Question	Answer	Marks	Guidance
7(a)	$(a=)\frac{\mathrm{d}v}{\mathrm{d}t} = 0.5$	B1	For acceleration during the first 10 seconds
	Differentiate to get $(a =) \frac{dv}{dt} = 2 \times 0.25t - 8$ $[= 0.5t - 8]$	B1	Allow unsimplified
	$a[=0.5\times10-8]=-3$	B1	CWO. Do not award final B mark if more than 2 accelerations seen and not discarded, 2/3 maximum Ignore any comments, correct or incorrect
		3	

Question	Answer	Marks	Guidance
(b)	Get distance in first 10 seconds as 25	B1	From suvat or from $\int_{0}^{10} 0.5t dt$
	v = 0 when $t = 12$ and $t = 20$	B1	SOI
	Attempt to integrate v	*M1	For integration, the power of t must increase by 1 in at least 1 term with a change of coefficient in the same term. $s = vt$ is M0
	$\left[s = \int \left(0.25t^2 - 8t + 60\right) dt\right]$		
	$s = \frac{0.25}{3}t^3 - \frac{8}{2}t^2 + 60t(+c)$ $\left[= \frac{1}{12}t^3 - 4t^2 + 60t(+c) \right]$	A1	Allow unsimplified
	Attempt to evaluate their $\left[\frac{1}{12}t^3 - 4t^2 + 60t\right]$ for $t = 10$ to $t = 12$	DM1	Using the correct limits correctly
	and $t = 12$ to $t = 20$		
	$s = \left[25 + 288 - \frac{850}{3} - \left(\frac{800}{3} - 288\right) = 25 + \frac{14}{3} - \left(-\frac{64}{3}\right)\right] = 51 \text{ m}$	A1	

Question	Answer	Marks	Guidance	
(b)	Special Case for those who use a calculator to integrate. Maximum 4/6			
	Get distance in first 10 seconds as 25	B1	From suvat or $\int_{0}^{10} 0.5t dt$	
	v = 0 when $t = 12$ and $t = 20$	B1	SOI	
	Either $s = \int_{10}^{12} (0.25t^2 - 8t + 60) dt = \frac{14}{3} = 4.67$	B1	Allow $\int_{10}^{20} \left 0.25t^2 - 8t + 60 \right dt = 26$	
	Or $s = \left \int_{12}^{20} (0.25t^2 - 8t + 60) dt \right = \frac{64}{3} = 21.3$			
	$s = \left[25 + \frac{14}{3} + \frac{64}{3}\right] = 51 \text{ m}$	B1	Allow if $t = 12$ and $t = 20$ not found for 3 marks	
		6		