之起始位元	、終止位元、資料內容或奇偶誤碼進行觸發。
SPI	不支援	可針對持定訊框處理期間 (framing period) 內的 SPI (序列通訊協定介面) 資料碼型進行觸發。 支援正向與負向的 Chip Select 訊框處理以及時脈閒置訊框處理,並可由使用者定義每一訊框的位元數。支援 MOSI 和 MISO (4通道機型)資料。
CAN	不支援	可針對 CAN (控制器區域網路) 2.0A 版及 2.0B 版的信號進行觸發,並可對訊框開始 (SOF) 位元、遠端訊框 ID (RTR) 、資料訊框 ID (-RTR) 、遠端或資料訊框 ID、資料訊框 ID 與資料、誤碼訊框、所有誤碼、確認誤碼、以及過載訊框,進行觸發。
LIN	不支援	可在 LIN (區域互連網路) 出現同步中斷、同 步訊框 ID,或訊框 ID 與資料上或奇偶誤碼 或校驗和誤碼訊框等條件下進行觸發。

^{9.} 作為有效的觸發條件,碼型必須提供至少 5 ns 的穩定度。

串列協定分析/解碼

	EDUX1052A/EDUX1052G	DSOX1202A/DSOX1202G
		DSOX1204A/DSOX1204G
I ² C	Baud Rate: Up to 3.4 Mbps	Baud rate: Up to 3.4 Mbps
	Address size: 7-bit or 8-bit	Address size: 7-bit or 8-bit
	Number of time-correlated decode traces:	Number of time-correlated decode traces:
	One plus protocol lister/table	One plus protocol lister/table
UART/RS232	Baud Rate: 100 bps to 10 Mbps	Baud rate: 100 bps to 10 Mbps
	Number of bits: 5 to 9	Number of bits: 5 to 9
	Bit order: Isb or msb	Bit order: Isb or msb
	Decode formats: Hex, binary, or ASCII	Decode formats: Hex, binary, or ASCII
	Number of time-correlated decode traces:	Number of time-correlated decode traces:
	Two (Tx and Rx) plus protocol lister/table	Two (Tx and Rx) plus protocol lister/table
SPI ¹⁰	不支援	Baud rate: Up to 25 Mbps
		Chip select: low, high, or time-out
		Number of time-correlated decode traces on 4-channel models:
		Two (MISO and MOSI) plus protocol lister/table
		Number of time-correlated decode traces on 2-channel models:
		One (Data) plus protocol lister/table
CAN		Baud rate: 10 kbps to 5 Mbps
		Standard: "Classic" CAN 2.0
		Real-time totalizer: Number of frames, number of error frames,
		number of overload frames, bus load (%)
		Number of time-correlated decode traces: One plus protocol lister/table
LIN		Baud rate: 2.4 kbps to 625 kbps
		Standards: LIN 1.3 and 2.x
		Number of time-correlated decode traces: One plus protocol lister/table

^{10.} 建議使用 4-wire SPI 量測應用的 4 通道型號 (DSOX1204A 或 DSOX1204G) 。

波形量測

	所有機型
游標	單游標準確度:±[直流垂直增益準確度 + 直流垂直偏移準確度 + 全刻度的 0.25%]
	單位:秒 (s)、Hz (1/s)、相位(度)
自動量測功能	從32個可用振幅、正時和計數量測清單中選擇多達4個連續更新量測統計數據
	游標會追蹤最後選取的量測項目
	使用預設值(相對/%)或可自訂量測閾值等級(絕對或相對)
	透過縮放視窗進行自動量測
	垂直/振幅量測(14) 峰值對峰值、最大、最小、振幅、最高、最低、過擊、預擊、平均值-N 個週期、平均值-全螢幕、直流 RMS-N 個週期、直流 RMS-全螢幕、交流 RMS-N 個週期、交流 RMS-全螢幕(標準差)
	時間量測 (14) 週期、頻率、計頻器、正寬度、負寬度、正信號週期、負信號週期、傳輸速率、上升時間、下降時間、 延遲、相位、出現最小 Y 值時的 X、出現最大 Y 值時的 X
	讀數量測 (4) 正脈衝讀數、負脈衝讀數、上升信號緣讀數、下降信號緣讀數
	自動量測記錄:適用於 BenchVue BV0004B

