热力学复习内容

主要内容:

一、基本概念

平衡态、准静态过程,热量、功、内能、焓、熵、自由能、 吉不斯函数、特性函数等基本概念

二、热力学第一定律

热力学第一定律内容及数学表示,其对理想气体各等值过程的应用,准静态过程功的计算、热量计算,理想气体的摩尔热容,循环过程,卡诺循环,

主要内容:

三、热力学第二定律

热力学第二定律两种表述,卡诺定理、克劳休斯等式不等式,熵和熵增加定理,熵差计算,热力学基本方程等。

四、均匀物质的热力学性质

导出克劳休斯方程组——麦式关系,麦式关系的应用 (系数比较法和复合函数微分法)举例说明特性函数。

等值过程

	状态方程	多万 指数 n	恐谷 量	热量	系统做功	内能改变	熵变
等 温	PV = C	1	±∞	$nRT \ln \frac{V_2}{V_1}$	$nRT \ln \frac{V_2}{V_1}$	0	$nR \ln \frac{V_2}{V_1}$
等 容	V = C	<u>+</u> ∞	C _v	$C_V dT$	0	$C_V dT$	$C_V \ln \frac{T_2}{T_1}$
等 压	P = C	0	C _P	$C_P dT$	nRdT	$C_V dT$	$C_P \ln \frac{T_2}{T_1}$
绝热	$PV^n = C$	$n = \frac{C_P}{C_V} > 1$	0	0	$\frac{p_1V_1 - P_2V_2}{n-1}$	$\frac{P_2V_2 - P_1V_2}{n-1}$	<u>V</u> 1 0

热容

名 称	符号及定义	独立亦	共轭变量	函数关系 (麦氏关系)
		变量		
内	U	S	$T = \left(\frac{\partial U}{\partial G} \right)$	
能	dU=TdS-pdV	V	$P = -\left(\frac{\partial U}{\partial V}\right)_{s}$	$\left(\frac{\partial T}{\partial V}\right) = -\left(\frac{\partial P}{\partial C}\right)$
	ш		(∂H)	$\left(\partial V\right)_{s} \left(\partial S\right)_{v}$
焓	Н	S	$T = \begin{bmatrix} \frac{\partial T}{\partial C} \end{bmatrix}$	
	H=U+PV	Р	$\left(\frac{\partial S}{\partial S} \right)_p V = \left(\frac{\partial H}{\partial S} \right)$	$\left(\begin{array}{c} OI \\ \hline \end{array}\right) = \left(\begin{array}{c} OV \\ \hline \end{array}\right)$
	dH=TdS+Vdp		$\left(\partial P \right)_{s}$	$\left(\partial P \right)_s \left(\partial S \right)_P$
自	F	\/	$S - (\partial F)$	
曲	F=U-TS	T	$\int_{V} P = -\left(\frac{\partial F}{\partial F}\right)$	$\left(\frac{\partial S}{\partial P}\right) = \left(\frac{\partial P}{\partial P}\right)$
能	dF=-pdV-SdT	•	$ \left(\partial V \right)_T$	$\left(\partial V \right)_T \left(\partial T \right)_V$
自	G	Т	$S = -\left(\frac{\partial G}{\partial T}\right)$	
由焓	G=H-TS	Р	$ \left(\frac{\partial T}{\partial T} \right)_{P} V = \left(\frac{\partial G}{\partial G} \right) $	$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P}$
焓	dG=-SdT+VdP	•	$\left\langle \partial P \right\rangle_T$	$\left(\partial P\right)_{T} \left(\partial T\right)_{P}$