SUITES – BAC S CENTRES ÉTRANGERS 2013

Soit la suite (u_n) définie par $u_1 = \frac{3}{2}$ et $u_{n+1} = \frac{nu_n + 1}{2(n+1)}$.

PARTIE A

A.1) On complète l'algorithme :

	Variables	n est un entier naturel
		u est un réel
	Initialisation	Affecter à n la valeur 1
		Affecter à u la valeur 1,5
	Traitement	Tant que $n < 9$
		Affecter à u la valeur $(n^*u + 1)/[2^*(n + 1)]$
		Affecter à n la valeur $n+1$
		Fin Tant que
	Sortie	Afficher la variable u

A.2) On modifie l'algorithme :

Variables	n est un entier naturel
	u est un réel
Initialisation	Affecter à n la valeur 1
	Affecter à u la valeur 1,5
Traitement	Tant que $n < 9$
	Affecter à u la valeur $(n^*u + 1)/[2^*(n + 1)]$
	Afficher la variable u
	Affecter à n la valeur $n + 1$
	Fin Tant que
Sortie	

A.3) Au vu des résultats du tableau, on conjecture que (u_n) est décroissante et tend vers une limite l telle que : $0 \le l < 0.0101$

PARTIE B

On définit la suite $v_n = nu_n - 1$ pour tout entier $n \ge 1$.

B.1) Calculons le rapport $\frac{v_{n+1}}{v_n}$. On a :

$$v_{n+1} = (n+1)u_{n+1} - 1 = \frac{(n+1)(nu_n + 1)}{2(n+1)} - 1 = \frac{nu_n + 1}{2} - 1 = \frac{nu_n - 1}{2}.$$
 D'où l'on tire :
$$\frac{v_{n+1}}{v} = \frac{nu_n - 1}{2(nu_n - 1)} = \frac{1}{2}.$$

En remarquant que $v_1 = u_1 - 1 = \frac{3}{2} - 1 = \frac{1}{2}$, on en déduit que (v_n) est une suite géométrique de raison $\frac{1}{2}$ et de premier terme $\frac{1}{2}$.

B.2) De ce qui précède, on peut écrire pour tout entier $n \ge 1$:

$$v_n = nu_n - 1 = (0,5)^n \Rightarrow u_n = \frac{1 + (0,5)^n}{n}$$
.

B.3) On en déduit que la limite de (u_n) est 0.

B.4) Pour tout entier n > 1 on a :

$$u_{n+1} - u_n = \frac{1 + (0,5)^{n+1}}{n+1} - \frac{1 + (0,5)^n}{n} = \frac{n[1 + 0,5(0,5)^n] - (n+1)[1 + (0,5)^n]}{n(n+1)}.$$

En développant et réarrangeant le numérateur, on trouve :

$$u_{n+1} - u_n = -\frac{1 + (1 + 0.5n)(0.5)^n}{n(n+1)}.$$

Le calcul précédent montre que $u_{n+1} - u_n < 0 \Rightarrow u_{n+1} < u_n$, ce qui signifie que (u_n) est décroissante.

PARTIE C

On propose l'algorithme suivant :

301110	America a critica w
Sortie	Afficher l'entier n
	Fin Tant que
	Affecter à n la valeur $n + 1$
	Affecter à u la valeur $(n^*u + 1)/[2^*(n + 1)]$
Traitement	Tant que $u \ge 0,001$
	Affecter à u la valeur 1,5
Initialisation	Affecter à n la valeur 1
	u est un réel
Variables	n est un entier naturel