波形數學運算

	所有機型	
算術運算	加、減、乘、除、FFT(振幅)、FFT(相位)、低通濾波器	
紀錄長度	高達 64 kpts 的解析度	
快速傅立葉轉換(FFT)	視窗類型:Hanning、平頂(Flat top)、矩形 (Rectangular)、Blackman-Harris 垂直縮放:dB (對數) 或 RMS (線性) 平行縮放:使用者定義的 span 和中心頻率設定,或自動設定	

數位電壓錶

	所有機型
功能	DC · ACrms · DCrms
解析度	3 位數
量測速率	每秒 100 次
自動範圍	自動調整垂直放大倍率,以便大幅延伸動態量測範圍
範圍量測	以圖形方式顯示最新的量測結果,同時顯示前3秒的極值

計頻器

	ation and plate west
	所有機型
功能	頻率
解析度	5 位數解析度
量測速率	每秒 100 次
自動範圍	自動調整垂直放大倍率,以便大幅延伸動態量測範圍
範圍量測	以圖形方式顯示最新的量測結果,同時顯示前 3 秒的極值

頻率響應分析(波特圖)(G機型為標配)

	EDUX1052G/DSOX1202G/DSOX1204G	
動態範圍	> 80 dB (典型值,based on 0 dBm (630 mVpp)輸入到 50 Ω load	
輸入和輸出源	WaveGen 輸出	
VIN 和 VOUT	通道1,2,3和4(通道3和4只在4通道機型)	
頻率範圍	10 Hz 至 20 MHz	
測試點數量	1到1,000個點數 在所選擇的頻率範圍	
測試振幅	在 50 Ω 下為 1 mVpp 至 9 Vpp	
測試結果	疊加對數增益 (dB) 和線性相位 (度) 圖與對數頻率	
手動量測	在使用者定義的頻率設定下量測一對追蹤增益和相位標記	
自動調整刻度	在測試和使用者定義操作時自動調整刻度	

WaveGen - 內建的函數產生器(G機型為標配)

註:僅適用於 WaveGen EDUX1052G、DSOX1202G 和 DSOX1204G, WaveGen 不可升級。

	EDUX1052G/DSOX1202G/DSOX1204G		
WaveGen 輸出	前面板 BNC 連接器		
波形	正弦波、方波、斜波、脈衝波、直流、雜訊		
調變	調變類型:AM、FM、FSK		
нг 3 🔀	載波波形:正弦波、斜波		
	調變信號源:內部(無需外部調變功能)		
	RESETT TOTAL THE CANCELLA CONTRACTOR AND A CONTRACTOR AND		
	AM:		
	- 調變頻率:1 Hz 至 20 kHz		
	- 深度:0至100%		
	FM:		
	- 調變頻率:1 Hz 至 20 kHz		
	- 最小載波頻率:10 Hz		
	- 偏差:1 Hz 至載波頻率或(2e12/載波頻率),取兩者中較小者		
	FSK:		
正弦波	頻率範圍:0.1 Hz 至 20 MHz		
	振幅平坦度:± 0.5 dB(相對於 1 kHz)		
	突波(非諧波):-40 dBc		
方波/脈衝波	頻率範圍:0.1 Hz 至 10 MHz		
	信號週期解析度:取 1% 或 10 ns 兩者中較大者		
	脈衝寬度:最低 20 ns		
	上升/下降時間:18 ns(10 至 90%)		
	脈寬解析度:10 ns 或 5 位數,取兩者中較大者		
	非對稱性(在 50% 直流下):± 1% ± 5 ns		
	抖動 (TIE RMS):500 ps		
斜波/三角波	頻率範圍:0.1 Hz 至 200 kHz		
	變數對稱性:0至 100%		
雜訊	頻寬:典型值為 20 MHz		

