IN THE CLAIMS:

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Previously Presented) A method for producing a compound represented by the formula:

wherein the ring A is a benzene ring which may be substituted in addition to the group of $-COOR^6$ group; R^1 is hydrogen or an optionally substituted hydrocarbon residue; X is a direct bond or a spacer having an atomic length of two or less between the phenylene group and the phenyl group; Y is -O-, -S(O)m- or $-N(R^4)$ - wherein m is an integer of 0, 1 or 2 and R^4 is hydrogen or an optionally substituted alkyl group; R^6 is a lower (C_{1-6}) alkyl optionally substituted with lower (C_{2-6}) alkanoyloxy, 1-lower (C_{1-6}) alkoxycarbonyloxy; n is an integer of 1 or 2; or a pharmaceutically acceptable salt thereof, which comprises;

(i) reacting a compound represented by the formula:

wherein R is triphenylmethyl, 2-tetrahydropyranyl, methoxymethyl or ethoxy methyl, and the other symbols have the same meanings as defined above, or a pharmaceutically acceptable salt thereof; with an alkylating agent to give a compound represented by the formula:

$$(Ip)$$

wherein each symbol has the same meaning as defined above; or a pharmaceutically acceptable salt thereof; and then,

- (ii) deprotecting the compound (Ip) or a pharmaceutically acceptable salt thereof.
- 4. (Previously Presented) A method for producing a compound represented by the formula:

wherein the ring A is a benzene ring which may be substituted in addition to the group of $-COOR^6$ group; R^1 is hydrogen or an optionally substituted hydrocarbon residue; X is a direct bond or a spacer having an atomic length of two or less between the phenylene group and the phenyl group; Y is -O-, -S(O)m- or -N(R^4)- wherein m is an integer of 0, 1 or 2 and R^4 is hydrogen or an optionally substituted alkyl group; R^6 is a lower (C_{1-6}) alkyl optionally substituted with lower (C_{2-6}) alkanoyloxy, 1-lower (C_{1-6}) alkoxycarbonyloxy; n is an integer of 1 or 2; or a pharmaceutically acceptable salt thereof, which comprises;

(i) reacting a compound represented by the formula:

$$(CH_2)_n \longrightarrow X \longrightarrow X$$

$$(In)$$

wherein each symbol has the same meaning as defined above, or a pharmaceutically acceptable salt thereof with an alkylating agent to give a compound represented by the formula:

wherein R is triphenylmethyl, 2-tetrahydropyranyl, methoxymethyl or ethoxy methyl, and the other symbols have the same meanings as defined above, or a pharmaceutically acceptable salt thereof;

(ii) reacting the compound (Io) or a pharmaceutically acceptable salt thereof with an alkylating agent to give a compound represented by the formula:

$$(Ip)$$

wherein each symbol has the same meaning as defined above; or a pharmaceutically acceptable salt thereof; and then,

- (iii) deprotecting the compound (Ip) or a pharmaceutically acceptable salt thereof.
- 5. (Previously Presented) A method according to claims 3 or 4, wherein R¹ is an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, aryl, or aralkyl group.

- 6. (Previously Presented) A method according to claims 3 or 4, wherein R^1 is an alkyl, alkenyl, alkynyl, or cycloalkyl group, which may be substituted with hydroxyl, an optionally substituted amino group, halogen or a lower (C_{1-4}) alkoxy group.
- 7. (Previously Presented) A method according to claims 3 or 4, wherein R^1 is a lower (C_{1-5}) alkyl or lower (C_{2-5}) alkenyl group optionally substituted with hydroxyl, an amino group, halogen or a lower (C_{1-4}) alkoxy group.
- 8. (Original) A method according to claim 6, wherein the alkyl is a lower alkyl group having 1 to about 8 carbon atoms, which may be straight or branched.
- 9. (Original) A method according to claim 8, wherein the lower alkyl group is unsubstituted or substituted with hydroxyl, an optionally substituted amino group, halogen or a lower (C_{l-4}) alkoxy group.
- 10. (Previously Presented) A method according to claims 3 or 4, wherein R¹ is a lower alkyl group having 1 to about 8 carbon atoms.
- 11. (Original) A method according to claim 5, wherein the aryl group is phenyl which may be substituted with halogen, nitro, lower (C_{1-4}) alkoxy, or lower (C_{1-4}) alkyl.
- 12. (Original) A method according to claim 5, wherein the aralkyl group is phenyl-lower (C_{1-4}) alkyl which may be substituted with halogen, nitro, lower (C_{1-4}) alkoxy, or lower (C_{1-4}) alkyl.
- 13-21. (Cancelled)
- 22. (Currently Amended) A method according to claims 3 or 4, wherein the ring A is a benzene ring which may contain, in addition to the <u>-COOR⁶</u> [[R']] group, a substituent being

