

Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

# Метод построения конечных автоматов на основе муравьиного алгоритма

Д.С. Чивилихин В.И. Ульянцев А.А. Шалыто

«Интегрированные модели и мягкие вычисления в искусственном интеллекте»

Коломна, 21 мая 2013

# Системы со сложным поведением



Система с простым поведением

Система со сложным поведением

### Автоматное программирование: система управления

Автомат управления Воздействия управления воздействия управления

- Система управления является конечным автоматом
- Эффективно для систем со сложным поведением

#### Управляющий автомат



#### Постановка задачи

• Построение управляющих автоматов вручную затруднительно, иногда невозможно

- Разрабатываются методы автоматизированного построения
- Поисковая оптимизация

### Поисковая оптимизация для построения конечных автоматов

- N число состояний
- Σ множество входных событий
- Д множество выходных воздействий
- $X = (N, \Sigma, \Delta)$



#### Известные решения

- Эволюционные стратегии, генетические алгоритмы
  - Недостаток: скорость работы
- Сведение задачи к другим NP-полным задачам (SAT, CSP)
  - Преимущество: скорость работы
  - Недостаток: можно свести лишь некоторые задачи построения автоматов

#### Предлагаемое решение

• Применение муравьиных алгоритмов для построения автоматов

- Муравьиные алгоритмы относятся к методам роевого интеллекта (swarm intelligence)
- Ни один из методов роевого интеллекта до сих пор не применялся для построения автоматов

### Классический муравьиный алгоритм

- Комбинаторные задачи сводятся к поиску оптимального пути в некотором полном графе
- Вершины графа переходы автомата
- Муравьи добавляют переходы в автомат, перемещаясь по вершинам графа

# Пример полного графа переходов



# Предлагаемый метод построения автоматов

- Классика:
  - Вершины компоненты решений
  - Полные решения пути в графе
  - Неэффективны для решения задачи
- Предлагаемый муравьиный алгоритм:
  - Вершины полные решения (автоматы)
  - Муравьи перебирают полные решения

#### Метод: представление пространства поиска в виде графа

- Вершины управляющие автоматы
- Ребра мутации автоматов
  - изменение состояния, в которое ведет переход
  - изменение действия на переходе
- Рассматривается лишь часть пространства поиска

#### Метод: пример



#### Метод: муравьиный алгоритм

- Изначальное решение случайный автомат
- Пока не найдено решение
  - Построение решений муравьями
  - Обновление феромона

#### Построение решений муравьями

- Муравей помещается в вершину графа
- У каждого муравья ограниченное число шагов
- Шаг муравья переход в следующую вершину

#### Выбор следующей вершины





#### Обновление значений феромона

- Качество решения (пути муравья) максимальное значение ФП вершины пути
- Обновление  $\tau_{uv}^{best}$  наибольшего значения феромона, отложенного на ребре (u, v)
- Новое значение вычисляется по формуле:

$$\tau_{uv} = (1 - \rho)\tau_{uv} + \tau_{uv}^{best}$$

•  $\rho \in [0,1]$  – скорость испарения феромона

#### Метод: пример



#### Задача построения агента

- Поле тор NxN
- М клеток с едой
- К ходов
- Положение еды и начальная позиция агента фиксированы
- Цель создать агента, который съест всю еду



Пример поля

## Эксперименты: построение агента

- Два поля:
  - Santa Fe Trail
  - John Muir Trail
- Сравнение:
  - Классический муравьиный алгоритм
  - Christensen, Oppacher (2007)
  - Царев, Шалыто (2007)

## Классический муравьиный алгоритм

|                    | Классический<br>муравьиный<br>алгоритм |               | Предложенный<br>алгоритм |               |
|--------------------|----------------------------------------|---------------|--------------------------|---------------|
| Число<br>состояний | Доля<br>удач, %                        | Время,<br>сек | Доля<br>удач, %          | Время,<br>сек |
| 5                  | 18                                     | 18.09         | 87                       | 0.65          |
| 10                 | 10                                     | 218.49        | 91                       | 0.5           |

#### Santa Fe trail

Для автоматов с семью состояниями — в 3 раза быстрее



# John Muir Trail (Царев и Шалыто, 2007): 200 ходов

 $5 \times 10^{7}$ Муравьиный алгоритм ГА - Царев, Шалыто (2007) Для Iисло вычислений ФП 3 автоматов с семью СОСТОЯНИЯМИ — в 30 раз быстрее 10 15 Число состояний автомата

#### Результаты

- Разработан новый метод построения управляющих автоматов
- Метод основан на муравьином алгоритме нового типа
- Для рассмотренных задач метод в несколько раз эффективнее известных подходов

#### Основные публикации

- 1. Chivilikhin D., Ulyantsev V., Tsarev F. Test-Based Extended Finite-State Machines Induction with Evolutionary Algorithms and Ant Colony Optimization // Proceedings of the 2012 GECCO Conference Companion on Genetic and Evolutionary Computation. NY.: ACM. 2012, pp. 603–606.
- **2. Chivilikhin D., Ulyantsev V.** Learning Finite-State Machines with Ant Colony Optimization // Lecture Notes in Computer Science, 2012, Volume 7461/2012, pp. 268-275.
- 3. Chivilikhin D., Ulyantsev V. MuACOsm A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines // To appear in Proceedings of the 2013 Genetic and Evolutionary Computation Conference
- 4. Chivilikhin D., Ulyantsev V., Shalyto A. Solving Five Instances of the Artificial Ant Problem with Ant Colony Optimization // To appear in Proceedings of the 2013 IFAC Conference on Manufacturing Modelling, Management and Control
- **5.** Чивилихин Д.С., Ульянцев В.И. Метод построения управляющих автоматов на основе муравьиных алгоритмов // Научно-технический вестник информационных технологий, механики и оптики. 2012. №6(82), с. 72-76.

#### Спасибо за внимание!

Метод построения конечных автоматов на основе муравьиного алгоритма

Д.С. Чивилихин В.И. Ульянцев А.А. Шалыто



chivilikhin.daniil@gmail.com

http://is.ifmo.ru