WaveGen - 內建的函數產生器(續)

註:適用於 WaveGen EDUX1052G、DSOX1202G 和 DSOX1204G, WaveGen 不可升級。

	EDUX1052G/DSOX1202G/DSOX1204G
頻率	正弦波與斜波準確度:
9प्र'न	エス次条が及手権及・ 130 ppm(頻率 < 10 kHz)
	130 ppin(頻率 > 10 kHz
	50 ppm (95学 > 10 KHZ)
	150 + 頻率/200] ppm (頻率 < 25 kHz)
	50 ppm (頻率25 kHz)
	37 FF (3)(+-3 ··· ·-2)
	M
振幅	
	在高阻抗下為 2 mVpp 至 20 Vpp (偏移≤± 0.4 V)
	在 50 Ω 下為 1 mVpp 至 10 Vpp(偏移≤± 0.4 V)
	在高阻抗下為 50 mVpp 至 20 Vpp(偏移 > ± 0.4 V)
	在 50 Ω 下為 25 mVpp 至 10 Vpp(偏移 > ± 0.4 V)
	正弦波:
	在高阻抗下為 2 mVpp 至 12 Vpp(偏移 ≤ ± 0.4 V)
	在 50 Ω 下為 1 mVpp 至 9 Vpp(偏移 ≤ ± 0.4 V)
	在高阻抗下為 50 mVpp 至 12 Vpp (偏移 > ± 0.4 V)
	在 50 Ω 下為 25 mVpp 至 9 Vpp(偏移 > ± 0.4 V)
	解析度:≤振幅的 1%
+\+1614	準確度: 2% (頻率 = 1 kHz)
直流偏移	方波、脈衝波、斜波:
	在高阻抗下為 ± [10 V - ½ 振幅]
	在 50 Ω 下為 ± [5 V – ½ 振幅]
	正弦波:
	在高阻抗下為 ± [8 V - ½ 振幅] 在 50 Ω 下為 ± [4.5 V - ½ 振幅]
	<u>任 30 ㎡ 下高 = [4:3 V = 72 孤闸]</u> 解析度:100 uV 或 3 位數,取兩者中較大者
	<u>牌析版・100 W 以 3 位数 * 取 M 4 中収入 4</u> 準確度:偏移設定值的 ± 1.5%、振幅的 ± 1.5%、± 1 mV
 主要輸出	<u> </u>
上久+刑 山	隔離值:不適用,主要輸出 BNC 已接地
	保護設計:過載時自動關閉輸出
	正弦波、方波、斜波、脈衝波、直流、雜訊
	AND

連接

	所有機型
標配的連接埠	背板配備 1 個 USB 2.0 高速裝置連接埠。支援 USBTMC 協定
	前蓋配備 1 個 USB 2.0 高速主控埠。支援的記憶體裝置
	一個 Ethernet 1 Gb/s 網路埠:RJ-45

永久性記憶體

	所有機型		
參考波形顯示	2 個內建波形,或是儲存於 USB 隨身碟的參考波形		
波形儲存格式	設定 (.scp), 圖像 (.bmp, .png), 通道波形 (.csv, .bin), 參考波形 (.h5), 波罩 (.msk), 串列協定數據 (.csv), 頻率響應增益和相位數據 (.csv)		
最大 USB 隨身碟容量	支援業界標準的 USB 隨身碟		
無 USB 隨身碟時的設定			
USB 隨身碟格式	FAT32 NTFS EXT2/3/4		