selected from the group consisting of halogen nitro, cyano, optionally substituted amino, a group having the formula: -W-R¹³

and R^{13} is hydrogen or an optionally substituted lower alkyl group, a group having the formula: $-(CH_2)_p$ -CO-D wherein D is hydrogen, hydroxyl, optionally substituted amino, or optionally substituted alkoxy, and p is 0 or 1, tetrazolyl optionally protected with an optionally substituted lower alkyl group or an acyl group, trifluoromethanesulfonic amide, phosphoric acid, or sulfonic acid.

- 23. (Currently Amended) A method according to claims 3 or 4, wherein the ring A is a benzene ring which contains no substitution in addition to the <u>-COOR⁶</u> [[R']] group.
- 24. (Previously Presented) A method according to claims 3 or 4, wherein X is a chemical bond, lower (C_{1-4}) alkylene,

- 25. (Previously Presented) A method according to any one of claims 3 or 4, wherein'X is a chemical bond between the phenylene group and the phenyl group.
- 26. (Previously Presented) A method according to claims 3 or 4, wherein Y is -O-, -SO_m-wherein m is 0, 1, or 2, or -N(R^4)- wherein R^4 is hydrogen or an optionally substituted lower (C_{1-4}) alkyl group.
- 27. (Previously Presented) A method according to claims 3 or 4, wherein $Y R^1$ is $-N(R^4)$ - R^1 wherein R^1 and R^4 are taken together with the N atom attached thereto to form a heterocyclic ring.
- 28. (Cancelled)

- 29. (Original) A method according to claim 3 or 4, wherein the alkylating reaction is conducted in the presence of a base.
- 30. (Previously Presented) A method according to claims 3 or 4, wherein the deprotecting reaction is conducted under acid condition.
- 31. (Previously Presented) A method according to claim 3 or 4, wherein the alkylating agent is a halide.
- 32. (Original) A method according to claim 4, wherein the alkylating agent used in the reaction (i) of compound (In) with alkylating agent, is selected from triphenylmethyl chloride and methoxy methyl chloride.
- 33. (Original) A method according to claim 3 or 4, wherein the alkylating agent used in the reaction of compound (Io) with alkylating agent, is selected from cyclohexyl 1-iodoethyl carbonate, ethyl 1-iodoethyl carbonate, and pivaloyloxymethyl iodide.
- 34. (Cancelled)
- 35. (Original) A method for producing 1-(cyclohexyloxycarbonyloxy)ethyl 2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylate or a pharmaceutically acceptable salt thereof, which comprises reacting 2-ethoxy-1-[[2'-(N-triphenylmethyltetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylic acid or a pharmaceutically acceptable salt thereof with an alkylating agent, and then subjecting the resulting compound to deprotecting reaction of the tetrazole group.
- 36. (Original) A method for producing 1-(cyclohexyloxycarbonyloxy)ethyl 2-ethoxy-1-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylate or a pharmaceutically acceptable salt thereof, which comprises (i) reacting 2-ethoxy-[[2'-(1H-tetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylic acid or a pharmaceutically acceptable

salt thereof with an alkylating agent to give 2-ethoxy-1-[[2'-N-triphenylmethyltetrazol-5-yl)biphenyl-4-yl]methyl]benzimidazole-7-carboxylic acid or a pharmaceutically acceptable salt thereof, (ii) reacting the resulting compound with an alkylating agent, and then (iii) subjecting the resulting compound to deprotecting reaction of the tetrazole group.