Tarea 6 Actividades de Distribución Weibull

Alumno

 ${\color{red} \bullet}$ Luis Ángel Mendoza López

${\bf \acute{I}ndice}$

1	Verificación Inversa de Weibull	2
2	Aplicaciones de la Distribución Weibull	3

1. Verificación Inversa de Weibull

Verificar que si $U \sim \text{Unif}(0,1)$ entonces

$$F_x^{-1}(u) = \frac{1}{\lambda} \left(-ln(1-u) \right)^{\frac{1}{\alpha}} \sim \mathbf{Weibull}(\alpha, \lambda)$$

Demostración. Tenemos inicialmente que

$$U \sim \text{Unif}(0,1) \text{ y } X = \frac{1}{\lambda} \left(-\ln(1-u) \right)^{\frac{1}{\alpha}}$$

De este modo, tenemos que

$$\mathbb{P}(X \le x) = \mathbb{P}\left(\frac{1}{\lambda}\left(-\ln(1-u)\right)^{\frac{1}{\alpha}} \le x\right)$$

$$= \mathbb{P}\left(\frac{1}{\lambda}\left(-\ln(1-u)\right)^{\frac{1}{\alpha}} \le x\right)$$

$$= \mathbb{P}\left(\left(-\ln(1-u)\right)^{\frac{1}{\alpha}} \le x \cdot \lambda\right)$$

$$= \mathbb{P}\left(\left((-\ln(1-u)\right)^{\frac{1}{\alpha}}\right)^{\alpha} \le (x \cdot \lambda)^{\alpha}\right)$$

$$= \mathbb{P}\left(-\ln(1-u) \le (\lambda \cdot x)^{\alpha}\right)$$

$$= \mathbb{P}\left(\ln(1-u) \ge -(\lambda x)^{\alpha}\right)$$

$$= \mathbb{P}\left(e^{\ln(1-u)} \ge e^{-(\lambda x)^{\alpha}}\right)$$

$$= \mathbb{P}\left(1-u \ge e^{-(\lambda x)^{\alpha}}\right)$$

$$= \mathbb{P}\left(u-1 \le -e^{-(\lambda x)^{\alpha}}\right)$$

$$= \mathbb{P}\left(u \le 1-e^{-(\lambda x)^{\alpha}}\right)$$

$$= 1-e^{-(\lambda x)^{\alpha}}$$

$$= F_X(x) \text{ con } X \sim \text{Weibull}(\alpha, \lambda)$$

2. Aplicaciones de la Distribución Weibull

La distribución Weibull nos ayuda a describir cómo varía la probabilidad de que ocurran eventos (tanto positivos como negativos) en función de alguna variable, siempre y cuando ésta sea continua.

• Aplicación en las Industrias

Modelar el tiempo de vida - calidad de aparatos, componentes o sistemas industriales.

Aplicación en las Finanzas

 Modelar el tamaño de pérdidas en carteras de inversión dentro de un lapso de tiempo.

Aplicación en los Seguros

 Modelar el tamaño de pérdidas debido a siniestros dentro de una aseguradora en un lapso de tiempo.

• Aplicación en la Medicina

• Modelar la duración de enfermedades y supervivencia de pacientes.

• Aplicación en el Clima

• Modelar la intensidad de tormentas, ráfagas de viento o lluvias.