一般特性與環境特性

	ビア → 140 Tri	
	所有機型	
電源線功耗	50 W 最大	
電壓範圍	100 至 120 V,50/60/400 Hz;100 至 240 V,50/60 Hz	
環境適應等級	<u>0 至 + 50°C,最高 3,000 m</u>	
	最大相對溼度(非凝結):高達 40℃ 時相對濕度為 95%RH;50℃ 時相對濕度將線性下降至 45%RH 11	
符合的電磁安規標準	符合 EMC directive (2004/108/EC)、符合或超過 IEC 61326-1:2005/EN61326-1:2013 (basic)	
	IEC 61000-4-2/EN 61000-4-2	
	IEC 61000-4-3/EN 61000-4-3	
	IEC 61000-4-4/EN 61000-4-4	
	IEC 61000-4-5/EN 61000-4-5	
	IEC 61000-4-6/EN 61000-4-6	
	IEC 61000-4-8/EN 61000-4-8	
	IEC 61000-4-11/EN 61000-4-11	
	加拿大:ICES/NMB-001:2006	
	· 澳洲/紐西蘭:AS/NZS CISPER 11:2011	
安全規格	ANSI/UL Std. No. 61010-1:2012; CAN/CSA-C22.2 No. 61010-1-12	
	ANSI/UL Std. No. 61010-2-030:2012; CAN/CSA-C22.2 No. 61010-2-030-12	
體積 (W x H x D)	314 mm (12.4 in) x 165 mm (6.5 in) x 130 mm (5.1 in)	
重量	淨重:3.23 kg (7.1 lbs),含包裝:4.2 kg (9.2 lbs)	
類示器	7.0 吋對角彩色 TFT LCD WVGA	

^{11.} 從 40°C 到 50°C,最大相對濕度百分比遵守恆定露點線。

設定您的 InfiniiVision 1000 X 系列示波器

第1步:選擇您的示波器

EDUX1052A	
EDUX1052G	50 MHz,2 通道,具備函數產生器
DSOX1202A	70/100/200 MHz,2 <u>通道</u>
DSOX1202G	70/100/200 MHz,2 通道,具備函數產生器
DSOX1204A	70/100/200 MHz,4 通道
DSOX1204G	70/100/200 MHz,4 通道,具備函數產生器

第2步:選擇頻寬升級選項

型號: DSOX1202A/G (2 通道)

D1202BW1A	頻寬從 70 升級至 100 MHz	與 DSOX1202A 或 DSOX1202G 相容
D1202BW2A	頻寬從 70 升級至 200 MHz	與 DSOX1202A 或 DSOX1202G 相容
D1202BW3A	頻寬從 100 升級至 200 MHz	與 DSOX1202A 或 DSOX1202G 相容

型號: DSOX1204A/G (4 通道)

D1200BW1A	頻寬從 70 升級至 100 MHz	與 DSOX1204A 或 DSOX1204G 相容
D1200BW2A	頻寬從 70 升級至 200 MHz	與 DSOX1204A 或 DSOX1204G 相容
D1200BW3A	頻寬從 100 升級至 200 MHz	與 DSOX1204A 或 DSOX1204G 相容

選擇其他配件

N2137A	InfiniiVision 1000 X-系列使用者手冊(印刷版)	選配(提供電子版免費下載)
N2738A	用於 1000 X-系列的攜帶包	選配
N2138A	用於 1000 X-系列的安裝套件	選配

選擇適用於電腦的應用軟體

BV0004B	BenchVue 示波器應用軟體	標配	
D9010UDAA	使用者定義 (UDA) 的應用軟體	選配	
D9010BSEO	Infiniium 離線示波器分析軟體	選配	

設定您的 InfiniiVision 1000 X 系列示波器(續)

第5步:選擇探棒

被動探棒

N2142A	1:1,10:1 可切换式 75 MHz 被動探棒	EDUX1052A/G 隨附的 2 個探棒
N2140A	1:1,10:1 可切换式 200 MHz 被動探棒	DSOX1202A/G 隨附的 2 個探棒
		DSOX1204A/G 隨附的 4 個探棒
N2842A	10:1,300 MHz 被動探棒	選配
N2889A	1:1,10:1 可切換式 350 MHz 被動探棒	選配
10070D	1:1,20 MHz 被動探棒	選配
N2870A	1:1,35 MHz 被動探棒	選配
N7007A	10:1,400 MHz 極端溫度被動探棒	選配
10076C	100:1,500 MHz 3.7 KV 高電壓被動探棒	選配

差動探棒

N2791A	25 MHz,10:1,100:1 高達 ± 700 V 可切換式高電壓	選配	
N2891A	70 MHz,100:1,1,000:1 高達 ± 7,000 V 可切換式高電壓	選配	

電流探棒

1146B	100 kHz,100 A,交流/直流電流探棒	選配
N2780B	2 MHz,500 A,交流/直流電流探棒(配備 N2779A 電源供應器)	選配
N2781B	10 MHz,150 A,交流/直流電流探棒(配備 N2779A 電源供應器)	選配
N2782B	50 MHz,30 A,交流/直流電流探棒(配備 N2779A 電源供應器)	選配
N2783B	100 MHz,30 A,交流/直流電流探棒(配備 N2779A 電源供應器)	選配
N7040A	23 MHz,3 kA,交流電流探棒(Rogowski 線圈)	選配
N7041A	30 MHz,600 A,交流電流探棒(Rogowski 線圈)	選配
N7042A	30 MHz,300 A,交流電流探棒(Rogowski 線圈)	選配

第6步:選擇語言版本(紙本的操作指南,需要另行訂購,電子版為免費下載)

	前面板 (EDUX1052A/G, DSOX1202A/G)	前面板 (DSOX1204A/G)	使用者手冊 所有機型
英文	標配	標配	N2137A-ABA
簡體中文	DSOX1202-AB2	DSOX1200-AB2	N2137A-AB2
繁體中文	DSOX1202-ABO	DSOX1200-AB0	N2137A-AB0
捷克文	DSOX1202-AKB	DSOX1200-AKB	不提供
法文	DSOX1202-ABF	DSOX1200-ABF	N2137A-ABF
德文	DSOX1202-ABD	DSOX1200-ABD	N2137A-ABD
義大利文	DSOX1202-ABZ	DSOX1200-ABZ	N2137A-ABZ
日文	DSOX1202-ABJ	DSOX1200-ABJ	N2137A-ABJ
韓文	DSOX1202-AB1	DSOX1200-AB1	N2137A-AB1
波蘭文	DSOX1202-AKD	DSOX1200-AKD	不提供
葡萄牙文	DSOX1202-AB9	DSOX1200-AB9	N2137A-AB9
俄文	DSOX1202-AKT	DSOX1200-AKT	N2137A-AKT
西班牙文	DSOX1202-ABE	DSOX1200-ABE	N2137A-ABE
泰文	DSOX1202-AB3	DSOX1200-AB3	不提供
土耳其文	DSOX1202-AB8	DSOX1200-AB8	 不提供

設定您的 InfiniiVision 1000 X 系列示波器(續)

標配

標配被動式探棒 (EDUX1052A/G 兩個 N2142A; DSOX1202A/G 兩個 N2140A; DSOX1204A/G 四個 N2140A)

標配的資料清除安全功能

支援的介面語言版本:英文、日文、簡體中文、繁體中文、韓文、德文、法文、西班牙文、俄文、葡萄牙文、義大利文、波蘭文、捷克文、泰文和土耳其文

支援的內建輔助說明語言版本:英文、日文、簡體中文、繁體中文、韓文、德文、法文、西班牙文、俄文、葡萄牙文、義大利文、波蘭文和泰文

當地適用的電源線

校驗證書 (CoC)

詳細的資訊,請上網查詢:www.keysight.com

有關是德科技電子量測產品、應用及服務的詳細資訊,可查詢我們的網站或來電洽詢 以下為是德科技聯絡窗口:www.keysight.com/find/contactus

